diff options
author | android-build-team Robot <android-build-team-robot@google.com> | 2020-04-28 20:26:22 +0000 |
---|---|---|
committer | android-build-team Robot <android-build-team-robot@google.com> | 2020-04-28 20:26:22 +0000 |
commit | f213b0ebb32c7c8a2b998609975ad273fc82eba6 (patch) | |
tree | 221d5bb3866a4569ef03155e0e25e193906765e4 | |
parent | 8a5b851a455d73077de82298fabd383cbb5d2652 (diff) | |
parent | 4857a1a24ab6fd537bc4186fc88548c2b9c29e82 (diff) | |
download | platform_tools_test_connectivity-android10-mainline-tzdata-release.tar.gz platform_tools_test_connectivity-android10-mainline-tzdata-release.tar.bz2 platform_tools_test_connectivity-android10-mainline-tzdata-release.zip |
Snap for 6439596 from 4857a1a24ab6fd537bc4186fc88548c2b9c29e82 to qt-aml-tzdata-releaseandroid-mainline-10.0.0_r11android10-mainline-tzdata-release
Change-Id: I2bc9eaafd95e98e4a87e0f4c9a6ce366f88c9d95
483 files changed, 17026 insertions, 42958 deletions
@@ -1,4 +1,5 @@ bmahadev@google.com htellez@google.com +krisr@google.com markdr@google.com xianyuanjia@google.com diff --git a/PREUPLOAD.cfg b/PREUPLOAD.cfg index b76b7978e4..245cd52358 100644 --- a/PREUPLOAD.cfg +++ b/PREUPLOAD.cfg @@ -1,7 +1,31 @@ [Hook Scripts] -create_virtualenv = ./tools/create_virtualenv.sh -acts_unittests = /tmp/acts_preupload_virtualenv/bin/python3 ./acts/tests/meta/ActsUnitTest.py -destroy_virtualenv = rm -rf /tmp/acts_preupload_virtualenv/ +acts_adb_test = ./acts/framework/tests/acts_adb_test.py +acts_android_device_test = ./acts/framework/tests/acts_android_device_test.py +acts_asserts_test = ./acts/framework/tests/acts_asserts_test.py +acts_base_class_test = ./acts/framework/tests/acts_base_class_test.py +acts_config_test = ./acts/framework/tests/config/unittest_bundle.py +acts_context_test = ./acts/framework/tests/acts_context_test.py +acts_error_test = ./acts/framework/tests/acts_error_test.py +acts_host_utils_test = ./acts/framework/tests/acts_host_utils_test.py +acts_import_test_utils_test = ./acts/framework/tests/acts_import_test_utils_test.py +acts_import_unit_test = ./acts/framework/tests/acts_import_unit_test.py +acts_job_test = ./acts/framework/tests/acts_job_test.py +acts_libs_ota_tests = ./acts/framework/tests/libs/ota/unittest_bundle.py +acts_logger_test = ./acts/framework/tests/acts_logger_test.py +acts_metrics_test = ./acts/framework/tests/libs/metrics/unittest_bundle.py +acts_records_test = ./acts/framework/tests/acts_records_test.py +acts_relay_controller_test = ./acts/framework/tests/acts_relay_controller_test.py +acts_test_runner_test = ./acts/framework/tests/acts_test_runner_test.py +acts_unittest_suite = ./acts/framework/tests/acts_unittest_suite.py +acts_utils_test = ./acts/framework/tests/acts_utils_test.py +android_lib_unittest_bundle = ./acts/framework/tests/controllers/android_lib/android_lib_unittest_bundle.py +event_unittest_bundle = ./acts/framework/tests/event/event_unittest_bundle.py +logging_unittest_bundle = ./acts/framework/tests/libs/logging/logging_unittest_bundle.py +metrics_tests = ./acts/framework/tests/metrics/unittest_bundle.py +proc_unittest_bundle = ./acts/framework/tests/libs/proc/proc_unittest_bundle.py +sl4a_lib_suite = ./acts/framework/tests/controllers/sl4a_lib/test_suite.py +test_runner_test = ./acts/framework/tests/test_runner_test.py +version_selector_tests = ./acts/framework/tests/libs/version_selector_test.py lab_test = ./tools/lab/lab_upload_hooks.py proto_check = ./tools/proto_check.py diff --git a/acts/framework/acts/base_test.py b/acts/framework/acts/base_test.py index 6fad51ea6c..0eff6ab5bb 100755 --- a/acts/framework/acts/base_test.py +++ b/acts/framework/acts/base_test.py @@ -39,7 +39,6 @@ from acts.event.event import TestClassEndEvent from acts.event.subscription_bundle import SubscriptionBundle from mobly import controller_manager -from mobly.base_test import BaseTestClass as MoblyBaseTest from mobly.records import ExceptionRecord # Macro strings for test result reporting @@ -96,53 +95,16 @@ def _logcat_log_test_end(event): test_instance.log.warning('Error: %s' % e) -@subscribe_static(TestCaseBeginEvent) -def _syslog_log_test_begin(event): - """This adds a BEGIN log message with the test name to the syslog of any - Fuchsia device""" - test_instance = event.test_class - try: - for fd in getattr(test_instance, 'fuchsia_devices', []): - if not fd.skip_sl4f: - fd.logging_lib.logI("%s BEGIN %s" % (TEST_CASE_TOKEN, - event.test_case_name)) - - except Exception as e: - test_instance.log.warning( - 'Unable to send BEGIN log command to all devices.') - test_instance.log.warning('Error: %s' % e) - - -@subscribe_static(TestCaseEndEvent) -def _syslog_log_test_end(event): - """This adds a END log message with the test name to the syslog of any - Fuchsia device""" - test_instance = event.test_class - try: - for fd in getattr(test_instance, 'fuchsia_devices', []): - if not fd.skip_sl4f: - fd.logging_lib.logI("%s END %s" % (TEST_CASE_TOKEN, - event.test_case_name)) - - except Exception as e: - test_instance.log.warning( - 'Unable to send END log command to all devices.') - test_instance.log.warning('Error: %s' % e) - - event_bus.register_subscription(_logcat_log_test_begin.subscription) event_bus.register_subscription(_logcat_log_test_end.subscription) -event_bus.register_subscription(_syslog_log_test_begin.subscription) -event_bus.register_subscription(_syslog_log_test_end.subscription) class Error(Exception): """Raised for exceptions that occured in BaseTestClass.""" -class BaseTestClass(MoblyBaseTest): - """Base class for all test classes to inherit from. Inherits some - functionality from Mobly's base test class. +class BaseTestClass(object): + """Base class for all test classes to inherit from. This class gets all the controller objects from test_runner and executes the test cases requested within itself. @@ -182,7 +144,6 @@ class BaseTestClass(MoblyBaseTest): # Set all the controller objects and params. self.user_params = {} self.testbed_configs = {} - self.testbed_name = '' for name, value in configs.items(): setattr(self, name, value) self.results = records.TestResult() @@ -192,13 +153,79 @@ class BaseTestClass(MoblyBaseTest): self.consecutive_failure_limit = self.user_params.get( 'consecutive_failure_limit', -1) self.size_limit_reached = False - self.retryable_exceptions = signals.TestFailure # Initialize a controller manager (Mobly) self._controller_manager = controller_manager.ControllerManager( class_name=self.__class__.__name__, controller_configs=self.testbed_configs) + # Import and register the built-in controller modules specified + # in testbed config. + for module in self._import_builtin_controllers(): + self.register_controller(module, builtin=True) + if hasattr(self, 'android_devices'): + for ad in self.android_devices: + if ad.droid: + utils.set_location_service(ad, False) + utils.sync_device_time(ad) + self.testbed_name = '' + + def __enter__(self): + return self + + def __exit__(self, *args): + self._exec_func(self.clean_up) + + def unpack_userparams(self, + req_param_names=[], + opt_param_names=[], + **kwargs): + """An optional function that unpacks user defined parameters into + individual variables. + + After unpacking, the params can be directly accessed with self.xxx. + + If a required param is not provided, an exception is raised. If an + optional param is not provided, a warning line will be logged. + + To provide a param, add it in the config file or pass it in as a kwarg. + If a param appears in both the config file and kwarg, the value in the + config file is used. + + User params from the config file can also be directly accessed in + self.user_params. + + Args: + req_param_names: A list of names of the required user params. + opt_param_names: A list of names of the optional user params. + **kwargs: Arguments that provide default values. + e.g. unpack_userparams(required_list, opt_list, arg_a="hello") + self.arg_a will be "hello" unless it is specified again in + required_list or opt_list. + + Raises: + Error is raised if a required user params is not provided. + """ + for k, v in kwargs.items(): + if k in self.user_params: + v = self.user_params[k] + setattr(self, k, v) + for name in req_param_names: + if hasattr(self, name): + continue + if name not in self.user_params: + raise Error(("Missing required user param '%s' in test " + "configuration.") % name) + setattr(self, name, self.user_params[name]) + for name in opt_param_names: + if hasattr(self, name): + continue + if name in self.user_params: + setattr(self, name, self.user_params[name]) + else: + self.log.warning(("Missing optional user param '%s' in " + "configuration, continue."), name) + def _import_builtin_controllers(self): """Import built-in controller modules. @@ -277,6 +304,14 @@ class BaseTestClass(MoblyBaseTest): A list of json serializable objects, each represents the info of a controller object. The order of the info object should follow that of the input objects. + def get_post_job_info(controller_list): + [Optional] Returns information about the controller after the + test has run. This info is sent to test_run_summary.json's + "Extras" key. + Args: + The list of controller objects created by the module + Returns: + A (name, data) tuple. Registering a controller module declares a test class's dependency the controller. If the module config exists and the module matches the controller interface, controller objects will be instantiated with @@ -330,6 +365,28 @@ class BaseTestClass(MoblyBaseTest): setattr(self, module_ref_name, controllers) return controllers + def unregister_controllers(self): + """Destroy controller objects and clear internal registry. Invokes + Mobly's controller manager's unregister_controllers. + + This will be called upon test class teardown. + """ + controller_modules = self._controller_manager._controller_modules + controller_objects = self._controller_manager._controller_objects + # Record post job info for the controller + for name, controller_module in controller_modules.items(): + if hasattr(controller_module, 'get_post_job_info'): + self.log.debug('Getting post job info for %s', name) + try: + name, value = controller_module.get_post_job_info( + controller_objects[name]) + self.results.set_extra_data(name, value) + self.summary_writer.dump( + {name: value}, records.TestSummaryEntryType.USER_DATA) + except: + self.log.error("Fail to get post job info for %s", name) + self._controller_manager.unregister_controllers() + def _record_controller_info(self): """Collect controller information and write to summary file.""" try: @@ -347,19 +404,34 @@ class BaseTestClass(MoblyBaseTest): is called. """ event_bus.post(TestClassBeginEvent(self)) - # Import and register the built-in controller modules specified - # in testbed config. - for module in self._import_builtin_controllers(): - self.register_controller(module, builtin=True) return self.setup_class() + def setup_class(self): + """Setup function that will be called before executing any test case in + the test class. + + To signal setup failure, return False or raise an exception. If + exceptions were raised, the stack trace would appear in log, but the + exceptions would not propagate to upper levels. + + Implementation is optional. + """ + def _teardown_class(self): """Proxy function to guarantee the base implementation of teardown_class is called. """ - super()._teardown_class() + self.teardown_class() + self.unregister_controllers() event_bus.post(TestClassEndEvent(self, self.results)) + def teardown_class(self): + """Teardown function that will be called after all the selected test + cases in the test class have been executed. + + Implementation is optional. + """ + def _setup_test(self, test_name): """Proxy function to guarantee the base implementation of setup_test is called. @@ -389,7 +461,18 @@ class BaseTestClass(MoblyBaseTest): is called. """ self.log.debug('Tearing down test %s' % test_name) - self.teardown_test() + + try: + self.teardown_test() + finally: + self.current_test_name = None + + def teardown_test(self): + """Teardown function that will be called every time a test case has + been executed. + + Implementation is optional. + """ def _on_fail(self, record): """Proxy function to guarantee the base implementation of on_fail is @@ -484,14 +567,6 @@ class BaseTestClass(MoblyBaseTest): begin_time: Logline format timestamp taken when the test started. """ - def on_retry(): - """Function to run before retrying a test through get_func_with_retry. - - This function runs when a test is automatically retried. The function - can be used to modify internal test parameters, for example, to retry - a test with slightly different input variables. - """ - def _exec_procedure_func(self, func, tr_record): """Executes a procedure function like on_pass, on_fail etc. @@ -625,7 +700,6 @@ class BaseTestClass(MoblyBaseTest): Returns: result of the test method """ - exceptions = self.retryable_exceptions def wrapper(*args, **kwargs): error_msgs = [] extras = {} @@ -635,9 +709,8 @@ class BaseTestClass(MoblyBaseTest): if retry: self.teardown_test() self.setup_test() - self.on_retry() return func(*args, **kwargs) - except exceptions as e: + except signals.TestFailure as e: retry = True msg = 'Failure on attempt %d: %s' % (i+1, e.details) self.log.warning(msg) @@ -873,14 +946,17 @@ class BaseTestClass(MoblyBaseTest): self._block_all_test_cases(tests) setup_fail = True except signals.TestAbortClass: - self.log.exception('Test class %s aborted' % self.TAG) + try: + self._exec_func(self._teardown_class) + except Exception as e: + self.log.warning(e) setup_fail = True except Exception as e: self.log.exception("Failed to setup %s.", self.TAG) self._block_all_test_cases(tests) + self._exec_func(self._teardown_class) setup_fail = True if setup_fail: - self._exec_func(self._teardown_class) self.log.info("Summary for test class %s: %s", self.TAG, self.results.summary_str()) return self.results @@ -892,7 +968,6 @@ class BaseTestClass(MoblyBaseTest): self.exec_one_testcase(test_name, test_func, self.cli_args) return self.results except signals.TestAbortClass: - self.log.exception('Test class %s aborted' % self.TAG) return self.results except signals.TestAbortAll as e: # Piggy-back test results on this exception object so we don't lose @@ -904,6 +979,14 @@ class BaseTestClass(MoblyBaseTest): self.log.info("Summary for test class %s: %s", self.TAG, self.results.summary_str()) + def clean_up(self): + """A function that is executed upon completion of all tests cases + selected in the test class. + + This function should clean up objects initialized in the constructor by + user. + """ + def _ad_take_bugreport(self, ad, test_name, begin_time): for i in range(3): try: @@ -935,12 +1018,9 @@ class BaseTestClass(MoblyBaseTest): result = False return result - def _skip_bug_report(self, test_name): + def _skip_bug_report(self): """A function to check whether we should skip creating a bug report. - Args: - test_name: The test case name - Returns: True if bug report is to be skipped. """ if "no_bug_report_on_fail" in self.user_params: @@ -955,7 +1035,7 @@ class BaseTestClass(MoblyBaseTest): self.log.info( "Skipping bug report, as directed for this test class.") return True - full_test_name = '%s.%s' % (class_name, test_name) + full_test_name = '%s.%s' % (class_name, self.test_name) if full_test_name in quiet_tests: self.log.info( "Skipping bug report, as directed for this test case.") @@ -982,7 +1062,7 @@ class BaseTestClass(MoblyBaseTest): return False def _take_bug_report(self, test_name, begin_time): - if self._skip_bug_report(test_name): + if self._skip_bug_report(): return executor = ThreadPoolExecutor(max_workers=10) diff --git a/acts/framework/acts/bin/act.py b/acts/framework/acts/bin/act.py index 4f3b911305..b4e6b018e1 100755 --- a/acts/framework/acts/bin/act.py +++ b/acts/framework/acts/bin/act.py @@ -13,7 +13,7 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. - +import logging from builtins import str import argparse @@ -26,6 +26,7 @@ from acts import config_parser from acts import keys from acts import signals from acts import test_runner +from acts.config.config_generator import ConfigGenerator def _run_test(parsed_config, test_identifiers, repeat=1): @@ -240,6 +241,21 @@ def main(argv): args.config[0], args.testbed, args.testpaths, args.logpath, args.test_args, args.random, args.test_case_iterations) + log = logging.getLogger() + try: + new_parsed_args = ConfigGenerator().generate_configs() + + for old_config, new_config in zip(parsed_configs, new_parsed_args): + if not old_config.items() <= new_config.items(): + log.warning('Backward compat broken:\n%s\n%s' % ( + old_config, new_config)) + except SystemExit as e: + log.warning('Unable to parse command line flags: %s' % + traceback.format_exc(e)) + except Exception as e: + log.warning('Failed to generate configs through the new system: ' + '%s' % traceback.format_exc(e)) + # Prepare args for test runs test_identifiers = config_parser.parse_test_list(test_list) diff --git a/acts/framework/acts/bin/monsoon.py b/acts/framework/acts/bin/monsoon.py index a76b425dd9..c43eca505e 100755 --- a/acts/framework/acts/bin/monsoon.py +++ b/acts/framework/acts/bin/monsoon.py @@ -1,6 +1,6 @@ #!/usr/bin/env python3 # -# Copyright 2019 - The Android Open Source Project +# Copyright 2016 - The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -13,100 +13,75 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. + """Interface for a USB-connected Monsoon power meter (http://msoon.com/LabEquipment/PowerMonitor/). """ import argparse +import sys +import time +import collections -import acts.controllers.monsoon as monsoon_controller - +from acts.controllers.monsoon import Monsoon -def main(args): +def main(FLAGS): """Simple command-line interface for Monsoon.""" - if args.avg and args.avg < 0: - print('--avg must be greater than 0') + if FLAGS.avg and FLAGS.avg < 0: + print("--avg must be greater than 0") return - mon = monsoon_controller.create([int(args.serialno[0])])[0] + mon = Monsoon(serial=int(FLAGS.serialno[0])) - if args.voltage is not None: - mon.set_voltage(args.voltage) + if FLAGS.voltage is not None: + mon.set_voltage(FLAGS.voltage) - if args.current is not None: - mon.set_max_current(args.current) + if FLAGS.current is not None: + mon.set_max_current(FLAGS.current) - if args.status: + if FLAGS.status: items = sorted(mon.status.items()) - print('\n'.join(['%s: %s' % item for item in items])) + print("\n".join(["%s: %s" % item for item in items])) - if args.usbpassthrough: - mon.usb(args.usbpassthrough) + if FLAGS.usbpassthrough: + mon.usb(FLAGS.usbpassthrough) - if args.startcurrent is not None: - mon.set_max_initial_current(args.startcurrent) + if FLAGS.startcurrent is not None: + mon.set_max_init_current(FLAGS.startcurrent) - if args.samples: - result = mon.measure_power( - args.samples / args.hz, - measure_after_seconds=args.offset, - hz=args.hz, - output_path='monsoon_output.txt') + if FLAGS.samples: + # Have to sleep a bit here for monsoon to be ready to lower the rate of + # socket read timeout. + time.sleep(1) + result = mon.take_samples(FLAGS.hz, FLAGS.samples, + sample_offset=FLAGS.offset, live=True) print(repr(result)) - if __name__ == '__main__': - parser = argparse.ArgumentParser( - description='This is a python utility tool to control monsoon power ' - 'measurement boxes.') - parser.add_argument( - '--status', action='store_true', help='Print power meter status.') - parser.add_argument( - '-avg', - '--avg', - type=int, - default=0, - help='Also report average over last n data points.') - parser.add_argument( - '-v', '--voltage', type=float, help='Set output voltage (0 for off)') - parser.add_argument( - '-c', '--current', type=float, help='Set max output current.') - parser.add_argument( - '-sc', - '--startcurrent', - type=float, - help='Set max power-up/initial current.') - parser.add_argument( - '-usb', - '--usbpassthrough', - choices=('on', 'off', 'auto'), - help='USB control (on, off, auto).') - parser.add_argument( - '-sp', - '--samples', - type=int, - help='Collect and print this many samples') - parser.add_argument( - '-hz', '--hz', type=int, help='Sample this many times per second.') - parser.add_argument('-d', '--device', help='Use this /dev/ttyACM... file.') - parser.add_argument( - '-sn', - '--serialno', - type=int, - nargs=1, - required=True, - help='The serial number of the Monsoon to use.') - parser.add_argument( - '--offset', - type=int, - nargs='?', - default=0, - help='The number of samples to discard when calculating average.') - parser.add_argument( - '-r', - '--ramp', - action='store_true', - help='Gradually increase voltage to prevent tripping Monsoon ' - 'overvoltage.') - arguments = parser.parse_args() - main(arguments) + parser = argparse.ArgumentParser(description=("This is a python utility " + "tool to control monsoon power measurement boxes.")) + parser.add_argument("--status", action="store_true", + help="Print power meter status.") + parser.add_argument("-avg", "--avg", type=int, default=0, + help="Also report average over last n data points.") + parser.add_argument("-v", "--voltage", type=float, + help="Set output voltage (0 for off)") + parser.add_argument("-c", "--current", type=float, + help="Set max output current.") + parser.add_argument("-sc", "--startcurrent", type=float, + help="Set max power-up/inital current.") + parser.add_argument("-usb", "--usbpassthrough", choices=("on", "off", + "auto"), help="USB control (on, off, auto).") + parser.add_argument("-sp", "--samples", type=int, + help="Collect and print this many samples") + parser.add_argument("-hz", "--hz", type=int, + help="Sample this many times per second.") + parser.add_argument("-d", "--device", help="Use this /dev/ttyACM... file.") + parser.add_argument("-sn", "--serialno", type=int, nargs=1, required=True, + help="The serial number of the Monsoon to use.") + parser.add_argument("--offset", type=int, nargs='?', default=0, + help="The number of samples to discard when calculating average.") + parser.add_argument("-r", "--ramp", action="store_true", help=("Gradually " + "increase voltage to prevent tripping Monsoon overvoltage")) + args = parser.parse_args() + main(args) diff --git a/acts/framework/acts/config/config_generator.py b/acts/framework/acts/config/config_generator.py index b83466f544..3f4bfe007a 100644 --- a/acts/framework/acts/config/config_generator.py +++ b/acts/framework/acts/config/config_generator.py @@ -89,7 +89,7 @@ class ConfigGenerator(object): # TODO(b/29836695): Remove after the key has been deprecated. config_dir = os.path.dirname( self._master_config[Config.key_config_full_path.value]) - self._master_config[Config.key_config_path.value] = config_dir + self._master_config[Config.key_config_path] = config_dir # Normalizes the "testbed" field to be a dictionary if not already. if type(self._master_config[Config.key_testbed.value]) is list: diff --git a/acts/framework/acts/config/config_wrapper.py b/acts/framework/acts/config/config_wrapper.py index 4c680da594..d0c7c1f5aa 100644 --- a/acts/framework/acts/config/config_wrapper.py +++ b/acts/framework/acts/config/config_wrapper.py @@ -29,6 +29,12 @@ class ConfigWrapper(object): self._dictionary = dictionary def __getitem__(self, key): + if key == Config.key_config_path: + logging.warning( + 'The config key "%s" is pending deprecation. For resolving ' + 'files in the same directory as your config, please use a ' + 'key-value entry in your config that contains an absolute ' + 'path.' % Config.key_config_path) return self._dictionary[key] def __contains__(self, key): diff --git a/acts/framework/acts/config_parser.py b/acts/framework/acts/config_parser.py index ef3822558d..4a16ab52aa 100755 --- a/acts/framework/acts/config_parser.py +++ b/acts/framework/acts/config_parser.py @@ -283,7 +283,7 @@ def load_test_config_file(test_config_path, # TODO: See if there is a better way to do this: b/29836695 config_path, _ = os.path.split(utils.abs_path(test_config_path)) - configs[keys.Config.key_config_path.value] = config_path + configs[keys.Config.key_config_path] = config_path _validate_test_config(configs) _validate_testbed_configs(testbeds, config_path) # Unpack testbeds into separate json objects. diff --git a/acts/framework/acts/controllers/OWNERS b/acts/framework/acts/controllers/OWNERS deleted file mode 100644 index 9b32fd0c5d..0000000000 --- a/acts/framework/acts/controllers/OWNERS +++ /dev/null @@ -1,2 +0,0 @@ -per-file fuchsia_device.py = tturney@google.com,jmbrenna@google.com -per-file bluetooth_pts_device.py = tturney@google.com diff --git a/acts/framework/acts/controllers/__init__.py b/acts/framework/acts/controllers/__init__.py index da302ce3c5..78014d7b17 100644 --- a/acts/framework/acts/controllers/__init__.py +++ b/acts/framework/acts/controllers/__init__.py @@ -24,7 +24,6 @@ def destroy(objs): """ """This is a list of all the top level controller modules""" __all__ = [ - "android_device", "attenuator", "bluetooth_pts_device", "monsoon", - "access_point", "iperf_server", "packet_sender", "arduino_wifi_dongle", - "packet_capture", "fuchsia_device" + "android_device", "attenuator", "monsoon", "access_point", "iperf_server", + "packet_sender", "arduino_wifi_dongle", "packet_capture" ] diff --git a/acts/framework/acts/controllers/access_point.py b/acts/framework/acts/controllers/access_point.py index 4bdb924a2e..ff6eb12648 100755 --- a/acts/framework/acts/controllers/access_point.py +++ b/acts/framework/acts/controllers/access_point.py @@ -16,7 +16,9 @@ import collections import ipaddress +import logging import os +import time from acts import logger from acts.controllers.ap_lib import ap_get_interface @@ -24,6 +26,7 @@ from acts.controllers.ap_lib import bridge_interface from acts.controllers.ap_lib import dhcp_config from acts.controllers.ap_lib import dhcp_server from acts.controllers.ap_lib import hostapd +from acts.controllers.ap_lib import hostapd_config from acts.controllers.ap_lib import hostapd_constants from acts.controllers.utils_lib.commands import ip from acts.controllers.utils_lib.commands import route @@ -105,14 +108,15 @@ class AccessPoint(object): ssh_settings: The ssh settings being used by the ssh connection. dhcp_settings: The dhcp server settings being used. """ + def __init__(self, configs): """ Args: configs: configs for the access point from config file. """ self.ssh_settings = settings.from_config(configs['ssh_config']) - self.log = logger.create_logger(lambda msg: '[Access Point|%s] %s' % - (self.ssh_settings.hostname, msg)) + self.log = logger.create_logger(lambda msg: '[Access Point|%s] %s' % ( + self.ssh_settings.hostname, msg)) if 'ap_subnet' in configs: self._AP_2G_SUBNET_STR = configs['ap_subnet']['2g'] @@ -135,8 +139,6 @@ class AccessPoint(object): # A map from network interface name to _ApInstance objects representing # the hostapd instance running against the interface. self._aps = dict() - self._dhcp = None - self._dhcp_bss = dict() self.bridge = bridge_interface.BridgeInterface(self) self.interfaces = ap_get_interface.ApInterfaces(self) @@ -195,8 +197,8 @@ class AccessPoint(object): off parameters into the config. Returns: - An identifier for each ssid being started. These identifiers can be - used later by this controller to control the ap. + An identifier for the ap being run. This identifier can be used + later by this controller to control the ap. Raises: Error: When the ap can't be brought up. @@ -216,17 +218,15 @@ class AccessPoint(object): # For multi bssid configurations the mac address # of the wireless interface needs to have enough space to mask out - # up to 8 different mac addresses. So in for one interface the range is - # hex 0-7 and for the other the range is hex 8-f. + # up to 8 different mac addresses. The easiest way to do this + # is to set the last byte to 0. While technically this could + # cause a duplicate mac address it is unlikely and will allow for + # one radio to have up to 8 APs on the interface. interface_mac_orig = None cmd = "ifconfig %s|grep ether|awk -F' ' '{print $2}'" % interface interface_mac_orig = self.ssh.run(cmd) - if interface == self.wlan_5g: - hostapd_config.bssid = interface_mac_orig.stdout[:-1] + '0' - last_octet = 1 - if interface == self.wlan_2g: - hostapd_config.bssid = interface_mac_orig.stdout[:-1] + '8' - last_octet = 9 + hostapd_config.bssid = interface_mac_orig.stdout[:-1] + '0' + if interface in self._aps: raise ValueError('No WiFi interface available for AP on ' 'channel %d' % hostapd_config.channel) @@ -236,12 +236,12 @@ class AccessPoint(object): self._aps[interface] = new_instance # Turn off the DHCP server, we're going to change its settings. - self.stop_dhcp() + self._dhcp.stop() # Clear all routes to prevent old routes from interfering. self._route_cmd.clear_routes(net_interface=interface) if hostapd_config.bss_lookup: - # The self._dhcp_bss dictionary is created to hold the key/value + # The dhcp_bss dictionary is created to hold the key/value # pair of the interface name and the ip scope that will be # used for the particular interface. The a, b, c, d # variables below are the octets for the ip address. The @@ -249,23 +249,23 @@ class AccessPoint(object): # is requested. This part is designed to bring up the # hostapd interfaces and not the DHCP servers for each # interface. - self._dhcp_bss = dict() + dhcp_bss = {} counter = 1 for bss in hostapd_config.bss_lookup: if interface_mac_orig: - hostapd_config.bss_lookup[bss].bssid = ( - interface_mac_orig.stdout[:-1] + hex(last_octet)[-1:]) + hostapd_config.bss_lookup[ + bss].bssid = interface_mac_orig.stdout[:-1] + str( + counter) self._route_cmd.clear_routes(net_interface=str(bss)) if interface is self.wlan_2g: starting_ip_range = self._AP_2G_SUBNET_STR else: starting_ip_range = self._AP_5G_SUBNET_STR a, b, c, d = starting_ip_range.split('.') - self._dhcp_bss[bss] = dhcp_config.Subnet( + dhcp_bss[bss] = dhcp_config.Subnet( ipaddress.ip_network('%s.%s.%s.%s' % (a, b, str(int(c) + counter), d))) counter = counter + 1 - last_octet = last_octet + 1 apd.start(hostapd_config, additional_parameters=additional_parameters) @@ -279,112 +279,30 @@ class AccessPoint(object): # hostapd and assigns the DHCP scopes that were defined but # not used during the hostapd loop above. The k and v # variables represent the interface name, k, and dhcp info, v. - for k, v in self._dhcp_bss.items(): + for k, v in dhcp_bss.items(): bss_interface_ip = ipaddress.ip_interface( - '%s/%s' % (self._dhcp_bss[k].router, - self._dhcp_bss[k].network.netmask)) + '%s/%s' % (dhcp_bss[k].router, + dhcp_bss[k].network.netmask)) self._ip_cmd.set_ipv4_address(str(k), bss_interface_ip) # Restart the DHCP server with our updated list of subnets. configured_subnets = [x.subnet for x in self._aps.values()] if hostapd_config.bss_lookup: - for k, v in self._dhcp_bss.items(): + for k, v in dhcp_bss.items(): configured_subnets.append(v) - self.start_dhcp(subnets=configured_subnets) - self.start_nat() - - bss_interfaces = [bss for bss in hostapd_config.bss_lookup] - bss_interfaces.append(interface) - - return bss_interfaces - - def start_dhcp(self, subnets): - """Start a DHCP server for the specified subnets. - - This allows consumers of the access point objects to control DHCP. - - Args: - subnets: A list of Subnets. - """ - return self._dhcp.start(config=dhcp_config.DhcpConfig(subnets)) - - def stop_dhcp(self): - """Stop DHCP for this AP object. - - This allows consumers of the access point objects to control DHCP. - """ - return self._dhcp.stop() - - def start_nat(self): - """Start NAT on the AP. - - This allows consumers of the access point objects to enable NAT - on the AP. + self._dhcp.start(config=dhcp_config.DhcpConfig(configured_subnets)) - Note that this is currently a global setting, since we don't - have per-interface masquerade rules. - """ - # The following three commands are needed to enable NAT between + # The following three commands are needed to enable bridging between # the WAN and LAN/WLAN ports. This means anyone connecting to the # WLAN/LAN ports will be able to access the internet if the WAN port # is connected to the internet. self.ssh.run('iptables -t nat -F') - self.ssh.run('iptables -t nat -A POSTROUTING -o %s -j MASQUERADE' % - self.wan) - self.ssh.run('echo 1 > /proc/sys/net/ipv4/ip_forward') - - def stop_nat(self): - """Stop NAT on the AP. - - This allows consumers of the access point objects to disable NAT on the - AP. - - Note that this is currently a global setting, since we don't have - per-interface masquerade rules. - """ - self.ssh.run('iptables -t nat -F') - self.ssh.run('echo 0 > /proc/sys/net/ipv4/ip_forward') - - def create_bridge(self, bridge_name, interfaces): - """Create the specified bridge and bridge the specified interfaces. - - Args: - bridge_name: The name of the bridge to create. - interfaces: A list of interfaces to add to the bridge. - """ - - # Create the bridge interface self.ssh.run( - 'brctl addbr {bridge_name}'.format(bridge_name=bridge_name)) - - for interface in interfaces: - self.ssh.run('brctl addif {bridge_name} {interface}'.format( - bridge_name=bridge_name, interface=interface)) - - def remove_bridge(self, bridge_name): - """Removes the specified bridge + 'iptables -t nat -A POSTROUTING -o %s -j MASQUERADE' % self.wan) + self.ssh.run('echo 1 > /proc/sys/net/ipv4/ip_forward') - Args: - bridge_name: The name of the bridge to remove. - """ - # Check if the bridge exists. - # - # Cases where it may not are if we failed to initialize properly - # - # Or if we're doing 2.4Ghz and 5Ghz SSIDs and we've already torn - # down the bridge once, but we got called for each band. - result = self.ssh.run( - 'brctl show {bridge_name}'.format(bridge_name=bridge_name), - ignore_status=True) - - # If the bridge exists, we'll get an exit_status of 0, indicating - # success, so we can continue and remove the bridge. - if result.exit_status == 0: - self.ssh.run('ip link set {bridge_name} down'.format( - bridge_name=bridge_name)) - self.ssh.run( - 'brctl delbr {bridge_name}'.format(bridge_name=bridge_name)) + return interface def get_bssid_from_ssid(self, ssid, band): """Gets the BSSID from a provided SSID @@ -429,7 +347,7 @@ class AccessPoint(object): instance = self._aps.get(identifier) instance.hostapd.stop() - self.stop_dhcp() + self._dhcp.stop() self._ip_cmd.clear_ipv4_addresses(identifier) # DHCP server needs to refresh in order to tear down the subnet no @@ -439,7 +357,7 @@ class AccessPoint(object): configured_subnets = [x.subnet for x in self._aps.values()] del self._aps[identifier] if configured_subnets: - self.start_dhcp(subnets=configured_subnets) + self._dhcp.start(dhcp_config.DhcpConfig(configured_subnets)) def stop_all_aps(self): """Stops all running aps on this device.""" @@ -447,7 +365,7 @@ class AccessPoint(object): for ap in list(self._aps.keys()): try: self.stop_ap(ap) - except dhcp_server.NoInterfaceError: + except dhcp_server.NoInterfaceError as e: pass def close(self): @@ -480,7 +398,7 @@ class AccessPoint(object): iface_lan = self.lan - a, b, c, _ = subnet_str.strip('/24').split('.') + a, b, c, d = subnet_str.strip('/24').split('.') bridge_ip = "%s.%s.%s.%s" % (a, b, c, BRIDGE_IP_LAST) configs = (iface_wlan, iface_lan, bridge_ip) @@ -499,11 +417,10 @@ class AccessPoint(object): self.ssh.send_file(scapy_path, self.scapy_install_path) self.ssh.send_file(send_ra_path, self.scapy_install_path) - scapy = os.path.join(self.scapy_install_path, - scapy_path.split('/')[-1]) + scapy = os.path.join(self.scapy_install_path, scapy_path.split('/')[-1]) - untar_res = self.ssh.run('tar -xvf %s -C %s' % - (scapy, self.scapy_install_path)) + untar_res = self.ssh.run( + 'tar -xvf %s -C %s' % (scapy, self.scapy_install_path)) instl_res = self.ssh.run( 'cd %s; %s' % (self.scapy_install_path, SCAPY_INSTALL_COMMAND)) @@ -516,13 +433,8 @@ class AccessPoint(object): output = self.ssh.run(cmd) self.scapy_install_path = None - def send_ra(self, - iface, - mac=RA_MULTICAST_ADDR, - interval=1, - count=None, - lifetime=LIFETIME, - rtt=0): + def send_ra(self, iface, mac=RA_MULTICAST_ADDR, interval=1, count=None, + lifetime=LIFETIME, rtt=0): """Invoke scapy and send RA to the device. Args: diff --git a/acts/framework/acts/controllers/adb.py b/acts/framework/acts/controllers/adb.py index 618435aaa9..cf0e2c64ea 100644 --- a/acts/framework/acts/controllers/adb.py +++ b/acts/framework/acts/controllers/adb.py @@ -87,7 +87,7 @@ class AdbProxy(object): self.serial = serial self._server_local_port = None adb_path = job.run("which adb").stdout - adb_cmd = [shellescape.quote(adb_path)] + adb_cmd = [adb_path] if serial: adb_cmd.append("-s %s" % serial) if ssh_connection is not None: @@ -174,8 +174,8 @@ class AdbProxy(object): return parsing_parcel_output(out) if ignore_status: return out or err - if ret == 1 and (DEVICE_NOT_FOUND_REGEX.match(err) - or CANNOT_BIND_LISTENER_REGEX.match(err)): + if ret == 1 and (DEVICE_NOT_FOUND_REGEX.match(err) or + CANNOT_BIND_LISTENER_REGEX.match(err)): raise AdbError(cmd=cmd, stdout=out, stderr=err, ret_code=ret) else: return out @@ -213,8 +213,9 @@ class AdbProxy(object): # 2) Setup forwarding between that remote port and the requested # device port remote_port = self._ssh_connection.find_free_port() - host_port = self._ssh_connection.create_ssh_tunnel( + local_port = self._ssh_connection.create_ssh_tunnel( remote_port, local_port=host_port) + host_port = remote_port output = self.forward("tcp:%d tcp:%d" % (host_port, device_port)) # If hinted_port is 0, the output will be the selected port. # Otherwise, there will be no output upon successfully @@ -222,7 +223,7 @@ class AdbProxy(object): if output: return int(output) else: - return host_port + return local_port def remove_tcp_forward(self, host_port): """Stop tcp forwarding a port from localhost to this android device. @@ -288,7 +289,8 @@ class AdbProxy(object): AdbError if the version number is not found/parsable. """ version_output = self.version() - match = re.search(ADB_VERSION_REGEX, version_output) + match = re.search(ADB_VERSION_REGEX, + version_output) if not match: logging.error('Unable to capture ADB version from adb version ' diff --git a/acts/framework/acts/controllers/android_device.py b/acts/framework/acts/controllers/android_device.py index 16671fa621..9bd03b6eeb 100755 --- a/acts/framework/acts/controllers/android_device.py +++ b/acts/framework/acts/controllers/android_device.py @@ -51,11 +51,10 @@ ANDROID_DEVICE_EMPTY_CONFIG_MSG = "Configuration is empty, abort!" ANDROID_DEVICE_NOT_LIST_CONFIG_MSG = "Configuration should be a list, abort!" CRASH_REPORT_PATHS = ("/data/tombstones/", "/data/vendor/ramdump/", "/data/ramdump/", "/data/vendor/ssrdump", - "/data/vendor/ramdump/bluetooth", "/data/vendor/log/cbd") + "/data/vendor/ramdump/bluetooth") CRASH_REPORT_SKIPS = ("RAMDUMP_RESERVED", "RAMDUMP_STATUS", "RAMDUMP_OUTPUT", "bluetooth") DEFAULT_QXDM_LOG_PATH = "/data/vendor/radio/diag_logs" -DEFAULT_SDM_LOG_PATH = "/data/vendor/slog/" BUG_REPORT_TIMEOUT = 1800 PULL_TIMEOUT = 300 PORT_RETRY_COUNT = 3 @@ -100,10 +99,6 @@ def create(configs): " but is not attached.") % ad.serial, serial=ad.serial) _start_services_on_ads(ads) - for ad in ads: - if ad.droid: - utils.set_location_service(ad, False) - utils.sync_device_time(ad) return ads @@ -137,6 +132,18 @@ def get_info(ads): return device_info +def get_post_job_info(ads): + """Returns the tracked build id to test_run_summary.json + + Args: + ads: A list of AndroidDevice objects. + + Returns: + A dict consisting of {'build_id': ads[0].build_info} + """ + return 'Build Info', ads[0].build_info + + def _start_services_on_ads(ads): """Starts long running services on multiple AndroidDevice objects. @@ -362,8 +369,9 @@ class AndroidDevice: self.log_dir = 'AndroidDevice%s' % serial self.log_path = os.path.join(log_path_base, self.log_dir) self.log = tracelogger.TraceLogger( - AndroidDeviceLoggerAdapter(logging.getLogger(), - {'serial': serial})) + AndroidDeviceLoggerAdapter(logging.getLogger(), { + 'serial': serial + })) self._event_dispatchers = {} self._services = [] self.register_service(services.AdbLogcatService(self)) @@ -663,9 +671,8 @@ class AndroidDevice: except (IndexError, ValueError) as e: # Possible ValueError from string to int cast. # Possible IndexError from split. - self.log.warn( - 'Command \"%s\" returned output line: ' - '\"%s\".\nError: %s', cmd, out, e) + self.log.warn('Command \"%s\" returned output line: ' + '\"%s\".\nError: %s', cmd, out, e) except Exception as e: self.log.warn( 'Device fails to check if %s running with \"%s\"\n' @@ -691,10 +698,7 @@ class AndroidDevice: target) >= 0 return low and high - def cat_adb_log(self, - tag, - begin_time, - end_time=None, + def cat_adb_log(self, tag, begin_time, end_time=None, dest_path="AdbLogExcerpts"): """Takes an excerpt of the adb logcat log from a certain time point to current time. @@ -718,8 +722,7 @@ class AndroidDevice: return adb_excerpt_dir = os.path.join(self.log_path, dest_path) utils.create_dir(adb_excerpt_dir) - out_name = '%s,%s.txt' % (acts_logger.normalize_log_line_timestamp( - log_begin_time), self.serial) + out_name = '%s,%s.txt' % (log_begin_time, self.serial) tag_len = utils.MAX_FILENAME_LEN - len(out_name) out_name = '%s,%s' % (tag[:tag_len], out_name) adb_excerpt_path = os.path.join(adb_excerpt_dir, out_name) @@ -764,8 +767,7 @@ class AndroidDevice: self.log.warning("Logcat file %s does not exist." % logcat_path) return output = job.run( - "grep '%s' %s" % (matching_string, logcat_path), - ignore_status=True) + "grep '%s' %s" % (matching_string, logcat_path), ignore_status=True) if not output.stdout or output.exit_status != 0: return [] if begin_time: @@ -856,9 +858,8 @@ class AndroidDevice: 'pm list packages | grep -w "package:%s"' % package_name)) except Exception as err: - self.log.error( - 'Could not determine if %s is installed. ' - 'Received error:\n%s', package_name, err) + self.log.error('Could not determine if %s is installed. ' + 'Received error:\n%s', package_name, err) return False def is_sl4a_installed(self): @@ -882,9 +883,8 @@ class AndroidDevice: self.log.info("apk %s is running", package_name) return True except Exception as e: - self.log.warn( - "Device fails to check is %s running by %s " - "Exception %s", package_name, cmd, e) + self.log.warn("Device fails to check is %s running by %s " + "Exception %s", package_name, cmd, e) continue self.log.debug("apk %s is not running", package_name) return False @@ -979,22 +979,13 @@ class AndroidDevice: self.log.debug("Find files in directory %s: %s", directory, files) return files - def pull_files(self, device_paths, host_path=None): - """Pull files from devices. - - Args: - device_paths: List of paths on the device to pull from. - host_path: Destination path - """ - if isinstance(device_paths, str): - device_paths = [device_paths] - if not host_path: - host_path = self.log_path - for device_path in device_paths: - self.log.info( - 'Pull from device: %s -> %s' % (device_path, host_path)) + def pull_files(self, files, remote_path=None): + """Pull files from devices.""" + if not remote_path: + remote_path = self.log_path + for file_name in files: self.adb.pull( - "%s %s" % (device_path, host_path), timeout=PULL_TIMEOUT) + "%s %s" % (file_name, remote_path), timeout=PULL_TIMEOUT) def check_crash_report(self, test_name=None, @@ -1054,32 +1045,6 @@ class AndroidDevice: timeout=PULL_TIMEOUT, ignore_status=True) - def get_sdm_logs(self, test_name="", begin_time=None): - """Get sdm logs.""" - # Sleep 10 seconds for the buffered log to be written in sdm log file - time.sleep(10) - log_path = getattr(self, "sdm_log_path", DEFAULT_SDM_LOG_PATH) - sdm_logs = self.get_file_names( - log_path, begin_time=begin_time, match_string="*.sdm*") - if sdm_logs: - sdm_log_path = os.path.join(self.device_log_path, - "SDM_%s" % self.serial) - utils.create_dir(sdm_log_path) - self.log.info("Pull SDM Log %s to %s", sdm_logs, sdm_log_path) - self.pull_files(sdm_logs, sdm_log_path) - else: - self.log.error("Didn't find SDM logs in %s." % log_path) - if "Verizon" in self.adb.getprop("gsm.sim.operator.alpha"): - omadm_log_path = os.path.join(self.device_log_path, - "OMADM_%s" % self.serial) - utils.create_dir(omadm_log_path) - self.log.info("Pull OMADM Log") - self.adb.pull( - "/data/data/com.android.omadm.service/files/dm/log/ %s" % - omadm_log_path, - timeout=PULL_TIMEOUT, - ignore_status=True) - def start_new_session(self, max_connections=None, server_port=None): """Start a new session in sl4a. @@ -1316,18 +1281,13 @@ class AndroidDevice: def get_my_current_focus_app(self): """Get the current focus application""" - dumpsys_cmd = [ - 'dumpsys window | grep -E mFocusedApp', - 'dumpsys window windows | grep -E mFocusedApp' - ] - for cmd in dumpsys_cmd: - output = self.adb.shell(cmd, ignore_status=True) - if not output or "not found" in output or "Can't find" in output or ( - "mFocusedApp=null" in output): - result = '' - else: - result = output.split(' ')[-2] - break + output = self.adb.shell( + 'dumpsys window windows | grep -E mFocusedApp', ignore_status=True) + if not output or "not found" in output or "Can't find" in output or ( + "mFocusedApp=null" in output): + result = '' + else: + result = output.split(' ')[-2] self.log.debug("Current focus app is %s", result) return result @@ -1441,10 +1401,6 @@ class AndroidDevice: self.send_keycode("BACK") def exit_setup_wizard(self): - # Handling Android TV's setupwizard is ignored for now. - if 'feature:com.google.android.tv.installed' in self.adb.shell( - 'pm list features'): - return if not self.is_user_setup_complete() or self.is_setupwizard_on(): # b/116709539 need this to prevent reboot after skip setup wizard self.adb.shell( @@ -1481,66 +1437,6 @@ class AndroidDevice: self.log.info("%s/.%sActivity" % (wizard_package, activity)) return "%s/.%sActivity" % (wizard_package, activity) - def push_system_file(self, src_file_path, dst_file_path, push_timeout=300): - """Pushes a file onto the read-only file system. - - For speed, the device is left in root mode after this call, and leaves - verity disabled. To re-enable verity, call ensure_verity_enabled(). - - Args: - src_file_path: The path to the system app to install. - dst_file_path: The destination of the file. - push_timeout: How long to wait for the push to finish. - Returns: - Whether or not the install was successful. - """ - self.adb.ensure_root() - try: - self.ensure_verity_disabled() - self.adb.remount() - out = self.adb.push( - '%s %s' % (src_file_path, dst_file_path), timeout=push_timeout) - if 'error' in out: - self.log.error('Unable to push system file %s to %s due to %s', - src_file_path, dst_file_path, out) - return False - return True - except Exception as e: - self.log.error('Unable to push system file %s to %s due to %s', - src_file_path, dst_file_path, e) - return False - - def ensure_verity_enabled(self): - """Ensures that verity is enabled. - - If verity is not enabled, this call will reboot the phone. Note that - this only works on debuggable builds. - """ - user = self.adb.get_user_id() - # The below properties will only exist if verity has been enabled. - system_verity = self.adb.getprop('partition.system.verified') - vendor_verity = self.adb.getprop('partition.vendor.verified') - if not system_verity or not vendor_verity: - self.adb.ensure_root() - self.adb.enable_verity() - self.reboot() - self.adb.ensure_user(user) - - def ensure_verity_disabled(self): - """Ensures that verity is disabled. - - If verity is enabled, this call will reboot the phone. - """ - user = self.adb.get_user_id() - # The below properties will only exist if verity has been enabled. - system_verity = self.adb.getprop('partition.system.verified') - vendor_verity = self.adb.getprop('partition.vendor.verified') - if system_verity or vendor_verity: - self.adb.ensure_root() - self.adb.disable_verity() - self.reboot() - self.adb.ensure_user(user) - class AndroidDeviceLoggerAdapter(logging.LoggerAdapter): def process(self, msg, kwargs): diff --git a/acts/framework/acts/controllers/anritsu_lib/md8475_cellular_simulator.py b/acts/framework/acts/controllers/anritsu_lib/md8475_cellular_simulator.py deleted file mode 100644 index 08db20b52f..0000000000 --- a/acts/framework/acts/controllers/anritsu_lib/md8475_cellular_simulator.py +++ /dev/null @@ -1,537 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the 'License'); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an 'AS IS' BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import ntpath -import time -import acts.controllers.cellular_simulator as cc -from acts.test_utils.power.tel_simulations import LteSimulation -from acts.controllers.anritsu_lib import md8475a -from acts.controllers.anritsu_lib import _anritsu_utils as anritsu - - -class MD8475CellularSimulator(cc.AbstractCellularSimulator): - - MD8475_VERSION = 'A' - - # Indicates if it is able to use 256 QAM as the downlink modulation for LTE - LTE_SUPPORTS_DL_256QAM = False - - # Indicates if it is able to use 64 QAM as the uplink modulation for LTE - LTE_SUPPORTS_UL_64QAM = False - - # Indicates if 4x4 MIMO is supported for LTE - LTE_SUPPORTS_4X4_MIMO = False - - # The maximum number of carriers that this simulator can support for LTE - LTE_MAX_CARRIERS = 2 - - # The maximum power that the equipment is able to transmit - MAX_DL_POWER = -10 - - # Simulation config files in the callbox computer. - # These should be replaced in the future by setting up - # the same configuration manually. - LTE_BASIC_SIM_FILE = 'SIM_default_LTE.wnssp' - LTE_BASIC_CELL_FILE = 'CELL_LTE_config.wnscp' - LTE_CA_BASIC_SIM_FILE = 'SIM_LTE_CA.wnssp' - LTE_CA_BASIC_CELL_FILE = 'CELL_LTE_CA_config.wnscp' - - # Filepath to the config files stored in the Anritsu callbox. Needs to be - # formatted to replace {} with either A or B depending on the model. - CALLBOX_CONFIG_PATH = 'C:\\Users\\MD8475A\\Documents\\DAN_configs\\' - - def __init__(self, ip_address): - """ Initializes the cellular simulator. - - Args: - ip_address: the ip address of the MD8475 instrument - """ - super().__init__() - - try: - self.anritsu = md8475a.MD8475A(ip_address, - md8475_version=self.MD8475_VERSION) - except anritsu.AnristuError: - raise cc.CellularSimulatorError('Could not connect to MD8475.') - - self.bts = None - - def destroy(self): - """ Sends finalization commands to the cellular equipment and closes - the connection. """ - self.anritsu.stop_simulation() - self.anritsu.disconnect() - - def setup_lte_scenario(self): - """ Configures the equipment for an LTE simulation. """ - cell_file_name = self.LTE_BASIC_CELL_FILE - sim_file_name = self.LTE_BASIC_SIM_FILE - - cell_file_path = ntpath.join(self.CALLBOX_CONFIG_PATH, cell_file_name) - sim_file_path = ntpath.join(self.CALLBOX_CONFIG_PATH, sim_file_name) - - self.anritsu.load_simulation_paramfile(sim_file_path) - self.anritsu.load_cell_paramfile(cell_file_path) - self.anritsu.start_simulation() - - self.bts = [self.anritsu.get_BTS(md8475a.BtsNumber.BTS1)] - - def setup_lte_ca_scenario(self): - """ Configures the equipment for an LTE with CA simulation. """ - cell_file_name = self.LTE_CA_BASIC_CELL_FILE - sim_file_name = self.LTE_CA_BASIC_SIM_FILE - - cell_file_path = ntpath.join(self.CALLBOX_CONFIG_PATH, cell_file_name) - sim_file_path = ntpath.join(self.CALLBOX_CONFIG_PATH, sim_file_name) - - self.anritsu.load_simulation_paramfile(sim_file_path) - self.anritsu.load_cell_paramfile(cell_file_path) - self.anritsu.start_simulation() - - self.bts = [ - self.anritsu.get_BTS(md8475a.BtsNumber.BTS1), - self.anritsu.get_BTS(md8475a.BtsNumber.BTS2) - ] - - def set_input_power(self, bts_index, input_power): - """ Sets the input power for the indicated base station. - - Args: - bts_index: the base station number - input_power: the new input power - """ - self.bts[bts_index].input_level = input_power - - def set_output_power(self, bts_index, output_power): - """ Sets the output power for the indicated base station. - - Args: - bts_index: the base station number - output_power: the new output power - """ - self.bts[bts_index].output_level = output_power - - def set_downlink_channel_number(self, bts_index, channel_number): - """ Sets the downlink channel number for the indicated base station. - - Args: - bts_index: the base station number - channel_number: the new channel number - """ - # Temporarily adding this line to workaround a bug in the - # Anritsu callbox in which the channel number needs to be set - # to a different value before setting it to the final one. - self.bts[bts_index].dl_channel = str(channel_number + 1) - time.sleep(8) - self.bts[bts_index].dl_channel = str(channel_number) - - def set_enabled_for_ca(self, bts_index, enabled): - """ Enables or disables the base station during carrier aggregation. - - Args: - bts_index: the base station number - enabled: whether the base station should be enabled for ca. - """ - self.bts[bts_index].dl_cc_enabled = enabled - - def set_dl_modulation(self, bts_index, modulation): - """ Sets the DL modulation for the indicated base station. - - Args: - bts_index: the base station number - modulation: the new DL modulation - """ - self.bts[bts_index].lte_dl_modulation_order = modulation - - def set_ul_modulation(self, bts_index, modulation): - """ Sets the UL modulation for the indicated base station. - - Args: - bts_index: the base station number - modulation: the new UL modulation - """ - self.bts[bts_index].lte_ul_modulation_order = modulation - - def set_tbs_pattern_on(self, bts_index, tbs_pattern_on): - """ Enables or disables TBS pattern in the indicated base station. - - Args: - bts_index: the base station number - tbs_pattern_on: the new TBS pattern setting - """ - if tbs_pattern_on: - self.bts[bts_index].tbs_pattern = 'FULLALLOCATION' - else: - self.bts[bts_index].tbs_pattern = 'OFF' - - def set_lte_rrc_state_change_timer(self, enabled, time=10): - """ Configures the LTE RRC state change timer. - - Args: - enabled: a boolean indicating if the timer should be on or off. - time: time in seconds for the timer to expire - """ - self.anritsu.set_lte_rrc_status_change(enabled) - if enabled: - self.anritsu.set_lte_rrc_status_change_timer(time) - - def set_band(self, bts_index, band): - """ Sets the right duplex mode before switching to a new band. - - Args: - bts_index: the base station number - band: desired band - """ - bts = self.bts[bts_index] - - # The callbox won't restore the band-dependent default values if the - # request is to switch to the same band as the one the base station is - # currently using. To ensure that default values are restored, go to a - # different band before switching. - if int(bts.band) == band: - # Using bands 1 and 2 but it could be any others - bts.band = '1' if band != 1 else '2' - # Switching to config.band will be handled by the parent class - # implementation of this method. - - bts.duplex_mode = self.get_duplex_mode(band).value - bts.band = band - time.sleep(5) # It takes some time to propagate the new band - - def get_duplex_mode(self, band): - """ Determines if the band uses FDD or TDD duplex mode - - Args: - band: a band number - Returns: - an variable of class DuplexMode indicating if band is FDD or TDD - """ - - if 33 <= int(band) <= 46: - return LteSimulation.DuplexMode.TDD - else: - return LteSimulation.DuplexMode.FDD - - def set_tdd_config(self, bts_index, config): - """ Sets the frame structure for TDD bands. - - Args: - bts_index: the base station number - config: the desired frame structure. An int between 0 and 6. - """ - - if not 0 <= config <= 6: - raise ValueError("The frame structure configuration has to be a " - "number between 0 and 6") - - self.bts[bts_index].uldl_configuration = config - - # Wait for the setting to propagate - time.sleep(5) - - def set_bandwidth(self, bts_index, bandwidth): - """ Sets the LTE channel bandwidth (MHz) - - Args: - bts_index: the base station number - bandwidth: desired bandwidth (MHz) - """ - bts = self.bts[bts_index] - - if bandwidth == 20: - bts.bandwidth = md8475a.BtsBandwidth.LTE_BANDWIDTH_20MHz - elif bandwidth == 15: - bts.bandwidth = md8475a.BtsBandwidth.LTE_BANDWIDTH_15MHz - elif bandwidth == 10: - bts.bandwidth = md8475a.BtsBandwidth.LTE_BANDWIDTH_10MHz - elif bandwidth == 5: - bts.bandwidth = md8475a.BtsBandwidth.LTE_BANDWIDTH_5MHz - elif bandwidth == 3: - bts.bandwidth = md8475a.BtsBandwidth.LTE_BANDWIDTH_3MHz - elif bandwidth == 1.4: - bts.bandwidth = md8475a.BtsBandwidth.LTE_BANDWIDTH_1dot4MHz - else: - msg = "Bandwidth = {} MHz is not valid for LTE".format(bandwidth) - self.log.error(msg) - raise ValueError(msg) - time.sleep(5) # It takes some time to propagate the new settings - - def set_mimo_mode(self, bts_index, mimo): - """ Sets the number of DL antennas for the desired MIMO mode. - - Args: - bts_index: the base station number - mimo: object of class MimoMode - """ - - bts = self.bts[bts_index] - - # If the requested mimo mode is not compatible with the current TM, - # warn the user before changing the value. - - if mimo == LteSimulation.MimoMode.MIMO_1x1: - if bts.transmode not in [ - LteSimulation.TransmissionMode.TM1, - LteSimulation.TransmissionMode.TM7 - ]: - self.log.warning( - "Using only 1 DL antennas is not allowed with " - "the current transmission mode. Changing the " - "number of DL antennas will override this " - "setting.") - bts.dl_antenna = 1 - elif mimo == LteSimulation.MimoMode.MIMO_2x2: - if bts.transmode not in [ - LteSimulation.TransmissionMode.TM2, - LteSimulation.TransmissionMode.TM3, - LteSimulation.TransmissionMode.TM4, - LteSimulation.TransmissionMode.TM8, - LteSimulation.TransmissionMode.TM9 - ]: - self.log.warning("Using two DL antennas is not allowed with " - "the current transmission mode. Changing the " - "number of DL antennas will override this " - "setting.") - bts.dl_antenna = 2 - elif mimo == LteSimulation.MimoMode.MIMO_4x4: - if bts.transmode not in [ - LteSimulation.TransmissionMode.TM2, - LteSimulation.TransmissionMode.TM3, - LteSimulation.TransmissionMode.TM4, - LteSimulation.TransmissionMode.TM9 - ]: - self.log.warning("Using four DL antennas is not allowed with " - "the current transmission mode. Changing the " - "number of DL antennas will override this " - "setting.") - - bts.dl_antenna = 4 - else: - RuntimeError("The requested MIMO mode is not supported.") - - def set_scheduling_mode(self, bts_index, scheduling, mcs_dl, mcs_ul, - nrb_dl, nrb_ul): - """ Sets the scheduling mode for LTE - - Args: - bts_index: the base station number - scheduling: DYNAMIC or STATIC scheduling (Enum list) - mcs_dl: Downlink MCS (only for STATIC scheduling) - mcs_ul: Uplink MCS (only for STATIC scheduling) - nrb_dl: Number of RBs for downlink (only for STATIC scheduling) - nrb_ul: Number of RBs for uplink (only for STATIC scheduling) - """ - - bts = self.bts[bts_index] - bts.lte_scheduling_mode = scheduling.value - - if scheduling == LteSimulation.SchedulingMode.STATIC: - - if not all([nrb_dl, nrb_ul, mcs_dl, mcs_ul]): - raise ValueError('When the scheduling mode is set to manual, ' - 'the RB and MCS parameters are required.') - - bts.packet_rate = md8475a.BtsPacketRate.LTE_MANUAL - bts.lte_mcs_dl = mcs_dl - bts.lte_mcs_ul = mcs_ul - bts.nrb_dl = nrb_dl - bts.nrb_ul = nrb_ul - - time.sleep(5) # It takes some time to propagate the new settings - - def lte_attach_secondary_carriers(self): - """ Activates the secondary carriers for CA. Requires the DUT to be - attached to the primary carrier first. """ - - testcase = self.anritsu.get_AnritsuTestCases() - # Setting the procedure to selection is needed because of a bug in the - # instrument's software (b/139547391). - testcase.procedure = md8475a.TestProcedure.PROCEDURE_SELECTION - testcase.procedure = md8475a.TestProcedure.PROCEDURE_MULTICELL - testcase.power_control = md8475a.TestPowerControl.POWER_CONTROL_DISABLE - testcase.measurement_LTE = md8475a.TestMeasurement.MEASUREMENT_DISABLE - - self.anritsu.start_testcase() - - retry_counter = 0 - self.log.info("Waiting for the test case to start...") - time.sleep(5) - - while self.anritsu.get_testcase_status() == "0": - retry_counter += 1 - if retry_counter == 3: - raise RuntimeError( - "The test case failed to start after {} " - "retries. The connection between the phone " - "and the base station might be unstable.".format( - retry_counter)) - time.sleep(10) - - def set_transmission_mode(self, bts_index, tmode): - """ Sets the transmission mode for the LTE basetation - - Args: - bts_index: the base station number - tmode: Enum list from class 'TransmissionModeLTE' - """ - - bts = self.bts[bts_index] - - # If the selected transmission mode does not support the number of DL - # antennas, throw an exception. - if (tmode in [ - LteSimulation.TransmissionMode.TM1, - LteSimulation.TransmissionMode.TM7 - ] and bts.dl_antenna != '1'): - # TM1 and TM7 only support 1 DL antenna - raise ValueError("{} allows only one DL antenna. Change the " - "number of DL antennas before setting the " - "transmission mode.".format(tmode.value)) - elif (tmode == LteSimulation.TransmissionMode.TM8 - and bts.dl_antenna != '2'): - # TM8 requires 2 DL antennas - raise ValueError("TM2 requires two DL antennas. Change the " - "number of DL antennas before setting the " - "transmission mode.") - elif (tmode in [ - LteSimulation.TransmissionMode.TM2, - LteSimulation.TransmissionMode.TM3, - LteSimulation.TransmissionMode.TM4, - LteSimulation.TransmissionMode.TM9 - ] and bts.dl_antenna == '1'): - # TM2, TM3, TM4 and TM9 require 2 or 4 DL antennas - raise ValueError("{} requires at least two DL atennas. Change the " - "number of DL antennas before setting the " - "transmission mode.".format(tmode.value)) - - # The TM mode is allowed for the current number of DL antennas, so it - # is safe to change this setting now - bts.transmode = tmode.value - - time.sleep(5) # It takes some time to propagate the new settings - - def wait_until_attached(self, timeout=120): - """ Waits until the DUT is attached to the primary carrier. - - Args: - timeout: after this amount of time the method will raise a - CellularSimulatorError exception. Default is 120 seconds. - """ - try: - self.anritsu.wait_for_registration_state(time_to_wait=timeout) - except anritsu.AnritsuError: - raise cc.CellularSimulatorError('The phone did not attach before ' - 'the timeout period ended.') - - def wait_until_communication_state(self, timeout=120): - """ Waits until the DUT is in Communication state. - - Args: - timeout: after this amount of time the method will raise a - CellularSimulatorError exception. Default is 120 seconds. - """ - try: - self.anritsu.wait_for_communication_state(time_to_wait=timeout) - except anritsu.AnritsuError: - raise cc.CellularSimulatorError('The phone was not in ' - 'Communication state before ' - 'the timeout period ended.') - - def wait_until_idle_state(self, timeout=120): - """ Waits until the DUT is in Idle state. - - Args: - timeout: after this amount of time the method will raise a - CellularSimulatorError exception. Default is 120 seconds. - """ - try: - self.anritsu.wait_for_idle_state(time_to_wait=timeout) - except anritsu.AnritsuError: - raise cc.CellularSimulatorError('The phone was not in Idle state ' - 'before the time the timeout ' - 'period ended.') - - def detach(self): - """ Turns off all the base stations so the DUT loose connection.""" - self.anritsu.set_simulation_state_to_poweroff() - - def stop(self): - """ Stops current simulation. After calling this method, the simulator - will need to be set up again. """ - self.simulator.stop() - - def start_data_traffic(self): - """ Starts transmitting data from the instrument to the DUT. """ - try: - self.anritsu.start_ip_traffic() - except md8475a.AnritsuError as inst: - # This typically happens when traffic is already running. - # TODO (b/141962691): continue only if traffic is running - self.log.warning(str(inst)) - time.sleep(4) - - def stop_data_traffic(self): - """ Stops transmitting data from the instrument to the DUT. """ - try: - self.anritsu.stop_ip_traffic() - except md8475a.AnritsuError as inst: - # This typically happens when traffic has already been stopped - # TODO (b/141962691): continue only if traffic is stopped - self.log.warning(str(inst)) - time.sleep(2) - - -class MD8475BCellularSimulator(MD8475CellularSimulator): - - MD8475_VERSION = 'B' - - # Indicates if it is able to use 256 QAM as the downlink modulation for LTE - LTE_SUPPORTS_DL_256QAM = True - - # Indicates if it is able to use 64 QAM as the uplink modulation for LTE - LTE_SUPPORTS_UL_64QAM = True - - # Indicates if 4x4 MIMO is supported for LTE - LTE_SUPPORTS_4X4_MIMO = True - - # The maximum number of carriers that this simulator can support for LTE - LTE_MAX_CARRIERS = 4 - - # The maximum power that the equipment is able to transmit - MAX_DL_POWER = -30 - - # Simulation config files in the callbox computer. - # These should be replaced in the future by setting up - # the same configuration manually. - LTE_BASIC_SIM_FILE = 'SIM_default_LTE.wnssp2' - LTE_BASIC_CELL_FILE = 'CELL_LTE_config.wnscp2' - LTE_CA_BASIC_SIM_FILE = 'SIM_LTE_CA.wnssp2' - LTE_CA_BASIC_CELL_FILE = 'CELL_LTE_CA_config.wnscp2' - - # Filepath to the config files stored in the Anritsu callbox. Needs to be - # formatted to replace {} with either A or B depending on the model. - CALLBOX_CONFIG_PATH = 'C:\\Users\\MD8475B\\Documents\\DAN_configs\\' - - def setup_lte_ca_scenario(self): - """ The B model can support up to five carriers. """ - - super().setup_lte_ca_scenario() - - self.bts.extend([ - self.anritsu.get_BTS(md8475a.BtsNumber.BTS3), - self.anritsu.get_BTS(md8475a.BtsNumber.BTS4), - self.anritsu.get_BTS(md8475a.BtsNumber.BTS5) - ]) diff --git a/acts/framework/acts/controllers/anritsu_lib/md8475a.py b/acts/framework/acts/controllers/anritsu_lib/md8475a.py index e7380abaad..c8dfd985e1 100644 --- a/acts/framework/acts/controllers/anritsu_lib/md8475a.py +++ b/acts/framework/acts/controllers/anritsu_lib/md8475a.py @@ -17,7 +17,6 @@ Controller interface for Anritsu Signalling Tester MD8475A. """ -import logging import time import socket from enum import Enum @@ -28,8 +27,6 @@ from acts.controllers.anritsu_lib._anritsu_utils import AnritsuUtils from acts.controllers.anritsu_lib._anritsu_utils import NO_ERROR from acts.controllers.anritsu_lib._anritsu_utils import OPERATION_COMPLETE -from acts import tracelogger - TERMINATOR = "\0" # The following wait times (except COMMUNICATION_STATE_WAIT_TIME) are actually @@ -45,7 +42,6 @@ ANRITSU_SOCKET_BUFFER_SIZE = 8192 COMMAND_COMPLETE_WAIT_TIME = 180 # was 90 SETTLING_TIME = 1 WAIT_TIME_IDENTITY_RESPONSE = 5 -IDLE_STATE_WAIT_TIME = 240 IMSI_READ_USERDATA_WCDMA = "081501" IMEI_READ_USERDATA_WCDMA = "081502" @@ -77,11 +73,11 @@ WCDMA_BANDS = { } -def create(configs): +def create(configs, logger): objs = [] for c in configs: ip_address = c["ip_address"] - objs.append(MD8475A(ip_address)) + objs.append(MD8475A(ip_address, logger)) return objs @@ -135,45 +131,6 @@ class BtsBandwidth(Enum): LTE_BANDWIDTH_15MHz = "15MHz" LTE_BANDWIDTH_20MHz = "20MHz" - def get_float_value(bts_bandwidth): - """ Returns a float representing the bandwidth in MHz. - - Args: - bts_bandwidth: a BtsBandwidth enum or a string matching one of the - values in the BtsBandwidth enum. - """ - - if isinstance(bts_bandwidth, BtsBandwidth): - bandwidth_str = bts_bandwidth.value - elif isinstance(bts_bandwidth, str): - bandwidth_str = bts_bandwidth - else: - raise TypeError('bts_bandwidth should be an instance of string or ' - 'BtsBandwidth. ') - - if bandwidth_str == BtsBandwidth.LTE_BANDWIDTH_20MHz.value: - return 20 - elif bandwidth_str == BtsBandwidth.LTE_BANDWIDTH_15MHz.value: - return 15 - elif bandwidth_str == BtsBandwidth.LTE_BANDWIDTH_10MHz.value: - return 10 - elif bandwidth_str == BtsBandwidth.LTE_BANDWIDTH_5MHz.value: - return 5 - elif bandwidth_str == BtsBandwidth.LTE_BANDWIDTH_3MHz.value: - return 3 - elif bandwidth_str == BtsBandwidth.LTE_BANDWIDTH_1dot4MHz.value: - return 1.4 - else: - raise ValueError( - 'Could not map {} to a bandwidth value.'.format(bandwidth_str)) - - -class LteMimoMode(Enum): - """ Values for LTE MIMO modes. """ - NONE = "MIMONOT" - MIMO_2X2 = "MIMO2X2" - MIMO_4X4 = "MIMO4X4" - class BtsGprsMode(Enum): ''' Values for Gprs Modes ''' @@ -284,7 +241,6 @@ class TriggerMessageIDs(Enum): IDENTITY_REQUEST_LTE = 141155 IDENTITY_REQUEST_WCDMA = 241115 IDENTITY_REQUEST_GSM = 641115 - UE_CAPABILITY_ENQUIRY = 111167 class TriggerMessageReply(Enum): @@ -443,10 +399,10 @@ class MD8475A(object): """Class to communicate with Anritsu MD8475A Signalling Tester. This uses GPIB command to interface with Anritsu MD8475A """ - def __init__(self, ip_address, wlan=False, md8475_version="A"): + def __init__(self, ip_address, log_handle, wlan=False, md8475_version="A"): self._error_reporting = True self._ipaddr = ip_address - self.log = tracelogger.TraceLogger(logging.getLogger()) + self.log = log_handle self._wlan = wlan port_number = 28002 self._md8475_version = md8475_version @@ -777,13 +733,12 @@ class MD8475A(object): if status != NO_ERROR: raise AnritsuError(status, cmd) - def _set_simulation_model(self, sim_model, reset=True): + def _set_simulation_model(self, sim_model): """ Set simulation model and valid the configuration Args: sim_model: simulation model - reset: if True, reset the simulation after setting the new - simulation model + Returns: True/False """ @@ -803,30 +758,30 @@ class MD8475A(object): COMMAND_COMPLETE_WAIT_TIME)) if error: return False - if reset: - # Reset might be necessary because SIMMODEL will load - # some of the contents from previous parameter files. - self.reset() + # Reset every time after SIMMODEL is set because SIMMODEL will load + # some of the contents from previous parameter files. + self.reset() return True - def set_simulation_model(self, *bts_rats, reset=True): - """ Stops the simulation and then sets the simulation model. + def set_simulation_model(self, bts1, bts2=None, bts3=None, bts4=None): + """ Sets the simulation model Args: - *bts_rats: base station rats for BTS 1 to 5. - reset: if True, reset the simulation after setting the new - simulation model + bts1 - BTS1 RAT + bts1 - BTS2 RAT + bts3 - Not used now + bts4 - Not used now + Returns: True or False """ self.stop_simulation() - if len(bts_rats) not in range(1, 6): - raise ValueError( - "set_simulation_model requires 1 to 5 BTS values.") - simmodel = ",".join(bts_rat.value for bts_rat in bts_rats) + simmodel = bts1.value + if bts2 is not None: + simmodel = simmodel + "," + bts2.value if self._wlan: simmodel = simmodel + "," + "WLAN" - return self._set_simulation_model(simmodel, reset) + return self._set_simulation_model(simmodel) def get_simulation_model(self): """ Gets the simulation model @@ -840,77 +795,6 @@ class MD8475A(object): cmd = "SIMMODEL?" return self.send_query(cmd) - def get_lte_rrc_status_change(self): - """ Gets the LTE RRC status change function state - - Returns: - Boolean: True is Enabled / False is Disabled - """ - cmd = "L_RRCSTAT?" - return self.send_query(cmd) == "ENABLE" - - def set_lte_rrc_status_change(self, status_change): - """ Enables or Disables the LTE RRC status change function - - Returns: - None - """ - cmd = "L_RRCSTAT " - if status_change: - cmd += "ENABLE" - else: - cmd += "DISABLE" - self.send_command(cmd) - - def get_lte_rrc_status_change_timer(self): - """ Gets the LTE RRC Status Change Timer - - Returns: - returns a status change timer integer value - """ - cmd = "L_STATTMR?" - return self.send_query(cmd) - - def set_lte_rrc_status_change_timer(self, time): - """ Sets the LTE RRC Status Change Timer parameter - - Returns: - None - """ - cmd = "L_STATTMR %s" % time - self.send_command(cmd) - - def set_umts_rrc_status_change(self, status_change): - """ Enables or Disables the UMTS RRC status change function - - Returns: - None - """ - cmd = "W_RRCSTAT " - if status_change: - cmd += "ENABLE" - else: - cmd += "DISABLE" - self.send_command(cmd) - - def get_umts_rrc_status_change(self): - """ Gets the UMTS RRC Status Change - - Returns: - Boolean: True is Enabled / False is Disabled - """ - cmd = "W_RRCSTAT?" - return self.send_query(cmd) - - def set_umts_dch_stat_timer(self, timer_seconds): - """ Sets the UMTS RRC DCH timer - - Returns: - None - """ - cmd = "W_STATTMRDCH %s" % timer_seconds - self.send_command(cmd) - def set_simulation_state_to_poweroff(self): """ Sets the simulation state to POWER OFF @@ -962,57 +846,6 @@ class MD8475A(object): else: break - def set_trigger_message_mode(self, msg_id): - """ Sets the Message Mode of the trigger - - Args: - msg_id: The hex value of the identity of an RRC/NAS message. - - Returns: - None - """ - - if isinstance(msg_id, TriggerMessageIDs): - msg_id = msg_id.value - - cmd = "TMMESSAGEMODE {},USERDATA".format(msg_id) - self.send_command(cmd) - - def set_data_of_trigger_message(self, msg_id, user_data): - """ Sets the User Data of the trigger message - - Args: - msg_id: The hex value of the identity of an RRC/NAS message. - user_data: Hex data - - Returns: - None - """ - - if isinstance(msg_id, TriggerMessageIDs): - msg_id = msg_id.value - - data_len = len(user_data) * 4 - - cmd = "TMUSERDATA {}, {}, {}".format(msg_id, user_data, data_len) - self.send_command(cmd) - - def send_trigger_message(self, msg_id): - """ Sends the User Data of the trigger information - - Args: - msg_id: The hex value of the identity of an RRC/NAS message. - - Returns: - None - """ - - if isinstance(msg_id, TriggerMessageIDs): - msg_id = msg_id.value - - cmd = "TMSENDUSERMSG {}".format(msg_id) - self.send_command(cmd) - def wait_for_registration_state(self, bts=1, time_to_wait=REGISTRATION_STATE_WAIT_TIME): @@ -1069,29 +902,6 @@ class MD8475A(object): else: raise AnritsuError("UE failed to register on network") - def wait_for_idle_state(self, time_to_wait=IDLE_STATE_WAIT_TIME): - """ Waits for UE idle state on Anritsu - - Args: - time_to_wait: time to wait for the phone to get to idle state - - Returns: - None - """ - self.log.info("wait for IDLE state on anritsu.") - - sleep_interval = 1 - waiting_time = 0 - - callstat = self.send_query("CALLSTAT? BTS1").split(",") - while callstat[0] != "IDLE": - time.sleep(sleep_interval) - waiting_time += sleep_interval - if waiting_time <= time_to_wait: - callstat = self.send_query("CALLSTAT? BTS1").split(",") - else: - raise AnritsuError("UE failed to go on idle state") - def get_camping_cell(self): """ Gets the current camping cell information @@ -1154,31 +964,6 @@ class MD8475A(object): """ return self.send_query("TESTSTAT?") - def start_ip_traffic(self, pdn='1'): - """ Starts IP data traffic with the selected PDN. - - Args: - pdn: the pdn to be used for data traffic. Defaults to '1'. - """ - self.send_command('OPERATEIPTRAFFIC START,' + pdn) - - def stop_ip_traffic(self, pdn='1'): - """ Stops IP data traffic with the selected PDN. - - Args: - pdn: pdn for which data traffic has to be stopped. Defaults to '1'. - """ - self.send_command('OPERATEIPTRAFFIC STOP,' + pdn) - - def set_carrier_aggregation_enabled(self, enabled=True): - """ Enables or disables de carrier aggregation option. - - Args: - enabled: enables CA if True and disables CA if False. - """ - cmd = 'CA ' + 'ENABLE' if enabled else 'DISABLE' - self.send_command(cmd) - # Common Default Gateway: @property def gateway_ipv4addr(self): @@ -1559,20 +1344,6 @@ class MD8475A(object): seqlog = self.send_query("SEQLOG? %d" % index).split(",") return (seqlog[-1]) - def trigger_ue_capability_enquiry(self, requested_bands): - """ Triggers LTE RRC UE capability enquiry from callbox. - - Args: - requested_bands: User data in hex format - """ - self.set_trigger_message_mode(TriggerMessageIDs.UE_CAPABILITY_ENQUIRY) - time.sleep(SETTLING_TIME) - self.set_data_of_trigger_message( - TriggerMessageIDs.UE_CAPABILITY_ENQUIRY, requested_bands) - time.sleep(SETTLING_TIME) - self.send_trigger_message(TriggerMessageIDs.UE_CAPABILITY_ENQUIRY) - time.sleep(SETTLING_TIME) - def select_usim(self, usim): """ Select pre-defined Anritsu USIM models @@ -1982,7 +1753,7 @@ class _BaseTransceiverStation(object): Raises: ValueError: Frame structure has to be [ 0, 6 ] inclusive """ - if configuration not in range(0, 7): + if uldl_configuration not in range(0, 7): raise ValueError("The frame structure configuration has to be a " "number between 0 and 6 inclusive") @@ -3144,30 +2915,6 @@ class _BaseTransceiverStation(object): self._anritsu.send_command(cmd) @property - def mimo_support(self): - """ Gets the maximum supported MIMO mode for the LTE bases tation. - - Returns: - the MIMO mode as a string - """ - cmd = "LTEMIMO? " + self._bts_number - return self._anritsu.send_query(cmd) - - @mimo_support.setter - def mimo_support(self, mode): - """ Sets the maximum supported MIMO mode for the LTE base station. - - Args: - mode: a string or an object of the LteMimoMode class. - """ - - if isinstance(mode, LteMimoMode): - mode = mode.value - - cmd = "LTEMIMO {},{}".format(self._bts_number, mode) - self._anritsu.send_command(cmd) - - @property def neighbor_cell_mode(self): """ Gets the neighbor cell mode diff --git a/acts/framework/acts/controllers/anritsu_lib/mg3710a.py b/acts/framework/acts/controllers/anritsu_lib/mg3710a.py index a9df65d713..4be900db96 100644 --- a/acts/framework/acts/controllers/anritsu_lib/mg3710a.py +++ b/acts/framework/acts/controllers/anritsu_lib/mg3710a.py @@ -17,7 +17,6 @@ Controller interface for Anritsu Signal Generator MG3710A. """ -import logging import time import socket from enum import Enum @@ -27,16 +26,14 @@ from acts.controllers.anritsu_lib._anritsu_utils import AnritsuError from acts.controllers.anritsu_lib._anritsu_utils import NO_ERROR from acts.controllers.anritsu_lib._anritsu_utils import OPERATION_COMPLETE -from acts import tracelogger - TERMINATOR = "\n" -def create(configs): +def create(configs, logger): objs = [] for c in configs: ip_address = c["ip_address"] - objs.append(MG3710A(ip_address)) + objs.append(MG3710A(ip_address, logger)) return objs @@ -48,9 +45,9 @@ class MG3710A(object): """Class to communicate with Anritsu Signal Generator MG3710A. This uses GPIB command to interface with Anritsu MG3710A """ - def __init__(self, ip_address): + def __init__(self, ip_address, log_handle): self._ipaddr = ip_address - self.log = tracelogger.TraceLogger(logging.getLogger()) + self.log = log_handle # Open socket connection to Signaling Tester self.log.info("Opening Socket Connection with " diff --git a/acts/framework/acts/controllers/ap_lib/dhcp_server.py b/acts/framework/acts/controllers/ap_lib/dhcp_server.py index 8993e4005a..19d6d733e5 100644 --- a/acts/framework/acts/controllers/ap_lib/dhcp_server.py +++ b/acts/framework/acts/controllers/ap_lib/dhcp_server.py @@ -92,8 +92,7 @@ class DhcpServer(object): def stop(self): """Kills the daemon if it is running.""" - if self.is_alive(): - self._shell.kill(self._identifier) + self._shell.kill(self._identifier) def is_alive(self): """ diff --git a/acts/framework/acts/controllers/ap_lib/hostapd_ap_preset.py b/acts/framework/acts/controllers/ap_lib/hostapd_ap_preset.py index a7d89a7e5b..3d6c3f4129 100644 --- a/acts/framework/acts/controllers/ap_lib/hostapd_ap_preset.py +++ b/acts/framework/acts/controllers/ap_lib/hostapd_ap_preset.py @@ -12,45 +12,19 @@ # See the License for the specific language governing permissions and # limitations under the License. -import acts.controllers.ap_lib.third_party_ap_profiles.actiontec as actiontec -import acts.controllers.ap_lib.third_party_ap_profiles.asus as asus -import acts.controllers.ap_lib.third_party_ap_profiles.belkin as belkin - from acts.controllers.ap_lib import hostapd_config from acts.controllers.ap_lib import hostapd_constants - -def _get_or_default(var, default_value): - """Check variable and return non-null value. - - Args: - var: Any variable. - default_value: Value to return if the var is None. - - Returns: - Variable value if not None, default value otherwise. - """ - return var if var is not None else default_value - - def create_ap_preset(profile_name='whirlwind', iface_wlan_2g=None, iface_wlan_5g=None, channel=None, - mode=None, + dtim=2, frequency=None, security=None, ssid=None, - hidden=None, - dtim_period=None, - frag_threshold=None, - rts_threshold=None, - force_wmm=None, - beacon_interval=None, - short_preamble=None, - n_capabilities=None, - ac_capabilities=None, - vht_bandwidth=None, + hidden=False, + vht_bandwidth=80, bss_settings=[]): """AP preset config generator. This a wrapper for hostapd_config but but supplies the default settings for the preset that is selected. @@ -71,15 +45,6 @@ def create_ap_preset(profile_name='whirlwind', bss_settings: The settings for all bss. iface_wlan_2g: the wlan 2g interface name of the AP. iface_wlan_5g: the wlan 5g interface name of the AP. - mode: The hostapd 802.11 mode of operation. - ssid: The ssid for the wireless network. - hidden: Whether to include the ssid in the beacons. - dtim_period: The dtim period for the BSS - frag_threshold: Max size of packet before fragmenting the packet. - rts_threshold: Max size of packet before requiring protection for - rts/cts or cts to self. - n_capabilities: 802.11n capabilities for for BSS to advertise. - ac_capabilities: 802.11ac capabilities for for BSS to advertise. Returns: A hostapd_config object that can be used by the hostapd object. """ @@ -93,6 +58,15 @@ def create_ap_preset(profile_name='whirlwind', iface_wlan_5g not in hostapd_constants.INTERFACE_5G_LIST: raise ValueError('Incorrect interface name was passed.') + force_wmm = None + force_wmm = None + beacon_interval = None + dtim_period = None + short_preamble = None + interface = None + mode = None + n_capabilities = None + ac_capabilities = None if channel: frequency = hostapd_config.get_frequency_for_channel(channel) elif frequency: @@ -100,26 +74,21 @@ def create_ap_preset(profile_name='whirlwind', else: raise ValueError('Specify either frequency or channel.') - if profile_name == 'whirlwind': - # profile indicates phy mode is 11bgn for 2.4Ghz or 11acn for 5Ghz - hidden = _get_or_default(hidden, False) - force_wmm = _get_or_default(force_wmm, True) - beacon_interval = _get_or_default(beacon_interval, 100) - short_preamble = _get_or_default(short_preamble, True) - dtim_period = _get_or_default(dtim_period, 2) - frag_threshold = _get_or_default(frag_threshold, 2346) - rts_threshold = _get_or_default(rts_threshold, 2347) + if (profile_name == 'whirlwind'): + force_wmm = True + beacon_interval = 100 + short_preamble = True if frequency < 5000: interface = iface_wlan_2g - mode = _get_or_default(mode, hostapd_constants.MODE_11N_MIXED) - n_capabilities = _get_or_default(n_capabilities, [ + mode = hostapd_constants.MODE_11N_MIXED + n_capabilities = [ hostapd_constants.N_CAPABILITY_LDPC, hostapd_constants.N_CAPABILITY_SGI20, hostapd_constants.N_CAPABILITY_SGI40, hostapd_constants.N_CAPABILITY_TX_STBC, hostapd_constants.N_CAPABILITY_RX_STBC1, hostapd_constants.N_CAPABILITY_DSSS_CCK_40 - ]) + ] config = hostapd_config.HostapdConfig( ssid=ssid, hidden=hidden, @@ -132,13 +101,10 @@ def create_ap_preset(profile_name='whirlwind', short_preamble=short_preamble, frequency=frequency, n_capabilities=n_capabilities, - frag_threshold=frag_threshold, - rts_threshold=rts_threshold, bss_settings=bss_settings) else: interface = iface_wlan_5g - vht_bandwidth = _get_or_default(vht_bandwidth, 80) - mode = _get_or_default(mode, hostapd_constants.MODE_11AC_MIXED) + mode = hostapd_constants.MODE_11AC_MIXED if hostapd_config.ht40_plus_allowed(channel): extended_channel = hostapd_constants.N_CAPABILITY_HT40_PLUS elif hostapd_config.ht40_minus_allowed(channel): @@ -148,26 +114,24 @@ def create_ap_preset(profile_name='whirlwind', mode = hostapd_constants.MODE_11N_MIXED extended_channel = hostapd_constants.N_CAPABILITY_HT20 # Define the n capability vector for 20 MHz and higher bandwidth - if not vht_bandwidth: - pass - elif vht_bandwidth >= 40: - n_capabilities = _get_or_default(n_capabilities, [ + if vht_bandwidth >= 40: + n_capabilities = [ hostapd_constants.N_CAPABILITY_LDPC, extended_channel, hostapd_constants.N_CAPABILITY_SGI20, hostapd_constants.N_CAPABILITY_SGI40, hostapd_constants.N_CAPABILITY_TX_STBC, hostapd_constants.N_CAPABILITY_RX_STBC1 - ]) + ] else: - n_capabilities = _get_or_default(n_capabilities, [ + n_capabilities = [ hostapd_constants.N_CAPABILITY_LDPC, hostapd_constants.N_CAPABILITY_SGI20, hostapd_constants.N_CAPABILITY_SGI40, hostapd_constants.N_CAPABILITY_TX_STBC, hostapd_constants.N_CAPABILITY_RX_STBC1, hostapd_constants.N_CAPABILITY_HT20 - ]) - ac_capabilities = _get_or_default(ac_capabilities, [ + ] + ac_capabilities = [ hostapd_constants.AC_CAPABILITY_MAX_MPDU_11454, hostapd_constants.AC_CAPABILITY_RXLDPC, hostapd_constants.AC_CAPABILITY_SHORT_GI_80, @@ -176,7 +140,7 @@ def create_ap_preset(profile_name='whirlwind', hostapd_constants.AC_CAPABILITY_MAX_A_MPDU_LEN_EXP7, hostapd_constants.AC_CAPABILITY_RX_ANTENNA_PATTERN, hostapd_constants.AC_CAPABILITY_TX_ANTENNA_PATTERN - ]) + ] config = hostapd_config.HostapdConfig( ssid=ssid, hidden=hidden, @@ -189,89 +153,9 @@ def create_ap_preset(profile_name='whirlwind', dtim_period=dtim_period, short_preamble=short_preamble, frequency=frequency, - frag_threshold=frag_threshold, - rts_threshold=rts_threshold, n_capabilities=n_capabilities, ac_capabilities=ac_capabilities, bss_settings=bss_settings) - elif profile_name == 'whirlwind_11ab_legacy': - if frequency < 5000: - mode = hostapd_constants.MODE_11B - else: - mode = hostapd_constants.MODE_11A - - config = create_ap_preset(iface_wlan_2g=iface_wlan_2g, - iface_wlan_5g=iface_wlan_5g, - ssid=ssid, - channel=channel, - mode=mode, - security=security, - hidden=hidden, - force_wmm=force_wmm, - beacon_interval=beacon_interval, - short_preamble=short_preamble, - dtim_period=dtim_period, - rts_threshold=rts_threshold, - frag_threshold=frag_threshold, - n_capabilities=[], - ac_capabilities=[], - vht_bandwidth=None) - elif profile_name == 'whirlwind_11ag_legacy': - if frequency < 5000: - mode = hostapd_constants.MODE_11G - else: - mode = hostapd_constants.MODE_11A - - config = create_ap_preset(iface_wlan_2g=iface_wlan_2g, - iface_wlan_5g=iface_wlan_5g, - ssid=ssid, - channel=channel, - mode=mode, - security=security, - hidden=hidden, - force_wmm=force_wmm, - beacon_interval=beacon_interval, - short_preamble=short_preamble, - dtim_period=dtim_period, - rts_threshold=rts_threshold, - frag_threshold=frag_threshold, - n_capabilities=[], - ac_capabilities=[], - vht_bandwidth=None) - elif profile_name == 'actiontec_pk5000': - config = actiontec.actiontec_pk5000(iface_wlan_2g=iface_wlan_2g, - channel=channel, - ssid=ssid, - security=security) - elif profile_name == 'actiontec_mi424wr': - config = actiontec.actiontec_mi424wr(iface_wlan_2g=iface_wlan_2g, - channel=channel, - ssid=ssid, - security=security) - elif profile_name == 'asus_rtac66u': - config = asus.asus_rtac66u(iface_wlan_2g=iface_wlan_2g, - iface_wlan_5g=iface_wlan_5g, - channel=channel, - ssid=ssid, - security=security) - elif profile_name == 'asus_rtac86u': - config = asus.asus_rtac86u(iface_wlan_2g=iface_wlan_2g, - iface_wlan_5g=iface_wlan_5g, - channel=channel, - ssid=ssid, - security=security) - elif profile_name == 'asus_rtac5300': - config = asus.asus_rtac5300(iface_wlan_2g=iface_wlan_2g, - iface_wlan_5g=iface_wlan_5g, - channel=channel, - ssid=ssid, - security=security) - elif profile_name == 'belkin_f9k1001v5': - config = belkin.belkin_f9k1001v5(iface_wlan_2g=iface_wlan_2g, - channel=channel, - ssid=ssid, - security=security) else: raise ValueError('Invalid ap model specified (%s)' % profile_name) - return config diff --git a/acts/framework/acts/controllers/ap_lib/hostapd_config.py b/acts/framework/acts/controllers/ap_lib/hostapd_config.py index 64ea022641..2d39875292 100644 --- a/acts/framework/acts/controllers/ap_lib/hostapd_config.py +++ b/acts/framework/acts/controllers/ap_lib/hostapd_config.py @@ -71,6 +71,7 @@ class HostapdConfig(object): All the settings for a router that are not part of an ssid. """ + def _get_11ac_center_channel_from_channel(self, channel): """Returns the center channel of the selected channel band based on the channel and channel bandwidth provided. @@ -307,7 +308,6 @@ class HostapdConfig(object): beacon_interval=None, dtim_period=None, frag_threshold=None, - rts_threshold=None, short_preamble=None, ssid=None, hidden=False, @@ -324,7 +324,6 @@ class HostapdConfig(object): scenario_name=None, min_streams=None, bss_settings=[], - additional_parameters={}, set_ap_defaults_model=None): """Construct a HostapdConfig. @@ -341,8 +340,6 @@ class HostapdConfig(object): beacon_interval: int, beacon interval of AP. dtim_period: int, include a DTIM every |dtim_period| beacons. frag_threshold: int, maximum outgoing data frame size. - rts_threshold: int, maximum packet size without requiring explicit - protection via rts/cts or cts to self. short_preamble: Whether to use a short preamble. ssid: string, The name of the ssid to brodcast. hidden: bool, Should the ssid be hidden. @@ -366,8 +363,6 @@ class HostapdConfig(object): min_streams: int, number of spatial streams required. control_interface: The file name to use as the control interface. bss_settings: The settings for all bss. - additional_parameters: A dictionary of additional parameters to add - to the hostapd config. """ self._interface = interface if channel is not None and frequency is not None: @@ -419,17 +414,14 @@ class HostapdConfig(object): self._beacon_interval = beacon_interval self._dtim_period = dtim_period self._frag_threshold = frag_threshold - self._rts_threshold = rts_threshold self._short_preamble = short_preamble + self._ssid = ssid self._hidden = hidden self._security = security self._bssid = bssid if force_wmm is not None: - if force_wmm: - self._wmm_enabled = 1 - else: - self._wmm_enabled = 0 + self._wmm_enabled = force_wmm if pmf_support not in hostapd_constants.PMF_SUPPORT_VALUES: raise ValueError('Invalid value for pmf_support: %r' % pmf_support) @@ -451,9 +443,10 @@ class HostapdConfig(object): logging.warning( 'No channel bandwidth specified. Using 80MHz for 11ac.') self._vht_oper_chwidth = 1 - if not vht_channel_width == 20 and not vht_center_channel: - self._vht_oper_centr_freq_seg0_idx = self._get_11ac_center_channel_from_channel( - self.channel) + if not vht_channel_width == 20: + if not vht_center_channel: + self._vht_oper_centr_freq_seg0_idx = self._get_11ac_center_channel_from_channel( + self.channel) else: self._vht_oper_centr_freq_seg0_idx = vht_center_channel self._ac_capabilities = set(ac_capabilities) @@ -461,7 +454,6 @@ class HostapdConfig(object): self._spectrum_mgmt_required = spectrum_mgmt_required self._scenario_name = scenario_name self._min_streams = min_streams - self._additional_parameters = additional_parameters self._bss_lookup = collections.OrderedDict() for bss in bss_settings: @@ -471,16 +463,16 @@ class HostapdConfig(object): self._bss_lookup[bss.name] = bss def __repr__(self): - return ( - '%s(mode=%r, channel=%r, frequency=%r, ' - 'n_capabilities=%r, beacon_interval=%r, ' - 'dtim_period=%r, frag_threshold=%r, ssid=%r, bssid=%r, ' - 'wmm_enabled=%r, security_config=%r, ' - 'spectrum_mgmt_required=%r)' % - (self.__class__.__name__, self._mode, self.channel, self.frequency, - self._n_capabilities, self._beacon_interval, self._dtim_period, - self._frag_threshold, self._ssid, self._bssid, self._wmm_enabled, - self._security, self._spectrum_mgmt_required)) + return ('%s(mode=%r, channel=%r, frequency=%r, ' + 'n_capabilities=%r, beacon_interval=%r, ' + 'dtim_period=%r, frag_threshold=%r, ssid=%r, bssid=%r, ' + 'wmm_enabled=%r, security_config=%r, ' + 'spectrum_mgmt_required=%r)' % + (self.__class__.__name__, self._mode, self.channel, + self.frequency, self._n_capabilities, self._beacon_interval, + self._dtim_period, self._frag_threshold, self._ssid, + self._bssid, self._wmm_enabled, self._security, + self._spectrum_mgmt_required)) def supports_channel(self, value): """Check whether channel is supported by the current hardware mode. @@ -569,8 +561,8 @@ class HostapdConfig(object): conf['vht_oper_centr_freq_seg0_idx'] = \ self._vht_oper_centr_freq_seg0_idx conf['vht_capab'] = self._hostapd_vht_capabilities - if self._wmm_enabled is not None: - conf['wmm_enabled'] = self._wmm_enabled + if self._wmm_enabled: + conf['wmm_enabled'] = 1 if self._require_ht: conf['require_ht'] = 1 if self._require_vht: @@ -581,8 +573,6 @@ class HostapdConfig(object): conf['dtim_period'] = self._dtim_period if self._frag_threshold: conf['fragm_threshold'] = self._frag_threshold - if self._rts_threshold: - conf['rts_threshold'] = self._rts_threshold if self._pmf_support: conf['ieee80211w'] = self._pmf_support if self._obss_interval: @@ -611,7 +601,4 @@ class HostapdConfig(object): bss_conf[k] = v all_conf.append(bss_conf) - if self._additional_parameters: - all_conf.append(self._additional_parameters) - return all_conf diff --git a/acts/framework/acts/controllers/ap_lib/hostapd_constants.py b/acts/framework/acts/controllers/ap_lib/hostapd_constants.py index 4139ed0595..f453250f77 100755 --- a/acts/framework/acts/controllers/ap_lib/hostapd_constants.py +++ b/acts/framework/acts/controllers/ap_lib/hostapd_constants.py @@ -25,7 +25,6 @@ MIXED = 3 ENT = 4 # get the correct constant MAX_WPA_PSK_LENGTH = 64 MIN_WPA_PSK_LENGTH = 8 -MAX_WPA_PASSWORD_LENGTH = 63 WPA_STRICT_REKEY = 1 WPA_DEFAULT_CIPHER = 'TKIP' WPA2_DEFAULT_CIPER = 'CCMP' @@ -46,25 +45,16 @@ WLAN1_GALE = 'wlan-5000mhz' WEP_STRING = 'wep' WEP_DEFAULT_KEY = 0 WEP_HEX_LENGTH = [10, 26, 32, 58] -WEP_STR_LENGTH = [5, 13, 16] AP_DEFAULT_CHANNEL_2G = 6 AP_DEFAULT_CHANNEL_5G = 36 AP_DEFAULT_MAX_SSIDS_2G = 8 AP_DEFAULT_MAX_SSIDS_5G = 8 AP_SSID_LENGTH_2G = 8 -AP_SSID_MIN_LENGTH_2G = 1 -AP_SSID_MAX_LENGTH_2G = 32 AP_PASSPHRASE_LENGTH_2G = 10 AP_SSID_LENGTH_5G = 8 -AP_SSID_MIN_LENGTH_5G = 1 -AP_SSID_MAX_LENGTH_5G = 32 AP_PASSPHRASE_LENGTH_5G = 10 INTERFACE_2G_LIST = [WLAN0_STRING, WLAN0_GALE] INTERFACE_5G_LIST = [WLAN1_STRING, WLAN1_GALE] -HIGH_BEACON_INTERVAL = 300 -LOW_BEACON_INTERVAL = 100 -HIGH_DTIM = 3 -LOW_DTIM = 1 # A mapping of frequency to channel number. This includes some # frequencies used outside the US. @@ -149,12 +139,6 @@ N_CAPABILITY_RX_STBC1 = object() N_CAPABILITY_RX_STBC12 = object() N_CAPABILITY_RX_STBC123 = object() N_CAPABILITY_DSSS_CCK_40 = object() -N_CAPABILITY_LSIG_TXOP_PROT = object() -N_CAPABILITY_40_INTOLERANT = object() -N_CAPABILITY_MAX_AMSDU_7935 = object() -N_CAPABILITY_DELAY_BLOCK_ACK = object() -N_CAPABILITY_SMPS_STATIC = object() -N_CAPABILITY_SMPS_DYNAMIC = object() N_CAPABILITIES_MAPPING = { N_CAPABILITY_LDPC: '[LDPC]', N_CAPABILITY_HT20: '[HT20]', @@ -167,13 +151,7 @@ N_CAPABILITIES_MAPPING = { N_CAPABILITY_RX_STBC1: '[RX-STBC1]', N_CAPABILITY_RX_STBC12: '[RX-STBC12]', N_CAPABILITY_RX_STBC123: '[RX-STBC123]', - N_CAPABILITY_DSSS_CCK_40: '[DSSS_CCK-40]', - N_CAPABILITY_LSIG_TXOP_PROT: '[LSIG-TXOP-PROT]', - N_CAPABILITY_40_INTOLERANT: '[40-INTOLERANT]', - N_CAPABILITY_MAX_AMSDU_7935: '[MAX-AMSDU-7935]', - N_CAPABILITY_DELAY_BLOCK_ACK: '[DELAYED-BA]', - N_CAPABILITY_SMPS_STATIC: '[SMPS-STATIC]', - N_CAPABILITY_SMPS_DYNAMIC: '[SMPS-DYNAMIC]' + N_CAPABILITY_DSSS_CCK_40: '[DSSS_CCK-40]' } N_CAPABILITY_HT40_MINUS_CHANNELS = object() N_CAPABILITY_HT40_PLUS_CHANNELS = object() @@ -262,12 +240,12 @@ VHT_CHANNEL = { HT40_ALLOW_MAP = { N_CAPABILITY_HT40_MINUS_CHANNELS: tuple( - itertools.chain(range(6, 14), range(40, 65, 8), range(104, 137, 8), - [153, 161])), + itertools.chain( + range(6, 14), range(40, 65, 8), range(104, 137, 8), [153, 161])), N_CAPABILITY_HT40_PLUS_CHANNELS: tuple( - itertools.chain(range(1, 8), range(36, 61, 8), range(100, 133, 8), - [149, 157])) + itertools.chain( + range(1, 8), range(36, 61, 8), range(100, 133, 8), [149, 157])) } PMF_SUPPORT_DISABLED = 0 @@ -280,912 +258,18 @@ DRIVER_NAME = 'nl80211' CENTER_CHANNEL_MAP = { VHT_CHANNEL_WIDTH_40: { - 'delta': - 2, + 'delta': 2, 'channels': ((36, 40), (44, 48), (52, 56), (60, 64), (100, 104), (108, 112), (116, 120), (124, 128), (132, 136), (140, 144), (149, 153), (147, 161)) }, VHT_CHANNEL_WIDTH_80: { - 'delta': - 6, - 'channels': - ((36, 48), (52, 64), (100, 112), (116, 128), (132, 144), (149, 161)) + 'delta': 6, + 'channels': ((36, 48), (52, 64), (100, 112), (116, 128), (132, 144), + (149, 161)) }, VHT_CHANNEL_WIDTH_160: { 'delta': 14, 'channels': ((36, 64), (100, 128)) } } - -OFDM_DATA_RATES = {'supported_rates': '60 90 120 180 240 360 480 540'} - -CCK_DATA_RATES = {'supported_rates': '10 20 55 11'} - -OFDM_ONLY_BASIC_RATES = {'basic_rates': '60 120 240'} - -CCK_AND_OFDM_BASIC_RATES = {'basic_rates': '10 20 55 11'} - -WEP_AUTH = { - 'open': { - 'auth_algs': 1 - }, - 'shared': { - 'auth_algs': 2 - }, - 'open_and_shared': { - 'auth_algs': 3 - } -} - -WMM_11B_DEFAULT_PARAMS = { - 'wmm_ac_bk_cwmin': 5, - 'wmm_ac_bk_cwmax': 10, - 'wmm_ac_bk_aifs': 7, - 'wmm_ac_bk_txop_limit': 0, - 'wmm_ac_be_aifs': 3, - 'wmm_ac_be_cwmin': 5, - 'wmm_ac_be_cwmax': 7, - 'wmm_ac_be_txop_limit': 0, - 'wmm_ac_vi_aifs': 2, - 'wmm_ac_vi_cwmin': 4, - 'wmm_ac_vi_cwmax': 5, - 'wmm_ac_vi_txop_limit': 188, - 'wmm_ac_vo_aifs': 2, - 'wmm_ac_vo_cwmin': 3, - 'wmm_ac_vo_cwmax': 4, - 'wmm_ac_vo_txop_limit': 102 -} - -WMM_PHYS_11A_11G_11N_11AC_DEFAULT_PARAMS = { - 'wmm_ac_bk_cwmin': 4, - 'wmm_ac_bk_cwmax': 10, - 'wmm_ac_bk_aifs': 7, - 'wmm_ac_bk_txop_limit': 0, - 'wmm_ac_be_aifs': 3, - 'wmm_ac_be_cwmin': 4, - 'wmm_ac_be_cwmax': 10, - 'wmm_ac_be_txop_limit': 0, - 'wmm_ac_vi_aifs': 2, - 'wmm_ac_vi_cwmin': 3, - 'wmm_ac_vi_cwmax': 4, - 'wmm_ac_vi_txop_limit': 94, - 'wmm_ac_vo_aifs': 2, - 'wmm_ac_vo_cwmin': 2, - 'wmm_ac_vo_cwmax': 3, - 'wmm_ac_vo_txop_limit': 47 -} - -WMM_NON_DEFAULT_PARAMS = { - 'wmm_ac_bk_cwmin': 5, - 'wmm_ac_bk_cwmax': 9, - 'wmm_ac_bk_aifs': 3, - 'wmm_ac_bk_txop_limit': 94, - 'wmm_ac_be_aifs': 2, - 'wmm_ac_be_cwmin': 2, - 'wmm_ac_be_cwmax': 8, - 'wmm_ac_be_txop_limit': 0, - 'wmm_ac_vi_aifs': 1, - 'wmm_ac_vi_cwmin': 7, - 'wmm_ac_vi_cwmax': 10, - 'wmm_ac_vi_txop_limit': 47, - 'wmm_ac_vo_aifs': 1, - 'wmm_ac_vo_cwmin': 6, - 'wmm_ac_vo_cwmax': 10, - 'wmm_ac_vo_txop_limit': 94 -} - -WMM_ACM_BK = {'wmm_ac_bk_acm': 1} -WMM_ACM_BE = {'wmm_ac_be_acm': 1} -WMM_ACM_VI = {'wmm_ac_vi_acm': 1} -WMM_ACM_VO = {'wmm_ac_vo_acm': 1} - -UAPSD_ENABLED = {'uapsd_advertisement_enabled': 1} - -UTF_8_SSID = {'utf8_ssid': 1} - -VENDOR_IE = { - 'correct_length_beacon': { - 'vendor_elements': 'dd0411223301' - }, - 'too_short_length_beacon': { - 'vendor_elements': 'dd0311223301' - }, - 'too_long_length_beacon': { - 'vendor_elements': 'dd0511223301' - }, - 'zero_length_beacon_with_data': { - 'vendor_elements': 'dd0011223301' - }, - 'zero_length_beacon_without_data': { - 'vendor_elements': 'dd00' - }, - 'simliar_to_wpa': { - 'vendor_elements': 'dd040050f203' - }, - 'correct_length_association_response': { - 'assocresp_elements=': 'dd0411223301' - }, - 'too_short_length_association_response': { - 'assocresp_elements=': 'dd0311223301' - }, - 'too_long_length_association_response': { - 'assocresp_elements=': 'dd0511223301' - }, - 'zero_length_association_response_with_data': { - 'assocresp_elements': 'dd0011223301' - }, - 'zero_length_association_response_without_data': { - 'assocresp_elements': 'dd00' - } -} - -ENABLE_IEEE80211D = {'ieee80211d': 1} - -COUNTRY_STRING = { - 'ALL': { - 'country3': '0x20' - }, - 'OUTDOOR': { - 'country3': '0x4f' - }, - 'INDOOR': { - 'country3': '0x49' - }, - 'NONCOUNTRY': { - 'country3': '0x58' - }, - 'GLOBAL': { - 'country3': '0x04' - } -} - -COUNTRY_CODE = { - 'AFGHANISTAN': { - 'country_code': 'AF' - }, - 'ALAND_ISLANDS': { - 'country_code': 'AX' - }, - 'ALBANIA': { - 'country_code': 'AL' - }, - 'ALGERIA': { - 'country_code': 'DZ' - }, - 'AMERICAN_SAMOA': { - 'country_code': 'AS' - }, - 'ANDORRA': { - 'country_code': 'AD' - }, - 'ANGOLA': { - 'country_code': 'AO' - }, - 'ANGUILLA': { - 'country_code': 'AI' - }, - 'ANTARCTICA': { - 'country_code': 'AQ' - }, - 'ANTIGUA_AND_BARBUDA': { - 'country_code': 'AG' - }, - 'ARGENTINA': { - 'country_code': 'AR' - }, - 'ARMENIA': { - 'country_code': 'AM' - }, - 'ARUBA': { - 'country_code': 'AW' - }, - 'AUSTRALIA': { - 'country_code': 'AU' - }, - 'AUSTRIA': { - 'country_code': 'AT' - }, - 'AZERBAIJAN': { - 'country_code': 'AZ' - }, - 'BAHAMAS': { - 'country_code': 'BS' - }, - 'BAHRAIN': { - 'country_code': 'BH' - }, - 'BANGLADESH': { - 'country_code': 'BD' - }, - 'BARBADOS': { - 'country_code': 'BB' - }, - 'BELARUS': { - 'country_code': 'BY' - }, - 'BELGIUM': { - 'country_code': 'BE' - }, - 'BELIZE': { - 'country_code': 'BZ' - }, - 'BENIN': { - 'country_code': 'BJ' - }, - 'BERMUDA': { - 'country_code': 'BM' - }, - 'BHUTAN': { - 'country_code': 'BT' - }, - 'BOLIVIA': { - 'country_code': 'BO' - }, - 'BONAIRE': { - 'country_code': 'BQ' - }, - 'BOSNIA_AND_HERZEGOVINA': { - 'country_code': 'BA' - }, - 'BOTSWANA': { - 'country_code': 'BW' - }, - 'BOUVET_ISLAND': { - 'country_code': 'BV' - }, - 'BRAZIL': { - 'country_code': 'BR' - }, - 'BRITISH_INDIAN_OCEAN_TERRITORY': { - 'country_code': 'IO' - }, - 'BRUNEI_DARUSSALAM': { - 'country_code': 'BN' - }, - 'BULGARIA': { - 'country_code': 'BG' - }, - 'BURKINA_FASO': { - 'country_code': 'BF' - }, - 'BURUNDI': { - 'country_code': 'BI' - }, - 'CAMBODIA': { - 'country_code': 'KH' - }, - 'CAMEROON': { - 'country_code': 'CM' - }, - 'CANADA': { - 'country_code': 'CA' - }, - 'CAPE_VERDE': { - 'country_code': 'CV' - }, - 'CAYMAN_ISLANDS': { - 'country_code': 'KY' - }, - 'CENTRAL_AFRICAN_REPUBLIC': { - 'country_code': 'CF' - }, - 'CHAD': { - 'country_code': 'TD' - }, - 'CHILE': { - 'country_code': 'CL' - }, - 'CHINA': { - 'country_code': 'CN' - }, - 'CHRISTMAS_ISLAND': { - 'country_code': 'CX' - }, - 'COCOS_ISLANDS': { - 'country_code': 'CC' - }, - 'COLOMBIA': { - 'country_code': 'CO' - }, - 'COMOROS': { - 'country_code': 'KM' - }, - 'CONGO': { - 'country_code': 'CG' - }, - 'DEMOCRATIC_REPUBLIC_CONGO': { - 'country_code': 'CD' - }, - 'COOK_ISLANDS': { - 'country_code': 'CK' - }, - 'COSTA_RICA': { - 'country_code': 'CR' - }, - 'COTE_D_IVOIRE': { - 'country_code': 'CI' - }, - 'CROATIA': { - 'country_code': 'HR' - }, - 'CUBA': { - 'country_code': 'CU' - }, - 'CURACAO': { - 'country_code': 'CW' - }, - 'CYPRUS': { - 'country_code': 'CY' - }, - 'CZECH_REPUBLIC': { - 'country_code': 'CZ' - }, - 'DENMARK': { - 'country_code': 'DK' - }, - 'DJIBOUTI': { - 'country_code': 'DJ' - }, - 'DOMINICA': { - 'country_code': 'DM' - }, - 'DOMINICAN_REPUBLIC': { - 'country_code': 'DO' - }, - 'ECUADOR': { - 'country_code': 'EC' - }, - 'EGYPT': { - 'country_code': 'EG' - }, - 'EL_SALVADOR': { - 'country_code': 'SV' - }, - 'EQUATORIAL_GUINEA': { - 'country_code': 'GQ' - }, - 'ERITREA': { - 'country_code': 'ER' - }, - 'ESTONIA': { - 'country_code': 'EE' - }, - 'ETHIOPIA': { - 'country_code': 'ET' - }, - 'FALKLAND_ISLANDS_(MALVINAS)': { - 'country_code': 'FK' - }, - 'FAROE_ISLANDS': { - 'country_code': 'FO' - }, - 'FIJI': { - 'country_code': 'FJ' - }, - 'FINLAND': { - 'country_code': 'FI' - }, - 'FRANCE': { - 'country_code': 'FR' - }, - 'FRENCH_GUIANA': { - 'country_code': 'GF' - }, - 'FRENCH_POLYNESIA': { - 'country_code': 'PF' - }, - 'FRENCH_SOUTHERN_TERRITORIES': { - 'country_code': 'TF' - }, - 'GABON': { - 'country_code': 'GA' - }, - 'GAMBIA': { - 'country_code': 'GM' - }, - 'GEORGIA': { - 'country_code': 'GE' - }, - 'GERMANY': { - 'country_code': 'DE' - }, - 'GHANA': { - 'country_code': 'GH' - }, - 'GIBRALTAR': { - 'country_code': 'GI' - }, - 'GREECE': { - 'country_code': 'GR' - }, - 'GREENLAND': { - 'country_code': 'GL' - }, - 'GRENADA': { - 'country_code': 'GD' - }, - 'GUADELOUPE': { - 'country_code': 'GP' - }, - 'GUAM': { - 'country_code': 'GU' - }, - 'GUATEMALA': { - 'country_code': 'GT' - }, - 'GUERNSEY': { - 'country_code': 'GG' - }, - 'GUINEA': { - 'country_code': 'GN' - }, - 'GUINEA-BISSAU': { - 'country_code': 'GW' - }, - 'GUYANA': { - 'country_code': 'GY' - }, - 'HAITI': { - 'country_code': 'HT' - }, - 'HEARD_ISLAND_AND_MCDONALD_ISLANDS': { - 'country_code': 'HM' - }, - 'VATICAN_CITY_STATE': { - 'country_code': 'VA' - }, - 'HONDURAS': { - 'country_code': 'HN' - }, - 'HONG_KONG': { - 'country_code': 'HK' - }, - 'HUNGARY': { - 'country_code': 'HU' - }, - 'ICELAND': { - 'country_code': 'IS' - }, - 'INDIA': { - 'country_code': 'IN' - }, - 'INDONESIA': { - 'country_code': 'ID' - }, - 'IRAN': { - 'country_code': 'IR' - }, - 'IRAQ': { - 'country_code': 'IQ' - }, - 'IRELAND': { - 'country_code': 'IE' - }, - 'ISLE_OF_MAN': { - 'country_code': 'IM' - }, - 'ISRAEL': { - 'country_code': 'IL' - }, - 'ITALY': { - 'country_code': 'IT' - }, - 'JAMAICA': { - 'country_code': 'JM' - }, - 'JAPAN': { - 'country_code': 'JP' - }, - 'JERSEY': { - 'country_code': 'JE' - }, - 'JORDAN': { - 'country_code': 'JO' - }, - 'KAZAKHSTAN': { - 'country_code': 'KZ' - }, - 'KENYA': { - 'country_code': 'KE' - }, - 'KIRIBATI': { - 'country_code': 'KI' - }, - 'DEMOCRATIC_PEOPLE_S_REPUBLIC_OF_KOREA': { - 'country_code': 'KP' - }, - 'REPUBLIC_OF_KOREA': { - 'country_code': 'KR' - }, - 'KUWAIT': { - 'country_code': 'KW' - }, - 'KYRGYZSTAN': { - 'country_code': 'KG' - }, - 'LAO': { - 'country_code': 'LA' - }, - 'LATVIA': { - 'country_code': 'LV' - }, - 'LEBANON': { - 'country_code': 'LB' - }, - 'LESOTHO': { - 'country_code': 'LS' - }, - 'LIBERIA': { - 'country_code': 'LR' - }, - 'LIBYA': { - 'country_code': 'LY' - }, - 'LIECHTENSTEIN': { - 'country_code': 'LI' - }, - 'LITHUANIA': { - 'country_code': 'LT' - }, - 'LUXEMBOURG': { - 'country_code': 'LU' - }, - 'MACAO': { - 'country_code': 'MO' - }, - 'MACEDONIA': { - 'country_code': 'MK' - }, - 'MADAGASCAR': { - 'country_code': 'MG' - }, - 'MALAWI': { - 'country_code': 'MW' - }, - 'MALAYSIA': { - 'country_code': 'MY' - }, - 'MALDIVES': { - 'country_code': 'MV' - }, - 'MALI': { - 'country_code': 'ML' - }, - 'MALTA': { - 'country_code': 'MT' - }, - 'MARSHALL_ISLANDS': { - 'country_code': 'MH' - }, - 'MARTINIQUE': { - 'country_code': 'MQ' - }, - 'MAURITANIA': { - 'country_code': 'MR' - }, - 'MAURITIUS': { - 'country_code': 'MU' - }, - 'MAYOTTE': { - 'country_code': 'YT' - }, - 'MEXICO': { - 'country_code': 'MX' - }, - 'MICRONESIA': { - 'country_code': 'FM' - }, - 'MOLDOVA': { - 'country_code': 'MD' - }, - 'MONACO': { - 'country_code': 'MC' - }, - 'MONGOLIA': { - 'country_code': 'MN' - }, - 'MONTENEGRO': { - 'country_code': 'ME' - }, - 'MONTSERRAT': { - 'country_code': 'MS' - }, - 'MOROCCO': { - 'country_code': 'MA' - }, - 'MOZAMBIQUE': { - 'country_code': 'MZ' - }, - 'MYANMAR': { - 'country_code': 'MM' - }, - 'NAMIBIA': { - 'country_code': 'NA' - }, - 'NAURU': { - 'country_code': 'NR' - }, - 'NEPAL': { - 'country_code': 'NP' - }, - 'NETHERLANDS': { - 'country_code': 'NL' - }, - 'NEW_CALEDONIA': { - 'country_code': 'NC' - }, - 'NEW_ZEALAND': { - 'country_code': 'NZ' - }, - 'NICARAGUA': { - 'country_code': 'NI' - }, - 'NIGER': { - 'country_code': 'NE' - }, - 'NIGERIA': { - 'country_code': 'NG' - }, - 'NIUE': { - 'country_code': 'NU' - }, - 'NORFOLK_ISLAND': { - 'country_code': 'NF' - }, - 'NORTHERN_MARIANA_ISLANDS': { - 'country_code': 'MP' - }, - 'NORWAY': { - 'country_code': 'NO' - }, - 'OMAN': { - 'country_code': 'OM' - }, - 'PAKISTAN': { - 'country_code': 'PK' - }, - 'PALAU': { - 'country_code': 'PW' - }, - 'PALESTINE': { - 'country_code': 'PS' - }, - 'PANAMA': { - 'country_code': 'PA' - }, - 'PAPUA_NEW_GUINEA': { - 'country_code': 'PG' - }, - 'PARAGUAY': { - 'country_code': 'PY' - }, - 'PERU': { - 'country_code': 'PE' - }, - 'PHILIPPINES': { - 'country_code': 'PH' - }, - 'PITCAIRN': { - 'country_code': 'PN' - }, - 'POLAND': { - 'country_code': 'PL' - }, - 'PORTUGAL': { - 'country_code': 'PT' - }, - 'PUERTO_RICO': { - 'country_code': 'PR' - }, - 'QATAR': { - 'country_code': 'QA' - }, - 'RÉUNION': { - 'country_code': 'RE' - }, - 'ROMANIA': { - 'country_code': 'RO' - }, - 'RUSSIAN_FEDERATION': { - 'country_code': 'RU' - }, - 'RWANDA': { - 'country_code': 'RW' - }, - 'SAINT_BARTHELEMY': { - 'country_code': 'BL' - }, - 'SAINT_KITTS_AND_NEVIS': { - 'country_code': 'KN' - }, - 'SAINT_LUCIA': { - 'country_code': 'LC' - }, - 'SAINT_MARTIN': { - 'country_code': 'MF' - }, - 'SAINT_PIERRE_AND_MIQUELON': { - 'country_code': 'PM' - }, - 'SAINT_VINCENT_AND_THE_GRENADINES': { - 'country_code': 'VC' - }, - 'SAMOA': { - 'country_code': 'WS' - }, - 'SAN_MARINO': { - 'country_code': 'SM' - }, - 'SAO_TOME_AND_PRINCIPE': { - 'country_code': 'ST' - }, - 'SAUDI_ARABIA': { - 'country_code': 'SA' - }, - 'SENEGAL': { - 'country_code': 'SN' - }, - 'SERBIA': { - 'country_code': 'RS' - }, - 'SEYCHELLES': { - 'country_code': 'SC' - }, - 'SIERRA_LEONE': { - 'country_code': 'SL' - }, - 'SINGAPORE': { - 'country_code': 'SG' - }, - 'SINT_MAARTEN': { - 'country_code': 'SX' - }, - 'SLOVAKIA': { - 'country_code': 'SK' - }, - 'SLOVENIA': { - 'country_code': 'SI' - }, - 'SOLOMON_ISLANDS': { - 'country_code': 'SB' - }, - 'SOMALIA': { - 'country_code': 'SO' - }, - 'SOUTH_AFRICA': { - 'country_code': 'ZA' - }, - 'SOUTH_GEORGIA': { - 'country_code': 'GS' - }, - 'SOUTH_SUDAN': { - 'country_code': 'SS' - }, - 'SPAIN': { - 'country_code': 'ES' - }, - 'SRI_LANKA': { - 'country_code': 'LK' - }, - 'SUDAN': { - 'country_code': 'SD' - }, - 'SURINAME': { - 'country_code': 'SR' - }, - 'SVALBARD_AND_JAN_MAYEN': { - 'country_code': 'SJ' - }, - 'SWAZILAND': { - 'country_code': 'SZ' - }, - 'SWEDEN': { - 'country_code': 'SE' - }, - 'SWITZERLAND': { - 'country_code': 'CH' - }, - 'SYRIAN_ARAB_REPUBLIC': { - 'country_code': 'SY' - }, - 'TAIWAN': { - 'country_code': 'TW' - }, - 'TAJIKISTAN': { - 'country_code': 'TJ' - }, - 'TANZANIA': { - 'country_code': 'TZ' - }, - 'THAILAND': { - 'country_code': 'TH' - }, - 'TIMOR-LESTE': { - 'country_code': 'TL' - }, - 'TOGO': { - 'country_code': 'TG' - }, - 'TOKELAU': { - 'country_code': 'TK' - }, - 'TONGA': { - 'country_code': 'TO' - }, - 'TRINIDAD_AND_TOBAGO': { - 'country_code': 'TT' - }, - 'TUNISIA': { - 'country_code': 'TN' - }, - 'TURKEY': { - 'country_code': 'TR' - }, - 'TURKMENISTAN': { - 'country_code': 'TM' - }, - 'TURKS_AND_CAICOS_ISLANDS': { - 'country_code': 'TC' - }, - 'TUVALU': { - 'country_code': 'TV' - }, - 'UGANDA': { - 'country_code': 'UG' - }, - 'UKRAINE': { - 'country_code': 'UA' - }, - 'UNITED_ARAB_EMIRATES': { - 'country_code': 'AE' - }, - 'UNITED_KINGDOM': { - 'country_code': 'GB' - }, - 'UNITED_STATES': { - 'country_code': 'US' - }, - 'UNITED_STATES_MINOR_OUTLYING_ISLANDS': { - 'country_code': 'UM' - }, - 'URUGUAY': { - 'country_code': 'UY' - }, - 'UZBEKISTAN': { - 'country_code': 'UZ' - }, - 'VANUATU': { - 'country_code': 'VU' - }, - 'VENEZUELA': { - 'country_code': 'VE' - }, - 'VIETNAM': { - 'country_code': 'VN' - }, - 'VIRGIN_ISLANDS_BRITISH': { - 'country_code': 'VG' - }, - 'VIRGIN_ISLANDS_US': { - 'country_code': 'VI' - }, - 'WALLIS_AND_FUTUNA': { - 'country_code': 'WF' - }, - 'WESTERN_SAHARA': { - 'country_code': 'EH' - }, - 'YEMEN': { - 'country_code': 'YE' - }, - 'ZAMBIA': { - 'country_code': 'ZM' - }, - 'ZIMBABWE': { - 'country_code': 'ZW' - }, - 'NON_COUNTRY': { - 'country_code': 'XX' - } -} diff --git a/acts/framework/acts/controllers/ap_lib/hostapd_security.py b/acts/framework/acts/controllers/ap_lib/hostapd_security.py index 42618f9a8e..47d41fe003 100644 --- a/acts/framework/acts/controllers/ap_lib/hostapd_security.py +++ b/acts/framework/acts/controllers/ap_lib/hostapd_security.py @@ -83,9 +83,7 @@ class Security(object): self.security_mode = security_mode if password: if security_mode == hostapd_constants.WEP: - if len(password) in hostapd_constants.WEP_STR_LENGTH: - self.password = '"%s"' % password - elif len(password) in hostapd_constants.WEP_HEX_LENGTH and all( + if len(password) in hostapd_constants.WEP_HEX_LENGTH and all( c in string.hexdigits for c in password): self.password = password else: @@ -105,7 +103,7 @@ class Security(object): def generate_dict(self): """Returns: an ordered dictionary of settings""" settings = collections.OrderedDict() - if self.security_mode is not None: + if self.security_mode != None: if self.security_mode == hostapd_constants.WEP: settings['wep_default_key'] = self.wep_default_key settings['wep_key' + str(self.wep_default_key)] = self.password @@ -122,6 +120,7 @@ class Security(object): settings['wpa_psk'] = self.password else: settings['wpa_passphrase'] = self.password + if self.security_mode == hostapd_constants.MIXED: settings['wpa_pairwise'] = self.wpa_cipher settings['rsn_pairwise'] = self.wpa2_cipher @@ -129,6 +128,7 @@ class Security(object): settings['wpa_pairwise'] = self.wpa_cipher elif self.security_mode == hostapd_constants.WPA2: settings['rsn_pairwise'] = self.wpa2_cipher + if self.wpa_group_rekey: settings['wpa_group_rekey'] = self.wpa_group_rekey if self.wpa_strict_rekey: diff --git a/acts/framework/acts/controllers/ap_lib/third_party_ap_profiles/actiontec.py b/acts/framework/acts/controllers/ap_lib/third_party_ap_profiles/actiontec.py deleted file mode 100644 index 1e576ebded..0000000000 --- a/acts/framework/acts/controllers/ap_lib/third_party_ap_profiles/actiontec.py +++ /dev/null @@ -1,181 +0,0 @@ -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from acts.controllers.ap_lib import hostapd_config -from acts.controllers.ap_lib import hostapd_constants - - -def _merge_dicts(*dict_args): - result = {} - for dictionary in dict_args: - result.update(dictionary) - return result - - -def actiontec_pk5000(iface_wlan_2g=None, - channel=None, - security=None, - ssid=None): - """A simulated implementation of what a Actiontec PK5000 AP - Args: - iface_wlan_2g: The 2.4 interface of the test AP. - channel: What channel to use. Only 2.4Ghz is supported for this profile - security: A security profile. Must be none or WPA2 as this is what is - supported by the PK5000. - ssid: Network name - Returns: - A hostapd config - - Differences from real pk5000: - Supported Rates IE: - PK5000: Supported: 1, 2, 5.5, 11 - Extended: 6, 9, 12, 18, 24, 36, 48, 54 - Simulated: Supported: 1, 2, 5.5, 11, 6, 9, 12, 18 - Extended: 24, 36, 48, 54 - """ - if channel > 11: - # Technically this should be 14 but since the PK5000 is a US only AP, - # 11 is the highest allowable channel. - raise ValueError('The Actiontec PK5000 does not support 5Ghz. ' - 'Invalid channel (%s)' % channel) - else: - interface = iface_wlan_2g - short_preamble = False - force_wmm = False - beacon_interval = 100 - dtim_period = 3 - # Sets the basic rates and supported rates of the PK5000 - additional_params = { - 'basic_rates': '10 20 55 110', - 'supported_rates': '10 20 55 110 60 90 120 180 240 360 480 540' - } - - if security: - if security.security_mode is hostapd_constants.WPA2: - if not security.wpa2_cipher == 'CCMP': - raise ValueError('The Actiontec PK5000 only supports a WPA2 ' - 'unicast and multicast cipher of CCMP. ' - 'Invalid cipher mode (%s)' % - security.security.wpa2_cipher) - # Fake WPS IE based on the PK5000 - additional_params['vendor_elements'] = 'dd0e0050f204104a00011010' \ - '44000102' - else: - raise ValueError( - 'The Actiontec PK5000 only supports WPA2. Invalid security ' - 'mode (%s)' % security.security_mode) - elif security is None: - pass - else: - raise ValueError('Only open or wpa2 are supported on the ' - 'Actiontec PK5000.') - - config = hostapd_config.HostapdConfig( - ssid=ssid, - channel=channel, - hidden=False, - security=security, - interface=interface, - mode=hostapd_constants.MODE_11G, - force_wmm=force_wmm, - beacon_interval=beacon_interval, - dtim_period=dtim_period, - short_preamble=short_preamble, - additional_parameters=additional_params) - - return config - - -def actiontec_mi424wr(iface_wlan_2g=None, - channel=None, - security=None, - ssid=None): - # TODO(b/143104825): Permit RIFS once it is supported - """A simulated implementation of an Actiontec MI424WR AP. - Args: - iface_wlan_2g: The 2.4Ghz interface of the test AP. - channel: What channel to use (2.4Ghz or 5Ghz). - security: A security profile. - ssid: The network name. - Returns: - A hostapd config. - - Differences from real MI424WR: - HT Capabilities: - MI424WR: - HT Rx STBC: Support for 1, 2, and 3 - Simulated: - HT Rx STBC: Support for 1 - HT Information: - MI424WR: - RIFS: Premitted - Simulated: - RIFS: Prohibited - """ - if channel > 11: - raise ValueError('The Actiontec MI424WR does not support 5Ghz. ' - 'Invalid channel (%s)' % channel) - if (iface_wlan_2g not in hostapd_constants.INTERFACE_2G_LIST): - raise ValueError('Invalid interface name was passed.') - - if security: - if security.security_mode is hostapd_constants.WPA2: - if not security.wpa2_cipher == 'CCMP': - raise ValueError('The mock Actiontec MI424WR only supports a ' - 'WPA2 unicast and multicast cipher of CCMP.' - 'Invalid cipher mode (%s)' % - security.security.wpa2_cipher) - else: - raise ValueError('The mock Actiontec MI424WR only supports WPA2. ' - 'Invalid security mode (%s)' % - security.security_mode) - - n_capabilities = [ - hostapd_constants.N_CAPABILITY_TX_STBC, - hostapd_constants.N_CAPABILITY_DSSS_CCK_40, - hostapd_constants.N_CAPABILITY_RX_STBC1 - ] - - rates = { - 'basic_rates': '10 20 55 110', - 'supported_rates': '10 20 55 110 60 90 120 180 240 360 480 540' - } - - # Proprietary Atheros Communication: Adv Capability IE - # Proprietary Atheros Communication: Unknown IE - # Country Info: US Only IE - vendor_elements = { - 'vendor_elements': - 'dd0900037f01010000ff7f' - 'dd0a00037f04010000000000' - '0706555320010b1b' - } - - additional_params = _merge_dicts(rates, vendor_elements) - - config = hostapd_config.HostapdConfig( - ssid=ssid, - channel=channel, - hidden=False, - security=security, - interface=iface_wlan_2g, - mode=hostapd_constants.MODE_11N_MIXED, - force_wmm=True, - beacon_interval=100, - dtim_period=1, - short_preamble=True, - n_capabilities=n_capabilities, - additional_parameters=additional_params) - - return config diff --git a/acts/framework/acts/controllers/ap_lib/third_party_ap_profiles/asus.py b/acts/framework/acts/controllers/ap_lib/third_party_ap_profiles/asus.py deleted file mode 100644 index 8ab68c5563..0000000000 --- a/acts/framework/acts/controllers/ap_lib/third_party_ap_profiles/asus.py +++ /dev/null @@ -1,395 +0,0 @@ -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from acts.controllers.ap_lib import hostapd_config -from acts.controllers.ap_lib import hostapd_constants - - -def _merge_dicts(*dict_args): - result = {} - for dictionary in dict_args: - result.update(dictionary) - return result - - -def asus_rtac66u(iface_wlan_2g=None, - iface_wlan_5g=None, - channel=None, - security=None, - ssid=None): - # TODO(b/143104825): Permit RIFS once it is supported - """A simulated implementation of an Asus RTAC66U AP. - Args: - iface_wlan_2g: The 2.4Ghz interface of the test AP. - iface_wlan_5g: The 5Ghz interface of the test AP. - channel: What channel to use. - security: A security profile. Must be none or WPA2 as this is what is - supported by the RTAC66U. - ssid: Network name - Returns: - A hostapd config - Differences from real RTAC66U: - 2.4 GHz: - Rates: - RTAC66U: - Supported: 1, 2, 5.5, 11, 18, 24, 36, 54 - Extended: 6, 9, 12, 48 - Simulated: - Supported: 1, 2, 5.5, 11, 6, 9, 12, 18 - Extended: 24, 36, 48, 54 - HT Capab: - Info - RTAC66U: Green Field supported - Simulated: Green Field not supported by driver - 5GHz: - VHT Capab: - RTAC66U: - SU Beamformer Supported, - SU Beamformee Supported, - Beamformee STS Capability: 3, - Number of Sounding Dimensions: 3, - VHT Link Adaptation: Both - Simulated: - Above are not supported by driver - VHT Operation Info: - RTAC66U: Basic MCS Map (0x0000) - Simulated: Basic MCS Map (0xfffc) - VHT Tx Power Envelope: - RTAC66U: Local Max Tx Pwr Constraint: 1.0 dBm - Simulated: Local Max Tx Pwr Constraint: 23.0 dBm - Both: - HT Capab: - A-MPDU - RTAC66U: MPDU Density 4 - Simulated: MPDU Density 8 - HT Info: - RTAC66U: RIFS Permitted - Simulated: RIFS Prohibited - """ - if not iface_wlan_2g or not iface_wlan_5g: - raise ValueError('Wlan interface for 2G and/or 5G is missing.') - if (iface_wlan_2g not in hostapd_constants.INTERFACE_2G_LIST - or iface_wlan_5g not in hostapd_constants.INTERFACE_5G_LIST): - raise ValueError('Invalid interface name was passed.') - if security: - if security.security_mode is hostapd_constants.WPA2: - if not security.wpa2_cipher == 'CCMP': - raise ValueError('The mock ASUS RT-AC66U only supports a WPA2 ' - 'unicast and multicast cipher of CCMP. ' - 'Invalid cipher mode (%s)' % - security.security.wpa2_cipher) - else: - raise ValueError( - 'The Asus RT-AC66U only supports WPA2 or open. Invalid ' - 'security mode (%s)' % security.security_mode) - - # Common Parameters - rates = {'supported_rates': '10 20 55 110 60 90 120 180 240 360 480 540'} - n_capabilities = [ - hostapd_constants.N_CAPABILITY_LDPC, - hostapd_constants.N_CAPABILITY_TX_STBC, - hostapd_constants.N_CAPABILITY_RX_STBC1, - hostapd_constants.N_CAPABILITY_MAX_AMSDU_7935, - hostapd_constants.N_CAPABILITY_DSSS_CCK_40, - hostapd_constants.N_CAPABILITY_SGI20 - ] - # WPS IE - # Broadcom IE - vendor_elements = { - 'vendor_elements': - 'dd310050f204104a00011010440001021047001093689729d373c26cb1563c6c570f33' - 'd7103c0001031049000600372a000120' - 'dd090010180200001c0000' - } - - # 2.4GHz - if channel <= 11: - interface = iface_wlan_2g - rates['basic_rates'] = '10 20 55 110' - mode = hostapd_constants.MODE_11N_MIXED - ac_capabilities = None - vht_channel_width = None - vht_center_channel = None - - # 5GHz - else: - interface = iface_wlan_5g - rates['basic_rates'] = '60 120 240' - mode = hostapd_constants.MODE_11AC_MIXED - ac_capabilities = [ - hostapd_constants.AC_CAPABILITY_RXLDPC, - hostapd_constants.AC_CAPABILITY_SHORT_GI_80, - hostapd_constants.AC_CAPABILITY_TX_STBC_2BY1, - hostapd_constants.AC_CAPABILITY_RX_STBC_1, - hostapd_constants.AC_CAPABILITY_MAX_MPDU_11454, - hostapd_constants.AC_CAPABILITY_MAX_A_MPDU_LEN_EXP7 - ] - vht_channel_width = 40 - vht_center_channel = 36 - - additional_params = _merge_dicts(rates, vendor_elements, - hostapd_constants.UAPSD_ENABLED) - - config = hostapd_config.HostapdConfig( - ssid=ssid, - channel=channel, - hidden=False, - security=security, - interface=interface, - mode=mode, - force_wmm=True, - beacon_interval=100, - dtim_period=3, - short_preamble=False, - n_capabilities=n_capabilities, - ac_capabilities=ac_capabilities, - vht_channel_width=vht_channel_width, - vht_center_channel=vht_center_channel, - additional_parameters=additional_params) - - return config - - -def asus_rtac86u(iface_wlan_2g=None, - iface_wlan_5g=None, - channel=None, - security=None, - ssid=None): - """A simulated implementation of an Asus RTAC86U AP. - Args: - iface_wlan_2g: The 2.4Ghz interface of the test AP. - iface_wlan_5g: The 5Ghz interface of the test AP. - channel: What channel to use. - security: A security profile. Must be none or WPA2 as this is what is - supported by the RTAC86U. - ssid: Network name - Returns: - A hostapd config - Differences from real RTAC86U: - 2.4GHz: - Rates: - RTAC86U: - Supported: 1, 2, 5.5, 11, 18, 24, 36, 54 - Extended: 6, 9, 12, 48 - Simulated: - Supported: 1, 2, 5.5, 11, 6, 9, 12, 18 - Extended: 24, 36, 48, 54 - 5GHz: - Country Code: - Simulated: Has two country code IEs, one that matches - the actual, and another explicit IE that was required for - hostapd's 802.11d to work. - Both (w/ WPA2): - RSN Capabilities: - RTA86U: 0x000c (RSN PTKSA Replay Counter Capab: 16) - Simulated: 0x0000 - """ - if not iface_wlan_2g or not iface_wlan_5g: - raise ValueError('Wlan interface for 2G and/or 5G is missing.') - if (iface_wlan_2g not in hostapd_constants.INTERFACE_2G_LIST - or iface_wlan_5g not in hostapd_constants.INTERFACE_5G_LIST): - raise ValueError('Invalid interface name was passed.') - if security: - if security.security_mode is hostapd_constants.WPA2: - if not security.wpa2_cipher == 'CCMP': - raise ValueError('The mock ASUS RTAC86U only supports a WPA2 ' - 'unicast and multicast cipher of CCMP. ' - 'Invalid cipher mode (%s)' % - security.security.wpa2_cipher) - else: - raise ValueError( - 'The Asus RTAC86U only supports WPA2 or open. Invalid ' - 'security mode (%s)' % security.security_mode) - - # Common Parameters - rates = {'supported_rates': '10 20 55 110 60 90 120 180 240 360 480 540'} - qbss = {'bss_load_update_period': 50, 'chan_util_avg_period': 600} - - # 2.4GHz - if channel <= 11: - interface = iface_wlan_2g - mode = hostapd_constants.MODE_11G - rates['basic_rates'] = '10 20 55 110' - spectrum_mgmt = False - # Measurement Pilot Transmission IE - vendor_elements = {'vendor_elements': '42020000'} - - # 5GHz - else: - interface = iface_wlan_5g - mode = hostapd_constants.MODE_11A - rates['basic_rates'] = '60 120 240' - spectrum_mgmt = True, - # Country Information IE (w/ individual channel info) - # TPC Report Transmit Power IE - # Measurement Pilot Transmission IE - vendor_elements = { - 'vendor_elements': - '074255532024011e28011e2c011e30011e34011e38011e3c011e40011e64011e' - '68011e6c011e70011e74011e84011e88011e8c011e95011e99011e9d011ea1011e' - 'a5011e' - '23021300' - '42020000' - } - - additional_params = _merge_dicts(rates, qbss, vendor_elements) - - config = hostapd_config.HostapdConfig( - ssid=ssid, - channel=channel, - hidden=False, - security=security, - interface=interface, - mode=mode, - force_wmm=False, - beacon_interval=100, - dtim_period=3, - short_preamble=False, - spectrum_mgmt_required=spectrum_mgmt, - additional_parameters=additional_params) - return config - - -def asus_rtac5300(iface_wlan_2g=None, - iface_wlan_5g=None, - channel=None, - security=None, - ssid=None): - # TODO(b/143104825): Permit RIFS once it is supported - """A simulated implementation of an Asus RTAC5300 AP. - Args: - iface_wlan_2g: The 2.4Ghz interface of the test AP. - iface_wlan_5g: The 5Ghz interface of the test AP. - channel: What channel to use. - security: A security profile. Must be none or WPA2 as this is what is - supported by the RTAC5300. - ssid: Network name - Returns: - A hostapd config - Differences from real RTAC5300: - 2.4GHz: - Rates: - RTAC86U: - Supported: 1, 2, 5.5, 11, 18, 24, 36, 54 - Extended: 6, 9, 12, 48 - Simulated: - Supported: 1, 2, 5.5, 11, 6, 9, 12, 18 - Extended: 24, 36, 48, 54 - 5GHz: - VHT Capab: - RTAC5300: - SU Beamformer Supported, - SU Beamformee Supported, - Beamformee STS Capability: 4, - Number of Sounding Dimensions: 4, - MU Beamformer Supported, - VHT Link Adaptation: Both - Simulated: - Above are not supported by driver - VHT Operation Info: - RTAC5300: Basic MCS Map (0x0000) - Simulated: Basic MCS Map (0xfffc) - VHT Tx Power Envelope: - RTAC5300: Local Max Tx Pwr Constraint: 1.0 dBm - Simulated: Local Max Tx Pwr Constraint: 23.0 dBm - Both: - HT Capab: - A-MPDU - RTAC5300: MPDU Density 4 - Simulated: MPDU Density 8 - HT Info: - RTAC5300: RIFS Permitted - Simulated: RIFS Prohibited - """ - if not iface_wlan_2g or not iface_wlan_5g: - raise ValueError('Wlan interface for 2G and/or 5G is missing.') - if (iface_wlan_2g not in hostapd_constants.INTERFACE_2G_LIST - or iface_wlan_5g not in hostapd_constants.INTERFACE_5G_LIST): - raise ValueError('Invalid interface name was passed.') - if security: - if security.security_mode is hostapd_constants.WPA2: - if not security.wpa2_cipher == 'CCMP': - raise ValueError('The mock ASUS RTAC5300 only supports a WPA2 ' - 'unicast and multicast cipher of CCMP. ' - 'Invalid cipher mode (%s)' % - security.security.wpa2_cipher) - else: - raise ValueError( - 'The Asus RTAC5300 only supports WPA2 or open. Invalid ' - 'security mode (%s)' % security.security_mode) - - # Common Parameters - rates = {'supported_rates': '10 20 55 110 60 90 120 180 240 360 480 540'} - qbss = {'bss_load_update_period': 50, 'chan_util_avg_period': 600} - n_capabilities = [ - hostapd_constants.N_CAPABILITY_LDPC, - hostapd_constants.N_CAPABILITY_TX_STBC, - hostapd_constants.N_CAPABILITY_RX_STBC1, - hostapd_constants.N_CAPABILITY_SGI20 - ] - # Broadcom IE - vendor_elements = {'vendor_elements': 'dd090010180200009c0000'} - - # 2.4GHz - if channel <= 11: - interface = iface_wlan_2g - rates['basic_rates'] = '10 20 55 110' - mode = hostapd_constants.MODE_11N_MIXED - # AsusTek IE - # Epigram 2.4GHz IE - vendor_elements['vendor_elements'] += 'dd25f832e4010101020100031411b5' \ - '2fd437509c30b3d7f5cf5754fb125aed3b8507045aed3b85' \ - 'dd1e00904c0418bf0cb2798b0faaff0000aaff0000c0050001000000c3020002' - ac_capabilities = None - vht_channel_width = None - vht_center_channel = None - - # 5GHz - else: - interface = iface_wlan_5g - rates['basic_rates'] = '60 120 240' - mode = hostapd_constants.MODE_11AC_MIXED - # Epigram 5GHz IE - vendor_elements['vendor_elements'] += 'dd0500904c0410' - ac_capabilities = [ - hostapd_constants.AC_CAPABILITY_RXLDPC, - hostapd_constants.AC_CAPABILITY_SHORT_GI_80, - hostapd_constants.AC_CAPABILITY_TX_STBC_2BY1, - hostapd_constants.AC_CAPABILITY_RX_STBC_1, - hostapd_constants.AC_CAPABILITY_MAX_MPDU_11454, - hostapd_constants.AC_CAPABILITY_MAX_A_MPDU_LEN_EXP7 - ] - vht_channel_width = 40 - vht_center_channel = 36 - - additional_params = _merge_dicts(rates, qbss, vendor_elements, - hostapd_constants.UAPSD_ENABLED) - - config = hostapd_config.HostapdConfig( - ssid=ssid, - channel=channel, - hidden=False, - security=security, - interface=interface, - mode=mode, - force_wmm=True, - beacon_interval=100, - dtim_period=3, - short_preamble=False, - n_capabilities=n_capabilities, - ac_capabilities=ac_capabilities, - vht_channel_width=vht_channel_width, - vht_center_channel=vht_center_channel, - additional_parameters=additional_params) - return config diff --git a/acts/framework/acts/controllers/ap_lib/third_party_ap_profiles/belkin.py b/acts/framework/acts/controllers/ap_lib/third_party_ap_profiles/belkin.py deleted file mode 100644 index 00e80290b5..0000000000 --- a/acts/framework/acts/controllers/ap_lib/third_party_ap_profiles/belkin.py +++ /dev/null @@ -1,108 +0,0 @@ -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from acts.controllers.ap_lib import hostapd_config -from acts.controllers.ap_lib import hostapd_constants - - -def _merge_dicts(*dict_args): - result = {} - for dictionary in dict_args: - result.update(dictionary) - return result - - -def belkin_f9k1001v5(iface_wlan_2g=None, - channel=None, - security=None, - ssid=None): - # TODO(b/143104825): Permit RIFS once it is supported - """A simulated implementation of what a Belkin F9K1001v5 AP - Args: - iface_wlan_2g: The 2.4Ghz interface of the test AP. - channel: What channel to use. - security: A security profile (None or WPA2). - ssid: The network name. - Returns: - A hostapd config. - Differences from real F9K1001v5: - Rates: - F9K1001v5: - Supported: 1, 2, 5.5, 11, 18, 24, 36, 54 - Extended: 6, 9, 12, 48 - Simulated: - Supported: 1, 2, 5.5, 11, 6, 9, 12, 18 - Extended: 24, 36, 48, 54 - HT Info: - F9K1001v5: - RIFS: Permitted - Simulated: - RIFS: Prohibited - """ - if channel > 11: - raise ValueError('The Belkin F9k1001v5 does not support 5Ghz. ' - 'Invalid channel (%s)' % channel) - if (iface_wlan_2g not in hostapd_constants.INTERFACE_2G_LIST): - raise ValueError('Invalid interface name was passed.') - - if security: - if security.security_mode is hostapd_constants.WPA2: - if not security.wpa2_cipher == 'CCMP': - raise ValueError('The mock Belkin F9k1001v5 only supports a ' - 'WPA2 unicast and multicast cipher of CCMP.' - 'Invalid cipher mode (%s)' % - security.security.wpa2_cipher) - else: - raise ValueError('The mock Belkin F9k1001v5 only supports WPA2. ' - 'Invalid security mode (%s)' % - security.security_mode) - - n_capabilities = [ - hostapd_constants.N_CAPABILITY_SGI20, - hostapd_constants.N_CAPABILITY_SGI40, - hostapd_constants.N_CAPABILITY_TX_STBC, - hostapd_constants.N_CAPABILITY_MAX_AMSDU_7935, - hostapd_constants.N_CAPABILITY_DSSS_CCK_40 - ] - - rates = { - 'basic_rates': '10 20 55 110', - 'supported_rates': '10 20 55 110 60 90 120 180 240 360 480 540' - } - - # Broadcom IE - # WPS IE - vendor_elements = { - 'vendor_elements': - 'dd090010180200100c0000' - 'dd180050f204104a00011010440001021049000600372a000120' - } - - additional_params = _merge_dicts(rates, vendor_elements) - - config = hostapd_config.HostapdConfig( - ssid=ssid, - channel=channel, - hidden=False, - security=security, - interface=iface_wlan_2g, - mode=hostapd_constants.MODE_11N_MIXED, - force_wmm=True, - beacon_interval=100, - dtim_period=3, - short_preamble=False, - n_capabilities=n_capabilities, - additional_parameters=additional_params) - - return config diff --git a/acts/framework/acts/controllers/attenuator_lib/minicircuits/telnet.py b/acts/framework/acts/controllers/attenuator_lib/minicircuits/telnet.py index be415d0ef3..96c890bd5f 100644 --- a/acts/framework/acts/controllers/attenuator_lib/minicircuits/telnet.py +++ b/acts/framework/acts/controllers/attenuator_lib/minicircuits/telnet.py @@ -37,11 +37,11 @@ class AttenuatorInstrument(attenuator.AttenuatorInstrument): the functionality of AttenuatorInstrument is contingent upon a telnet connection being established. """ + def __init__(self, num_atten=0): super(AttenuatorInstrument, self).__init__(num_atten) - self._tnhelper = _tnhelper._TNHelper(tx_cmd_separator='\r\n', - rx_cmd_separator='\r\n', - prompt='') + self._tnhelper = _tnhelper._TNHelper( + tx_cmd_separator='\r\n', rx_cmd_separator='\r\n', prompt='') def __del__(self): if self.is_open(): @@ -134,9 +134,6 @@ class AttenuatorInstrument(attenuator.AttenuatorInstrument): raise IndexError('Attenuator index out of range!', self.num_atten, idx) - if self.num_atten == 1: - atten_val_str = self._tnhelper.cmd(':ATT?') - else: - atten_val_str = self._tnhelper.cmd('CHAN:%s:ATT?' % (idx + 1)) + atten_val_str = self._tnhelper.cmd('CHAN:%s:ATT?' % (idx + 1)) atten_val = float(atten_val_str) return atten_val diff --git a/acts/framework/acts/controllers/bluetooth_pts_device.py b/acts/framework/acts/controllers/bluetooth_pts_device.py deleted file mode 100644 index b629108b1c..0000000000 --- a/acts/framework/acts/controllers/bluetooth_pts_device.py +++ /dev/null @@ -1,765 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -""" -Prerequisites: - Windows 10 - Bluetooth PTS installed - Recommended: Running cmder as Admin: https://cmder.net/ - -### BEGIN SETUP STEPS### -1. Install latest version of Python for windows: - https://www.python.org/downloads/windows/ - -Tested successfully on Python 3.7.3.: - https://www.python.org/ftp/python/3.7.3/python-3.7.3.exe - -2. Launch Powershell and setup PATH: -Setx PATH “%PATH%;C:/Users/<username>/AppData/Local/Programs/Python/Python37-32/Scripts†- -3. Launch Cmder as Admin before running any PTS related ACTS tests. - - -### END SETUP STEPS### - - -Bluetooth PTS controller. -Mandatory parameters are log_directory and sig_root_directory. - -ACTS Config setup: -"BluetoothPtsDevice": { - "log_directory": "C:\\Users\\fsbtt\\Documents\\Profile Tuning Suite\\Test_Dir", - "sig_root_directory": "C:\\Program Files (x86)\\Bluetooth SIG" -} - -""" -from acts import signals -from datetime import datetime -from threading import Thread - -import ctypes -import logging -import os -import subprocess -import time -import xml.etree.ElementTree as ET - -from xml.dom import minidom -from xml.etree.ElementTree import Element - - -class BluetoothPtsDeviceConfigError(signals.ControllerError): - pass - - -class BluetoothPtsSnifferError(signals.ControllerError): - pass - - -ACTS_CONTROLLER_CONFIG_NAME = "BluetoothPtsDevice" -ACTS_CONTROLLER_REFERENCE_NAME = "bluetooth_pts_device" - -# Prefix to identify final verdict string. This is a PTS specific log String. -VERDICT = 'VERDICT/' - -# Verdict strings that are specific to PTS. -VERDICT_STRINGS = { - 'RESULT_PASS': 'PASS', - 'RESULT_FAIL': 'FAIL', - 'RESULT_INCONC': 'INCONC', - 'RESULT_INCOMP': - 'INCOMP', # Initial final verdict meaning that test has not completed yet. - 'RESULT_NONE': - 'NONE', # Error verdict usually indicating internal PTS error. -} - -# Sniffer ready log message. -SNIFFER_READY = 'SNIFFER/Save and clear complete' - -# PTS Log Types as defined by PTS: -LOG_TYPE_GENERAL_TEXT = 0 -LOG_TYPE_FIRST = 1 -LOG_TYPE_START_TEST_CASE = 1 -LOG_TYPE_TEST_CASE_ENDED = 2 -LOG_TYPE_START_DEFAULT = 3 -LOG_TYPE_DEFAULT_ENDED = 4 -LOG_TYPE_FINAL_VERDICT = 5 -LOG_TYPE_PRELIMINARY_VERDICT = 6 -LOG_TYPE_TIMEOUT = 7 -LOG_TYPE_ASSIGNMENT = 8 -LOG_TYPE_START_TIMER = 9 -LOG_TYPE_STOP_TIMER = 10 -LOG_TYPE_CANCEL_TIMER = 11 -LOG_TYPE_READ_TIMER = 12 -LOG_TYPE_ATTACH = 13 -LOG_TYPE_IMPLICIT_SEND = 14 -LOG_TYPE_GOTO = 15 -LOG_TYPE_TIMED_OUT_TIMER = 16 -LOG_TYPE_ERROR = 17 -LOG_TYPE_CREATE = 18 -LOG_TYPE_DONE = 19 -LOG_TYPE_ACTIVATE = 20 -LOG_TYPE_MESSAGE = 21 -LOG_TYPE_LINE_MATCHED = 22 -LOG_TYPE_LINE_NOT_MATCHED = 23 -LOG_TYPE_SEND_EVENT = 24 -LOG_TYPE_RECEIVE_EVENT = 25 -LOG_TYPE_OTHERWISE_EVENT = 26 -LOG_TYPE_RECEIVED_ON_PCO = 27 -LOG_TYPE_MATCH_FAILED = 28 -LOG_TYPE_COORDINATION_MESSAGE = 29 - -PTS_DEVICE_EMPTY_CONFIG_MSG = "Configuration is empty, abort!" - - -def create(config): - if not config: - raise errors.PTS_DEVICE_EMPTY_CONFIG_MSG - return get_instance(config) - - -def destroy(pts): - try: - pts[0].clean_up() - except: - pts[0].log.error("Failed to clean up properly.") - - -def get_info(pts_devices): - """Get information from the BluetoothPtsDevice object. - - Args: - pts_devices: A list of BluetoothPtsDevice objects although only one - will ever be specified. - - Returns: - A dict, representing info for BluetoothPtsDevice object. - """ - return { - "address": pts_devices[0].address, - "sniffer_ready": pts_devices[0].sniffer_ready, - "ets_manager_library": pts_devices[0].ets_manager_library, - "log_directory": pts_devices[0].log_directory, - "pts_installation_directory": - pts_devices[0].pts_installation_directory, - } - - -def get_instance(config): - """Create BluetoothPtsDevice instance from a dictionary containing - information related to PTS. Namely the SIG root directory as - sig_root_directory and the log directory represented by the log_directory. - - Args: - config: A dict that contains BluetoothPtsDevice device info. - - Returns: - A list of BluetoothPtsDevice objects. - """ - result = [] - try: - log_directory = config.pop("log_directory") - except KeyError: - raise BluetoothPtsDeviceConfigError( - "Missing mandatory log_directory in config.") - try: - sig_root_directory = config.pop("sig_root_directory") - except KeyError: - example_path = \ - "C:\\\\Program Files (x86)\\\\Bluetooth SIG" - raise BluetoothPtsDeviceConfigError( - "Missing mandatory sig_root_directory in config. Example path: {}". - format(example_path)) - - # "C:\\Program Files (x86)\\Bluetooth SIG\\Bluetooth PTS\\bin\\ETSManager.dll" - ets_manager_library = "{}\\Bluetooth PTS\\bin\\ETSManager.dll".format( - sig_root_directory) - # "C:\\Program Files (x86)\\Bluetooth SIG\\Bluetooth PTS\\bin" - pts_installation_directory = "{}\\Bluetooth PTS\\bin".format( - sig_root_directory) - # "C:\\Program Files (x86)\\Bluetooth SIG\\Bluetooth Protocol Viewer" - pts_sniffer_directory = "{}\\Bluetooth Protocol Viewer".format( - sig_root_directory) - result.append( - BluetoothPtsDevice(ets_manager_library, log_directory, - pts_installation_directory, pts_sniffer_directory)) - return result - - -class BluetoothPtsDevice: - """Class representing an Bluetooth PTS device and associated functions. - - Each object of this class represents one BluetoothPtsDevice in ACTS. - """ - - _next_action = -1 - _observers = [] - address = "" - current_implicit_send_description = "" - devices = [] - extra_answers = [] - log_directory = "" - log = None - ics = None - ixit = None - profile_under_test = None - pts_library = None - pts_profile_mmi_request = "" - pts_test_result = VERDICT_STRINGS['RESULT_INCOMP'] - sniffer_ready = False - test_log_directory = "" - test_log_prefix = "" - - def __init__(self, ets_manager_library, log_directory, - pts_installation_directory, pts_sniffer_directory): - self.log = logging.getLogger() - if ets_manager_library is not None: - self.ets_manager_library = ets_manager_library - self.log_directory = log_directory - if pts_installation_directory is not None: - self.pts_installation_directory = pts_installation_directory - if pts_sniffer_directory is not None: - self.pts_sniffer_directory = pts_sniffer_directory - # Define callback functions - self.USEAUTOIMPLSENDFUNC = ctypes.CFUNCTYPE(ctypes.c_bool) - self.use_auto_impl_send_func = self.USEAUTOIMPLSENDFUNC( - self.UseAutoImplicitSend) - - self.DONGLE_MSG_FUNC = ctypes.CFUNCTYPE(ctypes.c_bool, ctypes.c_char_p) - self.dongle_msg_func = self.DONGLE_MSG_FUNC(self.DongleMsg) - - self.DEVICE_SEARCH_MSG_FUNC = ctypes.CFUNCTYPE(ctypes.c_bool, - ctypes.c_char_p, - ctypes.c_char_p, - ctypes.c_char_p) - self.dev_search_msg_func = self.DEVICE_SEARCH_MSG_FUNC( - self.DeviceSearchMsg) - - self.LOGFUNC = ctypes.CFUNCTYPE(ctypes.c_bool, ctypes.c_char_p, - ctypes.c_char_p, ctypes.c_char_p, - ctypes.c_int, ctypes.c_void_p) - self.log_func = self.LOGFUNC(self.Log) - - self.ONIMPLSENDFUNC = ctypes.CFUNCTYPE(ctypes.c_char_p, - ctypes.c_char_p, ctypes.c_int) - self.onimplsend_func = self.ONIMPLSENDFUNC(self.ImplicitSend) - - # Helps with PTS reliability. - os.chdir(self.pts_installation_directory) - # Load EtsManager - self.pts_library = ctypes.cdll.LoadLibrary(self.ets_manager_library) - self.log.info("ETS Manager library {0:s} has been loaded".format( - self.ets_manager_library)) - # If post-logging is turned on all callbacks to LPLOG-type function - # will be executed after test execution is complete. It is recommended - # that post-logging is turned on to avoid simultaneous invocations of - # LPLOG and LPAUTOIMPLICITSEND callbacks. - self.pts_library.SetPostLoggingEx(True) - - self.xml_root = Element("ARCHIVE") - version = Element("VERSION") - version.text = "2.0" - self.xml_root.append(version) - self.xml_pts_pixit = Element("PicsPixit") - self.xml_pts_pixit.text = "" - self.xml_pts_running_log = Element("LOG") - self.xml_pts_running_log.text = "" - self.xml_pts_running_summary = Element("SUMMARY") - self.xml_pts_running_summary.text = "" - - def clean_up(self): - # Since we have no insight to the actual PTS library, - # catch all Exceptions and log them. - try: - self.log.info("Cleaning up Stack...") - self.pts_library.ExitStackEx(self.profile_under_test) - except Exception as err: - self.log.error( - "Failed to clean up BluetoothPtsDevice: {}".format(err)) - try: - self.log.info("Unregistering Profile...") - self.pts_library.UnregisterProfileEx.argtypes = [ctypes.c_char_p] - self.pts_library.UnregisterProfileEx( - self.profile_under_test.encode()) - self.pts_library.UnRegisterGetDevInfoEx() - except Exception as err: - self.log.error( - "Failed to clean up BluetoothPtsDevice: {}".format(err)) - try: - self.log.info("Cleaning up Sniffer") - self.pts_library.SnifferTerminateEx() - except Exception as err: - self.log.error( - "Failed to clean up BluetoothPtsDevice: {}".format(err)) - self.log.info("Cleanup Done.") - - def write_xml_pts_pixit_values_for_current_test(self): - """ Writes the current PICS and IXIT values to the XML result. - """ - self.xml_pts_pixit.text = "ICS VALUES:\n\n" - for key, value in self.ics.items(): - self.xml_pts_pixit.text += "{} {}\n".format( - key.decode(), value.decode()) - self.xml_pts_pixit.text += "\nIXIT VALUES:\n\n" - for key, (_, value) in self.ixit.items(): - self.xml_pts_pixit.text += "{} {}\n".format( - key.decode(), value.decode()) - - def set_ics_and_ixit(self, ics, ixit): - self.ics = ics - self.ixit = ixit - - def set_profile_under_test(self, profile): - self.profile_under_test = profile - - def setup_pts(self): - """Prepares PTS to run tests. This needs to be called in test classes - after ICS, IXIT, and setting Profile under test. - Specifically BluetoothPtsDevice functions: - set_profile_under_test - set_ics_and_ixit - """ - - # Register layer to test with callbacks - self.pts_library.RegisterProfileWithCallbacks.argtypes = [ - ctypes.c_char_p, self.USEAUTOIMPLSENDFUNC, self.ONIMPLSENDFUNC, - self.LOGFUNC, self.DEVICE_SEARCH_MSG_FUNC, self.DONGLE_MSG_FUNC - ] - res = self.pts_library.RegisterProfileWithCallbacks( - self.profile_under_test.encode(), self.use_auto_impl_send_func, - self.onimplsend_func, self.log_func, self.dev_search_msg_func, - self.dongle_msg_func) - - self.log.info( - "Profile has been registered with result {0:d}".format(res)) - - # GetDeviceInfo module is for discovering devices and PTS Dongle address - # Initialize GetDeviceInfo and register it with callbacks - # First parameter is PTS executable directory - self.pts_library.InitGetDevInfoWithCallbacks.argtypes = [ - ctypes.c_char_p, self.DEVICE_SEARCH_MSG_FUNC, self.DONGLE_MSG_FUNC - ] - res = self.pts_library.InitGetDevInfoWithCallbacks( - self.pts_installation_directory.encode(), self.dev_search_msg_func, - self.dongle_msg_func) - self.log.info( - "GetDevInfo has been initialized with result {0:d}".format(res)) - # Initialize PTS dongle - res = self.pts_library.VerifyDongleEx() - self.log.info( - "PTS dongle has been initialized with result {0:d}".format(res)) - - # Find PTS dongle address - self.pts_library.GetDongleBDAddress.restype = ctypes.c_ulonglong - self.address = self.pts_library.GetDongleBDAddress() - self.address_str = "{0:012X}".format(self.address) - self.log.info("PTS BD Address 0x{0:s}".format(self.address_str)) - - # Initialize Bluetooth Protocol Viewer communication module - self.pts_library.SnifferInitializeEx() - - # If Bluetooth Protocol Viewer is not running, start it - if not self.is_sniffer_running(): - self.log.info("Starting Protocol Viewer") - args = [ - "{}\Executables\Core\FTS.exe".format( - self.pts_sniffer_directory), - '/PTS Protocol Viewer=Generic', - '/OEMTitle=Bluetooth Protocol Viewer', '/OEMKey=Virtual' - ] - subprocess.Popen(args) - sniffer_timeout = 10 - while not self.is_sniffer_running(): - time.sleep(sniffer_timeout) - - # Register to recieve Bluetooth Protocol Viewer notofications - self.pts_library.SnifferRegisterNotificationEx() - self.pts_library.SetParameterEx.argtypes = [ - ctypes.c_char_p, ctypes.c_char_p, ctypes.c_char_p, ctypes.c_char_p - ] - - for ics_name in self.ics: - res = self.pts_library.SetParameterEx( - ics_name, b'BOOLEAN', self.ics[ics_name], - self.profile_under_test.encode()) - if res: - self.log.info("ICS {0:s} set successfully".format( - str(ics_name))) - else: - self.log.error("Setting ICS {0:s} value failed".format( - str(ics_name))) - - for ixit_name in self.ixit: - res = self.pts_library.SetParameterEx( - ixit_name, (self.ixit[ixit_name])[0], - (self.ixit[ixit_name])[1], self.profile_under_test.encode()) - if res: - self.log.info("IXIT {0:s} set successfully".format( - str(ixit_name))) - else: - self.log.error("Setting IXIT {0:s} value failed".format( - str(ixit_name))) - - # Prepare directory to store Bluetooth Protocol Viewer output - if not os.path.exists(self.log_directory): - os.makedirs(self.log_directory) - - address_b = self.address_str.encode("utf-8") - self.pts_library.InitEtsEx.argtypes = [ - ctypes.c_char_p, ctypes.c_char_p, ctypes.c_char_p, ctypes.c_char_p - ] - - implicit_send_path = "{}\\implicit_send3.dll".format( - self.pts_installation_directory).encode() - res = self.pts_library.InitEtsEx(self.profile_under_test.encode(), - self.log_directory.encode(), - implicit_send_path, address_b) - self.log.info("ETS has been initialized with result {0:s}".format( - str(res))) - - # Initialize Host Stack DLL - self.pts_library.InitStackEx.argtypes = [ctypes.c_char_p] - res = self.pts_library.InitStackEx(self.profile_under_test.encode()) - self.log.info("Stack has been initialized with result {0:s}".format( - str(res))) - - # Select to receive Log messages after test is done - self.pts_library.SetPostLoggingEx.argtypes = [ - ctypes.c_bool, ctypes.c_char_p - ] - self.pts_library.SetPostLoggingEx(True, - self.profile_under_test.encode()) - - # Clear Bluetooth Protocol Viewer. Dongle message callback will update - # sniffer_ready automatically. No need to fail setup if the timeout - # is exceeded since the logs will still be available just not starting - # from a clean slate. Just post a warning. - self.sniffer_ready = False - self.pts_library.SnifferClearEx() - end_time = time.time() + 10 - while not self.sniffer_ready and time.time() < end_time: - time.sleep(1) - if not self.sniffer_ready: - self.log.warning("Sniffer not cleared. Continuing.") - - def is_sniffer_running(self): - """ Looks for running Bluetooth Protocol Viewer process - - Returns: - Returns True if finds one, False otherwise. - """ - prog = [ - line.split() - for line in subprocess.check_output("tasklist").splitlines() - ] - [prog.pop(e) for e in [0, 1, 2]] - for task in prog: - task_name = task[0].decode("utf-8") - if task_name == "Fts.exe": - self.log.info("Found FTS process successfully.") - # Sleep recommended by PTS. - time.sleep(1) - return True - return False - - def UseAutoImplicitSend(self): - """Callback method that defines Which ImplicitSend will be used. - - Returns: - True always to inform PTS to use the local implementation. - """ - return True - - def DongleMsg(self, msg_str): - """ Receives PTS dongle messages. - - Specifically this receives the Bluetooth Protocol Viewer completed - save/clear operations. - - Returns: - True if sniffer is ready, False otherwise. - """ - msg = (ctypes.c_char_p(msg_str).value).decode("utf-8") - self.log.info(msg) - # Sleep recommended by PTS. - time.sleep(1) - if SNIFFER_READY in msg: - self.sniffer_ready = True - return True - - def DeviceSearchMsg(self, addr_str, name_str, cod_str): - """ Receives device search messages - - Each device may return multiple messages - Each message will contain device address and may contain device name and - COD. - - Returns: - True always and reports to the callback appropriately. - """ - addr = (ctypes.c_char_p(addr_str).value).replace(b'\xed', - b' ').decode("utf-8") - name = (ctypes.c_char_p(name_str).value).replace(b'\xed', - b' ').decode("utf-8") - cod = (ctypes.c_char_p(cod_str).value).replace(b'\xed', - b' ').decode("utf-8") - self.devices.append( - "Device address = {0:s} name = {1:s} cod = {2:s}".format( - addr, name, cod)) - return True - - def Log(self, log_time_str, log_descr_str, log_msg_str, log_type, project): - """ Receives PTS log messages. - - Returns: - True always and reports to the callback appropriately. - """ - log_time = (ctypes.c_char_p(log_time_str).value).decode("utf-8") - log_descr = (ctypes.c_char_p(log_descr_str).value).decode("utf-8") - log_msg = (ctypes.c_char_p(log_msg_str).value).decode("utf-8") - if "Verdict Description" in log_descr: - self.xml_pts_running_summary.text += "\t- {}".format(log_msg) - if "Final Verdict" in log_descr: - self.xml_pts_running_summary.text += "{}{}\n".format( - log_descr.strip(), log_msg.strip()) - full_log_msg = "{}{}{}".format(log_time, log_descr, log_msg) - self.xml_pts_running_log.text += "{}\n".format(str(full_log_msg)) - - if ctypes.c_int(log_type).value == LOG_TYPE_FINAL_VERDICT: - indx = log_msg.find(VERDICT) - if indx == 0: - if self.pts_test_result == VERDICT_STRINGS['RESULT_INCOMP']: - if VERDICT_STRINGS['RESULT_INCONC'] in log_msg: - self.pts_test_result = VERDICT_STRINGS['RESULT_INCONC'] - elif VERDICT_STRINGS['RESULT_FAIL'] in log_msg: - self.pts_test_result = VERDICT_STRINGS['RESULT_FAIL'] - elif VERDICT_STRINGS['RESULT_PASS'] in log_msg: - self.pts_test_result = VERDICT_STRINGS['RESULT_PASS'] - elif VERDICT_STRINGS['RESULT_NONE'] in log_msg: - self.pts_test_result = VERDICT_STRINGS['RESULT_NONE'] - return True - - def ImplicitSend(self, description, style): - """ ImplicitSend callback - - Implicit Send Styles: - MMI_Style_Ok_Cancel1 = 0x11041, Simple prompt | OK, Cancel buttons | Default: OK - MMI_Style_Ok_Cancel2 = 0x11141, Simple prompt | Cancel button | Default: Cancel - MMI_Style_Ok1 = 0x11040, Simple prompt | OK button | Default: OK - MMI_Style_Yes_No1 = 0x11044, Simple prompt | Yes, No buttons | Default: Yes - MMI_Style_Yes_No_Cancel1 = 0x11043, Simple prompt | Yes, No buttons | Default: Yes - MMI_Style_Abort_Retry1 = 0x11042, Simple prompt | Abort, Retry buttons | Default: Abort - MMI_Style_Edit1 = 0x12040, Request for data input | OK, Cancel buttons | Default: OK - MMI_Style_Edit2 = 0x12140, Select item from a list | OK, Cancel buttons | Default: OK - - Handling - MMI_Style_Ok_Cancel1 - OK = return "OK" - Cancel = return 0 - - MMI_Style_Ok_Cancel2 - OK = return "OK" - Cancel = return 0 - - MMI_Style_Ok1 - OK = return "OK", this version should not return 0 - - MMI_Style_Yes_No1 - Yes = return "OK" - No = return 0 - - MMI_Style_Yes_No_Cancel1 - Yes = return "OK" - No = return 0 - Cancel = has been deprecated - - MMI_Style_Abort_Retry1 - Abort = return 0 - Retry = return "OK" - - MMI_Style_Edit1 - OK = return expected string - Cancel = return 0 - - MMI_Style_Edit2 - OK = return expected string - Cancel = return 0 - - Receives ImplicitSend messages - Description format is as following: - {MMI_ID,Test Name,Layer Name}MMI Action\n\nDescription: MMI Description - """ - descr_str = (ctypes.c_char_p(description).value).decode("utf-8") - # Sleep recommended by PTS. - time.sleep(1) - indx = descr_str.find('}') - implicit_send_info = descr_str[1:(indx)] - self.current_implicit_send_description = descr_str[(indx + 1):] - items = implicit_send_info.split(',') - implicit_send_info_id = items[0] - implicit_send_info_test_case = items[1] - self.pts_profile_mmi_request = items[2] - self.log.info( - "OnImplicitSend() has been called with the following parameters:\n" - ) - self.log.info("\t\tproject_name = {0:s}".format( - self.pts_profile_mmi_request)) - self.log.info("\t\tid = {0:s}".format(implicit_send_info_id)) - self.log.info( - "\t\ttest_case = {0:s}".format(implicit_send_info_test_case)) - self.log.info("\t\tdescription = {0:s}".format( - self.current_implicit_send_description)) - self.log.info("\t\tstyle = {0:#X}".format(ctypes.c_int(style).value)) - self.log.info("") - try: - self.next_action = int(implicit_send_info_id) - except Exception as err: - self.log.error( - "Setting verdict to RESULT_FAIL, exception found: {}".format( - err)) - self.pts_test_result = VERDICT_STRINGS['RESULT_FAIL'] - res = b'OK' - if len(self.extra_answers) > 0: - res = self.extra_answers.pop(0).encode() - self.log.info("Sending Response: {}".format(res)) - return res - - def log_results(self, test_name): - """Log results. - - Saves the sniffer results in cfa format and clears the sniffer. - - Args: - test_name: string, name of the test run. - """ - self.pts_library.SnifferCanSaveEx.restype = ctypes.c_bool - canSave = ctypes.c_bool(self.pts_library.SnifferCanSaveEx()).value - self.pts_library.SnifferCanSaveAndClearEx.restype = ctypes.c_bool - canSaveClear = ctypes.c_bool( - self.pts_library.SnifferCanSaveAndClearEx()).value - file_name = "\\{}.cfa".format(self.test_log_prefix).encode() - path = self.test_log_directory.encode() + file_name - - if canSave == True: - self.pts_library.SnifferSaveEx.argtypes = [ctypes.c_char_p] - self.pts_library.SnifferSaveEx(path) - else: - self.pts_library.SnifferSaveAndClearEx.argtypes = [ctypes.c_char_p] - self.pts_library.SnifferSaveAndClearEx(path) - end_time = time.time() + 60 - while self.sniffer_ready == False and end_time > time.time(): - self.log.info("Waiting for sniffer to be ready...") - time.sleep(1) - if self.sniffer_ready == False: - raise BluetoothPtsSnifferError( - "Sniffer not ready after 60 seconds.") - - def execute_test(self, test_name, test_timeout=60): - """Execute the input test name. - - Preps PTS to run the test and waits up to 2 minutes for all steps - in the execution to finish. Cleanup of PTS related objects follows - any test verdict. - - Args: - test_name: string, name of the test to execute. - """ - today = datetime.now() - self.write_xml_pts_pixit_values_for_current_test() - # TODO: Find out how to grab the PTS version. Temporarily - # hardcoded to v.7.4.1.2. - self.xml_pts_pixit.text = ( - "Test Case Started: {} v.7.4.1.2, {} started on {}\n\n{}".format( - self.profile_under_test, test_name, - today.strftime("%A, %B %d, %Y, %H:%M:%S"), - self.xml_pts_pixit.text)) - - self.xml_pts_running_summary.text += "Test case : {} started\n".format( - test_name) - log_time_formatted = "{:%Y_%m_%d_%H_%M_%S}".format(datetime.now()) - formatted_test_name = test_name.replace('/', '_') - formatted_test_name = formatted_test_name.replace('-', '_') - self.test_log_prefix = "{}_{}".format(formatted_test_name, - log_time_formatted) - self.test_log_directory = "{}\\{}\\{}".format(self.log_directory, - self.profile_under_test, - self.test_log_prefix) - os.makedirs(self.test_log_directory) - curr_test = test_name.encode() - - self.pts_library.StartTestCaseEx.argtypes = [ - ctypes.c_char_p, ctypes.c_char_p, ctypes.c_bool - ] - res = self.pts_library.StartTestCaseEx( - curr_test, self.profile_under_test.encode(), True) - self.log.info("Test has been started with result {0:s}".format( - str(res))) - - # Wait till verdict is received - self.log.info("Begin Test Execution... waiting for verdict.") - end_time = time.time() + test_timeout - while self.pts_test_result == VERDICT_STRINGS[ - 'RESULT_INCOMP'] and time.time() < end_time: - time.sleep(1) - self.log.info("End Test Execution... Verdict {}".format( - self.pts_test_result)) - - # Clean up after test is done - self.pts_library.TestCaseFinishedEx.argtypes = [ - ctypes.c_char_p, ctypes.c_char_p - ] - res = self.pts_library.TestCaseFinishedEx( - curr_test, self.profile_under_test.encode()) - - self.log_results(test_name) - self.xml_pts_running_summary.text += "{} finished\n".format(test_name) - # Add the log results to the XML output - self.xml_root.append(self.xml_pts_pixit) - self.xml_root.append(self.xml_pts_running_log) - self.xml_root.append(self.xml_pts_running_summary) - rough_string = ET.tostring(self.xml_root, - encoding='utf-8', - method='xml') - reparsed = minidom.parseString(rough_string) - with open( - "{}\\{}.xml".format(self.test_log_directory, - self.test_log_prefix), "w") as writter: - writter.write( - reparsed.toprettyxml(indent=" ", encoding="utf-8").decode()) - - if self.pts_test_result is VERDICT_STRINGS['RESULT_PASS']: - return True - return False - - """Observer functions""" - - def bind_to(self, callback): - """ Callbacks to add to the observer. - This is used for DUTS automatic responses (ImplicitSends local - implementation). - """ - self._observers.append(callback) - - @property - def next_action(self): - return self._next_action - - @next_action.setter - def next_action(self, action): - self._next_action = action - for callback in self._observers: - callback(self._next_action) - - """End Observer functions""" diff --git a/acts/framework/acts/controllers/ap_lib/third_party_ap_profiles/__init__.py b/acts/framework/acts/controllers/buds_lib/data_storage/__init__.py index e69de29bb2..e69de29bb2 100644 --- a/acts/framework/acts/controllers/ap_lib/third_party_ap_profiles/__init__.py +++ b/acts/framework/acts/controllers/buds_lib/data_storage/__init__.py diff --git a/acts/framework/acts/controllers/buds_lib/data_storage/_sponge/SimpleXMLWriter.py b/acts/framework/acts/controllers/buds_lib/data_storage/_sponge/SimpleXMLWriter.py new file mode 100644 index 0000000000..bb316319dd --- /dev/null +++ b/acts/framework/acts/controllers/buds_lib/data_storage/_sponge/SimpleXMLWriter.py @@ -0,0 +1,305 @@ +#/usr/bin/env python3 +# +# Copyright (C) 2018 The Android Open Source Project +# +# Licensed under the Apache License, Version 2.0 (the "License"); you may not +# use this file except in compliance with the License. You may obtain a copy of +# the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +# License for the specific language governing permissions and limitations under +# the License. + +# +# SimpleXMLWriter +# $Id: SimpleXMLWriter.py 3265 2007-09-06 20:42:00Z fredrik $ +# +# a simple XML writer +# +# history: +# 2001-12-28 fl created +# 2002-11-25 fl fixed attribute encoding +# 2002-12-02 fl minor fixes for 1.5.2 +# 2004-06-17 fl added pythondoc markup +# 2004-07-23 fl added flush method (from Jay Graves) +# 2004-10-03 fl added declaration method +# +# Copyright (c) 2001-2004 by Fredrik Lundh +# +# fredrik@pythonware.com +# http://www.pythonware.com +# +# -------------------------------------------------------------------- +# The SimpleXMLWriter module is +# +# Copyright (c) 2001-2004 by Fredrik Lundh +# +# By obtaining, using, and/or copying this software and/or its +# associated documentation, you agree that you have read, understood, +# and will comply with the following terms and conditions: +# +# Permission to use, copy, modify, and distribute this software and +# its associated documentation for any purpose and without fee is +# hereby granted, provided that the above copyright notice appears in +# all copies, and that both that copyright notice and this permission +# notice appear in supporting documentation, and that the name of +# Secret Labs AB or the author not be used in advertising or publicity +# pertaining to distribution of the software without specific, written +# prior permission. +# +# SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD +# TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT- +# ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR +# BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY +# DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, +# WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS +# ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE +# OF THIS SOFTWARE. +# -------------------------------------------------------------------- + +## +# Tools to write XML files, without having to deal with encoding +# issues, well-formedness, etc. +# <p> +# The current version does not provide built-in support for +# namespaces. To create files using namespaces, you have to provide +# "xmlns" attributes and explicitly add prefixes to tags and +# attributes. +# +# <h3>Patterns</h3> +# +# The following example generates a small XHTML document. +# <pre> +# +# from elementtree.SimpleXMLWriter import XMLWriter +# import sys +# +# w = XMLWriter(sys.stdout) +# +# html = w.start("html") +# +# w.start("head") +# w.element("title", "my document") +# w.element("meta", name="generator", value="my application 1.0") +# w.end() +# +# w.start("body") +# w.element("h1", "this is a heading") +# w.element("p", "this is a paragraph") +# +# w.start("p") +# w.data("this is ") +# w.element("b", "bold") +# w.data(" and ") +# w.element("i", "italic") +# w.data(".") +# w.end("p") +# +# w.close(html) +# </pre> +## + +import re, sys, string + +try: + unicode("") +except NameError: + + def encode(s, encoding): + # 1.5.2: application must use the right encoding + return s + + _escape = re.compile(r"[&<>\"\x80-\xff]+") # 1.5.2 +else: + + def encode(s, encoding): + return s.encode(encoding) + + _escape = re.compile(eval(r'u"[&<>\"\u0080-\uffff]+"')) + + +def encode_entity(text, pattern=_escape): + # map reserved and non-ascii characters to numerical entities + def escape_entities(m): + out = [] + for char in m.group(): + out.append("&#%d;" % ord(char)) + return string.join(out, "") + + return encode(pattern.sub(escape_entities, text), "ascii") + + +del _escape + +# +# the following functions assume an ascii-compatible encoding +# (or "utf-16") + + +def escape_cdata(s, encoding=None): + s = s.replace("&", "&") + s = s.replace("<", "<") + s = s.replace(">", ">") + if encoding: + try: + return encode(s, encoding) + except UnicodeError: + return encode_entity(s) + return s + + +def escape_attrib(s, encoding=None): + s = s.replace("&", "&") + s = s.replace("'", "'") + s = s.replace("\"", """) + s = s.replace("<", "<") + s = s.replace(">", ">") + if encoding: + try: + return encode(s, encoding) + except UnicodeError: + return encode_entity(s) + return s + + +## +# XML writer class. +# +# @param file A file or file-like object. This object must implement +# a <b>write</b> method that takes an 8-bit string. +# @param encoding Optional encoding. + + +class XMLWriter: + def __init__(self, file, encoding="us-ascii"): + if not hasattr(file, "write"): + file = open(file, "w") + self.__write = file.write + if hasattr(file, "flush"): + self.flush = file.flush + self.__open = 0 # true if start tag is open + self.__tags = [] + self.__data = [] + self.__encoding = encoding + + def __flush(self): + # flush internal buffers + if self.__open: + self.__write(">") + self.__open = 0 + if self.__data: + data = string.join(self.__data, "") + self.__write(escape_cdata(data, self.__encoding)) + self.__data = [] + + ## + # Writes an XML declaration. + + def declaration(self): + encoding = self.__encoding + if encoding == "us-ascii" or encoding == "utf-8": + self.__write("<?xml version='1.0'?>\n") + else: + self.__write("<?xml version='1.0' encoding='%s'?>\n" % encoding) + + ## + # Opens a new element. Attributes can be given as keyword + # arguments, or as a string/string dictionary. You can pass in + # 8-bit strings or Unicode strings; the former are assumed to use + # the encoding passed to the constructor. The method returns an + # opaque identifier that can be passed to the <b>close</b> method, + # to close all open elements up to and including this one. + # + # @param tag Element tag. + # @param attrib Attribute dictionary. Alternatively, attributes + # can be given as keyword arguments. + # @return An element identifier. + + def start(self, tag, attrib={}, **extra): + self.__flush() + tag = escape_cdata(tag, self.__encoding) + self.__data = [] + self.__tags.append(tag) + self.__write("<%s" % tag) + if attrib or extra: + attrib = attrib.copy() + attrib.update(extra) + attrib = attrib.items() + attrib.sort() + for k, v in attrib: + k = escape_cdata(k, self.__encoding) + v = escape_attrib(v, self.__encoding) + self.__write(" %s=\"%s\"" % (k, v)) + self.__open = 1 + return len(self.__tags) - 1 + + ## + # Adds a comment to the output stream. + # + # @param comment Comment text, as an 8-bit string or Unicode string. + + def comment(self, comment): + self.__flush() + self.__write("<!-- %s -->\n" % escape_cdata(comment, self.__encoding)) + + ## + # Adds character data to the output stream. + # + # @param text Character data, as an 8-bit string or Unicode string. + + def data(self, text): + self.__data.append(text) + + ## + # Closes the current element (opened by the most recent call to + # <b>start</b>). + # + # @param tag Element tag. If given, the tag must match the start + # tag. If omitted, the current element is closed. + + def end(self, tag=None): + if tag: + assert self.__tags, "unbalanced end(%s)" % tag + assert escape_cdata(tag, self.__encoding) == self.__tags[-1],\ + "expected end(%s), got %s" % (self.__tags[-1], tag) + else: + assert self.__tags, "unbalanced end()" + tag = self.__tags.pop() + if self.__data: + self.__flush() + elif self.__open: + self.__open = 0 + self.__write(" />") + return + self.__write("</%s>" % tag) + + ## + # Closes open elements, up to (and including) the element identified + # by the given identifier. + # + # @param id Element identifier, as returned by the <b>start</b> method. + + def close(self, id): + while len(self.__tags) > id: + self.end() + + ## + # Adds an entire element. This is the same as calling <b>start</b>, + # <b>data</b>, and <b>end</b> in sequence. The <b>text</b> argument + # can be omitted. + + def element(self, tag, text=None, attrib={}, **extra): + apply(self.start, (tag, attrib), extra) + if text: + self.data(text) + self.end() + + ## + # Flushes the output stream. + + def flush(self): + pass # replaced by the constructor diff --git a/acts/framework/acts/controllers/monsoon_lib/__init__.py b/acts/framework/acts/controllers/buds_lib/data_storage/_sponge/__init__.py index e69de29bb2..e69de29bb2 100644 --- a/acts/framework/acts/controllers/monsoon_lib/__init__.py +++ b/acts/framework/acts/controllers/buds_lib/data_storage/_sponge/__init__.py diff --git a/acts/framework/acts/controllers/buds_lib/data_storage/_sponge/sponge_client_lite.py b/acts/framework/acts/controllers/buds_lib/data_storage/_sponge/sponge_client_lite.py new file mode 100644 index 0000000000..77b8e35e99 --- /dev/null +++ b/acts/framework/acts/controllers/buds_lib/data_storage/_sponge/sponge_client_lite.py @@ -0,0 +1,1031 @@ +#/usr/bin/env python3 +# +# Copyright (C) 2018 The Android Open Source Project +# +# Licensed under the Apache License, Version 2.0 (the "License"); you may not +# use this file except in compliance with the License. You may obtain a copy of +# the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +# License for the specific language governing permissions and limitations under +# the License. + +# +# Copyright 2009 Google Inc. All Rights Reserved. +"""Lightweight Sponge client, supporting upload via the HTTP Redirector. + +Does not depend on protobufs, Stubby, works on Windows, builds without blaze. +""" + +__author__ = 'klm@google.com (Michael Klepikov)' + +import collections +import os +import re +import socket +import time + +try: + import httpclient as httplib +except ImportError: + import httplib + +try: + import StringIO +except ImportError: + from io import StringIO + +try: + import google3 # pylint: disable=g-import-not-at-top + from google3.testing.coverage.util import bitfield # pylint: disable=g-import-not-at-top +except ImportError: + pass # Running outside of google3 + +import SimpleXMLWriter # pylint: disable=g-import-not-at-top + + +class Entity(object): + """Base class for all Sponge client entities. Provides XML s11n basics.""" + + def WriteXmlToStream(self, ostream, encoding='UTF-8'): + """Writes out all attributes with string/numeric value to supplied ostream. + + Args: + ostream: A file or file-like object. This object must implement a write + method. + encoding: Optionally specify encoding to be used. + """ + xml_writer = SimpleXMLWriter.XMLWriter(ostream, encoding) + self.WriteXml(xml_writer) + + def WriteXml(self, xml_writer): + """Writes out all attributes that have a string or numeric value. + + Args: + xml_writer: google3.third_party.python.elementtree.SimpleXMLWriter. + """ + for attr_name in dir(self): # Guaranteed sorted alphabetically + assert attr_name + if attr_name.startswith( + '_') or attr_name[0].upper() == attr_name[0]: + continue # Skip non-public attributes and public constants + if hasattr(self, '_permitted_attributes'): + assert attr_name in self._permitted_attributes + if (hasattr(self, '_custom_write_attributes') + and attr_name in self._custom_write_attributes): + # An attribute that has custom serialization code + continue + value = self.__getattribute__(attr_name) + if callable(value): + continue # Skip methods + Entity._WriteValue(xml_writer, attr_name, value) + + def GetXmlString(self): + """Returns a string with XML produced by WriteXml().""" + xml_out = StringIO.StringIO() + self.WriteXmlToStream(xml_out) + xml_str = xml_out.getvalue() + xml_out.close() + return xml_str + + @staticmethod + def _WriteValue(xml_writer, name, value): + if value is None: + return # Do not serialize None (but do serialize 0 or empty string) + elif isinstance(value, unicode): + xml_writer.element(name, value) # Will write out as UTF-8 + elif isinstance(value, str): + # A non-Unicode string. By default the encoding is 'ascii', + # where 8-bit characters cause an encoding exception + # when a protobuf encodes itself on the HTTP Redirector side. + # Force 'latin' encoding, which allows 8-bit chars. + # Still it's only a guess which could be wrong, so use errors='replace' + # to produce an 'invalid character' Unicode placeholder in such cases. + # For the caller, the cleanest thing to do is pass a proper + # Unicode string if it may contain international characters. + xml_writer.element( + name, unicode(value, encoding='latin', errors='replace')) + elif isinstance(value, bool): + # Careful! Check for this before isinstance(int) -- true for bools + xml_writer.element(name, str(value).lower()) + elif (isinstance(value, int) or isinstance(value, long) + or isinstance(value, float)): + xml_writer.element(name, str(value)) + elif hasattr(value, 'WriteXml'): + # An object that knows how to write itself + xml_writer.start(name) + value.WriteXml(xml_writer) + xml_writer.end() + elif isinstance(value, list) or isinstance(value, tuple): + # Sequence names are often plural, but the element name must be single + if name.endswith('s'): + value_element_name = name[0:len(name) - 1] + else: + value_element_name = name + for sequence_value in value: + Entity._WriteValue(xml_writer, value_element_name, + sequence_value) + elif hasattr(value, 'iteritems'): # A mapping type + # Map names are often plural, but the element name must be single + if name.endswith('s'): + map_element_name = name[0:len(name) - 1] + else: + map_element_name = name + Entity._WriteNameValuesXml(xml_writer, map_element_name, value, + 'name', 'value') + + @staticmethod + def _WriteNameValuesXml(xml_writer, element_name, name_value_dict, + name_elem, value_elem): + """Writes a dict as XML elements with children as keys (names) and values. + + Args: + xml_writer: google3.third_party.python.elementtree.SimpleXMLWriter. + element_name: name of enclosing element for the name-value pair elements. + name_value_dict: the dict to write. + name_elem: name of the "name" element. + value_elem: name of the "value" element. + """ + if name_value_dict: + for name in sorted( + name_value_dict): # Guarantee order for testability + value = name_value_dict[name] + xml_writer.start(element_name) + Entity._WriteValue(xml_writer, name_elem, name) + Entity._WriteValue(xml_writer, value_elem, value) + xml_writer.end() + + +class LcovUtils(object): + """Just groups Lcov handling.""" + + @staticmethod + def GetFilename(lcov_section): + return lcov_section.split('\n', 1)[0].strip()[3:] + + @staticmethod + def LcovSectionToBitFields(lcov_section): + """Fill in bit fields that represent covered and instrumented lines. + + Note that lcov line numbers start from 1 while sponge expects line numbers + to start from 0, hence the line_num-1 is required. + + Args: + lcov_section: string, relevant section of lcov + + Returns: + Tuple of google3.testing.coverage.util.bitfield objects. First bitfield + represents lines covered. Second bitfield represents total lines + instrumented. + """ + covered_bf = bitfield.BitField() + instrumented_bf = bitfield.BitField() + for line in lcov_section.split('\n'): + if line.startswith('DA:'): + line_num, times_hit = line.strip()[3:].split(',') + instrumented_bf.SetBit(int(line_num) - 1) + if times_hit != '0': + covered_bf.SetBit(int(line_num) - 1) + elif line.startswith('FN:'): + pass # Function coverage will be supported soon. + return covered_bf, instrumented_bf + + @staticmethod + def UrlEncode(bit_field): + """Convert bit field into url-encoded string of hex representation.""" + if not bit_field.CountBitsSet(): + return '%00' + else: + ret_str = '' + for c in bit_field.Get(): + ret_str += '%%%02x' % ord(c) + return ret_str.upper() + + @staticmethod + def WriteBitfieldXml(xml_writer, name, value): + encoded_value = LcovUtils.UrlEncode(value) + xml_writer.element( + name, unicode(encoded_value, encoding='latin', errors='replace')) + + +class FileCoverage(Entity): + """Represents Sponge FileCoverage. + + instrumented_lines and executed_lines are bit fields with following format: + Divide line number by 8 to get index into string. + Mod line number by 8 to get bit number (0 = LSB, 7 = MSB). + + Attributes: + file_name: name of the file this entry represents. + location: the location of the file: PERFORCE, MONDRIAN, UNKNOWN. + revision: stores the revision number of the file when location is PERFORCE. + instrumented_lines: bitfield of line numbers that have been instrumented + executed_lines: bitfield of line numbers that have been executed + md5: string. Hex representation of the md5 checksum for the file + "file_name". This should only be set if file_name is open in the + client. + pending_cl: string. CL containing the file "file_name" if it is checked out + at the time this invocation is sent out. Should only be set if + location is MONDRIAN. + sourcerer_depot: string. [optional] The sourcerer depot to use in coverage + tab. Only required if your code is stored in one of the PerforceN + servers and therefore has it's own Sourcerer instance. For example, + Perforce11 code should set sourcerer_depot to "s11". + """ + + # location + PERFORCE = 0 + MONDRIAN = 1 + UNKNOWN = 2 + + def __init__(self): + super(FileCoverage, self).__init__() + self.file_name = None + self.location = None + self.revision = None + self.md5 = None + self.pending_cl = None + self.executed_lines = None + self.instrumented_lines = None + self.sourcerer_depot = None + self._custom_write_attributes = [ + 'executed_lines', 'instrumented_lines' + ] + + def WriteXml(self, xml_writer): + """Writes this object as XML suitable for Sponge HTTP Redirector. + + Args: + xml_writer: google3.third_party.python.elementtree.SimpleXMLWriter. + """ + super(FileCoverage, self).WriteXml(xml_writer) + for attr_name in self._custom_write_attributes: + value = self.__getattribute__(attr_name) + if value: + LcovUtils.WriteBitfieldXml(xml_writer, attr_name, value) + + def Combine(self, other_file_coverage): + """Combines 2 FileCoverage objects. + + This method expects all fields of the 2 FileCoverage objects to be identical + except for the executed_lines and instrumented_lines fields which it will + combine into 1 by performing logical OR operation on executed_lines and + instrumented_lines bitfields. All other fields are copied directly from + source. + + Args: + other_file_coverage: FileCoverage object to combine with + + Returns: + The combined FileCoverage object + """ + assert self.file_name == other_file_coverage.file_name + assert self.location == other_file_coverage.location + assert self.revision == other_file_coverage.revision + assert self.md5 == other_file_coverage.md5 + assert self.pending_cl == other_file_coverage.pending_cl + + result_file_coverage = FileCoverage() + result_file_coverage.file_name = self.file_name + result_file_coverage.location = self.location + result_file_coverage.revision = self.revision + result_file_coverage.md5 = self.md5 + result_file_coverage.pending_cl = self.pending_cl + + result_file_coverage.executed_lines = self.executed_lines.Or( + other_file_coverage.executed_lines) + result_file_coverage.instrumented_lines = self.instrumented_lines.Or( + other_file_coverage.instrumented_lines) + + return result_file_coverage + + def FromLcovSection(self, lcov_section): + """Fill in coverage from relevant lcov section. + + An lcov section starts with a line starting with 'SF:' followed by filename + of covered file and is followed by 1 or more lines of coverage data starting + with 'DA:' or 'FN:'. + + 'DA:'lines have the format: + 'DA: line_num, times_covered' + + line_num is the line number of source file starting from 1. + times_covered is the number of times the line was covered, starting from 0. + + 'FN:' is for function coverage and is not supported yet. + + An example section would look like this: + SF:/Volumes/BuildData/PulseData/data/googleclient/picasa4/yt/safe_str.h + DA:1412,12 + DA:1413,12 + DA:1414,0 + DA:1415,0 + + Args: + lcov_section: string, relevant section of lcov file. + """ + if lcov_section: + assert lcov_section.startswith('SF:') + + self.file_name = LcovUtils.GetFilename(lcov_section) + self.executed_lines, self.instrumented_lines = ( + LcovUtils.LcovSectionToBitFields(lcov_section)) + + +class TargetCodeCoverage(Entity): + """Represents Sponge TargetCodeCoverage. + + Attributes: + file_coverage: list of FileCoverage object. + instrumentation: method of instrumentation: ONTHEFLY, OFFLINE, UNKNOWN + """ + + # instrumentation + ONTHEFLY = 0 + OFFLINE = 1 + UNKNOWN = 2 + + def __init__(self): + super(TargetCodeCoverage, self).__init__() + self.file_coverage = [] + self.instrumentation = None + + # Warning: *DO NOT* switch to Python 2.7 OrderedDict. This code needs to + # run on Windows and other environments where Python 2.7 may not be + # available. + self._file_coverage_map = collections.OrderedDict() + + def FromLcovString(self, lcov_str): + """Fill in coverage from lcov-formatted string. + + Args: + lcov_str: contents of lcov file as string + """ + for entry in lcov_str.split('end_of_record\n'): + file_coverage = FileCoverage() + file_coverage.FromLcovSection(entry.strip()) + + if not file_coverage.file_name: + continue + + prev_file_coverage = self._file_coverage_map.get( + file_coverage.file_name) + if prev_file_coverage: + self._file_coverage_map[file_coverage.file_name] = ( + prev_file_coverage.Combine(file_coverage)) + else: + self._file_coverage_map[ + file_coverage.file_name] = file_coverage + + self.file_coverage = self._file_coverage_map.values() + + def IndexOf(self, filename): + """Index of filename in the FileCoverage map. Must exist!""" + return self._file_coverage_map.keys().index(filename) + + +class Sample(Entity): + """Represents a single data sample within a Metric object. + + Attributes: + value: the data value of this sample -- the thing that we measured. + timestamp_in_millis: the time when this particular sample was taken. + Milliseconds since the Epoch. Not required, but highly recommended for + a proper single-CL view in LoadViz that shows all samples of one run. + outcome: SUCCESSFUL_OUTCOME or FAILED_OUTCOME. + metadata: a dict of arbitrary user defined name-value pairs. + For example, when measuring page load times, one can store the page URL + under the key "url" in the metadata. + """ + + SUCCESSFUL_OUTCOME = 0 + FAILED_OUTCOME = 1 + + def __init__(self): + super(Sample, self).__init__() + self.value = None + self.timestamp_in_millis = None + self.outcome = None + self.metadata = {} + + +class Percentile(Entity): + """Represents a percentile within an Aggregation object. + + Percentile objects only give enough info to filter samples by percentiles, + Sponge doesn't store per-percentile means etc. + + Attributes: + percentage: upper bracket of the percentile: integer number of percent. + Lower bracket is always zero. + value: maximum value for the this percentile. + """ + + def __init__(self): + super(Percentile, self).__init__() + self.percentage = None + self.value = None + + +class Aggregation(Entity): + """Represents aggregated values from samples in a Metric object. + + As also noted in Metric, Sponge would compute a default Aggregation + if it's not supplied explicitly with a Metric. Sponge currently computes + the following percentiles: 50, 80, 90, 95, 99, with no way to control it. + If you want other percentiles, you need to provide the Aggregatioin yourself. + + Attributes: + count: the number of samples represented by this aggregation. + min: minimum sample value. + max: maximum sample value. + mean: mean of all sample values. + standard_deviation: standard deviation of all sample values. + percentiles: a sequence of Percentile objects. + error_count: the number of samples with error outcomes. + """ + + def __init__(self): + super(Aggregation, self).__init__() + self.count = None + self.min = None + self.max = None + self.mean = None + self.standard_deviation = None + self.error_count = None + self.percentiles = [] + + +class Metric(Entity): + """Represents a single metric under PerformanceData. + + See the comment in PerformanceData about the mapping to sponge.proto. + + Attributes: + name: the metric name. + time_series: if True, this is a time series, otherwise not a time series. + unit: string name of the unit of measure for sample values in this metric. + machine_name: hostname where the test was run. + If None, use Invocation.hostname. + aggregation: an Aggregation object. + If None, Sponge will compute it from samples. + samples: a sequence of Sample objects. + """ + + def __init__(self): + super(Metric, self).__init__() + self.name = None + self.time_series = True + self.unit = None + self.machine_name = None + self.aggregation = None + self.samples = [] + + +class PerformanceData(Entity): + """Represents Sponge PerformanceData, only moved under a TargetResult. + + Currently sponge.proto defines PerformanceData as a top level object, + stored in a separate table from Invocations. There is an idea to move it + under a TargetResult, allowing it to have labels and generally play + by the same rules as all other test runs -- coverage etc. + + So far the interim solution is to try to have PerformanceData under + a TargetResult only in sponge_client_lite, and do an on the fly + conversion to sponge.proto structures in the HTTP Redirector. + If all goes well there, then a similar conversion in the other direction + (top level PerformanceData -> PerformanceData under a TargetResult) + can be implemented in Sponge Java upload code, together with a data model + change, allowing backward compatibility with older performance test clients. + + The mapping of the PerformanceData fields missing here is as follows: + id -> Invocation.id + timestamp_in_millis -> TargetResult.run_date + cl -> Invocation.cl + config -> TargetResult.configuration_values + user -> Invocation.user + description, project_name, project_id -- not mapped, if necessary should + be added to Invocation and/or TargetResult, as they are not + performance-specific. TODO(klm): discuss use cases with havardb@. + + For LoadViz to work properly, Invocation.cl must be supplied even though + it's formally optional in the Invocation. It doesn't have to be an actual + Perforce CL number, could be an arbitrary string, but these strings must + sort in the chronological order -- e.g. may represent a date and time, + for example may use an ISO date+time string notation of the run_date. + + Attributes: + benchmark: benchmark name -- the most important ID in LoadViz. + Must not be None for results to be usable in LoadViz. + experiment: experiment name. + thread_count: for load tests, the number of concurrent threads. + aggregator_strategy: NONE or V1 or V1_NO_DOWNSAMPLE. + metrics: a sequence of Metric objects. + """ + + NONE = 0 + V1 = 1 + V1_NO_DOWNSAMPLE = 2 + + def __init__(self): + super(PerformanceData, self).__init__() + self.benchmark = None + self.experiment = None + self.thread_count = None + self.aggregator_strategy = None + self.metrics = [] + + +class TestFault(Entity): + """Test failure/error data. + + Attributes: + message: message for the failure/error. + exception_type: the type of failure/error. + detail: details of the failure/error. + """ + + def __init__(self): + super(TestFault, self).__init__() + + self._permitted_attributes = set( + ['message', 'exception_type', 'detail']) + self.message = None + self.exception_type = None + self.detail = None + + +class TestResult(Entity): + """Test case data. + + Attributes: + child: List of TestResult representing test suites or test cases + name: Test result name + class_name: Required for test cases, otherwise not + was_run: true/false, default true, optional + run_duration_millis: - + property: List of TestProperty entities. + test_case_count: number of test cases + failure_count: number of failures + error_count: number of errors + disabled_count: number of disabled tests + test_file_coverage: List of TestCaseFileCoverage + test_failure: List of TestFault objects describing test failures + test_error: List of TestFault objects describing test errors + result: The result of running a test case: COMPLETED, INTERRUPTED, etc + """ + + # result + COMPLETED = 0 + INTERRUPTED = 1 + CANCELLED = 2 + FILTERED = 3 + SKIPPED = 4 + SUPPRESSED = 5 + + # Match DA lines claiming nonzero execution count. + _lcov_executed_re = re.compile(r'^DA:\d+,[1-9][0-9]*', re.MULTILINE) + + def __init__(self): + super(TestResult, self).__init__() + + self._permitted_attributes = set([ + 'child', 'name', 'class_name', 'was_run', 'run_duration_millis', + 'property', 'test_case_count', 'failure_count', 'error_count', + 'disabled_count', 'test_file_coverage', 'test_failure', + 'test_error', 'result' + ]) + self.child = [] + self.name = None + self.class_name = None + self.was_run = True + self.run_duration_millis = None + self.property = [] + self.test_case_count = None + self.failure_count = None + self.error_count = None + self.disabled_count = None + self.test_file_coverage = [] + self.test_error = [] + self.test_failure = [] + self.result = None + + def FromLcovString(self, lcov_str, target_code_coverage): + """Fill in hit coverage from lcov-formatted string and target_code_coverage. + + Ignores files with zero hit bitmaps; presumes target_code_coverage is final + for the purposes of determining the index of filenames. + + Args: + lcov_str: contents of lcov file as string + target_code_coverage: TargetCodeCoverage for filename indexing + """ + for entry in lcov_str.split('end_of_record\n'): + + if not TestResult._lcov_executed_re.search(entry): + continue + + test_file_coverage = TestCaseFileCoverage() + test_file_coverage.FromLcovSection(entry.strip(), + target_code_coverage) + + self.test_file_coverage.append(test_file_coverage) + + +class TestProperty(Entity): + """Test property data. + + Attributes: + key: A string representing the property key. + value: A string representing the property value. + """ + + def __init__(self): + super(TestProperty, self).__init__() + self._permitted_attributes = set(['key', 'value']) + self.key = None + self.value = None + + +class TestCaseFileCoverage(Entity): + """Test case file coverage data. + + Attributes: + file_coverage_index: index into associated test target's file coverage. + executed_lines: bitfield representing executed lines, as for FileCoverage. + zipped_executed_lines: zip of executed_lines data, if smaller. + """ + + def __init__(self): + super(TestCaseFileCoverage, self).__init__() + + self._permitted_attributes = set( + ['file_coverage_index', 'executed_lines', 'zipped_executed_lines']) + + self.file_coverage_index = None + self.executed_lines = 0 + self.zipped_executed_lines = 0 + self._custom_write_attributes = [ + 'executed_lines', 'zipped_executed_lines' + ] + + def WriteXml(self, xml_writer): + """Writes this object as XML suitable for Sponge HTTP Redirector. + + Args: + xml_writer: google3.third_party.python.elementtree.SimpleXMLWriter. + """ + super(TestCaseFileCoverage, self).WriteXml(xml_writer) + for attr_name in self._custom_write_attributes: + value = self.__getattribute__(attr_name) + if value: + LcovUtils.WriteBitfieldXml(xml_writer, attr_name, value) + # TODO(weasel): Mmmaybe lift bitfield handling to the base class. + + def FromLcovSection(self, lcov_section, tcc): + if lcov_section: + assert lcov_section.startswith('SF:') + + file_name = LcovUtils.GetFilename(lcov_section) + self.file_coverage_index = tcc.IndexOf(file_name) + self.executed_lines, unused_instrumented_lines = ( + LcovUtils.LcovSectionToBitFields(lcov_section)) + # TODO(weasel): compress executed_lines to zipped_* if smaller. + + +class GoogleFilePointer(Entity): + """Represents a Google File system path. + + Attributes: + name: str name for use by Sponge + path: str containing the target Google File. + length: integer size of the file; used purely for display purposes. + """ + + def __init__(self, name, path, length): + super(GoogleFilePointer, self).__init__() + self.name = name + self.path = path + self.length = length + + def WriteXml(self, xml_writer): + """Writes this object as XML suitable for Sponge HTTP Redirector. + + Args: + xml_writer: google3.third_party.python.elementtree.SimpleXMLWriter. + """ + Entity._WriteValue(xml_writer, 'name', self.name) + xml_writer.start('google_file_pointer') + Entity._WriteValue(xml_writer, 'path', self.path) + Entity._WriteValue(xml_writer, 'length', self.length) + xml_writer.end() + + +class TargetResult(Entity): + """Represents Sponge TargetResult. + + Attributes: + index: index of the target result within its parent Invocation. + Needed only for update requests, not for initial creation. + run_date: execution start timestamp in milliseconds. + build_target: the name of the build target that was executed. + size: one of size constants: SMALL, MEDIUM, LARGE, OTHER_SIZE, ENORMOUS. + environment: how we ran: FORGE, LOCAL_*, OTHER_*, UNKNOWN_*. + status: test outcome: PASSED, FAILED, etc. + test_result: tree of TestResults representing test suites and test cases. + language: programming language of the source code: CC, JAVA, etc. + run_duration_millis: execution duration in milliseconds. + status_details: a string explaining the status in more detail. + attempt_number: for flaky reruns, the number of the run attempt. Start at 1. + total_attempts: for flaky reruns, the total number of run attempts. + coverage: a TargetCodeCoverage object. + performance_data: a PerformanceData object. + configuration_values: a dict of test configuration parameters. + type: the type of target: TEST, BINARY, LIBRARY, APPLICATION. + large_texts: a dict of logs associated with this run. A magic key 'XML Log' + allows to upload GUnit/JUnit XML and auto-convert it to TestResults. + large_text_pointers: a list of GoogleFilePointers - distinction for + formatting only, these are conceptually the same as large_texts. + """ + + # size - if you update these values ensure to also update the appropriate + # enum list in uploader_recommended_options.py + SMALL = 0 + MEDIUM = 1 + LARGE = 2 + OTHER_SIZE = 3 + ENORMOUS = 4 + + # environment + FORGE = 0 + LOCAL_PARALLEL = 1 + LOCAL_SEQUENTIAL = 2 + OTHER_ENVIRONMENT = 3 + UNKNOWN_ENVIRONMENT = 4 + + # status - if you update these values ensure to also update the appropriate + # enum list in uploader_optional_options.py + PASSED = 0 + FAILED = 1 + CANCELLED_BY_USER = 2 + ABORTED_BY_TOOL = 3 + FAILED_TO_BUILD = 4 + BUILT = 5 + PENDING = 6 + UNKNOWN_STATUS = 7 + INTERNAL_ERROR = 8 + + # language - if you update these values ensure to also update the appropriate + # enum list in uploader_recommended_options.py + UNSPECIFIED_LANGUAGE = 0 + BORGCFG = 1 + CC = 2 + GWT = 3 + HASKELL = 4 + JAVA = 5 + JS = 6 + PY = 7 + SH = 8 + SZL = 9 + + # type + UNSPECIFIED_TYPE = 0 + TEST = 1 + BINARY = 2 + LIBRARY = 3 + APPLICATION = 4 + + def __init__(self): + super(TargetResult, self).__init__() + self.index = None + self.run_date = long(round(time.time() * 1000)) + self.build_target = None + self.size = None + self.environment = None + self.status = None + self.test_result = None + self.language = None + self.run_duration_millis = None + self.status_details = None + self.attempt_number = None + self.total_attempts = None + self.coverage = None + self.performance_data = None + self.configuration_values = {} + self.type = None + self.large_texts = {} + self.large_text_pointers = [] + self._custom_write_attributes = ['large_text_pointers'] + + def MarkRunDuration(self): + """Assigns run_duration_millis to the current time minus run_date.""" + assert self.run_date + self.run_duration_millis = long(round( + time.time() * 1000)) - self.run_date + assert self.run_duration_millis > 0 + + def WriteXml(self, xml_writer): + """Writes this object as XML suitable for Sponge HTTP Redirector. + + Args: + xml_writer: google3.third_party.python.elementtree.SimpleXMLWriter. + """ + super(TargetResult, self).WriteXml(xml_writer) + # Write out GoogleFilePointers as large_text fields + for google_file_pointer in self.large_text_pointers: + Entity._WriteValue(xml_writer, 'large_text', google_file_pointer) + + +class Invocation(Entity): + """Represents a Sponge Invocation. + + Attributes: + id: the ID of an invocation to update. + Needed only for update requests, not for initial creation. + run_date: execution start timestamp in milliseconds + user: username. + client: P4 client name. + cl: P4 changelist ID. + hostname: the host where the tests ran. + working_dir: the dir where the tests ran. + args: command line arguments of the test command. + environment_variables: a dict of notable OS environment variables. + configuration_values: a dict of test configuration parameters. + large_texts: a dict of logs associated with the entire set of target runs. + labels: a list of labels associated with this invocation. + target_results: a list of TargetResult objects. + large_text_pointers: a list of GoogleFilePointers - distinction for + formatting only, these are conceptually the same as large_texts. + """ + + def __init__(self): + super(Invocation, self).__init__() + self.id = None + self.run_date = long(round(time.time() * 1000)) + self.user = None + self.target_results = [] + self.client = None + self.cl = None + self.hostname = socket.gethostname().lower() + self.working_dir = os.path.abspath(os.curdir) + self.args = None + self.environment_variables = {} + self.configuration_values = {} + self.large_texts = {} + self.large_text_pointers = [] + self.labels = [] + self._custom_write_attributes = [ + 'environment_variables', + 'large_text_pointers', + ] + + def WriteXml(self, xml_writer): + """Writes this object as XML suitable for Sponge HTTP Redirector. + + Args: + xml_writer: google3.third_party.python.elementtree.SimpleXMLWriter. + """ + super(Invocation, self).WriteXml(xml_writer) + Entity._WriteNameValuesXml( + xml_writer, + 'environment_variable', + self.environment_variables, + name_elem='variable', + value_elem='value') + # Write out GoogleFilePointers as large_text fields + for google_file_pointer in self.large_text_pointers: + Entity._WriteValue(xml_writer, 'large_text', google_file_pointer) + + +# Constants for Uploader.server +SERVER_PROD = 'backend' +SERVER_QA = 'backend-qa' + + +class Uploader(Entity): + """Uploads Sponge Invocations to the Sponge HTTP Redirector service.""" + + def __init__(self, + url_host='sponge-http.appspot.com', + upload_url_path='/create_invocation', + update_url_path='/update_target_result', + server=None): + """Initializes the object. + + Args: + url_host: host or host:port for the Sponge HTTP Redirector server. + upload_url_path: the path after url_host. + update_url_path: the path after update_url_host. + server: name of the Sponge backend, if None use SERVER_QA. + """ + super(Uploader, self).__init__() + self.server = server or SERVER_QA + self.invocations = [] + self._url_host = url_host + self._upload_url_path = upload_url_path + self._update_url_path = update_url_path + self._proxy = None + self._https_connection_factory = httplib.HTTPSConnection + + def WriteXml(self, xml_writer): + """Writes this object as XML suitable for Sponge HTTP Redirector. + + Args: + xml_writer: google3.third_party.python.elementtree.SimpleXMLWriter. + """ + xml_writer.start('xml') + super(Uploader, self).WriteXml(xml_writer) + xml_writer.end() + + def UseProxy(self, proxy): + """Forward requests through a given HTTP proxy. + + Args: + proxy: the proxy address as '<host>' or '<host>:<port>' + """ + self._proxy = proxy + + def UseHTTPSConnectionFactory(self, https_connection_factory): + """Use the given function to create HTTPS connections. + + This is helpful for clients on later version of Python (2.7.9+) that wish to + do client-side SSL authentication via ssl.SSLContext. + + Args: + https_connection_factory: A function that takes a string url and returns + an httplib.HTTPSConnection. + """ + self._https_connection_factory = https_connection_factory + + def Upload(self): + """Uploads Sponge invocations to the Sponge HTTP Redirector service. + + Returns: + A string with Sponge invocation IDs, as returned by the HTTP Redirector. + + Raises: + ValueError: when at least one invocation id is not None. + """ + for invocation in self.invocations: + if invocation.id: + raise ValueError( + 'Invocation id must be None for new invocation.') + return self._UploadHelper(self._url_host, self._upload_url_path) + + def UploadUpdatedResults(self): + """Uploads updated Sponge invocations to the Sponge HTTP Redirector service. + + Returns: + A string with Sponge invocation IDs, as returned by the HTTP Redirector. + + Raises: + ValueError: when at least one invocation id is None or at least one + target result has index of None. + """ + for invocation in self.invocations: + if invocation.id is None: + raise ValueError('Invocation id must not be None for update.') + for target_result in invocation.target_results: + if target_result.index is None: + raise ValueError( + 'Target result index can not be None for update.') + return self._UploadHelper(self._url_host, self._update_url_path) + + def _UploadHelper(self, host, url): + """A helper function to perform actual upload of Sponge invocations. + + Args: + host: host server to connect to. + url: url for Sponge end point. + + Returns: + A string represent Sponge invocation IDs. + """ + if self._proxy: + # A simple HTTP proxy request is the same as a regular HTTP request + # via the proxy host:port, except the path after the method (GET or POST) + # is the full actual request URL. + url = 'https://%s%s' % (host, url) + # Assume proxy does not support HTTPS. + http_connect = httplib.HTTPConnection(self._proxy) + else: + http_connect = self._https_connection_factory(host) + xml_str = self.GetXmlString() + http_connect.connect() + http_connect.request('PUT', url, body=xml_str) + response = http_connect.getresponse() + response_str = response.read().strip() + if response_str.startswith('id: "'): + response_str = response_str[5:-1] + return response_str + + +def GetInvocationUrl(server, invocation_id): + if server == 'backend-qa': + return 'http://sponge-qa/%s' % invocation_id + else: + return 'http://tests/%s' % invocation_id diff --git a/acts/framework/acts/controllers/monsoon_lib/api/__init__.py b/acts/framework/acts/controllers/buds_lib/data_storage/bigquery/__init__.py index e69de29bb2..e69de29bb2 100644 --- a/acts/framework/acts/controllers/monsoon_lib/api/__init__.py +++ b/acts/framework/acts/controllers/buds_lib/data_storage/bigquery/__init__.py diff --git a/acts/framework/acts/controllers/buds_lib/data_storage/bigquery/bigquery_buffer.py b/acts/framework/acts/controllers/buds_lib/data_storage/bigquery/bigquery_buffer.py new file mode 100644 index 0000000000..6c8c56bab8 --- /dev/null +++ b/acts/framework/acts/controllers/buds_lib/data_storage/bigquery/bigquery_buffer.py @@ -0,0 +1,155 @@ +#!/usr/bin/env python3 +# +# Copyright (C) 2018 The Android Open Source Project +# +# Licensed under the Apache License, Version 2.0 (the "License"); you may not +# use this file except in compliance with the License. You may obtain a copy of +# the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +# License for the specific language governing permissions and limitations under +# the License. +"""Simple buffer interface that sends rows to specified tables in wearables-qa project in BigQuery.""" +import acts.controllers.buds_lib.data_storage.bigquery.bigquery_logger_utils as bq_utils +import os +import time +import yaml + +CONFIG = 'config.yml' +PATH_TO_CONFIG = os.path.join(os.path.dirname(__file__), CONFIG) + +queue = None + + +class BigqueryBufferError(Exception): + """To be thrown if data storage queue malfunctions or cannot be reached""" + + +class BigQueryProcessManager: + def __init__(self, config_path): + self.config_path = config_path + self.ip_address = None + self.port = None + self.load_config() + + def load_config(self): + config = yaml.load(open(self.config_path, 'r')) + new_ip_address = config['ip_address'] + new_port = config['port'] + new_queue_size = config['queue_size'] + new_authkey = config['authkey'] + if new_ip_address == self.ip_address and new_port == self.port: + if new_authkey != self.authkey or new_queue_size != self.queue_size: + raise BigqueryBufferError( + 'To change queue size or server authkey, choose an unused port for a new server.' + ) + self.project_id = config['project_id'] + self.credentials_path = config['credentials_path'] + self.queue_size = config['queue_size'] + self.ip_address = config['ip_address'] + self.port = config['port'] + self.authkey = config['authkey'] + self.flush_period = config['flush_period'] + + def start_subprocesses(self): + old_server_pid, old_queue = None, None + + if not self.server_pid(): + try: + # check if a BigqueryLoggerQueue currently exists but with different args + old_server_pid, old_queue = bq_utils.get_current_queue_and_server_pid( + ) + except TypeError: + pass + + # Start server to initialize new shared BigqueryLoggerQueue + bq_utils.start_queue_server( + queue_size=self.queue_size, + ip_address=self.ip_address, + port=self.port, + authkey=self.authkey) + time.sleep(5) + + # Retrieve proxy object for new shared BigqueryLoggerQueue + global queue + queue = bq_utils.get_queue( + ip_address=self.ip_address, port=self.port, authkey=self.authkey) + + if queue: + + if old_queue and old_server_pid: # If and older queue exists, transfer its items to new one + while not old_queue.empty(): + queue.put(old_queue.get()) + bq_utils.kill_pid(old_server_pid) + + # noinspection PyUnresolvedReferences + queue.set_flush_period(self.flush_period) + + # noinspection PyUnresolvedReferences + if not self.automatic_logger_pid(): + bq_utils.kill_current_scheduled_automatic_logger() + + bq_utils.start_scheduled_automatic_logger( + ip_address=self.ip_address, + port=self.port, + authkey=self.authkey, + project_id=self.project_id, + credentials_path=self.credentials_path) + + if self.server_pid() and self.automatic_logger_pid(): + return True + + return False + + def automatic_logger_pid(self): + return bq_utils.get_scheduled_automatic_logger_pid( + ip_address=self.ip_address, + port=self.port, + authkey=self.authkey, + project_id=self.project_id, + credentials_path=self.credentials_path) + + def server_pid(self): + return bq_utils.get_logger_server_pid( + queue_size=self.queue_size, + ip_address=self.ip_address, + port=self.port, + authkey=self.authkey) + + +process_manager = BigQueryProcessManager(PATH_TO_CONFIG) + + +def log(dataset_id, table_id, row_dict): + """Sends a row dict to be flushed to a table in BigQuery. + + Arguments: + dataset_id: dataset in which table resides. + table_id: table to update with row. + row_dict: dictionary for field: value pairs to send to table. + """ + global queue + + try: + process_manager.load_config() + except BigqueryBufferError as e: + print(e.message) + subprocesses_started = True + else: + subprocesses_started = process_manager.start_subprocesses() + + if not subprocesses_started: + raise BigqueryBufferError('Could not start subprocesses') + if queue: + try: + # noinspection PyUnresolvedReferences + queue.add_row(dataset_id, table_id, row_dict) + except EOFError: + raise BigqueryBufferError( + 'Could not push data to storage queue (EOFError)') + else: + raise BigqueryBufferError('No data queue exists to push data to...') diff --git a/acts/framework/acts/controllers/buds_lib/data_storage/bigquery/bigquery_logger.py b/acts/framework/acts/controllers/buds_lib/data_storage/bigquery/bigquery_logger.py new file mode 100644 index 0000000000..74f5e7db7b --- /dev/null +++ b/acts/framework/acts/controllers/buds_lib/data_storage/bigquery/bigquery_logger.py @@ -0,0 +1,57 @@ +#!/usr/bin/env python3 +# +# Copyright (C) 2018 The Android Open Source Project +# +# Licensed under the Apache License, Version 2.0 (the "License"); you may not +# use this file except in compliance with the License. You may obtain a copy of +# the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +# License for the specific language governing permissions and limitations under +# the License. +"""Client object for testing infrastructure to store information in BigQuery""" + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +from acts.controllers.buds_lib.data_storage.bigquery.bigquery_logger_utils import add_row, BigqueryLoggerClient + +PROJECT_ID = 'google.com:wearables-qa' +CREDENTIALS_PATH = '/google/data/ro/teams/wearables/test/automation/bigquery/wearables-service-key.json' + + +class BigqueryLogger: + """Bigquery Logger specialized for automated test logging.""" + + def __init__(self, dataset_id, table_id): + """Initialization method for BigqueryLogger class.""" + # An array of InsertEntry objects to insert into the BigQuery table + self.rows = [] + self.dataset_id = dataset_id + self.table_id = table_id + self.utils = BigqueryLoggerClient( + project_id=PROJECT_ID, + google_application_credentials_path=CREDENTIALS_PATH) + + def __enter__(self): + return self + + def __exit__(self, exc_type, exc_value, traceback): + self.utils.flush(self.rows, self.dataset_id, self.table_id) + + def clear(self): + """Clear data structures""" + self.rows = [] + + def get_rows(self): + """Getter method for self.rows().""" + return self.rows + + def add_row(self, row_dict): + print('Adding row...') + return add_row(row_dict, self.rows) diff --git a/acts/framework/acts/controllers/buds_lib/data_storage/bigquery/bigquery_logger_queue.py b/acts/framework/acts/controllers/buds_lib/data_storage/bigquery/bigquery_logger_queue.py new file mode 100644 index 0000000000..7ebf90f3a5 --- /dev/null +++ b/acts/framework/acts/controllers/buds_lib/data_storage/bigquery/bigquery_logger_queue.py @@ -0,0 +1,75 @@ +#!/usr/bin/env python3 +# +# Copyright (C) 2018 The Android Open Source Project +# +# Licensed under the Apache License, Version 2.0 (the "License"); you may not +# use this file except in compliance with the License. You may obtain a copy of +# the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +# License for the specific language governing permissions and limitations under +# the License. +"""Queue wrapper object to be shared across all tests using the bigquery_buffer module.""" + +from multiprocessing import Queue + +DEFAULT_SIZE = 30000 + + +class BigqueryLoggerQueue: + """Organizes and stores all BigQuery table row updates sent to it.""" + + def __init__(self, size=DEFAULT_SIZE): + self.queue = Queue(maxsize=size) + self.flush_period = 1 + + def add_row(self, dataset_id, table_id, row): + """Store row to be added with all other rows to be added to passed table. + + Arguments: + dataset_id: the dataset in which table_id resides. + table_id: the id of the table to update. + row: a dictionary of field: value pairs representing the row to add. + """ + + self.queue.put(((dataset_id, table_id), row)) + + def get_insert_iterator(self): + """Organize queue into iterator of ((dataset_id, table_id), rows_list) tuples. + Takes state of queue upon invocation, ignoring items put in queue after. + + Returns: + insert_iterator: an iterator of pairs dataset/table ids and the lists + of rows to insert into those tables. + """ + + insert_dict = {} + num_entries_to_insert = self.queue.qsize() + + for i in xrange(num_entries_to_insert): + if not self.queue.empty(): + dataset_table_tuple, row_dict = self.queue.get() + if dataset_table_tuple not in insert_dict.keys(): + insert_dict[dataset_table_tuple] = [] + insert_dict[dataset_table_tuple].append(row_dict) + + return insert_dict.items() + + def put(self, row_tuple): + self.queue.put(row_tuple) + + def get(self): + return self.queue.get() + + def empty(self): + return self.queue.empty() + + def get_flush_period(self): + return self.flush_period + + def set_flush_period(self, period): + self.flush_period = int(period) diff --git a/acts/framework/acts/controllers/buds_lib/data_storage/bigquery/bigquery_logger_server.py b/acts/framework/acts/controllers/buds_lib/data_storage/bigquery/bigquery_logger_server.py new file mode 100644 index 0000000000..39a23079a5 --- /dev/null +++ b/acts/framework/acts/controllers/buds_lib/data_storage/bigquery/bigquery_logger_server.py @@ -0,0 +1,40 @@ +#!/usr/bin/env python3 +# +# Copyright (C) 2018 The Android Open Source Project +# +# Licensed under the Apache License, Version 2.0 (the "License"); you may not +# use this file except in compliance with the License. You may obtain a copy of +# the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +# License for the specific language governing permissions and limitations under +# the License. +"""Script to start running server that manages a shared BigqueryLoggerQueue.""" + +import sys +from multiprocessing.managers import BaseManager + +from acts.controllers.buds_lib.data_storage.bigquery.bigquery_logger_queue import BigqueryLoggerQueue + + +def start_queue_server(queue_size, ip_address, port, authkey): + queue = BigqueryLoggerQueue(size=int(queue_size)) + BaseManager.register('get_queue', callable=lambda: queue) + m = BaseManager(address=(ip_address, int(port)), authkey=authkey) + s = m.get_server() + + print('starting server...') + s.serve_forever() + + +def main(): + queue_size, ip_address, port, authkey = sys.argv[1:] + start_queue_server(queue_size, ip_address, port, authkey) + + +if __name__ == '__main__': + main() diff --git a/acts/framework/acts/controllers/buds_lib/data_storage/bigquery/bigquery_logger_utils.py b/acts/framework/acts/controllers/buds_lib/data_storage/bigquery/bigquery_logger_utils.py new file mode 100644 index 0000000000..e6e7277b70 --- /dev/null +++ b/acts/framework/acts/controllers/buds_lib/data_storage/bigquery/bigquery_logger_utils.py @@ -0,0 +1,704 @@ +#!/usr/bin/env python3 +# +# Copyright (C) 2018 The Android Open Source Project +# +# Licensed under the Apache License, Version 2.0 (the "License"); you may not +# use this file except in compliance with the License. You may obtain a copy of +# the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +# License for the specific language governing permissions and limitations under +# the License. + +import logging +from datetime import datetime +import inspect +import os +import socket +import string +import subprocess +import time +import yaml +from multiprocessing.managers import BaseManager + +from google.api_core.exceptions import NotFound +from google.cloud import bigquery + +_TIMESTAMP_STR_FORMAT = '%Y-%m-%d %H:%M:%S' +_AUTOMATIC_LOGGER_SCRIPT = 'bigquery_scheduled_automatic_client.py' +_SERVER_SCRIPT = 'bigquery_logger_server.py' + + +def load_config(config_file_path): + with open(config_file_path, 'r') as f: + config = yaml.load(f) + return config + + +class BigQueryLoggerUtilsError(Exception): + """Exception class for bigquery logger utils module""" + + +################################# +# Data transformation and preparation methods +################################# + + +def make_storeable(value): + """Casts non primitive data types to string. + + Certain data types such as list can cause unexpected behavior with BigQuery. + + Arguments: + value: an object to store in a BigQuery table. + Returns: + value or str(value): string version of passed value, if necessary. + """ + if (isinstance(value, int) or isinstance(value, float) + or isinstance(value, str) or isinstance(value, bool)): + return value + elif isinstance(value, datetime): + return value.strftime(_TIMESTAMP_STR_FORMAT) + return str(value) + + +def get_field_name(dirty_string): + """Converts field name to a BigQuery acceptable field name. + + Arguments: + dirty_string: the string to convert to a standardized field name. + Returns: + field_name: the field name as a string. + """ + valid_chars = '_ %s%s' % (string.ascii_letters, string.digits) + field_name = ''.join(c for c in dirty_string.upper() if c in valid_chars) + field_name = field_name.strip().replace(' ', '_') + if not field_name: + field_name = 'FIELD' + elif field_name[0] not in string.ascii_letters + '_': + field_name = 'FIELD_' + field_name + return field_name + + +def get_bigquery_type(value): + """Returns BigQuery recognizable datatype string from value. + + Arguments: + value: the item you want to store in BigQuery + Returns: + field_type: the BigQuery data type for the field to store your value. + """ + # Dict for converting Python types to BigQuery recognizable schema fields + field_name = { + 'STR': 'STRING', + 'INT': 'INTEGER', + 'FLOAT': 'FLOAT', + 'BOOL': 'BOOLEAN' + } + + # Default field type is STRING + field_type = 'STRING' + if isinstance(value, str): + try: + # Try to infer whether datatype is a timestamp by converting it to + # a timestamp object using the string format + time.strptime(value, _TIMESTAMP_STR_FORMAT) + field_type = 'TIMESTAMP' + except ValueError: + pass + else: + type_string = type(value).__name__ + try: + field_type = field_name[type_string.upper()] + except KeyError: + logging.error('Datatype %s not recognized. Reverting to STRING.', + type_string) + return field_type + + +def add_row(dictionary, row_list_to_update): + # Convert dictionary key names to BigQuery field names + to_add = { + get_field_name(key): make_storeable(value) + for key, value in dictionary.items() + } + + row_list_to_update.append(to_add) + + +def change_field_name(old_name, new_name, row_list_to_update): + """Changes field name in row_list_to_update in place. + + Arguments: + old_name: the old field name, to be replaced. + new_name: the new name to replace the old one. + row_list_to_update: the list of row dictionaries to update the field name for + Returns: + num_replacements: how many rows were affected by this change. + """ + old_name = get_field_name(old_name) + new_name = get_field_name(new_name) + num_replacements = 0 + for row in row_list_to_update: + if old_name in row.keys(): + # Update all items in the rows with the new field name + row[new_name] = row[old_name] + del row[old_name] + num_replacements += 1 + return num_replacements + + +def get_tuple_from_schema(schema): + """Returns a tuple of all field names in the passed schema""" + return tuple(field.name for field in schema) + + +def get_dict_from_schema(schema): + """Turns a BigQuery schema array into a more flexible dictionary. + + Arguments: + schema: the schema array to be converted. + Returns: + dictionary: a dictionary from the schema. Maps field names to field types. + """ + dictionary = { + schema_field.name: schema_field.field_type + for schema_field in schema + } + return dictionary + + +def reconcile_schema_differences(schema_to_change_dict, + schema_to_preserve_dict): + """Returns a schema dict combining two schema dicts. + + If there are conflicts between the schemas, for example if they share a + field name but those field names don't share the same type value, that field + name in one of the schema dicts will have to change to be added to the + combined schema. + Arguments: + schema_to_change_dict: a dict representing the schema that will be changed + if a conflict arises. + schema_to_preserve_dict: a dict representing the schema whose fields will + remain unchanged. + Returns: + new_schema_dict: a dict representing the combined schemas + changed_fields: a dict mapping old field names to their new field names, + if they were changed, in schema_to_change_dict. + """ + new_schema_dict = schema_to_preserve_dict.copy() + changed_fields = {} + for field_name, field_type in schema_to_change_dict.items(): + if field_name in schema_to_preserve_dict.keys(): + + # Field name already exists in remote table, but it might not accept the + # same value type the user is passing this time around + if schema_to_preserve_dict[field_name] == field_type: + + # Same data type for fields, no need to do anything + continue + else: + + # We need to create a new field with a unique name to store this + # different data type. Automatically makes new name: + # FIELD_NAME_FIELD_TYPE, ex. 'RESULT_BOOLEAN' + new_field_name = '%s_%s' % (field_name, field_type) + + # On the off chance that this new field name is also already taken, we + # start appending numbers to it to make it unique. This should be an + # extreme edge case, hence the inelegance. + count = 1 + merged_schemas = schema_to_preserve_dict.copy() + merged_schemas.update(schema_to_change_dict) + if new_field_name in merged_schemas.keys( + ) and merged_schemas[new_field_name] != field_type: + new_field_name += str(count) + while new_field_name in merged_schemas.keys( + ) and merged_schemas[new_field_name] != field_type: + count += 1 + new_field_name = new_field_name[:-1] + str(count) + + # Update the actual rows in our logger as well as self.schema_dict to + # reflect the new field name. + changed_fields[field_name] = new_field_name + + new_schema_dict[new_field_name] = field_type + + else: + new_schema_dict[field_name] = field_type + + return new_schema_dict, changed_fields + + +################################# +# BigQuery request data preparation methods +################################# + + +def get_schema_from_dict(dictionary): + """Turns dictionary into a schema formatted for BigQuery requests. + + Arguments: + dictionary: the dictionary to convert into a schema array. + Returns: + schema: an array of SchemaField objects specifying name and type, listed alphabetically. + """ + schema = [] + for key in sorted(dictionary): + schema.append( + bigquery.SchemaField(key, dictionary[key], mode='nullable')) + return schema + + +def get_schema_from_rows_list(rows_list): + """Deduces the BigQuery table schema represented by a list of row dictionaries. + + Arguments: + rows_list: the list of row dictionaries to create a schema from. + Returns: + schema: a formatted BigQuery table schema with the fields in alphabetical order.""" + schema = {} + for row in rows_list: + # Create new field names and corresponding types in self.schema_dict in case + # the schema of the remote table needs to be updated. + for key, value in row.items(): + value_type = get_bigquery_type(value) + if key in schema.keys(): + # We have another row with the same field name. Most of the time their + # types should match and we can just skip adding it to the fields to + # update + + if value_type != schema[key]: + # Their types don't match. Merge the fields and change the type to + # string + schema[key] = 'STRING' + + row[key] = str(row[key]) + else: + schema[key] = value_type + + return get_schema_from_dict(schema) + + +def get_formatted_rows(rows_list, schema): + """Returns an InsertEntry object for adding to BQ insert request. + + Arguments: + rows_list: a list of row dictionaries to turn into tuples of values corresponding to the schema fields. + schema: a tuple representing the column names in the table. + Returns: + rows: an array of tuples with the elements ordered corresponding to the order of the column names in schema. + """ + rows = [] + schema_tuple = get_tuple_from_schema(schema) + for row in rows_list: + row_tuple = tuple( + row[key] if key in row.keys() else None for key in schema_tuple) + rows.append(row_tuple) + return rows + + +################################# +# BigQuery client class +################################# + + +class BigqueryLoggerClient: + """Client class for interacting with and preparing data for BigQuery""" + + def __init__(self, project_id, google_application_credentials_path): + os.environ[ + 'GOOGLE_APPLICATION_CREDENTIALS'] = google_application_credentials_path + self.client = bigquery.Client(project_id) + + ################################# + # BigQuery request methods + ################################# + + def create_dataset(self, dataset_id): + """Creates a new dataset if it doesn't exist. + + Arguments: + dataset_id: the name of the dataset you want to create. + Returns: + dataset: the resulting dataset object. + """ + dataset_ref = self.client.dataset(dataset_id) + dataset = bigquery.Dataset(dataset_ref) + try: + dataset = self.client.get_dataset(dataset_ref) + except Exception as err: + self.client.create_dataset(dataset) + return dataset + + def create_table(self, dataset_id, table_id, schema): + """Creates a new table if it doesn't exist. + + Arguments: + dataset_id: the name of the dataset that will contain the table you want + to create. + table_id: the name of the table you want to create. + schema: a schema array for the table to be created. + Returns: + table: the resulting table object + """ + dataset = self.create_dataset(dataset_id) + table_ref = dataset.table(table_id) + table = bigquery.Table(table_ref, schema=schema) + try: + table = self.client.get_table(table_ref) + except NotFound: + self.client.create_table(table) + return table + + def update_table_schema(self, dataset_id, table_id, new_schema): + """Updates the schema for the given remote table. + + Uses fields specified in self.schema_dict. This method will never remove + fields, to avoid loss of data. + + Arguments: + dataset_id: the dataset containing the table to modify. + table_id: the table to modify. + new_schema: a new schema to update the remote table's schema with. + Returns: + table: the updated table object. + changed_fields: a dictionary mapping any changed field names to their new name strings. + """ + table = self.create_table(dataset_id, table_id, new_schema) + remote_schema = table.schema + remote_schema_dict = get_dict_from_schema(remote_schema) + new_schema_dict = get_dict_from_schema(new_schema) + + updated_schema_dict, changed_fields = reconcile_schema_differences( + new_schema_dict, remote_schema_dict) + + if updated_schema_dict.items() != remote_schema_dict.items(): + table.schema = get_schema_from_dict(updated_schema_dict) + table = self.client.update_table( + table=table, properties=['schema']) + + return table, changed_fields + + def delete(self, dataset_id, table_id=None): + """Deletes specified table in specified dataset. + + Arguments: + dataset_id: the name of the dataset to be deleted or the dataset that + contains the table to be deleted. + table_id: the name of the table to be deleted. + """ + dataset_ref = self.client.dataset(dataset_id) + dataset = bigquery.Dataset(dataset_ref) + try: + if table_id: + table_ref = dataset.table(table_id) + table = bigquery.Table(table_ref) + self.client.delete_table(table) + else: + self.client.delete_dataset(dataset) + except NotFound: + pass + + def flush(self, rows_list, dataset_id, table_id, retries=5): + """Inserts key value store of data into the specified table. + + Arguments: + rows_list: a list of row dictionaries to send to BigQuery + dataset_id: dataset name to store table in. + table_id: table name to store info in. + retries: how many times to retry insert upon failure + Returns: + erros: any errors resulting from the insert operation. + Raises: + DataNotStoredError: if data is not stored because of insertErrors in + query response or timeout. + """ + correctly_formatted_rows_list = [] + + for row in rows_list: + add_row(row, correctly_formatted_rows_list) + + local_schema = get_schema_from_rows_list(correctly_formatted_rows_list) + table, changed_fields = self.update_table_schema( + dataset_id, table_id, local_schema) + + if changed_fields: + print('Changed Fields: ' + str(changed_fields)) + for old_name, new_name in changed_fields.items(): + change_field_name(old_name, new_name, + correctly_formatted_rows_list) + + schema = table.schema + + values = get_formatted_rows(correctly_formatted_rows_list, schema) + errors = self.client.create_rows(table, values) + if errors: + for retry in range(retries): + print('Retry ' + str(retry + 1)) + time.sleep(30) + errors = self.client.create_rows(table, values) + if not errors: + break + + if errors: + print(errors) + return errors + + +#################### +# Subprocess and helper methods to help with automated logger +#################### + + +def start_queue_server(queue_size, ip_address, port, authkey): + """Starts a subprocess bigquery_logger_server.py. + Subprocess creates a server to handle the shared job queue. + + Arguments: + queue_size: maximum number of items this queue can hold + ip_address: ip address of the machine on which to start queue management server + port: port on which to reach queue management server + authkey: password to be used by clients trying to access server + Returns: + process: the result of Popen on the subprocess. + """ + + # If ip_address is empty string (signifying local machine) we need to have '' in the command so it is counted + # as an actual argument to bigquery_logger_server + ip_address = ip_address or '\'\'' + command = ' '.join([ + _SERVER_SCRIPT, + str(queue_size), + str(ip_address), + str(port), + str(authkey) + ]) + # Create error log file for user to check + error_log_name = os.path.join( + os.path.dirname(__file__), 'queue_server_err.log') + error_log = open(error_log_name, 'w+') + process = subprocess.Popen( + command, + shell=True, + stderr=error_log, + stdin=subprocess.PIPE, + stdout=subprocess.PIPE) + return process + + +def start_scheduled_automatic_logger(ip_address, port, authkey, project_id, + credentials_path): + """Starts a subprocess bigquery_scheduled_automatic_logger. + Subprocess accesses the queue managed by the server at ip_address:port + and periodically sends items in queue to the BigQuery project identified by project_id. + + Arguments: + ip_address: ip_address of the machine on which the server managing the shared queue to pull from is located + port: port on which the server managing the shared queue to pull from can be reached + authkey: password needed to access server + project_id: name of BigQuery project to send data to + credentials_path: path to directory where Google Service Account credentials for this BigQuery + project are stored + Returns: + process: the result of Popen on the subprocess. + """ + + # If ip_address is empty string (signifying local machine) we need to have '' in the command so it is counted + # as an actual argument to bigquery_scheduled_automatic_logger + ip_address = ip_address or '\'\'' + print('starting scheduled automatic logger...') + command = ' '.join([ + _AUTOMATIC_LOGGER_SCRIPT, + str(ip_address), + str(port), + str(authkey), + str(project_id), + str(credentials_path) + ]) + # Create error log file for user to check + error_log_name = os.path.join( + os.path.dirname(__file__), 'scheduled_automatic_logger_err.log') + error_log = open(error_log_name, 'w+') + process = subprocess.Popen( + command, + shell=True, + stderr=error_log, + stdin=subprocess.PIPE, + stdout=subprocess.PIPE) + return process + + +def get_queue(ip_address, port, authkey): + """Returns a proxy object for shared queue. + Shared queue is created and managed in start_server(). + + Arguments: + ip_address: ip_address of the machine on which the server managing the shared queue to proxy is located + port: port on which the server managing the shared queue to proxy can be reached + authkey: password needed to access server + Returns: + queue: the BigqueryLoggerQueue object that organizers and holds all BigQuery + inserts sent to server.""" + BaseManager.register('get_queue') + m = BaseManager(address=(ip_address, int(port)), authkey=authkey) + try: + m.connect() + return m.get_queue() + except socket.error: + raise BigQueryLoggerUtilsError('Cannot connect to data storage queue.') + + +def get_current_scheduled_automatic_logger(): + """Returns process id and args of running scheduled automatic logger""" + + processes = get_processes(_AUTOMATIC_LOGGER_SCRIPT) + + pid = 0 + args = {} + if processes: + process = processes[0] + pid = process[0] + process_argspec = inspect.getargspec(start_scheduled_automatic_logger) + process_arg_names = process_argspec.args + process_argv = process[-1 * len(process_arg_names):] + args = dict(zip(process_arg_names, process_argv)) + + return pid, args + + +def get_current_logger_server(): + """Returns process id and args of running logger servers""" + + processes = get_processes(_SERVER_SCRIPT) + + pid = 0 + args = {} + if processes: + process = processes[0] + pid = process[0] + process_argspec = inspect.getargspec(start_queue_server) + process_arg_names = process_argspec.args + process_argv = process[-1 * len(process_arg_names):] + args = dict(zip(process_arg_names, process_argv)) + + return pid, args + + +def get_current_queue_and_server_pid(): + """Kills the current running queue server process. + + Returns: + queue: the queue that the server used to serve. + """ + + pid, args = get_current_logger_server() + get_queue_args = inspect.getargspec(get_queue).args + if pid: + try: + kwargs = {arg_name: args[arg_name] for arg_name in get_queue_args} + except KeyError: + raise BigQueryLoggerUtilsError( + 'Param names in get_queue %s must be subset of param names for start_queue_server %s' + % (get_queue_args, args.keys())) + else: + # Retrieve reference to current + queue = get_queue(**kwargs) + return pid, queue + + +def kill_current_scheduled_automatic_logger(): + pid, _ = get_current_scheduled_automatic_logger() + if pid: + kill_pid(pid) + + +def get_scheduled_automatic_logger_pid(ip_address, port, authkey, project_id, + credentials_path): + """Returns the process id of a bigquery_scheduled_automatic_logger instance for a given set of configs. + + Arguments: + ip_address: ip_address of the machine on which the server managing the shared queue to pull from is located + port: port on which the server managing the shared queue to pull from can be reached + authkey: password needed to access server + project_id: name of BigQuery project to send data to + credentials_path: path to directory where Google Service Account credentials for this BigQuery + project are stored + Returns: + pid: process id of process if found. Else 0 + """ + + pids = get_pids(_AUTOMATIC_LOGGER_SCRIPT, ip_address, port, authkey, + project_id, os.path.expanduser(credentials_path)) + + pid = 0 + if pids: + pid = pids[0] + return pid + + +def get_logger_server_pid(queue_size, ip_address, port, authkey): + """Returns the process id of a bigquery_logger_service instance for a given set of configs. + + Arguments: + queue_size: the size of the shared data queue + ip_address: ip_address of the machine on which the server managing the shared queue to pull from is located + port: port on which the server managing the shared queue to pull from can be reached + authkey: password needed to access server + Returns: + pid: process id of process if found. Else 0 + """ + + pids = get_pids(_SERVER_SCRIPT, queue_size, ip_address, port, authkey) + pid = 0 + if pids: + pid = pids[0] + return pid + + +def get_pids(*argv): + """Gets process ids based on arguments to concatenate and grep + + Arguments: + *argv: any number of arguments to be joined and grepped + Returns: + pids: process ids of process if found. + """ + processes = get_processes(*argv) + pids = [process[0] for process in processes] + + return pids + + +def get_processes(*argv): + """Returns process grepped by a set of arguments. + + Arguments: + *argv: any number of arguments to be joined and grepped + Returns: + processes: processes returned by grep, as a list of lists. + """ + expression = ' '.join([str(arg) for arg in argv]) + processes = [] + try: + results = subprocess.check_output( + 'pgrep -af \"%s\"' % expression, shell=True) + for result in results.split('\n'): + items = result.split(' ') + if 'pgrep' not in items: + processes.append(items) + except subprocess.CalledProcessError: + pass + + return processes + + +def kill_pid(pid): + """To only be used on _SERVER_SCRIPT or _AUTOMATIC_LOGGER_SCRIPT""" + + result = subprocess.check_output('kill -9 %s' % str(pid), shell=True) + return result diff --git a/acts/framework/acts/controllers/buds_lib/data_storage/bigquery/bigquery_scheduled_automatic_client.py b/acts/framework/acts/controllers/buds_lib/data_storage/bigquery/bigquery_scheduled_automatic_client.py new file mode 100644 index 0000000000..a1ec39507f --- /dev/null +++ b/acts/framework/acts/controllers/buds_lib/data_storage/bigquery/bigquery_scheduled_automatic_client.py @@ -0,0 +1,49 @@ +#!/usr/bin/env python3 +# +# Copyright (C) 2018 The Android Open Source Project +# +# Licensed under the Apache License, Version 2.0 (the "License"); you may not +# use this file except in compliance with the License. You may obtain a copy of +# the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +# License for the specific language governing permissions and limitations under +# the License. +"""Script that runs perpetually, flushing contents of shared BigqueryLoggerQueue +to BigQuery on a specified schedule.""" + +import sys +import time + +import acts.controllers.buds_lib.data_storage.bigquery.bigquery_logger_utils as utils + + +def start_scheduled_automatic_logging(queue, project_id, credentials_path): + """Runs infinite while loop that flushes contents of queue to BigQuery + on schedule determined by flush_period.""" + + client = utils.BigqueryLoggerClient(project_id, credentials_path) + + while True: + # TODO: check if connected to internet before attempting to push to BQ + insert_iterator = queue.get_insert_iterator() + for dataset_table_tuple, rows_list in insert_iterator: + dataset_id, table_id = dataset_table_tuple + client.flush(rows_list, dataset_id, table_id) + + time.sleep(queue.get_flush_period()) + + +def main(): + """Pass shared BigqueryLoggerQueue to automatic logging method.""" + ip_address, port, authkey, project_id, credentials_path = sys.argv[1:] + queue = utils.get_queue(ip_address, port, authkey) + start_scheduled_automatic_logging(queue, project_id, credentials_path) + + +if __name__ == '__main__': + main() diff --git a/acts/framework/acts/controllers/buds_lib/data_storage/bigquery/config.yml b/acts/framework/acts/controllers/buds_lib/data_storage/bigquery/config.yml new file mode 100644 index 0000000000..12fe4a4608 --- /dev/null +++ b/acts/framework/acts/controllers/buds_lib/data_storage/bigquery/config.yml @@ -0,0 +1,7 @@ +project_id: 'google.com:wearables-qa' +credentials_path: '/google/data/ro/teams/wearables/test/automation/bigquery/wearables-service-key.json' +queue_size: 30000 +ip_address: '' +port: 60009 +authkey: 'wearables' +flush_period: 5
\ No newline at end of file diff --git a/acts/framework/acts/controllers/buds_lib/data_storage/bigquery/test_bigquery_logger.py b/acts/framework/acts/controllers/buds_lib/data_storage/bigquery/test_bigquery_logger.py new file mode 100644 index 0000000000..e19b6cc6fc --- /dev/null +++ b/acts/framework/acts/controllers/buds_lib/data_storage/bigquery/test_bigquery_logger.py @@ -0,0 +1,27 @@ +#!/usr/bin/env python3 +# +# Copyright (C) 2018 The Android Open Source Project +# +# Licensed under the Apache License, Version 2.0 (the "License"); you may not +# use this file except in compliance with the License. You may obtain a copy of +# the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +# License for the specific language governing permissions and limitations under +# the License. +"""Tests for bigquery_logger.""" + +import acts.controllers.buds_lib.data_storage.bigquery.bigquery_logger + +logger = bigquery_logger.BigqueryLogger(dataset_id='test', table_id='test') + + +def test_with_block(): + with bigquery_logger.BigqueryLogger('with_block_test', + 'test_table') as log: + log.add_row({'NEW': 'nice', 'FIELD6': 3.0, 'noodle': 3}) + log.add_row({'FIELD2': 12, 'FIELD3': True, 'SUPERNEW': 'stroong'}) diff --git a/acts/framework/acts/controllers/buds_lib/data_storage/bigquery/test_bigquery_utils.py b/acts/framework/acts/controllers/buds_lib/data_storage/bigquery/test_bigquery_utils.py new file mode 100644 index 0000000000..f6855a4813 --- /dev/null +++ b/acts/framework/acts/controllers/buds_lib/data_storage/bigquery/test_bigquery_utils.py @@ -0,0 +1,510 @@ +#!/usr/bin/env python3 +# +# Copyright (C) 2018 The Android Open Source Project +# +# Licensed under the Apache License, Version 2.0 (the "License"); you may not +# use this file except in compliance with the License. You may obtain a copy of +# the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT +# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the +# License for the specific language governing permissions and limitations under +# the License. + +from google.api_core.exceptions import NotFound +from google.cloud import bigquery +from mock import patch, Mock + +import acts.controllers.buds_lib.data_storage.bigquery.bigquery_logger_utils as utils + +_TIMESTAMP_STR_FORMAT = '%Y-%m-%d %H:%M:%S' + + +def test_make_storable(): + to_make_storable = ['one', 1, 1.0, True, [1]] + targets = ['one', 1, 1.0, True, str([1])] + assert [utils.make_storeable(item) for item in to_make_storable] == targets + + +def test_get_field_name(): + bad_names = [ + 'all_lowercase', 'b@d<h4r^c7=r$', '5tarts_with_digit', '_underscore', + '', 'hyphen-name' + ] + targets = [ + 'ALL_LOWERCASE', 'BDH4RC7R', 'FIELD_5TARTS_WITH_DIGIT', '_UNDERSCORE', + 'FIELD', 'HYPHENNAME' + ] + assert [utils.get_field_name(item) for item in bad_names] == targets + + +def test_get_bigquery_type(): + items = ['one', '2017-11-03 12:30:00', 1, 1.0, True, utils] + targets = ['STRING', 'TIMESTAMP', 'INTEGER', 'FLOAT', 'BOOLEAN', 'STRING'] + assert [utils.get_bigquery_type(item) for item in items] == targets + + +def test_add_row(): + row_list = [] + utils.add_row({'int': 500, 'list': [1, 2, 3], 'float': 5.0}, row_list) + assert set(row_list[0].items()) == set({ + 'INT': 500, + 'LIST': '[1, 2, 3]', + 'FLOAT': 5.0 + }.items()) + utils.add_row({'int': 12, 'time': '2011-12-13 10:00:00'}, row_list) + assert set(row_list[1].items()) == set({ + 'INT': 12, + 'TIME': '2011-12-13 10:00:00' + }.items()) + utils.add_row({'1string': '1'}, row_list) + assert set(row_list[2].items()) == set({'FIELD_1STRING': '1'}.items()) + + +def test_change_field_name(): + row_list = [{ + 'FIELD1': None, + 'FIELD2': 300, + 'FIELD3': True + }, { + 'FIELD1': 'a string', + 'FIELD2': 300, + 'FIELD4': False + }, { + 'FIELD1': 'another string', + 'FIELD3': True, + 'FIELD4': False + }] + num_replacements = utils.change_field_name('field1', 'new_name', row_list) + assert num_replacements == 3 + assert set(row_list[0].items()) == set({ + 'NEW_NAME': None, + 'FIELD2': 300, + 'FIELD3': True + }.items()) + assert set(row_list[1].items()) == set({ + 'NEW_NAME': 'a string', + 'FIELD2': 300, + 'FIELD4': False + }.items()) + assert set(row_list[2].items()) == set({ + 'NEW_NAME': 'another string', + 'FIELD3': True, + 'FIELD4': False + }.items()) + num_replacements = utils.change_field_name('field2', 'new_name2', row_list) + assert num_replacements == 2 + assert set(row_list[0].items()) == set({ + 'NEW_NAME': None, + 'NEW_NAME2': 300, + 'FIELD3': True + }.items()) + assert set(row_list[1].items()) == set({ + 'NEW_NAME': 'a string', + 'NEW_NAME2': 300, + 'FIELD4': False + }.items()) + assert set(row_list[2].items()) == set({ + 'NEW_NAME': 'another string', + 'FIELD3': True, + 'FIELD4': False + }.items()) + num_replacements = utils.change_field_name('field5', 'new_name3', row_list) + assert num_replacements == 0 + assert set(row_list[0].items()) == set({ + 'NEW_NAME': None, + 'NEW_NAME2': 300, + 'FIELD3': True + }.items()) + assert set(row_list[1].items()) == set({ + 'NEW_NAME': 'a string', + 'NEW_NAME2': 300, + 'FIELD4': False + }.items()) + assert set(row_list[2].items()) == set({ + 'NEW_NAME': 'another string', + 'FIELD3': True, + 'FIELD4': False + }.items()) + + +def test_get_schema_from_dict(): + dict = {'FIELD': 'STRING', 'IELD': 'BOOLEAN', 'ELD': 'TIMESTAMP'} + target = [ + bigquery.SchemaField('ELD', 'TIMESTAMP', mode='nullable'), + bigquery.SchemaField('FIELD', 'STRING', mode='nullable'), + bigquery.SchemaField('IELD', 'BOOLEAN', mode='nullable') + ] + assert utils.get_schema_from_dict(dict) == target + + +def test_get_dict_from_schema(): + schema = [ + bigquery.SchemaField('a_float'.upper(), 'FLOAT'), + bigquery.SchemaField('an_int'.upper(), 'INTEGER'), + bigquery.SchemaField('a_string'.upper(), 'STRING'), + bigquery.SchemaField('a_timestamp'.upper(), 'TIMESTAMP'), + bigquery.SchemaField('a_boolean'.upper(), 'BOOLEAN'), + bigquery.SchemaField('unknown'.upper(), 'STRING') + ] + + dictionary = { + 'a_float'.upper(): 'FLOAT', + 'an_int'.upper(): 'INTEGER', + 'a_string'.upper(): 'STRING', + 'a_timestamp'.upper(): 'TIMESTAMP', + 'a_boolean'.upper(): 'BOOLEAN', + 'unknown'.upper(): 'STRING' + } + + assert dictionary.items() == utils.get_dict_from_schema(schema).items() + + +def test_reconcile_schema_differences(): + schema_to_change = { + 'FIELD1': 'TIMESTAMP', + 'FIELD2': 'INTEGER', + 'FIELD3': 'FLOAT', + 'FIELD4': 'STRING', + 'FIELD5': 'BOOLEAN', + 'FIELD6': 'STRING' + } + schema_to_preserve = { + 'FIELD1': 'TIMESTAMP', + 'FIELD2': 'FLOAT', + 'FIELD3_FLOAT': 'TIMESTAMP', + 'FIELD3': 'BOOLEAN', + 'FIELD5': 'TIMESTAMP', + 'FIELD7': 'TIMESTAMP' + } + target_schema = { + 'FIELD1': 'TIMESTAMP', + 'FIELD2': 'FLOAT', + 'FIELD2_INTEGER': 'INTEGER', + 'FIELD3': 'BOOLEAN', + 'FIELD3_FLOAT': 'TIMESTAMP', + 'FIELD3_FLOAT1': 'FLOAT', + 'FIELD4': 'STRING', + 'FIELD5': 'TIMESTAMP', + 'FIELD5_BOOLEAN': 'BOOLEAN', + 'FIELD6': 'STRING', + 'FIELD7': 'TIMESTAMP' + } + assert utils.reconcile_schema_differences( + schema_to_change, + schema_to_preserve)[0].items() == target_schema.items() + + +def test_get_tuple_from_schema(): + schema = [ + bigquery.SchemaField('FIELD1', 'BOOLEAN', mode='nullable'), + bigquery.SchemaField('FIELD2', 'INTEGER', mode='nullable'), + bigquery.SchemaField('FIELD3', 'STRING', mode='nullable'), + bigquery.SchemaField('FIELD4', 'TIMESTAMP', mode='nullable'), + bigquery.SchemaField('FIELD5', 'FLOAT', mode='nullable') + ] + target = ('FIELD1', 'FIELD2', 'FIELD3', 'FIELD4', 'FIELD5') + assert utils.get_tuple_from_schema(schema) == target + + +def test_get_schema_from_rows_list(): + row_list = [{ + 'FIELD1': None, + 'FIELD2': 300, + 'FIELD3': True + }, { + 'FIELD1': 'a string', + 'FIELD2': 300.0, + 'FIELD4': False + }, { + 'FIELD1': 'another string', + 'FIELD3': True, + 'FIELD4': False + }] + schema = [ + bigquery.SchemaField('FIELD1', 'STRING', mode='nullable'), + bigquery.SchemaField('FIELD2', 'STRING', mode='nullable'), + bigquery.SchemaField('FIELD3', 'BOOLEAN', mode='nullable'), + bigquery.SchemaField('FIELD4', 'BOOLEAN', mode='nullable') + ] + assert utils.get_schema_from_rows_list(row_list) == schema + + +def test_get_formatted_rows(): + row_list = [{ + 'FIELD1': None, + 'FIELD2': 300, + 'FIELD3': True + }, { + 'FIELD1': 'a string', + 'FIELD2': 300.0, + 'FIELD4': False + }, { + 'FIELD1': 'another string', + 'FIELD3': True, + 'FIELD4': False + }] + schema = (bigquery.SchemaField('FIELD5', 'TIMESTAMP', mode='nullable'), + bigquery.SchemaField('FIELD4', 'BOOLEAN', mode='nullable'), + bigquery.SchemaField('FIELD3.5', 'INTEGER', mode='nullable'), + bigquery.SchemaField('FIELD3', 'BOOLEAN', mode='nullable'), + bigquery.SchemaField('FIELD2', 'STRING', mode='nullable'), + bigquery.SchemaField('FIELD1', 'STRING', mode='nullable')) + target = [(None, None, None, True, 300, None), (None, False, None, None, + 300.0, 'a string'), + (None, False, None, True, None, 'another string')] + assert utils.get_formatted_rows(row_list, schema) == target + + +class Client: + def get_dataset(self, name): + if name == 'existing_dataset': + return Dataset(name) + else: + raise NotFound('') + + def create_dataset(self, dataset): + return dataset + + def dataset(self, name): + return name + + def delete_dataset(self, dataset): + return 'deleted dataset ' + dataset.name + + def get_table(self, name): + if name == 'existing_table': + return Table(name, []) + else: + raise NotFound('') + + def create_table(self, table): + return table + + def update_table(self, table, properties): + return Table(table.name + '_changed', table.schema) + + def delete_table(self, table): + return 'deleted table ' + table.name + + def create_rows(self, table, rows): + if table.name == 'bad_table': + return ['errors'] + return [] + + +class Dataset: + def __init__(self, name): + self.name = name + + def __eq__(self, other): + return self.name == other.name + + def table(self, name): + return name + + +class Table: + def __init__(self, name, schema): + self.name = name + self.schema = schema + + def __eq__(self, other): + return self.name == other.name and set(self.schema) == set( + other.schema) + + def __str__(self): + return 'NAME: %s\nSCHEMA: %s' % (self.name, str(self.schema)) + + +@patch('infra.data_storage.bigquery.bigquery_logger_utils.bigquery.Dataset') +@patch('infra.data_storage.bigquery.bigquery_logger_utils.bigquery.Client') +def test_create_dataset_already_exists(mock_client, mock_dataset): + mock_client.return_value = Client() + client = utils.BigqueryLoggerClient('', '') + dataset = client.create_dataset('existing_dataset') + assert dataset == Dataset('existing_dataset') + + +@patch('infra.data_storage.bigquery.bigquery_logger_utils.bigquery.Dataset') +@patch('infra.data_storage.bigquery.bigquery_logger_utils.bigquery.Client') +def test_create_dataset_does_not_exist(mock_client, mock_dataset): + mock_client.return_value = Client() + mock_dataset.return_value = Dataset('new_dataset') + client = utils.BigqueryLoggerClient('', '') + dataset = client.create_dataset('new_dataset') + assert dataset == Dataset('new_dataset') + + +@patch('infra.data_storage.bigquery.bigquery_logger_utils.bigquery.Table') +@patch( + 'infra.data_storage.bigquery.bigquery_logger_utils.BigqueryLoggerClient.create_dataset' +) +@patch('infra.data_storage.bigquery.bigquery_logger_utils.bigquery.Client') +def test_create_table_already_exists(mock_client, mock_dataset, mock_table): + mock_client.return_value = Client() + mock_dataset.return_value = Dataset('existing_dataset') + schema = { + bigquery.SchemaField('FIELD1', 'STRING', mode='nullable'), + bigquery.SchemaField('FIELD2', 'BOOLEAN', mode='nullable'), + bigquery.SchemaField('FIELD3', 'TIMESTAMP', mode='nullable') + } + mock_table.return_value = Table('existing_table', schema) + client = utils.BigqueryLoggerClient('', '') + table = client.create_table('existing_dataset', 'existing_table', schema) + assert table == Table('existing_table', []) + + +@patch('infra.data_storage.bigquery.bigquery_logger_utils.bigquery.Table') +@patch( + 'infra.data_storage.bigquery.bigquery_logger_utils.BigqueryLoggerClient.create_dataset' +) +@patch('infra.data_storage.bigquery.bigquery_logger_utils.bigquery.Client') +def test_create_table_does_not_exist(mock_client, mock_dataset, mock_table): + mock_client.return_value = Client() + mock_dataset.return_value = Dataset('existing_dataset') + schema = { + bigquery.SchemaField('FIELD1', 'STRING', mode='nullable'), + bigquery.SchemaField('FIELD2', 'BOOLEAN', mode='nullable'), + bigquery.SchemaField('FIELD3', 'TIMESTAMP', mode='nullable') + } + mock_table.return_value = Table('new_table', schema) + client = utils.BigqueryLoggerClient('', '') + table = client.create_table('existing_dataset', 'new_table', schema) + assert table == Table('new_table', schema) + + +@patch( + 'infra.data_storage.bigquery.bigquery_logger_utils.BigqueryLoggerClient.create_table' +) +@patch('infra.data_storage.bigquery.bigquery_logger_utils.bigquery.Client') +def test_update_table_schema(mock_client, mock_table): + mock_client.return_value = Client() + schema = { + bigquery.SchemaField('FIELD1', 'STRING', mode='nullable'), + bigquery.SchemaField('FIELD2', 'BOOLEAN', mode='nullable'), + bigquery.SchemaField('FIELD3', 'TIMESTAMP', mode='nullable') + } + mock_table.return_value = Table('existing_table', schema) + new_schema = { + bigquery.SchemaField('FIELD1', 'INTEGER', mode='nullable'), + bigquery.SchemaField('FIELD2', 'BOOLEAN', mode='nullable'), + bigquery.SchemaField('FIELD5', 'FLOAT', mode='nullable') + } + client = utils.BigqueryLoggerClient('', '') + table, changed_fields = client.update_table_schema( + 'existing_dataset', 'existing_table', new_schema) + print(table) + assert table == Table( + 'existing_table_changed', { + bigquery.SchemaField('FIELD1_INTEGER', 'INTEGER', mode='nullable'), + bigquery.SchemaField('FIELD1', 'STRING', mode='nullable'), + bigquery.SchemaField('FIELD2', 'BOOLEAN', mode='nullable'), + bigquery.SchemaField('FIELD3', 'TIMESTAMP', mode='nullable'), + bigquery.SchemaField('FIELD5', 'FLOAT', mode='nullable') + }) + assert set(changed_fields.items()) == set({ + 'FIELD1': 'FIELD1_INTEGER' + }.items()) + + +@patch( + 'infra.data_storage.bigquery.bigquery_logger_utils.BigqueryLoggerClient.create_table' +) +@patch('infra.data_storage.bigquery.bigquery_logger_utils.bigquery.Client') +def test_update_table_schema_no_change(mock_client, mock_table): + mock_client.return_value = Client() + schema = { + bigquery.SchemaField('FIELD1', 'STRING', mode='nullable'), + bigquery.SchemaField('FIELD2', 'BOOLEAN', mode='nullable'), + bigquery.SchemaField('FIELD3', 'TIMESTAMP', mode='nullable') + } + mock_table.return_value = Table('existing_table', schema) + new_schema = { + bigquery.SchemaField('FIELD1', 'STRING', mode='nullable'), + bigquery.SchemaField('FIELD2', 'BOOLEAN', mode='nullable') + } + client = utils.BigqueryLoggerClient('', '') + table, changed_fields = client.update_table_schema( + 'existing_dataset', 'existing_table', new_schema) + print(table) + assert table == Table( + 'existing_table', { + bigquery.SchemaField('FIELD1', 'STRING', mode='nullable'), + bigquery.SchemaField('FIELD2', 'BOOLEAN', mode='nullable'), + bigquery.SchemaField('FIELD3', 'TIMESTAMP', mode='nullable') + }) + assert set(changed_fields.items()) == set({}.items()) + + +@patch('infra.data_storage.bigquery.test_bigquery_utils.Client.delete_dataset') +@patch('infra.data_storage.bigquery.bigquery_logger_utils.bigquery.Dataset') +@patch('infra.data_storage.bigquery.bigquery_logger_utils.bigquery.Client') +def test_delete_dataset(mock_client, mock_dataset, mock_delete_dataset): + mock_client.return_value = Client() + ds = Dataset('existing_dataset') + mock_dataset.return_value = ds + client = utils.BigqueryLoggerClient('', '') + client.delete('existing_dataset') + mock_delete_dataset.assert_called_with(ds) + + +@patch('infra.data_storage.bigquery.test_bigquery_utils.Client.delete_table') +@patch('infra.data_storage.bigquery.bigquery_logger_utils.bigquery.Table') +@patch('infra.data_storage.bigquery.bigquery_logger_utils.bigquery.Dataset') +@patch('infra.data_storage.bigquery.bigquery_logger_utils.bigquery.Client') +def test_delete_dataset(mock_client, mock_dataset, mock_table, + mock_delete_table): + mock_client.return_value = Client() + schema = { + bigquery.SchemaField('FIELD1', 'STRING', mode='nullable'), + bigquery.SchemaField('FIELD2', 'BOOLEAN', mode='nullable'), + bigquery.SchemaField('FIELD3', 'TIMESTAMP', mode='nullable') + } + tb = Table('existing_table', schema) + mock_table.return_value = tb + client = utils.BigqueryLoggerClient('', '') + client.delete('existing_dataset', 'existing_table') + mock_delete_table.assert_called_with(tb) + + +@patch('infra.data_storage.bigquery.test_bigquery_utils.Client.create_rows') +@patch( + 'infra.data_storage.bigquery.test_bigquery_utils.utils.get_schema_from_rows_list' +) +@patch( + 'infra.data_storage.bigquery.test_bigquery_utils.utils.change_field_name') +@patch( + 'infra.data_storage.bigquery.test_bigquery_utils.utils.BigqueryLoggerClient.update_table_schema' +) +@patch('infra.data_storage.bigquery.bigquery_logger_utils.bigquery.Client') +def test_flush(mock_client, mock_update_table_schema, mock_change_field_name, + mock_get_schema, mock_create_rows): + mock_create_rows.return_value = [] + mock_client.return_value = Client() + schema = { + bigquery.SchemaField('FIELD1', 'STRING', mode='nullable'), + bigquery.SchemaField('FIELD2', 'BOOLEAN', mode='nullable'), + bigquery.SchemaField('FIELD3', 'TIMESTAMP', mode='nullable') + } + tb = Table('existing_table', schema) + mock_update_table_schema.return_value = tb, {'FIELD1': 'NEW_NAME1'} + row_list = [{ + 'FIELD1': 1, + 'FIELD2': False, + 'FIELD3': 'result' + }, { + 'FIELD1': 2, + 'FIELD2': True + }, { + 'FIELD1': 3, + 'FIELD3': 'result' + }] + client = utils.BigqueryLoggerClient('', '') + errors = client.flush(row_list, 'existing_dataset', 'existing_table') + mock_change_field_name.assert_called_with('FIELD1', 'NEW_NAME1', row_list) + mock_create_rows.assert_called_once() + assert errors == [] diff --git a/acts/framework/acts/controllers/cellular_simulator.py b/acts/framework/acts/controllers/cellular_simulator.py deleted file mode 100644 index 35f0885c46..0000000000 --- a/acts/framework/acts/controllers/cellular_simulator.py +++ /dev/null @@ -1,320 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the 'License'); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an 'AS IS' BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -from acts import logger -from acts.test_utils.power import tel_simulations as sims - - -class AbstractCellularSimulator: - """ A generic cellular simulator controller class that can be derived to - implement equipment specific classes and allows the tests to be implemented - without depending on a singular instrument model. - - This class defines the interface that every cellular simulator controller - needs to implement and shouldn't be instantiated by itself. """ - - # Indicates if it is able to use 256 QAM as the downlink modulation for LTE - LTE_SUPPORTS_DL_256QAM = None - - # Indicates if it is able to use 64 QAM as the uplink modulation for LTE - LTE_SUPPORTS_UL_64QAM = None - - # Indicates if 4x4 MIMO is supported for LTE - LTE_SUPPORTS_4X4_MIMO = None - - # The maximum number of carriers that this simulator can support for LTE - LTE_MAX_CARRIERS = None - - # The maximum power that the equipment is able to transmit - MAX_DL_POWER = None - - def __init__(self): - """ Initializes the cellular simulator. """ - self.log = logger.create_tagged_trace_logger('CellularSimulator') - - def destroy(self): - """ Sends finalization commands to the cellular equipment and closes - the connection. """ - raise NotImplementedError() - - def setup_lte_scenario(self): - """ Configures the equipment for an LTE simulation. """ - raise NotImplementedError() - - def setup_lte_ca_scenario(self): - """ Configures the equipment for an LTE with CA simulation. """ - raise NotImplementedError() - - def configure_bts(self, config, bts_index=0): - """ Commands the equipment to setup a base station with the required - configuration. This method applies configurations that are common to all - RATs. - - Args: - config: a BaseSimulation.BtsConfig object. - bts_index: the base station number. - """ - - if config.output_power: - self.set_output_power(bts_index, config.output_power) - - if config.input_power: - self.set_input_power(bts_index, config.input_power) - - if isinstance(config, sims.LteSimulation.LteSimulation.BtsConfig): - self.configure_lte_bts(config, bts_index) - - def configure_lte_bts(self, config, bts_index=0): - """ Commands the equipment to setup an LTE base station with the - required configuration. - - Args: - config: an LteSimulation.BtsConfig object. - bts_index: the base station number. - """ - if config.band: - self.set_band(bts_index, config.band) - - if config.dlul_config: - self.set_tdd_config(bts_index, config.dlul_config) - - if config.bandwidth: - self.set_bandwidth(bts_index, config.bandwidth) - - if config.dl_channel: - self.set_downlink_channel_number(bts_index, config.dl_channel) - - if config.mimo_mode: - self.set_mimo_mode(bts_index, config.mimo_mode) - - if config.transmission_mode: - self.set_transmission_mode(bts_index, config.transmission_mode) - - if config.scheduling_mode: - - if (config.scheduling_mode == - sims.LteSimulation.SchedulingMode.STATIC - and not (config.dl_rbs and config.ul_rbs and config.dl_mcs - and config.ul_mcs)): - raise ValueError('When the scheduling mode is set to manual, ' - 'the RB and MCS parameters are required.') - - # If scheduling mode is set to Dynamic, the RB and MCS parameters - # will be ignored by set_scheduling_mode. - self.set_scheduling_mode(bts_index, config.scheduling_mode, - config.dl_mcs, config.ul_mcs, - config.dl_rbs, config.ul_rbs) - - # This variable stores a boolean value so the following is needed to - # differentiate False from None - if config.dl_cc_enabled is not None: - self.set_enabled_for_ca(bts_index, config.dl_cc_enabled) - - if config.dl_modulation_order: - self.set_dl_modulation(bts_index, config.dl_modulation_order) - - if config.ul_modulation_order: - self.set_ul_modulation(bts_index, config.ul_modulation_order) - - # This variable stores a boolean value so the following is needed to - # differentiate False from None - if config.tbs_pattern_on is not None: - self.set_tbs_pattern_on(bts_index, config.tbs_pattern_on) - - def set_lte_rrc_state_change_timer(self, enabled, time=10): - """ Configures the LTE RRC state change timer. - - Args: - enabled: a boolean indicating if the timer should be on or off. - time: time in seconds for the timer to expire - """ - raise NotImplementedError() - - def set_band(self, bts_index, band): - """ Sets the band for the indicated base station. - - Args: - bts_index: the base station number - band: the new band - """ - raise NotImplementedError() - - def set_input_power(self, bts_index, input_power): - """ Sets the input power for the indicated base station. - - Args: - bts_index: the base station number - input_power: the new input power - """ - raise NotImplementedError() - - def set_output_power(self, bts_index, output_power): - """ Sets the output power for the indicated base station. - - Args: - bts_index: the base station number - output_power: the new output power - """ - raise NotImplementedError() - - def set_tdd_config(self, bts_index, tdd_config): - """ Sets the tdd configuration number for the indicated base station. - - Args: - bts_index: the base station number - tdd_config: the new tdd configuration number - """ - raise NotImplementedError() - - def set_bandwidth(self, bts_index, bandwidth): - """ Sets the bandwidth for the indicated base station. - - Args: - bts_index: the base station number - bandwidth: the new bandwidth - """ - raise NotImplementedError() - - def set_downlink_channel_number(self, bts_index, channel_number): - """ Sets the downlink channel number for the indicated base station. - - Args: - bts_index: the base station number - channel_number: the new channel number - """ - raise NotImplementedError() - - def set_mimo_mode(self, bts_index, mimo_mode): - """ Sets the mimo mode for the indicated base station. - - Args: - bts_index: the base station number - mimo_mode: the new mimo mode - """ - raise NotImplementedError() - - def set_transmission_mode(self, bts_index, transmission_mode): - """ Sets the transmission mode for the indicated base station. - - Args: - bts_index: the base station number - transmission_mode: the new transmission mode - """ - raise NotImplementedError() - - def set_scheduling_mode(self, bts_index, scheduling_mode, mcs_dl, mcs_ul, - nrb_dl, nrb_ul): - """ Sets the scheduling mode for the indicated base station. - - Args: - bts_index: the base station number - scheduling_mode: the new scheduling mode - mcs_dl: Downlink MCS (only for STATIC scheduling) - mcs_ul: Uplink MCS (only for STATIC scheduling) - nrb_dl: Number of RBs for downlink (only for STATIC scheduling) - nrb_ul: Number of RBs for uplink (only for STATIC scheduling) - """ - raise NotImplementedError() - - def set_enabled_for_ca(self, bts_index, enabled): - """ Enables or disables the base station during carrier aggregation. - - Args: - bts_index: the base station number - enabled: whether the base station should be enabled for ca. - """ - raise NotImplementedError() - - def set_dl_modulation(self, bts_index, modulation): - """ Sets the DL modulation for the indicated base station. - - Args: - bts_index: the base station number - modulation: the new DL modulation - """ - raise NotImplementedError() - - def set_ul_modulation(self, bts_index, modulation): - """ Sets the UL modulation for the indicated base station. - - Args: - bts_index: the base station number - modulation: the new UL modulation - """ - raise NotImplementedError() - - def set_tbs_pattern_on(self, bts_index, tbs_pattern_on): - """ Enables or disables TBS pattern in the indicated base station. - - Args: - bts_index: the base station number - tbs_pattern_on: the new TBS pattern setting - """ - raise NotImplementedError() - - def lte_attach_secondary_carriers(self): - """ Activates the secondary carriers for CA. Requires the DUT to be - attached to the primary carrier first. """ - raise NotImplementedError() - - def wait_until_attached(self, timeout=120): - """ Waits until the DUT is attached to the primary carrier. - - Args: - timeout: after this amount of time the method will raise a - CellularSimulatorError exception. Default is 120 seconds. - """ - raise NotImplementedError() - - def wait_until_communication_state(self, timeout=120): - """ Waits until the DUT is in Communication state. - - Args: - timeout: after this amount of time the method will raise a - CellularSimulatorError exception. Default is 120 seconds. - """ - raise NotImplementedError() - - def wait_until_idle_state(self, timeout=120): - """ Waits until the DUT is in Idle state. - - Args: - timeout: after this amount of time the method will raise a - CellularSimulatorError exception. Default is 120 seconds. - """ - raise NotImplementedError() - - def detach(self): - """ Turns off all the base stations so the DUT loose connection.""" - raise NotImplementedError() - - def stop(self): - """ Stops current simulation. After calling this method, the simulator - will need to be set up again. """ - raise NotImplementedError() - - def start_data_traffic(self): - """ Starts transmitting data from the instrument to the DUT. """ - raise NotImplementedError() - - def stop_data_traffic(self): - """ Stops transmitting data from the instrument to the DUT. """ - raise NotImplementedError() - - -class CellularSimulatorError(Exception): - """ Exceptions thrown when the cellular equipment is unreachable or it - returns an error after receiving a command. """ - pass diff --git a/acts/framework/acts/controllers/fuchsia_device.py b/acts/framework/acts/controllers/fuchsia_device.py index 4e9b2dc9bd..bc3977435c 100644 --- a/acts/framework/acts/controllers/fuchsia_device.py +++ b/acts/framework/acts/controllers/fuchsia_device.py @@ -14,34 +14,36 @@ # See the License for the specific language governing permissions and # limitations under the License. +import collections +import enum import json import logging +import math import os import random import re import requests -import subprocess +import socket import time +import urllib as ul +import webbrowser +import xmlrpc.client + +from subprocess import call -from acts import context from acts import logger as acts_logger from acts import signals +from acts import tracelogger +from acts import utils from acts.controllers.fuchsia_lib.bt.ble_lib import FuchsiaBleLib -from acts.controllers.fuchsia_lib.bt.btc_lib import FuchsiaBtcLib +from acts.controllers.fuchsia_lib.bt.bta_lib import FuchsiaBtaLib from acts.controllers.fuchsia_lib.bt.gattc_lib import FuchsiaGattcLib from acts.controllers.fuchsia_lib.bt.gatts_lib import FuchsiaGattsLib -from acts.controllers.fuchsia_lib.bt.sdp_lib import FuchsiaProfileServerLib -from acts.controllers.fuchsia_lib.logging_lib import FuchsiaLoggingLib from acts.controllers.fuchsia_lib.netstack.netstack_lib import FuchsiaNetstackLib -from acts.controllers.fuchsia_lib.syslog_lib import start_syslog -from acts.controllers.fuchsia_lib.utils_lib import create_ssh_connection -from acts.controllers.fuchsia_lib.utils_lib import SshResults from acts.controllers.fuchsia_lib.wlan_lib import FuchsiaWlanLib -from acts.libs.proc.job import Error -from acts.utils import is_valid_ipv4_address -from acts.utils import is_valid_ipv6_address -from acts.utils import SuppressLogOutput +from acts.controllers.utils_lib.ssh import connection +from acts.controllers.utils_lib.ssh import settings ACTS_CONTROLLER_CONFIG_NAME = "FuchsiaDevice" ACTS_CONTROLLER_REFERENCE_NAME = "fuchsia_devices" @@ -51,33 +53,16 @@ FUCHSIA_DEVICE_NOT_LIST_CONFIG_MSG = "Configuration should be a list, abort!" FUCHSIA_DEVICE_INVALID_CONFIG = ("Fuchsia device config must be either a str " "or dict. abort! Invalid element %i in %r") FUCHSIA_DEVICE_NO_IP_MSG = "No IP address specified, abort!" -FUCHSIA_COULD_NOT_GET_DESIRED_STATE = "Could not %s %s." +FUCHSIA_COULD_NOT_GET_DESIRED_STATE = "Could not %s SL4F." FUCHSIA_INVALID_CONTROL_STATE = "Invalid control state (%s). abort!" -FUCHSIA_SSH_CONFIG_NOT_DEFINED = ("Cannot send ssh commands since the " - "ssh_config was not specified in the Fuchsia" - "device config.") FUCHSIA_SSH_USERNAME = "fuchsia" SL4F_APK_NAME = "com.googlecode.android_scripting" -DAEMON_INIT_TIMEOUT_SEC = 1 - -DAEMON_ACTIVATED_STATES = ["running", "start"] -DAEMON_DEACTIVATED_STATES = ["stop", "stopped"] - -FUCHSIA_DEFAULT_LOG_CMD = 'iquery --absolute_paths --cat --format= --recursive' -FUCHSIA_DEFAULT_LOG_ITEMS = [ - '/hub/c/scenic.cmx/[0-9]*/out/objects', - '/hub/c/root_presenter.cmx/[0-9]*/out/objects', - '/hub/c/wlanstack2.cmx/[0-9]*/out/public', - '/hub/c/basemgr.cmx/[0-9]*/out/objects' -] +SL4F_INIT_TIMEOUT_SEC = 1 -FUCHSIA_RECONNECT_AFTER_REBOOT_TIME = 5 - -ENABLE_LOG_LISTENER = True - -CHANNEL_OPEN_TIMEOUT = 5 +SL4F_ACTIVATED_STATES = ["running", "start"] +SL4F_DEACTIVATED_STATES = ["stop", "stopped"] class FuchsiaDeviceError(signals.ControllerError): @@ -100,7 +85,6 @@ def create(configs): def destroy(fds): for fd in fds: - fd.clean_up() del fd @@ -164,40 +148,24 @@ class FuchsiaDevice: self.ssh_config = fd_conf_data.get("ssh_config", None) self.ssh_username = fd_conf_data.get("ssh_username", FUCHSIA_SSH_USERNAME) - self._persistent_ssh_conn = None - self.log = acts_logger.create_tagged_trace_logger( - "FuchsiaDevice | %s" % self.ip) - - if is_valid_ipv4_address(self.ip): - self.address = "http://{}:{}".format(self.ip, self.port) - elif is_valid_ipv6_address(self.ip): - self.address = "http://[{}]:{}".format(self.ip, self.port) - else: - raise ValueError('Invalid IP: %s' % self.ip) + self.log = acts_logger.create_tagged_trace_logger("[FuchsiaDevice|%s]" + % self.ip) + self.address = "http://{}:{}".format(self.ip, self.port) self.init_address = self.address + "/init" self.cleanup_address = self.address + "/cleanup" self.print_address = self.address + "/print_clients" - self.ping_rtt_match = re.compile(r'RTT Min/Max/Avg ' - r'= \[ (.*?) / (.*?) / (.*?) \] ms') # TODO(): Come up with better client numbering system self.client_id = "FuchsiaClient" + str(random.randint(0, 1000000)) self.test_counter = 0 - self.serial = re.sub('[.:%]', '_', self.ip) - log_path_base = getattr(logging, 'log_path', '/tmp/logs') - self.log_path = os.path.join(log_path_base, - 'FuchsiaDevice%s' % self.serial) - self.fuchsia_log_file_path = os.path.join( - self.log_path, "fuchsialog_%s_debug.txt" % self.serial) - self.log_process = None # Grab commands from FuchsiaBleLib self.ble_lib = FuchsiaBleLib(self.address, self.test_counter, self.client_id) - # Grab commands from FuchsiaBtcLib - self.btc_lib = FuchsiaBtcLib(self.address, self.test_counter, + # Grab commands from FuchsiaBtaLib + self.bta_lib = FuchsiaBtaLib(self.address, self.test_counter, self.client_id) # Grab commands from FuchsiaGattcLib self.gattc_lib = FuchsiaGattcLib(self.address, self.test_counter, @@ -206,27 +174,26 @@ class FuchsiaDevice: self.gatts_lib = FuchsiaGattsLib(self.address, self.test_counter, self.client_id) - # Grab commands from FuchsiaLoggingLib - self.logging_lib = FuchsiaLoggingLib(self.address, self.test_counter, - self.client_id) - # Grab commands from FuchsiaNetstackLib - self.netstack_lib = FuchsiaNetstackLib(self.address, self.test_counter, + self.netstack_lib = FuchsiaNetstackLib(self.address, + self.test_counter, self.client_id) - - # Grab commands from FuchsiaProfileServerLib - self.sdp_lib = FuchsiaProfileServerLib(self.address, self.test_counter, - self.client_id) - # Grab commands from FuchsiaWlanLib self.wlan_lib = FuchsiaWlanLib(self.address, self.test_counter, self.client_id) - self.skip_sl4f = False # Start sl4f on device - self.start_services(skip_sl4f=self.skip_sl4f) + self.start_services() # Init server self.init_server_connection() + def build_id(self, test_id): + """Concatenates client_id and test_id to form a command_id + + Args: + test_id: string, unique identifier of test command + """ + return self.client_id + "." + str(test_id) + def init_server_connection(self): """Initializes HTTP connection with SL4F server.""" self.log.debug("Initialziing server connection") @@ -241,161 +208,6 @@ class FuchsiaDevice: requests.get(url=self.init_address, data=init_data) self.test_counter += 1 - def build_id(self, test_id): - """Concatenates client_id and test_id to form a command_id - - Args: - test_id: string, unique identifier of test command - """ - return self.client_id + "." + str(test_id) - - def send_command_sl4f(self, test_id, test_cmd, test_args): - """Builds and sends a JSON command to SL4F server. - - Args: - test_id: string, unique identifier of test command. - test_cmd: string, sl4f method name of command. - test_args: dictionary, arguments required to execute test_cmd. - - Returns: - Dictionary, Result of sl4f command executed. - """ - test_data = json.dumps({ - "jsonrpc": "2.0", - "id": self.build_id(self.test_counter), - "method": test_cmd, - "params": test_args - }) - return requests.get(url=self.address, data=test_data).json() - - def reboot(self, timeout=60): - """Reboot a Fuchsia device and restablish all the services after reboot - - Disables the logging when sending the reboot command - because the ssh session does not disconnect cleanly and therefore - would throw an error. This is expected and thus the error logging - is disabled for this call. - - Args: - timeout: How long to wait for the device to reboot. - """ - ping_command = ['ping', '-t', '1', '-c', '1', self.ip] - self.clean_up() - self.log.info('Rebooting FuchsiaDevice %s' % self.ip) - # Disables the logging when sending the reboot command - # because the ssh session does not disconnect cleanly and therefore - # would throw an error. This is expected and thus the error logging - # is disabled for this call to not confuse the user. - with SuppressLogOutput(): - self.send_command_ssh('dm reboot', - timeout=FUCHSIA_RECONNECT_AFTER_REBOOT_TIME) - start_time = time.time() - self.log.info('Waiting for FuchsiaDevice %s to come back up.' % - self.ip) - while not subprocess.call(ping_command, - stdout=subprocess.DEVNULL, - stderr=subprocess.STDOUT) == 0: - elapsed_time = time.time() - start_time - if elapsed_time > timeout: - raise TimeoutError('Waited %s seconds, and FuchsiaDevice %s' - 'did not come back up.' % - (elapsed_time, self.ip)) - # Wait another 5 seconds after receiving a ping packet to just to let - # the OS get everything up and running. - time.sleep(5) - # Start sl4f on device - self.start_services() - # Init server - self.init_server_connection() - - def send_command_ssh(self, test_cmd, connect_timeout=30, timeout=3600): - """Sends an SSH command to a Fuchsia device - - Args: - test_cmd: string, command to send to Fuchsia device over SSH. - connect_timeout: Timeout to wait for connecting via SSH. - timeout: Timeout to wait for a command to complete. - - Returns: - A SshResults object containing the results of the ssh command. - """ - command_result = False - ssh_conn = None - if not self.ssh_config: - self.log.warning(FUCHSIA_SSH_CONFIG_NOT_DEFINED) - else: - try: - ssh_conn = create_ssh_connection( - self.ip, - self.ssh_username, - self.ssh_config, - connect_timeout=connect_timeout) - cmd_result_stdin, cmd_result_stdout, cmd_result_stderr = ( - ssh_conn.exec_command(test_cmd, timeout=timeout)) - cmd_result_exit_status = ( - cmd_result_stdout.channel.recv_exit_status()) - command_result = SshResults(cmd_result_stdin, - cmd_result_stdout, - cmd_result_stderr, - cmd_result_exit_status) - except Exception as e: - self.log.warning("Problem running ssh command: %s" - "\n Exception: %s" % (test_cmd, e)) - return e - finally: - ssh_conn.close() - return command_result - - def ping(self, dest_ip, count=3, interval=1000, timeout=1000, size=25): - """Pings from a Fuchsia device to an IPv4 address or hostname - - Args: - dest_ip: (str) The ip or hostname to ping. - count: (int) How many icmp packets to send. - interval: (int) How long to wait between pings (ms) - timeout: (int) How long to wait before having the icmp packet - timeout (ms). - size: (int) Size of the icmp packet. - - Returns: - A dictionary for the results of the ping. The dictionary contains - the following items: - status: Whether the ping was successful. - rtt_min: The minimum round trip time of the ping. - rtt_max: The minimum round trip time of the ping. - rtt_avg: The avg round trip time of the ping. - stdout: The standard out of the ping command. - stderr: The standard error of the ping command. - """ - rtt_min = None - rtt_max = None - rtt_avg = None - self.log.info("Pinging %s..." % dest_ip) - ping_result = self.send_command_ssh( - 'ping -c %s -i %s -t %s -s %s %s' % - (count, interval, timeout, size, dest_ip)) - if isinstance(ping_result, Error): - ping_result = ping_result.result - - if ping_result.stderr: - status = False - else: - status = True - rtt_line = ping_result.stdout.split('\n')[:-1] - rtt_line = rtt_line[-1] - rtt_stats = re.search(self.ping_rtt_match, rtt_line) - rtt_min = rtt_stats.group(1) - rtt_max = rtt_stats.group(2) - rtt_avg = rtt_stats.group(3) - return { - 'status': status, - 'rtt_min': rtt_min, - 'rtt_max': rtt_max, - 'rtt_avg': rtt_avg, - 'stdout': ping_result.stdout, - 'stderr': ping_result.stderr - } - def print_clients(self): """Gets connected clients from SL4F server""" self.log.debug("Request to print clients") @@ -428,145 +240,122 @@ class FuchsiaDevice: "params": cleanup_args }) - try: - response = requests.get(url=self.cleanup_address, data=data).json() - self.log.debug(response) - except Exception as err: - self.log.exception("Cleanup request failed with %s:" % err) - finally: - self.test_counter += 1 - self.stop_services() + r = requests.get(url=self.cleanup_address, data=data).json() + self.test_counter += 1 - def check_process_state(self, process_name): - """Checks the state of a process on the Fuchsia device + self.log.debug("Cleaned up with status: ", r) + return r + + def create_ssh_connection(self): + """Creates and ssh connection to a Fuchsia device + + Returns: + An ssh connection object + """ + ssh_settings = settings.from_config({ + "host": self.ip, + "user": self.ssh_username, + "ssh_config": self.ssh_config + }) + return connection.SshConnection(ssh_settings) + + @staticmethod + def check_sl4f_state(ssh_connection): + """Checks the state of sl4f on the Fuchsia device + Args: + ssh_connection: An ssh connection object with a valid ssh + connection established Returns: - True if the process_name is running - False if process_name is not running + True if sl4f is running + False if sl4f is not running """ - ps_cmd = self.send_command_ssh("ps") - return process_name in ps_cmd.stdout + ps_cmd = ssh_connection.run("ps") + return "sl4f.cmx" in ps_cmd.stdout - def check_process_with_expectation(self, process_name, expectation=None): - """Checks the state of a process on the Fuchsia device and returns - true or false depending the stated expectation + def check_sl4f_with_expectation(self, ssh_connection, expectation=None): + """Checks the state of sl4f on the Fuchsia device and returns true or + or false depending the stated expectation Args: - expectation: The state expectation of state of process + ssh_connection: An ssh connection object with a valid ssh + connection established + expectation: The state expectation of state of sl4f Returns: - True if the state of the process matches the expectation - False if the state of the process does not match the expectation + True if the state of sl4f matches the expectation + False if the state of sl4f does not match the expectation """ - process_state = self.check_process_state(process_name) - if expectation in DAEMON_ACTIVATED_STATES: - return process_state - elif expectation in DAEMON_DEACTIVATED_STATES: - return not process_state + sl4f_state = self.check_sl4f_state(ssh_connection) + if expectation in SL4F_ACTIVATED_STATES: + return sl4f_state + elif expectation in SL4F_DEACTIVATED_STATES: + return not sl4f_state else: - raise ValueError("Invalid expectation value (%s). abort!" % - expectation) + raise ValueError("Invalid expectation value (%s). abort!" + % expectation) - def control_daemon(self, process_name, action): - """Starts or stops a process on a Fuchsia device + def control_sl4f(self, action): + """Starts or stops sl4f on a Fuchsia device Args: - process_name: the name of the process to start or stop - action: specify whether to start or stop a process + action: specify whether to start or stop sl4f """ - if not process_name[-4:] == '.cmx': - process_name = '%s.cmx' % process_name + ssh_conn = None unable_to_connect_msg = None - process_state = False + sl4f_state = False try: - if not self._persistent_ssh_conn: - self._persistent_ssh_conn = (create_ssh_connection( - self.ip, self.ssh_username, self.ssh_config)) - self._persistent_ssh_conn.exec_command( - "killall %s" % process_name, timeout=CHANNEL_OPEN_TIMEOUT) - # This command will effectively stop the process but should - # be used as a cleanup before starting a process. It is a bit + ssh_conn = self.create_ssh_connection() + ssh_conn.run_async("killall sl4f.cmx") + # This command will effectively stop sl4f but should + # be used as a cleanup before starting sl4f. It is a bit # confusing to have the msg saying "attempting to stop - # the process" after the command already tried but since both start + # sl4f" after the command already tried but since both start # and stop need to run this command, this is the best place # for the command. - if action in DAEMON_ACTIVATED_STATES: + if action in SL4F_ACTIVATED_STATES: self.log.debug("Attempting to start Fuchsia " "devices services.") - self._persistent_ssh_conn.exec_command( - "run fuchsia-pkg://fuchsia.com/%s#meta/%s &" % - (process_name[:-4], process_name)) - process_initial_msg = ( - "%s has not started yet. Waiting %i second and " - "checking again." % - (process_name, DAEMON_INIT_TIMEOUT_SEC)) - process_timeout_msg = ("Timed out waiting for %s to start." % - process_name) - unable_to_connect_msg = ("Unable to start %s no Fuchsia " - "device via SSH. %s may not " - "be started." % - (process_name, process_name)) - elif action in DAEMON_DEACTIVATED_STATES: - process_initial_msg = ("%s is running. Waiting %i second and " - "checking again." % - (process_name, DAEMON_INIT_TIMEOUT_SEC)) - process_timeout_msg = ("Timed out waiting trying to kill %s." % - process_name) - unable_to_connect_msg = ("Unable to stop %s on Fuchsia " - "device via SSH. %s may " - "still be running." % - (process_name, process_name)) + ssh_conn.run_async("run fuchsia-pkg://" + "fuchsia.com/sl4f#meta/sl4f.cmx &") + sl4f_initial_msg = ("SL4F has not started yet. " + "Waiting %i second and checking " + "again." % SL4F_INIT_TIMEOUT_SEC) + sl4f_timeout_msg = ("Timed out waiting for SL4F " + "to start.") + unable_to_connect_msg = ("Unable to connect to Fuchsia " + "device via SSH. SL4F may not " + "be started.") + elif action in SL4F_DEACTIVATED_STATES: + sl4f_initial_msg = ("SL4F is running. " + "Waiting %i second and checking " + "again." % SL4F_INIT_TIMEOUT_SEC) + sl4f_timeout_msg = ("Timed out waiting " + "trying to kill SL4F.") + unable_to_connect_msg = ("Unable to connect to Fuchsia " + "device via SSH. SL4F may " + "still be running.") else: - raise FuchsiaDeviceError(FUCHSIA_INVALID_CONTROL_STATE % - action) + raise FuchsiaDeviceError(FUCHSIA_INVALID_CONTROL_STATE + % action) timeout_counter = 0 - while not process_state: - self.log.info(process_initial_msg) - time.sleep(DAEMON_INIT_TIMEOUT_SEC) + while not sl4f_state: + self.log.debug(sl4f_initial_msg) + time.sleep(SL4F_INIT_TIMEOUT_SEC) timeout_counter += 1 - process_state = (self.check_process_with_expectation( - process_name, expectation=action)) - if timeout_counter == (DAEMON_INIT_TIMEOUT_SEC * 3): - self.log.info(process_timeout_msg) + sl4f_state = self.check_sl4f_with_expectation( + ssh_connection=ssh_conn, + expectation=action) + if timeout_counter == (SL4F_INIT_TIMEOUT_SEC * 3): + self.log.error(sl4f_timeout_msg) break - if not process_state: - raise FuchsiaDeviceError(FUCHSIA_COULD_NOT_GET_DESIRED_STATE % - (action, process_name)) + if not sl4f_state: + raise FuchsiaDeviceError(FUCHSIA_COULD_NOT_GET_DESIRED_STATE + % action) except Exception as e: - self.log.info(unable_to_connect_msg) + self.log.error(unable_to_connect_msg) raise e finally: - if action == 'stop' and process_name == 'sl4f': - self._persistent_ssh_conn.close() - self._persistent_ssh_conn = None - - def check_connect_response(self, connect_response): - if connect_response.get("error") is None: - # Checks the response from SL4F and if there is no error, check - # the result. - connection_result = connect_response.get("result") - if not connection_result: - # Ideally the error would be present but just outputting a log - # message until available. - self.log.error("Connect call failed, aborting!") - return False - else: - # Returns True if connection was successful. - return True - else: - # the response indicates an error - log and raise failure - self.log.error("Aborting! - Connect call failed with error: %s" % - connect_response.get("error")) - return False - - def check_disconnect_response(self, disconnect_response): - if disconnect_response.get("error") is None: - # Returns True if disconnect was successful. - return True - else: - # the response indicates an error - log and raise failure - self.log.error("Disconnect call failed with error: %s" % - disconnect_response.get("error")) - return False + ssh_conn.close() def start_services(self, skip_sl4f=False): """Starts long running services on the Fuchsia device. @@ -578,100 +367,22 @@ class FuchsiaDevice: """ self.log.debug("Attempting to start Fuchsia device services on %s." % self.ip) - if self.ssh_config: - self.log_process = start_syslog(self.serial, self.log_path, - self.ip, self.ssh_username, - self.ssh_config) - if ENABLE_LOG_LISTENER: - self.log_process.start() - - if not skip_sl4f: - self.control_daemon("sl4f.cmx", "start") + if self.ssh_config and not skip_sl4f: + self.control_sl4f("start") def stop_services(self): - """Stops long running services on the fuchsia device. + """Stops long running services on the android device. Terminate sl4f sessions if exist. """ self.log.debug("Attempting to stop Fuchsia device services on %s." % self.ip) if self.ssh_config: - try: - self.control_daemon("sl4f.cmx", "stop") - except Exception as err: - self.log.exception("Failed to stop sl4f.cmx with: %s" % err) - if self.log_process: - if ENABLE_LOG_LISTENER: - self.log_process.stop() + self.control_sl4f("stop") def load_config(self, config): pass - def take_bug_report(self, - test_name, - begin_time, - additional_log_objects=None): - """Takes a bug report on the device and stores it in a file. - - Args: - test_name: Name of the test case that triggered this bug report. - begin_time: Epoch time when the test started. - additional_log_objects: A list of additional objects in Fuchsia to - query in the bug report. Must be in the following format: - /hub/c/scenic.cmx/[0-9]*/out/objects - """ - if not additional_log_objects: - additional_log_objects = [] - log_items = [] - matching_log_items = FUCHSIA_DEFAULT_LOG_ITEMS - for additional_log_object in additional_log_objects: - if additional_log_object not in matching_log_items: - matching_log_items.append(additional_log_object) - br_path = context.get_current_context().get_full_output_path() - os.makedirs(br_path, exist_ok=True) - time_stamp = acts_logger.normalize_log_line_timestamp( - acts_logger.epoch_to_log_line_timestamp(begin_time)) - out_name = "FuchsiaDevice%s_%s" % ( - self.serial, time_stamp.replace(" ", "_").replace(":", "-")) - out_name = "%s.txt" % out_name - full_out_path = os.path.join(br_path, out_name) - self.log.info("Taking bugreport for %s on FuchsiaDevice%s." % - (test_name, self.serial)) - system_objects = self.send_command_ssh('iquery --find /hub').stdout - system_objects = system_objects.split() - - for matching_log_item in matching_log_items: - for system_object in system_objects: - if re.match(matching_log_item, system_object): - log_items.append(system_object) - - log_command = '%s %s' % (FUCHSIA_DEFAULT_LOG_CMD, ' '.join(log_items)) - bug_report_data = self.send_command_ssh(log_command).stdout - - bug_report_file = open(full_out_path, 'w') - bug_report_file.write(bug_report_data) - bug_report_file.close() - - def take_bt_snoop_log(self, custom_name=None): - """Takes a the bt-snoop log from the device and stores it in a file - in a pcap format. - """ - bt_snoop_path = context.get_current_context().get_full_output_path() - time_stamp = acts_logger.normalize_log_line_timestamp( - acts_logger.epoch_to_log_line_timestamp(time.time())) - out_name = "FuchsiaDevice%s_%s" % ( - self.serial, time_stamp.replace(" ", "_").replace(":", "-")) - out_name = "%s.pcap" % out_name - if custom_name: - out_name = "%s.pcap" % custom_name - else: - out_name = "%s.pcap" % out_name - full_out_path = os.path.join(bt_snoop_path, out_name) - bt_snoop_data = self.send_command_ssh('bt-snoop-cli -d -f pcap').stdout - bt_snoop_file = open(full_out_path, 'w') - bt_snoop_file.write(bt_snoop_data) - bt_snoop_file.close() - class FuchsiaDeviceLoggerAdapter(logging.LoggerAdapter): def process(self, msg, kwargs): diff --git a/acts/framework/acts/controllers/fuchsia_lib/OWNERS b/acts/framework/acts/controllers/fuchsia_lib/OWNERS deleted file mode 100644 index 3907b1bd5e..0000000000 --- a/acts/framework/acts/controllers/fuchsia_lib/OWNERS +++ /dev/null @@ -1,2 +0,0 @@ -jmbrenna@google.com -tturney@google.com diff --git a/acts/framework/tests/test_utils/instrumentation/unit_test_suite.py b/acts/framework/acts/controllers/fuchsia_lib/bt/bta_lib.py index d253cb33ad..8737183e80 100755..100644 --- a/acts/framework/tests/test_utils/instrumentation/unit_test_suite.py +++ b/acts/framework/acts/controllers/fuchsia_lib/bt/bta_lib.py @@ -1,6 +1,6 @@ #!/usr/bin/env python3 # -# Copyright 2019 - The Android Open Source Project +# Copyright 2018 - The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -14,19 +14,23 @@ # See the License for the specific language governing permissions and # limitations under the License. +import collections +import json +import logging +import math import os -import sys -import unittest +import random +import re +import requests +import socket +import time +from acts.controllers.fuchsia_lib.base_lib import BaseLib -def main(): - suite = unittest.TestLoader().discover( - start_dir=os.path.dirname(__file__), pattern='*_test.py') - return suite +# Placeholder for Bluetooth adapter commands - -if __name__ == '__main__': - test_suite = main() - runner = unittest.TextTestRunner() - test_run = runner.run(test_suite) - sys.exit(not test_run.wasSuccessful()) +class FuchsiaBtaLib(BaseLib): + def __init__(self, addr, tc, client_id): + self.address = addr + self.test_counter = tc + self.client_id = client_id diff --git a/acts/framework/acts/controllers/fuchsia_lib/bt/btc_lib.py b/acts/framework/acts/controllers/fuchsia_lib/bt/btc_lib.py deleted file mode 100644 index 54e81b0930..0000000000 --- a/acts/framework/acts/controllers/fuchsia_lib/bt/btc_lib.py +++ /dev/null @@ -1,216 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2018 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import collections -import json -import logging -import math -import os -import random -import re -import requests -import socket -import time - -from acts.controllers.fuchsia_lib.base_lib import BaseLib - - -class FuchsiaBtcLib(BaseLib): - # Class representing the Bluetooth Controller Library. - - def __init__(self, addr, tc, client_id): - self.address = addr - self.test_counter = tc - self.client_id = client_id - - def acceptPairing(self): - """Accepts incomming pairing requests. - - Returns: - Dictionary, None if success, error if error. - """ - test_cmd = "bt_control_facade.BluetoothAcceptPairing" - test_args = {} - test_id = self.build_id(self.test_counter) - self.test_counter += 1 - - return self.send_command(test_id, test_cmd, test_args) - - def setDiscoverable(self, discoverable): - """Sets the device to be discoverable over BR/EDR. - - Args: - discoverable: A bool object for setting Bluetooth - device discoverable or not. - - Returns: - Dictionary, None if success, error if error. - """ - test_cmd = "bt_control_facade.BluetoothSetDiscoverable" - test_args = {"discoverable": discoverable} - test_id = self.build_id(self.test_counter) - self.test_counter += 1 - - return self.send_command(test_id, test_cmd, test_args) - - def setName(self, name): - """Sets the local Bluetooth name of the device. - - Args: - name: A string that represents the name to set. - - Returns: - Dictionary, None if success, error if error. - """ - test_cmd = "bt_control_facade.BluetoothSetName" - test_args = {"name": name} - test_id = self.build_id(self.test_counter) - self.test_counter += 1 - - return self.send_command(test_id, test_cmd, test_args) - - def inputPairingPin(self, pin): - """Inputs the pairing pin to the Fuchsia devices' pairing delegate. - - Args: - pin: A string that represents the pin to input. - - Returns: - Dictionary, None if success, error if error. - """ - test_cmd = "bt_control_facade.BluetoothInputPairingPin" - test_args = {"pin": pin} - test_id = self.build_id(self.test_counter) - self.test_counter += 1 - - return self.send_command(test_id, test_cmd, test_args) - - def getPairingPin(self): - """Gets the pairing pin from the Fuchsia devices' pairing delegate. - - Returns: - Dictionary, None if success, error if error. - """ - test_cmd = "bt_control_facade.BluetoothGetPairingPin" - test_args = {} - test_id = self.build_id(self.test_counter) - self.test_counter += 1 - - return self.send_command(test_id, test_cmd, test_args) - - def initBluetoothControl(self): - """Initialises the Bluetooth Control Interface proxy in SL4F. - - Returns: - Dictionary, None if success, error if error. - """ - test_cmd = "bt_control_facade.BluetoothInitControl" - test_args = {} - test_id = self.build_id(self.test_counter) - self.test_counter += 1 - - return self.send_command(test_id, test_cmd, test_args) - - def requestDiscovery(self, discovery): - """Start or stop Bluetooth Control device discovery. - - Args: - discovery: A bool object representing starting or stopping - device discovery. - - Returns: - Dictionary, None if success, error if error. - """ - test_cmd = "bt_control_facade.BluetoothRequestDiscovery" - test_args = {"discovery": discovery} - test_id = self.build_id(self.test_counter) - self.test_counter += 1 - - return self.send_command(test_id, test_cmd, test_args) - - def getKnownRemoteDevices(self): - """Get known remote BR/EDR and LE devices. - - Returns: - Dictionary, None if success, error if error. - """ - test_cmd = "bt_control_facade.BluetoothGetKnownRemoteDevices" - test_args = {} - test_id = self.build_id(self.test_counter) - self.test_counter += 1 - - return self.send_command(test_id, test_cmd, test_args) - - def forgetDevice(self, identifier): - """Forgets a devices pairing. - - Args: - identifier: A string representing the device id. - - Returns: - Dictionary, None if success, error if error. - """ - test_cmd = "bt_control_facade.BluetoothForgetDevice" - test_args = {"identifier": identifier} - test_id = self.build_id(self.test_counter) - self.test_counter += 1 - - return self.send_command(test_id, test_cmd, test_args) - - def disconnectDevice(self, identifier): - """Disconnects a devices. - - Args: - identifier: A string representing the device id. - - Returns: - Dictionary, None if success, error if error. - """ - test_cmd = "bt_control_facade.BluetoothDisconnectDevice" - test_args = {"identifier": identifier} - test_id = self.build_id(self.test_counter) - self.test_counter += 1 - - return self.send_command(test_id, test_cmd, test_args) - - def connectDevice(self, identifier): - """Connects to a devices. - - Args: - identifier: A string representing the device id. - - Returns: - Dictionary, None if success, error if error. - """ - test_cmd = "bt_control_facade.BluetoothConnectDevice" - test_args = {"identifier": identifier} - test_id = self.build_id(self.test_counter) - self.test_counter += 1 - - return self.send_command(test_id, test_cmd, test_args) - - def getActiveAdapterAddress(self): - """Gets the current Active Adapter's address. - - Returns: - Dictionary, String address if success, error if error. - """ - test_cmd = "bt_control_facade.BluetoothGetActiveAdapterAddress" - test_args = {} - test_id = self.build_id(self.test_counter) - self.test_counter += 1 - - return self.send_command(test_id, test_cmd, test_args) diff --git a/acts/framework/acts/controllers/fuchsia_lib/bt/gatts_lib.py b/acts/framework/acts/controllers/fuchsia_lib/bt/gatts_lib.py index 5a5a657dc6..365997a377 100644 --- a/acts/framework/acts/controllers/fuchsia_lib/bt/gatts_lib.py +++ b/acts/framework/acts/controllers/fuchsia_lib/bt/gatts_lib.py @@ -41,16 +41,3 @@ class FuchsiaGattsLib(BaseLib): self.test_counter += 1 return self.send_command(test_id, test_cmd, test_args) - - def closeServer(self): - """Closes an active GATT server. - - Returns: - Dictionary, None if success, error if error. - """ - test_cmd = "gatt_server_facade.GattServerCloseServer" - test_args = {} - test_id = self.build_id(self.test_counter) - self.test_counter += 1 - - return self.send_command(test_id, test_cmd, test_args) diff --git a/acts/framework/acts/controllers/fuchsia_lib/bt/sdp_lib.py b/acts/framework/acts/controllers/fuchsia_lib/bt/sdp_lib.py deleted file mode 100644 index ab1f6dd5e1..0000000000 --- a/acts/framework/acts/controllers/fuchsia_lib/bt/sdp_lib.py +++ /dev/null @@ -1,110 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from acts.controllers.fuchsia_lib.base_lib import BaseLib - - -class FuchsiaProfileServerLib(BaseLib): - - def __init__(self, addr, tc, client_id): - self.address = addr - self.test_counter = tc - self.client_id = client_id - - def addService(self, record): - """Publishes an SDP service record specified by input args - - Args: - record: A database that represents an SDP record to - be published. - - Returns: - Dictionary, service id if success, error if error. - """ - test_cmd = "profile_server_facade.ProfileServerAddService" - test_args = { - "record": record, - } - test_id = self.build_id(self.test_counter) - self.test_counter += 1 - - return self.send_command(test_id, test_cmd, test_args) - - def addSearch(self, attribute_list, profile_id): - """Publishes services specified by input args - - Args: - attribute_list: The list of attributes to set - profile_id: The profile ID to set. - Returns: - Dictionary, None if success, error if error. - """ - test_cmd = "profile_server_facade.ProfileServerAddSearch" - test_args = { - "attribute_list": attribute_list, - "profile_id": profile_id - } - test_id = self.build_id(self.test_counter) - self.test_counter += 1 - - return self.send_command(test_id, test_cmd, test_args) - - def removeService(self, service_id): - """Removes a service. - - Args: - record: A database that represents an SDP record to - be published. - - Returns: - Dictionary, None if success, error if error. - """ - test_cmd = "profile_server_facade.ProfileServerRemoveService" - test_args = { - "service_id": service_id, - } - test_id = self.build_id(self.test_counter) - self.test_counter += 1 - - return self.send_command(test_id, test_cmd, test_args) - - def init(self): - """Initializes the ProfileServerFacade's proxy object. - - No operations for SDP can be performed until this is initialized. - - Returns: - Dictionary, None if success, error if error. - """ - test_cmd = "profile_server_facade.ProfileServerInit" - test_args = {} - test_id = self.build_id(self.test_counter) - self.test_counter += 1 - - return self.send_command(test_id, test_cmd, test_args) - - def cleanUp(self): - """Cleans up all objects related to SDP. - - Returns: - Dictionary, None if success, error if error. - """ - test_cmd = "profile_server_facade.ProfileServerCleanup" - test_args = {} - test_id = self.build_id(self.test_counter) - self.test_counter += 1 - - return self.send_command(test_id, test_cmd, test_args) diff --git a/acts/framework/acts/controllers/fuchsia_lib/logging_lib.py b/acts/framework/acts/controllers/fuchsia_lib/logging_lib.py deleted file mode 100644 index 71678aa16c..0000000000 --- a/acts/framework/acts/controllers/fuchsia_lib/logging_lib.py +++ /dev/null @@ -1,80 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import datetime - -from acts.controllers.fuchsia_lib.base_lib import BaseLib - - -class FuchsiaLoggingLib(BaseLib): - def __init__(self, addr, tc, client_id): - self.address = addr - self.test_counter = tc - self.client_id = client_id - - def logE(self, message): - """Log a message of level Error directly to the syslog. - - Args: - message: The message to log. - - Returns: - Dictionary, None if success, error if error. - """ - test_cmd = "logging_facade.LogErr" - test_args = { - "message": '[%s] %s' % (datetime.datetime.now(), message), - } - test_id = self.build_id(self.test_counter) - self.test_counter += 1 - - return self.send_command(test_id, test_cmd, test_args) - - def logI(self, message): - """Log a message of level Info directly to the syslog. - - Args: - message: The message to log. - - Returns: - Dictionary, None if success, error if error. - """ - test_cmd = "logging_facade.LogInfo" - test_args = { - "message": '[%s] %s' % (datetime.datetime.now(), message) - } - test_id = self.build_id(self.test_counter) - self.test_counter += 1 - - return self.send_command(test_id, test_cmd, test_args) - - def logW(self, message): - """Log a message of level Warning directly to the syslog. - - Args: - message: The message to log. - - Returns: - Dictionary, None if success, error if error. - """ - test_cmd = "logging_facade.LogWarn" - test_args = { - "message": '[%s] %s' % (datetime.datetime.now(), message) - } - test_id = self.build_id(self.test_counter) - self.test_counter += 1 - - return self.send_command(test_id, test_cmd, test_args) diff --git a/acts/framework/acts/controllers/fuchsia_lib/netstack/netstack_lib.py b/acts/framework/acts/controllers/fuchsia_lib/netstack/netstack_lib.py index 578612c5fd..d4c560d978 100644 --- a/acts/framework/acts/controllers/fuchsia_lib/netstack/netstack_lib.py +++ b/acts/framework/acts/controllers/fuchsia_lib/netstack/netstack_lib.py @@ -34,71 +34,3 @@ class FuchsiaNetstackLib(BaseLib): self.test_counter += 1 return self.send_command(test_id, test_cmd, test_args) - - def init(self): - """ListInterfaces command - - Returns: - Dictionary, None if success, error if error. - """ - test_cmd = "netstack_facade.InitNetstack" - test_args = {} - test_id = self.build_id(self.test_counter) - self.test_counter += 1 - - return self.send_command(test_id, test_cmd, test_args) - - def getInterfaceInfo(self, id): - """Get interface info. - - Args: - id: The interface ID. - - Returns: - Dictionary, None if success, error if error. - """ - test_cmd = "netstack_facade.GetInterfaceInfo" - test_args = { - "identifier": id - } - test_id = self.build_id(self.test_counter) - self.test_counter += 1 - - return self.send_command(test_id, test_cmd, test_args) - - def enableInterface(self, id): - """Enable Interface - - Args: - id: The interface ID. - - Returns: - Dictionary, None if success, error if error. - """ - test_cmd = "netstack_facade.EnableInterface" - test_args = { - "identifier": id - } - test_id = self.build_id(self.test_counter) - self.test_counter += 1 - - return self.send_command(test_id, test_cmd, test_args) - - def disableInterface(self, id): - """Disable Interface - - Args: - id: The interface ID. - - Returns: - Dictionary, None if success, error if error. - """ - test_cmd = "netstack_facade.DisableInterface" - test_args = { - "identifier": id - } - test_id = self.build_id(self.test_counter) - self.test_counter += 1 - - return self.send_command(test_id, test_cmd, test_args) - diff --git a/acts/framework/acts/controllers/fuchsia_lib/syslog_lib.py b/acts/framework/acts/controllers/fuchsia_lib/syslog_lib.py deleted file mode 100644 index 2a32ffb349..0000000000 --- a/acts/framework/acts/controllers/fuchsia_lib/syslog_lib.py +++ /dev/null @@ -1,216 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import logging -import time - -from threading import Thread - -from acts.libs.logging import log_stream -from acts.libs.logging.log_stream import LogStyles -from acts.controllers.android_lib.logcat import TimestampTracker -from acts.controllers.fuchsia_lib.utils_lib import create_ssh_connection - - -def _log_line_func(log, timestamp_tracker): - """Returns a lambda that logs a message to the given logger.""" - - def log_line(message): - timestamp_tracker.read_output(message) - log.info(message) - - return log_line - - -def start_syslog(serial, - base_path, - ip_address, - ssh_username, - ssh_config, - extra_params=''): - """Creates a FuchsiaSyslogProcess that automatically attempts to reconnect. - - Args: - serial: The unique identifier for the device. - base_path: The base directory used for syslog file output. - ip_address: The ip address of the device to get the syslog. - ssh_username: Username for the device for the Fuchsia Device. - ssh_config: Location of the ssh_config for connecting to the remote - device - extra_params: Any additional params to be added to the syslog cmdline. - - Returns: - A FuchsiaSyslogProcess object. - """ - logger = log_stream.create_logger( - 'fuchsia_log_%s' % serial, base_path=base_path, - log_styles=(LogStyles.LOG_DEBUG | LogStyles.MONOLITH_LOG)) - syslog = FuchsiaSyslogProcess(ssh_username, - ssh_config, - ip_address, - extra_params) - timestamp_tracker = TimestampTracker() - syslog.set_on_output_callback(_log_line_func(logger, timestamp_tracker)) - return syslog - - -class FuchsiaSyslogError(Exception): - """Raised when invalid operations are run on a Fuchsia Syslog.""" - - -class FuchsiaSyslogProcess(object): - """A class representing a Fuchsia Syslog object that communicates over ssh. - """ - - def __init__(self, ssh_username, ssh_config, ip_address, extra_params): - """ - Args: - ssh_username: The username to connect to Fuchsia over ssh. - ssh_config: The ssh config that holds the information to connect to - a Fuchsia device over ssh. - ip_address: The ip address of the Fuchsia device. - """ - self.ssh_config = ssh_config - self.ip_address = ip_address - self.extra_params = extra_params - self.ssh_username = ssh_username - self._output_file = None - self._ssh_client = None - self._listening_thread = None - self._redirection_thread = None - self._on_output_callback = lambda *args, **kw: None - - self._started = False - self._stopped = False - - def start(self): - """Starts reading the data from the syslog ssh connection.""" - if self._started: - raise FuchsiaSyslogError('Syslog has already started for ' - 'FuchsiaDevice (%s).' % self.ip_address) - self._started = True - - self._listening_thread = Thread(target=self._exec_loop) - self._listening_thread.start() - - time_up_at = time.time() + 10 - - while self._ssh_client is None: - if time.time() > time_up_at: - raise FuchsiaSyslogError('Unable to connect to syslog!') - - self._stopped = False - - def stop(self): - """Stops listening to the syslog ssh connection and coalesces the - threads. - """ - if self._stopped: - raise FuchsiaSyslogError('Syslog is already being stopped for ' - 'FuchsiaDevice (%s).' % self.ip_address) - self._stopped = True - - try: - self._ssh_client.close() - except Exception as e: - raise e - finally: - self._join_threads() - self._started = False - return None - - def _join_threads(self): - """Waits for the threads associated with the process to terminate.""" - if self._listening_thread is not None: - self._listening_thread.join() - self._listening_thread = None - - if self._redirection_thread is not None: - self._redirection_thread.join() - self._redirection_thread = None - - def _redirect_output(self): - """Redirects the output from the ssh connection into the - on_output_callback. - """ - while True: - line = self._output_file.readline() - - if not line: - return - else: - # Output the line without trailing \n and whitespace. - self._on_output_callback(line.rstrip()) - - def set_on_output_callback(self, on_output_callback, binary=False): - """Sets the on_output_callback function. - - Args: - on_output_callback: The function to be called when output is sent to - the output. The output callback has the following signature: - - >>> def on_output_callback(output_line): - >>> return None - - binary: If True, read the process output as raw binary. - Returns: - self - """ - self._on_output_callback = on_output_callback - self._binary_output = binary - return self - - def __start_process(self): - """A convenient wrapper function for starting the ssh connection and - starting the syslog.""" - - self._ssh_client = create_ssh_connection(self.ip_address, - self.ssh_username, - self.ssh_config) - transport = self._ssh_client.get_transport() - channel = transport.open_session() - channel.get_pty() - self._output_file = channel.makefile() - logging.debug('Starting FuchsiaDevice (%s) syslog over ssh.' - % self.ssh_username) - channel.exec_command('log_listener %s' % self.extra_params) - return transport - - def _exec_loop(self): - """Executes a ssh connection to the Fuchsia Device syslog in a loop. - - When the ssh connection terminates without stop() being called, - the threads are coalesced and the syslog is restarted. - """ - start_up = True - while True: - if self._stopped: - break - else: - if start_up or not ssh_transport.is_alive(): - if start_up: - logging.debug('Starting SSH connection for ' - 'FuchsiaDevice (%s) syslog.' - % self.ip_address) - start_up = False - else: - logging.debug('SSH connection for FuchsiaDevice (%s) is' - ' down. Restarting.' % self.ip_address) - ssh_transport = self.__start_process() - self._redirection_thread = Thread( - target=self._redirect_output) - self._redirection_thread.start() - self._redirection_thread.join() diff --git a/acts/framework/acts/controllers/fuchsia_lib/utils_lib.py b/acts/framework/acts/controllers/fuchsia_lib/utils_lib.py deleted file mode 100644 index f0b8dda4fb..0000000000 --- a/acts/framework/acts/controllers/fuchsia_lib/utils_lib.py +++ /dev/null @@ -1,133 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import os -import logging -import paramiko - -logging.getLogger("paramiko").setLevel(logging.WARNING) - - -def get_private_key(ip_address, ssh_config): - """Tries to load various ssh key types. - - Args: - ip_address: IP address of ssh server. - ssh_config: ssh_config location for the ssh server. - Returns: - The ssh private key - """ - exceptions = [] - try: - logging.debug('Trying to load SSH key type: ed25519') - return paramiko.ed25519key.Ed25519Key( - filename=get_ssh_key_for_host(ip_address, ssh_config)) - except paramiko.SSHException as e: - exceptions.append(e) - logging.debug('Failed loading SSH key type: ed25519') - - try: - logging.debug('Trying to load SSH key type: rsa') - return paramiko.RSAKey.from_private_key_file( - filename=get_ssh_key_for_host(ip_address, ssh_config)) - except paramiko.SSHException as e: - exceptions.append(e) - logging.debug('Failed loading SSH key type: rsa') - - raise Exception('No valid ssh key type found', exceptions) - - -def create_ssh_connection(ip_address, - ssh_username, - ssh_config, - connect_timeout=30): - """Creates and ssh connection to a Fuchsia device - - Args: - ip_address: IP address of ssh server. - ssh_username: Username for ssh server. - ssh_config: ssh_config location for the ssh server. - connect_timeout: Timeout value for connecting to ssh_server. - - Returns: - A paramiko ssh object - """ - ssh_key = get_private_key(ip_address=ip_address, ssh_config=ssh_config) - ssh_client = paramiko.SSHClient() - ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) - ssh_client.connect(hostname=ip_address, - username=ssh_username, - allow_agent=False, - pkey=ssh_key, - timeout=connect_timeout) - return ssh_client - - -def get_ssh_key_for_host(host, ssh_config_file): - """Gets the SSH private key path from a supplied ssh_config_file and the - host. - Args: - host (str): The ip address or host name that SSH will connect to. - ssh_config_file (str): Path to the ssh_config_file that will be used - to connect to the host. - - Returns: - path: A path to the private key for the SSH connection. - """ - ssh_config = paramiko.SSHConfig() - user_config_file = os.path.expanduser(ssh_config_file) - if os.path.exists(user_config_file): - with open(user_config_file) as f: - ssh_config.parse(f) - user_config = ssh_config.lookup(host) - - if 'identityfile' not in user_config: - raise ValueError('Could not find identity file in %s.' % ssh_config) - - path = os.path.expanduser(user_config['identityfile'][0]) - if not os.path.exists(path): - raise FileNotFoundError('Specified IdentityFile %s for %s in %s not ' - 'existing anymore.' % (path, host, ssh_config)) - return path - - -class SshResults: - """Class representing the results from a SSH command to mimic the output - of the job.Result class in ACTS. This is to reduce the changes needed from - swapping the ssh connection in ACTS to paramiko. - - Attributes: - stdin: The file descriptor to the input channel of the SSH connection. - stdout: The file descriptor to the stdout of the SSH connection. - stderr: The file descriptor to the stderr of the SSH connection. - exit_status: The exit status of the SSH command. - """ - def __init__(self, stdin, stdout, stderr, exit_status): - self._stdout = stdout.read().decode('utf-8', errors='replace') - self._stderr = stderr.read().decode('utf-8', errors='replace') - self._exit_status = exit_status - - @property - def stdout(self): - return self._stdout - - @property - def stderr(self): - return self._stderr - - @property - def exit_status(self): - return self._exit_status diff --git a/acts/framework/acts/controllers/fuchsia_lib/wlan_lib.py b/acts/framework/acts/controllers/fuchsia_lib/wlan_lib.py index ac2085403a..0f63b6a72c 100644 --- a/acts/framework/acts/controllers/fuchsia_lib/wlan_lib.py +++ b/acts/framework/acts/controllers/fuchsia_lib/wlan_lib.py @@ -13,20 +13,18 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. -from acts import logger + from acts.controllers.fuchsia_lib.base_lib import BaseLib COMMAND_SCAN = "wlan.scan" COMMAND_CONNECT = "wlan.connect" COMMAND_DISCONNECT = "wlan.disconnect" -COMMAND_STATUS = "wlan.status" class FuchsiaWlanLib(BaseLib): def __init__(self, addr, tc, client_id): self.address = addr self.test_counter = tc self.client_id = client_id - self.log = logger.create_tagged_trace_logger(str(addr)) def wlanStartScan(self): """ Starts a wlan scan @@ -50,7 +48,10 @@ class FuchsiaWlanLib(BaseLib): boolean indicating if the connection was successful """ test_cmd = COMMAND_CONNECT - test_args = {"target_ssid": target_ssid, "target_pwd": target_pwd} + test_args = { + "target_ssid": target_ssid, + "target_pwd": target_pwd + } test_id = self.build_id(self.test_counter) self.test_counter += 1 @@ -64,15 +65,3 @@ class FuchsiaWlanLib(BaseLib): return self.send_command(test_id, test_cmd, {}) - def wlanStatus(self): - """ Request connection status - - Returns: - Client state summary containing WlanClientState and - status of various networks connections - """ - test_cmd = COMMAND_STATUS - test_id = self.build_id(self.test_counter) - self.test_counter += 1 - - return self.send_command(test_id, test_cmd, {}) diff --git a/acts/framework/acts/controllers/monsoon_lib/api/hvpm/__init__.py b/acts/framework/acts/controllers/gnssinst_lib/__init__.py index e69de29bb2..e69de29bb2 100644 --- a/acts/framework/acts/controllers/monsoon_lib/api/hvpm/__init__.py +++ b/acts/framework/acts/controllers/gnssinst_lib/__init__.py diff --git a/acts/framework/acts/controllers/abstract_inst.py b/acts/framework/acts/controllers/gnssinst_lib/abstract_inst.py index 2f6a264a4b..40972d59c1 100644 --- a/acts/framework/acts/controllers/abstract_inst.py +++ b/acts/framework/acts/controllers/gnssinst_lib/abstract_inst.py @@ -1,22 +1,21 @@ -#!/usr/bin/env python3 +#!/usr/bin python3 # -# Copyright 2019 - The Android Open Source Project +# Copyright 2019 - The Android Open Source Project # -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at # -# http://www.apache.org/licenses/LICENSE-2.0 +# http://www.apache.org/licenses/LICENSE-2.0 # -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -"""Python module for Abstract Instrument Library.""" +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Python module for GNSS Abstract Instrument Library.""" import socket -import requests from acts import logger @@ -73,6 +72,10 @@ class SocketInstrument(object): try: self._socket = socket.create_connection( (self._ip_addr, self._ip_port), timeout=self._socket_timeout) + resp = self._query('*IDN?') + + infmsg = 'Inst-ID: {}'.format(resp) + self._logger.debug(infmsg) infmsg = 'Opened Socket connection to {}:{} with handle {}.'.format( repr(self._ip_addr), repr(self._ip_port), repr(self._socket)) @@ -95,10 +98,6 @@ class SocketInstrument(object): cmd: Command to send, Type, Str. """ - if not self._socket: - self._logger.warning('Socket instrument is not connected') - self._connect_socket() - cmd_es = cmd + self._escseq try: @@ -131,10 +130,6 @@ class SocketInstrument(object): resp: Response from Instrument via Socket, Type, Str. """ - if not self._socket: - self._logger.warning('Socket instrument is not connected') - self._connect_socket() - resp = '' try: @@ -199,45 +194,3 @@ class SocketInstrument(object): self._send(cmd + ';*OPC?') resp = self._recv() return resp - - -class RequestInstrument(object): - """Abstract Instrument Class, via Request.""" - - def __init__(self, ip_addr): - """Init method for request instrument. - - Args: - ip_addr: IP Address. - Type, Str. - """ - self._request_timeout = 120 - self._request_protocol = 'http' - self._ip_addr = ip_addr - self._escseq = '\r\n' - - self._logger = logger.create_tagged_trace_logger(self._ip_addr) - - def _query(self, cmd): - """query instrument via request. - - Args: - cmd: Command to send, - Type, Str. - - Returns: - resp: Response from Instrument via request, - Type, Str. - """ - request_cmd = '{}://{}/{}'.format(self._request_protocol, - self._ip_addr, cmd) - resp_raw = requests.get(request_cmd, timeout=self._request_timeout) - - resp = resp_raw.text - for char_del in self._escseq: - resp = resp.replace(char_del, '') - - self._logger.debug('Sent %r to %r, and get %r.', cmd, self._ip_addr, - resp) - - return resp diff --git a/acts/framework/acts/controllers/iperf_client.py b/acts/framework/acts/controllers/iperf_client.py index 40c69931f5..e2728ea526 100644 --- a/acts/framework/acts/controllers/iperf_client.py +++ b/acts/framework/acts/controllers/iperf_client.py @@ -22,7 +22,6 @@ import threading from acts import context from acts import utils from acts.controllers.android_device import AndroidDevice -from acts.controllers.iperf_server import _AndroidDeviceBridge from acts.controllers.utils_lib.ssh import connection from acts.controllers.utils_lib.ssh import settings from acts.event import event_bus @@ -173,6 +172,32 @@ class IPerfClientOverSsh(IPerfClientBase): return full_out_path +# TODO(markdr): Remove this after automagic controller creation has been +# removed. +class _AndroidDeviceBridge(object): + """A helper class that bridges the IPerfClientOverAdb to the AndroidDevices. + + Using this class, IPerfClientOverAdb can access the AndroidDevices on the + test + """ + android_devices = {} + + @staticmethod + @subscribe_static(TestClassBeginEvent) + def on_test_begin(event): + for device in getattr(event.test_class, 'android_devices', []): + _AndroidDeviceBridge.android_devices[device.serial] = device + + @staticmethod + @subscribe_static(TestClassEndEvent) + def on_test_end(_): + _AndroidDeviceBridge.android_devices = {} + + +event_bus.register_subscription(_AndroidDeviceBridge.on_test_begin.subscription) +event_bus.register_subscription(_AndroidDeviceBridge.on_test_end.subscription) + + class IPerfClientOverAdb(IPerfClientBase): """Class that handles iperf3 operations over ADB devices.""" @@ -192,7 +217,7 @@ class IPerfClientOverAdb(IPerfClientBase): if isinstance(self._android_device_or_serial, AndroidDevice): return self._android_device_or_serial else: - return _AndroidDeviceBridge.android_devices()[ + return _AndroidDeviceBridge.android_devices[ self._android_device_or_serial] def start(self, ip, iperf_args, tag, timeout=3600): diff --git a/acts/framework/acts/controllers/iperf_server.py b/acts/framework/acts/controllers/iperf_server.py index 039f143470..bd659ad482 100755 --- a/acts/framework/acts/controllers/iperf_server.py +++ b/acts/framework/acts/controllers/iperf_server.py @@ -18,10 +18,7 @@ import json import logging import math import os -import shlex -import subprocess import threading -import time from acts import context from acts import utils @@ -81,25 +78,20 @@ class IPerfResult(object): will be loaded and this funtion is not intended to be used with files containing multiple iperf client runs. """ - # if result_path isn't a path, treat it as JSON - if not os.path.exists(result_path): - self.result = json.loads(result_path) - else: - try: - with open(result_path, 'r') as f: - iperf_output = f.readlines() - if '}\n' in iperf_output: - iperf_output = iperf_output[:iperf_output.index('}\n') - + 1] - iperf_string = ''.join(iperf_output) - iperf_string = iperf_string.replace('nan', '0') - self.result = json.loads(iperf_string) - except ValueError: - with open(result_path, 'r') as f: - # Possibly a result from interrupted iperf run, - # skip first line and try again. - lines = f.readlines()[1:] - self.result = json.loads(''.join(lines)) + try: + with open(result_path, 'r') as f: + iperf_output = f.readlines() + if '}\n' in iperf_output: + iperf_output = iperf_output[:iperf_output.index('}\n') + 1] + iperf_string = ''.join(iperf_output) + iperf_string = iperf_string.replace('nan', '0') + self.result = json.loads(iperf_string) + except ValueError: + with open(result_path, 'r') as f: + # Possibly a result from interrupted iperf run, skip first line + # and try again. + lines = f.readlines()[1:] + self.result = json.loads(''.join(lines)) def _has_data(self): """Checks if the iperf result has valid throughput data. @@ -202,7 +194,7 @@ class IPerfResult(object): instantaneous_rates = self.instantaneous_rates[iperf_ignored_interval: -1] avg_rate = math.fsum(instantaneous_rates) / len(instantaneous_rates) - sqd_deviations = [(rate - avg_rate) ** 2 for rate in instantaneous_rates] + sqd_deviations = [(rate - avg_rate)**2 for rate in instantaneous_rates] std_dev = math.sqrt( math.fsum(sqd_deviations) / (len(sqd_deviations) - 1)) return std_dev @@ -217,10 +209,7 @@ class IPerfServerBase(object): def __init__(self, port): self._port = port - # TODO(markdr): We shouldn't be storing the log files in an array like - # this. Nobody should be reading this property either. Instead, the - # IPerfResult should be returned in stop() with all the necessary info. - # See aosp/1012824 for a WIP implementation. + # TODO(markdr): Remove this after migration to the new iperf APIs. self.log_files = [] @property @@ -283,27 +272,14 @@ class IPerfServerBase(object): return full_out_dir -def _get_port_from_ss_output(ss_output, pid): - pid = str(pid) - lines = ss_output.split('\n') - for line in lines: - if pid in line: - # Expected format: - # tcp LISTEN 0 5 *:<PORT> *:* users:(("cmd",pid=<PID>,fd=3)) - return line.split()[4].split(':')[1] - else: - raise ProcessLookupError('Could not find started iperf3 process.') - - class IPerfServer(IPerfServerBase): """Class that handles iperf server commands on localhost.""" - def __init__(self, port=5201): + def __init__(self, port): super().__init__(port) - self._hinted_port = port + self._iperf_command = 'iperf3 -s -J -p {}'.format(self.port) self._current_log_file = None self._iperf_process = None - self._last_opened_file = None @property def port(self): @@ -327,28 +303,12 @@ class IPerfServer(IPerfServerBase): self._current_log_file = self._get_full_file_path(tag) - # Run an iperf3 server on the hinted port with JSON output. - command = ['iperf3', '-s', '-p', str(self._hinted_port), '-J'] - - command.extend(shlex.split(extra_args)) - - if self._last_opened_file: - self._last_opened_file.close() - self._last_opened_file = open(self._current_log_file, 'w') - self._iperf_process = subprocess.Popen( - command, stdout=self._last_opened_file, stderr=subprocess.DEVNULL) - for attempts_left in reversed(range(3)): - try: - self._port = int( - _get_port_from_ss_output( - job.run('ss -l -p -n | grep iperf').stdout, - self._iperf_process.pid)) - break - except ProcessLookupError: - if attempts_left == 0: - raise - logging.debug('iperf3 process not started yet.') - time.sleep(.01) + cmd = '{cmd} {extra_flags} > {log_file}'.format( + cmd=self._iperf_command, + extra_flags=extra_args, + log_file=self._current_log_file) + + self._iperf_process = utils.start_standing_subprocess(cmd) def stop(self): """Stops the iperf server. @@ -359,18 +319,11 @@ class IPerfServer(IPerfServerBase): if self._iperf_process is None: return - if self._last_opened_file: - self._last_opened_file.close() - self._last_opened_file = None + utils.stop_standing_subprocess(self._iperf_process) - self._iperf_process.terminate() self._iperf_process = None - return self._current_log_file - def __del__(self): - self.stop() - class IPerfServerOverSsh(IPerfServerBase): """Class that handles iperf3 operations on remote machines.""" @@ -444,27 +397,20 @@ class IPerfServerOverSsh(IPerfServerBase): class _AndroidDeviceBridge(object): """A helper class for connecting serial numbers to AndroidDevices.""" - _test_class = None + # A dict of serial -> AndroidDevice, where AndroidDevice is a device found + # in the current TestClass's controllers. + android_devices = {} @staticmethod @subscribe_static(TestClassBeginEvent) def on_test_begin(event): - _AndroidDeviceBridge._test_class = event.test_class + for device in getattr(event.test_class, 'android_devices', []): + _AndroidDeviceBridge.android_devices[device.serial] = device @staticmethod @subscribe_static(TestClassEndEvent) def on_test_end(_): - _AndroidDeviceBridge._test_class = None - - @staticmethod - def android_devices(): - """A dict of serial -> AndroidDevice, where AndroidDevice is a device - found in the current TestClass's controllers. - """ - if not _AndroidDeviceBridge._test_class: - return {} - return {device.serial: device - for device in _AndroidDeviceBridge._test_class.android_devices} + _AndroidDeviceBridge.android_devices = {} event_bus.register_subscription( @@ -505,7 +451,7 @@ class IPerfServerOverAdb(IPerfServerBase): if isinstance(self._android_device_or_serial, AndroidDevice): return self._android_device_or_serial else: - return _AndroidDeviceBridge.android_devices()[ + return _AndroidDeviceBridge.android_devices[ self._android_device_or_serial] def _get_device_log_path(self): @@ -546,7 +492,7 @@ class IPerfServerOverAdb(IPerfServerBase): job.run('kill -9 {}'.format(self._iperf_process.pid)) - # TODO(markdr): update with definitive kill method + #TODO(markdr): update with definitive kill method while True: iperf_process_list = self._android_device.adb.shell('pgrep iperf3') if iperf_process_list.find(self._iperf_process_adb_pid) == -1: diff --git a/acts/framework/acts/controllers/monsoon.py b/acts/framework/acts/controllers/monsoon.py index 9488837dbb..d5b24a2703 100644 --- a/acts/framework/acts/controllers/monsoon.py +++ b/acts/framework/acts/controllers/monsoon.py @@ -13,28 +13,1006 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. +"""Interface for a USB-connected Monsoon power meter +(http://msoon.com/LabEquipment/PowerMonitor/). +Based on the original py2 script of kens@google.com +""" -from acts.controllers.monsoon_lib.api.hvpm.monsoon import Monsoon as HvpmMonsoon -from acts.controllers.monsoon_lib.api.lvpm_stock.monsoon import Monsoon as LvpmStockMonsoon +import fcntl +import logging +import os +import select +import struct +import sys +import time +import collections -ACTS_CONTROLLER_CONFIG_NAME = 'Monsoon' -ACTS_CONTROLLER_REFERENCE_NAME = 'monsoons' +# http://pyserial.sourceforge.net/ +# On ubuntu, apt-get install python3-pyserial +import serial + +import acts.signals + +from acts import utils +from acts.controllers import android_device + +ACTS_CONTROLLER_CONFIG_NAME = "Monsoon" +ACTS_CONTROLLER_REFERENCE_NAME = "monsoons" def create(configs): objs = [] - for serial in configs: - serial_number = int(serial) - if serial_number < 20000: - # This code assumes the LVPM has not been updated to have a - # non-stock firmware. If someone has updated the firmware, - # power measurement will fail. - objs.append(LvpmStockMonsoon(serial=serial_number)) - else: - objs.append(HvpmMonsoon(serial=serial_number)) + for c in configs: + objs.append(Monsoon(serial=int(c))) return objs -def destroy(monsoons): - for monsoon in monsoons: - monsoon.release_monsoon_connection() +def destroy(objs): + for obj in objs: + fcntl.flock(obj.mon._tempfile, fcntl.LOCK_UN) + obj.mon._tempfile.close() + + +class MonsoonError(acts.signals.ControllerError): + """Raised for exceptions encountered in monsoon lib.""" + + +class MonsoonProxy(object): + """Class that directly talks to monsoon over serial. + + Provides a simple class to use the power meter, e.g. + mon = monsoon.Monsoon() + mon.SetVoltage(3.7) + mon.StartDataCollection() + mydata = [] + while len(mydata) < 1000: + mydata.extend(mon.CollectData()) + mon.StopDataCollection() + + See http://wiki/Main/MonsoonProtocol for information on the protocol. + """ + + def __init__(self, device=None, serialno=None, wait=1): + """Establish a connection to a Monsoon. + + By default, opens the first available port, waiting if none are ready. + A particular port can be specified with "device", or a particular + Monsoon can be specified with "serialno" (using the number printed on + its back). With wait=0, IOError is thrown if a device is not + immediately available. + """ + self._coarse_ref = self._fine_ref = self._coarse_zero = 0 + self._fine_zero = self._coarse_scale = self._fine_scale = 0 + self._last_seq = 0 + self.start_voltage = 0 + self.serial = serialno + + if device: + self.ser = serial.Serial(device, timeout=1) + return + # Try all devices connected through USB virtual serial ports until we + # find one we can use. + while True: + for dev in os.listdir("/dev"): + prefix = "ttyACM" + # Prefix is different on Mac OS X. + if sys.platform == "darwin": + prefix = "tty.usbmodem" + if not dev.startswith(prefix): + continue + tmpname = "/tmp/monsoon.%s.%s" % (os.uname()[0], dev) + self._tempfile = open(tmpname, "w") + try: + os.chmod(tmpname, 0o666) + except OSError as e: + pass + + try: # use a lockfile to ensure exclusive access + fcntl.flock(self._tempfile, fcntl.LOCK_EX | fcntl.LOCK_NB) + except IOError as e: + logging.error("device %s is in use", dev) + continue + + try: # try to open the device + self.ser = serial.Serial("/dev/%s" % dev, timeout=1) + self.StopDataCollection() # just in case + self._FlushInput() # discard stale input + status = self.GetStatus() + except Exception as e: + logging.exception("Error opening device %s: %s", dev, e) + continue + + if not status: + logging.error("no response from device %s", dev) + elif serialno and status["serialNumber"] != serialno: + logging.error("Another device serial #%d seen on %s", + status["serialNumber"], dev) + else: + self.start_voltage = status["voltage1"] + return + + self._tempfile = None + if not wait: raise IOError("No device found") + logging.info("Waiting for device...") + time.sleep(1) + + def GetStatus(self): + """Requests and waits for status. + + Returns: + status dictionary. + """ + # status packet format + STATUS_FORMAT = ">BBBhhhHhhhHBBBxBbHBHHHHBbbHHBBBbbbbbbbbbBH" + STATUS_FIELDS = [ + "packetType", + "firmwareVersion", + "protocolVersion", + "mainFineCurrent", + "usbFineCurrent", + "auxFineCurrent", + "voltage1", + "mainCoarseCurrent", + "usbCoarseCurrent", + "auxCoarseCurrent", + "voltage2", + "outputVoltageSetting", + "temperature", + "status", + "leds", + "mainFineResistor", + "serialNumber", + "sampleRate", + "dacCalLow", + "dacCalHigh", + "powerUpCurrentLimit", + "runTimeCurrentLimit", + "powerUpTime", + "usbFineResistor", + "auxFineResistor", + "initialUsbVoltage", + "initialAuxVoltage", + "hardwareRevision", + "temperatureLimit", + "usbPassthroughMode", + "mainCoarseResistor", + "usbCoarseResistor", + "auxCoarseResistor", + "defMainFineResistor", + "defUsbFineResistor", + "defAuxFineResistor", + "defMainCoarseResistor", + "defUsbCoarseResistor", + "defAuxCoarseResistor", + "eventCode", + "eventData", + ] + + self._SendStruct("BBB", 0x01, 0x00, 0x00) + while 1: # Keep reading, discarding non-status packets + read_bytes = self._ReadPacket() + if not read_bytes: + raise MonsoonError("Failed to read Monsoon status") + calsize = struct.calcsize(STATUS_FORMAT) + if len(read_bytes) != calsize or read_bytes[0] != 0x10: + raise MonsoonError( + "Wanted status, dropped type=0x%02x, len=%d", + read_bytes[0], len(read_bytes)) + status = dict( + zip(STATUS_FIELDS, struct.unpack(STATUS_FORMAT, read_bytes))) + p_type = status["packetType"] + if p_type != 0x10: + raise MonsoonError("Package type %s is not 0x10." % p_type) + for k in status.keys(): + if k.endswith("VoltageSetting"): + status[k] = 2.0 + status[k] * 0.01 + elif k.endswith("FineCurrent"): + pass # needs calibration data + elif k.endswith("CoarseCurrent"): + pass # needs calibration data + elif k.startswith("voltage") or k.endswith("Voltage"): + status[k] = status[k] * 0.000125 + elif k.endswith("Resistor"): + status[k] = 0.05 + status[k] * 0.0001 + if k.startswith("aux") or k.startswith("defAux"): + status[k] += 0.05 + elif k.endswith("CurrentLimit"): + status[k] = 8 * (1023 - status[k]) / 1023.0 + return status + + def RampVoltage(self, start, end): + v = start + if v < 3.0: v = 3.0 # protocol doesn't support lower than this + while (v < end): + self.SetVoltage(v) + v += .1 + time.sleep(.1) + self.SetVoltage(end) + + def SetVoltage(self, v): + """Set the output voltage, 0 to disable. + """ + if v == 0: + self._SendStruct("BBB", 0x01, 0x01, 0x00) + else: + self._SendStruct("BBB", 0x01, 0x01, int((v - 2.0) * 100)) + + def GetVoltage(self): + """Get the output voltage. + + Returns: + Current Output Voltage (in unit of v). + """ + try: + return self.GetStatus()["outputVoltageSetting"] + # Catch potential errors such as struct.error, TypeError and other + # unknown errors which would bring down the whole test + except Exception as e: + raise MonsoonError("Error getting Monsoon voltage") + + def SetMaxCurrent(self, i): + """Set the max output current. + """ + if i < 0 or i > 8: + raise MonsoonError(("Target max current %sA, is out of acceptable " + "range [0, 8].") % i) + val = 1023 - int((i / 8) * 1023) + self._SendStruct("BBB", 0x01, 0x0a, val & 0xff) + self._SendStruct("BBB", 0x01, 0x0b, val >> 8) + + def SetMaxPowerUpCurrent(self, i): + """Set the max power up current. + """ + if i < 0 or i > 8: + raise MonsoonError(("Target max current %sA, is out of acceptable " + "range [0, 8].") % i) + val = 1023 - int((i / 8) * 1023) + self._SendStruct("BBB", 0x01, 0x08, val & 0xff) + self._SendStruct("BBB", 0x01, 0x09, val >> 8) + + def SetUsbPassthrough(self, val): + """Set the USB passthrough mode: 0 = off, 1 = on, 2 = auto. + """ + self._SendStruct("BBB", 0x01, 0x10, val) + + def GetUsbPassthrough(self): + """Get the USB passthrough mode: 0 = off, 1 = on, 2 = auto. + + Returns: + Current USB passthrough mode. + """ + try: + return self.GetStatus()["usbPassthroughMode"] + # Catch potential errors such as struct.error, TypeError and other + # unknown errors which would bring down the whole test + except Exception as e: + raise MonsoonError("Error reading Monsoon USB passthrough status") + + def StartDataCollection(self): + """Tell the device to start collecting and sending measurement data. + """ + self._SendStruct("BBB", 0x01, 0x1b, 0x01) # Mystery command + self._SendStruct("BBBBBBB", 0x02, 0xff, 0xff, 0xff, 0xff, 0x03, 0xe8) + + def StopDataCollection(self): + """Tell the device to stop collecting measurement data. + """ + self._SendStruct("BB", 0x03, 0x00) # stop + + def CollectData(self): + """Return some current samples. Call StartDataCollection() first. + """ + while 1: # loop until we get data or a timeout + _bytes = self._ReadPacket() + if not _bytes: + raise MonsoonError("Data collection failed due to empty data") + if len(_bytes) < 4 + 8 + 1 or _bytes[0] < 0x20 or _bytes[0] > 0x2F: + logging.warning("Wanted data, dropped type=0x%02x, len=%d", + _bytes[0], len(_bytes)) + continue + + seq, _type, x, y = struct.unpack("BBBB", _bytes[:4]) + data = [ + struct.unpack(">hhhh", _bytes[x:x + 8]) + for x in range(4, + len(_bytes) - 8, 8) + ] + + if self._last_seq and seq & 0xF != (self._last_seq + 1) & 0xF: + logging.warning("Data sequence skipped, lost packet?") + self._last_seq = seq + + if _type == 0: + if not self._coarse_scale or not self._fine_scale: + logging.warning( + "Waiting for calibration, dropped data packet.") + continue + out = [] + for main, usb, aux, voltage in data: + if main & 1: + coarse = ((main & ~1) - self._coarse_zero) + out.append(coarse * self._coarse_scale) + else: + out.append((main - self._fine_zero) * self._fine_scale) + return out + elif _type == 1: + self._fine_zero = data[0][0] + self._coarse_zero = data[1][0] + elif _type == 2: + self._fine_ref = data[0][0] + self._coarse_ref = data[1][0] + else: + logging.warning("Discarding data packet type=0x%02x", _type) + continue + + # See http://wiki/Main/MonsoonProtocol for details on these values. + if self._coarse_ref != self._coarse_zero: + self._coarse_scale = 2.88 / ( + self._coarse_ref - self._coarse_zero) + if self._fine_ref != self._fine_zero: + self._fine_scale = 0.0332 / (self._fine_ref - self._fine_zero) + + def _SendStruct(self, fmt, *args): + """Pack a struct (without length or checksum) and send it. + """ + # Flush out the input buffer before sending data + self._FlushInput() + data = struct.pack(fmt, *args) + data_len = len(data) + 1 + checksum = (data_len + sum(bytearray(data))) % 256 + out = struct.pack("B", data_len) + data + struct.pack("B", checksum) + self.ser.write(out) + + def _ReadPacket(self): + """Read a single data record as a string (without length or checksum). + """ + len_char = self.ser.read(1) + if not len_char: + raise MonsoonError("Reading from serial port timed out") + + data_len = ord(len_char) + if not data_len: + return "" + result = self.ser.read(int(data_len)) + result = bytearray(result) + if len(result) != data_len: + raise MonsoonError( + "Length mismatch, expected %d bytes, got %d bytes.", data_len, + len(result)) + body = result[:-1] + checksum = (sum(struct.unpack("B" * len(body), body)) + data_len) % 256 + if result[-1] != checksum: + raise MonsoonError( + "Invalid checksum from serial port! Expected %s, got %s", + hex(checksum), hex(result[-1])) + return result[:-1] + + def _FlushInput(self): + """ Flush all read data until no more available. """ + self.ser.reset_input_buffer() + flushed = 0 + while True: + ready_r, ready_w, ready_x = select.select([self.ser], [], + [self.ser], 0) + if len(ready_x) > 0: + raise MonsoonError("Exception from serial port.") + elif len(ready_r) > 0: + flushed += 1 + self.ser.read(1) # This may cause underlying buffering. + self.ser.reset_input_buffer( + ) # Flush the underlying buffer too. + else: + break + # if flushed > 0: + # logging.info("dropped >%d bytes" % flushed) + + +class MonsoonData(object): + """A class for reporting power measurement data from monsoon. + + Data means the measured current value in Amps. + """ + # Number of digits for long rounding. + lr = 8 + # Number of digits for short rounding + sr = 6 + # Delimiter for writing multiple MonsoonData objects to text file. + delimiter = "\n\n==========\n\n" + + def __init__(self, data_points, timestamps, hz, voltage, offset=0): + """Instantiates a MonsoonData object. + + Args: + data_points: A list of current values in Amp (float). + timestamps: A list of epoch timestamps (int). + hz: The hertz at which the data points are measured. + voltage: The voltage at which the data points are measured. + offset: The number of initial data points to discard + in calculations. + """ + self._data_points = data_points + self._timestamps = timestamps + self.offset = offset + num_of_data_pt = len(self._data_points) + if self.offset >= num_of_data_pt: + raise MonsoonError( + ("Offset number (%d) must be smaller than the " + "number of data points (%d).") % (offset, num_of_data_pt)) + self.data_points = self._data_points[self.offset:] + self.timestamps = self._timestamps[self.offset:] + self.hz = hz + self.voltage = voltage + self.tag = None + self._validate_data() + + @property + def average_current(self): + """Average current in the unit of mA. + """ + len_data_pt = len(self.data_points) + if len_data_pt == 0: + return 0 + cur = sum(self.data_points) * 1000 / len_data_pt + return round(cur, self.sr) + + @property + def total_charge(self): + """Total charged used in the unit of mAh. + """ + charge = (sum(self.data_points) / self.hz) * 1000 / 3600 + return round(charge, self.sr) + + @property + def total_power(self): + """Total power used. + """ + power = self.average_current * self.voltage + return round(power, self.sr) + + @staticmethod + def from_string(data_str): + """Creates a MonsoonData object from a string representation generated + by __str__. + + Args: + str: The string representation of a MonsoonData. + + Returns: + A MonsoonData object. + """ + lines = data_str.strip().split('\n') + err_msg = ("Invalid input string format. Is this string generated by " + "MonsoonData class?") + conditions = [ + len(lines) <= 4, "Average Current:" not in lines[1], + "Voltage: " not in lines[2], "Total Power: " not in lines[3], + "samples taken at " not in lines[4], + lines[5] != "Time" + ' ' * 7 + "Amp" + ] + if any(conditions): + raise MonsoonError(err_msg) + """Example string from Monsoon output file, first line is empty. + Line1: + Line2: test_2g_screenoff_dtimx2_marlin_OPD1.170706.006 + Line3: Average Current: 51.87984mA. + Line4: Voltage: 4.2V. + Line5: Total Power: 217.895328mW. + Line6: 150000 samples taken at 500Hz, with an offset of 0 samples. + """ + hz_str = lines[4].split()[4] + hz = int(hz_str[:-3]) + voltage_str = lines[2].split()[1] + voltage = float(voltage_str[:-2]) + lines = lines[6:] + t = [] + v = [] + for l in lines: + try: + timestamp, value = l.split(' ') + t.append(int(timestamp)) + v.append(float(value)) + except ValueError: + raise MonsoonError(err_msg) + return MonsoonData(v, t, hz, voltage) + + @staticmethod + def save_to_text_file(monsoon_data, file_path): + """Save multiple MonsoonData objects to a text file. + + Args: + monsoon_data: A list of MonsoonData objects to write to a text + file. + file_path: The full path of the file to save to, including the file + name. + """ + if not monsoon_data: + raise MonsoonError("Attempting to write empty Monsoon data to " + "file, abort") + utils.create_dir(os.path.dirname(file_path)) + with open(file_path, 'a') as f: + for md in monsoon_data: + f.write(str(md)) + f.write(MonsoonData.delimiter) + + @staticmethod + def from_text_file(file_path): + """Load MonsoonData objects from a text file generated by + MonsoonData.save_to_text_file. + + Args: + file_path: The full path of the file load from, including the file + name. + + Returns: + A list of MonsoonData objects. + """ + results = [] + with open(file_path, 'r') as f: + data_strs = f.read().split(MonsoonData.delimiter) + data_strs = data_strs[:-1] + for data_str in data_strs: + results.append(MonsoonData.from_string(data_str)) + return results + + def _validate_data(self): + """Verifies that the data points contained in the class are valid. + """ + msg = "Error! Expected {} timestamps, found {}.".format( + len(self._data_points), len(self._timestamps)) + if len(self._data_points) != len(self._timestamps): + raise MonsoonError(msg) + + def update_offset(self, new_offset): + """Updates how many data points to skip in caculations. + + Always use this function to update offset instead of directly setting + self.offset. + + Args: + new_offset: The new offset. + """ + self.offset = new_offset + self.data_points = self._data_points[self.offset:] + self.timestamps = self._timestamps[self.offset:] + + def get_data_with_timestamps(self): + """Returns the data points with timestamps. + + Returns: + A list of tuples in the format of (timestamp, data) + """ + result = [] + for t, d in zip(self.timestamps, self.data_points): + result.append(t, round(d, self.lr)) + return result + + def get_average_record(self, n): + """Returns a list of average current numbers, each representing the + average over the last n data points. + + Args: + n: Number of data points to average over. + + Returns: + A list of average current values. + """ + history_deque = collections.deque() + averages = [] + for d in self.data_points: + history_deque.appendleft(d) + if len(history_deque) > n: + history_deque.pop() + avg = sum(history_deque) / len(history_deque) + averages.append(round(avg, self.lr)) + return averages + + def _header(self): + strs = [""] + if self.tag: + strs.append(self.tag) + else: + strs.append("Monsoon Measurement Data") + strs.append("Average Current: {}mA.".format(self.average_current)) + strs.append("Voltage: {}V.".format(self.voltage)) + strs.append("Total Power: {}mW.".format(self.total_power)) + strs.append( + ("{} samples taken at {}Hz, with an offset of {} samples.").format( + len(self._data_points), self.hz, self.offset)) + return "\n".join(strs) + + def __len__(self): + return len(self.data_points) + + def __str__(self): + strs = [] + strs.append(self._header()) + strs.append("Time" + ' ' * 7 + "Amp") + for t, d in zip(self.timestamps, self.data_points): + strs.append("{} {}".format(t, round(d, self.sr))) + return "\n".join(strs) + + def __repr__(self): + return self._header() + + +class Monsoon(object): + """The wrapper class for test scripts to interact with monsoon. + """ + + def __init__(self, *args, **kwargs): + serial = kwargs["serial"] + device = None + self.log = logging.getLogger() + if "device" in kwargs: + device = kwargs["device"] + self.mon = MonsoonProxy(serialno=serial, device=device) + self.dev = self.mon.ser.name + self.serial = serial + self.dut = None + + def attach_device(self, dut): + """Attach the controller object for the Device Under Test (DUT) + physically attached to the Monsoon box. + + Args: + dut: A controller object representing the device being powered by + this Monsoon box. + """ + self.dut = dut + + def set_voltage(self, volt, ramp=False): + """Sets the output voltage of monsoon. + + Args: + volt: Voltage to set the output to. + ramp: If true, the output voltage will be increased gradually to + prevent tripping Monsoon overvoltage. + """ + if ramp: + self.mon.RampVoltage(mon.start_voltage, volt) + else: + self.mon.SetVoltage(volt) + + def set_max_current(self, cur): + """Sets monsoon's max output current. + + Args: + cur: The max current in A. + """ + self.mon.SetMaxCurrent(cur) + + def set_max_init_current(self, cur): + """Sets the max power-up/inital current. + + Args: + cur: The max initial current allowed in mA. + """ + self.mon.SetMaxPowerUpCurrent(cur) + + @property + def status(self): + """Gets the status params of monsoon. + + Returns: + A dictionary where each key-value pair represents a monsoon status + param. + """ + return self.mon.GetStatus() + + def take_samples(self, sample_hz, sample_num, sample_offset=0, live=False): + """Take samples of the current value supplied by monsoon. + + This is the actual measurement for power consumption. This function + blocks until the number of samples requested has been fulfilled. + + Args: + hz: Number of points to take for every second. + sample_num: Number of samples to take. + offset: The number of initial data points to discard in MonsoonData + calculations. sample_num is extended by offset to compensate. + live: Print each sample in console as measurement goes on. + + Returns: + A MonsoonData object representing the data obtained in this + sampling. None if sampling is unsuccessful. + """ + sys.stdout.flush() + voltage = self.mon.GetVoltage() + self.log.info("Taking samples at %dhz for %ds, voltage %.2fv.", + sample_hz, (sample_num / sample_hz), voltage) + sample_num += sample_offset + # Make sure state is normal + self.mon.StopDataCollection() + status = self.mon.GetStatus() + native_hz = status["sampleRate"] * 1000 + + # Collect and average samples as specified + self.mon.StartDataCollection() + + # In case sample_hz doesn't divide native_hz exactly, use this + # invariant: 'offset' = (consumed samples) * sample_hz - + # (emitted samples) * native_hz + # This is the error accumulator in a variation of Bresenham's + # algorithm. + emitted = offset = 0 + collected = [] + # past n samples for rolling average + history_deque = collections.deque() + current_values = [] + timestamps = [] + + try: + last_flush = time.time() + while emitted < sample_num or sample_num == -1: + # The number of raw samples to consume before emitting the next + # output + need = int((native_hz - offset + sample_hz - 1) / sample_hz) + if need > len(collected): # still need more input samples + samples = self.mon.CollectData() + if not samples: + break + collected.extend(samples) + else: + # Have enough data, generate output samples. + # Adjust for consuming 'need' input samples. + offset += need * sample_hz + # maybe multiple, if sample_hz > native_hz + while offset >= native_hz: + # TODO(angli): Optimize "collected" operations. + this_sample = sum(collected[:need]) / need + this_time = int(time.time()) + timestamps.append(this_time) + if live: + self.log.info("%s %s", this_time, this_sample) + current_values.append(this_sample) + sys.stdout.flush() + offset -= native_hz + emitted += 1 # adjust for emitting 1 output sample + collected = collected[need:] + now = time.time() + if now - last_flush >= 0.99: # flush every second + sys.stdout.flush() + last_flush = now + except Exception as e: + pass + self.mon.StopDataCollection() + try: + return MonsoonData( + current_values, + timestamps, + sample_hz, + voltage, + offset=sample_offset) + except: + return None + + @utils.timeout(60) + def usb(self, state): + """Sets the monsoon's USB passthrough mode. This is specific to the + USB port in front of the monsoon box which connects to the powered + device, NOT the USB that is used to talk to the monsoon itself. + + "Off" means USB always off. + "On" means USB always on. + "Auto" means USB is automatically turned off when sampling is going on, + and turned back on when sampling finishes. + + Args: + stats: The state to set the USB passthrough to. + + Returns: + True if the state is legal and set. False otherwise. + """ + state_lookup = {"off": 0, "on": 1, "auto": 2} + state = state.lower() + if state in state_lookup: + current_state = self.mon.GetUsbPassthrough() + while (current_state != state_lookup[state]): + self.mon.SetUsbPassthrough(state_lookup[state]) + time.sleep(1) + current_state = self.mon.GetUsbPassthrough() + return True + return False + + def _check_dut(self): + """Verifies there is a DUT attached to the monsoon. + + This should be called in the functions that operate the DUT. + """ + if not self.dut: + raise MonsoonError("Need to attach the device before using it.") + + @utils.timeout(15) + def _wait_for_device(self, ad): + while ad.serial not in android_device.list_adb_devices(): + pass + ad.adb.wait_for_device() + + def execute_sequence_and_measure(self, + step_funcs, + hz, + duration, + offset_sec=20, + *args, + **kwargs): + """@Deprecated. + Executes a sequence of steps and take samples in-between. + + For each step function, the following steps are followed: + 1. The function is executed to put the android device in a state. + 2. If the function returns False, skip to next step function. + 3. If the function returns True, sl4a session is disconnected. + 4. Monsoon takes samples. + 5. Sl4a is reconnected. + + Because it takes some time for the device to calm down after the usb + connection is cut, an offset is set for each measurement. The default + is 20s. + + Args: + hz: Number of samples to take per second. + durations: Number(s) of minutes to take samples for in each step. + If this is an integer, all the steps will sample for the same + amount of time. If this is an iterable of the same length as + step_funcs, then each number represents the number of minutes + to take samples for after each step function. + e.g. If durations[0] is 10, we'll sample for 10 minutes after + step_funcs[0] is executed. + step_funcs: A list of funtions, whose first param is an android + device object. If a step function returns True, samples are + taken after this step, otherwise we move on to the next step + function. + ad: The android device object connected to this monsoon. + offset_sec: The number of seconds of initial data to discard. + *args, **kwargs: Extra args to be passed into each step functions. + + Returns: + The MonsoonData objects from samplings. + """ + self._check_dut() + sample_nums = [] + try: + if len(duration) != len(step_funcs): + raise MonsoonError(("The number of durations need to be the " + "same as the number of step functions.")) + for d in duration: + sample_nums.append(d * 60 * hz) + except TypeError: + num = duration * 60 * hz + sample_nums = [num] * len(step_funcs) + results = [] + oset = offset_sec * hz + for func, num in zip(step_funcs, sample_nums): + try: + self.usb("auto") + step_name = func.__name__ + self.log.info("Executing step function %s.", step_name) + take_sample = func(ad, *args, **kwargs) + if not take_sample: + self.log.info("Skip taking samples for %s", step_name) + continue + time.sleep(1) + self.dut.stop_services() + time.sleep(1) + self.log.info("Taking samples for %s.", step_name) + data = self.take_samples(hz, num, sample_offset=oset) + if not data: + raise MonsoonError("Sampling for %s failed." % step_name) + self.log.info("Sample summary: %s", repr(data)) + data.tag = step_name + results.append(data) + except Exception: + self.log.exception("Exception happened during step %s, abort!" + % func.__name__) + return results + finally: + self.mon.StopDataCollection() + self.usb("on") + self._wait_for_device(self.dut) + # Wait for device to come back online. + time.sleep(10) + self.dut.start_services() + # Release wake lock to put device into sleep. + self.dut.droid.goToSleepNow() + return results + + def disconnect_dut(self): + """Disconnect DUT from monsoon. + + Stop the sl4a service on the DUT and disconnect USB connection + raises: + MonsoonError: monsoon erro trying to disconnect usb + """ + try: + self.dut.stop_services() + time.sleep(1) + self.usb("off") + except Exception as e: + raise MonsoonError( + "Error happended trying to disconnect DUT from Monsoon") + + def monsoon_usb_auto(self): + """Set monsoon USB to auto to ready the device for power measurement. + + Stop the sl4a service on the DUT and disconnect USB connection + raises: + MonsoonError: monsoon erro trying to set usbpassthrough to auto + """ + try: + self.dut.stop_services() + time.sleep(1) + self.usb("auto") + except Exception as e: + raise MonsoonError( + "Error happended trying to set Monsoon usbpassthrough to auto") + + def reconnect_dut(self): + """Reconnect DUT to monsoon and start sl4a services. + + raises: + MonsoonError: monsoon erro trying to reconnect usb + Turn usbpassthrough on and start the sl4a services. + """ + self.log.info("Reconnecting dut.") + try: + # If wait for device failed, reset monsoon and try it again, if + # this still fails, then raise + try: + self._wait_for_device(self.dut) + except acts.utils.TimeoutError: + self.log.info('Retry-reset monsoon and connect again') + self.usb('off') + time.sleep(1) + self.usb('on') + self._wait_for_device(self.dut) + # Wait for device to come back online. + time.sleep(2) + self.dut.start_services() + # Release wake lock to put device into sleep. + self.dut.droid.goToSleepNow() + self.log.info("Dut reconnected.") + except Exception as e: + raise MonsoonError("Error happened trying to reconnect DUT") + + def measure_power(self, hz, duration, tag, offset=30): + """Measure power consumption of the attached device. + + Because it takes some time for the device to calm down after the usb + connection is cut, an offset is set for each measurement. The default + is 30s. The total time taken to measure will be (duration + offset). + + Args: + hz: Number of samples to take per second. + duration: Number of seconds to take samples for in each step. + offset: The number of seconds of initial data to discard. + tag: A string that's the name of the collected data group. + + Returns: + A MonsoonData object with the measured power data. + """ + num = duration * hz + oset = offset * hz + data = None + try: + data = self.take_samples(hz, num, sample_offset=oset) + if not data: + raise MonsoonError( + ("No data was collected in measurement %s.") % tag) + data.tag = tag + self.log.info("Measurement summary: %s", repr(data)) + finally: + self.mon.StopDataCollection() + return data + + def reconnect_monsoon(self): + """Reconnect Monsoon to serial port. + + """ + logging.info("Close serial connection") + self.mon.ser.close() + logging.info("Reset serial port") + time.sleep(5) + logging.info("Open serial connection") + self.mon.ser.open() + self.mon.ser.reset_input_buffer() + self.mon.ser.reset_output_buffer() diff --git a/acts/framework/acts/controllers/monsoon_lib/api/common.py b/acts/framework/acts/controllers/monsoon_lib/api/common.py deleted file mode 100644 index f932535467..0000000000 --- a/acts/framework/acts/controllers/monsoon_lib/api/common.py +++ /dev/null @@ -1,151 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from acts.signals import ControllerError - - -class MonsoonError(ControllerError): - """Raised for exceptions encountered when interfacing with a Monsoon device. - """ - - -class PassthroughStates(object): - """An enum containing the values for power monitor's passthrough states.""" - # "Off" or 0 means USB always off. - OFF = 0 - # "On" or 1 means USB always on. - ON = 1 - # "Auto" or 2 means USB is automatically turned off during sampling, and - # turned back on after sampling. - AUTO = 2 - - -PASSTHROUGH_STATES = { - 'off': PassthroughStates.OFF, - 'on': PassthroughStates.ON, - 'auto': PassthroughStates.AUTO -} - - -class MonsoonDataRecord(object): - """A data class for Monsoon data points.""" - def __init__(self, time, current): - """Creates a new MonsoonDataRecord. - - Args: - time: the string '{time}s', where time is measured in seconds since - the beginning of the data collection. - current: The current in Amperes as a string. - """ - self._time = float(time[:-1]) - self._current = float(current) - - @property - def time(self): - """The time the record was fetched.""" - return self._time - - @property - def current(self): - """The amount of current in Amperes measured for the given record.""" - return self._current - - @classmethod - def create_from_record_line(cls, line): - """Creates a data record from the line passed in from the output file. - """ - return cls(*line.split(' ')) - - -class MonsoonResult(object): - """An object that contains aggregated data collected during sampling. - - Attributes: - _num_samples: The number of samples gathered. - _sum_currents: The total sum of all current values gathered, in amperes. - _hz: The frequency sampling is being done at. - _voltage: The voltage output during sampling. - """ - - # The number of decimal places to round a value to. - ROUND_TO = 6 - - def __init__(self, num_samples, sum_currents, hz, voltage, datafile_path): - """Creates a new MonsoonResult. - - Args: - num_samples: the number of samples collected. - sum_currents: the total summation of every current measurement. - hz: the number of samples per second. - voltage: the voltage used during the test. - datafile_path: the path to the monsoon data file. - """ - self._num_samples = num_samples - self._sum_currents = sum_currents - self._hz = hz - self._voltage = voltage - self.tag = datafile_path - - def get_data_points(self): - """Returns an iterator of MonsoonDataRecords.""" - class MonsoonDataIterator: - def __init__(self, file): - self.file = file - - def __iter__(self): - with open(self.file, 'r') as f: - for line in f: - # Remove the newline character. - line.strip() - yield MonsoonDataRecord.create_from_record_line(line) - - return MonsoonDataIterator(self.tag) - - @property - def num_samples(self): - """The number of samples recorded during the test.""" - return self._num_samples - - @property - def average_current(self): - """Average current in mA.""" - if self.num_samples == 0: - return 0 - return round(self._sum_currents * 1000 / self.num_samples, - self.ROUND_TO) - - @property - def total_charge(self): - """Total charged used in the unit of mAh.""" - return round((self._sum_currents / self._hz) * 1000 / 3600, - self.ROUND_TO) - - @property - def total_power(self): - """Total power used.""" - return round(self.average_current * self._voltage, self.ROUND_TO) - - @property - def voltage(self): - """The voltage during the measurement (in Volts).""" - return self._voltage - - def __str__(self): - return ('avg current: %s\n' - 'total charge: %s\n' - 'total power: %s\n' - 'total samples: %s' % (self.average_current, self.total_charge, - self.total_power, self._num_samples)) diff --git a/acts/framework/acts/controllers/monsoon_lib/api/hvpm/monsoon.py b/acts/framework/acts/controllers/monsoon_lib/api/hvpm/monsoon.py deleted file mode 100644 index f1b03c9114..0000000000 --- a/acts/framework/acts/controllers/monsoon_lib/api/hvpm/monsoon.py +++ /dev/null @@ -1,159 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import multiprocessing -import time - -from Monsoon import HVPM -from Monsoon import Operations as op - -from acts.controllers.monsoon_lib.api.common import MonsoonResult -from acts.controllers.monsoon_lib.api.monsoon import BaseMonsoon -from acts.controllers.monsoon_lib.sampling.engine.assembly_line import AssemblyLineBuilder -from acts.controllers.monsoon_lib.sampling.engine.assembly_line import ThreadAssemblyLine -from acts.controllers.monsoon_lib.sampling.engine.transformers import DownSampler -from acts.controllers.monsoon_lib.sampling.engine.transformers import SampleAggregator -from acts.controllers.monsoon_lib.sampling.engine.transformers import Tee -from acts.controllers.monsoon_lib.sampling.hvpm.transformers import HvpmTransformer - - -class Monsoon(BaseMonsoon): - """The controller class for interacting with the HVPM Monsoon.""" - - # The device doesn't officially support voltages lower than this. Note that - # 0 is a valid voltage. - MIN_VOLTAGE = 0.8 - - # The Monsoon doesn't support setting higher voltages than this directly - # without tripping overvoltage. - # Note that it is possible to increase the voltage above this value by - # increasing the voltage by small increments over a period of time. - # The communication protocol supports up to 16V. - MAX_VOLTAGE = 13.5 - - def __init__(self, serial): - super().__init__() - self.serial = serial - self._mon = HVPM.Monsoon() - self._mon.setup_usb(serial) - if self._mon.Protocol is None: - raise ValueError('HVPM Monsoon %s could not be found.' % serial) - - def set_voltage(self, voltage): - """Sets the output voltage of monsoon. - - Args: - voltage: The voltage to set the output to. - """ - self._log.debug('Setting voltage to %sV.' % voltage) - self._mon.setVout(voltage) - - def set_max_current(self, amperes): - """Sets monsoon's max output current. - - Args: - amperes: The max current in A. - """ - self._mon.setRunTimeCurrentLimit(amperes) - - def set_max_initial_current(self, amperes): - """Sets the max power-up/initial current. - - Args: - amperes: The max initial current allowed in amperes. - """ - self._mon.setPowerUpCurrentLimit(amperes) - - @property - def status(self): - """Gets the status params of monsoon. - - Returns: - A dictionary of {status param, value} key-value pairs. - """ - self._mon.fillStatusPacket() - return self._mon.statusPacket - - def _set_usb_passthrough_mode(self, mode): - """Sends the call to set usb passthrough mode. - - Args: - mode: The state to set the USB passthrough to. Can either be the - string name of the state or the integer value. - - "Off" or 0 means USB always off. - "On" or 1 means USB always on. - "Auto" or 2 means USB is automatically turned off during - sampling, and turned back on after sampling. - """ - self._mon.setUSBPassthroughMode(mode) - - def _get_main_voltage(self): - """Returns the value of the voltage on the main channel.""" - # Any getValue call on a setX function will return the value set for X. - # Using this, we can pull the last setMainVoltage (or its default). - return (self._mon.Protocol.getValue(op.OpCodes.setMainVoltage, 4) / - op.Conversion.FLOAT_TO_INT) - - def measure_power(self, - duration, - measure_after_seconds=0, - hz=5000, - output_path=None, - transformers=None): - """See parent docstring for details.""" - voltage = self._get_main_voltage() - - aggregator = SampleAggregator(measure_after_seconds) - manager = multiprocessing.Manager() - - assembly_line_builder = AssemblyLineBuilder(manager.Queue, - ThreadAssemblyLine) - assembly_line_builder.source(HvpmTransformer(self.serial, duration)) - if hz != 5000: - assembly_line_builder.into(DownSampler(int(5000 / hz))) - if output_path: - assembly_line_builder.into(Tee(output_path)) - assembly_line_builder.into(aggregator) - if transformers: - for transformer in transformers: - assembly_line_builder.into(transformer) - - self.take_samples(assembly_line_builder.build()) - - manager.shutdown() - - self._mon.setup_usb(self.serial) - monsoon_data = MonsoonResult(aggregator.num_samples, - aggregator.sum_currents, hz, voltage, - output_path) - self._log.info('Measurement summary:\n%s', str(monsoon_data)) - return monsoon_data - - def reconnect_monsoon(self): - """Reconnect Monsoon to serial port.""" - self.release_monsoon_connection() - self._log.info('Closed monsoon connection.') - time.sleep(5) - self.establish_monsoon_connection() - - def release_monsoon_connection(self): - self._mon.closeDevice() - - def establish_monsoon_connection(self): - self._mon.setup_usb(self.serial) - # Makes sure the Monsoon is in the command-receiving state. - self._mon.stopSampling() diff --git a/acts/framework/acts/controllers/monsoon_lib/api/lvpm_stock/__init__.py b/acts/framework/acts/controllers/monsoon_lib/api/lvpm_stock/__init__.py deleted file mode 100644 index e69de29bb2..0000000000 --- a/acts/framework/acts/controllers/monsoon_lib/api/lvpm_stock/__init__.py +++ /dev/null diff --git a/acts/framework/acts/controllers/monsoon_lib/api/lvpm_stock/monsoon.py b/acts/framework/acts/controllers/monsoon_lib/api/lvpm_stock/monsoon.py deleted file mode 100644 index e8d116d83f..0000000000 --- a/acts/framework/acts/controllers/monsoon_lib/api/lvpm_stock/monsoon.py +++ /dev/null @@ -1,145 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -import multiprocessing -import time - -from acts.controllers.monsoon_lib.api.common import MonsoonResult -from acts.controllers.monsoon_lib.api.lvpm_stock.monsoon_proxy import MonsoonProxy -from acts.controllers.monsoon_lib.api.monsoon import BaseMonsoon -from acts.controllers.monsoon_lib.sampling.engine.assembly_line import AssemblyLineBuilder -from acts.controllers.monsoon_lib.sampling.engine.assembly_line import ThreadAssemblyLine -from acts.controllers.monsoon_lib.sampling.engine.transformers import DownSampler -from acts.controllers.monsoon_lib.sampling.engine.transformers import SampleAggregator -from acts.controllers.monsoon_lib.sampling.engine.transformers import Tee -from acts.controllers.monsoon_lib.sampling.lvpm_stock.stock_transformers import StockLvpmSampler - - -class Monsoon(BaseMonsoon): - """The controller class for interacting with the LVPM Monsoon.""" - - # The device protocol has a floor value for positive voltages. Note that 0 - # is still a valid voltage. - MIN_VOLTAGE = 2.01 - - # The device protocol does not support values above this. - MAX_VOLTAGE = 4.55 - - def __init__(self, serial, device=None): - super().__init__() - self._mon = MonsoonProxy(serialno=serial, device=device) - self.serial = serial - - def set_voltage(self, voltage): - """Sets the output voltage of monsoon. - - Args: - voltage: Voltage to set the output to. - """ - self._log.debug('Setting voltage to %sV.' % voltage) - self._mon.set_voltage(voltage) - - def set_max_current(self, amperes): - """Sets monsoon's max output current. - - Args: - amperes: The max current in A. - """ - self._mon.set_max_current(amperes) - - def set_max_initial_current(self, amperes): - """Sets the max power-up/initial current. - - Args: - amperes: The max initial current allowed in amperes. - """ - self._mon.set_max_initial_current(amperes) - - @property - def status(self): - """Gets the status params of monsoon. - - Returns: - A dictionary of {status param, value} key-value pairs. - """ - return self._mon.get_status() - - def _set_usb_passthrough_mode(self, mode): - """Sends the call to set usb passthrough mode. - - Args: - mode: The state to set the USB passthrough to. Can either be the - string name of the state or the integer value. - - "Off" or 0 means USB always off. - "On" or 1 means USB always on. - "Auto" or 2 means USB is automatically turned off during - sampling, and turned back on after sampling. - """ - self._mon.set_usb_passthrough(mode) - - def measure_power(self, - duration, - measure_after_seconds=0, - hz=5000, - output_path=None, - transformers=None): - """See parent docstring for details.""" - voltage = self._mon.get_voltage() - - aggregator = SampleAggregator(measure_after_seconds) - manager = multiprocessing.Manager() - - assembly_line_builder = AssemblyLineBuilder(manager.Queue, - ThreadAssemblyLine) - assembly_line_builder.source( - StockLvpmSampler(self.serial, duration + measure_after_seconds)) - if hz != 5000: - assembly_line_builder.into(DownSampler(int(round(5000 / hz)))) - if output_path is not None: - assembly_line_builder.into(Tee(output_path)) - assembly_line_builder.into(aggregator) - if transformers: - for transformer in transformers: - assembly_line_builder.into(transformer) - - self.take_samples(assembly_line_builder.build()) - - manager.shutdown() - - monsoon_data = MonsoonResult(aggregator.num_samples, - aggregator.sum_currents, hz, voltage, - output_path) - self._log.info('Measurement summary:\n%s', str(monsoon_data)) - return monsoon_data - - def reconnect_monsoon(self): - """Reconnect Monsoon to serial port.""" - self._log.debug('Close serial connection') - self._mon.ser.close() - self._log.debug('Reset serial port') - time.sleep(5) - self._log.debug('Open serial connection') - self._mon.ser.open() - self._mon.ser.reset_input_buffer() - self._mon.ser.reset_output_buffer() - - def release_monsoon_connection(self): - self._mon.release_dev_port() - - def establish_monsoon_connection(self): - self._mon.obtain_dev_port() - # Makes sure the Monsoon is in the command-receiving state. - self._mon.stop_data_collection() diff --git a/acts/framework/acts/controllers/monsoon_lib/api/lvpm_stock/monsoon_proxy.py b/acts/framework/acts/controllers/monsoon_lib/api/lvpm_stock/monsoon_proxy.py deleted file mode 100644 index 42c749883e..0000000000 --- a/acts/framework/acts/controllers/monsoon_lib/api/lvpm_stock/monsoon_proxy.py +++ /dev/null @@ -1,397 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -"""The interface for a USB-connected Monsoon power meter. - -Details on the protocol can be found at -(http://msoon.com/LabEquipment/PowerMonitor/) - -Based on the original py2 script of kens@google.com. -""" -import collections -import fcntl -import logging -import os -import select -import struct -import sys -import time - -import errno -import serial - -from acts.controllers.monsoon_lib.api.common import MonsoonError - - -class LvpmStatusPacket(object): - """The data received from asking an LVPM Monsoon for its status. - - Attributes names with the same values as HVPM match those defined in - Monsoon.Operations.statusPacket. - """ - - def __init__(self, values): - iter_value = iter(values) - self.packetType = next(iter_value) - self.firmwareVersion = next(iter_value) - self.protocolVersion = next(iter_value) - self.mainFineCurrent = next(iter_value) - self.usbFineCurrent = next(iter_value) - self.auxFineCurrent = next(iter_value) - self.voltage1 = next(iter_value) - self.mainCoarseCurrent = next(iter_value) - self.usbCoarseCurrent = next(iter_value) - self.auxCoarseCurrent = next(iter_value) - self.voltage2 = next(iter_value) - self.outputVoltageSetting = next(iter_value) - self.temperature = next(iter_value) - self.status = next(iter_value) - self.leds = next(iter_value) - self.mainFineResistor = next(iter_value) - self.serialNumber = next(iter_value) - self.sampleRate = next(iter_value) - self.dacCalLow = next(iter_value) - self.dacCalHigh = next(iter_value) - self.powerupCurrentLimit = next(iter_value) - self.runtimeCurrentLimit = next(iter_value) - self.powerupTime = next(iter_value) - self.usbFineResistor = next(iter_value) - self.auxFineResistor = next(iter_value) - self.initialUsbVoltage = next(iter_value) - self.initialAuxVoltage = next(iter_value) - self.hardwareRevision = next(iter_value) - self.temperatureLimit = next(iter_value) - self.usbPassthroughMode = next(iter_value) - self.mainCoarseResistor = next(iter_value) - self.usbCoarseResistor = next(iter_value) - self.auxCoarseResistor = next(iter_value) - self.defMainFineResistor = next(iter_value) - self.defUsbFineResistor = next(iter_value) - self.defAuxFineResistor = next(iter_value) - self.defMainCoarseResistor = next(iter_value) - self.defUsbCoarseResistor = next(iter_value) - self.defAuxCoarseResistor = next(iter_value) - self.eventCode = next(iter_value) - self.eventData = next(iter_value) - - -class MonsoonProxy(object): - """Class that directly talks to monsoon over serial. - - Provides a simple class to use the power meter. - See http://wiki/Main/MonsoonProtocol for information on the protocol. - """ - - # The format of the status packet. - STATUS_FORMAT = '>BBBhhhHhhhHBBBxBbHBHHHHBbbHHBBBbbbbbbbbbBH' - - # The list of fields that appear in the Monsoon status packet. - STATUS_FIELDS = [ - 'packetType', - 'firmwareVersion', - 'protocolVersion', - 'mainFineCurrent', - 'usbFineCurrent', - 'auxFineCurrent', - 'voltage1', - 'mainCoarseCurrent', - 'usbCoarseCurrent', - 'auxCoarseCurrent', - 'voltage2', - 'outputVoltageSetting', - 'temperature', - 'status', - 'leds', - 'mainFineResistorOffset', - 'serialNumber', - 'sampleRate', - 'dacCalLow', - 'dacCalHigh', - 'powerupCurrentLimit', - 'runtimeCurrentLimit', - 'powerupTime', - 'usbFineResistorOffset', - 'auxFineResistorOffset', - 'initialUsbVoltage', - 'initialAuxVoltage', - 'hardwareRevision', - 'temperatureLimit', - 'usbPassthroughMode', - 'mainCoarseResistorOffset', - 'usbCoarseResistorOffset', - 'auxCoarseResistorOffset', - 'defMainFineResistor', - 'defUsbFineResistor', - 'defAuxFineResistor', - 'defMainCoarseResistor', - 'defUsbCoarseResistor', - 'defAuxCoarseResistor', - 'eventCode', - 'eventData', - ] - - def __init__(self, device=None, serialno=None, connection_timeout=600): - """Establish a connection to a Monsoon. - - By default, opens the first available port, waiting if none are ready. - - Args: - device: The particular device port to be used. - serialno: The Monsoon's serial number. - connection_timeout: The number of seconds to wait for the device to - connect. - - Raises: - TimeoutError if unable to connect to the device. - """ - self.start_voltage = 0 - self.serial = serialno - - if device: - self.ser = serial.Serial(device, timeout=1) - return - # Try all devices connected through USB virtual serial ports until we - # find one we can use. - self._tempfile = None - self.obtain_dev_port(connection_timeout) - self.log = logging.getLogger() - - def obtain_dev_port(self, timeout=600): - """Obtains the device port for this Monsoon. - - Args: - timeout: The time in seconds to wait for the device to connect. - - Raises: - TimeoutError if the device was unable to be found, or was not - available. - """ - start_time = time.time() - - while start_time + timeout > time.time(): - for dev in os.listdir('/dev'): - prefix = 'ttyACM' - # Prefix is different on Mac OS X. - if sys.platform == 'darwin': - prefix = 'tty.usbmodem' - if not dev.startswith(prefix): - continue - tmpname = '/tmp/monsoon.%s.%s' % (os.uname()[0], dev) - self._tempfile = open(tmpname, 'w') - try: - os.chmod(tmpname, 0o666) - except OSError as e: - # Only ignore file modification errors (i.e., allow file - # not found errors to correctly raise). - if e.errno != errno.EACCES: - raise - - try: # Use a lock file to ensure exclusive access. - fcntl.flock(self._tempfile, fcntl.LOCK_EX | fcntl.LOCK_NB) - except IOError: - logging.error('Device %s is in use.', repr(dev)) - continue - - try: # try to open the device - self.ser = serial.Serial('/dev/%s' % dev, timeout=1) - self.stop_data_collection() # just in case - self._flush_input() # discard stale input - status = self.get_status() - except Exception as e: - logging.exception('Error opening device %s: %s', dev, e) - continue - - if not status: - logging.error('No response from device %s.', dev) - elif self.serial and status.serialNumber != self.serial: - logging.error('Another device serial #%d seen on %s', - status.serialNumber, dev) - else: - self.start_voltage = status.voltage1 - return - - self._tempfile = None - logging.info('Waiting for device...') - time.sleep(1) - raise TimeoutError( - 'Unable to connect to Monsoon device with ' - 'serial "%s" within %s seconds.' % (self.serial, timeout)) - - def release_dev_port(self): - """Releases the dev port used to communicate with the Monsoon device.""" - fcntl.flock(self._tempfile, fcntl.LOCK_UN) - self._tempfile.close() - self.ser.close() - - def get_status(self): - """Requests and waits for status. - - Returns: - status dictionary. - """ - self._send_struct('BBB', 0x01, 0x00, 0x00) - read_bytes = self._read_packet() - - if not read_bytes: - raise MonsoonError('Failed to read Monsoon status') - expected_size = struct.calcsize(self.STATUS_FORMAT) - if len(read_bytes) != expected_size or read_bytes[0] != 0x10: - raise MonsoonError('Wanted status, dropped type=0x%02x, len=%d', - read_bytes[0], len(read_bytes)) - - status = collections.OrderedDict( - zip(self.STATUS_FIELDS, - struct.unpack(self.STATUS_FORMAT, read_bytes))) - p_type = status['packetType'] - if p_type != 0x10: - raise MonsoonError('Packet type %s is not 0x10.' % p_type) - - for k in status.keys(): - if k.endswith('VoltageSetting'): - status[k] = 2.0 + status[k] * 0.01 - elif k.endswith('FineCurrent'): - pass # needs calibration data - elif k.endswith('CoarseCurrent'): - pass # needs calibration data - elif k.startswith('voltage') or k.endswith('Voltage'): - status[k] = status[k] * 0.000125 - elif k.endswith('Resistor'): - status[k] = 0.05 + status[k] * 0.0001 - if k.startswith('aux') or k.startswith('defAux'): - status[k] += 0.05 - elif k.endswith('CurrentLimit'): - status[k] = 8 * (1023 - status[k]) / 1023.0 - return LvpmStatusPacket(status.values()) - - def set_voltage(self, voltage): - """Sets the voltage on the device to the specified value. - - Args: - voltage: Either 0 or a value between 2.01 and 4.55 inclusive. - - Raises: - struct.error if voltage is an invalid value. - """ - # The device has a range of 255 voltage values: - # - # 0 is "off". Note this value not set outputVoltageSetting to - # zero. The previous outputVoltageSetting value is - # maintained. - # 1 is 2.01V. - # 255 is 4.55V. - voltage_byte = max(0, round((voltage - 2.0) * 100)) - self._send_struct('BBB', 0x01, 0x01, voltage_byte) - - def get_voltage(self): - """Get the output voltage. - - Returns: - Current Output Voltage (in unit of V). - """ - return self.get_status().outputVoltageSetting - - def set_max_current(self, i): - """Set the max output current.""" - if i < 0 or i > 8: - raise MonsoonError(('Target max current %sA, is out of acceptable ' - 'range [0, 8].') % i) - val = 1023 - int((i / 8) * 1023) - self._send_struct('BBB', 0x01, 0x0a, val & 0xff) - self._send_struct('BBB', 0x01, 0x0b, val >> 8) - - def set_max_initial_current(self, current): - """Sets the maximum initial current, in mA.""" - if current < 0 or current > 8: - raise MonsoonError(('Target max current %sA, is out of acceptable ' - 'range [0, 8].') % current) - val = 1023 - int((current / 8) * 1023) - self._send_struct('BBB', 0x01, 0x08, val & 0xff) - self._send_struct('BBB', 0x01, 0x09, val >> 8) - - def set_usb_passthrough(self, passthrough_mode): - """Set the USB passthrough mode. - - Args: - passthrough_mode: The mode used for passthrough. Must be the integer - value. See common.PassthroughModes for a list of values and - their meanings. - """ - self._send_struct('BBB', 0x01, 0x10, passthrough_mode) - - def get_usb_passthrough(self): - """Get the USB passthrough mode: 0 = off, 1 = on, 2 = auto. - - Returns: - The mode used for passthrough, as an integer. See - common.PassthroughModes for a list of values and their meanings. - """ - return self.get_status().usbPassthroughMode - - def start_data_collection(self): - """Tell the device to start collecting and sending measurement data.""" - self._send_struct('BBB', 0x01, 0x1b, 0x01) # Mystery command - self._send_struct('BBBBBBB', 0x02, 0xff, 0xff, 0xff, 0xff, 0x03, 0xe8) - - def stop_data_collection(self): - """Tell the device to stop collecting measurement data.""" - self._send_struct('BB', 0x03, 0x00) # stop - - def _send_struct(self, fmt, *args): - """Pack a struct (without length or checksum) and send it.""" - # Flush out the input buffer before sending data - self._flush_input() - data = struct.pack(fmt, *args) - data_len = len(data) + 1 - checksum = (data_len + sum(bytearray(data))) % 256 - out = struct.pack('B', data_len) + data + struct.pack('B', checksum) - self.ser.write(out) - - def _read_packet(self): - """Returns a single packet as a string (without length or checksum).""" - len_char = self.ser.read(1) - if not len_char: - raise MonsoonError('Reading from serial port timed out') - - data_len = ord(len_char) - if not data_len: - return '' - result = self.ser.read(int(data_len)) - result = bytearray(result) - if len(result) != data_len: - raise MonsoonError( - 'Length mismatch, expected %d bytes, got %d bytes.', data_len, - len(result)) - body = result[:-1] - checksum = (sum(struct.unpack('B' * len(body), body)) + data_len) % 256 - if result[-1] != checksum: - raise MonsoonError( - 'Invalid checksum from serial port! Expected %s, got %s', - hex(checksum), hex(result[-1])) - return result[:-1] - - def _flush_input(self): - """Flushes all read data until the input is empty.""" - self.ser.reset_input_buffer() - while True: - ready_r, ready_w, ready_x = select.select([self.ser], [], - [self.ser], 0) - if len(ready_x) > 0: - raise MonsoonError('Exception from serial port.') - elif len(ready_r) > 0: - self.ser.read(1) # This may cause underlying buffering. - # Flush the underlying buffer too. - self.ser.reset_input_buffer() - else: - break diff --git a/acts/framework/acts/controllers/monsoon_lib/api/monsoon.py b/acts/framework/acts/controllers/monsoon_lib/api/monsoon.py deleted file mode 100644 index a55fc8a0e0..0000000000 --- a/acts/framework/acts/controllers/monsoon_lib/api/monsoon.py +++ /dev/null @@ -1,294 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -import logging -import time - -from acts.controllers.monsoon_lib.api import common -from acts.controllers.monsoon_lib.api.common import MonsoonError -from acts.controllers.monsoon_lib.api.common import PassthroughStates - - -class BaseMonsoon(object): - """The base class for all Monsoon interface devices. - - Attributes: - on_reconnect: The function to call when Monsoon has reconnected USB. - Raises TimeoutError if the device cannot be found. - on_disconnect: The function to call when Monsoon has disconnected USB. - """ - - # The minimum non-zero supported voltage for the given Monsoon device. - MIN_VOLTAGE = NotImplemented - - # The maximum practical voltage for the given Monsoon device. - MAX_VOLTAGE = NotImplemented - - # When ramping voltage, the rate in volts/second to increase the voltage. - VOLTAGE_RAMP_RATE = 3 - - # The time step between voltage increments. This value does not need to be - # modified. - VOLTAGE_RAMP_TIME_STEP = .1 - - def __init__(self): - self._log = logging.getLogger() - self.on_disconnect = lambda: None - self.on_reconnect = lambda: None - - @classmethod - def get_closest_valid_voltage(cls, voltage): - """Returns the nearest valid voltage value.""" - if voltage < cls.MIN_VOLTAGE / 2: - return 0 - else: - return max(cls.MIN_VOLTAGE, min(voltage, cls.MAX_VOLTAGE)) - - @classmethod - def is_voltage_valid(cls, voltage): - """Returns True iff the given voltage can be set on the device. - - Valid voltage values are {x | x ∈ {0} ∪ [MIN_VOLTAGE, MAX_VOLTAGE]}. - """ - return cls.get_closest_valid_voltage(voltage) == voltage - - @classmethod - def validate_voltage(cls, voltage): - """Raises a MonsoonError if the given voltage cannot be set.""" - if not cls.is_voltage_valid(voltage): - raise MonsoonError('Invalid voltage %s. Voltage must be zero or ' - 'within range [%s, %s].' % - (voltage, cls.MIN_VOLTAGE, cls.MAX_VOLTAGE)) - - def set_voltage_safe(self, voltage): - """Sets the output voltage of monsoon to a safe value. - - This function is effectively: - self.set_voltage(self.get_closest_valid_voltage(voltage)). - - Args: - voltage: The voltage to set the output to. - """ - normalized_voltage = self.get_closest_valid_voltage(voltage) - if voltage != normalized_voltage: - self._log.debug( - 'Requested voltage %sV is invalid.' % normalized_voltage) - self.set_voltage(normalized_voltage) - - def ramp_voltage(self, start, end): - """Ramps up the voltage to the specified end voltage. - - Increments the voltage by fixed intervals of .1 Volts every .1 seconds. - - Args: - start: The starting voltage - end: the end voltage. Must be higher than the starting voltage. - """ - voltage = start - - while voltage < end: - self.set_voltage(self.get_closest_valid_voltage(voltage)) - voltage += self.VOLTAGE_RAMP_RATE * self.VOLTAGE_RAMP_TIME_STEP - time.sleep(self.VOLTAGE_RAMP_TIME_STEP) - self.set_voltage(end) - - def usb(self, state): - """Sets the monsoon's USB passthrough mode. - - This is specific to the USB port in front of the monsoon box which - connects to the powered device, NOT the USB that is used to talk to the - monsoon itself. - - Args: - state: The state to set the USB passthrough to. Can either be the - string name of the state or the integer value. - - "Off" or 0 means USB always off. - "On" or 1 means USB always on. - "Auto" or 2 means USB is automatically turned off during - sampling, and turned back on after sampling. - - Raises: - ValueError if the state given is invalid. - TimeoutError if unable to set the passthrough mode within a minute, - or if the device was not found after setting the state to ON. - """ - expected_state = None - states_dict = common.PASSTHROUGH_STATES - if isinstance(state, str): - normalized_state = state.lower() - expected_state = states_dict.get(normalized_state, None) - elif state in states_dict.values(): - expected_state = state - - if expected_state is None: - raise ValueError( - 'USB passthrough state %s is not a valid state. ' - 'Expected any of %s.' % (repr(state), states_dict)) - if self.status.usbPassthroughMode == expected_state: - return - - if expected_state in [PassthroughStates.OFF, PassthroughStates.AUTO]: - self.on_disconnect() - - start_time = time.time() - time_limit_seconds = 60 - while self.status.usbPassthroughMode != expected_state: - current_time = time.time() - if current_time >= start_time + time_limit_seconds: - raise TimeoutError('Setting USB mode timed out after %s ' - 'seconds.' % time_limit_seconds) - self._set_usb_passthrough_mode(expected_state) - time.sleep(1) - - if expected_state in [PassthroughStates.ON]: - self._on_reconnect() - - def attach_device(self, android_device): - """Deprecated. Use the connection callbacks instead.""" - - def on_reconnect(): - # Make sure the device is connected and available for commands. - android_device.wait_for_boot_completion() - android_device.start_services() - # Release wake lock to put device into sleep. - android_device.droid.goToSleepNow() - self._log.info('Dut reconnected.') - - def on_disconnect(): - android_device.stop_services() - time.sleep(1) - - self.on_reconnect = on_reconnect - self.on_disconnect = on_disconnect - - def set_on_disconnect(self, callback): - """Sets the callback to be called when Monsoon disconnects USB.""" - self.on_disconnect = callback - - def set_on_reconnect(self, callback): - """Sets the callback to be called when Monsoon reconnects USB.""" - self.on_reconnect = callback - - def take_samples(self, assembly_line): - """Runs the sampling procedure based on the given assembly line.""" - # Sampling is always done in a separate process. Release the Monsoon - # so the child process can sample from the Monsoon. - self.release_monsoon_connection() - - try: - assembly_line.run() - finally: - self.establish_monsoon_connection() - - def measure_power(self, - duration, - measure_after_seconds=0, - hz=5000, - output_path=None, - transformers=None): - """Measure power consumption of the attached device. - - This function is a default implementation of measuring power consumption - during gathering measurements. For offline methods, use take_samples() - with a custom AssemblyLine. - - Args: - duration: Amount of time to measure power for. Note: - total_duration = duration + measure_after_seconds - measure_after_seconds: Number of seconds to wait before beginning - reading measurement. - hz: The number of samples to collect per second. Must be a factor - of 5000. - output_path: The location to write the gathered data to. - transformers: A list of Transformer objects that receive passed-in - samples. Runs in order sent. - - Returns: - A MonsoonData object with the measured power data. - """ - raise NotImplementedError() - - def set_voltage(self, voltage): - """Sets the output voltage of monsoon. - - Args: - voltage: The voltage to set the output to. - """ - raise NotImplementedError() - - def set_max_current(self, amperes): - """Sets monsoon's max output current. - - Args: - amperes: The max current in A. - """ - raise NotImplementedError() - - def set_max_initial_current(self, amperes): - """Sets the max power-up/initial current. - - Args: - amperes: The max initial current allowed in amperes. - """ - raise NotImplementedError() - - @property - def status(self): - """Gets the status params of monsoon. - - Returns: - A dictionary of {status param, value} key-value pairs. - """ - raise NotImplementedError() - - def _on_reconnect(self): - """Reconnects the DUT over USB. - - Raises: - TimeoutError upon failure to reconnect over USB. - """ - self._log.info('Reconnecting dut.') - # Wait for one second to ensure that the relay is ready, then - # attempt to reconnect. If reconnect times out, reset the passthrough - # state and try again. - time.sleep(1) - try: - self.on_reconnect() - except TimeoutError as err: - self._log.info('Toggling USB and trying again. %s' % err) - self.usb(PassthroughStates.OFF) - time.sleep(1) - self.usb(PassthroughStates.ON) - self.on_reconnect() - - def _set_usb_passthrough_mode(self, mode): - """Makes the underlying Monsoon call to set passthrough mode.""" - raise NotImplementedError() - - def reconnect_monsoon(self): - """Reconnects the Monsoon Serial/USB connection.""" - raise NotImplementedError() - - def release_monsoon_connection(self): - """Releases the underlying monsoon Serial or USB connection. - - Useful for allowing other processes access to the device. - """ - raise NotImplementedError() - - def establish_monsoon_connection(self): - """Establishes the underlying monsoon Serial or USB connection.""" - raise NotImplementedError() diff --git a/acts/framework/acts/controllers/monsoon_lib/sampling/__init__.py b/acts/framework/acts/controllers/monsoon_lib/sampling/__init__.py deleted file mode 100644 index e69de29bb2..0000000000 --- a/acts/framework/acts/controllers/monsoon_lib/sampling/__init__.py +++ /dev/null diff --git a/acts/framework/acts/controllers/monsoon_lib/sampling/common.py b/acts/framework/acts/controllers/monsoon_lib/sampling/common.py deleted file mode 100644 index debffd0856..0000000000 --- a/acts/framework/acts/controllers/monsoon_lib/sampling/common.py +++ /dev/null @@ -1,31 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - - -class UncalibratedSampleChunk(object): - """An uncalibrated sample collection stored with its calibration data. - - These objects are created by the SampleChunker Transformer and read by - the CalibrationApplier Transformer. - - Attributes: - samples: the uncalibrated samples list - calibration_data: the data used to calibrate the samples. - """ - - def __init__(self, samples, calibration_data): - self.samples = samples - self.calibration_data = calibration_data diff --git a/acts/framework/acts/controllers/monsoon_lib/sampling/engine/__init__.py b/acts/framework/acts/controllers/monsoon_lib/sampling/engine/__init__.py deleted file mode 100644 index e69de29bb2..0000000000 --- a/acts/framework/acts/controllers/monsoon_lib/sampling/engine/__init__.py +++ /dev/null diff --git a/acts/framework/acts/controllers/monsoon_lib/sampling/engine/assembly_line.py b/acts/framework/acts/controllers/monsoon_lib/sampling/engine/assembly_line.py deleted file mode 100644 index 7f4bab2bf7..0000000000 --- a/acts/framework/acts/controllers/monsoon_lib/sampling/engine/assembly_line.py +++ /dev/null @@ -1,331 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import queue -from concurrent.futures import ThreadPoolExecutor -import multiprocessing - - -class AssemblyLine(object): - """A class for passing data through a chain of threads or processes, - assembly-line style. - - Attributes: - nodes: A list of AssemblyLine.Nodes that pass data from one node to the - next. - """ - - class Node(object): - """A Node in an AssemblyLine. - - Each node is composed of the following: - - input_stream output_stream - ==============> [ transformer ] ===============> - - Attributes: - transformer: The Transformer that takes input from the input - stream, transforms the data, and sends it to the output stream. - input_stream: The stream of data to be taken in as input to this - transformer. This stream is the stream to be registered as the - previous node's output stream. - - Properties: - output_stream: The stream of data to be passed to the next node. - """ - - def __init__(self, transformer=None, input_stream=None): - self.transformer = transformer - self.input_stream = input_stream - - @property - def output_stream(self): - return self.transformer.output_stream - - @output_stream.setter - def output_stream(self, value): - self.transformer.output_stream = value - - def __init__(self, nodes): - """Initializes an AssemblyLine class. - - nodes: - A list of AssemblyLine.Node objects. - """ - self.nodes = nodes - - def run(self): - """Runs the AssemblyLine, passing the data between each work node.""" - raise NotImplementedError() - - -class ProcessAssemblyLine(AssemblyLine): - """An AssemblyLine that uses processes to schedule work on nodes.""" - - def run(self): - """Runs the AssemblyLine within a process pool.""" - if not self.nodes: - # If self.nodes is empty, it will create a multiprocessing.Pool of - # 0 nodes, which raises a ValueError. - return - - process_pool = multiprocessing.Pool(processes=len(self.nodes)) - for node in self.nodes: - process_pool.apply_async(node.transformer.transform, - [node.input_stream]) - process_pool.close() - process_pool.join() - - -class ThreadAssemblyLine(AssemblyLine): - """An AssemblyLine that uses threading to schedule work on nodes.""" - - def run(self): - """Runs the AssemblyLine within a thread pool.""" - with ThreadPoolExecutor(max_workers=len(self.nodes)) as thread_pool: - for node in self.nodes: - thread_pool.submit(node.transformer.transform, - node.input_stream) - - -class AssemblyLineBuilder(object): - """An abstract class that builds an AssemblyLine object. - - Attributes: - _assembly_line_generator: The callable that creates the AssemblyLine. - Should be in the form of: - - Args: - A list of AssemblyLine.Node objects. - - Returns: - An AssemblyLine object. - - _queue_generator: The callable that creates new queues to be used for - BufferStreams. Should be in the form of: - - Args: - None. - - Returns: - A Queue object. - """ - - def __init__(self, queue_generator, assembly_line_generator): - """Creates an AssemblyLineBuilder. - - Args: - queue_generator: A callable of type lambda: Queue(). - assembly_line_generator: A callable of type - lambda list<AssemblyLine.Node>: AssemblyLine. - """ - super().__init__() - self._assembly_line_generator = assembly_line_generator - self._queue_generator = queue_generator - - self.nodes = [] - self._built = False - - @property - def built(self): - return self._built - - def __generate_queue(self): - """Returns a new Queue object for passing information between nodes.""" - return self._queue_generator() - - @property - def queue_generator(self): - """Returns the callable used for generating queues.""" - return self._queue_generator - - def source(self, transformer, input_stream=None): - """Adds a SourceTransformer to the AssemblyLine. - - Must be the first function call on the AssemblyLineBuilder. - - Args: - transformer: The SourceTransformer that generates data for the - AssemblyLine to process. - input_stream: The input stream to use, if necessary. - - Raises: - ValueError if source is not the first transformer to be added to - the AssemblyLine, or the AssemblyLine has been built. - """ - if self.nodes: - raise ValueError('AssemblyLines can only have a single source.') - if input_stream is None: - input_stream = DevNullBufferStream() - self.nodes.append(AssemblyLine.Node(transformer, input_stream)) - return self - - def into(self, transformer): - """Adds the given transformer next in the AssemblyLine. - - Args: - transformer: The transformer next in the AssemblyLine. - - Raises: - ValueError if no source node is set, or the AssemblyLine has been - built. - """ - if not self.nodes: - raise ValueError('The source transformer must be set first.') - if self.built: - raise ValueError('Cannot add additional nodes after the ' - 'AssemblyLine has been built.') - stream = BufferStream(self.__generate_queue()) - self.nodes[-1].transformer.set_output_stream(stream) - self.nodes.append(AssemblyLine.Node(transformer, stream)) - return self - - def build(self, output_stream=None): - """Builds the AssemblyLine object. - - Note that after this function is called this AssemblyLineBuilder cannot - be used again, as it is already marked as built. - """ - if self.built: - raise ValueError('The AssemblyLine is already built.') - if not self.nodes: - raise ValueError('Cannot create an empty assembly line.') - self._built = True - if output_stream is None: - output_stream = DevNullBufferStream() - self.nodes[-1].output_stream = output_stream - return self._assembly_line_generator(self.nodes) - - -class ThreadAssemblyLineBuilder(AssemblyLineBuilder): - """An AssemblyLineBuilder for generating ThreadAssemblyLines.""" - - def __init__(self, queue_generator=queue.Queue): - super().__init__(queue_generator, ThreadAssemblyLine) - - -class ProcessAssemblyLineBuilder(AssemblyLineBuilder): - """An AssemblyLineBuilder for ProcessAssemblyLines. - - Attributes: - manager: The multiprocessing.Manager used for having queues communicate - with one another over multiple processes. - """ - - def __init__(self): - self.manager = multiprocessing.Manager() - super().__init__(self.manager.Queue, ProcessAssemblyLine) - - -class IndexedBuffer(object): - """A buffer indexed with the order it was generated in.""" - - def __init__(self, index, size_or_buffer): - """Creates an IndexedBuffer. - - Args: - index: The integer index associated with the buffer. - size_or_buffer: - either: - An integer specifying the number of slots in the buffer OR - A list to be used as a buffer. - """ - self.index = index - if isinstance(size_or_buffer, int): - self.buffer = [None] * size_or_buffer - else: - self.buffer = size_or_buffer - - -class BufferList(list): - """A list of Buffers. - - This type is useful for differentiating when a buffer has been returned - from a transformer, vs when a list of buffers has been returned from a - transformer. - """ - - -class BufferStream(object): - """An object that acts as a stream between two transformers.""" - - # The object passed to the buffer queue to signal the end-of-stream. - END = None - - def __init__(self, buffer_queue): - """Creates a new BufferStream. - - Args: - buffer_queue: A Queue object used to pass data along the - BufferStream. - """ - self._buffer_queue = buffer_queue - - def initialize(self): - """Initializes the stream. - - When running BufferStreams through multiprocessing, initialize must - only be called on the process using the BufferStream. - """ - # Here we need to make any call to the stream to initialize it. This - # makes read and write times for the first buffer faster, preventing - # the data at the beginning from being dropped. - self._buffer_queue.qsize() - - def end_stream(self): - """Closes the stream. - - By convention, a None object is used, mirroring file reads returning - an empty string when the end of file is reached. - """ - self._buffer_queue.put(None, block=False) - - def add_indexed_buffer(self, buffer): - """Adds the given buffer to the buffer stream.""" - self._buffer_queue.put(buffer, block=False) - - def remove_indexed_buffer(self): - """Removes an indexed buffer from the array. - - This operation blocks until data is received. - - Returns: - an IndexedBuffer. - """ - return self._buffer_queue.get() - - -class DevNullBufferStream(BufferStream): - """A BufferStream that is always empty.""" - - def __init__(self, *_): - super().__init__(None) - - def initialize(self): - """Does nothing. Nothing to initialize.""" - pass - - def end_stream(self): - """Does nothing. The stream always returns end-of-stream when read.""" - pass - - def add_indexed_buffer(self, buffer): - """Imitating /dev/null, nothing will be written to the stream.""" - pass - - def remove_indexed_buffer(self): - """Always returns the end-of-stream marker.""" - return None diff --git a/acts/framework/acts/controllers/monsoon_lib/sampling/engine/calibration.py b/acts/framework/acts/controllers/monsoon_lib/sampling/engine/calibration.py deleted file mode 100644 index 21e785f766..0000000000 --- a/acts/framework/acts/controllers/monsoon_lib/sampling/engine/calibration.py +++ /dev/null @@ -1,181 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - - -class CalibrationError(Exception): - """Raised when a value is requested before it is properly calibrated.""" - - -class CalibrationCollection(object): - """The interface for keeping track of calibration values. - - This class is an abstract representation of a collection of Calibration - values. Some CalibrationCollections may simply be a dictionary that returns - values given to it (see CalibrationScalars). Others may accept multiple - values and return the average for a set rolling window (see - CalibrationWindow). - - Whichever the implementation, this interface gives end-users a way of - setting and querying a collection of calibration data that comes from a - Monsoon device. - """ - - def add(self, channel, origin, granularity, value): - """Adds a value to the calibration storage. - - The passed in channel, origin, and granularity arguments will be used - as a key to handle and store the value passed in. - - Args: - channel: The channel this value comes from. See - MonsoonConstants.Channel. - origin: The origin type for this value. See MonsoonConstants.Origin. - granularity: The granularity type for this value. See - MonsoonConstants.Granularity. - value: The value to set within the collection. - """ - raise NotImplementedError() - - def get_keys(self): - """Returns the list of possible keys for obtaining calibration data. - - Not all possible (Channel, Origin, Granularity) combinations may be - available for all CalibrationCollections. It is also not guaranteed the - CalibrationCollection's key set is static. - """ - raise NotImplementedError() - - def get(self, channel, origin, granularity): - """Returns the calibration value for a given key.""" - raise NotImplementedError() - - -class CalibrationWindows(CalibrationCollection): - """A class that holds calibration data in sliding windows. - - After the window size has been filled, a calibration value is removed every - time a new calibration value is added. - """ - - def __init__(self, calibration_window_size=5): - """Creates a collection of CalibrationWindows. - - calibration_window_size: The number of entries in the rolling window to - consider for calibration. - """ - super().__init__() - self._calibrations = dict() - self._calibration_window_size = calibration_window_size - - def add(self, channel, origin, granularity, value): - """Adds the given value to the given calibration window. - - Args: - channel: The channel being calibrated. - origin: The origin value being calibrated. - granularity: The granularity level being calibrated. - value: The calibration value. - """ - window = self._calibrations[(channel, origin, granularity)] - if len(window) == self._calibration_window_size: - window.popleft() - window.append(value) - - def get_keys(self): - return self._calibrations.keys() - - def get(self, channel, origin, granularity): - window = self._calibrations[(channel, origin, granularity)] - if len(window) < self._calibration_window_size: - raise CalibrationError('%s is not calibrated yet.' % repr( - (channel, origin, granularity))) - return sum(window) / self._calibration_window_size - - -class CalibrationScalars(CalibrationCollection): - """A collection of calibrations where scalar values are used. - - Reading scalar calibration values are faster than calculating the - calibration value from rolling windows. - """ - - def __init__(self): - self._calibrations = dict() - - def get_keys(self): - return self._calibrations.keys() - - def add(self, channel, origin, granularity, value): - """Adds a value to the calibration storage. - - Note that if a value is already within the collection, it will be - overwritten, since CalibrationScalars can only hold a single value. - - Args: - channel: The channel being calibrated. - origin: The origin value being calibrated. - granularity: The granularity level being calibrated. - value: The calibration value. - """ - self._calibrations[(channel, origin, granularity)] = value - - def get(self, channel, origin, granularity): - return self._calibrations[(channel, origin, granularity)] - - -class CalibrationSnapshot(CalibrationScalars): - """A collection of calibrations taken from another CalibrationCollection. - - CalibrationSnapshot calculates all of the calibration values of another - CalibrationCollection and creates a snapshot of those values. This allows - the CalibrationWindows to continue getting new values while another thread - processes the calibration on previously gathered values. - """ - - def __init__(self, calibration_collection): - """Generates a CalibrationSnapshot from another CalibrationCollection. - - Args: - calibration_collection: The CalibrationCollection to create a - snapshot of. - """ - super().__init__() - - if not isinstance(calibration_collection, CalibrationCollection): - raise ValueError('Argument must inherit from ' - 'CalibrationCollection.') - - for key in calibration_collection.get_keys(): - try: - # key's type is tuple(Channel, Origin, Granularity) - value = calibration_collection.get(*key) - except CalibrationError as calibration_error: - # If uncalibrated, store the CalibrationError and raise when a - # user has asked for the value. - value = calibration_error - self._calibrations[key] = value - - def get(self, channel, origin, granularity): - """Returns the calibration value for the given key. - - Raises: - CalibrationError if the requested key is not calibrated. - """ - value = self._calibrations[(channel, origin, granularity)] - if isinstance(value, CalibrationError): - # The user requested an uncalibrated value. Raise that error. - raise value - return value diff --git a/acts/framework/acts/controllers/monsoon_lib/sampling/engine/transformer.py b/acts/framework/acts/controllers/monsoon_lib/sampling/engine/transformer.py deleted file mode 100644 index ca9e4fb4dc..0000000000 --- a/acts/framework/acts/controllers/monsoon_lib/sampling/engine/transformer.py +++ /dev/null @@ -1,223 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import logging - -from acts.controllers.monsoon_lib.sampling.engine.assembly_line import BufferList -from acts.controllers.monsoon_lib.sampling.engine.assembly_line import BufferStream -from acts.controllers.monsoon_lib.sampling.engine.assembly_line import DevNullBufferStream -from acts.controllers.monsoon_lib.sampling.engine.assembly_line import IndexedBuffer - - -class Transformer(object): - """An object that represents how to transform a given buffer into a result. - - Attributes: - output_stream: The stream to output data to upon transformation. - Defaults to a DevNullBufferStream. - """ - - def __init__(self): - self.output_stream = DevNullBufferStream(None) - - def set_output_stream(self, output_stream): - """Sets the Transformer's output stream to the given output stream.""" - self.output_stream = output_stream - - def transform(self, input_stream): - """Transforms input_stream data and passes it to self.output_stream. - - Args: - input_stream: The BufferStream of input data this transformer should - transform. Note that the type of data stored within BufferStream - is not guaranteed to be in the format expected, much like STDIN - is not guaranteed to be the format a process expects. However, - for performance, users should expect the data to be properly - formatted anyway. - """ - input_stream.initialize() - self.output_stream.initialize() - class_name = self.__class__.__qualname__ - try: - logging.debug('%s transformer beginning.', class_name) - self.on_begin() - logging.debug('%s transformation started.', class_name) - self._transform(input_stream) - except Exception: - # TODO(markdr): Get multi-process error reporting to play nicer. - logging.exception('%s ran into an exception.', class_name) - raise - finally: - logging.debug('%s transformation ended.', class_name) - self.on_end() - logging.debug('%s finished.', class_name) - - def _transform_buffer(self, buffer): - """Transforms a given buffer. - - The implementation can either: - - 1) Return the transformed buffer. Can be either in-place or a new - buffer. - - 2) Return a BufferList: a list of transformed buffers. This is useful - for grouping data together for faster operations. - - Args: - buffer: The buffer to transform - - Returns: - either a buffer or a BufferList. See detailed documentation. - """ - raise NotImplementedError() - - def _on_end_of_stream(self, input_stream): - """To be called when the input stream has sent the end of stream signal. - - This is particularly useful for flushing any stored memory into the - output stream. - - Args: - input_stream: the stream that was closed. - """ - # By default, this function closes the output stream. - self.output_stream.end_stream() - - def _transform(self, input_stream): - """Should call _transform_buffer within this function.""" - raise NotImplementedError() - - def on_begin(self): - """A function called before the transform loop begins.""" - pass - - def on_end(self): - """A function called after the transform loop has ended.""" - pass - - -class SourceTransformer(Transformer): - """The base class for generating data in an AssemblyLine. - - Note that any Transformer will be able to generate data, but this class is - a generic way to send data. - - Attributes: - _buffer_size: The buffer size for each IndexedBuffer sent over the - output stream. - """ - - def __init__(self): - super().__init__() - # Defaulted to 64, which is small enough to be passed within the .6ms - # window, but large enough so that it does not spam the queue. - self._buffer_size = 64 - - def _transform(self, _): - """Generates data and sends it to the output stream.""" - buffer_index = 0 - while True: - indexed_buffer = IndexedBuffer(buffer_index, self._buffer_size) - buffer = self._transform_buffer(indexed_buffer.buffer) - if buffer is BufferStream.END: - break - indexed_buffer.buffer = buffer - self.output_stream.add_indexed_buffer(indexed_buffer) - buffer_index += 1 - - self.output_stream.end_stream() - - def _transform_buffer(self, buffer): - """Fills the passed-in buffer with data.""" - raise NotImplementedError() - - -class SequentialTransformer(Transformer): - """A transformer that receives input in sequential order. - - Attributes: - _next_index: The index of the next IndexedBuffer that should be read. - """ - - def __init__(self): - super().__init__() - self._next_index = 0 - - def _transform(self, input_stream): - while True: - indexed_buffer = input_stream.remove_indexed_buffer() - if indexed_buffer is BufferStream.END: - break - buffer_or_buffers = self._transform_buffer(indexed_buffer.buffer) - if buffer_or_buffers is not None: - self._send_buffers(buffer_or_buffers) - - self._on_end_of_stream(input_stream) - - def _send_buffers(self, buffer_or_buffer_list): - """Sends buffers over to the output_stream. - - Args: - buffer_or_buffer_list: A BufferList or buffer object. Note that if - buffer is None, it is effectively an end-of-stream signal. - """ - if not isinstance(buffer_or_buffer_list, BufferList): - # Assume a single buffer was returned - buffer_or_buffer_list = BufferList([buffer_or_buffer_list]) - - buffer_list = buffer_or_buffer_list - for buffer in buffer_list: - new_buffer = IndexedBuffer(self._next_index, buffer) - self.output_stream.add_indexed_buffer(new_buffer) - self._next_index += 1 - - def _transform_buffer(self, buffer): - raise NotImplementedError() - - -class ParallelTransformer(Transformer): - """A Transformer that is capable of running in parallel. - - Buffers received may be unordered. For ordered input, use - SequentialTransformer. - """ - - def _transform(self, input_stream): - while True: - indexed_buffer = input_stream.remove_indexed_buffer() - if indexed_buffer is None: - break - buffer = self._transform_buffer(indexed_buffer.buffer) - indexed_buffer.buffer = buffer - self.output_stream.add_indexed_buffer(indexed_buffer) - - self._on_end_of_stream(input_stream) - - def _transform_buffer(self, buffer): - """Transforms a given buffer. - - Note that ParallelTransformers can NOT return a BufferList. This is a - limitation with the current indexing system. If the input buffer is - replaced with multiple buffers, later transformers will not know what - the proper order of buffers is. - - Args: - buffer: The buffer to transform - - Returns: - either None or a buffer. See detailed documentation. - """ - raise NotImplementedError() diff --git a/acts/framework/acts/controllers/monsoon_lib/sampling/engine/transformers.py b/acts/framework/acts/controllers/monsoon_lib/sampling/engine/transformers.py deleted file mode 100644 index b4b971d1f8..0000000000 --- a/acts/framework/acts/controllers/monsoon_lib/sampling/engine/transformers.py +++ /dev/null @@ -1,171 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import numpy as np - -from acts.controllers.monsoon_lib.sampling.engine.assembly_line import BufferList -from acts.controllers.monsoon_lib.sampling.engine.transformer import ParallelTransformer -from acts.controllers.monsoon_lib.sampling.engine.transformer import SequentialTransformer - - -class Tee(SequentialTransformer): - """Outputs main_current values to the specified file. - - Attributes: - _filename: the name of the file to open. - _fd: the filestream written to. - """ - - def __init__(self, filename): - """Creates an OutputStream. - - Args: - filename: the path to the file to write the collected data to. - """ - super().__init__() - self._filename = filename - self._fd = None - - def on_begin(self): - self._fd = open(self._filename, 'w+') - - def on_end(self): - self._fd.close() - - def _transform_buffer(self, buffer): - """Writes the reading values to a file. - - Args: - buffer: A list of HvpmReadings. - """ - for sample in buffer: - self._fd.write( - '%.9fs %s\n' % (sample.sample_time, sample.main_current)) - self._fd.flush() - return BufferList([buffer]) - - -class SampleAggregator(ParallelTransformer): - """Aggregates the main current value and the number of samples gathered.""" - - def __init__(self, start_after_seconds=0): - """Creates a new SampleAggregator. - - Args: - start_after_seconds: The number of seconds to wait before gathering - data. Useful for allowing the device to settle after USB - disconnect. - """ - super().__init__() - self._num_samples = 0 - self._sum_currents = 0 - self.start_after_seconds = start_after_seconds - - def _transform_buffer(self, buffer): - """Aggregates the sample data. - - Args: - buffer: A buffer of H/LvpmReadings. - """ - for sample in buffer: - if sample.sample_time < self.start_after_seconds: - continue - self._num_samples += 1 - self._sum_currents += sample.main_current - return buffer - - @property - def num_samples(self): - """The number of samples read from the device.""" - return self._num_samples - - @property - def sum_currents(self): - """The total sum of current values gathered so far.""" - return self._sum_currents - - -class DownSampler(SequentialTransformer): - """Takes in sample outputs and returns a downsampled version of that data. - - Note for speed, the downsampling must occur at a perfect integer divisor of - the Monsoon's sample rate (5000 hz). - """ - _MONSOON_SAMPLE_RATE = 5000 - - def __init__(self, downsample_factor): - """Creates a DownSampler Transformer. - - Args: - downsample_factor: The number of samples averaged together for a - single output sample. - """ - super().__init__() - - self._mean_width = int(downsample_factor) - self._leftovers = [] - - def _transform_buffer(self, buffer): - """Returns the buffer downsampled by an integer factor. - - The algorithm splits data points into three categories: - - tail: The remaining samples where not enough were collected to - reach the integer factor for downsampling. The tail is stored - in self._leftovers between _transform_buffer calls. - tailless_buffer: The samples excluding the tail that can be - downsampled directly. - - Below is a diagram explaining the buffer math: - - input: input buffer n input buffer n + 1 - â•”â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•— â•”â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•— - ... â•‘ ╔╗╔╗╔╗╔╗╔╗╔╗╔╗╔╗╔╗╔╗╔╗╔╗ â•‘ â•‘ ╔╗╔╗╔╗╔╗╔╗╔╗╔╗╔╗╔╗╔╗╔╗╔╗ â•‘ ... - â•‘ ╚â•╚â•╚â•╚â•╚â•╚â•╚â•╚â•╚â•╚â•╚â•╚╠║ â•‘ ╚â•╚â•╚â•╚â•╚â•╚â•╚â•╚â•╚â•╚â•╚â•╚╠║ - ╚â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•╠╚â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â• - â–¼ â–¼ - alg: â•”â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•╦â•â•â•â•â•— â•”â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•╦â•â•â•â•â•— - â•‘ ╔╗╔╗╔╗╔╗╔╗╔╗╔╗╔╗╔╗╔╗║╔╗╔╗║ â•‘ ╔╗╔╗╔╗╔╗╔╗╔╗╔╗╔╗╔╗╔╗║╔╗╔╗║ - â•‘ ╚â•╚â•╚â•╚â•╚â•╚â•╚â•╚â•╚â•╚â•║╚â•╚â•â•‘ â•‘ ╚â•╚â•╚â•╚â•╚â•╚â•╚â•╚â•╚â•╚â•║╚â•╚â•â•‘ - ... â•‘ tailless_buffer â•‘tailâ•‘ â•‘ tailless_buffer â•‘tailâ•‘ ... - ╚â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•©â•â•â•â•╠╚â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•©â•â•â•â•â• - ──┬───┘ └─┬─┘ ... └─┬─┘ └────┬─────┘ └─┬─┘ ... └─┬─┘ └──┬─── - ╔╗ ╔╗ ╔╗ ╔╗ ╔╗ ╔╗ ╔╗ ╔╗ ╔╗ ╔╗ ╔╗ - ╚╠╚╠╚╠╚╠╚╠╚╠╚╠╚╠╚╠╚╠╚╠- └─────────┬────────┘ └──────────┬─────────┘ - â–¼ â–¼ - output: â•”â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•— â•”â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•— - â•‘ ╔╗ ╔╗ ╔╗ ╔╗ ╔╗ â•‘ â•‘ ╔╗ ╔╗ ╔╗ ╔╗ ╔╗ â•‘ - â•‘ ╚╠╚╠╚╠╚╠╚╠║ â•‘ ╚╠╚╠╚╠╚╠╚╠║ - ╚â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•╠╚â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â• - output buffer n output buffer n + 1 - """ - tail_length = int( - (len(buffer) + len(self._leftovers)) % self._mean_width) - - tailless_buffer = np.array(buffer[:len(buffer) - tail_length]) - - sample_count = len(tailless_buffer) + len(self._leftovers) - - downsampled_values = np.mean( - np.resize( - np.append(self._leftovers, tailless_buffer), - (sample_count // self._mean_width, self._mean_width)), - axis=1) - - self._leftovers = buffer[len(buffer) - tail_length:] - - return downsampled_values diff --git a/acts/framework/acts/controllers/monsoon_lib/sampling/enums.py b/acts/framework/acts/controllers/monsoon_lib/sampling/enums.py deleted file mode 100644 index 1bd36fa4f5..0000000000 --- a/acts/framework/acts/controllers/monsoon_lib/sampling/enums.py +++ /dev/null @@ -1,73 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - - -class Origin: - """The origin types of a given measurement or calibration. - - The Monsoon returns calibration packets for three types of origin: - - ZERO: The calibrated zeroing point. - REFERENCE: The reference point used for the returned samples. - SCALE: The factor at which to scale the returned samples to get power - consumption data. - """ - ZERO = 0 - REFERENCE = 1 - SCALE = 2 - - values = [ZERO, REFERENCE, SCALE] - - -class Granularity: - """The granularity types. - - Monsoon leverages two different granularities when returning power - measurements. If the power usage exceeds the threshold of the fine - measurement region, a coarse measurement will be used instead. - - This also means that there need to be two calibration values: one for coarse - and one for fine. - """ - COARSE = 0 - FINE = 1 - - values = [COARSE, FINE] - - -class Reading: - """The extraneous possible reading types. - - Aside from coarse and fine readings (see Granularity), some Monsoons can - gather readings on the voltage and gain control. - """ - VOLTAGE = 0x4 - GAIN = 0x6 - - values = [VOLTAGE, GAIN] - - -class Channel: - """The possible channel types. - - Monsoons can read power measurements from the following three inputs. - Calibration and reading values may also be available on these channels. - """ - MAIN = 0 - USB = 1 - AUX = 2 - - values = [MAIN, USB, AUX] diff --git a/acts/framework/acts/controllers/monsoon_lib/sampling/hvpm/__init__.py b/acts/framework/acts/controllers/monsoon_lib/sampling/hvpm/__init__.py deleted file mode 100644 index e69de29bb2..0000000000 --- a/acts/framework/acts/controllers/monsoon_lib/sampling/hvpm/__init__.py +++ /dev/null diff --git a/acts/framework/acts/controllers/monsoon_lib/sampling/hvpm/calibrations.py b/acts/framework/acts/controllers/monsoon_lib/sampling/hvpm/calibrations.py deleted file mode 100644 index 926b7e1b06..0000000000 --- a/acts/framework/acts/controllers/monsoon_lib/sampling/hvpm/calibrations.py +++ /dev/null @@ -1,147 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import itertools -from collections import deque - -from acts.controllers.monsoon_lib.sampling.engine.calibration import CalibrationScalars -from acts.controllers.monsoon_lib.sampling.engine.calibration import CalibrationWindows -from acts.controllers.monsoon_lib.sampling.enums import Channel -from acts.controllers.monsoon_lib.sampling.enums import Granularity -from acts.controllers.monsoon_lib.sampling.enums import Origin -from acts.controllers.monsoon_lib.sampling.hvpm.packet import SampleType - - -class HvpmCalibrationData(CalibrationWindows): - """An object that holds the Dynamic Calibration values for HVPM Sampling.""" - - def __init__(self, calibration_window_size=5): - super().__init__(calibration_window_size) - - all_variable_sets = [ - Channel.values, - (Origin.REFERENCE, Origin.ZERO), - Granularity.values - ] # yapf: disable - - for key in itertools.product(*all_variable_sets): - self._calibrations[key] = deque() - - def add_calibration_sample(self, sample): - """Adds calibration values from a calibration sample. - - The packet is formatted the following way: - [0]: MAIN, COARSE - [1]: MAIN, FINE - [2]: USB, COARSE - [3]: USB, FINE - [4]: AUX, COARSE - [5]: AUX, FINE - [...]: ? - [8]: 0x10 == Origin.ZERO - 0x30 == Origin.REFERENCE - """ - sample_type = sample.get_sample_type() - if sample_type == SampleType.ZERO_CAL: - origin = Origin.ZERO - elif sample_type == SampleType.REF_CAL: - origin = Origin.REFERENCE - else: - raise ValueError( - 'Packet of type %s is not a calibration packet.' % sample_type) - - for i in range(6): - # Reads the last bit to get the Granularity value. - granularity = i & 0x01 - # Divides by 2 to get the Channel value. - channel = i >> 1 - self.add(channel, origin, granularity, - sample[channel, granularity]) - - -class HvpmCalibrationConstants(CalibrationScalars): - """Tracks the calibration values gathered from the Monsoon status packet.""" - - def __init__(self, monsoon_status_packet): - """Initializes the calibration constants.""" - super().__init__() - - # Invalid combinations: - # *, REFERENCE, * - # AUX, ZERO, * - all_variable_sets = [ - Channel.values, - (Origin.SCALE, Origin.ZERO), - Granularity.values - ] # yapf: disable - - for key in itertools.product(*all_variable_sets): - if key[0] == Channel.AUX and key[1] == Origin.ZERO: - # Monsoon status packets do not contain AUX, ZERO readings. - # Monsoon defaults these values to 0: - self._calibrations[key] = 0 - else: - self._calibrations[key] = getattr( - monsoon_status_packet, - build_status_packet_attribute_name(*key)) - - -# TODO(markdr): Potentially find a better home for this function. -def build_status_packet_attribute_name(channel, origin, granularity): - """Creates the status packet attribute name from the given keys. - - The HVPM Monsoon status packet returns values in the following format: - - <channel><Granularity><Origin> - - Note that the following combinations are invalid: - <channel><Granularity>Reference - aux<Granularity>ZeroOffset - - Args: - channel: the Channel value of the attribute - origin: the Origin value of the attribute - granularity: the Granularity value of the attribute - - Returns: - A string that corresponds to the attribute of the Monsoon status packet. - """ - if channel == Channel.MAIN: - channel = 'main' - elif channel == Channel.USB: - channel = 'usb' - elif channel == Channel.AUX: - channel = 'aux' - else: - raise ValueError('Unknown channel "%s".' % channel) - - if granularity == Granularity.COARSE: - granularity = 'Coarse' - elif granularity == Granularity.FINE: - granularity = 'Fine' - else: - raise ValueError('Invalid granularity "%s"' % granularity) - - if origin == Origin.SCALE: - origin = 'Scale' - elif origin == Origin.ZERO: - origin = 'ZeroOffset' - else: - # Note: Origin.REFERENCE is not valid for monsoon_status_packet - # attribute names. - raise ValueError('Invalid origin "%s"' % origin) - - return '%s%s%s' % (channel, granularity, origin) diff --git a/acts/framework/acts/controllers/monsoon_lib/sampling/hvpm/packet.py b/acts/framework/acts/controllers/monsoon_lib/sampling/hvpm/packet.py deleted file mode 100644 index 223337054d..0000000000 --- a/acts/framework/acts/controllers/monsoon_lib/sampling/hvpm/packet.py +++ /dev/null @@ -1,212 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -import struct - -from acts.controllers.monsoon_lib.sampling.enums import Reading - - -class SampleType: - """An enum-like class that defines the SampleTypes for LVPM data. - - Note that these values differ from the LVPM values. - """ - - # A measurement sample. - MEASUREMENT = 0x00 - - # A zero calibration sample. - ZERO_CAL = 0x10 - - # A reference calibration sample. - REF_CAL = 0x30 - - @staticmethod - def is_calibration(value): - """Returns true iff the SampleType is a type of calibration.""" - return bool(value & 0x10) - - -class HvpmMeasurement(object): - """An object that represents a single measurement from the HVPM device. - - Attributes: - _sample_time: The time the sample was taken. - values: From the Monsoon API doc, the values are as follows: - - Val │ Byte │ Type | Monsoon │ Reading │ - Pos │ Offset │ Format │ Channel │ Type │ Description - ────┼────────┼────────┼─────────┼─────────┼────────────────────────────── - 0 │ 0 │ uint16 │ Main │ Coarse │ Calibration/Measurement value - 1 │ 2 │ uint16 │ Main │ Fine │ Calibration/Measurement value - 2 │ 4 │ uint16 │ USB │ Coarse │ Calibration/Measurement value - 3 │ 6 │ uint16 │ USB │ Fine │ Calibration/Measurement value - 4 │ 8 │ uint16 │ Aux │ Coarse │ Calibration/Measurement value - 5 │ 10 │ uint16 │ Aux │ Fine │ Calibration/Measurement value - 6 │ 12 │ uint16 │ Main │ Voltage │ Main V measurement, or Aux V - │ │ │ │ │ if setVoltageChannel == 1 - 7 │ 14 │ uint16 │ USB │ Voltage │ USB Voltage - â•”â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•— - â•‘ Note: The Monsoon API Doc puts the below values in the wrong order. â•‘ - â•‘ The values in this docstring are in the correct order. â•‘ - ╚â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â•â• - 8 │ 16 │ uint8? │ USB │ Gain │ Measurement gain control. - │ │ │ │ │ * Structure Unknown. May be - │ │ │ │ │ similar to Main Gain. - 9 │ 17 │ uint8 │ Main │ Gain │ Measurement gain control. - │ │ │ │ │ * b0-3: Believed to be gain. - │ │ │ │ │ * b4-5: SampleType. - │ │ │ │ │ * b6-7: Unknown. - - """ - - # The total number of bytes in a measurement. See the table above. - SIZE = 18 - - def __init__(self, raw_data, sample_time): - self.values = struct.unpack('>8H2B', raw_data) - self._sample_time = sample_time - - def __getitem__(self, channel_and_reading_granularity): - """Returns the requested reading for the given channel. - - See HvpmMeasurement.__doc__ for a reference table. - - Args: - channel_and_reading_granularity: A tuple of (channel, - reading_or_granularity). - """ - channel = channel_and_reading_granularity[0] - reading_or_granularity = channel_and_reading_granularity[1] - - data_index = self.get_index(channel, reading_or_granularity) - - if reading_or_granularity == Reading.GAIN: - # The format of this value is undocumented by Monsoon Inc. - # Assume an unsigned 4-bit integer is used. - return self.values[data_index] & 0x0F - return self.values[data_index] - - @staticmethod - def get_index(channel, reading_or_granularity): - """Returns the values array index that corresponds with the given query. - - See HvpmMeasurement.__doc__ for details on how this is determined. - - Args: - channel: The channel to read data from. - reading_or_granularity: The reading or granularity desired. - - Returns: - An index corresponding to the data's location in self.values - """ - if reading_or_granularity == Reading.VOLTAGE: - return 6 + channel - if reading_or_granularity == Reading.GAIN: - return 9 - channel - # reading_or_granularity is a granularity value. - return channel * 2 + reading_or_granularity - - def get_sample_time(self): - """Returns the calculated time for the given sample.""" - return self._sample_time - - def get_sample_type(self): - """Returns a value contained in SampleType.""" - return self.values[9] & 0x30 - - -class Packet(object): - """A packet collected directly from serial.read() during sample collection. - - Large amounts of documentation here are pulled directly from - http://msoon.github.io/powermonitor/Python_Implementation/docs/API.pdf - - For convenience, here is the table of values stored: - - Offset │ Format │ Field │ Description - ───────┼────────┼──────────────────┼──────────────────────────────────────── - 0 │ uint16 │ dropped_count │ Number of dropped packets - 2 │ bits │ flags │ Flag values. see self.flags property - 3 │ uint8 │ num_measurements │ Number of measurements in this packet - 4 │ byte[] │ measurement[0] │ Measurement. See HvpmMeasurement class - 22 │ byte[] │ measurement[1] │ Optional Measurement. See above - 44 │ byte[] │ measurement[2] │ Optional Measurement. See above - - Note that all of values except dropped_count are stored in big-endian - format. - - Attributes: - _packet_data: The raw data received from the packet. - time_since_start: The timestamp (relative to start) this packet was - collected. - time_since_last_sample: The differential between this packet's - time_since_start and the previous packet's. Note that for the first - packet, this value will be equal to time_since_start. - """ - - FIRST_MEASUREMENT_OFFSET = 8 - - # The maximum size of a packet read from USB. - # Note: each HVPM Packet can hold a maximum of 3 measurements. - MAX_PACKET_SIZE = FIRST_MEASUREMENT_OFFSET + HvpmMeasurement.SIZE * 3 - - def __init__(self, sampled_bytes): - self._packet_data = sampled_bytes - - num_data_bytes = (len(sampled_bytes) - Packet.FIRST_MEASUREMENT_OFFSET) - self.num_measurements = num_data_bytes // HvpmMeasurement.SIZE - - struct_string = ( - '<2dhBx' + - (str(HvpmMeasurement.SIZE) + 's') * self.num_measurements) - - # yapf: disable. Yapf forces these to try to fit one after the other. - (self.time_since_start, - self.time_since_last_sample, - self.dropped_count, - self.flags, - *samples) = struct.unpack(struct_string, sampled_bytes) - # yapf: enable - - self.measurements = [None] * self.num_measurements - - for i, raw_data in enumerate(samples): - self.measurements[i] = HvpmMeasurement(raw_data, - self._get_sample_time(i)) - - def _get_sample_time(self, index): - """Returns the time the sample at the given index was received. - - If multiple samples were captured within the same reading, the samples - are assumed to be uniformly distributed during the time it took to - sample the values. - """ - time_per_sample = self.time_since_last_sample / self.num_measurements - return time_per_sample * (index + 1) + self.time_since_start - - @property - def packet_counter(self): - """The 4-bit packet index.""" - return self.flags & 0x0F - - def get_bytes(self): - return list(self._packet_data) - - def __getitem__(self, index): - return self.measurements[index] - - def __len__(self): - return self.num_measurements diff --git a/acts/framework/acts/controllers/monsoon_lib/sampling/hvpm/transformers.py b/acts/framework/acts/controllers/monsoon_lib/sampling/hvpm/transformers.py deleted file mode 100644 index 5ddc23c13d..0000000000 --- a/acts/framework/acts/controllers/monsoon_lib/sampling/hvpm/transformers.py +++ /dev/null @@ -1,470 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import array -import logging -import struct -import time - -import numpy as np -from Monsoon import HVPM - -from acts.controllers.monsoon_lib.sampling.common import UncalibratedSampleChunk -from acts.controllers.monsoon_lib.sampling.engine.assembly_line import BufferList -from acts.controllers.monsoon_lib.sampling.engine.assembly_line import ProcessAssemblyLineBuilder -from acts.controllers.monsoon_lib.sampling.engine.assembly_line import ThreadAssemblyLineBuilder -from acts.controllers.monsoon_lib.sampling.engine.calibration import CalibrationError -from acts.controllers.monsoon_lib.sampling.engine.calibration import CalibrationSnapshot -from acts.controllers.monsoon_lib.sampling.engine.transformer import ParallelTransformer -from acts.controllers.monsoon_lib.sampling.engine.transformer import SequentialTransformer -from acts.controllers.monsoon_lib.sampling.engine.transformer import SourceTransformer -from acts.controllers.monsoon_lib.sampling.engine.transformer import Transformer -from acts.controllers.monsoon_lib.sampling.enums import Channel -from acts.controllers.monsoon_lib.sampling.enums import Granularity -from acts.controllers.monsoon_lib.sampling.enums import Origin -from acts.controllers.monsoon_lib.sampling.enums import Reading -from acts.controllers.monsoon_lib.sampling.hvpm.calibrations import HvpmCalibrationConstants -from acts.controllers.monsoon_lib.sampling.hvpm.calibrations import HvpmCalibrationData -from acts.controllers.monsoon_lib.sampling.hvpm.packet import HvpmMeasurement -from acts.controllers.monsoon_lib.sampling.hvpm.packet import Packet -from acts.controllers.monsoon_lib.sampling.hvpm.packet import SampleType - - -class HvpmTransformer(Transformer): - """Gathers samples from the Monsoon and brings them back to the caller.""" - - def __init__(self, monsoon_serial, duration): - super().__init__() - self.monsoon_serial = monsoon_serial - self.duration = duration - - def _transform(self, input_stream): - # We need to gather the status packet before sampling so we can use the - # static calibration during sample normalization. - monsoon = HVPM.Monsoon() - monsoon.setup_usb(self.monsoon_serial) - monsoon.fillStatusPacket() - monsoon_status_packet = monsoon.statusPacket() - monsoon.closeDevice() - - # yapf: disable. Yapf doesn't handle fluent interfaces well. - (ProcessAssemblyLineBuilder() - .source(PacketCollector(self.monsoon_serial, self.duration)) - .into(SampleNormalizer(monsoon_status_packet=monsoon_status_packet)) - .build(output_stream=self.output_stream).run()) - # yapf: enable - - -class PacketCollector(SourceTransformer): - """Collects Monsoon packets into a buffer to be sent to another transformer. - - Ideally, the other transformer will be in a separate process to prevent the - GIL from slowing down packet collection. - - Attributes: - _monsoon_id: The id of the monsoon. - _monsoon: The monsoon instance. This is left unset until - _initialize_monsoon() is called. - """ - - def __init__(self, monsoon_id, sampling_duration=None): - super().__init__() - self._monsoon_id = monsoon_id - self._monsoon = None - self.start_time = None - self.array = array.array('B', b'\x00' * Packet.MAX_PACKET_SIZE) - self.sampling_duration = sampling_duration - - def _initialize_monsoon(self): - """Initializes the monsoon object. - - Note that this must be done after the Transformer has started. - Otherwise, this transformer will have c-like objects, preventing - the transformer from being used with the multiprocess libraries. - """ - self._monsoon = HVPM.Monsoon() - self._monsoon.setup_usb(self._monsoon_id) - self._monsoon.stopSampling() - self._monsoon.fillStatusPacket() - self._monsoon.StartSampling() - - def on_begin(self): - if __debug__: - logging.warning( - 'Debug mode is enabled. Expect a higher frequency of dropped ' - 'packets. To reduce packet drop, disable your python debugger.' - ) - - self.start_time = time.time() - self._initialize_monsoon() - - def __del__(self): - if self._monsoon: - self.on_end() - - def on_end(self): - self._monsoon.stopSampling() - self._monsoon.closeDevice() - - def _transform_buffer(self, buffer): - """Fills the buffer with packets until time has been reached. - - Returns: - A BufferList of a single buffer if collection is not yet finished. - None if sampling is complete. - """ - index = 0 - if (self.sampling_duration - and self.sampling_duration < time.time() - self.start_time): - return None - - for index in range(len(buffer)): - time_before_read = time.time() - try: - data = self._monsoon.Protocol.DEVICE.read( - # Magic value for USB bulk reads. - 0x81, - Packet.MAX_PACKET_SIZE, - # In milliseconds. - timeout=1000) - except Exception as e: - logging.warning(e) - continue - time_after_read = time.time() - time_data = struct.pack('dd', time_after_read - self.start_time, - time_after_read - time_before_read) - buffer[index] = time_data + data.tobytes() - - return buffer - - -class SampleNormalizer(Transformer): - """A Transformer that applies calibration to the input's packets.""" - - def __init__(self, monsoon_status_packet): - """Creates a SampleNormalizer. - - Args: - monsoon_status_packet: The status of the monsoon. Used for gathering - the constant calibration data from the device. - """ - super().__init__() - self.monsoon_status_packet = monsoon_status_packet - - def _transform(self, input_stream): - # yapf: disable. Yapf doesn't handle fluent interfaces well. - (ThreadAssemblyLineBuilder() - .source(PacketReader(), input_stream=input_stream) - .into(SampleChunker()) - .into(CalibrationApplier(self.monsoon_status_packet)) - .build(output_stream=self.output_stream).run()) - # yapf: enable - - -class PacketReader(ParallelTransformer): - """Reads raw HVPM Monsoon data and converts it into Packet objects. - - Attributes: - rollover_count: The number of times the dropped_count value has rolled - over it's maximum value (2^16-1). - previous_dropped_count: The dropped count read from the last packet. - Used for determining the true number of dropped samples. - """ - """The number of seconds before considering dropped_count to be meaningful. - - Monsoon devices will often report 2^16-1 as the dropped count when first - starting the monsoon. This usually goes away within a few milliseconds. - """ - DROP_COUNT_TIMER_THRESHOLD = 1 - - def __init__(self): - super().__init__() - self.rollover_count = 0 - self.previous_dropped_count = 0 - - def _transform_buffer(self, buffer): - """Reads raw sample data and converts it into packet objects.""" - for i in range(len(buffer)): - buffer[i] = Packet(buffer[i]) - if (buffer[i].time_since_start > - PacketReader.DROP_COUNT_TIMER_THRESHOLD): - self._process_dropped_count(buffer[i]) - - return buffer - - def _process_dropped_count(self, packet): - """Processes the dropped count value, updating the internal counters.""" - if packet.dropped_count == self.previous_dropped_count: - return - - if packet.dropped_count < self.previous_dropped_count: - self.rollover_count += 1 - - self.previous_dropped_count = packet.dropped_count - log_function = logging.info if __debug__ else logging.warning - log_function('At %9f, total dropped count: %s' % - (packet.time_since_start, self.total_dropped_count)) - - @property - def total_dropped_count(self): - """Returns the total dropped count, accounting for rollovers.""" - return self.rollover_count * 2**16 + self.previous_dropped_count - - def on_begin(self): - if __debug__: - logging.info( - 'The python debugger is enabled. Expect results to ' - 'take longer to process after collection is complete.') - - def on_end(self): - if self.previous_dropped_count > 0: - if __debug__: - logging.info( - 'During collection, a total of %d packets were ' - 'dropped. To reduce this amount, run your test ' - 'without debug mode enabled.' % self.total_dropped_count) - else: - logging.warning( - 'During collection, a total of %d packets were ' - 'dropped.' % self.total_dropped_count) - - -class SampleChunker(SequentialTransformer): - """Chunks input packets into lists of samples with identical calibration. - - This step helps to quickly apply calibration across many samples at once. - - Attributes: - _stored_raw_samples: The queue of raw samples that have yet to be - split into a new calibration group. - calibration_data: The calibration window information. - """ - - def __init__(self): - super().__init__() - self._stored_raw_samples = [] - self.calibration_data = HvpmCalibrationData() - - def _on_end_of_stream(self, input_stream): - self._send_buffers(BufferList([self._cut_new_buffer()])) - super()._on_end_of_stream(input_stream) - - def _transform_buffer(self, buffer): - """Takes in data from the buffer and splits it based on calibration. - - This transformer is meant to after the PacketReader. - - Args: - buffer: A list of Packet objects. - - Returns: - A BufferList containing 0 or more UncalibratedSampleChunk objects. - """ - buffer_list = BufferList() - for packet in buffer: - for sample in packet: - sample_type = sample.get_sample_type() - - if sample_type == SampleType.MEASUREMENT: - self._stored_raw_samples.append(sample) - elif SampleType.is_calibration(sample_type): - if len(self._stored_raw_samples) > 0: - buffer_list.append(self._cut_new_buffer()) - self.calibration_data.add_calibration_sample(sample) - else: - # There's no information on what this packet means within - # the documentation or code Monsoon Inc. provides. - logging.warning('Received unidentifiable packet with ' - 'SampleType %s: %s' % (sample_type, - packet.get_bytes())) - return buffer_list - - def _cut_new_buffer(self): - """Cuts a new buffer from the input stream data. - - Returns: - The newly generated UncalibratedSampleChunk. - """ - calibration_snapshot = CalibrationSnapshot(self.calibration_data) - new_chunk = UncalibratedSampleChunk(self._stored_raw_samples, - calibration_snapshot) - # Do not clear the list. Instead, create a new one so the old list can - # be owned solely by the UncalibratedSampleChunk. - self._stored_raw_samples = [] - return new_chunk - - -class HvpmReading(object): - """The result of fully calibrating a sample. Contains all Monsoon readings. - - Attributes: - _reading_list: The list of values obtained from the Monsoon. - _time_of_reading: The time since sampling began that the reading was - collected at. - """ - - def __init__(self, reading_list, time_of_reading): - """ - Args: - reading_list: A list of reading values in the order of: - [0] Main Current - [1] USB Current - [2] Aux Current - [3] Main Voltage - [4] USB Voltage - time_of_reading: The time the reading was received. - """ - self._reading_list = reading_list - self._time_of_reading = time_of_reading - - @property - def main_current(self): - return self._reading_list[0] - - @property - def usb_current(self): - return self._reading_list[1] - - @property - def aux_current(self): - return self._reading_list[2] - - @property - def main_voltage(self): - return self._reading_list[3] - - @property - def usb_voltage(self): - return self._reading_list[4] - - @property - def sample_time(self): - return self._time_of_reading - - def __add__(self, other): - return HvpmReading([ - self.main_current + other.main_current, - self.usb_current + other.usb_current, - self.aux_current + other.aux_current, - self.main_voltage + other.main_voltage, - self.usb_voltage + other.usb_voltage, - ], self.sample_time + other.sample_time) - - def __truediv__(self, other): - return HvpmReading([ - self.main_current / other, - self.usb_current / other, - self.aux_current / other, - self.main_voltage / other, - self.usb_voltage / other, - ], self.sample_time / other) - - -class CalibrationApplier(ParallelTransformer): - """Applies the calibration formula to the all given samples.""" - - def __init__(self, monsoon_status_packet): - super().__init__() - self.cal_constants = HvpmCalibrationConstants(monsoon_status_packet) - monsoon = HVPM.Monsoon() - self.fine_threshold = monsoon.fineThreshold - self._main_voltage_scale = monsoon.mainvoltageScale - self._usb_voltage_scale = monsoon.usbVoltageScale - # According to Monsoon.sampleEngine.__ADCRatio, each tick of the ADC - # represents this much voltage - self._adc_ratio = 6.25e-5 - - @staticmethod - def _is_device_calibrated(data): - """Checks to see if the Monsoon has completed calibration. - - Args: - data: the calibration data. - - Returns: - True if the data is calibrated. False otherwise. - """ - try: - # If the data is calibrated for any Origin.REFERENCE value, it is - # calibrated for all Origin.REFERENCE values. The same is true for - # Origin.ZERO. - data.get(Channel.MAIN, Origin.REFERENCE, Granularity.COARSE) - data.get(Channel.MAIN, Origin.ZERO, Granularity.COARSE) - except CalibrationError: - return False - return True - - def _transform_buffer(self, buffer): - """Transforms the buffer's information into HvpmReadings. - - Args: - buffer: An UncalibratedSampleChunk. This buffer is in-place - transformed into a buffer of HvpmReadings. - """ - calibration_data = buffer.calibration_data - - if not self._is_device_calibrated(calibration_data): - buffer.samples.clear() - return buffer.samples - - readings = np.zeros((len(buffer.samples), 5)) - - measurements = np.array([sample.values for sample in buffer.samples]) - calibrated_value = np.zeros((len(buffer.samples), 2)) - - for channel in Channel.values: - for granularity in Granularity.values: - scale = self.cal_constants.get(channel, Origin.SCALE, - granularity) - zero_offset = self.cal_constants.get(channel, Origin.ZERO, - granularity) - cal_ref = calibration_data.get(channel, Origin.REFERENCE, - granularity) - cal_zero = calibration_data.get(channel, Origin.ZERO, - granularity) - zero_offset += cal_zero - if cal_ref - zero_offset != 0: - slope = scale / (cal_ref - zero_offset) - else: - slope = 0 - if granularity == Granularity.FINE: - slope /= 1000 - - index = HvpmMeasurement.get_index(channel, granularity) - calibrated_value[:, granularity] = slope * ( - measurements[:, index] - zero_offset) - - fine_data_position = HvpmMeasurement.get_index( - channel, Granularity.FINE) - readings[:, channel] = np.where( - measurements[:, fine_data_position] < self.fine_threshold, - calibrated_value[:, Granularity.FINE], - calibrated_value[:, Granularity.COARSE]) / 1000.0 # to mA - - main_voltage_index = HvpmMeasurement.get_index(Channel.MAIN, - Reading.VOLTAGE) - usb_voltage_index = HvpmMeasurement.get_index(Channel.USB, - Reading.VOLTAGE) - readings[:, 3] = (measurements[:, main_voltage_index] * self._adc_ratio - * self._main_voltage_scale) - readings[:, 4] = (measurements[:, usb_voltage_index] * self._adc_ratio - * self._usb_voltage_scale) - - for i in range(len(buffer.samples)): - buffer.samples[i] = HvpmReading( - list(readings[i]), buffer.samples[i].get_sample_time()) - - return buffer.samples diff --git a/acts/framework/acts/controllers/monsoon_lib/sampling/lvpm_stock/__init__.py b/acts/framework/acts/controllers/monsoon_lib/sampling/lvpm_stock/__init__.py deleted file mode 100644 index e69de29bb2..0000000000 --- a/acts/framework/acts/controllers/monsoon_lib/sampling/lvpm_stock/__init__.py +++ /dev/null diff --git a/acts/framework/acts/controllers/monsoon_lib/sampling/lvpm_stock/calibrations.py b/acts/framework/acts/controllers/monsoon_lib/sampling/lvpm_stock/calibrations.py deleted file mode 100644 index 6a46e5600d..0000000000 --- a/acts/framework/acts/controllers/monsoon_lib/sampling/lvpm_stock/calibrations.py +++ /dev/null @@ -1,103 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -"""Note: These calibration classes are based on the original reverse-engineered -algorithm for handling calibration values. As a result, LvpmCalibrationConstants -does not exist for the LVPM stock sampling algorithm.""" - -import itertools -from collections import deque - -from acts.controllers.monsoon_lib.sampling.engine.calibration import CalibrationWindows -from acts.controllers.monsoon_lib.sampling.engine.calibration import CalibrationSnapshot -from acts.controllers.monsoon_lib.sampling.enums import Channel -from acts.controllers.monsoon_lib.sampling.enums import Granularity -from acts.controllers.monsoon_lib.sampling.enums import Origin -from acts.controllers.monsoon_lib.sampling.lvpm_stock.packet import SampleType - -# The numerator used for FINE granularity calibration. -_FINE_NUMERATOR = .0332 - -# The numerator used for COARSE granularity calibration -_COARSE_NUMERATOR = 2.88 - - -class LvpmCalibrationData(CalibrationWindows): - """An object that holds the Dynamic Calibration values for HVPM Sampling.""" - - def __init__(self, calibration_window_size=5): - super().__init__(calibration_window_size) - - all_variable_sets = [ - Channel.values, - (Origin.REFERENCE, Origin.ZERO), - Granularity.values - ] # yapf: disable - - for key in itertools.product(*all_variable_sets): - self._calibrations[key] = deque() - - def add_calibration_sample(self, sample): - """Adds calibration values from a calibration sample. - - LVPM Calibration Data is stored as: - [0]: Main Current calibration - [1]: USB Current calibration - [2]: Aux Current calibration - [3]: Main Voltage (unknown if this is actually calibration or a - measurement!) - - Note that coarse vs fine is determined by the position within the - packet. Even indexes are fine values, odd indexes are coarse values. - """ - sample_type = sample.get_sample_type() - if sample_type == SampleType.ZERO_CAL: - origin = Origin.ZERO - elif sample_type == SampleType.REF_CAL: - origin = Origin.REFERENCE - else: - raise ValueError( - 'Packet of type %s is not a calibration packet.' % sample_type) - granularity = sample.get_calibration_granularity() - for channel in Channel.values: - self.add(channel, origin, granularity, sample[channel]) - - -class LvpmCalibrationSnapshot(CalibrationSnapshot): - """A class that holds a snapshot of LVPM Calibration Data. - - According to the original reverse-engineered algorithm for obtaining - samples, the LVPM determines scale from the reference and zero calibration - values. Here, we calculate those when taking a snapshot.""" - - def __init__(self, lvpm_calibration_base): - super().__init__(lvpm_calibration_base) - pairs = itertools.product(Channel.values, Granularity.values) - - for channel, granularity in pairs: - if granularity == Granularity.COARSE: - numerator = _COARSE_NUMERATOR - else: - numerator = _FINE_NUMERATOR - - divisor = ( - self._calibrations[(channel, Origin.REFERENCE, granularity)] - - self._calibrations[(channel, Origin.ZERO, granularity)]) - # Prevent division by zero. - if divisor == 0: - divisor = .0001 - - self._calibrations[(channel, Origin.SCALE, - granularity)] = (numerator / divisor) diff --git a/acts/framework/acts/controllers/monsoon_lib/sampling/lvpm_stock/packet.py b/acts/framework/acts/controllers/monsoon_lib/sampling/lvpm_stock/packet.py deleted file mode 100644 index b0f88394af..0000000000 --- a/acts/framework/acts/controllers/monsoon_lib/sampling/lvpm_stock/packet.py +++ /dev/null @@ -1,224 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -import struct - -from acts.controllers.monsoon_lib.sampling.enums import Reading -from acts.controllers.monsoon_lib.sampling.enums import Granularity - - -class SampleType: - """An enum-like class that defines the SampleTypes for LVPM data. - - Note that these values differ from the HVPM values. - """ - - # A measurement sample. - MEASUREMENT = 0x00 - - # A zero calibration sample. - ZERO_CAL = 0x01 - - # A reference calibration sample. - REF_CAL = 0x02 - - @staticmethod - def is_calibration(value): - """Returns true iff the SampleType is a type of calibration.""" - return value == SampleType.ZERO_CAL or value == SampleType.REF_CAL - - -class LvpmMeasurement(object): - """An object that tracks an individual measurement within the LvpmPacket. - - Attributes: - _sample_time: The time the sample was taken. - _sample_type: The type of sample stored. - values: From reverse engineering, the values are as follows: - - - If the measurement is a calibration measurement: - - Val │ Byte │ Type │ Monsoon │ Reading │ - Pos │ Offset │ Format │ Channel │ Type │ Description - ────┼────────┼────────┼─────────┼─────────┼────────────────────────────── - 0 │ 0 │ int16 │ Main │ Current │ Calibration value. - 1 │ 2 │ int16 │ USB │ Current │ Calibration value. - 2 │ 4 │ int16 │ Aux │ Current │ Calibration value. - 3 │ 6 │ uint16 │ Main │ Voltage │ Calibration value. - - If the measurement is a power reading: - - Val │ Byte │ Type │ Monsoon │ Reading │ - Pos │ Offset │ Format │ Channel │ Type │ Description - ────┼────────┼────────┼─────────┼─────────┼────────────────────────────── - 0 │ 0 │ int16 │ Main │ Current │ b0: if 1, Coarse, else Fine - │ │ │ │ │ b1-7: Measurement value. - 1 │ 2 │ int16 │ USB │ Current │ b0: if 1, Coarse, else Fine - │ │ │ │ │ b1-7: Measurement value. - 2 │ 4 │ int16 │ Aux │ Current │ b0: if 1, Coarse, else Fine - │ │ │ │ │ b1-7: Measurement value. - 3 │ 6 │ uint16 │ Main │ Voltage │ Measurement value. - - """ - - # The total number of bytes in a measurement. See the table above. - SIZE = 8 - - def __init__(self, raw_data, sample_time, sample_type, entry_index): - """Creates a new LVPM Measurement. - - Args: - raw_data: The raw data format of the LvpmMeasurement. - sample_time: The time the sample was recorded. - sample_type: The type of sample that was recorded. - entry_index: The index of the measurement within the packet. - """ - self.values = struct.unpack('>3hH', raw_data) - self._sample_time = sample_time - self._sample_type = sample_type - - if SampleType.is_calibration(self._sample_type): - # Calibration packets have granularity values determined by whether - # or not the entry was odd or even within the returned packet. - if entry_index % 2 == 0: - self._granularity = Granularity.FINE - else: - self._granularity = Granularity.COARSE - else: - # If it is not a calibration packet, each individual reading (main - # current, usb current, etc) determines granularity value by - # checking the LSB of the measurement value. - self._granularity = None - - def __getitem__(self, channel_or_reading): - """Returns the requested reading for the given channel. - - Args: - channel_or_reading: either a Channel or Reading.Voltage. - """ - if channel_or_reading == Reading.VOLTAGE: - return self.values[3] - else: - # Must be a channel. If it is not, this line will throw an - # IndexError, which is what we will want for invalid values. - return self.values[channel_or_reading] - - def get_sample_time(self): - """Returns the time (since the start time) this sample was collected.""" - return self._sample_time - - def get_sample_type(self): - """Returns a value contained in SampleType.""" - return self._sample_type - - def get_calibration_granularity(self): - """Returns the granularity associated with this packet. - - If the packet is not a calibration packet, None is returned. - """ - return self._granularity - - -class Packet(object): - """A packet collected directly from serial.read() during sample collection. - - Note that the true documentation for this has been lost to time. This class - and documentation uses knowledge that comes from several reverse-engineering - projects. Most of this knowledge comes from - http://wiki/Main/MonsoonProtocol. - - The data table looks approximately like this: - - Offset │ Format │ Field │ Description - ───────┼─────────┼─────────┼──────────────────────────────────────────── - 0 │ uint8 │ flags │ Bits: - │ │ & │ * b0-3: Sequence number (0-15). Increments - │ │ seq │ each packet - │ │ │ * b4: 1 means over-current or thermal kill - │ │ │ * b5: Main Output, 1 == unit is at voltage, - │ │ │ 0 == output disabled. - │ │ │ * b6-7: reserved. - 1 │ uint8 │ packet │ The type of the packet: - │ │ type │ * 0: A data packet - │ │ │ * 1: A zero calibration packet - │ │ │ * 2: A reference calibration packet - 2 │ uint8 │ unknown │ Always seems to be 0x00 - 3 │ uint8 │ unknown │ Always seems to be 0x00 or 0xC4. - 4 │ byte[8] │ data │ See LvpmMeasurement. - ... │ byte[8] │ data │ Additional LvpmMeasurements. - -1 │ uint8 │ unknown │ Last byte, unknown values. Has been seen to - │ │ │ usually be \x00, or \x84. - - Attributes: - _packet_data: The raw data received from the packet. - time_since_start: The timestamp (relative to start) this packet was - collected. - time_since_last_sample: The differential between this packet's - time_since_start and the previous packet's. Note that for the first - packet, this value will be equal to time_since_start. - """ - - # The number of bytes before the first packet. - FIRST_MEASUREMENT_OFFSET = 4 - - def __init__(self, sampled_bytes, time_since_start, - time_since_last_sample): - self._packet_data = sampled_bytes - self.time_since_start = time_since_start - self.time_since_last_sample = time_since_last_sample - - num_data_bytes = len(sampled_bytes) - Packet.FIRST_MEASUREMENT_OFFSET - num_packets = num_data_bytes // LvpmMeasurement.SIZE - - sample_struct_format = (str(LvpmMeasurement.SIZE) + 's') * num_packets - struct_string = '>2B2x%sx' % sample_struct_format - - self._flag_data, self.packet_type, *samples = struct.unpack( - struct_string, sampled_bytes) - - self.measurements = [None] * len(samples) - - for index, raw_measurement in enumerate(samples): - self.measurements[index] = LvpmMeasurement( - raw_measurement, self._get_sample_time(index), - self.packet_type, index) - - def _get_sample_time(self, index): - """Returns the time the sample at the given index was received. - - If multiple samples were captured within the same reading, the samples - are assumed to be uniformly distributed during the time it took to - sample the values. - - Args: - index: the index of the individual reading from within the sample. - """ - time_per_sample = self.time_since_last_sample / len(self.measurements) - return time_per_sample * (index + 1) + self.time_since_start - - @property - def packet_counter(self): - return self._flag_data & 0x0F - - def get_bytes(self, start, end_exclusive): - """Returns a bytearray spanning from start to the end (exclusive).""" - return self._packet_data[start:end_exclusive] - - def __getitem__(self, index): - return self.measurements[index] - - def __len__(self): - return len(self.measurements) diff --git a/acts/framework/acts/controllers/monsoon_lib/sampling/lvpm_stock/stock_transformers.py b/acts/framework/acts/controllers/monsoon_lib/sampling/lvpm_stock/stock_transformers.py deleted file mode 100644 index becc4ee99c..0000000000 --- a/acts/framework/acts/controllers/monsoon_lib/sampling/lvpm_stock/stock_transformers.py +++ /dev/null @@ -1,377 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import logging -import struct -import time - -import numpy as np - -from acts.controllers.monsoon_lib.api.lvpm_stock.monsoon_proxy import MonsoonProxy -from acts.controllers.monsoon_lib.sampling.common import UncalibratedSampleChunk -from acts.controllers.monsoon_lib.sampling.engine.assembly_line import BufferList -from acts.controllers.monsoon_lib.sampling.engine.assembly_line import ProcessAssemblyLineBuilder -from acts.controllers.monsoon_lib.sampling.engine.assembly_line import ThreadAssemblyLineBuilder -from acts.controllers.monsoon_lib.sampling.engine.calibration import CalibrationError -from acts.controllers.monsoon_lib.sampling.engine.transformer import ParallelTransformer -from acts.controllers.monsoon_lib.sampling.engine.transformer import SequentialTransformer -from acts.controllers.monsoon_lib.sampling.engine.transformer import SourceTransformer -from acts.controllers.monsoon_lib.sampling.engine.transformer import Transformer -from acts.controllers.monsoon_lib.sampling.enums import Channel -from acts.controllers.monsoon_lib.sampling.enums import Granularity -from acts.controllers.monsoon_lib.sampling.enums import Origin -from acts.controllers.monsoon_lib.sampling.lvpm_stock.calibrations import LvpmCalibrationData -from acts.controllers.monsoon_lib.sampling.lvpm_stock.calibrations import LvpmCalibrationSnapshot -from acts.controllers.monsoon_lib.sampling.lvpm_stock.packet import Packet -from acts.controllers.monsoon_lib.sampling.lvpm_stock.packet import SampleType - - -class StockLvpmSampler(Transformer): - """Gathers samples from the Monsoon and brings them back to the caller.""" - - def __init__(self, monsoon_serial, duration): - super().__init__() - self.monsoon_serial = monsoon_serial - self.duration = duration - - def _transform(self, input_stream): - # yapf: disable. Yapf doesn't handle fluent interfaces well. - (ProcessAssemblyLineBuilder() - .source(PacketCollector(self.monsoon_serial, self.duration)) - .into(SampleNormalizer()) - .build(output_stream=self.output_stream) - .run()) - # yapf: enable - - -class PacketCollector(SourceTransformer): - """Collects Monsoon packets into a buffer to be sent to another process.""" - - def __init__(self, serial=None, sampling_duration=None): - super().__init__() - self._monsoon_serial = serial - self._monsoon_proxy = None - self.start_time = 0 - self.sampling_duration = sampling_duration - - def _initialize_monsoon(self): - """Initializes the MonsoonProxy object.""" - self._monsoon_proxy = MonsoonProxy(serialno=self._monsoon_serial) - - def on_begin(self): - """Begins data collection.""" - self.start_time = time.time() - self._initialize_monsoon() - self._monsoon_proxy.start_data_collection() - - def on_end(self): - """Stops data collection.""" - self._monsoon_proxy.stop_data_collection() - self._monsoon_proxy.ser.close() - - def _transform_buffer(self, buffer): - """Fills the given buffer with raw monsoon data at each entry.""" - if (self.sampling_duration - and self.sampling_duration < time.time() - self.start_time): - return None - - for index in range(len(buffer)): - time_before_read = time.time() - data = self._read_packet() - if data is None: - continue - time_after_read = time.time() - time_data = struct.pack('dd', time_after_read - self.start_time, - time_after_read - time_before_read) - buffer[index] = time_data + data - - return buffer - - def _read_packet(self): - """Reads a single packet from the serial port. - - Packets are sent as Length-Value-Checksum, where the first byte is the - length, the following bytes are the value and checksum. The checksum is - the stored in the final byte, and is calculated as the 16 least- - significant-bits of the sum of all value bytes. - - Returns: - None if the read failed. Otherwise, the packet data received. - """ - len_char = self._monsoon_proxy.ser.read(1) - if not len_char: - logging.warning('Reading from serial timed out.') - return None - - data_len = ord(len_char) - if not data_len: - logging.warning('Unable to read packet length.') - return None - - result = self._monsoon_proxy.ser.read(int(data_len)) - result = bytearray(result) - if len(result) != data_len: - logging.warning( - 'Length mismatch, expected %d bytes, got %d bytes.', data_len, - len(result)) - return None - body = result[:-1] - checksum = sum(body, data_len) & 0xFF - if result[-1] != checksum: - logging.warning( - 'Invalid checksum from serial port! Expected %s, ' - 'got %s', hex(checksum), hex(result[-1])) - return None - return body - - -class SampleNormalizer(Transformer): - """Normalizes the raw packet data into reading values.""" - - def _transform(self, input_stream): - # yapf: disable. Yapf doesn't handle fluent interfaces well. - (ThreadAssemblyLineBuilder() - .source(PacketReader(), input_stream=input_stream) - .into(SampleChunker()) - .into(CalibrationApplier()) - .build(output_stream=self.output_stream) - .run()) - # yapf: enable - - def _transform_buffer(self, buffer): - """_transform is overloaded, so this function can be left empty.""" - pass - - -class PacketReader(ParallelTransformer): - """Reads the raw packets and converts them into LVPM Packet objects.""" - - def _transform_buffer(self, buffer): - """Converts the raw packets to Packet objects in-place in buffer. - - Args: - buffer: A list of bytes objects. Will be in-place replaced with - Packet objects. - """ - for i, packet in enumerate(buffer): - time_bytes_size = struct.calcsize('dd') - # Unpacks the two time.time() values sent by PacketCollector. - time_since_start, time_of_read = struct.unpack( - 'dd', packet[:time_bytes_size]) - packet = packet[time_bytes_size:] - # Magic number explanation: - # LVPM sample packets begin with 4 bytes, have at least one - # measurement (8 bytes), and have 1 last byte (usually a \x00 byte). - if len(packet) < 4 + 8 + 1 or packet[0] & 0x20 != 0x20: - logging.warning( - 'Tried to collect power sample values, received data of ' - 'type=0x%02x, len=%d instead.', packet[0], len(packet)) - buffer[i] = None - continue - - buffer[i] = Packet(packet, time_since_start, time_of_read) - - return buffer - - -class SampleChunker(SequentialTransformer): - """Chunks input packets into lists of samples with identical calibration. - - This step helps to quickly apply calibration across many samples at once. - - Attributes: - _stored_raw_samples: The queue of raw samples that have yet to be - split into a new calibration group. - calibration_data: The calibration window information. - """ - - def __init__(self): - super().__init__() - self._stored_raw_samples = [] - self.calibration_data = LvpmCalibrationData() - - def _on_end_of_stream(self, input_stream): - self._send_buffers(BufferList([self._cut_new_buffer()])) - super()._on_end_of_stream(input_stream) - - def _transform_buffer(self, buffer): - """Takes in data from the buffer and splits it based on calibration. - - This transformer is meant to after the PacketReader. - - Args: - buffer: A list of Packet objects. - - Returns: - A BufferList containing 0 or more UncalibratedSampleChunk objects. - """ - buffer_list = BufferList() - for packet in buffer: - # If a read packet was not a sample, the PacketReader returns None. - # Skip over these dud values. - if packet is None: - continue - - for sample in packet: - sample_type = sample.get_sample_type() - - if sample_type == SampleType.MEASUREMENT: - self._stored_raw_samples.append(sample) - elif SampleType.is_calibration(sample_type): - if len(self._stored_raw_samples) > 0: - buffer_list.append(self._cut_new_buffer()) - self.calibration_data.add_calibration_sample(sample) - else: - # There's no information on what this packet means within - # Monsoon documentation or code. - logging.warning('Received unidentifiable packet with ' - 'SampleType %s: %s' % - (sample_type, packet.get_bytes(0, None))) - return buffer_list - - def _cut_new_buffer(self): - """Cuts a new buffer from the input stream data. - - Returns: - The newly generated UncalibratedSampleChunk. - """ - calibration_snapshot = LvpmCalibrationSnapshot(self.calibration_data) - new_chunk = UncalibratedSampleChunk(self._stored_raw_samples, - calibration_snapshot) - self._stored_raw_samples = [] - return new_chunk - - -class LvpmReading(object): - """The result of fully calibrating a sample. Contains all Monsoon readings. - - Attributes: - _reading_list: The list of values obtained from the Monsoon. - _time_of_reading: The time since sampling began that the reading was - collected at. - """ - - def __init__(self, reading_list, time_of_reading): - """Creates an LvpmReading. - - Args: - reading_list: - [0] Main Current - [1] USB Current - [2] Aux Current - time_of_reading: The time the reading was received. - """ - self._reading_list = reading_list - self._time_of_reading = time_of_reading - - @property - def main_current(self): - return self._reading_list[0] - - @property - def usb_current(self): - return self._reading_list[1] - - @property - def aux_current(self): - return self._reading_list[2] - - @property - def sample_time(self): - return self._time_of_reading - - def __add__(self, other): - reading_list = [ - self.main_current + other.main_current, - self.usb_current + other.usb_current, - self.aux_current + other.aux_current, - ] - sample_time = self.sample_time + other.sample_time - - return LvpmReading(reading_list, sample_time) - - def __truediv__(self, other): - reading_list = [ - self.main_current / other, - self.usb_current / other, - self.aux_current / other, - ] - sample_time = self.sample_time / other - - return LvpmReading(reading_list, sample_time) - - -class CalibrationApplier(ParallelTransformer): - """Applies the calibration formula to the all given samples. - - Designed to come after a SampleChunker Transformer. - """ - - @staticmethod - def _is_device_calibrated(data): - """Checks to see if the Monsoon has completed calibration. - - Args: - data: the calibration data. - - Returns: - True if the data is calibrated. False otherwise. - """ - try: - # If the data is calibrated for any Origin.REFERENCE value, it is - # calibrated for all Origin.REFERENCE values. The same is true for - # Origin.ZERO. - data.get(Channel.MAIN, Origin.REFERENCE, Granularity.COARSE) - data.get(Channel.MAIN, Origin.ZERO, Granularity.COARSE) - except CalibrationError: - return False - return True - - def _transform_buffer(self, buffer): - calibration_data = buffer.calibration_data - - if not self._is_device_calibrated(calibration_data): - return [] - - measurements = np.array([sample.values for sample in buffer.samples]) - readings = np.zeros((len(buffer.samples), 5)) - - for channel in Channel.values: - fine_zero = calibration_data.get(channel, Origin.ZERO, - Granularity.FINE) - fine_scale = calibration_data.get(channel, Origin.SCALE, - Granularity.FINE) - coarse_zero = calibration_data.get(channel, Origin.ZERO, - Granularity.COARSE) - coarse_scale = calibration_data.get(channel, Origin.SCALE, - Granularity.COARSE) - - # A set LSB means a coarse measurement. This bit needs to be - # cleared before setting calibration. Note that the - # reverse-engineered algorithm does not rightshift the bits after - # this operation. This explains the mismatch of calibration - # constants between the reverse-engineered algorithm and the - # Monsoon.py algorithm. - readings[:, channel] = np.where( - measurements[:, channel] & 1, - ((measurements[:, channel] & ~1) - coarse_zero) * coarse_scale, - (measurements[:, channel] - fine_zero) * fine_scale) - - for i in range(len(buffer.samples)): - buffer.samples[i] = LvpmReading( - list(readings[i]), buffer.samples[i].get_sample_time()) - - return buffer.samples diff --git a/acts/framework/acts/controllers/rohdeschwarz_lib/__init__.py b/acts/framework/acts/controllers/rohdeschwarz_lib/__init__.py deleted file mode 100644 index e69de29bb2..0000000000 --- a/acts/framework/acts/controllers/rohdeschwarz_lib/__init__.py +++ /dev/null diff --git a/acts/framework/acts/controllers/rohdeschwarz_lib/cmw500.py b/acts/framework/acts/controllers/rohdeschwarz_lib/cmw500.py deleted file mode 100644 index 0163d16517..0000000000 --- a/acts/framework/acts/controllers/rohdeschwarz_lib/cmw500.py +++ /dev/null @@ -1,761 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import time - -from enum import Enum - -from acts.controllers import abstract_inst - -LTE_ATTACH_RESP = 'ATT' -LTE_CONN_RESP = 'CONN' -LTE_PSWITCHED_ON_RESP = 'ON' -LTE_PSWITCHED_OFF_RESP = 'OFF' -LTE_TURN_ON_RESP = 'ON,ADJ' -LTE_TURN_OFF_RESP = 'OFF,ADJ' - - -class LteState(Enum): - """LTE ON and OFF""" - LTE_ON = 'ON' - LTE_OFF = 'OFF' - - -class BtsNumber(Enum): - """Base station Identifiers.""" - BTS1 = 'PCC' - BTS2 = 'SCC1' - BTS3 = 'SCC2' - BTS4 = 'SCC3' - BTS5 = 'SCC4' - BTS6 = 'SCC6' - BTS7 = 'SCC7' - - -class LteBandwidth(Enum): - """Supported LTE bandwidths.""" - BANDWIDTH_1MHz = 'B014' - BANDWIDTH_3MHz = 'B030' - BANDWIDTH_5MHz = 'B050' - BANDWIDTH_10MHz = 'B100' - BANDWIDTH_15MHz = 'B150' - BANDWIDTH_20MHz = 'B200' - - -class DuplexMode(Enum): - """Duplex Modes""" - FDD = 'FDD' - TDD = 'TDD' - - -class SchedulingMode(Enum): - """Supported scheduling modes.""" - RMC = 'RMC' - USERDEFINEDCH = 'UDCHannels' - - -class TransmissionModes(Enum): - """Supported transmission modes.""" - TM1 = 'TM1' - TM2 = 'TM2' - TM3 = 'TM3' - TM4 = 'TM4' - TM7 = 'TM7' - TM8 = 'TM8' - TM9 = 'TM9' - - -class UseCarrierSpecific(Enum): - """Enable or disable carrier specific.""" - UCS_ON = 'ON' - UCS_OFF = 'OFF' - - -class RbPosition(Enum): - """Supported RB postions.""" - LOW = 'LOW' - HIGH = 'HIGH' - P5 = 'P5' - P10 = 'P10' - P23 = 'P23' - P35 = 'P35' - P48 = 'P48' - - -class ModulationType(Enum): - """Supported Modulation Types.""" - QPSK = 'QPSK' - Q16 = 'Q16', - Q64 = 'Q64', - Q256 = 'Q256' - - -class DciFormat(Enum): - """Support DCI Formats for MIMOs""" - D1 = 'D1' - D1A = 'D1A' - D1B = 'D1B' - D2 = 'D2' - D2A = 'D2A' - D2B = 'D2B' - D2C = 'D2C' - - -class MimoModes(Enum): - """MIMO Modes dl antennas""" - MIMO1x1 = 'ONE' - MIMO2x2 = 'TWO' - MIMO4x4 = 'FOUR' - - -class MimoScenario(Enum): - """Supportted mimo scenarios""" - SCEN1x1 = 'SCELl:FLEXible SUA1,RF1C,RX1,RF1C,TX1' - SCEN2x2 = 'TRO:FLEXible SUA1,RF1C,RX1,RF1C,TX1,RF3C,TX2' - SCEN4x4 = 'FRO FLEXible SUA1,RF1C,RX1,RF1C,TX1,RF3C,TX2,RF2C,TX3,RF4C,TX4' - - -class RrcState(Enum): - """States to enable/disable rrc.""" - RRC_ON = 'ON' - RRC_OFF = 'OFF' - - -class Cmw500(abstract_inst.SocketInstrument): - - def __init__(self, ip_addr, port): - """Init method to setup variables for controllers. - - Args: - ip_addr: Controller's ip address. - port: Port - """ - super(Cmw500, self).__init__(ip_addr, port) - self._connect_socket() - self._send('*CLS') - self._send('*ESE 0;*SRE 0') - self._send('*CLS') - self._send('*ESE 1;*SRE 4') - self._send('SYST:DISP:UPD ON') - - def switch_lte_signalling(self, state): - """Turns LTE signalling ON/OFF. - - Args: - state: ON/OFF. - """ - cmd = 'SOURce:LTE:SIGN:CELL:STATe {}'.format(state.value) - self.send_and_recv(cmd) - self.wait_for_lte_state_change() - - def enable_packet_switching(self): - """Enable packet switching in call box.""" - self.send_and_recv('CALL:LTE:SIGN:PSWitched:ACTion CONNect') - self.wait_for_pswitched_state() - - def disable_packet_switching(self): - """Disable packet switching in call box.""" - self.send_and_recv('CALL:LTE:SIGN:PSWitched:ACTion DISConnect') - self.wait_for_pswitched_state() - - @property - def use_carrier_specific(self): - """Gets current status of carrier specific duplex configuration.""" - return self.send_and_recv('CONFigure:LTE:SIGN:DMODe:UCSPECific?') - - @use_carrier_specific.setter - def use_carrier_specific(self, state): - """Sets the carrier specific duplex configuration. - - Args: - state: ON/OFF UCS configuration. - """ - cmd = 'CONFigure:LTE:SIGN:DMODe:UCSPECific {}'.format(state) - self.send_and_recv(cmd) - - def send_and_recv(self, cmd): - """Send and recv the status of the command. - - Args: - cmd: Command to send. - - Returns: - status: returns the status of the command sent. - """ - - self._send(cmd) - if '?' in cmd: - status = self._recv() - return status - - def configure_mimo_settings(self, mimo): - """Sets the mimo scenario for the test. - - Args: - mimo: mimo scenario to set. - """ - cmd = 'ROUTe:LTE:SIGN:SCENario:{}'.format(mimo.value) - self.send_and_recv(cmd) - - def wait_for_lte_state_change(self, timeout=20): - """Waits until the state of LTE changes. - - Args: - timeout: timeout for lte to be turned ON/OFF. - - Raises: - CmwError on timeout. - """ - end_time = time.time() + timeout - while time.time() <= end_time: - state = self.send_and_recv('SOURce:LTE:SIGN:CELL:STATe:ALL?') - - if state == LTE_TURN_ON_RESP: - self._logger.debug('LTE turned ON.') - break - elif state == LTE_TURN_OFF_RESP: - self._logger.debug('LTE turned OFF.') - break - else: - raise CmwError('Failed to turn ON/OFF lte signalling.') - - def wait_for_pswitched_state(self, timeout=10): - """Wait until pswitched state. - - Args: - timeout: timeout for lte pswitched state. - - Raises: - CmwError on timeout. - """ - end_time = time.time() + timeout - while time.time() <= end_time: - state = self.send_and_recv('FETCh:LTE:SIGN:PSWitched:STATe?') - if state == LTE_PSWITCHED_ON_RESP: - self._logger.debug('Connection to setup initiated.') - break - elif state == LTE_PSWITCHED_OFF_RESP: - self._logger.debug('Connection to setup detached.') - break - else: - raise CmwError('Failure in setting up/detaching connection') - - def wait_for_attached_state(self, timeout=120): - """Attach the controller with device. - - Args: - timeout: timeout for phone to get attached. - - Raises: - CmwError on time out. - """ - end_time = time.time() + timeout - while time.time() <= end_time: - state = self.send_and_recv('FETCh:LTE:SIGN:PSWitched:STATe?') - - if state == LTE_ATTACH_RESP: - self._logger.debug('Call box attached with device') - break - else: - raise CmwError('Device could not be attached') - - def wait_for_connected_state(self, timeout=120): - """Checks if controller connected with device. - - Args: - timeout: timeout for phone to be in connnected state. - - Raises: - CmwError on time out. - """ - end_time = time.time() + timeout - while time.time() <= end_time: - conn_state = self.send_and_recv('SENSe:LTE:SIGN:RRCState?') - - if conn_state == LTE_CONN_RESP: - self._logger.debug('Call box connected with device') - break - else: - raise CmwError('Call box could not be connected with device') - - def reset(self): - """System level reset""" - self.send_and_recv('*RST; *OPC') - - @property - def get_instrument_id(self): - """Gets instrument identification number""" - return self.send_and_recv('*IDN?') - - def disconnect(self): - """Disconnect controller from device and switch to local mode.""" - self.switch_lte_signalling(LteState.LTE_OFF) - self.close_remote_mode() - self._close_socket() - - def close_remote_mode(self): - """Exits remote mode to local mode.""" - self.send_and_recv('>L') - - def detach(self): - """Detach callbox and controller.""" - self.send_and_recv('CALL:LTE:SIGN:PSWitched:ACTion DETach') - - @property - def rrc_connection(self): - """Gets the RRC connection state.""" - return self.send_and_recv('CONFigure:LTE:SIGN:CONNection:KRRC?') - - @rrc_connection.setter - def rrc_connection(self, state): - """Selects whether the RRC connection is kept or released after attach. - - Args: - mode: RRC State ON/OFF. - """ - if not isinstance(state, RrcState): - raise ValueError('state should be the instance of RrcState.') - - cmd = 'CONFigure:LTE:SIGN:CONNection:KRRC {}'.format(state.value) - self.send_and_recv(cmd) - - @property - def rrc_connection_timer(self): - """Gets the inactivity timeout for disabled rrc connection.""" - return self.send_and_recv('CONFigure:LTE:SIGN:CONNection:RITimer?') - - @rrc_connection_timer.setter - def rrc_connection_timer(self, time_in_secs): - """Sets the inactivity timeout for disabled rrc connection. By default - the timeout is set to 5. - - Args: - time_in_secs: timeout of inactivity in rrc connection. - """ - cmd = 'CONFigure:LTE:SIGN:CONNection:RITimer {}'.format(time_in_secs) - self.send_and_recv(cmd) - - def get_base_station(self, bts_num=BtsNumber.BTS1): - """Gets the base station object based on bts num. By default - bts_num set to PCC - - Args: - bts_num: base station identifier - - Returns: - base station object. - """ - return BaseStation(self, bts_num) - - -class BaseStation(object): - """Class to interact with different base stations""" - - def __init__(self, cmw, bts_num): - if not isinstance(bts_num, BtsNumber): - raise ValueError('bts_num should be an instance of BtsNumber.') - self._bts = bts_num.value - self._cmw = cmw - - @property - def duplex_mode(self): - """Gets current duplex of cell.""" - cmd = 'CONFigure:LTE:SIGN:{}:DMODe?'.format(self._bts) - return self._cmw.send_and_recv(cmd) - - @duplex_mode.setter - def duplex_mode(self, mode): - """Sets the Duplex mode of cell. - - Args: - mode: String indicating FDD or TDD. - """ - if not isinstance(mode, DuplexMode): - raise ValueError('mode should be an instance of DuplexMode.') - - cmd = 'CONFigure:LTE:SIGN:{}:DMODe {}'.format(self._bts, mode.value) - self._cmw.send_and_recv(cmd) - - @property - def band(self): - """Gets the current band of cell.""" - cmd = 'CONFigure:LTE:SIGN:{}:BAND?'.format(self._bts) - return self._cmw.send_and_recv(cmd) - - @band.setter - def band(self, band): - """Sets the Band of cell. - - Args: - band: band of cell. - """ - cmd = 'CONFigure:LTE:SIGN:{}:BAND {}'.format(self._bts, band) - self._cmw.send_and_recv(cmd) - - @property - def dl_channel(self): - """Gets the downlink channel of cell.""" - cmd = 'CONFigure:LTE:SIGN:RFSettings:{}:CHANnel:DL?'.format(self._bts) - return self._cmw.send_and_recv(cmd) - - @dl_channel.setter - def dl_channel(self, channel): - """Sets the downlink channel number of cell. - - Args: - channel: downlink channel number of cell. - """ - cmd = 'CONFigure:LTE:SIGN:RFSettings:{}:CHANnel:DL {}'.format( - self._bts, channel) - self._cmw.send_and_recv(cmd) - - @property - def ul_channel(self): - """Gets the uplink channel of cell.""" - cmd = 'CONFigure:LTE:SIGN:RFSettings:{}:CHANnel:UL?'.format(self._bts) - return self._cmw.send_and_recv(cmd) - - @ul_channel.setter - def ul_channel(self, channel): - """Sets the up link channel number of cell. - - Args: - channel: up link channel number of cell. - """ - cmd = 'CONFigure:LTE:SIGN:RFSettings:{}:CHANnel:UL {}'.format( - self._bts, channel) - self._cmw.send_and_recv(cmd) - - @property - def bandwidth(self): - """Get the channel bandwidth of the cell.""" - cmd = 'CONFigure:LTE:SIGN:CELL:BANDwidth:{}:DL?'.format(self._bts) - return self._cmw.send_and_recv(cmd) - - @bandwidth.setter - def bandwidth(self, bandwidth): - """Sets the channel bandwidth of the cell. - - Args: - bandwidth: channel bandwidth of cell. - """ - if not isinstance(bandwidth, LteBandwidth): - raise ValueError('bandwidth should be an instance of ' - 'LteBandwidth.') - cmd = 'CONFigure:LTE:SIGN:CELL:BANDwidth:{}:DL {}'.format( - self._bts, bandwidth.value) - self._cmw.send_and_recv(cmd) - - @property - def ul_frequency(self): - """Get the uplink frequency of the cell.""" - cmd = 'CONFigure:LTE:SIGN:RFSettings:{}:CHANnel:UL? MHZ'.format( - self._bts) - return self._cmw.send_and_recv(cmd) - - @ul_frequency.setter - def ul_frequency(self, freq): - """Get the uplink frequency of the cell. - - Args: - freq: uplink frequency of the cell. - """ - cmd = 'CONFigure:LTE:SIGN:RFSettings:{}:CHANnel:UL {} MHZ'.format( - self._bts, freq) - self._cmw.send_and_recv(cmd) - - @property - def dl_frequency(self): - """Get the downlink frequency of the cell""" - cmd = 'CONFigure:LTE:SIGN:RFSettings:{}:CHANnel:DL? MHZ'.format( - self._bts) - return self._cmw.send_and_recv(cmd) - - @dl_frequency.setter - def dl_frequency(self, freq): - """Get the downlink frequency of the cell. - - Args: - freq: downlink frequency of the cell. - """ - cmd = 'CONFigure:LTE:SIGN:RFSettings:{}:CHANnel:DL {} MHZ'.format( - self._bts, freq) - self._cmw.send_and_recv(cmd) - - @property - def transmode(self): - """Gets the TM of cell.""" - cmd = 'CONFigure:LTE:SIGN:CONNection:{}:TRANsmission?'.format( - self._bts) - return self._cmw.send_and_recv(cmd) - - @transmode.setter - def transmode(self, tm_mode): - """Sets the TM of cell. - - Args: - tm_mode: TM of cell. - """ - if not isinstance(tm_mode, TransmissionModes): - raise ValueError('tm_mode should be an instance of ' - 'Transmission modes.') - - cmd = 'CONFigure:LTE:SIGN:CONNection:{}:TRANsmission {}'.format( - self._bts, tm_mode.value) - self._cmw.send_and_recv(cmd) - - @property - def downlink_power_level(self): - """Gets RSPRE level.""" - cmd = 'CONFigure:LTE:SIGN:DL:{}:RSEPre:LEVel?'.format(self._bts) - return self._cmw.send_and_recv(cmd) - - @downlink_power_level.setter - def downlink_power_level(self, pwlevel): - """Modifies RSPRE level. - - Args: - pwlevel: power level in dBm. - """ - cmd = 'CONFigure:LTE:SIGN:DL:{}:RSEPre:LEVel {}'.format( - self._bts, pwlevel) - self._cmw.send_and_recv(cmd) - - @property - def uldl_configuration(self): - """Gets uldl configuration of the cell.""" - cmd = 'CONFigure:LTE:SIGN:CELL:{}:ULDL?'.format(self._bts) - return self._cmw.send_and_recv(cmd) - - @uldl_configuration.setter - def uldl_configuration(self, uldl): - """Sets the ul-dl configuration. - - Args: - uldl: Configuration value ranging from 0 to 6. - """ - if uldl not in range(0, 7): - raise ValueError('uldl configuration value should be between' - ' 0 and 6 inclusive.') - - cmd = 'CONFigure:LTE:SIGN:CELL:{}:ULDL {}'.format(self._bts, uldl) - self._cmw.send_and_recv(cmd) - - @property - def tdd_special_subframe(self): - """Gets special subframe of the cell.""" - cmd = 'CONFigure:LTE:SIGN:CELL:{}:SSUBframe?'.format(self._bts) - return self._cmw.send_and_recv(cmd) - - @tdd_special_subframe.setter - def tdd_special_subframe(self, sframe): - """Sets the tdd special subframe of the cell. - - Args: - sframe: Integer value ranging from 1 to 9. - """ - if sframe not in range(0, 10): - raise ValueError('tdd special subframe should be between 0 and 9' - ' inclusive.') - - cmd = 'CONFigure:LTE:SIGN:CELL:{}:SSUBframe {}'.format( - self._bts, sframe) - self._cmw.send_and_recv(cmd) - - @property - def scheduling_mode(self): - """Gets the current scheduling mode.""" - cmd = 'CONFigure:LTE:SIGN:CONNection:{}:STYPe?'.format(self._bts) - return self._cmw.send_and_recv(cmd) - - @scheduling_mode.setter - def scheduling_mode(self, mode): - """Sets the scheduling type for the cell. - - Args: - mode: Selects the channel mode to be scheduled. - """ - if not isinstance(mode, SchedulingMode): - raise ValueError('mode should be the instance of scheduling mode.') - - cmd = 'CONFigure:LTE:SIGN:CONNection:{}:STYPe {}'.format( - self._bts, mode.value) - self._cmw.send_and_recv(cmd) - - @property - def rb_configuration_dl(self): - """Gets rmc's rb configuration for down link. This function returns - Number of Resource blocks, Resource block position and Modulation type. - """ - cmd = 'CONFigure:LTE:SIGN:CONNection:{}:{}:DL?'.format( - self._bts, self.scheduling_mode) - return self._cmw.send_and_recv(cmd) - - @rb_configuration_dl.setter - def rb_configuration_dl(self, rb_config): - """Sets the rb configuration for down link for scheduling type. - - Args: - rb_config: Tuple containing Number of resource blocks, resource - block position and modulation type. - - Raises: - ValueError: If tuple unpacking fails. - """ - if self.scheduling_mode == 'RMC': - rb, rb_pos, modulation = rb_config - - cmd = ('CONFigure:LTE:SIGN:CONNection:{}:RMC:DL {},{},' - '{}'.format(self._bts, rb, rb_pos, modulation)) - self._cmw.send_and_recv(cmd) - - elif self.scheduling_mode == 'UDCH': - rb, start_rb, modulation, tbs = rb_config - - if not 0 <= rb <= 26: - raise ValueError('rb should be between 0 and 26 inclusive.') - - cmd = ('CONFigure:LTE:SIGN:CONNection:{}:UDCHannels:DL {},{},' - '{},{}'.format(self._bts, rb, start_rb, modulation, tbs)) - self._cmw.send_and_recv(cmd) - - @property - def rb_configuration_ul(self): - """Gets rb configuration for up link. This function returns - Number of Resource blocks, Resource block position and Modulation type. - """ - cmd = 'CONFigure:LTE:SIGN:CONNection:{}:{}:UL?'.format( - self._bts, self.scheduling_mode) - return self._cmw.send_and_recv(cmd) - - @rb_configuration_ul.setter - def rb_configuration_ul(self, rb_config): - """Sets the rb configuration for down link for scheduling mode. - - Args: - rb_config: Tuple containing Number of resource blocks, resource - block position and modulation type. - - Raises: - ValueError: If tuple unpacking fails. - """ - if self.scheduling_mode == 'RMC': - rb, rb_pos, modulation = rb_config - - cmd = ('CONFigure:LTE:SIGN:CONNection:{}:RMC:UL {},{},' - '{}'.format(self._bts, rb, rb_pos, modulation)) - self._cmw.send_and_recv(cmd) - - elif self.scheduling_mode == 'UDCH': - rb, start_rb, modulation, tbs = rb_config - - if not 0 <= rb <= 26: - raise ValueError('rb should be between 0 and 26 inclusive.') - - cmd = ('CONFigure:LTE:SIGN:CONNection:{}:UDCHannels:UL {},{},' - '{},{}'.format(self._bts, rb, start_rb, modulation, tbs)) - self._cmw.send_and_recv(cmd) - - @property - def rb_position_dl(self): - """Gets the position of the allocated down link resource blocks within - the channel band-width. - """ - cmd = 'CONFigure:LTE:SIGN:CONNection:{}:RMC:RBPosition:DL?'.format( - self._bts) - return self._cmw.send_and_recv(cmd) - - @rb_position_dl.setter - def rb_position_dl(self, rbpos): - """Selects the position of the allocated down link resource blocks - within the channel band-width - - Args: - rbpos: position of resource blocks. - """ - if not isinstance(rbpos, RbPosition): - raise ValueError('rbpos should be the instance of RbPosition.') - - cmd = 'CONFigure:LTE:SIGN:CONNection:{}:RMC:RBPosition:DL {}'.format( - self._bts, rbpos.value) - self._cmw.send_and_recv(cmd) - - @property - def rb_position_ul(self): - """Gets the position of the allocated up link resource blocks within - the channel band-width. - """ - cmd = 'CONFigure:LTE:SIGN:CONNection:{}:RMC:RBPosition:UL?'.format( - self._bts) - return self._cmw.send_and_recv(cmd) - - @rb_position_ul.setter - def rb_position_ul(self, rbpos): - """Selects the position of the allocated up link resource blocks - within the channel band-width. - - Args: - rbpos: position of resource blocks. - """ - if not isinstance(rbpos, RbPosition): - raise ValueError('rbpos should be the instance of RbPosition.') - - cmd = 'CONFigure:LTE:SIGN:CONNection:{}:RMC:RBPosition:UL {}'.format( - self._bts, rbpos.value) - self._cmw.send_and_recv(cmd) - - @property - def dci_format(self): - """Gets the downlink control information (DCI) format.""" - cmd = 'CONFigure:LTE:SIGN:CONNection:{}:DCIFormat?'.format(self._bts) - return self._cmw.send_and_recv(cmd) - - @dci_format.setter - def dci_format(self, dci_format): - """Selects the downlink control information (DCI) format. - - Args: - dci_format: supported dci. - """ - if not isinstance(dci_format, DciFormat): - raise ValueError('dci_format should be the instance of DciFormat.') - - cmd = 'CONFigure:LTE:SIGN:CONNection:{}:DCIFormat {}'.format( - self._bts, dci_format) - self._cmw.send_and_recv(cmd) - - @property - def dl_antenna(self): - """Gets dl antenna count of cell.""" - cmd = 'CONFigure:LTE:SIGN:CONNection:{}:NENBantennas?'.format(self._bts) - return self._cmw.send_and_recv(cmd) - - @dl_antenna.setter - def dl_antenna(self, num_antenna): - """Sets the dl antenna count of cell. - - Args: - num_antenna: Count of number of dl antennas to use. - """ - if not isinstance(num_antenna, MimoModes): - raise ValueError('num_antenna should be an instance of MimoModes.') - cmd = 'CONFigure:LTE:SIGN:CONNection:{}:NENBantennas {}'.format( - self._bts, num_antenna) - self._cmw.send_and_recv(cmd) - - -class CmwError(Exception): - """Class to raise exceptions related to cmw.""" diff --git a/acts/framework/acts/controllers/rohdeschwarz_lib/cmw500_cellular_simulator.py b/acts/framework/acts/controllers/rohdeschwarz_lib/cmw500_cellular_simulator.py deleted file mode 100644 index 64d127b808..0000000000 --- a/acts/framework/acts/controllers/rohdeschwarz_lib/cmw500_cellular_simulator.py +++ /dev/null @@ -1,392 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the 'License'); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an 'AS IS' BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -import time - -from acts.controllers.rohdeschwarz_lib import cmw500 -from acts.controllers import cellular_simulator as cc -from acts.test_utils.power.tel_simulations import LteSimulation - -CMW_TM_MAPPING = { - LteSimulation.TransmissionMode.TM1: cmw500.TransmissionModes.TM1, - LteSimulation.TransmissionMode.TM2: cmw500.TransmissionModes.TM2, - LteSimulation.TransmissionMode.TM3: cmw500.TransmissionModes.TM3, - LteSimulation.TransmissionMode.TM4: cmw500.TransmissionModes.TM4, - LteSimulation.TransmissionMode.TM7: cmw500.TransmissionModes.TM7, - LteSimulation.TransmissionMode.TM8: cmw500.TransmissionModes.TM8, - LteSimulation.TransmissionMode.TM9: cmw500.TransmissionModes.TM9 -} - -CMW_SCH_MAPPING = { - LteSimulation.SchedulingMode.STATIC: cmw500.SchedulingMode.USERDEFINEDCH -} - -CMW_MIMO_MAPPING = { - LteSimulation.MimoMode.MIMO_1x1: cmw500.MimoModes.MIMO1x1, - LteSimulation.MimoMode.MIMO_2x2: cmw500.MimoModes.MIMO2x2, - LteSimulation.MimoMode.MIMO_4x4: cmw500.MimoModes.MIMO4x4 -} - - -class CMW500CellularSimulator(cc.AbstractCellularSimulator): - """ A cellular simulator for telephony simulations based on the CMW 500 - controller. """ - - # Indicates if it is able to use 256 QAM as the downlink modulation for LTE - LTE_SUPPORTS_DL_256QAM = None - - # Indicates if it is able to use 64 QAM as the uplink modulation for LTE - LTE_SUPPORTS_UL_64QAM = None - - # Indicates if 4x4 MIMO is supported for LTE - LTE_SUPPORTS_4X4_MIMO = None - - # The maximum number of carriers that this simulator can support for LTE - LTE_MAX_CARRIERS = None - - def __init__(self, ip_address, port): - """ Initializes the cellular simulator. - - Args: - ip_address: the ip address of the CMW500 - port: the port number for the CMW500 controller - """ - super().__init__() - - try: - self.cmw = cmw500.Cmw500(ip_address, port) - except cmw500.CmwError: - raise cc.CellularSimulatorError('Could not connect to CMW500.') - - self.bts = None - self.dl_modulation = None - self.ul_modulation = None - - def destroy(self): - """ Sends finalization commands to the cellular equipment and closes - the connection. """ - self.cmw.disconnect() - - def setup_lte_scenario(self): - """ Configures the equipment for an LTE simulation. """ - self.bts = [self.cmw.get_base_station()] - self.cmw.switch_lte_signalling(cmw500.LteState.LTE_ON) - - def setup_lte_ca_scenario(self): - """ Configures the equipment for an LTE with CA simulation. """ - raise NotImplementedError() - - def set_lte_rrc_state_change_timer(self, enabled, time=10): - """ Configures the LTE RRC state change timer. - - Args: - enabled: a boolean indicating if the timer should be on or off. - time: time in seconds for the timer to expire - """ - # Setting this method to pass instead of raising an exception as it - # it is required by LTE sims. - # TODO (b/141838145): Implement RRC status change timer for CMW500. - pass - - def set_band(self, bts_index, band): - """ Sets the band for the indicated base station. - - Args: - bts_index: the base station number - band: the new band - """ - bts = self.bts[bts_index] - bts.duplex_mode = self.get_duplex_mode(band) - band = 'OB' + band - bts.band = band - self.log.debug('Band set to {}'.format(band)) - - def get_duplex_mode(self, band): - """ Determines if the band uses FDD or TDD duplex mode - - Args: - band: a band number - - Returns: - an variable of class DuplexMode indicating if band is FDD or TDD - """ - if 33 <= int(band) <= 46: - return cmw500.DuplexMode.TDD - else: - return cmw500.DuplexMode.FDD - - def set_input_power(self, bts_index, input_power): - """ Sets the input power for the indicated base station. - - Args: - bts_index: the base station number - input_power: the new input power - """ - raise NotImplementedError() - - def set_output_power(self, bts_index, output_power): - """ Sets the output power for the indicated base station. - - Args: - bts_index: the base station number - output_power: the new output power - """ - bts = self.bts[bts_index] - bts.downlink_power_level = output_power - - def set_tdd_config(self, bts_index, tdd_config): - """ Sets the tdd configuration number for the indicated base station. - - Args: - bts_index: the base station number - tdd_config: the new tdd configuration number - """ - self.bts[bts_index].uldl_configuration = tdd_config - - def set_bandwidth(self, bts_index, bandwidth): - """ Sets the bandwidth for the indicated base station. - - Args: - bts_index: the base station number - bandwidth: the new bandwidth - """ - bts = self.bts[bts_index] - - if bandwidth == 20: - bts.bandwidth = cmw500.LteBandwidth.BANDWIDTH_20MHz - elif bandwidth == 15: - bts.bandwidth = cmw500.LteBandwidth.BANDWIDTH_15MHz - elif bandwidth == 10: - bts.bandwidth = cmw500.LteBandwidth.BANDWIDTH_10MHz - elif bandwidth == 5: - bts.bandwidth = cmw500.LteBandwidth.BANDWIDTH_5MHz - elif bandwidth == 3: - bts.bandwidth = cmw500.LteBandwidth.BANDWIDTH_3MHz - elif bandwidth == 1.4: - bts.bandwidth = cmw500.LteBandwidth.BANDWIDTH_1MHz - else: - msg = 'Bandwidth {} MHz is not valid for LTE'.format(bandwidth) - raise ValueError(msg) - - def set_downlink_channel_number(self, bts_index, channel_number): - """ Sets the downlink channel number for the indicated base station. - - Args: - bts_index: the base station number - channel_number: the new channel number - """ - bts = self.bts[bts_index] - bts.dl_channel = channel_number - self.log.debug('Downlink Channel set to {}'.format(bts.dl_channel)) - - def set_mimo_mode(self, bts_index, mimo_mode): - """ Sets the mimo mode for the indicated base station. - - Args: - bts_index: the base station number - mimo_mode: the new mimo mode - """ - bts = self.bts[bts_index] - mimo_mode = CMW_MIMO_MAPPING[mimo_mode] - if mimo_mode == cmw500.MimoModes.MIMO1x1: - self.cmw.configure_mimo_settings(cmw500.MimoScenario.SCEN1x1) - bts.dl_antenna = cmw500.MimoModes.MIMO1x1 - - elif mimo_mode == cmw500.MimoModes.MIMO2x2: - self.cmw.configure_mimo_settings(cmw500.MimoScenario.SCEN2x2) - bts.dl_antenna = cmw500.MimoModes.MIMO2x2 - - elif mimo_mode == cmw500.MimoModes.MIMO4x4: - self.cmw.configure_mimo_settings(cmw500.MimoScenario.SCEN4x4) - bts.dl_antenna = cmw500.MimoModes.MIMO4x4 - else: - RuntimeError('The requested MIMO mode is not supported.') - - def set_transmission_mode(self, bts_index, tmode): - """ Sets the transmission mode for the indicated base station. - - Args: - bts_index: the base station number - tmode: the new transmission mode - """ - bts = self.bts[bts_index] - - tmode = CMW_TM_MAPPING[tmode] - if (tmode in [ - cmw500.TransmissionModes.TM1, - cmw500.TransmissionModes.TM7 - ] and bts.dl_antenna != cmw500.MimoModes.MIMO1x1): - bts.transmode = tmode - elif (tmode in cmw500.TransmissionModes.__members__ and - bts.dl_antenna != cmw500.MimoModes.MIMO2x2): - bts.transmode = tmode - elif (tmode in [ - cmw500.TransmissionModes.TM2, - cmw500.TransmissionModes.TM3, - cmw500.TransmissionModes.TM4, - cmw500.TransmissionModes.TM6, - cmw500.TransmissionModes.TM9 - ] and bts.dl_antenna == cmw500.MimoModes.MIMO4x4): - bts.transmode = tmode - - else: - raise ValueError('Transmission modes should support the current ' - 'mimo mode') - - def set_scheduling_mode(self, bts_index, scheduling, mcs_dl=None, - mcs_ul=None, nrb_dl=None, nrb_ul=None): - """ Sets the scheduling mode for the indicated base station. - - Args: - bts_index: the base station number. - scheduling: the new scheduling mode. - mcs_dl: Downlink MCS. - mcs_ul: Uplink MCS. - nrb_dl: Number of RBs for downlink. - nrb_ul: Number of RBs for uplink. - """ - bts = self.bts[bts_index] - bts.scheduling_mode = CMW_SCH_MAPPING[scheduling] - - if not self.ul_modulation and self.dl_modulation: - raise ValueError('Modulation should be set prior to scheduling ' - 'call') - - if scheduling == cmw500.SchedulingMode.RMC: - - if not nrb_ul and nrb_dl: - raise ValueError('nrb_ul and nrb dl should not be none') - - bts.rb_configuration_ul = (nrb_ul, self.ul_modulation, 'KEEP') - self.log.info('ul rb configurations set to {}'.format( - bts.rb_configuration_ul)) - - time.sleep(1) - - self.log.debug('Setting rb configurations for down link') - bts.rb_configuration_dl = (nrb_dl, self.dl_modulation, 'KEEP') - self.log.info('dl rb configurations set to {}'.format( - bts.rb_configuration_ul)) - - elif scheduling == cmw500.SchedulingMode.USERDEFINEDCH: - - if not all([nrb_ul, nrb_dl, mcs_dl, mcs_ul]): - raise ValueError('All parameters are mandatory.') - - bts.rb_configuration_ul = (nrb_ul, 0, self.ul_modulation, - mcs_ul) - self.log.info('ul rb configurations set to {}'.format( - bts.rb_configuration_ul)) - - time.sleep(1) - - bts.rb_configuration_dl = (nrb_dl, 0, self.dl_modulation, mcs_dl) - self.log.info('dl rb configurations set to {}'.format( - bts.rb_configuration_dl)) - - def set_enabled_for_ca(self, bts_index, enabled): - """ Enables or disables the base station during carrier aggregation. - - Args: - bts_index: the base station number - enabled: whether the base station should be enabled for ca. - """ - raise NotImplementedError() - - def set_dl_modulation(self, bts_index, modulation): - """ Sets the DL modulation for the indicated base station. - - Args: - bts_index: the base station number - modulation: the new DL modulation - """ - - # This function is only used to store the values of modulation to - # be inline with abstract class signature. - self.dl_modulation = modulation - self.log.warning('Modulation config stored but not applied until ' - 'set_scheduling_mode called.') - - def set_ul_modulation(self, bts_index, modulation): - """ Sets the UL modulation for the indicated base station. - - Args: - bts_index: the base station number - modulation: the new UL modulation - """ - # This function is only used to store the values of modulation to - # be inline with abstract class signature. - self.ul_modulation = modulation - self.log.warning('Modulation config stored but not applied until ' - 'set_scheduling_mode called.') - - def set_tbs_pattern_on(self, bts_index, tbs_pattern_on): - """ Enables or disables TBS pattern in the indicated base station. - - Args: - bts_index: the base station number - tbs_pattern_on: the new TBS pattern setting - """ - # TODO (b/143918664): CMW500 doesn't have an equivalent setting. - pass - - def lte_attach_secondary_carriers(self): - """ Activates the secondary carriers for CA. Requires the DUT to be - attached to the primary carrier first. """ - raise NotImplementedError() - - def wait_until_attached(self, timeout=120): - """ Waits until the DUT is attached to the primary carrier. - - Args: - timeout: after this amount of time the method will raise a - CellularSimulatorError exception. Default is 120 seconds. - """ - self.cmw.wait_for_attached_state(timeout=timeout) - - def wait_until_communication_state(self, timeout=120): - """ Waits until the DUT is in Communication state. - - Args: - timeout: after this amount of time the method will raise a - CellularSimulatorError exception. Default is 120 seconds. - """ - self.cmw.wait_for_connected_state(timeout=timeout) - - def wait_until_idle_state(self, timeout=120): - """ Waits until the DUT is in Idle state. - - Args: - timeout: after this amount of time the method will raise a - CellularSimulatorError exception. Default is 120 seconds. - """ - raise NotImplementedError() - - def detach(self): - """ Turns off all the base stations so the DUT loose connection.""" - self.cmw.detach() - - def stop(self): - """ Stops current simulation. After calling this method, the simulator - will need to be set up again. """ - raise NotImplementedError() - - def start_data_traffic(self): - """ Starts transmitting data from the instrument to the DUT. """ - raise NotImplementedError() - - def stop_data_traffic(self): - """ Stops transmitting data from the instrument to the DUT. """ - raise NotImplementedError() diff --git a/acts/framework/acts/controllers/rohdeschwarz_lib/contest.py b/acts/framework/acts/controllers/rohdeschwarz_lib/contest.py deleted file mode 100644 index f34a62b728..0000000000 --- a/acts/framework/acts/controllers/rohdeschwarz_lib/contest.py +++ /dev/null @@ -1,422 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from zeep import client -from acts.libs.proc import job -from xml.etree import ElementTree -import requests -import asyncio -import time -import threading -import re -import os -import logging - - -class Contest(object): - """ Controller interface for Rohde Schwarz CONTEST sequencer software. """ - - # Remote Server parameter / operation names - TESTPLAN_PARAM = 'Testplan' - TESTPLAN_VERSION_PARAM = 'TestplanVersion' - KEEP_ALIVE_PARAM = 'KeepContestAlive' - START_TESTPLAN_OPERATION = 'StartTestplan' - - # Results dictionary keys - POS_ERROR_KEY = 'pos_error' - TTFF_KEY = 'ttff' - SENSITIVITY_KEY = 'sensitivity' - - # Waiting times - OUTPUT_WAITING_INTERVAL = 5 - - # Maximum number of times to retry if the Contest system is not responding - MAXIMUM_OUTPUT_READ_RETRIES = 25 - - # Root directory for the FTP server in the remote computer - FTP_ROOT = 'D:\\Logs\\' - - def __init__(self, logger, remote_ip, remote_port, automation_listen_ip, - automation_port, dut_on_func, dut_off_func, ftp_usr, ftp_pwd): - """ - Initializes the Contest software controller. - - Args: - logger: a logger handle. - remote_ip: the Remote Server's IP address. - remote_port: port number used by the Remote Server. - automation_listen_ip: local IP address in which to listen for - Automation Server connections. - automation_port: port used for Contest's DUT automation requests. - dut_on_func: function to turn the DUT on. - dut_off_func: function to turn the DUT off. - ftp_usr: username to login to the FTP server on the remote host - ftp_pwd: password to authenticate ftp_user in the ftp server - """ - self.log = logger - self.ftp_user = ftp_usr - self.ftp_pass = ftp_pwd - - self.remote_server_ip = remote_ip - - server_url = 'http://{}:{}/RemoteServer'.format(remote_ip, remote_port) - - # Initialize the SOAP client to interact with Contest's Remote Server - try: - self.soap_client = client.Client(server_url + '/RemoteServer?wsdl') - except requests.exceptions.ConnectionError: - self.log.error('Could not connect to the remote endpoint. Is ' - 'Remote Server running on the Windows computer?') - raise - - # Assign a value to asyncio_loop in case the automation server is not - # started - self.asyncio_loop = None - - # Start the automation server if an IP and port number were passed - if automation_listen_ip and automation_port: - self.start_automation_server(automation_port, automation_listen_ip, - dut_on_func, dut_off_func) - - def start_automation_server(self, automation_port, automation_listen_ip, - dut_on_func, dut_off_func): - """ Starts the Automation server in a separate process. - - Args: - automation_listen_ip: local IP address in which to listen for - Automation Server connections. - automation_port: port used for Contest's DUT automation requests. - dut_on_func: function to turn the DUT on. - dut_off_func: function to turn the DUT off. - """ - - # Start an asyncio event loop to run the automation server - self.asyncio_loop = asyncio.new_event_loop() - - # Start listening for automation requests on a separate thread. This - # will start a new thread in which a socket will listen for incoming - # connections and react to Contest's automation commands - - def start_automation_server(asyncio_loop): - AutomationServer(self.log, automation_port, automation_listen_ip, - dut_on_func, dut_off_func, asyncio_loop) - - automation_daemon = threading.Thread( - target=start_automation_server, args=[self.asyncio_loop]) - automation_daemon.start() - - def execute_testplan(self, testplan): - """ Executes a test plan with Contest's Remote Server sequencer. - - Waits until and exit code is provided in the output. Logs the ouput with - the class logger and pulls the json report from the server if the test - succeeds. - - Arg: - testplan: the test plan's name in the Contest system - - Returns: - a dictionary with test results if the test finished successfully, - and None if it finished with an error exit code. - """ - - self.soap_client.service.DoSetParameterValue(self.TESTPLAN_PARAM, - testplan) - self.soap_client.service.DoSetParameterValue( - self.TESTPLAN_VERSION_PARAM, 16) - self.soap_client.service.DoSetParameterValue(self.KEEP_ALIVE_PARAM, - 'true') - - # Remote Server sometimes doesn't respond to the request immediately and - # frequently times out producing an exception. A shorter timeout will - # throw the exception earlier and allow the script to continue. - with self.soap_client.options(timeout=5): - try: - self.soap_client.service.DoStartOperation( - self.START_TESTPLAN_OPERATION) - except requests.exceptions.ReadTimeout: - pass - - self.log.info('Started testplan {} in Remote Server.'.format(testplan)) - - testplan_directory = None - read_retries = 0 - - while True: - - time.sleep(self.OUTPUT_WAITING_INTERVAL) - output = self.soap_client.service.DoGetOutput() - - # Output might be None while the instrument is busy. - if output: - self.log.debug(output) - - # Obtain the path to the folder where reports generated by the - # test equipment will be stored in the remote computer - if not testplan_directory: - prefix = re.escape('Testplan Directory: ' + self.FTP_ROOT) - match = re.search('(?<={}).+(?=\\\\)'.format(prefix), - output) - if match: - testplan_directory = match.group(0) - - # An exit code in the output indicates that the measurement is - # completed. - match = re.search('(?<=Exit code: )-?\d+', output) - if match: - exit_code = int(match.group(0)) - break - - # Reset the not-responding counter - read_retries = 0 - - else: - # If the output has been None for too many retries in a row, - # the testing instrument is assumed to be unresponsive. - read_retries += 1 - if read_retries == self.MAXIMUM_OUTPUT_READ_RETRIES: - raise RuntimeError('The Contest test sequencer is not ' - 'responding.') - - self.log.info( - 'Contest testplan finished with exit code {}.'.format(exit_code)) - - if exit_code in [0, 1]: - self.log.info('Testplan reports are stored in {}.'.format( - testplan_directory)) - - return self.pull_test_results(testplan_directory) - - def pull_test_results(self, testplan_directory): - """ Downloads the test reports from the remote host and parses the test - summary to obtain the results. - - Args: - testplan_directory: directory where to look for reports generated - by the test equipment in the remote computer - - Returns: - a JSON object containing the test results - """ - - if not testplan_directory: - raise ValueError('Invalid testplan directory.') - - # Download test reports from the remote host - job.run('wget -r --user={} --password={} -P {} ftp://{}/{}'.format( - self.ftp_user, self.ftp_pass, logging.log_path, - self.remote_server_ip, testplan_directory)) - - # Open the testplan directory - testplan_path = os.path.join(logging.log_path, self.remote_server_ip, - testplan_directory) - - # Find the report.json file in the testcase folder - dir_list = os.listdir(testplan_path) - xml_path = None - - for dir in dir_list: - if 'TestCaseName' in dir: - xml_path = os.path.join(testplan_path, dir, - 'SummaryReport.xml') - break - - if not xml_path: - raise RuntimeError('Could not find testcase directory.') - - # Return the obtained report as a dictionary - xml_tree = ElementTree.ElementTree() - xml_tree.parse(source=xml_path) - - results_dictionary = {} - - col_iterator = xml_tree.iter('column') - for col in col_iterator: - # Look in the text of the first child for the required metrics - if col.text == '2D position error [m]': - results_dictionary[self.POS_ERROR_KEY] = { - 'min': float(next(col_iterator).text), - 'med': float(next(col_iterator).text), - 'avg': float(next(col_iterator).text), - 'max': float(next(col_iterator).text) - } - elif col.text == 'Time to first fix [s]': - results_dictionary[self.TTFF_KEY] = { - 'min': float(next(col_iterator).text), - 'med': float(next(col_iterator).text), - 'avg': float(next(col_iterator).text), - 'max': float(next(col_iterator).text) - } - - message_iterator = xml_tree.iter('message') - for message in message_iterator: - # Look for the line showing sensitivity - if message.text: - # The typo in 'successfull' is intended as it is present in the - # test logs generated by the Contest system. - match = re.search('(?<=Margin search completed, the lowest ' - 'successfull output power is )-?\d+.?\d+' - '(?= dBm)', message.text) - if match: - results_dictionary[self.SENSITIVITY_KEY] = float( - match.group(0)) - break - - return results_dictionary - - def destroy(self): - """ Closes all open connections and kills running threads. """ - if self.asyncio_loop: - # Stopping the asyncio loop will let the Automation Server exit - self.asyncio_loop.call_soon_threadsafe(self.asyncio_loop.stop) - - -class AutomationServer: - """ Server object that handles DUT automation requests from Contest's Remote - Server. - """ - - def __init__(self, logger, port, listen_ip, dut_on_func, dut_off_func, - asyncio_loop): - """ Initializes the Automation Server. - - Opens a listening socket using a asyncio and waits for incoming - connections. - - Args: - logger: a logger handle - port: port used for Contest's DUT automation requests - listen_ip: local IP in which to listen for connections - dut_on_func: function to turn the DUT on - dut_off_func: function to turn the DUT off - asyncio_loop: asyncio event loop to listen and process incoming - data asynchronously - """ - - self.log = logger - - # Define a protocol factory that will provide new Protocol - # objects to the server created by asyncio. This Protocol - # objects will handle incoming commands - def aut_protocol_factory(): - return self.AutomationProtocol(logger, dut_on_func, dut_off_func) - - # Each client connection will create a new protocol instance - coro = asyncio_loop.create_server(aut_protocol_factory, listen_ip, - port) - - self.server = asyncio_loop.run_until_complete(coro) - - # Serve requests until Ctrl+C is pressed - self.log.info('Automation Server listening on {}'.format( - self.server.sockets[0].getsockname())) - asyncio_loop.run_forever() - - class AutomationProtocol(asyncio.Protocol): - """ Defines the protocol for communication with Contest's Automation - client. """ - - AUTOMATION_DUT_ON = 'DUT_SWITCH_ON' - AUTOMATION_DUT_OFF = 'DUT_SWITCH_OFF' - AUTOMATION_OK = 'OK' - - NOTIFICATION_TESTPLAN_START = 'AtTestplanStart' - NOTIFICATION_TESTCASE_START = 'AtTestcaseStart' - NOTIFICATION_TESCASE_END = 'AfterTestcase' - NOTIFICATION_TESTPLAN_END = 'AfterTestplan' - - def __init__(self, logger, dut_on_func, dut_off_func): - """ Keeps the function handles to be used upon incoming requests. - - Args: - logger: a logger handle - dut_on_func: function to turn the DUT on - dut_off_func: function to turn the DUT off - """ - - self.log = logger - self.dut_on_func = dut_on_func - self.dut_off_func = dut_off_func - - def connection_made(self, transport): - """ Called when a connection has been established. - - Args: - transport: represents the socket connection. - """ - - # Keep a reference to the transport as it will allow to write - # data to the socket later. - self.transport = transport - - peername = transport.get_extra_info('peername') - self.log.info('Connection from {}'.format(peername)) - - def data_received(self, data): - """ Called when some data is received. - - Args: - data: non-empty bytes object containing the incoming data - """ - command = data.decode() - - # Remove the line break and newline characters at the end - command = re.sub('\r?\n$', '', command) - - self.log.info("Command received from Contest's Automation " - "client: {}".format(command)) - - if command == self.AUTOMATION_DUT_ON: - self.log.info("Contest's Automation client requested to set " - "DUT to on state.") - self.send_ok() - self.dut_on_func() - return - elif command == self.AUTOMATION_DUT_OFF: - self.log.info("Contest's Automation client requested to set " - "DUT to off state.") - self.dut_off_func() - self.send_ok() - elif command.startswith(self.NOTIFICATION_TESTPLAN_START): - self.log.info('Test plan is starting.') - self.send_ok() - elif command.startswith(self.NOTIFICATION_TESTCASE_START): - self.log.info('Test case is starting.') - self.send_ok() - elif command.startswith(self.NOTIFICATION_TESCASE_END): - self.log.info('Test case finished.') - self.send_ok() - elif command.startswith(self.NOTIFICATION_TESTPLAN_END): - self.log.info('Test plan finished.') - self.send_ok() - else: - self.log.error('Unhandled automation command: ' + command) - raise ValueError() - - def send_ok(self): - """ Sends an OK message to the Automation server. """ - self.log.info("Sending OK response to Contest's Automation client") - self.transport.write( - bytearray( - self.AUTOMATION_OK + '\n', - encoding='utf-8', - )) - - def eof_received(self): - """ Called when the other end signals it won’t send any more - data. - """ - self.log.info('Received EOF from Contest Automation client.') diff --git a/acts/framework/acts/controllers/rohdeschwarz_lib/smbv100.py b/acts/framework/acts/controllers/rohdeschwarz_lib/smbv100.py deleted file mode 100644 index bbdec13ac6..0000000000 --- a/acts/framework/acts/controllers/rohdeschwarz_lib/smbv100.py +++ /dev/null @@ -1,163 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -"""Python module for Rohde & Schwarz SMBV100 Vector Signal Generator.""" - -import numbers -from acts.controllers import abstract_inst - - -class SMBV100Error(abstract_inst.SocketInstrumentError): - """SMBV100 Instrument Error Class.""" - - -class SMBV100(abstract_inst.SocketInstrument): - """SMBV100 Class, inherted from abstract_inst SocketInstrument.""" - - def __init__(self, ip_addr, ip_port): - """Init method for SMBV100. - - Args: - ip_addr: IP Address. - Type, str. - ip_port: TCPIP Port. - Type, str. - """ - super(SMBV100, self).__init__(ip_addr, ip_port) - - self.idn = '' - - def connect(self): - """Init and Connect to SMBV100.""" - self._connect_socket() - - self.get_idn() - - infmsg = 'Connected to SMBV100, with ID: {}'.format(self.idn) - self._logger.debug(infmsg) - - def close(self): - """Close SMBV100.""" - self._close_socket() - - self._logger.debug('Closed connection to SMBV100') - - def get_idn(self): - """Get the Idenification of SMBV100. - - Returns: - SMBV100 Identifier - """ - self.idn = self._query('*IDN?') - - return self.idn - - def preset(self): - """Preset SMBV100 to default status.""" - self._send('*RST') - - self._logger.debug('Preset SMBV100') - - def set_rfout_state(self, state): - """set SMBV100 RF output state. - - Args: - state: RF output state. - Type, str. Option, ON/OFF. - - Raises: - SMBV100Error: raise when state is not ON/OFF. - """ - - if state not in ['ON', 'OFF']: - raise SMBV100Error(error='"state" input must be "ON" or "OFF"', - command='set_rfout') - - self._send(':OUTP ' + state) - - infmsg = 'set SMBV100 RF output to "{}"'.format(state) - self._logger.debug(infmsg) - - def set_rfout_freq(self, freq): - """set SMBV100 RF output frequency. - - Args: - freq: RF output frequency. - Type, num. - - Raises: - SMBV100Error: raise when 'freq' is not numerical value. - """ - - if not isinstance(freq, numbers.Number): - raise SMBV100Error(error='"freq" input must be numerical value', - command='set_rfoutfreq') - - self._send(':SOUR:FREQ:CW ' + str(freq)) - - infmsg = 'set SMBV100 RF output frequency to {} Hz'.format(freq) - self._logger.debug(infmsg) - - def get_rfout_freq(self): - """get SMBV100 RF output frequency. - - Return: - freq: RF output frequency. - Type, num. - """ - resp = self._query(':SOUR:FREQ:CW?') - - freq = float(resp.split(';')[0]) - - infmsg = 'get SMBV100 RF output frequency as {} Hz'.format(freq) - self._logger.debug(infmsg) - - return freq - - def set_rfout_level(self, level): - """set SMBV100 RF output level. - - Args: - level: RF Level. - Type, num. - - Raises: - SMBV100Error: raise when 'level' is not numerical value. - """ - - if not isinstance(level, numbers.Number): - raise SMBV100Error(error='"level" input must be numerical value', - command='set_rflevel') - - self._send(':SOUR:POW:LEV:IMM:AMPL ' + str(level)) - - infmsg = 'set SMBV100 RF level to {} dBm'.format(level) - self._logger.debug(infmsg) - - def get_rfout_level(self): - """get SMBV100 RF out level. - - Return: - level: RF Level. - Type, num. - """ - resp = self._query(':SOUR:POW:LEV:IMM:AMPL?') - - level = float(resp.split(';')[0]) - - infmsg = 'get SMBV100 RF level as {} dBm'.format(level) - self._logger.debug(infmsg) - - return level diff --git a/acts/framework/acts/controllers/utils_lib/commands/shell.py b/acts/framework/acts/controllers/utils_lib/commands/shell.py index f99e1b78a9..ac232dacc0 100644 --- a/acts/framework/acts/controllers/utils_lib/commands/shell.py +++ b/acts/framework/acts/controllers/utils_lib/commands/shell.py @@ -180,7 +180,7 @@ class ShellCommand(object): file_name: The name of the file to delete. """ try: - self.run('rm -r %s' % file_name) + self.run('rm %s' % file_name) except job.Error as e: if 'No such file or directory' in e.result.stderr: return diff --git a/acts/framework/acts/controllers/utils_lib/ssh/settings.py b/acts/framework/acts/controllers/utils_lib/ssh/settings.py index e32b9c77eb..e89afc0d50 100644 --- a/acts/framework/acts/controllers/utils_lib/ssh/settings.py +++ b/acts/framework/acts/controllers/utils_lib/ssh/settings.py @@ -30,13 +30,12 @@ def from_config(config): port = config.get('port', 22) identity_file = config.get('identity_file', None) ssh_config = config.get('ssh_config', None) - connect_timeout = config.get('connect_timeout', 30) if user is None or host is None: raise ValueError('Malformed SSH config did not include user and ' 'host keys: %s' % config) return SshSettings(host, user, port=port, identity_file=identity_file, - ssh_config=ssh_config, connect_timeout=connect_timeout) + ssh_config=ssh_config) class SshSettings(object): diff --git a/acts/framework/acts/keys.py b/acts/framework/acts/keys.py index 65b0e21216..3be8bcdf81 100644 --- a/acts/framework/acts/keys.py +++ b/acts/framework/acts/keys.py @@ -26,60 +26,58 @@ class Config(enum.Enum): # Keys used to look up values from test config files. # These keys define the wording of test configs and their internal # references. - key_log_path = 'logpath' + key_log_path = "logpath" key_testbeds_under_test = 'testbeds_under_test' - key_testbed = 'testbed' - key_testbed_name = 'name' + key_testbed = "testbed" + key_testbed_name = "name" # configpath is the directory. key_config_full_path is the file path. - key_config_path = 'configpath' + key_config_path = "configpath" key_config_full_path = 'config_full_path' - key_test_paths = 'testpaths' - key_port = 'Port' - key_address = 'Address' - key_random = 'random' - key_test_case_iterations = 'test_case_iterations' - key_test_failure_tracebacks = 'test_failure_tracebacks' + key_test_paths = "testpaths" + key_port = "Port" + key_address = "Address" + key_random = "random" + key_test_case_iterations = "test_case_iterations" + key_test_failure_tracebacks = "test_failure_tracebacks" # Config names for controllers packaged in ACTS. - key_android_device = 'AndroidDevice' - key_bluetooth_pts_device = 'BluetoothPtsDevice' - key_fuchsia_device = 'FuchsiaDevice' - key_buds_device = 'BudsDevice' - key_chameleon_device = 'ChameleonDevice' - key_native_android_device = 'NativeAndroidDevice' - key_relay_device = 'RelayDevice' - key_access_point = 'AccessPoint' - key_attenuator = 'Attenuator' - key_iperf_server = 'IPerfServer' - key_iperf_client = 'IPerfClient' - key_packet_sender = 'PacketSender' - key_monsoon = 'Monsoon' - key_sniffer = 'Sniffer' - key_arduino_wifi_dongle = 'ArduinoWifiDongle' - key_packet_capture = 'PacketCapture' + key_android_device = "AndroidDevice" + key_fuchsia_device = "FuchsiaDevice" + key_buds_device = "BudsDevice" + key_chameleon_device = "ChameleonDevice" + key_native_android_device = "NativeAndroidDevice" + key_relay_device = "RelayDevice" + key_access_point = "AccessPoint" + key_attenuator = "Attenuator" + key_iperf_server = "IPerfServer" + key_iperf_client = "IPerfClient" + key_packet_sender = "PacketSender" + key_monsoon = "Monsoon" + key_sniffer = "Sniffer" + key_arduino_wifi_dongle = "ArduinoWifiDongle" + key_packet_capture = "PacketCapture" # Internal keys, used internally, not exposed to user's config files. - ikey_user_param = 'user_params' - ikey_testbed_name = 'testbed_name' - ikey_logger = 'log' - ikey_logpath = 'log_path' + ikey_user_param = "user_params" + ikey_testbed_name = "testbed_name" + ikey_logger = "log" + ikey_logpath = "log_path" ikey_summary_writer = 'summary_writer' - ikey_cli_args = 'cli_args' + ikey_cli_args = "cli_args" # module name of controllers packaged in ACTS. - m_key_monsoon = 'monsoon' - m_key_android_device = 'android_device' - m_key_fuchsia_device = 'fuchsia_device' - m_key_bluetooth_pts_device = 'bluetooth_pts_device' - m_key_buds_device = 'buds_controller' - m_key_chameleon_device = 'chameleon_controller' - m_key_native_android_device = 'native_android_device' - m_key_relay_device = 'relay_device_controller' - m_key_access_point = 'access_point' - m_key_attenuator = 'attenuator' - m_key_iperf_server = 'iperf_server' - m_key_iperf_client = 'iperf_client' - m_key_packet_sender = 'packet_sender' - m_key_sniffer = 'sniffer' - m_key_arduino_wifi_dongle = 'arduino_wifi_dongle' - m_key_packet_capture = 'packet_capture' + m_key_monsoon = "monsoon" + m_key_android_device = "android_device" + m_key_fuchsia_device = "fuchsia_device" + m_key_buds_device = "buds_controller" + m_key_chameleon_device = "chameleon_controller" + m_key_native_android_device = "native_android_device" + m_key_relay_device = "relay_device_controller" + m_key_access_point = "access_point" + m_key_attenuator = "attenuator" + m_key_iperf_server = "iperf_server" + m_key_iperf_client = "iperf_client" + m_key_packet_sender = "packet_sender" + m_key_sniffer = "sniffer" + m_key_arduino_wifi_dongle = "arduino_wifi_dongle" + m_key_packet_capture = "packet_capture" # A list of keys whose values in configs should not be passed to test # classes without unpacking first. @@ -88,7 +86,6 @@ class Config(enum.Enum): # Controller names packaged with ACTS. builtin_controller_names = [ key_android_device, - key_bluetooth_pts_device, key_fuchsia_device, key_buds_device, key_native_android_device, @@ -119,7 +116,7 @@ def get_name_by_value(value): def get_module_name(name_in_config): """Translates the name of a controller in config file to its module name. """ - return value_to_value(name_in_config, 'm_%s') + return value_to_value(name_in_config, "m_%s") def value_to_value(ref_value, pattern): diff --git a/acts/framework/acts/libs/logging/log_stream.py b/acts/framework/acts/libs/logging/log_stream.py index fbf0474d13..177dc4a054 100644 --- a/acts/framework/acts/libs/logging/log_stream.py +++ b/acts/framework/acts/libs/logging/log_stream.py @@ -201,6 +201,11 @@ class _LogStream(object): subcontext: Location of logs relative to the test context path. stream_format: Format used for log output to stream file_format: Format used for log output to files + + _test_case_handler_descriptors: The list of HandlerDescriptors that are + used to create LogHandlers for each new test case. + _test_case_log_handlers: The list of current LogHandlers for the current + test case. """ def __init__(self, name, log_name=None, base_path='', subcontext='', diff --git a/acts/framework/acts/metrics/loggers/blackbox.py b/acts/framework/acts/metrics/loggers/blackbox.py index 8d7aeca6b2..5f9441fde7 100644 --- a/acts/framework/acts/metrics/loggers/blackbox.py +++ b/acts/framework/acts/metrics/loggers/blackbox.py @@ -14,15 +14,12 @@ # See the License for the specific language governing permissions and # limitations under the License. -import shutil - from acts.metrics.core import ProtoMetric from acts.metrics.logger import MetricLogger -class BlackboxMappedMetricLogger(MetricLogger): - """A MetricLogger for logging and publishing Blackbox metrics from a dict. - The dict maps the metric name to the metric value. +class BlackboxMetricLogger(MetricLogger): + """A MetricLogger for logging and publishing Blackbox metrics. The logger will publish an ActsBlackboxMetricResult message, containing data intended to be uploaded to Blackbox. The message itself contains only @@ -35,68 +32,61 @@ class BlackboxMappedMetricLogger(MetricLogger): Attributes: proto_module: The proto module for ActsBlackboxMetricResult. + metric_name: The name of the metric, used to determine output filename. + result_attr: The name of the attribute of the test class where the + result is stored. metric_key: The metric key to use. If unset, the logger will use the context's identifier. - _metric_map: the map of metric_name -> metric_value to publish - to blackbox. If the metric value is set to None, the - metric will not be reported. + metric_value: The metric value. If this value is set, result_attr is + ignored. """ PROTO_FILE = 'protos/acts_blackbox.proto' - def __init__(self, metric_key=None, event=None, compiler_out=None): + def __init__(self, + metric_name, + result_attr='result', + metric_key=None, + event=None): """Initializes a logger for Blackbox metrics. Args: + metric_name: The name of the metric. + result_attr: The name of the attribute of the test class where the + result is stored. metric_key: The metric key to use. If unset, the logger will use the context's identifier. event: The event triggering the creation of this logger. - compiler_out: The directory to store the compiled proto module. """ super().__init__(event=event) - self.proto_module = self._compile_proto(self.PROTO_FILE, - compiler_out=compiler_out) + self.proto_module = self._compile_proto(self.PROTO_FILE) + if not metric_name: + raise ValueError("metric_name must be supplied.") + self.metric_name = metric_name + self.result_attr = result_attr self.metric_key = metric_key - self._metric_map = {} + self.metric_value = None + + def _get_metric_value(self): + """Extracts the metric value from the current context.""" + return getattr(self.context.test_class, self.result_attr) - def _get_metric_key(self, metric_name): + def _get_metric_key(self): """Gets the metric key to use. If the metric_key is explicitly set, returns that value. Otherwise, extracts an identifier from the context. - - Args: - metric_name: The name of the metric to report. """ if self.metric_key: key = self.metric_key else: key = self._get_blackbox_identifier() - key = '%s.%s' % (key, metric_name) + key = '%s.%s' % (key, self.metric_name) return key - def set_metric_data(self, metric_map): - """Sets the map of metrics to be uploaded to Blackbox. Note that - this will overwrite all existing added by this function or add_metric. - - Args: - metric_map: the map of metric_name -> metric_value to publish - to blackbox. If the metric value is set to None, the - metric will not be reported. - """ - self._metric_map = metric_map - - def add_metric(self, metric_name, metric_value): - """Adds a metric value to be published later. - - Note that if the metric name has already been added, the metric value - will be overwritten. - - Args: - metric_name: the name of the metric. - metric_value: the value of the metric. - """ - self._metric_map[metric_name] = metric_value + def _get_file_name(self): + """Gets the base file name to publish to.""" + return 'blackbox_%s' % self.metric_name def _get_blackbox_identifier(self): """Returns the testcase identifier, as expected by Blackbox.""" @@ -106,63 +96,24 @@ class BlackboxMappedMetricLogger(MetricLogger): parts = identifier.rsplit('.', 1) return '#'.join(parts) - def end(self, _): + def end(self, event): """Creates and publishes a ProtoMetric with blackbox data. - Builds a list of ActsBlackboxMetricResult messages from the set - metric data, and sends them to the publisher. - """ - metrics = [] - for metric_name, metric_value in self._metric_map.items(): - if metric_value is None: - continue - result = self.proto_module.ActsBlackboxMetricResult() - result.test_identifier = self._get_blackbox_identifier() - result.metric_key = self._get_metric_key(metric_name) - result.metric_value = metric_value - - metrics.append( - ProtoMetric(name='blackbox_%s' % metric_name, data=result)) - - return self.publisher.publish(metrics) - - -class BlackboxMetricLogger(BlackboxMappedMetricLogger): - """A MetricLogger for logging and publishing individual Blackbox metrics. - - For additional information on reporting to Blackbox, see - BlackboxMappedMetricLogger. - - Attributes: - proto_module: The proto module for ActsBlackboxMetricResult. - metric_name: The name of the metric, used to determine output filename. - metric_key: The metric key to use. If unset, the logger will use the - context's identifier. - metric_value: The metric value. - """ - - def __init__(self, metric_name, metric_key=None, event=None, - compiler_out=None): - """Initializes a logger for Blackbox metrics. + Builds an ActsBlackboxMetricResult message based on the result + generated, and passes it off to the publisher. Args: - metric_name: The name of the metric. - metric_key: The metric key to use. If unset, the logger will use - the context's identifier. - event: The event triggering the creation of this logger. - compiler_out: The directory to store the compiled proto module + event: The triggering event. """ - super().__init__(metric_key=metric_key, event=event, - compiler_out=compiler_out) - if not metric_name: - raise ValueError("metric_name must be supplied.") - self.metric_name = metric_name - self.metric_value = None - - @property - def metric_value(self): - return self._metric_map[self.metric_name] + result = self.proto_module.ActsBlackboxMetricResult() + result.test_identifier = self._get_blackbox_identifier() + result.metric_key = self._get_metric_key() + if self.result_attr is None or self.metric_value is not None: + result.metric_value = self.metric_value + else: + result.metric_value = self._get_metric_value() - @metric_value.setter - def metric_value(self, value): - self.add_metric(self.metric_name, value) + metric = ProtoMetric( + name=self._get_file_name(), + data=result) + return self.publisher.publish(metric) diff --git a/acts/framework/acts/test_runner.py b/acts/framework/acts/test_runner.py index 3827f69f5e..6a4ae0c0fb 100644 --- a/acts/framework/acts/test_runner.py +++ b/acts/framework/acts/test_runner.py @@ -22,7 +22,6 @@ import copy import importlib import inspect import fnmatch -import json import logging import os import pkgutil @@ -37,8 +36,6 @@ from acts import signals from acts import utils from acts import error -from mobly.records import ExceptionRecord - def _find_test_class(): """Finds the test class in a test script. @@ -148,7 +145,6 @@ class TestRunner(object): self.write_test_campaign() else: self.run_list = run_list - self.dump_config() self.results = records.TestResult() self.running = False @@ -179,9 +175,7 @@ class TestRunner(object): for path, name, _ in file_list: sys.path.append(path) try: - with utils.SuppressLogOutput( - log_levels=[logging.INFO, logging.ERROR]): - module = importlib.import_module(name) + module = importlib.import_module(name) except: for test_cls_name, _ in self.run_list: alt_name = name.replace('_', '').lower() @@ -293,15 +287,15 @@ class TestRunner(object): test_case_iterations = self.test_configs.get( keys.Config.key_test_case_iterations.value, 1) - test_cls_instance = test_cls(self.test_run_info) - try: - cls_result = test_cls_instance.run(test_cases, - test_case_iterations) - self.results += cls_result - self._write_results_to_file() - except signals.TestAbortAll as e: - self.results += e.results - raise e + with test_cls(self.test_run_info) as test_cls_instance: + try: + cls_result = test_cls_instance.run(test_cases, + test_case_iterations) + self.results += cls_result + self._write_results_to_file() + except signals.TestAbortAll as e: + self.results += e.results + raise e def run(self, test_class=None): """Executes test cases. @@ -342,7 +336,7 @@ class TestRunner(object): try: self.run_test_class(test_cls_name, test_case_names) except error.ActsError as e: - self.results.error.append(ExceptionRecord(e)) + self.results.errors.append(e) self.log.error("Test Runner Error: %s" % e.message) except signals.TestAbortAll as e: self.log.warning( @@ -373,12 +367,6 @@ class TestRunner(object): self.summary_writer.dump( self.results.summary_dict(), records.TestSummaryEntryType.SUMMARY) - def dump_config(self): - """Writes the test config to a JSON file under self.log_path""" - config_path = os.path.join(self.log_path, 'test_configs.json') - with open(config_path, 'a') as f: - json.dump(self.test_configs, f, skipkeys=True, indent=4) - def write_test_campaign(self): """Log test campaign file.""" path = os.path.join(self.log_path, "test_campaign.log") diff --git a/acts/framework/acts/test_utils/OWNERS b/acts/framework/acts/test_utils/OWNERS deleted file mode 100644 index e7fd3268e4..0000000000 --- a/acts/framework/acts/test_utils/OWNERS +++ /dev/null @@ -1 +0,0 @@ -include /acts/tests/OWNERS diff --git a/acts/framework/acts/test_utils/abstract_devices/bluetooth_device.py b/acts/framework/acts/test_utils/abstract_devices/bluetooth_device.py deleted file mode 100644 index 6c042ee815..0000000000 --- a/acts/framework/acts/test_utils/abstract_devices/bluetooth_device.py +++ /dev/null @@ -1,798 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import inspect -import logging - -from queue import Empty - -from acts.controllers.android_device import AndroidDevice -from acts.controllers.fuchsia_device import FuchsiaDevice -from acts.test_utils.bt.bt_constants import ble_scan_settings_modes -from acts.test_utils.bt.bt_constants import scan_result -from acts.test_utils.bt.bt_gatt_utils import GattTestUtilsError -from acts.test_utils.bt.bt_gatt_utils import disconnect_gatt_connection -from acts.test_utils.bt.bt_gatt_utils import setup_gatt_connection -from acts.test_utils.fuchsia.bt_test_utils import le_scan_for_device_by_name - -import acts.test_utils.bt.bt_test_utils as bt_test_utils - - -def create_bluetooth_device(hardware_device): - """Creates a generic Bluetooth device based on type of device that is sent - to the functions. - - Args: - hardware_device: A Bluetooth hardware device that is supported by ACTS. - """ - if isinstance(hardware_device, FuchsiaDevice): - return FuchsiaBluetoothDevice(hardware_device) - elif isinstance(hardware_device, AndroidDevice): - return AndroidBluetoothDevice(hardware_device) - else: - raise ValueError('Unable to create BluetoothDevice for type %s' % - type(hardware_device)) - - -class BluetoothDevice(object): - """Class representing a generic Bluetooth device. - - Each object of this class represents a generic Bluetooth device. - Android device and Fuchsia devices are the currently supported devices. - - Attributes: - device: A generic Bluetooth device. - """ - - def __init__(self, device): - self.device = device - self.log = logging - - def a2dp_initiate_open_stream(self): - """Base generic Bluetooth interface. Only called if not overridden by - another supported device. - """ - raise NotImplementedError("{} must be defined.".format( - inspect.currentframe().f_code.co_name)) - - def start_profile_a2dp_sink(self): - """Base generic Bluetooth interface. Only called if not overridden by - another supported device. - """ - raise NotImplementedError("{} must be defined.".format( - inspect.currentframe().f_code.co_name)) - - def stop_profile_a2dp_sink(self): - """Base generic Bluetooth interface. Only called if not overridden by - another supported device. - """ - raise NotImplementedError("{} must be defined.".format( - inspect.currentframe().f_code.co_name)) - - def start_pairing_helper(self): - """Base generic Bluetooth interface. Only called if not overridden by - another supported device. - """ - raise NotImplementedError("{} must be defined.".format( - inspect.currentframe().f_code.co_name)) - - def set_discoverable(self, is_discoverable): - """Base generic Bluetooth interface. Only called if not overridden by - another supported device. - """ - raise NotImplementedError("{} must be defined.".format( - inspect.currentframe().f_code.co_name)) - - def bluetooth_toggle_state(self, state): - """Base generic Bluetooth interface. Only called if not overridden by - another supported device. - """ - raise NotImplementedError("{} must be defined.".format( - inspect.currentframe().f_code.co_name)) - - def gatt_client_discover_characteristic_by_uuid(self, peer_identifier, - uuid): - """Base generic Bluetooth interface. Only called if not overridden by - another supported device. - """ - raise NotImplementedError("{} must be defined.".format( - inspect.currentframe().f_code.co_name)) - - def initialize_bluetooth_controller(self): - """Base generic Bluetooth interface. Only called if not overridden by - another supported device. - """ - raise NotImplementedError("{} must be defined.".format( - inspect.currentframe().f_code.co_name)) - - def get_pairing_pin(self): - """Base generic Bluetooth interface. Only called if not overridden by - another supported device. - """ - raise NotImplementedError("{} must be defined.".format( - inspect.currentframe().f_code.co_name)) - - def input_pairing_pin(self, pin): - """Base generic Bluetooth interface. Only called if not overridden by - another supported device. - """ - raise NotImplementedError("{} must be defined.".format( - inspect.currentframe().f_code.co_name)) - - def get_bluetooth_local_address(self): - """Base generic Bluetooth interface. Only called if not overridden by - another supported device. - """ - raise NotImplementedError("{} must be defined.".format( - inspect.currentframe().f_code.co_name)) - - def gatt_connect(self, peer_identifier, transport, autoconnect): - """Base generic Bluetooth interface. Only called if not overridden by - another supported device. - """ - raise NotImplementedError("{} must be defined.".format( - inspect.currentframe().f_code.co_name)) - - def gatt_client_ready_characteristic_by_handle(self, peer_identifier, - handle): - """Base generic Bluetooth interface. Only called if not overridden by - another supported device. - """ - raise NotImplementedError("{} must be defined.".format( - inspect.currentframe().f_code.co_name)) - - def gatt_disconnect(self, peer_identifier): - """Base generic Bluetooth interface. Only called if not overridden by - another supported device. - """ - raise NotImplementedError("{} must be defined.".format( - inspect.currentframe().f_code.co_name)) - - def gatt_client_refresh(self, peer_identifier): - """Base generic Bluetooth interface. Only called if not overridden by - another supported device. - """ - raise NotImplementedError("{} must be defined.".format( - inspect.currentframe().f_code.co_name)) - - def le_scan_with_name_filter(self, name, timeout): - """Base generic Bluetooth interface. Only called if not overridden by - another supported device. - """ - raise NotImplementedError("{} must be defined.".format( - inspect.currentframe().f_code.co_name)) - - def log_info(self, log): - """Base generic Bluetooth interface. Only called if not overridden by - another supported device. - """ - raise NotImplementedError("{} must be defined.".format( - inspect.currentframe().f_code.co_name)) - - def reset_bluetooth(self): - """Base generic Bluetooth interface. Only called if not overridden by - another supported device. - """ - raise NotImplementedError("{} must be defined.".format( - inspect.currentframe().f_code.co_name)) - - def sdp_add_search(self, attribute_list, profile_id): - """Base generic Bluetooth interface. Only called if not overridden by - another supported device. - """ - raise NotImplementedError("{} must be defined.".format( - inspect.currentframe().f_code.co_name)) - - def sdp_add_service(self, sdp_record): - """Base generic Bluetooth interface. Only called if not overridden by - another supported device. - """ - raise NotImplementedError("{} must be defined.".format( - inspect.currentframe().f_code.co_name)) - - def sdp_clean_up(self): - """Base generic Bluetooth interface. Only called if not overridden by - another supported device. - """ - raise NotImplementedError("{} must be defined.".format( - inspect.currentframe().f_code.co_name)) - - def sdp_init(self): - """Base generic Bluetooth interface. Only called if not overridden by - another supported device. - """ - raise NotImplementedError("{} must be defined.".format( - inspect.currentframe().f_code.co_name)) - - def sdp_remove_service(self, service_id): - """Base generic Bluetooth interface. Only called if not overridden by - another supported device. - """ - raise NotImplementedError("{} must be defined.".format( - inspect.currentframe().f_code.co_name)) - - def start_le_advertisement(self, adv_data, adv_interval): - """Base generic Bluetooth interface. Only called if not overridden by - another supported device. - """ - raise NotImplementedError("{} must be defined.".format( - inspect.currentframe().f_code.co_name)) - - def stop_le_advertisement(self): - """Base generic Bluetooth interface. Only called if not overridden by - another supported device. - """ - raise NotImplementedError("{} must be defined.".format( - inspect.currentframe().f_code.co_name)) - - def set_bluetooth_local_name(self, name): - """Base generic Bluetooth interface. Only called if not overridden by - another supported device. - """ - raise NotImplementedError("{} must be defined.".format( - inspect.currentframe().f_code.co_name)) - - def setup_gatt_server(self, database): - """Base generic Bluetooth interface. Only called if not overridden by - another supported device. - """ - raise NotImplementedError("{} must be defined.".format( - inspect.currentframe().f_code.co_name)) - - def close_gatt_server(self): - """Base generic Bluetooth interface. Only called if not overridden by - another supported device. - """ - raise NotImplementedError("{} must be defined.".format( - inspect.currentframe().f_code.co_name)) - - def unbond_device(self, peer_identifier): - """Base generic Bluetooth interface. Only called if not overridden by - another supported device. - """ - raise NotImplementedError("{} must be defined.".format( - inspect.currentframe().f_code.co_name)) - - def unbond_all_known_devices(self): - """Base generic Bluetooth interface. Only called if not overridden by - another supported device. - """ - raise NotImplementedError("{} must be defined.".format( - inspect.currentframe().f_code.co_name)) - - -class AndroidBluetoothDevice(BluetoothDevice): - """Class wrapper for an Android Bluetooth device. - - Each object of this class represents a generic Bluetooth device. - Android device and Fuchsia devices are the currently supported devices/ - - Attributes: - android_device: An Android Bluetooth device. - """ - - def __init__(self, android_device): - super().__init__(android_device) - self.peer_mapping = {} - - def a2dp_initiate_open_stream(self): - raise NotImplementedError("{} not yet implemented.".format( - inspect.currentframe().f_code.co_name)) - - def start_profile_a2dp_sink(self): - raise NotImplementedError("{} not yet implemented.".format( - inspect.currentframe().f_code.co_name)) - - def stop_profile_a2dp_sink(self): - raise NotImplementedError("{} not yet implemented.".format( - inspect.currentframe().f_code.co_name)) - - def bluetooth_toggle_state(self, state): - self.device.droid.bluetoothToggleState(state) - - def set_discoverable(self, is_discoverable): - """ Sets the device's discoverability. - - Args: - is_discoverable: True if discoverable, false if not discoverable - """ - if is_discoverable: - self.device.droid.bluetoothMakeDiscoverable() - else: - self.device.droid.bluetoothMakeUndiscoverable() - - def initialize_bluetooth(self): - pass - - def start_pairing_helper(self): - """ Starts the Android pairing helper. - """ - self.device.droid.bluetoothStartPairingHelper(True) - - def gatt_connect(self, peer_identifier, transport, autoconnect=False): - """ Perform a GATT connection to a perihperal. - - Args: - peer_identifier: The mac address to connect to. - transport: Which transport to use. - autoconnect: Set autocnnect to True or False. - Returns: - True if success, False if failure. - """ - try: - bluetooth_gatt, gatt_callback = setup_gatt_connection( - self.device, peer_identifier, autoconnect, transport) - self.peer_mapping[peer_identifier] = { - "bluetooth_gatt": bluetooth_gatt, - "gatt_callback": gatt_callback - } - except GattTestUtilsError as err: - self.log.error(err) - return False - return True - - def gatt_disconnect(self, peer_identifier): - """ Perform a GATT disconnect from a perihperal. - - Args: - peer_identifier: The peer to disconnect from. - Returns: - True if success, False if failure. - """ - peer_info = self.peer_mapping.get(peer_identifier) - if not peer_info: - self.log.error( - "No previous connections made to {}".format(peer_identifier)) - return False - - try: - disconnect_gatt_connection(self.device, - peer_info.get("bluetooth_gatt"), - peer_info.get("gatt_callback")) - self.cen_ad.droid.gattClientClose(peer_info.get("bluetooth_gatt")) - except GattTestUtilsError as err: - self.log.error(err) - return False - self.cen_ad.droid.gattClientClose(peer_info.get("bluetooth_gatt")) - - def gatt_client_refresh(self, peer_identifier): - """ Perform a GATT Client Refresh of a perihperal. - - Clears the internal cache and forces a refresh of the services from the - remote device. - - Args: - peer_identifier: The peer to refresh. - """ - peer_info = self.peer_mapping.get(peer_identifier) - if not peer_info: - self.log.error( - "No previous connections made to {}".format(peer_identifier)) - return False - self.device.droid.gattClientRefresh(peer_info["bluetooth_gatt"]) - - def le_scan_with_name_filter(self, name, timeout): - """ Scan over LE for a specific device name. - - Args: - name: The name filter to set. - timeout: The timeout to wait to find the advertisement. - Returns: - Discovered mac address or None - """ - self.device.droid.bleSetScanSettingsScanMode( - ble_scan_settings_modes['low_latency']) - filter_list = self.device.droid.bleGenFilterList() - scan_settings = self.device.droid.bleBuildScanSetting() - scan_callback = self.device.droid.bleGenScanCallback() - self.device.droid.bleSetScanFilterDeviceName(name) - self.device.droid.bleBuildScanFilter(filter_list) - self.device.droid.bleSetScanFilterDeviceName(self.name) - self.device.droid.bleStartBleScan(filter_list, scan_settings, - scan_callback) - try: - event = self.device.ed.pop_event(scan_result.format(scan_callback), - timeout) - return event['data']['Result']['deviceInfo']['address'] - except Empty as err: - self.log.info("Scanner did not find advertisement {}".format(err)) - return None - - def log_info(self, log): - """ Log directly onto the device. - - Args: - log: The informative log. - """ - self.device.droid.log.logI(log) - - def set_bluetooth_local_name(self, name): - """ Sets the Bluetooth controller's local name - Args: - name: The name to set. - """ - self.device.droid.bluetoothSetLocalName(name) - - def get_local_bluetooth_address(self): - """ Returns the Bluetooth local address. - """ - self.device.droid.bluetoothGetLocalAddress() - - def reset_bluetooth(self): - """ Resets Bluetooth on the Android Device. - """ - bt_test_utils.reset_bluetooth([self.device]) - - def sdp_add_search(self, attribute_list, profile_id): - """Adds an SDP search record. - Args: - attribute_list: The list of attributes to set - profile_id: The profile ID to set. - """ - # Android devices currently have no hooks to modify the SDP record. - pass - - def sdp_add_service(self, sdp_record): - """Adds an SDP service record. - Args: - sdp_record: The dictionary representing the search record to add. - Returns: - service_id: The service id to track the service record published. - None if failed. - """ - # Android devices currently have no hooks to modify the SDP record. - pass - - def sdp_clean_up(self): - """Cleans up all objects related to SDP. - """ - self.device.sdp_lib.cleanUp() - - def sdp_init(self): - """Initializes SDP on the device. - """ - # Android devices currently have no hooks to modify the SDP record. - pass - - def sdp_remove_service(self, service_id): - """Removes a service based on an input id. - Args: - service_id: The service ID to remove. - """ - # Android devices currently have no hooks to modify the SDP record. - pass - - def unbond_all_known_devices(self): - """ Unbond all known remote devices. - """ - self.device.droid.bluetoothFactoryReset() - - def unbond_device(self, peer_identifier): - """ Unbond peer identifier. - - Args: - peer_identifier: The mac address for the peer to unbond. - - """ - self.device.droid.bluetoothUnbond(peer_identifier) - - -class FuchsiaBluetoothDevice(BluetoothDevice): - """Class wrapper for an Fuchsia Bluetooth device. - - Each object of this class represents a generic luetooth device. - Android device and Fuchsia devices are the currently supported devices/ - - Attributes: - fuchsia_device: A Fuchsia Bluetooth device. - """ - - def __init__(self, fuchsia_device): - super().__init__(fuchsia_device) - - def a2dp_initiate_open_stream(self): - raise NotImplementedError("{} not yet implemented.".format( - inspect.currentframe().f_code.co_name)) - - def start_profile_a2dp_sink(self): - """ Starts the A2DP sink profile. - """ - self.device.control_daemon("bt-a2dp-sink.cmx", "start") - - def stop_profile_a2dp_sink(self): - """ Stops the A2DP sink profile. - """ - self.device.control_daemon("bt-a2dp-sink.cmx", "stop") - - def start_pairing_helper(self): - self.device.btc_lib.acceptPairing() - - def bluetooth_toggle_state(self, state): - """Stub for Fuchsia implementation.""" - pass - - def set_discoverable(self, is_discoverable): - """ Sets the device's discoverability. - - Args: - is_discoverable: True if discoverable, false if not discoverable - """ - self.device.btc_lib.setDiscoverable(is_discoverable) - - def get_pairing_pin(self): - """ Get the pairing pin from the active pairing delegate. - """ - return self.device.btc_lib.getPairingPin()['result'] - - def input_pairing_pin(self, pin): - """ Input pairing pin to active pairing delegate. - - Args: - pin: The pin to input. - """ - self.device.btc_lib.inputPairingPin(pin) - - def initialize_bluetooth_controller(self): - """ Initialize Bluetooth controller for first time use. - """ - self.device.btc_lib.initBluetoothControl() - - def get_local_bluetooth_address(self): - """ Returns the Bluetooth local address. - """ - return self.device.btc_lib.getActiveAdapterAddress().get("result") - - def set_bluetooth_local_name(self, name): - """ Sets the Bluetooth controller's local name - Args: - name: The name to set. - """ - self.device.btc_lib.setName(name) - - def gatt_connect(self, peer_identifier, transport, autoconnect): - """ Perform a GATT connection to a perihperal. - - Args: - peer_identifier: The peer to connect to. - transport: Not implemented. - autoconnect: Not implemented. - Returns: - True if success, False if failure. - """ - connection_result = self.device.gattc_lib.bleConnectToPeripheral( - peer_identifier) - if connection_result.get("error") is None: - self.log.error("Failed to connect to peer id {}: {}".format( - peer_identifier, connection_result.get("error"))) - return False - return True - - def gatt_client_refresh(self, peer_identifier): - """ Perform a GATT Client Refresh of a perihperal. - - Clears the internal cache and forces a refresh of the services from the - remote device. In Fuchsia there is no FIDL api to automatically do this - yet. Therefore just read all Characteristics which satisfies the same - requirements. - - Args: - peer_identifier: The peer to refresh. - """ - self._read_all_characteristics(peer_identifier) - - def gatt_client_discover_characteristic_by_uuid(self, peer_identifier, - uuid): - """ Perform a GATT Client Refresh of a perihperal. - - Clears the internal cache and forces a refresh of the services from the - remote device. In Fuchsia there is no FIDL api to automatically do this - yet. Therefore just read all Characteristics which satisfies the same - requirements. - - Args: - peer_identifier: The peer to refresh. - """ - self._read_all_characteristics(peer_identifier, uuid) - - def gatt_disconnect(self, peer_identifier): - """ Perform a GATT disconnect from a perihperal. - - Args: - peer_identifier: The peer to disconnect from. - Returns: - True if success, False if failure. - """ - disconnect_result = self.device.gattc_lib.bleDisconnectPeripheral( - peer_identifier) - if disconnect_result.get("error") is None: - self.log.error("Failed to disconnect from peer id {}: {}".format( - peer_identifier, disconnect_result.get("error"))) - return False - return True - - def reset_bluetooth(self): - """Stub for Fuchsia implementation.""" - pass - - def sdp_add_search(self, attribute_list, profile_id): - """Adds an SDP search record. - Args: - attribute_list: The list of attributes to set - profile_id: The profile ID to set. - """ - return self.device.sdp_lib.addSearch(attribute_list, profile_id) - - def sdp_add_service(self, sdp_record): - """Adds an SDP service record. - Args: - sdp_record: The dictionary representing the search record to add. - """ - return self.device.sdp_lib.addService(sdp_record) - - def sdp_clean_up(self): - """Cleans up all objects related to SDP. - """ - return self.device.sdp_lib.cleanUp() - - def sdp_init(self): - """Initializes SDP on the device. - """ - return self.device.sdp_lib.init() - - def sdp_remove_service(self, service_id): - """Removes a service based on an input id. - Args: - service_id: The service ID to remove. - """ - return self.device.sdp_lib.init() - - def start_le_advertisement(self, adv_data, adv_interval): - """ Starts an LE advertisement - - Args: - adv_data: Advertisement data. - adv_interval: Advertisement interval. - """ - self.device.ble_lib.bleStartBleAdvertising(adv_data, adv_interval) - - def stop_le_advertisement(self): - """ Stop active LE advertisement. - """ - self.device.ble_lib.bleStopBleAdvertising() - - def setup_gatt_server(self, database): - """ Sets up an input GATT server. - - Args: - database: A dictionary representing the GATT database to setup. - """ - self.device.gatts_lib.publishServer(database) - - def close_gatt_server(self): - """ Closes an existing GATT server. - """ - self.device.gatts_lib.closeServer() - - def le_scan_with_name_filter(self, name, timeout): - """ Scan over LE for a specific device name. - - Args: - name: The name filter to set. - timeout: The timeout to wait to find the advertisement. - Returns: - Discovered device id or None - """ - partial_match = True - return le_scan_for_device_by_name(self.device, self.device.log, name, - timeout, partial_match) - - def log_info(self, log): - """ Log directly onto the device. - - Args: - log: The informative log. - """ - self.device.logging_lib.logI(log) - pass - - def unbond_all_known_devices(self): - """ Unbond all known remote devices. - """ - try: - device_list = self.device.btc_lib.getKnownRemoteDevices()['result'] - for device_info in device_list: - device = device_list[device_info] - if device['bonded']: - self.device.btc_lib.forgetDevice(device['id']) - except Exception as err: - self.log.err("Unable to unbond all devices: {}".format(err)) - - def unbond_device(self, peer_identifier): - """ Unbond peer identifier. - - Args: - peer_identifier: The peer identifier for the peer to unbond. - - """ - self.device.btc_lib.forgetDevice(peer_identifier) - - def _read_all_characteristics(self, peer_identifier, uuid=None): - fail_err = "Failed to read all characteristics with: {}" - try: - services = self.device.gattc_lib.listServices(peer_identifier) - for service in services['result']: - service_id = service['id'] - service_uuid = service['uuid_type'] - self.device.gattc_lib.connectToService(peer_identifier, - service_id) - chars = self.device.gattc_lib.discoverCharacteristics() - self.log.info( - "Reading chars in service uuid: {}".format(service_uuid)) - - for char in chars['result']: - char_id = char['id'] - char_uuid = char['uuid_type'] - if uuid and uuid.lower() not in char_uuid.lower(): - continue - try: - read_val = \ - self.device.gattc_lib.readCharacteristicById( - char_id) - self.log.info( - "\tCharacteristic uuid / Value: {} / {}".format( - char_uuid, read_val['result'])) - str_value = "" - for val in read_val['result']: - str_value += chr(val) - self.log.info("\t\tstr val: {}".format(str_value)) - except Exception as err: - self.log.error(err) - pass - except Exception as err: - self.log.error(fail_err.forma(err)) - - def _perform_read_all_descriptors(self, peer_identifier): - fail_err = "Failed to read all characteristics with: {}" - try: - services = self.device.gattc_lib.listServices(peer_identifier) - for service in services['result']: - service_id = service['id'] - service_uuid = service['uuid_type'] - self.device.gattc_lib.connectToService(peer_identifier, - service_id) - chars = self.device.gattc_lib.discoverCharacteristics() - self.log.info( - "Reading descs in service uuid: {}".format(service_uuid)) - - for char in chars['result']: - char_id = char['id'] - char_uuid = char['uuid_type'] - descriptors = char['descriptors'] - self.log.info( - "\tReading descs in char uuid: {}".format(char_uuid)) - for desc in descriptors: - desc_id = desc["id"] - desc_uuid = desc["uuid_type"] - try: - read_val = self.device.gattc_lib.readDescriptorById( - desc_id) - self.log.info( - "\t\tDescriptor uuid / Value: {} / {}".format( - desc_uuid, read_val['result'])) - except Exception as err: - pass - except Exception as err: - self.log.error(fail_err.format(err)) diff --git a/acts/framework/acts/test_utils/abstract_devices/bluetooth_handsfree_abstract_device.py b/acts/framework/acts/test_utils/abstract_devices/bluetooth_handsfree_abstract_device.py index bb63bd9934..669ab0c259 100644 --- a/acts/framework/acts/test_utils/abstract_devices/bluetooth_handsfree_abstract_device.py +++ b/acts/framework/acts/test_utils/abstract_devices/bluetooth_handsfree_abstract_device.py @@ -14,11 +14,8 @@ # License for the specific language governing permissions and limitations under # the License. import inspect -import time -from acts import asserts -from acts.controllers.buds_lib.dev_utils import apollo_sink_events -from acts.test_utils.bt.bt_constants import bt_default_timeout +from acts.controllers.buds_lib.dev_utils import apollo_sink_events def validate_controller(controller, abstract_device_class): @@ -32,8 +29,8 @@ def validate_controller(controller, abstract_device_class): NotImplementedError: if controller is missing one or more methods. """ ctlr_methods = inspect.getmembers(controller, predicate=callable) - reqd_methods = inspect.getmembers( - abstract_device_class, predicate=inspect.ismethod) + reqd_methods = inspect.getmembers(abstract_device_class, + predicate=inspect.ismethod) expected_func_names = {method[0] for method in reqd_methods} controller_func_names = {method[0] for method in ctlr_methods} @@ -50,7 +47,8 @@ def validate_controller(controller, abstract_device_class): if inspect.signature(controller_func) != required_signature: raise NotImplementedError( 'Method {} must have the signature {}{}.'.format( - controller_func.__qualname__, controller_func.__name__, + controller_func.__qualname__, + controller_func.__name__, required_signature)) @@ -60,7 +58,6 @@ class BluetoothHandsfreeAbstractDevice: Desired controller classes should have a corresponding Bluetooth handsfree abstract device class defined in this module. """ - @property def mac_address(self): raise NotImplementedError @@ -103,7 +100,7 @@ class BluetoothHandsfreeAbstractDevice: class PixelBudsBluetoothHandsfreeAbstractDevice( - BluetoothHandsfreeAbstractDevice): + BluetoothHandsfreeAbstractDevice): CMD_EVENT = 'EvtHex' @@ -118,8 +115,7 @@ class PixelBudsBluetoothHandsfreeAbstractDevice( return self.pixel_buds_controller.bluetooth_address def accept_call(self): - return self.pixel_buds_controller.cmd( - self.format_cmd('EventUsrAnswer')) + return self.pixel_buds_controller.cmd(self.format_cmd('EventUsrAnswer')) def end_call(self): return self.pixel_buds_controller.cmd( @@ -151,8 +147,7 @@ class PixelBudsBluetoothHandsfreeAbstractDevice( self.format_cmd('EventUsrAvrcpSkipBackward')) def reject_call(self): - return self.pixel_buds_controller.cmd( - self.format_cmd('EventUsrReject')) + return self.pixel_buds_controller.cmd(self.format_cmd('EventUsrReject')) def volume_down(self): return self.pixel_buds_controller.volume('Down') @@ -163,6 +158,7 @@ class PixelBudsBluetoothHandsfreeAbstractDevice( class EarstudioReceiverBluetoothHandsfreeAbstractDevice( BluetoothHandsfreeAbstractDevice): + def __init__(self, earstudio_controller): self.earstudio_controller = earstudio_controller @@ -209,6 +205,7 @@ class EarstudioReceiverBluetoothHandsfreeAbstractDevice( class JaybirdX3EarbudsBluetoothHandsfreeAbstractDevice( BluetoothHandsfreeAbstractDevice): + def __init__(self, jaybird_controller): self.jaybird_controller = jaybird_controller @@ -253,73 +250,6 @@ class JaybirdX3EarbudsBluetoothHandsfreeAbstractDevice( return self.jaybird_controller.press_volume_up() -class AndroidHeadsetBluetoothHandsfreeAbstractDevice( - BluetoothHandsfreeAbstractDevice): - def __init__(self, ad_controller): - self.ad_controller = ad_controller - - @property - def mac_address(self): - """Getting device mac with more stability ensurance. - - Sometime, getting mac address is flaky that it returns None. Adding a - loop to add more ensurance of getting correct mac address. - """ - device_mac = None - start_time = time.time() - end_time = start_time + bt_default_timeout - while not device_mac and time.time() < end_time: - device_mac = self.ad_controller.droid.bluetoothGetLocalAddress() - asserts.assert_true(device_mac, 'Can not get the MAC address') - return device_mac - - def accept_call(self): - return self.ad_controller.droid.telecomAcceptRingingCall(None) - - def end_call(self): - return self.ad_controller.droid.telecomEndCall() - - def enter_pairing_mode(self): - self.ad_controller.droid.bluetoothStartPairingHelper(True) - return self.ad_controller.droid.bluetoothMakeDiscoverable() - - def next_track(self): - return (self.ad_controller.droid.bluetoothMediaPassthrough("skipNext")) - - def pause(self): - return self.ad_controller.droid.bluetoothMediaPassthrough("pause") - - def play(self): - return self.ad_controller.droid.bluetoothMediaPassthrough("play") - - def power_off(self): - return self.ad_controller.droid.bluetoothToggleState(False) - - def power_on(self): - return self.ad_controller.droid.bluetoothToggleState(True) - - def previous_track(self): - return (self.ad_controller.droid.bluetoothMediaPassthrough("skipPrev")) - - def reject_call(self): - return self.ad_controller.droid.telecomCallDisconnect( - self.ad_controller.droid.telecomCallGetCallIds()[0]) - - def reset(self): - return self.ad_controller.droid.bluetoothFactoryReset() - - def volume_down(self): - target_step = self.ad_controller.droid.getMediaVolume() - 1 - target_step = max(target_step, 0) - return self.ad_controller.droid.setMediaVolume(target_step) - - def volume_up(self): - target_step = self.ad_controller.droid.getMediaVolume() + 1 - max_step = self.ad_controller.droid.getMaxMediaVolume() - target_step = min(target_step, max_step) - return self.ad_controller.droid.setMediaVolume(target_step) - - class BluetoothHandsfreeAbstractDeviceFactory: """Generates a BluetoothHandsfreeAbstractDevice for any device controller. """ @@ -327,8 +257,7 @@ class BluetoothHandsfreeAbstractDeviceFactory: _controller_abstract_devices = { 'EarstudioReceiver': EarstudioReceiverBluetoothHandsfreeAbstractDevice, 'JaybirdX3Earbuds': JaybirdX3EarbudsBluetoothHandsfreeAbstractDevice, - 'ParentDevice': PixelBudsBluetoothHandsfreeAbstractDevice, - 'AndroidDevice': AndroidHeadsetBluetoothHandsfreeAbstractDevice + 'ParentDevice': PixelBudsBluetoothHandsfreeAbstractDevice } def generate(self, controller): diff --git a/acts/framework/acts/test_utils/abstract_devices/utils_lib/wlan_utils.py b/acts/framework/acts/test_utils/abstract_devices/utils_lib/wlan_utils.py deleted file mode 100644 index 745d35f68c..0000000000 --- a/acts/framework/acts/test_utils/abstract_devices/utils_lib/wlan_utils.py +++ /dev/null @@ -1,203 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import logging - -from acts import asserts -from acts.controllers.ap_lib import hostapd_ap_preset - - -def validate_setup_ap_and_associate(*args, **kwargs): - """Validates if setup_ap_and_associate was a success or not - - Args: Args match setup_ap_and_associate - """ - asserts.assert_true( - setup_ap_and_associate(*args, **kwargs), 'Failed to associate.') - asserts.explicit_pass('Successfully associated.') - - -def setup_ap_and_associate(access_point, - client, - profile_name, - channel, - ssid, - mode=None, - preamble=None, - beacon_interval=None, - dtim_period=None, - frag_threshold=None, - rts_threshold=None, - force_wmm=None, - hidden=False, - security=None, - additional_ap_parameters=None, - password=None, - check_connectivity=False, - n_capabilities=None, - ac_capabilities=None, - vht_bandwidth=None): - """Sets up the AP and associates a client. - - Args: - access_point: An ACTS access_point controller - client: A WlanDevice. - profile_name: The profile name of one of the hostapd ap presets. - channel: What channel to set the AP to. - preamble: Whether to set short or long preamble (True or False) - beacon_interval: The beacon interval (int) - dtim_period: Length of dtim period (int) - frag_threshold: Fragmentation threshold (int) - rts_threshold: RTS threshold (int) - force_wmm: Enable WMM or not (True or False) - hidden: Advertise the SSID or not (True or False) - security: What security to enable. - additional_ap_parameters: Additional parameters to send the AP. - password: Password to connect to WLAN if necessary. - check_connectivity: Whether to check for internet connectivity. - """ - setup_ap(access_point, profile_name, channel, ssid, mode, preamble, - beacon_interval, dtim_period, frag_threshold, rts_threshold, - force_wmm, hidden, security, additional_ap_parameters, password, - check_connectivity, n_capabilities, ac_capabilities, - vht_bandwidth) - - return associate( - client, - ssid, - password, - check_connectivity=check_connectivity, - hidden=hidden) - - -def setup_ap(access_point, - profile_name, - channel, - ssid, - mode=None, - preamble=None, - beacon_interval=None, - dtim_period=None, - frag_threshold=None, - rts_threshold=None, - force_wmm=None, - hidden=False, - security=None, - additional_ap_parameters=None, - password=None, - check_connectivity=False, - n_capabilities=None, - ac_capabilities=None, - vht_bandwidth=None): - """Sets up the AP. - - Args: - access_point: An ACTS access_point controller - profile_name: The profile name of one of the hostapd ap presets. - channel: What channel to set the AP to. - preamble: Whether to set short or long preamble (True or False) - beacon_interval: The beacon interval (int) - dtim_period: Length of dtim period (int) - frag_threshold: Fragmentation threshold (int) - rts_threshold: RTS threshold (int) - force_wmm: Enable WMM or not (True or False) - hidden: Advertise the SSID or not (True or False) - security: What security to enable. - additional_ap_parameters: Additional parameters to send the AP. - password: Password to connect to WLAN if necessary. - check_connectivity: Whether to check for internet connectivity. - """ - ap = hostapd_ap_preset.create_ap_preset( - profile_name=profile_name, - iface_wlan_2g=access_point.wlan_2g, - iface_wlan_5g=access_point.wlan_5g, - channel=channel, - ssid=ssid, - mode=mode, - short_preamble=preamble, - beacon_interval=beacon_interval, - dtim_period=dtim_period, - frag_threshold=frag_threshold, - rts_threshold=rts_threshold, - force_wmm=force_wmm, - hidden=hidden, - bss_settings=[], - security=security, - n_capabilities=n_capabilities, - ac_capabilities=ac_capabilities, - vht_bandwidth=vht_bandwidth) - access_point.start_ap( - hostapd_config=ap, additional_parameters=additional_ap_parameters) - - -def associate(client, - ssid, - password=None, - check_connectivity=True, - hidden=False): - """Associates a client to a WLAN network. - - Args: - client: A WlanDevice - ssid: SSID of the ap we are looking for. - password: The password for the WLAN, if applicable. - check_connectivity: Whether to check internet connectivity. - hidden: If the WLAN is hidden or not. - """ - return client.associate( - ssid, password, check_connectivity=check_connectivity, hidden=hidden) - - -def status(client): - """Requests the state of WLAN network. - - Args: - None - """ - status = '' - status_response = client.status() - - if status_response.get('error') is None: - # No error, so get the result - status = status_response['result'] - - logging.info('status: %s' % status) - return status - - -def is_connected(client): - """Gets status to determine if WLAN is connected or not. - - Args: - None - """ - connected = False - client_status = status(client) - if client_status and client_status['state'] == 'ConnectionsEnabled': - for index, network in enumerate(client_status['networks']): - if network['state'] == 'Connected': - connected = True - - return connected - - -def disconnect(client): - """Disconnect client from its WLAN network. - - Args: - client: A WlanDevice - """ - client.disconnect() diff --git a/acts/framework/acts/test_utils/abstract_devices/wlan_device.py b/acts/framework/acts/test_utils/abstract_devices/wlan_device.py deleted file mode 100644 index 3ec32bc1f9..0000000000 --- a/acts/framework/acts/test_utils/abstract_devices/wlan_device.py +++ /dev/null @@ -1,238 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import acts.test_utils.wifi.wifi_test_utils as wutils - -from acts import asserts -from acts.controllers.fuchsia_device import FuchsiaDevice -from acts.controllers.android_device import AndroidDevice - - -def create_wlan_device(hardware_device): - """Creates a generic WLAN device based on type of device that is sent to - the functions. - - Args: - hardware_device: A WLAN hardware device that is supported by ACTS. - """ - if isinstance(hardware_device, FuchsiaDevice): - return FuchsiaWlanDevice(hardware_device) - elif isinstance(hardware_device, AndroidDevice): - return AndroidWlanDevice(hardware_device) - else: - raise ValueError( - 'Unable to create WlanDevice for type %s' % type(hardware_device)) - - -class WlanDevice(object): - """Class representing a generic WLAN device. - - Each object of this class represents a generic WLAN device. - Android device and Fuchsia devices are the currently supported devices/ - - Attributes: - device: A generic WLAN device. - """ - - def __init__(self, device): - self.device = device - - def wifi_toggle_state(self, state): - """Base generic WLAN interface. Only called if not overridden by - another supported device. - """ - raise NotImplementedError('wifi_toggle_state must be defined.') - - def reset_wifi(self): - """Base generic WLAN interface. Only called if not overridden by - another supported device. - """ - raise NotImplementedError('reset_wifi must be defined.') - - def take_bug_report(self, test_name, begin_time): - """Base generic WLAN interface. Only called if not overridden by - another supported device. - """ - raise NotImplementedError('take_bug_report must be defined.') - - def get_log(self, test_name, begin_time): - """Base generic WLAN interface. Only called if not overridden by - another supported device. - """ - raise NotImplementedError('get_log( must be defined.') - - def turn_location_off_and_scan_toggle_off(self): - """Base generic WLAN interface. Only called if not overridden by - another supported device. - """ - raise NotImplementedError('turn_location_off_and_scan_toggle_off' - ' must be defined.') - - def associate(self, - target_ssid, - target_pwd=None, - check_connectivity=True, - hidden=False): - """Base generic WLAN interface. Only called if not overriden by - another supported device. - """ - raise NotImplementedError('associate must be defined.') - - def disconnect(self): - """Base generic WLAN interface. Only called if not overridden by - another supported device. - """ - raise NotImplementedError('disconnect must be defined.') - - -class AndroidWlanDevice(WlanDevice): - """Class wrapper for an Android WLAN device. - - Each object of this class represents a generic WLAN device. - Android device and Fuchsia devices are the currently supported devices/ - - Attributes: - android_device: An Android WLAN device. - """ - - def __init__(self, android_device): - super().__init__(android_device) - - def wifi_toggle_state(self, state): - wutils.wifi_toggle_state(self.device, state) - - def reset_wifi(self): - wutils.reset_wifi(self.device) - - def take_bug_report(self, test_name, begin_time): - self.device.take_bug_report(test_name, begin_time) - - def get_log(self, test_name, begin_time): - self.device.cat_adb_log(test_name, begin_time) - - def turn_location_off_and_scan_toggle_off(self): - wutils.turn_location_off_and_scan_toggle_off(self.device) - - def associate(self, - target_ssid, - target_pwd=None, - check_connectivity=True, - hidden=False): - """Function to associate an Android WLAN device. - - Args: - target_ssid: SSID to associate to. - target_pwd: Password for the SSID, if necessary. - check_connectivity: Whether to check for internet connectivity. - hidden: Whether the network is hidden. - Returns: - True if successfully connected to WLAN, False if not. - """ - if target_pwd: - network = { - 'SSID': target_ssid, - 'password': target_pwd, - 'hiddenSSID': hidden - } - else: - network = {'SSID': target_ssid, 'hiddenSSID': hidden} - try: - wutils.connect_to_wifi_network( - self.device, - network, - check_connectivity=check_connectivity, - hidden=hidden) - return True - except Exception as e: - self.device.log.info('Failed to associated (%s)' % e) - return False - - def disconnect(self): - wutils.turn_location_off_and_scan_toggle_off(self.device) - - -class FuchsiaWlanDevice(WlanDevice): - """Class wrapper for an Fuchsia WLAN device. - - Each object of this class represents a generic WLAN device. - Android device and Fuchsia devices are the currently supported devices/ - - Attributes: - fuchsia_device: A Fuchsia WLAN device. - """ - - def __init__(self, fuchsia_device): - super().__init__(fuchsia_device) - - def wifi_toggle_state(self, state): - """Stub for Fuchsia implementation.""" - pass - - def reset_wifi(self): - """Stub for Fuchsia implementation.""" - pass - - def take_bug_report(self, test_name, begin_time): - """Stub for Fuchsia implementation.""" - pass - - def get_log(self, test_name, begin_time): - """Stub for Fuchsia implementation.""" - pass - - def turn_location_off_and_scan_toggle_off(self): - """Stub for Fuchsia implementation.""" - pass - - def associate(self, - target_ssid, - target_pwd=None, - check_connectivity=True, - hidden=False): - """Function to associate a Fuchsia WLAN device. - - Args: - target_ssid: SSID to associate to. - target_pwd: Password for the SSID, if necessary. - check_connectivity: Whether to check for internet connectivity. - hidden: Whether the network is hidden. - Returns: - True if successfully connected to WLAN, False if not. - """ - connection_response = self.device.wlan_lib.wlanConnectToNetwork( - target_ssid, target_pwd=target_pwd) - - return self.device.check_connect_response( - connection_response) - - def disconnect(self): - """Function to disconnect from a Fuchsia WLAN device. - Asserts if disconnect was not successful. - """ - disconnect_response = self.device.wlan_lib.wlanDisconnect() - asserts.assert_true(self.device.check_disconnect_response( - disconnect_response), 'Failed to disconnect.') - - def status(self): - return self.device.wlan_lib.wlanStatus() - - def ping(self, dest_ip, count=3, interval=1000, timeout=1000, size=25): - return self.device.ping( - dest_ip, - count=count, - interval=interval, - timeout=timeout, - size=size) diff --git a/acts/framework/acts/test_utils/audio_analysis_lib/check_quality.py b/acts/framework/acts/test_utils/audio_analysis_lib/check_quality.py index 8f29f82574..61c1fa1c69 100644 --- a/acts/framework/acts/test_utils/audio_analysis_lib/check_quality.py +++ b/acts/framework/acts/test_utils/audio_analysis_lib/check_quality.py @@ -530,7 +530,8 @@ def quality_analysis( quality_burst_amplitude_threshold: Input the burst aplitutde threshold. """ - + format = '%(asctime)-15s:%(levelname)s:%(pathname)s:%(lineno)d: %(message)s' + logging.basicConfig(format=format, level=logging.INFO) raw_data, rate = read_audio_file(filename, channel, bit_width, rate) checker = QualityChecker(raw_data, rate) @@ -552,4 +553,3 @@ def quality_analysis( if not spectral_only: checker.check_quality() - logging.debug("Audio analysis completed.") diff --git a/acts/framework/acts/test_utils/bt/A2dpCodecBaseTest.py b/acts/framework/acts/test_utils/bt/A2dpCodecBaseTest.py index 8d2e0b2777..0cd97bf462 100644 --- a/acts/framework/acts/test_utils/bt/A2dpCodecBaseTest.py +++ b/acts/framework/acts/test_utils/bt/A2dpCodecBaseTest.py @@ -16,7 +16,6 @@ """Stream music through connected device from phone test implementation.""" import logging import os -import time from acts import asserts from acts.test_utils.abstract_devices.bluetooth_handsfree_abstract_device import BluetoothHandsfreeAbstractDeviceFactory as Factory @@ -27,7 +26,6 @@ from acts.test_utils.coex.audio_test_utils import SshAudioCapture ADB_FILE_EXISTS = 'test -e %s && echo True' ADB_VOL_UP = 'input keyevent 24' -HEADSET_CONTROL_SLEEP_TIME = 10 class A2dpCodecBaseTest(BluetoothBaseTest): @@ -84,12 +82,8 @@ class A2dpCodecBaseTest(BluetoothBaseTest): 'thdn': []} self.log.info('Pairing and connecting to headset...') - self.bt_device.power_off() - time.sleep(HEADSET_CONTROL_SLEEP_TIME) - self.bt_device.power_on() - time.sleep(HEADSET_CONTROL_SLEEP_TIME) asserts.assert_true( - connect_phone_to_headset(self.android, self.bt_device, 60), + connect_phone_to_headset(self.android, self.bt_device, 600), 'Could not connect to device at address %s' % self.bt_device.mac_address, extras=self.metrics) diff --git a/acts/framework/acts/test_utils/bt/AvrcpBaseTest.py b/acts/framework/acts/test_utils/bt/AvrcpBaseTest.py index 475e725419..3d17092ecc 100644 --- a/acts/framework/acts/test_utils/bt/AvrcpBaseTest.py +++ b/acts/framework/acts/test_utils/bt/AvrcpBaseTest.py @@ -39,8 +39,8 @@ class AvrcpBaseTest(BluetoothBaseTest): def __init__(self, configs): super(AvrcpBaseTest, self).__init__(configs) self.dut = self.android_devices[0] - serial = self.user_params['simulated_carkit_device'] - controller = SimulatedCarkitDevice(serial) + attr, idx = self.user_params['simulated_carkit_device'].split(':') + controller = SimulatedCarkitDevice(getattr(self, attr)[int(idx)]) self.controller = Factory().generate(controller) self.phone_music_files = [] @@ -61,7 +61,6 @@ class AvrcpBaseTest(BluetoothBaseTest): def teardown_class(self): super().teardown_class() self.dut.droid.mediaPlayStop() - self.controller.destroy() def setup_test(self): self.dut.droid.bluetoothMediaPhoneSL4AMBSStart() diff --git a/acts/framework/acts/test_utils/bt/BluetoothBaseTest.py b/acts/framework/acts/test_utils/bt/BluetoothBaseTest.py index d6bcd05f02..ec34b044ce 100644 --- a/acts/framework/acts/test_utils/bt/BluetoothBaseTest.py +++ b/acts/framework/acts/test_utils/bt/BluetoothBaseTest.py @@ -49,6 +49,18 @@ class BluetoothBaseTest(BaseTestClass): start_time = 0 timer_list = [] + def __init__(self, controllers): + BaseTestClass.__init__(self, controllers) + for ad in self.android_devices: + self._setup_bt_libs(ad) + if 'preferred_device_order' in self.user_params: + prefered_device_order = self.user_params['preferred_device_order'] + for i, ad in enumerate(self.android_devices): + if ad.serial in prefered_device_order: + index = prefered_device_order.index(ad.serial) + self.android_devices[i], self.android_devices[index] = \ + self.android_devices[index], self.android_devices[i] + def collect_bluetooth_manager_metrics_logs(self, ads, test_name): """ Collect Bluetooth metrics logs, save an ascii log to disk and return @@ -119,17 +131,6 @@ class BluetoothBaseTest(BaseTestClass): return _safe_wrap_test_case def setup_class(self): - super().setup_class() - for ad in self.android_devices: - self._setup_bt_libs(ad) - if 'preferred_device_order' in self.user_params: - prefered_device_order = self.user_params['preferred_device_order'] - for i, ad in enumerate(self.android_devices): - if ad.serial in prefered_device_order: - index = prefered_device_order.index(ad.serial) - self.android_devices[i], self.android_devices[index] = \ - self.android_devices[index], self.android_devices[i] - if "reboot_between_test_class" in self.user_params: threads = [] for a in self.android_devices: diff --git a/acts/framework/acts/test_utils/bt/BluetoothCarHfpBaseTest.py b/acts/framework/acts/test_utils/bt/BluetoothCarHfpBaseTest.py index ece7ed5712..cd97d0d0d3 100644 --- a/acts/framework/acts/test_utils/bt/BluetoothCarHfpBaseTest.py +++ b/acts/framework/acts/test_utils/bt/BluetoothCarHfpBaseTest.py @@ -63,7 +63,7 @@ class BluetoothCarHfpBaseTest(BluetoothBaseTest): sim_conf_file = self.user_params["sim_conf_file"][0] if not os.path.isfile(sim_conf_file): sim_conf_file = os.path.join( - self.user_params[Config.key_config_path.value], sim_conf_file) + self.user_params[Config.key_config_path], sim_conf_file) if not os.path.isfile(sim_conf_file): self.log.error("Unable to load user config " + sim_conf_file + " from test config file.") diff --git a/acts/framework/acts/test_utils/bt/BtEnum.py b/acts/framework/acts/test_utils/bt/BtEnum.py index b9fe6e23e1..a2010d0074 100644 --- a/acts/framework/acts/test_utils/bt/BtEnum.py +++ b/acts/framework/acts/test_utils/bt/BtEnum.py @@ -103,11 +103,3 @@ class BluetoothPriorityLevel(Enum): PRIORITY_ON = 100 PRIORITY_OFF = 0 PRIORITY_UNDEFINED = -1 - -class BluetoothA2dpCodecType(Enum): - SBC = 0 - AAC = 1 - APTX = 2 - APTX_HD = 3 - LDAC = 4 - MAX = 5 diff --git a/acts/framework/acts/test_utils/bt/BtFunhausBaseTest.py b/acts/framework/acts/test_utils/bt/BtFunhausBaseTest.py index 3987917c5e..ffcfacf559 100644 --- a/acts/framework/acts/test_utils/bt/BtFunhausBaseTest.py +++ b/acts/framework/acts/test_utils/bt/BtFunhausBaseTest.py @@ -115,8 +115,8 @@ class BtFunhausBaseTest(BtMetricsBaseTest): if type(music_path) is list: self.log.info("Media ready to push as is.") elif not os.path.isdir(music_path): - music_path = os.path.join( - self.user_params[Config.key_config_path.value], music_path) + music_path = os.path.join(self.user_params[Config.key_config_path], + music_path) if not os.path.isdir(music_path): self.log.error( "Unable to find music directory {}.".format(music_path)) diff --git a/acts/framework/acts/test_utils/bt/bt_constants.py b/acts/framework/acts/test_utils/bt/bt_constants.py index 076290767c..457e8036fc 100644 --- a/acts/framework/acts/test_utils/bt/bt_constants.py +++ b/acts/framework/acts/test_utils/bt/bt_constants.py @@ -38,8 +38,7 @@ default_le_data_length = 23 default_le_connection_interval_ms = 30 le_connection_event_time_step_ms = 0.625 -# Headers of LE L2CAP Connection-oriented Channels. See section 3.4, Vol -# 3, Part A, Version 5.0. +# Headers of LE L2CAP Connection-oriented Channels. See section 3.4, Vol 3, Part A, Version 5.0. l2cap_header_size = 4 l2cap_coc_sdu_length_field_size = 2 l2cap_coc_header_size = l2cap_header_size + l2cap_coc_sdu_length_field_size @@ -633,15 +632,15 @@ headphone_bus_endpoint = 'Cros device headphone' ### Chameleon Constants End ### -# Begin logcat strings dict""" +### Begin logcat strings dict""" logcat_strings = { "media_playback_vol_changed": "onRouteVolumeChanged", } -# End logcat strings dict""" +### End logcat strings dict""" ### Begin Service Discovery UUIDS ### -# Values match the Bluetooth SIG defined values: """ +### Values match the Bluetooth SIG defined values: """ """ https://www.bluetooth.com/specifications/assigned-numbers/service-discovery """ sig_uuid_constants = { "BASE_UUID": "0000{}-0000-1000-8000-00805F9B34FB", @@ -737,21 +736,3 @@ sig_uuid_constants = { } ### End Service Discovery UUIDS ### - - -# Attribute Record values from the Bluetooth Specification -# Version 5, Vol 3, Part B -bt_attribute_values = { - 'ATTR_SERVICE_RECORD_HANDLE': 0x0000, - 'ATTR_SERVICE_CLASS_ID_LIST': 0x0001, - 'ATTR_SERVICE_RECORD_STATE': 0x0002, - 'ATTR_SERVICE_ID': 0x0003, - 'ATTR_PROTOCOL_DESCRIPTOR_LIST': 0x0004, - 'ATTR_ADDITIONAL_PROTOCOL_DESCRIPTOR_LIST': 0x000D, - 'ATTR_BROWSE_GROUP_LIST': 0x0005, - 'ATTR_LANGUAGE_BASE_ATTRIBUTE_ID_LIST': 0x0006, - 'ATTR_SERVICE_INFO_TIME_TO_LIVE': 0x0007, - 'ATTR_SERVICE_AVAILABILITY': 0x0008, - 'ATTR_BLUETOOTH_PROFILE_DESCRIPTOR_LIST': 0x0009, - 'ATTR_A2DP_SUPPORTED_FEATURES': 0x0311, -} diff --git a/acts/framework/acts/test_utils/bt/bt_power_test_utils.py b/acts/framework/acts/test_utils/bt/bt_power_test_utils.py index 628c3375d1..c9c60723e9 100644 --- a/acts/framework/acts/test_utils/bt/bt_power_test_utils.py +++ b/acts/framework/acts/test_utils/bt/bt_power_test_utils.py @@ -14,144 +14,93 @@ # See the License for the specific language governing permissions and # limitations under the License. -import logging import time -import acts.test_utils.bt.BleEnum as bleenum -import acts.test_utils.instrumentation.instrumentation_command_builder as icb +from acts.test_utils.wifi import wifi_power_test_utils as wputils +from acts.test_utils.bt.bt_test_utils import enable_bluetooth +from acts.test_utils.bt.bt_test_utils import disable_bluetooth + +BT_BASE_UUID = '00000000-0000-1000-8000-00805F9B34FB' +BT_CLASSICAL_DATA = [1, 2, 3] BLE_LOCATION_SCAN_ENABLE = 'settings put global ble_scan_always_enabled 1' BLE_LOCATION_SCAN_DISABLE = 'settings put global ble_scan_always_enabled 0' -SCREEN_WAIT_TIME = 1 +START_PMC_CMD = 'am start -n com.android.pmc/com.android.pmc.PMCMainActivity' +PMC_VERBOSE_CMD = 'setprop log.tag.PMC VERBOSE' +PMC_BASE_SCAN = 'am broadcast -a com.android.pmc.BLESCAN --es ScanMode ' -class MediaControl(object): - """Media control using adb shell for power testing. +def phone_setup_for_BT(dut, bt_on, ble_on, screen_status): + """Sets the phone and Bluetooth in the desired state - Object to control media play status using adb. + Args: + dut: object of the android device under test + bt_on: Enable/Disable BT + ble_on: Enable/Disable BLE + screen_status: screen ON or OFF """ - - def __init__(self, android_device, music_file): - """Initialize the media_control class. - - Args: - android_dut: android_device object - music_file: location of the music file - """ - self.android_device = android_device - self.music_file = music_file - - def player_on_foreground(self): - """Turn on screen and make sure media play is on foreground - - All media control keycode only works when screen is on and media player - is on the foreground. Turn off screen first and turn it on to make sure - all operation is based on the same screen status. Otherwise, 'MENU' key - would block command to be sent. - """ - self.android_device.droid.goToSleepNow() - time.sleep(SCREEN_WAIT_TIME) - self.android_device.droid.wakeUpNow() - time.sleep(SCREEN_WAIT_TIME) - self.android_device.send_keycode('MENU') - time.sleep(SCREEN_WAIT_TIME) - - def play(self): - """Start playing music. - - """ - self.player_on_foreground() - PLAY = 'am start -a android.intent.action.VIEW -d file://{} -t audio/wav'.format( - self.music_file) - self.android_device.adb.shell(PLAY) - - def pause(self): - """Pause music. - - """ - self.player_on_foreground() - self.android_device.send_keycode('MEDIA_PAUSE') - - def resume(self): - """Pause music. - - """ - self.player_on_foreground() - self.android_device.send_keycode('MEDIA_PLAY') - - def stop(self): - """Stop music and close media play. - - """ - self.player_on_foreground() - self.android_device.send_keycode('MEDIA_STOP') - - -def start_apk_ble_adv(dut, adv_mode, adv_power_level, adv_duration): - """Trigger BLE advertisement from power-test.apk. + # Initialize the dut to rock-bottom state + wputils.dut_rockbottom(dut) + time.sleep(2) + + # Check if we are enabling a background scan + # TODO: Turn OFF cellular wihtout having to turn ON airplane mode + if bt_on == 'OFF' and ble_on == 'ON': + dut.adb.shell(BLE_LOCATION_SCAN_ENABLE) + dut.droid.connectivityToggleAirplaneMode(False) + time.sleep(2) + + # Turn ON/OFF BT + if bt_on == 'ON': + enable_bluetooth(dut.droid, dut.ed) + dut.log.info('BT is ON') + else: + disable_bluetooth(dut.droid) + dut.droid.bluetoothDisableBLE() + dut.log.info('BT is OFF') + time.sleep(2) + + # Turn ON/OFF BLE + if ble_on == 'ON': + dut.droid.bluetoothEnableBLE() + dut.log.info('BLE is ON') + else: + dut.droid.bluetoothDisableBLE() + dut.log.info('BLE is OFF') + time.sleep(2) + + # Set the desired screen status + if screen_status == 'OFF': + dut.droid.goToSleepNow() + dut.log.info('Screen is OFF') + time.sleep(2) + + +def start_pmc_ble_scan(dut, + scan_mode, + offset_start, + scan_time, + idle_time=None, + num_reps=1): + """Starts a generic BLE scan via the PMC app Args: - dut: Android device under test, type AndroidDevice obj - adv_mode: The BLE advertisement mode. - {0: 'LowPower', 1: 'Balanced', 2: 'LowLatency'} - adv_power_leve: The BLE advertisement TX power level. - {0: 'UltraLowTXPower', 1: 'LowTXPower', 2: 'MediumTXPower, - 3: HighTXPower} - adv_duration: duration of advertisement in seconds, type int + dut: object of the android device under test + scan mode: desired BLE scan type + offset_start: Time delay in seconds before scan starts + scan_time: active scan time + idle_time: iddle time (i.e., no scans occuring) + num_reps: Number of repetions of the ative+idle scan sequence """ + scan_dur = scan_time + if not idle_time: + idle_time = 0.2 * scan_time + scan_dur = 0.8 * scan_time - adv_duration = str(adv_duration) + 's' - builder = icb.InstrumentationTestCommandBuilder.default() - builder.add_test_class( - "com.google.android.device.power.tests.ble.BleAdvertise") - builder.set_manifest_package("com.google.android.device.power") - builder.set_runner("androidx.test.runner.AndroidJUnitRunner") - builder.add_key_value_param("cool-off-duration", "0s") - builder.add_key_value_param("idle-duration", "0s") - builder.add_key_value_param( - "com.android.test.power.receiver.ADVERTISE_MODE", adv_mode) - builder.add_key_value_param("com.android.test.power.receiver.POWER_LEVEL", - adv_power_level) - builder.add_key_value_param( - "com.android.test.power.receiver.ADVERTISING_DURATION", adv_duration) - - adv_command = builder.build() + ' &' - logging.info('Start BLE {} at {} for {} seconds'.format( - bleenum.AdvertiseSettingsAdvertiseMode(adv_mode).name, - bleenum.AdvertiseSettingsAdvertiseTxPower(adv_power_level).name, - adv_duration)) - dut.adb.shell_nb(adv_command) - - -def start_apk_ble_scan(dut, scan_mode, scan_duration): - """Build the command to trigger BLE scan from power-test.apk. + first_part_msg = '%s%s --es StartTime %d --es ScanTime %d' % ( + PMC_BASE_SCAN, scan_mode, offset_start, scan_dur) - Args: - dut: Android device under test, type AndroidDevice obj - scan_mode: The BLE scan mode. - {0: 'LowPower', 1: 'Balanced', 2: 'LowLatency', -1: 'Opportunistic'} - scan_duration: duration of scan in seconds, type int - Returns: - adv_command: the command for BLE scan - """ - scan_duration = str(scan_duration) + 's' - builder = icb.InstrumentationTestCommandBuilder.default() - builder.add_test_class("com.google.android.device.power.tests.ble.BleScan") - builder.set_manifest_package("com.google.android.device.power") - builder.set_runner("androidx.test.runner.AndroidJUnitRunner") - builder.add_key_value_param("cool-off-duration", "0s") - builder.add_key_value_param("idle-duration", "0s") - builder.add_key_value_param("com.android.test.power.receiver.SCAN_MODE", - scan_mode) - builder.add_key_value_param("com.android.test.power.receiver.MATCH_MODE", - 2) - builder.add_key_value_param( - "com.android.test.power.receiver.SCAN_DURATION", scan_duration) - builder.add_key_value_param( - "com.android.test.power.receiver.CALLBACK_TYPE", 1) - builder.add_key_value_param("com.android.test.power.receiver.FILTER", - 'true') - - scan_command = builder.build() + ' &' - logging.info('Start BLE {} scans for {} seconds'.format( - bleenum.ScanSettingsScanMode(scan_mode).name, scan_duration)) - dut.adb.shell_nb(scan_command) + msg = '%s --es NoScanTime %d --es Repetitions %d' % (first_part_msg, + idle_time, num_reps) + + dut.log.info('Sent BLE scan broadcast message: %s', msg) + dut.adb.shell(msg) diff --git a/acts/framework/acts/test_utils/bt/bt_test_utils.py b/acts/framework/acts/test_utils/bt/bt_test_utils.py index da4a88089f..698469ae74 100644 --- a/acts/framework/acts/test_utils/bt/bt_test_utils.py +++ b/acts/framework/acts/test_utils/bt/bt_test_utils.py @@ -79,20 +79,18 @@ def _add_android_device_to_dictionary(android_device, profile_list, profile_list: The list of profiles the Android device supports. """ for profile in profile_list: - if profile in selector_dict and android_device not in selector_dict[ - profile]: + if profile in selector_dict and android_device not in selector_dict[profile]: selector_dict[profile].append(android_device) else: selector_dict[profile] = [android_device] -def bluetooth_enabled_check(ad, timeout_sec=5): +def bluetooth_enabled_check(ad): """Checks if the Bluetooth state is enabled, if not it will attempt to enable it. Args: ad: The Android device list to enable Bluetooth on. - timeout_sec: number of seconds to wait for toggle to take effect. Returns: True if successful, false if unsuccessful. @@ -112,10 +110,7 @@ def bluetooth_enabled_check(ad, timeout_sec=5): return True ad.log.error(".. actual state is OFF") return False - end_time = time.time() + timeout_sec - while not ad.droid.bluetoothCheckState() and time.time() < end_time: - time.sleep(1) - return ad.droid.bluetoothCheckState() + return True def check_device_supported_profiles(droid): @@ -165,7 +160,7 @@ def cleanup_scanners_and_advertisers(scn_android_device, scn_callback_list, except Exception as err: adv_android_device.log.debug( "Failed to stop LE advertisement... reseting Bluetooth. Error {}". - format(err)) + format(err)) reset_bluetooth([adv_android_device]) @@ -198,9 +193,7 @@ def clear_bonded_devices(ad): return True -def connect_phone_to_headset(android, - headset, - timeout=bt_default_timeout, +def connect_phone_to_headset(android, headset, timeout=bt_default_timeout, connection_check_period=10): """Connects android phone to bluetooth headset. Headset object must have methods power_on and enter_pairing_mode, @@ -217,29 +210,23 @@ def connect_phone_to_headset(android, connected (bool): True if devices are paired and connected by end of method. False otherwise. """ - headset_mac_address = headset.mac_address - connected = is_a2dp_src_device_connected(android, headset_mac_address) + connected = is_a2dp_src_device_connected(android, headset.mac_address) log.info('Devices connected before pair attempt: %s' % connected) - if not connected: - # Turn on headset and initiate pairing mode. - headset.enter_pairing_mode() - android.droid.bluetoothStartPairingHelper() start_time = time.time() # If already connected, skip pair and connect attempt. while not connected and (time.time() - start_time < timeout): - bonded_info = android.droid.bluetoothGetBondedDevices() - if headset.mac_address not in [ - info["address"] for info in bonded_info - ]: - # Use SL4A to pair and connect with headset. + bonded_info = android.droid.bluetoothA2dpGetConnectedDevices() + if headset.mac_address not in [info["address"] for info in bonded_info]: + # Turn on headset and initiate pairing mode. headset.enter_pairing_mode() - android.droid.bluetoothDiscoverAndBond(headset_mac_address) + # Use SL4A to pair and connect with headset. + android.droid.bluetoothDiscoverAndBond(headset.mac_address) else: # Device is bonded but not connected - android.droid.bluetoothConnectBonded(headset_mac_address) + android.droid.bluetoothConnectBonded(headset.mac_address) log.info('Waiting for connection...') time.sleep(connection_check_period) # Check for connection. - connected = is_a2dp_src_device_connected(android, headset_mac_address) + connected = is_a2dp_src_device_connected(android, headset.mac_address) log.info('Devices connected after pair attempt: %s' % connected) return connected @@ -400,13 +387,12 @@ def determine_max_advertisements(android_device): advertise_callback = android_device.droid.bleGenBleAdvertiseCallback() advertise_callback_list.append(advertise_callback) - android_device.droid.bleStartBleAdvertising(advertise_callback, - advertise_data, - advertise_settings) + android_device.droid.bleStartBleAdvertising( + advertise_callback, advertise_data, advertise_settings) regex = "(" + adv_succ.format( advertise_callback) + "|" + adv_fail.format( - advertise_callback) + ")" + advertise_callback) + ")" # wait for either success or failure event evt = android_device.ed.pop_events(regex, bt_default_timeout, small_timeout) @@ -592,9 +578,10 @@ def generate_ble_scan_objects(droid): return filter_list, scan_settings, scan_callback -def generate_id_by_size(size, - chars=(string.ascii_lowercase + - string.ascii_uppercase + string.digits)): +def generate_id_by_size( + size, + chars=( + string.ascii_lowercase + string.ascii_uppercase + string.digits)): """Generate random ascii characters of input size and input char types Args: @@ -656,122 +643,6 @@ def get_bluetooth_crash_count(android_device): return int(re.search("crashed(.*\d)", out).group(1)) -def get_bt_metric(ad_list, duration=1, tag="bt_metric", processed=True): - """ Function to get the bt metric from logcat. - - Captures logcat for the specified duration and returns the bqr results. - Takes list of android objects as input. If a single android object is given, - converts it into a list. - - Args: - ad_list: list of android_device objects - duration: time duration (seconds) for which the logcat is parsed. - tag: tag to be appended to the logcat dump. - processed: flag to process bqr output. - - Returns: - metrics_dict: dict of metrics for each android device. - """ - - # Defining bqr quantitites and their regex to extract - regex_dict = {"pwlv": "PwLv:\s(\S+)", "rssi": "RSSI:\s[-](\d+)"} - metrics_dict = {"rssi": {}, "pwlv": {}} - - # Converting a single android device object to list - if not isinstance(ad_list, list): - ad_list = [ad_list] - - #Time sync with the test machine - for ad in ad_list: - ad.droid.setTime(int(round(time.time() * 1000))) - time.sleep(0.5) - - begin_time = utils.get_current_epoch_time() - time.sleep(duration) - end_time = utils.get_current_epoch_time() - - for ad in ad_list: - bt_rssi_log = ad.cat_adb_log(tag, begin_time, end_time) - bqr_tag = "Monitoring , Handle:" - - # Extracting supporting bqr quantities - for metric, regex in regex_dict.items(): - bqr_metric = [] - file_bt_log = open(bt_rssi_log, "r") - for line in file_bt_log: - if bqr_tag in line: - if re.findall(regex, line): - m = re.findall(regex, line)[0].strip(",") - bqr_metric.append(m) - metrics_dict[metric][ad.serial] = bqr_metric - - # Formatting the raw data - metrics_dict["rssi"][ad.serial] = [ - (-1) * int(x) for x in metrics_dict["rssi"][ad.serial] - ] - metrics_dict["pwlv"][ad.serial] = [ - int(x, 16) for x in metrics_dict["pwlv"][ad.serial] - ] - - # Processing formatted data if processing is required - if processed: - # Computes the average RSSI - metrics_dict["rssi"][ad.serial] = round( - sum(metrics_dict["rssi"][ad.serial]) / - len(metrics_dict["rssi"][ad.serial]), 2) - # Returns last noted value for power level - metrics_dict["pwlv"][ad.serial] = metrics_dict["pwlv"][ - ad.serial][-1] - - return metrics_dict - - -def get_bt_rssi(ad, duration=1, processed=True): - """Function to get average bt rssi from logcat. - - This function returns the average RSSI for the given duration. RSSI values are - extracted from BQR. - - Args: - ad: (list of) android_device object. - duration: time duration(seconds) for which logcat is parsed. - - Returns: - avg_rssi: average RSSI on each android device for the given duration. - """ - function_tag = "get_bt_rssi" - bqr_results = get_bt_metric(ad, - duration, - tag=function_tag, - processed=processed) - return bqr_results["rssi"] - - -def enable_bqr(ad_list, bqr_interval=10, bqr_event_mask=15,): - """Sets up BQR reporting. - - Sets up BQR to report BT metrics at the requested frequency and toggles - airplane mode for the bqr settings to take effect. - - Args: - ad_list: an android_device or list of android devices. - """ - # Converting a single android device object to list - if not isinstance(ad_list, list): - ad_list = [ad_list] - - for ad in ad_list: - #Setting BQR parameters - ad.adb.shell("setprop persist.bluetooth.bqr.event_mask {}".format( - bqr_event_mask)) - ad.adb.shell("setprop persist.bluetooth.bqr.min_interval_ms {}".format( - bqr_interval)) - - ## Toggle airplane mode - ad.droid.connectivityToggleAirplaneMode(True) - ad.droid.connectivityToggleAirplaneMode(False) - - def get_device_selector_dictionary(android_device_list): """Create a dictionary of Bluetooth features vs Android devices. @@ -855,8 +726,8 @@ def get_mac_address_of_generic_advertisement(scan_ad, adv_ad): adv_ad.droid.bleStartBleAdvertising(advertise_callback, advertise_data, advertise_settings) try: - adv_ad.ed.pop_event(adv_succ.format(advertise_callback), - bt_default_timeout) + adv_ad.ed.pop_event( + adv_succ.format(advertise_callback), bt_default_timeout) except Empty as err: raise BtTestUtilsError( "Advertiser did not start successfully {}".format(err)) @@ -1095,8 +966,8 @@ def orchestrate_bluetooth_socket_connection( client_ad.droid.bluetoothStartPairingHelper() server_ad.droid.bluetoothSocketConnBeginAcceptThreadUuid( - (bluetooth_socket_conn_test_uuid if uuid is None else uuid), - accept_timeout_ms) + (bluetooth_socket_conn_test_uuid + if uuid is None else uuid), accept_timeout_ms) client_ad.droid.bluetoothSocketConnBeginConnectThreadUuid( server_ad.droid.bluetoothGetLocalAddress(), (bluetooth_socket_conn_test_uuid if uuid is None else uuid)) @@ -1160,14 +1031,12 @@ def pair_pri_to_sec(pri_ad, sec_ad, attempts=2, auto_confirm=True): # Wait 2 seconds before unbound time.sleep(2) if not clear_bonded_devices(pri_ad): - log.error( - "Failed to clear bond for primary device at attempt {}".format( - str(curr_attempts))) + log.error("Failed to clear bond for primary device at attempt {}" + .format(str(curr_attempts))) return False if not clear_bonded_devices(sec_ad): - log.error( - "Failed to clear bond for secondary device at attempt {}". - format(str(curr_attempts))) + log.error("Failed to clear bond for secondary device at attempt {}" + .format(str(curr_attempts))) return False # Wait 2 seconds after unbound time.sleep(2) @@ -1265,8 +1134,8 @@ def scan_and_verify_n_advertisements(scn_ad, max_advertisements): while (start_time + bt_default_timeout) > time.time(): event = None try: - event = scn_ad.ed.pop_event(scan_result.format(scan_callback), - bt_default_timeout) + event = scn_ad.ed.pop_event( + scan_result.format(scan_callback), bt_default_timeout) except Empty as error: raise BtTestUtilsError( "Failed to find scan event: {}".format(error)) @@ -1280,12 +1149,13 @@ def scan_and_verify_n_advertisements(scn_ad, max_advertisements): return test_result -def set_bluetooth_codec(android_device, - codec_type, - sample_rate, - bits_per_sample, - channel_mode, - codec_specific_1=0): +def set_bluetooth_codec( + android_device, + codec_type, + sample_rate, + bits_per_sample, + channel_mode, + codec_specific_1=0): """Sets the A2DP codec configuration on the AndroidDevice. Args: @@ -1304,26 +1174,31 @@ def set_bluetooth_codec(android_device, bool: True if the codec config was successfully changed to the desired values. Else False. """ - message = ("Set Android Device A2DP Bluetooth codec configuration:\n" - "\tCodec: {codec_type}\n" - "\tSample Rate: {sample_rate}\n" - "\tBits per Sample: {bits_per_sample}\n" - "\tChannel Mode: {channel_mode}".format( - codec_type=codec_type, - sample_rate=sample_rate, - bits_per_sample=bits_per_sample, - channel_mode=channel_mode)) + message = ( + "Set Android Device A2DP Bluetooth codec configuration:\n" + "\tCodec: {codec_type}\n" + "\tSample Rate: {sample_rate}\n" + "\tBits per Sample: {bits_per_sample}\n" + "\tChannel Mode: {channel_mode}".format( + codec_type=codec_type, + sample_rate=sample_rate, + bits_per_sample=bits_per_sample, + channel_mode=channel_mode + ) + ) android_device.log.info(message) # Send SL4A command droid, ed = android_device.droid, android_device.ed if not droid.bluetoothA2dpSetCodecConfigPreference( - codec_types[codec_type], sample_rates[str(sample_rate)], - bits_per_samples[str(bits_per_sample)], - channel_modes[channel_mode], codec_specific_1): - android_device.log.warning( - "SL4A command returned False. Codec was not " - "changed.") + codec_types[codec_type], + sample_rates[str(sample_rate)], + bits_per_samples[str(bits_per_sample)], + channel_modes[channel_mode], + codec_specific_1 + ): + android_device.log.warning("SL4A command returned False. Codec was not " + "changed.") else: try: ed.pop_event(bluetooth_a2dp_codec_config_changed, @@ -1341,10 +1216,14 @@ def set_bluetooth_codec(android_device, android_device.log.warning("Could not verify codec config change " "through ADB.") elif split_out[1].strip().upper() != codec_type: - android_device.log.error("Codec config was not changed.\n" - "\tExpected codec: {exp}\n" - "\tActual codec: {act}".format( - exp=codec_type, act=split_out[1].strip())) + android_device.log.error( + "Codec config was not changed.\n" + "\tExpected codec: {exp}\n" + "\tActual codec: {act}".format( + exp=codec_type, + act=split_out[1].strip() + ) + ) return False android_device.log.info("Bluetooth codec successfully changed.") return True @@ -1450,8 +1329,8 @@ def setup_multiple_devices_for_bt_test(android_devices): threads = [] try: for a in android_devices: - thread = threading.Thread(target=factory_reset_bluetooth, - args=([[a]])) + thread = threading.Thread( + target=factory_reset_bluetooth, args=([[a]])) threads.append(thread) thread.start() for t in threads: @@ -1473,9 +1352,9 @@ def setup_multiple_devices_for_bt_test(android_devices): a.log.info("Removing bond for device {}".format(b['address'])) d.bluetoothUnbond(b['address']) for a in android_devices: - a.adb.shell("setprop persist.bluetooth.btsnooplogmode full") - getprop_result = a.adb.shell( - "getprop persist.bluetooth.btsnooplogmode") == "full" + a.adb.shell("setprop persist.bluetooth.btsnoopenable true") + getprop_result = bool( + a.adb.shell("getprop persist.bluetooth.btsnoopenable")) if not getprop_result: a.log.warning("Failed to enable Bluetooth Hci Snoop Logging.") except Exception as err: @@ -1505,8 +1384,8 @@ def setup_n_advertisements(adv_ad, num_advertisements): adv_ad.droid.bleStartBleAdvertising(advertise_callback, advertise_data, advertise_settings) try: - adv_ad.ed.pop_event(adv_succ.format(advertise_callback), - bt_default_timeout) + adv_ad.ed.pop_event( + adv_succ.format(advertise_callback), bt_default_timeout) adv_ad.log.info("Advertisement {} started.".format(i + 1)) except Empty as error: adv_ad.log.error("Advertisement {} failed to start.".format(i + 1)) @@ -1657,9 +1536,8 @@ def _wait_for_passkey_match(pri_ad, sec_ad): timeout=bt_default_timeout) sec_variant = sec_pairing_req["data"]["PairingVariant"] sec_pin = sec_pairing_req["data"]["Pin"] - sec_ad.log.info( - "Secondary device received Pin: {}, Variant: {}".format( - sec_pin, sec_variant)) + sec_ad.log.info("Secondary device received Pin: {}, Variant: {}" + .format(sec_pin, sec_variant)) except Empty as err: log.error("Wait for pin error: {}".format(err)) log.error("Pairing request state, Primary: {}, Secondary: {}".format( @@ -1719,3 +1597,4 @@ def write_read_verify_data(client_ad, server_ad, msg, binary=False): log.error("Mismatch! Read: {}, Expected: {}".format(read_msg, msg)) return False return True + diff --git a/acts/framework/acts/test_utils/bt/gatt_test_database.py b/acts/framework/acts/test_utils/bt/gatt_test_database.py index 2eae933c74..f1d774e93d 100644 --- a/acts/framework/acts/test_utils/bt/gatt_test_database.py +++ b/acts/framework/acts/test_utils/bt/gatt_test_database.py @@ -119,7 +119,8 @@ LARGE_DB_1 = { gatt_descriptor['permission_write'], }, { 'uuid': '0000b017-0000-1000-8000-00805f9b34fb', - 'permissions': + 'permissions': gatt_descriptor['permission_read'] | + gatt_descriptor['permission_write'] | gatt_characteristic['permission_read_encrypted_mitm'], }] }] @@ -322,7 +323,6 @@ LARGE_DB_1 = { 'handles': 7, 'characteristics': [{ 'uuid': '0000b009-0000-0000-0123-456789abcdef', - 'enforce_initial_attribute_length': True, 'properties': gatt_characteristic['property_write'] | gatt_characteristic['property_extended_props'] | gatt_characteristic['property_read'], @@ -365,7 +365,6 @@ LARGE_DB_1 = { }, { 'uuid': '0000b00f-0000-1000-8000-00805f9b34fb', - 'enforce_initial_attribute_length': True, 'properties': gatt_characteristic['property_read'] | gatt_characteristic['property_write'], 'permissions': gatt_characteristic['permission_read'] | @@ -394,7 +393,6 @@ LARGE_DB_1 = { }, { 'uuid': '0000b007-0000-1000-8000-00805f9b34fb', - 'enforce_initial_attribute_length': True, 'properties': gatt_characteristic['property_read'] | gatt_characteristic['property_write'], 'permissions': gatt_characteristic['permission_read'] | @@ -752,7 +750,6 @@ DB_TEST = { 'permissions': 0x10 | 0x01, 'value_type': gatt_characteristic_value_format['byte'], 'value': [0x01], - 'enforce_initial_attribute_length': True, 'descriptors': [{ 'uuid': '0000b004-0000-1000-8000-00805f9b34fb', 'permissions': gatt_descriptor['permission_read'] | @@ -1311,7 +1308,6 @@ LARGE_DB_3 = { 'value': [0x01], }, { 'uuid': '0000b002-0000-1000-8000-00805f9b34fb', - 'enforce_initial_attribute_length': True, 'instance_id': 0x0076, 'properties': 0x0a, 'permissions': gatt_characteristic['permission_read'] | @@ -1416,7 +1412,6 @@ LARGE_DB_3 = { { 'uuid': '0000b002-0000-1000-8000-00805f9b34fb', 'instance_id': 0x00a4, - 'enforce_initial_attribute_length': True, 'properties': 0x0a, 'permissions': gatt_characteristic['permission_read'] | gatt_characteristic['permission_write'], @@ -1426,7 +1421,6 @@ LARGE_DB_3 = { { 'uuid': '0000b002-0000-1000-8000-00805f9b34fb', 'instance_id': 0x00a6, - 'enforce_initial_attribute_length': True, 'properties': 0x0a, 'permissions': gatt_characteristic['permission_read'] | gatt_characteristic['permission_write'], @@ -1436,7 +1430,6 @@ LARGE_DB_3 = { { 'uuid': '0000b002-0000-1000-8000-00805f9b34fb', 'instance_id': 0x00a8, - 'enforce_initial_attribute_length': True, 'properties': 0x0a, 'permissions': gatt_characteristic['permission_read'] | gatt_characteristic['permission_write'], @@ -1446,7 +1439,6 @@ LARGE_DB_3 = { { 'uuid': '0000b002-0000-1000-8000-00805f9b34fb', 'instance_id': 0x00aa, - 'enforce_initial_attribute_length': True, 'properties': 0x0a, 'permissions': gatt_characteristic['permission_read'] | gatt_characteristic['permission_write'], @@ -1456,7 +1448,6 @@ LARGE_DB_3 = { { 'uuid': '0000b002-0000-1000-8000-00805f9b34fb', 'instance_id': 0x00ac, - 'enforce_initial_attribute_length': True, 'properties': 0x0a, 'permissions': gatt_characteristic['permission_read'] | gatt_characteristic['permission_write'], @@ -1466,7 +1457,6 @@ LARGE_DB_3 = { { 'uuid': '0000b002-0000-1000-8000-00805f9b34fb', 'instance_id': 0x00ae, - 'enforce_initial_attribute_length': True, 'properties': 0x0a, 'permissions': gatt_characteristic['permission_read'] | gatt_characteristic['permission_write'], diff --git a/acts/framework/acts/test_utils/bt/loggers/bluetooth_metric_logger.py b/acts/framework/acts/test_utils/bt/loggers/bluetooth_metric_logger.py index 9221193487..49f606b278 100644 --- a/acts/framework/acts/test_utils/bt/loggers/bluetooth_metric_logger.py +++ b/acts/framework/acts/test_utils/bt/loggers/bluetooth_metric_logger.py @@ -21,7 +21,11 @@ import time from acts.metrics.core import ProtoMetric from acts.metrics.logger import MetricLogger -from acts.test_utils.bt.loggers.protos import bluetooth_metric_pb2 + +# Initializes the path to the protobuf +PROTO_PATH = os.path.join(os.path.dirname(__file__), + 'protos', + 'bluetooth_metric.proto') def recursive_assign(proto, dct): @@ -46,7 +50,7 @@ class BluetoothMetricLogger(MetricLogger): def __init__(self, event): super().__init__(event=event) - self.proto_module = bluetooth_metric_pb2 + self.proto_module = self._compile_proto(PROTO_PATH) self.results = [] self.start_time = int(time.time()) @@ -60,8 +64,6 @@ class BluetoothMetricLogger(MetricLogger): .BluetoothDataTestResult(), 'BtCodecSweepTest': self.proto_module .BluetoothAudioTestResult(), - 'BtRangeCodecTest': self.proto_module - .BluetoothAudioTestResult(), } @staticmethod diff --git a/acts/framework/acts/test_utils/bt/loggers/protos/__init__.py b/acts/framework/acts/test_utils/bt/loggers/protos/__init__.py deleted file mode 100644 index e69de29bb2..0000000000 --- a/acts/framework/acts/test_utils/bt/loggers/protos/__init__.py +++ /dev/null diff --git a/acts/framework/acts/test_utils/bt/pts/fuchsia_pts_ics_lib.py b/acts/framework/acts/test_utils/bt/pts/fuchsia_pts_ics_lib.py deleted file mode 100644 index f2f9b2c295..0000000000 --- a/acts/framework/acts/test_utils/bt/pts/fuchsia_pts_ics_lib.py +++ /dev/null @@ -1,365 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright (C) 2019 The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. -"""This is a placeholder for all ICS values in PTS - that matter to Fuchsia devices. -""" - -# A2DP Values are just a placeholder. -A2DP_ICS = { - b'TSPC_ALL': b'FALSE', - b'TSPC_A2DP_0_1': b'FALSE', - b'TSPC_A2DP_0_2': b'FALSE', - b'TSPC_A2DP_0_3': b'FALSE', - b'TSPC_A2DP_1_1': b'TRUE', - b'TSPC_A2DP_1_2': b'TRUE', - b'TSPC_A2DP_2_1': b'TRUE', - b'TSPC_A2DP_2a_1': b'FALSE', - b'TSPC_A2DP_2a_2': b'TRUE', - b'TSPC_A2DP_2a_3': b'FALSE', - b'TSPC_A2DP_2b_1': b'FALSE', - b'TSPC_A2DP_2b_2': b'FALSE', - b'TSPC_A2DP_2_2': b'TRUE', - b'TSPC_A2DP_2_3': b'TRUE', - b'TSPC_A2DP_2_4': b'TRUE', - b'TSPC_A2DP_2_5': b'TRUE', - b'TSPC_A2DP_2_6': b'TRUE', - b'TSPC_A2DP_2_7': b'TRUE', - b'TSPC_A2DP_2_8': b'FALSE', - b'TSPC_A2DP_2_9': b'FALSE', - b'TSPC_A2DP_2_10': b'TRUE', - b'TSPC_A2DP_2_10a': b'FALSE', - b'TSPC_A2DP_2_11': b'FALSE', - b'TSPC_A2DP_2_12': b'FALSE', - b'TSPC_A2DP_2_13': b'TRUE', - b'TSPC_A2DP_2_14': b'TRUE', - b'TSPC_A2DP_2_15': b'FALSE', - b'TSPC_A2DP_2_16': b'FALSE', - b'TSPC_A2DP_2_17': b'FALSE', - b'TSPC_A2DP_3_1': b'TRUE', - b'TSPC_A2DP_3_1a': b'FALSE', - b'TSPC_A2DP_3_2': b'TRUE', - b'TSPC_A2DP_3_3': b'FALSE', - b'TSPC_A2DP_3_4': b'FALSE', - b'TSPC_A2DP_3_5': b'TRUE', - b'TSPC_A2DP_3_6': b'FALSE', - b'TSPC_A2DP_3_7': b'FALSE', - b'TSPC_A2DP_3_8': b'FALSE', - b'TSPC_A2DP_3a_1': b'TRUE', - b'TSPC_A2DP_3a_2': b'FALSE', - b'TSPC_A2DP_3a_3': b'TRUE', - b'TSPC_A2DP_3a_4': b'TRUE', - b'TSPC_A2DP_3a_5': b'TRUE', - b'TSPC_A2DP_3a_6': b'TRUE', - b'TSPC_A2DP_3a_7': b'TRUE', - b'TSPC_A2DP_3a_8': b'TRUE', - b'TSPC_A2DP_3a_9': b'FALSE', - b'TSPC_A2DP_3a_10': b'TRUE', - b'TSPC_A2DP_3a_11': b'FALSE', - b'TSPC_A2DP_3a_12': b'TRUE', - b'TSPC_A2DP_4_1': b'TRUE', - b'TSPC_A2DP_4_2': b'TRUE', - b'TSPC_A2DP_4_3': b'FALSE', - b'TSPC_A2DP_4_4': b'TRUE', - b'TSPC_A2DP_4_5': b'TRUE', - b'TSPC_A2DP_4_6': b'FALSE', - b'TSPC_A2DP_4_7': b'TRUE', - b'TSPC_A2DP_4_8': b'FALSE', - b'TSPC_A2DP_4_9': b'TRUE', - b'TSPC_A2DP_4_10': b'TRUE', - b'TSPC_A2DP_4_10a': b'FALSE', - b'TSPC_A2DP_4_11': b'FALSE', - b'TSPC_A2DP_4_12': b'FALSE', - b'TSPC_A2DP_4_13': b'TRUE', - b'TSPC_A2DP_4_14': b'TRUE', - b'TSPC_A2DP_4_15': b'FALSE', - b'TSPC_A2DP_5_1': b'TRUE', - b'TSPC_A2DP_5_1a': b'TRUE', - b'TSPC_A2DP_5_2': b'TRUE', - b'TSPC_A2DP_5_3': b'FALSE', - b'TSPC_A2DP_5_4': b'FALSE', - b'TSPC_A2DP_5_5': b'FALSE', - b'TSPC_A2DP_5a_1': b'TRUE', - b'TSPC_A2DP_5a_2': b'TRUE', - b'TSPC_A2DP_5a_3': b'TRUE', - b'TSPC_A2DP_5a_4': b'TRUE', - b'TSPC_A2DP_5a_5': b'TRUE', - b'TSPC_A2DP_5a_6': b'TRUE', - b'TSPC_A2DP_5a_7': b'TRUE', - b'TSPC_A2DP_5a_8': b'TRUE', - b'TSPC_A2DP_5a_9': b'TRUE', - b'TSPC_A2DP_5a_10': b'TRUE', - b'TSPC_A2DP_5a_11': b'TRUE', - b'TSPC_A2DP_5a_12': b'TRUE', - b'TSPC_A2DP_7a_1': b'FALSE', - b'TSPC_A2DP_7a_2': b'FALSE', - b'TSPC_A2DP_7a_3': b'FALSE', - b'TSPC_A2DP_7b_1': b'FALSE', - b'TSPC_A2DP_7b_2': b'FALSE', - - # Not available in Launch Studio Yet - b'TSPC_A2DP_10_1': b'FALSE', - b'TSPC_A2DP_10_2': b'FALSE', - b'TSPC_A2DP_10_3': b'FALSE', - b'TSPC_A2DP_10_4': b'FALSE', - b'TSPC_A2DP_10_5': b'FALSE', - b'TSPC_A2DP_10_6': b'FALSE', - b'TSPC_A2DP_11_1': b'FALSE', - b'TSPC_A2DP_11_2': b'FALSE', - b'TSPC_A2DP_11_3': b'FALSE', - b'TSPC_A2DP_11_4': b'FALSE', - b'TSPC_A2DP_11_5': b'FALSE', - b'TSPC_A2DP_11_6': b'FALSE', - b'TSPC_A2DP_12_2': b'FALSE', - b'TSPC_A2DP_12_3': b'FALSE', - b'TSPC_A2DP_12_3': b'FALSE', - b'TSPC_A2DP_12_4': b'FALSE', - b'TSPC_A2DP_13_1': b'FALSE', - b'TSPC_A2DP_13_2': b'FALSE', - b'TSPC_A2DP_13_3': b'FALSE', - b'TSPC_A2DP_13_4': b'FALSE', - b'TSPC_A2DP_14_1': b'FALSE', - b'TSPC_A2DP_14_2': b'FALSE', - b'TSPC_A2DP_14_3': b'FALSE', - b'TSPC_A2DP_14_4': b'FALSE', - b'TSPC_A2DP_14_5': b'FALSE', - b'TSPC_A2DP_15_1': b'FALSE', - b'TSPC_A2DP_15_2': b'FALSE', - b'TSPC_A2DP_15_3': b'FALSE', - b'TSPC_A2DP_15_4': b'FALSE', - b'TSPC_A2DP_15_5': b'FALSE', - b'TSPC_A2DP_15_6': b'FALSE', - b'TSPC_A2DP_3_2a': b'FALSE', - b'TSPC_A2DP_3_2b': b'FALSE', - b'TSPC_A2DP_3_2c': b'FALSE', - b'TSPC_A2DP_3_2d': b'FALSE', - b'TSPC_A2DP_3_2e': b'FALSE', - b'TSPC_A2DP_3_2f': b'FALSE', - b'TSPC_A2DP_5_2a': b'FALSE', - b'TSPC_A2DP_5_2b': b'FALSE', - b'TSPC_A2DP_5_2c': b'FALSE', - b'TSPC_A2DP_8_2': b'FALSE', - b'TSPC_A2DP_8_3': b'FALSE', - b'TSPC_A2DP_8_4': b'FALSE', - b'TSPC_A2DP_9_1': b'FALSE', - b'TSPC_A2DP_9_2': b'FALSE', - b'TSPC_A2DP_9_3': b'FALSE', - b'TSPC_A2DP_9_4': b'FALSE', - -} - - -GATT_ICS = { - b'TSPC_GATT_1_1': b'TRUE', - b'TSPC_GATT_1_2': b'TRUE', - b'TSPC_GATT_1a_1': b'TRUE', - b'TSPC_GATT_1a_2': b'TRUE', - b'TSPC_GATT_1a_3': b'TRUE', - b'TSPC_GATT_1a_4': b'TRUE', - b'TSPC_GATT_1a_5': b'FALSE', - b'TSPC_GATT_1a_6': b'FALSE', - b'TSPC_GATT_1a_7': b'FALSE', - b'TSPC_GATT_1a_8': b'FALSE', - b'TSPC_GATT_2_1': b'FALSE', - b'TSPC_GATT_2_2': b'TRUE', - b'TSPC_GATT_3_1': b'TRUE', - b'TSPC_GATT_3_2': b'TRUE', - b'TSPC_GATT_3_3': b'TRUE', - b'TSPC_GATT_3_4': b'TRUE', - b'TSPC_GATT_3_5': b'TRUE', - b'TSPC_GATT_3_6': b'FALSE', - b'TSPC_GATT_3_7': b'TRUE', - b'TSPC_GATT_3_8': b'TRUE', - b'TSPC_GATT_3_9': b'TRUE', - b'TSPC_GATT_3_10': b'TRUE', - b'TSPC_GATT_3_11': b'FALSE', - b'TSPC_GATT_3_12': b'TRUE', - b'TSPC_GATT_3_13': b'FALSE', - b'TSPC_GATT_3_14': b'TRUE', - b'TSPC_GATT_3_15': b'TRUE', - b'TSPC_GATT_3_16': b'TRUE', - b'TSPC_GATT_3_17': b'TRUE', - b'TSPC_GATT_3_18': b'TRUE', - b'TSPC_GATT_3_19': b'TRUE', - b'TSPC_GATT_3_20': b'TRUE', - b'TSPC_GATT_3_21': b'TRUE', - b'TSPC_GATT_3_22': b'TRUE', - b'TSPC_GATT_3_23': b'TRUE', - b'TSPC_GATT_3_24': b'FALSE', - b'TSPC_GATT_3_25': b'FALSE', - b'TSPC_GATT_3_26': b'FALSE', - b'TSPC_GATT_3B_1': b'FALSE', - b'TSPC_GATT_3B_2': b'FALSE', - b'TSPC_GATT_3B_3': b'FALSE', - b'TSPC_GATT_3B_4': b'FALSE', - b'TSPC_GATT_3B_5': b'FALSE', - b'TSPC_GATT_3B_6': b'FALSE', - b'TSPC_GATT_3B_7': b'FALSE', - b'TSPC_GATT_3B_8': b'FALSE', - b'TSPC_GATT_3B_9': b'FALSE', - b'TSPC_GATT_3B_10': b'FALSE', - b'TSPC_GATT_3B_11': b'FALSE', - b'TSPC_GATT_3B_12': b'FALSE', - b'TSPC_GATT_3B_13': b'FALSE', - b'TSPC_GATT_3B_14': b'FALSE', - b'TSPC_GATT_3B_15': b'FALSE', - b'TSPC_GATT_3B_16': b'FALSE', - b'TSPC_GATT_3B_17': b'FALSE', - b'TSPC_GATT_3B_18': b'FALSE', - b'TSPC_GATT_3B_19': b'FALSE', - b'TSPC_GATT_3B_20': b'FALSE', - b'TSPC_GATT_3B_21': b'FALSE', - b'TSPC_GATT_3B_22': b'FALSE', - b'TSPC_GATT_3B_23': b'FALSE', - b'TSPC_GATT_3B_24': b'FALSE', - b'TSPC_GATT_3B_25': b'FALSE', - b'TSPC_GATT_3B_26': b'FALSE', - b'TSPC_GATT_3B_27': b'FALSE', - b'TSPC_GATT_3B_28': b'FALSE', - b'TSPC_GATT_3B_29': b'FALSE', - b'TSPC_GATT_3B_30': b'FALSE', - b'TSPC_GATT_3B_31': b'FALSE', - b'TSPC_GATT_3B_32': b'FALSE', - b'TSPC_GATT_3B_33': b'FALSE', - b'TSPC_GATT_3B_34': b'FALSE', - b'TSPC_GATT_3B_35': b'FALSE', - b'TSPC_GATT_3B_36': b'FALSE', - b'TSPC_GATT_3B_37': b'FALSE', - b'TSPC_GATT_3B_38': b'FALSE', - b'TSPC_GATT_4_1': b'TRUE', - b'TSPC_GATT_4_2': b'TRUE', - b'TSPC_GATT_4_3': b'TRUE', - b'TSPC_GATT_4_4': b'TRUE', - b'TSPC_GATT_4_5': b'TRUE', - b'TSPC_GATT_4_6': b'TRUE', - b'TSPC_GATT_4_7': b'TRUE', - b'TSPC_GATT_4_8': b'TRUE', - b'TSPC_GATT_4_9': b'TRUE', - b'TSPC_GATT_4_10': b'TRUE', - b'TSPC_GATT_4_11': b'FALSE', - b'TSPC_GATT_4_12': b'TRUE', - b'TSPC_GATT_4_13': b'FALSE', - b'TSPC_GATT_4_14': b'TRUE', - b'TSPC_GATT_4_15': b'TRUE', - b'TSPC_GATT_4_16': b'TRUE', - b'TSPC_GATT_4_17': b'TRUE', - b'TSPC_GATT_4_18': b'TRUE', - b'TSPC_GATT_4_19': b'TRUE', - b'TSPC_GATT_4_20': b'TRUE', - b'TSPC_GATT_4_21': b'TRUE', - b'TSPC_GATT_4_22': b'TRUE', - b'TSPC_GATT_4_23': b'TRUE', - b'TSPC_GATT_4_24': b'FALSE', - b'TSPC_GATT_4_25': b'FALSE', - b'TSPC_GATT_4_26': b'FALSE', - b'TSPC_GATT_4_27': b'FALSE', - b'TSPC_GATT_4B_1': b'FALSE', - b'TSPC_GATT_4B_2': b'FALSE', - b'TSPC_GATT_4B_3': b'FALSE', - b'TSPC_GATT_4B_4': b'FALSE', - b'TSPC_GATT_4B_5': b'FALSE', - b'TSPC_GATT_4B_6': b'FALSE', - b'TSPC_GATT_4B_7': b'FALSE', - b'TSPC_GATT_4B_8': b'FALSE', - b'TSPC_GATT_4B_9': b'FALSE', - b'TSPC_GATT_4B_10': b'FALSE', - b'TSPC_GATT_4B_11': b'FALSE', - b'TSPC_GATT_4B_12': b'FALSE', - b'TSPC_GATT_4B_13': b'FALSE', - b'TSPC_GATT_4B_14': b'FALSE', - b'TSPC_GATT_4B_15': b'FALSE', - b'TSPC_GATT_4B_16': b'FALSE', - b'TSPC_GATT_4B_17': b'FALSE', - b'TSPC_GATT_4B_18': b'FALSE', - b'TSPC_GATT_4B_19': b'FALSE', - b'TSPC_GATT_4B_20': b'FALSE', - b'TSPC_GATT_4B_21': b'FALSE', - b'TSPC_GATT_4B_22': b'FALSE', - b'TSPC_GATT_4B_23': b'FALSE', - b'TSPC_GATT_4B_24': b'FALSE', - b'TSPC_GATT_4B_25': b'FALSE', - b'TSPC_GATT_4B_26': b'FALSE', - b'TSPC_GATT_4B_27': b'FALSE', - b'TSPC_GATT_4B_28': b'FALSE', - b'TSPC_GATT_4B_29': b'FALSE', - b'TSPC_GATT_4B_30': b'FALSE', - b'TSPC_GATT_4B_31': b'FALSE', - b'TSPC_GATT_4B_32': b'FALSE', - b'TSPC_GATT_4B_33': b'FALSE', - b'TSPC_GATT_4B_34': b'FALSE', - b'TSPC_GATT_4B_35': b'FALSE', - b'TSPC_GATT_4B_36': b'FALSE', - b'TSPC_GATT_4B_37': b'FALSE', - b'TSPC_GATT_4B_38': b'FALSE', - b'TSPC_GATT_6_2': b'TRUE', - b'TSPC_GATT_6_3': b'TRUE', - b'TSPC_GATT_7_1': b'TRUE', - b'TSPC_GATT_7_2': b'TRUE', - b'TSPC_GATT_7_3': b'TRUE', - b'TSPC_GATT_7_4': b'TRUE', - b'TSPC_GATT_7_5': b'FALSE', - b'TSPC_GATT_7_6': b'FALSE', - b'TSPC_GATT_7_7': b'FALSE', - b'TSPC_GATT_8_1': b'TRUE', - b'TSPC_GAP_0_2': b'FALSE', - b'TSPC_GAP_24_2': b'TRUE', - b'TSPC_GAP_24_3': b'TRUE', - b'TSPC_GAP_34_2': b'TRUE', - b'TSPC_GAP_34_3': b'TRUE', - b'TSPC_ALL': b'FALSE', -} - - -SDP_ICS = { - b'TSPC_ALL': b'FALSE', - b'TSPC_SDP_1_1': b'TRUE', - b'TSPC_SDP_1_2': b'TRUE', - b'TSPC_SDP_1_3': b'TRUE', - b'TSPC_SDP_1b_1': b'TRUE', - b'TSPC_SDP_1b_2': b'TRUE', - b'TSPC_SDP_2_1': b'TRUE', - b'TSPC_SDP_2_2': b'TRUE', - b'TSPC_SDP_2_3': b'TRUE', - b'TSPC_SDP_3_1': b'TRUE', - b'TSPC_SDP_4_1': b'TRUE', - b'TSPC_SDP_4_2': b'TRUE', - b'TSPC_SDP_4_3': b'TRUE', - b'TSPC_SDP_5_1': b'TRUE', - b'TSPC_SDP_6_1': b'TRUE', - b'TSPC_SDP_6_2': b'TRUE', - b'TSPC_SDP_6_3': b'TRUE', - b'TSPC_SDP_7_1': b'TRUE', - b'TSPC_SDP_8_1': b'FALSE', - b'TSPC_SDP_8_2': b'FALSE', - b'TSPC_SDP_9_1': b'TRUE', - b'TSPC_SDP_9_2': b'TRUE', - b'TSPC_SDP_9_3': b'FALSE', - b'TSPC_SDP_9_4': b'FALSE', - b'TSPC_SDP_9_5': b'TRUE', - b'TSPC_SDP_9_6': b'TRUE', - b'TSPC_SDP_9_7': b'FALSE', - b'TSPC_SDP_9_8': b'FALSE', - b'TSPC_SDP_9_9': b'TRUE', - b'TSPC_SDP_9_10': b'TRUE', - b'TSPC_SDP_9_11': b'TRUE', - b'TSPC_SDP_9_12': b'FALSE', - b'TSPC_SDP_9_13': b'FALSE', - b'TSPC_SDP_9_14': b'TRUE', - b'TSPC_SDP_9_15': b'FALSE', - b'TSPC_SDP_9_16': b'FALSE', - b'TSPC_SDP_9_17': b'TRUE', - b'TSPC_SDP_9_18': b'TRUE', - b'TSPC_SDP_9_19': b'TRUE', -} diff --git a/acts/framework/acts/test_utils/bt/pts/fuchsia_pts_ixit_lib.py b/acts/framework/acts/test_utils/bt/pts/fuchsia_pts_ixit_lib.py deleted file mode 100644 index b7d1c80a97..0000000000 --- a/acts/framework/acts/test_utils/bt/pts/fuchsia_pts_ixit_lib.py +++ /dev/null @@ -1,92 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright (C) 2019 The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. -"""This is a placeholder for all IXIT values in PTS - that matter to Fuchsia devices. -""" - -A2DP_IXIT = { - b'TSPX_security_enabled': (b'BOOLEAN', b'FALSE'), - b'TSPX_bd_addr_iut': (b'OCTETSTRING', b'000000000000'), - b'TSPX_SRC_class_of_device': (b'OCTETSTRING', b'080418'), - b'TSPX_SNK_class_of_device': (b'OCTETSTRING', b'04041C'), - b'TSPX_pin_code': (b'IA5STRING', b'0000'), - b'TSPX_delete_link_key': (b'BOOLEAN', b'FALSE'), - b'TSPX_time_guard': (b'INTEGER', b'300000'), - b'TSPX_use_implicit_send': (b'BOOLEAN', b'TRUE'), - b'TSPX_media_directory': - (b'IA5STRING', b'C:\Program Files\Bluetooth SIG\Bluetooth PTS\\bin\\audio'), - b'TSPX_auth_password': (b'IA5STRING', b'0000'), - b'TSPX_auth_user_id': (b'IA5STRING', b'PTS'), - b'TSPX_rfcomm_channel': (b'INTEGER', b'8'), - b'TSPX_l2cap_psm': (b'OCTETSTRING', b'1011'), - b'TSPX_no_confirmations': (b'BOOLEAN', b'FALSE'), - b'TSPX_cover_art_uuid': (b'OCTETSTRING', b'3EEE'), -} - -GATT_IXIT = { - b'TSPX_bd_addr_iut': (b'OCTETSTRING', b'000000000000'), - b'TSPX_iut_device_name_in_adv_packet_for_random_address': (b'IA5STRING', b'tbd'), - b'TSPX_security_enabled': (b'BOOLEAN', b'FALSE'), - b'TSPX_delete_link_key': (b'BOOLEAN', b'TRUE'), - b'TSPX_time_guard': (b'INTEGER', b'180000'), - b'TSPX_selected_handle': (b'OCTETSTRING', b'0012'), - b'TSPX_use_implicit_send': (b'BOOLEAN', b'TRUE'), - b'TSPX_secure_simple_pairing_pass_key_confirmation': (b'BOOLEAN', b'FALSE'), - b'TSPX_iut_use_dynamic_bd_addr': (b'BOOLEAN', b'FALSE'), - b'TSPX_iut_setup_att_over_br_edr': (b'BOOLEAN', b'FALSE'), - b'TSPX_tester_database_file': (b'IA5STRING', b'C:\Program Files\Bluetooth SIG\Bluetooth PTS\Data\SIGDatabase\GATT_Qualification_Test_Databases.xml'), - b'TSPX_iut_is_client_periphral': (b'BOOLEAN', b'FALSE'), - b'TSPX_iut_is_server_central': (b'BOOLEAN', b'FALSE'), - b'TSPX_mtu_size': (b'INTEGER', b'23'), - b'TSPX_pin_code': (b'IA5STRING', b'0000'), - b'TSPX_use_dynamic_pin': (b'BOOLEAN', b'FALSE'), - b'TSPX_delete_ltk': (b'BOOLEAN', b'FALSE'), - b'TSPX_tester_appearance': (b'OCTETSTRING', b'0000'), -} - -SDP_IXIT = { - b'TSPX_sdp_service_search_pattern': (b'IA5STRING', b'0100'), - b'TSPX_sdp_service_search_pattern_no_results': (b'IA5STRING', b'EEEE'), - b'TSPX_sdp_service_search_pattern_additional_protocol_descriptor_list': (b'IA5STRING', b''), - b'TSPX_sdp_service_search_pattern_bluetooth_profile_descriptor_list': (b'IA5STRING', b''), - b'TSPX_sdp_service_search_pattern_browse_group_list': (b'IA5STRING', b''), - b'TSPX_sdp_service_search_pattern_client_exe_url': (b'IA5STRING', b''), - b'TSPX_sdp_service_search_pattern_documentation_url': (b'IA5STRING', b''), - b'TSPX_sdp_service_search_pattern_icon_url': (b'IA5STRING', b''), - b'TSPX_sdp_service_search_pattern_language_base_attribute_id_list': (b'IA5STRING', b''), - b'TSPX_sdp_service_search_pattern_protocol_descriptor_list': (b'IA5STRING', b''), - b'TSPX_sdp_service_search_pattern_provider_name': (b'IA5STRING', b''), - b'TSPX_sdp_service_search_pattern_service_availability': (b'IA5STRING', b''), - b'TSPX_sdp_service_search_pattern_service_data_base_state': (b'IA5STRING', b'1000'), - b'TSPX_sdp_service_search_pattern_service_description': (b'IA5STRING', b''), - b'TSPX_sdp_service_search_pattern_service_id': (b'IA5STRING', b''), - b'TSPX_sdp_service_search_pattern_service_info_time_to_live': (b'IA5STRING', b''), - b'TSPX_sdp_service_search_pattern_version_number_list': (b'IA5STRING', b''), - b'TSPX_sdp_service_search_pattern_service_name': (b'IA5STRING', b''), - b'TSPX_sdp_service_search_pattern_service_record_state': (b'IA5STRING', b''), - b'TSPX_sdp_unsupported_attribute_id': (b'OCTETSTRING', b'EEEE'), - b'TSPX_security_enabled': (b'BOOLEAN', b'FALSE'), - b'TSPX_delete_link_key': (b'BOOLEAN', b'FALSE'), - b'TSPX_bd_addr_iut': (b'OCTETSTRING', b''), - b'TSPX_class_of_device_pts': (b'OCTETSTRING', b'200404'), - b'TSPX_class_of_device_test_pts_initiator': (b'BOOLEAN', b'TRUE'), - b'TSPX_limited_inquiry_used': (b'BOOLEAN', b'FALSE'), - b'TSPX_pin_code': (b'IA5STRING', b'0000'), - b'TSPX_time_guard': (b'INTEGER', b'200000'), - b'TSPX_device_search_time': (b'INTEGER', b'20'), - b'TSPX_use_implicit_send': (b'BOOLEAN', b'TRUE'), - b'TSPX_secure_simple_pairing_pass_key_confirmation': (b'BOOLEAN', b'FALSE'), -} diff --git a/acts/framework/acts/test_utils/bt/pts/pts_base_class.py b/acts/framework/acts/test_utils/bt/pts/pts_base_class.py deleted file mode 100644 index b2c48d66e1..0000000000 --- a/acts/framework/acts/test_utils/bt/pts/pts_base_class.py +++ /dev/null @@ -1,343 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright (C) 2019 The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. -"""This is the PTS base class that is inherited from all PTS -Tests. -""" - -import ctypes -import random -import re -import time -import traceback - -from ctypes import * -from datetime import datetime - -from acts import signals -from acts.base_test import BaseTestClass -from acts.controllers.bluetooth_pts_device import VERDICT_STRINGS -from acts.controllers.fuchsia_device import FuchsiaDevice -from acts.signals import TestSignal -from acts.test_utils.abstract_devices.bluetooth_device import create_bluetooth_device -from acts.test_utils.bt.bt_constants import gatt_transport -from acts.test_utils.fuchsia.bt_test_utils import le_scan_for_device_by_name - - -class PtsBaseClass(BaseTestClass): - """ Class for representing common functionality across all PTS tests. - - This includes the ability to rerun tests due to PTS instability, - common PTS action mappings, and setup/teardown related devices. - - """ - scan_timeout_seconds = 10 - peer_identifier = None - - def setup_class(self): - super().setup_class() - if 'dut' in self.user_params: - if self.user_params['dut'] == 'fuchsia_devices': - self.dut = create_bluetooth_device(self.fuchsia_devices[0]) - elif self.user_params['dut'] == 'android_devices': - self.dut = create_bluetooth_device(self.android_devices[0]) - else: - raise ValueError('Invalid DUT specified in config. (%s)' % - self.user_params['dut']) - else: - # Default is an fuchsia device - self.dut = create_bluetooth_device(self.fuchsia_devices[0]) - - self.characteristic_read_not_permitted_uuid = self.user_params.get( - "characteristic_read_not_permitted_uuid") - self.characteristic_read_not_permitted_handle = self.user_params.get( - "characteristic_read_not_permitted_handle") - self.characteristic_read_invalid_handle = self.user_params.get( - "characteristic_read_invalid_handle") - self.characteristic_attribute_not_found_uuid = self.user_params.get( - "characteristic_attribute_not_found_uuid") - self.characteristic_write_not_permitted_handle = self.user_params.get( - "characteristic_write_not_permitted_handle") - - self.pts = self.bluetooth_pts_device[0] - # MMI functions commented out until implemented. Added for tracking - # purposes. - self.pts_action_mapping = { - "A2DP": { - 1: self.a2dp_mmi_iut_connectable, - 1002: self.a2dp_mmi_iut_accept_connect, - 1020: self.a2dp_mmi_initiate_open_stream, - }, - "GATT": { - 1: self.mmi_make_iut_connectable, - 2: self.mmi_iut_initiate_connection, - 3: self.mmi_iut_initiate_disconnection, - # 4: self.mmi_iut_no_security, - # 5: self.mmi_iut_initiate_br_connection, - 10: self.mmi_discover_primary_service, - # 11: self.mmi_confirm_no_primary_service_small, - # 12: self.mmi_iut_mtu_exchange, - # 13: self.mmi_discover_all_service_record, - # 14: self.mmi_iut_discover_gatt_service_record, - 15: self.mmi_iut_find_included_services, - # 16: self.mmi_confirm_no_characteristic_uuid_small, - 17: self.mmi_confirm_primary_service, - # 18: self.mmi_send_primary_service_uuid, - # 19: self.mmi_confirm_primary_service_uuid, - # 22: self.confirm_primary_service_1801, - 24: self.mmi_confirm_include_service, - 26: self.mmi_confirm_characteristic_service, - # 27: self.perform_read_all_characteristics, - 29: self. - mmi_discover_service_uuid_range, # AKA: discover service by uuid - # 31: self.perform_read_all_descriptors, - 48: self.mmi_iut_send_read_characteristic_handle, - 58: self.mmi_iut_send_read_descriptor_handle, - 70: self.mmi_send_write_command, - 74: self.mmi_send_write_request, - 76: self.mmi_send_prepare_write, - 77: self.mmi_iut_send_prepare_write_greater_offset, - 80: self.mmi_iut_send_prepare_write_greater, - 110: self.mmi_iut_enter_handle_read_not_permitted, - 111: self.mmi_iut_enter_uuid_read_not_permitted, - 118: self.mmi_iut_enter_handle_invalid, - 119: self.mmi_iut_enter_uuid_attribute_not_found, - 120: self.mmi_iut_enter_handle_write_not_permitted, - 2000: self.mmi_verify_secure_id, # Enter pairing pin from DUT. - }, - "SDP": { - # TODO: Implement MMIs as necessary - } - } - self.pts.bind_to(self.process_next_action) - - def teardown_class(self): - self.pts.clean_up() - - def setup_test(self): - # Always start the test with RESULT_INCOMP - self.pts.pts_test_result = VERDICT_STRINGS['RESULT_INCOMP'] - - def teardown_test(self): - return True - - @staticmethod - def pts_test_wrap(fn): - def _safe_wrap_test_case(self, *args, **kwargs): - test_id = "{}:{}:{}".format(self.__class__.__name__, fn.__name__, - time.time()) - log_string = "[Test ID] {}".format(test_id) - self.log.info(log_string) - try: - self.dut.log_info("Started " + log_string) - result = fn(self, *args, **kwargs) - self.dut.log_info("Finished " + log_string) - rerun_count = self.user_params.get("pts_auto_rerun_count", 0) - for i in range(int(rerun_count)): - if result is not True: - self.teardown_test() - log_string = "[Rerun Test ID] {}. Run #{} run failed... Retrying".format( - test_id, i + 1) - self.log.info(log_string) - self.setup_test() - self.dut.log_info("Rerun Started " + log_string) - result = fn(self, *args, **kwargs) - else: - return result - return result - except TestSignal: - raise - except Exception as e: - self.log.error(traceback.format_exc()) - self.log.error(str(e)) - raise - return fn(self, *args, **kwargs) - - return _safe_wrap_test_case - - def process_next_action(self, action): - func = self.pts_action_mapping.get( - self.pts.pts_profile_mmi_request).get(action, "Nothing") - if func is not 'Nothing': - func() - - ### BEGIN A2DP MMI Actions ### - - def a2dp_mmi_iut_connectable(self): - self.dut.start_profile_a2dp_sink() - self.dut.set_discoverable(True) - - def a2dp_mmi_iut_accept_connect(self): - self.dut.start_profile_a2dp_sink() - self.dut.set_discoverable(True) - - def a2dp_mmi_initiate_open_stream(self): - self.dut.a2dp_initiate_open_stream() - - ### END A2DP MMI Actions ### - - ### BEGIN GATT MMI Actions ### - - def create_write_value_by_size(self, size): - write_value = [] - for i in range(size): - write_value.append(i % 256) - return write_value - - def mmi_send_write_command(self): - description_to_parse = self.pts.current_implicit_send_description - raw_handle = re.search('handle = \'(.*)\'O with', description_to_parse) - handle = int(raw_handle.group(1), 16) - raw_size = re.search('with <= \'(.*)\' byte', description_to_parse) - size = int(raw_size.group(1)) - self.dut.gatt_client_write_char_with_no_response_to_input_handle( - self.peer_identifier, handle, - self.create_write_value_by_size(size)) - - def mmi_send_write_request(self): - description_to_parse = self.pts.current_implicit_send_description - raw_handle = re.search('handle = \'(.*)\'O with', description_to_parse) - handle = int(raw_handle.group(1), 16) - raw_size = re.search('with <= \'(.*)\' byte', description_to_parse) - size = int(raw_size.group(1)) - offset = 0 - self.dut.gatt_client_write_to_input_handle( - self.peer_identifier, handle, offset, - self.create_write_value_by_size(size)) - - def mmi_send_prepare_write(self): - description_to_parse = self.pts.current_implicit_send_description - raw_handle = re.search('handle = \'(.*)\'O <=', description_to_parse) - handle = int(raw_handle.group(1), 16) - raw_size = re.search('<= \'(.*)\' byte', description_to_parse) - size = int(math.floor(int(raw_size.group(1)) / 2)) - offset = int(size / 2) - self.dut.gatt_client_write_to_input_handle( - self.peer_identifier, handle, offset, - self.create_write_value_by_size(size)) - - def mmi_iut_send_prepare_write_greater_offset(self): - description_to_parse = self.pts.current_implicit_send_description - raw_handle = re.search('handle = \'(.*)\'O and', description_to_parse) - handle = int(raw_handle.group(1), 16) - raw_offset = re.search('greater than \'(.*)\' byte', - description_to_parse) - offset = int(raw_offset.group(1)) - size = 1 - self.dut.gatt_client_write_to_input_handle( - self.peer_identifier, handle, offset, - self.create_write_value_by_size(size)) - - def mmi_iut_send_prepare_write_greater(self): - description_to_parse = self.pts.current_implicit_send_description - raw_handle = re.search('handle = \'(.*)\'O with', description_to_parse) - handle = int(raw_handle.group(1), 16) - raw_size = re.search('greater than \'(.*)\' byte', - description_to_parse) - size = int(raw_size.group(1)) - offset = 0 - self.dut.gatt_client_write_to_input_handle( - self.peer_identifier, handle, offset, - self.create_write_value_by_size(size)) - - def mmi_make_iut_connectable(self): - adv_data = {"name": self.dut_bluetooth_local_name} - self.dut.start_le_advertisement(adv_data, self.ble_advertise_interval) - - def mmi_iut_enter_uuid_read_not_permitted(self): - self.pts.extra_answers.append( - self.characteristic_read_not_permitted_uuid) - - def mmi_iut_enter_handle_read_not_permitted(self): - self.pts.extra_answers.append( - self.characteristic_read_not_permitted_handle) - - def mmi_iut_enter_handle_invalid(self): - self.pts.extra_answers.append(self.characteristic_read_invalid_handle) - - def mmi_iut_enter_uuid_attribute_not_found(self): - self.pts.extra_answers.append( - self.characteristic_attribute_not_found_uuid) - - def mmi_iut_enter_handle_write_not_permitted(self): - self.pts.extra_answers.append( - self.characteristic_write_not_permitted_handle) - - def mmi_verify_secure_id(self): - self.pts.extra_answers.append(self.dut.get_pairing_pin()) - - def mmi_discover_service_uuid_range(self, uuid): - self.dut.gatt_client_mmi_discover_service_uuid_range( - self.peer_identifier, uuid) - - def mmi_iut_initiate_connection(self): - autoconnect = False - transport = gatt_transport['le'] - adv_name = "PTS" - self.peer_identifier = self.dut.le_scan_with_name_filter( - "PTS", self.scan_timeout_seconds) - if self.peer_identifier is None: - raise signals.TestFailure("Scanner unable to find advertisement.") - tries = 3 - for _ in range(tries): - if self.dut.gatt_connect(self.peer_identifier, transport, - autoconnect): - return - - raise signals.TestFailure("Unable to connect to peripheral.") - - def mmi_iut_initiate_disconnection(self): - if not self.dut.gatt_disconnect(self.peer_identifier): - raise signals.TestFailure("Failed to disconnect from peer.") - - def mmi_discover_primary_service(self): - self.dut.gatt_refresh() - - def mmi_iut_find_included_services(self): - self.dut.gatt_refresh() - - test_result = self.pts.execute_test(test_name) - return test_result - - def mmi_confirm_primary_service(self): - # TODO: Write verifier that 1800 and 1801 exists. For now just pass. - return True - - def mmi_confirm_characteristic_service(self): - # TODO: Write verifier that no services exist. For now just pass. - return True - - def mmi_confirm_include_service(self, uuid_description): - # TODO: Write verifier that input services exist. For now just pass. - # Note: List comes in the form of a long string to parse: - # Attribute Handle = '0002'O Included Service Attribute handle = '0080'O,End Group Handle = '0085'O,Service UUID = 'A00B'O - # \n - # Attribute Handle = '0021'O Included Service Attribute handle = '0001'O,End Group Handle = '0006'O,Service UUID = 'A00D'O - # \n ... - return True - - def _read_generic_handle(self): - description_to_parse = self.pts.current_implicit_send_description - raw_handle = re.search('handle = \'(.*)\'O to', description_to_parse) - handle = int(raw_handle.group(1), 16) - self.dut.gatt_client_read_input_handle(self.peer_identifier, handle) - - def mmi_iut_send_read_characteristic_handle(self): - self._read_generic_handle() - - def mmi_iut_send_read_descriptor_handle(self): - self._read_generic_handle() - - ### END GATT MMI Actions ### diff --git a/acts/framework/acts/test_utils/bt/simulated_carkit_device.py b/acts/framework/acts/test_utils/bt/simulated_carkit_device.py index 84fcc5ea79..28e0d37b24 100644 --- a/acts/framework/acts/test_utils/bt/simulated_carkit_device.py +++ b/acts/framework/acts/test_utils/bt/simulated_carkit_device.py @@ -16,25 +16,17 @@ from acts import asserts -from acts.controllers import android_device from acts.test_utils.bt.bt_test_utils import bluetooth_enabled_check -# TODO: This class to be deprecated for -# ../acts/test_utils/abstract_devices/bluetooth_handsfree_abstract_device.py - - class SimulatedCarkitDevice(): - def __init__(self, serial): - self.ad = android_device.create(serial)[0] + def __init__(self, android_device): + self.ad = android_device if not bluetooth_enabled_check(self.ad): asserts.fail("No able to turn on bluetooth") self.mac_address = self.ad.droid.bluetoothGetLocalAddress() self.ad.droid.bluetoothToggleState(False) self.ad.droid.bluetoothMediaConnectToCarMBS() - def destroy(self): - self.ad.clean_up() - def accept_call(self): return self.ad.droid.telecomAcceptRingingCall(None) diff --git a/acts/framework/acts/test_utils/coex/CoexBaseTest.py b/acts/framework/acts/test_utils/coex/CoexBaseTest.py index 2d32afab47..37d74f2de5 100644 --- a/acts/framework/acts/test_utils/coex/CoexBaseTest.py +++ b/acts/framework/acts/test_utils/coex/CoexBaseTest.py @@ -48,6 +48,14 @@ AVRCP_WAIT_TIME = 3 class CoexBaseTest(BaseTestClass): + def __init__(self, controllers): + super().__init__(controllers) + self.pri_ad = self.android_devices[0] + if len(self.android_devices) == 2: + self.sec_ad = self.android_devices[1] + elif len(self.android_devices) == 3: + self.third_ad = self.android_devices[2] + class IperfVariables: def __init__(self, current_test_name): @@ -64,14 +72,6 @@ class CoexBaseTest(BaseTestClass): self.is_bidirectional = True def setup_class(self): - super().setup_class() - self.pri_ad = self.android_devices[0] - if len(self.android_devices) == 2: - self.sec_ad = self.android_devices[1] - elif len(self.android_devices) == 3: - self.third_ad = self.android_devices[2] - self.ssh_config = None - self.counter = 0 self.thread_list = [] if not setup_multiple_devices_for_bt_test(self.android_devices): @@ -104,12 +104,10 @@ class CoexBaseTest(BaseTestClass): if hasattr(self, "IPerfClient"): self.log.info("Iperfclient is given in config file") self.iperf_client = self.iperf_clients[0] - if 'ssh_config' in self.IPerfClient[0]: - self.ssh_config = self.IPerfClient[0]["ssh_config"] else: self.log.warning("Iperfclient is not given in config file") wifi_test_device_init(self.pri_ad) - wifi_connect(self.pri_ad, self.network, num_of_tries=5) + wifi_connect(self.pri_ad, self.network) def setup_test(self): self.tag = 0 @@ -215,8 +213,7 @@ class CoexBaseTest(BaseTestClass): self.tag, ) - cmd = "adb -s {} shell {}".format(self.pri_ad.serial, - self.iperf_server) + cmd = "adb -s {} shell {}".format(self.pri_ad.serial, self.iperf_server) def appender_iperf_logs(line): with open(out_file_name, 'a') as f: @@ -249,8 +246,8 @@ class CoexBaseTest(BaseTestClass): if self.iperf_variables.is_bidirectional: self.iperf_variables.bidirectional_server_path = ( self.start_iperf_server_on_shell(self.iperf["port_2"])) - self.iperf_variables.iperf_server_path = ( - self.start_iperf_server_on_shell(self.iperf["port_1"])) + self.iperf_variables.iperf_server_path = self.start_iperf_server_on_shell( + self.iperf["port_1"]) if self.iperf_variables.protocol == "tcp": self.iperf_args = "-t {} -p {} {} -J".format( self.iperf["duration"], self.iperf["port_1"], @@ -296,9 +293,9 @@ class CoexBaseTest(BaseTestClass): ip = get_phone_ip(self.pri_ad) args = [ - lambda: check_wifi_status(self.pri_ad, self.network, - ssh_config=self.ssh_config) - ] + lambda: check_wifi_status(self.pri_ad, self.network, + self.iperf["ssh_config"]) + ] self.run_thread(args) if bidirectional: self.tag = self.tag + 1 @@ -430,6 +427,5 @@ class CoexBaseTest(BaseTestClass): self.log.error("Increase volume failed") return False else: - self.log.warning( - "No volume control pins specified in relay config.") + self.log.warning("No volume control pins specfied in relay config.") return True diff --git a/acts/framework/acts/test_utils/coex/CoexPerformanceBaseTest.py b/acts/framework/acts/test_utils/coex/CoexPerformanceBaseTest.py index 663bea5022..b713ec2bd7 100644 --- a/acts/framework/acts/test_utils/coex/CoexPerformanceBaseTest.py +++ b/acts/framework/acts/test_utils/coex/CoexPerformanceBaseTest.py @@ -28,10 +28,6 @@ from acts.test_utils.coex.coex_test_utils import multithread_func from acts.test_utils.coex.coex_test_utils import wifi_connection_check from acts.test_utils.wifi.wifi_test_utils import wifi_connect from acts.test_utils.wifi.wifi_test_utils import wifi_test_device_init -from acts.utils import get_current_epoch_time - -RSSI_POLL_RESULTS = "Monitoring , Handle: 0x0003, POLL" -RSSI_RESULTS = "Monitoring , Handle: 0x0003, " def get_atten_range(start, stop, step): @@ -41,11 +37,13 @@ def get_atten_range(start, stop, step): start: Start attenuation value. stop: Stop attenuation value. step: Step attenuation value. + + Returns: + list of attenuation range. """ - temp = start - while temp < stop: - yield temp - temp += step + atten_step = int(round((stop - start) / float(step))) + atten_range = [start + x * step for x in range(0, atten_step)] + return atten_range class CoexPerformanceBaseTest(CoexBaseTest): @@ -80,21 +78,20 @@ class CoexPerformanceBaseTest(CoexBaseTest): for i in range(self.num_atten): self.attenuators[i].set_atten(0) super().setup_class() - self.performance_files_list = [] if "performance_result_path" in self.user_params["test_params"]: self.performance_files_list = [ os.path.join(self.test_params["performance_result_path"], files) for files in os.listdir( self.test_params["performance_result_path"]) ] - self.bt_atten_range = list(get_atten_range( + self.bt_atten_range = get_atten_range( self.test_params["bt_atten_start"], self.test_params["bt_atten_stop"], - self.test_params["bt_atten_step"])) - self.wifi_atten_range = list(get_atten_range( + self.test_params["bt_atten_step"]) + self.wifi_atten_range = get_atten_range( self.test_params["attenuation_start"], self.test_params["attenuation_stop"], - self.test_params["attenuation_step"])) + self.test_params["attenuation_step"]) def setup_test(self): if "a2dp_streaming" in self.current_test_name: @@ -142,8 +139,7 @@ class CoexPerformanceBaseTest(CoexBaseTest): for bt_atten in self.bt_atten_range: self.rvr[bt_atten] = {} self.rvr[bt_atten]["fixed_attenuation"] = ( - self.test_params["fixed_attenuation"][str( - self.network["channel"])]) + self.test_params["fixed_attenuation"][str(self.network["channel"])]) self.log.info("Setting bt attenuation = {}".format(bt_atten)) self.attenuators[self.num_atten - 1].set_atten(bt_atten) for i in range(self.num_atten - 1): @@ -151,11 +147,6 @@ class CoexPerformanceBaseTest(CoexBaseTest): if not wifi_connection_check(self.pri_ad, self.network["SSID"]): wifi_test_device_init(self.pri_ad) wifi_connect(self.pri_ad, self.network, num_of_tries=5) - adb_rssi_results = self.pri_ad.search_logcat(RSSI_RESULTS) - if adb_rssi_results: - self.log.debug(adb_rssi_results[-1]) - self.log.info("Android device RSSI = {}".format( - (adb_rssi_results[-1]['log_message']).split(',')[5])) (self.rvr[bt_atten]["throughput_received"], self.rvr[bt_atten]["a2dp_packet_drop"], status_flag) = self.rvr_throughput(bt_atten, called_func) @@ -163,19 +154,12 @@ class CoexPerformanceBaseTest(CoexBaseTest): ["attenuation"]) self.wifi_min_atten_metric.metric_value = min(self.rvr[bt_atten] ["attenuation"]) - - if self.rvr[bt_atten]["throughput_received"]: - for i, atten in enumerate(self.rvr[bt_atten]["attenuation"]): - if self.rvr[bt_atten]["throughput_received"][i] < 1.0: - self.wifi_range_metric.metric_value = ( - self.rvr[bt_atten]["attenuation"][i-1]) - break - else: - self.wifi_range_metric.metric_value = max( - self.rvr[bt_atten]["attenuation"]) + for i, atten in enumerate(self.rvr[bt_atten]["attenuation"]): + if self.rvr[bt_atten]["throughput_received"][i] < 1.0: + self.wifi_range_metric = self.rvr[bt_atten]["attenuation"][i-1] + break else: - self.wifi_range_metric.metric_value = max( - self.rvr[bt_atten]["attenuation"]) + self.wifi_range_metric = max(self.rvr[bt_atten]["attenuation"]) if self.a2dp_streaming: if not any(x > 0 for x in self.a2dp_dropped_list): self.rvr[bt_atten]["a2dp_packet_drop"] = [] @@ -207,10 +191,8 @@ class CoexPerformanceBaseTest(CoexBaseTest): for i in range(self.num_atten - 1): self.attenuators[i].set_atten(atten) if not wifi_connection_check(self.pri_ad, self.network["SSID"]): - self.iperf_received.append(0) - return self.iperf_received, self.a2dp_dropped_list, False + return self.iperf_received, self.a2dp_dropped_list time.sleep(5) # Time for attenuation to set. - begin_time = get_current_epoch_time() if called_func: if not multithread_func(self.log, called_func): self.teardown_result() @@ -219,15 +201,6 @@ class CoexPerformanceBaseTest(CoexBaseTest): return self.iperf_received, self.a2dp_dropped_list, False else: self.run_iperf_and_get_result() - adb_rssi_poll_results = self.pri_ad.search_logcat( - RSSI_POLL_RESULTS, begin_time) - adb_rssi_results = self.pri_ad.search_logcat( - RSSI_RESULTS, begin_time) - if adb_rssi_results: - self.log.debug(adb_rssi_poll_results) - self.log.debug(adb_rssi_results[-1]) - self.log.info("Android device RSSI = {}".format(( - adb_rssi_results[-1]['log_message']).split(',')[5])) if self.a2dp_streaming: analysis_path = self.audio.audio_quality_analysis(self.log_path) with open(analysis_path) as f: @@ -263,16 +236,15 @@ class CoexPerformanceBaseTest(CoexBaseTest): with open(self.json_file, 'a') as results_file: json.dump({str(k): v for k, v in self.rvr.items()}, results_file, indent=4, sort_keys=True) - self.bt_range_metric.metric_value = self.rvr["bt_range"][0] + self.bt_range_metric.metric_value = self.rvr["bt_range"] self.log.info("BT range where gap has occurred = %s" % - self.bt_range_metric.metric_value) + self.rvr["bt_range"][0]) self.log.info("BT min range = %s" % min(self.rvr["bt_attenuation"])) self.log.info("BT max range = %s" % max(self.rvr["bt_attenuation"])) + with open(self.json_file, 'a') as result_file: + json.dump({str(k): v for k, v in self.rvr.items()}, result_file, + indent=4, sort_keys=True) self.plot_graph_for_attenuation() - if not self.performance_files_list: - self.log.warning("Performance file list is empty. Couldn't" - "calculate throughput limits") - return self.throughput_pass_fail_check() else: self.log.error("Throughput dict empty!") @@ -281,16 +253,16 @@ class CoexPerformanceBaseTest(CoexBaseTest): def plot_graph_for_attenuation(self): """Plots graph and add as JSON formatted results for attenuation with - respect to its iperf values. + respect to its iperf values. Compares rvr results with baseline + values by calculating throughput limits. """ data_sets = defaultdict(dict) - legends = defaultdict(list) - + test_name = self.current_test_name x_label = 'WIFI Attenuation (dB)' y_label = [] - + legends = defaultdict(list) fig_property = { - "title": self.current_test_name, + "title": test_name, "x_label": x_label, "linewidth": 3, "markersize": 10 @@ -304,6 +276,46 @@ class CoexPerformanceBaseTest(CoexBaseTest): self.rvr[bt_atten]["attenuation"]) data_sets[bt_atten]["throughput_received"] = ( self.rvr[bt_atten]["throughput_received"]) + shaded_region = None + + if "performance_result_path" in self.user_params["test_params"]: + try: + attenuation_path = [ + file_name for file_name in self.performance_files_list + if test_name in file_name + ] + attenuation_path = attenuation_path[0] + with open(attenuation_path, 'r') as throughput_file: + throughput_results = json.load(throughput_file) + for bt_atten in self.bt_atten_range: + throughput_received = [] + legends[bt_atten].insert( + 0, ('Performance Results @ {}dB'.format(bt_atten))) + throughput_attenuation = [ + att + + (throughput_results[str(bt_atten)]["fixed_attenuation"]) + for att in self.rvr[bt_atten]["attenuation"] + ] + for idx, _ in enumerate(throughput_attenuation): + throughput_received.append(throughput_results[str( + bt_atten)]["throughput_received"][idx]) + data_sets[bt_atten][ + "user_attenuation"] = throughput_attenuation + data_sets[bt_atten]["user_throughput"] = throughput_received + throughput_limits = self.get_throughput_limits(attenuation_path) + shaded_region = defaultdict(dict) + for bt_atten in self.bt_atten_range: + shaded_region[bt_atten] = {} + shaded_region[bt_atten] = { + "x_vector": throughput_limits[bt_atten]["attenuation"], + "lower_limit": + throughput_limits[bt_atten]["lower_limit"], + "upper_limit": + throughput_limits[bt_atten]["upper_limit"] + } + except Exception as e: + shaded_region = None + self.log.warning("ValueError: Performance file not found") if self.a2dp_streaming: for bt_atten in self.bt_atten_range: @@ -315,69 +327,15 @@ class CoexPerformanceBaseTest(CoexBaseTest): self.rvr[bt_atten]["a2dp_packet_drop"]) y_label.insert(0, "Packets Dropped") fig_property["y_label"] = y_label - shaded_region = None - - if "performance_result_path" in self.user_params["test_params"]: - shaded_region = self.comparision_results_calculation(data_sets, legends) - - output_file_path = os.path.join(self.pri_ad.log_path, - self.current_test_name, + output_file_path = os.path.join(self.pri_ad.log_path, test_name, "attenuation_plot.html") - bokeh_chart_plot(list(self.rvr["bt_attenuation"]), - data_sets, - legends, - fig_property, - shaded_region=shaded_region, - output_file_path=output_file_path) - - def comparision_results_calculation(self, data_sets, legends): - """Compares rvr results with baseline values by calculating throughput - limits. - - Args: - data_sets: including lists of x_data and lists of y_data. - ex: [[[x_data1], [x_data2]], [[y_data1],[y_data2]]] - legends: list of legend for each curve. - - Returns: - None if test_file is not found, otherwise shaded_region - will be returned. - """ - try: - attenuation_path = next( - file_name for file_name in self.performance_files_list - if self.current_test_name in file_name - ) - except StopIteration: - self.log.warning("Test_file not found. " - "No comparision values to calculate") - return - with open(attenuation_path, 'r') as throughput_file: - throughput_results = json.load(throughput_file) - for bt_atten in self.bt_atten_range: - throughput_received = [] - user_attenuation = [] - legends[bt_atten].insert( - 0, ('Performance Results @ {}dB'.format(bt_atten))) - for att in self.rvr[bt_atten]["attenuation"]: - attenuation = att - self.rvr[bt_atten]["fixed_attenuation"] - throughput_received.append(throughput_results[str(bt_atten)] - ["throughput_received"][attenuation]) - user_attenuation.append(att) - data_sets[bt_atten][ - "user_attenuation"] = user_attenuation - data_sets[bt_atten]["user_throughput"] = throughput_received - throughput_limits = self.get_throughput_limits(attenuation_path) - shaded_region = defaultdict(dict) - for bt_atten in self.bt_atten_range: - shaded_region[bt_atten] = { - "x_vector": throughput_limits[bt_atten]["attenuation"], - "lower_limit": - throughput_limits[bt_atten]["lower_limit"], - "upper_limit": - throughput_limits[bt_atten]["upper_limit"] - } - return shaded_region + bokeh_chart_plot( + list(self.rvr["bt_attenuation"]), + data_sets, + legends, + fig_property, + shaded_region=shaded_region, + output_file_path=output_file_path) def total_attenuation(self, performance_dict): """Calculates attenuation with adding fixed attenuation. @@ -401,47 +359,47 @@ class CoexPerformanceBaseTest(CoexBaseTest): provided in the config file. Returns: - None if test_file is not found, True if successful, - False otherwise. + True if successful, False otherwise. """ + test_name = self.current_test_name try: - performance_path = next( + performance_path = [ file_name for file_name in self.performance_files_list - if self.current_test_name in file_name - ) - except StopIteration: - self.log.warning("Test_file not found. Couldn't " - "calculate throughput limits") - return - throughput_limits = self.get_throughput_limits(performance_path) + if test_name in file_name + ] + performance_path = performance_path[0] + throughput_limits = self.get_throughput_limits(performance_path) - failure_count = 0 - for bt_atten in self.bt_atten_range: - for idx, current_throughput in enumerate( - self.rvr[bt_atten]["throughput_received"]): - current_att = self.rvr[bt_atten]["attenuation"][idx] - if (current_throughput < - (throughput_limits[bt_atten]["lower_limit"][idx]) or - current_throughput > - (throughput_limits[bt_atten]["upper_limit"][idx])): - failure_count = failure_count + 1 - self.log.info( - "Throughput at {} dB attenuation is beyond limits. " - "Throughput is {} Mbps. Expected within [{}, {}] Mbps.". - format( - current_att, current_throughput, - throughput_limits[bt_atten]["lower_limit"][idx], - throughput_limits[bt_atten]["upper_limit"][ - idx])) - if failure_count >= self.test_params["failure_count_tolerance"]: - self.log.error( - "Test failed. Found {} points outside throughput limits.". + failure_count = 0 + for bt_atten in self.bt_atten_range: + for idx, current_throughput in enumerate( + self.rvr[bt_atten]["throughput_received"]): + current_att = self.rvr[bt_atten]["attenuation"][idx] + ( + self.rvr[bt_atten]["fixed_attenuation"]) + if (current_throughput < + (throughput_limits[bt_atten]["lower_limit"][idx]) or + current_throughput > + (throughput_limits[bt_atten]["upper_limit"][idx])): + failure_count = failure_count + 1 + self.log.info( + "Throughput at {} dB attenuation is beyond limits. " + "Throughput is {} Mbps. Expected within [{}, {}] Mbps.". + format( + current_att, current_throughput, + throughput_limits[bt_atten]["lower_limit"][idx], + throughput_limits[bt_atten]["upper_limit"][ + idx])) + if failure_count >= self.test_params["failure_count_tolerance"]: + self.log.error( + "Test failed. Found {} points outside throughput limits.". + format(failure_count)) + return False + self.log.info( + "Test passed. Found {} points outside throughput limits.". format(failure_count)) - return False - self.log.info( - "Test passed. Found {} points outside throughput limits.". - format(failure_count)) - return True + except Exception as e: + self.log.warning("ValueError: Performance file not found cannot " + "calculate throughput limits") def get_throughput_limits(self, performance_path): """Compute throughput limits for current test. @@ -468,7 +426,8 @@ class CoexPerformanceBaseTest(CoexBaseTest): upper_limit = [] for idx, current_throughput in enumerate( self.rvr[bt_atten]["throughput_received"]): - current_att = self.rvr[bt_atten]["attenuation"][idx] + current_att = self.rvr[bt_atten]["attenuation"][idx] + ( + self.rvr[bt_atten]["fixed_attenuation"]) att_distances = [ abs(current_att - performance_att) for performance_att in performance_attenuation diff --git a/acts/framework/acts/test_utils/coex/audio_capture.py b/acts/framework/acts/test_utils/coex/audio_capture.py index bb29dccd0c..d0438e53e7 100644 --- a/acts/framework/acts/test_utils/coex/audio_capture.py +++ b/acts/framework/acts/test_utils/coex/audio_capture.py @@ -27,9 +27,6 @@ RECORD_FILE_TEMPLATE = 'recorded_audio_%s.wav' class DeviceNotFound(Exception): """Raises exception if audio capture device is not found.""" -# TODO: (@sairamganesh) This class will be deprecated for -# ../acts/test_utils/coex/audio_capture_device.py - class AudioCapture: @@ -64,7 +61,6 @@ class AudioCapture: if self.__input_device is None: for i in range(self.audio.get_device_count()): device_info = self.audio.get_device_info_by_index(i) - logging.info("Device Information {}".format(device_info)) if self.audio_params['input_device'] in device_info['name']: self.__input_device = device_info break @@ -97,7 +93,7 @@ class AudioCapture: 'record_duration'] for i in range(total_chunks): try: - data = stream.read(self.chunk, exception_on_overflow=False) + data = stream.read(self.chunk) except IOError as ex: logging.error("Cannot record audio :{}".format(ex)) return False @@ -151,7 +147,7 @@ if __name__ == '__main__': '--test_params', type=json.loads, help="Contains sample rate, channels," - " chunk and device index for recording.") + " chunk and device index for recording.") args = parser.parse_args() audio = AudioCapture(args.test_params, args.path) audio.capture_and_store_audio(args.test_params['trim_beginning'], diff --git a/acts/framework/acts/test_utils/coex/audio_capture_device.py b/acts/framework/acts/test_utils/coex/audio_capture_device.py deleted file mode 100644 index 7f32030c9e..0000000000 --- a/acts/framework/acts/test_utils/coex/audio_capture_device.py +++ /dev/null @@ -1,215 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import logging -import os -import pyaudio -import wave - -from acts import context -from acts import utils - - -WAVE_FILE_TEMPLATE = 'recorded_audio_%s.wav' -ADB_PATH = 'sdcard/Music/' -ADB_FILE = 'rec.pcm' - - -class AudioCaptureBase(object): - """Base class for Audio capture.""" - - def __init__(self): - - self.wave_file = os.path.join(self.log_path, WAVE_FILE_TEMPLATE) - self.file_dir = self.log_path - - @property - def log_path(self): - """Returns current log path.""" - current_context = context.get_current_context() - full_out_dir = os.path.join(current_context.get_full_output_path(), - 'AudioCapture') - - utils.create_dir(full_out_dir) - return full_out_dir - - @property - def next_fileno(self): - counter = 0 - while os.path.exists(self.wave_file % counter): - counter += 1 - return counter - - @property - def last_fileno(self): - return self.next_fileno - 1 - - def write_record_file(self, audio_params, frames): - """Writes the recorded audio into the file. - - Args: - audio_params: A dict with audio configuration. - frames: Recorded audio frames. - - Returns: - file_name: wave file name. - """ - file_name = self.wave_file % self.next_fileno - logging.debug('writing to %s' % file_name) - wf = wave.open(file_name, 'wb') - wf.setnchannels(audio_params['channel']) - wf.setsampwidth(audio_params['sample_width']) - wf.setframerate(audio_params['sample_rate']) - wf.writeframes(frames) - wf.close() - return file_name - - -class CaptureAudioOverAdb(AudioCaptureBase): - """Class to capture audio over android device which acts as the - a2dp sink or hfp client. This captures the digital audio and converts - to analog audio for post processing. - """ - - def __init__(self, ad, audio_params): - """Initializes CaptureAudioOverAdb. - - Args: - ad: An android device object. - audio_params: Dict containing audio record settings. - """ - super().__init__() - self._ad = ad - self.audio_params = audio_params - self.adb_path = None - - def start(self): - """Start the audio capture over adb.""" - self.adb_path = os.path.join(ADB_PATH, ADB_FILE) - cmd = 'ap2f --usage 1 --start --duration {} --target {}'.format( - self.audio_params['duration'], self.adb_path, - ) - self._ad.adb.shell(cmd) - - def stop(self): - """Stops the audio capture and stores it in wave file. - - Returns: - File name of the recorded file. - """ - cmd = '{} {}'.format(self.adb_path, self.file_dir) - self._ad.adb.pull(cmd) - self._ad.adb.shell('rm {}'.format(self.adb_path)) - return self._convert_pcm_to_wav() - - def _convert_pcm_to_wav(self): - """Converts raw pcm data into wave file. - - Returns: - file_path: Returns the file path of the converted file - (digital to analog). - """ - file_to_read = os.path.join(self.file_dir, ADB_FILE) - with open(file_to_read, 'rb') as pcm_file: - frames = pcm_file.read() - file_path = self.write_record_file(self.audio_params, frames) - return file_path - - -class CaptureAudioOverLocal(AudioCaptureBase): - """Class to capture audio on local server using the audio input devices - such as iMic/AudioBox. This class mandates input deivce to be connected to - the machine. - """ - def __init__(self, audio_params): - """Initializes CaptureAudioOverLocal. - - Args: - audio_params: Dict containing audio record settings. - """ - super().__init__() - self.audio_params = audio_params - self.channels = self.audio_params['channel'] - self.chunk = self.audio_params['chunk'] - self.sample_rate = self.audio_params['sample_rate'] - self.__input_device = None - self.audio = None - self.frames = [] - - @property - def name(self): - return self.__input_device["name"] - - def __get_input_device(self): - """Checks for the audio capture device.""" - if self.__input_device is None: - for i in range(self.audio.get_device_count()): - device_info = self.audio.get_device_info_by_index(i) - logging.debug('Device Information: {}'.format(device_info)) - if self.audio_params['input_device'] in device_info['name']: - self.__input_device = device_info - break - else: - raise DeviceNotFound( - 'Audio Capture device {} not found.'.format( - self.audio_params['input_device'])) - return self.__input_device - - def start(self, trim_beginning=0, trim_end=0): - """Starts audio recording on host machine. - - Args: - trim_beginning: how many seconds to trim from the beginning - trim_end: how many seconds to trim from the end - """ - self.audio = pyaudio.PyAudio() - self.__input_device = self.__get_input_device() - stream = self.audio.open( - format=pyaudio.paInt16, - channels=self.channels, - rate=self.sample_rate, - input=True, - frames_per_buffer=self.chunk, - input_device_index=self.__input_device['index']) - b_chunks = trim_beginning * (self.sample_rate // self.chunk) - e_chunks = trim_end * (self.sample_rate // self.chunk) - total_chunks = self.sample_rate // self.chunk * self.audio_params[ - 'duration'] - for i in range(total_chunks): - try: - data = stream.read(self.chunk, exception_on_overflow=False) - except IOError as ex: - logging.error('Cannot record audio: {}'.format(ex)) - return False - if b_chunks <= i < total_chunks - e_chunks: - self.frames.append(data) - - stream.stop_stream() - stream.close() - - def stop(self): - """Terminates the pulse audio instance. - - Returns: - File name of the recorded audio file. - """ - self.audio.terminate() - frames = b''.join(self.frames) - return self.write_record_file(self.audio_params, frames) - - -class DeviceNotFound(Exception): - """Raises exception if audio capture device is not found.""" diff --git a/acts/framework/acts/test_utils/coex/audio_test_utils.py b/acts/framework/acts/test_utils/coex/audio_test_utils.py index 0fca41af94..a57528c8a0 100644 --- a/acts/framework/acts/test_utils/coex/audio_test_utils.py +++ b/acts/framework/acts/test_utils/coex/audio_test_utils.py @@ -18,8 +18,6 @@ import logging import os import wave -from acts.test_utils.coex.audio_capture_device import CaptureAudioOverAdb -from acts.test_utils.coex.audio_capture_device import CaptureAudioOverLocal from acts.controllers.utils_lib.ssh import connection from acts.controllers.utils_lib.ssh import settings from acts.test_utils.audio_analysis_lib import audio_analysis @@ -34,47 +32,9 @@ ANALYSIS_FILE_TEMPLATE = "audio_analysis_%s.txt" bits_per_sample = 32 -def get_audio_capture_device(test_class_instance): - """Gets the device object of the audio capture device connected to server. - - The audio capture device returned is specified by the audio_params - within user_params. audio_params must specify a "type" field, that - is either "AndroidDevice" or "Local" - - Args: - test_class_instance: object self of test class. - - Returns: - Object of the audio capture device. - - Raises: - ValueError if audio_params['type'] is not "AndroidDevice" or - "Local". - ValueError if "AndroidDevice" is specified, but there is only one - AndroidDevice within the testbed. - """ - audio_params = test_class_instance.user_params.get('audio_params') - - if audio_params['type'] == 'AndroidDevice': - if len(test_class_instance.android_devices) > 1: - return CaptureAudioOverAdb( - test_class_instance.android_devices[-1], audio_params) - else: - raise ValueError('At least 2 or more AndroidDevice should be ' - 'specified to use as audio capture endpoint.') - elif audio_params['type'] == 'Local': - return CaptureAudioOverLocal(audio_params) - else: - raise ValueError('Unrecognized audio capture device ' - '%s' % audio_params['type']) - - class FileNotFound(Exception): """Raises Exception if file is not present""" -# TODO @sairamganesh Rename this class to AudioCaptureResult and -# remove duplicates which are in ../test_utils/coex/audio_capture_device.py. - class SshAudioCapture(AudioCapture): @@ -113,7 +73,8 @@ class SshAudioCapture(AudioCapture): logging.debug("Job Result {}".format(job_result.stdout)) self.ssh_session.pull_file( self.remote_path, os.path.join( - self.audio_params["dest_path"], "*.wav")) + self.audio_params["dest_path"], "*.wav"), + ignore_status=True) return bool(not job_result.exit_status) else: return self.capture_and_store_audio(trim_beginning, trim_end) diff --git a/acts/framework/acts/test_utils/coex/coex_test_utils.py b/acts/framework/acts/test_utils/coex/coex_test_utils.py index fe36f130da..6d0e5233dc 100644 --- a/acts/framework/acts/test_utils/coex/coex_test_utils.py +++ b/acts/framework/acts/test_utils/coex/coex_test_utils.py @@ -19,6 +19,7 @@ import logging import math import os import re +import subprocess import time from acts import asserts @@ -28,7 +29,7 @@ from acts.controllers.ap_lib import hostapd_security from acts.controllers.utils_lib.ssh import connection from acts.controllers.utils_lib.ssh import settings from acts.controllers.iperf_server import IPerfResult -from acts.libs.proc import job +from acts.test_utils.bt import BtEnum from acts.test_utils.bt.bt_constants import ( bluetooth_profile_connection_state_changed) from acts.test_utils.bt.bt_constants import bt_default_timeout @@ -536,7 +537,7 @@ def initiate_disconnect_call_dut(pri_ad, sec_ad, duration, callee_number): return flag -def check_wifi_status(pri_ad, network, ssh_config=None): +def check_wifi_status(pri_ad, network, ssh_config): """Function to check existence of wifi connection. Args: @@ -545,12 +546,12 @@ def check_wifi_status(pri_ad, network, ssh_config=None): ssh_config: ssh config for iperf client. """ time.sleep(5) - proc = job.run("pgrep -f 'iperf3 -c'") - pid_list = proc.stdout.split() + proc = subprocess.Popen("pgrep -f 'iperf3 -c'", stdout=subprocess.PIPE, shell=True) + pid_list = proc.communicate()[0].decode('utf-8').split() while True: - iperf_proc = job.run(["pgrep", "-f", "iperf3"]) - process_list = iperf_proc.stdout.split() + p = subprocess.Popen(["pgrep", "-f", "iperf3"], stdout=subprocess.PIPE) + process_list = p.communicate()[0].decode('utf-8').split() if not wifi_connection_check(pri_ad, network["SSID"]): pri_ad.adb.shell("killall iperf3") if ssh_config: @@ -561,13 +562,12 @@ def check_wifi_status(pri_ad, network, ssh_config=None): res = result.stdout.split("\n") for pid in res: try: - ssh_session.run("kill -9 %s" % pid) + ssh_session.run("kill -9 %s" %pid) except Exception as e: - logging.warning("No such process: %s" % e) + logging.warning("No such process: %s" %e) for pid in pid_list[:-1]: - job.run(["kill", " -9", " %s" % pid], ignore_status=True) - else: - job.run(["killall", " iperf3"], ignore_status=True) + subprocess.Popen("kill -9 {}".format(pid), + stdout=subprocess.PIPE, shell=True) break elif pid_list[0] not in process_list: break @@ -729,7 +729,7 @@ def get_phone_ip(ad): def pair_dev_to_headset(pri_ad, dev_to_pair): - """Pairs primary android device with headset. + """Pairs pri droid to secondary droid. Args: pri_ad: Android device initiating connection @@ -742,13 +742,12 @@ def pair_dev_to_headset(pri_ad, dev_to_pair): bonded_devices = pri_ad.droid.bluetoothGetBondedDevices() for d in bonded_devices: if d['address'] == dev_to_pair: - pri_ad.log.info("Successfully bonded to device {}".format( - dev_to_pair)) + pri_ad.log.info("Successfully bonded to device".format(dev_to_pair)) return True pri_ad.droid.bluetoothStartDiscovery() - time.sleep(10) # Wait until device gets discovered + time.sleep(10) #Wait until device gets discovered pri_ad.droid.bluetoothCancelDiscovery() - pri_ad.log.debug("Discovered bluetooth devices: {}".format( + pri_ad.log.debug("discovered devices = {}".format( pri_ad.droid.bluetoothGetDiscoveredDevices())) for device in pri_ad.droid.bluetoothGetDiscoveredDevices(): if device['address'] == dev_to_pair: @@ -756,18 +755,17 @@ def pair_dev_to_headset(pri_ad, dev_to_pair): result = pri_ad.droid.bluetoothDiscoverAndBond(dev_to_pair) pri_ad.log.info(result) end_time = time.time() + bt_default_timeout - pri_ad.log.info("Verifying if device bonded with {}".format( - dev_to_pair)) - time.sleep(5) # Wait time until device gets paired. + pri_ad.log.info("Verifying devices are bonded") + time.sleep(5) #Wait time until device gets paired. while time.time() < end_time: bonded_devices = pri_ad.droid.bluetoothGetBondedDevices() + bonded = False for d in bonded_devices: if d['address'] == dev_to_pair: pri_ad.log.info( - "Successfully bonded to device {}".format( - dev_to_pair)) + "Successfully bonded to device".format(dev_to_pair)) return True - pri_ad.log.error("Failed to bond with {}".format(dev_to_pair)) + pri_ad.log.info("Failed to bond devices.") return False @@ -781,30 +779,28 @@ def pair_and_connect_headset(pri_ad, headset_mac_address, profile_to_connect, re retry: Number of times pair and connection should happen. Returns: - True if pair and connect to headset successful, or raises exception - on failure. + True if pair and connect to headset successful, False otherwise. """ paired = False - for i in range(1, retry): + for _ in range(retry): if pair_dev_to_headset(pri_ad, headset_mac_address): paired = True break else: - pri_ad.log.error("Attempt {} out of {}, Failed to pair, " - "Retrying.".format(i, retry)) + pri_ad.log.error("Could not pair to headset. Retrying.") + + time.sleep(2) # Wait until pairing gets over. if paired: - for i in range(1, retry): + for _ in range(retry): if connect_dev_to_headset(pri_ad, headset_mac_address, profile_to_connect): return True else: - pri_ad.log.error("Attempt {} out of {}, Failed to connect, " - "Retrying.".format(i, retry)) + pri_ad.log.error("Could not connect to headset. Retrying.") else: - asserts.fail("Failed to pair and connect with {}".format( - headset_mac_address)) + asserts.fail("Failed to pair and connect to headset") def perform_classic_discovery(pri_ad, duration, file_name, dev_list=None): @@ -977,7 +973,7 @@ def start_fping(pri_ad, duration, fping_params): else: cmd = cmd.split() with open(full_out_path, "w") as f: - job.run(cmd) + subprocess.call(cmd, stderr=f, stdout=f) result = parse_fping_results(fping_params["fping_drop_tolerance"], full_out_path) return bool(result) diff --git a/acts/framework/acts/test_utils/coex/hotspot_utils.py b/acts/framework/acts/test_utils/coex/hotspot_utils.py deleted file mode 100644 index a6109bd23e..0000000000 --- a/acts/framework/acts/test_utils/coex/hotspot_utils.py +++ /dev/null @@ -1,111 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - - -# WiFi Frequency and channel map. -wifi_channel_map = { - 2412: 1, - 2417: 2, - 2422: 3, - 2427: 4, - 2432: 5, - 2437: 6, - 2442: 7, - 2447: 8, - 2452: 9, - 2457: 10, - 2462: 11, - 2467: 12, - 2472: 13, - 2484: 14, - 5170: 34, - 5180: 36, - 5190: 38, - 5200: 40, - 5210: 42, - 5220: 44, - 5230: 46, - 5240: 48, - 5260: 52, - 5280: 56, - 5300: 60, - 5320: 64, - 5500: 100, - 5520: 104, - 5540: 108, - 5560: 112, - 5580: 116, - 5600: 120, - 5620: 124, - 5640: 128, - 5660: 132, - 5680: 136, - 5700: 140, - 5720: 144, - 5745: 149, - 5755: 151, - 5765: 153, - 5775: 155, - 5795: 159, - 5785: 157, - 5805: 161, - 5825: 165 -} - -# Supported lte band. -# TODO:(@sairamganesh) Make a common function to support different SKU's. - -supported_lte_bands = ['OB1', 'OB2', 'OB3', 'OB4', 'OB5', 'OB7', 'OB8', - 'OB12', 'OB13', 'OB14', 'OB17', 'OB18', 'OB19', - 'OB20', 'OB25', 'OB26', 'OB28', 'OB30', 'OB38', - 'OB39', 'OB40', 'OB41', 'OB46', 'OB48', 'OB66', - 'OB71' - ] - -# list of TDD Bands supported. -tdd_band_list = ['OB33', 'OB34', 'OB35', 'OB36', 'OB37', 'OB38', 'OB39', 'OB40', - 'OB41', 'OB42', 'OB43', 'OB44'] - -# lte band channel map. -# For every band three channels are chosen(Low, Mid and High) -band_channel_map = { - 'OB1': [25, 300, 575], - 'OB2': [625, 900, 1175], - 'OB3': [1225, 1575, 1925], - 'OB4': [1975, 2175, 2375], - 'OB5': [2425, 2525, 2625], - 'OB7': [3100], - 'OB8': [3475, 3625, 3775], - 'OB12': [5035, 5095, 5155], - 'OB13': [5205, 5230, 5255], - 'OB14': [5310, 5330, 5355], - 'OB17': [5755, 5790, 5825], - 'OB18': [5875, 5925, 5975], - 'OB19': [6025, 6075, 6125], - 'OB20': [6180, 6300, 6425], - 'OB25': [8065, 8365, 8665], - 'OB26': [8715, 8865, 9010], - 'OB28': [9235, 9435, 9635], - 'OB30': [9795, 9820, 9840], - 'OB38': [37750, 38000, 38245], - 'OB39': [38250, 38450, 38645], - 'OB40': [38650, 39150, 39645], - 'OB41': [39650, 40620, 41585], - 'OB46': [46790, 50665, 54535], - 'OB48': [55240, 55990, 56735], - 'OB66': [66461, 66886, 67331], - 'OB71': [68611, 68761, 68906] -} diff --git a/acts/framework/acts/test_utils/fuchsia/bt_test_utils.py b/acts/framework/acts/test_utils/fuchsia/bt_test_utils.py index c5a9250447..a19f4f7956 100644 --- a/acts/framework/acts/test_utils/fuchsia/bt_test_utils.py +++ b/acts/framework/acts/test_utils/fuchsia/bt_test_utils.py @@ -17,19 +17,13 @@ import time -def le_scan_for_device_by_name(fd, - log, - search_name, - timeout, - partial_match=False): +def le_scan_for_device_by_name(fd, log, search_name, timeout): """Scan for and returns the first BLE advertisement with the device name. Args: fd: The Fuchsia device to start LE scanning on. name: The name to find. timeout: How long to scan for. - partial_match: Only do a partial match for the LE advertising name. - This will return the first result that had a partial match. Returns: The dictionary of device information. @@ -44,7 +38,7 @@ def le_scan_for_device_by_name(fd, for device in scan_res: name, did, connectable = device["name"], device["id"], device[ "connectable"] - if name == search_name or (partial_match and search_name in name): + if name == search_name: log.info("Successfully found advertisement! name, id: {}, {}". format(name, did)) found_device = device diff --git a/acts/framework/acts/test_utils/fuchsia/utils.py b/acts/framework/acts/test_utils/fuchsia/utils.py deleted file mode 100644 index 80142201ce..0000000000 --- a/acts/framework/acts/test_utils/fuchsia/utils.py +++ /dev/null @@ -1,124 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2018 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import os - -from acts.libs.proc.job import Error - - -def http_file_download_by_curl(fd, - url, - out_path='/tmp/', - curl_loc='/bin/curl', - remove_file_after_check=True, - timeout=3600, - limit_rate=None, - additional_args=None, - retry=3): - """Download http file by ssh curl. - - Args: - fd: Fuchsia Device Object. - url: The url that file to be downloaded from. - out_path: Optional. Where to download file to. - out_path is /tmp by default. - curl_loc: Location of curl binary on fd. - remove_file_after_check: Whether to remove the downloaded file after - check. - timeout: timeout for file download to complete. - limit_rate: download rate in bps. None, if do not apply rate limit. - additional_args: Any additional args for curl. - retry: the retry request times provided in curl command. - """ - file_directory, file_name = _generate_file_directory_and_file_name( - url, out_path) - file_path = os.path.join(file_directory, file_name) - curl_cmd = curl_loc - if limit_rate: - curl_cmd += ' --limit-rate %s' % limit_rate - if retry: - curl_cmd += ' --retry %s' % retry - if additional_args: - curl_cmd += ' %s' % additional_args - curl_cmd += ' --url %s > %s' % (url, file_path) - try: - fd.log.info( - 'Download %s to %s by ssh command %s' % (url, file_path, curl_cmd)) - - status = fd.send_command_ssh(curl_cmd, timeout=timeout) - if isinstance(status, Error): - status = status.result - if not status.stderr: - if int(status.exit_status) != 0: - fd.log.warning('Curl command: "%s" failed with error %s' % - (curl_cmd, status.exit_status)) - return False - - if _check_file_existence(fd, file_path): - fd.log.info( - '%s is downloaded to %s successfully' % (url, file_path)) - return True - else: - fd.log.warning('Fail to download %s' % url) - return False - except Exception as e: - fd.log.warning('Download %s failed with exception %s' % (url, e)) - return False - finally: - if remove_file_after_check: - fd.log.info('Remove the downloaded file %s' % file_path) - fd.send_command_ssh('rm %s' % file_path) - - -def _generate_file_directory_and_file_name(url, out_path): - """Splits the file from the url and specifies the appropriate location of - where to store the downloaded file. - - Args: - url: A url to the file that is going to be downloaded. - out_path: The location of where to store the file that is downloaded. - - Returns: - file_directory: The directory of where to store the downloaded file. - file_name: The name of the file that is being downloaded. - """ - file_name = url.split('/')[-1] - if not out_path: - file_directory = '/tmp/' - elif not out_path.endswith('/'): - file_directory, file_name = os.path.split(out_path) - else: - file_directory = out_path - return file_directory, file_name - - -def _check_file_existence(fd, file_path): - """Check file existence by file_path. If expected_file_size - is provided, then also check if the file meet the file size requirement. - - Args: - fd: A fuchsia device - file_path: Where to store the file on the fuchsia device. - """ - out = fd.send_command_ssh('ls -al "%s"' % file_path) - if isinstance(out, Error): - out = out.result - if 'No such file or directory' in out.stdout: - fd.log.debug('File %s does not exist.' % file_path) - return False - else: - fd.log.debug('File %s exists.' % file_path) - return True diff --git a/acts/framework/acts/test_utils/gnss/dut_log_test_utils.py b/acts/framework/acts/test_utils/gnss/dut_log_test_utils.py deleted file mode 100644 index 6dfa77deb8..0000000000 --- a/acts/framework/acts/test_utils/gnss/dut_log_test_utils.py +++ /dev/null @@ -1,156 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the 'License'); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an 'AS IS' BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import os -import time -import errno - -DEVICE_CFG_FOLDER = "/data/vendor/radio/diag_logs/cfg/" -DEVICE_DIAGMDLOG_FOLDER = "/data/vendor/radio/diag_logs/logs/" -MDLOG_SETTLING_TIME = 2 -MDLOG_PROCESS_KILL_TIME = 3 -NOHUP_CMD = "nohup diag_mdlog -f {} -o {} -s 100 -c &> /dev/null &" - - -def find_device_qxdm_log_mask(ad, maskfile): - """Finds device's diagmd mask file - - Args: - ad: the target android device, AndroidDevice object - maskfile: Device's mask file name - - Return: - exists, if cfg file is present - - Raises: - FileNotFoundError if maskfile is not present - """ - - if ".cfg" not in maskfile: - # errno.ENOENT - No such file or directory - raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), - maskfile) - else: - cfg_path = os.path.join(DEVICE_CFG_FOLDER, maskfile) - device_mask_file = ad.adb.shell('test -e %s && echo exists' % cfg_path) - return device_mask_file - - -def set_diagmdlog_command(ad, maskfile): - """Sets diagmdlog command to run in background - - Args: - ad: the target android device, AndroidDevice object - maskfile: mask file name - - """ - cfg_path = os.path.join(DEVICE_CFG_FOLDER, maskfile) - ad.adb.shell(NOHUP_CMD.format(cfg_path, DEVICE_DIAGMDLOG_FOLDER)) - ad.log.info("Running diag_mdlog in the background") - time.sleep(MDLOG_SETTLING_TIME) - - -def verify_diagmd_folder_exists(ad): - """Verify diagmd folder existence in device - - Args: - ad: the target android device, AndroidDevice object - - """ - mask_folder_exists = ad.adb.shell( - 'test -d %s && echo exists' % DEVICE_CFG_FOLDER) - diag_folder_exists = ad.adb.shell( - 'test -d %s && echo exists' % DEVICE_DIAGMDLOG_FOLDER) - if not mask_folder_exists and diag_folder_exists: - ad.adb.shell("mkdir " + DEVICE_CFG_FOLDER) - ad.adb.shell("mkdir " + DEVICE_DIAGMDLOG_FOLDER) - - -def start_diagmdlog_background(ad, maskfile="default.cfg", is_local=True): - """Runs diagmd_log in background - - Args: - ad: the target android device, AndroidDevice object - maskfile: Local Mask file path or Device's mask file name - is_local: False, take cfgfile from config. - True, find cfgfile in device and run diagmdlog - - Raises: - FileNotFoundError if maskfile is not present - ProcessLookupError if diagmdlog process not present - """ - if is_local: - find_device_qxdm_log_mask(ad, maskfile) - set_diagmdlog_command(ad, maskfile) - else: - if not os.path.isfile(maskfile): - # errno.ENOENT - No such file or directory - raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), - maskfile) - else: - cfgfilename = os.path.basename(maskfile) - verify_diagmd_folder_exists(ad) - ad.adb.push("{} {}".format(maskfile, DEVICE_CFG_FOLDER)) - set_diagmdlog_command(ad, cfgfilename) - output = ad.adb.shell("pgrep diag_mdlog") - ad.log.info("Checking diag_mdlog in process") - if not output: - # errno.ESRCH - No such process - raise ProcessLookupError(errno.ESRCH, os.strerror(errno.ESRCH), - "diag_mdlog") - - -def stop_background_diagmdlog(ad, local_logpath, keep_logs=True): - """Stop diagmdlog and pulls diag_mdlog from android device - - Args: - ad: the target android device, AndroidDevice object - local_logpath: Local file path to pull the diag_mdlog logs - keep_logs: False, delete log files from the diag_mdlog path - - Raises: - ProcessLookupError if diagmdlog process not present - """ - ps_output = ad.adb.shell("pgrep diag_mdlog") - ad.log.info("Checking diag_mdlog in process") - if ps_output: - output = ad.adb.shell("diag_mdlog -k") - time.sleep(MDLOG_PROCESS_KILL_TIME) - if "stopping" in output: - ad.log.debug("Stopping diag_mdlog") - ad.adb.pull("{} {}".format(DEVICE_DIAGMDLOG_FOLDER, local_logpath)) - ad.log.debug("Pulling diag_logs from the device to local") - if not keep_logs: - ad.adb.shell("rm -rf " + DEVICE_DIAGMDLOG_FOLDER + "*.*") - ad.log.debug("diagmd logs are deleted from device") - else: - ad.log.debug("diagmd logs are not deleted from device") - else: - output = ad.adb.shell("pidof diag_mdlog") - if output: - ad.adb.shell("kill -9 {}".format(output)) - ad.log.debug("Kill the existing qxdm process") - ad.adb.pull("{} {}".format(DEVICE_DIAGMDLOG_FOLDER, - local_logpath)) - ad.log.debug("Pulling diag_logs from the device to local") - else: - # errno.ESRCH - No such process - raise ProcessLookupError(errno.ESRCH, os.strerror(errno.ESRCH), - "diag_mdlog") - else: - # errno.ESRCH - No such process - raise ProcessLookupError(errno.ESRCH, os.strerror(errno.ESRCH), - "diag_mdlog") diff --git a/acts/framework/acts/test_utils/gnss/gnss_test_utils.py b/acts/framework/acts/test_utils/gnss/gnss_test_utils.py index 641c8e5ad8..2241de3fa6 100644 --- a/acts/framework/acts/test_utils/gnss/gnss_test_utils.py +++ b/acts/framework/acts/test_utils/gnss/gnss_test_utils.py @@ -17,11 +17,7 @@ import time import re import os -import math -import collections -import shutil -import fnmatch -import posixpath +import logging from acts import utils from acts import signals @@ -35,22 +31,8 @@ from acts.utils import get_current_epoch_time WifiEnums = wutils.WifiEnums PULL_TIMEOUT = 300 -GNSSSTATUS_LOG_PATH = ( - "/storage/emulated/0/Android/data/com.android.gpstool/files/") -QXDM_MASKS = ["GPS.cfg", "GPS-general.cfg", "default.cfg"] -TTFF_REPORT = collections.namedtuple( - "TTFF_REPORT", "ttff_loop ttff_sec ttff_pe ttff_cn") -TRACK_REPORT = collections.namedtuple( - "TRACK_REPORT", "track_l5flag track_pe track_top4cn track_cn") -LOCAL_PROP_FILE_CONTENTS = """\ -log.tag.LocationManagerService=VERBOSE -log.tag.GnssLocationProvider=VERBOSE -log.tag.GnssMeasurementsProvider=VERBOSE -log.tag.GpsNetInitiatedHandler=VERBOSE -log.tag.GnssNetworkConnectivityHandler=VERBOSE -log.tag.ConnectivityService=VERBOSE -log.tag.ConnectivityManager=VERBOSE -log.tag.GnssVisibilityControl=VERBOSE""" +GNSSSTATUS_LOG_PATH = "/storage/emulated/0/Android/data/com.android.gpstool/files" +QXDM_MASKS = ["GPS-general.cfg", "GPS.cfg", "default.cfg"] class GnssTestUtilsError(Exception): @@ -62,77 +44,38 @@ def remount_device(ad): Args: ad: An AndroidDevice object. """ - for retries in range(5): + remount_flag = 0 + for retries in range(2): ad.root_adb() remount_result = ad.adb.remount() ad.log.info("Attempt %d - %s" % (retries + 1, remount_result)) - if "remount succeeded" in remount_result: + if "remount succeeded" in remount_result or remount_flag == 1: break if ad.adb.getprop("ro.boot.veritymode") == "enforcing": + remount_flag = 1 disable_verity_result = ad.adb.disable_verity() - reboot(ad) - -def reboot(ad): - """Reboot device and check if mobile data is available. - - Args: - ad: An AndroidDevice object. - """ - ad.log.info("Reboot device to make changes take effect.") - ad.reboot() - ad.unlock_screen(password=None) - if not int(ad.adb.shell("settings get global mobile_data")) == 1: - set_mobile_data(ad, True) - utils.sync_device_time(ad) + ad.log.info("%s" % disable_verity_result) + ad.reboot() + ad.unlock_screen(password=None) def enable_gnss_verbose_logging(ad): - """Enable GNSS VERBOSE Logging and persistent logcat. + """Enable GNSS VERBOSE Logging and logd. Args: ad: An AndroidDevice object. """ remount_device(ad) - ad.log.info("Enable GNSS VERBOSE Logging and persistent logcat.") + ad.log.info("Enable GNSS VERBOSE Logging and logd.") ad.adb.shell("echo DEBUG_LEVEL = 5 >> /vendor/etc/gps.conf") - ad.adb.shell("echo %r >> /data/local.prop" % LOCAL_PROP_FILE_CONTENTS) + ad.adb.shell("echo log.tag.LocationManagerService=VERBOSE >> /data/local.prop") + ad.adb.shell("echo log.tag.GnssLocationProvider=VERBOSE >> /data/local.prop") + ad.adb.shell("echo log.tag.GnssMeasurementsProvider=VERBOSE >> /data/local.prop") ad.adb.shell("chmod 644 /data/local.prop") - ad.adb.shell("setprop persist.logd.logpersistd.size 20000") - ad.adb.shell("setprop persist.logd.size 16777216") - ad.adb.shell("setprop persist.vendor.radio.adb_log_on 1") ad.adb.shell("setprop persist.logd.logpersistd logcatd") + ad.adb.shell("setprop persist.vendor.radio.adb_log_on 1") ad.adb.shell("setprop log.tag.copresGcore VERBOSE") ad.adb.shell("sync") -def enable_compact_and_particle_fusion_log(ad): - """Enable CompactLog and FLP particle fusion log. - - Args: - ad: An AndroidDevice object. - """ - ad.root_adb() - ad.log.info("Enable CompactLog and FLP particle fusion log.") - ad.adb.shell("am broadcast -a com.google.gservices.intent.action." - "GSERVICES_OVERRIDE -e location:compact_log_enabled true") - ad.adb.shell("am broadcast -a com.google.gservices.intent.action." - "GSERVICES_OVERRIDE -e location:proks_config 28") - ad.adb.shell("am broadcast -a com.google.gservices.intent.action." - "GSERVICES_OVERRIDE -e location:flp_use_particle_fusion true") - ad.adb.shell("am broadcast -a com.google.gservices.intent.action." - "GSERVICES_OVERRIDE -e " - "location:flp_particle_fusion_extended_bug_report true") - ad.adb.shell("am broadcast -a com.google.gservices.intent.action." - "GSERVICES_OVERRIDE -e location:flp_event_log_size 86400") - ad.adb.shell("am broadcast -a com.google.gservices.intent.action." - "GSERVICES_OVERRIDE -e " - "location:flp_particle_fusion_bug_report_window_sec 86400") - ad.adb.shell("am broadcast -a com.google.gservices.intent.action." - "GSERVICES_OVERRIDE -e location:" - "flp_particle_fusion_bug_report_max_buffer_size 86400") - ad.adb.shell("am force-stop com.google.android.gms") - ad.adb.shell("am broadcast -a com.google.android.gms.INITIALIZE") - ad.adb.shell("dumpsys activity service com.google.android.location." - "internal.GoogleLocationManagerService") - def disable_xtra_throttle(ad): """Disable XTRA throttle will have no limit to download XTRA data. @@ -163,7 +106,9 @@ def disable_supl_mode(ad): remount_device(ad) ad.log.info("Disable SUPL mode.") ad.adb.shell("echo SUPL_MODE=0 >> /etc/gps_debug.conf") - reboot(ad) + ad.log.info("Reboot device to make changes take effect.") + ad.reboot() + ad.unlock_screen(password=None) def kill_xtra_daemon(ad): """Kill XTRA daemon to test SUPL only test item. @@ -194,10 +139,13 @@ def _init_device(ad): Args: ad: An AndroidDevice object. """ + set_mobile_data(ad, True) + disable_private_dns_mode(ad) + tutils.synchronize_device_time(ad) enable_gnss_verbose_logging(ad) - enable_compact_and_particle_fusion_log(ad) disable_xtra_throttle(ad) enable_supl_mode(ad) + ad.adb.shell("svc power stayon true") ad.adb.shell("settings put system screen_off_timeout 1800000") wutils.wifi_toggle_state(ad, False) ad.log.info("Setting Bluetooth state to False") @@ -205,9 +153,8 @@ def _init_device(ad): set_gnss_qxdm_mask(ad, QXDM_MASKS) check_location_service(ad) set_wifi_and_bt_scanning(ad, True) - disable_private_dns_mode(ad) - init_gtw_gpstool(ad) - reboot(ad) + ad.reboot() + ad.unlock_screen(password=None) def connect_to_wifi_network(ad, network): """Connection logic for open and psk wifi networks. @@ -217,7 +164,10 @@ def connect_to_wifi_network(ad, network): network: Dictionary with network info. """ SSID = network[WifiEnums.SSID_KEY] - wutils.start_wifi_connection_scan_and_return_status(ad) + ad.ed.clear_all_events() + wutils.start_wifi_connection_scan(ad) + scan_results = ad.droid.wifiGetScanResults() + wutils.assert_network_in_list({WifiEnums.SSID_KEY: SSID}, scan_results) wutils.wifi_connect(ad, network, num_of_tries=5) def set_wifi_and_bt_scanning(ad, state=True): @@ -225,8 +175,9 @@ def set_wifi_and_bt_scanning(ad, state=True): Args: ad: An AndroidDevice object. - state: True to turn on "Wi-Fi and Bluetooth scanning". - False to turn off "Wi-Fi and Bluetooth scanning". + state: State for "Wi-Fi and Bluetooth scanning". + If state is True, turn on "Wi-Fi and Bluetooth scanning". + If state is False, turn off "Wi-Fi and Bluetooth scanning". """ ad.root_adb() if state: @@ -244,13 +195,17 @@ def check_location_service(ad): Args: ad: An AndroidDevice object. + + Return: + True : location service is on. + False : location service is off. """ - remount_device(ad) utils.set_location_service(ad, True) - location_mode = int(ad.adb.shell("settings get secure location_mode")) - ad.log.info("Current Location Mode >> %d" % location_mode) - if location_mode != 3: - raise signals.TestFailure("Failed to turn Location on") + out = ad.adb.shell("settings get secure location_providers_allowed") + ad.log.info("Current Location Provider >> %s" % out) + if "gps,network" in out: + return True + return False def clear_logd_gnss_qxdm_log(ad): """Clear /data/misc/logd, @@ -266,48 +221,77 @@ def clear_logd_gnss_qxdm_log(ad): ad.adb.shell("rm -rf %s" % GNSSSTATUS_LOG_PATH, ignore_status=True) output_path = os.path.join(DEFAULT_QXDM_LOG_PATH, "logs") ad.adb.shell("rm -rf %s" % output_path, ignore_status=True) - reboot(ad) + ad.reboot() + ad.unlock_screen(password=None) -def get_gnss_qxdm_log(ad, qdb_path): +def get_gnss_qxdm_log(ad, test_name=""): """Get /storage/emulated/0/Android/data/com.android.gpstool/files and - /data/vendor/radio/diag_logs/logs for test item. + /data/vendor/radio/diag_logs/logs for failed test item. Args: ad: An AndroidDevice object. - qdb_path: The path of qdsp6m.qdb on different projects. """ - log_path = ad.device_log_path + log_path_base = getattr(logging, "log_path", "/tmp/logs") + log_path = os.path.join(log_path_base, "AndroidDevice%s" % ad.serial) utils.create_dir(log_path) - gnss_log_name = "gnssstatus_log_%s_%s" % (ad.model, ad.serial) - gnss_log_path = os.path.join(log_path, gnss_log_name) + gnss_log_path = os.path.join(log_path, test_name, "gnssstatus_log_%s_%s" + % (ad.model, ad.serial)) utils.create_dir(gnss_log_path) ad.log.info("Pull GnssStatus Log to %s" % gnss_log_path) - ad.adb.pull("%s %s" % (GNSSSTATUS_LOG_PATH+".", gnss_log_path), + ad.adb.pull("%s %s" % (GNSSSTATUS_LOG_PATH, gnss_log_path), timeout=PULL_TIMEOUT, ignore_status=True) - shutil.make_archive(gnss_log_path, "zip", gnss_log_path) - shutil.rmtree(gnss_log_path) - output_path = os.path.join(DEFAULT_QXDM_LOG_PATH, "logs/.") - file_count = ad.adb.shell( - "find %s -type f -iname *.qmdl | wc -l" % output_path) + output_path = os.path.join(DEFAULT_QXDM_LOG_PATH, "logs") + file_count = ad.adb.shell("find %s -type f -iname *.qmdl | wc -l" % output_path) if not int(file_count) == 0: - qxdm_log_name = "QXDM_%s_%s" % (ad.model, ad.serial) - qxdm_log_path = os.path.join(log_path, qxdm_log_name) + qxdm_log_path = os.path.join(log_path, test_name, "QXDM_%s_%s" + % (ad.model, ad.serial)) utils.create_dir(qxdm_log_path) ad.log.info("Pull QXDM Log %s to %s" % (output_path, qxdm_log_path)) ad.adb.pull("%s %s" % (output_path, qxdm_log_path), timeout=PULL_TIMEOUT, ignore_status=True) - for path in qdb_path: - output = ad.adb.pull("%s %s" % (path, qxdm_log_path), - timeout=PULL_TIMEOUT, ignore_status=True) - if "No such file or directory" in output: - continue - break - shutil.make_archive(qxdm_log_path, "zip", qxdm_log_path) - shutil.rmtree(qxdm_log_path) + if ad.model == "sailfish" or ad.model == "marlin": + ad.adb.pull("/firmware/radio/qdsp6m.qdb %s" % qxdm_log_path, + timeout=PULL_TIMEOUT, ignore_status=True) + elif ad.model == "walleye": + ad.adb.pull("/firmware/image/qdsp6m.qdb %s" % qxdm_log_path, + timeout=PULL_TIMEOUT, ignore_status=True) + else: + ad.adb.pull("/vendor/firmware_mnt/image/qdsp6m.qdb %s" + % qxdm_log_path, timeout=PULL_TIMEOUT, ignore_status=True) else: ad.log.error("QXDM file count is %d. There is no QXDM log on device." % int(file_count)) +def start_youtube_video(ad, url=None, retries=0): + """Start youtube video and verify if audio is in music state. + + Args: + ad: An AndroidDevice object. + url: Website for youtube video + retries: Retry times if audio is not in music state. + + Returns: + True if youtube video is playing normally. + False if youtube video is not playing properly. + """ + ad.droid.setMediaVolume(25) + for i in range(retries): + ad.log.info("Open an youtube video - attempt %d" % (i+1)) + ad.adb.shell("am start -a android.intent.action.VIEW -d \"%s\"" % url) + time.sleep(1) + out = ad.adb.shell("dumpsys activity | grep \"NewVersionAvailableActivity\"") + if out: + ad.log.info("Skip Youtube New Version Update.") + ad.send_keycode("BACK") + if tutils.wait_for_state(ad.droid.audioIsMusicActive, True, 15, 1): + ad.log.info("Started a video in youtube, audio is in MUSIC state") + return True + ad.log.info("Force-Stop youtube and reopen youtube again.") + ad.force_stop_apk("com.google.android.youtube") + time.sleep(1) + ad.log.error("Started a video in youtube, but audio is not in MUSIC state") + return False + def set_mobile_data(ad, state): """Set mobile data on or off and check mobile data state. @@ -331,38 +315,26 @@ def set_mobile_data(ad, state): else: ad.log.error("Mobile data is at unknown state and set to %d" % out) -def gnss_trigger_modem_ssr(ad, dwelltime=60): - """Trigger modem SSR crash and verify if modem crash and recover - successfully. +def get_modem_ssr_crash_count(ad): + """Check current modem SSR crash count. Args: ad: An AndroidDevice object. Returns: - True if success. - False if failed. + Times of current modem SSR crash count """ - begin_time = get_current_epoch_time() - ad.root_adb() - cmds = ("echo restart > /sys/kernel/debug/msm_subsys/modem", - r"echo 'at+cfun=1,1\r' > /dev/at_mdm0") - for cmd in cmds: - ad.log.info("Triggering modem SSR crash by %s" % cmd) - output = ad.adb.shell(cmd, ignore_status=True) - if "No such file or directory" in output: - continue - break - time.sleep(dwelltime) + crash_count = 0 ad.send_keycode("HOME") - logcat_results = ad.search_logcat("SSRObserver", begin_time) - if logcat_results: - for ssr in logcat_results: - if "mSubsystem='modem', mCrashReason" in ssr["log_message"]: - ad.log.debug(ssr["log_message"]) - ad.log.info("Triggering modem SSR crash successfully.") - return True - raise signals.TestFailure("Failed to trigger modem SSR crash") - raise signals.TestFailure("No SSRObserver found in logcat") + ad.log.info("Check modem SSR crash count...") + total_subsys = ad.adb.shell("ls /sys/bus/msm_subsys/devices/") + for i in range(0, len(total_subsys.split())): + crash_count = int(ad.adb.shell("cat /sys/bus/msm_subsys/devices/" + "subsys%d/crash_count" % i)) + ad.log.info("subsys%d crash_count is %d" % (i, crash_count)) + if crash_count != 0: + return crash_count + return crash_count def check_xtra_download(ad, begin_time): """Verify XTRA download success log message in logcat. @@ -379,7 +351,7 @@ def check_xtra_download(ad, begin_time): logcat_results = ad.search_logcat("XTRA download success. " "inject data into modem", begin_time) if logcat_results: - ad.log.debug("%s" % logcat_results[-1]["log_message"]) + ad.log.info("%s" % logcat_results[-1]["log_message"]) ad.log.info("XTRA downloaded and injected successfully.") return True ad.log.error("XTRA downloaded FAIL.") @@ -409,18 +381,7 @@ def reinstall_gtw_gpstool(ad): ad: An AndroidDevice object. """ ad.log.info("Re-install GTW GPSTool") - ad.adb.install("-r -g -t /tmp/GNSS/base.apk") - -def init_gtw_gpstool(ad): - """Init GTW_GPSTool apk. - - Args: - ad: An AndroidDevice object. - """ - remount_device(ad) - pull_gtw_gpstool(ad) - ad.adb.shell("settings put global verifier_verify_adb_installs 0") - reinstall_gtw_gpstool(ad) + ad.adb.install("-r -g /tmp/GNSS/base.apk") def fastboot_factory_reset(ad): """Factory reset the device in fastboot mode. @@ -470,7 +431,8 @@ def fastboot_factory_reset(ad): break ad.log.info("Re-install sl4a") ad.adb.shell("settings put global verifier_verify_adb_installs 0") - ad.adb.install("-r -g -t /tmp/base.apk") + ad.adb.shell("settings put global package_verifier_enable 0") + ad.adb.install("-r -g /tmp/base.apk") reinstall_gtw_gpstool(ad) time.sleep(10) break @@ -488,6 +450,7 @@ def fastboot_factory_reset(ad): if ad.skip_sl4a: return status tutils.bring_up_sl4a(ad) + set_gnss_qxdm_mask(ad, QXDM_MASKS) return status def clear_aiding_data_by_gtw_gpstool(ad): @@ -502,37 +465,27 @@ def clear_aiding_data_by_gtw_gpstool(ad): ad.adb.shell("am start -S -n com.android.gpstool/.GPSTool --es mode clear") time.sleep(10) - -def start_gnss_by_gtw_gpstool(ad, state, type="gnss", bgdisplay=False): +def start_gnss_by_gtw_gpstool(ad, state): """Start or stop GNSS on GTW_GPSTool. Args: ad: An AndroidDevice object. state: True to start GNSS. False to Stop GNSS. - type: Different API for location fix. Use gnss/flp/nmea - bgdisplay: true to run GTW when Display off. - false to not run GTW when Display off. """ - if state and not bgdisplay: - ad.adb.shell("am start -S -n com.android.gpstool/.GPSTool " - "--es mode gps --es type %s" % type) - elif state and bgdisplay: - ad.adb.shell("am start -S -n com.android.gpstool/.GPSTool --es mode" - " gps --es type {} --ez BG {}".format(type, bgdisplay)) + if state: + ad.adb.shell("am start -S -n com.android.gpstool/.GPSTool --es mode gps") if not state: - ad.log.info("Stop %s on GTW_GPSTool." % type) + ad.log.info("Stop GNSS on GTW_GPSTool.") ad.adb.shell("am broadcast -a com.android.gpstool.stop_gps_action") time.sleep(3) - -def process_gnss_by_gtw_gpstool(ad, criteria, type="gnss"): +def process_gnss_by_gtw_gpstool(ad, criteria): """Launch GTW GPSTool and Clear all GNSS aiding data Start GNSS tracking on GTW_GPSTool. Args: ad: An AndroidDevice object. criteria: Criteria for current test item. - type: Different API for location fix. Use gnss/flp/nmea Returns: True: First fix TTFF are within criteria. @@ -542,29 +495,27 @@ def process_gnss_by_gtw_gpstool(ad, criteria, type="gnss"): for i in range(retries): begin_time = get_current_epoch_time() clear_aiding_data_by_gtw_gpstool(ad) - ad.log.info("Start %s on GTW_GPSTool - attempt %d" % (type.upper(), - i+1)) - start_gnss_by_gtw_gpstool(ad, True, type) + ad.log.info("Start GNSS on GTW_GPSTool - attempt %d" % (i+1)) + start_gnss_by_gtw_gpstool(ad, True) for _ in range(10 + criteria): logcat_results = ad.search_logcat("First fixed", begin_time) if logcat_results: - ad.log.debug(logcat_results[-1]["log_message"]) first_fixed = int(logcat_results[-1]["log_message"].split()[-1]) - ad.log.info("%s First fixed = %.3f seconds" % - (type.upper(), first_fixed/1000)) - if (first_fixed/1000) <= criteria: + ad.log.info("GNSS First fixed = %.3f seconds" % (first_fixed / 1000)) + if (first_fixed / 1000) <= criteria: return True - start_gnss_by_gtw_gpstool(ad, False, type) - raise signals.TestFailure("Fail to get %s location fixed " - "within %d seconds criteria." - % (type.upper(), criteria)) + ad.log.error("DUT takes more than %d seconds to get location " + "fixed. Test Abort and Close GPS for next test " + "item." % criteria) + start_gnss_by_gtw_gpstool(ad, False) + return False time.sleep(1) + start_gnss_by_gtw_gpstool(ad, False) if not ad.is_adb_logcat_on: ad.start_adb_logcat() - check_currrent_focus_app(ad) - start_gnss_by_gtw_gpstool(ad, False, type) - raise signals.TestFailure("Fail to get %s location fixed within %d " - "attempts." % (type.upper(), retries)) + ad.log.error("Test Abort. DUT can't get location fixed within %d attempts." + % retries) + return False def start_ttff_by_gtw_gpstool(ad, ttff_mode, iteration): """Identify which TTFF mode for different test items. @@ -574,203 +525,62 @@ def start_ttff_by_gtw_gpstool(ad, ttff_mode, iteration): ttff_mode: TTFF Test mode for current test item. iteration: Iteration of TTFF cycles. """ - begin_time = get_current_epoch_time() - if ttff_mode == "hs" or ttff_mode == "ws": - ad.log.info("Wait 5 minutes to start TTFF %s..." % ttff_mode.upper()) + if ttff_mode == "ws": + ad.log.info("Wait 5 minutes to start TTFF Warm Start...") time.sleep(300) if ttff_mode == "cs": ad.log.info("Start TTFF Cold Start...") time.sleep(3) - for i in range(1, 4): - ad.adb.shell("am broadcast -a com.android.gpstool.ttff_action " - "--es ttff %s --es cycle %d" % (ttff_mode, iteration)) - time.sleep(1) - if ad.search_logcat("act=com.android.gpstool.start_test_action", - begin_time): - ad.log.info("Send TTFF start_test_action successfully.") - break - else: - check_currrent_focus_app(ad) - raise signals.TestFailure("Fail to send TTFF start_test_action.") + ad.adb.shell("am broadcast -a com.android.gpstool.ttff_action " + "--es ttff %s --es cycle %d" % (ttff_mode, iteration)) -def gnss_tracking_via_gtw_gpstool(ad, criteria, type="gnss", testtime=60): - """Start GNSS/FLP tracking tests for input testtime on GTW_GPSTool. +def process_ttff_by_gtw_gpstool(ad, begin_time): + """Process and save TTFF results. Args: ad: An AndroidDevice object. - criteria: Criteria for current TTFF. - type: Different API for location fix. Use gnss/flp/nmea - testtime: Tracking test time for minutes. Default set to 60 minutes. - """ - process_gnss_by_gtw_gpstool(ad, criteria, type) - ad.log.info("Start %s tracking test for %d minutes" % (type.upper(), - testtime)) - begin_time = get_current_epoch_time() - while get_current_epoch_time() - begin_time < testtime * 60 * 1000 : - if not ad.is_adb_logcat_on: - ad.start_adb_logcat() - crash_result = ad.search_logcat("Force finishing activity " - "com.android.gpstool/.GPSTool", - begin_time) - if crash_result: - raise signals.TestFailure("GPSTool crashed. Abort test.") - ad.log.info("Successfully tested for %d minutes" % testtime) - start_gnss_by_gtw_gpstool(ad, False, type) - -def parse_gtw_gpstool_log(ad, true_position, type="gnss"): - """Process GNSS/FLP API logs from GTW GPSTool and output track_data to - test_run_info for ACTS plugin to parse and display on MobileHarness as - Property. - - Args: - ad: An AndroidDevice object. - true_position: Coordinate as [latitude, longitude] to calculate - position error. - type: Different API for location fix. Use gnss/flp/nmea - """ - test_logfile = {} - track_data = {} - history_top4_cn = 0 - history_cn = 0 - l5flag = "false" - file_count = int(ad.adb.shell("find %s -type f -iname *.txt | wc -l" - % GNSSSTATUS_LOG_PATH)) - if file_count != 1: - ad.log.error("%d API logs exist." % file_count) - dir = ad.adb.shell("ls %s" % GNSSSTATUS_LOG_PATH).split() - for path_key in dir: - if fnmatch.fnmatch(path_key, "*.txt"): - logpath = posixpath.join(GNSSSTATUS_LOG_PATH, path_key) - out = ad.adb.shell("wc -c %s" % logpath) - file_size = int(out.split(" ")[0]) - if file_size < 2000: - ad.log.info("Skip log %s due to log size %d bytes" % - (path_key, file_size)) - continue - test_logfile = logpath - if not test_logfile: - raise signals.TestFailure("Failed to get test log file in device.") - lines = ad.adb.shell("cat %s" % test_logfile).split("\n") - for line in lines: - if "History Avg Top4" in line: - history_top4_cn = float(line.split(":")[-1].strip()) - if "History Avg" in line: - history_cn = float(line.split(":")[-1].strip()) - if "L5 used in fix" in line: - l5flag = line.split(":")[-1].strip() - if "Latitude" in line: - track_lat = float(line.split(":")[-1].strip()) - if "Longitude" in line: - track_long = float(line.split(":")[-1].strip()) - if "Time" in line: - track_utc = line.split("Time:")[-1].strip() - if track_utc in track_data.keys(): - continue - track_pe = calculate_position_error(ad, track_lat, track_long, - true_position) - track_data[track_utc] = TRACK_REPORT(track_l5flag=l5flag, - track_pe=track_pe, - track_top4cn=history_top4_cn, - track_cn=history_cn) - ad.log.debug(track_data) - prop_basename = "TestResult %s_tracking_" % type.upper() - time_list = sorted(track_data.keys()) - l5flag_list = [track_data[key].track_l5flag for key in time_list] - pe_list = [float(track_data[key].track_pe) for key in time_list] - top4cn_list = [float(track_data[key].track_top4cn) for key in time_list] - cn_list = [float(track_data[key].track_cn) for key in time_list] - ad.log.info(prop_basename+"StartTime %s" % time_list[0].replace(" ", "-")) - ad.log.info(prop_basename+"EndTime %s" % time_list[-1].replace(" ", "-")) - ad.log.info(prop_basename+"TotalFixPoints %d" % len(time_list)) - ad.log.info(prop_basename+"L5FixRate "+'{percent:.2%}'.format( - percent=l5flag_list.count("true")/len(l5flag_list))) - ad.log.info(prop_basename+"AvgDis %.1f" % (sum(pe_list)/len(pe_list))) - ad.log.info(prop_basename+"MaxDis %.1f" % max(pe_list)) - ad.log.info(prop_basename+"AvgTop4Signal %.1f" % top4cn_list[-1]) - ad.log.info(prop_basename+"AvgSignal %.1f" % cn_list[-1]) - -def process_ttff_by_gtw_gpstool(ad, begin_time, true_position, type="gnss"): - """Process TTFF and record results in ttff_data. - - Args: - ad: An AndroidDevice object. - begin_time: test begin time. - true_position: Coordinate as [latitude, longitude] to calculate - position error. - type: Different API for location fix. Use gnss/flp/nmea + begin_time: test begin time Returns: - ttff_data: A dict of all TTFF data. + ttff_result: A list of saved TTFF seconds. """ - ttff_data = {} - ttff_loop_time = get_current_epoch_time() + loop = 1 + ttff_result = [] + ttff_log_loop = [] while True: - if get_current_epoch_time() - ttff_loop_time >= 120000: - raise signals.TestFailure("Fail to search specific GPSService " - "message in logcat. Abort test.") - if not ad.is_adb_logcat_on: - ad.start_adb_logcat() - stop_gps_results = ad.search_logcat("stop gps test", begin_time) + stop_gps_results = ad.search_logcat("stop gps test()", begin_time) if stop_gps_results: ad.send_keycode("HOME") break crash_result = ad.search_logcat("Force finishing activity " - "com.android.gpstool/.GPSTool", - begin_time) + "com.android.gpstool/.GPSTool", begin_time) if crash_result: - raise signals.TestFailure("GPSTool crashed. Abort test.") + ad.log.error("GPSTool crashed. Abort test.") + break logcat_results = ad.search_logcat("write TTFF log", begin_time) if logcat_results: ttff_log = logcat_results[-1]["log_message"].split() - ttff_loop = int(ttff_log[8].split(":")[-1]) - if ttff_loop in ttff_data.keys(): + if not ttff_log_loop: + ttff_log_loop.append(ttff_log[8].split(":")[-1]) + elif ttff_log[8].split(":")[-1] == ttff_log_loop[loop-1]: continue - ttff_loop_time = get_current_epoch_time() - ttff_sec = float(ttff_log[11]) - if ttff_sec != 0.0: - ttff_cn = float(ttff_log[18].strip("]")) - if type == "gnss": - gnss_results = ad.search_logcat("GPSService: Check item", - begin_time) - if gnss_results: - ad.log.debug(gnss_results[-1]["log_message"]) - gnss_location_log = \ - gnss_results[-1]["log_message"].split() - ttff_lat = float( - gnss_location_log[8].split("=")[-1].strip(",")) - ttff_lon = float( - gnss_location_log[9].split("=")[-1].strip(",")) - elif type == "flp": - flp_results = ad.search_logcat("GPSService: FLP Location", - begin_time) - if flp_results: - ad.log.debug(flp_results[-1]["log_message"]) - flp_location_log = \ - flp_results[-1]["log_message"].split() - ttff_lat = float(flp_location_log[8].split(",")[0]) - ttff_lon = float(flp_location_log[8].split(",")[1]) + if ttff_log[11] == "0.0": + ad.log.error("Iteration %d = Timeout" % loop) else: - ttff_cn = float(ttff_log[19].strip("]")) - ttff_lat = 0.0 - ttff_lon = 0.0 - ttff_pe = calculate_position_error(ad, ttff_lat, ttff_lon, - true_position) - ttff_data[ttff_loop] = TTFF_REPORT(ttff_loop=ttff_loop, - ttff_sec=ttff_sec, - ttff_pe=ttff_pe, - ttff_cn=ttff_cn) - ad.log.info("Loop %d = %.1f seconds, " - "Position Error = %.1f meters, " - "Average Signal = %.1f dbHz" - % (ttff_loop, ttff_sec, ttff_pe, ttff_cn)) - return ttff_data - -def check_ttff_data(ad, ttff_data, ttff_mode, criteria): - """Verify all TTFF results from ttff_data. + ad.log.info("Iteration %d = %s seconds" % (loop, ttff_log[11])) + ttff_log_loop.append(ttff_log[8].split(":")[-1]) + ttff_result.append(float(ttff_log[11])) + loop += 1 + if not ad.is_adb_logcat_on: + ad.start_adb_logcat() + return ttff_result + +def check_ttff_result(ad, ttff_result, ttff_mode, criteria): + """Verify all TTFF results. Args: ad: An AndroidDevice object. - ttff_data: TTFF data of secs, position error and signal strength. + ttff_result: A list of saved TTFF seconds. ttff_mode: TTFF Test mode for current test item. criteria: Criteria for current test item. @@ -779,18 +589,15 @@ def check_ttff_data(ad, ttff_data, ttff_mode, criteria): False: One or more TTFF results exceed criteria or Timeout. """ ad.log.info("%d iterations of TTFF %s tests finished." - % (len(ttff_data.keys()), ttff_mode)) + % (len(ttff_result), ttff_mode)) ad.log.info("%s PASS criteria is %d seconds" % (ttff_mode, criteria)) - ad.log.debug("%s TTFF data: %s" % (ttff_mode, ttff_data)) - ttff_property_key_and_value(ad, ttff_data, ttff_mode) - if len(ttff_data.keys()) == 0: + if len(ttff_result) == 0: ad.log.error("GTW_GPSTool didn't process TTFF properly.") return False - elif any(float(ttff_data[key].ttff_sec) == 0.0 for key in ttff_data.keys()): + elif any(float(ttff_result[i]) == 0.0 for i in range(len(ttff_result))): ad.log.error("One or more TTFF %s Timeout" % ttff_mode) return False - elif any(float(ttff_data[key].ttff_sec) >= criteria for key in - ttff_data.keys()): + elif any(float(ttff_result[i]) >= criteria for i in range(len(ttff_result))): ad.log.error("One or more TTFF %s are over test criteria %d seconds" % (ttff_mode, criteria)) return False @@ -798,60 +605,6 @@ def check_ttff_data(ad, ttff_data, ttff_mode, criteria): % (ttff_mode, criteria)) return True -def ttff_property_key_and_value(ad, ttff_data, ttff_mode): - """Output ttff_data to test_run_info for ACTS plugin to parse and display - on MobileHarness as Property. - - Args: - ad: An AndroidDevice object. - ttff_data: TTFF data of secs, position error and signal strength. - ttff_mode: TTFF Test mode for current test item. - """ - prop_basename = "TestResult "+ttff_mode.replace(" ", "_")+"_TTFF_" - sec_list = [float(ttff_data[key].ttff_sec) for key in ttff_data.keys()] - pe_list = [float(ttff_data[key].ttff_pe) for key in ttff_data.keys()] - cn_list = [float(ttff_data[key].ttff_cn) for key in ttff_data.keys()] - timeoutcount = sec_list.count(0.0) - if len(sec_list) == timeoutcount: - avgttff = 9527 - else: - avgttff = sum(sec_list)/(len(sec_list) - timeoutcount) - if timeoutcount != 0: - maxttff = 9527 - else: - maxttff = max(sec_list) - avgdis = sum(pe_list)/len(pe_list) - maxdis = max(pe_list) - avgcn = sum(cn_list)/len(cn_list) - ad.log.info(prop_basename+"AvgTime %.1f" % avgttff) - ad.log.info(prop_basename+"MaxTime %.1f" % maxttff) - ad.log.info(prop_basename+"TimeoutCount %d" % timeoutcount) - ad.log.info(prop_basename+"AvgDis %.1f" % avgdis) - ad.log.info(prop_basename+"MaxDis %.1f" % maxdis) - ad.log.info(prop_basename+"AvgSignal %.1f" % avgcn) - -def calculate_position_error(ad, latitude, longitude, true_position): - """Use haversine formula to calculate position error base on true location - coordinate. - - Args: - ad: An AndroidDevice object. - latitude: latitude of location fixed in the present. - longitude: longitude of location fixed in the present. - true_position: [latitude, longitude] of true location coordinate. - - Returns: - position_error of location fixed in the present. - """ - radius = 6371009 - dlat = math.radians(latitude - true_position[0]) - dlon = math.radians(longitude - true_position[1]) - a = math.sin(dlat/2) * math.sin(dlat/2) + \ - math.cos(math.radians(true_position[0])) * \ - math.cos(math.radians(latitude)) * math.sin(dlon/2) * math.sin(dlon/2) - c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a)) - return radius * c - def launch_google_map(ad): """Launch Google Map via intent. @@ -869,18 +622,6 @@ def launch_google_map(ad): except Exception as e: ad.log.error(e) raise signals.TestFailure("Failed to launch google map.") - check_currrent_focus_app(ad) - -def check_currrent_focus_app(ad): - """Check to see current focused window and app. - - Args: - ad: An AndroidDevice object. - """ - time.sleep(1) - current = ad.adb.shell( - "dumpsys window | grep -E 'mCurrentFocus|mFocusedApp'") - ad.log.debug("\n"+current) def check_location_api(ad, retries): """Verify if GnssLocationProvider API reports location. @@ -901,8 +642,7 @@ def check_location_api(ad, retries): logcat_results = ad.search_logcat("REPORT_LOCATION", begin_time) if logcat_results: ad.log.info("%s" % logcat_results[-1]["log_message"]) - ad.log.info("GnssLocationProvider reports location " - "successfully.") + ad.log.info("GnssLocationProvider reports location successfully.") return True if not ad.is_adb_logcat_on: ad.start_adb_logcat() @@ -925,12 +665,10 @@ def check_network_location(ad, retries, location_type): time.sleep(1) begin_time = get_current_epoch_time() ad.log.info("Try to get NLP status - attempt %d" % (i+1)) - ad.adb.shell( - "am start -S -n com.android.gpstool/.GPSTool --es mode nlp") + ad.adb.shell("am start -S -n com.android.gpstool/.GPSTool --es mode nlp") while get_current_epoch_time() - begin_time <= 30000: - logcat_results = ad.search_logcat("LocationManagerService: " - "incoming location: Location", - begin_time) + logcat_results = ad.search_logcat( + "LocationManagerService: incoming location: Location", begin_time) if logcat_results: for logcat_result in logcat_results: if location_type in logcat_result["log_message"]: @@ -951,12 +689,15 @@ def set_attenuator_gnss_signal(ad, attenuator, atten_value): attenuator: The attenuator object. atten_value: attenuation value """ + ad.log.info("Set attenuation value to \"%d\" for GNSS signal." % atten_value) try: - ad.log.info( - "Set attenuation value to \"%d\" for GNSS signal." % atten_value) attenuator[0].set_atten(atten_value) + time.sleep(3) + atten_val = int(attenuator[0].get_atten()) + ad.log.info("Current attenuation value is \"%d\"" % atten_val) except Exception as e: ad.log.error(e) + raise signals.TestFailure("Failed to set attenuation for gnss signal.") def set_battery_saver_mode(ad, state): """Enable or diable battery saver mode via adb. @@ -991,113 +732,3 @@ def set_gnss_qxdm_mask(ad, masks): except Exception as e: ad.log.error(e) raise signals.TestFailure("Failed to set any QXDM masks.") - -def start_youtube_video(ad, url=None, retries=0): - """Start youtube video and verify if audio is in music state. - - Args: - ad: An AndroidDevice object. - url: Youtube video url. - retries: Retry times if audio is not in music state. - - Returns: - True if youtube video is playing normally. - False if youtube video is not playing properly. - """ - for i in range(retries): - ad.log.info("Open an youtube video - attempt %d" % (i+1)) - ad.adb.shell("am start -a android.intent.action.VIEW -d \"%s\"" % url) - time.sleep(2) - out = ad.adb.shell( - "dumpsys activity | grep NewVersionAvailableActivity") - if out: - ad.log.info("Skip Youtube New Version Update.") - ad.send_keycode("BACK") - if tutils.wait_for_state(ad.droid.audioIsMusicActive, True, 15, 1): - ad.log.info("Started a video in youtube, audio is in MUSIC state") - return True - ad.log.info("Force-Stop youtube and reopen youtube again.") - ad.force_stop_apk("com.google.android.youtube") - check_currrent_focus_app(ad) - raise signals.TestFailure("Started a video in youtube, " - "but audio is not in MUSIC state") - -def get_baseband_and_gms_version(ad, extra_msg=""): - """Get current radio baseband and GMSCore version of AndroidDevice object. - - Args: - ad: An AndroidDevice object. - """ - try: - build_version = ad.adb.getprop("ro.build.id") - baseband_version = ad.adb.getprop("gsm.version.baseband") - gms_version = ad.adb.shell( - "dumpsys package com.google.android.gms | grep versionName" - ).split("\n")[0].split("=")[1] - mpss_version = ad.adb.shell("cat /sys/devices/soc0/images | grep MPSS " - "| cut -d ':' -f 3") - if not extra_msg: - ad.log.info("TestResult Build_Version %s" % build_version) - ad.log.info("TestResult Baseband_Version %s" % baseband_version) - ad.log.info( - "TestResult GMS_Version %s" % gms_version.replace(" ", "")) - ad.log.info("TestResult MPSS_Version %s" % mpss_version) - else: - ad.log.info( - "%s, Baseband_Version = %s" % (extra_msg, baseband_version)) - except Exception as e: - ad.log.error(e) - -def start_toggle_gnss_by_gtw_gpstool(ad, iteration): - """Send toggle gnss off/on start_test_action - - Args: - ad: An AndroidDevice object. - iteration: Iteration of toggle gnss off/on cycles. - """ - msg_list = [] - begin_time = get_current_epoch_time() - try: - for i in range(1, 4): - ad.adb.shell("am start -S -n com.android.gpstool/.GPSTool " - "--es mode toggle --es cycle %d" % iteration) - time.sleep(1) - if ad.search_logcat("cmp=com.android.gpstool/.ToggleGPS", - begin_time): - ad.log.info("Send ToggleGPS start_test_action successfully.") - break - else: - check_currrent_focus_app(ad) - raise signals.TestFailure("Fail to send ToggleGPS " - "start_test_action within 3 attempts.") - time.sleep(2) - test_start = ad.search_logcat("GPSTool_ToggleGPS: startService", - begin_time) - if test_start: - ad.log.info(test_start[-1]["log_message"].split(":")[-1].strip()) - else: - raise signals.TestFailure("Fail to start toggle GPS off/on test.") - # Every iteration is expected to finish within 4 minutes. - while get_current_epoch_time() - begin_time <= iteration * 240000: - crash_end = ad.search_logcat("Force finishing activity " - "com.android.gpstool/.GPSTool", - begin_time) - if crash_end: - raise signals.TestFailure("GPSTool crashed. Abort test.") - toggle_results = ad.search_logcat("GPSTool : msg", begin_time) - if toggle_results: - for toggle_result in toggle_results: - msg = toggle_result["log_message"] - if not msg in msg_list: - ad.log.info(msg.split(":")[-1].strip()) - msg_list.append(msg) - if "timeout" in msg: - raise signals.TestFailure("Fail to get location fixed " - "within 60 seconds.") - if "Test end" in msg: - raise signals.TestPass("Completed quick toggle GNSS " - "off/on test.") - raise signals.TestFailure("Fail to finish toggle GPS off/on test " - "within %d minutes" % (iteration * 4)) - finally: - ad.send_keycode("HOME") diff --git a/acts/framework/acts/test_utils/gnss/gnss_testlog_utils.py b/acts/framework/acts/test_utils/gnss/gnss_testlog_utils.py deleted file mode 100644 index 6bb18dfc1a..0000000000 --- a/acts/framework/acts/test_utils/gnss/gnss_testlog_utils.py +++ /dev/null @@ -1,306 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -'''Python Module for GNSS test log utilities.''' - -import re as regex -import datetime -import functools as fts -import numpy as npy -import pandas as pds -from acts import logger - -# GPS API Log Reading Config -CONFIG_GPSAPILOG = { - 'phone_time': - r'(?P<date>\d+\/\d+\/\d+)\s+(?P<time>\d+:\d+:\d+)\s+' - r'Read:\s+(?P<logsize>\d+)\s+bytes', - 'SpaceVehicle': - r'Fix:\s+(?P<Fix>\w+)\s+Type:\s+(?P<Type>\w+)\s+' - r'SV:\s+(?P<SV>\d+)\s+C\/No:\s+(?P<CNo>\d+\.\d+)\s+' - r'Elevation:\s+(?P<Elevation>\d+\.\d+)\s+' - r'Azimuth:\s+(?P<Azimuth>\d+\.\d+)\s+' - r'Signal:\s+(?P<Signal>\w+)\s+' - r'Frequency:\s+(?P<Frequency>\d+\.\d+)\s+' - r'EPH:\s+(?P<EPH>\w+)\s+ALM:\s+(?P<ALM>\w+)', - 'HistoryAvgTop4CNo': - r'History\s+Avg\s+Top4\s+:\s+(?P<HistoryAvgTop4CNo>\d+\.\d+)', - 'CurrentAvgTop4CNo': - r'Current\s+Avg\s+Top4\s+:\s+(?P<CurrentAvgTop4CNo>\d+\.\d+)', - 'HistoryAvgCNo': - r'History\s+Avg\s+:\s+(?P<HistoryAvgCNo>\d+\.\d+)', - 'CurrentAvgCNo': - r'Current\s+Avg\s+:\s+(?P<CurrentAvgCNo>\d+\.\d+)', - 'L5inFix': - r'L5\s+used\s+in\s+fix:\s+(?P<L5inFix>\w+)', - 'L5EngagingRate': - r'L5\s+engaging\s+rate:\s+(?P<L5EngagingRate>\d+.\d+)%', - 'Provider': - r'Provider:\s+(?P<Provider>\w+)', - 'Latitude': - r'Latitude:\s+(?P<Latitude>-?\d+.\d+)', - 'Longitude': - r'Longitude:\s+(?P<Longitude>-?\d+.\d+)', - 'Altitude': - r'Altitude:\s+(?P<Altitude>-?\d+.\d+)', - 'GNSSTime': - r'Time:\s+(?P<Date>\d+\/\d+\/\d+)\s+' - r'(?P<Time>\d+:\d+:\d+)', - 'Speed': - r'Speed:\s+(?P<Speed>\d+.\d+)', - 'Bearing': - r'Bearing:\s+(?P<Bearing>\d+.\d+)', -} - -# Space Vehicle Statistics Dataframe List -LIST_SVSTAT = [ - 'HistoryAvgTop4CNo', 'CurrentAvgTop4CNo', 'HistoryAvgCNo', 'CurrentAvgCNo', - 'L5inFix', 'L5EngagingRate' -] - -# Location Fix Info Dataframe List -LIST_LOCINFO = [ - 'Provider', 'Latitude', 'Longitude', 'Altitude', 'GNSSTime', 'Speed', - 'Bearing' -] - -LOGPARSE_UTIL_LOGGER = logger.create_logger() - - -def parse_log_to_df(filename, configs, index_rownum=True): - r"""Parse log to a dictionary of Pandas dataframes. - - Args: - filename: log file name. - Type String. - configs: configs dictionary of parsed Pandas dataframes. - Type dictionary. - dict key, the parsed pattern name, such as 'Speed', - dict value, regex of the config pattern, - Type Raw String. - index_rownum: index row number from raw data. - Type Boolean. - Default, True. - - Returns: - parsed_data: dictionary of parsed data. - Type dictionary. - dict key, the parsed pattern name, such as 'Speed', - dict value, the corresponding parsed dataframe. - - Examples: - configs = { - 'GNSSTime': - r'Time:\s+(?P<Date>\d+\/\d+\/\d+)\s+ - r(?P<Time>\d+:\d+:\d+)')}, - 'Speed': r'Speed:\s+(?P<Speed>\d+.\d+)', - } - """ - # Init a local config dictionary to hold compiled regex and match dict. - configs_local = {} - # Construct parsed data dictionary - parsed_data = {} - - # Loop the config dictionary to compile regex and init data list - for key, regex_string in configs.items(): - configs_local[key] = { - 'cregex': regex.compile(regex_string), - 'datalist': [], - } - - # Open the file, loop and parse - with open(filename, 'r') as fid: - - for idx_line, current_line in enumerate(fid): - for _, config in configs_local.items(): - matched_log_object = config['cregex'].search(current_line) - - if matched_log_object: - matched_data = matched_log_object.groupdict() - matched_data['rownumber'] = idx_line + 1 - config['datalist'].append(matched_data) - - # Loop to generate parsed data from configs list - for key, config in configs_local.items(): - parsed_data[key] = pds.DataFrame(config['datalist']) - if index_rownum and not parsed_data[key].empty: - parsed_data[key].set_index('rownumber', inplace=True) - elif parsed_data[key].empty: - LOGPARSE_UTIL_LOGGER.warning( - 'The parsed dataframe of "%s" is empty.', key) - - # Return parsed data list - return parsed_data - - -def parse_gpsapilog_to_df(filename): - """Parse GPS API log to Pandas dataframes. - - Args: - filename: full log file name. - Type, String. - - Returns: - timestamp_df: Timestamp Data Frame. - Type, Pandas DataFrame. - sv_info_df: GNSS SV info Data Frame. - Type, Pandas DataFrame. - loc_info_df: Location Information Data Frame. - Type, Pandas DataFrame. - include Provider, Latitude, Longitude, Altitude, GNSSTime, Speed, Bearing - """ - - def get_phone_time(target_df_row, timestamp_df): - """subfunction to get the phone_time.""" - - try: - row_num = timestamp_df[ - timestamp_df.index < target_df_row.name].iloc[-1].name - phone_time = timestamp_df.loc[row_num]['phone_time'] - except IndexError: - row_num = npy.NaN - phone_time = npy.NaN - - return phone_time, row_num - - # Get parsed dataframe list - parsed_data = parse_log_to_df( - filename=filename, - configs=CONFIG_GPSAPILOG, - ) - - # get DUT Timestamp - timestamp_df = parsed_data['phone_time'] - timestamp_df['phone_time'] = timestamp_df.apply( - lambda row: datetime.datetime.strptime(row.date + '-' + row.time, - '%Y/%m/%d-%H:%M:%S'), - axis=1) - - # Add phone_time from timestamp_df dataframe by row number - for key in parsed_data: - if key != 'phone_time': - current_df = parsed_data[key] - time_n_row_num = current_df.apply(get_phone_time, - axis=1, - timestamp_df=timestamp_df) - current_df[['phone_time', 'time_row_num' - ]] = pds.DataFrame(time_n_row_num.apply(pds.Series)) - - # Get space vehicle info dataframe - sv_info_df = parsed_data['SpaceVehicle'] - - # Get space vehicle statistics dataframe - # First merge all dataframe from LIST_SVSTAT[1:], - # Drop duplicated 'phone_time', based on time_row_num - sv_stat_df = fts.reduce( - lambda item1, item2: pds.merge(item1, item2, on='time_row_num'), [ - parsed_data[key].drop(['phone_time'], axis=1) - for key in LIST_SVSTAT[1:] - ]) - # Then merge with LIST_SVSTAT[0] - sv_stat_df = pds.merge(sv_stat_df, - parsed_data[LIST_SVSTAT[0]], - on='time_row_num') - - # Get location fix information dataframe - # First merge all dataframe from LIST_LOCINFO[1:], - # Drop duplicated 'phone_time', based on time_row_num - loc_info_df = fts.reduce( - lambda item1, item2: pds.merge(item1, item2, on='time_row_num'), [ - parsed_data[key].drop(['phone_time'], axis=1) - for key in LIST_LOCINFO[1:] - ]) - # Then merge with LIST_LOCINFO[8] - loc_info_df = pds.merge(loc_info_df, - parsed_data[LIST_LOCINFO[0]], - on='time_row_num') - # Convert GNSS Time - loc_info_df['gnsstime'] = loc_info_df.apply( - lambda row: datetime.datetime.strptime(row.Date + '-' + row.Time, - '%Y/%m/%d-%H:%M:%S'), - axis=1) - - return timestamp_df, sv_info_df, sv_stat_df, loc_info_df - - -def parse_gpsapilog_to_df_v2(filename): - """Parse GPS API log to Pandas dataframes, by using merge_asof. - - Args: - filename: full log file name. - Type, String. - - Returns: - timestamp_df: Timestamp Data Frame. - Type, Pandas DataFrame. - sv_info_df: GNSS SV info Data Frame. - Type, Pandas DataFrame. - loc_info_df: Location Information Data Frame. - Type, Pandas DataFrame. - include Provider, Latitude, Longitude, Altitude, GNSSTime, Speed, Bearing - """ - # Get parsed dataframe list - parsed_data = parse_log_to_df( - filename=filename, - configs=CONFIG_GPSAPILOG, - ) - - # get DUT Timestamp - timestamp_df = parsed_data['phone_time'] - timestamp_df['phone_time'] = timestamp_df.apply( - lambda row: datetime.datetime.strptime(row.date + '-' + row.time, - '%Y/%m/%d-%H:%M:%S'), - axis=1) - # drop logsize, date, time - parsed_data['phone_time'] = timestamp_df.drop(['logsize', 'date', 'time'], - axis=1) - - # Add phone_time from timestamp dataframe by row number - for key in parsed_data: - if key != 'phone_time': - parsed_data[key] = pds.merge_asof(parsed_data[key], - parsed_data['phone_time'], - left_index=True, - right_index=True) - - # Get space vehicle info dataframe - sv_info_df = parsed_data['SpaceVehicle'] - - # Get space vehicle statistics dataframe - # First merge all dataframe from LIST_SVSTAT[1:], - sv_stat_df = fts.reduce( - lambda item1, item2: pds.merge(item1, item2, on='phone_time'), - [parsed_data[key] for key in LIST_SVSTAT[1:]]) - # Then merge with LIST_SVSTAT[0] - sv_stat_df = pds.merge(sv_stat_df, - parsed_data[LIST_SVSTAT[0]], - on='phone_time') - - # Get location fix information dataframe - # First merge all dataframe from LIST_LOCINFO[1:], - loc_info_df = fts.reduce( - lambda item1, item2: pds.merge(item1, item2, on='phone_time'), - [parsed_data[key] for key in LIST_LOCINFO[1:]]) - # Then merge with LIST_LOCINFO[8] - loc_info_df = pds.merge(loc_info_df, - parsed_data[LIST_LOCINFO[0]], - on='phone_time') - # Convert GNSS Time - loc_info_df['gnsstime'] = loc_info_df.apply( - lambda row: datetime.datetime.strptime(row.Date + '-' + row.Time, - '%Y/%m/%d-%H:%M:%S'), - axis=1) - - return timestamp_df, sv_info_df, sv_stat_df, loc_info_df diff --git a/acts/framework/acts/test_utils/instrumentation/__init__.py b/acts/framework/acts/test_utils/instrumentation/__init__.py deleted file mode 100644 index e69de29bb2..0000000000 --- a/acts/framework/acts/test_utils/instrumentation/__init__.py +++ /dev/null diff --git a/acts/framework/acts/test_utils/instrumentation/adb_command_types.py b/acts/framework/acts/test_utils/instrumentation/adb_command_types.py deleted file mode 100644 index 5c557346da..0000000000 --- a/acts/framework/acts/test_utils/instrumentation/adb_command_types.py +++ /dev/null @@ -1,102 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the 'License'); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an 'AS IS' BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - - -class DeviceState(object): - """Class for adb commands for setting device properties to a value.""" - - def __init__(self, base_cmd, on_val='1', off_val='0'): - """Create a DeviceState. - - Args: - base_cmd: The base adb command. Needs to accept an argument/value to - generate the full command. - on_val: Value used for the 'on' state - off_val: Value used for the 'off' state - """ - self._base_cmd = base_cmd - self._on_val = on_val - self._off_val = off_val - - def set_value(self, *values): - """Returns the adb command with the given arguments/values. - - Args: - values: The value(s) to run the command with - """ - try: - return self._base_cmd % values - except TypeError: - return str.strip(' '.join( - [self._base_cmd] + [str(value) for value in values])) - - def toggle(self, enabled): - """Returns the command corresponding to the desired state. - - Args: - enabled: True for the 'on' state. - """ - return self.set_value(self._on_val if enabled else self._off_val) - - -class DeviceSetprop(DeviceState): - """Class for setprop commands.""" - - def __init__(self, prop, on_val='1', off_val='0'): - """Create a DeviceSetprop. - - Args: - prop: Property name - on_val: Value used for the 'on' state - off_val: Value used for the 'off' state - """ - super().__init__('setprop %s' % prop, on_val, off_val) - - -class DeviceSetting(DeviceState): - """Class for commands to set a settings.db entry to a value.""" - - def __init__(self, namespace, setting, on_val='1', off_val='0'): - """Create a DeviceSetting. - - Args: - namespace: Namespace of the setting - setting: Setting name - on_val: Value used for the 'on' state - off_val: Value used for the 'off' state - """ - super().__init__('settings put %s %s' % (namespace, setting), - on_val, off_val) - - -class DeviceBinaryCommandSeries(object): - """Class for toggling multiple settings at once.""" - - def __init__(self, binary_commands): - """Create a DeviceBinaryCommandSeries. - - Args: - binary_commands: List of commands for setting toggleable options - """ - self.cmd_list = binary_commands - - def toggle(self, enabled): - """Returns the list of command corresponding to the desired state. - - Args: - enabled: True for the 'on' state. - """ - return [cmd.toggle(enabled) for cmd in self.cmd_list] diff --git a/acts/framework/acts/test_utils/instrumentation/adb_commands/common.py b/acts/framework/acts/test_utils/instrumentation/adb_commands/common.py deleted file mode 100644 index ffd43dd30d..0000000000 --- a/acts/framework/acts/test_utils/instrumentation/adb_commands/common.py +++ /dev/null @@ -1,131 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the 'License'); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an 'AS IS' BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from acts.test_utils.instrumentation.adb_command_types \ - import DeviceBinaryCommandSeries -from acts.test_utils.instrumentation.adb_command_types import DeviceSetprop -from acts.test_utils.instrumentation.adb_command_types import DeviceSetting -from acts.test_utils.instrumentation.adb_command_types import DeviceState - -GLOBAL = 'global' -SYSTEM = 'system' -SECURE = 'secure' - -"""Common device settings for power testing.""" - -# TODO: add descriptions to each setting - -# Network/Connectivity - -airplane_mode = DeviceBinaryCommandSeries( - [ - DeviceSetting(GLOBAL, 'airplane_mode_on'), - DeviceState( - 'am broadcast -a android.intent.action.AIRPLANE_MODE --ez state', - 'true', 'false') - ] -) - -mobile_data = DeviceBinaryCommandSeries( - [ - DeviceSetting(GLOBAL, 'mobile_data'), - DeviceState('svc data', 'enable', 'disable') - ] -) - -cellular = DeviceSetting(GLOBAL, 'cell_on') - -wifi = DeviceBinaryCommandSeries( - [ - DeviceSetting(GLOBAL, 'wifi_on'), - DeviceState('svc wifi', 'enable', 'disable') - ] -) - -ethernet = DeviceState('ifconfig eth0', 'up', 'down') - -bluetooth = DeviceState('service call bluetooth_manager', '6', '8') - -nfc = DeviceState('svc nfc', 'enable', 'disable') - - -# Calling - -disable_dialing = DeviceSetprop('ro.telephony.disable-call', 'true', 'false') - - -# Screen - -screen_adaptive_brightness = DeviceSetting( - SYSTEM, 'screen_brightness_mode') - -screen_brightness = DeviceSetting(SYSTEM, 'screen_brightness') - -screen_always_on = DeviceState('svc power stayon', 'true', 'false') - -screen_timeout_ms = DeviceSetting(SYSTEM, 'screen_off_timeout') - -doze_mode = DeviceSetting(SECURE, 'doze_enabled') - -wake_gesture = DeviceSetting(SECURE, 'wake_gesture_enabled') - -screensaver = DeviceSetting(SECURE, 'screensaver_enabled') - -notification_led = DeviceSetting(SYSTEM, 'notification_light_pulse') - - -# Accelerometer - -auto_rotate = DeviceSetting(SYSTEM, 'accelerometer_rotation') - - -# Time - -auto_time = DeviceSetting(GLOBAL, 'auto_time') - -auto_timezone = DeviceSetting(GLOBAL, 'auto_time_zone') - -timezone = DeviceSetprop('persist.sys.timezone') - - -# Location - -location_gps = DeviceSetting(SECURE, 'location_providers_allowed', - '+gps', '-gps') - -location_network = DeviceSetting(SECURE, 'location_providers_allowed', - '+network', '-network') - - -# Power - -battery_saver_mode = DeviceSetting(GLOBAL, 'low_power') - -battery_saver_trigger = DeviceSetting(GLOBAL, 'low_power_trigger_level') - -enable_full_batterystats_history = 'dumpsys batterystats --enable full-history' - -disable_doze = 'dumpsys deviceidle disable' - - -# Miscellaneous - -test_harness = DeviceBinaryCommandSeries( - [ - DeviceSetprop('ro.monkey'), - DeviceSetprop('ro.test_harness') - ] -) diff --git a/acts/framework/acts/test_utils/instrumentation/app_installer.py b/acts/framework/acts/test_utils/instrumentation/app_installer.py deleted file mode 100644 index c27d7e750d..0000000000 --- a/acts/framework/acts/test_utils/instrumentation/app_installer.py +++ /dev/null @@ -1,104 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the 'License'); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an 'AS IS' BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import os -import re - -from acts.libs.proc import job - -PKG_NAME_PATTERN = r"^package:\s+name='(?P<pkg_name>.*?)'" -PM_PATH_PATTERN = r"^package:(?P<apk_path>.*)" - - -class AppInstaller(object): - """Class for installing apps on an Android device.""" - def __init__(self, device): - self.ad = device - self._pkgs = {} - - def install(self, apk_path, *extra_args): - """Installs an apk on the device. - - Args: - apk_path: Path to the apk to install - extra_args: Additional flags to the ADB install command. - Note that '-r' is included by default. - """ - self.ad.log.info('Installing app %s' % apk_path) - self.ad.ensure_screen_on() - args = '-r %s' % ' '.join(extra_args) - self.ad.adb.install('%s %s' % (args, apk_path)) - - def uninstall(self, apk_path, *extra_args): - """Finds the package corresponding to the apk and uninstalls it from the - device. - - Args: - apk_path: Path to the apk - extra_args: Additional flags to the uninstall command. - """ - if self.is_installed(apk_path): - pkg_name = self.get_package_name(apk_path) - self.ad.log.info('Uninstalling app %s' % pkg_name) - self.ad.adb.shell( - 'pm uninstall %s %s' % (' '.join(extra_args), pkg_name)) - - def is_installed(self, apk_path): - """Verifies that an apk is installed on the device. - - Args: - apk_path: Path to the apk - - Returns: True if the apk is installed on the device. - """ - pkg_name = self.get_package_name(apk_path) - if not pkg_name: - self.ad.log.warning('No package name found for %s' % apk_path) - return False - return self.ad.is_apk_installed(pkg_name) - - def get_package_name(self, apk_path): - """Get the package name corresponding to the apk from aapt - - Args: - apk_path: Path to the apk - - Returns: The package name - """ - if apk_path not in self._pkgs: - dump = job.run( - 'aapt dump badging %s' % apk_path, ignore_status=True).stdout - match = re.compile(PKG_NAME_PATTERN).search(dump) - self._pkgs[apk_path] = match.group('pkg_name') if match else '' - return self._pkgs[apk_path] - - def pull_apk(self, package_name, dest): - """Pull the corresponding apk file from device given the package name - - Args: - package_name: Package name - dest: Destination directory - - Returns: Path to the pulled apk, or None if package not installed - """ - if not self.ad.is_apk_installed(package_name): - self.ad.log.warning('Unable to find package %s on device. Pull ' - 'aborted.' % package_name) - return None - apk_path = re.compile(PM_PATH_PATTERN).search( - self.ad.adb.shell('pm path %s' % package_name)).group('apk_path') - self.ad.pull_files(apk_path, dest) - return os.path.join(dest, os.path.basename(apk_path)) diff --git a/acts/framework/acts/test_utils/instrumentation/config_wrapper.py b/acts/framework/acts/test_utils/instrumentation/config_wrapper.py deleted file mode 100644 index 0ec25cb1c4..0000000000 --- a/acts/framework/acts/test_utils/instrumentation/config_wrapper.py +++ /dev/null @@ -1,93 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the 'License'); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an 'AS IS' BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import collections -import os - - -class InvalidParamError(Exception): - pass - - -class ConfigWrapper(collections.UserDict): - """Class representing a test or preparer config.""" - - def __init__(self, config=None): - """Initialize a ConfigWrapper - - Args: - config: A dict representing the preparer/test parameters - """ - if config is None: - config = {} - super().__init__( - { - key: (ConfigWrapper(val) if isinstance(val, dict) else val) - for key, val in config.items() - } - ) - - def get(self, param_name, default=None, verify_fn=lambda _: True, - failure_msg=''): - """Get parameter from config, verifying that the value is valid - with verify_fn. - - Args: - param_name: Name of the param to fetch - default: Default value of param. - verify_fn: Callable to verify the param value. If it returns False, - an exception will be raised. - failure_msg: Exception message upon verify_fn failure. - """ - result = self.data.get(param_name, default) - if not verify_fn(result): - raise InvalidParamError('Invalid value "%s" for param %s. %s' - % (result, param_name, failure_msg)) - return result - - def get_config(self, param_name): - """Get a sub-config from config. Returns an empty ConfigWrapper if no - such sub-config is found. - """ - return self.get(param_name, default=ConfigWrapper()) - - def get_int(self, param_name, default=0): - """Get integer parameter from config. Will raise an exception - if result is not of type int. - """ - return self.get(param_name, default=default, - verify_fn=lambda val: type(val) is int, - failure_msg='Param must be of type int.') - - def get_numeric(self, param_name, default=0): - """Get int or float parameter from config. Will raise an exception if - result is not of type int or float. - """ - return self.get(param_name, default=default, - verify_fn=lambda val: type(val) in (int, float), - failure_msg='Param must be of type int or float.') - - def get_files(self, param_name): - """Get list of file paths from config. Will raise an exception if any - of the paths do not point to actual files/directories. - """ - return self.get(param_name, - verify_fn=lambda l: all(map(os.path.exists, l)), - failure_msg='Cannot resolve one or more paths.') - - def get_file(self, param_name): - """Get single file path from config.""" - return self.get_files(param_name)[0] diff --git a/acts/framework/acts/test_utils/instrumentation/instrumentation_base_test.py b/acts/framework/acts/test_utils/instrumentation/instrumentation_base_test.py deleted file mode 100644 index fe00d330b2..0000000000 --- a/acts/framework/acts/test_utils/instrumentation/instrumentation_base_test.py +++ /dev/null @@ -1,292 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the 'License'); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an 'AS IS' BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import os - -import yaml -from acts.keys import Config -from acts.test_utils.instrumentation import app_installer -from acts.test_utils.instrumentation import instrumentation_proto_parser \ - as proto_parser -from acts.test_utils.instrumentation.adb_commands import common -from acts.test_utils.instrumentation.config_wrapper import ConfigWrapper -from acts.test_utils.instrumentation.instrumentation_command_builder import \ - InstrumentationCommandBuilder - -from acts import base_test -from acts import context - -RESOLVE_FILE_MARKER = 'FILE' -FILE_NOT_FOUND = 'File is missing from ACTS config' -DEFAULT_INSTRUMENTATION_CONFIG_FILE = 'instrumentation_config.yaml' - - -class InstrumentationTestError(Exception): - pass - - -class InstrumentationBaseTest(base_test.BaseTestClass): - """Base class for tests based on am instrument.""" - - def __init__(self, configs): - """Initialize an InstrumentationBaseTest - - Args: - configs: Dict representing the test configuration - """ - super().__init__(configs) - # Take instrumentation config path directly from ACTS config if found, - # otherwise try to find the instrumentation config in the same directory - # as the ACTS config - instrumentation_config_path = '' - if 'instrumentation_config' in self.user_params: - instrumentation_config_path = ( - self.user_params['instrumentation_config'][0]) - elif Config.key_config_path.value in self.user_params: - instrumentation_config_path = os.path.join( - self.user_params[Config.key_config_path.value], - DEFAULT_INSTRUMENTATION_CONFIG_FILE) - self._instrumentation_config = ConfigWrapper() - if os.path.exists(instrumentation_config_path): - self._instrumentation_config = self._load_instrumentation_config( - instrumentation_config_path) - self._class_config = self._instrumentation_config.get_config( - self.__class__.__name__) - else: - self.log.warning( - 'Instrumentation config file %s does not exist' % - instrumentation_config_path) - - def _load_instrumentation_config(self, path): - """Load the instrumentation config file into an - InstrumentationConfigWrapper object. - - Args: - path: Path to the instrumentation config file. - - Returns: The loaded instrumentation config as an - InstrumentationConfigWrapper - """ - try: - with open(path, mode='r', encoding='utf-8') as f: - config_dict = yaml.safe_load(f) - except Exception as e: - raise InstrumentationTestError( - 'Cannot open or parse instrumentation config file %s' - % path) from e - if not self._resolve_file_paths(config_dict): - self.log.warning('File paths missing from instrumentation config.') - - # Write out a copy of the resolved instrumentation config - with open(os.path.join( - self.log_path, 'resolved_instrumentation_config.yaml'), - mode='w', encoding='utf-8') as f: - yaml.safe_dump(config_dict, f) - - return ConfigWrapper(config_dict) - - def _resolve_file_paths(self, config): - """Recursively resolve all 'FILE' markers found in the instrumentation - config to their corresponding paths in the ACTS config, i.e. in - self.user_params. - - Args: - config: The instrumentation config to update - - Returns: True if all 'FILE' markers are resolved. - """ - success = True - for key, value in config.items(): - # Recursive call; resolve files in nested maps - if isinstance(value, dict): - success &= self._resolve_file_paths(value) - # Replace file resolver markers with paths from ACTS config - elif value == RESOLVE_FILE_MARKER: - if key not in self.user_params: - success = False - config[key] = FILE_NOT_FOUND - else: - config[key] = self.user_params[key] - return success - - def setup_class(self): - """Class setup""" - self.ad_dut = self.android_devices[0] - self.ad_apps = app_installer.AppInstaller(self.ad_dut) - self._prepare_device() - - def teardown_class(self): - """Class teardown""" - self._cleanup_device() - - def _prepare_device(self): - """Prepares the device for testing.""" - pass - - def _cleanup_device(self): - """Clean up device after test completion.""" - pass - - def _get_merged_config(self, config_name): - """Takes the configs with config_name from the base, testclass, and - testcase levels and merges them together. When the same parameter is - defined in different contexts, the value from the most specific context - is taken. - - Example: - self._instrumentation_config = { - 'sample_config': { - 'val_a': 5, - 'val_b': 7 - }, - 'ActsTestClass': { - 'sample_config': { - 'val_b': 3, - 'val_c': 6 - }, - 'acts_test_case': { - 'sample_config': { - 'val_c': 10, - 'val_d': 2 - } - } - } - } - - self._get_merged_config('sample_config') returns - { - 'val_a': 5, - 'val_b': 3, - 'val_c': 10, - 'val_d': 2 - } - - Args: - config_name: Name of the config to fetch - Returns: The merged config, as a ConfigWrapper - """ - merged_config = self._instrumentation_config.get_config( - config_name) - merged_config.update(self._class_config.get_config(config_name)) - if self.current_test_name: - case_config = self._class_config.get_config(self.current_test_name) - merged_config.update(case_config.get_config(config_name)) - return merged_config - - def adb_run(self, cmds): - """Run the specified command, or list of commands, with the ADB shell. - - Args: - cmds: A string or list of strings representing ADB shell command(s) - - Returns: dict mapping command to resulting stdout - """ - if isinstance(cmds, str): - cmds = [cmds] - out = {} - for cmd in cmds: - out[cmd] = self.ad_dut.adb.shell(cmd) - return out - - def adb_run_async(self, cmds): - """Run the specified command, or list of commands, with the ADB shell. - (async) - - Args: - cmds: A string or list of strings representing ADB shell command(s) - - Returns: dict mapping command to resulting subprocess.Popen object - """ - if isinstance(cmds, str): - cmds = [cmds] - procs = {} - for cmd in cmds: - procs[cmd] = self.ad_dut.adb.shell_nb(cmd) - return procs - - def dump_instrumentation_result_proto(self): - """Dump the instrumentation result proto as a human-readable txt file - in the log directory. - - Returns: The parsed instrumentation_data_pb2.Session - """ - session = proto_parser.get_session_from_device(self.ad_dut) - proto_txt_path = os.path.join( - context.get_current_context().get_full_output_path(), - 'instrumentation_proto.txt') - with open(proto_txt_path, 'w') as f: - f.write(str(session)) - return session - - # Basic setup methods - - def mode_airplane(self): - """Mode for turning on airplane mode only.""" - self.log.info('Enabling airplane mode.') - self.adb_run(common.airplane_mode.toggle(True)) - self.adb_run(common.auto_time.toggle(False)) - self.adb_run(common.auto_timezone.toggle(False)) - self.adb_run(common.location_gps.toggle(False)) - self.adb_run(common.location_network.toggle(False)) - self.adb_run(common.wifi.toggle(False)) - self.adb_run(common.bluetooth.toggle(False)) - - def mode_wifi(self): - """Mode for turning on airplane mode and wifi.""" - self.log.info('Enabling airplane mode and wifi.') - self.adb_run(common.airplane_mode.toggle(True)) - self.adb_run(common.location_gps.toggle(False)) - self.adb_run(common.location_network.toggle(False)) - self.adb_run(common.wifi.toggle(True)) - self.adb_run(common.bluetooth.toggle(False)) - - def mode_bluetooth(self): - """Mode for turning on airplane mode and bluetooth.""" - self.log.info('Enabling airplane mode and bluetooth.') - self.adb_run(common.airplane_mode.toggle(True)) - self.adb_run(common.auto_time.toggle(False)) - self.adb_run(common.auto_timezone.toggle(False)) - self.adb_run(common.location_gps.toggle(False)) - self.adb_run(common.location_network.toggle(False)) - self.adb_run(common.wifi.toggle(False)) - self.adb_run(common.bluetooth.toggle(True)) - - def grant_permissions(self): - """Grant all runtime permissions with PermissionUtils.""" - self.log.info('Granting all revoked runtime permissions.') - - # Install PermissionUtils.apk - permissions_apk_path = self._instrumentation_config.get_file( - 'permissions_apk') - self.ad_apps.install(permissions_apk_path) - if not self.ad_apps.is_installed(permissions_apk_path): - raise InstrumentationTestError( - 'Failed to install PermissionUtils.apk, abort!') - package_name = self.ad_apps.get_package_name(permissions_apk_path) - - # Run the instrumentation command - cmd_builder = InstrumentationCommandBuilder() - cmd_builder.set_manifest_package(package_name) - cmd_builder.set_runner('.PermissionInstrumentation') - cmd_builder.add_flag('-w') - cmd_builder.add_flag('-r') - cmd_builder.add_key_value_param('command', 'grant-all') - cmd = cmd_builder.build() - self.log.debug('Instrumentation call: %s' % cmd) - self.adb_run(cmd) - - # Uninstall PermissionUtils.apk - self.ad_apps.uninstall(permissions_apk_path) diff --git a/acts/framework/acts/test_utils/instrumentation/instrumentation_command_builder.py b/acts/framework/acts/test_utils/instrumentation/instrumentation_command_builder.py deleted file mode 100644 index b1624ed7fc..0000000000 --- a/acts/framework/acts/test_utils/instrumentation/instrumentation_command_builder.py +++ /dev/null @@ -1,171 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the 'License'); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an 'AS IS' BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import os - -DEFAULT_NOHUP_LOG = 'nohup.log' - - -class InstrumentationCommandBuilder(object): - """Helper class to build instrumentation commands.""" - - def __init__(self): - self._manifest_package_name = None - self._flags = [] - self._key_value_params = {} - self._runner = None - self._nohup = False - self._proto_path = None - self._nohup_log_path = None - - def set_manifest_package(self, test_package): - self._manifest_package_name = test_package - - def set_runner(self, runner): - self._runner = runner - - def add_flag(self, param): - self._flags.append(param) - - def add_key_value_param(self, key, value): - if isinstance(value, bool): - value = str(value).lower() - self._key_value_params[key] = str(value) - - def set_proto_path(self, path): - """Sets a custom path to store result proto. Note that this path will - be relative to $EXTERNAL_STORAGE on device. - """ - self._proto_path = path - - def set_nohup(self, log_path=DEFAULT_NOHUP_LOG): - """Enables nohup mode. This enables the instrumentation command to - continue running after a USB disconnect. - - Args: - log_path: Path to store stdout of the process. Relative to - $EXTERNAL_STORAGE - """ - self._nohup = True - self._nohup_log_path = log_path - - def build(self): - call = self._instrument_call_with_arguments() - call.append('{}/{}'.format(self._manifest_package_name, self._runner)) - if self._nohup: - call = ['nohup'] + call - call.append('>>') - call.append(os.path.join('$EXTERNAL_STORAGE', self._nohup_log_path)) - call.append('2>&1') - return " ".join(call) - - def _instrument_call_with_arguments(self): - errors = [] - if self._manifest_package_name is None: - errors.append('manifest package cannot be none') - if self._runner is None: - errors.append('instrumentation runner cannot be none') - if len(errors) > 0: - raise Exception('instrumentation call build errors: {}' - .format(','.join(errors))) - call = ['am instrument'] - for flag in self._flags: - call.append(flag) - call.append('-f') - if self._proto_path: - call.append(self._proto_path) - for key, value in self._key_value_params.items(): - call.append('-e') - call.append(key) - call.append(value) - return call - - -class InstrumentationTestCommandBuilder(InstrumentationCommandBuilder): - - def __init__(self): - super().__init__() - self._packages = [] - self._classes = [] - - @staticmethod - def default(): - """Default instrumentation call builder. - - The flags -w, -r and --no-isolated-storage are enabled. - - -w Forces am instrument to wait until the instrumentation terminates - (needed for logging) - -r Outputs results in raw format. - --no-isolated-storage Disables the isolated storage feature - introduced in Q. - https://developer.android.com/studio/test/command-line#AMSyntax - - The default test runner is androidx.test.runner.AndroidJUnitRunner. - """ - builder = InstrumentationTestCommandBuilder() - builder.add_flag('-w') - builder.add_flag('-r') - builder.add_flag('--no-isolated-storage') - builder.set_runner('androidx.test.runner.AndroidJUnitRunner') - return builder - - CONFLICTING_PARAMS_MESSAGE = ('only a list of classes and test methods or ' - 'a list of test packages are allowed.') - - def add_test_package(self, package): - if len(self._classes) != 0: - raise Exception(self.CONFLICTING_PARAMS_MESSAGE) - self._packages.append(package) - - def add_test_method(self, class_name, test_method): - if len(self._packages) != 0: - raise Exception(self.CONFLICTING_PARAMS_MESSAGE) - self._classes.append('{}#{}'.format(class_name, test_method)) - - def add_test_class(self, class_name): - if len(self._packages) != 0: - raise Exception(self.CONFLICTING_PARAMS_MESSAGE) - self._classes.append(class_name) - - def build(self): - errors = [] - if len(self._packages) == 0 and len(self._classes) == 0: - errors.append('at least one of package, class or test method need ' - 'to be defined') - - if len(errors) > 0: - raise Exception('instrumentation call build errors: {}' - .format(','.join(errors))) - - call = self._instrument_call_with_arguments() - - if len(self._packages) > 0: - call.append('-e') - call.append('package') - call.append(','.join(self._packages)) - elif len(self._classes) > 0: - call.append('-e') - call.append('class') - call.append(','.join(self._classes)) - - call.append('{}/{}'.format(self._manifest_package_name, self._runner)) - if self._nohup: - call = ['nohup'] + call - call.append('>>') - call.append(os.path.join('$EXTERNAL_STORAGE', self._nohup_log_path)) - call.append('2>&1') - return ' '.join(call) diff --git a/acts/framework/acts/test_utils/instrumentation/instrumentation_proto_parser.py b/acts/framework/acts/test_utils/instrumentation/instrumentation_proto_parser.py deleted file mode 100644 index 6e676a45a2..0000000000 --- a/acts/framework/acts/test_utils/instrumentation/instrumentation_proto_parser.py +++ /dev/null @@ -1,124 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the 'License'); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an 'AS IS' BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import collections -import os -import tempfile - -from acts.test_utils.instrumentation.proto.gen import instrumentation_data_pb2 - -DEFAULT_INST_LOG_DIR = 'instrument-logs' - -START_TIMESTAMP = 'start' -END_TIMESTAMP = 'end' - - -class ProtoParserError(Exception): - """Class for exceptions raised by the proto parser.""" - - -def pull_proto(ad, dest_dir, source_path=None): - """Pull latest instrumentation result proto from device. - - Args: - ad: AndroidDevice object - dest_dir: Directory on the host where the proto will be sent - source_path: Path on the device where the proto is generated. If None, - pull the latest proto from DEFAULT_INST_PROTO_DIR. - - Returns: Path to the retrieved proto file - """ - if source_path: - filename = os.path.basename(source_path) - else: - default_full_proto_dir = os.path.join( - ad.adb.shell('echo $EXTERNAL_STORAGE'), DEFAULT_INST_LOG_DIR) - filename = ad.adb.shell('ls %s -t | head -n1' % default_full_proto_dir) - if not filename: - raise ProtoParserError( - 'No instrumentation result protos found at default location.') - source_path = os.path.join(default_full_proto_dir, filename) - ad.pull_files(source_path, dest_dir) - dest_path = os.path.join(dest_dir, filename) - if not os.path.exists(dest_path): - raise ProtoParserError( - 'Failed to pull instrumentation result proto: %s -> %s' - % (source_path, dest_path)) - return dest_path - - -def get_session_from_local_file(proto_file): - """Get a instrumentation_data_pb2.Session object from a proto file on the - host. - - Args: - proto_file: Path to the proto file (on host) - - Returns: A instrumentation_data_pb2.Session - """ - with open(proto_file, 'rb') as f: - return instrumentation_data_pb2.Session.FromString(f.read()) - - -def get_session_from_device(ad, proto_file=None): - """Get a instrumentation_data_pb2.Session object from a proto file on - device. - - Args: - ad: AndroidDevice object - proto_file: Path to the proto file (on device). If None, defaults to - latest proto from DEFAULT_INST_PROTO_DIR. - - Returns: A instrumentation_data_pb2.Session - """ - with tempfile.TemporaryDirectory() as tmp_dir: - pulled_proto = pull_proto(ad, tmp_dir, proto_file) - return get_session_from_local_file(pulled_proto) - - -def get_test_timestamps(session): - """Parse an instrumentation_data_pb2.Session to get the timestamps for each - test. - - Args: - session: an instrumentation_data.Session object - - Returns: a dict in the format - { - <test name> : (<begin_time>, <end_time>), - ... - } - """ - timestamps = collections.defaultdict(dict) - for test_status in session.test_status: - entries = test_status.results.entries - # Timestamp entries have the key 'timestamp-message' - if any(entry.key == 'timestamps-message' for entry in entries): - test_name = None - timestamp = None - timestamp_type = None - for entry in entries: - if entry.key == 'test': - test_name = entry.value_string - if entry.key == 'timestamp': - timestamp = entry.value_long - if entry.key == 'start-timestamp': - timestamp_type = START_TIMESTAMP - if entry.key == 'end-timestamp': - timestamp_type = END_TIMESTAMP - if test_name and timestamp and timestamp_type: - timestamps[test_name][timestamp_type] = timestamp - return timestamps diff --git a/acts/framework/acts/test_utils/instrumentation/intent_builder.py b/acts/framework/acts/test_utils/instrumentation/intent_builder.py deleted file mode 100644 index a1cc529f7a..0000000000 --- a/acts/framework/acts/test_utils/instrumentation/intent_builder.py +++ /dev/null @@ -1,83 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the 'License'); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an 'AS IS' BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import collections - -TYPE_TO_FLAG = collections.defaultdict(lambda: '--es') -TYPE_TO_FLAG.update({bool: '--ez', int: '--ei', float: '--ef', str: '--es'}) - - -class IntentBuilder(object): - """Helper class to build am broadcast <INTENT> commands.""" - - def __init__(self, base_cmd=''): - """Initializes the intent command builder. - - Args: - base_cmd: The base am command, e.g. am broadcast, am start - """ - self._base_cmd = base_cmd - self._action = None - self._component = None - self._data_uri = None - self._flags = [] - self._key_value_params = collections.OrderedDict() - - def set_action(self, action): - """Set the intent action, as marked by the -a flag""" - self._action = action - - def set_component(self, package, component=None): - """Set the package and/or component, as marked by the -n flag. - Only the package name will be used if no component is specified. - """ - if component: - self._component = '%s/%s' % (package, component) - else: - self._component = package - - def set_data_uri(self, data_uri): - """Set the data URI, as marked by the -d flag""" - self._data_uri = data_uri - - def add_flag(self, flag): - """Add any additional flags to the intent argument""" - self._flags.append(flag) - - def add_key_value_param(self, key, value=None): - """Add any extra data as a key-value pair""" - self._key_value_params[key] = value - - def build(self): - """Returns the full intent command string.""" - cmd = [self._base_cmd] - if self._action: - cmd.append('-a %s' % self._action) - if self._component: - cmd.append('-n %s' % self._component) - if self._data_uri: - cmd.append('-d %s' % self._data_uri) - cmd += self._flags - for key, value in self._key_value_params.items(): - if value is None: - cmd.append('--esn %s' % key) - else: - str_value = str(value) - if isinstance(value, bool): - str_value = str_value.lower() - cmd.append(' '.join((TYPE_TO_FLAG[type(value)], key, - str_value))) - return ' '.join(cmd).strip() diff --git a/acts/framework/acts/test_utils/instrumentation/proto/gen/instrumentation_data_pb2.py b/acts/framework/acts/test_utils/instrumentation/proto/gen/instrumentation_data_pb2.py deleted file mode 100644 index 783cd22b09..0000000000 --- a/acts/framework/acts/test_utils/instrumentation/proto/gen/instrumentation_data_pb2.py +++ /dev/null @@ -1,345 +0,0 @@ -# Generated by the protocol buffer compiler. DO NOT EDIT! -# source: instrumentation_data.proto - -import sys -_b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) -from google.protobuf.internal import enum_type_wrapper -from google.protobuf import descriptor as _descriptor -from google.protobuf import message as _message -from google.protobuf import reflection as _reflection -from google.protobuf import symbol_database as _symbol_database -from google.protobuf import descriptor_pb2 -# @@protoc_insertion_point(imports) - -_sym_db = _symbol_database.Default() - - - - -DESCRIPTOR = _descriptor.FileDescriptor( - name='instrumentation_data.proto', - package='android.am', - syntax='proto2', - serialized_pb=_b('\n\x1ainstrumentation_data.proto\x12\nandroid.am\"\xcf\x01\n\x12ResultsBundleEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\x14\n\x0cvalue_string\x18\x02 \x01(\t\x12\x11\n\tvalue_int\x18\x03 \x01(\x11\x12\x13\n\x0bvalue_float\x18\x04 \x01(\x02\x12\x14\n\x0cvalue_double\x18\x05 \x01(\x01\x12\x12\n\nvalue_long\x18\x06 \x01(\x12\x12/\n\x0cvalue_bundle\x18\x07 \x01(\x0b\x32\x19.android.am.ResultsBundle\x12\x13\n\x0bvalue_bytes\x18\x08 \x01(\x0c\"@\n\rResultsBundle\x12/\n\x07\x65ntries\x18\x01 \x03(\x0b\x32\x1e.android.am.ResultsBundleEntry\"M\n\nTestStatus\x12\x13\n\x0bresult_code\x18\x03 \x01(\x11\x12*\n\x07results\x18\x04 \x01(\x0b\x32\x19.android.am.ResultsBundle\"\x98\x01\n\rSessionStatus\x12\x32\n\x0bstatus_code\x18\x01 \x01(\x0e\x32\x1d.android.am.SessionStatusCode\x12\x12\n\nerror_text\x18\x02 \x01(\t\x12\x13\n\x0bresult_code\x18\x03 \x01(\x11\x12*\n\x07results\x18\x04 \x01(\x0b\x32\x19.android.am.ResultsBundle\"i\n\x07Session\x12+\n\x0btest_status\x18\x01 \x03(\x0b\x32\x16.android.am.TestStatus\x12\x31\n\x0esession_status\x18\x02 \x01(\x0b\x32\x19.android.am.SessionStatus*>\n\x11SessionStatusCode\x12\x14\n\x10SESSION_FINISHED\x10\x00\x12\x13\n\x0fSESSION_ABORTED\x10\x01\x42\x19\n\x17\x63om.android.commands.am') -) -_sym_db.RegisterFileDescriptor(DESCRIPTOR) - -_SESSIONSTATUSCODE = _descriptor.EnumDescriptor( - name='SessionStatusCode', - full_name='android.am.SessionStatusCode', - filename=None, - file=DESCRIPTOR, - values=[ - _descriptor.EnumValueDescriptor( - name='SESSION_FINISHED', index=0, number=0, - options=None, - type=None), - _descriptor.EnumValueDescriptor( - name='SESSION_ABORTED', index=1, number=1, - options=None, - type=None), - ], - containing_type=None, - options=None, - serialized_start=659, - serialized_end=721, -) -_sym_db.RegisterEnumDescriptor(_SESSIONSTATUSCODE) - -SessionStatusCode = enum_type_wrapper.EnumTypeWrapper(_SESSIONSTATUSCODE) -SESSION_FINISHED = 0 -SESSION_ABORTED = 1 - - - -_RESULTSBUNDLEENTRY = _descriptor.Descriptor( - name='ResultsBundleEntry', - full_name='android.am.ResultsBundleEntry', - filename=None, - file=DESCRIPTOR, - containing_type=None, - fields=[ - _descriptor.FieldDescriptor( - name='key', full_name='android.am.ResultsBundleEntry.key', index=0, - number=1, type=9, cpp_type=9, label=1, - has_default_value=False, default_value=_b("").decode('utf-8'), - message_type=None, enum_type=None, containing_type=None, - is_extension=False, extension_scope=None, - options=None), - _descriptor.FieldDescriptor( - name='value_string', full_name='android.am.ResultsBundleEntry.value_string', index=1, - number=2, type=9, cpp_type=9, label=1, - has_default_value=False, default_value=_b("").decode('utf-8'), - message_type=None, enum_type=None, containing_type=None, - is_extension=False, extension_scope=None, - options=None), - _descriptor.FieldDescriptor( - name='value_int', full_name='android.am.ResultsBundleEntry.value_int', index=2, - number=3, type=17, cpp_type=1, label=1, - has_default_value=False, default_value=0, - message_type=None, enum_type=None, containing_type=None, - is_extension=False, extension_scope=None, - options=None), - _descriptor.FieldDescriptor( - name='value_float', full_name='android.am.ResultsBundleEntry.value_float', index=3, - number=4, type=2, cpp_type=6, label=1, - has_default_value=False, default_value=float(0), - message_type=None, enum_type=None, containing_type=None, - is_extension=False, extension_scope=None, - options=None), - _descriptor.FieldDescriptor( - name='value_double', full_name='android.am.ResultsBundleEntry.value_double', index=4, - number=5, type=1, cpp_type=5, label=1, - has_default_value=False, default_value=float(0), - message_type=None, enum_type=None, containing_type=None, - is_extension=False, extension_scope=None, - options=None), - _descriptor.FieldDescriptor( - name='value_long', full_name='android.am.ResultsBundleEntry.value_long', index=5, - number=6, type=18, cpp_type=2, label=1, - has_default_value=False, default_value=0, - message_type=None, enum_type=None, containing_type=None, - is_extension=False, extension_scope=None, - options=None), - _descriptor.FieldDescriptor( - name='value_bundle', full_name='android.am.ResultsBundleEntry.value_bundle', index=6, - number=7, type=11, cpp_type=10, label=1, - has_default_value=False, default_value=None, - message_type=None, enum_type=None, containing_type=None, - is_extension=False, extension_scope=None, - options=None), - _descriptor.FieldDescriptor( - name='value_bytes', full_name='android.am.ResultsBundleEntry.value_bytes', index=7, - number=8, type=12, cpp_type=9, label=1, - has_default_value=False, default_value=_b(""), - message_type=None, enum_type=None, containing_type=None, - is_extension=False, extension_scope=None, - options=None), - ], - extensions=[ - ], - nested_types=[], - enum_types=[ - ], - options=None, - is_extendable=False, - syntax='proto2', - extension_ranges=[], - oneofs=[ - ], - serialized_start=43, - serialized_end=250, -) - - -_RESULTSBUNDLE = _descriptor.Descriptor( - name='ResultsBundle', - full_name='android.am.ResultsBundle', - filename=None, - file=DESCRIPTOR, - containing_type=None, - fields=[ - _descriptor.FieldDescriptor( - name='entries', full_name='android.am.ResultsBundle.entries', index=0, - number=1, type=11, cpp_type=10, label=3, - has_default_value=False, default_value=[], - message_type=None, enum_type=None, containing_type=None, - is_extension=False, extension_scope=None, - options=None), - ], - extensions=[ - ], - nested_types=[], - enum_types=[ - ], - options=None, - is_extendable=False, - syntax='proto2', - extension_ranges=[], - oneofs=[ - ], - serialized_start=252, - serialized_end=316, -) - - -_TESTSTATUS = _descriptor.Descriptor( - name='TestStatus', - full_name='android.am.TestStatus', - filename=None, - file=DESCRIPTOR, - containing_type=None, - fields=[ - _descriptor.FieldDescriptor( - name='result_code', full_name='android.am.TestStatus.result_code', index=0, - number=3, type=17, cpp_type=1, label=1, - has_default_value=False, default_value=0, - message_type=None, enum_type=None, containing_type=None, - is_extension=False, extension_scope=None, - options=None), - _descriptor.FieldDescriptor( - name='results', full_name='android.am.TestStatus.results', index=1, - number=4, type=11, cpp_type=10, label=1, - has_default_value=False, default_value=None, - message_type=None, enum_type=None, containing_type=None, - is_extension=False, extension_scope=None, - options=None), - ], - extensions=[ - ], - nested_types=[], - enum_types=[ - ], - options=None, - is_extendable=False, - syntax='proto2', - extension_ranges=[], - oneofs=[ - ], - serialized_start=318, - serialized_end=395, -) - - -_SESSIONSTATUS = _descriptor.Descriptor( - name='SessionStatus', - full_name='android.am.SessionStatus', - filename=None, - file=DESCRIPTOR, - containing_type=None, - fields=[ - _descriptor.FieldDescriptor( - name='status_code', full_name='android.am.SessionStatus.status_code', index=0, - number=1, type=14, cpp_type=8, label=1, - has_default_value=False, default_value=0, - message_type=None, enum_type=None, containing_type=None, - is_extension=False, extension_scope=None, - options=None), - _descriptor.FieldDescriptor( - name='error_text', full_name='android.am.SessionStatus.error_text', index=1, - number=2, type=9, cpp_type=9, label=1, - has_default_value=False, default_value=_b("").decode('utf-8'), - message_type=None, enum_type=None, containing_type=None, - is_extension=False, extension_scope=None, - options=None), - _descriptor.FieldDescriptor( - name='result_code', full_name='android.am.SessionStatus.result_code', index=2, - number=3, type=17, cpp_type=1, label=1, - has_default_value=False, default_value=0, - message_type=None, enum_type=None, containing_type=None, - is_extension=False, extension_scope=None, - options=None), - _descriptor.FieldDescriptor( - name='results', full_name='android.am.SessionStatus.results', index=3, - number=4, type=11, cpp_type=10, label=1, - has_default_value=False, default_value=None, - message_type=None, enum_type=None, containing_type=None, - is_extension=False, extension_scope=None, - options=None), - ], - extensions=[ - ], - nested_types=[], - enum_types=[ - ], - options=None, - is_extendable=False, - syntax='proto2', - extension_ranges=[], - oneofs=[ - ], - serialized_start=398, - serialized_end=550, -) - - -_SESSION = _descriptor.Descriptor( - name='Session', - full_name='android.am.Session', - filename=None, - file=DESCRIPTOR, - containing_type=None, - fields=[ - _descriptor.FieldDescriptor( - name='test_status', full_name='android.am.Session.test_status', index=0, - number=1, type=11, cpp_type=10, label=3, - has_default_value=False, default_value=[], - message_type=None, enum_type=None, containing_type=None, - is_extension=False, extension_scope=None, - options=None), - _descriptor.FieldDescriptor( - name='session_status', full_name='android.am.Session.session_status', index=1, - number=2, type=11, cpp_type=10, label=1, - has_default_value=False, default_value=None, - message_type=None, enum_type=None, containing_type=None, - is_extension=False, extension_scope=None, - options=None), - ], - extensions=[ - ], - nested_types=[], - enum_types=[ - ], - options=None, - is_extendable=False, - syntax='proto2', - extension_ranges=[], - oneofs=[ - ], - serialized_start=552, - serialized_end=657, -) - -_RESULTSBUNDLEENTRY.fields_by_name['value_bundle'].message_type = _RESULTSBUNDLE -_RESULTSBUNDLE.fields_by_name['entries'].message_type = _RESULTSBUNDLEENTRY -_TESTSTATUS.fields_by_name['results'].message_type = _RESULTSBUNDLE -_SESSIONSTATUS.fields_by_name['status_code'].enum_type = _SESSIONSTATUSCODE -_SESSIONSTATUS.fields_by_name['results'].message_type = _RESULTSBUNDLE -_SESSION.fields_by_name['test_status'].message_type = _TESTSTATUS -_SESSION.fields_by_name['session_status'].message_type = _SESSIONSTATUS -DESCRIPTOR.message_types_by_name['ResultsBundleEntry'] = _RESULTSBUNDLEENTRY -DESCRIPTOR.message_types_by_name['ResultsBundle'] = _RESULTSBUNDLE -DESCRIPTOR.message_types_by_name['TestStatus'] = _TESTSTATUS -DESCRIPTOR.message_types_by_name['SessionStatus'] = _SESSIONSTATUS -DESCRIPTOR.message_types_by_name['Session'] = _SESSION -DESCRIPTOR.enum_types_by_name['SessionStatusCode'] = _SESSIONSTATUSCODE - -ResultsBundleEntry = _reflection.GeneratedProtocolMessageType('ResultsBundleEntry', (_message.Message,), dict( - DESCRIPTOR = _RESULTSBUNDLEENTRY, - __module__ = 'instrumentation_data_pb2' - # @@protoc_insertion_point(class_scope:android.am.ResultsBundleEntry) - )) -_sym_db.RegisterMessage(ResultsBundleEntry) - -ResultsBundle = _reflection.GeneratedProtocolMessageType('ResultsBundle', (_message.Message,), dict( - DESCRIPTOR = _RESULTSBUNDLE, - __module__ = 'instrumentation_data_pb2' - # @@protoc_insertion_point(class_scope:android.am.ResultsBundle) - )) -_sym_db.RegisterMessage(ResultsBundle) - -TestStatus = _reflection.GeneratedProtocolMessageType('TestStatus', (_message.Message,), dict( - DESCRIPTOR = _TESTSTATUS, - __module__ = 'instrumentation_data_pb2' - # @@protoc_insertion_point(class_scope:android.am.TestStatus) - )) -_sym_db.RegisterMessage(TestStatus) - -SessionStatus = _reflection.GeneratedProtocolMessageType('SessionStatus', (_message.Message,), dict( - DESCRIPTOR = _SESSIONSTATUS, - __module__ = 'instrumentation_data_pb2' - # @@protoc_insertion_point(class_scope:android.am.SessionStatus) - )) -_sym_db.RegisterMessage(SessionStatus) - -Session = _reflection.GeneratedProtocolMessageType('Session', (_message.Message,), dict( - DESCRIPTOR = _SESSION, - __module__ = 'instrumentation_data_pb2' - # @@protoc_insertion_point(class_scope:android.am.Session) - )) -_sym_db.RegisterMessage(Session) - - -DESCRIPTOR.has_options = True -DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), _b('\n\027com.android.commands.am')) -# @@protoc_insertion_point(module_scope) diff --git a/acts/framework/acts/test_utils/instrumentation/proto/instrumentation_data.proto b/acts/framework/acts/test_utils/instrumentation/proto/instrumentation_data.proto deleted file mode 100644 index 8e29f96455..0000000000 --- a/acts/framework/acts/test_utils/instrumentation/proto/instrumentation_data.proto +++ /dev/null @@ -1,67 +0,0 @@ -/* - * Copyright (C) 2016 The Android Open Source Project - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -syntax = "proto2"; -package android.am; - -option java_package = "com.android.commands.am"; - -message ResultsBundleEntry { - optional string key = 1; - - optional string value_string = 2; - optional sint32 value_int = 3; - optional float value_float = 4; - optional double value_double = 5; - optional sint64 value_long = 6; - optional ResultsBundle value_bundle = 7; - optional bytes value_bytes = 8; -} - -message ResultsBundle { - repeated ResultsBundleEntry entries = 1; -} - -message TestStatus { - optional sint32 result_code = 3; - optional ResultsBundle results = 4; -} - -enum SessionStatusCode { - /** - * The command ran successfully. This does not imply that the tests passed. - */ - SESSION_FINISHED = 0; - - /** - * There was an unrecoverable error running the tests. - */ - SESSION_ABORTED = 1; -} - -message SessionStatus { - optional SessionStatusCode status_code = 1; - optional string error_text = 2; - optional sint32 result_code = 3; - optional ResultsBundle results = 4; -} - -message Session { - repeated TestStatus test_status = 1; - optional SessionStatus session_status = 2; -} - - diff --git a/acts/framework/acts/test_utils/power/PowerBTBaseTest.py b/acts/framework/acts/test_utils/power/PowerBTBaseTest.py index e0fd37da2e..5dfda12c7a 100644 --- a/acts/framework/acts/test_utils/power/PowerBTBaseTest.py +++ b/acts/framework/acts/test_utils/power/PowerBTBaseTest.py @@ -14,15 +14,18 @@ # See the License for the specific language governing permissions and # limitations under the License. -import os -import acts.test_utils.bt.bt_power_test_utils as btputils -import acts.test_utils.bt.bt_test_utils as btutils +import time import acts.test_utils.power.PowerBaseTest as PBT -from acts.test_utils.abstract_devices.bluetooth_handsfree_abstract_device import BluetoothHandsfreeAbstractDeviceFactory as bt_factory +from acts.test_utils.bt.bt_test_utils import enable_bluetooth +from acts.test_utils.bt.bt_test_utils import disable_bluetooth -BLE_LOCATION_SCAN_DISABLE = 'settings put secure location_mode 0' -PHONE_MUSIC_FILE_DIRECTORY = '/sdcard/Music' -INIT_ATTEN = [30] +BT_BASE_UUID = '00000000-0000-1000-8000-00805F9B34FB' +BT_CLASSICAL_DATA = [1, 2, 3] +BLE_LOCATION_SCAN_ENABLE = 'settings put global ble_scan_always_enabled 1' +BLE_LOCATION_SCAN_DISABLE = 'settings put global ble_scan_always_enabled 0' +START_PMC_CMD = 'am start -n com.android.pmc/com.android.pmc.PMCMainActivity' +PMC_VERBOSE_CMD = 'setprop log.tag.PMC VERBOSE' +PMC_BASE_SCAN = 'am broadcast -a com.android.pmc.BLESCAN --es ScanMode ' class PowerBTBaseTest(PBT.PowerBaseTest): @@ -31,43 +34,16 @@ class PowerBTBaseTest(PBT.PowerBaseTest): Inherited from the PowerBaseTest class """ - def setup_class(self): - - super().setup_class() - # Get music file and push it to the phone - music_files = self.user_params.get('music_files', []) - if music_files: - music_src = music_files[0] - music_dest = PHONE_MUSIC_FILE_DIRECTORY - success = self.dut.push_system_file(music_src, music_dest) - if success: - self.music_file = os.path.join(PHONE_MUSIC_FILE_DIRECTORY, - os.path.basename(music_src)) - # Initialize media_control class - self.media = btputils.MediaControl(self.dut, self.music_file) - # Set Attenuator to the initial attenuation - if hasattr(self, 'attenuators'): - self.set_attenuation(INIT_ATTEN) - # Create the BTOE(Bluetooth-Other-End) device object - bt_devices = self.user_params.get('bt_devices', []) - if bt_devices: - attr, idx = bt_devices.split(':') - self.bt_device_controller = getattr(self, attr)[int(idx)] - self.bt_device = bt_factory().generate(self.bt_device_controller) - else: - self.log.error('No BT devices config is provided!') - # Turn off screen as all tests will be screen off - self.dut.droid.goToSleepNow() - def setup_test(self): super().setup_test() - self.unpack_userparams(volume=0.9) # Reset BT to factory defaults self.dut.droid.bluetoothFactoryReset() - self.bt_device.reset() - self.bt_device.power_on() - btutils.enable_bluetooth(self.dut.droid, self.dut.ed) + time.sleep(2) + # Start PMC app. + self.log.info('Start PMC app...') + self.dut.adb.shell(START_PMC_CMD) + self.dut.adb.shell(PMC_VERBOSE_CMD) def teardown_test(self): """Tear down necessary objects after test case is finished. @@ -78,11 +54,6 @@ class PowerBTBaseTest(PBT.PowerBaseTest): super().teardown_test() self.dut.droid.bluetoothFactoryReset() self.dut.adb.shell(BLE_LOCATION_SCAN_DISABLE) - if hasattr(self, 'media'): - self.media.stop() - self.bt_device.reset() - self.bt_device.power_off() - btutils.disable_bluetooth(self.dut.droid) def teardown_class(self): """Clean up the test class after tests finish running @@ -90,7 +61,75 @@ class PowerBTBaseTest(PBT.PowerBaseTest): """ super().teardown_class() self.dut.droid.bluetoothFactoryReset() - self.dut.adb.shell(BLE_LOCATION_SCAN_DISABLE) - self.bt_device.reset() - self.bt_device.power_off() - btutils.disable_bluetooth(self.dut.droid) + + def phone_setup_for_BT(self, bt_on, ble_on, screen_status): + """Sets the phone and Bluetooth in the desired state + + Args: + bt_on: Enable/Disable BT + ble_on: Enable/Disable BLE + screen_status: screen ON or OFF + """ + + # Check if we are enabling a background scan + # TODO: Turn OFF cellular wihtout having to turn ON airplane mode + if bt_on == 'OFF' and ble_on == 'ON': + self.dut.adb.shell(BLE_LOCATION_SCAN_ENABLE) + self.dut.droid.connectivityToggleAirplaneMode(False) + time.sleep(2) + + # Turn ON/OFF BT + if bt_on == 'ON': + enable_bluetooth(self.dut.droid, self.dut.ed) + self.dut.log.info('BT is ON') + else: + disable_bluetooth(self.dut.droid) + self.dut.droid.bluetoothDisableBLE() + self.dut.log.info('BT is OFF') + time.sleep(2) + + # Turn ON/OFF BLE + if ble_on == 'ON': + self.dut.droid.bluetoothEnableBLE() + self.dut.log.info('BLE is ON') + else: + self.dut.droid.bluetoothDisableBLE() + self.dut.log.info('BLE is OFF') + time.sleep(2) + + # Set the desired screen status + if screen_status == 'OFF': + self.dut.droid.goToSleepNow() + self.dut.log.info('Screen is OFF') + time.sleep(2) + + def start_pmc_ble_scan(self, + scan_mode, + offset_start, + scan_time, + idle_time=None, + num_reps=1): + """Starts a generic BLE scan via the PMC app + + Args: + dut: object of the android device under test + scan mode: desired BLE scan type + offset_start: Time delay in seconds before scan starts + scan_time: active scan time + idle_time: iddle time (i.e., no scans occuring) + num_reps: Number of repetions of the ative+idle scan sequence + """ + scan_dur = scan_time + if not idle_time: + idle_time = 0.2 * scan_time + scan_dur = 0.8 * scan_time + + first_part_msg = '%s%s --es StartTime %d --es ScanTime %d' % ( + PMC_BASE_SCAN, scan_mode, offset_start, scan_dur) + + msg = '%s --es NoScanTime %d --es Repetitions %d' % (first_part_msg, + idle_time, + num_reps) + + self.dut.log.info('Sent BLE scan broadcast message: %s', msg) + self.dut.adb.shell(msg) diff --git a/acts/framework/acts/test_utils/power/PowerBaseTest.py b/acts/framework/acts/test_utils/power/PowerBaseTest.py index 2334702828..9f2da28590 100644 --- a/acts/framework/acts/test_utils/power/PowerBaseTest.py +++ b/acts/framework/acts/test_utils/power/PowerBaseTest.py @@ -1,4 +1,4 @@ -#!/usr/bin/env python3 +#!/usr/bin/env python3.4 # # Copyright 2018 - The Android Open Source Project # @@ -13,39 +13,59 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. +import acts import json import logging import math import os -import re import time - import acts.controllers.iperf_server as ipf from acts import asserts from acts import base_test from acts import utils -from acts.controllers.monsoon_lib.api.common import MonsoonError -from acts.controllers.monsoon_lib.api.common import PassthroughStates +from acts.controllers import monsoon from acts.metrics.loggers.blackbox import BlackboxMetricLogger -from acts.test_utils.power.loggers.power_metric_logger import PowerMetricLogger -from acts.test_utils.wifi import wifi_power_test_utils as wputils from acts.test_utils.wifi import wifi_test_utils as wutils +from acts.test_utils.wifi import wifi_power_test_utils as wputils +SETTINGS_PAGE = 'am start -n com.android.settings/.Settings' +SCROLL_BOTTOM = 'input swipe 0 2000 0 0' +UNLOCK_SCREEN = 'input keyevent 82' +SET_BATTERY_LEVEL = 'dumpsys battery set level 100' +SCREENON_USB_DISABLE = 'dumpsys battery unplug' RESET_BATTERY_STATS = 'dumpsys batterystats --reset' +AOD_OFF = 'settings put secure doze_always_on 0' +MUSIC_IQ_OFF = 'pm disable-user com.google.intelligence.sense' +# Command to disable gestures +LIFT = 'settings put secure doze_pulse_on_pick_up 0' +DOUBLE_TAP = 'settings put secure doze_pulse_on_double_tap 0' +JUMP_TO_CAMERA = 'settings put secure camera_double_tap_power_gesture_disabled 1' +RAISE_TO_CAMERA = 'settings put secure camera_lift_trigger_enabled 0' +FLIP_CAMERA = 'settings put secure camera_double_twist_to_flip_enabled 0' +ASSIST_GESTURE = 'settings put secure assist_gesture_enabled 0' +ASSIST_GESTURE_ALERT = 'settings put secure assist_gesture_silence_alerts_enabled 0' +ASSIST_GESTURE_WAKE = 'settings put secure assist_gesture_wake_enabled 0' +SYSTEM_NAVI = 'settings put secure system_navigation_keys_enabled 0' +# End of command to disable gestures +AUTO_TIME_OFF = 'settings put global auto_time 0' +AUTO_TIMEZONE_OFF = 'settings put global auto_time_zone 0' +FORCE_YOUTUBE_STOP = 'am force-stop com.google.android.youtube' +FORCE_DIALER_STOP = 'am force-stop com.google.android.dialer' IPERF_TIMEOUT = 180 -THRESHOLD_TOLERANCE_DEFAULT = 0.2 +THRESHOLD_TOLERANCE = 0.2 GET_FROM_PHONE = 'get_from_dut' GET_FROM_AP = 'get_from_ap' -PHONE_BATTERY_VOLTAGE_DEFAULT = 4.2 +PHONE_BATTERY_VOLTAGE = 4.2 MONSOON_MAX_CURRENT = 8.0 MONSOON_RETRY_INTERVAL = 300 -DEFAULT_MONSOON_FREQUENCY = 500 MEASUREMENT_RETRY_COUNT = 3 RECOVER_MONSOON_RETRY_COUNT = 3 MIN_PERCENT_SAMPLE = 95 ENABLED_MODULATED_DTIM = 'gEnableModulatedDTIM=' MAX_MODULATED_DTIM = 'gMaxLIModulatedDTIM=' TEMP_FILE = '/sdcard/Download/tmp.log' +IPERF_DURATION = 'iperf_duration' +INITIAL_ATTEN = [0, 0, 90, 90] class ObjNew(): @@ -75,50 +95,27 @@ class PowerBaseTest(base_test.BaseTestClass): def __init__(self, controllers): base_test.BaseTestClass.__init__(self, controllers) - self.power_result = BlackboxMetricLogger.for_test_case( - metric_name='avg_power') + BlackboxMetricLogger.for_test_case( + metric_name='avg_power', result_attr='power_consumption') self.start_meas_time = 0 - self.rockbottom_script = None - self.img_name = '' - self.power_logger = PowerMetricLogger.for_test_case() def setup_class(self): self.log = logging.getLogger() self.tests = self._get_all_test_names() - # Obtain test parameters from user_params - TEST_PARAMS = self.TAG + '_params' - self.test_params = self.user_params.get(TEST_PARAMS, {}) - if not self.test_params: - self.log.warning(TEST_PARAMS + ' was not found in the user ' - 'parameters defined in the config file.') - - # Override user_param values with test parameters - self.user_params.update(self.test_params) - - # Unpack user_params with default values. All the usages of user_params - # as self attributes need to be included either as a required parameter - # or as a parameter with a default value. - req_params = ['custom_files', 'mon_duration'] - self.unpack_userparams(req_params, - mon_freq=DEFAULT_MONSOON_FREQUENCY, - mon_offset=0, - bug_report=False, - extra_wait=None, - iperf_duration=None, - pass_fail_tolerance=THRESHOLD_TOLERANCE_DEFAULT, - mon_voltage=PHONE_BATTERY_VOLTAGE_DEFAULT) - # Setup the must have controllers, phone and monsoon self.dut = self.android_devices[0] self.mon_data_path = os.path.join(self.log_path, 'Monsoon') - os.makedirs(self.mon_data_path, exist_ok=True) self.mon = self.monsoons[0] self.mon.set_max_current(8.0) - self.mon.set_voltage(self.mon_voltage) + self.mon.set_voltage(PHONE_BATTERY_VOLTAGE) self.mon.attach_device(self.dut) + # Unpack the test/device specific parameters + TEST_PARAMS = self.TAG + '_params' + req_params = [TEST_PARAMS, 'custom_files'] + self.unpack_userparams(req_params) # Unpack the custom files based on the test configs for file in self.custom_files: if 'pass_fail_threshold_' + self.dut.model in file: @@ -127,48 +124,32 @@ class PowerBaseTest(base_test.BaseTestClass): self.attenuation_file = file elif 'network_config' in file: self.network_file = file - elif 'rockbottom_' + self.dut.model in file: - self.rockbottom_script = file - # Abort the class if threshold and rockbottom file is missing - asserts.abort_class_if( - not self.threshold_file, - 'Required test pass/fail threshold file is missing') - asserts.abort_class_if( - not self.rockbottom_script, - 'Required rockbottom setting script is missing') + # Unpack test specific configs + self.unpack_testparams(getattr(self, TEST_PARAMS)) if hasattr(self, 'attenuators'): self.num_atten = self.attenuators[0].instrument.num_atten self.atten_level = self.unpack_custom_file(self.attenuation_file) + self.set_attenuation(INITIAL_ATTEN) self.threshold = self.unpack_custom_file(self.threshold_file) self.mon_info = self.create_monsoon_info() - # Sync device time, timezone and country code - utils.require_sl4a((self.dut,)) - utils.sync_device_time(self.dut) - self.dut.droid.wifiSetCountryCode('US') - - screen_on_img = self.user_params.get('screen_on_img', []) - if screen_on_img: - img_src = screen_on_img[0] - img_dest = '/sdcard/Pictures/' - success = self.dut.push_system_file(img_src, img_dest) - if success: - self.img_name = os.path.basename(img_src) + # Onetime task for each test class + # Temporary fix for b/77873679 + self.adb_disable_verity() + self.dut.adb.shell('mv /vendor/bin/chre /vendor/bin/chre_renamed') + self.dut.adb.shell('pkill chre') def setup_test(self): """Set up test specific parameters or configs. """ # Reset the power consumption to 0 before each tests - self.power_result.metric_value = 0 + self.power_consumption = 0 # Set the device into rockbottom state self.dut_rockbottom() - wutils.reset_wifi(self.dut) - wutils.wifi_toggle_state(self.dut, False) - # Wait for extra time if needed for the first test - if self.extra_wait: + if hasattr(self, 'extra_wait'): self.more_wait_first_test() def teardown_test(self): @@ -177,19 +158,6 @@ class PowerBaseTest(base_test.BaseTestClass): """ self.log.info('Tearing down the test case') self.mon.usb('on') - self.power_logger.set_avg_power(self.power_result.metric_value) - self.power_logger.set_testbed(self.testbed_name) - - # Take Bugreport - if self.bug_report: - begin_time = utils.get_current_epoch_time() - self.dut.take_bug_report(self.test_name, begin_time) - - # Allow the device to cooldown before executing the next test - last_test = self.current_test_name == self.results.requested[-1] - cooldown = self.test_params.get('cooldown', None) - if cooldown and not last_test: - time.sleep(cooldown) def teardown_class(self): """Clean up the test class after tests finish running @@ -198,29 +166,20 @@ class PowerBaseTest(base_test.BaseTestClass): self.log.info('Tearing down the test class') self.mon.usb('on') - def dut_rockbottom(self): - """Set the dut to rockbottom state + def unpack_testparams(self, bulk_params): + """Unpack all the test specific parameters. + Args: + bulk_params: dict with all test specific params in the config file """ - # The rockbottom script might include a device reboot, so it is - # necessary to stop SL4A during its execution. - self.dut.stop_services() - self.log.info('Executing rockbottom script for ' + self.dut.model) - os.chmod(self.rockbottom_script, 0o777) - os.system('{} {} {}'.format(self.rockbottom_script, self.dut.serial, - self.img_name)) - # Make sure the DUT is in root mode after coming back - self.dut.root_adb() - # Restart SL4A - self.dut.start_services() + for key in bulk_params.keys(): + setattr(self, key, bulk_params[key]) def unpack_custom_file(self, file, test_specific=True): """Unpack the pass_fail_thresholds from a common file. Args: file: the common file containing pass fail threshold. - test_specific: if True, returns the JSON element within the file - that starts with the test class name. """ with open(file, 'r') as f: params = json.load(f) @@ -264,27 +223,79 @@ class PowerBaseTest(base_test.BaseTestClass): for i in range(self.num_atten): self.attenuators[i].set_atten(atten_list[i]) + def dut_rockbottom(self): + """Set the phone into Rock-bottom state. + + """ + self.dut.log.info('Now set the device to Rockbottom State') + utils.require_sl4a((self.dut, )) + self.dut.droid.connectivityToggleAirplaneMode(False) + time.sleep(2) + self.dut.droid.connectivityToggleAirplaneMode(True) + time.sleep(2) + utils.set_ambient_display(self.dut, False) + utils.set_auto_rotate(self.dut, False) + utils.set_adaptive_brightness(self.dut, False) + utils.sync_device_time(self.dut) + utils.set_location_service(self.dut, False) + utils.set_mobile_data_always_on(self.dut, False) + utils.disable_doze_light(self.dut) + utils.disable_doze(self.dut) + wutils.reset_wifi(self.dut) + wutils.wifi_toggle_state(self.dut, False) + try: + self.dut.droid.nfcDisable() + except acts.controllers.sl4a_lib.rpc_client.Sl4aApiError: + self.dut.log.info('NFC is not available') + self.dut.droid.setScreenBrightness(0) + self.dut.adb.shell(AOD_OFF) + self.dut.droid.setScreenTimeout(2200) + self.dut.droid.wakeUpNow() + self.dut.adb.shell(LIFT) + self.dut.adb.shell(DOUBLE_TAP) + self.dut.adb.shell(JUMP_TO_CAMERA) + self.dut.adb.shell(RAISE_TO_CAMERA) + self.dut.adb.shell(FLIP_CAMERA) + self.dut.adb.shell(ASSIST_GESTURE) + self.dut.adb.shell(ASSIST_GESTURE_ALERT) + self.dut.adb.shell(ASSIST_GESTURE_WAKE) + self.dut.adb.shell(SET_BATTERY_LEVEL) + self.dut.adb.shell(SCREENON_USB_DISABLE) + self.dut.adb.shell(UNLOCK_SCREEN) + self.dut.adb.shell(SETTINGS_PAGE) + self.dut.adb.shell(SCROLL_BOTTOM) + self.dut.adb.shell(MUSIC_IQ_OFF) + self.dut.adb.shell(AUTO_TIME_OFF) + self.dut.adb.shell(AUTO_TIMEZONE_OFF) + self.dut.adb.shell(FORCE_YOUTUBE_STOP) + self.dut.adb.shell(FORCE_DIALER_STOP) + self.dut.droid.wifiSetCountryCode('US') + self.dut.droid.wakeUpNow() + self.dut.log.info('Device has been set to Rockbottom state') + self.dut.log.info('Screen is ON') + def measure_power_and_validate(self): """The actual test flow and result processing and validate. """ - result = self.collect_power_data() - self.pass_fail_check(result.average_current) + self.collect_power_data() + self.pass_fail_check() def collect_power_data(self): """Measure power, plot and take log if needed. - Returns: - A MonsoonResult object. """ + tag = '' # Collecting current measurement data and plot - result = self.monsoon_data_collect_save() - self.power_result.metric_value = (result.average_current * - self.mon_voltage) - wputils.monsoon_data_plot(self.mon_info, result) - return result + begin_time = utils.get_current_epoch_time() + self.file_path, self.test_result = self.monsoon_data_collect_save() + self.power_consumption = self.test_result * PHONE_BATTERY_VOLTAGE + wputils.monsoon_data_plot(self.mon_info, self.file_path, tag=tag) + # Take Bugreport + if self.bug_report: + self.dut.take_bug_report(self.test_name, begin_time) - def pass_fail_check(self, average_current=None): + def pass_fail_check(self): """Check the test result and decide if it passed or failed. The threshold is provided in the config file. In this class, result is @@ -297,19 +308,16 @@ class PowerBaseTest(base_test.BaseTestClass): return current_threshold = self.threshold[self.test_name] - if average_current: + if self.test_result: asserts.assert_true( - abs(average_current - current_threshold) / current_threshold < - self.pass_fail_tolerance, - 'Measured average current in [{}]: {:.2f}mA, which is ' - 'out of the acceptable range {:.2f}±{:.2f}mA'.format( - self.test_name, average_current, current_threshold, - self.pass_fail_tolerance * current_threshold)) - asserts.explicit_pass( - 'Measurement finished for [{}]: {:.2f}mA, which is ' - 'within the acceptable range {:.2f}±{:.2f}'.format( - self.test_name, average_current, current_threshold, - self.pass_fail_tolerance * current_threshold)) + abs(self.test_result - current_threshold) / current_threshold < + THRESHOLD_TOLERANCE, + ('Measured average current in [{}]: {}, which is ' + 'more than {} percent off than acceptable threshold {:.2f}mA' + ).format(self.test_name, self.test_result, + self.pass_fail_tolerance * 100, current_threshold)) + asserts.explicit_pass('Measurement finished for {}.'.format( + self.test_name)) else: asserts.fail( 'Something happened, measurement is not complete, test failed') @@ -320,13 +328,14 @@ class PowerBaseTest(base_test.BaseTestClass): Returns: mon_info: Dictionary with the monsoon packet config """ - if self.iperf_duration: + if hasattr(self, IPERF_DURATION): self.mon_duration = self.iperf_duration - 10 - mon_info = ObjNew(dut=self.mon, - freq=self.mon_freq, - duration=self.mon_duration, - offset=self.mon_offset, - data_path=self.mon_data_path) + mon_info = ObjNew( + dut=self.mon, + freq=self.mon_freq, + duration=self.mon_duration, + offset=self.mon_offset, + data_path=self.mon_data_path) return mon_info def monsoon_recover(self): @@ -345,12 +354,8 @@ class PowerBaseTest(base_test.BaseTestClass): logging.info('Monsoon recovered from unexpected error') time.sleep(2) return True - except MonsoonError: - try: - self.log.info(self.mon_info.dut._mon.ser.in_waiting) - except AttributeError: - # This attribute does not exist for HVPMs. - pass + except monsoon.MonsoonError: + logging.info(self.mon.mon.ser.in_waiting) logging.warning('Unable to recover monsoon from unexpected error') return False @@ -361,70 +366,119 @@ class PowerBaseTest(base_test.BaseTestClass): log file. Take bug report if requested. Returns: - A MonsoonResult object containing information about the gathered - data. + data_path: the absolute path to the log file of monsoon current + measurement + avg_current: the average current of the test """ tag = '{}_{}_{}'.format(self.test_name, self.dut.model, self.dut.build_info['build_id']) - data_path = os.path.join(self.mon_info.data_path, '{}.txt'.format(tag)) - - # If the specified Monsoon data file already exists (e.g., multiple - # measurements in a single test), write the results to a new file with - # the postfix "_#". - if os.path.exists(data_path): - highest_value = 1 - for filename in os.listdir(os.path.dirname(data_path)): - match = re.match(r'{}_(\d+).txt'.format(tag), filename) - if match: - highest_value = int(match.group(1)) - - data_path = os.path.join(self.mon_info.data_path, - '%s_%s.txt' % (tag, highest_value + 1)) - - total_expected_samples = self.mon_info.freq * self.mon_info.duration - min_required_samples = (total_expected_samples - * MIN_PERCENT_SAMPLE / 100) - for retry_measure in range(1, MEASUREMENT_RETRY_COUNT + 1): - # Resets the battery status right before the test starts. - self.dut.adb.shell(RESET_BATTERY_STATS) - self.log.info( - 'Starting power measurement, attempt #{}.'.format( + total_expected_samples = self.mon_info.freq * ( + self.mon_info.duration + self.mon_info.offset) + min_required_samples = total_expected_samples * MIN_PERCENT_SAMPLE / 100 + # Retry counter for monsoon data aquisition + retry_measure = 1 + # Indicator that need to re-collect data + need_collect_data = 1 + result = None + while retry_measure <= MEASUREMENT_RETRY_COUNT: + try: + # If need to retake data + if need_collect_data == 1: + #Resets the battery status right before the test started + self.dut.adb.shell(RESET_BATTERY_STATS) + self.log.info( + 'Starting power measurement with monsoon box, try #{}'. + format(retry_measure)) + #Start the power measurement using monsoon + self.mon_info.dut.monsoon_usb_auto() + result = self.mon_info.dut.measure_power( + self.mon_info.freq, + self.mon_info.duration, + tag=tag, + offset=self.mon_info.offset) + self.mon_info.dut.reconnect_dut() + # Reconnect to dut + else: + self.mon_info.dut.reconnect_dut() + # Reconnect and return measurement results if no error happens + avg_current = result.average_current + monsoon.MonsoonData.save_to_text_file([result], data_path) + self.log.info('Power measurement done within {} try'.format( retry_measure)) - # Start the power measurement using monsoon. - self.mon_info.dut.usb(PassthroughStates.AUTO) - result = self.mon_info.dut.measure_power( - self.mon_info.duration, - measure_after_seconds=self.mon_info.offset, - hz=self.mon_info.freq, - output_path=data_path) - self.mon_info.dut.usb(PassthroughStates.ON) - - self.log.debug(result) - self.log.debug('Samples Gathered: %s. Max Samples: %s ' - 'Min Samples Required: %s.' % - (result.num_samples, total_expected_samples, - min_required_samples)) - - if result.num_samples <= min_required_samples: - retry_measure += 1 - self.log.warning( - 'More than {} percent of samples are missing due to ' - 'dropped packets. Need to remeasure.'.format( - 100 - MIN_PERCENT_SAMPLE)) - continue - - self.log.info('Measurement successful after {} attempt(s).'.format( - retry_measure)) - return result + return data_path, avg_current + # Catch monsoon errors during measurement + except monsoon.MonsoonError: + self.log.info(self.mon_info.dut.mon.ser.in_waiting) + # Break early if it's one count away from limit + if retry_measure == MEASUREMENT_RETRY_COUNT: + self.log.error( + 'Test failed after maximum measurement retry') + break + + self.log.warning('Monsoon error happened, now try to recover') + # Retry loop to recover monsoon from error + retry_monsoon = 1 + while retry_monsoon <= RECOVER_MONSOON_RETRY_COUNT: + mon_status = self.monsoon_recover() + if mon_status: + break + else: + retry_monsoon += 1 + self.log.warning( + 'Wait for {} second then try again'.format( + MONSOON_RETRY_INTERVAL)) + time.sleep(MONSOON_RETRY_INTERVAL) + + # Break the loop to end test if failed to recover monsoon + if not mon_status: + self.log.error( + 'Tried our best, still failed to recover monsoon') + break + else: + # If there is no data, or captured samples are less than min + # required, re-take + if not result: + self.log.warning('No data taken, need to remeasure') + elif len(result._data_points) <= min_required_samples: + self.log.warning( + 'More than {} percent of samples are missing due to monsoon error. Need to remeasure'. + format(100 - MIN_PERCENT_SAMPLE)) + else: + need_collect_data = 0 + self.log.warning( + 'Data collected is valid, try reconnect to DUT to finish test' + ) + retry_measure += 1 + + if retry_measure > MEASUREMENT_RETRY_COUNT: + self.log.error('Test failed after maximum measurement retry') + + def setup_ap_connection(self, network, bandwidth=80, connect=True, + ap=None): + """Setup AP and connect DUT to it. + + Args: + network: the network config for the AP to be setup + bandwidth: bandwidth of the WiFi network to be setup + connect: indicator of if connect dut to the network after setup + ap: access point object, default is None to find the main AP + Returns: + self.brconfigs: dict for bridge interface configs + """ + wutils.wifi_toggle_state(self.dut, True) + if not ap: + if hasattr(self, 'access_points'): + self.brconfigs = wputils.ap_setup( + self.access_point, network, bandwidth=bandwidth) else: - try: - self.log.info(self.mon_info.dut._mon.ser.in_waiting) - except AttributeError: - # This attribute does not exist for HVPMs. - pass - self.log.error('Unable to gather enough samples to run validation.') + self.brconfigs = wputils.ap_setup(ap, network, bandwidth=bandwidth) + if connect: + wutils.wifi_connect(self.dut, network, num_of_tries=3) + + if ap or (not ap and hasattr(self, 'access_points')): + return self.brconfigs def process_iperf_results(self): """Get the iperf results and process. @@ -433,10 +487,11 @@ class PowerBaseTest(base_test.BaseTestClass): throughput: the average throughput during tests. """ # Get IPERF results and add this to the plot title - RESULTS_DESTINATION = os.path.join( - self.iperf_server.log_path, - 'iperf_client_output_{}.log'.format(self.current_test_name)) - self.dut.pull_files(TEMP_FILE, RESULTS_DESTINATION) + RESULTS_DESTINATION = os.path.join(self.iperf_server.log_path, + 'iperf_client_output_{}.log'.format( + self.current_test_name)) + PULL_FILE = '{} {}'.format(TEMP_FILE, RESULTS_DESTINATION) + self.dut.adb.pull(PULL_FILE) # Calculate the average throughput if self.use_client_output: iperf_file = RESULTS_DESTINATION @@ -449,10 +504,22 @@ class PowerBaseTest(base_test.BaseTestClass): throughput = (math.fsum( iperf_result.instantaneous_rates[self.start_meas_time:-1] ) / len(iperf_result.instantaneous_rates[self.start_meas_time:-1]) - ) * 8 * (1.024 ** 2) + ) * 8 * (1.024**2) self.log.info('The average throughput is {}'.format(throughput)) except ValueError: self.log.warning('Cannot get iperf result. Setting to 0') throughput = 0 return throughput + + # TODO(@qijiang)Merge with tel_test_utils.py + def adb_disable_verity(self): + """Disable verity on the device. + + """ + if self.dut.adb.getprop("ro.boot.veritymode") == "enforcing": + self.dut.adb.disable_verity() + self.dut.reboot() + self.dut.adb.root() + self.dut.adb.remount() + self.dut.adb.shell(SET_BATTERY_LEVEL) diff --git a/acts/framework/acts/test_utils/power/PowerCellularLabBaseTest.py b/acts/framework/acts/test_utils/power/PowerCellularLabBaseTest.py index d3dae158e8..e3495aa1d2 100644 --- a/acts/framework/acts/test_utils/power/PowerCellularLabBaseTest.py +++ b/acts/framework/acts/test_utils/power/PowerCellularLabBaseTest.py @@ -1,4 +1,4 @@ -#!/usr/bin/env python3 +#!/usr/bin/env python3.4 # # Copyright 2018 - The Android Open Source Project # @@ -14,18 +14,14 @@ # See the License for the specific language governing permissions and # limitations under the License. import time -import os import acts.test_utils.power.PowerBaseTest as PBT -import acts.controllers.cellular_simulator as simulator -from acts.controllers.anritsu_lib import md8475_cellular_simulator as anritsu -from acts.controllers.rohdeschwarz_lib import cmw500_cellular_simulator as cmw +from acts.controllers.anritsu_lib._anritsu_utils import AnritsuError +from acts.controllers.anritsu_lib.md8475a import MD8475A from acts.test_utils.power.tel_simulations.GsmSimulation import GsmSimulation from acts.test_utils.power.tel_simulations.LteSimulation import LteSimulation from acts.test_utils.power.tel_simulations.UmtsSimulation import UmtsSimulation from acts.test_utils.power.tel_simulations.LteCaSimulation import LteCaSimulation -from acts.test_utils.power.tel_simulations.LteImsSimulation import LteImsSimulation -from acts.test_utils.tel import tel_test_utils as telutils class PowerCellularLabBaseTest(PBT.PowerBaseTest): @@ -40,17 +36,11 @@ class PowerCellularLabBaseTest(PBT.PowerBaseTest): PARAM_SIM_TYPE_LTE = "lte" PARAM_SIM_TYPE_LTE_CA = "lteca" - PARAM_SIM_TYPE_LTE_IMS = "lteims" PARAM_SIM_TYPE_UMTS = "umts" PARAM_SIM_TYPE_GSM = "gsm" - # Custom files - FILENAME_CALIBRATION_TABLE_UNFORMATTED = 'calibration_table_{}.json' - - # Name of the files in the logs directory that will contain test results - # and other information in csv format. - RESULTS_SUMMARY_FILENAME = 'cellular_power_results.csv' - CALIBRATION_TABLE_FILENAME = 'calibration_table.csv' + # User param keywords + KEY_CALIBRATION_TABLE = "calibration_table" def __init__(self, controllers): """ Class initialization. @@ -61,14 +51,18 @@ class PowerCellularLabBaseTest(PBT.PowerBaseTest): super().__init__(controllers) self.simulation = None - self.cellular_simulator = None + self.anritsu = None self.calibration_table = {} - self.power_results = {} + + # If callbox version was not specified in the config files, + # set a default value + if not hasattr(self, "md8475_version"): + self.md8475_version = "A" def setup_class(self): """ Executed before any test case is started. - Sets the device to rockbottom and connects to the cellular instrument. + Sets the device to rockbottom and connects to the anritsu callbox. Returns: False if connecting to the callbox fails. @@ -76,83 +70,44 @@ class PowerCellularLabBaseTest(PBT.PowerBaseTest): super().setup_class() - # Unpack test parameters used in this class - self.unpack_userparams(md8475_version=None, - md8475a_ip_address=None, - cmw500_ip=None, - cmw500_port=None) + # Gets the name of the interface from which packets are sent + if hasattr(self, 'packet_senders'): + self.pkt_sender = self.packet_senders[0] # Load calibration tables - filename_calibration_table = ( - self.FILENAME_CALIBRATION_TABLE_UNFORMATTED.format( - self.testbed_name)) - - for file in self.custom_files: - if filename_calibration_table in file: - self.calibration_table = self.unpack_custom_file(file, False) - self.log.info('Loading calibration table from ' + file) - self.log.debug(self.calibration_table) - break - - # Ensure the calibration table only contains non-negative values - self.ensure_valid_calibration_table(self.calibration_table) - - # Turn on airplane mode for all devices, as some might - # be unused during the test - for ad in self.android_devices: - telutils.toggle_airplane_mode(self.log, ad, True) - - # Establish a connection with the cellular simulator equipment - try: - self.cellular_simulator = self.initialize_simulator() - except ValueError: - self.log.error('No cellular simulator could be selected with the ' - 'current configuration.') - raise - except simulator.CellularSimulatorError: - self.log.error('Could not initialize the cellular simulator.') - raise - - def initialize_simulator(self): - """ Connects to Anritsu Callbox and gets handle object. - - Returns: - False if a connection with the callbox could not be started - """ - - if self.md8475_version: + # Load calibration tables + if self.KEY_CALIBRATION_TABLE in self.user_params: + self.calibration_table = self.unpack_custom_file( + self.user_params[self.KEY_CALIBRATION_TABLE], False) - self.log.info('Selecting Anrtisu MD8475 callbox.') + # Store the value of the key to access the test config in the + # user_params dictionary. + self.PARAMS_KEY = self.TAG + "_params" - # Verify the callbox IP address has been indicated in the configs - if not self.md8475a_ip_address: - raise RuntimeError( - 'md8475a_ip_address was not included in the test ' - 'configuration.') + # Set DUT to rockbottom + self.dut_rockbottom() - if self.md8475_version == 'A': - return anritsu.MD8475CellularSimulator(self.md8475a_ip_address) - elif self.md8475_version == 'B': - return anritsu.MD8475BCellularSimulator( - self.md8475a_ip_address) - else: - raise ValueError('Invalid MD8475 version.') + # Establish connection to Anritsu Callbox + return self.connect_to_anritsu() - elif self.cmw500_ip or self.cmw500_port: + def connect_to_anritsu(self): + """ Connects to Anritsu Callbox and gets handle object. - for key in ['cmw500_ip', 'cmw500_port']: - if not hasattr(self, key): - raise RuntimeError('The CMW500 cellular simulator ' - 'requires %s to be set in the ' - 'config file.' % key) + Returns: + False if a connection with the callbox could not be started + """ - return cmw.CMW500CellularSimulator(self.cmw500_ip, - self.cmw500_port) + try: - else: - raise RuntimeError( - 'The simulator could not be initialized because ' - 'a callbox was not defined in the configs file.') + self.anritsu = MD8475A( + self.md8475a_ip_address, + self.log, + self.wlan_option, + md8475_version=self.md8475_version) + return True + except AnritsuError: + self.log.error('Error in connecting to Anritsu Callbox') + return False def setup_test(self): """ Executed before every test case. @@ -171,8 +126,6 @@ class PowerCellularLabBaseTest(PBT.PowerBaseTest): classes can then consume the remaining values. """ - super().setup_test() - # Get list of parameters from the test name self.parameters = self.current_test_name.split('_') @@ -184,8 +137,6 @@ class PowerCellularLabBaseTest(PBT.PowerBaseTest): self.init_simulation(self.PARAM_SIM_TYPE_LTE) elif self.consume_parameter(self.PARAM_SIM_TYPE_LTE_CA): self.init_simulation(self.PARAM_SIM_TYPE_LTE_CA) - elif self.consume_parameter(self.PARAM_SIM_TYPE_LTE_IMS): - self.init_simulation(self.PARAM_SIM_TYPE_LTE_IMS) elif self.consume_parameter(self.PARAM_SIM_TYPE_UMTS): self.init_simulation(self.PARAM_SIM_TYPE_UMTS) elif self.consume_parameter(self.PARAM_SIM_TYPE_GSM): @@ -210,26 +161,17 @@ class PowerCellularLabBaseTest(PBT.PowerBaseTest): # Wait for new params to settle time.sleep(5) - # Start the simulation. This method will raise an exception if - # the phone is unable to attach. - self.simulation.start() + # Attach the phone to the basestation + if not self.simulation.attach(): + return False + + self.simulation.start_test_case() # Make the device go to sleep self.dut.droid.goToSleepNow() return True - def teardown_test(self): - """ Executed after every test case, even if it failed or an exception - happened. - - Save results to dictionary so they can be displayed after completing - the test batch. - """ - super().teardown_test() - - self.power_results[self.test_name] = self.power_result.metric_value - def consume_parameter(self, parameter_name, num_values=0): """ Parses a parameter from the test name. @@ -267,60 +209,14 @@ class PowerCellularLabBaseTest(PBT.PowerBaseTest): def teardown_class(self): """Clean up the test class after tests finish running. - Stops the simulation and disconnects from the Anritsu Callbox. Then - displays the test results. + Stop the simulation and then disconnect from the Anritsu Callbox. """ super().teardown_class() - try: - if self.cellular_simulator: - self.cellular_simulator.destroy() - except simulator.CellularSimulatorError as e: - self.log.error('Error while tearing down the callbox controller. ' - 'Error message: ' + str(e)) - - # Log a summary of results - results_table_log = 'Results for cellular power tests:' - - for test_name, value in self.power_results.items(): - results_table_log += '\n{}\t{}'.format(test_name, value) - - # Save this summary to a csv file in the logs directory - self.save_summary_to_file() - - self.log.info(results_table_log) - - def save_summary_to_file(self): - """ Creates CSV format files with a summary of results. - - This CSV files can be easily imported in a spreadsheet to analyze the - results obtained from the tests. - """ - - # Save a csv file with the power measurements done in all the tests - - path = os.path.join(self.log_path, self.RESULTS_SUMMARY_FILENAME) - - with open(path, 'w') as csvfile: - csvfile.write('test,avg_power') - for test_name, value in self.power_results.items(): - csvfile.write('\n{},{}'.format(test_name, value)) - - # Save a csv file with the calibration table for each simulation type - - for sim_type in self.calibration_table: - - path = os.path.join( - self.log_path, '{}_{}'.format(sim_type, - self.CALIBRATION_TABLE_FILENAME)) - - with open(path, 'w') as csvfile: - csvfile.write('band,dl_pathloss, ul_pathloss') - for band, pathloss in self.calibration_table[sim_type].items(): - csvfile.write('\n{},{},{}'.format( - band, pathloss.get('dl', 'Error'), - pathloss.get('ul', 'Error'))) + if self.anritsu: + self.anritsu.stop_simulation() + self.anritsu.disconnect() def init_simulation(self, sim_type): """ Starts a new simulation only if needed. @@ -336,8 +232,7 @@ class PowerCellularLabBaseTest(PBT.PowerBaseTest): self.PARAM_SIM_TYPE_LTE: LteSimulation, self.PARAM_SIM_TYPE_UMTS: UmtsSimulation, self.PARAM_SIM_TYPE_GSM: GsmSimulation, - self.PARAM_SIM_TYPE_LTE_CA: LteCaSimulation, - self.PARAM_SIM_TYPE_LTE_IMS: LteImsSimulation + self.PARAM_SIM_TYPE_LTE_CA: LteCaSimulation } if not sim_type in simulation_dictionary: @@ -359,24 +254,9 @@ class PowerCellularLabBaseTest(PBT.PowerBaseTest): self.calibration_table[sim_type] = {} # Instantiate a new simulation - self.simulation = simulation_class(self.cellular_simulator, self.log, - self.dut, - self.test_params, + self.simulation = simulation_class(self.anritsu, self.log, self.dut, + self.user_params[self.PARAMS_KEY], self.calibration_table[sim_type]) - def ensure_valid_calibration_table(self, calibration_table): - """ Ensures the calibration table has the correct structure. - - A valid calibration table is a nested dictionary with non-negative - number values - - """ - if not calibration_table or not isinstance(calibration_table, dict): - raise TypeError('The calibration table must be a dictionary') - for val in calibration_table.values(): - if isinstance(val, dict): - self.ensure_valid_calibration_table(val) - elif not isinstance(val, float) and not isinstance(val, int): - raise TypeError('Calibration table value must be a number') - elif val < 0.0: - raise ValueError('Calibration table contains negative values') + # Start the simulation + self.simulation.start() diff --git a/acts/framework/acts/test_utils/power/PowerGnssBaseTest.py b/acts/framework/acts/test_utils/power/PowerGnssBaseTest.py deleted file mode 100644 index 5f38aec086..0000000000 --- a/acts/framework/acts/test_utils/power/PowerGnssBaseTest.py +++ /dev/null @@ -1,163 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import logging -import time - -import os - -import acts.test_utils.power.PowerBaseTest as PBT - -from acts import base_test -from acts.controllers import monsoon -from bokeh.layouts import column, layout -from bokeh.models import CustomJS, ColumnDataSource -from bokeh.models import tools as bokeh_tools -from bokeh.models.widgets import DataTable, TableColumn -from bokeh.plotting import figure, output_file, save - -LOGTIME_RETRY_COUNT = 3 -RESET_BATTERY_STATS = 'dumpsys batterystats --reset' -RECOVER_MONSOON_RETRY_COUNT = 3 -MONSOON_RETRY_INTERVAL = 300 - -class PowerGnssBaseTest(PBT.PowerBaseTest): - """ - Base Class for all GNSS Power related tests - """ - - def collect_power_data(self): - """Measure power and plot.""" - result = super().collect_power_data() - self.monsoon_data_plot_power(self.mon_info, result, tag='_Power') - return result - - def monsoon_data_plot_power(self, mon_info, monsoon_results, tag=''): - """Plot the monsoon power data using bokeh interactive plotting tool. - - Args: - mon_info: Dictionary with the monsoon packet config. - monsoon_results: a MonsoonResult or list of MonsoonResult objects to - to plot. - tag: an extra tag to append to the resulting filename. - - """ - - if not isinstance(monsoon_results, list): - monsoon_results = [monsoon_results] - logging.info('Plotting the power measurement data.') - - voltage = monsoon_results[0].voltage - - total_current = 0 - total_samples = 0 - for result in monsoon_results: - total_current += result.average_current * result.num_samples - total_samples += result.num_samples - avg_current = total_current / total_samples - - time_relative = [ - data_point.time - for monsoon_result in monsoon_results - for data_point in monsoon_result.get_data_points() - ] - - power_data = [ - data_point.current * voltage - for monsoon_result in monsoon_results - for data_point in monsoon_result.get_data_points() - ] - - total_data_points = sum( - result.num_samples for result in monsoon_results) - color = ['navy'] * total_data_points - - # Preparing the data and source link for bokehn java callback - source = ColumnDataSource( - data=dict(x0=time_relative, y0=power_data, color=color)) - s2 = ColumnDataSource( - data=dict( - z0=[mon_info.duration], - y0=[round(avg_current, 2)], - x0=[round(avg_current * voltage, 2)], - z1=[round(avg_current * voltage * mon_info.duration, 2)], - z2=[round(avg_current * mon_info.duration, 2)])) - # Setting up data table for the output - columns = [ - TableColumn(field='z0', title='Total Duration (s)'), - TableColumn(field='y0', title='Average Current (mA)'), - TableColumn(field='x0', title='Average Power (4.2v) (mW)'), - TableColumn(field='z1', title='Average Energy (mW*s)'), - TableColumn(field='z2', title='Normalized Average Energy (mA*s)') - ] - dt = DataTable( - source=s2, columns=columns, width=1300, height=60, editable=True) - - plot_title = (os.path.basename( - os.path.splitext(monsoon_results[0].tag)[0]) - + tag) - output_file(os.path.join(mon_info.data_path, plot_title + '.html')) - tools = 'box_zoom,box_select,pan,crosshair,redo,undo,reset,hover,save' - # Create a new plot with the datatable above - plot = figure( - plot_width=1300, - plot_height=700, - title=plot_title, - tools=tools, - output_backend='webgl') - plot.add_tools(bokeh_tools.WheelZoomTool(dimensions='width')) - plot.add_tools(bokeh_tools.WheelZoomTool(dimensions='height')) - plot.line('x0', 'y0', source=source, line_width=2) - plot.circle('x0', 'y0', source=source, size=0.5, fill_color='color') - plot.xaxis.axis_label = 'Time (s)' - plot.yaxis.axis_label = 'Power (mW)' - plot.title.text_font_size = {'value': '15pt'} - jsscript = open(self.customjsfile, 'r') - customjsscript = jsscript.read() - # Callback Java scripting - source.callback = CustomJS( - args=dict(mytable=dt), - code=customjsscript) - - # Layout the plot and the datatable bar - save(layout([[dt], [plot]])) - - def disconnect_usb(self, ad, sleeptime): - """Disconnect usb while device is on sleep and - connect the usb again once the sleep time completes - - sleeptime: sleep time where dut is disconnected from usb - """ - self.dut.adb.shell(RESET_BATTERY_STATS) - time.sleep(1) - for _ in range(LOGTIME_RETRY_COUNT): - self.mon_info.dut.disconnect_dut() - if not ad.is_connected(): - time.sleep(sleeptime) - self.mon_info.dut.reconnect_dut() - break - else: - self.log.error('Test failed after maximum retry') - for _ in range(RECOVER_MONSOON_RETRY_COUNT): - if self.monsoon_recover(): - break - else: - self.log.warning( - 'Wait for {} second then try again'.format( - MONSOON_RETRY_INTERVAL)) - time.sleep(MONSOON_RETRY_INTERVAL) - else: - self.log.error('Failed to recover monsoon') diff --git a/acts/framework/acts/test_utils/power/PowerWiFiBaseTest.py b/acts/framework/acts/test_utils/power/PowerWiFiBaseTest.py index 937656e352..19702f4540 100644 --- a/acts/framework/acts/test_utils/power/PowerWiFiBaseTest.py +++ b/acts/framework/acts/test_utils/power/PowerWiFiBaseTest.py @@ -15,11 +15,9 @@ # limitations under the License. import acts.test_utils.power.PowerBaseTest as PBT -from acts.test_utils.wifi import wifi_test_utils as wutils from acts.test_utils.wifi import wifi_power_test_utils as wputils IPERF_DURATION = 'iperf_duration' -INITIAL_ATTEN = [0, 0, 90, 90] class PowerWiFiBaseTest(PBT.PowerBaseTest): @@ -36,8 +34,6 @@ class PowerWiFiBaseTest(PBT.PowerBaseTest): self.access_point_main = self.access_points[0] if len(self.access_points) > 1: self.access_point_aux = self.access_points[1] - if hasattr(self, 'attenuators'): - self.set_attenuation(INITIAL_ATTEN) if hasattr(self, 'network_file'): self.networks = self.unpack_custom_file(self.network_file, False) self.main_network = self.networks['main_network'] @@ -46,7 +42,7 @@ class PowerWiFiBaseTest(PBT.PowerBaseTest): self.pkt_sender = self.packet_senders[0] if hasattr(self, 'iperf_servers'): self.iperf_server = self.iperf_servers[0] - if self.iperf_duration: + if hasattr(self, 'iperf_duration'): self.mon_duration = self.iperf_duration - 10 self.create_monsoon_info() @@ -85,41 +81,15 @@ class PowerWiFiBaseTest(PBT.PowerBaseTest): for ap in self.access_points: ap.close() - def setup_ap_connection(self, network, bandwidth=80, connect=True, - ap=None): - """Setup AP and connect DUT to it. - - Args: - network: the network config for the AP to be setup - bandwidth: bandwidth of the WiFi network to be setup - connect: indicator of if connect dut to the network after setup - ap: access point object, default is None to find the main AP - Returns: - self.brconfigs: dict for bridge interface configs - """ - wutils.wifi_toggle_state(self.dut, True) - if not ap: - if hasattr(self, 'access_points'): - self.brconfigs = wputils.ap_setup( - self.access_point, network, bandwidth=bandwidth) - else: - self.brconfigs = wputils.ap_setup(ap, network, bandwidth=bandwidth) - if connect: - wutils.wifi_connect(self.dut, network, num_of_tries=3) - - if ap or (not ap and hasattr(self, 'access_points')): - return self.brconfigs - def collect_power_data(self): """Measure power, plot and check pass/fail. If IPERF is run, need to pull iperf results and attach it to the plot. """ - result = super().collect_power_data() + super().collect_power_data() tag = '' - if self.iperf_duration: + if hasattr(self, IPERF_DURATION): throughput = self.process_iperf_results() tag = '_RSSI_{0:d}dBm_Throughput_{1:.2f}Mbps'.format( self.RSSI, throughput) - wputils.monsoon_data_plot(self.mon_info, result, tag=tag) - return result + wputils.monsoon_data_plot(self.mon_info, self.file_path, tag=tag) diff --git a/acts/framework/acts/test_utils/power/loggers/__init__.py b/acts/framework/acts/test_utils/power/loggers/__init__.py deleted file mode 100644 index e69de29bb2..0000000000 --- a/acts/framework/acts/test_utils/power/loggers/__init__.py +++ /dev/null diff --git a/acts/framework/acts/test_utils/power/loggers/power_metric_logger.py b/acts/framework/acts/test_utils/power/loggers/power_metric_logger.py deleted file mode 100644 index 6738e097ba..0000000000 --- a/acts/framework/acts/test_utils/power/loggers/power_metric_logger.py +++ /dev/null @@ -1,53 +0,0 @@ -# /usr/bin/env python3 -# -# Copyright (C) 2019 The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -import os -import acts.test_utils.power.loggers.protos.power_metric_pb2 as power_protos - -from acts.metrics.core import ProtoMetric -from acts.metrics.logger import MetricLogger - -# Initializes the path to the protobuf -PROTO_PATH = os.path.join(os.path.dirname(__file__), 'protos', - 'power_metric.proto') - - -class PowerMetricLogger(MetricLogger): - """A logger for gathering Power test metrics - - Attributes: - proto: Module used to store Power metrics in a proto - """ - - def __init__(self, event): - super().__init__(event=event) - self.proto = power_protos.PowerMetric() - - def set_dl_tput(self, avg_dl_tput): - self.proto.cellular_metric.avg_dl_tput = avg_dl_tput - - def set_ul_tput(self, avg_ul_tput): - self.proto.cellular_metric.avg_ul_tput = avg_ul_tput - - def set_avg_power(self, avg_power): - self.proto.avg_power = avg_power - - def set_testbed(self, testbed): - self.proto.testbed = testbed - - def end(self, event): - metric = ProtoMetric(name='spanner_power_metric', data=self.proto) - return self.publisher.publish(metric) diff --git a/acts/framework/acts/test_utils/power/loggers/protos/__init__.py b/acts/framework/acts/test_utils/power/loggers/protos/__init__.py deleted file mode 100644 index e69de29bb2..0000000000 --- a/acts/framework/acts/test_utils/power/loggers/protos/__init__.py +++ /dev/null diff --git a/acts/framework/acts/test_utils/power/loggers/protos/power_metric.proto b/acts/framework/acts/test_utils/power/loggers/protos/power_metric.proto deleted file mode 100644 index a3c81ba89d..0000000000 --- a/acts/framework/acts/test_utils/power/loggers/protos/power_metric.proto +++ /dev/null @@ -1,27 +0,0 @@ -/* Note: If making any changes to this file be sure to generate a new - compiled *_pb2.py file by running the following command from the same dir: - $ protoc -I=. --python_out=. power_metric.proto - - Be sure that you are compiling with protoc 3.4.0 - - More info can be found at: - https://developers.google.com/protocol-buffers/docs/pythontutorial -*/ - -syntax = "proto2"; - -package wireless.android.platform.testing.power.metrics; - -/* - Power metrics to be uploaded to Spanner -*/ -message PowerMetric { - optional float avg_power = 1; // Required - optional string testbed = 2; // Required - optional PowerCellularMetric cellular_metric = 3; -} - -message PowerCellularMetric { - optional float avg_dl_tput = 1; - optional float avg_ul_tput = 2; -} diff --git a/acts/framework/acts/test_utils/power/loggers/protos/power_metric_pb2.py b/acts/framework/acts/test_utils/power/loggers/protos/power_metric_pb2.py deleted file mode 100644 index 0d205ddcb1..0000000000 --- a/acts/framework/acts/test_utils/power/loggers/protos/power_metric_pb2.py +++ /dev/null @@ -1,130 +0,0 @@ -# Generated by the protocol buffer compiler. DO NOT EDIT! -# source: power_metric.proto - -import sys -_b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) -from google.protobuf import descriptor as _descriptor -from google.protobuf import message as _message -from google.protobuf import reflection as _reflection -from google.protobuf import symbol_database as _symbol_database -from google.protobuf import descriptor_pb2 -# @@protoc_insertion_point(imports) - -_sym_db = _symbol_database.Default() - - - - -DESCRIPTOR = _descriptor.FileDescriptor( - name='power_metric.proto', - package='wireless.android.platform.testing.power.metrics', - syntax='proto2', - serialized_pb=_b('\n\x12power_metric.proto\x12/wireless.android.platform.testing.power.metrics\"\x90\x01\n\x0bPowerMetric\x12\x11\n\tavg_power\x18\x01 \x01(\x02\x12\x0f\n\x07testbed\x18\x02 \x01(\t\x12]\n\x0f\x63\x65llular_metric\x18\x03 \x01(\x0b\x32\x44.wireless.android.platform.testing.power.metrics.PowerCellularMetric\"?\n\x13PowerCellularMetric\x12\x13\n\x0b\x61vg_dl_tput\x18\x01 \x01(\x02\x12\x13\n\x0b\x61vg_ul_tput\x18\x02 \x01(\x02') -) - - - - -_POWERMETRIC = _descriptor.Descriptor( - name='PowerMetric', - full_name='wireless.android.platform.testing.power.metrics.PowerMetric', - filename=None, - file=DESCRIPTOR, - containing_type=None, - fields=[ - _descriptor.FieldDescriptor( - name='avg_power', full_name='wireless.android.platform.testing.power.metrics.PowerMetric.avg_power', index=0, - number=1, type=2, cpp_type=6, label=1, - has_default_value=False, default_value=float(0), - message_type=None, enum_type=None, containing_type=None, - is_extension=False, extension_scope=None, - options=None), - _descriptor.FieldDescriptor( - name='testbed', full_name='wireless.android.platform.testing.power.metrics.PowerMetric.testbed', index=1, - number=2, type=9, cpp_type=9, label=1, - has_default_value=False, default_value=_b("").decode('utf-8'), - message_type=None, enum_type=None, containing_type=None, - is_extension=False, extension_scope=None, - options=None), - _descriptor.FieldDescriptor( - name='cellular_metric', full_name='wireless.android.platform.testing.power.metrics.PowerMetric.cellular_metric', index=2, - number=3, type=11, cpp_type=10, label=1, - has_default_value=False, default_value=None, - message_type=None, enum_type=None, containing_type=None, - is_extension=False, extension_scope=None, - options=None), - ], - extensions=[ - ], - nested_types=[], - enum_types=[ - ], - options=None, - is_extendable=False, - syntax='proto2', - extension_ranges=[], - oneofs=[ - ], - serialized_start=72, - serialized_end=216, -) - - -_POWERCELLULARMETRIC = _descriptor.Descriptor( - name='PowerCellularMetric', - full_name='wireless.android.platform.testing.power.metrics.PowerCellularMetric', - filename=None, - file=DESCRIPTOR, - containing_type=None, - fields=[ - _descriptor.FieldDescriptor( - name='avg_dl_tput', full_name='wireless.android.platform.testing.power.metrics.PowerCellularMetric.avg_dl_tput', index=0, - number=1, type=2, cpp_type=6, label=1, - has_default_value=False, default_value=float(0), - message_type=None, enum_type=None, containing_type=None, - is_extension=False, extension_scope=None, - options=None), - _descriptor.FieldDescriptor( - name='avg_ul_tput', full_name='wireless.android.platform.testing.power.metrics.PowerCellularMetric.avg_ul_tput', index=1, - number=2, type=2, cpp_type=6, label=1, - has_default_value=False, default_value=float(0), - message_type=None, enum_type=None, containing_type=None, - is_extension=False, extension_scope=None, - options=None), - ], - extensions=[ - ], - nested_types=[], - enum_types=[ - ], - options=None, - is_extendable=False, - syntax='proto2', - extension_ranges=[], - oneofs=[ - ], - serialized_start=218, - serialized_end=281, -) - -_POWERMETRIC.fields_by_name['cellular_metric'].message_type = _POWERCELLULARMETRIC -DESCRIPTOR.message_types_by_name['PowerMetric'] = _POWERMETRIC -DESCRIPTOR.message_types_by_name['PowerCellularMetric'] = _POWERCELLULARMETRIC -_sym_db.RegisterFileDescriptor(DESCRIPTOR) - -PowerMetric = _reflection.GeneratedProtocolMessageType('PowerMetric', (_message.Message,), dict( - DESCRIPTOR = _POWERMETRIC, - __module__ = 'power_metric_pb2' - # @@protoc_insertion_point(class_scope:wireless.android.platform.testing.power.metrics.PowerMetric) - )) -_sym_db.RegisterMessage(PowerMetric) - -PowerCellularMetric = _reflection.GeneratedProtocolMessageType('PowerCellularMetric', (_message.Message,), dict( - DESCRIPTOR = _POWERCELLULARMETRIC, - __module__ = 'power_metric_pb2' - # @@protoc_insertion_point(class_scope:wireless.android.platform.testing.power.metrics.PowerCellularMetric) - )) -_sym_db.RegisterMessage(PowerCellularMetric) - - -# @@protoc_insertion_point(module_scope) diff --git a/acts/framework/acts/test_utils/power/tel_simulations/BaseSimulation.py b/acts/framework/acts/test_utils/power/tel_simulations/BaseSimulation.py index 091c18ef0b..bb191a7da0 100644 --- a/acts/framework/acts/test_utils/power/tel_simulations/BaseSimulation.py +++ b/acts/framework/acts/test_utils/power/tel_simulations/BaseSimulation.py @@ -1,4 +1,4 @@ -#!/usr/bin/env python3 +#!/usr/bin/env python3.4 # # Copyright 2018 - The Android Open Source Project # @@ -18,14 +18,16 @@ import time from enum import Enum import numpy as np -from acts.controllers import cellular_simulator + +from acts.controllers.anritsu_lib._anritsu_utils import AnritsuError +from acts.controllers.anritsu_lib.md8475a import BtsNumber from acts.test_utils.tel.tel_test_utils import get_telephony_signal_strength from acts.test_utils.tel.tel_test_utils import toggle_airplane_mode from acts.test_utils.tel.tel_test_utils import toggle_cell_data_roaming class BaseSimulation(): - """ Base class for cellular connectivity simulations. + """ Base class for an Anritsu Simulation abstraction. Classes that inherit from this base class implement different simulation setups. The base class contains methods that are common to all simulation @@ -35,17 +37,15 @@ class BaseSimulation(): NUM_UL_CAL_READS = 3 NUM_DL_CAL_READS = 5 + DL_CAL_TARGET_POWER = {'A': -15.0, 'B': -35.0} MAX_BTS_INPUT_POWER = 30 MAX_PHONE_OUTPUT_POWER = 23 + DL_MAX_POWER = {'A': -10.0, 'B': -30.0} UL_MIN_POWER = -60.0 # Key to read the calibration setting from the test_config dictionary. KEY_CALIBRATION = "calibration" - # Filepath to the config files stored in the Anritsu callbox. Needs to be - # formatted to replace {} with either A or B depending on the model. - CALLBOX_PATH_FORMAT_STR = 'C:\\Users\\MD8475{}\\Documents\\DAN_configs\\' - # Time in seconds to wait for the phone to settle # after attaching to the base station. SETTLING_TIME = 10 @@ -57,49 +57,14 @@ class BaseSimulation(): # Max retries before giving up attaching the phone ATTACH_MAX_RETRIES = 3 - # These two dictionaries allow to map from a string to a signal level and - # have to be overriden by the simulations inheriting from this class. - UPLINK_SIGNAL_LEVEL_DICTIONARY = {} - DOWNLINK_SIGNAL_LEVEL_DICTIONARY = {} - - # Units for downlink signal level. This variable has to be overriden by - # the simulations inheriting from this class. - DOWNLINK_SIGNAL_LEVEL_UNITS = None - - class BtsConfig: - """ Base station configuration class. This class is only a container for - base station parameters and should not interact with the instrument - controller. - - Atributes: - output_power: a float indicating the required signal level at the - instrument's output. - input_level: a float indicating the required signal level at the - instrument's input. - """ - def __init__(self): - """ Initialize the base station config by setting all its - parameters to None. """ - self.output_power = None - self.input_power = None - self.band = None - - def incorporate(self, new_config): - """ Incorporates a different configuration by replacing the current - values with the new ones for all the parameters different to None. - """ - for attr, value in vars(new_config).items(): - if value: - setattr(self, attr, value) - - def __init__(self, simulator, log, dut, test_config, calibration_table): + def __init__(self, anritsu, log, dut, test_config, calibration_table): """ Initializes the Simulation object. Keeps a reference to the callbox, log and dut handlers and initializes the class attributes. Args: - simulator: a cellular simulator controller + anritsu: the Anritsu callbox controller log: a logger handle dut: the android device handler test_config: test configuration obtained from the config file @@ -107,7 +72,7 @@ class BaseSimulation(): different bands. """ - self.simulator = simulator + self.anritsu = anritsu self.log = log self.dut = dut self.calibration_table = calibration_table @@ -124,8 +89,8 @@ class BaseSimulation(): self.calibration_required = test_config.get(self.KEY_CALIBRATION, False) - # Configuration object for the primary base station - self.primary_config = self.BtsConfig() + # Gets BTS1 since this sim only has 1 BTS + self.bts1 = self.anritsu.get_BTS(BtsNumber.BTS1) # Store the current calibrated band self.current_calibrated_band = None @@ -138,9 +103,6 @@ class BaseSimulation(): self.sim_dl_power = None self.sim_ul_power = None - # Stores RRC status change timer - self.rrc_sc_timer = None - # Set to default APN log.info("Setting preferred APN to anritsu1.com.") dut.droid.telephonySetAPN("anritsu1.com", "anritsu1.com") @@ -148,18 +110,21 @@ class BaseSimulation(): # Enable roaming on the phone toggle_cell_data_roaming(self.dut, True) + def start(self): + """ Start simulation. + + Starts the simulation in the Anritsu Callbox. + + """ + # Make sure airplane mode is on so the phone won't attach right away toggle_airplane_mode(self.log, self.dut, True) # Wait for airplane mode setting to propagate time.sleep(2) - # Prepare the simulator for this simulation setup - self.setup_simulator() - - def setup_simulator(self): - """ Do initial configuration in the simulator. """ - raise NotImplementedError() + # Start simulation if it wasn't started + self.anritsu.start_simulation() def attach(self): """ Attach the phone to the basestation. @@ -178,11 +143,9 @@ class BaseSimulation(): time.sleep(2) # Provide a good signal power for the phone to attach easily - new_config = self.BtsConfig() - new_config.input_power = -10 - new_config.output_power = -30 - self.simulator.configure_bts(new_config) - self.primary_config.incorporate(new_config) + self.bts1.input_level = -10 + time.sleep(2) + self.bts1.output_level = -30 # Try to attach the phone. for i in range(self.ATTACH_MAX_RETRIES): @@ -193,14 +156,15 @@ class BaseSimulation(): toggle_airplane_mode(self.log, self.dut, False) # Wait for the phone to attach. - self.simulator.wait_until_attached( - timeout=self.ATTACH_WAITING_TIME) + self.anritsu.wait_for_registration_state( + time_to_wait=self.ATTACH_WAITING_TIME) - except cellular_simulator.CellularSimulatorError: + except AnritsuError as e: # The phone failed to attach self.log.info( "UE failed to attach on attempt number {}.".format(i + 1)) + self.log.info("Error message: {}".format(str(e))) # Turn airplane mode on to prepare the phone for a retry. toggle_airplane_mode(self.log, self.dut, True) @@ -222,6 +186,14 @@ class BaseSimulation(): self.log.info("UE attached to the callbox.") break + # Set signal levels obtained from the test parameters + if self.sim_dl_power: + self.set_downlink_rx_power(self.bts1, self.sim_dl_power) + time.sleep(2) + if self.sim_ul_power: + self.set_uplink_tx_power(self.bts1, self.sim_ul_power) + time.sleep(2) + return True def detach(self): @@ -238,12 +210,14 @@ class BaseSimulation(): time.sleep(2) # Power off basestation - self.simulator.detach() + self.anritsu.set_simulation_state_to_poweroff() def stop(self): """ Detach phone from the basestation by stopping the simulation. - Stop the simulation and turn airplane mode on. """ + Send stop command to anritsu and turn on airplane mode. + + """ # Set the DUT to airplane mode so it doesn't see the # cellular network going off @@ -253,38 +227,7 @@ class BaseSimulation(): time.sleep(2) # Stop the simulation - self.simulator.stop() - - def start(self): - """ Start the simulation by attaching the phone and setting the - required DL and UL power. - - Note that this refers to starting the simulated testing environment - and not to starting the signaling on the cellular instruments, - which might have been done earlier depending on the cellular - instrument controller implementation. """ - - if not self.attach(): - raise RuntimeError('Could not attach to base station.') - - # Starts IP traffic while changing this setting to force the UE to be - # in Communication state, as UL power cannot be set in Idle state - self.start_traffic_for_calibration() - - # Wait until it goes to communication state - self.simulator.wait_until_communication_state() - - # Set signal levels obtained from the test parameters - new_config = self.BtsConfig() - new_config.output_power = self.calibrated_downlink_rx_power( - self.primary_config, self.sim_dl_power) - new_config.input_power = self.calibrated_uplink_tx_power( - self.primary_config, self.sim_ul_power) - self.simulator.configure_bts(new_config) - self.primary_config.incorporate(new_config) - - # Stop IP traffic after setting the UL power level - self.stop_traffic_for_calibration() + self.anritsu.stop_simulation() def parse_parameters(self, parameters): """ Configures simulation using a list of parameters. @@ -296,7 +239,7 @@ class BaseSimulation(): parameters: list of parameters """ - raise NotImplementedError() + pass def consume_parameter(self, parameters, parameter_name, num_values=0): """ Parses a parameter from a list. @@ -332,52 +275,13 @@ class BaseSimulation(): return return_list - def get_uplink_power_from_parameters(self, parameters): - """ Reads uplink power from a list of parameters. """ - - values = self.consume_parameter(parameters, self.PARAM_UL_PW, 1) - - if not values or values[1] not in self.UPLINK_SIGNAL_LEVEL_DICTIONARY: - raise ValueError( - "The test name needs to include parameter {} followed by one " - "the following values: {}.".format( - self.PARAM_UL_PW, - list(self.UPLINK_SIGNAL_LEVEL_DICTIONARY.keys()))) - - return self.UPLINK_SIGNAL_LEVEL_DICTIONARY[values[1]] - - def get_downlink_power_from_parameters(self, parameters): - """ Reads downlink power from a list of parameters. """ - - values = self.consume_parameter(parameters, self.PARAM_DL_PW, 1) - - if values: - if values[1] not in self.DOWNLINK_SIGNAL_LEVEL_DICTIONARY: - raise ValueError("Invalid signal level value {}.".format( - values[1])) - else: - return self.DOWNLINK_SIGNAL_LEVEL_DICTIONARY[values[1]] - else: - # Use default value - power = self.DOWNLINK_SIGNAL_LEVEL_DICTIONARY['excellent'] - self.log.info("No DL signal level value was indicated in the test " - "parameters. Using default value of {} {}.".format( - power, self.DOWNLINK_SIGNAL_LEVEL_UNITS)) - return power - - def calibrated_downlink_rx_power(self, bts_config, signal_level): - """ Calculates the power level at the instrument's output in order to - obtain the required rx power level at the DUT's input. - - If calibration values are not available, returns the uncalibrated signal - level. + def set_downlink_rx_power(self, bts, signal_level): + """ Sets downlink rx power using calibration if available Args: - bts_config: the current configuration at the base station. derived - classes implementations can use this object to indicate power as - spectral power density or in other units. + bts: the base station in which to change the signal level signal_level: desired downlink received power, can be either a - key value pair, an int or a float + key value pair, an int or a float """ # Obtain power value if the provided signal_level is a key value pair @@ -390,12 +294,14 @@ class BaseSimulation(): # throw an TypeError exception try: calibrated_power = round(power + self.dl_path_loss) - if calibrated_power > self.simulator.MAX_DL_POWER: + if (calibrated_power > + self.DL_MAX_POWER[self.anritsu._md8475_version]): self.log.warning( "Cannot achieve phone DL Rx power of {} dBm. Requested TX " "power of {} dBm exceeds callbox limit!".format( power, calibrated_power)) - calibrated_power = self.simulator.MAX_DL_POWER + calibrated_power = self.DL_MAX_POWER[ + self.anritsu._md8475_version] self.log.warning( "Setting callbox Tx power to max possible ({} dBm)".format( calibrated_power)) @@ -403,31 +309,25 @@ class BaseSimulation(): self.log.info( "Requested phone DL Rx power of {} dBm, setting callbox Tx " "power at {} dBm".format(power, calibrated_power)) + bts.output_level = calibrated_power time.sleep(2) # Power has to be a natural number so calibration wont be exact. # Inform the actual received power after rounding. self.log.info( "Phone downlink received power is {0:.2f} dBm".format( calibrated_power - self.dl_path_loss)) - return calibrated_power except TypeError: + bts.output_level = round(power) self.log.info("Phone downlink received power set to {} (link is " "uncalibrated).".format(round(power))) - return round(power) - - def calibrated_uplink_tx_power(self, bts_config, signal_level): - """ Calculates the power level at the instrument's input in order to - obtain the required tx power level at the DUT's output. - If calibration values are not available, returns the uncalibrated signal - level. + def set_uplink_tx_power(self, bts, signal_level): + """ Sets uplink tx power using calibration if available Args: - bts_config: the current configuration at the base station. derived - classes implementations can use this object to indicate power as - spectral power density or in other units. + bts: the base station in which to change the signal level signal_level: desired uplink transmitted power, can be either a - key value pair, an int or a float + key value pair, an int or a float """ # Obtain power value if the provided signal_level is a key value pair @@ -453,27 +353,24 @@ class BaseSimulation(): self.log.info( "Requested phone UL Tx power of {} dBm, setting callbox Rx " "power at {} dBm".format(power, calibrated_power)) + bts.input_level = calibrated_power time.sleep(2) # Power has to be a natural number so calibration wont be exact. # Inform the actual transmitted power after rounding. self.log.info( "Phone uplink transmitted power is {0:.2f} dBm".format( calibrated_power + self.ul_path_loss)) - return calibrated_power except TypeError: + bts.input_level = round(power) self.log.info("Phone uplink transmitted power set to {} (link is " "uncalibrated).".format(round(power))) - return round(power) - def calibrate(self, band): + def calibrate(self): """ Calculates UL and DL path loss if it wasn't done before. - The should be already set to the required band before calling this - method. - - Args: - band: the band that is currently being calibrated. """ + # SET TBS pattern for calibration + self.bts1.tbs_pattern = "FULLALLOCATION" if self.tbs_pattern_on else "OFF" if self.dl_path_loss and self.ul_path_loss: self.log.info("Measurements are already calibrated.") @@ -486,34 +383,26 @@ class BaseSimulation(): # If downlink or uplink were not yet calibrated, do it now if not self.dl_path_loss: - self.dl_path_loss = self.downlink_calibration() + self.dl_path_loss = self.downlink_calibration(self.bts1) if not self.ul_path_loss: - self.ul_path_loss = self.uplink_calibration() + self.ul_path_loss = self.uplink_calibration(self.bts1) # Detach after calibrating self.detach() time.sleep(2) - def start_traffic_for_calibration(self): - """ - Starts UDP IP traffic before running calibration. Uses APN_1 - configured in the phone. - """ - self.simulator.start_data_traffic() - - def stop_traffic_for_calibration(self): - """ - Stops IP traffic after calibration. - """ - self.simulator.stop_data_traffic() - - def downlink_calibration(self, rat=None, power_units_conversion_func=None): + def downlink_calibration(self, + bts, + rat=None, + power_units_conversion_func=None): """ Computes downlink path loss and returns the calibration value - The DUT needs to be attached to the base station before calling this - method. + The bts needs to be set at the desired config (bandwidth, mode, etc) + before running the calibration. The phone also needs to be attached + to the desired basesation for calibration Args: + bts: basestation handle rat: desired RAT to calibrate (matching the label reported by the phone) power_units_conversion_func: a function to convert the units @@ -531,23 +420,26 @@ class BaseSimulation(): "The parameter 'rat' has to indicate the RAT being used as " "reported by the phone.") - # Save initial output level to restore it after calibration - restoration_config = self.BtsConfig() - restoration_config.output_power = self.primary_config.output_power - # Set BTS to a good output level to minimize measurement error + init_output_level = bts.output_level initial_screen_timeout = self.dut.droid.getScreenTimeout() - new_config = self.BtsConfig() - new_config.output_power = self.simulator.MAX_DL_POWER - 5 - self.simulator.configure_bts(new_config) + bts.output_level = self.DL_CAL_TARGET_POWER[ + self.anritsu._md8475_version] # Set phone sleep time out self.dut.droid.setScreenTimeout(1800) self.dut.droid.goToSleepNow() time.sleep(2) - # Starting IP traffic - self.start_traffic_for_calibration() + # Starting first the IP traffic (UDP): Using always APN 1 + if not self.tbs_pattern_on: + try: + cmd = 'OPERATEIPTRAFFIC START,1' + self.anritsu.send_command(cmd) + except AnritsuError as inst: + self.log.warning( + "{}\n".format(inst)) # Typically RUNNING already + time.sleep(4) down_power_measured = [] for i in range(0, self.NUM_DL_CAL_READS): @@ -559,13 +451,20 @@ class BaseSimulation(): self.dut.droid.goToSleepNow() time.sleep(5) - # Stop IP traffic - self.stop_traffic_for_calibration() + # Stop the IP traffic (UDP) + if not self.tbs_pattern_on: + try: + cmd = 'OPERATEIPTRAFFIC STOP,1' + self.anritsu.send_command(cmd) + except AnritsuError as inst: + self.log.warning( + "{}\n".format(inst)) # Typically STOPPED already + time.sleep(2) # Reset phone and bts to original settings self.dut.droid.goToSleepNow() self.dut.droid.setScreenTimeout(initial_screen_timeout) - self.simulator.configure_bts(restoration_config) + bts.output_level = init_output_level time.sleep(2) # Calculate the mean of the measurements @@ -574,12 +473,13 @@ class BaseSimulation(): # Convert from RSRP to signal power if power_units_conversion_func: avg_down_power = power_units_conversion_func( - reported_asu_power, self.primary_config) + reported_asu_power, bts) else: avg_down_power = reported_asu_power # Calculate Path Loss - dl_target_power = self.simulator.MAX_DL_POWER - 5 + dl_target_power = self.DL_CAL_TARGET_POWER[ + self.anritsu._md8475_version] down_call_path_loss = dl_target_power - avg_down_power # Validate the result @@ -593,35 +493,41 @@ class BaseSimulation(): return down_call_path_loss - def uplink_calibration(self): + def uplink_calibration(self, bts): """ Computes uplink path loss and returns the calibration value - The DUT needs to be attached to the base station before calling this - method. + The bts needs to be set at the desired config (bandwidth, mode, etc) + before running the calibration. The phone also neeeds to be attached + to the desired basesation for calibration + + Args: + bts: basestation handle Returns: Uplink calibration value and measured UL power """ - # Save initial input level to restore it after calibration - restoration_config = self.BtsConfig() - restoration_config.input_power = self.primary_config.input_power - # Set BTS1 to maximum input allowed in order to perform # uplink calibration target_power = self.MAX_PHONE_OUTPUT_POWER + initial_input_level = bts.input_level initial_screen_timeout = self.dut.droid.getScreenTimeout() - new_config = self.BtsConfig() - new_config.input_power = self.MAX_BTS_INPUT_POWER - self.simulator.configure_bts(new_config) + bts.input_level = self.MAX_BTS_INPUT_POWER # Set phone sleep time out self.dut.droid.setScreenTimeout(1800) self.dut.droid.wakeUpNow() time.sleep(2) - # Start IP traffic - self.start_traffic_for_calibration() + # Starting first the IP traffic (UDP): Using always APN 1 + if not self.tbs_pattern_on: + try: + cmd = 'OPERATEIPTRAFFIC START,1' + self.anritsu.send_command(cmd) + except AnritsuError as inst: + self.log.warning( + "{}\n".format(inst)) # Typically RUNNING already + time.sleep(4) up_power_per_chain = [] # Get the number of chains @@ -645,13 +551,20 @@ class BaseSimulation(): time.sleep(3) - # Stop IP traffic - self.stop_traffic_for_calibration() + # Stop the IP traffic (UDP) + if not self.tbs_pattern_on: + try: + cmd = 'OPERATEIPTRAFFIC STOP,1' + self.anritsu.send_command(cmd) + except AnritsuError as inst: + self.log.warning( + "{}\n".format(inst)) # Typically STOPPED already + time.sleep(2) # Reset phone and bts to original settings self.dut.droid.goToSleepNow() self.dut.droid.setScreenTimeout(initial_screen_timeout) - self.simulator.configure_bts(restoration_config) + bts.input_level = initial_input_level time.sleep(2) # Phone only supports 1x1 Uplink so always chain 0 @@ -674,25 +587,33 @@ class BaseSimulation(): return up_call_path_loss - def load_pathloss_if_required(self): - """ If calibration is required, try to obtain the pathloss values from - the calibration table and measure them if they are not available. """ - # Invalidate the previous values - self.dl_path_loss = None - self.ul_path_loss = None + def set_band(self, bts, band, calibrate_if_necessary=True): + """ Sets the band used for communication. - # Load the new ones - if self.calibration_required: + When moving to a new band, recalibrate the link. - band = self.primary_config.band + Args: + bts: basestation handle + band: desired band + calibrate_if_necessary: if False calibration will be skipped + """ + + bts.band = band + time.sleep(5) # It takes some time to propagate the new band + + # Invalidate the calibration values + self.dl_path_loss = None + self.ul_path_loss = None + # Only calibrate when required. + if self.calibration_required and calibrate_if_necessary: # Try loading the path loss values from the calibration table. If # they are not available, use the automated calibration procedure. try: self.dl_path_loss = self.calibration_table[band]["dl"] self.ul_path_loss = self.calibration_table[band]["ul"] except KeyError: - self.calibrate(band) + self.calibrate() # Complete the calibration table with the new values to be used in # the next tests. @@ -728,3 +649,11 @@ class BaseSimulation(): Maximum throughput in mbps """ raise NotImplementedError() + + def start_test_case(self): + """ Starts a test case in the current simulation. + + Requires the phone to be attached. + """ + + pass diff --git a/acts/framework/acts/test_utils/power/tel_simulations/GsmSimulation.py b/acts/framework/acts/test_utils/power/tel_simulations/GsmSimulation.py index 6dc2082cd6..16bfa8a30c 100644 --- a/acts/framework/acts/test_utils/power/tel_simulations/GsmSimulation.py +++ b/acts/framework/acts/test_utils/power/tel_simulations/GsmSimulation.py @@ -1,4 +1,4 @@ -#!/usr/bin/env python3 +#!/usr/bin/env python3.4 # # Copyright 2018 - The Android Open Source Project # @@ -13,13 +13,7 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. - -import ntpath - -import time from acts.controllers.anritsu_lib.md8475a import BtsGprsMode -from acts.controllers.anritsu_lib.md8475a import BtsNumber -from acts.controllers.anritsu_lib import md8475_cellular_simulator as anritsusim from acts.test_utils.power.tel_simulations.BaseSimulation import BaseSimulation from acts.test_utils.tel.anritsu_utils import GSM_BAND_DCS1800 from acts.test_utils.tel.anritsu_utils import GSM_BAND_EGSM900 @@ -29,15 +23,19 @@ from acts.test_utils.tel.tel_defines import NETWORK_MODE_GSM_ONLY class GsmSimulation(BaseSimulation): - """ Single base station GSM. """ + """ Simple GSM simulation with only one basestation. + + """ # Simulation config files in the callbox computer. # These should be replaced in the future by setting up # the same configuration manually. - GSM_BASIC_SIM_FILE = 'SIM_default_GSM.wnssp' + GSM_BASIC_SIM_FILE = ('C:\\Users\MD8475A\Documents\DAN_configs\\' + 'SIM_default_GSM.wnssp') - GSM_CELL_FILE = 'CELL_GSM_config.wnscp' + GSM_CELL_FILE = ('C:\\Users\MD8475A\Documents\\DAN_configs\\' + 'CELL_GSM_config.wnscp') # Test name parameters @@ -54,14 +52,14 @@ class GsmSimulation(BaseSimulation): '1900': GSM_BAND_RGSM900 } - def __init__(self, simulator, log, dut, test_config, calibration_table): - """ Initializes the simulator for a single-carrier GSM simulation. + def __init__(self, anritsu, log, dut, test_config, calibration_table): + """ Configures Anritsu system for GSM simulation with 1 basetation Loads a simple LTE simulation enviroment with 1 basestation. It also creates the BTS handle so we can change the parameters as desired. Args: - simulator: a cellular simulator controller + anritsu: the Anritsu callbox controller log: a logger handle dut: the android device handler test_config: test configuration obtained from the config file @@ -69,18 +67,11 @@ class GsmSimulation(BaseSimulation): different bands. """ - # The GSM simulation relies on the cellular simulator to be a MD8475 - if not isinstance(self.simulator, anritsusim.MD8475CellularSimulator): - raise ValueError('The GSM simulation relies on the simulator to ' - 'be an Anritsu MD8475 A/B instrument.') - # The Anritsu controller needs to be unwrapped before calling - # super().__init__ because setup_simulator() requires self.anritsu and - # will be called during the parent class initialization. - self.anritsu = self.simulator.anritsu - self.bts1 = self.anritsu.get_BTS(BtsNumber.BTS1) + super().__init__(anritsu, log, dut, test_config, calibration_table) - super().__init__(simulator, log, dut, test_config, calibration_table) + anritsu.load_simulation_paramfile(self.GSM_BASIC_SIM_FILE) + self.anritsu.load_cell_paramfile(self.GSM_CELL_FILE) if not dut.droid.telephonySetPreferredNetworkTypesForSubscription( NETWORK_MODE_GSM_ONLY, @@ -89,21 +80,6 @@ class GsmSimulation(BaseSimulation): else: log.info("Preferred network type set.") - def setup_simulator(self): - """ Do initial configuration in the simulator. """ - - # Load callbox config files - callbox_config_path = self.CALLBOX_PATH_FORMAT_STR.format( - self.anritsu._md8475_version) - - self.anritsu.load_simulation_paramfile( - ntpath.join(callbox_config_path, self.GSM_BASIC_SIM_FILE)) - self.anritsu.load_cell_paramfile( - ntpath.join(callbox_config_path, self.GSM_CELL_FILE)) - - # Start simulation if it wasn't started - self.anritsu.start_simulation() - def parse_parameters(self, parameters): """ Configs a GSM simulation using a list of parameters. @@ -113,6 +89,8 @@ class GsmSimulation(BaseSimulation): parameters: list of parameters """ + super().parse_parameters(parameters) + # Setup band values = self.consume_parameter(parameters, self.PARAM_BAND, 1) @@ -123,7 +101,6 @@ class GsmSimulation(BaseSimulation): "the required band number.".format(self.PARAM_BAND)) self.set_band(self.bts1, values[1]) - self.load_pathloss_if_required() # Setup GPRS mode @@ -150,14 +127,3 @@ class GsmSimulation(BaseSimulation): self.PARAM_SLOTS)) self.bts1.gsm_slots = (int(values[1]), int(values[2])) - - def set_band(self, bts, band): - """ Sets the band used for communication. - - Args: - bts: basestation handle - band: desired band - """ - - bts.band = band - time.sleep(5) # It takes some time to propagate the new band diff --git a/acts/framework/acts/test_utils/power/tel_simulations/LteCaSimulation.py b/acts/framework/acts/test_utils/power/tel_simulations/LteCaSimulation.py index 6273833705..f4014652cc 100644 --- a/acts/framework/acts/test_utils/power/tel_simulations/LteCaSimulation.py +++ b/acts/framework/acts/test_utils/power/tel_simulations/LteCaSimulation.py @@ -1,4 +1,4 @@ -#!/usr/bin/env python3 +#!/usr/bin/env python3.4 # # Copyright 2018 - The Android Open Source Project # @@ -14,73 +14,34 @@ # See the License for the specific language governing permissions and # limitations under the License. import re +import time + from acts.controllers.anritsu_lib.md8475a import BtsNumber -from acts.controllers.anritsu_lib.md8475a import BtsTechnology -from acts.controllers.anritsu_lib.md8475a import LteMimoMode -from acts.test_utils.power.tel_simulations import LteSimulation - - -class LteCaSimulation(LteSimulation.LteSimulation): - """ Carrier aggregation LTE simulation. """ - - # Dictionary of lower DL channel number bound for each band. - LOWEST_DL_CN_DICTIONARY = { - 1: 0, - 2: 600, - 3: 1200, - 4: 1950, - 5: 2400, - 6: 2650, - 7: 2750, - 8: 3450, - 9: 3800, - 10: 4150, - 11: 4750, - 12: 5010, - 13: 5180, - 14: 5280, - 17: 5730, - 18: 5850, - 19: 6000, - 20: 6150, - 21: 6450, - 22: 6600, - 23: 7500, - 24: 7700, - 25: 8040, - 26: 8690, - 27: 9040, - 28: 9210, - 29: 9660, - 30: 9770, - 31: 9870, - 32: 36000, - 33: 36200, - 34: 36350, - 35: 36950, - 36: 37550, - 37: 37750, - 38: 38250, - 39: 38650, - 40: 39650, - 41: 41590, - 42: 45590 - } +from acts.controllers.anritsu_lib.md8475a import BtsPacketRate +from acts.controllers.anritsu_lib.md8475a import TestProcedure +from acts.controllers.anritsu_lib.md8475a import TestPowerControl +from acts.controllers.anritsu_lib.md8475a import TestMeasurement +from acts.test_utils.power.tel_simulations.LteSimulation import LteSimulation + + +class LteCaSimulation(LteSimulation): + # Simulation config files in the callbox computer. + # These should be replaced in the future by setting up + # the same configuration manually. + LTE_BASIC_SIM_FILE = 'SIM_LTE_CA' + LTE_BASIC_CELL_FILE = 'CELL_LTE_CA_config' # Simulation config keywords contained in the test name PARAM_CA = 'ca' - # Test config keywords - KEY_FREQ_BANDS = "freq_bands" - - def __init__(self, simulator, log, dut, test_config, calibration_table): - """ Initializes the simulator for LTE simulation with carrier + def __init__(self, anritsu, log, dut, test_config, calibration_table): + """ Configures Anritsu system for LTE simulation with carrier aggregation. Loads a simple LTE simulation enviroment with 5 basestations. Args: - simulator: the cellular instrument controller + anritsu: the Anritsu callbox controller log: a logger handle dut: the android device handler test_config: test configuration obtained from the config file @@ -89,62 +50,27 @@ class LteCaSimulation(LteSimulation.LteSimulation): """ - super().__init__(simulator, log, dut, test_config, calibration_table) + super().__init__(anritsu, log, dut, test_config, calibration_table) - self.anritsu = simulator.anritsu - - self.bts = [ - self.anritsu.get_BTS(BtsNumber.BTS1), - self.anritsu.get_BTS(BtsNumber.BTS2) - ] + self.bts = [self.bts1, self.anritsu.get_BTS(BtsNumber.BTS2)] if self.anritsu._md8475_version == 'B': self.bts.extend([ - self.anritsu.get_BTS(BtsNumber.BTS3), - self.anritsu.get_BTS(BtsNumber.BTS4) + anritsu.get_BTS(BtsNumber.BTS3), + anritsu.get_BTS(BtsNumber.BTS4), + anritsu.get_BTS(BtsNumber.BTS5) ]) - # Create a configuration object for each base station and copy initial - # settings from the PCC base station. - self.bts_configs = [self.primary_config] - - for bts_index in range(1, self.simulator.LTE_MAX_CARRIERS): - new_config = self.BtsConfig() - new_config.incorporate(self.primary_config) - self.simulator.configure_bts(new_config, bts_index) - self.bts_configs.append(new_config) - - # Get LTE CA frequency bands setting from the test configuration - if self.KEY_FREQ_BANDS not in test_config: - self.log.warning("The key '{}' is not set in the config file. " - "Setting to null by default.".format( - self.KEY_FREQ_BANDS)) - - self.freq_bands = test_config.get(self.KEY_FREQ_BANDS, True) - - def setup_simulator(self): - """ Do initial configuration in the simulator. """ - self.simulator.setup_lte_ca_scenario() - def parse_parameters(self, parameters): """ Configs an LTE simulation with CA using a list of parameters. + Calls the parent method first, then consumes parameters specific to LTE + Args: parameters: list of parameters """ - # Enable all base stations initially. The ones that are not needed after - # parsing the CA combo string can be removed. - self.anritsu.set_simulation_model(BtsTechnology.LTE, - BtsTechnology.LTE, - BtsTechnology.LTE, - BtsTechnology.LTE, - reset=False) - - # Create an empty array for new configuration objects. Elements will be - # added to this list after parsing the CA configuration from the band - # parameter. - new_configs = [] + super(LteSimulation, self).parse_parameters(parameters) # Get the CA band configuration @@ -174,7 +100,7 @@ class LteCaSimulation(LteSimulation.LteSimulation): for ca in ca_configs: - band = ca[:-1] + band = int(ca[:-1]) ca_class = ca[-1] if ca_class.upper() == 'B': @@ -188,31 +114,31 @@ class LteCaSimulation(LteSimulation.LteSimulation): if ca_class.upper() == 'A': - if bts_index >= self.simulator.LTE_MAX_CARRIERS: + if bts_index >= len(self.bts): raise ValueError("This callbox model doesn't allow the " "requested CA configuration") - # Create a configuration object for this carrier - config = self.BtsConfig() - config.band = band - new_configs.append(config) + self.set_band_with_defaults( + self.bts[bts_index], + band, + calibrate_if_necessary=bts_index == 0) bts_index += 1 - carriers.append(band) elif ca_class.upper() == 'C': - if bts_index + 1 >= self.simulator.LTE_MAX_CARRIERS: + if bts_index + 1 >= len(self.bts): raise ValueError("This callbox model doesn't allow the " "requested CA configuration") - # Create configuration objects for the two secondary carriers - scc_configs = [self.BtsConfig(), self.BtsConfig()] - - for config in scc_configs: - config.band = band - - new_configs.extend(scc_configs) + self.set_band_with_defaults( + self.bts[bts_index], + band, + calibrate_if_necessary=bts_index == 0) + self.set_band( + self.bts[bts_index + 1], + band, + calibrate_if_necessary=False) bts_index += 2 @@ -220,43 +146,14 @@ class LteCaSimulation(LteSimulation.LteSimulation): raise ValueError("Invalid carrier aggregation configuration: " "{}{}.".format(band, ca_class)) + carriers.append(band) + # Ensure there are at least two carriers being used self.num_carriers = bts_index if self.num_carriers < 2: raise ValueError("At least two carriers need to be indicated for " "the carrier aggregation sim.") - # Set the simulation model to use only the base stations that are - # needed for this CA combination. - - self.anritsu.set_simulation_model( - *[BtsTechnology.LTE for _ in range(self.num_carriers)], - reset=False) - - # If base stations use different bands, make sure that the RF cards are - # not being shared by setting the right maximum MIMO modes - if self.num_carriers == 2: - # RF cards are never shared when doing 2CA so 4X4 can be done in - # both base stations. - self.bts[0].mimo_support = LteMimoMode.MIMO_4X4 - self.bts[1].mimo_support = LteMimoMode.MIMO_4X4 - if self.num_carriers == 3: - # 4X4 can only be done in the second base station if it is shared - # with the primary. If the RF cards cannot be shared, then at most - # 2X2 can be done. - self.bts[0].mimo_support = LteMimoMode.MIMO_4X4 - if carriers[0] == carriers[1]: - self.bts[1].mimo_support = LteMimoMode.MIMO_4X4 - else: - self.bts[1].mimo_support = LteMimoMode.MIMO_2X2 - self.bts[2].mimo_support = LteMimoMode.MIMO_2X2 - - # Enable carrier aggregation - self.anritsu.set_carrier_aggregation_enabled() - - # Restart the simulation as changing the simulation model will stop it. - self.anritsu.start_simulation() - # Get the bw for each carrier # This is an optional parameter, by default the maximum bandwidth for # each band will be selected. @@ -276,17 +173,22 @@ class LteCaSimulation(LteSimulation.LteSimulation): else: bw = max(self.allowed_bandwidth_dictionary[band]) - new_configs[bts_index].bandwidth = bw + self.set_channel_bandwidth(self.bts[bts_index], bw) bts_index += 1 if ca_class.upper() == 'C': - new_configs[bts_index].bandwidth = bw + self.set_channel_bandwidth(self.bts[bts_index], bw) + + # Temporarily adding this line to workaround a bug in the + # Anritsu callbox in which the channel number needs to be set + # to a different value before setting it to the final one. + self.bts[bts_index].dl_channel = str( + int(self.bts[bts_index - 1].dl_channel) + bw * 10 - 1) + time.sleep(8) - # Calculate the channel number for the second carrier to be - # contiguous to the first one - new_configs[bts_index].dl_channel = int( - self.LOWEST_DL_CN_DICTIONARY[int(band)] + bw * 10 - 2) + self.bts[bts_index].dl_channel = str( + int(self.bts[bts_index - 1].dl_channel) + bw * 10 - 2) bts_index += 1 @@ -329,11 +231,11 @@ class LteCaSimulation(LteSimulation.LteSimulation): for elem in LteSimulation.MimoMode}) if (requested_mimo == LteSimulation.MimoMode.MIMO_4x4 - and not self.simulator.LTE_SUPPORTS_4X4_MIMO): + and self.anritsu._md8475_version == 'A'): raise ValueError("The test requires 4x4 MIMO, but that is not " "supported by the MD8475A callbox.") - new_configs[bts_index].mimo_mode = requested_mimo + self.set_mimo_mode(self.bts[bts_index], requested_mimo) # Parse and set the requested TM @@ -354,9 +256,9 @@ class LteCaSimulation(LteSimulation.LteSimulation): else: requested_tm = LteSimulation.TransmissionMode.TM3 - new_configs[bts_index].transmission_mode = requested_tm + self.set_transmission_mode(self.bts[bts_index], requested_tm) - self.log.info("Cell {} will be set to {} and {} MIMO.".format( + self.log.info("Cell {} was set to {} and {} MIMO.".format( bts_index + 1, requested_tm.value, requested_mimo.value)) # Get uplink power @@ -398,9 +300,6 @@ class LteCaSimulation(LteSimulation.LteSimulation): {elem.value for elem in LteSimulation.SchedulingMode})) - for bts_index in range(self.num_carriers): - new_configs[bts_index].scheduling_mode = scheduling - if scheduling == LteSimulation.SchedulingMode.STATIC: values = self.consume_parameter(parameters, self.PARAM_PATTERN, 2) @@ -410,89 +309,127 @@ class LteCaSimulation(LteSimulation.LteSimulation): "The '{}' parameter was not set, using 100% RBs for both " "DL and UL. To set the percentages of total RBs include " "the '{}' parameter followed by two ints separated by an " - "underscore indicating downlink and uplink percentages.". - format(self.PARAM_PATTERN, self.PARAM_PATTERN)) + "underscore indicating downlink and uplink percentages." + .format(self.PARAM_PATTERN, self.PARAM_PATTERN)) dl_pattern = 100 ul_pattern = 100 else: dl_pattern = int(values[1]) ul_pattern = int(values[2]) - if (dl_pattern, ul_pattern) not in [(0, 100), (100, 0), - (100, 100)]: + if (dl_pattern, ul_pattern) not in [(0, 100), (100, 0), (100, + 100)]: raise ValueError( "Only full RB allocation for DL or UL is supported in CA " "sims. The allowed combinations are 100/0, 0/100 and " "100/100.") - for bts_index in range(self.num_carriers): + if self.dl_256_qam and bw == 1.4: + mcs_dl = 26 + elif not self.dl_256_qam and self.tbs_pattern_on and bw != 1.4: + mcs_dl = 28 + else: + mcs_dl = 27 - if self.dl_256_qam and new_configs[bts_index].bandwidth == 1.4: - mcs_dl = 26 - elif (not self.dl_256_qam - and self.primary_config.tbs_pattern_on - and new_configs[bts_index].bandwidth != 1.4): - mcs_dl = 28 - else: - mcs_dl = 27 + if self.ul_64_qam: + mcs_ul = 28 + else: + mcs_ul = 23 - if self.ul_64_qam: - mcs_ul = 28 - else: - mcs_ul = 23 + for bts_index in range(self.num_carriers): dl_rbs, ul_rbs = self.allocation_percentages_to_rbs( - new_configs[bts_index].bandwidth, - new_configs[bts_index].transmission_mode, dl_pattern, - ul_pattern) + self.bts[bts_index], dl_pattern, ul_pattern) - new_configs[bts_index].dl_rbs = dl_rbs - new_configs[bts_index].ul_rbs = ul_rbs - new_configs[bts_index].dl_mcs = mcs_dl - new_configs[bts_index].ul_mcs = mcs_ul + self.set_scheduling_mode( + self.bts[bts_index], + LteSimulation.SchedulingMode.STATIC, + packet_rate=BtsPacketRate.LTE_MANUAL, + nrb_dl=dl_rbs, + nrb_ul=ul_rbs, + mcs_ul=mcs_ul, + mcs_dl=mcs_dl) - # Enable the configured base stations for CA - for bts_config in new_configs: - bts_config.dl_cc_enabled = True + else: - # Setup the base stations with the obtained configurations and then save - # these parameters in the current configuration objects - for bts_index in range(len(new_configs)): - self.simulator.configure_bts(new_configs[bts_index], bts_index) - self.bts_configs[bts_index].incorporate(new_configs[bts_index]) + for bts_index in range(self.num_carriers): - # Trigger UE capability enquiry from network to get - # UE supported CA band combinations. Here freq_bands is a hex string. - self.anritsu.trigger_ue_capability_enquiry(self.freq_bands) + self.set_scheduling_mode(self.bts[bts_index], + LteSimulation.SchedulingMode.DYNAMIC) - # Now that the band is set, calibrate the link for the PCC if necessary - self.load_pathloss_if_required() + def set_band_with_defaults(self, bts, band, calibrate_if_necessary=True): + """ Switches to the given band restoring default values + + Ensures the base station is switched from a different band so + band-dependent default values are restored. + + Args: + bts: basestation handle + band: desired band + calibrate_if_necessary: if False calibration will be skipped - def maximum_downlink_throughput(self): - """ Calculates maximum downlink throughput as the sum of all the active - carriers. """ - return sum( - self.bts_maximum_downlink_throughtput(self.bts_configs[bts_index]) - for bts_index in range(self.num_carriers)) - def start(self): - """ Set the signal level for the secondary carriers, as the base class - implementation of this method will only set up downlink power for the - primary carrier component. + # If the band is already the desired band, temporarily switch to + # another band to trigger restoring default values. + if int(bts.band) == band: + # Using bands 1 and 2 but it could be any others + bts.band = '1' if band != 1 else '2' + + self.set_band(bts, band, calibrate_if_necessary=calibrate_if_necessary) - After that, attaches the secondary carriers.""" + def set_downlink_rx_power(self, bts, rsrp): + """ Sets downlink rx power in RSRP using calibration for every cell - super().start() + Calls the method in the parent class for each base station. + + Args: + bts: this argument is ignored, as all the basestations need to have + the same downlink rx power + rsrp: desired rsrp, contained in a key value pair + """ + + for bts_index in range(self.num_carriers): + self.log.info("Setting DL power for BTS{}.".format(bts_index + 1)) + # Use parent method to set signal level + super().set_downlink_rx_power(self.bts[bts_index], rsrp) - if self.sim_dl_power: - self.log.info('Setting DL power for secondary carriers.') + def start_test_case(self): + """ Attaches the phone to all the other basestations. - for bts_index in range(1, self.num_carriers): - new_config = self.BtsConfig() - new_config.output_power = self.calibrated_downlink_rx_power( - self.bts_configs[bts_index], self.sim_dl_power) - self.simulator.configure_bts(new_config, bts_index) - self.bts_configs[bts_index].incorporate(new_config) + Starts the CA test case. Requires being attached to + basestation 1 first. - self.simulator.lte_attach_secondary_carriers() + """ + + testcase = self.anritsu.get_AnritsuTestCases() + testcase.procedure = TestProcedure.PROCEDURE_MULTICELL + testcase.power_control = TestPowerControl.POWER_CONTROL_DISABLE + testcase.measurement_LTE = TestMeasurement.MEASUREMENT_DISABLE + + for bts_index in range(1, len(self.bts)): + self.bts[bts_index].dl_cc_enabled = bts_index < self.num_carriers + + self.anritsu.start_testcase() + + retry_counter = 0 + self.log.info("Waiting for the test case to start...") + time.sleep(5) + + while self.anritsu.get_testcase_status() == "0": + retry_counter += 1 + if retry_counter == 3: + raise RuntimeError("The test case failed to start after {} " + "retries. The connection between the phone " + "and the basestation might be unstable." + .format(retry_counter)) + time.sleep(10) + + def maximum_downlink_throughput(self): + """ Calculates maximum downlink throughput as the sum of all the active + carriers. + """ + + return sum( + self.bts_maximum_downlink_throughtput(self.bts[bts_index]) + for bts_index in range(self.num_carriers)) diff --git a/acts/framework/acts/test_utils/power/tel_simulations/LteImsSimulation.py b/acts/framework/acts/test_utils/power/tel_simulations/LteImsSimulation.py deleted file mode 100644 index 71102463cf..0000000000 --- a/acts/framework/acts/test_utils/power/tel_simulations/LteImsSimulation.py +++ /dev/null @@ -1,46 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the 'License'); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an 'AS IS' BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -from acts.test_utils.power.tel_simulations.LteSimulation import LteSimulation -import acts.test_utils.tel.anritsu_utils as anritsu_utils -import acts.controllers.anritsu_lib.md8475a as md8475a - - -class LteImsSimulation(LteSimulation): - - LTE_BASIC_SIM_FILE = 'VoLTE_ATT_Sim.wnssp' - LTE_BASIC_CELL_FILE = 'VoLTE_ATT_Cell.wnscp' - - def attach(self): - """ After attaching verify the UE has registered with the IMS server. - - Returns: - True if the phone was able to attach, False if not. - """ - - if not super().attach(): - return False - - # The phone should have registered with the IMS server before attaching. - # Make sure the IMS registration was successful by verifying the CSCF - # status is SIP IDLE. - if not anritsu_utils.wait_for_ims_cscf_status( - self.log, self.anritsu, - anritsu_utils.DEFAULT_IMS_VIRTUAL_NETWORK_ID, - md8475a.ImsCscfStatus.SIPIDLE.value): - self.log.error('UE failed to register with the IMS server.') - return False - - return True diff --git a/acts/framework/acts/test_utils/power/tel_simulations/LteSimulation.py b/acts/framework/acts/test_utils/power/tel_simulations/LteSimulation.py index 8637b2dcee..73a5cd0f3e 100644 --- a/acts/framework/acts/test_utils/power/tel_simulations/LteSimulation.py +++ b/acts/framework/acts/test_utils/power/tel_simulations/LteSimulation.py @@ -1,4 +1,4 @@ -#!/usr/bin/env python3 +#!/usr/bin/env python3.4 # # Copyright 2018 - The Android Open Source Project # @@ -14,45 +14,26 @@ # See the License for the specific language governing permissions and # limitations under the License. +import time import math from enum import Enum +from acts.controllers.anritsu_lib.md8475a import BtsBandwidth +from acts.controllers.anritsu_lib.md8475a import BtsPacketRate from acts.test_utils.power.tel_simulations.BaseSimulation import BaseSimulation from acts.test_utils.tel.tel_defines import NETWORK_MODE_LTE_ONLY -class TransmissionMode(Enum): - """ Transmission modes for LTE (e.g., TM1, TM4, ...) """ - TM1 = "TM1" - TM2 = "TM2" - TM3 = "TM3" - TM4 = "TM4" - TM7 = "TM7" - TM8 = "TM8" - TM9 = "TM9" - - -class MimoMode(Enum): - """ Mimo modes """ - MIMO_1x1 = "1x1" - MIMO_2x2 = "2x2" - MIMO_4x4 = "4x4" - - -class SchedulingMode(Enum): - """ Traffic scheduling modes (e.g., STATIC, DYNAMIC) """ - DYNAMIC = "DYNAMIC" - STATIC = "STATIC" - - -class DuplexMode(Enum): - """ DL/UL Duplex mode """ - FDD = "FDD" - TDD = "TDD" +class LteSimulation(BaseSimulation): + """ Simple LTE simulation with only one basestation. + """ -class LteSimulation(BaseSimulation): - """ Single-carrier LTE simulation. """ + # Simulation config files in the callbox computer. + # These should be replaced in the future by setting up + # the same configuration manually. + LTE_BASIC_SIM_FILE = 'SIM_default_LTE' + LTE_BASIC_CELL_FILE = 'CELL_LTE_config' # Simulation config keywords contained in the test name PARAM_FRAME_CONFIG = "tddconfig" @@ -66,19 +47,48 @@ class LteSimulation(BaseSimulation): PARAM_DL_PW = 'pdl' PARAM_BAND = "band" PARAM_MIMO = "mimo" - PARAM_RRC_STATUS_CHANGE_TIMER = "rrcstatuschangetimer" # Test config keywords KEY_TBS_PATTERN = "tbs_pattern_on" KEY_DL_256_QAM = "256_qam_dl" KEY_UL_64_QAM = "64_qam_ul" - # Units in which signal level is defined in DOWNLINK_SIGNAL_LEVEL_DICTIONARY - DOWNLINK_SIGNAL_LEVEL_UNITS = "RSRP" + class TransmissionMode(Enum): + ''' Transmission modes for LTE (e.g., TM1, TM4, ..) + + ''' + TM1 = "TM1" + TM2 = "TM2" + TM3 = "TM3" + TM4 = "TM4" + TM7 = "TM7" + TM8 = "TM8" + TM9 = "TM9" + + class MimoMode(Enum): + """ Mimo modes """ + + MIMO_1x1 = "1x1" + MIMO_2x2 = "2x2" + MIMO_4x4 = "4x4" + + class SchedulingMode(Enum): + ''' Traffic scheduling modes (e.g., STATIC, DYNAMIC) + + ''' + DYNAMIC = "DYNAMIC" + STATIC = "STATIC" + + class DuplexMode(Enum): + ''' DL/UL Duplex mode + + ''' + FDD = "FDD" + TDD = "TDD" # RSRP signal levels thresholds (as reported by Android) in dBm/15KHz. # Excellent is set to -75 since callbox B Tx power is limited to -30 dBm - DOWNLINK_SIGNAL_LEVEL_DICTIONARY = { + downlink_rsrp_dictionary = { 'excellent': -75, 'high': -110, 'medium': -115, @@ -86,24 +96,55 @@ class LteSimulation(BaseSimulation): } # Transmitted output power for the phone (dBm) - UPLINK_SIGNAL_LEVEL_DICTIONARY = { - 'max': 27, + uplink_signal_level_dictionary = { + 'max': 23, 'high': 13, 'medium': 3, 'low': -20 } - # Bandwidth [MHz] to total RBs mapping - total_rbs_dictionary = {20: 100, 15: 75, 10: 50, 5: 25, 3: 15, 1.4: 6} + # Total RBs for each bandwidth + + total_rbs_dictionary = { + BtsBandwidth.LTE_BANDWIDTH_20MHz.value: 100, + BtsBandwidth.LTE_BANDWIDTH_15MHz.value: 75, + BtsBandwidth.LTE_BANDWIDTH_10MHz.value: 50, + BtsBandwidth.LTE_BANDWIDTH_5MHz.value: 25, + BtsBandwidth.LTE_BANDWIDTH_3MHz.value: 15, + BtsBandwidth.LTE_BANDWIDTH_1dot4MHz.value: 6 + } - # Bandwidth [MHz] to RB group size - rbg_dictionary = {20: 4, 15: 4, 10: 3, 5: 2, 3: 2, 1.4: 1} + # RB groups for each bandwidth - # Bandwidth [MHz] to minimum number of DL RBs that can be assigned to a UE - min_dl_rbs_dictionary = {20: 16, 15: 12, 10: 9, 5: 4, 3: 4, 1.4: 2} + rbg_dictionary = { + BtsBandwidth.LTE_BANDWIDTH_20MHz.value: 4, + BtsBandwidth.LTE_BANDWIDTH_15MHz.value: 4, + BtsBandwidth.LTE_BANDWIDTH_10MHz.value: 3, + BtsBandwidth.LTE_BANDWIDTH_5MHz.value: 2, + BtsBandwidth.LTE_BANDWIDTH_3MHz.value: 2, + BtsBandwidth.LTE_BANDWIDTH_1dot4MHz.value: 1 + } - # Bandwidth [MHz] to minimum number of UL RBs that can be assigned to a UE - min_ul_rbs_dictionary = {20: 8, 15: 6, 10: 4, 5: 2, 3: 2, 1.4: 1} + # Table of minimum number of RBs. This is needed to achieve peak + # throughput. + + min_dl_rbs_dictionary = { + BtsBandwidth.LTE_BANDWIDTH_20MHz.value: 16, + BtsBandwidth.LTE_BANDWIDTH_15MHz.value: 12, + BtsBandwidth.LTE_BANDWIDTH_10MHz.value: 9, + BtsBandwidth.LTE_BANDWIDTH_5MHz.value: 4, + BtsBandwidth.LTE_BANDWIDTH_3MHz.value: 4, + BtsBandwidth.LTE_BANDWIDTH_1dot4MHz.value: 2 + } + + min_ul_rbs_dictionary = { + BtsBandwidth.LTE_BANDWIDTH_20MHz.value: 8, + BtsBandwidth.LTE_BANDWIDTH_15MHz.value: 6, + BtsBandwidth.LTE_BANDWIDTH_10MHz.value: 4, + BtsBandwidth.LTE_BANDWIDTH_5MHz.value: 2, + BtsBandwidth.LTE_BANDWIDTH_3MHz.value: 2, + BtsBandwidth.LTE_BANDWIDTH_1dot4MHz.value: 1 + } # Allowed bandwidth for each band. allowed_bandwidth_dictionary = { @@ -171,253 +212,13 @@ class LteSimulation(BaseSimulation): 255: [20] } - # Peak throughput lookup tables for each TDD subframe - # configuration and bandwidth - # yapf: disable - tdd_config4_tput_lut = { - 0: { - 5: {'DL': 3.82, 'UL': 2.63}, - 10: {'DL': 11.31,'UL': 9.03}, - 15: {'DL': 16.9, 'UL': 20.62}, - 20: {'DL': 22.88, 'UL': 28.43} - }, - 1: { - 5: {'DL': 6.13, 'UL': 4.08}, - 10: {'DL': 18.36, 'UL': 9.69}, - 15: {'DL': 28.62, 'UL': 14.21}, - 20: {'DL': 39.04, 'UL': 19.23} - }, - 2: { - 5: {'DL': 5.68, 'UL': 2.30}, - 10: {'DL': 25.51, 'UL': 4.68}, - 15: {'DL': 39.3, 'UL': 7.13}, - 20: {'DL': 53.64, 'UL': 9.72} - }, - 3: { - 5: {'DL': 8.26, 'UL': 3.45}, - 10: {'DL': 23.20, 'UL': 6.99}, - 15: {'DL': 35.35, 'UL': 10.75}, - 20: {'DL': 48.3, 'UL': 14.6} - }, - 4: { - 5: {'DL': 6.16, 'UL': 2.30}, - 10: {'DL': 26.77, 'UL': 4.68}, - 15: {'DL': 40.7, 'UL': 7.18}, - 20: {'DL': 55.6, 'UL': 9.73} - }, - 5: { - 5: {'DL': 6.91, 'UL': 1.12}, - 10: {'DL': 30.33, 'UL': 2.33}, - 15: {'DL': 46.04, 'UL': 3.54}, - 20: {'DL': 62.9, 'UL': 4.83} - }, - 6: { - 5: {'DL': 6.13, 'UL': 4.13}, - 10: {'DL': 14.79, 'UL': 11.98}, - 15: {'DL': 23.28, 'UL': 17.46}, - 20: {'DL': 31.75, 'UL': 23.95} - } - } - - tdd_config3_tput_lut = { - 0: { - 5: {'DL': 5.04, 'UL': 3.7}, - 10: {'DL': 15.11, 'UL': 17.56}, - 15: {'DL': 22.59, 'UL': 30.31}, - 20: {'DL': 30.41, 'UL': 41.61} - }, - 1: { - 5: {'DL': 8.07, 'UL': 5.66}, - 10: {'DL': 24.58, 'UL': 13.66}, - 15: {'DL': 39.05, 'UL': 20.68}, - 20: {'DL': 51.59, 'UL': 28.76} - }, - 2: { - 5: {'DL': 7.59, 'UL': 3.31}, - 10: {'DL': 34.08, 'UL': 6.93}, - 15: {'DL': 53.64, 'UL': 10.51}, - 20: {'DL': 70.55, 'UL': 14.41} - }, - 3: { - 5: {'DL': 10.9, 'UL': 5.0}, - 10: {'DL': 30.99, 'UL': 10.25}, - 15: {'DL': 48.3, 'UL': 15.81}, - 20: {'DL': 63.24, 'UL': 21.65} - }, - 4: { - 5: {'DL': 8.11, 'UL': 3.32}, - 10: {'DL': 35.74, 'UL': 6.95}, - 15: {'DL': 55.6, 'UL': 10.51}, - 20: {'DL': 72.72, 'UL': 14.41} - }, - 5: { - 5: {'DL': 9.28, 'UL': 1.57}, - 10: {'DL': 40.49, 'UL': 3.44}, - 15: {'DL': 62.9, 'UL': 5.23}, - 20: {'DL': 82.21, 'UL': 7.15} - }, - 6: { - 5: {'DL': 8.06, 'UL': 5.74}, - 10: {'DL': 19.82, 'UL': 17.51}, - 15: {'DL': 31.75, 'UL': 25.77}, - 20: {'DL': 42.12, 'UL': 34.91} - } - } - - tdd_config2_tput_lut = { - 0: { - 5: {'DL': 3.11, 'UL': 2.55}, - 10: {'DL': 9.93, 'UL': 11.1}, - 15: {'DL': 13.9, 'UL': 21.51}, - 20: {'DL': 20.02, 'UL': 41.66} - }, - 1: { - 5: {'DL': 5.33, 'UL': 4.27}, - 10: {'DL': 15.14, 'UL': 13.95}, - 15: {'DL': 33.84, 'UL': 19.73}, - 20: {'DL': 44.61, 'UL': 27.35} - }, - 2: { - 5: {'DL': 6.87, 'UL': 3.32}, - 10: {'DL': 17.06, 'UL': 6.76}, - 15: {'DL': 49.63, 'UL': 10.5}, - 20: {'DL': 65.2, 'UL': 14.41} - }, - 3: { - 5: {'DL': 5.41, 'UL': 4.17}, - 10: {'DL': 16.89, 'UL': 9.73}, - 15: {'DL': 44.29, 'UL': 15.7}, - 20: {'DL': 53.95, 'UL': 19.85} - }, - 4: { - 5: {'DL': 8.7, 'UL': 3.32}, - 10: {'DL': 17.58, 'UL': 6.76}, - 15: {'DL': 51.08, 'UL': 10.47}, - 20: {'DL': 66.45, 'UL': 14.38} - }, - 5: { - 5: {'DL': 9.46, 'UL': 1.55}, - 10: {'DL': 19.02, 'UL': 3.48}, - 15: {'DL': 58.89, 'UL': 5.23}, - 20: {'DL': 76.85, 'UL': 7.1} - }, - 6: { - 5: {'DL': 4.74, 'UL': 3.9}, - 10: {'DL': 12.32, 'UL': 13.37}, - 15: {'DL': 27.74, 'UL': 25.02}, - 20: {'DL': 35.48, 'UL': 32.95} - } - } - - tdd_config1_tput_lut = { - 0: { - 5: {'DL': 4.25, 'UL': 3.35}, - 10: {'DL': 8.38, 'UL': 7.22}, - 15: {'DL': 12.41, 'UL': 13.91}, - 20: {'DL': 16.27, 'UL': 24.09} - }, - 1: { - 5: {'DL': 7.28, 'UL': 4.61}, - 10: {'DL': 14.73, 'UL': 9.69}, - 15: {'DL': 21.91, 'UL': 13.86}, - 20: {'DL': 27.63, 'UL': 17.18} - }, - 2: { - 5: {'DL': 10.37, 'UL': 2.27}, - 10: {'DL': 20.92, 'UL': 4.66}, - 15: {'DL': 31.01, 'UL': 7.04}, - 20: {'DL': 42.03, 'UL': 9.75} - }, - 3: { - 5: {'DL': 9.25, 'UL': 3.44}, - 10: {'DL': 18.38, 'UL': 6.95}, - 15: {'DL': 27.59, 'UL': 10.62}, - 20: {'DL': 34.85, 'UL': 13.45} - }, - 4: { - 5: {'DL': 10.71, 'UL': 2.26}, - 10: {'DL': 21.54, 'UL': 4.67}, - 15: {'DL': 31.91, 'UL': 7.2}, - 20: {'DL': 43.35, 'UL': 9.74} - }, - 5: { - 5: {'DL': 12.34, 'UL': 1.08}, - 10: {'DL': 24.78, 'UL': 2.34}, - 15: {'DL': 36.68, 'UL': 3.57}, - 20: {'DL': 49.84, 'UL': 4.81} - }, - 6: { - 5: {'DL': 5.76, 'UL': 4.41}, - 10: {'DL': 11.68, 'UL': 9.7}, - 15: {'DL': 17.34, 'UL': 17.95}, - 20: {'DL': 23.5, 'UL': 23.42} - } - } - # yapf: enable - - # Peak throughput lookup table dictionary - tdd_config_tput_lut_dict = { - 'TDD_CONFIG1': - tdd_config1_tput_lut, # DL 256QAM, UL 64QAM & TBS turned OFF - 'TDD_CONFIG2': - tdd_config2_tput_lut, # DL 256QAM, UL 64 QAM turned ON & TBS OFF - 'TDD_CONFIG3': - tdd_config3_tput_lut, # DL 256QAM, UL 64QAM & TBS turned ON - 'TDD_CONFIG4': - tdd_config4_tput_lut # DL 256QAM, UL 64 QAM turned OFF & TBS ON - } - - class BtsConfig(BaseSimulation.BtsConfig): - """ Extension of the BaseBtsConfig to implement parameters that are - exclusive to LTE. - - Atributes: - band: an integer indicating the required band number. - dlul_config: an integer indicating the TDD config number. - bandwidth: a float indicating the required channel bandwidth. - mimo_mode: an instance of LteSimulation.MimoMode indicating the - required MIMO mode for the downlink signal. - transmission_mode: an instance of LteSimulation.TransmissionMode - indicating the required TM. - scheduling_mode: an instance of LteSimulation.SchedulingMode - indicating wether to use Static or Dynamic scheduling. - dl_rbs: an integer indicating the number of downlink RBs - ul_rbs: an integer indicating the number of uplink RBs - dl_mcs: an integer indicating the MCS for the downlink signal - ul_mcs: an integer indicating the MCS for the uplink signal - dl_modulation_order: a string indicating a DL modulation scheme - ul_modulation_order: a string indicating an UL modulation scheme - tbs_pattern_on: a boolean indicating whether full allocation mode - should be used or not - dl_channel: an integer indicating the downlink channel number - """ - def __init__(self): - """ Initialize the base station config by setting all its - parameters to None. """ - super().__init__() - self.band = None - self.dlul_config = None - self.bandwidth = None - self.mimo_mode = None - self.transmission_mode = None - self.scheduling_mode = None - self.dl_rbs = None - self.ul_rbs = None - self.dl_mcs = None - self.ul_mcs = None - self.dl_modulation_order = None - self.ul_modulation_order = None - self.tbs_pattern_on = None - self.dl_channel = None - self.dl_cc_enabled = None - - def __init__(self, simulator, log, dut, test_config, calibration_table): - """ Initializes the simulator for a single-carrier LTE simulation. + def __init__(self, anritsu, log, dut, test_config, calibration_table): + """ Configures Anritsu system for LTE simulation with 1 basetation Loads a simple LTE simulation enviroment with 1 basestation. Args: - simulator: a cellular simulator controller + anritsu: the Anritsu callbox controller log: a logger handle dut: the android device handler test_config: test configuration obtained from the config file @@ -426,7 +227,23 @@ class LteSimulation(BaseSimulation): """ - super().__init__(simulator, log, dut, test_config, calibration_table) + super().__init__(anritsu, log, dut, test_config, calibration_table) + self.file_path = 'C:\\Users\\MD8475{}\\Documents\\DAN_configs\\'.format( + self.anritsu._md8475_version) + + if self.anritsu._md8475_version == 'A': + self.sim_file_path = "{}{}.wnssp".format(self.file_path, + self.LTE_BASIC_SIM_FILE) + self.cell_file_path = "{}{}.wnscp".format(self.file_path, + self.LTE_BASIC_CELL_FILE) + else: + self.sim_file_path = "{}{}.wnssp2".format(self.file_path, + self.LTE_BASIC_SIM_FILE) + self.cell_file_path = "{}{}.wnscp2".format( + self.file_path, self.LTE_BASIC_CELL_FILE) + + anritsu.load_simulation_paramfile(self.sim_file_path) + anritsu.load_cell_paramfile(self.cell_file_path) if not dut.droid.telephonySetPreferredNetworkTypesForSubscription( NETWORK_MODE_LTE_ONLY, @@ -440,8 +257,8 @@ class LteSimulation(BaseSimulation): self.log.warning("The key '{}' is not set in the config file. " "Setting to true by default.".format( self.KEY_TBS_PATTERN)) - self.primary_config.tbs_pattern_on = test_config.get( - self.KEY_TBS_PATTERN, True) + + self.tbs_pattern_on = test_config.get(self.KEY_TBS_PATTERN, True) # Get the 256-QAM setting from the test configuration if self.KEY_DL_256_QAM not in test_config: @@ -452,13 +269,13 @@ class LteSimulation(BaseSimulation): self.dl_256_qam = test_config.get(self.KEY_DL_256_QAM, False) if self.dl_256_qam: - if not self.simulator.LTE_SUPPORTS_DL_256QAM: - self.log.warning("The key '{}' is set to true but the " - "simulator doesn't support that modulation " + if anritsu._md8475_version == 'A': + self.log.warning("The key '{}' is set to true but MD8475A " + "callbox doesn't support that modulation " "order.".format(self.KEY_DL_256_QAM)) self.dl_256_qam = False else: - self.primary_config.dl_modulation_order = "256QAM" + self.bts1.lte_dl_modulation_order = "256QAM" # Get the 64-QAM setting from the test configuration if self.KEY_UL_64_QAM not in test_config: @@ -469,19 +286,13 @@ class LteSimulation(BaseSimulation): self.ul_64_qam = test_config.get(self.KEY_UL_64_QAM, False) if self.ul_64_qam: - if not self.simulator.LTE_SUPPORTS_UL_64QAM: - self.log.warning("The key '{}' is set to true but the " - "simulator doesn't support that modulation " + if anritsu._md8475_version == 'A': + self.log.warning("The key '{}' is set to true but MD8475A " + "callbox doesn't support that modulation " "order.".format(self.KEY_UL_64_QAM)) self.ul_64_qam = False else: - self.primary_config.ul_modulation_order = "64QAM" - - self.simulator.configure_bts(self.primary_config) - - def setup_simulator(self): - """ Do initial configuration in the simulator. """ - self.simulator.setup_lte_scenario() + self.bts1.lte_ul_modulation_order = "64QAM" def parse_parameters(self, parameters): """ Configs an LTE simulation using a list of parameters. @@ -492,8 +303,7 @@ class LteSimulation(BaseSimulation): parameters: list of parameters """ - # Instantiate a new configuration object - new_config = self.BtsConfig() + super().parse_parameters(parameters) # Setup band @@ -504,21 +314,24 @@ class LteSimulation(BaseSimulation): "The test name needs to include parameter '{}' followed by " "the required band number.".format(self.PARAM_BAND)) - new_config.band = values[1] + band = values[1] + + self.set_band(self.bts1, band) # Set DL/UL frame configuration - if self.get_duplex_mode(new_config.band) == DuplexMode.TDD: + if self.get_duplex_mode(band) == self.DuplexMode.TDD: values = self.consume_parameter(parameters, self.PARAM_FRAME_CONFIG, 1) if not values: - raise ValueError( - "When a TDD band is selected the frame " - "structure has to be indicated with the '{}' " - "parameter followed by a number from 0 to 6.".format( - self.PARAM_FRAME_CONFIG)) + raise ValueError("When a TDD band is selected the frame " + "structure has to be indicated with the '{}' " + "parameter followed by a number from 0 to 6." + .format(self.PARAM_FRAME_CONFIG)) - new_config.dlul_config = int(values[1]) + frame_config = int(values[1]) + + self.set_dlul_configuration(self.bts1, frame_config) # Setup bandwidth @@ -535,7 +348,7 @@ class LteSimulation(BaseSimulation): if bw == 14: bw = 1.4 - new_config.bandwidth = bw + self.set_channel_bandwidth(self.bts1, bw) # Setup mimo mode @@ -546,18 +359,20 @@ class LteSimulation(BaseSimulation): "The test name needs to include parameter '{}' followed by the " "mimo mode.".format(self.PARAM_MIMO)) - for mimo_mode in MimoMode: + for mimo_mode in LteSimulation.MimoMode: if values[1] == mimo_mode.value: - new_config.mimo_mode = mimo_mode + self.set_mimo_mode(self.bts1, mimo_mode) break else: raise ValueError("The {} parameter needs to be followed by either " "1x1, 2x2 or 4x4.".format(self.PARAM_MIMO)) - if (new_config.mimo_mode == MimoMode.MIMO_4x4 - and not self.simulator.LTE_SUPPORTS_4X4_MIMO): + if (mimo_mode == LteSimulation.MimoMode.MIMO_4x4 + and self.anritsu._md8475_version == 'A'): raise ValueError("The test requires 4x4 MIMO, but that is not " - "supported by the cellular simulator.") + "supported by the MD8475A callbox.") + + self.set_mimo_mode(self.bts1, mimo_mode) # Setup transmission mode @@ -569,9 +384,9 @@ class LteSimulation(BaseSimulation): "int value from 1 to 4 indicating transmission mode.".format( self.PARAM_TM)) - for tm in TransmissionMode: + for tm in LteSimulation.TransmissionMode: if values[1] == tm.value[2:]: - new_config.transmission_mode = tm + self.set_transmission_mode(self.bts1, tm) break else: raise ValueError("The {} parameter needs to be followed by either " @@ -583,20 +398,20 @@ class LteSimulation(BaseSimulation): values = self.consume_parameter(parameters, self.PARAM_SCHEDULING, 1) if not values: - new_config.scheduling_mode = SchedulingMode.STATIC + scheduling = LteSimulation.SchedulingMode.STATIC self.log.warning( "The test name does not include the '{}' parameter. Setting to " "static by default.".format(self.PARAM_SCHEDULING)) elif values[1] == self.PARAM_SCHEDULING_DYNAMIC: - new_config.scheduling_mode = SchedulingMode.DYNAMIC + scheduling = LteSimulation.SchedulingMode.DYNAMIC elif values[1] == self.PARAM_SCHEDULING_STATIC: - new_config.scheduling_mode = SchedulingMode.STATIC + scheduling = LteSimulation.SchedulingMode.STATIC else: raise ValueError( "The test name parameter '{}' has to be followed by either " "'dynamic' or 'static'.".format(self.PARAM_SCHEDULING)) - if new_config.scheduling_mode == SchedulingMode.STATIC: + if scheduling == LteSimulation.SchedulingMode.STATIC: values = self.consume_parameter(parameters, self.PARAM_PATTERN, 2) @@ -605,8 +420,8 @@ class LteSimulation(BaseSimulation): "The '{}' parameter was not set, using 100% RBs for both " "DL and UL. To set the percentages of total RBs include " "the '{}' parameter followed by two ints separated by an " - "underscore indicating downlink and uplink percentages.". - format(self.PARAM_PATTERN, self.PARAM_PATTERN)) + "underscore indicating downlink and uplink percentages." + .format(self.PARAM_PATTERN, self.PARAM_PATTERN)) dl_pattern = 100 ul_pattern = 100 else: @@ -618,37 +433,34 @@ class LteSimulation(BaseSimulation): "The scheduling pattern parameters need to be two " "positive numbers between 0 and 100.") - new_config.dl_rbs, new_config.ul_rbs = ( - self.allocation_percentages_to_rbs( - new_config.bandwidth, new_config.transmission_mode, - dl_pattern, ul_pattern)) + dl_rbs, ul_rbs = self.allocation_percentages_to_rbs( + self.bts1, dl_pattern, ul_pattern) - if self.dl_256_qam and new_config.bandwidth == 1.4: - new_config.dl_mcs = 26 - elif (not self.dl_256_qam and self.primary_config.tbs_pattern_on - and new_config.bandwidth != 1.4): - new_config.dl_mcs = 28 + if self.dl_256_qam and bw == 1.4: + mcs_dl = 26 + elif not self.dl_256_qam and self.tbs_pattern_on and bw != 1.4: + mcs_dl = 28 else: - new_config.dl_mcs = 27 + mcs_dl = 27 if self.ul_64_qam: - new_config.ul_mcs = 28 + mcs_ul = 28 else: - new_config.ul_mcs = 23 + mcs_ul = 23 + + self.set_scheduling_mode( + self.bts1, + LteSimulation.SchedulingMode.STATIC, + packet_rate=BtsPacketRate.LTE_MANUAL, + nrb_dl=dl_rbs, + nrb_ul=ul_rbs, + mcs_ul=mcs_ul, + mcs_dl=mcs_dl) - # Setup LTE RRC status change function and timer for LTE idle test case - # TODO (b/141838145): setting RRC timer parameters requires unwrapping - # the simulator class as it still doesn't support these methods. - values = self.consume_parameter(parameters, - self.PARAM_RRC_STATUS_CHANGE_TIMER, 1) - if not values: - self.log.info( - "The test name does not include the '{}' parameter. Disabled " - "by default.".format(self.PARAM_RRC_STATUS_CHANGE_TIMER)) - self.simulator.set_lte_rrc_state_change_timer(False) else: - timer = int(values[1]) - self.simulator.anritsu.set_lte_rrc_status_change(True, timer) + + self.set_scheduling_mode(self.bts1, + LteSimulation.SchedulingMode.DYNAMIC) # Get uplink power @@ -666,38 +478,71 @@ class LteSimulation(BaseSimulation): # started. Saving this value in a variable for later self.sim_dl_power = dl_power - # Setup the base station with the obtained configuration and then save - # these parameters in the current configuration object - self.simulator.configure_bts(new_config) - self.primary_config.incorporate(new_config) + def get_uplink_power_from_parameters(self, parameters): + """ Reads uplink power from a list of parameters. """ - # Now that the band is set, calibrate the link if necessary - self.load_pathloss_if_required() + values = self.consume_parameter(parameters, self.PARAM_UL_PW, 1) - def calibrated_downlink_rx_power(self, bts_config, rsrp): - """ LTE simulation overrides this method so that it can convert from + if not values or values[1] not in self.uplink_signal_level_dictionary: + raise ValueError( + "The test name needs to include parameter {} followed by one " + "the following values: {}.".format(self.PARAM_UL_PW, [ + val for val in self.uplink_signal_level_dictionary.keys() + ])) + + return self.uplink_signal_level_dictionary[values[1]] + + def get_downlink_power_from_parameters(self, parameters): + """ Reads downlink power from a list of parameters. """ + + values = self.consume_parameter(parameters, self.PARAM_DL_PW, 1) + + if values: + if values[1] not in self.downlink_rsrp_dictionary: + raise ValueError("Invalid signal level value {}.".format( + values[1])) + else: + return self.downlink_rsrp_dictionary[values[1]] + else: + # Use default value + power = self.downlink_rsrp_dictionary['excellent'] + self.log.info( + "No DL signal level value was indicated in the test " + "parameters. Using default value of {} RSRP.".format(power)) + return power + + def set_downlink_rx_power(self, bts, rsrp): + """ Sets downlink rx power in RSRP using calibration + + Lte simulation overrides this method so that it can convert from RSRP to total signal power transmitted from the basestation. Args: - bts_config: the current configuration at the base station + bts: the base station in which to change the signal level rsrp: desired rsrp, contained in a key value pair """ - power = self.rsrp_to_signal_power(rsrp, bts_config) + power = self.rsrp_to_signal_power(rsrp, bts) self.log.info( "Setting downlink signal level to {} RSRP ({} dBm)".format( rsrp, power)) - # Use parent method to calculate signal level - return super().calibrated_downlink_rx_power(bts_config, power) + # Use parent method to set signal level + super().set_downlink_rx_power(bts, power) - def downlink_calibration(self, rat=None, power_units_conversion_func=None): - """ Computes downlink path loss and returns the calibration value. + def downlink_calibration(self, + bts, + rat=None, + power_units_conversion_func=None): + """ Computes downlink path loss and returns the calibration value - See base class implementation for details. + The bts needs to be set at the desired config (bandwidth, mode, etc) + before running the calibration. The phone also needs to be attached + to the desired basesation for calibration Args: + bts: basestation handle rat: ignored, replaced by 'lteRsrp' power_units_conversion_func: ignored, replaced by self.rsrp_to_signal_power @@ -708,10 +553,11 @@ class LteSimulation(BaseSimulation): """ return super().downlink_calibration( - rat='lteDbm', + bts, + rat='lteRsrp', power_units_conversion_func=self.rsrp_to_signal_power) - def rsrp_to_signal_power(self, rsrp, bts_config): + def rsrp_to_signal_power(self, rsrp, bts): """ Converts rsrp to total band signal power RSRP is measured per subcarrier, so total band power needs to be @@ -719,24 +565,25 @@ class LteSimulation(BaseSimulation): Args: rsrp: desired rsrp in dBm - bts_config: a base station configuration object + bts: basestation handler for which the unit conversion is done + Returns: Total band signal power in dBm """ - bandwidth = bts_config.bandwidth + bandwidth = bts.bandwidth - if bandwidth == 20: # 100 RBs + if bandwidth == BtsBandwidth.LTE_BANDWIDTH_20MHz.value: # 100 RBs power = rsrp + 30.79 - elif bandwidth == 15: # 75 RBs + elif bandwidth == BtsBandwidth.LTE_BANDWIDTH_15MHz.value: # 75 RBs power = rsrp + 29.54 - elif bandwidth == 10: # 50 RBs + elif bandwidth == BtsBandwidth.LTE_BANDWIDTH_10MHz.value: # 50 RBs power = rsrp + 27.78 - elif bandwidth == 5: # 25 RBs + elif bandwidth == BtsBandwidth.LTE_BANDWIDTH_5MHz.value: # 25 RBs power = rsrp + 24.77 - elif bandwidth == 3: # 15 RBs + elif bandwidth == BtsBandwidth.LTE_BANDWIDTH_3MHz.value: # 15 RBs power = rsrp + 22.55 - elif bandwidth == 1.4: # 6 RBs + elif bandwidth == BtsBandwidth.LTE_BANDWIDTH_1dot4MHz.value: # 6 RBs power = rsrp + 18.57 else: raise ValueError("Invalid bandwidth value.") @@ -752,118 +599,78 @@ class LteSimulation(BaseSimulation): """ - return self.bts_maximum_downlink_throughtput(self.primary_config) + return self.bts_maximum_downlink_throughtput(self.bts1) - def bts_maximum_downlink_throughtput(self, bts_config): - """ Calculates maximum achievable downlink throughput for a single - base station from its configuration object. + def bts_maximum_downlink_throughtput(self, bts): + """ Calculates maximum achievable downlink throughput for the selected + basestation. Args: - bts_config: a base station configuration object. + bts: basestation handle Returns: Maximum throughput in mbps. """ - if bts_config.mimo_mode == MimoMode.MIMO_1x1: - streams = 1 - elif bts_config.mimo_mode == MimoMode.MIMO_2x2: - streams = 1 - elif bts_config.mimo_mode == MimoMode.MIMO_4x4: - streams = 1 - else: - raise ValueError('Unable to calculate maximum downlink throughput ' - 'because the MIMO mode has not been set.') - bandwidth = bts_config.bandwidth - rb_ratio = bts_config.dl_rbs / self.total_rbs_dictionary[bandwidth] - mcs = bts_config.dl_mcs + bandwidth = bts.bandwidth + rb_ratio = float(bts.nrb_dl) / self.total_rbs_dictionary[bandwidth] + streams = float(bts.dl_antenna) + mcs = bts.lte_mcs_dl max_rate_per_stream = None - tdd_subframe_config = bts_config.dlul_config - duplex_mode = self.get_duplex_mode(bts_config.band) - - if duplex_mode == DuplexMode.TDD.value: - if self.dl_256_qam: - if mcs == "27": - if bts_config.tbs_pattern_on: - max_rate_per_stream = self.tdd_config_tput_lut_dict[ - 'TDD_CONFIG3'][tdd_subframe_config][bandwidth][ - 'DL'] - else: - max_rate_per_stream = self.tdd_config_tput_lut_dict[ - 'TDD_CONFIG2'][tdd_subframe_config][bandwidth][ - 'DL'] - else: - if mcs == "28": - if bts_config.tbs_pattern_on: - max_rate_per_stream = self.tdd_config_tput_lut_dict[ - 'TDD_CONFIG4'][tdd_subframe_config][bandwidth][ - 'DL'] - else: - max_rate_per_stream = self.tdd_config_tput_lut_dict[ - 'TDD_CONFIG1'][tdd_subframe_config][bandwidth][ - 'DL'] - - elif duplex_mode == DuplexMode.FDD.value: - if (not self.dl_256_qam and bts_config.tbs_pattern_on - and mcs == "28"): - max_rate_per_stream = { - 3: 9.96, - 5: 17.0, - 10: 34.7, - 15: 52.7, - 20: 72.2 - }.get(bandwidth, None) - if (not self.dl_256_qam and bts_config.tbs_pattern_on - and mcs == "27"): - max_rate_per_stream = { - 1.4: 2.94, - }.get(bandwidth, None) - elif (not self.dl_256_qam and not bts_config.tbs_pattern_on - and mcs == "27"): - max_rate_per_stream = { - 1.4: 2.87, - 3: 7.7, - 5: 14.4, - 10: 28.7, - 15: 42.3, - 20: 57.7 - }.get(bandwidth, None) - elif self.dl_256_qam and bts_config.tbs_pattern_on and mcs == "27": - max_rate_per_stream = { - 3: 13.2, - 5: 22.9, - 10: 46.3, - 15: 72.2, - 20: 93.9 - }.get(bandwidth, None) - elif self.dl_256_qam and bts_config.tbs_pattern_on and mcs == "26": - max_rate_per_stream = { - 1.4: 3.96, - }.get(bandwidth, None) - elif (self.dl_256_qam and not bts_config.tbs_pattern_on - and mcs == "27"): - max_rate_per_stream = { - 3: 11.3, - 5: 19.8, - 10: 44.1, - 15: 68.1, - 20: 88.4 - }.get(bandwidth, None) - elif (self.dl_256_qam and not bts_config.tbs_pattern_on - and mcs == "26"): - max_rate_per_stream = { - 1.4: 3.96, - }.get(bandwidth, None) + if not self.dl_256_qam and self.tbs_pattern_on and mcs == "28": + max_rate_per_stream = { + BtsBandwidth.LTE_BANDWIDTH_3MHz.value: 9.96, + BtsBandwidth.LTE_BANDWIDTH_5MHz.value: 17.0, + BtsBandwidth.LTE_BANDWIDTH_10MHz.value: 34.7, + BtsBandwidth.LTE_BANDWIDTH_15MHz.value: 52.7, + BtsBandwidth.LTE_BANDWIDTH_20MHz.value: 72.2 + }.get(bandwidth, None) + if not self.dl_256_qam and self.tbs_pattern_on and mcs == "27": + max_rate_per_stream = { + BtsBandwidth.LTE_BANDWIDTH_1dot4MHz.value: 2.94, + }.get(bandwidth, None) + elif not self.dl_256_qam and not self.tbs_pattern_on and mcs == "27": + max_rate_per_stream = { + BtsBandwidth.LTE_BANDWIDTH_1dot4MHz.value: 2.87, + BtsBandwidth.LTE_BANDWIDTH_3MHz.value: 7.7, + BtsBandwidth.LTE_BANDWIDTH_5MHz.value: 14.4, + BtsBandwidth.LTE_BANDWIDTH_10MHz.value: 28.7, + BtsBandwidth.LTE_BANDWIDTH_15MHz.value: 42.3, + BtsBandwidth.LTE_BANDWIDTH_20MHz.value: 57.7 + }.get(bandwidth, None) + elif self.dl_256_qam and self.tbs_pattern_on and mcs == "27": + max_rate_per_stream = { + BtsBandwidth.LTE_BANDWIDTH_3MHz.value: 13.2, + BtsBandwidth.LTE_BANDWIDTH_5MHz.value: 22.9, + BtsBandwidth.LTE_BANDWIDTH_10MHz.value: 46.3, + BtsBandwidth.LTE_BANDWIDTH_15MHz.value: 72.2, + BtsBandwidth.LTE_BANDWIDTH_20MHz.value: 93.9 + }.get(bandwidth, None) + elif self.dl_256_qam and self.tbs_pattern_on and mcs == "26": + max_rate_per_stream = { + BtsBandwidth.LTE_BANDWIDTH_1dot4MHz.value: 3.96, + }.get(bandwidth, None) + elif self.dl_256_qam and not self.tbs_pattern_on and mcs == "27": + max_rate_per_stream = { + BtsBandwidth.LTE_BANDWIDTH_3MHz.value: 11.3, + BtsBandwidth.LTE_BANDWIDTH_5MHz.value: 19.8, + BtsBandwidth.LTE_BANDWIDTH_10MHz.value: 44.1, + BtsBandwidth.LTE_BANDWIDTH_15MHz.value: 68.1, + BtsBandwidth.LTE_BANDWIDTH_20MHz.value: 88.4 + }.get(bandwidth, None) + elif self.dl_256_qam and not self.tbs_pattern_on and mcs == "26": + max_rate_per_stream = { + BtsBandwidth.LTE_BANDWIDTH_1dot4MHz.value: 3.96, + }.get(bandwidth, None) if not max_rate_per_stream: raise NotImplementedError( "The calculation for tbs pattern = {} " "and mcs = {} is not implemented.".format( - "FULLALLOCATION" if bts_config.tbs_pattern_on else "OFF", - mcs)) + "FULLALLOCATION" if self.tbs_pattern_on else "OFF", mcs)) return max_rate_per_stream * streams * rb_ratio @@ -876,80 +683,180 @@ class LteSimulation(BaseSimulation): """ - return self.bts_maximum_uplink_throughtput(self.primary_config) + return self.bts_maximum_uplink_throughtput(self.bts1) - def bts_maximum_uplink_throughtput(self, bts_config): + def bts_maximum_uplink_throughtput(self, bts): """ Calculates maximum achievable uplink throughput for the selected - basestation from its configuration object. + basestation. Args: - bts_config: an LTE base station configuration object. + bts: basestation handle Returns: Maximum throughput in mbps. """ - bandwidth = bts_config.bandwidth - rb_ratio = bts_config.ul_rbs / self.total_rbs_dictionary[bandwidth] - mcs = bts_config.ul_mcs + bandwidth = bts.bandwidth + rb_ratio = float(bts.nrb_ul) / self.total_rbs_dictionary[bandwidth] + mcs = bts.lte_mcs_ul max_rate_per_stream = None - - tdd_subframe_config = bts_config.dlul_config - duplex_mode = self.get_duplex_mode(bts_config.band) - - if duplex_mode == DuplexMode.TDD.value: - if self.ul_64_qam: - if mcs == "28": - if bts_config.tbs_pattern_on: - max_rate_per_stream = self.tdd_config_tput_lut_dict[ - 'TDD_CONFIG3'][tdd_subframe_config][bandwidth][ - 'UL'] - else: - max_rate_per_stream = self.tdd_config_tput_lut_dict[ - 'TDD_CONFIG2'][tdd_subframe_config][bandwidth][ - 'UL'] - else: - if mcs == "23": - if bts_config.tbs_pattern_on: - max_rate_per_stream = self.tdd_config_tput_lut_dict[ - 'TDD_CONFIG4'][tdd_subframe_config][bandwidth][ - 'UL'] - else: - max_rate_per_stream = self.tdd_config_tput_lut_dict[ - 'TDD_CONFIG1'][tdd_subframe_config][bandwidth][ - 'UL'] - - elif duplex_mode == DuplexMode.FDD.value: - if mcs == "23" and not self.ul_64_qam: - max_rate_per_stream = { - 1.4: 2.85, - 3: 7.18, - 5: 12.1, - 10: 24.5, - 15: 36.5, - 20: 49.1 - }.get(bandwidth, None) - elif mcs == "28" and self.ul_64_qam: - max_rate_per_stream = { - 1.4: 4.2, - 3: 10.5, - 5: 17.2, - 10: 35.3, - 15: 53.0, - 20: 72.6 - }.get(bandwidth, None) + if mcs == "23" and not self.ul_64_qam: + max_rate_per_stream = { + BtsBandwidth.LTE_BANDWIDTH_1dot4MHz.value: 2.85, + BtsBandwidth.LTE_BANDWIDTH_3MHz.value: 7.18, + BtsBandwidth.LTE_BANDWIDTH_5MHz.value: 12.1, + BtsBandwidth.LTE_BANDWIDTH_10MHz.value: 24.5, + BtsBandwidth.LTE_BANDWIDTH_15MHz.value: 36.5, + BtsBandwidth.LTE_BANDWIDTH_20MHz.value: 49.1 + }.get(bandwidth, None) + elif mcs == "28" and self.ul_64_qam: + max_rate_per_stream = { + BtsBandwidth.LTE_BANDWIDTH_1dot4MHz.value: 4.2, + BtsBandwidth.LTE_BANDWIDTH_3MHz.value: 10.5, + BtsBandwidth.LTE_BANDWIDTH_5MHz.value: 17.2, + BtsBandwidth.LTE_BANDWIDTH_10MHz.value: 35.3, + BtsBandwidth.LTE_BANDWIDTH_15MHz.value: 53.0, + BtsBandwidth.LTE_BANDWIDTH_20MHz.value: 72.6 + }.get(bandwidth, None) if not max_rate_per_stream: - raise NotImplementedError( - "The calculation fir mcs = {} is not implemented.".format( - "FULLALLOCATION" if bts_config.tbs_pattern_on else "OFF", - mcs)) + raise NotImplementedError("The calculation fir mcs = {} is not " + "implemented.".format( + "FULLALLOCATION" if + self.tbs_pattern_on else "OFF", mcs)) return max_rate_per_stream * rb_ratio - def allocation_percentages_to_rbs(self, bw, tm, dl, ul): + def set_transmission_mode(self, bts, tmode): + """ Sets the transmission mode for the LTE basetation + + Args: + bts: basestation handle + tmode: Enum list from class 'TransmissionModeLTE' + """ + + # If the selected transmission mode does not support the number of DL + # antennas, throw an exception. + if (tmode in [self.TransmissionMode.TM1, self.TransmissionMode.TM7] + and bts.dl_antenna != '1'): + # TM1 and TM7 only support 1 DL antenna + raise ValueError("{} allows only one DL antenna. Change the " + "number of DL antennas before setting the " + "transmission mode.".format(tmode.value)) + elif tmode == self.TransmissionMode.TM8 and bts.dl_antenna != '2': + # TM8 requires 2 DL antennas + raise ValueError("TM2 requires two DL antennas. Change the " + "number of DL antennas before setting the " + "transmission mode.") + elif (tmode in [ + self.TransmissionMode.TM2, self.TransmissionMode.TM3, + self.TransmissionMode.TM4, self.TransmissionMode.TM9 + ] and bts.dl_antenna == '1'): + # TM2, TM3, TM4 and TM9 require 2 or 4 DL antennas + raise ValueError("{} requires at least two DL atennas. Change the " + "number of DL antennas before setting the " + "transmission mode.".format(tmode.value)) + + # The TM mode is allowed for the current number of DL antennas, so it + # is safe to change this setting now + bts.transmode = tmode.value + + time.sleep(5) # It takes some time to propagate the new settings + + def set_mimo_mode(self, bts, mimo): + """ Sets the number of DL antennas for the desired MIMO mode. + + Args: + bts: basestation handle + mimo: object of class MimoMode + """ + + # If the requested mimo mode is not compatible with the current TM, + # warn the user before changing the value. + + if mimo == self.MimoMode.MIMO_1x1: + if bts.transmode not in [ + self.TransmissionMode.TM1, self.TransmissionMode.TM7 + ]: + self.log.warning( + "Using only 1 DL antennas is not allowed with " + "the current transmission mode. Changing the " + "number of DL antennas will override this " + "setting.") + bts.dl_antenna = 1 + elif mimo == self.MimoMode.MIMO_2x2: + if bts.transmode not in [ + self.TransmissionMode.TM2, self.TransmissionMode.TM3, + self.TransmissionMode.TM4, self.TransmissionMode.TM8, + self.TransmissionMode.TM9 + ]: + self.log.warning("Using two DL antennas is not allowed with " + "the current transmission mode. Changing the " + "number of DL antennas will override this " + "setting.") + bts.dl_antenna = 2 + elif mimo == self.MimoMode.MIMO_4x4: + if bts.transmode not in [ + self.TransmissionMode.TM2, self.TransmissionMode.TM3, + self.TransmissionMode.TM4, self.TransmissionMode.TM9 + ]: + self.log.warning("Using four DL antennas is not allowed with " + "the current transmission mode. Changing the " + "number of DL antennas will override this " + "setting.") + + bts.dl_antenna = 4 + else: + RuntimeError("The requested MIMO mode is not supported.") + + def set_scheduling_mode(self, + bts, + scheduling, + packet_rate=None, + mcs_dl=None, + mcs_ul=None, + nrb_dl=None, + nrb_ul=None): + """ Sets the scheduling mode for LTE + + Args: + bts: basestation handle + scheduling: DYNAMIC or STATIC scheduling (Enum list) + mcs_dl: Downlink MCS (only for STATIC scheduling) + mcs_ul: Uplink MCS (only for STATIC scheduling) + nrb_dl: Number of RBs for downlink (only for STATIC scheduling) + nrb_ul: Number of RBs for uplink (only for STATIC scheduling) + """ + + bts.lte_scheduling_mode = scheduling.value + + if scheduling == self.SchedulingMode.STATIC: + + if not packet_rate: + raise RuntimeError("Packet rate needs to be indicated when " + "selecting static scheduling.") + + bts.packet_rate = packet_rate + bts.tbs_pattern = "FULLALLOCATION" if self.tbs_pattern_on else "OFF" + + if packet_rate == BtsPacketRate.LTE_MANUAL: + + if not (mcs_dl and mcs_ul and nrb_dl and nrb_ul): + raise RuntimeError("When using manual packet rate the " + "number of dl/ul RBs and the dl/ul " + "MCS needs to be indicated with the " + "optional arguments.") + + bts.lte_mcs_dl = mcs_dl + bts.lte_mcs_ul = mcs_ul + bts.nrb_dl = nrb_dl + bts.nrb_ul = nrb_ul + + time.sleep(5) # It takes some time to propagate the new settings + + def allocation_percentages_to_rbs(self, bts, dl, ul): """ Converts usage percentages to number of DL/UL RBs Because not any number of DL/UL RBs can be obtained for a certain @@ -957,8 +864,7 @@ class LteSimulation(BaseSimulation): closely matches the desired DL/UL percentages. Args: - bw: the bandwidth for the which the RB configuration is requested - tm: the transmission in which the base station will be operating + bts: base station handle dl: desired percentage of downlink RBs ul: desired percentage of uplink RBs Returns: @@ -970,6 +876,10 @@ class LteSimulation(BaseSimulation): raise ValueError("The percentage of DL and UL RBs have to be two " "positive between 0 and 100.") + # Get the available number of RBs for the channel bandwidth + bw = bts.bandwidth + # Get the current transmission mode + tm = bts.transmode # Get min and max values from tables max_rbs = self.total_rbs_dictionary[bw] min_dl_rbs = self.min_dl_rbs_dictionary[bw] @@ -993,11 +903,11 @@ class LteSimulation(BaseSimulation): # Get the number of DL RBs that corresponds to # the required percentage. - desired_dl_rbs = percentage_to_amount(min_val=min_dl_rbs, - max_val=max_rbs, - percentage=dl) + desired_dl_rbs = percentage_to_amount( + min_val=min_dl_rbs, max_val=max_rbs, percentage=dl) - if tm == TransmissionMode.TM3 or tm == TransmissionMode.TM4: + if (tm == self.TransmissionMode.TM3.value + or tm == self.TransmissionMode.TM4.value): # For TM3 and TM4 the number of DL RBs needs to be max_rbs or a # multiple of the RBG size @@ -1016,9 +926,8 @@ class LteSimulation(BaseSimulation): # Get the number of UL RBs that corresponds # to the required percentage - desired_ul_rbs = percentage_to_amount(min_val=min_ul_rbs, - max_val=max_rbs, - percentage=ul) + desired_ul_rbs = percentage_to_amount( + min_val=min_ul_rbs, max_val=max_rbs, percentage=ul) # Create a list of all possible UL RBs assignment # The standard allows any number that can be written as @@ -1031,10 +940,10 @@ class LteSimulation(BaseSimulation): return range(int(math.ceil(math.log(max_value, base)))) possible_ul_rbs = [ - 2**a * 3**b * 5**c for a in pow_range(max_rbs, 2) - for b in pow_range(max_rbs, 3) - for c in pow_range(max_rbs, 5) - if 2**a * 3**b * 5**c <= max_rbs] # yapf: disable + 2**a * 3**b * 5**c + for a in pow_range(max_rbs, 2) for b in pow_range(max_rbs, 3) + for c in pow_range(max_rbs, 5) if 2**a * 3**b * 5**c <= max_rbs + ] # Find the value in the list that is closest to desired_ul_rbs differences = [abs(rbs - desired_ul_rbs) for rbs in possible_ul_rbs] @@ -1043,56 +952,77 @@ class LteSimulation(BaseSimulation): # Report what are the obtained RB percentages self.log.info("Requested a {}% / {}% RB allocation. Closest possible " "percentages are {}% / {}%.".format( - dl, ul, round(100 * dl_rbs / max_rbs), + dl, ul, + round(100 * dl_rbs / max_rbs), round(100 * ul_rbs / max_rbs))) return dl_rbs, ul_rbs - def calibrate(self, band): - """ Calculates UL and DL path loss if it wasn't done before + def set_channel_bandwidth(self, bts, bandwidth): + """ Sets the LTE channel bandwidth (MHz) + + Args: + bts: basestation handle + bandwidth: desired bandwidth (MHz) + """ + if bandwidth == 20: + bts.bandwidth = BtsBandwidth.LTE_BANDWIDTH_20MHz + elif bandwidth == 15: + bts.bandwidth = BtsBandwidth.LTE_BANDWIDTH_15MHz + elif bandwidth == 10: + bts.bandwidth = BtsBandwidth.LTE_BANDWIDTH_10MHz + elif bandwidth == 5: + bts.bandwidth = BtsBandwidth.LTE_BANDWIDTH_5MHz + elif bandwidth == 3: + bts.bandwidth = BtsBandwidth.LTE_BANDWIDTH_3MHz + elif bandwidth == 1.4: + bts.bandwidth = BtsBandwidth.LTE_BANDWIDTH_1dot4MHz + else: + msg = "Bandwidth = {} MHz is not valid for LTE".format(bandwidth) + self.log.Error(msg) + raise ValueError(msg) + time.sleep(5) # It takes some time to propagate the new settings - Before running the base class implementation, configure the base station - to only use one downlink antenna with maximum bandwidth. + def set_dlul_configuration(self, bts, config): + """ Sets the frame structure for TDD bands. Args: - band: the band that is currently being calibrated. + config: the desired frame structure. An int between 0 and 6. """ - # Save initial values in a configuration object so they can be restored - restore_config = self.BtsConfig() - restore_config.mimo_mode = self.primary_config.mimo_mode - restore_config.transmission_mode = self.primary_config.transmission_mode - restore_config.bandwidth = self.primary_config.bandwidth + if not 0 <= config <= 6: + raise ValueError("The frame structure configuration has to be a " + "number between 0 and 6") - # Set up a temporary calibration configuration. - temporary_config = self.BtsConfig() - temporary_config.mimo_mode = MimoMode.MIMO_1x1 - temporary_config.transmission_mode = TransmissionMode.TM1 - temporary_config.bandwidth = max( - self.allowed_bandwidth_dictionary[int(band)]) - self.simulator.configure_bts(temporary_config) - self.primary_config.incorporate(temporary_config) + bts.uldl_configuration = config - super().calibrate(band) + # Wait for the setting to propagate + time.sleep(5) - # Restore values as they were before changing them for calibration. - self.simulator.configure_bts(restore_config) - self.primary_config.incorporate(restore_config) + def calibrate(self): + """ Calculates UL and DL path loss if it wasn't done before - def start_traffic_for_calibration(self): - """ - If TBS pattern is set to full allocation, there is no need to start - IP traffic. - """ - if not self.primary_config.tbs_pattern_on: - super().start_traffic_for_calibration() + This method overrides the baseclass specifically for LTE calibration. + For LTE cal, the simulation is set to TM1 and 1 antenna. - def stop_traffic_for_calibration(self): - """ - If TBS pattern is set to full allocation, IP traffic wasn't started """ - if not self.primary_config.tbs_pattern_on: - super().stop_traffic_for_calibration() + + # Set in TM1 mode and 1 antenna for downlink calibration for LTE + init_dl_antenna = None + init_transmode = None + if int(self.bts1.dl_antenna) != 1: + init_dl_antenna = self.bts1.dl_antenna + init_transmode = self.bts1.transmode + self.bts1.dl_antenna = 1 + self.bts1.transmode = "TM1" + time.sleep(5) # It takes some time to propagate the new settings + + super().calibrate() + + if init_dl_antenna is not None: + self.bts1.dl_antenna = init_dl_antenna + self.bts1.transmode = init_transmode + time.sleep(5) # It takes some time to propagate the new settings def get_duplex_mode(self, band): """ Determines if the band uses FDD or TDD duplex mode @@ -1104,6 +1034,19 @@ class LteSimulation(BaseSimulation): """ if 33 <= int(band) <= 46: - return DuplexMode.TDD + return self.DuplexMode.TDD else: - return DuplexMode.FDD + return self.DuplexMode.FDD + + def set_band(self, bts, band, calibrate_if_necessary=True): + """ Sets the right duplex mode before switching to a new band. + + Args: + bts: basestation handle + band: desired band + calibrate_if_necessary: if False calibration will be skipped + """ + + bts.duplex_mode = self.get_duplex_mode(band).value + + super().set_band(bts, band, calibrate_if_necessary) diff --git a/acts/framework/acts/test_utils/power/tel_simulations/UmtsSimulation.py b/acts/framework/acts/test_utils/power/tel_simulations/UmtsSimulation.py index 4d4aeebf8b..aa89d017e8 100644 --- a/acts/framework/acts/test_utils/power/tel_simulations/UmtsSimulation.py +++ b/acts/framework/acts/test_utils/power/tel_simulations/UmtsSimulation.py @@ -1,4 +1,4 @@ -#!/usr/bin/env python3 +#!/usr/bin/env python3.4 # # Copyright 2018 - The Android Open Source Project # @@ -13,31 +13,31 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. - -import ntpath -import time - -from acts.controllers.anritsu_lib import md8475_cellular_simulator as anritsusim -from acts.controllers.anritsu_lib.md8475a import BtsNumber from acts.controllers.anritsu_lib.md8475a import BtsPacketRate from acts.test_utils.power.tel_simulations.BaseSimulation import BaseSimulation from acts.test_utils.tel.tel_defines import NETWORK_MODE_WCDMA_ONLY class UmtsSimulation(BaseSimulation): - """ Single base station simulation. """ + """ Simple UMTS simulation with only one basestation. + + """ # Simulation config files in the callbox computer. # These should be replaced in the future by setting up # the same configuration manually. - UMTS_BASIC_SIM_FILE = 'SIM_default_WCDMA.wnssp' + UMTS_BASIC_SIM_FILE = ('C:\\Users\MD8475A\Documents\DAN_configs\\' + 'SIM_default_WCDMA.wnssp') - UMTS_R99_CELL_FILE = 'CELL_WCDMA_R99_config.wnscp' + UMTS_R99_CELL_FILE = ('C:\\Users\MD8475A\Documents\\DAN_configs\\' + 'CELL_WCDMA_R99_config.wnscp') - UMTS_R7_CELL_FILE = 'CELL_WCDMA_R7_config.wnscp' + UMTS_R7_CELL_FILE = ('C:\\Users\MD8475A\Documents\\DAN_configs\\' + 'CELL_WCDMA_R7_config.wnscp') - UMTS_R8_CELL_FILE = 'CELL_WCDMA_R8_config.wnscp' + UMTS_R8_CELL_FILE = ('C:\\Users\MD8475A\Documents\\DAN_configs\\' + 'CELL_WCDMA_R8_config.wnscp') # Test name parameters PARAM_RELEASE_VERSION = "r" @@ -47,16 +47,12 @@ class UmtsSimulation(BaseSimulation): PARAM_UL_PW = 'pul' PARAM_DL_PW = 'pdl' PARAM_BAND = "band" - PARAM_RRC_STATUS_CHANGE_TIMER = "rrcstatuschangetimer" - - # Units in which signal level is defined in DOWNLINK_SIGNAL_LEVEL_DICTIONARY - DOWNLINK_SIGNAL_LEVEL_UNITS = "RSCP" # RSCP signal levels thresholds (as reported by Android). Units are dBm # Using LTE thresholds + 24 dB to have equivalent SPD # 24 dB comes from 10 * log10(3.84 MHz / 15 KHz) - DOWNLINK_SIGNAL_LEVEL_DICTIONARY = { + downlink_rscp_dictionary = { 'excellent': -51, 'high': -76, 'medium': -86, @@ -67,36 +63,22 @@ class UmtsSimulation(BaseSimulation): # Stronger Tx power means that the signal received by the BTS is weaker # Units are dBm - UPLINK_SIGNAL_LEVEL_DICTIONARY = { - 'low': -20, + uplink_signal_level_dictionary = { + 'excellent': -20, + 'high': 2, 'medium': 8, - 'high': 15, - 'max': 23 + 'weak': 15, + 'edge': 23 } - # Converts packet rate to the throughput that can be actually obtained in - # Mbits/s - - packet_rate_to_dl_throughput = { - BtsPacketRate.WCDMA_DL384K_UL64K: 0.362, - BtsPacketRate.WCDMA_DL21_6M_UL5_76M: 18.5, - BtsPacketRate.WCDMA_DL43_2M_UL5_76M: 36.9 - } - - packet_rate_to_ul_throughput = { - BtsPacketRate.WCDMA_DL384K_UL64K: 0.0601, - BtsPacketRate.WCDMA_DL21_6M_UL5_76M: 5.25, - BtsPacketRate.WCDMA_DL43_2M_UL5_76M: 5.25 - } - - def __init__(self, simulator, log, dut, test_config, calibration_table): - """ Initializes the cellular simulator for a UMTS simulation. + def __init__(self, anritsu, log, dut, test_config, calibration_table): + """ Configures Anritsu system for UMTS simulation with 1 basetation Loads a simple UMTS simulation enviroment with 1 basestation. It also creates the BTS handle so we can change the parameters as desired. Args: - simulator: a cellular simulator controller + anritsu: the Anritsu callbox controller log: a logger handle dut: the android device handler test_config: test configuration obtained from the config file @@ -104,18 +86,10 @@ class UmtsSimulation(BaseSimulation): different bands. """ - # The UMTS simulation relies on the cellular simulator to be a MD8475 - if not isinstance(self.simulator, anritsusim.MD8475CellularSimulator): - raise ValueError('The UMTS simulation relies on the simulator to ' - 'be an Anritsu MD8475 A/B instrument.') - # The Anritsu controller needs to be unwrapped before calling - # super().__init__ because setup_simulator() requires self.anritsu and - # will be called during the parent class initialization. - self.anritsu = self.simulator.anritsu - self.bts1 = self.anritsu.get_BTS(BtsNumber.BTS1) + super().__init__(anritsu, log, dut, test_config, calibration_table) - super().__init__(simulator, log, dut, test_config, calibration_table) + anritsu.load_simulation_paramfile(self.UMTS_BASIC_SIM_FILE) if not dut.droid.telephonySetPreferredNetworkTypesForSubscription( NETWORK_MODE_WCDMA_ONLY, @@ -125,20 +99,6 @@ class UmtsSimulation(BaseSimulation): log.info("Preferred network type set.") self.release_version = None - self.packet_rate = None - - def setup_simulator(self): - """ Do initial configuration in the simulator. """ - - # Load callbox config files - callbox_config_path = self.CALLBOX_PATH_FORMAT_STR.format( - self.anritsu._md8475_version) - - self.anritsu.load_simulation_paramfile( - ntpath.join(callbox_config_path, self.UMTS_BASIC_SIM_FILE)) - - # Start simulation if it wasn't started - self.anritsu.start_simulation() def parse_parameters(self, parameters): """ Configs an UMTS simulation using a list of parameters. @@ -149,6 +109,8 @@ class UmtsSimulation(BaseSimulation): parameters: list of parameters """ + super().parse_parameters(parameters) + # Setup band values = self.consume_parameter(parameters, self.PARAM_BAND, 1) @@ -159,7 +121,6 @@ class UmtsSimulation(BaseSimulation): "the required band number.".format(self.PARAM_BAND)) self.set_band(self.bts1, values[1]) - self.load_pathloss_if_required() # Setup release version @@ -176,35 +137,35 @@ class UmtsSimulation(BaseSimulation): self.set_release_version(self.bts1, values[1]) - # Setup W-CDMA RRC status change and CELL_DCH timer for idle test case - - values = self.consume_parameter(parameters, - self.PARAM_RRC_STATUS_CHANGE_TIMER, 1) - if not values: - self.log.info( - "The test name does not include the '{}' parameter. Disabled " - "by default.".format(self.PARAM_RRC_STATUS_CHANGE_TIMER)) - self.anritsu.set_umts_rrc_status_change(False) - else: - self.rrc_sc_timer = int(values[1]) - self.anritsu.set_umts_rrc_status_change(True) - self.anritsu.set_umts_dch_stat_timer(self.rrc_sc_timer) - # Setup uplink power - ul_power = self.get_uplink_power_from_parameters(parameters) + values = self.consume_parameter(parameters, self.PARAM_UL_PW, 1) + if not values or values[1] not in self.uplink_signal_level_dictionary: + raise ValueError( + "The test name needs to include parameter {} followed by " + "one the following values: {}.".format(self.PARAM_UL_PW, [ + "\n" + val + for val in self.uplink_signal_level_dictionary.keys() + ])) # Power is not set on the callbox until after the simulation is - # started. Saving this value in a variable for later - self.sim_ul_power = ul_power + # started. Will save this value in a variable and use it later + self.sim_ul_power = self.uplink_signal_level_dictionary[values[1]] # Setup downlink power - dl_power = self.get_downlink_power_from_parameters(parameters) + values = self.consume_parameter(parameters, self.PARAM_DL_PW, 1) + + if not values or values[1] not in self.downlink_rscp_dictionary: + raise ValueError( + "The test name needs to include parameter {} followed by " + "one of the following values: {}.".format( + self.PARAM_DL_PW, + [val for val in self.downlink_rscp_dictionary.keys()])) # Power is not set on the callbox until after the simulation is - # started. Saving this value in a variable for later - self.sim_dl_power = dl_power + # started. Will save this value in a variable and use it later + self.sim_dl_power = self.downlink_rscp_dictionary[values[1]] def set_release_version(self, bts, release_version): """ Sets the release version. @@ -221,83 +182,24 @@ class UmtsSimulation(BaseSimulation): if release_version == self.PARAM_RELEASE_VERSION_99: cell_parameter_file = self.UMTS_R99_CELL_FILE - self.packet_rate = BtsPacketRate.WCDMA_DL384K_UL64K + packet_rate = BtsPacketRate.WCDMA_DL384K_UL64K elif release_version == self.PARAM_RELEASE_VERSION_7: cell_parameter_file = self.UMTS_R7_CELL_FILE - self.packet_rate = BtsPacketRate.WCDMA_DL21_6M_UL5_76M + packet_rate = BtsPacketRate.WCDMA_DL21_6M_UL5_76M elif release_version == self.PARAM_RELEASE_VERSION_8: cell_parameter_file = self.UMTS_R8_CELL_FILE - self.packet_rate = BtsPacketRate.WCDMA_DL43_2M_UL5_76M + packet_rate = BtsPacketRate.WCDMA_DL43_2M_UL5_76M else: raise ValueError("Invalid UMTS release version number.") - self.anritsu.load_cell_paramfile( - ntpath.join(self.callbox_config_path, cell_parameter_file)) - - self.release_version = release_version + self.anritsu.load_cell_paramfile(cell_parameter_file) # Loading a cell parameter file stops the simulation self.start() - bts.packet_rate = self.packet_rate - - def maximum_downlink_throughput(self): - """ Calculates maximum achievable downlink throughput in the current - simulation state. - - Returns: - Maximum throughput in mbps. - - """ - - if self.packet_rate not in self.packet_rate_to_dl_throughput: - raise NotImplementedError("Packet rate not contained in the " - "throughput dictionary.") - return self.packet_rate_to_dl_throughput[self.packet_rate] - - def maximum_uplink_throughput(self): - """ Calculates maximum achievable uplink throughput in the current - simulation state. - - Returns: - Maximum throughput in mbps. - - """ - - if self.packet_rate not in self.packet_rate_to_ul_throughput: - raise NotImplementedError("Packet rate not contained in the " - "throughput dictionary.") - return self.packet_rate_to_ul_throughput[self.packet_rate] - - def set_downlink_rx_power(self, bts, signal_level): - """ Starts IP data traffic while setting downlink power. - - This is only necessary for UMTS for unclear reasons. b/139026916 """ - - # Starts IP traffic while changing this setting to force the UE to be - # in Communication state, as UL power cannot be set in Idle state - self.start_traffic_for_calibration() - - # Wait until it goes to communication state - self.anritsu.wait_for_communication_state() - - super().set_downlink_rx_power(bts, signal_level) - - # Stop IP traffic after setting the signal level - self.stop_traffic_for_calibration() - - def set_band(self, bts, band): - """ Sets the band used for communication. - - Args: - bts: basestation handle - band: desired band - """ - - bts.band = band - time.sleep(5) # It takes some time to propagate the new band + bts.packet_rate = packet_rate diff --git a/acts/framework/acts/test_utils/power/tel_simulations/__init__.py b/acts/framework/acts/test_utils/power/tel_simulations/__init__.py deleted file mode 100644 index e69de29bb2..0000000000 --- a/acts/framework/acts/test_utils/power/tel_simulations/__init__.py +++ /dev/null diff --git a/acts/framework/acts/test_utils/tel/TelephonyBaseTest.py b/acts/framework/acts/test_utils/tel/TelephonyBaseTest.py index 6a0895d648..d459c881de 100644 --- a/acts/framework/acts/test_utils/tel/TelephonyBaseTest.py +++ b/acts/framework/acts/test_utils/tel/TelephonyBaseTest.py @@ -28,7 +28,6 @@ from acts import logger as acts_logger from acts import signals from acts.base_test import BaseTestClass from acts.controllers.android_device import DEFAULT_QXDM_LOG_PATH -from acts.controllers.android_device import DEFAULT_SDM_LOG_PATH from acts.keys import Config from acts import records from acts import utils @@ -37,7 +36,6 @@ from acts.test_utils.tel.tel_subscription_utils import \ initial_set_up_for_subid_infomation from acts.test_utils.tel.tel_subscription_utils import \ set_default_sub_for_all_services -from acts.test_utils.tel.tel_subscription_utils import get_subid_from_slot_index from acts.test_utils.tel.tel_test_utils import build_id_override from acts.test_utils.tel.tel_test_utils import disable_qxdm_logger from acts.test_utils.tel.tel_test_utils import enable_connectivity_metrics @@ -61,12 +59,8 @@ from acts.test_utils.tel.tel_test_utils import set_phone_silent_mode from acts.test_utils.tel.tel_test_utils import set_qxdm_logger_command from acts.test_utils.tel.tel_test_utils import start_qxdm_logger from acts.test_utils.tel.tel_test_utils import start_qxdm_loggers -from acts.test_utils.tel.tel_test_utils import start_sdm_loggers -from acts.test_utils.tel.tel_test_utils import start_sdm_logger from acts.test_utils.tel.tel_test_utils import start_tcpdumps from acts.test_utils.tel.tel_test_utils import stop_qxdm_logger -from acts.test_utils.tel.tel_test_utils import stop_sdm_loggers -from acts.test_utils.tel.tel_test_utils import stop_sdm_logger from acts.test_utils.tel.tel_test_utils import stop_tcpdumps from acts.test_utils.tel.tel_test_utils import synchronize_device_time from acts.test_utils.tel.tel_test_utils import unlock_sim @@ -80,7 +74,6 @@ from acts.test_utils.tel.tel_test_utils import activate_google_fi_account from acts.test_utils.tel.tel_test_utils import check_google_fi_activated from acts.test_utils.tel.tel_test_utils import check_fi_apk_installed from acts.test_utils.tel.tel_test_utils import phone_switch_to_msim_mode -from acts.test_utils.tel.tel_test_utils import activate_esim_using_suw from acts.test_utils.tel.tel_defines import PRECISE_CALL_STATE_LISTEN_LEVEL_BACKGROUND from acts.test_utils.tel.tel_defines import SINGLE_SIM_CONFIG, MULTI_SIM_CONFIG from acts.test_utils.tel.tel_defines import PRECISE_CALL_STATE_LISTEN_LEVEL_FOREGROUND @@ -89,10 +82,42 @@ from acts.test_utils.tel.tel_defines import SIM_STATE_ABSENT from acts.test_utils.tel.tel_defines import SIM_STATE_UNKNOWN from acts.test_utils.tel.tel_defines import WIFI_VERBOSE_LOGGING_ENABLED from acts.test_utils.tel.tel_defines import WIFI_VERBOSE_LOGGING_DISABLED -from acts.test_utils.tel.tel_defines import INVALID_SUB_ID class TelephonyBaseTest(BaseTestClass): + def __init__(self, controllers): + + BaseTestClass.__init__(self, controllers) + self.wifi_network_ssid = self.user_params.get( + "wifi_network_ssid") or self.user_params.get( + "wifi_network_ssid_2g") or self.user_params.get( + "wifi_network_ssid_5g") + self.wifi_network_pass = self.user_params.get( + "wifi_network_pass") or self.user_params.get( + "wifi_network_pass_2g") or self.user_params.get( + "wifi_network_ssid_5g") + + self.log_path = getattr(logging, "log_path", None) + self.qxdm_log = self.user_params.get("qxdm_log", True) + self.enable_radio_log_on = self.user_params.get( + "enable_radio_log_on", False) + self.cbrs_esim = self.user_params.get("cbrs_esim", False) + self.account_util = self.user_params.get("account_util", None) + if isinstance(self.account_util, list): + self.account_util = self.account_util[0] + self.fi_util = self.user_params.get("fi_util", None) + if isinstance(self.fi_util, list): + self.fi_util = self.fi_util[0] + tasks = [(self._init_device, [ad]) for ad in self.android_devices] + multithread_func(self.log, tasks) + self.skip_reset_between_cases = self.user_params.get( + "skip_reset_between_cases", True) + self.log_path = getattr(logging, "log_path", None) + self.sim_config = { + "config":SINGLE_SIM_CONFIG, + "number_of_sims":1 + } + # Use for logging in the test cases to facilitate # faster log lookup and reduce ambiguity in logging. @staticmethod @@ -102,8 +127,6 @@ class TelephonyBaseTest(BaseTestClass): self.log_begin_time.replace(' ', '-')) self.test_id = test_id self.result_detail = "" - self.testsignal_details = "" - self.testsignal_extras = {} tries = int(self.user_params.get("telephony_auto_rerun", 1)) for ad in self.android_devices: ad.log_path = self.log_path @@ -116,11 +139,13 @@ class TelephonyBaseTest(BaseTestClass): self._setup_test(self.test_name) try: result = fn(self, *args, **kwargs) - except signals.TestFailure as e: - self.testsignal_details = e.details - self.testsignal_extras = e.extras + except signals.TestFailure: + if self.result_detail: + signal.details = self.result_detail result = False except signals.TestSignal: + if self.result_detail: + signal.details = self.result_detail raise except Exception as e: self.log.exception(e) @@ -142,56 +167,11 @@ class TelephonyBaseTest(BaseTestClass): if result is not False: asserts.explicit_pass(self.result_detail) else: - if self.result_detail: - asserts.fail(self.result_detail) - else: - asserts.fail(self.testsignal_details, self.testsignal_extras) + asserts.fail(self.result_detail) return _safe_wrap_test_case def setup_class(self): - super().setup_class() - self.wifi_network_ssid = self.user_params.get( - "wifi_network_ssid") or self.user_params.get( - "wifi_network_ssid_2g") or self.user_params.get( - "wifi_network_ssid_5g") - self.wifi_network_pass = self.user_params.get( - "wifi_network_pass") or self.user_params.get( - "wifi_network_pass_2g") or self.user_params.get( - "wifi_network_ssid_5g") - - self.log_path = getattr(logging, "log_path", None) - self.qxdm_log = self.user_params.get("qxdm_log", True) - self.sdm_log = self.user_params.get("sdm_log", False) - self.enable_radio_log_on = self.user_params.get( - "enable_radio_log_on", False) - self.cbrs_esim = self.user_params.get("cbrs_esim", False) - self.account_util = self.user_params.get("account_util", None) - self.save_passing_logs = self.user_params.get("save_passing_logs", False) - if isinstance(self.account_util, list): - self.account_util = self.account_util[0] - self.fi_util = self.user_params.get("fi_util", None) - if isinstance(self.fi_util, list): - self.fi_util = self.fi_util[0] - tasks = [(self._init_device, [ad]) for ad in self.android_devices] - multithread_func(self.log, tasks) - self.skip_reset_between_cases = self.user_params.get( - "skip_reset_between_cases", True) - self.log_path = getattr(logging, "log_path", None) - self.sim_config = { - "config":SINGLE_SIM_CONFIG, - "number_of_sims":1 - } - - for ad in self.android_devices: - if hasattr(ad, "dsds"): - self.sim_config = { - "config":MULTI_SIM_CONFIG, - "number_of_sims":2 - } - break - if "anritsu_md8475a_ip_address" in self.user_params: - return qxdm_log_mask_cfg = self.user_params.get("qxdm_log_mask_cfg", None) if isinstance(qxdm_log_mask_cfg, list): qxdm_log_mask_cfg = qxdm_log_mask_cfg[0] @@ -207,8 +187,7 @@ class TelephonyBaseTest(BaseTestClass): # relative to the config file. if not os.path.isfile(sim_conf_file): sim_conf_file = os.path.join( - self.user_params[Config.key_config_path.value], - sim_conf_file) + self.user_params[Config.key_config_path], sim_conf_file) if not os.path.isfile(sim_conf_file): self.log.error("Unable to load user config %s ", sim_conf_file) @@ -235,7 +214,6 @@ class TelephonyBaseTest(BaseTestClass): def _setup_device(self, ad, sim_conf_file, qxdm_log_mask_cfg=None): ad.qxdm_log = getattr(ad, "qxdm_log", self.qxdm_log) - ad.sdm_log = getattr(ad, "sdm_log", self.sdm_log) if self.user_params.get("enable_connectivity_metrics", False): enable_connectivity_metrics(ad) if self.user_params.get("build_id_override", False): @@ -248,13 +226,11 @@ class TelephonyBaseTest(BaseTestClass): postfix=build_postfix) if self.enable_radio_log_on: enable_radio_log_on(ad) - if "sdm" in ad.model or "msm" in ad.model: - phone_mode = "ssss" - if hasattr(ad, "mtp_dsds"): - phone_mode = "dsds" - if ad.adb.getprop("persist.radio.multisim.config") != phone_mode: + if "sdm" in ad.model: + if ad.adb.getprop("persist.radio.multisim.config") != \ + self.sim_config["config"]: ad.adb.shell("setprop persist.radio.multisim.config %s" \ - % phone_mode) + % self.sim_config["config"]) reboot_device(ad) stop_qxdm_logger(ad) @@ -270,8 +246,6 @@ class TelephonyBaseTest(BaseTestClass): qxdm_log_mask = os.path.join(qxdm_mask_path, mask_file_name) set_qxdm_logger_command(ad, mask=qxdm_log_mask) start_qxdm_logger(ad, utils.get_current_epoch_time()) - elif ad.sdm_log: - start_sdm_logger(ad) else: disable_qxdm_logger(ad) if not unlock_sim(ad): @@ -282,6 +256,7 @@ class TelephonyBaseTest(BaseTestClass): if not ensure_wifi_connected(self.log, ad, self.wifi_network_ssid, self.wifi_network_pass): ad.log.error("Failed to connect to wifi") + return False if check_google_fi_activated(ad): ad.log.info("Google Fi is already Activated") else: @@ -289,39 +264,29 @@ class TelephonyBaseTest(BaseTestClass): add_google_account(ad) install_googlefi_apk(ad, self.fi_util) if not activate_google_fi_account(ad): - ad.log.error("Failed to activate Fi") - check_google_fi_activated(ad) - if hasattr(ad, "dsds"): - sim_mode = ad.droid.telephonyGetPhoneCount() - if sim_mode == 1: - ad.log.info("Phone in Single SIM Mode") - if not phone_switch_to_msim_mode(ad): - ad.log.error("Failed to switch to Dual SIM Mode") return False - elif sim_mode == 2: - ad.log.info("Phone already in Dual SIM Mode") + check_google_fi_activated(ad) + if hasattr(ad, "dsds"): + sim_mode = ad.droid.telephonyGetPhoneCount() + if sim_mode == 1: + ad.log.info("Phone in Single SIM Mode") + if not phone_switch_to_msim_mode(ad): + ad.log.error("Failed to switch to Dual SIM Mode") + return False + elif sim_mode == 2: + ad.log.info("Phone already in Dual SIM Mode") + set_default_sub_for_all_services(ad) if get_sim_state(ad) in (SIM_STATE_ABSENT, SIM_STATE_UNKNOWN): ad.log.info("Device has no or unknown SIM in it") - # eSIM needs activation - activate_esim_using_suw(ad) ensure_phone_idle(self.log, ad) elif self.user_params.get("Attenuator"): ad.log.info("Device in chamber room") ensure_phone_idle(self.log, ad) - setup_droid_properties(self.log, ad, sim_conf_file) + setup_droid_properties(self.log, ad, sim_conf_file, self.cbrs_esim) else: self.wait_for_sim_ready(ad) ensure_phone_default_state(self.log, ad) - setup_droid_properties(self.log, ad, sim_conf_file) - - default_slot = getattr(ad, "default_slot", 0) - if get_subid_from_slot_index(ad.log, ad, default_slot) != INVALID_SUB_ID: - ad.log.info("Slot %s is the default slot.", default_slot) - set_default_sub_for_all_services(ad, default_slot) - else: - ad.log.warning("Slot %s is NOT a valid slot. Slot %s will be used by default.", - default_slot, 1-default_slot) - set_default_sub_for_all_services(ad, 1-default_slot) + setup_droid_properties(self.log, ad, sim_conf_file, self.cbrs_esim) # Activate WFC on Verizon, AT&T and Canada operators as per # b/33187374 & # b/122327716 @@ -334,7 +299,8 @@ class TelephonyBaseTest(BaseTestClass): if getattr(ad, "telephony_test_setup", None): return True - ad.droid.wifiEnableVerboseLogging(WIFI_VERBOSE_LOGGING_ENABLED) + if "enable_wifi_verbose_logging" in self.user_params: + ad.droid.wifiEnableVerboseLogging(WIFI_VERBOSE_LOGGING_ENABLED) # Disable Emergency alerts # Set chrome browser start with no-first-run verification and @@ -362,7 +328,7 @@ class TelephonyBaseTest(BaseTestClass): curl_file_path = os.path.join(tel_data, "curl") if not os.path.isfile(curl_file_path): curl_file_path = os.path.join( - self.user_params[Config.key_config_path.value], + self.user_params[Config.key_config_path], curl_file_path) if os.path.isfile(curl_file_path): ad.log.info("Pushing Curl to /data dir") @@ -398,7 +364,6 @@ class TelephonyBaseTest(BaseTestClass): def _teardown_device(self, ad): try: stop_qxdm_logger(ad) - stop_sdm_logger(ad) except Exception as e: self.log.error("Failure with %s", e) try: @@ -412,7 +377,9 @@ class TelephonyBaseTest(BaseTestClass): force_connectivity_metrics_upload(ad) time.sleep(30) try: - ad.droid.wifiEnableVerboseLogging(WIFI_VERBOSE_LOGGING_DISABLED) + if "enable_wifi_verbose_logging" in self.user_params: + ad.droid.wifiEnableVerboseLogging( + WIFI_VERBOSE_LOGGING_DISABLED) except Exception as e: self.log.error("Failure with %s", e) try: @@ -445,8 +412,6 @@ class TelephonyBaseTest(BaseTestClass): ad, "qxdm_logger_command", "")): set_qxdm_logger_command(ad, None) start_qxdm_loggers(self.log, self.android_devices, self.begin_time) - if getattr(self, "sdm_log", False): - start_sdm_loggers(self.log, self.android_devices) if getattr(self, "tcpdump_log", False) or "wfc" in self.test_name: mask = getattr(self, "tcpdump_mask", "all") interface = getattr(self, "tcpdump_interface", "wlan0") @@ -476,10 +441,6 @@ class TelephonyBaseTest(BaseTestClass): def on_fail(self, test_name, begin_time): self._take_bug_report(test_name, begin_time) - def on_pass(self, test_name, begin_time): - if self.save_passing_logs: - self._take_bug_report(test_name, begin_time) - def _ad_take_extra_logs(self, ad, test_name, begin_time): ad.adb.wait_for_device() result = True @@ -514,25 +475,14 @@ class TelephonyBaseTest(BaseTestClass): ad.log.error("Failed to get QXDM log for %s with error %s", test_name, e) result = False - if getattr(ad, "sdm_log", False): - # Gather sdm log modified 3 minutes earlier than test start time - if begin_time: - sdm_begin_time = begin_time - 1000 * extra_qxdm_logs_in_seconds - else: - sdm_begin_time = None - try: - time.sleep(10) - ad.get_sdm_logs(test_name, sdm_begin_time) - except Exception as e: - ad.log.error("Failed to get SDM log for %s with error %s", - test_name, e) - result = False return result def _take_bug_report(self, test_name, begin_time): - if self._skip_bug_report(test_name): + if self._skip_bug_report(): return + test_log_path = os.path.join(self.log_path, test_name) + utils.create_dir(test_log_path) dev_num = getattr(self, "number_of_devices", None) or len( self.android_devices) tasks = [(self._ad_take_bugreport, (ad, test_name, begin_time)) @@ -547,7 +497,6 @@ class TelephonyBaseTest(BaseTestClass): # Zip log folder if not self.user_params.get("zip_log", False): return src_dir = os.path.join(self.log_path, test_name) - utils.create_dir(src_dir) file_name = "%s_%s" % (src_dir, begin_time) self.log.info("Zip folder %s to %s.zip", src_dir, file_name) shutil.make_archive(file_name, "zip", src_dir) diff --git a/acts/framework/acts/test_utils/tel/TelephonyLabPowerTest.py b/acts/framework/acts/test_utils/tel/TelephonyLabPowerTest.py new file mode 100644 index 0000000000..d42cbf48cf --- /dev/null +++ b/acts/framework/acts/test_utils/tel/TelephonyLabPowerTest.py @@ -0,0 +1,200 @@ +#!/usr/bin/env python3 +# +# Copyright 2016 - The Android Open Source Project +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Sanity tests for voice tests in telephony +""" +import time, os + +from acts.controllers.anritsu_lib._anritsu_utils import AnritsuError +from acts.controllers.anritsu_lib.md8475a import MD8475A +from acts.controllers.anritsu_lib.md8475a import BtsBandwidth +from acts.test_utils.tel.anritsu_utils import set_system_model_lte +from acts.test_utils.tel.anritsu_utils import set_usim_parameters +from acts.test_utils.tel.tel_defines import RAT_FAMILY_LTE +from acts.test_utils.tel.tel_defines import NETWORK_MODE_LTE_CDMA_EVDO +from acts.test_utils.tel.tel_defines import NETWORK_MODE_LTE_CDMA_EVDO_GSM_WCDMA +from acts.test_utils.tel.tel_test_utils import ensure_network_rat +from acts.test_utils.tel.tel_test_utils import set_phone_screen_on +from acts.test_utils.tel.tel_test_utils import toggle_volte +from acts.test_utils.tel.tel_voice_utils import phone_idle_volte +from acts.test_utils.tel.tel_voice_utils import phone_setup_volte +from acts.test_utils.tel.TelephonyBaseTest import TelephonyBaseTest +from acts.utils import create_dir +from acts.utils import disable_doze +from acts.utils import set_adaptive_brightness +from acts.utils import set_ambient_display +from acts.utils import set_auto_rotate +from acts.utils import set_location_service + +DEFAULT_CALL_NUMBER = "+11234567891" + +# Monsoon output Voltage in V +MONSOON_OUTPUT_VOLTAGE = 4.2 +# Monsoon output max current in A +MONSOON_MAX_CURRENT = 7.8 + +# Sampling rate in Hz +ACTIVE_CALL_TEST_SAMPLING_RATE = 100 +# Sample duration in seconds +ACTIVE_CALL_TEST_SAMPLE_TIME = 10 +# Offset time in seconds +ACTIVE_CALL_TEST_OFFSET_TIME = 10 + + +class TelephonyLabPowerTest(TelephonyBaseTest): + def __init__(self, controllers): + TelephonyBaseTest.__init__(self, controllers) + self.ad = self.android_devices[0] + self.ad.sim_card = getattr(self.ad, "sim_card", None) + self.md8475a_ip_address = self.user_params[ + "anritsu_md8475a_ip_address"] + self.wlan_option = self.user_params.get("anritsu_wlan_option", False) + + def _configure_dut(self): + try: + self.log.info("Rebooting DUT") + self.ad.reboot() + self.log.info("DUT rebooted") + set_adaptive_brightness(self.ad, False) + set_ambient_display(self.ad, False) + set_auto_rotate(self.ad, False) + set_location_service(self.ad, False) + # This is not needed for AOSP build + disable_doze(self.ad) + set_phone_screen_on(self.log, self.ad, 15) + self.ad.droid.telephonyFactoryReset() + except Exception as e: + self.ad.log.error(e) + return False + return True + + def _configure_dut_network_mode_for_data_volte(self): + self._configure_dut() + try: + # TODO do what is needed to verify connected for LTE data transfer + self.log.info("setting back to LTE") + self.ad.droid.telephonySetPreferredNetworkTypesForSubscription( + "NETWORK_MODE_LTE_CDMA_EVDO", + self.ad.droid.subscriptionGetDefaultSubId()) + self.ad.adb.shell( + "setprop net.lte.ims.volte.provisioned 1", ignore_status=True) + except Exception as e: + self.ad.log.error(e) + return False + return True + + def _configure_simulation(self): + try: + self.anritsu = MD8475A(self.md8475a_ip_address, self.log, + self.wlan_option) + [lte_bts] = set_system_model_lte(self.anritsu, self.user_params, + self.ad.sim_card) + self.bts = lte_bts + lte_bts.bandwidth = BtsBandwidth.LTE_BANDWIDTH_10MHz + set_usim_parameters(self.anritsu, self.ad.sim_card) + self.anritsu.start_simulation() + self.anritsu.send_command("IMSSTARTVN 1") + except AnritsuError: + self.log.error("Error in connecting to Anritsu Simulator") + return False + return True + + def _dut_setup_data_volte(self, ad): + ad.droid.telephonyToggleDataConnection(True) + toggle_volte(self.log, ad, True) + return ensure_network_rat( + self.log, + ad, + NETWORK_MODE_LTE_CDMA_EVDO_GSM_WCDMA, + RAT_FAMILY_LTE, + toggle_apm_after_setting=True) + + def setup_class(self): + # Monsoon setup + self.log.info("Starting Monsoon setup") + self.mon = self.monsoons[0] + self.mon.set_voltage(MONSOON_OUTPUT_VOLTAGE) + self.mon.set_max_current(MONSOON_MAX_CURRENT) + self.mon.dut = self.ad = self.android_devices[0] + self.monsoon_log_path = os.path.join(self.log_path, "MonsoonLog") + create_dir(self.monsoon_log_path) + self.log.info("Conffiguring MD8475A network simulator") + self._configure_simulation() + self.log.info("Setting DUT's network mode for data and volte") + self._configure_dut_network_mode_for_data_volte() + self.log.info("Enabling DUT for data and VoLTE") + if not self._dut_setup_data_volte(self.ad): + self.log.error("phone_setup_volte failed.") + self.log.info("Waiting for DUT to register on MD8475A") + self.anritsu.wait_for_registration_state() + self.log.info("Waiting for DUT to register with IMS server") + if not phone_idle_volte(self.log, self.ad): + self.log.error("phone_idle_volte failed.") + + def setup_test(self): + self.log.info("Bypassing empty setup_test() in TelephonyLabPowerTest") + + def teardown_class(self): + self.log.info("Stopping Simulation and disconnect MD8475A") + self.anritsu.stop_simulation() + self.anritsu.disconnect() + return True + + def _save_logs_for_power_test(self, monsoon_result, bug_report): + if monsoon_result and "monsoon_log_for_power_test" in self.user_params: + monsoon_result.save_to_text_file( + [monsoon_result], + os.path.join(self.monsoon_log_path, self.test_id)) + if bug_report and "bug_report_for_power_test" in self.user_params: + self.android_devices[0].take_bug_report(self.test_name, + self.begin_time) + + def power_test(self, + olvl, + rflvl, + sch_mode="DYNAMIC", + sample_rate=ACTIVE_CALL_TEST_SAMPLING_RATE, + sample_time=ACTIVE_CALL_TEST_SAMPLE_TIME, + offset_time=ACTIVE_CALL_TEST_OFFSET_TIME): + """ Set Output(DL)/InputDL(UL) power and scheduling mode of BTS, + and samping parameters of Monsoon + Args: ovlv: Output (DL) level in dBm + rflvl: Input (UL) level in dBm + sch_mode: Scheduling mode, either "STATIC" or "DYNAMIC" + sample_rate: Sampling rate in Hz + sample_time: Sample duration in seconds + offset_time: Offset time in seconds + Return: True if no exception + """ + self.bts.output_level = olvl + self.bts.input_level = rflvl + self.bts.lte_scheduling_mode = sch_mode + bug_report = True + average_current = 0 + result = None + self.log.info("Test %s" % self.test_name) + try: + result = self.mon.measure_power(sample_rate, sample_time, + self.test_id, offset_time) + average_current = result.average_current + self._save_logs_for_power_test(result, bug_report) + self.log.info("{} Result: {} mA".format(self.test_id, + average_current)) + except Exception as e: + self.log.error("Exception during power consumption measurement: " + + str(e)) + return False + return True diff --git a/acts/framework/acts/test_utils/tel/anritsu_utils.py b/acts/framework/acts/test_utils/tel/anritsu_utils.py index 91d18ad036..61178b5763 100644 --- a/acts/framework/acts/test_utils/tel/anritsu_utils.py +++ b/acts/framework/acts/test_utils/tel/anritsu_utils.py @@ -1446,7 +1446,7 @@ def call_mo_setup_teardown( raise _CallSequenceException("DUT call not drop.") else: log.info("Disconnecting the call from DUT") - if not hangup_call(log, ad, is_emergency): + if not hangup_call(log, ad): raise _CallSequenceException( "Error in Hanging-Up Call on DUT.") @@ -1689,7 +1689,7 @@ def ims_call_ho(log, raise _CallSequenceException("Call ended before delay_in_call.") # end the call from phone log.info("Disconnecting the call from DUT") - if not hangup_call(log, ad, is_emergency): + if not hangup_call(log, ad): raise _CallSequenceException("Error in Hanging-Up Call on DUT.") # confirm if CSCF status is back to idle if not wait_for_ims_cscf_status(log, anritsu_handle, @@ -1826,7 +1826,7 @@ def ims_call_cs_teardown( raise _CallSequenceException("DUT call not drop.") else: log.info("Disconnecting the call from DUT") - if not hangup_call(log, ad, is_emergency): + if not hangup_call(log, ad): raise _CallSequenceException( "Error in Hanging-Up Call on DUT.") # confirm if virtual phone status is back to idle @@ -2772,6 +2772,7 @@ def set_post_sim_params(anritsu_handle, user_params, sim_card): anritsu_handle.send_command("PDNIMS 1,ENABLE") anritsu_handle.send_command("PDNVNID 1,1") anritsu_handle.send_command("PDNIMS 2,ENABLE") + anritsu_handle.send_command("PDNVNID 2,2") anritsu_handle.send_command("PDNIMS 3,ENABLE") anritsu_handle.send_command("PDNVNID 3,1") if sim_card == VzW12349: diff --git a/acts/framework/acts/test_utils/tel/tel_defines.py b/acts/framework/acts/test_utils/tel/tel_defines.py index f85932c20e..db018641d3 100644 --- a/acts/framework/acts/test_utils/tel/tel_defines.py +++ b/acts/framework/acts/test_utils/tel/tel_defines.py @@ -143,9 +143,6 @@ WAIT_TIME_ANDROID_STATE_SETTLING = 1 # has sufficient time to reconfigure based on new network WAIT_TIME_BETWEEN_REG_AND_CALL = 5 -# Wait time for data pdn to be up on CBRS -WAIT_TIME_FOR_CBRS_DATA_SWITCH = 60 - # Time to wait for 1xrtt voice attach check # After DUT voice network type report 1xrtt (from unknown), it need to wait for # several seconds before the DUT can receive incoming call. @@ -599,7 +596,6 @@ NETWORK_MODE_LTE_TDSCDMA_CDMA_EVDO_GSM_WCDMA = "NETWORK_MODE_LTE_TDSCDMA_CDMA_EV # Carrier Config Update CARRIER_ID_VERSION = "3" -CARRIER_ID_VERSION_P = "5" WAIT_TIME_FOR_CARRIERID_CHANGE = 6 CARRIER_ID_METADATA_URL = "am broadcast -a com.google.android.gms." \ "phenotype.FLAG_OVERRIDE --es package 'com.google.android.configupdater'" \ @@ -607,24 +603,12 @@ CARRIER_ID_METADATA_URL = "am broadcast -a com.google.android.gms." \ "--esa values 'https://www.gstatic.com/android/config_update/110618-" \ "carrier-id-metadata.txt' --esa types 'string' com.google.android.gms" -CARRIER_ID_METADATA_URL_P = "am broadcast -a com.google.android.gms." \ - "phenotype.FLAG_OVERRIDE --es package 'com.google.android.configupdater'" \ - " --es user '\*' --esa flags 'CarrierIdentification__metadata_url' " \ - "--esa values 'https://www.gstatic.com/android/telephony/carrierid/" \ - "030419-p-carrier-id-metadata.txt' --esa types 'string' com.google.android.gms" - CARRIER_ID_CONTENT_URL = "am broadcast -a com.google.android.gms." \ "phenotype.FLAG_OVERRIDE --es package 'com.google.android.configupdater'" \ " --es user '\*' --esa flags 'CarrierIdentification__content_url' " \ "--esa values 'https://www.gstatic.com/android/config_update/110618-" \ "carrier-id.pb' --esa types 'string' com.google.android.gms" -CARRIER_ID_CONTENT_URL_P = "am broadcast -a com.google.android.gms." \ - "phenotype.FLAG_OVERRIDE --es package 'com.google.android.configupdater'" \ - " --es user '\*' --esa flags 'CarrierIdentification__content_url' " \ - "--esa values 'https://www.gstatic.com/android/telephony/carrierid/" \ - "030419-p-carrier-id.pb' --esa types 'string' com.google.android.gms" - # Constant for Messaging Event Name EventSmsDeliverSuccess = "SmsDeliverSuccess" EventSmsDeliverFailure = "SmsDeliverFailure" @@ -673,7 +657,6 @@ EventSignalStrengthChanged = "SignalStrengthChanged" EventVolteServiceStateChanged = "VolteServiceStateChanged" EventMessageWaitingIndicatorChanged = "MessageWaitingIndicatorChanged" EventConnectivityChanged = "ConnectivityChanged" -EventActiveDataSubIdChanged = "ActiveDataSubIdChanged" # Constant for Packet Keep Alive Call Back EventPacketKeepaliveCallback = "PacketKeepaliveCallback" diff --git a/acts/framework/acts/test_utils/tel/tel_subscription_utils.py b/acts/framework/acts/test_utils/tel/tel_subscription_utils.py index 8398c79662..6007854329 100644 --- a/acts/framework/acts/test_utils/tel/tel_subscription_utils.py +++ b/acts/framework/acts/test_utils/tel/tel_subscription_utils.py @@ -20,8 +20,6 @@ from future import standard_library standard_library.install_aliases() from acts.test_utils.tel.tel_defines import INVALID_SUB_ID from acts.test_utils.tel.tel_defines import WAIT_TIME_CHANGE_DATA_SUB_ID -from acts.test_utils.tel.tel_defines import MAX_WAIT_TIME_NW_SELECTION - import time @@ -172,39 +170,6 @@ def get_subid_from_slot_index(log, ad, sim_slot_index): return INVALID_SUB_ID -def get_operatorname_from_slot_index(ad, sim_slot_index): - """ Get the operator name for a SIM at a particular slot - - Args: - ad: android_device object. - - Returns: - result: Operator Name - """ - subInfo = ad.droid.subscriptionGetAllSubInfoList() - for info in subInfo: - if info['simSlotIndex'] == sim_slot_index: - return info['displayName'] - return None - - -def get_carrierid_from_slot_index(ad, sim_slot_index): - """ Get the carrierId for a SIM at a particular slot - - Args: - ad: android_device object. - sim_slot_index: slot 0 or slot 1 - - Returns: - result: CarrierId - """ - subInfo = ad.droid.subscriptionGetAllSubInfoList() - for info in subInfo: - if info['simSlotIndex'] == sim_slot_index: - return info['carrierId'] - return None - - def set_subid_for_data(ad, sub_id, time_to_sleep=WAIT_TIME_CHANGE_DATA_SUB_ID): """Set subId for data @@ -219,7 +184,6 @@ def set_subid_for_data(ad, sub_id, time_to_sleep=WAIT_TIME_CHANGE_DATA_SUB_ID): if ad.droid.subscriptionGetDefaultDataSubId() != sub_id: ad.droid.subscriptionSetDefaultDataSubId(sub_id) time.sleep(time_to_sleep) - setattr(ad, "default_data_sub_id", sub_id) def set_subid_for_message(ad, sub_id): @@ -278,109 +242,9 @@ def set_default_sub_for_all_services(ad, slot_id=0): None """ sub_id = get_subid_from_slot_index(ad.log, ad, slot_id) - ad.log.info("Default Subid for all service is %s", sub_id) + ad.log.info("Subid is %s", sub_id) set_subid_for_outgoing_call(ad, sub_id) set_incoming_voice_sub_id(ad, sub_id) set_subid_for_data(ad, sub_id) set_subid_for_message(ad, sub_id) ad.droid.telephonyToggleDataConnection(True) - - -def perform_dds_switch(ad): - slot_dict = {0: {}, 1: {}} - for slot in (0,1): - slot_dict[slot]['sub_id'] = get_subid_from_slot_index(ad.log, ad, slot) - slot_dict[slot]['operator'] = get_operatorname_from_slot_index(ad, slot) - ad.log.debug("%s", slot_dict) - - current_data = get_default_data_sub_id(ad) - if slot_dict[0]['sub_id'] == current_data: - ad.log.info("DDS Switch from %s to %s", slot_dict[0]['operator'], - slot_dict[1]['operator']) - new_data = slot_dict[1]['sub_id'] - new_oper = slot_dict[1]['operator'] - else: - ad.log.info("DDS Switch from %s to %s", slot_dict[1]['operator'], - slot_dict[0]['operator']) - new_data = slot_dict[0]['sub_id'] - new_oper = slot_dict[0]['operator'] - set_subid_for_data(ad, new_data) - ad.droid.telephonyToggleDataConnection(True) - if get_default_data_sub_id(ad) == new_data: - return new_oper - else: - ad.log.error("DDS Switch Failed") - return False - - -def set_dds_on_slot_0(ad): - sub_id = get_subid_from_slot_index(ad.log, ad, 0) - operator = get_operatorname_from_slot_index(ad, 0) - ad.log.info("Setting DDS on %s", operator) - set_subid_for_data(ad, sub_id) - ad.droid.telephonyToggleDataConnection(True) - time.sleep(WAIT_TIME_CHANGE_DATA_SUB_ID) - if get_default_data_sub_id(ad) == sub_id: - return True - else: - return False - - -def set_dds_on_slot_1(ad): - sub_id = get_subid_from_slot_index(ad.log, ad, 1) - operator = get_operatorname_from_slot_index(ad, 1) - ad.log.info("Setting DDS on %s", operator) - set_subid_for_data(ad, sub_id) - ad.droid.telephonyToggleDataConnection(True) - time.sleep(WAIT_TIME_CHANGE_DATA_SUB_ID) - if get_default_data_sub_id(ad) == sub_id: - return True - else: - return False - - -def set_slways_allow_mms_data(ad, sub_id, state=True): - """Set always allow mms data on sub_id - - Args: - ad: android device object. - sub_id: subscription id (integer) - state: True or False - - Returns: - None - """ - if "sdm" in ad.model or "msm" in ad.model: - ad.log.info("Always allow MMS Data is not supported on platform") - else: - ad.log.debug("Setting MMS Data Always ON %s sub_id %s", state, sub_id) - return ad.droid.subscriptionSetAlwaysAllowMmsData(sub_id, state) - - -def get_cbrs_and_default_sub_id(ad): - """Gets CBRS and Default SubId - - Args: - ad: android device object. - - Returns: - cbrs_subId - default_subId - """ - slot_dict = {0: {}, 1: {}} - for slot in (0, 1): - slot_dict[slot]['sub_id'] = get_subid_from_slot_index( - ad.log, ad, slot) - slot_dict[slot]['carrier_id'] = get_carrierid_from_slot_index( - ad, slot) - slot_dict[slot]['operator'] = get_operatorname_from_slot_index( - ad, slot) - if slot_dict[slot]['carrier_id'] == 2340: - cbrs_subid = slot_dict[slot]['sub_id'] - else: - default_subid = slot_dict[slot]['sub_id'] - ad.log.info("Slot %d - Sub %s - Carrier %d - %s", slot, - slot_dict[slot]['sub_id'], - slot_dict[slot]['carrier_id'], - slot_dict[slot]['operator']) - return cbrs_subid, default_subid diff --git a/acts/framework/acts/test_utils/tel/tel_test_utils.py b/acts/framework/acts/test_utils/tel/tel_test_utils.py index 323e1bc1e0..b65f13731b 100644 --- a/acts/framework/acts/test_utils/tel/tel_test_utils.py +++ b/acts/framework/acts/test_utils/tel/tel_test_utils.py @@ -24,7 +24,6 @@ import re import os import urllib.parse import time -import acts.controllers.iperf_server as ipf from acts import signals from acts import utils @@ -35,7 +34,6 @@ from acts.controllers.adb import AdbError from acts.controllers.android_device import list_adb_devices from acts.controllers.android_device import list_fastboot_devices from acts.controllers.android_device import DEFAULT_QXDM_LOG_PATH -from acts.controllers.android_device import DEFAULT_SDM_LOG_PATH from acts.controllers.android_device import SL4A_APK_NAME from acts.libs.proc import job from acts.test_utils.tel.loggers.protos.telephony_metric_pb2 import TelephonyVoiceTestResult @@ -65,7 +63,8 @@ from acts.test_utils.tel.tel_defines import INVALID_SIM_SLOT_INDEX from acts.test_utils.tel.tel_defines import INVALID_SUB_ID from acts.test_utils.tel.tel_defines import MAX_SAVED_VOICE_MAIL from acts.test_utils.tel.tel_defines import MAX_SCREEN_ON_TIME -from acts.test_utils.tel.tel_defines import MAX_WAIT_TIME_ACCEPT_CALL_TO_OFFHOOK_EVENT +from acts.test_utils.tel.tel_defines import \ + MAX_WAIT_TIME_ACCEPT_CALL_TO_OFFHOOK_EVENT from acts.test_utils.tel.tel_defines import MAX_WAIT_TIME_AIRPLANEMODE_EVENT from acts.test_utils.tel.tel_defines import MAX_WAIT_TIME_CALL_DROP from acts.test_utils.tel.tel_defines import MAX_WAIT_TIME_CALL_INITIATION @@ -130,7 +129,6 @@ from acts.test_utils.tel.tel_defines import WFC_MODE_WIFI_PREFERRED from acts.test_utils.tel.tel_defines import TYPE_MOBILE from acts.test_utils.tel.tel_defines import TYPE_WIFI from acts.test_utils.tel.tel_defines import EventCallStateChanged -from acts.test_utils.tel.tel_defines import EventActiveDataSubIdChanged from acts.test_utils.tel.tel_defines import EventConnectivityChanged from acts.test_utils.tel.tel_defines import EventDataConnectionStateChanged from acts.test_utils.tel.tel_defines import EventDataSmsReceived @@ -151,25 +149,36 @@ from acts.test_utils.tel.tel_defines import NetworkCallbackContainer from acts.test_utils.tel.tel_defines import ServiceStateContainer from acts.test_utils.tel.tel_defines import CARRIER_VZW, CARRIER_ATT, \ CARRIER_BELL, CARRIER_ROGERS, CARRIER_KOODO, CARRIER_VIDEOTRON, CARRIER_TELUS -from acts.test_utils.tel.tel_lookup_tables import connection_type_from_type_string +from acts.test_utils.tel.tel_lookup_tables import \ + connection_type_from_type_string from acts.test_utils.tel.tel_lookup_tables import is_valid_rat from acts.test_utils.tel.tel_lookup_tables import get_allowable_network_preference -from acts.test_utils.tel.tel_lookup_tables import get_voice_mail_count_check_function +from acts.test_utils.tel.tel_lookup_tables import \ + get_voice_mail_count_check_function from acts.test_utils.tel.tel_lookup_tables import get_voice_mail_check_number from acts.test_utils.tel.tel_lookup_tables import get_voice_mail_delete_digit -from acts.test_utils.tel.tel_lookup_tables import network_preference_for_generation -from acts.test_utils.tel.tel_lookup_tables import operator_name_from_network_name +from acts.test_utils.tel.tel_lookup_tables import \ + network_preference_for_generation +from acts.test_utils.tel.tel_lookup_tables import \ + operator_name_from_network_name from acts.test_utils.tel.tel_lookup_tables import operator_name_from_plmn_id -from acts.test_utils.tel.tel_lookup_tables import rat_families_for_network_preference +from acts.test_utils.tel.tel_lookup_tables import \ + rat_families_for_network_preference from acts.test_utils.tel.tel_lookup_tables import rat_family_for_generation from acts.test_utils.tel.tel_lookup_tables import rat_family_from_rat from acts.test_utils.tel.tel_lookup_tables import rat_generation_from_rat -from acts.test_utils.tel.tel_subscription_utils import get_default_data_sub_id, get_subid_from_slot_index -from acts.test_utils.tel.tel_subscription_utils import get_outgoing_message_sub_id -from acts.test_utils.tel.tel_subscription_utils import get_outgoing_voice_sub_id -from acts.test_utils.tel.tel_subscription_utils import get_incoming_voice_sub_id -from acts.test_utils.tel.tel_subscription_utils import get_incoming_message_sub_id -from acts.test_utils.tel.tel_subscription_utils import set_subid_for_outgoing_call +from acts.test_utils.tel.tel_subscription_utils import \ + get_default_data_sub_id, get_subid_from_slot_index +from acts.test_utils.tel.tel_subscription_utils import \ + get_outgoing_message_sub_id +from acts.test_utils.tel.tel_subscription_utils import \ + get_outgoing_voice_sub_id +from acts.test_utils.tel.tel_subscription_utils import \ + get_incoming_voice_sub_id +from acts.test_utils.tel.tel_subscription_utils import \ + get_incoming_message_sub_id +from acts.test_utils.tel.tel_subscription_utils import \ + set_subid_for_outgoing_call from acts.test_utils.wifi import wifi_test_utils from acts.test_utils.wifi import wifi_constants from acts.utils import adb_shell_ping @@ -284,12 +293,12 @@ def setup_droid_properties_by_adb(log, ad, sim_filename=None): setattr(ad, 'telephony', device_props) -def setup_droid_properties(log, ad, sim_filename=None): +def setup_droid_properties(log, ad, sim_filename=None, cbrs_esim=False): if ad.skip_sl4a: return setup_droid_properties_by_adb( log, ad, sim_filename=sim_filename) - refresh_droid_config(log, ad) + refresh_droid_config(log, ad, cbrs_esim) device_props = {} device_props['subscription'] = {} @@ -356,12 +365,13 @@ def setup_droid_properties(log, ad, sim_filename=None): ad.log.debug("telephony = %s", ad.telephony) -def refresh_droid_config(log, ad): +def refresh_droid_config(log, ad, cbrs_esim=False): """ Update Android Device telephony records for each sub_id. Args: log: log object ad: android device object + cbrs_esim: special case for cbrs feature Returns: None @@ -371,14 +381,26 @@ def refresh_droid_config(log, ad): droid = ad.droid sub_info_list = droid.subscriptionGetAllSubInfoList() ad.log.info("SubInfoList is %s", sub_info_list) + if cbrs_esim: + ad.log.info("CBRS testing detected, removing it form SubInfoList") + if len(sub_info_list) > 1: + # Check for Display Name + index_to_delete = -1 + for i, oper in enumerate(d['displayName'] for d in sub_info_list): + ad.log.info("Index %d Display %s", i, oper) + if "Google" in oper: + index_to_delete = i + elif sub_info_list[i]['simSlotIndex'] != -1: + ad.log.info("Workaround for b/122979645, setting default" \ + " Voice Sub ID to %s", sub_info_list[i]['subscriptionId']) + set_subid_for_outgoing_call(ad, + sub_info_list[i]['subscriptionId']) + del sub_info_list[index_to_delete] + ad.log.info("Updated SubInfoList is %s", sub_info_list) active_sub_id = get_outgoing_voice_sub_id(ad) for sub_info in sub_info_list: sub_id = sub_info["subscriptionId"] sim_slot = sub_info["simSlotIndex"] - if sub_info.get("carrierId"): - carrier_id = sub_info["carrierId"] - else: - carrier_id = -1 if sim_slot != INVALID_SIM_SLOT_INDEX: if sub_id not in ad.telephony["subscription"]: @@ -428,10 +450,6 @@ def refresh_droid_config(log, ad): ) except: ad.log.info("Carrier ID is not supported") - if carrier_id == 2340: - ad.log.info("SubId %s info: %s", sub_id, sorted( - sub_record.items())) - return if not sub_info.get("number"): sub_info[ "number"] = droid.telephonyGetLine1NumberForSubscription( @@ -552,14 +570,9 @@ def toggle_airplane_mode_by_adb(log, ad, new_state=None): elif new_state is None: new_state = not cur_state ad.log.info("Change airplane mode from %s to %s", cur_state, new_state) - try: - ad.adb.shell("settings put global airplane_mode_on %s" % int(new_state)) - ad.adb.shell("am broadcast -a android.intent.action.AIRPLANE_MODE") - except Exception as e: - ad.log.error(e) - return False - changed_state = bool(int(ad.adb.shell("settings get global airplane_mode_on"))) - return changed_state == new_state + ad.adb.shell("settings put global airplane_mode_on %s" % int(new_state)) + ad.adb.shell("am broadcast -a android.intent.action.AIRPLANE_MODE") + return True def toggle_airplane_mode(log, ad, new_state=None, strict_checking=True): @@ -802,15 +815,6 @@ def get_service_state_by_adb(log, ad): ad.log.info("mVoiceRegState is %s %s", result.group(1), result.group(2)) return result.group(2) - else: - if getattr(ad, "sdm_log", False): - #look for all occurrence in string - result2 = re.findall(r"mVoiceRegState=(\S+)\((\S+)\)", output) - for voice_state in result2: - if voice_state[0] == 0: - ad.log.info("mVoiceRegState is 0 %s", voice_state[1]) - return voice_state[1] - return result2[1][1] else: result = re.search(r"mServiceState=(\S+)", output) if result: @@ -1370,7 +1374,7 @@ def wait_and_reject_call_for_subscription(log, return True -def hangup_call(log, ad, is_emergency=False): +def hangup_call(log, ad): """Hang up ongoing active call. Args: @@ -1387,11 +1391,7 @@ def hangup_call(log, ad, is_emergency=False): ad.ed.clear_events(EventCallStateChanged) ad.droid.telephonyStartTrackingCallState() ad.log.info("Hangup call.") - if is_emergency: - for call in ad.droid.telecomCallGetCallIds(): - ad.droid.telecomCallDisconnect(call) - else: - ad.droid.telecomEndCall() + ad.droid.telecomEndCall() try: ad.ed.wait_for_event( @@ -1410,60 +1410,6 @@ def hangup_call(log, ad, is_emergency=False): return True -def wait_for_cbrs_data_active_sub_change_event( - ad, - event_tracking_started=False, - timeout=120): - """Wait for an data change event on specified subscription. - - Args: - ad: android device object. - event_tracking_started: True if event tracking already state outside - timeout: time to wait for event - - Returns: - True: if data change event is received. - False: if data change event is not received. - """ - if not event_tracking_started: - ad.ed.clear_events(EventActiveDataSubIdChanged) - ad.droid.telephonyStartTrackingActiveDataChange() - try: - ad.ed.wait_for_event( - EventActiveDataSubIdChanged, - is_event_match, - timeout=timeout) - ad.log.info("Got event activedatasubidchanged") - except Empty: - ad.log.info("No event for data subid change") - return False - finally: - if not event_tracking_started: - ad.droid.telephonyStopTrackingActiveDataChange() - return True - - -def is_current_data_on_cbrs(ad, cbrs_subid): - """Verifies if current data sub is on CBRS - - Args: - ad: android device object. - cbrs_subid: sub_id against which we need to check - - Returns: - True: if data is on cbrs - False: if data is not on cbrs - """ - if cbrs_subid is None: - return False - current_data = ad.droid.subscriptionGetActiveDataSubscriptionId() - ad.log.info("Current Data subid %s cbrs_subid %s", current_data, cbrs_subid) - if current_data == cbrs_subid: - return True - else: - return False - - def disconnect_call_by_id(log, ad, call_id): """Disconnect call by call id. """ @@ -1582,9 +1528,6 @@ def initiate_call(log, else: return True finally: - if hasattr(ad, "sdm_log") and getattr(ad, "sdm_log"): - ad.adb.shell("i2cset -fy 3 64 6 1 b", ignore_status=True) - ad.adb.shell("i2cset -fy 3 65 6 1 b", ignore_status=True) ad.droid.telephonyStopTrackingCallStateChangeForSubscription(sub_id) if incall_ui_display == INCALL_UI_DISPLAY_FOREGROUND: ad.droid.telecomShowInCallScreen() @@ -1603,13 +1546,7 @@ def dial_phone_number(ad, callee_number): def get_call_state_by_adb(ad): - slot_index_of_default_voice_subid = get_slot_index_from_subid(ad.log, ad, - get_incoming_voice_sub_id(ad)) - output = ad.adb.shell("dumpsys telephony.registry | grep mCallState") - if "mCallState" in output: - call_state_list = re.findall("mCallState=(\d)", output) - if call_state_list: - return call_state_list[slot_index_of_default_voice_subid] + return ad.adb.shell("dumpsys telephony.registry | grep mCallState") def check_call_state_connected_by_adb(ad): @@ -1769,156 +1706,74 @@ def dumpsys_new_call_info(ad, last_tc_number, retries=3, interval=5): def dumpsys_carrier_config(ad): - output = ad.adb.shell("dumpsys carrier_config").split("\n") - output_phone_id_0 = [] - output_phone_id_1 = [] - current_output = [] - for line in output: - if "Phone Id = 0" in line: - current_output = output_phone_id_0 - elif "Phone Id = 1" in line: - current_output = output_phone_id_1 - current_output.append(line.strip()) - + output = ad.adb.shell("dumpsys carrier_config") configs = {} - if ad.adb.getprop("ro.build.version.release")[0] in ("9", "P"): - phone_count = 1 - if "," in ad.adb.getprop("gsm.network.type"): - phone_count = 2 - else: - phone_count = ad.droid.telephonyGetPhoneCount() - - slot_0_subid = get_subid_from_slot_index(ad.log, ad, 0) - if slot_0_subid != INVALID_SUB_ID: - configs[slot_0_subid] = {} - - if phone_count == 2: - slot_1_subid = get_subid_from_slot_index(ad.log, ad, 1) - if slot_1_subid != INVALID_SUB_ID: - configs[slot_1_subid] = {} - attrs = [attr for attr in dir(CarrierConfigs) if not attr.startswith("__")] for attr in attrs: attr_string = getattr(CarrierConfigs, attr) - values = re.findall( - r"%s = (\S+)" % attr_string, "\n".join(output_phone_id_0)) - - if slot_0_subid != INVALID_SUB_ID: - if values: - value = values[-1] - if value == "true": - configs[slot_0_subid][attr_string] = True - elif value == "false": - configs[slot_0_subid][attr_string] = False - elif attr_string == CarrierConfigs.DEFAULT_WFC_IMS_MODE_INT: - if value == "0": - configs[slot_0_subid][attr_string] = WFC_MODE_WIFI_ONLY - elif value == "1": - configs[slot_0_subid][attr_string] = \ - WFC_MODE_CELLULAR_PREFERRED - elif value == "2": - configs[slot_0_subid][attr_string] = \ - WFC_MODE_WIFI_PREFERRED - else: - try: - configs[slot_0_subid][attr_string] = int(value) - except Exception: - configs[slot_0_subid][attr_string] = value + values = re.findall(r"%s = (\S+)" % attr_string, output) + if values: + value = values[-1] + if value == "true": + configs[attr_string] = True + elif value == "false": + configs[attr_string] = False + elif attr_string == CarrierConfigs.DEFAULT_WFC_IMS_MODE_INT: + if value == "0": + configs[attr_string] = WFC_MODE_WIFI_ONLY + elif value == "1": + configs[attr_string] = WFC_MODE_CELLULAR_PREFERRED + elif value == "2": + configs[attr_string] = WFC_MODE_WIFI_PREFERRED else: - configs[slot_0_subid][attr_string] = None - - if phone_count == 2: - if slot_1_subid != INVALID_SUB_ID: - values = re.findall( - r"%s = (\S+)" % attr_string, "\n".join(output_phone_id_1)) - if values: - value = values[-1] - if value == "true": - configs[slot_1_subid][attr_string] = True - elif value == "false": - configs[slot_1_subid][attr_string] = False - elif attr_string == CarrierConfigs.DEFAULT_WFC_IMS_MODE_INT: - if value == "0": - configs[slot_1_subid][attr_string] = \ - WFC_MODE_WIFI_ONLY - elif value == "1": - configs[slot_1_subid][attr_string] = \ - WFC_MODE_CELLULAR_PREFERRED - elif value == "2": - configs[slot_1_subid][attr_string] = \ - WFC_MODE_WIFI_PREFERRED - else: - try: - configs[slot_1_subid][attr_string] = int(value) - except Exception: - configs[slot_1_subid][attr_string] = value - else: - configs[slot_1_subid][attr_string] = None + try: + configs[attr_string] = int(value) + except Exception: + configs[attr_string] = value + else: + configs[attr_string] = None return configs def get_phone_capability(ad): + # TODO: add sub_id based carrier_config: carrier_configs = dumpsys_carrier_config(ad) - for sub_id in carrier_configs: - capabilities = [] - if carrier_configs[sub_id][CarrierConfigs.VOLTE_AVAILABLE_BOOL]: - capabilities.append(CAPABILITY_VOLTE) - if carrier_configs[sub_id][CarrierConfigs.WFC_IMS_AVAILABLE_BOOL]: - capabilities.append(CAPABILITY_WFC) - if carrier_configs[sub_id][CarrierConfigs.EDITABLE_WFC_MODE_BOOL]: - capabilities.append(CAPABILITY_WFC_MODE_CHANGE) - if carrier_configs[sub_id][CarrierConfigs.SUPPORT_CONFERENCE_CALL_BOOL]: - capabilities.append(CAPABILITY_CONFERENCE) - if carrier_configs[sub_id][CarrierConfigs.VT_AVAILABLE_BOOL]: - capabilities.append(CAPABILITY_VT) - if carrier_configs[sub_id][CarrierConfigs.VOLTE_PROVISIONED_BOOL]: - capabilities.append(CAPABILITY_VOLTE_PROVISIONING) - if carrier_configs[sub_id][CarrierConfigs.VOLTE_OVERRIDE_WFC_BOOL]: - capabilities.append(CAPABILITY_VOLTE_OVERRIDE_WFC_PROVISIONING) - ad.log.info("Capabilities of sub ID %s: %s", sub_id, capabilities) - if not getattr(ad, 'telephony', {}): - ad.telephony["subscription"] = {} - ad.telephony["subscription"][sub_id] = {} - setattr( - ad.telephony["subscription"][sub_id], - 'capabilities', capabilities) - - else: - ad.telephony["subscription"][sub_id]["capabilities"] = capabilities - if CAPABILITY_WFC not in capabilities: - wfc_modes = [] - else: - if carrier_configs[sub_id].get( - CarrierConfigs.EDITABLE_WFC_MODE_BOOL, False): - wfc_modes = [ - WFC_MODE_CELLULAR_PREFERRED, - WFC_MODE_WIFI_PREFERRED] - else: - wfc_modes = [ - carrier_configs[sub_id].get( - CarrierConfigs.DEFAULT_WFC_IMS_MODE_INT, - WFC_MODE_CELLULAR_PREFERRED) - ] - if carrier_configs[sub_id].get( - CarrierConfigs.WFC_SUPPORTS_WIFI_ONLY_BOOL, - False) and WFC_MODE_WIFI_ONLY not in wfc_modes: - wfc_modes.append(WFC_MODE_WIFI_ONLY) - ad.telephony["subscription"][sub_id]["wfc_modes"] = wfc_modes - if wfc_modes: - ad.log.info("Supported WFC modes for sub ID %s: %s", sub_id, - wfc_modes) - - -def get_capability_for_subscription(ad, capability, subid): - if capability in ad.telephony["subscription"][subid].get( - "capabilities", []): - ad.log.info('Capability "%s" is available for sub ID %s.', - capability, subid) - return True + capabilities = [] + if carrier_configs[CarrierConfigs.VOLTE_AVAILABLE_BOOL]: + capabilities.append(CAPABILITY_VOLTE) + if carrier_configs[CarrierConfigs.WFC_IMS_AVAILABLE_BOOL]: + capabilities.append(CAPABILITY_WFC) + if carrier_configs[CarrierConfigs.EDITABLE_WFC_MODE_BOOL]: + capabilities.append(CAPABILITY_WFC_MODE_CHANGE) + if carrier_configs[CarrierConfigs.SUPPORT_CONFERENCE_CALL_BOOL]: + capabilities.append(CAPABILITY_CONFERENCE) + if carrier_configs[CarrierConfigs.VT_AVAILABLE_BOOL]: + capabilities.append(CAPABILITY_VT) + if carrier_configs[CarrierConfigs.VOLTE_PROVISIONED_BOOL]: + capabilities.append(CAPABILITY_VOLTE_PROVISIONING) + if carrier_configs[CarrierConfigs.VOLTE_OVERRIDE_WFC_BOOL]: + capabilities.append(CAPABILITY_VOLTE_OVERRIDE_WFC_PROVISIONING) + ad.log.info("Capabilities: %s", capabilities) + if not getattr(ad, 'telephony', {}): + setattr(ad, 'telephony', {"capabilities": capabilities}) else: - ad.log.info('Capability "%s" is NOT available for sub ID %s.', - capability, subid) - return False + ad.telephony["capabilities"] = capabilities + if CAPABILITY_WFC not in capabilities: + wfc_modes = [] + else: + if carrier_configs.get(CarrierConfigs.EDITABLE_WFC_MODE_BOOL, False): + wfc_modes = [WFC_MODE_CELLULAR_PREFERRED, WFC_MODE_WIFI_PREFERRED] + else: + wfc_modes = [ + carrier_configs.get(CarrierConfigs.DEFAULT_WFC_IMS_MODE_INT, + WFC_MODE_CELLULAR_PREFERRED) + ] + if carrier_configs.get(CarrierConfigs.WFC_SUPPORTS_WIFI_ONLY_BOOL, + False) and WFC_MODE_WIFI_ONLY not in wfc_modes: + wfc_modes.append(WFC_MODE_WIFI_ONLY) + ad.telephony["wfc_modes"] = wfc_modes + if wfc_modes: + ad.log.info("Supported WFC modes: %s", wfc_modes) def call_reject(log, ad_caller, ad_callee, reject=True): @@ -2495,10 +2350,6 @@ def phone_number_formatter(input_string, formatter=None): ".", "").lstrip("0") if not formatter: return input_string - # Remove +81 and add 0 for Japan Carriers only. - if (len(input_string) == 13 and input_string[0:3] == "+81"): - input_string = "0" + input_string[3:] - return input_string # Remove "1" or "+1"from front if (len(input_string) == PHONE_NUMBER_STRING_FORMAT_11_DIGIT and input_string[0] == "1"): @@ -2815,33 +2666,38 @@ def verify_internet_connection(log, ad, retries=3, expected_state=True): return False -def iperf_test_with_options(log, - ad, - iperf_server, - iperf_option, - timeout=180, - rate_dict=None, - blocking=True, - log_file_path=None): - """Iperf adb run helper. +def iperf_test_by_adb(log, + ad, + iperf_server, + port_num=None, + reverse=False, + timeout=180, + limit_rate=None, + omit=10, + ipv6=False, + rate_dict=None, + blocking=True, + log_file_path=None): + """Iperf test by adb. Args: log: log object ad: Android Device Object. - iperf_server: The iperf host url". - iperf_option: The options to pass to iperf client + iperf_Server: The iperf host url". + port_num: TCP/UDP server port timeout: timeout for file download to complete. - rate_dict: dictionary that can be passed in to save data - blocking: run iperf in blocking mode if True - log_file_path: location to save logs - Returns: - True if IPerf runs without throwing an exception + limit_rate: iperf bandwidth option. None by default + omit: the omit option provided in iperf command. """ + iperf_option = "-t %s -O %s -J" % (timeout, omit) + if limit_rate: iperf_option += " -b %s" % limit_rate + if port_num: iperf_option += " -p %s" % port_num + if ipv6: iperf_option += " -6" + if reverse: iperf_option += " -R" try: if log_file_path: ad.adb.shell("rm %s" % log_file_path, ignore_status=True) ad.log.info("Running adb iperf test with server %s", iperf_server) - ad.log.info("IPerf options are %s", iperf_option) if not blocking: ad.run_iperf_client_nb( iperf_server, @@ -2851,133 +2707,21 @@ def iperf_test_with_options(log, return True result, data = ad.run_iperf_client( iperf_server, iperf_option, timeout=timeout + 60) - ad.log.info("IPerf test result with server %s is %s", iperf_server, + ad.log.info("Iperf test result with server %s is %s", iperf_server, result) if result: - iperf_str = ''.join(data) - iperf_result = ipf.IPerfResult(iperf_str) - if "-u" in iperf_option: - udp_rate = iperf_result.avg_rate - if udp_rate is None: - ad.log.warning( - "UDP rate is none, IPerf server returned error: %s", - iperf_result.error) - ad.log.info("IPerf3 udp speed is %sbps", udp_rate) - else: - tx_rate = iperf_result.avg_send_rate - rx_rate = iperf_result.avg_receive_rate - if (tx_rate or rx_rate) is None: - ad.log.warning( - "A TCP rate is none, IPerf server returned error: %s", - iperf_result.error) - ad.log.info( - "IPerf3 upload speed is %sbps, download speed is %sbps", - tx_rate, rx_rate) + data_json = json.loads(''.join(data)) + tx_rate = data_json['end']['sum_sent']['bits_per_second'] + rx_rate = data_json['end']['sum_received']['bits_per_second'] + ad.log.info( + 'iPerf3 upload speed is %sbps, download speed is %sbps', + tx_rate, rx_rate) if rate_dict is not None: rate_dict["Uplink"] = tx_rate rate_dict["Downlink"] = rx_rate return result - except AdbError as e: + except Exception as e: ad.log.warning("Fail to run iperf test with exception %s", e) - raise - - -def iperf_udp_test_by_adb(log, - ad, - iperf_server, - port_num=None, - reverse=False, - timeout=180, - limit_rate=None, - omit=10, - ipv6=False, - rate_dict=None, - blocking=True, - log_file_path=None): - """Iperf test by adb using UDP. - - Args: - log: log object - ad: Android Device Object. - iperf_Server: The iperf host url". - port_num: TCP/UDP server port - reverse: whether to test download instead of upload - timeout: timeout for file download to complete. - limit_rate: iperf bandwidth option. None by default - omit: the omit option provided in iperf command. - ipv6: whether to run the test as ipv6 - rate_dict: dictionary that can be passed in to save data - blocking: run iperf in blocking mode if True - log_file_path: location to save logs - """ - iperf_option = "-u -i 1 -t %s -O %s -J" % (timeout, omit) - if limit_rate: - iperf_option += " -b %s" % limit_rate - if port_num: - iperf_option += " -p %s" % port_num - if ipv6: - iperf_option += " -6" - if reverse: - iperf_option += " -R" - try: - return iperf_test_with_options(log, - ad, - iperf_server, - iperf_option, - timeout, - rate_dict, - blocking, - log_file_path) - except AdbError: - return False - -def iperf_test_by_adb(log, - ad, - iperf_server, - port_num=None, - reverse=False, - timeout=180, - limit_rate=None, - omit=10, - ipv6=False, - rate_dict=None, - blocking=True, - log_file_path=None): - """Iperf test by adb using TCP. - - Args: - log: log object - ad: Android Device Object. - iperf_server: The iperf host url". - port_num: TCP/UDP server port - reverse: whether to test download instead of upload - timeout: timeout for file download to complete. - limit_rate: iperf bandwidth option. None by default - omit: the omit option provided in iperf command. - ipv6: whether to run the test as ipv6 - rate_dict: dictionary that can be passed in to save data - blocking: run iperf in blocking mode if True - log_file_path: location to save logs - """ - iperf_option = "-t %s -O %s -J" % (timeout, omit) - if limit_rate: - iperf_option += " -b %s" % limit_rate - if port_num: - iperf_option += " -p %s" % port_num - if ipv6: - iperf_option += " -6" - if reverse: - iperf_option += " -R" - try: - return iperf_test_with_options(log, - ad, - iperf_server, - iperf_option, - timeout, - rate_dict, - blocking, - log_file_path) - except AdbError: return False @@ -3077,7 +2821,7 @@ def http_file_download_by_chrome(ad, "chrome_mobile_data_usage": get_mobile_data_usage( ad, None, chrome_apk) } - ad.log.debug("Before downloading: %s", data_accounting) + ad.log.info("Before downloading: %s", data_accounting) ad.log.info("Download %s with timeout %s", url, timeout) ad.ensure_screen_on() open_url_by_adb(ad, url) @@ -3106,7 +2850,7 @@ def http_file_download_by_chrome(ad, key: value - data_accounting[key] for key, value in new_data_accounting.items() } - ad.log.debug("Data accounting difference: %s", accounting_diff) + ad.log.info("Data accounting difference: %s", accounting_diff) if getattr(ad, "on_mobile_data", False): for key, value in accounting_diff.items(): if value < expected_file_size: @@ -3183,7 +2927,7 @@ def http_file_download_by_sl4a(ad, "sl4a_mobile_data_usage": get_mobile_data_usage(ad, None, accounting_apk) } - ad.log.debug("Before downloading: %s", data_accounting) + ad.log.info("Before downloading: %s", data_accounting) ad.log.info("Download file from %s to %s by sl4a RPC call", url, file_path) try: @@ -3209,16 +2953,16 @@ def http_file_download_by_sl4a(ad, "sl4a_mobile_data_usage": get_mobile_data_usage(ad, None, accounting_apk) } - ad.log.debug("After downloading: %s", new_data_accounting) + ad.log.info("After downloading: %s", new_data_accounting) accounting_diff = { key: value - data_accounting[key] for key, value in new_data_accounting.items() } - ad.log.debug("Data accounting difference: %s", accounting_diff) + ad.log.info("Data accounting difference: %s", accounting_diff) if getattr(ad, "on_mobile_data", False): for key, value in accounting_diff.items(): if value < expected_file_size: - ad.log.debug("%s diff is %s less than %s", key, + ad.log.warning("%s diff is %s less than %s", key, value, expected_file_size) ad.data_accounting["%s_failure"] += 1 else: @@ -3242,17 +2986,17 @@ def http_file_download_by_sl4a(ad, def get_mobile_data_usage(ad, sid=None, apk=None): if not sid: - sid = ad.droid.subscriptionGetDefaultDataSubId() + sid = ad.droid.subscriptionGetDefaultSubId() current_time = int(time.time() * 1000) begin_time = current_time - 10 * 24 * 60 * 60 * 1000 end_time = current_time + 10 * 24 * 60 * 60 * 1000 if apk: uid = ad.get_apk_uid(apk) - ad.log.debug("apk %s uid = %s", apk, uid) + ad.log.info("apk %s uid = %s", apk, uid) try: usage_info = ad.droid.getMobileDataUsageInfoForUid(uid, sid) - ad.log.debug("Mobile data usage info for uid %s = %s", uid, + ad.log.info("Mobile data usage info for uid %s = %s", uid, usage_info) return usage_info["UsageLevel"] except: @@ -3268,7 +3012,7 @@ def get_mobile_data_usage(ad, sid=None, apk=None): else: try: usage_info = ad.droid.getMobileDataUsageInfo(sid) - ad.log.debug("Mobile data usage info = %s", usage_info) + ad.log.info("Mobile data usage info = %s", usage_info) return usage_info["UsageLevel"] except: try: @@ -3285,7 +3029,7 @@ def get_mobile_data_usage(ad, sid=None, apk=None): def set_mobile_data_usage_limit(ad, limit, subscriber_id=None): if not subscriber_id: subscriber_id = ad.droid.telephonyGetSubscriberId() - ad.log.debug("Set subscriber mobile data usage limit to %s", limit) + ad.log.info("Set subscriber mobile data usage limit to %s", limit) ad.droid.logV("Setting subscriber mobile data usage limit to %s" % limit) try: ad.droid.connectivitySetDataUsageLimit(subscriber_id, str(limit)) @@ -3341,7 +3085,7 @@ def trigger_modem_crash_by_modem(ad, timeout=120): def phone_switch_to_msim_mode(ad, retries=3, timeout=60): result = False if not ad.is_apk_installed("com.google.mdstest"): - raise signals.TestAbortClass("mdstest is not installed") + raise signals.TestSkipClass("mdstest is not installed") mode = ad.droid.telephonyGetPhoneCount() if mode == 2: ad.log.info("Device already in MSIM mode") @@ -3366,15 +3110,6 @@ def phone_switch_to_msim_mode(ad, retries=3, timeout=60): if mode == 2: ad.log.info("Device correctly switched to MSIM mode") result = True - if "Sprint" in ad.adb.getprop("gsm.sim.operator.alpha"): - cmd = ('am instrument -w -e request "WriteEFS" -e item ' - '"/google/pixel_dsds_imei_mapping_slot_record" -e data "03"' - ' "com.google.mdstest/com.google.mdstest.instrument.' - 'ModemConfigInstrumentation"') - ad.log.info("Switch Sprint to IMEI1 slot using %s", cmd) - ad.adb.shell(cmd, ignore_status=True) - time.sleep(timeout) - reboot_device(ad) break else: ad.log.warning("Attempt %d - failed to switch to MSIM", (i + 1)) @@ -3384,7 +3119,7 @@ def phone_switch_to_msim_mode(ad, retries=3, timeout=60): def phone_switch_to_ssim_mode(ad, retries=3, timeout=30): result = False if not ad.is_apk_installed("com.google.mdstest"): - raise signals.TestAbortClass("mdstest is not installed") + raise signals.TestSkipClass("mdstest is not installed") mode = ad.droid.telephonyGetPhoneCount() if mode == 1: ad.log.info("Device already in SSIM mode") @@ -3863,18 +3598,17 @@ def toggle_volte_for_subscription(log, ad, sub_id, new_state=None): If None, opposite of the current state. """ - current_state = ad.droid.imsMmTelIsAdvancedCallingEnabled(sub_id) + # TODO: b/26293960 No framework API available to set IMS by SubId. + if not ad.droid.imsIsEnhanced4gLteModeSettingEnabledByPlatform(): + ad.log.info("Enhanced 4G Lte Mode Setting is not enabled by platform.") + return False + current_state = ad.droid.imsIsEnhanced4gLteModeSettingEnabledByUser() if new_state is None: new_state = not current_state if new_state != current_state: - ad.log.info("Toggle Enhanced 4G LTE Mode from %s to %s on sub_id %s", current_state, - new_state, sub_id) - ad.droid.imsMmTelSetAdvancedCallingEnabled(sub_id, new_state) - check_state = ad.droid.imsMmTelIsAdvancedCallingEnabled(sub_id) - if check_state != new_state: - ad.log.error("Failed to toggle Enhanced 4G LTE Mode to %s, still set to %s on sub_id %s", - new_state, check_state, sub_id) - return False + ad.log.info("Toggle Enhanced 4G LTE Mode from %s to %s", current_state, + new_state) + ad.droid.imsSetEnhanced4gMode(new_state) return True @@ -3926,8 +3660,8 @@ def set_wfc_mode(log, ad, wfc_mode): Returns: True if success. False if ad does not support WFC or error happened. """ - if wfc_mode != WFC_MODE_DISABLED and wfc_mode not in ad.telephony[ - "subscription"][get_outgoing_voice_sub_id(ad)].get("wfc_modes", []): + if wfc_mode != WFC_MODE_DISABLED and wfc_mode not in ad.telephony.get( + "wfc_modes", []): ad.log.error("WFC mode %s is not supported", wfc_mode) raise signals.TestSkip("WFC mode %s is not supported" % wfc_mode) try: @@ -4935,13 +4669,11 @@ def mms_send_receive_verify_for_subscription( phonenumber_tx = ad_tx.telephony['subscription'][subid_tx]['phone_num'] phonenumber_rx = ad_rx.telephony['subscription'][subid_rx]['phone_num'] - toggle_enforce = False for ad in (ad_tx, ad_rx): ad.send_keycode("BACK") if "Permissive" not in ad.adb.shell("su root getenforce"): ad.adb.shell("su root setenforce 0") - toggle_enforce = True if not getattr(ad, "messaging_droid", None): ad.messaging_droid, ad.messaging_ed = ad.get_droid() ad.messaging_ed.start() @@ -4997,9 +4729,8 @@ def mms_send_receive_verify_for_subscription( finally: ad_rx.droid.smsStopTrackingIncomingMmsMessage() for ad in (ad_tx, ad_rx): - if toggle_enforce: - ad.send_keycode("BACK") - ad.adb.shell("su root setenforce 1") + ad.send_keycode("BACK") + ad.adb.shell("su root setenforce 1") return True @@ -5592,13 +5323,11 @@ def ensure_phones_idle(log, ads, max_time=MAX_WAIT_TIME_CALL_DROP): return result -def ensure_phone_idle(log, ad, max_time=MAX_WAIT_TIME_CALL_DROP, retry=2): +def ensure_phone_idle(log, ad, max_time=MAX_WAIT_TIME_CALL_DROP): """Ensure ad idle (not in call). """ - while ad.droid.telecomIsInCall() and retry > 0: + if ad.droid.telecomIsInCall(): ad.droid.telecomEndCall() - time.sleep(3) - retry -= 1 if not wait_for_droid_not_in_call(log, ad, max_time=max_time): ad.log.error("Failed to end call") return False @@ -5660,7 +5389,7 @@ def ensure_phone_subscription(log, ad): return False -def ensure_phone_default_state(log, ad, check_subscription=True, retry=2): +def ensure_phone_default_state(log, ad, check_subscription=True): """Ensure ad in default state. Phone not in call. Phone have no stored WiFi network and WiFi disconnected. @@ -5672,12 +5401,10 @@ def ensure_phone_default_state(log, ad, check_subscription=True, retry=2): result = False try: set_wifi_to_default(log, ad) - while ad.droid.telecomIsInCall() and retry > 0: + if ad.droid.telecomIsInCall(): ad.droid.telecomEndCall() - time.sleep(3) - retry -= 1 - if not wait_for_droid_not_in_call(log, ad): - ad.log.error("Failed to end call") + if not wait_for_droid_not_in_call(log, ad): + ad.log.error("Failed to end call") ad.droid.telephonyFactoryReset() ad.droid.imsFactoryReset() data_roaming = getattr(ad, 'roaming', False) @@ -6059,7 +5786,6 @@ def set_phone_silent_mode(log, ad, silent_mode=True): ad.droid.setAlarmVolume(0) ad.adb.ensure_root() ad.adb.shell("setprop ro.audio.silent 1", ignore_status=True) - ad.adb.shell("cmd notification set_dnd on", ignore_status=True) return silent_mode == ad.droid.checkRingerSilentMode() @@ -6427,34 +6153,6 @@ def set_qxdm_logger_command(ad, mask=None): return True -def start_sdm_logger(ad): - """Start SDM logger.""" - if not getattr(ad, "sdm_log", True): return - # Delete existing SDM logs which were created 15 mins prior - ad.sdm_log_path = DEFAULT_SDM_LOG_PATH - file_count = ad.adb.shell( - "find %s -type f -iname *.sdm* | wc -l" % ad.sdm_log_path) - if int(file_count) > 3: - seconds = 15 * 60 - # Remove sdm logs modified more than specified seconds ago - ad.adb.shell( - "find %s -type f -iname *.sdm* -not -mtime -%ss -delete" % - (ad.sdm_log_path, seconds)) - # start logging - cmd = "setprop vendor.sys.modem.logging.enable true" - ad.log.debug("start sdm logging") - ad.adb.shell(cmd, ignore_status=True) - time.sleep(5) - - -def stop_sdm_logger(ad): - """Stop SDM logger.""" - cmd = "setprop vendor.sys.modem.logging.enable false" - ad.log.debug("stop sdm logging") - ad.adb.shell(cmd, ignore_status=True) - time.sleep(5) - - def stop_qxdm_logger(ad): """Stop QXDM logger.""" for cmd in ("diag_mdlog -k", "killall diag_mdlog"): @@ -6564,17 +6262,6 @@ def stop_qxdm_loggers(log, ads): run_multithread_func(log, tasks) -def start_sdm_loggers(log, ads): - tasks = [(start_sdm_logger, [ad]) for ad in ads - if getattr(ad, "sdm_log", True)] - if tasks: run_multithread_func(log, tasks) - - -def stop_sdm_loggers(log, ads): - tasks = [(stop_sdm_logger, [ad]) for ad in ads] - run_multithread_func(log, tasks) - - def start_nexuslogger(ad): """Start Nexus/Pixel Logger Apk.""" qxdm_logger_apk = None @@ -6786,7 +6473,7 @@ def fastboot_wipe(ad, skip_setup_wizard=True): if ad.is_sl4a_installed(): break ad.log.info("Re-install sl4a") - ad.adb.shell("settings put global verifier_verify_adb_installs 0") + ad.adb.shell("settings put global package_verifier_enable 0") ad.adb.install("-r /tmp/base.apk") time.sleep(10) break @@ -7321,7 +7008,6 @@ def power_on_sim(ad, sim_slot_id=None): def extract_test_log(log, src_file, dst_file, test_tag): - utils.create_dir(os.path.dirname(dst_file)) cmd = "grep -n '%s' %s" % (test_tag, src_file) result = job.run(cmd, ignore_status=True) if not result.stdout or result.exit_status == 1: @@ -7547,62 +7233,28 @@ def my_current_screen_content(ad, content): return True -def activate_esim_using_suw(ad): - _START_SUW = ('am start -a android.intent.action.MAIN -n ' - 'com.google.android.setupwizard/.SetupWizardTestActivity') - _STOP_SUW = ('am start -a com.android.setupwizard.EXIT') - - toggle_airplane_mode(ad.log, ad, new_state=False, strict_checking=False) - ad.adb.shell("settings put system screen_off_timeout 1800000") - ad.ensure_screen_on() - ad.send_keycode("MENU") - ad.send_keycode("HOME") - for _ in range(3): - ad.log.info("Attempt %d - activating eSIM", (_ + 1)) - ad.adb.shell(_START_SUW) - time.sleep(10) - log_screen_shot(ad, "start_suw") - for _ in range(4): - ad.send_keycode("TAB") - time.sleep(0.5) - ad.send_keycode("ENTER") - time.sleep(15) - log_screen_shot(ad, "activate_esim") - get_screen_shot_log(ad) - ad.adb.shell(_STOP_SUW) - time.sleep(5) - current_sim = get_sim_state(ad) - ad.log.info("Current SIM status is %s", current_sim) - if current_sim not in (SIM_STATE_ABSENT, SIM_STATE_UNKNOWN): - break - return True - -def activate_google_fi_account(ad, retries=10): +def activate_google_fi_account(ad, retries=3): _FI_APK = "com.google.android.apps.tycho" _FI_ACTIVATE_CMD = ('am start -c android.intent.category.DEFAULT -n ' - 'com.google.android.apps.tycho/.AccountDetailsActivity --ez ' + 'com.google.android.apps.tycho/.InitActivity --ez ' 'in_setup_wizard false --ez force_show_account_chooser ' 'false') toggle_airplane_mode(ad.log, ad, new_state=False, strict_checking=False) ad.adb.shell("settings put system screen_off_timeout 1800000") page_match_dict = { - "SelectAccount" : "Choose an account to use", "Setup" : "Activate Google Fi to use your device for calls", "Switch" : "Switch to the Google Fi mobile network", - "WiFi" : "Fi to download your SIM", "Connect" : "Connect to the Google Fi mobile network", "Move" : "Move number", - "Data" : "first turn on mobile data", "Activate" : "This takes a minute or two, sometimes longer", "Welcome" : "Welcome to Google Fi", "Account" : "Your current cycle ends in" } - page_list = ["Account", "Setup", "WiFi", "Switch", "Connect", - "Activate", "Move", "Welcome", "Data"] + page_list = ["Account", "Setup", "Switch", "Connect", + "Activate", "Move", "Welcome"] for _ in range(retries): ad.force_stop_apk(_FI_APK) ad.ensure_screen_on() - ad.send_keycode("MENU") ad.send_keycode("HOME") ad.adb.shell(_FI_ACTIVATE_CMD) time.sleep(15) @@ -7610,12 +7262,12 @@ def activate_google_fi_account(ad, retries=10): if my_current_screen_content(ad, page_match_dict[page]): ad.log.info("Ready for Step %s", page) log_screen_shot(ad, "fi_activation_step_%s" % page) - if page in ("Setup", "Switch", "Connect", "WiFi"): + if page in ("Setup", "Switch", "Connect"): ad.send_keycode("TAB") ad.send_keycode("TAB") ad.send_keycode("ENTER") time.sleep(30) - elif page == "Move" or page == "SelectAccount": + elif page == "Move": ad.send_keycode("TAB") ad.send_keycode("ENTER") time.sleep(5) @@ -7636,15 +7288,9 @@ def activate_google_fi_account(ad, retries=10): time.sleep(60) elif page == "Account": return True - elif page == "Data": - ad.log.error("Mobile Data is turned OFF by default") - ad.send_keycode("TAB") - ad.send_keycode("TAB") - ad.send_keycode("ENTER") else: ad.log.info("NOT FOUND - Page %s", page) log_screen_shot(ad, "fi_activation_step_%s_failure" % page) - get_screen_shot_log(ad) return False @@ -7727,14 +7373,6 @@ def bring_up_connectivity_monitor(ad): return True -def get_host_ip_address(ad): - cmd = "|".join(("ifconfig", "grep eno1 -A1", "grep inet", "awk '{$1=$1};1'", "cut -d ' ' -f 2")) - destination_ip = exe_cmd(cmd) - destination_ip = (destination_ip.decode("utf-8")).split("\n")[0] - ad.log.info("Host IP is %s", destination_ip) - return destination_ip - - def toggle_connectivity_monitor_setting(ad, state=True): monitor_setting = ad.adb.getprop("persist.radio.enable_tel_mon") ad.log.info("radio.enable_tel_mon setting is %s", monitor_setting) diff --git a/acts/framework/acts/test_utils/tel/tel_voice_utils.py b/acts/framework/acts/test_utils/tel/tel_voice_utils.py index b952f0b3c1..f5a85c7c12 100644 --- a/acts/framework/acts/test_utils/tel/tel_voice_utils.py +++ b/acts/framework/acts/test_utils/tel/tel_voice_utils.py @@ -94,7 +94,6 @@ from acts.test_utils.tel.tel_test_utils import \ wait_for_voice_attach_for_subscription from acts.test_utils.tel.tel_test_utils import wait_for_wfc_enabled from acts.test_utils.tel.tel_test_utils import wait_for_wfc_disabled -from acts.test_utils.tel.tel_test_utils import get_capability_for_subscription CallResult = TelephonyVoiceTestResult.CallResult.Value @@ -392,8 +391,8 @@ def phone_setup_iwlan(log, Returns: True if success. False if fail. """ - if not get_capability_for_subscription(ad, CAPABILITY_WFC, - get_outgoing_voice_sub_id(ad)): + #TODO: get per sub_id carrier_config for multi-sim purpose + if CAPABILITY_WFC not in ad.telephony.get("capabilities", []): ad.log.error("WFC is not supported, abort test.") raise signals.TestSkip("WFC is not supported, abort test.") return phone_setup_iwlan_for_subscription(log, ad, @@ -676,8 +675,8 @@ def phone_setup_volte(log, ad): True: if VoLTE is enabled successfully. False: for errors """ - if not get_capability_for_subscription(ad, CAPABILITY_VOLTE, - get_outgoing_voice_sub_id(ad)): + #TODO: get per sub_id carrier_config for multi-sim purpose + if CAPABILITY_VOLTE not in ad.telephony.get("capabilities", []): ad.log.error("VoLTE is not supported, abort test.") raise signals.TestSkip("VoLTE is not supported, abort test.") return phone_setup_volte_for_subscription(log, ad, @@ -1290,7 +1289,8 @@ def is_phone_in_call_iwlan(log, ad, call_id=None): return False nw_type = get_network_rat(log, ad, NETWORK_SERVICE_DATA) if nw_type != RAT_IWLAN: - ad.log.warning("Data rat on: %s. Expected: iwlan", nw_type) + ad.log.error("Data rat on: %s. Expected: iwlan", nw_type) + return False return True diff --git a/acts/framework/acts/test_utils/wifi/OWNERS b/acts/framework/acts/test_utils/wifi/OWNERS index 31966b7984..7e868cfe07 100644 --- a/acts/framework/acts/test_utils/wifi/OWNERS +++ b/acts/framework/acts/test_utils/wifi/OWNERS @@ -1,5 +1,6 @@ bmahadev@google.com etancohen@google.com +krisr@google.com mplass@google.com rpius@google.com satk@google.com diff --git a/acts/framework/acts/test_utils/wifi/WifiBaseTest.py b/acts/framework/acts/test_utils/wifi/WifiBaseTest.py index cb7ab80975..2a111d26bf 100644..100755 --- a/acts/framework/acts/test_utils/wifi/WifiBaseTest.py +++ b/acts/framework/acts/test_utils/wifi/WifiBaseTest.py @@ -28,7 +28,6 @@ from acts import utils from acts.base_test import BaseTestClass from acts.signals import TestSignal from acts.controllers import android_device -from acts.controllers.access_point import AccessPoint from acts.controllers.ap_lib import hostapd_ap_preset from acts.controllers.ap_lib import hostapd_bss_settings from acts.controllers.ap_lib import hostapd_constants @@ -40,7 +39,9 @@ MAX_AP_COUNT = 2 class WifiBaseTest(BaseTestClass): - def setup_class(self): + def __init__(self, controllers): + if not hasattr(self, 'android_devices'): + BaseTestClass.__init__(self, controllers) if hasattr(self, 'attenuators') and self.attenuators: for attenuator in self.attenuators: attenuator.set_atten(0) @@ -343,11 +344,6 @@ class WifiBaseTest(BaseTestClass): if ent_network_pwd: self.user_params["ent_networks_pwd"] = [] - # kill hostapd & dhcpd if the cleanup was not successful - for i in range(len(self.access_points)): - self.log.debug("Check ap state and cleanup") - self._cleanup_hostapd_and_dhcpd(i) - for count in range(config_count): network_list_2g = [] @@ -458,58 +454,6 @@ class WifiBaseTest(BaseTestClass): self.populate_bssid(AP_2, self.access_points[AP_2], orig_network_list_5g, orig_network_list_2g) - def _kill_processes(self, ap, daemon): - """ Kill hostapd and dhcpd daemons - - Args: - ap: AP to cleanup - daemon: process to kill - - Returns: True/False if killing process is successful - """ - self.log.info("Killing %s" % daemon) - pids = ap.ssh.run('pidof %s' % daemon, ignore_status=True) - if pids.stdout: - ap.ssh.run('kill %s' % pids.stdout, ignore_status=True) - time.sleep(3) - pids = ap.ssh.run('pidof %s' % daemon, ignore_status=True) - if pids.stdout: - return False - return True - - def _cleanup_hostapd_and_dhcpd(self, count): - """ Check if AP was cleaned up properly - - Kill hostapd and dhcpd processes if cleanup was not successful in the - last run - - Args: - count: AP to check - - Returns: - New AccessPoint object if AP required cleanup - - Raises: - Error: if the AccessPoint timed out to setup - """ - ap = self.access_points[count] - phy_ifaces = ap.interfaces.get_physical_interface() - kill_hostapd = False - for iface in phy_ifaces: - if '2g_' in iface or '5g_' in iface or 'xg_' in iface: - kill_hostapd = True - break - - if not kill_hostapd: - return - - self.log.debug("Cleanup AP") - if not self._kill_processes(ap, 'hostapd') or \ - not self._kill_processes(ap, 'dhcpd'): - raise("Failed to cleanup AP") - - ap.__init__(self.user_params['AccessPoint'][count]) - def _generate_legacy_ap_config(self, network_list): bss_settings = [] wlan_2g = self.access_points[AP_1].wlan_2g diff --git a/acts/framework/acts/test_utils/wifi/aware/AwareBaseTest.py b/acts/framework/acts/test_utils/wifi/aware/AwareBaseTest.py index bf8b66e7d7..533ee12199 100644 --- a/acts/framework/acts/test_utils/wifi/aware/AwareBaseTest.py +++ b/acts/framework/acts/test_utils/wifi/aware/AwareBaseTest.py @@ -23,6 +23,10 @@ from acts.test_utils.wifi.aware import aware_test_utils as autils class AwareBaseTest(BaseTestClass): + def __init__(self, controllers): + if not hasattr(self, 'android_devices'): + super(AwareBaseTest, self).__init__(controllers) + # message ID counter to make sure all uses are unique msg_id = 0 diff --git a/acts/framework/acts/test_utils/wifi/ota_chamber.py b/acts/framework/acts/test_utils/wifi/ota_chamber.py index 53494dad52..8181a0d1b9 100644 --- a/acts/framework/acts/test_utils/wifi/ota_chamber.py +++ b/acts/framework/acts/test_utils/wifi/ota_chamber.py @@ -14,14 +14,9 @@ # See the License for the specific language governing permissions and # limitations under the License. -import contextlib -import io -import time from acts import logger from acts import utils -CHAMBER_SLEEP = 30 - def create(configs): """Factory method for OTA chambers. @@ -33,7 +28,7 @@ def create(configs): objs = [] for config in configs: try: - chamber_class = globals()[config['model']] + chamber_class = globals()[config['type']] except KeyError: raise KeyError('Invalid chamber configuration.') objs.append(chamber_class(config)) @@ -50,11 +45,8 @@ class OtaChamber(object): Base class provides functions whose implementation is shared by all chambers. """ - def reset_chamber(self): - """Resets the chamber to its zero/home state.""" - raise NotImplementedError - def set_orientation(self, orientation): + def set_orientation(angle): """Set orientation for turn table in OTA chamber. Args: @@ -62,178 +54,33 @@ class OtaChamber(object): """ raise NotImplementedError - def set_stirrer_pos(self, stirrer_id, position): - """Starts turntables and stirrers in OTA chamber.""" - raise NotImplementedError - - def start_continuous_stirrers(self): - """Starts turntables and stirrers in OTA chamber.""" - raise NotImplementedError - - def stop_continuous_stirrers(self): - """Stops turntables and stirrers in OTA chamber.""" - raise NotImplementedError - - def step_stirrers(self, steps): - """Move stepped stirrers in OTA chamber to next step.""" - raise NotImplementedError - class MockChamber(OtaChamber): """Class that implements mock chamber for test development and debug.""" + def __init__(self, config): self.config = config.copy() self.device_id = self.config['device_id'] self.log = logger.create_tagged_trace_logger('OtaChamber|{}'.format( self.device_id)) - self.current_mode = None def set_orientation(self, orientation): self.log.info('Setting orientation to {} degrees.'.format(orientation)) - def reset_chamber(self): - self.log.info('Resetting chamber to home state') - - def set_stirrer_pos(self, stirrer_id, position): - """Starts turntables and stirrers in OTA chamber.""" - self.log.info('Setting stirrer {} to {}.'.format(stirrer_id, position)) - - def start_continuous_stirrers(self): - """Starts turntables and stirrers in OTA chamber.""" - self.log.info('Starting continuous stirrer motion') - - def stop_continuous_stirrers(self): - """Stops turntables and stirrers in OTA chamber.""" - self.log.info('Stopping continuous stirrer motion') - - def configure_stepped_stirrers(self, steps): - """Programs parameters for stepped stirrers in OTA chamber.""" - self.log.info('Configuring stepped stirrers') - - def step_stirrers(self, steps): - """Move stepped stirrers in OTA chamber to next step.""" - self.log.info('Moving stirrers to the next step') - class OctoboxChamber(OtaChamber): """Class that implements Octobox chamber.""" + def __init__(self, config): self.config = config.copy() self.device_id = self.config['device_id'] self.log = logger.create_tagged_trace_logger('OtaChamber|{}'.format( self.device_id)) self.TURNTABLE_FILE_PATH = '/usr/local/bin/fnPerformaxCmd' - utils.exe_cmd('sudo {} -d {} -i 0'.format(self.TURNTABLE_FILE_PATH, - self.device_id)) - self.current_mode = None + utils.exe_cmd('{} -d {} -i 0'.format(self.TURNTABLE_FILE_PATH, + self.device_id)) def set_orientation(self, orientation): self.log.info('Setting orientation to {} degrees.'.format(orientation)) - utils.exe_cmd('sudo {} -d {} -p {}'.format(self.TURNTABLE_FILE_PATH, - self.device_id, - orientation)) - - def reset_chamber(self): - self.log.info('Resetting chamber to home state') - self.set_orientation(0) - - -class ChamberAutoConnect(object): - def __init__(self, chamber, chamber_config): - self._chamber = chamber - self._config = chamber_config - - def __getattr__(self, item): - def chamber_call(*args, **kwargs): - self._chamber.connect(self._config['ip_address'], - self._config['username'], - self._config['password']) - return getattr(self._chamber, item)(*args, **kwargs) - - return chamber_call - - -class BluetestChamber(OtaChamber): - """Class that implements Octobox chamber.""" - def __init__(self, config): - import flow - self.config = config.copy() - self.log = logger.create_tagged_trace_logger('OtaChamber|{}'.format( - self.config['ip_address'])) - self.chamber = ChamberAutoConnect(flow.Flow(), self.config) - self.stirrer_ids = [0, 1, 2] - self.current_mode = None - - # Capture print output decorator - @staticmethod - def _capture_output(func, *args, **kwargs): - """Creates a decorator to capture stdout from bluetest module""" - f = io.StringIO() - with contextlib.redirect_stdout(f): - func(*args, **kwargs) - output = f.getvalue() - return output - - def _connect(self): - self.chamber.connect(self.config['ip_address'], - self.config['username'], self.config['password']) - - def _init_manual_mode(self): - self.current_mode = 'manual' - for stirrer_id in self.stirrer_ids: - out = self._capture_output( - self.chamber.chamber_stirring_manual_init, stirrer_id) - if "failed" in out: - self.log.warning("Initialization error: {}".format(out)) - time.sleep(CHAMBER_SLEEP) - - def _init_continuous_mode(self): - self.current_mode = 'continuous' - self.chamber.chamber_stirring_continuous_init() - - def _init_stepped_mode(self, steps): - self.current_mode = 'stepped' - self.current_stepped_pos = 0 - self.chamber.chamber_stirring_stepped_init(steps, False) - - def set_stirrer_pos(self, stirrer_id, position): - if self.current_mode != 'manual': - self._init_manual_mode() - self.log.info('Setting stirrer {} to {}.'.format(stirrer_id, position)) - out = self._capture_output( - self.chamber.chamber_stirring_manual_set_pos, stirrer_id, position) - if "failed" in out: - self.log.warning("Bluetest error: {}".format(out)) - self.log.warning("Set position failed. Retrying.") - self.current_mode = None - self.set_stirrer_pos(stirrer_id, position) - else: - self._capture_output(self.chamber.chamber_stirring_manual_wait, - CHAMBER_SLEEP) - self.log.warning('Stirrer {} at {}.'.format(stirrer_id, position)) - - def set_orientation(self, orientation): - self.set_stirrer_pos(2, orientation * 100 / 360) - - def start_continuous_stirrers(self): - if self.current_mode != 'continuous': - self._init_continuous_mode() - self.chamber.chamber_stirring_continuous_start() - - def stop_continuous_stirrers(self): - self.chamber.chamber_stirring_continuous_stop() - - def step_stirrers(self, steps): - if self.current_mode != 'stepped': - self._init_stepped_mode(steps) - if self.current_stepped_pos == 0: - self.current_stepped_pos += 1 - return - self.current_stepped_pos += 1 - self.chamber.chamber_stirring_stepped_next_pos() - - def reset_chamber(self): - if self.current_mode == 'continuous': - self._init_continuous_mode() - else: - self._init_manual_mode() + utils.exe_cmd('{} -d {} -p {}'.format(self.TURNTABLE_FILE_PATH, + self.device_id, orientation)) diff --git a/acts/framework/acts/test_utils/wifi/ota_sniffer.py b/acts/framework/acts/test_utils/wifi/ota_sniffer.py deleted file mode 100644 index 884f8f12ca..0000000000 --- a/acts/framework/acts/test_utils/wifi/ota_sniffer.py +++ /dev/null @@ -1,484 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the 'License'); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an 'AS IS' BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import csv -import os -from acts import context -from acts import logger -from acts import utils -from acts.controllers.utils_lib import ssh - - -def create(configs): - """Factory method for sniffer. - Args: - configs: list of dicts with sniffer settings. - Settings must contain the following : ssh_settings, type, OS, interface. - - Returns: - objs: list of sniffer class objects. - """ - objs = [] - for config in configs: - try: - if config["type"] == "tshark": - if config["os"] == "unix": - objs.append(TsharkSnifferOnUnix(config)) - elif config["os"] == "linux": - objs.append(TsharkSnifferOnLinux(config)) - else: - raise RuntimeError("Wrong sniffer config") - - elif config["type"] == "mock": - objs.append(MockSniffer(config)) - except KeyError: - raise KeyError("Invalid sniffer configurations") - return objs - - -def destroy(objs): - return - - -class OtaSnifferBase(object): - """Base class defining common sniffers functions.""" - - _log_file_counter = 0 - - @property - def started(self): - raise NotImplementedError('started must be specified.') - - def start_capture(self, network, duration=30): - """Starts the sniffer Capture. - - Args: - network: dict containing network information such as SSID, etc. - duration: duration of sniffer capture in seconds. - """ - raise NotImplementedError('start_capture must be specified.') - - def stop_capture(self, tag=""): - """Stops the sniffer Capture. - - Args: - tag: string to tag sniffer capture file name with. - """ - raise NotImplementedError('stop_capture must be specified.') - - def _get_remote_dump_path(self): - """Returns name of the sniffer dump file.""" - return "sniffer_dump.csv" - - def _get_full_file_path(self, tag=None): - """Returns the full file path for the sniffer capture dump file. - - Returns the full file path (on test machine) for the sniffer capture - dump file. - - Args: - tag: The tag appended to the sniffer capture dump file . - """ - tags = [tag, "count", OtaSnifferBase._log_file_counter] - out_file_name = 'Sniffer_Capture_%s.csv' % ('_'.join( - [str(x) for x in tags if x != '' and x is not None])) - OtaSnifferBase._log_file_counter += 1 - - file_path = os.path.join(self.log_path, out_file_name) - return file_path - - @property - def log_path(self): - current_context = context.get_current_context() - full_out_dir = os.path.join(current_context.get_full_output_path(), - 'sniffer_captures') - - # Ensure the directory exists. - utils.create_dir(full_out_dir) - - return full_out_dir - - -class MockSniffer(OtaSnifferBase): - """Class that implements mock sniffer for test development and debug.""" - def __init__(self, config): - self.log = logger.create_tagged_trace_logger("Mock Sniffer") - - def start_capture(self, network, duration=30): - """Starts sniffer capture on the specified machine. - - Args: - network: dict of network credentials. - duration: duration of the sniff. - """ - self.log.info("Starting sniffer.") - - def stop_capture(self): - """Stops the sniffer. - - Returns: - log_file: name of processed sniffer. - """ - - self.log.info("Stopping sniffer.") - log_file = self._get_full_file_path() - with open(log_file, 'w') as file: - file.write('this is a sniffer dump.') - return log_file - - -class TsharkSnifferBase(OtaSnifferBase): - """Class that implements Tshark based sniffer controller. """ - - TYPE_SUBTYPE_DICT = { - "0": "Association Requests", - "1": "Association Responses", - "2": "Reassociation Requests", - "3": "Resssociation Responses", - "4": "Probe Requests", - "5": "Probe Responses", - "8": "Beacon", - "9": "ATIM", - "10": "Disassociations", - "11": "Authentications", - "12": "Deauthentications", - "13": "Actions", - "24": "Block ACK Requests", - "25": "Block ACKs", - "26": "PS-Polls", - "27": "RTS", - "28": "CTS", - "29": "ACK", - "30": "CF-Ends", - "31": "CF-Ends/CF-Acks", - "32": "Data", - "33": "Data+CF-Ack", - "34": "Data+CF-Poll", - "35": "Data+CF-Ack+CF-Poll", - "36": "Null", - "37": "CF-Ack", - "38": "CF-Poll", - "39": "CF-Ack+CF-Poll", - "40": "QoS Data", - "41": "QoS Data+CF-Ack", - "42": "QoS Data+CF-Poll", - "43": "QoS Data+CF-Ack+CF-Poll", - "44": "QoS Null", - "46": "QoS CF-Poll (Null)", - "47": "QoS CF-Ack+CF-Poll (Null)" - } - - TSHARK_COLUMNS = [ - "frame_number", "frame_time_relative", "mactime", "frame_len", "rssi", - "channel", "ta", "ra", "bssid", "type", "subtype", "duration", "seq", - "retry", "pwrmgmt", "moredata", "ds", "phy", "radio_datarate", - "vht_datarate", "radiotap_mcs_index", "vht_mcs", "wlan_data_rate", - "11n_mcs_index", "11ac_mcs", "11n_bw", "11ac_bw", "vht_nss", "mcs_gi", - "vht_gi", "vht_coding", "ba_bm", "fc_status", "bf_report" - ] - - TSHARK_OUTPUT_COLUMNS = [ - "frame_number", "frame_time_relative", "mactime", "ta", "ra", "bssid", - "rssi", "channel", "frame_len", "Info", "radio_datarate", - "radiotap_mcs_index", "pwrmgmt", "phy", "vht_nss", "vht_mcs", - "vht_datarate", "11ac_mcs", "11ac_bw", "vht_gi", "vht_coding", - "wlan_data_rate", "11n_mcs_index", "11n_bw", "mcs_gi", "type", - "subtype", "duration", "seq", "retry", "moredata", "ds", "ba_bm", - "fc_status", "bf_report" - ] - - TSHARK_FIELDS_LIST = [ - 'frame.number', 'frame.time_relative', 'radiotap.mactime', 'frame.len', - 'radiotap.dbm_antsignal', 'wlan_radio.channel', 'wlan.ta', 'wlan.ra', - 'wlan.bssid', 'wlan.fc.type', 'wlan.fc.type_subtype', 'wlan.duration', - 'wlan.seq', 'wlan.fc.retry', 'wlan.fc.pwrmgt', 'wlan.fc.moredata', - 'wlan.fc.ds', 'wlan_radio.phy', 'radiotap.datarate', - 'radiotap.vht.datarate.0', 'radiotap.mcs.index', 'radiotap.vht.mcs.0', - 'wlan_radio.data_rate', 'wlan_radio.11n.mcs_index', - 'wlan_radio.11ac.mcs', 'wlan_radio.11n.bandwidth', - 'wlan_radio.11ac.bandwidth', 'radiotap.vht.nss.0', 'radiotap.mcs.gi', - 'radiotap.vht.gi', 'radiotap.vht.coding.0', 'wlan.ba.bm', - 'wlan.fcs.status', 'wlan.vht.compressed_beamforming_report.snr' - ] - - def __init__(self, config): - self.sniffer_proc_pid = None - self.log = logger.create_tagged_trace_logger("Tshark Sniffer") - self.ssh_config = config["ssh_config"] - self.sniffer_os = config["os"] - self.sniffer_interface = config["interface"] - - #Logging into sniffer - self.log.info("Logging into sniffer.") - self._sniffer_server = ssh.connection.SshConnection( - ssh.settings.from_config(self.ssh_config)) - - self.tshark_fields = self._generate_tshark_fields( - self.TSHARK_FIELDS_LIST) - - self.tshark_path = self._sniffer_server.run("which tshark").stdout - - @property - def _started(self): - return self.sniffer_proc_pid is not None - - def _scan_for_networks(self): - """Scans for wireless networks on the sniffer.""" - raise NotImplementedError - - def _init_network_association(self, ssid, password): - """Associates the sniffer to the network to sniff. - - Args: - ssid: SSID of the wireless network to connect to. - password: password of the wireless network to connect to. - """ - raise NotImplementedError - - def _get_tshark_command(self, duration): - """Frames the appropriate tshark command. - - Args: - duration: duration to sniff for. - - Returns: - tshark_command : appropriate tshark command. - """ - - tshark_command = "{} -l -i {} -I -t u -a duration:{}".format( - self.tshark_path, self.sniffer_interface, int(duration)) - - return tshark_command - - def _generate_tshark_fields(self, fields): - """Generates tshark fields to be appended to the tshark command. - - Args: - fields: list of tshark fields to be appended to the tshark command. - - Returns: - tshark_fields: string of tshark fields to be appended to the tshark command. - """ - - tshark_fields = '-T fields -y IEEE802_11_RADIO -E separator="^"' - for field in fields: - tshark_fields = tshark_fields + " -e {}".format(field) - return tshark_fields - - def _connect_to_network(self, network): - """ Connects to a wireless network using networksetup utility. - - Args: - network: dictionary of network credentials; SSID and password. - """ - - self.log.info("Connecting to network {}".format(network["SSID"])) - - # Scan to see if the requested SSID is available - scan_result = self._scan_for_networks() - - if network["SSID"] not in scan_result: - self.log.error("{} not found in scan".format(network["SSID"])) - - if "password" not in network.keys(): - network["password"] = "" - - self._init_network_association(network["SSID"], network["password"]) - - def _run_tshark(self, sniffer_command): - """Starts the sniffer. - - Args: - sniffer_command: sniffer command to execute. - """ - - self.log.info("Starting sniffer.") - sniffer_job = self._sniffer_server.run_async(sniffer_command) - self.sniffer_proc_pid = sniffer_job.stdout - - def _stop_tshark(self): - """ Stops the sniffer.""" - - self.log.info("Stopping sniffer") - - # while loop to kill the sniffer process - kill_line_logged = False - - while True: - try: - # Returns 1 if process was killed - self._sniffer_server.run( - "ps aux| grep {} | grep -v grep".format( - self.sniffer_proc_pid)) - except: - break - try: - # Returns error if process was killed already - if not kill_line_logged: - self.log.info('Killing tshark process.') - kill_line_logged = True - self._sniffer_server.run("kill -15 {}".format( - str(self.sniffer_proc_pid))) - except: - # Except is hit when tshark is already dead but we will break - # out of the loop when confirming process is dead using ps aux - pass - - def _process_tshark_dump(self, temp_dump_file, tag): - """ Process tshark dump for better readability. - - Processes tshark dump for better readability and saves it to a file. - Adds an info column at the end of each row. Format of the info columns: - subtype of the frame, sequence no and retry status. - - Args: - temp_dump_file : string of sniffer capture output. - tag : tag to be appended to the dump file. - Returns: - log_file : name of the file where the processed dump is stored. - """ - log_file = self._get_full_file_path(tag) - with open(temp_dump_file, "r") as input_csv, open(log_file, - "w") as output_csv: - reader = csv.DictReader(input_csv, - fieldnames=self.TSHARK_COLUMNS, - delimiter="^") - writer = csv.DictWriter(output_csv, - fieldnames=self.TSHARK_OUTPUT_COLUMNS, - delimiter="\t") - writer.writeheader() - for row in reader: - if row["subtype"] in self.TYPE_SUBTYPE_DICT.keys(): - row["Info"] = "{sub} S={seq} retry={retry_status}".format( - sub=self.TYPE_SUBTYPE_DICT[row["subtype"]], - seq=row["seq"], - retry_status=row["retry"]) - else: - row["Info"] = "{} S={} retry={}\n".format( - row["subtype"], row["seq"], row["retry"]) - writer.writerow(row) - return log_file - - def start_capture(self, network, duration=30): - """Starts sniffer capture on the specified machine. - - Args: - network: dict describing network to sniff on. - duration: duration of sniff. - """ - - # Checking for existing sniffer processes - if self._started: - self.log.info("Sniffer already running") - return - - # Connecting to network - self._connect_to_network(network) - - tshark_command = self._get_tshark_command(duration) - - sniffer_command = "{tshark} {fields} > {log_file}".format( - tshark=tshark_command, - fields=self.tshark_fields, - log_file=self._get_remote_dump_path()) - - # Starting sniffer capture by executing tshark command - self._run_tshark(sniffer_command) - - def stop_capture(self, tag=""): - """Stops the sniffer. - - Args: - tag: tag to be appended to the sniffer output file. - Returns: - log_file: path to sniffer dump. - """ - # Checking if there is an ongoing sniffer capture - if not self._started: - self.log.error("No sniffer process running") - return - # Killing sniffer process - self._stop_tshark() - - # Processing writing capture output to file - temp_dump_path = os.path.join(self.log_path, "sniffer_temp_dump.csv") - self._sniffer_server.pull_file(temp_dump_path, - self._get_remote_dump_path()) - log_file = self._process_tshark_dump(temp_dump_path, tag) - - self.sniffer_proc_pid = None - utils.exe_cmd("rm -f {}".format(temp_dump_path)) - return log_file - - -class TsharkSnifferOnUnix(TsharkSnifferBase): - """Class that implements Tshark based sniffer controller on Unix systems.""" - def _scan_for_networks(self): - """Scans the wireless networks on the sniffer. - - Returns: - scan_results : output of the scan command. - """ - - scan_command = "/usr/local/bin/airport -s" - scan_result = self._sniffer_server.run(scan_command).stdout - - return scan_result - - def _init_network_association(self, ssid, password): - """Associates the sniffer to the network to sniff. - - Associates the sniffer to wireless network to sniff using networksetup utility. - - Args: - ssid: SSID of the wireless network to connect to. - password: password of the wireless network to connect to. - """ - - connect_command = "networksetup -setairportnetwork en0 {} {}".format( - ssid, password) - self._sniffer_server.run(connect_command) - - -class TsharkSnifferOnLinux(TsharkSnifferBase): - """Class that implements Tshark based sniffer controller on Linux systems.""" - def _scan_for_networks(self): - """Scans the wireless networks on the sniffer. - - Returns: - scan_results : output of the scan command. - """ - - scan_command = "nmcli device wifi rescan; nmcli device wifi list" - scan_result = self._sniffer_server.run(scan_command).stdout - - return scan_result - - def _init_network_association(self, ssid, password): - """Associates the sniffer to the network to sniff. - - Associates the sniffer to wireless network to sniff using nmcli utility. - - Args: - ssid: SSID of the wireless network to connect to. - password: password of the wireless network to connect to. - """ - if password != "": - connect_command = "sudo nmcli device wifi connect {} password {}".format( - ssid, password) - else: - connect_command = "sudo nmcli device wifi connect {}".format(ssid) - self._sniffer_server.run(connect_command) diff --git a/acts/framework/acts/test_utils/wifi/p2p/WifiP2pBaseTest.py b/acts/framework/acts/test_utils/wifi/p2p/WifiP2pBaseTest.py index 7aca3c6ca9..dc081534d1 100644 --- a/acts/framework/acts/test_utils/wifi/p2p/WifiP2pBaseTest.py +++ b/acts/framework/acts/test_utils/wifi/p2p/WifiP2pBaseTest.py @@ -58,15 +58,15 @@ class WifiP2pBaseTest(BaseTestClass): if len(self.android_devices) > 2: self.dut3 = self.android_devices[2] - acts.utils.set_location_service(self.dut3, True) wutils.wifi_test_device_init(self.dut3) utils.sync_device_time(self.dut3) self.dut3.droid.wifiP2pInitialize() time.sleep(p2pconsts.DEFAULT_FUNCTION_SWITCH_TIME) asserts.assert_true(self.dut3.droid.wifiP2pIsEnabled(), - "DUT3's p2p should be initialized but it didn't") + "DUT1's p2p should be initialized but it didn't") self.dut3.name = "Android_" + self.dut3.serial self.dut3.droid.wifiP2pSetDeviceName(self.dut3.name) + acts.utils.set_location_service(self.dut3, True) def teardown_class(self): @@ -106,4 +106,4 @@ class WifiP2pBaseTest(BaseTestClass): def get_p2p_mac_address(self, dut): """Gets the current MAC address being used for Wi-Fi Direct.""" out = dut.adb.shell("ifconfig p2p0") - return re.match(".* HWaddr (\S+).*", out, re.S).group(1) + return re.match(".* HWaddr (\S+).*", out, re.S).group(1)
\ No newline at end of file diff --git a/acts/framework/acts/test_utils/wifi/rtt/RttBaseTest.py b/acts/framework/acts/test_utils/wifi/rtt/RttBaseTest.py index 6cb3460a0b..1110bac577 100644 --- a/acts/framework/acts/test_utils/wifi/rtt/RttBaseTest.py +++ b/acts/framework/acts/test_utils/wifi/rtt/RttBaseTest.py @@ -23,6 +23,10 @@ from acts.test_utils.wifi.rtt import rtt_test_utils as rutils class RttBaseTest(BaseTestClass): + def __init__(self, controllers): + if not hasattr(self, 'android_devices'): + super(RttBaseTest, self).__init__(controllers) + def setup_test(self): required_params = ("lci_reference", "lcr_reference", "rtt_reference_distance_mm", diff --git a/acts/framework/acts/test_utils/wifi/rtt/rtt_test_utils.py b/acts/framework/acts/test_utils/wifi/rtt/rtt_test_utils.py index 013e7f61fe..ce3e6fa863 100644 --- a/acts/framework/acts/test_utils/wifi/rtt/rtt_test_utils.py +++ b/acts/framework/acts/test_utils/wifi/rtt/rtt_test_utils.py @@ -124,22 +124,16 @@ def get_rtt_constrained_results(scanned_networks, support_rtt): return matching_networks -def scan_networks(dut, max_tries=3): +def scan_networks(dut): """Perform a scan and return scan results. Args: dut: Device under test. - max_retries: Retry scan to ensure network is found Returns: an array of scan results. """ - scan_results = [] - for num_tries in range(max_tries): - wutils.start_wifi_connection_scan(dut) - scan_results = dut.droid.wifiGetScanResults() - if scan_results: - break - return scan_results + wutils.start_wifi_connection_scan(dut) + return dut.droid.wifiGetScanResults() def scan_with_rtt_support_constraint(dut, support_rtt, repeat=0): diff --git a/acts/framework/acts/test_utils/wifi/wifi_constants.py b/acts/framework/acts/test_utils/wifi/wifi_constants.py index 21f13d2fc1..82da5208a8 100644 --- a/acts/framework/acts/test_utils/wifi/wifi_constants.py +++ b/acts/framework/acts/test_utils/wifi/wifi_constants.py @@ -32,24 +32,6 @@ WIFI_NETWORK_SUGGESTION_POST_CONNECTION = "WifiNetworkSuggestionPostConnection" CONNECT_BY_CONFIG_SUCCESS = 'WifiManagerConnectByConfigOnSuccess' CONNECT_BY_NETID_SUCCESS = 'WifiManagerConnectByNetIdOnSuccess' -# Softap related constants -SOFTAP_CALLBACK_EVENT = "WifiManagerSoftApCallback-" -# Callback Event for softap state change -# WifiManagerSoftApCallback-[callbackId]-OnStateChanged -SOFTAP_STATE_CHANGED = "-OnStateChanged" -# Cllback Event for client number change: -# WifiManagerSoftApCallback-[callbackId]-OnNumClientsChanged -SOFTAP_NUMBER_CLIENTS_CHANGED = "-OnNumClientsChanged" -SOFTAP_NUMBER_CLIENTS_CALLBACK_KEY = "NumClients" -SOFTAP_STATE_CHANGE_CALLBACK_KEY = "State" -WIFI_AP_DISABLING_STATE = 10 -WIFI_AP_DISABLED_STATE = 11 -WIFI_AP_ENABLING_STATE = 12 -WIFI_AP_ENABLED_STATE = 13 -WIFI_AP_FAILED_STATE = 14 -DEFAULT_SOFTAP_TIMEOUT_S = 600 # 10 minutes - - # AP related constants AP_MAIN = "main_AP" AP_AUX = "aux_AP" diff --git a/acts/framework/acts/test_utils/wifi/wifi_performance_test_utils.py b/acts/framework/acts/test_utils/wifi/wifi_performance_test_utils.py index e1039a08eb..b229767223 100644 --- a/acts/framework/acts/test_utils/wifi/wifi_performance_test_utils.py +++ b/acts/framework/acts/test_utils/wifi/wifi_performance_test_utils.py @@ -2,22 +2,20 @@ # # Copyright 2019 - The Android Open Source Project # -# Licensed under the Apache License, Version 2.0 (the 'License'); +# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an 'AS IS' BASIS, +# distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import bokeh, bokeh.plotting import collections -import itertools -import json import logging import math import re @@ -25,8 +23,6 @@ import statistics import time from acts.controllers.android_device import AndroidDevice from acts.controllers.utils_lib import ssh -from acts import utils -from acts.test_utils.wifi import wifi_test_utils as wutils from concurrent.futures import ThreadPoolExecutor SHORT_SLEEP = 1 @@ -46,6 +42,7 @@ LOSS_REGEX = re.compile(r'(?P<loss>\S+)% packet loss') # Threading decorator def nonblocking(f): """Creates a decorator transforming function calls to non-blocking""" + def wrap(*args, **kwargs): executor = ThreadPoolExecutor(max_workers=1) thread_future = executor.submit(f, *args, **kwargs) @@ -56,249 +53,77 @@ def nonblocking(f): return wrap -# Link layer stats utilities -class LinkLayerStats(): - - LLSTATS_CMD = 'cat /d/wlan0/ll_stats' - PEER_REGEX = 'LL_STATS_PEER_ALL' - MCS_REGEX = re.compile( - r'preamble: (?P<mode>\S+), nss: (?P<num_streams>\S+), bw: (?P<bw>\S+), ' - 'mcs: (?P<mcs>\S+), bitrate: (?P<rate>\S+), txmpdu: (?P<txmpdu>\S+), ' - 'rxmpdu: (?P<rxmpdu>\S+), mpdu_lost: (?P<mpdu_lost>\S+), ' - 'retries: (?P<retries>\S+), retries_short: (?P<retries_short>\S+), ' - 'retries_long: (?P<retries_long>\S+)') - MCS_ID = collections.namedtuple( - 'mcs_id', ['mode', 'num_streams', 'bandwidth', 'mcs', 'rate']) - MODE_MAP = {'0': '11a/g', '1': '11b', '2': '11n', '3': '11ac'} - BW_MAP = {'0': 20, '1': 40, '2': 80} - - def __init__(self, dut): - self.dut = dut - self.llstats_cumulative = self._empty_llstats() - self.llstats_incremental = self._empty_llstats() - - def update_stats(self): - llstats_output = self.dut.adb.shell(self.LLSTATS_CMD) - self._update_stats(llstats_output) - - def reset_stats(self): - self.llstats_cumulative = self._empty_llstats() - self.llstats_incremental = self._empty_llstats() - - def _empty_llstats(self): - return collections.OrderedDict(mcs_stats=collections.OrderedDict(), - summary=collections.OrderedDict()) - - def _empty_mcs_stat(self): - return collections.OrderedDict(txmpdu=0, - rxmpdu=0, - mpdu_lost=0, - retries=0, - retries_short=0, - retries_long=0) - - def _mcs_id_to_string(self, mcs_id): - mcs_string = '{} {}MHz Nss{} MCS{} {}Mbps'.format( - mcs_id.mode, mcs_id.bandwidth, mcs_id.num_streams, mcs_id.mcs, - mcs_id.rate) - return mcs_string - - def _parse_mcs_stats(self, llstats_output): - llstats_dict = {} - # Look for per-peer stats - match = re.search(self.PEER_REGEX, llstats_output) - if not match: - self.reset_stats() - return collections.OrderedDict() - # Find and process all matches for per stream stats - match_iter = re.finditer(self.MCS_REGEX, llstats_output) - for match in match_iter: - current_mcs = self.MCS_ID(self.MODE_MAP[match.group('mode')], - int(match.group('num_streams')) + 1, - self.BW_MAP[match.group('bw')], - int(match.group('mcs')), - int(match.group('rate'), 16) / 1000) - current_stats = collections.OrderedDict( - txmpdu=int(match.group('txmpdu')), - rxmpdu=int(match.group('rxmpdu')), - mpdu_lost=int(match.group('mpdu_lost')), - retries=int(match.group('retries')), - retries_short=int(match.group('retries_short')), - retries_long=int(match.group('retries_long'))) - llstats_dict[self._mcs_id_to_string(current_mcs)] = current_stats - return llstats_dict - - def _diff_mcs_stats(self, new_stats, old_stats): - stats_diff = collections.OrderedDict() - for stat_key in new_stats.keys(): - stats_diff[stat_key] = new_stats[stat_key] - old_stats[stat_key] - return stats_diff - - def _generate_stats_summary(self, llstats_dict): - llstats_summary = collections.OrderedDict(common_tx_mcs=None, - common_tx_mcs_count=0, - common_tx_mcs_freq=0, - common_rx_mcs=None, - common_rx_mcs_count=0, - common_rx_mcs_freq=0) - txmpdu_count = 0 - rxmpdu_count = 0 - for mcs_id, mcs_stats in llstats_dict['mcs_stats'].items(): - if mcs_stats['txmpdu'] > llstats_summary['common_tx_mcs_count']: - llstats_summary['common_tx_mcs'] = mcs_id - llstats_summary['common_tx_mcs_count'] = mcs_stats['txmpdu'] - if mcs_stats['rxmpdu'] > llstats_summary['common_rx_mcs_count']: - llstats_summary['common_rx_mcs'] = mcs_id - llstats_summary['common_rx_mcs_count'] = mcs_stats['rxmpdu'] - txmpdu_count += mcs_stats['txmpdu'] - rxmpdu_count += mcs_stats['rxmpdu'] - if txmpdu_count: - llstats_summary['common_tx_mcs_freq'] = ( - llstats_summary['common_tx_mcs_count'] / txmpdu_count) - if rxmpdu_count: - llstats_summary['common_rx_mcs_freq'] = ( - llstats_summary['common_rx_mcs_count'] / rxmpdu_count) - return llstats_summary - - def _update_stats(self, llstats_output): - # Parse stats - new_llstats = self._empty_llstats() - new_llstats['mcs_stats'] = self._parse_mcs_stats(llstats_output) - # Save old stats and set new cumulative stats - old_llstats = self.llstats_cumulative.copy() - self.llstats_cumulative = new_llstats.copy() - # Compute difference between new and old stats - self.llstats_incremental = self._empty_llstats() - for mcs_id, new_mcs_stats in new_llstats['mcs_stats'].items(): - old_mcs_stats = old_llstats['mcs_stats'].get( - mcs_id, self._empty_mcs_stat()) - self.llstats_incremental['mcs_stats'][ - mcs_id] = self._diff_mcs_stats(new_mcs_stats, old_mcs_stats) - # Generate llstats summary - self.llstats_incremental['summary'] = self._generate_stats_summary( - self.llstats_incremental) - self.llstats_cumulative['summary'] = self._generate_stats_summary( - self.llstats_cumulative) - - -# JSON serializer -def serialize_dict(input_dict): - """Function to serialize dicts to enable JSON output""" - output_dict = collections.OrderedDict() - for key, value in input_dict.items(): - output_dict[_serialize_value(key)] = _serialize_value(value) - return output_dict - - -def _serialize_value(value): - """Function to recursively serialize dict entries to enable JSON output""" - if isinstance(value, tuple): - return str(value) - if isinstance(value, list): - return [_serialize_value(x) for x in value] - elif isinstance(value, dict): - return serialize_dict(value) - else: - return value - - # Plotting Utilities class BokehFigure(): - """Class enabling simplified Bokeh plotting.""" - - COLORS = [ - 'black', - 'blue', - 'blueviolet', - 'brown', - 'burlywood', - 'cadetblue', - 'cornflowerblue', - 'crimson', - 'cyan', - 'darkblue', - 'darkgreen', - 'darkmagenta', - 'darkorange', - 'darkred', - 'deepskyblue', - 'goldenrod', - 'green', - 'grey', - 'indigo', - 'navy', - 'olive', - 'orange', - 'red', - 'salmon', - 'teal', - 'yellow', - ] - MARKERS = [ - 'asterisk', 'circle', 'circle_cross', 'circle_x', 'cross', 'diamond', - 'diamond_cross', 'hex', 'inverted_triangle', 'square', 'square_x', - 'square_cross', 'triangle', 'x' - ] - def __init__(self, title=None, x_label=None, - primary_y_label=None, - secondary_y_label=None, + primary_y=None, + secondary_y=None, height=700, width=1300, - title_size='15pt', - axis_label_size='12pt'): + title_size=15, + axis_label_size=12): self.figure_data = [] self.fig_property = { 'title': title, 'x_label': x_label, - 'primary_y_label': primary_y_label, - 'secondary_y_label': secondary_y_label, + 'primary_y_label': primary_y, + 'secondary_y_label': secondary_y, 'num_lines': 0, - 'height': height, - 'width': width, - 'title_size': title_size, - 'axis_label_size': axis_label_size + 'title_size': '{}pt'.format(title_size), + 'axis_label_size': '{}pt'.format(axis_label_size) } self.TOOLS = ( 'box_zoom,box_select,pan,crosshair,redo,undo,reset,hover,save') - self.TOOLTIPS = [ - ('index', '$index'), - ('(x,y)', '($x, $y)'), - ('info', '@hover_text'), + self.COLORS = [ + 'black', + 'blue', + 'blueviolet', + 'brown', + 'burlywood', + 'cadetblue', + 'cornflowerblue', + 'crimson', + 'cyan', + 'darkblue', + 'darkgreen', + 'darkmagenta', + 'darkorange', + 'darkred', + 'deepskyblue', + 'goldenrod', + 'green', + 'grey', + 'indigo', + 'navy', + 'olive', + 'orange', + 'red', + 'salmon', + 'teal', + 'yellow', + ] + self.MARKERS = [ + 'asterisk', 'circle', 'circle_cross', 'circle_x', 'cross', + 'diamond', 'diamond_cross', 'hex', 'inverted_triangle', 'square', + 'square_x', 'square_cross', 'triangle', 'x' ] - - def init_plot(self): self.plot = bokeh.plotting.figure( - plot_width=self.fig_property['width'], - plot_height=self.fig_property['height'], - title=self.fig_property['title'], + plot_width=width, + plot_height=height, + title=title, tools=self.TOOLS, output_backend='webgl') - self.plot.hover.tooltips = self.TOOLTIPS self.plot.add_tools( bokeh.models.tools.WheelZoomTool(dimensions='width')) self.plot.add_tools( bokeh.models.tools.WheelZoomTool(dimensions='height')) - def _filter_line(self, x_data, y_data, hover_text=None): - """Function to remove NaN points from bokeh plots.""" - x_data_filtered = [] - y_data_filtered = [] - hover_text_filtered = [] - for x, y, hover in itertools.zip_longest(x_data, y_data, hover_text): - if not math.isnan(y): - x_data_filtered.append(x) - y_data_filtered.append(y) - hover_text_filtered.append(hover) - return x_data_filtered, y_data_filtered, hover_text_filtered - def add_line(self, x_data, y_data, legend, - hover_text=None, color=None, width=3, style='solid', @@ -306,136 +131,61 @@ class BokehFigure(): marker_size=10, shaded_region=None, y_axis='default'): - """Function to add line to existing BokehFigure. - - Args: - x_data: list containing x-axis values for line - y_data: list containing y_axis values for line - legend: string containing line title - hover_text: text to display when hovering over lines - color: string describing line color - width: integer line width - style: string describing line style, e.g, solid or dashed - marker: string specifying line marker, e.g., cross - shaded region: data describing shaded region to plot - y_axis: identifier for y-axis to plot line against - """ if y_axis not in ['default', 'secondary']: raise ValueError('y_axis must be default or secondary') if color == None: - color = self.COLORS[self.fig_property['num_lines'] % - len(self.COLORS)] + color = self.COLORS[self.fig_property['num_lines'] % len( + self.COLORS)] if style == 'dashed': style = [5, 5] - if not hover_text: - hover_text = ['y={}'.format(y) for y in y_data] - x_data_filter, y_data_filter, hover_text_filter = self._filter_line( - x_data, y_data, hover_text) self.figure_data.append({ - 'x_data': x_data_filter, - 'y_data': y_data_filter, + 'x_data': x_data, + 'y_data': y_data, 'legend': legend, - 'hover_text': hover_text_filter, 'color': color, 'width': width, 'style': style, 'marker': marker, 'marker_size': marker_size, 'shaded_region': shaded_region, - 'y_axis': y_axis - }) - self.fig_property['num_lines'] += 1 - - def add_scatter(self, - x_data, - y_data, - legend, - hover_text=None, - color=None, - marker=None, - marker_size=10, - y_axis='default'): - """Function to add line to existing BokehFigure. - - Args: - x_data: list containing x-axis values for line - y_data: list containing y_axis values for line - legend: string containing line title - hover_text: text to display when hovering over lines - color: string describing line color - marker: string specifying marker, e.g., cross - y_axis: identifier for y-axis to plot line against - """ - if y_axis not in ['default', 'secondary']: - raise ValueError('y_axis must be default or secondary') - if color == None: - color = self.COLORS[self.fig_property['num_lines'] % - len(self.COLORS)] - if marker == None: - marker = self.MARKERS[self.fig_property['num_lines'] % - len(self.MARKERS)] - if not hover_text: - hover_text = ['y={}'.format(y) for y in y_data] - self.figure_data.append({ - 'x_data': x_data, - 'y_data': y_data, - 'legend': legend, - 'hover_text': hover_text, - 'color': color, - 'width': 0, - 'style': 'solid', - 'marker': marker, - 'marker_size': marker_size, - 'shaded_region': None, - 'y_axis': y_axis + 'y_range_name': y_axis }) self.fig_property['num_lines'] += 1 def generate_figure(self, output_file=None): - """Function to generate and save BokehFigure. - - Args: - output_file: string specifying output file path - """ - self.init_plot() two_axes = False for line in self.figure_data: - source = bokeh.models.ColumnDataSource( - data=dict(x=line['x_data'], - y=line['y_data'], - hover_text=line['hover_text'])) - if line['width'] > 0: - self.plot.line(x='x', - y='y', - legend=line['legend'], - line_width=line['width'], - color=line['color'], - line_dash=line['style'], - name=line['y_axis'], - y_range_name=line['y_axis'], - source=source) + self.plot.line( + line['x_data'], + line['y_data'], + legend=line['legend'], + line_width=line['width'], + color=line['color'], + line_dash=line['style'], + name=line['y_range_name'], + y_range_name=line['y_range_name']) if line['shaded_region']: band_x = line['shaded_region']['x_vector'] band_x.extend(line['shaded_region']['x_vector'][::-1]) band_y = line['shaded_region']['lower_limit'] band_y.extend(line['shaded_region']['upper_limit'][::-1]) - self.plot.patch(band_x, - band_y, - color='#7570B3', - line_alpha=0.1, - fill_alpha=0.1) + self.plot.patch( + band_x, + band_y, + color='#7570B3', + line_alpha=0.1, + fill_alpha=0.1) if line['marker'] in self.MARKERS: marker_func = getattr(self.plot, line['marker']) - marker_func(x='x', - y='y', - size=line['marker_size'], - legend=line['legend'], - line_color=line['color'], - fill_color=line['color'], - name=line['y_axis'], - y_range_name=line['y_axis'], - source=source) - if line['y_axis'] == 'secondary': + marker_func( + line['x_data'], + line['y_data'], + size=line['marker_size'], + legend=line['legend'], + fill_color=line['color'], + name=line['y_range_name'], + y_range_name=line['y_range_name']) + if line['y_range_name'] == 'secondary': two_axes = True #x-axis formatting @@ -464,49 +214,87 @@ class BokehFigure(): self.plot.title.text_font_size = self.fig_property['title_size'] if output_file is not None: - self.save_figure(output_file) + bokeh.plotting.output_file(output_file) + bokeh.plotting.save(self.plot) return self.plot - def _save_figure_json(self, output_file): - """Function to save a json format of a figure""" - figure_dict = collections.OrderedDict(fig_property=self.fig_property, - figure_data=self.figure_data, - tools=self.TOOLS, - tooltips=self.TOOLTIPS) - output_file = output_file.replace('.html', '_plot_data.json') - with open(output_file, 'w') as outfile: - json.dump(figure_dict, outfile, indent=4) - def save_figure(self, output_file): - """Function to save BokehFigure. - - Args: - output_file: string specifying output file path - """ bokeh.plotting.output_file(output_file) bokeh.plotting.save(self.plot) - self._save_figure_json(output_file) - @staticmethod - def save_figures(figure_array, output_file_path): - """Function to save list of BokehFigures in one file. +def bokeh_plot(data_sets, + legends, + fig_property, + shaded_region=None, + output_file_path=None): + """Plot bokeh figs. Args: - figure_array: list of BokehFigure object to be plotted - output_file: string specifying output file path - """ - for idx, figure in enumerate(figure_array): - figure.generate_figure() - json_file_path = output_file_path.replace( - '.html', '{}-plot_data.json'.format(idx)) - figure._save_figure_json(json_file_path) - plot_array = [figure.plot for figure in figure_array] - all_plots = bokeh.layouts.column(children=plot_array) + data_sets: data sets including lists of x_data and lists of y_data + ex: [[[x_data1], [x_data2]], [[y_data1],[y_data2]]] + legends: list of legend for each curve + fig_property: dict containing the plot property, including title, + lables, linewidth, circle size, etc. + shaded_region: optional dict containing data for plot shading + output_file_path: optional path at which to save figure + Returns: + plot: bokeh plot figure object + """ + TOOLS = ('box_zoom,box_select,pan,crosshair,redo,undo,reset,hover,save') + plot = bokeh.plotting.figure( + plot_width=1300, + plot_height=700, + title=fig_property['title'], + tools=TOOLS, + output_backend='webgl') + plot.add_tools(bokeh.models.tools.WheelZoomTool(dimensions='width')) + plot.add_tools(bokeh.models.tools.WheelZoomTool(dimensions='height')) + colors = [ + 'red', 'green', 'blue', 'olive', 'orange', 'salmon', 'black', 'navy', + 'yellow', 'darkred', 'goldenrod' + ] + if shaded_region: + band_x = shaded_region['x_vector'] + band_x.extend(shaded_region['x_vector'][::-1]) + band_y = shaded_region['lower_limit'] + band_y.extend(shaded_region['upper_limit'][::-1]) + plot.patch( + band_x, band_y, color='#7570B3', line_alpha=0.1, fill_alpha=0.1) + + for x_data, y_data, legend in zip(data_sets[0], data_sets[1], legends): + index_now = legends.index(legend) + color = colors[index_now % len(colors)] + plot.line( + x_data, + y_data, + legend=str(legend), + line_width=fig_property['linewidth'], + color=color) + plot.circle( + x_data, + y_data, + size=fig_property['markersize'], + legend=str(legend), + fill_color=color) + + # Plot properties + plot.xaxis.axis_label = fig_property['x_label'] + plot.yaxis.axis_label = fig_property['y_label'] + plot.legend.location = 'top_right' + plot.legend.click_policy = 'hide' + plot.title.text_font_size = {'value': '15pt'} + if output_file_path is not None: bokeh.plotting.output_file(output_file_path) - bokeh.plotting.save(all_plots) + bokeh.plotting.save(plot) + return plot + + +def save_bokeh_plots(plot_array, output_file_path): + all_plots = bokeh.layouts.column(children=plot_array) + bokeh.plotting.output_file(output_file_path) + bokeh.plotting.save(all_plots) -# Ping utilities class PingResult(object): """An object that contains the results of running ping command. @@ -522,27 +310,25 @@ class PingResult(object): ping_interarrivals: A list-like object enumerating the amount of time between the beginning of each subsequent transmission. """ + def __init__(self, ping_output): self.packet_loss_percentage = 100 self.transmission_times = [] self.rtts = _ListWrap(self.transmission_times, lambda entry: entry.rtt) - self.timestamps = _ListWrap(self.transmission_times, - lambda entry: entry.timestamp) + self.timestamps = _ListWrap( + self.transmission_times, lambda entry: entry.timestamp) self.ping_interarrivals = _PingInterarrivals(self.transmission_times) - self.start_time = 0 for line in ping_output: if 'loss' in line: match = re.search(LOSS_REGEX, line) self.packet_loss_percentage = float(match.group('loss')) if 'time=' in line: match = re.search(RTT_REGEX, line) - if self.start_time == 0: - self.start_time = float(match.group('timestamp')) self.transmission_times.append( PingTransmissionTimes( - float(match.group('timestamp')) - self.start_time, + float(match.group('timestamp')), float(match.group('rtt')))) self.connected = len( ping_output) > 1 and self.packet_loss_percentage < 100 @@ -573,6 +359,7 @@ class PingTransmissionTimes(object): rtt: The round trip time for the packet sent. timestamp: The timestamp the packet started its trip. """ + def __init__(self, timestamp, rtt): self.rtt = rtt self.timestamp = timestamp @@ -580,6 +367,7 @@ class PingTransmissionTimes(object): class _ListWrap(object): """A convenient helper class for treating list iterators as native lists.""" + def __init__(self, wrapped_list, func): self.__wrapped_list = wrapped_list self.__func = func @@ -597,6 +385,7 @@ class _ListWrap(object): class _PingInterarrivals(object): """A helper class for treating ping interarrivals as a native list.""" + def __init__(self, ping_entries): self.__ping_entries = ping_entries @@ -628,27 +417,21 @@ def get_ping_stats(src_device, dest_address, ping_duration, ping_interval, Returns: ping_result: dict containing ping results and other meta data """ - ping_count = int(ping_duration / ping_interval) - ping_deadline = int(ping_count * ping_interval) + 1 - ping_cmd = 'ping -c {} -w {} -i {} -s {} -D'.format( - ping_count, - ping_deadline, + ping_cmd = 'ping -w {} -i {} -s {} -D'.format( + ping_duration, ping_interval, ping_size, ) if isinstance(src_device, AndroidDevice): ping_cmd = '{} {}'.format(ping_cmd, dest_address) - ping_output = src_device.adb.shell(ping_cmd, - timeout=ping_deadline + SHORT_SLEEP, - ignore_status=True) + ping_output = src_device.adb.shell( + ping_cmd, timeout=ping_duration + TEST_TIMEOUT, ignore_status=True) elif isinstance(src_device, ssh.connection.SshConnection): ping_cmd = 'sudo {} {}'.format(ping_cmd, dest_address) - ping_output = src_device.run(ping_cmd, - timeout=ping_deadline + SHORT_SLEEP, - ignore_status=True).stdout + ping_output = src_device.run(ping_cmd, ignore_status=True).stdout else: - raise TypeError('Unable to ping using src_device of type %s.' % - type(src_device)) + raise TypeError( + 'Unable to ping using src_device of type %s.' % type(src_device)) return PingResult(ping_output.splitlines()) @@ -674,15 +457,13 @@ def empty_rssi_result(): def get_connected_rssi(dut, num_measurements=1, polling_frequency=SHORT_SLEEP, - first_measurement_delay=0, - disconnect_warning=True): + first_measurement_delay=0): """Gets all RSSI values reported for the connected access point/BSSID. Args: dut: android device object from which to get RSSI num_measurements: number of scans done, and RSSIs collected polling_frequency: time to wait between RSSI measurements - disconnect_warning: boolean controlling disconnection logging messages Returns: connected_rssi: dict containing the measurements results for all reported RSSI values (signal_poll, per chain, etc.) and their @@ -697,7 +478,6 @@ def get_connected_rssi(dut, ('chain_0_rssi', empty_rssi_result()), ('chain_1_rssi', empty_rssi_result())]) # yapf: enable - previous_bssid = 'disconnected' t0 = time.time() time.sleep(first_measurement_delay) for idx in range(num_measurements): @@ -707,14 +487,10 @@ def get_connected_rssi(dut, status_output = dut.adb.shell(WPA_CLI_STATUS) match = re.search('bssid=.*', status_output) if match: - current_bssid = match.group(0).split('=')[1] - connected_rssi['bssid'].append(current_bssid) + bssid = match.group(0).split('=')[1] + connected_rssi['bssid'].append(bssid) else: - current_bssid = 'disconnected' - connected_rssi['bssid'].append(current_bssid) - if disconnect_warning and previous_bssid != 'disconnected': - logging.warning('WIFI DISCONNECT DETECTED!') - previous_bssid = current_bssid + connected_rssi['bssid'].append(RSSI_ERROR_VAL) signal_poll_output = dut.adb.shell(SIGNAL_POLL) match = re.search('FREQUENCY=.*', signal_poll_output) if match: @@ -779,8 +555,7 @@ def get_connected_rssi(dut, def get_connected_rssi_nb(dut, num_measurements=1, polling_frequency=SHORT_SLEEP, - first_measurement_delay=0, - disconnect_warning=True): + first_measurement_delay=0): return get_connected_rssi(dut, num_measurements, polling_frequency, first_measurement_delay) @@ -804,9 +579,8 @@ def get_scan_rssi(dut, tracked_bssids, num_measurements=1): time.sleep(MED_SLEEP) scan_output = dut.adb.shell(SCAN_RESULTS) for bssid in tracked_bssids: - bssid_result = re.search(bssid + '.*', - scan_output, - flags=re.IGNORECASE) + bssid_result = re.search( + bssid + '.*', scan_output, flags=re.IGNORECASE) if bssid_result: bssid_result = bssid_result.group(0).split('\t') scan_rssi[bssid]['data'].append(int(bssid_result[2])) @@ -834,7 +608,7 @@ def get_scan_rssi_nb(dut, tracked_bssids, num_measurements=1): return get_scan_rssi(dut, tracked_bssids, num_measurements) -# Attenuator Utilities +## Attenuator Utilities def atten_by_label(atten_list, path_label, atten_level): """Attenuate signals according to their path label. @@ -848,268 +622,21 @@ def atten_by_label(atten_list, path_label, atten_level): atten.set_atten(atten_level) -def get_current_atten_dut_chain_map(attenuators, dut, ping_server): - """Function to detect mapping between attenuator ports and DUT chains. - - This function detects the mapping between attenuator ports and DUT chains - in cases where DUT chains are connected to only one attenuator port. The - function assumes the DUT is already connected to a wifi network. The - function starts by measuring per chain RSSI at 0 attenuation, then - attenuates one port at a time looking for the chain that reports a lower - RSSI. +def get_server_address(ssh_connection, subnet): + """Get server address on a specific subnet Args: - attenuators: list of attenuator ports - dut: android device object assumed connected to a wifi network. - ping_server: ssh connection object to ping server - ping_ip: ip to ping to keep connection alive and RSSI updated - Returns: - chain_map: list of dut chains, one entry per attenuator port - """ - # Set attenuator to 0 dB - for atten in attenuators: - atten.set_atten(0, strict=False) - # Start ping traffic - dut_ip = dut.droid.connectivityGetIPv4Addresses('wlan0')[0] - ping_future = get_ping_stats_nb(ping_server, dut_ip, 11, 0.02, 64) - # Measure starting RSSI - base_rssi = get_connected_rssi(dut, 4, 0.25, 1) - chain0_base_rssi = base_rssi['chain_0_rssi']['mean'] - chain1_base_rssi = base_rssi['chain_1_rssi']['mean'] - # Compile chain map by attenuating one path at a time and seeing which - # chain's RSSI degrades - chain_map = [] - for test_atten in attenuators: - # Set one attenuator to 20 dB down - test_atten.set_atten(30, strict=False) - # Get new RSSI - test_rssi = get_connected_rssi(dut, 4, 0.25, 1) - # Assign attenuator to path that has lower RSSI - if chain0_base_rssi > -40 and chain0_base_rssi - test_rssi[ - 'chain_0_rssi']['mean'] > 15: - chain_map.append('DUT-Chain-0') - elif chain1_base_rssi > -40 and chain1_base_rssi - test_rssi[ - 'chain_1_rssi']['mean'] > 15: - chain_map.append('DUT-Chain-1') - else: - chain_map.append(None) - # Reset attenuator to 0 - test_atten.set_atten(0, strict=False) - ping_future.result() - logging.debug('Chain Map: {}'.format(chain_map)) - return chain_map - - -def get_full_rf_connection_map(attenuators, dut, ping_server, networks): - """Function to detect per-network connections between attenuator and DUT. - - This function detects the mapping between attenuator ports and DUT chains - on all networks in its arguments. The function connects the DUT to each - network then calls get_current_atten_dut_chain_map to get the connection - map on the current network. The function outputs the results in two formats - to enable easy access when users are interested in indexing by network or - attenuator port. - - Args: - attenuators: list of attenuator ports - dut: android device object assumed connected to a wifi network. - ping_server: ssh connection object to ping server - networks: dict of network IDs and configs - Returns: - rf_map_by_network: dict of RF connections indexed by network. - rf_map_by_atten: list of RF connections indexed by attenuator - """ - for atten in attenuators: - atten.set_atten(0, strict=False) - - rf_map_by_network = collections.OrderedDict() - rf_map_by_atten = [[] for atten in attenuators] - for net_id, net_config in networks.items(): - wutils.reset_wifi(dut) - wutils.wifi_connect(dut, - net_config, - num_of_tries=1, - assert_on_fail=False, - check_connectivity=False) - rf_map_by_network[net_id] = get_current_atten_dut_chain_map( - attenuators, dut, ping_server) - for idx, chain in enumerate(rf_map_by_network[net_id]): - if chain: - rf_map_by_atten[idx].append({ - "network": net_id, - "dut_chain": chain - }) - logging.debug("RF Map (by Network): {}".format(rf_map_by_network)) - logging.debug("RF Map (by Atten): {}".format(rf_map_by_atten)) - - return rf_map_by_network, rf_map_by_atten - - -# Miscellaneous Wifi Utilities -def validate_network(dut, ssid): - """Check that DUT has a valid internet connection through expected SSID - - Args: - dut: android device of interest - ssid: expected ssid + ssh_connection: object representing server for which we want an ip + subnet: string in ip address format, i.e., xxx.xxx.xxx.xxx, + representing the subnet of interest. """ - current_network = dut.droid.wifiGetConnectionInfo() + subnet_str = subnet.split('.')[:-1] + subnet_str = '.'.join(subnet_str) + cmd = "ifconfig | grep 'inet addr:{}'".format(subnet_str) try: - connected = wutils.validate_connection(dut) is not None + if_output = ssh_connection.run(cmd).stdout + ip_line = if_output.split('inet addr:')[1] + ip_address = ip_line.split(' ')[0] except: - connected = False - if connected and current_network['SSID'] == ssid: - return True - else: - return False - - -def get_server_address(ssh_connection, dut_ip, subnet_mask): - """Get server address on a specific subnet, - - This function retrieves the LAN IP of a remote machine used in testing, - i.e., it returns the server's IP belonging to the same LAN as the DUT. - - Args: - ssh_connection: object representing server for which we want an ip - dut_ip: string in ip address format, i.e., xxx.xxx.xxx.xxx, specifying - the DUT LAN IP we wish to connect to - subnet_mask: string representing subnet mask - """ - subnet_mask = subnet_mask.split('.') - dut_subnet = [ - int(dut) & int(subnet) - for dut, subnet in zip(dut_ip.split('.'), subnet_mask) - ] - ifconfig_out = ssh_connection.run('ifconfig').stdout - ip_list = re.findall('inet (?:addr:)?(\d+.\d+.\d+.\d+)', ifconfig_out) - for current_ip in ip_list: - current_subnet = [ - int(ip) & int(subnet) - for ip, subnet in zip(current_ip.split('.'), subnet_mask) - ] - if current_subnet == dut_subnet: - return current_ip - logging.error('No IP address found in requested subnet') - - -def get_iperf_arg_string(duration, - reverse_direction, - interval=1, - traffic_type='TCP', - tcp_window=None, - tcp_processes=1, - udp_throughput='1000M'): - """Function to format iperf client arguments. - - This function takes in iperf client parameters and returns a properly - formatter iperf arg string to be used in throughput tests. - - Args: - duration: iperf duration in seconds - reverse_direction: boolean controlling the -R flag for iperf clients - interval: iperf print interval - traffic_type: string specifying TCP or UDP traffic - tcp_window: string specifying TCP window, e.g., 2M - tcp_processes: int specifying number of tcp processes - udp_throughput: string specifying TX throughput in UDP tests, e.g. 100M - Returns: - iperf_args: string of formatted iperf args - """ - iperf_args = '-i {} -t {} -J '.format(interval, duration) - if traffic_type == 'UDP': - iperf_args = iperf_args + '-u -b {} -l 1400'.format(udp_throughput) - elif traffic_type == 'TCP': - iperf_args = iperf_args + '-P {}'.format(tcp_processes) - if tcp_window: - iperf_args = iperf_args + '-w {}'.format(tcp_window) - if reverse_direction: - iperf_args = iperf_args + ' -R' - return iperf_args - - -def get_dut_temperature(dut): - """Function to get dut temperature. - - The function fetches and returns the reading from the temperature sensor - used for skin temperature and thermal throttling. - - Args: - dut: AndroidDevice of interest - Returns: - temperature: device temperature. 0 if temperature could not be read - """ - candidate_zones = ['sdm-therm-monitor', 'sdm-therm-adc', 'back_therm'] - for zone in candidate_zones: - try: - temperature = int( - dut.adb.shell( - 'cat /sys/class/thermal/tz-by-name/{}/temp'.format(zone))) - break - except ValueError: - temperature = 0 - if temperature == 0: - logging.debug('Could not check DUT temperature.') - elif temperature > 100: - temperature = temperature / 1000 - return temperature - - -def health_check(dut, batt_thresh=5, temp_threshold=50): - """Function to check health status of a DUT. - - The function checks both battery levels and temperature to avoid DUT - powering off during the test. - - Args: - dut: AndroidDevice of interest - batt_thresh: battery level threshold - temp_threshold: temperature threshold - Returns: - health_check: boolean confirming device is healthy - """ - health_check = True - battery_level = utils.get_battery_level(dut) - if battery_level < batt_thresh: - logging.warning("Battery level low ({}%)".format(battery_level)) - health_check = False - else: - logging.debug("Battery level = {}%".format(battery_level)) - - temperature = get_dut_temperature(dut) - if temperature > temp_threshold: - logging.warning("DUT Overheating ({} C)".format(temperature)) - health_check = False - else: - logging.debug("DUT Temperature = {}C".format(temperature)) - return health_check - - -def push_bdf(dut, bdf_file): - """Function to push Wifi BDF files - - This function checks for existing wifi bdf files and over writes them all, - for simplicity, with the bdf file provided in the arguments. The dut is - rebooted for the bdf file to take effect - - Args: - dut: dut to push bdf file to - bdf_file: path to bdf_file to push - """ - bdf_files_list = dut.adb.shell('ls /vendor/firmware/bdwlan*').splitlines() - for dst_file in bdf_files_list: - dut.push_system_file(bdf_file, dst_file) - dut.reboot() - - -def push_firmware(dut, wlanmdsp_file, datamsc_file): - """Function to push Wifi firmware files - - Args: - dut: dut to push bdf file to - wlanmdsp_file: path to wlanmdsp.mbn file - datamsc_file: path to Data.msc file - """ - dut.push_system_file(wlanmdsp_file, '/vendor/firmware/wlanmdsp.mbn') - dut.push_system_file(datamsc_file, '/vendor/firmware/Data.msc') - dut.reboot() + logging.warning('Could not find ip in requested subnet.') + return ip_address diff --git a/acts/framework/acts/test_utils/wifi/wifi_power_test_utils.py b/acts/framework/acts/test_utils/wifi/wifi_power_test_utils.py index ac18a8f3e8..589946dd0d 100644 --- a/acts/framework/acts/test_utils/wifi/wifi_power_test_utils.py +++ b/acts/framework/acts/test_utils/wifi/wifi_power_test_utils.py @@ -16,8 +16,8 @@ import logging import time -import os from acts import utils +from acts.controllers import monsoon from acts.libs.proc import job from acts.controllers.ap_lib import bridge_interface as bi from acts.test_utils.wifi import wifi_test_utils as wutils @@ -39,7 +39,7 @@ ENABLED_MODULATED_DTIM = 'gEnableModulatedDTIM=' MAX_MODULATED_DTIM = 'gMaxLIModulatedDTIM=' -def monsoon_data_plot(mon_info, monsoon_results, tag=''): +def monsoon_data_plot(mon_info, file_path, tag=""): """Plot the monsoon current data using bokeh interactive plotting tool. Plotting power measurement data with bokeh to generate interactive plots. @@ -50,10 +50,9 @@ def monsoon_data_plot(mon_info, monsoon_results, tag=''): Args: mon_info: obj with information of monsoon measurement, including - monsoon device object, measurement frequency, duration, etc. - monsoon_results: a MonsoonResult or list of MonsoonResult objects to - to plot. - tag: an extra tag to append to the resulting filename. + monsoon device object, measurement frequency, duration and + offset etc. + file_path: the path to the monsoon log file with current data Returns: plot: the plotting object of bokeh, optional, will be needed if multiple @@ -61,35 +60,25 @@ def monsoon_data_plot(mon_info, monsoon_results, tag=''): dt: the datatable object of bokeh, optional, will be needed if multiple datatables will be combined to one html file. """ - if not isinstance(monsoon_results, list): - monsoon_results = [monsoon_results] - logging.info('Plotting the power measurement data.') - - voltage = monsoon_results[0].voltage - - total_current = 0 - total_samples = 0 - for result in monsoon_results: - total_current += result.average_current * result.num_samples - total_samples += result.num_samples - avg_current = total_current / total_samples - - time_relative = [ - data_point.time - for monsoon_result in monsoon_results - for data_point in monsoon_result.get_data_points() - ] - - current_data = [ - data_point.current * 1000 - for monsoon_result in monsoon_results - for data_point in monsoon_result.get_data_points() - ] - total_data_points = sum(result.num_samples for result in monsoon_results) - color = ['navy'] * total_data_points - - # Preparing the data and source link for bokehn java callback + log = logging.getLogger() + log.info("Plot the power measurement data") + #Get results as monsoon data object from the input file + results = monsoon.MonsoonData.from_text_file(file_path) + #Decouple current and timestamp data from the monsoon object + current_data = [] + timestamps = [] + voltage = results[0].voltage + [current_data.extend(x.data_points) for x in results] + [timestamps.extend(x.timestamps) for x in results] + period = 1 / float(mon_info.freq) + time_relative = [x * period for x in range(len(current_data))] + #Calculate the average current for the test + current_data = [x * 1000 for x in current_data] + avg_current = sum(current_data) / len(current_data) + color = ['navy'] * len(current_data) + + #Preparing the data and source link for bokehn java callback source = ColumnDataSource( data=dict(x0=time_relative, y0=current_data, color=color)) s2 = ColumnDataSource( @@ -99,7 +88,7 @@ def monsoon_data_plot(mon_info, monsoon_results, tag=''): x0=[round(avg_current * voltage, 2)], z1=[round(avg_current * voltage * mon_info.duration, 2)], z2=[round(avg_current * mon_info.duration, 2)])) - # Setting up data table for the output + #Setting up data table for the output columns = [ TableColumn(field='z0', title='Total Duration (s)'), TableColumn(field='y0', title='Average Current (mA)'), @@ -110,32 +99,31 @@ def monsoon_data_plot(mon_info, monsoon_results, tag=''): dt = DataTable( source=s2, columns=columns, width=1300, height=60, editable=True) - plot_title = (os.path.basename(os.path.splitext(monsoon_results[0].tag)[0]) - + tag) - output_file(os.path.join(mon_info.data_path, plot_title + '.html')) - tools = 'box_zoom,box_select,pan,crosshair,redo,undo,reset,hover,save' + plot_title = file_path[file_path.rfind('/') + 1:-4] + tag + output_file("%s/%s.html" % (mon_info.data_path, plot_title)) + TOOLS = ('box_zoom,box_select,pan,crosshair,redo,undo,reset,hover,save') # Create a new plot with the datatable above plot = figure( plot_width=1300, plot_height=700, title=plot_title, - tools=tools, - output_backend='webgl') - plot.add_tools(bokeh_tools.WheelZoomTool(dimensions='width')) - plot.add_tools(bokeh_tools.WheelZoomTool(dimensions='height')) + tools=TOOLS, + output_backend="webgl") + plot.add_tools(bokeh_tools.WheelZoomTool(dimensions="width")) + plot.add_tools(bokeh_tools.WheelZoomTool(dimensions="height")) plot.line('x0', 'y0', source=source, line_width=2) plot.circle('x0', 'y0', source=source, size=0.5, fill_color='color') plot.xaxis.axis_label = 'Time (s)' plot.yaxis.axis_label = 'Current (mA)' plot.title.text_font_size = {'value': '15pt'} - # Callback JavaScript - source.selected.js_on_change( - "indices", - CustomJS(args=dict(source=source, mytable=dt), code=""" - var inds = cb_obj.indices; - var d1 = source.data; - var d2 = mytable.source.data; + #Callback Java scripting + source.callback = CustomJS( + args=dict(mytable=dt), + code=""" + var inds = cb_obj.get('selected')['1d'].indices; + var d1 = cb_obj.get('data'); + var d2 = mytable.get('source').get('data'); ym = 0 ts = 0 d2['x0'] = [] @@ -165,12 +153,13 @@ def monsoon_data_plot(mon_info, monsoon_results, tag=''): d2['y0'].push(dy0) d2['z1'].push(dz1) d2['z2'].push(dz2) - mytable.change.emit(); - """)) + mytable.trigger('change'); + """) - # Layout the plot and the datatable bar - save(layout([[dt], [plot]])) - return plot, dt + #Layout the plot and the datatable bar + l = layout([[dt], [plot]]) + save(l) + return [plot, dt] def change_dtim(ad, gEnableModulatedDTIM, gMaxLIModulatedDTIM=10): @@ -300,12 +289,12 @@ def bokeh_plot(data_sets, Returns: plot: bokeh plot figure object """ - tools = 'box_zoom,box_select,pan,crosshair,redo,undo,reset,hover,save' + TOOLS = ('box_zoom,box_select,pan,crosshair,redo,undo,reset,hover,save') plot = figure( plot_width=1300, plot_height=700, title=fig_property['title'], - tools=tools, + tools=TOOLS, output_backend="webgl") plot.add_tools(bokeh_tools.WheelZoomTool(dimensions="width")) plot.add_tools(bokeh_tools.WheelZoomTool(dimensions="height")) @@ -337,7 +326,7 @@ def bokeh_plot(data_sets, legend=str(legend), fill_color=color) - # Plot properties + #Plot properties plot.xaxis.axis_label = fig_property['x_label'] plot.yaxis.axis_label = fig_property['y_label'] plot.legend.location = "top_right" @@ -447,66 +436,43 @@ def get_if_addr6(intf, address_type): return None -def wait_for_dhcp(interface_name): +@utils.timeout(60) +def wait_for_dhcp(intf): """Wait the DHCP address assigned to desired interface. Getting DHCP address takes time and the wait time isn't constant. Utilizing utils.timeout to keep trying until success Args: - interface_name: desired interface name + intf: desired interface name Returns: ip: ip address of the desired interface name Raise: TimeoutError: After timeout, if no DHCP assigned, raise """ log = logging.getLogger() - reset_host_interface(interface_name) - start_time = time.time() - time_limit_seconds = 60 + reset_host_interface(intf) ip = '0.0.0.0' - while start_time + time_limit_seconds > time.time(): - ip = scapy.get_if_addr(interface_name) - if ip == '0.0.0.0': - time.sleep(1) - else: - log.info( - 'DHCP address assigned to %s as %s' % (interface_name, ip)) - return ip - raise TimeoutError('Timed out while getting if_addr after %s seconds.' % - time_limit_seconds) - - -def reset_host_interface(intferface_name): - """Reset the host interface. - - Args: - intferface_name: the desired interface to reset - """ - log = logging.getLogger() - intf_down_cmd = 'ifconfig %s down' % intferface_name - intf_up_cmd = 'ifconfig %s up' % intferface_name - try: - job.run(intf_down_cmd) - time.sleep(10) - job.run(intf_up_cmd) - log.info('{} has been reset'.format(intferface_name)) - except job.Error: - raise Exception('No such interface') + while ip == '0.0.0.0': + ip = scapy.get_if_addr(intf) + log.info('DHCP address assigned to {} as {}'.format(intf, ip)) + return ip -def bringdown_host_interface(intferface_name): +def reset_host_interface(intf): """Reset the host interface. Args: - intferface_name: the desired interface to reset + intf: the desired interface to reset """ log = logging.getLogger() - intf_down_cmd = 'ifconfig %s down' % intferface_name + intf_down_cmd = 'ifconfig %s down' % intf + intf_up_cmd = 'ifconfig %s up' % intf try: job.run(intf_down_cmd) - time.sleep(2) - log.info('{} has been brought down'.format(intferface_name)) + time.sleep(10) + job.run(intf_up_cmd) + log.info('{} has been reset'.format(intf)) except job.Error: raise Exception('No such interface') diff --git a/acts/framework/acts/test_utils/wifi/wifi_retail_ap.py b/acts/framework/acts/test_utils/wifi/wifi_retail_ap.py index 64307e9e9a..607a884bc1 100644 --- a/acts/framework/acts/test_utils/wifi/wifi_retail_ap.py +++ b/acts/framework/acts/test_utils/wifi/wifi_retail_ap.py @@ -95,22 +95,11 @@ class BlockingBrowser(splinter.driver.webdriver.chrome.WebDriver): self.timeout = timeout def __enter__(self): - """Entry context manager for BlockingBrowser. - - The enter context manager for BlockingBrowser attempts to lock the - browser file. If successful, it launches and returns a chromedriver - session. If an exception occurs while starting the browser, the lock - file is released. - """ self.lock_file = open(self.lock_file_path, "r") start_time = time.time() while time.time() < start_time + self.timeout: try: fcntl.flock(self.lock_file, fcntl.LOCK_EX | fcntl.LOCK_NB) - except BlockingIOError: - time.sleep(BROWSER_WAIT_SHORT) - continue - try: self.driver = selenium.webdriver.Chrome( options=self.chrome_options, desired_capabilities=self.chrome_capabilities) @@ -120,19 +109,11 @@ class BlockingBrowser(splinter.driver.webdriver.chrome.WebDriver): super(splinter.driver.webdriver.chrome.WebDriver, self).__init__(2) return super(BlockingBrowser, self).__enter__() - except: - fcntl.flock(self.lock_file, fcntl.LOCK_UN) - self.lock_file.close() - raise RuntimeError("Error starting browser. " - "Releasing lock file.") + except BlockingIOError: + time.sleep(BROWSER_WAIT_SHORT) raise TimeoutError("Could not start chrome browser in time.") def __exit__(self, exc_type, exc_value, traceback): - """Exit context manager for BlockingBrowser. - - The exit context manager simply calls the parent class exit and - releases the lock file. - """ try: super(BlockingBrowser, self).__exit__(exc_type, exc_value, traceback) @@ -1314,10 +1295,8 @@ class GoogleWifiAP(WifiRetailAP): cmd_string = "iw dev {0} set bitrates legacy-{1} ht-mcs-{1} vht-mcs-{1} {2}:{3}".format( interface, interface_short, num_streams, rate) if short_gi: - cmd_string = cmd_string + " sgi-{}".format(interface_short) + cmd_string = cmd_string + " sgi-interface_short" elif "ht" in mode.lower(): cmd_string = "iw dev {0} set bitrates legacy-{1} ht-mcs-{1} {2} vht-mcs-{1}".format( interface, interface_short, rate) - if short_gi: - cmd_string = cmd_string + " sgi-{}".format(interface_short) self.access_point.ssh.run(cmd_string) diff --git a/acts/framework/acts/test_utils/wifi/wifi_test_utils.py b/acts/framework/acts/test_utils/wifi/wifi_test_utils.py index 37426c682b..6e29e61243 100755 --- a/acts/framework/acts/test_utils/wifi/wifi_test_utils.py +++ b/acts/framework/acts/test_utils/wifi/wifi_test_utils.py @@ -762,7 +762,6 @@ def wifi_test_device_init(ad): # TODO(angli): need to verify the country code was actually set. No generic # way to check right now. ad.adb.shell("halutil -country %s" % WifiEnums.CountryCode.US) - ad.droid.wifiSetCountryCode(WifiEnums.CountryCode.US) utils.set_ambient_display(ad, False) @@ -1221,7 +1220,7 @@ def ensure_no_disconnect(ad, duration=10): def connect_to_wifi_network(ad, network, assert_on_fail=True, - check_connectivity=True, hidden=False): + check_connectivity=True): """Connection logic for open and psk wifi networks. Args: @@ -1229,14 +1228,9 @@ def connect_to_wifi_network(ad, network, assert_on_fail=True, network: network info of the network to connect to assert_on_fail: If true, errors from wifi_connect will raise test failure signals. - hidden: Is the Wifi network hidden. """ - if hidden: - start_wifi_connection_scan_and_ensure_network_not_found( - ad, network[WifiEnums.SSID_KEY]) - else: - start_wifi_connection_scan_and_ensure_network_found( - ad, network[WifiEnums.SSID_KEY]) + start_wifi_connection_scan_and_ensure_network_found( + ad, network[WifiEnums.SSID_KEY]) wifi_connect(ad, network, num_of_tries=3, @@ -1776,8 +1770,6 @@ def validate_connection(ad, ping_addr=DEFAULT_PING_ADDR): Returns: ping output if successful, NULL otherwise. """ - # Adding 2 secs timeout before pinging to allow for DHCP to complete. - time.sleep(2) ping = ad.droid.httpPing(ping_addr) ad.log.info("Http ping result: %s.", ping) return ping @@ -1953,29 +1945,6 @@ def set_attns(attenuator, attn_val_name): attn_val_name) raise -def set_attns_steps(attenuators, atten_val_name, steps=10, wait_time=12): - """Set attenuation values on attenuators used in this test. It will change - the attenuation values linearly from current value to target value step by - step. - - Args: - attenuators: The list of attenuator objects that you want to change - their attenuation value. - atten_val_name: Name of the attenuation value pair to use. - steps: Number of attenuator changes to reach the target value. - wait_time: Sleep time for each change of attenuator. - """ - logging.info("Set attenuation values to %s in %d step(s)", - roaming_attn[atten_val_name], steps) - start_atten = [attenuator.get_atten() for attenuator in attenuators] - target_atten = roaming_attn[atten_val_name] - for current_step in range(steps): - progress = (current_step + 1) / steps - for i, attenuator in enumerate(attenuators): - amount_since_start = (target_atten[i] - start_atten[i]) * progress - attenuator.set_atten(round(start_atten[i] + amount_since_start)) - time.sleep(wait_time) - def trigger_roaming_and_validate(dut, attenuator, attn_val_name, expected_con): """Sets attenuators to trigger roaming and validate the DUT connected @@ -2012,6 +1981,7 @@ def create_softap_config(): } return config + def start_softap_and_verify(ad, band): """Bring-up softap and verify AP mode and in scan results. @@ -2031,68 +2001,6 @@ def start_softap_and_verify(ad, band): config[WifiEnums.SSID_KEY]) return config -def wait_for_expected_number_of_softap_clients(ad, callbackId, - expected_num_of_softap_clients): - """Wait for the number of softap clients to be updated as expected. - Args: - callbackId: Id of the callback associated with registering. - expected_num_of_softap_clients: expected number of softap clients. - """ - eventStr = wifi_constants.SOFTAP_CALLBACK_EVENT + str( - callbackId) + wifi_constants.SOFTAP_NUMBER_CLIENTS_CHANGED - asserts.assert_equal(ad.ed.pop_event(eventStr, - SHORT_TIMEOUT)['data'][wifi_constants. - SOFTAP_NUMBER_CLIENTS_CALLBACK_KEY], - expected_num_of_softap_clients, - "Number of softap clients doesn't match with expected number") - -def wait_for_expected_softap_state(ad, callbackId, expected_softap_state): - """Wait for the expected softap state change. - Args: - callbackId: Id of the callback associated with registering. - expected_softap_state: The expected softap state. - """ - eventStr = wifi_constants.SOFTAP_CALLBACK_EVENT + str( - callbackId) + wifi_constants.SOFTAP_STATE_CHANGED - asserts.assert_equal(ad.ed.pop_event(eventStr, - SHORT_TIMEOUT)['data'][wifi_constants. - SOFTAP_STATE_CHANGE_CALLBACK_KEY], - expected_softap_state, - "Softap state doesn't match with expected state") - -def get_current_number_of_softap_clients(ad, callbackId): - """pop up all of softap client updated event from queue. - Args: - callbackId: Id of the callback associated with registering. - - Returns: - If exist aleast callback, returns last updated number_of_softap_clients. - Returns None when no any match callback event in queue. - """ - eventStr = wifi_constants.SOFTAP_CALLBACK_EVENT + str( - callbackId) + wifi_constants.SOFTAP_NUMBER_CLIENTS_CHANGED - events = ad.ed.pop_all(eventStr) - for event in events: - num_of_clients = event['data'][wifi_constants. - SOFTAP_NUMBER_CLIENTS_CALLBACK_KEY] - if len(events) == 0: - return None - return num_of_clients - -def get_ssrdumps(ad, test_name=""): - """Pulls dumps in the ssrdump dir - Args: - ad: android device object. - test_name: test case name - """ - logs = ad.get_file_names("/data/vendor/ssrdump/") - if logs: - ad.log.info("Pulling ssrdumps %s", logs) - log_path = os.path.join(ad.log_path, test_name, - "SSRDUMP_%s" % ad.serial) - utils.create_dir(log_path) - ad.pull_files(logs, log_path) - ad.adb.shell("find /data/vendor/ssrdump/ -type f -delete") def start_pcap(pcap, wifi_band, test_name): """Start packet capture in monitor mode. @@ -2343,11 +2251,3 @@ def turn_ap_on(test, AP): if not hostapd_5g.is_alive(): hostapd_5g.start(hostapd_5g.config) logging.debug('Turned WLAN1 AP%d on' % AP) - - -def turn_location_off_and_scan_toggle_off(ad): - """Turns off wifi location scans.""" - utils.set_location_service(ad, False) - ad.droid.wifiScannerToggleAlwaysAvailable(False) - msg = "Failed to turn off location service's scan." - asserts.assert_true(not ad.droid.wifiScannerIsAlwaysAvailable(), msg) diff --git a/acts/framework/acts/tracelogger.py b/acts/framework/acts/tracelogger.py index 9652fd007e..afdcb3f333 100644 --- a/acts/framework/acts/tracelogger.py +++ b/acts/framework/acts/tracelogger.py @@ -14,6 +14,7 @@ # See the License for the specific language governing permissions and # limitations under the License. +from colorama import Fore, Back, Style, init import datetime import inspect import logging @@ -21,9 +22,31 @@ import os import xml.etree.cElementTree as et +TYPE = { + 'INFO': {'level': 10, 'enabled': True, 'style': None}, + 'DEBUG': {'level': 20, 'enabled': True, 'style': Fore.GREEN + Style.BRIGHT}, + 'WARNING': {'level': 30, 'enabled': True, 'style': Fore.YELLOW + Style.BRIGHT}, + 'ERROR': {'level': 40, 'enabled': True, 'style': Fore.RED + Style.BRIGHT}, + 'EXCEPTION': {'level': 0, 'enabled': True, 'style': Back.RED + Fore.WHITE + Style.BRIGHT}, + 'CASE': {'level': 0, 'enabled': True, 'style': Back.BLUE + Fore.WHITE + Style.BRIGHT}, + 'SUITE': {'level': 0, 'enabled': True, 'style': Back.MAGENTA + Fore.WHITE + Style.BRIGHT}, + 'DEVICE': {'level': 50, 'enabled': True, 'style': Fore.CYAN + Style.BRIGHT}, + 'STEP': {'level': 15, 'enabled': True, 'style': Fore.WHITE + Style.BRIGHT}} + + class TraceLogger(object): def __init__(self, logger): self._logger = logger + self.root = et.Element('logger') + self.cat = None + self.max_level = 100 + self.type = TYPE + self.d = self.debug + self.e = self.error + self.i = self.info + self.t = self.step + self.w = self.warning + @staticmethod def _get_trace_info(level=1, offset=2): @@ -45,6 +68,33 @@ class TraceLogger(object): trace_info = TraceLogger._get_trace_info(level=trace_level, offset=3) logging_lambda('%s %s' % (msg, trace_info), *args, **kwargs) + def _check_verbosity(self, message_type): + if self.level: + return self.max_level >= self.type[message_type]['level'] + else: + return self.type[message_type]['enabled'] + + + def _xml(self, message_date, message_type, message_text): + if self.cat is None: + self.cat = et.SubElement(self.root, 'category', name='general', id='gen') + message = et.SubElement(self.cat, 'message', name=message_type, date=str(message_date)) + message.text = str(message_text) + + + def _print_message(self, message_type, message): + if self._check_verbosity(message_type): + now = datetime.datetime.now() + self._xml(now, message_type, message) + style = self.type[message_type]['style'] + default_format = '{} [{}] '.format(now, message_type) + if style: + for line in str(message).split('\n'): + print('{}{} {}'.format(style, default_format, line)) + else: + for line in str(message).split('\n'): + print('{} {}'.format(default_format, line)) + def exception(self, msg, *args, **kwargs): self._log_with(self._logger.exception, 5, msg, *args, **kwargs) @@ -63,6 +113,9 @@ class TraceLogger(object): def info(self, msg, *args, **kwargs): self._log_with(self._logger.info, 1, msg, *args, **kwargs) + def step(self, message): + self._print_message(message_type='STEP', message=message) + def __getattr__(self, name): return getattr(self._logger, name) diff --git a/acts/framework/acts/utils.py b/acts/framework/acts/utils.py index adce2a3160..acde51e2f5 100755 --- a/acts/framework/acts/utils.py +++ b/acts/framework/acts/utils.py @@ -16,7 +16,6 @@ import base64 import concurrent.futures -import copy import datetime import functools import json @@ -26,10 +25,8 @@ import random import re import signal import string -import socket import subprocess import time -import threading import traceback import zipfile from concurrent.futures import ThreadPoolExecutor @@ -183,31 +180,6 @@ def get_timezone_olson_id(): return GMT_to_olson[gmt] -def get_next_device(test_bed_controllers, used_devices): - """Gets the next device in a list of testbed controllers - - Args: - test_bed_controllers: A list of testbed controllers of a particular - type, for example a list ACTS Android devices. - used_devices: A list of devices that have been used. This can be a - mix of devices, for example a fuchsia device and an Android device. - Returns: - The next device in the test_bed_controllers list or None if there are - no items that are not in the used devices list. - """ - if test_bed_controllers: - device_list = test_bed_controllers - else: - raise ValueError('test_bed_controllers is empty.') - for used_device in used_devices: - if used_device in device_list: - device_list.remove(used_device) - if device_list: - return device_list[0] - else: - return None - - def find_files(paths, file_predicate): """Locate files whose names and extensions match the given predicate in the specified directories. @@ -526,8 +498,8 @@ def sync_device_time(ad): Args: ad: The android device to sync time on. """ - ad.adb.shell("settings put global auto_time 0", ignore_status=True) - ad.adb.shell("settings put global auto_time_zone 0", ignore_status=True) + ad.adb.shell("settings global put auto_time 0", ignore_status=True) + ad.adb.shell("settings global put auto_time_zone 0", ignore_status=True) droid = ad.droid droid.setTimeZone(get_timezone_olson_id()) droid.setTime(get_current_epoch_time()) @@ -641,16 +613,6 @@ def force_airplane_mode(ad, new_state, timeout_value=60): return False return True -def get_battery_level(ad): - """Gets battery level from device - - Returns: - battery_level: int indicating battery level - """ - output = ad.adb.shell("dumpsys battery") - match = re.search(r"level: (?P<battery_level>\S+)", output) - battery_level = int(match.group("battery_level")) - return battery_level def get_device_usb_charging_status(ad): """ Returns the usb charging status of the device. @@ -1269,81 +1231,3 @@ def test_concurrent_actions(*calls, failure_exceptions=(Exception,)): raise except failure_exceptions as e: raise signals.TestFailure(e) - - -class SuppressLogOutput(object): - """Context manager used to suppress all logging output for the specified - logger and level(s). - """ - - def __init__(self, logger=logging.getLogger(), log_levels=None): - """Create a SuppressLogOutput context manager - - Args: - logger: The logger object to suppress - log_levels: Levels of log handlers to disable. - """ - - self._logger = logger - self._log_levels = log_levels or [logging.DEBUG, logging.INFO, - logging.WARNING, logging.ERROR, - logging.CRITICAL] - if isinstance(self._log_levels, int): - self._log_levels = [self._log_levels] - self._handlers = copy.copy(self._logger.handlers) - - def __enter__(self): - for handler in self._handlers: - if handler.level in self._log_levels: - self._logger.removeHandler(handler) - return self - - def __exit__(self, *_): - for handler in self._handlers: - self._logger.addHandler(handler) - - -class BlockingTimer(object): - """Context manager used to block until a specified amount of time has - elapsed. - """ - - def __init__(self, secs): - """Initializes a BlockingTimer - - Args: - secs: Number of seconds to wait before exiting - """ - self._thread = threading.Timer(secs, lambda: None) - - def __enter__(self): - self._thread.start() - return self - - def __exit__(self, *_): - self._thread.join() - - -def is_valid_ipv4_address(address): - try: - socket.inet_pton(socket.AF_INET, address) - except AttributeError: # no inet_pton here, sorry - try: - socket.inet_aton(address) - except socket.error: - return False - return address.count('.') == 3 - except socket.error: # not a valid address - return False - - return True - - -def is_valid_ipv6_address(address): - if '%' in address: - address = address.split('%')[0] - try: - socket.inet_pton(socket.AF_INET6, address) - except socket.error: # not a valid address - return False - return True diff --git a/acts/framework/setup.py b/acts/framework/setup.py index 32b8a93cad..23f51f3522 100755 --- a/acts/framework/setup.py +++ b/acts/framework/setup.py @@ -25,7 +25,9 @@ import sys install_requires = [ # Future needs to have a newer version that contains urllib. 'future>=0.16.0', - 'mock', + # mock-1.0.1 is the last version compatible with setuptools <17.1, + # which is what comes with Ubuntu 14.04 LTS. + 'mock<=1.0.1', 'numpy', 'pyserial', 'pyyaml>=5.1', @@ -37,15 +39,12 @@ install_requires = [ 'scapy', 'pylibftdi', 'xlsxwriter', - 'mobly', - 'grpcio', - 'Monsoon', - # paramiko-ng is needed vs paramiko as currently paramiko does not support - # ed25519 ssh keys, which is what Fuchsia uses. - 'paramiko-ng', + # TODO(markdr): b/113719194: Remove this module + 'colorama', + 'mobly' ] -if sys.version_info < (3, ): +if sys.version_info < (3,): install_requires.append('enum34') install_requires.append('statistics') # "futures" is needed for py2 compatibility and it only works in 2.7 @@ -94,8 +93,8 @@ class ActsInstallDependencies(cmd.Command): for package in required_packages: self.announce('Installing %s...' % package, log.INFO) - subprocess.check_call(install_args + - ['-v', '--no-cache-dir', package]) + subprocess.check_call( + install_args + ['-v', '--no-cache-dir', package]) self.announce('Dependencies installed.') @@ -161,10 +160,8 @@ class ActsUninstall(cmd.Command): def main(): framework_dir = os.path.dirname(os.path.realpath(__file__)) - scripts = [ - os.path.join(framework_dir, 'acts', 'bin', 'act.py'), - os.path.join(framework_dir, 'acts', 'bin', 'monsoon.py') - ] + scripts = [os.path.join(framework_dir, 'acts', 'bin', 'act.py'), + os.path.join(framework_dir, 'acts', 'bin', 'monsoon.py')] setuptools.setup( name='acts', @@ -184,14 +181,11 @@ def main(): url="http://www.android.com/") if {'-u', '--uninstall', 'uninstall'}.intersection(sys.argv): - installed_scripts = [ - '/usr/local/bin/act.py', '/usr/local/bin/monsoon.py' - ] - for act_file in installed_scripts: - if os.path.islink(act_file): - os.unlink(act_file) - elif os.path.exists(act_file): - os.remove(act_file) + act_path = '/usr/local/bin/act.py' + if os.path.islink(act_path): + os.unlink(act_path) + elif os.path.exists(act_path): + os.remove(act_path) if __name__ == '__main__': diff --git a/acts/framework/tests/acts_android_device_test.py b/acts/framework/tests/acts_android_device_test.py index 3a9fb17116..87436b8eb5 100755 --- a/acts/framework/tests/acts_android_device_test.py +++ b/acts/framework/tests/acts_android_device_test.py @@ -317,9 +317,8 @@ class ActsAndroidDeviceTest(unittest.TestCase): return_value=MockFastbootProxy(MOCK_SERIAL)) @mock.patch('acts.utils.create_dir') @mock.patch('acts.utils.exe_cmd') - @mock.patch( - 'acts.controllers.android_device.AndroidDevice.device_log_path', - new_callable=mock.PropertyMock) + @mock.patch('acts.controllers.android_device.AndroidDevice.device_log_path', + new_callable=mock.PropertyMock) def test_AndroidDevice_take_bug_report(self, mock_log_path, exe_mock, create_dir_mock, FastbootProxy, MockAdbProxy): @@ -340,12 +339,11 @@ class ActsAndroidDeviceTest(unittest.TestCase): return_value=MockFastbootProxy(MOCK_SERIAL)) @mock.patch('acts.utils.create_dir') @mock.patch('acts.utils.exe_cmd') - @mock.patch( - 'acts.controllers.android_device.AndroidDevice.device_log_path', - new_callable=mock.PropertyMock) - def test_AndroidDevice_take_bug_report_fail(self, mock_log_path, exe_mock, - create_dir_mock, FastbootProxy, - MockAdbProxy): + @mock.patch('acts.controllers.android_device.AndroidDevice.device_log_path', + new_callable=mock.PropertyMock) + def test_AndroidDevice_take_bug_report_fail( + self, mock_log_path, exe_mock, create_dir_mock, FastbootProxy, + MockAdbProxy): """Verifies AndroidDevice.take_bug_report writes out the correct message when taking bugreport fails. """ @@ -353,7 +351,8 @@ class ActsAndroidDeviceTest(unittest.TestCase): mock_log_path.return_value = os.path.join( logging.log_path, "AndroidDevice%s" % ad.serial) expected_msg = "Failed to take bugreport on 1: OMG I died!" - with self.assertRaisesRegex(errors.AndroidDeviceError, expected_msg): + with self.assertRaisesRegex(errors.AndroidDeviceError, + expected_msg): ad.take_bug_report("test_something", 4346343.23) @mock.patch( @@ -364,9 +363,8 @@ class ActsAndroidDeviceTest(unittest.TestCase): return_value=MockFastbootProxy(MOCK_SERIAL)) @mock.patch('acts.utils.create_dir') @mock.patch('acts.utils.exe_cmd') - @mock.patch( - 'acts.controllers.android_device.AndroidDevice.device_log_path', - new_callable=mock.PropertyMock) + @mock.patch('acts.controllers.android_device.AndroidDevice.device_log_path', + new_callable=mock.PropertyMock) def test_AndroidDevice_take_bug_report_fallback( self, mock_log_path, exe_mock, create_dir_mock, FastbootProxy, MockAdbProxy): @@ -392,15 +390,17 @@ class ActsAndroidDeviceTest(unittest.TestCase): underlying logcat process is started properly and correct warning msgs are generated. """ - with mock.patch(('acts.controllers.android_lib.logcat.' - 'create_logcat_keepalive_process'), - return_value=proc_mock) as create_proc_mock: + with mock.patch( + ('acts.controllers.android_lib.logcat.' + 'create_logcat_keepalive_process'), + return_value=proc_mock) as create_proc_mock: ad = android_device.AndroidDevice(serial=MOCK_SERIAL) ad.start_adb_logcat() # Verify start did the correct operations. self.assertTrue(ad.adb_logcat_process) log_dir = "AndroidDevice%s" % ad.serial - create_proc_mock.assert_called_with(ad.serial, log_dir, '-b all') + create_proc_mock.assert_called_with( + ad.serial, log_dir, '-b all') proc_mock.start.assert_called_with() # Expect warning msg if start is called back to back. expected_msg = "Android device .* already has a running adb logcat" @@ -428,7 +428,8 @@ class ActsAndroidDeviceTest(unittest.TestCase): # Verify that create_logcat_keepalive_process is called with the # correct command. log_dir = "AndroidDevice%s" % ad.serial - create_proc_mock.assert_called_with(ad.serial, log_dir, '-b radio') + create_proc_mock.assert_called_with( + ad.serial, log_dir, '-b radio') @mock.patch( 'acts.controllers.adb.AdbProxy', @@ -438,7 +439,7 @@ class ActsAndroidDeviceTest(unittest.TestCase): return_value=MockFastbootProxy(MOCK_SERIAL)) @mock.patch('acts.libs.proc.process.Process') def test_AndroidDevice_stop_adb_logcat(self, proc_mock, FastbootProxy, - MockAdbProxy): + MockAdbProxy): """Verifies the AndroidDevice method stop_adb_logcat. Checks that the underlying logcat process is stopped properly and correct warning msgs are generated. @@ -491,156 +492,6 @@ class ActsAndroidDeviceTest(unittest.TestCase): ad.adb.return_value = "bad return value error" self.assertEqual(None, ad.get_package_pid("some_package")) - @mock.patch( - 'acts.controllers.adb.AdbProxy', - return_value=MockAdbProxy(MOCK_SERIAL)) - def test_ensure_verity_enabled_only_system_enabled(self, adb_proxy): - ad = android_device.AndroidDevice(serial=MOCK_SERIAL) - root_user_id = '0' - - ad.adb.get_user_id = mock.MagicMock() - ad.adb.get_user_id.return_value = root_user_id - - ad.adb.getprop = mock.MagicMock(side_effect=[ - '', # system.verified - '2' - ]) # vendor.verified - ad.adb.ensure_user = mock.MagicMock() - ad.reboot = mock.MagicMock() - ad.ensure_verity_enabled() - ad.reboot.assert_called_once() - - ad.adb.ensure_user.assert_called_with(root_user_id) - - @mock.patch( - 'acts.controllers.adb.AdbProxy', - return_value=MockAdbProxy(MOCK_SERIAL)) - def test_ensure_verity_enabled_only_vendor_enabled(self, adb_proxy): - ad = android_device.AndroidDevice(serial=MOCK_SERIAL) - root_user_id = '0' - - ad.adb.get_user_id = mock.MagicMock() - ad.adb.get_user_id.return_value = root_user_id - - ad.adb.getprop = mock.MagicMock(side_effect=[ - '2', # system.verified - '' - ]) # vendor.verified - ad.adb.ensure_user = mock.MagicMock() - ad.reboot = mock.MagicMock() - - ad.ensure_verity_enabled() - - ad.reboot.assert_called_once() - ad.adb.ensure_user.assert_called_with(root_user_id) - - @mock.patch( - 'acts.controllers.adb.AdbProxy', - return_value=MockAdbProxy(MOCK_SERIAL)) - def test_ensure_verity_enabled_both_enabled_at_start(self, adb_proxy): - ad = android_device.AndroidDevice(serial=MOCK_SERIAL) - root_user_id = '0' - - ad.adb.get_user_id = mock.MagicMock() - ad.adb.get_user_id.return_value = root_user_id - - ad.adb.getprop = mock.MagicMock(side_effect=[ - '2', # system.verified - '2' - ]) # vendor.verified - ad.adb.ensure_user = mock.MagicMock() - ad.reboot = mock.MagicMock() - ad.ensure_verity_enabled() - - assert not ad.reboot.called - - @mock.patch( - 'acts.controllers.adb.AdbProxy', - return_value=MockAdbProxy(MOCK_SERIAL)) - def test_ensure_verity_disabled_system_already_disabled(self, adb_proxy): - ad = android_device.AndroidDevice(serial=MOCK_SERIAL) - root_user_id = '0' - - ad.adb.get_user_id = mock.MagicMock() - ad.adb.get_user_id.return_value = root_user_id - - ad.adb.getprop = mock.MagicMock(side_effect=[ - '2', # system.verified - '' - ]) # vendor.verified - ad.adb.ensure_user = mock.MagicMock() - ad.reboot = mock.MagicMock() - ad.ensure_verity_disabled() - - ad.reboot.assert_called_once() - - @mock.patch( - 'acts.controllers.adb.AdbProxy', - return_value=MockAdbProxy(MOCK_SERIAL)) - def test_ensure_verity_disabled_vendor_already_disabled(self, adb_proxy): - ad = android_device.AndroidDevice(serial=MOCK_SERIAL) - root_user_id = '0' - - ad.adb.get_user_id = mock.MagicMock() - ad.adb.get_user_id.return_value = root_user_id - - ad.adb.getprop = mock.MagicMock(side_effect=[ - '', # system.verified - '2' - ]) # vendor.verified - ad.adb.ensure_user = mock.MagicMock() - ad.reboot = mock.MagicMock() - - ad.ensure_verity_disabled() - - ad.reboot.assert_called_once() - ad.adb.ensure_user.assert_called_with(root_user_id) - - @mock.patch( - 'acts.controllers.adb.AdbProxy', - return_value=MockAdbProxy(MOCK_SERIAL)) - def test_ensure_verity_disabled_disabled_at_start(self, adb_proxy): - ad = android_device.AndroidDevice(serial=MOCK_SERIAL) - root_user_id = '0' - - ad.adb.get_user_id = mock.MagicMock() - ad.adb.get_user_id.return_value = root_user_id - - ad.adb.getprop = mock.MagicMock(side_effect=[ - '', # system.verified - '' - ]) # vendor.verified - ad.adb.ensure_user = mock.MagicMock() - ad.reboot = mock.MagicMock() - - ad.ensure_verity_disabled() - - assert not ad.reboot.called - - @mock.patch( - 'acts.controllers.adb.AdbProxy', - return_value=MockAdbProxy(MOCK_SERIAL)) - def test_push_system_file(self, adb_proxy): - ad = android_device.AndroidDevice(serial=MOCK_SERIAL) - ad.ensure_verity_disabled = mock.MagicMock() - ad.adb.remount = mock.MagicMock() - ad.adb.push = mock.MagicMock() - - ret = ad.push_system_file('asdf', 'jkl') - self.assertTrue(ret) - - @mock.patch( - 'acts.controllers.adb.AdbProxy', - return_value=MockAdbProxy(MOCK_SERIAL)) - def test_push_system_file_returns_false_on_error(self, adb_proxy): - ad = android_device.AndroidDevice(serial=MOCK_SERIAL) - ad.ensure_verity_disabled = mock.MagicMock() - ad.adb.remount = mock.MagicMock() - ad.adb.push = mock.MagicMock(return_value='error') - - ret = ad.push_system_file('asdf', 'jkl') - self.assertFalse(ret) - if __name__ == "__main__": unittest.main() diff --git a/acts/framework/tests/acts_base_class_test.py b/acts/framework/tests/acts_base_class_test.py index 9180fb874f..b402a4752c 100755 --- a/acts/framework/tests/acts_base_class_test.py +++ b/acts/framework/tests/acts_base_class_test.py @@ -26,8 +26,6 @@ from acts import base_test from acts import error from acts import signals -from mobly import base_test as mobly_base_test - MSG_EXPECTED_EXCEPTION = 'This is an expected exception.' MSG_EXPECTED_TEST_FAILURE = 'This is an expected test failure.' MSG_UNEXPECTED_EXCEPTION = 'Unexpected exception!' @@ -879,7 +877,7 @@ class ActsBaseClassTest(unittest.TestCase): bc = base_test.BaseTestClass(self.mock_test_cls_configs) expected_msg = ('Missing required user param "%s" in test ' 'configuration.') % required[0] - with self.assertRaises(mobly_base_test.Error, msg=expected_msg): + with self.assertRaises(base_test.Error, msg=expected_msg): bc.unpack_userparams(required) def test_unpack_userparams_optional(self): diff --git a/acts/framework/tests/acts_import_unit_test.py b/acts/framework/tests/acts_import_unit_test.py index 38dc3bf103..9d264d4b14 100755 --- a/acts/framework/tests/acts_import_unit_test.py +++ b/acts/framework/tests/acts_import_unit_test.py @@ -48,18 +48,17 @@ else: PY_FILE_REGEX = re.compile('.+\.py$') BLACKLIST = [ - # TODO(markdr): Remove these after BT team evaluates these tests. - 'acts/test_utils/bt/PowerBaseTest.py', - 'tests/google/ble/power/GattPowerTest.py', - 'tests/google/bt/power/A2dpPowerTest.py', - 'tests/google/ble/power/BleScanPowerTest.py', - - 'acts/controllers/rohdeschwarz_lib/contest.py', 'acts/controllers/native.py', 'acts/controllers/native_android_device.py', 'acts/controllers/packet_sender.py', - 'acts/test_utils/wifi/ota_chamber.py', 'acts/controllers/buds_lib/dev_utils/proto/gen/nanopb_pb2.py', + 'acts/controllers/buds_lib/data_storage/bigquery/bigquery_logger_utils.py', + 'acts/controllers/buds_lib/data_storage/bigquery/test_bigquery_utils.py', + 'acts/controllers/buds_lib/data_storage/bigquery/test_bigquery_logger.py', + 'acts/controllers/buds_lib/data_storage/bigquery/bigquery_buffer.py', + 'acts/controllers/buds_lib/data_storage/bigquery/bigquery_logger.py', + 'acts/controllers/buds_lib/data_storage/bigquery/bigquery_scheduled_automatic_client.py', + 'acts/controllers/buds_lib/data_storage/_sponge/sponge_client_lite.py', 'acts/test_utils/wifi/wifi_performance_test_utils.py', 'acts/test_utils/wifi/wifi_power_test_utils.py', 'acts/test_utils/wifi/wifi_retail_ap.py', @@ -90,20 +89,14 @@ BLACKLIST = [ 'tests/google/tel/live/TelLiveConnectivityMonitorTest.py', 'tests/google/tel/live/TelLiveConnectivityMonitorMobilityTest.py', 'tests/google/fuchsia/bt/FuchsiaCmdLineTest.py', - 'tests/google/fuchsia/bt/gatt/GattServerSetupTest.py', - 'tests/google/fuchsia/wlan/RebootStressTest.py', - 'acts/test_utils/gnss/gnss_testlog_utils.py', + 'tests/google/fuchsia/bt/gatt/GattServerSetupTest.py' ] BLACKLIST_DIRECTORIES = [ - 'acts/controllers/buds_lib', - # TODO: remove monsoon_lib after HVPM and LVPM sampling libraries are merged - 'acts/controllers/monsoon_lib', 'acts/test_utils/audio_analysis_lib/', 'acts/test_utils/coex/', 'acts/test_utils/power/', 'tests/google/coex/', - 'tests/google/gnss/', 'tests/google/power/', 'tests/google/bt/performance/' ] @@ -150,10 +143,9 @@ class ActsImportUnitTest(unittest.TestCase): self.longMessage = False for banned_import in BANNED_IMPORTS: - self.assertNotIn( - banned_import, sys.modules, - 'Attempted to import the banned package/module ' - '%s.' % banned_import) + self.assertNotIn(banned_import, sys.modules, + 'Attempted to import the banned package/module ' + '%s.' % banned_import) if __name__ == '__main__': diff --git a/acts/framework/tests/acts_test_decorators_test.py b/acts/framework/tests/acts_test_decorators_test.py index f491302b2a..7d98d49628 100644 --- a/acts/framework/tests/acts_test_decorators_test.py +++ b/acts/framework/tests/acts_test_decorators_test.py @@ -11,7 +11,6 @@ # See the License for the specific language governing permissions and # limitations under the License. -import shutil import tempfile import unittest @@ -91,26 +90,26 @@ class MockTest(base_test.BaseTestClass): class TestDecoratorIntegrationTests(unittest.TestCase): - @classmethod - def setUpClass(cls): - cls.MOCK_CONFIG = { - "testbed": { - "name": "SampleTestBed", - }, - "logpath": tempfile.mkdtemp(), - "cli_args": None, - "testpaths": ["./"], - } + MOCK_CONFIG = { + "testbed": { + "name": "SampleTestBed", + }, + "logpath": tempfile.mkdtemp(), + "cli_args": None, + "testpaths": ["./"], + } - cls.MOCK_TEST_RUN_LIST = [(MockTest.__name__, - [MockTest.TEST_CASE_LIST])] + MOCK_TEST_RUN_LIST = [(MockTest.__name__, [MockTest.TEST_CASE_LIST])] + + def setUp(self): + pass def _run_with_test_logic(self, func): if hasattr(MockTest, MockTest.TEST_LOGIC_ATTR): delattr(MockTest, MockTest.TEST_LOGIC_ATTR) setattr(MockTest, MockTest.TEST_LOGIC_ATTR, func) - self.test_runner = test_runner.TestRunner(self.MOCK_CONFIG, - self.MOCK_TEST_RUN_LIST) + self.test_runner = test_runner.TestRunner(TestDecoratorIntegrationTests.MOCK_CONFIG, + TestDecoratorIntegrationTests.MOCK_TEST_RUN_LIST) self.test_runner.run(MockTest) def _validate_results_has_extra(self, result, extra_key, extra_value): @@ -128,10 +127,6 @@ class TestDecoratorIntegrationTests(unittest.TestCase): self._run_with_test_logic(raise_generic) self._validate_results_has_extra(self.test_runner.results, UUID_KEY, TEST_TRACKER_UUID) - @classmethod - def tearDownClass(cls): - shutil.rmtree(cls.MOCK_CONFIG['logpath']) - if __name__ == "__main__": - unittest.main() + unittest.main()
\ No newline at end of file diff --git a/acts/framework/tests/acts_test_runner_test.py b/acts/framework/tests/acts_test_runner_test.py index 4769fd77a5..e8599a778f 100755 --- a/acts/framework/tests/acts_test_runner_test.py +++ b/acts/framework/tests/acts_test_runner_test.py @@ -15,17 +15,16 @@ # limitations under the License. import mock -import os import shutil import tempfile import unittest from acts import keys +from acts import signals from acts import test_runner import acts_android_device_test import mock_controller -import IntegrationTest class ActsTestRunnerTest(unittest.TestCase): @@ -36,14 +35,14 @@ class ActsTestRunnerTest(unittest.TestCase): def setUp(self): self.tmp_dir = tempfile.mkdtemp() self.base_mock_test_config = { - 'testbed': { - 'name': 'SampleTestBed', + "testbed": { + "name": "SampleTestBed", }, - 'logpath': self.tmp_dir, - 'cli_args': None, - 'testpaths': [os.path.dirname(IntegrationTest.__file__)], - 'icecream': 42, - 'extra_param': 'haha' + "logpath": self.tmp_dir, + "cli_args": None, + "testpaths": ["./"], + "icecream": 42, + "extra_param": "haha" } self.mock_run_list = [('SampleTest', None)] @@ -60,11 +59,11 @@ class ActsTestRunnerTest(unittest.TestCase): tb_key = keys.Config.key_testbed.value mock_ctrlr_config_name = mock_controller.ACTS_CONTROLLER_CONFIG_NAME my_config = [{ - 'serial': 'xxxx', - 'magic': 'Magic1' + "serial": "xxxx", + "magic": "Magic1" }, { - 'serial': 'xxxx', - 'magic': 'Magic2' + "serial": "xxxx", + "magic": "Magic2" }] mock_test_config[tb_key][mock_ctrlr_config_name] = my_config tr = test_runner.TestRunner(mock_test_config, @@ -74,9 +73,9 @@ class ActsTestRunnerTest(unittest.TestCase): tr.run() tr.stop() results = tr.results.summary_dict() - self.assertEqual(results['Requested'], 2) - self.assertEqual(results['Executed'], 2) - self.assertEqual(results['Passed'], 2) + self.assertEqual(results["Requested"], 2) + self.assertEqual(results["Executed"], 2) + self.assertEqual(results["Passed"], 2) @mock.patch( 'acts.controllers.adb.AdbProxy', @@ -85,7 +84,7 @@ class ActsTestRunnerTest(unittest.TestCase): 'acts.controllers.fastboot.FastbootProxy', return_value=acts_android_device_test.MockFastbootProxy(1)) @mock.patch( - 'acts.controllers.android_device.list_adb_devices', return_value=['1']) + 'acts.controllers.android_device.list_adb_devices', return_value=["1"]) @mock.patch( 'acts.controllers.android_device.get_all_instances', return_value=acts_android_device_test.get_mock_ads(1)) @@ -108,16 +107,16 @@ class ActsTestRunnerTest(unittest.TestCase): tb_key = keys.Config.key_testbed.value mock_ctrlr_config_name = mock_controller.ACTS_CONTROLLER_CONFIG_NAME my_config = [{ - 'serial': 'xxxx', - 'magic': 'Magic1' + "serial": "xxxx", + "magic": "Magic1" }, { - 'serial': 'xxxx', - 'magic': 'Magic2' + "serial": "xxxx", + "magic": "Magic2" }] mock_test_config[tb_key][mock_ctrlr_config_name] = my_config - mock_test_config[tb_key]['AndroidDevice'] = [{ - 'serial': '1', - 'skip_sl4a': True + mock_test_config[tb_key]["AndroidDevice"] = [{ + "serial": "1", + "skip_sl4a": True }] tr = test_runner.TestRunner(mock_test_config, [('IntegrationTest', None), @@ -125,10 +124,10 @@ class ActsTestRunnerTest(unittest.TestCase): tr.run() tr.stop() results = tr.results.summary_dict() - self.assertEqual(results['Requested'], 2) - self.assertEqual(results['Executed'], 2) - self.assertEqual(results['Passed'], 2) + self.assertEqual(results["Requested"], 2) + self.assertEqual(results["Executed"], 2) + self.assertEqual(results["Passed"], 2) -if __name__ == '__main__': +if __name__ == "__main__": unittest.main() diff --git a/acts/framework/tests/acts_utils_test.py b/acts/framework/tests/acts_utils_test.py index 2ede709189..0e0cac7265 100755 --- a/acts/framework/tests/acts_utils_test.py +++ b/acts/framework/tests/acts_utils_test.py @@ -14,7 +14,6 @@ # See the License for the specific language governing permissions and # limitations under the License. -import logging import time import unittest @@ -249,73 +248,5 @@ class ConcurrentActionsTest(unittest.TestCase): ) -class SuppressLogOutputTest(unittest.TestCase): - """Tests SuppressLogOutput""" - - def test_suppress_log_output(self): - """Tests that the SuppressLogOutput context manager removes handlers - of the specified levels upon entry and re-adds handlers upon exit. - """ - handlers = [logging.NullHandler(level=lvl) for lvl in - (logging.DEBUG, logging.INFO, logging.ERROR)] - log = logging.getLogger('test_log') - for handler in handlers: - log.addHandler(handler) - with utils.SuppressLogOutput(log, [logging.INFO, logging.ERROR]): - self.assertTrue( - any(handler.level == logging.DEBUG for handler in log.handlers)) - self.assertFalse( - any(handler.level in (logging.INFO, logging.ERROR) - for handler in log.handlers)) - self.assertCountEqual(handlers, log.handlers) - - -class IpAddressUtilTest(unittest.TestCase): - - def test_positive_ipv4_normal_address(self): - ip_address = "192.168.1.123" - self.assertTrue(utils.is_valid_ipv4_address(ip_address)) - - def test_positive_ipv4_any_address(self): - ip_address = "0.0.0.0" - self.assertTrue(utils.is_valid_ipv4_address(ip_address)) - - def test_positive_ipv4_broadcast(self): - ip_address = "255.255.255.0" - self.assertTrue(utils.is_valid_ipv4_address(ip_address)) - - def test_negative_ipv4_with_ipv6_address(self): - ip_address = "fe80::f693:9fff:fef4:1ac" - self.assertFalse(utils.is_valid_ipv4_address(ip_address)) - - def test_negative_ipv4_with_invalid_string(self): - ip_address = "fdsafdsafdsafdsf" - self.assertFalse(utils.is_valid_ipv4_address(ip_address)) - - def test_negative_ipv4_with_invalid_number(self): - ip_address = "192.168.500.123" - self.assertFalse(utils.is_valid_ipv4_address(ip_address)) - - def test_positive_ipv6(self): - ip_address = 'fe80::f693:9fff:fef4:1ac' - self.assertTrue(utils.is_valid_ipv6_address(ip_address)) - - def test_positive_ipv6_link_local(self): - ip_address = 'fe80::' - self.assertTrue(utils.is_valid_ipv6_address(ip_address)) - - def test_negative_ipv6_with_ipv4_address(self): - ip_address = '192.168.1.123' - self.assertFalse(utils.is_valid_ipv6_address(ip_address)) - - def test_negative_ipv6_invalid_characters(self): - ip_address = 'fe80:jkyr:f693:9fff:fef4:1ac' - self.assertFalse(utils.is_valid_ipv6_address(ip_address)) - - def test_negative_ipv6_invalid_string(self): - ip_address = 'fdsafdsafdsafdsf' - self.assertFalse(utils.is_valid_ipv6_address(ip_address)) - - if __name__ == '__main__': unittest.main() diff --git a/acts/framework/tests/config/config_generator_test.py b/acts/framework/tests/config/config_generator_test.py index ec9d55df96..f2a9f711ab 100755 --- a/acts/framework/tests/config/config_generator_test.py +++ b/acts/framework/tests/config/config_generator_test.py @@ -78,7 +78,9 @@ class ConfigGeneratorTest(TestCase): config_generator._master_config = dict(self.post_process_master_config) config_generator._post_process_configs() self.assertEqual( - config_generator._master_config[Config.key_config_path.value], + # Doesn't use .value here on purpose due to backwards compatibility! + # See b/29836695 and b/78189048. + config_generator._master_config[Config.key_config_path], 'foo' ) diff --git a/acts/framework/tests/config/unittest_bundle.py b/acts/framework/tests/config/unittest_bundle.py index 87d5bc5d3e..8e26b9300a 100755 --- a/acts/framework/tests/config/unittest_bundle.py +++ b/acts/framework/tests/config/unittest_bundle.py @@ -14,14 +14,13 @@ # See the License for the specific language governing permissions and # limitations under the License. -import os import sys import unittest def main(): suite = unittest.TestLoader().discover( - start_dir=os.path.dirname(__file__), pattern='*_test.py') + start_dir='./acts/framework/tests/config/', pattern='*_test.py') return suite diff --git a/acts/framework/tests/controllers/android_lib/android_lib_unittest_bundle.py b/acts/framework/tests/controllers/android_lib/android_lib_unittest_bundle.py index cf8e81e51f..3a40d3132d 100755 --- a/acts/framework/tests/controllers/android_lib/android_lib_unittest_bundle.py +++ b/acts/framework/tests/controllers/android_lib/android_lib_unittest_bundle.py @@ -14,14 +14,14 @@ # See the License for the specific language governing permissions and # limitations under the License. -import os import sys import unittest def main(): suite = unittest.TestLoader().discover( - start_dir=os.path.dirname(__file__), pattern='*_test.py') + start_dir='./acts/framework/tests/controllers/android_lib', + pattern='*_test.py') return suite diff --git a/acts/framework/tests/controllers/abstract_inst_test.py b/acts/framework/tests/controllers/gnssinst_lib/abstract_inst_test.py index ef6d608ce0..ea54099fee 100755 --- a/acts/framework/tests/controllers/abstract_inst_test.py +++ b/acts/framework/tests/controllers/gnssinst_lib/abstract_inst_test.py @@ -19,7 +19,7 @@ import socket import unittest from unittest.mock import Mock from unittest.mock import patch -import acts.controllers.abstract_inst as pyinst +import acts.controllers.gnssinst_lib.abstract_inst as pyinst class SocketInstrumentTest(unittest.TestCase): diff --git a/acts/framework/tests/controllers/monsoon_lib/__init__.py b/acts/framework/tests/controllers/monsoon_lib/__init__.py deleted file mode 100644 index e69de29bb2..0000000000 --- a/acts/framework/tests/controllers/monsoon_lib/__init__.py +++ /dev/null diff --git a/acts/framework/tests/controllers/monsoon_lib/api/__init__.py b/acts/framework/tests/controllers/monsoon_lib/api/__init__.py deleted file mode 100644 index e69de29bb2..0000000000 --- a/acts/framework/tests/controllers/monsoon_lib/api/__init__.py +++ /dev/null diff --git a/acts/framework/tests/controllers/monsoon_lib/api/hvpm/__init__.py b/acts/framework/tests/controllers/monsoon_lib/api/hvpm/__init__.py deleted file mode 100644 index e69de29bb2..0000000000 --- a/acts/framework/tests/controllers/monsoon_lib/api/hvpm/__init__.py +++ /dev/null diff --git a/acts/framework/tests/controllers/monsoon_lib/api/hvpm/monsoon_test.py b/acts/framework/tests/controllers/monsoon_lib/api/hvpm/monsoon_test.py deleted file mode 100755 index ba59ed799a..0000000000 --- a/acts/framework/tests/controllers/monsoon_lib/api/hvpm/monsoon_test.py +++ /dev/null @@ -1,152 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import unittest - -import mock - -from acts.controllers.monsoon_lib.api.hvpm.monsoon import Monsoon - -ASSEMBLY_LINE_IMPORT = ('acts.controllers.monsoon_lib.api.hvpm.monsoon' - '.AssemblyLineBuilder') -DOWNSAMPLER_IMPORT = ('acts.controllers.monsoon_lib.api.hvpm.monsoon' - '.DownSampler') -TEE_IMPORT = 'acts.controllers.monsoon_lib.api.hvpm.monsoon.Tee' - -# The position in the call tuple that represents the args array. -ARGS = 0 - - -class BaseMonsoonTest(unittest.TestCase): - """Tests acts.controllers.monsoon_lib.api.monsoon.Monsoon.""" - - SERIAL = 534147 - - def setUp(self): - self.sleep_patch = mock.patch('time.sleep') - self.sleep_patch.start() - - self.mp_manager_patch = mock.patch('multiprocessing.Manager') - self.mp_manager_patch.start() - - proxy_mock = mock.MagicMock() - proxy_mock.Protocol.getValue.return_value = 1048576 * 4 - self.monsoon_proxy = mock.patch( - 'Monsoon.HVPM.Monsoon', return_value=proxy_mock) - self.monsoon_proxy.start() - - def tearDown(self): - self.sleep_patch.stop() - self.monsoon_proxy.stop() - self.mp_manager_patch.stop() - - def test_status_fills_status_packet_first(self): - """Tests fillStatusPacket() is called before returning the status. - - If this is not done, the status packet returned is stale. - """ - - def verify_call_order(): - if not self.monsoon_proxy().fillStatusPacket.called: - self.fail('fillStatusPacket must be called first.') - - monsoon = Monsoon(self.SERIAL) - monsoon._mon.statusPacket.side_effect = verify_call_order - - status_packet = monsoon.status - - self.assertEqual( - status_packet, monsoon._mon.statusPacket, - 'monsoon.status MUST return ' - 'MonsoonProxy.statusPacket.') - - @mock.patch(DOWNSAMPLER_IMPORT) - @mock.patch(ASSEMBLY_LINE_IMPORT) - def test_measure_power_downsample_skipped_if_hz_unset( - self, _, downsampler): - """Tests the DownSampler transformer is skipped if it is not needed.""" - monsoon = Monsoon(self.SERIAL) - unimportant_kwargs = {'output_path': None, 'transformers': None} - - monsoon.measure_power(1, hz=5000, **unimportant_kwargs) - - self.assertFalse( - downsampler.called, - 'A Downsampler should not have been created for a the default ' - 'sampling frequency.') - - @mock.patch(DOWNSAMPLER_IMPORT) - @mock.patch(ASSEMBLY_LINE_IMPORT) - def test_measure_power_downsamples_immediately_after_sampling( - self, assembly_line, downsampler): - """Tests """ - monsoon = Monsoon(self.SERIAL) - unimportant_kwargs = {'output_path': None, 'transformers': None} - - monsoon.measure_power(1, hz=500, **unimportant_kwargs) - - downsampler.assert_called_once_with(int(round(5000 / 500))) - # Assert Downsampler() is the first element within the list. - self.assertEqual(assembly_line().into.call_args_list[0][ARGS][0], - downsampler()) - - @mock.patch(TEE_IMPORT) - @mock.patch(ASSEMBLY_LINE_IMPORT) - def test_measure_power_tee_skipped_if_ouput_path_not_set(self, _, tee): - """Tests the Tee Transformer is not added when not needed.""" - monsoon = Monsoon(self.SERIAL) - unimportant_kwargs = {'hz': 5000, 'transformers': None} - - monsoon.measure_power(1, output_path=None, **unimportant_kwargs) - - self.assertFalse( - tee.called, - 'A Tee Transformer should not have been created for measure_power ' - 'without an output_path.') - - @mock.patch(TEE_IMPORT) - @mock.patch(ASSEMBLY_LINE_IMPORT) - def test_measure_power_tee_is_added_to_assembly_line( - self, assembly_line, tee): - """Tests Tee is added to the assembly line with the correct path.""" - monsoon = Monsoon(self.SERIAL) - unimportant_kwargs = {'hz': 5000, 'transformers': None} - - monsoon.measure_power(1, output_path='foo', **unimportant_kwargs) - - tee.assert_called_once_with('foo') - # Assert Tee() is the first element within the assembly into calls. - self.assertEqual(assembly_line().into.call_args_list[0][ARGS][0], - tee()) - - @mock.patch(ASSEMBLY_LINE_IMPORT) - def test_measure_power_transformers_are_added(self, assembly_line): - """Tests additional transformers are added to the assembly line.""" - monsoon = Monsoon(self.SERIAL) - unimportant_kwargs = {'hz': 5000, 'output_path': None} - expected_transformers = [mock.Mock(), mock.Mock()] - - monsoon.measure_power( - 1, transformers=expected_transformers, **unimportant_kwargs) - - self.assertEqual(expected_transformers[0], - assembly_line().into.call_args_list[-2][ARGS][0]) - self.assertEqual(expected_transformers[1], - assembly_line().into.call_args_list[-1][ARGS][0]) - - -if __name__ == '__main__': - unittest.main() diff --git a/acts/framework/tests/controllers/monsoon_lib/api/lvpm_stock/__init__.py b/acts/framework/tests/controllers/monsoon_lib/api/lvpm_stock/__init__.py deleted file mode 100644 index e69de29bb2..0000000000 --- a/acts/framework/tests/controllers/monsoon_lib/api/lvpm_stock/__init__.py +++ /dev/null diff --git a/acts/framework/tests/controllers/monsoon_lib/api/lvpm_stock/monsoon_test.py b/acts/framework/tests/controllers/monsoon_lib/api/lvpm_stock/monsoon_test.py deleted file mode 100755 index 4c6bd6feab..0000000000 --- a/acts/framework/tests/controllers/monsoon_lib/api/lvpm_stock/monsoon_test.py +++ /dev/null @@ -1,133 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import unittest - -import mock -from acts.controllers.monsoon_lib.api.lvpm_stock.monsoon import Monsoon - -ASSEMBLY_LINE_IMPORT = ('acts.controllers.monsoon_lib.api.lvpm_stock.monsoon' - '.AssemblyLineBuilder') -DOWNSAMPLER_IMPORT = ('acts.controllers.monsoon_lib.api.lvpm_stock.monsoon' - '.DownSampler') -TEE_IMPORT = 'acts.controllers.monsoon_lib.api.lvpm_stock.monsoon.Tee' -MONSOON_PROXY_IMPORT = ('acts.controllers.monsoon_lib.api.lvpm_stock.monsoon' - '.MonsoonProxy') - -# The position in the call tuple that represents the args array. -ARGS = 0 - - -class BaseMonsoonTest(unittest.TestCase): - """Tests acts.controllers.monsoon_lib.api.monsoon.Monsoon.""" - - SERIAL = 534147 - - def setUp(self): - self.sleep_patch = mock.patch('time.sleep') - self.sleep_patch.start() - - self.mp_manager_patch = mock.patch('multiprocessing.Manager') - self.mp_manager_patch.start() - - proxy_mock = mock.MagicMock() - proxy_mock.get_voltage.return_value = 4.2 - self.monsoon_proxy = mock.patch( - MONSOON_PROXY_IMPORT, return_value=proxy_mock) - self.monsoon_proxy.start() - - def tearDown(self): - self.sleep_patch.stop() - self.monsoon_proxy.stop() - self.mp_manager_patch.stop() - - @mock.patch(DOWNSAMPLER_IMPORT) - @mock.patch(ASSEMBLY_LINE_IMPORT) - def test_measure_power_downsample_skipped_if_hz_unset( - self, _, downsampler): - """Tests the DownSampler transformer is skipped if it is not needed.""" - monsoon = Monsoon(self.SERIAL) - unimportant_kwargs = {'output_path': None, 'transformers': None} - - monsoon.measure_power(1, hz=5000, **unimportant_kwargs) - - self.assertFalse( - downsampler.called, - 'A Downsampler should not have been created for a the default ' - 'sampling frequency.') - - @mock.patch(DOWNSAMPLER_IMPORT) - @mock.patch(ASSEMBLY_LINE_IMPORT) - def test_measure_power_downsamples_immediately_after_sampling( - self, assembly_line, downsampler): - """Tests """ - monsoon = Monsoon(self.SERIAL) - unimportant_kwargs = {'output_path': None, 'transformers': None} - - monsoon.measure_power(1, hz=500, **unimportant_kwargs) - - downsampler.assert_called_once_with(int(round(5000 / 500))) - # Assert Downsampler() is the first element within the list. - self.assertEqual(assembly_line().into.call_args_list[0][ARGS][0], - downsampler()) - - @mock.patch(TEE_IMPORT) - @mock.patch(ASSEMBLY_LINE_IMPORT) - def test_measure_power_tee_skipped_if_ouput_path_not_set(self, _, tee): - """Tests the Tee Transformer is not added when not needed.""" - monsoon = Monsoon(self.SERIAL) - unimportant_kwargs = {'hz': 5000, 'transformers': None} - - monsoon.measure_power(1, output_path=None, **unimportant_kwargs) - - self.assertFalse( - tee.called, - 'A Tee Transformer should not have been created for measure_power ' - 'without an output_path.') - - @mock.patch(TEE_IMPORT) - @mock.patch(ASSEMBLY_LINE_IMPORT) - def test_measure_power_tee_is_added_to_assembly_line( - self, assembly_line, tee): - """Tests Tee is added to the assembly line with the correct path.""" - monsoon = Monsoon(self.SERIAL) - unimportant_kwargs = {'hz': 5000, 'transformers': None} - - monsoon.measure_power(1, output_path='foo', **unimportant_kwargs) - - tee.assert_called_once_with('foo') - # Assert Tee() is the first element within the assembly into calls. - self.assertEqual(assembly_line().into.call_args_list[0][ARGS][0], - tee()) - - @mock.patch(ASSEMBLY_LINE_IMPORT) - def test_measure_power_transformers_are_added(self, assembly_line): - """Tests additional transformers are added to the assembly line.""" - monsoon = Monsoon(self.SERIAL) - unimportant_kwargs = {'hz': 5000, 'output_path': None} - expected_transformers = [mock.Mock(), mock.Mock()] - - monsoon.measure_power( - 1, transformers=expected_transformers, **unimportant_kwargs) - - self.assertEqual(expected_transformers[0], - assembly_line().into.call_args_list[-2][ARGS][0]) - self.assertEqual(expected_transformers[1], - assembly_line().into.call_args_list[-1][ARGS][0]) - - -if __name__ == '__main__': - unittest.main() diff --git a/acts/framework/tests/controllers/monsoon_lib/api/monsoon_test.py b/acts/framework/tests/controllers/monsoon_lib/api/monsoon_test.py deleted file mode 100755 index 9d628959d9..0000000000 --- a/acts/framework/tests/controllers/monsoon_lib/api/monsoon_test.py +++ /dev/null @@ -1,223 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import unittest - -import mock - -from acts.controllers.monsoon_lib.api.common import MonsoonError -from acts.controllers.monsoon_lib.api.common import PASSTHROUGH_STATES -from acts.controllers.monsoon_lib.api.common import PassthroughStates -from acts.controllers.monsoon_lib.api.monsoon import BaseMonsoon - -# The position in the call tuple that represents the args array. -ARGS = 0 - -STILL_TIME_LEFT = 0 -OUT_OF_TIME = 9001 - - -class MonsoonImpl(BaseMonsoon): - MIN_VOLTAGE = 1.5 - MAX_VOLTAGE = 3.0 - - set_voltage = mock.Mock() - release_monsoon_connection = mock.Mock() - establish_monsoon_connection = mock.Mock() - - def _set_usb_passthrough_mode(self, value): - self.__usb_passthrough_mode = value - - def __init__(self): - super().__init__() - self.__usb_passthrough_mode = None - - @property - def status(self): - class StatusPacket(object): - def __init__(self, passthrough_mode): - self.usbPassthroughMode = ( - passthrough_mode - if passthrough_mode in PASSTHROUGH_STATES.values() else - PASSTHROUGH_STATES.get(passthrough_mode, None)) - - return StatusPacket(self.__usb_passthrough_mode) - - -class BaseMonsoonTest(unittest.TestCase): - """Tests acts.controllers.monsoon_lib.api.monsoon.Monsoon.""" - - def setUp(self): - self.sleep_patch = mock.patch('time.sleep') - self.sleep_patch.start() - MonsoonImpl.set_voltage = mock.Mock() - MonsoonImpl.release_monsoon_connection = mock.Mock() - MonsoonImpl.establish_monsoon_connection = mock.Mock() - - def tearDown(self): - self.sleep_patch.stop() - - def test_get_closest_valid_voltage_returns_zero_when_low(self): - voltage_to_round_to_zero = MonsoonImpl.MIN_VOLTAGE / 2 - 0.1 - self.assertEqual( - MonsoonImpl.get_closest_valid_voltage(voltage_to_round_to_zero), 0) - - def test_get_closest_valid_voltage_snaps_to_min_when_low_but_close(self): - voltage_to_round_to_min = MonsoonImpl.MIN_VOLTAGE / 2 + 0.1 - self.assertEqual( - MonsoonImpl.get_closest_valid_voltage(voltage_to_round_to_min), - MonsoonImpl.MIN_VOLTAGE) - - def test_get_closest_valid_voltage_snaps_to_max_when_high(self): - voltage_to_round_to_max = MonsoonImpl.MAX_VOLTAGE * 2 - self.assertEqual( - MonsoonImpl.get_closest_valid_voltage(voltage_to_round_to_max), - MonsoonImpl.MAX_VOLTAGE) - - def test_get_closest_valid_voltage_to_not_round(self): - valid_voltage = (MonsoonImpl.MAX_VOLTAGE + MonsoonImpl.MIN_VOLTAGE) / 2 - - self.assertEqual( - MonsoonImpl.get_closest_valid_voltage(valid_voltage), - valid_voltage) - - def test_is_voltage_valid_voltage_is_valid(self): - valid_voltage = (MonsoonImpl.MAX_VOLTAGE + MonsoonImpl.MIN_VOLTAGE) / 2 - - self.assertTrue(MonsoonImpl.is_voltage_valid(valid_voltage)) - - def test_is_voltage_valid_voltage_is_not_valid(self): - invalid_voltage = MonsoonImpl.MIN_VOLTAGE - 2 - - self.assertFalse(MonsoonImpl.is_voltage_valid(invalid_voltage)) - - def test_validate_voltage_voltage_is_valid(self): - valid_voltage = (MonsoonImpl.MAX_VOLTAGE + MonsoonImpl.MIN_VOLTAGE) / 2 - - MonsoonImpl.validate_voltage(valid_voltage) - - def test_validate_voltage_voltage_is_not_valid(self): - invalid_voltage = MonsoonImpl.MIN_VOLTAGE - 2 - - with self.assertRaises(MonsoonError): - MonsoonImpl.validate_voltage(invalid_voltage) - - def test_set_voltage_safe_rounds_unsafe_voltage(self): - invalid_voltage = MonsoonImpl.MIN_VOLTAGE - .1 - monsoon = MonsoonImpl() - - monsoon.set_voltage_safe(invalid_voltage) - - monsoon.set_voltage.assert_called_once_with(MonsoonImpl.MIN_VOLTAGE) - - def test_set_voltage_safe_does_not_round_safe_voltages(self): - valid_voltage = (MonsoonImpl.MAX_VOLTAGE + MonsoonImpl.MIN_VOLTAGE) / 2 - monsoon = MonsoonImpl() - - monsoon.set_voltage_safe(valid_voltage) - - monsoon.set_voltage.assert_called_once_with(valid_voltage) - - def test_ramp_voltage_sets_vout_to_final_value(self): - """Tests the desired end voltage is set.""" - monsoon = MonsoonImpl() - expected_value = monsoon.MIN_VOLTAGE - - monsoon.ramp_voltage(0, expected_value) - - self.assertEqual( - MonsoonImpl.set_voltage.call_args_list[-1][ARGS][0], - expected_value, 'The last call to setVout() was not the expected ' - 'final value.') - - def test_ramp_voltage_ramps_voltage_over_time(self): - """Tests that voltage increases between each call.""" - monsoon = MonsoonImpl() - - difference = (MonsoonImpl.VOLTAGE_RAMP_RATE * - MonsoonImpl.VOLTAGE_RAMP_TIME_STEP * 5) - monsoon.ramp_voltage(MonsoonImpl.MIN_VOLTAGE, - MonsoonImpl.MIN_VOLTAGE + difference) - - previous_voltage = 0 - for set_voltage_call in MonsoonImpl.set_voltage.call_args_list: - self.assertGreaterEqual( - set_voltage_call[ARGS][0], previous_voltage, - 'ramp_voltage does not always increment voltage.') - previous_voltage = set_voltage_call[ARGS][0] - - def test_usb_accepts_passthrough_state_sets_with_str(self): - monsoon = MonsoonImpl() - state_string = 'on' - - monsoon.usb(state_string) - - self.assertEqual(monsoon.status.usbPassthroughMode, - PASSTHROUGH_STATES[state_string]) - - def test_usb_accepts_passthrough_state_sets_with_int_value(self): - monsoon = MonsoonImpl() - - monsoon.usb(1) - - self.assertEqual(monsoon.status.usbPassthroughMode, 1) - - def test_usb_raises_on_invalid_str_value(self): - monsoon = MonsoonImpl() - - with self.assertRaises(ValueError): - monsoon.usb('DEADBEEF') - - def test_usb_raises_on_invalid_int_value(self): - monsoon = MonsoonImpl() - - with self.assertRaises(ValueError): - monsoon.usb(9001) - - @mock.patch('time.time') - def test_usb_raises_timeout_error(self, time): - monsoon = MonsoonImpl() - time.side_effect = [STILL_TIME_LEFT, OUT_OF_TIME] - - with self.assertRaises(TimeoutError): - monsoon.usb(1) - - def test_usb_does_not_set_passthrough_mode_if_unchanged(self): - """Tests that the passthrough mode is not reset if it is unchanged.""" - monsoon = MonsoonImpl() - existing_state = PassthroughStates.ON - monsoon._set_usb_passthrough_mode(existing_state) - monsoon._set_usb_passthrough_mode = mock.Mock() - - monsoon.usb(existing_state) - - self.assertFalse( - monsoon._set_usb_passthrough_mode.called, - 'usbPassthroughMode should not be called when the ' - 'state does not change.') - - def take_samples_always_reestablishes_the_monsoon_connection(self): - monsoon = MonsoonImpl() - assembly_line = mock.Mock() - assembly_line.run.side_effect = Exception('Some Terrible error') - - monsoon.take_samples(assembly_line) - - self.assertTrue(monsoon.establish_monsoon_connection.called) - - -if __name__ == '__main__': - unittest.main() diff --git a/acts/framework/tests/controllers/monsoon_lib/sampling/__init__.py b/acts/framework/tests/controllers/monsoon_lib/sampling/__init__.py deleted file mode 100644 index e69de29bb2..0000000000 --- a/acts/framework/tests/controllers/monsoon_lib/sampling/__init__.py +++ /dev/null diff --git a/acts/framework/tests/controllers/monsoon_lib/sampling/engine/__init__.py b/acts/framework/tests/controllers/monsoon_lib/sampling/engine/__init__.py deleted file mode 100644 index e69de29bb2..0000000000 --- a/acts/framework/tests/controllers/monsoon_lib/sampling/engine/__init__.py +++ /dev/null diff --git a/acts/framework/tests/controllers/monsoon_lib/sampling/engine/assembly_line_test.py b/acts/framework/tests/controllers/monsoon_lib/sampling/engine/assembly_line_test.py deleted file mode 100755 index 77f9df18ad..0000000000 --- a/acts/framework/tests/controllers/monsoon_lib/sampling/engine/assembly_line_test.py +++ /dev/null @@ -1,248 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import unittest - -import mock - -from acts.controllers.monsoon_lib.sampling.engine.assembly_line import AssemblyLineBuilder -from acts.controllers.monsoon_lib.sampling.engine.assembly_line import DevNullBufferStream -from acts.controllers.monsoon_lib.sampling.engine.assembly_line import IndexedBuffer -from acts.controllers.monsoon_lib.sampling.engine.assembly_line import ProcessAssemblyLine -from acts.controllers.monsoon_lib.sampling.engine.assembly_line import ThreadAssemblyLine - -ASSEMBLY_LINE_MODULE = ( - 'acts.controllers.monsoon_lib.sampling.engine.assembly_line') - - -def mock_import(full_module_name, import_name): - return mock.patch('%s.%s' % (full_module_name, import_name)) - - -class ProcessAssemblyLineTest(unittest.TestCase): - """Tests the basic functionality of ProcessAssemblyLine.""" - - @mock.patch('multiprocessing.Pool') - def test_run_no_nodes(self, pool_mock): - """Tests run() with no nodes does not spawn a new process.""" - empty_node_list = [] - assembly_line = ProcessAssemblyLine(empty_node_list) - - assembly_line.run() - - self.assertFalse(pool_mock().__enter__().apply_async.called) - - @mock.patch('multiprocessing.Pool') - def test_run_spawns_new_process_for_each_node(self, pool_mock): - """Tests run() with a node spawns a new process for each node.""" - node_list = [mock.Mock(), mock.Mock()] - assembly_line = ProcessAssemblyLine(node_list) - - assembly_line.run() - - apply_async = pool_mock().apply_async - self.assertEqual(len(node_list), apply_async.call_count) - for node in node_list: - apply_async.assert_any_call(node.transformer.transform, - [node.input_stream]) - - -class ThreadAssemblyLineTest(unittest.TestCase): - """Tests the basic functionality of ThreadAssemblyLine.""" - - @mock_import(ASSEMBLY_LINE_MODULE, 'ThreadPoolExecutor') - def test_run_no_nodes(self, pool_mock): - """Tests run() with no nodes does not spawn a new thread.""" - empty_node_list = [] - assembly_line = ThreadAssemblyLine(empty_node_list) - - assembly_line.run() - - self.assertFalse(pool_mock().__enter__().submit.called) - - @mock_import(ASSEMBLY_LINE_MODULE, 'ThreadPoolExecutor') - def test_run_spawns_new_thread_for_each_node(self, pool_mock): - """Tests run() with a node spawns a new thread for each node.""" - node_list = [mock.Mock(), mock.Mock()] - assembly_line = ThreadAssemblyLine(node_list) - - assembly_line.run() - - submit = pool_mock().__enter__().submit - self.assertEqual(len(node_list), submit.call_count) - for node in node_list: - submit.assert_any_call(node.transformer.transform, - node.input_stream) - - -class AssemblyLineBuilderTest(unittest.TestCase): - """Tests the basic functionality of AssemblyLineBuilder.""" - - def test_source_raises_if_nodes_already_in_assembly_line(self): - """Tests a ValueError is raised if a node already exists.""" - builder = AssemblyLineBuilder(mock.Mock(), mock.Mock()) - first_source = mock.Mock() - second_source = mock.Mock() - builder.source(first_source) - - with self.assertRaises(ValueError) as context: - builder.source(second_source) - - self.assertIn('single source', context.exception.args[0]) - - def test_source_sets_input_stream_from_given_stream(self): - """Tests source() sets input_stream from args.""" - builder = AssemblyLineBuilder(mock.Mock(), mock.Mock()) - input_stream = mock.Mock() - dummy_source = mock.Mock() - - builder.source(dummy_source, input_stream=input_stream) - - self.assertEqual(input_stream, builder.nodes[-1].input_stream) - - def test_source_creates_a_new_input_stream(self): - """Tests source() takes in DevNullBufferStream when None is provided.""" - builder = AssemblyLineBuilder(mock.Mock(), mock.Mock()) - dummy_source = mock.Mock() - - builder.source(dummy_source) - - self.assertIsInstance(builder.nodes[-1].input_stream, - DevNullBufferStream) - - def test_source_returns_self(self): - """Tests source() returns the builder.""" - builder = AssemblyLineBuilder(mock.Mock(), mock.Mock()) - - return_value = builder.source(mock.Mock()) - - self.assertEqual(return_value, builder) - - def test_into_raises_value_error_if_source_not_called_yet(self): - """Tests a ValueError is raised if into() is called before source().""" - builder = AssemblyLineBuilder(mock.Mock(), mock.Mock()) - dummy_transformer = mock.Mock() - - with self.assertRaises(ValueError) as context: - builder.into(dummy_transformer) - - self.assertIn('source', context.exception.args[0]) - - def test_into_raises_value_error_if_already_built(self): - """Tests a ValueError is raised into() is called after build().""" - builder = AssemblyLineBuilder(mock.Mock(), mock.Mock()) - dummy_transformer = mock.Mock() - # Build before trying to add more nodes. - builder.source(dummy_transformer).build() - - with self.assertRaises(ValueError) as context: - builder.into(dummy_transformer) - - self.assertIn('built', context.exception.args[0]) - - def test_into_appends_transformer_to_node_list(self): - """Tests into() appends the transformer to the end of the node list.""" - builder = AssemblyLineBuilder(mock.Mock(), mock.Mock()) - dummy_transformer = mock.Mock() - dummy_source = mock.Mock() - builder.source(dummy_source) - - builder.into(dummy_transformer) - - self.assertEqual(dummy_transformer, builder.nodes[-1].transformer) - - def test_into_sets_output_stream_to_newly_created_stream(self): - """Tests into() sets the input_stream queue to the newly created one.""" - queue_generator = mock.Mock() - builder = AssemblyLineBuilder(queue_generator, mock.Mock()) - dummy_transformer = mock.Mock() - dummy_source = mock.Mock() - builder.source(dummy_source) - - builder.into(dummy_transformer) - - self.assertEqual(queue_generator(), - builder.nodes[-1].input_stream._buffer_queue) - - def test_into_returns_self(self): - """Tests into() returns the builder.""" - builder = AssemblyLineBuilder(mock.Mock(), mock.Mock()) - builder.source(mock.Mock()) - - return_value = builder.into(mock.Mock()) - - self.assertEqual(return_value, builder) - - def test_build_raises_if_already_built(self): - """Tests build() raises ValueError if build() was already called.""" - builder = AssemblyLineBuilder(mock.Mock(), mock.Mock()) - builder.source(mock.Mock()).build() - - with self.assertRaises(ValueError) as context: - builder.build() - - self.assertIn('already built', context.exception.args[0]) - - def test_build_raises_if_no_source_has_been_set(self): - """Tests build() raises when there's nothing to build.""" - builder = AssemblyLineBuilder(mock.Mock(), mock.Mock()) - - with self.assertRaises(ValueError) as context: - builder.build() - - self.assertIn('empty', context.exception.args[0]) - - def test_build_properly_sets_output_stream(self): - """Tests build() passes the output_stream to the AssemblyLine.""" - given_output_stream = 1 - - assembly_line_generator = mock.Mock() - builder = AssemblyLineBuilder(mock.Mock(), assembly_line_generator) - builder.source(mock.Mock()) - - builder.build(output_stream=given_output_stream) - - self.assertEqual( - assembly_line_generator.call_args[0][0][-1].output_stream, - given_output_stream) - - def test_build_generates_dev_null_stream_by_default(self): - """Tests build() uses DevNullBufferStream when no output_stream.""" - assembly_line_generator = mock.Mock() - builder = AssemblyLineBuilder(mock.Mock(), assembly_line_generator) - builder.source(mock.Mock()) - - builder.build() - - self.assertIsInstance( - assembly_line_generator.call_args[0][0][-1].output_stream, - DevNullBufferStream) - - -class IndexedBufferTest(unittest.TestCase): - """Tests the IndexedBuffer class.""" - - def test_create_indexed_buffer_uses_existing_list(self): - my_list = [0, 1, 2, 3, 4, 5] - self.assertEqual(IndexedBuffer(0, my_list).buffer, my_list) - - def test_create_indexed_buffer_creates_buffer_when_given_a_size(self): - buffer_len = 10 - self.assertEqual(len(IndexedBuffer(0, buffer_len).buffer), buffer_len) - - -if __name__ == '__main__': - unittest.main() diff --git a/acts/framework/tests/controllers/monsoon_lib/sampling/engine/calibration_test.py b/acts/framework/tests/controllers/monsoon_lib/sampling/engine/calibration_test.py deleted file mode 100755 index 2747f55545..0000000000 --- a/acts/framework/tests/controllers/monsoon_lib/sampling/engine/calibration_test.py +++ /dev/null @@ -1,165 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -import statistics -import unittest -from collections import deque - -from acts.controllers.monsoon_lib.sampling.engine.calibration import CalibrationError -from acts.controllers.monsoon_lib.sampling.engine.calibration import CalibrationScalars -from acts.controllers.monsoon_lib.sampling.engine.calibration import CalibrationSnapshot -from acts.controllers.monsoon_lib.sampling.engine.calibration import CalibrationWindows -from acts.controllers.monsoon_lib.sampling.enums import Channel -from acts.controllers.monsoon_lib.sampling.enums import Granularity -from acts.controllers.monsoon_lib.sampling.enums import Origin - -# These values don't really matter. -C = Channel.MAIN -O = Origin.ZERO -G = Granularity.FINE -C2 = Channel.USB -O2 = Origin.REFERENCE -G2 = Granularity.COARSE - - -class CalibrationWindowsTest(unittest.TestCase): - """Unit tests the CalibrationWindows class.""" - - def setUp(self): - # Here, we set up CalibrationWindows with a single dict entry so we can - # add values to the window. Normally, a child class is responsible for - # setting the keys of the CalibrationWindows object. - self.calibration_windows = CalibrationWindows( - calibration_window_size=5) - self.calibration_windows._calibrations[(C, O, G)] = deque() - - def test_add_adds_new_value_to_end_of_window(self): - """Tests add() appends the new value to the end of the window.""" - self.calibration_windows.add(C, O, G, 0) - self.calibration_windows.add(C, O, G, 1) - self.calibration_windows.add(C, O, G, 2) - - expected_value = 3 - - self.calibration_windows.add(C, O, G, expected_value) - - self.assertEqual(expected_value, - self.calibration_windows._calibrations[(C, O, G)][-1]) - - def test_add_removes_stale_values(self): - """Tests add() removes values outside of the calibration window.""" - value_to_remove = 0 - new_values = range(1, 6) - - self.calibration_windows.add(C, O, G, value_to_remove) - for new_value in new_values: - self.calibration_windows.add(C, O, G, new_value) - - self.assertNotIn(value_to_remove, - self.calibration_windows._calibrations[(C, O, G)]) - - def test_get_averages_items_within_window(self): - """tests get() returns the average of all values within the window.""" - values = range(5) - expected_value = statistics.mean(values) - - for value in values: - self.calibration_windows.add(C, O, G, value) - - self.assertEqual(self.calibration_windows.get(C, O, G), expected_value) - - def test_get_raises_error_when_calibration_is_not_complete(self): - """Tests get() raises CalibrationError when the window is not full.""" - values = range(4) - for value in values: - self.calibration_windows.add(C, O, G, value) - - with self.assertRaises(CalibrationError): - self.calibration_windows.get(C, O, G) - - -class CalibrationScalarsTest(unittest.TestCase): - """Unit tests the CalibrationScalars class.""" - - def setUp(self): - # Here, we set up CalibrationScalars with a single dict entry so we can - # add values to the window. Normally, a child class is responsible for - # setting the keys of the CalibrationScalars object. - self.calibration_scalars = CalibrationScalars() - # Use a non-integer value so unit tests will fail when a bug occurs. - self.calibration_scalars._calibrations[(C, O, G)] = None - - def test_get_returns_last_added_scalar(self): - """Tests the value added is the value returned from get().""" - ignored_value = 2.71828 - expected_value = 3.14159 - - self.calibration_scalars.add(C, O, G, ignored_value) - self.calibration_scalars.add(C, O, G, expected_value) - - self.assertEqual(expected_value, self.calibration_scalars.get(C, O, G)) - - -class CalibrationSnapshotTest(unittest.TestCase): - """Unit tests the CalibrationSnapshot class.""" - - def test_all_keys_are_copied_to_snapshot(self): - """Tests that all keys from passed-in collection are copied.""" - base_calibration = CalibrationScalars() - base_calibration._calibrations = { - (C, O, G): 2.71828, - (C2, O2, G2): 3.14159, - } - - calibration_snapshot = CalibrationSnapshot(base_calibration) - - self.assertSetEqual( - set(base_calibration.get_keys()), - set(calibration_snapshot.get_keys())) - - def test_init_raises_value_error_upon_illegal_arguments(self): - """Tests __init__() raises ValueError if the argument is invalid.""" - with self.assertRaises(ValueError): - CalibrationSnapshot({'illegal': 'dictionary'}) - - def test_calibration_error_surfaced_on_get(self): - """Tests get() raises a CalibrationError if the snapshotted collection - had a CalibrationError. - """ - base_calibration = CalibrationScalars() - base_calibration._calibrations = { - (C, O, G): CalibrationError('raise me') - } - - calibration_snapshot = CalibrationSnapshot(base_calibration) - - with self.assertRaises(CalibrationError): - calibration_snapshot.get(C, O, G) - - def test_calibration_copied_upon_snapshot_created(self): - """Tests the calibration value is snapshotted.""" - expected_value = 5 - unexpected_value = 10 - base_calibration = CalibrationScalars() - base_calibration._calibrations = {(C, O, G): expected_value} - - calibration_snapshot = CalibrationSnapshot(base_calibration) - base_calibration.add(C, O, G, unexpected_value) - - self.assertEqual(calibration_snapshot.get(C, O, G), expected_value) - - -if __name__ == '__main__': - unittest.main() diff --git a/acts/framework/tests/controllers/monsoon_lib/sampling/engine/transformer_test.py b/acts/framework/tests/controllers/monsoon_lib/sampling/engine/transformer_test.py deleted file mode 100755 index 08b1fe6f59..0000000000 --- a/acts/framework/tests/controllers/monsoon_lib/sampling/engine/transformer_test.py +++ /dev/null @@ -1,268 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import unittest - -import mock - -from acts.controllers.monsoon_lib.sampling.engine.assembly_line import BufferList -from acts.controllers.monsoon_lib.sampling.engine.assembly_line import BufferStream -from acts.controllers.monsoon_lib.sampling.engine.assembly_line import IndexedBuffer -from acts.controllers.monsoon_lib.sampling.engine.transformer import ParallelTransformer -from acts.controllers.monsoon_lib.sampling.engine.transformer import SequentialTransformer -from acts.controllers.monsoon_lib.sampling.engine.transformer import SourceTransformer -from acts.controllers.monsoon_lib.sampling.engine.transformer import Transformer - -# The indexes of the arguments returned in Mock's call lists. -ARGS = 0 -KWARGS = 1 - - -class TransformerImpl(Transformer): - """A basic implementation of a Transformer object.""" - - def __init__(self): - super().__init__() - self.actions = [] - - def on_begin(self): - self.actions.append('begin') - - def on_end(self): - self.actions.append('end') - - def _transform(self, _): - self.actions.append('transform') - - -def raise_exception(tipe=Exception): - def exception_raiser(): - raise tipe() - - return exception_raiser - - -class TransformerTest(unittest.TestCase): - """Tests the Transformer class.""" - - def test_transform_calls_functions_in_order(self): - """Tests transform() calls functions in the correct arrangement.""" - my_transformer = TransformerImpl() - - my_transformer.transform(mock.Mock()) - - self.assertEqual(['begin', 'transform', 'end'], my_transformer.actions) - - def test_transform_initializes_input_stream(self): - """Tests transform() initializes the input_stream before beginning.""" - input_stream = mock.Mock() - transformer = TransformerImpl() - # Purposely fail before sending any data - transformer.on_begin = raise_exception(Exception) - - with self.assertRaises(Exception): - transformer.transform(input_stream) - - # Asserts initialize was called before on_begin. - self.assertTrue(input_stream.initialize.called) - - def test_transform_initializes_output_stream(self): - """Tests transform() initializes the output_stream before beginning.""" - output_stream = mock.Mock() - transformer = TransformerImpl() - transformer.set_output_stream(output_stream) - # Purposely fail before sending any data - transformer.on_begin = raise_exception(Exception) - - with self.assertRaises(Exception): - transformer.transform(mock.Mock()) - - # Asserts initialize was called before on_begin. - self.assertTrue(output_stream.initialize.called) - - -class SourceTransformerTest(unittest.TestCase): - """Tests the SourceTransformer class.""" - - def test_transform_ends_on_buffer_stream_end(self): - """Tests transformation ends on stream end.""" - source_transformer = SourceTransformer() - source_transformer.set_output_stream(mock.Mock()) - transform_buffer = mock.Mock(side_effect=[BufferStream.END]) - source_transformer._transform_buffer = transform_buffer - - output_stream = mock.Mock() - source_transformer.transform(output_stream) - - self.assertFalse(output_stream.add_indexed_buffer.called) - - def test_transform_adds_transformed_index_buffer(self): - source_transformer = SourceTransformer() - output_stream = mock.Mock() - source_transformer.set_output_stream(output_stream) - expected_buffer = [0, 1, 2] - transform_buffer = mock.Mock( - side_effect=[expected_buffer, BufferStream.END]) - source_transformer._transform_buffer = transform_buffer - - source_transformer.transform(mock.Mock()) - - self.assertEqual( - expected_buffer, - output_stream.add_indexed_buffer.call_args[ARGS][0].buffer) - - def test_transform_increases_buffer_index_each_call(self): - source_transformer = SourceTransformer() - output_stream = mock.Mock() - source_transformer.set_output_stream(output_stream) - buffer = [0, 1, 2] - transform_buffer = mock.Mock( - side_effect=[buffer, buffer, buffer, BufferStream.END]) - source_transformer._transform_buffer = transform_buffer - - source_transformer.transform(mock.Mock()) - - self.assertEqual([0, 1, 2], [ - output_stream.add_indexed_buffer.call_args_list[i][ARGS][0].index - for i in range(output_stream.add_indexed_buffer.call_count) - ]) - - def test_transform_calls_end_stream(self): - source_transformer = SourceTransformer() - output_stream = mock.Mock() - source_transformer.set_output_stream(output_stream) - transform_buffer = mock.Mock(side_effect=[BufferStream.END]) - source_transformer._transform_buffer = transform_buffer - - source_transformer.transform(mock.Mock()) - - self.assertTrue(output_stream.end_stream.called) - - -class SequentialTransformerTest(unittest.TestCase): - """Unit tests the SequentialTransformer class.""" - - def test_send_buffers_updates_next_index_on_buffer_list(self): - sequential_transformer = SequentialTransformer() - sequential_transformer._next_index = 10 - expected_next_index = 15 - - sequential_transformer._send_buffers(BufferList([[]] * 5)) - - self.assertEqual(expected_next_index, - sequential_transformer._next_index) - - def test_send_buffers_updates_next_index_on_single_buffer(self): - sequential_transformer = SequentialTransformer() - sequential_transformer._next_index = 10 - expected_next_index = 11 - - sequential_transformer._send_buffers([]) - - self.assertEqual(expected_next_index, - sequential_transformer._next_index) - - def test_send_buffers_sends_buffer_list_with_correct_indexes(self): - buffers_to_send = [ - [1], - [1, 2], - [1, 2, 3], - [1, 2, 3, 4], - [1, 2, 3, 4, 5], - ] - sequential_transformer = SequentialTransformer() - output_stream = mock.Mock() - sequential_transformer.set_output_stream(output_stream) - sequential_transformer._send_buffers(BufferList(buffers_to_send)) - - for expected_index, expected_buffer in enumerate(buffers_to_send): - call = output_stream.add_indexed_buffer.call_args_list[ - expected_index] - self.assertEqual(expected_index, call[ARGS][0].index) - self.assertEqual(expected_buffer, call[ARGS][0].buffer) - - def test_transform_breaks_upon_buffer_stream_end_received(self): - sequential_transformer = SequentialTransformer() - output_stream = mock.Mock() - input_stream = mock.Mock() - sequential_transformer.set_output_stream(output_stream) - input_stream.remove_indexed_buffer.side_effect = [BufferStream.END] - - sequential_transformer._transform(input_stream) - - self.assertFalse(output_stream.add_indexed_buffer.called) - - def test_transform_closes_output_stream_when_finished(self): - sequential_transformer = SequentialTransformer() - output_stream = mock.Mock() - input_stream = mock.Mock() - sequential_transformer.set_output_stream(output_stream) - input_stream.remove_indexed_buffer.side_effect = [BufferStream.END] - - sequential_transformer._transform(input_stream) - - self.assertTrue(output_stream.end_stream.called) - - -class ParallelTransformerTest(unittest.TestCase): - """Unit tests the ParallelTransformer class.""" - - def test_transform_breaks_upon_buffer_stream_end_received(self): - parallel_transformer = ParallelTransformer() - output_stream = mock.Mock() - input_stream = mock.Mock() - parallel_transformer.set_output_stream(output_stream) - input_stream.remove_indexed_buffer.side_effect = [BufferStream.END] - - parallel_transformer._transform(input_stream) - - self.assertFalse(output_stream.add_indexed_buffer.called) - - def test_transform_closes_output_stream_when_finished(self): - parallel_transformer = ParallelTransformer() - output_stream = mock.Mock() - input_stream = mock.Mock() - parallel_transformer.set_output_stream(output_stream) - input_stream.remove_indexed_buffer.side_effect = [BufferStream.END] - - parallel_transformer._transform(input_stream) - - self.assertTrue(output_stream.end_stream.called) - - def test_transform_passes_indexed_buffer_with_updated_buffer(self): - expected_buffer = [0, 1, 2, 3, 4] - expected_index = 12345 - parallel_transformer = ParallelTransformer() - output_stream = mock.Mock() - input_stream = mock.Mock() - parallel_transformer.set_output_stream(output_stream) - input_stream.remove_indexed_buffer.side_effect = [ - IndexedBuffer(expected_index, []), BufferStream.END - ] - parallel_transformer._transform_buffer = lambda _: expected_buffer - - parallel_transformer._transform(input_stream) - - self.assertEqual( - expected_buffer, - output_stream.add_indexed_buffer.call_args_list[0][ARGS][0].buffer) - self.assertEqual( - expected_index, - output_stream.add_indexed_buffer.call_args_list[0][ARGS][0].index) - - -if __name__ == '__main__': - unittest.main() diff --git a/acts/framework/tests/controllers/monsoon_lib/sampling/engine/transformers_test.py b/acts/framework/tests/controllers/monsoon_lib/sampling/engine/transformers_test.py deleted file mode 100755 index 5fc3f7a6bf..0000000000 --- a/acts/framework/tests/controllers/monsoon_lib/sampling/engine/transformers_test.py +++ /dev/null @@ -1,186 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -import statistics -import unittest - -import mock - -from acts.controllers.monsoon_lib.sampling.engine.transformers import DownSampler -from acts.controllers.monsoon_lib.sampling.engine.transformers import SampleAggregator -from acts.controllers.monsoon_lib.sampling.engine.transformers import Tee - -ARGS = 0 -KWARGS = 1 - - -# TODO: Import HvpmReading directly when it is added to the codebase. -class HvpmReading(object): - def __init__(self, data, time): - self.main_current = data[0] - self.sample_time = time - - def __add__(self, other): - return HvpmReading([self.main_current + other.main_current], - self.sample_time + other.sample_time) - - def __truediv__(self, other): - return HvpmReading([self.main_current / other], - self.sample_time / other) - - -class TeeTest(unittest.TestCase): - """Unit tests the transformers.Tee class.""" - - @mock.patch('builtins.open') - def test_begin_opens_file_on_expected_filename(self, open_mock): - expected_filename = 'foo' - - Tee(expected_filename).on_begin() - - open_mock.assert_called_with(expected_filename, 'w+') - - @mock.patch('builtins.open') - def test_end_closes_file(self, open_mock): - tee = Tee('foo') - tee.on_begin() - - tee.on_end() - - self.assertTrue(open_mock().close.called) - - @mock.patch('builtins.open') - def test_transform_buffer_outputs_correct_format(self, open_mock): - tee = Tee('foo') - tee.on_begin() - - expected_output = [ - '0.010000000s 1.41421356237\n', '0.020000000s 2.71828182846\n', - '0.030000000s 3.14159265359\n' - ] - - tee._transform_buffer([ - HvpmReading([1.41421356237, 0, 0, 0, 0], 0.01), - HvpmReading([2.71828182846, 0, 0, 0, 0], 0.02), - HvpmReading([3.14159265359, 0, 0, 0, 0], 0.03), - ]) - - for call, out in zip(open_mock().write.call_args_list, - expected_output): - self.assertEqual(call[ARGS][0], out) - - -class SampleAggregatorTest(unittest.TestCase): - """Unit tests the transformers.SampleAggregator class.""" - - def test_transform_buffer_respects_start_after_seconds_flag(self): - sample_aggregator = SampleAggregator(start_after_seconds=1) - sample_aggregator._transform_buffer([ - HvpmReading([1.41421356237, 0, 0, 0, 0], 0.01), - HvpmReading([2.71828182846, 0, 0, 0, 0], 0.99), - HvpmReading([3.14159265359, 0, 0, 0, 0], 1.00), - ]) - - self.assertEqual(sample_aggregator.num_samples, 1) - self.assertEqual(sample_aggregator.sum_currents, 3.14159265359) - - def test_transform_buffer_sums_currents(self): - sample_aggregator = SampleAggregator() - sample_aggregator._transform_buffer([ - HvpmReading([1.41421356237, 0, 0, 0, 0], 0.01), - HvpmReading([2.71828182846, 0, 0, 0, 0], 0.99), - HvpmReading([3.14159265359, 0, 0, 0, 0], 1.00), - ]) - - self.assertEqual(sample_aggregator.num_samples, 3) - self.assertAlmostEqual(sample_aggregator.sum_currents, 7.27408804442) - - -class DownSamplerTest(unittest.TestCase): - """Unit tests the DownSampler class.""" - - def test_transform_buffer_downsamples_without_leftovers(self): - downsampler = DownSampler(2) - buffer = [ - HvpmReading([2, 0, 0, 0, 0], .01), - HvpmReading([4, 0, 0, 0, 0], .03), - HvpmReading([6, 0, 0, 0, 0], .05), - HvpmReading([8, 0, 0, 0, 0], .07), - HvpmReading([10, 0, 0, 0, 0], .09), - HvpmReading([12, 0, 0, 0, 0], .011), - ] - - values = downsampler._transform_buffer(buffer) - - self.assertEqual(len(values), len(buffer) / 2) - for i, down_sample in enumerate(values): - self.assertAlmostEqual( - down_sample.main_current, - ((buffer[2 * i] + buffer[2 * i + 1]) / 2).main_current) - - def test_transform_stores_unused_values_in_leftovers(self): - downsampler = DownSampler(3) - buffer = [ - HvpmReading([2, 0, 0, 0, 0], .01), - HvpmReading([4, 0, 0, 0, 0], .03), - HvpmReading([6, 0, 0, 0, 0], .05), - HvpmReading([8, 0, 0, 0, 0], .07), - HvpmReading([10, 0, 0, 0, 0], .09), - ] - - downsampler._transform_buffer(buffer) - - self.assertEqual(len(downsampler._leftovers), 2) - self.assertIn(buffer[-2], downsampler._leftovers) - self.assertIn(buffer[-1], downsampler._leftovers) - - def test_transform_uses_leftovers_on_next_calculation(self): - downsampler = DownSampler(3) - starting_leftovers = [ - HvpmReading([2, 0, 0, 0, 0], .01), - HvpmReading([4, 0, 0, 0, 0], .03), - ] - downsampler._leftovers = starting_leftovers - buffer = [ - HvpmReading([6, 0, 0, 0, 0], .05), - HvpmReading([8, 0, 0, 0, 0], .07), - HvpmReading([10, 0, 0, 0, 0], .09), - HvpmReading([12, 0, 0, 0, 0], .011) - ] - - values = downsampler._transform_buffer(buffer) - - self.assertEqual(len(values), 2) - self.assertNotIn(starting_leftovers[0], downsampler._leftovers) - self.assertNotIn(starting_leftovers[1], downsampler._leftovers) - - self.assertAlmostEqual( - values[0].main_current, - statistics.mean([ - starting_leftovers[0].main_current, - starting_leftovers[1].main_current, - buffer[0].main_current, - ])) - self.assertAlmostEqual( - values[1].main_current, - statistics.mean([ - buffer[1].main_current, - buffer[2].main_current, - buffer[3].main_current, - ])) - - -if __name__ == '__main__': - unittest.main() diff --git a/acts/framework/tests/controllers/rohdeschwarz_lib/__init__.py b/acts/framework/tests/controllers/rohdeschwarz_lib/__init__.py deleted file mode 100644 index e69de29bb2..0000000000 --- a/acts/framework/tests/controllers/rohdeschwarz_lib/__init__.py +++ /dev/null diff --git a/acts/framework/tests/controllers/rohdeschwarz_lib/contest_test.py b/acts/framework/tests/controllers/rohdeschwarz_lib/contest_test.py deleted file mode 100644 index 5427bd5137..0000000000 --- a/acts/framework/tests/controllers/rohdeschwarz_lib/contest_test.py +++ /dev/null @@ -1,259 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from acts import base_test -from acts import asserts -from acts.controllers.rohdeschwarz_lib import contest -from unittest import mock -import socket -import time - - -class ContestTest(base_test.BaseTestClass): - """ Unit tests for the contest controller.""" - - LOCAL_HOST_IP = '127.0.0.1' - - def test_automation_server_end_to_end(self): - """ End to end test for the Contest object's ability to start an - Automation Server and respond to the commands sent through the - socket interface. """ - - automation_port = 5555 - - # Instantiate the mock Contest object. This will start a thread in the - # background running the Automation server. - with mock.patch('zeep.client.Client') as zeep_client: - - # Create a MagicMock instance - zeep_client.return_value = mock.MagicMock() - - controller = contest.Contest( - logger=self.log, - remote_ip=None, - remote_port=None, - automation_listen_ip=self.LOCAL_HOST_IP, - automation_port=automation_port, - dut_on_func=None, - dut_off_func=None, - ftp_pwd=None, - ftp_usr=None) - - # Give some time for the server to initialize as it's running on - # a different thread. - time.sleep(0.01) - - # Start a socket connection and send a command - with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: - s.connect((self.LOCAL_HOST_IP, automation_port)) - s.sendall(b'AtTestcaseStart') - data = s.recv(1024) - asserts.assert_true(data == b'OK\n', "Received OK response.") - - controller.destroy() - - def test_automation_protocol_calls_dut_off_func_for_on_command(self): - """ Tests the AutomationProtocol's ability to turn the DUT off - upon receiving the requests.""" - - dut_on_func = mock.Mock() - protocol = contest.AutomationServer.AutomationProtocol( - mock.Mock(), dut_on_func, mock.Mock()) - protocol.send_ok = mock.Mock() - protocol.data_received(b'DUT_SWITCH_ON') - asserts.assert_true(dut_on_func.called, 'Function was not called.') - asserts.assert_true(protocol.send_ok.called, 'OK response not sent.') - - def test_automation_protocol_calls_dut_on_func_for_off_command(self): - """ Tests the Automation server's ability to turn the DUT on - upon receiving the requests.""" - - dut_off_func = mock.Mock() - protocol = contest.AutomationServer.AutomationProtocol( - mock.Mock(), mock.Mock(), dut_off_func) - protocol.send_ok = mock.Mock() - protocol.data_received(b'DUT_SWITCH_OFF') - asserts.assert_true(dut_off_func.called, 'Function was not called.') - asserts.assert_true(protocol.send_ok.called, 'OK response not sent.') - - def test_automation_protocol_handles_testcase_start_command(self): - """ Tests the Automation server's ability to handle a testcase start - command.""" - - protocol = contest.AutomationServer.AutomationProtocol( - mock.Mock(), mock.Mock(), None) - protocol.send_ok = mock.Mock() - protocol.data_received(b'AtTestcaseStart name_of_the_testcase') - asserts.assert_true(protocol.send_ok.called, 'OK response not sent.') - - def test_automation_protocol_handles_testplan_start_command(self): - """ Tests the Automation server's ability to handle a testplan start - command.""" - - protocol = contest.AutomationServer.AutomationProtocol( - mock.Mock(), mock.Mock(), None) - protocol.send_ok = mock.Mock() - protocol.data_received(b'AtTestplanStart') - asserts.assert_true(protocol.send_ok.called, 'OK response not sent.') - - def test_automation_protocol_handles_testcase_end_command(self): - """ Tests the Automation server's ability to handle a testcase end - command.""" - - protocol = contest.AutomationServer.AutomationProtocol( - mock.Mock(), mock.Mock(), None) - protocol.send_ok = mock.Mock() - protocol.data_received(b'AfterTestcase') - asserts.assert_true(protocol.send_ok.called, 'OK response not sent.') - - def test_automation_protocol_handles_testplan_end_command(self): - """ Tests the Automation server's ability to handle a testplan start - command.""" - - protocol = contest.AutomationServer.AutomationProtocol( - mock.Mock(), mock.Mock(), None) - protocol.send_ok = mock.Mock() - protocol.data_received(b'AfterTestplan') - asserts.assert_true(protocol.send_ok.called, 'OK response not sent.') - - # Makes all time.sleep commands call a mock function that returns - # immediately, rather than sleeping. - @mock.patch('time.sleep') - # Prevents the controller to try to download the results from the FTP server - @mock.patch('acts.controllers.gnssinst_lib.rohdeschwarz.contest' - '.Contest.pull_test_results') - def test_execute_testplan_stops_reading_output_on_exit_line( - self, time_mock, results_func_mock): - """ Makes sure that execute_test plan returns after receiving an - exit code. - - Args: - time_mock: time.sleep mock object. - results_func_mock: Contest.pull_test_results mock object. - """ - - service_output = mock.Mock() - # An array of what return values. If a value is an Exception, the - # Exception is raised instead. - service_output.side_effect = [ - 'Output line 1\n', 'Output line 2\n', - 'Testplan Directory: \\\\a\\b\\c\n' - 'Exit code: 0\n', - AssertionError('Tried to read output after exit code was sent.') - ] - - with mock.patch('zeep.client.Client') as zeep_client: - zeep_client.return_value.service.DoGetOutput = service_output - controller = contest.Contest( - logger=self.log, - remote_ip=None, - remote_port=None, - automation_listen_ip=None, - automation_port=None, - dut_on_func=None, - dut_off_func=None, - ftp_usr=None, - ftp_pwd=None) - - controller.execute_testplan('TestPlan') - controller.destroy() - - # Makes all time.sleep commands call a mock function that returns - # immediately, rather than sleeping. - @mock.patch('time.sleep') - # Prevents the controller to try to download the results from the FTP server - @mock.patch.object(contest.Contest, 'pull_test_results') - def test_execute_testplan_detects_results_directory( - self, time_mock, results_func_mock): - """ Makes sure that execute_test is able to detect the testplan - directory from the test output. - - Args: - time_mock: time.sleep mock object. - results_func_mock: Contest.pull_test_results mock object. - """ - - results_directory = 'results\directory\\name' - - service_output = mock.Mock() - # An array of what return values. If a value is an Exception, the - # Exception is raised instead. - service_output.side_effect = [ - 'Testplan Directory: {}{}\\ \n'.format( - contest.Contest.FTP_ROOT, results_directory), 'Exit code: 0\n' - ] - - with mock.patch('zeep.client.Client') as zeep_client: - zeep_client.return_value.service.DoGetOutput = service_output - controller = contest.Contest( - logger=self.log, - remote_ip=None, - remote_port=None, - automation_listen_ip=None, - automation_port=None, - dut_on_func=None, - dut_off_func=None, - ftp_usr=None, - ftp_pwd=None) - - controller.execute_testplan('TestPlan') - - controller.pull_test_results.assert_called_with(results_directory) - controller.destroy() - - # Makes all time.sleep commands call a mock function that returns - # immediately, rather than sleeping. - @mock.patch('time.sleep') - # Prevents the controller to try to download the results from the FTP server - @mock.patch.object(contest.Contest, 'pull_test_results') - def test_execute_testplan_fails_when_contest_is_unresponsive( - self, time_mock, results_func_mock): - """ Makes sure that execute_test plan returns after receiving an - exit code. - - Args: - time_mock: time.sleep mock object. - results_func_mock: Contest.pull_test_results mock object. - """ - - service_output = mock.Mock() - # An array of what return values. If a value is an Exception, the - # Exception is raised instead. - mock_output = [None] * contest.Contest.MAXIMUM_OUTPUT_READ_RETRIES - mock_output.append( - AssertionError('Test did not failed after too many ' - 'unsuccessful retries.')) - service_output.side_effect = mock_output - - with mock.patch('zeep.client.Client') as zeep_client: - zeep_client.return_value.service.DoGetOutput = service_output - controller = contest.Contest( - logger=self.log, - remote_ip=None, - remote_port=None, - automation_listen_ip=None, - automation_port=None, - dut_on_func=None, - dut_off_func=None, - ftp_usr=None, - ftp_pwd=None) - - try: - controller.execute_testplan('TestPlan') - except RuntimeError: - pass - - controller.destroy() diff --git a/acts/framework/tests/event/event_bus_integration_test.py b/acts/framework/tests/event/event_bus_integration_test.py index c58727df3f..7dadf40377 100755 --- a/acts/framework/tests/event/event_bus_integration_test.py +++ b/acts/framework/tests/event/event_bus_integration_test.py @@ -13,7 +13,6 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. -import shutil import tempfile import unittest from threading import RLock @@ -66,9 +65,6 @@ class EventBusIntegrationTest(TestCase): TestClass.instance_event_received = [] TestClass.static_event_received = [] - def tearDown(self): - shutil.rmtree(self.tmp_dir) - def test_test_class_subscribed_fn_receives_event(self): """Tests that TestClasses have their subscribed functions called.""" TestRunner(self.config, [('TestClass', [])]).run(TestClass) diff --git a/acts/framework/tests/event/event_unittest_bundle.py b/acts/framework/tests/event/event_unittest_bundle.py index 56c3e090bd..b310cb58bd 100755 --- a/acts/framework/tests/event/event_unittest_bundle.py +++ b/acts/framework/tests/event/event_unittest_bundle.py @@ -14,14 +14,13 @@ # See the License for the specific language governing permissions and # limitations under the License. -import os import sys import unittest def main(): suite = unittest.TestLoader().discover( - start_dir=os.path.dirname(__file__), pattern='*_test.py') + start_dir='./acts/framework/tests/event', pattern='*_test.py') return suite diff --git a/acts/framework/tests/libs/logging/logging_unittest_bundle.py b/acts/framework/tests/libs/logging/logging_unittest_bundle.py index cf8e81e51f..6f384ca167 100755 --- a/acts/framework/tests/libs/logging/logging_unittest_bundle.py +++ b/acts/framework/tests/libs/logging/logging_unittest_bundle.py @@ -14,14 +14,13 @@ # See the License for the specific language governing permissions and # limitations under the License. -import os import sys import unittest def main(): suite = unittest.TestLoader().discover( - start_dir=os.path.dirname(__file__), pattern='*_test.py') + start_dir='./acts/framework/tests/libs/logging', pattern='*_test.py') return suite diff --git a/acts/framework/tests/libs/metrics/unittest_bundle.py b/acts/framework/tests/libs/metrics/unittest_bundle.py index 87d5bc5d3e..8bf7411ac5 100755 --- a/acts/framework/tests/libs/metrics/unittest_bundle.py +++ b/acts/framework/tests/libs/metrics/unittest_bundle.py @@ -14,14 +14,13 @@ # See the License for the specific language governing permissions and # limitations under the License. -import os import sys import unittest def main(): suite = unittest.TestLoader().discover( - start_dir=os.path.dirname(__file__), pattern='*_test.py') + start_dir='./acts/framework/tests/libs/metrics', pattern='*_test.py') return suite diff --git a/acts/framework/tests/libs/ota/unittest_bundle.py b/acts/framework/tests/libs/ota/unittest_bundle.py index 87d5bc5d3e..e0019f190f 100755 --- a/acts/framework/tests/libs/ota/unittest_bundle.py +++ b/acts/framework/tests/libs/ota/unittest_bundle.py @@ -14,14 +14,13 @@ # See the License for the specific language governing permissions and # limitations under the License. -import os import sys import unittest def main(): suite = unittest.TestLoader().discover( - start_dir=os.path.dirname(__file__), pattern='*_test.py') + start_dir='./acts/framework/tests/libs/ota', pattern='*_test.py') return suite diff --git a/acts/framework/tests/libs/proc/proc_unittest_bundle.py b/acts/framework/tests/libs/proc/proc_unittest_bundle.py index cf8e81e51f..2a255878a5 100755 --- a/acts/framework/tests/libs/proc/proc_unittest_bundle.py +++ b/acts/framework/tests/libs/proc/proc_unittest_bundle.py @@ -14,14 +14,13 @@ # See the License for the specific language governing permissions and # limitations under the License. -import os import sys import unittest def main(): suite = unittest.TestLoader().discover( - start_dir=os.path.dirname(__file__), pattern='*_test.py') + start_dir='./acts/framework/tests/libs/proc', pattern='*_test.py') return suite diff --git a/acts/framework/tests/metrics/loggers/blackbox_test.py b/acts/framework/tests/metrics/loggers/blackbox_test.py index d40b00dc79..3304eebcc0 100644 --- a/acts/framework/tests/metrics/loggers/blackbox_test.py +++ b/acts/framework/tests/metrics/loggers/blackbox_test.py @@ -13,19 +13,17 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. -import shutil + +from mock import Mock +from mock import patch import tempfile import unittest -import warnings from unittest import TestCase - from acts.base_test import BaseTestClass from acts.metrics.loggers.blackbox import BlackboxMetricLogger from acts.test_runner import TestRunner -from mock import Mock -from mock import patch -COMPILE_PROTO = 'acts.metrics.logger.MetricLogger._compile_proto' +COMPILE_IMPORT_PROTO = 'acts.metrics.logger.compile_import_proto' GET_CONTEXT_FOR_EVENT = 'acts.metrics.logger.get_context_for_event' PROTO_METRIC_PUBLISHER = 'acts.metrics.logger.ProtoMetricPublisher' @@ -43,30 +41,38 @@ class BlackboxMetricLoggerTest(TestCase): self.publisher = Mock() self._get_blackbox_identifier = lambda: str(id(self.context)) - @patch(COMPILE_PROTO) - def test_default_init_attributes(self, compile_proto): + @patch(COMPILE_IMPORT_PROTO) + def test_default_init_attributes(self, compile_import_proto): metric_name = Mock() - compile_proto.return_value = self.proto_module + compile_import_proto.return_value = self.proto_module logger = BlackboxMetricLogger(metric_name) self.assertEqual(logger.metric_name, metric_name) self.assertEqual(logger.proto_module, self.proto_module) + self.assertEqual(logger.result_attr, 'result') self.assertIsNone(logger.metric_key) - @patch(COMPILE_PROTO) - def test_init_with_params(self, compile_proto): + @patch(COMPILE_IMPORT_PROTO) + def test_init_with_params(self, compile_import_proto): metric_name = Mock() + result_attr = Mock() metric_key = Mock() - logger = BlackboxMetricLogger(metric_name, metric_key=metric_key) + logger = BlackboxMetricLogger(metric_name, + result_attr=result_attr, + metric_key=metric_key) + self.assertEqual(logger.result_attr, result_attr) self.assertEqual(logger.metric_key, metric_key) @patch(PROTO_METRIC_PUBLISHER) @patch(GET_CONTEXT_FOR_EVENT) - @patch(COMPILE_PROTO) - def test_init_with_event(self, compile_proto, get_context, publisher_cls): + @patch(COMPILE_IMPORT_PROTO) + def test_init_with_event(self, + compile_import_proto, + get_context, + publisher_cls): metric_name = Mock() logger = BlackboxMetricLogger(metric_name, event=self.event) @@ -74,34 +80,72 @@ class BlackboxMetricLoggerTest(TestCase): self.assertIsNotNone(logger.context) self.assertIsNotNone(logger.publisher) - @patch(COMPILE_PROTO) - def test_end_populates_result(self, compile_proto): + @patch(COMPILE_IMPORT_PROTO) + def test_end_populates_result(self, compile_import_proto): result = Mock() - compile_proto.return_value = self.proto_module + compile_import_proto.return_value = self.proto_module self.proto_module.ActsBlackboxMetricResult.return_value = result logger = BlackboxMetricLogger(self.TEST_METRIC_NAME) logger.context = self.context logger.publisher = self.publisher logger.context.identifier = 'Class.test' - logger.metric_value = 'foo' logger.end(self.event) self.assertEqual(result.test_identifier, 'Class#test') - self.assertEqual(result.metric_key, - '%s.%s' % ('Class#test', self.TEST_METRIC_NAME)) - self.assertEqual(result.metric_value, logger.metric_value) + self.assertEqual(result.metric_key, '%s.%s' % ('Class#test', + self.TEST_METRIC_NAME)) + self.assertEqual(result.metric_value, self.context.test_class.result) + + @patch(COMPILE_IMPORT_PROTO) + def test_end_uses_custom_result_attr(self, compile_import_proto): + result = Mock() + compile_import_proto.return_value = self.proto_module + self.proto_module.ActsBlackboxMetricResult.return_value = result + result_attr = 'result_attr' + + logger = BlackboxMetricLogger(self.TEST_METRIC_NAME, + result_attr=result_attr) + logger.context = self.context + logger.publisher = self.publisher + logger._get_blackbox_identifier = self._get_blackbox_identifier - @patch(COMPILE_PROTO) + logger.end(self.event) + + self.assertEqual(result.metric_value, + getattr(self.context.test_class, result_attr)) + + @patch(COMPILE_IMPORT_PROTO) + def test_end_uses_metric_value_on_result_attr_none(self, + compile_import_proto): + result = Mock() + expected_result = Mock() + compile_import_proto.return_value = self.proto_module + self.proto_module.ActsBlackboxMetricResult.return_value = result + result_attr = None + + logger = BlackboxMetricLogger(self.TEST_METRIC_NAME, + result_attr=result_attr) + logger.context = self.context + logger.publisher = self.publisher + logger._get_blackbox_identifier = self._get_blackbox_identifier + logger.metric_value = expected_result + logger.end(self.event) + + self.assertEqual(result.metric_value, expected_result) + + @patch(COMPILE_IMPORT_PROTO) def test_end_uses_metric_value_on_metric_value_not_none( - self, compile_proto): + self, compile_import_proto): result = Mock() expected_result = Mock() - compile_proto.return_value = self.proto_module + compile_import_proto.return_value = self.proto_module self.proto_module.ActsBlackboxMetricResult.return_value = result + result_attr = 'result_attr' - logger = BlackboxMetricLogger(self.TEST_METRIC_NAME) + logger = BlackboxMetricLogger(self.TEST_METRIC_NAME, + result_attr=result_attr) logger.context = self.context logger.context.identifier = 'Class.test' logger.publisher = self.publisher @@ -110,19 +154,18 @@ class BlackboxMetricLoggerTest(TestCase): self.assertEqual(result.metric_value, expected_result) - @patch(COMPILE_PROTO) - def test_end_uses_custom_metric_key(self, compile_proto): + @patch(COMPILE_IMPORT_PROTO) + def test_end_uses_custom_metric_key(self, compile_import_proto): result = Mock() - compile_proto.return_value = self.proto_module + compile_import_proto.return_value = self.proto_module self.proto_module.ActsBlackboxMetricResult.return_value = result metric_key = 'metric_key' - logger = BlackboxMetricLogger( - self.TEST_METRIC_NAME, metric_key=metric_key) + logger = BlackboxMetricLogger(self.TEST_METRIC_NAME, + metric_key=metric_key) logger.context = self.context logger.publisher = self.publisher logger._get_blackbox_identifier = self._get_blackbox_identifier - logger.metric_value = 'foo' logger.end(self.event) @@ -130,91 +173,70 @@ class BlackboxMetricLoggerTest(TestCase): self.assertEqual(result.metric_key, expected_metric_key) @patch('acts.metrics.loggers.blackbox.ProtoMetric') - @patch(COMPILE_PROTO) - def test_end_does_publish(self, compile_proto, proto_metric_cls): + @patch(COMPILE_IMPORT_PROTO) + def test_end_does_publish(self, compile_import_proto, proto_metric_cls): result = Mock() - compile_proto.return_value = self.proto_module + compile_import_proto.return_value = self.proto_module self.proto_module.ActsBlackboxMetricResult.return_value = result metric_key = 'metric_key' - logger = BlackboxMetricLogger( - self.TEST_METRIC_NAME, metric_key=metric_key) + logger = BlackboxMetricLogger(self.TEST_METRIC_NAME, + metric_key=metric_key) logger.context = self.context logger.publisher = self.publisher logger._get_blackbox_identifier = self._get_blackbox_identifier - logger.metric_value = 'foo' logger.end(self.event) - proto_metric_cls.assert_called_once_with( - name=self.TEST_FILE_NAME, data=result) + proto_metric_cls.assert_called_once_with(name=self.TEST_FILE_NAME, + data=result) self.publisher.publish.assert_called_once_with( - [proto_metric_cls.return_value]) - - -class _BaseTestClassWithCleanup(BaseTestClass): - """Subclass of ACTS base test that generates a temp directory for - proto compiler output and cleans up upon exit. - """ - def __init__(self, controllers): - super().__init__(controllers) - self.proto_dir = tempfile.mkdtemp() - - def __del__(self): - shutil.rmtree(self.proto_dir) + proto_metric_cls.return_value) class BlackboxMetricLoggerIntegrationTest(TestCase): """Integration tests for BlackboxMetricLogger.""" - def setUp(self): - warnings.simplefilter('ignore', ResourceWarning) - @patch('acts.test_runner.sys') @patch('acts.test_runner.utils') @patch('acts.test_runner.importlib') def run_acts_test(self, test_class, importlib, utils, sys): config = { - 'testbed': { - 'name': 'SampleTestBed', + "testbed": { + "name": "SampleTestBed", }, - 'logpath': tempfile.mkdtemp(), - 'cli_args': None, - 'testpaths': ['./'], + "logpath": tempfile.mkdtemp(), + "cli_args": None, + "testpaths": ["./"], } mockModule = Mock() setattr(mockModule, test_class.__name__, test_class) utils.find_files.return_value = [(None, None, None)] importlib.import_module.return_value = mockModule - runner = TestRunner(config, [( - test_class.__name__, - None, - )]) + runner = TestRunner(config, [(test_class.__name__, None,)]) runner.run() runner.stop() - shutil.rmtree(config['logpath']) return runner @patch('acts.metrics.logger.ProtoMetricPublisher') def test_test_case_metric(self, publisher_cls): result = 5.0 - class MyTest(_BaseTestClassWithCleanup): + class MyTest(BaseTestClass): def __init__(self, controllers): - super().__init__(controllers) - self.tests = ('test_case', ) - self.metric = BlackboxMetricLogger.for_test_case( - 'my_metric', compiler_out=self.proto_dir) + BaseTestClass.__init__(self, controllers) + self.tests = ('test_case',) + BlackboxMetricLogger.for_test_case('my_metric') def test_case(self): - self.metric.metric_value = result + self.result = result self.run_acts_test(MyTest) args_list = publisher_cls().publish.call_args_list self.assertEqual(len(args_list), 1) - metric = self.__get_only_arg(args_list[0])[0] + metric = self.__get_only_arg(args_list[0]) self.assertEqual(metric.name, 'blackbox_my_metric') self.assertEqual(metric.data.test_identifier, 'MyTest#test_case') self.assertEqual(metric.data.metric_key, 'MyTest#test_case.my_metric') @@ -224,90 +246,102 @@ class BlackboxMetricLoggerIntegrationTest(TestCase): def test_multiple_test_case_metrics(self, publisher_cls): result = 5.0 - class MyTest(_BaseTestClassWithCleanup): + class MyTest(BaseTestClass): def __init__(self, controllers): - super().__init__(controllers) - self.tests = ('test_case', ) - self.metric_1 = ( - BlackboxMetricLogger.for_test_case( - 'my_metric_1', compiler_out=self.proto_dir)) - self.metric_2 = ( - BlackboxMetricLogger.for_test_case( - 'my_metric_2', compiler_out=self.proto_dir)) + BaseTestClass.__init__(self, controllers) + self.tests = ('test_case',) + BlackboxMetricLogger.for_test_case('my_metric_1') + BlackboxMetricLogger.for_test_case('my_metric_2') def test_case(self): - self.metric_1.metric_value = result - self.metric_2.metric_value = result + self.result = result self.run_acts_test(MyTest) args_list = publisher_cls().publish.call_args_list self.assertEqual(len(args_list), 2) - metrics = [self.__get_only_arg(args)[0] for args in args_list] - self.assertEqual({metric.name - for metric in metrics}, - {'blackbox_my_metric_1', 'blackbox_my_metric_2'}) - self.assertEqual({metric.data.test_identifier - for metric in metrics}, {'MyTest#test_case'}) + metrics = [self.__get_only_arg(args) for args in args_list] self.assertEqual( - {metric.data.metric_key - for metric in metrics}, + {metric.name for metric in metrics}, + {'blackbox_my_metric_1', 'blackbox_my_metric_2'}) + self.assertEqual( + {metric.data.test_identifier for metric in metrics}, + {'MyTest#test_case'}) + self.assertEqual( + {metric.data.metric_key for metric in metrics}, {'MyTest#test_case.my_metric_1', 'MyTest#test_case.my_metric_2'}) - self.assertEqual({metric.data.metric_value - for metric in metrics}, {result}) + self.assertEqual( + {metric.data.metric_value for metric in metrics}, + {result}) @patch('acts.metrics.logger.ProtoMetricPublisher') def test_test_case_metric_with_custom_key(self, publisher_cls): result = 5.0 - class MyTest(_BaseTestClassWithCleanup): + class MyTest(BaseTestClass): def __init__(self, controllers): - super().__init__(controllers) - self.tests = ('test_case', ) - self.metrics = BlackboxMetricLogger.for_test_case( - 'my_metric', metric_key='my_metric_key', - compiler_out=self.proto_dir) + BaseTestClass.__init__(self, controllers) + self.tests = ('test_case',) + BlackboxMetricLogger.for_test_case('my_metric', + metric_key='my_metric_key') def test_case(self): - self.metrics.metric_value = result + self.result = result self.run_acts_test(MyTest) args_list = publisher_cls().publish.call_args_list self.assertEqual(len(args_list), 1) - metric = self.__get_only_arg(args_list[0])[0] + metric = self.__get_only_arg(args_list[0]) self.assertEqual(metric.data.metric_key, 'my_metric_key.my_metric') @patch('acts.metrics.logger.ProtoMetricPublisher') + def test_test_case_metric_with_custom_result_attr(self, publisher_cls): + true_result = 5.0 + other_result = 10.0 + + class MyTest(BaseTestClass): + def __init__(self, controllers): + BaseTestClass.__init__(self, controllers) + self.tests = ('test_case',) + BlackboxMetricLogger.for_test_case('my_metric', + result_attr='true_result') + + def test_case(self): + self.true_result = true_result + self.result = other_result + + self.run_acts_test(MyTest) + + args_list = publisher_cls().publish.call_args_list + self.assertEqual(len(args_list), 1) + metric = self.__get_only_arg(args_list[0]) + self.assertEqual(metric.data.metric_value, true_result) + + @patch('acts.metrics.logger.ProtoMetricPublisher') def test_test_class_metric(self, publisher_cls): publisher_cls().publish = Mock() result_1 = 5.0 result_2 = 8.0 - class MyTest(_BaseTestClassWithCleanup): + class MyTest(BaseTestClass): def __init__(self, controllers): - super().__init__(controllers) - self.tests = ( - 'test_case_1', - 'test_case_2', - ) - self.metric = BlackboxMetricLogger.for_test_class( - 'my_metric', compiler_out=self.proto_dir) - - def setup_class(self): - self.metric.metric_value = 0 + BaseTestClass.__init__(self, controllers) + self.tests = ('test_case_1', 'test_case_2',) + BlackboxMetricLogger.for_test_class('my_metric') + self.result = 0 def test_case_1(self): - self.metric.metric_value += result_1 + self.result += result_1 def test_case_2(self): - self.metric.metric_value += result_2 + self.result += result_2 self.run_acts_test(MyTest) args_list = publisher_cls().publish.call_args_list self.assertEqual(len(args_list), 1) - metric = self.__get_only_arg(args_list[0])[0] + metric = self.__get_only_arg(args_list[0]) self.assertEqual(metric.data.metric_value, result_1 + result_2) self.assertEqual(metric.data.test_identifier, MyTest.__name__) diff --git a/acts/framework/tests/metrics/unittest_bundle.py b/acts/framework/tests/metrics/unittest_bundle.py index 56c3e090bd..9ba0bc5312 100755 --- a/acts/framework/tests/metrics/unittest_bundle.py +++ b/acts/framework/tests/metrics/unittest_bundle.py @@ -14,14 +14,13 @@ # See the License for the specific language governing permissions and # limitations under the License. -import os import sys import unittest def main(): suite = unittest.TestLoader().discover( - start_dir=os.path.dirname(__file__), pattern='*_test.py') + start_dir='./acts/framework/tests/metrics/', pattern='*_test.py') return suite diff --git a/acts/framework/tests/test_runner_test.py b/acts/framework/tests/test_runner_test.py index b48f338e82..65f50c9819 100755 --- a/acts/framework/tests/test_runner_test.py +++ b/acts/framework/tests/test_runner_test.py @@ -14,15 +14,15 @@ # See the License for the specific language governing permissions and # limitations under the License. -import shutil -import tempfile -import unittest - from mock import Mock -from mock import patch +import unittest +import tempfile +from acts import keys from acts import test_runner +import mock_controller + class TestRunnerTest(unittest.TestCase): def setUp(self): @@ -38,16 +38,19 @@ class TestRunnerTest(unittest.TestCase): "extra_param": "haha" } - def tearDown(self): - shutil.rmtree(self.tmp_dir) + def create_mock_context(self): + context = Mock() + context.__exit__ = Mock() + context.__enter__ = Mock() + return context - @staticmethod - def create_test_classes(class_names): - return {class_name: Mock() for class_name in class_names} + def create_test_classes(self, class_names): + return { + class_name: Mock(return_value=self.create_mock_context()) + for class_name in class_names + } - @patch('acts.records.TestResult') - @patch.object(test_runner.TestRunner, '_write_results_to_file') - def test_class_name_pattern_single(self, *_): + def test_class_name_pattern_single(self): class_names = ['test_class_1', 'test_class_2'] pattern = 'test*1' tr = test_runner.TestRunner(self.base_mock_test_config, [(pattern, @@ -59,9 +62,7 @@ class TestRunnerTest(unittest.TestCase): self.assertTrue(test_classes[class_names[0]].called) self.assertFalse(test_classes[class_names[1]].called) - @patch('acts.records.TestResult') - @patch.object(test_runner.TestRunner, '_write_results_to_file') - def test_class_name_pattern_multi(self, *_): + def test_class_name_pattern_multi(self): class_names = ['test_class_1', 'test_class_2', 'other_name'] pattern = 'test_class*' tr = test_runner.TestRunner(self.base_mock_test_config, [(pattern, @@ -74,9 +75,7 @@ class TestRunnerTest(unittest.TestCase): self.assertTrue(test_classes[class_names[1]].called) self.assertFalse(test_classes[class_names[2]].called) - @patch('acts.records.TestResult') - @patch.object(test_runner.TestRunner, '_write_results_to_file') - def test_class_name_pattern_question_mark(self, *_): + def test_class_name_pattern_question_mark(self): class_names = ['test_class_1', 'test_class_12'] pattern = 'test_class_?' tr = test_runner.TestRunner(self.base_mock_test_config, [(pattern, @@ -88,9 +87,7 @@ class TestRunnerTest(unittest.TestCase): self.assertTrue(test_classes[class_names[0]].called) self.assertFalse(test_classes[class_names[1]].called) - @patch('acts.records.TestResult') - @patch.object(test_runner.TestRunner, '_write_results_to_file') - def test_class_name_pattern_char_seq(self, *_): + def test_class_name_pattern_char_seq(self): class_names = ['test_class_1', 'test_class_2', 'test_class_3'] pattern = 'test_class_[1357]' tr = test_runner.TestRunner(self.base_mock_test_config, [(pattern, diff --git a/acts/framework/tests/test_utils/instrumentation/adb_command_types_test.py b/acts/framework/tests/test_utils/instrumentation/adb_command_types_test.py deleted file mode 100755 index d934cc0708..0000000000 --- a/acts/framework/tests/test_utils/instrumentation/adb_command_types_test.py +++ /dev/null @@ -1,134 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import unittest - -from acts.test_utils.instrumentation.adb_command_types import DeviceState -from acts.test_utils.instrumentation.adb_command_types import DeviceSetprop -from acts.test_utils.instrumentation.adb_command_types import DeviceSetting -from acts.test_utils.instrumentation.adb_command_types import \ - DeviceBinaryCommandSeries - - -class AdbCommandTypesTest(unittest.TestCase): - - def test_device_state(self): - """Tests that DeviceState returns the correct ADB command with - set_value. - """ - base_cmd = 'run command with vals' - val1 = 15 - val2 = 24 - device_state = DeviceState(base_cmd) - self.assertEqual(device_state.set_value(val1, val2), - 'run command with vals 15 24') - - def test_device_state_with_base_cmd_as_format_string(self): - """Tests that DeviceState returns the correct ADB command if the base - command is given as a format string. - """ - base_cmd = 'echo %s > /test/data' - val = 23 - device_state = DeviceState(base_cmd) - self.assertEqual(device_state.set_value(val), 'echo 23 > /test/data') - - def test_device_binary_state(self): - """Tests that DeviceState returns the correct ADB commands with toggle. - """ - on_cmd = 'enable this service' - off_cmd = 'disable the service' - device_binary_state = DeviceState('', on_cmd, off_cmd) - self.assertEqual(device_binary_state.toggle(True), on_cmd) - self.assertEqual(device_binary_state.toggle(False), off_cmd) - - def test_device_setprop(self): - """Tests that DeviceSetprop returns the correct ADB command with - set_value. - """ - prop = 'some.property' - val = 3 - device_setprop = DeviceSetprop(prop) - self.assertEqual(device_setprop.set_value(val), - 'setprop some.property 3') - - def test_device_binary_setprop(self): - """Tests that DeviceSetprop returns the correct ADB commands with - toggle. - """ - prop = 'some.other.property' - on_val = True - off_val = False - device_binary_setprop = DeviceSetprop(prop, on_val, off_val) - self.assertEqual(device_binary_setprop.toggle(True), - 'setprop some.other.property True') - self.assertEqual(device_binary_setprop.toggle(False), - 'setprop some.other.property False') - - def test_device_setting(self): - """Tests that DeviceSetting returns the correct ADB command with - set_value. - """ - namespace = 'global' - setting = 'some_new_setting' - val = 10 - device_setting = DeviceSetting(namespace, setting) - self.assertEqual(device_setting.set_value(val), - 'settings put global some_new_setting 10') - - def test_device_binary_setting(self): - """Tests that DeviceSetting returns the correct ADB commands with - toggle. - """ - namespace = 'system' - setting = 'some_other_setting' - on_val = 'on' - off_val = 'off' - device_binary_setting = DeviceSetting( - namespace, setting, on_val, off_val) - self.assertEqual( - device_binary_setting.toggle(True), - 'settings put system some_other_setting on') - self.assertEqual( - device_binary_setting.toggle(False), - 'settings put system some_other_setting off') - - def test_device_binary_command_series(self): - """Tests that DeviceBinaryCommandSuite returns the correct ADB - commands. - """ - on_cmds = [ - 'settings put global test_setting on', - 'setprop test.prop 1', - 'svc test_svc enable' - ] - off_cmds = [ - 'settings put global test_setting off', - 'setprop test.prop 0', - 'svc test_svc disable' - ] - device_binary_command_series = DeviceBinaryCommandSeries( - [ - DeviceSetting('global', 'test_setting', 'on', 'off'), - DeviceSetprop('test.prop'), - DeviceState('svc test_svc', 'enable', 'disable') - ] - ) - self.assertEqual(device_binary_command_series.toggle(True), on_cmds) - self.assertEqual(device_binary_command_series.toggle(False), off_cmds) - - -if __name__ == "__main__": - unittest.main() diff --git a/acts/framework/tests/test_utils/instrumentation/config_wrapper_test.py b/acts/framework/tests/test_utils/instrumentation/config_wrapper_test.py deleted file mode 100755 index af582d5141..0000000000 --- a/acts/framework/tests/test_utils/instrumentation/config_wrapper_test.py +++ /dev/null @@ -1,120 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import mock -import unittest - -from acts.test_utils.instrumentation.config_wrapper import ConfigWrapper -from acts.test_utils.instrumentation.config_wrapper import InvalidParamError - - -REAL_PATHS = ['realpath/1', 'realpath/2'] -MOCK_CONFIG = { - 'big_int': 50000, - 'small_int': 5, - 'float': 7.77, - 'string': 'insert text here', - 'real_paths_only': REAL_PATHS, - 'real_and_fake_paths': [ - 'realpath/1', 'fakepath/0' - ], - 'inner_config': { - 'inner_val': 16 - } -} - - -class ConfigWrapperTest(unittest.TestCase): - """Unit tests for the Config Wrapper.""" - def setUp(self): - self.mock_config = ConfigWrapper(MOCK_CONFIG) - - def test_get_returns_correct_value(self): - """Test that get() returns the correct param value.""" - self.assertEqual(self.mock_config.get('big_int'), - MOCK_CONFIG['big_int']) - - def test_get_missing_param_returns_default(self): - """Test that get() returns the default value if no param with the - requested name is found. - """ - default_val = 17 - self.assertEqual(self.mock_config.get('missing', default=default_val), - default_val) - - def test_get_with_custom_verification_method(self): - """Test that get() verifies the param with the user-provided test - function. - """ - verifier = lambda i: i > 100 - msg = 'Value too small' - self.assertEqual(self.mock_config.get('big_int', verify_fn=verifier, - failure_msg=msg), - MOCK_CONFIG['big_int']) - with self.assertRaisesRegex(InvalidParamError, msg): - self.mock_config.get('small_int', verify_fn=verifier, - failure_msg=msg) - - def test_get_config(self): - """Test that get_config() returns an empty ConfigWrapper if no - sub-config exists with the given name. - """ - ret = self.mock_config.get_config('missing') - self.assertIsInstance(ret, ConfigWrapper) - self.assertFalse(ret) - - def test_get_int(self): - """Test that get_int() returns the value if it is an int, and raises - an exception if it isn't. - """ - self.assertEqual(self.mock_config.get_int('small_int'), - MOCK_CONFIG['small_int']) - with self.assertRaisesRegex(InvalidParamError, 'of type int'): - self.mock_config.get_int('float') - - def test_get_numeric(self): - """Test that get_numeric() returns the value if it is an int or float, - and raises an exception if it isn't. - """ - self.assertEqual(self.mock_config.get_numeric('small_int'), - MOCK_CONFIG['small_int']) - self.assertEqual(self.mock_config.get_numeric('float'), - MOCK_CONFIG['float']) - with self.assertRaisesRegex(InvalidParamError, 'of type int or float'): - self.mock_config.get_numeric('string') - - @mock.patch('os.path.exists', side_effect=lambda f: f in REAL_PATHS) - def test_get_files(self, *_): - """Test that get_files() returns the list of files only if all of the - paths actually exist. - """ - self.assertEqual(self.mock_config.get_files('real_paths_only'), - MOCK_CONFIG['real_paths_only']) - with self.assertRaisesRegex(InvalidParamError, 'Cannot resolve'): - self.mock_config.get_files('real_and_fake_paths') - - def test_config_wrapper_wraps_recursively(self): - """Test that dict values within the input config get transformed into - ConfigWrapper objects themselves. - """ - self.assertTrue( - isinstance(self.mock_config.get('inner_config'), ConfigWrapper)) - self.assertEqual( - self.mock_config.get('inner_config').get_int('inner_val'), 16) - - -if __name__ == '__main__': - unittest.main() diff --git a/acts/framework/tests/test_utils/instrumentation/data/sample.instrumentation_data_proto b/acts/framework/tests/test_utils/instrumentation/data/sample.instrumentation_data_proto deleted file mode 100644 index 42892d5f08..0000000000 --- a/acts/framework/tests/test_utils/instrumentation/data/sample.instrumentation_data_proto +++ /dev/null @@ -1,6 +0,0 @@ -a]INSTRUMENTATION_FAILED: com.google.android.powertests/androidx.test.runner.AndroidJUnitRunner -¬"§ -† -Error}Unable to find instrumentation info for: ComponentInfo{com.google.android.powertests/androidx.test.runner.AndroidJUnitRunner} - -idActivityManagerService
\ No newline at end of file diff --git a/acts/framework/tests/test_utils/instrumentation/data/sample_instrumentation_proto.txt b/acts/framework/tests/test_utils/instrumentation/data/sample_instrumentation_proto.txt deleted file mode 100644 index 6de10d7e0e..0000000000 --- a/acts/framework/tests/test_utils/instrumentation/data/sample_instrumentation_proto.txt +++ /dev/null @@ -1,17 +0,0 @@ -test_status { - result_code: -1 - results { - entries { - key: "Error" - value_string: "Unable to find instrumentation info for: ComponentInfo{com.google.android.powertests/androidx.test.runner.AndroidJUnitRunner}" - } - entries { - key: "id" - value_string: "ActivityManagerService" - } - } -} -session_status { - status_code: SESSION_ABORTED - error_text: "INSTRUMENTATION_FAILED: com.google.android.powertests/androidx.test.runner.AndroidJUnitRunner" -} diff --git a/acts/framework/tests/test_utils/instrumentation/data/sample_timestamp.instrumentation_data_proto b/acts/framework/tests/test_utils/instrumentation/data/sample_timestamp.instrumentation_data_proto deleted file mode 100644 index ecc75a50c7..0000000000 --- a/acts/framework/tests/test_utils/instrumentation/data/sample_timestamp.instrumentation_data_proto +++ /dev/null @@ -1,94 +0,0 @@ - -Æ"Á -6 -class-com.google.android.powertests.PartialWakelock - -current - -idAndroidJUnitRunner - -numtests -9 -stream/ -com.google.android.powertests.PartialWakelock: - -testpartialWakelock -À#"Ž -6 -class-com.google.android.powertests.PartialWakelock - -start-timestamp - -testpartialWakelock - - timestamp0Ôá—¤›[ - -timestamps-message*¬"--------- beginning of main -08-28 15:05:16.598 10178 7664 7664 I MonitoringInstr: Activities that are still in CREATED to STOPPED: 0 -08-28 15:05:16.601 10178 7664 7696 D com.google.android.powertests.PartialWakelock: fixture setup -08-28 15:05:16.601 10178 7664 7696 I com.android.test.power.utils.Screen: Setting Screen Off -08-28 15:05:16.684 10117 2426 7573 I ChromeSync: [Persistence,AffiliationManager] Fetching affiliations from the server. -08-28 15:05:16.721 10117 2426 7573 E ChromeSync: [Sync,SyncIntentOperation] Error handling the intent: Intent { act=android.intent.action.PACKAGE_ADDED dat=package:com.google.android.powertests flg=0x4000010 cmp=com.google.android.gms/.chimera.GmsIntentOperationService (has extras) }. -08-28 15:05:16.736 10117 2426 31227 I Icing : IndexChimeraService.getServiceInterface callingPackage=com.google.android.gms componentName=AppsCorpus serviceId=32 -08-28 15:05:16.737 10117 2426 16984 I Icing : IndexChimeraService.getServiceInterface callingPackage=com.google.android.gms componentName=AppsCorpus serviceId=36 ---------- beginning of system -08-28 15:05:16.774 1000 940 2043 W ProcessStats: Tracking association SourceState{7e3b0a1 com.google.android.gms.persistent/10117 ImpFg #71619} whose proc state 2 is better than process ProcessState{55175ae com.google.android.gms/10117 pkg=com.google.android.gms} proc state 3 (73 skipped) -08-28 15:05:16.808 10117 2426 6018 I Icing : Usage reports ok 0, Failed Usage reports 0, indexed 0, rejected 0 -08-28 15:05:16.840 1000 940 2512 I ActivityManager: Force stopping com.googlecode.android_scripting appid=1000 user=0: from pid 7728 -08-28 15:05:16.841 1000 940 2512 I ActivityManager: Killing 6654:com.googlecode.android_scripting/1000 (adj 965): stop com.googlecode.android_scripting -08-28 15:05:16.824 10117 2426 6018 I chatty : uid=10117(com.google.android.gms) lowpool[42] identical 1 line -08-28 15:05:16.846 10117 2426 6018 I Icing : Usage reports ok 0, Failed Usage reports 0, indexed 0, rejected 0 -08-28 15:05:16.852 radio 1559 1559 E PhoneInterfaceManager: [PhoneIntfMgr] getCarrierPackageNamesForIntent: No UICC -08-28 15:05:16.852 radio 1559 1559 D CarrierSvcBindHelper: No carrier app for: 0 -08-28 15:05:16.859 nfc 2452 2452 D RegisteredNfcFServicesCache: Service unchanged, not updating -08-28 15:05:16.863 media 796 905 D NuPlayerDriver: reset(0xe199b100) at state 4 -08-28 15:05:16.865 root 629 629 I Zygote : Process 6654 exited due to signal 9 (Killed) -08-28 15:05:16.865 media 796 6689 D NuPlayerDriver: notifyResetComplete(0xe199b100) -08-28 15:05:16.873 10117 2426 6018 I Icing : Usage reports ok 0, Failed Usage reports 0, indexed 0, rejected 0 -08-28 15:05:16.887 1000 940 1069 I libprocessgroup: Successfully killed process cgroup uid 1000 pid 6654 in 44ms -08-28 15:05:17.172 1000 647 647 I /vendor/bin/hw/android.hardware.health@2.0-service.marlin: SRAM data: 2812000 -08-28 15:05:17.668 1000 647 647 I chatty : uid=1000(system) health@2.0-serv identical 20 lines -08-28 15:05:17.672 1000 647 647 I /vendor/bin/hw/android.hardware.health@2.0-service.marlin: SRAM data: 2812000 -08-28 15:05:17.697 10117 2426 28502 I Icing : Indexing com.google.android.gms-apps from com.google.android.gms -08-28 15:05:17.717 1000 647 647 I /vendor/bin/hw/android.hardware.health@2.0-service.marlin: SRAM data: 2812000 -08-28 15:05:17.769 1000 647 647 I chatty : uid=1000(system) health@2.0-serv identical 2 lines -08-28 15:05:17.773 1000 647 647 I /vendor/bin/hw/android.hardware.health@2.0-service.marlin: SRAM data: 2812000 -08-28 15:05:17.775 10117 2426 28502 I Icing : Indexing done com.google.android.gms-apps -08-28 15:05:17.778 1000 647 647 I /vendor/bin/hw/android.hardware.health@2.0-service.marlin: SRAM data: 2812000 -08-28 15:05:17.786 1000 940 2043 I WindowManager: sleepRelease() calling goToSleep(GO_TO_SLEEP_REASON_SLEEP_BUTTON) -08-28 15:05:17.787 1000 940 2043 I PowerManagerService: Going to sleep due to sleep_button (uid 1000)... -08-28 15:05:17.788 1000 940 940 W UsageStatsService: Event reported without a package name, eventType:16 -08-28 15:05:17.802 10178 7664 7696 D com.google.android.powertests.PartialWakelock: before -08-28 15:05:17.839 1000 940 1115 V DisplayPowerController: Brightness [131] reason changing to: 'manual', previous reason: 'manual [ dim ]'. - -"Œ -6 -class-com.google.android.powertests.PartialWakelock - -
end-timestamp - -testpartialWakelock - - timestamp0žÍ™¤›[ - -timestamps-message -–"“ -6 -class-com.google.android.powertests.PartialWakelock - -current - -idAndroidJUnitRunner - -numtests - -stream. - -testpartialWakelock-") -' -stream - -Time: 16.333 - -OK (1 test) - diff --git a/acts/framework/tests/test_utils/instrumentation/data/sample_timestamp_proto.txt b/acts/framework/tests/test_utils/instrumentation/data/sample_timestamp_proto.txt deleted file mode 100644 index 5ac75cd3aa..0000000000 --- a/acts/framework/tests/test_utils/instrumentation/data/sample_timestamp_proto.txt +++ /dev/null @@ -1,110 +0,0 @@ -test_status { - result_code: 1 - results { - entries { - key: "class" - value_string: "com.google.android.powertests.PartialWakelock" - } - entries { - key: "current" - value_int: 1 - } - entries { - key: "id" - value_string: "AndroidJUnitRunner" - } - entries { - key: "numtests" - value_int: 1 - } - entries { - key: "stream" - value_string: "\ncom.google.android.powertests.PartialWakelock:" - } - entries { - key: "test" - value_string: "partialWakelock" - } - } -} -test_status { - results { - entries { - key: "class" - value_string: "com.google.android.powertests.PartialWakelock" - } - entries { - key: "start-timestamp" - } - entries { - key: "test" - value_string: "partialWakelock" - } - entries { - key: "timestamp" - value_long: 1567029917802 - } - entries { - key: "timestamps-message" - } - } -} -test_status { - results { - entries { - key: "class" - value_string: "com.google.android.powertests.PartialWakelock" - } - entries { - key: "end-timestamp" - } - entries { - key: "test" - value_string: "partialWakelock" - } - entries { - key: "timestamp" - value_long: 1567029932879 - } - entries { - key: "timestamps-message" - } - } -} -test_status { - results { - entries { - key: "class" - value_string: "com.google.android.powertests.PartialWakelock" - } - entries { - key: "current" - value_int: 1 - } - entries { - key: "id" - value_string: "AndroidJUnitRunner" - } - entries { - key: "numtests" - value_int: 1 - } - entries { - key: "stream" - value_string: "." - } - entries { - key: "test" - value_string: "partialWakelock" - } - } -} -session_status { - result_code: -1 - results { - entries { - key: "stream" - value_string: "\n\nTime: 16.333\n\nOK (1 test)\n\n" - } - } -} diff --git a/acts/framework/tests/test_utils/instrumentation/instrumentation_base_test_test.py b/acts/framework/tests/test_utils/instrumentation/instrumentation_base_test_test.py deleted file mode 100755 index 0a3ddde309..0000000000 --- a/acts/framework/tests/test_utils/instrumentation/instrumentation_base_test_test.py +++ /dev/null @@ -1,106 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import copy -import unittest - -from acts.test_utils.instrumentation.config_wrapper import ConfigWrapper -from acts.test_utils.instrumentation.instrumentation_base_test import \ - InstrumentationBaseTest - -MOCK_INSTRUMENTATION_CONFIG = { - 'not_file': 'NOT_FILE', - 'file1': 'FILE', - 'lvl1': { - 'file2': 'FILE', - 'lvl2': {'file1': 'FILE'} - }, - 'MockController': { - 'param1': 1, - 'param2': 4 - }, - 'MockInstrumentationBaseTest': { - 'MockController': { - 'param2': 2, - 'param3': 5 - }, - 'test_case': { - 'MockController': { - 'param3': 3 - } - } - } -} - -MOCK_ACTS_USERPARAMS = { - 'file1': '/path/to/file1', - 'file2': '/path/to/file2' -} - - -class MockInstrumentationBaseTest(InstrumentationBaseTest): - """Mock test class to initialize required attributes.""" - def __init__(self): - self.user_params = MOCK_ACTS_USERPARAMS - self.current_test_name = None - self._instrumentation_config = ConfigWrapper( - MOCK_INSTRUMENTATION_CONFIG) - self._class_config = self._instrumentation_config.get_config( - self.__class__.__name__) - - -class InstrumentationBaseTestTest(unittest.TestCase): - def setUp(self): - self.instrumentation_test = MockInstrumentationBaseTest() - - def test_resolve_files_from_config(self): - """Test that params with the 'FILE' marker are properly substituted - with the corresponding paths from ACTS user_params. - """ - mock_config = copy.deepcopy(MOCK_INSTRUMENTATION_CONFIG) - self.instrumentation_test._resolve_file_paths(mock_config) - self.assertEqual(mock_config['not_file'], - MOCK_INSTRUMENTATION_CONFIG['not_file']) - self.assertEqual(mock_config['file1'], MOCK_ACTS_USERPARAMS['file1']) - self.assertEqual(mock_config['lvl1']['file2'], - MOCK_ACTS_USERPARAMS['file2']) - self.assertEqual(mock_config['lvl1']['lvl2']['file1'], - MOCK_ACTS_USERPARAMS['file1']) - - def test_get_controller_config_for_test_case(self): - """Test that _get_controller_config returns the corresponding - controller config for the current test case. - """ - self.instrumentation_test.current_test_name = 'test_case' - config = self.instrumentation_test._get_merged_config( - 'MockController') - self.assertEqual(config.get('param1'), 1) - self.assertEqual(config.get('param2'), 2) - self.assertEqual(config.get('param3'), 3) - - def test_get_controller_config_for_test_class(self): - """Test that _get_controller_config returns the controller config for - the current test class (while no test case is running). - """ - config = self.instrumentation_test._get_merged_config( - 'MockController') - self.assertEqual(config.get('param1'), 1) - self.assertEqual(config.get('param2'), 2) - self.assertEqual(config.get('param3'), 5) - - -if __name__ == '__main__': - unittest.main() diff --git a/acts/framework/tests/test_utils/instrumentation/instrumentation_command_builder_test.py b/acts/framework/tests/test_utils/instrumentation/instrumentation_command_builder_test.py deleted file mode 100755 index fdb67812ad..0000000000 --- a/acts/framework/tests/test_utils/instrumentation/instrumentation_command_builder_test.py +++ /dev/null @@ -1,132 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the 'License'); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an 'AS IS' BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import unittest - -from acts.test_utils.instrumentation.instrumentation_command_builder \ - import InstrumentationCommandBuilder -from acts.test_utils.instrumentation.instrumentation_command_builder \ - import InstrumentationTestCommandBuilder - - -class InstrumentationCommandBuilderTest(unittest.TestCase): - - def test__runner_and_manifest_package_definition(self): - builder = InstrumentationCommandBuilder() - builder.set_manifest_package('package') - builder.set_runner('runner') - call = builder.build() - self.assertIn('package/runner', call) - - def test__manifest_package_must_be_defined(self): - builder = InstrumentationCommandBuilder() - - with self.assertRaisesRegex(Exception, '.*package cannot be none.*'): - builder.build() - - def test__runner_must_be_defined(self): - builder = InstrumentationCommandBuilder() - - with self.assertRaisesRegex(Exception, '.*runner cannot be none.*'): - builder.build() - - def test_proto_flag_without_set_proto_path(self): - builder = InstrumentationCommandBuilder() - builder.set_runner('runner') - builder.set_manifest_package('some.manifest.package') - - call = builder.build() - self.assertIn('-f', call) - - def test_proto_flag_with_set_proto_path(self): - builder = InstrumentationCommandBuilder() - builder.set_runner('runner') - builder.set_manifest_package('some.manifest.package') - builder.set_proto_path('/some/proto/path') - - call = builder.build() - self.assertIn('-f /some/proto/path', call) - - def test_set_nohup(self): - builder = InstrumentationCommandBuilder() - builder.set_runner('runner') - builder.set_manifest_package('some.manifest.package') - builder.set_nohup() - - call = builder.build() - self.assertEqual( - call, 'nohup am instrument -f some.manifest.package/runner >> ' - '$EXTERNAL_STORAGE/nohup.log 2>&1') - - def test__key_value_param_definition(self): - builder = InstrumentationCommandBuilder() - builder.set_runner('runner') - builder.set_manifest_package('some.manifest.package') - - builder.add_key_value_param('my_key_1', 'my_value_1') - builder.add_key_value_param('my_key_2', 'my_value_2') - - call = builder.build() - self.assertIn('-e my_key_1 my_value_1', call) - self.assertIn('-e my_key_2 my_value_2', call) - - def test__flags(self): - builder = InstrumentationCommandBuilder() - builder.set_runner('runner') - builder.set_manifest_package('some.manifest.package') - - builder.add_flag('--flag1') - builder.add_flag('--flag2') - - call = builder.build() - self.assertIn('--flag1', call) - self.assertIn('--flag2', call) - - -class InstrumentationTestCommandBuilderTest(unittest.TestCase): - """Test class for - acts/test_utils/instrumentation/instrumentation_call_builder.py - """ - - def test__test_packages_can_not_be_added_if_classes_were_added_first(self): - builder = InstrumentationTestCommandBuilder() - builder.add_test_class('some.tests.Class') - - with self.assertRaisesRegex(Exception, '.*only a list of classes.*'): - builder.add_test_package('some.tests.package') - - def test__test_classes_can_not_be_added_if_packages_were_added_first(self): - builder = InstrumentationTestCommandBuilder() - builder.add_test_package('some.tests.package') - - with self.assertRaisesRegex(Exception, '.*only a list of classes.*'): - builder.add_test_class('some.tests.Class') - - def test__test_classes_and_test_methods_can_be_combined(self): - builder = InstrumentationTestCommandBuilder() - builder.set_runner('runner') - builder.set_manifest_package('some.manifest.package') - builder.add_test_class('some.tests.Class1') - builder.add_test_method('some.tests.Class2', 'favoriteTestMethod') - - call = builder.build() - self.assertIn('some.tests.Class1', call) - self.assertIn('some.tests.Class2', call) - self.assertIn('favoriteTestMethod', call) - - -if __name__ == '__main__': - unittest.main() diff --git a/acts/framework/tests/test_utils/instrumentation/instrumentation_proto_parser_test.py b/acts/framework/tests/test_utils/instrumentation/instrumentation_proto_parser_test.py deleted file mode 100644 index cb4068c64c..0000000000 --- a/acts/framework/tests/test_utils/instrumentation/instrumentation_proto_parser_test.py +++ /dev/null @@ -1,80 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the 'License'); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an 'AS IS' BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import os -import unittest - -import mock -from acts.test_utils.instrumentation import instrumentation_proto_parser \ - as parser -from acts.test_utils.instrumentation.instrumentation_proto_parser import \ - ProtoParserError -from acts.test_utils.instrumentation.proto.gen import instrumentation_data_pb2 - - -DEST_DIR = 'dest/proto_dir' -SOURCE_PATH = 'source/proto/protofile' -SAMPLE_PROTO = 'data/sample.instrumentation_data_proto' -SAMPLE_TIMESTAMP_PROTO = 'data/sample_timestamp.instrumentation_data_proto' - - -class InstrumentationProtoParserTest(unittest.TestCase): - """Unit tests for instrumentation proto parser.""" - - def setUp(self): - self.ad = mock.MagicMock() - - @mock.patch('os.path.exists', return_value=True) - def test_pull_proto_returns_correct_path_given_source(self, *_): - self.assertEqual(parser.pull_proto(self.ad, DEST_DIR, SOURCE_PATH), - 'dest/proto_dir/protofile') - - @mock.patch('os.path.exists', return_value=True) - def test_pull_proto_returns_correct_path_from_default_location(self, *_): - self.ad.adb.shell.side_effect = ['', 'default'] - self.assertEqual(parser.pull_proto(self.ad, DEST_DIR), - 'dest/proto_dir/default') - - def test_pull_proto_fails_if_no_default_proto_found(self, *_): - self.ad.adb.shell.side_effect = ['', None] - with self.assertRaisesRegex( - ProtoParserError, 'No instrumentation result'): - parser.pull_proto(self.ad, DEST_DIR) - - @mock.patch('os.path.exists', return_value=False) - def test_pull_proto_fails_if_adb_pull_fails(self, *_): - with self.assertRaisesRegex(ProtoParserError, 'Failed to pull'): - parser.pull_proto(self.ad, DEST_DIR, SOURCE_PATH) - - def test_parser_converts_valid_proto(self): - proto_file = os.path.join(os.path.dirname(__file__), SAMPLE_PROTO) - self.assertIsInstance(parser.get_session_from_local_file(proto_file), - instrumentation_data_pb2.Session) - - def test_get_test_timestamps(self): - proto_file = os.path.join(os.path.dirname(__file__), - SAMPLE_TIMESTAMP_PROTO) - session = parser.get_session_from_local_file(proto_file) - timestamps = parser.get_test_timestamps(session) - self.assertEqual( - timestamps['partialWakelock'][parser.START_TIMESTAMP], - 1567029917802) - self.assertEqual( - timestamps['partialWakelock'][parser.END_TIMESTAMP], 1567029932879) - - -if __name__ == '__main__': - unittest.main() diff --git a/acts/framework/tests/test_utils/instrumentation/intent_builder_test.py b/acts/framework/tests/test_utils/instrumentation/intent_builder_test.py deleted file mode 100644 index f86fac3e76..0000000000 --- a/acts/framework/tests/test_utils/instrumentation/intent_builder_test.py +++ /dev/null @@ -1,101 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the 'License'); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an 'AS IS' BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from acts.test_utils.instrumentation.intent_builder import IntentBuilder - -import unittest - - -class IntentBuilderTest(unittest.TestCase): - """Unit tests for IntentBuilder""" - - def test_set_action(self): - """Test that a set action yields the correct intent call""" - builder = IntentBuilder('am start') - builder.set_action('android.intent.action.SOME_ACTION') - self.assertEqual(builder.build(), - 'am start -a android.intent.action.SOME_ACTION') - - def test_set_component_with_package_only(self): - """Test that the intent call is built properly with only the package - name specified. - """ - builder = IntentBuilder('am broadcast') - builder.set_component('android.package.name') - self.assertEqual(builder.build(), - 'am broadcast -n android.package.name') - - def test_set_component_with_package_and_component(self): - """Test that the intent call is built properly with both the package - and component name specified. - """ - builder = IntentBuilder('am start') - builder.set_component('android.package.name', '.AndroidComponent') - self.assertEqual( - builder.build(), - 'am start -n android.package.name/.AndroidComponent') - - def test_set_data_uri(self): - """Test that a set data URI yields the correct intent call""" - builder = IntentBuilder() - builder.set_data_uri('file://path/to/file') - self.assertEqual(builder.build(), '-d file://path/to/file') - - def test_add_flag(self): - """Test that additional flags are added properly""" - builder = IntentBuilder('am start') - builder.add_flag('--flag-numero-uno') - builder.add_flag('--flag-numero-dos') - self.assertEqual( - builder.build(), 'am start --flag-numero-uno --flag-numero-dos') - - def test_add_key_value_with_empty_value(self): - """Test that a param with an empty value is added properly.""" - builder = IntentBuilder('am broadcast') - builder.add_key_value_param('empty_param') - self.assertEqual(builder.build(), 'am broadcast --esn empty_param') - - def test_add_key_value_with_nonempty_values(self): - """Test that a param with various non-empty values is added properly.""" - builder = IntentBuilder('am start') - builder.add_key_value_param('bool_param', False) - builder.add_key_value_param('string_param', 'enabled') - builder.add_key_value_param('int_param', 5) - builder.add_key_value_param('float_param', 12.1) - self.assertEqual( - builder.build(), - 'am start --ez bool_param false --es string_param enabled ' - '--ei int_param 5 --ef float_param 12.1') - - def test_full_intent_command(self): - """Test a full intent command with all possible components.""" - builder = IntentBuilder('am broadcast') - builder.set_action('android.intent.action.TEST_ACTION') - builder.set_component('package.name', '.ComponentName') - builder.set_data_uri('file://path/to/file') - builder.add_key_value_param('empty') - builder.add_key_value_param('numeric_param', 11.6) - builder.add_key_value_param('bool_param', True) - builder.add_flag('--unit-test') - self.assertEqual( - builder.build(), - 'am broadcast -a android.intent.action.TEST_ACTION ' - '-n package.name/.ComponentName -d file://path/to/file --unit-test ' - '--esn empty --ef numeric_param 11.6 --ez bool_param true') - - -if __name__ == '__main__': - unittest.main() diff --git a/acts/tests/OWNERS b/acts/tests/OWNERS index 258057c0ba..19d7215e0c 100644 --- a/acts/tests/OWNERS +++ b/acts/tests/OWNERS @@ -1,25 +1,5 @@ -# Platform -jaineelm@google.com -satmaram@google.com - -# Pixel ashutoshrsingh@google.com dvj@google.com gmoturu@google.com +jaineelm@google.com mrtyler@google.com -codycaldwell@google.com - -# Fuchsia -jmbrenna@google.com -tturney@google.com - -# TechEng -abhinavjadon@google.com -djfernan@google.com -iguarna@google.com -jingliang@google.com -klug@google.com -oelayach@google.com -qijiang@google.com -sriramsundar@google.com -xouyang@google.com diff --git a/acts/tests/google/ble/api/BleAdvertiseApiTest.py b/acts/tests/google/ble/api/BleAdvertiseApiTest.py index 26c459f70a..2a6cb26249 100644 --- a/acts/tests/google/ble/api/BleAdvertiseApiTest.py +++ b/acts/tests/google/ble/api/BleAdvertiseApiTest.py @@ -35,8 +35,8 @@ class BleAdvertiseVerificationError(Exception): class BleAdvertiseApiTest(BluetoothBaseTest): - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) self.ad_dut = self.android_devices[0] @BluetoothBaseTest.bt_test_wrap diff --git a/acts/tests/google/ble/api/BleScanApiTest.py b/acts/tests/google/ble/api/BleScanApiTest.py index 06f2362079..1398715a84 100644 --- a/acts/tests/google/ble/api/BleScanApiTest.py +++ b/acts/tests/google/ble/api/BleScanApiTest.py @@ -47,8 +47,8 @@ class BleSetScanFilterError(Exception): class BleScanApiTest(BluetoothBaseTest): - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) self.ad_dut = self.android_devices[0] def _format_defaults(self, input): diff --git a/acts/tests/google/ble/api/GattApiTest.py b/acts/tests/google/ble/api/GattApiTest.py index cc87979a73..5444e51eda 100644 --- a/acts/tests/google/ble/api/GattApiTest.py +++ b/acts/tests/google/ble/api/GattApiTest.py @@ -24,10 +24,11 @@ from acts.test_utils.bt.bt_test_utils import setup_multiple_devices_for_bt_test class GattApiTest(BluetoothBaseTest): - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) self.ad = self.android_devices[0] + def setup_class(self): return setup_multiple_devices_for_bt_test(self.android_devices) def setup_test(self): diff --git a/acts/tests/google/ble/beacon_tests/BeaconSwarmTest.py b/acts/tests/google/ble/beacon_tests/BeaconSwarmTest.py index 0df9a7b2be..9ebfe1ebf5 100644 --- a/acts/tests/google/ble/beacon_tests/BeaconSwarmTest.py +++ b/acts/tests/google/ble/beacon_tests/BeaconSwarmTest.py @@ -41,6 +41,10 @@ class BeaconSwarmTest(BluetoothBaseTest): advertising_device_name_list = [] discovered_mac_address_list = [] + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) + self.scn_ad = self.android_devices[0] + def setup_test(self): self.discovered_mac_address_list = [] for a in self.android_devices: @@ -52,7 +56,6 @@ class BeaconSwarmTest(BluetoothBaseTest): return True def setup_class(self): - self.scn_ad = self.android_devices[0] if not setup_multiple_devices_for_bt_test(self.android_devices): return False return self._start_special_advertisements() diff --git a/acts/tests/google/ble/bt5/AdvertisingSetTest.py b/acts/tests/google/ble/bt5/AdvertisingSetTest.py index de4192f125..66b00288cf 100644 --- a/acts/tests/google/ble/bt5/AdvertisingSetTest.py +++ b/acts/tests/google/ble/bt5/AdvertisingSetTest.py @@ -62,12 +62,14 @@ class AdvertisingSetTest(BluetoothBaseTest): ] } - def setup_class(self): - super(AdvertisingSetTest, self).setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) self.adv_ad = self.android_devices[0] + def setup_class(self): + super(AdvertisingSetTest, self).setup_class() if not self.adv_ad.droid.bluetoothIsLeExtendedAdvertisingSupported(): - raise signals.TestAbortClass( + raise signals.TestSkipClass( "Advertiser does not support LE Extended Advertising") def teardown_test(self): diff --git a/acts/tests/google/ble/bt5/Bt5ScanTest.py b/acts/tests/google/ble/bt5/Bt5ScanTest.py index e2c9c83cc3..e4cf4c5f10 100644 --- a/acts/tests/google/ble/bt5/Bt5ScanTest.py +++ b/acts/tests/google/ble/bt5/Bt5ScanTest.py @@ -60,17 +60,19 @@ class Bt5ScanTest(BluetoothBaseTest): ] } - def setup_class(self): - super(Bt5ScanTest, self).setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) self.scn_ad = self.android_devices[0] self.adv_ad = self.android_devices[1] + def setup_class(self): + super(Bt5ScanTest, self).setup_class() if not self.scn_ad.droid.bluetoothIsLeExtendedAdvertisingSupported(): - raise signals.TestAbortClass( + raise signals.TestSkipClass( "Scanner does not support LE Extended Advertising") if not self.adv_ad.droid.bluetoothIsLeExtendedAdvertisingSupported(): - raise signals.TestAbortClass( + raise signals.TestSkipClass( "Advertiser does not support LE Extended Advertising") def teardown_test(self): diff --git a/acts/tests/google/ble/bt5/PhyTest.py b/acts/tests/google/ble/bt5/PhyTest.py index 0b1ecfade8..9b95ead0f5 100644 --- a/acts/tests/google/ble/bt5/PhyTest.py +++ b/acts/tests/google/ble/bt5/PhyTest.py @@ -42,11 +42,11 @@ class PhyTest(GattConnectedBaseTest): def setup_class(self): super(PhyTest, self).setup_class() if not self.cen_ad.droid.bluetoothIsLe2MPhySupported(): - raise signals.TestAbortClass( + raise signals.TestSkipClass( "Central device does not support LE 2M PHY") if not self.per_ad.droid.bluetoothIsLe2MPhySupported(): - raise signals.TestAbortClass( + raise signals.TestSkipClass( "Peripheral device does not support LE 2M PHY") # Some controllers auto-update PHY to 2M, and both client and server diff --git a/acts/tests/google/ble/concurrency/ConcurrentBleAdvertisementDiscoveryTest.py b/acts/tests/google/ble/concurrency/ConcurrentBleAdvertisementDiscoveryTest.py index 2af4c05bcc..950a37034c 100644 --- a/acts/tests/google/ble/concurrency/ConcurrentBleAdvertisementDiscoveryTest.py +++ b/acts/tests/google/ble/concurrency/ConcurrentBleAdvertisementDiscoveryTest.py @@ -46,8 +46,8 @@ class ConcurrentBleAdvertisementDiscoveryTest(BluetoothBaseTest): max_advertisements = -1 advertise_callback_list = [] - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) self.droid_list = get_advanced_droid_list(self.android_devices) self.scn_ad = self.android_devices[0] self.adv_ad = self.android_devices[1] diff --git a/acts/tests/google/ble/concurrency/ConcurrentBleAdvertisingTest.py b/acts/tests/google/ble/concurrency/ConcurrentBleAdvertisingTest.py index 94ee0f771e..62f06d13a9 100644 --- a/acts/tests/google/ble/concurrency/ConcurrentBleAdvertisingTest.py +++ b/acts/tests/google/ble/concurrency/ConcurrentBleAdvertisingTest.py @@ -45,8 +45,8 @@ class ConcurrentBleAdvertisingTest(BluetoothBaseTest): default_timeout = 10 max_advertisements = -1 - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) self.droid_list = get_advanced_droid_list(self.android_devices) self.scn_ad = self.android_devices[0] self.adv_ad = self.android_devices[1] diff --git a/acts/tests/google/ble/concurrency/ConcurrentBleScanningTest.py b/acts/tests/google/ble/concurrency/ConcurrentBleScanningTest.py index 512aed8f16..c3e71f24a8 100644 --- a/acts/tests/google/ble/concurrency/ConcurrentBleScanningTest.py +++ b/acts/tests/google/ble/concurrency/ConcurrentBleScanningTest.py @@ -39,8 +39,8 @@ class ConcurrentBleScanningTest(BluetoothBaseTest): default_timeout = 20 max_concurrent_scans = 27 - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) self.scn_ad = self.android_devices[0] self.adv_ad = self.android_devices[1] diff --git a/acts/tests/google/ble/concurrency/ConcurrentGattConnectTest.py b/acts/tests/google/ble/concurrency/ConcurrentGattConnectTest.py index ec5e09cae8..96cdf0a8ab 100644 --- a/acts/tests/google/ble/concurrency/ConcurrentGattConnectTest.py +++ b/acts/tests/google/ble/concurrency/ConcurrentGattConnectTest.py @@ -79,10 +79,12 @@ class ConcurrentGattConnectTest(BluetoothBaseTest): advertisement_names = [] list_of_arguments_list = [] - def setup_class(self): - super(BluetoothBaseTest, self).setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) self.pri_dut = self.android_devices[0] + def setup_class(self): + super(BluetoothBaseTest, self).setup_class() # Create 5 advertisements from different android devices for i in range(1, self.max_connections + 1): diff --git a/acts/tests/google/ble/conn_oriented_chan/BleCoc2ConnTest.py b/acts/tests/google/ble/conn_oriented_chan/BleCoc2ConnTest.py index 353f507088..4229630aeb 100644 --- a/acts/tests/google/ble/conn_oriented_chan/BleCoc2ConnTest.py +++ b/acts/tests/google/ble/conn_oriented_chan/BleCoc2ConnTest.py @@ -42,8 +42,8 @@ from acts.test_utils.bt.bt_test_utils import verify_server_and_client_connected class BleCoc2ConnTest(BluetoothBaseTest): - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) self.client_ad = self.android_devices[0] # The client which is scanning will need location to be enabled in order to # start scan and get scan results. @@ -53,6 +53,7 @@ class BleCoc2ConnTest(BluetoothBaseTest): if len(self.android_devices) > 2: self.server2_ad = self.android_devices[2] + def setup_class(self): return setup_multiple_devices_for_bt_test(self.android_devices) def teardown_test(self): diff --git a/acts/tests/google/ble/conn_oriented_chan/BleCocTest.py b/acts/tests/google/ble/conn_oriented_chan/BleCocTest.py index 97ace9bbbb..29bbe1ae80 100644 --- a/acts/tests/google/ble/conn_oriented_chan/BleCocTest.py +++ b/acts/tests/google/ble/conn_oriented_chan/BleCocTest.py @@ -46,8 +46,8 @@ class BleCocTest(BluetoothBaseTest): "strange new worlds, to seek out new life and new civilizations," " to boldly go where no man has gone before.") - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) self.client_ad = self.android_devices[0] # The client which is scanning will need location to be enabled in order to # start scan and get scan results. @@ -57,6 +57,7 @@ class BleCocTest(BluetoothBaseTest): if len(self.android_devices) > 2: self.server2_ad = self.android_devices[2] + def setup_class(self): return setup_multiple_devices_for_bt_test(self.android_devices) def teardown_test(self): diff --git a/acts/tests/google/ble/examples/BleExamplesTest.py b/acts/tests/google/ble/examples/BleExamplesTest.py index 1ced2db965..e84e2013fa 100644 --- a/acts/tests/google/ble/examples/BleExamplesTest.py +++ b/acts/tests/google/ble/examples/BleExamplesTest.py @@ -34,8 +34,8 @@ class BleExamplesTest(BluetoothBaseTest): scn_droid = None adv_droid = None - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) self.scn_droid, self.scn_ed = (self.android_devices[0].droid, self.android_devices[0].ed) self.adv_droid, self.adv_ed = (self.android_devices[1].droid, diff --git a/acts/tests/google/ble/examples/GattServerExampleTest.py b/acts/tests/google/ble/examples/GattServerExampleTest.py index e1f6476017..6a741a70f2 100644 --- a/acts/tests/google/ble/examples/GattServerExampleTest.py +++ b/acts/tests/google/ble/examples/GattServerExampleTest.py @@ -55,8 +55,8 @@ gatt_server_read_descriptor_sample = { class GattServerExampleTest(BluetoothBaseTest): - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) self.dut = self.android_devices[0] @BluetoothBaseTest.bt_test_wrap diff --git a/acts/tests/google/ble/filtering/FilteringTest.py b/acts/tests/google/ble/filtering/FilteringTest.py index d1bdc399c9..3a3aaac5fc 100644 --- a/acts/tests/google/ble/filtering/FilteringTest.py +++ b/acts/tests/google/ble/filtering/FilteringTest.py @@ -64,8 +64,8 @@ class FilteringTest(BluetoothBaseTest): service_uuid_2 = "FFFFFFFF-0000-1000-8000-00805f9b34fb" service_uuid_3 = "3846D7A0-69C8-11E4-BA00-0002A5D5C51B" - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) self.scn_ad = self.android_devices[0] self.adv_ad = self.android_devices[1] self.log.info("Scanner device model: {}".format( diff --git a/acts/tests/google/ble/filtering/UniqueFilteringTest.py b/acts/tests/google/ble/filtering/UniqueFilteringTest.py index c2e837c567..35945e5990 100644 --- a/acts/tests/google/ble/filtering/UniqueFilteringTest.py +++ b/acts/tests/google/ble/filtering/UniqueFilteringTest.py @@ -38,8 +38,8 @@ from acts.test_utils.bt.bt_constants import scan_result class UniqueFilteringTest(BluetoothBaseTest): default_timeout = 10 - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) self.scn_ad = self.android_devices[0] self.adv_ad = self.android_devices[1] diff --git a/acts/tests/google/ble/gatt/GattConnectTest.py b/acts/tests/google/ble/gatt/GattConnectTest.py index 52f3601cd0..c276c0e889 100644 --- a/acts/tests/google/ble/gatt/GattConnectTest.py +++ b/acts/tests/google/ble/gatt/GattConnectTest.py @@ -58,8 +58,8 @@ class GattConnectTest(BluetoothBaseTest): default_timeout = 10 default_discovery_timeout = 3 - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) self.cen_ad = self.android_devices[0] self.per_ad = self.android_devices[1] diff --git a/acts/tests/google/ble/gatt/GattToolTest.py b/acts/tests/google/ble/gatt/GattToolTest.py index 8e7a9f0182..fc61cb5f6f 100644 --- a/acts/tests/google/ble/gatt/GattToolTest.py +++ b/acts/tests/google/ble/gatt/GattToolTest.py @@ -49,8 +49,8 @@ class GattToolTest(BluetoothBaseTest): adv_instances = [] timer_list = [] - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) # Central role Android device self.cen_ad = self.android_devices[0] self.ble_mac_address = self.user_params['ble_mac_address'] diff --git a/acts/tests/google/ble/power/GattPowerTest.py b/acts/tests/google/ble/power/GattPowerTest.py index 2817d74d9a..c4239bd057 100644 --- a/acts/tests/google/ble/power/GattPowerTest.py +++ b/acts/tests/google/ble/power/GattPowerTest.py @@ -50,12 +50,14 @@ class GattPowerTest(PowerBaseTest): PMC_GATT_CMD = ("am broadcast -a com.android.pmc.GATT ") GATT_SERVER_MSG = "%s--es GattServer 1" % (PMC_GATT_CMD) - def setup_class(self): - super(GattPowerTest, self).setup_class() + def __init__(self, controllers): + PowerBaseTest.__init__(self, controllers) self.cen_ad = self.android_devices[0] self.per_ad = self.android_devices[1] + def setup_class(self): + super(GattPowerTest, self).setup_class() if not bluetooth_enabled_check(self.per_ad): self.log.error("Failed to turn on Bluetooth on peripheral") diff --git a/acts/tests/google/ble/scan/BleBackgroundScanTest.py b/acts/tests/google/ble/scan/BleBackgroundScanTest.py index 68396023b4..3a10793422 100644 --- a/acts/tests/google/ble/scan/BleBackgroundScanTest.py +++ b/acts/tests/google/ble/scan/BleBackgroundScanTest.py @@ -45,11 +45,13 @@ class BleBackgroundScanTest(BluetoothBaseTest): active_scan_callback_list = [] active_adv_callback_list = [] - def setup_class(self): - super(BluetoothBaseTest, self).setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) self.scn_ad = self.android_devices[0] self.adv_ad = self.android_devices[1] + def setup_class(self): + super(BluetoothBaseTest, self).setup_class() utils.set_location_service(self.scn_ad, True) utils.set_location_service(self.adv_ad, True) return True diff --git a/acts/tests/google/ble/scan/BleOnLostOnFoundTest.py b/acts/tests/google/ble/scan/BleOnLostOnFoundTest.py index 01f7976db4..dd40b6a4fe 100644 --- a/acts/tests/google/ble/scan/BleOnLostOnFoundTest.py +++ b/acts/tests/google/ble/scan/BleOnLostOnFoundTest.py @@ -39,11 +39,13 @@ class BleOnLostOnFoundTest(BluetoothBaseTest): active_scan_callback_list = [] active_adv_callback_list = [] - def setup_class(self): - super(BluetoothBaseTest, self).setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) self.scn_ad = self.android_devices[0] self.adv_ad = self.android_devices[1] + def setup_class(self): + super(BluetoothBaseTest, self).setup_class() utils.set_location_service(self.scn_ad, True) utils.set_location_service(self.adv_ad, True) return True diff --git a/acts/tests/google/ble/scan/BleOpportunisticScanTest.py b/acts/tests/google/ble/scan/BleOpportunisticScanTest.py index 9e591281b1..6a87e65677 100644 --- a/acts/tests/google/ble/scan/BleOpportunisticScanTest.py +++ b/acts/tests/google/ble/scan/BleOpportunisticScanTest.py @@ -38,18 +38,20 @@ from acts.test_utils.bt.bt_constants import scan_result class BleOpportunisticScanTest(BluetoothBaseTest): default_timeout = 10 - max_scan_instances = 25 + max_scan_instances = 27 report_delay = 2000 scan_callbacks = [] adv_callbacks = [] active_scan_callback_list = [] active_adv_callback_list = [] - def setup_class(self): - super(BluetoothBaseTest, self).setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) self.scn_ad = self.android_devices[0] self.adv_ad = self.android_devices[1] + def setup_class(self): + super(BluetoothBaseTest, self).setup_class() utils.set_location_service(self.scn_ad, True) utils.set_location_service(self.adv_ad, True) return True diff --git a/acts/tests/google/ble/scan/BleScanScreenStateTest.py b/acts/tests/google/ble/scan/BleScanScreenStateTest.py index 07ae898fbf..b6d128aeed 100644 --- a/acts/tests/google/ble/scan/BleScanScreenStateTest.py +++ b/acts/tests/google/ble/scan/BleScanScreenStateTest.py @@ -42,11 +42,13 @@ class BleScanScreenStateTest(BluetoothBaseTest): scan_callback = -1 shorter_scan_timeout = 4 - def setup_class(self): - super(BluetoothBaseTest, self).setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) self.scn_ad = self.android_devices[0] self.adv_ad = self.android_devices[1] + def setup_class(self): + super(BluetoothBaseTest, self).setup_class() utils.set_location_service(self.scn_ad, True) utils.set_location_service(self.adv_ad, True) return True diff --git a/acts/tests/google/ble/system_tests/BleStressTest.py b/acts/tests/google/ble/system_tests/BleStressTest.py index f97907ff0e..a9c012652d 100644 --- a/acts/tests/google/ble/system_tests/BleStressTest.py +++ b/acts/tests/google/ble/system_tests/BleStressTest.py @@ -38,8 +38,8 @@ class BleStressTest(BluetoothBaseTest): default_timeout = 10 PAIRING_TIMEOUT = 20 - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) self.droid_list = get_advanced_droid_list(self.android_devices) self.scn_ad = self.android_devices[0] self.adv_ad = self.android_devices[1] @@ -337,14 +337,10 @@ class BleStressTest(BluetoothBaseTest): self.log.error("Failed to bond devices.") return False self.log.info("Total time (ms): {}".format(self.end_timer())) - if not self._verify_successful_bond(self.adv_ad.droid.bluetoothGetLocalAddress()): - self.log.error("Failed to bond BREDR devices.") - return False - if not self.scn_ad.droid.bluetoothUnbond(target_address): + if not clear_bonded_devices(self.scn_ad): self.log.error("Failed to unbond device from scanner.") return False - time.sleep(2) - if not self.adv_ad.droid.bluetoothUnbond(self.scn_ad.droid.bluetoothGetLocalAddress()): + if not clear_bonded_devices(self.adv_ad): self.log.error("Failed to unbond device from advertiser.") return False self.adv_ad.droid.bleStopBleAdvertising(adv_callback) diff --git a/acts/tests/google/bt/AkXB10PairingTest.py b/acts/tests/google/bt/AkXB10PairingTest.py index 10e73354fb..51e1e5977a 100644 --- a/acts/tests/google/bt/AkXB10PairingTest.py +++ b/acts/tests/google/bt/AkXB10PairingTest.py @@ -28,8 +28,8 @@ log = logging class AkXB10PairingTest(BluetoothBaseTest): DISCOVERY_TIME = 5 - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) self.dut = self.android_devices[0] # Do factory reset and then do delay for 3-seconds self.dut.droid.bluetoothFactoryReset() diff --git a/acts/tests/google/bt/BtAirplaneModeTest.py b/acts/tests/google/bt/BtAirplaneModeTest.py index e2dd7ebea4..bb90b1035f 100644 --- a/acts/tests/google/bt/BtAirplaneModeTest.py +++ b/acts/tests/google/bt/BtAirplaneModeTest.py @@ -31,8 +31,8 @@ class BtAirplaneModeTest(BluetoothBaseTest): grace_timeout = 4 WAIT_TIME_ANDROID_STATE_SETTLING = 5 - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) self.dut = self.android_devices[0] def setup_test(self): diff --git a/acts/tests/google/bt/BtBasicFunctionalityTest.py b/acts/tests/google/bt/BtBasicFunctionalityTest.py index 3194d769a5..0cb4ea844b 100644 --- a/acts/tests/google/bt/BtBasicFunctionalityTest.py +++ b/acts/tests/google/bt/BtBasicFunctionalityTest.py @@ -36,11 +36,12 @@ class BtBasicFunctionalityTest(BluetoothBaseTest): default_timeout = 10 scan_discovery_time = 5 - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) self.droid_ad = self.android_devices[0] self.droid1_ad = self.android_devices[1] + def setup_class(self): return setup_multiple_devices_for_bt_test(self.android_devices) def setup_test(self): diff --git a/acts/tests/google/bt/BtFactoryResetTest.py b/acts/tests/google/bt/BtFactoryResetTest.py index f33b210456..8c9d399b5e 100644 --- a/acts/tests/google/bt/BtFactoryResetTest.py +++ b/acts/tests/google/bt/BtFactoryResetTest.py @@ -25,8 +25,8 @@ class BtFactoryResetTest(BluetoothBaseTest): default_timeout = 10 grace_timeout = 4 - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) self.pri_dut = self.android_devices[0] self.sec_dut = self.android_devices[1] diff --git a/acts/tests/google/bt/BtKillProcessTest.py b/acts/tests/google/bt/BtKillProcessTest.py index ed53e20af7..2b17d2830e 100644 --- a/acts/tests/google/bt/BtKillProcessTest.py +++ b/acts/tests/google/bt/BtKillProcessTest.py @@ -25,8 +25,8 @@ from acts.test_utils.bt.BluetoothBaseTest import BluetoothBaseTest class BtKillProcessTest(BluetoothBaseTest): - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) self.dut = self.android_devices[0] def _get_bt_pid(self): diff --git a/acts/tests/google/bt/RfcommTest.py b/acts/tests/google/bt/RfcommTest.py index 58de1be7de..272fc89a16 100644 --- a/acts/tests/google/bt/RfcommTest.py +++ b/acts/tests/google/bt/RfcommTest.py @@ -47,11 +47,12 @@ class RfcommTest(BluetoothBaseTest): "strange new worlds, to seek out new life and new civilizations," " to boldly go where no man has gone before.") - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) self.client_ad = self.android_devices[0] self.server_ad = self.android_devices[1] + def setup_class(self): return setup_multiple_devices_for_bt_test(self.android_devices) def teardown_test(self): diff --git a/acts/tests/google/bt/SonyXB2PairingTest.py b/acts/tests/google/bt/SonyXB2PairingTest.py index 4dcf863bdf..39071354f0 100644 --- a/acts/tests/google/bt/SonyXB2PairingTest.py +++ b/acts/tests/google/bt/SonyXB2PairingTest.py @@ -28,8 +28,8 @@ log = logging class SonyXB2PairingTest(BluetoothBaseTest): DISCOVERY_TIME = 5 - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) self.dut = self.android_devices[0] # Do factory reset and then do delay for 3-seconds self.dut.droid.bluetoothFactoryReset() diff --git a/acts/tests/google/bt/audio_lab/BtChameleonTest.py b/acts/tests/google/bt/audio_lab/BtChameleonTest.py index d26834409b..4a43cd3c87 100644 --- a/acts/tests/google/bt/audio_lab/BtChameleonTest.py +++ b/acts/tests/google/bt/audio_lab/BtChameleonTest.py @@ -47,8 +47,8 @@ class BtChameleonTest(BtFunhausBaseTest): audio_file_2k1k_300_sec = "audio_file_2k1k_300_sec.wav" android_sdcard_music_path = "/sdcard/Music" - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BtFunhausBaseTest.__init__(self, controllers) self.chameleon = self.chameleon_devices[0] self.dut = self.android_devices[0] self.raw_audio_dest = "{}/{}".format(self.android_devices[0].log_path, diff --git a/acts/tests/google/bt/audio_lab/BtFunhausTest.py b/acts/tests/google/bt/audio_lab/BtFunhausTest.py index 42cbc22dd9..e82c95582e 100644 --- a/acts/tests/google/bt/audio_lab/BtFunhausTest.py +++ b/acts/tests/google/bt/audio_lab/BtFunhausTest.py @@ -26,8 +26,8 @@ class BtFunhausTest(BtFunhausBaseTest): music_file_to_play = "" device_fails_to_connect_list = [] - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BtFunhausBaseTest.__init__(self, controllers) @test_tracker_info(uuid='80a4cc4c-7c2a-428d-9eaf-46239a7926df') def test_run_bt_audio_12_hours(self): diff --git a/acts/tests/google/bt/audio_lab/ThreeButtonDongleTest.py b/acts/tests/google/bt/audio_lab/ThreeButtonDongleTest.py index abf97be2bd..cf9add5fb0 100644 --- a/acts/tests/google/bt/audio_lab/ThreeButtonDongleTest.py +++ b/acts/tests/google/bt/audio_lab/ThreeButtonDongleTest.py @@ -26,8 +26,8 @@ from acts.test_utils.bt.bt_test_utils import clear_bonded_devices class ThreeButtonDongleTest(BluetoothBaseTest): iterations = 10 - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) self.dut = self.android_devices[0] self.dongle = self.relay_devices[0] self.log.info("Target dongle is {}".format(self.dongle.name)) diff --git a/acts/tests/google/bt/car_bt/BtCarBasicFunctionalityTest.py b/acts/tests/google/bt/car_bt/BtCarBasicFunctionalityTest.py index 99f2851843..431e49ed6e 100644 --- a/acts/tests/google/bt/car_bt/BtCarBasicFunctionalityTest.py +++ b/acts/tests/google/bt/car_bt/BtCarBasicFunctionalityTest.py @@ -36,10 +36,11 @@ class BtCarBasicFunctionalityTest(BluetoothBaseTest): default_timeout = 10 scan_discovery_time = 5 - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) self.car_ad = self.android_devices[0] + def setup_class(self): return setup_multiple_devices_for_bt_test(self.android_devices) @test_tracker_info(uuid='b52a032a-3438-4b84-863f-c46a969882a4') diff --git a/acts/tests/google/bt/car_bt/BtCarMediaPassthroughTest.py b/acts/tests/google/bt/car_bt/BtCarMediaPassthroughTest.py index dbb1cc95c2..031834da6f 100644 --- a/acts/tests/google/bt/car_bt/BtCarMediaPassthroughTest.py +++ b/acts/tests/google/bt/car_bt/BtCarMediaPassthroughTest.py @@ -68,7 +68,7 @@ class BtCarMediaPassthroughTest(BluetoothBaseTest): self.log.info("Media ready to push as is.") elif not os.path.isdir(self.local_media_path): self.local_media_path = os.path.join( - self.user_params[Config.key_config_path.value], + self.user_params[Config.key_config_path], self.local_media_path) if not os.path.isdir(self.local_media_path): self.log.error("Unable to load user config " + self. diff --git a/acts/tests/google/bt/car_bt/BtCarPairingTest.py b/acts/tests/google/bt/car_bt/BtCarPairingTest.py index 603f1a8afd..b4fde56fe3 100644 --- a/acts/tests/google/bt/car_bt/BtCarPairingTest.py +++ b/acts/tests/google/bt/car_bt/BtCarPairingTest.py @@ -33,8 +33,8 @@ UNBOND_TIMEOUT = 3 class BtCarPairingTest(BluetoothBaseTest): - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) self.car = self.android_devices[0] self.ph = self.android_devices[1] diff --git a/acts/tests/google/bt/car_bt/BtCarPbapTest.py b/acts/tests/google/bt/car_bt/BtCarPbapTest.py index 6d5bccbd89..ab605a2385 100644 --- a/acts/tests/google/bt/car_bt/BtCarPbapTest.py +++ b/acts/tests/google/bt/car_bt/BtCarPbapTest.py @@ -40,14 +40,16 @@ STANDART_CONTACT_COUNT = 100 class BtCarPbapTest(BluetoothBaseTest): contacts_destination_path = "" - def setup_class(self): - if not super(BtCarPbapTest, self).setup_class(): - return False + def __init__(self, controllers): + BaseTestClass.__init__(self, controllers) self.pce = self.android_devices[0] self.pse = self.android_devices[1] self.pse2 = self.android_devices[2] self.contacts_destination_path = self.log_path + "/" + def setup_class(self): + if not super(BtCarPbapTest, self).setup_class(): + return False permissions_list = [ "android.permission.READ_CONTACTS", "android.permission.WRITE_CONTACTS", diff --git a/acts/tests/google/bt/gatt/GattOverBrEdrTest.py b/acts/tests/google/bt/gatt/GattOverBrEdrTest.py index 7985540dfe..dcf916de9a 100644 --- a/acts/tests/google/bt/gatt/GattOverBrEdrTest.py +++ b/acts/tests/google/bt/gatt/GattOverBrEdrTest.py @@ -47,11 +47,13 @@ class GattOverBrEdrTest(BluetoothBaseTest): default_discovery_timeout = 3 per_droid_mac_address = None - def setup_class(self): - super(BluetoothBaseTest, self).setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) self.cen_ad = self.android_devices[0] self.per_ad = self.android_devices[1] + def setup_class(self): + super(BluetoothBaseTest, self).setup_class() self.per_droid_mac_address = self.per_ad.droid.bluetoothGetLocalAddress( ) if not self.per_droid_mac_address: diff --git a/acts/tests/google/bt/hid/HidDeviceTest.py b/acts/tests/google/bt/hid/HidDeviceTest.py index e7e1778611..cdd1094ada 100644 --- a/acts/tests/google/bt/hid/HidDeviceTest.py +++ b/acts/tests/google/bt/hid/HidDeviceTest.py @@ -34,8 +34,8 @@ class HidDeviceTest(BluetoothBaseTest): tests = None default_timeout = 10 - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BaseTestClass.__init__(self, controllers) self.host_ad = self.android_devices[0] self.device_ad = self.android_devices[1] diff --git a/acts/tests/google/bt/ota/BtOtaTest.py b/acts/tests/google/bt/ota/BtOtaTest.py index 86e3098c19..91e51bb7f7 100644 --- a/acts/tests/google/bt/ota/BtOtaTest.py +++ b/acts/tests/google/bt/ota/BtOtaTest.py @@ -32,14 +32,14 @@ class BtOtaTest(BluetoothBaseTest): # Pairing devices if not pair_pri_to_sec(self.dut, self.android_devices[1]): - raise signals.TestAbortClass( + raise signals.TestSkipClass( "Failed to bond devices prior to update") #Run OTA below, if ota fails then abort all tests try: ota_updater.update(self.dut) except Exception as err: - raise signals.TestAbortClass( + raise signals.TestSkipClass( "Failed up apply OTA update. Aborting tests") @BluetoothBaseTest.bt_test_wrap diff --git a/acts/tests/google/bt/pan/BtPanTest.py b/acts/tests/google/bt/pan/BtPanTest.py index 01f6078130..0539851456 100644 --- a/acts/tests/google/bt/pan/BtPanTest.py +++ b/acts/tests/google/bt/pan/BtPanTest.py @@ -32,8 +32,8 @@ import time class BtPanTest(BluetoothBaseTest): - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) self.pan_dut = self.android_devices[0] self.panu_dut = self.android_devices[1] diff --git a/acts/tests/google/bt/performance/BtCodecSweepTest.py b/acts/tests/google/bt/performance/BtCodecSweepTest.py index a6504a5e58..c8e68195bb 100644 --- a/acts/tests/google/bt/performance/BtCodecSweepTest.py +++ b/acts/tests/google/bt/performance/BtCodecSweepTest.py @@ -28,8 +28,8 @@ DEFAULT_ANOMALIES_THRESHOLD = 0 class BtCodecSweepTest(A2dpCodecBaseTest): - def setup_class(self): - super().setup_class() + def __init__(self, configs): + super().__init__(configs) self.bt_logger = BluetoothMetricLogger.for_test_case() self.start_time = time.time() diff --git a/acts/tests/google/bt/performance/BtInterferenceRSSITest.py b/acts/tests/google/bt/performance/BtInterferenceRSSITest.py index 6c92c618ee..dbc1e9eda3 100644 --- a/acts/tests/google/bt/performance/BtInterferenceRSSITest.py +++ b/acts/tests/google/bt/performance/BtInterferenceRSSITest.py @@ -26,8 +26,8 @@ class BtInterferenceRSSITest(A2dpCodecBaseTest): module) terminates the sequence and keeps it from looping. """ - def setup_class(self): - super().setup_class() + def __init__(self, configs): + super().__init__(configs) req_params = ["bt_atten_sequences", "RelayDevice", "codec"] opt_params = ["audio_params"] self.unpack_userparams(req_params, opt_params) diff --git a/acts/tests/google/bt/performance/BtRangeCodecTest.py b/acts/tests/google/bt/performance/BtRangeCodecTest.py index e20b864cc8..ae2fc1601f 100644..100755 --- a/acts/tests/google/bt/performance/BtRangeCodecTest.py +++ b/acts/tests/google/bt/performance/BtRangeCodecTest.py @@ -14,27 +14,21 @@ # License for the specific language governing permissions and limitations under # the License. """Stream music through connected device from phone across different -attenuations.""" +attenuation.""" import time from acts import asserts from acts.signals import TestPass from acts.test_utils.bt.A2dpCodecBaseTest import A2dpCodecBaseTest -from acts.test_utils.bt.A2dpCodecBaseTest import HEADSET_CONTROL_SLEEP_TIME -from acts.test_utils.bt import bt_constants from acts.test_utils.bt.bt_test_utils import set_bluetooth_codec -from acts.test_utils.bt.loggers import bluetooth_metric_logger as log DEFAULT_THDN_THRESHOLD = 0.9 +HEADSET_CONTROL_SLEEP_TIME = 10 PHONE_BT_ENABLE_WAITING_TIME = 10 - class BtRangeCodecTest(A2dpCodecBaseTest): - - def setup_class(self): - super().setup_class() - self.bt_logger = log.BluetoothMetricLogger.for_test_case() - self.start_time = time.time() + def __init__(self, configs): + super().__init__(configs) self.attenuator = self.attenuators[0] req_params = [ 'bt_atten_start', 'bt_atten_stop', @@ -82,57 +76,16 @@ class BtRangeCodecTest(A2dpCodecBaseTest): # after the test, reset the attenuation self.attenuator.set_atten(0) - def generate_proto(self, data_points, codec_type, sample_rate, - bits_per_sample, channel_mode): - """Generate a results protobuf. - - Args: - data_points: list of dicts representing info to go into - AudioTestDataPoint protobuffer message. - codec_type: The codec type config to store in the proto. - sample_rate: The sample rate config to store in the proto. - bits_per_sample: The bits per sample config to store in the proto. - channel_mode: The channel mode config to store in the proto. - Returns: - dict: Dictionary with key 'proto' mapping to serialized protobuf, - 'proto_ascii' mapping to human readable protobuf info, and 'test' - mapping to the test class name that generated the results. - """ - - # Populate protobuf - test_case_proto = self.bt_logger.proto_module.BluetoothAudioTestResult() - - for data_point in data_points: - audio_data_proto = test_case_proto.data_points.add() - log.recursive_assign(audio_data_proto, data_point) - - codec_proto = test_case_proto.a2dp_codec_config - codec_proto.codec_type = bt_constants.codec_types[codec_type] - codec_proto.sample_rate = int(sample_rate) - codec_proto.bits_per_sample = int(bits_per_sample) - codec_proto.channel_mode = bt_constants.channel_modes[channel_mode] - - self.bt_logger.add_config_data_to_proto(test_case_proto, - self.android, - self.bt_device) - - self.bt_logger.add_proto_to_results(test_case_proto, - self.__class__.__name__) - - proto_dict = self.bt_logger.get_proto_dict(self.__class__.__name__, - test_case_proto) - del proto_dict["proto_ascii"] - return proto_dict - def stream_music_on_codec_vs_atten(self, codec_config): attenuation_range = range(self.bt_atten_start, - self.bt_atten_stop + 1, - self.bt_atten_step) + self.bt_atten_stop + 1, + self.bt_atten_step) - data_points = [] + results = [] codec_set = set_bluetooth_codec(self.android, **codec_config) - asserts.assert_true(codec_set, 'Codec configuration failed.') + asserts.assert_true(codec_set, 'Codec configuration failed.', + extras=self.metrics) #loop RSSI with the same codec setting for atten in attenuation_range: @@ -140,35 +93,25 @@ class BtRangeCodecTest(A2dpCodecBaseTest): self.log.info('atten %d', atten) self.play_and_record_audio() - time_from_start = int((time.time() - self.start_time) * 1000) thdns = self.run_thdn_analysis() - stream_duration = int(self.mic.get_last_record_duration_millis()) - data_point = { - 'timestamp_since_beginning_of_test_millis': time_from_start, - 'audio_streaming_duration_millis': stream_duration, - 'attenuation_db': atten, - 'total_harmonic_distortion_plus_noise_percent': thdns[0] * 100 - } - data_points.append(data_point) + results.append(thdns) self.log.info('attenuation is %d', atten) - self.log.info('THD+N result is %s', thdns) + self.log.info('THD+N result is %s', str(results[-1])) for thdn in thdns: if thdn >= self.user_params.get('thdn_threshold', - DEFAULT_THDN_THRESHOLD): + DEFAULT_THDN_THRESHOLD): self.log.info( 'stop increasing attenuation and ' 'get into next codec test. THD+N=, %s', str(thdn) ) - proto_dict = self.generate_proto(data_points, **codec_config) raise TestPass( 'test run through attenuations before audio is broken.' 'Successfully recorded and analyzed audio.', - extras=proto_dict) + extras=self.metrics) - proto_dict = self.generate_proto(data_points, **codec_config) raise TestPass( 'test run through all attenuations.' 'Successfully recorded and analyzed audio.', - extras=proto_dict) + extras=self.metrics) diff --git a/acts/tests/google/bt/power/A2dpPowerTest.py b/acts/tests/google/bt/power/A2dpPowerTest.py index 561c5037b5..a74d539cc4 100644 --- a/acts/tests/google/bt/power/A2dpPowerTest.py +++ b/acts/tests/google/bt/power/A2dpPowerTest.py @@ -123,7 +123,7 @@ class A2dpPowerTest(PowerBaseTest): "Push bt_config file so it will connect automatically") if not push_file_to_device( self.ad, bt_config_path, bt_conf_path_dut, - self.user_params[Config.key_config_path.value]): + self.user_params[Config.key_config_path]): self.log.error( "Unable to push file {} to DUT.".format(bt_config_path)) @@ -220,18 +220,18 @@ class A2dpPowerTest(PowerBaseTest): 0] self.log.info( "Push CD quality music file {}".format(self.cd_quality_music_file)) - if not push_file_to_device( - self.ad, self.cd_quality_music_file, music_path_dut, - self.user_params[Config.key_config_path.value]): + if not push_file_to_device(self.ad, self.cd_quality_music_file, + music_path_dut, + self.user_params[Config.key_config_path]): self.log.error("Unable to push file {} to DUT.".format( self.cd_quality_music_file)) self.hi_res_music_file = self.user_params["hi_res_music_file"][0] self.log.info( "Push Hi Res quality music file {}".format(self.hi_res_music_file)) - if not push_file_to_device( - self.ad, self.hi_res_music_file, music_path_dut, - self.user_params[Config.key_config_path.value]): + if not push_file_to_device(self.ad, self.hi_res_music_file, + music_path_dut, + self.user_params[Config.key_config_path]): self.log.error( "Unable to find file {}.".format(self.hi_res_music_file)) diff --git a/acts/tests/google/bt/pts/A2dpPtsTest.py b/acts/tests/google/bt/pts/A2dpPtsTest.py deleted file mode 100644 index 2c2ffeefa4..0000000000 --- a/acts/tests/google/bt/pts/A2dpPtsTest.py +++ /dev/null @@ -1,136 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright (C) 2019 The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. -""" -A2DP PTS Tests. -""" -from acts.test_utils.abstract_devices.bluetooth_device import AndroidBluetoothDevice -from acts.test_utils.abstract_devices.bluetooth_device import FuchsiaBluetoothDevice -from acts.test_utils.bt.pts.pts_base_class import PtsBaseClass - -import acts.test_utils.bt.pts.fuchsia_pts_ics_lib as f_ics_lib -import acts.test_utils.bt.pts.fuchsia_pts_ixit_lib as f_ixit_lib - - -class A2dpPtsTest(PtsBaseClass): - ble_advertise_interval = 100 - pts_action_mapping = None - - def setup_class(self): - super().setup_class() - self.dut.initialize_bluetooth_controller() - # self.dut.set_bluetooth_local_name(self.dut_bluetooth_local_name) - local_dut_mac_address = self.dut.get_local_bluetooth_address() - - ics = None - ixit = None - if isinstance(self.dut, FuchsiaBluetoothDevice): - fuchsia_ixit = f_ixit_lib.A2DP_IXIT - fuchsia_ixit[b'TSPX_bd_addr_iut'] = (b'OCTETSTRING', - local_dut_mac_address.replace( - ':', '').encode()) - ics = f_ics_lib.A2DP_ICS - ixit = fuchsia_ixit - elif isinstance(self.dut, AndroidBluetoothDevice): - # TODO: Add ICS and IXIT values for Android - self.log.warn( - "ICS/IXIT values not set for Android, using Fuchsia as default." - ) - fuchsia_ixit = f_ixit_lib.A2DP_IXIT - fuchsia_ixit[b'TSPX_bd_addr_iut'] = (b'OCTETSTRING', - local_dut_mac_address.replace( - ':', '').encode()) - ics = f_ics_lib.A2DP_ICS - ixit = fuchsia_ixit - - ### PTS SETUP: Required after ICS, IXIT, and profile is setup ### - self.pts.set_profile_under_test("A2DP") - self.pts.set_ics_and_ixit(ics, ixit) - self.pts.setup_pts() - ### End PTS Setup ### - - self.dut.unbond_all_known_devices() - self.dut.start_pairing_helper() - - def setup_test(self): - super(A2dpPtsTest, self).setup_test() - # Make sure there were no lingering answers due to a failed test. - self.pts.extra_answers = [] - - def teardown_test(self): - super(A2dpPtsTest, self).teardown_test() - - def teardown_class(self): - super(A2dpPtsTest, self).teardown_class() - self.dut.stop_profile_a2dp_sink() - - # BEGIN A2DP SINK TESTCASES # - @PtsBaseClass.pts_test_wrap - def test_a2dp_snk_as_bv_01_i(self): - return self.pts.execute_test("A2DP/SNK/AS/BV-01-I") - - @PtsBaseClass.pts_test_wrap - def test_a2dp_snk_as_bv_02_i(self): - return self.pts.execute_test("A2DP/SNK/AS/BV-02-I") - - @PtsBaseClass.pts_test_wrap - def test_a2dp_snk_cc_bv_01_i(self): - return self.pts.execute_test("A2DP/SNK/CC/BV-01-I") - - @PtsBaseClass.pts_test_wrap - def test_a2dp_snk_cc_bv_02_i(self): - return self.pts.execute_test("A2DP/SNK/CC/BV-02-I") - - @PtsBaseClass.pts_test_wrap - def test_a2dp_snk_cc_bv_05_i(self): - return self.pts.execute_test("A2DP/SNK/CC/BV-05-I") - - @PtsBaseClass.pts_test_wrap - def test_a2dp_snk_cc_bv_06_i(self): - return self.pts.execute_test("A2DP/SNK/CC/BV-06-I") - - @PtsBaseClass.pts_test_wrap - def test_a2dp_snk_cc_bv_07_i(self): - return self.pts.execute_test("A2DP/SNK/CC/BV-07-I") - - @PtsBaseClass.pts_test_wrap - def test_a2dp_snk_cc_bv_08_i(self): - return self.pts.execute_test("A2DP/SNK/CC/BV-08-I") - - @PtsBaseClass.pts_test_wrap - def test_a2dp_snk_rel_bv_01_i(self): - return self.pts.execute_test("A2DP/SNK/REL/BV-01-I") - - @PtsBaseClass.pts_test_wrap - def test_a2dp_snk_set_bv_01_i(self): - return self.pts.execute_test("A2DP/SNK/SET/BV-01-I") - - @PtsBaseClass.pts_test_wrap - def test_a2dp_snk_set_bv_02_i(self): - return self.pts.execute_test("A2DP/SNK/SET/BV-02-I") - - @PtsBaseClass.pts_test_wrap - def test_a2dp_snk_set_bv_03_i(self): - return self.pts.execute_test("A2DP/SNK/SET/BV-03-I") - - @PtsBaseClass.pts_test_wrap - def test_a2dp_snk_set_bv_03_i_bv_05_i(self): - return self.pts.execute_test("A2DP/SNK/SET/BV-05-I") - - @PtsBaseClass.pts_test_wrap - def test_a2dp_snk_sus_bv_01_i(self): - return self.pts.execute_test("A2DP/SNK/SUS/BV-01-I") - - # END A2DP SINK TESTCASES # diff --git a/acts/tests/google/bt/pts/BtCmdLineTest.py b/acts/tests/google/bt/pts/BtCmdLineTest.py index 8d925edcd2..74d1c98972 100644 --- a/acts/tests/google/bt/pts/BtCmdLineTest.py +++ b/acts/tests/google/bt/pts/BtCmdLineTest.py @@ -34,8 +34,8 @@ from acts.test_utils.tel.tel_test_utils import setup_droid_properties class BtCmdLineTest(BluetoothBaseTest): target_mac_address = "" - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) if not "target_mac_address" in self.user_params.keys(): self.log.warning("Missing user config \"target_mac_address\"!") self.target_mac_address = "" @@ -55,8 +55,7 @@ class BtCmdLineTest(BluetoothBaseTest): # relative to the config file. if not os.path.isfile(sim_conf_file): sim_conf_file = os.path.join( - self.user_params[Config.key_config_path.value], - sim_conf_file) + self.user_params[Config.key_config_path], sim_conf_file) if not os.path.isfile(sim_conf_file): log.error("Unable to load user config " + sim_conf_file + " from test config file.") @@ -71,7 +70,6 @@ class BtCmdLineTest(BluetoothBaseTest): music_path = self.user_params[music_path_str] self._add_music_to_primary_android_device(music_path, android_music_path) - return True def _add_music_to_primary_android_device(self, music_path, android_music_path): @@ -83,6 +81,9 @@ class BtCmdLineTest(BluetoothBaseTest): self.android_devices[0].adb.push("{} {}".format( file, android_music_path)) + def setup_class(self): + return True + def test_pts_cmd_line_helper(self): cmd_line = CmdInput() cmd_line.setup_vars(self.android_devices, self.target_mac_address, diff --git a/acts/tests/google/bt/pts/GattPtsTest.py b/acts/tests/google/bt/pts/GattPtsTest.py deleted file mode 100644 index 4166f8e9b6..0000000000 --- a/acts/tests/google/bt/pts/GattPtsTest.py +++ /dev/null @@ -1,464 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright (C) 2019 The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. -""" -GATT PTS Automation -""" - -from acts import signals -from acts.test_utils.abstract_devices.bluetooth_device import AndroidBluetoothDevice -from acts.test_utils.abstract_devices.bluetooth_device import FuchsiaBluetoothDevice -from acts.controllers.bluetooth_pts_device import VERDICT_STRINGS -from acts.test_utils.bt.pts.pts_base_class import PtsBaseClass - -import acts.test_utils.bt.gatt_test_database as gatt_test_database -import acts.test_utils.bt.pts.fuchsia_pts_ics_lib as f_ics_lib -import acts.test_utils.bt.pts.fuchsia_pts_ixit_lib as f_ixit_lib - - -class GattPtsTest(PtsBaseClass): - ble_advertise_interval = 100 - pts_action_mapping = None - - def setup_class(self): - super().setup_class() - self.dut_bluetooth_local_name = "fs_test" - self.dut.initialize_bluetooth_controller() - self.dut.set_bluetooth_local_name(self.dut_bluetooth_local_name) - local_dut_mac_address = self.dut.get_local_bluetooth_address() - - ics = None - ixit = None - if isinstance(self.dut, FuchsiaBluetoothDevice): - fuchsia_ixit = f_ixit_lib.GATT_IXIT - fuchsia_ixit[b'TSPX_bd_addr_iut'] = (b'OCTETSTRING', - local_dut_mac_address.replace( - ':', '').encode()) - fuchsia_ixit[ - b'TSPX_iut_device_name_in_adv_packet_for_random_address'] = ( - b'IA5STRING', self.dut_bluetooth_local_name.encode()) - ics = f_ics_lib.GATT_ICS - ixit = fuchsia_ixit - elif isinstance(self.dut, AndroidBluetoothDevice): - # TODO: Add ICS and IXIT values for Android. For now just default - # To Fuchsia as it's a subset of Android. - self.log.warn( - "ICS/IXIT values not set for Android, using Fuchsia as default." - ) - fuchsia_ixit = f_ixit_lib.GATT_IXIT - fuchsia_ixit[b'TSPX_bd_addr_iut'] = (b'OCTETSTRING', - local_dut_mac_address.replace( - ':', '').encode()) - fuchsia_ixit[ - b'TSPX_iut_device_name_in_adv_packet_for_random_address'] = ( - b'IA5STRING', self.dut_bluetooth_local_name.encode()) - ics = f_ics_lib.GATT_ICS - ixit = fuchsia_ixit - else: - raise ValueError( - "Unable to run PTS tests on unsupported hardare {}.".format( - type(self.dut))) - - ### PTS SETUP: Required after ICS, IXIT, and profile is setup ### - self.pts.set_profile_under_test("GATT") - self.pts.set_ics_and_ixit(ics, ixit) - self.pts.setup_pts() - ### End PTS Setup ### - - self.dut.unbond_all_known_devices() - self.dut.start_pairing_helper() - - def setup_test(self): - super(GattPtsTest, self).setup_test() - # Make sure there were no lingering answers due to a failed test. - self.pts.extra_answers = [] - - def teardown_test(self): - super(GattPtsTest, self).teardown_test() - self.dut.stop_le_advertisement() - self.dut.close_gatt_server() - - def teardown_class(self): - super(GattPtsTest, self).teardown_class() - self.dut.unbond_device(self.peer_identifier) - - # BEGIN GATT CLIENT TESTCASES # - @PtsBaseClass.pts_test_wrap - def test_gatt_cl_gad_bv_01_c(self): - return self.pts.execute_test("GATT/CL/GAD/BV-01-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_cl_gad_bv_03_c(self): - return self.pts.execute_test("GATT/CL/GAD/BV-03-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_cl_gad_bv_04_c(self): - return self.pts.execute_test("GATT/CL/GAD/BV-04-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_cl_gad_bv_05_c(self): - return self.pts.execute_test("GATT/CL/GAD/BV-05-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_cl_gad_bv_06_c(self): - return self.pts.execute_test("GATT/CL/GAD/BV-06-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_cl_gad_bv_07_c(self): - return self.pts.execute_test("GATT/CL/GAD/BV-07-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_cl_gad_bv_08_c(self): - return self.pts.execute_test("GATT/CL/GAD/BV-08-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_cl_gar_bv_01_c(self): - return self.pts.execute_test("GATT/CL/GAR/BV-01-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_cl_gaw_bv_01_c(self): - return self.pts.execute_test("GATT/CL/GAW/BV-01-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_cl_gaw_bv_03_c(self): - return self.pts.execute_test("GATT/CL/GAW/BV-03-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_cl_gaw_bv_05_c(self): - return self.pts.execute_test("GATT/CL/GAW/BV-05-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_cl_gaw_bv_08_c(self): - return self.pts.execute_test("GATT/CL/GAW/BV-08-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_cl_gaw_bv_09_c(self): - return self.pts.execute_test("GATT/CL/GAW/BV-09-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_cl_gaw_bi_02_c(self): - return self.pts.execute_test("GATT/CL/GAW/BI-02-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_cl_gaw_bi_03_c(self): - return self.pts.execute_test("GATT/CL/GAW/BI-03-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_cl_gaw_bi_05_c(self): - return self.pts.execute_test("GATT/CL/GAW/BI-05-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_cl_gaw_bi_06_c(self): - return self.pts.execute_test("GATT/CL/GAW/BI-06-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_cl_gaw_bi_07_c(self): - return self.pts.execute_test("GATT/CL/GAW/BI-07-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_cl_gaw_bi_08_c(self): - return self.pts.execute_test("GATT/CL/GAW/BI-08-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_cl_gaw_bi_09_c(self): - return self.pts.execute_test("GATT/CL/GAW/BI-09-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_cl_gaw_bi_33_c(self): - return self.pts.execute_test("GATT/CL/GAW/BI-33-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_cl_gar_bv_01_c(self): - return self.pts.execute_test("GATT/CL/GAR/BV-01-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_cl_gar_bv_03_c(self): - return self.pts.execute_test("GATT/CL/GAR/BV-03-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_cl_gar_bv_04_c(self): - return self.pts.execute_test("GATT/CL/GAR/BV-04-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_cl_gar_bv_06_c(self): - return self.pts.execute_test("GATT/CL/GAR/BV-06-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_cl_gar_bv_07_c(self): - return self.pts.execute_test("GATT/CL/GAR/BV-07-C") - - # END GATT CLIENT TESTCASES # - # BEGIN GATT SERVER TESTCASES # - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gad_bv_01_c(self): - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_1')) - return self.pts.execute_test("GATT/SR/GAD/BV-01-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gad_bv_02_c(self): - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_1')) - return self.pts.execute_test("GATT/SR/GAD/BV-02-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gad_bv_03_c(self): - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_1')) - return self.pts.execute_test("GATT/SR/GAD/BV-03-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gad_bv_04_c(self): - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_1')) - return self.pts.execute_test("GATT/SR/GAD/BV-04-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gad_bv_05_c(self): - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_1')) - return self.pts.execute_test("GATT/SR/GAD/BV-05-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gad_bv_06_c(self): - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_1')) - return self.pts.execute_test("GATT/SR/GAD/BV-06-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gad_bv_07_c(self): - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_1')) - return self.pts.execute_test("GATT/SR/GAD/BV-07-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gad_bv_08_c(self): - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_1')) - return self.pts.execute_test("GATT/SR/GAD/BV-08-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gar_bv_01_c(self): - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_1')) - return self.pts.execute_test("GATT/SR/GAR/BV-01-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gar_bi_01_c(self): - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_1')) - return self.pts.execute_test("GATT/SR/GAR/BI-01-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gar_bi_02_c(self): - if self.characteristic_read_invalid_handle is None: - raise signals.TestSkip( - "Required user params missing:\n{}\n{}".format( - "characteristic_read_invalid_handle")) - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_1')) - return self.pts.execute_test("GATT/SR/GAR/BI-02-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gar_bi_05_c(self): - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('TEST_DB_2')) - return self.pts.execute_test("GATT/SR/GAR/BI-05-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gar_bv_03_c(self): - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_1')) - return self.pts.execute_test("GATT/SR/GAR/BV-03-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gar_bi_06_c(self): - if (self.characteristic_read_not_permitted_uuid is None - or self.characteristic_read_not_permitted_handle is None): - raise signals.TestSkip( - "Required user params missing:\n{}\n{}".format( - "characteristic_read_not_permitted_uuid", - "characteristic_read_not_permitted_handle")) - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_1')) - return self.pts.execute_test("GATT/SR/GAR/BI-06-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gar_bi_07_c(self): - if self.characteristic_attribute_not_found_uuid is None: - raise signals.TestSkip("Required user params missing:\n{}".format( - "characteristic_attribute_not_found_uuid")) - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_1')) - return self.pts.execute_test("GATT/SR/GAR/BI-07-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gar_bi_08_c(self): - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_3')) - return self.pts.execute_test("GATT/SR/GAR/BI-08-C") - - def test_gatt_sr_gar_bi_11_c(self): - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_1')) - return self.pts.execute_test("GATT/SR/GAR/BI-11-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gar_bv_04_c(self): - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_3')) - return self.pts.execute_test("GATT/SR/GAR/BV-04-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gar_bi_12_c(self): - if self.characteristic_read_not_permitted_handle is None: - raise signals.TestSkip("Required user params missing:\n{}".format( - "characteristic_read_not_permitted_handle")) - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_1')) - return self.pts.execute_test("GATT/SR/GAR/BI-12-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gar_bi_13_c(self): - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_1')) - return self.pts.execute_test("GATT/SR/GAR/BI-13-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gar_bi_14_c(self): - if self.characteristic_read_invalid_handle is None: - raise signals.TestSkip("Required user params missing:\n{}".format( - "characteristic_read_invalid_handle")) - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_1')) - return self.pts.execute_test("GATT/SR/GAR/BI-14-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gar_bi_16_c(self): - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('TEST_DB_2')) - return self.pts.execute_test("GATT/SR/GAR/BI-16-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gar_bv_06_c(self): - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_1')) - return self.pts.execute_test("GATT/SR/GAR/BV-06-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gar_bv_07_c(self): - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_1')) - return self.pts.execute_test("GATT/SR/GAR/BV-07-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gar_bv_08_c(self): - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_1')) - return self.pts.execute_test("GATT/SR/GAR/BV-08-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gaw_bv_01_c(self): - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_3')) - return self.pts.execute_test("GATT/SR/GAW/BV-01-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gaw_bv_03_c(self): - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_3')) - return self.pts.execute_test("GATT/SR/GAW/BV-03-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gaw_bi_03_c(self): - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_1')) - return self.pts.execute_test("GATT/SR/GAW/BI-03-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gaw_bi_07_c(self): - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_3')) - return self.pts.execute_test("GATT/SR/GAW/BI-07-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gaw_bi_08_c(self): - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_3')) - return self.pts.execute_test("GATT/SR/GAW/BI-08-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gaw_bi_12_c(self): - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_1')) - return self.pts.execute_test("GATT/SR/GAW/BI-12-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gaw_bi_13_c(self): - - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_3')) - return self.pts.execute_test("GATT/SR/GAW/BI-03-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gaw_bv_05_c(self): - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_3')) - return self.pts.execute_test("GATT/SR/GAW/BV-05-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gaw_bi_09_c(self): - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_1')) - return self.pts.execute_test("GATT/SR/GAW/BI-09-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gaw_bv_06_c(self): - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_1')) - return self.pts.execute_test("GATT/SR/GAW/BV-06-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gaw_bv_07_c(self): - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_1')) - return self.pts.execute_test("GATT/SR/GAW/BV-07-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gaw_bv_09_c(self): - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_1')) - return self.pts.execute_test("GATT/SR/GAW/BV-09-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gaw_bv_10_c(self): - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_1')) - return self.pts.execute_test("GATT/SR/GAW/BV-10-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gaw_bi_32_c(self): - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('DB_TEST')) - return self.pts.execute_test("GATT/SR/GAW/BI-32-C") - - @PtsBaseClass.pts_test_wrap - def test_gatt_sr_gaw_bi_33_c(self): - self.dut.setup_gatt_server( - gatt_test_database.GATT_SERVER_DB_MAPPING.get('LARGE_DB_3')) - return self.pts.execute_test("GATT/SR/GAW/BI-33-C") - - # END GATT SERVER TESTCASES # diff --git a/acts/tests/google/bt/pts/SdpPtsTest.py b/acts/tests/google/bt/pts/SdpPtsTest.py deleted file mode 100644 index 1dd5d66a24..0000000000 --- a/acts/tests/google/bt/pts/SdpPtsTest.py +++ /dev/null @@ -1,309 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright (C) 2019 The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. -""" -SDP PTS Tests. -""" -from acts.test_utils.abstract_devices.bluetooth_device import AndroidBluetoothDevice -from acts.test_utils.abstract_devices.bluetooth_device import FuchsiaBluetoothDevice -from acts.test_utils.bt.bt_constants import bt_attribute_values -from acts.test_utils.bt.bt_constants import sig_uuid_constants -from acts.test_utils.bt.pts.pts_base_class import PtsBaseClass - -import acts.test_utils.bt.pts.fuchsia_pts_ics_lib as f_ics_lib -import acts.test_utils.bt.pts.fuchsia_pts_ixit_lib as f_ixit_lib - -# SDP_RECORD Definition is WIP -SDP_RECORD = { - 'service_class_uuids': ["0001"], - 'protocol_descriptors': [ - { - 'protocol': - int(sig_uuid_constants['AVDTP'], 16), - 'params': [ - { - 'data': 0x0103 # to indicate 1.3 - }, - { - 'data': 0x0105 # to indicate 1.5 - } - ] - }, - { - 'protocol': int(sig_uuid_constants['SDP'], 16), - 'params': [{ - 'data': int(sig_uuid_constants['AVDTP'], 16), - }] - } - ], - 'profile_descriptors': [{ - 'profile_id': - int(sig_uuid_constants['AdvancedAudioDistribution'], 16), - 'major_version': - 1, - 'minor_version': - 3, - }], - 'additional_protocol_descriptors': [{ - 'protocol': - int(sig_uuid_constants['L2CAP'], 16), - 'params': [ - { - 'data': int(sig_uuid_constants['AVDTP'], 16), - }, - { - 'data': int(sig_uuid_constants['AVCTP'], 16), - }, - { - 'data': int(sig_uuid_constants['GenericAudio'], 16), - }, - ] - }], - 'information': [{ - 'language': "en", - 'name': "A2DP", - 'description': "Advanced Audio Distribution Profile", - 'provider': "Fuchsia" - }], - 'additional_attributes': [{ - 'id': 0x0201, - 'element': { - 'data': int(sig_uuid_constants['AVDTP'], 16) - } - }] -} - -ATTRIBUTES = [ - bt_attribute_values['ATTR_PROTOCOL_DESCRIPTOR_LIST'], - bt_attribute_values['ATTR_SERVICE_CLASS_ID_LIST'], - bt_attribute_values['ATTR_BLUETOOTH_PROFILE_DESCRIPTOR_LIST'], - bt_attribute_values['ATTR_SERVICE_AVAILABILITY'], - bt_attribute_values['ATTR_A2DP_SUPPORTED_FEATURES'], -] - -PROFILE_ID = int(sig_uuid_constants['AudioSource'], 16) - - -class SdpPtsTest(PtsBaseClass): - - def setup_class(self): - super().setup_class() - self.dut.initialize_bluetooth_controller() - # self.dut.set_bluetooth_local_name(self.dut_bluetooth_local_name) - local_dut_mac_address = self.dut.get_local_bluetooth_address() - - ics = None - ixit = None - if isinstance(self.dut, FuchsiaBluetoothDevice): - fuchsia_ixit = f_ixit_lib.SDP_IXIT - fuchsia_ixit[b'TSPX_bd_addr_iut'] = (b'OCTETSTRING', - local_dut_mac_address.replace( - ':', '').encode()) - ics = f_ics_lib.SDP_ICS - ixit = fuchsia_ixit - elif isinstance(self.dut, AndroidBluetoothDevice): - # TODO: Add ICS and IXIT values for Android - self.log.warn( - "ICS/IXIT values not set for Android, using Fuchsia as default." - ) - fuchsia_ixit = f_ixit_lib.SDP_IXIT - fuchsia_ixit[b'TSPX_bd_addr_iut'] = (b'OCTETSTRING', - local_dut_mac_address.replace( - ':', '').encode()) - ics = f_ics_lib.SDP_ICS - ixit = fuchsia_ixit - - ### PTS SETUP: Required after ICS, IXIT, and profile is setup ### - self.pts.set_profile_under_test("SDP") - self.pts.set_ics_and_ixit(ics, ixit) - self.pts.setup_pts() - ### End PTS Setup ### - - self.dut.unbond_all_known_devices() - self.dut.set_discoverable(True) - - def setup_test(self): - super(SdpPtsTest, self).setup_test() - self.dut.sdp_init() - self.dut.sdp_add_search(ATTRIBUTES, PROFILE_ID) - self.dut.sdp_add_service(SDP_RECORD) - - # Make sure there were no lingering answers due to a failed test. - self.pts.extra_answers = [] - - def teardown_test(self): - super(SdpPtsTest, self).teardown_test() - self.dut.sdp_clean_up() - - def teardown_class(self): - super(SdpPtsTest, self).teardown_class() - self.dut.sdp_clean_up() - self.dut.set_discoverable(False) - - # BEGIN SDP TESTCASES # - - @PtsBaseClass.pts_test_wrap - def test_sdp_sr_sa_bv_01_c(self): - return self.pts.execute_test("SDP/SR/SA/BV-01-C") - - @PtsBaseClass.pts_test_wrap - def test_sdp_sr_sa_bv_03_c(self): - return self.pts.execute_test("SDP/SR/SA/BV-03-C") - - @PtsBaseClass.pts_test_wrap - def test_sdp_sr_sa_bv_04_c(self): - return self.pts.execute_test("SDP/SR/SA/BV-04-C") - - @PtsBaseClass.pts_test_wrap - def test_sdp_sr_sa_bv_05_c(self): - return self.pts.execute_test("SDP/SR/SA/BV-05-C") - - @PtsBaseClass.pts_test_wrap - def test_sdp_sr_sa_bv_08_c(self): - return self.pts.execute_test("SDP/SR/SA/BV-08-C") - - @PtsBaseClass.pts_test_wrap - def test_sdp_sr_sa_bv_09_c(self): - return self.pts.execute_test("SDP/SR/SA/BV-09-C") - - @PtsBaseClass.pts_test_wrap - def test_sdp_sr_sa_bv_12_c(self): - return self.pts.execute_test("SDP/SR/SA/BV-12-C") - - @PtsBaseClass.pts_test_wrap - def test_sdp_sr_sa_bv_13_c(self): - return self.pts.execute_test("SDP/SR/SA/BV-13-C") - - @PtsBaseClass.pts_test_wrap - def test_sdp_sr_sa_bv_14_c(self): - return self.pts.execute_test("SDP/SR/SA/BV-14-C") - - @PtsBaseClass.pts_test_wrap - def test_sdp_sr_sa_bv_17_c(self): - return self.pts.execute_test("SDP/SR/SA/BV-17-C") - - @PtsBaseClass.pts_test_wrap - def test_sdp_sr_sa_bv_20_c(self): - return self.pts.execute_test("SDP/SR/SA/BV-20-C") - - @PtsBaseClass.pts_test_wrap - def test_sdp_sr_sa_bv_21_c(self): - return self.pts.execute_test("SDP/SR/SA/BV-21-C") - - @PtsBaseClass.pts_test_wrap - def test_sdp_sr_sa_bi_01_c(self): - return self.pts.execute_test("SDP/SR/SA/BI-01-C") - - @PtsBaseClass.pts_test_wrap - def test_sdp_sr_sa_bi_02_c(self): - return self.pts.execute_test("SDP/SR/SA/BI-02-C") - - @PtsBaseClass.pts_test_wrap - def test_sdp_sr_sa_bi_03_c(self): - return self.pts.execute_test("SDP/SR/SA/BI-03-C") - - @PtsBaseClass.pts_test_wrap - def test_sdp_sr_ss_bv_01_c(self): - return self.pts.execute_test("SDP/SR/SS/BV-01-C") - - @PtsBaseClass.pts_test_wrap - def test_sdp_sr_ss_bv_03_c(self): - # Triggers continuation response for supported devices. - num_of_records = 9 - for _ in range(num_of_records): - self.dut.sdp_add_service(SDP_RECORD) - return self.pts.execute_test("SDP/SR/SS/BV-03-C") - - @PtsBaseClass.pts_test_wrap - def test_sdp_sr_ss_bv_04_c(self): - # Triggers continuation response for supported devices. - num_of_records = 9 - for _ in range(num_of_records): - self.dut.sdp_add_service(SDP_RECORD) - return self.pts.execute_test("SDP/SR/SS/BV-04-C") - - @PtsBaseClass.pts_test_wrap - def test_sdp_sr_ss_bi_01_c(self): - return self.pts.execute_test("SDP/SR/SS/BI-01-C") - - @PtsBaseClass.pts_test_wrap - def test_sdp_sr_ss_bi_02_c(self): - return self.pts.execute_test("SDP/SR/SS/BI-02-C") - - @PtsBaseClass.pts_test_wrap - def test_sdp_sr_ssa_bv_01_c(self): - return self.pts.execute_test("SDP/SR/SSA/BV-01-C") - - @PtsBaseClass.pts_test_wrap - def test_sdp_sr_ssa_bv_02_c(self): - return self.pts.execute_test("SDP/SR/SSA/BV-02-C") - - @PtsBaseClass.pts_test_wrap - def test_sdp_sr_ssa_bv_03_c(self): - return self.pts.execute_test("SDP/SR/SSA/BV-03-C") - - @PtsBaseClass.pts_test_wrap - def test_sdp_sr_ssa_bv_04_c(self): - return self.pts.execute_test("SDP/SR/SSA/BV-04-C") - - @PtsBaseClass.pts_test_wrap - def test_sdp_sr_ssa_bv_06_c(self): - return self.pts.execute_test("SDP/SR/SSA/BV-06-C") - - @PtsBaseClass.pts_test_wrap - def test_sdp_sr_ssa_bv_10_c(self): - return self.pts.execute_test("SDP/SR/SSA/BV-10-C") - - @PtsBaseClass.pts_test_wrap - def test_sdp_sr_ssa_bv_11_c(self): - return self.pts.execute_test("SDP/SR/SSA/BV-11-C") - - @PtsBaseClass.pts_test_wrap - def test_sdp_sr_ssa_bv_12_c(self): - return self.pts.execute_test("SDP/SR/SSA/BV-12-C") - - @PtsBaseClass.pts_test_wrap - def test_sdp_sr_ssa_bv_13_c(self): - return self.pts.execute_test("SDP/SR/SSA/BV-13-C") - - @PtsBaseClass.pts_test_wrap - def test_sdp_sr_ssa_bv_16_c(self): - return self.pts.execute_test("SDP/SR/SSA/BV-16-C") - - @PtsBaseClass.pts_test_wrap - def test_sdp_sr_ssa_bv_17_c(self): - return self.pts.execute_test("SDP/SR/SSA/BV-17-C") - - @PtsBaseClass.pts_test_wrap - def test_sdp_sr_ssa_bv_18_c(self): - return self.pts.execute_test("SDP/SR/SSA/BV-18-C") - - @PtsBaseClass.pts_test_wrap - def test_sdp_sr_ssa_bv_20_c(self): - return self.pts.execute_test("SDP/SR/SSA/BV-20-C") - - @PtsBaseClass.pts_test_wrap - def test_sdp_sr_ssa_bv_23_c(self): - return self.pts.execute_test("SDP/SR/SSA/BV-23-C") - - @PtsBaseClass.pts_test_wrap - def test_sdp_sr_ssa_bi_01_c(self): - return self.pts.execute_test("SDP/SR/SSA/BI-01-C") - - @PtsBaseClass.pts_test_wrap - def test_sdp_sr_ssa_bi_02_c(self): - return self.pts.execute_test("SDP/SR/SSA/BI-02-C") - - # END SDP TESTCASES # diff --git a/acts/tests/google/bt/sdp/SdpSetupTest.py b/acts/tests/google/bt/sdp/SdpSetupTest.py deleted file mode 100644 index 938d720d98..0000000000 --- a/acts/tests/google/bt/sdp/SdpSetupTest.py +++ /dev/null @@ -1,195 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright (C) 2019 The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. -""" -Basic SDP Tests. - -This only requires a single bluetooth_device -and exercises adding/removing services, initialization, and -adding search records. -""" -from acts import signals -from acts.base_test import BaseTestClass -from acts.test_utils.abstract_devices.bluetooth_device import AndroidBluetoothDevice -from acts.test_utils.abstract_devices.bluetooth_device import FuchsiaBluetoothDevice -from acts.test_utils.abstract_devices.bluetooth_device import create_bluetooth_device -from acts.test_utils.bt.bt_constants import bt_attribute_values -from acts.test_utils.bt.bt_constants import sig_uuid_constants - -TEST_SDP_RECORD = { - 'service_class_uuids': ["0001"], - 'protocol_descriptors': [ - { - 'protocol': - int(sig_uuid_constants['AVDTP'], 16), - 'params': [ - { - 'data': 0x0103 # to indicate 1.3 - }, - { - 'data': 0x0105 # to indicate 1.5 - } - ] - }, - { - 'protocol': int(sig_uuid_constants['SDP'], 16), - 'params': [{ - 'data': int(sig_uuid_constants['AVDTP'], 16), - }] - } - ], - 'profile_descriptors': [{ - 'profile_id': - int(sig_uuid_constants['AdvancedAudioDistribution'], 16), - 'major_version': - 1, - 'minor_version': - 3, - }], - 'additional_protocol_descriptors': [{ - 'protocol': - int(sig_uuid_constants['L2CAP'], 16), - 'params': [{ - 'data': int(sig_uuid_constants['AVDTP'], 16), - }] - }], - 'information': [{ - 'language': "en", - 'name': "A2DP", - 'description': "Advanced Audio Distribution Profile", - 'provider': "Fuchsia" - }], - 'additional_attributes': - None -} - - -class SdpSetupTest(BaseTestClass): - def setup_class(self): - super(SdpSetupTest, self).setup_class() - if 'dut' in self.user_params: - if self.user_params['dut'] == 'fuchsia_devices': - self.dut = create_bluetooth_device(self.fuchsia_devices[0]) - elif self.user_params['dut'] == 'android_devices': - self.dut = create_bluetooth_device(self.android_devices[0]) - else: - raise ValueError('Invalid DUT specified in config. (%s)' % - self.user_params['dut']) - else: - # Default is an fuchsia device - self.dut = create_bluetooth_device(self.fuchsia_devices[0]) - self.dut.initialize_bluetooth_controller() - - - def setup_test(self): - self.dut.sdp_clean_up() - - def cleanup_class(self): - self.dut.sdp_clean_up() - - def test_init(self): - result = self.dut.sdp_init() - if result.get("error") is None: - raise signals.TestPass("Success") - else: - raise signals.TestFailure( - "Failed to initialize SDP with {}".format(result.get("error"))) - - def test_add_service(self): - self.dut.sdp_init() - result = self.dut.sdp_add_service(TEST_SDP_RECORD) - if result.get("error") is not None: - raise signals.TestFailure( - "Failed to add SDP service record: {}".format( - result.get("error"))) - else: - raise signals.TestPass("Success") - - def test_malformed_service(self): - self.dut.sdp_init() - malformed_record = {'malformed_sdp_record_input': ["1101"]} - result = self.dut.sdp_add_service(malformed_record) - if result.get("error") is not None: - raise signals.TestPass("Successfully failed with: {}".format( - result.get("error"))) - else: - raise signals.TestFailure( - "Expected failure of adding SDP record: {}".format( - malformed_record)) - - def test_add_search(self): - attributes = [ - bt_attribute_values['ATTR_PROTOCOL_DESCRIPTOR_LIST'], - bt_attribute_values['ATTR_SERVICE_CLASS_ID_LIST'], - bt_attribute_values['ATTR_BLUETOOTH_PROFILE_DESCRIPTOR_LIST'], - bt_attribute_values['ATTR_A2DP_SUPPORTED_FEATURES'], - ] - - self.dut.sdp_init() - profile_id = int(sig_uuid_constants['AudioSource'], 16) - result = self.dut.sdp_add_search(attributes, profile_id) - if result.get("error") is not None: - raise signals.TestFailure("Failed to add SDP search: {}".format( - result.get("error"))) - else: - raise signals.TestPass("Success") - - def test_include_additional_attributes(self): - self.dut.sdp_init() - additional_attributes = [{ - 'id': 0x0201, - 'element': { - 'data': int(sig_uuid_constants['AVDTP'], 16) - } - }] - - TEST_SDP_RECORD['additional_attributes'] = additional_attributes - result = self.dut.sdp_add_service(TEST_SDP_RECORD) - if result.get("error") is not None: - raise signals.TestFailure( - "Failed to add SDP service record: {}".format( - result.get("error"))) - else: - raise signals.TestPass("Success") - - - def test_include_additional_attributes(self): - self.dut.sdp_init() - additional_attributes = [{ - 'id': 0x0201, - 'element': { - 'data': int(sig_uuid_constants['AVDTP'], 16) - } - }] - - TEST_SDP_RECORD['additional_attributes'] = additional_attributes - result = self.dut.sdp_add_service(TEST_SDP_RECORD) - if result.get("error") is not None: - raise signals.TestFailure( - "Failed to add SDP service record: {}".format( - result.get("error"))) - else: - raise signals.TestPass("Success") - - def test_add_multiple_services(self): - self.dut.sdp_init() - number_of_records = 10 - for _ in range(number_of_records): - result = self.dut.sdp_add_service(TEST_SDP_RECORD) - if result.get("error") is not None: - raise signals.TestFailure( - "Failed to add SDP service record: {}".format( - result.get("error"))) - raise signals.TestPass("Success") diff --git a/acts/tests/google/bt/system_tests/BtStressTest.py b/acts/tests/google/bt/system_tests/BtStressTest.py index 0473aa0bcd..163ee3734c 100644 --- a/acts/tests/google/bt/system_tests/BtStressTest.py +++ b/acts/tests/google/bt/system_tests/BtStressTest.py @@ -33,8 +33,8 @@ class BtStressTest(BluetoothBaseTest): default_timeout = 20 iterations = 100 - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) def teardown_test(self): super(BluetoothBaseTest, self).teardown_test() diff --git a/acts/tests/google/bt/system_tests/RfcommLongevityTest.py b/acts/tests/google/bt/system_tests/RfcommLongevityTest.py index d1d4fe58d2..3e39344e92 100644 --- a/acts/tests/google/bt/system_tests/RfcommLongevityTest.py +++ b/acts/tests/google/bt/system_tests/RfcommLongevityTest.py @@ -39,8 +39,8 @@ class RfcommLongevityTest(BluetoothBaseTest): "strange new worlds, to seek out new life and new civilizations," " to boldly go where no man has gone before.") - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) self.client_ad = self.android_devices[0] self.server_ad = self.android_devices[1] diff --git a/acts/tests/google/bt/system_tests/RfcommStressTest.py b/acts/tests/google/bt/system_tests/RfcommStressTest.py index 3fac543eb1..8e56ef0832 100644 --- a/acts/tests/google/bt/system_tests/RfcommStressTest.py +++ b/acts/tests/google/bt/system_tests/RfcommStressTest.py @@ -38,8 +38,8 @@ class RfcommStressTest(BluetoothBaseTest): "strange new worlds, to seek out new life and new civilizations," " to boldly go where no man has gone before.") - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) self.client_ad = self.android_devices[0] self.server_ad = self.android_devices[1] diff --git a/acts/tests/google/coex/functionality_tests/CoexBasicFunctionalityTest.py b/acts/tests/google/coex/functionality_tests/CoexBasicFunctionalityTest.py index 38db1031fb..b0d71aa0ae 100644 --- a/acts/tests/google/coex/functionality_tests/CoexBasicFunctionalityTest.py +++ b/acts/tests/google/coex/functionality_tests/CoexBasicFunctionalityTest.py @@ -30,9 +30,11 @@ from acts.test_utils.coex.coex_test_utils import start_fping class CoexBasicFunctionalityTest(CoexBaseTest): + def __init__(self, controllers): + super().__init__(controllers) + def setup_class(self): super().setup_class() - req_params = ["iterations", "fping_params"] self.unpack_userparams(req_params) diff --git a/acts/tests/google/coex/functionality_tests/CoexBtMultiProfileFunctionalityTest.py b/acts/tests/google/coex/functionality_tests/CoexBtMultiProfileFunctionalityTest.py index 53dc7fa8cd..26dcdc4417 100644 --- a/acts/tests/google/coex/functionality_tests/CoexBtMultiProfileFunctionalityTest.py +++ b/acts/tests/google/coex/functionality_tests/CoexBtMultiProfileFunctionalityTest.py @@ -34,9 +34,11 @@ from acts.test_utils.coex.coex_test_utils import setup_tel_config class CoexBtMultiProfileFunctionalityTest(CoexBaseTest): + def __init__(self, controllers): + super().__init__(controllers) + def setup_class(self): super().setup_class() - req_params = ["sim_conf_file", "music_play_time", "music_file"] self.unpack_userparams(req_params) self.ag_phone_number, self.re_phone_number = setup_tel_config( diff --git a/acts/tests/google/coex/functionality_tests/WlanWithA2dpFunctionalityTest.py b/acts/tests/google/coex/functionality_tests/WlanWithA2dpFunctionalityTest.py index 9eb2f20b3a..89e257b825 100644 --- a/acts/tests/google/coex/functionality_tests/WlanWithA2dpFunctionalityTest.py +++ b/acts/tests/google/coex/functionality_tests/WlanWithA2dpFunctionalityTest.py @@ -47,9 +47,11 @@ BLUETOOTH_WAIT_TIME = 2 class WlanWithA2dpFunctionalityTest(CoexBaseTest): + def __init__(self, controllers): + super().__init__(controllers) + def setup_class(self): super().setup_class() - req_params = ["iterations", "fping_params", "headset_mac_address", "audio_params"] self.unpack_userparams(req_params) diff --git a/acts/tests/google/coex/functionality_tests/WlanWithHfpFunctionalityTest.py b/acts/tests/google/coex/functionality_tests/WlanWithHfpFunctionalityTest.py index f03ade0681..41846a071a 100644 --- a/acts/tests/google/coex/functionality_tests/WlanWithHfpFunctionalityTest.py +++ b/acts/tests/google/coex/functionality_tests/WlanWithHfpFunctionalityTest.py @@ -35,9 +35,11 @@ BLUETOOTH_WAIT_TIME = 2 class WlanWithHfpFunctionalityTest(CoexBaseTest): + def __init__(self, controllers): + super().__init__(controllers) + def setup_class(self): super().setup_class() - req_params = ["sim_conf_file", "fping_drop_tolerance"] self.unpack_userparams(req_params) self.ag_phone_number, self.re_phone_number = setup_tel_config( diff --git a/acts/tests/google/coex/hotspot_tests/HotspotWiFiChannelTest.py b/acts/tests/google/coex/hotspot_tests/HotspotWiFiChannelTest.py deleted file mode 100644 index c7f0c32922..0000000000 --- a/acts/tests/google/coex/hotspot_tests/HotspotWiFiChannelTest.py +++ /dev/null @@ -1,242 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import csv -import itertools -import os -import re -import time - -from collections import OrderedDict -from functools import partial - -import acts.base_test -import acts.controllers.rohdeschwarz_lib.cmw500 as cmw500 -from acts.test_utils.coex.hotspot_utils import band_channel_map -from acts.test_utils.coex.hotspot_utils import supported_lte_bands -from acts.test_utils.coex.hotspot_utils import tdd_band_list -from acts.test_utils.coex.hotspot_utils import wifi_channel_map -from acts.test_utils.tel.tel_test_utils import toggle_airplane_mode -from acts.test_utils.wifi.wifi_test_utils import reset_wifi -from acts.test_utils.wifi.wifi_test_utils import start_wifi_tethering -from acts.test_utils.wifi.wifi_test_utils import stop_wifi_tethering -from acts.test_utils.wifi.wifi_test_utils import wifi_connect -from acts.test_utils.wifi.wifi_test_utils import WifiEnums -from acts.utils import create_dir - -BANDWIDTH_2G = 20 -CNSS_LOG_PATH = '/data/vendor/wifi/wlan_logs' -CNSS_CMD = 'cnss_diag -f -s' - - -class HotspotWiFiChannelTest(acts.base_test.BaseTestClass): - """Idea behind this test is to check which wifi channel gets picked with - different lte bands(low, mid and high frequencies) when connected via - hotspot from secondary device. As of now there is no failure condition - to check the channel picked for the particular lte band. - """ - def __init__(self, controllers): - super().__init__(controllers) - req_params = ['callbox_params', 'network', 'lte_bands', 'hotspot_mode'] - self.unpack_userparams(req_params) - self.tests = self.generate_test_cases() - - def setup_class(self): - self.pri_ad = self.android_devices[0] - self.sec_ad = self.android_devices[1] - self.cmw = cmw500.Cmw500(self.callbox_params['host'], - self.callbox_params['port']) - # Get basestation object. - self.bts = self.cmw.get_base_station() - csv_header = ('Hotspot Mode', 'lte_band', 'LTE_dl_channel', - 'LTE_ul_freq', 'LTE_dl_freq', 'wifi_channel', - 'wifi_bandwidth') - self.write_data_to_csv(csv_header) - - def setup_test(self): - self.pri_ad.adb.shell_nb(CNSS_CMD) - - def teardown_test(self): - self.pri_ad.adb.shell('killall cnss_diag') - stop_wifi_tethering(self.pri_ad) - reset_wifi(self.sec_ad) - cnss_path = os.path.join(self.log_path, 'wlan_logs') - create_dir(cnss_path) - self.pri_ad.pull_files([CNSS_LOG_PATH], os.path.join( - cnss_path, self.current_test_name)) - self.pri_ad.adb.shell('rm -rf {}'.format(CNSS_LOG_PATH)) - - def teardown_class(self): - self.cmw.disconnect() - - def write_data_to_csv(self, data): - """Writes the data to csv file - - Args: - data: data to be written into csv. - """ - with open('{}/test_data.csv'.format(self.log_path), 'a', - newline="") as cf: - csv_writer = csv.writer(cf, delimiter=',') - csv_writer.writerow(data) - cf.close() - - def generate_test_cases(self): - # find and run only the supported bands. - lte_band = list(set(self.lte_bands).intersection(supported_lte_bands)) - - if len(lte_band) == 0: - # if lte_band in config is empty run all bands. - lte_band = supported_lte_bands - - test_cases = [] - for hmode, lband in itertools.product(self.hotspot_mode, lte_band): - for channel in band_channel_map.get(lband): - test_case_name = ('test_hotspot_lte_band_{}_channel_{}_wifi' - '_band_{}'.format(lband, channel, hmode)) - test_params = OrderedDict( - lte_band=lband, - LTE_dl_channel=channel, - hotspot_mode=hmode, - ) - setattr(self, test_case_name, partial(self.set_hotspot_params, - test_params)) - test_cases.append(test_case_name) - - return test_cases - - def set_hotspot_params(self, test_params): - """Set up hot spot parameters. - - Args: - test_params: Contains band and frequency of current test. - """ - self.setup_lte_and_attach(test_params['lte_band'], - test_params['LTE_dl_channel']) - band = test_params['hotspot_mode'].lower() - self.initiate_wifi_tethering_and_connect(band) - test_params['LTE_ul_freq'] = self.bts.ul_frequency - test_params['LTE_dl_freq'] = self.bts.dl_frequency - test_params['wifi_channel'] = self.get_wifi_channel(self.sec_ad) - test_params['wifi_bandwidth'] = self.get_wifi_bandwidth(self.sec_ad) - data = (test_params['hotspot_mode'], test_params['lte_band'], - test_params['LTE_dl_channel'], test_params['LTE_ul_freq'], - test_params['LTE_dl_freq'], test_params['wifi_channel'], - test_params['wifi_bandwidth']) - - self.write_data_to_csv(data) - - def setup_lte_and_attach(self, band, channel): - """Setup callbox and attaches the device. - - Args: - band: lte band to configure. - channel: channel to set for band. - """ - toggle_airplane_mode(self.log, self.pri_ad, True) - - # Reset system - self.cmw.reset() - - if band in tdd_band_list: - self.bts.duplex_mode = cmw500.DuplexMode.TDD - - # Turn ON LTE signalling - self.cmw.switch_lte_signalling(cmw500.LteState.LTE_ON) - - # Set Signalling params - self.cmw.enable_packet_switching() - self.bts.downlink_power_level = '-59.8' - - self.bts.band = band - self.bts.bandwidth = cmw500.LteBandwidth.BANDWIDTH_5MHz - self.bts.dl_channel = channel - time.sleep(1) - self.log.info('Callbox settings: band: {}, bandwidth: {}, ' - 'dl_channel: {}, '.format(self.bts.band, - self.bts.bandwidth, - self.bts.dl_channel - )) - - toggle_airplane_mode(self.log, self.pri_ad, False) - self.log.info('Waiting for device to attach.') - self.cmw.wait_for_attached_state() - self.log.info('Device attached with callbox.') - self.log.debug('Waiting for connected state.') - self.cmw.wait_for_connected_state() - self.log.info('Device connected with callbox') - - def initiate_wifi_tethering_and_connect(self, wifi_band=None): - """Initiates wifi tethering and connects wifi. - - Args: - wifi_band: Hotspot mode to set. - """ - if wifi_band == '2g': - wband = WifiEnums.WIFI_CONFIG_APBAND_2G - elif wifi_band == '5g': - self.pri_ad.droid.wifiSetCountryCode(WifiEnums.CountryCode.US) - self.sec_ad.droid.wifiSetCountryCode(WifiEnums.CountryCode.US) - wband = WifiEnums.WIFI_CONFIG_APBAND_5G - elif wifi_band == 'auto': - wband = WifiEnums.WIFI_CONFIG_APBAND_AUTO - else: - raise ValueError('Invalid hotspot mode.') - - start_wifi_tethering(self.pri_ad, self.network['SSID'], - self.network['password'], band=wband) - - wifi_connect(self.sec_ad, self.network, check_connectivity=False) - - def get_wifi_channel(self, ad): - """Get the Wifi Channel for the SSID connected. - - Args: - ad: Android device to get channel. - - Returns: - wifi_channel: WiFi channel of connected device, - - Raises: - Value Error on Failure. - """ - out = ad.adb.shell('wpa_cli status') - match = re.search('freq=.*', out) - if match: - freq = match.group(0).split('=')[1] - wifi_channel = wifi_channel_map[int(freq)] - self.log.info('Channel Chosen: {}'.format(wifi_channel)) - return wifi_channel - else: - raise ValueError('Wifi connection inactive.') - - def get_wifi_bandwidth(self, ad): - """Gets the Wifi Bandwidth for the SSID connected. - - Args: - ad: Android device to get bandwidth. - - Returns: - bandwidth: if connected wifi is 5GHz. - 2G_BANDWIDTH: if connected wifi is 2GHz, - """ - out = ad.adb.shell('iw wlan0 link') - match = re.search(r'[0-9.]+MHz', out) - if match: - bandwidth = match.group(0).strip('MHz') - return bandwidth - else: - return BANDWIDTH_2G diff --git a/acts/tests/google/coex/performance_tests/CoexBasicPerformanceTest.py b/acts/tests/google/coex/performance_tests/CoexBasicPerformanceTest.py index 00cb73522b..786a6b9f73 100644 --- a/acts/tests/google/coex/performance_tests/CoexBasicPerformanceTest.py +++ b/acts/tests/google/coex/performance_tests/CoexBasicPerformanceTest.py @@ -20,8 +20,8 @@ from acts.test_utils.coex.coex_test_utils import perform_classic_discovery class CoexBasicPerformanceTest(CoexPerformanceBaseTest): - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + super().__init__(controllers) def run_iperf_and_perform_discovery(self): """Starts iperf client on host machine and bluetooth discovery diff --git a/acts/tests/google/coex/performance_tests/CoexBtMultiProfilePerformanceTest.py b/acts/tests/google/coex/performance_tests/CoexBtMultiProfilePerformanceTest.py index af753737d3..99d42a1d7f 100644 --- a/acts/tests/google/coex/performance_tests/CoexBtMultiProfilePerformanceTest.py +++ b/acts/tests/google/coex/performance_tests/CoexBtMultiProfilePerformanceTest.py @@ -40,9 +40,11 @@ from acts.test_utils.tel.tel_test_utils import wait_and_answer_call class CoexBtMultiProfilePerformanceTest(CoexPerformanceBaseTest): + def __init__(self, controllers): + super().__init__(controllers) + def setup_class(self): super().setup_class() - req_params = ["sim_conf_file", "music_file"] self.unpack_userparams(req_params) self.ag_phone_number, self.re_phone_number = setup_tel_config( diff --git a/acts/tests/google/coex/performance_tests/WlanStandalonePerformanceTest.py b/acts/tests/google/coex/performance_tests/WlanStandalonePerformanceTest.py index 82b72d0afe..414afaf1ce 100644 --- a/acts/tests/google/coex/performance_tests/WlanStandalonePerformanceTest.py +++ b/acts/tests/google/coex/performance_tests/WlanStandalonePerformanceTest.py @@ -20,9 +20,13 @@ from acts.test_utils.bt.bt_test_utils import disable_bluetooth class WlanStandalonePerformanceTest(CoexPerformanceBaseTest): + def __init__(self, controllers): + super().__init__(controllers) + def setup_class(self): super().setup_class() - + req_params = ["iterations"] + self.unpack_userparams(req_params) def setup_test(self): super().setup_test() @@ -38,6 +42,8 @@ class WlanStandalonePerformanceTest(CoexPerformanceBaseTest): Steps: 1. Start TCP-uplink traffic. + + Test Id: Bt_CoEx_kpi_001 """ self.set_attenuation_and_run_iperf() return self.teardown_result() @@ -50,6 +56,8 @@ class WlanStandalonePerformanceTest(CoexPerformanceBaseTest): Steps: 1. Start TCP-downlink traffic. + + Test Id: Bt_CoEx_kpi_002 """ self.set_attenuation_and_run_iperf() return self.teardown_result() @@ -62,6 +70,8 @@ class WlanStandalonePerformanceTest(CoexPerformanceBaseTest): Steps: 1. Start UDP-uplink traffic. + + Test Id: Bt_CoEx_kpi_003 """ self.set_attenuation_and_run_iperf() return self.teardown_result() @@ -74,6 +84,8 @@ class WlanStandalonePerformanceTest(CoexPerformanceBaseTest): Steps: 1. Start UDP-downlink traffic. + + Test Id: Bt_CoEx_kpi_004 """ self.set_attenuation_and_run_iperf() return self.teardown_result() diff --git a/acts/tests/google/coex/performance_tests/WlanWithA2dpPerformanceTest.py b/acts/tests/google/coex/performance_tests/WlanWithA2dpPerformanceTest.py index f3f838d3bf..5afdb7184b 100644 --- a/acts/tests/google/coex/performance_tests/WlanWithA2dpPerformanceTest.py +++ b/acts/tests/google/coex/performance_tests/WlanWithA2dpPerformanceTest.py @@ -36,9 +36,11 @@ from acts.test_utils.coex.coex_test_utils import push_music_to_android_device class WlanWithA2dpPerformanceTest(CoexPerformanceBaseTest): + def __init__(self, controllers): + super().__init__(controllers) + def setup_class(self): super().setup_class() - req_params = ["iterations", "fping_params", "headset_mac_address", "audio_params"] self.unpack_userparams(req_params) diff --git a/acts/tests/google/coex/performance_tests/WlanWithBlePerformanceTest.py b/acts/tests/google/coex/performance_tests/WlanWithBlePerformanceTest.py index 50825c9b6d..cb06e9f75f 100644 --- a/acts/tests/google/coex/performance_tests/WlanWithBlePerformanceTest.py +++ b/acts/tests/google/coex/performance_tests/WlanWithBlePerformanceTest.py @@ -30,10 +30,12 @@ class WlanWithBlePerformanceTest(CoexPerformanceBaseTest): bluetooth_gatt_list = [] gatt_server_list = [] + def __init__(self, controllers): + super().__init__(controllers) + def setup_class(self): super().setup_class() - def setup_test(self): super().setup_test() self.pri_ad.droid.bluetoothDisableBLE() diff --git a/acts/tests/google/coex/performance_tests/WlanWithHfpPerformanceTest.py b/acts/tests/google/coex/performance_tests/WlanWithHfpPerformanceTest.py index bec999e547..a97ca99f8b 100644 --- a/acts/tests/google/coex/performance_tests/WlanWithHfpPerformanceTest.py +++ b/acts/tests/google/coex/performance_tests/WlanWithHfpPerformanceTest.py @@ -28,9 +28,11 @@ from acts.test_utils.tel.tel_test_utils import initiate_call class WlanWithHfpPerformanceTest(CoexPerformanceBaseTest): + def __init__(self, controllers): + super().__init__(controllers) + def setup_class(self): super().setup_class() - req_params = ["sim_conf_file"] self.unpack_userparams(req_params) self.ag_phone_number, self.re_phone_number = setup_tel_config( diff --git a/acts/tests/google/coex/stress_tests/CoexA2dpStressTest.py b/acts/tests/google/coex/stress_tests/CoexA2dpStressTest.py index b7f1aa7e53..3975051f06 100644 --- a/acts/tests/google/coex/stress_tests/CoexA2dpStressTest.py +++ b/acts/tests/google/coex/stress_tests/CoexA2dpStressTest.py @@ -37,9 +37,11 @@ from acts.test_utils.coex.coex_test_utils import push_music_to_android_device class CoexA2dpStressTest(CoexBaseTest): + def __init__(self, controllers): + super().__init__(controllers) + def setup_class(self): super().setup_class() - req_params = ["iterations", "audio_params", "headset_mac_address"] self.unpack_userparams(req_params) if hasattr(self, "audio_params"): diff --git a/acts/tests/google/coex/stress_tests/CoexBasicStressTest.py b/acts/tests/google/coex/stress_tests/CoexBasicStressTest.py index 1bd7b06c3b..b2d7bc8df9 100644 --- a/acts/tests/google/coex/stress_tests/CoexBasicStressTest.py +++ b/acts/tests/google/coex/stress_tests/CoexBasicStressTest.py @@ -29,9 +29,11 @@ from acts.test_utils.coex.coex_test_utils import device_discoverable class CoexBasicStressTest(CoexBaseTest): + def __init__(self, controllers): + super().__init__(controllers) + def setup_class(self): super().setup_class() - req_params = ["iterations"] self.unpack_userparams(req_params) diff --git a/acts/tests/google/coex/stress_tests/CoexBtMultiProfileStressTest.py b/acts/tests/google/coex/stress_tests/CoexBtMultiProfileStressTest.py index 5516bec79a..6a7de75a94 100644 --- a/acts/tests/google/coex/stress_tests/CoexBtMultiProfileStressTest.py +++ b/acts/tests/google/coex/stress_tests/CoexBtMultiProfileStressTest.py @@ -31,9 +31,11 @@ from acts.test_utils.coex.coex_test_utils import pair_and_connect_headset class CoexBtMultiProfileStressTest(CoexBaseTest): + def __init__(self, controllers): + super().__init__(controllers) + def setup_class(self): super().setup_class() - self.receiver = self.relay_devices[1] req_params = ["iterations"] self.unpack_userparams(req_params) diff --git a/acts/tests/google/coex/stress_tests/CoexHfpStressTest.py b/acts/tests/google/coex/stress_tests/CoexHfpStressTest.py index afde46d68d..25ec03adaa 100644 --- a/acts/tests/google/coex/stress_tests/CoexHfpStressTest.py +++ b/acts/tests/google/coex/stress_tests/CoexHfpStressTest.py @@ -31,9 +31,11 @@ from acts.test_utils.tel.tel_voice_utils import set_audio_route class CoexHfpStressTest(CoexBaseTest): + def __init__(self, controllers): + CoexBaseTest.__init__(self, controllers) + def setup_class(self): CoexBaseTest.setup_class(self) - req_params = ["iterations"] self.unpack_userparams(req_params) diff --git a/acts/tests/google/experimental/BluetoothLatencyTest.py b/acts/tests/google/experimental/BluetoothLatencyTest.py index 811a41cca0..ebb3019a84 100644 --- a/acts/tests/google/experimental/BluetoothLatencyTest.py +++ b/acts/tests/google/experimental/BluetoothLatencyTest.py @@ -41,8 +41,8 @@ class BluetoothLatencyTest(BaseTestClass): data_transfer_type: Data transfer protocol used for the test """ - def setup_class(self): - super().setup_class() + def __init__(self, configs): + BaseTestClass.__init__(self, configs) # Sanity check of the devices under test # TODO(b/119051823): Investigate using a config validator to replace this. diff --git a/acts/tests/google/experimental/BluetoothPairAndConnectTest.py b/acts/tests/google/experimental/BluetoothPairAndConnectTest.py index e54e4e7417..f021702945 100644 --- a/acts/tests/google/experimental/BluetoothPairAndConnectTest.py +++ b/acts/tests/google/experimental/BluetoothPairAndConnectTest.py @@ -52,8 +52,8 @@ class BluetoothPairAndConnectTest(BaseTestClass): bt_utils: BTUtils test action object """ - def setup_class(self): - super().setup_class() + def __init__(self, configs): + BaseTestClass.__init__(self, configs) # Sanity check of the devices under test # TODO(b/119051823): Investigate using a config validator to replace this. if not self.android_devices: diff --git a/acts/tests/google/experimental/BluetoothReconnectTest.py b/acts/tests/google/experimental/BluetoothReconnectTest.py index a03ec7b14b..717f444f62 100644 --- a/acts/tests/google/experimental/BluetoothReconnectTest.py +++ b/acts/tests/google/experimental/BluetoothReconnectTest.py @@ -46,8 +46,8 @@ class BluetoothReconnectTest(BaseTestClass): dut_bt_addr: The Bluetooth address of the Apollo earbuds """ - def setup_class(self): - super().setup_class() + def __init__(self, configs): + BaseTestClass.__init__(self, configs) # sanity check of the dut devices. # TODO(b/119051823): Investigate using a config validator to replace this. if not self.android_devices: diff --git a/acts/tests/google/experimental/BluetoothThroughputTest.py b/acts/tests/google/experimental/BluetoothThroughputTest.py index 3403ded238..8b4fd48fac 100644 --- a/acts/tests/google/experimental/BluetoothThroughputTest.py +++ b/acts/tests/google/experimental/BluetoothThroughputTest.py @@ -37,8 +37,8 @@ class BluetoothThroughputTest(BaseTestClass): data_transfer_type: Data transfer protocol used for the test """ - def setup_class(self): - super().setup_class() + def __init__(self, configs): + BaseTestClass.__init__(self, configs) # Sanity check of the devices under test # TODO(b/119051823): Investigate using a config validator to replace this. diff --git a/acts/tests/google/fuchsia/bt/BleFuchsiaAndroidTest.py b/acts/tests/google/fuchsia/bt/BleFuchsiaAndroidTest.py index 6c5798a67a..4f278864b3 100644 --- a/acts/tests/google/fuchsia/bt/BleFuchsiaAndroidTest.py +++ b/acts/tests/google/fuchsia/bt/BleFuchsiaAndroidTest.py @@ -37,8 +37,8 @@ class BleFuchsiaAndroidTest(BluetoothBaseTest): active_adv_callback_list = [] droid = None - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) # Android device under test self.ad = self.android_devices[0] @@ -47,6 +47,9 @@ class BleFuchsiaAndroidTest(BluetoothBaseTest): self.log.info("There are: {} fuchsia and {} android devices.".format( len(self.fuchsia_devices), len(self.android_devices))) + def teardown_test(self): + self.fd.clean_up() + def _start_generic_advertisement_include_device_name(self): self.ad.droid.bleSetAdvertiseDataIncludeDeviceName(True) self.ad.droid.bleSetAdvertiseSettingsAdvertiseMode( @@ -54,11 +57,10 @@ class BleFuchsiaAndroidTest(BluetoothBaseTest): advertise_data = self.ad.droid.bleBuildAdvertiseData() advertise_settings = self.ad.droid.bleBuildAdvertiseSettings() advertise_callback = self.ad.droid.bleGenBleAdvertiseCallback() - self.ad.droid.bleStartBleAdvertising(advertise_callback, - advertise_data, - advertise_settings) - self.ad.ed.pop_event(adv_succ.format(advertise_callback), - self.default_timeout) + self.ad.droid.bleStartBleAdvertising( + advertise_callback, advertise_data, advertise_settings) + self.ad.ed.pop_event( + adv_succ.format(advertise_callback), self.default_timeout) self.active_adv_callback_list.append(advertise_callback) return advertise_callback @@ -95,9 +97,8 @@ class BleFuchsiaAndroidTest(BluetoothBaseTest): droid_name = self.ad.droid.bluetoothGetLocalName() self.log.info("Android device name: {}".format(droid_name)) - scan_result = le_scan_for_device_by_name(self.fd, self.log, - sample_android_name, - self.default_timeout) + scan_result = le_scan_for_device_by_name( + self.fd, self.log, sample_android_name, self.default_timeout) if not scan_result: return False @@ -155,4 +156,4 @@ class BleFuchsiaAndroidTest(BluetoothBaseTest): self.fd.ble_lib.bleStopBleAdvertising() self.ad.droid.bleStopBleScan(scan_callback) # TODO(): Validate result - return True + return True
\ No newline at end of file diff --git a/acts/tests/google/fuchsia/bt/BleFuchsiaTest.py b/acts/tests/google/fuchsia/bt/BleFuchsiaTest.py index 7b368ca948..acd0ee67ad 100644 --- a/acts/tests/google/fuchsia/bt/BleFuchsiaTest.py +++ b/acts/tests/google/fuchsia/bt/BleFuchsiaTest.py @@ -30,8 +30,8 @@ class BleFuchsiaTest(BaseTestClass): active_adv_callback_list = [] droid = None - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BaseTestClass.__init__(self, controllers) if (len(self.fuchsia_devices) < 2): self.log.error("BleFuchsiaTest Init: Not enough fuchsia devices.") @@ -39,6 +39,10 @@ class BleFuchsiaTest(BaseTestClass): self.fuchsia_adv = self.fuchsia_devices[0] self.fuchsia_scan = self.fuchsia_devices[1] + def teardown_test(self): + self.fuchsia_adv.clean_up() + self.fuchsia_scan.clean_up() + def test_fuchsia_publish_service(self): service_id = 0 service_primary = True @@ -64,7 +68,7 @@ class BleFuchsiaTest(BaseTestClass): self.fuchsia_adv.ble_lib.bleStartBleAdvertising(adv_data, interval) self.log.info("Fuchsia advertising name: {}".format(fuchsia_name)) - # Start scan + #Start scan scan_result = le_scan_for_device_by_name( self.fuchsia_scan, self.log, fuchsia_name, self.default_timeout) if not scan_result: @@ -97,7 +101,7 @@ class BleFuchsiaTest(BaseTestClass): self.fuchsia_adv.ble_lib.bleStartBleAdvertising(adv_data, interval) self.log.info("Fuchsia advertising name: {}".format(fuchsia_name)) - # Start Scan + #Start Scan scan_result = le_scan_for_device_by_name( self.fuchsia_scan, self.log, fuchsia_name, self.default_timeout) if not scan_result: @@ -119,4 +123,4 @@ class BleFuchsiaTest(BaseTestClass): # Stop fuchsia advertising self.fuchsia_adv.ble_lib.bleStopBleAdvertising() - return True + return True
\ No newline at end of file diff --git a/acts/tests/google/fuchsia/bt/FuchsiaBtMacAddressTest.py b/acts/tests/google/fuchsia/bt/FuchsiaBtMacAddressTest.py deleted file mode 100644 index c4124b74d8..0000000000 --- a/acts/tests/google/fuchsia/bt/FuchsiaBtMacAddressTest.py +++ /dev/null @@ -1,69 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright (C) 2019 The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. -""" -This is a test to verify two or more Fuchsia devices don't have the same mac -address. - -Setup: -This test requires at least two fuchsia devices. -""" - -import time - -from acts import signals -from acts.base_test import BaseTestClass -from acts.test_decorators import test_tracker_info -from acts.test_utils.bt.bt_test_utils import generate_id_by_size - - -class FuchsiaBtMacAddressTest(BaseTestClass): - scan_timeout_seconds = 10 - - def setup_class(self): - super().setup_class() - - if len(self.fuchsia_devices) < 2: - raise signals.TestAbortAll("Need at least two Fuchsia devices") - for device in self.fuchsia_devices: - device.btc_lib.initBluetoothControl() - - # TODO: add @test_tracker_info(uuid='') - def test_verify_different_mac_addresses(self): - """Verify that all connected Fuchsia devices have unique mac addresses. - - Steps: - 1. Get mac address from each device - - Expected Result: - Verify duplicate mac addresses don't exist. - - Returns: - signals.TestPass if no errors - signals.TestFailure if there are any errors during the test. - - TAGS: BR/EDR, BT - Priority: 1 - """ - mac_addr_list = [] - for device in self.fuchsia_devices: - mac_addr_list.append( - device.btc_lib.getActiveAdapterAddress().get("result")) - if len(mac_addr_list) != len(set(mac_addr_list)): - raise signals.TestFailure( - "Found duplicate mac addresses {}.".format(mac_addr_list)) - raise signals.TestPass( - "Success: All Bluetooth Mac address unique: {}".format( - mac_addr_list)) diff --git a/acts/tests/google/fuchsia/bt/FuchsiaBtScanTest.py b/acts/tests/google/fuchsia/bt/FuchsiaBtScanTest.py deleted file mode 100644 index 722a44666b..0000000000 --- a/acts/tests/google/fuchsia/bt/FuchsiaBtScanTest.py +++ /dev/null @@ -1,118 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright (C) 2019 The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. -""" -This is a stress test for Fuchsia GATT connections. - -Setup: -This test only requires two fuchsia devices as the purpose is to test -the robusntess of GATT connections. -""" - -import time - -from acts import signals -from acts.base_test import BaseTestClass -from acts.test_decorators import test_tracker_info -from acts.test_utils.bt.bt_test_utils import generate_id_by_size - - -class FuchsiaBtScanTest(BaseTestClass): - scan_timeout_seconds = 30 - - def setup_class(self): - super().setup_class() - self.pri_dut = self.fuchsia_devices[0] - self.sec_dut = self.fuchsia_devices[1] - - self.pri_dut.btc_lib.initBluetoothControl() - self.sec_dut.btc_lib.initBluetoothControl() - - # TODO: add @test_tracker_info(uuid='') - def test_scan_with_peer_set_non_discoverable(self): - """Test Bluetooth scan with peer set to non discoverable. - - Steps: - 1. Set peer device to a unique device name. - 2. Set peer device to be non-discoverable. - 3. Perform a BT Scan with primary dut with enough time to - gather results. - - Expected Result: - Verify there are no results that match the unique device - name in step 1. - - Returns: - signals.TestPass if no errors - signals.TestFailure if there are any errors during the test. - - TAGS: BR/EDR, BT - Priority: 1 - """ - local_name = generate_id_by_size(10) - self.sec_dut.btc_lib.setName(local_name) - self.sec_dut.btc_lib.setDiscoverable(False) - - self.pri_dut.btc_lib.requestDiscovery(True) - time.sleep(self.scan_timeout_seconds) - self.pri_dut.btc_lib.requestDiscovery(False) - discovered_devices = self.pri_dut.btc_lib.getKnownRemoteDevices() - for device in discovered_devices.get("result").values(): - discoverd_name = device.get("name") - if discoverd_name is not None and discoverd_name is local_name: - raise signals.TestFailure( - "Found peer unexpectedly: {}.".format(device)) - raise signals.TestPass("Successfully didn't find peer device.") - - # TODO: add @test_tracker_info(uuid='') - def test_scan_with_peer_set_discoverable(self): - """Test Bluetooth scan with peer set to discoverable. - - Steps: - 1. Set peer device to a unique device name. - 2. Set peer device to be discoverable. - 3. Perform a BT Scan with primary dut with enough time to - gather results. - - Expected Result: - Verify there is a result that match the unique device - name in step 1. - - Returns: - signals.TestPass if no errors - signals.TestFailure if there are any errors during the test. - - TAGS: BR/EDR, BT - Priority: 1 - """ - local_name = generate_id_by_size(10) - self.log.info("Setting local peer name to: {}".format(local_name)) - self.sec_dut.btc_lib.setName(local_name) - self.sec_dut.btc_lib.setDiscoverable(True) - - self.pri_dut.btc_lib.requestDiscovery(True) - end_time = time.time() + self.scan_timeout_seconds - poll_timeout = 10 - while time.time() < end_time: - discovered_devices = self.pri_dut.btc_lib.getKnownRemoteDevices() - for device in discovered_devices.get("result").values(): - self.log.info(device) - discoverd_name = device.get("name") - if discoverd_name is not None and discoverd_name in local_name: - self.pri_dut.btc_lib.requestDiscovery(False) - raise signals.TestPass("Successfully found peer device.") - time.sleep(poll_timeout) - self.pri_dut.btc_lib.requestDiscovery(False) - raise signals.TestFailure("Unable to find peer device.") diff --git a/acts/tests/google/fuchsia/bt/FuchsiaCmdLineTest.py b/acts/tests/google/fuchsia/bt/FuchsiaCmdLineTest.py index 63c7845822..d34dc62e82 100644 --- a/acts/tests/google/fuchsia/bt/FuchsiaCmdLineTest.py +++ b/acts/tests/google/fuchsia/bt/FuchsiaCmdLineTest.py @@ -32,8 +32,8 @@ from acts.test_utils.tel.tel_test_utils import setup_droid_properties class FuchsiaCmdLineTest(BaseTestClass): target_device_name = "" - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BaseTestClass.__init__(self, controllers) if not "target_device_name" in self.user_params.keys(): self.log.warning("Missing user config \"target_device_name\"!") self.target_device_name = "" diff --git a/acts/tests/google/fuchsia/bt/fuchsia_cmd_input.py b/acts/tests/google/fuchsia/bt/fuchsia_cmd_input.py index 411d1bb7ea..0f4519360e 100644 --- a/acts/tests/google/fuchsia/bt/fuchsia_cmd_input.py +++ b/acts/tests/google/fuchsia/bt/fuchsia_cmd_input.py @@ -43,9 +43,6 @@ This is all to say this documentation pattern is expected. """ -from acts.test_utils.bt.bt_constants import bt_attribute_values -from acts.test_utils.bt.bt_constants import sig_uuid_constants - import acts.test_utils.bt.gatt_test_database as gatt_test_database import cmd @@ -59,18 +56,12 @@ BASIC_ADV_NAME = "fs_test" class CmdInput(cmd.Cmd): ble_advertise_interval = 1000 - bt_control_ids = [] - bt_control_names = [] - bt_control_devices = [] - bt_scan_poll_timer = 0.5 target_device_name = "" le_ids = [] unique_mac_addr_id = None def setup_vars(self, fuchsia_devices, target_device_name, log): self.pri_dut = fuchsia_devices[0] - self.pri_dut.btc_lib.initBluetoothControl() - self.pri_dut.sdp_lib.init() if len(fuchsia_devices) > 1: self.sec_dut = fuchsia_devices[1] self.target_device_name = target_device_name @@ -85,18 +76,23 @@ class CmdInput(cmd.Cmd): """ Useful Helper functions and cmd line tooling """ - def _find_unique_id_over_le(self): + def _find_unique_id(self): + scan_time_ms = 100000 scan_filter = {"name_substring": self.target_device_name} + scan_count = 1 self.unique_mac_addr_id = None self.pri_dut.gattc_lib.bleStartBleScan(scan_filter) - tries = 10 - for i in range(tries): - time.sleep(self.bt_scan_poll_timer) - scan_res = self.pri_dut.gattc_lib.bleGetDiscoveredDevices( - )['result'] + for i in range(100): + time.sleep(.5) + scan_res = self.pri_dut.gattc_lib.bleGetDiscoveredDevices()[ + 'result'] for device in scan_res: name, did, connectable = device["name"], device["id"], device[ "connectable"] + if (name): + self.log.info( + "Discovered device with name, id: {}, {}".format( + name, did)) if (self.target_device_name in name): self.unique_mac_addr_id = did self.log.info( @@ -107,52 +103,7 @@ class CmdInput(cmd.Cmd): break self.pri_dut.gattc_lib.bleStopBleScan() - def _find_unique_id_over_bt_control(self): - self.unique_mac_addr_id = None - self.bt_control_devices = [] - self.pri_dut.btc_lib.requestDiscovery(True) - tries = 10 - for i in range(tries): - if self.unique_mac_addr_id: - break - time.sleep(self.bt_scan_poll_timer) - device_list = self.pri_dut.btc_lib.getKnownRemoteDevices( - )['result'] - for id_dict in device_list: - device = device_list[id_dict] - self.bt_control_devices.append(device) - name = None - if device['name'] is not None: - name = device['name'] - did, address = device['id'], device['address'] - - self.bt_control_ids.append(did) - if name is not None: - self.bt_control_names.append(name) - if self.target_device_name in name: - self.unique_mac_addr_id = did - self.log.info( - "Successfully found device: name, id, address: {}, {}, {}" - .format(name, did, address)) - break - self.pri_dut.btc_lib.requestDiscovery(False) - - def do_tool_take_bt_snoop_log(self, custom_name): - """ - Description: Takes the bt snoop log from the Fuchsia device. - Logs will show up in your config files' logpath directory. - - Input(s): - custom_name: Optional. Override the default pcap file name. - - Usage: tool_set_target_device_name new_target_device name - Examples: - tool_take_bt_snoop_log connection_error - tool_take_bt_snoop_log - """ - self.pri_dut.take_bt_snoop_log(custom_name) - - def do_tool_refresh_unique_id(self, line): + def do_tool_refesh_unique_id(self, line): """ Description: Refresh command line tool mac unique id. Usage: @@ -160,20 +111,7 @@ class CmdInput(cmd.Cmd): tool_refresh_unique_id """ try: - self._find_unique_id_over_le() - except Exception as err: - self.log.error( - "Failed to scan or find scan result: {}".format(err)) - - def do_tool_refresh_unique_id_using_bt_control(self, line): - """ - Description: Refresh command line tool mac unique id. - Usage: - Examples: - tool_refresh_unique_id_using_bt_control - """ - try: - self._find_unique_id_over_bt_control() + self._find_unique_id() except Exception as err: self.log.error( "Failed to scan or find scan result: {}".format(err)) @@ -996,21 +934,6 @@ class CmdInput(cmd.Cmd): """End LE scan wrappers""" """Begin GATT Server wrappers""" - def do_gatts_close(self, line): - """ - Description: Close active GATT server. - - Usage: - Examples: - gatts_close - """ - cmd = "Close active GATT server." - try: - result = self.pri_dut.gatts_lib.closeServer() - self.log.info(result) - except Exception as err: - self.log.error(FAILURE.format(cmd, err)) - def complete_gatts_setup_database(self, text, line, begidx, endidx): if not text: completions = list( @@ -1037,437 +960,8 @@ class CmdInput(cmd.Cmd): try: scan_results = self.pri_dut.gatts_lib.publishServer( gatt_test_database.GATT_SERVER_DB_MAPPING.get(line)) - self.log.info(scan_results) + print(scan_results) except Exception as err: self.log.error(FAILURE.format(cmd, err)) """End GATT Server wrappers""" - """Begin Bluetooth Controller wrappers""" - - def do_btc_accept_pairing(self, line): - """ - Description: Accept all incoming pairing requests. - - Usage: - Examples: - btc_accept_pairing - """ - cmd = "Accept incoming pairing requests" - try: - result = self.pri_dut.btc_lib.acceptPairing() - self.log.info(result) - except Exception as err: - self.log.error(FAILURE.format(cmd, err)) - - def do_btc_forget_device(self, line): - """ - Description: Forget pairing of the current device under test. - Current device under test is the device found by - tool_refresh_unique_id from custom user param. This function - will also perform a clean disconnect if actively connected. - - Usage: - Examples: - btc_forget_device - """ - cmd = "For pairing of the current device under test." - try: - self.log.info("Forgetting device id: {}".format( - self.unique_mac_addr_id)) - result = self.pri_dut.btc_lib.forgetDevice(self.unique_mac_addr_id) - self.log.info(result) - except Exception as err: - self.log.error(FAILURE.format(cmd, err)) - - def do_btc_set_discoverable(self, discoverable): - """ - Description: Change Bluetooth Controller discoverablility. - Input(s): - discoverable: true to set discoverable - false to set non-discoverable - Usage: - Examples: - btc_set_discoverable true - btc_set_discoverable false - """ - cmd = "Change Bluetooth Controller discoverablility." - try: - result = self.pri_dut.btc_lib.setDiscoverable(bool(discoverable)) - self.log.info(result) - except Exception as err: - self.log.error(FAILURE.format(cmd, err)) - - def do_btc_set_name(self, name): - """ - Description: Change Bluetooth Controller local name. - Input(s): - name: The name to set the Bluetooth Controller name to. - - Usage: - Examples: - btc_set_name fs_test - """ - cmd = "Change Bluetooth Controller local name." - try: - result = self.pri_dut.btc_lib.setName(name) - self.log.info(result) - except Exception as err: - self.log.error(FAILURE.format(cmd, err)) - - def do_btc_request_discovery(self, discover): - """ - Description: Change whether the Bluetooth Controller is in active. - discovery or not. - Input(s): - discover: true to start discovery - false to end discovery - Usage: - Examples: - btc_request_discovery true - btc_request_discovery false - """ - cmd = "Change whether the Bluetooth Controller is in active." - try: - result = self.pri_dut.btc_lib.requestDiscovery(bool(discover)) - self.log.info(result) - except Exception as err: - self.log.error(FAILURE.format(cmd, err)) - - def do_btc_get_known_remote_devices(self, line): - """ - Description: Get a list of known devices. - - Usage: - Examples: - btc_get_known_remote_devices - """ - cmd = "Get a list of known devices." - self.bt_control_devices = [] - try: - device_list = self.pri_dut.btc_lib.getKnownRemoteDevices( - )['result'] - for id_dict in device_list: - device = device_list[id_dict] - self.bt_control_devices.append(device) - self.log.info("Device found {}".format(device)) - - except Exception as err: - self.log.error(FAILURE.format(cmd, err)) - - def do_btc_forget_all_known_devices(self, line): - """ - Description: Forget all known devices. - - Usage: - Examples: - btc_forget_all_known_devices - """ - cmd = "Forget all known devices." - try: - device_list = self.pri_dut.btc_lib.getKnownRemoteDevices( - )['result'] - for device in device_list: - d = device_list[device] - if d['bonded'] or d['connected']: - self.log.info("Unbonding deivce: {}".format(d)) - self.log.info( - self.pri_dut.btc_lib.forgetDevice(d['id'])['result']) - except Exception as err: - self.log.error(FAILURE.format(cmd, err)) - - def do_btc_connect_device(self, line): - """ - Description: Connect to device under test. - Device under test is specified by either user params - or - tool_set_target_device_name <name> - do_tool_refresh_unique_id_using_bt_control - - Usage: - Examples: - btc_connect_device - """ - cmd = "Connect to device under test." - try: - result = self.pri_dut.btc_lib.connectDevice( - self.unique_mac_addr_id) - self.log.info(result) - except Exception as err: - self.log.error(FAILURE.format(cmd, err)) - - def complete_btc_connect_device_by_id(self, text, line, begidx, endidx): - if not text: - completions = list(self.bt_control_ids)[:] - else: - completions = [ - s for s in self.bt_control_ids if s.startswith(text) - ] - return completions - - def do_btc_connect_device_by_id(self, device_id): - """ - Description: Connect to device id based on pre-defined inputs. - Supports Tab Autocomplete. - Input(s): - device_id: The device id to connect to. - - Usage: - Examples: - btc_connect_device_by_id <device_id> - """ - cmd = "Connect to device id based on pre-defined inputs." - try: - result = self.pri_dut.btc_lib.connectDevice(device_id) - self.log.info(result) - except Exception as err: - self.log.error(FAILURE.format(cmd, err)) - - def complete_btc_connect_device_by_name(self, text, line, begidx, endidx): - if not text: - completions = list(self.bt_control_names)[:] - else: - completions = [ - s for s in self.bt_control_names if s.startswith(text) - ] - return completions - - def do_btc_connect_device_by_name(self, device_name): - """ - Description: Connect to device id based on pre-defined inputs. - Supports Tab Autocomplete. - Input(s): - device_id: The device id to connect to. - - Usage: - Examples: - btc_connect_device_by_name <device_id> - """ - cmd = "Connect to device name based on pre-defined inputs." - try: - for device in self.bt_control_devices: - if device_name is device['name']: - - result = self.pri_dut.btc_lib.connectDevice(device['id']) - self.log.info(result) - except Exception as err: - self.log.error(FAILURE.format(cmd, err)) - - def do_btc_disconnect_device(self, line): - """ - Description: Disconnect to device under test. - Device under test is specified by either user params - or - tool_set_target_device_name <name> - do_tool_refresh_unique_id_using_bt_control - - Usage: - Examples: - btc_disconnect_device - """ - cmd = "Disconnect to device under test." - try: - result = self.pri_dut.btc_lib.disconnectDevice( - self.unique_mac_addr_id) - self.log.info(result) - except Exception as err: - self.log.error(FAILURE.format(cmd, err)) - - def do_btc_init_bluetooth_control(self, line): - """ - Description: Initialize the Bluetooth Controller. - - Usage: - Examples: - btc_init_bluetooth_control - """ - cmd = "Initialize the Bluetooth Controller." - try: - result = self.pri_dut.btc_lib.initBluetoothControl() - self.log.info(result) - except Exception as err: - self.log.error(FAILURE.format(cmd, err)) - - def do_btc_get_local_address(self, line): - """ - Description: Get the local BR/EDR address of the Bluetooth Controller. - - Usage: - Examples: - btc_get_local_address - """ - cmd = "Get the local BR/EDR address of the Bluetooth Controller." - try: - result = self.pri_dut.btc_lib.getActiveAdapterAddress()['result'] - self.log.info(result) - except Exception as err: - self.log.error(FAILURE.format(cmd, err)) - - def do_btc_input_pairing_pin(self, line): - """ - Description: Sends a pairing pin to SL4F's Bluetooth Control's - Pairing Delegate. - - Usage: - Examples: - btc_input_pairing_pin 123456 - """ - cmd = "Input pairing pin to the Fuchsia device." - try: - result = self.pri_dut.btc_lib.inputPairingPin(line)['result'] - self.log.info(result) - except Exception as err: - self.log.error(FAILURE.format(cmd, err)) - - def do_btc_get_pairing_pin(self, line): - """ - Description: Gets the pairing pin from SL4F's Bluetooth Control's - Pairing Delegate. - - Usage: - Examples: - btc_get_pairing_pin - """ - cmd = "Get the pairing pin from the Fuchsia device." - try: - result = self.pri_dut.btc_lib.getPairingPin()['result'] - self.log.info(result) - except Exception as err: - self.log.error(FAILURE.format(cmd, err)) - - """End Bluetooth Control wrappers""" - """Begin Profile Server wrappers""" - - def do_sdp_pts_example(self, num_of_records): - """ - Description: An example of how to setup a generic SDP record - and SDP search capabilities. This example will pass a few - SDP tests. - - Input(s): - num_of_records: The number of records to add. - - Usage: - Examples: - sdp_pts_example 1 - sdp pts_example 10 - """ - cmd = "Setup SDP for PTS testing." - record = { - 'service_class_uuids': ["0001"], - 'protocol_descriptors': [ - { - 'protocol': - int(sig_uuid_constants['AVDTP'], 16), - 'params': [ - { - 'data': 0x0103 # to indicate 1.3 - }, - { - 'data': 0x0105 # to indicate 1.5 - } - ] - }, - { - 'protocol': int(sig_uuid_constants['SDP'], 16), - 'params': [{ - 'data': int(sig_uuid_constants['AVDTP'], 16), - }] - } - ], - 'profile_descriptors': [{ - 'profile_id': - int(sig_uuid_constants['AdvancedAudioDistribution'], 16), - 'major_version': - 1, - 'minor_version': - 3, - }], - 'additional_protocol_descriptors': [{ - 'protocol': - int(sig_uuid_constants['L2CAP'], 16), - 'params': [ - { - 'data': int(sig_uuid_constants['AVDTP'], 16), - }, - { - 'data': int(sig_uuid_constants['AVCTP'], 16), - }, - { - 'data': int(sig_uuid_constants['GenericAudio'], 16), - }, - ] - }], - 'information': [{ - 'language': "en", - 'name': "A2DP", - 'description': "Advanced Audio Distribution Profile", - 'provider': "Fuchsia" - }], - 'additional_attributes': [ - { - 'id': 0x0200, - 'element': { - 'data': int(sig_uuid_constants['AVDTP'], 16) - } - }, - { - 'id': 0x0201, - 'element': { - 'data': int(sig_uuid_constants['AVDTP'], 16) - } - }, - ] - } - - attributes = [ - bt_attribute_values['ATTR_PROTOCOL_DESCRIPTOR_LIST'], - bt_attribute_values['ATTR_SERVICE_CLASS_ID_LIST'], - bt_attribute_values['ATTR_BLUETOOTH_PROFILE_DESCRIPTOR_LIST'], - bt_attribute_values['ATTR_A2DP_SUPPORTED_FEATURES'], - bt_attribute_values['ATTR_ADDITIONAL_PROTOCOL_DESCRIPTOR_LIST'], - bt_attribute_values['ATTR_SERVICE_RECORD_HANDLE'], - ] - - try: - self.pri_dut.sdp_lib.addSearch( - attributes, int(sig_uuid_constants['AudioSource'], 16)) - self.pri_dut.sdp_lib.addSearch( - attributes, - int(sig_uuid_constants['AdvancedAudioDistribution'], 16)) - for _ in range(int(num_of_records)): - result = self.pri_dut.sdp_lib.addService(record) - self.log.info(result) - except Exception as err: - self.log.error(FAILURE.format(cmd, err)) - - def do_sdp_cleanup(self, line): - """ - Description: Cleanup any existing SDP records - - Usage: - Examples: - sdp_cleanup - """ - cmd = "Cleanup SDP objects." - try: - result = self.pri_dut.sdp_lib.cleanUp() - self.log.info(result) - except Exception as err: - self.log.error(FAILURE.format(cmd, err)) - - def do_sdp_init(self, line): - """ - Description: Init the profile proxy for setting up SDP records - - Usage: - Examples: - sdp_init - """ - cmd = "Initialize profile proxy objects for adding SDP records" - try: - result = self.pri_dut.sdp_lib.init() - self.log.info(result) - except Exception as err: - self.log.error(FAILURE.format(cmd, err)) - - """End Profile Server wrappers""" diff --git a/acts/tests/google/fuchsia/bt/gatt/GattConnectionStressTest.py b/acts/tests/google/fuchsia/bt/gatt/GattConnectionStressTest.py deleted file mode 100644 index 5c46548279..0000000000 --- a/acts/tests/google/fuchsia/bt/gatt/GattConnectionStressTest.py +++ /dev/null @@ -1,106 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright (C) 2019 The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. -""" -This is a stress test for Fuchsia GATT connections. - -Custom Params: -gatt_connect_stress_test_iterations - - Example: - "gatt_connect_stress_test_iterations": 10 - -Setup: -This test only requires two fuchsia devices as the purpose is to test -the robusntess of GATT connections. -""" - -from acts import signals -from acts.base_test import BaseTestClass -from acts.test_decorators import test_tracker_info -from acts.test_utils.bt.bt_test_utils import generate_id_by_size -from acts.test_utils.fuchsia.bt_test_utils import le_scan_for_device_by_name -import time - - -class GattConnectionStressTest(BaseTestClass): - gatt_connect_err_message = "Gatt connection failed with: {}" - gatt_disconnect_err_message = "Gatt disconnection failed with: {}" - ble_advertise_interval = 50 - scan_timeout_seconds = 10 - default_iterations = 1000 - - def setup_class(self): - super().setup_class() - self.fuchsia_client_dut = self.fuchsia_devices[0] - self.fuchsia_server_dut = self.fuchsia_devices[1] - self.default_iterations = self.user_params.get( - "gatt_connect_stress_test_iterations", self.default_iterations) - - def _orchestrate_single_connect_disconnect(self): - adv_name = generate_id_by_size(10) - adv_data = {"name": adv_name} - self.fuchsia_server_dut.ble_lib.bleStartBleAdvertising( - adv_data, self.ble_advertise_interval) - device = le_scan_for_device_by_name(self.fuchsia_client_dut, self.log, - adv_name, - self.scan_timeout_seconds) - if device is None: - raise signals.TestFailure("Scanner unable to find advertisement.") - connect_result = self.fuchsia_client_dut.gattc_lib.bleConnectToPeripheral( - device["id"]) - if connect_result.get("error") is not None: - raise signals.TestFailure( - self.gatt_connect_err_message.format( - connect_result.get("error"))) - self.log.info("Connection Successful...") - disconnect_result = self.fuchsia_client_dut.gattc_lib.bleDisconnectPeripheral( - device["id"]) - if disconnect_result.get("error") is not None: - raise signals.TestFailure( - self.gatt_disconnect_err_message.format( - connect_result.get("error"))) - self.log.info("Disconnection Successful...") - self.fuchsia_server_dut.ble_lib.bleStopBleAdvertising() - - # TODO: add @test_tracker_info(uuid='') - def test_connect_reconnect_n_iterations_over_le(self): - """Test GATT reconnection n times. - - Verify that the GATT client device can discover and connect to - a perpheral n times. Default value is 1000. - - Steps: - 1. Setup Ble advertisement on peripheral with unique advertisement - name. - 2. GATT client scans for peripheral advertisement. - 3. Upon find the advertisement, send a connection request to - peripheral. - - Expected Result: - Verify that there are no errors after each GATT connection. - - Returns: - signals.TestPass if no errors - signals.TestFailure if there are any errors during the test. - - TAGS: GATT - Priority: 1 - """ - for i in range(self.default_iterations): - self.log.info("Starting iteration {}".format(i + 1)) - self._orchestrate_single_connect_disconnect() - self.log.info("Iteration {} successful".format(i + 1)) - raise signals.TestPass("Success") diff --git a/acts/tests/google/fuchsia/bt/gatt/GattServerSetupTest.py b/acts/tests/google/fuchsia/bt/gatt/GattServerSetupTest.py index 83418e4a7d..4199df4998 100644 --- a/acts/tests/google/fuchsia/bt/gatt/GattServerSetupTest.py +++ b/acts/tests/google/fuchsia/bt/gatt/GattServerSetupTest.py @@ -31,10 +31,14 @@ import gatt_server_databases as database class GattServerSetupTest(BaseTestClass): err_message = "Setting up database failed with: {}" - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BaseTestClass.__init__(self, controllers) self.fuchsia_dut = self.fuchsia_devices[0] + def teardown_test(self): + for fd in self.fuchsia_devices: + fd.clean_up() + def setup_database(self, database): setup_result = self.fuchsia_dut.gatts_lib.publishServer(database) if setup_result.get("error") is None: @@ -43,9 +47,6 @@ class GattServerSetupTest(BaseTestClass): raise signals.TestFailure( self.err_message.format(setup_result.get("error"))) - def test_teardown(self): - self.fuchsia_dut.gatts_lib.closeServer() - @test_tracker_info(uuid='25f3463b-b6bd-408b-9924-f18ed3b9bbe2') def test_single_primary_service(self): """Test GATT Server Setup: Single Primary Service diff --git a/acts/tests/google/fuchsia/bt/pts/GATT_PTS_INSTRUCTIONS b/acts/tests/google/fuchsia/bt/pts/GATT_PTS_INSTRUCTIONS deleted file mode 100644 index 406c07831e..0000000000 --- a/acts/tests/google/fuchsia/bt/pts/GATT_PTS_INSTRUCTIONS +++ /dev/null @@ -1,198 +0,0 @@ -# Copyright (C) 2019 The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -GATT -================================================================= -Note: Bug in PTS forces GATT operations to be over BR/EDR. To run tests over LE disable BR/EDR in ICS when running tests (ICS Name TSCP_GATT_2_1). To Run over BR/EDR re-enable the same ICS value. - -Note: While using ACTS cmd line tools, if there is ever an issue with connecting to PTS make sure the -unique ID is properly set by running these commands: - tool_set_target_device_name PTS - tool_refresh_unique_id - -Cmd Line Tools in use: - ACTS: - FuchsiaCmdLineTest - Fuchsia CLI: - ... - -GATT/CL/GAC/BV-01-C - TBD - -GATT/CL/GAD/BV-01-C - gattc_connect - gattc_list_services - [PTS Interaction] Verify values - gattc_disconnect - gattc_connect - gattc_list_services - [PTS Interaction] Verify values - gattc_disconnect - gattc_connect - gattc_list_services - [PTS Interaction] Verify values - gattc_disconnect - gattc_connect - gattc_list_services - [PTS Interaction] Verify values - gattc_disconnect - gattc_connect - gattc_list_services - [PTS Interaction] Verify values - gattc_disconnect - gattc_connect - gattc_list_services - [PTS Interaction] Verify values - gattc_disconnect - -GATT/CL/GAD/BV-02-C - Bug: BT-764 - -GATT/CL/GAD/BV-03-C - Note: Bug BT-764 would simplify this testcase. - Note: If device is already paired, pairing tool instructions are not needed. - Fuchsia cmd-line-tool: bt-pairing-tool - gattc_connect - gattc_real_all_chars - [PTS Interaction] Verify confirmation - gattc_disconnect - gattc_connect - gattc_real_all_chars - [PTS Interaction] Verify values - [Fuchsia interaction] Type 'y' on the bt-pairing-tool - [PTS Interaction] Enter pin from bt-pairing-tool to PTS - gattc_disconnect - gattc_connect - gattc_real_all_chars - [PTS Interaction] Verify values - gattc_disconnect - gattc_connect - gattc_real_all_chars - [PTS Interaction] Verify values - gattc_disconnect - -GATT/CL/GAD/BV-04-C - Note: Bug BT-764 would simplify this testcase. - Note: If device is already paired, pairing tool instructions are not needed. - Fuchsia cmd-line-tool: bt-pairing-tool - gattc_connect - gattc_real_all_chars - [PTS Interaction] Verify confirmation - gattc_disconnect - gattc_connect - gattc_real_all_chars - [PTS Interaction] Verify values - [Fuchsia interaction] Type 'y' on the bt-pairing-tool - [PTS Interaction] Enter pin from bt-pairing-tool to PTS - gattc_disconnect - gattc_connect - gattc_real_all_chars - [PTS Interaction] Verify values - gattc_disconnect - gattc_connect - gattc_real_all_chars - [PTS Interaction] Verify values - gattc_disconnect - -GATT/CL/GAD/BV-05-C - Note: Bug BT-764 would simplify this testcase. - Note: If device is already paired, pairing tool instructions are not needed. - Fuchsia cmd-line-tool: bt-pairing-tool - gattc_connect - gattc_real_all_chars - [PTS Interaction] Verify confirmation - gattc_disconnect - gattc_connect - gattc_real_all_chars - [PTS Interaction] Verify values - [Fuchsia interaction] Type 'y' on the bt-pairing-tool - [PTS Interaction] Enter pin from bt-pairing-tool to PTS - gattc_disconnect - gattc_connect - gattc_real_all_chars - [PTS Interaction] Verify values - gattc_disconnect - gattc_connect - gattc_real_all_chars - [PTS Interaction] Verify values - gattc_disconnect - gattc_connect - gattc_real_all_chars - [PTS Interaction] Verify values - gattc_disconnect - gattc_connect - gattc_real_all_chars - [PTS Interaction] Verify values - gattc_disconnect - gattc_connect - gattc_real_all_chars - [PTS Interaction] Verify values - gattc_disconnect - gattc_connect - gattc_real_all_chars - [PTS Interaction] Verify values - gattc_disconnect - gattc_connect - gattc_real_all_chars - [PTS Interaction] Verify values - gattc_disconnect - -GATT/CL/GAD/BV-06-C - Note: Bug BT-764 would simplify this testcase. - Note: If device is already paired, pairing tool instructions are not needed. - Fuchsia cmd-line-tool: bt-pairing-tool - gattc_connect - gattc_real_all_desc - [PTS Interaction] Verify confirmation - gattc_disconnect - gattc_connect - gattc_real_all_desc - [PTS Interaction] Verify values - [Fuchsia interaction] Type 'y' on the bt-pairing-tool - [PTS Interaction] Enter pin from bt-pairing-tool to PTS - gattc_disconnect - gattc_connect - gattc_real_all_desc - [PTS Interaction] Verify values - gattc_disconnect - gattc_connect - gattc_real_all_desc - [PTS Interaction] Verify values - gattc_disconnect - -GATT/CL/GAD/BV-07-C - [PTS Interaction] Verify values - [PTS Interaction] Verify values - [PTS Interaction] Verify values - [PTS Interaction] Verify values - [PTS Interaction] Verify values - [PTS Interaction] Verify values - -GATT/CL/GAD/BV-08-C - [PTS Interaction] Verify values - [PTS Interaction] Verify values - [PTS Interaction] Verify values - [PTS Interaction] Verify values - -GATTT/CL/GAR/BV-01-C - Note: Bug BT-451 would simplify this testcase. - Note: If device is already paired, pairing tool instructions are not needed. - Fuchsia cmd-line-tool: bt-pairing-tool - gattc_connect - gattc_read_all_chars - Fuchsia interaction] Type 'y' on the bt-pairing-tool - [PTS Interaction] Enter pin from bt-pairing-tool to PTS - [PTS Interaction] Verify values - gattc_disconnect - diff --git a/acts/tests/google/fuchsia/examples/Sl4fSanityTest.py b/acts/tests/google/fuchsia/examples/Sl4fSanityTest.py index d2116a9b32..7d95e2dcfc 100644 --- a/acts/tests/google/fuchsia/examples/Sl4fSanityTest.py +++ b/acts/tests/google/fuchsia/examples/Sl4fSanityTest.py @@ -29,9 +29,10 @@ from acts.test_utils.tel.tel_test_utils import setup_droid_properties class Sl4fSanityTest(BaseTestClass): - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BaseTestClass.__init__(self, controllers) + def setup_class(self): success_str = ("Congratulations! Fuchsia controllers have been " "initialized successfully!") err_str = ("Sorry, please try verifying FuchsiaDevice is in your " @@ -39,7 +40,7 @@ class Sl4fSanityTest(BaseTestClass): if len(self.fuchsia_devices) > 0: self.log.info(success_str) else: - raise signals.TestAbortClass("err_str") + raise signals.TestSkipClass("err_str") def test_example(self): self.log.info("Congratulations! You've run your first test.") diff --git a/acts/tests/google/fuchsia/logging/FuchsiaLoggingTest.py b/acts/tests/google/fuchsia/logging/FuchsiaLoggingTest.py deleted file mode 100644 index 28d6998b7b..0000000000 --- a/acts/tests/google/fuchsia/logging/FuchsiaLoggingTest.py +++ /dev/null @@ -1,47 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright (C) 2019 The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -from acts import signals -from acts.base_test import BaseTestClass -from acts import asserts - - -class FuchsiaLoggingTest(BaseTestClass): - def setup_class(self): - super().setup_class() - self.dut = self.fuchsia_devices[0] - self.message = "Logging Test" - - def test_log_err(self): - result = self.dut.logging_lib.logE(self.message) - if result.get("error") is None: - signals.TestPass(result.get("result")) - else: - signals.TestFailure(result.get("error")) - - def test_log_info(self): - result = self.dut.logging_lib.logI(self.message) - if result.get("error") is None: - signals.TestPass(result.get("result")) - else: - signals.TestFailure(result.get("error")) - - def test_log_warn(self): - result = self.dut.logging_lib.logW(self.message) - if result.get("error") is None: - signals.TestPass(result.get("result")) - else: - signals.TestFailure(result.get("error")) diff --git a/acts/framework/acts/test_utils/net/NetstackBaseTest.py b/acts/tests/google/fuchsia/netstack/NetstackFuchsiaTest.py index a59a2e0abd..f095c8a3e1 100755..100644 --- a/acts/framework/acts/test_utils/net/NetstackBaseTest.py +++ b/acts/tests/google/fuchsia/netstack/NetstackFuchsiaTest.py @@ -17,7 +17,24 @@ from acts.base_test import BaseTestClass from acts import asserts +class NetstackFuchsiaTest(BaseTestClass): + default_timeout = 10 + active_scan_callback_list = [] + active_adv_callback_list = [] + droid = None -class NetstackBaseTest(BaseTestClass): def __init__(self, controllers): BaseTestClass.__init__(self, controllers) + + if (len(self.fuchsia_devices) < 1): + self.log.error("NetstackFuchsiaTest Init: Not enough fuchsia devices.") + self.log.info("Running testbed setup with one fuchsia devices") + self.fuchsia_dev = self.fuchsia_devices[0] + + def teardown_test(self): + self.fuchsia_dev.clean_up() + + def test_fuchsia_publish_service(self): + asserts.assert_false(self.fuchsia_dev.netstack_lib.netstackListInterfaces()['error'], + "Expected list interfaces to succeed") + return True diff --git a/acts/tests/google/fuchsia/netstack/NetstackIfaceTest.py b/acts/tests/google/fuchsia/netstack/NetstackIfaceTest.py deleted file mode 100644 index d3602772e9..0000000000 --- a/acts/tests/google/fuchsia/netstack/NetstackIfaceTest.py +++ /dev/null @@ -1,173 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright (C) 2019 The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -from acts import signals - -from acts.base_test import BaseTestClass -from acts import asserts - - -class NetstackIfaceTest(BaseTestClass): - default_timeout = 10 - active_scan_callback_list = [] - active_adv_callback_list = [] - droid = None - - def setup_class(self): - super().setup_class() - if (len(self.fuchsia_devices) < 1): - self.log.error( - "NetstackFuchsiaTest Init: Not enough fuchsia devices.") - self.log.info("Running testbed setup with one fuchsia devices") - self.dut = self.fuchsia_devices[0] - self.dut.netstack_lib.init() - - def _enable_all_interfaces(self): - interfaces = self.dut.netstack_lib.netstackListInterfaces() - for item in interfaces.get("result"): - identifier = item.get('id') - self.dut.netstack_lib.enableInterface(identifier) - - def setup_test(self): - # Always make sure all interfaces listed are in an up state. - self._enable_all_interfaces() - - def teardown_test(self): - # Always make sure all interfaces listed are in an up state. - self._enable_all_interfaces() - - def test_list_interfaces(self): - """Test listing all interfaces. - - Steps: - 1. Call ListInterfaces FIDL api. - 2. Verify there is at least one interface returned. - - Expected Result: - There were no errors in retrieving the list of interfaces. - There was at least one interface in the list. - - Returns: - signals.TestPass if no errors - signals.TestFailure if there are any errors during the test. - - TAGS: Netstack - Priority: 1 - """ - interfaces = self.dut.netstack_lib.netstackListInterfaces() - if interfaces.get('error') is not None: - raise signals.TestFailure("Failed with {}".format( - interfaces.get('error'))) - if len(interfaces.get('result')) < 1: - raise signals.TestFailure("No interfaces found.") - self.log.info("Interfaces found: {}".format(interfaces.get('result'))) - raise signals.TestPass("Success") - - def test_get_interface_by_id(self): - """Tests getting interface information by id on all interfaces. - - Steps: - 1. Call ListInterfaces FIDL api. - 2. For each interface in the list, call GetInterfaceInfo FIDL api. - - Expected Result: - There were no errors in each GetInterfaceInfo call. - - Returns: - signals.TestPass if no errors - signals.TestFailure if there are any errors during the test. - - TAGS: Netstack - Priority: 1 - """ - interfaces = self.dut.netstack_lib.netstackListInterfaces() - if interfaces.get('error') is not None: - raise signals.TestFailure("Failed with {}".format( - interfaces.get('error'))) - for item in interfaces.get("result"): - identifier = item.get('id') - interface_info_result = self.dut.netstack_lib.getInterfaceInfo( - identifier) - if interface_info_result.get('error') is not None: - raise signals.TestFailure( - "Get interfaces info failed with {}".format( - interface_info_result.get('error'))) - else: - result = interface_info_result.get('result') - if result is None: - raise signals.TestFailure( - "Interface info returned None: {}".format(result)) - self.log.info("Interface {} info: {}".format( - identifier, result)) - raise signals.TestPass("Success") - - def test_toggle_wlan_interface(self): - """Test toggling the wlan interface if it exists. - - Steps: - 1. Call ListInterfaces FIDL api. - 2. Find the wlan interface. - 3. Disable the interface. - 4. Verify interface attributes in a down state. - 5. Enable the interface. - 6. Verify interface attributes in an up state. - - Expected Result: - WLAN interface was successfully brought down and up again. - - Returns: - signals.TestPass if no errors - signals.TestFailure if there are any errors during the test. - - TAGS: Netstack - Priority: 1 - """ - interfaces = self.dut.netstack_lib.netstackListInterfaces() - for item in interfaces.get('result'): - # Find the WLAN interface - if "wlan" in item.get('name'): - identifier = item.get('id') - # Disable the interface by ID. - result = self.dut.netstack_lib.disableInterface(identifier) - if result.get('error') is not None: - raise signals.TestFailure( - "Unable to disable wlan interface: {}".format( - result.get('error'))) - - # Check the current state of the interface. - interface_info_result = self.dut.netstack_lib.getInterfaceInfo( - identifier) - interface_info = interface_info_result.get('result') - - if len(interface_info.get('ipv4_addresses')) > 0: - raise signals.TestFailure( - "No Ipv4 Address should be present: {}".format( - interface_info)) - - # TODO (35981): Verify other values when interface down. - - # Re-enable the interface - result = self.dut.netstack_lib.enableInterface(identifier) - if result.get('error') is not None: - raise signals.TestFailure( - "Unable to enable wlan interface: {}".format( - result.get('error'))) - - # TODO (35981): Verify other values when interface up. - - raise signals.TestPass("Success") - - raise signals.TestSkip("No WLAN interface found.") diff --git a/acts/tests/google/fuchsia/netstack/NetstackIxiaTest.py b/acts/tests/google/fuchsia/netstack/NetstackIxiaTest.py deleted file mode 100644 index 81d69bf5b4..0000000000 --- a/acts/tests/google/fuchsia/netstack/NetstackIxiaTest.py +++ /dev/null @@ -1,169 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright (C) 2019 The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. - -from acts import asserts -from acts.controllers.ap_lib import hostapd_ap_preset -from acts.controllers.ap_lib import hostapd_bss_settings -from acts.controllers.ap_lib import hostapd_constants -from acts.controllers.ap_lib import hostapd_security - -from acts.test_utils.net.NetstackBaseTest import NetstackBaseTest - -from acts.utils import rand_ascii_str - - -class NetstackIxiaTest(NetstackBaseTest): - def __init__(self, controllers): - NetstackBaseTest.__init__(self, controllers) - - def setup_class(self): - self.log.info('Setup {cls}'.format(cls=type(self))) - - if not self.fuchsia_devices: - self.log.error( - "NetstackFuchsiaTest Init: Not enough fuchsia devices.") - self.log.info("Running testbed setup with one fuchsia devices") - self.fuchsia_dev = self.fuchsia_devices[0] - - # We want to bring up several 2GHz and 5GHz BSSes. - wifi_bands = ['2g', '5g'] - - # Currently AP_DEFAULT_CHANNEL_2G is 6 - # and AP_DEFAULT_CHANNEL_5G is 36. - wifi_channels = [ - hostapd_constants.AP_DEFAULT_CHANNEL_2G, - hostapd_constants.AP_DEFAULT_CHANNEL_5G - ] - - # Each band will start up an Open BSS (security_mode=None) - # and a WPA2 BSS (security_mode=hostapd_constants.WPA2_STRING) - security_modes = [None, hostapd_constants.WPA2_STRING] - - # All secure BSSes will use the same password. - wifi_password = rand_ascii_str(10) - self.log.info('Wi-Fi password for this test: {wifi_password}'.format( - wifi_password=wifi_password)) - hostapd_configs = [] - wifi_interfaces = {} - bss_settings = {} - - # Build a configuration for each sub-BSSID - for band_index, wifi_band in enumerate(wifi_bands): - ssid_name = 'Ixia_{wifi_band}_#{bss_number}_{security_mode}' - bss_settings[wifi_band] = [] - - # Prepare the extra SSIDs. - for mode_index, security_mode in enumerate(security_modes): - - # Skip the first SSID because we configure that separately. - # due to the way the APIs work. This loop is only concerned - # with the sub-BSSIDs. - if mode_index == 0: - continue - - bss_name = ssid_name.format(wifi_band=wifi_band, - security_mode=security_mode, - bss_number=mode_index + 1) - - bss_setting = hostapd_bss_settings.BssSettings( - name=bss_name, - ssid=bss_name, - security=hostapd_security.Security( - security_mode=security_mode, password=wifi_password)) - bss_settings[wifi_band].append(bss_setting) - - # This is the configuration for the first SSID. - ssid_name = ssid_name.format(wifi_band=wifi_band, - security_mode=security_modes[0], - bss_number=1) - - hostapd_configs.append( - hostapd_ap_preset.create_ap_preset( - profile_name='whirlwind', - iface_wlan_2g='wlan0', - iface_wlan_5g='wlan1', - ssid=ssid_name, - channel=wifi_channels[band_index], - security=hostapd_security.Security( - security_mode=security_modes[0], - password=wifi_password), - bss_settings=bss_settings[wifi_band])) - - access_point = self.access_points[band_index] - - # Now bring up the AP and track the interfaces we're using for - # each BSSID. All BSSIDs are now beaconing. - wifi_interfaces[wifi_band] = access_point.start_ap( - hostapd_configs[band_index]) - - # Disable DHCP on this Wi-Fi band. - # Note: This also disables DHCP on each sub-BSSID due to how - # the APIs are built. - # - # We need to do this in order to enable IxANVL testing across - # Wi-Fi, which needs to configure the IP addresses per-interface - # on the client device. - access_point.stop_dhcp() - - # Disable NAT. - # NAT config in access_point.py is global at the moment, but - # calling it twice (once per band) won't hurt anything. This is - # easier than trying to conditionalize per band. - # - # Note that we could make this per-band, but it would require - # refactoring the access_point.py code that turns on NAT, however - # if that ever does happen then this code will work as expected - # without modification. - # - # This is also required for IxANVL testing. NAT would interfere - # with IxANVL because IxANVL needs to see the raw frames - # sourcing/sinking from/to the DUT for protocols such as ARP and - # DHCP, but it also needs the MAC/IP of the source and destination - # frames and packets to be from the DUT, so we want the AP to act - # like a bridge for these tests. - access_point.stop_nat() - - # eth1 is the LAN port, which will always be a part of the bridge. - bridge_interfaces = ['eth1'] - - # This adds each bssid interface to the bridge. - for wifi_band in wifi_bands: - for wifi_interface in wifi_interfaces[wifi_band]: - bridge_interfaces.append(wifi_interface) - - # Each interface can only be a member of 1 bridge, so we're going to use - # the last access_point object to set the bridge up for all interfaces. - access_point.create_bridge(bridge_name='ixia_bridge0', - interfaces=bridge_interfaces) - - def setup_test(self): - pass - - def teardown_test(self): - pass - - def teardown_class(self): - self.log.info('Teardown {cls}'.format(cls=type(self))) - - import pdb - pdb.set_trace() - - for access_point in self.access_points: - access_point.remove_bridge(bridge_name='ixia_bridge0') - - """Tests""" - def test_do_nothing(self): - return True diff --git a/acts/tests/google/fuchsia/wlan/ConnectionStressTest.py b/acts/tests/google/fuchsia/wlan/ConnectionStressTest.py deleted file mode 100644 index 51bc59cddf..0000000000 --- a/acts/tests/google/fuchsia/wlan/ConnectionStressTest.py +++ /dev/null @@ -1,213 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright (C) 2018 The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. -""" -Script for testing WiFi connection and disconnection in a loop - -""" -from acts.base_test import BaseTestClass - -import os -import uuid -import time - -from acts import signals -from acts.controllers.ap_lib import hostapd_constants -from acts.controllers.ap_lib import hostapd_security -from acts.test_utils.abstract_devices.utils_lib.wlan_utils import setup_ap -from acts.test_utils.abstract_devices.utils_lib.wlan_utils import associate -from acts.test_utils.abstract_devices.utils_lib.wlan_utils import disconnect -from acts.test_utils.abstract_devices.wlan_device import create_wlan_device -from acts.test_utils.fuchsia import utils -from acts.test_utils.tel.tel_test_utils import setup_droid_properties -from acts.utils import rand_ascii_str - - - -class ConnectionStressTest(BaseTestClass): - # Default number of test iterations here. - # Override using parameter in config file. - # Eg: "connection_stress_test_iterations": "50" - num_of_iterations = 10 - channel_2G = hostapd_constants.AP_DEFAULT_CHANNEL_2G - channel_5G = hostapd_constants.AP_DEFAULT_CHANNEL_5G - - def setup_class(self): - super().setup_class() - self.ssid = rand_ascii_str(10) - self.fd = self.fuchsia_devices[0] - self.dut = create_wlan_device(self.fd) - self.ap = self.access_points[0] - self.num_of_iterations = int( - self.user_params.get("connection_stress_test_iterations", - self.num_of_iterations)) - self.log.info('iterations: %d' % self.num_of_iterations) - - def teardown_test(self): - self.dut.reset_wifi() - self.ap.stop_all_aps() - - def start_ap(self, profile, channel, security=None): - """Starts an Access Point - - Args: - profile: Profile name such as 'whirlwind' - channel: Channel to operate on - """ - self.log.info('Profile: %s, Channel: %d' % (profile, channel)) - setup_ap( - access_point=self.ap, - profile_name=profile, - channel=channel, - ssid=self.ssid, - security=security) - - def connect_disconnect(self, - ap_config, - ssid=None, - password=None, - negative_test=False): - """Helper to start an AP, connect DUT to it and disconnect - - Args: - ap_config: Dictionary contaning profile name and channel - ssid: ssid to connect to - password: password for the ssid to connect to - """ - # Start AP - self.start_ap(ap_config['profile'], - ap_config['channel'], - ap_config['security']) - - failed = False - # Connect and Disconnect several times - for x in range(0, self.num_of_iterations): - if not ssid: - ssid = self.ssid - if negative_test: - if not associate(self.dut, ssid=ssid, password=password): - self.log.info('Attempt %d. Did not associate as expected.' - % x) - else: - self.log.error('Attempt %d. Negative test successfully ' - 'associated. Fail.' % x) - failed = True - else: - # Connect - if associate(self.dut, ssid=ssid, password=password): - self.log.info('Attempt %d. Successfully associated' % x) - else: - self.log.error('Attempt %d. Failed to associate.' % x) - failed = True - # Disconnect - disconnect(self.dut) - - # Wait a second before trying again - time.sleep(1) - - # Stop AP - self.ap.stop_all_aps() - if failed: - raise signals.TestFailure('One or more association attempt failed.') - - def test_whirlwind_2g(self): - self.connect_disconnect({ - 'profile': 'whirlwind', - 'channel': self.channel_2G, - 'security': None - }) - - def test_whirlwind_5g(self): - self.connect_disconnect({ - 'profile': 'whirlwind', - 'channel': self.channel_5G, - 'security': None - }) - - def test_whirlwind_11ab_2g(self): - self.connect_disconnect({ - 'profile': 'whirlwind_11ab_legacy', - 'channel': self.channel_2G, - 'security': None - }) - - def test_whirlwind_11ab_5g(self): - self.connect_disconnect({ - 'profile': 'whirlwind_11ab_legacy', - 'channel': self.channel_5G, - 'security': None - }) - - def test_whirlwind_11ag_2g(self): - self.connect_disconnect({ - 'profile': 'whirlwind_11ag_legacy', - 'channel': self.channel_2G, - 'security': None - }) - - def test_whirlwind_11ag_5g(self): - self.connect_disconnect({ - 'profile': 'whirlwind_11ag_legacy', - 'channel': self.channel_5G, - 'security': None - }) - - def test_wrong_ssid_whirlwind_2g(self): - self.connect_disconnect( - { - 'profile': 'whirlwind', - 'channel': self.channel_2G, - 'security': None - }, - ssid=rand_ascii_str(20), - negative_test=True - ) - - def test_wrong_ssid_whirlwind_5g(self): - self.connect_disconnect( - { - 'profile': 'whirlwind', - 'channel': self.channel_5G, - 'security': None - }, - ssid=rand_ascii_str(20), - negative_test=True - ) - - def test_wrong_password_whirlwind_2g(self): - self.connect_disconnect( - { - 'profile': 'whirlwind', - 'channel': self.channel_2G, - 'security': hostapd_security.Security( - security_mode='wpa2', - password=rand_ascii_str(10)) - }, - password=rand_ascii_str(20), - negative_test=True - ) - - def test_wrong_password_whirlwind_5g(self): - self.connect_disconnect( - { - 'profile': 'whirlwind', - 'channel': self.channel_5G, - 'security': hostapd_security.Security( - security_mode='wpa2', - password=rand_ascii_str(10)) - }, - password=rand_ascii_str(20), - negative_test=True - )
\ No newline at end of file diff --git a/acts/tests/google/fuchsia/wlan/DownloadStressTest.py b/acts/tests/google/fuchsia/wlan/DownloadStressTest.py deleted file mode 100644 index f3f3803c88..0000000000 --- a/acts/tests/google/fuchsia/wlan/DownloadStressTest.py +++ /dev/null @@ -1,188 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright (C) 2018 The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. -""" -Script for testing various download stress scenarios. - -""" -import os -import threading -import uuid - -from acts.base_test import BaseTestClass -from acts import signals -from acts.controllers.ap_lib import hostapd_constants -from acts.test_utils.abstract_devices.utils_lib.wlan_utils import setup_ap_and_associate -from acts.test_utils.abstract_devices.wlan_device import create_wlan_device -from acts.test_utils.fuchsia import utils -from acts.test_utils.tel.tel_test_utils import setup_droid_properties -from acts.utils import rand_ascii_str - - -class DownloadStressTest(BaseTestClass): - # Default number of test iterations here. - # Override using parameter in config file. - # Eg: "download_stress_test_iterations": "10" - num_of_iterations = 3 - - # Timeout for download thread in seconds - download_timeout_s = 60 * 5 - - # Download urls - url_20MB = 'http://ipv4.download.thinkbroadband.com/20MB.zip' - url_40MB = 'http://ipv4.download.thinkbroadband.com/40MB.zip' - url_60MB = 'http://ipv4.download.thinkbroadband.com/60MB.zip' - url_512MB = 'http://ipv4.download.thinkbroadband.com/512MB.zip' - - # Constants used in test_one_large_multiple_small_downloads - download_small_url = url_20MB - download_large_url = url_512MB - num_of_small_downloads = 5 - download_threads_result = [] - - def setup_class(self): - super().setup_class() - self.ssid = rand_ascii_str(10) - self.fd = self.fuchsia_devices[0] - self.wlan_device = create_wlan_device(self.fd) - self.ap = self.access_points[0] - self.num_of_iterations = int( - self.user_params.get("download_stress_test_iterations", - self.num_of_iterations)) - - setup_ap_and_associate( - access_point=self.ap, - client=self.wlan_device, - profile_name='whirlwind', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.ssid) - - def teardown_test(self): - self.download_threads_result.clear() - self.wlan_device.disconnect() - self.wlan_device.reset_wifi() - self.ap.stop_all_aps() - - def test_download_small(self): - self.log.info("Downloading small file") - return self.download_file(self.url_20MB) - - def test_download_large(self): - return self.download_file(self.url_512MB) - - def test_continuous_download(self): - for x in range(0, self.num_of_iterations): - if not self.download_file(self.url_512MB): - return False - return True - - def download_file(self, url): - self.log.info("Start downloading: %s" % url) - return utils.http_file_download_by_curl( - self.fd, - url, - additional_args='--max-time %d --silent' % self.download_timeout_s) - - def download_thread(self, url): - download_status = self.download_file(url) - if download_status: - self.log.info("Success downloading: %s" % url) - else: - self.log.info("Failure downloading: %s" % url) - - self.download_threads_result.append(download_status) - return download_status - - def test_multi_downloads(self): - download_urls = [self.url_20MB, self.url_40MB, self.url_60MB] - download_threads = [] - - try: - # Start multiple downloads at the same time - for index, url in enumerate(download_urls): - self.log.info('Create and start thread %d.' % index) - t = threading.Thread(target=self.download_thread, args=(url, )) - download_threads.append(t) - t.start() - - # Wait for all threads to complete or timeout - for t in download_threads: - t.join(self.download_timeout_s) - - finally: - is_alive = False - - for index, t in enumerate(download_threads): - if t.isAlive(): - t = None - is_alive = True - - if is_alive: - raise signals.TestFailure('Thread %d timedout' % index) - - for index in range(0, len(self.download_threads_result)): - if not self.download_threads_result[index]: - self.log.info("Download failed for %d" % index) - raise signals.TestFailure( - 'Thread %d failed to download' % index) - return False - - return True - - def test_one_large_multiple_small_downloads(self): - for index in range(self.num_of_iterations): - download_threads = [] - try: - large_thread = threading.Thread( - target=self.download_thread, - args=(self.download_large_url, )) - download_threads.append(large_thread) - large_thread.start() - - for i in range(self.num_of_small_downloads): - # Start small file download - t = threading.Thread( - target=self.download_thread, - args=(self.download_small_url, )) - download_threads.append(t) - t.start() - # Wait for thread to exit before starting the next iteration - t.join(self.download_timeout_s) - - # Wait for the large file download thread to complete - large_thread.join(self.download_timeout_s) - - finally: - is_alive = False - - for index, t in enumerate(download_threads): - if t.isAlive(): - t = None - is_alive = True - - if is_alive: - raise signals.TestFailure('Thread %d timedout' % index) - - for index in range(0, len(self.download_threads_result)): - if not self.download_threads_result[index]: - self.log.info("Download failed for %d" % index) - raise signals.TestFailure( - 'Thread %d failed to download' % index) - return False - - # Clear results before looping again - self.download_threads_result.clear() - - return True diff --git a/acts/tests/google/fuchsia/wlan/PingStressTest.py b/acts/tests/google/fuchsia/wlan/PingStressTest.py deleted file mode 100644 index 2aa1d00410..0000000000 --- a/acts/tests/google/fuchsia/wlan/PingStressTest.py +++ /dev/null @@ -1,152 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright (C) 2018 The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. -""" -Script for exercising various ping scenarios - -""" -from acts.base_test import BaseTestClass - -import os -import threading -import uuid - -from acts import signals -from acts.controllers.ap_lib import hostapd_constants -from acts.test_utils.abstract_devices.utils_lib.wlan_utils import setup_ap_and_associate -from acts.test_utils.abstract_devices.wlan_device import create_wlan_device -from acts.test_utils.tel.tel_test_utils import setup_droid_properties -from acts.test_utils.fuchsia import utils -from acts.utils import rand_ascii_str - - -class PingStressTest(BaseTestClass): - # Timeout for ping thread in seconds - ping_thread_timeout_s = 60 * 5 - - # List to capture ping results - ping_threads_result = [] - - # IP addresses used in pings - google_dns_1 = '8.8.8.8' - google_dns_2 = '8.8.4.4' - - def setup_class(self): - super().setup_class() - - self.ssid = rand_ascii_str(10) - self.fd = self.fuchsia_devices[0] - self.wlan_device = create_wlan_device(self.fd) - self.ap = self.access_points[0] - setup_ap_and_associate( - access_point=self.ap, - client=self.wlan_device, - profile_name='whirlwind', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.ssid) - - def teardown_test(self): - self.wlan_device.disconnect() - self.wlan_device.reset_wifi() - self.ap.stop_all_aps() - - def send_ping(self, dest_ip, count=3, interval=1000, timeout=1000, - size=25): - ping_result = self.wlan_device.ping(dest_ip, count, interval, timeout, size) - if ping_result['status']: - self.log.info('Ping was successful.') - else: - if '8.8' in dest_ip: - raise signals.TestFailure('Ping was unsuccessful. Consider possibility of server failure.') - else: - raise signals.TestFailure('Ping was unsuccessful.') - return True - - def ping_thread(self, dest_ip): - ping_result = self.wlan_device.ping(dest_ip, count=10, size=50) - if ping_result['status']: - self.log.info('Success pinging: %s' % dest_ip) - else: - self.log.info('Failure pinging: %s' % dest_ip) - - self.ping_threads_result.append(ping_result['status']) - - def test_simple_ping(self): - return self.send_ping(self.google_dns_1) - - def test_ping_local(self): - return self.send_ping('127.0.0.1') - - def test_ping_AP(self): - return self.send_ping(self.ap.ssh_settings.hostname) - - def test_ping_with_params(self): - return self.send_ping( - self.google_dns_1, count=5, interval=800, size=50) - - def test_long_ping(self): - return self.send_ping(self.google_dns_1, count=50) - - def test_medium_packet_ping(self): - return self.send_ping(self.google_dns_1, size=64) - - def test_medium_packet_long_ping(self): - return self.send_ping( - self.google_dns_1, count=50, timeout=1500, size=64) - - def test_large_packet_ping(self): - return self.send_ping(self.google_dns_1, size=500) - - def test_large_packet_long_ping(self): - return self.send_ping( - self.google_dns_1, count=50, timeout=5000, size=500) - - def test_simultaneous_pings(self): - ping_urls = [ - self.google_dns_1, self.google_dns_2, self.google_dns_1, - self.google_dns_2 - ] - ping_threads = [] - - try: - # Start multiple ping at the same time - for index, url in enumerate(ping_urls): - self.log.info('Create and start thread %d.' % index) - t = threading.Thread(target=self.ping_thread, args=(url, )) - ping_threads.append(t) - t.start() - - # Wait for all threads to complete or timeout - for t in ping_threads: - t.join(self.ping_thread_timeout_s) - - finally: - is_alive = False - - for index, t in enumerate(ping_threads): - if t.isAlive(): - t = None - is_alive = True - - if is_alive: - raise signals.TestFailure('Thread %d timedout' % index) - - for index in range(0, len(self.ping_threads_result)): - if not self.ping_threads_result[index]: - self.log.info("Ping failed for %d" % index) - raise signals.TestFailure('Thread %d failed to ping. Consider possibility of server failure' % index) - return False - - return True diff --git a/acts/tests/google/fuchsia/wlan/RebootAPStressTest.py b/acts/tests/google/fuchsia/wlan/RebootAPStressTest.py deleted file mode 100644 index cbe9d12cdd..0000000000 --- a/acts/tests/google/fuchsia/wlan/RebootAPStressTest.py +++ /dev/null @@ -1,111 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright (C) 2019 The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. -""" -Script for testing WiFi recovery after rebooting the AP. - -Override default number of iterations using the following -parameter in the test config file. - -"reboot_ap_stress_test_iterations": "10" -""" - -import os -import uuid -import time - -from acts import asserts -from acts import signals -from acts.base_test import BaseTestClass -from acts.controllers.ap_lib import hostapd_constants -from acts.test_utils.abstract_devices.utils_lib.wlan_utils import disconnect -from acts.test_utils.abstract_devices.utils_lib.wlan_utils import is_connected -from acts.test_utils.abstract_devices.utils_lib.wlan_utils import setup_ap -from acts.test_utils.abstract_devices.utils_lib.wlan_utils import setup_ap_and_associate -from acts.test_utils.abstract_devices.wlan_device import create_wlan_device -from acts.test_utils.fuchsia import utils -from acts.test_utils.tel.tel_test_utils import setup_droid_properties -from acts.utils import rand_ascii_str - - -class RebootAPStressTest(BaseTestClass): - # Default number of test iterations here. - # Override using parameter in config file. - # Eg: "reboot_ap_stress_test_iterations": "10" - num_of_iterations = 3 - - # Default wait time in seconds for the device - # to connect back after AP reboot. - # Override using parameter in config file. - # Eg: "wait_to_connect_after_ap_reboot_s": "60" - wait_to_connect_after_ap_reboot_s = 30 - - # Time to wait for device to disconnect - # after AP reboot. - wait_after_ap_reboot_s = 1 - - def setup_class(self): - super().setup_class() - self.ssid = rand_ascii_str(10) - self.wlan_device = create_wlan_device(self.fuchsia_devices[0]) - self.ap = self.access_points[0] - self.num_of_iterations = int( - self.user_params.get("reboot_ap_stress_test_iterations", - self.num_of_iterations)) - self.wait_to_connect_after_ap_reboot_s = int( - self.user_params.get("wait_to_connect_after_ap_reboot_s", - self.wait_to_connect_after_ap_reboot_s)) - def teardown_test(self): - disconnect(self.wlan_device) - self.wlan_device.reset_wifi() - self.ap.stop_all_aps() - - def setup_ap(self): - setup_ap(access_point=self.ap, - profile_name='whirlwind', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.ssid) - - def test_reboot_AP_stress(self): - setup_ap_and_associate( - access_point=self.ap, - client=self.wlan_device, - profile_name='whirlwind', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.ssid) - - asserts.assert_true(is_connected(self.wlan_device), - 'Failed to connect.') - - for _ in range(0, self.num_of_iterations): - # Stop AP - self.ap.stop_all_aps() - time.sleep(self.wait_after_ap_reboot_s) - - # Did we disconnect from AP? - asserts.assert_false(is_connected(self.wlan_device), - 'Failed to disconnect.') - - # Start AP - self.setup_ap() - - # Give the device time to connect back - time.sleep(self.wait_to_connect_after_ap_reboot_s) - - # Did we connect back to WiFi? - asserts.assert_true(is_connected(self.wlan_device), - 'Failed to connect back.') - - return True diff --git a/acts/tests/google/fuchsia/wlan/RebootStressTest.py b/acts/tests/google/fuchsia/wlan/RebootStressTest.py deleted file mode 100644 index fb9a87006f..0000000000 --- a/acts/tests/google/fuchsia/wlan/RebootStressTest.py +++ /dev/null @@ -1,71 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright (C) 2018 The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); you may not -# use this file except in compliance with the License. You may obtain a copy of -# the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT -# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the -# License for the specific language governing permissions and limitations under -# the License. -""" -Script for testing WiFi recovery after device reboot - -""" -from acts.base_test import BaseTestClass - -import os -import uuid - -from acts import asserts -from acts.controllers.ap_lib import hostapd_constants -from acts.test_utils.abstract_devices.utils_lib.wlan_utils import is_connected -from acts.test_utils.abstract_devices.utils_lib.wlan_utils import setup_ap_and_associate -from acts.test_utils.abstract_devices.utils_lib.wlan_utils import disconnect -from acts.test_utils.abstract_devices.wlan_device import create_wlan_device -from acts.test_utils.fuchsia import utils -from acts.test_utils.tel.tel_test_utils import setup_droid_properties -from acts.utils import rand_ascii_str - -class RebootStressTest(BaseTestClass): - # Default number of test iterations here. - # Override using parameter in config file. - # Eg: "reboot_stress_test_iterations": "10" - num_of_iterations = 3 - - def setup_class(self): - super().setup_class() - self.ssid = rand_ascii_str(10) - self.fd = self.fuchsia_devices[0] - self.wlan_device = create_wlan_device(self.fd) - self.ap = self.access_points[0] - self.num_of_iterations = int( - self.user_params.get("reboot_stress_test_iterations", - self.num_of_iterations)) - - setup_ap_and_associate( - access_point=self.ap, - client=self.wlan_device, - profile_name='whirlwind', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.ssid) - - def teardown_test(self): - disconnect(self.wlan_device) - self.wlan_device.reset_wifi() - self.ap.stop_all_aps() - - def test_reboot_stress(self): - for x in range(0, self.num_of_iterations): - # Reboot device - self.fd.reboot() - - # Did we connect back to WiFi? - asserts.assert_true( - is_connected(self.wlan_device), 'Failed to connect.') - return True diff --git a/acts/tests/google/fuchsia/wlan/WlanPhyCompliance11NTest.py b/acts/tests/google/fuchsia/wlan/WlanPhyCompliance11NTest.py deleted file mode 100644 index 673255c684..0000000000 --- a/acts/tests/google/fuchsia/wlan/WlanPhyCompliance11NTest.py +++ /dev/null @@ -1,542 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import itertools -import re - -from acts import utils -from acts.controllers.ap_lib.hostapd_security import Security -from acts.controllers.ap_lib import hostapd_constants -from acts.controllers.ap_lib import hostapd_config -from acts.test_utils.abstract_devices.wlan_device import create_wlan_device -from acts.test_utils.abstract_devices.utils_lib.wlan_utils import validate_setup_ap_and_associate -from acts.test_utils.wifi.WifiBaseTest import WifiBaseTest -from acts.utils import rand_ascii_str - -FREQUENCY_24 = ['2.4GHz'] -FREQUENCY_5 = ['5GHz'] -CHANNEL_BANDWIDTH_20 = ['HT20'] -CHANNEL_BANDWIDTH_40_LOWER = ['HT40-'] -CHANNEL_BANDWIDTH_40_UPPER = ['HT40+'] -SECURITY_OPEN = 'open' -SECURITY_WPA2 = 'wpa2' -LDPC = [hostapd_constants.N_CAPABILITY_LDPC, ''] -TX_STBC = [hostapd_constants.N_CAPABILITY_TX_STBC, ''] -RX_STBC = [hostapd_constants.N_CAPABILITY_RX_STBC1, ''] -SGI_20 = [hostapd_constants.N_CAPABILITY_SGI20, ''] -SGI_40 = [hostapd_constants.N_CAPABILITY_SGI40, ''] -DSSS_CCK = [hostapd_constants.N_CAPABILITY_DSSS_CCK_40, ''] -INTOLERANT_40 = [hostapd_constants.N_CAPABILITY_40_INTOLERANT, ''] -MAX_AMPDU_7935 = [hostapd_constants.N_CAPABILITY_MAX_AMSDU_7935, ''] -SMPS = [hostapd_constants.N_CAPABILITY_SMPS_STATIC, ''] - - -def generate_test_name(settings): - """Generates a string based on the n_capabilities for a test case - - Args: - settings: A dictionary of hostapd constant n_capabilities. - - Returns: - A string that represents a test case name. - """ - ret = [] - for cap in hostapd_constants.N_CAPABILITIES_MAPPING.keys(): - if cap in settings['n_capabilities']: - ret.append(hostapd_constants.N_CAPABILITIES_MAPPING[cap]) - return '%s_%s_%s_%s' % (settings['frequency'], - settings['chbw'], - settings['security'], - ''.join(ret)) - - -class WlanPhyCompliance11NTest(WifiBaseTest): - """Tests for validating 11n PHYS. - - Test Bed Requirement: - * One Android device or Fuchsia device - * One Access Point - """ - def __init__(self, controllers): - WifiBaseTest.__init__(self, controllers) - self.tests = [ - 'test_11n_capabilities_24_HT20', - 'test_11n_capabilities_24_HT40_lower', - 'test_11n_capabilities_24_HT40_upper', - 'test_11n_capabilities_5_HT20', - 'test_11n_capabilities_5_HT40_lower', - 'test_11n_capabilities_5_HT40_upper', - 'test_11n_capabilities_24_HT20_wpa2', - 'test_11n_capabilities_24_HT40_lower_wpa2', - 'test_11n_capabilities_24_HT40_upper_wpa2', - 'test_11n_capabilities_5_HT20_wpa2', - 'test_11n_capabilities_5_HT40_lower_wpa2', - 'test_11n_capabilities_5_HT40_upper_wpa2' - - ] - if 'debug_11n_tests' in self.user_params: - self.tests.append('test_11n_capabilities_debug') - - def setup_class(self): - super().setup_class() - if 'dut' in self.user_params: - if self.user_params['dut'] == 'fuchsia_devices': - self.dut = create_wlan_device(self.fuchsia_devices[0]) - elif self.user_params['dut'] == 'android_devices': - self.dut = create_wlan_device(self.android_devices[0]) - else: - raise ValueError('Invalid DUT specified in config. (%s)' - % self.user_params['dut']) - else: - # Default is an android device, just like the other tests - self.dut = create_wlan_device(self.android_devices[0]) - - self.access_point = self.access_points[0] - self.access_point.stop_all_aps() - - def setup_test(self): - if hasattr(self, "android_devices"): - for ad in self.android_devices: - ad.droid.wakeLockAcquireBright() - ad.droid.wakeUpNow() - self.dut.wifi_toggle_state(True) - - def teardown_test(self): - if hasattr(self, "android_devices"): - for ad in self.android_devices: - ad.droid.wakeLockRelease() - ad.droid.goToSleepNow() - self.dut.turn_location_off_and_scan_toggle_off() - self.dut.disconnect() - self.dut.reset_wifi() - self.access_point.stop_all_aps() - - def on_fail(self, test_name, begin_time): - self.dut.take_bug_report(test_name, begin_time) - self.dut.get_log(test_name, begin_time) - - def setup_and_connect(self, ap_settings): - """Generates a hostapd config, setups up the AP with that config, then - attempts to associate a DUT - - Args: - ap_settings: A dictionary of hostapd constant n_capabilities. - """ - security_profile = None - password = None - temp_n_capabilities = list(ap_settings['n_capabilities']) - n_capabilities = [] - for n_capability in temp_n_capabilities: - if n_capability in hostapd_constants.N_CAPABILITIES_MAPPING.keys(): - n_capabilities.append(n_capability) - - if ap_settings['chbw'] == 'HT20' or ap_settings['chbw'] == 'HT40+': - if ap_settings['frequency'] == '2.4GHz': - channel = 1 - elif ap_settings['frequency'] == '5GHz': - channel = 36 - else: - raise ValueError('Invalid frequence: %s' - % ap_settings['frequency']) - - if ap_settings['chbw'] == 'HT40-': - if ap_settings['frequency'] == '2.4GHz': - channel = 11 - elif ap_settings['frequency'] == '5GHz': - channel = 60 - else: - raise ValueError('Invalid frequency: %s' - % ap_settings['frequency']) - - if ap_settings['chbw'] == 'HT40-' or ap_settings['chbw'] == 'HT40+': - if hostapd_config.ht40_plus_allowed(channel): - extended_channel = hostapd_constants.N_CAPABILITY_HT40_PLUS - elif hostapd_config.ht40_minus_allowed(channel): - extended_channel = hostapd_constants.N_CAPABILITY_HT40_MINUS - else: - raise ValueError('Invalid channel: %s' - % channel) - n_capabilities.append(extended_channel) - - if ap_settings['security'] == 'wpa2': - security_profile = Security(security_mode=SECURITY_WPA2, - password=rand_ascii_str(20), - wpa_cipher='CCMP', - wpa2_cipher='CCMP') - password = security_profile.password - - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind', - mode=hostapd_constants.MODE_11N_MIXED, - channel=channel, - n_capabilities=n_capabilities, - ac_capabilities=[], - force_wmm=True, - ssid=utils.rand_ascii_str(20), - security=security_profile, - password=password - ) - - - def test_11n_capabilities_24_HT20(self): - test_list = [] - for combination in itertools.product(FREQUENCY_24, - CHANNEL_BANDWIDTH_20, - LDPC, - TX_STBC, - RX_STBC, - SGI_20, - INTOLERANT_40, - MAX_AMPDU_7935, - SMPS): - test_frequency = combination[0] - test_chbw = combination[1] - n_capabilities = combination[2:] - test_list.append({'frequency': test_frequency, - 'chbw': test_chbw, - 'security': SECURITY_OPEN, - 'n_capabilities': n_capabilities}) - self.run_generated_testcases( - self.setup_and_connect, - settings=test_list, - name_func=generate_test_name) - - def test_11n_capabilities_24_HT40_lower(self): - test_list = [] - for combination in itertools.product(FREQUENCY_24, - CHANNEL_BANDWIDTH_40_LOWER, - LDPC, - TX_STBC, - RX_STBC, - SGI_20, - SGI_40, - MAX_AMPDU_7935, - SMPS, - DSSS_CCK): - test_frequency = combination[0] - test_chbw = combination[1] - n_capabilities = combination[2:] - test_list.append({'frequency': test_frequency, - 'chbw': test_chbw, - 'security': SECURITY_OPEN, - 'n_capabilities': n_capabilities}) - self.run_generated_testcases( - self.setup_and_connect, - settings=test_list, - name_func=generate_test_name) - - def test_11n_capabilities_24_HT40_upper(self): - test_list = [] - for combination in itertools.product(FREQUENCY_24, - CHANNEL_BANDWIDTH_40_UPPER, - LDPC, - TX_STBC, - RX_STBC, - SGI_20, - SGI_40, - MAX_AMPDU_7935, - SMPS, - DSSS_CCK): - test_frequency = combination[0] - test_chbw = combination[1] - n_capabilities = combination[2:] - test_list.append({'frequency': test_frequency, - 'chbw': test_chbw, - 'security': SECURITY_OPEN, - 'n_capabilities': n_capabilities}) - self.run_generated_testcases( - self.setup_and_connect, - settings=test_list, - name_func=generate_test_name) - - def test_11n_capabilities_5_HT20(self): - test_list = [] - for combination in itertools.product(FREQUENCY_5, - CHANNEL_BANDWIDTH_20, - LDPC, - TX_STBC, - RX_STBC, - SGI_20, - INTOLERANT_40, - MAX_AMPDU_7935, - SMPS): - test_frequency = combination[0] - test_chbw = combination[1] - n_capabilities = combination[2:] - test_list.append({'frequency': test_frequency, - 'chbw': test_chbw, - 'security': SECURITY_OPEN, - 'n_capabilities': n_capabilities}) - self.run_generated_testcases( - self.setup_and_connect, - settings=test_list, - name_func=generate_test_name) - - def test_11n_capabilities_5_HT40_lower(self): - test_list = [] - for combination in itertools.product(FREQUENCY_5, - CHANNEL_BANDWIDTH_40_LOWER, - LDPC, - TX_STBC, - RX_STBC, - SGI_20, - SGI_40, - MAX_AMPDU_7935, - SMPS, - DSSS_CCK): - test_frequency = combination[0] - test_chbw = combination[1] - n_capabilities = combination[2:] - test_list.append({'frequency': test_frequency, - 'chbw': test_chbw, - 'security': SECURITY_OPEN, - 'n_capabilities': n_capabilities}) - self.run_generated_testcases( - self.setup_and_connect, - settings=test_list, - name_func=generate_test_name) - - def test_11n_capabilities_5_HT40_upper(self): - test_list = [] - for combination in itertools.product(FREQUENCY_5, - CHANNEL_BANDWIDTH_40_UPPER, - LDPC, - TX_STBC, - RX_STBC, - SGI_20, - SGI_40, - MAX_AMPDU_7935, - SMPS, - DSSS_CCK): - test_frequency = combination[0] - test_chbw = combination[1] - n_capabilities = combination[2:] - test_list.append({'frequency': test_frequency, - 'chbw': test_chbw, - 'security': SECURITY_OPEN, - 'n_capabilities': n_capabilities}) - self.run_generated_testcases( - self.setup_and_connect, - settings=test_list, - name_func=generate_test_name) - - def test_11n_capabilities_24_HT20_wpa2(self): - test_list = [] - for combination in itertools.product(FREQUENCY_24, - CHANNEL_BANDWIDTH_20, - LDPC, - TX_STBC, - RX_STBC, - SGI_20, - INTOLERANT_40, - MAX_AMPDU_7935, - SMPS): - test_frequency = combination[0] - test_chbw = combination[1] - n_capabilities = combination[2:] - test_list.append({'frequency': test_frequency, - 'chbw': test_chbw, - 'security': SECURITY_WPA2, - 'n_capabilities': n_capabilities}) - self.run_generated_testcases( - self.setup_and_connect, - settings=test_list, - name_func=generate_test_name) - - def test_11n_capabilities_24_HT40_lower_wpa2(self): - test_list = [] - for combination in itertools.product(FREQUENCY_24, - CHANNEL_BANDWIDTH_40_LOWER, - LDPC, - TX_STBC, - RX_STBC, - SGI_20, - SGI_40, - MAX_AMPDU_7935, - SMPS, - DSSS_CCK): - test_frequency = combination[0] - test_chbw = combination[1] - n_capabilities = combination[2:] - test_list.append({'frequency': test_frequency, - 'chbw': test_chbw, - 'security': SECURITY_WPA2, - 'n_capabilities': n_capabilities}) - self.run_generated_testcases( - self.setup_and_connect, - settings=test_list, - name_func=generate_test_name) - - def test_11n_capabilities_24_HT40_upper_wpa2(self): - test_list = [] - for combination in itertools.product(FREQUENCY_24, - CHANNEL_BANDWIDTH_40_UPPER, - LDPC, - TX_STBC, - RX_STBC, - SGI_20, - SGI_40, - MAX_AMPDU_7935, - SMPS, - DSSS_CCK): - test_frequency = combination[0] - test_chbw = combination[1] - n_capabilities = combination[2:] - test_list.append({'frequency': test_frequency, - 'chbw': test_chbw, - 'security': SECURITY_WPA2, - 'n_capabilities': n_capabilities}) - self.run_generated_testcases( - self.setup_and_connect, - settings=test_list, - name_func=generate_test_name) - - def test_11n_capabilities_5_HT20_wpa2(self): - test_list = [] - for combination in itertools.product(FREQUENCY_5, - CHANNEL_BANDWIDTH_20, - LDPC, - TX_STBC, - RX_STBC, - SGI_20, - INTOLERANT_40, - MAX_AMPDU_7935, - SMPS): - test_frequency = combination[0] - test_chbw = combination[1] - n_capabilities = combination[2:] - test_list.append({'frequency': test_frequency, - 'chbw': test_chbw, - 'security': SECURITY_WPA2, - 'n_capabilities': n_capabilities}) - self.run_generated_testcases( - self.setup_and_connect, - settings=test_list, - name_func=generate_test_name) - - def test_11n_capabilities_5_HT40_lower_wpa2(self): - test_list = [] - for combination in itertools.product(FREQUENCY_5, - CHANNEL_BANDWIDTH_40_LOWER, - LDPC, - TX_STBC, - RX_STBC, - SGI_20, - SGI_40, - MAX_AMPDU_7935, - SMPS, - DSSS_CCK): - test_frequency = combination[0] - test_chbw = combination[1] - n_capabilities = combination[2:] - test_list.append({'frequency': test_frequency, - 'chbw': test_chbw, - 'security': SECURITY_WPA2, - 'n_capabilities': n_capabilities}) - self.run_generated_testcases( - self.setup_and_connect, - settings=test_list, - name_func=generate_test_name) - - def test_11n_capabilities_5_HT40_upper_wpa2(self): - test_list = [] - for combination in itertools.product(FREQUENCY_5, - CHANNEL_BANDWIDTH_40_UPPER, - LDPC, - TX_STBC, - RX_STBC, - SGI_20, - SGI_40, - MAX_AMPDU_7935, - SMPS, - DSSS_CCK): - test_frequency = combination[0] - test_chbw = combination[1] - n_capabilities = combination[2:] - test_list.append({'frequency': test_frequency, - 'chbw': test_chbw, - 'security': SECURITY_WPA2, - 'n_capabilities': n_capabilities}) - self.run_generated_testcases( - self.setup_and_connect, - settings=test_list, - name_func=generate_test_name) - - def test_11n_capabilities_debug(self): - allowed_frequencies = FREQUENCY_5 + FREQUENCY_24 - allowed_chbw = (CHANNEL_BANDWIDTH_20 + CHANNEL_BANDWIDTH_40_LOWER + - CHANNEL_BANDWIDTH_40_UPPER) - allowed_security = [SECURITY_WPA2, SECURITY_OPEN] - freq_chbw_sec = re.compile(r'(.*)_(.*)_(.*)_(\[.*\])?$') - for test_title in self.user_params['debug_11n_tests']: - test_list = [] - test_to_run = re.match(freq_chbw_sec, test_title) - if test_to_run: - test_frequency = test_to_run.group(1) - test_chbw = test_to_run.group(2) - security = test_to_run.group(3) - if (test_frequency in allowed_frequencies and - test_chbw in allowed_chbw and - security in allowed_security): - if test_to_run.group(4): - n_capabilities_str = test_to_run.group(4) - else: - n_capabilities_str = '' - n_capabilities_list = [] - if '[LDPC]' in n_capabilities_str: - n_capabilities_list.append( - hostapd_constants.N_CAPABILITY_LDPC) - if '[TX-STBC]' in n_capabilities_str: - n_capabilities_list.append( - hostapd_constants.N_CAPABILITY_TX_STBC) - if '[RX-STBC1]' in n_capabilities_str: - n_capabilities_list.append( - hostapd_constants.N_CAPABILITY_RX_STBC1) - if '[SHORT-GI-20]' in n_capabilities_str: - n_capabilities_list.append( - hostapd_constants.N_CAPABILITY_SGI20) - if '[SHORT-GI-40]' in n_capabilities_str: - n_capabilities_list.append( - hostapd_constants.N_CAPABILITY_SGI40) - if '[DSSS_CCK-40]' in n_capabilities_str: - n_capabilities_list.append( - hostapd_constants.N_CAPABILITY_DSSS_CCK_40) - if '[40-INTOLERANT]' in n_capabilities_str: - n_capabilities_list.append( - hostapd_constants.N_CAPABILITY_40_INTOLERANT) - if '[MAX-AMSDU-7935]' in n_capabilities_str: - n_capabilities_list.append( - hostapd_constants.N_CAPABILITY_MAX_AMSDU_7935) - if '[SMPS-STATIC]' in n_capabilities_str: - n_capabilities_list.append( - hostapd_constants.N_CAPABILITY_SMPS_STATIC) - n_capabilities = tuple(n_capabilities_list) - test_list.append({'frequency': test_frequency, - 'chbw': test_chbw, - 'security': security, - 'n_capabilities': n_capabilities}) - self.run_generated_testcases( - self.setup_and_connect, - settings=test_list, - name_func=generate_test_name) - else: - self.log.error('Invalid test (%s). Trying the next one.' - % test_title) - else: - self.log.error('Invalid test (%s). Trying the next one.' - % test_title) diff --git a/acts/tests/google/fuchsia/wlan/WlanPhyComplianceABGTest.py b/acts/tests/google/fuchsia/wlan/WlanPhyComplianceABGTest.py deleted file mode 100644 index 665dfa5e6a..0000000000 --- a/acts/tests/google/fuchsia/wlan/WlanPhyComplianceABGTest.py +++ /dev/null @@ -1,1511 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from acts.controllers.ap_lib import hostapd_ap_preset -from acts.controllers.ap_lib import hostapd_constants -from acts.test_utils.abstract_devices.wlan_device import create_wlan_device -from acts.test_utils.abstract_devices.utils_lib.wlan_utils import validate_setup_ap_and_associate -from acts.test_utils.wifi.WifiBaseTest import WifiBaseTest - - -def _merge_dicts(*dict_args): - result = {} - for dictionary in dict_args: - result.update(dictionary) - return result - - -class WlanPhyComplianceABGTest(WifiBaseTest): - """Tests for validating 11a, 11b, and 11g PHYS. - - Test Bed Requirement: - * One Android device or Fuchsia device - * One Access Point - """ - def setup_class(self): - super().setup_class() - if 'dut' in self.user_params: - if self.user_params['dut'] == 'fuchsia_devices': - self.dut = create_wlan_device(self.fuchsia_devices[0]) - elif self.user_params['dut'] == 'android_devices': - self.dut = create_wlan_device(self.android_devices[0]) - else: - raise ValueError('Invalid DUT specified in config. (%s)' - % self.user_params['dut']) - else: - # Default is an android device, just like the other tests - self.dut = create_wlan_device(self.android_devices[0]) - - self.access_point = self.access_points[0] - open_network = self.get_open_network(False, []) - open_network_min_len = self.get_open_network( - False, [], ssid_length_2g=hostapd_constants.AP_SSID_MIN_LENGTH_2G, - ssid_length_5g=hostapd_constants.AP_SSID_MIN_LENGTH_5G) - open_network_max_len = self.get_open_network( - False, [], ssid_length_2g=hostapd_constants.AP_SSID_MAX_LENGTH_2G, - ssid_length_5g=hostapd_constants.AP_SSID_MAX_LENGTH_5G) - self.open_network_2g = open_network['2g'] - self.open_network_5g = open_network['5g'] - self.open_network_max_len_2g = open_network_max_len['2g'] - self.open_network_max_len_2g['SSID'] = ( - self.open_network_max_len_2g['SSID'][3:]) - self.open_network_max_len_5g = open_network_max_len['5g'] - self.open_network_max_len_5g['SSID'] = ( - self.open_network_max_len_5g['SSID'][3:]) - self.open_network_min_len_2g = open_network_min_len['2g'] - self.open_network_min_len_2g['SSID'] = ( - self.open_network_min_len_2g['SSID'][3:]) - self.open_network_min_len_5g = open_network_min_len['5g'] - self.open_network_min_len_5g['SSID'] = ( - self.open_network_min_len_5g['SSID'][3:]) - self.utf8_ssid_2g = '2ð”¤_ð”Šð”¬ð”¬ð”¤ð”©ð”¢' - self.utf8_ssid_5g = '5ð”¤_ð”Šð”¬ð”¬ð”¤ð”©ð”¢' - - self.access_point.stop_all_aps() - - def setup_test(self): - if hasattr(self, "android_devices"): - for ad in self.android_devices: - ad.droid.wakeLockAcquireBright() - ad.droid.wakeUpNow() - self.dut.wifi_toggle_state(True) - - def teardown_test(self): - if hasattr(self, "android_devices"): - for ad in self.android_devices: - ad.droid.wakeLockRelease() - ad.droid.goToSleepNow() - self.dut.turn_location_off_and_scan_toggle_off() - self.dut.disconnect() - self.dut.reset_wifi() - self.access_point.stop_all_aps() - - def on_fail(self, test_name, begin_time): - self.dut.take_bug_report(test_name, begin_time) - self.dut.get_log(test_name, begin_time) - - def test_associate_11b_only_long_preamble(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - preamble=False) - - def test_associate_11b_only_short_preamble(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - preamble=True) - - def test_associate_11b_only_minimal_beacon_interval(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - beacon_interval=15 - ) - - def test_associate_11b_only_maximum_beacon_interval(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - beacon_interval=1024 - ) - - def test_associate_11b_only_frag_threshold_430(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - frag_threshold=430 - ) - - def test_associate_11b_only_rts_threshold_256(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - rts_threshold=256 - ) - - def test_associate_11b_only_rts_256_frag_430(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - rts_threshold=256, - frag_threshold=430 - ) - - def test_associate_11b_only_high_dtim_low_beacon_interval(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - dtim_period=3, - beacon_interval=100 - ) - - def test_associate_11b_only_low_dtim_high_beacon_interval(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - dtim_period=1, - beacon_interval=300 - ) - - def test_associate_11b_only_with_WMM_with_default_values(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - force_wmm=True, - additional_ap_parameters=hostapd_constants.WMM_11B_DEFAULT_PARAMS - ) - - def test_associate_11b_only_with_WMM_with_non_default_values(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - force_wmm=True, - additional_ap_parameters=hostapd_constants.WMM_NON_DEFAULT_PARAMS - ) - - def test_associate_11b_only_with_WMM_ACM_on_BK(self): - wmm_acm_bits_enabled = _merge_dicts( - hostapd_constants.WMM_11B_DEFAULT_PARAMS, - hostapd_constants.WMM_ACM_BK) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - force_wmm=True, - additional_ap_parameters=wmm_acm_bits_enabled - ) - - def test_associate_11b_only_with_WMM_ACM_on_BE(self): - wmm_acm_bits_enabled = _merge_dicts( - hostapd_constants.WMM_11B_DEFAULT_PARAMS, - hostapd_constants.WMM_ACM_BE) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - force_wmm=True, - additional_ap_parameters=wmm_acm_bits_enabled - ) - - def test_associate_11b_only_with_WMM_ACM_on_VI(self): - wmm_acm_bits_enabled = _merge_dicts( - hostapd_constants.WMM_11B_DEFAULT_PARAMS, - hostapd_constants.WMM_ACM_VI) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - force_wmm=True, - additional_ap_parameters=wmm_acm_bits_enabled - ) - - def test_associate_11b_only_with_WMM_ACM_on_VO(self): - wmm_acm_bits_enabled = _merge_dicts( - hostapd_constants.WMM_11B_DEFAULT_PARAMS, - hostapd_constants.WMM_ACM_VO) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - force_wmm=True, - additional_ap_parameters=wmm_acm_bits_enabled - ) - - def test_associate_11b_only_with_WMM_ACM_on_BK_BE_VI(self): - wmm_acm_bits_enabled = _merge_dicts( - hostapd_constants.WMM_11B_DEFAULT_PARAMS, - hostapd_constants.WMM_ACM_BK, - hostapd_constants.WMM_ACM_BE, - hostapd_constants.WMM_ACM_VI) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - force_wmm=True, - additional_ap_parameters=wmm_acm_bits_enabled - ) - - def test_associate_11b_only_with_WMM_ACM_on_BK_BE_VO(self): - wmm_acm_bits_enabled = _merge_dicts( - hostapd_constants.WMM_11B_DEFAULT_PARAMS, - hostapd_constants.WMM_ACM_BK, - hostapd_constants.WMM_ACM_BE, - hostapd_constants.WMM_ACM_VO) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - force_wmm=True, - additional_ap_parameters=wmm_acm_bits_enabled - ) - - def test_associate_11b_only_with_WMM_ACM_on_BK_VI_VO(self): - wmm_acm_bits_enabled = _merge_dicts( - hostapd_constants.WMM_11B_DEFAULT_PARAMS, - hostapd_constants.WMM_ACM_BK, - hostapd_constants.WMM_ACM_VI, - hostapd_constants.WMM_ACM_VO) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - force_wmm=True, - additional_ap_parameters=wmm_acm_bits_enabled - ) - - def test_associate_11b_only_with_WMM_ACM_on_BE_VI_VO(self): - wmm_acm_bits_enabled = _merge_dicts( - hostapd_constants.WMM_11B_DEFAULT_PARAMS, - hostapd_constants.WMM_ACM_BE, - hostapd_constants.WMM_ACM_VI, - hostapd_constants.WMM_ACM_VO) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - force_wmm=True, - additional_ap_parameters=wmm_acm_bits_enabled - ) - - def test_associate_11b_only_with_country_code(self): - country_info = _merge_dicts( - hostapd_constants.ENABLE_IEEE80211D, - # TODO: Use this when using hostapd 2.7 or above - # hostapd_constants.COUNTRY_STRING['ALL'], - hostapd_constants.COUNTRY_CODE['UNITED_STATES'] - ) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - additional_ap_parameters=country_info - ) - - def test_associate_11b_only_with_non_country_code(self): - country_info = _merge_dicts( - hostapd_constants.ENABLE_IEEE80211D, - # TODO: Use this when using hostapd 2.7 or above - # hostapd_constants.COUNTRY_STRING['ALL'], - hostapd_constants.COUNTRY_CODE['NON_COUNTRY'] - ) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - additional_ap_parameters=country_info - ) - - def test_associate_11b_only_with_hidden_ssid(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - hidden=True - ) - - def test_associate_11b_only_with_vendor_ie_in_beacon_correct_length(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - additional_ap_parameters= - hostapd_constants.VENDOR_IE['correct_length_beacon']) - - def test_associate_11b_only_with_vendor_ie_in_beacon_zero_length(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - additional_ap_parameters= - hostapd_constants.VENDOR_IE['zero_length_beacon_without_data']) - - # TODO: Enable when updated to version 2.7 of hostapd - # Not implemented in our version of hostapd - #def test_associate_11b_only_with_vendor_ie_in_assoc_correct_length(self): - # validate_setup_ap_and_associate( - # access_point=self.access_point, - # client=self.dut, - # profile_name='whirlwind_11ab_legacy', - # channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - # ssid=self.open_network_2g['SSID'], - # additional_ap_parameters= - # hostapd_constants.VENDOR_IE['correct_length_association_response']) - # - #def test_associate_11b_only_with_vendor_ie_in_assoc_zero_length(self): - # validate_setup_ap_and_associate( - # access_point=self.access_point, - # client=self.dut, - # profile_name='whirlwind_11ab_legacy', - # channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - # ssid=self.open_network_2g['SSID'], - # additional_ap_parameters= - # hostapd_constants.VENDOR_IE['zero_length_association_' - # 'response_without_data']) - - def test_associate_11a_only_long_preamble(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.open_network_5g['SSID'], - preamble=False) - - def test_associate_11a_only_short_preamble(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.open_network_5g['SSID'], - preamble=True) - - def test_associate_11a_only_minimal_beacon_interval(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.open_network_5g['SSID'], - beacon_interval=15 - ) - - def test_associate_11a_only_maximum_beacon_interval(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.open_network_5g['SSID'], - beacon_interval=1024 - ) - - def test_associate_11a_only_frag_threshold_430(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.open_network_5g['SSID'], - frag_threshold=430 - ) - - def test_associate_11a_only_rts_threshold_256(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.open_network_5g['SSID'], - rts_threshold=256 - ) - - def test_associate_11a_only_rts_256_frag_430(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.open_network_5g['SSID'], - rts_threshold=256, - frag_threshold=430 - ) - - def test_associate_11a_only_high_dtim_low_beacon_interval(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.open_network_5g['SSID'], - dtim_period=3, - beacon_interval=100 - ) - - def test_associate_11a_only_low_dtim_high_beacon_interval(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.open_network_5g['SSID'], - dtim_period=1, - beacon_interval=300 - ) - - def test_associate_11a_only_with_WMM_with_default_values(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.open_network_5g['SSID'], - force_wmm=True, - additional_ap_parameters= - hostapd_constants.WMM_PHYS_11A_11G_11N_11AC_DEFAULT_PARAMS - ) - - def test_associate_11a_only_with_WMM_with_non_default_values(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.open_network_5g['SSID'], - force_wmm=True, - additional_ap_parameters=hostapd_constants.WMM_NON_DEFAULT_PARAMS - ) - - def test_associate_11a_only_with_WMM_ACM_on_BK(self): - wmm_acm_bits_enabled = _merge_dicts( - hostapd_constants.WMM_PHYS_11A_11G_11N_11AC_DEFAULT_PARAMS, - hostapd_constants.WMM_ACM_BK) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.open_network_5g['SSID'], - force_wmm=True, - additional_ap_parameters=wmm_acm_bits_enabled - ) - - def test_associate_11a_only_with_WMM_ACM_on_BE(self): - wmm_acm_bits_enabled = _merge_dicts( - hostapd_constants.WMM_PHYS_11A_11G_11N_11AC_DEFAULT_PARAMS, - hostapd_constants.WMM_ACM_BE) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.open_network_5g['SSID'], - force_wmm=True, - additional_ap_parameters=wmm_acm_bits_enabled - ) - - def test_associate_11a_only_with_WMM_ACM_on_VI(self): - wmm_acm_bits_enabled = _merge_dicts( - hostapd_constants.WMM_PHYS_11A_11G_11N_11AC_DEFAULT_PARAMS, - hostapd_constants.WMM_ACM_VI) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.open_network_5g['SSID'], - force_wmm=True, - additional_ap_parameters=wmm_acm_bits_enabled - ) - - def test_associate_11a_only_with_WMM_ACM_on_VO(self): - wmm_acm_bits_enabled = _merge_dicts( - hostapd_constants.WMM_PHYS_11A_11G_11N_11AC_DEFAULT_PARAMS, - hostapd_constants.WMM_ACM_VO) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.open_network_5g['SSID'], - force_wmm=True, - additional_ap_parameters=wmm_acm_bits_enabled - ) - - def test_associate_11a_only_with_WMM_ACM_on_BK_BE_VI(self): - wmm_acm_bits_enabled = _merge_dicts( - hostapd_constants.WMM_PHYS_11A_11G_11N_11AC_DEFAULT_PARAMS, - hostapd_constants.WMM_ACM_BK, - hostapd_constants.WMM_ACM_BE, - hostapd_constants.WMM_ACM_VI) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.open_network_5g['SSID'], - force_wmm=True, - additional_ap_parameters=wmm_acm_bits_enabled - ) - - def test_associate_11a_only_with_WMM_ACM_on_BK_BE_VO(self): - wmm_acm_bits_enabled = _merge_dicts( - hostapd_constants.WMM_PHYS_11A_11G_11N_11AC_DEFAULT_PARAMS, - hostapd_constants.WMM_ACM_BK, - hostapd_constants.WMM_ACM_BE, - hostapd_constants.WMM_ACM_VO) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.open_network_5g['SSID'], - force_wmm=True, - additional_ap_parameters=wmm_acm_bits_enabled - ) - - def test_associate_11a_only_with_WMM_ACM_on_BK_VI_VO(self): - wmm_acm_bits_enabled = _merge_dicts( - hostapd_constants.WMM_PHYS_11A_11G_11N_11AC_DEFAULT_PARAMS, - hostapd_constants.WMM_ACM_BK, - hostapd_constants.WMM_ACM_VI, - hostapd_constants.WMM_ACM_VO) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.open_network_5g['SSID'], - force_wmm=True, - additional_ap_parameters=wmm_acm_bits_enabled - ) - - def test_associate_11a_only_with_WMM_ACM_on_BE_VI_VO(self): - wmm_acm_bits_enabled = _merge_dicts( - hostapd_constants.WMM_PHYS_11A_11G_11N_11AC_DEFAULT_PARAMS, - hostapd_constants.WMM_ACM_BE, - hostapd_constants.WMM_ACM_VI, - hostapd_constants.WMM_ACM_VO) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.open_network_5g['SSID'], - force_wmm=True, - additional_ap_parameters=wmm_acm_bits_enabled - ) - - def test_associate_11a_only_with_country_code(self): - country_info = _merge_dicts( - hostapd_constants.ENABLE_IEEE80211D, - # TODO: Use this when using hostapd 2.7 or above - # hostapd_constants.COUNTRY_STRING['ALL'], - hostapd_constants.COUNTRY_CODE['UNITED_STATES'] - ) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.open_network_5g['SSID'], - additional_ap_parameters=country_info - ) - - def test_associate_11a_only_with_non_country_code(self): - country_info = _merge_dicts( - hostapd_constants.ENABLE_IEEE80211D, - # TODO: Use this when using hostapd 2.7 or above - # hostapd_constants.COUNTRY_STRING['ALL'], - hostapd_constants.COUNTRY_CODE['NON_COUNTRY'] - ) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.open_network_5g['SSID'], - additional_ap_parameters=country_info - ) - - def test_associate_11a_only_with_hidden_ssid(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.open_network_5g['SSID'], - hidden=True - ) - - def test_associate_11a_only_with_vendor_ie_in_beacon_correct_length(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.open_network_5g['SSID'], - additional_ap_parameters= - hostapd_constants.VENDOR_IE['correct_length_beacon']) - - def test_associate_11a_only_with_vendor_ie_in_beacon_zero_length(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.open_network_5g['SSID'], - additional_ap_parameters= - hostapd_constants.VENDOR_IE['zero_length_beacon_without_data']) - - # TODO: Enable when updated to version 2.7 of hostapd - # Not implemented in our version of hostapd - #def test_associate_11a_only_with_vendor_ie_in_assoc_correct_length(self): - # validate_setup_ap_and_associate( - # access_point=self.access_point, - # client=self.dut, - # profile_name='whirlwind_11ab_legacy', - # channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - # ssid=self.open_network_5g['SSID'], - # additional_ap_parameters= - # hostapd_constants.VENDOR_IE['correct_length_association_response']) - # - #def test_associate_11a_only_with_vendor_ie_in_assoc_zero_length(self): - # validate_setup_ap_and_associate( - # access_point=self.access_point, - # client=self.dut, - # profile_name='whirlwind_11ab_legacy', - # channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - # ssid=self.open_network_5g['SSID'], - # additional_ap_parameters= - # hostapd_constants.VENDOR_IE['zero_length_association_' - # 'response_without_data']) - - def test_associate_11g_only_long_preamble(self): - data_rates = _merge_dicts(hostapd_constants.OFDM_DATA_RATES, - hostapd_constants.OFDM_ONLY_BASIC_RATES) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - preamble=False, - additional_ap_parameters=data_rates) - - def test_associate_11g_only_short_preamble(self): - data_rates = _merge_dicts(hostapd_constants.OFDM_DATA_RATES, - hostapd_constants.OFDM_ONLY_BASIC_RATES) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - preamble=True, - additional_ap_parameters=data_rates) - - def test_associate_11g_only_minimal_beacon_interval(self): - data_rates = _merge_dicts(hostapd_constants.OFDM_DATA_RATES, - hostapd_constants.OFDM_ONLY_BASIC_RATES) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - beacon_interval=15, - additional_ap_parameters=data_rates - ) - - def test_associate_11g_only_maximum_beacon_interval(self): - data_rates = _merge_dicts(hostapd_constants.OFDM_DATA_RATES, - hostapd_constants.OFDM_ONLY_BASIC_RATES) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - beacon_interval=1024, - additional_ap_parameters=data_rates - ) - - def test_associate_11g_only_frag_threshold_430(self): - data_rates = _merge_dicts(hostapd_constants.OFDM_DATA_RATES, - hostapd_constants.OFDM_ONLY_BASIC_RATES) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - frag_threshold=430, - additional_ap_parameters=data_rates - ) - - def test_associate_11g_only_rts_threshold_256(self): - data_rates = _merge_dicts(hostapd_constants.OFDM_DATA_RATES, - hostapd_constants.OFDM_ONLY_BASIC_RATES) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - rts_threshold=256, - additional_ap_parameters=data_rates - ) - - def test_associate_11g_only_rts_256_frag_430(self): - data_rates = _merge_dicts(hostapd_constants.OFDM_DATA_RATES, - hostapd_constants.OFDM_ONLY_BASIC_RATES) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - rts_threshold=256, - frag_threshold=430, - additional_ap_parameters=data_rates - ) - - def test_associate_11g_only_high_dtim_low_beacon_interval(self): - data_rates = _merge_dicts(hostapd_constants.OFDM_DATA_RATES, - hostapd_constants.OFDM_ONLY_BASIC_RATES) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - dtim_period=3, - beacon_interval=100, - additional_ap_parameters=data_rates - ) - - def test_associate_11g_only_low_dtim_high_beacon_interval(self): - data_rates = _merge_dicts(hostapd_constants.OFDM_DATA_RATES, - hostapd_constants.OFDM_ONLY_BASIC_RATES) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - dtim_period=1, - beacon_interval=300, - additional_ap_parameters=data_rates - ) - - def test_associate_11g_only_with_WMM_with_default_values(self): - data_rates = _merge_dicts( - hostapd_constants.OFDM_DATA_RATES, - hostapd_constants.OFDM_ONLY_BASIC_RATES, - hostapd_constants.WMM_PHYS_11A_11G_11N_11AC_DEFAULT_PARAMS) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - force_wmm=True, - additional_ap_parameters=data_rates - ) - - def test_associate_11g_only_with_WMM_with_non_default_values(self): - data_rates = _merge_dicts(hostapd_constants.OFDM_DATA_RATES, - hostapd_constants.OFDM_ONLY_BASIC_RATES, - hostapd_constants.WMM_NON_DEFAULT_PARAMS) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - force_wmm=True, - additional_ap_parameters=data_rates - ) - - def test_associate_11g_only_with_WMM_ACM_on_BK(self): - data_rates = _merge_dicts(hostapd_constants.OFDM_DATA_RATES, - hostapd_constants.OFDM_ONLY_BASIC_RATES) - wmm_acm_bits_enabled = _merge_dicts( - hostapd_constants.WMM_PHYS_11A_11G_11N_11AC_DEFAULT_PARAMS, - hostapd_constants.WMM_ACM_BK, - data_rates) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - force_wmm=True, - additional_ap_parameters=wmm_acm_bits_enabled - ) - - def test_associate_11g_only_with_WMM_ACM_on_BE(self): - data_rates = _merge_dicts(hostapd_constants.OFDM_DATA_RATES, - hostapd_constants.OFDM_ONLY_BASIC_RATES) - wmm_acm_bits_enabled = _merge_dicts( - hostapd_constants.WMM_PHYS_11A_11G_11N_11AC_DEFAULT_PARAMS, - hostapd_constants.WMM_ACM_BE, - data_rates) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - force_wmm=True, - additional_ap_parameters=wmm_acm_bits_enabled - ) - - def test_associate_11g_only_with_WMM_ACM_on_VI(self): - data_rates = _merge_dicts(hostapd_constants.OFDM_DATA_RATES, - hostapd_constants.OFDM_ONLY_BASIC_RATES) - wmm_acm_bits_enabled = _merge_dicts( - hostapd_constants.WMM_PHYS_11A_11G_11N_11AC_DEFAULT_PARAMS, - hostapd_constants.WMM_ACM_VI, - data_rates) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - force_wmm=True, - additional_ap_parameters=wmm_acm_bits_enabled - ) - - def test_associate_11g_only_with_WMM_ACM_on_VO(self): - data_rates = _merge_dicts(hostapd_constants.OFDM_DATA_RATES, - hostapd_constants.OFDM_ONLY_BASIC_RATES) - wmm_acm_bits_enabled = _merge_dicts( - hostapd_constants.WMM_PHYS_11A_11G_11N_11AC_DEFAULT_PARAMS, - hostapd_constants.WMM_ACM_VO, - data_rates) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - force_wmm=True, - additional_ap_parameters=wmm_acm_bits_enabled - ) - - def test_associate_11g_only_with_WMM_ACM_on_BK_BE_VI(self): - data_rates = _merge_dicts(hostapd_constants.OFDM_DATA_RATES, - hostapd_constants.OFDM_ONLY_BASIC_RATES) - wmm_acm_bits_enabled = _merge_dicts( - hostapd_constants.WMM_PHYS_11A_11G_11N_11AC_DEFAULT_PARAMS, - hostapd_constants.WMM_ACM_BK, - hostapd_constants.WMM_ACM_BE, - hostapd_constants.WMM_ACM_VI, - data_rates) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - force_wmm=True, - additional_ap_parameters=wmm_acm_bits_enabled - ) - - def test_associate_11g_only_with_WMM_ACM_on_BK_BE_VO(self): - data_rates = _merge_dicts(hostapd_constants.OFDM_DATA_RATES, - hostapd_constants.OFDM_ONLY_BASIC_RATES) - wmm_acm_bits_enabled = _merge_dicts( - hostapd_constants.WMM_PHYS_11A_11G_11N_11AC_DEFAULT_PARAMS, - hostapd_constants.WMM_ACM_BK, - hostapd_constants.WMM_ACM_BE, - hostapd_constants.WMM_ACM_VO, - data_rates) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - force_wmm=True, - additional_ap_parameters=wmm_acm_bits_enabled - ) - - def test_associate_11g_only_with_WMM_ACM_on_BK_VI_VO(self): - data_rates = _merge_dicts(hostapd_constants.OFDM_DATA_RATES, - hostapd_constants.OFDM_ONLY_BASIC_RATES) - wmm_acm_bits_enabled = _merge_dicts( - hostapd_constants.WMM_PHYS_11A_11G_11N_11AC_DEFAULT_PARAMS, - hostapd_constants.WMM_ACM_BK, - hostapd_constants.WMM_ACM_VI, - hostapd_constants.WMM_ACM_VO, - data_rates) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - force_wmm=True, - additional_ap_parameters=wmm_acm_bits_enabled - ) - - def test_associate_11g_only_with_WMM_ACM_on_BE_VI_VO(self): - data_rates = _merge_dicts(hostapd_constants.OFDM_DATA_RATES, - hostapd_constants.OFDM_ONLY_BASIC_RATES) - wmm_acm_bits_enabled = _merge_dicts( - hostapd_constants.WMM_PHYS_11A_11G_11N_11AC_DEFAULT_PARAMS, - hostapd_constants.WMM_ACM_BE, - hostapd_constants.WMM_ACM_VI, - hostapd_constants.WMM_ACM_VO, - data_rates) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - force_wmm=True, - additional_ap_parameters=wmm_acm_bits_enabled - ) - - def test_associate_11g_only_with_country_code(self): - data_rates = _merge_dicts(hostapd_constants.OFDM_DATA_RATES, - hostapd_constants.OFDM_ONLY_BASIC_RATES) - country_info = _merge_dicts( - hostapd_constants.ENABLE_IEEE80211D, - # TODO: Use this when using hostapd 2.7 or above - # hostapd_constants.COUNTRY_STRING['ALL'], - hostapd_constants.COUNTRY_CODE['UNITED_STATES'], - data_rates - ) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - additional_ap_parameters=country_info - ) - - def test_associate_11g_only_with_non_country_code(self): - data_rates = _merge_dicts(hostapd_constants.OFDM_DATA_RATES, - hostapd_constants.OFDM_ONLY_BASIC_RATES) - country_info = _merge_dicts( - hostapd_constants.ENABLE_IEEE80211D, - # TODO: Use this when using hostapd 2.7 or above - # hostapd_constants.COUNTRY_STRING['ALL'], - hostapd_constants.COUNTRY_CODE['NON_COUNTRY'], - data_rates - ) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - additional_ap_parameters=country_info - ) - - def test_associate_11g_only_with_hidden_ssid(self): - data_rates = _merge_dicts(hostapd_constants.OFDM_DATA_RATES, - hostapd_constants.OFDM_ONLY_BASIC_RATES) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - hidden=True, - additional_ap_parameters=data_rates - ) - - def test_associate_11g_only_with_vendor_ie_in_beacon_correct_length(self): - data_rates = _merge_dicts( - hostapd_constants.OFDM_DATA_RATES, - hostapd_constants.OFDM_ONLY_BASIC_RATES, - hostapd_constants.VENDOR_IE['correct_length_beacon']) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - additional_ap_parameters=data_rates) - - def test_associate_11g_only_with_vendor_ie_in_beacon_zero_length(self): - data_rates = _merge_dicts( - hostapd_constants.OFDM_DATA_RATES, - hostapd_constants.OFDM_ONLY_BASIC_RATES, - hostapd_constants.VENDOR_IE['zero_length_beacon_without_data']) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - additional_ap_parameters=data_rates - ) - - # TODO: Enable when updated to version 2.7 of hostapd - # Not implemented in our version of hostapd - #def test_associate_11g_only_with_vendor_ie_in_assoc_correct_length(self): - # data_rates = _merge_dicts( - # hostapd_constants.OFDM_DATA_RATES, - # hostapd_constants.OFDM_ONLY_BASIC_RATES, - # hostapd_constants.VENDOR_IE['correct_length_association_response']) - # validate_setup_ap_and_associate( - # access_point=self.access_point, - # client=self.dut, - # profile_name='whirlwind_11ag_legacy', - # channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - # ssid=self.open_network_2g['SSID'], - # additional_ap_parameters=data_rates) - # - #def test_associate_11g_only_with_vendor_ie_in_assoc_zero_length(self): - # data_rates = _merge_dicts( - # hostapd_constants.OFDM_DATA_RATES, - # hostapd_constants.OFDM_ONLY_BASIC_RATES, - # hostapd_constants.VENDOR_IE['correct_length_association_response'], - # hostapd_constants.VENDOR_IE['zero_length_association_' - # 'response_without_data']) - # validate_setup_ap_and_associate( - # access_point=self.access_point, - # client=self.dut, - # profile_name='whirlwind_11ag_legacy', - # channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - # ssid=self.open_network_2g['SSID'], - # additional_ap_parameters=data_rates - # ) - - def test_associate_11bg_only_long_preamble(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - preamble=False) - - def test_associate_11bg_short_preamble(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - preamble=True) - - def test_associate_11bg_minimal_beacon_interval(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - beacon_interval=15 - ) - - def test_associate_11bg_maximum_beacon_interval(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - beacon_interval=1024 - ) - - def test_associate_11bg_frag_threshold_430(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - frag_threshold=430 - ) - - def test_associate_11bg_rts_threshold_256(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - rts_threshold=256 - ) - - def test_associate_11bg_rts_256_frag_430(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - rts_threshold=256, - frag_threshold=430 - ) - - def test_associate_11bg_high_dtim_low_beacon_interval(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - dtim_period=3, - beacon_interval=100 - ) - - def test_associate_11bg_low_dtim_high_beacon_interval(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - dtim_period=1, - beacon_interval=300 - ) - - def test_associate_11bg_with_WMM_with_default_values(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - force_wmm=True, - additional_ap_parameters= - hostapd_constants.WMM_PHYS_11A_11G_11N_11AC_DEFAULT_PARAMS - ) - - def test_associate_11bg_with_WMM_with_non_default_values(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - force_wmm=True, - additional_ap_parameters=hostapd_constants.WMM_NON_DEFAULT_PARAMS - ) - - def test_associate_11bg_with_WMM_ACM_on_BK(self): - wmm_acm_bits_enabled = _merge_dicts( - hostapd_constants.WMM_PHYS_11A_11G_11N_11AC_DEFAULT_PARAMS, - hostapd_constants.WMM_ACM_BK) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - force_wmm=True, - additional_ap_parameters=wmm_acm_bits_enabled - ) - - def test_associate_11bg_with_WMM_ACM_on_BE(self): - wmm_acm_bits_enabled = _merge_dicts( - hostapd_constants.WMM_PHYS_11A_11G_11N_11AC_DEFAULT_PARAMS, - hostapd_constants.WMM_ACM_BE) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - force_wmm=True, - additional_ap_parameters=wmm_acm_bits_enabled - ) - - def test_associate_11bg_with_WMM_ACM_on_VI(self): - wmm_acm_bits_enabled = _merge_dicts( - hostapd_constants.WMM_PHYS_11A_11G_11N_11AC_DEFAULT_PARAMS, - hostapd_constants.WMM_ACM_VI) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - force_wmm=True, - additional_ap_parameters=wmm_acm_bits_enabled - ) - - def test_associate_11bg_with_WMM_ACM_on_VO(self): - wmm_acm_bits_enabled = _merge_dicts( - hostapd_constants.WMM_PHYS_11A_11G_11N_11AC_DEFAULT_PARAMS, - hostapd_constants.WMM_ACM_VO) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - force_wmm=True, - additional_ap_parameters=wmm_acm_bits_enabled - ) - - def test_associate_11bg_with_WMM_ACM_on_BK_BE_VI(self): - wmm_acm_bits_enabled = _merge_dicts( - hostapd_constants.WMM_PHYS_11A_11G_11N_11AC_DEFAULT_PARAMS, - hostapd_constants.WMM_ACM_BK, - hostapd_constants.WMM_ACM_BE, - hostapd_constants.WMM_ACM_VI) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - force_wmm=True, - additional_ap_parameters=wmm_acm_bits_enabled - ) - - def test_associate_11bg_with_WMM_ACM_on_BK_BE_VO(self): - wmm_acm_bits_enabled = _merge_dicts( - hostapd_constants.WMM_PHYS_11A_11G_11N_11AC_DEFAULT_PARAMS, - hostapd_constants.WMM_ACM_BK, - hostapd_constants.WMM_ACM_BE, - hostapd_constants.WMM_ACM_VO) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - force_wmm=True, - additional_ap_parameters=wmm_acm_bits_enabled - ) - - def test_associate_11bg_with_WMM_ACM_on_BK_VI_VO(self): - wmm_acm_bits_enabled = _merge_dicts( - hostapd_constants.WMM_PHYS_11A_11G_11N_11AC_DEFAULT_PARAMS, - hostapd_constants.WMM_ACM_BK, - hostapd_constants.WMM_ACM_VI, - hostapd_constants.WMM_ACM_VO) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - force_wmm=True, - additional_ap_parameters=wmm_acm_bits_enabled - ) - - def test_associate_11bg_with_WMM_ACM_on_BE_VI_VO(self): - wmm_acm_bits_enabled = _merge_dicts( - hostapd_constants.WMM_PHYS_11A_11G_11N_11AC_DEFAULT_PARAMS, - hostapd_constants.WMM_ACM_BE, - hostapd_constants.WMM_ACM_VI, - hostapd_constants.WMM_ACM_VO) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - force_wmm=True, - additional_ap_parameters=wmm_acm_bits_enabled - ) - - def test_associate_11bg_with_country_code(self): - country_info = _merge_dicts( - hostapd_constants.ENABLE_IEEE80211D, - # TODO: Use this when using hostapd 2.7 or above - # hostapd_constants.COUNTRY_STRING['ALL'], - hostapd_constants.COUNTRY_CODE['UNITED_STATES']) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - additional_ap_parameters=country_info - ) - - def test_associate_11bg_with_non_country_code(self): - country_info = _merge_dicts( - hostapd_constants.ENABLE_IEEE80211D, - # TODO: Use this when using hostapd 2.7 or above - # hostapd_constants.COUNTRY_STRING['ALL'], - hostapd_constants.COUNTRY_CODE['NON_COUNTRY']) - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - additional_ap_parameters=country_info - ) - - def test_associate_11bg_only_with_hidden_ssid(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - hidden=True - ) - - def test_associate_11bg_with_vendor_ie_in_beacon_correct_length(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - additional_ap_parameters= - hostapd_constants.VENDOR_IE['correct_length_beacon'] - ) - - def test_associate_11bg_with_vendor_ie_in_beacon_zero_length(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ag_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - additional_ap_parameters= - hostapd_constants.VENDOR_IE['zero_length_beacon_without_data'] - ) - - # TODO: Enable when updated to version 2.7 of hostapd - # Not implemented in our version of hostapd - #def test_associate_11g_only_with_vendor_ie_in_assoc_correct_length(self): - # data_rates = _merge_dicts( - # hostapd_constants.OFDM_DATA_RATES, - # hostapd_constants.OFDM_ONLY_BASIC_RATES, - # hostapd_constants.VENDOR_IE['correct_length_association_response']) - # validate_setup_ap_and_associate( - # access_point=self.access_point, - # client=self.dut, - # profile_name='whirlwind_11ag_legacy', - # channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - # ssid=self.open_network_2g['SSID'], - # additional_ap_parameters=data_rates) - # - #def test_associate_11g_only_with_vendor_ie_in_assoc_zero_length(self): - # data_rates = _merge_dicts( - # hostapd_constants.OFDM_DATA_RATES, - # hostapd_constants.OFDM_ONLY_BASIC_RATES, - # hostapd_constants.VENDOR_IE['correct_length_association_response'], - # hostapd_constants.VENDOR_IE['zero_length_association_' - # 'response_without_data']) - # validate_setup_ap_and_associate( - # access_point=self.access_point, - # client=self.dut, - # profile_name='whirlwind_11ag_legacy', - # channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - # ssid=self.open_network_2g['SSID'], - # additional_ap_parameters=data_rates - # ) - - def test_minimum_ssid_length_2g_11n_20mhz(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_min_len_2g['SSID']) - - def test_minimum_ssid_length_5g_11ac_80mhz(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.open_network_min_len_5g['SSID']) - - def test_maximum_ssid_length_2g_11n_20mhz(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_max_len_2g['SSID']) - - def test_maximum_ssid_length_5g_11ac_80mhz(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.open_network_max_len_5g['SSID']) - - def test_ssid_with_UTF8_characters_2g_11n_20mhz(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.utf8_ssid_2g) - - def test_ssid_with_UTF8_characters_5g_11ac_80mhz(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name='whirlwind_11ab_legacy', - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.utf8_ssid_5g) - diff --git a/acts/tests/google/fuchsia/wlan/WlanScanTest.py b/acts/tests/google/fuchsia/wlan/WlanScanTest.py index 012e0867e4..6b7b20ab32 100644 --- a/acts/tests/google/fuchsia/wlan/WlanScanTest.py +++ b/acts/tests/google/fuchsia/wlan/WlanScanTest.py @@ -28,223 +28,93 @@ import acts.base_test import acts.test_utils.wifi.wifi_test_utils as wutils from acts import signals -from acts.controllers.ap_lib import hostapd_ap_preset -from acts.controllers.ap_lib import hostapd_bss_settings -from acts.controllers.ap_lib import hostapd_constants -from acts.controllers.ap_lib import hostapd_security from acts.test_utils.wifi.WifiBaseTest import WifiBaseTest - class WlanScanTest(WifiBaseTest): - """WLAN scan test class. + """wlan scan test class. Test Bed Requirement: - * One or more Fuchsia devices + * One Fuchsia device * Several Wi-Fi networks visible to the device, including an open Wi-Fi - network or a onHub/GoogleWifi + network. """ + def __init__(self, controllers): + WifiBaseTest.__init__(self, controllers) + def setup_class(self): - super().setup_class() - - self.start_access_point = False - if "AccessPoint" in self.user_params: - # This section sets up the config that could be sent to the AP if - # the AP is needed. The reasoning is since ACTS already connects - # to the AP if it is in the config, generating the config in memory - # has no over head is used if need by the test if one of the ssids - # needed for the test is not included in the config. The logic - # here creates 2 ssids on each radio, 5ghz and 2.4ghz, with an - # open, no security network and one that is wpa2, for a total of 4 - # networks. However, if all of the ssids are specified in the - # the config will never be written to the AP and the AP will not be - # brought up. For more information about how to configure the - # hostapd config info, see the hostapd libraries, which have more - # documentation. - bss_settings_2g = [] - bss_settings_5g = [] - open_network = self.get_open_network(False, []) - self.open_network_2g = open_network['2g'] - self.open_network_5g = open_network['5g'] - wpa2_settings = self.get_psk_network(False, []) - self.wpa2_network_2g = wpa2_settings['2g'] - self.wpa2_network_5g = wpa2_settings['5g'] - bss_settings_2g.append( - hostapd_bss_settings.BssSettings( - name=self.wpa2_network_2g['SSID'], - ssid=self.wpa2_network_2g['SSID'], - security=hostapd_security.Security( - security_mode=self.wpa2_network_2g["security"], - password=self.wpa2_network_2g["password"]))) - bss_settings_5g.append( - hostapd_bss_settings.BssSettings( - name=self.wpa2_network_5g['SSID'], - ssid=self.wpa2_network_5g['SSID'], - security=hostapd_security.Security( - security_mode=self.wpa2_network_5g["security"], - password=self.wpa2_network_5g["password"]))) - self.ap_2g = hostapd_ap_preset.create_ap_preset( - iface_wlan_2g=self.access_points[0].wlan_2g, - iface_wlan_5g=self.access_points[0].wlan_5g, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.open_network_2g['SSID'], - bss_settings=bss_settings_2g) - self.ap_5g = hostapd_ap_preset.create_ap_preset( - iface_wlan_2g=self.access_points[0].wlan_2g, - iface_wlan_5g=self.access_points[0].wlan_5g, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.open_network_5g['SSID'], - bss_settings=bss_settings_5g) - - if "wlan_open_network_2g" in self.user_params: - self.open_network_2g = self.user_params.get("wlan_open_network_2g") - elif "AccessPoint" in self.user_params: - self.start_access_point_2g = True - else: - raise Exception('Missing parameter in config ' - '(wlan_open_network_2g)') + self.dut = self.fuchsia_devices[0] - if "wlan_open_network_5g" in self.user_params: - self.open_network_5g = self.user_params.get("wlan_open_network_5g") - elif "AccessPoint" in self.user_params: - self.start_access_point_5g = True - else: - raise Exception('Missing parameter in config ' - '(wlan_open_network_5g)') + def teardown_test(self): + self.dut.wlan_lib.wlanDisconnect() - if "wlan_wpa2_network_2g" in self.user_params: - self.wpa2_network_2g = self.user_params.get("wlan_wpa2_network_2g") - elif "AccessPoint" in self.user_params: - self.start_access_point_2g = True - else: - raise Exception('Missing parameter in config ' - '(wlan_wpa2_network_2g)') + """Helper Functions""" - if "wlan_wpa2_network_5g" in self.user_params: - self.wpa2_network_5g = self.user_params.get("wlan_wpa2_network_5g") - elif "AccessPoint" in self.user_params: - self.start_access_point_5g = True + def check_connect_response(self, connection_response): + if connection_response.get("error") is None: + # the command did not get an error response - go ahead and check the + # result + connection_result = connection_response.get("result") + if connection_result: + self.log.info("connection to network successful") else: - raise Exception('Missing parameter in config ' - '(wlan_wpa2_network_5g)') - - # Only bring up the APs that are needed for the test. Each ssid is - # randomly generated so there is no chance of re associating to a - # previously saved ssid on the device. - if self.start_access_point_2g: - self.start_access_point = True - self.access_points[0].start_ap(hostapd_config=self.ap_2g) - if self.start_access_point_5g: - self.start_access_point = True - self.access_points[0].start_ap(hostapd_config=self.ap_5g) - - def setup_test(self): - for fd in self.fuchsia_devices: - # stub for setting up all the fuchsia devices in the testbed. - pass + # ideally, we would have the actual error... but logging here to + # cover that error case + raise signals.TestFailure("Connect call failed, aborting test") + else: + # the response indicates an error - log and raise failure + raise signals.TestFailure("Aborting test - Connect call failed with error: %s" + %connection_response.get("error")) - def teardown_test(self): - for fd in self.fuchsia_devices: - fd.wlan_lib.wlanDisconnect() - def teardown_class(self): - if self.start_access_point: - self.access_points[0].stop_all_aps() + """Tests""" + def test_basic_scan_request(self): + """Verify a general scan trigger returns at least one result""" + start_time = datetime.now() + + scan_response = self.dut.wlan_lib.wlanStartScan() - """Helper Functions""" + # first check if we received an error + if scan_response.get("error") is None: + # the scan command did not get an error response - go ahead and check + # for scan results + scan_results = scan_response["result"] + else: + # the response indicates an error - log and raise failure + raise signals.TestFailure("Aborting test - scan failed with error: %s" + %scan_response.get("error")) - def check_connect_response(self, connection_response): - """ Checks the result of connecting to a wlan. - Args: - connection_response: The response from SL4F after attempting - to connect to a wlan. - """ - if connection_response.get("error") is None: - # the command did not get an error response - go ahead and - # check the result - connection_result = connection_response.get("result") - if connection_result: - self.log.info("connection to network successful") - else: - # ideally, we would have the actual error... but logging - # here to cover that error case - raise signals.TestFailure("Connect call failed, aborting test") - else: - # the response indicates an error - log and raise failure - raise signals.TestFailure("Aborting test - Connect call failed " - "with error: %s" - % connection_response.get("error")) - - def scan_while_connected(self, wlan_network_params, fd): - """ Connects to as specified network and initiates a scan - Args: - wlan_network_params: A dictionary containing wlan - infomation. - fd: The fuchsia device to connect to the wlan. - """ - target_ssid = wlan_network_params['SSID'] - self.log.info("got the ssid! %s", target_ssid) - target_pwd = None - if 'password' in wlan_network_params: - target_pwd = wlan_network_params['password'] - - connection_response = fd.wlan_lib.wlanConnectToNetwork( - target_ssid, - target_pwd) - self.check_connect_response(connection_response) - self.basic_scan_request(fd) - - def basic_scan_request(self, fd): - """ Initiates a basic scan on a Fuchsia device - Args: - fd: A fuchsia device - """ - start_time = datetime.now() - - scan_response = fd.wlan_lib.wlanStartScan() - - # first check if we received an error - if scan_response.get("error") is None: - # the scan command did not get an error response - go ahead - # and check for scan results - scan_results = scan_response["result"] - else: - # the response indicates an error - log and raise failure - raise signals.TestFailure("Aborting test - scan failed with " - "error: %s" - % scan_response.get("error")) + self.log.info("scan contained %d results", len(scan_results)) - self.log.info("scan contained %d results", len(scan_results)) + total_time_ms = (datetime.now() - start_time).total_seconds() * 1000 + self.log.info("scan time: %d ms", total_time_ms) - total_time_ms = (datetime.now() - start_time).total_seconds() * 1000 - self.log.info("scan time: %d ms", total_time_ms) + if len(scan_results) > 0: + raise signals.TestPass(details="", extras={"Scan time":"%d" %total_time_ms}) + else: + raise signals.TestFailure("Scan failed or did not find any networks") - if len(scan_results) > 0: - raise signals.TestPass(details="", - extras={"Scan time":"%d" % total_time_ms}) - else: - raise signals.TestFailure("Scan failed or did not " - "find any networks") + def test_scan_while_connected_open_network(self): + """Verify a general scan trigger returns at least one result when wifi is connected""" + "first check if we can read params" + target_ssid = self.user_params.get("wlan_open_network_ssid").get("SSID") + self.log.info("got the ssid! %s", target_ssid) - """Tests""" - def test_basic_scan_request(self): - """Verify a general scan trigger returns at least one result""" - for fd in self.fuchsia_devices: - self.basic_scan_request(fd) + connection_response = self.dut.wlan_lib.wlanConnectToNetwork(target_ssid) + self.check_connect_response(connection_response) + + self.test_basic_scan_request() - def test_scan_while_connected_open_network_2g(self): - for fd in self.fuchsia_devices: - self.scan_while_connected(self.open_network_2g, fd) + def test_scan_while_connected_wpa2_network(self): + """Verify a general scan trigger returns at least one result when wifi is connected""" - def test_scan_while_connected_wpa2_network_2g(self): - for fd in self.fuchsia_devices: - self.scan_while_connected(self.wpa2_network_2g, fd) + "first check if we can read params" + target_ssid = self.user_params.get("wlan_wpa2_network_ssid").get("SSID") + target_pwd = self.user_params.get("wlan_wpa2_network_pwd").get("password") + self.log.info("got the ssid! %s", target_ssid) - def test_scan_while_connected_open_network_5g(self): - for fd in self.fuchsia_devices: - self.scan_while_connected(self.open_network_5g, fd) + connection_response = self.dut.wlan_lib.wlanConnectToNetwork(target_ssid, target_pwd) + self.check_connect_response(connection_response) - def test_scan_while_connected_wpa2_network_5g(self): - for fd in self.fuchsia_devices: - self.scan_while_connected(self.wpa2_network_5g, fd) + self.test_basic_scan_request() diff --git a/acts/tests/google/fuchsia/wlan/WlanSecurityComplianceABGTest.py b/acts/tests/google/fuchsia/wlan/WlanSecurityComplianceABGTest.py deleted file mode 100644 index 77ccc416a2..0000000000 --- a/acts/tests/google/fuchsia/wlan/WlanSecurityComplianceABGTest.py +++ /dev/null @@ -1,2308 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android secure Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -import re - -from functools import wraps - -from acts.controllers.ap_lib import hostapd_constants -from acts.controllers.ap_lib.hostapd_security import Security -from acts.test_utils.abstract_devices.wlan_device import create_wlan_device -from acts.test_utils.abstract_devices.utils_lib.wlan_utils import validate_setup_ap_and_associate -from acts.test_utils.wifi.WifiBaseTest import WifiBaseTest -from acts.utils import rand_ascii_str -from acts.utils import rand_hex_str - -AP_11ABG_PROFILE_NAME='whirlwind_11ag_legacy' - -def create_security_profile(test_func): - """Decorator for generating hostapd security profile object based on the - test name. - Args: - test_func: The test function - Returns: - security_profile_generator: The function that generates the security - profile object - """ - @wraps(test_func) - def security_profile_generator(self, *args, **kwargs): - """Function that looks at the name of the function and determines what - the security profile should be based on what items are in the name - - Example: A function with the name sec_wpa_wpa2_ptk_ccmp_tkip would - return a security profile that has wpa and wpa2 configure with a - ptk cipher of ccmp or tkip. Removing one of those options would - drop it from the config. - - Args: - self: The object of the WlanSecurityComplianceABGTest class. - *args: args that were sent to the original test function - **kwargs: kwargs that were sent to the original test function - Returns: - The original fuction that was called - """ - security = re.search(r'sec_(.*?)_ptk_(.*)', - test_func.__name__) - security_mode = security.group(1) - ptk_type = security.group(2) - wpa_cipher = None - wpa2_cipher = None - if 'wpa' in security_mode and 'wpa2' in security_mode: - security_mode = 'wpa/wpa2' - elif 'wep' in security_mode: - security_mode = 'wep' - elif 'wpa' in security_mode: - security_mode = 'wpa' - elif 'wpa2' in security_mode: - security_mode = 'wpa2' - if 'tkip' in ptk_type and 'ccmp' in ptk_type: - wpa_cipher = 'TKIP CCMP' - wpa2_cipher = 'TKIP CCMP' - elif 'tkip' in ptk_type: - wpa_cipher = 'TKIP' - wpa2_cipher = 'TKIP' - elif 'ccmp' in ptk_type: - wpa_cipher = 'CCMP' - wpa2_cipher = 'CCMP' - if 'max_length_password' in test_func.__name__: - password = rand_ascii_str(hostapd_constants.MAX_WPA_PASSWORD_LENGTH) - elif 'max_length_psk' in test_func.__name__: - password = str(rand_hex_str( - hostapd_constants.MAX_WPA_PSK_LENGTH)).lower() - elif 'wep_5_chars' in test_func.__name__: - password = rand_ascii_str(5) - elif 'wep_13_chars' in test_func.__name__: - password = rand_ascii_str(13) - elif 'wep_16_chars' in test_func.__name__: - password = rand_ascii_str(16) - elif 'wep_10_hex' in test_func.__name__: - password = str(rand_hex_str(10)).lower() - elif 'wep_26_hex' in test_func.__name__: - password = str(rand_hex_str(26)).lower() - elif 'wep_32_hex' in test_func.__name__: - password = str(rand_hex_str(32)).lower() - else: - password = rand_ascii_str(hostapd_constants.MIN_WPA_PSK_LENGTH) - self.security_profile = Security(security_mode=security_mode, - password=password, - wpa_cipher=wpa_cipher, - wpa2_cipher=wpa2_cipher) - return test_func(self, *args, *kwargs) - return security_profile_generator - - -class WlanSecurityComplianceABGTest(WifiBaseTest): - """Tests for validating 11a, 11b, and 11g PHYS. - - Test Bed Requirement: - * One Android device or Fuchsia device - * One Access Point - """ - def setup_class(self): - super().setup_class() - if 'dut' in self.user_params: - if self.user_params['dut'] == 'fuchsia_devices': - self.dut = create_wlan_device(self.fuchsia_devices[0]) - elif self.user_params['dut'] == 'android_devices': - self.dut = create_wlan_device(self.android_devices[0]) - else: - raise ValueError('Invalid DUT specified in config. (%s)' - % self.user_params['dut']) - else: - # Default is an android device, just like the other tests - self.dut = create_wlan_device(self.android_devices[0]) - - self.access_point = self.access_points[0] - secure_network = self.get_psk_network(False, - [], - ssid_length_2g=15, - ssid_length_5g=15) - self.secure_network_2g = secure_network['2g'] - self.secure_network_5g = secure_network['5g'] - self.security_profile = None - - self.access_point.stop_all_aps() - - def setup_test(self): - if hasattr(self, "android_devices"): - for ad in self.android_devices: - ad.droid.wakeLockAcquireBright() - ad.droid.wakeUpNow() - self.dut.wifi_toggle_state(True) - - def teardown_test(self): - if hasattr(self, "android_devices"): - for ad in self.android_devices: - ad.droid.wakeLockRelease() - ad.droid.goToSleepNow() - self.dut.turn_location_off_and_scan_toggle_off() - self.dut.disconnect() - self.dut.reset_wifi() - self.access_point.stop_all_aps() - - def on_fail(self, test_name, begin_time): - self.dut.take_bug_report(test_name, begin_time) - self.dut.get_log(test_name, begin_time) - - @create_security_profile - def test_associate_11a_sec_open_wep_5_chars_ptk_none(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False, - additional_ap_parameters=hostapd_constants.WEP_AUTH['open'] - ) - - @create_security_profile - def test_associate_11a_sec_open_wep_13_chars_ptk_none(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False, - additional_ap_parameters=hostapd_constants.WEP_AUTH['open'] - ) - - @create_security_profile - def test_associate_11a_sec_open_wep_16_chars_ptk_none(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False, - additional_ap_parameters=hostapd_constants.WEP_AUTH['open'] - ) - - @create_security_profile - def test_associate_11a_sec_open_wep_10_hex_ptk_none(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False, - additional_ap_parameters=hostapd_constants.WEP_AUTH['open'] - ) - - @create_security_profile - def test_associate_11a_sec_open_wep_26_hex_ptk_none(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False, - additional_ap_parameters=hostapd_constants.WEP_AUTH['open'] - ) - - @create_security_profile - def test_associate_11a_sec_open_wep_32_hex_ptk_none(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False, - additional_ap_parameters=hostapd_constants.WEP_AUTH['open'] - ) - - @create_security_profile - def test_associate_11a_sec_shared_wep_5_chars_ptk_none(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False, - additional_ap_parameters=hostapd_constants.WEP_AUTH['shared'] - ) - - @create_security_profile - def test_associate_11a_sec_shared_wep_13_chars_ptk_none(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False, - additional_ap_parameters=hostapd_constants.WEP_AUTH['shared'] - ) - - @create_security_profile - def test_associate_11a_sec_shared_wep_16_chars_ptk_none(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False, - additional_ap_parameters=hostapd_constants.WEP_AUTH['shared'] - ) - - @create_security_profile - def test_associate_11a_sec_shared_wep_10_hex_ptk_none(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False, - additional_ap_parameters=hostapd_constants.WEP_AUTH['shared'] - ) - - @create_security_profile - def test_associate_11a_sec_shared_wep_26_hex_ptk_none(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False, - additional_ap_parameters=hostapd_constants.WEP_AUTH['shared'] - ) - - @create_security_profile - def test_associate_11a_sec_shared_wep_32_hex_ptk_none(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False, - additional_ap_parameters=hostapd_constants.WEP_AUTH['shared'] - ) - - @create_security_profile - def test_associate_11a_sec_wpa_psk_ptk_tkip(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_sec_wpa_psk_ptk_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_sec_wpa_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_max_length_password_sec_wpa_psk_ptk_tkip(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_max_length_password_sec_wpa_psk_ptk_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_max_length_password_sec_wpa_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_max_length_psk_sec_wpa_psk_ptk_tkip(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_max_length_psk_sec_wpa_psk_ptk_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_max_length_psk_sec_wpa_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_frag_430_sec_wpa_psk_ptk_tkip(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - frag_threshold=430, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_frag_430_sec_wpa_psk_ptk_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - frag_threshold=430, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_frag_430_sec_wpa_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - frag_threshold=430, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_rts_430_sec_wpa_psk_ptk_tkip(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - rts_threshold=430, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_rts_430_sec_wpa_psk_ptk_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - rts_threshold=256, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_rts_430_sec_wpa_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - rts_threshold=256, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_rts_256_frag_430_sec_wpa_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - rts_threshold=256, - frag_threshold=430, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_high_dtim_low_beacon_int_sec_wpa_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - dtim_period=hostapd_constants.HIGH_DTIM, - beacon_interval=hostapd_constants.LOW_BEACON_INTERVAL, - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_low_dtim_high_beacon_int_sec_wpa_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - dtim_period=hostapd_constants.LOW_DTIM, - beacon_interval=hostapd_constants.HIGH_BEACON_INTERVAL, - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_with_WMM_with_default_values_sec_wpa_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - force_wmm=True, - additional_ap_parameters= - hostapd_constants.WMM_PHYS_11A_11G_11N_11AC_DEFAULT_PARAMS, - security=self.security_profile, - password=self.security_profile.password - ) - - @create_security_profile - def test_associate_11a_with_vendor_ie_in_beacon_correct_length_sec_wpa_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - additional_ap_parameters= - hostapd_constants.VENDOR_IE['correct_length_beacon'], - security=self.security_profile, - password=self.security_profile.password - ) - - @create_security_profile - def test_associate_11a_with_vendor_ie_in_beacon_zero_length_sec_wpa_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - additional_ap_parameters= - hostapd_constants.VENDOR_IE['zero_length_beacon_without_data'], - security=self.security_profile, - password=self.security_profile.password - ) - - @create_security_profile - def test_associate_11a_with_vendor_ie_in_beacon_similar_to_wpa_ie_sec_wpa_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - additional_ap_parameters= - hostapd_constants.VENDOR_IE['simliar_to_wpa'], - security=self.security_profile, - password=self.security_profile.password - ) - - - @create_security_profile - def test_associate_11a_sec_wpa2_psk_ptk_tkip(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_sec_wpa2_psk_ptk_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_sec_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_max_length_password_sec_wpa2_psk_ptk_tkip(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_max_length_password_sec_wpa2_psk_ptk_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_max_length_password_sec_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_max_length_psk_sec_wpa2_psk_ptk_tkip(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_max_length_psk_sec_wpa2_psk_ptk_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_max_length_psk_sec_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_frag_430_sec_wpa2_psk_ptk_tkip(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - frag_threshold=430, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_frag_430_sec_wpa2_psk_ptk_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - frag_threshold=430, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_frag_430_sec_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - frag_threshold=430, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_rts_430_sec_wpa2_psk_ptk_tkip(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - rts_threshold=430, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_rts_430_sec_wpa2_psk_ptk_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - rts_threshold=256, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_rts_430_sec_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - rts_threshold=256, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_rts_256_frag_430_sec_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - rts_threshold=256, - frag_threshold=430, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_high_dtim_low_beacon_int_sec_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - dtim_period=hostapd_constants.HIGH_DTIM, - beacon_interval=hostapd_constants.LOW_BEACON_INTERVAL, - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_low_dtim_high_beacon_int_sec_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - dtim_period=hostapd_constants.LOW_DTIM, - beacon_interval=hostapd_constants.HIGH_BEACON_INTERVAL, - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_with_WMM_with_default_values_sec_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - force_wmm=True, - additional_ap_parameters=hostapd_constants.WMM_11B_DEFAULT_PARAMS, - security=self.security_profile, - password=self.security_profile.password - ) - - @create_security_profile - def test_associate_11a_with_vendor_ie_in_beacon_correct_length_sec_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - additional_ap_parameters= - hostapd_constants.VENDOR_IE['correct_length_beacon'], - security=self.security_profile, - password=self.security_profile.password - ) - - @create_security_profile - def test_associate_11a_with_vendor_ie_in_beacon_zero_length_sec_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - additional_ap_parameters= - hostapd_constants.VENDOR_IE['zero_length_beacon_without_data'], - security=self.security_profile, - password=self.security_profile.password - ) - - @create_security_profile - def test_associate_11a_with_vendor_ie_in_beacon_similar_to_wpa_ie_sec_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - additional_ap_parameters= - hostapd_constants.VENDOR_IE['simliar_to_wpa'], - security=self.security_profile, - password=self.security_profile.password - ) - - @create_security_profile - def test_associate_11a_sec_wpa_wpa2_psk_ptk_tkip(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_sec_wpa_wpa2_psk_ptk_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_sec_wpa_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_max_length_password_sec_wpa_wpa2_psk_ptk_tkip(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_max_length_password_sec_wpa_wpa2_psk_ptk_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_max_length_password_sec_wpa_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_max_length_psk_sec_wpa_wpa2_psk_ptk_tkip(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_max_length_psk_sec_wpa_wpa2_psk_ptk_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_max_length_psk_sec_wpa_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_frag_430_sec_wpa_wpa2_psk_ptk_tkip(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - frag_threshold=430, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_frag_430_sec_wpa_wpa2_psk_ptk_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - frag_threshold=430, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_frag_430_sec_wpa_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - frag_threshold=430, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_rts_430_sec_wpa_wpa2_psk_ptk_tkip(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - rts_threshold=430, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_rts_430_sec_wpa_wpa2_psk_ptk_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - rts_threshold=256, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_rts_430_sec_wpa_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - rts_threshold=256, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_rts_256_frag_430_sec_wpa_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - rts_threshold=256, - frag_threshold=430, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_high_dtim_low_beacon_int_sec_wpa_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - dtim_period=hostapd_constants.HIGH_DTIM, - beacon_interval=hostapd_constants.LOW_BEACON_INTERVAL, - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_low_dtim_high_beacon_int_sec_wpa_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - dtim_period=hostapd_constants.LOW_DTIM, - beacon_interval=hostapd_constants.HIGH_BEACON_INTERVAL, - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11a_with_WMM_with_default_values_sec_wpa_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - force_wmm=True, - additional_ap_parameters=hostapd_constants.WMM_11B_DEFAULT_PARAMS, - security=self.security_profile, - password=self.security_profile.password - ) - - @create_security_profile - def test_associate_11a_with_vendor_ie_in_beacon_correct_length_sec_wpa_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - additional_ap_parameters= - hostapd_constants.VENDOR_IE['correct_length_beacon'], - security=self.security_profile, - password=self.security_profile.password - ) - - @create_security_profile - def test_associate_11a_with_vendor_ie_in_beacon_zero_length_sec_wpa_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - additional_ap_parameters= - hostapd_constants.VENDOR_IE['zero_length_beacon_without_data'], - security=self.security_profile, - password=self.security_profile.password - ) - - @create_security_profile - def test_associate_11a_with_vendor_ie_in_beacon_similar_to_wpa_ie_sec_wpa_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_5G, - ssid=self.secure_network_5g['SSID'], - additional_ap_parameters= - hostapd_constants.VENDOR_IE['simliar_to_wpa'], - security=self.security_profile, - password=self.security_profile.password - ) - - @create_security_profile - def test_associate_11bg_sec_open_wep_5_chars_ptk_none(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False, - additional_ap_parameters=hostapd_constants.WEP_AUTH['open'] - ) - - @create_security_profile - def test_associate_11bg_sec_open_wep_13_chars_ptk_none(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False, - additional_ap_parameters=hostapd_constants.WEP_AUTH['open'] - ) - - @create_security_profile - def test_associate_11bg_sec_open_wep_16_chars_ptk_none(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False, - additional_ap_parameters=hostapd_constants.WEP_AUTH['open'] - ) - - @create_security_profile - def test_associate_11bg_sec_open_wep_10_hex_ptk_none(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False, - additional_ap_parameters=hostapd_constants.WEP_AUTH['open'] - ) - - @create_security_profile - def test_associate_11bg_sec_open_wep_26_hex_ptk_none(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False, - additional_ap_parameters=hostapd_constants.WEP_AUTH['open'] - ) - - @create_security_profile - def test_associate_11bg_sec_open_wep_32_hex_ptk_none(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False, - additional_ap_parameters=hostapd_constants.WEP_AUTH['open'] - ) - - @create_security_profile - def test_associate_11bg_sec_shared_wep_5_chars_ptk_none(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False, - additional_ap_parameters=hostapd_constants.WEP_AUTH['shared'] - ) - - @create_security_profile - def test_associate_11bg_sec_shared_wep_13_chars_ptk_none(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False, - additional_ap_parameters=hostapd_constants.WEP_AUTH['shared'] - ) - - @create_security_profile - def test_associate_11bg_sec_shared_wep_16_chars_ptk_none(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False, - additional_ap_parameters=hostapd_constants.WEP_AUTH['shared'] - ) - - @create_security_profile - def test_associate_11bg_sec_shared_wep_10_hex_ptk_none(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False, - additional_ap_parameters=hostapd_constants.WEP_AUTH['shared'] - ) - - @create_security_profile - def test_associate_11bg_sec_shared_wep_26_hex_ptk_none(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False, - additional_ap_parameters=hostapd_constants.WEP_AUTH['shared'] - ) - - @create_security_profile - def test_associate_11bg_sec_shared_wep_32_hex_ptk_none(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_5g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False, - additional_ap_parameters=hostapd_constants.WEP_AUTH['shared'] - ) - - @create_security_profile - def test_associate_11bg_sec_wpa_psk_ptk_tkip(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_sec_wpa_psk_ptk_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_sec_wpa_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_max_length_password_sec_wpa_psk_ptk_tkip(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_max_length_password_sec_wpa_psk_ptk_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_max_length_password_sec_wpa_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_max_length_psk_sec_wpa_psk_ptk_tkip(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_max_length_psk_sec_wpa_psk_ptk_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_max_length_psk_sec_wpa_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_frag_430_sec_wpa_psk_ptk_tkip(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - frag_threshold=430, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_frag_430_sec_wpa_psk_ptk_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - frag_threshold=430, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_frag_430_sec_wpa_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - frag_threshold=430, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_rts_430_sec_wpa_psk_ptk_tkip(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - rts_threshold=430, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_rts_430_sec_wpa_psk_ptk_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - rts_threshold=256, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_rts_430_sec_wpa_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - rts_threshold=256, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_rts_256_frag_430_sec_wpa_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - rts_threshold=256, - frag_threshold=430, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_high_dtim_low_beacon_int_sec_wpa_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - dtim_period=hostapd_constants.HIGH_DTIM, - beacon_interval=hostapd_constants.LOW_BEACON_INTERVAL, - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_low_dtim_high_beacon_int_sec_wpa_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - dtim_period=hostapd_constants.LOW_DTIM, - beacon_interval=hostapd_constants.HIGH_BEACON_INTERVAL, - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_with_WMM_with_default_values_sec_wpa_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - force_wmm=True, - additional_ap_parameters=hostapd_constants.WMM_11B_DEFAULT_PARAMS, - security=self.security_profile, - password=self.security_profile.password - ) - - @create_security_profile - def test_associate_11bg_with_vendor_ie_in_beacon_correct_length_sec_wpa_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - additional_ap_parameters= - hostapd_constants.VENDOR_IE['correct_length_beacon'], - security=self.security_profile, - password=self.security_profile.password - ) - - @create_security_profile - def test_associate_11bg_with_vendor_ie_in_beacon_zero_length_sec_wpa_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - additional_ap_parameters= - hostapd_constants.VENDOR_IE['zero_length_beacon_without_data'], - security=self.security_profile, - password=self.security_profile.password - ) - - @create_security_profile - def test_associate_11bg_with_vendor_ie_in_beacon_similar_to_wpa_ie_sec_wpa_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - additional_ap_parameters= - hostapd_constants.VENDOR_IE['simliar_to_wpa'], - security=self.security_profile, - password=self.security_profile.password - ) - - @create_security_profile - def test_associate_11bg_sec_wpa2_psk_ptk_tkip(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_sec_wpa2_psk_ptk_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_sec_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_max_length_password_sec_wpa2_psk_ptk_tkip(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_max_length_password_sec_wpa2_psk_ptk_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_max_length_password_sec_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_max_length_psk_sec_wpa2_psk_ptk_tkip(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_max_length_psk_sec_wpa2_psk_ptk_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_max_length_psk_sec_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_frag_430_sec_wpa2_psk_ptk_tkip(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - frag_threshold=430, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_frag_430_sec_wpa2_psk_ptk_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - frag_threshold=430, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_frag_430_sec_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - frag_threshold=430, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_rts_430_sec_wpa2_psk_ptk_tkip(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - rts_threshold=430, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_rts_430_sec_wpa2_psk_ptk_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - rts_threshold=256, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_rts_430_sec_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - rts_threshold=256, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_rts_256_frag_430_sec_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - rts_threshold=256, - frag_threshold=430, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_high_dtim_low_beacon_int_sec_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - dtim_period=hostapd_constants.HIGH_DTIM, - beacon_interval=hostapd_constants.LOW_BEACON_INTERVAL, - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_low_dtim_high_beacon_int_sec_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - dtim_period=hostapd_constants.HIGH_DTIM, - beacon_interval=hostapd_constants.HIGH_BEACON_INTERVAL, - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_with_WMM_with_default_values_sec_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - force_wmm=True, - additional_ap_parameters=hostapd_constants.WMM_11B_DEFAULT_PARAMS, - security=self.security_profile, - password=self.security_profile.password - ) - - @create_security_profile - def test_associate_11bg_with_vendor_ie_in_beacon_correct_length_sec_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - additional_ap_parameters= - hostapd_constants.VENDOR_IE['correct_length_beacon'], - security=self.security_profile, - password=self.security_profile.password - ) - - @create_security_profile - def test_associate_11bg_with_vendor_ie_in_beacon_zero_length_sec_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - additional_ap_parameters= - hostapd_constants.VENDOR_IE['zero_length_beacon_without_data'], - security=self.security_profile, - password=self.security_profile.password - ) - - @create_security_profile - def test_associate_11bg_with_vendor_ie_in_beacon_similar_to_wpa_ie_sec_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - additional_ap_parameters= - hostapd_constants.VENDOR_IE['simliar_to_wpa'], - security=self.security_profile, - password=self.security_profile.password - ) - - @create_security_profile - def test_associate_11bg_sec_wpa_wpa2_psk_ptk_tkip(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_sec_wpa_wpa2_psk_ptk_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_sec_wpa_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_max_length_password_sec_wpa_wpa2_psk_ptk_tkip(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_max_length_password_sec_wpa_wpa2_psk_ptk_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_max_length_password_sec_wpa_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_max_length_psk_sec_wpa_wpa2_psk_ptk_tkip(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_max_length_psk_sec_wpa_wpa2_psk_ptk_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_max_length_psk_sec_wpa_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_frag_430_sec_wpa_wpa2_psk_ptk_tkip(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - frag_threshold=430, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_frag_430_sec_wpa_wpa2_psk_ptk_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - frag_threshold=430, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_frag_430_sec_wpa_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - frag_threshold=430, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_rts_430_sec_wpa_wpa2_psk_ptk_tkip(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - rts_threshold=430, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_rts_430_sec_wpa_wpa2_psk_ptk_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - rts_threshold=256, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_rts_430_sec_wpa_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - rts_threshold=256, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_rts_256_frag_430_sec_wpa_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - security=self.security_profile, - password=self.security_profile.password, - rts_threshold=256, - frag_threshold=430, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_high_dtim_low_beacon_int_sec_wpa_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - dtim_period=hostapd_constants.HIGH_DTIM, - beacon_interval=hostapd_constants.LOW_BEACON_INTERVAL, - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_low_dtim_high_beacon_int_sec_wpa_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - dtim_period=hostapd_constants.LOW_DTIM, - beacon_interval=hostapd_constants.HIGH_BEACON_INTERVAL, - security=self.security_profile, - password=self.security_profile.password, - force_wmm=False - ) - - @create_security_profile - def test_associate_11bg_with_WMM_with_default_values_sec_wpa_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - force_wmm=True, - additional_ap_parameters= - hostapd_constants.WMM_PHYS_11A_11G_11N_11AC_DEFAULT_PARAMS, - security=self.security_profile, - password=self.security_profile.password - ) - - @create_security_profile - def test_associate_11bg_with_vendor_ie_in_beacon_correct_length_sec_wpa_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - additional_ap_parameters= - hostapd_constants.VENDOR_IE['correct_length_beacon'], - security=self.security_profile, - password=self.security_profile.password - ) - - @create_security_profile - def test_associate_11bg_with_vendor_ie_in_beacon_zero_length_sec_wpa_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - additional_ap_parameters= - hostapd_constants.VENDOR_IE['zero_length_beacon_without_data'], - security=self.security_profile, - password=self.security_profile.password - ) - - @create_security_profile - def test_associate_11bg_with_vendor_ie_in_beacon_similar_to_wpa_ie_sec_wpa_wpa2_psk_ptk_tkip_or_ccmp(self): - validate_setup_ap_and_associate( - access_point=self.access_point, - client=self.dut, - profile_name=AP_11ABG_PROFILE_NAME, - channel=hostapd_constants.AP_DEFAULT_CHANNEL_2G, - ssid=self.secure_network_2g['SSID'], - additional_ap_parameters= - hostapd_constants.VENDOR_IE['simliar_to_wpa'], - security=self.security_profile, - password=self.security_profile.password - ) diff --git a/acts/tests/google/fugu/AndroidFuguRemotePairingTest.py b/acts/tests/google/fugu/AndroidFuguRemotePairingTest.py index a41f9fce79..03b443f16d 100644..100755 --- a/acts/tests/google/fugu/AndroidFuguRemotePairingTest.py +++ b/acts/tests/google/fugu/AndroidFuguRemotePairingTest.py @@ -22,8 +22,8 @@ from acts.controllers.relay_lib.relay import SynchronizeRelays from acts.test_utils.bt.BluetoothBaseTest import BluetoothBaseTest class AndroidFuguRemotePairingTest(BluetoothBaseTest): - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BluetoothBaseTest.__init__(self, controllers) self.dut = self.android_devices[0] self.fugu_remote = self.relay_devices[0] diff --git a/acts/tests/google/gnss/AGNSSPerformanceTest.py b/acts/tests/google/gnss/AGNSSPerformanceTest.py deleted file mode 100644 index a14a1babad..0000000000 --- a/acts/tests/google/gnss/AGNSSPerformanceTest.py +++ /dev/null @@ -1,188 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import time - -from acts import base_test -from acts import asserts -from acts.controllers.rohdeschwarz_lib import contest -from acts.test_utils.tel import tel_test_utils -import json - - -class AGNSSPerformanceTest(base_test.BaseTestClass): - - # User parameters defined in the ACTS config file - - TESTPLAN_KEY = '{}_testplan' - CONTEST_IP_KEY = 'contest_ip' - REMOTE_SERVER_PORT_KEY = 'remote_server_port' - AUTOMATION_PORT_KEY = 'automation_port' - CUSTOM_FILES_KEY = 'custom_files' - AUTOMATION_LISTEN_IP = 'automation_listen_ip' - FTP_USER_KEY = 'ftp_user' - FTP_PASSWORD_KEY = 'ftp_password' - - def __init__(self, controllers): - """ Initializes class attributes. """ - - super().__init__(controllers) - - self.dut = None - self.contest = None - self.testplan = None - self.thresholds_file = None - - def setup_class(self): - """ Executed before any test case is started. Initializes the Contest - controller and prepares the DUT for testing. """ - - req_params = [ - self.CONTEST_IP_KEY, self.REMOTE_SERVER_PORT_KEY, - self.AUTOMATION_PORT_KEY, self.AUTOMATION_LISTEN_IP, - self.FTP_USER_KEY, self.FTP_PASSWORD_KEY - ] - - for param in req_params: - if param not in self.user_params: - self.log.error('Required parameter {} is missing in config ' - 'file.'.format(param)) - return False - - contest_ip = self.user_params[self.CONTEST_IP_KEY] - remote_port = self.user_params[self.REMOTE_SERVER_PORT_KEY] - automation_port = self.user_params[self.AUTOMATION_PORT_KEY] - listen_ip = self.user_params[self.AUTOMATION_LISTEN_IP] - ftp_user = self.user_params[self.FTP_USER_KEY] - ftp_password = self.user_params[self.FTP_PASSWORD_KEY] - custom_files = self.user_params.get(self.CUSTOM_FILES_KEY, []) - - self.dut = self.android_devices[0] - - self.contest = contest.Contest(logger=self.log, - remote_ip=contest_ip, - remote_port=remote_port, - automation_listen_ip=listen_ip, - automation_port=automation_port, - dut_on_func=self.set_apm_off, - dut_off_func=self.set_apm_on, - ftp_usr=ftp_user, - ftp_pwd=ftp_password) - - # Look for the threshold files - for file in custom_files: - if 'pass_fail_threshold_' + self.dut.model in file: - self.thresholds_file = file - self.log.debug('Threshold file loaded: ' + file) - break - else: - self.log.warning('No threshold files found in custom files.') - - def teardown_class(self): - """ Executed after completing all selected test cases.""" - if self.contest: - self.contest.destroy() - - def setup_test(self): - """ Executed before every test case. - - Returns: - False if the setup failed. - """ - - testplan_formatted_key = self.TESTPLAN_KEY.format(self.test_name) - - if testplan_formatted_key not in self.user_params: - self.log.error('Test plan not indicated in the config file. Use ' - 'the {} key to set the testplan filename.'.format( - testplan_formatted_key)) - return False - - self.testplan = self.user_params[testplan_formatted_key] - - def agnss_performance_test(self): - """ Executes the aGNSS performance test and verifies that the results - are within the expected values if a thresholds file is available. - - The thresholds file is in json format and contains the metrics keys - defined in the Contest object with 'min' and 'max' values. """ - - results = self.contest.execute_testplan(self.testplan) - - asserts.assert_true( - results, 'No results were obtained from the test execution.') - - if not self.thresholds_file: - self.log.info('Skipping pass / fail check because no thresholds ' - 'file was provided.') - return - - passed = True - - with open(self.thresholds_file, 'r') as file: - - thresholds = json.load(file) - - for key, val in results.items(): - - asserts.assert_true( - key in thresholds, 'Key {} is missing in ' - 'the thresholds file.'.format(key)) - - # If the result is provided as a dictionary, obtain the value - # from the 'avg' key. - if isinstance(val, dict): - metric = val['avg'] - else: - metric = val - - if thresholds[key]['min'] < metric < thresholds[key]['max']: - self.log.info('Metric {} = {} is within the expected ' - 'values.'.format(key, metric)) - else: - self.log.error('Metric {} = {} is not within ({}, ' - '{}).'.format(key, metric, - thresholds[key]['min'], - thresholds[key]['max'])) - passed = False - - asserts.assert_true( - passed, 'At least one of the metrics was not ' - 'within the expected values.') - - def set_apm_on(self): - """ Wrapper method to turn airplane mode on. - - This is passed to the Contest object so it can be executed when the - automation system requires the DUT to be set to 'off' state. - """ - - tel_test_utils.toggle_airplane_mode(self.log, self.dut, True) - - def set_apm_off(self): - """ Wrapper method to turn airplane mode off. - - This is passed to the Contest object so it can be executed when the - automation system requires the DUT to be set to 'on' state. - """ - # Wait for the Contest system to initialize the base stations before - # actually setting APM off. - time.sleep(5) - - tel_test_utils.toggle_airplane_mode(self.log, self.dut, False) - - def test_agnss_performance(self): - self.agnss_performance_test() diff --git a/acts/tests/google/gnss/FlpTtffTest.py b/acts/tests/google/gnss/FlpTtffTest.py deleted file mode 100644 index 0a36923952..0000000000 --- a/acts/tests/google/gnss/FlpTtffTest.py +++ /dev/null @@ -1,261 +0,0 @@ -#!/usr/bin/env python3.5 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from acts import utils -from acts import asserts -from acts import signals -from acts.base_test import BaseTestClass -from acts.test_decorators import test_tracker_info -from acts.utils import get_current_epoch_time -from acts.test_utils.wifi.wifi_test_utils import wifi_toggle_state -from acts.test_utils.tel.tel_test_utils import start_qxdm_logger -from acts.test_utils.tel.tel_test_utils import stop_qxdm_logger -from acts.test_utils.tel.tel_test_utils import verify_internet_connection -from acts.test_utils.tel.tel_test_utils import abort_all_tests -from acts.test_utils.gnss.gnss_test_utils import get_baseband_and_gms_version -from acts.test_utils.gnss.gnss_test_utils import _init_device -from acts.test_utils.gnss.gnss_test_utils import check_location_service -from acts.test_utils.gnss.gnss_test_utils import clear_logd_gnss_qxdm_log -from acts.test_utils.gnss.gnss_test_utils import set_mobile_data -from acts.test_utils.gnss.gnss_test_utils import get_gnss_qxdm_log -from acts.test_utils.gnss.gnss_test_utils import set_wifi_and_bt_scanning -from acts.test_utils.gnss.gnss_test_utils import process_gnss_by_gtw_gpstool -from acts.test_utils.gnss.gnss_test_utils import start_ttff_by_gtw_gpstool -from acts.test_utils.gnss.gnss_test_utils import process_ttff_by_gtw_gpstool -from acts.test_utils.gnss.gnss_test_utils import check_ttff_data -from acts.test_utils.gnss.gnss_test_utils import set_attenuator_gnss_signal -from acts.test_utils.gnss.gnss_test_utils import connect_to_wifi_network -from acts.test_utils.gnss.gnss_test_utils import gnss_tracking_via_gtw_gpstool -from acts.test_utils.gnss.gnss_test_utils import parse_gtw_gpstool_log - - -class FlpTtffTest(BaseTestClass): - """ FLP TTFF Tests""" - def setup_class(self): - super().setup_class() - self.ad = self.android_devices[0] - req_params = ["pixel_lab_network", "standalone_cs_criteria", - "qdsp6m_path", "flp_ttff_max_threshold", - "pixel_lab_location", "default_gnss_signal_attenuation", - "weak_gnss_signal_attenuation"] - self.unpack_userparams(req_param_names=req_params) - self.ssid_map = {} - for network in self.pixel_lab_network: - SSID = network['SSID'] - self.ssid_map[SSID] = network - if int(self.ad.adb.shell("settings get global airplane_mode_on")) != 0: - self.ad.log.info("Force airplane mode off") - force_airplane_mode(self.ad, False) - set_attenuator_gnss_signal(self.ad, self.attenuators, - self.default_gnss_signal_attenuation) - _init_device(self.ad) - - def setup_test(self): - get_baseband_and_gms_version(self.ad) - clear_logd_gnss_qxdm_log(self.ad) - set_attenuator_gnss_signal(self.ad, self.attenuators, - self.default_gnss_signal_attenuation) - if not verify_internet_connection(self.ad.log, self.ad, retries=3, - expected_state=True): - raise signals.TestFailure("Fail to connect to LTE network.") - - def teardown_test(self): - stop_qxdm_logger(self.ad) - if int(self.ad.adb.shell("settings get global mobile_data")) != 1: - set_mobile_data(self.ad, True) - if int(self.ad.adb.shell( - "settings get global wifi_scan_always_enabled")) != 1: - set_wifi_and_bt_scanning(self.ad, True) - if self.ad.droid.wifiCheckState(): - wifi_toggle_state(self.ad, False) - set_attenuator_gnss_signal(self.ad, self.attenuators, - self.default_gnss_signal_attenuation) - - def on_pass(self, test_name, begin_time): - self.ad.take_bug_report(test_name, begin_time) - get_gnss_qxdm_log(self.ad, self.qdsp6m_path) - - def on_fail(self, test_name, begin_time): - self.ad.take_bug_report(test_name, begin_time) - get_gnss_qxdm_log(self.ad, self.qdsp6m_path) - - """ Helper Functions """ - - def flp_ttff_hs_and_cs(self, criteria, location): - flp_results = [] - ttff = {"hs": "Hot Start", "cs": "Cold Start"} - for mode in ttff.keys(): - begin_time = get_current_epoch_time() - process_gnss_by_gtw_gpstool(self.ad, self.standalone_cs_criteria, - type="flp") - start_ttff_by_gtw_gpstool(self.ad, ttff_mode=mode, iteration=10) - ttff_data = process_ttff_by_gtw_gpstool(self.ad, begin_time, - location, type="flp") - result = check_ttff_data(self.ad, ttff_data, ttff[mode], criteria) - flp_results.append(result) - asserts.assert_true(all(flp_results), - "FLP TTFF fails to reach designated criteria") - - """ Test Cases """ - - @test_tracker_info(uuid="c11ada6a-d7ad-4dc8-9d4a-0ae3cb9dfa8e") - def test_flp_one_hour_tracking(self): - """Verify FLP tracking performance of position error. - - Steps: - 1. Launch GTW_GPSTool. - 2. FLP tracking for 60 minutes. - - Expected Results: - DUT could finish 60 minutes test and output track data. - """ - start_qxdm_logger(self.ad, get_current_epoch_time()) - gnss_tracking_via_gtw_gpstool(self.ad, self.standalone_cs_criteria, - type="flp", testtime=60) - parse_gtw_gpstool_log(self.ad, self.pixel_lab_location, type="flp") - - @test_tracker_info(uuid="8bc4e82d-fdce-4ee8-af8c-5e4a925b5360") - def test_flp_ttff_strong_signal_wifiscan_on_wifi_connect(self): - """Verify FLP TTFF Hot Start and Cold Start under strong GNSS signals - with WiFi scanning on and connected. - - Steps: - 1. Enable WiFi scanning in location setting. - 2. Connect to WiFi AP. - 3. TTFF Hot Start for 10 iteration. - 4. TTFF Cold Start for 10 iteration. - - Expected Results: - Both FLP TTFF Hot Start and Cold Start results should be within - flp_ttff_max_threshold. - """ - start_qxdm_logger(self.ad, get_current_epoch_time()) - set_wifi_and_bt_scanning(self.ad, True) - wifi_toggle_state(self.ad, True) - connect_to_wifi_network( - self.ad, self.ssid_map[self.pixel_lab_network[0]["SSID"]]) - self.flp_ttff_hs_and_cs(self.flp_ttff_max_threshold, - self.pixel_lab_location) - - @test_tracker_info(uuid="adc1a0c7-3635-420d-9481-0f5816c58334") - def test_flp_ttff_strong_signal_wifiscan_on_wifi_not_connect(self): - """Verify FLP TTFF Hot Start and Cold Start under strong GNSS signals - with WiFi scanning on and not connected. - - Steps: - 1. Enable WiFi scanning in location setting. - 2. WiFi is not connected. - 3. TTFF Hot Start for 10 iteration. - 4. TTFF Cold Start for 10 iteration. - - Expected Results: - Both FLP TTFF Hot Start and Cold Start results should be within - flp_ttff_max_threshold. - """ - start_qxdm_logger(self.ad, get_current_epoch_time()) - set_wifi_and_bt_scanning(self.ad, True) - self.flp_ttff_hs_and_cs(self.flp_ttff_max_threshold, - self.pixel_lab_location) - - @test_tracker_info(uuid="3ec3cee2-b881-4c61-9df1-b6b81fcd4527") - def test_flp_ttff_strong_signal_wifiscan_off(self): - """Verify FLP TTFF Hot Start and Cold Start with WiFi scanning OFF - under strong GNSS signals. - - Steps: - 1. Disable WiFi scanning in location setting. - 2. TTFF Hot Start for 10 iteration. - 3. TTFF Cold Start for 10 iteration. - - Expected Results: - Both FLP TTFF Hot Start and Cold Start results should be within - flp_ttff_max_threshold. - """ - start_qxdm_logger(self.ad, get_current_epoch_time()) - set_wifi_and_bt_scanning(self.ad, False) - self.flp_ttff_hs_and_cs(self.flp_ttff_max_threshold, - self.pixel_lab_location) - - @test_tracker_info(uuid="03c0d34f-8312-48d5-8753-93b09151233a") - def test_flp_ttff_weak_signal_wifiscan_on_wifi_connect(self): - """Verify FLP TTFF Hot Start and Cold Start under Weak GNSS signals - with WiFi scanning on and connected - - Steps: - 1. Set attenuation value to weak GNSS signal. - 2. Enable WiFi scanning in location setting. - 3. Connect to WiFi AP. - 4. TTFF Hot Start for 10 iteration. - 5. TTFF Cold Start for 10 iteration. - - Expected Results: - Both FLP TTFF Hot Start and Cold Start results should be within - flp_ttff_max_threshold. - """ - set_attenuator_gnss_signal(self.ad, self.attenuators, - self.weak_gnss_signal_attenuation) - start_qxdm_logger(self.ad, get_current_epoch_time()) - set_wifi_and_bt_scanning(self.ad, True) - wifi_toggle_state(self.ad, True) - connect_to_wifi_network( - self.ad, self.ssid_map[self.pixel_lab_network[0]["SSID"]]) - self.flp_ttff_hs_and_cs(self.flp_ttff_max_threshold, - self.pixel_lab_location) - - @test_tracker_info(uuid="13daf7b3-5ac5-4107-b3dc-a3a8b5589fed") - def test_flp_ttff_weak_signal_wifiscan_on_wifi_not_connect(self): - """Verify FLP TTFF Hot Start and Cold Start under Weak GNSS signals - with WiFi scanning on and not connected. - - Steps: - 1. Set attenuation value to weak GNSS signal. - 2. Enable WiFi scanning in location setting. - 3. WiFi is not connected. - 4. TTFF Hot Start for 10 iteration. - 5. TTFF Cold Start for 10 iteration. - - Expected Results: - Both FLP TTFF Hot Start and Cold Start results should be within - flp_ttff_max_threshold. - """ - set_attenuator_gnss_signal(self.ad, self.attenuators, - self.weak_gnss_signal_attenuation) - start_qxdm_logger(self.ad, get_current_epoch_time()) - set_wifi_and_bt_scanning(self.ad, True) - self.flp_ttff_hs_and_cs(self.flp_ttff_max_threshold, - self.pixel_lab_location) - - @test_tracker_info(uuid="1831f80f-099f-46d2-b484-f332046d5a4d") - def test_flp_ttff_weak_signal_wifiscan_off(self): - """Verify FLP TTFF Hot Start and Cold Start with WiFi scanning OFF - under weak GNSS signals. - - Steps: - 1. Set attenuation value to weak GNSS signal. - 2. Disable WiFi scanning in location setting. - 3. TTFF Hot Start for 10 iteration. - 4. TTFF Cold Start for 10 iteration. - - Expected Results: - Both FLP TTFF Hot Start and Cold Start results should be within - flp_ttff_max_threshold. - """ - set_attenuator_gnss_signal(self.ad, self.attenuators, - self.weak_gnss_signal_attenuation) - start_qxdm_logger(self.ad, get_current_epoch_time()) - set_wifi_and_bt_scanning(self.ad, False) - self.flp_ttff_hs_and_cs(self.flp_ttff_max_threshold, - self.pixel_lab_location)
\ No newline at end of file diff --git a/acts/tests/google/gnss/GNSSSanityTest.py b/acts/tests/google/gnss/GNSSSanityTest.py new file mode 100644 index 0000000000..b385a6779b --- /dev/null +++ b/acts/tests/google/gnss/GNSSSanityTest.py @@ -0,0 +1,800 @@ +#!/usr/bin/env python3.5 +# +# Copyright 2019 - The Android Open Source Project +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import time +from multiprocessing import Process + +from acts import utils +from acts.base_test import BaseTestClass +from acts.test_decorators import test_tracker_info +from acts.test_utils.wifi import wifi_test_utils as wutils +from acts.test_utils.tel import tel_test_utils as tutils +from acts.test_utils.gnss import gnss_test_utils as gutils +from acts.utils import get_current_epoch_time + + +class GNSSSanityTest(BaseTestClass): + """ GNSS Function Sanity Tests""" + def __init__(self, controllers): + BaseTestClass.__init__(self, controllers) + self.ad = self.android_devices[0] + req_params = ["pixel_lab_network", + "standalone_cs_criteria", "supl_cs_criteria", + "xtra_ws_criteria", "xtra_cs_criteria", + "weak_signal_supl_cs_criteria", + "weak_signal_xtra_ws_criteria", + "weak_signal_xtra_cs_criteria", + "default_gnss_signal_attenuation", + "weak_gnss_signal_attenuation", + "no_gnss_signal_attenuation"] + self.unpack_userparams(req_param_names=req_params) + # create hashmap for SSID + self.ssid_map = {} + for network in self.pixel_lab_network: + SSID = network['SSID'] + self.ssid_map[SSID] = network + + def setup_class(self): + self.ad.droid.wakeLockAcquireBright() + self.ad.droid.wakeUpNow() + tutils.print_radio_info(self.ad) + gutils.set_attenuator_gnss_signal(self.ad, self.attenuators, + self.default_gnss_signal_attenuation) + gutils._init_device(self.ad) + if not tutils.verify_internet_connection(self.ad.log, + self.ad, + retries=3, + expected_state=True): + tutils.abort_all_tests(self.ad.log, + "Fail to connect to LTE network") + if not gutils.check_location_service(self.ad): + tutils.abort_all_tests(self.ad.log, "Fail to switch Location on") + + def setup_test(self): + gutils.clear_logd_gnss_qxdm_log(self.ad) + + def teardown_test(self): + tutils.stop_qxdm_logger(self.ad) + if tutils.check_call_state_connected_by_adb(self.ad): + tutils.hangup_call(self.ad.log, self.ad) + if not int(self.ad.adb.shell("settings get global airplane_mode_on")) == 0: + self.ad.log.info("Force airplane mode off") + utils.force_airplane_mode(self.ad, False) + if self.ad.droid.wifiCheckState(): + wutils.wifi_toggle_state(self.ad, False) + if not int(self.ad.adb.shell("settings get global mobile_data")) == 1: + gutils.set_mobile_data(self.ad, True) + if not int(self.ad.adb.shell( + "settings get global wifi_scan_always_enabled")) == 1: + gutils.set_wifi_and_bt_scanning(self.ad, True) + if not int(self.attenuators[0].get_atten()) == self.default_gnss_signal_attenuation: + gutils.set_attenuator_gnss_signal(self.ad, self.attenuators, + self.default_gnss_signal_attenuation) + + def on_fail(self, test_name, begin_time): + gutils.get_gnss_qxdm_log(self.ad, test_name) + self.ad.take_bug_report(test_name, begin_time) + + """ Test Cases """ + + @test_tracker_info(uuid="ff318483-411c-411a-8b1a-422bd54f4a3f") + def test_supl_capabilities(self): + """Verify SUPL capabilities. + + Steps: + 1. Root DUT. + 2. Check SUPL capabilities. + + Expected Results: + CAPABILITIES=0x37 which supports MSA + MSB. + + Return: + True if PASS, False if FAIL. + """ + capabilities_state = str(self.ad.adb.shell("cat vendor/etc/gps.conf | " + "grep CAPABILITIES")) + self.ad.log.info("SUPL capabilities - %s" % capabilities_state) + if "CAPABILITIES=0x37" in capabilities_state: + return True + return False + + @test_tracker_info(uuid="dcae6979-ddb4-4cad-9d14-fbdd9439cf42") + def test_sap_valid_modes(self): + """Verify SAP Valid Modes. + + Steps: + 1. Root DUT. + 2. Check SAP Valid Modes. + + Expected Results: + SAP=PREMIUM + + Return: + True if PASS, False if FAIL. + """ + sap_state = str(self.ad.adb.shell("cat vendor/etc/izat.conf | grep " + "SAP=")) + self.ad.log.info("SAP Valid Modes - %s" % sap_state) + if "SAP=PREMIUM" in sap_state: + return True + return False + + @test_tracker_info(uuid="14daaaba-35b4-42d9-8d2c-2a803dd746a6") + def test_network_location_provider_cell(self): + """Verify LocationManagerService API reports cell Network Location. + + Steps: + 1. WiFi scanning and Bluetooth scanning in Location Setting are OFF. + 2. Launch GTW_GPSTool. + 3. Verify whether test devices could report cell Network Location. + 4. Repeat Step 2. to Step 3. for 5 times. + + Expected Results: + Test devices could report cell Network Location. + + Return: + True if PASS, False if FAIL. + """ + test_result_all = [] + tutils.start_qxdm_logger(self.ad, get_current_epoch_time()) + gutils.set_wifi_and_bt_scanning(self.ad, False) + for i in range(1, 6): + test_result = gutils.check_network_location( + self.ad, retries=3, location_type = "networkLocationType=cell") + test_result_all.append(test_result) + self.ad.log.info("Iteraion %d => %s" % (i, test_result)) + gutils.set_wifi_and_bt_scanning(self.ad, True) + return all(test_result_all) + + @test_tracker_info(uuid="a45bdc7d-29fa-4a1d-ba34-6340b90e308d") + def test_network_location_provider_wifi(self): + """Verify LocationManagerService API reports wifi Network Location. + + Steps: + 1. WiFi scanning and Bluetooth scanning in Location Setting are ON. + 2. Launch GTW_GPSTool. + 3. Verify whether test devices could report wifi Network Location. + 4. Repeat Step 2. to Step 3. for 5 times. + + Expected Results: + Test devices could report wifi Network Location. + + Return: + True if PASS, False if FAIL. + """ + test_result_all = [] + tutils.start_qxdm_logger(self.ad, get_current_epoch_time()) + gutils.set_wifi_and_bt_scanning(self.ad, True) + for i in range(1, 6): + test_result = gutils.check_network_location( + self.ad, retries=3, location_type = "networkLocationType=wifi") + test_result_all.append(test_result) + self.ad.log.info("Iteraion %d => %s" % (i, test_result)) + return all(test_result_all) + + @test_tracker_info(uuid="0919d375-baf2-4fe7-b66b-3f72d386f791") + def test_gmap_location_report_gps_network(self): + """Verify GnssLocationProvider API reports location to Google Map + when GPS and Location Accuracy are on. + + Steps: + 1. GPS and NLP are on. + 2. Launch Google Map. + 3. Verify whether test devices could report location. + 4. Repeat Step 2. to Step 3. for 5 times. + + Expected Results: + Test devices could report location to Google Map. + + Return: + True if PASS, False if FAIL. + """ + test_result_all = [] + tutils.start_qxdm_logger(self.ad, get_current_epoch_time()) + for i in range(1, 6): + gutils.launch_google_map(self.ad) + test_result = gutils.check_location_api(self.ad, retries=3) + self.ad.send_keycode("HOME") + test_result_all.append(test_result) + self.ad.log.info("Iteraion %d => %s" % (i, test_result)) + return all(test_result_all) + + @test_tracker_info(uuid="513361d2-7d72-41b0-a944-fb259c606b81") + def test_gmap_location_report_gps(self): + """Verify GnssLocationProvider API reports location to Google Map + when GPS is on and Location Accuracy is off. + + Steps: + 1. GPS is on. + 2. Location Accuracy is off. + 3. Launch Google Map. + 4. Verify whether test devices could report location. + 5. Repeat Step 3. to Step 4. for 5 times. + + Expected Results: + Test devices could report location to Google Map. + + Return: + True if PASS, False if FAIL. + """ + test_result_all = [] + tutils.start_qxdm_logger(self.ad, get_current_epoch_time()) + self.ad.adb.shell("settings put secure location_providers_allowed " + "-network") + out = self.ad.adb.shell("settings get secure location_providers_allowed") + self.ad.log.info("Modify current Location Provider to %s" % out) + for i in range(1, 6): + gutils.launch_google_map(self.ad) + test_result = gutils.check_location_api(self.ad, retries=3) + self.ad.send_keycode("HOME") + test_result_all.append(test_result) + self.ad.log.info("Iteraion %d => %s" % (i, test_result)) + self.ad.adb.shell("settings put secure location_providers_allowed " + "+network") + out = self.ad.adb.shell("settings get secure location_providers_allowed") + self.ad.log.info("Modify current Location Provider to %s" % out) + return all(test_result_all) + + @test_tracker_info(uuid="91a65121-b87d-450d-bd0f-387ade450ab7") + def test_gmap_location_report_battery_saver(self): + """Verify GnssLocationProvider API reports location to Google Map + when Battery Saver is enabled. + + Steps: + 1. GPS and NLP are on. + 2. Enable Battery Saver. + 3. Launch Google Map. + 4. Verify whether test devices could report location. + 5. Repeat Step 3. to Step 4. for 5 times. + 6. Disable Battery Saver. + + Expected Results: + Test devices could report location to Google Map. + + Return: + True if PASS, False if FAIL. + """ + test_result_all = [] + tutils.start_qxdm_logger(self.ad, get_current_epoch_time()) + gutils.set_battery_saver_mode(self.ad, True) + for i in range(1, 6): + gutils.launch_google_map(self.ad) + test_result = gutils.check_location_api(self.ad, retries=3) + self.ad.send_keycode("HOME") + test_result_all.append(test_result) + self.ad.log.info("Iteraion %d => %s" % (i, test_result)) + gutils.set_battery_saver_mode(self.ad, False) + return all(test_result_all) + + @test_tracker_info(uuid="60c0aeec-0c8f-4a96-bc6c-05cba1260e73") + def test_supl_ongoing_call(self): + """Verify SUPL functionality during phone call. + + Steps: + 1. Kill XTRA daemon to support SUPL only case. + 2. Initiate call on DUT. + 3. SUPL TTFF Cold Start for 10 iteration. + 4. DUT hang up call. + + Expected Results: + All SUPL TTFF Cold Start results should be less than + supl_cs_criteria. + + Return: + True if PASS, False if FAIL. + """ + begin_time = get_current_epoch_time() + tutils.start_qxdm_logger(self.ad, begin_time) + gutils.kill_xtra_daemon(self.ad) + self.ad.droid.setVoiceCallVolume(25) + tutils.initiate_call(self.ad.log, self.ad, "99117") + time.sleep(5) + if tutils.check_call_state_idle_by_adb(self.ad): + self.ad.log.error("Call is not connected.") + return False + if not gutils.process_gnss_by_gtw_gpstool(self.ad, self.supl_cs_criteria): + return False + gutils.start_ttff_by_gtw_gpstool(self.ad, ttff_mode="cs", iteration=10) + ttff_result = gutils.process_ttff_by_gtw_gpstool(self.ad, begin_time) + return gutils.check_ttff_result(self.ad, ttff_result, + ttff_mode="Cold Start", + criteria=self.supl_cs_criteria) + + @test_tracker_info(uuid="df605509-328f-43e8-b6d8-00635bf701ef") + def test_supl_downloading_files(self): + """Verify SUPL functionality when downloading files. + + Steps: + 1. Kill XTRA daemon to support SUPL only case. + 2. DUT start downloading files by sl4a. + 3. SUPL TTFF Cold Start for 10 iteration. + 4. DUT cancel downloading files. + + Expected Results: + All SUPL TTFF Cold Start results should be within supl_cs_criteria. + + Return: + True if PASS, False if FAIL. + """ + begin_time = get_current_epoch_time() + tutils.start_qxdm_logger(self.ad, begin_time) + gutils.kill_xtra_daemon(self.ad) + download = Process(target=tutils.http_file_download_by_sl4a, + args=(self.ad, "https://speed.hetzner.de/10GB.bin", + None, None, True, 3600)) + download.start() + time.sleep(10) + if not gutils.process_gnss_by_gtw_gpstool(self.ad, self.supl_cs_criteria): + download.terminate() + time.sleep(3) + return False + gutils.start_ttff_by_gtw_gpstool(self.ad, ttff_mode="cs", iteration=10) + ttff_result = gutils.process_ttff_by_gtw_gpstool(self.ad, begin_time) + download.terminate() + time.sleep(3) + return gutils.check_ttff_result(self.ad, ttff_result, + ttff_mode="Cold Start", + criteria=self.supl_cs_criteria) + + @test_tracker_info(uuid="66b9f9d4-1397-4da7-9e55-8b89b1732017") + def test_supl_watching_youtube(self): + """Verify SUPL functionality when watching video on youtube. + + Steps: + 1. Kill XTRA daemon to support SUPL only case. + 2. DUT start watching video on youtube. + 3. SUPL TTFF Cold Start for 10 iteration at the background. + 4. DUT stop watching video on youtube. + + Expected Results: + All SUPL TTFF Cold Start results should be within supl_cs_criteria. + + Return: + True if PASS, False if FAIL. + """ + begin_time = get_current_epoch_time() + tutils.start_qxdm_logger(self.ad, begin_time) + gutils.kill_xtra_daemon(self.ad) + if not gutils.process_gnss_by_gtw_gpstool(self.ad, self.supl_cs_criteria): + return False + gutils.start_ttff_by_gtw_gpstool(self.ad, ttff_mode="cs", iteration=10) + if not gutils.start_youtube_video( + self.ad, "https://www.youtube.com/watch?v=AbdVsi1VjQY", retries=3): + return False + ttff_result = gutils.process_ttff_by_gtw_gpstool(self.ad, begin_time) + return gutils.check_ttff_result(self.ad, ttff_result, + ttff_mode="Cold Start", + criteria=self.supl_cs_criteria) + + @test_tracker_info(uuid="a748af8b-e1eb-4ec6-bde3-74bcefa1c680") + def test_supl_modem_ssr(self): + """Verify SUPL functionality after modem silent reboot. + + Steps: + 1. Trigger modem crash by adb. + 2. Wait 1 minute for modem to recover. + 3. SUPL TTFF Cold Start for 3 iteration. + 4. Repeat Step 1. to Step 3. for 5 times. + + Expected Results: + All SUPL TTFF Cold Start results should be within supl_cs_criteria. + + Return: + True if PASS, False if FAIL. + """ + supl_ssr_test_result_all = [] + tutils.start_qxdm_logger(self.ad, get_current_epoch_time()) + gutils.kill_xtra_daemon(self.ad) + for times in range(1, 6): + begin_time = get_current_epoch_time() + before_modem_ssr = gutils.get_modem_ssr_crash_count(self.ad) + tutils.trigger_modem_crash(self.ad, timeout=60) + after_modem_ssr = gutils.get_modem_ssr_crash_count(self.ad) + if not int(after_modem_ssr) == int(before_modem_ssr) + 1: + self.ad.log.error("Simulated Modem SSR Failed.") + return False + if not gutils.process_gnss_by_gtw_gpstool(self.ad, self.supl_cs_criteria): + return False + gutils.start_ttff_by_gtw_gpstool(self.ad, ttff_mode="cs", iteration=3) + ttff_result = gutils.process_ttff_by_gtw_gpstool(self.ad, begin_time) + supl_ssr_test_result = gutils.check_ttff_result( + self.ad, ttff_result, "Cold Start", self.supl_cs_criteria) + self.ad.log.info("SUPL after Modem SSR test %d times -> %s" + % (times, supl_ssr_test_result)) + supl_ssr_test_result_all.append(supl_ssr_test_result) + return all(supl_ssr_test_result_all) + + @test_tracker_info(uuid="01602e65-8ded-4459-8df1-7df70a1bfe8a") + def test_gnss_airplane_mode_on(self): + """Verify Standalone GNSS functionality while airplane mode is on. + + Steps: + 1. Turn on airplane mode. + 2. TTFF Cold Start for 10 iteration. + 3. Turn off airplane mode. + + Expected Results: + All Standalone TTFF Cold Start results should be within + standalone_cs_criteria. + + Return: + True if PASS, False if FAIL. + """ + begin_time = get_current_epoch_time() + tutils.start_qxdm_logger(self.ad, begin_time) + self.ad.log.info("Turn airplane mode on") + utils.force_airplane_mode(self.ad, True) + if not gutils.process_gnss_by_gtw_gpstool(self.ad, self.standalone_cs_criteria): + return False + gutils.start_ttff_by_gtw_gpstool(self.ad, ttff_mode="cs", iteration=10) + ttff_result = gutils.process_ttff_by_gtw_gpstool(self.ad, begin_time) + return gutils.check_ttff_result(self.ad, ttff_result, + ttff_mode="Cold Start", + criteria=self.standalone_cs_criteria) + + @test_tracker_info(uuid="23731b0d-cb80-4c79-a877-cfe7c2faa447") + def test_gnss_mobile_data_off(self): + """Verify Standalone GNSS functionality while mobile radio is off. + + Steps: + 1. Disable mobile data. + 2. TTFF Cold Start for 10 iteration. + 3. Enable mobile data. + + Expected Results: + All Standalone TTFF Cold Start results should be within + standalone_cs_criteria. + + Return: + True if PASS, False if FAIL. + """ + begin_time = get_current_epoch_time() + tutils.start_qxdm_logger(self.ad, begin_time) + gutils.kill_xtra_daemon(self.ad) + gutils.set_mobile_data(self.ad, False) + if not gutils.process_gnss_by_gtw_gpstool(self.ad, self.standalone_cs_criteria): + return False + gutils.start_ttff_by_gtw_gpstool(self.ad, ttff_mode="cs", iteration=10) + ttff_result = gutils.process_ttff_by_gtw_gpstool(self.ad, begin_time) + return gutils.check_ttff_result(self.ad, ttff_result, + ttff_mode="Cold Start", + criteria=self.standalone_cs_criteria) + + @test_tracker_info(uuid="085b86a9-0212-4c0f-8ca1-2e467a0a2e6e") + def test_supl_without_gnss_signal(self): + """Verify SUPL functionality after no GNSS signal for awhile. + + Steps: + 1. Get location fixed. + 2 Let device do GNSS tracking for 1 minute. + 3. Set attenuation value to 60 to block GNSS signal. + 4. Let DUT stay in no GNSS signal for 5 minutes. + 5. Set attenuation value to 23 to regain GNSS signal. + 6. Try to get location reported again. + 7. Repeat Step 1. to Step 6. for 5 times. + + Expected Results: + After setting attenuation value to 10 (GPS signal regain), + DUT could get location fixed again. + + Return: + True if PASS, False if FAIL. + """ + supl_no_gnss_signal_all = [] + tutils.start_qxdm_logger(self.ad, get_current_epoch_time()) + for times in range(1, 6): + if not gutils.process_gnss_by_gtw_gpstool(self.ad, self.supl_cs_criteria): + return False + self.ad.log.info("Let device do GNSS tracking for 1 minute.") + time.sleep(60) + gutils.set_attenuator_gnss_signal(self.ad, self.attenuators, + self.no_gnss_signal_attenuation) + self.ad.log.info("Let device stay in no GNSS signal for 5 minutes.") + time.sleep(300) + gutils.set_attenuator_gnss_signal(self.ad, self.attenuators, + self.default_gnss_signal_attenuation) + supl_no_gnss_signal = gutils.check_location_api(self.ad, retries=3) + gutils.start_gnss_by_gtw_gpstool(self.ad, False) + self.ad.log.info("SUPL without GNSS signal test %d times -> %s" + % (times, supl_no_gnss_signal)) + supl_no_gnss_signal_all.append(supl_no_gnss_signal) + return all(supl_no_gnss_signal_all) + + @test_tracker_info(uuid="3ff2f2fa-42d8-47fa-91de-060816cca9df") + def test_supl_weak_gnss_signal(self): + """Verify SUPL TTFF functionality under weak GNSS signal. + + Steps: + 1. Set attenuation value to 40 to set weak GNSS signal. + 2. Kill XTRA daemon to support SUPL only case. + 3. SUPL TTFF Cold Start for 10 iteration. + 4. Set attenuation value to 23 to set default GNSS signal. + + Expected Results: + All SUPL TTFF Cold Start results should be less than + weak_signal_supl_cs_criteria. + + Return: + True if PASS, False if FAIL. + """ + gutils.set_attenuator_gnss_signal(self.ad, self.attenuators, + self.weak_gnss_signal_attenuation) + begin_time = get_current_epoch_time() + tutils.start_qxdm_logger(self.ad, begin_time) + gutils.kill_xtra_daemon(self.ad) + if not gutils.process_gnss_by_gtw_gpstool(self.ad, self.weak_signal_supl_cs_criteria): + return False + gutils.start_ttff_by_gtw_gpstool(self.ad, ttff_mode="cs", iteration=10) + ttff_result = gutils.process_ttff_by_gtw_gpstool(self.ad, begin_time) + return gutils.check_ttff_result(self.ad, ttff_result, "Cold Start", + self.weak_signal_supl_cs_criteria) + + @test_tracker_info(uuid="4ad4a371-949a-42e1-b1f4-628c79fa8ddc") + def test_supl_factory_reset(self): + """Verify SUPL functionality after factory reset. + + Steps: + 1. Factory reset device. + 2. Kill XTRA daemon to support SUPL only case. + 3. SUPL TTFF Cold Start for 10 iteration. + 4. Repeat Step 1. to Step 3. for 3 times. + + Expected Results: + All SUPL TTFF Cold Start results should be within supl_cs_criteria. + + Return: + True if PASS, False if FAIL. + """ + for times in range(1, 4): + gutils.fastboot_factory_reset(self.ad) + self.ad.unlock_screen(password=None) + gutils._init_device(self.ad) + if not gutils.check_location_service(self.ad): + return False + begin_time = get_current_epoch_time() + tutils.start_qxdm_logger(self.ad, begin_time) + gutils.kill_xtra_daemon(self.ad) + if not gutils.process_gnss_by_gtw_gpstool(self.ad, self.supl_cs_criteria): + return False + gutils.start_ttff_by_gtw_gpstool(self.ad, ttff_mode="cs", iteration=10) + ttff_result = gutils.process_ttff_by_gtw_gpstool(self.ad, begin_time) + if not gutils.check_ttff_result(self.ad, ttff_result, + ttff_mode="Cold Start", + criteria=self.supl_cs_criteria): + self.ad.log.error("SUPL after Factory Reset test %d times " + "-> FAIL" % times) + return False + self.ad.log.info("SUPL after Factory Reset test %d times -> " + "PASS" % times) + return True + + @test_tracker_info(uuid="ea3096cf-4f72-4e91-bfb3-0bcbfe865ab4") + def test_xtra_ttff_mobile_data(self): + """Verify XTRA TTFF functionality with mobile data. + + Steps: + 1. Disable SUPL mode. + 2. TTFF Warm Start for 10 iteration. + 3. TTFF Cold Start for 10 iteration. + + Expected Results: + XTRA TTFF Warm Start results should be within xtra_ws_criteria. + XTRA TTFF Cold Start results should be within xtra_cs_criteria. + + Return: + True if PASS, False if FAIL. + """ + gutils.disable_supl_mode(self.ad) + begin_time = get_current_epoch_time() + tutils.start_qxdm_logger(self.ad, begin_time) + if not gutils.process_gnss_by_gtw_gpstool(self.ad, self.xtra_cs_criteria): + return False + gutils.start_ttff_by_gtw_gpstool(self.ad, ttff_mode="ws", iteration=10) + ws_ttff_result = gutils.process_ttff_by_gtw_gpstool(self.ad, begin_time) + if not gutils.check_ttff_result(self.ad, ws_ttff_result, "Warm Start", + self.xtra_ws_criteria): + return False + begin_time = get_current_epoch_time() + if not gutils.process_gnss_by_gtw_gpstool(self.ad, self.xtra_cs_criteria): + return False + gutils.start_ttff_by_gtw_gpstool(self.ad, ttff_mode="cs", iteration=10) + cs_ttff_result = gutils.process_ttff_by_gtw_gpstool(self.ad, begin_time) + return gutils.check_ttff_result(self.ad, cs_ttff_result, "Cold Start", + self.xtra_cs_criteria) + + @test_tracker_info(uuid="c91ba740-220e-41de-81e5-43af31f63907") + def test_xtra_ttff_weak_gnss_signal(self): + """Verify XTRA TTFF functionality under weak GNSS signal. + + Steps: + 1. Set attenuation value to 40 to set weak GNSS signal. + 2. TTFF Warm Start for 10 iteration. + 3. TTFF Cold Start for 10 iteration. + 4. Set attenuation value to 23 to set default GNSS signal. + + Expected Results: + XTRA TTFF Warm Start results should be within + weak_signal_xtra_ws_criteria. + XTRA TTFF Cold Start results should be within + weak_signal_xtra_cs_criteria. + + Return: + True if PASS, False if FAIL. + """ + gutils.disable_supl_mode(self.ad) + gutils.set_attenuator_gnss_signal(self.ad, self.attenuators, + self.weak_gnss_signal_attenuation) + begin_time = get_current_epoch_time() + tutils.start_qxdm_logger(self.ad, begin_time) + if not gutils.process_gnss_by_gtw_gpstool(self.ad, self.weak_signal_xtra_cs_criteria): + return False + gutils.start_ttff_by_gtw_gpstool(self.ad, ttff_mode="ws", iteration=10) + ws_ttff_result = gutils.process_ttff_by_gtw_gpstool(self.ad, begin_time) + if not gutils.check_ttff_result(self.ad, ws_ttff_result, "Warm Start", + self.weak_signal_xtra_ws_criteria): + return False + begin_time = get_current_epoch_time() + if not gutils.process_gnss_by_gtw_gpstool(self.ad, self.weak_signal_xtra_cs_criteria): + return False + gutils.start_ttff_by_gtw_gpstool(self.ad, ttff_mode="cs", iteration=10) + cs_ttff_result = gutils.process_ttff_by_gtw_gpstool(self.ad, begin_time) + return gutils.check_ttff_result(self.ad, cs_ttff_result, "Cold Start", + self.weak_signal_xtra_cs_criteria) + + @test_tracker_info(uuid="beeb3454-bcb2-451e-83fb-26289e89b515") + def test_xtra_ttff_wifi(self): + """Verify XTRA TTFF functionality with WiFi. + + Steps: + 1. Disable SUPL mode and turn airplane mode on. + 2. Connect to WiFi. + 3. TTFF Warm Start for 10 iteration. + 4. TTFF Cold Start for 10 iteration. + + Expected Results: + XTRA TTFF Warm Start results should be within xtra_ws_criteria. + XTRA TTFF Cold Start results should be within xtra_cs_criteria. + + Return: + True if PASS, False if FAIL. + """ + gutils.disable_supl_mode(self.ad) + begin_time = get_current_epoch_time() + tutils.start_qxdm_logger(self.ad, begin_time) + self.ad.log.info("Turn airplane mode on") + utils.force_airplane_mode(self.ad, True) + wutils.wifi_toggle_state(self.ad, True) + gutils.connect_to_wifi_network( + self.ad, self.ssid_map[self.pixel_lab_network[0]["SSID"]]) + if not gutils.process_gnss_by_gtw_gpstool(self.ad, self.xtra_cs_criteria): + return False + gutils.start_ttff_by_gtw_gpstool(self.ad, ttff_mode="ws", iteration=10) + ws_ttff_result = gutils.process_ttff_by_gtw_gpstool(self.ad, begin_time) + if not gutils.check_ttff_result(self.ad, ws_ttff_result, "Warm Start", + self.xtra_ws_criteria): + return False + begin_time = get_current_epoch_time() + if not gutils.process_gnss_by_gtw_gpstool(self.ad, self.xtra_cs_criteria): + return False + gutils.start_ttff_by_gtw_gpstool(self.ad, ttff_mode="cs", iteration=10) + cs_ttff_result = gutils.process_ttff_by_gtw_gpstool(self.ad, begin_time) + return gutils.check_ttff_result(self.ad, cs_ttff_result, "Cold Start", + self.xtra_cs_criteria) + + @test_tracker_info(uuid="1745b8a4-5925-4aa0-809a-1b17e848dc9c") + def test_xtra_modem_ssr(self): + """Verify XTRA functionality after modem silent reboot. + + Steps: + 1. Trigger modem crash by adb. + 2. Wait 1 minute for modem to recover. + 3. XTRA TTFF Cold Start for 3 iteration. + 4. Repeat Step1. to Step 3. for 5 times. + + Expected Results: + All XTRA TTFF Cold Start results should be within xtra_cs_criteria. + + Return: + True if PASS, False if FAIL. + """ + gutils.disable_supl_mode(self.ad) + xtra_ssr_test_result_all = [] + tutils.start_qxdm_logger(self.ad, get_current_epoch_time()) + for times in range(1, 6): + begin_time = get_current_epoch_time() + before_modem_ssr = gutils.get_modem_ssr_crash_count(self.ad) + tutils.trigger_modem_crash(self.ad, timeout=60) + after_modem_ssr = gutils.get_modem_ssr_crash_count(self.ad) + if not int(after_modem_ssr) == int(before_modem_ssr) + 1: + self.ad.log.error("Simulated Modem SSR Failed.") + return False + if not gutils.process_gnss_by_gtw_gpstool(self.ad, self.xtra_cs_criteria): + return False + gutils.start_ttff_by_gtw_gpstool(self.ad, ttff_mode="cs", iteration=3) + ttff_result = gutils.process_ttff_by_gtw_gpstool(self.ad, begin_time) + xtra_ssr_test_result = gutils.check_ttff_result(self.ad, + ttff_result, + "Cold Start", + self.xtra_cs_criteria) + self.ad.log.info("XTRA after Modem SSR test %d times -> %s" + % (times, xtra_ssr_test_result)) + xtra_ssr_test_result_all.append(xtra_ssr_test_result) + return all(xtra_ssr_test_result_all) + + @test_tracker_info(uuid="4d6e81e1-3abb-4e03-b732-7b6b497a2258") + def test_xtra_download_mobile_data(self): + """Verify XTRA data could be downloaded via mobile data. + + Steps: + 1. Delete all GNSS aiding data. + 2. Get location fixed. + 3. Verify whether XTRA is downloaded and injected. + 4. Repeat Step 1. to Step 3. for 5 times. + + Expected Results: + XTRA data is properly downloaded and injected via mobile data. + + Return: + True if PASS, False if FAIL. + """ + mobile_xtra_result_all = [] + gutils.disable_supl_mode(self.ad) + tutils.start_qxdm_logger(self.ad, get_current_epoch_time()) + for i in range(1, 6): + begin_time = get_current_epoch_time() + if not gutils.process_gnss_by_gtw_gpstool(self.ad, self.xtra_cs_criteria): + return False + time.sleep(5) + gutils.start_gnss_by_gtw_gpstool(self.ad, False) + mobile_xtra_result = gutils.check_xtra_download(self.ad, begin_time) + self.ad.log.info("Iteration %d => %s" % (i, mobile_xtra_result)) + mobile_xtra_result_all.append(mobile_xtra_result) + return all(mobile_xtra_result_all) + + @test_tracker_info(uuid="625ac665-1446-4406-a722-e6a19645222c") + def test_xtra_download_wifi(self): + """Verify XTRA data could be downloaded via WiFi. + + Steps: + 1. Connect to WiFi. + 2. Delete all GNSS aiding data. + 3. Get location fixed. + 4. Verify whether XTRA is downloaded and injected. + 5. Repeat Step 2. to Step 4. for 5 times. + + Expected Results: + XTRA data is properly downloaded and injected via WiFi. + + Return: + True if PASS, False if FAIL. + """ + wifi_xtra_result_all = [] + gutils.disable_supl_mode(self.ad) + tutils.start_qxdm_logger(self.ad, get_current_epoch_time()) + self.ad.log.info("Turn airplane mode on") + utils.force_airplane_mode(self.ad, True) + wutils.wifi_toggle_state(self.ad, True) + gutils.connect_to_wifi_network( + self.ad, self.ssid_map[self.pixel_lab_network[0]["SSID"]]) + for i in range(1, 6): + begin_time = get_current_epoch_time() + if not gutils.process_gnss_by_gtw_gpstool(self.ad, self.xtra_cs_criteria): + return False + time.sleep(5) + gutils.start_gnss_by_gtw_gpstool(self.ad, False) + wifi_xtra_result = gutils.check_xtra_download(self.ad, begin_time) + wifi_xtra_result_all.append(wifi_xtra_result) + self.ad.log.info("Iteraion %d => %s" % (i, wifi_xtra_result)) + return all(wifi_xtra_result_all) diff --git a/acts/tests/google/gnss/GnssSanityTest.py b/acts/tests/google/gnss/GnssSanityTest.py deleted file mode 100644 index 28c2ccfa6d..0000000000 --- a/acts/tests/google/gnss/GnssSanityTest.py +++ /dev/null @@ -1,938 +0,0 @@ -#!/usr/bin/env python3.5 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -import time -import os -import re -import fnmatch -from multiprocessing import Process - -from acts import utils -from acts import asserts -from acts import signals -from acts.base_test import BaseTestClass -from acts.test_decorators import test_tracker_info -from acts.test_utils.wifi import wifi_test_utils as wutils -from acts.test_utils.tel import tel_test_utils as tutils -from acts.test_utils.gnss import gnss_test_utils as gutils -from acts.utils import get_current_epoch_time -from acts.utils import unzip_maintain_permissions -from acts.utils import force_airplane_mode -from acts.test_utils.wifi.wifi_test_utils import wifi_toggle_state -from acts.test_utils.tel.tel_test_utils import flash_radio -from acts.test_utils.tel.tel_test_utils import verify_internet_connection -from acts.test_utils.tel.tel_test_utils import abort_all_tests -from acts.test_utils.tel.tel_test_utils import stop_qxdm_logger -from acts.test_utils.tel.tel_test_utils import check_call_state_connected_by_adb -from acts.test_utils.tel.tel_test_utils import initiate_call -from acts.test_utils.tel.tel_test_utils import hangup_call -from acts.test_utils.tel.tel_test_utils import http_file_download_by_sl4a -from acts.test_utils.tel.tel_test_utils import start_qxdm_logger -from acts.test_utils.tel.tel_test_utils import trigger_modem_crash -from acts.test_utils.gnss.gnss_test_utils import get_baseband_and_gms_version -from acts.test_utils.gnss.gnss_test_utils import set_attenuator_gnss_signal -from acts.test_utils.gnss.gnss_test_utils import _init_device -from acts.test_utils.gnss.gnss_test_utils import check_location_service -from acts.test_utils.gnss.gnss_test_utils import clear_logd_gnss_qxdm_log -from acts.test_utils.gnss.gnss_test_utils import set_mobile_data -from acts.test_utils.gnss.gnss_test_utils import set_wifi_and_bt_scanning -from acts.test_utils.gnss.gnss_test_utils import get_gnss_qxdm_log -from acts.test_utils.gnss.gnss_test_utils import remount_device -from acts.test_utils.gnss.gnss_test_utils import reboot -from acts.test_utils.gnss.gnss_test_utils import check_network_location -from acts.test_utils.gnss.gnss_test_utils import launch_google_map -from acts.test_utils.gnss.gnss_test_utils import check_location_api -from acts.test_utils.gnss.gnss_test_utils import set_battery_saver_mode -from acts.test_utils.gnss.gnss_test_utils import kill_xtra_daemon -from acts.test_utils.gnss.gnss_test_utils import start_gnss_by_gtw_gpstool -from acts.test_utils.gnss.gnss_test_utils import process_gnss_by_gtw_gpstool -from acts.test_utils.gnss.gnss_test_utils import start_ttff_by_gtw_gpstool -from acts.test_utils.gnss.gnss_test_utils import process_ttff_by_gtw_gpstool -from acts.test_utils.gnss.gnss_test_utils import check_ttff_data -from acts.test_utils.gnss.gnss_test_utils import start_youtube_video -from acts.test_utils.gnss.gnss_test_utils import fastboot_factory_reset -from acts.test_utils.gnss.gnss_test_utils import gnss_trigger_modem_ssr -from acts.test_utils.gnss.gnss_test_utils import disable_supl_mode -from acts.test_utils.gnss.gnss_test_utils import connect_to_wifi_network -from acts.test_utils.gnss.gnss_test_utils import check_xtra_download -from acts.test_utils.gnss.gnss_test_utils import gnss_tracking_via_gtw_gpstool -from acts.test_utils.gnss.gnss_test_utils import parse_gtw_gpstool_log -from acts.test_utils.gnss.gnss_test_utils import enable_supl_mode -from acts.test_utils.gnss.gnss_test_utils import start_toggle_gnss_by_gtw_gpstool - - -class GnssSanityTest(BaseTestClass): - """ GNSS Function Sanity Tests""" - def setup_class(self): - super().setup_class() - self.ad = self.android_devices[0] - req_params = ["pixel_lab_network", "standalone_cs_criteria", - "supl_cs_criteria", "xtra_ws_criteria", - "xtra_cs_criteria", "weak_signal_supl_cs_criteria", - "weak_signal_xtra_ws_criteria", - "weak_signal_xtra_cs_criteria", - "default_gnss_signal_attenuation", - "weak_gnss_signal_attenuation", - "no_gnss_signal_attenuation", "gnss_init_error_list", - "gnss_init_error_whitelist", "pixel_lab_location", - "legacy_wifi_xtra_cs_criteria", "legacy_projects", - "qdsp6m_path"] - self.unpack_userparams(req_param_names=req_params) - # create hashmap for SSID - self.ssid_map = {} - for network in self.pixel_lab_network: - SSID = network['SSID'] - self.ssid_map[SSID] = network - if self.ad.model in self.legacy_projects: - self.wifi_xtra_cs_criteria = self.legacy_wifi_xtra_cs_criteria - else: - self.wifi_xtra_cs_criteria = self.xtra_cs_criteria - self.flash_new_radio_or_mbn() - set_attenuator_gnss_signal(self.ad, self.attenuators, - self.default_gnss_signal_attenuation) - _init_device(self.ad) - - def setup_test(self): - get_baseband_and_gms_version(self.ad) - clear_logd_gnss_qxdm_log(self.ad) - set_attenuator_gnss_signal(self.ad, self.attenuators, - self.default_gnss_signal_attenuation) - if not verify_internet_connection(self.ad.log, self.ad, retries=3, - expected_state=True): - raise signals.TestFailure("Fail to connect to LTE network.") - - def teardown_test(self): - stop_qxdm_logger(self.ad) - if check_call_state_connected_by_adb(self.ad): - hangup_call(self.ad.log, self.ad) - if int(self.ad.adb.shell("settings get global airplane_mode_on")) != 0: - self.ad.log.info("Force airplane mode off") - force_airplane_mode(self.ad, False) - if self.ad.droid.wifiCheckState(): - wifi_toggle_state(self.ad, False) - if int(self.ad.adb.shell("settings get global mobile_data")) != 1: - set_mobile_data(self.ad, True) - if int(self.ad.adb.shell( - "settings get global wifi_scan_always_enabled")) != 1: - set_wifi_and_bt_scanning(self.ad, True) - set_attenuator_gnss_signal(self.ad, self.attenuators, - self.default_gnss_signal_attenuation) - - def on_pass(self, test_name, begin_time): - self.ad.take_bug_report(test_name, begin_time) - get_gnss_qxdm_log(self.ad, self.qdsp6m_path) - - def on_fail(self, test_name, begin_time): - self.ad.take_bug_report(test_name, begin_time) - get_gnss_qxdm_log(self.ad, self.qdsp6m_path) - - def flash_new_radio_or_mbn(self): - paths = {} - path = self.user_params.get("radio_image") - if isinstance(path, list): - path = path[0] - if "dev/null" in path: - self.ad.log.info("Radio image path is not defined in Test flag.") - return False - for path_key in os.listdir(path): - if fnmatch.fnmatch(path_key, "*.img"): - paths["radio_image"] = os.path.join(path, path_key) - os.system("chmod -R 777 %s" % paths["radio_image"]) - self.ad.log.info("radio_image = %s" % paths["radio_image"]) - if fnmatch.fnmatch(path_key, "*.zip"): - zip_path = os.path.join(path, path_key) - self.ad.log.info("Unzip %s", zip_path) - dest_path = os.path.join(path, "mbn") - unzip_maintain_permissions(zip_path, dest_path) - paths["mbn_path"] = dest_path - os.system("chmod -R 777 %s" % paths["mbn_path"]) - self.ad.log.info("mbn_path = %s" % paths["mbn_path"]) - self.ad.log.info(os.listdir(paths["mbn_path"])) - if not paths.get("radio_image"): - self.ad.log.info("No radio image is provided on X20. " - "Skip flashing radio step.") - return False - else: - get_baseband_and_gms_version(self.ad, "Before flash radio") - flash_radio(self.ad, paths["radio_image"]) - get_baseband_and_gms_version(self.ad, "After flash radio") - if not paths.get("mbn_path"): - self.ad.log.info("No need to push mbn files") - return False - else: - try: - mcfg_ver = self.ad.adb.shell( - "cat /vendor/rfs/msm/mpss/readonly/vendor/mbn/mcfg.version") - if mcfg_ver: - self.ad.log.info("Before push mcfg, mcfg.version = %s", - mcfg_ver) - else: - self.ad.log.info("There is no mcfg.version before push, " - "unmatching device") - return False - except: - self.ad.log.info("There is no mcfg.version before push, " - "unmatching device") - return False - get_baseband_and_gms_version(self.ad, "Before push mcfg") - try: - remount_device(self.ad) - cmd = "%s %s" % (paths["mbn_path"]+"/.", - "/vendor/rfs/msm/mpss/readonly/vendor/mbn/") - out = self.ad.adb.push(cmd) - self.ad.log.info(out) - reboot(self.ad) - except Exception as e: - self.ad.log.error("Push mbn files error %s", e) - return False - get_baseband_and_gms_version(self.ad, "After push mcfg") - try: - new_mcfg_ver = self.ad.adb.shell( - "cat /vendor/rfs/msm/mpss/readonly/vendor/mbn/mcfg.version") - if new_mcfg_ver: - self.ad.log.info("New mcfg.version = %s", new_mcfg_ver) - if new_mcfg_ver == mcfg_ver: - self.ad.log.error("mcfg.version is the same before and " - "after push") - return True - else: - self.ad.log.error("Unable to get new mcfg.version") - return False - except Exception as e: - self.ad.log.error("cat mcfg.version with error %s", e) - return False - - """ Test Cases """ - - @test_tracker_info(uuid="ab859f2a-2c95-4d15-bb7f-bd0e3278340f") - def test_gnss_one_hour_tracking(self): - """Verify GNSS tracking performance of signal strength and position - error. - - Steps: - 1. Launch GTW_GPSTool. - 2. GNSS tracking for 60 minutes. - - Expected Results: - DUT could finish 60 minutes test and output track data. - """ - start_qxdm_logger(self.ad, get_current_epoch_time()) - gnss_tracking_via_gtw_gpstool(self.ad, self.standalone_cs_criteria, - type="gnss", testtime=60) - parse_gtw_gpstool_log(self.ad, self.pixel_lab_location, type="gnss") - - @test_tracker_info(uuid="499d2091-640a-4735-9c58-de67370e4421") - def test_gnss_init_error(self): - """Check if there is any GNSS initialization error after reboot. - - Steps: - 1. Reboot DUT. - 2. Check logcat if the following error pattern shows up. - "E LocSvc.*", ".*avc.*denied.*u:r:location:s0", - ".*avc.*denied.*u:r:hal_gnss_qti:s0" - - Expected Results: - There should be no GNSS initialization error after reboot. - """ - error_mismatch = True - for attr in self.gnss_init_error_list: - error = self.ad.adb.shell("logcat -d | grep -E '%s'" % attr) - if error: - for whitelist in self.gnss_init_error_whitelist: - if whitelist in error: - error = re.sub(".*"+whitelist+".*\n?", "", error) - self.ad.log.info("\"%s\" is white-listed and removed " - "from error." % whitelist) - if error: - error_mismatch = False - self.ad.log.error("\n%s" % error) - else: - self.ad.log.info("NO \"%s\" initialization error found." % attr) - asserts.assert_true(error_mismatch, "Error message found after GNSS " - "init") - - @test_tracker_info(uuid="ff318483-411c-411a-8b1a-422bd54f4a3f") - def test_supl_capabilities(self): - """Verify SUPL capabilities. - - Steps: - 1. Root DUT. - 2. Check SUPL capabilities. - - Expected Results: - CAPABILITIES=0x37 which supports MSA + MSB. - """ - capabilities_state = str(self.ad.adb.shell("cat vendor/etc/gps.conf | " - "grep CAPABILITIES")) - self.ad.log.info("SUPL capabilities - %s" % capabilities_state) - asserts.assert_true(capabilities_state == "CAPABILITIES=0x37", - "Wrong default SUPL capabilities is set") - - @test_tracker_info(uuid="dcae6979-ddb4-4cad-9d14-fbdd9439cf42") - def test_sap_valid_modes(self): - """Verify SAP Valid Modes. - - Steps: - 1. Root DUT. - 2. Check SAP Valid Modes. - - Expected Results: - SAP=PREMIUM - """ - sap_state = str(self.ad.adb.shell("cat vendor/etc/izat.conf | grep " - "SAP=")) - self.ad.log.info("SAP Valid Modes - %s" % sap_state) - asserts.assert_true(sap_state == "SAP=PREMIUM", - "Wrong SAP Valid Modes is set") - - @test_tracker_info(uuid="14daaaba-35b4-42d9-8d2c-2a803dd746a6") - def test_network_location_provider_cell(self): - """Verify LocationManagerService API reports cell Network Location. - - Steps: - 1. WiFi scanning and Bluetooth scanning in Location Setting are OFF. - 2. Launch GTW_GPSTool. - 3. Verify whether test devices could report cell Network Location. - 4. Repeat Step 2. to Step 3. for 5 times. - - Expected Results: - Test devices could report cell Network Location. - """ - test_result_all = [] - start_qxdm_logger(self.ad, get_current_epoch_time()) - set_wifi_and_bt_scanning(self.ad, False) - for i in range(1, 6): - test_result = check_network_location( - self.ad, retries=3, location_type="networkLocationType=cell") - test_result_all.append(test_result) - self.ad.log.info("Iteraion %d => %s" % (i, test_result)) - set_wifi_and_bt_scanning(self.ad, True) - asserts.assert_true(all(test_result_all), - "Fail to get networkLocationType=cell") - - @test_tracker_info(uuid="a45bdc7d-29fa-4a1d-ba34-6340b90e308d") - def test_network_location_provider_wifi(self): - """Verify LocationManagerService API reports wifi Network Location. - - Steps: - 1. WiFi scanning and Bluetooth scanning in Location Setting are ON. - 2. Launch GTW_GPSTool. - 3. Verify whether test devices could report wifi Network Location. - 4. Repeat Step 2. to Step 3. for 5 times. - - Expected Results: - Test devices could report wifi Network Location. - """ - test_result_all = [] - start_qxdm_logger(self.ad, get_current_epoch_time()) - set_wifi_and_bt_scanning(self.ad, True) - for i in range(1, 6): - test_result = check_network_location( - self.ad, retries=3, location_type="networkLocationType=wifi") - test_result_all.append(test_result) - self.ad.log.info("Iteraion %d => %s" % (i, test_result)) - asserts.assert_true(all(test_result_all), - "Fail to get networkLocationType=wifi") - - @test_tracker_info(uuid="0919d375-baf2-4fe7-b66b-3f72d386f791") - def test_gmap_location_report_gps_network(self): - """Verify GnssLocationProvider API reports location to Google Map - when GPS and Location Accuracy are on. - - Steps: - 1. GPS and NLP are on. - 2. Launch Google Map. - 3. Verify whether test devices could report location. - 4. Repeat Step 2. to Step 3. for 5 times. - - Expected Results: - Test devices could report location to Google Map. - """ - test_result_all = [] - start_qxdm_logger(self.ad, get_current_epoch_time()) - for i in range(1, 6): - launch_google_map(self.ad) - test_result = check_location_api(self.ad, retries=3) - self.ad.send_keycode("HOME") - test_result_all.append(test_result) - self.ad.log.info("Iteraion %d => %s" % (i, test_result)) - asserts.assert_true(all(test_result_all), "Fail to get location update") - - @test_tracker_info(uuid="513361d2-7d72-41b0-a944-fb259c606b81") - def test_gmap_location_report_gps(self): - """Verify GnssLocationProvider API reports location to Google Map - when GPS is on and Location Accuracy is off. - - Steps: - 1. GPS is on. - 2. Location Accuracy is off. - 3. Launch Google Map. - 4. Verify whether test devices could report location. - 5. Repeat Step 3. to Step 4. for 5 times. - - Expected Results: - Test devices could report location to Google Map. - """ - test_result_all = [] - start_qxdm_logger(self.ad, get_current_epoch_time()) - self.ad.adb.shell("settings put secure location_mode 1") - out = int(self.ad.adb.shell("settings get secure location_mode")) - self.ad.log.info("Modify current Location Mode to %d" % out) - for i in range(1, 6): - launch_google_map(self.ad) - test_result = check_location_api(self.ad, retries=3) - self.ad.send_keycode("HOME") - test_result_all.append(test_result) - self.ad.log.info("Iteraion %d => %s" % (i, test_result)) - check_location_service(self.ad) - asserts.assert_true(all(test_result_all), "Fail to get location update") - - @test_tracker_info(uuid="91a65121-b87d-450d-bd0f-387ade450ab7") - def test_gmap_location_report_battery_saver(self): - """Verify GnssLocationProvider API reports location to Google Map - when Battery Saver is enabled. - - Steps: - 1. GPS and NLP are on. - 2. Enable Battery Saver. - 3. Launch Google Map. - 4. Verify whether test devices could report location. - 5. Repeat Step 3. to Step 4. for 5 times. - 6. Disable Battery Saver. - - Expected Results: - Test devices could report location to Google Map. - """ - test_result_all = [] - start_qxdm_logger(self.ad, get_current_epoch_time()) - set_battery_saver_mode(self.ad, True) - for i in range(1, 6): - launch_google_map(self.ad) - test_result = check_location_api(self.ad, retries=3) - self.ad.send_keycode("HOME") - test_result_all.append(test_result) - self.ad.log.info("Iteraion %d => %s" % (i, test_result)) - set_battery_saver_mode(self.ad, False) - asserts.assert_true(all(test_result_all), "Fail to get location update") - - @test_tracker_info(uuid="60c0aeec-0c8f-4a96-bc6c-05cba1260e73") - def test_supl_ongoing_call(self): - """Verify SUPL functionality during phone call. - - Steps: - 1. Kill XTRA daemon to support SUPL only case. - 2. Initiate call on DUT. - 3. SUPL TTFF Cold Start for 10 iteration. - 4. DUT hang up call. - - Expected Results: - All SUPL TTFF Cold Start results should be less than - supl_cs_criteria. - """ - begin_time = get_current_epoch_time() - start_qxdm_logger(self.ad, begin_time) - kill_xtra_daemon(self.ad) - self.ad.droid.setVoiceCallVolume(25) - initiate_call(self.ad.log, self.ad, "99117") - time.sleep(5) - if not check_call_state_connected_by_adb(self.ad): - raise signals.TestFailure("Call is not connected.") - process_gnss_by_gtw_gpstool(self.ad, self.standalone_cs_criteria) - start_ttff_by_gtw_gpstool(self.ad, ttff_mode="cs", iteration=10) - ttff_data = process_ttff_by_gtw_gpstool(self.ad, begin_time, - self.pixel_lab_location) - result = check_ttff_data(self.ad, ttff_data, ttff_mode="Cold Start", - criteria=self.supl_cs_criteria) - asserts.assert_true(result, "TTFF fails to reach designated criteria") - - @test_tracker_info(uuid="df605509-328f-43e8-b6d8-00635bf701ef") - def test_supl_downloading_files(self): - """Verify SUPL functionality when downloading files. - - Steps: - 1. Kill XTRA daemon to support SUPL only case. - 2. DUT start downloading files by sl4a. - 3. SUPL TTFF Cold Start for 10 iteration. - 4. DUT cancel downloading files. - - Expected Results: - All SUPL TTFF Cold Start results should be within supl_cs_criteria. - """ - begin_time = get_current_epoch_time() - start_qxdm_logger(self.ad, begin_time) - kill_xtra_daemon(self.ad) - download = Process(target=http_file_download_by_sl4a, - args=(self.ad, "https://speed.hetzner.de/10GB.bin", - None, None, True, 3600)) - download.start() - time.sleep(10) - process_gnss_by_gtw_gpstool(self.ad, self.standalone_cs_criteria) - start_ttff_by_gtw_gpstool(self.ad, ttff_mode="cs", iteration=10) - ttff_data = process_ttff_by_gtw_gpstool(self.ad, begin_time, - self.pixel_lab_location) - download.terminate() - time.sleep(3) - result = check_ttff_data(self.ad, ttff_data, ttff_mode="Cold Start", - criteria=self.supl_cs_criteria) - asserts.assert_true(result, "TTFF fails to reach designated criteria") - - @test_tracker_info(uuid="66b9f9d4-1397-4da7-9e55-8b89b1732017") - def test_supl_watching_youtube(self): - """Verify SUPL functionality when watching video on youtube. - - Steps: - 1. Kill XTRA daemon to support SUPL only case. - 2. DUT start watching video on youtube. - 3. SUPL TTFF Cold Start for 10 iteration at the background. - 4. DUT stop watching video on youtube. - - Expected Results: - All SUPL TTFF Cold Start results should be within supl_cs_criteria. - """ - begin_time = get_current_epoch_time() - start_qxdm_logger(self.ad, begin_time) - kill_xtra_daemon(self.ad) - self.ad.droid.setMediaVolume(25) - process_gnss_by_gtw_gpstool(self.ad, self.standalone_cs_criteria) - start_ttff_by_gtw_gpstool(self.ad, ttff_mode="cs", iteration=10) - start_youtube_video(self.ad, - url="https://www.youtube.com/watch?v=AbdVsi1VjQY", - retries=3) - ttff_data = process_ttff_by_gtw_gpstool(self.ad, begin_time, - self.pixel_lab_location) - result = check_ttff_data(self.ad, ttff_data, ttff_mode="Cold Start", - criteria=self.supl_cs_criteria) - asserts.assert_true(result, "TTFF fails to reach designated criteria") - - @test_tracker_info(uuid="a748af8b-e1eb-4ec6-bde3-74bcefa1c680") - def test_supl_modem_ssr(self): - """Verify SUPL functionality after modem silent reboot. - - Steps: - 1. Trigger modem crash by adb. - 2. Wait 1 minute for modem to recover. - 3. SUPL TTFF Cold Start for 3 iteration. - 4. Repeat Step 1. to Step 3. for 5 times. - - Expected Results: - All SUPL TTFF Cold Start results should be within supl_cs_criteria. - """ - supl_ssr_test_result_all = [] - start_qxdm_logger(self.ad, get_current_epoch_time()) - kill_xtra_daemon(self.ad) - for times in range(1, 6): - begin_time = get_current_epoch_time() - gnss_trigger_modem_ssr(self.ad) - if not verify_internet_connection(self.ad.log, self.ad, retries=3, - expected_state=True): - raise signals.TestFailure("Fail to connect to LTE network.") - process_gnss_by_gtw_gpstool(self.ad, self.standalone_cs_criteria) - start_ttff_by_gtw_gpstool(self.ad, ttff_mode="cs", iteration=3) - ttff_data = process_ttff_by_gtw_gpstool(self.ad, begin_time, - self.pixel_lab_location) - supl_ssr_test_result = check_ttff_data( - self.ad, ttff_data, ttff_mode="Cold Start", - criteria=self.supl_cs_criteria) - self.ad.log.info("SUPL after Modem SSR test %d times -> %s" - % (times, supl_ssr_test_result)) - supl_ssr_test_result_all.append(supl_ssr_test_result) - asserts.assert_true(all(supl_ssr_test_result_all), - "TTFF fails to reach designated criteria") - - @test_tracker_info(uuid="01602e65-8ded-4459-8df1-7df70a1bfe8a") - def test_gnss_airplane_mode_on(self): - """Verify Standalone GNSS functionality while airplane mode is on. - - Steps: - 1. Turn on airplane mode. - 2. TTFF Cold Start for 10 iteration. - 3. Turn off airplane mode. - - Expected Results: - All Standalone TTFF Cold Start results should be within - standalone_cs_criteria. - """ - begin_time = get_current_epoch_time() - start_qxdm_logger(self.ad, begin_time) - self.ad.log.info("Turn airplane mode on") - force_airplane_mode(self.ad, True) - process_gnss_by_gtw_gpstool(self.ad, self.standalone_cs_criteria) - start_ttff_by_gtw_gpstool(self.ad, ttff_mode="cs", iteration=10) - ttff_data = process_ttff_by_gtw_gpstool(self.ad, begin_time, - self.pixel_lab_location) - result = check_ttff_data(self.ad, ttff_data, ttff_mode="Cold Start", - criteria=self.standalone_cs_criteria) - asserts.assert_true(result, "TTFF fails to reach designated criteria") - - @test_tracker_info(uuid="23731b0d-cb80-4c79-a877-cfe7c2faa447") - def test_gnss_mobile_data_off(self): - """Verify Standalone GNSS functionality while mobile radio is off. - - Steps: - 1. Disable mobile data. - 2. TTFF Cold Start for 10 iteration. - 3. Enable mobile data. - - Expected Results: - All Standalone TTFF Cold Start results should be within - standalone_cs_criteria. - """ - begin_time = get_current_epoch_time() - start_qxdm_logger(self.ad, begin_time) - kill_xtra_daemon(self.ad) - set_mobile_data(self.ad, False) - process_gnss_by_gtw_gpstool(self.ad, self.standalone_cs_criteria) - start_ttff_by_gtw_gpstool(self.ad, ttff_mode="cs", iteration=10) - ttff_data = process_ttff_by_gtw_gpstool(self.ad, begin_time, - self.pixel_lab_location) - result = check_ttff_data(self.ad, ttff_data, ttff_mode="Cold Start", - criteria=self.standalone_cs_criteria) - asserts.assert_true(result, "TTFF fails to reach designated criteria") - - @test_tracker_info(uuid="085b86a9-0212-4c0f-8ca1-2e467a0a2e6e") - def test_supl_without_gnss_signal(self): - """Verify SUPL functionality after no GNSS signal for awhile. - - Steps: - 1. Get location fixed. - 2 Let device do GNSS tracking for 1 minute. - 3. Set attenuation value to block GNSS signal. - 4. Let DUT stay in no GNSS signal for 5 minutes. - 5. Set attenuation value to regain GNSS signal. - 6. Try to get location reported again. - 7. Repeat Step 1. to Step 6. for 5 times. - - Expected Results: - After setting attenuation value to 10 (GPS signal regain), - DUT could get location fixed again. - """ - supl_no_gnss_signal_all = [] - start_qxdm_logger(self.ad, get_current_epoch_time()) - for times in range(1, 6): - process_gnss_by_gtw_gpstool(self.ad, self.standalone_cs_criteria) - self.ad.log.info("Let device do GNSS tracking for 1 minute.") - time.sleep(60) - set_attenuator_gnss_signal(self.ad, self.attenuators, - self.no_gnss_signal_attenuation) - self.ad.log.info("Let device stay in no GNSS signal for 5 minutes.") - time.sleep(300) - set_attenuator_gnss_signal(self.ad, self.attenuators, - self.default_gnss_signal_attenuation) - supl_no_gnss_signal = check_location_api(self.ad, retries=3) - start_gnss_by_gtw_gpstool(self.ad, False) - self.ad.log.info("SUPL without GNSS signal test %d times -> %s" - % (times, supl_no_gnss_signal)) - supl_no_gnss_signal_all.append(supl_no_gnss_signal) - asserts.assert_true(all(supl_no_gnss_signal_all), - "Fail to get location update") - - @test_tracker_info(uuid="3ff2f2fa-42d8-47fa-91de-060816cca9df") - def test_supl_weak_gnss_signal(self): - """Verify SUPL TTFF functionality under weak GNSS signal. - - Steps: - 1. Set attenuation value to weak GNSS signal. - 2. Kill XTRA daemon to support SUPL only case. - 3. SUPL TTFF Cold Start for 10 iteration. - - Expected Results: - All SUPL TTFF Cold Start results should be less than - weak_signal_supl_cs_criteria. - """ - set_attenuator_gnss_signal(self.ad, self.attenuators, - self.weak_gnss_signal_attenuation) - begin_time = get_current_epoch_time() - start_qxdm_logger(self.ad, begin_time) - kill_xtra_daemon(self.ad) - process_gnss_by_gtw_gpstool(self.ad, self.standalone_cs_criteria) - start_ttff_by_gtw_gpstool(self.ad, ttff_mode="cs", iteration=10) - ttff_data = process_ttff_by_gtw_gpstool(self.ad, begin_time, - self.pixel_lab_location) - result = check_ttff_data(self.ad, ttff_data, ttff_mode="Cold Start", - criteria=self.weak_signal_supl_cs_criteria) - asserts.assert_true(result, "TTFF fails to reach designated criteria") - - @test_tracker_info(uuid="4ad4a371-949a-42e1-b1f4-628c79fa8ddc") - def test_supl_factory_reset(self): - """Verify SUPL functionality after factory reset. - - Steps: - 1. Factory reset device. - 2. Kill XTRA daemon to support SUPL only case. - 3. SUPL TTFF Cold Start for 10 iteration. - 4. Repeat Step 1. to Step 3. for 3 times. - - Expected Results: - All SUPL TTFF Cold Start results should be within supl_cs_criteria. - """ - for times in range(1, 4): - fastboot_factory_reset(self.ad) - self.ad.unlock_screen(password=None) - _init_device(self.ad) - begin_time = get_current_epoch_time() - start_qxdm_logger(self.ad, begin_time) - kill_xtra_daemon(self.ad) - process_gnss_by_gtw_gpstool(self.ad, self.standalone_cs_criteria) - start_ttff_by_gtw_gpstool(self.ad, ttff_mode="cs", iteration=10) - ttff_data = process_ttff_by_gtw_gpstool(self.ad, begin_time, - self.pixel_lab_location) - if not check_ttff_data(self.ad, ttff_data, ttff_mode="Cold Start", - criteria=self.supl_cs_criteria): - raise signals.TestFailure("SUPL after Factory Reset test %d " - "times -> FAIL" % times) - self.ad.log.info("SUPL after Factory Reset test %d times -> " - "PASS" % times) - - @test_tracker_info(uuid="ea3096cf-4f72-4e91-bfb3-0bcbfe865ab4") - def test_xtra_ttff_mobile_data(self): - """Verify XTRA TTFF functionality with mobile data. - - Steps: - 1. Disable SUPL mode. - 2. TTFF Warm Start for 10 iteration. - 3. TTFF Cold Start for 10 iteration. - - Expected Results: - XTRA TTFF Warm Start results should be within xtra_ws_criteria. - XTRA TTFF Cold Start results should be within xtra_cs_criteria. - """ - xtra_result = [] - disable_supl_mode(self.ad) - begin_time = get_current_epoch_time() - start_qxdm_logger(self.ad, begin_time) - process_gnss_by_gtw_gpstool(self.ad, self.standalone_cs_criteria) - start_ttff_by_gtw_gpstool(self.ad, ttff_mode="ws", iteration=10) - ws_ttff_data = process_ttff_by_gtw_gpstool(self.ad, begin_time, - self.pixel_lab_location) - ws_result = check_ttff_data(self.ad, - ws_ttff_data, - ttff_mode="Warm Start", - criteria=self.xtra_ws_criteria) - xtra_result.append(ws_result) - begin_time = get_current_epoch_time() - process_gnss_by_gtw_gpstool(self.ad, self.standalone_cs_criteria) - start_ttff_by_gtw_gpstool(self.ad, ttff_mode="cs", iteration=10) - cs_ttff_data = process_ttff_by_gtw_gpstool(self.ad, begin_time, - self.pixel_lab_location) - cs_result = check_ttff_data(self.ad, - cs_ttff_data, - ttff_mode="Cold Start", - criteria=self.xtra_cs_criteria) - xtra_result.append(cs_result) - asserts.assert_true(all(xtra_result), - "TTFF fails to reach designated criteria") - - @test_tracker_info(uuid="c91ba740-220e-41de-81e5-43af31f63907") - def test_xtra_ttff_weak_gnss_signal(self): - """Verify XTRA TTFF functionality under weak GNSS signal. - - Steps: - 1. Set attenuation value to weak GNSS signal. - 2. TTFF Warm Start for 10 iteration. - 3. TTFF Cold Start for 10 iteration. - - Expected Results: - XTRA TTFF Warm Start results should be within - weak_signal_xtra_ws_criteria. - XTRA TTFF Cold Start results should be within - weak_signal_xtra_cs_criteria. - """ - xtra_result = [] - disable_supl_mode(self.ad) - set_attenuator_gnss_signal(self.ad, self.attenuators, - self.weak_gnss_signal_attenuation) - begin_time = get_current_epoch_time() - start_qxdm_logger(self.ad, begin_time) - process_gnss_by_gtw_gpstool(self.ad, self.standalone_cs_criteria) - start_ttff_by_gtw_gpstool(self.ad, ttff_mode="ws", iteration=10) - ws_ttff_data = process_ttff_by_gtw_gpstool(self.ad, begin_time, - self.pixel_lab_location) - ws_result = check_ttff_data(self.ad, - ws_ttff_data, - ttff_mode="Warm Start", - criteria=self.weak_signal_xtra_ws_criteria) - xtra_result.append(ws_result) - begin_time = get_current_epoch_time() - process_gnss_by_gtw_gpstool(self.ad, self.standalone_cs_criteria) - start_ttff_by_gtw_gpstool(self.ad, ttff_mode="cs", iteration=10) - cs_ttff_data = process_ttff_by_gtw_gpstool(self.ad, begin_time, - self.pixel_lab_location) - cs_result = check_ttff_data(self.ad, - cs_ttff_data, - ttff_mode="Cold Start", - criteria=self.weak_signal_xtra_cs_criteria) - xtra_result.append(cs_result) - asserts.assert_true(all(xtra_result), - "TTFF fails to reach designated criteria") - - @test_tracker_info(uuid="beeb3454-bcb2-451e-83fb-26289e89b515") - def test_xtra_ttff_wifi(self): - """Verify XTRA TTFF functionality with WiFi. - - Steps: - 1. Disable SUPL mode and turn airplane mode on. - 2. Connect to WiFi. - 3. TTFF Warm Start for 10 iteration. - 4. TTFF Cold Start for 10 iteration. - - Expected Results: - XTRA TTFF Warm Start results should be within xtra_ws_criteria. - XTRA TTFF Cold Start results should be within xtra_cs_criteria. - """ - xtra_result = [] - disable_supl_mode(self.ad) - begin_time = get_current_epoch_time() - start_qxdm_logger(self.ad, begin_time) - self.ad.log.info("Turn airplane mode on") - force_airplane_mode(self.ad, True) - wifi_toggle_state(self.ad, True) - connect_to_wifi_network( - self.ad, self.ssid_map[self.pixel_lab_network[0]["SSID"]]) - process_gnss_by_gtw_gpstool(self.ad, self.standalone_cs_criteria) - start_ttff_by_gtw_gpstool(self.ad, ttff_mode="ws", iteration=10) - ws_ttff_data = process_ttff_by_gtw_gpstool(self.ad, begin_time, - self.pixel_lab_location) - ws_result = check_ttff_data(self.ad, - ws_ttff_data, - ttff_mode="Warm Start", - criteria=self.xtra_ws_criteria) - xtra_result.append(ws_result) - begin_time = get_current_epoch_time() - process_gnss_by_gtw_gpstool(self.ad, self.standalone_cs_criteria) - start_ttff_by_gtw_gpstool(self.ad, ttff_mode="cs", iteration=10) - cs_ttff_data = process_ttff_by_gtw_gpstool(self.ad, begin_time, - self.pixel_lab_location) - cs_result = check_ttff_data(self.ad, - cs_ttff_data, - ttff_mode="Cold Start", - criteria=self.wifi_xtra_cs_criteria) - xtra_result.append(cs_result) - asserts.assert_true(all(xtra_result), - "TTFF fails to reach designated criteria") - - @test_tracker_info(uuid="1745b8a4-5925-4aa0-809a-1b17e848dc9c") - def test_xtra_modem_ssr(self): - """Verify XTRA functionality after modem silent reboot. - - Steps: - 1. Trigger modem crash by adb. - 2. Wait 1 minute for modem to recover. - 3. XTRA TTFF Cold Start for 3 iteration. - 4. Repeat Step1. to Step 3. for 5 times. - - Expected Results: - All XTRA TTFF Cold Start results should be within xtra_cs_criteria. - """ - disable_supl_mode(self.ad) - xtra_ssr_test_result_all = [] - start_qxdm_logger(self.ad, get_current_epoch_time()) - for times in range(1, 6): - begin_time = get_current_epoch_time() - gnss_trigger_modem_ssr(self.ad) - if not verify_internet_connection(self.ad.log, self.ad, retries=3, - expected_state=True): - raise signals.TestFailure("Fail to connect to LTE network.") - process_gnss_by_gtw_gpstool(self.ad, self.standalone_cs_criteria) - start_ttff_by_gtw_gpstool(self.ad, ttff_mode="cs", iteration=3) - ttff_data = process_ttff_by_gtw_gpstool(self.ad, begin_time, - self.pixel_lab_location) - xtra_ssr_test_result = check_ttff_data( - self.ad, ttff_data, ttff_mode="Cold Start", - criteria=self.xtra_cs_criteria) - self.ad.log.info("XTRA after Modem SSR test %d times -> %s" - % (times, xtra_ssr_test_result)) - xtra_ssr_test_result_all.append(xtra_ssr_test_result) - asserts.assert_true(all(xtra_ssr_test_result_all), - "TTFF fails to reach designated criteria") - - @test_tracker_info(uuid="4d6e81e1-3abb-4e03-b732-7b6b497a2258") - def test_xtra_download_mobile_data(self): - """Verify XTRA data could be downloaded via mobile data. - - Steps: - 1. Delete all GNSS aiding data. - 2. Get location fixed. - 3. Verify whether XTRA is downloaded and injected. - 4. Repeat Step 1. to Step 3. for 5 times. - - Expected Results: - XTRA data is properly downloaded and injected via mobile data. - """ - mobile_xtra_result_all = [] - disable_supl_mode(self.ad) - start_qxdm_logger(self.ad, get_current_epoch_time()) - for i in range(1, 6): - begin_time = get_current_epoch_time() - process_gnss_by_gtw_gpstool(self.ad, self.standalone_cs_criteria) - time.sleep(5) - start_gnss_by_gtw_gpstool(self.ad, False) - mobile_xtra_result = check_xtra_download(self.ad, begin_time) - self.ad.log.info("Iteration %d => %s" % (i, mobile_xtra_result)) - mobile_xtra_result_all.append(mobile_xtra_result) - asserts.assert_true(all(mobile_xtra_result_all), - "Fail to Download XTRA file") - - @test_tracker_info(uuid="625ac665-1446-4406-a722-e6a19645222c") - def test_xtra_download_wifi(self): - """Verify XTRA data could be downloaded via WiFi. - - Steps: - 1. Connect to WiFi. - 2. Delete all GNSS aiding data. - 3. Get location fixed. - 4. Verify whether XTRA is downloaded and injected. - 5. Repeat Step 2. to Step 4. for 5 times. - - Expected Results: - XTRA data is properly downloaded and injected via WiFi. - """ - wifi_xtra_result_all = [] - disable_supl_mode(self.ad) - start_qxdm_logger(self.ad, get_current_epoch_time()) - self.ad.log.info("Turn airplane mode on") - force_airplane_mode(self.ad, True) - wifi_toggle_state(self.ad, True) - connect_to_wifi_network( - self.ad, self.ssid_map[self.pixel_lab_network[0]["SSID"]]) - for i in range(1, 6): - begin_time = get_current_epoch_time() - process_gnss_by_gtw_gpstool(self.ad, self.standalone_cs_criteria) - time.sleep(5) - start_gnss_by_gtw_gpstool(self.ad, False) - wifi_xtra_result = check_xtra_download(self.ad, begin_time) - wifi_xtra_result_all.append(wifi_xtra_result) - self.ad.log.info("Iteraion %d => %s" % (i, wifi_xtra_result)) - asserts.assert_true(all(wifi_xtra_result_all), - "Fail to Download XTRA file") - - @test_tracker_info(uuid="2a9f2890-3c0a-48b8-821d-bf97e36355e9") - def test_quick_toggle_gnss_state(self): - """Verify GNSS can still work properly after quick toggle GNSS off - to on. - - Steps: - 1. Launch GTW_GPSTool. - 2. Go to "Advance setting" - 3. Set Cycle = 10 & Time-out = 60 - 4. Go to "Toggle GPS" tab - 5. Execute "Start" - - Expected Results: - No single Timeout is seen in 10 iterations. - """ - enable_supl_mode(self.ad) - reboot(self.ad) - start_qxdm_logger(self.ad, get_current_epoch_time()) - start_toggle_gnss_by_gtw_gpstool(self.ad, iteration=10) diff --git a/acts/tests/google/gnss/GnssSimInventoryTest.py b/acts/tests/google/gnss/GnssSimInventoryTest.py deleted file mode 100644 index 2d966fbbd1..0000000000 --- a/acts/tests/google/gnss/GnssSimInventoryTest.py +++ /dev/null @@ -1,43 +0,0 @@ -import time -from acts import utils -from acts import signals -from acts.base_test import BaseTestClass -from acts.test_utils.tel.tel_defines import EventSmsSentSuccess -from acts.test_utils.tel.tel_test_utils import get_iccid_by_adb -from acts.test_utils.tel.tel_test_utils import is_sim_ready_by_adb - - -class GnssSimInventoryTest(BaseTestClass): - """ GNSS SIM Inventory Tests""" - def setup_class(self): - super().setup_class() - self.ad = self.android_devices[0] - req_params = ["sim_inventory_recipient", "sim_inventory_ldap"] - self.unpack_userparams(req_param_names=req_params) - - def check_device_status(self): - if int(self.ad.adb.shell("settings get global airplane_mode_on")) != 0: - self.ad.log.info("Force airplane mode off") - utils.force_airplane_mode(self.ad, False) - if not is_sim_ready_by_adb(self.ad.log, self.ad): - raise signals.TestFailure("SIM card is not loaded and ready.") - - def test_gnss_sim_inventory(self): - self.check_device_status() - imsi = str(self.ad.adb.shell("service call iphonesubinfo 7")) - if not imsi: - raise signals.TestFailure("Couldn't get imsi") - iccid = str(get_iccid_by_adb(self.ad)) - if not iccid: - raise signals.TestFailure("Couldn't get iccid") - sms_message = "imsi: %s, iccid: %s, ldap: %s, model: %s, sn: %s" % \ - (imsi, iccid, self.sim_inventory_ldap, self.ad.model, - self.ad.serial) - self.ad.log.info(sms_message) - try: - self.ad.log.info("Send SMS by SL4A.") - self.ad.droid.smsSendTextMessage(self.sim_inventory_recipient, - sms_message, True) - self.ad.ed.pop_event(EventSmsSentSuccess, 10) - except Exception as e: - raise signals.TestFailure(e) diff --git a/acts/tests/google/native/NativeTest.py b/acts/tests/google/native/NativeTest.py index 90ebceb28c..be5fd2a7e9 100644 --- a/acts/tests/google/native/NativeTest.py +++ b/acts/tests/google/native/NativeTest.py @@ -24,6 +24,7 @@ class NativeTest(BaseTestClass): def __init__(self, controllers): BaseTestClass.__init__(self, controllers) + self.droid = self.native_android_devices[0].droid self.tests = ( "test_bool_return_true", "test_bool_return_false", @@ -32,10 +33,6 @@ class NativeTest(BaseTestClass): "test_max_param_size", ) - def setup_class(self): - super().setup_class() - self.droid = self.native_android_devices[0].droid - def test_bool_return_true(self): return self.droid.TestBoolTrueReturn() diff --git a/acts/tests/google/native/bt/BtNativeTest.py b/acts/tests/google/native/bt/BtNativeTest.py index 55674bcb42..5315e34394 100644 --- a/acts/tests/google/native/bt/BtNativeTest.py +++ b/acts/tests/google/native/bt/BtNativeTest.py @@ -1,3 +1,4 @@ +mport time from acts.base_test import BaseTestClass from acts.controllers import native_android_device from acts.test_utils.bt.native_bt_test_utils import setup_native_bluetooth @@ -9,15 +10,13 @@ class BtNativeTest(BaseTestClass): def __init__(self, controllers): BaseTestClass.__init__(self, controllers) + setup_native_bluetooth(self.native_android_devices) + self.droid = self.native_android_devices[0].droid self.tests = ( "test_binder_get_name", "test_binder_get_name_invalid_parameter", "test_binder_set_name_get_name", "test_binder_get_address", ) - - def setup_class(self): - setup_native_bluetooth(self.native_android_devices) - self.droid = self.native_android_devices[0].droid if len(self.native_android_devices) > 1: self.droid1 = self.native_android_devices[1].droid self.tests = self.tests + ("test_two_devices_set_get_name", ) diff --git a/acts/tests/google/net/ApfCountersTest.py b/acts/tests/google/net/ApfCountersTest.py index b8df3ede57..abee138fb5 100755 --- a/acts/tests/google/net/ApfCountersTest.py +++ b/acts/tests/google/net/ApfCountersTest.py @@ -15,9 +15,9 @@ from acts import asserts from acts.test_decorators import test_tracker_info -from acts.test_utils.net.net_test_utils import start_tcpdump -from acts.test_utils.net.net_test_utils import stop_tcpdump from acts.test_utils.wifi.WifiBaseTest import WifiBaseTest +from acts.test_utils.tel.tel_test_utils import start_adb_tcpdump +from acts.test_utils.tel.tel_test_utils import stop_adb_tcpdump from acts.test_utils.wifi import wifi_test_utils as wutils import acts.base_test @@ -74,10 +74,16 @@ class ApfCountersTest(WifiBaseTest): self.tcpdump_pid = None def setup_test(self): - self.tcpdump_pid = start_tcpdump(self.dut, self.test_name) + self.tcpdump_pid = start_adb_tcpdump(self.dut, + self.test_name, + mask='all') def teardown_test(self): - stop_tcpdump(self.dut, self.tcpdump_pid, self.test_name) + if self.tcpdump_pid: + stop_adb_tcpdump(self.dut, + self.tcpdump_pid, + pull_tcpdump=True) + self.tcpdump_pid = None def on_fail(self, test_name, begin_time): self.dut.take_bug_report(test_name, begin_time) @@ -171,7 +177,6 @@ class ApfCountersTest(WifiBaseTest): 4. Verify internet connectivity """ pkt_num = 400 - rtt_list = random.sample(range(10, 10000), pkt_num) # get mac address of the dut ap = self.access_points[0] @@ -184,7 +189,8 @@ class ApfCountersTest(WifiBaseTest): ra_count = self._get_icmp6intype134() # send RA with differnt re-trans time - for rtt in rtt_list: + for _ in range(pkt_num): + rtt=random.randint(10, 10000) ap.send_ra('wlan1', mac_addr, 0, 1, rtt=rtt) # get the new RA count diff --git a/acts/tests/google/net/CoreNetworkingOTATest.py b/acts/tests/google/net/CoreNetworkingOTATest.py index 5b350f88f9..2444971a87 100755 --- a/acts/tests/google/net/CoreNetworkingOTATest.py +++ b/acts/tests/google/net/CoreNetworkingOTATest.py @@ -84,7 +84,7 @@ class CoreNetworkingOTATest(BaseTestClass): for ad in self.android_devices: ota_updater.update(ad) except Exception as err: - raise signals.TestAbortClass( + raise signals.TestSkipClass( "Failed up apply OTA update. Aborting tests") def on_fail(self, test_name, begin_time): diff --git a/acts/tests/google/net/DataCostTest.py b/acts/tests/google/net/DataCostTest.py index 2b7bd50ac6..fb63c7a36b 100644 --- a/acts/tests/google/net/DataCostTest.py +++ b/acts/tests/google/net/DataCostTest.py @@ -22,7 +22,6 @@ import time from acts import asserts from acts import base_test -from acts import signals from acts import test_runner from acts.controllers import adb from acts.test_decorators import test_tracker_info @@ -37,7 +36,6 @@ from acts.test_utils.net.connectivity_const import MULTIPATH_PREFERENCE_PERFORMA DOWNLOAD_PATH = "/sdcard/Download/" RELIABLE = RELIABILITY | HANDOVER -TIMEOUT = 6 class DataCostTest(base_test.BaseTestClass): """ Tests for Wifi Tethering """ @@ -159,16 +157,8 @@ class DataCostTest(base_test.BaseTestClass): sub_id, int((total_pre + 5) * 1000.0 * 1000.0)) # verify multipath preference values - curr_time = time.time() - while time.time() < curr_time + TIMEOUT: - try: - self._verify_multipath_preferences( - ad, RELIABLE, NONE, wifi_network, cell_network) - return True - except signals.TestFailure as e: - self.log.debug("%s" % e) - time.sleep(1) - return False + self._verify_multipath_preferences( + ad, RELIABLE, NONE, wifi_network, cell_network) @test_tracker_info(uuid="a2781411-d880-476a-9f40-2c67e0f97db9") def test_multipath_preference_data_download(self): @@ -204,16 +194,8 @@ class DataCostTest(base_test.BaseTestClass): ad.adb.shell("rm -rf %s%s" % (DOWNLOAD_PATH, file_name)) # verify multipath preference values - curr_time = time.time() - while time.time() < curr_time + TIMEOUT: - try: - self._verify_multipath_preferences( - ad, RELIABLE, NONE, wifi_network, cell_network) - return True - except signals.TestFailure as e: - self.log.debug("%s" % e) - time.sleep(1) - return False + self._verify_multipath_preferences( + ad, RELIABLE, NONE, wifi_network, cell_network) # TODO gmoturu@: Need to add tests that use the mobility rig and test when # the WiFi signal is poor and data signal is good. diff --git a/acts/tests/google/net/DhcpServerTest.py b/acts/tests/google/net/DhcpServerTest.py index 6fb6ed4d03..c473b25375 100644 --- a/acts/tests/google/net/DhcpServerTest.py +++ b/acts/tests/google/net/DhcpServerTest.py @@ -1,6 +1,5 @@ from acts import asserts from acts import base_test -from acts import signals from acts.controllers import android_device from acts.test_decorators import test_tracker_info @@ -20,9 +19,6 @@ NETADDR_PREFIX = '192.168.42.' OTHER_NETADDR_PREFIX = '192.168.43.' NETADDR_BROADCAST = '255.255.255.255' SUBNET_BROADCAST = NETADDR_PREFIX + '255' -USB_CHARGE_MODE = 'svc usb setFunctions' -USB_TETHERING_MODE = 'svc usb setFunctions rndis' -DEVICE_IP_ADDRESS = 'ip address' OFFER = 2 @@ -31,6 +27,14 @@ ACK = 5 NAK = 6 +pmc_base_cmd = ( + "am broadcast -a com.android.pmc.action.AUTOPOWER --es PowerAction ") +start_pmc_cmd = ( + "am start -S -n com.android.pmc/com.android.pmc.PMCMainActivity") +pmc_start_usb_tethering_cmd = "%sStartUSBTethering" % pmc_base_cmd +pmc_stop_usb_tethering_cmd = "%sStopUSBTethering" % pmc_base_cmd + + class DhcpServerTest(base_test.BaseTestClass): def setup_class(self): self.dut = self.android_devices[0] @@ -43,6 +47,8 @@ class DhcpServerTest(base_test.BaseTestClass): # Allow using non-67 server ports as long as client uses 68 bind_layers(UDP, BOOTP, dport=CLIENT_PORT) + self.dut.adb.shell(start_pmc_cmd) + self.dut.adb.shell("setprop log.tag.PMC VERBOSE") iflist_before = get_if_list() self._start_usb_tethering(self.dut) self.iface = self._wait_for_new_iface(iflist_before) @@ -92,11 +98,8 @@ class DhcpServerTest(base_test.BaseTestClass): """ self.log.info("Starting USB Tethering") dut.stop_services() - dut.adb.shell(USB_TETHERING_MODE, ignore_status=True) - dut.adb.wait_for_device() - dut.start_services() - if 'rndis' not in dut.adb.shell(DEVICE_IP_ADDRESS): - raise signals.TestFailure('Unable to enable USB tethering.') + dut.adb.shell(pmc_start_usb_tethering_cmd) + self._wait_for_device(self.dut) self.USB_TETHERED = True def _stop_usb_tethering(self, dut): @@ -106,9 +109,8 @@ class DhcpServerTest(base_test.BaseTestClass): 1. dut - ad object """ self.log.info("Stopping USB Tethering") - dut.stop_services() - dut.adb.shell(USB_CHARGE_MODE) - dut.adb.wait_for_device() + dut.adb.shell(pmc_stop_usb_tethering_cmd) + self._wait_for_device(self.dut) dut.start_services() self.USB_TETHERED = False diff --git a/acts/tests/google/net/DnsOverTlsTest.py b/acts/tests/google/net/DnsOverTlsTest.py index 84646d7f9e..8d9fbed7ce 100644 --- a/acts/tests/google/net/DnsOverTlsTest.py +++ b/acts/tests/google/net/DnsOverTlsTest.py @@ -25,15 +25,9 @@ from acts import base_test from acts import test_runner from acts.controllers import adb from acts.test_decorators import test_tracker_info -from acts.test_utils.net import connectivity_const as cconst -from acts.test_utils.net import connectivity_test_utils as cutils from acts.test_utils.net import net_test_utils as nutils from acts.test_utils.net.net_test_utils import start_tcpdump from acts.test_utils.net.net_test_utils import stop_tcpdump -from acts.test_utils.tel import tel_test_utils as tutils -from acts.test_utils.tel.tel_defines import WFC_MODE_DISABLED -from acts.test_utils.tel.tel_test_utils import get_operator_name -from acts.test_utils.tel.tel_test_utils import set_wfc_mode from acts.test_utils.wifi import wifi_test_utils as wutils from scapy.all import TCP @@ -41,8 +35,12 @@ from scapy.all import UDP from scapy.all import rdpcap from scapy.all import Scapy_Exception +DNS_QUAD9 = "dns.quad9.net" +PRIVATE_DNS_MODE_OFF = "off" +PRIVATE_DNS_MODE_OPPORTUNISTIC = "opportunistic" +PRIVATE_DNS_MODE_STRICT = "hostname" RST = 0x04 -SSID = wutils.WifiEnums.SSID_KEY +WLAN = "wlan0" class DnsOverTlsTest(base_test.BaseTestClass): """ Tests for Wifi Tethering """ @@ -51,19 +49,11 @@ class DnsOverTlsTest(base_test.BaseTestClass): """ Setup devices for tethering and unpack params """ self.dut = self.android_devices[0] - self.dut_b = self.android_devices[1] - for ad in self.android_devices: - nutils.verify_lte_data_and_tethering_supported(ad) - set_wfc_mode(self.log, ad, WFC_MODE_DISABLED) - req_params = ("ping_hosts", "ipv4_only_network", "ipv4_ipv6_network",) + nutils.verify_lte_data_and_tethering_supported(self.dut) + req_params = ("wifi_network_with_dns_tls", "wifi_network_no_dns_tls", + "ping_hosts") self.unpack_userparams(req_params) self.tcpdump_pid = None - self.private_dns_servers = [cconst.DNS_GOOGLE, - cconst.DNS_QUAD9, - cconst.DNS_CLOUDFLARE] - - def teardown_test(self): - wutils.reset_wifi(self.dut) def on_fail(self, test_name, begin_time): self.dut.take_bug_report(test_name, begin_time) @@ -99,352 +89,176 @@ class DnsOverTlsTest(base_test.BaseTestClass): asserts.fail("Not a valid pcap file") for pkt in packets: summary = "%s" % pkt.summary() - for host in self.ping_hosts: - host = host.split('.')[-2] - if tls and UDP in pkt and pkt[UDP].dport == 53 and \ - host in summary: - asserts.fail("Found query to port 53: %s" % summary) - elif not tls and TCP in pkt and pkt[TCP].dport == 853 and \ - not pkt[TCP].flags: - asserts.fail("Found query to port 853: %s" % summary) + if tls and UDP in pkt and pkt[UDP].dport == 53 and \ + "connectivitycheck.gstatic.com." not in summary and \ + "www.google.com" not in summary: + asserts.fail("Found query to port 53: %s" % summary) + elif not tls and TCP in pkt and pkt[TCP].dport == 853 and \ + not pkt[TCP].flags: + asserts.fail("Found query to port 853: %s" % summary) def _verify_rst_packets(self, pcap_file): - """ Verify if RST packets are found in the pcap file - - Args: - 1. pcap_file: full path of tcpdump file - """ + """ Verify if RST packets are found in the pcap file """ packets = rdpcap(pcap_file) for pkt in packets: - if TCP in pkt and pkt[TCP].flags == RST and pkt[TCP].dport == 853: + if TCP in pkt and pkt[TCP].flags == RST: asserts.fail("Found RST packets: %s" % pkt.summary()) - def _test_private_dns_mode(self, ad, net, dns_mode, use_tls, hostname=None): - """ Test private DNS mode - - Args: - 1. ad: android device object - 2. net: wifi network to connect to, LTE network if None - 3. dns_mode: private DNS mode - 4. use_tls: if True, the DNS packets should be encrypted - 5. hostname: private DNS hostname to set to - """ - - # set private dns mode - if dns_mode: - cutils.set_private_dns(self.dut, dns_mode, hostname) - + def _test_private_dns_mode(self, network, dns_mode, use_tls, + hostname = None): + """ Test private DNS mode """ # connect to wifi - if net: - wutils.start_wifi_connection_scan_and_ensure_network_found( - self.dut, net[SSID]) - wutils.wifi_connect(self.dut, net) + wutils.reset_wifi(self.dut) + if network: + wutils.wifi_connect(self.dut, network) + time.sleep(1) # wait till lte network becomes active - network = None # start tcpdump on the device self._start_tcp_dump(self.dut) + # set private dns mode + if dns_mode == PRIVATE_DNS_MODE_OFF: + self.dut.droid.setPrivateDnsMode(False) + elif hostname: + self.dut.droid.setPrivateDnsMode(True, hostname) + else: + self.dut.droid.setPrivateDnsMode(True) + mode = self.dut.droid.getPrivateDnsMode() + asserts.assert_true(mode == dns_mode, + "Failed to set private DNS mode to %s" % dns_mode) + time.sleep(2) + # ping hosts should pass for host in self.ping_hosts: self.log.info("Pinging %s" % host) - status = wutils.validate_connection(self.dut, host) - asserts.assert_true(status, "Failed to ping host %s" % host) - self.log.info("Ping successful") + asserts.assert_true(wutils.validate_connection(self.dut, host), + "Failed to ping host %s" % host) # stop tcpdump pcap_file = self._stop_tcp_dump(self.dut) + self.log.info("TCPDUMP file is: %s" % pcap_file) # verify DNS queries self._verify_dns_queries_over_tls(pcap_file, use_tls) - # reset wifi - wutils.reset_wifi(self.dut) - """ Test Cases """ @test_tracker_info(uuid="2957e61c-d333-45fb-9ff9-2250c9c8535a") - def test_private_dns_mode_off_wifi_ipv4_only_network(self): - """ Verify private dns mode off on ipv4 only network + def test_private_dns_mode_off_wifi_no_dns_tls_server(self): + """ Verify private dns mode off Steps: 1. Set private dns mode off - 2. Connect to wifi network. DNS server supports DNS/TLS - 3. Run HTTP ping to amazon.com, facebook.com, netflix.com - 4. Verify ping works to differnt hostnames - 5. Verify that all queries go to port 53 + 2. Connect to wifi network. DNS/TLS server is not set + 3. Verify ping works to differnt hostnames + 4. Verify that all queries go to port 53 """ - self._test_private_dns_mode(self.dut, - self.ipv4_only_network, - cconst.PRIVATE_DNS_MODE_OFF, - False) + self._test_private_dns_mode(self.wifi_network_no_dns_tls, + PRIVATE_DNS_MODE_OFF, False) @test_tracker_info(uuid="ea036d22-25af-4df0-b6cc-0027bc1efbe9") - def test_private_dns_mode_off_wifi_ipv4_ipv6_network(self): - """ Verify private dns mode off on ipv4-ipv6 network + def test_private_dns_mode_off_wifi_with_dns_tls_server(self): + """ Verify private dns mode off Steps: 1. Set private dns mode off - 2. Connect to wifi network. DNS server supports DNS/TLS - 3. Run HTTP ping to amazon.com, facebook.com, netflix.com - 4. Verify ping works to differnt hostnames - 5. Verify that all queries go to port 53 + 2. Connect to wifi network. DNS server is set to 9.9.9.9, 8.8.8.8 + 3. Verify ping works to differnt hostnames + 4. Verify that all queries go to port 53 """ - self._test_private_dns_mode(self.dut, - self.ipv4_ipv6_network, - cconst.PRIVATE_DNS_MODE_OFF, - False) + self._test_private_dns_mode(self.wifi_network_with_dns_tls, + PRIVATE_DNS_MODE_OFF, False) @test_tracker_info(uuid="4227abf4-0a75-4b4d-968c-dfc63052f5db") - def test_private_dns_mode_opportunistic_wifi_ipv4_only_network(self): - """ Verify private dns mode opportunistic on ipv4 only network + def test_private_dns_mode_opportunistic_wifi_no_dns_tls_server(self): + """ Verify private dns opportunistic mode Steps: - 1. Set private dns to opportunistic mode - 2. Connect to wifi network. DNS server supports DNS/TLS - 3. Run HTTP ping to amazon.com, facebook.com, netflix.com - 4. Verify ping works to differnt hostnames - 5. Verify that all queries go to port 853 and encrypted + 1. Set private dns mode to opportunistic + 2. Connect to wifi network. DNS/TLS server is not set + 3. Verify ping works to differnt hostnames + 4. Verify that all queries go to port 53 """ - self._test_private_dns_mode(self.dut, - self.ipv4_only_network, - cconst.PRIVATE_DNS_MODE_OPPORTUNISTIC, - True) + self._test_private_dns_mode(self.wifi_network_no_dns_tls, + PRIVATE_DNS_MODE_OPPORTUNISTIC, False) @test_tracker_info(uuid="0c97cfef-4313-4346-b05b-395de63c5c3f") - def test_private_dns_mode_opportunistic_wifi_ipv4_ipv6_network(self): - """ Verify private dns mode opportunistic on ipv4-ipv6 network + def test_private_dns_mode_opportunistic_wifi_with_dns_tls_server(self): + """ Verify private dns opportunistic mode Steps: - 1. Set private dns to opportunistic mode - 2. Connect to wifi network. DNS server supports DNS/TLS - 3. Run HTTP ping to amazon.com, facebook.com, netflix.com - 4. Verify ping works to differnt hostnames - 5. Verify that all queries go to port 853 + 1. Set private dns mode to opportunistic + 2. Connect to wifi network. DNS server is set to 9.9.9.9, 8.8.8.8 + 3. Verify ping works to differnt hostnames + 4. Verify that all queries go to port 853 """ - self._test_private_dns_mode(self.dut, - self.ipv4_ipv6_network, - cconst.PRIVATE_DNS_MODE_OPPORTUNISTIC, - True) + self._test_private_dns_mode(self.wifi_network_with_dns_tls, + PRIVATE_DNS_MODE_OPPORTUNISTIC, True) @test_tracker_info(uuid="b70569f1-2613-49d0-be49-fd3464dde305") - def test_private_dns_mode_strict_wifi_ipv4_only_network(self): - """ Verify private dns mode strict on ipv4 only network + def test_private_dns_mode_strict_wifi_no_dns_tls_server(self): + """ Verify private dns strict mode Steps: - 1. Set private dns to strict mode - 2. Connect to wifi network. DNS server supports DNS/TLS - 3. Run HTTP ping to amazon.com, facebook.com, netflix.com - 4. Verify ping works to differnt hostnames - 5. Verify that all queries go to port 853 and encrypted + 1. Set private dns mode to strict + 2. Connect to wifi network. DNS/TLS server is not set + 3. Verify ping works to differnt hostnames + 4. Verify that all queries go to port 853 """ - for dns in self.private_dns_servers: - self._test_private_dns_mode(self.dut, - self.ipv4_only_network, - cconst.PRIVATE_DNS_MODE_STRICT, - True, - dns) + self._test_private_dns_mode(self.wifi_network_no_dns_tls, + PRIVATE_DNS_MODE_STRICT, True, + DNS_QUAD9) @test_tracker_info(uuid="85738b52-823b-4c59-a0d5-219e2fab2929") - def test_private_dns_mode_strict_wifi_ipv4_ipv6_network(self): - """ Verify private dns mode strict on ipv4-ipv6 network + def test_private_dns_mode_strict_wifi_with_dns_tls_server(self): + """ Verify private dns strict mode Steps: - 1. Set private dns to strict mode - 2. Connect to wifi network. DNS server supports DNS/TLS - 3. Run HTTP ping to amazon.com, facebook.com, netflix.com - 4. Verify ping works to differnt hostnames - 5. Verify that all queries go to port 853 and encrypted + 1. Set private dns mode to strict + 2. Connect to wifi network. DNS server is set to 9.9.9.9, 8.8.8.8 + 3. Verify ping works to differnt hostnames + 4. Verify that all queries go to port 853 """ - for dns in self.private_dns_servers: - self._test_private_dns_mode(self.dut, - self.ipv4_ipv6_network, - cconst.PRIVATE_DNS_MODE_STRICT, - True, - dns) + self._test_private_dns_mode(self.wifi_network_with_dns_tls, + PRIVATE_DNS_MODE_STRICT, True, + DNS_QUAD9) @test_tracker_info(uuid="727e280a-d2bd-463f-b2a1-653d4b3f7f29") - def test_private_dns_mode_off_vzw_carrier(self): - """ Verify private dns mode off on VZW network + def test_private_dns_mode_off_lte(self): + """ Verify private dns off mode Steps: - 1. Set private dns mode off - 2. Connect to wifi network. VZW doesn't support DNS/TLS - 3. Run HTTP ping to amazon.com, facebook.com, netflix.com - 4. Verify ping works to differnt hostnames - 5. Verify that all queries go to port 53 + 1. Set private dns mode to off + 2. Reset wifi and enable LTE on DUT + 3. Verify ping works to differnt hostnames + 4. Verify that all queries go to port 53 """ - carrier = get_operator_name(self.log, self.dut_b) - asserts.skip_if(carrier != "vzw", "Carrier is not Verizon") - self._test_private_dns_mode(self.dut_b, - None, - cconst.PRIVATE_DNS_MODE_OFF, - False) + self._test_private_dns_mode(None, PRIVATE_DNS_MODE_OFF, False) @test_tracker_info(uuid="b16f6e2c-a24f-4efe-9003-2bfaf28b8d5e") - def test_private_dns_mode_off_tmo_carrier(self): - """ Verify private dns mode off on TMO network + def test_private_dns_mode_opportunistic_lte(self): + """ Verify private dns opportunistic mode Steps: - 1. Set private dns to off mode - 2. Connect to wifi network. TMO supports DNS/TLS - 3. Run HTTP ping to amazon.com, facebook.com, netflix.com - 4. Verify ping works to differnt hostnames - 5. Verify that all queries go to port 53 + 1. Set private dns mode to opportunistic mode + 2. Reset wifi and enable LTE on DUT + 3. Verify ping works to differnt hostnames + 4. Verify that all queries go to port 853 """ - carrier = get_operator_name(self.log, self.dut) - asserts.skip_if(carrier != "tmo", "Carrier is not T-mobile") - self._test_private_dns_mode(self.dut, - None, - cconst.PRIVATE_DNS_MODE_OFF, - False) + self._test_private_dns_mode(None, PRIVATE_DNS_MODE_OPPORTUNISTIC, True) @test_tracker_info(uuid="edfa7bfe-3e52-46b4-9d72-7c6c300b3680") - def test_private_dns_mode_opportunistic_vzw_carrier(self): - """ Verify private dns mode opportunistic on VZW network - - Steps: - 1. Set private dns mode opportunistic - 2. Connect to wifi network. VZW doesn't support DNS/TLS - 3. Run HTTP ping to amazon.com, facebook.com, netflix.com - 4. Verify ping works to differnt hostnames - 5. Verify that all queries go to port 53 - """ - carrier = get_operator_name(self.log, self.dut_b) - asserts.skip_if(carrier != "vzw", "Carrier is not Verizon") - self._test_private_dns_mode(self.dut_b, - None, - cconst.PRIVATE_DNS_MODE_OPPORTUNISTIC, - False) - - @test_tracker_info(uuid="41c3f2c4-11b7-4bb8-a3c9-fac63f6822f6") - def test_private_dns_mode_opportunistic_tmo_carrier(self): - """ Verify private dns mode opportunistic on TMO network - - Steps: - 1. Set private dns mode opportunistic - 2. Connect to wifi network. TMP supports DNS/TLS - 3. Run HTTP ping to amazon.com, facebook.com, netflix.com - 4. Verify ping works to differnt hostnames - 5. Verify that all queries go to port 853 and encrypted - """ - carrier = get_operator_name(self.log, self.dut) - asserts.skip_if(carrier != "tmo", "Carrier is not T-mobile") - self._test_private_dns_mode(self.dut, - None, - cconst.PRIVATE_DNS_MODE_OPPORTUNISTIC, - True) - - @test_tracker_info(uuid="65fd2052-f0c0-4446-b353-7ed2273e6c95") - def test_private_dns_mode_strict_vzw_carrier(self): - """ Verify private dns mode strict on VZW network + def test_private_dns_mode_strict_lte(self): + """ Verify private dns strict mode Steps: - 1. Set private dns mode strict - 2. Connect to wifi network. VZW doesn't support DNS/TLS - 3. Run HTTP ping to amazon.com, facebook.com, netflix.com - 4. Verify ping works to differnt hostnames - 5. Verify that all queries go to port 853 and encrypted + 1. Set private dns mode to strict mode + 2. Reset wifi and enable LTE on DUT + 3. Verify ping works to differnt hostnames + 4. Verify that all queries go to port 853 """ - carrier = get_operator_name(self.log, self.dut_b) - asserts.skip_if(carrier != "vzw", "Carrier is not Verizon") - for dns in self.private_dns_servers: - self._test_private_dns_mode(self.dut_b, - None, - cconst.PRIVATE_DNS_MODE_STRICT, - True, - dns) - - @test_tracker_info(uuid="bca141f7-06c9-4e44-854e-4bdb9443b2da") - def test_private_dns_mode_strict_tmo_carrier(self): - """ Verify private dns mode strict on TMO network - - Steps: - 1. Set private dns mode strict - 2. Connect to wifi network. TMO supports DNS/TLS - 3. Run HTTP ping to amazon.com, facebook.com, netflix.com - 4. Verify ping works to differnt hostnames - 5. Verify that all queries go to port 853 and encrypted - """ - carrier = get_operator_name(self.log, self.dut) - asserts.skip_if(carrier != "tmo", "Carrier is not T-mobile") - for dns in self.private_dns_servers: - self._test_private_dns_mode(self.dut, - None, - cconst.PRIVATE_DNS_MODE_STRICT, - True, - dns) - - @test_tracker_info(uuid="7d977987-d9e3-4be1-b8fc-e5a84050ed48") - def test_private_dns_mode_opportunistic_connectivity_toggle_networks(self): - """ Verify private DNS opportunistic mode connectivity by toggling networks - - Steps: - 1. Set private DNS opportunistic mode - 2. DUT is connected to mobile network - 3. Verify connectivity and DNS queries going to port 853 for TMO - and port 53 for VZW - 4. Switch to wifi network set with private DNS server - 5. Verify connectivity and DNS queries going to port 853 - 6. Switch back to mobile network - 7. Verify connectivity and DNS queries going to port 853 for TMO - and port 53 for VZW - 8. Repeat steps 1-7 for TMO, VZW and different private DNS servers - """ - for ad in self.android_devices: - carrier = get_operator_name(self.log, ad) - self.log.info("Carrier is: %s" % carrier) - use_tls = True if carrier == "tmo" else False - for dns in self.private_dns_servers: - self.log.info("Setting opportunistic private dns mode") - # set private dns mode - cutils.set_private_dns(ad, cconst.PRIVATE_DNS_MODE_OPPORTUNISTIC) - - # verify dns over tls on mobile network - self._test_private_dns_mode( - self.dut, None, None, use_tls, dns) - - # verify dns over tls on wifi network - self._test_private_dns_mode( - self.dut, self.ipv4_ipv6_network, None, True, dns) - - # verify dns over tls on mobile network - wutils.reset_wifi(self.dut) - self._test_private_dns_mode( - self.dut, None, None, use_tls, dns) - - @test_tracker_info(uuid="bc2f228f-e288-4539-a4b9-c02968209985") - def test_private_dns_mode_strict_connectivity_toggle_networks(self): - """ Verify private DNS strict mode connectivity by toggling networks - - Steps: - 1. Set private DNS strict mode - 2. DUT is connected to mobile network - 3. Verify connectivity and DNS queries going to port 853 - 4. Switch to wifi network - 5. Verify connectivity and DNS queries going to port 853 - 6. Switch back to mobile network - 7. Verify connectivity and DNS queries going to port 853 - 8. Repeat steps 1-7 for TMO, VZW and different private DNS servers - """ - for ad in self.android_devices: - self.log.info("Carrier is: %s" % get_operator_name(self.log, ad)) - for dns in self.private_dns_servers: - self.log.info("Setting strict mode private dns: %s" % dns) - # set private dns mode - cutils.set_private_dns(ad, cconst.PRIVATE_DNS_MODE_STRICT, dns) - - # verify dns over tls on mobile network - self._test_private_dns_mode( - self.dut, None, None, True, dns) - - - # verify dns over tls on wifi network - self._test_private_dns_mode( - self.dut, self.ipv4_ipv6_network, None, True, dns) - - # verify dns over tls on mobile network - wutils.reset_wifi(self.dut) - self._test_private_dns_mode( - self.dut, None, None, True, dns) + self._test_private_dns_mode(None, PRIVATE_DNS_MODE_STRICT, True, + DNS_QUAD9) @test_tracker_info(uuid="1426673a-7728-4df7-8de5-dfb3529ada62") def test_dns_server_link_properties_strict_mode(self): @@ -459,13 +273,15 @@ class DnsOverTlsTest(base_test.BaseTestClass): self._start_tcp_dump(self.dut) # set private DNS to strict mode - cutils.set_private_dns( - self.dut, cconst.PRIVATE_DNS_MODE_STRICT, cconst.DNS_GOOGLE) + self.dut.droid.setPrivateDnsMode(True, DNS_QUAD9) + mode = self.dut.droid.getPrivateDnsMode() + specifier = self.dut.droid.getPrivateDnsSpecifier() + asserts.assert_true( + mode == PRIVATE_DNS_MODE_STRICT and specifier == DNS_QUAD9, + "Failed to set private DNS strict mode") # connect DUT to wifi network - wutils.start_wifi_connection_scan_and_ensure_network_found( - self.dut, self.ipv4_ipv6_network[SSID]) - wutils.wifi_connect(self.dut, self.ipv4_ipv6_network) + wutils.wifi_connect(self.dut, self.wifi_network_no_dns_tls) for host in self.ping_hosts: wutils.validate_connection(self.dut, host) @@ -487,15 +303,16 @@ class DnsOverTlsTest(base_test.BaseTestClass): # stop tcpdump on device pcap_file = self._stop_tcp_dump(self.dut) + self.log.info("TCPDUMP file is: %s" % pcap_file) # Verify DNS server in link properties - asserts.assert_true(cconst.DNS_GOOGLE in wifi_dns_servers, + asserts.assert_true(DNS_QUAD9 in wifi_dns_servers, "Hostname not in link properties - wifi network") - asserts.assert_true(cconst.DNS_GOOGLE in lte_dns_servers, + asserts.assert_true(DNS_QUAD9 in lte_dns_servers, "Hostname not in link properites - cell network") @test_tracker_info(uuid="525a6f2d-9751-474e-a004-52441091e427") - def test_dns_over_tls_no_reset_packets(self): + def dns_over_tls_no_reset_packets(self): """ Verify there are no TCP packets with RST flags Steps: @@ -506,17 +323,19 @@ class DnsOverTlsTest(base_test.BaseTestClass): self._start_tcp_dump(self.dut) # set private DNS to opportunistic mode - cutils.set_private_dns(self.dut, cconst.PRIVATE_DNS_MODE_OPPORTUNISTIC) + self.dut.droid.setPrivateDnsMode(True) + mode = self.dut.droid.getPrivateDnsMode() + asserts.assert_true(mode == PRIVATE_DNS_MODE_OPPORTUNISTIC, + "Failed to set private DNS opportunistic mode") # connect DUT to wifi network - wutils.start_wifi_connection_scan_and_ensure_network_found( - self.dut, self.ipv4_ipv6_network[SSID]) - wutils.wifi_connect(self.dut, self.ipv4_ipv6_network) + wutils.wifi_connect(self.dut, self.wifi_network_with_dns_tls) for host in self.ping_hosts: wutils.validate_connection(self.dut, host) # stop tcpdump on device pcap_file = self._stop_tcp_dump(self.dut) + self.log.info("TCPDUMP file is: %s" % pcap_file) # check that there no RST TCP packets self._verify_rst_packets(pcap_file) @@ -531,10 +350,10 @@ class DnsOverTlsTest(base_test.BaseTestClass): """ invalid_hostnames = ["!%@&!*", "12093478129", "9.9.9.9", "sdkfjhasdf"] for hostname in invalid_hostnames: - cutils.set_private_dns( - self.dut, cconst.PRIVATE_DNS_MODE_STRICT, hostname) + self.dut.droid.setPrivateDnsMode(True, hostname) mode = self.dut.droid.getPrivateDnsMode() specifier = self.dut.droid.getPrivateDnsSpecifier() + wutils.wifi_connect(self.dut, self.wifi_network_no_dns_tls) asserts.assert_true( - mode == cconst.PRIVATE_DNS_MODE_STRICT and specifier != hostname, + mode == PRIVATE_DNS_MODE_STRICT and specifier != hostname, "Able to set invalid private DNS strict mode") diff --git a/acts/tests/google/net/IpSecTest.py b/acts/tests/google/net/IpSecTest.py index c767000ec8..41ae0bc978 100644 --- a/acts/tests/google/net/IpSecTest.py +++ b/acts/tests/google/net/IpSecTest.py @@ -39,11 +39,7 @@ class IpSecTest(base_test.BaseTestClass): req_params = ("wifi_network",) self.unpack_userparams(req_params) - wutils.start_wifi_connection_scan_and_ensure_network_found( - self.dut_a, self.wifi_network['SSID']) wutils.wifi_connect(self.dut_a, self.wifi_network) - wutils.start_wifi_connection_scan_and_ensure_network_found( - self.dut_b, self.wifi_network['SSID']) wutils.wifi_connect(self.dut_b, self.wifi_network) self.ipv4_dut_a = self.dut_a.droid.connectivityGetIPv4Addresses(WLAN)[0] diff --git a/acts/tests/google/net/LegacyVpnTest.py b/acts/tests/google/net/LegacyVpnTest.py index a4bfc5250e..1e037ded5b 100644 --- a/acts/tests/google/net/LegacyVpnTest.py +++ b/acts/tests/google/net/LegacyVpnTest.py @@ -48,15 +48,17 @@ class LegacyVpnTest(WifiBaseTest): """ self.dut = self.android_devices[0] required_params = dir(VPN_PARAMS) - required_params = [ - x for x in required_params if not x.startswith('__') - ] + ["wifi_network"] - self.unpack_userparams(req_param_names=required_params) - + required_params = [x for x in required_params if not x.startswith('__')] + optional_params = ["reference_networks", "wpa_networks",] + self.unpack_userparams(req_param_names=required_params, + opt_param_names=optional_params) + if "AccessPoint" in self.user_params: + self.legacy_configure_ap_and_start(wpa_network=True) + asserts.assert_true(len(self.reference_networks) > 0, + "Need at least one reference network with psk.") + self.wifi_network = self.reference_networks[0]["2g"] wutils.wifi_test_device_init(self.dut) wutils.wifi_toggle_state(self.dut, True) - wutils.start_wifi_connection_scan_and_ensure_network_found( - self.dut, self.wifi_network["SSID"]) wutils.wifi_connect(self.dut, self.wifi_network) time.sleep(3) diff --git a/acts/tests/google/power/PowerBaselineTest.py b/acts/tests/google/power/PowerBaselineTest.py deleted file mode 100644 index d8ef277b2e..0000000000 --- a/acts/tests/google/power/PowerBaselineTest.py +++ /dev/null @@ -1,37 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the 'License'); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an 'AS IS' BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from acts.test_utils.power.PowerBaseTest import PowerBaseTest - - -class PowerBaselineTest(PowerBaseTest): - """Power baseline test. - - Tests power consumption on rockbottom to verify the ability to set power - consumption to a minimum during connectivity power tests. - """ - - def test_power_baseline(self): - """Measures power when the device is on rockbottom. """ - - # Make the device go to sleep - self.dut.droid.goToSleepNow() - - # Measure power - result = self.collect_power_data() - - # Check if power measurement is below the required value - self.pass_fail_check(result.average_current) diff --git a/acts/tests/google/power/bt/PowerBLEadvertiseTest.py b/acts/tests/google/power/bt/PowerBLEadvertiseTest.py deleted file mode 100644 index c12d2293e1..0000000000 --- a/acts/tests/google/power/bt/PowerBLEadvertiseTest.py +++ /dev/null @@ -1,63 +0,0 @@ -#!/usr/bin/env python3.4 -# -# Copyright 2018 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import time -import acts.test_utils.bt.BleEnum as bleenum -import acts.test_utils.bt.bt_power_test_utils as btputils -import acts.test_utils.power.PowerBTBaseTest as PBtBT - -BLE_LOCATION_SCAN_ENABLE = 'settings put secure location_mode 3' -EXTRA_ADV_TIME = 10 - - -class PowerBLEadvertiseTest(PBtBT.PowerBTBaseTest): - def __init__(self, configs): - super().__init__(configs) - req_params = ['adv_modes', 'adv_power_levels', 'adv_duration'] - self.unpack_userparams(req_params) - # Loop all advertise modes and power levels - for adv_mode in self.adv_modes: - for adv_power_level in self.adv_power_levels: - self.generate_test_case(adv_mode, adv_power_level, - self.adv_duration) - - def setup_class(self): - - super().setup_class() - self.dut.adb.shell(BLE_LOCATION_SCAN_ENABLE) - # Make sure during power measurement, advertisement is always on - self.mon_info.duration = ( - self.adv_duration - self.mon_offset - EXTRA_ADV_TIME) - - def generate_test_case(self, adv_mode, adv_power_level, adv_duration): - def test_case_fn(): - - self.measure_ble_advertise_power(adv_mode, adv_power_level, - adv_duration) - - adv_mode_str = bleenum.AdvertiseSettingsAdvertiseMode(adv_mode).name - adv_txpl_str = bleenum.AdvertiseSettingsAdvertiseTxPower( - adv_power_level).name.strip('ADVERTISE').strip('_') - test_case_name = ('test_BLE_{}_{}'.format(adv_mode_str, adv_txpl_str)) - setattr(self, test_case_name, test_case_fn) - - def measure_ble_advertise_power(self, adv_mode, adv_power_level, - adv_duration): - - btputils.start_apk_ble_adv(self.dut, adv_mode, adv_power_level, - adv_duration) - time.sleep(EXTRA_ADV_TIME) - self.measure_power_and_validate() diff --git a/acts/tests/google/power/bt/PowerBLEscanTest.py b/acts/tests/google/power/bt/PowerBLEscanTest.py deleted file mode 100644 index 8ed77b5a94..0000000000 --- a/acts/tests/google/power/bt/PowerBLEscanTest.py +++ /dev/null @@ -1,57 +0,0 @@ -#!/usr/bin/env python3.4 -# -# Copyright 2018 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import time -import acts.test_utils.bt.BleEnum as bleenum -import acts.test_utils.bt.bt_power_test_utils as btputils -import acts.test_utils.power.PowerBTBaseTest as PBtBT - -BLE_LOCATION_SCAN_ENABLE = 'settings put secure location_mode 3' -EXTRA_SCAN_TIME = 10 - - -class PowerBLEscanTest(PBtBT.PowerBTBaseTest): - def __init__(self, configs): - super().__init__(configs) - req_params = ['scan_modes', 'scan_duration'] - self.unpack_userparams(req_params) - - for scan_mode in self.scan_modes: - self.generate_test_case_no_devices_around(scan_mode, - self.scan_duration) - - def setup_class(self): - - super().setup_class() - self.dut.adb.shell(BLE_LOCATION_SCAN_ENABLE) - # Make sure during power measurement, scan is always on - self.mon_info.duration = ( - self.scan_duration - self.mon_offset - EXTRA_SCAN_TIME) - - def generate_test_case_no_devices_around(self, scan_mode, scan_duration): - def test_case_fn(): - - self.measure_ble_scan_power(scan_mode, scan_duration) - - test_case_name = ('test_BLE_{}_no_advertisers'.format( - bleenum.ScanSettingsScanMode(scan_mode).name)) - setattr(self, test_case_name, test_case_fn) - - def measure_ble_scan_power(self, scan_mode, scan_duration): - - btputils.start_apk_ble_scan(self.dut, scan_mode, scan_duration) - time.sleep(EXTRA_SCAN_TIME) - self.measure_power_and_validate() diff --git a/acts/tests/google/power/bt/PowerBTa2dpTest.py b/acts/tests/google/power/bt/PowerBTa2dpTest.py deleted file mode 100644 index 8122fc0748..0000000000 --- a/acts/tests/google/power/bt/PowerBTa2dpTest.py +++ /dev/null @@ -1,75 +0,0 @@ -#!/usr/bin/env python3.4 -# -# Copyright 2018 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import time -import acts.test_utils.bt.bt_test_utils as btutils -import acts.test_utils.power.PowerBTBaseTest as PBtBT -from acts import asserts -from acts.test_utils.bt import BtEnum - -EXTRA_PLAY_TIME = 10 - - -class PowerBTa2dpTest(PBtBT.PowerBTBaseTest): - def __init__(self, configs): - super().__init__(configs) - req_params = ['codecs', 'tx_power_levels', 'atten_pl_settings'] - self.unpack_userparams(req_params) - # Loop all codecs and tx power levels - for codec_config in self.codecs: - for tpl in self.tx_power_levels: - self.generate_test_case(codec_config, tpl) - - def setup_test(self): - super().setup_test() - btutils.connect_phone_to_headset(self.dut, self.bt_device, 60) - vol = self.dut.droid.getMaxMediaVolume() * self.volume - self.dut.droid.setMediaVolume(0) - time.sleep(1) - self.dut.droid.setMediaVolume(int(vol)) - - - def generate_test_case(self, codec_config, tpl): - def test_case_fn(): - self.measure_a2dp_power(codec_config, tpl) - - test_case_name = ('test_BTa2dp_{}_codec_at_PL{}'.format( - codec_config['codec_type'], tpl)) - setattr(self, test_case_name, test_case_fn) - - def measure_a2dp_power(self, codec_config, tpl): - - current_codec = self.dut.droid.bluetoothA2dpGetCurrentCodecConfig() - current_codec_type = BtEnum.BluetoothA2dpCodecType( - current_codec['codecType']).name - if current_codec_type != codec_config['codec_type']: - codec_set = btutils.set_bluetooth_codec(self.dut, **codec_config) - asserts.assert_true(codec_set, 'Codec configuration failed.') - else: - self.log.info('Current Codec is {}, no need to change'.format( - current_codec_type)) - - # Set attenuation so BT tx at desired power level - tpl = 'PL' + str(tpl) - self.set_attenuation(self.atten_pl_settings[tpl]) - self.log.info('Setting Attenuator to {} dB'.format(self.atten_pl_settings[tpl])) - - self.media.play() - self.log.info('Running A2DP with codec {} at {}'.format( - codec_config['codec_type'], tpl)) - self.dut.droid.goToSleepNow() - time.sleep(EXTRA_PLAY_TIME) - self.measure_power_and_validate()
\ No newline at end of file diff --git a/acts/tests/google/power/bt/PowerBTbaselineTest.py b/acts/tests/google/power/bt/PowerBTbaselineTest.py new file mode 100644 index 0000000000..f4050c8de5 --- /dev/null +++ b/acts/tests/google/power/bt/PowerBTbaselineTest.py @@ -0,0 +1,62 @@ +#!/usr/bin/env python3.4 +# +# Copyright 2018 - The Android Open Source Project +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from acts.test_decorators import test_tracker_info +import acts.test_utils.power.PowerBTBaseTest as PBtBT + + +class PowerBTbaselineTest(PBtBT.PowerBTBaseTest): + def bt_baseline_test_func(self): + """Base function for BT baseline measurement. + + Steps: + 1. Sets the phone in airplane mode, disables gestures and location + 2. Turns ON/OFF BT, BLE and screen according to test conditions + 3. Measures the power consumption + 4. Asserts pass/fail criteria based on measured power + """ + + # Decode the test params from test name + attrs = ['screen_status', 'bt_status', 'ble_status', 'scan_status'] + indices = [2, 4, 6, 7] + self.decode_test_configs(attrs, indices) + # Setup the phoen at desired state + self.phone_setup_for_BT(self.test_configs.bt_status, + self.test_configs.ble_status, + self.test_configs.screen_status) + if self.test_configs.scan_status == 'connectable': + self.dut.droid.bluetoothMakeConnectable() + elif self.test_configs.scan_status == 'discoverable': + self.dut.droid.bluetoothMakeDiscoverable( + self.mon_info.duration + self.mon_info.offset) + self.measure_power_and_validate() + + # Test cases- Baseline + @test_tracker_info(uuid='3f8ac0cb-f20d-4569-a58e-6009c89ea049') + def test_screen_OFF_bt_ON_ble_ON_connectable(self): + self.bt_baseline_test_func() + + @test_tracker_info(uuid='d54a992e-37ed-460a-ada7-2c51941557fd') + def test_screen_OFF_bt_ON_ble_ON_discoverable(self): + self.bt_baseline_test_func() + + @test_tracker_info(uuid='8f4c36b5-b18e-4aa5-9fe5-aafb729c1034') + def test_screen_ON_bt_ON_ble_ON_connectable(self): + self.bt_baseline_test_func() + + @test_tracker_info(uuid='7128356f-67d8-46b3-9d6b-1a4c9a7a1745') + def test_screen_ON_bt_ON_ble_ON_discoverable(self): + self.bt_baseline_test_func() diff --git a/acts/tests/google/power/bt/PowerBTcalibrationTest.py b/acts/tests/google/power/bt/PowerBTcalibrationTest.py deleted file mode 100644 index dffcc67231..0000000000 --- a/acts/tests/google/power/bt/PowerBTcalibrationTest.py +++ /dev/null @@ -1,65 +0,0 @@ -#!/usr/bin/env python3.4 -# -# Copyright 2018 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import csv -import os -import time -import acts.test_utils.bt.bt_test_utils as btutils -import acts.test_utils.power.PowerBTBaseTest as PBtBT -from acts import utils - -EXTRA_PLAY_TIME = 10 - - -class PowerBTcalibrationTest(PBtBT.PowerBTBaseTest): - def setup_test(self): - - super().setup_test() - self.attenuator = self.attenuators[0] - btutils.enable_bqr(self.dut) - btutils.enable_bluetooth(self.dut.droid, self.dut.ed) - btutils.connect_phone_to_headset(self.dut, self.bt_device, 60) - vol = self.dut.droid.getMaxMediaVolume() * self.volume - self.dut.droid.setMediaVolume(int(vol)) - - self.cal_data_path = os.path.join(self.log_path, 'Calibration') - self.log_file = os.path.join(self.cal_data_path, 'Cal_data.csv') - utils.create_dir(os.path.dirname(self.log_file)) - - - def test_calibrate(self): - """Run calibration to get attenuation value at each power level - - """ - - self.cal_matrix = [] - self.media.play() - time.sleep(EXTRA_PLAY_TIME) - - # Loop through attenuation in 1 dB step until reaching at PL10 - for i in range(int(self.attenuator.get_max_atten())): - - self.attenuator.set_atten(i) - bt_metrics_dict = btutils.get_bt_metric(self.dut) - pwl = int(bt_metrics_dict['pwlv'][self.dut.serial]) - self.cal_matrix.append([i, pwl]) - if pwl == 10: - break - - # Write cal results to csv - with open(self.log_file, 'w', newline='') as f: - writer = csv.writer(f) - writer.writerows(self.cal_matrix) diff --git a/acts/tests/google/power/bt/PowerBTidleTest.py b/acts/tests/google/power/bt/PowerBTidleTest.py deleted file mode 100644 index bab79d0836..0000000000 --- a/acts/tests/google/power/bt/PowerBTidleTest.py +++ /dev/null @@ -1,59 +0,0 @@ -#!/usr/bin/env python3.4 -# -# Copyright 2018 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import time -import acts.test_utils.power.PowerBTBaseTest as PBtBT -import acts.test_utils.bt.bt_test_utils as btutils - -SCREEN_OFF_WAIT_TIME = 2 - - -class PowerBTidleTest(PBtBT.PowerBTBaseTest): - def setup_class(self): - - super().setup_class() - btutils.enable_bluetooth(self.dut.droid, self.dut.ed) - - # Test cases- Baseline - def test_bt_on_unconnected_connectable(self): - """BT turned on connectable mode. - - Page scan only. - """ - self.dut.droid.bluetoothMakeConnectable() - self.dut.droid.goToSleepNow() - time.sleep(SCREEN_OFF_WAIT_TIME) - self.measure_power_and_validate() - - def test_bt_on_unconnected_discoverable(self): - """BT turned on discoverable mode. - - Page and inquiry scan. - """ - self.dut.droid.bluetoothMakeConnectable() - self.dut.droid.bluetoothMakeDiscoverable() - self.dut.droid.goToSleepNow() - time.sleep(SCREEN_OFF_WAIT_TIME) - self.measure_power_and_validate() - - def test_bt_connected_idle(self): - """BT idle after connecting to headset. - - """ - btutils.connect_phone_to_headset(self.dut, self.bt_device, 60) - self.dut.droid.goToSleepNow() - time.sleep(SCREEN_OFF_WAIT_TIME) - self.measure_power_and_validate() diff --git a/acts/tests/google/power/bt/PowerBTscanTest.py b/acts/tests/google/power/bt/PowerBTscanTest.py new file mode 100644 index 0000000000..0ef622c648 --- /dev/null +++ b/acts/tests/google/power/bt/PowerBTscanTest.py @@ -0,0 +1,85 @@ +#!/usr/bin/env python3.4 +# +# Copyright 2018 - The Android Open Source Project +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import acts.test_utils.power.PowerBTBaseTest as PBtBT +from acts.test_decorators import test_tracker_info + + +class PowerBTscanTest(PBtBT.PowerBTBaseTest): + def ble_scan_base_func(self): + """Base function to start a generic BLE scan and measures the power + + Steps: + 1. Sets the phone in airplane mode, disables gestures and location + 2. Turns ON/OFF BT, BLE and screen according to test conditions + 3. Sends the adb shell command to PMC to start scan + 4. Measures the power consumption + 5. Asserts pass/fail criteria based on measured power + """ + # Decode the test params from test name + attrs = ['screen_status', 'bt_status', 'ble_status', 'scan_mode'] + indices = [2, 4, 6, -1] + self.decode_test_configs(attrs, indices) + if self.test_configs.scan_mode == 'lowpower': + scan_mode = 'low_power' + elif self.test_configs.scan_mode == 'lowlatency': + scan_mode = 'low_latency' + else: + scan_mode = self.test_configs.scan_mode + self.phone_setup_for_BT(self.test_configs.bt_status, + self.test_configs.ble_status, + self.test_configs.screen_status) + self.start_pmc_ble_scan(scan_mode, self.mon_info.offset, + self.mon_info.duration) + self.measure_power_and_validate() + + # Test Cases: BLE Scans + Filtered scans + @test_tracker_info(uuid='e9a36161-1d0c-4b9a-8bd8-80fef8cdfe28') + def test_screen_ON_bt_ON_ble_ON_default_scan_balanced(self): + self.ble_scan_base_func() + + @test_tracker_info(uuid='5fa61bf4-5f04-40bf-af52-6644b534d02e') + def test_screen_OFF_bt_ON_ble_ON_filter_scan_opportunistic(self): + self.ble_scan_base_func() + + @test_tracker_info(uuid='512b6cde-be83-43b0-b799-761380ba69ff') + def test_screen_OFF_bt_ON_ble_ON_filter_scan_lowpower(self): + self.ble_scan_base_func() + + @test_tracker_info(uuid='3a526838-ae7b-4cdb-bc29-89a5503d2306') + def test_screen_OFF_bt_ON_ble_ON_filter_scan_balanced(self): + self.ble_scan_base_func() + + @test_tracker_info(uuid='03a57cfd-4269-4a09-8544-84f878d2e801') + def test_screen_OFF_bt_ON_ble_ON_filter_scan_lowlatency(self): + self.ble_scan_base_func() + + # Test Cases: Background scans + @test_tracker_info(uuid='20145317-e362-4bfd-9860-4ceddf764784') + def test_screen_ON_bt_OFF_ble_ON_background_scan_lowlatency(self): + self.ble_scan_base_func() + + @test_tracker_info(uuid='00a53dc3-2c33-43c4-b356-dba93249b823') + def test_screen_ON_bt_OFF_ble_ON_background_scan_lowpower(self): + self.ble_scan_base_func() + + @test_tracker_info(uuid='b7185d64-631f-4b18-8d0b-4e14b80db375') + def test_screen_OFF_bt_OFF_ble_ON_background_scan_lowlatency(self): + self.ble_scan_base_func() + + @test_tracker_info(uuid='93eb05da-a577-409c-8208-6af1899a10c2') + def test_screen_OFF_bt_OFF_ble_ON_background_scan_lowpower(self): + self.ble_scan_base_func() diff --git a/acts/tests/google/power/gnss/PowerGnssDpoSimTest.py b/acts/tests/google/power/gnss/PowerGnssDpoSimTest.py deleted file mode 100644 index 9c2ce9a2ef..0000000000 --- a/acts/tests/google/power/gnss/PowerGnssDpoSimTest.py +++ /dev/null @@ -1,71 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the 'License'); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an 'AS IS' BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import acts.test_utils.power.PowerGnssBaseTest as GBT -from acts.test_utils.gnss import dut_log_test_utils as diaglog -from acts.test_utils.gnss import gnss_test_utils as gutil -import time -import os -from acts import utils -MDLOG_RUNNING_TIME = 300 -DUT_ACTION_WAIT_TIME = 2 - -class PowerGnssDpoSimTest(GBT.PowerGnssBaseTest): - """Power baseline tests for rockbottom state. - Rockbottom for GNSS on/off, screen on/off, everything else turned off - - """ - - def measure_gnsspower_test_func(self): - """Test function for baseline rockbottom tests. - - Decode the test config from the test name, set device to desired state. - Measure power and plot results. - """ - result = self.collect_power_data() - self.pass_fail_check(result.average_current) - - # Test cases - def test_gnss_dpoOFF_measurement(self): - utils.set_location_service(self.dut, True) - time.sleep(DUT_ACTION_WAIT_TIME) - gutil.start_gnss_by_gtw_gpstool(self.dut, state=True, type="gnss", bgdisplay=True) - self.dut.send_keycode("SLEEP") - time.sleep(DUT_ACTION_WAIT_TIME) - self.measure_gnsspower_test_func() - diaglog.start_diagmdlog_background(self.dut, maskfile=self.maskfile) - self.disconnect_usb(self.dut, MDLOG_RUNNING_TIME) - qxdm_log_path = os.path.join(self.log_path, 'QXDM') - diaglog.stop_background_diagmdlog(self.dut, qxdm_log_path) - gutil.start_gnss_by_gtw_gpstool(self.dut, state=False) - - def test_gnss_dpoON_measurement(self): - utils.set_location_service(self.dut, True) - time.sleep(DUT_ACTION_WAIT_TIME) - gutil.start_gnss_by_gtw_gpstool(self.dut, state=True, type="gnss", bgdisplay=True) - self.dut.send_keycode("SLEEP") - time.sleep(DUT_ACTION_WAIT_TIME) - self.measure_gnsspower_test_func() - diaglog.start_diagmdlog_background(self.dut, maskfile=self.maskfile) - self.disconnect_usb(self.dut, MDLOG_RUNNING_TIME) - qxdm_log_path = os.path.join(self.log_path, 'QXDM') - diaglog.stop_background_diagmdlog(self.dut, qxdm_log_path) - gutil.start_gnss_by_gtw_gpstool(self.dut, state=False) - - def test_gnss_rockbottom(self): - self.dut.send_keycode("SLEEP") - time.sleep(120) - self.measure_gnsspower_test_func() diff --git a/acts/tests/google/power/tel/lab/PowerTelHotspotSuiteTest.py b/acts/tests/google/power/tel/lab/PowerTelHotspotSuiteTest.py index ddd65a28f4..d15abb523e 100644 --- a/acts/tests/google/power/tel/lab/PowerTelHotspotSuiteTest.py +++ b/acts/tests/google/power/tel/lab/PowerTelHotspotSuiteTest.py @@ -1,4 +1,4 @@ -#!/usr/bin/env python3 +#!/usr/bin/env python3.4 # # Copyright 2018 - The Android Open Source Project # @@ -16,103 +16,35 @@ from PowerTelHotspotTest import PowerTelHotspotTest -class PowerTelHotspot_LTE_Test(PowerTelHotspotTest): - - def test_lte_hotspot_band_13_pdl_excellent_pul_medium_bw_10_tm_4_mimo_2x2_scheduling_static_direction_dlul_pattern_75_25_wifiband_5g_1(self): - self.power_tel_tethering_test() - - def test_lte_hotspot_band_13_pdl_excellent_pul_medium_bw_10_tm_4_mimo_2x2_scheduling_static_direction_dlul_pattern_75_25_wifiband_2g_2(self): - self.power_tel_tethering_test() - - def test_lte_hotspot_band_13_pdl_excellent_pul_low_bw_10_tm_1_mimo_1x1_scheduling_static_direction_dl_pattern_100_0_wifiband_2g_3(self): - self.power_tel_tethering_test() - - def test_lte_hotspot_band_13_pdl_excellent_pul_low_bw_10_tm_4_mimo_2x2_scheduling_static_direction_dl_pattern_100_0_wifiband_5g_4(self): - self.power_tel_tethering_test() - - def test_lte_hotspot_band_12_pdl_excellent_pul_max_bw_10_tm_1_mimo_1x1_scheduling_static_direction_ul_pattern_0_100_wifiband_2g_5(self): - self.power_tel_tethering_test() - - def test_lte_hotspot_band_12_pdl_excellent_pul_max_bw_10_tm_1_mimo_1x1_scheduling_static_direction_ul_pattern_0_100_wifiband_5g_6(self): - self.power_tel_tethering_test() - - def test_lte_hotspot_band_2_pdl_excellent_pul_low_bw_5_tm_1_mimo_1x1_scheduling_static_direction_dl_pattern_100_0_wifiband_5g_7(self): - self.power_tel_tethering_test() - - def test_lte_hotspot_band_4_pdl_excellent_pul_low_bw_20_tm_3_mimo_4x4_scheduling_static_direction_dl_pattern_100_0_wifiband_2g_8(self): - self.power_tel_tethering_test() - - def test_lte_hotspot_band_3_pdl_excellent_pul_low_bw_20_tm_4_mimo_2x2_scheduling_static_direction_dl_pattern_100_0_wifiband_2g_9(self): - self.power_tel_tethering_test() - - def test_lte_hotspot_band_3_pdl_excellent_pul_low_bw_20_tm_4_mimo_2x2_scheduling_static_direction_dl_pattern_100_0_wifiband_5g_10(self): - self.power_tel_tethering_test() - def test_lte_hotspot_band_3_pdl_excellent_pul_low_bw_10_tm_1_mimo_1x1_scheduling_static_direction_dl_pattern_100_0_wifiband_2g_11(self): - self.power_tel_tethering_test() - - def test_lte_hotspot_band_3_pdl_excellent_pul_low_bw_20_tm_1_mimo_1x1_scheduling_static_direction_dl_pattern_100_0_wifiband_2g_12(self): - self.power_tel_tethering_test() - - def test_lte_hotspot_band_3_pdl_excellent_pul_low_bw_20_tm_3_mimo_4x4_scheduling_static_direction_dl_pattern_100_0_wifiband_5g_13(self): - self.power_tel_tethering_test() - - def test_lte_hotspot_band_3_pdl_excellent_pul_medium_bw_20_tm_4_mimo_2x2_scheduling_static_direction_dlul_pattern_75_25_wifiband_5g_14(self): - self.power_tel_tethering_test() - - def test_lte_hotspot_band_4_pdl_excellent_pul_low_bw_20_tm_3_mimo_4x4_scheduling_static_direction_dl_pattern_100_0_wifiband_2g_15(self): - self.power_tel_tethering_test() - - def test_lte_hotspot_band_4_pdl_excellent_pul_low_bw_20_tm_3_mimo_4x4_scheduling_static_direction_dl_pattern_100_0_wifiband_5g_16(self): - self.power_tel_tethering_test() - - def test_lte_hotspot_band_4_pdl_excellent_pul_max_bw_20_tm_1_mimo_1x1_scheduling_static_direction_ul_pattern_0_100_wifiband_2g_17(self): - self.power_tel_tethering_test() - - def test_lte_hotspot_band_4_pdl_excellent_pul_max_bw_20_tm_1_mimo_1x1_scheduling_static_direction_ul_pattern_0_100_wifiband_5g_18(self): - self.power_tel_tethering_test() - - def test_lte_hotspot_band_7_pdl_excellent_pul_low_bw_20_tm_4_mimo_2x2_scheduling_static_direction_dl_pattern_100_0_wifiband_2g_19(self): - self.power_tel_tethering_test() - - def test_lte_hotspot_band_7_pdl_excellent_pul_low_bw_20_tm_4_mimo_2x2_scheduling_static_direction_dl_pattern_100_0_wifiband_5g_20(self): - self.power_tel_tethering_test() - - def test_lte_hotspot_band_7_pdl_excellent_pul_low_bw_10_tm_1_mimo_1x1_scheduling_static_direction_dl_pattern_100_0_wifiband_2g_21(self): - self.power_tel_tethering_test() - - def test_lte_hotspot_band_7_pdl_excellent_pul_low_bw_20_tm_1_mimo_1x1_scheduling_static_direction_dl_pattern_100_0_wifiband_2g_22(self): - self.power_tel_tethering_test() - - def test_lte_hotspot_band_7_pdl_excellent_pul_low_bw_20_tm_3_mimo_4x4_scheduling_static_direction_dl_pattern_100_0_wifiband_5g_23(self): - self.power_tel_tethering_test() +class PowerTelHotspot_LTE_Test(PowerTelHotspotTest): - def test_lte_hotspot_band_7_pdl_excellent_pul_medium_bw_20_tm_4_mimo_2x2_scheduling_static_direction_dlul_pattern_75_25_wifiband_5g_24(self): + def test_lte_hotspot_band_2_pdl_excellent_pul_low_bw_14_tm_1_mimo_1x1_scheduling_static_direction_dl_pattern_100_0_wifiband_5g_1(self): self.power_tel_tethering_test() - def test_lte_hotspot_band_7_pdl_excellent_pul_max_bw_20_tm_1_mimo_1x1_scheduling_static_direction_ul_pattern_0_100_wifiband_2g_25(self): + def test_lte_hotspot_band_13_pdl_excellent_pul_high_bw_10_tm_4_mimo_2x2_scheduling_static_direction_ul_pattern_0_100_wifiband_5g_4(self): self.power_tel_tethering_test() - def test_lte_hotspot_band_7_pdl_excellent_pul_max_bw_20_tm_1_mimo_1x1_scheduling_static_direction_ul_pattern_0_100_wifiband_5g_26(self): + def test_lte_hotspot_band_13_pdl_excellent_pul_high_bw_10_tm_4_mimo_2x2_scheduling_static_direction_dl_pattern_100_0_wifiband_5g_5(self): self.power_tel_tethering_test() - def test_lte_hotspot_band_38_pdl_excellent_pul_low_bw_10_tm_1_mimo_1x1_scheduling_static_direction_dlul_tddconfig_2_wifiband_2g_27(self): + def test_lte_hotspot_band_7_pdl_excellent_pul_max_bw_20_tm_4_mimo_2x2_scheduling_static_direction_dl_pattern_100_0_wifiband_2g_6(self): self.power_tel_tethering_test() - def test_lte_hotspot_band_38_pdl_excellent_pul_low_bw_10_tm_4_mimo_2x2_scheduling_static_direction_dlul_tddconfig_2_wifiband_5g_28(self): + def test_lte_hotspot_band_3_pdl_excellent_pul_low_bw_10_tm_1_mimo_2x2_scheduling_static_direction_dl_pattern_100_0_wifiband_5g_9(self): self.power_tel_tethering_test() - def test_lte_hotspot_band_40_pdl_excellent_pul_low_bw_20_tm_4_mimo_2x2_scheduling_static_direction_dlul_tddconfig_2_wifiband_5g_29(self): + def test_lte_hotspot_band_3_pdl_excellent_pul_low_bw_10_tm_1_mimo_2x2_scheduling_static_direction_dlul_pattern_50_50_wifiband_2g_10(self): self.power_tel_tethering_test() - def test_lte_hotspot_band_41_pdl_excellent_pul_low_bw_20_tm_3_mimo_4x4_scheduling_static_direction_dlul_tddconfig_2_wifiband_5g_30(self): + def test_lte_hotspot_band_2_pdl_excellent_pul_max_bw_20_tm_1_mimo_1x1_scheduling_static_direction_dl_pattern_100_0_wifiband_2g_11(self): self.power_tel_tethering_test() - def test_lte_hotspot_band_41_pdl_excellent_pul_max_bw_20_tm_1_mimo_1x1_scheduling_static_direction_dlul_tddconfig_2_wifiband_2g_31(self): + def test_lte_hotspot_band_12_pdl_excellent_pul_medium_bw_5_tm_1_mimo_1x1_scheduling_static_direction_dlul_pattern_50_50_wifiband_5g_13(self): self.power_tel_tethering_test() - def test_lte_hotspot_band_41_pdl_excellent_pul_max_bw_20_tm_1_mimo_1x1_scheduling_static_direction_dlul_tddconfig_2_wifiband_5g_32(self): + def test_lte_hotspot_band_12_pdl_excellent_pul_medium_bw_5_tm_4_mimo_2x2_scheduling_static_direction_ul_pattern_0_100_wifiband_5g_14(self): self.power_tel_tethering_test() - def test_lte_hotspot_band_41_pdl_excellent_pul_medium_bw_20_tm_4_mimo_2x2_scheduling_static_direction_dlul_tddconfig_2_wifiband_5g_33(self): + def test_lte_hotspot_band_5_pdl_excellent_pul_low_bw_3_tm_1_mimo_1x1_scheduling_static_direction_ul_pattern_0_100_wifiband_5g_15(self): self.power_tel_tethering_test() diff --git a/acts/tests/google/power/tel/lab/PowerTelHotspotTest.py b/acts/tests/google/power/tel/lab/PowerTelHotspotTest.py index e5aabb76f9..0617be8d3a 100644 --- a/acts/tests/google/power/tel/lab/PowerTelHotspotTest.py +++ b/acts/tests/google/power/tel/lab/PowerTelHotspotTest.py @@ -1,4 +1,4 @@ -#!/usr/bin/env python3 +#!/usr/bin/env python3.4 # # Copyright 2018 - The Android Open Source Project # @@ -74,19 +74,25 @@ class PowerTelHotspotTest(PowerTelTrafficTest): wutils.WifiEnums.PWD_KEY)) else: - self.log.warning("The configuration file doesn't indicate an SSID " - "password for the hotspot. Using default values. " - "To configured the SSID and pwd include a the key" - " {} containing the '{}' and '{}' fields.".format( - self.CONFIG_KEY_WIFI, - wutils.WifiEnums.SSID_KEY, - wutils.WifiEnums.PWD_KEY)) + self.log.warning( + "The configuration file doesn't indicate an SSID " + "password for the hotspot. Using default values. " + "To configured the SSID and pwd include a the key" + " {} containing the '{}' and '{}' fields.".format( + self.CONFIG_KEY_WIFI, + wutils.WifiEnums.SSID_KEY, + wutils.WifiEnums.PWD_KEY)) self.network = { wutils.WifiEnums.SSID_KEY: "Pixel_1030", wutils.WifiEnums.PWD_KEY: "1234567890" } + # Both devices need to have a country code in order + # to use the 5 GHz band. + self.android_devices[0].droid.wifiSetCountryCode('US') + self.android_devices[1].droid.wifiSetCountryCode('US') + def power_tel_tethering_test(self): """ Measure power and throughput during data transmission. @@ -94,32 +100,20 @@ class PowerTelHotspotTest(PowerTelTrafficTest): the iPerf client is hosted in the second android device. """ - # Country Code set to 00 after toggling airplane mode. - # We need to set this right before we setup a hotspot - # Set country codes on both devices to US to connect to 5GHz - country_code = "US" - hotspot_dut = self.dut - slave_dut = self.android_devices[1] - for dut in [hotspot_dut, slave_dut]: - self.log.info("Setting Country Code to %s for SN:%s" % - (country_code, dut.serial)) - dut.droid.wifiSetCountryCode(country_code) # Setup tethering - wutils.start_wifi_tethering(self.dut, - self.network[wutils.WifiEnums.SSID_KEY], - self.network[wutils.WifiEnums.PWD_KEY], - self.wifi_band) + wutils.start_wifi_tethering( + self.dut, self.network[wutils.WifiEnums.SSID_KEY], + self.network[wutils.WifiEnums.PWD_KEY], self.wifi_band) - wutils.wifi_connect(self.android_devices[1], - self.network, - check_connectivity=False) + wutils.wifi_connect( + self.android_devices[1], self.network, check_connectivity=False) # Start data traffic iperf_helpers = self.start_tel_traffic(self.android_devices[1]) # Measure power - result = self.collect_power_data() + self.collect_power_data() # Wait for iPerf to finish time.sleep(self.IPERF_MARGIN + 2) @@ -129,7 +123,7 @@ class PowerTelHotspotTest(PowerTelTrafficTest): iperf_helpers) # Checks if power is below the required threshold. - self.pass_fail_check(result.average_current) + self.pass_fail_check() def setup_test(self): """ Executed before every test case. @@ -154,9 +148,9 @@ class PowerTelHotspotTest(PowerTelTrafficTest): except: self.log.error( "The test name has to include parameter {} followed by " - "either {} or {}.".format(self.PARAM_WIFI_BAND, - self.PARAM_2G_BAND, - self.PARAM_5G_BAND)) + "either {} or {}.". + format(self.PARAM_WIFI_BAND, self.PARAM_2G_BAND, + self.PARAM_5G_BAND)) return False return True diff --git a/acts/tests/google/power/tel/lab/PowerTelIdleSuiteTest.py b/acts/tests/google/power/tel/lab/PowerTelIdleSuiteTest.py deleted file mode 100644 index 2abcc18572..0000000000 --- a/acts/tests/google/power/tel/lab/PowerTelIdleSuiteTest.py +++ /dev/null @@ -1,33 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2018 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the 'License'); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an 'AS IS' BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from PowerTelIdleTest import PowerTelIdleTest - - -class PowerTelIdle_LTE_Test(PowerTelIdleTest): - def test_lte_idle_band_13_pul_low_bw_10_tm_1_mimo_1x1_rrcstatuschangetimer_10_1(self): - self.power_tel_idle_test() - - def test_lte_idle_band_41_pul_low_bw_10_tm_1_mimo_1x1_rrcstatuschangetimer_10_tddconfig_2_2(self): - self.power_tel_idle_test() - - -class PowerTelIdle_UMTS_Test(PowerTelIdleTest): - def test_umts_idle_r_8_band_1_pul_low_rrcstatuschangetimer_10_1(self): - self.power_tel_idle_test() - - def test_umts_idle_r_7_band_4_pul_low_rrcstatuschangetimer_20_2(self): - self.power_tel_idle_test()
\ No newline at end of file diff --git a/acts/tests/google/power/tel/lab/PowerTelIdleTest.py b/acts/tests/google/power/tel/lab/PowerTelIdleTest.py deleted file mode 100644 index f1197988c6..0000000000 --- a/acts/tests/google/power/tel/lab/PowerTelIdleTest.py +++ /dev/null @@ -1,39 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the 'License'); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an 'AS IS' BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from acts.test_utils.power import PowerCellularLabBaseTest as PWCEL - - -class PowerTelIdleTest(PWCEL.PowerCellularLabBaseTest): - """Cellular idle power test. - - Inherits from PowerCellularLabBaseTest. Tests power consumption during - cellular idle scenarios to verify the ability to set power consumption - to a minimum during connectivity power tests. - """ - def power_tel_idle_test(self): - """ Measures power when the device is on LTE RRC idle state. """ - - idle_wait_time = self.simulation.rrc_sc_timer + 30 - - # Wait for RRC status change to trigger - self.cellular_simulator.wait_until_idle_state(idle_wait_time) - - # Measure power - result = self.collect_power_data() - - # Check if power measurement is below the required value - self.pass_fail_check(result.average_current) diff --git a/acts/tests/google/power/tel/lab/PowerTelTrafficSuiteTest.py b/acts/tests/google/power/tel/lab/PowerTelTrafficSuiteTest.py index 01a5dfc576..8ea90937f5 100644 --- a/acts/tests/google/power/tel/lab/PowerTelTrafficSuiteTest.py +++ b/acts/tests/google/power/tel/lab/PowerTelTrafficSuiteTest.py @@ -1,4 +1,4 @@ -#!/usr/bin/env python3 +#!/usr/bin/env python3.4 # # Copyright 2018 - The Android Open Source Project # @@ -17,234 +17,188 @@ from PowerTelTrafficTest import PowerTelTrafficTest class PowerTelTraffic_LTE_Test(PowerTelTrafficTest): - def test_lte_traffic_band_12_pdl_excellent_pul_low_bw_10_tm_4_mimo_2x2_scheduling_static_direction_dlul_pattern_75_25_1(self): + def test_lte_traffic_band_2_pdl_excellent_pul_low_bw_14_tm_1_mimo_1x1_scheduling_static_direction_ul_pattern_0_100_1(self): self.power_tel_traffic_test() - def test_lte_traffic_band_12_pdl_excellent_pul_max_bw_5_tm_1_mimo_1x1_scheduling_static_direction_ul_pattern_0_100_2(self): + def test_lte_traffic_band_2_pdl_excellent_pul_low_bw_3_tm_1_mimo_1x1_scheduling_static_direction_ul_pattern_0_100_2(self): self.power_tel_traffic_test() - def test_lte_traffic_band_12_pdl_excellent_pul_low_bw_14_tm_1_mimo_1x1_scheduling_static_direction_ul_pattern_0_100_3(self): + def test_lte_traffic_band_2_pdl_excellent_pul_low_bw_5_tm_1_mimo_1x1_scheduling_static_direction_ul_pattern_0_100_3(self): self.power_tel_traffic_test() - def test_lte_traffic_band_20_pdl_excellent_pul_low_bw_5_tm_3_mimo_2x2_scheduling_static_direction_dl_pattern_100_0_4(self): + def test_lte_traffic_band_2_pdl_excellent_pul_low_bw_10_tm_1_mimo_1x1_scheduling_static_direction_ul_pattern_0_100_4(self): self.power_tel_traffic_test() - def test_lte_traffic_band_13_pdl_excellent_pul_low_bw_5_tm_1_mimo_1x1_scheduling_static_direction_dlul_pattern_75_25_5(self): + def test_lte_traffic_band_2_pdl_excellent_pul_low_bw_15_tm_1_mimo_1x1_scheduling_static_direction_ul_pattern_0_100_5(self): self.power_tel_traffic_test() - def test_lte_traffic_band_13_pdl_excellent_pul_max_bw_10_tm_1_mimo_1x1_scheduling_static_direction_dl_pattern_100_0_6(self): + def test_lte_traffic_band_2_pdl_excellent_pul_low_bw_20_tm_1_mimo_1x1_scheduling_static_direction_ul_pattern_0_100_6(self): self.power_tel_traffic_test() - def test_lte_traffic_band_5_pdl_excellent_pul_low_bw_10_tm_4_mimo_2x2_scheduling_static_direction_dlul_pattern_75_25_7(self): + def test_lte_traffic_band_13_pdl_excellent_pul_max_bw_5_tm_1_mimo_1x1_scheduling_static_direction_ul_pattern_0_100_7(self): self.power_tel_traffic_test() - def test_lte_traffic_band_1_pdl_excellent_pul_medium_bw_20_tm_3_mimo_4x4_scheduling_static_direction_dl_pattern_100_0_8(self): + def test_lte_traffic_band_13_pdl_excellent_pul_high_bw_5_tm_1_mimo_1x1_scheduling_static_direction_ul_pattern_0_100_8(self): self.power_tel_traffic_test() - def test_lte_traffic_band_1_pdl_excellent_pul_low_bw_10_tm_4_mimo_2x2_scheduling_static_direction_dlul_pattern_75_25_9(self): + def test_lte_traffic_band_13_pdl_excellent_pul_medium_bw_5_tm_1_mimo_1x1_scheduling_static_direction_ul_pattern_0_100_9(self): self.power_tel_traffic_test() - def test_lte_traffic_band_3_pdl_excellent_pul_low_bw_10_tm_4_mimo_2x2_scheduling_static_direction_dlul_pattern_75_25_10(self): + def test_lte_traffic_band_13_pdl_excellent_pul_low_bw_5_tm_1_mimo_1x1_scheduling_static_direction_ul_pattern_0_100_10(self): self.power_tel_traffic_test() - def test_lte_traffic_band_3_pdl_excellent_pul_max_bw_10_tm_1_mimo_1x1_scheduling_static_direction_dl_pattern_100_0_11(self): + def test_lte_traffic_band_13_pdl_excellent_pul_low_bw_5_tm_1_mimo_1x1_scheduling_static_direction_dl_pattern_100_0_11(self): self.power_tel_traffic_test() - def test_lte_traffic_band_2_pdl_excellent_pul_low_bw_3_tm_1_mimo_1x1_scheduling_static_direction_ul_pattern_0_100_12(self): + def test_lte_traffic_band_13_pdl_excellent_pul_low_bw_5_tm_1_mimo_1x1_scheduling_static_direction_dlul_pattern_50_50_12(self): self.power_tel_traffic_test() - def test_lte_traffic_band_2_pdl_excellent_pul_low_bw_10_tm_4_mimo_2x2_scheduling_static_direction_dlul_pattern_75_25_13(self): + def test_lte_traffic_band_13_pdl_excellent_pul_low_bw_5_tm_1_mimo_1x1_scheduling_static_direction_dlul_pattern_75_25_13(self): self.power_tel_traffic_test() - def test_lte_traffic_band_2_pdl_excellent_pul_medium_bw_20_tm_3_mimo_4x4_scheduling_static_direction_dl_pattern_100_0_14(self): + def test_lte_traffic_band_13_pdl_excellent_pul_low_bw_5_tm_1_mimo_1x1_scheduling_static_direction_dlul_pattern_90_10_14(self): self.power_tel_traffic_test() - def test_lte_traffic_band_4_pdl_excellent_pul_low_bw_10_tm_4_mimo_2x2_scheduling_static_direction_dlul_pattern_75_25_15(self): + def test_lte_traffic_band_4_pdl_excellent_pul_low_bw_5_tm_1_mimo_1x1_scheduling_static_direction_dl_pattern_100_0_15(self): self.power_tel_traffic_test() - def test_lte_traffic_band_4_pdl_excellent_pul_low_bw_5_tm_3_mimo_4x4_scheduling_static_direction_dl_pattern_100_0_16(self): + def test_lte_traffic_band_4_pdl_excellent_pul_low_bw_5_tm_4_mimo_2x2_scheduling_static_direction_dl_pattern_100_0_16(self): self.power_tel_traffic_test() def test_lte_traffic_band_4_pdl_excellent_pul_max_bw_5_tm_3_mimo_4x4_scheduling_static_direction_dl_pattern_100_0_17(self): self.power_tel_traffic_test() - def test_lte_traffic_band_4_pdl_excellent_pul_medium_bw_10_tm_3_mimo_4x4_scheduling_static_direction_dl_pattern_100_0_18(self): + def test_lte_traffic_band_4_pdl_excellent_pul_low_bw_5_tm_3_mimo_4x4_scheduling_static_direction_dl_pattern_100_0_18(self): self.power_tel_traffic_test() - def test_lte_traffic_band_4_pdl_excellent_pul_medium_bw_20_tm_3_mimo_4x4_scheduling_static_direction_dl_pattern_100_0_19(self): + def test_lte_traffic_band_7_pdl_excellent_pul_max_bw_20_tm_1_mimo_1x1_scheduling_static_direction_ul_pattern_0_100_19(self): self.power_tel_traffic_test() - def test_lte_traffic_band_4_pdl_excellent_pul_max_bw_20_tm_1_mimo_1x1_scheduling_static_direction_ul_pattern_0_100_20(self): + def test_lte_traffic_band_7_pdl_excellent_pul_high_bw_20_tm_1_mimo_1x1_scheduling_static_direction_ul_pattern_0_100_20(self): self.power_tel_traffic_test() - def test_lte_traffic_band_7_pdl_excellent_pul_high_bw_15_tm_1_mimo_1x1_scheduling_static_direction_ul_pattern_0_100_21(self): + def test_lte_traffic_band_7_pdl_excellent_pul_medium_bw_20_tm_1_mimo_1x1_scheduling_static_direction_ul_pattern_0_100_21(self): self.power_tel_traffic_test() - def test_lte_traffic_band_7_pdl_excellent_pul_high_bw_20_tm_1_mimo_1x1_scheduling_static_direction_ul_pattern_0_100_22(self): + def test_lte_traffic_band_7_pdl_excellent_pul_low_bw_20_tm_1_mimo_1x1_scheduling_static_direction_ul_pattern_0_100_22(self): self.power_tel_traffic_test() - def test_lte_traffic_band_7_pdl_excellent_pul_max_bw_10_tm_1_mimo_1x1_scheduling_static_direction_dl_pattern_100_0_23(self): + def test_lte_traffic_band_2_pdl_excellent_pul_max_bw_5_tm_1_mimo_1x1_scheduling_static_direction_ul_pattern_0_100_29(self): self.power_tel_traffic_test() - def test_lte_traffic_band_7_pdl_excellent_pul_max_bw_20_tm_1_mimo_1x1_scheduling_static_direction_ul_pattern_0_100_24(self): + def test_lte_traffic_band_4_pdl_excellent_pul_max_bw_5_tm_1_mimo_1x1_scheduling_static_direction_ul_pattern_0_100_30(self): self.power_tel_traffic_test() - def test_lte_traffic_band_7_pdl_excellent_pul_low_bw_10_tm_4_mimo_2x2_scheduling_static_direction_dlul_pattern_75_25_25(self): + def test_lte_traffic_band_5_pdl_excellent_pul_max_bw_5_tm_1_mimo_1x1_scheduling_static_direction_ul_pattern_0_100_31(self): self.power_tel_traffic_test() - def test_lte_traffic_band_7_pdl_excellent_pul_medium_bw_10_tm_3_mimo_4x4_scheduling_static_direction_dl_pattern_100_0_26(self): + def test_lte_traffic_band_7_pdl_excellent_pul_max_bw_5_tm_1_mimo_1x1_scheduling_static_direction_ul_pattern_0_100_32(self): self.power_tel_traffic_test() - def test_lte_traffic_band_7_pdl_excellent_pul_medium_bw_20_tm_3_mimo_4x4_scheduling_static_direction_dl_pattern_100_0_27(self): + def test_lte_traffic_band_12_pdl_excellent_pul_max_bw_5_tm_1_mimo_1x1_scheduling_static_direction_ul_pattern_0_100_33(self): self.power_tel_traffic_test() - def test_lte_traffic_band_38_pdl_excellent_pul_medium_bw_20_tm_3_mimo_4x4_scheduling_static_direction_dlul_tddconfig_2_28(self): + def test_lte_traffic_band_13_pdl_excellent_pul_max_bw_10_tm_1_mimo_1x1_scheduling_static_direction_dl_pattern_100_0_34(self): self.power_tel_traffic_test() - def test_lte_traffic_band_38_pdl_excellent_pul_max_bw_10_tm_1_mimo_1x1_scheduling_static_direction_dlul_tddconfig_1_29(self): + def test_lte_traffic_band_4_pdl_excellent_pul_max_bw_10_tm_1_mimo_1x1_scheduling_static_direction_dl_pattern_100_0_35(self): self.power_tel_traffic_test() - def test_lte_traffic_band_38_pdl_excellent_pul_high_bw_5_tm_1_mimo_1x1_scheduling_static_direction_dlul_tddconfig_5_30(self): + def test_lte_traffic_band_7_pdl_excellent_pul_max_bw_10_tm_1_mimo_1x1_scheduling_static_direction_dl_pattern_100_0_36(self): self.power_tel_traffic_test() - def test_lte_traffic_band_40_pdl_excellent_pul_low_bw_20_tm_4_mimo_2x2_scheduling_static_direction_dlul_tddconfig_2_31(self): + def test_lte_traffic_band_3_pdl_excellent_pul_max_bw_10_tm_1_mimo_1x1_scheduling_static_direction_dl_pattern_100_0_37(self): self.power_tel_traffic_test() - def test_lte_traffic_band_40_pdl_excellent_pul_max_bw_10_tm_1_mimo_1x1_scheduling_static_direction_dlul_tddconfig_5_32(self): + def test_lte_traffic_band_1_pdl_excellent_pul_medium_bw_20_tm_3_mimo_4x4_scheduling_static_direction_dl_pattern_100_0_38(self): self.power_tel_traffic_test() - def test_lte_traffic_band_41_pdl_excellent_pul_medium_bw_20_tm_3_mimo_4x4_scheduling_static_direction_dlul_tddconfig_2_33(self): + def test_lte_traffic_band_2_pdl_excellent_pul_medium_bw_20_tm_3_mimo_4x4_scheduling_static_direction_dl_pattern_100_0_39(self): self.power_tel_traffic_test() - def test_lte_traffic_band_41_pdl_excellent_pul_high_bw_15_tm_1_mimo_1x1_scheduling_static_direction_dlul_tddconfig_1_34(self): + def test_lte_traffic_band_3_pdl_excellent_pul_medium_bw_20_tm_3_mimo_4x4_scheduling_static_direction_dl_pattern_100_0_40(self): self.power_tel_traffic_test() - def test_lte_traffic_band_42_pdl_excellent_pul_low_bw_20_tm_4_mimo_2x2_scheduling_static_direction_dlul_tddconfig_2_35(self): - self.power_tel_traffic_test() - - -class PowerTelTraffic_LTECA_Test(PowerTelTrafficTest): - - def test_lteca_ca_13a4a_bw_10_10_pul_low_tm_3_3_mimo_2x2_2x2_direction_dlul_1(self): - self.power_tel_traffic_test() - - def test_lteca_ca_2a4a_bw_20_20_pul_low_tm_3_3_mimo_2x2_2x2_direction_dlul_2(self): - self.power_tel_traffic_test() - - def test_lteca_ca_7a66a_bw_20_20_pul_low_tm_3_3_mimo_2x2_2x2_direction_dlul_3(self): - self.power_tel_traffic_test() - - def test_lteca_ca_41c_bw_20_20_pul_low_tm_3_3_mimo_2x2_2x2_direction_dlul_4(self): - self.power_tel_traffic_test() - - def test_lteca_ca_2a66a_bw_10_5_pul_low_tm_3_3_mimo_2x2_2x2_direction_dlul_5(self): - self.power_tel_traffic_test() - - def test_lteca_ca_12a7a_bw_5_5_pul_low_tm_3_3_mimo_2x2_2x2_direction_dlul_6(self): - self.power_tel_traffic_test() - - def test_lteca_ca_30a4a_bw_5_20_pul_low_tm_3_3_mimo_2x2_2x2_direction_dlul_7(self): - self.power_tel_traffic_test() - - def test_lteca_ca_5a7a_bw_10_20_pul_low_tm_3_3_mimo_2x2_2x2_direction_dlul_8(self): - self.power_tel_traffic_test() - - def test_lteca_ca_4a7a_bw_20_20_pul_low_tm_3_3_mimo_2x2_2x2_direction_dlul_9(self): - self.power_tel_traffic_test() - - def test_lteca_ca_13a66a_bw_5_5_pul_low_tm_3_3_mimo_2x2_2x2_direction_dlul_10(self): - self.power_tel_traffic_test() - - def test_lteca_ca_66c2a_bw_20_20_20_pul_low_tm_3_3_3_mimo_2x2_2x2_2x2_direction_dlul_11(self): - self.power_tel_traffic_test() - - def test_lteca_ca_7c66a_bw_20_20_20_pul_low_tm_3_3_3_mimo_2x2_2x2_2x2_direction_dlul_12(self): + def test_lte_traffic_band_4_pdl_excellent_pul_medium_bw_20_tm_3_mimo_4x4_scheduling_static_direction_dl_pattern_100_0_41(self): self.power_tel_traffic_test() - def test_lteca_ca_66c5a_bw_20_20_10_pul_low_tm_3_3_3_mimo_2x2_2x2_2x2_direction_dlul_13(self): + def test_lte_traffic_band_7_pdl_excellent_pul_medium_bw_20_tm_3_mimo_4x4_scheduling_static_direction_dl_pattern_100_0_42(self): self.power_tel_traffic_test() - def test_lteca_ca_7c2a_bw_20_20_20_pul_low_tm_3_3_3_mimo_2x2_2x2_2x2_direction_dlul_14(self): + def test_lte_traffic_band_1_pdl_excellent_pul_low_bw_10_tm_4_mimo_2x2_scheduling_static_direction_dlul_pattern_75_25_43(self): self.power_tel_traffic_test() - def test_lteca_ca_7c5a_bw_20_20_10_pul_low_tm_3_3_3_mimo_2x2_2x2_2x2_direction_dlul_15(self): + def test_lte_traffic_band_2_pdl_excellent_pul_low_bw_10_tm_4_mimo_2x2_scheduling_static_direction_dlul_pattern_75_25_44(self): self.power_tel_traffic_test() - def test_lteca_ca_2a66a13a_bw_20_20_10_pul_low_tm_3_3_3_mimo_2x2_2x2_2x2_direction_dlul_16(self): + def test_lte_traffic_band_3_pdl_excellent_pul_low_bw_10_tm_4_mimo_2x2_scheduling_static_direction_dlul_pattern_75_25_45(self): self.power_tel_traffic_test() - def test_lteca_ca_4a13a2a_bw_20_10_20_pul_low_tm_3_3_3_mimo_2x2_2x2_2x2_direction_dlul_17(self): + def test_lte_traffic_band_4_pdl_excellent_pul_low_bw_10_tm_4_mimo_2x2_scheduling_static_direction_dlul_pattern_75_25_46(self): self.power_tel_traffic_test() - def test_lteca_ca_13a66a2a_bw_10_20_20_pul_low_tm_3_3_3_mimo_2x2_2x2_2x2_direction_dlul_18(self): + def test_lte_traffic_band_5_pdl_excellent_pul_low_bw_10_tm_4_mimo_2x2_scheduling_static_direction_dlul_pattern_75_25_47(self): self.power_tel_traffic_test() - def test_lteca_ca_7a66a2a_bw_20_20_20_pul_low_tm_3_3_3_mimo_2x2_2x2_2x2_direction_dlul_19(self): + def test_lte_traffic_band_7_pdl_excellent_pul_low_bw_10_tm_4_mimo_2x2_scheduling_static_direction_dlul_pattern_75_25_48(self): self.power_tel_traffic_test() - def test_lteca_ca_7c4a2a_bw_20_20_20_20_pul_low_tm_3_3_3_3_mimo_2x2_2x2_2x2_2x2_direction_dlul_20(self): + def test_lte_traffic_band_12_pdl_excellent_pul_low_bw_10_tm_4_mimo_2x2_scheduling_static_direction_dlul_pattern_75_25_49(self): self.power_tel_traffic_test() - def test_lteca_ca_2c66a66a_bw_20_20_20_20_pul_low_tm_3_3_3_3_mimo_2x2_2x2_2x2_2x2_direction_dlul_21(self): - self.power_tel_traffic_test() - - def test_lteca_ca_7c66a66a_bw_20_20_20_20_pul_low_tm_3_3_3_3_mimo_2x2_2x2_2x2_2x2_direction_dlul_22(self): - self.power_tel_traffic_test() - - def test_lteca_ca_66c13a2a_bw_20_20_10_20_pul_low_tm_3_3_3_3_mimo_2x2_2x2_2x2_2x2_direction_dlul_23(self): - self.power_tel_traffic_test() +class PowerTelTraffic_LTECA_Test(PowerTelTrafficTest): - def test_lteca_ca_66c2a2a5a_bw_20_20_20_20_10_pul_low_tm_3_3_3_3_3_mimo_2x2_2x2_2x2_2x2_2x2_direction_dlul_24(self): + def test_lteca_ca_3c7c28a_pul_max_mimo_2x2_2x2_2x2_2x2_2x2_scheduling_static_direction_dlul(self): self.power_tel_traffic_test() class PowerTelTraffic_UMTS_Test(PowerTelTrafficTest): - def test_umts_traffic_r_8_band_1_pul_max_direction_ul_pattern_0_100_1(self): + def test_umts_traffic_r_8_band_1_pul_edge_direction_ul_pattern_0_100_1(self): self.power_tel_traffic_test() - def test_umts_traffic_r_8_band_1_pul_high_direction_ul_pattern_0_100_2(self): + def test_umts_traffic_r_8_band_1_pul_weak_direction_ul_pattern_0_100_2(self): self.power_tel_traffic_test() def test_umts_traffic_r_8_band_1_pul_medium_direction_ul_pattern_0_100_3(self): self.power_tel_traffic_test() - def test_umts_traffic_r_8_band_1_pul_low_direction_ul_pattern_0_100_4(self): + def test_umts_traffic_r_8_band_1_pul_excellent_direction_ul_pattern_0_100_4(self): self.power_tel_traffic_test() - def test_umts_traffic_r_7_band_1_pul_low_direction_ul_pattern_0_100_5(self): + def test_umts_traffic_r_7_band_1_pul_excellent_direction_ul_pattern_0_100_5(self): self.power_tel_traffic_test() - def test_umts_traffic_r_99_band_1_pul_low_direction_ul_pattern_0_100_6(self): + def test_umts_traffic_r_99_band_1_pul_excellent_direction_ul_pattern_0_100_6(self): self.power_tel_traffic_test() - def test_umts_traffic_r_8_band_4_pul_low_direction_ul_pattern_0_100_7(self): + def test_umts_traffic_r_8_band_4_pul_excellent_direction_ul_pattern_0_100_7(self): self.power_tel_traffic_test() - def test_umts_traffic_r_8_band_5_pul_low_direction_ul_pattern_0_100_8(self): + def test_umts_traffic_r_8_band_5_pul_excellent_direction_ul_pattern_0_100_8(self): self.power_tel_traffic_test() - def test_umts_traffic_r_8_band_5_pul_low_direction_dl_pattern_100_0_9(self): + def test_umts_traffic_r_8_band_5_pul_excellent_direction_dl_pattern_100_0_9(self): self.power_tel_traffic_test() - def test_umts_traffic_r_8_band_5_pul_low_direction_dlul_pattern_90_10_10(self): + def test_umts_traffic_r_8_band_5_pul_excellent_direction_dlul_pattern_90_10_10(self): self.power_tel_traffic_test() - def test_umts_traffic_r_8_band_5_pul_low_direction_dlul_pattern_75_25_11(self): + def test_umts_traffic_r_8_band_5_pul_excellent_direction_dlul_pattern_75_25_11(self): self.power_tel_traffic_test() - def test_umts_traffic_r_8_band_5_pul_low_direction_dlul_pattern_50_50_12(self): + def test_umts_traffic_r_8_band_5_pul_excellent_direction_dlul_pattern_50_50_12(self): self.power_tel_traffic_test() - def test_umts_traffic_r_7_band_4_pul_max_direction_dl_pattern_100_0_13(self): + def test_umts_traffic_r_7_band_4_pul_edge_direction_dl_pattern_100_0_13(self): self.power_tel_traffic_test() - #def test_umts_traffic_r_99_band_4_pul_max_direction_dl_pattern_100_0_14(self): - # self.power_tel_traffic_test() + def test_umts_traffic_r_99_band_4_pul_edge_direction_dl_pattern_100_0_14(self): + self.power_tel_traffic_test() - def test_umts_traffic_r_7_band_4_pul_max_direction_ul_pattern_0_100_15(self): + def test_umts_traffic_r_7_band_4_pul_edge_direction_ul_pattern_0_100_15(self): self.power_tel_traffic_test() - #def test_umts_traffic_r_99_band_4_pul_max_direction_ul_pattern_0_100_16(self): - # self.power_tel_traffic_test() + def test_umts_traffic_r_99_band_4_pul_edge_direction_ul_pattern_0_100_16(self): + self.power_tel_traffic_test() class PowerTelTraffic_GSM_Test(PowerTelTrafficTest): diff --git a/acts/tests/google/power/tel/lab/PowerTelTrafficTest.py b/acts/tests/google/power/tel/lab/PowerTelTrafficTest.py index b373fdb3d0..b34089c8ed 100644 --- a/acts/tests/google/power/tel/lab/PowerTelTrafficTest.py +++ b/acts/tests/google/power/tel/lab/PowerTelTrafficTest.py @@ -1,4 +1,4 @@ -#!/usr/bin/env python3 +#!/usr/bin/env python3.4 # # Copyright 2018 - The Android Open Source Project # @@ -19,7 +19,6 @@ import time import scapy.all as scapy from acts import asserts -from acts.metrics.loggers.blackbox import BlackboxMetricLogger from acts.test_utils.power import IperfHelper as IPH from acts.test_utils.power import PowerCellularLabBaseTest as PWCEL from acts.test_utils.wifi import wifi_power_test_utils as wputils @@ -62,22 +61,7 @@ class PowerTelTrafficTest(PWCEL.PowerCellularLabBaseTest): self.bandwidth_limit_ul = None # Throughput obtained from iPerf - self.iperf_results = {} - - # Blackbox metrics loggers - - self.dl_tput_logger = BlackboxMetricLogger.for_test_case( - metric_name='avg_dl_tput') - self.ul_tput_logger = BlackboxMetricLogger.for_test_case( - metric_name='avg_ul_tput') - - def setup_class(self): - super().setup_class() - - # Verify that at least one PacketSender controller has been initialized - if not hasattr(self, 'packet_senders'): - raise RuntimeError('At least one packet sender controller needs ' - 'to be defined in the test config files.') + self.iperf_results = None def setup_test(self): """ Executed before every test case. @@ -86,9 +70,6 @@ class PowerTelTrafficTest(PWCEL.PowerCellularLabBaseTest): the simulation for measurement. """ - # Reset results at the start of the test - self.iperf_results = {} - # Call parent method first to setup simulation if not super().setup_test(): return False @@ -132,16 +113,6 @@ class PowerTelTrafficTest(PWCEL.PowerCellularLabBaseTest): """ - super().teardown_test() - - # Log the throughput values to Blackbox - self.dl_tput_logger.metric_value = self.iperf_results.get('DL', 0) - self.ul_tput_logger.metric_value = self.iperf_results.get('UL', 0) - - # Log the throughput values to Spanner - self.power_logger.set_dl_tput(self.iperf_results.get('DL', 0)) - self.power_logger.set_ul_tput(self.iperf_results.get('UL', 0)) - for ips in self.iperf_servers: ips.stop() @@ -158,7 +129,7 @@ class PowerTelTrafficTest(PWCEL.PowerCellularLabBaseTest): iperf_helpers = self.start_tel_traffic(self.dut) # Measure power - result = self.collect_power_data() + self.collect_power_data() # Wait for iPerf to finish time.sleep(self.IPERF_MARGIN + 2) @@ -167,9 +138,9 @@ class PowerTelTrafficTest(PWCEL.PowerCellularLabBaseTest): self.iperf_results = self.get_iperf_results(self.dut, iperf_helpers) # Check if power measurement is below the required value - self.pass_fail_check(result.average_current) + self.pass_fail_check() - return result.average_current, self.iperf_results + return self.test_result, self.iperf_results def get_iperf_results(self, device, iperf_helpers): """ Pulls iperf results from the device. @@ -188,15 +159,14 @@ class PowerTelTrafficTest(PWCEL.PowerCellularLabBaseTest): self.log.info("Getting {} throughput results.".format( iph.traffic_direction)) - iperf_result = iph.process_iperf_results(device, self.log, - self.iperf_servers, - self.test_name) + iperf_result = iph.process_iperf_results( + device, self.log, self.iperf_servers, self.test_name) throughput[iph.traffic_direction] = iperf_result return throughput - def pass_fail_check(self, average_current=None): + def pass_fail_check(self): """ Checks power consumption and throughput. Uses the base class method to check power consumption. Also, compares @@ -226,11 +196,13 @@ class PowerTelTrafficTest(PWCEL.PowerCellularLabBaseTest): asserts.assert_true( 0.90 < throughput / expected_t < 1.10, "{} throughput differed more than 10% from the expected " - "value! ({}/{} = {})".format( - direction, round(throughput, 3), round(expected_t, 3), - round(throughput / expected_t, 3))) + "value! ({}/{} = {})".format(direction, + round(throughput, 3), + round(expected_t, 3), + round(throughput / expected_t, + 3))) - super().pass_fail_check(average_current) + super().pass_fail_check() def start_tel_traffic(self, client_host): """ Starts iPerf in the indicated device and initiates traffic. @@ -244,9 +216,10 @@ class PowerTelTrafficTest(PWCEL.PowerCellularLabBaseTest): Returns: A list of iperf helpers. """ + # The iPerf server is hosted in this computer self.iperf_server_address = scapy.get_if_addr( - self.packet_senders[0].interface) + self.pkt_sender.interface) # Start iPerf traffic iperf_helpers = [] @@ -254,55 +227,37 @@ class PowerTelTrafficTest(PWCEL.PowerCellularLabBaseTest): # Calculate TCP windows as a fraction of the expected throughput # Some simulation classes don't implement this method yed try: - dl_max_throughput = self.simulation.maximum_downlink_throughput() - ul_max_throughput = self.simulation.maximum_uplink_throughput() + dl_tcp_window = (self.simulation.maximum_downlink_throughput() / + self.TCP_WINDOW_FRACTION) + ul_tcp_window = (self.simulation.maximum_uplink_throughput() / + self.TCP_WINDOW_FRACTION) except NotImplementedError: - self.log.error("Maximum downlink/uplink throughput method not " - "implemented for %s." % - type(self.simulation).__name__) - ul_tcp_window = None dl_tcp_window = None - else: - # Calculate the TCP window only if dl/ul max throughput was - # obtained. Use tcp_window_fraction if given in parameters. If - # tcp_window_fraction is false then send None. - if hasattr(self, 'tcp_window_fraction'): - if not self.tcp_window_fraction: - ul_tcp_window = None - dl_tcp_window = None - elif self.tcp_window_fraction > 0.0: - dl_tcp_window = dl_max_throughput / self.tcp_window_fraction - ul_tcp_window = ul_max_throughput / self.tcp_window_fraction - else: - self.log.warning("tcp_window_fraction should be positive " - "int or 'false'. Disabling window") - ul_tcp_window = None - dl_tcp_window = None - else: - dl_tcp_window = dl_max_throughput / self.TCP_WINDOW_FRACTION - ul_tcp_window = ul_max_throughput / self.TCP_WINDOW_FRACTION + ul_tcp_window = None if self.traffic_direction in [ self.PARAM_DIRECTION_DL, self.PARAM_DIRECTION_DL_UL ]: # Downlink traffic iperf_helpers.append( - self.start_iperf_traffic(client_host, - server_idx=len(iperf_helpers), - traffic_direction='DL', - window=dl_tcp_window, - bandwidth=self.bandwidth_limit_dl)) + self.start_iperf_traffic( + client_host, + server_idx=len(iperf_helpers), + traffic_direction='DL', + window=dl_tcp_window, + bandwidth=self.bandwidth_limit_dl)) if self.traffic_direction in [ self.PARAM_DIRECTION_UL, self.PARAM_DIRECTION_DL_UL ]: # Uplink traffic iperf_helpers.append( - self.start_iperf_traffic(client_host, - server_idx=len(iperf_helpers), - traffic_direction='UL', - window=ul_tcp_window, - bandwidth=self.bandwidth_limit_ul)) + self.start_iperf_traffic( + client_host, + server_idx=len(iperf_helpers), + traffic_direction='UL', + window=ul_tcp_window, + bandwidth=self.bandwidth_limit_ul)) return iperf_helpers @@ -348,9 +303,8 @@ class PowerTelTrafficTest(PWCEL.PowerCellularLabBaseTest): self.iperf_servers[server_idx].start() # Start the client in the android device - wputils.run_iperf_client_nonblocking(client_host, - self.iperf_server_address, - iph.iperf_args) + wputils.run_iperf_client_nonblocking( + client_host, self.iperf_server_address, iph.iperf_args) return iph diff --git a/acts/tests/google/power/tel/lab/PowerTelVoLTECallTest.py b/acts/tests/google/power/tel/lab/PowerTelVoLTECallTest.py deleted file mode 100644 index 6ae06b6013..0000000000 --- a/acts/tests/google/power/tel/lab/PowerTelVoLTECallTest.py +++ /dev/null @@ -1,76 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2018 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the 'License'); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an 'AS IS' BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import time - -import acts.test_utils.tel.anritsu_utils as anritsu_utils -import acts.controllers.anritsu_lib.md8475a as md8475a - -from acts.test_utils.power import PowerCellularLabBaseTest as PWCEL -from acts.test_utils.tel.tel_test_utils import initiate_call, hangup_call, set_phone_silent_mode - - -class PowerTelVoLTECallTest(PWCEL.PowerCellularLabBaseTest): - """ VoLTE call power test. - - Inherits from PowerCellularLabBaseTest. Contains methods to initiate - a voice call from the IMS server and pick up on the UE. - - """ - - # Waiting time before trying to pick up from the phone - CALL_INITIATING_TIME = 10 - - def setup_class(self): - """ Executed only once when initializing the class. """ - - super().setup_class() - - # Set voice call volume to minimum - set_phone_silent_mode(self.log, self.dut) - - def power_volte_call_test(self): - """ Measures power during a VoLTE call. - - Measurement step in this test. Starts the voice call and - initiates power measurement. Pass or fail is decided with a - threshold value. """ - - # Initiate the voice call - self.anritsu.ims_cscf_call_action( - anritsu_utils.DEFAULT_IMS_VIRTUAL_NETWORK_ID, - md8475a.ImsCscfCall.MAKE.value) - - # Wait for the call to be started - time.sleep(self.CALL_INITIATING_TIME) - - # Pickup the call - self.dut.adb.shell('input keyevent KEYCODE_CALL') - - # Mute the call - self.dut.droid.telecomCallMute() - - # Turn of screen - self.dut.droid.goToSleepNow() - - # Measure power - self.collect_power_data() - - # End the call - hangup_call(self.log, self.dut) - - # Check if power measurement is within the required values - self.pass_fail_check() diff --git a/acts/tests/google/power/tel/lab/PowerTelVoiceCallSuiteTest.py b/acts/tests/google/power/tel/lab/PowerTelVoiceCallSuiteTest.py deleted file mode 100644 index 07a3a42586..0000000000 --- a/acts/tests/google/power/tel/lab/PowerTelVoiceCallSuiteTest.py +++ /dev/null @@ -1,52 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2018 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the 'License'); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an 'AS IS' BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from PowerTelVoiceCallTest import PowerTelVoiceCallTest -from PowerTelVoLTECallTest import PowerTelVoLTECallTest - -class PowerTelVoiceCall_LTE_Test(PowerTelVoLTECallTest): - def test_lteims_voice_band_12_pul_low_bw_10_tm_1_mimo_1x1_1(self): - self.power_volte_call_test() - - def test_lteims_voice_band_4_pul_low_bw_10_tm_1_mimo_1x1_2(self): - self.power_volte_call_test() - - def test_lteims_voice_band_30_pul_low_bw_10_tm_1_mimo_1x1_3(self): - self.power_volte_call_test() - - def test_lteims_voice_band_4_pul_low_bw_20_tm_3_mimo_2x2_4(self): - self.power_volte_call_test() - - -class PowerTelVoiceCall_UMTS_Test(PowerTelVoiceCallTest): - def test_umts_voice_r_8_band_1_pul_low_1(self): - self.power_voice_call_test() - - def test_umts_voice_r_8_band_4_pul_max_2(self): - self.power_voice_call_test() - - def test_umts_voice_r_7_band_5_pul_low_3(self): - self.power_voice_call_test() - - def test_umts_voice_r_7_band_4_pul_max_4(self): - self.power_voice_call_test() - - def test_umts_voice_r_99_band_1_pul_low_5(self): - self.power_voice_call_test() - - def test_umts_voice_r_99_band_5_pul_max_6(self): - self.power_voice_call_test() - diff --git a/acts/tests/google/power/tel/lab/PowerTelVoiceCallTest.py b/acts/tests/google/power/tel/lab/PowerTelVoiceCallTest.py index 93b69c6e2b..f5b2539839 100644 --- a/acts/tests/google/power/tel/lab/PowerTelVoiceCallTest.py +++ b/acts/tests/google/power/tel/lab/PowerTelVoiceCallTest.py @@ -1,4 +1,4 @@ -#!/usr/bin/env python3 +#!/usr/bin/env python3.4 # # Copyright 2018 - The Android Open Source Project # @@ -22,7 +22,7 @@ from acts.test_utils.power import PowerCellularLabBaseTest as PWCEL from acts.test_utils.tel.tel_test_utils import initiate_call, hangup_call, set_phone_silent_mode -class PowerTelVoiceCallTest(PWCEL.PowerCellularLabBaseTest): +class PowerVoiceCallTest(PWCEL.PowerCellularLabBaseTest): """ Voice call power test. Inherits from PowerCellularLabBaseTest. Contains methods to initiate @@ -70,10 +70,10 @@ class PowerTelVoiceCallTest(PWCEL.PowerCellularLabBaseTest): self.dut.droid.goToSleepNow() # Measure power - result = self.collect_power_data() + self.collect_power_data() # End the call hangup_call(self.log, self.dut) # Check if power measurement is within the required values - self.pass_fail_check(result.average_current) + self.pass_fail_check() diff --git a/acts/tests/google/power/tel/lab/temp/Anritsu_SIM_Bo.wnssp b/acts/tests/google/power/tel/lab/temp/Anritsu_SIM_Bo.wnssp new file mode 100644 index 0000000000..e292832b90 --- /dev/null +++ b/acts/tests/google/power/tel/lab/temp/Anritsu_SIM_Bo.wnssp @@ -0,0 +1 @@ +fO6p4ZnmlusNdwDTxCoF5Lv2d+AD3iaQJtEFqV1nMCwtZuwc+Fl2+Re9li5IIIzXX+pr7sHZS4VbQ1Lr2pdzym1oSpgDX+hNupKPYeHeSm7XD3SWHrrItblSSov2CYB+CIufTDn4S2/qVYgBsjQBszZ6CWNqCZc0xl3RePS6Lib6i4xAXaCkX3msLVIC4V5+BJl6MifxHr3NTUxFW8m+nsgnqed5cU7+yFLGF9iCTtVi0vvmTB6HEfyYPLaOXEsxiFOIkUejjpRcSd74bsOyIXSnoks5AOJ+3NVinB4L+mG0d6nrJCMOQK0cYSGW8p7dA6PWf1MrTkbLTD5+Z0MZ0QMbqiyJ7jBJdmav0oBKmfxEORfVOTW3gBImqLx7QnP7YNV1oihZ0jRFVR0Qmv5BODdV/e1pvGIFxkngpcZawndcDjwz5UVKCsNk4RydyzMQly8soMJrq2L+xYXuKAc4/M74RlI5bGqHdTa8Myi/NWPcwkAZdQctrL8G/m889mOkd4wqarV4zM12O+RmSXyhtxWGuPllcAbJGTIcBN5VnMky+mIntHwGJn801iGEO7GFKJDjwQt21K6gta7SL1kIXR/srOsDsZareASL0mzqwQLedEei5+/i9pQQIlxGE2n0eQNauwlZrJ5BheUAU3lzgDjG/kREgVqZ3Y4oI2Wl7t7NtTXh+/2/WwOAeNUGfcQBN2oV2LBRvINldR8vnd+YWCSre5LFsLDQYBO4oFMJmmDZADjseT5PJr24mlXlLHo9iI5vg+xjhSS8owzi1N+N5ho6bvq6seIpYEYadz7A6lk8YK2gJlDSXuk8AkXXqFvPfw20J1yu8IO7NFIVhfb9yw1RzhpE7oONwkWsL0DyoYWh+lMouvY77pdDKgZLT/7RpnucA8m27M7qZLwipd8AR9CmlJuN9wyOPBg/7AvvtuuFUYeXD6OAoO2Fq5KzUzmputKFcPtq8zw1xttOGekPKJezBYHqQ5IJwO7ibkSIcFak3/mrUkGHbYwG26J3bFgC6oJjmcnSiQNTPau/8Ku53poCtARhL0NNnYfTIpmsKiByAMrEiDipCKQQBwyRO2NBqwod3XfaRVuN7zVbyGxrQW50fbSoEZ7ZvdAM1IX6XhBrPv7ySKjmX16kAiFmRfkjaZm+KyIGPTjUHbyF1OGVUSxhPwaROKxLZt0CoYsDZ0IGmVKxxoNC0qLWV8FNqk4n8IxQn6xQMEniji/4sx95e6uvOrZseAb+6V9DX36ARQAa1/Gkk5jIzdjw4vbLtUv6FT24YbEAPaL1ZZPD+RkpKu0kmNNo7l5TQUy5RGpAxUEQM3+87RJ+scGOzL5ZHeb7dWazhAmNQsiruLbJRUrZO8VaCrGz/05ZFI2wC8DEQvR1Mk47GAK4LWweDxQNHiH5m7uaHcyc0/dXvwK9Kp3KzpJU5ykrVfgmsL5deDASqIq/vjorf25f2wsggpE3cAU19DvVANs16/9WG4mg+dXJTkBYNbM2pk7EyBLyfXgvRfu05K4ApVbyWJMoufmwN0rGYGWL2AdAXIx2IyUsJu8JYxft2bh9nRknMmA1Fhemous+nuTXlZOVFlqZGgJw9q3CvFd3yk1dRDokjdy2uMx91Hny5us9f+Fls0R/nBketjaU6Rp94/MYsxKet/mWOytC/4L0uY2yLzlALOzgvpt+vYEF+Bi1tmATa9oq23FPnCTlYw+byBVGdQhH+VZKL4qhyJdCKZcI0/gAMFBpiT6VLX1/exsvMqe+4wd0uQWAu1N0xWkZns8ZYJWQnf6v6SWQQDHotvNRtzvycQs5k2KYpcFfqcIY8W1AGWGfcSlBhb6Ib8OBZjawVanCJFIMm192OFgbCdKzqnKoKV9KEL3ZdzJDsmeYAwK4qj4sSezgYzg9bCtDwVfL5He/rqPRDdToA/WWZvfkIIr8PFm5UnKFD6kYeqebwOxHBnKeeXKvmsONfw4XJUqYii3gj2Xn+rqaiLGxy78vXJAmkjrA1ynQuOwmnUQyoIw994ATKkM045b72957NCmSbfuNrd2+tCAnmG1q3xlp5SzFz/wJpwvlpi6BE5PU6Oml+VgfQg48rmjT0/kv/uTsgw0SgDPeY7ypV/gQl9ZEsGMi6UrxZzXWSSgmJeJN1MEdtJyQkEprlov1vw+cdIAaz2EWK8Lxjpajg8/on1nSGJ79zvSrjjQ2bqMSbkY/woihvMELIawpvWp8AwdOz51QeO9lyJbpavgFMhEQQb8Lf1LMh42RXjxkmaDQVM4KlS6L2TY9h9d0wuUwkTgA1oNu9qMwvjr+e+R/Bs0jGIs7TmBEfZ/M07PqoaalQFNFlx7UmgoB7UU0/T+Zb6veVakFyEd82woMFl8QkPvddhzv1uFPsMUOoB8jfqN3kdAqW5zFvk7yQimevdfX09rg/nFdymksMTKiZUkvPPn+tUnQnq56sWErm0SY1MRLXd5AGVxPRgfMJJwfFvM9ryXBEdQzanrd5xsX8c+thLb/mGbqYtB87r3CLDZ5IbEnE4UgmH0DOwove5IDCvM0ja/IrxmAvBUaQMA1NsfwrOen+HncL5jn8vFlLPlUFWZlBotGdg0MT1E9V2YymFEC4NxNwvyha1L9zRyBtXDJkfYX+1c8I5D29c/gSK8lKr4wa3n4ybNWTIpWWtrkf7/Q0efd3hVW/ZSaSEdrST/KbRfWQryZWjyiGFEStNnIn5wrdFnIm6qokNFpI7q+bGIUWdvuRc8l9tBAEYzcb/76ZTJ266ZxN3vN1Ju/n1f9vCH+ZmXIymVf1Keb4HEZPtSomi+uS3GY+CSYo8ybL6OexTiBhhXWJ7fqITXEX8vE8Estp2Ros68UYZ2xvizhNeE08V3YdsRGUCchHDp7/PaCCDd7SLExiNGwwK8F8Jzwx+P8ALy3F/Q0AKyBZRVmzgyL/abJ27GS0grC4v/g23HzNJvrS9RSWOIlZhFhNeHYgTBZ3Y0QQ7D4IWboB7eDljjFVcmN2/Pcss1Wdx5hCykP9ZYsMB9a8I4q233FHSSWUDfZA1IomDq3gOVnURbc3GugFgmUHK8+GUXBLnkGaSNZR/l0Utt4RPe+nzCMUt9plyYS7gvawKo1am9SqE5ELekojEXCSBHRXR/E7tEaMDoPHqYKa/XgOCbjIv8qTX+RJ9uG+h/8P24F4WkMFbl+ce8yIqXjmoPsfGETcY6YCnCuTXw9MtqYkAIQCeySQgbHsruAdUvjQhDCrqPXDS3D0Nb1A5QtXF1vdn6hcNc3ZZlJKM5bRXSeIyU8fYPeeGsfJbrdqm7UoUqkL2WHXQqjRcQl2ljWjfUa5ODrzMWuSDlKK3HYYru7dF8793J2DFKns9eO1Gi9sYXyyiasq/ZQFimdntZq+XAWDjJpfY67Io55/td+beT18UaUYOhm5MP2xAuQwDs1d8FTJkNcUSxPcb/c4gWW/36/J+WrL5nB8zvYbqOXakQdIt6wrfmBQUSe+Z2nr1OjBMi7Yr5SUZ3h0rJvkoQXWJMPhUbbJPc1F6nc5HGnAly6smaY1sWaUsd75f4DGCEWNChtEbkyPCJgtRnvIkQ47Zr+LSwPHHjgg87k5ETnww4kyM47Y4YF6wGaJ5iqX9KODcsjKcBXyNgdAbfeN9JKDT3DaYlXNE0C9EqRaC2kc8znrwWU6rj51bC5Fjt7YVvCLGHyjyNQfEzNiG0gqY5UP3oytf9AwauOGgKCqdDmnxiaPj43j0Y7Fq3ZrQB2RYg/3Bk97aBuYcNSdBtI5G5tU2D8v8STFhUuToBDJtudmB5dCAHpqRvwdnz1OrmqBQwTZqbn/XuUiAVPjkrFqd+1PYmrbxLypT4hUwXNyg/tNLyziVV4e0bRa5xeyMjBqfNCQXJVIXPfKUl6fqoe3LMpfOW51abYoPzho0GnA+H4sWy8/Zsm6YmfJvUATMN7osYgqnbNRKq2NxIEnzpWIkJnnTGwrTHo3I3BxEum4sLa97xgQP68+semx9rlnxew2TaRqWi9xiYAUDHlaN8jIKXI9F7AL5RTi0wMLML4x8NNDGjiVpIHZGcOIjEKYlC7PNlBoVyp4MZAA3B+7B+DxKA/TZD2OnxGzo424r+kq2+tYKME4sirpiBRrP1XDyKLh3+kiifIAbvxOAO4x4BDTBE2rHyKvI/omzuSuz4X/wZgP55sKWMTNpkCUEsgzVzy6hgQiSCRjLWwpuvzZOiut4Cnx2pQHGo4lCKfEhYPGFc3i1/d1KLyrYlCdwT1RGC3e8O+MX251dYNswaM89SEiNiXa2u2za0z2MKCpN0dRJ+btTzFZMBFDvS0KkevniwOXVyTswsXP6i9AiOc3zaLh0hSTSk+yBmaCgPjLdUdhHhz1gWr/mWG0FjwD6j8i0SV8qqOPpvH9QO0qTarzFDcdjGbnBhxRDhaS9vcMteb/suySyMecT6Y7WqASOgPTClYYX65b7nrLHisFQShGjwm5EDte5j+p7IJc6ON8m051ggo6JS7kFbtJEBI5cItPIALyivNO2oX/hkE4qB4nnQ1LE0lfVtosT7/ccUlhy2flYWBmBqeiLVqv6VBAfAQiTtUCQ/LJlFh6botsEPJ0414TCDOzWfuFLkab1m76OJ5u2ewHUckXq8YM2sRG+2fgKAQC4cl1P2xKGzLzkDlyIP49qPAidknbApT5oQUqkAuFopua7MMLXyVKsQH9PQXPOKDrFRTO0HeTomm2MB8TkLNjesDeZMspRYqG2h0jF9sBCDZjAiyGihLmgfLW52oZgllby6trrl+yZbojZc243bsHJdbyvxuLny1Y1ZjA5kiUQwlchwYscwSw4ur9hZDoRmxHzzk3fHZ52wPn9GqRO8EKJ5XOwdMX7fzTludloP+KTmXSOenV56mrYFU4qd8rL29vIn+z1MiCgvkxJCsXwbMZ2rVVB9qT70InteS50vvIZAOGFi9O/5ZISSgG+0NjPfKaDI43xfR16UAPMPywjPqk8ONOCAbNOFoPamNGpCoN51WkwkArQQZ4rRec3gqrKJH182oOyCf2gajHfrPif4Qi4qMCOROnED5vyk/CMzN88+YnzPpELzBHnm3lf6UIkQkL3Wx4H0BTGjcT3G1wS02vwGEyA2hFP3yFb7K3He6t9ZpDrttjdeN7BVwgvD3ddQr78l0p5iPeTBdI0gNvaRBr0ZeKwnWJL6F6XPqTcl3UfiVsMZcUNuSM9cmGQIUZ8N83UBqU01EmOltBaPhPevAAaZMN+KIPQ1KE2npYmUel2n+4nbUk5VZP5QsDeAxnrizzM1R1zLmk/oRE7JYzowIuWqupDplPbimYdvXUQWMUczEFxGlICZMzVMyiwErH1861Qo+AMIpum5vDF5iKzzydyAIjoW06ZuWeMT1gNBjTarDaKZS9hL/KzKi3lKH/yK/nO+1M2h0uDTeMInWnGxAf7g6Uc4xQnNPxvgY8aGkYtfQlVyTi/jbfZfEBhI3jXfSqONPCmdYq6dx+22RFeMj81AQN1HAVRJo16WV5G57TmV8nl4+bIvvvkpwRudlXzFZHxlRFbzUTWki/W9aC9w+bpiNuE/8iJR2Ik3rGpR0AsKXa9swbLheY1/CmixHDR8Dko03WyGnKhVNpUA1JU+4Ommgy0Jhc15V9E5XO8DPVNb8MO9wlXeJ8jbA7BN9+HW/YCLRetiEkA0wqDvZhFW53gmr73vJbhxqH965tiW5I4WjturQveKs/gdWMKbr0qpBQAJL/IeBfljvokQ7AHvS3FQHyseC3Xb+hxhWVmBirEzlYZW1TUngZSJ9ljnScbVF0L3gmVq15xd7+vdtQRr0jW7YlA8j56HHOdEs9ptZTdl9QYIF9AG/C0KmjTzd9/HneZNRLH0bC7JDRm6rM2OsQic+C08qeBCMh35EXQeWsSEabJY37AYEYyB+QDR0nfqsO79zU3NhJ/fqG3MnpFZxdARIO30lG6UP5sVI21dbh0gVjkB0pMkQnLZw5nwgi92Jx4czffwsxFD+0Q3iDQYVCw2E1uMSDIv5lCJ0k0+gXQGm08JFTAlgdWKdfB6ddB9vCGwHV9wqK/Jh6IPO3ZUwL0UaO8yLePzHH07kMk+Ez33unehV8F7cjCvIaEjzT5KYQ350CEj1NVHb1Fyta8FMDdHKbXiX5+CEeTczx1ib3c1a9OK4zuvgNu5mi76f+TsjugFOYLW+1HoEu8kNvc7/GQ+nwlvOW438wgnJ4+0iIIZH3R+Tws6qqtIbcvtvFPNpqiyP/WcCH8lDdzBS97bl/G9s1KlnkHhUlsYfFeZ+HlxF5v7EbtVX4SYz00hpqaSi0dCxSyxad3zRDSPQuko2oyEcJbEAsp+EBKVRSrYfp6TUDyn9IbY89XCSx7KfJbL2aEx6lwh5ff9KJtYC8byFVswRzra5sz+uWFHEzXzeusZr/U++PQSynurmPDGFeFrjDSrzVg3DNWqm1U+xEwji2cFd2SlhugzJchhSyYjWnh4ZYBwr3J08WcMTw7U/Jmv2XuF9VkFj4jp97QrPml2wQwfEnCt8r49rII6WJJvxZAHMjQlJtLiqpgCLJ/HbBjlhCnFXcu0ULX7J/Ckk0gUqcJimZjj/K86tabpM1aDzK+kTqndVMEILfrGixstS8wXLEcno1wSqlEZLXWrskBwaNy3Qe6fAM1fuXk1BhMO8k/CUwVkgKo0uy6Md7GP3bzBLfkUcyNcFXxTRiYuJosMBhxy1fJDEfI2hbuWXU7wTL4Fg4TZgA1YURD5UXZUEiJUd89uvKJi5IlxJa/RdsmK85AaksWSDEsB1ALYsS5w4Cl/u5h2oB6+TH4ZM4Uj0xFSDazzg73N6+pBOOfonMDcSSISpjP0LJ//Owa/3AgkqBLABP5SWdiZecGnN16WYukUIaucSIRSA7xFN+fREiIEReRjfScYK6bUoIVH3uoP/ZjtzSwvfz3Sdbcj0zWKwlimXSZ9eGg5MAJZDaavTHLrWIkkhrkkAloty/zbuDi1GxHxhtle6N6Wkq2NkiwdJIY67plWGBK6T+n87wgypmWbzKRci0urV01QotVA4FrBMkXndoZz6aiu1ZCyY0dYHB646pAIBwY82d0HLxXRcslrPcKeuPxgUJc+7SZtUDRbnhvPaxmb8T4JE/c/g3LIIO6uIAPvd1Yz63WvO1mMNGpwUjCw2aJqotqPdQd22vHzNJHDcECBWOQJ07iTPhGM5ng7U9zJnf8aDmmT/CQV90abm0z1q98XgOnKNOJUF9MeKxjbRFDZeeuvPpAopjA5VDLvy5r3Hm0g2t+kkx2Z07ptOPPU8FhpeatMbPGA05istjhMIk0oX0RFl18Pbucow1e1MXnLC41VGBCYrgKG0Rtn+j1oJfNtBn8zL1dSlD8OSjYh7qrzXvKbLEDOaYDthertRzTNn77yS38xJdvtutB/MuEV5fcLG3C3ILfmQohEQ0o8kcEzTLtpygM214BPeqAsPzt9Fx1/qCZefCT1y6p8u502AT4S3L+DSOZus6yz87Xhuc/8iHGr7xIZLZS9vEwoXDPqa25A4F4avnu5bJ+69Gq1yIiu4ijbEvhixnUBaRNmXB8OzHG9fwW+MZXL7HHmkR5gC467oNnHtT8CUvS8mnpQFxHlCiaJ44BgUcQ4dPvj5eWQf6BXthBBP/DkhN3ED12ZDS4CZaeJ/dTRKFW3y4r/5cp1oVn22TDvnx2CFGpKSwMRbe7+Ij2yiU0eYya7xv+YHd2FnjUL3yqbszXHTyaYaRvcf/dhPoPX9PgnRsiHkZjfp/E0uV3UiIygyoJV2Ozi4h1ILCG2fN5+0xijcXwwvdU+LRyhR1Q4VQppXXT2LnpkqMOjovf56H4voNU4VUbCBySLlD1XcIUEdio/Uv2EVHU8YOpSUQik5nEjbi+ythEl8n0Z2pKOVBoaABgo4PJxO8BmtebcGjgAWyxSVt0NjJHMv2Ooxm602zW9qchzrqc/JOFV+v3d63nIFJtBKocCc5xZHrXgRwR/DNbRYZq+suP9XfQbeYdhcYMJqjuYRzQWCdyZzSKd/a7s55s4QlGGx0gJ7UeM5ju/bszXlLAmnoyg+ZFC6zdsHQu4yahv0PiYNMzxRy2IhCGGoF60URnC2RYkyK1sshlL5HTDZXub6ndWpY9rNWZMTEYKDyJfoVr0uI0ndWov9sVaF0B5DrKZclUv1iox5cU6SCvtz83jYjxsQR9KgaZkjnSAigEP960xIEWRROiQiAvpE86GgJdOiVKRtcOs6uJ5P5tFwtBl7y4jR+/SViibj9/epSecF22/JTjruL0ZH3YSMhPxMysqUAT9zuq98xVSvFY2GKbVI/lRokJ2DBX9QQ/ZO11Wwf1C26UsZl4SqRTH7T9/T9C6nnwkvwNMogQLK+7/RQl6H4Gc0JtDm0xdm4Jqr+3uTqlL5GczhWfeFXRPOaBAZMcEqKx/E6WGwCFj6n3v1eCZKGK8d+7t+phIM0d9dRteiOdTltcmAiVfKlanLlqw9Y0XQCOrUqjkZWYBbb6OhSXufpn9dAzZ3/IJRW1TGugqsaN3Rqf2NYa9ESsbMHP3KoMV9iVJ6CjWE7OWz9l4dxthWfksbGGIA9XbDHvmUyJhHZyJDDRroCpdSRegF567pl6iL7z3rzFypmaeGLNDhvqtF2oUou2bw1u0M2kOhbCU/XenrW9jt+aeORP7bYGmLodTsuFqydt/63uwRmlkfsbBEDcEcVTsBklMF7jRGdRSaxxPNatrNaxQiEL1a2MdI3TNcknkfEi8N9/CUh8+Tdiet4iq/3eyFxm1LTVeCE4Js/s1uHIV6dly5jxDixwiVQ6dlOt7sYk21B/hVDeSs4Oa1uFKSfTc3YrxPSuOYP3qY4gmQkeD0RGsJh1cwFYusA6SgNXUHPK8ZNfrRhMAZjz4l8xPTBwq+xxHtNC2mZ7znBsdlx3AB8pP19TeUcArOb5KyGbr2Lh/KQnoc2kaxsIJu1WQodzBhl76oRYjR3hBntI6mD9VDcwQaI0HOEb2x+UZs8dj016UAXkjpiMkWqYUwTOlHCFrCAMoFDQcywCpC8ZX4FHUNsI1CbZ1PrXPOVvSoz54+etVjWwTISbXVHjDaCP/JElaHrcM4QQNQhyl24L0FvrwZcbdVRxn8+bbOWm4b3vPUvwZCHWIXpec75iFZuyH/Nq6Wrk7WT88VJz8EvguEFnRUFgQhYmkHxFLDOB/ZVxvQzlxDhitXAjkI+n1jVKpFfRMbf3+g04ujV/Q93VRyLCApnzAf5iPIfDEsU6moou17e+dEb7wdKIuMYOVmOuMOb0O5tJK5PSB8siM735/ao1wYOEJ58o/z/5ifdHU7yNHt8/eTu1KPY2JeAnI98uloyWLlMhfKXgJEbWjjLVO3r9xAw1wHdaSGpQBruTxmiv4UxBbQ4nuw5R8ibaWa1va7X1FLP61d1CpB2zSozOwuujV65MQ8o3GH1DvnIJB1+7frP11wQI3gCR0CO1AZw381RHaiHKmVnX0iOxTSCecMB1wK5qQmj2w/V3ylmSp0/WhuxQ/efE04qMibwKS0PfyBReHArlw9HHHdtc2MOVsmtMEMQvJjGiaLyTBibBhS2Eg+oX92KGHnYcb/lc8NUHYXwPkg+8FsRnW1vvpOotrbYaEd0RSCzRczbB8h55lisCGdMdvQfdDwwYfxoAvhztF2TsPeCSMPvGpo6AULxDtAEdu71NNt+wqUpzIl57HGwBsL0LT4mEGpWBe+mG4q2of/0gqQ4klJdNwhdPhu4RYUGkvjwNQbdM2LSwG9uY8ttHsl9H+x1tjs24FC4eif54ofoXEyhxlsX8e9FPKE2rxjUd9+Z56yp3m+WCOwiRoyeE40U+xFz3JiyRYmHr0iB+oX/GUpqTBizlHA6I4L9ZqkWoep2+7+Str6UyToXffg6FA+TATZVTUu7jrQ1WliSC67QIJczP6Ql1X81043u8Qcl+mqmTYTjfq7huXkhQ/2R6plqwPHMRp3kShrrPDwuBTiZ5DAlSJtJut1dt2+Cu/SD+8CeHLBcvqjBO+es3Sp6A3Sq2vDgceeRVbHq13EXxFslIyuChecJWenmTpJg/Jfs1mBdgkC8kt7QcElpvNkIaNCDQY6E5pZnjrCb6j7uB3Xj210g8VvMzhJQ4Vv/48Rn7YRfw4AQ8Pf6Dz1a7tMbsuYtUMEcvo3oml94KPtnQ6OTPUf2XuESb/bssaAteDOTRw7Rsvc2We1JzCP9r5vFpD7RursLnOkkW5geayszxjv6B0wUI9gOiRvHsmDYJqQk9nfZh2k+J7i3NR5T1R2GUebD+ZFPRkviMgtzGPMCQpQLgXul9F0gxOL/p6TOGYS812RlPk/qjTrCtqODJX+Q4TGfsjWtlesGjzUqXIu+Ah1adyzhE4dTXdpBIBw2Ckh+XnEDas7EyN1YRfRTIJ+Y4lM/D7ln1YLqujnfsxWA6CffUpSFIIdRG1ridzk1XxZdzzSTOkL3vQc0bxV+A63tNyPfOHvtC7mZMB9V4wIcsVzWQbs8kFJypikMLKUvrRrWHzQPP8V1+gFgmIWq+Vy0ogh7Jisxa1Mns/8a+QyYel+U521cAa8mfHHS9+V4dlTJgHPjnw3/0azpxSLM+yhHVxSlwJON+tRn5LlDnR6rDNJmCz83ItGhTbLVVHmnBd/ZznWzomEFzAdTnQwCvME3Lr8YldWFePl+acGCPS6lSZC3nBcWynOWQOVB9a3aog0yw/qnJYnJclWCs2Whzn4HWtbJQYPcp7sfBpV4zrAGpxyMd52kxb0FgAjq9YERkGKE0cL+if5yaoV05HZz9HjmSRCnGgL19UlmJmpI75fjadYKn87BeMWgcXiHBRdW4CqHNrR8mkic5DfN2IHCE46G7GRhJbCmWdnSutSC4oikocsJvQltTNpUnl73ThugP1Ipy/tFdcPHDquZ6GgjIhqEq+0EceXL4z8Trtrf0DccGCniknV5v0cBFHf1CtLDZcQSQWgcE/dlEGVUoKH/3LHbygwgqILo4sExg5ZdtQxsAaFRTwold0Pc8c9+SG3j05H0whARcZ4dwwNwiG6QkoJHB7Dn2TGUQcRMvjlH15N8sEmg1SzS32Yo8gEanFAzDM6HLP0zMeAeHiM9HHm5tagCwcMFqiwBRLv06FhveLh0rWECE+EWES3Lrrce1tkzBSv0X5rqxJzUhtPyQYSruFFb2wVNnC1AP3eyF9XA/6w5eNEkfUPxjgVC26HG4z2IYh7zFSWFhrQv7UcxOcBXTbdjD2auAsesdaT/Wx4yjglU3aKgAupiLzUFTlXtEfdQfZu/NdC7+l6gzMJwJX38EhfO+iuOuXysnr3+BkAwvgnqP5iQOCua1NoZeYZn6fV/Is8OJc0QahwaSRPopHfsQ7E/gtP5SDrLdbuOvQ1LDD3gQU4VJPm26e0qJtpV9JB7iSGywMKk+JUY7/3tLdZG4xkJ6XueYHALKAx7Mn878wkwF/QCIQ7h75BFwTU0T4xmuoVEyzta3Y55nTyizovHtJkNH2EokNRvuVE3FNPjRsTfAfuySamrQU8MNfS62rdgrhC83tAVRFL6nnxDegOD+fzoADXLqrQK8U2C9WHlMp2KGPZiCvLKIcA/QXlArcAgy+S0TW+j30uOySIz2jZq14g6Eff/VZ7M1ZmpyN7W3JDgyVBZGQg5rTD9T+f1vIcgVIo075eudilJQeqE72sx0mvzEloHA/V74bpvgSV7WHqxGXiO+QoJyNlXdcBa0ehNpYRgQ4FMYDCiYrrZB17/CfZezgT4EfOvlKkls/kBVdMK9/25fO4iZboQKMpay8VCSerdR8gaIFmfBytNFVXgpCZe1QAYRnCVn7zQ2S3v8ij9+Ky46Wa7kCuHZd/+VAeWRSWU7U6vzGggyoFe57vtJ3IBmk1WyQrPOP4qROyMM/712symuWWSqxtS/UGvZ6q5G5EeXFAp8XWOt8qUVYHzfw23jzJNs083/6i4maE2/5q7o/3sBP2s3qjtNnbet7kDQC8OuKMLrIpylPEayFmxNhBYe8KA1UrtAlZABVdC515wvPjeCXR/Wr6o2vLNUoitp6WR1IY7ubXV2m9IHCqSml9LM3j4SGflVQBP/p2vEFAMCzy+q4YWGBqeZhpoJADfuT9TrVgcGuAJyO8BOoZgZ7pPM5EzEjPWLR8Xi7/2u7QoUgcEvI5WFddtHqDKgTeRrC2MMa2irh4J/o18gsYKVKAqrtWsdKOuaDr6i0yV2Bc9AhUd6gJXSHXRrzaYcOTslrP/1VG0wGNUVWQQdt7siOOD9pMHRuz9aMvKAGZSRz/ubkFjvicYs1gUX2uNJrFgXqq+0SeLVa1MWk63zGqsT7l1LTqsHwpt7f61ku9ZCLGt650WBe8hlrOezVRRr3rDKan/Tl2iycdYT3dfA9DZUDPDGngfTD0kUTFKVSPPS2c+LbTOXgEWwM0FLjgjiqVlW6okdRSSxLttA6PKS5BGvorOGAsCJhm95vbVF8I7vlQWDQalu+4WplpAcPsH5sIdDErz0jehWsCplY0bFYNMoKGFsNnsYVwfL6lUzcoPWcGVqp8+VE1AA1jP+H0oaQAId8BHileSl4n1u/oMH1KES5NmJ1gfnOFo9Xa6Ja4HbWXbFePjXtNaMRA/bopmu1HpZ77cKcTgoqWA+R8vR9VUgmjA23EU3QSXLsMXzH8GyVpcQCCv9kSQwx0QVKUkMLJ1HKYQcDz/MM+RveJ1SwjqGZUJNJq5b4lZgpOmBGr6ipGJFbr8yKeQHTOKck73aJppLsFTU9iGB8enU/wnyWmK8K1pg5ZRbYujpvU5pQFuSj8kKSfGwpKH50LzgtLMb1+PsS0+uPY6n7GY4AtHWjHnvO6zjy7Z5NANWSB+8u0xYpq6ewUj/wCSleiF4sCvXonbL6UWJZlMKEDrwyeqlm0paC2wgTBHNNplnUze5V84+Dp7lg81n9pemrs9qmn7+ppEmlQNccGyoGv4FWzNAdoDkpEKvABfEOiwom+qB/FZ5eU7fsWHCQQivkhHZ/tnTDl+PMho3l1P792mxbP10GX7kzOOVsiEgQ8dyVmEMtwyOQKUMr1MOTQVmeKO8R/kojSffrJbG6m76OvIfyFal3UdwSGestEfotxvsIi5yCv0XXTR9guUqt364okwVXzztQEbPjCpprGwNxMAC0GcYf7Szv4TsEIDZK3i7a1dbH6g1yokQHhiLko/b38aux3y/PT7nwR/qCMKWeXo8pftslIZ+Q8XonxOuTetvwTxNDndStyI1f1zPUnZI5xhrrIaeprIh8lQ9dEZqzF7xa42LbBxyZZGsqnTCB23KXmCuQcK8z9ZgCMxOIfA3pCu7tOarXSB/jKLW/fKRsbvWdULq6V6zzwMCMPhHgU6q46qhPaHb7M5zEKbLXLlC79tLQ1bKOtOnHKfUrSsGHugk8QqcFBeBXP0xpXq4m98KSTa9J3kA77Vm4iHIVCLrBEChxYf3Wdgibr5qyrwtKsgwwD8vasZiBuAWi7QjtXAvE9sUDZbZJcrklx8fBF2e0Q0COCIn7M7hXasn6TZlRkdKV/S3gtSEM7R+FlcfMI9sUBNjG8W7poK4UJeAI9nq2vFWKB4YsNbDg1XWLFwRPLwV97Fd5bbdzhHVIDl35CALuRaiBgY5gEaRfmwkhr2tzoi3e4N8nnT0VYvOhBYcLSuUrbGppvgUv23KH4cntfUcte6oC6FyMhLn71OwUuxk6r9y3OMWWM11CwX4WNFYUG0L4s8ez9XSL/3HeHoQrnkcOs51V3FCWuf5YNvyUMBnPIeV9x4Nk4ZXRnHsiy0dJmrLFWhfpniDi9mO3XNgOayzUPwTSYIaQzZps6fiR8Xi8z3QkcOVGD6hL249nT1okP/IELwUuud2wZdMNuIoOkWQ5n+Ri7NjtuMmg1SRuNMcEOhrhDNH6T3r1MbMS+SDDzzeNqOLRq4kmaI/xpKYF+21Hzwq1LsQMNTcQW2YTNoV/uEygBgOM2PK+V0uWXIpuYDVVfKj5l8GE3cixxEJgtkE3M4o5eYQsxj5JxL7Ffl49fL7T8+2gMg8TjNS7/3anGjDN8TKpD1OpzKydXIDrkBasvgWKvMwc7fjRRqVgVQCL8kdB6wEzRHEE2PengT6gEBOUE8qArClstPmqtq5aqKbvWrLUNJ0r49ccAmYd+shgLpswSrfij43M1xaZeny/glcJqwnxeB+cXNyGt8AC75cJM8dwl7kSe84ijNxyUi8k2ohI/JkpSgicCJt6DS3Dv09mE/kC0UluJWqIBhSNZQdXXHXfSZdIvOtiwcEf1Pii8piGG2a+EjqjE5pQKKgiEd+kXB8vjkJgC9EM63iPpdXnZ+L+Dj1NsYwFMxYHJz17X0KQ3+izQXc7/2BiZ+H1e3WZcLnUoUlEZgx/mEB0thRt1ZYJcfFEfByHwJDTISulXlUlL4z9749XocewDmTF/fWz4qjEysdkEeDHQei560iu3Fj2BaeyInG5HJvsrJsVyX24W+uLz1xoBizcPvwdIkd89EDTaMrTNZWxkhqxT1smYZB2gZ+54l45FcsYVFINgobuunb/k5l+OPwZ5gPStd/S1MTdMLoW5Wzhf4vdZOu2lNtIKVIvI8duoQ1oEtpPMIXbf35Wsqdt6OjsXMy+QFqFVpDohByckx8ps2HvwXOH1kZAJwnqMxRqR/Ka1d4zK4EK+wF9c5Bp3tVOfqrvc6K82fEotQMaIh034T1/5B9jQi8zZYbipBWYVu3TN4O8tiPHZos+HAr9OdhoxFENVqyiyTy0jbq1MA2eW7XbuScGF3wZ+5F0D6bGOV8DH5bIUD4CUUjNRxKK9XGBlygkDq5b5Rzdxj8XDif5XbL3IQC9ogEeQtuXdIU66EtOCiv8G6Lztui9CQlO0ItatSV7Ek8Q60XTLJTAX4231B/GVI3UHYDz7C2pi40YQ1jPX7ibzkcYnXjjGTs9oKj0gYrdqLgG2nkTPubxsN0d5ogIt5AVqAo15097ofFzCaDXvfACSX8GUswlO4yFo7LmCHAALScfHHYWKXcovIPVs7bRNAQUlLZKKv4HiyKa5XJ7dzBxFz0tfvqjS9ig7ctQiM/S8Gtqksp/Kr1PdybzGEQ4mc0J4hPqg5NBImyke/0XKPHFd28Ca4L2gaqu83qtBuVGYUtDuIFI8MYWd9B3wVvF/5gwu4D/wTEgYvaAM+TRiQAT0sJ2N2ADHXt8K7wZYOXxwTyCYUQnsgPiot33M5NhXV+bMZWIbibLYpIfafZrMwGdJ3uHPZ+/YNi0a9Fl2VNJKvw44oqQr7NKbiO3KOprKNOrf0MzikgNNvspCRMFB4ak52hLGU22bXyhsGz5nEIDhYada8qaE6C0dRZnrZd4uR5oygx09wh2i1ZCfnk2l3RSrGX/uG9U26QoUjnkOnrvO8AQRJCRciuevalS3k0STHC1IphK47KI8lAscTtZEyjitFrKQ5kUlN/nmFfC5QRWyqNNq35IITJ/sYaN0yqFVweFkoWlVS53GWniM15XUh0PfYdMp+VLJtq84PW4nv6IyVzXM24Wu30V1QaLdSzl3iVfsQHec+b8CiolCH2wvm87xCipdiXME0gvWp1FnEsO1aiotkFtV8/c+wnACsfztvcaF0JZFg/v/mWMsb7h5TIW0VaiUHiP5PDoCgzFMMzG2PBOPt3CtrG0TlZhn3bX/AsEDE+kxZSk2FHGSrhEpiUfgpYmPYHIAf9utJYMDSGRF8alofEG+yOzg9VlUrccEtMqn1FZQjGe6RT7MHFcwsY5khX0PlxhBEdB5zgj1vCR79hUekrPVRoNsOTfwFYEL7efCm5eDClRL4eTTQP8sCNgyKMrjfl4w2sPVyzRBzTDKKd0UgxBGchkrAF6/zFgCz6Ac1dKJmHarfKsgjsuoMx2/ZClHNMiH4iq7ib+6lgya5t49n76wzgOrInAngV90YQiCpu2ClzmClbIX4zInJVYVzKseX8DHQc7zu/L+g8FMiawWnNduamYJjaOjwiDTY29dN6DLxHDPNuXJlK3mp69g5UfjgPZeeTa1jPVwyuLmYA7vffvWQbBAkbTYpuf77MTzAuZHv5FLb9z3ljUcqg3VeahdtruXs2s78zytnjnlQ0J/6yvFdUQxqeiUARjOpLYNiLTtiOJLVcyHr5m8kw37XAuINqYBoQo3NbHcuZlvwdOwUtDUYsEa0P7XPGECssE1CPlnjm+yxBMo7p6V6kpohm8Qi9a0ojPEto/xyAN0lou+QrwDxsn3jAahDOWkiF+wlJxt0DwJ86AsfJmcy8bTl72iJ0B02C6bmrBPnUFFxdlHBYsXay6A6sw2wh9D4t4/N9+I4Zu9ekOVqkkLP5Ftd3p8Z7viH32eVMBfHeJTbmiD2iHKya4MY+e+OtgSOiVC/bD/H5Mf7SfuLSXa/zs/Jr7cdwm91NI4+5TJhq8LxHrFk639/nyod+LEbvLdnXolA4ZKSSwSTjuFI34lNgARLssWYZ8bx/UToalhXpNCL0prz/Gm/GyxzjcflAy1NsyDDKP+JUNPnJ5Vg334l8MEJU78Tbn9qocEEiN+bQqTAeov7udXNz0fN1LEhu3PFsfZeGjIjii+IKQLJsQpDrUfPd8naeXMxbOMZMk+HjhXygN/db8uL4clI7md7uk46lajvxA85Y/akJxxBi+isMf8NXlTF8ktFpvsj4k0ZEGjGhYhFOzEhgDgcM5OK1tzdRVxvBwfn7iCd1iDXHCkMrQhw3JKSoNyLwEGoLeLQcPWh5uYSH373FauC4PBIHvn4vYKPedMmC3p4bZwr9dFfr5XraDjde9b+TryKX/T9hzM61YAK4QJkeqQPotViESyOTRjRkQ3Lnth0lGGL01lo/V2J8MFPfmvrYcXG6WwEH+/Q983SkgG6jw2ZMlLILCuHpSk13YmayUdKuvjyIYqBbeFpK0yTfU/o+SeQSXxNymK2peNzBCE68PEifoNCV1cgkPHBYfXl6uaJuKg1sbJBzfBeQk0ABd1M51IhgUp+6L1vfH4NPefovwEneH2hxxb0B7z1LaKggqTkO/kLi6/Pqn7o3lGDm2gYb/rVVagLUFXo/LPL+13cubj2SvYNc5AS8km9KKGSDahrdiPil7aZCVOKTEpvKZMLQWy6pnqtVenuziwGzWXxqgbMqDtMzebe3cZbyeBPsa04o667AMPVYVx+MEUDWYYmrM+5VgZPnzDtg2KvApWeod3hXCwfWAnCD1DBG9yUrC/Gla0IymtAlrIwfKgh791hP+Su6aEdJQxc7oCh0At3T9nkuRON99WADzjDE3H42zrG0Zhqxj3W11Bvz6YPQtnEqzncnwEpwmcWmlz4PXSqLWKuM8ztXbPoUUnGlToQwCV2SD7y8CM1cs+E55Q38GmvlkrmR1zWrQF28tLyS1JpX2UXExMD6pwuEdlbE21m2PzQ4k8vw3MLLTOvI1G9wPBQg8dlT+T2TRlBs9eaaKr4IHtwmxnIfnPCaaNoBydcRu8GIXCB1eDjngH/gqwNQLi3QGfiun66HN0on6UvOZaF0VkT0AouVpi5eoBfosyI3+U172smWJpWT6bEPwOkVC2XgMii+vl8Kpr/TBpvZwri6SCFmAWid7jrypmsfv522Rni+ZUim1SSBBMuP/GRseXFVKrNUJhlxNstr6m+VI3AbD5U3WwfL8akhFOiJqg6N3udq+h3bbGbHfejgj7W3ao+mYS8BkjjfxhxMNFLU+e1qK4tUBhtwTmz4IgoZJ02+jUfltOTXMEbKXIqgNquGY0hc9AIdkalJ23VoJ/N08tIOE5d10hT4PqzbEGjIsDjBCiUDoUp6SAw/TgH1XomSSBr9CX8e6N3U/sNGah58u7J20KGsngFvEpU2oEKR18PcCrHmII4ZEPp2pHad0eQAtqkrqEva50A5LeYK7mMjHSoac6kOAt4nTVx0a4OoAwCTXjq0Ai1eJqBBIZbi+HljKAsepVQWBfoQluk+4MNqIthGtu70y8rKM3JhJds4FmagB+J5/kONFzbhywxXTM9Y3l52FB3fOxIKZoyByTp2z+C/kajqy4++87Jp3qi2cv64P7LscHuzMzgzpNdm7Mr5HKFzyELaAY8C5o55lFpiLVuIczb6hsarpA7R/i3FDNpAezVLs32kfFsXaZLkpRBhEDlnRvxJXPYSweuYzFgreRTfTYOtFnz2cUmprXMxNA6oPonUCiGoA/nBsVW7NFf9FEYxI4BaKr8anv9Zrz5RTCpunJZIvFd8xFQXrxuHKnQIM+7Xaf+ARz4V115ESovJiJVKLarzSPJET/uTpoz2LyBCjGWp/XtOxKe7WnmpmUdCogh3BsFVjkEUUOmvO7zVQuZ0RYgKWXzx8fk8BpjF9QBVqEw/AvP5GR1StiQZGLWXbo09KweHEKBF3WOKhTiTb+egS8S7q/mCVC6tWp1lnGYeW3PCX67jSmby+dOUCogjIIxcP1tGTPxIwf+4ywT3JvhCsLItMYDmZ2OdrFEy8tv0fVG1RZvB0Di2dq8Vmp18+RX2U8ATvL7yNH2da837RKc9/TpYiIlY8cIw2Lqt3WBImrRvqzew2tjcmmOmtg7cqrk2ytGuiIiu38uCBKMj6ooWvNIyovIZ/crp1tqLQ9c8jCL4NNc4aFyT0tuYWk+vSbPEPb3+6D/eugY5DmcF/bih+mlC47r1B5sJ4Z6X8nDd1v8yG1QajtzNLm/tElVRVX7dalKfomv/xY9tyoyS9OqmAoOMyO6UcT5uCSKEsk+I/CPFwLnwNtaXp8zTYItK3uKa7Zn9edZ/pnWWfqUkHu2MPtfidIdBgVZLkEvjfJGkPd8njC9/hQKS8Y41sfogsC9EHMmPerqxSklSqnswBeo4AabyoXsy6y6bFH8RVu4OkmhwDWkOrw9sD0CBytYJlKuG/dQ8nK0sbVK2JtRe66o9hsufuhMCvXdC+BmwSFuYfs8RCL9bU9TKFajQ+nSyyyIOgrUC3eUoaqWtcbItDFYwM9JJUVULL4XCyBavHOcVW2lRTigVx6+FONa3+5kNfhszYSMl44EqYHx/xDDvCdm4ggAncSL8NoAAfiEw0o9vc2gpU9rq5bcHAtDQ8f1JqRRiqX1TVew/3FvKWYE9RkC1fJHB7SiPX/vCdFY9rwu7xRek4akguY/TDUfwNcWcWItnK5gDlbAk8stmDBWvV3W8+16Oo94IIxYMM8OqfMlzrrMSA0HDew/mX7r9wk+QwAktTYcRmjrDeZOJTz3Kn3S7ClFTqE9+DOFixzJRP1t8Ie/uY2DTZURVuYD17hj4OFn9B8xPOxcJ4JWe8KSea7rZnjKgcFaIARgy65E0juy6wFsHAZDvR5GtVpBXiD1iDs3k4CY7S8LY1FblY7ZB39O84qzxnfZoF/BmzwJinWOq4puCrvYdS1JQJRX1aMVThztj7D5i3Y4IGRBqnnXCIQxQwty/9nITdPct1TIHoeqPFtWH+uJTf9W1UqP/JunudSneG6YJblkxX1a77e8ftK6fQWK93Tcw3ta7y2VdSisEOA3kHVMtJDH1fQTZnh+1Sz2NVHYT3z7M5zV2KItFTHjQCpH4vHR17O5ow7TZbMxlu9oVx9250eC/W/axoWTDOvt9U5KN6BF8txbsVySh1+qqwm5YhHwby0cNlABNFpgQ9GIgxFQlmBE3nbZarLsuuByHAYUPeHeR8wDf3AmW6KasO3QjPIxmtByWwW/piiSqOer3o2k4yBn3P68HqM23tjM1vSZCTEamjoRIl3zk+LxUXs6nBecUNSgoBkszmTL4/DK2vJmnzq3roww1qwu2J+rkRZHrWA4AsOuJRbd5Qw1ph37dQhBGSFlrDTa0wiRdgWqW7tVRa+4HIzjrqnZw/d30bH57gKk3JjWuzdEW9RbawQM26DIvbh+1tWA96SPzhTAC2OSFu32ti7az4vLkoabPoDAxOIfQrz7MFt7IA0x2+zzgWOGnofxIeZrM/Wm3mC7IBrdjLqtWHIvyaTpw0PnuhJKlSWpM3KNFPnkB68yAsH03dExK/+oquERaRG2TvfbBQWKJuGdXW/si8S0tcIYj98+UoX5JD+XZjHojP9CZiHLcJDeJGeI8U0gmiHmuq/MqSCSB/jZvwRH3I6ntN+9W+OBgHs3ntBANhVBmuVry9sMixi9wp1nmAkjXgxDyqEa4OB8CJOFScsTGMcfdutk5GYPynKZ+rdK/o4itMkNq6S1g335hsCURioieZnpxyKsQjCbzFXVWjCSZ2ZrgMQ9VEpl/O6ky4YugkfEyvOOAxfcJ+O8W78cWe5USwwpvsWlG8utGFE8oGBm+ci99GXcZNYRfS4eXlJcsqgD3eKa8RpbfK1jvZuZ7bi0zsu+OapcBRud56ElQixJcUlEeCj0npdttPHtcQu6JN/6XNJtB5OG0J20EhhfFw9WiOFqz7h98DkGBSmVYOARvNp/AbbtrRHJ6MUm4Rehz9llNNddgjjFqpMNavb8jK1i0fB74pWoPz4tUX8wsOmlhvSyzx65WO+oOhaAtTwu4xolAmvsMnCPnr8SUkryMzVh6pLAjp21VgM6WIedbh0f4JetP8hOEN9x7IY7mWftMs5ADtxEBm+pihuix0qPQ+Zg5vrO1rmS3MqOGQ9uyotDpjjub5lcy5zvok28Uho1suzqL84GLywicESSJIJJsoxSyo3P/3PAhcOFsKcPmmmfXvBNVWVHJ1x1D8hXSCEnRzkVanbXwfarwlg9LQlZz3LHznS1ldqX+Rq9aEOBNN77u1LtqyoCZCuesis0DO2LfnPwJvRaf7NjX7CSqMcC8cAf6WfSnBDCVPrTQa/cWjsmqNKVJnjcIgknSvonmZVoYn2SCe1Da6H9UM5VaO89CDpfTcFmVW/Bn5Ia17GXZ6uXPbKQtNEjmHYgTjG8MYh+auiX+Y+mk1a9ROIvQHAypZvIf0HLRwUJzc245VEnlSw2l9ilyV9Hmo4Y8rpvCD8EWyqDyX2bbLfxBBirOsz1uabOJKqqwiXYmHJ5gCpCw7siNIIfQs5SIPrAjQ5kpoJOfFxa98HDq0GD1sjhG77g1NKn7Cx2mT4HbIUGt5uEpnOSB39/VLsFmvDbvxVpEFXu3Ca700vGo5KeqnTNNdsbeMMAjSfajwRIpIOUfQ8khxLUPyAJTlLjXv9bVXF+WzbTdPWUSjVl09fKNd0nXUOTs4LnLZlD/EmhVaCUz4LCYtXkaOI4dbWCzympvAxXEUi4iaDcrL1WkNWRXWc2a02cDq40gjqbRZ0qIvFO2ssDVSamKS6/TeYFKSZVHNR2wwwy/cpYX03ZYo+C36nYjkxDVad8Om4SOcv5IQ34/gb1ewfcyvfKkKUptVdAe7uxFtEdM7fPc1RyHSr+kWgfh9Oh3rM5QQZn3/AH92EzNG9HRu9ZhIN0T7v3EQqqWsW/JHZ7UCDq6giAQjnZk0QA/pIHqg09VkwK+/XiOXrVcCGmB3kTTQSXAHFGvvnuzP+sU5eecgADMMAbMyRESsQMhZxXfQedypeqIC+pvTFstt2bWwjEuSVZ8HayueeiulJ3QRVdJIl79qPUTdc6HWm0l8LD/UrohKTTF7dFyMf8yyCBgF7FgDCQ8YZA9QbnXi3UdPJKfWdc2/B/TusSUG7W9QR+PPVnIwiS05oKAk4sMwzs8lDvSXgIf7wIo6DHmIbCQQwvBGIEryflE09gcElM2JjhHG0LNge+JsVNfZTy1+s+d9dkl70TVrLTmjqF3TTFWjviBvCgcUUAa7dFL3upKTPZGT3fuNhwYVXWGBvdEflW74KcDFZHY1p3ZEucuGIepmvP8jX2JrpYRUYAyKDxyyK/mAVr/K8YmFhlp6cvy+0SunCeuAu1BbajYyjjjD9xhC82SKO9bhj8Ht7bFOqjnFtgd2Yb67GBXMwd+Kg6XXzCO3K81t0jL5y9IvleppmjEinsl8TY+Tz5kxXQiklt3RxxNR4vEUZIQqk4oCy/u7ho+zc27hI8094N5tW4Gfvxr8eWDIKFef26YHF3DNHtfxuWY1DQkXvBpa/yMLJDT+Mq4Qt6sS71485gBvHlw0QoL0qzIeqi8GNNYjG6rxR+HzgeC5Ya56YcEg7H2W1bqos+3nZVNbaY6SlQwssYDWKY3IWhGinBp5Kte27iO3Qpag604W9evuG/D7TbN3NUtd9qJq9olq8hW4kxpYK+gUghFxiDgql/d29U81UVtZk/prJRMmpPygsw+unM/VqyP36pzZgKiADNlLk0scFrD+kYTa0TyV3vo+utrtSbDBopn+HZem76OnOG6ZUFz+A6j7/dMgpq4YOkJ3KmXJmPu5DSTr0IGNwNTecxVI6sUOaRzyAakkPeoKw+Z9P6xZDnUL3zC4RCbWgEJ0aFBod0+FfHobhQ0eGCHg3dtJTTySmjdf4kqdOCaziK+igBfrHyKOdo3QzydbDrfIDYqel6YcguaH8VdS1UZfZjXBRFACc/Fe7XIH67BRGB4Mz3Ltdh+DVnOpOsPlzmWT90j1Dh+i+Hct4lFoGW3Y8ygHpZex3adeHAAbxtqqGzdq3YoD6cQb0C5/avgU0GcmyCIO6hyCKtPfIpGFKgX7PSfzK60ELhXHuc4VQjqmpnR7WcYjjV9E1me4wtNqshO9LLX5U8A8m/hzibWI0bwQdsvQ+e1GEHFO5RtMuNa0DvWIVQ1vnFaCx+PPGq4Gmui5TSQ7N3woJ0wacn7LKPSrtuSWowtNKrKUnfLSZl0wn+KUyAdISisJ8ZCvD5vSjEAbZm4wM8uxN9l8Qc/TwTqtQ0ksEXhk29d7TvbbdYcaX2V4P1tbXgiLFRasmcjRohpDbzXSL7uDdcB7a9M+J0+QQWGd+CtGwrDr03J/9va9v6S7CPQPBjr8uyGD67MRbUR56AR0csHVCBfN+ZcUVpNcHtWKBJEXgjaZ8Xb1A7YmfagbVvR6S0Eve6PivQEdipAzfTZrZeTWC9dDQY+J/7pFkpbOqG5hli1eW1+HNXK9GUuT4Hn24iztYpWk4BonKb5cRMzyj2naXpb9+L3Ke6qAiW2O1kmjlz41+l0wwob49sfbUhu+eHkMwq8sqyz+lZyED0J4tgfQgk5tC5pWxlArSEOfIoGAumEOrq3VOgfqEH5jRCletqDvj2A2pfDpon1wCZfULgi8ImAnYJM8p4luFcZ9DVKDutb1pgLB6pfLrUGkwqcfV2aqMCKB5CtqWSoD4lzGCTlCh29ZyVkU0BVhfUjRSPEOUSwOzq8Q1F402KHjkLeqUKt40AqC1udj++ylaxaQfYuP7iHXt/WaEWspz+mJlMYbDuf4rDyjwb/MIkWKZR0DWQqpnFGkZO1H5QUS1jmNMc0+bF9FXiyCLT1zPl9uLSlHZ092lePDORXqnyb7UsnftzJ8k/InzmJOYZ4GDq9kofp5lwmKKDGDp3YAkOMHpBI7XfJZ4oAVaXSnUtnIf8cthuP8nnzNNOLSvtPTMoVVS9qxKBKlLH7Xmex8LhLruJuZPdeOPVR/B41fHkj/S4Zd04SXbF3ioSmyJ8V/P+qvdCSkRF2Dh+moqtk+2Gkvtv06ZJ7EcI85sFhQkK+v7M6j/lxE1LiR3roSSt3gZRNzGG3i56aGJXvb0o2DSrL99xzIPrT3+OaLnSwcJp7vONwxGwi9QmU950K0GigTnIUKNBT+N+kg6MUg6ZdQdye1o1rJKagB+lDWLeClvw6qOyGdzl2U+Mm3daPTMGBy8OOClL+hziYMYxP1beDfmZFqBKpYfGt4sU8l5BB9c4ZuZYPIOLHDKmvq7eedALT/OfvYB8DuULQN0mnB0TslvYNcDeXGweS/SfnUA7jV3LRzJlRQZ36EBVmJq+2h7PW6+r+EbCg42BoupJCd97tmQJVUtMZ+5KaW7zKmgQaBL3zpm5HE9mti6Mz7GiSk/oYWMRU8y67g0OzY+H4zsv035Q3vtYWia3jZ1beKuz7NDbmxc05KVwMGFop1L0r5QSrLXng5IYXEIDPCfloZ9uGvyUyo11mupCNzN3dznwx1HrDWrku5mUg/HynShoB/P6FXtcEcGkF+y/ghNhIv/fII1D0PR8DbKopwbA9t3kdEmJ/e+H/RXBg7/nr3GKI6qR8lJRlhIGXKOwj6XD1jm26bTjKGigqYCv191dD5nsqJItHw/x4iJlk4xkt+XLYJ7ZqDU7aGW2ngdiqj58wIRPNf2Wrl0Gnj4iG1oGwtuk/EOU4nLO7sO8AzkOzzabQUtkm1J7SaqcBNfwiXg02/yVx+DI+qxLgdRRQ4Umz/ptilrAm+F22PDbNixS3m0R3TBUufvxDB5iTQtObwMpyiA9PETnF4CnFaRWs6MtC89hmK6okIrB5yYpNUTZNbSm8nzkgiYRImYjCrcfmHcUATM6TFYdIGgV/IMP1czlU2zbRBOxAQ6AAZMtMV1C9ltxNbAinz7h1llOS5V2gqPd0CfeYYf/ym7sDafQdORmMsu3sAzMlyF/kc6oqay3Y0rwNVQi8vKA0qwoR+v4ydfp+39C8J77vlEf8vBCqE79M8AgaGTDGhNEbb6noDWPjPeGw3ImI8Us26HZDDkBlqxg+bsgfrV3ZwEDw6pUhHBer8kCTU0351uhkwcDEMYjTDHinnWGJLNUI0bNhGOFBlRSzUDOjtaukWJwGn70sIp7gGF2UyZenyRxh4GinOLog7Mr1LcCCTyFiN1Ey7jPoroFdj58uJHEgttPUImx3EOoCvXRWZoTBQLda+EYel0yMHC2OutZdqwM/p9OzwJhq8fuI8Eb0P2sAL2hykdx4WKsMA3oVOfVoPKoamK2emQwf5082Ol10fdQ7zTg/8zSB1Q2W5Wl7iR9XrBectZw43PIz6q83eSnJCw9bZnXjhB7Pkegw1HOFy3awhrRBiLg70uJu/3NE0MFFZcXCO/zP+zGkbkqNPTzgsfOdFa7M6xRfvHA90s5d44jjXwDSjzUtn0wSxPyIoTsXjfocFgmwdvW4B9oSxvZY6ycBJfQSLQkvSO9a+uruxurYhvVoxp5PkJM0+9c54I7x74Z2kojU6/FW36f1SpAsZcQ43EChTFjXoqU4WsbcxnyTwIoHOAuXpEofVZElLUv5x3QPub8yHuiRW0KQ9wNKCeoIG6IP8unC3MJHtnlcHKOlk6TUaombfC65Nl3Mnq0zKr9IhO04U+AEEM+j+eDDPGN7LZovId/MOCQUqx0oEDou3ZifoSR3MZbcGpmIgbMF+RdcrtaHghw1OPwk+bVEstxP6ZdkIGG+A966PEHrWHCSxeGhrf0eE+ifXJHevyi1oMy63jiWawErrDD1xCtq7CEg1brarzALpGmSh6DtDssO5ZHwwpEj8v51lLC1yDUlE89w2sNY71JtUc0grOJgAxwVGAzk8pLUypbpcPyyXXQSE+BNn1FiRapYgr5sXP7l4PsdNBn/XU2zjQUJeFb1GdHiB/Jio/+4UkY+PaX2cDOun+IYzCrw8dhr3WQwU2dApY56gVU3bhEvUoNMp1mBBDYl4AAqetxFbUKr1Rnq8rkTRQC4U2U6EDwG2q83uUGjEKKNEzTyelOE2jkbmoyh6MnHgnyityMMMZp8bma/+MD8dA1meDtazHRONQpvGbZIXSFVV2IE6l70tT4nfxlsK7jPOUazcDwZreRbYkDfXbt2v4aQRBqKVjG8SuOJNgvUmKng+ddraa6IKOSnNMHX5CuwRNSwWHHaURfcqZ0Go0ro9pyEbXXxv5/ODk0/8Eq7KVUtxq6oYHnI7rjMDMsmgGLEDcjeCaqPJ+ljrB/2F54yqVhJ+BJeU4WsHUD84A5z1boXyFbqQ3f2NmlWSmyufOepcl/QY6Gn43ZL8esTSYuBD67u/Mqmc7LUNeFjTQ6mknZqmLKeB5htxJmCIZRE3QZtNv0+CwD+fpMcKMp3Ew07G+eO8KsGiAzBr/5+AAqQ2m4ClEE+389A4jTJc+C9Kt1auIKnEOF6bGhajnOVfwWZ0DGfLHyAey7wtGRg+HSnEb3hxiZPAjS5zE5GSfx7x13ClbxJ9e7Bh/Zb5+Wwuep/Y/8jMe21b4nzbe22Qz0AiY5SjU3/CHZkZco4bEesWdpGJ00MLYp+1eU6P872DYxk4tcY6itcl4mdsEXP6CcQA76yOvVAwdtz++fNCeHvNdHcNILfEq3Zn8JK7hoZui6B6jdp3BS41FkeWJZHDq514uQp5/3LL2qP3P3s82TXNkoMusvDzv6mg8Dqf6QXhZNbFPnGrHQsvulV/beVt9Hx3ig5kEMUCoAx4Q+ku7R5k7QUGTsmFPKiEhS8nDZYqsyUUv8Q5UHgBlMvEI6pCYyYG7Mxr8FSyM03tTj+kxFDemlpaN0p//sW8V0yzlJ0LZaeIVWYn37A0C1FdVSlyIlpBQN/UwqsyyubDWyN6vzfCuAN6oImE3x3CLLmeqPL7ROCf5+6llv9eCGDZAv+zTsqwKJ6OAEJIhOAWjWAgQQ+I4J0NNz7L0JQmwiN/KnSv0UUnBhY2dvvXMdtEII7ZhwBLyHNS+6V0Tjf38iH94UdurImMbdqaim75MJxy854KjKYUn3+xYDtWIzwwOhwV5l+PxvCR4SX55vu1dzX1oxRKClOfuVw1tT/gTstD3CiNs5uuiSkG386NHfXyTwBlSOlbylVrHv40E+npNbSabPhOXSQr9rGjTsEn/aIjgnKq8czDRytsOQfsnaHhhJF9UAOyUB39tfxGJjPLOfPldMrIPSK6WWIuwOnnjXRzZfgQEBDu5/OjJPzR+FZJ1XbrVTPCxqh+djjZfr88H9EFpfydJdFAQ5WvjYHCYWBiSrhI8Qy2ccJsE6GrzMoVWQ6cV1ih8cYPOS/hfkJyweJszKxq/4Jgvow1eV9jsEQ6hiGbN6QyAj/Zw90hKPyPtZcBuoWZ/2ZkWHQwMTjyflmX/uhfDRCOeHKzK69rwpMV7vISLi0cPHEe9XpkeESD5jgsEpEzp7NaP1Sp8Y8j7pYIIk3WA5a8eWj+bhWgqcxwOGAdGbiouF8cES/gP+EOrbQSnb6SuLk4ksemrqpkZRSJwI1m+rCc0wnen/ETXR3iu1iKo8ujW/C3Jii3KsSmTfREBgGl3hYqhpptnM0d0wuzmzDJ5YkWedxjUmQe9pQkkHS6h7MpJg0xm+K478ekjF5Vr7aTMosT7ne0oiQZH9JDoiDsCWDR09+IsLr6gFGgN7Bhpj8jl+NiP2mbjjEq8/xo7PkPz0/NqO3lOONj2IFy3oEBwZQDhY7jOLrS9CPy/dpC2Z45Tw53rwqfnrsp6ZxBLqd+Mu22D9HuQwC1jP35+OoEkmP7azWrRv/dmnWaZLRYdMkRrwQrI89anegmZmZQnRp778vI0fpf2LW7F1FOoKBPju3EPXA9KWYDWoT6k5wOMwqWakP+uJ7wlJ2It53c0Wm42PW1FWPeNJ9WCJdA5Y6oEWYY5oTHp7xeYnactBDc3rrc0G9yVBpwKHumWbxifr0RCgwoCvoxnzg/eO6gQa3hbr+e2uPb2dl5qt5gss5HXZjX2ssGIW89wEwhc+AQ7R2CQVnWCu4b1H4Fa4f0qmTJB4hZxvwhlVcMzVTtXunjuncJRMhKHIAMXJu7W8kL8pCKuxtK3ZiQ8TwDl4aVbfshACPigFZDBstUvo5ZOfp/hRxMIRhEFHfghobFfkyA6A9443E0udazeuftTUBqtclyfnDkHgBmHU4hjg2PaqeMApHHeKVsvJsTShzDC6QW9lQCSIYYhYfD1vPUlc8HMLR1dvtnMcO9EFLF28t0CpvE+M0OI1aAwQQKhD3BnuspcBOaNfTYCTqGeEwY0Z5P1FrDeHNuQzBkG0GU3W6WaWC1rAkWcSrniBe6xD8X6q0b9FDEjxNmRNYGQ4Beqxuu5IJsaxYRwxfxyOneohmZJ9Mc55Y2tkEIOqPQXDuKioT6le834Nw9Z1fCHcZ/vp+LlTQVL8rKaCqcDQxDSNPIWJEs2kquob/rNFPZB0Mai5Uo1vdiVN7Y8mVpR8HZVnKC1uUjOzI3CqXoLfp6blUaVjujk+cb9+l8c0P8IHvuj1KAK8fVzAdZFExrTKozYTlKM8x0zvlRj8qKxNEhnGHqsi8X2OI8r9gxrmodGrHWDajq/c/LhMZslm9m3suqU78GNgShGlRYxAY8jhJvoeD8cGm18pZXuh18/tFDsE7rkUt8VEL8MQL2gtSCgweh2P84lWPO0/UJ1wFaEIiC476tTRc6XDlqsWkrJi/+gSxSPjNI8qUgwCBE1sZ/ImkBpA2/9RKWBAN6svf/kVnHi9A8v25icj2psXktaeL6yjhcUdfvuA8RDodySJfOWpOVBuPLNLOQ57xdlvwQrTmV8EeUGkR8DfhBio6/Ya9wKUuTA6eRW+LK3Z9RzBkfc5aGOtng7hIKjAjPi69A5mQ+e0gf4TROl+KgDgmHEYsZURR5OXYP3wUKOBwhhKVWyEo1Yc6PnilJyLJ+VDPdahlcccd3yDOqOYEwQDt+UBvrXgEGsLbAbDoK2cSBU4HLDMeBv8LMkREj+q/Cnb2FP9P9lL7gZ9BgF916F/2eQ2r2KurOVvGCHP6RLKx+YjPc6T+GXHc2cWlOgDSC+M5I4FT/Kx4ptn4F6r3jP/M6dvo/jLqA+OcRiwmIqvLb8zcRcTP7O3O7sLnyNsXcVSfWE01JyT0wxojEvvEsRjpVEztoThB8ztUi56oXoOPKjClfxVTJpOCbRYKdMWoHQORYiTP43iAhLTu60mY0AliA7c47fAEKfmshQBz61cMgePu3pD8KHeDpV+Hic1nwEChIpvSDPSZcfYQNW2oEZIR93TNe2puUk4l936IRamkfZyxvXRTTOxj8rSQgjjml7264t2qMdITvvsvk6CMobWIrJBgbwDU+3qZnHLIENJphAH3O2aoe+rHUFolT4XM+ba8JaLHWrKER14J1Rqv+gqHfH2IYFcL8KC7Z4Yg8ir0uvHHtoFSr60dz8PjRD4lO8Y5OYa0Mw7ofBj8FrTe4yO9FPJf/KH6Rz3CEl9QT0jYVapYNBGtqLFuwj/XdKq6xG2KehIHZmlAEkHTTzQNhMf9GQxAagn64OqYHeoBkHZkyEgnbk44mnIn0JTZ4F/N9zb4owCvNoOUVvCLbW/Osrr9AwHoPTP6gGpRlsuEoJH6afX0YhcAmcOXaiVFOBhw+upBfJpCBEj3K0FZBtlwMW0QnCvLKTQofGVsA9SdPbXw+IqYTFBP4jKLAxWDpvr8lO0DO0fr8Jnn3if+8zfgCmbz27rESl/fDBvt7+mmc/MuW0dI+okIXDrvoE9cgxCsHKBy2NoXvMfTtLUE7wEO7drt+7JIi8iGv1ZqdD3K8QVvCw1zuEwD5eXvgkQ466V+9jfoz6D+zjwJtnfAhowCx6GGDeUk6RiyMglOjjeOCLlKCaxqpBBkHsuCbKDYA84zTIGt9qVdkvVN30UR4jpzlS58pN6YL8GYrwj6YM3DHLlYe9MpkY+KllI7qXurMBplUF0z7bEMr5915Kk6+ROGBPM2qmtrxJ3lXSoWHjLe5+ZQoBlivecS3Akgebzv+VKFl8gyRRZWkwO6BY12VXsElp2pDbA7oKoI7Uz92nvhX7WPQ2v5SZcC/5ituhg6b131VU6wPmFKYdn9ewlk2zRrKBwA/kZpFOQSAjJxyBsvqkexZl23MODbWpwT8loDWCcgpsqSoW/JzLPOJEEtq0wA+gSE1whgu7fCZTh8qJvpzcYx2x/1eL8lcJ++Mh7EsYPwbcbAqrAIdRbgL8I4Owx+jcMh6WCmZzh8wUWB3EWq8Ay2m5qcH5leh1Y7tNLB3sHo29v4Kk0Zy9zn7ajIzEN1knG3N2Q32cCtad0zFOCmqw+hTpcUN4G84VAEFw9fR8lzTSKHLVbeBoXtUw9HGPFPffv5ZtNKimoEJJ5sRFylDImOnlQSRQMZA/B0xqLWUostqe9vawBNHBR4FWRXh/j0a7jTs+Y5v6BZ0I2TXVMtRo5apl+J0C8D2KHDI/qzw8iqu2RcJKvQ8fkYV3y+2Gmm2PD1rud/PNjy6waeXTScrl54MQyBsigpZE7VWWag7hLO60WgxVr5Rr+OICCC4BYPDkP7fSgJr30QaeAaLtF0LScr7nALRAAmDIuA1e16LzDrQWeBo/AoOw+1BIzT7ztSPMERF+JVqix+3N6DX5cJfPxEIONpncysFxuksTPR/XuoPWE/f34dSNboRpmraxkr1rgotcCxtGbuDgoWXenrgBv5U9iGFXnoDZ6z/Y4hMi8o3BJ07DxFG0FQzBzTmZ1wlZWIvPRhN8LmNxO1bLZksCfZOXA1Jw7SiNguRDVfcgr3wtJ1NRSzJT9ox2QQmi2ifCAicAoCaB5e8sxNfqseXblvf3EHfDgdGmxDIByBC0pu2cA1Iri3HZCTEEpupsVq+36ag8YA7fZ9rEqgnWIyMgMhK3sDYXmjGJk7aiAnn9qNla2VQAbiSc5ZeiaVFM3agiAWEBdkrH8dlmc21EwCNeSPiLaAU+PttgS/ydQ3MBjVDu3QkBzK1vtA6tISZfVSdB/pmLXQAP0lwm+w4o1++Sm+10LdPA95mRG3eymWZ/5VaZRz7Zg92+NacQPGplbXl/ZoVogk/3BAAXtHTRQvVslTEge9N5Y/LLRXM7tSRItvClwDPMm/8oF8kmxof08FUktLkMJPimtyG2gfJqrddGeZcmVmMCp2Otp2TkPLm1V6D/Xg+VmXI4TZbi9UeadjAmXxwlnhABIo1vHejtGnu+UCicr22B9kOkRBTL/QVQcJVoTABUqyRbKvJyJFMbslVyveqgaRaBl4U8LTq7NSyrrGe3xmqKuON5u80k2adH5CtfUu1PIPkK/Z1VliXSv4ZmWTgE5tFW2A8p/hoWMRcbEvO3mKvullyBuL2jEsXhp06oZgNLCmSPnR8AqBsDT8PqpZpSLYgSVvOVGsRV8NDPyWb6BEzeHX6Hb8jWVggXVICA0uy0F4HJksyO/EjQGH0uSxY0u0iLv6OjTqs0cfgMtL2PulI/SCaaSp/MNMLCcxJTJzxLwvcnwLPz09IjqiQAOoDB7r8dUCLo2uwGUQuJt0PmlHraGZJ2xQq3oJL2IwioQKYlvVzX2lUoxZ/4Yt4kixEUrIYM6WmJjCSEHBN5q5QeTVfhoKG+oxgV2T0Ur90T103WnSK8ARYIhrweWCUmfYQo3kEEBbTBJ2cI9x0/E6LAdgVaO6InZEHkHp0+3t6sFNIgWlBoJy4t2ZyHPnb8y6VzZmOfZ5Or2CBeud+2NZb80cWhTDvqdJo3dYznj/lvGNOk7ZuaH/wVqoQa//LVK0W5uqzO3ymne23j7Z5qWBjiUXCYjVt42cr6DuUIU9/WMg+IMjyjuf7goDNrJQjWJ+co7RODDL3nfCKr5VIxz76rY0bciZ9VKXP/C0ndLXz0wwAuY1d/KOwunhTJBkGLDYh8FFsEwuvR2Gtn3CVlv5ty5/WNNlswd4gLrCXgdz9Ne5CknTYJ4XAcqzXbHCJ8cXLi7ouQ+XbLVL+0iXTOR81eT0w2Xt1FdEz/aAHNW0LERpAH46Wuswu4gLEPrVzkCkI7vbdPRcOvXnDqKWU3tiEcZLTt71YL1r15RW5CPJ88pS3TNLa7fddEc3lpI7Q9/GGajb/tn/VcmqoZssCoogM4L7YpsQrpBR9YBEeKiBelhP8Rln8m4o2sAiIOBPIUOehz50fY3DXwIxKIsjUk5d7zy2iAT5/0SGyYlz1HyCPRvSLgoz1cAIRzRrzbtqpBvcLsWPdMeNFVoQyAPy5H7IphVdEMdER1Zl5Chty7Ij0keHeBDIAn2PN4p4bz0QVPc3aHYWubOR3FZurnGwS6w5uhJfhgqMxBIVJqsGW9XFspBDQcPqKITwmnihVcHgpU2dHg2xXM06ed7sU30o/NbJZ1wL7uIa2Z6JEk/ee71toZpOjJDrzeinA0zWmMcs+5QluAch7ROFNf5m369PG9+uFB8k07nP5kSvMyUDh6WHMZXYP4bmlY7VVNP3mQUxXfaLSc2Azout4GxK3Dnns17B5ug66bEb9CviflnkrVT3b3v2vB3PlUBicmUFUvwa1CyXbj+Kz8aTWFix3beGon1TRMNjN3DE4AEDSieTqQWmkkRSWJ45NDpCbwbUffi/neju0yg9F63Ven97xg3vrMvDmy5u6eUkcXjdChT+gM1ZmECleamkGtAOfdmADOgZZbqUORtwGp1+ibO3v7HLpIGfdzJyDVQ5U3/cAOQaeP59kC9uXokBtbIC2nRcbTw0SQ+RAnG6demnFERNZUv36tnZgL3DVE3faByQn3WGkwWmKA4O39M1tTgCRuK4EKfNOD2+g9+ODs7DMhEhv1HrOZdAb2hikZnW45FY368I0B5NKnakHlNoGYBTp/6KM1Ff9oz28kdBVTTtHwwqKAfPTwYPiVO/pY+YpjHjAE8WFycH/aLemrTo7ETWicl0IaSFicV7BGsyyQGD3WjJJG0EZ+FFVjFrmHlgb5HsLMjdQ0NkSsjM4j9d2bjeh7HcT7z1f3+Nl2N4H6ExWtfA4fNXyuAH3Nd2k13FgYcd7B54sr0u1rKnNj8v4jw7e/DOaad9iDnEedzUUwy9RfYv5FQ2Iqwhbs0/0MDahAMpIJRIrdnwTLrBdZTKodM2+oRn+nu7GtViiJTaP1oSF1mc+jpO2xwsWJXHqDBxVlp0NZK4XcNHKZEzR0faSq3bzg6YXTLk16UYiPb+0IoZV3AEkYOovK3IvfsM2+HX2hBPqbM2Dw67eGa9hKYt4hDupcF+MoYRMKVlX5K+4dDShkzn1ZxJVL+XQoNKg9VnHxv5k01DzcRjqF8fTz8jxsnGL+3bUDwRjZhZ+A0NXog3wd58afFIEJgO13iam7GXAokEQRo1sy20JU8xC6nL9QRdgGT63zZrorBKXX6pGWhw/Dx8GK/6b96dARuu2ghLdU6vyYwEK8W1ApB6NuP2R6f/ckLOW6MMfv+bMhvxRbSs+V1Xav6BJybsY0fPR3+85i5rLwEbGmMJWOkwZVwSoSOzt4QcQ/GcleGpY+M0mdB/3HA7Fs7gPvuKBFWUpt/5iNR2x9Vs7zF11p6uIZPQY4PnXkozkhU7bUIQbruikITKcTmKU1EOgutAaSczzBAfYzhAao1R4WF4PGuu7kVrk4inZb7KEzYZqZS27knZFXTe34DkDyAkbrn+a/sn4oBSQxm4nkMLyiPvOj8ycRU+58gsLsOga0DccFWyL562GD/BfFbt51jVEglraQnvQVRQTMf8BMItvvl85tvLrB5t7la93/LgFlmBOyYLhXHhaoKKO/w5NWu+eOcwnANCU2hHG8eJdcyINCJD82rgsnqKeU4myGe8cLmhpwPsiEclzqGCCZ4Tu6ym9YC1f5Nz23lAiDtiwq49hkmL+ju7hktYvsg9e4ZnZijHtVE0Tuegv5NEwuojGOHz1I2GGZcRWw63aA50K5gL/mz4zSeZpeG86LA2qhFLfbWAaLViEQdF/ynwAEKnebAKS48zDAcySgwIlN+BeBW7UZ72Peqz1dEsuqsd1cqsrOS0GJCfgcgNUU8YGRkXeJ4XQyZRKWgOV/tmhKGQF0pyT94z/+aVExiz6yqDPRxjBDMp7gq3qU56ujPsAKckp2F09RRhnPnj40J2HFIzi9TofT5GgEhLHdbhohplrMih63LkMsG5MMvcxGEGHP3LKHQtxrnoel1mxe2+Tx4U60r9QwxeYoQGG2F7I1qSGanYTxGaX2MJ9UZegSo+RyeStJUAAqV42Zv47Jp0UymgOecaUOrP6ec5HoGvoug+x/lYDYvWmlx2kPlrrkKp8hUEc1Hdzs6y4yZODKyFozG29d72E2n9+XmzYgdjjampbXvACUcJaATOBpLG7BNBvaLSAUJojx2o8KGZQegd9w7D8wS/VmpRDwWhqluZruy04q9XLfy7gQbbM0ENdh9ygiaQpl1jPzAq2AgzNLLxgP4dB7ophhkUTske72ZopXZc6RTi0Jf8xlKkfgQ3jKXHB+yRO5z7x87/LUEkOfQcLDSvpbwz5fXK09llWr1/6x3DSV2mSySvNYERuTn9VVAMZV2Fs6FLr1keGfKuTTGS5LfHtC+1775HXAcBdoWxjSjLv/1h0isFYM9THPGJFgFndiNI49Y1j5uqeD2GtiLMzLHSa7Y0bU/3yN2jYDwViI7R2IX5mkmRwtnfAbX7Bfy4YVreRF3RrBQ/DAHuyf0Cl9xvbKK9f6a7izM+RsO3HINpbp0U5zHjp7Jkq9yL2tT94V7z59l4UFIgm82T+OUgcJP1YyvttqVnWYaRMx6ONcWdQ0CSEx5Ig28vF5mqnrTMsZgKgWVA7yoHJVHD71M7s9Ot82nyPAMjOYY5/GHFXJamPfj5k345DH7U2uylsE3Z5AoykyFBb/3JjptO5chzff+mNwrKQKGENXs9/k34qVWQwWI7k+/Bg4anQy4gPL/W/AOH8tUVgKF8j5+LivYqhSywFtkEqh8o76hLr9UyQ4U+mMCBBRXyD1N5xlmni7MPDsEZp/8jii/P5aCs2jtygH8FCX4ddv0lYA/z2WB8XWQ9NqAdFZAAyU5YZuVCay2ElqOH0fpzHWEXMrXp6Ees/VoS5XDNdsUMvDxTSip8FfJhg6CrbDvvBWCxOYDCFpbMCY479Nt8Lr2YJs8IklPVx0Q1Avp/thQvVZ8o9bshKxsG01IWWVUAZYZPLKRS04vg9Uzv3fKNoJdWAVe7pzfmrNxpI6iciQDWXSegHmDJRpMu33lVlCae98B5uI6X83p8EIk6XyD08WrnxnNPx2GFKkRt7hFBxNY2MbP1MWoHLg538FFXurPcJu/PChG7brSMv9VbAfWW3lDr1o57OgSSE1KZ1uT90hvolROYY5zudEMKKa2+KC+rFwJXFSNqcSqyL5+mCKYRajf3dgKaB2/CSzDxseiLL9/RYhAiZOLjE+oxrTY/i/UykiIoXP1A+uvffOop8lvXSqoM472Zl59j6/IQ+Ba3N607XIsVDJnsU03emdedctmtpnVn8PuUhIvxTTbJ0ApQGbiEjlRDQ0riA/u18KpGIK9xUWInpuwL3+YAGoPBxgj7BGClmglKfJulvHmJVZ/hd0V/ifh8U/JEIW1ZiBo3nrzeIofDpE5rs1Lzs0JFKCiNtsCXKFm/KTkQaUx580h99uH5RsAjod1yXT4jAbK5MGPpmJZ7Cb+0YMRP2q3thVcHz3uYIwG9l4KdtVtqgjrmSotijPt82XivWrF+xxoK+KVODalIHiruaBM7+U8CH2BZFKNXsORODO1YTIJ08J4phcDR7yLaYkm11TLKPfITe8DXJTdPFDlq2uTEdzxqeGsKKyIP5iIFpvysu8qYp4IME0Y2Ba+giFNOGrOvHt6ttUoHyDDN1Ac5uN2DMWWpJoM5JYN5H3pQ+wTGSDAXa6oYSEq4iNEXI4xKKy7BZJA+7yuWxLbsinps56dBSgiYHE3KzOU4XtNwSp1k0z2VUGK/bDLwQszjR6gGQuNdFzQrQ4ROq+CGGcQ/fH25pQaaoq15Z3VsmuVnuBi/U/5gExB+DjUm/mWSAfueBL+Rt89Gy51/vgCyEnLohP3CZR01FehQa2hlUiTDT86BJ5OkYNx2dWaXRKhhe/yDxI+isPsWuZQDVtcwboVSprt+1achwX96z2822Cl1HmIAX/JQbKMtLF7QH24VVMgAGLi/EDAABVebyLi2a+ufXA/4xf2ELIKfKzfkpshUMI2/gaMt3pnfKie2hgUSt/INn4DgdcKhTVaWB/K4VlZ/RWZI9RXmiVCLJv/mUx0G/xSyK6zqI0Moux/jFWeUXi1QIfbAjt9SuBqDvqXoDLCrKHTWe6DfGeqyGB1xxrMBt2Pfvnnhz5NXcM8eAjEXkG4r9KHKbHCEA/iry4+isa2IAUcjrpwQiEKjTwPyvGa/041mb3iJzBxRjVPogsLIBDdEhmTyd6MfI5WUsHfmgCGBN/UOb5cVHR/7Ds9wNXUN0cN7Y2nS39lSdqmgYtfx9Vn2/wBOea8ftlQgaaa3FrdUnATqL9G8cFvyrt3Z2/q2TidaE+r0PDftkSce1WlHjcPYQRoYYhvDJCWfFflrjXKvpPm79eq1/JtDxrW1IThkD9OiXRQXWsxjuWWjofZKYJ2ugCjrk4w5RvsLfRW6+sIAnX3VCN71n9VsEnYVij00Lm+GvkgFX//hoo/X5CopBL7StHLskB1sJTGLZ+sSAJnnskp4rfbJZ4SOCudR8ixu0ddcrjrPPZ+C0BBjbdsODfqj8IK68K58ugatKPPbUfqdWtTaqTxzUBm27P9gFNwWsX/BERyju7wvcqaQpY3g4/K1259rABfMKABcUIoyFZHn86hJ5CxcpM3toeErOfZIhXQA+ZnbkGuoDm7YTwpxUX+QmLUI8sulgxTDQNgFeSJjkmqzUEsti60agTvP1bkL2jT0gmyYtKJYUz8tFZTL7T9+KvMFMa3uxWyYs35bcVF2yvKXSvgzC062Cgoyuc+G9eomHXZdvEdMiQC9bRiAh7ED+VrtrwEnCONrzYiIffxww0446o2Fm6EbEG8dxr7h68kGT/dBfuovOmuc7hqkN7rjJLDMqQ6Bx0Ov/Kie1BITVYTryDrbIqfe0sBdkyohvON77Wrloe9E+vt3Go/uBDrtSNZX2RS5zG9xn0TubAOao42EglwytOps54mIIff8oVoWlCAd/H7qDO/Ak0w40om0eIMCcPt7/KKGs4oGS/ftBqKdntMqm5pdrwpA2FMSBUl1z6eMEhBkVdAsgEApdpyJRUTB0VW9qkpvZAQKcaRPmEWcULn4CLsiDagjscufLsEo/sj2XEdqzzE+4Y6AEuhix+AojncrpquRA1ocdT2fn308410lfQOFWi37BTMdlVmfGHVwj8F36lzhSLI7TzCcfkDEcJn8+ZDxjdAcS12ePBQxpkJdVYqWdCnCeLMOLPF8Ce6FuvIHgIT36pnciw9Ln04Fn4+cwsngQTaccZKWdFFrau3yaJ4eNfLERh1+qZr0DRSMCyNGuDlWVK7SNP5AGWlb+tuzqmWG+2NWFbHppqGq7Z0bKoFmgTaQoc0PhrjX7tLaKRA3B3y8l6lFG+XhNnnxmQnL9I9BRnJsCNGbDzH3kHugQCtFQnh3oqJIzHBnqG0GXlFofFozp7YDPmroSjcJd+OpR3YX+5rmwpU5eR6e1RekGmD/VuiPEnOgHV904M+usp/aMM7S109uKrgnWmX8virVP1E1e/LevrvIKIamL3brbw2qCqIosaVemu0G7COqeTK4hFNmg6e1FFF6jigcwoiAKiWfCBJsUQiOF8wpDpQrVX3UN0P/QKHUnNagbdMRpJpkm9V7q9wwT7WWajMOZ0jDKVUD55x1MnbXLmQ5Arqy8GMz4qgrGO+ahKhJHZVcSpp6V9eE8T2w/J14rWZ3BheKyydqg3nJNQBGjomZdjlHmCjCbEdxQEWFRgRdqn73/qIg6mTcUAXQicz+rmUS40sRKDyZL4h/RJnnPiHVHaOpv9a/D9DJ89L9VUWYVvNoJMGMMJI/x6mHFmBWWNDyIgL6XAW8GOBBXbRwojzcX4y+HCW/iHdZ9wDD9Rx6l60rdwir7zA8Gpd2708qVh697ebEim/T0eVOEVTGfWzjJcBA70RKPtGCSGBQyWUWIbKtY8Pw5eC5kPecMvTSlsR8Zc4YR26rvhq5OBXe6NdPHGR82pv4oQPEkKJ2tn0rkWTzbTDTBzpYscPVYGz1bXhGdB6oOCgYCSd64jRvM3UHzqyPELwhbkZN7UgRRHxvKGW6vjNO5qUv9fBWOnO45f41e0FPHmQWeRTj7e9NDx6GAslCgKFVGFN4pogASgtnJqqDHV4I1HYJNHbZ8WLibxlpARwZSNNIeGhVWonLM/VS9599YGoQlwe+ipXXh29ZTdR3Hae+nSRDBLxIas4PfK3jDm2i6LwHK4HjwH0yRlNjCA47rx6YQ0J7r83yQR6XpqealkTMZ0zaguiGeDtHXfctz1mvxAJZnEPiazKLbS5VZ1RB9p0BjqCSd39ktIl2Szfa9Z1ixUZdKVWcc3DpwZhc5ypMEyeFcLb031pqF3U7nca9lRt7d1oQyus/XA5PiHDlM6MRGmV27ZzBkyvEqpkb4M5x2CzTTQiFOhWg7jobOzuSNjk2SkYu8AQAuctQB01vN+yvmMnQ156QQb4Z2bfoCPHvH3Y7fFhg1/gYW/5x3VHpDLasNS7cqEs2G463qbNh99sEwryb1cCku0gI86SpGJqB4n+mZrNExrEU1YTFa73IKDc5nEtwliJMeXysGBQKHuLHf9f/j7fNPPWJEZTVoQeVI0vs8yd/xW4ya8SlEcl/kooQFU61sfLJggTQRwXk8NTEgsOMGrLMu3UYmkg+HzJ4wgbC1NJquSkmuBEvmbKcfEE7mOONxqIHDFJZD2lStpyM2lEh1sr0qAWo6cJooE7Aa196tko4te4kFqE64jx0nrYPnVZ6W3qqsekt9DDInb5HacJ1xhxNrBfg3PI0dZo6gXvvtElwx0oNFN8b6C/SOWkh8P+xfDXGV0YIED3TPXbcW8dvH+w7e5feuUuCrJ8CCdUcujYZ51vcWr/0nrWrtDGo8+76jiuVpOxL2B50pBE/VjOdB4bz2lQrENb40CEHOGb8KQeVEVWEK8AKmcMFTE6Z+xxH/P+cjPBgTyB4VX2ZcxPXWWxkQWRSRznp/goMPkj5jyuBPZ3E0n8YT27KuObA/KDpjYBtlOd3WbyGxw5MRXBXbQXW1Zjn8IYS58SPinbD7ihEsGksxMpdFLe0eQ2qm3PKMcrWyIeV0KNgaYHWRekqDdrmObnl+ck947OHvAe34gmJ4itDrnASpBz/LfgXB1p6rDPuL5M7xlPh7QUweTNZ9Te7QgKSikYWITvXYvJzUc8rwEIapSxsIhuMEM+YSsZJS9IrE7HfHcSfM42KCsaRE5GBKgZiz1BJXhZGKqgb4VFOlNY/or7uo0SmnwiDuzSm4J45F01Gk8OZLEj5UJeyQS89ZhVF4/q9F410Ww7MUbKi7JZNEWfVnLxoDUjFZn09RJcaD4KZPzuL85Yj1Wv4yxfD7MyUWpg14p5voDdn1ypUVnq+ICCIkhlhF7fXjgmKeDkbQmAcjZVhIiEaF4eTeB0ensH3agJ8n3W20Xkv2a+hl+TLLggSSBYbghb9MFrIcWP5N8drSqSVRQMfzhUGcI04Z/t9ih4W2UUvVHG36MI0I0YSVlV1ZG5J9pqGHc8GUkS8eoikyj1Ybyx4iHP5CzUPrwD99pVYIS3Z7oFj6vxr8c56BqxXeaaIjYGiT5+8mroJZkGXU11kwh8yha4X7WUbNSI0EuqIzQwYWWBcyv9oVd75dyCNiJX0IgQSb9yNNTeTGLJ5uzd9OomQ3WvFiaGGPrFDDxDiK+LYcH25H0YHOw4Al8a24M52ceFTzL3XZjlTv5hvO7C7LVDY7jzrnGy2HBQ70+504I9jInZVORwJ25A9fAx1Jb25cqc1JIiwMatDRg8aku6LqYlpKIJoELJnvvC19fKcA3l6NEXmSnS/rDmNEHGW81l9qiu70IZFE+dJ31HxlsHqJXjPhYwHfy5NaFB+VC/Zwmj9T1QFkALMVFdvddYx1UfY6KO9OghKxY6p8aAjDEpErWHgrhPOrcWz8/9Ojxxj/+zt7+zpHwtyfJBHZkdRZl2w4gPzwaUJySruwnADQRsLht0FcrSPoWbrz/ZvACUJN8wHz/XNyjTKyJtdn23tUgy0LUZyawciKNQa/XX84qcSR7v+poLqIWnxZlKqztyZ88aLe8YeGxjr36hIucObdGTAWlJQWK2QgKLRrLzOeAFip3KQcZb8hKpL2BCxzIwWNdjWaquD6ZGLpXUpD9GEfaqxkmQKrvNe+igVka8b7NK6tQr+5LWppJvIoQH0ZcmZHGF6Fny1LKge6RzC72GWy0VnnC84tU99O2MBTZVQMpowk7WHxxxhHNwbd0kSBL0flNh04W1bJ+phcFVxsJOcTBgQvjdGf/FqsAg5J/7muwbVJ9lQzn4l+9sB6P2CV9Z2NhG4FemIDWoQyFFUBnk6EZW3jVT9DF9LsrAxFeWldK9uOGjuZDiojzcyocNszr9v1O2/YlJ29aOGgDhXnZj8H4f4n+OxqQEmq94hu4sl12S6cj0eLfAVdy2eSUkw5Eg3m2Mq7xzN7GjeUUom3i1PJF8DB5TF5Rohp8m/e6FLLtEo+wybgBSXAafbZU9bVOIdMjoODnuqZSt1o6f6UE+KeOsYGMpkKdWj+V6DjieB+EMTykrVdYgDPnBGXilB/oa/eGsUQdVvUfauH6qmMuXzETjwGYVf4RWZtFXM+HOGHVEq4ZgPBEDoVIa3TSvwAKcDgmw4pAWHrjs92Q6o/wGxVbuGnpHbcHOOtjqbdxt53WnkPkBXaA4S1BL9D+bzqDV3MozEJQEGJT2aOv53BIx+Tw9fjEMzvmTbHZJzj6dJSjDFnk5c+MlJ59FC0Zuj6opDx64708DtVLGKhCzLqE3HpYQOCIhKRdNI3qtDV6RSKvxTfkMZ06HmtVRK8eu+XI8dWi7hFH0Tr5y5LSlH/PN3n9qFdTl2GJysWxfrITbhIEl8jyz1P8aslha+1Yat43dzltHwcrI4mCrD51dSC6PC7B4B4tqnXD0PqG2vqkpfLSqHCyfm9cAOBDpTOj0rdB5jSQiCYf8Nykxdj3URcgWnysuV5eOGpKYuqXdZUIrKes3tkoxTS5oxX4W64cCbYNrvz5z4R7O56YUAhHJA4cr68GSMZJXK0fjPFahkl1XxhQ+G5IJBhmkpgrY0AEXNzJHYeFGhAe6rxjndLPclWXjWbEneKfT6ooLb9s/ncT9wKiogLYFnOr49ud9p2Ap/ivytZkQtkkaJx5M28rQG5hI9eW2rIl13Cjz9AwTxJXjU/uR6JNFa0riFdB3wWRIKMVtYbdAPG6fCIUmV4RFfVm+3HmkDWJ0bOEugpWKkTeTZ0KKYiCuZQCOZNDP0tZkEMcpC16TkaQkcDEPf89A6z1Eb4RpigoxiN95aew0O8sl6NmE+WegYNhu6bng5+nI0wfzQJCZiuChGClxalJ+m5Qn/BWRJudxs25LHPZx9eIFz+pCt1lpT/Z5X7a3KExTnipQ8u3IoiI7QMFAlg0/Aeg+gmGaOSXtLT6kPL+ogiYqmo0CWQSK6azYLTogcIurpi9MzNMhpTV/rcSGl95+XXBBMUSTajOR99zfb6QebbfLRQclc8Jgwwi9NBjGokPHl2VRC/m1EnXaga/J1eyYj8N4xlIDifiK2Gq9118w3AoEBZVCMD41Ochnao/f48aZXGhDezKQWPylr18OoVxRLycRsmwPBoj1iPeMMzLg+FYL1AxwuaOT6j5vGV7rYxerEVdLEaJu3hATnqpzoJL7hCGIaYCdkBzUrnn1FBZI+UNSHCsKrG+iD9F5KfkllItpz38cSwtT4uCWGZQHeImVCxSiXTNRJCW4jcNGG+dD41SkOZAGLghBZeoPU8VCQTIkeZIMhSBIS0x2uiOBamtXHN7srnIKaDu2snspejF8R6oZsobi3T2kBRc6YLzgD9ejihIBGkdR/OjOAeuxc94tCIUoh0rC0yfDGRB2aaidninD4t6MeHzpgK4eitZMBU0q5xiGAWDr14j7q37z5p3xppytPdX0cS9XaqDFVPvXNterFzis+77aaq8Kb33xNZjPxbyKZQFWl2TfVWGSgNQWVd+QHsLe1Kri4bIDIj12w44WSWhCZBd6qNC9S3tv8lCI7Ek1YPQHu5dCKwT8H+ckOSyf5UZ9oypbu8OhugfSczTZsPvGBOep2LlxvcPKcT2uA2PuKKwQKtJkeiaavOk5j57LZRGvKQ0nUGfZThexkG0SqsC1uWBlVQwA4VXsT7a7HQFT0v1YIqHh2TMFM3O7uRRkY0nYrDVFfre3UwCnsRBT1Jfc6woLVg4tI2a6jbvDHdjaulnBq2wNEyycl4uCqvUCNaAF9dPtfDubdwYnDRQ84jIhMLuhnIbJYoaF9Ua07gY47SL/Z/Q5BtBV7kjwhGVFLYsPzg8koTfsyjFKOgZan2mJ4flKqPoBwhThUyp0VnPInD8EmoRMrFtLMEl0Q0yR3OGfXQgmQY3JlNemeJ9azLFRWiY0cdUP6ERolZh5To8nILTFwEO3XXCFLTI9pJ0W/j5ZKDP9tn4zj8ifpg76VfJeRE8Ba5Sdp76KHDhYFkkhym4cek4lGQRkslBw2y/WCOV9eBVgneg6li81VBPRdD2v52P7lk9qg/srV0CoDqp/JqdMjLoLCFORvruLIEDP5TkO3zf9QAvyYA3uEEy1IfUehsz48e5jjLzZRgVBCyMBwbfQuCHZKVTI/l73HZnoUbaGXWlySoBvxeWBHzEyf4BMPan76cr2+2Q4lgi6RZRfjVQKy6dbR43B648U4JtxWkispo/DJxHij6k7ouL180fUjPPAI/QWlQT9bUp3TNmo+OGoqer13RUXr7WDHdm0bfCKl1r50SuFE4pfXDNNyQKkzQpICD7TO04UxPWE2CWwKnkjtyYdrkoQlbXpDKay4/TFBvMrfGUCXhGCFgm3PMa7W4odzlKSc7t4rl1OKR9kmIIrrKnMeuidenOgkxRqC7EDPAvKWxrhBM+e4vx4Y4yNwnweqHyhDut6pC1cttbtZjbjdsqVdmq6gNL0eZBT7XijsQxTa0xZSFg08P/Sy1KUfBMu5hRdpKADIWiV00Q0z5qnlP4qZhp4X1ABImLM5yW30EazRvXplbW0JbeO2i7Vrn7MEju6ZYZR7gke3V0TF0hbCVoqYI9WAXlkzKc/B/bCyJn8RVcC02SfQ2ky/6XbgweHXqWXPuvp99SfGvugZ6UPbdhaQnDIRK99bYXIkYYNWpStnZcCwZPxAYR2uvaYmhnnYAe1JBjZQ2/fqpOQY8zHmU1UXzQXbWWczcCXDp7V8G/kWwsb1xgoNfsnxMV3JZDv+fRUXOqYaMfxUEcXhXBCA+rNXTYi4B9xJPZVg6QgKahfkLOM2F/vL8BuqBgzU6YxjdSEh3HjcwFkSFSZK9668P7AMurp2seGWrhBdFI4pITjub2oj3rvzKzZ4gWMzkuHRS1yBWvMXYzI2WmECf6i1WWrWMbTjTixqNNkeu48nw7hp5zpUb5bWgRLIiTYUz38WeeP4GfJjJ+TtuEIQCl5Klwy1HKSLaQZSh1Vbjxocm1kPJgWIXT9gwXoZVCcIVNqQfRQILkHxgGPrCBpMIL7vR4VzCVIYJlnTDBsNODNL9TXMdc70nir2ulvK+q6ydFGQBNILkWKO6wRviHyEZHB99S4qjlExssbbId+pex08G5ef2QPROk2ddwNQG6BXJdhcbmAYHbGeS8UNGiRkCuurLoqzBekHNZrvPj41+6ak9sP5UuB8jmtafGpypROJvTqDivlQ56ot+nq3DaFvYnoR7CBpabTDG9JK9Hv8/61mojUxBAZFxjhIPQFtweAR+uNdtzq3owydZMQBSAHeaV/ZljLrG8M75aVt2AAN1zTr/KqpRyv03gqAFs/Kzg0NZkASmpT52t1s+X5e5tupaScQ5AfUc0s16B661Rqswy3L/5cBX74b1XT8oS+ZsPk8wNEOErrPE0UK3vxjztALS+bmYj7oQvaG6HeSI8qChpQR19iRXOwW37ekAwMZH80Qv8kIjnKTzLi3YF0hJaSvjTWAwF4SzVILtXd7F1fA2TV5aijeaKjgRUzduBbRTA2HOTjELAhjRDorHGDT1p3/fu1X0zjYOFJ19KMdmpFENInIERr7YyRn9surmsnbB0H7sVzJuOYYe3SfqC+LWID9hbVhi5yD0gsF8Q8dvM6s4WjvogFg5vbOVQrAeGI7+9BSgBKv0Qk19zJ+4Vw4UD9pcQ+099wN69wUF3DcehkpzW1eEypOYVX5GemCwp/nGg99PGh61x8+PVpG1z+uvjiR9Nx/nggBr/KV6c7Lnlm96NMGRGJDL8sknoZMMfPyIBCYNttuVN4QHsa8JOh4EcHFusjX7XpnC4r/4dWAlIEZS4V0nafmi+9j6vdORAkRSZpxi3+5n4wThfRDnTY3dcaKTZPN49gEkJY8F1FOzK+H3MfgP8P6nw8vFpwEwltHUm37DCyHVDcTokNBbrlHAP0zavGt4ekmBK4nqLfJnrqmyt9QNG1QBbyhFT/E+W6tKxOLKSzgY3gwzadzt4Z7fkbLK0lSJ36aRBLHuEF7RMq2+boUh6B/LB8FOACUL+XpbL7uLQykKf49yCjAkEb/wxyW1ImLbi57d3BSTAWeqOXD3rsR+PK+RL6d6Q3Iicu06mKUBWb0464wYjaURfCWON2mO6i9H3QnRwLF2rZFtwEEj/MvWDHBYsFR+bSiqfWt9k6X8xQrYDIVzG7x5ayBtSxdx/C2kYDY+Tx1rf+ZOMFxF2glbU+fD+GtJy5sZKzC515+MdgxTOxwoRCGrwHGSsC4zg+nmHdJh7iOa40yQ8h5ZTYNYetHMbhATIkn1jqHYRYW/1RTvWA9SoeN1LNbNeqoVVw7qzcxDOnL/tquAhDR7DqELRtVgzQtG7TRQjVzpFByjvUYltflcdZG1xkLfXV6/w1ZjLmCn36jmuAg8ZYfUofLvuB+1bTOz1X8F5WxK50vIDCOIEdjmgbP/7y5XY4zd4CjA+fcOx9pLqqEmm/EwIoOkZ58rBAzFwbgGGbIDscFN+6ada9zAkzEstmp7qdytEHcdoCgyrMb5KlGZxL4JRW4p3eqzK3YE70mBAp13bRLIDIBXB4vRNs4CuMW9QO86eOsRBJNqRt0bqcgwphIjwynruWMS7wyzfNf9uGvb0s3lUhHAAvqeEY0a8K55j3lovf6o0YCIdyY0LEtHq9IfC6yF11692CSn2cG2e/o7BPb98Jsk2oYakh2/j2eVy+8Vh8k7axZGvnwjza6kfO5yWdZKXuv+c3MBt4CQSYre0uJ2OqLsT4MPEYMcUU6ndtxoOmc1Cwe2z6CiSqYuq7fKgNEO8PxI+1VwHwXdPWhPU8ddythUNIP/h+uXD1fQIZ7n8tqVLlQy8KWrcFM8pMZFvx3hJkfbo9XKfKrqPkRVG/i2Yk4tSNvo3g5pI7lRUr9YKDzcX9WeaN4ff/QqyRKwA//rcGJXWgXP8W/OsK7Zswn2ddvG5vLFR1T2jvPdYI9gPPeoi/EctaZo2ym7lfesbWrnBWpsN53AztTyStuKxH8ab38xoq2dseLZIEE/Lz3TehePVCf22+ZH2IGINa2BJoWo0fmEjc+66rfrcjYcaLohEoZAL0lhQwZ7ZPzrcqBg0EN1AOjKrRzGMmx97B6a7BHRrflUe0JKFy1zjmjwnzkUFJywf7V5T9IxQCGSEm5JKqaNFiQdR6mvJixHwIfiCG3F+JxfAY1qZmUJv85wQTIef3L/fTDvV2fqfTNXn3naXi5orq9fI5H/Eaef5EN6Eu4JIgKx3JDhmJqoeT8g6vd6EcxPnIdg02A5bmH2zqctHHOaHkGPx8PLPcC9SLEYuF5Xm+M+eg38/VTB/D2QLy5z/aLNscruojxaYKPNXUr/WPeYVDbsohjP5SLEmRRbLNh7Szd9Mycsu8H8ENt8tYr3rdfe2IGlkrrm4lBTRTBCidLeM53SB6oUNLGjnEk4559FGp/Q3/8rvj2EDWpBMzsGquiiqUUDhuhlIlOrD96qGIUHMHNqFEdvD+8nC1CV66b72kcoTYhBsoVIHGEkgOLb75WHcarcS/mDK0eir94zJCy+RVVGEBCWzHaWYedvlkL26UHTDf/8xP71TUZcPFErCmrif5yh+eMW04JOzBHP7mMNuYZZqzi3lY+blIodapHKL6Jk754sLy1C1Ou68In4R75Rwt6wt1UQIQlQw1Dv5VSyYIPPHAjQoz2Kq+J5pY2ApoXRq2J7+hQ9VgMMOWeGkkLi68Mv4jwHXXN/xCyW4yvDKmnuXA0h4p2G4vaqej3VQKpu3lDBRHf9hbukA4GQcMRpIJSAoboWRHeePhtl+E+OtMvytDP0mYWsS3jxEGKJKz2c6xCwizk3gb18OpWqaXukoMpkRHvhyvGYh63CBeeCGTlbc2wJzmqYv7kf7bpAf9h4zgE9A28jccMZoMrh5FdnmMiafy2TMTineN3JCJQ0i7X9WTzca7yHMkWmyucdQ7ljOov3h96RhGtd6PzVQOnjVLcbZWPlBAEQkf9aeCOKkL9Vqqy1ttuBmjSX5KayufimibTN3CZuebMPC6A/rH/OlBo+8GOPAn/JfHL3eCqj0Y0FWEamcmqWzuHZIsRzzai58retFhxZ5Nc86SixEMgcd2zA8aYRthlbbK1sziZk/UnYlXpw6n+KYIAQ/WAgV898QElNiO1PA9Jc7zp2vBrZmWXpAZbgPBQHmmpCt/Bf9VCRu65+3ubT8bJL0AV9NlmpJFS0rBc7P+58mMwaA8I/oZZ/Db7Vy9AJU0ZJvWGkcW7na9XTzlNKZoCB85opKlEMusIbZEPgO9XLVoQuS7QWOX2Fxcp3vnsFbdxsifmRgiVjwFat6Ubwe+3pKhQkx5PwKukXlTyox2QM18l3qUwbn4B6omyzh8mn8gfTCOdgKe6kBiZokBmF+R1aWb+RxvbY8yypvRi4ApbFmgXn4hp5u7E2I51+b/r0I7A55kZ0toQc4yUuAPSLyA86ES0tex4ZQCg0RxRfqiB0y3vlHGXmMrau0I9sbtYFGQJ45yKEC72i677r0xHsekYUw54GP73vGpC2jv9aU45FldXxMrzSJsPzQsaz2T/K8WbKIPzzM5qGce+KCR3zeDb0oxFRvz4SvXnFT1jbrlycN1MKBcfbz5pkiXK888sqleanP5xkyXEjTSC3SlJpoCcTjHl0OGngxZn/FL5kIrBm3CoQe61OMskeQ0YkTlC+Y3Nahh81bO83OWKQ5gOtqWlcwMjH2NEMBPIEFmuj13HsH7JsSeXTpAinvlr9n+q9BJ4tsEUuzfTSD59C1jpgRmTjf3BnxA6uMatJFHVo87K/v9thNIGUiMUPOdv9WQdlMCLHlUxOKYfA1N067nCb8t4wn+6DgYdBupUlXqlL3LcjEVgB9T7aM6mAKJ6IRtKk16DVIwBRU4yZB6XgMJmLu2D9yEFrjta75t4MV30o5+E/bs7GeYajkWbym6RgJpw3fpPOnajo8w0JnL79KRnOl4wKjv2EcCACPHeN0nvajdEB5arNQH/6B8wKrG1G5C6o/ixwXJdwjbfepkRYaW1zxJtX5B3yMgWGyr/vUP5uiZKAZ2HoHpUcqaMxcrB4D0GZVd0qlu6hkXNShkONzj4b1M0kJXjgR9TD2qka+nGZ/I19Sa7zU5jqQCzkHb7QQdtpHgFn9kffTXZOiMGjd2JPba9J+TCIF1tGYKHHY2gw+pNPZ/Ixq3VL6s5a+/Ke0TUo257H72mi+6ZH7xaML5i0rEC/a8Zn/AaVJ5X4xSzP/H/bcGb0FLKGuWL2GS2h7+q3fSC/yOWi0jVEHd+vFMbhNvMAuxrCIr8vVz6mL6jke8OTDxc7hEaqbkVDujWeQ/8u3U+1YCJXbhzS9dfefIqtTZwA2QqmiDi+HYrWXqi0EggA+uq9g3BbSs1jd7RWyYB3DG7Nnb4NsKc9/q6gI6G0lj9cSSyPdR9T60nN9qR3pN533C8CjA2jbwiP1zz7k5pr/iGjw9BZqDJ8yNlVpTUlcUzXsg3NtyvxslWOMA0fUdmKG8QzFAox6/Z5nq11yP0dWxQLfyWJXtSu+vOdOYY0Nopt73D+O9Y2io24/4TZT+2E7gY3dXJovfra/kxfkB/fH1QP5xt23Tx9VIwtPLuW2YSBfkgSSiHIh5k68GjgKySpIIMIUfxMI7nOxanVfdCqzx0yT5+1jC/7gGqpc7+13vacpbR8khk+sJLRnznzkjFM5Uvkuzaf2tFOyuhhdmbb/p7MrYeVPINgGzdvWM3gCsqCn+txcDC0t5anKq2ueKvBJCTQ81PnzXnn1EfLiW9kC7xj9CjZ2rdP5fiaO4uNplWezV8JqBFG6t5BQezkboFVT4G/QOoK+PhEAGkJPIByP/kHzMJ1dqhtIjx/hxnUNrKzTPzRXUOgqPjarzFB6DsVXqAeP5/dSifEsd0Jr3mjfOJ5yoONPXk2jVa3SKt5fL9uWEc3dFfVP0Gen3QtrAZZknProwHzV6SniQluKyXJaCmM9FW2jd9DMXDxH5Az/IqAZh0bp9p+N+sPtKk3Rx/lgvqdSZRVE2/qR2i89scSYtJ7Bt0Bbs7WiRtbNOyfjBnX+gYQ3TNvd7J3CHx/33rDYmEhmtoGCYPL6aF4iH0f0I278k/UveC/KMgFwy6tglQFMN94bDYHPKOroBHndRrKhgIYbvu9VTis/VQSzkSroLEf6wnIIqETRAmO2qzF3XAfvLlxvTbxWI1Oj4xW95cz/zGpn8CaH7i2OpJ9xLPr+uD/ZkkhsKfOBV1CbEEdtoSWhjIClQd/rA4jUSDwPlRzzCpPPwFU3PmSp9MhwzhhVaa9PzQtb7/Dsbk2RND7SHv0UiJnsDZ44aFl+Eb74VOHZv5cs77TNy6faZm54GKLAka+2HzesutwUDlN/AcrkvBMZ71Ru/B90y0qAYxI26u6m5hcZUQee+0+A466MH0e9fJskjloD5yIIvkDfO6uUu31FzKZnmFqyXa0PHQ04OoPAsGYdAQJNAAqQBKvf8FcKRKQKV5udfwVTEUUOX9GuNB5uAb5m83tl24R+w49lS1xooZeHqnxFM51Gt46B+kOl0VN/TRkw97WdN917dqoz0BGlzGienOhAgEkPCA9p34NIBxf6kkMMtSJb7rc0+LCThYK4hNhnAbBSfL72hQlmoHWmyNdXNJKDChD4H0CafqgD+phGHfaKDrz1iH5W+BATjmgRcxPiMkMDoqHFoWldS+K7+JDEAsRwsLKM81zbjbHNSKZmkDTsUu4CKyo7Jk4PGJylriVjlHvMI+I25Ors31BR07+ssu7XA7WGP1ldZ8dwUS2U1QUZIjY8BjbpbPCld4XnP124gintMr1dLOOWh2DP6U9bqHWOcM+yUGw44sdZOz7jhlP9c1Q3U3meVSE0HwcpJapJj2T9yw8jPAS59YySGoEqOtyHTkcqdrFzcpuqYo/Nx4YEoRf0OiOrlpgDuJjhUL4SM3tfwVIvDG81N/Fs+OfawoNaxYvbgUt5sEVHcNCCICa7/oNAIKbrahe+S1UtvZeGyNmKPTbpyT6m5QAfLA7M80o29LrIZGcjfkFjZ0dXTZ+vV9Hcb3fnssnjNfVWbrNnQ1de3d424GwCJNov0h72RgeTarTURagVCMraM1exPjQX16H/YD5t4bGLY+QOP6+nhqXCTX8wx4WIPOWzb1yrhsBBRanqWIWApt63L/srLxdWPlNmJfBApKjFuowwMRdqQouo681is0hsZCW9aian095d1+Hy1CS3EOipRtIWVodCkEA5wGg9aIMgm0s52+a15oDkJcE04CgbZdrY4wQqgjSJoU80VtVclcnOoZO6diAJrTzJ8y2Bvvu+8Xokwy+eILDyWqf0hrDKJqpBRqS+q1HJHj3IL5Kp/UF5lXGF7EOpCDg0ttEsT0pSK8pI/QJ6C6jEJCYkaD5MPaf4uxXmbwx2bdgHzpvoVtQlmGESE2I6wQwdEsdoMvirARNkLuipjsa0VNHpgaxVZ8l/oEDFVLNhUmi5tYVzdJ/HahlWUWoMuF1xpxt8nbn74a1TmmLe9kONhsPaxgmiucoNhY6nqkS5GYCTmnODjqmA8mI/awY24vlSY51vhMrojbaik77RPh6lHl0InATeTDQlb8nii75T5zkfqqmc8lm0hZ4Z2C58G71buE282r5p0KZWSYL968wCi67NB2cpyNk8R9NUE6BjDwjHzZtcV9AdWekf/b45vVF9xIby1KRAYfF820KFlJ8+dgHabpvA5btJE/T4M+Le3knALAZXZKDq+F6k2brPRxsxs4SvbHbKKNGN/+caZD6tW/TPlGpNgl8Ur03I/fYYSiyvB8FiOxbnaOrayn57sl42hXWOSFuScMMsCZArbgKZAhcyk6TYSGu7DqXshY+b1Pw6qkCq16WFKK8dbvd69JXdBvVo5m9ocRayDxaOZ+UCh0+m/Vgzh1KcIamPVD3xaAIicmX6lyXoZUIxN3g69SyuHBjKwe8WEJG3A7ZyGF+8TPXZiK9LpvwLCaoNnTZ2+S416SWFgyd5LYZHW5lgigoCg9mJr45UrjvGKs2GlAK0RCpqhkScq4oejini3rSAfBSt20yayQfuFMde4bBnsGpv8vMD9jO1/wra0n7HqvkyzgaivF4Wnf+pCwzl48hZsDECQ/Z5Ws7AaGIcuJFMgJn2jXl0Qw/m6PaDG/QdmHNyKCrGL9KweTHsYF3vbYNkJCS9fh0ZhAGvobkuqHVsWr1T9uHHbPst42mQAp5oM0xhYoSbWgVvo3DmpWzFxwFp2PBFApG5OsYCjAPe1g4EGHu2Nn1lAdLOpf7ALKqnVLn2+0rXNYxEfoFE9Jbl4T/ftwKwgoWq34PUxqiA549UTN7NoDuSk/CwodONUILuGj1e1glMXVdnJv4IYlRuNN+mOy+qMVh5GjsjZTNN1nllQc4YNPQEeA+kSEXJyas2CftA+Si3Ly1T63auxnMlJIHATByvmiEhIVdq7KAAMTl4L6ZQVXQGp+LnfcAGsE61/qHRKMBnDkaEIn19fFF+qPxGf889n1ldNcBlM8YU0paVs9vyfth2zdhOA1nCgg48Dab1sFGMUSmrG1cD0Auc56EfrGEYoRir8pY+clT3dGm519/hP+KBoYSpAitD2CM3O9kYTCImDKq1ILwqU0pSrJI+8/GX5Zm5Wm9xxdWTtP0SCwWYNuvpsydKox97qDTKxtu0fXwwsU3AZS9IlXd4OjTrWfFwXc662vXOT0jwRKNV7muUqQJAv5Bz/nkOs5kgLpAwz1G3/srOwkFD2nsrirp2lqINFmA74PeiqhvhQjxJkZI/bM4ufgDkrwuQ/qbYi4iE6Ad+IyjEBxdXOIIFMXWRy36KdrsVhCEPmKOaELb/PDpke7YZIwk1TW5K0loJLtt8qNV7SvjzOX0Zml2iUHIRvhLr7nrKgzV1xXTUvyr/9XjqtQIk3o1O/D6itUGg+TIcKP+Arlt1HARq285C3HcmHlqw8W6V+Ye9owm1uCCSOIQqXBTEqO5FLB8yPqiNtY4ZdU9E52MiCUcNpfuCyHEUwQMdONjkwBTJVInNynzHQXqJVF4jMtje7MEjj4862KrhJPXuHr0g2TfpiebveCF7uWd3Hvgg945FAkG4tunWwXUd6AMjp0WaC3ZtbzvBtTEvSsU1Ml7EjgW1orYyfk4d8CyO9EMr31HlhO7P5UKkT8ptY/L2KWi7nh9fNfiYXtNH9XeM6qak1JKFLoTqKeLv+A93R6mkAMazTT3EyrxaBmqVaatvX7EssHx92sPrk9j03AYf52A8zZGXbVANIuI0z463OsjCRbxXGAqKcL2XvTO7oeCvuLP2QRDCvGic3pdsMnmcvDug76k3pJUDgQgLEjgKFseZHQlKNnybRw3DU5kYcn9f9UIe/PVyGmpFtEs6UHzu2RmIK0N7saDuQDlGSddcT4OVgpRF9744oospZxR4oX7Z8qyGpr7CETlchF6d8UKcjbzMs+fIksVB3R+qW+L8mFw1ydv/O6Ywwghl+lezHvE37Q7T2bfIGhXfQ5eMQrMbkZe3CvhVFj/XEOxH37oXQYDS2+LozP6E680LGMiHx2FEWNVZzRD64PdylLij2WZ/MCZDNf6uehwVmdFtkHcaJhSKaWI6aWnVUo3b1vkWwHpRSNx4R2jwldSZ6SBYzkU0r+Erp6mjAiWB2WXkfqtpjMQ/SFdPH9CZ9alrXpwBOY7GRITcucyrJ8SuRzmhRX+u/BEYnItLhaXk0gZaFdnsk+dzF/NLe8OxIc9uRwhQkn4/ea1NQJ5bVLgQ9LazjoZ4CPjxU0FSqNnRSQD8q1zKQXmONSZ0sLpDR6M/zqTdE/UbVSem0U0oANw5mL5j7fuwZ1ukJuIotlz9GVECdoiJWPiHPP5hRs8e1FSaeGppRAFmfVjPrPKFs8OMX35nB5h08+6zc84rB8Qsni0LH3yXH9SYXq1i6DtQdO/8iwHnWk/AjnIq+7/L9LcVurkGuJ+BzSP/T7D/1jESiuerTSEhxHxVJ6RstcMhfiMEOXHE5wnFjPicyMKV5MKa5u3Nm8plbHvQ+kQMSpby8yyhSkC/7l1LR22HH7EgKxGeVTeIXI/oGvvNlOq08zGQSxCePlAGGcFu6JLsigIBhgx/0jEIzYSgM4e17EGB5+eDaNfbRsIjCm8D+guSOIFXcaXXQzq4cB8BhYO6wSmlT7KyjMWgFDfTYkMH+2V2ZB2T2zeG8sRbZ0YY86utLCvpSw7ezOLGqJ1QYdUSJBG6Far/Wto5PVqWbtiUWAel/J0bVKHQB8tBMOjBAKu2ObJvw8Dco4Pn3yhPnmhAp37JWVie1YdZasku8dgbYtlxU3C8soRjnde/H9HBmeqbutwQ4PNtyn0Vg8VKUFy4xeSJQ0L4TPDE8cenhyE5Am921m/64VfJ+B5H6WCrAkPGjgOCYSMOBDpCD5KQXuJ4l6+gVz1Sr0yeHQdOBtVaYi+sLG2rzfS8LEZcJmjAdyP/wZW62v9Gz73BREDE/YEzpRyIuh9OQN9fWI726rx6zMzy1UuObE0a/CdrF90kZQqxE8jquK7q/B3bOatklTJzxLzSwP4/QYXO5jWqy63keAvR6B04V/t1Qu/tKTIE2uKIjGGg966UdBH6S19DG0jzjM1X8dZIucI3pI4Waz4xWHTlFRnnTD+uUGiNCnDSBO5U1YKNcKnHbtlZMz1vB9l2bcpRNUaGu8+J21Q6AHpsAal7PQAKDhwSYiwqB9eurACeEeOy4hFphk0UZYPzHxuczhcqKqET+Cjgr1LWjgcv8RXBQBuyQOVdVJVgT/uiJyZFjz9TkFw7F22OnvbiYw/XIlr0Ms7aX0ppQCMA7d70M+DkCHUSxW1a6QbrKBONsJWbvrQr6VabwP50MpRZLqwwWzC+6HHPli6QaRnQwDN207YzZHQbXOreGyMMszD9w36U0CJrz1ovX6bTr6eAxoKBIhscJ+NRZ+jq99fiRV0s0VQTJu9arLKiUtpytnoVBbDJOhGrjx6zTXnT2gbhpbRQDp6V5iAjLTkBzj3BjoVujZ/gQ39MkcdlGENZYeLdfmE16s34Xxzago/hyYk2xikKiEW3VRnoMYKrhK6MeR5Tp1cDZJ3zuvC01Abykvx96meSw683InNwcMFV15AOOrGzAgTXkkI/n6qpCbGQ736LJItgO4zoDaXol9XzwJwICeMU/lV/7mZarXcdTIscN+m18yImkdqSTZSXqzilLo9MCOAD0H0eScZeFPHCkull/Nz62lcBxdj5txq4+ibk9WsHkkr4J69w5qbVRbDHhkHc9OUw5DckorPR24StY3yQBbLtia+Pk6Z8gu4Sp5ROvfHOR9zttO2nnqoZ0efKyTMVLGlJtubxDb5kehOlXAH4nq2bsgGxMJfmoMGAApABNgaBvTyyOUjL+MfM8WAyCDiVJ4LZhuJU4OORvNi23wFfVLPSq/1pHfu1Nx3N7cqAce4TOLjgGTOFQnneoIjt4TlctliMUv+Pnic0KJZYcgiV+e1gNaeTYdOuahniCNYd3ormaDhU6f+vEyz5lPaZt7wK1JUbe+W2UxmEYt/8qSSg7LwYdaD4F4Tr/0w52F0Ze59/iGUZp3YUhGxsHeeob0Ad7U7qUVnBMyMtmNxiuncWK0mDRuuO7ybDzXbCkbIjCsYNKoMTZj4peeyN0NLkmDBKHRDMrH7MCyX3X2hUAbKE0c41yiI+lp+k+qSYKlkgrdT/VTSMx3AWtJTX0U1HUCt7+LVAR21rpQmDrekucXyPJqc5D3McH3GScD/joeszabyXCTs+RY8WaV3+MDEP2iFXtOVtwAiIuU8VFQpPyKlfIR2nAavAi19jxk4rYkd7xjMKF2R8VUnVUyHfHCkGcOIG4LrWSXSAsMpX3RP7olv2q4sGmrU3fn9Kpe4zlzAkpMAuaCRbucvfYKjkjkTl+56FigeKPvYVHKK+Xa8JPoHUpIPmuWXKIkM0Yf8oDH6HF1FvUkw3J8vLpM7wBBrpkmUOCsOcp4gdT2+kWo6owh9aRs+Oz32nQoVj2BxLSMRtGAsgbqBC+GfwPF6cRxmaTIszrdDDIiOxJKIMC10jrBrIHAx06Wb1zhFuqbiap9HqiTAmPgawqQghQbNhaZT/OIinFO/O6QigPJ58NJx9eUKqS4L9QEzx+1UdNpqDOct9wFw2bf5go9OVIOD2Mh7/MnwKaTCvFWLhoba2SyqHGximBoqGPw+Q0hFyIQb6QjV2cnD6e864DdWlUncEcTRzsaWS2IPtUOsCQUaztyr/smfdL8UNUZIMOhT+CgAMPKn/MARQYBbK0jql4OF5y4BABZfwBGoVkSahGy9+iffB3WE++DgBEC633W60xuF6fotThDczvzcTGOEYAxEAYzQyjOZcQtolVh4btrbgXIlR9Ngei2nSsOCPsbbeDfGCSn7fQN77eYmKVkn6nQjTGdJRNwHFGjmsenZAjGKaRY5AcO0xWqi59xymUEfYnsdPjFMYsCGo9y+y7GMx1n8y+KRi/mHk7eIicXOx8n1W/LiDvUi89BRXJM8LBma4zwa2ssO7zD0lU5Da8XDy1rRjAgGriiQ7Zehh5O0wZgzF1c3M0wYE4TShbq2EVrlBOJrYSAd3wyKuueQKFAofhJg6l60ppp6GDnqMLqyvwEUFLSgZENaXq3WsJ3gDqi20Ms80ItbkXcP8fbi6VvrxeQnzwUl+JkjsMHCGOxOXSzesZCj1MANTgZbzL9CQWDyhmsFTbefg5hC47IM+k+h9N9QOSvR25fnZWNuPJQs1sT+RugsgYp5laRgNgXMJSdKe+lJLgakKb6F4ITQIPAvKHr9uEfKIlAuVCHhb1mmbCgqFbS5a3ojaykCiJzfPMtX8ltLRyTQ3tjvlmpEtFmcAh0V+GOiORBo70nc9WkO8o8iycQ4WpEkjdDmnisjDatPGOA6QhNyCeBYiwGAcL/QCBaUgIzeuj+SmLCSuQm9EKUXhFQPCnet398xIVyiq+znb5tgEx3cV0LXq5s9WnMD3n35FeOr0cPBATBHgrlzvZ4opNdFyj0psLy7mmLyx1Igc1qhlHwtCQrxKoPqE1FuhZSCAcMQ5rQks93JKNfDQv7I2zwAIqgNJbRFELkjhv74tf+7JkfZicowNejbb954vkOcah0xV5U3uxLGofdV8tcfiWHqd7HFZL9MElVrVktmO9RWikHCRMGYWYS3pH1o7BNtPSxrqJh3OmTrXjUiv0jyi+eB5E67FzzYsqQ+O28a53yYKvx3Adcwu3N245u//01Q9pCZFjKxaD3e3RTyxUYwsRd9RMp6BMMNRi4akSZ9Mw1uG83dIzwKbB1grZnxcPAMLusv6Nn6Ln3pSnXr9XbJS4HfTonwhrjfIDKMoo1v5iadLkIeEDRo3pIjFbwP32tPquNB9PBXIszCfnMx5A0N11JEOfEVUH7mVU5Sumq5MSjwnR/dxbpo98U94jLOoU35ytQMXyU6DkhGETNDjcstuxi87bjh/Yxrc9Tsy7d6aNjRk+Xnguyt63duGhuWnHL3LOjqdg/w0l/eagqV+821IKGAwfHewmBKJp+s2ScJYU7uWw9YWGLUgDMUPItvPZAW8XH307DsLNN6yf/rI31zkbMp35m4tZlkyTe7KlBspg+2LgQUjR//WXED0kDWDNYY2FaYfR9M/8aRc0sgtNPrYiRfkzck7LFAvIJMgFORkvxqCMCJMKi3yOmxAcB3qoIAlC9weKMftoLo7dpKg+QzDZwE24yD99AFRNXxzGi4vaVz6cz4QZWRQx/UmQroiVtOifzqJrKN1eUoGrXg0YSEt9cRa5WtwfvHDs2xo3P+UXJvhuZXFzO28cXrl5CD/sObBHXnJag3WetDwvYkfPoMfoQpVbPGmW62yLjtMeZRFmif2CfMpaVwbh5dGLZFf923mLx8r2xYotFBJwKSh3GF1vgO2E4QZTqB2bdRK5OclKjfPBHfOf4q5v4NPVdohIa4gb1SKgQC/elRD2EuNkQ4T+FOuZIjFZBq0cF82IhOLKqH+6pDKPlU3b2dfl4iEKq0jsIRMxRxC+jMHA5Sh1k6nuewqt4AZoBMUS/cgpM73BmuZ/P0nWr9p4Z2CSCfIb2AaU8BVr8H4jcGzc7vXMNbuBOCIsYGUZIrEBK3wz/BQhSIW+Al/txnkuhIuDPmx92/l4Jcu1NOXnvmzuopJWgSD9pRiuutccREMrD+Jlp9+KRbr95uknAeSpaskGBKucJfdWlRRLF70wPMa1pxeDs0O3oU9rBwDsOetLkqmjjzshuDL6U3kQ9jCePKTpLq07e5fWmz/5VS0/9c22RopocFxT+cC7i4aLCK6ldCtw0YAIqZz8E3qNp/luGYZkRatTwWcDreg738h7gNfFSItd8zGHSsP1xYDqYGPbCXQOX3c9PrcXeYW66eVQrxXaYHFTuD3X4pXoTQtcBKohlQSCPvfwtGG2nT31Aw04o+UguPpvQL0WMpjnSv38VKVIG1GIVLhOgMP6iH4ajUw7wy/SB/G12jLrRgnKRxa7EN8ML8Sn4I5Gvv9uzsYBzy5/N1UheOtimtS3B0+tGLM5TUTJgUzREwdDBFTBiAmkvIl7YGKAzvqaHopU9vptXJU3dA3akLcWbdwcdhuvJGYxkOmyLzWIWmkmI5RBlbSiPDKDhExK+H7osKaLKA03cJIVAyObPI74xwpE+ctzy+RTuvTFMJYXJHubeuEAMhrbklG1RyQwN4gvc12e0jXqnbJ6xZ7AyWIQAg7z7e/cHOZshhcdZLqTwQ+Th8/737vvBl9XV8ed/ooHXr2x+dnRtEjzccRkSYkmihsYUijnNxXsqw0XKMC+QBnM2EnJnP0xY3ISII7R4NDjL6a7WIQ8MbDSDj3HlPhKb0H8Inzp0dYtjlIbf/pYPkmEIHF5UTg0Mbwb6wmBIzvxhvMO9PsWR+C025QlUERLJfE0pPjLj3WGE82sTPzkOP8qOdoNBdIi9yV9QZoDqj4WdSg6+q53lWSbo7iIGLrdEcYE5LT7cZKNbYx5xyVJYWaSjh3ataxdPsHkoZIAnV2mVhidm+KBuBZUu4FHUTz8EhRj+HQGDOSDRd22c8ivEJ1ZV1bIHmnhGohmm+5Eu25VO+BfuOKKMoVNMlvj+R4rIG87W/n3veuVg4WGx7Dey73TzQjx1G/c9b5X3uMhXcmaFIGrM8e93Wt1RJTab2nq1ms2W5rLu5JJQWXllg7PoPXytohndf7WBijY5+sL+5WY0kskwU/oOvAHjOvNlACkvN8eQ717AAtoYETo491Nh2KL3xh065C1NHqb/bp03bowLLszpP2uht72ye8mdF/dpxc/i/DNRwyh4ZP5hu+LRBeAqeCaw+i+eBLgHLejMkWtH8lT9TBmBbHD/siVC3n+ykEIdVWVmbPaBzCf5Wb2AMjo6OVAq0uN2pr+pRmZWlfM73FEbVANpP9QJOLY/6+F8WWw5G5/UEZkJ5+pLX8w0FG2nwkZdwq8PSH+KJeSAT1ryKzwuSIL0NImX9Wk+TOmegbEvHlO370Ip2LSZLtc4RMq94flKfgyzs4QInZFwo5OJ0XiDmN/MmeR1FCjihzoHckTfjopOvl2k73WPyzZP9Bt7V/vcIuWDzyiR9+SclNn0LpnDXqpqZqs029FLDUiHDCXV97PfSZHUvTsj2ExZC1n38j1tkSc/H2cJuRfRw+jqdeQsBIw5kWddaTFz83uUCK1C/meUBZ9WiKNyJxcCZFX1vC7DmYizwxKT0qQEvp4zTzZ+5U9JWckGxPzQUJHx09Jx9iCIJnm5xFN/InR4YGnTVkb8I3S9gqOQSXYW0nGKyUu7XqztIh5SL8gUAOL8vWvWFGOvQWWJasG3t9cs+MWTB7EE2aCB5CsDynjTrNkCQSOdMnDu+ImwCRZ3XV4T1MreT3WDxTakw6jWFCv7K2spXLUzNVyvwtNZ1TJTBiUjhqdcyXRV9NdUbONw1eBuhPqJHNboNNmKwlgT0ukwMV+6uf42joDHsuInFamMb46419gNDq/VXn40MJCEYCzJ+mSoyoW4NYe93EHOqgF/jvIrzftBbigEZXS+D6hfwECOUY0C9QMs3yJhTBvyQcWzlhYhwuQpFJELliQ41HWy5JurXlUl6Bw7YjaTCT8vNk7Cee9+M5SU/cDJSxYNwfD+dzPILygkUVwmlVKCGAj3WhlROeEOutKkA9M+74iDSKMq2HT7GY2j9N8uVpZIE90UL14oz9UlF7dqRXnOXxA3ktYEUTiwMA6jYOzQXs5BA86VmsG8qK3+UXW/rLlzWJonjEs8SS/vYCnv3TwGwb3KCJDW+kF33gPWuy9lm6IFoZQcRAiQszANVBF6RxeHODmLT7EW1HOEe58KWZx/B2xshMWjpDbjXRmDPAk6I+FizROKCiX2R9dnYZRm5ntANwjjq6rlOj3Wb/8YNVyO7oiIgHAY73fJCLOofoXWB0U2cZpJ7j+JnMK+b8V4Ks19U7W7Zqo14dBvQsGez7OE673jaTKHM8KfEGXsf6dxSsjAcpD7hY/aQVSfxNsTVnqxOA8RK1hyavFcBim+BB0da+s13mrPNgWzF8HxPoTQAKn3+7Qzi1AAqULnV47BEd7SBDPRHQhp/qukkFdf61DP/WUW0PH/NhNubA6ha5TInKvrvEvMi+vsAXD7DpI4z4vxEADXxax0oG7mmw6FN0TTtv7VwjGL2xBqO0vqAlsC4tYvD/4in1RDXw+VbD8oDxcmtQZ0Afc9GSsH8yU+WsXuTMHjcZ23XnP1FIgJ6KXJccqSxCx27E5YoXYwVX/lr/9WUHhss0BCKEX260ZbfL1DFOyitq1i3bhzGW/AUknsvstVQ1ks/Cu15DTa3/U9N47Wm82Cg3rhkdyVG54xi4GrwC19wv6K37K9DX6mOIsXOk+FpJPiOC1lYNeX+yvNUjv9+t6n8nGCIIRoCyy8boL8bi9tic9J6kLBd3NT6iDv7YrPPMpKIh0arTQpdc5dFR9NMR2GgGSJkwCh9kKLbY/Ddl/gjysgWztOmpqhhZMCIA40o2PZ822/KG8CHnY2Zbo85aisVDKTdjWvu51LQ4r/oaw6MnW1DAiER2XjKsnDqihc5sajUTi2dgOut+5fWJwNGcj52f6vSQgtImyYzwEQaw1lsA/Yt7tsWijG3hhhx5IXAWM3JYPzWvgBYQXHXFnFiBy+rsiU9kwPq9IeUD6lzI0xJSsqq8z+xSQFILGm/B1b9QXvxyfMgHP56U92jXWX6DIUDV2IudDu1rWdxovGSLn71xY1io3mLRlepWdVmXQIC/36LfvFrfQ9GL60kooAyl74nvI9P66OQvc/vStBBhsDWTKgpkP8/yQKVm9+ktaK8CB+M3xAGN3n4270WmWbZ4bgp6Snt/F1wVAxRfRqYLeJ+U3R8AY3NUYv8if+LeHW2oIDWXpQyIKBep1ZA/ZefjcwDLD+fqlKSGVoJ5iRvzMX+KAlNZd5LiY4wGu5/OKCnfFwATxyhOHxTgyc4sJACX09Xx8revN259oQ4SSVOQ5c7WIPJExN0Ea9Zcbwe1GWKWIMtmnNchZ91FV2qdkUr8yrYaIa33qJQ5Q8SKa4vXf5FxeoUF/yvRXdY5nYmZMVvGu6Uk9RJCE11b9FACHQdHJrXKxFQWW1ozIuSz2/kzCIfHUFuCMlRrqeXIwvgHy5J3aciEhkJaCd2ScKRNl6oAMZ6NXt5TX4rrQSZMzKbhQkH7Popi9mfNqdlXMuqb7chHCEJ6fCbOrIDrAzf/AL5BKh3+TrWWk7hpnsa8l0JKoXFAJFB9lY4EK7nGirB8aLCFCF3jeJXED6w+tJaDcj0Um35tSjbeHmcO0FA0WO9FgmH4ve2dhm3/8rSJ41jDhU0bD5TfvW8uG8s7pBYhGRj9UFc3Npk60Kn+In0Oqh67I2d1EvxlhbC3xvNV1mfLmYnaCGWIEu3+62DGGPtI0XkgGqKlj5o1Paxfbz9zKZApUr542GwugEOstcHVlWoum/sIN0r6mibpNCr2+9my4DQRFnRKIquwfsXO3eDo+/NMhirHHwigCgVa/KzazvJN+eqI5ce7i8xTdEqA4Ehapg+LQsgsA5zFmxC4M4wpSKSlQes4rVnt43DO+7TuCI23Jewt2JVGcfttToHdd+udXaLlYTZ0V0r+CI5XI4O8vZK868C1IvSzhxHcA6K1kpjipBwYUgybo9Ew4UIWaht+mZO2iq68R68CifigsT7UA4iOmVLwbSjkQScK+/yVZc5LWYbWRzMFNKWBcRkq+D+Wkii4w++1Ai4z80SSGEq69F4etBGuO1EOeHLojicLV5h7SNh520T16QAjFTD1zc/koBy/LlkyH2vaaMjSqrUBAXs/sdd90jv2qt0dmO2utsHggYAeF/2MaCd78djf+5pdCWoFIslkW7/8C3pjuXd0KfP+DqqBOZwOLGgRPNZge8RxZgW4ocrfSC9KEAzA/A1OH3cPuyLIrsnBFEZoRbfWrvnZ0RL5gzBNflhZUqM8u2L+hQsPdyL4ktt7akvzvPZCV1wEHpjlZojhVDVfFlIBTntjn5azWst6VEZFfs0f1qD38oA6OJ+BtOa6Z6nUGi1MhWZIR9JDNWLWSn79xbKUybXOSe/azxTBWBHjLr/xJ//UoL882/HhCUkW2OTAF/ddN8r92ZABEpndlDRk0uU09VZtE+Swy4YrfzOfCbgxRnsCGMymDhCS/PufGULMrmEwFN7qb5pTncj+JpL8RNYQeyu3rcENcK1dh9eVI68XDlAIrQvGmRRIrDNiHF0dnyJdKZweev6PSrGV8fyPlfYxCgbD427qErxPuXF+1dwsdo72zhUqRdfsD9W0yn5nqFjOA2kmfY7i1l5kab1QhQpUKqM2qGTMLMjX2o0zqw8vtgR2lzUZHy3oGk0Au7ZasPMe/psBoDFNnHnTwp0pgQ+36yutYiFazZRIuq/QFpGLWz9/PxjNVgMel4vbUNL6TRNLhWzkk+BxxgamynZCj3QR974q/vbvg9MjcjICy6c5ID25StV0f+K4TH2re/GITL3Uswm1e0e4Jdiid4AVYXAMzrBze4ZaIbMC4P28dguW/FsbvMB641vj6RmVdKz8maPlrWzwGiXF+qHek6DpbST+1Rsiftneou2PrQ2OCQ029PMQFwT/BB0J3P/DKjb3DbPUYdteLLrKqNUxx5+PxR7lA/A/eQeXJ792DrwGs/vgMJ/9unzyWVSlR4eDxcZi19Udp11F5HXAOUwZMcqSzJw88kPow565LC/lF/LyKdUEI8Fj7D1wwGx3wNO2iwFR4GBlFCy+v+V0ZeA7KQHnrDXdKNjzTwysArl93Cpk4bdOs1mdRKarqiqQ1ChIkXPMQA13iteDP9QIOXJEFCRiu0q2rOVAzkuDs5/zqkAd549ah7Ar+vh9N3Qvr7XVWeeALOZ866DFBbFrRS5xZaVIR+52tJHCktzwlGdiDi7UvBkZhnaEC0M2OT10lHIb6uNCzpXC0i8NRpkZPsBDy6X1W1JaXtDyQbZ+4pCbUB+AH3WPe7Me88qynGHHs5hhuUQiS6mnRwfoIOdVj7bSWBRZxH4z84zHExnbv/0QQL+5/gtbdxgj93vchIxoEgUu5SQ2IMkcI2xrP4O+3Ukz/AxRI6MBnS67570woOF65nNhDaikpjUqkQdvwyvLyX0pXasb77S86iz/5FR+ZwRS+Rviaw9oyXNwFoaxMZaWrAo7GjDrOOoFr3tY1XAjqeaS6b4Nean4FFPDZWAtCTqimV82gBPbkhXFk3oD5BnalV4ZlbLN8qHNdcVzFUTQVsQXQc8RBEjyQnZPEZZNTDhQw0I/KWU3I6sa5Be0G6/ZTx8SUclR2FOa5dwUpWjDReUvii091HyvNfEtzynhSd91irrUY4OB9cLqKJnW32w1PVDc+7nyqYDRO2QGlS1nqhlifCTWz9HST5O+BGP9G1+P78C+SMHTkRa07YbKxjzqGdOLVJKzvZNAy80Fc/DZ5H5h6N+RmuqLsWIKMxxBiqoaaUXJAlcYfKC7JG3piOJH3Sv0qyE1yIOv5jLXpJdUe2ZVDtf31DztCPlLHz95SJlmSOkNa1x9hfl74ANmlh8dmwBq+QCBr5dgMqBcBE6m0h5aqo8ar/m6YxdetNJLs+sCp8aIv4JTXk/mhXJJ05KBT1G9rRQM3uxhTJYhdpapgJ/rv0id0W3cVEiR95QpbPhsCU1YRP0dRuARMpCF1sk91cftbpm7AN4rFw6yZPlsUqaYXLzLqAQtyeOzR91RXJsLayeCTVujo/OlKMVPLjJJ9K2EfyibWuOS2atYAGZaBWP2Ud0XAdX6aYJuJuuk0kiS6HB/hCrkQS3vZlfajxFaHMSEy8sGQERVicfLnfsVXKu52ByU3cHIpw3U/JrgH4xwLhWevrrdHc4QnfI6qXv82KHmGHVA7sBII9orF6bMOzQe43eqeliptry5kbkCqd1DRAqujA6l0QEtDYVf/EU/t7siVMuaDnTUZYErlz4rdi0WHDKiE/VVzoBQCCmqMmtsMA/c7aoV4h0j1nwKKMubWA8fYPsyvCYtygbcgfMtpqH4+bVm4iU39WB2QUjmFuxY5o30vc+T1MlHHtBr6K1W3/YEXTtcwLKSE7kAXm7vTGCgn/2eYg5D0WOU39eUTSH1OSTa3D8ndGEC221Gbc2Q/7V8kCEzWYRNoLMoMDxHBgVL53Z2FqWvCkDNa/SaeYc25Uj9RW04E6tIo0Qd8MUkpal2N0Ib3hsTxCWH7C4ECc5vGCnENrzzmNUZ1y37pHjkooEzgHx/sxOsa/n8Rh7lXy4/5XA/AeoXYCYmcD523VBrEo8wXTYXT6T6ZVYiZQkGFksuoOjCNiJkWe/KADd+AmbfXCGK7CmivbRgKwQURCuiX6DdqKVIoDgdrHRD++tutzRSdX+6K76AkxDuze/JgvoJd1CL2SrEydmOS36F0rTJUn/GlMgHjeQyzemNT4KqiR+3sWgurqstTfFPAYU1Z8AnaC1aCTnibjwm6QZdZR9d2xjVEvoy97AFx6dyVHS4xAND/pn83qc++viP6MIB/p6Pn5R/bBTqVOxirugZFiZQsOtU3TF8iKDk7+WehpxlD/C3bJZJEgyRRzaJF5ZUUWDQLF9bn8q0m8HEM2qSXwg4ofO43DgYVZHHA2hEDHlZYul81KsrtVLS5SYpe4Sm3RyUOWJYY1k2m3wZQpm3pmMDq9TSsSF1O/+Y87yZ7hi/TWL7BN81ApJMowKxkZHilWE53Wfrf2B9RrrwOcEmQJNsTQ6BxvR3LOzb0D7ABf4RhiY6KnLXLUgpfE5aaGEy67UdPi4JpiXHzv05zCJhIqhjpqL2fK0lZjkxebdqlZyPA+/6+sX2zRR8YrXAH5gWbgqtW9JFzIFtXgkXqbJ5GaiaeMRkkAfQFr476qLn/+NXnQ9uuFzhnLwjkwl1fU44yiREe5f/Jye+yMsvln7v5tpLAtBgajsj2np7OLBvPTAUua06gMg7RIHr0VDH/NxMtwy+qy6hy/ojJqB4JZYSG6YlRz/gWsi7fChYN16927vI7+qmG1+eDzBxH2sGvGwADFUE67d21q4bD+PmtCAHBBILFzg8w7XkwpbHuoUY4ATx5sJVECIUEvExXLsG27DO89LI02IWxCDwB0mj3DxbodUZhVz4J+dd2xdIt26f8sBcNAiJTnM9q73P4VIvcKr4fwkdb7zbQ/CeXgv1FE1Y9Vc96R5GF7VC+GBb2fbiRhsQLvoSBllgriW22KZ/79JlumpVKOQQo87ZBqWs5BwYzOgL6tsajbYFA2XGcpCOSaEXILpGqg++BWHGFn+/T6NGpn+XgGDS4gnIReMoysIHiXC/8t1y7vg/uWz9UO2HxOJTw9ivwejjrJbAnDQO5qUpBjp97yMsQsSeJ3crVpL9PR/ShC7KCr9tFd96K7bQ2SVNW6rYf8n5wFKZwWh1R3LdUBxVmkd6jNwflT8hokIZqw92fYynORD6BV4W+nsNfU45dkpGU4gZtw5PdD9PjhYiBAoVAWq82cud5StY02JDQa0fx+s0kGrWg0AfnnU/bZTaJ+ca0q/1pGfDkiLK2311iMe6jP4TfsazWAbo9QLT5bYJXDGVkEbTZgZuaJxSU2G57qjfaj0ZmZAG/MWph+bVIi0rPXxGAzx4TD1lFiz4slEM7OtE5g2lVHB5x2mB9fVVi/N3fmpab+xJxinnj9QJwUW7CrfyKgAiGSCstguo6JlBQq7e5NqKtm5YDAj69vBCs+UEqTOF/0RBQGzp8TJDq1ngaAuxQGy+U3GjqICYNwo6m57/nyoLJDox5iwHo4nf+dqWRGysYScwVuJzlRK79obZ+2KL2esOvYhs8KNsyJAFAYjvWZRzVVlir9wmYY57VHrXM5PaY06vOM8YZAivpL4ZvaPpLlgZThU8nmJbFxoz6aZqfPZznrQPd55OT623g2vkEaPJ1IvS5Ze66mTYn9lmNgXPAt5pExMx9fHWsNXOEnVTx3AdRjSx2p6+v+4Ru5FESmeLtRFGinHtrUbjSg37Yf5qt4VmR0seyK+9u6r0gB460mcbbAOIWvcXCinPx3iLi53coUSJ2KndRv0zgj5StqI3InXcSv3biE69aGT9T0cR+Yqhh5HP0PpRSJGnzLkyl+4nKcmyLBMozfwRIAtCXSDwGv8m2bnqZ+m9UlmZ2j4ihIKncNIDR+WYwqxRLEfxyDzOiK0hUS4DnXbm7t95RJdrlSE6EopChqk/g3DYpGSni5zKmPotZmLPQfySKluFUHrNq/RiieqUCNdlERTCDvIJ4CJPh+tLvqq0cnXEIAPdKK0d15w0rzopjSw0aPwJ4BYNr2Fc91Wx4IkYlhBtXWvNO6SCxB/Ntofsd/bJsBn7ETg2kjn0p9BnnqBhFcBDNvxS2PZizfCKrfopB4kUPBQHkCG+vc3XSuljEv3jjgVuaHuMVKB+FODcFsVlUrginFynsDyMx/wA2WFoiz03A2UDUcy8Z2ITKH8QijYLPLyFXmeDqGT69VwjljHxXeysUznRoNdQBT/ORknfNS9TMQC/w2TYWZ/wR2fZNidcyqqtOefdgzPI3XY2xvwXV9oeI+mMql+RxuXp3JBZAk/CocukthFIB+Wz8jLN6n8dOX2xijfuSyM8PW0EwnG/U56KNyBPFwQlHyWxKDLIs7HNbyN7LoK5lF69d7dF2a60j3OXWPsEs197hEq7GH+sQyKscXnT+6wpa7T0NoLZ0u4FFiQC+XbrE/HMiJAeBMIbbjCM0TQmP3VCiwQcBxw3wiyZ/CmAfgo22AW4FORb9Q/QF13NDB46U3LFJsy+BAOmJD9dkv2tuVrBj1UBR/ZEswE74dvxqdmUyGX0/Fdhmd/YgxyMABmmiPl3gLMJEUHQ6997Z5Z3oUZahIJDzsmP0zvUIRNR7ZMqXtEvmfyQqtcTMLGvTof0fcStZb2QowrfoyzhNCJHTx0SoGTXyoWyfgaUz3FX8v7iY6tCQprtA3BgYyAJJ2iXBS2PtlLtOlJqYguAWTya5EBUFFPde+rgJF7zzjNbv2E3ltGqtiqbN74kx7IAt0IWorEfAPasfR8i+Xp9tQmyc8000rPrXoIZltvwCMuuYtgf6XlkGxXCwbgyffsKS4OLGRBo3Pnmvr9uDP2YfkFb8mar/ONhv55b1LbQd5kfT4spODcvWk8uw6j/+Nci9hEbFk7GcEyG//i2SY41guGDCgFx42DBbYEuChyVW2Oy9fKQ05m6+dOKCEqc8E1/hgEYXsJpKG4Keqpxwjiot6tZbt/+EJLvsPtFy0W502iX0JNLidscxf2s3Rhwem8hUuLWYUwFhDEqtikzoQ9DOmwhtBd04/3irDYd1jvlfLeDQqVTIsCcYCQjT5DTBJEGYTjn1D4d3gWTq2mguO0Ke/iHMFjrLdetBbgAIEa4zzyXx5FsOFFo68VXIUkciDjWkm80/2e88tILrOmyHBRKGa0SDY9WGHticxr0BmoadMo2wFvbQD2y0Lm7Fam+jwlSu9UM+FzqOlsZoxepHo8/tcENhYWTX02NNa/wqrbmM0cCL0kDoqBWjipC/jrh0rlgu1Ic7hb6kXrOWxoyP79qcuJ1joywMM+/J3Vsi9Q3PPuh4/r1CJ8Atn0j8FoXbZbxZNjTo9uJslYorDYHUFdqaE5/W7ZvH9IYZRXOAxW+vQ6+x9ru0A0hFVlH1hDRTSxUcsVMg9yUKYAWpSdQ93DDUkj2tFyy4BqIuhP6JIjTdZ3m3Li87Fq3NmR8We/yr+BqkVBeDzKK+bztrDoPM74Yj/j+Wc0Af0gRnLzirzE2ENLT2+g5zHEmqwI30Q36Sbeaz3+37PZ3fxVLHO6690ZzXHJEU3M2k6wLmW5bO2hOBWMVnQrIe4hZ13IFv8Fn978s9trRffw9EwDlHUvUaXLyWz16uYFXd7rOGSMYS0lQuDSScCGlR+wcVeL58e05afOx/cTuY2x6BW/DoZJU0DM0TTcEsZzCxL8WU3vcLSqWjPFVhyNBe+1Y6NQZYZfQQHvgUwz8I4gSrA3SFB/x8APLgvtmYYbEN3MmJTil1og1f4wDxFMOT1egdJiK4Ijx3AicB+eOW2O/H4h51yB1j3q5YlwXIeDKd8/j/NBzKzrL+3rKu3MY+kEsvoaAIolSMTTZmuZyAQBaaqnF5SAfXL3Y08gC3AoUd+o4zNpVw6m4mcB+Mb6fi39gEA2SUYOmsKRSCdrOpGjvm90YeEkAtBurYXUi4ggOZ3l+zgk2dk7rl/kQY1oFiFNQ3kWRwXu218ijDd1rYJmEs2fVRMLJCq6AIZaWz08lgyBcK3pHffba1cDBjTCti+tWqdNFD7JwAnTEFEHdzfcEXAIdSZalbKgK88HciELUXHhoA3RDNcTiJWZYvcCGrmFzbNN3Q9/npJFMRddOk2VJlgbqzOt7Rd8+Vq3mUySC2HIbhTD+KRKxZAowab36BdDmfByee6YIBqqYb2o9Lqq1nnjAlP2DS3nbNvSMTNTkEnnUW0sUyAZxebHu75/i25LG7X3lc3wbOO4QgOkEgmjWDfgNHAB3q01i7PtOZZbpD3YrfZCrfT0US+NDVUs6WjF+myIVxuimAAbZSJ5pVSPmsuxk/nemRInOK8zr0vNqBiHgxlwsjxsrLlsUyrV9ODSpS8ytd6iSREaXsbkwJH3b6/UpC63KcfcA2WcBBgV90WyQvFmMFcnde/+/I55Fu69SZq1jKwvR+CbdurYfrLlMGnT8JDNPiahWQ9XNxHa1+84zMFS+uji82GQDXSi4vBcAnEHlEAX83kFgK9Pfe6sNNHVXTN3dsHmWX1Ii6YozGG3jSDdJLfmH/LPqru48sv2dTDa8Vu2OrR44pqOxJi7XvrFRLEC+fAsHNUqYZ9eZlCoCX9LJEBa2mDaOqrNHT46P20ijPAfzmHWQh2X9FN27roCcXIDcl14PwgKH8dTwbN/yYrCLDve3DXqnOCrUCvOS/g+Vr79kIUMVbLW65ki4oIooGajHsJ89cyaI0qXCUgNm8n+doQ/rFdSKmlzWY8rg6fAX8fNFGJoJ+f9lKZyOMzyC2/sQN0rD0QJq40+tWK2zxGDe+EZ6d48pmFw4cSMgC8oEM/gFW/KYYvJSk97BaKWQYjDI6+pU3GUiPcTdalfJKt819ABSsIhGmaI2tFhl15kG9FednpxKFTWVcLgXnTmbKmKz7QIUcE3L2BggTgc6L3G9O1NlF41VaoyDMLjTfZgYzty7nyshSCRcmgaGs/IVhFVzsl4bgbNQrunS5HWKjLeexMJ/Ujdfbf+PJxFj7vB5gJY7lSYyjgeLnMmLUP0NieOF14ptsqUlrVaIw0kDro67D9obyMUVz0nZArvRWvqvL16l1QvtpfFeqQpD1+HPRu6swjOeY0i6mSrYujpkods46TA87YQgV3LGKiRHxZShxJzYqx4leDwhMdtT1F+mlAYRIEYQouwpwponR+9THvcNsR6Myu1C9s4w9P94dYnEELvzu+HNyl3yPE+nUFxaTNok5L2OwcwQDbKpyzo+nRoc2pXakD7aDQMTXyR0DT1RTtO3aglP8u9JS0WUA+cOdoAmuccmL5g9TGW4LJL4Aznjvih36NajUckl6q7vGv3nfOYw5DB90AV2knJFhbOBMomnS3Z+ddc34Hh2IzB/w9Qc0xXDnjDt/o1B8PNSMe6dM1wehYidO0y4A13VAluDn0DWA4Oaf8SbgbNXMeei/nGSmgwIv6niO9H0mueK4G83ugDiDBBzPqA4a9ueaZdY656KW+gsjEV3juGQ2OEA+R86GSfT+oag3e0aG+c3jIZv/O4tGB7RgRagi0piDKqsKOy6N+Bvw3gcjvAZL7t5OSNq0r8/VwFHayYQRVAm9xRuWWpjlIl/G14o9BDVDkoJAojLIkzm7FvMLukUorlPqJUfMROqiHoJgtPcsLILiYpK5pEhVvKravMqZBmruP2t644hHQrFoyMzVMjGtbgLUHP0YSgye9+b3mxA9hMjN0TfNE5NgN7pF1tJlGRy8Tp5mcjWCVOhxkL/U5xSg+OkEAs0kX3Wx/sFkEo5WHZpJVmSmmbbFnR/WAyLKpXhLyHhUpL+z5HT1rAKA/iafyeBVtzsgJHkeVDU3IURU2wtYhd1/3rD4cARQtFivLW2ifGtq85li2LrM7uPgEb8P0eANzRUN/TIQNK79cqRsZ1RUA6BjHig26vxjxds1cPHgLU0cVPIWaW68CBPvn++P6RTtQRGYLpgrH6C/0clqAiKiyj4s8Qv9ykbg1FCrrQZFFwm9JiygfJENFb2nKFMuEoRi6C3HeTXGAFJoKDm5zuYu8jdb1TUURyGDA86DUL/VMmrFMlDNtztdYBIEZD/w4n0mSNvm9tLA4R0CRBgPDgWcjvsJxZX5TijfvggL1XIG+lyLlSeWl46gTMKySZHf5isMGljSJXh4i+w4v7KkbyKbhj023rKnrHYVqf7DD3MZK50SWZYg47+OtMGQuqtOnnkgV3DqZ58eCcGhUC1GpSL2FJD0Hm2tjVfms9TW1gaw5V7q/PASeEoqkzOgcCsYBBeVBqFQSwber/nFUts2RDABw6u2gmm9ZOc2HJzGbSGDCq1IEtpF4xN/6070nvyjWZ0XYSh6IRMY/u5QmB5X5v69GtqY0VmHinKAIQOuvludtWgzotQ8ZThz6eVSyk19cI7i9ZadpLCYlUEIUc1Y6xns5yk6kxnrNKih1yRDXJv4fU6yqjTJrR1VECz6kPDvlhDh7/IAyorl4KSqcg3i0yYDtXHmLfeKxMnHWos++M5PI4k55N+9wrdwbYbqLyBcyV0VjHrWhZKOcjBP+PR8HNDTgSxEH5GKGmI+jNGCK8EOpvtZUkLeY8z+UlUN7cKo/ufneBkg+m195jrMA355rCXTc3byKGv2KSuiElLfs5SGGXcIue99PgsCAagex4/0VpNFJRti9bS1AMYoGZ6lMGzQUxob5Wez+XzYRMuQcnmwAcijVg5shuALpLRu/k0NH8kEzgsNc6C5+m/z3ShNTXqtW88HoRWT3UFHnUw5jEZUcc3Xp03hn1RTTVCfUJPHFI/7EIHT975zXr34wsC3ANABUHxKaGWhcxVvakKtb+6mBeEz8FK10q4Q4QVoJhiDNZ3c6voreHmCGDGr+6MNXDn1qc1+TEB3rdPIFhjwb2DhPtvo7VuP1a/Ht16cPF+I/vSUMjQr0p2BoI8cw3duz8MEv7Myb11Fliz6yvMrIEQtznLTxmH3NMIFFIMjJiFMYYOdZnG4dtAUYr+56Gt6OGWDbfZfpWdsgQxpLF77k30rWVmX45wBBbdfXOAYwSjK0OZPaA9bgM0IJg2aNJwsRpUFGpN0KgHSarGVrQ4r90ZTj6Mn/kxoNLNt6rWByC5zIRVJkmSQlNLwE+VSz1CBtMjN0gQqcKxIvVfkzF2gk7nWbE28bSjmM+BPQXM2LuGZ2oajCMlRV9AA3QqJZnH62fFBbHbnfFQfZ/WB4I+1RX4J+iWDytUpd1TG79KYLA6Dr20qFnqT3fw4MaD8snbegXYNtogKYtYwRfcHhryWTUS9yZjTd8r+PqxtTMcRMny08r1JUwQP4GNpGpdsusUASYSmkgmV4VN8IZdZ5lIb+HPPNKlAmlx8IW8ntT4OZhcS77preg3TB9NWTR/HbHNJIYX+ebxzMp+izOykCzVevuuncmPeYvlBu8E5GdGq2bRt9P8jl8dPNZZAviyAWpyufKSmn5MhCR+cFTa5aNSOEvbZVkOkvgDLnvZhU5wpcP0GfaR0NX2CQZvWfgfgOs+mSxWqeRDY54q3gFq9oSKU+iYG9furstR4axGWtOpkGRoGGLjkIU9KsCLGTxRUMv5XbP4YgZMBIZGtufyvEyDb0tSdmhxMbixxNNIFBY0l3JNkRGkvZwKvJmqHQUe2wX5h8OEdhfvRRZ68G8eZG12hxWhm3lTayb1oDg25P7YPWVM3wAI4dXibpL2oZ16pQYgk6pRgZvlvl6iDjWFwXQ80BTFdJJqYk+Gu2212CGLF+WiKmM8Q4mEkpRUBOwmtuxcFyn3kgLSh0vJNE+1TRbgi3Ix0xrJMBHS10Bltz9tZA4uTD70S97jKdA/nWBJhWqmuuGCc/KdEtshoFhqwJi3RmULfrr7WLYkNInewxMbIvFRa58HTr/IHa19xvCBrsrViEpOSQbUcBHOMKM6RmvZfDsmy/BK3lLU33eGyKKSHLO6Yz6aM2ikmSy3gSVqezOqD9lAJsRV1I36eGd8nvRbj/CFZeLfDRDLDUesGVKRZAWgVp3iOy43DqSdtc8elWAE+lBfczLyg385nunLWpG5LnupNiUU4SK1Cguc2FPd2IcBOLQOksz/tHQIG+OfclFKVWIm8Z2ZZV/2KZLWoTkSIRUTxRxJXHNi/FQhHTEhb98J7rAQFucBnKZBWk8uIPH+mGEvHbci/s6uoSmT7G+TCe8OL1iIJJfYTnnciygTpjSnFBrHhb9ZlVsV8Jfpf+9WG/Um2v7qHEH3IZyTanyZcQo0HacbRXOdnm6MVCp8TEnTUtllt3Bwxc11rZQk3iyLvr21BoVP7tbXQYxWWunAw4tXistXA6SnaUnW/kLLGHw+MAN975AdT2iAl3/HCVzEPcCYT9gcna81OlX9WQ3rnfhsVpKGIIjcAoSjTk8GwpwgcUxXryJaxs7aw6QVdjIcNn2xf7O3mf8bLYiJonqNt8eUy9NE+6FwvbR3RwnEzyPHySI+SLu4xDfWWhXuc3pEPAStHPXo2ZQLZPDfpfmC/4Ta1L3GOzJxde6d6PNyF8RgD+h1s78J2razBk2Au9N1lGG9Ou2ERshiX+X3d3rY7rouAag+n9oD3vJ4Zl1U/A87ERkW64uqaVMDFx4HHQ6paUVoK2BIlqVHxWEwgA4OFVqNzFRZTQSaK28OoQEvZt/wKSKPJB7Jch7h/IOyXzZwaWc0pUHaslCgFq4irqqdAPmjWxu5RfR3Mu0J+Iz2G3tqhZ+Z2Nkob3DmSyEXKuGRFkXtReNwJImG/WQeuKiGhWa172cJdgpJzTYs9H8jC+vcgy4Q3SGJhcMvU6G//pjvDWEuiRYnqSA/0DSoRwm0JnsiuaB7ZAwQZFvmg5oPaE06NujhdBPS8R1/d4W0ZM1n/XgVVV4HqlKC9AXXHYjPNz9nNPBQ1vtmJK+bgHUdGkcEHT+spAsidMIVvTr1zSTjtn1GlvscQ9RsfzzUwF9FKKqBEM4NkY8HbS8Wrj6w+axkrVCTxxQMHabigW7OBWWg0yhC3FXW5FNpMCmo5sCKZzH29BGiRPdlP10ugAJyzXCI4y3FperXCDo58H1e67NOiO0Cm3dQkQzSsJrbgin+SX1pvQAN66pTXyntJWqOLSYX0d4rsPNR3o20KLdWrIcTS7iNjPCCAhMNoyNk+rZf4iC+N/O/1OLtjos/3eetQaGT3LS7CeqwnqiV4tpZUNMOmFpKB39XwRH6gO0B28WREuwn0LJW6FH8eNHqr8LbEGId7ZdBoxjsLQyUSHmk5AnQDsOWLJs/vaRYHeTePnRYCKQ9ZhNmOcXO0kXHtdO5WidV2zXenvg0E9WxJdXXn79eWxSFE5jtwXVGKRDF/0fzalDxCXd27nFoO8IUNgkeL4EQtAYv363V9boAFeIsqkZ3jgmRG+pUl8U4uJt1GSJa3FaDbVrgDUwbX4yEM+mU/WjrnGa4jMHFH731+5Sd3BHuCt4JiDejs06yImlpx9f3ht3JQWrvT6YDL7B3rsIRJy5prJZ23OV13So8fvQSlEeGBcHq7ttaxngSklLJQb+Q211cmR0HaaX+Grlf5PdwWxoHluZH/W8BdCy1KZ+V94KaytwI/brMiYAEARqLt02Q71Z5Gx/MuCHxDLSGOY+9SPC++eCIyhhSylIUPDYHm3DOOzGSh3rAjIfAfyy1NiRphWBwS8ZvG/JW55HNQOCBbgytPhqoCQckJOWQqVaK4U5KpmlGhsy7Luv5dI9yGaXSp9lXOoNG/t7fn/bHHg6GwHEXHySPZ41tgB/9HE3lb/hjxFkeFMW+tBpA3Uev+aW9zT1NCa86ZyOkZmVlZPwzj//x8rG0W6OL+Hn0Zk3xdA2cC1Tw6XwcPLGoOBt3dnSfxfmb8nCeNsSvYockiiEB/PRcp4KdIsSnlJiKL4DJOy46HqVTsyQg4nu3icIx0ub2gaH9fyx1G+58uwVA4e+QzaUdY/uPgSwOCzO1yjbE9bUfM+LoHTyqy/oDT2wzMO8l0sscY9pus9fPsv22pRtnO/T9U52mbCk0lYuTv7eMUhqq3ylGEBV0Orx6q7znv/T/GRKm9bwGZSuBko6oU1WuuL+3SKrnwEufBe0YowyGR2YSloDGKKWV8VkPa5kUFXqgsjQtw62HNXsWt3XVh2xm4y45bYQxfyqYmrEpQa560+qaMrKCn0aunOlx08fh0nJ8OX2VuXspmOPjPGUVzsFWvyj4pV7ps7kNmCbnTnPJZzTJLrSAmU9fuvPoZQR4o8HZICNwPCZ2/WLedVdoO4eK9MR7jEzyiaICpfG21km0zXm77EnXXp1j2H4i8rRSRXg0hd9z8RSHy4DPmJr6dhet6qglrWZizMs4Uy1dNVxytyG0WWAmsuDEmty9x1vNtu5cMfaaE4pb0r5jdMp1ivq8UtquIx/7+8cHBxjxvIbYI7k6prOm2uyNSaiFt6eqkCofH1ufE98fArpiK/YGJ2K6UzYInEMH8/86h8vSyzc1vEWW1TJXtP/NmeDO+64u+MwJ3HCNjGn+c4XmTdMoQ5iX7cwYAx/D29PriUtcl/JBXAKNmAMOOvLdiDqVgxOkbCUSzX52zEONHWBuxxQ4Afo8TuV34UCx98W02BDnK0Y1I5u+rdhfEJiUUilzfZhJ8TXQOCtxuZLWGJF3oMT1Mla0A9MafVpFbtXAl37xiaiyFDLdmQqXNu8WPeWkv6Fr/gU/WXchba6XwuF8r7/MuSW2OARBG5rXG6WJ6XX9qeI3UrHta9+NNAffo7Y+R0YYYgrsB9kNbJZTJv5DNBmRcD+EV+tKXJUxau4oa8v/aFu+LP/Pf6SQHGQ+0ee9THuj3NEBdKKy0R2q8eYtKykxH/bLUjuuvhMBfPo6Kz2tKCuDS/MKkh74+EjQRmMt7ppb8dgQ89MnvKcQkESR9bWMDaeHbvL8fC8dwVycuyBCuIIhoK5DfLPhavN0AHpE0haPp+01Y+7/bbfnPw0cykFzOQw9c9j3nvZt2juG+bk1jSrwwWgpE7TnZpIlXDx1DR2bbnlpuykoBZ6m71H8ipr+heOUjEOhfyFI6E5tdlBb8Edw0g0bOPC9YzA097/wQcYT7jNc1orKCx8oS3dwiW+35puJnTWzcjcfpK9U9QUghC9AacP5y/NSXFH2p19JwfXxhFQU0hnDyquwHQy4X80yDEddAwmEHpyQGo5iNTaw3MwWBYe17kb3hKmNx8U4vFy+mXJDeBWH3ZJwI+AOsTw7JTRfgRPEClQENEqHkbOco0TxnRc5dJHuanQZvb/lpnXEkIwhcfGJY+Py/3uuMVNLe2aQ9rHMifOZSo0m1VGZ5DjviYUpp+FnMfI6NhmXnvxMf2E8WgLrBBZ4JdM9ogPAhuonWSi4gtt2v6QiJ5RTzEXeBo5FvhBXw0go2NFgrVh3kOp2rQVz4GdUz1vCPAErAwpVeG6jIqGu97CwofoyxqCfRr3vx1Df3aE5xN5XZcxvCmxeubgK9NI2eb47MRA4rdwLY3R5s5nQzUcTuGO8/jrmy+n9vJlfMUplrP/oJEsGjzNhyH7SMGvo5/qUkginSS/SM7RzI3H9iPWSBW1kyfqH/DNjEEEswLt20TpnyiJ/3DWgmEwASu9NquNO84m6th41J2PpuY/H0qD9wsYBXRdysSIgYiBWINoJxjkhrIepUBQAwE5TKOGx0reAkOVTvnjUZBzW7HrnIbrG2bv0QAKGJXB1nAEkyWpzDlp/+fZj30MuObBgS/DqWTvNkHc7HuwuJn9ngVtXLO/1OVRd9r5OESOLcwqJlamU4rrjmt42qxzi/Oe0ypLW/Cj4NKjSPRzNw0Qr0ikUoo7QtCbLdWkT1SglBG62WwmzI+SAKjjVEMD4X6+DYTAllHolX4lCS8khNwjsJGRdvCrmfaF/i8CVoLjt0W/dmfJ6TwsmFn2sulgz/C5Q7Hiqkk/r0uPy6ZzWF5egBQ6U5nh404Bi4uOh+A2CNwNqdaWfH/vnUd0LbhkXyloO2N0DVsKSYSm9In/E/OsQefH+HDa8cHd2Eu4l55BgRtF8WczYDFD3O62saLAhukVDVOuUDkoqtpp+kg06t31RuvXJ+LdHT5OdnrSZNBf1GZI+VULPq+4XR6qew8+Inn3HbIWVAvOchZg1jYMvKjjQgv79HWD8xnYbTyF8z48ZY/7lDsJj61+sH3AbtR9uO4rmzc6GOzpXqrPLRDSxclUx1L33CdKkcJPr6S22HCVgAyqBQwClHhm124GmbZWl5mhwG6DSP2R9iijK2eZ0Nrnh+S0WsvYljAZYQkTKUQL7WTHvl+b624jCBHAxEOuf87BJR4TqngLjbztNilBNWs1OZ8HZ7eMvDYUBKGdbTkBzMh5tRbsUjZBQ0fZ5FJspF0Ih1Xz2KTTjes11ixgUTptGQH5l76BFWZnpuwbCXsLk61XoCZOPlXp40YK5c1oUHgVGhWWBeI51iBJZmgAXQQkELBsDhz1zWGby5cVIRSoizGdU0IZmcyB8qYvL57QTEL4874gfnm7SBdsZcVymBRDCI6zXNML7x1N4a40oLWGLqE53BOjulLYnsD21+F9mCseyHqIcTWiar9ps/OZ2ja0TKIjW2xPus6b1tMBnGkdeIa4ps8V5if78gpE+szL1BmL853z7p374PhdqYKwCZLD5BVdKVGdEKiDTDBR3pH+d2HGjhgyzKx+vjXUb8/uCBsgVTxOPRz7xQKb8SOUIfq4Fkjfo3oacCilULMNQO2+eu9JiTTLJFUAHTDgN5nvXp7/OR5KhoEamy51i0xPtvhSLorQQ5r2VyxWAmBHfHfx7bJeCr4yIsXNdalnLUi2yOjW1iaNZ2MtOPg2ee9vP/sURj1k1xwFZDnTBbrUNOk+K9XwM615GqvL4Yx3OMXt0FyBPAWbSAKWOAB+aTOSBZ5Gz3VYRA08WcxmlFGQ0uDNtOki85LDV19PVhg9DX9C6MWeLt4UN2ss11jLobuNBtTV/xT6AXee2BoyT95NDu0gmiXXAeE9EwmE76lWCUDw0gqbcZ3YrApLUSpT6j/0Hc1dqRRFB3BFNmP9a6ctW9fmDumUPQ/eW02YsTPtww7WEaEefJrbzzjWkbFXd1f7u/CH4w8W7QvePp9QgsgInlaUeSX0DrApLizPqJSV0ubWK0Ewo4V0sRRDGHp+fyRPnye0qip1hTCZsE93yitSRhZKysFUPRqM1A2tdbFQwCeDKFwyJLe9xBtY1HW0aLilgwAjjv8KU1jDYkhXHA1n3pLrxmcaHFloucW9gvWXdqXDKy8hTjRwTNK21KRdd0jeW1KKKS3vRcmKUNJIaFoTbay+Ztt5WFXv6KxaT9YOKUMfVWsVKcyx5yA3M2WeiFtYtsa6uCyFsPWWBwGBze1Vg9K34sLhmIHEmqsoQZ18Qvo5mC86+igTFwdWE6117Mv9RyrWYD+cULxMq5c1dWP6SgSGU/NsorpXY9IAZzl14Eac/4faaw3d4oKBbQVYBHzX6TS+HhsIJogZVp5loNgsAjXC08yjFNe9yswnE68jdGgLhk6VCRDJhoLIDTRb5oFYTTO7mo0JIk8hEfGKJR1XN8bDr+UEGEoq0ZphgKzKhgCKvOehUhcdMOduv64exLlRYB4dsm2k4d6/RBCg+yERWuI6MJG2JHgLgBYGlI7BpDi31+W1eSiTLe4shV05NRbrp/sMMRkDTbarNOW+UWeLTBO2zXVybIDJMzJtiLNgOhULdyHcDeBSHKv8ALlSxbMJWhpu1PXmKacqDNsA+D/pgnqKSZFncA1J47ByxsS9qjptiM69U/nWUAg5XjR8kIH7rSTY4rPJRyxUB1JKOuc/boaWRirAFAvEKkuRSEfMVgzkTMflGXXuruINUHc1p7yZ7/g+crPurvBpfyEGCiK4bzDnGrx4N7o7a5ppIX4RPoIE8m7Cgl3E4gq3Lh56JyzD7/RI2G1t+Q4opi5noA0S/X5CkYJm1BRSj3YPYEdoDgWCvI48qlmmSus047sSSC/Vir+or4lK9uQfHfB5VPTllq7IMEB5lCXdWfvkQiEIKH2npdwjQ28islDnnyqGVMBClaHvWgOdXg8ucxAG4iaj1ehlx8/V9XdMRWqlwjnr3zbFitVaZRWRgRqeec/IYuMFgaPE+Iir/N0jw6kecbnq5l8ZO2+/s6okVqI+mkrapCH+wjDoO5RR5F0PSeoqEb8ST7RM8PT6FozD5+W0n4ecZ7l85kpl2p9VTsmJ5Km+e/q5vNp3SUPPZICuJJxiC8WcsfVYvTEtg4K9G0/tk+50gepRkSWpPe2P6aFA59ruVDTwZbEEZgapQPSAc+Y2cCgZJ3IJdFjreo/jy+hsne78dxR7j+FXl93gxEquvYLzLRif2Yjtto98aYFXfQt9DjYrIH35/X23ax6VVN7nksIJ8rGM86utKsXEIcfE2z2BKSyKqY8NDG/GZlbFw9k+Z26gCM4YWIUek8gHSadqZGpRswMHkwiz8n9VyTCxu9N0asAbAta6tnoBiW7sZ77zjSVteJDdDCBSInTMmZWUrZukYRWkntq4YRwLOx8Q7mw3mznsiVyPZx7ULblfD5RB9CKQgxVzjYBoqn5ZfvKnmfrPHyBlNFrqnhuGZT1HLQc3YGXaE254d+d6BnTQvXQM5A1ojRZNz+dHF3KcVSUXBBcX/REO/f+5DlRI03853EB3ywAld/2Yjb6XrGJHxNus1kHJPMXiWOpiDYB6zefLTdIOPPSYuM+cNRINaT3EDw+2/+BJsNqtKxtKzb6Tp+rtgMNOsC+ZChAq+7e8NSM6relJr4O2u7Ym/7pLrG4Rqy7xeWtfgnU+vZpmIhvKG/vc+eFd5cdB5D3X07AJ8Cl7CuUJynGOMgbna9iw0Y23BNxbCXOzo0bOhX+w45DcEdDnYZkkL91J+NDyXrsArT168NgVB+yAur9hwGz6xzNGYkf2ugz8ysw/whIb5MJA9w9F5YsiBjlgBCreyBOS+qgm1D13NlAcMeJNvYiYEKaHAncqKaEONX7mqEwE40CCfGOKLCck+/q5YuUOEX4oPmWCy4KzRAPlztp6diYc6s3kLJ+Rhb2t4y8S6vjFDRNBGfVwzJGI0j64xx1AQ421tr7mkkb07mnG5G0Yq+of/w6jCohG1Q1q2WLbNcq6or7XqnyDgZEeC+xJYdocvfNTSBiGRUyHzErS7V7bP8g5eV4Xv9TlY3oYPJPdx5gpbabH30qzGlfu45Qz9BbiqVlbigVArL+hp07oOLQr/8UItoyvQaPxtYuX46IITl8FSIvR+z6q0ToCJJUT9tQ08QqornddDj9Smesnrk5HIG/OjUo4OJu6kbzc715NJeOPsOYoZ4P7AbggrU34oDkTV71zgMzZBT8/yLWKQeRqZ1dwEGD4Rmtk1rUoB0zYk4Xkc2lPiIS2Pps0Ke/VFXZ2ezNBJMVm562b9sGOupbcCqRbIcYWp08myZpxl+58N0qgOJpHrC/nml06ZcBEwxcmoGzkzRJV/fE9V29EKMqKNfxMwM3oaL1vGziKtggwcyMH/F0u+D1N/PDw/EGXL34UhzqaSgjBo8S9tAADrMVtLS8wVCSRtp9Z58Ri5H6YIxWxaT42j3IWIzlMQOZV9diBJfHvHar44EZfQYtR/ouyEqh51IhyzYjVoOx8+llL+bnaAsap4PoT1xsKmCVf4srRKibEwJyvhipX+OPmnHviClx0pILT8cacgcvcT30yHhokbbudf3uppaBSXsVLQ92HC1Q7oZC+Cjl27tC0WHS2GBUMBAb4xk+C7S0q1iHCzZYsGYWse+8OHcjC/yFE9rDbk1+OSmn4uZgAVAokG+uTKx3I6JuDRsBU1kS2LwOmhNdfhqMkvzB+YjUhkQO5PYQcYyBp4sY/VBUNn1vlDquNHQrWC/uWwBcWg5USTZnHgKsFqDBDf7YsX6OV+qa4Or7NLkh205a6JEASNW0lBSbXGNOOzJNQ0tGheG+z/SyFmhMPRx46gpevnbpOOJlsbVvjCHDT1+GZafA5LKBgFFZa2u3Ovf+kiPTOzeu7XkEf7kUUvStbRcLc3YMOgXVUIDGs4GC+3gJGlJ18Zi8dumR4x4+P+HHp4YXWCEQlOz8rN5DjNyr36pyn1m333J4Cf67n3fk2cA4M4Goas4Qf3ThcyC2euEEYr95uyfYtBsa8cnbKwCenswG1lI1lZNXQLeORlDklDX+OQr4KoMLaG3PfSqowUy9a8xSqzfMTrY3bcIrtAREuM0VEyvUPJD1ZmDCdM5uz1jVfF8++yyx3PbhLdl9SYRYgs7ZyX/Y4LQv5WBPmW0vwWOY4qqTwKuzMj64QgZw3r95vEkbHU0LvCh2YYB3IJmefwXNeJlzvdNczPZBGEoLXJgTuj5oOCC8CG+2oHG9UnjnWkT0BTV5ms+q0WdWf0pl20bWj0TuR6lRsRI82FCKVnikG+1FWykwCkMSMTM8GlqL1fcPQFTCPTBKZu+Y2MYxnXipPobjyRnQ/biHDQzwdghxjWucP8WoAyQXgVVIq5r/iMtPecjb0hpeg9v+8jAuoDSN3GzFgcW5ez7FoX/T0KkZ/WkFBrPOlZiRKyExnN78O4LpdwBTmOqR+Fu+/wfmCHAP3y4N5vivxu7WGZrxyvvy9bky12aTYTxvIbwdjEjYI0KoAk4Fvkl4W2+kB8x/7vabPNT80gpmAJiPKw+g1e9RRi9dyrnhfmHg2uTLJ5eT2RvrNYAdOMSMkazq/QQstKW4lLqKH6XbEe0Vo7wiegapUa05J2Mu6x2mzL+PuuJZnE3mmM8xTM5WrhWwfRrzdpCYEb+connq3t60zGZ0a6Q8S0QydoNMoZZ+hOOZwTfblTQ27PbHF03pmVI4LkcKweVuReVWYh6R93qGefdqadMu6F+wyfpNF0ThZNab3nxhMe2jVa1CVI2m6t4xlGAI4O6RMb/WSOctQ0MxcBfgIJDYeR2f3eNPNsB69DUGivav7d+f9Z3S9fQGF5qXTgG1Gj5RyMkhVyAAP/ELUgyidxQgOc3/yTMeSBIOnF/VOnRWcMuZYtzUqBfSC6Fe/wReCPETCkEzfEJFFH5EuNz1xi2HNDoJ5iPIkmp+FQCn/+G8VpPW5cgXnnmgD7yHbvYIie2CSnY4Mo20O8OdNuZkTtWKJ8RvpOZz5qaoVu+Gi3yIBUWE7Th5y1tHBoT/26GBFRUQZtBO0bXNdwu8BNPWmz++kEoXoA5e5JETS90Zw5vBpoeRx7g+fBVyGKzezlQMhBg9xvmgcGMWwajGLfuWYnKNd731RB0ua3Zm27MAU5cKeAB93MAhAhV9/18pcoKHSXct7nCIbrOHFX4HfGYVH02nincAn4kvSc6HAg1ryvLI33qF9e1v5EK5lGhPjbiuKFWB9AwgKwvo9+Tv7lp4TbFDdvJR9GsLk5kd44tz1Bmrd3hoBXhMuFYXw/o07shFQwou4lZ7/Su1FPEHw4amaJE2OJpVvn15ZMAriXbFZKYWQ8Jjz3VxcZ2FOl6ABmWi2314XPtbAdtl+6R3+KtfxPuWErWqTB2Jv0PeZrutLnKbMigyZu28+Yi2acMhj91eQYljHneEWor0upJPbuoo/PXbFXtKcU2WGbcN9xoiPuPgz6mTj/q1kvT1doEy4R1GEL4IXAoSBFxM4PyMa4jJjAC/ZR+h11nI2eclhkt1bY1cBP4cpn56+nQ+8gZ8KzYOJaB0og1bMoMnEQv+F1WOgzEKRFVvAWAHaOjQMMLZlRj7cxxJK2jzuLEGDHBq6A8hRV0WXqKzpDClYutYqawPHRbeNCHRuug+wHgQxocRP9zZPu/FTeTWto0oBTYbLB0iMHC3A1VzxhqCRImWEY95l0rRqhKfUm1+XyS2AVnp37EnX5RkCQYlwkbvU8/2FvvQGg29wAgv6sbnWPyCPay0nGOPTc6o/puy42L7qhEUveNQA3uTs9GaLW6cwdeARt9bQqa4lDq01wE2TKgdJKi4NSwhUE9j234c8yszZduccV5eQ4EjzcqfzhgsZI3pxa03LsSkTFTO1DnlQXYSEuxmS35DzBT07TyJwJvXUa5Gy14hKtejKThfVGEqNUXjSVzqbT5Sq2eHn55TpSuhCDXjqG3nVz/WP45q+wvcYDV2fgpJzt5ZkSrMr5ihkdNr/UYeP1ieQ6Ce6TU8GC2Ttovrgn1UuZU4A1Wo7ENsuIIRDY7W6/zRbkqW+hWCW0HiAucZJ6K01Ch36yJHUJTLpLZmkt3u05w23PuTpB8kybeZ4CcVd/5JuEpl905bb60o7U7w2RjmF3Nb3HBhpOXTP1aDm6TfLzwWq9r6eMYRC/JbY3eyenO5JPSNQMWvF0Dw37dRhI9wc0JqcuK2RAbq+pfWwHmbMSE/LNfqTE2J8BibQkSDwY6dKXBK27FDbe4SCyYg3BR/inMYH6QFNNkj/CaQyKAtplJp7nxXePZMdaks1B+qJGJZV6YAKu5f7QLvpjwwdsYxxhtyqnu3C8J74I2CaDqHbvkjJ9zdq0gX+PGeci9jiA7m6ts33fb4H8nVNAjiMclusm3iyQF4XXAkMl2yOZ+hWaluzv7CGaQjWnxNpV8fdTLGBivgMn7Rrco/nnlC6nN9LG4aVVWUzUqZgIYdI3CswLKw7KQFSq40pN55pqJowbPOmcwlhgV9Zo2iXMcGhbYIDC46jf8BF4kK5VZLQjizL2rC5yFTX1sbazGaAa2J++ELbvJKkMPfZvszP21VMo2rZRX457R12orGpLYkhSQ+jv9ec8uYNS4D+pA8VIC6WvRl2ssQVHv5gTg3leD1M+EKc0rgGDjURqUBm01N9wZcckqJ8ExsgrFW+f7A2vrN2YVbBclM89m3+6W4CyQGd2rDJEs0BiYBkYhkHqBSJN5iAXZB1RyanBFGc2ubt3TZezua7dURethD/cplCy6i2SLloGfa4/8Aypx54YS22Mdrks9x/sIHRADwWx8kdrypJbUGwwaYTPlS5pCyz3zEaJ3aFzopOfNme9ybFOVyljfe/c1jUsM0Ph1R02KtS3OFbVl7FoG6T2/MnKRo+cfPig2tnbyOn1oS0dMPSSTmMW7IWMF0+ZYgK+Ja8fToSC38c/AukceOZWlqo9KhleEmYtR8Ospu9M1IcQcH2EY3I8cWL60KDrrMIaap+tA0FmJTY2XAJ6B5DZ/v6n6fW2YmTt548B9ihuf3cqAaCotMyi5g/0XRCq+uqB2yrFj4q5Afc4VfttUnagSnHUxA0gZFc/LbJJl0qU1HdXWqsp0cueu5OSgWrMWJgHkplG0/SDaNpiBNpzkkwG5X4NZxQa1C6UIzKwZsyoqEP5V3XN/tayHQUloU+LA/tRiip6gKAmjiHKtqOI6uLjvJFBUe9RZvZd8tGGXVzNSwq9Xk67OHaUDcm6WUYlIzrElmBLuQwQUkGmU7RmFovg9IB06mLZPJqsfzWg4yhOXNz3EvZ0+ob8Z38HgdnSRz+hVOebCe4PbGOnpIFt/6IJctp8RF74Mw7q7OLCDYmGRgJNQuQzo/j3TQuoiMDe/lyAXrWH/Q4c2lVFvVbYSuCJoQpxmeuMEaTG4eI/AaJ5sUw30qpKFYUrtIyyYFn3N1uvrpiH1vMiSUEOoTWc/8tZNDLNYoWb0YXu2uyLx6IGT94leP8ltUzmyXCdVtW+qA8/hJi650262TnE0L5+qa6lRBt2Hrscs+uOxwhnvqJPw7hTAvcZmGSOPL4bqdmYE9CXUISVW9IX/w9Y5EfNKbBv/tJFNsZbs/WlDeJSb0hNxZsRxHRwYJDBGCVk0p29ePVS55/MACWjY1LaqDRBf8gpbMMLQPix4R+y9TIGzjARR+n3jR6FUJcRL8mZAjns+WgZUhjpU9cADChdqnzKDnj6Wj6jHeLTZNScnSwJuwTT/9u6/70MpU3JzpILRsoPYSFNIw07pvzCSB+7hpzzQlWg1kxgAeLPHjhBHF2O680D38BQs6i1ghm5EGsBN5+COZc442pQ0QZ1bMfkglCEDKNOM3ZcSTwW5jraa9pRbl+4h7y0l9D9mBc6dfyjTaFwolyPeRBAzCCaBc4N9ZKnBu2qqtaO3geyv8ZLyNWOCZFyl2KgonGaOiz/DnrIhBqS+KmZ+Fem1bIST/tGfWExSuz5jiXFBmQSThBVpHJaPc7wobgO0BEf+7Uf+j7LCfVDVWK9vqZHYPzJeO5nMDw0awOMHiqdof78vtYkGXoWpatCqlVPs+diPZ+JB97/apjJYB1oGVAr8dlf6s6C+rTyt+OXQe+bxXctYK78387IsrtmKonm1obcgLfjgwCMx8Q9ngjYNJ25qcHAdV2HifgN/LzlNfYlnDrHLYrlAhE208HrVl/kCy5TKngOgG04R/FjmApp+RXd0uNx+goMTgJX2IQwQ/2lM8O757nomZmT1pNbtEMMK/wSfeYV+ab+ZB2C6tczgKnVJIWNLBXtlWtLI6EnF7AWQ8hwtpnQM9Ykt/B8l+MB743TnPHvpRzJCfACnR7nyFoI40/URnY8DwjWLj71mX1huyQtQV4HfyVn5nf2lSUJidZvpu++1w1nojfGSOj6WsjnarDQQgHYhwhlrn90+NzLCxTYWNGTxE377DV5uzSU5bPfirSP1MEx1XTXkK1woS1JoWW8AKV2lwxfY/YMfQOQgVpxAjbTXhtMyKhXogQv7LdFkM+ZrAxpGJ1HzRb769J3623vGdLGPt8W8kTt9O+QPUyVILVcBRog0kFPk9JEDQr3FH6TIbqw/xzW2eN8UPOhabmRWVI+y5MzzHHJaborVp4B/k/RGHK0GuKOXjALLLvGzqpzTKiJJIXg+1A7xUik/Ve7XAkmzbNRFuoM3Y/lv3vRTz5hnHSx8ftI6VyUU/teEd4C1dNkJ4wfXMo8KnTS5MMPHtRwEgo1PIueXxFhUODT1BDNqoPvX3JEOrpZATF+edAxN5+3d5ac0iNAVDQoEtuPlkj/OpaJYKZ2I70dWo+2A2cvsu+JEsBzVFnyXF6HTedJQn/NahfLZTSYeiH7pOOm2PkXLnyBZ9WP2zcNsIiD6us/ziHfBbaqq0TuKQCCyYh/1jFvTd8EO1vaBICW6974MZChVs8W73puVVISDQqu5hh8NCCa5JtYzFH+0T4nk91iUHT0RyaNefd/gDnIajzAtyqx8KaAumAi1QYzv0sCNS5zkIKbeRhQAo9rn68HSo/giSk0YXvlu3qCr7vXRNu83eSRSgswqT2rMMC5Psyj09oH7equTtoyyXd5g0fiZdipdPv4pGoJ1sFzWEHcg3lDLHCGQ1V5KuOP7LcHu2rMp6e9/DhsR8aG2gTLyImahPtctsOoOioeqjrUKhbYMw7CKoRsH2/HG4QXmBY3bYZTytj3MWvTmM4Dy5frYn/OOXf6zm4LcUCvuyqrrX9j4XpXFVBc4i7rsGnI+ZzPuh/uzYeVv7CC/6QV+8b9nkL+4lVyG2oArd6q2r/1HZqLVnHewjl7Af/SWOPtjy5x9wZAhXt4mczWchWrBxwbdpV3/FUEErHV3uzDc2ahD8XcgHXP09lQALEhGRFL/VqTyebOZCZzEEuhIbSqP3OB2K+AasWOJRmqu2ARX1ezLPkLxQJBdSGfsTkx0zUB4miwI4gPK0L3EcVViQ7w0SziZdQGxAccLwkXidpYwrqE6mM76fv2YE1De1+z3tr7thSmjZ+hqhVz12xvbnrI7541G0DzsSnuTeDIome9hpZfpvMOwePvDqf5SO9b5RFRwKi1b/mS113fzzPLMobzj1vV4HSvAoWzB0RfYjfgL2w8tRJJFNGP68hzTfDVGZv8jFQUJIbKVQ41jFDLlv0S2vv7UlEbFSYxWE/eYJRNZg9JAjt+EiQXj6tjhy0jLWMc+6HChwft38/5x08r9idBLFWdFfgBtou0W4C07KMtmlrgHDz3kY8n4Ge+wynRLuhIMomcwk7W65VILwo8//OUYrCecvkTlSOvxKai7yjNOxtRW1HlIX73oma4L+ZP2WKtlSw2+wuktPO6Yt6C+VMahXdsxgseco/5fRTXcjRGSgtAohPID/qzd+lofUZm959LobmEomsr4aIQCqTup/6KpeSm19kjggzYVfk4GOY7Zr/YLpzG2H3nNJgXHq631mWjFa87U8Cd/azhJoqUyIUQZwGTFxsf24KwoScc7GY6i6mDwXZA4HvvekXUjHsrjendHlwcY41Zg5s8VBMXdVqewY7WtAL10AfWonlrfVIsc6g1LTA7waKvkHkYUOln8DjQPsxOgHrXOwnm4ELLuepBfZx9o8DAyV070SxNRLIoTmJDh0gVtqjRkTHylTbC7sX94xMdp002ZjDLbKuRuNFsq0Fzk1/IrHSwVOzwAdB/cBHEvh96jCgzxtf0maN1QMQT/x/W+jrIzmUuCp7dkIEXGc1KnFLjmeIy5TlK0aBkXdKOPnRpjE/Qkbje0qPIpSIPHjJcEU5N3kElE0XHchhOsC2ZT3TXvp6iI6LaMmCqYliRG0PAZLi3lAqptiH/c1IbpsM5+7wd1sIZoOl40P7NuWTEHSRoEd6sGKw8K/9p+GdBjDDTnrq40fJWTdv2bXfMrVFBb3mV6G7NUQkUE24wendz9a7KA4NGaUwneTFza9rztEaw7ZfFxGjI+OLGppdKBMVTS7ICa65JykLtUWlbTLcKrNlz3/Z8v876FVa/6XIC/gAL3XCBQwVGAbHIIIA6AznKmn/yjC8+X8ssKdABD1cK5IcEHLzVUN5sqnNfQ4DpuIB6je4DJml0fzGol8C4mTu05HFsnjg9oBNgmnW6YyynfXAUTPZ4APQPWCg2fzTQAKWXxkLF7PA3D0qZewwaP/dopmfAuW+GdSLj5FNzto82Kjmww+7uR8r2hLMg1hK7kOJjGFqdIiq58J7Im9KxKwGXANFjVMlGwfy6TAjWazVQ7HrgS3zMMb0+/LpuSKUW6fNRdiyrCrYGPlE4h7YpfAmtSKMn6U06tV1Ry7pJ+QTG/KtCJmcu0kCeO1mm3YcbfAU/BZy88kgdhaXSw8kP1WoUQ1CdieHldB6dQ9yCOCEtUbnUQDrYgWvW3b6wdLTYupLJ9vVnrQO5gAUjQ/D0plPTiS1hGVBDgrSdF/v27LAQWCojfiJZ8tb3F8/XEFH3Ycc9hItZONXR4Dp7gFtQ9g8TMNy7t1OCC/Tzgugwj5tgC9E7aVfCyG7Hvixo0RV/duws9Mh9yHFXGifGUv33TSD/6WrjYf/BgCtkx+h58Qdu/JmQEvPVgF5NXNP3bftpfLTki/8DGLhJaIGDuxlzM8GSACeYGqhff+LPGEHc3NGF5qIg75foriVkp9WwZnPhVFEuUqrb26Gdt+9lmXXnFxnKGe9di0weuWFNWH8nx1KLwG0NmWewzHbIgrBk9qOHcCpfxs3qyQBTBVmEpAAPyvXuj5xU+7PpAhe/m44YOLfg9tzVnj21ZNGQvQ7h+15Bg97sPkppwm8PE/ikp6i0f3Uf5rozWDi38OsRN7vDZuyQh7M3rsYCLFvXGHVyMU9QDXnrxn8zYSGOgzM/7tPRNYmpRNL6j9gew97aTYzIGG2BrHj6uw3h4Uiaen9wunErkpG6qxOe7ZRi0QEQLyIX0OUZt49oovmupEyfOmiTJEPQ/fMd+T8Iwm/4tf2n4gMPgze9HvgaZyfUbjLka0jh/TBPUNVzbjEDRlBSfHTGSnYU/knqV7WHClTwf/KmGx+eiQfE09td0Mo/xf570oH0tb6xdPP6Iyt+lKnO1ryrGO0tqitwFZefIzTF+IxdPi6+Mk9vvvQBlTcgbxK8Iw702FBikISGLvRRAGouZP4ILAl4rQCvWZalfBpnGbDQ/nJu47/88uVQVyXHfEgg0ZAhGKsslMG/7pdmvn4RifS0FLSisph+0YOjnH5vgf4Z8wxkaUYi+KHezjfMqZaSZRN7dal8dJsBBEfUo/ebnYQJRV168eJPBXWBEFgplEd5SBCwwvp7WyWaz9dWvU/3una5dmQkk1hc7Pmu3xzVZPkYfMUXusKYu3HkH7te6jpsX5Mf1J0FdWM+mmg1qbVjQv3spqrwiJRGvQji7qo48y5VIvWe7GYIxG2a9rH+oXHFyJtkKZSJBY3kz31gX+mV09mMOCSFOtkspWu+VhHUJ9Zjc9tdvTVpCOoSjIW6y3XupXtZhvgwpZY55Fs4WJ2zjETM6P+MiMw2H8ILhWP8vdCxF6LXKbVno2mI788oUynTRffiHxmityDpI0KZy5wIjNnHenLs450x1YtqRvH22g3QZRGj/VCciRCR3PON4B3MYxu5Zk5Hyg+7lFWcmm9fVmbzFXjEaLiCkJqmruQ88wpQrweZEyIVhEzagjpMP6iuUV6mWwbph3MGvyg88Hby/ALrv+iXjRAJszmpNKUCB9e2YJS/UagI3dks0i4LJ8CvXl8jiJh6F+UKLn+uzY/1ZBGT9R/tBvOHracbWHzDtxp3zTNC0BG+a/ZxK6t9w9JOujn8Oe6Ll4JSthG7ALUOWst2uy2MsTi3qQHF1X+7BixeiWEQgLcz8q0on9/MyVAqG3u8uXhK0Yo+J9H/IucuujaIPdB8JPLigpiALTyt0pAyskrSIELqvv0LJbdyExV1TaosSfNV5/a0yAtHQrphe/gM/a+/eR5BvOoEbJmN9K93XJcwsFO/ZEeIInzuWfd/FRHXyl/XkpgyIkuSXqSKSj+5khLO0oLfq5PFlDp3RYNzzmKt6ISrMJCc8Yk0tcg0hRxHWICqIHOPDjF9qI6QjqivzdgPaRnTfun1lY9Y4t5yfV6xq2l0rOaBGG8KB2ajW7sm7KvLbjKQTo39HRv95Q8Ey9T6ngQBUy3hIoQMQyIjEcv4RnPtr+oUPpOZg56goGs9kt82Syecsztc8JvhMAVTKSBjAl7jECagwMBj35iPDfoeVQFXqbf8m8NarsiCG4NceYRxWlKCwjMkWgcczszZJj7P7rMyHM0y6F2sLYNsp//p/hb7ZMWvnQAeIWRKnZuQbz51NRG9a5Npd0yNxz1kesla2VJjoveljJWPkuLsrS94crAos0NWta9VunXkvwmhZttQIhEbO3TE0CraYfJmyOKBpCDlU3edWIKn1/lIxH7/GL9OWSUCADJ7UQOWW5D6Ol0EAGWIW8l2B1WhtmbNs2fgfKE+LGymqtJBHaGWYAGz+b5HrOfzssUoHbyJit0o6oSyK+gmjDajg7PUEnrSHv0vd4meOpa5St78VkVcnQTKl1kq4hWTW2u1EBXUi+bw1eqSENj05mLEvjq6LddDuVMGUxoYYka3VF/g5+pIdWapVGV8k8OPYua2LY/4k8sSwQxkmJ1epvx8cl0ydSSJQaE5ij2ucxU45dfEJl+edd6yUrkYnAgDDNrjnGOQzmZ6PJP3GVLb2oVkEXozEaXprSTGtsUtKtEznpFCs9VSF3vbAwlBwX/vhu/uGtu6ANlvx4F39C1k3cX0rXHlGSZW2MrxQqwHTFD1c9L7jrpaIHLwowYK3bMvKLPydIFUa0yPw/xpWb8yzMp24T0YWhvfytUF9IL815vnWq8+17Mj4wAMMCfr3a16UOmH37WhHHG4wjd3R7iNLLvtSSaC6zNxJsZ94e7ZLmm38Czax7udVwXBA/sWhsjAW07qS8zGBOuvcMemooUBs5chZ8kuTbYOy3u70ZqoV0/P5IhT3IGi6sVjIYnYoeTU5JROuM+F/e/ry3JX+N5dICwET9MyBVga8WtAIHa3wAJZIRQffs9u2uc3gcdfosY4fGzLB8nOYVMGgXB6YWHsSosR+pZyfF3+57110Bjo9pKBVr3AtT2eKWz4tiGnG5yT0rJQCapPpeh+Q3KeKqt2sYkKMG2a9/ljEwYO8zRs6NCZUlz/5Yh1oHDn181la0+SiL2t4AuZs7YA70/yNm8V1vH6tDs4SKsFQCeCPoCOdBVXjxV+NSL66G5rj6Q8yRfJIYBoYEujipn36asLjF6bgW2XgTxASA2CQ6zxDtMaGqC22RPpKq1WJTP5X/Oobx5DF05ttkdSGlW6DzuklHrgUYEn2NISmK9S3UkWtipOO/yK0TLU4dLiWUucUBSOi1qNLYtlflXaivevaHEYi8cAZW25g0TzO92nsnXM5QhNLPnaeq//GKAzyBBhblzFTRTVLx/8r5ztrwD6EqtW7FcZUT9gWQKnPlNnOgIR0ZWix2CI0JOF1gT0nY/zp5+8T2jYOIWOxhixWgsRe37cVKaciD2UF+fKUtw11ThlLyP1yYxtGe++/boRzZnHh4C0vEZCWmcLT2V+pOuKsy1sxpyGA4ofZ/Rg/mtZ32SaCBT6Ts7mEBnhNWvJQ+NOnpNd2/tikuqQKeGDBo09hFvJSGLNk7LFkO32YyOCcGVndDZHsNbDj1Wok4vwq2rGi0DgfA7RGxGadowIxk3TLMjfmWcPrrIlmVVHyjKbzTdT74O0gDdPWYp6Iv8ATaUETGFOaK6AEj+N9qKdz8HUYfKE3XOJTd+pn0REHIp/AbKEevzkt2p+j03wBNPBdGrGrovoe67TFHvKxJ8D/pf1iuO9I9Jzd7CV4edjyHgg1l+aRI1iBuvfPiGshOYPtDEhPaNzacUGFg9jwMBs6ORSjIi2Xo3yWUNK3F9afnr+E2YDyvONY7awLXKQnMZ6UsTJ8WLtL6grC02Y5TiYyrrN/+D/C04cAK2TB8y2Cr1D6ex2H7HI9EqtwV2u17blOT5mS3ClF/ru864ClRrGHQnuPebeK+WXd7h1mT6vqxiMQZaE9cjzdHu7YbomztXbrbw8rOTk1L6hm2YSqxDSgVdyA8E6yLM9oEoeiskJDW8hEt+OzpBM+NMx6s3eiMNUcO9UGgp+wUFkUdb/HSHXrRltiY6LFUefB8NQVzt1396sMtFdOFWtPiZ8pvahkeHBNbJkGo12+52f1Xc+k741PqUJUnbq6IuzCQIors71bntImxlns2XfDQGM3uFw+c/7MfD8kzv1rBid6P0N6ntv/It6L4Lwf0Iry9cJa1DFTQDCzgY9na3Lf0fZ0dDWHsPBk/8jpCTum23ODPUFOBA/53K6JPn3n8/0fRthCp5ibGFsBo/kubTUlzJL2UFFv2dtbzvUzI2BAmMqTfmLdXqnFEDDRL4IMPmvsP3kxMIP4Apda2HGW9dcuNinoxcW0+AOrsJt2HVcnHqYrnpo4AsuwIDrJnNShybcMKIufKHpzCCEh2AajY837fXbDwNG9dZDOYVgeMMFXpPzdp76/F/tVH5baD0RJilWlvFJQyvz3pPyeW32NqEuCyrw7H2Ej6DZ6fTXfYKvbDFKcwzPDiKAEYgNcCF84wgcDEIAbnej2ReFpgT6n51obNP9E5jgZdMqga97Gsq8G2ZBteGi7vXlo7lvqtIgaK80W1RGdY7m8Y2fpcgovLXA1sNOIy3FzANV+sUeDfkppUBwTBpthE6EOb45IWwYcvJ+EaNoy8dOVScbGq3sZYy+Ddh8m3oC7TGCrbG4tCUkIfTgtdhmQp8fkCLg97Q4T/pds8E4SCwJq7+CuJO//hFfPPbL80n+7gsmLJ78KRnYtNOeivH0hnHDSPeohQAKIjEluXNeWmDHwZRw+C1m0IFtzoFYnL8x8NnU1DQRvWOmnrZioJfbCJlWphlwYzdGdSvp17HoNBFbhZOOq5N9n8TKjI2zEdOkzoGSmOm4vHpb1pCfLMkBMNeTs1dFVd/d8WMaY48E21Z3PjhHKKt9Q533cqB14+h3rmqTjYPh6jN+63BC4YYnQWo3j3ws/RySGduCxybVUNfoM0YQXvmtOrhqW89vYLZf9hfF25QHQXK0+cE/dNaUtdTBKWF66FKTMujar8b32Hnyq+dhOSeqNtbHipUhQbFJByc3iMbPmZwI1fbQi4Y/17a64ymHvnzROesbr21BrtyYEfoxfIttKyusPqZ7qgQzqPtwkWv7rja2DGtKjRTn4FzBTeivspFOqnlLCQr6rY9VsnUXeOBGRQMbi+x66bbq7hajRvWQKKo7oYKvhG6DwMXCfSYJ+KOvWiOHgz+CUOwbtAzvFGBbBd/RgFyqYH16T6z57/Mne0sVujqmhi8RpaO41SP4Xuj4iyVXtuRreByyTrPL8mUGVOZmhRsN0xvA3pCuoqBJDOBV9zaoFvNinvFxCpnbUHpfvw04dvSmTPFkJB/vCheykCugjxQ+MLVHY31Xy0yRZvRoaGNVljYGKoqr9XlEln7bKZOBGpzravYkQt6JxTVdnk8KQ1wigN84bFQQcZZywMLbd/vt/3QkgzD6L/8AASdgIPg2N98ilneHAQ/NqExWhhgIeF571Y1oIRs2X1QCk45qcv/wI/b39zsUSaYafOYOcyTZPt9hTr+jQCIXAgrxXYrMUVHAkSTP6RJFHl/ydXPxabnOrjpkFb+X32NBy/a0bQA2j8vCPUuUFBXn0w1E2qBwM+amPq3ImIVj/RUimxlp8VjdoCvUOU1RE9i/HRsJfxQOViqPGCbNqJJRpvS/Lu22a2DOsgX7XC6y4Ovxjka1YB5EWqydAMPtIPdIOvpQ3vwosBAC8w8hexycuN15Uxqtho6rjWtL8CAs0ktqH0I/CmfEiJhtUsuB5RVasOqUM2jhPxSCrqHBCqrnWhCtxUgtpCZ/FKLSJMuTlFkeS1dDs9h1mgXo3ACaAvwiwKveKsp7tybOvCXrp35l3juw7X1V7giEKsYavxJzMKD5AO6Z5WPO+IcxgFiTe7cwiV3Gu+Ixlw4b2q+iC0hAFYPJz3XiVtQTmyC+3NkhPBWWBqLZlWfdWntj1fgxOotJUcet0pQCEFXAtcGB2y46hYyLmyttmHVv0bQG3gC6wNFPs6J7Z2YLPDmOv4gP6AFvgfpXyWyQeXrhjmkGSzFjqZ39+DQq4oRQGaDmdAIXh/+nFddFAtR1EaxG4FEXYpUe9hf2Iaen9fMvWWXMTrozAi2Rfu/gdAliQY+G+SsyaXNGPyV08P9q8xUZqNbJS6k1shdVvWOfgA09h44HEuC8Rzl9rmFgsWtZHMkVAhvyM0wrtf2wq78+5cl86wBODNYDdrh4zcSnDROMExdwQkky71YIIN4l8jee3zqLsu68V8h1zeeVzEuXpcWejTvJpcToIg3jw3J0evkWEInPYTY8bRkunAyD4f3QTCmXHx17SUsNLSbfHBaNT6dsdAnVHa4hvi/RRg498NztGB5exB1Q+wo43O3e1lCnxUXl2IMWuIHCpg4AQ6LMOhEzuhnuhQaW29Q23eOYyZVg+4W0qgkf2lPVcV+c/wfjiC7rAizK4dPtwrVMwY2K76co+gbvJjp/X969zF2KaWGDHW99WSn4AYAQ+5OUAJPN+ok+pfJ+cgkfJeQ5UfeqN9JZ4nyc7ZQt6icM8F3FldBjxV9An7mBIVAzn9sNnU9yN1NxbgpbpkdR/mQ61c2jZfrAh8i+GHR69SEfurkhyiX2wVbcMlZzPMx68e+cclpPfLH9VUxnalJapR0/pjQSY3ONMkBVKKeX8XdlCQsIwzy5CSr1Y+fCMRVu7IQhADch5hlcLK6aZOCFO+z2ndRc5amMu5EUIypdztf06fWAwaNfC9Xgp5YBQ4pX/K5Tn05WUtSpetBHG8HmEMxNEorDjHtQqm1su0Hr6xpwf5n79UczzoQntKng/xQB0u7rinJnN04uDAzFO0CIAAmfFA+Lbt5eMggMizC445E9oWz9Ub2XdSVljFCbwl88/ohSqPRr+QH2h2YfOgbSJDLXgzDH0l6tUorXZMs4lRfdmrRaWj9wY0vrIGbTM65cKvCsSJDRTCOppbXCUosJEAZ6kwEboNnxCdYijO3zAZCm1eJkveWaPHCXBDdImi03Trko2qs9HL5H3lT4rJm1X6e312LLAnT7xABgSqpvUp+7g0YkNWmFI+2GX/dPlbLkmFCnBMlgxq2+fJDNRK47DeYB2IsDr2yKZcW9i5pZTbB8gtCTJsWN8uMtgAtEm49U5LREfOqnC2ZqgYMIUUVFKsOorAk2IuULaQRO0FijZC7PuepuQFSgbIppd3DKNAbwmWgRrfTEa5NUpZfhFEIkv7Fc+VWi6jSV5prLlr+6t6pAj1tQKpCCKjdg3tLfWaKAEXZCBHvcRB1TN1bLsI01la5uWJBoyOMmUQ2kC2gDcVBa6EInF5F/LB7W3CjAVE0cjuZV4AHoqioe0heP0PiruUrSK1wuJ2f2qpGDaYU4F6zNo89jXK5YTwg/kqKqFgvtjK9erLP9s1Wp49sSKAWs1SwX/XOWgIOVk/TrZIyBj5Yej1NS9EQhroumuUg6vx2fuaBWxCdnnPSwkQCP0Rbe9DgsVvfoJYk/biftghq/oCTPsd3tpzAgi+rEkvN0p8EJrBsDOUa2xdhogIoRtbz/n7VgdvEdx4pIDsj/9jcn/bpRkdILvrGUk1cI94jfmEDT8QJ6HGVD3BA9lvu/YCN7arIw8B9u47HOGmNmtEzmiWqbKY69aISZLJSo5rZJ0nTIaJXXqFqV32/n0JZrdtMDdhLGlS2fXagZ4GSdaWM+tNEBKeoVnEUIMrVGc5sPrxr0UptYUMloR0dWiaAg1pzSxvfCFsLaa0UZrkt4jRAi1EXQxq4y9T8XDE+R6gWCSjbQOTXXz9rwjCx5WOBZ9QMTWxGqXCbOtCS4ioLTASJvL3+17IiLN/7bY/h81OXRdib6E5fT+0aWV6BlJ9+Z8nS+ODjpOVq4//nUm5KOsPuQBPlfV8xqh1+o0N+k8j0ZgBaUfEiKeYn/wPtPgRo0gD/11lgxYTW5PWywuoTWUANI9dkVX5o3yha7hBVXw/YP0gxml0UQARlX8yLlSnzjYqJ4peNYS3tNxGbsC7gzFEYhedUXbTsoh94Y3DC2qShytAuEoNKehxC5zB492kVc3LFRDByXDP5FxfVEx87znM3X9p/q52YbvHKdLo6+nplbz2g1UqbWz/4lGpiNqNLoU0X4y3+UtXBkhHm5pozRDQFg4sjwBfVseU8j5pMO9xGXMyBJODqUR8UUBouSt7eb3wsxFCIkOzkH67HievL72rLhmSwLn5gQjTnPXCmVXpvl5s8xCaqq/cJVUnDz9S3uwgg0jQMvsrc9NYA+2JM8//lWj05NoGEAXcbnfbWFVUgCOx0wbOb2I+4/Vjy0/xbt+yYBhqIgHsybFa1e6ivuBtEJIfIXn3sl1zUiYxmkrk+KA7OwagUjWW+t76St49pmVd7rJ3JPLIMubitCaamVuSpVjRTnOO/ZHNpId2I/8AF61mgJzrA9h5p/tBTveIQE6T6KmZZWPeapiBEpnZzmRXzX0/UnbdTxdqwRU1dBpMFw0rOZ9/t0vyG1sTTHMQY3Ls4re2zhRCV9XuMZXkgDB5E+AA1qVMu6tANdjhg6d5Z/IyMIK2UifBzU29fuKkwmzFVqF/ZYSPS/wEUWsMhox3MBPXSEiPTbNkFePdA9c6GGG426Wf4NTg5lUbMW4Q18hIcn03qQmpPONvo9JQmwMwo2BB6kbGFXYcVjAnWJW98HcOTmunoBm6mhpK4amkuWWQ8aIfBx9OWtm//GRD6E9jJATztgiOS+EmKai0LxTPYvUKXm5yr0Uc0zwrdU+OuI75oLMEzdsALw2zXvdbxtxNsCb5E5cbDLdpUAWEOU17yAuKQ1I2lQt8BZC2WahJF/tkRbWKAfmM9AMqcjsYJiqmffyL5GZDQ+tYwrlJxnV6rdwEURJP2bTAp7pLKWFaJ4BQrTx277pN4rxtS37R1P3XHdDe4xAmaWJVOr98UEodPqeX/FwrwGBIUp/2RHSVb+qG974yXcMQHmvdxHmXHhkiLs4WZrM4vwnw+6bWB4+A9fBUsnZNA8VpZCfUNaR/CdBviJM/YH3OCdLT8ERiydqnqWii2tUNEE4TCCCeVud++eIiEO9FTZRfkbrwaUtLjMh2rG7QK0X4aukyYAx6NLQpl7Af/+Gk1D+Fbjw5IVNd2ZDyv7JKle+8rOImSCkXiV+ZR8t87odmPndnfP8Qx4cRco/RA0rxEZkx27DE1W5Glhzc+Yh+QOsU76yietsKBk5j4EDz6/N1a6D6b8niqkWXq8tCPp8qVvJaXSMCQpgoiK1FjMuNP/CIrobgducHcqu8rSoUIV2nDgDSqc2yEB/5abZY6zYAfeA+mvLt5nNgh/AM4e/sfAOY6e18btZ3ijfl5sVI4dVCV3Ajnlgril4/OqBiwMA51mIC2QGIsfQj5UqR7DJkwmcC005B88up4xOaEvLnZc2hJC3nq061ppyesVARaco7j4a1tOGdQoGWLAdSC/29TSr4SH7wq4UlNIkf84FLcuYg7I1JEtvOXQecc/LUaZm8jZI/0DLFjJi+VcmC8bVrpQar8Povy6Xea9jtpLEvTU3QgTmJ0jxBSh2sg5RrXkycR5/wweEYyIO4ajBpIO+Ov9tVVGFDBppRLDZiNkIDxdGK8jctvGaIBc+O5BzFk+3sBGV0ZzDQhN9E7pzSFJhJ/pLpPSqQ03kbRwvrVc3i87vIfu1RTu8U303kPhRtFRAtlUGclxBQ4MtE99nOsWLpfkrF0SE/Og4EQt8RLxhj3AmGnuWBQwSc7bNP7050Z6m21xMSFX1ztseUrdaBR2fPX6d3M4BmLtcK+m1hfTDFYwcUIoS/voj30PClGchCtJBBcCpoYOmKpXLdaUuSUxVy0pUtKzYWhIiTcR8I+TYy9qWcaemaO3xr5a2z30Fl2VhzkceBS1bvYlPwAnp+OU5aCiOZXyuL54vR4mJRhmuArUKGonMplhlc5DKy+0A8mzGxDrgLWTt/uldPWQMxke+mSSh8BlYEy5vOGcrcqb+3SLKHozQjECS0YSy2Vu4oMJhwsiu9JWradSM8aObrc+7USkUMdnpGigxRXcQYKNwoSy6bpHM+JdzR5g40Y6h4Nb61jmbkqzTx62KOtvza3SNzWaRmB8VWGdEjx71SkgAUYZxpuKeCvt9U8Ljc02L3Jw/b4NqRFAykYXJcqhkDLjAWjhF0dqRHSHuijdHAUPRdLH76lMAQ7n17W+BovkNv9NHN5WIDihi0uyvHXd1LUYzjaIRICZaBq4fYN/MJWXrdlYN1XXGPaMgTOSoPLgh+cHJ8C33NuWEHYCdD53RQAOS/isAdTQ/PvJ/UUVf6qSL1/hy9dsGwrv+K7lyzlSQjjacVoTqq1GGY0eOevS+ydBw8Dzn5tcJ2FDgDBREqwDZ62U0ys5lt99P7UCgmdaS357NGzgeDqvIu2uO4CXv9VY4Z5tfW/bZebRi854M6mqoz9kTFKxPiLbU31/XG77v/24f1NioMgmt4Ejabwfb0vSMZ/ZSeD7v5qrCRcXmn5Iww5Vthlwq/HaSab9ga89f+Jxa1YzSwmvv8OYFHn/aC1oqJaf21DeHnupQWYvQSHqI1Vw+eSeHDPtYTQtdZO02ZF3vwND8H4NuegoSFXEr2rrVv8aRHjcF3KY6mGvZ5SPvp/LGylGMZoTushGvkmgMVBG++1itWYl2QA1fcNvcGjXcqcdFTKg7FuNCvyAKLEdbXDarPDgyfrIFKAPqtxGb6Hso+sCc4n3mkW8U+idIa0j5E4KWPYnGLvbenmygjwZyZt7pOUWk5pc+XVEvXmQG8AFcisdE3YCJGgO94Z5St6hCLbvJG4pMfOd1nUMIjku538O1G7t/wBPLUxwIkVH9L8RjGxh6F6dSekdz3M7rFYdkVmu68QdhgBlGGm2RfKJYDW0WGYG6oJ7dRP4Usajw3tV0tUxve9jyUzDC98CK/+vbjARGkyc6Ifymx+qMDYm8Z4UX/scDpF1mLh526NSMBobQht4HzBLVAMxxRuSmA7tkVNXSzm61lOeKKQ/geonLQX+90qVnYz4/XH1lRHyb49QZQY9YBiRis8Hrarvz+YuLfki8T7l8NPy67q21o47elYzvlQP1u25a5gpxvhDR0P8N+ISYXo4l9O87HkLPJyB2TDrBkR1ZbN13tZOCcc6dECGvDZpA5sFluV4dAjEhYDcH8i6o6Erk7IhQPpQxHcH6Q/gTbMRiSVP5jz+IO32KV8w3vtaLpC3wS/l1oY6kJz3I6+PzotPy/Q2PJZAji9BxS7oBK2qseRIE7OJuhwG+u7A40KS70XJhLOrLGd+qNgX0V8zmC+eFHwXOiyLCiwlVXNIjP3vwW5ePhoVS4DNKJg7LrY/jN8syQHZUUOhX7OhmIbugOfIM9fKGKC4yVwWVIV8dy2O2IkgWK/yTDvUULzoTwiWrjz0vXPsWO8jM8uOvqhZNjcrV+1/VlJXb32JCKt51sv1lSRkJThiXH5LopyNHme1QftrQBIS4pZiwb9594W/plGW0gP24KAgMAkL2JOVb1ArvRb9gNl1RtOe6LXxrJk2C4+bO2L6Pmy0b+pKz9Pl3Z+24ysPsgqP3UJW8cHEXq8KN2JACWPK/N4JR4VrO+lg+eTC4SWCyvLwRbINBtItFS8BklKdr4KJqsvRmNi+NEF7OhdzZO5qKm0jLpbxvL/lYAqCaqh0fljijBexv+Mk5yXGnOqDTn2oN1orp3ivUk2I5JQCG6KqzPuEPL8GWa0ZXRKtc8g2jHwMAFwGNQ7rpkPpVfKFOoXQ2afpL2TkEMFJWiFsH93iE622pTfOAkEkD8CIG1hp4JVOvuQ39GcV5Tst1RsVy7ZFcM746yJWI4rbolT1qZ9OBmmgNBDZPf7kWI9R3KW1R5Ag7b56YF3uwLb/QlWphlVnzLhAWF/HiMujapSX0cv33PG8UdM545oBUXWfTJBVGoKqUmLtpS8APL+eWdoXXX01xnhpvTguXASXjuQdi3e+4UZr+JGVdPEl5BGndNQK/nyQ8zANz+ZpnGwV8EdJkLTb7yG0ALv6uKo09+rFoNM/9DavA0PVheHkJybZpRJbZloQM6WsLxHAtBFnNr6d1mlULwnqmDKR9gIQ9omuAyfBm+/8Jj8zAnKQ9cALBgAN8PPh7Z/71Ay0bitInuKHlLFWeiQpDxoCXc0UonUjtRS1inuY7CgOyaHreAn5gTr7ma4+bPSYhkB6ixEeDsJPyAus3cyQQhLrJUuSyPf+PLrai3L8VOchEXhyMcR3QoPR4Iordsqfx9EODKiYTRR7ZrgxaM8wDvyzuYiMi7e8/LJSyGbeG4MTezWR9kod5yFmCZPKR3hMOonfy6HrDaF9JNdg2ADBolCURbdG68fOwaPRgL4Gc1lyARGA9D+NW2h9wy+MYtk27rZEpkL4jA8FkpNE3m4pV1lb9Mj9QW3E+r9SfairXjYqyhMnoH/a6QM8teQXoHgy9pa92yQ39YZaQY1va590nP5Q69Nk5+xHsDVNXQz13ewjCpVsnCyUr4qe5KWLsJS0Y8a2a2HOXPTd6k0Mb4EY3JjxbV9xscpnzqfxfQeaGwS15cwYDcwYR7VUBMoJYxqw7CgNCI/oV5Go7ouVU/wgk761siESXlJVHZmBPDF1uTusduQcaFHMF6j773+S/4g8FLiBD8CReP0mX9rhHrsl4jkfLuYAM6n06eNxZHtvJhB+UVUEftPGEFqIDpP9/iJLlU5sMJmbO+fVW2Ovhb7U4COo0CbNr0r5ZOgPXKk7Pn+KJj1hDMhqa9Dm9dqkQcyau+AhaJRDuFYskbI3zIeszJ13881uSbgHtH7AxGuB9k5Mz2R41PnjEwVCw36fanup9JaL+JOGUkAGzEJ0nKyERrCQjmk2UFh9p47jmyo40mpxdza8PjgQVKs8D+LqE2OybqmOwKXyURJjkmjEo9XldxckeZAQHfHG274wZEu3P7/XE5TnzXxYoqETEWVKprQG59Ph/TKX0dt5AZ1Qp22DBJPBMc8uaerMyRyOKyVbYrQN1T285O9+UBpgsapNsVZVDLMSStpu87ixmJTW7PXBynj1Ust16OVOGL5f8fa+P0F2gh8UX1nEsoK1Tc7zI7u3AE4LcskPLdGk8zNmoxECu4N5BOu85CSOE6Kfb5j7s7GbuLX2/1r0RMedrgQ3RWLdHZBwa29BrMZaO87cLs/xQmH8eJ+uR8LAxcdC9WFYAO8jgfnaMOd63ywSU+hQE91YMhucSlbrZo+j9AWKtRQhJ9QYP5Fu/1LXgEy/d8kQ50IncHSzQpO55VneyFYJTNhZ56XjryxaEMsGPdmY+K80Ft/aV9AZ8OFlnAmOx06OeQJsWwTTBpVRpitMaDY9jVPji0K8ZKZdEq4bzjYANR9lN4lZocvXyCnRW+FK4uzaGaT+jNcc9I7o5aZ0ok0tR+KmcR3arpvfEk0LenGjfPlXKVO2AY8y9gX+C+vbC4M9G4c2d6iSh6woONoJGRv1jf2t89S3q0LBEkkmg736kxZmWNzGjv0jYVIWiJ4pIAgdcAPNp0YdUMPSWhJmQolW0nUMmEjht0C9RIC1aXgUBLhctJZBRGoYpSZvDiLTaXsyJHZyiIBC4Lqn/c9iX3qfzqzIbxLrcTt9pzWLhxmRAZvjGm/UmdJiZ5wjd8rrTkgqFrhYAiVqaZaFsrER0yZDb3gbOUVKLDWyOY8AWCu6sybmIfYTGoqHMsjcDKKgtUxf8/PJ1UOeOFFeRLwvggITA2fGMWzs8uQXlHFujtaHf5onbENSwAlfeOsfGmfR3vPmFbPphxhnu5NesuMIGo8xVErGbe/RJVSjKf/id4PQZyxPmgTAu6Ybde1BPrR8mutIchWPHpj+EqHTkConSpR7Ybl+Xyx48ZJgOtS9muIOZjlTUK7aaS5Hu7gBbV5hU3kLp/CTjzT1G2QEzSqn5eO0O+iT27aDrFUqJR8tq2SsCyz6ZzKKfFTU/3GjfeHVKkILazQOBV2hFYHI9JXCWXhD93e0+OZ4F1/HfZ5pEzYX+kQDJ2/rZcIFL4YCEFN0acRvAvGuSNnEdc38z19COOcXbxfvlqRPqMSDMm0FdhPrmZaC5ZAOQOxGMPhcHKVMwNY7fMkRXf25CRJYmCZ7LU7Q8Aysvd/k3D95VVrXm8+2CzkGz13Ih9mEX/Zv4mSWWyuhDA+tBCmPyoNwEgRDKlmMLHg3a6HbuvZV/S2YNn9bgaflhXduj/UX19UavFuOQbazqZhykajAoCSbItWO5kjk1uPysohZnEpyg7CE1HdLo8gCFAhnyZTlrpGOxcjRJcKzyNCQNeSQakakOX4cSJaJgaDrkeDPi63zjxigHzakQNZFK6ZIeDF9FQtj1UF4urvvpkFbup2wrSqErscAywr7NQZYBIRMhp/YTNUalpqp73IxIXzQV6L6BzTmww2VYPQ+TSaRDxsuaXCUEh5lLYi3wr3ZbSQgsYw+fQ7kfqbDMpRq+7zxry+jSjYc6Wd3k1iFj7Mn0CNcs+exoF6AIRAxq4qnzoY1yjEgRcwR8HINZnqf71UNIuMOh+GUPpJR4tZNIQpTy1Y20UjJZ+zm+PsHBQWUDlBr4/sa/a+Db76mHPpdKxC3xVwolgVBa1MhqsxyX/6WJSL/cA45d5kB8R9irwc8bnVWWONg6qmPqcqoKSZBpkw24dLz9FZTF0ch99PXyrMADAlrj2raR5U/3Ky1IR08TJ0leEh/mOQWglThU38bYdUNJIP9Nc9/i08NUkoqdXyrp2/KUZOKe3BgBI/VPGnGisgsg9KAiOc8sTgPbxPsIZo+/+xTb+GM7TCY/46YqzKAu7OseQ7H0bYOGcy2n4E7GEEn9oUGoGVcEex2V2KNYt/EAxVgkUSampkPwctBwQNMDRyQvbULCRZs5bwp3MbhZRCiz1w4DkbQzsajyZRN1kLVO/SGXYLILFbFXUJ307qHTizzdOogiGAVbQDE2ytZ6PUFj2+ccXb/DtwsJ9tdEoWCQgyWByo24/difIT12LF6O667nPeKL5e2H1v+hwPIyobMqIVJqYuPqMDBT3dw6aVhmmcpqjp8nkPRFo1L4VxZfy30xny6K4nUafa8WacpVAeBKL2ueMugHs1AZUBdd3AKJVgIFVComgRG8un59kCENGYeoGix/DRUotgl9hCsBkaxlk2BYwRYobiuwV8NIVQzEDAnSjGvxIbw3FUMmmGq7JWMYlZpg4rTqSxp0DSlm10+0mqw+qwoVgEDkrRGbDFPFbTqVfnQOpI7zhvYjFsS/opBwP0ayu/71deLiX16QuuEYSYaVMew4L+IROrMUYo0Sq8XjsoPOS9LH2ow7hVB/kaBJKEVD/oO//xnvaluoQu0EC+qVrD0BZ87EgHAzFWg5V8HBDJECnwNoRRfKPxUOkOcs9fxw3/r5KmY/DPznpqdHvjpztBLTpVVLWRCy2GumwnM4vTgbVwsIuqiRjmazJ3oz7FRjj/YNfR5eX5SX2lFy6H+DlLEegsm1LLnP0OibycA13NHOS1G7oJhuvunchJaYHUMNqkevgX8jWOX4V4o3CVs+Sqt0EqE5q+k+byBMvORaGiEnS1Lj+WHi4myrr2xpyO0duSOqsopjnxD3xvkQEy1EYIfbzDAxgT6pUIp16RBYVgi/QBM5kJsjneO7p43izO+nYA+Yic0iSWuJxmXzmQ6Yt4I0ynrY+MxPBaaixOfM662Lw+tbJ/vcfufv0cYo6oyqY1cHatcgLPIKGxB70qRsLyoZJFRmsDj8SQrVI084f7A71IyTuev76dgoCpMCnSwtncLEE5iWH2KFNnnGvdCudyzqXwUYOezSyYZa5P8IgiWkiMqypIZ4BUS75yfMxyBjzbhJcqlQbf10d6/i5oF+a2j226J+QTbZYyrhNzi62mUDQfjumCLM718RuucoWor1KvSgrUR3DJxiHpj4KKh1doCGTEvFQVsF6yJvpxxaOaPxA18S3pIuVuXVlfAn+kixzXzjlznnKWKjZmJajuV+X9CXxZGMsVMF4yPF3P3sXLRsWCKsTv3Om4IlCzUD0cZ65f164YjpTdCm8cNgaCnTa+XP7/n7GywGuXuYkmA7689VPb6U0FIzrej0/R93i97qJNSmRPkDXja4X0MkRRnzmznR8fULUXyEX4VeVelz/qNPgLK3rLrfGLtJ4kKQvtgJvQv646mfwub4Gt8V013KS6eUAwZeyjF0t9Ks3C7FjGK9Hxm/G67u041K2jcbjJpxhF3iD6DjhLiOxD6sk0Fy/gCPHVYPnhWxfgOXDCQaSgyTymtaPNwE28vQKz0CPPFs353FJyC9H2JS5rde2eHpPSq9Z3tOXxg19qi1SwPb95QXwCGplIts7MWJIulVA6AZ5g76zo/SgX968unTzhd+3WrNhPDMN22tK4xIj3m7Z7SIejBwSaGck2da0zA5n4T2JqflRGPOheXcA/svyQwzZLitVQnWwX9+gG7m9P23/4zASC2b5gnN3WOE+BZpx75UYOumetdigrINAEaSl2DxoFuLHnJqu4QJK5OuHBmwOKooeu5ZBhJMIWUnJsgJ4MlAN2KouIYJ7MjkQ2CRpm3TxXW3PC0BvmNZhOd/9jCshhM+vD05BFFOhr+vkkAJYz1vdEvxJzTkJIPvIPfJlaslnBieXLuofXx8b/LegsM5CB3HSZTNf8IK7OFHhaVAazDaArVvpw1mkUfbKXY8c41VJ7/XuwSs/Z4r1nKgkuEiYGh8xlJ37uQ8FFc75ivff9oJ6Do2F1Jkaj2rjgMaYA25yn8AHuWrwGoDCF9+O1ANV8esc2TLsE1NZrK+TOnIxXKwnYcI6m0Pev++Vet2piBsNoE4dGw+w7PjmHHBnAr4vx8qsKylW+KY1ovpOJ++h2xsWbAeU56++HRbRPiIBT/HN1ws6+4kewTdd9CcBYnyZXOgY4nD593Jyv2Q+PR+EXYYvTf3xhA9ZkECQsBaPcyEjOf+KlnonVmueN5fUsaLAjNQ9yP0l5gUIGmpGYy2wy3RdoP3RjjUnYWmIkW4j3nliFC1VP7Vr2eilROq+NGEoLf0r9ps5Y4VFOKMPlUD+j0bcIbt/KOMqeihNjAnDMt/Eo/Dfpji4aIoVg+6eGKXElA1IwoJxmSUu2aQeLrkHVOxjX1p3KRdqZE+Qs2jom5GlsI8g+Y+pEaaDp+NmgDBO+scYUefMSYKMX2aanzyvydaqmSZEX7gQz+gOkpdT46qTnF9k2evINT/C3Js81EeHVYLJNgTxlr74KDsMTfQs1vM/snsfG7qRKEc/H0XS5BHwCHFMxWE7F5/WND99M7LUYXr/w6tXKRrTLrSqHyItCrVeIn/tm9cYpmP76z9a5UPboY2xTJ4f/A7bEzYkmgTe3gr61hX9tHor7Ik2XjwwqafpEiBM+FRB4mMOyfYdlb9sPcxssc01YtX0qVImLnJ42YFqb/nzErkL2sOvLafw6jhOFyF62MB2ZgKkU7j6wjhoIYN6UFujzG6U4dPY6IXyuseWcYvtjEk7CgtJ2yxeHRXhjvJ97n8V5CNjCbzT169saxwHnh8q9D0sT4QfpFpiX/qeY4d3SPpZ429r339NcTYgOjOj9kbvMg3JvQIGtCa7gBysmYyC1xqeL9NI8YFwUxuOr2PdOTw8sZ2/zRE0+UtLuSA6iJAabfK9De5LM5eBEKDdXHFhb/fZnRZaFkn/LkEt4XZFLMOUP+dHeT+QJGUZRSpCdYmZYvTcVPGK+BM/HnWLjX81Kxd9CewXzu24QMbrukqNQbkNaMeHToWRjyuOPqXiUcGj1BG7g0pHL8jz9Cm7QZNf6En9UKfrJBlHIdZZIVbiZxmQPpvKkU0QPeTV+7Bo0iIxzy/qykZ6Xj1VUm9hwFQ1J13phFjWTEttMEUE6U+IDJ5/SqG2CRG4uS75WxByZptnR4mHVQDOu7zRZAtP9qf7S7LwdI5ldY53GDGRUqfk0DnhETR0Q4j7uEI70BMr13uRnfcSVHy4iVcRg9epNpDwJpuExuA4eYsN4649GV1rSXF8sua1d2et7rbGwK2LbvkxrtV1Hn6tCGDknIbuiaGqlecA4eZbEr+X7wT1PjFTJSIIs+X7f+XRhfbMWM4b4jXQV0jwHM3iovrAEqy5MJKRciJ/tPSNHBw1FiEfBGO9HATN4UtrYDQNTMdIcIdgwsIM3FFPm4sp2GxlvIBWX4uZkhqOZfWZJ7CVlwfD6VfiNNUJ5X0bQDKe5XSI+0SdiXfr6fQFhKjnP0RGDjyeFc0b0q+bpLbzN5ViJTTQIMCznay/W0XkH8J7P/0Vjxk9k9RVv6qkW7Yuhsqsf1g3Co5pg9tbXQRRdr3sIt/tBnpmf1r50vDybQ70h0ZIhR0P38S3DLaINIUQ1yjO30i3X9Fks3hThHmHKRwNQeE9wsirdEfR56aDbprnLDl1Xx74t8emgYujTb/Aa4bHqmH54+4QDoSQlO9Mho0hZCP9Ib+s111LLoqSSLuyvmM7/Nq40UhA/pMXIxwIAqO0RIwrCrrnIJ4F1Ldpo3/e34GywewWzGrSA+fqJda5Q0xTD4tIQnqYcg+7SwqDjKZV9FUj2kYa1xp+2GT50s+rzGCVJ3H1IP0jFUfpF7QMCWyfrNFB4FyQtY8hUmMSqfF6BSbiDeIj0fXFX5ywr1pHbJyMgbbewnCo36ZMX0smufHZsDp42FH8vlRMBpbLJrUEUUNZk6ieaPubKFJdoLShoBtt0ca81Y9kezONsv/2wSy4RFWTEtG0m/A68x3jZBDEcTuAcwMv+cvR72JjxvnvIBkz05aPRMDDFIRyi75zJH88P0DfLUcmKwtA9rDZCe0fwlHNa+HTt7vy9y/lK9Abl5Lwc3zMZSbTlrcCFAoH892jFv4DNNnCD6E5odKb+QVIvIKrhP9Vk8+mCapaj+OQ5rqrgIUuJvSTvNANf2EJeStyME/dFeQJytZVNYZVx8eTlzzKoIRwvp5wLjBm7cdK+ZAiOadVa0aXziml8zdDZ6bsyuWdVytO0w326UFoDDxMn48+8E5VKIyfwdGd+WcsELh58WNgZPu0J3/XPHyCqr0UHsV+1Vo5CFwaaPA7d1Xyivp3qoNoF4kBSWOQcZeTdtWk8rTa+YLkE1skyA1Vbi2Ui8Bob0xYYITqxOkNLHb+i/qUf42ED5aLKHSf6z4nxwW/Olqbr5rHVs2lvarb3X8qPwAOT/4Ho7kLhpyTIuL/msNKJIy7ZJ3BobirRYs0je/w2v75DUKpvgOt0UgqtZcWnQyxAOrNJRjYq9ozbojrm6ZpbROAclGKNHv7ELw9IqfUD0BbthcoWOZ8WeeMpZuQoq5+BP1UCZPFvb+Cd9hfhHvfiRuE/iTttxQcrZowlwlX3D7qJ66HJBO+QnbKk3fjdU8lYCJSZl8TSdalcXeuDk/IOAy0X+twdOR2pLITHk5ShGqUmy72bmZh9IKZxRnrKED+Zvib+2/UEiVrH5E3aqAkFUNNDeNrS8r4Ktgd4sDucFe1wP5iJ68TW1e6/q663GsYH14VjQpMMtZ3/JHLuL2Q/hJQW2jJN+5gpqKzWstoSCavqwaPgHoQ+5UBVlPt5QsVotmFKtmqSjTo//gpBOhtH9puGYRQeeE5ZZKg1RGYg740/SCTUmDq7XXEmpXWVD86h8jA5W7BkQqF10NppgPBWOJg7sE7wOz99ZUplAICwfV88h+Na91QE1jNQLnVKjtm2zAEdHbTHYVhyO1PrgrWITMf7GqsaYP6dYEpJ2B21yicNjbfTVsV/cXbjMI0UDHdbzo2RctgMZMk1j1DagaC05GvKBX060wuyoS2EF1bbo3+Qm+Utcbt4DCF2uXiobUQ9mkYzxxuhjqIrR8+amcA4ZGa2/ZtkNnRC1Lz1pqU6A8DTuvPmyGsPwlx0viWf+MJF/ahqLFMWOwy11eT4NfqHXGjW8v9G3sF0LeihulBImvhdY67pI8DT0FGWLUgAUljZGNnrxiA/BUEVw5V04Cq7to9Hk+ZtGczIOtJsvCpbfdvm0ZL2+kso/RLBlkS9wLh5WS/YWEbxc7PbCq+ohA6gxeyKc5LjFjFDOoQiVm/TsLVENAe4O8Zkp8jj+3o8s9sUcbyjj0sNv1kFyRvFUqbB9MrxtX64T7zCXLdawDJYJlIVYCK1ratShyhEvu49nYnx6y6hnhi6nNH2kCEzSHtgIETpFD81m8RegLutRS9NXrtwg0RRpR1DtyNsBfMf42GWcGxl14vx1gezznUh7idjVbHx/kYBz6AC6JCc96HBYK9jS9nav5rI8kLYbai6pJzrPrhM4VSYWR0c1/Ba68/ME1j0tlokSHa9+7q76i7NDMPuwtxKeGJ0u8bypgDB8tOhr+LQvPS5T+Knq/1K0mY0Eeg71X5VGMprTcfKV+P5z3sJrY6+wWKrvAuFGtCqNCGaz0xEK10UKFoVqRv6aTy0sVP/NB4mx5xinBwk0ZKtM5l4bbJRZvTo1JBBj51GPc2EAhTGMp4U0G8Xb5k0JIy10JFFc6Mm0WpDWFFude+C7HHXjHc85v1+KIBZt6YX30btr6FI2zmPl/RwMg+UHq+BZFAsiiqzHZA7Z6U7/x6vjY7HlrSs6w/9e2sgkas4lvQmoHyit4P4eY93O5HU8yVXtueUuk/26BdT2lFMTAI8BrGhi94nDm+P5KLA5O2TGgpprBTdo1jzkyXgoiLwm6tl6Lp2De+7dubDZmb8iaiNKwGoEqrAIxSff+PPMSgiUQlVhsj+HEkaOV/G5oXqa6N93Fy0bHIVzEFjOAQPInXWmyQrCzspim4u6e5n+ZQYJZDdSLpVQXqolrRk1vzELxNHp+qJusMHTFexSwGMWqG0nfN9qxzGVx3G+8M1u/KnwVMWrhoaM0d43fTPpj8P8zc8/jPKdm0rEL0+//feVGvZtETa1wbamwsvYHWl0Dw7GVm0QG8TgPj3fI+lLUN9+y2/UaDJLddbi0M1TK5NaXSRag6+qc+QNuONd0CvpGkOLoRLqXjv4j39H21N/m40RuKej89vzXWfIh5GNdzUjmMGBPHMzteOxyzATTvJLz2rpJcUgcNaVJw6cRBOB5VOnNttdvzGKZhxunX7fcZlLfeZyMqw7BbikqtzA7UQ01ea5B96Nq1LyrsB0bKrC/9NChVrytQXOcryredcOrbdVHVwnJaMiMFUxCUA+w1IY7x/wN0ahLcFuYulpCk0wAw2abpFs20qslGeTAON1qCN7u5n2wvC15VjAZ1s9fH9RNSO+B7uMohpmz5JvO+H1N+AZpxOJILfix1WKs/PtoADUfcAxLIvUQoDLLqT40ph92JsdhcnM0PcitMdK0yVy4tPIvKfWde0j5NQ8cGtsOpr85K+Ku8/YdKUDkBFQ3JkUfsVLzp0GcI8H0s/U1ecAy4SnY7m5DQGWcnY0g6mozvLib1OLkF2v7PF+qcCyQ9tQuMWF5l2rbpNviUmtJ9ox2QvMOXs0CH8c7tRs604Z8UlYs7EkF2J7cntC02vws+n82tvRwOoT088QIWDGhmuM+kz18F4+XT26Qa1WKXtSkDYD3NCMHr8QXL0cCueKDjiEwcp3v78y4nz6Fz3FNfknXwhJHH+7R6gD5cZ5EV1tYO0wRKjVBbg9eIp6iCmYaTtSVQdFWjOhW40coHu9l9iPpRZ0cmSqW5z9O+ZlUzFpEn4aUDEjlP2XdRiCiwySF3zuyvoXoSG1NoyCG/oXhxMAZ/5IrckwIUNWMZs6IVz7ffrdq78D9qq4ESNJaMBhUC83DZmV1mCY6u0f6gtufYSFcxJBok1QuLTqgh8F8uNoVNBhKrbVqbLZgNQnjq0RFVLgOeEXrUMd5hq6UGxRmTTY7/4B6jVV8MW5y0Z7uhvVOobNVrYB0A5iJ/AKx7j+1gfugNKF140djz1TBejaP9hL7bt99QjWEJBmYEM0EM56ZmLBOlyGlVwan8McQw8180arWOiK3mqQolMffxsfyj16sqZqMqdBo0F3Y71qe8I/NI8mD9e8PLtERZHQqcIpZID3RQS84kFFlmU0HwjkDKA5PaVpQrwa0m6raWQUy1t+y23KW2scE7doJ31SzB41iO7XWrVILvz764KitqTkuPQme6JjqGCP+d+X+xqqU8k2bSJKbTVnRUpO5Z8cIZvRBM8Go/SZi2aG3JvwhNICy1hu1UE/gSpLQ/W4sjx5AONUPG6IjlVP2Vt5S4RGzJ/lRtjowwGPiiVx6lw9+KneJnFSXzHEnuswMjys37sG7NUEOX2HNWvUdFTNEps5Y26I+UpwcuQrkbRyp/o/5K3xIwYE0BtCmUJfj2CJ5fuf43P42FvOPa5iGeTFdJCBWy7Ez3dZAKFQ4l1R2S7gsbTZgqjNjPaoHTdmGMjG9jGcwHqv8u2tr3ySvhyix8Yss2Q78jwo6dl6SL1wq0cK3epLDKv2GBVXUH4WvlzWTLSUHB1h/8m6gn+S//1OU6SnLwnln/SLqJiJqU0Vooh4bFVRoUWtn7rits7WpAqZeDwqvPPLYNuO0sRGmBIQJqNl1twT/Jyr9FWKJ+XnLyoeIN1EZBWWqC1rwomtL8f+Qw6JJqRodrEQ9R0EEr8ViJ9vNvwgFRuvtI71FF1oT+JMj7ig2yQmymf/+8SHN3IP4Y8xbJ31n/0LFlwCL4LNdt6AhARsTmdFhawgo+Ejd9wWVtVQiC9KKazw6qzsH9VxzAWj+pbgb1hA2JDFo4MY4deQlJWjpCE8KwTZSsG0OEgJXZqsp8+YMs1SpeUQOCBVGcD5kp5dT637GZipaEjBy+VEaUpimgbxakC+418BfCpvSgnDoe4N2b5A0IB4t+cw6zU0SpyBmyHgMycZov+fKL8vI/sobxVIR1wsHy4fIEiv3s+TFH+2WhpKjj1akCy9foa+Fa8bGpGDMg47GThmF6T9gCnAP256b08/IbghrPgv27C+J1I2o0Vc7+OalLX3IreMWObBCZLVuXZ9C4l4GgN4bsg0P891/RgcxKVaN4VshtGpG3tQKsGQmZTwNI9QILxYaXDrH8J+KOkSrbHLPOkm0y8do4dojha1c5IZjtbSUk8X9/qC/8kUGhqdl4dNxXmtNnIMsx7bE/wBZ/vfCFODHPo9X23voRGqw3cn7X5K6R36ofnzd5ntZ+N5cdMrr5sxqXpGeDd12K6FsyFoBnd2eio77J/lYnALqgHXrKrcafVFSY1kpKEz3yGwi4iaroqHnBAlENDsv40HB0qzW2Aj1pGc33G69rdyw/wGldI98bqroJXCwTWDYTIvFcymvqFv1vtsaeG72wRbx+iKdk/Y/xrdpvL7bfagVEx3NJ9RVOykhDE0NouHkL4IZj9ATHlFDRWRTcbPzwRNqmahl9gnqHGxo5kkifiFkxlHzXZwj59CcE1A6hDAmnGB9thzv1N5GpDdqTWlIoPMvzw0/iFco/Fwh0OqQaWkc6XjiF1Y+sibF0x+eUSzzTyToUB990CkcWxWG7S+US5jIYIdnesFlQo0Haxx8+LHVKjCFxbFic0qYaX9iwWcaWZ8SDr1jTHextil88ayS93vQOXz86B2NK6h/4Kxiu62CiNFyPvpCgBW6Z3Q9bGhTgTw1sgVZEb0DZAalNCGk2XwsiY2ug4YgZ7ujIf+S5jIvmTbMvsALakxsDQeE+YWU1Tgo35xTEhqSBGGCMzbZboXto1tenwSVpaZYtUoQ4oHqRhJuLk3cvDYO/siBjvNUfr/KVqkjaMrP7shhOio2WzCMaaJhsJsMKgv1+bumM+aUOrj/qUN2ZnsqdalJoxor3+QHfFnOIJ78+ria6eizd9Rz5jL00y77QDtg9GCctsPwxtLo/tU4KdoNAkDUhPbWtqhn/Q3ce2XJuzw0spNnXlmEmXfq4jdoL1A5njBr1OVtrDiEKHKy+NIGX1Q2qquL40vWJvbDMbiRGAN0VtL+UmY5ltgH+cEuoDj9UTFUxUSUOOTwGdrokkN4F20Gg5zY8p2gF4sUupdv+ZBv+Nh587WOi6o6EV6WT5mDIb8XpLXhkUhPovLEEcmR2BKCBrLdZkegALPOGGSQUDNcaP1qKCVYD4mR+hGEAtaZj1Pu2SC6GV/KSaEgUxEki/EH5RKVhb/eXMCPyIE8sWPf6M7ecLB5nVeVaf3WfdLHhzJd6yCAsPq1/HYaAuM0619XalXgZP7KDHzRqhP7WICw9QwqpPAp0kgncKrUnvp5VNlVW4mNudwLQFWInni4YZPpPEb+zu/rVqSk0SkC7+onyAJNo9bNf00qk7msJXN81HUJVs+DcEDxklBHtN6dULoDBL46UwZVGHObxecqz03mlltJajNtwxXpTkfUHQ4Vww0UuxkSurVwnnxX1chSFbJ2o2wnxIJ4GHBZppcl8J4H0czLSOk2+d/oD0HFGh2lrEUzuUYSuPBgZWv4yNiewj9BNsr88YkH98nzTcgcv2PnHtu1BBXS3GKQdZcg90jzt+3j79r30BMjhBfEEdt+g30MzkSsWElgTPbnTQWt/ImFHaALW/kSwnvVPiaSZOG0mfxBp4SO0ljDCXM5neK4lMYjmBzjQHNskT3zUT4+UdoXTKtlXH5XbkVwGaE6L5LoF/owGN6szDTTHr/5ii/RisKte23QKBkGZV0SRUy3hzUu3EWiqgWj4PMeAe5QC1pUhlPxQPjAD9OAKeLZjOgcTkO+pFnE9+KMhNk+vd3NmCXcl0yOCFdEmotDt7pUc5Zy4M0m8Jws/yrbxA9vSRIQmlSUn/crQS5TngDct6iXUStuLFYfjQjZ4HrkYcgxDkzJKYATrtNJ2a7AXtAj5YLsmU2cbgUfkMy/rU8VTeijqCRIO/TniHTyQ+oy4MmeKBwac14u9Kpx8bNyUuGBzC4RIQ4pAGl5hBA7VIQB4ekssfILo7G7m0FU9jti/S7Yf/a8InW8gCvdbUESAAFGopDjBTNzm8A3R4A8KwGiN8SFuF9we++VteqotIh4andK8pSeyM65HOKgn8k63NmGTCQMOVd2qE2MQP1xcUfJQ92iP7B0zHWh4rkbnRDhZiCZbCI45bEaVNHRAWIrGyQArqlFVgWSHmaRRPsHA5pC3hbU+GcKBOovb3f82HDdvXdcmbAaZh64QXdxlOe6M8HkZBzp7aiVtrWMWiFryffPeHoVYN/OoZ1LPEO9gwQsK65tGSDFqj2AIB16DAiVjZLYfy8C+cKLsEOiX3SgDznXDxdmljgRvz11vcUu4dQrb3HxpX5RiH6R1vdkvwZwUna1D8H3iQ8c3RrKzxDA7fXxv4j69mjxU0LBgqXUd7jX4wBe8pP4zmur9XZUr0sH0a47PbgnaGAO/RSG1wZGEoqkXFZuB8akOoA/EVFvATbgQb4JP2nIZ7hDuzeQGKtVcle8yG/AuAMYi+lL7ohcZZgDiNLRt6aFMO5OY5LxUwIcpp8VpckwG65nVG8oJLwg6J5jci9OJYm9EKK/W4vbK+PuperHWELfarmbtPTPXtPMXlp0IwBsrNbIFRl40EHTRk3hruTKoOSD7m7gAEUxI7sChngWlHaWSHvlFyEUHAVaBOQ1vVt/pHnDwxm4p13QcZxakxI0NbL8blAlUaAhw7+DloT12GnQY8y4X9klsMlrJ1qQ0rnTBCEs2RBeXotZDwIpnFEgZJglQbfoGaFn+jBXVZW4qeZZR7B4noRYIJQBfP9g98WCW7yCirfoer5bfMXrUXZqRcxKeJsDpk83mraNEhCRNQQKagbOtwFxkdKgmmlw5zPevFvn9/F2DqL1Cjk8NDusXtv6u4ILCvBxEDJkA1EX+L+HGeZR4UPgBNCWADvUQXu27G4Hbql9czbCH022v8UigqAUyqPHuH4GEr221nL3BjpxIVQ6k+Vv0i64qulrctNy2JZHV1r2va6eiAlQd64sYgNoXtwrAmyNt+Tx/G+icqen2OsyzWlD7NsY2GKegUQEv6IRwQspXEExT9vKX+aDhvgdO9bG/+UyIuMOYW5hNoW+56xkPzXj+9LitX5SWzPO9OWbYvCPdGDRWr+6eq0Kxpvve7h21GWPu74xlKUVvT6trCJKnHhhmdngwhBuNFeboedAPMOpEtg02oaUT1mG0P42HD+ypOXGAejHDEJyixK4P8jFS7W1BbXY1A+6+HplZtCulP7Qta6pGCS9ICDXkP9WcWnkH8wkoU804qEPd6jA5mh0ZpCpLI3C+bC4X3klSOqOBYj7UPywUxjU/H2Day9EuAOPjPHbjDFgb+sbRdL2/Qcw9lemBcoH02GmJVy48zoCQc7/s/0EKFAAQmSoSP2DZrCNTDK1cNvmrFs9S3wlFE3NIi92UvEE+bNyJv1QpxEezNaakiB+rGR4Jr/3HN1TM9CZRkVETFUyB460VujuUiqQb0R5g/h3678oJrpv2/XzOI2HpqxtqMfsoXm5inZ5mfJnGZ6tpTZAEF5HINvUJe1ERqt8b1K+1G7V5SWETKus8LBFVE79oMUp8nJjXi2G/5T9TNbqGIlCvU60FNgxB71KpdtLkAtunTmFkGc30Uok7paSM5ddeb28EzLL+J9E4LuYYCXOhCE2zDSDYJCi7P1S5v59XbJ/fzomkZ8V3o899qVSomGZmsQO7YmpsHlDgZCbYHH8+SQj9/q8MwSMaIsLWOFMWOTaqPTwagSjnAzjDIiU+jGaTvQR16+PZ6oST/FZy3tFtm1pJbjh6mXSVbCm9ZcYo7CLtxe8ndCW1ugLvjE+39uF+HTN25HgNECnnihlPIsE+fSBSvYD5XUiJa6Aq+nQeow84+4AdKaWpO5VJDe4qM6YAza33rpDxhV8yk8B0Fu2WSorHu6UPmS428zlwcTxTU7f6Y+9ukTATl4RTQp2XVQ42RijFI7NrO4eyR9NLuzq9+YLQ8WrZClS8RLmBj5y9nthu4BeLwzVTbYjYNhmhmWpF2MRw3FcKeZgCYOn7+Ehy9mqFy7cCt9F0Cj1pmMlX05M8cZo7jIpJn3hn22KbnkovOthJUm9Tt3XsTC6njgxUytaIAJB8WxfzLquL4BKBazfvwrFX4oghqhAdehVqnlVMiHTI6dL0KYBHKMyCmrZnzRqBd4R7oc5RGEcxhq6OjXiYnKvpJG9WCN2urRmrMOOUr9SGfuKoqxWKDWQ5dMzMlG+/embrTFenrcctluaPv0+ROfOgoGgAgag046ucZry1rnxtnHnyrrxt2NcEINwG3o6HbCMFfTJpkAgBsnrScLvlH7I+CPjXCT4o8u4k5+/GWTVwp4JDF692JK2jJx9MHZpXY6J7W5xu1DjJ7XqVLV3J5XFoo8ACih/YFMiMsVuJVKKcCMUSfRmbnszrWCII5nLCC20VU2smeodn51a9O13Nyus7XpnZ0Bz4K6ayt9NnZtqDJXyIKAHpXJzsff/x+oCA8E60Xhue/9PeB6cud0a68baAoxuLj4MqPE1lWXqcaEvtIVgpGQvw8xOfxGdzIO9Zl2n3HCvjC0uU3GFl4AYyOdhaKdSpix3IrYVOx1X4p3LkwPioAvucYNbl44mhbbsAAl3V2hIxdhFhSAmXk8OSt51CIy98P4hBw3y051faWriM8KquWvJzcACOGh84N/mIHQ33WPewi6RKtogvll1l4kD3sVdqU44ydtE9vx2oMP5oUBBRJJhKYkD+1ty+70iB3RUJFQyIdbXuYSrORVoeVEKzehiZuqZUOQ/5jRUm2BWfXBjNPixFjyk5NzvgTpg2SuhLS21hB23AhfNC7uwJHWcsDNs9pcxp/ewL1NPhxBPVHf2IRFf2HPiPT3gufOewLBPfpmQ0xUMvkn3NosygcnOMn2tfSTfpQ5MxioYf/4x0u8cLtiylN8u/peqksapvrUxSCIJc+g0ZX+D6iwTjf3Ug46MnQNOne5DMfiCqhJ8Q+CMqI6Zy9hpBJ6z5wlfdSyKpM4/tu5jnn4s7EKsTIQ+IEDKd4uGnnHmgW4hAFUe8rQMxzZncognVCJmVPg8FJNDG3XW2yzAXaNFNR0HV+CgnBB47tNdDfUSGaA+Jpc30YiqYNxEeuHSWIyxKEEzXK64jLFRiY37wSGV5owa9D4ecON+nCasx8kvIjIXDSd4Gbpdly5VKXhJ+gtOUIF2WVKwR2FDiIs5B7x37b1tnAO/OD/BxiW8ueCgXVHNhbtpUHcbaYlYpyjd62LC/Pcg9rupyntLOkcqWxy015T8h0Smksv7ERifuHLjhPItkGcslxnAFUB48Nr4ri7acwAgnSpmcaj3iGMcHJSOPY46Gn1+JUv5IyQRpGcLLR74DXF6waEckbG1X/1Ofm5TDJoIsUZ6VLKdIew5zd1ASopppu6qYVkbEhDEAgNTuvDkYPXcAurIHV+6IK+yAThP4RfaV/VV6UuJ69Tc07nvHgIdn56NrGCna8D34xW8M1VFiy48nqsGfED4LI8wmkEI+4Mk4gMzigJdU5eaIKoNRUKLtXVXUzQLnAyEdQCETMdte2LuTLb1cox3/W8up48qk/txRbAqsq3tv0508B7Hs/3r8Rfy7HZZKqHKY2dyggeVoemidzGv1R3FFKoahOwM63DnQ/7t07zwJcUYb0kQ1VXi1FiAHyv1UlMcb9Ipw4L9POhqVyXgLrEGXaaI9gxLActAmr/dPcc6c6FGKHRZthKBi1f1GNiSVVKa6CBP6tukCa+DniH0JDo1qd6NGGYzIpP/egz3OTcCGT1cg1oM5N4N+600NfLeUaX17nUh9x0dLwRx63PYHDaodWIvqbSH7ZcsGGfcYUjJh+wyEQQpkXxDc535dKZ2lOiKXGBC5AlCCigvN2qdZOYgGbDZmhDb9tkhl9JxwkX/ynjHjWhKlB0odUK6CGaGnKHrMt8cOetpBDZ79no0nCe+z9SevsHAvnNsyTyyLgd2bMwEXK8x3XUWl9M0whdUN/yqWyfwrjKgZ56U1AwRvolWum3/WXBCTMvl7EzNvQZhOFmShNkuPtKjxgr+1X9QX0qtTSOyMZKTzaA8pQhp2lnlh9jEMOXiFH4PaUuhnEsAm6fqK66kRd3PDVyEjWXDY39gz/Ikr1eX6t/50CDnnwZdqJyvOiRHukrTvFcpmjAixPLNXf7js4oRnAXaxvqlGJ3ewZmzE5Kr7HJ/qdr1BDmXVrML9mRyOOhuUoyOu3pgVx5qddhtOw6VgE22il4d3tfsbDx+amPzNSsegk7zjs7kBtOtlxG2I0Lop/01w4FKNcQAJ324PAu4Gl6JjebLm0h4IY0emx2ogyv3oL4qnShNO+HIko/Rz84w557Lgwv4nTwIDrSwF1v/aTDNCHK2buxGgpGAQ6TlWiVlZFmzV/eCGfBV6GRzJlx2DjiTAkjHo4VvZ89wNHSWyf98EugQ69CixPOSpw+9ow8S4L7nLDHFpAsuZDmHXpZpx9ieykd9QIQth/SqTsmCzQQ8BH091/YW/qWkR0pR/XTPKZik1/OYXEK6ZQpcuM9g/uassy4DxWJ+R4ilZSrSzfpW2xOzWTPlJckFbzkx+aJ0Ezrvsg78iVUJVHOCUXxge1jOoWCLv9G36oEPPOU8tbeOPA638gvuc4kkTXrvTY3A08eokahtknhPB5s0F2gEbYqb3gqmd/HmGg0wPZ9CpP68y4G0h8pbmiBfuwBRI1fQEO2obrRLyG1jXY6YypmXYlBK/MUXLokXdmBEkoWNv4/fa6TYBQQG7yVeRiyN1zIxxJgPKdLsWo45HecKa2nzM/8na479+BzRDYnQDBGbMkDLd6uDAeizf4Ei9Vi0c9h0u9J/wPMB+y/TQrdHsXLtGiACvbRIPSEl9zpJ9uPVZp2Yr/aNs+IdPFTBf49bDpg7A3GQTGeUZweOcKOoeJhseXZK8RI5MEeUU2GRrUcobOs2vQWgC0lbp/uNkc7MUbaLzAgjw6HNH6K9RlCYnnbiT7Ipww8XDrzQIh6Q45vBWhqSuE19raxq9C1SFp/goPnNKG2ocfb2waZptADfm4e9Htlg/R3VobfpDuGwzm0XwWqPZ7V/3zRa8g3uAb4IT+JztZsoLyjE3D3RVuQS1SGOso/I73UmuRTaDX99H3oDaUEKHsyDbJ1KRqYH3P8uhLgI9q4/w4x3KKMHTyxoLTZtOG+jxh1jl12zCGPrZKj18NSbloxCfh9X1D9Fs+B4PXuvlKHZUOopJ4Y/iDz/ad7mpc28a51YWs1dZCiayyKtV6pt1ofz17xdn1KzOXutnSHzvtgOQ1XZH6g1gGuSXy6nUrpuv3qWuxX1KfYeYyht3OBL8HwvIIoEwi+6qLQIzZCB4FPFPYP6g1G+KRMQ4tKIVRGaAJKh+3M1o0U9S0Yt7FBsePlIiw799wb/EYLctmum0gcdqHvZh3CyOIpewZ9nC2AJ/rkbX5/RokV+3qZaPnVXgYyTd2YbmTmIE/b3X0rED2ji0eYcMeiQBeXrspWt4YMtdhb7R91ubYkAPUk/2Hq1pwQqg5yUDUxg3FpgWAVUxLopsGTBjrv7oyliU2EtDuREjK0va4BAu+fZlhJdfbsEcEH5QB0AYzGEg8jQ3D0NC8MM/1hqDPo2WbB+QbPka9/FzxeppScMEl3k79BrXqF1nSr/LBR7pZEO3Stdxy0xHchVuH2h7Px8K/+hkOwdxuVvcOn/oHVwgo83nFPPWFNNlKV5apkge5kAGHi0CjHeDaW0vpm9b2SVt4vLxAPgSYre4X5VG21ACojU2gpptkYTnDygEieBVW+VAz0QIvsld/aHgAI1iZKLxTd8kwHqVSHpjGUORyDSbcP2WqsoPVgRR+GmTDK9cGY0PaXQqmqpyEKwUdbvn8OOB2X9k5fcEFW2kfFAOg4SgZZNEafxH8/VpvtgCkndSvAmSp5z9ZWWPIjWfByQsbrMCqMdv77q+81LEJT7ypXuOmmue8GvxDU4C5YMSV7OUohZhVv2zoEauWUe2ce/dl0hIBNY+gMpiJuw56cIAzZeUCUspqpCbfxoQbqgchNRBflzNPkSfNq5JyOWKe9Kg8c5uQ4T9u0lkvEP7kleeImBP2LlbFTLOfhuAfML60Xvck+/qVnplu3i0I60psyzADb6COHXWqA2cX0FnY2zS+lcAOMdUsNlESZxDtLCWGadDeHDU9uXUfGs+2JlDmrRaQgSxHWDaFk6af0H8YPkF4GxEe6GD6AxLUn8VKt3zZOJ2hnJ2bkrjsLpXh98vm2aKTXv4+drYsABk9/xsztaSaFAtAiOvClW8zuAH+yJmeJwKoGc4k17u8OSY6srxb6HIWiZRxSRjPRWcB9kP2phGYpX/8dkG5JYGN6lWo77Pxb5GMRbQGtSxd2+zk7HKoLdWSZpRCDkYvoL3oG3JVg2xkOhNNlQvBDOVA88Y/8/vf4/h8Gybl1eKTPftb8ZMY2jl8Bpan7nVGqzJfu0le6+yU1gJOQIuRC8/y+H0pBZhqwfvqRa6AKlMw72u0AiQCqmDHoC8b/w4dAbvru4/070sdn4Rmw3UVwJP8+JZ4d+33QX9dO16xc2LBImHcys76DMfFssTAkAQfvfss2g6Pb/HMloMGBiPtIWN7eIjco78/PjoUZwzi/0G+T8FVpE8pg8uib0GS92vdWVbigrZCTHUMFc0OtP2d7fyLG5g3TBjJy3egrwm8mZDWvMUO4Rv6LhaSmgWKfEn1At2+/i9nKPp1bI/xeHq9cw3QL5Yz/YeMa/WyxOVjvmrKv1usD4PIdbawI7K3nMKAnvgOFk9A5H6lsyC80CzGeMnP+HQJH/HUJ3TF279j1Q4fZ+8YKOvvcQu5J/YcS02wQ0j4KD6d/oQW3b3pquLKKBPYyZ7xEnM4DnYKi2AE1WRWvLD06IfEinYPW/yESCsc1O+8NUvs/c5QWabWvqicYl3APArrGpaoTSOKL3Zrh/QBsBkNadmwQsqILaqS8bIBDvgI17Oohzm4je7uNcJq31kl78Nag4IkrRoXvpKBNiSTTchppXDtjcyo1G6F8jUit34TFp6TS0RBaONkIkR7Twm5ynw2xLnYkEWtsKN8pYrki8+8rjuy1knKzKi7KC8f7PIsFKKmqg6WmZp+8KHQ4ay8M4G07KHe0bw5mq/nsAtqhStQtECVuDi/dssLhPXnufazjElL/hhjg0AZKoXefoS7YJmMDKkcN+yiPYblBYMkZP56VIJ/z2gRz16Btb8rHqzi5WeombackLQq6UTO4+1T08h4RaS7vhINbSik6QmOK36CTgA6A5HtpW4UAKTS/rFGE+pMEcmf2ZWeIv6dFphNSskriJ9LgvmrpnnKG/4WR983Y1Ecvt61JlvUpdZKGyP3xbqFJXQ0LCOneXS4mK5fOk9VcGxXpnqZsTqapk14l4RnSoRmSzRLj6p29sUkAaUCfQvA8RifSNZt4FYhhVvOEKxQ95igvBVGLBogSJ3Shrkx9DCeUhbc6HZD9d7GfajDN5nb/JdoQCN49+9Z+avhVAxznAnUrjz1fybz/V6qY4X5S6P3IOLVLy8kOEWX+DPoMbMCDK0lm9d/SgaaM4oSnlcm4u3nuQtgoIwQa3qsVk01dXfm41CTTmc0YSWhhKROnNDLNSSOo4tLjmrPQZnvsOykx6yz5Fer5kpUYF3HPcXpr4P2+IOQiuPCoC1SXuEDqYOweVQ6TEQoOcip91HyBI8zAyUVXoNXoWW1BOFe3Gyb46o7VNyhBnvqglpQZsnGfUXqtxd2VBLKzdnJ4ucOGTIquVz81nS9ERVS/zkZQmYfsk/lUKy0WceMwETE4NR0kauFSXAFUrB1bPsVn1jghjIl7PqtPYjj1uRm1PfI7OvldiCZHwNUx5mRu1ydLu80uWEVDfifvSQzoqV0F6UfyhCHG948081sIesmVEgPHzJfQzr8J0FGONk6VGqAYuCODu6CpZZA22LrBIakXKxAcQDKi/agYB8tstlVdSsLxauHabRMGOpm6Tgch9whl12kHN55jAUR4Sd6ftnUJVciolZN838YmeUpb5yHNwq84W5dza3ZERKIOaqEyd46RBsT5K2ErFp9GBBQ0gHsQGi99CtoFO00C/chbwiVSI1k/0peaYUu3+bFKLfrr3VTRhTFTrX5uxRwO/PN8hk7yk5Bz0161dBdJHOv0tsLY3OGQpP3GHxqT06YQWrzsNC72mrTvomnIksrXl/QansfI3HVmmmSxbjZNuUM8k/SwHcA84XxS03FevUyoVjJZ30brFxR98ZwsLgcVhFJAYIYNHYWTkYyppCSE7M9Ebt79NP3RV5/Dnuxae+qBRtvc8j2o6oz4Jw3mv5aMniBkUjYfo9qph42HQoIoX3ttNw6quFvrIOK9+Q1jbCKg0NypnzEvqMr5QF6HxgeuVW+qPXozQDj81Y7vnb5xwEK3LkFLycXLiva5cuJz1x8DfMtw98lBiKs4B8zshcWNT2E8AXwmK3xs3G9OJteH9kyyOctwRbVkcsu+2GQAsyiZzK6oswG8JpnrX6jexKPGdJNu/EnAdKMv2uFzjZkBvaLfSsy2UhrVZJriYqZU8ciUIAsc/XBH0KmRFCXUbMohDvJSxZS5+ciJDrVjQx4GjDnWEG/PsXlCck82TvcrHUbHcrSA1MKiYK9QSavT+nM/f/McPW2xLrZVaEEVLMOzCeUUWCXxj82gmor0+HjyNrV97Vz0oURveyrIDvk9xZJRd91p/tN+7Vceb0pR7Y7evjrRiwTehM8NVLggtjV55aceE1nlaQuU7f6evR/FJIH+6pIOH9owCm3JvZl8jY7PslYTRMmtzgwvx/K6Jm7MQ7gJB32sqtsOqLWgP7eVGvNTD/1zhghZwxL5ak8zi8ExQfaL4TZ8/8w4RN9Lz5VRQh19wTwLhC/vB7e3eDq+CbNNDGJ6CCQ/APDCmXLhH9fg/BeRV5K99ge/saZOtI3ddvuZVfOX5KWR5X/eUfCLj5AgmSdLnO853JxGRMBmNV1kFX4z3+GE8W+1X3aFAwhPYYcjtOFaabEXbRY46zdWYsPZUjt9I38PWIgKMhuUaT15iPVP0haBBkmSKuTzsYORWMrfBdiJuDPGESNbz/GYMui73UPhZFejRxjCnuCwaUh7rFVxd+EEIe86NAeHwYNFCrR+iXR8tcAg7zZaasrNjzLWLIqAiXHSeAEbntzO34jvNO1zWDgPu3L+y/d+WqO94l1osEqk9S+3xkTHV2zgZ+dRaj2xN23gg7xT/DEjk7NSPVJz0yp/TIhqnqNQ/Ea6pWTLJE44reOydNUW4WPYPNf56f8P1gRj4GPqDJeEXJAenSuJwX21+I84UMbdJlDnpgcmnSsJJ8GA2JY2G36Xx2qLXjUNuBcVCM+HjyEvLMp3Is7sUeFg1RfolsqUnSNYirLSO4mHMOEAMCbG6F9gBuhb6CkB+kLRn8QI6dv4dZ+jfN33TBkh0LSRPhu0uU7vC4LZLgm3BlcHh4WtfAey9biIS14oBvG0D/gbrn9zRmONlSy9peyUHUw+CYdWTt6Q7DMw0y6frU5huxoPUCsELSqI3v7AXyoqYdPOCcazpLsJdGp0u4cS0kDd44EU4L9Hr3BVZxdBR768qdlR15cznfRpsH9l4JvY1cPcGuRJwmXCxa5NEGFoQTurdrcO0wKzdy9fg3LtripGsV4BuVf3i7WQ8Sb/Njr5krk6Q0cIxaebYzgxkZegBcfh0msndLc5njRunOTgny49wdaMI5ENKjJi5uGMgOW8XPneM85pPJ7ykZbPh53R0UYGj5+7FAkrkNso8QVSCxRMnnyE4SaCVllko3VeIro/GwAzJVorwI9p7LAHnYrczyEy3NDy/1eTkf3q6Xo0U7/lsHuWrq19jglWXI89gc6UQzgx7R3ESgoAaV607yb2WRrOLf+Ugh1TOLK3BCd1LDk5H1+xHzfd3liBMRXlJjZW105a7Apf3rTVEMma9rNrD7qXyI0NTKc1IScXvj9+d/xKzlxw/+jAA53J9HdFhYp5BK7TKGDTrBVYSH9pKCVFaaF7e8MBYS7OAIvLsVC3xvGwxuBRWo68RRbfShfgPBuc2K11UjCB2mJrU+Nxx1s3otEdUGXv6R4Ind0g34TbUljMkzLNhW9QwYgiLCNfID9aUuckgMd9dddlo0cs+IbB98ZBTa2F+u9f7gi4a9lgadkwzygLx7NeGxYfWSez67k0wGUlQpdmWpX/GpYZxEgNBi/eK8uR6UvLthspOkpBaWUHP15OMnySdf/4LnMkU6LtZz6z9uyyF3/1zaJU1PxCkH/hzf+GIJvHSYNo9GgygVutmkZfUBjYIS6TRcirGQHA03NKnrJRAD6hr18WREi+lrX4LSlzHOEEtGR19AMm+36tU5a76tbmHlIMr532Ue/xKg9Af9T1Evqy45gM7g/4YgJeeByGyvwhWJjRfX16yZzi1zJcrdMp0x7Z5c/Fdsz2wB2Wx+QsslXPxmuNz0fgeh+dEvbvE4VCAlEkhpk3TOELpgOEZkHiUDPTSMcvyt0VGJXYvNScQzNj+5nvmzm2QNrDnGL5Alroo0Z45zYtnvKvMyA9Jjr2xGe3fxNllb7UWxoi0gFpZCVZ+nIDg9HZOr5Iv3iuRyv+6+IavSDA+uZtUM3GXD0V47cj4TudlAsGohZVJf2Hll3XULmS10TWGteMOkbVgeBzFkSwxx4Ti2n+/GG3eb4HgT6002ScoanUGxbgduhktTbeWQXKxnpsApCw/OOwvpWbmbmn+1XUCMYHpyxe9FbgXlYXZZzeNjiohIZUs3SnfL6S5woNFmB85mWxoUu+yfDwbIvdbTmC6CmR67a6LhxUXe+rlZrJ0+77dyDqHxcxzV6Oggb/SdHFPCcnobnyySX/0jdCLjPOMAEYnceIdHHJItM+yEJ5b7VL4hz8+PWidtt7spf62MArpKlvaSHNRTAAmc/wlbg4dh3KVEVSorCXnoeLx9yJaJ2oYk88Oxl+yTkNVWAcdGZn4MnQxyLdd2/jg/K7N/IWGK3LvKs/jYBgYk0Czq66jRyhnTaev4K2Bvt6RKbHNRsMAwH8vbM2N+PsNtVm+rsLNAavARDDWscKOE6+tbR7W8IiMghu9aH0lYZYZK1yGlFStsegeNKqKjC7AsvZ6rWdjdLDcgTKv8e/zuI8+t4NZkm258x1D3QLVVbNs7dj1B7cpKH3AaBtpI3QY/Qvj9DlnatVQu5OZfg96JNQPmPutzmcnXysdtoUr0NOM5cWpgbTwKMxAIj7F3viUozJyUVaBuObZe6sb/bXdUxo+fyxUf//72JZAkCuiMNSxB5tR53YnFBvdP9sX1Jep4YZgRyR9yLMj90bTV0xbZO7lEYJeYZxgD2wfJ5t83aqViGzc0k9kpPARxqa9HavnCxoOOGtftgWhOzZQJN7H9DvrqqyS3Eh8jXYsU3TzLKD7ovX1UUTcY4wnCjbgS70T1dP45ib6mld3ugvHWITLUFW7pXZiqFPHpxbOrnjHYnYk0imv46Zj6MlhIKXcqp8L8hDhoUWl55DR6kXB768pxH2+dfXCDw9/ZRbqVxeK78y/YiN//QxXMlamn0q/V0kRKxRv6ZBWj9IDj9aoHDYSjL1R1+H06n5+TP7F2on5sZKpgNPvjh30WBlR6klR6C/rViv2FeVDT0QLnfqoIQJqv6lWyNbh6SxR2SEkvLAQpJKDAWKz5OCUmdNBD7+GOpEoW34diEq7qToCrRjw4GiDngTAPP2mONx55iRSx3/hSyrY9Dlbr5qhWI3USK32utzNE3onNuVvPzO/4D+0aQe5x0wqPny72TPTJ3GtCLNXMFiEM6dSHV8qrgrxzTt8ZsUm5UPdnTmieGeJfTIHhza5pACzeuC6ndLUmwBfK8eGq3YOlbqK2l1CoT+0uEO3DPNFXC/KeCghzm9yZDO7JxhGOt1L/DHXKHfjv6RoOl7bO7XORMfzu8B/vQCGhO9rPC5GgRGUFQqrWjw+sqjtD6UxedoaVNJ/Fkr/6EAKdoysZHq80VfI07etAvbwbAiaXTKTVh3lyvKGsgibY0mBAVuoLEF5lz+Y5WAxD10kY27mG3UbTCJGXpkEOzwRk1s4h1vKEkHmoumzFr4xQBbLTyncAj9YKnzbqhvVM8vh2fsylhmXYKyDA5uaWHIWVBh6ixYjlnlcboCgcr1miFz0etkXkd4HzpkzoQNLZfVisWvWveMvVAlhdAVyHRqilTVzFuxMSoNDer+ngt2byOwRkazrTa/yF34w0SH1rzOLx+Fapays2KAyxs/CDTkd2fb7CN55CaVTgNZuwOcyzrnkoD0BiuytqPCsH/KCitokfcwoirhp/LtDLSLEst/gymMRwxsqxcCN3gi++Us7MGPg/vrDa0tqbmnwxwwXE7JpFwNb+1ZRPWZZoiggy0s+0dZBISpCY41CoRsGXFxllZo+eUC7Wyt0tdQ3gvFPsB9FTLYCX0+jirHWtyd2cVn0AhEqBo9UntNSjrE4jTsOF04Q6M4Fr8IeTRaMUZvQdoKvXoT20S3fCHCYV3vM9cVW0Ms3743xgf7eyhOLLcZHSDRSnny2oXcI099LA1G1npmwDjjZOY6aNzLIhGoWbCEMWtC07KlQc9x9trajEfd5DlrVuGQI+R4MdoKSKtA7rCVhfiWowyKgOZjupQjQsZzH74GuwikNAV66NmwVwOaM3Hj7bcwCOYoVUwHoqADp036IPD49j6TSQ5Aue8J4HCKRRWHyzpT3nXlWrF0sH/hRZUCPuBNN4ha8Jdo4/e6ckQS3BmCRiTvewR9Kfx/H0/Qm+4SLxlea1TJaOUlkSsZnCTrwjBr8L8XPda3oNZXsQOPAabq4uvZUSqCaU/SI0/ptKjkUo0Z79yBo4SNC0FJP2zphE8yt2O2BRNytZHlRBv8wySOxeDAnuUblm0Shd5IEQpuCDQB+pqjp15ijpRd6z5oVQ4fo33PHqFEMGeYCUQR0D8+WaUIzGK6Ot/oBV64ITp/RgSLFPIhHK1j1uNewDIjkkLnAvO6INeVFk9jXY54yGrRdoS7Rg1xhpuPXFsCC1P63tdmH+8jDSrmc5W/JWdP3/yc7EIyOpsdTLptuXmgr9bWuCrXUlXz8Bu5/JpMLscLkllrJ8vN7qnrkCmbCD/EkcI4nGEGGIAUOVFoxLX+lMXv6a93lWO7Hrhb9KKwcQ/+yT7b3qBEGhre2QjmRHA5Oh+Z2HsiCfPhjrS59r0/jWV1dDdUjNjjeeelLhYlJJkv4DQhubusDAMU9kYd2YGK8KYdmWngq85qJpFQTyzVd8Q3p402zRElzx07i7AuqgJwCKuSWuZrMrg85BSjAjeEM0sMGjq/WNXfRpJHItP/hNFu4hOWciSN0hMJuZ0L3vD6wIFta9LPfSL1kAB0fFspaa3fhC5Pz1FT5/cPIdDGJi2eroSWqLegbam3GOBsFGeFq8yuZA8bG3q1OTaMw0NZis24JdfS7cFPuuz27E607MKo1hZ6EOA7BKX8iBRgd/Qv8E5S4kj2jDJh7+Zpv/a9ebeA2qh00+9ijV1OhKQozYQF0m3dBCNZgiEUEq4//PD/ehAR1UyBTrhR72gZIFdJGQAVoY+0CKpfBBp7XdrTmKmPbZ4Vqmz0yFANNFH2fekMtTq095t1JRbmpO028/bFBMWLCS2t/lgOaLNTRPXzSCsrUzJeBJ0cP10TVAkuAL4RpAhraTr7WUc0U04nIbWSfZY02LUxz3x0O04AesxWF1jJvEqiUOlY9PI+lh2kV7ZZjjmJCUlR7gM/bv+/1ygh+L54EZgqMX7uXaQcDmfSnaMOSA+DfFcQ1TRTxIipbQwKqKNRXVUEsRNGqLsNnjPrIm+IMjWOUN5KnORTl5wM8VpqH5D5o2gYtZ6jwrTNDTpKs1gqJLwqO5TCXLwvN9pNEoCMjLnKA++lPjyMOBBdXs83kZwRW5ywDLigUyCSUcIKXujzZKJj6D0x7P+uVngURNiP0GBqGmPv1rvC3H5jhh++FsvQicWMrszNRsE7CBZ6QWg3ENGtUlGrrzJbGghomechTRLYBN5IXafboFVrBYlZk//BlCNB2m6uC6wjhVkCNWP0skNlkraufqDdH93oSbbHm0GV3S+2X+K28EE2w+3oNxWhbm2S6iNzh2uYXF57/KFxzY0ltA68f9C7hKdvZZZceLz/vCud9G4JcyRmGjoOWNGxc4XRJyOl4vryzRwan9SZR0KTVHsCH7y+oqxEv1XPMAX8DdFS/UF1r8vk3E61gxVoH6Ko+D8D1l30wtyoKSg/cNSGn8Yv/eJtll8TI+lR/azm0FnmsN01bQMDtl1qNk+wfbq+ap2Gdik/bvASvgu0XkvrjRVgN4XfV95CVTb3TeVE1FaN6tuTZQ5LgIu0s4SfQ1F+zmrF0eltflSSkZ9KcSJJ26zyUeb/V8xeXHTzGUTVKkKxfWbxAvL9N2EyjYBPD9h4Arr1DvKE5fZyMpDDjKXHOeKCbeNDdWaTOh9rvTTGntXjx/GMQyuCqptfFOuRP8afTQDyqXQ8I7DpIKd2yN3oE4MR0LJFwExpnudj5GX1Rpe+HSQqrq0KivwkZ6CqIunSjwjKpRC7DMZHqh2XcPENKO1t5MmpO8dNHQirrYGYjPExcoXonrBjRsEeiCHz85tuTreRVjyy3mKhlJk0h1frUf4JpneZmlIBlBq5Cu8fBkRRC6pGOnqTxnL4LRS1F66xEpZR59Gws4Wl6fJgZRQ/F2IzeiCSK8ZazWeyd0iyXZR1b48LsFaFZWgV6zcEXYoC7WqIGvzAvHB7CA/vGq3Q3CXVVuavdXhoW5o+9EN3f48eBMAnuJsa+m3+UA7eVvydA+VFwHbtX0TOj0EMh5YtDVWWZCCbR5odHKVXjVTGrZX33QfT0fGdSxAtdKbYnLgpjLzYk9jDQXBLcjh4p6IE5BayIcTY+0kEEg1u1VAWUjKU4QTwhE+PYX+fHKQ/twjKfXZG93rk5UgiKDfjlls4DninM/xOmrTJfVMajbZVXSQZq1uy4u3KdyIwm3vh910LRy8DXMCz4KrSGIr701wqpTOrw9mcP+H91R/EWyCLkvReNDNrvR9u9witjYry4Z6AiHViDWeoxve03cljgm7tqe0x4T2u/18ubeQ+cszmYBlPLXOrRHQgklLHqHqP/4bD2KBRZpJSJxckuOesWvqjIYdbMk8RvRQdouGLDw4wHCPc817pfyRlXo6wSWgX/OnTy8pO0Yf8PsVXJxezXvo1YCM5a06fUyQuGM+w9VZ3Q3iF2E3E0HGbCQhi77msBeFnxL4ydm/QtM0duzJhrPKxB3wUyY4qkiPdkB8wQGpusf1+/AQULn/N6Gjw4O7DZa7tK97FAlM5z/fXY6j2RBN+552rfQgEwF3SuRIowBQl+QAftXh1s6soWOo2jja3zoVGwe1T8yhsDkC7nV6yGLIuWdjqYHd7pu+rw73eiuT1GxSrteNUrrfM6VLMvANnEDHS2yAhMsvcAsoza15o5oGIl+4s7klG1mA/PIMbujVxGpZ8xbvhA/ipoQCz1n18Gf7+p7O/DwiSs4DxMsDPzNMPiSYJnMpzubmf1fVXHCHwjj1xUMSyvhwfQfd5rdLvwGrOrL/VVpgCAH0MSec9AGgL4Gkm5WVWDE6BMOiQKLqxoEnJ1CRqOf2+jl6hcXQRw2bWb1hNNvuqp0my4TFBTp1Rz7jDqQ5ihPyz6ZGhyYaHgkUhFYb9k0576/96bKq4Wp/5brVsD9hOeUV7V/NMTLVXeH1TxxfitRyFWvQnEPATt5UFp6t5/cOfZWSPyiIKcYjBOpwA/kGi08ZOy/NKkTj1KZo0nqWr8pg3uPcMPBgohHuYXL+LHcR0/3UOfh+2gFk76qKZu7IgwGZz4Xv3H0JLbL6KzikPcoXHANcdSrbRybwhKhxxbfEvJd8dVQ4SoHp5WTCbz0RWuGwf8U5OM+5/3E6LWOKAqpRLLaWSgG5+Z5KDEqRDLhbTphP4rhGuQUUCk44VHv0FGKOb9c7+veDUooy1bB1sFc8xxBdy3zjeKsm0Ik0XTH9yWlHk/B6jTXZgWmtCYhQTMg2455N+S+aSmGiKjQC9pc0tn3t2CJhczbAw6NmA0Go32gBa1WHE8q0YvTBR69ilOGBhXuKcGn81f/4VKm9CT0+rp32Cni66P4i7b8776NwakLQoNxaQ1xrLJ2UZGWVMiqkCKTMYmX1gW+uS9Z9+/AkTYmeZTlZk1ITxXZgJip6K5bMzyjnGuSeom6zryRJyAc8+9FyaLtXMGIXNS6eLe13CSgTWtnMCqmjmORIh6Tjx98mB02xMa+U5DVu+wqAHTol6Hz1o4H7q9bNyrR6zW5phxgEC69efiOBOtmXYfNT8EjDeaWuUCDpqASD85yIQLeu1o2O1vYiZNTHSpvak77FhoW0Vd/Z1GRE5wLzH3OENNrNOFFHGatzp2Ev3yYx0hloW/vcLyX5kNOwgKm8hjOlu1YOzYP7Q1BNLpUeXLHEkKHSJolGiiicfG9rvZeL+T7l/rpmcWaAFK1KnkeJYiHTi9SuhXvNjYNAgtzL0/VNRK4NgsIi7PfjKQjFE7/3sACKocw2iFpdneMHWllNcsD18d9rnNYvRlEh4GwqYX2KPB7uG0R3o5T4ZAiMDT073FfBqdL99Xoh1Xr2cFE3VgLUI0sZTbbuVH7htG613IqmGQ9FVSnf2ZGAz+rnhhKtM9BKauDwLw9FwNJ0TkjmdVyzr/L1AKcg170nMQUwiIBiXQJLbVcQgZKARt3Pt0NBo4ZZmv1XG4P3P+mLgoph4RNHXyp9uak2bB9i3p07T1bYnDeo3HzprT2V6B4iBPXA9d5ueYPtlkOHFzizpt6YugVMjXoFl+kKT3Xcd+87T31MBTE4P+RauEokOhhaWG4YapyfAkb4NcF8WVAgZ4KT077GKz5fEY0tetRObhp6Zg9O6xagadE1Hv2t9A5BF7UfTeGWrxr74TdI9KGFyhUzmBvD8eB/953ExWffK6ms34t12YDBJClFiTuzkffXvRy4YT0pCbPwuQVSfv17cHY3nOyRRWwFNFMw4Dj08T6rFByXbtDdNdwDkDJ7CsW/uEyQOJ70zsVDIFYP+xec1HVB1XAvPAQ5j3kGqSLBmOG5xsGwccwLCn6kOLIDXs2yXR/fbjO9SddGFQpoOfGZULOTaspuJB9zAglY+tYMZ4Rv9p11Yx0xt5tsOOkaeRhvsV0hQBqMNi6+d6Va0acax0CECgzswzNiRtAi7iK62EXaH3m8OERyxMH+kVTlkRgn7nBaba56LcJ7lhNXui1wUP+hafm1EtFo3AJ2U5AgoZLsXxyfIYpYg/SpTGbHWMh7BGfCR4DsrTMLgVcYS5Db+vnV4YkH6Bke/+mu4rUURNhzntVl07yGzmned6Og+hhLAFWC6BC4zJ5wxxvoegFwCrg0X6x70t3Y3gjR3Je8wdFBgg+EQUdP/ytOhVHmsS5ZfgRJsIEo4nvS7FzsUjA/wZLs8PuAUaPZ1YhHPwwkfzuJFuVs4tjGYFyMI+ErQjz8tEDajg8MfP7s7pwdbzvs/kFz7qlMcbuJadf8bpP8r7G5is7yHMItOmeUEeRZ2ZeQrgVjklON3Dhdze2hX2iArOMFcJq6iKF1JV0R/yceX+ytSRQXk77sfepD7y/wMxADHgdp4BjrILwV528Rx5gjElIeOBP7sOaJuvl8E7Kf2feTmdUnvXIr9npdg+ml6/HI+DJWJvND+ZU6QUL05qEPA2jYSlytfWv0510uWf9J+MsJEJL8BbRurRnH6G/LMq759mJ1ltGltrT0jzIcjBaNpBLv4coStg0T4rxfwHCyGm1+q/9AzqEQozt7vB5HYu554AxfkNHftRo51PZwucmTCMyLCYzuaeGALiLMr0mRyLCRMWDiDrqchK+gosSF2rsN/iD6mEs7LCFK74BbpSp7zA78ILBO9cHAhV64Kj8tgiydKuOvsywjqbB5HQcqD3nwfhjP1reirIOSCPWRQWJI1J1yTrZ8q46ros7zHEMR7gPlTasxNydIFVHyNrajYkY4g3vJewS5mUvzJPoNrWCGD+xjCV3M5zBjj0w0pHXjhqwyETJEti+JpEVXbR4CUyXdD54QBzMt8VSvN3//uky7Gd839JfLYtoHVpml3AfuSU7fhzlyUdtb76z5WRf1qmPj/6btmO+Jeccon18nK1J0KgOfwyjdJ3tSkWqdwYenFbnA4kbg/R8aNA6dIKszNrPIkTMK+yViV0kTrMeNDu8tR4GCbE6bnZAj+7Td9ZEn4TRdDgIKfnEop2D53hB/7LeC+oQPwBxqNrK89wx+4hvyCZWmKkYq+qVu4oP9JfldudXzkOWnVAlncf9OU2PO12Ewewa3XmEb+nqHjUZEjMvXSeSHxEnMaStCCUok+COy9IA7gnPiDywIZei55b9gHhSxvvlutcKAYUozyA4cfZzWFaqsGy5K7aZblBd6ellQSzh32E5hRYWJHjSddpq244iwPDcWhv4kDUNb53cwmEgC7ECiZcbFBUw0zhpuMmHuNaQF7jcFuP8ux18c7f8QDLh2v0s82A9SwAZPpskOtNTFl/xPOB2qttA6vF9vXdA6mTH6soV40hpii6W6JTwCgfijSayTz9Bh1+VvbH8MwB+6IrxhgQcodfdT0HbYaBz4CXGrMNlN0wnQTV/tLbhs5d3ZlDI8JCGSG4VFZ/slmfggWnZzr7IG17fWbqNzCDKrGNlk1HxHo7TrR2GxS3+ZH2TPl+8S8zVfG60ims7EIFViOTj1wn4Mp5WPwY/xbR+vVR9Ki3H1LyYqsKdGx/O0n5Is/BY2U0Pdhu4RVTrGmtouyVa9epOQ505YGqHXnLnvodquyQDFCW6goIQxn0EwaDnBiN2Ir9J1n7S5Y11ytqLIdeBs2xFH4Kqut6HBwFP4gzro/DxhYLUd+HXTTjz/BZhltvQNiCSRo6hGLMJ8CRSFPrv4yRhtIY4mG5umxAQzru0Ve5VY9yvbUs8kUw4BN07iDI5Gey6tFqavE1TBh10ZP1wJS1XEhoAjlnrsEho7YbPT0HLccKIbehP563MxX4/jKxLa2hRFWm48CfXozol+Az59lFufDkYSYNa8JJ/S2OujpDcCfCYxMfcHwH/+WDqfeKYAYY/L3g/3icdI1xBsyHu6pDgIEKUtSAH7OS0J5t6L45nI633N2N4miY2rWDiPr5wbxl63efMZd/FBKjy9/1V1qdQC5QoN0U05t3dM/GEnUHp8vhMHP3MdPDNxnntpcWXgmSAs+QlzTLNJLW+NfEiACN35lYdSj8U10ns8Wa+DhzV7ynkL2Zgy4G9B7fzODin/B94/xBGxSxuKKG7DL8kP8Z0114onsBhfh/WE7C3DO27GSOzHnQ+zBKzhErOsq2pJkGkzlydniZ/QRDT9scEkzyADDvO6V30KrctrLB/XgdbTxditYbMCJ3r46f5z4opnM5vUJPrOvaj4eNr/sOy39o+LvVQpXAFjyapI59gtcfe1sUCvX9Y+99TDG9lWs9z+C5bbruXrDB0xWzdpwPRtf7ImYRGBTg5j+cTKBN6OJWiVFsqweLrn67PXVBBx0HK9GUDpfD4ZcvRvT6LaCb3t6+N48useijm3hXRNbthjEoKxdP6hdt5baf4ifT+xyZscWZQ0JSBwYlUW1LeYz/Pv5WL13ec3RgPzc1gepYnWCW09S9b1KtCnU15a9r5tsBpXlMVv9Cqb9Dgd831+sE0ZAa1CTie+uU7o/NRyn+VFaxR/ZIEZ3V/QDANe0nJAsS9H0g7U9Oqnt7WNxMN0pEY65CC9H4LeI1FXZdh4dtMB0TEekaKb1bPVvyMeuQhvODmBR3tRmVSBhF4lwDOz7TlNGzx6zZESc93Wn80Qn49sllJbADZM4hpohMErdVGq85GcGJHypq94enHicdGuH+HCIDjyEPpOIVmhpwqxRI9+TYMUVs23lSai+mir2seqS8Ootqh40qx7AnaYG+3Vsgp9o7EEfEnYXXFdnwpq/cWu5u6acKUkwRvGXLaCxVGJLyB7j1wjeEVWAiLL6WrIYzfCC8QspAJbNY619eP6Eum7JpR0ycvZSEcHTG0qsugM9aO4OarC9J57g+oSWOZ2RleIR5xOTadvvfN9bPhONSHjoajqlWuVDElC/2aDtkpGuCnzcF+UY2gnjOh39JE+LOKySFbg+SiX5raB0EQcUFgzualW/MQZnYM0Ij9C23wMXVv92j8RARM2op6gUH1ExJuQkjCxxyr9hZlUOl2/H4r4KYme/1usL7uoBY/e4Wx1r8Fol7LPIpaufrEkbqkLiRHL5+n55mwMIvnO92jQDtsfNnimY2MIeZs/vI1VWMaXRWVB2RPX+tGWRUjaDDcLCWHBlJuuyhRKpfdCK4PW1ryUWRoJvCkT9xdTYKHlsIqvLfEXkxnnajqxHyjgCCwEBgU6u3tc4pv5RmU7PJgl3vFR/0c2ifj7KblL3z7ZeRkgnfaF9zGNoECZ9wIcBP0OsVxPsbRqtNo/oWsnXnbwqSRXW9NGz4o45JwjRNjytZ9Mj3MLU9sHY2OwQPLclpX/5Bg+s+FNtoO2FsiD+0bnPvfT0gcEy/UFtqQ57wvJrNSkOS1atYUI+pVNgIA89Em8pjog7a+CCf1hwB7PSehf4oXufrTW3VeZxNoA/aE6hWLNO936vsXVGrObLbX3jJxiK6c90WJNrvwWHFByfJP0tTv5fXxi5Vygfa6N/TKvrkapHzTwn/3bqEBtUju77TrKSFFDI9XOngplq0URasDz+sm8usgOPRRj05BAWKLTMZg34E8WBrsRr0oBb7w8ZlWx4IgiHxVFJcpVMA1UMLM+05FTM+plokl83KSPy6g8t1i00iymId2i5TjxvSyXv0cUiSbQbx/CUSzVKzue9DVief/3TX1kx9gbHiP2hiilP9BHKmD9fikhEWrvWm6COJ3L3H9kDFmxEkZ+giKh4qP+tJ7Hq3qlLB21fgve1jweuyuitqCGM/bOJFQFujYSnGa7vPzmIxanJArzbPqpSWLwLAnB27DDLJMsnOWWsEnRodtSSpPgPgK2bLZvF4bmYql0DY5CMwfRsmxlkKpGKA3cBrAc51goer0vx/A2wIulDnQnXsr2cQQJm+vCJntaEC6Xh7S67kBlXMvRtJ66mnkbYhV4VKs2c51Uxf+fcZwQymGszAjN6WzL8yEu8hBIw2YxuKLC9upahCIcv1iI8S70+sFtMaJo3NwT3dbGdu0mAYJJQ3QJdHVok2Cso+xcNMShMe0dm9hLry5Oi/gBZVDSR/fhizc7qMKcqIogXfCYcJgx6udRmOl1/sRlrx+mKNPbCvkC9NVl5W1qW4/B0ChWieLrBTXI8kvTlLv37Aysf+IDDuRbBhwiQK8/avybeuWwvRXKaQyLjACXpyhlKeBpNZVP1Xuuqk2mluVbKTK6Gs5ZT+EL7ZCN0D+lKHpGhIJAjFFNFPHQP2O3wOb2a2XEMD4MZ9qNsg5TwmyZqYx4jLOsjCiBfEFRcaPm86gE9yRiqfBbyk0iPKC6XzVmyQJAICXSxaha/iN4CuSs6/zngiLf3XzICDz1YRqYD4xkcn7W8EbIgGn/mbo97EkASxioDiQWf5Vo8Elo9aS3QMD4mv44W5R9ImH2OyMA2R/nJbhfkXmkPrxJoQ9SmcwRBgOzEIUISBLgtJd8H3LFDmVKjJa9yhiiCqHE+Yvzk3IhXOC9tdCJUiBvuB9U5+l9elD++1BwtoojABnepHqSTIWV9RmP7OYi889lyKHI5NlKfUoY7rF95/3482aHw0l8/8ev+ro3v+N3xH6oZCMIs2ad9+4NtxhWYXyTrguUSH4XyRegiM/NhP6Ya0Ez6dlZzHjDof24ovS/vvDS76zOja/zDRu5YAgv50LMU5VpHSvY6zo6YJ7p/chTLAqoHmttPG7GGeSqJBtqbHzbo7giowSHyjgEPehE2WkQB2NcxcwzIq2sZPJauvC9BO1BKXLN2EkBOVYXxJGzKH8V6MWDSBGB2thx4/qruPA1BHFpuYhqXfc4NDnrX3I7IISlPT8T6zXNVCQQxQR6dvs1uFZfrrAhwalz61UTcINVguhdDXALyhTY2TxD/h4upyhyMUx4eBdT9kfl1hwKRjyYmPCRJqaVeB8DuhiLa6iYvcX3SUUM+hS2vj9p8h+5s+IRNjTHTIKEvGVtkRn3UFon2u89aOoHy7AD/K6dwnRwoN6K9aYjOf/igrGb5v/ZAOdZ6p5wbfYPKdr9pZhpWjl7naXAlUoAGRSZZ0wWNUcukc/STJ95DoOVUmx0kOdAE1VKJday38eRFlUAnbl/oI7Y9R/P8VIYfIi/ZEvBqjSMizPPOk/3WkFOg/+jYuL+wNV7vPkgAyWLn4pd1d+nIKPX7D4cFs2CP57pn8Nq1Ab4NSO1FYnxK8ms4n9HwZtd1mZjSqxkfvZDfmkEC7ku18vpQDTLSn2myCCzEj8HqdUW9HxLz9sUmdewb1HhCSO2Zc6IPVj0yoFrHI5iuc5aqDcitXQ/7Xh0c+3vsku3sNEdgqv4h+qv4KAu9FBrzs42fxhty2Ce+Fj17ck6Rla62sS9BUFgJCNI/qFLH+5bamnEI0kggcfQye5DeB0/07QAgO5Pb4iCDdtiGW2Qiz2QB7S3k/kPKvAQqJStZNkjAqqoY8jjUj+3jfSt4n5gavQX3pRkFtl7sUhkaVVyN19O/JzjZ5OYBlW6O19ZyDmmW/neUX4POWKXlGVSqB08WmmG0LIVXuhAxss7Qos6FcXquM+JwEosXvl/BBJHe0FScUShWynBo2EErKGlCBj9ZyoV1sdVNQEjToYQnlA/nND+YDqNl+oGzstlVCjz7wIhSPV9c51XCTGSmUsaEUYbPZo9dW2xU0QyZXtAXh72IIrtyaWV6u96jiPNJRf970jaSr+IRKOtYqn4/gi5pjLO1rUj39s9SR5FJPlXieExbLZcFJ+DjqjxuwVseWOvYXFfUfcdAr1jzt5R+GC4ydJ0MF/OY2omM6SdG96mwR2BRjabnjk8Rx/nmvSg4ZEZ4Fs2dT6EFkT2HYzIyPMLuWbE2dRAuTLWusl9Tf+u0eRRWVB1oJBvSqjd30B1/ibeBePgsucebg+Xcjn61YYXk7BGzGYPpymGR5668obAPGGmEWkZU++9U/yWOXYVoh5NA0L4vAdupAVa3Lw6ik+23BnuwSxgSLEL2p9RWiCl7ljH70lY0+sWHTM8TQLphBroHHWNa7rtOwxwEwDiGDub4LovtiIQqMGZFIC85JJv8xutrpm/bXOw/+OomZcN7kfPZdq2oAi6UCreiZlZQClPf2Llj2riCqYiCf+F9Jk2rA7nHuG5uqP2VkU157tM5PfV5/sB/XfjFA837YbCQMCUSCM7hdXuNC0H1YxQDsaCQdmRtoF7N2Atsn3wUQxaKuEJfralCvkyL7p3ovW0T/riQtbaF3hcO8NJ0SYcG3lKaUWZKdVtEc5jEwOWLRZBpO5tXq7PFOHl/CPqv3S/kyrriwmgp4A+clj4Dc9q1lebydgacygUB3EDy1yHbuiUWM5IUWA9IItPx/1TkHcWzQmepGdyxknwG1m+yBP7894y7ojqQI/4GSwHChIcLZ1s/NlbDsc4jQy9uPwlra/q+vqwk0QhEe/2ic5ROcpOV6I4Aqf3ZiUdon2x6dlvPDk7EvRGtv2s9OCCDaDzntt9EV82NTCuRMW5PnO43DWMTJY8kOEBdq/NmyaEwvEomWIIZn5Wy2s22TkMVcDvVamh4pTxCQNx4VEmdlKq+M2na5GPAAywZdmn0eBxNyWfT1FY7zaV31+/FE5W7bWKKuPHSzRUJQ2JzU2evTT9+D5MKkSA4aKm4ZT+7DKLjorQDA9R2jVZoKfrb5WKKC21GbQD1s1qlKU0tJGPVHeWXYfUKm+p7//E/baoC+sZWkn1fGCRWb7MAjElEY+8K9ihWz6n0GopP45RD0YxWArP7deJjyMmS/iVwI3SNSWgO/oRdTl09J7jaxELaaJ/9tUmjW2NQBo23JRD4Zsv3ECt2O2z6xO1+Y5tdX/BW9MkQU5vnpb8szKRX/YThgOF8UzCFWGvIj23FEJYNl+TXbwTSDPqEtyIBlnGEyF9jrvoovHqxj+kZB3ADj5B9G1tYg+uyGZ/1l6b1+JaTMUaKbpmsLtI0RIbuEjRcuvoHe27HRsaIuc660STCX+O0c+ex+O6xcP7dxcGsQS1oe92+kXpOMAWN+dTFHOqbXPNH1BebZQWUpgGgp8wC41bbsCxyiuHBXDSMoi6NeaFtrlXZQDr7Omo3nU/qJLz1Rahd4HN0gaOWv++36eD/opzbHaCDN6A7S8AeyvzJncQKi7kxza880jImU2q3PYP2q7zG7jViKk8u7y06pB/XXNmT6R01QLGz9hRySW2/ST+Ev7zjHo9KWU3XKrH5/F+cSqWZBvV4CXbcl+txvAuqM9TTNZxxFgIlrc0cTFH5ADXNO56tAstS59t+grlYvXSHuiZCpVhGXz+i28s0POzsHOkKv9RrIFhHWO82KRZ0Gq4Sw9HWhMPkdaNu27xHBKHGOdZDx2IufDyoBjTA9N2/NGCmqN6cOF2tOx7Z6VPZx7OCa38L94YLZKtsu7PQPc7lVoPPwJ5i3reGmAyUBobYIHDUiTi94SAp4a9r8PD2Tkf69hCXEUdQ0IJT/MS3gX5wGd9uGYA/pH1fSvxQ3cqid8VErQsjhO4n1iJjuWJfPm79GtblU2SKlIxLOsdCiypzBIXun5iKv5QnGyTm90kAZtkWQo+yAfbZyiqJtcCalalDyAnr3uwDc000L2fc0yCH+Rn3F8OW828tcwTxIzcHAvv9KTK64IF+KaetOnk54gWzuYznIG61yPk4sXTrwSOSWpF4ZEZOYlfZulG9wSBxmcHpL1K2oeWMOE0BtcvceCnrWyP7PYM8ug2b5ig5irVZtCrzl1zURU974zTQwa1OaUIwxNbRpxLN15KUsnrPLdZH7YiHIQ5/0A2UsgNOEbaDVrallbHane6e/b5IbI/9ZipilBiZaeAqOMxFnJm61DxcCzLG1xRrNfeYh/XSZm1oYVaShhTP2l4P5iGrHtVpeyd4C7kHdjax51LYCJkMkTu6K55hTfU3WcesOSyM7Twohr73Eb1AcQDlKIEe+AHKyQRIhlVdyGNjnxtzc89QZnclyeIaVhdzFDrnB2jGdg9KJ89GVwAYrzjL9lnSfncoy6gos4Ctl7wfoN0QNj1tYHSuap5INQpxsvvTpRZDPL4ZX5Z3foQe7bXZKvrW0toJXeq9Nv+N8m3U3+khRzdiK46Fd6NhTEYKW8W1V4AzysSVkDrVC4hCCPNIu3/m9dRkdJ1IwMrJocGFGjsk0IsARPwUqPKXV2s6g5XE+2LRzrsgOsBBSroMpRLoUaE52AnP+b/O3PrqnfaJgFCNEYIOXjzUxvDo90Dmms33+tkC1rGUnwMwzVobvb7wOmv6hYruqf7iZRGc8v+Zo1CFM2MNYOInwr6iCdTxYdb5UX3VYelhv8dL3WRZNoR0VBNZ0eJe8dFDUags7KrK30HgbFz792eI6CW34fp0QKPhbMgsDPSPY2eYjpN1EJW7V3Wyzpxz2kf1HRhUW0LRrSGLKH62EzXxd2wX9XyQ/iSPVfnrQEFgifK5ibW04GVP/Fa6bPgJ3F39wUqNfJ2ngE5dDl5/sIrt8VBvoNmqya0LGchYLCqJ8HmI1AhOBSWzDZxksepAmwrmGENCtJ/YrcswQ9at4CLnY1KCm4jBevNacFbx6hSTJFO+ucXye+U4UwyT6oVv85Inv+6M+cUVvNqxm1SkjD5aUp6u+GsKthQ35q6NB61yy7O+e/YkyfpYaxYBW89LYpoNdOvgsIYdDO9GVeiYADnorEZh7AAf1U3Y/hPBDzYDrOS+cWYeGB7DbKpkoZZBHNtxwZEaquKpVro13X8KtBJ1Hwq3mSBVlYI0FcDbvVCjs0DyXG9jyA34o+kzssnSX9oKkgu/spw3u6lpTELdE3m69TziWL3QqB+D9E8n80X1SC9+3miHG5kbyDJn8IsuqQZePf9P6cMEkcNY/J59FIoxU5GrJzWz6euV2buWGxLUe3wzTgJP2ajUy+xIyoZZ8TMj/OBQ9cGZPBgo4kBkQsUp9o1e2qTVVNC8KJu1x5P84m9Ta/q/4BQftu1v32Red1blDq1SD21wnWaUGz2QD5JRU3cI3ZB/l2rtf/8szIJiL9qhk62DycbnBMHsfQkkvCLc9DzwNlORipO1c+TDFUfGXMGyp+o4R7QTW3amf2bfOMoa3JFKV/JZyWY1B4BF+BE9kadDkcEMAIUaBeQRJoD3gdvmVuejqaDSnR9F6TAjnIsOifKmRffHYkRnkb2O0VagntmX4vVC2JBpwEkbjJXrKOmUeT1I8l9C7yJwSnaWWS+bO0m4W9GGM7UhNrz6QXegkkBhjIWML4iZv8jLZtmkN0ace1DIhkK0ZlCb5dnTHEwB7336FjL6DTi45SSr3HLbRScm8re8MhM7gERBsvB/zE+KUFb6iezGTPqj2UzUbxZ+9nY80lbKwKpFkUSNWjlMkUkHFJg/IO19YxF8HouQHBLGBRfpg2DB3uKdQOYCKVfx4aqKCo2uqK0EZMxD0sLDxcbPzof+sR1uc/deD108huJbCG3ku7/UPZDety71R4c3NW0v0RoeMZtgZeNCIkX2Pu7VRs+rSJSzW9uoTeUM3jR+cDtC/p6wRBA2xqwABw15JxDotZzW/ZxxWYWl/bnaei75l1em6dMntgPxjE95NXRNvzhJXZqqmeUR21AxrM7yVEl2PN9mEcMEugOFgVk/24V2B4dDMsYM0Jqa5hwPgaEr8Hqmu8mcBRhN2RCA5Wv47pGapPNTCTfuxXhkC9j1pSMC3afWGpUI7n4QLhTBff2dprPnICRelX4h+UC/wbGMYYh9tXqtV7nlRMfrcu7Jkf1iTmkF+ao4T2KiNvBge7HQ91TJyEgT1G/c9OWZRgJPk0JT07QHsXFTNahdjDrfMa4u6ADxFGJKjIUcT6yECe+eWgEJmFgi7C3eOSGL/ieiOAhrdqDbDc1RdIzkZcM7eeu0dRyxuueTS8aTQcn52CwDaCc73PuIcZijdxM0BbVsy1e4T1kqn0lsQmyJzwKzuMeZ/r7+aq7Zy11mCKmoYjQaE+vJlpCadJQVsXo/K+TbWpyBjVpJBAL5acBLFiccQ8+rZYUSaY9e1iBrX62p5+Wblgb+qytURAPSaBDAl8Ns9go5a6a5arQ0DVsKtbpE4UKXmmQF82m104w13FdNp0bcVxLzl83sZNHdtNYYvy+zwqimpOvHCivYu8zb1vGUER6iqeiwbMUMDjzvK3WulpZP37/1JI9q+hx0tgG8B85ygE7wgkMqJthY4jmHZG5oRdvtmfWRQn9/zR14eQMn99/rTGcJKklu6OvasTd23vJZOWZxA5apPuFYJs97ChbIqFbB4HBLFsDNtH5l7ER4G/8kXPPLo7aM8a99/YGfFPYKyzlZC/RF71SjzDdd9p088hY5TDBkmS45JMEJxfOh8aId9dGkv7I73KgkM7LnAe0zf+FYWrCQ9moIO4a1uqyLPXwH6PhZ+e6YfUfqfzpQILwU1PEJpLMTQk/Hx0m/pOsQLkYG/pKoGPHNySWKM3EpXxRIKzeTDmsdO173dFpoxAo/TRgMb7M8E7sCl6m+hXR1QqSTgg+agd4F2QJbBkrwEVMR+Jj5eEkdg6exberabfZCl3IJLdrkyWuBOl2RqokjpfW86Sl+2MyLA3Hi0lnuui9BojILm4MDRhFBYuAyQBFT5WhGW3UD3pHMS6xletfs7Kmj8YsoMuI/lFImQP5pMwlaPiHb6CYPbmTCQFIKs/1tAF1WjyAvlyEPFU6l7TI+J+49o9YNS1qWkslsqc/1gJHoeiUCQRNMo8/DcTXAw1IEoUlb3YbPBA5RjTxgesiuQ7B5yov8pmuF/nsMcwKNqUXpyDQzFXGv4Phvy2xKOfEFRwDAPknXMwn4vdLWW4BGj5oUTY02gv7yA0Umg0ZQZkoXv45DRgv9KjjPmoVvn4UH2CA5DILBmR2+ftFdJniiKBC0qas1Ag622r7swrM/HhD67smTahXpKGobtm5JHOtJTkMF+/nik9qXm/cR7WXP8zL6AjL8v+5++g+obruac0rR5Kf+R2qEXCgTvsJJQyQ16BiiIQoVEVUVJChhVV9YJI5HuHtgOaZSGDQ83aKgj3Ph0TRxGnmCtdYP8SZ5m9+oKpiXRIOBwaDLqzNEmCsFZqfYRdA0Bm9XLQx3Yo1G2iSbEvwrS4au/KuzsiuZQqaWuzqj7L9tksSxCYItZ+ti6k5qqAkYJIVALFeW401u/lEWSrnT6hCBlRPdV2r7EwiliTge7Y+Gb1RTDGQ+ep3Wd91XqB9lOm5t6hWUd8FQgCsyQn26xDdIsnZ9OrGDxYtWOuWhRO9igEdox66H75g4/fNiMg/hYMlT1uOOxdIOg8tkZqrJWLa6bUGk//IDI4Z9VklLRPAXMAtI+rBpKo+hwj1S2EXm5EH3wfImh6upm2exEWWZ8F5YzjDkVCjrqZiRgQ/SLYLylBk9VokBt8M9AvUmV5SQR95OniETI9zbabUdy95A41hUT5OVPWHqEr8b2ZlnGTiE8IwL123MkkvlH96hbSNx0SpNuI53hEuczCMW+54KAvC3PKkoI5Jt+fsGCGv89E1APiqhNNZJGcwYytcvWLm3dRZm+crBuEua2saOgT5BoVZodzkPbcHixAKfNHoHKaQcyshmgy5qAZMNXkoOIY2Kjnq4vLxJYji+lSL4mNC1luK1S3SZK2eLWaxXaaNfMITwraKU0w6lQ74/eSq9vLY3pH5NCa4/roBCflgQ1WkVy/SELtattc6NuGFdYxG9xRCDTlh22cYHml6kdizD5oemAmVekAx1r2hoBvzOHTFFId61mmbjwNqsgMVJcPrzFm5MMDYWPbsGgfE7JXoUIrA8Dzow9qlOp/doD7+cEU2hddKIy0weRwXtn4pVge/yRBEm1vaJeXLVB2pXF0g0S++CYWLjQKDcESDOaj8XgstQBqZhCVyp8B1cMnLR8clc97AsL3jOEGfmH00fKS/eKsSYxPazn86q7dANEIFCV41q5cXDk088ZzsOCywdoTMCdwOUBrfj9xu9TW14lrNdIcmvi+VG2YSahSqh++uhfIl0a/GA+sbnYuMY7bqGmgEajT9zksW2dyvOSrqy0qgMAqRlJA8jP2FdNES6VaC9nLaAxgqLciY1ZcmvWgIa2SegIlLToAsUyPlalB3q9T9Tj2Pur4GlZV8Q4o2CvJTuKv31t9OY/1JbNzk0C4rpTseC/nL3rG2QJGCQ0mHJgbbaxv0gS5Xk/WfHZ9C77bWLD6wiDhZ+yu4BbUCnTz/m0vHfP2gW2aRQYJWxMdQgTIuoODUkN3d2ypY1DB3EYRM2gg0A4tBw+IXO62CX0nTncpb7My3LBGXcYv/JK1nicD9v1o+C7muQaG+EX4AeQoGqTi8dzvv4czT34X5NgJyXOuxm/h0TgEIdNjz4J9nLrxNWpjAaacfcNfdviCsNH8xPzvy+d6eGW+1ReNgCXkTpshKaV1brUTJ/zX3NI5Vq/GkQY4hQBavLxVMXNLb2h/wJ/sZLaA5s9nywwCWoOx8S4bqG/9v97tpxXTUwhuMSKYVwppIzsLsg3MYustP5oqgKJpXGACoOm33lF8DYgxyrGklPnTz1cNJE+kO3AfXWye0demyLTvsHWQHMFP1iDFIAkVFF+ssA0yTEGlZKghLOCkEB4fLdhv7cc1tjgqk0ZChX+fPFzp11cE+kOEKJBtLbF9Qd7vqsd8aFeRyFD60KIOVnKPa+d+HG1nVHBHkDM+nMBkAzZYtrnAKDUCdh6MCsxEPwMfFkNd9QHyjEQXjef4d19HQZWn57k8s2PEffKW0DdstlH+/R3qcOdP4OkbIemiUbclLPQ6KOY9hMMGxPTPz45yyxQfWHvmSGGrApT+i1bqVZ0aYLpaoVptm6tPJWeh/0zOlHAcxTc7fgElO5VeuHVUp9lCF12AmM12eZYPX1Xwr5FKz+Zoi1s8787+A+9exsL3of2z47As7D+dL9F9xTx3cXcUVUH+c3A/qiwAt0I58zSqwAdVuI6pgaC2K71JdZmvNSinhDxPK85H6Vlj0U9aXS0Fp2cQKbGaF98vjSbeytB3+1uVzaiSSv+9g3/qdEt76z2UUbNJKTfFQsq3G+ZBJTfhJGxhaG/avQU3wkmHsQxwpHb506usIHFcFknx7+gUI2mHA8s7E2+gIE75Du0pF2/qItiPws6et28H4qTcpnHh70+0ejkZrxU4ndZ1GuEhnSTfVRYY6ErQIlXkeCc65Mj1yCMpiek5jLK6UVwe4u/QmSwQPrL/4BP9DjcVlpqKzIbjjjlAn89IRQrR7zkgVQsxrBnXj1WU6TqUQq39RFhPgqx77m0IDyg1zua7hOeBzYruqGsSh58c/8edsYDpgmnOZjFmPP1UgkXUBUfG/GLFHpk0RqPrAg0Dv1zenIwo3OUY0haA5Fuj43ASfZ9sbZ/UNgAqTHGltpfkoBpSjOu/6ZHqEBSo8/PWVip4EYwRP+rRcOBS+wuzX5TOje6GmAMuAh0Ci9objyRHIRcFh5TcHWFNdCA3NF4fs+QzZoinFZdvX4JNRmWh5sckmZUKhtBqhRqpgOgdVWFu5/v/AHJV7dxK9VS13c3dOvPMXq10kK5bh2flcawSOB7NB/CLF8mgGpMFZsxv1JC8BD2MAyKafRFJbja2yuv5RbhfR8WgfkiUO/U4bJiLHDX0loNdRhQIVs94c1Y92bBezFnOssTuACqCY7JahTRSch9/WarUtoWqvbAcBVl/bTUOMDgE1z1AdYHMJs1GVLfmL4jfbnvv8CasGf/EYAYVDVgy4paIhuJdqOYJhhisr7U5XSZfVbuVIQaiAGA6aGm3GarAZzplz39Z1Gf432W3PtlKyoGxRXL4o+SH9KFr4v0AIPJXhg7dXmdFbR8svC4b5J9ijRKco/uFKevF7Fujdzv/9Z7aoDbb06aL+Ebegtx9dTijvQAMs9esO/Oe2RQRyPkxZQIwK17zNy9c3Y6d3+9UcSHHY7SfT0WpjXNqUWoHOaa2AtFkgL+dGerzOWW4zm6LaGDBAGnefEK/G83hmknlNnLBOMZaIA5xL8hMP2Mb1drpN9moVU/RX+gnKpS/4SCvk77gHxguzU8P7hjvJEBUzhkF7MXzN5Vnsi+Xz0aJCk1ulgMe5jm9MzrNmwwbZ8fvBVcyyRTbn0QoIBgKh59db/kugPE4OokDXKPrPBGOxCMqRnjwK3GwfxCgxMKVy1YyHUpafpnSJa59RrkSHkvMgY9+Tuzz8YX1vV1nl75oBD6/Q/Yr0RroWHiQmZ/CpB+TrVIGnOaCZdwN5x9BxfzH+X08XwMgtVdLzlCR3ShrOVXQY8GykG/G8tk1chtUMXLuBq+5UGVvdqxYlXsJj/iXRIwV2cAnJja2b+BuAUHrVgS02XUS10A2qHznYIfGmO90jFr9mr8ebgi0FWTQf7xJcgt0aoyRxUc9OSgLmQzGX4cZ9hBIuApGgkx6w+tkb6OWrqbJPUhLWXE61brjFlQDchbNglRYIrsAiDS/ScncTO1QJUt/FPD/Dtvs3r+QwWK6zmg/Gs2AcyR//CPgoZICbVo6lBwY73vNOeghH+ZF4L+/OoUTJ7XmG36RLkjwhk+YMgu+7u5DhUO6aj+pReBGYhniUG4dfJXpY3khDycs/tcEo1du97Q/CmV0VmJQNlmy14e/HZHR1tb4m8OtS96DliUj72OdkNgO/kyEZAWoQpwTj961nQ+fiery4ZU+ZXphFR9Ws2EUA3VHokOuw85A/p6Hnx6G0/DCURquu18tyY1X4A8rlrkmPp4cKsV6uSryJvzKbq+N60r5h7GhH48us5bqJ9fn8qu4P/mmJ3HNE7vH8DJyOTZ6tG292OzJ25pudlQeh78Qhn9DSEgYlccnEiVfvdKNZKtccjh4gvCz8YcvCqaa2tj3VNJ9t5FpIcBHkmeTKC/1qhdYIgDVDTeVbZ4otjp7x9eb60X81ZO/MyOL6VnJG8CyAouoeIEKDz+96om0vFTsK7Ppb7EKNGXZdNm+776J+M6KLeOwYj5ezXtQVokLxMS+BKo6BlZQ+tLD1wseowyQkraAiF+flJ2nBfYROsQAA5MBiYudam6LH6dIOicjtRxEQ1oAFsMwaDCK6rFGkRSACRK8IxNZe2JKzi3nnFuqoUJ8uqCjd8ebVOpn1CtOJKpcBxmsk1dQgBxH1gqgX/UBiATT6QS8IWVOYIwKKopm4kz1T/tJsPAJD/8CqRicBWpjoFAy+Fhk093FXiaA9JOzYW6W/crBcBujJnIeG9H6t9GUy1PlJxczSd87o++OyCGMtay5yYsAL13tQC5P/ZJykk0t/WFIYKI0NE22R63tMeFxeDj3VS4yVaXyg0wZOYemwOkF/L0UHQwCwkZQZfH9NPs9agWUtG6InYgmzgb7rXdopxhQLq9zAFXBTI0cF3U4em6DyrP5L6Y19zw3GG3Ki1zyFLggAHsvhuC6IBntl8BRCLjFfPwGlbNYPSCwQdMm+zKctQldRRnmDplokqrW1PCdYsF4UVvtQOSITF3iPLQlbu1HZIk6aoU8aR4NJxKbDZTQmdp90mOg/avlHHtVA8tiSF1z7EcweJ+md7IXctFPy7NA0fUU/rdjO1ZaFrkAgM6Jg0+gJvGAEcEWJVqUhQAWl6piVD11wkHirUB6wrR6DzbkQBhGq3KkEF3ZLyyWZrXbJWnRpR7O4IZ9E+XeIQS+z14cgh22qYzaKyEEINfr0Ap0Wp2Y1bfOGnUevwI+ywwk5Xh+MmLX7Hx3DW9lwBsNKAKIT7PX1IPc3bS8uXp//FpWKfL1+79EXiq4n6U2tGAG0CmBVpwpsxZBTi4DJt2ITwiOSz8D+WkM/8GG0y8/l5h0y4Qz7fbaGIEGFRar/g+jqjtBbdDorEkFKGinKe6nF6CPO06GCd2ux5sNQy31Cy0dRRg9NBk9CZKx/8l9cYbuqoCL37NAk9j68y58JuL+VMzZiUfn8HeAy4N6XKE4r8BZWj+SSuvyiZu1gwgBzQ2ooXoYY9V+avb44RXkGIzhrha73NT99Tw/lPgap9QS7EjItQYjmwui2UPh8rNTOC3naeAKzO5ASsdPRXndLrxCIkMSZjTmBUg665wX7lMvdLgmsoDZDbnX0kSy09FOM2GOF/QASXK+Smh/ZvNUlKFdG7nUXn+ru1TxlEDDPaBFgPQbGOBs2hUVQ3d08ChUUBjME1HtGE6HJSPJSkSCH+WM05fuXUWWmT5aRWS/dcGUg0hvcaIXBThd7YTSS3YbXKuKQxrxA5eA1oHCAINucZa+sqrfZmmhr24gPTDSfdxb05Ze0oj4mh+vVf964OhKfR+gzGuvY2qPRgaRAhU3nuMkpiXGLful9uK0ecyCSQvJMa9Q0Th0hVON5ySAYT132KBrC+8LnFgefco0QaSiTz0d94NZ+Rt5nwSITrZFNbeprCbHdp+tghjiuQX/OZrd3mw0G1ZP5mx5tPQeaaPiFpK73RYBZludwrrPztKbCrsDcBMNpgFoXYo8rJuH9e2TmCqVH7qa5NoMWqQjEnvmmY0EKbkpdl1E6aVsZqNgQbwiADGoB8ATOezD4YiQmWc742fHH5ru3xa3d0fW3hABhwcYcsh3Ks1bpfENq0fyJx7ZlnT55wHaaCvD55bsJ5y3oFzJSi22lKda+4Flrc7iCH3gnG3Rwz/GyFmJHqiAU1d3mWDSXFFH+21lEyMDIINeuQIYVjusHlglS0oBVbOzobPyahJp53FyHr72+VmapKMeSuhhgYe4KLB0gI6RhV2HkqkYTyPEg/p5VqrVbDUdfZpP23/Yvw3Gr/HG2ZSqYjWD+xg8vTGM/Rs1OosN3lIk+REQ898KgFFWu3brdFFFupg32jRyo5Bg3vzZ/AJriU3nGcxzc3cMdg/UCeQ7cOWKzEOGMwjXJhLYPk28jK8PutYHA8ykPvJnlZDCxYIz6GIanVscQ5hOa+ru0labtmE4f/TcN2ke9dp0MhLrs9fXpjFqHPaGX2ypwxPgVTXvimkYKLqSGjnT1fuJgXpQGbG49RCJMYH4u+CBKuoPxOQeAyXsvqPFwV64s5JH8OImAolxsH8xdC/99s8Cesv5ZKJG8NU+a8pAmzbNynQvgbCVIy5TfuqB240pK8ROQq2aduBWwZa3Tv812ERx1cmWgtg8IPKSLuApXq1RdPuA7tbX5TSk+46LRMgIcEyPK1W+KpZp2dy5E11yso+wsdioy8niEXG1jSkl+jzZebcgdNG+P/9oEcG4DaWKQcWglJc4MuMaerzlJ0ShJv7GjLyWMfVzVqd5EyMn0AA4YRwEt89Pitwsq4YsobbZvPWAFqcE1Q78sgLpUYnqiXpYEDrUyy6ZdywQ9+KDs7Qx+7j+FrrHMVBUIFbclygeyz7za/pstXi55s8EYEzIbRJeoExt029g/qlZDYEbPXluagLjcGA1W2mpVdkHSGExR5/piV46HAOYCElMce2lL69y8YglqXfbVO4A4+qNaybt1lElPG4AtmwKX3AHfXelwkP9Ny7HsDV3bofsjIY4pqc1b2TrMfEWF+SRkqWWngH7xzz4wvuxLnaj+kANN1HUOGhTzocbalM4GZJvKUU2yUgS8k+G2TsOrY9aGwdztnamWq6wS+2AKm72vLDrU3ZnhgZKIXxSYByDzX7mlXTSbVN7QjKHp7BpQhvSV6uRNLBCQX7I/TiFWgSJNaWhjPjzk7ZGA6QkppThLFp8vIbpLcYfKwPuQywqD15atxPdZM5UlITNjU9yzA77/0YhPL3cy3z1+jc528QXio3tPnVRlrsquc+UflmBElVXj/T0j/a0fH8NvxkwJzrihyU5DoLQzlcgM/t6bvME7wYT91b75/HkaqGyQW7yDjW6Gah8WYeM/1fZyIx8S61sg0Mv3tn14yvdtCTkrO6oyADISjZfKr2UUa1THuF3SyKbkj7daV8xZ6VtNQYgRKbwx2VBSl2I+vc7jssIc06q5APhjf6EYPGZgZKs8d5YOYxFrmvNWtxQXZPXfG5U89E1JuwbXYNDwg5svMaZoL/rRGNL3+0nhCNiS1NoLLW87+R0P9JE4R8/hDC6RnvBkqD/hJAr/02PfiV7VycFR/32tZG3YoUz9jt6lp3dGgBnlpMLNaKHzzc9oPKjwwk+TVItYPbSbxNhHW37v3eM5AkR7+fEoDuFiqPlZEDwHKwSQvta2q4Lg6+bvT044yhjWxgXgW0dlU39tsrz6jSOarxJHFb/9pcGVeSVT7j1W+u4iTlJwuZYMA6ymrkigz4m290qmYIlWi3oKhBe1EBoCUpYXdz7kXx4Wgf5p851QHxfon3NGq7jhWt9n9TeWFYLxmx+BNsSezTq0GZ/KSrrkDCcw7eWaoJ0VXrlXeh4LsWNjEE41HW9dTJO1xgMqyCYmbh+mtXJ+qEgh1Azi6zIQZyh73PmTt8qIpcwrAmCFRiZRHiuEekkYuobEZ3QAdhqXblgVPsegZJoPCQqgGagmBZ278iXFEkceRhqVyyKwmA93F5yhgNOfWQj4iDzHS6TF0AM85mVzGPNTez24K1lyxpZASDcjtQid/j0VzQCHDbBWrTU/R5UQvvT8RfnIRItnVdlQEv8snILEwvQJhMncdpW5/8nW1VrJKEr7/LDwJ99sumLzjgLzdyuVsOKNNTxkqX7mAAjBzQHXlPnTG5ev0UK9edGQDWHfMVLB5H1n0xbyMMeRYMcZtl2MjBm3Cmpu4gCpyj4g+YpWb7FD5iLUIWUIZsL737aXs7Lo26htvuKRNuwb+9foEySlt56rmhoyuJzKVtgnmsDta05mJhFSh3IXBzQ4dPv27SyMw8WqVbtn6j8WH6Bm2nruWtt/EN0jQIQu9ojLPW5Ewo05UdmWQEDIRptV3YNeiIzJLoNK4L13NDhHXcfRj95L4mNkehKkJhNuRqFjfSQPumvCKBa760vjfCXT071gA3xu+wZmL9/3zCr8j+FcYka87L5QVvsnKlSiGv7DSXZ11fjyg4VrAZd+pueU5fXwOrAcgLdli3D/i0q8SCmxCNAzBjORiUg7KfgbhToKB4leD8EsAEFl3hO244HlOBH1ZTPqEUoX4g/NxHiHj7FJymo7r/kX9w4gHd6nJrMSIhLiHKixd0HZXliwfxZicBlZ+ENe92lbpXOWRskCzcmujuYUX+XGCqIb38C2dkjoI7iJ5ch1W9uc2k+9gFd/iO488N1uA67n2wQsDW6KmeOYWevZPaX0gMidj3zm4JZzxKzZwRzUDfV4Svf3gcLT9LerYmh0xvbH7ZffVo411hrfJSbh/9WRWpfzsBdfBaYF2QHeF1Sl8ks5WFL8+hD066szPq4ceNinHNrk47tV1PGpCvEtQsHKUJ1vrjM4722AxMoc9eLWl5OZnsojpGMml7g8qlnLFT9Tn8/4qh6ghFcWd9wjtsxDJqwYSMuY9Pcn8yH3k3gp03vjRDuXxg2iot4vaa7bxqQRImHyJn9gndlcfp8ANVJqRvMXVMbNtCxY8qD+OMxCnNs/xJr/qkh78ZpCQRP+KvKX35v8GLqwHWhKgxakc9CdRSwjD93qi+lB2dJV1RS008VCWhbfTzpn16KKreMmqokNx7hC7krGcC9A+kjpZNc3B0NWgHRuTERK6h+QzNgM3nifhYTtARmE3G3qP7+Tima/iH35+xLbql0+bswkq+ysqjaBFjThjExdQOVRIrEb2qK4KJHWUAJ3yxow+aVuOsa86P485ih0NCMqj2SVLkLKoduWXPjQZdkNkdejQ0QvEjSI69eJJDAr4D8iPQ9keMqRogX9AF18jc41WHdQLuwBQgf+0X+ugMQq9qmUGD+SjNqIoVdR/qmRwGZQ4sRGtaNWUEVIeswYZUqxISh30jhUJ4Y6y52HsOQK/pOHA1tvbNyHr9gtcFMWDxQDUHjJpvOzccsrob6sV51uJ5i8hixcmLzEhVoEiCNkIk1DtgpNvMAYxbhppuUX5JEJU4zQ1cvg4lpcWG8/ydLlzOrhaTAgBAjNZ+npgNERuDqeaPwxoThfhPzesEgbjzjA1uKBZvaZz93NxBR21jRIoZ6qAV1VqWVn3AGUYLKzsCY4bMS9RsZa5OLhfgzjvrIA6O9f5sOLPkbn7UOoGBxE2lytPTQ9mV5aX4py8PH7plQi+DrjMOO/rVG78xxEwp5j/g85mfOEOz3ck+SJOD+IDiloHBlun9XQ9rUFgIzVGBO8lmQn8lvHZYL5JkVj2Kysogho1bM8SR0b1KvLbTjfOHqVrl8RX9QApzCXsViDbBIGuZnxppHS8gbjFAd2bETgO/gTZ7KB1FeocWThNrP3pS2o64vzUCvbtQREzNS/HU+ukAO/NMjm8CrOfn1zZh+A7jhqAuE6G0P21IEQ5Cj1evcO8iGC3JFFPtxqk58ctAaorlx8qMrPjp3VwbCKs/0RNZFHc3exjH6t98DFYLKSXrKFZQ/CfSh5Lda2jGUt7QSvfzed0AbqLT/Ix5qyr8IyObNrbC8W8oW2Xb1gHFHS8uYO1QRyMHiUzAAAeArJZVSZl7JKK0/ylRn3QO91oDPvPAMRO9mvsQP+RMoZsiY0fmiom7nW4S++HV+FFHiA2fEV4OEhwtj2tBxxu26XrHrtx8pUl6xzsWvpypvfgYbC66virRS6vRSehn9af6PAcYgR3KfFKD9Lq9+IWA5smYvWMwP5FSDrbh+lB6BgCoS+5uRDD+6nPQrMbEgcLr9k/2hLiYN0FiF/05wQIiXqcUkNh1l1she9Mi7hiVYYscYFr/jQnFCFzUKtFmpGyIYQAl3Q0yreAlTMX+fbrTuZOUHY9lkdOE+WVZUcBKnF2+INpV5b9qT2ydiWn24i/vh6nxMXfTm36WcxdIDaclrpmbCBIZniIOPzOo0EqvVlM2V1Wxi0jmLXHnE+XDwvJOVMeDX+Fj5JQ/BOefrG+7csLxHFOUCSHYR9+sympher9kUTcXSVKBbpiuEg/GnnhFLHenl6o8/MIhIHhWRKju5dY5IicpFslLtIjc75Z2ylYDi/3n/wlkueJFu0uTaMSzu5EUlT2lsc44vhMTebo4UMzLxzHaTsLZ0xNw45/0Pp4bZFsV3PuRc5X7Rk/QKzIkcpuiGjxlmD4qvzIeQIQYRViURcYppu8yHJRqyDbNg3QaYf6uny0CxrdWHWkGOUpMxoJOfJfgzDNmkoj9moFU+YISDb/31tjl+YOJgU8XaKMKUABJqiYSMJi/dRt+5TA7QuG1QjlGewWec+PobMKqP04lakD/3pW/UaeQvKxsJwpfMsFE+Ze/p1t2V4Citb40qfX3UmxYpQnx5HwHtI5jbPwPdRwdKWQ1d8bMA7N1+SJDVEil9ie9BRrhliRq+p9ZJDh1r6rJGYnw81eQS5aV3r8yGgRudYhr7GoHdD3m2F8dVksr93LQf2deooirbI/mC5nqEhgB+lkw/jldjDd/gHsqRQpmU7uHaG0chrFKFW9s/Uislut7yk60qHkMz3wJQ1N6/S0T5UuiqWkiH+z4sV7sz3nuAur4iXXzLPmVMVLqrBRp1SAUwPba2LwZtn6xfSrSDtSsrqnvmfM+S0O80qKvCtg1N4wjOUc1v+dABsfke5xx1ow5TyLItH239FJOJqTLyMCemImvhDBKQUbMkH9oJwDUEiA8Eqi53wFkKadLPasDetbKNJjiWaPJYP4gHy9jOp/xKPj3QwHP62io72PSXWNMeQOql/3/b49gPuMNAmZeZbJ5QzmmQgPE3zLKHS04taPl4bF7JTQCrdMXh4TxXwht0H3xWknxsMXWm/z0ZJjGQdK6q0oeOaLUq6CxACi++xftMkAM7ph6QHi6wXTYUmNnyH392m3VMlWKx10l5kcV+ae9rsw5i7+s0AD5YHFDlTGBqU2SDtiAyKVWGCLziY9dkfKMxRyUQbQ/NXj9mTQSNfbvdndbSvRyQ4WJUxXPQBmrNIcjatxDs8VoHYIh096UfZxGWUT+Iro2lsPOPR/KeQee8ZSbYQPCD3RYYKMMsy9EpKBoNhzCC+8f7HpwGs4Fxz42P3fOi1Inq6hCpe9Z5KkLo48xXDrZxI9RIfAfwzgw6saZuh70wEN6cCSd7YlJBBdUKxkPnlhVVJigjCQ9akSimhk01sAfkXxgFVGaa3sCfwZu7GEWMKLlEl9/zKjo+1ZBjO2LZX/UE6JLv4sLtj1ge9hpt2ozltt+QkkNXuaObYABPCgRJiZUaQuIqJ8uJU60bifzNZPdrodnkyMV5dyAHK40o42PwsY5lPXeVJebo12EdO6u5HXfrqlGeOWm/gRoNuFR3hX2BzZ/9708JRXb2q6iTskCl2TgDM3/0f3d+APfxg6j+QWVJyCSo58dsLym+I/7G3uutXF/mvkibzh2hksSpp78Ya2rWW+l6w+4scgo1Z+HwHB15Rlj47gNIrV/cpTXkVQmpb0Nbu3YplIfnZQFVqEeO/8G6ckCmg7FloSsJuUWbkm2RD3YUabzY7nUmqp/vDQgZMn4gFFvonpAxFPhy/hrQ20Gv2woVx1jtUE+xTgHMGOf7+LxIkJc0WWMbrBdap3RbiWCeBlLVD8084UWxx6Rx9ysG36DZbscWt3lq1qmNK1Q8E+uAI3M8801I3EcS2C9Q/kr6JSSkquXE2yJIcnl38w7Hk19d9N/797NnnxKIr8jp9c1yIR0KOv9EfbbumAyaVKi1rYec2XuvYrXKWgrO2AAB1vxD2HTF4YfmrUiLBBLpLKBlTnsWjKbz8DDTOAVKdJPgvErBx8mSST75k5RBQqdiahcg1lmMKMToajAawkllhtnYudaCFD7M2p5/h0UgVT7bvtQvywNxZVMH6snRdHcNgNPaqU08yhYCkU2din5grcYOglvI1ydHzCPwQILR5VTIthBbsnTQIgExWiVV//LomL/tUKS4PRp4dB02OLIhPqjMSt/QS+fUyMRoJwdWW/uw2aA/MWX6v6oyiINUInLMwQcFdHgy09kmFExBeC38qDv1E5M4uXQafXJxr+0nMyPIgpFln8Set3p0301uc58k+gTPtXdZ7MifWoZ+LdphgKt4LDQYHE0tzZWaKBBWeDX+Drx/3ihI9fP4kWjmJ1X5RkZWIDuK1+ghN8XE5xojaW+JT6aq92q3PplDrYbunOWDLYTkybGGN6CG3tYIoOeJAOWSYrotBTHwMkl8q/0WIaSMBSYnBZKjWopeTENz2Jl4zWsTDapJvq7DpWmCgUhXc3wPki+RuUzIyrefCmitDeMKgu+QDHaInXk/Z6/AVF8NB2peREpvHPfj7BixzxvBcyuRaiYprbAJlU1tJzq8wP34cdoDGOiRtVd6izNa4PzCw6zzov3RSA6bz1/5dwxJOFxe76Kv/+J+s5F+/8hBOjoey990inXpynJuAs4BxDmhN+XVSV5gK/o3mYP1wMGdK3w3ZM9cEtBQrFR389GI9nvasY53oduUpMPMQtgFnKRo+6SlfCsPeTvfbRcb8UgUfwlofKDyQ0Gn24HEEKHp3gNijoNbfI6FNtMO4KhaFIftd7lAM8fVFm3kVMzh034Qouw72ao8VUuTnnJo7BuURH7I6SpQiz6xjlvNW1jTGkA1/ksCVsMfrHYWDEygt8zj0ZcB6Au5ZPia5JDSClJ4PWcoiUhdMG+GMf2PYc5oqQ7+LuCEUHxSsypVIJm34Yp6ZVZEZB3V0jGBUNgDpA5Q6DMKMd12xqHzmSHuGg/DV4VPeg8tmvEMgAK5EOimrF/KT5b+9m8ux+pIfRWlEIlgRaCYg6Mj6FTSxwukmgVKYiW/sGUKWlssu8T7fc0V59YFGRHOAuLNapdUkHGYV/5+mgINX3FEJzeXKcyjMWcRllKfj+7hyM7zx9ViAK/rqHdjtzW6aT0GYM0nzj2BkwcqWZc8YpCqWj63SHMbBzCGc7xWThlxtFLP1GIyS+7NI5D9WZElHYt5Zm38pFIIVTRsGfKmaqpIcJ3CCQVvSbkdurvuuA4v7qPWXKQRS2MADsNiO1xme1IhuE0TQXlJOynWJiKd9FB21zamdTBpv08ixIkCe3wkLS2n5jBMMocOuED0ZbXqz3O0RpAhxUQ4Pfm4u3PvQK1zSEIndhfOcqnWi2wcEVgD/cidk5cEpfRmZQLqpTHe8mE036b5Cachbu0iC9EHKV5Aau5tfMYC73ZC+HWWl+Cv8EMm35KHRXOOhYF3QldnZFno6qWdChUM16vTRaJCGcelkKcX50ry3pFcoB9AtbEis1XERHPRTMdqW389Bp1334J6tVHcGznTZS9LEM5FAnd52FjsNVF/h6NVHpfSjH29ou6EHaGzLiDpiaTocfGN/aO5dFa/fSdVoZ6QIQTsd2pGoBKqjH8EH+1KBQvlO4Lo8TsAdkjHDDd26la7OVEa/XqlyjmG3p3EjJ8jTGqlh0nskPEZxbgwrDZ7QqHY8V9reQuGDlcHETbktMdVBr6LQNQHOtniYgGPnbvM+cfe3F+V7ie310Zfp7e13iTOqdhogEG40Ervl9BgSJQQhmRzurjiYlKV1TgBFelt8uY1CpQke9hMpvkMh4lLzqKgUNEFJnyFBBLI76H2e4Ul6aJVk6ngOpPlxaZ7zF3ctknzQyq3RMG3bBh1yNPk7e/dzkqo/GzfpWFyYraD0fo/0/XnwUM9V82Vn+VUpwuXqB3tbPWv4dx2c8tOLShwqjrnrhX9c3IXzQS0BErkrEpjZHidYRiENwBlQrs37G4406VShxo8vt1Yvc91HbsbOVxRr+/8Xns/4bVRnT8hvPr2K2q2eL5xdi3FcpxC08bOGquzkP5BHJTpodQ0hMLxUPqz1S1eN9o41iBQUAHJZWgklIsHS0F5U1YNR4AzQfhZNUnb3JPswBr8bQz0YbGgmg4bX8Ksq8c+opJOYwwEsM7WnNreBYQilTSwssUIMStOguXGXf5CqMT9havAFXYib8FxdbbmEDzDX2U7l+9k654bowl4x8cFP7LilTmQF3N64jQKzQU4OsDXQT/0C02NJhm5FfsKw2TVc8rFbwz0MgCvYTQEFFutQfhdudX2nLfaEs1+6scH4VxZxyH0yxEKD6XXF/csSLgyuTbYGhwhXviSeglArm+8sSYpaxJ2u865D9Tl6quYLQT/vw2ZFwLpLCfdHsHQndeVvMGX3hqG3NOViKopXjPHm13TqJV+bbA9dCkkWC/zSxm9R7MFX/v22+UI7n6gTvgszslKCooriJIPXZ6kb2tswx62MJuag+Kn/ATleHemlUED+KMnrGPvKfq3Qzb8NVrfxKWAOXfCgeaigZGSR9rbdA/msMbuhrf8r6VgqJa6oZkDREhS55ATJgegvP3DhA512vGA5SeFRkXHZqA6s0yXgoQDwJ8UiWng64IWCdRmZEl6F0OzMiwrG2o8TdCK+E9LBEClS/CEbrHj9WB73sIhXxXLop9VbkScrNkcqFzf1EhUAewdi7ggZXB4csOQDvpHfFX0h0isuSeyJNE4As9TTkuSPuassVRl6aiUh/o0woeutAB7hI3pdOhuA652Q6tJblsnYVb8qdSlOLhg50Vz4dnY1gsU4Qw0DKohFJFNxLVntI4TrEJ934THm9eC0KLcAWykvlkx0WNQco7wKcd8Mk3dKVM2/RWu8qKnbMyQATciTy7d3gWjnOmidS8u2CUJDhb0Eljm281lUSAUi/NvTNzcFiad3BOpDYCci5UDCin4WvFagMUDkxP705HD/ZXfj2Rj6+UvOyGkOi9UC3wkoERELjJP97hi04mvvK1WWDjp/EyL09/68n8zeIkbY3B7a7uiAwuhTvcqY3L+thhusBnfT78e6VsvFhgsMYiQ7MjdxVUm+y975HYpoOC1Y8PFBOuLMWAdPL6WfIjZGJJi/kKZPRPRGbdIzyPxgCv8shgRAmsiXcuF5pmk6XoGvxpwujRbnz0cskS4mvTob8UFdf0qv4Q9PtDL8Ezi6AU1NDjvPGZe1PsJwi5x/qa1P6EHzxzRJ9C04zHmTlEZnpeTcaF1mJPwpLt1agO3d/9h1bJ0RGM1C0dsFbiCX2cEoYx3ig59akQnp3aYwDYcfFwfm3A2pSz7wnEahzoRI3E/N07FjQBd4KXOXkbw2Y36EKwn6VtjWwkZwPJtmT4iFkhkeesay26bUKBBib1QYe9L0aaI6WVDKQ4xLQJ6Je9cqhaP3iEM2ftZnPdppaERVT/D1c/v0eQo3PANXHea9icndQo9nXT6W13M6BIjMy1RKtW4sjFVWwBeOuBjtunYJ/c7N2XW94DEbRxASwKzpJdBmJbEE4CFntIQ2g0cEtGFn7vL/BfGwscEH5X2LqhY63HSJtU0FZbnDsRGJiXLd1OP8j7Nn8ESwUimBu/+IbzLmixX3JSHjCOZwLgv69VmxqWHhp4ntGpv4sgJIxNUS+OjBcDgQka3Z4t8Up/umq30Eak7z2KdWfPKHMahVHbIDsC2/Xqg5K/lSI8njZQwcJjUq+QBFfQQDp3d5/TIj4Tqam8copKcuMg+wrW0/VWiVCUIXyJeATsNp7m6llicnKVUIhkZGWe9axw/9PugKDcmIFvw/6bSkDsyBbzLUMEQNgynot3HRmubJi/iO+x3Q8mC0YMiQCAfnbKmea5ThkoL8ZDaseGRIJPpT7iwx0XrQQWwt8nPj8rXNN0uWPy86Lrk4zBmQuJg8ZbzsYLRrB+IOVfH8qFVl57TzjfOMpIU2QCWM7zytdpqZHKLMX2FMk5t+XqPlmL1aQhF7YuKBpqdmHro1JV2Po5lWX3fuaNb6glgyVs14kLsVe0f5KCLv5sxhHq4DWVc7Ll4yIFm6wLwuxTku+D6gzsDKxHs2uTkthW4IJgsKAM8d9I1R64M/zD1NQ1TmgGlMoi9QcW8rV8Z/389VMzCoCTucs42LLqKyTGvrTTRovu/oocqTf7DHVsa6vVyGfQOpVoQj5nvnX1NrcQNf2C93gm85gkA/IboqNgunp/1oLQruKMyKU2iCqvtH9YeKq/QAkagqPgtbq1MyDQK1H+TYPhQ6xyqAtvjirYZNUVqKEw7prOYvxnOMP3AKi1Jti8XMWq66uiHwU2r4RZ0waRutCd+a7ADzPtDW9A9F3d9ICaagNVn4m3WA76yD73C8NRJbFHTREA3S8+P8siJ6uLRMgYBTJ4v7w/m2OZfn+2eTMFMJXgMnVFSgkSWKE19fCGg3Qn2Im1JMwFxSHPw+w4pmcMQdeBvUnlQLXJ2Nt9iSY+n8PDDCqnpRi77TUDcwnFozwRabneBgkYGiig0i7iYoQCFDa4CdQM3uMsTkn37xwzFDelFquTqKBtR74nXWwCXOh+nAVmNIRATS3okvD2ejqzYSsWThMgqLhQuH2CoOcKFlk4INOWxrHEtqEjvXeVAiJFmkuIhcQXEocFfgOpvYSIKR3YwoCPGMKX/j5ygU06/MOoo5+thGl11a3xoX0JG7itZCfEcmhlN/eLfnsKB5d3gyLI+KQ2YWWRoPu+Qi31jRn4AZR1IKOJK4B/O5wpVpFNdLD60IPiy6TUJLt+bfPKgb0KsrIGNMwG1ECqm+hpxQi9ALmA/Qz/m5ezFYiiGq4rxpA4EDCl/hCWs1SlXUgKwjLtSRjd817JeY4fI+bdODTkVLEYC2oxCBXO0/20dlBO6x8nKHyEWigmK109IF3rvtAkvJDUsXPcTNm77Tn5tOSqhTV7gVbAbDnXaeRneXfw7FkFd0WSC/lu7iI4u45nJxt5TOGSShbGoFc1e4CHijcSFG5Bohcmaf1QYGTBH7Iln+gdrc1MMq+hsMwThAT3Sfb3pdB9ySvnS1VIK7oYdrFzUMxIKdt4wtaAAjzYHDhhBuxV/WeHk3dnBb9INGSD8dAV27qLS55YUdKRjM7BYAHxMZar5M8/G0yHQcIThs54lhbXptBdd1fQTr6mUPjtUeaE6Wiy/h9izQjwKBBWThZ+efT3gTJPgxUsr517HkXYgF+dtUW9Qa3dyaEJ8hmCu3jGXArOVbr9cCi2Dj/X8tQP0P5Yhw4QKRWM0KjkmCAECCydWO+gnnBQgaDzkZeub0O/f8ejCj2ojXILr/2DYutkAln2QicdqKbyh0cbOMM1PE27bEUTaPzPTWvXQaa239hU3xFb0rZtbMUF9jRDAhemiEQjgZc9cAwMJ2tFZ58Ql0TtlPL8rPA6AB/arYHPEgWpCXQXyzGETxLksq3zUvMONKbOGEsJivEyq3d3shi/Pbm/f/1JZiMNIE+aKsltsNd2XX2KIxEc7DPMS88qtgqs2Mlw0KExmDxMpgZMqv2nfetyrcDo3MD7Y/yn10jfDfI5gzsFGE7gJCEtXfVwPBVdZlOc5s+5lDNQtEuW0rKAzps22hm3Ch1wXzR9goak81yO921XDALCuz/kZw8UH1JuChuIbJmMAr7qsZGPToXQ4/1QCxwbYUiPb7ba6gzmivftOHi5LBLKQhSlgkiAPect5CktT0fk9hxwCzLximRkm5w/dK4H+jhNvbOgtf6ZOeHV1UfPjHzwd3KTFqVwZFmDHLccP9k0psDwaWV+BHxW2I/wNuy0laSh11hQRXbfdX3uU0TFx781ONVyRk1vrhwuUpvVAxdmzn2AwWIh+50sEotDKqnbwr9HkFLuwUfMhESP5WT5IrDDQz2o3JPBqoxTwy/lsiaqFNt+TqQPGlNGohRyPDii5VINXEEWrKX+VRhVWu0L3pAczvVRsMIOpp2J1BYZDmKmdRY4G4hI0k7eWcbCRmm4EhYR7gHwZdBtQdCtFh9bo78xPkxe5/azH+/mh6lPuTWJV9hVtQ5xrX5dXnmswMkGo9R3ZlonylTcyCC5CVRjOxw5L6sFoIqhDTM20xlxD/Hr7JYT1EoAoja28cBl9VXJIBlvOxRzu+0FiyRz6O8vFnkZ9h/ID4DnbiCwdQIeJPXb4YhZPry9IniR4v31he6oZ7hxdF8VZjUYLNTWsag6tHpYbPmwJ+qi9SGqeejtxBgfOR+RDBurvgUAxoYZ0BJypJntnaqZTRFefzHOokYZbeKElolYjGhB0ejm66nM0huMy2+cdNn6+K7TezcSDUMcYs/3jRLfG5EbAzSgkzOqEITWRxX5X9fMPs57Fqj0f1LACrBG/t7VTNIEk9CGGEX3Ggn1PBYxZH0DdEuQOrRIImAJRsNeysgHwf9OSpQXwOawbjZBvJtsTrC13MTjtqpnA5mmgj0pnpKf1rhT+baGBRvg8pOgn3PH+5jDMBquOCXYRWuki3/wEejR+OdU4eKz8FJ/12yDgCk0pj5t438ZnqRvYCtcOyysLW+pzMXG1b7cS/SzxwdjcIdnJ7GIHmx6aHQy+efXMc7NAL4jvTH369H1YFXlg/YrFpaaTjn+4CqLwqO3dLmzt3NTbnKvA70CUOr4Z+L0KdY39elPStb39skuIa+lodbRqkiR1pK1EpY4GKk+ciA6zIX6BVzpGhOt6wQZv4MACx4mXQIPGQkVVs3vhCYIBhvVwI5rkq+sKEVl4sFWFAp4Hm+/c66ogO6nI5WaUc/fjOLnZfqc0AkXKiaAnJPA1vU7LxmjgmypPKKEWRvNIZTc96Iz8hDHGzCOjSVQrenBuUtuyAhGQSXWh8uM2wo47EwLm/Zix3HKpsxBPC8lbMNLtAbz/mcwkncGJGq4p08QQtyxEnZKHOBrpQLxPsrsPaUsCCWwSKfOaY0ySVu9yCAnbU16zCKakj7ju9qgdFHwzA4YIQFoRE55geAIKfHfQe3bDgCSAh3ZeD/GCDoh7lwV2pgrfxHHdt/bDo72qlE2zrHl3RE2yznHzwuc++7wvRfpYC2oSw82U7VoBMMpNI8rKqiDMPSjYJElfuWLUJywpbXsiSesxB9HN0hwoX+kTe6lsnfxufm2YmZAlwLaDec8S+bltMGBQ0h+kkAX6+dkiQrMgPPNEVKKpfi+5zx+MyYS2zbmVR8/YthXNVcYg09a+X45wCMAIP5cLjW+AELdj+cgRSudLmBbzyfTrP6N83csKp6t/4XczCWw32HqQIKJLvZZJ6GQJh/Q5bsKXF4YzJlMZFPXULDOmS2zHy2NgUs7qdcd/Q9Iys1yuC+WeV0jfaXQAEdIFtwDwJ2tYjv0gAmMKBtNjS0DJZHa+tAoBnaRYUv0BlTNllrWGUhikHPVfeZnrkDrE+oP1gM3QSPiEcxwOR0QlQHqM1cPVto0U1KjTRfhTPCGomt8bqUPyjbiOzhiX90rGyS0zOmGcSlkPFhezJl1IaONqvNTEzE8z1I0ZolEJ/ilUxKRIotn9dI07k/j7TjOy0H2/6muAPfLNTLSGBNX3ANIdVki9p013mlRvEg8f2cZk0aTib5KN8jccOb7aQy17OdlY29JnVXIHB/UiJgA+Fk6guLj/GUUZ+c6WaBWUXty84t0lNBYj0bHyblSQQKUqbcUWUlF3cZVBDlkc2oLU8Rk5KU0gDnHvZ6K7n9GnrGgfD4WSBXjJR5CR8wNwKJ9YaHQCKTHL3Jx1YkXaA923Acyv1w3WOdJnCRplNEMo1wBesmCqJlvsj+KUC6dEozItkuYtPamKGdegtaVHNCWqJGe3U7FTdQ9BhZM1G4oOYTLjpMOwxQUOTpgAr53Dom9IddMQrgs5J/FIrKRxn8lr0B80Yg/fAt2zGzPFKEbjmlO5IV6TP7496BEeNQ0bfoa+9lUQTzFocyGRWZKKJ4/YInZHea14AhYxhF+Yxu5KuT65aJzwNJ8Z9gjQyzM1Tv7xFeuBbfhh8NREvi0xBsNk9oq4nyo/pUTuhz21roWAB2acuyJozMMY54pienduGBzHo0DcvzueAzVyr+UL3E0Mj+qJf87hTAg5NYZAhwDB3bqjjwNuiUzkwL+9BKumHG17a/izpm/JUKfOShnMI+sAMU5R1tGlY5OHaPKPYQAr5vQ0fLzGdo9m54XETlNhjFCeuYbgnp9TTiQkFNji0PsSIQ9kNDhF5uVHVo9Af/LOko9u5Z7A5nO3QkG0kgb8yum5D8sd2mrXGRZ1DnfWHMF9CDJS4E0j9PbieHcndC9jbLo3LujgxjBgQB/e1zft3FdNY8CbehSB3IOAJ/EMy2PXwwliuP1fOa+zTPIdf70XGRRcbLVLll5DvPXT6gJA8bDBdWGoTlmvv4E9yzbITYUbE3/bDbtqmmzVedU0OjaAcFYpcNNHJllXHF4HhBfRlfZezgU+UnOquAe0kkQufGB3VDyRk6JmzB5pcH7gsH1zCjzc9+meYp9CibPZZnyC17kZGkH/X1aem39JC/E5wFeqNLX1ZAsO1QwskaP8f8cgrrRnNwFrLeZQpZqQJqK2K2A6clDyk3vZd8kKfbz6bthcT5ZsK4y0m6YSWMc3j1Fh68oRPWN40g7om32Vdj947oCYLGrqS16XLb416N5LJqsZ6KtEL+RAdTkIJxd64jVFVz6UO/YwMyaWw0qtByx+lUJ8z6cAifi8WMtsWx4+jSr+YmK4ThXqzYs6Udk6ZHC15zMcOOj9RW36tGgb7c1P3C2H+u6iCVM3LquISJgIojD+BrGfFOEGxI8b9MwawnrHK+YCV3BQqmyizqcCnurTv1J0ZrQmA2ZBte7HoiDeqMIOtWo8M57qsUB2VnxxqoLZJL9YvZVKz/f40/o8caxBts4X1Vw7w9c5B/zlV1uI4kyrsp1nFTQUH57iYUUFZdcabUsCSZPkwgEtePN8p9Xpd7ih2EtpbJSR15+UVkeXrdhht4NeZBLkeT+XC2qumwJ8d26+qdOwv15rfz5HhUMMY1Exf9f/884uQyEB9qkyZHzU2VtOmmGgRbGAKroIYH4uWxlDt5rZCTbwsWMTw0hmecNduBwc+Qlwrurtx/KabJzNcQ1df8lL8lRP3bfrq+j8nBAq9sJOs8laSr9G/25hVwwIdTZAJDuxTBip5hMheOkOA4t8lKR10+jngjghZ1fkYHp+hKDNn50W3uXBEncj+NsDh1u3txA39GDIYC4m9Zr1mv+vTdpJPbS5OUJYLXjiRZ6Qjhm2aZ83LAU5KdVjyrRFz/ad/aHKDJHIm6hnkAe4/+NFyXsHYSliDQNcgEoyLJDcyBnVWK5ieBO5GZYy2s8LBTWNiKZi1wm9Me3zU8bMKZa9ISmAY4frp4euX5F3FhT0TeayBO3YwCK4t5FXo3gJTquwgLokhw0YVGePiSNCZqxiFYNhcsXWQAUok194gzIeTpI8VL+qP2A3pn4NOqJV4pObzzBkiE/fZbQdXwEKi2KFg0pT7bdMHQ1OHYVVy7uz8hx/S8yQoBD4jq9YaRFlr2mnCjYZxlnbaC/s1tuTtahTh06QD2HGxZ00UpJhdeciGf5HL8BV1czwDq/rtaKfp5n8IEOeHFx+nAHInFWQwjHm3vHNS1UrMZT+bb7DSXfGat7EZsBkLwnhmVqZRA60h+YvIuHIaCbd5Y6Dt427XTPls032EN9/246RDZ/epnk3WKFEHG3do70x+DXPhlSJ+rqAgA665R3bTTZgsGtIgTisTSkzZNA7dstILrITktFdhT5N7FRTvPvBCVFox684S4m2pOljEBtKXz0JChholnhaxTex+mkhcxmGC3WVAKprdozPrtM0ZNtMU6kxqHSO9mx1Z+0JUb9aNsQmi094Ejg3SPvpaqRJJosnR0zcQ7V0tlLYTkeaG06k8eoLGUYsrxDLEx6SD5S2qATEmF4h4YhqJaGVdJPswWeFLWDFc2jt+YIT737GpIie1Te2NGTTaQ2PX2vAx3jmKh+JkAAbHoXV9w0jaBcPbYPEeYhdB791TVgmnha2XuZVkBDszLAfjgxn+pNWNkEQcLrC7xLWULSO4a+0yE3LrxR9InWHtCnNxlvpqfXJ4U8eNcS78P/TYqP7iOFXHLuCKuJEn+baCvU/ufrzTbH4Rc/Gn46jEoAm7TPfitJ7Ifb0cW0p3XtpsU8/9ctO6f9mTxlSJ0kCUlqGIJu5v5gga1/Wevhnsc1Bx4Q8a+pt1y9YPMwyrQU1Z/RSSKZXMh6AYFZ6RAxpmOj1nbLJtyhl5jOB8EVmB2n6PYAgqhMkaAse+1UTq0K6IVQUWjA9STj3IBk0oq+wyLgP4mpQsoz7WBTQr6OBJxgVau4+9hyekZped/EVPavvdUPnQXWc36XzgNbIf3nkIk/msicMLv1wVs2XI2WkZpkbpNMzQC5W9Ytek15h/WZN5UtuIU3S/9Gpyppbh8aMWGzNf3DPYf3HFs6T8vgMAL9TDv1Je9bcv/QvNqZY0i3SeUgVFB7kGQeIcjzC5VCfjBrr1SvZop/lSP74vhv+lGJd4i5Xuq02et2ORpfFiUYNYiWJO7cZRuQwIn1fMZFx5Uj9+sn5cIWWVDVY+56SkAgO1hLGzBvBxDnGbEabMtCxHIhdXeEIGXLzuAAR3MzEF4QJbJKTSoPTb+WfRmP9BSmZu7HP3DAKDNLdv7Yr7+Q0Ch7n8o409XTywdu9flFReT/hltkXco4JGOsovNyvh1PdQARSdSCc/jApXfw21Yfd8MAKi2rSfE1Jq9PhxA9Tmnq6ZOqzlMuvqx/AWagcwbq0QDiAs2DO+PTUQGTFR1p+7g4GCryWaSomEWu1x+IL/B20uIKaDMeo6OFZ+pf18YhjAFJwOnbNoTrzxGORztKRCDUn2/50b9UGngGbJdhxAdWbIi7ZIUpJWDYh13nID69XRKms78XAcJmnCdIAo0Axjf8hwmquD+Myw7m2D5NMuCFyqgCCxvr2il5drm58Z7okQlxSPtbyXP9FDf09c4gXDztu91Sdv1iO+4/sSymEefPXnAKAnXZWx7rKSa0goGG9l5jlp6mUIyL3PxpWUKL0RTN3C/ju6j//u7khsV0B2JywtP0cPsSZ1+NaH98KqCFAyHC4LPZL3CAFM6zKRT9MjqEUa6KShYHIPbY0c4miBBOzZkFgzhiNUShYukpLQVMZdV6Z8Wn4Df7NxHc3kfLs8fdddTKJpyxcGyLRhXSk/6TnXWk5dZGiA+0sVdQl8k0aLMeb9mZp3kO9jNSJyxOGiRKmF3dKcAa4ZM39pr2VB5V+feizohjGwsSvxwYE3WnBX6zokgLbO+pdbeDOK/Dk8AVQGqZppjvRI2nGcBJAetl9jfj+Zh609Seiq50A2odhqdD+j0HERy/9wgDR3wnMEwI4YwI1wj108kI/nTBlJGgn5f7olXQSD4eaqmxZWbbNQ+pJpGP1pNL8eZ9HNXBj1YJY1VfnV+zQCi9UES55RkgvXAF28zSsYS5eDC/QnyKpPyoK5kioAL/s57nLEv5Xx1RVEV9Bgk6cJYRHPw6jCSRkMceQbLk9UTlx0FOhMcc32vGJToyAQdcXSTGC4vpiOtTn3YZ+3pPE0+a7psGfqLJJHkZOtFmZuHyVt3hx+xVtMhJmILSFScyd7mhOP15yLdvoKgU9sf3FTIysrG24fh3tLk7H0+EKpP5K9DVA9BpYegk3+vtpv9wTtogwEbehzs04AfR7EZ+6MGb/nAby0x413h7pHXqaQaHLoTzKCUhMqqHmCqmRfKUITJIzZJdXZcn52uoNeDlIzLl1skjiuaVkmjtrrDtR2INmZ8/avPBAkzf8zfk4S2ocTbmEgwBlUQRKMP5l5QYQruPuh2RHMLzoZKvAmy4nLpDbLaGTDNkdV+nJbeNthx1ny9d/tVaow40bFe9qNowJk9pUyvqL7/w+pJXiRwIGkvRzVRzAieZLhWaLTykyHtZIWuE4CVN0dnDqdJWiZRsb1WlCwKAH+mkqhIyDgUUygKWWPn0m/fvl7EzArG0/0CosEw0TN7XCsKzzSbmscfQyFtDgNjg7ntGTq7XsUtHBUzqry9Fg+fKIE7zHX/jdaAv3aOdogtmEjYSkQILZjKTmCa9gbfXDkjHA79lPRshf/Wlsg1hpWC8YxWq2GJzGs0l1sRGiMo32KntDkx+AlV+1SdOhuqfMhbuvmViruXTyPW5UG5HHRohhp1BgLCEg8qhYK6tdCMYbsa99vF0Sn7L9THFSmEgF3c+maPSHsVIsGn0Xv6l9zPwTsmJQ6p/qnuOJA7osqVTYDv80Ds2irL/tnVQR1eljobALSfXfrGuQ7EJ2mASZAB8eQMuJFXkf3xsWlWyI+2OkSLCE2MqnQi/Vd8SbR1JGnEW9WOI9Rke0/F6rOAoCI17PFssqiGUEGKwFgwILP/pMxg+fJfpigPQiJi2PgV9VrsXPBuzu++LfNaqG4dKEVfzaHvL7SLHRHbDzBdkX4zZVyVtUaAlAuqW+tQ8Tl4yI2JURjYeMcn/qo/duX1M4BnDuGzh84gUF3Flp4k4GcElAzkEKvAJ2rcB7CYETDFtMpp2e/T/29v56Sjn8nR784lf/WF1f/VsfFzRBRDRehB3gMz/nUUMGRGfd0kFqmOxSBy1YZxNhlKTL7uwyTkfMuCdfzXHBFfrjoFxsnqtrD1w5uvV5TwxGND+Q2ExDOfbT1l5VDqATxrxYdEa2JPQMNo3h0IAYngn34+1hs90mOY7S/woIGHLmtc2vh1J/f4uQyC+9IkW2y2w46HO0l0ghJIOQm62DfCqsgaPEonpc0J+d/5m8OIb77fqKQ6TdiM5GuFhFQMdOmAj9PicFQ+vBE6CS3VQx3uN/ybLE/8W5CNA54jkumTTBRqCByGXe5Z52vx6Q27FsFI6c61TK5sLVor5sjfRysLmGzsBaKOElvSiucWtFjpQXZDGN/x4ef4lYE9NFsqrUVLU/B2agxcVPz7CcJSBeb9sM3phq7HnUBl0acHLmwjijST+uq9Bj7TO6jzNv3mCLK9GA29gHfju0cvhKVSg5cS+gHQy8WjPlyhVpKbwmsLm1SELYOOcIEjB0YJLgAhTUe/DZINExdWy1SOkVRgPtwJyQn9lEIUW7lWIUNopATPA/CVwCy1U8IyBTwROn0EPegNwxETo7aDNWYzKFvrjhYjc/mr9a3Ue5Hr5pn1DC25hf2dHZ3aoeDBP9N0Qkp4I0j/v3XE5vtiwNw4xaP67u0tgqzJVaPJ094qnCl3rOXjXYkR3M5BlRFJWymjb3BHEdNZ47LBung5YzxX4JRnep/kSeMAtzYlkh/Elj1XIhCj81li7Mso2qmpWQfyFqdbixpnTvvxeCeG9Asv02l1afuhw+zcDPTpQdog+/xlAAcuudRjx8MmKfvZ9YdIB+VRuP5l8YZs+nKcWVyEc0aNT3i/x1AMWn2puYNZdOd4OTzSrN+huf6wCZRrJHTTtEt86DexhJut1Q3tEnyrfs4Vn5pl7l1ZTgdrVLIfKnPlZTDg3Unn9xwh3IDeXXvY2jDtRu95RfuBbGWqTI2Dnb2h5tC62kK3Pn/Gkiws2uvGcYaZ8bQMd/XAMcDe8vySXjvxmUaV8BoxCnPEHJG3mPFXehLcBL9O6pByE+HpVNsbnM/AI0epR3l6gRpldy83mkucxUX5Mcnrw+54DWF131hWKrBex6arewud0nzSGBfEWJfxIqc1Mdiu79Ln+PMJyYWA9SQYw9XqQT1qd4ZsNHAATVJyHdbkh9eP1X++mcXOUx41cpxqoHf7pY+Of8blORw+le6rMGWoMGVFvUmBDWgCXrTqiCO5hOFlTm4QEZfn5JLu3fj5UutYrW/rvW/ITnq5BpZMF8eoJPISTCwzDJWDmUkXLQA3RDbWn+lZEWDZNv5tsJZpw1qm7I4BDinItF99/H7GEeRjJZq8O7UvnkZ3JWOXtwP8qaHnAU9+UjiIahhWidbNELG2epboT6fQ+uQ0eHf4KgdfZiqBGnD39PJQg2z154TqHpm511p1Tr+lUlwYR9rsCgesgfNyYHGIKXlADxV130enKUwdtQTNcK8IAEUR12TJz4r1szGRF9AA3dyhPN7sE7Bb8PzhgKHorpYx4nBBtdN9ETBegvut48UI2LftaQs40tCSKwwvOsIoUJRK/M6E0dFAkBDzOoDkLYcjk7O8GQr8H9+2kdGv81ZNrcVkht5zkgvom10JtPZwjuhwmxeN5njPjqXDvZhuLgkl6EvuMsQJTYmxIXEOYJyVD+Jyegb9dBo+HjdDncTMEq3m/X0oZ5krd8LlUjUVbVWafaNWOKpkyDbShQJuILCuWnDRLc3UqgvoGHhEx5rig8NNWR9MWT5y5gUxdfwwp6J+8trOasqwxmakWPMSUpp9gk3ugP30L3SeD7XNoZ3bJO34XLM8MfjQdlBhOp+kycyGmV9gfUwdIgon+USQeFXa8Lku/HpdkfTs5AhG9L/WHYejhrN7PdHH8KMoKzBVKvCEiQDm5BtK2JCXt2XeSiIoR0wu6zfzWdHspAIxVAAlv+Jr7IadNzGEL6EugVEeOspwUlTgmiZRW0vxSOyN59uqpgHcdcDgA9VL11n1jv4YorT1qkm65PxmUmzCVpjFDNTC4zJnoIb1Pjikimq1HJttEF+lzri6i7ScjxtMF8H0vOHvW66n+6uyykzcskw7c9k4l12xS6K1nXZCgJANSBb1NnMgduA9Bpfm1BRaw5aJzLL92ehCYZxrkzLNkMbHEMZxxGFN+t2x4Kvgm+/zf5o+WTv+dUi3VtfW2aYbrj2seKL6vpDZaWsxwgSp6bPw3is5fcGqbC5ZahSTlOATr8mNSW0/OK0f6tTaNj+too3L88atNvOXRexyTWBK0fPDlih3PEMmxzzotTZr5dRDXOGvtza5PtCoR+ae5GvxjqYsVBA/Oi4flWCJ/75KJdrbXPHi2/ttpM3SAGQ2nOvQob5OeXbL0fpnvGjglELJnZRXlVHqO8bnQGGiylsPeWzwa1AetLZCbQ6j77sPw4IzYCvXQJcRN4XFMMfqCujnfTCvxUPPqamuI+VdF17o8ptPG83qI+z6jkrM06zkydF0qAKp47N0mZIP/+nP3TMTcZzcfxho5Luh1F/V1FteTWLNGhE14ZmUw8V+zN8mH/+SUAy9jhi+DYm3P2WeTCTMsLv/nlEHbyzBYvIfaKWb3G1x8dsMenwQgmGznGSVcPwOa69sFzyC2I0Gv+Qk3Snc8GkVKYyAmca0dUuFpzKBkB72NWl1vMVAIaQjvauHZloesC6hgVegsptNHnbKsIAAchSmUYvgYX2+vrFP48eRP67XA2cmWu9qKd4UDM6PK1EiZYdtaT7Lo7Tz6mQN6j9TFAdlCW4PC7v6kJG9yu82JWa1inkgWV23j5ehBfZzQel3jDGUoQ00KIw34i6Zvj8KU0tSLqujT0/DnTQ8C49q26UXJIlSR3bVx/9cHei8P7hYFMbwn7y4vON4Y/PGdCQ28a8JpssMritXJqW4muh04HCE9C4rT7QfnlrUDYlWRVdcCg5tbDD+rIbLHibs0CCCeUh5hbMK7nvVtTthkfYc61jNNmHeQiGWQwsPW0IYBxwBHYKdU5hmY5NAjdJyJzSNQlShr8JeLIYQSYVi26YPViiGqAxQmDORxdQeIOGQDIWbpDi9LwfiVFRttbZYN2Ddy5gUJUdI512HJ7hETxVvNPQV40HDDJr6QYINs96HbJmkep5NmYISWiXWYVlJzKVIJJVJA9xj3tGV6gWMdZHALxe9khK3msUHIkcODokpohSgKH7jXGCuWqNvqu1bcUFfWz49F4aNmRnFaQZANbKOEMvW8Nyxr78ytPzrPiubEtU5vE/E3fOtIeHPAgHJs6k4Sy3A5Kkt1GLKfLpnZ5JYy0jFLADjUSQIu7tyaZJ+cKJtaAHufYYgO7Ebv3hoGFo+znBklo1j+3sHK1HLvwxMUcz2MpIiL5GvwPHWbdOlT+YTNxQF0ktGrNz22tbPKX82bZsmO+tzXXTsXSEfNXmOc5PMlkoFjgh0mCi50aCe8MTbd7SCsKptSPxItGE6HvET00DpJv/5K9oMrFM75J6ky/JwRS9PA1zpxVJpLdPUzIrUZOSkTSH6XGdVoADcXAvUGkj3aPLFDBIbhw7nxHNdm453982/6HpI7nxJf59tBFaedrdWiLVLWp3DzXj+kIOwimcmaARgT7EWmryWGH0Gq5Kj4UHRxCFxSEbEEIrHD+h0xD+REGvUWkyvT+XlHJvAEYE87EfaPT8Z9EFRLgnE8ol1xxBTxaYOyTENeex4LdK7T2ZibV9vGH+vA1PTLrBZmsnTy6fronSvx8PHDnJ/4CNkCB0IqvNmy2/BnPb7PSHa2xjZMRxLY2vnIbbA68KIaZw1EFWj+EyJxCxF5/zWaE+TsnTXveHCc8Xdy62Bts0WTrtUTLrdVa9neMBErfZ49KjlPAnMcslWUMUxW0JsIJFbJQhCRdgFZxJtJ+tplbQAnd+ou7qyLusFson9Ue6COj+KOZgDXug/lImmPKdDbeKJiu4qhSAiBuHwWevTI3O/zWaHO6E0Cw09tUodqUlYVaPXif8nGST5yRy5t0GtwTvg1QfGdcUE3y0EK9EiPADJCm9sg69eZoo98UUQcAFxuwVyciashFWULDW/qN1lRaO67E8lDpGbZrKav9liRTudE3J9XCI+GlUaQ7OPfH85RiLTGkXXewKKDQUOl/suTz3sJD/rskGLpPima3P5JWVCQ4DJsSos2n8bv2NeKBM6z9CEYqdB/INQy8o5U+kwmYDaJTWAEzsqeo+z8TBXSvQJzDGskw1NWYJgvQZbUpi6uAiK2DVTkz+paSsvFUSNno9gops/EZcLru6Vxo8h4gHOzy6Rgz9PsbhPTiGdbAKt/zRNX0rA1U2NkNhQEWX930XxX0Ec27IvJdm6D/Z7TbrnPHN2XHEXgxHaclgSVCmnnfqwmwspX1G1EGUWTIskP+Xur8GiPxYPhSkbiRahq7l96ZOTVHKPpUBidezewGdW+aQp3uQIEcS5c8M4E58u8ST+Mn1+WEeHb37CwyYNvaC94IpyxfTQH4maK9LMGDwNxTbfOD7bMW+bWWwpzaXOYy/Zb6F+tWHYjy4Xlfsjs066DBt8rPqHfyKUY8f2aM0mfmwkcpfX8SjV7T2TVeVU2EoonFXFEObjQQE8z5JtGMgYxNHveugdhDQXHe8wNtBHZrGCe4cIMn0OOHSiaAQh4t6D+fFRsHYmPaqrFteCWisCdIqWVzd8g+5FCk6Yp/GAkEcA4+vZz7As7N27WbltnIyDKSU62j9S4/si72jrSsBfKkher2/Py/F3R/+bb5/PS4p2800JH6o1Tg/K/A33tps7cSUCudSibN57crrKwysBVlbTAfLJ7CxZAUUIQCchyEtueuiBoLd4raHeeMMkO+8Ck5JLGdotLiiETRDU7UOjlIOrNR4hJXed8/htNpfs3pOuFrjWiQfpq0ww58jF3nQv+l/u8OBXI7cBNFlle3G6ev2L8d711gIVGY9Y8kfh/3f7EigKQQTPJocYb8nbCAMtx8rH+xQJGYhqtrpIW8HkoVupQIqHrsKAVCcJI79T40yfVgWoe+Cg63djLL8ste4q/ux9hUWO5wWRCpLyfo/d6Y8hO39OCExRuUbjrIFvUQnoj2YJQ2MJfMWoRIxJijxsPCv3G1oySrZ2YIodYRsYI8VInzxiR0jJLeXyTpV0r0WmqSTchnx4HYQLA8iD7tu0AbcdYdyyEWbhW2+PFK9FqF1LbT5OeJZiMf0ko/FIREmYHG0SgZ/5EM2pUiE5P0ItBHxSnrBD1xfEoa4DBGyTHtg2N0rPV8wMPJESQJNZw/QnsvaaEBzTHfcTKPNBpTPFMmoJeXfqPvCA/3+j6zT2CAOpkkVbVJBw057fJAyFqegg3lrLgAsOFBRhMNfHyTYZMI1NLHcthmizp2NDGNYWxISAedVQCe34b3fRO9jUeRR8N7UUlfcJi7XMdKqhRsidnDcL6Z2XaLkD0kDBSjrMARJMcmoGd+VxyypNvJyfp/eVUzAx41kr8YfnJqrCuAqjsOJ8f9awt+WLCpqTvh8F1xpSMY32JODqWVnBXHJUJr3/sAWcp/byi9VjIyWGyOJt3I1SW/DKNwAqz9DC6BKFGoTk8cKxhc8Af237foMsUyzBA+ATEDtMvsKOt9msFYjkXG7qGb62SDDvRmtQC5xgCJyNlNz8qZJwOZ9PBDGIhWdlyxvmWWBoXFbbpi+IteDrPO5fwAUOqFts+rLxXXSO+M8JAVYd9XpsJ6D8U6sGT27iShDqufR3e0o/v590/GQ0sOoK9Ju1PpL+D13fTwHo9Rg8pgczftv5tuzzQduigL+1QExzAZFa8iZJRa7LWdja3aS7i5dEVd9/TtqCUblcshthUgn4pd37LFiAf++DpjrZMMT0ZfCfq7k77Af7/ilPxTcayV51mA2zXUWOmDv4O+93disKq/P1+xrCOJlJiCX/mWSS1uLLX/YpWWHkUss6DPU+7yys+Ss5erJuAxMtXXRyWY57Do0r5lziVo/9v9OHERUbZI+3ONL80yPLCwJxU9ISW01T1hRnTpaNfSAI1MUxLYsVYfso6BMKNpJcKBdPEYO8WMpyhUNNLHOXXSUs7q02I7NkPoalorVQh5/IAtW8sa71A5Rj5JDBzfQYyWqGdawllqaiuwHifWrDxR5WwoMID2uRDSTX5cB8JtH9wucHJjpV6qcZORK4iwY0T8KDMz4s6VmMJUut8ZI8HnxPxtmFxSlbLRgtOdyULcEwgdFE48aA8FfUO2NiJyr6RADyny2rI2jf6YwoHtt87Jmu5T+aZx44lL8Qb49s7O9uHDJpxq98nSWYCIrZXVocemXTzw6vhGOwIFpuz90bCGKO3LMEL/+ZmrhtZL1kbqokU9kVnoUBGxmSCU7l08SpNP2Zgh6G2Y80kmG+/a1cY+mvEQDT1VlGDlirjicG6bilbqcKYyLJg+PJi0TuLo9r9UtE/DRzqLBRBJVf9uJHKEDkKKWzv0BfELbLZ/N/V3Uy95TiHE+m0u228p0IQ5zwPhrLU/t+iQIObFX8+SS0uqULigWsM4pgQyx4A2TbbwoaIRg1ipU0gr0fVyPn6R12mLJcHk7j5j7Nuq1VbaXuSmVvCukaREo6oq0D8yBxnPNWwMPuMMWAKbHcGHMtln+U3TbfwCC3gh+pyzDb2hypmV4pXRKyk2e4uaFs9HDKXa4vugG6MEnwyAARTzUP2T2H+ZjA87TLxSxra1vGU4DVHAR1ZFJ34LLRsA/6n3ZRnUGr0VWaiTy1MB89u3YoqFzcqyyOevXh/IHjklfN5n2KNR8jChc71lfJrPis5incf5cZEEKcvEU7eC/gXa3SV4vWplv5NR6PRIcPgm1t/7XCJUzPiZFRl+HUZa5CMo6+o0p2AyOpE6FHqMqfOUtF97tc8zL/nJca7MYVyLi/vuToN/c/1EDI1MAHT1hjxeFv9aUB7BdW+rvzeAOZUaQ2nZGCm245uP4s8+Ququaa76+GsBeNooUdOqGax4bwPYBjOswckADG5c2AON1odcwkbfu5YmynkBinMs8TFa48Op6mmJpbK3xQx5XGrumXBH8g6ABiHUqUuY6r7uMQ6kzB2ixcQNbFiXw1UT5uiYUit2aXRN6oVulxzNEPeWeUUcLBJ3935sj65Bqf92io2YJjVYIHd0yGc8mBL+nUQ5R1l9y/30Mx46G5cfgBjtpq0bgtI+Vr9biP/j7FVU1uo+1UjIMF6GfV+Bd6ZZhLBNFb6cda91qsjCxBt1j7L088aSVBSjibmi4X/6qgE/YsuqKWB0+NxWopWW2z31QFrX55tRQzsgkQZytHHLWcYCYL8FTB5M4h7GWpEat3YfGl0xjzRkZt7fGObxLmcl4rLc3FGHschgmuM/tg5wpI4HrHb+Rwi27UFGCiywdKxpmE+oRY3dZW5GPjf5r4bUd+GoRM4lgNcicniXZ7cwYRIUEaW/QxoYl/tQTiww0zOZEu7ACoLoufu/X3e0INCzPw9U8+i7m2xyNN2sCpgt26oYey9eKeddA80HlObkXslk81XQ/0oDQXqzO+rbbaumRuWs7d4U2kiNmgi0e8r562NGubYQr8oi3x5lZdUPq5G7l6aN53fAzUCiwD9EkA+2OUnSMaT7HU5ok0/G83aBqu6qnlGTyDGy9/zUtn9zQPjUlhtibhuDcGIL+vYVfizDPr1X+ZPiEh+MoXd18Dodb8sxED3iZ99U5gXjN6U7KWiH2Xg7ax5P4mLaMtkmL5O/pS/lGZ/OfvKTPCEwTuF4/4hL4p2c1+XtdSKMVcgYyQ/dsqpHE+T45AmgDJDzT8szlwYP+9rOH6MRHoy/Q6pqdR37giNUuJB9MmtkeQRCJo+i8uQV1hYKRPALMHQmpNvmgdkGrmMHjIPsQygxMy1aS5vXwQaS1wPsg/mh69avNjaGSSvN2GgVUvdky4+y+B01f3yWeHTOruYA0DR0KwXzuIdi0ABxYjBpISCa2UU+pGRO16YQte5sIXQHkxVOCi7JEYWmht7O8mLuiwVXoJNqce9EpXdDZEGV1oL8PWX0YUj0izqVf4GHUgc8/kA+afkTD6Gp50Q5SwIiwEBhpr7ImP6ZqAIT88jW3IffqeKE+R893bBz/yE4g1MTrxzvM2sgtCF9h6ZskA6GeIBrNASuORdXXoxVli8vEGhAZPSGrtEHKI3WKu5B2HBy8fPsbyuj+yEOsVodY4j1bBJ5LpDknrZPdlvg/IrAodbfE+unU2UaqHs2gPC6zT2tjHsDfbjfMUsN2zFMOsUbGxaouKoYFMkvAlx1irt7nHilY4JGhXPwX9h2rrFU7WFEWWJOkya0FPxc5saVbjnZQDMqxBBWmpvvtobcIAAy/ahu4KqEv0KLAeXjaECN0aigNqcHT5o4FlsvDGAaqAhHibTHKyNxo5OMWUMdwdpOFA5YMlIjFYlafHlJYjhDER3zTwSMUQCeqyGFyhPt6+65pVrDv1G4hFpqlE3RRr9jLFvxp0krq4azHxrcYXeBMSiyRUcksC3Lf7jprmlH0bHPdxawzmcmcqCyezM/UA6GdRqAO5D6R1Xs+De6fJjPsicjOzVMSf2q4BOrFLMMIW+i+7o7VJRkAkuP3zeoyvBhTVWwLkebjB+qUvE59/tiyHnctGs7v0tnvmvca1d4+9FQYH2wlGEOeBEO+xzcvEsyesg/hYW6a97Dkxhf4of4v4fWrMaWhC935OIRrW3nKH0IuJszae+6CRasS2xwRqqhs/qX8iTBwWLTAj9vuKjfikhodKDfCtFOp79IePYrUdKRFvPGzuvzdus6zXz2vW4lGGcd6skG7V8/LnAL/kX8KSF0sgJvn/f9I2GPnIYYxtoVSG2wS0VSRqRo5jUY02LVdmpHMUyhdfYatE1ECx3ppySBA3RyDDsWnZWMzVQI5iq7k53qYZ7nIfVhi9Ls+pO/FIq238faw/vJofU9rqN4qLZiBnhhBnP9Agfp1/jwypJ5Av/8birayfzwvfdTz7H+op3F+B+zpK24MeDPk4m5ZGKGa2Vtz27lxIckCzZJ0igvVu2rr+WeVQKjQnzziTKOqNyprFrcwQOtUuzHA58V0+8sqe7RDkmAHNRu1jPXMJ4wy2AW67YvGZfyWZxQMA7HmpSp3QhssTY15P5jNs6UAyyDXI684MxL2wxLkSJAcBHpPTnep8jwDrLw7SGr0G89HfC6K/qwqpatZjEpmjDjI2VRtpFaFAU7IwOsTbB3Kxo0YSHQOLSfJW45u+t7rnccYvBUnX84yUmahcEhYbJdLUY2utoPIUdAVw1DpTmR9zFm0ih1Y4DHDF7AiPak+/VQGE+qEeE2LzBzV5Qpc+KlZarZib45cNs2H/7rr39GKEaFQzevD5WXcQzTlWpQvs8W7ztyt+SMBnfWvt5vWe7BA6hft7qmd6Li0N6KoGXwA8GwZVWisk0JY9QOX55cxkrrVVnjEb3Psl6Rc89Q+cOGDZEQPk8wdoo6C9R8d4IoiFjEcK300uPeui4v9+MiXGyyXfIGrNPc8T46iMinWXnyACkqx5d+JQwd+pGeWRgUdtCpSwqyo75RgyJC99IKs6fwpwskoL2z6EuU7PE24f1xWRaMZvk3n2Ki0DNiNA2DtHY4b45cdKuiFFaJu4vuY8d9Yk4WxJ+YlQk4mF3tFfciGGeBKSz6EfaLP6cwPwcUuxOnlbYLV5m2lG3HxW8m4D/o0P7vNdC4b/eAxZXWMG/VK95I774Chy4bQ5mOD1kWo2Grmv4rFmBoQXihbwRd1Yd+DX2VLT7KQEC9nrTih+mFD1/h0wEcXDIoyvh3z6j7wFfUwC5IzwqNKygz1RWBfSqX4VBmUs247ubJAlbuHVyCr64ap8s/5hjQXC1mnrjV0SGbOW/8iRS0SvXM0ngMjKa9pHEydD+YpR4o1sOJz0DoRs/+n49wz4iNdTIL6L7KJEEWb5qOwh1XquKPJpXzkUyYnoGJ2MWbkZ83LWNPqiZHit6O0o1/ShjCRSff+q4kn5WujRJsW+GoPOxSXIDYimjMTt3l1fCwUfGuVdBYrNF1+CRxcS6p56rdN7tEphmViP7Nyqbx9FmefYrBwr82vO1XzL20PmleAc4qOUmWAPMQVqfTQFZ1E6bSLDOVq8vnM6GO1m02vT037W776liqxK15jbTRg3xtz+cGIssp9fDsnvKIeqmIGW3nrlPzO0ffsgS1WQVt9/sI5hSpvUnAJULgKx5BTPqSseXQnxVu5XI1iLEwPkaxEChScO1nj6KW1X79BVLC5l8otFbRuYOkA+UbryN6y23g5rzxNStHyYIr7pcXrqqod02Wp3EL4jazKKUc/njFpq/IVBlvWb6V1pWcNm5A99J+GIwBnChzAFBFpfPJQ9V0ND3Bnafg2NRSvLZMdaTfOrvGUt8Mc1EADxUCMxHCGO3pvJJRWNER2p2eiUJh4WG08bkMzqeWYCTVerxNeEWQYHz1hA0/VZ6Sj1rPdir0E4Dxm4ihEH8RjScDOpxXw6KzUNdchU0p4meh41UReQtcLhdl+fhyfM8CaLZuUrgE5SFM8sHtGH2h4jbH+2/WG9abzvQswCUasefDEaTcmqFPpn8P1cQyvquav2/hFYeKz6BZfg2RZ5Qsyv4bda/CtgDUoxo+1eIYJX74f5UqeDTC/AVO/S5/rPAdXcMZ4wKb4SBpWLZTToPKe3yHVAoBh+VOeEXCuWFzbLdEJVbkm9DseTZs7/fU2lrAEOrRoK9LLjACpOdgiR8D9Cf8nGhqNZOdEgA/x1cBqqy60ycUoQAdSwlBAz5ziJ4J2MAq87NgnjCMCJptAkgHwV5c4blyFyStdy2a/jFB1HUyLj7ZNq7pmrixoPQSsx4NeLyQCjP8OF83DWIDprxGfCi8ucPExP10I/+fRDnq8esHdzUXkFeC/IWpl43SrLzlm7xDLnZhX6wp/fuY75T2RjeAeraWeZ996WU8q78BGw0jcPv5nR82/muDy8cFEG6NhwocN4Dp6PSBfyyEMN9oqioaY+UieBg+CNl2zk0gPY6eRdWQkVwhtMzMyKyRFJz9UMFrbrHwCN5fBn5oR4kQM+u/HXlkFnGlp3SOXTjFxhkfPSLu8tRi/CTJ1OBKejHi3I/MCMnRpYcvUMmJH1VADYHMHYTk3x8fDeIqEOwbChBeTuoQZ9/iUH3q2pisvC7hpSgQtDFcV307t1PhcfcP3L55RH4FDqPmT0xn4BjpNvdA9+M7a3ZlIO6oW9ceX/8kFFBRKQpgGpDYzs8PvT8wHktFJW9NHQfsV7u6gtlGy6Yu4yIULaA1ARAfX+goxYQbsoWnWNmmr0fowPA/zcZ296PNMupvDu0y1eMYLis1lwcSIhUDXcP5gM8DXAB2UxiLXe6ImmHt/9fW0+JMoiFpo6lk3M/sFLH4ssWUFSXAx2Snc72KknORwcDYCnh3jwCBsHTaLC3fw8baUHctHN2D81WahzrcKd75HM2Dd1oXXbEpU5JgD3FtFbMEtTVqXW3TmA+NPF6zv64z00DunTcdvnkbgBTq6FOQ/9X3lZVqnDqAtocNjosWuj/53dnavBUgCXsmQupYEQZ2X0d1dc8T2ynDxay87iYdEqT2xwepZMzm7uAReMo4suc7LFmv+8i1SDKYi/QidT1pBQrFXIgEji45wX5T0W+UAfHxutKVxIcQ+PwitqLJzMDuR/8AGox/s2lc4MjP2UsoEe7lSaOnMiaDFouDq5ByCzCdcZ9s9aBlmeGJbnY3XYuBCiDU6nip5ZRJ2FbZ1IMPwAz7WteH6ai0mg8/pIhUUi7fzuFV6kl0jwgzuaNkWY3zb3XreXuu19KGiEYVifCiQPl4I0Im19XbsRrt4jhzI5XkG9mvJLT4J37dxQq2Qq7o/TJnwl9GemmBJtEcb0TwlaSNhJuxgsm7ih7H5BiWjTMFAEBDMNWWF6KlBDANsIqNUtZ4nNvND3HXHDF/m5FGqBa+Y3ib0S3uC9sV/kQwt9OHxNnjtTngW2KgSQ5iBaivai9KSXxGb/x0HNVC3WX1NRuDxJ0WBb3NJr4V2UDpK+bV/h+FhuomT57MK7WM5CN/dvVq3hGznOg04mbdT/g2q/WBlsA4YBkiQwOwrWlumz9LU61+u/fuIbgEG7et1LvqoE+YrCZ+4XvtFBfElHa63OJ5UFmAFLxQAWFj2uuMdL9WUzxfd9G2tiy9olSuwiLCgvQIDGcy1++js0sQqjwdIWP/ywBjwuW7xp9bHjvecdyvUGDKdthTLNszGJRTaXus+DZwzbFuX2uQS8tg+qksAKJhpasPj2ssQSmzvD0spRJAjE4ZWV5THTxVNhXaH/PV2ri50oKlvw3JcCZHD/Lg/B2ANGUspZhrlOtD545ZMcA5fGik8MA3QRnSFdi0pHATQ+R9Wqxn7ccNzUEHv4fKxlcBUIQ7ijh8cowL/4Ek71kiKDEJTvuM9GbgryerITWKA3JWDr+VzH7Dn7CfhzabbYjG0l09UEvF1w3NSWO3IDhYXWlqI9eEIb1N6drhi3nQg89esIh3+Cr+qoTGoSMfZanUzNoRcS0HNyuWNRgEby7pmpOlpiy6VbwRpMKHgTRKpFePY0ulx4t3bu6lHkffPfM1SefZLy9deWahCnJp/sFsp0fAOtGXnO26RQfNWZYi96SHBX2gepQbFVfXjnZmS3VMv5chZEI4PDFR9Hc8GL9xy667WyJEoSbLiYzcLQtjCQjJj2kEZH5eMFsbZ/vfG89Lpbfwq71WdkXcbSE6i559nxvYxZCem3dDcIbAmJ5+qljX2CvEF4HDvz6NvxiS+wCiziC28nh0LFAQXjrnBiuYLR3Ag2wonOPL0HYUug7ERInkAg3nsV53HxGTkzqBoLSjHJNumovKZVPCusv7zdIKxeCBQ3/Q2/EpwGJ3XaNQad2O+KKvt+MAu3XYGekRkZmuYij5MGKDojBgf31j4J99ETQ5k0ZpXjoMd+bIiFWW4mo2G+1u3vWjxAaqqPxgCZHIFWHyvLj3AdqbSVuseSh+rJVjrLlAKX15CSItUQ3TeT1udu2fH3ejj5OXOsJ5hocOBrzGQ53SXDOWiBT/w1l4vpJdPp7/d0nHvXLfM2Pxnf6E8+c4tb0PXwxaovSpTGNO8xQOEK2zC3u5uAmK7sN9yQvnudqicaoCfc3bqK5Nj0X+gjhCShBFWdLRQexk8yeydgtz9Cn28wV1tYiv58eSDRLJEPas0G+3OMcz5NqCYpGd3TZ7+SFxvI5G8vZh/LAwwn2HNJFDCOIzeTjyUpn4xAqHnUq1OeSIm/xatRUNC0eFpTYHifQbsoUpMfvFjj6I6cFrmTTPCnyi9WdG5sUQmIINsrbtgRQ7i/Bc8jT4fwdY4JYAWkx/saLqg9EJJXLhdPqqPrx9GYsjIfiZA03lrCLho+AHvh1UzsXSOE/y/tz0BEEw8embTAKg9oCpuoyZjzfYxn/+bkv6hMZZTLynT35MQcH5PVPnJmvV349dg9dqrOpNAZmn04WCEh7bR7Js4DMPWBATWOuZM4/kj3Bqx+Y0kGnbFNtUVRiJJfi15wokLNTLPKFhN/20A7cRVAMfBXV7MnWNT6AZtpc6ibdXGmaoXzo7RtPNzAka8zX6UgVHAuqYPQYtH+etXs9jtdXN/MAH/utXmZyjdBzMqfUHHQxm/cSzo/ORtRzSGTs/oRuU+9SSD9Asbr565XvfxeDMsKw+i5ikGccq/qKMpiWW3H5U4AMuOE39plLTvhrwr2V+Hez+u19flwN04f11ohz6V2LgelNK8Qa1kOaX3Kwa7Ymk1HXYFDtiVeLxKUZ421/PP/a0RzEfc/teRT1NXT861Be81kimSAPaGjg8qrBBFqbQkfJ8tPMLFnAMhcFefh7BS+Fe3EsMZk9tC7S01HUJ+Pi7f4eSvJsd00zEf1U/AWrQuLEqfnSf0h/tCMvU8mdv1AXS4baOHuYeUEXhDEG9qDydVdah0JnsXqRyCwwKxuFYn/g4oCfCsW3maXSlAgDUe3zX5wdetY6A23Xju+BO11Z9h19xKEXMryQ25Hne8JWLV+lRairsoq9UDsrlJiULVQbVrah7Dt6twQgdIXxsDrWjF/nu7dfT4KjF1S543L3Xi4fyyJCq+urZEcqm4XMm78oOKyN4nuSHJNRvwuCEDdvTG/UISmGDgSkjdQQmVFL5ZoUudugGBCTYluWNRhGFrhGa1KiFnQwhInGJrXY2kWy2fvyvzsPIzPxs5aKscKhSIo+JeVcBWrOraMdM1Vc3K1D7QJhB0edkelvPsQyvFKHJVgv7ldVsJ2Qq1bc+0CYhouT3Pqdk11kfkqSldwH74HKdoxj8R2RiUsUKIzByinOqroMD7a8Z6ddcNqLkI0RkF90PD0dXBKKdzMpj3IiZJ3rtVaqZf0Q2hgWLjQt0PL3PVocqdIi4f33QCOy/NEscI4dUi7BkJD6WsMHLP0dVoKAn8sTDpc9aVJZfTShRSg29ksVr8FSVssdGUP18xqlz+PLcjFwSuOIe7s6SPmgP30nxk4rTCPkh7qKhAQUZ4rJz+ZAuBS9OGqa8/TNg22o7DzoI/1hZ8WExWx9gaj5EtXqcuZH2wGN9AoIriu+lQ7/wD8+HzqywnY3N+O4dwmcZdRaW8kkpf+bi1BJrhWZzAtosQal6fSnPrqiMXS9s2/4x2TCntKsp0ZXeHFjm+jSv85JlkE9yLbXSn+nunVfZrcjW4TAw1Wu7BTO+KV6y/aazSL+sbmz92HboerQ4eZuIqase2NdOW5oBuchBdg11IbkQGij5SYXFFyPsIcISxuwTlsiXbCLdrmBUk8xj7iZ4p62GeQMzpn0xcK+WoPqi87SraYSlR5o0AYXruzhQqfqOX9+1a3ZPOToiJ18EZ6CH9UZYW7fMpd0FYcJ9HJLazQpMV4QGVJlhyFwqSexBccZpyGa/ToQKsCNHBnY6P0hyuY3OADMmerczqHiZOIMNMnil1Iq/0o+QTpGlDQoaw8UIZFj8vZ8lwFT6sF2NQzsT0VaFvbFnQ3jKHWePOTjuruTvJ66/X9w/Uw2SO7hscwStdnBqeaYVE6mWVucWFiLOH3XBtqiisCebziT0rnLpTcPXjsy4v58T2sznMEV8gEAbMfe4meYwrps23/TfenHVs0gu0hdHTbgX4Qz644EIG08ARmQQp3G7Mq7U0xN0f08mPL2MERp3W9Dm2YGA6GYAOkyrMQ3n4lgx321KH8Dc4N55EXqwp/8UBCUKAdzxCZ+4b0AlzTtUGKqYksOxXa6x70rXdvP7A2D5NaDALgly9GTjd0q3gBHLgl9OkHicK4ruJmaz6TVhRIEiTTzhQi9d8x2I90tk8gFzMNkE8KPXvUg4Ck5KJrzjTXHqShBBPIAVKyyFoMFwn+zZhbxZBpL9HtoWgLTjlgEtr6e5omsbXeyfISUuJ75E5kejGZhooGlKRm78BZo+gElfRnXzbXvdOIDgncLbpTIiumKOqEzRI20KQm6YY8zrLOxmwJh9sUJCgMsvs7Cbbsk446/yVjNOyTdpm91/T7Keyu+MzQsUDLXvsfQUtxyvJ58WiRhtAa0e24y1xhhvNiyROvKAg8pednVdMfEQDUexs7IblvdL8HL3dWR0tKMrITDmlYjtSTj6kdBomPL8H/4B3mi8Urr2eHki/HtfRrVGi6FjKwg5li0ToZHZBZNuniP0D+COqOWW6XGxGi1UKyoazhF/Zqk/dhQxVkciwCMZz8m4oTeqEfLnTxmrJJlKHcQNnfQ2YyP4GzRme007aSrVdyxBKDB8I76tb86iQDKnmrP+nowiq5KVkrBq+wFcruh1lBZOP6aiwgto84rRFjUkG0Tx7E9f3+15ehE1XK5P5GaK5W9T0g1HXjgsEIfgqn25DKBQvyEoxSdetHaWv/YYEeyJWOl1B+3XqtXgaAUEV1YROhmzX4808FZU8Pwp16XRWYMxjZi8CZPjNbW6jCaXAWYeLpAYWOsxoku27riHMja5mWObmVOh7w/UnRb+GSRh7mxwo3qVntYx6dtFWZNgxSzj90O3gmK9QyChdJBmS9Gy73Liq8lgePcNj9/YSkIgCG3YfFGOw+7yRp6Oc2dLuouniXObSfmQeSxEYnejSEhhKHwxFLG+xlZyaoQonbQdCiCBGl3niMtpBtyQK8w7y479pYOmhZFzO0KZc3igykUARH1cOylSrMzN0rv6FRLYYd+/6APLML1vjuyISPb2wfZi9o0tOmZZXKn4TMWW2bMhWtPUMgdTkjiT6LTKMGHWoT+YNPa8rX0JClLVV7+EjXb2COnqxeIkmFWcYAU2iNOAPk7UDTAoZdluNUc4N/GuguG6fSwZZjlBXmLPJb54bf2dp1EEX/Qgyf0eCUbil11apfuDSzzpcqD/D0O6qZ6hQsfVPchkC7+1oegiyXLo6qeXcXjZD33DrHn/rbkG8sKqhhYqB7Hs+T2dWND6ZZITs4MZReexr2XSF/U7esZoOjHXoXUChK7j1y4uQ5qAJqbUmIHDKfzucwbXu4rn0wfuO3FHdJ67gYrv8tzfk6Mgjnat1mwmi3DjlXpXZW7lNT6+w8BGl7n/06sNllTsS9PhlONcDDDb2AVmxbUZgu8oJgnaG1vcPCFMubgqq41Ih8mVoOc0WHizD8vg0V1bcuMW2bdJMUWL1DQsi//l3B2HbhAxmhNi7QglMbtxcNGGSlkioE9jNV/9nqbXu/m/2SRi8/vE4PMDWyKLrIAu1mU5yXvZYqlOYmO2N+/V+zK5zy9bpH+faqDvNyB5T14qewiky3OlsX8bTf/Eey81C4IQRSbpSq41yXX/7sarZlAZYHuOBPXWxadTsewhpnRBFpWFbrbU1rl5mghMaMYPJtYBD28GMIhS10+oAE3FH5WdK9c+YCs4vDgG81UpEMOIqQzC31KexGoWZaEfCqyl0X7hUNgMoyxuFCh8rDbFHOhtOXV47md4nvEHBnneI+fZGDtt9e3+QtV4UOzrXr48fjyqEtEYhKZ8RI2ntBB8QR459bKEwRycYMmH5WGt0kuTFBie1kamdxh2ceKqDbTihiDWf7eKLSG/Hl2QW928+XtpylNbtQ22ARvYbNhE+Vi+AT5feQyFX2IiMobjvDWxxlO3OprIP8EQQy2H3AfkNQKqvgN4wHTfgLhS07WFbDEZVTdFCfImnJuzvwWcnJ+T2/pNci9FejaAuJryqOmDNxGSL49Ux/ZfgOVKi2b+Xuy3eQ1/ngmEvyf/DT3eICwhH6HDsORlwEHGMrLezqSldszEkamF1XoalWAt727amrekcEVQH5BIjyDQcEoBwZtiEv4LPYtIcCNUA8JESeTOevLUSgIALMTPqlqzEJ2h0EDdDbgJD8jNKPbyfejnB8RWKAooK/flvpC6pV3EuvtvpjIfFt8wH5TtfL0hDENfQM1S3Qlmucc90xXsjYQZjzm0AOjLKIiy6iIbgRk0oW04xb1md/4P+2rf1ZCwJoipY0MS48PRnOgMQsrBvQwhdlRZWDmom3j0T16loS01Q9MO3gOOcz91OeCbMMt4zpkZ/FbBpzhgdC2T3R9N2DJgHvzkul0afinFLp4Ik0jfbDcFdRkMsOx4B5KHKpIg/bTNfIuyTR99KDGVpIuR05TAW6OjDoxZM1w8H1T5HT/FQhwEVDPzUTnPdtr3iAVT4R/r5y37kB8gpDqMP+ioBGnBVcgGqb3BTzDuApX3ut14qEMRc2Zcv5M6MbGwPuV76bbOA2CwqX/sgD1IQkwqryrvpTt8s9e7CLHDegO6cfChIFaCbWknzunyIeTXCDUZfoYDeIvkiBdUrD/oqBlL+Kx1mnRmF8RfAxq0uQSU1+yeaszMezdfkmAjXusV/bkqYc7/mI5OeqAFxyrYglzJ+1a+zaiQYhErZx2BY8v/0/6+PWR2/Ic13z/whcjQuC4XR0VWzVRqwzDC027xRD+jiXze3QNTPix4/xnub6BSZPngCUODuD7cXIHtkXXuXIbB//28p0fvpxRwyz6J3nbhhynk6eIrbc5vaLfHwea84lx9Vf5dIEA4R9buiEbt/yVt6f3gdsi7cs91mmP1j/cPC5rx5F0+FUitod2/0HNUkKxD4ZHG+0AXPkJPyzb0JUKFTg9E6BB8AtV2vDZoQj4RPQWxsr6NfvLZAHBhsjbHiWmQhrjQCeCRVgvwemMmPe8ihUysZEOGsQuogvgPFuQ1Jcbwnnho/WkI0bYXn0trlHAlAyXE8l1ZdWG+OkYEuh1gzaFJnKLSeIzuYUiCffztA97XUY3zyXmdaDvi42Ppk4zB4efAop8mU0bEAUn+jt/oI/PsR/7ejEh8NB+3PivaE5vRmLKVSImy/9xhvn4AjyzKA8oio9wNjyG4RkZAGcN4RgOsT/TYUoXaEFzm5OHDOgaOWWhrViV/nvP6HCZibFMdvWcTV0tYCHbmK3/Gzhn8OWCzhpixnYl4PC2PJo5aEZa4UW5QQKlfOu7cXwYrlb/BHU8oH6tLontotw9zzSV6SR3/l4m8V2HobNvk7cZmagunAme5bXFU7xV2MHRavEearzxwK9nbZBO2tLClZUNcHflUaGZb+ofpZ0tN72SMXA2mjyfWAnJjcR9XvuH46sOl3TIfvIQqfET3XLC9OJ2kmuwaZ2XuQgVId6y4YLRAIqBTpI8y5I4fru0ttVWoFN7kZYWI3vuEYkCIMp5H4XUfQXGQ1+rtrNnHjlioiAX1cD1PjNj1h9q6QNgbJiXzO4eToG6uffj4X+fv6uZeURnJYu+ALb9xotzeEl1evFmtxGUYF+aOmCoHdbmW1sc4TEWao0DwEGBJT1954Cm/4CejkJcnS/o/TiKorWcBeL3nzWDaF5/IsOv4vJ3Ev0jxMqSRyb9j0534iwjfdUEpiQQ1xowVEgEoMo+ir5LB9hE6EpyZ+aEXpRXl+uKKu1qdrTIovMB+y4uTghNi1DFVbP9cqhz4zoLM5EwdenGCjykd1qoIQndEyXkoI/iWelsq3LxzBD1wQnj7iXKgCQIAq5p7o1SaeYMg7qKYM6yo3icgZ3O6/9Qk9EsgyeztcsG/32wqny1QXaHbbB/LQ+UeH+42YP+b7Gc95F0arveuSR47c+KXSkfaOlLub2c33KjB7QllAlz0az0qFsbEwB8V429ysaNQ7a4jcaotoQUvdHc+QBpTIuG7P6H7fSLRgrpjtzga0yyMwpwWWvfmQZkDGAr88rQwA0OY4RSQ/baw57YHclojbARPoYpWDOoCWwy1NefKFKFBA1VhcfZ+gErKFvfUtV1KQOt3mxEXbzwCagQXJ/oQNGaRTdmnJSw8xEDVQ952WNG6366khHPjcuWyIs9OWBgCE/GDNdtNPSRF1rZNBEMNihCdqMJVeHDz3TvhisNvaA4CoJu8Z0fqXOOP9rBkCoDHWu8DG06FxMCrmpAlAGqQ9WRCfZEsi9lGVAbSUteRlofdhpvEdDttO1gH/j7Bc1s9e3y/iqPzw/zQ2jJL1W7xM5fH4QUdIhnEXn0r9wdH1csOslFlWjf1byQYGlGTbNmrQA7PqRurYImccxrIprfg8jrCuHCF1YKMzcd7CipeLuSQKmhgLC8FORWwi7lKs7Gw4++5VQuLzXKwqKfGpJDdEZyQUw5RfvbX1ENzhNrYhbGXu2pYbC1O4OkXtS4xjpAA2Wi4E5mUnYChc0UVl27/hh8GyWSu4vAwB5UsxeKtnwxKy4aiSJ0Woa57Dh28bx70HQJ389JY8SRDFg9kmmf23D0NtbFjSKl2fQuLq3qIH1Sikc6ilTGh14kJDhWwxLDkbxUNha3+WTgtr1HopK5FrOd9x1yHlbPmEKv9UvFEfMyaa8DEPrpgb+oUyyCexsHvTROujkZJgvwLUTjADGNxaTlHBBR6TuCGmtD2mOhS/9GaTsnVZb529Qs5f7hV3Hm7CRG9IBmoeNOoL8Wl+uGS0DkbcTR0XbYcVsmY7yQGUxwLXY18rMK5B4NdYU4LH5sGG7LltYZt4VDpQUvEoTTBY3pwZW3+/sS5xglpS8PQ/FNLGqnGE+wEuRX662vwCLJQoy2fH73mkd16P1sJfDl0n7hXVYcXEvyqgrfTgOLZSwbM4Qvb9tQOJtjJ9pU97D2WgfwoKPzQdJRRVej3DNt4zTlQdxX4pqMXVw+TPA9InEJKji7IC1vMMG2kOhPzkQNy9BGVreb3IavX9vKAnyx1Wi43eUIXyBDtzVJ1l8UIVstbOfhXFKP6b94NjJRhLRh6j5+uREkZFF5qDUzeTcLQlPa0lXib5cEntz5HGOdFRvZ1zmHsWLashZl6B7PIIoWisqMqEjYTZEP/bEYC+vYZzX5NcM1hfq5/6LBPnIZ0avupMsM7a+77ui7+qYslx6i0deYN/nYKReRjQVlHNrMxSmbaZOO1l9gfv5HmHLhDH6qXjYib2d13AgwUXYDj7a7PpHHZzndQrhYIt5ATFk3jMv2E0CHcwg4alfja4iwBgEVUcNMPn9nF/VeO4Y1bhnWax6aubBhLrVZO8iNu4D//3NCHSXeY5sc4ygN8DqAj/ph3HZ3ZvSz6ynUpH7c4AJPeqzShs69mGIY8BvpU/XQAFYDtCofT0b3xFOTzWMRnfz5ZJqlJuSf1wa4mj/ldkv/C8HliShMppEnHkIQijK9TYt85N4F/HwJH+Eg+tBx+sR8oRwzs0K9pQFykEub+as3bzF4PRXvY3/YGSmHkhFiCWdNZHMBcJk9IgHiorAO6dpUA1gstZWSWwemNO/cezjeOIF0riVbeD1OJpdQdgWBXYNBcPqIqtTUiz7NxbTJ56igI8kF3z7jeQ/dksqFKzlp4cgkvyX7y6cHfztcdYJX+D4oZ7Izb/i8OjRqudEpb/NTuk8oEwEphqnj1a0NG1Ty0IHfanPvDPk1Pd5DGFJVkKsnDTVENINeVIw9Gwpz56asGkxz9lG0OT41fsGIj36lXIls/fQYL1tqjisWTZU88UtCJMvv1GGlwitK7c00CmlIajzgz2zbVCOw4qWvZOz74CzLXzi9VGBD/Bwkfe4cuRM6LjFdKv7SJcYdqOa5v8S+FYteE9uqeBmGYvsgQAjE+u+ylCIxbSZrZ4QMm+Gyk3x2kk4X4yhdmavVA3zt8V2KRFfxGg0KEZbHeO/YT77OmO2df/E+IppL1WEu1PIOu54sPP54FTS9byzN0i59dQCQOmAAG6CeopUULR0B7Q9ZYdDhuBhIGlKS0htFe/s7pRVsCeWC7+Fb1TGsYHLuQYXjqUDtNZ5yYOs5WNO5KwGJhpsZ2V7QDZsKifZ/CYkgrrpptGcw9qDBpN3L8E9RS8a8oNidd4nvU8Ym54KHxfXEA7lRH5Y1QMZ155s0pQ1ivFdP8ObZyPytcwsh4em9nEw/8ztcl/+YgZpQZxSwYV+9T29CVz1079AmANFtB60Rtti2ErivziyUN6Zg3K4rGgXSQSJ1BpnpBG6Rz2CIn4xcUaiM15bz5tMllQBoAwmIWqXTQI5s/SPlFG/7d3ljK9Dm9vpdYI9hYonviNbcFrD3U4HBlLUVFEBTu5ggx0vPagJB11bAtVCa1dK9q7NKjQ6PWiMWZ/FRac0ZJSdomMRqxpm+MOCHgtEq0/R7tX3Rt7VOVAFT6nFIbCIeQiX2EtclbaO6X+5pSUDhKo+wzYS521D0O+K/IXf74p3Jep/sRhT8AiiPUC4EsWDeTbVnHL+kWRWG+tdIhA+rXBIdh5TixdlwCHQCPEANFd+/bs1OVUNBZem2c6xlpYqVoe5bEqT5OX6mK22qaa0KbfoOQOQXq/wdSfl3qA5XVJ0hzWGDZlqL3JsHKOcJnz4UWcOKw/OUElEEOBftkI/r1y2N1XiRzNVvu8RmK3QWxBdlN3MAJAHi2DQUUmUdbOdNGSUreMCJ3Bn+qNlPHFPcNvHNRWIXQGi+/8LrQDy7Fk4/cnzu/QLPIJDP2bdKTkPbqT3RZ2ZFaLAd8/D1FmtQRSCpXVYfIsPCUGcTgKvBHxMliwOv4omwC/5cdsPo2iogUBvWlzeW4vvfCOo9PUyEJBivv3gWjly4qjXDWGpYRDCdrpMOBmKdAzcbheB9lW9JuQ/COYdPvndU93qZS+mMyO3F+NgFc1uhLMQIU0wCGzFZVQ9AM5NZfdo60OagRUFxxdcWpbyyaFUa4d6OHXRW80vcnsedLMFekLcAbP2u8upZBUHAeAWt6kXoHLBlZhKAu5NBil5DnXMGjg1Czk7b3h+MBJsxp/yc9jxV0GzaoQSxO5+EBTH3Th8fD15Pm4R95/JhPr+sPAoJYbR+07l/SxBRapdXmSh/zyLyPB1D6kx/jMiPOGVSFEwhdQ/633AJXhAUmvx26Fewk+DoS65K8bt1q4fqshblavLuk4N0SxGaz/Aps0qd/wMPt9LyzbzUi4GS7TqP+ItilrBfz87RYn0N1Ou8mxuy+YJyqGRpfco/bTsdIiKd/7uBvfB15mBpTYoqX93NddhdFsZLRBP7YLJ1h4opmTzEKIhDn1D2dCTHrCA7aiUuYmQPoylEuryigQtq+krFWNruV8jbEYPfF7WDYZDhqQSu5fPMjVKnstEgE2wuK1AM+NmBLyaCy+UpU3YGVjKIrD6xhQ+s73oErPp/QATo+KjS9MgelguCzx0Gqwd8yiS3wXxZD8UagPzeV0SaIB/WN/R8/CtHfbxmJaSJAJ1rnzP0FaKjxMRBD9iXYI5TplHIEd17Cars7U+MudmZn6FDLKhnKjAv8OI38zc1DEurPIHznLTxajFCoXyoXZAJIlLkixzy8bqaLw0PohJatUzeaUjrPrk8xWEjV7PcAR7QiIKERLdAwrawU1fcVu/N5+w8IpmllwyOOA0X/+e3cW8emQWSzNVIQ5S1Rd47szhCe7qyVLe5qmITD/Fn03J5B425rrB3KwI3mZhvMYelz6qM7V/g76japaOVLqy7Hn+LDetyNrzkf53kAb8VV1wfJ6bF2FNscD3RFM7prg/O8lDCzbcu+h6puYEND/p85PYHDStGXEeTznCLxA2+3o+Rq4XFaJtAUEiQlFCVt/+xszvnM3V9Cg0wepsLdYHgqKerd9PuQdjOHbiKGNy7DK5dAFuujt3o7I33CGBGAQtk9MGfr+sACNojbZ+qQdppyrwUWeNEGLNg6NKbNCQTAbV41NbqE5Pj5o8uow+cFn76RBd74eZ1cvYc6Imk6YnzNJToHHssRhkv8PImD7o72GDIxn/QpjfD4IHzsxxAerZ5duiWCMfQlXhBLNsNmKYv85KauExIiAt+LV7U8SFyIAT7Rej0f6xOtF+j4iu6jNUdgqL1pyovAonaIU24ZmA2fFr6F4uaBCMI2KPM/P1cjBTK0b3p/msBGsvcbtgKnoYzcOcDYRpgV1eJNRH1bX5BVDGg7vFAZEbZNHdpgNWJ30LFZ5lFhT/uh0LKuBuIVn+I7wT/iC5Uy+/Cb1H+2rTVpdiE6tF+O2es1GVYOldhnysZ4Y3lI/QQQn/N+Q1DIQScNoA+N65C/Z1zYx4xfQVg7hvQUbAH80gul15JIZtI9Rc5pLeHukYBfNJ/pFdNWN1Zz4UkqkQ3RDtfXETIbwScBHW5djAwANv9GLSltX+H31HD3Lbo8oJriJGE3/B4HLh/TZ9Jqn5v3WJbO/emT1nYoSFh9KABEWS2N7trslPKH2UiPGkxfHOMCqdpSoJJaezK2tqDOvBn0XjHTJe1Ujkvmf8zvh1aD0QhfbRzYvwTGyeICS++m53oVa1l7QKNrUFlWIBHhCUO1J03mlUzN3prweKt5n7NDuXqR7bQ/TUZm2WkbVA5cF4Jzjp4ukAMt5FfSIejZt6ffMdqr6xbejXwyM6zLR3pLDyKwiCd9aR2j94FJaaTrgTLuJP/OeisBe7JGGtJ1iRLLNw8f9zEquSi/xNXKU8raFBSLfT4X6cWEWphD5AhwTNVPsPaPro8GwtZ5Upy6zwccQmcZ4GMhapvCaNg3JyINFOZ62men9/SYZDWycW7MltV3E5qkxqSA5CC6dJKE71XaW5kk5yYLFy+t2nRgtjULJfEmllwbVbIneSO+Ipr4XvsiqBlQ4Zu9LEkLVBCIKgq3Ehy/q6zM9Yd4oLXdMgEUxxl+r556H5MydeFCtXsiIftMzmnaTHq/2Ri6BiP2AAdRcGAspCGSsBmXHMQexbp08jfhdZXqX2It3/5Ne39n7ap3nLisGJH/4YbnDckqz4vuoBhHim9cd2pynRRt4GnMzgM3vR2DCXUFDivc+za58ElQehokjC+usMi+Q51iKXLt94smH+9sj/cna1projCQmo16wR8SYKmPstNzzGUka1uEZ0ypru2R2zXeRlOW9sGXkACl+QiqVkMLLRmEVOcA3+tDfBYoHfThnO8rOZj+qLxF5Mm0kxmttuYTzwuavK01khTwWhdeW7akC5wSTVVF6NX7yMmmstgyWubBErhHGk3/a8W5qA++Qmnoj67kyQhOSlbEwACStiETshufS7BJ99QbdGUvqZfvV38mhoO1OYU6B9sxtWzDj7/i3ZqiKIhqrqCV4H5cNV4UX7btaoipa1dh/mZlgxGrX9YNPwpxQ5uLlIU1jyL3LAczMHnRdmhGO6p8yPuSsHua2ie7JYpa1yKMAr5wWGBtygLnyCfw1dtVn91iZfj6GpuLnJPjUVnZ7Tm6EqTynfcad2AupTrhmizq7VQUMnBMjKBRxlsND5qHByyjnXZBXTsPleZmuvTqmv/RnxvE+7nJqpHDbp1Yp+pihSVtowE7LRMy6Xu0Zjzr5HiAq6PtbY0foyu8qgATlk1EF6uiXmoKAj9fkrmVZ9Ssu/VgQnPXAgqh3D6uEt6XBTRtJNElhCJbj2JEzbtwldQLh0Bv0S07K7iNW/S86UCinAzX6zzo8EZKdwhn920iK0UORfIiLo7JAEmDqdKSlJxx4hOzKNMdfBIyLxC6O7FZu9pVmwk81aYkH3/mgBXCzYm5jLrjS4LTOSiLCKGTAxyFj3WHfjvp62+EEdmVKavFQ8t2NxIg6qX3mXDPukYkq5YZXNBIE261s5U1BfsXFy7PYEqMClbPJgGlu5HjStV+HJ8t61M9I6U8y/eiwJC/tC5PR16gZiFA8vX/HdakSESDvskpG7qm1X+ZpFvBoREsSaURTTRyOld1KtSjZkj5rruF9OkH2kOT8I/aHdfopGrv87ezQHCdXo04L6FVoLwM/tviVSXwtWjW5+ahrCT0ScdsCvu4aIXUyJ/aUMmsmnJgyd2AUWGHTKiUmfl4SngdXQfKnCWYcKTf0Mgxx+n/ZwNdt9qtMxD/Fd40LfzCfvOuMnb9xctA3/NQmjIa9HhLIe1bwXuzhWMj1+BPxr6w8MdZpe8pWNgyEo1uRb/sVIStuY2H146foLX67vFR7lyv0PBNGfpPgc9M/6B4qDwEVCqZZF/jnXS2fUbAJnkH7WfGg8C2mZ/Tvik7x/Q5HoI1FzvCew5wqg4jACP+c9X/7NwuLQqFrwywxUA6O4H69IZBfPGHc6eQeK85YhErL8OJ0W+a5Zc4LOIMzwaWdGlb6EJ+ZSIPKOfvdi9xXffbedmKHwol+8/MBVW8rugJ+0v0YWNcFP4R2Wzz8CRf//NC3pC2wsK47dSYgh60tWOxsVMEwBEUa5woD7Yh/AxNkynBQ6bFfOyND/4d7xLyJGq0UhqqvFt+tuCbChp0UDPde7nXiHfybuqhpxlh1ffWnDzp0AX7emdvevXnQ+BErU2CCc45okN+B2YTWNqAvZOTKx7+D3HZKCDY5dc8MDMN6cMhEMsrAeFVmSelejz3bCurrnuZuiEKouwNOWkWvMtVsBLwur0L4by7PXXi48zbndGfwPs0rSBLNx8wqnIPVDUlaL9N2vjQ/f09fXf/roxRji5bN+Uc9s+G0EAoylPO/3Qtydr6hcbyJ8yVPetoIZrIq+vLdO+L6SoW+TdqCqIoJDSHCW482zdfdyn3GDI7Ae1gY9vmKimnwZvagafbgPcH3MJ/5xYJcaUnp/81cglQyEo49cIYitWEm9nv91UC0mMbep1q8VlNLuWNcHJoHiZ6+hFMZYClVmejwaxLptgUFbWwblOWlPDgykomJLu5IeWK/fVG5fkC94R/wzA2F2YG3tT8l5vExK1qOovy09gFuVJCtqihkYn4Rz1V3sz1CjTVR211BFDPMa+/00wggsmXHpXfSFij8MiYevA/tNr8ieryG6xWaEzZAk35Su1h8XdIXSsxw7Q5ECnjoEUDZniHzxpvBT0BKhQQZ2ThnCY7NDKXEro+GmnS6vpx0Na9vp5kbcsWjugItze+S75pQmqUb7dnMNWuFp1cuwZjFGLi2NTtmghbKs3qZZxOLArspgRh+u3RQUcj4VxJhCPeA5Ua3vmyVdiK2oofaOaNjFpi1PawP/eooaSd/7cgDE4y2FG8T+1BL5S8H+XhjX2V6Vd35/sGIBPVmakLv9bYblQo1YrScvg7kYVsJsR4Fp4vYWW9DsysMMq04eJZsJGKyfNuw0gkx6gGDwXxjX5gv3JspjF/+IVXQ9NZSHNbGlS0oLtH43vq3PtM00KicGp1avUq3fUu2SXQWwK8278UnJEDt1aaabtA466MTl9Bhl8agNb9mQUKeU9/g+fLjcB8I2NRhFbN4ZsXz051dMPUVqpcl8+driLEQPeqOtFDXExooRiPPgkTjk8saA6MSe7Qph6vGc9NRFngrgcfmeufgK3wCZUcY802pY8Uyvlj/nVidI0NQffx1W5E6I/8pDiGhGiW00h3jJ2QoFM2qULrpQ2duJLsBcR1PlMSD0RzICJjcgQs3C3SaDa4153vGLw63zUDAuK0i/3U4QYJINYW9Sj5BIo5xTmDGMqwNNUnvtubVk6qXYnjk2S3zO7q9kCdoMz7dhGz/YRv+j/nNj0aHKNGgRz2ln0+QWVI+Limvjgge5uieBXxwueVEuf94/IRepa1y6cV1sLGhE9uopEcqsjzGFFl5N/4lSMS/mKqzY9ceGSv1BpSM+3vhAkLYqeDvQPQ4Sh2AauDg8f1mmwoCUhFQKXwomiJ9SMmyBATd9FkCK1ezosVzba++sO7PnBWPpdS9/zVWnSjGbaV0FT/BBC8r43gjX44pfc3s95X7H3DHpqQnSyWk6bcpDFHpWPi1Erle09Eys2IEFxGBiT+22UDbwcBOq047OyfXhZcHV63qNCq7eT+8ncjv0fjEyr0Z3yPHJxVY59mJN7QARtoWtaOdg4T46O4YHnyXvdn8/rvBfTMTbDNDS7ixd6brytwBVqmv18ykIZBi3QZZs6gwLVfqLwBV++G1I6PwKV1dXsPISYSLT0T/OzHR81GptRMQJ6FLsg4SOOr5DYw8Uqd+a72DFxt8+ZleNiXc05oC/D5HDPcRnLs1k7ERGUxdI/vqxj9WLrtVJqEACSsauaRzm397hi7CobcAvwT1tMqq5kZC36iEvg0+LAlxa/SwCsa5MHLmD/TbTTKxtkkT1i58afCmCD9hCPZqd4jE6oMqzeA6JKqVeW3LBZ0t6se1JOrDYgvxpQR/ky+l7G9DAyKNtfWsMccbsn76cacWkTZXxrlOTaGyWpcpkrxTVt02JvSA5OCprZ0ec32h3iPZTzWRcQ9XHYPpVC9z2q3Ys8uZpGTlTpmydUq0EiH7qtTS0HBNGPcs8gmHerbNvukoM00I+3VQccsTSz9vhZBj+VCvAEWrKhWhKKTU6ktM0ClJ0bzox/2IqYTk3hS0lVE989/e6btbvDoyw44kkIuctoWaIe7EAKX02teuJcTH7PqAmhZfO3DXltyPpqT27aBL7y99fgr1VQBXiCOYlqGYP0em3BpSzf36ZjrPWca6QqFanU6Yz7Da+W1yuF14vEOdYx4A+5UmegRJp2E12mLdMwPX2ZhQallpXtivcnVDUkohEyR4ldylj8eQMui0FI2lbaUm+K6A1aL8L2lYp4UyXG568jogA+y5eiLzmR9HUn7/VvL26Bmt9EJIUFBChmo53+vUexPl/yxoasPF1SgY6XT1UMfEGupjvhxiCAhKUIgUjHwF/XZ1fuiaDQwjpvYA0cywDwzIZ1Fyq6W9vmP0Ag4CHphAtkElTTMFFVt07e1fFpfuVtS5VJ1IzHqAe8AEpxCElqGpoEKDMwTfBMRnX0xaPVElfRDWwC0oQ+4tgbzGa/o9sVpVrD5LYnQ8LNNVW6Vau/wMa18Nm3sHYnvevkI5W2ApjAa++b77NK01mMHO/wTRz8AIgQHy6ucKrlclsWxwGTENk/P+Oe3Uqf9A5+YM+wcdrVrfQJidbLx76moy90Itlty2MhIBBwvoijkm5eU08Nk2WjuNqOSB8gaV3ZtPyaqc7JM+XLWErLsQATSomWo74gdFr6hOU9IlXVf7OP3Op1hhVOHl3APFgQkMXrFDbB2Px9eOtUhgxlT7QyzqhuassGWX3Zr1swamF7sJkhuhg+M6AdXOYxdWzTpI/QyjnMbgfTWPeprlgKFYRt92mexgea+hPKR3NU+EPJtFfJY20t2jHDTS64iObqdmtnMqFRfzWDZviy/z+m5fYg1rYr/BfUOM8yroiyo9va1fxrHG1knnrQSnFrSdv528mXJlhEZYUmgBGn2kaOKWzrWtjXYBDdVRAV0Q6w980f2yD6pJSECL2SYOIYlV/Lask4eR2YNeBtmkaZMQ+tDiS0d6f7/LLE3G4J4pDtFqxgAT/0FtZiX7aJFDwG2KO6SzOYUmV1vm/iLkS28XzfNvj7QQ1wjcJH6K8ISQG20rbRNmDDYT3oilWe8QFD9TopPLUIQMOrezao0sq9tpmWWlFdYl7DgjkvhZuhVoPgkK8KVImkPZOIoet/qw/ZajSd1CXGJvU0NxPHe+yRQCw6DrnGo/liM4YEcYrGEXAjeAmgXei+5xJvnd++B9oVArerABqjQdU3f20WwhIEFYFrRZN78jtkR85MZHbk0nOwMfj7jM918gYYEgIZAQ/FEx5sC3v1i2J/dGoB+tgVg5fYLNjGAzNDS4uJZaWSJBRLir0bVhbZtJDRV5gfl4Uqily0A7gCjTfYfNFVaSlRjDIoq6LUQfOyfvJ62l+k/NqpkkxhAVd5sCoXTp4yFzevAAtNnYyy7k2socKK64V9O3BAGuiOo7jxfnRQO/BA4152kog39GT5BtOUDhxk7yzXXwz4FwNLaRpWyltnvOlC/SSAJIu10Agvf01weuk0azhTJMnr/C3LHH+vjMAKitm+nKS/ptSoPVV2WyKxbouK0OsAQU5mMWwzlxTdzl+8f3jA4TKzVIy1EgpbyTj8MoLY1TB7Srm4mC8Bez17AvVY7qcGCz+I/msNU0AbD2A71BYG2HtXm/uQ/Drj+UZs9rpP/CqxwGtbQx6M/pNNL4ixskOExDtqasYsdSBbdphVQ5S5qQd3GDpDcBqX8L4+ZhQctxYd649RpBmpo7HFkb9KRJk7+4H4iZGLgp57kjBbUR+STEqqYWG2ssfdbvGfuCngdNH2ahZ+icjRZyuaH48sL4aBjnJWVbXtDKUR4P/VZedRzNjA78Ca2Tn+DO0+qd7Mpk6NYxOOdv1LgILARmVP0qNSHz/VGovvD+7TMNrn8ouy0yrGNAcQIPPdW3fpVxDBwP0t8fwueadQk3EQTQvvay+EzmsvIOzldwUZn7hzBvn4OBANt/gUoQJR/cPuJqsd2aGfQqWGZnpj/DhnOj4YXqMY9hyB1RiF3taBwPe9RkBsn1pRwJmTjQkPE0DZUaOpkS0NFxKMr2RzvUwhtbcprsNXlZkmwdnko5ZkeZM/jLKT0flFiEJpNzaAmGxSny7r6gIl70uSEiOvD3dvVXGfh3C9g3c7pa27OSBa/hFz06jA+bZvDrQNOP5K0FAZQ1JCjmwD7UYD3XQ9IQxEF4oqgIWQ009BQiS2onaJA7jJiQwGs8B/02PgyFbR2S2lTzyw+Yt0DvSAACf+1gqbDNbixLhe5DycR10IB02gcaGBUFiXwa7fW0I8sdst3Yd1yT27zR7qkgsdyS2nyDmGC9dro9jqnT8aeR/efnFIRHiEL9+mdcEVQejVsIuCutzhrGdSBkYIm35H0zaNsM9OYHOIBl0VGIoXisE4apRRBb187AiGOsqRZUNQUuEb7Py9ejjx1fNQj/LvoH/ZPzQVcMSCNJ5DD4eJiv0X7xzzM0aL6VcNyHZGbq8eqiSW3pQlXlVU3OiK4X1g98iBRbhgaElo6k2dff82JqD55Rlg4BHftAdMluJIuxP1q7erinTLy2hQ71iEj6n1MYMbs8UVMrpd1PrI7Lx+KRRQ3oHxDITwsN8IC3ystMIarJbwXuZ0aSz5aRhTUgMEC6jhn/j6FVA0xU4WeElFjcDW5dpmYJW+6myEalD4CcY/v5SGWbTk0QK1EmUmHGhrn8f/1dj/eZ9XaIVDV3PoHT66Eg+8BJwm7N26ZzZfs9RhHhUXhxkkM1qKo5lPKVoSgRu8QKKG4JI6X78zrUpVeobaXytjTT0CjRyi7TvAVayrp7xlGgUCcXdSrh46Hdlk/BfYiC4dFZjOPU8WWWu+lgUBLGE1QO5sFQqd8ZZJKN4sAzlpkCpKKD+UF5++YFNAMYIBtSmImZUGs1vVKsNfQw78jLQVSUZJM2qpMvkBmxBVrAr0ixxtFh8z+pvRTPaU2yNr546XRQDMGp9/W/fXSAfcMQHYKTjVA8Koc5ig5SZgjdAJY4mdj8WGoFKzouh4c4JAwjeWVqGI4obm3k3tUhuyiASWl6SP8nwx+GJu63xebyeza0dz4UyVhtm2yG32kYRLkiKRPxp7ICcmb10H/mAXTg+s47PEXmBobe0d4G3DgXl8TqqqFnpc/wbg9HDej3l7czR1uLEypKpEZWfSicQ/K8hRdc0IomTQNO5f/zDLB3HDDxibtBc5lYDDmdqLR4AthKL4T9d5U4cscDhSyRM/Lkn+3lzbgWGPoW+CQDtPEZiKXy/AEyYujuQefIZoxDGmYVf4SU3DnKa7kzgfTw1NEvRhEVRgW3alTKSrlmL0Dn0tSEs37bgSWMqUT8sZmMblzOeyjIrFkIZhX4oL1i9TRIQqGswzI2Jr6OdP9H0itM2wBM3LR9wgfDUc+tu1CYPyS/orwcG1wa9ZhL/e9iGPbAlKQGeZRfBTOsbzDfpGb8QYGoDzaNwNplKkd0PrbtW1oGeRzYtJifAA0I2CbCd6oJrD8ILv1DV9qsdrJ8RnEGh+oDIZfpLUqpQNjzLiBiQyW9rdnPNWnHLjG3vtP0v3z+vV8m8O+ftrIVDNMocisuPSuTBhfR/OWhzov+h0ELS279npD4P9IlLCeaTqxIt3xyXaS8FBUf4m7gnbPK2Aka4D2/folN5DagOkPpb+BLuAaPqLAQ/rx/bxBmh+B3iuQup915nsGQ6hX7JylGbYosNObypbrcwTR+a4QrACtJ5RA0+/Ht0yDMdVzhB1jCJQUVvgeJ5FbjTJQzkO+DNkYTRxw746HWKxQfrH2sSp3eMbZuYj4UaP0LjGCNzpooLXZZvTcDhSfqtRLI0r/BLFmteRfrla422U/DqrqNnQ091Wpl03OlUyzTnHawUKRvtY9YK0nZtW4d6tiaAzSM5x2ryF7qoAuYBKL06E4KdWsUuSr6woUJ79tahwrEZ4mwjow5YoHIzOaBFIIINWXEg6fo4U57/ofWfcP7qStAB44UiTCiK18SiAqk6LRDV4Ff+wvyyAinhwf1lgmLxH3aCHkocktFD9xN30mbVexc6Hm36KYqmS3JXGXGsSSPk4w8YYBRmh7TVTU/9nzPPVyqtSDSjrBYRQ4QKg3bxxCtfHt2bjv0PkEUrf05dYCZ2DqQTYwbIbgv+nvjAQoPAFCRNDcvH/TwkSVBsXsSG3YBQxpXKeXFJ+El1it6khwg4Im/3UL42JFFV1xxcLRr7gimTcFSGFdTF/BHPVtDQqb8Qol+S4AdaVK8hrg2vrrkD5djMVmmyYEE6Ioo0FU7EBnT/wFfhEH0lFGn/xsiB0rvk5bYZroOH9wPIqOwpSuXN9Wq18OKORsVW6kcYu5W1ccVh3WCzQu7d19sGEu4gjrE00f3bnh2bfpQjJOH6pqvpFoOQrxsJV6W3GPXC/Z49lLwIqBisjLSMKA404wV9o2lyBkspWx6nAcynaD1dsxPvU1AL4IbaODlQswcIQ2BjmREaCoTgQNJzPOPoqIclT2S8GfP8OCoxhmrb8OYap5z7A7Xw0lkCxOu5CxwRCWLQW01DwejS8YM6aFoVzRdmBgOcHJLRjqNB7vhxdelGPiphO5PlL98wKcUwFnVup4K49BCdPwxDbLudWVA+ntUWNSF0KclOBstdweiEiRJyZWnDC4ZCxQEhRJCdmJTu87ftezHd3ehWUZnZtvfQn7p21QDHRmK798/ndXaUTONNv0rUdJSuH/9Kpomakq3w4JxTu9KTq7KYjieQ8Zmo9hQ9a9BFM5esY9xzGHcpsdU+5SSgMbLozE+FdVCR2oz01gDSzrgtKV67I0e7J/NDsEAGOlH/kIa8XJuwkmWYS6eveKHSmVMTcwsHscL2iR07rxd6pmxmJM9+Ct7cZ+OUDWKK91JWEdJKFqg8WrE3qUDCtp8s/l+3GkJbc8qoCsPkiWAcvsj4kjITupj908mkHZOU7s1Ud3swGNZlPGJ0t1cGpnaIomJ74W76ricGYZYPZy8eKXrpdrEewG4TAmsaQQyxNpIOa0cPZK/UxesWSPL6cNn3weU0739H7EJz7pxqZZzpWHJ6kdVyxmCKsJzqw3zj+JQTa/ysxgMkQoEvYEwuxJkYyy1ZPJHLFL0kQLIkNxfwYqzr6iRz5+wwWVjfXEa9N6DrDCYuzz1OQponvlCQqQ9mm6HB+3ARv/ARTjZERU/y3iRzIYIwJ27c93vyZamfQpzFJhpHs78ZTaytOFxQQaVhFf4EPxPJ5XWsWLvP62sfWTtV4oRade2v0NPYC+FrU6vrSpg/3GSe5hbbGqNMbAyxz+miL7kKki2fV0fx242MSsoRENv2R7AcxFwsqBfRIndyBoqVenh3CN7va67tZeSvajvLX8X86SDwp5g8UGD/h94MRcLHZ7RoDTR2mFO1lJSlAiO/+Ybset3rQXGDa8XQBITamXtbN7jv+1haYkAXFs126iL5kolGrJSUiz+TDDmwmn5CjC8Dh86EJeZMiXGXdKr58qBeapkgx8JgQWysafsYN53Rfx6DARLptAL3ENf1N+UlvgnbHoqaRFFY+Nbro+UKqKV5iB3oLBG+v9lruTPDuWL2pu1fQcZgciSIU93BTK7Zaf8FgSF7/2clDfqo3AnsOAwxlU8mwIe60utFsgz1GEf0F8E2l2x2Ebo60tdDpoXL7vgKt175elLFVnEcoo39bZveP1B3FUftXTgkGBhfeGDfitwSoxEXt46QEv3DnxGSC3yLK73BFP7GxLKoi+vh+iAuFwS+OuR311nHpADLUKoY7KL8QSoAwmojIhvDBaepRuxjqDusLznp7EFgCw3Xfne7X1Cov/UJ5emufLtBFyv/1hAlKIWVrF89cgL1gWWzYSE4Ba5eZ8XurQHpjod3TbgzdZgJUcZhvWl8ntXqM7BhjLsPJObl80F6AMAmCqkYamt6KPwYDJjSQYjJQyBGvpQ6TaU6tccuoFfDHy++DWRg+LQt9FyfxotpNhJAgFNYveX9G3zGpYpY64XkSm8Aky5JJioaTUeyt3KRqXudzD370COpns0ej738OZa3kk+KxkiapfaybKDtsA0n0VhkgQu36qjxZ/Bp3YYb3dckFV2r/k9C55+VAVKY8Cq8NDoXf0Sp7n6tSwjRhEJJ4rhfnj0WhfuprysQjiY8qs0EAapoEU6Hm0MitRkvM640bZhlwGdpVLA8t1PylgGPaMAIVqvEvMlBjPCMkBCoVn5apR373N0PE5QpFVqjhsrXVARYumJS4AtUqjfM+uifEw8bfHWxUlyZkXmmZ6gA4b762U7rmEabb0C2lr+MH8cM8gu9cHxso52GjJ85St3Opm5+SOL5UMQfsyogiE2hGcVNHAy6YG1XlV92rFIU2agP0u02w9fP8Gx90HSLFsa7e5+gAw98JyAPTNdrTzm1Of4Y/z1ANhHEOePRTAZw6uvyC1wpo49RQILtLxPKGx0s6dnXqk9qAB4FdXpmgGTUzd9+/r8PApLsuB5an38ECD0K+XPiqRcsleVGAAx/+XO8xAVALMUsnUFQnAJspDKLntdScIxGqIEQO51A/38oBuLwDnkiUgzDdGidFrAbWps8jw45fmWICTcrBIcWnr15Rk4Gene9rFPbso9vr3o7jv8kNE6aWt/S915t7jnb9GmMgHhXdKGLKJQIEuyISyKMhgGmmxdGjfiXLvr0XMetwTmykIcNk2fJVadjlCRbuIrUyV1AH+7GowkARNkkacCj+4Enjil1d9zz1hKGhGM00UpaL7Y44onVb/tNmaLzZCdldsNm34e55Pg52Uf5lM3KqzOcPo1A5ZCHlEXjW5Wl+Skz6+LyMIw+zdX4CNiJiIZ7e8QPH9RggNhg0BSqemJUPrw/AGnnPq6OFQJt61CgxtZYTv/yD/xYI1XMc6EWNqAIMBjwd84a9ZxEepk4XXbxqGz3h/InzIjLDRe9k6KEdbnrXtuaITa0wBVKRr+FaiQnIq238mb55QyLNySdxhecpWyypJCk8z2QXPdJRzrVHp9bJa7ZFL5eC3L6FweqhHlBzrLp/6dWQYZYomW3KTyBG97D/mExzN34NXfUddRuFoFY/RRQ3mPkkgu8W37IF6CRjcOmiMJOrbd6qYAf/IKhzadOGXBR9deSnSINq7SpO/TAeEHijl52GfW0aO3/eXJfaKnF78BaBpW8BUPRUAwKwpBnqfr934lVNkb0qFQXVVPkOhLz9RK6YyxZ/Lh1jm6flOqgMwQ9j8zBRGa1h47bi3q5EpbUgYa4UF95txxYuEA0RVekfpCqbokHWNkvVjQVelWIWrvZhNUr21VsIIcyYfhM6v7eT+uC1TLLQk8WldpQrb5UZ1YGN6Mbf3ie7oPiNdwZGpaO3ARFVTpbwdzJj5HG+h/HDHgR4XEoo6FmEAYQEA0ditWbxwDH1Fd7nkeaPxf5wZB1Gu4ecZWfJH8rMAFMfJF0oiesK3ToJbdBMIW4jd1DqRVBRDA5qKmn+w5Ptv7cCiLkLnSp5OlHWTRBW9ZQehAKR/zkvGvjgLaAeeTpSiGLcqi7KkHTDiYPn5iDAQvH1+ReezC8Bi5NswcGU60LwT5OG73aCRM7cevS4M0kTl86+YWA01xL1qRfL101zhT70wHiCgoxK3ToseaP1IPeh6JWvU6WYKNdYSyZOMFz6eujMUELNPE2fFzkjK9rtR36Ei4VWLSf8F1HwvcEruoXAeQ1GxNHRik+WRX+FmnKnGvnKkP5zkSIpT2mwniHkvH5iVjPJPQcUqNuMawzyebGpCDoJyEcW7P6L4gO0r12URxCXBup+gfq7OFfpIFu5aMfVyYD6ayhExQvD8e/rdTEHzdfRgjzcgtoRCdzm5j1CWGEoK9khxoy0vsnP9EvZKcKymE31FmcHy9UqotecerWQHYInPMzJ9IihVotfG9d8D/+vxWuepJRuHa9KwZZylzlICiAnhWG5+H7Qm/GDbGQqUeQKgeF5nzvgwhRNBsHDZzaglcNifqHv6ep1bZk90UKh5YGlr4aD/jyMm3E3DLZn310Ox1UijSt3XsWx/rPd8EnYwh4xkwi6d94/CBnk010o9xibHD3NkBmaBo1o8C3OYRns6+ljXH63ng8dsxd87eFAjqsFjAtlXuF8ymLKPJ/QFjy1b6nD0kczKNnYSYrwlr9FS+yRW29Z3c6DEh0r98ml4pmqNraQmPpEaYqpAwt9PKewE2fkrWkJdGFL57KVfzVsXvcMFDd+MigWdVD+vygrBDxqfmDHoS4zCKUBkjJYpkjOk0X3BwiXlSonYCHuQeE6agsw6DkOhkzuvhl43wBXz70BLNHjnudAyNC0g3Jtd8T2iF0c2CbI0JD58jAseceTZLzfO1nK1u8N1eolGBU++Kq/ID2Iwpn0GNB1ogsZ5xvcvFDiWt/JZW7J2/e9kay0EncsbRx5EINNsT+bfNRuFNj12nhcMLh1H3q0J+ryqVUQAQrfIgS7jknvCbfC/VdqPENzCqh9S9uZckZLCL69Y/WFOvtSNMKckJ1wHLBkorejkYEitzlpV81PJxJMHYP+mNem2nzposiG2O/P2+9dXyQzYAL1axMzG7wU9dGYZI42/qoNUN0q/k3gCQZhs6I+6BGvI7Oy6cfyR/FTRN8XJVqtYCDiy0Xz++bKLeloR7BneNM+aOvN7LBbI5Qh+bdMShYJklVRkCsABqRQCkr8a5UxH64CkQ4DBly9TdmhS1M1vScXE0Ak0JTvDJo3R0DmjrjyxtrVVDSCX1EmY57l2WoM9wbco7LHwtL8qk8lnhW3bn1SDTKb3ts0PUYYSDgfqPJfGKK3I132EBpBw6GMngs+PSKaCzEVyLdYJI1H95PaTt0tlKTPmnBgf9w3HkLsjHR8ZTtCXJb0rlLrEq+4Hhcg5ekUInSRB/K3sJLCDud8NGA2eGpPr+eRZ2odmiZltHHSc6p4acgoLqTBgNvX8ZzQW76TGCJ9DWxAarmJqRUDZFwFPnnVVkC6sBWmQZfZ3rNTOOL5PBANWhPv5vv3NBK5L3m+ZFJC4XnevzwNWDWXlAtdxp2eUT2wDOq+y709YvNhTaQnTc7rVJMUevbb7y4Y5hDo78GK5f0E4VRvXYNXVTPdzRu1dp5pNflN3YWw5NpbZa6lWk8kKoY0PY2rGTgUTrksOoCv1cIJGO/+aBi4ExYVEOu24fjulMhOnyqowFMw3XHF3fyYV7vYbVXMJB9PatMMcooZKyuoDDpS0aYGHiUEqjg6psgW8nH5GntVnufAC/jZpNnHwd/uhlS90Os0rTaQlQbSZWe6Lq/4m1CdKy598PjrDx5lC1gGbFvCwpCgTc+jncDnBq43kBiiZBLgLTefojrAMTdFMhcvMb/keInL+uwQSshf4mtch1Lbqh1SE462as25i808KFYjZYmGfivIHM2a3XZvG9m2+tHqaH4/6MMoClES/cy8RdYiu621gmhRGZBh9pszqau0ZymXIpFzEE8SZv2/JpV2k8f6fglF7gAVDaE1f6bGjIoy8M0K7r02/4ntVZWvuACm7axxIWbyhoViZEnrBEaUjmEOdYZiKo1fSeiJwg/rvn+ZiTg5VO2EguDtRhNOkoYEUYnMvEg2yh7XU8YanXKglprFJcsLftRwZK/TfJbtC5Dpj2UB6eQVo2Dqv52g3CbpMSwrY8oW7TwmERnbX6lALYXJiK2NGr7Y4O6GjZ+lJAIF5qRv8w9EcJkXv0A1NB7982eXw7n4Pq+AlzwrUDyFw7L/AxtSf1q2qedwSUKW1fvYnkKv94ZvNhhR4ZAXmjrpgzEimovsAbC2YXAkv+9Hby5gx3L44RHYovaYYVrWeJEsKcHiKkiL7lkFc4xuaIgoXsgXl9MX1f42xhTFUq0fuKm4owEVyKA1QJGNDpcQz8kq6IaRhckg+IXUIRj54UW7dPuyJnbdnPPLb994SBnYIbM3GqhoheK+lzh1Bytq5UW1AhVAmJ0DbPSwdUaFjeDDlkCM5/MlF0yEMmwjLQHEJ2MiveEPs97hN2wVkhC4UHsJONMAFOeVUai94haJP0szqt+UGACrkgDi4RnLUiEeSd2sz0HVPxM0At1GtkNZPbpxGO3L7fyijoxUjsr65yP38JlBJ4cON3ybU742ZN5faedlLPBBj/R90OsuKZHH23dv+HOJndXysqsjM9i8wLi66AyUMssWTzPxGFALkvVXni5ypoklv/4IvU8SYdIO+ckUey4G86JVHF8+2kIeglx9Zo1AZVz/ouFpgx/9WXlJKVZbL/LN+g+QabCbSjt7o1ms0KDpxlV0wzCfkKFiz5ydzMxEMjo199jAPTHsauF2mp/Czl2lfmbSPnTG1PdvjAVYEWlbVYH8ZndMJdkt1EZCU/gTcaqYYdwN3v0QVeoIhy4RGpzrBaSia4ZEfNPo12WIMcebWxVRQdljTeHmNFH/1mPTyi7OZrKPbXWs88NGRvh9Cd51BVHIJnuq8D8GsSMELId2ow8110ffZ9xPUkvzvFrucecZu7BaHzczGEIyAJqKLJSQqg5h+yIp8HS146suFFPLmID/sUhpejmnwq+CYlD10mHz2VGasjJDJxv3tvn0i2kvCyUpJFxyV/wkz2WY+4sBz28RJXcny+b7zf4OetB7QMJ/NEPX58KrIUKh6zQE49emb552bqnk5g+D0PWwAC2HZiMgNzKLAxKCI0F3XuUsrQA/yYfxpzXayPKP+fJWFQmk1syWbJlE1jMJyxN4ARKgRqn2CeB+bjMLWk/5RP0CC5RZ9dJgL6CYkTHjRsnV4AWlBnwT7NgymPKYSij2nixDsxEwrVO7jWZpA04q6M9+AnNfm1D2ux+wiQi2kG27bdN0vwHLteL1Rmd5Ybfvm/xDjRvYXVJMHCEBCRAMuzkarg8zDJ2RsHd8UnpTz53dBB5V/Lm5G6w9+GU7XWUFrK4zApqxkD0Rl2tQTZJibDFK67q9hku6L+A0zOCDIN7/ane60FEKdyTMoe5bqa6VMFgTVi8kQbRYyTBQ6F9mbxERvHpZxtcHSI7WFPU0qlHz9TWIu1EqcPYvZddwVSXSDIYbZU927bXaLbHbYYXeKQ4pQ9HVT3AGEJpyI7CPC5+QnhrDq+aywkcuySB1ZiLiH8XM+ZHv/8ls1LKlTPG7eroVmIBRtcmcIXGdYqGVIAksDf2mH+5p5+SQsJAA5K207s9BfHskAfHXqky8B469O8kNmYS98D8WFpoZsRJCw2fACTRU03/qy7+sjYD5LSN6ayCS7QzQ58yIuNjfo+CxDiJYv5lSbze8TNW5H6zHXjIIIP0UWmoy32QBVtbQpvXYWl3xWA+9OMqosADo3cdEhlmu8RIMjR7HEzHEirlySqeO/IhcAqVmxVjzOS7nyXqXghL9TXVcTZr7UTr6BhRzQy6OdDPsSsjMO1ANNPLhCJPxBw8kC001boDmb3gEEE8hTZCebjB1jNzXvPq3jKc21b/E/4AT9hJp1wQKH6Uf8qZtRs15TpLUFjOZ9wHZh1cWmWfkQy2MOg01LZW5d3RDhdaB3Yo5h0FhToRj7MoEwmUVuJ1i1LT3sbOXoNq7IBIb63Nr6ggoT0HIrSqcuBCXL/I3JSynkjpIiQGClOGxYHGoLkkDB/u9hz6j+LhLuAyR+VPVpOD1TuxDsaAU2MTxcJpJspy3KrQOM/ErCjyMKp6SZUVoBpuS38uCLw0j4PPWyFa2Povp7xQ/fPEnLho0NYi/ZyzhxAgdhAMjAxdetPoCxS2vooF+U0qe2T62pVtJmkwq9sAKYSZRaNPYiH5i07M2uH9aLnLaS5NFQLLncOdsqedVwHKdgRvkIDgNX2/bJkTgYRZj1+tNLaynwtJkv1aohHuOSv3Ok9DtS0H0UeEIQlDELSmMtBu3cWOCB9+FSrGMv7wKj3MDqCrwTtPIc27ueidZbGDOpuog9pXf3K7HQZ2PEWgX3RftRLoEedkbIG6rt0cMtUVVBZoEaknBDzme4gdc6DB0yAge1UziInxTt8uKZkZBI1P1j1dnxk3yQ+0uNcH9Hu4CgngYuMc7yXsy1ORsTvJ7ww0XZ+mZGG0zSaDcUn1yL99BqlTL9NxktDgeBUs43LrJKb+3I9KJwM2MMi/gOnrRHyhUyNtrg0g+okAN+uEHzHR8AU1MwIQV8hvognNVYVpxQw6beYCmxzHeTV7hUjNBOz03G/VQEyO3S3WD0V601efLqbYSk8kuMHw78Bg6ZzrMRy6x7+7YHlQZfD1ZMDezXXM/hFvzfC5pg93/Sjje0Z7RfMSRrJN4YUnfquNq6+DLgRlwO3o74MZE1/frDA0NkxOOUbfoLsW2y4eIqb/UGXwxwGU51UcN+MB2ayvP7pXlYlUXvQLZoWf85DPEpsBCBZIZFPolWRG/tXVJVDzeyqflDXkY53AyFI9R8fvHRuo25kpJzIUhY/ei5NmxcvVF3WiODur4wThrs+FYuP2/x7wbpf6EZorjVqgstUapZrW1vJxe9YK/q2eznZOUXmgNKtOW/krg9Z7qZrBmJ6f1XyJQRW0N/kR6tQ2lOpqbi/WYOTa94iH4uCQJKUTEMx6Cf/jKa21iR8DYQFJ0qfy3YKGt5RUiexATq0a7WrAwhCka90+RX+hIHv6gzRC/3SDQ3SkF28ZlTs7d5fgvtliQ1gPl6ObDuAfKOG/9jy+E6ybAsgmItoubiOaUPzZk6/pRNISGboaaNw20aF+SZGHKLCK6lTa7srOmCCigSivtuu7CMcyOC7vKd6R7sgwWCXFOXr5S/vTLy7LGKpO5/1JkX/6O8W0seUnc/5/Kn8gGCa63zMimuYph2aWYb1/ATMxZcpupSHqLRhmyNHGGE0haBovZhLi9n2oQdlhgaiVM+exB7f0bArB/QzKLfd5Ecjf3UzPBtFfwOjkzsHmvqMCb4sQkY9Ref60oorAHaY2fVvrHUtMv2vB+hqKJEs++2+ZoDH+nyno8vu7rDkCwlr1PqHWicUUdJR+jfDe9NlRqJ+uJ8x3GJFUDFgn3t9e/8dkefjTcGCB0ayiTKS8CFDmWD14A0mMxCKlGul3v0DLuSWbeqz0BQCb3yhIRhQh32/UlrUcY+jvQrLvBNRnHSYRenJRfVLrXZzLa8QC3clzqulcIHRmTd3+PxB24OfM1D2DhCVqH4RHBRBUaczw/d9gNXI6j4w5UDFsB42tccJGOxQODUf0U9Z77qPTVT3s3iOWyBGy1+6HJjt+Tkn/4pC6WTXRFfLrNwhUfHK7eGJpswtzRvn4JVB458VKOH1pptt7Qp/a4t7Aga3PxFvrnJD3XnVzB0yIc/W9KP3VFspCJTxdh69M7B+Qhha73+88G3TxO2HqH8GW3TDI+w/HdLpusjzjiIKwA5hfbjBpfOyRIuxwsJHbpHJBfA74/VdoT89Zcpr9D32Ex3toNNj5rpHddl2KvGCho2aQN62wNxJ8PsPqX6TzpGwcR/xY2zcULy9/QnalSzV+Krvn2AdnJdwPd0v5z5KaYTKcXx/rDMrjBkzE4VJ0Asnd8KhP6axMOXjysFt/G2GoV1yT358UEnnm2tgtqKjAPe1jsCLtQQ/rfKtSkbQk62wOlheyTagGOi+NXF0IOLBmYLwPRKUwYu0HfmPCfkuw3d6EiewSM3HGiGeSbLTKH4A9SJMizt46mcQj9ERFg6nb59K1mKr/xbNkmVHShOqX9HZpQlABlfUkZ9Ubjizv1srkOj9v7VruQrBn930PP2LRQ98vUqB+DuBBkV+3gQM8X8RYaV4p9lx0wZEJB8LcHdAcMp/3f0r5gzYZGOSYxASI9KSV/jMXR5tbkyg43DR2TwtF8dmndM4Ib23PG4igiaFMYK9a7TeNT0D9I6K0n+tNL3WnFpxJVTRZVQ1H76Y/az0payrHl/UstQQ9xGdvPKIuqU0qqrNMXIbItig8yNWekVP/a4nJx/jeQ8Vg8UKOzYkXRBBCChsDSL7kyd9jc2ds221cVrUMlARYA1XqXdFbnYpt9ncU36Tl+pZC/4EMnSWdBTxmvToNG2yJXef/oS7CtUoODHzTjLUA3cbqYURpI8h5nz1F1ZALoGPTJ0aBTiAcpi3v0sAdXWjOPAX5V7Rsl2UOqNTxqp04SNr+kn0vsNalY+6nXzM4bm0YBwYbwZjUfqJKQ0CzZc5aDzvESdHx053t3v7Xi6RxXaEYqd9lNN58nHYIirz1p6dgqTC7Y7dPfjDHnnL9oyEGoJP8tCEbyyCeq2YAt3T6ixyeUaP4Q6vHEEsmqjcxqjZtbNf/ZjNTNLXrzaYUiyu2R+8UaRjpVRXxvECEG73Q3WwFWFryJvOzPX+zKnGkYZHu/xdgNFru8HeCU/61UGL71iVYCActNE7Dv8lSJOZRZnOes1+/5XQwD4fTJq1busOJ+u2XlVsb0lYOqqGMWw9GPaWlKaQkSnH6KS2tSDWnislxuLDN1p5PVs/UFTv5AtGf3JIVdkpNUrFeSx+dy4Y/MoqJlrDA4yNrRgkkAmn8rOi/7KB10yBlx7pVLBbiLWSo+YOtCEX34EEq5SiimLkyqfA1tjEgt4seh+Ti/em+YfA90tlDY6OVOAIWbIotzA1Fbur6LcCOHo28Mwc7eHZvN+LcDUBeGjEE+3Id02ShoR96l04jqd0jyriHSarB2te3Ufix7T3entStiuXE92HzYZ2qjnrigUuUoPu5whQmNK4V25bI0mVSw8ItNwAlTwxbzQwGBx3moT6vOq7r/c3tD1a52g6u+0nXiD4GD9aXUDjMEf4d8KAzqzv2M/zjllwgMVfQllpcbuitoVJxjbF+rmStW7RTncaFxdhQNUWOjOUbKKOGKSKyCgAn5G5cl5Rk1GtFKRdy4sQWrYB+rQ+PWWdNGIBh/qo8gABdjLJqAexvYdeOqH3pyu1B9f5lyCP/HDS0H9UgVbWTkxrrkx31pbozn79LpEW/+fSTrjymEznhPznFlTG1w1OmCPzI7klcM+RNaaaCtdLXRrJitpnSDlqGDOxktFRfCT+diNjfj7Oxli/fQcC0EXVnZTvB7h76HS1lpgfg2ahJEMbp3l0CYddvYQX94H2UIlQNM3XkMZ3u6ePsARm2z0UYMmuPxOoGIhdCecZ80owT6qAhjpraAboEFkM7PjiOoKJ2udxxrStdVT5DDPcDX/woJTc3Yd2qWA+JAzsVN97sTDLuOCgq5CXLrR2ZxDmQwD/2EDtQaloLSNTIJPDP2+Kvcc4dnbUD2M/BhMm/AjscgGxFoUU/xhXiqJ7Yj2sNepL3+hirgtXa6Xbi7XTfwlCkeaCh18v02cXc3KfAxQema+niEoBiLX57lYfp64aelbgpQojrimYMO5C4FBhBHWACRY2C9MkoFb93xwn/mAcm0BOToGFAJwCqwZtTT1fsyKQzjEtxab42qsPyWxRjfsI7zn/KuMuCIFyCzdSDYX+2Xr1hA6oMHOnhYSeElDrnI84MNRolZdGIZKZvXXz7enymT54hfz3dYgEed2U2urLcqHIisO9sxrPNn8rCPe3SGqHB3Fj3sJiAQjhFuGoMVR9DvpmA+w2sSRKHN94yXd7QDLpq7+WN2j9Bl5EHdXaS8gg1cOFWPUai/PlnPrKsMCCJQmNOms6NBJ+tZyH5dSHkkPI6BWxVfK0ojuMvRhL3A7Cn+cSFBavkSKWnm7dDSUmAf+d6UM9CDmLF8O9Y8Cba099z5S4P8AO9BD1wACB32+i213wHgKjrQVaf/EkxpUEls84ja1D+IfK4rDR/DjXxsyBlV1jZoRcwuZNl8LWTbmuAa3lwCpP7oMvPnEjD91E2Xm6KG3bQAH9gTh/e/QcnVsBdBatnWANPdJKnPE5hAMGPpC64/x1YwFrpd7jnaFwkDvNj4c7fvdOyenvGcGRb3GzkX/GQTpPMSAasNazua46zr/0onUqKJaQDnVyvE1OndzdlsNgvXFOHoGFbQjYBAqW4WFf1fg1q8jxCbAwo0A6JG1Ibf5jMz60j9JkSgB56d9N+5tFcq2uNADEgaSJtG/JoqSZNUXvFhqkYikMHDgBza14N0V9vLUA0aWQhGoaLsPckO+357mBGhbh10+9OAysRZoQn9d4cYPg4lIIK9inW87xvPC/VXt4xX7X3VfI6IV17ey1CUx0wCtzwsdupK/VNape595YQFVC38/0kgYmsKtukKZUjHM7yTzFcKQy/BMQtnmXG44kvaXRBFxl8q8MndfI5n8V27QDvS0VvNC1NqU+bGkV5r5Qay/Jw4Ug3JkEjyCJyCDJ856JeDvF2uCa6y67p63DIMBViEHYk+/AxJJhcTQZ/I44iZ0rKVR+H2g0bE3TmgcDgACeeWcveCv/2tHzlcAXSe7XiiNQbFnyOsVlGltAfSMXnicaYqZBPqDzmyRuiUnKvo/CKx4dLgJvmu+dOnLFAEqbYRdoF5wW1MBMyxKuHmJBw0tOMd2yKFYxuHDeM0Q/imlHeuxaGAHjQk8lmdlGGDkjTykgVAxmOubYokHUDQUc5yT6HHRA9dBjCIfQQ2vIB39N8/cplQvV+DPLp6IPYiV40i75quR21PrHstVHEpHy9YZk2I72dLq2TQebp6w5diIR5VJWB+vJGCJvc+ids5inqjHEpKIqjo0FGkXAMUXiIJ/yjt8sc7HnXmysJpcJlkcN7EGKQGHQ0faUq9qveAwf1fV0Yet11iJXMmRTRwN2SK76Mrh8bE4Mv6E4VWcJa2PM81NU59NV3zoulH6C1gC4YzZ3R7zZAltLiPFP/lvaP9PANeIkONA5FGe3DDLFExOcHguAo9Bkt1wlNiwP6A3RFpivKf/tfe3mPPMACrICLo58FPs4O5U1Biz7Sp7t8MGc+SoS8tQYzlgZv9n4ce+q1NpWgwVTilZ/vQ3oLtH7wKf1iI69fqy3U5j0Ov3t88QugWOamC9bdLtF/gC4rSagMsb6LbL3qKHsbd9E9dfMmuFovj9567oOKj0Zz09eX9qMuLBf82T3KvIInhzQfC3fCJt5n42vNew0xtcrwVBmN0xrzoIhBuFmumU7eTAmFips87LB0eWMiU5nsb4fFiUaqRESuANB+lpXTfPaaD8TAVbVmv6/OS7WkH3IMabqlfwwDiNg6ikyZnkHR0p8n5sIK/VcVTuGHyZhrAPLuA0lNRFWuPyliHCb/GszQm/DFcJHYe+DB8VKTGnG67LZnqB7Zge7q2oJ7HJL/6n/hw+OasMDciPs80zgKpJIMwu+AdoGSo0cR1ShluP2AQ7tm/w2+Kq7pLi8A+V5ZbIcib2ZYv7kpHV8S1E3ewsz8zxAJWOxTVQPb4cZzW5NGYyfDoPPa+Z2txZgYTpsNRY9HcJ67VGsORjdQuEZdwKNv8ToDHvMFygV+qneEbgjtYeASgW7GbEVm0ULlT6dkzj7ao1YlJMbyt7hLmTpuxomBodqkLwliN82/UF7OAQc3esHLtMicff8IO40eUr3yAIt1cxibM5kOpt4MOLYlqRqquaS5lzLY1kX1jN3TYuS+oBHsvPeu4AW/NTcrylLojlR1+BwulwLBYZNyURVajjoIUsMlT+rLhnnxVlWXQIRLAGeTzKzKf1ORTsvgeOw2R018Lte5WTc7vOzQu3+gTzI3gJCayY/1BtSBxz5gzzM1a1YlGwULAJKZekexZJ9c7Zsp4yvhT1kWYet0uUmlFZCjrCGwaRz8UZBhUKmOtbVOQrTWUrp5uJjmgcF7ZuOPIU7bE5Lo1Xp7yOqTEB/h6aR1IVXZYamOrYptOXxpAiW6C05AA5Dll/lc/ep9+XxU5ea7vwcvWtwngs4COqWEgmOiaPNDE4T0122YidfnJOvwHvbAzhCfhHeDs1Kt4w7MmZvBMkYfZbeaxG2u0tVd9dKA9Vtw/v81WtNCHmwJ9HvGeCdlejlJpvzyX2b2Gn/zhVOzwKOZIl1SjFj8NakGMcPINWfpPuyTs0PEbHG5cDvVhMGBagY0F7Up+gom+NMBpKlrTBLadCTBiE41VTcxWc+QN65+fvq8EF1ArjnRCd7qkbQuzods3QsHO6bQrQbllSH4p/BO6R+PLSXsmcvDAwkce2Cbt5SoGjzD7maoPBJ+d9u2rm23uqXSQw9AaXSiDSBS5SXhCixE5G/eSa6kO6BroE13nA5QWHdWFsMkASAWVMJI+nWvbjY4pUP49ZKu+E9qDcPB+n8vOei0KK8DxixL6tgw5U5cF/o5AtiQEmAwsAVTbK4N3ToP33hi46qi9S3xTU1/WkQggHVPI8/EHUPkUzkbH9zx4V5IdOSKgCrQvQSTHbIZW0IE++kVwashuetmkdeoGVatHsj8MhABz9DZIu6iQ9H3sYF3KV6cBtvcENy3Nu5lR9YH7qrTqtbtPVrw+VCwS9x7L8ZMK9fA19TWYIUOm/IbGoK+BzBFUir5gDoRl2i7yILXjuy6J8Cis3exVM3Mqo/jfcMfa61bG3nQFgoNQJQ4ePS0b2jPhgAg2NzKfouDrqc1LEa0lOUwbLN3afzd0CCeum8d6Jz8ilEvwt7dpfsIG3AeM6OWbpKzd2LajJFhxDuY2Jy1z5YQbpiRMFme0rtep3dRZH4JzOPyNPmYks3gT1Ujl8x3T3BTfAZ81FOSSEjFvprpusiqbC47vBJTo59rwc7QsIGUhxBXwkQQEqP8ZS6anCucBSnTnlCh3UZMUYzrGsx2bCcf+F3y1N89JBr4CAsQh+3PRdTwOJbOcSOdyScXs3RFHWxVOKpxWezU1hwxoWK/6UnjwVXckSIoDLr/mDb9QBueVwc+2ptJsqG3bmFQga8VODTbAbnTb1TF0EYoaJujQPjlKj26tKT+qdoUOLw3Bz45zcHKQPwveRfd3jdrGRvWCzUUluTw4JbNQJUrX1DBNqjlIpwgx3wvzkUUMKS3FMfFckK4Hb5zNp+CIKwRuHRxDaognoCo8fyjwoPQKeX8Z6R0vOo8hs9/3ctP6EwB7T/NkSO6xmsmhkLAj8xWPGHoA5VwnM2JHQqayfLpKzmW6M9KD1ijFscHBXx169ZFfMmDadm/3YK05zBVoSMV9pACNnJIkSJfiAOtju942gFn4emG7TVrhYKPeVfu2Oy40pT3nX0BKOt5L2grkaAWGj3YGmbFn30u+KBT2i8bpSbUxMD3laudUI44iw5HKsaJ/JLq0K9B9zAl4XikTy2N9Uhv28KYD8a0p3wYVl6TkmNNbLIGUak8UbLZRRBXWSjHvBMTK9SyR9c9nRQ8Nn5sativKkZZKQbR5EkSWwW6R07KtX0IRmBdW0IiuBYGFJOTNnMXl7oH+Wl/qe5zN/qGgJnkEE1bsGFFXxkgvYmjmPCGOaNO8bx4ybcz4mEnCso3ouJIAoV6cUmV7IfJYDn2xIq1RABAaxTio5jx0y2pHvpBFbM8baLzJ8mMrE2MXDN1V5mW70CkbC2fDdTy2jGcVPrierSiF9fNZk2dNhyxNM5gw1BfCXYT3rJMtHwEG3KZOjf9j3hG4gg84ow1igElZF08cA1ECc5GDaX0fYY75dOLMGlYd+BXduwL8Tws6k2z2KOnLRqMcsX5dMAAEfo8gnjl6es4ez+YUSEGARD1p/aHM7n5TihWu+c1SlbE/+A8lA++t4EMSI+82ftcTg3G8q5VYE2NLsXYE1kpEgwAcROli2axA8FTUle9281DXptDiqQOcQqf0KKT05onunWLaq7t1ZpLxxB2BayRHKGFo+laUbt8laawY5HMidFp9wRNy0i3B7GaPLQswm0TL/et9JFuNDg6LLnyUXLgCQfbREG0zV//pdtN4idSMFdX51GnDgiTYhUruld8zlpsER2+F64BlMFv8rwQgqkOeMCXQZprYdcv22+W9foyI3tob7FyrqVKYkOWqA89zxI+3BQ+tJ9sbrFsf7n7K1wUFDZmvNtXyLFGv7EHPfQuala7E1E92LvFi7ZP6T+MqLlH9gIog2CKO3QvpwfHDtA653qvAOi1cpRfjDE7DwNSReQj7U8kMKhjCjdlctRRyN5fiN+1/kYVvniN84r2IZGvRAKSI9zZVzhJJvlhx5nHt9c1085YSi44IddyrBgzK1VUag/NUaBBZkwTb8JfYhZC8L6MS3WYHjEYcX4NxLb1xvyLGPVzuU6NdNZypQEyYHQTb3BGi2Z4QAxVYKi+WVQm+3Drf5Qrw5zWB48iK+DYocDejEySoGKiYh8dvdNNNmMFzqSg2L40gClcLLlOi+uVWuW+9jcMzrIepAhK2LVlaHH4qXu3X4nBYMHrJw+OIdt3FS6wbdzalE00ecmyEjwdw1IKXlrNN/iGNBnKj6HsgeI9NkqNKBE98hAH7v2Guca2vfVRSgLOfgDjVwTuhPnnzGZBBK70X7vpXk4sYnFAKIPt5090H6XwQmvIMql5N+kd4zHRAUYZilh1pXLxmBmJATxPrJ4n3ilEX2OffSgwRxqxKc2X1M0BmGjdxVtdTatA3YDAYX+suyJvAenhEytSuS6XHOWbhKIMrWgbND+AGYVS5SXSrgbP7GU23atL/c/AGqmsR2QG+vmsOlwANGkaoG55jaRZ2cnnxIALVGqkPRKoHOn18YUaDqvhW4KlnO7nLpFgcXTsg96uQW7SoGfnF7WqHqvZfy/4c4f5QKnGBsVKddCU3jiwrt4qhCPC67rQBZkfqz6F/3KaVLWbOYWhLkeyH84rMA2u4nzqkpoEjpUF4zj57bUAAvv21e1h2lKeYi2cGGoWi+iFWRtfudOSX0qsnme/GlHB/yxtWS7wepuoH3s2G0F/lLsI44Ai24CV4qoioHWI7MTW8CHCH1jxc3AgRoQz1+Fo3mRv5/ca4Lu+z8Ci5ium0YwNicEy+lR5LeObYXcEP0pt04cMlLNbzzfU4KWQGWYDEz2HAyCE2QNxefHI7+RSFviBFORpTmHG2vWrVMCK/bka0W/VvUjy7/RbhQ/LZcC6li4cu42ZaAkLBXury7+9cXLsW5CvQAw/NKIPPVIIPYo4Il76eKCZjQXBJ5QlZmKmYA/W/T8q+VQ1/WNdW+PzITRMZggwBMXBLz/81KC8PvYFpKNPInp7wPUDVhk4uz465TwzCqrQ3FilNq0TVd7P5YE/4amUw+8AMQX0KF8dYhaU++M0w4zf+mDf6I28HRL87ZFvmaBbBT7GwazGFd9/7nljMm61wJArG0sGaVvZnkzU4bFicK2BuCMy6owOOF9isL081dzaveuTjh/29UMTreeHyvh4oFdu1wIBHwSEc/JRvm6MS8oUoR7zO7FRHS1oOUep1JDYO1oTNtmQuU4JheGSLzmxFgiReKIdgRnY/1wl+8kRpBvsj75La4M/ytE1ss3UPd46++p4qrhVx3BoU5eypZb2uI3V7VlsfYJJiIRBLeAm4ovL9eAGi2yqHv2M39zwALF9LQ9THiG6fgo+l369M4WgXQsmtzSSJLqJGE5i9LHcacr3UunIaOOJOMmNRugKWS6zZ5iw1CKTj/7CCM96uc70wHbuq7rbxmY0+NAQOul0LZ+NcPPTzg2jANHqwdMLIYS2H2Miop0qvEPno23m/TnXB84Bp2KNBFWxPK3KYSLKcsupJSgFSHHTn8a/jfV9BA7U7TSip67x0I9SHWVZwU7nUT5QAg1TqpHZuJfilQUn9E7t0VMEh+Djb/08mW3VPHiFiWjzeBc6NIJgWzxiJS3dh63XzD4B0so9fbJgbnwBltWGrrbxnKdkZs4xBYI/Yo6FrKXHSD9n/L0P6vC0Pm54ARoJU3AdQYbwmCXjomIAMIRb8MCi/t6nq8TvtW0LfLuEG/K4tvsnJvxWbh7aaqmX+6DQLSv8gjj34RnMXneu0msY/cYLhSTeK7DxWr/pm2xLbLODrNxsx2cfDJ+j1Su+e1zCmUbmCxgQvofhgSljZflcbzmyFS+1403zjcnMnkTC2vCltYKWimdD3Z3hMqo82n4GfbOXA0SZnDGpNdl41D9KTg0pzXBioOCv197owsKvZgXMJfn4DVS4+lCT8vlBLnH1H9tRxkyN18MyWdgyoWkSyDKZ1YC80NCIgivpBtyJzDcUjcj+W0EuDA8LXwuZ1KlOIg1VVgcEaKbyGgl44lzfp9dTg/bFs1RwOaEX9X4oPlZhWkinsG7I2i4dz20770RZB/lMOjqdGVBao0sx6LCndBYUktri145oLtxBMTaPegp9bsimItnp+Q/VklngSgYnBn4rmgG3AP5Ez/T+DN4wlF+lhwR6HeOv7awBRopCcjrUuwJqcQFCRxwCEP94fBcyUa3DyvL0IhSnAaqQgtB1JNElJD4l7WFsDvpRedke3oYcRHhNcThsmXRUK5aRe4+U2hJwgNaIjMSdCH3rk2PDpjIrR5YiTjyUixAbY3vY5mGGfZ0RvzAz89w9yP/+G87xzeBEJVbIcTfhJEhW1Uk1eGURlyciRr8zyXpFL9YGYpIS9hEjHpW5h6LMUl87TK6Iur/AkeSHh+RleU4HlOvYC/3MR4QZsOGbDvV7cEESJnyRhahGlwOLDJDrfq49/t1JgS0KDH0mfAcyT/UGbRhkutpp9oI4UJOoIgsitnoq8aCm0xgHEaexQVr/SZo6Z2bEgaEZXELn9AqlwfyxAsaSgu8hLSMT86AsoDVGc+ddpriTUsaFDTgFWH02MUNt4oUvz8nr9A8dl+YEmbQ3mQaL/mnbzKEZh7M6x/5HVsDEZ4BuA/1roVDKEU8fOVvJ6yj7d8mgtLuz4NH+/qh1N0aZWQ5p0egKwyPXz/8vlFPP2NQvsJGsGEFv/jmle5vnB6hM4pwMOYBTnJlmvHa1YOzt78KJV2GB8iO9w7KlmGeOrp3ONt0ht4qIbTIV9HnEPh8/4SDEeIb9BcyROZH0mgPszy2PidIikDpB/32+nmjR/bdaHNeFLLTjt2QhNPhXFdWtX+mxFOE4/WVyryAExw7tX7M64MWFO4d606ktni20z5PV1s5MelwZr60S0dQp1/9kAyaUEQDlrQgzBK2w/JDIK6Y7jscQF6yNbq5Lx7dyH7vOwVrNFHlDprtVwJ5BNdcfGrkzv3dafX+XS7R6KG1V2i8ZW/zvUHKwY5HSk3cYWbK+f7QnGFxt0OnWmmLrwi5js5P34zdgfOj/7CgZzkUgykWC7OufJH2bk/xRUH36NRNHMqjFGBT5WuWn2ZeeqQv+ANlvGp5UKAtPfs1qDLy8SLW2sud64816INo4WaXDU/CSrk6WRGlddevn4Bw1nVYMcoCm8Ueszjd2ISVwRgNQ81g0Zk77/McPAYSCGd233xATn5imyHejlf9G44xLewho9fL7VATo8tLu8cbTPsw2/nPq7SbteoG15xMrXy9WwZg+UL95Rd/kIUsBcr46FE/tDPFMJOdZQOwjgONBMAjsqyCOHqZvaMPFsDLACzgLc/N+S73lY0su8lEYtNCNT+lR/B/GVNtWqsBaQi52Yr0rtwksbVIr/gWpSI8LQI9I4MilltPZ67h/KsdVS7tEHHK20UmgHc1KczXZhgkLU8J4vmfZOeZNMGFVX1L3EEApsfb/55RDupCf2QBYRip+A/Uz1ZknhYsJ9Mdx6KoxTqhnepWPcB7MA7d5UwjA70Vb3YuQ3gn3ix3df/n3gCJUEXxfE3F5ks8VjkpDCUiTDr0CkRrY5BJLH2S0pu3rtgJ7wVXxK+T8XLlpbjticeYU8XBv9Ia9ZjI1BwK1S/LpLgfuyw8rHyqWSr9qUpJ/LIAu8GN8R8e1h58y+QoRSMMHq7z7CcQ7IeSfIg021ubw31L4qrgnxXnahHDS0O5ASBm1PdCpbb++M5FIbM/9v8bH9hU8kO+Xu0BvrrrKVy5Ji/ZaHvOqwMBKqEdkMJ93DEqaTwcE7R9+4CG2h/233dGRn2zJfaySDGD1zymdET3m2jc8H/jWvF5C5qjN1ealsEy0yQ6Fh/JtbG9xKKPiNQz4nH11fLRYVBsu9zkylqz5aD0CEahMzyCyuTXmyhA9xnFS+OMJwOEzVw7B7D6LE2sHGWaj5+9gd2lcmNd8E60GxrDT/FrDIBDW1ijPPQPeE23PysrIo4v94QEVn6uiUA3vnGZPkEhd9VH5kce3cCo4I7ex2WgCJAYu4MGAMti/EG8P+btGGHrBmFNa0hw8Mf4ilHtAqv0+wKGR+wzPjIj4jY1kXFLkDl+OVok9GXt3lXWRM0noicj4dYcbnvnkXS4GGR+D4ea10zTpeVuFhkNfD4Q7o4x/oVED8cTIKxNsonOua/txWXau+xggdSLiXRydUstG/Zlis3o834DIoQivwPm6FWeLMXH5oAVxX4ViG68x4BgNKQF4bQtv6dlSPAsxFM2KvDJhQUodUEpZDepijeHt2BHB2GS3U639Wa8ljpfdaF1BiTBsXDGNqtppdbmwzdt29uCF155Jh7LADXqm+xdeGDyWX7UlI/zA0d8AOsGYSHVNHRA8KD4tc0Lm9KJ83g+IRDMF8aV+AMcLlQBq5INBvlWx4HDILJeJh3J/GOB8YTy9MhwJbgQMMmjwjmcWivhAcpD4/jsghhTukTB6+h+/wcqtn0Tay8rC1ejAa3HkDz8OpRqDl9h3rUP/kPqMHaJa85qyguTdZZe635CLLy2eyAmbeB/0iKYnREECEcwPgo5iDY+DAYHSWkJ66+Lrl3rx+olvHUBcnai0KvSUXrBnXwhvBqhbxQUwTvYHEznzhqagBdLcSFp32kz8ANKLqpbKOPlsDpllMd0cJspKxevJcOdvTLcsQP660BSJjBUFICGtuOZ20nKmiQM0eeTa3iQivWulaqVyznJOVGvtv3jz1V4mbOxFxMkVSHhDQ6eeB4FfOC24PkpQN5G6Vus2cVElgI7g84lDJfSmOpIaQa+Pjq5bKvQhpZBP1ibfYwS0PN2LZYNChz2PGqfNnDIDJVkYRpAv1Ln9DN69kLOm4MY0tAWhV7JwOtASUWAaKL4y6jvmpRG0F4QUvfhhycFYoDfkbvkJN/UAKWXFr/fkZfTeYh7jipwYj8+S2M0xaL2K75oPRNOTPY1BS9o+6zi8q2oSQmi+op8yJmhl+JGH2d4UNQFgC5p6R6hUTZG87vT18L0hfGbC8BpSg4BPj4SgLD8PSIn7JlfGOnLkMZjXgQJDO1FTVoPDoy4elajOGalFTlOQKETx3CLgih4eJzQ+bibUYjYKbqWwgZm+tLNqPWuNxkqmN63RYgoGBEqC8JpyKy1K1402cm7mxNf3xMzQeLHQ3Mmz+TikJFwoZ/ln9ACsfcZ5BI7tKzbQtWny7XkmIsxZxWgljamVhSDFQW5/6G2DZO4EeeO3SOi/2VZKhXIOxQ5deGOHGeG3tuySHnwoeCnxQCc6hRWRXyvR1VWs3d5gMAoBSpjsIBYBz84L4XDRhfT7TWTJ/rosEoNuYW4IrPZG/BgY8GyHAF5GZ+eW1h1I0KrKH7O4oOQH/rj/3P5sfLo/q7poWjEzoyU7iQg+GjBWwe6x0EYMPu9SiNTVBAxq2uDFFembW+QFGb2w6C8ti9AH5ioIVg5vr+1r2SM8wRduTLi8z40eBSo0cVftxsSMrxu/SLIuBv1FuHuon5UxEQcka57VV1fYOp1q4/lwSqKUDYtSSRwzleMzAeYXiMbXm4YUGHHSppa4j0b+Pw9jKLzWj71UUdpo0akyQvqaKVUIUt6/bMrUFFMEsmS3DtKq6hb6h/7P95eZXrYAFKk3dNUBDIMLjsDVGFAF2FvDBD3H2Tlc/QM/Aze5G7zNzlRVI2lsdP4YxhPF36DcXz4cj1zbHzUOfdYfcXORkR+UPzKYH3WYx9bfE0PJN0UanM8Fd26Fhew+rWi9PUTWFRFTdc+cwMPmhcPYA8M+Gdzh2NlJlZCAu7PiI0Cg6E+/g8lBB287Qsffm939xBmQcExwxe0rFqcKSFbF1/kh4MsvAoOd37NMKpcTsa/UvK+GZmZMUU1MJoKojfDwtjCoCK20nbgdqspnZG80vXHqG7GHBXEkKA76xrrwpxsGgDAAgoijJCCTn9jHak43PgDkN/e/eWHjdNlOi6eOzzWhVwxiJ/ALPW84MaHpMII5D0JkT2eMZSeB4WBokgOdicNreVWnntcVQx00c2P2lYmFj4oUVwQ+ZAKRhg4qByLW3PXkH92raTPNIvsr4ESML5+7xIGEo8vXfywqVUWDP/iS0Uk26q35Jetk9K60/QXmTriKy1eVqbS2HUWtVyBh4E5qSFQXbN6c63zbETOtxuHsl86GgAf68WEAGtt4B3/ZZPv96VeYUSn5fZ6s5KJMMj27RyZMRzfwb9LPOp2o4y6Gw2N6fHDDMzcB+pxeQPXUqWXzOdMdF6HQH5GNO8mlm7mpyK0w3a7ibIAbF03kn847iy2LnapTk4rH6LtM2q1+A6afMxFiLjx4bguHFFhSXxyxouRhHcK9mtIMzkgoMIomOOQXposv4JuJacwVXpbuSukEPhNPYYIAXJKdbow+JVh5dw1HTJsWlnsvlmCQmJcc03qppuIyDgoMeILokXSkw26vEe6ihEqK7VZmYT8FVNHm0d/l12Qx+QXcSYkjWD33sdcOds8HQGCiSgrZn3GIn5BaAauvF32ORSFrpzdG9n14b0Htjuh/tXzwQMWPrHZMuJbQsTao8KoaF+uWsA+/dLQ1agm2Nfrq4FDYTDi9eVDQk+pH9TxTzi+srBRFIF8uIAnvGQBqrlaQhn95YUIDrEDPnqjnkPAKNvY5FLwAfiGYesYPbNXCHqWCm+rL39WziDZTgoytzQavIu14uOHh+jso0YHCAoMGSKPufnGF6zW6xodOxeiW3aSpvygSqvXgu54wVPPxhOLWPOP0SOT9R4ZeHb9icdq4dW1LihuXWF2QVWKrwB6UysE8R0jBOo5uLsXUMtkFGAW6DiFOraKGKR4TI/n3iwlIryzMfVjXI5RTAD9rPla+fux/l+nrHQ2P99bUX0lXpWo+Aj2w9NCI8GM78wRm1VEKSPcATOP1f1eoqNkFtJbclViun0wsnKo7J1Bq8jaSmxwPXQgoquTYVinLxsohdFEG0WWFLVRxwI2duWteMOp2M46GDbrosSdO3+SLm9XFcqRSUiO+kxDjXQpKlnMsl8cSO20l0sBtvdaVkyzgcVaHWx3OKK54d6hkTkbrXs96BFlrssglvQfhTxD++8mbOkAPBrnhX5CihUE+j79dxf+q+i7vSr41Cpk6fhRN5Wno9sYjwtPwEADTUF0WqwImmg24MSUeCEdvA6cQ7JRQkFMJ9EteFbcdSLHX0A9XKyauuJzMWEK+kcQsGHHuNaHySJbDXMfWOblWAaWZbB9IfYbtoIa+QnCo7ylZ2U7wtMYxfiHlP8SwXmI0Lqd05ZQoXsjcQXzOvlSjzdyQz2dFHptSEp79j+e630MHMc671mCICt1317YlHhg2F8Zw4wPxpX8zkv2CEUCCCPulGjOLXo2gHQj1in8dzf9msCEwuyses5zyQhco1dYKQngTix0Iw5jR+na9lmCBPuKcBCzxtHt3HRvTCk+0tWaV5EXRo0LxDQFfbjgrSpMKWYLcJKZpifsgExPHfDbm/riOtq+AR66FtBROxg6veD2di8032+f3KMXxUyQQFyTIOicdwsfLYE7CSFeF40ae/3SR1TWpItDR/fDyfNLz2+SO5T7oqRVwBxnkWWvFXkatFEl87N0LL7hPc6I+E7eMyPnqaK1KTza3VqbqaUQWGsjaUfQCM/p4gYaF/UvkX/iiKoxd1L5splSrIDGo8hx/Hd+//aBGzmVwdit+mAHcKvYqKf4bvG8trj18ATnanA9ykx9xamDdM+jX2Mvpvob818IJE62vD1OpyFxMpcxhtShv3uYAFcGpjbM3jbIP9bIuzcGFhcNOCY5kMghh+kVSweetogwXIwpRm4rXgizRkxehQYBSaPYa1MiUe2J4XisgEEazxs9TSUzD5TBsBnWYG6Jt48MMhS6N4eHmXxA0uAEEDcqKOLeCbl44UrXm8DtKi6Ab0EIUDCIWqAHXy4+KWCsxGfINgGiJEtGNsJ//IZSb9kXOzIftYDLqQLFtq03zeaw6QUhowU9s2AGIjTU/Qh6kc2MX+6t8M0f+Ds+bOWhUlMZCT50GI/wYT5Ik8h3nv4Q0C9Fn36TDEmoNlLDwJc9s28WpALPDIts7EGt7xmHMFjvEUoi36clQZsjfGLCcUqN8x8UCYMatv12J+P49lO60+SCcCIyqTCa9EzPd4d41EPUrJQteXzAONEyxl+s24tjfEwix7ltOmlmCY+8u1njVYbRqtjT+Me7Tt0WjPvJ0oaYrkqgCTIZfP8oFCGEv1G/AlaxDTlok5gDssS1IfTSC1BCzdP5nIO5FxF5dQ67qcg89XgZ6M1FIxmaqfUwUanop1wAmnjOm+cyTAuTrUdcZfDlXuDbqd0PGCx7YPbVaPoKYX4Lm4J7ZW1IOgD9yPakhIN/sAK5zSj3vP56FG9Pf1ubu2NLlvhNbsGoGu+pW3zq+8cz8Y5ToQ/1sACVVGvUYWGAT8zZhSH+hvuYZ8ELNGEyGP0yagzBg/a04KGjJ+0KSLAiDEjhyj9GZMYs64cGePyJmXTOH8nyGBv+542TjLmihtdvxwX8TgEDG5fY5ZM/TYjiehEh0vEwC042b5KWfPupWTFz/xMMGtRgZpFvwXLPxwhJq03Rahx0ZkrIwIO0nMDGHMRvjj9cz1nNN4lmtzqvsjvxcBl2YMLsCbuOyhc2QCR7Tn+9/11oD9C0iPWLNC9zOGhCPcZEAcHLIyNgPcbijxSlsH8Ebha2AVRwQ0Bh2qfqK8RxZzxYvo8Xln2WraUmpQNdOB4jQUzxPQ2ZQ5K8j8iso6IwmsMT/XWIhEfCzQHZTLgi+8AChBJZrL6LBZrn+/gmxzd6KMWhSBp2XUlSc0QnjGLQ32goTAa8i6aAQ5yF7EIYfq8aNUZPQKcf6EPlYm3SEFchXDowhwKIhHwVmfZyjQAMDWWQdlt+NNtxQ8AqwrNdFkwjXBLkY2MM/uWYHw2bvkdnVCtZuL/P+/yVB5RJlRhFdkhSoDiC3C4xCkJ+lq91UH4camHm/eLvugVA4FJU+owkxmkxVWHC09DTXpbLW4rKs+AuEA6nVLtl9OwiSuznlokScRSJWw0Mf3TbfCKj/jhcvMh3LG2i27fOcUlYIEkb9xDrgpPxNv414VACpOkztaXo2BPFQAWMuPmibMgpoeCcde6KZW4KquzU/wPHwDvElGZoFhmWnb86yk15Bu93RJocavxcsLzyKm8Hr2VOMM74F2jd79yYzqIcXX8ngOgr7ip31TXne1B1Pmw1IIhikkd1dW/YjxrAPY7JVi1V5dVLEL+3YxPygYW1/BhRqeK5+8YUsqpypn2jgywATJKIeFjJf0y+BWy3qaBUWeUXNyM5FPqIX8/IonGSjIt6XMT0me9EuY9BioUt9ZKWjlADMsByqw92QR7ZilZmpxSbjR1ymSaqWyigPkPCSfCo53jVa5r7cHHZ7hAVqUVRwr8QE7EO0NtF+VJM/eea2bjKN50FyjQFIe0wWIQvyP8/HrHYtTjwEp2CAqKkEqNBgT7AkQUs+PVFNygaDlA1LpQxB4VaBC8coEm1z/OWFK7aZHYSxmIGLdYQa1hPbzsd51BCBsFP5P+6RhDWH5+B837OHZPHxTbpPYFSbe8jnktRSYgHVMM/ZR86yRxdZHHqFXBHxA3S149646QFjVAP8T7aVj8wXr1fgO/XPdzGamWNb9hC34p836RGIZ46Bm4Zy09KjRN/ZDiTTKvfbJRWAnCqd/3rms6PyghqRws3/MFgTCBqHQbJM8c/6q07rU+17OTiozjwPSSHrQ9rAi0bR2rynmIe3qsmJl6N1j5wUEqhekPbSVIwOdjWwnQYaZPq/kpLnrXuqxAqvumrxJVFLao+EUoM/rNvh+8p5pMk5xP+BJSiOTRCntrnZiIh1uFKsN88o2gsaAo6p80jrulR4Y4kUv1FPNnbllik0lVSlVM3k3Q7d3zzcEfAlcMIk97rvl9SdiMxz8avSTGqgCkiZRIqs+0obBf9+3ztKC/dhBY1NXqhtMZ8qiFeQbyJCtevdhh00PTYGszG+oOELKmJTj3S0rCKhX08RFv6fKOOJtwbc5XVwi9Zrd4SOZWlbZSCGD0p/16ab1qSbrnvoFQVt7HdH/TB87178yuupheUupM6rrR/jmN3K+/QkA7jZ9umEZb6gNgKjXKARssBUfTmzOu25/Qw8IQLrn337g/JneADMsxM2cAfq4IMysceM/5X5mnBdDGriC3PddMvOovn0JHnWMDw0KSYd4bJtcZJSuZYzrekGo2U9r22Vf4AMphBmfWj9PqwcUyFR1eSFi4uVoigF20mQ8tnwJFSAV75cb5hsV2XmVGLtg29XtYyCTS0zg/7s1T4k1SmDI3o7xSk8ld9vfEv9wAafM31KBr4TpW/th6Re8N4Tn0DgJxfut8eQXBVGOED3MBT/A0SGp6ZokaBtHU8eELbEaL4/Z5nUCikVuGj58X6fPQaKhlURnPdWhPvV5piSZL2ORCz90YuNwtt0lETUOHvCF6THnyLJfuBCpLFBWiJRS6bzF3tvP6tJ8QL9RSqTfsoetILAJLOiMcPNifLrzLuWKpJUwk0eHPeKQMPkRzamnr0KNSTraaNoPJCW40wKRxWphYx4s+4yMsQOLrtsVneUS6aFvfo+vIJyYIbjCI+hqSbY0T54Yzyh4GZuofX7H6dXU1O3kUEFheORJMUd0P6pVd0HAJjN1dLqRyzEU262CqxCeimdu/SqZWty+KkhW+bsS9a87pRK0RX2nrTqjBKXL8Rk4OBd7/EkDHNLFKKQwsV2MQnnXuBROHI5xCxK5kFZn1eVKVFb4bIXz7MfV4NTTQTxBz/9l1K/hZt+9khuI4qEoQPWUV7h8U8+9bV9dszTac6CD4mFnBDcvKuNzklE3m4/Uc1BEemgGzSCcv9VmgmuC6rBFIoIzb/fAo7ctWtjmVW/KTNGlSh18E4QAVzBni9KWSs8phZ/lb0z+YgwpYOOwsuhtlHxKWjMPBaA1PFq2KzyS2jZ0xhQ3SKlcrk4WrI5/1aOmGCKUvxgWar1mb0aoOX9pdJTjB7onU8N4Ku5VaS2IsRvha935kQegfUdeklIWa0jJcfN+sKgcVGyAJHzhSLCb2/8e5rtbE2KrWT1aGSqE1cbJIsTFJjA0Da412EJ7w0nqMsIWS7AwbozX5ozMpH835knYawvcEdZQtHaESmHCOpHqnTD0zuT88Kthe1ZBJmoURZwn+MzhirLncuJgwcv9zpQfeehDDmH0uU4Uxg0O6T5EB8K1Z4U7GDRG/+01IqW+HEYLoUaGmmjkty1sXwaVy7W+lOmWmhjIOT/kKehG0vzVRgws70ppA5qqzlSBKldN1B7mm8m1ppfLYyHa3u/S31Vt1eS15q0Aren/TNfAkcVNnNv0DZZdGZjwJpGu+PEY9CEOIJgI+mR0f/CScxCNKuFiG7kfLeLPQnd9Su+7MZAuiUQ5hg92AfYDj6IUU1fggW4lE1kcHEpkZJHniO/zab/x+eMtD1j3/IQXDzJMuBEcjSW9pefG4N1SbgqkIoup/MLuFmwiKVc19BptAGP7069//4n7bRqltZk40ImqFwqYY+Ja80OHliy5ysrvwo/+hVB/dME9MtvaeEBz3TMFa2UJILtGzzVhWHqiIN5Q4POITuRXB9ZsJwV8wrZrQIes+5QoN3XJtsrXCHhwJEA3/BYdgRD/d3oQLEvATUKvJyDwDuLHFlZXidISg6sLWVuEDt7HN7YtTb16EhnsDTqmreogT0GNU2KxdVlJsRYHtglqSbMBi12zS+Ps4kTemmYBG6jOcFTPXrLkqm0xZaNaoubgEDeARD9Bn6nxd/gUCXdOM7pDFTTWjFfRVNhzR+xMc0iQt4umnwiOPsyPpi/TfxBfFmkFGdrFi5OJtCU8SJDHGU8MVOFHuHZobb9CegCEMtVVBOU7t0aZH8F9u5IFOKAwpxyPw0O5ztIInMrZ1/RbqSpI9yTlYMmS13dEUQTqv8LvDO0riVZjwHMl95mMYtaSF8Ozt2X53B/5xEhVRO0WFTAZw1BuzKfItiVvxjsDsuGPikjoH5zBgfaT/qpLtwi8laL7HEHkk4spBJNiNOBSq8wWhA9xOEIXp3mCBmcKiHsm+iHg6DYk03n5MWPO46VjG+mY0BDOE2uLGwOAp7X7mgHODGmGIxGoxW9qIp385ZsxnamgJHr2eNLHcU7a5cSOkyoXF7xvPwpYyaiy2VASXs96t3TdMeiUOPbyrKy9If9xhxMZ+rW/LfR3hoaCyMeXHU8O2Yene8PBCy1yfHhT7CvrkyU/9a2mk8dL08/DxNzW+9/RhG+x35qA7s/8b/x1727YZBzSJQOB6zt1EjmQt7Cgiet97t6by8J+pV6ahtlFz9+sNtddkHLadYZvqdKvfyTzSbmtIKomixuZeMvt7pbBIHTM3hp9Zk5vkYLD/VLppPXfZksZ3UfSqi2upQHCSwmwnLbKsg+497wBuOWlyuQ3KmGXli4n5XwYRMXNaxdLC3KpoXyVD9FDcUtxtD22qTwqHKvT0lkZKGrrdab26J8ENJXuLjeTaGezEqTQGwuSY3YAcuV3q/Jg4DrnlPNLnjQaUvFXjW4ogpfEwViIDIaK5wMlhU6D9pAAWTPnOtlG4nZ83EQRLJFbqw6T/uEf3CXKrp/tAFwrTdkeCdcd6TimfBITd0w56lFMw2i4heF8xGMogV/6EVJO8gKdLPI+pB+SPs2ASLIB7cztqwoTxK87YkShoMPt8fpPaZKdfEdtRsi82RW49ZBGVNMuPI0kYktsIGfWyobQM3m6Z/ZFtI+5MEDlh9zrIkDsxIxy3QTDEb9mAOhM4yYq438biDfXd/Fr//KOHrLHmZKvp/7AubCAN1SqbX4M9teL1c522lSsYUTT6j9MjU0y0MShmy1weIW1ev9nEBTEmmNWO84e73MXzaCprMxbj6pDbyzLudqN2LTYVUcbHmfn0FH/WaAUL8VPH17vYVz5QhrMUvfUOtNqYx6uXdKDrzutF+smJXeqjwaExtyXZME4h4bPgDFNtAGPQPZk7iEfWOkW8JVykgf0idf8vezuLD4kokl6x8PbXIihnK+89sAVEHf60KmSgVxXa59RhGtLlrOYQq5t48EL0o6mso/aUlH0EcN9cHE/JNFa8e8FAKlYfr+KrOFgXu9Jg2YJbiViAL/0i3hBcxwcWV8od90ujK4sThIXtTv54pqUEh2iDZMSOWD3pVbpZRS2u7F3GmDW03oT2QYf62gzcFsCwf3MctFd1Wkg9JjUQo6uNjcTg5Y8dmzhcW8t8lrrwK+QAt/LC6wS+bz5pPlpsp7LMdyHpKUlwUStDcMCH+1Y4qjEirS046wqnATpofLT7Oo7fWrslWai77Ckg5GVUMvSbM92ynnp7oRtx6pGO0eQlx2fkRxzwplSS3Bv9w91CYVqo2/WHNqUGj5n+ZfvaIBOaD8MAH7HZDdVMEv0QsXj2+hChR9+f7B3UtPXSXClG84C8pFQoskjwt9yRh8UJesqZnseDheRWG6jVhzSNMbQLLidy0D9504nR4KxMkcFX4BMyhJUG/x8Ujgjh21kK0wjxMXGbGXfDvvbp1iG/roOM1K9Uk0A9BkL8ZksaceH5bakIby/X9KK/n8rfk5wqVcT8ae/TaUOWVUgYmlkiB/IpazcZn/gCihE8/bjmVHxlGmsAgU/lz2ePEaWd/6RMy3DOfT91R4aykAEBsKfSSKTE+9SYNks/Be0iu56LmGAIkdMrPV1WrfnFEVGhQetmpe3yZ/aJCWkpFNxbtekHuIPdDx5AlsGz2P9CNcnN+tfsV9ajV3gzSrv53epXLpF10UXtbw1t6g3YxEKPGHmoD6ec7Q19sm8wt9SNvKXTdKJWkm74Alx3uRsCchIIEZuDuYZR9owMcjoBcoh39dw5Bcds3KjumUZSiRU28NHT4PrkjFQB0MbW8gzQCfvVBt0vNow7wfH2gg+fmvLCHf3mgiidfhWN51rFVsB0eWBrauKr2WFxKQp7VqqJmn0+mM/t+dqp2b6S86PHRGov8W0ekCZ79MFI9UOOO80LqiGr4ma4OLLMswX05K0ovlc1vxJmyelCJhwZAlJCzTJOiol4yKE2iT4JsNpYuisCPj8goLzxt4j+prin5d/2RhRzRBS3ZwL3MJ7iHAyFrONBMOQ3LnN0CMVzflaGOMsHCdr/3zPhIxhBDvUQ1O3HMT8XKek/QOaJtwEYsXytKSDOCZYr6eOQi/rG8y0UMez5NKeIRlRYL/SJgIswQ4aHuVNqxjoro4kF4CJmQbGSsAZH8qB4YHxoCxPKfZezedF1qE/DIKQFPGFZcRVdXo6Q+rgebIjvL5IkQgy+fWzF0goifT/Io0gOWgUiWnpi3NyNI5eaV/FbLZdBHGHPZzbmLtDs1/FJGhKQMG3rOGI6+p0nqgy7zs2Cmqc66UqIk+z8rM6lUO0DUWwToxDOJFlNMKrWtu5QHs7ewja0IgxBL0DGjWRD2mIWC6sJWGV7wDStwoatPqiUPicJFgZhbW4msAWcn1Af+graZuC3zj/hb7rQ33imlQ0NfhjzpfV2WGE9z+pnR3r9fe/HIjUSR1mYpXh7fcTkvA3+LGVZqZNoVqqln4MrLAoKaDC0XbG2gY+1SQ+4XIRJ2nJyaSoy6LNAsvh0kf2Qx6hQxZfnYnqDHgilxHKBxbW6hDZUlfoiqn/VjlnL6QPAcArrZKoLJoG2NXaA6YPHItuQHJ4rOvL1kRfNZfTffr1/DVVzYyK4/IueX0LuKEoeHpLL/q+dGpIVB1FZRn2l5AvaKamLHnIrRmk5Pgbdj6GQdeXB1m/jfLzxVsbzanzDoxS7kHwyZztsnlxNVOE/zhWpw5olkwlN6ShUH/yIW3BiP1sKSVpm61sGne9lZrteZ6AuoGNt3SPmC1etqcr0SdqNeUmtK9UhPElyWyYxUE+Fp7IXAOmfqC9Zv/rzWPl5JqOWv0k2Qa5OAAI1IqxmfENIkAPQqEqtQ9FlLm4f6DUbQp3wBtwxtDH3sL3o9ZjIfRUU+QE8Ya9Ey8N1JZ2l2fi92xgSlhph7bs5INeQBIl5gDoBy3B1h1QkqHnfRlq48A+whSudgM8nWcOU7brn+lXcRKN9kd923Gu9gDT7BwNY1qbkqos/Q1Px9N+emF17ALVmwJS7CiK5w1y2RoIeK8Qqu97XIw/rEkGl/gBjSfcBxoxohw6Bb78BFiDuZL0tY8jtLprxzW20GkZLDnV343RG+06PnMO59H93SIsFEQf12wJpA1wCe/COstzO/nG+nifvu48yzfLj/gE5q90cLUpKqnzTs0+lEKEBWAAMLuBTHn1z8SoCk7PCxZOUpFj+MujCM3yb3P2sn/UZ31wBnQs6mkNMxm0IULkG90fMmi6x0S0t1zQlbPtV9g/5RTZrtqS49bml0E1GIriLWaCbYnlue2YY3PLD+/eQBTn+el31Vxw79U/useUF+y/lgM7bbmr4UZnn9VXfz4xVDwrjygabvhJn5VPfrKSKPifznvSl+Qk2PBec5eh23l2xnqY7RJV2Y3EfH641BH+brIQj5hXrYaSqlflG8CD1Xgh7Zn7UMMb3Z+wChdub4mRhgoI+Mjny0ldVyXY/YhJ7CztAxvHYmtfhfuZH8QUVH2vokkKw8ES0bPOO0Qy5LnM/PEG0R0t+uWBwTrVBYelU0F76Sj/y2gr8Ycga6ahxzjwCIHKYahsTcOboDjRKAJ5GM/SESivom3YogLIRoAV4vVkPzAUb34PbqV6YRUx7WpgPibODqPochavpBT+rF0cDO6yNGJu49AHKJlBhF5XDorpQz2b4DJUBjdLUijGtYKZTdCMz/IVtBJlK/sgCFthpURI8pGxlXJ7xxhI532U8bn1089h6Q/HZNj99x+aSlH/gZKkMUAaF1MdBHc+evVKhk7V9b8r6Aa0n/OOPPAgzGBR/cDriRYfg5Hl+mGJJH7m8IrNVTKzgBjijBxE/fJu87i4Fu5GQiwesMqV1e3ExgYevwbsg/xw58nultiiS/a7oZrokIi3InTti+vaf76pbHfI3r948DUSM5AIJCPcHiMRHVQbRIZh/hh5mJjp6RXcc2+e4qw55qol4nf92HRoft3qbk6I8bAIqSvc9y9biOMsG+jvZk5S/tVU3uVunSREF77NEW0enjwWQ/19NSRei21N5y1Bfei1AC72W8FAEoaCIJ1Yj+xZ0FqzANpUW2mkapTgLE5e+wPy8nA01pfZ6ZLTElYNIJ2wxCyCvx9KCXKJq68LulhePgUB/Ve00jlkWcUePB6NFuzQze1yxtqrODGzmeKRGrV4wXWHICDOTFY5+zIhuaZ6Ny11GxFGzp1Biw+PkBXv+owfwfavMfUNq49mqxi7wwAxGGaKL4lSMx0dolCWpWGEtq4jpmCWDXRUeiWAJRlQrATAUf/x826c+/avr7K6ksJ+d+X9MhBQdT6YYL9v+8lIzASp0ff1c3hx1j2Dh3rDo5Ekym/OI2dPF0WgAK1Qfm5eyGU+Znsr1AbkblLNeuquDbCGy5UEbzfUOZVZWBMAAxcKUScfsqwEpgCy/SXMs8b7bqonoOuv/yVJqlU1QOpwtL2LVaFCGn7Ui4fpeSUQOL8lZRa05jD6tTQ4Q8O4qiorLDoHzoodjEAZLhB/8CB3GFGio60+ovP7806omu+lp/LToiO7EPtu+6bLtmH4dCtvnlOZrc9nrFGjR0xQHjkuz72Zx0uKeQPG64lee0IhVb0cHXK7T4F48y5+MHzygwfBd/ORrkALMedPDlbHYxXm5w6BrfSS7P3tBSaoNbdt+jcu+A0M7GNTgSQREAdAIJGZpCoq8EyiDrIxKvn+0UksN9dEF9bhe8GW13JCfjpvhBcigqlBjnMF1Sc0m+it3kmowSjBe+ulPrVRflXBArd1XH1pQAUC7W/O+7EHO5lFkCJ/uzoLgObNcnR0lDfbF2K4ti6po8I1eF65MkJ5Nk6bB68y9TwC485RjNh9YaCXrc8OF7P0/kalK3TAeqC/4Dwlhu7mew+kihEhmxzVzV5kZJ4bpOxcqrHjO0Top93vetlspH+I9apfeDWHC7ZssDujv2EaaqDd9Pqw4EmIFM3ku1NZeaEZfs8KiHpfhQqgwWVPQJdR177B88fUcMmFtfMmi/1jjKtP+Wnyg3ECTmhUI3N8NqYUBc8MIHuCR+UYFn5K49t8uNBRG8XBuK8wt2eRvzoZmb+GNPuz7cRd6yEqvPuFstSJ2fqaNIXt7CJ5CjrT5sqUI+zgM3e2aogtMIb9M4LmF4Nc/EA3HBgmNvJEuKYIDLEm8/I7uef+FVL6Bcsx+FJl6N+L04XSpdAX2MQPszrY5m5cHKSpSgOmjRy7CF0UoAU5MFQMwlm6+DCF+RJzivsAhJjJm6ZlIjcdPvd4HhuwxOKIXicodwT+3s5TvKTUMrimy1+B72vT4Mma1OPyDhp/q4vOTXq2AZyYWnxf7hrQYFpFHOP/9yceGzyMLdz6m+hU+J3cNJ5VjSyx7K/g+M44I3ICkur+0h718HT1PeKcCcX92SGgP7XOYSDLEsrMWortmNCJGmiLuOsKEH6fVk2ZP8dMN8CV/bIGYy3f5u8hVX+im1IkTnVW2CMWfm/cFcxA3ccZnyNO/ZlUA5i9AUBzHQzBQkXt01wfWsZoE8oOcP4y9jGm9Z3KSDhfPpHMsPm2gSnajeQrqxCYByQH9hN667vIHuGHr/GrQFqg7OOLFPY582e5SUMF8P/gQGG6m/en2nxzf+BzcCIzuCv0Jee6i0ZZNXZcOeVa/rylslKjyhZj/n1S2s5+VGZ45Yfbk5bRGDS7FE1IE6G1ldOGQPbWgtVWxug0GyC13SjXppaSK1X8Viz0rm+/2I+2cpXDJCP1RIDBdXz0OS3MKruDOO+H34n/8zhXmifxH56I75CAfWNrbAnl/RCVvVa8SswZbG5aGKVZr0Wk0eLv68cR9e9457qxs6rAukJyhpfbKjn1SugYsNZJddhBjrwldgVt56HGxJGfX9MZ8/NQCO20t+onBA94ZuAJyfLg4flZSxDCM8dAiWZmZAITTD26EPrWnpsdJ37X39i017pBe3vllxn8Orlcshxerr2oH2nMtrjP9XRmPC+1GpQLcnQ2CJ4a3bdGekeWcMPNIbEuoofy1nArx/WfwVYCn3dT3IuMsx8JOCqQy5fXbkeiOnX/DA5MOFnAIREoOSdF7KWdjY49dHFpC1w6ApTF6K9tYjjxZKoNuPk3iWa4FOeVLSnS2zlwL9inxvrxpkx7qHg9gfwF+LYLqXtIGmwOLr7X35JpRsXIjMUBYShgcNUhanQnFSonGUrZNd/QShKUSyPWs3N15r1TWhX1NYvRF+Bu+oWKDchVvpEf9k5POKjiz4yQUGOvzFUQMtrml2YEofa6vLrAN9FAe1BpN6J/B8eVrW07erZ4hNIj3mxz2fCq5MUCBy31f1/yQDRuKqQb8ARHDURqE0GBd5KrqzNPxnWn6RPDVdC9cx9zEzOKUb484bUQbxjun/p/IrqovJl/yN2hhiXSxStfGoSjBPn1wuVAsoGaQ5OHU8EX0GdB+mFBkvhMBQ3tar5nDCfmBmATLPrJyAO9TtEfdWPmv1USF8O6dVXDYab9XLkuQ88IRdT6BO4c6Mr/RqaBJ4Kx+5J97wC+tT4haK+hTjEbrXhhvTpP7JN408fGQEYMwOdci9Iz/YFtTgM+zsWb57qWdu3a03Wr6YSlE0lCkRQcU2hCnM4nXqDQz1QH+kPmyY7MhphIhNvPw+x/dfvJ2TStGIrdV3Y3FFfN+L+Z1392Bz2raVyhRUA2/aqyw1f4M3HwRz9rxOZNUaaiQUFVs+aaS5hAp1PG4JksOeaxPA/9MI+9fBuTBz0IdkrX4TGAI83HD4Dz2VSAge/rNFqNEQIP+x6K21Tm8iXkFDrO5NX01jMGF+6u6MigCD221JDRaBfhnJJk4yX4OQiv4zrEeFRavKQSKlqCrswKreq2LzmDG+VFFHH9rq8sTphU+c5XX9FSeyogoqF8wdydVLBVxtRmm9H164zNAfVNBYKoC7IMzdcg0sCWqd9716ME9u31l3VUR4lrNAloLMkuRJp1097U5exWAx3yqNpqggUcuWZDjd0fUVBUrATA/zx5h2fAtouR1PANDWEv/g7LrPSS2w/xB1iwZmt2sCIncZrpZXFelVHMNIuIPoytGHlV4G98hlFVZ+IWAnEjbHS986itClAciD0TypBlmc+kYHd8GqtKc1+etftr3UK+XSyY+SnCJJiXzfaZD2g+mqTfEDksWys3OCwfs800Q/TziffhlFCbIHkPkmvttwB9bd1A7BurDHulnUR3z64gBX8f8o7vH525pomaoSdQDJUm7Qqt6vcDhjXGK+wo0ZKd6HGxmoBdzp0D7/NNnbqlxuMJ5a5zyJzRzVc3T/qQXtPkqDpSdJZv9o2bVT2CR9CCCBhV8QeA7V+E0ehuv7fMkAStpw3h298CKGNg9s1Bo7H2G+6pCKrHk5aUXo2IASwj8ei4II6nLitNKR2Qr8IJIIItF7eIPv+fdtBhXJ3AmsqKEieMN35QTLv0p9MM+iOGtU/DlhqQOMqNK5IvJhY2UrJIKpQaIuUApT5GZGD5BJzCe6CZcgnnG/J5qDSE3AIfYoefqzP1nNULe3nwnvQfY4mS1YuXIOSKuncanangx9HHbYgd8AJDsJunMy3e7wibyM1fkVkb7OZwH9BMgz1tbEQLEtrlYhB25dZOtyUNkIRgkO83XavwsI8iWHOEcLN/XxkBL8x77OekOC9I6kQkOxosN/Ii8aHZBOAXhOqdFIZsdrZpTCxeCpfxgtlZ7vLXcmDB84C6VbtAkSnGIS5mZd7/JswivHP+w8zrrIHLjdgbmzxg6zu+tVzjyyklUOkPynqFLg/GlFJs7ufb7wIVjpMnhoDlONhwFmyNr1Yji8orzbL2XuwuqGTJDHcCuSX8uPtIWZFVUBOlfYjuxWtjs9Bg6blkUv3FP0DfDiiMeMoEgHU1UQrO8pV6OUwCyJ03CSYy+CqsTw1312es5PhS3tS13CAKJrae2dIlws7F1v89f7lJQbaADdT4RCyC8vq8FUWGJxSbnOXxuG9E3R7Jj2TtGrq3ebFoYDDBUeVd5SvS7EqIg1p94TbRZVO1M2NeqDDkGsjgTHllfXKiJPcUovDgS+IU64k6u4aCweWk/BocNviqILnFsR/5MQVLWZFq9J3rimpeaTi8D92Bhe7H1TVODvV4A156bIZ+nMDoSEzQ3HfPUUPAyF+YhYvj89KaIHe2gfLL7EXo15s4B18sIniKjMgKD0yuu7ld3XyocpORDFIk94/cqUUbFVBtTYj5G8QlSIP3uvVqqdCKx+2m3PXq3MzS0b0zQPAxOKrlBFdd7gEa4Z3QCtEcCJEVdDxAWnSUe5rRg1Q8r7QtDyaMINiLy+f4RgBMlai+8YLXAw3e6smwLCNFxS4BvCTEox+hjZMfuhK8/G3YNvoWJvyPB2vjYvUoKt/1T1fDmpcDqWSGF2EOWjE6C+YeSZAMY3LBxYcLujg98FigmGoYBkzRlY7j+Td/K5LLU0nQsf16LLoMj9q3aTXv6/UvKdtZtA8htw0de7J+Ml2B+ynfSuSNAYbpMUhH7DbIeWjvUd4D9WjcpsGUDwvTFKljVimTvV1yd3N00QqtFYkciiCDlCCIgOXtuJdsDtE+di/fS5tCFTeyxa2Bgt7kr4sNqJ6eMbiq1JIVrg0FrIV0MKS4KKIe0jbWPUzkUqnH0TIFfAuUBdAOLUQ5JSIiGhpXZZuh2m0b2XfXH/UWuXQHo9zbWyngvESPupDM8Qy0USVa1GQQah4NyAtN6JD8Xvs6m9eEfEWcyf4gKN4Lk4q/Vqhp4SPFkIwd6uwHaFna6gee+kJjmP6yB9oP/1Jeh7Xl/4NS65bMUYerYj0PU6crgCdk7s17jhDXsB/UodUuh6Bu+J+pTK49YsnRxUaOWLMeoYRrVamAqE5ZtUZNoa5VuUjoxAtgz3nkmRgpr9eKEkR6SlfW69t/KDMYiEynv2MoHwf73xkNkvRcB0pEjOv8xGnkH2oC7C+CWS2ih5eB7l7tvdYYbEmgkCUaIeBTHPYg8OD/ViiCXiQ72su2852jpop2d0ZiKAkqR4buO4Eia+vvPa9hPXg8p1TGUDLVxVmH79ZZiIxMmrSBzgItI/DQ2OHkMJx6lK/77JMc9ItvIM2ur+H5c3CeLHzj3CVyVMzZQUeRPrU0/PYpfAm0c9bdzqos+l2gGlr3sl2s157diEBq8J98d4W8+8AAgNdolsiBDaDcoLyIhWSPcggrkK8iSdcaXCRGo0l9yedZ1zkIG5bRblqOHMEvSgiZm13eXlABW1ySxLVua3wTLuE9FqN0DyGaLtGv2VfxsJ0/Eufeeu9aaIZAeag/78ZmYBronD6KFtuvowoW2R3HfhVoK4mrtiCQQE1NdFXVsgVP6DUCNReBGfgABsVa3YuhYUtsifdyFTYqrrEus3fx5LAe0CTIVKMGPSgMki8eWGBPg8sMPiVZOEaV8xWyh03UU95PuyPbYqqyQ+eNDbteUvaWEetcn8rXYkzVUXyQWEDIliOGYhSjBZPUUETwBLMZva4cSwvpFN5ItLmWN6/8pJkUizOr8h6bXPUUF0/nc2pujCXMKlkWLYUJwmdU69K3gzqZT55b2i93vOiUziOBhB3TGXg8o+eec6JXkHBzVKPvngy4WY0cppWf2gqmQzeBSTDoHwVI2ocwGxY+9x0/83Vv2SJftxuqtf/TaknwJpn2rGyaAtb+vUGhwmgC/AVZ/Mmzs1rZxoV88Wtv/DCAnc03lWfcNMZKIvawB642BpwhBo84IVSJSEM5VMCUH/NPRy6jGOjmDxSfsR2l9WSauIUKvnuC4lAlM1Q2s1Y8aN0oLZCwz/Guq+B8QfGOYAwwtVofg7Otd0QVDltc7E9UrFNbUnixh8TSSNPGORWPqJrLkzEyTgPP/0D1OresMGB6EW91rxMT1nsYTR8DFY1K2KCLIpm/N67KrkahqIrnlvFf04KXCu54SYcZUbIB0OOmTQbJdOuavIGw13UiKQ3OsBlgYGOUE1FQy6/5ZxQUFfaWJPgDaTUCijK66AYIIZzZRcXbm0vHHJaa/xfdqk69+ShMQA2E1rYBd/N6G4vDk1HxDq2gmmZJaEFdHCv7a5064kU+maZZ+FnvnDzJOvyNbToiw4iZ1PrWrXMS00owhyJhKe8X48PkSGvyzU6dbSNbTwLW4O1VXs+rDR67nx8c6srGjEZvNNHq5qzN1PuWLUPQYtTJtdZ424vIWZI9ylmFEuS1SMCwX2GR5e81/SyoQVbh/BY9uULIeIuZtZjjfwqrw+a4PYXS20XT8VFoWNE7AkUxR4WXiS+f1XVBWIVQhHUa7+S4P9nVCfXTT2JeJlPG45qpQZIldG1iYPBtjupoD5CJHm3EnRbtC8Rtio/pCR8mcc9qfofxy6YmoOdmhBmBSTmJtlJm5TpPP1b5dP6cVIgi5ywubv3ZhJdhtehJ/rWdvAZ87lhvsUwi7lDrpcP5gFUomxjE0Lypl9b9kb7cYPz8OV5iTTT4EQ2tcCYXBwQbqJ76TTrSJOIRsbXAW4eWBq//ZyWfZUwUQtrrsFmNAd1lYo2+8HdVJuVQVYfhO+da/3mM4dcVEjK+5WXeuzP6VXJ5qXdPZp5SFciv4cZVuCY26fM725EfKa1DNFBrmtJ583Oq+ccHnANWFj6jvKiDOy/CkeKLGDxeQB9NXgmWOEZM9iQIIPR5kqLnTV8rTy6fXEBKt+ujdiimxbdIHGZp/aAQ9J7Idsrf4t8vDlQdNeuvZlq2ShnownwPIqWIwMH1RE1wdxUBRGHQWi72omHZSRnUw6iJgRKnRdznhwS+N82wn82BIZVAsr/8Auo5jmPcDpBpQ6nIUJYTlCjPL2Ew7bwi5xPxduCjLOGWlSvCb6/shDqXiFnqbj5LpPAA3B4uQS0z9+h3W892f3YqqcOAvM4Pd2uPwqJKnxEbsQjJuP1ckQp5tBMRjmvIkXBXtWPPgcCMAxVZptCriedojeky76s0KatZostWXDY8nEixwqf/NDSQhPN/S7OaCjnub41tm5uLI9sPx59q6tXfbK6B2MJGM8vgKlui2L9FyxGzOrlYPxNcck1MiW90+XHhGfW4XZTZ2mhqsLSzdudlgVMcycCmHwrY4lRV77yTzwLS4RZcuKAdv49Tjil8+gdrluOB5GgV4LF+21Ru3O2wWTBgC1syIcIbQxpXxhxMgeZQ5AHpe03zdN+0qsonNpLJ3aT+ibMjfYAZroxbOhZCTRp+r5WOfLvJL6o7FQlrdzItOVRA8jTFCJVm6Z3YmFPIga8Esai7fH8hqoaxAZphhHItO2HLoyuQsDaEo2nKuBes6xjitenfKVrC+Lx9TjMsxTkl4Nz7Qb+bmr0Uvl4oKKdDmkdnK7RsXb5Cmk83k61yJ1yIK1zl+hERVKExOOgh+35NCe6aKY0ChzDNjl/QenZqjQC1ATVdOe3V7qXfJFdYtips7kpervLfdc7o5UBOT85UHVgssReQzr5zZbIxtt2ZB2y5LEz02L2OokezGjbnLe/D9ngqIjFaOkcU2RALMq/SEBc65NyoCrQbULCMiBv7Gduve5tYYxaObm1hz1SODZQLby9a/D9raAzCD9J1kbUpHDXGnyKFt20ezVaRVqPVu2oMYANhZB5HBWS4wvQPEWN7YDJJmOwOP9+J/EiRDjUqDMdIKX7zKAYQDLjmZi+MBm/+75QiViauyOjZjC1/BeJjCnrqM9zztBlXo4dfnB2ZapmNgd5vhg/DJe5Q7oMnFrIL4WC+OD7iAMyjL/UosW3IAJP/Ql4vxLWPXMcAW/r9T3hdLEEIUgTJaecYku1kZLO6hq2JfYnuJUWeCe0EkNpYlCwvv96OYa6r3WAMRARqAUMpgChzyD0LyXpdrxet0fvjkReZhFdETFfXgBnbZ91g5G7Psz8b/JhZEd76wFFdaz99U3wcYIiJ98YK3eGDgLEEdcA7BEFQtU52+D58BUHimtuIHKGsR8T2fgYx7FR2BRszF0L4DA1NfwfrRlDwcS8EZ/wn8Ihttxd0iJEMPoCSIxyElbV4FThepwXy5OpPsUwUISMp25z1OySJy9krHD7sntp9OmIo/VTR5qcKd7iRlE57+xxtqtLXKyBxw8onD8QM6x1bxL31l/O6ejjoGM4mtEfsfelcZSEVf4ZraYYYWbyhHkoRS0P4WUH9mUP4Svzkp0vmUrXZT2gDy93faVe2GbuMDVvClj1a3yqFzWPw7whRA6HIz0soif4qkpbRAJNmR/mA+9Dro0OXtanvWJyBMkCfMWA/iByx+haO3iRdUQfhVIQCx4flJunjkmTDRtuTjyTFD24AbtshNiGnjh4FECj0vGCpPQbFZBSCCGJ63IQONimZ6jGYqHoSFPkF4DwpJo1NhQqfG9tkemONk45ukrvM8VlWUKqYriGcBru96S0RRz2SZP4uCZYRAbVWqgJ1f13aAqdmbSWPxrp9bVEHghwj7bGhcbsoJIc9dh+Cq76x25FpEIMPSfVOpywLQtCmmRVlwRgbcICD3iJPKoR46Vn065qQ8mu00NRXoQ+7HmKAq3gEBeRfEnAicvmGZK6w8inIJsOy/vaosmcd9ThyRPENyM/ueslD46SywqZQdtHdU0XDTMn1e4zJ1iglHKTML/fqY7GsyKH0MnCF8FDOLQLDEErfK4o07o1rbrs8b8j30QJbNbhh8/SHo3QZuyzaP72uKzXcKhoTUG9j6ThFt3HtedX1r3Eq815OdR5cr7W+E97yI01BEA4C3lR6onb/wvqCVAigTHyGlLmHL63/GSITYsDCy9ulPAZEY5jXC8R+HzcNxc4sOZkEN73yEw9gQ2458l/tONkQ4h1TCHc/AYF0O6g4RKOe6iKpquBYPf53zTgX8CrQjy9E7TLQD8VU0TjJBXarpwzhUtofUjXHrm6ERuMT4/S9sVpH3G7aVP1TzoJgB2oBkwPpLYTnM9aJKPUjLG1/BdBP34Z+OOI4KCh6w8z0rHwIJK0C2GdggOYJtz0yS/CiQnzLc17oijaXcREJqBSfSM1fPa6wWwB3gh3QiJ/H+zouMXs5cy9wYcon65vP1dYoJx/l8LRE9Sb6UpNOl8Q8iuqwzrp834Ly5KrC1weBsm4VlNZACWaZT2kjt2rELKh3RFiXDkTMpYe4QqUNLxgJyh3i1N3V0zrS5KYySDDJ+v4isfBVAoyFmSJUePyYjQYiUYWW4R9BkHuG2RRPMxNm2OBiPQPaEv+2tYf1nw4kR3rxh1w7TDDJSVzbT50+N6G6vMKFEBALoGJ64uf4qeKm4p61afbyitSwULf0dcnoQc/zqmwK/jc7b9bvu9EeLE0C1gOIzySTBsbw1NMlDAYYJDlwOR/WxRZur+SMpDdGNNBpXHxFB7z/Bo3RRRtd17nu6QUPDIrYruMG8H5p0s9WqC1PLX3IAXXBsXOguVixSFPSKyUaCrQzIYKRhbdTDwok8A8/w5zgZUl3QUhtMmrFgAjb7iEU8QBgz2ESbpYCjH7o0s+993NH4LmqZrdBX+bRewl0XGR7WwAxCn4l8qHehBWduYDwuG2A/eL5gZxZaHXntNYMPdqNvbBY/yrcBE0GOPDOoso6UGOSDFdILBt8rOBJL+BefK/KxNUaF3TNzO/0QaGQwOjqaexTl1esk4JUSTa0sMeIQ1HVXrmxxXVYWV7ChXUJotjYXnoXjP1dhUTu8PQuWFzxeg3afd24MI3yYdLhLrAjvMmyZ76bHRjsLWg8ghfRJyuWy75tfTJ6Lu57XTzaEvIB2g/ggw00bW7k/bOECyHU8v7fgiqNegY5ygYg4REieL3uCaDLALzWNwjxCkljv3hwN9ihamu+q+rrg8zVhKHhPw1/5oQ8FYCKbRypNDDures35q4+mqP/3cqTyx7ZLAJA6wTFRRleytJSeQodhTTrcAEpuLkyfETELDLk87YOP0nGMVBTkPFRPcE6szP2HHWymEjuXggw6jztvHehYjLoQ0oeDcYt2DT9wzFq1zYCIldfPdqdZZLI3FLcH6JBW6o4CKseGL7h5jBFpi7/0OpnFjwYfhgjm5yIO5qaFH7BPsYsfCdfD2FATt/ReCz1M5DXcMrtk04+1mkltFEJJSchsXv8y++npPsyanBASRJv8qqV7qgo/kn5a/TKuLCj63OpbZO/Q33cR+GKfmMy7E1rMGWEOlPv/4JD7NnoeIUx1ZfDU7Q1dy9kwjqMkENPwQL/cGkXiYx05/tuJXasuFx97G9egGvkASpLge5O8P4yfRbTljp9WAYNti9Xp2x3OOQAh7yiwEMQ2b/p9xSyn9dscsEpPD9K6TKM04NXqsY53Hogx0u+9Lm30n2V8FtU7DZCMBrjoLYG1GpRsMF76j9brjtwbGiGtCAH28gG6xwpHlguQwREMHJiohhera3gNIOsPObKXXi/GAEQm8oye6vXMAiaE4J10rzXN4lr6yzR09lXzNW1rLYgpuRucoLIYSuZxmHWcQXzHjGFoZxb6rnn+LaNtozHa+YrkWeG7Ht/q20+8ImgSW8iVWXAUw4lbnH3ge5Np+VwFdXw/ez2EKAW0LpNbdi/E+3NiRviNKmGROdSUaW81AR1y6pYQdFwA8whbmWeIXlO9rYfQOnuqVjUcCTSCCIInpt45wLQdPfzoqZCRXsVY8/HDoj18KsA2QvhjTMZyLFOMN0yMjwwTcdllm+phMO9X7vdbMCOnmroAtbs2ezyHytgEuKnqM7+H+rcr+PiDD7PdHXZYdmKGSMcK/25G/npM5jFPkfFGhHsewhyWS4lKYXnq1exrn1p9SbmoyhxzqYoL9srohyXB/EqmVCqbEy5nrewtvSMyLGDu1gcvfWkbZtEy9ODtg9cP/l3B/HOKuDtOoKsBsZQrM1xnnnNNiBMV3L9BtkuvvSWAoxx6umY9Goc9SlCwKoECyThAkZyaV+NNxQ3EGlFCUMpzSFUg7OgJTGnrC/t39Q0HKPw/718MKwFnGyeXQMHqyNrezyCFnUn3ufsfOZEsF7mUMOzeNvUcV1k9LvhGpWjiAJ8hvowB+O2Su6oX6HOGeKTmcifgwm/TJ8ued84Lb/PlXQ2gFPpO+OE94qBaWbKiV/GxkafYkihEahL/0RFT4RESw9aYFsboUIVZTtdF74AQx8gXofWYkw8YoYdODx/ct9ndGqLJEuO0ZKqoHydeecvIMlYXsFEa/eJTXUYo9NXC43Or8GjNGDki7yFT73KVz2JMoSbmjHFoDAaR4J8ZSG61N/Kq0/g+YV1FOS91KzSsTMEGS00TegsI/lPrJ5Xdt7NSNn6z+RCqcmUJI4tBuE12jV8c/C0T69Bkme33VUVtQYpxPHpOy6iyxOcsAV8fah0hQTqMgobuZeVZakpKmvt7KfrLNtzM/3AeuIdjlkVwryEG4qusDjjG9Ebg0wYMseCFzFUi+vBWnkNoy0YZ23bmLNtl9S64CMac3exyguz2YYbsODzVQ3WwfTsws0Fnzch5E7YZXDfrppf0WebMI54Zo6gn7AfelLxRBTs8om8fpXP/3KgWa5HSUG3cVFqsylDbdG44yeOwgwgns23Mbq899Bk4k2Wop3XmqZni33XwJyoetxtEo8EEWfdqzQO3RwKdKyRdgTIFyw/eaoy1hC+XMM1n0HI+bDQpzA8DyqLam9RqRLmF6wZWU+HP0g9JlRHhcZ5LR+VXpit2WDntlePXiAhLu5WR0NALvOh+PSG0EJcg5cATcVbfzpAcz6Z8v+UKFLT0pBXn4TwhWFKhKdywd9rGlcoyXhn5M5PpSDSnTzZgkx52Ec8jS1WuzKjWYK+0NbsHjbiUK67k7ObJjNqwX1k2BORjjvtMX8N1Wvr1Ehs7q3wU/R1dxs8liJXIT8HTkOnf6UhujwRoipnqK4r4A0Or7AVtYe3vCsXpw4QWuVQdVd/I743RJYTJdul2iOZZBnWDO4AKh9amf+Hb7qNGRprVTRQZlLbGOSZpaVRUlPpGRL5Oomboy8yiRQ6X7WfXsS/tJRypnlXYg8+RIrJdDlXQ0uwuErPimi4R80UeLt9fyn/U93oKbBwes6jGtfXclL3MUXYGbG0Bdro+TAidTLkQq3urvCnz5OzsKOqotVhL9pnRoQJJlYjahspQkg9EoIO+5vmuqIOtfZxHckUKhJwT6ASYFkRlZKssbxTZnS9qnHBOD/G5LgrvDmbZau3zWge7s/wZfvzqU6ADtjj05JMyLByeDa5+rDipmSip8zCu1nOXczojy1A6o5Pl9DTCNFcRuQ62/MK3RSHEJ8kI6HnykFGMt00G59omLqdfpCW9QkYref26QBqh0cDS0XLffG6iUHSuNrAeqDPPMXinc06/1XOVIcBcyuPo0ZIZ0OaRZ0hDZg/O9BieMxomH4P8B+Y3nrI73o4IwSNn4y798dE8TwL+ZrBJYedxj6Vx7QnCKWv9vn82w3fv7Bp2aE+dGX3GJ9O9NEL0EsXEPuz8b0EVfjPfoARTrpPIPqn1/w3JQT3k99GVi5y2ysVHG7JFL+pPd6R4O5jzAjQhgZUncjJIoRIQ5K6BJ88G674/Fn3ZPw3Kg06hoEEFIyNGQcGTTE9n4yCnAkz6fcE+XqaQ17T+4I8+M1AedypmshYMQ90Z7SrDYW++n/PO8XUWpgKxiEoRfYzvm3mmPfBkOzfpF0V7piYIH7E4VvjZPjeezXtR5thc3uWzIhhwZ/6UTFtpoykemFX5/kJUjJkIp+qdPx9elZ8EvxiXG+P4ccbhput9xhecsEshMm1QTPnC8kfF8qEP9tNJBihTZDSjRvmxo3AZUk1X4iFaQnJHb20nyX8FOW5W3dkZi5mZdG3i1tsFT/fpzlyIlYY+LZoCKl4GR7yGJmDJesqA4HlMOrNmWqjS1LJhSeaGg9+1fQgoOSJiDJdlaqDLtRtFRRyiPoOEup+qv+l4c+UZ1BfliiVOgik3U8TmKT9+eLvsLrlDMf1nUnNCV3iZ6HIVdMWS53Pux6pRwISgcEMYtdxneJWze/KTo4wsYxYOyt+E21drIRbqF9UZTCjRYBM6WWBlG5dg5/RqSjg2VSkjnbpwH93cvk3vERc6nQYDxfdeHzl2Ltepm52Dy57Es8ePemy103o93YALmSrKL6b1jqS5VkS9ZRDZyvc/IDgXuvCtO4+O0pwXm7neZm+r9rvXDq40KMwqST3ILXr/UYPYfkMA1ynEV3ThRZZOtNTAqGdJX4zunawAHMMKwierrMWZ91gJpDClG34eNkVn8fT7OnVmNq+ghCBUW+/wSqkweWGXTTBrvTljh4kHFqePLsDU9Xyxzot9t0efJXS22eDGyTzsFR5KVpXd3LL403dVikauU6k9AQdMNJD5YuITA7cYJfgyI2GiRX0i6cK56NQ8PnhgXgPrqDj5ZyCal78835jLBdagizDoSkLZlPT9oApN2mCUgZKvPlI3WFX/i7Ogizp2fxJq7w65hi6Yvjk4IBOQoWR9hXRIRZjD02QXI6Xb61/YBtg3RNjHiH1E5U4Nm2VxExb2PTrp3t/dprk2soTCvC3y45+ro/n3KKwuZupM1us3/RXT7vpZztPxFDrxchWm27GzDOQ2xw5kFiGNJzDokkE7nsbkZQsCQR734+KiTq7RbWhhu7Qqo5y8NZO534+adPsfTiicj7JVX1dvyJLbmvrkwbWsO+bsginNju6zyZZfOheahVI8ZGizAbsNDrEs2vJ2cp0fAzYojSOYkck5wwBgowYSK2s3gRJOHCiUUUu8421B4VeWhydD4CMNvXRuy9gZEeZnLIiTDVkCkmFuPgD6RIWgF0+v3B6QCPeVOB+lTzSL1QVpJKl++8a+YhinfByShxHZXl+t0GjOG3uA35FVxSJX59m/11j7F2aRwnxZq0Pv3IpLNTWOyiBfBRhidMnsp/k8ufuKPu5LBqcw5DM8IFnX4Zzoza1a2/Jpbbwtx0RJTdhrrS+Qwkm6dAvKG/cKof60AzHzFLO9GdvccU/jKKD4UrFexpLY+QU/l6SwVerCzfrWnyYo3jHRLvWGAXo5+SUzvXRUNJLjxz/InTdAcXgq3d7LdoNNofj0UpzOl5WILLJhqthdhqJlUNetxint/AmTecx6aL9ZzhsIc/2F7tWBMj4Z2Ub2DbNZWzrXYt62t41ZdqEjINRQH5WdFFz1QBBWXnZLmhwbsXvk3sk2f9vhNhC+jqfz9YlMCj3wLbnjw2CM6aIMtGPWwNROIkN1gEMs1rRI/Y7h+zQK1gs9tOiQ+y4aguQhB6eFwah5UgYcTsaAsHzzU3CK4GGQrnO9sbLN4eNezCqRuWIOhelSl9rk1ciqWZ+dQxZko0guqE7y1PB7Cqv4tfirf4nen3Q7HAsa52QyWhg8xN9kDFnpV3HBIZTC9aTmSQSZDFAHL9qaF0hJEwUYyn28ONXRsvbA+S7jtEMJtnXOjj6m0Q0bw6WYiinq8y3JkL66dagKT9CUebPJYQVxW61Cb2/cUDXDNP99R1URyaXmf+oKCpMUs9oalpjotcQaCtoPV5kzfgSehD8GKqeVGGPLpIg3riCj2Jyp8SF5wOFkfp73+T2AQA6m1G2HIPvTqzSpFZ++4+ZeMlb9oWSqqkjRYUlWfbyYugGPurZ8TtgPCSKqzMFmzbEAu2jTF9ZDzU/wF50KCPYzsWV9uIv1qFJcwShwIIGpxWX/w05WAzbOnFD+saGEdoPdgRFl6gtz42ScxMjM+AGByX9JyutWGRr+EVAgu19quOz8Fx+our9hUIEYnZ0fBsA9h9Frra4B89yJQpvHvlzSO6Zw9OB7OfnpRBOqe5nzg7JgDCgcoiHllgRPqxl0WqCcigHMXF3b8yJi6ifbGWF3TfFib0wRlHIHngtRfYSMSQ+0fKiODXCHlwsFfl3xhnc+hDLuX6kQvEySRUk+xkt84Va3HLH5DV96+rQnKH6VYT0vxjm/sJQAHsB54Np1Tu1lcO8ljfHzkBa8wUCeyZFKcCEoAJK3/qnU4FfQe/EeRReqn6US96fjqb+/IYLqKeeJ2ybyMJywS1yZz1ASuVVeqO0frgo3LXV/XcANm5TAH62lsCtegW2DMLl1acXL2P8B9yNKWjDAWl12pOclLAOHGNSGkis6yG9LLCtyL84YJ73AyeZtZL6ccEdfN30PxQIwA9389FH7QIsr8E8QeqsR0+jaodhJ3nl7sRL8IjNIkfXUM8t5VgLuP36xAKlpJi2TRW8m8MdghsvbPomszFyrqFmZ0DP4AQN27Y7qfCvmce8Xi0Mc/PjVED3ARyjQBKpWi9rtoSAeyZS/Cf0s4dKBuBc25hI4/myeTYfa4e6RoeILnYwD3LdLJ6/G4PwikNytiaHoRHoH8vqsy4HW1iplrP8UXTRpafTsBvXD7mzs9eothKou4oF6lNPLyg9TQ4c6Ti4JZcr3JOUTdpkZalr9r7vjZmTMsZUeU0xq944dfJkgnhk4wI9IR6H0+g7HLkVlXb4JAkMOVU4IZSauEOeSXQldE5WejSL+8r/hhnMePF20wopK/Eje3pRY3XX+XaPFtbQj9G6LlrudacdrTlnVrLLiggrlMDYd05yPL59vm4TfOp4jQOPt92GZ7qHT2sZo1JhfLeyeOx8egBT9vk183ePSDYAFyg4x+9E/uFN4WvX2w6oLvnNgG8PDXKJomeAIfkecvrduqw3fREY3FmmoXHRt0TNLenuXtleiey47YawcPoE+JcEX0e5tCx6DqBmkwZkb7juwAHGUnYrhngLXwHi7XkUfg7OhnNtkmjPcLaL5Mv+L/gkp1CrPMxqzailYxdzXYD+l8+j1dzsIo4kvBfup/iNCDBtnqCipdbgAZHjzXrm2Bt96u+WMSNUS2+tiy7entISxP/9K5PHKtwod4szCyKzjCeSv5ioCkCWVjaqmw7xdvqsNrHcZU2pa8OcqUnHPd9JwYEg3YwDQx7i/9dJBvfAvKa4hUfieq6YwCPKKV6iwzfMBDbD8UgPvIj/m5SZkQCfUEF5ejjb0gQ4Fe+Eu5/eJSa/hji459ojbvfDHUohw7SpicTLGanRTX6Mmv1SV7RnB4cnYCEKjLfyiv+mnTDZOyA0gwnyL2iqTtwTTGprU60tSPtsMKEtlV+xjDTUgHTznCBjuucwo24Fuh6uw4HuS5E4TKt5pzfGBMpg6+apHIS1dbT/SVQiufC3jBOhJeyR4Dm8EY2Ay0rhfA7Rb8iwyhkOVtG1PeIaQXXDo8x26fVdY4vKcP49CvIpQgVVvOwWE+FOzvmYMUMOBsDyzzahrqo6dANbHrlbI7NR/VlOanyolKmt5S+CoNg3nHawu6tumAWUGXfx/cZc26CHDN5P2+9zEfVCfG47xy1b6seb+d+Gm808zS9LeNd4guCND3tKbBGK3MzBZ5glFUTM4d//Jr86+QXX0q8yABo449Jyl89dfowk+SCodYQYW85gcHBHkK/ECOVKwQ3t2wv5mD75yMLVuPv+byQzFPw2Yb/FBk5lzCWKkYENK3sYFvHvojlvDieLwyCzZBJyRxppoG6g/V4AG7jNXUDvXpqMiamFReiNctW/ssxRXw0iEr8rqZ3behMeaqCzXZFVKpQdxYVAEI2mQd9k5k9a+Co5NBljbW8AmHNIQUSCKB72Kdi4soniC5n5wU/DQRjOxfH2UoTJRTtMpTkGzcSzwYxB05VenpTD27gJGY+W/sJqC6EDH7Ty7q6fzcnlWija4HyTmR68aTYmjxyWubabCrUQ7xdAYsMA4uzkcqbhEHHAaorfPqpVFPNFdgfQLHsg2tmoGsRVA881Wj0wofi9w26DsamcQFHipxDANbaAzC/qAcPijLGpKCsrnErHVbZx9LfbITXZhm+HqnH8AL+XYFY72pbumLVd3Qj6yVh/5D58gRD2ugNLSM/gWHW7a6/En2uu90CSeL/rmXyzQqwOGdhPz2uNZzvBefJKc7P37DDD6RcDUj4aMvkW8M9TeCsL925Au7MsWEaLGNpjQzLuR5PP6uFi2UGY4DXpr7QzKpXlov8ij0ZpEQzfJKK7ooJk70/g70fXwu7GTWcOxK0lZstTsW03pAq+7n4He7BVRTXfusUcdGLRp1VSBfhFHPSjHsuHzEOZkM2+Xyx7Y1rF7KnQYJJAQOzn88i7y2oe0t5XZ3XtxpCcgAky0pCLxT11FnE5vCzTNfmEyBvS24lCBQzS90X5SrEulVdwZ/5psfZQH9ezbb0vMSqdyqsK/py4eJWReg34WDH6tbQj8a2tm8jaZfWhTyzXHIHtiZO3AUjv9IfUcfkDX7KE0+vNYGMucxvAAA1zhZd5ElZyF1bdRPkKN1Zm1DkN4ur46C7ZaBKJmDI1iodNCJKiaBZP1aF9YJ03ImIV7yRLMjvjcbJMAr/2ybYBQkN4/X+c4YKRsRITDgMKelSUUG5Vcsq1mkv0QvfKnfrMn6LGOSYqAlNHWl3i/NbDCsKjGzmM80Av0IVBL1XeNP8VcvAzC/Okh5+3hbfhasXvdINlDV40gydgP2Tx707+Jv+Fxwy2IiREdYZoXyBJjEa7gVHAK77c4P7Hb9u5hdnBFXdoUQVF4fakO9IS6fi1d/8w5KBSJq3J0n+lVRu94Ml+VyNCbanHuT6JbXQDrwzwNHNAHds+vUK/tThFR9ZQwvPkqhUY10BRTYtDjzMOKA6aWh4hxkK+79yNR3QThTo2iLfr+8IaUbOqzmF3k2z5BQmlYBlqjmQ87cpDFksi8RcoZUt5YuK5hj6HdyuSl/zx/+G8Rqc3X7EJQnitY/OFa4Co1TE141t9nFzQa24QYETdlnKlVFmSx4CTzDL1dTQV3NKUEQROUlomT5wQl8xHnu2L8bwgE00zy3+jS56oy6I+M97GkZ5OAriibr3WDz9u7gFgIo13XinFPf6o7Hz7CUdvrGl1VurcesVBfx5tRIlWABwTKydrvG1J5wX6+oiFsYjDzc8mLIBe1oOuCiyamnb0oyuibXVFMH5a0JWZ+YLGLbB+QEj7xFeDVFSg8KhaTTdE+e6K/WGVI7TBeVKX4LUQXrEkjotJPsrAec/kwnG2USVR/QYiqRsEGmp+AkB0uPSt7wgECi1EseKG/LG/82v5wO4/cQPG0LfEqjUGpCGbow7sJuUXeUDYNSkvGL9dDfHLCMTdbGEMQZl3ht7KeKTkoeGGkY+ahp3Tu7zs0GkZSVqrKxYWxDsddlLaCuf+T/mWRt5E43hL8z9EgYOXnxU7Irs8YDCQuh31Vf+/vQYvtL/WYJ9rF/jzpcn6Ub22zVWheYVtRTF56pgzJBI1VQjtZOzK0lAHzWlxrN+bce/gGil0/yC7xveVNW/hkub+WdzkUcdhb9/yoc1lczZrl8z0+yOqgB/EJNm0SmZnTIl+bR9wO25xqSTj14AD26LzjqUjZADtPKeoZWX6R1obELyQyWw96zYfvT3ceajeo9cIbW+QdZCL/kAkF9zoDYbW7dmAXIRVJEhwnLB+k6cddojxxrKFXxz2mfcNGHZ6ONv225MM5Ufqgfe98KsYRSsfGHi9vk6J6n/BRHjAOUmPJ+aXXk0XNGppaZnK3YYdhPR2I6H5oc4P5wxAGGA5XRs6NGgSY6eaXIU3OX57uAXAjgWgdMLcE94HBkZBGevt+k7+kARie4DlTDdRJZ1LusG/Y5j7dX3eLJtio9mCFdHS8eNDkYOH1JE53auC8R0MjvJy5b+au9IS77wh+amTLXRo/PJlISAXNaP0LcRAGiI2pr/HCLQkOPxijhSWFNB3+49L/pbB0AB16MEuaZd3W5mY7K8/jliqRkhqkS7n6fU9dve16C9yw39WY+8Rn3A9bgc6AezsxXQ9i8mMcx54hAvXOF+esLLGUqDMVqjSFTySrgOLU7x7nQrsSRjPwALerVLGS6tkn7oPNthjr3vyR5/o+1ItNo49W/NhonvrcW4AcwhNpy1NCe5X0Esl93BK3iiuOIHb/NkRLOqZOFLTScczyqe4whFcVvIhvzv7GxBI1BjbD99GC47tpIWlugpyv2hKEna9VrdqHFx/BG7doIxNvhHMjn7v9lYwMt30Fp854DRsgYKQG8B8yPH6o0YB81oKDVF2TbDeTyZCMW7KW0E/snlpJ6434FXlXiL/Is6qHB6LcfjoRhWOD4jBMpiZgzBACmc9t4sIEQe3/DrA8kZRvX+vH+N+0G3R5chrHTATzr0ydFWuE80FjUGKRNhm0D0gw+UqNEGJcWhwqpuu5qO+E6L0da8QxOITP6GAt+KCEtayO9UPctTxY9twJ090BA5YD29v0CrQhRSfCOymQD1M2lGkKCevVCH6Pz82IEAt2GnCkfBHPfmuk8+jKBZwaSU6kfOWLYaNMfahIvfxFkww2vRrolBn1a6F/XS7jgT+vmqmt4cVpco1GgVvlAHv4uBHbfSEjLWnbC3xMD+TobfCcGC7/CjqQHsC/cM6vBoH4PSdOLZDNIu+CXd3xiYE3cQuIWXBeGh3WuOpXMdBAe41r4ozgxVXqP42uyU4LJUHrhTrN2fB89OjEpL1OU9VHuJn7keJuVfYlhlFJyb1j1OsSwdzbtFWwnaDpouyfEQWk73kER6eoLBHkPMmhYsQsYjrZU8+JjFK/sOzpbsYbFIzmhPV9vyBFhoPVppoZU4i9L3BQfKOxsFACLLNN4tCBEkAag7DA1RZyzJSO8SIEf+pX/yQslq7gnOtYzhtOqt2Ye9dbOCHgCCokQosROFfxz2aMfZjHZeaDdlEWLmfbJwDPwAA1Qnd+x9grT5YnOBDgJrPWOUTNzPhw2z2IepgsQ+z2RIDhMqy5zuabwyooqTeH4IVicnYMJAbK9U/RGKL+RgNt0abuKH8g5XTuDt/sgi/KwI8wAVF53o51pWritFo/vObKjb1l2enRl00G5FoS/fHQZHeYRffPLc2a5XgCeAt9DRMU6neREemfWiZXz1vGbzXQopJl0F9DgMpA9PtY+fEyNpkJM9jt/B1yyOdoadFOqJQ06GYZluckfWmC7WoVjeQJ/ooZNCueGxEPgJmNxaF6T3q6L3mt2TQSWslj29plNY4zhG/voSDXoHvZqHvrlmyoHJZfAtnT0gFm2tve7T7+IBUFRx5Xu5c2Or68Hy8NM+8d4etey3b72qqsW9ZIwwla1pQyxr2bYYxhoaENCT12oxytXcuRbm1Xxxruy8oXiJ3zY67lq8JTZGrm1mrPl+Etf77vQBnGy8zKnqDCuatQbxLHMVC+QTUB9S+D48xkEidLPqXz3UmQYOr3fmgcYu0fbETZBUc1nZ5DQAe6Scwg0h1en96D0gDTzrZVfH9EsS5HUZiDaFBUe70ExQOSNZnRg04bBHORHSa3+FldpnxqpBpVDMEVuEYwrOJ+qQb0yb3ZM4zzZDn4VtEeDF0vySveOH+87btA0APuIiyGMmdW/esy9DopbL4+BAAABI3kx6exaNxK7QSZzQZwoffgLv6VZDAtB83PFnGrHEDmpZyuBJTxgAjeoiVaKg/42rW30Tp90lEibij10JyUSAzcuKb9ORXifbl1bpEcqAbcpk2R7WZOKdde4Ve14vXy8aV2zAi9yslgJ7NC+VMPXR6oHeQLzZ2/Y/P97YpWI+iglPuE4mp13WeHs4CffHAvaQBt3AtYHCbaGgGkF3kz+NGOzfKZ6gbCH18LvirWHwdtmzqy2tlkC7DT1BuuVPy/5FcesdbZ7ZnSfYppP/jobvPptBqtaPCrBpCtH3ao0Y9G4EBw6S33tOAZym6UG5unyP66XfQ8hz8tYTAtOunQ12552xw4dXLaeRLXrHFO8/LFHcd0xUYFfR/GPH9ceTD0lZPESc4DAFngDTaEjXf7wex9ejw73U/LHtKWblsiVt4KfrVwWmaHF4BihmbG9VgogflmPG+IiyyXnhsEl4ki4j/gD50Mr+arNf7O7Gyzymb9DwPBQ8ax9zhjDrX9YjLDe9uatOK8QCGOsXZi7eBFp8KjYW3YO7eY08ZceuHOsL5uudf+wT8lONhxXCOXTe3Bwg0mF04tV/k6POAvUkQwQCCa63B7aOcYobRvUbuiWHubcgTJQYKdIN1bgsyDUnNNIJyMzlY/BfHsN8tkOQ9wt8HjtcK10FduTmGRcIOwGrJjzt9mUJtft3TZ+4JUk3KEilNBT/DhHroX3K1MzzECy0l4bDJkizo951DbN06SXDFOsCJfYmSisRx6ouWi7la2edPI1kpeMDhQSX8Z2WW9VxUoBePNZ9T1D/z4YutlTJW1YLNAS1zg04DIx4XowzdjcV+kdFDTw8WTmvaKyL+9CfKlcf0oBBaOKcBwXnV+/5j3GcrUIjpI98zukO6+xjN38nOTRgG94RhKIP10rsB5OHgDLRXwDBubR9FmP3Unn9xQ6V6vEi3QGbp4tWHgBxT2NdKxIR4zN+Nyl7kZlolHZFtPaF9ESPYSym7MfwFUuTiNFSp+74qWNZmIMokdKS2mkW9lqXjiC6MwNCJZa7iHYHaw7JbaNJkFFKNWc+sknoaHs5NTII/2FrMuaozaMayOQYvw0o/6tfOLEovw2Ar9ypBvueI7+ohgySuWMqXiJX3dX0a665SldjZCWNY8Mp0y1SZbU767+k9fU4HaSCM2CMt6srwrq7zFak/vR2UBgQb6VzmRKSe0v122+YtSVyN+d/241gv+PKcqy2ozUsCVsNs0zSxWcbP7hR6aKb6d1RfOLCkniwvrsfFTN0REe2DSLXRbqoYWPfJVhCO7HMT96tT+aB14H2zeZ2M8YNjwe+szEogUzxO/q7mm3IqvbDUFRnhidGVZpWxvVKgDRY3wXpEEBivepUEI8rhTipVitf3YxhuemnHAqaZKfqHAspi5XWRSxNtZ6HnM8ubmbiZ6Kal8S4uHN0sCeWUPvwfBz0YeUe9Q157jRweK5hQLkNl4xoMz2pn+XOaCnfOxcz293h9dPyh9D+moI/G9q0XXk7XbP3G76gj4xS9hMDz3A9PmUm5GA2ZT31g0DdvRTwAlAWGGG0L67y7GXg5kIJYA7RsudGAIx8zmgBR3WrqT8tlU4ivGKZ84lGf8wOj3Rux8XnbTYXx1Z5sm2OiRmYUS9pso4w+p8Zh8/OTIrjHXaZ3cng+ipzeh7UugN5oFu6QGdN+0ux5mwMbbhbWjIuzViG8XlznnQPlS0ubiDZemhpAMlBVeEZ2NJUqW8TAoIjtcL7uGCdoHZdUzv6UxtZpxYzBMgwCYJYcs22AftLmhrWJEYjGwOQhnd/Hz/6JXud9BdIJsWB9TxrwdfoR1jfyuXni0YqBPYbJ+IwXuW9D25t95+gC2/rMcW9JwyebELtkT/pE5DrFmD72kW21d//XADmZZTPBSZ8nmotEi2B+TZVRuox03/EuViE4Azv171p33laXLOjTP0ebxJ3TSViEy768jUDGdWhw6RNh8cXj3Yq1abg9IGDDRiT9SBqWGogCoblr/kYdGz+DIf8/8WRiCG56bbdLM+aETtPxZ4gXnfEdqQCvlRrtrb3KDR8hPDOWu7LqVZyxbnCwDRVEc9yLSCzaI3KauVmTZdJ5LNERD0/iDzQd1oHXlQlK50rd2dXuhTVvR3uuEZTJgjZtAoQ0XqTy4BxpfkXVJj5kFPdFrMwkmtBLNBrMLqbo1X+dz38RYTW+jlzUcqtR5iri8tIkyiRMEbdoubNLuRzTfquUFxBxz89aykgQXFRTMvkg7W7qEgjUjstknNPUwDZSJNrEHMhKFDNBorpo5J5jZFP7+t9zdwslZ4PcBJE4NwQ4Mx5Dw6EcJ34OELQb1WNUxT7C/kctCZOaAglgx4K2rfW6zN8m0wN0JVp+YEIgv9Q4Ar0ZpvkpfU7SbCD7MrgX3P9oYifElpWy77emAWmD+0y3NZSr7owhpRwIcm4Ji7kp1vjoDjjOkrjB6sZwBxf2ROJGW/pD/2/74ONppv8leaJwYBVRNYX4EcTlCfjnP3BCWQ4Zq6WSa6cNpewzGowk2MOkv5FcDSOVTFUxMsox1o6WFmy0Dn/CsUj7+JYvKkhcSBO6QKG3Ydsi4ihA5p9zQuZ6T2GcuUj6EXTZd+t09datMl7enreJwn5J6dcBMjHJem/BcLANxrGtbxbIIQdBup8Z32gXnDwn8fMaW7DS1AoQtV3IZaEqIyylStd+WVW0R17de/mDFnprFZdGdt2oeWjhmALAwE4ybM0HSARaxTJz6RfmrHGGCb/f4ZCFsDTXx208hLu4IQFVjESTijT6mkaIfgikg27IGkNEJfxRE5qQEehbNCzcW1dEftCkyrtgLavgLShibtNzydXAkSVn78xXpO9N3UBryNftIUZMLyapMooO82lRy+UuWYq4r0dfcuye1luK9B2UzUHWoE4Ut4rfxLp9waa0CQz/tkCXssv4E8rX6wdwUYFtpM/3WbSODs0loJYASmt7t2RIh4IDlKdOzvwxlrsK/te7iIv1iJq9hne513gN0DKKD4e3uxJpVgaEzVhrmOSt1S/F2Frbwd+iZW4xzGQ3Q6LDIcDPejyFJynIiGOqhXXBBXLL1Fg0MsnGw6iajRpri5a4QHbvBHnwpFjFx+ek56Ydr7O69G0yv8RMksVxIuOIQ3Aifsp0mbLwpbRnJcGdwO545z8ynN1J+GVDMdIiuvsyx3DGXdj9tBfQUJBukZc5lL8dc7mNoWNBOv98fyBUxTSscCCZ44QStsPp8oaWEjqDG9mbgD3mo3S3Q6A60Nu8aVmxuMKMxoSS0Q/EsGXqvkXEVHC1/WQMOsOthUREzhUu0S1rUwisplXUP6y08+U3UKaXkciaTCs7kC+y2UBAiwWbSRy2nnaVmVTiRs9VHlkP7wGAM1vqxJDKExTWhGWYFRhLXB+3NZIhY10Vi1eykF6tle4Db2GtUSKWLttzU4LkPGRvWEvbnGWLvpX6eOUZQBwZqHpkmJbWmcNnmDhydvJYW6haDhK2B8BbXzJXF2Ig0MuJwzlCF/om7rMfplJhHhV5+3vFWf0YUapoUPWTD5spQJtVydMJRM9PBbwO1wv1+a9/kMBB0M8Ax6krnBWTbnASySgIRS3kCrS4Gt+jzJ4Rnz7gQGqs63H8yOb6QFa/7psvbjbGTUP1DHfQdQMa5FXGPVnw3biHMSmTe7B/ytyiwI98qn+wn9FncoK11vuN+Gl+8Bpcbf+L2u75//iuax3agiOjW8qcSynEyu0MqKTlXsXdu6yZ0RhW42YwvyrpP3E8AOgEU1+aykZuQa1SHTucT8DWmNg2fxZaYcD/jqOcN4rM1sQKlj0egkGT/vqs89wjI8BrTMMshcKugRaIZ9cE2vASY02VV7kjPl7kZsM7mVD4xvB16agMf0ueLVileK1eLXixa5/SWG41FsCUB/h3xohEpabFdK3Cqdv5XiURycqAjRgMPUMa6FJXV3HtU4vVUhU/d6JCKorbfGGYMwUvG3h7DbA4ydQDB9NrHz3fYiheuXkIRBFcxpExT8THYZiwTHSfOvg1MGf7FUzRYKF9sDwx7h5xIFbzZLI6wcjpVZh+o+tfx1s4BMcxrszGZBqLtaBzzACJ38rrRyR3ESTsnovObTXyo3CDYtJs9p8MnlnuUxbbYrGp+j+QZtVY/lciZ+gfOThGX3rafTtdloMrlfhsuUBhaDhv9jOBaGXvTg+ziAKdu0pMHeJgfNlPxktXalkBD1jGiW8gNNgAJ1CI2MpNJxmhYoWrXSjlgMmQ2pgSp2KiBx5lcLEYak0nCHNM/jK05UQte4lhSsBBQaHGz9avDzpKaYo78FbMveI0+nG+8Fxa2yC0lbvW21L0XhzFtlv2WOF8jXQ30wbk5+Lhkjn1WUOd56xDU13lAmAegHT7SPoZPzMIluY8tQW86Wox/BNCP5K62AcCmz569MID/+rHorjTcuFvD25qEB6dcusX/Zhys5OFtHahH0VwJTm7rFB5pvKRTuwZrIV/ICkbZew3CFGcCODAC7dSjvFuARTA+t0eBNhM/7cnuX3vkgPkU8eNWGowb7JqS/WgxZAJ4lqIc+o0X6IiNW8TOAj/TNJOq8P67H560P9+9lq+iAo957P3lu53LlQpRR3V+RYLb5Ggz5LoJprAeZve/IhCKvVSND9H6AuaQ9trTWLVdohSeEpTpikXvymACDNNAdKfUY42+1mpp44ynMzn1pFrjM8HusItQ36GfO4Jvoou38vBA+uePu72RMvGgeEpD5/GdAvS+Ph5oWx8CRtzpLZaz987FU6qFE5woI3hHqg1WdmTdwq05eYzHhTVQLaOd5sH3OZt737idXTlR8l5x7VDKTA8pQfVYbPtoRV9Ym987g1TYEibB0orQvYsUQykPcVwIjuDvcocZMP5E0yuFl/5b3ynUXBvPfOvopJmYCELgYEeU4J/x2fGmqKuzP0XT7PsXY13qpKedTdLMbdKxHKq66porM9lfTCUWNtk3iCavYkgLCZ4xeND9UlDDvhExLrY0KyrZz7PFtcnAZ82cHJ/fvHhO2mEtNCXYKQPNkX/o5W+SKxv6lkqKxBVQG5OdQ56djPurrJ0idhBq3xqRN6Ui5WtXxFoq8ASET1LDbcpnIMTOkdleoewLP1Cp3O6Ey/4UGnX+xpeRE5EEfPRn71ChxkiTRHBdRJHzQYwd2vsbQz6gyj88CL92nx+YRh/STOtJ4PrHyBKrV8O8bwNdtlpRVYMLZEkSzRw9lDSNFuJdUXh+KaVrMDn4iaDPm+EZPaGaQWMkYk0Tn6azIScFb1BQYa69HrwJrliYwAZ6wJexlyIAeD9FRjh2q8knheG+QPd5SK7BVaXIQApdlAHFFvL2ac1vwUsfhUsU99twv/EujBxTlrCPYBbQZ4XKI5LQ3eQ2G6b4sE+Ktx9T6RVLkmtVZXfiOUxjCGnaaWQwWoBqVgdjSzdIhs4vY0lcN6cZVmsu4LY/MsS+boDY1xZlT4FNOpXKbCEB+8nMPwDtohLV5dKeLHc7saOU9pTLaBG/pE6fJ8RIdvXOM2hsecYFvoOsmYXiC+dloqhB1ACVK0wnxPJHaJSFxsZOB6UFEeW7ECmyQzN+W2VsZmmRzDPEyyfs9SswLWJ90prYpGkbaVJ+P9muSEJ2pVaYpGsBuKkHNgpOxaRztof0aMlBpfeULBvfNSXQoi+ecl2eiaiRRSQAoR2VfTML3udlIF7XotrL62QvNzEGwpMtJ0esFN3unumovMyAG7Vl1YqQXKFehwhxMXHcNiF8NoJ1lX1MywQO0KvXER536ivKGTCXepnMd71Y7ZiRQwPi66IXPS3okXMwJE5/Pnan/8dk7E3p075HUlUL5I1XKGWqKViBdNg1YqjjJqUbsRM3CUikeKbiRsw5NM5yyUt8tqGNyhHcek9FGnjLJPzLQdoLt6OpCVCtozSFnyxyO9ggM8jZU1dCPEIH/b/ci1yJo+snnU41h+CwmKygsOnrJ1Qu47Vyf59yBk2+SrtZwy12L7nQTHg6DgpVqdDZB9YQTP6IYl71k5tWBdSbHRqgamXlIP9HUnY2+Ee/x3D9h0F93HdWXqFHJD8qzeAvs2G5wjHk2bICNVtgFQixkz8/xb2yB2Is80cP+aIMBs5q7e60U0XEauzgH6DpHMQH/E1y6lvlP6PkXz/w5MltGlRnATv5g4iE3xtUzaLarJJGwDOdsi88jjB/YsGt/77jcAp+Bf2rG++D7ajxmMFe+TkzLca5p2aur+JM1XxKEDKT0Cq1IpcwRTE1g4GozreuRKRCOiKf7PdxGkiHLqmoRgabp6LKTDmQU8ErzNbZYlwdDzSeGHFyO0oySQOcHWUS4aHTTIeh2u9XLkM/dY+hAT92IMS1eFWQZrF4QOuFSz+LWo6oqrHh8KFFup6uLjhVje+Mn34BBtWqsBEpLuv0j2j+E+UUBqZ4ElCXmDYzeeHzFNFqn6GXraYKJmbdogH1iwv2ZJBKEZ7aBajFNbt/YinXp5rM5WZMcY8L5PEpbQodHpo0ojG0E3h885VcChpZDVtLm2+5hqJk8Z3NfNBgWZcxZ+jOusTGgSXJ46viY7o/vMhs9CzJBuVe/dzcEOTbUr+a3TPZy+T0twrizepmLlxTuzG+F744k3Wypm6+/rydxwDlCfWSLT1yX3DlEBjVtg7ChHLbvsOx6JfYaKCO/xBdORw9hVWmAvtZ17YG2eHnpwKmepv3t1NAIARoxQz5IjB7voGAqyNH9qjWIJE7nrtL+EcOtUIwXk1VCsrlI2q0rGuhaspUXxBOZ+ACXPYk2vW5+aR3AUIKNqyRaue/7qMqFgSZKkmaOOQC7RuOzJbWzmEM6zanXJ9MffwcPrMxRArp5dE34ASVVqvEmucbw4q6b8S4DrGFJ628+xPwtJ1g0pbJ//EZGGdM/a1Ehpg6nD4wwWpqMwTZEs237vHXFrk44BsNHVWhHHPnSIvyD0deFtbRbGmkLoezhkBmjfnoOxQ2az6zUa5wCvo9/FHKv0hK/3vT1qkrfzK7rwrRfrNKAWnClxigvmnijJuHZCzzxqu0JgQnOaqb+D7a/O0fTTtimA8apujHLuenbaLy/pi2S/hSLpEQ0JuweXSXlSqPUWx+y3ZPw5Ow2ZjO1J0MEjlP1/KIAps1tsOeHlZSCRQ49F6S4CBdP4QuZ7SVuKLqFV3fHbsQkpFbupPYWW0QyM4xgQEBY4wBzzw/+iP8uxs61Pyz/OIhNS95MvYxDJmTM5Pnik8QRSJ/lYODqDATr+gT6p3OpHCAyUWhYpKN8Bf2FgaaB5vyDw9i4s1EMyXQoMoK2h31o164KohRxBWEDBwgtnd5i0/tZmiMMUnrr//WGKaJpHAZFN0+OGwMlDe9LIzUeZN+yL7Yrn7/ub+DHSinn/3EsYG12h7Ut+kCpl+bd4cOBD2rKJVA7wofJAThcQTb0LJTW1CU+gfSPcXxD6uDNqPuh1ocJhHsMiNO0/d/MXrWa/8skhto/WoJL5qOupueB4wrSv3fN+IsdyBiteFGnMHrdZxvuRxRl4dTm8ViXQwDR2QOEx9UIDF1D+NvNlHMP9Zt+AeFd0x6JLyYENC23gvBSQPtZQ2e+CWQJmh/7vYmJqbtMaMVe+IH4yI4w+omJ+fk2pFDs8SIALGiGMHByNxVsTL5PC+Bj8Di1MbNLMhVnEvvC/2zLrlH6r21b6MuvinYkfse8/jgd/8qW8dpXKINwxAukaPkeTntQ/uaO2YQOiJ0WoymIDWmLZRapfnFHb/5BYfNo7X390LqCWNZOYJMXxC85OR+1XuNG0bisJvmUEcTAJyAIDmtQYgPK1Xy1NcLH6ckWr4P8oCy3FZqzTnq+qHGxO/Ww/CHfLLiboUAdX6Tr71EMwrSDvQfsmVwwNSD8jDFDSXtrZVFyPD5cMljSPF3PFODjB8ASskJAfToT1ysGxZsi1ygeOXVsw+8A3SapDYcm+3BsiKtY9tfwZFP97k6WyJSkfECb9xXtbjYQiBJMZMypjvzhndgPIxJxYKIhBh8VeMLRJaBrDbAOCBo1HCBQAwr/2LBcvJR3Sqo0VE9cbj97lxlTG74ILec4bDs6wYm1+mi1vqe6S8e3KWf5iBA0l1CxQRpBIUq5POGUGLlVwYqpN23XrUxS29R3ZncO75Dr8RgBqojnG3K0bEpHQ2rAefRkvNLVbDing612zGiJEEDoIeQCmfqsD5YMBvqs3N33Vv/DErvnmojb3ZefV/KLJOzt1wClZvDk28K+QG0YEQwBE86zegdAtonFEwe1bwafaGVun+W57Q3y2RvqP1ZN9lHwpZMud7DYjkvhCQO9hGRcaBEtrlcNW5sDkz6JceG+0wrLqWe/PGw9QdGr0+6eS1lcmjIcRqvrzMyI3ps8iYzGBoNqhOdZ1Xw3vqZ6yzvRaHPDfrnsC79dbQXINcx0TMEJHASu1+3U0ExZasXMCDFyKu6OdWhDwfXQkZBj2Wu7Q4F1/biCLUe3IX716yK7jHQJJtYP5ewAmdROFyM2qnT4TpwJ3KHKmHpg37+wlkQU05uey/R99a78k5sNt50ipWI5OgRxBb0n4hgVFjAp2X/gNCzfIl4CqUycGAqh7QhxBS28MXZH3h+2RU1BMUW0z0L0n7IynfOzGBUZq1K6xLTIHG6yh1syiXr48GJ4dC4X9vlfMELMhoADi82Hhjl0Ry7jArfdTdoHfazWqeHhSElhS/EylTLGHG34g20R0axWBUBqN2dEyNOZ0Ud6IOxOBGJF2OhlQdxh/p7U9uwphzJMmnz575SX4bQIPUor1u1c2bXlPCCq2WmmiGDSYfOAtHDrm92+9w/G33O22qLWm5pS5HE0ERHjUkWyIVA830raEu14HsX2MwbVlR+9QxQ1UODQjekfLG5KOHsqmW+m8TLtyE/WdZfVFg/XDnSN40TyEPbxwv79JLizDzU7Njhdz2EQ7V2aI/knjfd3PidrACuLlLfOh1v9uA/6USOqlvwpo+1gKXCm5RVEbagAGH0X879/vuVaKkKEcn8gXFw/m6bjHcsYErUXanNJ6ozGDWIDYcdE/wYMiPZaL9OnKyylWlqhB/C7SAJ3zA+wuDnzPLVDDTWItq+fKMMSmtTzloJPT45S7G9Y+ImrL+/dTImfjphYEZN+qX24Zm1xt2zRWR1o3O49BYnOyY0janQJLVfnsY5Lp46CxaC7KmsQMQXS/q7BKJdIlZgquNvv4mNjb5Ccv+blLFVz3R4OBZ7UgTb6TeFs+oSAjHKMNH4I8PZMxzrYO5NkeqmsfA5PwZIF5+BmhpQCmy8j0IXfNZuw0ejyP+V2SFczRNy0Ufa7txNNEPs7hYwLiig6vABPAR3mMXQjmzAaO2zyiWplt+57zZBJt2cXYShBRKad5dt8F8l2GEazy5QLmkvVIyrj0LIuh1ZTQ10+2U/uhZEba9YEqVD1VAiQ6frENkA5gRam4OQYPeoBGvjNT4TVgU2jFQSa3HN3FWwRLQCVG92yYAeAORqljN1GPOwXJNH+SipEYpk6kL7XKt3U/mc4FVmlmMQRmOKIPpf5WHC8YHbsb01uP7D5OkDzZr/CMnhJJ2r5Lr0C0ujWTKw4sWBJ2RPSH0a5kwUKpG27vfkhCn0BFfdNzC+g/miOS6nRxsC2E3BE/UlmoAMLdQbDej1YjNhlHOddxDLIiSuMI2qAv6E6vrftJVmQBtrBQma4O3Tl9hYA/wMwUW2hlHo0kSxjNdYTopu9cY7wDGLu9Fn12vJ6V3UlwH19xzWnXTccdmVuynDfCWOl0H6NwKLV4cCWK1FjS4sZvw/edvGYSuDcYGfb3fC1vs1+J8CROjiQJMMQOXRh5lShOEjb8uKYHAcfMKipVf/UbuEx+KnsS8SpmTB0+7BH01BYgvPg5wHTGzMSMVdNlJG31dZuXOca3+OzxZ/4gF3QKK82/XmB4nE1Uom6LT9lE4A+rmwctatY7IFqdJlD/lRu/WrOBx2kUl7iYIctGAH5sv5TzhTHPx9C3A1L/EhSAVzOv3fBxJV13ZH9PGF6iPFatHZ8c8SU62fZphQj4cmtBU96V895i2x7Wj58COy99+JWkeUnL1rCjUOwjRkZkAiLg1mFNXZ77c6YFhpFonnDKew+CwowvJcVkcngts7bdV2I2U/TxGq4529NX8px4WBCurLA/lQfh7eUmoIovBDxf9LCvQ0gXOxCSXVIw7Y8pTp3e0Dk8lZkyMwGXLghl+IHqdYIj7lGzCgR6NeApClmgcAojJyBSErEutICvJ1JPMA1aNOf8uiefSUTwR2A1cXKBdiMFmy+m2N0zTfjDxM0npZUh1chRjjBIPy2Gh1uFg4MNCm/EsBHCMY0d2HBT2rM4xzrE+gIjpvSwLvZn6RkmsSPVKuMVsHTFwf4QJKcrKKDvq+7lu5zUCrZzuE04giPSlRgXK/3W+HfExYn21bf433OgHozBHSTSPYtnv09ok0pBz0B9DeON5o4kiaZaHl6mBRvjZNUpdmEm2jApQu5PqL8Kl5paq6j9Xlofy5x1/76Yt68IyUoJsA4zFxbHlaxE+xFvD/DlCZLbg+yZV+QV9iZZEScJWDcAYlvF+i5v1CePBH7KFVlPeowICWu2OprqRTdj0HJ5m1S5LsNWstvJVT6IBknTbRMunt3rOYk+dTXrLNE8uNpohO2G+X6g8svfP2JOkGPZ1vvCxGxmhzGjG0G+nqUz4CkZ0P0Jp4L557TdmWCUFrqSL8dTl24eQ21nRDABmmEn+aIQx0upgMqprGDO9hhrayeiky+gs3ARvee8Rn+RNevvxYMja/XHVHzWhAW/xHf48rHi4/k62TWdqsCf2UqQ2MBUhSPLynxJM5r0gjR9608V8AVfX4LZ+pYBWyk59Zl6LGftVETPer/t8MOspuj87AOZEHD0cPCIKoOEqMz2p2NwQI7+WjOpodu1Em9AB+RU9NNl/LR3zxCXyKZ2WJYXOy0Vf9gtj/A93ccnVUl5Smq8KsyYHEDePPnbGT7gQs65TE2hb0SnIR0RHZ10THmTzB5LWRwMfnNWBE9mR5J0v15vm1C8jh2TJieaxCQu2JKIhPkkZFgTQiKYqqjq230V7ZDFqJc3ZCf6JgH7oj8WdmC4rm4Ds6ebSRuTrk5h3Zv5TxPlsaiDAo+53rf3PvqxbynY/nNKbBTk+yuE62m1mCuwVZn38Q5KdIV38HUtfjYlKaPlK/RQZLVE5sKICNCOa7tLv0lKj2z493nzapPyI6De9Z81otCrUEYcQ/GJ+sRcPSbifR/3aprBkil8JLmTFhYZXrhjjqu+SW2GRmzkVFLGKOAQWvuJcAiH0hN1Bh9xw2J4yruxDqj2ChmkvJuLRyk56b8vbeuutM7slg2mYJ6JdM+JSXdhpqckOcH2WPgxm37rHId4/dBkDouq5ZCt6Y+uL0txfJv+YnXHEx9S6FBQAekD+gflK1kBYfrjBPjnl0e0S85TfH80UtDRZk/6V620oBn59Lui/ISdqOv1vjGYVuNVEBiYhQbtOonHhllF24eHnCCa/QG6SjMkkpxbmJHPr2QCj35xbggKvuR15heWwdKa+LG438X56lMYBtDJpwU5vmi7cp7TUtRV9v5Qeu6tJpnaGRuB8OowuqrgbIieygCOoAM9lFLCRfQmekHEQu1j4keV4sPsF1/RjP4z0P/ka4X5awGdQ2Kr9vXeat6/XCTC16YXBf5KkLGNK3cKkvNxNM5WQUCOsOR6WaETq4bYb1OyiUYk9gFq3PqicQ61ZNnX82O2duhNNf65tTsvjw5SYzxz9lAAQT6X6BVRZ8AfgvHCOgs5sN6px52/w/Z4PZvFdD7EvYw2fXRB6d7ivbehM8mLjEhAn9jzpjaUYJawnLOF4lMyp3Ap1bDCasALyj+MEcUhm+nMkpMR/IHRvqKbwJw4QsbmckAInMbf2uI+S0eU+QYNpGfykMDVuaqrO9GCAguqvAjoR6QDeuC7yARIC+zYmdxSPf8GGHtXF7l5v1aQywUlg0ELKx64rUkh+O1MyaOJwuphhM1wiSCSreaN4clpGU7gho+FZTPiAUUsMXTlE02XWqO9nCcMj1wIiVpARdBPR3fKd2FkbzDunTXLxF3Lhc7vXRK5yzFEFF7TVCIyx3viROf6cnPVF/DyVfSvvNaijg8ijj5O59ryM4BZsWOMCpZN0QUv1+tKrYrZ0tAolZY/laELTVD9rlcYsKcrRzsBnBetk0Hs4QG5tZH7GopYBFPs5AAuJtU1spA2+leqn7wlGfSah4arVAZOdzbWS9uEcyk4v6YVNj/DjVuUnDv6FzzHwNCejTsMzMDET6XYtJ0TBcaLFEKsrjFfRQWUUsKEf8bxAXWs+/Zoiy6bWPEUMMsIk7wxNFwZibdVEym9+3W6JBh+kDAa0WwX9xmPm9GG8PQRtGXbFyzj7U8xy0L25GPt1iQQueSVMb4Wudx6h90r13MZ3jdZdEuYrJC+8n4goH1VrcMipNCId+I9ryCRp1/IhniKWWi33R5zwsQicnbAZjR7+DoYDmPDoxa/FPSgw8BOY1hxVAg0GSMbNyjSvKNV3uN+ZkEhCS0Cro9ruUaPeOnDtI0tilrj4wFey+VkPuBxITOUCaJJZgYOSkhFa1i4xued5qkBehpWbyhQfJVrKFMkCqOkjzBZwfLdQjmeoSeZNiWqDSerhbU42rvZYA4l2GCY90QMCC/vseKV+7NJgligfzQ3F3R61nYJYdyPobpXEb2BUdOAH12JkSJADv+Jc5OIH3UU+Gf6r2g2naGIq8W9SOnG9pDxZS/9aiNhgsCY48h8/oYjK0ofzhkXIRpYtF6gri2Sf5/iFj+IBI2M0ZCI25CTIAoriGuEI8ZnkFwvDaA8Pq04yjWV+2/AZF5w7XLNX+QK5fXbMjVbsVJz197GYY942Uk9nBDksDeXcXLtCVnr0n8QccmsIJw+ngWCMIw6dVOPwkEOF03nuq1F9xfOFJNziJ2gDAmQZo9H/3JmvE5oQ5JGeYkN9OrBn5adJMHyeKiAE54eo1YhkvttSdqqDUtYKBB0P7paTjFG4Ut6+MRWN/NFcQwRMi85s4ufOFYozn0QikPMd7l640il+rVafZHCm0REV8asYFqL75HyfiB032QtRkAW9fKjoG8pP+FnRCmUJun0UcmhpLSwsh29Gz5KykjrpBg6JCnRNcBy/fOuMkfQTA5B7W9UX6tMdf3cSAbiqukjU868+C4vos9yanuzR0iWwX3yMuGsQpV++JCAQz4NlsGbl3tvbkl4DnXFqvA0sd+vOyZO3p8Gj2V4AS8rAp6et7afGZFuuR4+nqNH2fvzk9Yv2/lNyh+2hoyT4lV1cimh6VZYPoEW2ro4p7W2CJVs4Yq3Vbt2V3WGbM4jJGCIjaUyZ9d1LsXmYTZ1hD8aab1zyEYWDBC0jfABOI4zmnE8f/6HaVLa/JglT6+Tb4TtzxSZvS27s/WHPRvrzfNulIM1ePmYpF3FVT+zs/PFBSrlZ2hDPsX8jcl2tGYQzZw8bUlgADglXctfpvHXJX1w/3Oc/OUX6D6gVOCAqxI9KYfOWKCSsSr6ZplMNGr6t3OlpZXo1QbwfpSFgyOgevTPMumDdiQRKCjrjT77uMVfBHUccsCtsPZnPSflj/EFGBqAs74+lasu4sg1Nz391eDkkEJiNXfjZ4HD3224WgmykbXKLpyPtWZawvJTdjvpqJ3qk+RkChSPius1m++Bf6W4Whq0VcpHC5HV6DPwD38gOBPHVK+MArKTL0EzU1chdXpQz6Xr0otc1QOw04YSMxUaeBgdQduv9YJfZvNTTcHeeSgfA9Ki9JEfnYB8tTyBImuyXnCIkVGQXvGxtakBYtJXuTCrxbp9xCqK2sLODMBEzZIzpRT8gV0GhRDbBbuget5OrUcftxSJ0EkTf07gAKewrsOXqI4D0ugKmM5D6Am2Pw1DqAXs3Acm0No/qz4PDDypejcgohEJ6gQ4VXLc0C38c+PjMcSeHqhQCihtSrDH5Z+xIp+nlW+OwZJOUcLgTAGFkFtzv9b1Z23xGkOEcwL3G2RqvU+1N5uC4xIQr2B4mttmtBzcowoWoudurZmu9gyxr+ZHuqx4sJsA5v7mUB9BKWSMRvdZvB20QSQmkmcGqLLwwt6vqhLspIVzorRinZhSHeiug+5pQxYubyCgFQhyZTGwS5QXlv+N8a9uXKzHxcxRdQqvb12KHFReZXg90GP6XSHdrTOCh1W3cWuAsT8jClWQiOCJfNs/Ug8gF9vSxgDu3mDpdWNytwgdw0UuTlbgHcQWxiIpwTUetLPHmlzBMHgrkPEbKhgGVLOEN/p1B/SKYCpw6Ev0b4Y5L8GgpbhtoKNi2Tspo9sjT0yKzhdiS9O4P0NceM4ssRbg/VamIIvv3GGaJ9E6BuCmb9kMX09+AvDlBQIHtweA6KxFaE1hxrMn8GgPQeznGezhTZJ7/AUyv5PI932UoxRnzmZJY/d+f5epsGig9l2gYzwgEaN7SmZr0dVIKRHiOaN4EOq+FZf8+sqJvonPVyhrhLavBHgTGyhkrpgWTzRKj5cuVK2TsSMlRD6i3AFTFWEw/krAqlWvMkijM3Ag84qOj4QUjZNEnhEr2HjTtq9d55bCrh3OhNfuL/OaD4/XctJ7amEi/S82CRixo0DF7ZrvZ3eQP38YJdLVlz6rWGv2qM7VW01Gwr2w4nHXAKEfSDPWep05oVK8sSKS+qAWMLM+qgWs331g7Miw+eQFzxcLID51dRDPVfnNd4HTaVT72BtUntAekdfcQ/+ZgiAY5sRiKPQI2RzkC8NYR8kuUxb4z16aXNcRmwjwYLAXA7ly196iK1fl2ob4QE9UAsLJlDcZ8PtomX+0K6LFblmJbh2f+AfshXrnYjVXW+wAMUVURMTsr7uVZBMrnGq8un1GGBHrb15Lc2nSVa92UdpW2v+XuQdr7nJjtBsvy4vc+qm6ZoJP3J6UKAsZIhgr+3LkyvDOM1WZVUx+n05yTI+Epn/RwoidbyAksDrA7B98R+JncQT7HGFMadgzsrbEAsNz3oDsIoJUpa8VrFkrZMp2KH3AdfjnBdkKGRNHkwMspfDxxT6hOhYttRYJ96AO+dGNgvX7RtP+C3EoVm5jsoKt/R12nfN2VfKmWd2kEjxqCulqePPZ2eU3s5ZYTjBoHl0L911/wxQwNFmoTGsXysRQr7Bkqx5tWilNGlKtcB/hE/FR7h1eoZHObBo6WEAinwBqdSsnTBOQzoLkH8J4ZhIOLAA6MD+L8AXDklqaiIOlEbsLRUde44TSrfeyo++9PSgVKjWGQxqbS3pAsbi9W04PJ+21tfMgCTHPFy7SlEde9aR2VTmCFM0VrApLLdSjV03GHMZ/vJPZOgu0QY8WZBdJuu2eqB1bdhefL2T0jgxzwVBrS05ZE+lpW29L3Y5WmBjQFhCLH3vbt/OYGfvEnm3Hmnzwx4kkW6VQGUxAOriqAT7ta4oOJRPmIJic/zn/ShfU9bpK34PoOHjkfRL9s2+ad33ndiXWHH/8VWVDDv4/PlLwHKWHaulTeYTb0zDOgIbuSnRDs1toAq2ZMKlxqfBbUVlQyEEGUQaZauOmaJyqcCpOR9807KMGurXQrwmAwcVS8hytNj0gKA4R0voFBKZ+ifbwsQyKD2N/inGuyBzQlCafAEjkLthi24Ybpif51tJRFDGrtKQGbpsBL7b6ypsk3CmsYEdrN10bma4KVUVEy59my9dyvL90kG2CP/tPauVuxcaj9dIXkuUupTEzwFh+hYLMPM1xXgErMhLTxjNzOJiOKRI0SpuryOrVHHYwba4BKwyNbluR8ZVsoV0FQZqoeX1UIQLsxUJsUec89FoPcWdm6D8flAjpiAFkcHP1LUVKF7JGuhjMJRvPCsL6HcBrPtXb2z7+E3lIBmdPhYIn8oIsNAuisG1g+D+PMemK1pDQaDF4bdswj4BqtvWT1GxdnLUgK72qSJYf5lfHXWLZFV2Gbq56z3uplKv79rRrLTnXhgwvudV4f5z22XZH8dtONUyWT980/PLvHC/v5gGBEKjXkEMbl3J1Gc0XUjRp2yb4dV121d9wGoVsYMFxTH8XomXRYTWpdm4PWZA5gacwdKrrgEOsbvwKIa+eN6VFbmDqWmjx2lbsl3Jgpg0SKjPtCyi4pj4+zTXHopjwuKg2Ye9O6zMu8MvSb3A5SGodPjuLMp5w6HVLXoK36nhoC5LGDZXWAHjxAaiLUStKFr8tjWde0oqJG9pyez6WVpyZNm8sLh60wma9bhpTZHWJ+z33xRBbUKfVzIUi60OGSvnMqrLIFYGSe2T2P95IyRcZYuDuR+h8R7365dqVNaB5q6zreil/lku4iF8cOZBdXmtIomSZ2PPqbAN0JvN48+YyxG7ABLiyIr2b7LB0Jg9FYZAORiS2zpQFwOPEWR+YqB4tJICT2EfFTQii1m/2O6yUnWzODm9y4vQWrAMoEtIhaABAblSguZs7rXKxn5R5rcdFGCDkCfSqh13Je9Gcio5KrxJvdBAOTIp5fyyWeIF4rR7Wt48rUJ5qG2+Uiyk5JKdxxlXJGPKbzv0Z/MnAnstKt5XbEEIJ+foYPYkqjVTnrzgoEfNMNOnOh7P56d1rJu6eg7G/pEyTxO6Tnz3Wh6WqHv6bJMB6wMf4lJKKnyXA44YePFVOmJbP4OtbxRdwbusBowu17SkoCYGYMNOUm3lYt+JmSeF033R62LlqjjsJ8KgYbruRm2lP1A2kGp8WeSUOr0xL4A+fVaMUYUpa2zZRYlsVBn0yz++Wh8zT2otTMAjTemq7LNsL1U/lHVMfeiq0mSaecGFHRDoKI9klBOkwj0KHwHymJaz8rBE1+RI9XJg8VcCDQePZKR12mFCXN4lTBu1TnTEyUkQYHwox0HXw5+PpBzQbuGWpASLB2bNtlDB245hQn9se+N6uwsUk6+rEW7CooFdqcsF8cUV1pi11OKK6xe3muKSus+6GSwolGTyU7KBIvG4NTRAMlXc+hj6zWunHkxLGuAUfB6+qVU6MCzNuYGHfsPf07xSRtHK13iG4iEoGxgfjvcDZRoWSxUC1/vsw0Y3DdQVzYJ8AylF5aSACi+rmLskDT8khDm05SutuHzgrsGMSYlbtMTgFtLOED6iTd/jDOsEc4+dDeCypv+INs565H4tqC1F/NVLKzIY8wiMN4NkThh7UlX6tsoSG0JbjK1Pfa5ZauvxZO5w9vBBSBF72v9FEdgbBgOnSJFZmQxJR1Y6Ha4TiEpdCXqDG1kbsPYc7+lHWC7aXFqZwRKwIAT0UHso/7HcL96FApe7i+oWFvWcksSsVNHlx5prZXncphIklrxG3YPlo3LvULjGEH0JYeHXwVLOhB9nYNtV3CYblDeq3zTcTUlVJ+dTo76NY8jcgp7GXsOqR3voJC1aO8SimZzaSm9ovWRogLOu3HkgypJ2knqb9mFFSJ+SOk3bwuTLQPkVZR+gxScRbhaYw0JeNpUwc/n87geyN9H8mNxELw0lrqJKGZs4vRAXlLFlw0vP3CYAk24k4d1P7A4KlD2lOhEQXMDerDTZZm9mnLt31PpDmC0y8sPee9DjoLeQz4Z3E8WaokikwtDruhxRpQr3nxQevESvBZoY8DJZK01FOMuTeTYrvi0P7/fleNacLH215Qnsx8LjGijUUn63cRYDQ3uzP5aVxRf8VCx3Mfa6ppd+lEa9KRMBgJyUj60ivQOtiv4uYWHFLmgryHxGmLb3coYi8AWwOS5ePokARc0OuLr2tKb42dGhc7flEs6v88ZXYH19bG5Jc0ivR6qczCMg9T5Sx7KzIgwznRt6dOduDZy8zW8bP38j6l/qhbIPNxQt876gOSHcSAEyLXc5zQoKEA1wPhGPVuQl/2xn5waObeZl05hAi82/CcCK12vk7UC3PJ3/UItej6l49FR0jeDDj4B+fkOD+GRIzTXvoUXPHKw8y+u93MAMPD+TakSXXjiOgwklJ2Pef/CJGOLRZJawIvPKQs42CZnhlIkIJK6tl9UcrNGjefMomOdE1pDuFmNsaC1Tfu6q1kAyJYqc0E6WFs2SxgdSvz1khkaLPWXB4XEd6ZGyOWqQPoSKW1DrYOT+pagCDhimXNmYwpX2157nVCIGDUU/gwL9kppsmTTQ6dnnVFnF8XN00wyY3lOCoUDMd4bkTJqRTknVgQpMvPZmW3fiaZWx7LwDQ/E62DeUY+oVxMfHVcvTsL0OB8s/EQ5ejNBVZo6DNS6dAEhxbBDGQ6ouLHLoT+82n8AECZp47+bS2v3BKMayvX4jRicuJ1bC/PlbKFB4KP6cbk0oCwIyBWxRfczqoamDEYXvgI+LnMh8YXvScma2Gqp0aHgXWERE3e8qvHY3LGFzVfSBQ+AYYYtL2qbidrZ7e+T32cDKfxpLOzVyBULSJTTTU3lGcDerYk1s4NNkRnFE3Ftp4tJuWa1banMgTLYG0eI+MH37/hEOmFSf1aKQ/wwxBnU7j62/kq9ougqUwacUl2Xe5xyK0taobkeowb+Fy7ltiK4gqav7qMScMXqKoXZ6eHtNeNeqvvmEbAPxRzhTqhDH7d6k49smkBJs75UjDyqrqpkkV21vqgKwhI2MQ3VzhVfH2Y2/B/qG+XbMughA6C6LJuBQzhITkTZfI5m1j+1qIPYb2xTGIiRaXv4ITPKG6wR7P/jkCYhkgt9cYfSWMIp8d/cywm7lMWo65JcORcgm7xu6JOc+3uE/bE99o9EOJGkkOz4RjeONO4Pg4ueh3t+t4Oh5PR1Yu75eNtwhOAlRulaS7aKdmsCtKK55/CTH2K6BX+9HsiH8HnbvO7FLsMFteDoEIzk8LTFQ+GzpoW+n+GVJDU0swsmP/Pkv6ymqQ5ZVLDILa6f8nuO31CiwdNrTT/hw6pnMiBC5+KKLYCzjsbGZP6WuceeUW1AP/849YpLsmwcBVSt6jrj95vmGG1v/4JU4FhKuAHhe8ZxUP8fjLJWWE6cHbNgReF8PTbXA8erTS7oODwbWI4mrw1eeb+tr/7vYmGlmTyAZfmhvxJE2CElbudnCn2mZ+QE6yDlorrdrLAB2BlrXgCQVcjVfI0HP/b9ITbJsaGZOUud+NCdsuhpjUdHNsIiymCyRL1od15618wlnJj/K6L7+FPDs0l1S5atFEgsEZuaLdJ+AKHDchGVY4ygrXfFgD3fTFzF6IUIasiIH4UEEfo7XD+D9MFZsDqCPYWvXzgSY6xTdCN9Qsz+5LICbElxpVGKN1ucU2fsvsHYz5RxN9LCAB8qri4TInxpSGR0As9ByZL4Pd3O1pQRUv5vHiWVmgmtfj3zff5O94QSHTy5dI3ghRGn293Br9HIsdg4zh9sgA1ZV+Fk++ObJQ2011Kua5WMlJdKMZD1Ns/1+h3svyySyoboNo4QWLXy2eCVYsCvcJtpTMsvWlyMSmqVxErrF7EO/eBcWBEVg3BWZt0aZMdPgH3ycia+t8aS5SjELXhySyy7SNNiRnu9xcqhoL11Dm6BXLiTfB8xLPYKhWRjS9BNeLG9VbIFG+HEmPi/Hu+6gMdtzzalvBzjy/Ib8v8otbPe3VNoiVcktKllHHhi2uBoGWs9SD/JT3opP+InlVbcnPYAuyf916XX4Axik1qVllbxPRHmFdhV18oJ3IQyhp+ExBnc6lGQACz9Me888KGuAiD1KYr9RUxjCJ8vRygk8pnPxgVzTzefP90S5SD/pjnM0Ple2JeIqxIQWMnYqjgj2sg6Z36Ldac2X4owWbU6kKtSShUQ2onAby0t/o0BuiY2WiUkjs2enmU3txO4au7WxIjAOmTqAU+Z5UMrwr/RADwWv5k4rZEDHPftTWrl4boKIK84sxqqw6K6fB+qdMQtp1+IFjPVpPtyft9CCAIdq6xSVKLiXfQ+9zsGsszB/tv//878m9L0cjQTFeceoHA1jyZOQQgPHejKtOE7NRL6rVRlpn0HKY+nUxkOCgkWRqioPgdrHBc7LZ4hemHXcfJpfkXvFBf4xRTvnthC2EMfevR151tiGLUX4dKkiDgyfG7y1CzZxhSNf/ZeQ9sA2irpPq9w/zmQDsuabO4A3Ldf4Xzpyv93iX22W6Pua1EKJwtT+lhRzpAJpCtsp/J3i5uPYXc8IyXFPfWLe8WD0TlcHqu8gxeE3U8oiwZjoeY+Krq48JsntoL8CkTSnEzYrcsvxlV7w7wb6sPlt7OlolE9j2KkeyzZPJhd4EeC4C86D8mzA6I0pMF7h+FOSEGs3yYX/S23FWrDhdRKXdq0SVyBnOF/n2Nx72J/pgW5ynB462iSRr8OwDW3X2mYsptAcDOz1CJL1q5V2RaOE0eHT5QrM4v4UlqBp2S5EV+WK2pzq+9idWArdFIuqe0pkFgehSwAnWnkDreZVWdCEGH2yFugakj3Iq2swX9LNK8YyaHwXt31QF6vC0weLCmyS7jkQCzlzrMTyo+s1ZJW57zP0IZneq1XW8iLFsAc0quj+rKEUUO9jCuqNlS/Mpc1JhQxK/wiqMCrL/XnKHqe3UkDztMMfdWYq8HR4CQ7HsSEg2NU0cW4ubLUYMl5JmhE+O8kBOWVyClbZaSiz27r7GZ7jP7+H27bGLpKDvqx4rK6ZpBbTSJgf8A6u7Y2+KG92XY+YaTJa6ZCAXByi5KOAIHauRekbevqk8xeqwEAlXm7DLAPudL3UmwM4US9NgQM8SJHR5PO1gxHm6P2/8DYnWrWukVbwbHOQ/g3/a34gAT6f9YUKAkbgCO7JiHpZBfufhuoNPNKCLONKXybL1mgMYwm5ns8vZ7BGNc8D8UKVQK4fq5ueG9nUjCHhiYacTx/JX5r2vS9FtWJqpnhCpr6bArHF9Nly95TtUFgHsIRjXmNlRTaUx7EFPB71sEB1XzJ3A6xYs82AfBYCngbbkpaX6RfAHIXzcipph1SCE3LRFZtU9OOlGR2vFQXX0y5Q/cqyFwY+Z3qDlHRykvLJ9fIFd9VUJVgA15ah2hzpA5wlQXpYuwu9kQZVvfgrdjcAwtRwbtd1JQ/jGI3pWrTxg0fPETETab0LAPnJ5vtFRuRXCgsMUwC08y4iZVsPfxR1vOtpUgG+ed07Au0xPVpYn4LQjpvgMWXLHACL/51DJ3rSM8tJ5tjDxtpDUjeKnAgUoixuUOZkTmLC6v6DPwXg3mGaRwO91jSoXHbEGGbZjlVU+K37aKa3lneuOkQCQy1um8wfPXQaFe0bzRtxHRMynzfj7MZZy/2EKesygKl+KCpXsgZ4q9gmdZ911X8DBv1UAVN6skSgmZjhkUDpAd824SYa8OLa26tcIN8PXDweDs9okwx0c4FXH6bIhHcpffNp7CSyD4glR9g5YEdcvmtfovm8C4zMTqw1hGrDAZPr8HB9deZNx3S0NWzOSxF6P4VzAd7D4XAenhWqIiUNjTJZRbmsmCfBF1GYU9R/kX8rAsQdOUzUXB12UtlcJqIL3BaytczPu/mzKtqG5G/kv2aUM1LVr7RgurpEOZQ4xf/WvAKiskkqhuP63EoTYicCML+063og9KaY5J0FCk9x88JIu7IQ8VyYhoHBNHW2DIAXDZwl1nAUywMaa3V9L8FYcItE0jjmEPelxg/onCDIqalJ1vY/Nghl1dhCmr0q0jv60TAu/zar6A9X27PHIXqpYAE3GOxTIgbPcuupwQ3rzK3ec1bD49TUIxa138MLXGJ+1zJcC9OT5hW7uayhHKjwI4sGKbthxyvE5NfmlOzHn9e3EWlz+VpJi5U42LsHSz3LTy+F7r6foLH4bJyO1SS8vgC+reVUZx+vt+TP79czbm1nVm3OzXVDsuE8030+ljIjiWFS8xo9ncLMl/2nKyXcxHwI7RNuZvz0crdyQJlpAFvdYtTXtG95JnfZB4SmXdgJLneSHuExfrOT5geIUBPlUk79YXUAuaX7KjyXJArAO9ol9dvgO2zPnk0K1Dz5BvVRZHDKF5Q2BYmx6vV/XLHzMZEvrUyYBv4ac9V0drMca3jG0fQi1JWBq4ABj6AmyPEIHpm7oKKcma+ijwLW1IUliytSwRKaxQ3zgFEft1SVKRso4Qwxh15pPxMYw2hcoPlk4YogOHkIxsFxzs4la72jue1RTLvTymO859CC6mBcwHVtMWup4oIyDi5ovzbE4oMwqNEIS+3LVUFSvJREziDzMLEO9wIt5WPQ007GIOv22Gn6ufG6tNpE53lVtoinPQY+vri0Y2V30EqZ3QXjsx/KJpV30T4+55IkIjBXl5omnAKbHQukeCUv1v2lWKVEL+zCugQjVUFKlsrmFK6QB2Nj3UP1S9EfFkI4v2/Sb9PT42mIIHx0YSP9mTDYXq3OmygHT3wDZes7Ol6rxd70qcpNN0xmKzVxOSLO+thLwPJlIdQJUIChHK1U3WnWWTFhBxVCYkdh54zFttsOQWK/SwGyTk+2F+LYkIhm49CHb6W3GVuSbi+1v9J4rF0ytC1pvLDA6B2JXLFm/IEycATF+ONLKCwWLanAedvQxEEaHp2zMiGtDEjMovzQ+qvdRtu1lEaZHqVAOLrzNqZ10fIO/ps/a0fBrQ04CqiKsbr8Mh/mi4RsSRukMh7cI9UyeKcZc9pB21v6/a2XCI4fmC1ShaGkN3/LS8NnjDw4OxPfrE/Q0qaE+jsXXVw9B1YgXOHGk0PkAAPJej15bvM5B79ONdCWQoXx/10iZ2ptej6NGPS+drsQgCd4LQGIoKuHj8MAkqOlVGyRkqkViM+OkN/cXkRc2EfnoW3Fn2PwsLy73WOY6DKTgLpvAoAmm9pZpXbCBzsO2QGMX9ZsObKxe8CVDh17J2r4tbPBYBd3eEX7Q3wb4gW6w9XKBvw7zFzbSf4jBKTAI1pnjyvY5mQIq2i7rq6GZLD9NWN4Or4GRrTu8rHn7sT7bfnK9MEJW2LtLmJFAh7w7sVAGPk3QqBeE/P7EFvf/vbZfNiuWKmCVoM4CEKTyhNXXoBZy9+L/W4Y3+nke5dg67WQ9XtECmTHlwHvxaDoF+B8hNnAstgF7AZvBTI0HVuQ1CbO4Z5KmT+yox8FCUhBIhpH1dd563sBA/vMFKYNrdyCh4YkDcMRZ/SspDhV3YoFKNLVBiZi32/+Sek3wxncxpoa2bujD76/pb3X+qKP03CU9wpghACmYRclL5xJ4H5mNgZPgbbQN++UZXM68xb4NagI4CwfpOnP46+pwjy/3iiO7L/ETzkXUOuwlQ+7uegnAtkqemR86VJqiPI6NA5+vMvro7BK7hh25TzeO8X9jubdiV24SE1fj3J88aJDEwzLqyiZoSlrEq2DdrWLVyq37Uzpq66hIArGEtJAbZMKKnp+WG8iG00BDgcld7fxKKnOf3I1nkFF8c+CxCQOBYnd8Inaj1W/VulRt55oWauqZrd8w2txLm93XqRTk0KHy4zwtq77qhufAxNVEQxo4PXU+tH9SK6+ThIpaGjPeZX6eQJxEXpHPfXniSOBNa5yMPyPe29if5TrMxlNTDFYQ6vKJlv+HfzZxjnn4x49FYhZVtBjNbF0BmcsJG+xEiJDRsn6AM0sJtJYoFGuYlJP+lS1rzc2zJv2Yu+WzqgcH/kVkQaxiqqvQOHuD/kgnkERlSGjbjPmzsiA7h4yCLDa1uAEny1xDt4NW6sMn/JKVf0mHRqMMIVOFdxTwbVQfTJslAMvagdL/c+acR2IclRmXVzSnzarLlObwkvmn4jYq6p/Nun9iPWr7tmWrmngaOS6hfd4DQR43HQkoNQgjVI4orrG+oUMIhYNA8vsy+wCvvROpygDtdmL3+pfxlSZx+4OeKCyUxAFFw1qwMc6EdNxDir7xqB/A+1ZPpkpZ8okC2Yl5aOliuFQTGQZyKjv/TAfZ7Hfn1mV94t+QrfqHZhO0+aCVjO+RTXICwH+b2lPxzWQDMi4RxrjnMumy7SmIlEzhtMuofBG/N9oBvfWCxlNNiZSOaEj+h3pJVO95aEuGOnIpoFRUVHOOFUrogRtRoxzdc6bQ1g+1PlZe0DJ3chyGfwss91AouhPNIdXqLJG2FAIUNfmDHHCWDXXa2XX5fUTbjpuTODvau8grtht6QXv2C3yF7y3jgwHKjwHwfG5GmPvuTmPIHW9gpObbchz27h/gVWZ3Tsln85zym0VUT5zDyibgyg7S2E+w67VtRBTuKBzfIG3f/wzDxl5kuI/KZtvpv5Ke05SCtpTvqIxa+4ubOWNTfSgz2+QqZzUu/mv7b4NzkgBEEGWenZPK40DoEa/OXmMrQZJ67s7swrQmOxZegQeIr9k4qf+9fqcN3fsXl/6UAZCEWOe1mmODKZFzBoBGtpvVy1raR0T8IsP6x8BzbTpLigw/P2735loBum76qkV7LlUhuVZXv2vWGrsZGORQHMD5y6Wgs5GMxHCmEbPKRL446uY9+u80lAUVExEWbm9FHknP9mLuk8nVcdfo7BL1uN7NvjINHgBuOHTh2gEW0rgd8/g5ffip0ljQA+x9lXK4s0H/EllyGfPjPDe7WbOcAuPkgnvWB9vAJmyBIWhI+QX5D4q8g9G1o+miuBRtTXMQdEUPV14gFiQ+lwEpMhO3Gnc0lUVsE2yuKqDOyOGoehVvlC3AZOPLJYFH1dl6WMeTi3WjmhIF5et25ntecNZTw6UFM1BD7zwdIzCPFb5Ch3yO2oGL5H5zVNhR7asTMgnmVAoqd3IKV681SY8ngNa5jzCsbN0v4dTXwTuhlNvwfKEhgBvJNRsOSwiXhp48RnTzn0E2GjNJZTOjp3DINfz9CQmnB2pgufph8q4gAAJdU34q0vTuo8CT/Zu3OmfH6IEoyFNzWupeYX3YL2q1Y6AQLsSaQ2lF2JndPRQHRjUM3dYsVp9fdlH+/j7G4SPUdqwBewrBiOcQDtkNX/7kz9DdsVET6JRsOajNuKFAThVLCu1Q5ip5cEBp2vqJ6+Rp8GFCeR8Ib1qzjfvgYWRQFajLXsCKWVVss75yOgR1TjX3aDVQ0oCTcEIYDWANmx5VBrkpDR5HZlCq479ivgAaWb1EMZznYPB9P/eucqxr0Utq8aUjIvp1LHq+JEJPJEK8RmYsq5iXvY1qEtmzjVY/Wdo0G4Y5TcbfTTSzc7blMIHTebmPEMFK03OFWgtt6VCd5NzPV38EZT4+yxPcGylCFR/HUewYXvnjppjYSpJX6/gMyoU6L8dThLnbD0tMSkRWrltaQUzkKPQ28gvXL13MGQkUVhx6iiuR10zKjYmbtZ3rTVORXwecZqRbQEnF4wkiTKjwBQ14e9iNIWVEKV13+ysLhmYzv8W+b1ptnfYmTu/iKBD/+diQEoeXYMjZpzs0RTm8be5p05l/DPp5+HIe/B+EO4ze0E1IMvI5qXlBdwr3PKxdKowaAZnirWI6X2weYKV6IoSCRTQkzoT9knWJaVZl3VACcau7tKpKg2DT48aRstR/2u87kLf+wDH1UPYNoRh2R4yaxJTCVhkz4vuN1JlOxDyzoPQ+1+Ru87Sm1GOiD0y3nTcHNnmLIr4IcR+JTYMw1FqN4cGtkiCpwFkp28SGyXrsrl1TrqPq+clZHXxwOZL6CR5z4TZ27p8dE7+2j3VztLaBh4rC9mtvfG9ric3zvNZtrmgNDcJlrqUX94rTVZWmeg0aR/HskpNf6ktGMYTPSUDnwH12qkGYow0iCfj8AsCIc1h1tnwpiUp3QHPoNLJOwxuXfNUkNJiaPpXzBizoC6ng0hHuYyYltd8f4Pr212NyGumQEfGJLuvFp8hZ4D9ovnynXmgv4XdiXceKN/M+msAmlMm1Y9eMEqqk7/l/gFxZ9kEmpZqPFV8FN+XXgX35vZYcl5D9QehatRCwhZQIkTF6jBmCRtymuvlR6C7JalQeRohvXEelwdkSKIz6gEttiNuFghCBtxu8jbUFWay7DGzBrar9dE/cSK0dd8JlANmNA+NxnjDg9bgnCctXlhxdGzEJOa8KQOD/mezYg8whxu30QWtJM9vFhK72v2BYvXBX/5exV0y+iyrHZ4BvK8hHowqaiZ1OhMXrDg9IKRR9x2obsJK6ABSSxkroKF//kbuJ2+uq6VrAKlpl0CTRQMIfdCJmEaQgUHvouLUqP34LPuQkpNyNWq4HJhhKaSoJoma0oheWFQtilZ+nZrRICFgib8nE6NdGxadgAd0VnDBOtA89/G2VmcK3frtKJFtK+6gm5ODJQHKNJel2bW5WjJpEbBDlx+FLQzhPjqoFr9IWmhiHRsZYuFIWwtCxpamIiJ4SVGIMvIVREpIr5aw7lH8De2XO6kKin8d4puzeUwXqiwl5WBEBUN4fKmnPrjjot32pIEAN41G8LkETUwqUb1eCoZqCQSc2rHlLuv7nKxhbKgCZW3O1ajomwwyw3+Najm8sIJ2T/k1UpNfnIvuio12cq3M8ezJ9hjR8NDdHvPnHqZsKGdtGqPIBJUsinaqRKQkIp+WBWLSNaudhOKYXA8g8GZ2w2aDhF1oLAF/LNFFlAY+Qfg8nb1vlZsNkd1ZHlXjgeaD65NY0koEpMYeNYpTnX1QJYC3MOwciFMRI1BunMzOSmUcO/pufuTwA46FBl1+5EnX4gL6XudwXEzO05lisOrx7I7F+rtZ86un8BZ/RkZO8ERsx8Km53oTO5SdEIyTN332AGgNCZq+7WKAfji2CdconVsQFr0uwgoTOJp0MX3I5eQAc5YjoNTVgAIKKB/LPbjZ+171oSCqk52bBfXPp5J0Dvu7+B+NAVTjzr3OQf5w9ryzBTJfRDshEm5lgYOAxPKU7I+F9oAsqjr8DzKAwUIc+oEQ7/6dJlSB7NVFcpfoI9TLgNefpxnb9jlbNqvfsJPVT0AX+vY+gE+G9JCD2tDBIDvF3oE5vQNL2jBQ4Vk1GVnipCOdeB+aSCXv/mqVeK3K5fofhDjFYYd/MRENJ7EKsggzmd5+mylZZH3jy91YSqyiVDdA5qo/SoW9LujFBsddx5bmlqRLjI4pZxLTXcSEiv/SUTbiCXF7jLP20sKJEitG8Q/5ATGQJm1Yfm3E2u6gZoR/paiD3JlUO13yb/lyBRag3aVEnCPZRNA/qD7PJ298WQfVoNc9E2uS7jAPGaH0kiIGAVkvp5b3AFvO1IRglaYRga0h9ZYxXBNv3gqS08ls9utGPrhlM9riTrICVRg3hs3/NadX7hVIDD3JVFFRNRLgXBcws5i+qn/RgOnwus58ZnDPyloe7cu1+ydSQYupNvtChx7IZI1fjlDdbUVyZVbfRcPXLufYatWJHglyoXnLkudvIwT7YjrH+yRui6k68cMhVNwOwPsG/CADHwEuagjNtBO3qcuUcq5r5/UObOZZACBNNF+4UX9KOFyoTPDz8KlXgazUTc2ZN2+k3rmshXo6zqSRHlwgIFT1LBiiYTweWk1F1sF+KchmVZVWct0gEeRyBFxNPVL8aMQCVvGUlZRdLmvbb6ts8JGQWtY7MvR1Xxim2aur+lQYi70pFmU/MBJJimZfcow0QVgcRw+pgBr7ZBOcsT5NkR8kmZWyuw+MrN4GHfiy1SWkhmiFvf85FM7SA9l3dSQCRQXba76tT+hS/onCK/LUFuIxAiAd1Zuexlb0HJpJNCWoQUJyQZQtKgdRY5+j+CRaYcgUxsghftfZ0YlHz08mBcmHFVWtkT8q5Wly4N9UBG3sw0GhqhzUHXTfa9f305uhlt8mxJaYfh/jsYYOrXQYw/byZgl8+eLoz6nHjWSjIweMF/n3dn0EgaLWmRPmc6p6mzKCy7ytz8Qou6FWUZCQEmGNppF0YKcuRUTkXzyNa+z+bq4uXgewEG2+jgeQ4TXcZEVoU4lQHr/Fa9OLIlxkPgCyrES3uTHi9ROPwCh7Pf4KdcACpWJglRYzp5uJgjg9QgTCUrs8oOw//nj+g4Hk1Gjsh7pDMRD1/tbHYov951xkdNpOTKFw3yxonEwumhR6t+zpip/1uE9W46bCt+C/Pf1aG4f/m44uw3brkm1oIQ63V0eJqqwpI/sLBKjhy2bHkiJtORj4TiCVf9LR0salg2CUYkVzxIu/DB7uJptqC9sbJwzFyhpggfGdjzx3cGuzLAgVWsPv2Pe/ZJc/PAX0yA+rtNV5KHtxcNwcyoYVm5JDE2JLalV+FepNy32dUWp1baqe+xmqv5vqqatgRNxoXFumFGNcaORcfiZnF4LRipTys4Bk8WcgmYcA1Dp8ORJkmUEGegSHvKRG+I2/NIYV2c182j3DwEVuJh9IzdHhsPmAiG/z0obyK7W5v2leQa1RorOZcahUNJA8CeWkFoVW1fLJjbEHW5G1IT7XeU+zUtlqHld4a46MrnWRhfidMEImlqWZPCQkD49evQwQ0dvvoxrGk4A1I5i2DuU7eWBqkRctbvJRQylVzybIMsc80cIzJmdziKWCDnVuY4L3wUdjTegkh7zzu6/DcAYK4BIQs9aeUTx9Degi866uPlD8GJC9bDixDJamJWJyEd/ttZrxDjqtOVxx2BD6Qt40VBK05JKgtl8wIcsgX1att3LbHuCAsOusfE2DmnVZnc3Bo9rwS/r5cGSjcfcgZ180+jPWwBse5QKaDxTNSlNz8K5v5D2+rebNKPp5oRPmcSrk4xhbwtW2Hd9r2l1FIPCwcPUx7hcTmWw17GV3jBGxOU8PCfPI+l8tX5g/ISlNbL/NK1xDJ2g7agkmk7DJeJRIJSEw7te/p+WvKjZBOFrfOavSyxG8z0G3q5dSa+718vsNbPkHtRQrPabBzrSO9VxNwxat/d1yMNjIKfCH5lM/g/DnhNSiZaPTHRBGlqWNf+TDsrHt1zSQBwEB9vVaf7HjIoN/1YgNA6bZHcVOOFgD1zN+BgzPNdSI2suv0LLq59kAE8SSX/TbygJrRgoiBmRdPXFmxN+YtJIH7kj+0Y7LYZQyXQ2e8f256alcTU9pln5SDIwbN7YG15LUDsVEusImqL11Uufk2kK5eKTIk/9hjx5mVAy3rrT3oBrhawDIX9U0Dhv5UXqQwXemd/hF8mDzio8oer4r8MAFCh44/o/xEIPVlN9JhSFSxbVD7QjmdHkjgt1TVHmK3GM1aqLRyhGD4zJZcmKB56kcx2TMHkW7vJLCcUh/8K9b61Q5RqXdZbWzX+myBQcxBlnIrMcRiide2kyNAG6ZA/J5r0bdoWVrGYSXU1SnQOJxlBAWNYgV1faDlVpjWkCrHvrGDVH/HrJuhi1n/E+nt+im8oMQUBiq1tpR6S2vjW14BeNR3yBReKjTZbSt3rsDpA4dXXsLL/W6CvmS8CTTK/j3uaqSnsyv0srpe4opCyiNHY7LLbXX9msGnCEm1exxQZIiTZMQzDz7DLp5W0ti/UwhqMkNRWCxXXiPmpE2/j01TP7X2gZ/YXtq8xWtzsCtiZfb0dRdChndwYDwCtq2b5jowjsrlaGHWqMZFPyJe7VkhIrvQ6i+nyleN6LfVn6XU5aItWgMmYvwGOqQjB1LOQWHg4r+pmG+/XVjssbz1R98VRAHN2jeYCM9BpRYbCfkTbd1xfo8X70NY/Sg6v6RpiS4gywUK4s1f2UdPfA6m/pSuj7UXdvZmkUNO9B4HVbeHU3oGlV9FJ+HDGLr/o6wW/2zk8CLFqzrRuFNhjVuMsCQCeQR2DUV2QpKV7emHh83qH9QUoXXxQcOFZlNTMro7sHoxC+KX39+ok7FznSWRQq0Z30Se+AXvs1fjtehKHtQW2ZiVZK3wMHvDiUT+ZJz2yIKvFAcBKWTOQZ8mhKeEkq7FUgQszGkmRzOXCxRqCbVnopQtBynJGvsh9EPMM9qKtzaLDr9XhMNOGiG2BK5cuix3OS1az+QO6xQSFPqKn8C8eiAsuOgADosdl6mPH2Jojmhm9UjGHOyP30+Z1+4Y948z0Tfmtv3N3a370PPquxXr8fbN28o4aO8+8jtDGZHOlX8YVJNCu7bmaBMV+I1EIWO7bt0kfU1YXeeIxzfgPzFov+vQH0ywescYNIR2weYvvX9R3+3pbTw8o8mOc8qgOTI3TjdTxkbnQYGWl6tOMiPO+XWIkFuW+YeqKcUj/VA8azrwmumQtEgwcAkDGcApKYG9gNxew+dmM3br1dbqurE7+rag0/Sf2Hrnq9WF9YZI2oXrjvM0nPFN2u8tRVoxqfWufXGIeG3UUpFmCXt26IArRW1hsLQULiMxhjCRa4OJCTMHe7ojoho9Y8fmTpmJTSQ3Q06X44ZWk0iZ7ye3io3rSsIxNoV6ldnzOXCGgHP5VklPfE/E52kuPzp7xbSlO7ELc7NCZdTYaM5ztQQoF4J1ur9DxGGu/gihg6i3L+3WiZa+yfBrkKo/V+8YckLGHSDwAf9VldIApiWMaFG2n9oWqJkLJ6ES2DQDIJrIiN+PW0kN6UJLLPD9nNaVZGngZ7QbB02vFZQttuKA8qqV+2pToLlyx8z71OHwHXk1pdncbtpqFWv34R5aSNMa2opS0rokLTrHA7cxs+iH1MKYV2ThdsANlP0ffAhtwZW/g+eSO1fYg1X9qatGX1VRrkpPuwZVz9AOmIVJWfROpHSYkj1M1FApfBHlhYsElC5Fw8ncGfymliFjzFbymZEViDOC2EQ8goRwT+BQCpBxzBBSAAvy5ptT9n2Y5UlRUF3ySIWlTaIi+k4pNRD4u1BGqR8XXqCT+el2w5q2lgbJGg7UaVOC7OHV/t6uKnJlgQplzZi8T+UEXRseM39GAVW9ZbJ4ijfx2fsC+LVhs8d8Mu1KRAMXSUE4VtD9Xnc+0tKzZIHKSC+9630QGBw/DHv1ETc3JWDCCb7pp377JCk6GEBpFEAw2gNV6Ug5NIvMWCb1pyPNO1A21AUhfLYfdgtPGOqNmFAK5nqBpHGGTbtSJ7JhcVeANaeYZy1EwiQH3PrYZk+azP9wN2azSdZfXNIIp5JnFVchaxPK6G3Uuh95s8zu5teWeKVS9sGXvGW1da3Ta0r9NIzkl91Njp2upCxiRqv2HVYl+H5tBTVKQwP0wYx735nSJfWxsLg9DQSeWuSf+Me4WkbegkUg9H151qR7X/cYelYsx9f2C/GaVQ1uO4mccX+Co/ARHKh6c+xtRzjcuH8MyQGP1Con6o5sRZ94jb75jXvwEHXVyO60zmdfI6oq4IbBLgKZkzo+tF3fWrDoEtFZXhz5cC03r92D1Gi7DYFXnE00RtsTDWOXMDlETpm/eI50EaeKDUqN9LHrHdacnRHU3d6Up4YS4oyDZjDOCngu+CkSHLCnFXtkkrV+lbz0Cd+8dc11sY4YgtFhXA3CLOhlQvIrx1FMU64J8FVkJxJccOuVXk//hUR4/B0jeWtAOavKxX2291itlq2sF+MP/CySNYqvOPoWRUi9dfznYlrtvITkaqF71BKTDETsmvSsPq8phke5xOjCt+zIOEwUNV8f1z911LcnFcXFIE2413pVygmrmogM/f/EbRMlMZJtdMz+V1F0XxH3RGA2aN0sWwHPNJl8vKaTFjKRpbSgNHQMh+MmNFnbdY3nr+3ph3aRqMGcY+VfU2GRTgqrUTYT6RRGd3ERpDbMKobHLDSGrSKw+w+CzNah/sHHQqK/9KwkqA3aRkFo+u0KvplrB57AViC4IQ8RA1A6Pk/STZG/PMRhQau82LZ4MoW26RhzygEU10YvrrzWLNUaJSu176eJV8Kt0MMS4MwrUY6G6xlNvKzkABsW309WB/7sq3j7xXazZGlgp0w6Xane+qwkXlYIkZfmzsAzcfr/M7QARXlJdPj40gCHiImvhNTxuigmk9wzc366aKtAqlSH0UAKr5cAigeM0J5uz2VWLXMA9KHAt/y+0ucoCXWrjbhckXzxq/nmNMW9/ZowBIWaD0ZZo1R64gQE1L3uw9xSGVkvuPTmYETfAyEWNNEfUIC0I/c0IFXJDvNxG7lJpRCD0KVsSkUqMyOj6Hj+R2Hb2hmlQsBTDfWOwHGytN44vFxq7aOs6CIBz+BRPmPFYBM3OCk0jp/ZUtZQuR3L5fXwDgh2mPo2EcFHA6FviZtWLLeQJd+op9ne38MsRWDCo6LciLskMqjYpsQZ80QHokVRJMcny9z1Hq44WAymhdS2XceCWFn8VJSg7h0ouvuhl4VZNiE5paQu+Llk2e+GUbHKONuJV4ztil0B2JT4chI9qT78edyQtGuRHONWheIbscBm0wNJiXOve/lobDhMHmi0HYX8qzvOwzDNP3TYQRUuD/8GBjbB7EBMz/3d18nvKpN5Zk83qEm83698xGzb4P+4NVrRnkj1JGyx7yGrW2ILaS7S206aMZ/lEQvt+lyOCdoNQOUIxs2d2xvI+h7617TcPi8cZCOSw/co0QzRDV1S4Jwh+UDBoH9UGan2SAHpSd1VFbqkdItAa6KicMMuhx8fTG/wQYGSHokVhiijU8G5Mr/PYuiWRGc3XPxeFthl43k9VMg+HowwEtJDjv5U0NeU7ucdzs7Bv0kRngqNRjDDIB9cAy2WBkh7zeDMC/aIUFZuHEyeZ2DSsTdj+zmYXcZKIt8iqE8vNmZjZNxH+g2+k58fmADcC62whDxVXtMqD7kJNtH2sD0MFkXDPrMyEQ7bntn7Hr4k9zWKmgImXPp98/7TaaC/Uk7GHA0A4WVJr6ydOP/dqat/qLsdKZn6tPFb6dbu+uGFMKxZTk4BIgpT3w7/4bK5DWIfsdHxESpifcGtVwhmzBLOFG89J1J5cjY8E51BwBCY6Tx2IqQYcJOjw8JO+6V8J7jGIpPp9ynM8liPv8uPwI3akkX0DMAGbFxY2MmV/PJufcszoqtP8PzURr3SQC/dKOAHGdda0Hv1Mrr8ZP09WKjF/n6v3W+tXuQG9X6r5ouVUps76WiOVICE2K3oJ54PbfRFmraa/7AOsBbXm2ctdBIZaTU2Xpfllmm3BbvxlrsQ2amLkFB9Qy5URYWPHAxhm33jBr0lG1/SQgqeq6hvDEPTD0CxQxpXyXeyOHx82eO1tCnXaq3oxwyxy0S67hi5dKCVhjRnnXikFsO9/auDaKBBaq6+VTrcWnNZVRJvLmH9h8RtVjbza7W/85tz0UoGv5Z/Oi04xqgtLS5txwhCVdWLSMXu2y9tBacTO5ny9nAwAauLW7/Lw/iX8uVwayD9Ro587L0biGumZ0o2yCMXlJYxm6orlNh0Xf5gOFJjoicbCZ919Xe5Jjvl8vZyrTxkdHB5f7QopTFdUQRArAsY+DQ+xGiuS97Z8K57qr94G6JoQrdILBHBlMgApVJE8+X/haWPXgPsjRYxPPELZswcVGVKnD+PWmrfR/yNQ3ZwTQr9Pygmlq0lBpNK54NYevlVKBaXwW8UZBPtgDcORyXMgaBzZkhowiPo7QwMKelMQoMJgJuUXmcuSDkf4BVaJUy8IIwkLVehLMtBU9MZZkcpC15PTV4ElzxuHwCCzmbnLKw+cge2L6hbMw2C3MgyoW9kzutMexm8My9MwLzUkhC/TDZaR/AZu8li47+KX5MkY2Nw0cNxSHHKxOyW5vlhHIVcOZouGfmZ6cEewqoIXBLBkgo7zWsz2Tj6g975CgpLb4akBZBPdyDrzih+BWBrIZU4rY7DXD6QXXCWzQ9aYJ5RLtwa/RRPiz369uriM3W94/+4wMW14DFSZ8aY4njnL0/+YKzRFpZbeDu27odODWtpG9Irzv4MegZubn3NWdf/vQyNMiXusufMtWUzM8AMww92tk95wW+E5jn7XdmN0eY2BPS13pKMcW/l3OQ0gIbTz0xVGSjta3kTzREgZm7XJCQdTNHjhR8K8/XGiucBmzEd4nUpMoPspnWq3wvpAY8lMB9/7S6bLSXwhAuR/PCmIi6fMkrIciv5Jr1AsK8QQoNn2z4q5EC85+Vp2DOrAPWfEHZWf53X+J+KJERkJHIsUKaDzfRtLsBSEOzlK4Ii4/6e6MNnM54ENsGczX032jaM7D6uFNZ3DRZxp4QsuD91fbPDJzQzrUd7twa5QCLrAFz6H7PEQuruhRNzPfThUKIVMMvnGagu1EHBDX6cmSDH54FDSXSFw2/uxh3tWnWu5NZrOvIEJ7RBAOta6hK/X5u33i6UPr4ricRcploPX2LkcVPFm8nyZn0PME2d3GUa3MPrK1iyaPsXGU5G6J8ikklikChUBTcSCgKqkLEewmD3gg9MASMFup0ItSkYVWoPrSwZc3p0lC+hD/T2hj7k9an5muPFkHNE1KdErtj64JJ3HOMtvE6cAa5jUncnfajAeazyRQ6LOcyA8CEuYKp+/Az3+jIpmcAPddrmQ4/frwGqXdiKjTh8SMMM/kN6rvos+uQzYyyzKHCzH9fZDAxPfWl9cI2MB1BI84y51fcdixOl+BvFKtlwlk5EJQOwt8c3g/kMYjNm77+PjJhCBcAoOS0vfUaaGZtiXTZqrINxXv48bspDkJrExXUG8fEvmSO+NCmyJomm3jo/e/p/5FBelhOk/YRTC/zGnSnE+HdHUVMHGWn/QQtxeQWARigjSHdrpHScd6yRWvFHKfa3c7Dt1Hgp23T2JvigTINGBodJXXIiH78iZJxgWWydyOrgCEugW0uLXJZugBL8SK5yopUoeMksXM1WxyZ4o+psa+GWgMwd7GOoQjmPtV339s/Psm9bySGKsuzqTDAswRnLBXcNK2mka/vKXdD8Q9jCO5UqjM0Pv8YT0LaxTTiLduMvDKfZFDwYmlUU6Bk5AYP6ZV89u1/W/EogNWbgZxFeLxrghQj/vxWlyisYHFFdwxKxMfB+82/8aocGwgs02vc2Dh1w2DDkTSjay/hPATN06ItLryhbG/o3pivZAeJVlSpnp3/eNi9LW09X/Rmw/SjflILYsBB02neFHFxjTfq0X0ABo+quGWTOQPf/U2+6w2QCiNMt+2mFnkV0oMYc17v7shStSkFYysDzIZTCLpPEDM5TIKuWVnqCt961jzfJSL0l4c2a3+rwvzdB0uEcivz8qLEUtFf7a4UcfdS+NASiSXFLC6VNWvVwZay9UfYUn4CKFPJmAEKuFX7dq5FwW0IjAbfyiLRlCFq1/bomVsER/94ijqEkDQhboAAitQ9VE8fujYb5v0icWa6D2DeQn0a3OJOimqTCjbvcEftYQl97k7986s0Z+pLB+44VFANmjimFpmoPxafB9fyrJcZwvXhDBIgA1/EHxY69bXGn4jfYE1qb3xODqZdTeTqibrSXVx85khZZ2WSuv6moA18jBeT5x1AXI41pLffjhG4rPsWf9bkpglr/md9aCC9hW3j4SNwW619HHeJFnb7w61rzz/wC5v/iv3b1gPoSj3z9kpeW5ZBnOH2XYaNnv0KRkAKJAud3oAGD7ud4v1gXuFJeBD5RAyPvze8r9Eh9vrykxrl3q5L+tfQ6F6nidsUscG33AHPqr1iYvm6laxrfQBem/3HJPvHv2a1To0R/iZzeWeSyVb+TqaUWQs5VZWdS2PX7ItP3nyOkxusSkeJgatW5aQy3XhFbGNnSt5iXgu1hKWcdNuOEDEyR3316RobAFSHkUCcqZi+H8MmDBUjOpiPV2FzZgUSMO9TTpOvk1XOI8dJNOTtkYS9i6JbW9eVleotWNNsx/+PRjud6Ae6C+LuJPI8PbIrqWmGbEzKzaiw7aMoxFWx2hfzyZKhBchrdmgAfOaM8vWhG6hZC1pnBPVOZ7nY+wLiDIHXee5QkIQZs+65ceVSR3m0O+FZMjRGIMvMBYXCw/zjX8MRGAVPdZwjEkU+om7kBfMvM24pssDi1GlV+Z20xBeozfkIgxEnIVETyoNDbLxLGx9AigiAYgyPUW62QegSayN8lV4+d/Ozejn3UYlp2OSqnWSk+8hzv342R5EniXXHYwcOLRC/J2bZIk5IaSIpz+MhYhhrZT91i/q3WrQFbsQciL2OH5s2Ak3LUS6TijNMA3LA5Au27nLv/QiJ0T126zmg2tSwMXczi3OvSlZiHCBjdxAhSKtm+E277BPXRquBl9rv3yJOEdnr96mRnMlZjEx7SmYCzUDYrfQhl5ZvamDFrEwUZo3bWqcKYenNJRJg4x55iLlcpb3z3LDmV8JI20VDKCZZqN0GoVy/Ptst2tOXXQ1J7gwAn3RJowFzd2hIVaxPQ2rbVAXPxX0JWMm1eG83IdVKRgQkszVQb1Ce/owdPPpoT2OxoC8PaAS2uaO9MOLd3VZ1hKD13eptDNz1vPxOMSdzLAw9PznrDd61fiJLoCAhsUWVQB2+4OGYRuNJoITHnAACQ1CnDtnPtwO2VfylfG7/mvhIndNl/VGNJwu44y2MOfqy3HRVWUcCc2ggMBGaEJ8/9MLhY6D4kVoFznD/ntXRhQFhIzq0U1rjc7cMAVXFwY8RD/3xvoWAvP0AX1KPdbfekDb5t+LhnD4rC69kv0CAlvO+Ktnqk/GVGHQvi8hVzDA2zDbQAWcVE87dhoLruukiwK1RM5F43NlmqzFNEBtsSaIxQVtF2XIUIZt4kbdUSeQLFuSFeyFfLsR3Kbva8PONju/a0qO7cEqrUIdWGf8A64ClqQCvyy8h5Sp4cDKQoguCN70ZkvV+c+gCJCCn6lK7YmXRXmaqU++36ka5phypaSTwr2QBlONcLktW7QP0ccCcfEbRkcd5//dNWZgV4sxIQerb045CXhMfwQoRbelxyCWxMXMAH+lw0HcdpiJm7PQEPNabCsqSBqFErvvgUSaVAzki46ByjjAncdwKYVAytUTBrJcnQmKml1eMGQXd3pkrb/A97Cs76iNMbCjt3W/EZjVczWoKTU7RSXHj23bEIqg2/2wQkOvdg9skT12qKx6sZ/DtelNYsCMEa0fNtl9wJpBfBuggm25KmWEKOgWA6TisoFhqjzNwRUl6RxiNGnDhVr0CQITgGd27D52wS/Q8w+OnTmIgP99vMjw4fzUkOMKlzBsdUfDpRRqZT+rjQQA0YTFiJXN69iI/ovXQkQVjn6ABEH8UthVGDy+rKN8VqAzFHGD7+yCw/vW6h887zuAGEHrmBYZcOGgduwKFDKak/R4jziOocxzLcDc1rDOgQOMmsJMakOFxfXkmBzdvzaxynshkRNpAYxgVsLC4sYTqqDLZPBYWvle1e5y6e4qrMWetVwD2R9Dw+ZVIYSG2yXkHT4BMtELuZhjFCtUjpSUKXLiTczU3bO47ToHaHSYRtWAXgVHM7pOHfPcpaMVqJqt+ovOG9IlkEQQ8J8bD+mo+0f7JsRuvyPVMBI5H0yiWA+XfWKZpZnXPebPpTE/gs7I1zCVtayWFYVQm8eKRO7EYGjv0Mf8+8gxvMY9M/MuDpmpe1wFNdJvfBKkvUumF6puZVDhoUpSj3AU6YTo5676fuCjAm0RUGiHvkuY1e+a8J3RjZjA9wK7rqKIYqsrfUSNIn8dre4+ocVxYR2M9NcjOJ8RxqnPtRm1e9Qqd74I1gYzh+xa7X6KnLJmdQ2qZZiU7/tRibaSwUbgD8yhPKkkbMiFd6FWvJp8VEsVnzgEbB88/i/oy2JWDkHiA5mE6w3ZDebA2ZMBGCn/QPj6t6IFOfYzQp+AbgZCNRcWw0oCwY6y1Lru0pc/UXNFhh1ZP2jhp0wLbOI21KEd/0BEfilFGjMNjw6v9msUPgBj82ApWLpN4AnH4NahbBTIkQJYGiuR48uoGZjYMOY76RWp87C94uEmrWdtGFHLn6jUSJbSYvZIrkQDzyunmQG9nWUExS2/jrxitiiOL6Q7MhXV3mcZ5WYQgNaEz3jXN7tZH1C9k21qzo+R2umhYWhYak7ITARXtbz1YvjBFR1YrfAKI4Y4XvoohOH/shY4rW9Vy+EYl4gn9ov5/tEsZPrAiuSBM6dd4G+9lQKJuVo4XdBtYlaWmgU8B2VAmFjdzqpJul5zSAlixDCEvIOn4FEnBuAlZhkGSAqr+RwwmrHjoa0//TtwO4FuX05F++p1N+mxF7sJs79ZloKp8/KDEWUOSVYg4aT2cC64kZYEz3ejCuZ4XnWCWxa7wEvv0z+vICjS85Zorik7WgjsSv98fBwYr8QYiHLtS8qRQfj2k+OM1i8cEW+6921TsjYPjGvDz8l0PsXxqwoUG16p+ecFckg+MW3HFiTFkJ3yacRyh+k3vVnckh/6QUVs1Ae3Evz49cicZBawl9ooSXb9BI7b5BC9lGCz67y4Rw6ZkmVd6Er6AAoOhtSU2nUfui/9K70oiGUGNoet7JdyyhoZEwiMlSZpBXuV6/QH6+efh4DmsDDjYtgdXuCmt69rMxps7OBZBdnRTzZ9WGTd2fBu92ksy/k6ok5FlRvooMfMqC5tYcz6V0GGpOTuW0pwixT1F+PN4/Vgrd6ls6j8fl4Sw5KTZfhAzmIBcom/RQD1JBQie2Z7jxIjHdbMeUH6AazporFxjcqX8C1i30o7yrF7T6VQm6ieDvSFZzYCNdUKzcpwKE95S3UNLVtLf5NZg6GVSRW2meUV9QIN1CG3fDWvqlltkStm/zjNjcl/pSEbE0MWz0Fyg7j2yLIi/tclD9zpuwoEZtUDXNgZHYoNsPRxkcDE69YVJUdIIEp3VnRgXXEw+4l9B6Lu2YaxhPjc3obTHCtM7q7PY7Ons0lErcCtij0fTMLzvyNQYzspOHfv2K58t8nt9VNCtyL/t47Kn2oTa6awuol5s0wMnDGG02kYiNNaxbP7wHI6C3X+068hf2sya05MEYn+mr0MLUccuYkbzMPyycL7ARszZxML2eamSEYpc3U60EJ15w6m5UWvN3Ual8hskxTHMdyNj3nKwxbkjHSE3YqDoi61J5GjxZlIqDWE0MZeU7zpU7Pzd573LNP56FwrMIsShibLZbIbhz8Rbe6Zp4g9GEY7majLpl8fgiGLctMUFHCQc6+5T9j7eR8ytDgf0mbxbpxR5DwAMXxFRtjuiHUiYmvkLBfG/ffhmEv6SalKqh8IsOPdI97FPTe2fITLgnbwQ88AEJTjgJngPsmYoQ5ponO8J3J9Z+B2YsFDLa+f5Kz8WMP1J534jZolEz852DzI39kAaIqsj/qVaa9zEZmHmRNGBz6nvaU+T447I36Kov3bhjNqaq/nU8DnHXwlRGv1ZmBkobJj5HAe0dkumMD1WF8Q7pFSPF/+9Hrvz8y+sM03K+GcFgi7ssAoqH/S4McH+0wIxAwbDiW3zVmH2ghaX6aMc+nwPAQCCpmpre4gZOu+KB1Z393GIsq6ItiozmaQvSjgwj7m67KZ5uPwIb+w2q7XWIcQ36ce2rrofKKMBAB1O6bfAMajygcmOOisiUjdG7rmArs7dhoHnpVyO7s+rK6HYPfBGiWH8GbdJ6X5CPecrjZ6A7D7T6TlRGR/yX/3DyDT5IxDg+Fc71vQfBsMPnswwsPD86JVy8uh7IOaftqZVvx5NM03J7/tVE1Pb6wt5u8ihUhZFHhETwBcdlg+0hnury5IUg+SO7GKbmq1KxbhYRMdT2rfxWvUJ2cewdigsdusmIZd0lHOaLwD+zsw296D+5de1VepXPoU2W9IFmsFbr9e90FNGpUXnM8Th9luXv4qpgOsVqf0vywja6wVU1/dyDloWUKpi9+dmIahM6zKuX+eK4YZKeN9B93sw8B1xMLSSeCUjz2+XQ/ByPa8jhymN8ig0jaJkfM0FfJRzz2xvWEAHoGvxyav/myaz192HZkHUK9YIBrZ6wZ45r6EX2KjvtC15+pJmpjOCX9rHC5JoFKSzLKsYWfMo6r154hT3yBIhmrMZzneAoIfN9YwuO7jxwvUW2bmdgbgwHGsAKP+FBuV3CBhM2AqVmkFc9rqN3ev51bocunIxZZC7w3WE3+eScel4GiG7DAuMYJYpKdF2NYlXAoa57ZYRDI5nE4dBozQfbEJRwck5A2EMZEA4a0Z44debMXAmj/yeNmduFa6MzTM1HZPJtOx3E5+dlBrRXJ/3wdWUmshB46t2BtRpPlxcrR7T/iQ8M/yVWd/BRL5wgejpO+TZCyqvEUjsrk5eVTx5BgOBBiWcyajmVQLFkKnpcnPwOJagk3a8qkqxvPFrQjN1yC6yvyeqPuQqN+AFUm5l6/71YdnZ10agBb7hGxS07NYFNvjV226RvlTJyL5aY+1DedV7418qTJfD7hIxjZhRz6uM2X19DCH4uwb1xxtFM8hmePbA3hX9ylGAg7VrVPTnvfpWPeDlj9s5PAtzo7MgoH/gebsv37Lh643LcTH7xeanLjRS6jni1NUgZIQvLPdZ3F8/19TLzTVHBBstB/hrh5I2yV8Zcbk8m8Mwans2zD1/LYdReYJUkdUd84GqPAAqsW/5IvwNry9EzcQY3PVyOlz44tCGn/1tP3ZnOWLZjJzauBKESj9H4ZCrNXKtCHlMq6gladMc1ac3QSE9uE4rlzmr1kY2ZdrGrBEVSearUHEjIpnFFihxa783/ZTKiFDodo9IGQu3v7SBYxJwl4AL5VBtNHI+HXl6PHnXLyNZDvjSVijCcOZ2l/kkIh6LvnbGdIV5MLKjoN6/yKfjs3pLR32cptHOsTn/xJdoQDeMUArMaafvyBane7hkRduT+p1Trqb8jVQRiT88ozPDFHf0K+XWKkDnpNXtNfcRxl1Rtlqh473YE9TDB09bJlDuDN4fowljQlYVxsdJ5A6GoArI4u6EOH35vKbJb/Rz1HJckOPkq1AF8K1zSzLTJKbpmbylRk2PYB7dclqiW9x/tVa1IcRt9fscyT0P1SGR36+ayC2V0Re7bhiNhvBkOc1WL6zqWaVyewNKRXQ1na47u4UwFWrlfKiVUAjCcLNOj2DomsLmSVh8ZEC6PBE1Gl1Nb5wJ3odQvnHH+axKAoseUKRWUaABPCrn5D2nUYsMzvxwB15TFiODiO3YfHWeFLY1BUALxN/WIvYFMo9zp1XjD5YZif8eGctJqwCwgErdkBjQn4g5pFryPZ1D1E2GOUpukQPn3pgmWEpV8bdRKNbsGvHp/VF/OTMrYN7bASfx0PHCtWFbriukJOXgYG0AwustE9n8kINeAZbPdGLRzBt2BA+bO4IJtjpjrT+GDw9oRIFlZq2gME6nPzjFU/njbJSD7cpIwHnb0li7OePqw7+oc8QqRiPmtaQQf5VZ+GYoHKJan2JZyagEPsQ25cFtv40YtHCLcZCgRy+lC/kjbGc+kfTdxEvihWimGE2I/J0+sGxgYeoshBMr+z9UQBGhnyzHwyvVpneeckRsJGGFXgr2Xsb/bgwEy1xMvRZtljLGm4CaRRX1GvV4LgCwoTDcNZv45fJ2jkTN8QCwzGPc7ZfeX9Es4SgxdeZW+vKUTGBKEUogRHPBrU+S5ZQ0666ZkxuU7Uq1dWZ+r58BVbIYu+4Z30zOGFqOcI0UDKscvafk0n+2er8t4ompmscpRSNbih75KZ2lc1zSl4RbgCoVd669OVsG/aavjyTm8/Wt1eobnGxisqjyi6WLOw6eD1KmOvYgBGWuMFi1c3HxE5pZlsEHQ1o4D241ZIOyKSu5rWTFNK4eXrQ0vozJjrZlNHhMtsbrAjisJBRX8lBsG2+z51OWA30K4Hpq192zZKVWPAlJ1Mq4pTBfE+CxXomxRwSawgG4MWWm6G+1TrZNe27CIHI26odNQq9bdpopRky5l3KXsp6IpUhj7yi8Ek0++IxQtYlixPzzvDcb/yvpt90Af7i6C3wVTJZIwOly21PgqJN1pSyJYavP5hTgdxnNWDRibf8cA1I5WNArWk4JZHhu4n2420jD14L4MiRELl5vlXmAWd9VoH2rjpuCnD9Q3jsakCYV5RHsocN9EwXaMnOoSgAKb6IimAVhhWRTavDbAGBo8J+yV00vZtTbfonWx4v34pC9p/sim2150iKXqUiquFHMSHLpQ54j/NTongZ/yuSKzudNioC0bDTkyylJbfkoYrxJSbpS0u5eWQuRV8l/sQ22sADNei/kcAjyAWRUGyC4Fc99LyspA4+c9ZJSw5kV4Isz9tQtcv55ynBNDbtzwUHoVxLBNfomLjZwf5XoTiNwq+z9xelPKR0NrG6Iv8IBMFXI2NJ/sCSsg1Mv1efGBdhIKS3lELBe56G7ZQGt1EyCuGvaZ7cNiMVm+7L9YCc16LPuLwlXki1BVyrK7bKqpIJhZXohs9g+yAqVPlEXcTtUikXWyTOKbcFA2ifJBm6/sWNsKjFKhEcQR+ToUHLUV44LtHbbdEwbVY8ifFgJzkA3Wcv+nMCnnvAyAC7NZxEN6wiZo1WqqW541Gw5uD79juW44KOvB1oZamkkpI1SbckRueLEX3woMEVRM+IIfKHrSa+JQnZIPG/UOJJyI0b8NhKsVso4mmQuOG/uzJFFrdE1PmsrkKtJQmMtUW+Ab1Qagv+iFoE1HnyM7PpJxQbgmS1TsoWW4ESriQ3EeWFQw71HS74cYpvbm+5ZbOj/XpFHivkiG/ZxFTIbMGr84lP3/2l9PLqEMd1bNvFKWNdzK4yNR9tlVz/msO5sjQ80Q+Xz2VhUDWWv5XYcYtWK3bvoD9MK8Hl2vSEL4mf7Ufs33DgjgwSmFY3LT2JoR/4FLE9PgOjGJgKchmK624VZN45uc3RNCa9HBxr2dnws/2lVVpfX02gCjBi3hUpRm6NUCvtSW0drUgCzaCCk60ScI27/HyXfn7i+RAa3kR/gR5EtqKnx+3Nkn3NjT288FgTjl9f8jm0+pSSR0EjY8j8eJYr4yqswuDgpSn/zW24VUbJDh/Mzp+t+F/VVx/I0dpxc0nFOR/D3J9USaZrvsFdxe1u6L4HrMtrsrdU/61PWgYd3lLNhAWp5LhwjhhAT102rslOLCD8b4INuKL55dKmsgd4o3/hKD3TAt78Wsj0LAVcRWwy7YPe5g5wbtRm6HJRDu6BSmTLEpW3Kod6oaOdfJldYgywV7UjMzG3hR79U3JCFggKyPtSCB1sSJ4vyb0tfyPfQ58d7XaQrUBlMJ/eyxNmzWIwVX5/Z8S7BxRG5osW/3JhsUWtLi6j9IimHnndv5fgXQAlTUfPJvsnJusDEB/Kwz4Bxk83gmCrvCBJv8yEWTczd8MWFf/cpcjaUt1ByNHkptulQlDuJK53OY2tFyzgSKDpOSUmNSG4iCP+SmPAk0fsjbiw6NbchIfhTGs1NRgWfKYTJU1a+4yq077KiPk7gQI3u+l3G77r0CFCvRNubXjpjwVYJkBS2eeQq5d8HkfiVaATvu+DLhVox89CdNikV189hRJvfxQHCUbDPjiuf770dshQLBnJ/V7DKKIn7soYcW+R6TKSJiDwc2ZLFM6/ygnqjm4PPy0hqhtO6y/Md/zEzra4TfQ+dk8eS07U1qqETsC4WRNJVDXZHdLux4sbzL9DJfHpMHdf0OSANp8FoSfU8R2wgSEWXlKyqmOpmwKG7lZFqvyZbp6YgXjsVxLchaODZjlagANLqguopsGKxS7GGFOWVrlaPuQydDdkahDKKaO3/dvnqelIGjGelaBsmLYa+zmkKFlZDS3or+2LQ96L/yyRIqo1vAyATAVifNajCPtOTjI4QD5Tn7KbqCuMY8vhZn2nVT4/WV0e3hWIessgoapbSq1TXchvXBcvbaLrb4CtPmR7vTAX2sPAlEWAcZAVB52FkiTzeNmQ34jvJ/yO1Kwct6+gbsgIQWvLUoRKslL0EsQ360sDQegc52943bhx+xlUVmn9mC86qdUlWlEJQ0IQbIH/OEW+muE3Xun2/y8OSGf/05L117nVb3NeuFC2u2siXF8YuB00sP/7AcPzU2gKCbVTUv0Zrn2XvGsM5bTsf4V6TY3NvCH+DSER0OYomu3xdm8r46gm2HmFpQcGUKN2uDZmnkOW67rNo7Ma/UGC7nHEUZPOb634HEiwgl7cqmQG0GUZYADcjYNHPghjY9ECti8WIgPSNCQM2AZRm0t6Js5VIhqYyADcg2wqDAp3SFZ8ynsw547XseIS9UpsIH1x8lebzglULQSatQAkxJXeFVAjgIHJAgHZK7dNbCM/jS601mNAwXoV8fF7A/VGeTR8vavAfZzA/bHk1KPHqbHBAS5rSGyQgBp7bHdr7yLnpIQlH1nhCuF8S8yLY8zLgbSZAO/lf/fIQb3pdr9zbrVwA9iONWJ560wy0L+nZ7T2rUhwIUL/7zwLkMndxfWkJe846vmFAkaRstuk2cWteZP8CuG9Vw657ZFJXffSziEzc16uqFCvwpwFjgopFMYoAHbxk7xsO5RBfIef/JhDAVlTQONR0ffz2FslRyXeQXj8k6EL30VM7zFEhjLRzt4Qxrc/Nqh5EW68ebDmrmccYyT0fr5cL0pKpplBy9wpTlgXBaTfjPpb/G+IIJHJNwHQk6REp8QS1tojgHH2wScB24VWrNLsKoC3S2zrepQ9NKV/zkatTJc8NwYdyJH6TquWoMQlKjyiI69MMpOxvv+Pg+Kaf2cNBMgAdkE9CqSyLXJxoVPafKKer2UEdvyNLrU2itcFAW6czP69z1hbITFZCMxX7t2hpcd6x7dfJ7z0TVTOuda+CAQGPJNTNFKix8s1+I19mlMzge96qvzdufT+sdF3hGD8FFZxtEUer/p7bY3Nm9vIhY6h0zYVXnN+IzaOou3LRCaYtEp7mxjSjFIpcBPrcfACBkrfLWcYHiK/OyUFsldug5StKW+qfnCPEaKJIHE9Pub/ZaVhQSXlNZt+tvxp47YZ3Er3TBwx36xx3rIL98/T7IzxtjHS4xVQts8CeLJjBlnRmXX66PaCrGSr+rjV76IKLi3dAFLRb2z9GxSjd+88XYUG3dMr99oJNfhbLImWuc7LUMs7p043pSSwbp+isZRhFwe9GFfOK3StrDgHOuQ7+wegSDba3i/q9clX+X8nqxPIIQgz2LhJsPHQJi3gB8mwsQpSfV8Rs+eGfVYRVaOjX0SGr2aX8CEDI6GBb8QjipA3Q3Lg7qPhq/F/e7TVIXSS3NNcEo6m2m7xYFrhAz9+Trs2o75IMUWO0jDBnOSjyQb6+J/6PAJRGs72kTg/B0xlDtWOcHEow0OoGM+gE8qe6V+GnX8YPqV3/IlAWLpEjywMhDa7MG8Bai4MNwh7yhwUzY7xkpDSv4qv67dwgaZNtYgCoc+6JpUl3VzDp+BI58inYjZhWZaVMNHPrNOL7YwQZaTyjON2qzReWRQ1w9h/rxsJVlyjE5si3bambaEnR86ZAjJd6FARrRxNvSPwR4SDP31/LeHQ/WwByYXieYdmJ0CxLKRNRJC06keqD4+6M/cN/Plfq10MSxS472P6JINo1pygbQSbqb/S3rRBXV8pOo+y2Ef2hDOa5M3qrmLGfywKWhL300JTnyPVIGrKr3P3Lyuf09BVwWIENHjpE8OM+5V4FmAxNNUEW0USOE8e54WurBs6nhOY1rga4Ulw3mnllQwE3Yixy72m3TcHs7e6hq3dDqXuS3g0Cr+pcQaJK30Rjas6xsgTzH79hYhNHBwHyAmOqbpO3/GI5OK4H067II03fv8GPH8IgRSEcfi+XoSzAb6Qegwvlhjdej2lXlWupMOKGX+DV5k3ZLesF42aDx6h+NuEhiGl05b6Nk2elecVpphe1DJoVmPbADTA+JwGlctPn287U8MLfbLKpCTENXn4+5WkYh4R7fSxMXlfUsb0Zcs2yE4fkyEMPMYLr8buDJJIdw7cQ4PutibJMZuyK4dW9lI/377yp395zsxFrAP4aUduw7dYN0B4u3QvZ5402FeO55GzWYixcACmdz0KXgqO3rfsK7ioESi5wKDDd5SGq/RdyeQt3Z3+y99woRv19kwy5o+Mq2/3amiJ60bQ2Ndeivx40pdq5i81X+Ol9mW665AWDD/74fbcPntBpc1SOGQ8Ew8iGcaWYZhht81RYm2n3EjDnBexWBLp7OYyjEVrgURkg9nWRPT7GarG4QXW1BSBDrAlLk0AuY3j7af27oT8x6IIIfzm0GIl47hmE5cXB+Mz2hPNDeFZeTJIZBRJExdkqmLLjockdJmfD30luOlpGQV+SiOhIKX2LHOp5nTmx3xadBSJdY/TDD0PDKptzIslYiR1HSZ3BSBLeYVNO/X1BiPkSR8CB3qDx7BtPG6vESoIjZhzwOCofGHQby0hDbHQdNreUs8l4NDcRgB4BkgaWlnPRR7siYYe8WuqyyCpsOMgGBlHDxeC7LA1cjKB6U9OpeTXdDlHYhmdeJ5K0fM6uLFon6qVLudEIH4tnV0YkerB/VQTweJZJGxWzMXxbGHvROue4/S86f/pvQfBXubFPrsMIu33dT49GD6ofehNo9Dy7hAf3liqCmUyN9k90VxkeucWgQlWCqbb+88cA+Z4SA0WdHCI+KtcpiVuuo7Mve1BqdCPjuyHCEt4g7EuIQtoIfuBmiGfenwI1+wvYtkDeVvcU6kB4SfFQ57bueV8i0pvjrPKfofbkU1tPWjoypVATI8174CC/qwintUEk4Ige8MzgB5jg6EcLCOiAxoPkyIlTQFERWnRcD3vvb9fnwGRoblrmR/kVpWZeGujYdYoczyY57fwgPMetzYspRof8HkqNNU7DtBJIufHQOgeLZd64m4yoCMUfGWjBdcaOO6ZlfXObccEJO5+B9fw8LhLVb+jYNphe69pFPjT8kC+zLCnhWYSpYfQp9mUdmbedusx5lLbz581JRjlYuw3bR5pOLlW3sHW4NQF18148dgMsBFxPVdK31D7A39QSgULjP/J7IZpmjJZEPCFPR4/Ohk6LqCgc4oKbabYg888sx5FYNnN46893gyvO6SkeohLSxnDHQLnzuL3r35oJgMIhj1uUl7gaFx2uQ1+HCt0+j9g4xqygAVMhJB5grO5MMqx2Rx+gYFI/XjgDrOomGAP2ijo3b7nNPcV1xq4rDhFS5GGuv0GZWS00oN58Fa1baJhjue71i4ghKg7Y0gDAn4hN3Z9HYj5dnLWpoDta1pJjfhNH4G5A1Nywe6nlo+rKKINjjUtQv8zxLhLGlsrehDXjuy2D3O2PvH36ia6Ey/ZYA9ahgjBsCcMOJji2BcWUeDN+YSN5Uj3Uwajdcp6HIDKoFrsAkrGzeENuAxJM7T+8ZuHnhdusAn2PMdED5gca1oDLxT0dIo8bqYi4OIQMKHi8qYDAkiyRJc4mGTv5EGAFLcapUcCZigE2ePl6+TkF/66wPy24L975bjRlsPioGsvwKaI2zLOTnLT0NT2Bl6THAgVU6I2UkJx8cRxvZjisW0fWWKr06AGa3ygDS4SYJG4FNw/V/mAoXdPLkg9PGD8bFYX87xbkY3WTBQFzbwo6kf53qJ6PdgCMBKAH2UD2tbLj9teJ0Sho+GKXYn/smNAecAt9BHUn6nNyLvp+IK8sUVybX+q0+6S9XhdbH424wthvYtGcqMrbbvidKCgtAhVCLZ3zNBHQe9nkeVHgkp7CNVrSkVj3/uq96sYYerxCoMjfqCTJpVvr70pn8iZI84T85fRWrnSqCFcTN2M7bQPX1UjfdDWLP+VRZSxNIhZXIYg8ENUF4Qdy0fvW7B8H5+0s5hxacWFnTPKL9rz0vSMojG3lqE0MQh5C33DCekLsVKI3WBlJ6B7I3q4n5wPrDTuv9Cg/exbXeFxMArxeMNvOgLvtsG6Zm/wicgGqdMSZ1mqXFjZMhmymoIGOvcInb0exxhSKbUEunDlC9J324L9zoKzhZbWq6+7ygjZ17dozeaqzsFvYKPgU5e972jmBRImLd+eDU6I6xQfPMA1xQ/ZE1z4BiOjSmiuMan92+4V72FvOVcQLp+YPAqL9Kyy0FYYapdeSjgnIwA5/Dd6jntDz5T1RGOfZr/FLRUZtZvyGKajlOvAx6+Q0g6BOChY8I5zJf+l+s4aA51J2xFrHTGShmI0UlKiB4Io4qymjpPBWENki3hXUq+5SOxT7ujo/pU9/riVSAbLXQCxcwL4FAubzAI0Tg7wFQ/P4ylb+KHqRxIH8i4yl+CO7AhbvZ8xP7eldE0PZv2htzAItBlmdFt323XTOJ4KwIO5sZrug7Y7VyyQwAi3lf1FtCkSBrhxdFQYx6dyDwY3v83cdETfJByatkOTWwsn/5IGEcbw04UtofTvfbMLYt2gmXJBJ0FfiAMSQiZz4fMefzh8lP1Lns1vDQIgHBG9CRiO6fw0tgf0jyPQybct/VULHaiVdND+FzlNomRBYEDup87lqv86ejQzS6YIoUb1LLQjFRujdwYOPkY1eTLy4FcR0ujKRDlX9hYk3DaQOjlHfy9qFuS2m02ql87IcUZPNodfCLT5d9weC/SsjQ1k8mVwNGyF4aWT0jm9KkjiSUioE9wajn9KCMt/Z0YpSnKUd0fDFmrVu5OpTdmGBKyHJxv9fy5SR4yb4BE3xZC+6+2Wm0wWG4tYZO6OvqSL329gty3Um2XIJHjja7dmTF99ZEvtkn84W0pACe6RS4+eQZstEptYDFV7kW7La0PK0aZIVmSlV8nl1QGgCwd/wOx0WJWa97Hx8RjWp/MLsHlE053d6lf+hwqWb3cfHrs+16ZjaRRTyA9R0OB+i7l7oVPwB6t1UR83+1nfCa2eI0hcnXy3NRe6ttHCaxA6naakHS7eNG/1YsLOaOP7pwvXggs6zdD736+Dt470Ov0Z64634290+ij7MdzonJGGQQLyXAT4oBSY6kJzN7OAfciE6HyeLvXPoqf4+aaLO8bVc6J3w0cjsY6lsp9pOAU91MO1MuyIgR4tnnRCA2aEg9RMHQPYiVqBWuoqDaQSt+TCfSvRUVG61NoX0YladntobuVYydyXxVuBx/OV7Dg83+2Sh9RgtGR8y6iGAFr6C6nXk9QsyTX50pG7W3ViC+B9hWk9Wza+8CsKvy7hY3TUHJLAOEi6+s3N3err+ptuAA/ir/0lt9ZyHjY2pi1Nr4Opxlc9UPZ6b3G72wyAFC4MYXS+uUzdhEZq7po1mL17A/ALtgH2uUTvb+1hzEZvZVJ+CIeYmd4O1PD9lveBRRfVL6VqXazPKC1j046bRn0kFVN2rAHgtLyP3KMFzFB9wfYVFhMVY8M2SGRpDjlqUgo+nlCon4iyVb9qAkYDUwJ8qhhLk5d6nV60jTXWO9MiomAFdEd0J0TZMkmlvRl0OLgA93GF8miKKk6NXj+Bmi15Qwy1+eEBqE/JbeNM1DM2569w78yj/fGtt+s7DLHN30TJcwHRrZlx2T36fR4J0z0peqGYzVkcT9V5dXKeHhPxlxrCHiAtrUvpGV5ThnNbELMXnYzJ5WB3L4rWNFhdMKsH1/lTFzlwlkFdtwqR4d8QEQQeCmOsgfEBpx8a+HNxhSbcSH2NCFSDl6UqzhO8364JCvCEMAeoVnOnaiITk5Vd24cacXmdbu7M3Szs/KcUf58pJKDseuc3/jScwq7c5j1SMaaCzZFbodj5VxWArJ8jfZS4shpqWRkBNEIABwRYI1Cqj/3ZNm3voeqPJjaP3TEvJ8PClvgnmH5Rn6YDafgLLrNJcJm6mHxgRqUwuVLC+Oyq/peU/nI99WJhBONkoKvTVK9oWnlzPjhp4OIsn7o/AV4T5Q90rvY9tMe8BxxKRRqk1OT0pji7UJwxRM0WMe8ucgy1EShvozSNaTvvHYB3EG6/m/7F+kzC7/Cxv6DDkzYDTO+yN+M0NGTv/0Z4EWDT1wNZ0gzeApfwL4DBZRYsnO1dtDUUyOqkv2XkVbLT/nowjSNezpKqFFWW5PhC0C/XG0IZDOXuAPJnp+hwxAW9eUXE5k4DQrRvuxA/5yGHXPv2vszC+gKV60pNOIte2w9dvPHn8bqfnziGB1ZD4U1rTPHSxIbEy0l7lPGT0V6jiKfmyZq04t5kxwJ2drZxBS9MqOiAeXUoeSxxqlnlKU9wHamgFxsL6fZ0csHhznLKk8LBbG6V2mNLmzs2lOgJUz5nvxlO2CBD7KSJNdIHTJ2KW9tY8BO7PwEdj289ceS/oYH+rCKpM1FYRyEq/1D7mczfMYtsozxvLF5lxb1QzkwtQsHoi/O7iIuetJxJhWEVEQ3HzQVs/Ry1eJ6U6AcxewxelayMLAK1WuIkHKojpSgu2NRg6h+IXWN1HHJKXXQD+Z+b70ciVG3NZtY1vsxxd4Zt1zFiXrOyD7AJJ0kRFaVgg2LAE/kwGfv8ew4b/9xcQRs8qwXpk7YP7kW545OWIvRLtXhxDHZxn/hIcZkeUSwELYeWVT1plyOGrkgmjX384YbOdQ3uWm96VtE5gEAJ7Th/Epqy8cEM1mLnSM5ze2dgcfmVWAIGBmNHHp90Abu/SwUdnTWd2r3ssHwJVslZit3VDgjcbWxEx1HA6KwhQkpFaal2SBiCQKZpCiVQLNjOV4fN+ooB+B27O2ctFF9/wp4EYZ6NYXhql21l0WQliCEmNxQuod3z29KCtrU7K/xLCKe5f1LP5FGUMwARBiU329Nuw4mWgWMsdhj+ZTEcUuqx9iw8UZDADXv7VaaXc0GwTC8F8SukvsxWmv7HraQfscY1w7GDfiMrZIXQCe34AEUtmcU/sOmod1HxT7jso2GXVNxrG9Ln4swUyunForaiR1hJlK774pJ3D/yP6zjY9cyoIncaUgIJbRdZz2CAarLUpJF4LHXq2wYIDUSuwHl0hB93WP2eGjG6fVSmIrRgyyVydB+mvuPo20/wWUulLKp3aNT92wPwQTLdUPIJDj68w+97/MdSz5ZqVvD3RsWENXebRsHIxP4TLEUyX3CAf+cznH1VP2MnPX9tfVOC/tZbZ8gYYLY61If2iBEz+Ftk2ZMIsXu+jQgUs2ELz8OkNmcSwN9SUrLAfQoklL4iBqMCvWYluR8SH5+Mk4sNQYKkukw/qDtPGcIQay8VH/1GlRRvd0tT4zOfEd6+CcIzzIVFXPGt+1F/OZajE2LcHdC/01B27m7M7+3m3hvapTETsTRPPstk8ybAA/AedeLH2vInfDaJU+NjnoUGGcmQLXET7pMWAZhQHbm7E5XDkhMhnZNBB2kOJjT/F5AHrqZiaOoL9zkzoMC+rEc8yxASmqZ3+/Zl11ratuME7nrrvmTnpANgtXgttzkVib9/HkgF5N1d6qvsRnMqSVwns1NLKJybvDveJZH7yyS/NrunbyoG7ycWQqvw2kxbwuWvlopHPMS2lHtTP9IcTV7Bu2vvt2oQ9BmpF+tg9QKWnBUaiFGfQkivsd/0tJey33CFm09zIyDxDFicG2ZI2qVzmR+K25RWE9NOK6eLF6/K8mAtyDzkYKp+1QV9uhNyo8ypgT2ZuXZJXryf9pbOmvdgm/jksHL3+7eaEExL/7LJW1zFa/xmpLT+aHXBZzRfr2xFrMMMs/qptvtBuvt3nMCaKNYXeqIvPy5J3bHkqtioOnDIQNPW67U+38uVykM6bviegNe7ZPCPRgzEvDHKubRqUmuL4vYNkb73Ohhxe+S3SPFJqOzl+kqYVeSxo2KYQCW04+QzZuIJ7j/Jn/AzybKLLSReI0zFlh6fbYwjIu5cbMr2Fwe+oHyK3JI1Qo/ARGo8BhTzQMqqr7jTMLsqJjA1z7WlgxL0ZFCt90Fq0nTIF6PhepCjYmcdTbLo+QxD0D2Vm7/weKJUeNLpkepCFf1IKjhW5+iZpzqWnKcfpCrS1sS70ftI0z3YdWq8htFd7Oy5MYcfukEUjgxQvX8FrkKE77guNqZCBDFKu8VK9SdnLQ+pAPa+we8oOvitEKs/aWGYKUc87Gz/ysW8Aa6LQdEsxms22u+Y1Oa306gNPBLCAYoAyeHJf+GchYPX8zRFZFgaf3vzMBdjhQqliQgp+MN2dAPafn1TrWn0ByFiak3bbL7HwsqjsGd5O2bBGr/NbFMKCAmV2xGl2y11S+lTG309Gh7KNpLXZkev/ZjyGVt0rrmLaR+qAR0HNvg+BwTSlM74ly2f9lmzZiJ5f4JDeF8v3p6haUldQaMPFZI65/jMPc7fnG0cBOSl8ju0P3ge+97/nKkiUEKFHdXLxo5xNZc515lgXrWcBVrriDANlt97oG+Z9tOvp/F7BCurqJdk9aGGGN15h4Lks3WRY8wTW1+vj5qEdUZoiJcIT/LvqY8p7B+mFMRJj1QHw8OiJKdX19j7Qf5z/ORU980QkOmqJLl20On0aLNF06LIomAeYbx6mLOMJZtPf3DtUhJAK5kilLPCG9GGKO364Y5zIqvtUMdqb/G9WlT/bJil83/itugJ+yVyqAed1ErwBhDMOAlvdu/yX4GKnpiDkQBx/KTcganmhpJRkypYGNNBf5s8FL/p4LOaYEcM4Ts12N3NQTPYAKENxyCXrZuOysKayS78hDSxqV09KrWkAKRElWxlfwl/5g/grJSaeyC2SOsyrTDEDiWtgHx2v+iWghCk938J12w2bfKoHStUXKOOenb74kWODUTuxMrk2mWBBlgA9TDmiCo2TvoVpDA9evHy2i40523PaMpV2f8tbB+AHUTEiZXWDRMmh3QN+BPd65/XF5XbO7ErJfpIxEgboqaifm9M9cSTWrutuFN/0LQiXGdUByWKVR+vgeKsZnfDlER7j0VkVGu2QUZSfJd99KwmVUKz7aiyFmcvHM3W8Uf8HX8w69QsEEnC9qEMVoySk5Pi9AQPTYpEego90kXHca7a9ahjlzsfdRY05Q7mEMCixqsuVqn6P5dSfCR4UC+VmOlYFlPlJnoyWSYlAHLM/OaDD6Y19THK8tAIz9sVdo9Y6/6duCi8FB+NtK+ZqcWR3K5bn3HCjtDE5ShP7rZuIeOgOGhp+HKaIE6dZGaT6F8QTea9tPrf78+axNz7+bOuQOba99KZiN+kKQYYv6Fzvp+pHa+qAP//p1UP1z6yHUj0AmBHZSWEMHgj9+XFFMQxNMagZjFZ/Wa5RnsYrdYpfPV42RFQQ20lVveV38MAjwL/DizS8AlIjybcCckiTQbmobbZxeICmdyHqNBxXaQr8U9bAWQ7c1VItC7xh0DnqGYfpiy8Nd5jvet2gAjQrEafc7AvV1+3fe5HPdXvC44bCwbfsmBUxyb0i4W2KWf4WA8wP3Dp1jtdjcA+pM9v/SjwhhnEnHJ4KEODW+Dphl6ZEmvbkZPRCUZcrp9mcK1//i7wyoN3sj9dE/taX60fs9p4RhwCgqvAv4HXv5BEXUbFI9R8zhBd9bpGpuSyRKx1V/FAXCX53UWEqPbu+la16WkXOABdJD6r4XiEaONA98yvK8pPzwOoNVhcuBGemqn77BHEEMzAEL6qQ+8/10m0YaKCek3qUy3ewXsWQXDEpsJi4JH3PrMf/7T0oD/j8qClD9q7wDz2Gb84vNezIRKYGw10d07AlerYujqwMOk5VBNHJ2KjmTG+Kum5yRasTVwhOnaNZfzQtsown8G5s3XctE2oGKPvEVKnP+rLGCmvWGaGhplB6xXPhkPX9XxP5sjMhVgHVU10QWomqXOPLDM3HTJ0MiOM9T9QhFm3FYx6cRz6V2QthNtpZiu6Ju/CJnhiWx8IVi9CbbDaFMUN1x3EpE22a1lp4zwbNS/5FqxOyCxUPTxg96ovADD7TVeGx9wG71oQQ7xxhwqHfy5GvbyUnSb4Vp5bR/3rwnjfHoGSkFrzy6KOPX2dCOT2J8O03ZRpBXtlGjJr/GXqcbZDpc6C0bEGIzhRj3FvC8vzSOyspKIe4NJ0N9N9YXcd1bKF6/slhjfv2JOMpUEukg70ODF0IxdgFb7sia9+LP5B0iMxjVfm4s6lgqWPaekZhO9dFgsduqRapfJzXBIc6AhUHjSYUo53OL/fQWRhHpW68ZoUgwNZver61IzKoju51v3Ujn5twG9hV3CH249RWOs2aVKL0QM2ccNEL4UHGeWDW+8EwD4SCU4qwuTkm0PQ7wKbJV3O/f3JIOKBAkZFINvYyxdVt0lhmPhUcH7fr7TZ1xag3FR4TbQ4WTEByurgIuYZUzcEWXU8U4iFrrvqTbmcoK/vajp4X6SzTSWcirgK5UkvYjvt7HkIm8T2jrCvPqN6eAIHDKi5Pt0TzZ6ZGwr/LdgxmHyPZJU+ADp0kTe0bbXWJHnMIQZAww9c8ADBX+K25h4c+css9imZpp1wjM1hi74dnZgwAIcApe77O+Q9etvE4JEvG5a4ubQ9nMp0uK7P4N+/aesAGkjDah6aCtvQYNIVOhPCdcKwIGe00Y4QzIrV60kAM+BBZIEr5aDOi11DwJYlSGEfkAuO5vvrt4nB+FWohlTXL7lb+DTg+avpAyoDmb9LK6mhySZdAbVUeL3IzmFQyjT6gqBswZk5gAj5HEn1FZKAy8D6wHLnHZHyHyjbdOd4W3CiDfl2Ur8Q/XYOOnKZjnAwCzWuMXZNX+TeFhQr9XK7mg/t0r+hD2eB7q4P6e4n7JLl4dj/Mm8buB+/uoxCAeQDFt9ZPEzBt4gWgwoWRwxAJwq0Dnx5tblrCtjwBDH22jXw5c5zU+uKzz4cSA8ak59uQQIJ0pUCKQ7VIc/S210JDGi/ve9s37YFHTe6CWSm5IADIIN4xin44ep451bW3WA/c5FveyAmk0Qyfi4SPRuf88I/eG17NxGKqxx3fylbnaHgLSnfLxczO8jql1VnU7uZK/wgZ6nHC3ftT8R1GLVOsgXMeTMWPQ6MnmELs8MYSIc6zFeFY/15y0KypZZObSDdu8fALDoLOOSS0Ff2plkrqeeba2N92g2IDurIRed+vJ4W4ifUZitRDDahGohHn6Yq884TFyDRXrlWR1X9myaTNZTWQYbRhGehWtkpV3QkkXzKPDkmG/lKTURigIGHlw29L5stDvcuY0V1bFYXRxPDwGh1fOCAKNOielnFO5+f7YVmdi9T/8As0NWT8ctXqV+ei7IhHhYbK5rCKy/4huOJOeLrbOyXb9XW2hR9JXPnHyfj6XHdjSeHBCHc4ajSOTPTFsqetREePpa4yYXdaEl/YvMvzT5MQC0aAryiu1WRbea9G0Ao3DyEcmul6QqcnBS6JPXob2bNvAjDyBOk/L0eWK5QN1u400THK7rLbM5RYKGUVI0OUYeMZBE3YTxdU/jWqNbTnkHjkJaStQSj7wmQoYNM5EuJw2LuVcrVuGtU1OlkntaRhBWAKfJRztj3iD/5s5hQ4cEUIZxyL6dpWqcLtPvTPJE/dmUNR/G0coV6/S7F7Jn5wM72hddd+kXWAy8F/uYBT6ycIYONe3ImtbsqDFH+GuTyWuqofkKklwTk7WNxKL0fEUXjIBdT7aN8J7BvHjlj8GtBXY0kJre3zu000B67TzXG2jxr0fVxCKnv7yygIqxShP7iRP6un8/Lwq7a1a6mF86YED0JSw6sIV7I/e9eGpzY3eTndkMhir3y4NXsgOnHSxWxU07bsPEwCvbBFtY2Wov0odqLpC0tC4wG8gsdNwWIDOryQXZ2NUKughgMIR9BTp1WpCuTVYbDgMR8czE31gNiytI3vYPuCJD3rNvd4IP7mcJrk3JmVsNzsi8iWF7M0cm/aAVcPEafyUwJAyso3NsIQF+jlp2s/M/9qctrnbjTx3JLF9hHGzHJnZ+1P5tt0BdAYazDkK2WPk5IanqIuflqrdgS1LU5bRqryGvXUn0fXedzaJYNKAlWF7JoeocvbFupqr7bSghORY3sZSsOQtfrKQ3vT1dkOraFxvE/mfEdWTE8cmELPMeKpAvGRciEhjnAEtYlc2AyOlKC+zTauu55fvae/BSvmNY3faxeTnSaSrbqjJPtyB8zg4uA8JzCwiuTHchEsTdNzVw0ym33zBCm20w6sdejRSnmQmTRLc2VZbGCxGrM2OpiFKW8p187XA2/AGLIHKtwGxkTjUWyJSTaimHJzfK4AsCSSV5b0zYEbBkn6FKXVXwO4i2ksvgwRQFf0JM/rlBS/9kEm9qVeY7kiO8ySPi9937YkNOnkHN9a+O5RvImq+hGuM47SygAEOqFWbINRO9KIaFdpeEbxYD1ltbvdlg+XYgeckgE6CsvFFczdoKMxB2Wh6vSTTFO/lNVA4UUM4A0vvKswgB6LWciRwsBru0SBtVXJiDR0foEKOuSsUaA8skiTdVQrNPz3v91sPfikRSl6GAX6t7an+0ga2LMi+FP/mGRqbF9DI3BybsHMnrJ69zU9t2a/EzZ6LRR3MV76obzcRGYltDGGgQoXQxucvcQakH/2oh/qmwKlwKo2ajw3HOIHraHoCdkr9JAeFnPvXVO6jIjk0XVipZhVPJHQ6wzwZxeir8DRJCzg1XvTj4lbAFd2ZbWNWRRMGtY0U2/S+AQsQYdP8zQi4r64Ty+MvQn0sCwc2ZnbZbkdOtilgwZkIVNprwFvCn2WJHWBFuamfRrZ/l5GYKN1hDFN1vGI2Sx868e+iIsnmV90yNspwPI3qEKVnGFuGeoQFvrZ1EIGXT0p3xGDgiuvdVMeVY63eciutAyhUWUlvZbrqYI9TyOUclO1KvR4S8Uhh8SIjPcVS0y7CQOldH+nA+PzaLiFk6LwQUTLpZ/Zs3u4K1aT3lD0DBggDFPmgs0MYbWcxyy05Rr11+qtUO41DgB6WOEZe8ICO8PedPoLmDlxLw1QVR7I3yiqsgUsrVIkLP2Q9Wm99LPVZpj1+WpzaCuCHACbxibl1L0u7tCA9Y1pXwsJdgIH0U37+Q0b8YehztBGb97cTqFAc09URyTY1lseRaw2DuHw5nAJcagKS24fTmwTZj7gn99qAzwcDfLe7UgPjZQEjB89TBTsEbSosw1mBRP4vfU8ov0sa1Gatzm2qzh10MS02ICkQewJWb4xOgrWTHXfXG3F7xKX6qevA/icrX6aOsg62hSYq1L6Sf3fVKr7y++PJ28DWCnFDYej9wws+Fc7folyGL8mIzR+YzDvVYlEbr57wIZfU9DwJ6sijVKP04b4NS9I2OVlUN/3CGOxQVCTM8h2d5lv9ylICQhMISNjkIIHzRkuF0AcVlRnQlnplvWe5x7PEqP8lCQC1Z9VrUqXHWuRgSwvJMQ1SsualntAo/xeh2nFm/mLuXtL/VRDbRKq3NBWw5WpaQL4dVHKDD9gNxITEj0ZFAm+zAxP+OsBkU+ykCl6SUra9F3KmtxoHtdzSAoNjP/17GQV/Lfos2qm0tmSP3kBaSstfx/GoNuYqQWeJBZMIxm8dz1nxPbLVDK8p4byEgH5SpHJEmZ0UWfj7TZn2474dKYQlC6QqNuyKzeWpUTUJ13ziU36/t3DHEuR9lH8D6UOib8hddiJEB0jpor3wC2T0R/ZvTxPLBml5IvP72sMtfhA2WsyieivyXnX9VXbwuLX8VMLKmLjzros5qbJ2MjDt4w1Et/Dh1QKgyj7CGEM+pvSgRL8e7HgbjU9tp5/oWZl++tZj1hPgkxkSpGJDB2tE9oQMNo9k4seiv2hEBNZvJVyd/hlzZo+4RTkeYsJG1cUxGVg23xq6XmA1ZTyqUOOH+0p4wxZtKAqBQpSVrAp3VJqxD04Orm5CyN2E3nnbHx1D8mC99E3L/chzDSqVA/lm2DROU4jcxW2U67M85nrpIajvktxwzsqtr3scTI5lx2NETboNz6RrdJhAg+/Y1fWsEEMzEEKkHQc9jvGTgmi17ekaUOrOaB/tCqsg61k0Szix6WLB8VmYglAO+tND7GBXePqFjelEefCPuoKxKpdVLnmfBYbxJvyWuYwyzDp4uyYS1IhOhZ9JJGsCT3crPAW+IHkDGXYWDxpJaVIPHN8x710VdZjzAGWoQ/2CCs+nPjKZRYWW954CY1XMetPlMvGv1AESxTcc6EsMQxd3b2RGyvftTVLFSCdJa9iR6Oqhs/NKjiaCsS8/f6bkE8ek83fftD5Ct10f/2cVWHeWI3g0ErKe0CsEDYcMkgByazl7IcRpLurFjX3tLfzyNfUHJ3mPudh5ltyaVPfjL1D7xqUDXbhuWXtyeCPwAhO3nPd9pVtKwsZnVreTDr/gfpxVS8q/u7oiQ7ftJrkHpZdwYleWVem3CEiu1a2gvGYre98mkmXOSg8imChbCrn3xZadIRElDx4MZ8eUUQ2KqXaE1sFLpeCscYnfAL+dLeZJuvi142eeWhvLh8bJXGcTfEgT+xlPc7z4pDaROYcGqFNrK3PpfnCmuuiWxTI9XWrKbwMw0rk0mRKngshMnmnTcQKG9BmzfsBXPzrIGHC90drErS1N3NXXUwuKph0aUoo/EW6OgbWROQ6mihhNKJ00jFtuMWXQijbPVd4mSZggQgoYaz3zVYTLKLeYS+SgWprh/wSPqbeYqlc/IZmDmh3PYNLzTbReZGei1Kt6EozivRg/Vko3T8Oy64sHeA14IZwdkUNmTmAUdVyiIEFdU6/tNo+xG230jOsZzFL12FGt8r5Lt6lDnYpisnG/HYblerPlX2r4AGD/UAPBGAIoyfOJOHK+ltynfjQm/MBJe3ZAPkgYKh2leJVW/voyc3B9H8Z8jFpXyo1/5J1R99tRqAYLa+1E9z7obyBg/pkqouZmVfPhZTOnTkh5EJVUY1w8d5STMqVd9gASpwKZvHNp/vZfG3W6rIDspVFJp2EuQei9qnCE98ma8CNBzEOgee9EVuRNlS4vl073bUO3bJ3n5qODl5ZVjIGvHMjKeSJA+RiFQSg114LbP73DhCO02Ck+f37vu4Kyhx1fWp5mMEUTFYfRHHt1FUyUSuIL/CmIN2/KOd5lPIw/GBCGMmuT2T8BuKC+gJvyys5VU8fRzJGXybqtCurVtjhggo1hGT2cumH1gRSZbKwkGO+X+X1RUHIljY6ayS3xnpt6J9Thnmc8FjjoSaq1XgHMgWD4ywh7lj4eyg+sFoEIC0iFDzlhTU/9DpHsvARqeu3GF7lHxqJ+y1AfpKxa/R6rtOTD+Nhg4RTRgjnlzt1vpQqFukrh2hoZeJF7N9bmfAAIVQq9w1Y+r6EdGVCU1wrwj/1wb7mIIvZRbTXGAVezYgE81BoVTb62JN86yfU8sfG6U2Z19qZCy29UVB9KmgzlXAXLsQhjVKYnEFQrY3qsxInIVAYlwRK0Rxeh7eYfPIwrBjTmzBB1Gl/bBB/P6WPyQRUbQLiwOVIdun7VLa5g76x/UN/OdUYxCo0nlKvTAyzmxxhFEQIFeeVf/HRqU5qlWvEN1sSEg4dea2lzv15mjARTqRjIMXZ+qdSs5ACUe0Aeb9HsabLWzKDwz0MdYlpzX31Yqb488w/9JZQOrIuXisTBLmi8v2sB35xPhjvk2bTGDTLBasFsLgkZ79jeqTTEw7PHj51QDeg3MhvTSPo5xfpo1iyfWXLKyI9FAyN26r8WVbmh+IIjWULUrLdk/AwrCiaXWlPZtFJ9RfQaa/wIgBJD+RLvfikxJIZTxpchGFKr4ClIKcFbNdmaHeIwBAOqMXKqZWo2K/O+ryLSz4rgXh4X6xWX0sKOZAVLMk3VS23CxrxSCsD+U9KRBKjZAt16PaUN8joTfiFNCDzn5QGnHAqm+d58V8kw63IUDIwVng78dKdDkQfi5ASsO46dMKP4PRpqckF7B1xfxQanu4kyBZz0F0BjQHx+Ft8owwTORhsSOPoPQycJauQg3R0glfTr7NPYQ0KuNWB4JeAJyKss61unl5vV34xAZpdAj4V3NBWrA18GMpJL4Q28QXBo7UUE7J4o4kWaPqZKGwpb+vwOfn2JE7rWGUjIraklwkSgus6yV0c2WxpvLZ5R68pexwPc96LhrDuOcIq6+L+tln0hz7qWQwjVDQgm26Ndt5DDrmhE69OkO67Togl1yguZ5YVUTs+RTMdX4ILAVVa7N/fTMf/3LYjqIU3930DgeigTE99iC2mgASvzuIbHk/2G2erYwGtU4wYtlEcWngjFVh7Y56U6/h/ECewGGd+qvo0UfpJuGP+YwmQaj+A6Ip+5PzSB/FgJMBhEEPl2fgBs8e3PqDFT8rdO3zDqvUAvIe95CDS3BvRrv4/vV2px8PQfIl+YlcQXAHZBzDMpJLM515p0evnxngEsgf57/XwGt+qjD3SSRYhpStmpto2eVTb/LxoUsfFbk/NuHuczDV69hMAE6AetX/Qfm0TnFWpy/0nH1XzvJcbPN90sAGGEUjbYlEKwf8PWsTAWMcyokBeIskY2Ue1Tqz5u714bu5p6PrkWwp4HKyfDZfM4k8UTCeqOcxoJOYlWVWDW7FDSIdfeLONNk61Gai9OdUy9Upf2qygNj1rtq8QDF4BF4Yf+yFc6mp8OglIj2IGRx1mdYtQ4CfOt4mHTGqjqY+UMFj2MyTn4mKt7Es93/VQZL7AuX340A37zjBxwS5c+eE7Fd7PFMh55BKg0TsJCTjyGfJ8vgJB0T5Nb7RixKgh5ncBSqoPBsHpbzTYdZYjUX1KUrtzdYdJSJXbyN5/heC4u1SlfcXpcO7THx41m59/ivLf3Kjk/i8SD00bSPU9OCiI8zrVOKbBrq+URWIu7WfIpktVzatb8T4qFZEOMO3Ev/6fXroGbbHssrAkx2+YeE5E443/d1VAAMCzGxaS1F80aJP+44/l5sEFFUjtlGRC5pqvQOSI1kXLn+35yDXwbQ2y7Gqy0T97WGU9YO9JzE0PonePPYxzLM4YFQ2cJyfubqTHo7pf3bBZtwnI4KvLl1McvDIfDmlU+OGsJhqTerPq0YYu7QzMo13+jmvqwqnt1IMd5JuR/j3eIs5/x+6RcsiIfuvR63jrgCBecI71DGYF28ejr4dpacMpOAe/w3d1vaGphjTBszZ7vAWJkSsvocseSTsCji68Ai2txYvQqh7f5LOg8poaIySRmC6IkEbA9qQ+u/wc+KrO7093SoQHDHx2Z+pu7S9/g+RjLFV9BiNjccB6mULmOlQg/E/8T9jj9w7S2cwpHWAeTSqs6pID1YAn6ynhJDTmBuWGNog11yzAy3uF/TBJ6ZfjHCThS/2a5yuKmOvIVH0DpfdAUlSg08Oiu3SrkIpEQZrGO8qW6SDMQgZXZ0I4mBw6jA+AlPNgD2eW3sm1V19CI3qAfDImvqu6JO/AioDs8TdGjdQLthIFe3f76Rd1xHxwPyQ2YZGigHV7oP4oqwPByINHuWNR4xJ1x6lH6zp4FtYwcSmQapWu+8IFOPycqxtRA5CVeNx+GoygR7gHQsHxgrJTie59VXO6uqz2GoO8GEd94a5YJ+QnbFLXzUUPIxEJSBlfIsbpOhacFa40xI73kW0cqJBiWEYWVPPFcaqkI5A6fpcVBVTiLtDkdHLXn7s89/+Sy64d8Y75mQkBZUOebADNSaWFMtdT0k+UZlDOjEOK8c1LRDYLlQZZ3+g6ETxOOs+6M5waD8bDTZ8SnYxbmj3zzYO5ifS3fHwLf4cLJf4SsPp5TP3DGNXr4q2yWUU/mJaKtoF9IOWexJtAJzLz4aeYgEX3rW8pipAWUsO5dOMSdNo429IDt6G5aRwAorB3VHwRFEWbnpUMg8xMOrckhrEzUX4Mc9Z4knDdstH6FAOVFmueJnSudtw5lR0Z9NW03ONXy8SgbB23UFmRfbvFjlujj0SUFpKCcgTA9FYVVjK+nZl7IuzwbLH0R1t0X53QjC5nYHcjR9v0NzfOzrA9O/Fi2hN8uxruZvjPwxUbatK3BK6q5Np/SZuSl+/L1lYz3AXZcoo5iQUTb8EUXWXUaSSGhpusZ0jrxHG1i4Daz3M0sxaORYFhSyKw4HckkxkGq8NUzSdZUmL34cFdfjuMdEA8e7IyzfyfhhiBSubX7DnOpgdZXP/r5D3XhC4MYrKfTNzzq4hpZZF3JeBcaTY/Ioe5OXJsxMwj0m6dRgdX3zZauCfE5Tkh6B27L71sAbu8/qCPNwG5E6U70X6jUTxQ2hwi/SW+wfKwgFnX5K5XujPkk+Xs6wN/xUuZYVuLElWDu5VHbsaUxWBfvDVksh/CNzbvuaU/BQMSWOZru5N5g9viBmx4fCsX5jaMK+RZ8lWY1Mkpt8KLcNG2lA9lBwz0PdTcbPZqVDiuN0wcE2EVzkA/ydIRWS/nHbaBfMO2alInTDUh0DPieHUEkgzOvi1xE6qSGZ7v5IvN9MXUjbei14tTleUBK5Fq6Pskx7ikTWN93I0Ga6kTY7XQii72Mzgko7+mC1Q0e1/LSmydNMvhlTjzzEk2a1RrVhDfYIhsYeMJXGYJMa7r9Myr0oESARVGyox/fs7INjVHi5FvxuOCK/d+sm9Ksb+wttYcljHj1EG7XTXw2ifwqUIONei7YDAKOqSX4D+m2boaPFUGasnipwSMXmMQUQNSwxH8Jj3gYBbPBqYh6EIRmy7YI73K0Jg2/kHV7RYY+MeKDLMg50LoXLsjFS2/OeZsMhddg3rCkLkch8iNRRiPXoSHlX9cIZEdkdu5vX6k/YS+JlWGmGS03PYdl2TjUKrb9DFWtmqPvj6gRq38nYlNE0L8zD9OMNt8qAqLO/He/9YUIQtraYS8Wg0mqX0bOJeVht3pHWkwz+W2BNb7gbwOw0UuTyKTPSccCqHhdsAkf6W/hX0OZYjWuuLhjYpdUYe9DJ33/YyDXJPf7JGQcJG4hwbwa9qijmw7mvrzQNxkpnx3xbAb4CqmYN11+Rhf8Jr02VtzFxeuYuukRAGUS8vK9sHr3l+yY9s6vwnCb/5Miy5V5D8l3YrCh3CPe86JYYQYRi2+Z+x4D03eQ6CRNOMBNJYhExQxXDsgu504W6MqwR2+Dj/hQO+2a4gvno5Vw1/FRRiqvUvBuP9kSpF4CGt7QJOMZi+xFO4HwSTYABNrFtFm0cvzWgMstSaeQRVmmMt72XJr+PiDTxdmf4dDeGscpM8l3wJ0MqYI3HXHe7Ef2AOLdXZYXso2OO4B8NU5I9PdbKtn4V9u+604HARjWx0JGFA5FCAvpPntn+tDdhSZMT4PmU9tz3e8Q7IpeUAkhUAAFUyr/p9HaYtjoTj+yoOlkCscEe98qCmefzTlnr1nHjwUMzPl25Ee70JP+BwbujjfWrxb4rqFPWMvvhOUU1dBTtdHNasMcBRk1iWDNcAz00zRYua19ZesKdt8GS5Y7G0QxFBNXyMaAxK3Xr66pqM8ubS/1tWcUfi/l6Z0ZmaALxft4+oYqRWFHRlvBeeNDEAUytkE+AqYGf1A0noxDKLD/TnOsjZVzvspeG0J64Jj384cUMc/qbicIH3QHg07v03OLGRlqOsWjpfB5464eVoMYKA1ZhKckm01Bc1Dd03BByjwIW9tqpRuJ2sNuxjY8Uau/drhvclqdFZBGQk248c/GtbRKMnHuBIbXdcjAlphCFxcbKWjcM/g1mhWCW4mSC0iPNt87mjHVc8XdBlaMClBw8QIcZj/cheNzqn3PtB7gpAdfimwXSH7PYh7Hh3aX4FUVs8d6k68e8V42TmfizlLR5Gyu9I/KPPttUBouesD0Y1TbK+T59k96hHbxzO37GAmPn6Im1xZit/bWd8N4vGAJl/4x0/tjUYcOMLL4Fabd6cP5p5n1tVjZzUwxv4MWaSzQrgGph3PMNImjoak4IrZqP93QFKISOTOkW+bDEL0+Oj0HLD+75+g6TtFzZoe2WpwAJtEkq9Z+F2Xjukl6jF8txAqZSPqTnACalcC2snrNTkQiL8KQEXCaqtO8hDintYilIIAjAOPISMU7r+devSNl0tPf9+NSnVEzzx1JRJtbrRnOXouEytZyQAckfK9X7JnCsAI6i4057iVKkEG+t96hG9Gq4WS+W94KTR24MTkpBcdhgZZ9ZgmshStr6F7zB3lKKh296zdnP50IqnQD3Ej6P48BmeYYL6c94b+zam7KSiskqW2lOuG5WOiT8bmbZ5TJHznLo4UtqvJ/GTxkqlg14DPyi0/piazIK5T792yzl8G8jAWbffgBu7ZrmYLe/vbnyIELUf4So16sepPYXW9PaRH3SKmE4DsgljwzKwTzjQMAKhnB6MoRhZscV6iEzC6jmm/QNR/NUTwLUR1Hfq26jLjBgIqiSvk+EZeMNi/tWsN79PhLSsEC7qZxmyF60UvaeL0byZq3xxeFb2jXyvxVpLinx+590eFulqLvka7CAOhqlVbyUYhNrMenTJ7b4btWCcsucvkDqRnpHwCBIh4qHcLCaTRfLB04UV3ZwKaWzWHcoyJq+S5hcMVWwB2h4CZXzSTxSwp50Qzz35lTpTCE3ykjciUzUj8j5vfKMesHPI2qdjF1WGSvV308KH1O7zOkHa90QvC8Yc+CpjK616JZLQbXCy020u7Yzsbftk+WtoN12rJC0AXLYBnARINGJvGqQXXN8EcpZYsD9e6pyAlskMc8tr3F7xAbVAml1RAiKctRIpJqJHUtPmjxK+79oRcUq1wDjdc21fVw8ruY/qwEcj/EmtV0Ye8zfCdyuY/mQXehYBOFpO+i+SbX97KGRMC8Cc8wc2T0YueMB4tlT1eKNJHuwqwZKPeXruop64Jj9P+gwNDTIuVQ6Esqn/N/Ir7XuHVloHVvwG4284M8It7c4oslCLgSI5ONlZ6QnvF1hWsx5gLVkNhhPQ9C/o5Zv08eyFlDMNs9MQItmhIZEyjCM5kJzdE/SMraXO6/kpdBK0bGDDEqXHsUJXxfo05RZpHzfECrlfCYmSDCXEcWbgYhI5fx7D+6UeT39RuLYoIUABSPuOcCnJNZi+Hvx2e73Ikfyp/5SBVw2hrjYO3E63VdLnH0oCShG2HMFknoS5NNfmFkMX7evpmSCC5kEXuzyxFhtkQ4XhTXuBoTHToUv/zgTHwJ06p1z8fpzHrx2tp6axYOga3q229QGVrZ72ZyF62qXKbFuKxoYBIhHRocZPwgcwEJFYOxIqokQYD/XGadk01WF5ohz3puLnHrcCc96BH/WMmw9hZZu5eDBklXQ/NA3qWm26XG1+UfBSoHQGj2BZ0NTQhL1mHcC3EK8dW/QAx/eTNv7LNsqUIexhKhtqNaioDfzjBdjnjvEW+R5nfW6QHcXHYFIcXr/hthEUXVhPOIj0lIVuc87UUqt/N9HqocayZdd/9mtro5sflDizYbolZcA7QTDtm8Eabe/tVd7CR5xAseW/XoAfckgjftypzomcUE9Ze9wteJ/wEFeMpGOHdALo7w5RtwTfNY51BOM5O3OUbHRVKek4HxxpMJWIlqcPjPY08lEFQAPf4Zy5INJy79GyuBZ8U7jcsHlZlRmB9r9wFiLh74XcvrbvBDNXjMhr9nU7spKjQkYeaN5QX8jq5psOaUOpPfDrAC+F8i77V3akJsBws3/SO9b2aBDQBOMFEljyjndL/63wtL2Oo3IDXFB1UZReIuddS20Zv+jmKpxxZiHophq2Kaf/t3fagEgmCn3cFZbIq+m0lBuOkkI9CMYAljs8Ptl0+lELYL07EhDjubFGnLomfnAnhL7R2wAikdnqBvWgpxHLLKNwdmUCNdQLwLQusH2bXoW5i8KuAWL5a3F4mCz5pdfSMDv0f/ODSs+aEnbSEpNlc2dJZeWH06if2fl7/oZ90MlKpZWWhFq5JEJ6c6uMDpIxY7cpjrHUTdRO3Cc6SVilOyUK+W2W48egGp+/PZiWwhIPmwxURAQhKGC84wVCo6lT+wuKR+ckMCCBUCLmTaNJhs4cBdrYnDYu8AgdXOB9YAOo9yZhvSt228NMGcw4LgjWQf7VsHrVY3bsCcNLruVqZZSnT1m1KA69pnXTbDAVUBJaedbrqBLKgmNsrZ/+1AV9hnfoQjS38DrYdd+w4ZSdUYCSRV2UFYV9jvCPXSIJJI2Qz/l7IG2CYwPwvGSBHhkHbAZ78+xI0SrucQR/39PMXNQjOBm2U95usBtWT45D6X5qliU3Ln6b2PcCrHUp7dFbrDgXfM+lYzNRNjFFYbJF9fIO5kLjfYaElytRF0bP9dGYCDFKw0TfhjgeAninXEhKQ7s7sDT/StPwHLgmuFU9L0Bg9U78SrWwlXj/w+KO+hZQ3ePsbReIUQ1vUSc4+F9Og9cIR8S1FWtxUpE6ekqYuVHhLBFSwbVoGzEHBTovpdrWmSrWIKjCCyRLmwnJC61FVSAulP8NXI8wsPJGO8iVQAmXYIjOOHjTyh2O9FSYoBVxfYKBLG4sUuaWGDZBsxKRZElZhh8RTgXxJLlr+mgPrlsDX6CoSGRfYhCIdj4Ev947iHdyjgL3FLblZJq43aQWR/nHcUkgmb8TKUPf0z3tqitpd+81xZJ0TBYzOoHyg+1ZXdXq6v3BUs6Utwz2w5BvpKmEWciXBvyvFoHXdMZ/3ffpBY38JOmumetplzikmOHX7ESGro0O3RAfhxojuY4vH5s12aYgBFu1LhFLb23JvE58B965tRpgVDkVrn8HmFsJ6Eiz50PZG+V24MnJ1LevKY1kTdvLAG3ElXv+uw55YUuo6DonvXH6XNhCiMGeCHzcr2JOiklvIR7o1WNVqzGIVq+n/LmaIR81uvVW3D4oPVou79in+NaPHWhjaGjBrfyzv2Fzp00Axr787sNjF72pBhjQkDXRFSPl2EgYY/iZiXWFhLr3iWDmWuIxzctntv7QCgiKpGCYYmbVIDQqZdi1E2Dd6Tu78jDr/ZNI6KYWD8vIEWU08zzlD0LTr3JSBMYYagztsJwoyjyYdE0Gti5EsplI8ky3OktVgWLOZwjpq5/zzRJOVQD9XbgcL86UD8QOPxyTZrOeo1w37pz9COCooJrhO7cJbrxdDvvaOhorreFEYBLV4Kpi+JozgPbpWdcYuqxR5k7804IHCl5aY17e3c5I7h/aWd2qRPSv5KoBqAKzm8UbGGjvOnLchoqDTpz6Hlh2ko071SWnDpjEvfAx5QychYUOGTHavf8VlspXGBm7LlH36xtLc0iS9jaf3BMC1dZUN0U1hAzRyAuxANz1enerSCqdr5US9mhKWlctpgcBQZnLaGh46p/+bP7X5Ibz3ZlneZEUZ4pKYQ+q3aki68D6lWuLzOYYA7WTSYyTDQHkd98dCnqNWPBfhjdnSxi0I32VVvAvhGgrSGXvUVugp78YcgXAuAA+IaK/usG0UBFpbGuw7AmJek3Hh1lwvcM1RUMVuU6cm1VQYedWc1vuA/vr825PmTt70rOUVkfoJ2yTIyHou6gL9l7TjmM5q6AMh1hpZccbljqzInP0vvuijTvjlCHGRPhh7mL4F/fk5OgWJ5/9ObuqbNsALKRAHeIpaAkpGhs+RoeKkAXG6U3w3syFOUw3yPUn4IHuUjq+bOfOPmLAOss+/2fCrZE4m2dVr0FLwsL3g1hQTMYOMGGNCOqJbN42tWzOKL2ptByzhQki8zglNTPpUEpbCZ/NbNRiAtFCbTv+liqEsVRseR4Nm07BREbwpIotIcIyPuF3JEYC9gES4EOCYI8xwa5kl9YCr+Ifb4YRow3tvOqigbGmjHYciYZypwmv0Jocw5zu5Qb1Ha9hLNrrUocQgkPr02i3jdVBOBK3jHwdPHheHZ8eX8Fa2he9dDsw4wHLAB0DhiSWKUbiRKGABo9WPhVC3nrThyyhecBEvZc2uwTSwUdF2+vCrwjAnDnZhvHb9XpaVgpunTZ6++PV8/j3mLHqm37Yu1gKcCza4WLyXO+VdVhjqo3eOnQPG6nst8Ipk4H96D0BuAuwBBeJWhjppPsBqT1NpJwyyVYNvlPjm0SB6lbIVjwoTFsndtiinJG7hnjqHJlwYb6qzilY9JfcGML+oNE/dXDShJFeG/r6wVIlrelgl96FClRM5NWj0tpnkgZFWc/2T5WVF13xzWqri0wteX15EwCEfr6kL8qpOKC/GAU7GONNVRZMwqCBbfbZJM5ZYRqToURsijZuv//NdaUQQjiMFx2Ux1urRPpHfvMFQ1shx1ucUSaWRM6c1aA87YFCbop0Y1LN4iizLAOJD3ogRtKYO6W8H6nCugTfmYQIbVQwt8ermNTT5aqCpveoenEyxTRemfGgK98LGnIJfFK7ZRV12TB4rzRnlg9+dgTHdqX9DZ2SBJqcQ9H8CtFstvVD40I+q3Iu0w/g9MoAcUI89m9MUfLpN5hnrXIRQ4bZ7xZNiHSiPhwFyc0A6sA4wvhG835NGZwZPSMu9kK3Xc5eR1zV7AyN1828lCUwgdrVtP6b+EERr9ySKwb6xN64fIwaUJGMhZte2d9idYB8/gR0aEumwyePAScszBXpK94GpDC7lyBWa1ABL8V0r8YFt+Rh3ekVoATKCtqo7dRIVtOtgA1R42t5IpFC+PLRywDdPSXqub+LC0ZQ5czb6mCZ8HbAj4h5tNCwsXG/id223b6HPneeyL5QzGwhm/GLwVcd+SPCTR7Bdblq5bw9NQZT2wN+E7bsUyXDMmYqKxLuW13dk2x3XF/fPXYvUy8L5XpWOPTm4zwzwnR8UYwhfouDCLaMGkqmlixF8pkj3cTzt/gkT3i68Y19q+uPNyDz528X+pMiDLwFlEflJyfhZYipF8YqyjlIgnDH3CEadh1gS6OCOdgD22JmIz2k/t+IKAh6mRQ3IfIK+BFJ1fZj5uPMG22gIn+qcUyZbd1fAHdrbcCyA6tFoizHcr+x6G/EuiGS+iEc0ZjWd+TSABCQvVcDvi56hVtZtc7x99u0Ki3FpqgEiEu7Ho49Po5PJyPdHRJipNR2tFY0q8BV2GlxPTguWS+DBmwoNfC3kWASPtJTFxjBa2+licO/2CZAFaXEqtuAu1sEP2F5ZjSxKFtLQQALx7SxSHMrEbBAP0NIg+dsJNGn4h1qBEicimWwqhERFbi3Y7ANPuCT2B2sQJxQZydXRt9gdWL8G5Ek77ZtONJEc7bMPqD6dEVMWvjN8TIWX0bkBxYmJNQAN9NcKRFu/plZc8zReScyohj/JPqRU6H/0Kf2qcVb0/OPK/AhNNAekOrpFI7Z/MyODZPB4xrcKJr9ZBrJ9Cnbm/eLXjPNUrV6EuClJGpdoG74j3ectgw7f1k+cKK+maUdDJ5z7ILwIfAJcRS0fGChRt39bucJCQY0upclJSsNGrjYawloJB0utDPxFDODMvcq0iiC1pO6lwBcinuleSEk4Ye+z4RVllbPPiLZV6InX4Nk9dYPr/PTmamBvk/1GDwI0sq8UjUORm8qyzQpG6tMAWczZdbWI9TRVQZ0+1ew2zGnYLMUQ/95afDOfKse1A2zw1n8WOkXK4x9qduZ8TSiMEcLy8mQRjd5iL29sXEmMAOEPzUkdk8sPcul1B6VfEay7msJaTxdVwgRZ//V7ruIEYqfVO3726shDy0wLVE/ZlzIANaINZ2wOlyZ6jMVe04HQIwRYzDrOF4lDfDWyxbzb8sjTQg9K2vQ8rx9FHjTiz4TCGJHZ+IeLRoisJ9GoWCgeuZ+HjOGRncueesn/aSC91H+mIxDLpULbwWgPayvh33+SrFMXuKK0cqXXRCCo3wT4dIFrRbnjnXBVvJjmuc8XgnMT8amjgBVh9EMYPFZiKnxk35fmjvkmMcH3BBDVdRnO7AxmTw335+2gX/tCyJajkYjNBXzmBqhfaCGfNzt16d72vSSoei3ZXKf5xAvTtDxGqbicPZVEylZVKDz2Z/kmwNPOlWWJZP3VO4u7o9hr2s4aDQ2Nrd/JsMau7JeCAAQW2kana4XPLtsBg3nrSR+a+1esxCYfeJ80sSJy86vXR4/mhTBycXpxV9opSpr0EGusjuWD4vyfnHMiWUvATD2Sa3uWNIZ8K/+Kd4EcuyzvyX7YRim8VeAuYzs9hCiFTm3szOymBSxSyCID0d9uNt95AassmWBoLZcIE6rACd+sCMHRbeirSiFdXVLwhCBu6lN6EZMdOFPsvFrOjcYgyBN/mqbFO5nuS2jX1grmalfVgZ2KrJRz1kuPcmiOaBLklTmIjk7IG+LUsrbU0rGa0Eg8SAgXSOh+LWNmBZyNVykfDCZjYdggsR/4ZGNWy8UEsAtrl5wWxg3iCZzgXvFBcQX4ghHyNmiQHZfh5M/JF8+LjebYOHttMJXOtM3xRMoaska0rNBvjhZUZ1NE6cmEQJaDYn+oPeQ2KaqeRcDGN+qrz/r8JaOww2WdfdRjPVEfP/RTqRntR9aEF9MqJog76+SEF/T7+WhVvzuskqSaRz1FS8BA0MgULzDE55Iq/KUUFjJ5CK+HD4WWXPjpXRdyVHMpIKHMqeXv01SJFzv4lO5dP56uddJrjPbffGCog7VeDDw+1VZ1+vQxtystxQrVTsf7Sj5W6rgkzdavJVeh1PDA1cZI0++bIx3Pst4HwuYMxBVsdRccWMkF9yQk0jn4SRpXLOwZ4F783zaFx50Ya5ejX5RfnbMn/8Buxn0ObqhUb+spZkULAJHdE6xujeDFn8+aGt6AQmDkYWe6A7Qt5PBz30UHQgwlb45TrKTcHoWtzayNCyyQ4HWE0ZaB/aVCqPep0ssqaFnVtu+5xiNeVIHa8g7ggYvsgAS6zdhjylIVFuQQ6p8OQhiSfivFg7G47WTJCKx/IrmH9WBDCwShfoj4TO6yLSFx/BlvmHmJgpS3PlgsQKpPNo7oMFvK0jsykgG8/cREp7age8D2Et20eZG8/45DH5dLo6ckPVSZG78oPOdPvAy1IGZjRK4+JbpI3j+5k3w7aPQLnNdrIfH7q0J+CJe0t2Y8ut4OyQ+SVA7jtqdB/tjHNLSMEKtaprEV3o4D3Y8OJo8KLGmBV05Nc1AJZ+aboyFNtBZm4WH//3GMbcttXJ4WO+odfkvIPgDusO1IjYTyUTDzn4SYyupD+d6kysE+vLorZvMF4TpvvWURK6JsqH6zfulIR8PSfzXod1j6TQcWsGnaHAoGk7SMmdSQvJ/spNqqyfo328eSjGG1fjPexD8proKXk/NhsolPdZU9QN4Y942p/kGT+yTqCcuyiTT8LhNsMX1kU7DDQXDJrMc9y5auCxvSGFYtuviCJLGhYyBKIFVYNB8B6lIidjgKMx32tkWXw3gNLeqsjnp94DYWuP+5vgOTfxI24zkyppCVMXF5YVQ7iZrHOpEOIknZRf2T3LL6RlVicktTq6vNwnjyqXIZ3nfYI1fGdLsQke6QK7os6E17SrAbeY7oSU/WIHtGrHiZEMtmKCt/Lv1dX66Hqt+Lffd1APaRH242Zurzbap8FfYWf4Oiyrhh317cbnipCHYmzozKEW4yjGV45q62PtnAPf88J0RKH4fiWByVY5e9drDc/Zj0UBexJQEOcnOGg92sfHvB4bqNbUUI+huUgGrl7qLtgFRah3rWNvf0qNt0Rr0DlKh4E1wL4Cq37z0xsjXCkF5fZTBWsfH/aALInxadFtsh4pulWs2PEm4wYW2exp/N66adff1XiOKJfyK/hkvp0DfV8gmoyNC1Zy+dWRrXYLiYL1QtJdO4xo/UiJhaynCD+3cmDYxU0CHSKWAId9H8VH4BQiAxhQeZ+Z+dRsmm/WoVBQdcak+5K5hT4NkSrxNItnutKAVno0kS81dxs53q7hnup07sxJL2skiufjZVV2aUVw7LUfv7U0Lt1QiKtYuC+3Lq5USa03EsmynICHKsB14E+yhENHaIJXkBMJdKFhZPs5O2wy5z5P/MEr+LkNu7iS/0xB9qSZYMzB//2VA4LoxJGczuwWgjXCMfj1x3lnkhBQOvnQZD2ZBoH15mdqknrpRrz+W53gJKUeh3WDPZqBD8CK4ShbNBWFAjBySwWWnp11GvRXuES4N07/RpWdXc8wtNaUdC7f9qWOzpVbNy+5gn6zBfm43Bc8XqIgiBx0pUoouFZ8sJA8DuJBKBnNIw4Mo24ocZuq602XJYcfEpPgQ0rSQXyul2f0UoXIDmQ4iTO05k4Fza/wO3zI+eFba0+gzfvTIYlbrLyRvoBBogNy3uC/rH3LsDqyLUdHs4K/aF3eouyt5uHA0uzgcWYJEe8SqUVwwmwgnczDkPP50jT0fCXeBw8t0ZTKZnLaVDHAMFbqp4I6iE4CysaXfs/DmYAbblTGjhWiKk8eyFCPNT3vtJ/TLeHH2vQo5gk3sciFYFcdrz4474f0W8wc+PBeBtGZutQJju2SWbvYIn+MB9CE/+RTW0zJ6bgVj1xa/BEWSFqozGsnTGSovtl7AKXupwp6ud2GXnVE6RTkh2GkQMYfoPlWpZW0oRaPVUD/qGGE4/tME1Leo5gSwlQDoCK16ckp0OX17Z8HUgsZP05I3jv3MehKw73aVxhwavtf1UDNl3RQRgfXWYh9Qf9ZQb2YPBfsIY36UkdCQsl5hKtsdVwynPOm5Xku4Haqx81GBfbIOAP1ERC6Yt0MUTkC1COD10yEtEFqalguPNbxQKNq5+UMpUzokP1zeKDQbsl78CYwNJZAfSOISs0Q6MVUUS+Lxo65JC53xAvGYd1vPABROSBgbDdl4QZkGNYhm8DOGtsHr97M3+vp2N+51R8GeyQlLfY8rM2xg2kDCP5lK8KvD4yIypXEXJxo5osPVdQhm8/iQno23O8WXNB+iyvxRLkGT2Q7KfFNHZ06M7M9XT01p15/w+auvrvnfg9CJMILfzPZbCSbihdcO6WyHGAViFty2UJrpkE2yWdFfpsQ+knh5Hq5gPwQzZQNPFfNTukpl3dVeKu+iCyxpNQlkLIi5sP7E5fuywTOlKHKy4h/5Fn+4vLnt7RPGlZOaP0bp3getp6j1W/37fwktnIBqQNWwrAPC9ow783+Iwf+ok4yyhWVuQtnyev/Y9p4FbjNnZc+Ron2rco3Xph0NpIKIL6YSadFwdrsqkBWBZWWWyuTWuzVj03mNwj7MoBHi0t3q4TxT5RiNry2mZM4Q8ZxSM6GplJlunN01pZpmZRX4Xpm0KLkdMF74YJrDpeoXWz7TSaFaorM1DoNio0RAn1VsWIXyuYPKw6hT1WklYCxEW6BWuCRhgr8Wo0PraEOYGyQMCwYCpHux71rIpLtMHSkzSedIM2PUtmQWtVnAIAIdnFRUWWweueuIcRacEFgm+cAVadpuItnP7TUpk9JKyJnBj8QPC4amhpW4yZQvdpL5mpb2vzYYPFvUITZKvHoH/ru+mcyB2jTjc9o9bX2xFoSAVCMZFeSTMAiYrxaDusX2oEGAO9fTCTC39f2btym1rTbLnVY+ad+k+P75DqRQeLDHyLYkRGgP5EumzhTGOQnwUJJDOag1ht41lrlZEW8ZHOk67fVh5tMM2Qu0JWtiYd2rDniYlnVbtuPfAAsSttiL5DVznWAWJIrmM5Qr1X3sJgIq8zYWhN5XGAZS/PzGSsEtXhQGjdPdumc7jiJhnDCqLqkaNd7zr78p07Got8ID5C4VOIv4xZqJceudDjL+W14/OXIpU8ItN2JfzkvWCB6xEKDCTH8X6mUw0tM34Ff9nuFK4pRM9iH3q6LtHNXE3JMPAAUiIy+F+uKJRA11xyIcAIc9XJ4LIGsNgaSocWPAk+I4oV5pDcXQMp9+ShPCbYGNX6VUIJpQxcrVoQ+rKuBKt/qIkXS14Pa0apaNSXvZ/jUKt9mfoednlnNtZk11lhqa2Q/uV4TZANRTQrIcu4T1v9XeB3p9DhqOh1HWPTt2OKpWj4y1NiLTzmEvLiBaLuV2C0pO8nc/Uxj0OaONpQLec8weZJMQQHGB+pNE/4spOdi1SzZ2flKLfkHMO8WCyMPa81R+Y72SjOE/KYCY841hxkyRZPaptBdupeLXlQjiBhzNmADuFZiiHOATrO+nOQoMFaZ7G4NUcGOdKpNjkLv/Dxz3VHTq5/6h0pm/Uc1R5Q8Q1irlC2SyIsMLZ3NDbyaqbif5rtGGWXIAio7hvvTKwod76Kt8fS1gCelAv9nt/I6GsglC5IHFQC1V5mk4lAQIgB0CAHUFa7FjKmZEnTFuJtYSRzHgDjh4bejLA38HRw3ql5/eyrsOf7qXIeubGEid0feKufNlG6dJjQ0tLho/JZqITyo3Dh3LRn4yIaU2zvka9q1S2F4XQljIBQoOH8FebuVawxQx65tkjralwARAcccGALyQVTSA2xSIGXxqMzSOpzZnhuCQ7Ni0ga2clYKrr9CksRhQ7W95NByGpRpmW+aCQxTzpLl6bCYsEmLX0749fCOZklZvU8eqiW1AATegF4CaTw1Y1VGvCasgzDk3OQRQVNh6z1Sdo9ZnY+OU/V2syHBuL5oDi9zUWW/YbbPqYq2mKLAOSwdtFDJVdlHzg6UF46SO4bpUIeyF7/Lzl5zgRd/UkK2q4MNsgIlX0YU5jgeeoMN3OzjwgeqaozCOZt80pXnHDVad2WGP4QYAZcyG1pZvoUCuz8poq4WqwyspNY6amNyw337zYt0FG8cKwSL4yVsFZ8LzWZ8KOGZIhd6eiGc5clDtDZg2ETaxIxBwqOReTkOgllesq9krMAx06juqopHOSWWsrA8mLgU+G/QcKU8yeSjZrmHyUNZ8L9yEl3UmkVkHIZVDVJ3e9umIstkP11H0vNWPUvnRmQuws/jPHZFlsT6gXdF3dCCFaVRfnANsALq5qnUwSsTb94jKcL2xi3hfjggGLgBZuQspwOtdQTu/MCNA1fdjtNsuYtsnIePdw9yBrUrMOvJE8EOm8oi1Es0OYBCRr/uq5aLaR9tPcGXSrjUpq7oHNZAfsMpTjtTXeHj5b93oz+JFvMy0/7ods8WnGOHkuMGYXg2LoWhKXRqob/CdZzqtikFK/KL9GG4kc6kaf8mf9MHfFmlknM/Sv2Q/HPqV4JHzVQ4ciCbBqSfNvsmZj7QY6/p5xg3UgyiLKfldvPzwNUrfSm7hupuRYW8ArLLhsrh0HjjjTxkCSwul6+F1QogHFUsQrHwrNC3UImYWcW1r6nxFDax1x10nS2xw43BRmn9DJdGGYoB0hjaAH0JbZ7NID2ro9a/fIWVOr74J8WARXGRrgUa+5Jq3mShQg8tx/vYaruyGHt3rEtGf0PguduGKK/hqcNmAZO1HaoS8nsffbWaTnBmWiYmuDZ8TXN0jmKaQr62yUQZZfDyk5OF44ESyuQFfhmATMwPsJDhJa95bwIvNszXoDQWCchx9Nj5F8dFeow4XFtUq3tvYzL56qkPvUetHJGkzloNBkrQhLQzQFQ46i864Ibox1dekQWBDqGazSDjd+vxyzeiMVkAaA8haYouE25vqLjeWIDgNuUtxPlJFHqm6vy44k94ay/iPC4ydqXerE1K2fqUF9mTqDpjjDq7dVyn5ccGSTb71GwG7M923tl+4BD6Dk/a/aHc/E+pkjqKE8eS5fASaQibRHb5+fXlUpzLRxjHJjmOyur/wDuiBK6JCwwVGtfrmjr5d3T7eYL1o979wpyDRmAgJGkCOq5jeT3U+S8I6KyXEKxw/SrseDNM0Gjuwj7f4cnfNXNHKEItpB5/uqtpouhTly4U1UI1oNIM5xsq8VNG0bCdUQNC1cUiX9w2m9qzTotSIFisFNNiWyiJZD1SaD6sh/yKS82wZ1ZGMC1p3rObNHOrCmo4EbFVYpxWDVwxxElLjzFpHkme0SCsSe0aOLULA+0JBofinGPzuneIZGmlgt0YhINwZfEhgyHdMtfRPUDm2FMCuio1HyJTfwCbH1pfjmnhiWuH2T0tQytcCQBn9qfxFJFg+aldm5CvxXKh8MSh9HU3t0T6MSTWEkJjz94kR00FCOEYedNLqi+ppFM6rglxuGRI11QFN0h4BkVOzYlcN1x6s7mSO+mR6SfxLaxjaVi5+8w67MArFBCj5MstrgOWRRewVZIK57+/J5FR6VhkZxWkpEzMBaud+91rb9D6Q4pOul5z20p7ghY3UfMn8r5KfzNTd66bdRfYtsA4Nozg2MN1rp1zQKTyNi197RGMjltWaN474biY5EtRkJFtQAhmyaVfjWHUywD0uftLONGZDW9O5gFhk5oLyR3cdCfK223s9ch78t7n8j1BvzHtkiS8NGOMXSs4kUEJuKkcpx7e9KvxHoiXni4gIMowXvf/TYU4yzoFo3+SZXP7IUbQrGPsFeT6K55D0+obxdnIMl4f730VSEZqR+HiN3HGkgnTSVjdT8xLWTGxljK64LhL0YrV1cf0CZGzrqWOCGTE6oId6kJb5314cdxfyIcrn2jG9dOrDgsmm7YBEdPdCcVX9onRETdPN3wew/bzu/qywJT/IwmrSqBjfBpmtpgu/YhHaKG2tkLyi/gPXCSFhWQ20c60Co9cXVj+DsPt7OSGXnyEXY1FHwgkRcP6l6h8Gkuy+pRXm4eLvE8/ou1756BMTm9Eq6NagYub8M/50s1MgR6wegBuzZbpXy5yLLJInVJe27oyGvpdohqwxCGvfOpNpH0uiFmHso0qeUdaYkiJoAVGQMUpeQfaAq17SCgOkr7VvnnZ/VZCfbj+65WiIFJBWYHxA1i/YdkmNSdCZ04Z7IaEHxuJWykGf9fMitQ9dBZ6yLA8h/FGaUKjDx6iUtJHRrKFmF+P9VFuezbiZ+L3PZNSETpduCHTsoY6fPsKP/jHUSyNGShu8G5JlgeL55tkTWGF2JutcWe8FE91xeOSsLXdD1xiREtxw5Ivn3Pcx+x52vhP7P+QuXB86jJkPUnDQGlvBVsvcgIU/wt4RMuSi29wDNtxQl1CK4gHXbbhvDe6ALIQh9JkPRVWAw4uv3nSdaYYPtvNwbCyM8g8u5fu5ZCTvWNchbnmUcj/vTQYrMf8wT4tlNpD1ZjYVtbW7NcIS8DZu9uezbroB+qQTf3BkZLvqzfHCo5BnvEqS/5gS980m4Pa+W+9khbu2FfwJ7D+Im3012Ywb2IFcaK8WL5rr1XZHJjS7nKY2uJ4Bkp3etnh0vfvo5mVqMPUxGBLW1K7yQl6z2mmjGaP7DMS39xk6ZwReA3erTuT0T6xDTLG4NAhQxJ5dmHiCizWWV6lP0Wj7jn+kUT/r/zNNoHoFUr280T/ahbXmR97caOk5fBSdISNA6kR11u579Kz1etNDnTAZvEJKq+5zreD/6SLtsd4YF/DQtfmkfai0T4I+tFmnn1s8qJTI3ReJRVtbJEdk9OUYXq6Z0Cpia3o2a/sPWVzoGPoRtDLIcxHyDZGvJuD6ZFH7E1u9mh+dbpQSzbnZsTG1Vw2BVKLXnqa0NdcjdV1KNkKXZzWtbi9zii0THGBU84+bAPV+N1PzKLUP4o4YJt3jEF+b0yvx+H1cJ7a1aL3kfMj8FRBYuU8LM6LRG2r+zBmvDa452VlZJjKypszr6XUnd4ALzM4HieJU9pllt7IJzUkZKbfjjNDspCYqDEC5hp4qVtjxYqgoUSbEYfMCgaikV75K4T2jhcVNVXEMJKFuXeYF5jHg37K7+Zfn0zSijBrv2S8TFa7ojRsKcQ//+PYCKB9mRIz/u0X44zcjrkAlxc5T28wSA7yZnYYEf0E5zHUVl82vrXwJpnQmmIcuvRSS4mGgGzKLuof9WfZMD/w3VRZb1cIOghBfA1PwZpekjJYu3Fje1aTWUVe2GM9y7mUKbU8y9uoA9K/CKnvOBnUKXZsIB6QwKMsFzBhb8lRAUbHpKaiMvOmimXpxiV7uuV6q4nPuJdkpsteleDJ3X1xN81oHgu22JeIOmjoWWiT9pv/3rpUZdSRYH2xFdz5RpjskoP5nPR7RRJif9mTwWPAWCLuRlZm3aEltiZ5JvzHbIxrojKGMPNzy5nB41L9vYUk6MFoRAzhL/qLq3iWe4M6oa6pMhfJ7BGpIDY9ekI+wEbAI9/DDODg63KRbOq9oPae9sRSLXd9TPNVLnE5ybXqSwSf33f3GshTnhkmzepdxVOsDbpFV+IH5+FYtcSThCsbHfF5Gj4MhDkaRzloyrKGA1cA5AWGwWSFb2eeSLYv7B6GQdZA2euQefDbOlWm++gViTv4HKa9DeZ47ZcVGxhZTMFXwKUQrrukoAjqgAT7Fqn32MrSFE9VaJ/7hVpqlN9X8to/wxe+/byHqVHXTt8fsjQzHv0Br6SgiVee4wK+Qi6UExKetvcmles2LWyOhGGlcPHNibC42OtyUPMYMqzc6HK+MZh80O0lywvvzJRDsB/rM8czBcN0HJPDKW6OkTsyHZHPDy8bOjRIrNL/QyIbsDoeGZSxQAbKwJLKN6grTsccmUmyv/jAAINyYBsMa7dKIyLER3t2ijkPJpbUCqe2V68xE59cMVUrUx9hOII+oGU2e94LsIpx1AeD3Fb6OV6AdqnqKnQv8cWkY4k/kEvaNHozAgstLCSUByFEA1Ix8Y4fu/K99D5oOBfLUj0sbNy4AcfOVWisj7E+WTexVjV0NrYkzNKZ//S/q6fkULq6EuBmH7QDU2j6msRNSLhatkFw+DoFAtF9BkKChy5zS2SgpBDCPJiEj/H/HIsUxjNAWISWmXzw9rU1sxlTL1Vusnk7jJWyeQ1nbc3Kgf6Kb25vo5ztrHFT9N1blDrx11vDcjkHrq7B5zTJlRtyHZftmJS8294bP9TEeK3FkfovjUpocNoLOIUfVJHd0IX/t6KQt/+xzZ3TMNslNS68aNTzibcCV1FxgVK9r8CvsIHamWrkHraFYVoWrmR39qzr0RxzMJj8iP/a4CHjE84TcsASaxRa/h38IvHS8mNVE8hm83xgcke5YDtIjdAUngVXqwQZUWVwVDagT09dNlp90eDG+X+fmdHFmgl83//puUJs7s9G7zjUG/+Ii1zGhi7IfoVVKzvGJ8ZgdXcX/3kjo6PawISCFnOmq4R2Vk6Itmq+via3Htff6RvpoUTLjTIHvytXZqn0Rgi9YArAK1m17/NQT/a2utxFJmjFT9yf7K7yvCYxHySdkBBmm/ZPujRGDBRuTKSGmlxlFaEcaKQuIxH0VqVTQmz3Dy2N4IbnoF0Rpm5uN1adijMAHU6QDq2yFYeDgB8l/GeR82auTkQNl5JXYRf3XzZTw2HtyIyCl3CTKd3O35q4Y0W0t+qlmSIdqT21uIAXklnYIEjX8LIbCNHT4RmB3kLV2NvrPuj4XOxVm3Kmlrex+2JDEOGW/6F7HUlg5WrcbTE04kPk8H9CJg8Shyk8SLxl95fipEWtZ6xf+ArC3aoh2UFr80QfoQIb4g2UmWlWrIgiNCe5/kscqKW7u2OfLf7GAEFm29LHVG4c4ev24s6fBfyuusXJRaiy6hIoyUn9DRskNt15CRioFFck/2S71lAVIq/q4Q5qIkjcSl2nseHCzmGVLuYd9dUwJlHCa96lC8k0ObTFPQ/xhElta1sswXhE7sifsvrD4CaekuAzJ8saz+6Do7Vzqq+6j5jzVnuNETXE01cWcpiGblHQilB1lbPhCtyk+FbbO+dplAcfQyT+BXl/VFQ9q0QYBOMwKfUwxzB2zcARDTIrLxiMRNKTNql9ZWQpl9vHZxtPLX7X3FUfNZOrfmKNR1PzFL12HzWIcIngbV/jtVqs9FcGZV0eF6PpOnxBfilOhpMxWkAvYBKVtt+emx4Ukp99lpW10fe3GfNz2PUISNcdIQRbwX5cGCSXKzTqXM/MgXNua/3zQJpxdBZDMPZ5SDSlvSNuW3dgbe3+Drt3R8MZ7H15BLfgANVkIzeeJXHiNv9/H90Ssb52chArlVKjbvI41ExY7ghIrEA9+4/tzaSoWPuQG1Z3Ui++yOJS2PXHnHeCCK8Qf3VICh8onEyY0qkXVzeOvAyjw/l0PLINKFgNP4Wq67kMuUbAKVwXOYKmRi+GKIxPJ92MTRfNtgwRlKFzpnH2moOppWEnuGpam0vsvUxPK7TWmIzhi1wqW4DC1TBJ9vGg7/Mol6pOdjl6cJ2epSpgmWsa1F0vT/Chd/J8RSdDQtfD1Q67svx+emsXlAB+Bngk6pQLOGqgXgkTNmanUJMhhuGLTHjZS4J5/fz1LD6e/D87cdCtod2NMh30SDOUbFy1PDdGP5o7mbIGtrDa2mTMiHru1m/fdHQ+lY20s8Yl5zLHLc6YWTeRqyKew9xgw4uv5JSDQ+t1rYRbp+szC2TpM/03llCGVqp9r4fzHpz5eyYJTFjxWTOQgXKnTuBlbGZTXaq6rId6HDZaHeIaeBTiZQrAU3ezkxlXZYhYD4eNWE+x64F0ixzUAnVvePmirbYjETEtBMf0mBKWu3MvKYVunj0MmSNTrj/MatoVzGxGQy8d3iIkuQeT8BpMt8iL9lKLzPFZZBXrAYYeBt82zGgtXOkRFscWEW8kDc6CkmJh8QrjFw70xo/8Bka2gfVrp0DEttgUvpOieT2tTzOcAsbeY0O3fy7OTTDtvuK0gm9uM8HAC07nbaN7WinMJpT96CgqyBryu4S0IfQ0/HdPRqV33HJlzCzkGEBGhS+PtYRhKWsyF/B9marESSgJBYDfrYgSkt81XdBjZwsKUFYc3/xUZp/n8LXv1rSR16XjIrl0awEEK9LsNbjc7lm/x0JZ6bDqJ4fDTwcs2I2/SGTgb09UyJ8yj4X0Y+t5eFLF+PZz+WcY4Ru7tHsz4sdoSIZ8MfAtajG9YvIuz7Pe3ZRNqbRDXbmz9GKBeqVwutbjY3ryR52LdmXdyap8qu23iWk7SyLbyTCY/lHh/1y06BWe9f+gcokhLTWZDlFq5PWZuKj53rmlXdOPnXFsRq0HsERhSx3efT2927+VwUHlCWBhjlHfe1JiScB94NAbywJuCAzx31OWODUeKE2eb5VIvzqyT8JQHfU6rAKy+jGo5kX6HonqkKyQ3Qb6n6sSS08bShiDDXRdL3/h5/XFqJ/WoFwW1biMGIRfr2zXlwGAyZwPMgVE2BLENceQI1oiZnSLVH9I4z9LhcoBXt/9fiUNbWXHUUQZhkjgvyl2kUofGlkzztOGAg0T49OSZjbvXhB6d/HYo0v7PVStH/GehrnAVXbbpNskTtYnb3KlY+NKK046C+aVosrPTjJh+9Hezk8RVTmFjtJzD0J01Ch0QNxQDQOHzVA1L7OsJfQ7kWcnEqV7iEfKtOilxHq5hYtJR+jpYUsQ1yRPos+M/HVIwUpMuxiTM4lcfFBu5DQXZnV19lTCicZsz+RN9l7bNqqpZAefhj21JgRNW6L9xKIq+v87nOQU11/oCyHuR1rxERfhTNONvFsJuSYnwidjdsXkyKqi7xB8x0yp/UHB3UKQ563/IFepOaqEMX/ieAUEOWlJobjQ8kD0NqoJFF1KaPpzx87Jx2EhnL1qxg1SWbWScCrQ6tNxW2FVHFdtlesDih76AyUhbSS68er5ooXqSr1gUwbhbS3urGKZD1hL7DG+AIWJnV5SO2sWJQRuP3eb/szAnL7bMqn2GJh+A/s3nRHCjaK2muJnfk4CzXeX7U5zoYx3XLGS8IoA1NHqXAI72VoUPSHHbcHCOa/lkH9BLmBA8dJRl2seZN1MmCmvylTwWNXEuIubXECnjHh2QtMZkeAjS6NPv4/QG2BBEIAz8xKEablbUJEBaWcNRsNYUUPR011ztJFQV2pSmC429ocYMfJq94SY+R6sBvFdw2MVhyYeTw9sLSNkvkDiOtSAwHI75CzRyxY45puDE/108l50VYkfO+Sr7ZADCqBgxZJqP+z+/+hwMfoht+sJ6wCTSrEeswVdhUspbpI08cKR1tfdIYH+dmL4TmK0xR+DSfdAUE0oBjKXKWALovPMF62LtuJVsAhLYoNZnTBrk7UCRgWYlu52h+90GTy/4ouAgTECYupHULMDcdfJ6LN9c+WYUmTMiH65Oe+BtcIdfSoe7ax2KjKot0O5d1N6+hKsAt+a4AK0H0w4jHRWiI3F8Ns+aFAiepRIGJJjF4sZtKkzKc5c820kwlH84hQDUYjeMFLX/1LpwhM7+r0duQgCaJIRAVagWXrYB90bnFM5T9H3YJGWbpiABs5pdxwtcAZ7f2j2krY2j62UZ47jxcO9nQ22YVDKqEVkfJr5bMCOQNWtoFpo+VickqqSvDGRq1ADZwqD5RnCn/w+kdG6pvIUiNFt0oG4rh3OgHaUzwVqsfxtoDYrRwNtuiIEG+/Z+q11PYtSuTZgduES5dBZQFwRC4+3eQI+g4C/UrE7GEYvN+zcYRQkOqqdOJ7YCG4r72WIMzg/TZEATrjth9zR99ebtfHXbG1rJVHmgFuL18012+XHf2wLLYeh9+dPB+bBnyyewZnvC2yHE4Ml5lCRuUC9GXgZRnhheN53UEW0GdE8OiCuOtdtR+Li/sXA46/2jEAoLBmWhP6T3nsXV1jf4QEC+lDwb/7VuEy0neKYI4lPh/X6WkicWVRC3OUZYpQPqO7QKF8wktKdMQZtmX8wIhn4CjoCZrnV/Ld8rQMNepSXkPZU4SjB2LIw7sdzpSgKhB6331hRZeKmDCBGkpHULLIE/G3IY9+BKdI45slB1/PQs66U5uiOecJsmRya9aMK8KUUITzYdlCf8vprxyzUK4LYs1KtnoC9SCX+rmjLV2KCB1xC5sveFrg0Tnu0Irxv5awJO7NJHr3yGWzRbTPPpwx1sIG3OwcmRq0qT17oxU1f+NQxMy30QNNHf+JjsWTJ65U0EGhrgzXh+7yTBpeMCqXQdNdrVw2Qu9HZdGmTZQLNb7OYqj3I5Vm4shw0xjTToaGqHfyu5PsqIb/Q69DC7c4XqlSMPLgK20EdacCc1MPeq3d1kEJvKvd8fpYuMeZ1+lmt2agshhrVL0Vp8nVf/7AkW/lW1M1SJJHXU/GI05eDJEkP90OsjLO0q6jFLWiUviJ6KiaLAKMhu1gtVfy+MFT+3+H0fNFZ9CWue43smsrebt4w9g7f6jM3TwHEZd+pc4aR6/PuxelJr7RhfyIi3wf4tGRJ9+7AZ+hVrTkcdHa3+YAynyN6f2gImIiwQjP6FhuR6YkYPzptHWpDPIjsfRR2FTNifjOU5N2vVZPk0cs0Md1chL37gNMAyDGFeykzU3/x+wVC7Y2U4mvOEG2s8GgUyDcyFP/PPfIeF3E83FXT+6Y44If9TfvRiUFMkVsboesxzq0H53hc/XRLrWrGWwwjtoZqDO5DbNnXbt9kb0s1SognuE0G9sdVDq0COV2wcD7tFEnOW40i8HSdUb8YH4SqgJxhAiKRwi2UGpC5QR0NyOL/tZfvPpDbP3+082GI5yoOaCQ0qQ3erebrOqvJ3HlUxn1ggv1L36Ca9BmdmGr4QXi3c1EwMiJr5nBt73Mp33rxZfl3f2hs+MUa+ddj7CuTohcYC2eR/eXoHotXgUZjjXCIyJGyrBPTkNWpbCyQbnsCP3y24FDerTL5bFO4woBNmvwVaqQD+VlBz7BGvJ2vzGAPWDtDkMIB/Zb7NMVXaPH1rOjPRtZ0HMh8EoiNM7ti/TA796h4iHoPAdmdJVslRSblWlmYxvMzjvjZFZX+iwo7NcNW4JUXDR/6Eca7YfeYi8BPF4ZaHajCaKizKOyr6IyoYqtwg2BhAlWgffIuwABPgnYlokIX2u1V6J0MvleVwMuFu49/oobzJSuQBOX7tDaM0b7zUX+tSyeq55O0KMbO/1U8bMJNcYXHh4pzG1dcxFN3BiByClBL8iwZoBxCvlkRfquul7p4vXWgnsNwafLYDxMJCpN7rrTMoXUtNHQel+sbo+sRiQmIUO/M138IMY0EUana3DAT9rzN39lmwB7YCvfAyxguj69Z8VO1ZX13zq1QaA9Kslg8YCzoYOrB1KM4q7CeTnSaDpebNjBBMoJVTOTxrxqNrqMwYgJOACARzaCD2QSe7d6ZNzoXgZVs0qfzTN4OEPShAoAGMcq93xUacuTsD8vWeJm2dPUhoBbhXpfOsbVfCsZ0DIbqkcr2oNAOor+mVfl16ZN5pYgo0lWOJSr9KawMTgrBnpcK82dzJ6mtdVSBmk1vXRxUsRo7RP+DRZp1iV9uAhyDfjlzMp2etsFhFLhdJsPRChLg3w+r7ZpgNHyXroKVGg+jdRbswC4NZGKF2rj47ZW/pb9jf1EWQl3pnD/TDWXOJJXiHBSwz2uKTYem0iIM4kafZxUv3pnWUJOG8L75g8KR5JsaM3BsEBxgZuBTljv4u+e6D2XJ7mhQ3+bGdfZDPQKBYBMGtA7Da06R3yGdegXcVUt2llVGD2SHaIF1wvu4HhrB7UCJ1SXBvFfpUFZIKikbbaEZM9V0E9TFDDoyhtAvk5UXdtLg7tbIdq36j1B9QyD75dSu9Zz1CjeeVM+s8ICz29EsJOIUNx9/ikdPdaTBQqhmEokLfTAkRoKLUUCXZK+SowGFoD98HRohN+BYpkwssJ5raNe43Yo7iz9WTL2qgHSiTaZQbmHkWcDlBDYdovV4PNXlemWXZUCaiZYJ8rZN6WX5UQ99/ODoYSqjhE0y7K+Y12VYT0mfqHbDMDA5BSzGgZHnfUWoobEARM8FUOwQ4Rq6MUgcVDXeEfMS6nkd4zWeMLa1zvvHlVT29SwNuCO0FFw0Z1I+9mnUCZvm+G45eit6VbEsO7M2LrrgbhXp7/C0p5cgaAZvcej6lGAKYqgNPv5tJy6zyP03fpNEe0ArEVUJ6Yxg+tI+a11dEGJYvzWJ361txJ5jnrA4UTqeZ/rwnLzZpwJzBfcLIyIyJwlCkhRoO0I2NxVkuIsiGzr247LAmDBhTbAf6DBNyNxQDP/6mDprw2XrZHuWV0asTFdaJDmlJp8IgvWpWaMSzMd5OB4rnf060jKMQIxdJAL7L9lC8HJ3clXHSRCydpdSgeUx+BA/Ckh66BUaainNC2DMIAfbyk4mwb4KJFneacQpiJ1wCux3h9g1EYULncqm1CiOeniWNq4zffFYFOmukXIBw4Et0euegZ9lmtpQe60oVyFIoiR767VT7UhUfEMV2X+kg8o4yBs8Orshvz0qZ7xpE+T6tlxvvZqb7zs05UnlmFYFmSBRYx6LaSGd6qANJd6fpnYvtDfvGVZAB0IMZd6AtEZnJN5gjdfZ4h8z+kmfYm8//tq+WZV9dvc3SepUAL6Nd4bGKKdCJbRJB0EWSCR353LGjF9wMcb59Drsj5EZMxntOQ7yuT3xM9gtJL1pkhso2PUEo8BSLANBovjz2a/8hngyoBIVe9waPNW1fSbgCAOi+snke2w/ClsLURLeqLaT5bFmiXWQahrvLsVYNvQ5+4zkxSl8FAiKNrZ7eDV1itJKDoomyKC9F6EMDVA7g9pdQjwawYCXoFd6Nu9GPikYSjI0ZeqWR99we+dTC4CaVm50kwCyBEq5b/z4e9LYhImDVHwd4llFIZ/qsL/PmghmCOPP6O8gyBU6IJewAbCtjvWElGlMaaO6Io2ftDCVE4nqP/09H4T6vaq3m8QVSDaBZs9MHx1ur/hGSISUcLdRLCTyP3fsEAgwmV+XJNH7RITgkkcYoTujgACnfnjIPBXR/DsBUsyXJUhzC8XB+sX8nKz6X/y4XL8xZyCdmSR/s51R3vCFyUxCxzmIXtDS+vKs/iCQBNIjaHaBsHAegjr/yatXdmJudRnYPk8LvcemY6jNYKGRVRFF4fk/C6cEAjbdvw+NZw1vpbm9TA5mrvTrYAy4Xdl+7KbvcQFYOw5/2CShhZ5sC/iBxGg+UJMyqW1Rk2+C11CL8kGOpGeXe8y+KtXU58t6T2IgwtIWDRqZF5XcUkreZpxO4fpN22GqACoyxxB8PsqCrgRo/To+ByMJdHl4/0J/B6SeGziQjsBYcmtq51JiPoZLV6pnX24f0A/6j6KqOC7suSX0ZUSrw7Rjvp49MbFboufYdrYWRhBOu2It7rVV1/LMQnsD4mSafhsIhNJAj0G0yOkUq3WavEejhSnjdBlKRJueqRjhTExZq2qqYLJtxbCwcOCkAV5uqTc9aLffFOWSK/s0x/uXq3otbwERmiFOKYEChTJ1op/u8okOHaLQH5IDgEa0SL1yyoTVtAilXpuJpLIDEfnOEQLK2HvynJfuVDco1qyDcByUhaftVLTmGDsHz70T6N+pnetEboIMJkLrEGJXHMKImtc847uG9XIlqBD0lQeMiLdFrjpMmH2Zc3aMcWtryRRjhb5Nf/auyYmKQG0id7pktGAxQeW+skmphTCnT/ZSV48Cz83/yaFyite3uDnkRHWOd4jG6X7+u96LFtDkpaDPRHMLG1Pn4G9tBEnuA+oPusm4ceX2MFcYtu9rzAETThiDyrYaRNa/Ee7Vj1HFTrC1SDA7775aXhCKzXPiA+zdKfaKHltjxzfPHNkzF9juGKegeyHFNdXlmhSLTw5cz6Us9C5N3CU4wOdk02rkZmYjGEFg+H5g/AV8ICTTkQjvRvXcpH+9iVOpOkQVs3XF7E4Qm2swRzfNyeEoyYiia0U6kF+1vVqnMUioTcWjiC56ak0KeQriDdaNSL6Ikst13HUp04zAOvDPlxLyw8yEAtRee+60FJR7PVWoPpECFCt/Egn3QQclAbk95jUecGiW4dhEY/2czo51UiRYDGhQqSRA/UOk1GG5umxxflT87b0fLiwZ9+/HwiGJuTNETGrOyDH2B/vEJ5JfwuS/hHyya4TusplodcxUFHrUTO23sWLN7RY+jVXelD/0y7RatVVkuywnlWGitkFZKXzVh7kuteemPCITW/upxwOTmiN+5vdctdHHEUHsW65tYQQUx7pmEWizIKsEnKMKie+19tcNIlW2H1ZFn9NVltKAfTe+0v7VEBu0yYF8Qh2BZJsDiympvorjXRY1DWTDuBODwNIVKH//Va8ntRf0+KKG8t46P+dlQuD4B8WkY057bq+o+eVGT971oWGX5x8LAen0NcyCtyfySr4dUTj52Pp/gWR/9KiyjfHQlq1WzoelvnZw8+gsjTTchjN9RpZmX4AAFKwPrQC8ex2TTmN4uH5u4395U0LfgEQ1/1UC6/ewuXAHaLQXKypTUvb+PuElOsknoSYrLpG/EQRU1jegdAZwljqc4CGEArKAe7QB854Jr4/hOSb2/MXcKL1cvEV7YG2bYOPyR5iDwX3/Pk2SWQRMzW60lQfY63P7aiocXC0y5PIiELfd80TQ4gIJ9bNaf3ixSMOMvg74Jo/6uMKS3l1fqB75JIojHR3jRS5SEvd+OVp8CeHI7jArIJfC0XSQHQRIoxZ27yrnYIYH3MLYIWzbGSGJ4HShTN2Wpm972A5+PEPheShDv3QMcoue8S6m6cZjO0DB6wt7mIztc9sf4Mr5zu6KTOHqpPEmt+ZhgseMU9cWjtPLQCn4wqyMc7w8NkhrTBn9GEuMXTbPPWwCGOaKAloraTfRNMbXj1ASTBTk5ntkgY21jUORcAE/zja7SntccnAJ19ykwANTBXQ4INMsQ9MVMVQKGEoYK8148Bg73+rHujt6gVMoiWiVbBCAannvzur7f61c8NxfCN5JZGg9qt8hgmizXxb48UT5lUTyGzv3btN6v9ACv+EzWoXIdm+nti9SN+cS6GPBinLAU0ub0LQbSIItfLm5IOUC6biCeqiZfcrZmC4d5tgOuhDJVbih4UbOQD0Yrf8czxPdM1t5E80paSrPwSFP7npjgmE44pZVdBynMRGaCDNfgMCyWK2Ht+4n9In1EgMEWKPizCTVhM/jK/03kIR2SYDw43N4vPMwRBR/uq0KSIEXvO9dO3rQg3tgQOjG2D/+dUtJZ1dPfBuf3FBdi51mmioW2/z+mozkYotl6SWkEaIjJ9ZcR8YlivTaRsIXAGUDv1R5TshKwlTmzjL7oEWYzt1luonwVKrxm3n98KL0g6LxuyLS+D74j0+LL+PRvuZ7WOWfXtveq9K8X7EK+UQv2oGUdIZnQCMfru7imfcl63CifttcCzu/YYqXM/oY9XwPoiB6v5i9RbW6wT0cH7f7iXunbQuPK+v1JjwkTrmJ4MEpbZijzOt2nlMmo9/wx590jUZqhQJk02/FT2ad/YioYiHrswumLhgpsXon+tV/64ZWDBKrqea6+b7uZOsSp3f058UNGsnuqyy9GrTLoAzQ2/7+A/LZ0md/MrygwrVF7ouK5qSENDMZ1ojvuJfWoi/Q0W+aoImO4AVc4765+hz1NUxiq/xkfPyLuQm6tHAaciu8WV6T4EpKiDqdoPqNfi5R8MTP8wDPmu6M+Bft/JdjE80BmuVQDZcKGwD3mvvb12n4vaIhY+pAxlMIr8LgzRIisGdclbIZHG4szTrhfdAmAEezVebAH8nhsYcRrHwdbZE9iaW9Izpmwu9eVkLcb+xFcOv8Ad51hmYdbxFy3H3T2fOUywB8Hx5jsZoFBp3YYgwqRwIi20F9xm4EVSDtvtxF7B8qV1rxSFXeYgqLDrh5MLQ0rTUHvVhQlVumw+eDQxmNmSVtbhd5a0yE/e2AwzZw6MwQmnsGYdXg7Ya1lTaUcLsSiJKjBnQNb5n3zbrX0icUC0KNQCrxPg8SGsVDPqxxLkBQ7/W06dp49+QoSns2xnIo43yOpJTVq2LHYnjloRk9ySjEvNOqQ2TWnM57A+DAhXy2odSfuBekDy/tbGtHssHNaHgLPfrWTpxmiSb1t/hcswcyQmHQD3Olw3WkrfzRSkBMypsyLTlWKtLC3blGVuqWEk9iGBChIV7N9XMyJ14u157y4agCRa6Nw25J1NnUmQpFXtRs4xN60tVLumGgnxRTYNmHa519YKHS2M2l6xpynJxuIItqVxPYHNtiiorqPlmI8pAAQtha2F551J5otcBQ8be6L3tg4/DcGxgtdfNUhboLhvNLqcg2xThpEnZRUktzbdSeUPHlh2bxGlQ5+AxYVJzWdQ2NZ9adVtaVxitsFEiWjP/N4TL2FYYWE9v+Lned9XUOhT0CmvkOCDWyvH7dmO3RH81mm1OM3LRNbP19S0CvFQbKz+ewnlgPOv4nzDN/N2NawwltK4YXP6pbK/LVbRiJDChBiJOEtKgean1YJoit4ZwcWANvvzMOVNnxFAmVw4ZHv/mfgHljbL0xOueXZ2OlNs9RdsxP7MeKfiwvUxc0OCuKoU04NqNCepPvpDZYTtTHASKrihYIlvWy50vynUeVc9DatxUUnBUwxM2VN0B6BQEvkLPWvKEGDqo0eFKKrHOzHSbiMJ6N47GUdFW+oIqk2+31Ap3adH0WaLa6YSox8f4/TyILOThEvYDMOGYTHhRgi9j84NCLBBgsK6GudOVNqeyjIS7NiGc2BBBPWptuX1vK+9P5DZdJSCcvYRpNHclZbMPG3NoxMAzA7sLCYB0Eazo0mS/gN7HeEb5xTjDdUAtnIdnYOI6uriu8o5exr8CW6MzgQm2Xa7JDRlzQDevEj5g6N7KzzQxp3XwnUhN17LfkS82FLOGg15GkRavrgPi4amZRvF5OugoVONDYuZEXVgDtwJ6hBES0A+yq3gKLR1K3CSnpJ4Ic0zocx8N63LIJ6dGjZb4VLxkn8XKvHJTcTnO1t7wJ9IE8WhlBsHl/EZxMJLPkYfpz2EWmkeyU1Kt1MmV/WEE3odi29CV2NcuB5fsUpVIhLVJKzrgPFCRpnR12C9EAV/UKA7zS76J6/owJ9ZQAfK+pdLs5TlmFkR9LF9cK2bK4wy/ou7qatPX7vLXCYfn2BwKX4y1Z2mIzb0io7ZgqS0ioWd8rs+El1yxkgSDJ/sb3uahmCnKIeDBdRvAYwwJpd9OKSNipjQ6Aget6CJQ5BK0nKmvERhzIe1jMrQusLQkGeo/5FXmPhHRFyGIlSwVtt/duRrdSF9RIIHbfAFMYSNQosBUYnbjVCTL+e9xRE/DF3bQt0yHPWdgT/VWg5SDZa1DgSiLPZa7SiSgHADiJ8MumyyQ5e4u6sjPcT+PLwIKW/irbzMzyv9e2QJyGpsdc3epqnNutM37lXEVoVg4qgSUq7vdZutFM0lecOUdxEuy8uK3kccWxsfldpaRvGKD6Fwu+3j3Nnxg2OQKzzA/sx9/GD3KBdEXlY3GgX9Ygn7UwY7c6xEgJ0Gnqt9+lBpldO/ewrg9mqrAIPX9uh8isnekz9WJ3Np4vrWysgqhwQWRcIAU+EIvXRzUbax1Dt+DAT9H5oXt8XMM5zYbWu/uf3e8maPTuPFx9iqwvm1W97X2Q6cgZ1kWP7kvWm7N4HA9GhNNI+SeUnIIkOtk6sDc5ylbfoQvEd8TiR4mfPWCS2Lt2Rd7JFJFf6Ik8pvCcFlF3xApbP2rOV171hIypsdVcp1GILqB/8zRRcrzBMGBDGUV3z9esuUEqsu6iyA47FcJyKd6w53+oE5EDvkuuTfd1lkIuNGkhoFfR5uC0Ee8WwGYjkKUG9C8HtAf+UpfveXzrrvwUBcgeSo6Z/3nY7ucAiRkPTM7TouCW9eY4zT6fxWMei+FzJmqSmhnvXdxW6oLoq5SX5KWxlOIBhefJ+5a6CgsY0tJZ2rRft/2bblmOOqJZA7LyKwjD8DPwAtUpBa93LWzYVozKrH7Sm4g+eKFledjqq9gZF8n1e7pZOhnnYlkJszUU4CuOTB8Pxz6fxXXeR3CyQxIxTHS7dKJ1gLY8DBE7lHTTrTT7t1r0YHjv+1sLeg9ILNQT0GC2C3yQ1QfWgabbDTw90PZhU06zp0EIMrBlESCJqfk76AFOLNbioVw00NC39I2N4XVGUd3xL57KlVXm76mT2ejRDWWlZHLj8Lfv+mmKHl03SV0dMGzphmRzxZuZbTqg3uAsRIkKapPGUaLDYEJVrWCWJ4CwEFhzHM70LMFtZ9lgeyFqpuxFygBGZy5fmI6VK8h8j4UmumxjkllAZl60ZhabtNPi1O1agt6JScuV5Nlz3wIb5nzpJ1z5qN5HVPimEVWfjTRGVbSq6jfv5f9tMB5fLYqavFO+TtAyPshFdJn+Ot0F9XXp44HFtht6w/9RH0Rl/18aPLUr2FOhBRzJHTmY5b0Q998IUQ0x6OCoMRKXT7FULhj1iYzvcEyNDhCTF03EDZ6111Ecxw7QdtUrqSU4f5gins88O/apNnqITRP/9wWDRdRqaZnsPK4nd9SPnX1Y/h+phIUidxRRXFdwvnCrxDxTEQvATj5Zij2w2CZ8oVgpGNR0xjDYH76/6r9VkBYRe1hDtgYwYTwpiBfrFtZ3Q6Ev+I8/jXeB0tcs/4ZZoDkGlVnIowrGEmFoxclkz6ZD2fvA+/yUZtb9hQ/F8PX5s3S2/GxvtlclgxfGuXkYCPaAlibKHP36noLPnZNxUEuwUrPRI0r5adwX+3PdFzT4hKu701HJz1fNaPUaoIaUdV1PMewTwlp9c5aQE+NJAYrNRH4cqjQvoz9yzxKHLyNvziHX5qT8MM0YIVjanox1lxcR7guBPT/C+2GJ4ByeGnSXQd2bCnoCy69U/1kS0KpD0ceIk0SCkiXdctZswI9fI2yshmwAtkRrNunoqbrLwAnJIXMyN8rjRWDlEJFdg8Tj2nBXCp6RRQujmTTC79HTY9nx63sT6+VA1VoO+M3y/aiCM3A9r0tqYKGDrofMoW5RKUM+GVQdY8Sh6LyWl2yFAK3mMEl7P+BLvoupNuCdN79M261xUwhCR0gs49R+orj51IeaQejndVmZvGRUAIkyupZtsRerUaMiHs8dlQscgfekozqDZ71mN/t1f0XTLgu2vpdhGgvhh0eNbzJdFXcdvA9VgMFEYcpB1cY34xi97TOJ6cDJMaelUGFkEhffCtnGsFs6GQ1TlU0OZmIM048pdQ8XFg+VUG5Hy56PXw623sTJ++wkWOYdBE5Q0bFzu7ZE6k1f14a0NdZ8gUJ2HGC33rw7rty0ysJmOlJPwthVQq1ksIoVvQ9wo69JKaAudUs32PDZhLUAb+2A+tYA+v9PhhnAmVDdtka9EFBr2H+ZSXuTjh+oVSIZ6f9387Bh5D+n98cjJzDJz9ozhR1Za3R1JHMkX1vq5t3P0WL7rMEWxQBEygOhLojN19hP/FlRuJQSKc5AKDMkrq1daSrTXEtylM3AsTSFPr1+GC8lc+p3K3TR4DcSnmmkxrsxz4joOtUpccCaWaU3SSIuut4KASTg7EbVqIZXFifXlDjfqcood9fIY8XSs6xEm1m4jFKC6UJOw4X+JTEri2mqsi0H9rVidq+keN1gcHBZR/yeFQHHPRnqzVUksY05S12rgjYkUSUXQkl71197GPOcZRwc7CFCTJVx7aqXr6+PBZpBtLztrM3EGENUqDO5Va0ozbENJ3em0Bjwjqg75fFBVrXkoVlM6eL5n+t3hKRk2h01qx4styKSWgiCyofCHt8FRSkI5yeWytsYHCcxyRzxgq4Irjsc24cpLyJ33vUJiZ3ONTgFHIB3N0R465LLyWY8wwMDc7eWdE9NaoP+/+QMgKap1ih4tyiKEKKVxkkWGNGtxzQEWl+if7IF9X0MQIgOoakFcsWIC2V55Wv/gNuhCmNiYt90FFpLymCSDmZO0vU6iwD3gpT/5QNf1U243iexkKzHBY9qcLuRfSeiSeHkR+3MHQjNbRK5aYwEiFLxaP0H9aasSRJGPDk5vTyqthvkL2KaWLr3vBSxPWpp0nOqXhBP65HQDmkj7IlXcY/DyhqMhrR+tM4Qw1HrkSMIPxIGiq8q+ievLWleM24T5BDYVb4YD24c8+fyZ+Nqk+YicdlIcwIVtZxLDxHFsITHuyxIQKBsVbxI1bAVcEvzwUMYmhQMK/duMVA6FlYcgRFEWGq/+w00nzHK+esccNUJ8dr0ZI4W4oQm+lagRKhhVxMnCLcFSE7lN3k4iqxx2E71qAbvVTqzn5bananhEeOC3P8+Wf/YBqlfss45xOoUqMFe7hmMiutBX8uyNHlka0EeDYEn2MWDX2xTKg/eIdPyyVJ2w8OexEVkej4jVdKSPBZUfxX+UHQlzDe8EZH3qvsnfMc5R+L0AOwGzEGpo2W9gRwiQW1NIG7UV8I3iNhiUycc0IOlhxyBQQbaRU544rN6BA4DDkqniJB0d5cOO3H4MHtNRg5cByzHJzpuqadp38l7vUCBQq1qQjb7g3vuzhwmUCKDKdnrYoRz0XytiWm88x+HlbpFgkpdSFpTAfdER08IAjIG/Pv7djUcvwkNwJ0cyLxJwH9c5OusBvn3tAQ8N3TVoP+a6znEgTylA8DwTs78DNFIw4XmIaMYbcZj4KK/TKgwixJvl1mgi7yYe6McoMVfNrcEonF01ofeZH7hEi2UTK2Yvf2BlMir2qnjooI4CQ9SaUmIpJ7d1v6il9yJWJWxXu7WssqqSHkYActwj72b7kCryQbp1Z0XgemPf+j6PaSW2LpATrdtNp3w/2cV3yu5r2YU8RlZ+WI+iy2cWO6EU+khHSKWojRRowvzptlrODUIHzqZ/sZdIIuL+hY27dL4nehDJFpFUoDxkLswrredqTclRMWr2RF8WgtQsPdZlwcdIgG3TtkAd+IEfnlNU+ms+r8dNtP1hZePSX4y/Vr8AfInQ0dmgNUXG/abMMSqRPsMHx0sThTiqMHw3em+zXuXpRd0c/JUSoiSQ9o0ihsfI85SHR/8N/iRYEivvsw4eXAusea3xEGIzuZBimeIYO8PJnpn5CP4MEOr1gfyRaajdeGPj1qYMbVews8NXOCK8xvnIwYA3z19PS0rpkiNb8r0uB88hWZzhMxu17Igqb22MfpNsrhA3RfnSx661DLYuWTtOiAWFvFEJi1CEwmkYGCBXf5V/0l1iPL7knN7UOXeXoaM31pICdG07P5S6B3pTjfhzkupMov32QDH/xeFPUkAIPhYxMWq3orUvJF5wB26pujtND0T895yh38wQoLA7ovfrtj9OmYbcC+JJWAZT7tZPQYKu9Jb9ZDiDAWPh4D5/MKbDLLYDmBweyAT4Cyd8Us0/NSoWL92URYicQvlrI1NlggDi9LazVoIuSooc2jUrYorxvO5LHanjFxQchburIKlWHD5hDydJvU2j/WZrNSe7c2bYleENK00vkjXniw0gOLRfAMV9evFtBROog7YrorNo1Rf1KHzQ7f6ebINl4oycgB3yZDUcrBsURUan6vtGS7epzBdcl4L8mjCeH5LnVmD00YpswAEBfKq86n/FRxFOyvcGdSNkbeeiyssmAXZeoNj7vNLNf5teoHOQ0PIIouGS0VoO6VN1liDxX5pFmMmlKJFJnzNz7dkDt9rK3wlVeNI2tseh+FPbhryGXciQJaxc4wWy3FWIV7lxncpAkyOwQLas0t06o+hEgOR5QDDq2RRzXQDJOYPbnlN9wB591fzxUv1O1+Ii3SCwKQ9b33bs1beC2VTEEbfHJ4uBHtS72OuWpgT7yn2ZP3TQjOYOgvWFgTuB9OVwK+Y+//Tlp8EUcbakpzRu5GPHuNPX9qTLnqJogljBm/z4WZ1Z11z5JzQwV0KBfdBQcJ1LOaY6PbxdUGW7EStlj8IvUOQtsKZVO2aVjvU7yhXXJ3AjWkWsZnrgQZLFsJfGoRiFg9Jn94rUgcg6xVcWwZzETFN0c/tPSXhRx4X+BH2nU500wTYvrg50kRoU0XSbM7xge5TJkesHC44XvNCRzhMj1XsLH/8R39GuPW1NVdo8npFJGiIgodCkICTDy3ijzNRG6ZMd97uUwT32NdiC2g/Ew85eKLzrvKNmL+EJzlbnQVUgQN1XjNz538koTlND0Bj4SnruizHJp+MwobHkQX3SJge4rPjQSPC9WnaRZjKVFUsa8cFp52IzAdFdH8HifXlyXZp4756g8vBAO06M6MDxslrf4UxGIy8NYsSozV0IhMroeWiVrd87CTUYJwkgAY1pcIvryWUd6hJ9o3ufknfuo8yFP87Ay71cHWJmabPapLuef0weZCpcExOE1+BaDQYE+qQCdJkLe2WwP5+WGK9ozkAmNbKZmadGjfBAZXNcEtQ2HGBekTFAvBFIuu/zYS8viPFydfwvRP2fLhdZ+6X6QkivWD2mSmtmGx57aSCLNovIZP5kyb3O9JH9qyQrnX8Gff5z4UrppeQ01cVO9TVLnV4YmrgZBmBtUKNajdLam2EPcStM7Fb9Dg+Z20SWa6D/E8t0Epmulj+s5GhFoan9WqPAiItEEXjW9VkGO6wNa4U4VFc+EEFQxzU5qSB9h8yJ0p0bYjpymoGLMmMvSID249Z2pHN8KpA82h5wfT4FcC6yq5GZKZNNAOq5xSOEgMie28DAxYG+5X6b2IhOBge785KN/J/kqy7dJqfmE4NOpICU/3R3jaBi/OL/3JTMHAArUC5AnMgEhmuZs5Z/FM1Y9FQ8UFkUCwOJRq6V4pUa7HTZaQftefmupbKB/YzMKFli+xLAZ8NoSd7nEwJp7tqHW06drg0g0sV1rPT3/yyk2TIi7JW4jwacZ17c3gcpQER1jR9B+dZOmY59T5acMcIJunIIg1+3Zx7ZOuW/UpEQ52Qw8Uxp3LFyIutT5kzOKgc/e+ieTfIIXR0fTJ1fIvjKQMMmSccI4oESardDf5glOWXJW8k54h8g7u1PORUtRGvc9yYKi3dIfX+ttpwUQ3DXG7xvI/pEY5JMR3aHmoyWrXR0Yn8vNRxZlzifDe3ng/sk2/NhFi7SU6zZ/rk10vWydBIKREFZx5bGsgfix8ngY88juJCfO/Q/osaFH6ObXArbGP58GEA7/eGJvZbVT5OA5yDjkHgtKrynXunOGNWSEbeAoyZSnU57vt9CARuttCLbcOAB0Ns6HgpoH5jMNBk7wtq1R+qs+Lw2ZB25wJRsjzzWPg2S0LhjkEutPhbPYYfAvHE9c+1bEVE5Iw7I6Yvp+EHwb+af5IzN659Eo4SqDUazKOf5C4RvO5D3PxRIWchEjaOLdgA9jdSKKOKsMWJ6zEm6pn00Cuxvw6LIe8ouftzdmRTc/mUyERwBUkxGXtX68FkRric/MQmI4vkl6ZR3q/kuM3o+j9xR3BwBcBOjVLiAjaaxrmemSaseTlVP4r6+uErui7ok04aaO4gUZIhwiiHpR6VPAKEfMwxcuA7hQTAMbT9Vcpti/grB1otUUnfxD5PSJPaOsCW9GQSkEXkdQvZwOy7jhZ818pE7I/wPrt40JR/DE5MZHxO1PyY363QCJAl9Z8fZc0l6iMwPbUbhGzsnHyeQBSmJ04S1vy1enae/iBBr+g6NDt3mS2H68xxZu4q9rJB79JYULKcrri1Ok3e5cW+RpN/bYAdxld58l4f4IFFHcXnx9sx00xxp1ZjlMMPLfLQkYVbAR7CqkoD7IggACZVLHg7AV3y0h+Kht+SNX2cqNv/VL5ljKBhECyrYJtMWlJFE1+uNPT9hY/KXYVBvWcE6WIS5ZgI2M2ExK27I5Ti6NXbTMbZFk/y9CFRKa/7up05loj8yeZtOPPUt/0f2GBksSiGXFE6l1X33UWwDWm+Ju1G0JIjKJIAtIvpJJejcQv02VSPqzP3975LHephARwPK8Qgg87LEVqcB7e7i6Ns4APvYBoi/7g8Ur1DonhBdK1XGEoxH6lMaoLOD0itCGfaUgvQ26YLdkDIZ3k2wiE724W8746IHV3p4sM+7DVUU4z1WG894XuQlCzIouL5eHwkUwXP4h3JVMV28kMgysLiOQcV7Ktj7tEs8WvlMINfI3Elo47nGxH4IJJ+yjgTZv9cWZKSa5px0VywifPDiaMTRxUIYUAj6lDq8lIBczJ/PcjH7u16QlQ9aZ0Yv6lp8lzz0T7t6UYUcGQnF4x7L1teBkoKw3B1QoEPmVaWMEEp0i1fMOpz/vRxVAVyr2PVs0rCGaoaYQG1nIAivRb2Yo+ikvmr4DQH5z8wjrF2AOYfCAxvh5ew1cpb2KLmsYn9GSza58Kxzqjp78XHeLU/4DGRA1fGnc0QsjYbnjFbxJt/ORv4/zaXtxlWvKy+UtEH8+w+lFkYvdMawXAa4RJ8X9PuCsAzHYG3QVC2MinxMB1gRxvAhDZBidmhxrwrqPItMMzQvyohmrDnEIdc+GkflIr5y/gnIzw3GfuCBhmCAjlzsQWs2Sxhl1quknJP93gp1fSWw0vBcfmPtCmYIDtJp9XZhjwCnkxEVNXyiJAZHvODXCuEGQihxgRhWN3HAlgo7viRd3sDHwhpgaWtkPeYveuVAV0PKq1O+11DThw+1vTVIDOH/I08lRFRvI+DEmtXdfhJ51iz7bRX70AunZaVn1zbuc1AvCw/QbPLf8Z9NF4ZYSb0wrL/F5pSEsdMcjp/CVVmIkIoul6iuimCOYxICyuJ+yJLaEGVan/EWbKt74MsnyQa/+ZhzfD8U2ern2AU+jPJPC5DGS2qsV29VH9Vg/gx25m6OTkZuL/N4RXLbCg/Lnmke4hwiDWUHW1OhmdIx96ntLE8agD2SlaejLDSLgse4etsSWt+DD0/NU1Uh0rz/OVI5giB6GBT1wtYywmK/8HzqrISyjcADd6EBjPBFBvOimdlnqYY1ogARBE4UxFka+eJUOX2SzBDcF0jbKJVwPNi82sNw5kj6Dz5Cbc6+IY0ZxOxl5Mgmkk3kS1A8wGWhE/ibcTo3tZzk4DmFYCiTvXt2YLo6kxXXOGkcyxU0aerMWz8dPnYMAdsBoC2wAXYZjJzL8BqU5gW3NXUuUiMVJFrR1OmRSRpXu9ruOitX7EKGTAHy/KY+cPpR7PoOa6SXYa5r1IFcRVlfVQ/xsiNjbk7vUcbd0+c4mJ97NCelZGuRBN+0e+93Pq92YV2GxAwFvKjicXGMVCttGG+yvV+9bzHYc4C4r04Nu41eAmsONs7cpasoO71ONwwDvFmJdNatSuDqIMkFCvksqlSdagWo6X9NVP6J98iQ6ZoNOsjN+9LyLHNyigbRnodtOvTz+yEr9e2AtzIoMcGgE17x/FMkk/SzhD1aK2B/e4Azf2OzvyxJTxiCjRqsWYdudfIMdl742cOrzWyrWUdi5u6yQBPOSrq20tLhpK7LfCyk/R84VDP7D0pfx9e2kLxqPrUgHR/F0HXvxyX4bE4D3A6az8jergFNEcNNAPvo6jOZ38BbDWCsArTp/bC9be2ygovSi36MSQ164FB+AP0y3CL/PlA28ggerkKHE6WzcaG3zkB3qGckXwazF6VTUlqF7i61NJdQElgrL7A4cQ8qfUlOAw9TC5/GSWmfk3hFxzC8mm+XkeCnwYTfx5cjaM7crVhp8INm06qaBpoczdlGxAO6L5sWrqcrdkiDKriRQLxzmZxJaj7apOlUy6q9Yojiqnb1Dq6VH5jcHtfeO96MWTqFy3XoMxcpp2C9VA0OQJdfg0cXsuSE+xN0+HIa+0AZXKS329eeEp9M+uydn9A3NWAT4HOvBDpQuvndUeS/Xu2eU7LzX/Zce4E6G/Z4beqVqct6u4J30uBWSTkFgLfVu7fxbl+kDjjtDmwgCAGdAoiBP1zKhOh9cbjDdK00LnM9+pxzm4kYpYX5xHIIgBXKtAFDwKhUzwt4zXr3T2Jy1+OmDY63rSUbGzVxRWBN/X65W9NyN7tQWKVXZaHlp/03JOw5+COQ41U9fNxfL2XWXudDjEc/D6S2TnUZLV19iV32fY93NwmlWvs6mRRxC4u/taYWlMYLqzD0qijJljcf2c8p1wmo2lpe5+ZmJ5asPjXJ9abykM2CMvrqGy2GeOOsXe2z+fEFexuornYYB/qsBnTJBh1RAcvDqQFMEitE6Ixotc3UrSUbpQpKWoav1PDexyBPeRN8Rs111ei7b0T/ySfsMcqmRSiJQuIw10qKnnt5/ItSXj56U4HftVa+YSyV/tPxwJ8EuJQJcp7IEMTEp8z/y/vqsZBPATtZ5a5FyT753wkRDihPX6JMx77AH42dzqVKmepzuJFXUMjF0mmqCwgZ/jdOUTZTlVGo9t0QswvcS+qQEwx0cdp7GLVxi/HF9CE5fp73yNy9RdNVkw1CK2WYoAa5eFmGXZ4nAOgn+II5zCSLiyM5FgF79MN4LclbzAmj3daceoPd+8iicgPuu4HJ+V9KeHYpe2isAXhPHth9kCTpkLFgPExz5UhSW/GhIHt4W8YwzokWT6YeOCB4la4MeHwR36kRsben6Gdvj1txvNbxLUvs5as3/9wkJ09IJfTbZtyQ0evL5mbajOFWv7n5yZY3N6WKbivUAAcHknmJzCq4X0S17+kcKV23B40b00pbfHEiqgkA+BadINR8yamrkYa6Dfye9QD6qsxMnK/r9ZlLwwIz9I7+vvO/VbQ341A8+iwpF1rwLtojx9dvkTYX12O4FlVojLOqjhcG74B5s6V2Qls7/C7qicaw04QAT8fvyf4X2PsDQBOv7YwC1JU20Wwuh85RyQvZNfwowePNmsy/SU3/3Ef/loTTNZyFrEsTnwQKJPJ0+1LeHbkJEvkL4DEAl/kmyUNf/lbhuLAxw/SZ+BifNaJz3pGLUw3/ImoqRop+oqBwV3/4dlIJhowtruANlgW7kR/gvIhANehaq/igYM43XZXaYkIEZhtOfAdjFbGjdeweEUgOIipvsvxigcBbmpbBPG+q/jrpetlpa5NE/cNqxmkxKaXeBk8usRUsbktYiQ/hMB4Q6DlPJvaLDt3HOUAmYK1P1fWw3aif8c/pYU4hqRaIOdZ0AHEgs7WXE2KBLbL2ShiX5N5HbFzBkK/fJ/cFCPrP9zCsh22kYy1vnn04ccbc3nlzzYXS08tpn1osfXeg7jm9IdBPBsnv5f+7Kzr9uw7rkfnrH00v0UBV0eAUr6f1Z+6pu/uhkMmSDvkETog6mWiRH3wrgMTl5lZACMWt+CHwcg+48n6IzWxFB6K6xIKmFzMjSyJvrjz3bDKxRH1oD274sX2rtBeZVY7U5qA46DYoNyknDkiGZhB8pDTM7COcRpw/oyBDyyC3EQV4I2JeEDaglccG/WOgyGvcT0nNPUmtE7pM9zfipyHIMDyArQk5nIOhpOxHgm7e92PAcZ7yP6AQhmqSJ4SOdovVqlIgQNGhEDIZ2fS3wKesqXCAWY4i20ybjOD0yupmRf38dAsu/5DneQ3VT64SZ/4Uypvv+oJwJgzPm2B5g5eaKqB3GcEZAvmp66gOdr1KAaOyn0S20GBk6bXaDWvSyKEdowG9hajRb6Yg9PfxFIUl9Sx9ix13y1igzx54Mxge7FDY7mpxaG0F+E+AS4waE5hL6qQvxW7x7NGIcu0nyBTE6gVnnCFZFETwArTalNB3NR0Imh+82IS9I8lfwN57vlg/vG014Y/88FFjOBKinfr3cmLC1VLOaUlEfyQCtxQlAF6aBlfL4otafm4xwJCvDs+wPED+ZQo66nJVBCQd8syAqnpmwbzMXgggYecMXD/9MyBZmetsfZ1B81YifdyZKOgHqZLDV3pGZEShhSTLlJ06Kyn5BaLWaGgJmIgQfz9ddA/VaKjbifLWJ73HT5Y93Jf55eF6X4fsL4HFo/fkkenJGNl0HLp1ikRpxc3FzGqoXRXNCqFxJ+ipDmaAol3L1Aav7x52rDwa0u7vI5tdKHNu4xUXyKhQ9gm+MJ7qVm4CRF5qxmuhUTxSR+3g+FBq2IAFD7mcS8ZOlt6tGUi4ZtAn04WlOmsKCeg/AlVwZZ1qrFffORibkJcjmlGsC3FbljMDH7ZND40oKE7udvhlak7MfvfXCFQssINtkUUohdO3gc4y0LgwYCAf5DIxL3zf32nrqpSRipjX+IYuY+lZSjqYWbbHE+H+bK0Lz2rE7J6QCHkBNHA/X9SbX5nSWTSknyWbRmQqNZ9dOAVGMZAA4aaUD6GYHEqrq/vGDJupVFXTE16hBathmNcEz3kJKiw4h7UmV/LkGWFLXOLnbH5xecdduxWIaPLAjC/01SbaWBlQyvOWWEYRuRmda0oCZJ0k12DpofArgvRL73aSpBlR9iftyqYnm+hJ4NSv3M664sH3yNFY5EpCR04P+NTIZ9s0ld9POxVmVoXdQME5uGhsPjKyYLUewIn3SoRmU2asIRR51fk9QK6+wE9VIhnIuFE08+jBswdUMiKaYs8Z22iCziNa1oDcFx4hFf/wmjzpgnVVX10ClpPfaGyH2ALvgVmyVdKd6tnLCpuhcmQy5hD6iX9UpqCdcX51DP6/cdHRjQhhrvMRfnRnkv2zMGLHEDbLSd0tmiBPY6pPAmJWJcVwmzDlGnM+i/p1ZK1eO6kfO02GiwUb8N9NujTx7P+WaSVroWNdT6aa/ELbPCADQwNUfVv+2T7frDvx7wFYtw82b+bR2bQX17T1i3Q7oYIDwwVLmW91+pmpUWrLdB1/RSA6NI1Y6WrJuLnGV3vP22m8VbkyHmeJ2POJpGmbKdTwSFGPQyt2cW02e/1+68JlLnjvZz6L0fkxgWmKH4tWCTPvW5GlLahMhRS6QsqPsAg710kcN12AnqMXK5B1tax2jHd2ifg+xgyvcfWDng8uhxoDnEWXr0h90iuHXdsn0xaQ6UAXvkFrerpTcVD9Ytp6xX7ynfXUMUKlW5kaj0aGpod5zZHXZMEs796G3+lHGlnGN/oWcZbI5KsWpD1oxbspSOFD5Gjz2YnmpXnV/kawl9SndulxSuwXEf9k0EP5pLt6jd2OuK5++3VU6ObDm6XkMJYtli8865Tyv6IQfqPdG/Lb0HxDCzWnid3tTZ/e3YYO9b/RSuU/jV5UOvuMGqI7XGBy50ByLZfeoOE4NO/KylJbEypiRzO7hpj6mDZesJcfaZWHum9klzv/e/YrZIO2xyPc4yo3XBEfnGL5TXBYwZRyElw7Qv8WjTIpd7+X6gKwrDwCIn64ATDgLZrSf3SmR+EY6s8jyKpL4IQVu3S8u+z5ng1LFuO0pzNrTvMMcG0F4lOJrRHZHm/juhuyTLX5S1LmRoJ9lkQiaYrEm95s8Hs/0hsrl/RbtZtEuaPfZorkUdog6zcaGqmflM+oYQbD5NlSXTHteuwTv7Xxm0MeicSj9YcmJsitbEz4HMqfhv/8nqjjpE304eCB/x9Q73skPVn70PxGlWEdGgEWmRt5zOaVe4BCiefpgbhy5qCvqObE7Yu48P8UfC1H0WG3fhDNHQeJFD9oWQFtFo+2Y+6BkaZ8lzwp4svu0oK+pO6iqGoXwZwGOoLPgv/IoJp6EUKUR0NDuavfYn+RUNR0rb4R5zs3aVRPZ6iwDkzb3JesdgI9dDgbQ/tLxZ/EUSE0I+3BdUH5/rildWZO63H1JjyXY5yIytxTgRiqzbnue53ZvEFy9iTqddvkp0nKUvORjN7aqSOp4Lf0FqwTZr8AVn6hZ2sU6Q3I2xzvNx5wEpXDSOMhUu9yWlCEq65gVxInSbZEygjodFWjbinKigg8vnnyJOAiysPMAOPezTI2uxHowh5+PLO4eQ+yZpcfOCIDLL/myY1Ogntx8oTpoYxXXCaeqHpHGHk7DEO4rJ1VRJsiS4Ic69b9VfkyQFHioSQwP4n7hmZtTXevndZAsckAMUUEsrCOSjjtY7xepw9OPYDGGNmg1Nzl7sdE13kuPMivZSYI1MOVVminqZkJLsR0hg1L5NOSsdfgpuabOboiOY0lxDyzu1ah0phO5E3W6fMfv4hZGsc+TDHFWmyzEuJOznIZu94Oen1FmGsdcFJS+MzznMzoc+uVC+8OVhtLZP5q274NrZ56fOKbaAmdGkOqCEnHYAS7AWm6NnOhYjoDdW7wrYBL7wpTSMgzgln42EByK4eogwyiTMRwxSDxNGz5AHatL5eIXZIMU77fwX5LaorpgfiX4nls7XRrkLgxmmyWyFXwDMaCXEuJ7gvqF/OKmwOIO9ltLL+TgATw7SyEFL+4Aid4mVXUBRKWoH3oYQtKOAz5lz1aJ0+ytdgr7l9JbQlW4NBBLNqO3C3LOCOyeB8afM5aHYJXNTeQXwTJ2KFyxXdQ4rC2nq6LN5FmpK+XaYmb6q0YyrQOhnlalqdEFAaJzjTb32i1d4/w0ZxK5VzCfuCCtYxRfuTggGAy+i4fxwu8gNzsjkZvyprkCOfn/n1iZb3eA5etA1HtRrG8OPTZQHxzVXrQ79Clw2TURO8CSYmMX2FC+a+kGM2dR1KDxULiit6CtpDZbfFgV1/gSAgXQxZEn58Y18HkaId32phKGxusiLIUcEIBqhax1ooyhFSKBxMn3UcxchxXjRR9Gv0cbJe0YjR9a7vYWCjbaIP8SML0XahciycKHoppBROtn1qfqwDAMrsibu4nOlTD81DyhfxgP6q90OmlCBLGV1x4I14M+zwtsuNb35g0EPLo77AqtppJfaXlnn1tZKuqC3htkBNNZzWAxFt1vgqRpiiZVcSpjTugm0q0/m1xK223sjDVIc9mv3ZFjbX77Y54o2kmPN3GBNn7VAbm3e/BvXoqbXx42nJf3yMNAKxfMIJl4NObJ/YFln6iO32UB8OP2byK/QlJ2dNFZjBpnRzdA7MpvHSs4uKaHRA/A+PLxfi+/uh9Zr+/nz/kUO5x4olPJ5TRIDL4OTPL994PLxUDtefePRiTeFvT4IKKoIMeJ1SPHo5YSlvb7TQSLnNLAZbavHwXQI964efskEwMpD+ITBQbnQJ1yEBE3hiUGoTUDct8LtdfuANjbipYnUU1jAttT8yh8dyWH6JXagf1uDIccuT8FpPNiADVvja+02mRddCBiAVNqtNRglZWHYme3GjMamJgzylNCWPXghDDOT0jQG+qfVOCr6n3CEZSz5SV16ftolSb2BrQyEJ5VgKJt+NiLw9FuSseCD1AUQJlnU+n+YLJuTB9v6kpRfFKUREo5SL3e5Gcg+Swqpb+DktX/CDhPyj7K+r+MRf81+Bi6TcvG9SckHG2Vcdmws+HANjypMJDwge9emv2KI2MMbU+yPfT5cisJjtXRU0eetmeIRjv5mCNWZgKfhXyCZ2ACxkHxnzgdU9UEwaZzFy9tX6eOHR2k2svrxw5Rx9wJDBt3AWq3xfpN2dlqQpvdkslFW8kY5VkTO4tm9IdtW2T2PcMPKGjrN6H+WF3KE5vQjaxuL0ZyTmnPUF1G7lx4dWHkbpBsoxIYn6y6l9MOmYoU8NTTSXKnPJ1s0CujifpPCb8HfvhcKED1trzCPNfOaRbjNCGCKMe5twgMDT/5eqjBUpT49AFHVv2sQ5eb2prfJOrME6DP+43ywbjJVgCMQk+zlncbPAHcSkmDvpRgnbqd5oNbMJX+ZzHuN/WPLKm0Pcq5xwTjRyGqoPiKH5LaZliVn+PvSEIqqTMH9OSZyE6esNYhqjCxKhhLZmU9gDONk/bxUB64dqNlQLeo37cx7wWV7Gk16BA848HsCGstCFr8YijgHprS5kt456UMPmwxCIqXBYb/i2Gllu/47BbVfXlHL/x75ArhD4KXNIjOewY3PgXcjUuqemzGRMdzAhK3KHBBlGU9DdjoqxxqOd4ZUJudMFgkjV48RNSrsc+I14DISihfZ288beQ++l1S0CJQnoq1EI+azmWWLfiu9YIHqS7okkkcUVvXRx6fsOXTfhMHxNqklbbFcr+vOYn2lns4cQE1nwDyvmhef2S0Zb+ur0bCeHN4R4h2DaiRpGVCDAQ91kW66FJQUq8+spdz4CSUL6LmLbwWtlw9QXQYT0f18UJ6GjNgiVaZujjrxfZeMPn0ycbafo3O0TKQB4RUd0348DEXEElWOEcQlX+vK6xUY2531X8Pfad2gZEpvWIIitI6BS7gl3lKqxAIbLX+CpY/kDiA5fvFiKsrcgK6zMiBePgtEMfxSs6QfFdjJ1lzUrEcf/BJld2rlezrLxJZisCbxUt5EEcyJAP1lfD29tdJnV/ZLuIPFJ0spD+QxVyXisdZtRYEUULwejNxPHnqbl8627GzzTSA9ygcNBh84LMsw9JYDhp9oJdGNtgO2qYgfw1F2gd8t3ijaKC0KYZWKMXoiauOGoBpAIwjnn9e+UdNdYRU+scQQ4XK+UppvS/JGDWL2hQMN1OMMowMtdZRp/+xY1MQkdf95XAYWzAgBRo492owe5vQ5klpip1inK4SJy/OV4pV5hvPup238JSp/wSyFJaBnflvuAimKEiQUHrBpXQ2PAB/NXlJg0yYpmyrYwGrqxiyP27B+SfWIbW8202pHIZMC3J1HKVIsKT+zZMqnoHtEMnszcm5NaFAuFuQCSzEDeS2l1n7ZM821SyOoADwcnO8sYdzjK0efoTp0ros/E2jTvVss6CRS5wwZbb057JASeb5WA4BtWq9ElMDX/Li6+N4uZQeRq/Z9oMejjyvaxdf17dh7VMWKKsXi9OC5wjjFQiq6wXA9FDpcpY2Caop5nRlWvbuklLdh+kkfnPhm7z3AmDUY4NNMMw9hGuNi2dm2JMyBFj4NwvL0vYgUuogtUwOViQmfHxvq3oEhlLUPfY6UD9g+CxDKMZAxVe7IXOsjN79QVCeSc0fczmd77OeAgFIjFGoqBkoevMn+TiouxSPrTmmvWItpaSlWfQKylWeYtRZtqXBqEmznsd/fohpnoUtr9/HAqlUSj8pPZ3MCRoi0cQqVjdLaZjgEbRq1xHTy+WHvCWDO6Ly9Akdtnns40v4Y3q7T8xA7HhmXV7aaE5QcClFd/uqB1A7QAU93dNwXhWkER8qwjTXnmCsm8Yj4bFNo/DuYXKq3D7KZ1fZe0CAgumAWKr5/sRI/qH2oHrOAkEbIVjJ7MZDxOX3nujaZAuG3RAd4Ta9F0NPULevVCrAscgeKje/f51O5eehPRU4in5HYqPnkbPGGnfEBcCQS0VBo6VSklq0toQd+Xubryw5myFxkl6iHfXV+DI/yGSOpy+uantOwQZU9EIx+0jszSn5P9xLXAijHXqzHoay12pUh5A78oEhIVKUUwhSogJjoSDJBjvQGLLH0XZ8y3EPT5h8rr0xZuOskFM3+bsMhfbjoAkvGUTuelaDmtJsaBz0pB6by37TTbrHfMpa1lBESbAj63SOQJVVHdvtPJcAaHU4lJ7ustyrkOQRmL3ZIZd5KbgOSwop9jYOBCvMNBu5XteGtIHjC/J1LNXM8zWKkbRaanH8K5bZe5uRfO12ikW4OPj29Q/zdlgUgE5Kkf312hz+53eSZdN5ku0go3bK7Safq4xuAkNBcYK7YLy7lEAruvqdDPNEqK4hpcvDeXKI4vgsQQA+0JZwhx9lP7EzVGh7PSmNrQkuRHvXiiIGplv8edKAQ3tN9ujgHDEf7m2SDIExlZ6NUkSD89U/yTOzVFqqy43ts6mSCJJ9S0Hw4VqXKFx1YGL9Ud6EWc65wuawmHLTRihafegB/wEXamDlLGqCEbewMQf8fcOw+3yCr9MMD0/FgmlbAuDJog5DFP2X+Z1j5sQxirm2ht1wZvl43KyY3vr2tK8GCjatMYlNjp0pZcK1W85aOZrT9WLwEuwzP8xg5BZx2G2dFiHFSLEvjr2M1HnyqC/kxb4AAh2nCBw3+JMyqZ+7HGsIxS+kdI4kO1vydq50M5TCM6htcWXr/sF83teAXgu2BXYiOCcESSgyRM7903T67b+lMrSt7NtUk0o5K1h4aCAR0ZsYDiY0n0BgR+ONwAt+P1Zbg4WBfDUFpkb4Cb7gSahX+UdPGWUrJ0pwxjA3TpruNaGfAcTwghmp+H0aS0ofom2n7fpG73MJyasJAn5H1YETz3EesnmmddRPq/CiMrG9yFz/xa2xY53NFaAqWdQEfr+oe5ez80EL1m7vXPA0TDc2ccWHgxhJfK0V3uu9WUxk0V7IjfyrTEJmlOimnoRV413TkHTK+SmBVmbLRNs/KDxJkjQtcyayjYmbsA3AF8z1lagcGhCeV9jUoIB2dH0aidD42ZHKuwBhB7HOL45z9/eKscSD4cBPEUDVPJXnI8zrFVY3aoxHDOoP5tizhLNpVYV7xRw3LlU5XnM9tuQ9X299aYLYbVkwbMaYTVBNGwp6A9jz4YI5shbRN6cwvi/0xKRkt+yZuI+hoPaY7FdfBcnSc8aS2WKcz5+CjpmwXyjx+Yn4ZZY9ODCBoVBTw7XIraUoeKBh3LThoxDuIgxQ3Ehp0ootA/dQdxTFTFkJ+c9rzqrB6tg9R1mw77a1XBpV5EECmBg6ZcN3J2/SNem1ew7qmlZhg1iqeZcA0EBMW3WmVftwS79RkRpoC15yUR4fxhDENAVkxnEGgqN6Iaa+jeWxTflxwH5dWgoHxol8BbWcmYdKCLlr6J4GXy3ZJ+HNM+ZPGnv1K/6MMptzANnQFXp6DNe/hI6K/q4bgwdoqRxmYWOW5CovXupExPRFJB3X3vuTjpey5JQKVxnrUZwhd/G6H0YxVkcaTTo8kDxUchDoUuDF2ixubUGcwNIaoDyac375zLkx1STtOJTAvIPtghJOpPDmFKg2EpHGD/FNkynjN3ucT6BCaLjENDaTD8mgdLGSmf76CdLMPj1yYElosg/rUfhKGG79z6k3QR5TkQQWOex/pJQei8mG112Cz4p1qxU9/u9pjNyfWRTsjIwcN49ASns8KStTvlJ/lutkwNr49kDSn9F4PDCC7PpHdUKLUJfxEDo9xDYP77svF7gC9ojGyKpCGxeIHwcThqgrNgFoghJR1Dxa07arzbbTe5bjKssF/Sl7CwB2lDWxY9wzXQS/PEgi/rq1h91e/8aImnzJF8Qdr+P678wyIOrI6tjwlnFEP8NhCuqIKU/Z3fMy/m1AN1t1zBUPK9P4VcEqOfEqCqnKkhjnyq8Y17E/82SfGtNekaKJC8HdaFf4isRcKd6S5QbkWfKTRapeQ2VKPTbFoFTRJBUtii84v8zq93Y8/RK8Vzd0f7hO7n7z8ph/Sz8MYoUi7Zhxfm658Gr7e4o/ONdMQQyiq4taQGV1lAlP34Xlt+AEgj+dvvSPu7KgV7xz7RK6dcvDN0dcWyzuSWHh1FRpaNUNcXJIfmmfn5E+yyKTl8kNGvJHuSrnXAeExrp6sHa2d6ssbn/ZPJjiYIXyEMRW08AOadaniiRFiVSpCMCaxDjJbPvrdloYbzZu2r7cSYimwZ/TxudwK6t4wgfSnJqQ2D+hEgpfZxWVrlGa4qNqHEQ6J6iArtmABP8+tgWVKeRov8g1uZE8jGRA4DYWgZWEJ+9ju1E0UiYX0xUtxVAgeSE9FNnf01hhkJPAX6KPycxhCXwkvW1sE5S2VBW/SqankUsqkeX2T1QI9P9Rx+8Ri7Zw2zz/oRjxLcPlUSuaQaxe5+1m3N9jK0r/kA9HYiNPwqeAdLqTHzLGBcIwo9I5tlo9hdQPYv3IFMj3T7p7k5E2B3/jZrHm8ZcfHy34Z+NtCOgNdJc5c4dRvXis1Q9oE39/niz/5+5gPd7jrEanEWj9o8oPmEw8rpAic8Tw9wd+C9gBwlQbCzlGV7UvDjl35eiTy8jtKI3uNGTdxsAELaUgcsV4cNB0x8QJzHKuuNkzciLXjVvKdCMHQewvmErtA4nO/AlfVCkqngxG8jgr3dgZYLuj6/zvi1n64atNuOO+PWV/2TZh5wFOT4IrNaoRwCK6mUnJqog81dWPlrHdI5oVhNUSCaGkymB/c0yDv0Acp943djqMwy9KNoYIFpsDBofoieFgeJhU0rzDisiPBkLAf6kZuWsQEJWLt0eX+qcb3JAXEF4v9RgwsjJgqWpY6rM6dHRIygSpoLKY2XhI9PHDrbWGamxdP3JfOj7pQhHKX2scugYTd9gSQ7vQ37hVkkQaoimlBEKVsZ63mEplpSA4lZz4NGAcP+pp5Ay+qFFtiEJQzSIKLLTUtcPmp+L2bPuiHExQtcVI2GTuKecNZTR9c7sxbwfiuCz4Lk6bQR+YbRqTuuCElT+JBxfv7IiuwfMe4PnD4OKXwPA52tEOeBcSzGUlgNtG0H/q+iKd2g/x5J4RlNO5oXwCL6eAF+o5wzUTZKL9jTMkRuNpSfNHFb5tywFBPv5+cUHz+iZuL1+Og0g9LLmR13sdmKu8+d34u5BiTTfYZoIDAZeHbOptDS4NrHaJHsJTMkHxDJfzK38SJ0wiePuHH3gt1mNelNrM/4gVfrIxZdkAH0MrfqQNgV9HHr6uTLTSLUrYEPPosxWwtrxz+RL0LhlZ+wEDE4c1luXdgsPWY7sAvttqQFe/MzsygkjUkynhwjhIsbOyHjDfpNe6+1SkqkdvFjKOBziPD9Co+CNxLdvKshStRGVVx8hKyU/cE0pQt4WMKzJRGr1yTVrGYKSX9NI/VYMi6mns+N4jTvDS6V7dVijw4RnDz8H4+4/vCKCxxjK6iM553YH97IaXS4tXYXTTSQdfxAdCuwbjQB1dl9TuqKIjtDQca+hjRhFyXe1wP5HmWh0D7Q51CZQKcC/ctfVO6Do3KUQTYYpYefVGUXP9oVDb2eqwDyTFM0gRWaYfjdGj9ihh8thESa8I0IaFQ90trCluJIroGKbim/L/Z5DQJVatazgwxj1gqEf/yQJKJ9eUs0jVCkjfQP1xzLLLTN0XMBkIv78p5Llfc4s2m0z2Tiu7VPr407Kj59XD3WMfSJaWp/iLlgpOPzFr8zSwmoqVxUuVtLz9EUasBJsdoqxa6GwrfjuWbm840G2JlgvwXKIirP+YFNocXfYqbeOAVy7BqkGlBudAbJ79ln/kR9OcPo+YGOBm2P1hETArjSblOWl05QEa1GiwzXXtXfgvV60RjEfgpM0ceWb4Sp9fREqJnDWnQdGsORaH8qR9zMIAcLLBCc3WV7BSTf0SvbQSfbo97GFKAj0fBCOFPzUF9U6WScnje4K5ApnGQY4NeNv6KMi0YFw3XTmrv/rkdkVip9gryh8UbmtN8yyFJDBmyzIAjKGmG8wMH337BPhvt7mDVebjW1jD9skujwu6NYGt7MBX5PbzaZT6jZOBGhsffdfeWV+XhTafuR8lnFt8wKZT6+LDas5+Is83rWK59cU4tUrjdn/5WGI9oQ5AsaTTbEIjd1poGlRvrOJUxcUpMZ2BWTPhuUY4VjyIrzbWnfFbO9zSBrLJD5efONHnnInXnJzp7TCcYTCoWlY/UiUh4XPWr6XOh2m9eoTBZY9/8lueOYpPYtf7rXpsT4rZ6FmeRIgr5OD1XZAebM/7KEPsnNBqDMM8daTqN6E2uAdPrt8c+iJB1rChwYnvV8uZkBzpJ15qqFslCRKmhu5lnqXKNNq8zX9nqBpoYbdvdA51m6fXR6b/oNR9Ss+WRxnNevZYTZNdOBFstWtOPOBQEbPcMh737GMQUsDrzWfprR3c+8T0LyoyrSw6icyZDiHEttT1zbNReDVbFQZURVzKoWbe6mbz367edctaulJK6eQQGVor/0HjgOFq6NJCksJ+dT9IHSaWvqudRUc8F8BL6AQLoG7euMF0v51mfVnEsApjdfX2VYqtDSBs3FYhhJOMhAq6CmLGWwG92kCDaEcYS1p/Rnhuu4SSvmr+Kw1jHMzeSrHsp3By2b0TR9zwW7eD6DwAc3v/QW8nM4HUhx44p+aOLYapx9JDFM9Xs4vCZUEtoNzuIlqZp6/vNwuhaeNpFVyg59D3A9nuMKjgdjDFJIkR9N/YXapN26RgQ1qGSSvMZTTzAhKJZtDMABm5YbvX+Jy4tROa/ew8uEOIf+jjutCgW5rEYfLaoRZPpQGMb8EEvcu4QKmDcDGMbLGCcQw2SrX/nmwKUoxT1zWAnihKc7V89qc2Re8uMQ7t3p2wohABaf6N/3GApXZdGCfbeZW5AHLx4smvNcNJrvlqArzofTr1v4xVpHsFI471WcB/2uQQvF/6eJCCS036IMoHjxEPSj0c6ikWqDNx/b8VtVBeq3WCcQDbSP47shx+GgwRheq3yMhWOOJTJ/RfPs7rqY22ymkMTddqiFObDUOZdZ0HDcoGWhMxvJg3GsSpQzZCO9e71pnQltm02gpzF+wJrlST0zriZTmr+QlJPzual+FtkHsRt/nAkzEnw+IYdloCjmvN52fWPIlHhRnAAwRGEWh6jSkOK4ymEVU3CKREQbgYnI1CuItURIwatH1y2gBD23UWZjYSM6V3L2g5CZFTTVvNqyVOmzY0MHP2mWyN4Nbx85cwwg/bksik0CL1pBW29VuwRDhr1QYda4rhQf/PUs86Ic707DysZlMhNxeIYk8fHHQnvclkuckcg4DjQ1XdnSF/wDP0iQhFq8bSQi0aG1W5GxUX+SE0kjFXZkGbLUUGHPULShWbkGNjf612LRca2+vpnHU1Mm6fPrpCVf2HEUPQukREmpFtvv/mOgxtFARWDp2QXqP3ZKTz47/aowPiSuihOKMkuosJs0Bw0B8QZXvVr3YUnOKTPy8L/l0G915FICPjY8WktvbhVCkxHC7vXFAT5QttoH7n803d9BfvQ0UFv8FrhIH4deJi7pBO6Gll6r9/9H9MqPTe7O6Dav3UxJCcRfE3C+ddEYGrkxSehI/8wWFWh0kRkkCJsrU8aFQnVjRv85MG33Yw3xo80gx4JmL7JwpkNKstj1hOQMJ7Yp4IAbRdOAanHJENuJqPSiZrWM6G6gF6rl7tHthf+W9fN+CdFtb6zhtGW7T/rUEa/AkE1OuRkq3cuUue9OX14VcAjLYWtQvLjcmBzAFXY/Myl1VER+zNNntXtst+5+s7AYqenbwHj9vV7YH8so6zrMR+S8E8p07efrRwa+kfuy6JD+igFEgDwATObOF1JFePuxQtQvQxwpb8NUZUZRZVgsiTQuN2OcrQGoY8ZrZiL019+Do4oHsbfw4s40iRxWlmPsJXBX/p4OYf9aVCdf61KcqJVH1FcNSelI01eRSxWQUJAEKQ24J1G6lYcB1F5sRpLAiljkbxqak6wnHt+VGUObSzWny/0jW0/dREyI3t71/B+qaMISDGV1Ov+QCcsyLQncN/eXTDOcTGNV6IYnWEp+eUTR0ec0PJvkW1iH7nJ1XFhgmaVwGV5ebo1+Gb5o3gWq6mHdLg/J4Q9SUAMBlgnZIbhtJDxvvmSeqTTuqTZLToXWuWVInf35HqYgVhl7OOsjXn4s/jFg6Cnwek0HVx88gfTat3uNpgskaby9oaigTJ/E2WFu1HwIpDPl2ZXzhNZnfq3Ygdmip1iWdzuI/qHG4bVo+1joBCD+6fcQUsjmxUwI+k9S8bnAjhyo1Xl80rQZszDEbIOhTUTbR6H+ptHUMV91c34EPfLdsdh0A1V5gUpaZLx9QU96QhdGJBB/kTG0Hm+wsUsxU6k5T2vCpO/l56TMqdEe3+/HqVlssuI1R1S3Rg4lFlRfdusg3W1v394GnpiJQ0ruUAVIcRVO3jkSd6ONSBNyXXo/GccKOyQxXyADmW9K+HPUWREUVMMA9LzdYOX7dDiWwvwb7Vq/5sbUuZCvGMwTTiew5CzGEmIvYJ3p0WF7XjHY5WYlpOhTYwwkw8lLFFKTV1SmeYXYqZfmeSMhd40vrPpBq23uq/kOM3azehaCuVAiRerISOm9Xuyk3oXU6N6C7oJpJD6n7LsJjb4tO1kjBYWlZB58eHj0A+WeRzG4yRnisM8PG6xvG4dnKL4PQ2cYQDnd1pW9RtfV4oA7trlMDVAiX0cyQlf96n9A0aF1iFWsFDNK2faMZs7zBk+egTbwYcLl1ASHc/D0oEprlcW+P5ETEGrMl57D+rtdRAHocWtRCRjYOaKph/f1FU3RbwjHul1WICx5nPYKvaOj831J8PvZ6ZAyLLrVZ6s8Vh4vdbvLMx6c3yYYD80ARDZR1l/jUm/9jZCjKl/l+Nc8l9k3wq/eHCyCfc7L7y9alRJddogzii8QJLgGUTmBRG+iEgnCHQ/reeqNFnutnaYytGfDR5JtEb5DAG/V7qHdSXeIhUFsOxou5Lm4W0dSsrCQSRV5pSrDWSc59uXkRWhOW7fWB1jN8gXZvAeP3fgMEAi30M4i7y7PetSLRN7+GQ5CMSTYsAiZTT6SXiiAiZw4odHNURyXUnLUJb5aN68ieUO9zpyiomANrYsf6UtbocAFNfMGDGXPdhggJY6E2BzvMqldpchQhYCvZROId8CDIsPVw5NBqTiFI/4invSl1/Q0jBRslgpMHmvKA9UHBSBHa2epVrp7ldWoA1AX4Ml3/bCevE5Ne8PW5+hbd2ob3cp1kSZslPtq0Mo0YhTHsQchP1TSHckM+iFI4Ruu7Cw5LkmUIH+v+8LQArY0wgURpxfu3/MOFKKNtex/cpJIAhis1bBJ+QM5wvj6lAiXpi2ieksEah8R/np3CKPFetWsNn20lSMiS0rP/5Kbvy95sfLj3oFP8xeJhuZk+GPfGlyS1CRzhsytUkZ3UQ40yO3Fk6iCgyJaR2K3pCSPGlGaRy5gn5eBR7roQaPlqAQ4dFww7rqBCY+BpfmtDKMru2QK6+9Q2KtMjrRkulS78O2UP4/yWlamvpDiZ7yy8O3gxHo6LRP/r4iTRy5/xOM3tns4i/9IknEVuNv4xZcTQde3VeItqyYDFeCr+NTrS6pvKAqfnMP4r6xusMFWPkT11roS4E1uUqIKj+CteDhowX3HhmrHegnuc2EBdAe4Gd60/eMJYkYha2b7ilgZYW6ltthC8nyGFt0WOl+oL1zPgneixUbGTao1y6Vu01Ebkw5xq/d9Hnb/SxxRJU9iIrY2VhJxv7CZTkk92fxDn88QTBQ412SDhZxYbzNu9/MJ4JCu6OTKeTUlsVKYTPA0j25qItDsLR5GSPCC1O7P40krPn9p5wCeru86ggGEstR+0mNDtc3jr0ar2TAVyM0kK9OaBuIsE7WBjAq91Vizupeb2xVlNLiyKjCw8T2UjCG4YqQyoh6NCibNEXBssEIAst076fAmBRe572IWYbelDnwEGfNNhj8kzTW8Cph2JpHEnn8XwPnF7MFQhb/32dujN4jhxmht01ARKOeY+zXMlqII4xFCKn0RbUMC+Y7dIOf+1b0dBbXpCG1YSIuyuxnxHhwbdE5XI2+F67d9SEBN1QZUXrjrRme8O60GcvNI3lhGPZlOfNIxn2/1XWJ//FRFq77fGLwZra1OmLqHdEaiBejwNSIS0XzZjmTkcEutOeeXD9XiOj3i7hATbk0FLEVpUecsI97XrdecnDkxM19Dyqy4h4xM30GX8nbN6DLU2rV8YTHh5Or6vJQ3bxqIYfgEBvFaPxpo5bFQXXRk+13ejT5nwmZRJ3GWsgphBe4r+salsPUWjD/DThF1F534dxjwn8hdYjXhAYMZHYv8xyuTex7bqAJ/oQ4iX7nLBTMJA6Na8oEWVxRqoEpcGkFOg20KoPd3/JHNjA84mxIIjAy3zECiqTpbWpKm741f8iBnzUOUSPi3bHgTXJwGCGsEMfyunS8lT026dWv/ZiN8jm6sOzEWtLj3tmUudkrV1ymL0Adazq6lJo51AvSu0abAyexupSrHUXb1BGolMr4DDrOWky/sKEA7uVwyrUDy/KKDrMxWy4SAfzEtq6BJLjyPd2Ln6yPEMlZtfuVzUyxONAmcl+Jjx0wcA2K7q4Ton9zHb/qM1wIJoFjJ1zMmgUoSZ/mVN4ZOWACS3BRJQJR5Bgne+/s7E2h2biGbdLu+ltwCsfejonzjX1C4KKnCKe9tcA4R/vqu8oSAkRyVst/t6Jikkq9odaXMdZ/Hr3Uqq03mhhngbqYdDImPlmHKu3uxqeXMyfVyKq8kP2vmG224RP/YW1cs2YfLSArujyEN743/qUN78BYYHM+tZBEqD+uI3zgy6SxFeK9I+Ku3pVlriLd+D3VyAotfmJHCCTjfJbzySM0BnvJgpSxENnbLgPyvKqHs1L7JtPVKyYQiXWjPrzW2QKlp1LycsGAQe2bw8OcvgKqAgwaQw4jyS23Hz8l6QG1kPGybcfMTGhyG7lfmyq5OibC5G9L7QEe/u4U+zxC/vPca5YOkzwEl7tc3O7YH8gI5dB/U/LkEsU7IdeqVBK+p8sSp22who2StXLYoKFZZFLxamXSPOtnRq98wu424VdAvAvHYTawO11mgQUS61ibR38t6L0JdMyxsoD1zbcfIS9f3v+Nod3egI4wUXO9kcgHnSpwxXYAC8O+Dk/kGuqljG515pWGb5WDRtw1X7TirchqTT8WObO102/6O3exutHfgE4rRbppcjTwSf1gR2zr5Af2RL4aT/q+c25Fr32fQxqiZqsuTBaDtcLJsrsw4dDMs9N2b/W2SPeu0i53bNRbA3rXpGrAzdu3/S6YTZmh3pLj7YLI3Qa0JLJPWgf8koLc7X9h99aVMQ9CCOpb8H/IrXeDOBiSNV08+iUhACim9paoNZ3DjJpc/diT3pE3SnMDFk9yT+rjFuti8YrN0shSKQavVWOMWfJh6vDC/8dQyfwngYHN/f2oFGOWf1ZtFVQeqeJse3lHLfdSgUwlr1ouwxrD8vtIvkn4MhfZZzCVrXfqnjB6m373cgI5x42ds6xBMnAMrFvEGy1gV8C6JYGY/sYHE4Jd4xDTmAysBHchgb8b/45u3j48INvvWg4GpW4wVWAnwy68zf3W3wI7gmn4DEvtlSD72298YdxIDJVxUjV35ZU9qmQe2aaTqYfYyNXmnF0YjBz0KJ2OTY6XJA5LnrzwlCveDNgxu17irmNgSTBNbDbp7VtilrOthJk3ZmftFe77IRmiw/iSjunYnKgJGZ1jl0noCu3HM2PJtSrvPDBo3zp4B7nnvTFPHtBCpdilFySvkjdtM04LWs5n4BbaRwUTbSyVeb/LiImhW3nsJ7CZmjGfsZHf/d1t+WjeEvTd+KIGGTU8R+V8RM9aomKtU15ZIGYpNxFztw6Ds9GWq/dNk5ZFYp1BRN4/HieBAGZm3PRJSTelaP7wOSfexzyGVdtU9v5nBXV21TBTYVhpbfjfNl7tDbCoDrZE4eMwoXMjFBglvOkxlxjSEIcee9jQTGZBYCimSJ1lsSu9oBQt9jQ/zf/BXMfVIVb2uUGr2in8hCZnGqfVJsU+5pvFgVmGvSbOQoh2xJcNbErZWG5IDP3iT2jMoo19STw5wMVsGxDuIdwbJ61C8cb6zKRBV+iO5g6mQyzv/9MAtmII24eNobW9esRL6n0udPRwqpHgooJqV52PerOjyT9Wvdg+Dh9sXdpEnioH1XLmWqcyH+OnU6nQQLe9yz6T9m38CdmPC6PGe6nsHuyzZ7bVq+hPhC4cuqCNi6t0j6/ZGGpSRFOEOhHC6YCTaTA1c/WdGyUA3FkGVJ1563MVOfpmm5bcHxb3rPZOl29fkvUFUG6061UaaTk76tw3cSH3XIllMayKqHFknf2KWS6ntf1SpMQyb3niBF8PRsnazg1PrrPGUhXJjf3LZxHdVxCN3Or20KmUGWlk011SBwlN9uUl94ccE5cWFCNomETsTFKOdVOz35dZy3wuDNVdtKrjf4Xv/R5rTeImolWUw1G8PkuY0XVKKo+miD0Za4WRKE+/Oz2Z2bRsTPlc9mn/XeGvxKCIaadEbvigHs6Ykh7G48bKdaEJF2I+3PT4QCnoWifVHzo7Ldefdh1ueqLLBDQzxQVJnMVY4UgG4qg+DRyj/uqx7M7BgUsgyheklPnaWt+SZQtWzsERTsXuF7KYfm+Qjtcs/Ce6YwFOwJS2SM/DsnAh0/e6hl5E//P/J09uVf1xb0XgceEEp8XiLcrpfT68ULDqcXPv4BsmRAJJYMpPXFbL2oOdzife7yxheawsK0j5EwU52G63A8u2DZh3LnYdU6bWjx4hnDBuumYf5XoGJnp0N9QbjhgMgbOQyb7AiobiuvQ/haYrrnZyyEV56+U/vpnEYTp1azbpLWQzLVYBR0rYkS//I7XIAp40IrjPbcd/5QodesZ/VH7r+HmnXQ2K172rXXJWg7EicPWg8DrxLt8VLLl96dAvbI1HdEf2T639meVmnoFHRWYP8JZgbQQYuk+la/rzpnz6qC2Aj8XCVnK8dYd/liGCCcZH2/cSpBcWic+A2eP+gybQkjhoanErYSGjdi7Pf5+hJ/mTxONdaj+nIcIjgdgmiwqP5JiCrkIFAHNxXBHopyXpk0C5GyhtJzcTIjTJR0bTlXsN4lAkcXoRVhrHora2KrBYnIrfnyD9uYSU+Z2GrNXgN8nLhUTir2rmOTwZ37RGX0DZrXOz9sbgIc7YSYcnG1y55HuASLNuUUVDlUUQXYUYdu9OJuLtmdtlj8TjWOyeV377YX/if/WuhxdM1qxDGeFGClIBxARpx1psYx7BHRbaODKjDKuziHEuN7lWveVpLuUZCul3EVmf9pbmAkNcjTj0VTjT0KQ+pmhB2Z+z/0VsQ9n1y4XbtTk1NH0N4YpiyVXSTlN24XZQtcfbYlf6YSsvQHdH6VqYYbYCfMg6XPElYBHnFFLTt2/8AgC0m+2JJHnqHlVNdtHqtpVOQLEnmTZnwkNoo8fdS35y3r9/jQu9ntpkfWMzUQk8WWzTcWa5UaMc/gnefBm/8ABj9RxvSDfXu+EoXOXgG1EoxZiqkeEAiS4Zj5IoJb4pRyHRop1I2XBrAm7U/SSGrzPY2irq7rDu7wHu+Th+6sootI1K4g8jBQsDd1cCK0j//DdoMQmip/cZLq7bC6i18xsD6gWPsP0eHmL2PYnxJcgSuoAN4wJQ6WwMNW+/xPepFmf2NOVd6dzBmTq/ebQcb6PBsAijz1GUreh+8qVYRiL1NXK5aF1zpIb0o51CkaUgwVdW0yWHHHZv8l40H3j3cuKU2gMtOUlVFdIHGQlM8wxGdd/3UmQLJKfIe8UKSttwTeyee3eWreQn3TlO3w1EkoWg+Hi/V9zqbKMn4UACB8+LtaNxDdmBU38kZwm6bLsjxxJMw15Xjxun1YdqfGgB6+x7sdYZw7gTOVLjtsF5HdVzJNeG77NYrtgxdd4R4qSeZ5y5c9IQQ3r/j+QWA2DgNVWG/YrwKKHo+0sTD8ifzcp4a+b69mBI1NlGDdXBfB8+XFQ5t/EaL7fWrmBXWHR4lTMQpOVwDiDTN0JjcvcCwz7pQmaxk35J4vBs+FSz2ykTwx3BK+RjeG7NBsH1kKa1ivcjaW1mkaaXJQl6GILmFyxyJdwbb1w5lWAYke48pNtpmCSNtRNlcjmz/+eV2LbT9dzO0W2bQc45F3hrzzndGM9wMq2r9+gA87+BEac/r0vCaPe/uKi6P2w9sbfu3WluH4NlijsVLQDrpcu8zUKhZeT2xgqp+gwLu2bO0wQcP66/VRuWYZkTJJXGy7H2eDaSjgFgIZrWVzPrbVq6ZCj0FvC4ZQxkxolbgLra0WRX2IzS3xxfOIOn9hdCnCRWucZCyDeuSY0U+siv8QIOKRHyE2ymaPk4GB7RvBkPlx119euunQrrlrH/xLaSN9l0Tga3QbpqfFNSPaSsDpA9hQlX8VXJcKZmBsLjWPUNQ3QFdbt9BWsqdPlOrdGzKZZQMs3tJBKlSuEw1NPsirb+SSQKkuEQ2g+pdNTi/bG2yTXmRNqQ6SRaFaVYKiAmVzNx+TKKaUy9BSZn30cRm1yy9Jn89L4dszCdpU8JBiLwwSen/EWrZkLn+FTTbpqNXp5153vwgp5Ik9yNDAlaR45gnH20Fl2+kNLT4o+B6Xshhndi+UPI++MUBNyZY+HDsGPeM2kEPPn1S+GJ0RHzj/Ts/wjdfLHsYeqjguQzguQlA8R03fUR54LT0o5qE5PHu8iJnQskNrxQedGc2uMM28i5pAFIpral5Ok3DqcmKUShWBBwi8jtlB7B4i74HRTu3pC8c3jnzY1M0qG9J/AJxByc/lX5Y/9PP6cxY+DlpBbM3H+DWAngnDnOF03g85af4zyYfhgg8nwaMiPktZop9Cnf+Vgo/h2KApmcpYMEWYXrDhYjdN5ZGo6t5EeVhJKyJ7f1Gje6/KYOqa6oLUVigzt9iBLU/XF1O9t8/vkoGoELLnqGTVBwQkPCPaN1M+Dy1bnE2ZdFXI7+VpMN+F8XnrT/GSmrmF/XzSAuNNCFwsGLGvFMAAq8HDP+WkUr4PRxvqwMxz+wFTNJuTqFpQWUTqDXdrMqaWyfDGX0rkQ2CSVSMB7/4u0TSh8m5KlW9JXC5zzymhPzGqhG6tdCkMVVmM0Kice26ZAYy2W5wCUChvC70jRmy7jRiPwIh5wlo/7ts/2fwB8HEM5pFIYzFARi7LBJLJg2airgpEojytI8+HApcxciKF91uWY1pSHq4TSVpbJjKGC3/o4lQEE9fWLLfiw6Db228h7mn52TPrwH5qV5amMQ7gneiVUP6h4fTozeOBdrr4UOU7+1ju+fTT7ZTR910ikvUZuUf7OXv3a5pEkA/mCD/UStOwNdAy/NUh/YH4idHBlm89Ef0K7Go42pISmKc/f5BSa7YsUs2VC8oI6OgjsIpCf+YLUToM0xSjNnh7kIOoH/nu/aLxXUDNyoNDTJwoF4j4ft0sFnRuY7iO270IJlJ5oszF6QYnM9uyZxald0ha4qK84Oe85vnJgEHT5RFopiRPRdD0mFGp3nbw4qnW5KdbqFqRhK/md0em5dFJsrJyM+ncF7GjBrtkQHS0N3SOxLP0JMzt3SrXFx3LZBkRw6GN2uOSvPsIQ1EROnNXwXRPXQdA+TDdKCncDnuw7zZyFE4zlCMD3lu/5EOl+iE+ywRdFvUOFf/3R10TxxeY2UhMY0YEnRoYsN3G5vlQ28vMa6UqgqQyEoHR1OLONSGq9vEt1iB2po1mf6khthu5iyT74Uc7RhUdqGWGYwJ/zPCjOFWeqKwKO6w+7k9Ty35Gt+cUa5UcmsYEAcqhhAH9FSbz9La1HL5HjxliC52wH9nvLJzTJ8cwO+1bu15lA3ooLF5bVw6qIT4sH6uaxlJKIsqbDVmHGOWmbp4rd2tul/9gndfU7bi7EpgSYo7lLcr2CtLO752HKYBCFI7x9JPkj6nhJHotEde845ovtbTHkkOs4FQOFGiQ5BC3rJ/WqnvfDsO64rLD8MIlUJmrRfnze7UAxnajDgsGIf11MPwVWY12umODZaZeXw9wvd2dXQt0wA9SA4vZheZM1hov4ESKiEPxdWlnf6rptAFmDt77v1VO0e3RHfq1u9SiOjqtySPevuL9a2qX/3Vxa1FY9JX9HwFAizwAwPy/ocFidJAdCI8eA48/BthTR4SxcbxYTUQk2vADFbPZkXCqXUtNwMZMQ/gWqISdM1KEZYJwHRgwxkBhb+HuF912JQA6NZ+2L3dtYVaeQ1ORga0ZLWWJdiYVEoi5BW96bxkVdUOK+hUfzffIKRAMSL82NZh97tMVKvYNCHd2NqvYkU9eumPj8U6tAAnrRXR3pwa4HTZISg9k/4gd76Li2YatCKrmHYShQQvRXO9ys0jA0uPKUXNvLaeajx6R1nPAmhMoCNxfH9RhmFDeioy/X3nxYflqnjH+hmOVKfwAtZ4sbYP0EQ60KP532JAPnIrqCSI7JU3lomaUyaG9U2z99Pc9wHypBmS/Tf19IHmupFbOP27J/iU/K0vtw29WHiBG2zkf16wb9+ngkD8RIRGabL5aKNuCiRAAEA3N7Mezd1xPbnM56Ue/axsqetsylVB/2An9CGuQpGBthI/eM6VavsWDQc8rRo/k1Gqop+wYqh5mIGRFmhRIfodILJnBBs0+8niqFO5BIy375VrcOeWd/f3kX0C1IsePZZkr6hQExtm0obPpRYTjg07mcImWhk0QpekxKV/hrMLKBjEWh3bS7ClvuwLI2aYqkxqghA1A/u9EzwuWzitZZYGugQYPk+VimpkQVRfSRKc3vuH+gGfGff9C/Pc4qgOu8nmH42jIteRx9VXbWZ78lPvrjbVV2p5Lv3EB77/75ipspFmKrdLQHqhA3owzd6wn90ZFUeouqiM2jUqEU6Gk+J6T39wOMpctq6UhWFI0em9qXFxYkEC3F0BswGHU1ILT3Xqfo4Yf0NR1KkMnqQXdbBMFiugc3Jkm1kdzplOUJCa+1kh+xqNklKmhgQO+uSU6XiCMA/ALz39KRync4G2DBdZXztOWC93fEu8ST5x6pgOKGXHls9jwsJDnO/T7UN53kldHol9GkwbrS3ZbMoFIFOpBFZ5GH5sEUYNTDEWlPUyVgi2YXsOa+fRmfWcj5lkAmkkAdFCGeOiOqCzkRHBP64Z+gASr/2oPHDA6n7cQJV3Yi9ElTLyxyBGBh9+FXbMA5936D0fo6Lh4/+dcOK5HyE8o+00xwoGqhs6GGowCGZ0ss+ijxyL0DPb1z0MeXNAhoDPaqdj07qy1IhHd5WPoZIoLymHOy0BCJR2aPMTctVzMIuYkS/VWyVBOvV9jsPdtQTnbzuvAPKSfgDCPbqcIyfQjhljvojhp0oo0yFxuicnk+fxRjAA+KB0n+xpaMP5QdZVRz4DjRqUCfo4s14074S67OwfX4uKrT+oMazuLhsfcpYfnbIMazrfA3JjmEbwBwc3rJU8PSj3jF/dhI+XDdtAyrvzszLArO9YrVaiXpvBOLhF1FGm130UCuDRIfOma+/o1E37Ig5tHP5HlhUwJHJWJ583mEo2A36HUyHLktqJ2oHN08Shg5strrvMMkzGlmS5djectILzOVxZ6q6/21p8vHo4Yf9WS5AyzyFm22r7Eks4IVbYcbx1S9pfzuTYU+kCstIBZ8iYru4/VuejTAUhpDCv3vhoDNl5cnlkREIBZTAhyhdpEfQ4JBuXkgzGBhKHjd9NvO98mcYvFJps/sg3k+zV2q+Y1lE892yiKZghr+s0XY2AOOwSJGAOnZwBXBOlpUU14lNVr3m7lg/M3c9q4F15x3HbbflDjjTdPcT30Nl6qJduKpDIra9h2iqF4LI53AsyiWSPMimvil/dAvxAi7pLY4K3Pmq9LmTPw31VlH3aLQKcvKLFcd2q2xP6JcP943W7X0oqQDO2rHgiowHixRDuu69OVpH5uyqthX8Q46+dDFOkeHxr8mizbBT485VVinLHf2lYmFx3uCeJNAoto+pSWj+7/GRwhINOcimd3Cw1S2Ef8O0vEy3fuwBwoXxrwtWNSSr8vIO3j0J3hBQj0kU/LDVkrwQbyRUAeS8jEz+lzUu+GozvdMPUn7tjAQOvCDzX9/2XxGaaD7lLwXh8j26PWRU/OXfXj80AxxS+X/+nWV2Jz7j9PKvBBvTJtY3r2JM/Bhd9hnKoiKlmzS8FzV2WCAeHu2bb20Y/9ximd52c+09ZoqVaICQLg/P/NF6HqKCqXBMRhNcUOq9tKZIrCcu6F8Zn/qq5jBbdFyYoNEjlH6eu0i4IpQMckIL64xRI4x4USq7kMIzbJlFAv6ia6IP+7W4yX+HcSQTIPYN+Hhr4wTJtuqtFl/nlZxPRAklwVhdohsYOfnDdMdxeS7nOn3fqRRlcPX6yCffuxRK6Lfqz+ao4etn9FCtjKFHzdJo+pUnvnPeBBTeH/aZSxlW96+bMgA/bcjN483340O+zGBzJSl+YyjWEXW1Kyjp05SvekEDmtAJYGr0DQD8bIL6MNYS+7QBNQ8MlZkB1lV/8BI6/0JDObN9wsd8tFxsnpxzos4Ik5lGgG2vdBx+4+RlRRh6xMKj+cjJJj4N23IXAh0AdV2ve4MXvDyvQiR36vM5HdLi6rlm09hfWUeeQ0I1NRZSrs3nzas3wy47VYGD/E5Q6rHYS54kkMcOc6MRQLCyCI/YuzlCUZqhjxpq0q16Z0ySWV47Jn6A7dTZpjBVf3s7ACZo6Ig6iCRqNSiT/SWBeuxICFVRVof/+lPgUw/WKVTw3nykhCp9gBsaOY/l0dFaIhABPCysez4mZyJ1eX2eYLwOhTZUrYklZ8xWME+zraKRfKmX6cTI1ypauLFg2i45tXdCu+H4KyIGhstdfMXBrqkJnaXXs9zkAspPXXroGdKGWWdu8QlmnMgeDTovncficwCCiw1QByeBWiuvdrnKN2tUmOmslnXjsVlDD8cxnlEspfZwcgbviPe57KKtaq43b2XyZkyvLerwgSuC5Ytw3yB6ydatj2AsL6Ey9N3pgfdc8qLplW1OByojmfrvgQSdFwX3Q9eDKTxvx3v63U1oQd5xMgm7nsTk3dSaEPq1TMnGY7mob68LXYcZhuzvylF5Hk1L0Up4uRgY/t188/+EeZ3FMe5o9qIkcfoCjsboiGOWWWHsF5ehSFmqRhKz05B1lQCApomnR+uGYv+wJEXnU2Og/0+ZIbc+0jJF1yvjensNDWUV1pEqvw95eJbl6l4niV/cDbPbF5DWGEJIrnmTOKrvUAi8xnis9KVrZmK6Ebs+oi/ugGfqbWGnFBtLazymYC7GrKGtyp6y2NlfIoiRTNInazO2Z/8d278QW8+V6gdozzPg3wr8yHqitslBy6GPi2mLe4ujmD1qdsJQ7zKR02h31L+sPY7BEWEH7b4nSdRykbqNbIj2XgZALYjnL55Vl0m6fMxJm67jSOjsLHjUFPye51e40FsMjgLoXK7c53iXz1WPjPBvm6JVhYDLdX/T3fpla6bhnfrDh/dXJ+i9laz7s2Pmk4sG8ZWv46qWBu0e2wDcBA7zFZciKkYOYIUzUqoBWVuiw07E8VZabg/9u43AZT2AMtdgh6wQqRaQ8xPoId7/ZCXhRShfbdZiqck3hx6AMYBjmsjYCpBTOWd7elYWmQyoKjKZVUqZ/oZAbe8jIApI3qN4GIbblnM7c1GOt4cUXtH6xy3S8R4GS34jD5llJNrLaXi9eQflitNIpYR4UbEfCoimxVA1O8d54SW9bAkIhFVL4Otf6fAIeMyvLAzbMXL2PDSpmRbajYfrHmONW8DTxRpwL4VwYW+Ab42Wxmc+4zN+m1Ppa7bX0UPrB/FYDOqAVAeuqeibK+9kUP2vNns5vhWYy4kGGk1ifDBpEyyUNm9DfBzXCAuckEoyIzjSikETBDGdbhcbQKcV4ox+mH22500mQ/3y6QQoQoPOE1iX9R7VnVdo7aQMJlekV6Wea3jewB+cZHrzE2TFTZpsshXB5qTDyioGHeFOORc54P+LyEU/SbWxJK/uf6qa8LINinsyDIwK0zwAj5eBrEki05NPapjh01aOIkoKa4XBq+SLbqSueGxwUtYp4TKj58+gQH68ve8luq2J2roC5DzmaQfynHTUveI1u3rxCZG6ZHsP2A3B8UFF3A1gQsyhsr4whK+1Ed7D5xqHQP07FjbBDwaV7m5EdXAm4aJUniP3RHAV1yUyy8SOvPXVMygF+xht3gac+nmJIxkTj4iwlVo/3+kfJ1gLkMCOB8Wp92ckOK7vA0gLVq5MB8ej/CQugzOvkwmJaH8KJ+pgSmeWmzOk+9Mi0/fUTcm7eCmQ7leNz7YEMoFZVSDUu11fREh7tO5vtD0oSbPAraNRrdaBs4SdTZ8fUaK/LcT/cdt7Ln72cwvu/cB31HzTXnAityEoheIhAfHx/sB/wp1QN94DCOCxF49iAoSLdlUa6MhHdE3ulVgxhXTXV5wEO3d0gCyGts/IdZbrrVPnky0eSR9d59zvgB5lJoj8eIsyz9cfM/YsHdQn4dhMU3K7zWC4Iiigp3YR7fYmbBpAQKK0+KjnG6N0R/C9bE1PSkHZc+ethyPTPX4m38mohSNXOpV1x7V9BmMNba2h/NLtTipcYR2AtltuL+7hdnvPkoyOj1enD6087M0F1NL/k/hCC2tTmPHVS2UG321hIEQngTYKtL3QwEL6ZCHk7QQmbO1nWfpy2qeYbY9s6HEf3Iyh0SpJff9v+DGgAkqQScVGEPx+kOhSZgTxsnqsi+fYzoiNajeQVqPz5oRXhVQyzlXbUF5+xKQeZZgRkuIaoNcl7+FV212ojQEqBQ5C9335nEEGzPYxcEMrJHjNb5PbuboXVbWsSVAAPdDLAMoeJiKDWLJr07b8ycv9+1NnrBPO2afs68+ShQQ4RCA9huhZ3YMIaZJm4vHCfS9mjhg9M/DceAQeS3m+JdQ746iB9M0atVZBgrcQNED1YOzuH+ooKvNo+TjYzj1t7L1bsfrzgoEzdiW8ydKb4tmm3tNir8OpN3MdLExhsTAEg4Min9hf4YpeT2nVV9+4jFHKCJQKcZwqs1p5MXmZYNfXQmsEpHgQ2y6LAGZk52Z6J6g8nIuAydPJ0QYNuD+u3TWT6DALnVbcWK8yp+9f9fsvXjM8IN3zsz5j90TD6RQkG8WsMT0W+yT7iT9/QBVKJ92/f4CSuNxRmU776axuCWoUy77f/EEbUPM23O1PzTc0tdlDEnVunTi8XJ/yr54u8vw3TWBVH9sERv30wzYqCHzWRAMEMmUoDdJpBPbfJY6slJM5QTLcySDeGdBYoGL+CKrOHI9/ZB6nzZ8JP3A6rsoA+DbfZWG6Ryn/0mNzJBtvZ2vpG04ZgfnuiI8ZaCarhw54k9Wgqswy+k94wtMdlzi+GSuYagPaWjz3jsRo8gaHgMo59xevx3uibY0OFj5SIdMCVRrOhq8SnvFwV10NAoe7LorosE2Iqi4hVDsBBdD4xm29Vqo/YvPd7jKxMWYjy6kqT484UrlksZh1CpUfFfrNkUF6Hm5gDLYw4qBm2aFRpvsHAuTZnr9JLzHLQn1/WFPE0kOTI0MBqPhq05EEg80MUsqUMVx/3awTlD/ccXAZuAl45nVBU8gGRVwxcf41ztKyltfID25bHXrtBunZ3Pj2cXVMsFrQ2LhMt2slQz6gyZWiQ/FnGqBaZKZACP3tlyJG10ym/MbOUfeBNLhWuNGXZfvzFidqnTnS5PH5VNJes2LXvspaYrhpgXz1Okvypken1OI5K6qQ9ZheTJ3rq146tLNz/QflcDZKkjLwv93K3WzGBEyXWVknUdRGk1KUQZbsPl9zBkeN3eSuRvln6Y7Kv2m+UKZ+ofl1zegRKA80WH/sxTMGTPV58o8bsE+ZOyT8Jzczrxs6E2lhU+oxS8pn8UWiXCt/RoI85AvTP9uU4+o6Xr7unH9t7GwDvC8ePnSo5KGzGoOMTmuVU1/np1AzkCWs2tBZX8l3miuqfwCt4xNtLEoR8RhQ5uytsVl93DQyadRJ/VOpg/la/ogMyQcgxbh5zdwUWbbcHRT9iHxeg3u+WmOfs7Bah/GAUH8zPV3K4ielbETVFoZU0MtT2JuKulIv37I5osgmI/PJgZoaPPyL/Iz3Lvc2T/ALefJcjobg5P8rsokT2qneaO5op2hq55cL/H9qpQ7pPLF6+Gz5HfMU1up0Jb0PIhlVRx58vvCXQx8r4EGzoQ9jZ7ZIgOyXwxNygvK33A7WXTx+W/RsKeVMG/33z5AfEjSj/JWVSu4GMhPXkwytjvnxQO7nJ0m9UCD02/ScNWwL73tZgxiZ9i4dQyLniSfHkdv7WL5KhByiM7Ci0Z+dZgV4L+PmVjqKDFrDMiFawaB5ZyOHY87RDs8iHduxhVRQswT8EKp/Mt/Lfqd64Dam5hXiGQmNe32PFLlJDA/+Nz4b6JfCx4DbTji7f48eX17YJG3xV+MDC2LIHcBSs7UgtGOfgvu52VCrzhdXF/0lL5684tqL7jbxlvX5t+YW3MgjlJSl16NE1fTr4kMgE872hkGNkdBBxTnFqFlVSCgNigx8hUlN2HjUPzFdu5c/2jUuimkWOPakoIKgcM/nLzxcQjxHoGtP+8KL95f5WIPksRwP1hiNd9k4tfWFD24F7Ew0K4XLykmp9j5V/Z7O8tlCP2s/vvFLkoIzfu6miBfbdzlrkBAFxPBt524XWPnT+6v0sbFuC+YpfHqmVPg7zaMvpWmY0b99ckaTVcFl2bixwMV0624vb8CrbJqjNHYaLq2mIAry5K15T/5glTeCI/5eYV8b7GrYnBJNDQS8+iw/yBeLokeKNbkuPtxw0K2QT10rL4U53m+g6VbWI9qzrxSMJLI1csp6gdEBHe5OevGtb66kHei9LSsnDx2EHwuy3FF4/DB/F/rmgk7b2ikLUHVVXSDmLvgvM8Ru2tbty7vCMRKtyYJyx2UpDbqOApleatReZnJ2KrIAara2lSVnskJvl0BdbQvZcA+638leSa+jOV3+KKQAPR8EYRvwZOfwGCzuYMh1+1op3hN0CgmhVbNhW/F3Ld/F/6Nk55sPHWdg0k7YMvBEA3OZaplR4anYm8XHvEWfTZSZwcyATHm7sjBOlotwVyx6Jgj+8pQZRtKC998qzfLCoh+SIlsx/Z7mu9QRzTE0ExUmtjVCzA6XJTVdCTS3GyVFOnpfLMd2yMaHVCEpnxVoAXDEZ3Wv0gSGtNnoXWMkh/yt1ebxZiU+sZcvf+fsakG2mhxI51bPydJfIB+CCnwt6SFvJl/AiFCd9Ze8yR1yP32KZm8hiSWoOsEehkUghOhhJLjLBHFksE/QZ62o2B4tsN2godSmawMhqZSZqiF+vmDRXmLFYEHGctERVfIOSVMQ2SsIfY5roRRNkaF8amUK4EaRIpIaPvirqh+wziC7y7RcNUac3qhqG1T0KFQPlnUd+U+/5tpCI9wqEo1mJ4Lho6NE+lu/jiF79oC6kTRmS/o6X4ANeI4pygtf5kRxc+APkztKG1WQTyzIAJX8zTV7HG6mjEaOLNYLOPrVFvvHRrsyXa/8MdmMpHgT3J3Ce9yy0lfTIS1tJHWIpjFSZDg97p3l/KFzs5rD9nDnSjThaTCcmgExUl/9VgEs3srgCnoiZCMb+p/A6wLYmjdHjN/WReba3TMMi62cXF16kpqGJZke+QrJD8BShxS0WvhzdWf6UwtRSyVbSZ9q0lJ3oZmmUV7QppklZ0/i6AKWxIjOiLxG4Yzaj6sbvdMxmVZBc6gAMxlgVTijkPTc0tLAz7o4zMWjd2kJ/yVDfXjchsXd5M62+YKax8L6wE5zVJg2M5NhgNRb6neQsvTWdrh5Ko1N1akdEkmJ6ZLH56pRXa/1u7Y5c4TSyESHbcslaAkPHhU0yeqWcT7KkGEEc6BTIU0dnMrxjg+VrRJDAaioeqLBoFhvRenIvsOc2rGrm5nM7jIScRKSSfYl7zlpMT5eLE5AL9Bzk8Idw5Nb8MptCT2bQyVCGMDYKR8tj6ui4iSCrArLyuklAJDcfZkcmRLXz4sX/jH9RN937aUNxECOniScXehfQSPzY6GPyU1WZffnU7/Q2fGBBo7Utw17+YBnzjsp49CpuHUj2uJiMkkR1qAqlHD8/e12abVEiIG4wQq+a8LybsmUcdk/wLaf5aO1p+n3IZRX6lFh/RxSHFb5viHOt+nxL6PopwPgOIG4fqloA7kDCZ2BAMrtozekEef7OiQLXjPtVsDrLMDfwRnWFy+Z0JBcue7kbR1cTP/HdErylIzwISwsJI92POAieMD+4G1/yW6EtdzU++EvZq4FcGgvFDkf0FnlxkzY6ClE3YlEKnZhbxkWN8tsmejWbMAKBtItHRjVgViLZg/GdkPvg9uPoo/R+j2Q9N69ojS9npj+Oti3kPHTGI1LCiTfsObZ89vAgE6q7WfTnq7lzphCm2YtEnt1aA/4eNjK+MoDqaHmA+mmPsiaOWMJXS/cdHwK4haaPoLCASnbvA76ScQhOWQOIn9I3+M3SnOsH5ikx24POuj2wK29S0h+LzywPMTnh8sgwCBOybj0q93KYArZW2Y5LM8Zrb/6QerBs/mGdmMRqlCkQHb/5v5BIlQj7Q6xUEDTIqpoLus3IiuBm4I+hoT51BDVT4E04GQpOc+Pc/tmalf8Vs6ECvEppEEeB/7ZNQ/bsVZJh2LSUSfhsMhNR8TW8g4Y6maJKH4pVso3C/OAu1hBciIN+LGpyIL3VrIp+IjCUF4SDV891PuYx2cWeGJasWHwOgt/+sQcEAf+e7NgDyNax0XAsG79DP2c4Uot9Na+7EH6xpJqOqqPo/QxSu6Q4LCeBH9JgVpiD1YdY5rJ/+ILH/vYpvV4vNr7vfgt0k9KvFEnQ4/uIPadgxwHmHUugThGgQxZM1LMM5eE65p/gAqt9HRRNlsWLWU3A8EEnRN1VXj1c4Gx3QECCGwsBh/QnbCdbv1Ie1IuSMDm6U/m2x6gpai59haBOh+O71xgbwlCCumkJJgJ7AAMz9BmHhE73UJ7p+4g5C7+lyEN4ptT/g2upNuiRJ8OF0i+oIMzWxtBenPRHkxhJ6cbicXZUYF9/gTqVKjDhbykNT9MFUrgSgubtFmY6wili/8p+JidOzMGHTmoyfgU2nWFtdAUmEy6mopPP/Adv9XLJprfQ2ryDqHl9yGYWTfJHr7fYUyh0pGDV2+4ulYOaUbYayFglDdN9EVu6nXct5wAXf/fJskiahnYeMhwjkh5EosACMYpCqSMsTHMBOPpR03hagvnOFGZ3WqMWYkeZSUDH6UAjTuouMdE5phhV87VHDy7MFQz2UNM70RltDNn0SrUK3zfQv83XM2xi51WjAp6HH9+ZM2YB+gRgLDxdpmmAczAq9UgxEIuvAodnQ+AWJwDEW8DvhgZNOTItAJfV4metL/fGes4uFEghwvH9+We6KJFOvws4rhSNiFMVnNd/8iJ1Dnc+2rg+MbD6L+Q9bBVo9nIyjIr1k1OpDiL+kCk73WOIsmQ8gxYSDMuQ0DWLOAdeoECehYtJHxE2MbFUVQT4QWUMO1A1nFm2G4Nmpx8SjXhpi4rP4efLcohN8yVNt+d17N3yJ4gV8AhAaghtOJNFuDeJA7RaKxCsLBkFtpMbbNXbtVuROv7b/BYAciOUg+sFrrFUw+2GlmXQndQcbzoWFoviHAu7GiPsBLTMBGcCKdKTKK8KvurzOD4+r0hs1R2vfqWIybFVN3sdQuxqDd/PHxRDBjK3jjWXIei7Wnj4hspy5xuaLp/CytBE7HpYL7lRfBz3ksYsp59tHswamn4Loow82rcCrQRjjS1pH3wgrH2j3/17BUHR/4CC2jQfvQsD0Q0lktE7JjYjqvvzgH2a5Gq+ta1Mxd0HFXADu4AVuSNqlfGH/sSuzHTKewOTdgM+JIs/yvqxB1kapERjwJec7wMhTJL8IZLfd3/xuzI+edE7okYnWgn+O/ILX10Yz3ITYcQ+KW6zfUj3tUlZCs5QDjqUGWS6hSz+2MZpQ7PvZkw41xcCf2DVJl47B+e6mJpNjP2BJPR4/G0L8I6oAVmxY6SoDdBMgXVMCMCXLmqULIC+xxkkSl8yA4AIKqG8U+x9wouXQaxEMTdT2tC+o+YQ7VLV9WAygAZ/ohqPKUcjWnBd2j4LE1V1zAmchevvNLJ+61bC5XgM6AEuh37Wmcsl+Hc5JXhuM86imJgeqP32vHyAXKLDAhZYsgPoJhclrl+V/CA3Hf21DR/YGhMCMI/RnRTcxxYSjowOqNxI86/oAtOG+lzuu+hcwp+XN3kGi4q5QzT/TcT1RJflDd1pYSku6fWKMnmF8WOGcd0b9eicyIBBBEBWYsRBk2nSNlvqj7gy9cQGqjMFPDXAuZwJt+1MM53Mpg5wDsfQpMI0Im/5NpIpr0maL4/m43mWdzhlFkBV81kCNrj1To/35LDhsBmV/fojWooMSFFc+70Z9KX8/GLFvH5qFo8BrnYOP4nI03Kb4HCnRI4gSkD9mqPkB5nLHIVKcuNzKn9FoWzEq1d9KgJs8EKXFosjShRFvmDG7TV0zvuJBOjzMWYKBrWZ6OLLaSVLZZBlFFp9SMYsjFUnuj7Ldrh6P9iqjgkaC+H87KMZ9qY1y6yOpCFkThuwBjwml/4RxA6PDeoxJ5zHSBbBYt7fyGjk88PZyykdzGRfJqNNNIQSq164Lvyqli++L/jt8YhWyJrmIUfecpnpssdPrCCjqvOsEP7T64R2kH3xTIYIjN6hIdMdQKNALnSiAbT57pfb20p+fpkdJ6h6+U+MkxEoiX8ERh860bGnVMXVwPjZI1lhaf0eJQOhVslyNISAGe/VrguBw0Qlv+P1GTFzrrqPqpxjUP+vzY8rdcbt0xRTYqWGdEm19w2wcbUVTgPS0R3Z9HsuhE51vI6kSNrDRlPm03u4ZHjJs2YV3/5f7Pnx8923V9HlmbtoeBT5CsKHe0084/2NeuvG+hbuw1uVoPv8o4WXzf1QQEbLUzUn8DKLwpQHFYQDQ03KkvGf1CIzXJKoyUAG9OnyDGruPq9oEVxvsAzos5/C3fFLGGL7yveum1ruecvajvjMX+g+OPJckc04KlvaYaulfyY1vyfN5RQA26yqTliysCfdVbfk0hpiCrYEDGXvNeNQVQi9rN99d1NsYVD5ehBpLyHBscsXzYa0G0tVhLBi4rIxhJNNr+x6bwSFqq9ld49cRyT3ujuxmkT/Dy0PHdta7QxDv1CXghxat0WXXYC7E6biCrbbwRQzb3m5q59Lga/QkbPD10CVoWFDGIdb7ocBq7xBVmRloodeQy8Xp642yYCa/CMewoKeIkJ7yoLla0xzKQsxGV6QAw1Vwphqf5z6xHRNJr+BYypv77W1K8dFuO5x14eOMsZ9XZIkBswv/+REZGaUFi9YlUVqnEaO2IaSRfHVWzJ0g7sDrjwjdSsEpKtjD7oDlD6vOyucRHn8xaQ876WASqoWR9nz4ftXw5rTN3BRei9umgY7cpNOhM4g2kE/w8o0Mjha7Cu+S1PgV4Do4AWgzL0/aelOoChyWSiEwn84LVPDEgZAMGBbs7JGVSxAPuWEvALhqzBnNgRdfT4jNG7Z4uv1iOz5NKgrphy6AbBIavG2S0LwG2OGlUDeOogWW02K5YSHda9X7Ff/acVv62Q86jbXU3vEcd8+7qwh78ZOzidMyo/+mea23qdpuVPvRVF8+MWf57A3HBj5DZtZY4piCC883tTsWyeB9mzvwfJ6p8Yf6NTIq0lXosv1zA60wiOLnw44o+v45fO7MLq/czMwL7iv2WPhjTgIK6hQk8sXtfG91G2d/EyLM9UV5nF7aI7XooIuupugj9O+xK3aftIFoOJH5Vk1WNn4J9e/17MR7oCCOuvkoX27e5JFMaHgnym6ziAf7Cvec560EeGQNRFpabtdAqwii2fFMine0I43+xdmBPqc3T6kDI9EreBplGpvcTMCJhCAb+n6dDDGTSNCGjsZKp9YiVM5kdIc7aPU0EE1z7HmJThyxUnq7npEXat8Ynx7bnvBnCN4mlUCmB7DAK5iES6gWR3MPJ6ZMb3WKDwkKJrNkGsKFsZ8vryNziBdJQudyNvUrRwEKc8cE4SIZUex68G1vc9I0ktcPmk/SWUKCh/y2w6zVtQAxfDpO2et8vfeEn8qaz2rqR+zlKiTE5bUeOqHI5No7j8vHE25gvSsU88VgkItlYHCjpq6t8z7dqFqr+7ZCQHKKagYvGin5yUJn2JR8hBT0QjsFj3QfCXhB8rwQiYF7KL/hRnQ7kgmrT43zsdsrl2dYTln0n9Zc7G1rs1xf3r64BIswPS4Uq9XgO32CocxkbCIkoeNqPaa+zqnL1Uq6NJ4eb/8p83YvZsKuTm/4sE4amYMjuaduGeXg+6/Err4kF/gmzLxCSWSMv/z9x2QivR3d9sIw7vP6PEK/dx0mgxRcaM1F6Ob5y7DcBCqPqP9kxMCYWD4lg8eROC/mTwR3HlJ+q6W4tza3vTb+qjnn6ajStgiQycxVj1nfND/ZJjji8vOinva/uqvE8KLzEpdtNbT8Q+InQxR/JvCis1lof1Q6vPpDDflayGDufhAuHRN2Frb6Rv7MD+BRK+dowe4wyZm3jx43dG2nL1IVfR6dDcHIeuzUTdiko7ADA2FH2Jv9ZaKdn1rwJ8a0DSjJ/d4UYgaTNa74ujZWMnfO9oWnTNnNQxTlldKd05YamJ4Kwg9EwTcPYV16iGWH94qVz+wYHis2YSm8TLw8QdFW6UL8/kqhL93p50rHPIUHLC0pCS7us3Y8oAGj5CkcH7A7TTTv30sG3vI9HGw14+CZrZtcYzhLp65I1y+0VCjgmtjACb8Vzchzw01ptmLGdUxw6w6L+zMCZrvG8d7iHNtO/zuNX74d/qXFJDWcquJ+Z+y+jcSBD5tmcKH22yaZgEIVZKplrEvAeCOD/jy7SB3Lhcv75Q5GbhYJoJZeeJIeVzEOGA972HBTKF1Om+dF19LZNbnSE5BGxkV2DVepbQT3fWGbbQu4HLEbOuD7oUG/T89Kp/Lpz6NGTALk0t9T79WIUWMNWkw6YgRQglPUBb+xwUkYFPNxeDzRWuMqnseli2pJyOzgbUzM/Gv19Pcm1KdQBo89BVy7xSVMJgtecRhou6XoP7LIi/958dxcaDxgCgMvGMBBc7ozUu00yTHp/gTfIEvCD1w+BLl/yU/1KKGMZFXVFb7HQ1gyKrJIC/Gs3cpfxFEV6eRI7DMduCFhLy3ajux9IgNbkBNVQP6YqqZHTAS0eUhSicgnTP9D8Wvs2RVbvY4y65wEsoZkAiMzjkLouO6AmfC/WOIY82Kmud2+WThkPSFhGRI1yyZHAEagaMKnHqALwZGEp4fbupg9DVs6boaZdlRBeKsyEJgCnQ7iAtNOyqEShh3r1m05+vkIqS17C9HrUgVWtEkkpI9S6JKIWV3ruA+IbyDX/NFluS31kr7e9tK6appkuEE80C668elmRg9ayCEgR1v72YA9i5fiQWFhi0QPXVoWOt8ZUqbQHJv6rd+8hjntoX8QMHEqWo/0xvlSC5IbDOLlIeL3KH8UGWfxX9m/JpSCuqZdnu2dlNWJVPwcrNX1JxVxm/VmA6Cno9GCvxeK++aL0vr1pUwVIyU5tvRDZFWrSBkraOZVS7N1lr93x+KOGjzAfexwD8ssBegv/jHVWAXkffn6lPO7vAA03o5Dx19rDA+G/EQngRBGqMK9XTUrRU/6WOSOIDyYLMFZVgWUwQxreDyOFqDSeZyo/XMo0+HFkLuyBKWM0L6BmSTdYWehh1hjxfBDfBwwNQXUSlfCTuNDgn+mKiBcJECgZ+NdzsLPw4OK4Myt/9rdZ0Rlu8w4ylBIRVi6NYIhivbkJ+BcP5yRnHzHfCPNuj2/STGkr24wZoSS1ZNIyCSrZYNvBeVhkskSGgY5St4lbt6EDsgjDurRENAFuKS7G3uaIG8K+xFBytEjxNL49FSDZ3xFUQWFpzbBrNCqToVB7StqVv315CKZrwLqbfRJsEBQaNWYiRkUWOGJ1yVIJfyclcIedKrWbdsXpcr4mdHqCY86jqDLItnbHcndjq4eVmFMHHUQy47oGxq/wjgC09AZhM7sUDozzg1xYsy3tB5QyWtYonqDiIC+Ff+8iiSFb5utxzbmFrIeMTvzXeNJKGQufxAoUqNECPSQCjG8r5dASxZmJ+X9rGPjcq2XAN40szlUQnSDAoa6fNUbDMJscvo8VliVqGBEJJYeXJe41q+gEkb+JTaFerNZh0+IEFSzpwcd0ZqYTY7xAFbuxgXVWyV2/AZQ7eYqZIBnDQNtsx8uJq/tqOZCv6+pqWui8co+NSqNx4CcAeXF7y+T63hXjUydtPZFTlRBQHSGMuRHu4oAs+h/ZZQNuo1RWh+7dJgZ31d3JMVGAg+DevG+1L64Q0/wBjlWNFSGjG23is/NsLB0SG1Dk8Rwdwxp0efP9X9gFq/1gJLXqdPt6mUKeEpXT3ecmpaHXNcmH8mlXNBraVm3KuM3LR/SFeApuILbxcYtIFeLiEzdCBWGqZigo/PzerwJEuhrRkQTljY34oDzR1bTwjJzzfly+T+2sgpnDIveaLzmfAVyC4UphHJwYcnX47SIOTZbRRth6z3I6zXq35VXRMQG3LKTYak+/cLmBIC8EWV7o2g0IjJTB24gElyqqNVOM8V3qbjyw+sQ4yx54BpL63+XrFGcPEKQ+0fbHsN3kzUzvI4PZOGZNjP0C2GfoQPJMG4h5URSi8V+pwD+k5LhzC2OZBaVky6ZL8gMgwhNc3k6Wuj5f1VXsbqaH3EurKIMqHy0sX0KuriLyRAcCxV4ctuXgUr6o97hbLCoTcP9yhSYlCjf6DtXvBScjBYSSN0hFatO16xnpUHHwrbb0y4m50/7XjUi1MT1rTmZUIE73NHaKnMc5MUPB+VZaObjBITI4RYYTQOHgCUnbYu2Rtd0mUB7ghT/mLlxtdrskDPrpyEiQIDPIHKCh6bYa8WnFaGpheTS14pMdy6afJfYpATMNKjeGGhn25AMdW4za1vYLZmUbtc64VRsrzMwJwaR7xE6s0/U/lAPuX5kZM+2jCTBFoDwIrOGvSOudTTopkd7AmTMNTk4dhjIgQsSstVTrKH2AU8tMqFf3NQMISdzZ6CO5ettH649ucfCK00TJ/wuMSAD722HgMEja+Sv2zZ5uc5tcCBcKcngpiRCjJvpgy4bNW6BBxex5BQuOgVju7q5az+hPl6FB5gXeGVmDn/xbHjgWp9vUH4bDlPBV6niM6/zPl6v1mZK69vEmh/W84MX5aIZlFy1ZRprD+0QhJTIoaV1LsgOPsRau59aYW+HWDdZ0V6jurDhgijKIENUs+bNbwzjXQI11z7uXVxdq7zrTEVMUPAFx2GlFH+wgFvyTj4h9RSMcQ5S61sJTLMESW7yXJVVRpahIJfGxxDupHCH6sQ3Pl2mHw/TgsfpKqyxy8TxeSAKQT/giPgz9hasH7z6k6vQDN2G99D/JC9dsoMUpaqN+SfdqWLEewf/w2dhtCAQfYh72N1LkkfsuX4UEy9CNqHLf8abL2rV8J6563YVwE9+ApUq6GWsgLD6UHySPhnwR7XFavqOpnc0D8yX44yh6EfiHh9vcGK/2OckTn6omhFCcdUVwKJ3joxno5y8+aJGpAGHbcgEz49nSy4Mox8NwbYif36NnfouQwbJ596xr7Ij3LCfbwYJeaSWD+ywUGIDloQqlxRLMWKhYokKgQYgr/CHj9NRYWttqMbccgPvzLm+r70/i5q6NlXBPzvY+zry30GTghzeJDDci3YgQ0Ux7POCZHeIFmVQYEkVewjR2TwLqjt2waFc9s9Z5ZNytt5TtiuYu5judSs+i9E5zeP7M8Q4eQHT/Zw2SZETqtVGx2yLeUmMUcYeyWurfVgFmr7fWHLppt+2BRcnnglEWrjxzxavN+I1GQgJEihTDsDv9zvn9JvzvQ9Sj7FCEFgl1fvEDPVty0N/lA+mqXdnkAyi38mnr+02rQYFGrcmnoxp08oppFWBscnrTG/hPoxQ1VY+9ynYO2uQ+gQ5OB0h02rOSdgEju0MqQlNyQUc16oFo4BRZUCnOKrkiaa4hBRM+Udu6Obg/6hospcZUPidB08PUusJ6XWMlmZ2eA3ZBD9UmfvfbBn1rV/2lGr6suC1w/FMM6l1SEGNVi62/yeIAdvmGxNOPxbc/bqh6IfkEWDdeQ1k3niuRn0Lt6Qx+k+6j7B5PSfrMGjc0bS2aQeXf5ihu7a3fCWXrPlMwX+r/EsvW14rONijKTkMotexj/Sj51Hw8tdNB4frkej2enLTLC42UU/MN/IcpzQRXfcpa9FjLlKA5qOxJYgXCNFYsftSFnfMDkpzFXTyBQCfmPOB5lFb3X8dS8pDCw43Jiq1fP3as0M1Fq3fl2OwrmfZRKM8BV13Fg/HxlGQt8tgCGfP6YD2dCzcmdXHDNpuA0B15ArY3hj7BlDjP3st5GrskiOb/4eUXQtQzR6mT60JKCXySwkVOaMUqC1zi7nTWTfPk+T2eqciUxXzVSVI36pD/xZJnWuWr1bb0vaYoO5X8zpwPEv8wK/5ystGcqEIE0O5sK6WGukEYRymFxvqyC9WOkza0i8nSm2wQCEUtcIGXVnXgtmNa3qCjB3QKwm9c1QHI+mYFuY4NTv1GcYfYMP/P08ggybh4op3tHEnj26zxSt6WPwfEa8FkiTqhQX8UZt+0PEyULtgvqc38ny0UpJ9/27VrdZLmI221WBSBT8gbbvyu+L/j3zruXtnYKsz0wU78UYx0hynUDfJ3jo15E99NhSCHl+w/k73fBSVXXDMFmdaLtofOU7nU28YkNOEiJTZihDeRRnF6v56YOfjxeuqFZCG9rLlE+pv6h5tSvFwNO5cstDf9z+9k1CqtMvd2wwlLfmtKBdrkLFYLx6Anc3sW60DzzWTaT/O/kwnvNYIvKV1rQ2IJZj1xOVAInXgt/FGm6K/0U403u+aJGDTzzOtRz0+8MYA6OCA5N16Ey1jY/QYRtK+i0BhkrW071sK6oj5iBSVLbH+dOsI6VPNGF1IpjPR/aDjQvD9Mc9hcVU/IQtiBm5iNTsjln3+Sq/VBtw+O2dSoxlmEEOHdvZ6N/QNraEP2fhsEoFPgw9FaXrbWnlMNewGo6+XpN4DCAKqq+IUxH58G+iO5XywrPz+cX+po2g/W7CvnzB+pcAB4S7pGbSWk8U+Sp5+xCarEvCL0D6Vr7ipnXj2kPuZxAtgcflzezJx+P3J0qsjpOMjPw3Rk6l7xY8sX9apjqv0CaQIlFZX6mjk/ffTdjVAADlZn7Edb1pVSijDaQJToaD9/Mh+dxRMAoXfxpsivMXVbN5078Rg/lX+PJxN9yTo56i3lgkT/5jroUnpZkk0P8qztzIzTsGGikiTcvSEuDodHx6tCxT5FEj7VHBBbvQmbmDw3cLGDh//+8iAQn8j8dUO6ZdWubZdUUAo2TSDigIWB2jWpYJnaY6UueABa9BFTE1oNYXAHVbglnpcrRuQu5VW/ynPNpm/Aa34qbAz7APvL83GnhSRIELZEoDWKhS+AP5yOB/DBJzoX96RmPuUuAC0jHcMeWG0jbjvkm9Vb0FGJp7IsnHsCo5d4JvuQV41HQktSFYz6bn/cy9lmdFrtckGxOZOYJo9OSHadZlwuFcSyIN5gMgNbm+7QELE5O/tjnaaLDCfgTwpJOdZSrA4UnXaJ+jw5sTCFhqcEFaKDOnEsfx+wyfMpTQj1FK25p2aLYb8vTlbFPXmVMCuBzq0mrW0XefNbx8lSHN1DSDVz4Q+q3Y4FB4+iwQC3QXPk4fBqKnDLnNjCJz1UYDLmeStyDxoPFUPEELm/2nKc4PiX8znShYEYJR/T6PGiKAKTHelwvoEPrbzP0dX6nAPwajk+/lKq+1WCbkv9DmdzYpZryQKGmKwe6MgCVEcT4cd3A+k4gteFePTgMt3fFT5OfKymhdCv4xWJ4TMzXRLy+9pPLoFw8Q+8ozfTghZyDLJCmEsMp8FcpDrERqaweQAvH1098E+QhefCuIGN5sD0tqlVpJZZR7LkrM48exVTOPZK7n8Br1NjhgULYj4MtL1GbK9JEfrvmwyTG+q1lmN9ZabOudyFDNZyD44kT0E0Ls4lrv9LkTP8CgahgGDaP5eIqJ1XKWEZ3fIXWHy20l9SM2KZsjHcAmVI65rQgp9W7KgUq3fXD+XA6eZnrDfhRPP6yZ//pYGZF4bVzYsmYE1jaFvk4HGJyfOMS07joNV1ZkUrRGvbjg+09NSYnPsnUfkR8Uli2K8W8RXGmvct0uWOKVUj+eX37I/ubm1sUzZIU3iNCjhZj+jb4zFsksOus0m3BYZgu4KCFbpPf3jTlanWSgZDZ4+rtEn8h0W4sch/Jv1Lm/NmE0HnDi/67d89KjsKMg9udIfsdFhoLwREysQ7t//JVllSqHI7PqFmRFxO5YYS0F0oo58fd4H+3Nw1Y0nRnnTgxLH1a/tS5StWvn5fevofPbo3Kuts/aHq0W8ZUUmGDZTXcYP5kdMWnIgx2YWjdpvvOccwy8w3r13qGH0AyvIvJ0C6haYIkQDHlGwWi6+Az9A4xoXKZhNism6VFTauebHCXlPDCLl+pKsoDZu4LnMHE8QCAtTdD8MMJq12K3nJPO25lGUJb9h576UUZsUXhmcQqadlqpbCdpJ1/1/dPuVyZ01LqI0oCPqBC05NR1NBMgD5247k38fwir98WNoo6bHoGI16kHY76R6YQjbhfXEzuLv+6PvRnhxKaGDzHYicYM484iYso/3pBH/nGtoZNloHu9zbY2ClKR6ycsrmIuOaAIj3uQXfV+cMRNrdJiX54JdigItErxsaqqRDKeUH79/wodSYFG2zGjcBuYo7tKNxgNDpIEjD6BjYmGZe9m1+e6eLPJkbbxDlIlR2q/jdzBrmG84DQiJFGQ+1xr9AzT2h5UC8Yl9ISQzRLV8Wr+Bci67OJupvfm05LaSuVtmCXgGKkAZ4T3tOxLsmLHrej1XKEb8/5cfhcxiSSx9ywcLYdGIvOrFf6FNmrPOQumhFzL9FSmyjitLdT1LeENwK0AShr3tl9vMgaYk1ih+JYPoHLECkq8I3p8iq7yVbNdvNTj2dufitOFkwmdA24PX097a9IAZ31SIb312PjLyneHqq3UlsFoVSqPeHHh8lepyTZHHjdoYSL1NFGRWxj6yVVAc9CyHK8gq2yHvjRx4cBI1VwKY8yme5AURJTWojohdvUi5hZoYbIUOSh3Bx1y550v6g/CwiZiE+QUh4+mlS53o7p83rQaY2vvfvOgtMJOU4EaIfmRcJhDE0Wu3PEk0BgHeeFWuBW3AKNuQhTNZGvv+NGzjJ/dJn4aTNfBxQnfOG0Qr8i+/GXI19VD7bqqWk+c4AbLoMz6PWAISXjK1wQWSvieigfrPxB9y9ix2693m2hPzdmZaH7Yl1fgduQ+Sq6b00GdnGbbFA/vkCCVqUP8l6jvxPY00BvPo2WIX4ACxKtMsKSc4t+5G3pUaUKZJaFhgKoysmETLCWXG7ReWqo/COulqEejr8RU76DotIvWDn9CyHpKikGEKt4CvSGXlxL1xMASzvu7UMHOanjx7Pz/vupdlcYo15NIeeROaaXJRTgDHDdOmVZWQVcufN5AjaEyZSPvZOO5RbkSAlEvgduV4XgHe98cw3LF5MVzKbALyKBYzUtH6nj1WBiVxW9lF8WXdehiJz6uWqxpO1/0h7QEjMUpX5JyxL+K/THwEKQTBi3Q1FRq+k+m5mnWf9FOIypIk08YKO56nY56xDNo80x335ziTXCPV91m5+3Usoe7HMC21RxWDVRUioXJJAwzvbFU3ohAXdkmmnRUYCzQ6cOjENPBr84SOhy382nOAJgZwwRNvQHZyl8UJZOBhoTl7raINeN8wpGPOiEF59Z2SMlWhuJZ5XOMbzDJHV7XJDBXYSWYhhYIncdTgm/5fD8YuErFkSAMp7sk6BYgT857H6+s6XJWdiC6WzmbnQ87USOqErx965MpO1TmI4UtpsrwtaDE3jYx1Qa6B6jPj+3X40lkGMQddHobvf8KFqb5fyoFri//tZ38O/+0Oxr7pfowtm37z1E/PPlWv/a/ADp2/j0g/7NyHploSltbZApgupTxurjxvSwUK9Eam0AHniA5D3n7+HVjrFQ7LUWWPEAErnUpKrNOr1aEikfRixqOFRxhMNTP7pL2ydrOLM/lWHxHTsoS2a/6I8AOpUPnLgyculuN9P/AARN/EVRsRZAQxXADsqvl8GbXhLmMB5RO6a2Cs3Efe/dYnp5xdsxx1NU2BGNpr3EiowobARVgk6FmgY1TZuQRw23a+SssAyVzeLczdCc4Z4rJLaQ5JPbqJi6oIGWsJgme84I5B9XvtWvUQ3arjmCvrud0V8IyutEuq1fyaQS2weQ4Mfpbj4EILjbzWvJQQYjOuHSJC9uXXM8IHv/Bwf/yK0LtjjS91M5MMZEsPD+Fohux6DiVRNIZ7mqFxz81Y5dhXIYiWLfV+ToIrjeybQu6xgD7GPGI87KRG1+kSa/6t5n4nZmv0NLi+QQCU8Usvd7KK+LBuVeah2gnjOGGyo7z/UJnYpqSGhym64cjulzBuPJTWikeessPXqboyAIXN6ZvSTa+KpvpAZXtiDox4aEtj3k2Inr7xasOzGBilIl2naQo2duQ0XBZ2aJHFLWQNjOPukJO4Wkfm7AEoTPTaDXc/dqaAOdenPSlxX3imocovHBiQsTCEk18ZjK9yT/a9KJ7b8m4jj3XppKqe9AW1uhFuHI9fsNmluNa1iCx22R3FuK6W6tJ6Xm+LDXq4Pxbco+56wlMjyTPhW/KzKtP7c1x7Vx8ZIbVxRA5cetJR1Sd7sG2hlYplgJ4Ie4UtI/ThA76HUC1gWO2QogCbAd6DuSAz5L+H6Ykndn2It5878VhHHwxcMrjZyTRGSM8XRj3qGqODlWPDNCf3BNunK7Vzk4CavZfDVyJKzgb7noA0AuDZF9AfNg0OWM72o5fITZqnmqRLUve8dkO/1WIEYC2oCaVR5TfbuCB/1M890CYvIZSd8dHz+oqHTI6s9X8otCe290+ZkP700AJtuQFf0IpYAsK6waTsOVP7byEwGzDZsQnpCHeUGiGVMOKAiG34FLcDMVd7nq9bQHXA3cq9jr8s6dWEXJIi4cgAojKO0XqJBGjB7+HVWlT9ETk9V/fFylKgZz1IRNkJhEXGelDWR3R6Fa8poufjXzhwAvIljD+99KN+wYpf2+7D9VqPrXoD2to2DtAimo4s3mB9r4TjE+O521xy0oqEWmMI1gXljUjLujMvQZSPg7OH3cQB7N6ndknPb17e4v0QM1VbI7Io5SFCSnzO7oip4kxT4GWca8wIGq04T2eFIt4YOwt3DAyO1cdCwEfO4MnZ0fZbWMQEaDxmuH2HWoufnQab/ZNELcHKZu7YlidTlM7TzNqxfRe2W+jrCNCsXWMIjbXqiLEiggvrN4Y4XBNbsCq8ckBIJWQqZU3T6BEu8Rv2VdUttX+T4EY9C+d9fMwZa5hdLdVZ7taLuoi9+ZFLFp620mjBuM7oXrvp1Xwuac/paDbwtGq4n/fMIH64VV/ejvFfbzBIvqw4jnJ+OS0OUtbke43ye+LwKXjuwLeyu1i2otH14HE7NBwAcfyY+PiwmeIH+XdBmzlrRjxUpF4i/RgsSolpWR0/O5ZkFcBrXYODxdJkL0OWMHjWlB2ACde+30nBRLXX/9+wfIFcbNruaEDTrnxs+GcQacKQD6Wmxq6IBbljivqDtYoLhY6Fk8yRnEX/Fk9ZHzedxjZQXWwQmMlKUQOZ19KWdZIRaeWjeQaBxPVuD8+PH1T83udgL3sIcJZTU111Nw/QU3OwC7YTa5Mz17cgdAXnJD08gvdDSpCJRYIejwvn/ImYMo6PUvYGi4BmFvsmbAAxtUJQ9wxQepW3oAUtctoaGnG/ygRmathCudGqC+UMGwuMiP4AqCz2gs3VmeQHml+6eNgkahR5X4qnEq95TyOcBR5Gro/OYJFtiLAAhyRWE21V3MAt2cPxTlp1ze+jf+acPjJcSfmVY9jJnzjk+utV4pC1v3zpTkWGLhTPF6LctxeXSbcmy0zz+GI4Yizl9FKrhvFcVGQpc+nE8Jg0erLmW98BLC/LS7FRYdldy0ZV2s+HX4JAeu/fqhp1Q40NidgDVkLG90Z5IvfIiafL2opNes7BLI2yWXrYgbS22chzNK24LIhLMmg2YOGYpyRHLEF9GQTU2B0mNuiKGNmqo9xRnd+7vLwSFTMf7Nfa8NGrGtBhNQmD8C156nS6EfM8xMxzRj3RZoR7lMTs/Z+fpKPJiTWOFrGoDYeP8Fgyp+x0x3ebhhsWuHdHGpuqks4u3kVu6GNskIFo3gD8mIbZME70ww8dhDQErbnzSGznAJu3GhDcbk3gQMaZfLpFbLrS7rSHmuKJ6IOfUHecmQkAivKy2JbLCRncJuGHc0y3aqWrVu6tbJqTcf4k0KmrGe8he2aPNTqgTO++u9eDpkMR1SOapDxbUx0quGXF291LPdI6UHMa2SPyog8MGWJ36al3pAHwo2BS+OiPUroYCvuTPlX6RU5CDqZzEn9u8j0FqthWyDl7wrwn+NqvbtLOkLMRlof8+E9mm5QCW+5y1C1EAVTwGzBxxnlyXc0owKJtqyBG3a4svduS61GHmfgfd9w3SjItJYiRTGUM9UCbRvpTlVd4ZJdUI5Pf2qeZkxz4u+DAW1LQWteRqIDVwuoH5AmF4IZt3zQx1/XJKfEjg16QRoSrYClkyywH+dBsxz7oObI070IZsQvAPp/njm7bWdu7MJZj8nrNqjBHqwfP6L++KDQRjGz/kwhW87GbiTvyaP1tR7hhdOgnqziGMeBRFZcNJ0Jh76CAT0rBkQlLwk64IdJYALVdiRGjcDRUzOcgV+7vUaGVGxzYwQkuglPVtgoBCaG8wxeTi0RQkrRUpw9eZmdgYE1o2J8F5mYh/9r4oTgR+YKj+s7VTtUExPVNq0O0pqfsuQuHf8xklyLRC5L8pyi/vRYfdpylavYXwBaJhdM3Etq12PvS311oGp9Y4/mOzl6k9AA97qYFVmni1IUUm1RB1zCUOBOoyix2P/ej0qsP0c0trPQp53JS9wSXdvTdS514o+r6h4igWTqS0v1kySh79sYUlwMOCDgpgJoJNSP+t1e0ehuPitSnAsGI3kfQGyB0aM2oL7u9QNpxHD5gpZ4/4VCbbNySgGvU7A9w7vbefCTE/d2Lyr6a3+DPv+byHnXJzgnjf4ZOBAbs8iKPgm9X83xT+4YLiccQwp+3wcQKYE/Y5aaWLBxxwDS3RyqodsvcUevKyJ1G8Thx/N9gb1zQCHvkcwge8D/Y3ip2Fkk5IKWxSAlYDMDk0/Gagw4RJ0fNjpxxIgNYlENDGkANSI6eQzqJddcAwOWOmiPIaF9Imba6aO/7PP16T1iR7ha8CLyDv4ut/RGDyK4K/ZqqIZX996bPYsEYnV5eEPnuFn7lytz4oaRAYhIKgHYyEx9zDQ5t1NuyfG4Dp5mXmyFDL8daKcXGNhfJxiWbeYh/5vM3JDlIFrOq3f8K/wirPiH8pSa8iY9j1PCdz6ZpHewXin2QWkpBH7P0LPixZ+KqBEiodk9hgQ2LhUvnyTv3VhU5xezd9GhsxSMDOZ8o24dHkbBDn0ytnq4D1Z/wJQIS+x25LUgEnbUNPd0+shHciyE/Mzgfq65hbhfSJrh3367iGAFTy+gPkn4Tr01Tc6/ACfoJCNtLX6BDNkfrAP2RJkfst3hlciHZptdTjLvOHvS7sGxBJ7CZquZJn+4xYQ9BXmtAC0nOIs5phwKaWXH+2fClv03akJD0fO4+hyoCKAWfisL7L7elTLvLjxrkP8MalFtOFiqyXlHvPfRVU7J9czcMsQQxC5gjlfjreTgQAczBjqpVJ1vuHvNXyuVlMOfNBkCNwtqdVlmN0lHzf+mYkB32L4IJ5bSY1J6amkE+uieQibVrxOOlqfnaRb/BWOIxuLN+5jtr2ZWV9sPzpkO4id8Zw/qlbhY+QYnegBp7PzaStNo1RLFo48By8v9GzDissGL4FaK702C4aZOh1+ZA7d4OgJcJ1teAr6Wu7ePmlSI0ceKHlZTS0ipUmPEKB++J5q85N9ydKnQyTjmrpwaU/W8ekg7eZEXsr8rhKbYE//mqtRXJfuPwzKq1JTsi9S218rcxAeEhQRjad9ZRnR7FQhYWqM4V3ypuBky8ujDEm7pEGG59jFGoK4sCXiyjIRkL+CFoVusqyCtbuOzmFNd9GguZfziZV5F449R2Rpw9tLnWqQ7RoojAyrtfY+KlNPYNnnKWvmr3cAqhVdIkhKVTEzbFhiI7a2kChiIR85Ti+vkJfuoo/cSPB7BDex90R93djlarp7LdraWHtJPJ+JhZqaRXcJpWx1jclvhgYbnDkgISVQiMSmubUKy/GpdW2Jg4lv4omiUhOITWK/Fs6VWbuUz/Vk7yGE9GXoKCJyZHrLyOQzGTqKdeq0x1MEqZj7LmLR8lFETmVy8SofpBq46ZJ3ZAh2YBo+MgaQrxi613VftstFgWs5Fl3tuouc/AUI4P5TtgqRlzauKk4Z7s7YjG2gflASNXS/8WS/CDGJ/YuN9sHlFqrXgkuGonwReQi5Q+h6UgYhdAutd19RUMfMa1SK9YV2ybETqcHAApKS73W/nCCYeGb5HJqxCz9pZsElr1k7E1ZbpE9CkJP8Ie8vT83Vp7cw8Z7r+jGaln3dkqCyKAfd9TQTrQ+sAAqNgOUOePFI3il44y/k35S38LDhFZPwsqESij1Tjwf+MkkHCMx0OVfjE/AR3sGIfF2k60azZz5qxC3cAQ6ERVHAXeE8wXfT5Dk2BXHhLos/+qJ7S4joGPPgECgyB35Hw4rCbghGIg17eL07nbWhvE8JlFUXwHKnBUBrdUrhLpIATXKs6axfj+wmgC61C7V7yI5jjaqsyX4M3wTg6I9aVR3/kTCTPwjq8NDpecKDfR/Ft5Y70anibHsnQNvb9A9qbvuawucOiOcosRwQhu14V2NQbLRSfnLngG6aEUYR4Yt7aGQTo4qHwiGjnEwYWNKmflfpEWIxP3vBs3JOydrrYx4d64ZXMzHtAxEalh8awVvz5X/aSYzAIo0VWLmiNq08JrlfbX+bTOfwEaR/LtmuT6fh2lsIdqK6pcvU20Kv2JJN46lY8Us+fFp/qtg/H6/5WAsGEAOjIQQJKNvp4nHffMTvs03vcFoXu+Zl7IN6Wc0ZqOvduYMEJcI+aZ0AzzXMt8LklABU2dI86j9osduodYbDtFymSPh/KXMSVDA3Vt5Dq3RGRJVSAsloFM9cQz4eEnYTGa1PbX/wnxHtZSsU+Q+DQx4BV8V0qiFgmpAJUw5rLf0UhU/2aaJJh2C4GzIQtXjGv+b9pBd9ZsNqHaXP+XNk+/WZViBemUCfe0uvk6IfCb6yVFRdXYOYMbgnzc8o1YplSADaSac6bLadR554KU4N7LBa9R2pv9ONOmqN4SJ44TpJGTQ4KSx+blKZQqMZAes4Pheo1XnxcRgTd3klYr/lP+KrG4ZJ7EYO5vSMsoBLA9UqDuZ0s0X5WgJJd7/duXzImJD+4mym0btN68sdCnFcdhtL+fbpMuLDKkMNd6xpvbqfsq+FGDyyoPKuX+twjVyWTcQwH2FD5OhoUyjDtFPE1iJpxN4HJ49yjDf1MyjFBgnLqX0OC5K1zYXmZ/1oRwlANEEMrczz1sjwQnPLzfrkB7b8MmMO6WwDC9NKcsYTjCIOH3YC5sMVRZMqLdKs3jEw+MGMAlx6CklJZkWqmPhZayL3/Sfr0YlpSrfXGzSwa3GlDht17hNdRLW2Vh2EKB6AbihJXX69B4nwzQeafIDWtT2KPU2UAAvha/6w0e/qzrmFL/t+RweDZ8LdlL1ZlJ1v4Gn+lQqxbNt1+SoXxtFToBRurTUwqx8pshV81g+mDvY9obSHawSw+N/svksHIB2u5zk0BwJaxitr19WPFgkaTXaIVvPfCm1qy7i7Ih5ys29TF4zPWYwVGL0Hz7Esbl2CwjsJ+7iTS2XgEYEBRQEua7WOWqTT7NSddHTSxY0aJbE7QIK5t4OmPayrrrJz+ULM8Fs4L+Qgs+/fie+cXakOZpIJNVu2rEKQLdV6qerBOWVw/7xJ3n0AWq7/AIUX2SEGqLm5eSdHaIdgBZ0anjaAvogTs7ONYLncJtjd0vCmTrHEYVJmmhN9f0LdL1xWtu6E5TflFTcfZOsS8leChI2DuPIJehKs+lyCn2U9nExWJSnAYqJww8FdmPa2YPv8UGdZXH4MIkiQ6AppKDiHtGb3RLvBa0i7vtaWQ8E1+W5tG92RajmzgojXp83qhBLv+7vpR+b9sZE+9fRqK3j6pWjKn0b2eSvtEp14S+rjb16Jz6E1XDUIsfN+od/9aHUJzm6jUWNSw6argVGGMmdEtGxBOg9TpYBSF0ZIX+oTe+L94UCJ+kviBIwqySJ8w02cazy4IGugtg+uLJKpxrBOD3FUn//OQ1MuI5fb6iOvrmVoTtG1uY/O7m3tVGsmKB3ThowLHN2ZC6ypNFv+aAqRh9GIciw3rNcwqma85Jo4XG/hjJ3ssv6d7pagCp1qJdNAnG5AlS5eV479XQOl0555GHPRjt/2jxIv9oP/k6d8n12eGiL1IFvi5ZyIpDzEN8JO/Bk404L3ekfX29q2f6T9y+X+ATk3cM3m4rwF5olamssiD8tOm3eTLAi6/C2D4AZET5g77QOwgW3kwBeWv8a7OeoSJB5yA468almonDfIvmkPz2+daBbTc6YvDAtPtLFxQRumrnK6Vdc9io238Wee+H5XhvQtNWUDm9Bmues+j+vS+hSq7I08fans5XpN998Gw+i73KxIqT4C4jrmi8OzNX/PI5IHr8wOh9sjhuxc542+5tPz8Qsajb7n6/6O1n3P0UfnyGW+tcxAyDRXHdvhhZU1ikQo5KsFg1zVcIg3rsTCbN/fev6wa5nhuGamgYjwSWU8E43AJgwTNyGs75M9AHePvqiGTLbbJzO52O/d7o1skSZkno0xgn0WLe6DnRHQIu7wZc7X1Qrj28QTl3hGPz7NlSShtECFwns3SZ/ijzoggGjbWSlXnM2KQsmn3WnYDhdL2Pmsfgq86tx8TSvRtdXqvrM7rdcCfkRQm/wWb2zen52sXjQiWmoFxabEaE7cfpLt7iETfUx6bUGYLxWIv9LcHpScz918asUOS0tlrfm0pXasIaP2N4w5++Dfbw63i8AHt1ZA2jT/TFCuv6UUoA5LLoF/EcQ7sYDYkgA/BjfZgfHCArFHkIYX1oktUvvqNg8GKIsm+7cpu7PxFZRI3QvUGDC0mtpljO4KdTxg4A27by4YqZyrAxw0fKu7ZvBBQYy7skzdBucKQEIV6Zoug/Q6KrLJe+cB/TURxEySuirPeL2zOM1jnBTyUR8E8vbGsQl9knt/o0V4PnXqQXmlfxWmZFwgZaXst+AujJfMk9Hma54U67t1SmRnNxb4Oxp0lCDjoC/J1C3tXUkZOr9FBb13qJ75TUDCAGj2bOB6KniNhpSC7SIHNEKxqvlXKCd518sJ/c5GjEHkR0DE7oyAuqd4HoyRjUNvnBXisE4xrr/gM4jL77ZgNYx2w8VbkCvCeJ7laoD3kzfKpOxUSY5+s8cmGIH1EtzrlBm3P19LKdn709ONXlUv/keyILOlJOeZTWhbd5i2orFaVkYewpWgS14ucZ+WOGUU2IMp8pZmR5qe1D//FhXs57ZZf9aYm7R7Ohc/dPJbHQAhEGcm5jIYkJcs3rg2imu4jBYhyzQz7WlTiHZpWGaqOfXYsWDj5DfqHyGXu3cKCDmcjaEKKpW01mlXymNErWtS//wyE2vARGGjkCgo8wd1snDiYSh/E0A/6luGYjT7Cxq/mOyTfOOBHAdPmpHtUZs6aZr0LwTVtnqhUGtecDz8tQVpRnSWGUDNOwPLDosS23eaWUXKWfAzbSSaD3f8JaA63TQCswbR9OYh1HkTT9+Q+to+eEgicm/Qgzwnfec5MFNyYstlpY6LNOp/jeKoJq9sToOddXBP8CAnFnbVNfC5mn3Y0Qf51EczT5A77TDkg3kq5UU1ZzqXzV38gkerjloeiH6RX+AwqNnMLrFHhUZL2g2BcBQeXAf+y3W1AGOYMVDz8U53sbnhAPxMV56RjfBkRmbkYkYTGRyx/ynSOF2ziBxA4QGWdmyBuLRlWdjromBUZD+lcsrnl9jMfi6VYYvGLX367Z86xyVxp7TDmSkLqSWhpq7ErN/2ZiCSUJgpf6i+bo54N+z+pADlkjqaSp4nnRr3jCi5Xm8a8YhxmMlxi5skseS+/Bxs88qVsU2cEHrdul01GUzByyH92STlxGknoJKdjBoPWsh3/IvMMkgNKU50WXKDLxcUJmXuc+Pkb8WCn1IcZo/XznSYEHKrGtl98WiQtmciEbR1j7tmu3LyZDb58rFJGM9/VQYiqX4/OvPYXWptiM1i3ld/lVyWQ/KCEGv/0BekqKjyxY4ptWuxWc947HYgIDrct2Vo2BPC8MyCwwj4KzTskHIkHfDR9okBLnHkijK7KTRbaOvc9v2J7dKL9JzFKXrRUt7BP2cqfqZH7N8mcPpFg5EwcqLTR32wyOPFz//F92+G6APVpKDPIJnoGylzUKimItTtKV4E/NuLlgBjU16l0uE+IsnMJajUFc0bb9kTroRr0ZvphlzSY3loSBz/swTvxqhQGxmp7zqF4bVMZs4CecTn/gymuFv1+/YeI+q2LecLsGPKoTqhl2tISrvM6CiLugjiwdonxrc4HXZMM+WS7ij/dMAp8qoSdwRjcw/gYMWWWR/RcNzVfcp65jRKnS9t7+WTq+/AoG9g45Y0dGHqyRZ7LxI1NJHf6XLhHmbsbYcyVuTLeARWLlCxmONQvddewQbfLXrFfJ4ZlTfR+ryW+5ud2ECjY3E6KexRADcugH2H0Km7GxmaXJ2bGu+IFq17HBSKabbKi+9X1NlvgZ7g6/EorfMKlOE1Kp4PU5IvDh426uRL6uD3VTT9F6Q0W/76ux9uJ+apo16l+gsjDDs4JFmpJI1J0enIROPyGeafS/GxSdZGZCWyv5hdmhacVpnXJTUxMXrk+QNCxwrSlqzQF9jp89jIwcQ1xxmqSTFpHDQ+D1eLXJTllwxcJRdcF1kg/VLDxchG9I3vKXAgfj3AuozMzyMWJZM/LpkMcJG49uBrpB3cCrLk+mm2KfRLb85yInbBovmYbP4RzPlm6C0H59bYXCw6swSUKdnOK0mGiwkEiH58yFWPvQHqb/253wfUZqS/+nKclu6ESvFaHM2QT3/5QlI+YH9EnRuYG3WWhp9x+JI/eZsQrI5yQyku+QootuYdZPAm04zevgaEmjNkChyenWNbqe0EEHK0kGkyjOY7LmVwDaU6uszaUxjwi2K9H3ugMdFT+8GX4nQec7sWTNr4IvGV2k5UdjKH31f3pyby3h8xBmqxBCUcjIDYb7cB+4xqSOgxj2uMC/fmxvDNKYYZxSfU/FvoP2Vvr+lRKlKvLTO2XWHPkBZlfxj5LG/N16k+H4BTFadDq2UQLIrI1MBTj6/Ef29J8gjwOtDvQoMQR2ez50lRKqSksOv5llmRm9P+erd3iuFIJk69GpwcMHyykZZGJ/a0Fp3YUE+gTgFnV/ugZcAwE/4iUfpTzlhPa7QY8qJ2zxE01kE8eARFvLM6h6P+jhQO0OUsYfE6beFEaozo/WpQS82EXI19b6BM8Pkdz0VjLDlfX3wUVWf5pPNdpj8XuSRf9aqHibgrJFNdYY+0KYUUI+rWoa47U41kG2H9F/62yupLb6/gt/jN+tRmX2OxiBe4OSaw01qlDkgRHoVlc64lDYp1lpMl/3H2Ynj22Gog+8BiZgKAWHYvGoYrSJkQqbUj8hBlSdRpSYGnSouOImDnlWUpI9TKxZeQDqfzjp+p/fTchNkV9g7EfUB8EQfYDUUgKnVhflfUu7CY1C1ZIGwZzjW3bPxZ57+4kN7lF29RnUhnMd40m8pqiHLHGBVdCAARsQhmML+KarP8j3XZjhMTNaZpgd+w9XcydtMyIlOh0fGlZk1O18pmYd8a6oSUcIRCRMeAHObR9qShIN8b6rZoFgkRisqRvDPsvBWBlzbdQABj4QfNYTfUxp9FIZfsX2sJTeoMuj7CnW+9f/HFx+mTmPB9/G0zlsXHXD58i3mKw1L9r4gRb2a7/5S0/jig9plBxRRS+cVNDM2TzKDG+Ap/V/CItIrKeojdbJV61xZHj3fZlRtdfo8GOH+1rk29CtR8iXmFYWGD4a4ZKzROkpDtJSdN4bJ+AOUlBBtY3SV86dZfp15MIkW3m2+bDosC60wEyKLLXaVG4WRc4CbJdBW4udSuYW22r6HF7KmfUfflx7S1q9XuGMfkat9YoD2KkukB2/E/nkqMCGNBviurJVtAN9frsffdIhXxmEYenj53okNW+uYtzgATmuHK2ylhrHL3OH0WS7TlNhQiU9yhsIHb2a728ekb40bSm8zq1JXs2vBYnpL8qQnybTnaw3ZpRd1/EHbKADyifVl0Vd60pk9YNLfyKNgSCODne6vxYNpO5FFijVDik0Q9YMsdWKkYW1gTzaJFLDAa3CH46eBOlP0J9uGCQs/1VUtDoSsRTV3a0Q5d+sAdjMXmm9yYeRWzY5Ed8s+KN1jWzGgx//qjTluF7Sbd4nCeyAWMtpncMXZsoRuXvnYQwVvn6SnBJMUI2hr3Szfj6cD5C5hYOVylHmS6da+aWkA8ceHUVCFAqyx2umWiEgqITJnpz20mZhO5gWbzJ2F/4Gx/zJjMI7Z0/TqimoWVwpHLz/Ftz5TV53CZaO6I71oHy7wvwwxNnMnwGuOaFa4c4z+prX2C2kyH8zbQnD3+JK5L7mSQszfBhUm+7Q2qqq+OStorR2iNfshmqAX0qWTCfX1DmLFaP33hwZjGjHiE6meLSII84PcRyf2382hKrLUL+CACNofss4/ktGpQWGEJm2kSvZdH48L7xVJtaP7IcquemVj1Kz0t4wFiv8FVDGHvnHeVt+EeeFG94Q4il1/L7auh7FeLPZBu8a3YCYodv08YiibfvW3Zi7x9QKldqiEce88FuHN/czrQ1lSMyJy35g4BXNd7LurkSga7NsX1bRqXcKjilW8s92DTq0EWLYM+kBkrxENdSgyd4dM/GCbuH/a2Cmco5AUW2ZxGSV0baMM4WYj4cOnYVVUf/wVC2u8/XWdjYCKGygR9+82RtEFg/9rXiA7npkophFAKHM4pAJf+gW4f4ukrSFC47J3G1Wq4Cwo9TTQq+50nvaVRpcenAig4uImcGleU9x52XrwTIJTGdS45cd4SGx/NNeAmYLa+kAuiN8694hnH78IdnwhnMP9JOt5XAavUZBCrVjKBWAiJNVqF/tzurMTLwCb/IFVqg7g019hUkxupIiNF4c+X29pc/EkwuIiunc8FnFz69ESuJvDwgd2vkzDcu/+4BqGXtval4M4G5JXNMPgSXrQA1ja4VWuRi6xia64+XHsyecM/qYeuXvI2fxxIOnAcopXfV1JmvZr5ulPGmGHCaNlHZ9CK+wbLLxYjOrO31Zn8ILcp6fiwU7JZZIVhS46z087vdr1MLraoQ1a4E7yfThvdq9+D0FihhCk/m8Xsb7bPfnTLVkhXMnVUHcvEFsBMfFI1wkr3+E7UbA3//rbs6OqLT4gr4NjmgPloBXgWFeR/F1QT5rQqTESIVcBS1ISCmRwIVhYa7VjRqUBXVm1Am2l5H87jUAPMy3/VMGtGYXEhTU7r5AfRGzgx/0G3xXIphm1B/eMW9sBvDdQP2Ch1yu5gd36MHwehnDPMuMwv4clTywOJ5dcZPjs1PTjic9G0xs3eUZ08XghPc58Ib55v6K1Ni8UYu/WdfkR8UQCEK7lFMVIgnqTKp0/2R6mpHaHOn+aiWHYo5UdlV8KtOYjzyFCeNSRJuHCmEJNs9IE0cLOBTuoP7gt+I3KB88u2w+uYNhpCM0lSy1UhifI0LVBxO5CjiE70avBs9tLguyV1Mt2QC5A6qkN5m9bpebuKUPi0r+XXVC/Tz+g8aguRYi13SSheZUDCg8N1SmCF19khk/2IKbrZaMlA0YJVXyh/6+a892FIQHod1LqxvQs11rK0dR1hA4RW7kfI4QLmUR4yBlqQcbJcIXHdxjRRh999CaDKfvfclW0gaUEahwRbfT1yKYLMZG44xM1nnnZXmECnrObFwm7ICgwHBsZicOYZEohTkPAWHcm8sGF69J2tBDaiuEztAXy7Kai5WMjalHyJ9hHwCngHCxpFyRNpcx2DEKtNs4g2c02N/HbzQrLJqZsqAc0scuaf0ngmGpwow2f7/EnKWf0sjqAGA2n5lomju0Yzzr7K9XKSrd8Kcoc5KxC8Md2kJppWWFvJ5P7BvCa4/ofLh7UC6+dHkD0SYABo3ttLd5OMH4pBLjiAkneJvACmcpHlwVe5gN2tPN4Yu3G+AgNMIXqWm19u66NPQhyDmfnTmwFXpz/rJDSEJ1BgU4tjQpFbyTTYVslv1ZlLAkJ6aKT3OCB64pjhZEAwkOR+4yF6G61eOBwMEh17nsnfuCQE+ZyuHbzBW/qC3Ch8FdsaKo7w6RX0t+wuh+Ovybz5UVrwEDiM+NSFtMqMKj1z85tiAgtwklajyHLK/qaRbDpBYn8pdXOi4IE1l0YvrfPMzIQu7fNBO1mf9GMn2JuG3XIPGtZ0eIhI97Eke/n8D+jUzdPVo3niOMu44GbByfgw6ZziAiSGbubTytfJgHQh52Adcyu/29vVxJQqeWpcPqxJl62VSLBmY2DMCtKK5v/pAGujcw39p6Pu1i/wqygGZqAjYWnP3aa7CHC+aZsTuel3qtPiDgKjdEmniBm0JKQJbnyYE06AluqmQsX2ObYhhUgCfsLecg7egyCB/X4GrqY77zqAb3Q7WK/7HTCsTTZOImbjWJqIxuK0+08MUnNnoViePWGKHwoFHTyUqjXXMHLB7fHRjCu9dviVlupT+fflLO+gbdOlNGIOkg3ZZ8M6HHKY5z8hLR9qiH5KKmZi1yE0heYIy5m+hrZE7Bjy21wYJ7mDswAl/zyA6HF3nMXK8goQ3t8LzR44bd7kqJLc1KCGoHpihzwFoan6/bzjP8OniYyqyTh82vpN25NckIatdsZozZCxXpH9xTc42ptkpXJVYMk8Hx9YL17yEyDKL/bdh6Y8TOQeLyENjOdQRoOzo00G4INrpY9iPZGYxJsdk97ZvtgsxV183WQfSWd1+rK9pHMGHPsgxv6SNzETBSgFMrxau8lab8sD3FdyWNICThP17oP68IM0ShfV9bEIfTsLQ4V+PgLeD635dN3wKwyWgKDp2myX8KIiGlfuBgun2AyFnrggnrVfucir11wca17HeoEuWs+7BvxdCFY/NjWwDqJS+J88fv4zRN/pRnAGZG1mSutafgML6A8FEjlVwoK6fUeQ/9OzISXOb2+mBCgr3BCykIW72lpva7708S3/wvxenIvt1pcZ3F9d6BjVODsfE7WTBJ6O9D6XAG5xvEhOPp1dUFZD3XibPkEvBA0+iR+Url+cCH0mch7V3Ard8TZK7Af18lldftAEnWEWAwNNmykDy3h/rEHflyQFPILK+99i6c5rHrThkojij4vSZqAvlF1rytPD71fuXxwwLc/P6ksn5aO2E45inIQBrNvAWMKSzVby7OhYb7CqscXmvzOcDZ4DiJ5IHkCFhZQKjzgoG/IwW+IWNq9kZrPhE9kBZ/oEr9MPQoxVRSdkI9GsN3eoocA1BOT+HgjiBO+loIlaPbUIv1mhUUqyzPI2jqeoHFiEQJtQqy54dwuJBQWBnAvoODsmDlivne7ifq6ccC6YkjLoUJOwZa9f8lYxvByQN5cHYBGtHtyUgio5Pvus6s+j7F3UO/SRTEaao/XPL3n3c3wfvNVZfotg0PLCeOnrDFqLDzZApkszRTE7mKMfSO1/pIMsaLC9oOaJkjAn1IUYyV7S2yrCRKp5zwaCRuI8R8Ff3V3W3ngDuKpWSaGcJjzvFyaDOKmouHok3sIbPIyBjei+X0Lqg0eFW3y/2ftSmEFIULcWy8THztpZMaGwMLtYaJntpWvodLJaTf5I+iLFV3v7hirUiRyWc4UuwFd2/1vi8V0yvtn6Uoqsq/Lu4R25Kc8uKzDDW85aQlo20KLonPd5KK2iiDqB71jPRPQz87czEl8t2a3nTrjg7HYeYt633VQMcEDXlIvtADAQ0pr9Lm8YR6g6o2/UT1q4jVxL5yBlEaXhwX8VIq/Gh3I0elnaKlu0m4tC1JbZW5T6QzrHcsYAlda9ZktUWMAtbQxlrO3Jh+wcL5NauWk9PR8/ZGBauOsHF+sDFlg9mJheaunnW678DVrCzxpjQLdteUoQeGOGDNLoGDCfMNH5/Kef/ccmP9gY6chNLlQcCKDEw9+Y0heEQa5PKCKknaDfQE+XBJZ7zmbq9kACxtumVer78SrKxWdxLEZee2y4YEoE4EiOH9AzbyMRsDzje+u42Zu1BMPZI06M6qzS8Yg4VycWoWeMpnuZpLSHbEQaYlkVueEd/FZp/GraDz2VkP07p4iC75oebn/kTKUcL/YUYF3qbpETSkXgDvGmOPO+WkfZ04jY8xlq5jlVtEy4CEdkrfxWSUSsgnZc+KxOE865S0wTM5qVwhDa502PQ3uLrKXwhMzG9jIymgFKbXMUYRyMhAi8tmhcSYey6GIoXtwMld6yMjmo0yzl84mincDomeZX7cH3s6PzWy99mjIBOTSdVv19MZnDb8U0p2OjSEMhFK7/QmsBsdCguuowMbsKNAEyMt8T3LPPEUQFNUBjjyavjyFxW6s6lpK/jNckBUQSt77UoTgcbnvcGeE096dbSGP693LgZea3iTcaFmSPC+AG0bD95Fwp/RLW88PAw7JVfonty06yzuHt/n5Fvdvy1zrC05egmgwT/V6rXZgr5NF8wy7uPrOdYEka+Y5+Q3A4bwsqSSxSNPGzCbsba3oYQxm7gC5y0V8o7BUtXyLPAjWDtqrRejb6gxdwKqlAWPMibAL6SfjknUbxmfMfzCM6XZTn/HayZyM4IJJaYnYMUyY1cxff5pxuxXRTeh6FRb+0XKQeL7CPXYR/f4FGcKbSyfcy21DeodmgPwUVif/6MWJiynzN2nQS/K4wtzVC/9MZTD8NQCwzwos+/X5aVQp5WDhmc7AOx/saWI99AWn1ZK4L1b6Hzy7NIYkrsQN7omAboXg+LiK08MrayoZOZqiKZ3IHpSL7c30un6O9BV0s5s0+CdXEfwUxxC4/HkN8XBC0vurnc4ORFpT/G4iaujU/ytBd0HT6vUYPKA+Ss4EibatdqB0FcMUJLx8Tr4FWE7cKixv1MV4h7hyFeXjg+AZZSk2/kI38Qy8pqd/ShYq1UBfBDt+s1C6ZyI5VngGjI3L9RaKaEwUyFbPz5nVj2KsX9GjkP4ox3c/uwxKdyu6RB0JcAEQR3SrYO4EymsAM2Dav1lB3gd9iCTMTGblOuH+I0d8J30LWFdnHjUPFCGXeQBC5MnKiNZxQGNRIVO0h4bXYNPFAJlSvW5CoG26A1knuCqS52E3yzzBVlkN2Kl16oFNpTaWJIG9sWUpm+wbllXOAEkPkhcEeGR8GIH8BiSsJpn6Wiefaas7hi9rnQtpJdD1AfaxL2lfsPq7j+VWOTRqHqEmbPp/EsTwir51Dz3rhu01BZBw6D0/CM+GvHg6axv0HqN71BO7205kk4xoo1/WWxUEVeWIDdc/qXtZMalzkv7N4NSmgbJ5I0jrA7ZAlud9+Dyw466HjDMI3hNdFO4QE9TcC26nxyeQGXqpUZPCt+ZXJr5beyZLJupHIylzpwKGig+jPWXyDqvBtH6/CGY4eDE6t8VLhE3IYbuOreNbQ//N4skzrTxbIxQVNKBaGNaOLF7AF3qT8qJlTkclGZj1CWEQ7v1MkdSOJg7ZcPvEHpu834LM18UG8rFJgxPZ4serjnCTvJtL/WCI9QjMSoHjF4+RLaVqAwYY3gkpBu9mUWSncUNSwkXkZHP315nojsWN+NPDyCB78WrIpcocvCfFW7POMDwlq7wj/2Iei2HLi2Y1HW/+i4aIkSVYgT5/i+qPYT645bbodG6KSvFtk88wX2fDZMhClSkBunm3mhzGucU0Loe5qwOFVCNT1hsv8uRUNAdbA77tk5d3vpWnxRPu/yFubYpY6toYSqGYDN3Bdcjq4eV2yVQHRqqC7IBoZ+YXFmw25S/4WAWtjhcskICVvehFdjJEFZEWgfkGpA7fFDxxAScLFLh4Eib5s9fbyji+cnOy3BrSzmO9q+6EQIAyOMuLVjbrjv0CVQHOnqJKHEGpRUfanrdsHhIZX+zezGYX1S6kYRUDtcoBN72PTeUOhLGmLnPEDE6e7mR0F6izDcCi+I0MUCpJZPvKfGd0a0oDossGGqZ34+0k1/nfQZ5rtpQfc6x5xxQY6OK3FmV31MonpnW4fSACQONxZFfxogFeyRom4cXjksOQKpLQ9wgPO1o0OVZpVyps5Si8DWUul/fpMKuCVL1pc7F2yTk2btmHMzTfyO+HeBmKEmIxv3GNHf+SJrOblw4KlPQkdqA6cpRYmd3oEjgRugb2G3c76G8UFiQsJP07IA3YsdHUIdaErxQGH9Bstvbj+b4cNu06E2SdeKqFth6zCQCR0VDXOWW25WK3dmgxtDUkd2evq9m5DVZ1zuEELowwl3WkU3PPcHv7DH6t4dDn2hQpJXw4Z7m7dlthmYt5182m6JggmVdRrH6LEXt9M3m1/Xia4fha7t23FkYUcILSctyvOAlzf4sblX7nezSJtncxRQqbjO2mffBJTXygaAOP4mHpAUzUDxRYqoXpnWTkt3BpRHXvPvyHsz0rca53KLhmqAZAbhaBj7tCgdaEKxthrZPDz+/8BP2kfcBb80PN1rwPVPkSUs2G4h3AhZnvhdBmMA1H6giTfKHZ3BndJEk9Tn4cSC7hGrUmIm0U/58FK+jYVU0ekVvwrLJrX6L+1iFwWHL/TGwT22jKWt88bTKu8AiUeBlCLRT/doeJGC/LLnSi+n9Y+FoEGzGmIzn39aImM20fmKbqg+oDnygABMfOjeYReAES7gXvk0qPQUnfWOl+2oTE2CYkYCiR+UF7GRV+FzsrzR3LM/7POGpG+Zg0nvxxjU49cUyZGvLmNImKce8TZBIoeIJ2FAmvsbqSFFboJXu/t7k+04fCX6uq76rSr0E1snYL+rqpP9AmHDrA0wtw+Lc9fxR6FEveMrL/a51ASJhDkbdq34lMs1JbnuOW9nEthtrA9x4cyrCfhGGVnhwuHl/6JXsokIxcG/YvhgPkruiKnvWJN2kScDZVUN62Ya7i7emiNn3BP5VKSQXz5YmGx79wOXVSZCbtoRiqNnBcyELGZbMwqNmY0gCbQoS3bcc/jrL8bFE+ce7IrUQ14cGdhlKC4hvjPfX2NdReZThZrkcgHxmQdpym58ezIchiQPh3rar/crnoffinm4yyUQW0GpQc27V860EemzuFPA4iLuaVM+HD8l15gksyJTB5rsirJcjJZ6es4SA0dPiuPnPApC/ck8x+yD3fODBCKPp00OVuMRqg/GVKDz4uKQ6H31Omf29l9V/nKi5XofMXm9/rdlr303o+BYRaKEDb7PXpSkqzu+P0duP3CqR+fDTjPk3dV3o70EskpDEt1LoDf4g9HoyzrTMzlSSblytiTtH+6Fdvd1jq+YjRxdjAN7jZFOi8mTFUUL9f4RJj5Y+1HFywXLOxyiPrLAoQLnUvVxmU41HfdSOYp//2hKTrh4X4mKGYqIRk5iHsH0znYyT4vJT6Y1Hx6HG43mW9mmmLFwujpq9DIaYIEwG3lFWMhYNQhXTCReoGvEGaPA9+4A+KuTiDisLG0AobKO4kULX67olga7nxLOnBsrqyQuo45oHRnZRLzsotzfvdjnB8ib7hecrD4zfPWx5la47mxrrMUqYeaQO77/LMkTlvyQcegofj9VN6Jy+vwcAdVh2nfbVAo4sxI+pU8VcjtD9gRylScRIo6xT4dif7rG99eFRfaKOXE+qLZSA8IJP9A/d7YVrN3vJdrYKduB0Ff/M6WHyI0w/704sW2sO7rTkt/kzwvkodnbdva3QPh7aTBnrv+wn7y4cVTnfydMu7GtugYbb+zCqRvKILvENu0fi/6zBgleqVDVgz+B0Pd6LEEwYWHUN8BCSju7aeM4rxfZS88beiHf7WPn42C6l5Fkfi3Oa0VTu2h+iEKuoTEMlnr6fscH/MopsCbXxxDNXlBMu6YbUZv942juH21wqm1syk6bjyTOIc31rudmcP29diWp4SDxoEG2E2wZ49y56CMSMZj2f0Z5QS45xiHD9vLZOEftKyfnAZiL6T2+UVbE/jPrlU8nYb9u9E8o2nYCFkdacOt+D56B3E2cjew0QrnEErdWh4oAgmPBHDHVt70cd8qbR1Bz9Ehst+VGOzxnSkrUoxtFBLva1D7rObtac6lMJJWsR/IEPbs+HGQgUTeqoBCX384VsmTWpyLeFpdjhxdFViIyVDy+8YtDP8OPvTbaEwnoIaIXaDXjyV4GbweIvArd0hlRQ3X3Y0ANWXNGRS5mDHRIuVwwfKT6diFBqgzWecs8t7LU92EBn1MXpdWXLreqcWoNT1m9KIF66CrMMzH+93F04QaD23+vjp21JH5O6eA8qO+S9zvZ/LNAlt6V8JPT85RKr4xtMKNYgDny861QgSTB5FaBRrpHzfQUbgu7J1sDOHjjOonPbLC8Sm6piQAXqOWloN4DZfFybOuu1LAHnDOhGvuZc0P0o7KBIK9MHvRqLFZ3pqixOnaQcySo2rLojQqxMxcuOXtd4+Ow7hq4oGI3NnUKs2AZDMLkLfF7k2d6gdPNCuV8JBiUMF+y4aoQIPmCrBHVxKmTnR7OdjNA0cIuXWnhCRiH3ciVBU1fJvtkrblM+5PhBpf3vijgI7fNl1rdulNuQVobON5OYo8p29Li/zXETR2xCuOD9KShw06jeFtUbA+m/rcIBXM32UZJ81dWLR4O2/0lbc+FNZPiang3CmeO+7eZKxbn5ZJt3cEqRYmkA59PBNz0i8FHN1C2Ab5p/T0Qxjzv7DfCzbTRQXXbf4NG7Ua5JpoUP+CVNiSJhuvVa0+n+xtLhxLlLt2Wt5zYW9NVAzl2MePV3SsbDfCmy3Fx9nl1jL/3yieUkJ/5tyPu8JG3G2uizj0J6+fMZJ2TlfDIKEtVvjmeSOwbhMHLdqa0VXYDPwkR/5hP1zp7ho1tz75ww13/IJUJYpgYMt6kVW6BbJLoHlHHxWk+6xZol1EnKiz2SoHCGrxRWBH5TY4apqV9GLoxUBvsYQt3cgo9LyXraoYv19GrR90J+x5st2AARup2HolBQPy3jm4LayWQYykUgL5s5KdPxubVN1CVxi6GmxGTDCuHHJeSoGsGe6aYq4hmUh6Ame9BuVa9jz9NXBS2OAQ1AWd65reSfHvl30DMh+LdIaJns5PYRbc9WWahXTDmvOwZVl2YDXp8nG/tazjNeSL4wjBrp51RD3We6nmc4L2k99BX2H7tNrGAkywJnAcm5Kd/ZzDcZ4Ny8esJdJCym5CN0TDF5o34fAX/wdDAxThnA/MHqqpFUvcbkwF7uhto1Av4XIQeGqdOfGs+R5CaseWLDoubUc2XLMgjop1L6osomtbpcBieXpYcXt1TYMHRcdxf00HNkhjDaaTwrBc7C1Bo135Y0ruuSi89fG5vJm9Sdp4ck1WUEpdbJCRbCIjGvtPGk3l2vYPlozvxChXFepjU2/T1Vvqv3UztX8LXBhmKDfeTu31JqAqeibBwQNgFeXdctUDA2eUVBAB069f1B+xiBzQmCYf/QHHo9PMgju5sNXxgc8SakHQEdL92/zYEWpJdt2/ljMlRQP0h9Vxp0J8anCMyRMdknBCBuQ6rwGeTh2uiR2BrEwuqTrdPokP5g74Brp7xF/8yToxI5sJyHssm8iR6oIqdeWhMXV+d1Ul7dn5Oa95XC+BpsIplJ6WdcQgp5VIkjswEe5tEW9qK3Y+OWF5asceJvMSEtjGG/7NDSThDRYUIuVf8tNVlnqK4oESnHv4Bf9lFaJwOraUL5KDmsAvN50pV5TyGYGF1lJFseH50I+9i9aX5CVblifgfdi9dCAlWkTzgYOHSvnggNsfxkxOrJ7ieUc5Eu6BBAkLDnIRtYNesg5RYiKufI1CKEjUuudtICjgKfn0ftQgXdFUctQ3gIceiY1I805UUPT9E0z4lPt3LMyQtb60gxH2vwyZnMeHn7t1nb81SSKHTS0y+Bpy5YvBVikqcuD10eDxXT8KHosyVtdRSYX3K0/Wy0voXIk0ftZ4EDvY1CZEGedUdhDOZz+6suhpCyAMYCySfHlQss6p9s6W3GYnbztTyKfxv9o0HyocRZiCU9yXzkMK9j+70ib+eL++70ftCzDoR/MgP49dvwwky93m20TVSIKGrFVZRdvUAkti8tp5NKCUJ7JjcbJwUbMdWUmpmLgshcX39NgOjZv0I/whg2jaSMwtZJfx88HnHyrYW4AqldQULyMAcyLAv72sHcoEfowqHGl5hKK6NzB0D7i+U9CNfRa1EUDeU676SAyRwHMEWt8FZOsmAnx0HdSHKAucmwTJat52BP3t5gwVgPeQkBnDrI+izUIuvUvUjJD/at/ht5kWCApya+49PuM8oTZwjLaGg+w7DKJTXwBZkXeUxjp1m2NRqG6DcJVm/CN8IZcSwnm9TPbVu9Z8jyXmj3M7y/ckBYc0osnO/VfSplykHmyjHEa568zKsiskKkcVpb9+fKRktzSLigfJN9db+qr9HnEBSkUAoj7oSWTPLGpUTNZmN1cchuyoCxDLok5BbqkzSsDNdeuOtHLFlWOZ+w9k6tQMAbW/MdB3ivEEDInX7QGNaTZEulguDDwl45ZljFUehtVIL3kHX5Do2Owsk+QOVSwb9A7t390A6ua7RWG20nueOQa8G8ZI107v7Jjomz+Pc1M5vAri2Cj9c6m2A0RC05h/DPtDWtRIpaQvI4gUIziWS74geYZwyedWBVCeOD1n9sW65zpR7wi+60YNA/WQ9cIhU/nlKNKzwQGO6NP7cJGslkfkom9ohhBFpYNL082RCwAXHVT53udPmwR+61MBsDf+JA5Q28bUCw1GooMfQG3Kjasla62vWXjeEeZ5APlP/K9R9ve6MWYij1Q2K9F5f3Gbin0UJ9bpDsXUqVnrnmvYP1KpqT+RQnLj86sAl2CPQTAUL8SGejm3Dn29sJqmLswVSjrabYvAZZto49Il5yFG7lNOnpXj087G+Ba91bXlOHfDpX2ow+gNcY9m8iP6HLNxB4nGV0ONRqymFL7jHmzRrNrS1rMgqYPrYxThMO5eyFGz7RTpWYf//47VqDpauccXrqFid3lqC8Jcnz1LXU/UdW5X6JMUspC6MxDXN8SK9MCNGIhdZeFen+o9ul2fRk9Z6OGTzTbpo2kWAFnJYRc92ZQuyOhyzFbzdkX8Pl/WGPYCLCc/l8UI5AM6HmPeu3Q1Rr7KpXnoVVfOcHx9XnE+Lum1OJRFbda8Je3VEn4fpNLfTumMu8uZXRo7xU5MWOuWydejLGehl0RHi8B9Irt7AW34CkZBXgCcV/P3oigFmblZb3Y+jVyp52rTWKfR8oqxUnYNCz3yW7ZB71nnvMrbJK4CRouOPIpZ+IXP754VVmUz9p8G4hqph7lh62LHQVaf51W20Hy8Kc6zUP7J+CTMLU7kmpHgDM+KCEOWzMg6wn1oSeRe7znHq2vdVh43OgmOwv938lI8IsnVv+mPBU+VFjg5J2r0sxuP3tEyoCAJOqmV7MeP35J6iY8px71k6f/hs1w4vHH+Jw0M4Rr2DyOKr0aLGy0NEcGAY0ZHmFBDuCZdxNM1kMI7+OyMlKkr7yyRpL598x4yKjV1/tgJrE+CcuKWVhF+55JlieRdY8QCpeXJYxaygh10IYloK0unGvcdLoC5W7DD7efgYu//P0v1I14sjtyi4HRjodBUx0Vdmis/OuAZPbFCD1+UYx+Y70WO2FFioVntjywvCPeklVUM8DLxzleq6Ey9ai4xIhTwXXNoHv0MDsmkPHTpxtcd2hWZN4Hcz3OL7B5DPeX8JSrmgn3vhgUY/aA8Ap9F9cSdkO5GF/WK68wfezLcJRl/cqQpydaiW/ocGDV7vxWPu28hRRY8O1wi5/sKEbfrFmpqtr4YJvtkQKlG29+SwYUPhRtxbCuJs5Lb507/LZ/mGqXoJHMGR4QfNM1qow5qIGVCmf0fgHiBAnpU3SrQKOshCRFv6tUAKMe5q20++XLqkeMaEQUYOZ1+zJDDITrJMtMsQ35mh9a/6x6tfhcQZkQa7d7oEHZGxFYTbB9MPYPxBd/8VEuZ6t4Ugmf8YKT5KpElTESzCj62tDvey6TtrQr3v/Y7aYK+gEwWaZUahPN4n8pQ2Zga9IOs1IzwK9rHr9HjNpIol6yn3zRDS/SCipNNDA8QT5GGcyieA4XgLdgHS2PmwRiGOliIY+qbuIWHlp/DQCeUFghDTyvAAxjHAXzI8xQzUCR+fmyTIBxr3e3TrmtdkO53gic3sLrwl+Q6+Qphq9drAN56FERy0Ub0KS9XG14NRqpdyj9peLJ6TWVJVvhzS6435OzrH3dsCfDQjRLiEnADVi+m9UmbAg67hKRB6NUcQ9w2SaHQyXYfafsonFzHLfPIEq/5DMO3pjKQiW92T+Ctb4GmjCxcGKJz6dXcoF/GXLODjf2ixVwQSENANMjC1HboPZ+o5i/F5As2m1esOEFZCLo3j7lOsiPEIcJYdplzs0D3rMAZ9Bh5UFFAwOk2zG/mCUZfi7QKMFL8Y3nW7+GWDkeYTg2tXY3yUGZ2bNlO6xb9XVfHuQxFGZfwdUOC9h7CRTExSjaAEWPIV5TQyxF3NCTMkETGSFAbbNvgkfGKrGsBzE2+tfvli7+bo+KxmUrdvqd+2m1xhDRnDNBM4jGUTZlfC5O3ZukIxHVvuKRRC5vdD0odQ36R2ol2+zlnUbpAa+hlCF4p/nG0sQTa7j5B8akcW5F2PHyQ0G19O09ymLrv0JYOs8KmPWv2yJ1QvzMEZkAEgTRDfLhGMAkVAnGY62fZTOnrK7f0r+eg4tDqeBz0AU/AUGNj5Ij9fQmxRbGHccAMGRPYf/CrO7YT+ehQoayFu+W6yfiR5a+CJHPEaLoDFn4A/Ni4tmFDPsCTTiyNakciGHL3dFCK624lt8e5IZCmnz1fQyDnNgD5r0rWK7PcNn0mKHVBMChBjC9WrMPQ6CxzIOohPoHj6FWPT4ib8bqkGcyaCPkYuhAjNT/oPg1XbS/aDCF7kLonryiU6Fp6q9tbE843fW5fm2bFibuz2g1rFU8/kK4uwiDBrNTfqnKSBBpSmH9Khs3Hpye468GeOSMNl9uTpJvYweSI4n5B3fRJkirvg4XUzV8zdm/a1d1t7wEOeOah8u3MdaP6izlvUh3U70AZcoiaU6+ds/aEiYBUMXb74tHUbxciLc7atQ6AOQS1qemV0p4//gVT5l+LBn7iXPi3Wwdq6OnrSKvzSEpzeyFBqF2fWmaxAukrv0YlxksJKct6Wdv4jfaslCq5tT1IJoDOb5N5zxPAJFaskZV+98XIvbxNTxIMDurFDoGSrtPVo76GhdBbXB/9+rxtxdkv0hXBCglc1CrxtGFf6el8UspJ3zCow+Hd58FTXiC8wzKvoP+CMZjz/EZ0Gu7s5z9UZs7EXkSUNQkvGp2oKXhfz4QiwKS9Tk7/L5udqJmVCBl+2xWDDjDispLxjDzYyI+sB8bX8jBQjBVXOX48BWT2ZWTBm9rIbXll6z+Jkaq8arR88fKs2VQ5j4gT3ZtujYK3py/IrNdkJi91ToulJJzaANPagS1tImDvSuW7X7WSuuxVwg2CK9tn2MiBXmG/3gWU6QoX4MdJ6JatD76lcdT2yAevimwd2AiDz42f6UAk2E4ii/JwLDaiAirdRwTfl5TiJbcwvDSNu2ovI4869hvAnhiAvVTMFbudk8mTmQ7+rM+cE6OZmipN5m3waNcoe6kF7r9H8PNDTWJaTE4iL0nSCYvTVhSiz/E4ByZDFMdq3W2qslM+P96xhgFyHpUIXO4N/19dWn8U97d/kqD395eGovBBbV0UTsc7fBKRtwRJYBa+nuNfkSy+QjceEZUOdvVgQ1vpi6Lxyp6qdcPC+ji3gLUv6g2mXrgW1CzwQ59TTSd5xcBDTzCinecuueaYqpsENEgR/2vRZ/bDmuux3eCAB81ZUcdAE9rUv5fGc/RlYABG9bCebo56Q0eX6mC0rjH6/McE7RZgrn0s/5p5879yWRtqpOmyK/IIFr+1N1F6yaMVqxVV9MV7FLFrthjQgDROV2Pz01SZS4LAbaTGI6NlvIunRZsK8IBVz2Q8VzAidMa0dW5sQw3rwXhmLV1IN8BhENyZrIcLpRkGTWdlofsuVgzFsgKO2+fxOXLq6gDpmwvptNpfUS+CAploP0ynP7D/yv6g08qCU8FFZJOrq+GJrxhlwz0fpjfMW2OaSDmm0abhAyfmP8xr4moxd4zVR2SIU0/vk/v0uH9x5OneFYO6rClT+7ejNM7CwGtDsG43ujZFh5XOhoUijQmnGBRRD2Bf4zbvkX/jKZho0FZIPaGRvvH0SMjmC+imSGEQgKrzk7Y68KZgiMbs/AoGSkH+iq7glNAl/3aULJ7ZeQpXwyf9pIz3ZUUj/H0VTpXYndOiai06OqtKJhv9vCz7OBdDlbpsomx3tvHclrrqal8FhywKrLgOHCAT+mkvFiYHKxfCxBGIwWcseBp0BtPmC3RFNqJ0aMN7GCO2a2zQJlcP3plxhhpwuMZphP0Joq9rcxOBgkx2HRgOOEBvyi2kYVzNZj4SoIB1b7hL3M4s5pjRQFFO2wK4rweRxJCY4gtJpcz8YO912h5C9rd9kHmkTzMHQxXTTBHNDSfeB452q/CydrE3vfee2TlO1LF6LopR4a42iwM99ApVTcdt8MVH281BjXjj9LN142t9b70U4HwdOV47zZk29tm8q/itkbOxHUpKENBKDUOh6yv35QNgjHQeC0vmWQrZi6WyySjMNUANwWr6KSRRv2CDv5l6zcQkUfrjJPsS3E2fX0eafKLCPBwg/PSDuUObSytW6axvy7Y/EhfyL01qKD9lamXBXQuBY6+poclL7PCm2b1pCWWGpSz/cnfZXi4u1cnahb74mcw2p8KpQg36IT+tQ+ZG5lwkXA+Lgw5ZgnKG3CpWN72jJyuOTnAz90f8zuI8YNdIdy7l23bEopGOWFcKskvkAbzoQAJPYBm6tRkHmnT3TKShNu+qmaVh2Dfkc0lZVNFUoihz21QZD14ked+jpocaseOvAz+llDc+r9jmGwQN+k0yB0KF97iAB0bJCE0z0jGek+xau55iMMSz4f5vkHg8rUTsOKGaUyDz7pU4G5lxvyEORHcrmAELBRYwfJ2F0yw2g4W9CIqF1FK0ujL4Wd4eet6R2tgcpYMgC5rhT2QnCoQGJaSLePmAWhtf1Y36u9wSp21KvWeD134knadTKZDBErtB0BhW93yWB6COr7MxaxVc49+FIW1cVFevVHACvI99iTc5E9EPvT3KnMcuV43MwTN4ubwoAsWDCA1stgaaCuU/yRMEan0/yaQfIXeAVe8/NynH5mQlFcLNpXFadojaTKIbm6wYZp0zy9Aqf08IMikLCCM9OVm+mltPf/D3G0MnLQi0CwT2GfWoHBPDzbn0sfzBzR8wmwlIYl6UFm09cxqqA8Qxm/QdlkLuqHJWuJUDco1JJ75SzfCZn67eDUgZARk7CTwpm66YKZ5jT5gzzyhx4eMjF6WGJKgoi/XW2eqLDwImpfhIt9xb/nB4aQf7GEXrd6sDQUaWVWqlSz5UXu67iadEAsfLsmCz9xkDWAnthnWPl6fC13PcY53K/h5ObSXrlgEAFzazBRhkhETkzxH61+F9UwtuFHCO8wjrJyVZ+AlQ/kg4zWcb+7ave7mA6RQF3zWRCwJdFTQvNNEMfULusHWZf+01TYHUtCPpbPfMdcB604EUkd+5/tS1K6msGlW08/Z7PsUOPy0XhpJ7dtJ2LmxfKwHL0Ai6YVB+K16p/RhFtcY2xiEr17vcflOnZGNoIKYgcj3pcefyh/FK7C0Za47++hJCEPoDdhIZvc7iUIQDD85v8UG0VkpD2MtbxU7YTeoSSZgacTdlAMK/EQZ40ncFoY+Y6sNI9b84vPuIqxojeWA5xvYuLXIs7/hFVi1msAiGUsSlfMg6hH5rTVRob054rs9qT00cVrwBb3ZKemObPQvFnNwTX9NKKMugeMur5SV8WJwVtY2xDYrTYrk500n6bfkLhwpV+UxK9d7yTYxvDuy51aGd3pYKbGYf32HKiOjjimNPg15V7G/+K4fTlmTAbzSymZaYA9UhnvHPIvnvm5ZSxfB8Ti/cDfRD0aexb1qsqcf5FDQPp6W1sM5eAKmu6tTUARCd3cE0z38K+JeHGy2YmmDPCmYlgE7GHW4IgZFkiRfJ+oOa0/6uVHlAoXsa67LDv3GZ3t1KPAGFfoaJzJkisAU1eIVMk5KT5F3bvSrdBvcgMUWNG/m9YNYNbEtlTwzChu3kvMVWx2YCLzCjBvTdOeCQE1p3SckTsmxcmBwcVaPNk34ABDtUzUe/5J6ePmciJRCvwyllwzmBr1Efd2W/lpS4GV97EVKMYWGV2CrW3U2T+WQaMoxIDFwtEaI8ITYnTsnqjb1RxfEdBgSgjS+zEz0JObyv5T7knt8s8CSqP1LuGME+1qR3mtXqMWXvj0hc2G7fzNz9KX4F4X7mrVZkCgf5QVk6C2sfLT8eIDZJeS7Lq78RjjN8Q3Ejp3TcE9I933dl0sE4gKqJw3031kWGbNBdnx6njmfWU1F04oBx97Dg1xS9X9uJxU/3WGEmZoyFF/TctxOzj/tmYy/reK2pedYQp1nRrPvrAF4GAf7ZGhO+MOZLqCfUvanm8qoXH+H6z4qtRt1jy6BscZxFeUr9cXpUTF83DOyRtAooBb3v4qf/zPSTRhpRxA9HvvAXG53Omm4Usvlnfs1XsHieU303/9Z0ZEB7ZBnvNw7Hq5J40z3XDQaFRvBzVxe7R0vVibWgdKKpg3prvwl5SgLBs6AsoP3GXGFDsiNO+84olsGSxBz/JREdPg35pDTaeCOHGHtwyxZextn4rlbWuxiDycG4/lnkVgXQ48oYuUhLCQpeeQ7IbScPeYmVyz0q4FMvs1mUBv12vatEXqCT8Ri9Z4sp1s38HbpoRhDpQxdsi/1zCxOzsWib+ConNYnKqFd9HpPLsoTdL5G3eJO1PhDtjQGlZ+18neZ1yJ8qvTctvvoP4CBKZxejKS5nPkIcnZUcgYUSfbMdnt6ikBPsvzZF75Cq0fYhFRo3Ka2i4XGuh1nHupVUkpluK3tkJ90w0qBpSrrawFmTPlvMG2PmF1kpVSy59xCmzzn5WHx6BGauGeJmbFDL+AK+eZf5fUDoEcNWu/F2eStHRVVSW58nL4r6+US08RmGeTkZSmI6feBXgA0//7YSjdaLRKpbNwhw3Makt96wuu9+NOrkTp5Bg/WxNHe39e/+p9fdjdKVC9RpzRw6UQbuBsaLThefWqf+7A3kbK8H4EdF/eUYQ+fVTaH/ciXbHwzwGP1xl3h5Q/JKc3SJc4C1ELa+78NwD2ImUjSrLJUd3OdB3kALByr0IYYUFz1zSjqb6st64ACPJ60G9g8jonFCbjzjkPbVjnNOEkDO7C4E6RVloXCX3MsgwdK9BqFBMnGHfGxtSyY8CxPSRd/cxQgodcK/qOJ0h1VPZXG6Xhl3E7wKkPNNODHF86QLZ4UnmUYvBrs7lI5+F0Y29e0mWuummP5wbfcz1MuwHUf4mK0tgE0vlETO9xknv4WfNJNIrb/kYMo7JP6lME4g08NcHqBFIxM2UGqcKjiETzTQqW69dZvo3ACFEkji8iVhWdvw5aYGbcXRQ7oivX7pTpx4ZfE8GXPag+OYCjE6YMykaMJYMxLyUdMXj8txyc+daQXTnQuSmstDDXD+fwllNxZBLfnzDs4xhhqiuWjFpyZzs7lgEXxGVPKu3DqabuTQn012145UCPqirPUqw4WZeTw3veOHWHvY5QgP2UjUdckLSruxn/X8JkzcdDl6tmF6R/zmMvcQVieCK6Ru7nal7NdqhOOLGbdVoskFFOs8XK2NmFnp75BDvPExQOYpR3094SJalohZrE0JtZF5vI610tWRe2ADDZYEipF4oeqcZ4QsUfb3FJ089YS//w2S571tiMusoVd0/04dg5LNNMf3tEgBwaeo8N1pbo1S6WaPYfdbgYG7Nlr0x/39SqU7GvzmIySh8ZpMJJ6uR6XLIsoY2ZCuE8/rm/5NJjrYApgKvEqLMyvYuwRvRUmoMTmL/FRctTVCcc0ago74COhK5MQN9wvw5fodGqUxCZtsD6CaccrS1XgZ5eCWJ91iDTV/c2qYMekUwuzIDbXQahPq1UYdic9xY/iHJM5EmfGC9cj5iNHMiU0nSJkrvyw02ko+WujwONo/3xPbkSo2m7LCo5yMh+tj9VF7sZmGXUQWfSXsPIeG1yOh6+NXcZ70obkF0q6oUSHGCCDFIobbTKji5tCS1aROv922v2DpET0FD+dUwcR3kkxJ4oDwDVXiYY41pzXF/e+eO8ZP8wNZpeGKaYZfdT6B68Q4AErl85rP8fOBCTXDqFfs2zB9d+s2k4q5kUfmnLiJgr1G+ulgxQYMiPNk4eWKUNmoP8rKqBUDtdy6eKO1Y3lduEgJUBHy6b8qkvlzxRx5gU5rHetBhKXW5WXJli87gLL/2KFLdlK6o9FKlEQtktFFv6fQPnNugkb1uxvGknBuc252GvaJzXO6tkxiGwQfutnqkY3tucMJECKj5BL0SnHaCRbUYTSNBR1FpdKugshmTPVE0bD2rrEcnhgHSDzzUAOc3DXSNYkg4WJELIfW2tc+Cx7u9HLu3wa4XcrTNkMnjSr4Dq+Q5ftkXI5PYYMKht3Ub9zF6YL0GJ7iHIGw8T5sf0pz0n2gRx85M1j8GuEOsuleAqrBrPZjJQYFjqxk67Mr1MDYpDb0C5Be1VRsTzwRIH6PUwtqC0ord7RlJBY3P110EkhB37HDb7fzAEkcVK+3f6a3W8mN6kzPAHy1AdJOfwqNc2i6JtGU7nLYBGo+4KGVaEZ0X+8hiGtOG9xEMBp3xqcQrUWYxNf0n9lGBH5570oSuQyO6kI6gHSQB5ReN758Hn5ORHQady/OowlQRSyjRToK0ChY2f1mEayQPR5uh024/fS/MT+BLc3U4A3GhWHOXb6LpQ+AV6df92okl4NKiViopN3/FplP3oSQRnm4ofPErgwpLVTOi7EEIoHoRwbvDmAcgEeaIB1IbGSSmC/wnI/x0mpUZINfXYM6BW0qpNri57En5P8EU0VCGOdkoCrL4PvagrW18HFrx631G4QUfzz2Fu9vEeJOl5Lbunlj6Oqac/1JCawpElEYX9N74sYV/578lKsYMSNJeIbqszuTqUVKp3VeB4YNkwDvsx/SmnEuhQS8PBZs6fVV97+yazhqhFUNc1O3LxG8+jmWHNqlKADNWaiBnw2n/yp5t/WfG43uzPIn6RwgHFiXak2jEmfcYjyNJDhDGqttwhTQkOeoVQzjOzGyqSTlvrq2Xv7tEopHq3ZzTSC/gzVaDTz74OvCy3CdTbN/F1hw5ezCOiICBXMd7kZFFqy69E2zU/9Atf64OhzoVXrYh1175qFKT38CReYq6BAKst20a1JEIQfw7P8cdfT3VY8WslwMEElk8ZyjuohS70m2Ie9zeWCSpr2UgWqSF2LL7g7DJYya3y3hHP2HRimzgRzxm23iPA8HuVh7WcKnMCAqhBXJxpt699y5Wev7T8P6dU0EBUlV41D47hluM30ErM3zBB6tGIXEyohN0PHS/N5FkPerOhPmKaNsi+tUqZ5S926wCvdlWE15E1tXl0uHIb0h+gPXRrios/Nj0E+06N90jHtuBWXi/BdKFRKAMWqN3S8YP083+LVbr7uqx96b2VHm7ySsHoYxtXfzSF7fIhzK6I58dMUia0PrFdt2bZ7N/Gg0SZrjUG197hO9K+IB6u1dKL9Lyo5L7MV3UaspvIbnlOs1yLKNS8JNWChW/Xfc4U+AErKVMbHqze/Lbb2+mZpm8it0H6zpicnOHbLpQty5U1lnYnNIICldID0stHUaFVUGeoLkoGILqNVrXACSwXe5ref63Bn8ZjzBaU9njPKxIxRxL8jVufwEFqxm+8ROxiCh3jlFgbGo4sD1TTp2U4SnAsvpzNx+2eMamYkqRt0ByKlXKhedJJDkY5zAPo+yiUwGX4ILOuch/6YK/A0S0KkO35eCDRpFcJou4kFgY9HqrY1QtHDefrBeN3H1kYN+m8Hz5PkRjs5/gg16YKbv70rwlBg9apT14db6WwMuzgVarnjpY/Qwb7OZFvhJWVRSu+sSJxO76ccAt3ejgidjxj658alvdHOSFl2kLizQlemoaO/ZLOkFwRC5+J58xorCNLVhFjW1w0/+Y296oxlB1boUPnWM51nZ5ydxuqwJatW19XmItNQmu4jRkCKTMHseKwC3wGqcOVp4mAoXklkoxuWPRDlZ1tlSOD3idHF49Lyg15jlUctv1n+YYghL3Uh1cbb7xNmb9eH15jOyr8pt9n+uGDK9gOjIqp7arFHqjm3Mr2vmh1EjxHaLbnJOpCH8VlRVFMMwLg9U3SYHqvHP+uPbHFtxy03Q/gLwUZZQZBguvV7GSEdD/mpPvrrnrhB73ZnkCB9O9r0OqqYmWHT1rYamkXXCKX59mDCJtGbq/RCwSfZlefXANxA55ZMQlC5tcibTu9ZnAdj/V7ZqKtlXYQlQWv8gSz+ofosh4vJX+e5D6Z0WofyoF0G0h6eCoD1/NI/LuC/JCA0o5e+df8SDZYURRLKbN1KtW2yUovlmfxWicF4e+po9vXOb26aen6ZkI4567wmPKydufWG0QvjQvxCSO6keeg1bjLQdBlJ7D13kiRjiK8jMlPbYMUQfSdWbLds4Hir0aZFNXw40dG6jxynKYE8BWce1x/CFWf8S7+MVSyOvd/c+6o9CYaAeHbac5h0ibObqr7iKHwhr0+NWKOL8cuG6DPSbKuy48IkI/MNhZrWUqgo/RceZNutPGqRUshyzvOL+purTCml5cWyaSvv0pZobGdW5c4jCnIHsU8wVJ1xEWPT4mKh8fojwmJodnl5YJJNujc1b7xuDXuSfQOqEZmVTWm7PDPBEEBR5CMZm/KhDUQcMZx0Zi2HDW7XtJaFLscwbpqFy2EK68O4ZH6iZcNCK0m0HDino6ehfMg4ql8NyN1JjSUoQvEwj44c/jk+P5F9AzEv0puuxbNCFrT/YCWzpkx8DoNmvlgsF/RtozFQDnJN1e+AF3PUAD33huXn+eIrOremDS2QHAjc4X0wWfMHNWCJZ0BAecgAKUVqj3bhqqB1vnwz2FVr4dugVdJb1WAV+QGi29UWqWWu1PeVChTtwYQaigrnKMOwTHMaPkdh3L5NMCe4KCDWoyRLR9kFC1ZBtkJkhisJm+LgYWDX/o+cbVCrasfhQV/yvLMK0yUM1rjiD8Mb8EzfqaxFy/q2kS8MYK1MIRilCsvRTMxjEPTFq5h1lnYZ2b4CPEs2ZaxraAk9jJVvxW7Q8xXs8+WPP+jJZ2/tuHuNztDnaJIWI3SjSFQsS2ti4RfnKug5QZc5H0f2wbjGYHiWgXJ80BV6H6mLCMgTR8xklyhZ1OHpHB+oPOKkt2YQcx+77eymbnFqFnzpTJ7Qqr6PndcAsLgYT1bf4zzbBBnuRt8gfwabijq6+7dkjmpUnYbs4rW0eLTRyxj9jWrINb2KiRneznLoGqPbHrUCBzQkSxXYKBTFZuzR7qdKwU9YjczLJozRl1eMfkPUKCHK8UlQ2Zemakpmi1QOU7J0pBbpca1PdZ3xMwCXMHDbWasQCyt2bD79rfeTF83AiC+fqEpQl0d6pRHDM41zjUjzVG4w5M5N1zeNWSV+UN1ajfSQM1n4mcZ589hW2d50DNY64MLVGTLT1teWTGL2N9tD3wGCKdb6nv7eQujueGbkLUyH92c/J5YUqYMpm91JzB4O4cJHq8hDtxyQvXDk7nQRLeMhv9RazsIQFGy60vnrRxPptefeYubVF7bhowz1mvXh5isV6jV9tZ77KV6YwGicQPjkMNreRCtcUmaMAXUizNEmsMEQ0X5ierNeftZaWp+KYq0VNWijK8G3ZmaDZkQDguuSgoNYuIio3jNBphm0uRdWl4QhZNE/DDC+rN7Nao5fTGgCFe5loRh++OG8QX6DwwfQTs25HbJXZMhfNg2RN2qFuD6XB50j13yZSmQ782F+b4SiABQvIx4cIum3Sx7cv0WFgINg7YDNwS7E/QpyOdvpp+fZpn+00vQuF1qG0pgW+nDqji8WyIa6LCrmJFJSLWoFq4hP+rI6nUH0KmdiWGQpDzPzlzem4P96r4kN2EguzijdN/+MP7DWLJ50BBQO4/uSbtRLFSaQNkYxp5MiOMDSry1TgGjt8nvxz+Us5tYKnLUysxOa6RejHPqF92cItYQ7EWkS3fm2JgwaktIAduSRwLaN4SBdgStiHNr2bSd0gQGlWbc7K3Bi//XD7lOR/3cm2t4lV69ZGKkxHUlomIpamtJr+sZu4//NLEy6HQzWWWPlU0pQdFfC9K2slaODgcpDY73xJoo+tgVeOYYLum5qaYeyiTqUZ1fkgPiXB4tIXcGZc6FQ8fEvJ8FpYG4BxYXF9eNb6gDhlLVEBv83vyS87SvZleLxrW21H+1KDKwdAGijUbrv0S+tWv72oPWUJ7GEaKeLcOXtR4H6h8nhqnoaVyNNEFFgCJCaIvj44QM7JuBXgFBb7xkKVf9pWfGTTal8Q7+WDqhiiGSDyylnsNCy14kPIXfTQuWe17h6WEG8NpzinvgnEO17MSz5CaKGtzlxI7sMo8D95jSQdoAmsNFDDLTHhlZJAGOcKnjbUvSQFsIWImSJdASCN45P5RWiEFPLQtcLPToNSpXOFpUO7WM1T5Y18oQC3G4L45L6D2mghoaL/QNeKFTRCWqw/BmFoSms+yySiPUMnQ77bW4J6YfpMF2vnr4mqKsdTxmXys2IQ39D+jAjWdHXHtIgeeY3b9j3g2dmX28UCLbq6ztYtBZesJkrmZWIoH3lPvGSgAyVSENPFqX+dGdqZLFqi+VRbvfRUPF2yy79AoORuWkCJuOqbR8c05hU/5KRLfZ0fIimRDz80JaN7RJhhhXG3F8Oq8rgdQkv5by8tfuuVuS2FB+gYX11XzI+jfvPzHWJ5WlND/wd1YGmad2oLNycSVAP6w1o8/0mZeaYQW3gPLNaUaWM9x6xiz0DpPx7/pgC7r4+6DrPK7TKUWdiLU2lj1NVqUIrzXZKfjlsS759VpL/j/M8uV0YIhumgPzwWYl5TAHpcGVbLHYyMn8J+iRMoMQbkPrST+UTxbZXZL06rMB1LipkCglxAdmlBJ7uDn7vYs5xzYSc53iQuyQWWVytquRf9uhYmdyRDpVE/rZYn2XCu6hx7TA2Dciu48hBUk2ix84eOqpGs7gdo0F/KbXyQolnuIheTTi1IfiJuB6RszLgKp+nAk7XHkFrKB7TRvlyTLz13VwlqGJ1J3wTk1YYYdH2Aw/FjrZGxLcZU+y4xw1gMnz4Lex8ZOOniikYHLszPCQI/ucxtaDGhqb70QXSjaGVovfX4+Qk1NEDjf7Y7+kCiXw53fQXrvbAol6E0tQKNM6g9XUAGPC56rXQzRpRQ+AddFc2DkFSGOcnRfe3tmh+ndnzPN4QJ/z1r245Na4q/40+MbXxVjRB0P4IWXcGTtLfpdNtLiLwneVRg5WjMQtYDIrr3igDh7StgjwPGGyd8rlHgoMH8PsKtid9ZeFuxlEopFHgm+fDOmekH4tY6oEVPt3r9j2kddZT0Dw600I2XVcggEnHO57wzHk4kfhCDcfYjkC//7lAKnmxaor+nzyFvhN6tPDpZHwK/cffKKzKrKQqCUe8awJR34kT8kkHeS2D6Au8fDhllGTaBx5WjGJxA/LTHdfSZP/KN/zmWzqdZ7nnEvYT77HBJxpfxS0g4GNGBSlS20q1EtEX36IO4nKGZ4ophcAn1s63cR2lJO0L+/1V8KeNxyJtN1M1LdnyiynS+GqbHZCcKdkDxnZ3hCXGF7uygDVBODeldLq0mHgy600Snc5zpIW1BZDSQDZrVW9vYF8ma9t7UgzNuB/Q+PdlEgC6i6HkYSqDjKD6I2fiuNMHRznEue8sWzhFasY458/MELZZ6FGbzcd9rRo+5ncqir3fNUot1nLVdr+uhsCjYkRd81d9fr1BKTIpz353NLCVFHQLY6qT7JDY2bCNQt/V9wzVZDSX8hBRHyFuY7uOq5ZQTnmSOcfn9oSIy6kj42dBd+tfLufsLRI6xYD3fuzSqphUvY21fWlV6H7EYubxWMZ34yEtYog7AK10lhY+RvElhPHufUVw8Ym/H+z/pbZhNWSVQI5pP5NqtS67VOiEcUoHaonOVtgLKXs/iKDHKZ1VRBHAXpYvm1gROc4vaRPLv4CmngydkFEe6w4Ms/G9AkVfSvle4pfkxmaimtaoVAVPqOfHQEBSB96Q7Auce+9NVGNso+gjuokqtLa4LSced/ZN3wuVo8u0ZZ9d5g0Z5Ftgtk3Anrocr/N5Pl5suq5RDv6xrrn6t/hxE9RwG190Fp9mq5CRDT6+S1tR2LWEJ0UQNCE9ccHC5SlkB1bkqXeqX69jXIkVNqN1FUuUzW6kf6wSdTsLx9PqeACIFNLvcdTwLiz3STCuzPrR7ZGHPOx9xUwrAw+4ER/M4e1i/qi2MpAPmPQVsRkq1sptcJKiMklA2Rn7dEQ41UsOkO4kGyGpaOQWbt7PzgfVM3V2CWovrgwtDiKEeMlmSiJ3qLMUgGdixJ3zYneSegt0IvmeONXlBGp3XMZkTazhm/+PnaxDCTBcelxsd9oN+P9tqVSECIXsdAXHZm/C6wu/v/WAZM2fp+AGVr2Nj8MVmWGs/0KZYG/gLahfw82i4K5cy8pVxhnM5gq+Mzb0HX+lxoHSHJDY7CzSzc5SixoiZJdAhuEZ9LMIiiNGlh3RJ+5tfdv5gLuTlE8PUx0bsMQvAPVmXJDeyUt416AMKtZMQoUy0UEUy4+TMxXvzke/zDBYGddKp5IrsAmHPkKvHn61hLMz48QnRQB+4IJAES5xtrNEMnNKvCJmGcXYsqGMgLcQN/+kO+/xkslGravNFtQEN6ulmg/TZUxRPG6cpHq6qj5iUZgvOhHn4uq3AE9umGNpvkRzZ0i4vNhBDeibPfsvTtKloMifTDEnEzS0GP9egPazd2u00Al7qvYw0Ay1jiRmg/+YfzM1iankYXjAA7dFtQGjfzea91heSBcR7+ZJZKLU3v0rYCBnX8OL+PB5I5QEPeThlAsn2OqhUm5lblTDu07lCKNG8OKwUmn+V3djjmA0mdGY69GLY/hnkCOlIAYbdQDELwTtTAAxDSwGk42WoKsYqpm998onjnLCQyPYqW1uqqecGgk/Tx3bVp3AsoSYAn3oV9avKRaz4JoZeUry3wFcrc+B0Zl0WtCTxuX9y6pssQq386Y6Cqx/Ore6ShCuRLEHpGBTUOX+52o0y+Q+2GFYBV99REuoXe13KAlC8kiMbjT+oLKxejhdlSpT8bKcpKYS/4YolL0mUwkgVX1pnIZz/ZZwj4aY9eu/N9f9Ty0aJVd3r30rVHFvLfU4snJOzq3nlufsFXHl8z0MqS7kgCaKIfhMlp1ZyVsyKBbbivvUkdtTWiZz2mvKZfTUFV+rFu11xRJatMPVs16W6HPkVDFhf6vADxPYh7vFYbBHy2ata061JUDSdtzSpG58EkG5NTFgTPedNd4044Fy1MNanmRK6m/sjt4DUo+fclmEkMISUTQ0U3UG+SWmCQ4jw4nLHTcrxPJJhaofKRQR6SyJYb8K467rGyOXtjzjkIZ5Ss8n9/U9X4O1Q/Tz7NmuuRd6lRc8S9+Pa/lF3/SSl7tHQBfGq+/mA5gMqZ2cba0JjCTsA4Hu2Zq68rQpFNN8EsIXuFHq6aijbEdztoe1dcLhmtnrjqiziF3HvboLfuXOpNW9fu2QGP+T5Gv1mBv28mmVcKOw58YL3t2ieJuaY5xue3Ksuye3fb+DpGFBACAcs/0EMEITy6qHXBSzwkK24LCRwMgl7h9ZVZYYzcmD4X4Z+JLlWSpLpbdgviy+h06trerNeqc4TLVXJIH+XyfKoJ5/PXEVSrjkl0B0Amna+eZOAzvgCcv+XaqQKBvA3CHT++SdFTwsWPQwJ3exb9bzC8NzSG7KDdxtvdM1Yy75BEC90iCK7jXNjvc22SVLRi6WzLEa2Vfbsya8GIRHBb1szJ0/l3EsyY6uJeCO0L3Zr9Yp9Qv7q+PllXCFzwm3iKmWzwi1+T7lIqHBIqgJReSiHHqmOvxeYst+kZilIu37znEaHgrs8fCvX+BNaNX4lsCWo7GZGjVeL0hZmkYyxEsPLeQuZ6ewtOtgbbJeCoYU1trXecsMSoSYDPiRfqP0znuuZnAEfIR7sh7Ycu85U5nD3bWVqImECci8dNwkG4AEXOjhKRuH8qA6/t91l12bgKejPgwvyDCx3oRvFv7pxAVGCic0mJzJLStJXoK5rfuPBL4hsHIFHbt1V5Pj80h+6OxlQpRGF70+bbcQ3hwdVeha5ZPY+6zACEliaiKH1wufJktTPULiYNA1iReoWWwO8AKJK+dcYxm/0k+BaWLZX5BV+/g7j7ndQAJ4nEM5HESpAiJFJFAhE+iMb6navvTb0cfn24Gg6gxh6drpi1HynBqHeHZs+5ZDLsrFOAshKLA/XSj5q1FBLMBAffxth/6S228mhIj3u7NV/5W4AdKlppoGOS/auGKvMEpt3NT0h4Qk2bBd0clBJpRKSw45QpdFuD+FkNIGESqnkdL/2uDSQ2e2kEJkjfkKxmOi8tUSVArx0fLQNqrJZDI61qX0LoDd5XTiO4hJ80m5V6dBItpaDY7ov3z6duMPg12OR3i4DWKCUFKBHE/b82+w1otJCxkaHbbGjKhXuz2Tmy6Lr6qkxtHjZFaadhSCeOrBf5j5cM5CWsvJGM/0EbI6+1FRaOfAKt+ymJPA2ygfWk7lJRjHMGRHVvz4mdeV3rpTYQgILIYkUTDbqrtfzGKVckEtOXiq1QbKhcZn7bSH/Y9HOIsR6iMh2NJpr0fPbvzCm1bad4gb7/KXS2ho7A8nmKTOAtTlPGxm5EYYrHcQPQUn8ZCPqYgBSgQvkdUsm9cE3vY3VCZ2LJy2QtCZeeK98m48DY8QDMRYBo3Ecqxv3BHrDh7v5rlc+P1cFfJq+K1m+3wmlEfLsPAqWxroGuXNr9w/+/hEUmIpSnMty60NfUjiuZBzMzQI23AWNU1oHDfo2/X+H4/fTp4O0m0HO1NYydS6IIsDQuKLSBUhepv7Dr16gmYOk4QOyoPd/WUgJZ4Bed7nJfTZd14w8sD3AIp7k/4r1hq+4rwyLPCMiQ+RGDMI5XOcDt3G3Ga/G8bVu6zjZN8hokQksho2W0gNmMY9gPju8stqwIbJjstxtHjL9WBshyPx00iQWDUGE9NL/CTt2NYeLLNRx73Qyp75Vx+SjC22geNuUpQV8FVjh1XyNJ1G5tGM6RBzZdhQLbGISqeVZ4cKMEOMAoM5cPLpu9bBrqgNm23W5E7wMw60Y7IjdXahQqzxgW3tbx00NlD6IGMMhYIevZnIoRseTS5uW4B0y6ovEksalOpGHz7f/2rE0R90leMelKTdoqmWUOdceIajpo59I/ue8heXvC0n4g6s9LEObDuNqSKXUvgk16rlOqCvoESq0eXdMcoOgntIh58uJdDqxTKcSZD1hML8jb+LsvWbkzAv1NmwB6o8UOAn5a05Iv3QyRj0yuFDlPT82524cDCufOqrsltIJ14dY2NNfMbEjtUdGDYJ0jExZC256B319y9EutyB8teuclK4F6X1PCk9UdPgrgehAf+0wHOcU52AhiC2cik3TRKligFG4pM4JR2LC77unCxFZx+5F204EH2YI1cNmqGrY0T4/s/0fQfbSxye0ywu81ve7t3taLUuFdlMagZYHuyWf0IYosoKRrzUCuXY3icji9l99dWDbx5BRPqf+YNPex2vagU90VmNMGvpv/w7E+yKSGrnCxs/XQrydp939uXbCglHOaPHwVu3SB+jmV3Qn3z4Whfw4UlMcKDkTo/wt4zo1FFXb3NpGXB5nCtpXEN+u3MvgoAsxIbo6qOk5eclOdSBS87Ov0KXcS9nXSHgV752u7Ed1FQ8xKFmNXP0MaGx3v11YWlw/G+c5tTBntAvQxv16a1Ff6fC9H94Hsm7dtv+LHA3sgcNB0QfpC1mVlAhpY3+y2kOMCDfbHEiZvu1T4lCFBfAz7gzPu7vs4EQfBGoI2kpSrGtMOBqyjH2n50MLWDwnp9UgKGD122Zm9+jF8jLIF5+x6bLux6aRWPukF48fi7Xloldq5RddDqnTWoXDJFHrx2wej8mIZ+MP6ccQ1e9Ms+An4JrPlDWgUILyEngBIpE6dhk6kbFKqIeep+jvZU0CXqCyZHVCQi1qxj8amUAUo/UaoQ0Pz0eYOpA/vLqIzQLhaUl87XVgcYy4qMddVPkPMPf2hgsh/xbZfIun/uE0dGHAhc5cijBJ2tDcYgsYndqNjJWn1GNwZF0TRPaxBft7dD7dIBPW7BtxQlaXf/17FZ79FaTBERRtp7h0vi2GXYK1G+2/eJ0aiIsU8epnJuIqOs5DdZygVIWi4Oveijl3Hay7CzuIWLtAVnGvEcl1RFaQDti0yt/fPa54FTRY91QnoR4dQXcG2IdmwXX3OuOzDHbtpvQkqv8i8amZ7HIz4tZwsa8qPtrAdHSV1Pn7eh8pg4XJLz5c1gIxLFDYxiHuBV2LLM3ajToJprTNeMEL3zsomxc6aBJP7UP5RMdcXDlcwfs4rRKb6Eeb+/Vo8ZV2Ydm66Md1Hwrr2PEbOcFUHS3sBEBEiCsHEq+djuFx8jtcIHMSQ/F1SNYm8LJImVNDi4nknCueWfuqeyaG9jNMNtqUPzakdLsGcRSIl5fPs3cSmDq/dpJGbpgxcjm+pOzXmNXhjiQ8BA1j2YN0/ZI+JrWjJsmJhkLfK7Fpk1MLxEpzptTaNh1ynJKi2v1JFsDoNVGS0ZuURm5Oo/bylYF8BrHuhrEL0gP3YWpPT75A3U1pnqy/9of0c1MyGqFYqz2y0qX0mjIl/ccMYwUUzknhEXJQSc0BOmt0W427YIzEwvHL/U+RDnDViRJmH1y88O80uQcsyyqWcuphnJqKWTVmu+JcTX12MMbugfFhf/ibQl9R+qm7D7MV/xo2uouUHStQYdLtsLTc0mfSNaMjrxHfirYdnyt/srG43zdj64eZPYHDNLivPtTDGBheO0gdYzolXTPG7EEAill+Q88fgBhuXlW9CCacPF9vaevL9e0i4bTZGa6nEpDFoWuewbnmaA2sIF5l8bEP4L4O9hZuk9rvCbEf/JWlBwW1cyMftiJGirNqGhml7kp0rmOCFepYN6mJKeMfXsWOBG92in6WySZvIRj+aALM1ZR1w4cZW9QeGgrzmRuTOKBxSQRU854nr9Fa8KHFaOwXkJR/PUjFCoXKdss/qpKAxz1kqDRBBgeHNlXUDVsdXcXd2A56q9YSw82QOd38gGf91n3rDs1QRNKLZCow/MuaPfBpZZi+FIYdSmGJ00PVXVl6/nXQ0EOB+6wRrtDoszOhPH8O42eXPqDB2eMNf3T8gE0Mxj0t5+Sf3v4OzrARjIsAQRc4zXR6T61yKIu8ygr8wHHCeQIpmLrx/4appTZrRHL9yCVcwsClS1lxvf6UqQyhDYbedsf1YqBZ8fzIN9UDEilOzLswFnfS0YpBYy4EmBU/ZWUd7XCgsU0jy9BCVG+iH83qV6UoNF7pHDdYSkVGRhkUJsPXuzs8HdY4B1JdMv4qVavigJoIaiy+ybWJr7i7Iu5twiKkU4qJptEicW6myQGX39R7al92zx6cZMysV80wFdAJ2zQaLKHLQiemMF5NNUMn/ZbwltOadEv/gMresJ1yT6ceOBBWAzfmnwWfdfKtqQRIuY1UACvav35drNnVSAcGdc7WA1O5nbszseYrR2BVKqxo5BUYVF80ZT2JAyn9WHisKSSNT5Zr5ri22C3L0CJ/sWhcFV0jq5dllK16C6/YZXIg6AVuB01bTRYeqNtD3LH05bqb13tYLMZZSz07nYrQmzJ81yhuMJFaRYiRsU7X+8rYXT1i1MUh8m68LtgS4BaZ4Lfi1sSFESQkhGbJLGNIwSrFJ88LBfS9fqdpGB7Lp9IT2KfiUe6FtoGw8bzXvIZfQX9CbnShnAbvRHXsiTFDhOJBFGeHlABpgnwwpNiVw7rPTFmpXF6KAdroVr0RhAoXl1BmF2VKTwDM82FuiV+lf0/AUG0Z0PY2RYYYJ4WL0R2GOaLEBeICOc5dLP9uLq5OgTA31mVnAxcDxge413XRgwpWU6WSC3NjCkKhC4mI5xpMOja1/xPu/OCXc2nvAQ+Gez3/5Hr2GHMizxCHdIqL/nDhEsJrg1KBETI7SqWc9m/G6N7Rd2Q5WD+Qk61qVUh6t5mBvXAy563S7Ko+BLeQYoZdxY5kVdNJB8iX//q1p6LiFJUR/1OvFcp9qnSE+r0tyFTg8RurqHnQfUO8dpO3vSDps04dZ1VHETk3/s2polG+GvouLPzB8vQHoxnW601jGuyhubOojF7PvAhaVSJrMSNoVK2OOuT/oALC0F/eiEJPbc1e9sAAoFD0cfRXOhAgh3+bZHKuioq1Ahz15ZQlpV5sKJqD4rBXfhmht9CCojT4wYk+TU4jf/sRYrdgWQuAAJWv1ICMuTt2GYw9eGfx7ZG2lthU0vqx1swQcIx+wOJjwsMJ2OJYloxxdg2/c+Zc52y9HDgHKE5TM4ZDKuzvJjbXXyv6RCMWQ6iX/VGre/UVAcI+AyXBAoTrwyHf0qwhCcu/BPj8oPOV5RssRAB6Q4m7P8xPL76jIUXK/+uS6pMII5MLRG2rnbZqFYL2NsI/ZYfrhnuZAkwnRqb0rgOVcS68aoJ+Serr3Z77ZlG+aG6DPsV45MnR/s807nhYzUA9Hd6pxJSOjE2J24x8Mz8MvvpX55wxI+5x2qXyxwj/2is63vUDPVqx/XcQA2Ta85I/1pJzPwxTuV3GiqXUiAMDFLgR2UPEd5YeuOtPWMegOMroLK6G/iLb85lqI1cfHkxXpQ0evGQ9c9kuB7bDuDRB2To8Z0sCB9E39ltUNPYDV6WXPz8qfvvuJ8iEz40u1L/NcsmJanSC4PKqE/G5wPdPSqIsHUrba85bvz6l++jMmcClkZRwBBnZkizckUqFKYaDqL6dG6WTxNUcP13UgnhLz0zkM7lflFIiU9eRAw7epfSszV87uiscaZLFdbdYzNuQaWffcVMhW4FMZAI4BseOeUih7ei6a/c+FVUpNdGlP6oO+/ymLZxmRL8tm8iXClMr+EdNjJJV3WygZqhAwaWGpwJZqappaVNPaZY8RqvcCcu38cUPyNYy3gwQiKeiFHZnzWbhB2kKPA5IoYozhDdYclKO/lgnWveRkv9CZ0lOycmfbKi9uhv124plIXC0F5sJxi2DFyOaKYLqfwOkkHhABpekUSvAGBlN6X/ROue+bjZWAFrK7w6pb+ZDjiasP8KOI3K+pUdgdcuvrtTViS1SvTfo8WBGHinSsPkJV2NF4IfLWQCG2j78EuMfrvMY7uyZg+hCggJHS0qB1TDhNXazEbEmvEhd32k0FbPGz71H32z5q3aykp03k8edSXiSJp3jzb5PpT5o3O/3Wampyzyy27pKIzwc6tKqAa0CJcms0af3lTOOxWj+1vDFiAzlc/+ABeHeUZKYAKvlXKKiocz3PEmDEIRQw1heufXwJ0vPqOpkmo9eMvRzep/gzqOhrKY+ODpX6nIQNKm0jNRAP5n9SDxrV6bdcHx6L/gCL6R/9fGvFURZo/hCOo8Jkyj25CnHnnk/552qWEsUrrdAhD6NEthElvPC/sYvg7U6eLovCYu7ouwUHedVsTGkxbon3NNCXUdN3FJYclfs5cD6OHHuVGEsEzYoZKWY9/PEpkgY2mDfx3bytVo/5yImJ9mOOmqxJkT7eV0cioshlOVe0/UcPqFnQKtPNs0BO0w/TKsde9Gt4mU2s5Ddcipc0mUF1ycCf9PzuyJHNPrMeANUJKUN3cTUJmrBb4wWxoKRjKC+2MGyCqb6fQhWXRGhSsQH43lgmtqSBH34B9O26Vn+qejzf8EOEV1SeYkeq5pHBF8UBQCb8cHJ0wKLxcPT4w588MkbFZjNITuTd2d7rZ9bdlSubEIrZb9WUaG9zgqdvUkzHgo9wm1vmvUVPLtReO9RNEeztFJBc1aadMYcKhF8eXa6NA3+ICUeHTEvj2cWgzzvWbAuj4hmqUD6T+pGJnJ0joyDKyUSDdCVQXXoYvgYDEg15/YmWwD6KJX5EVeDVa8iNF7DsxKT5V/c/BDlCNIPfwRRPmNHNe6TgGHfnlcFfQYCM3A8Y5BqIoqC8FXB6vzC7WlmP+T0PNbVW+tSS9r5MAIaPIYMOmZHdB0raWk2H+cOK/0RpMQGpll/ohGFqmhvW94BwsoEP+h8YslWVJ46Pzi171Oi3DXPsScoJV4gNG9oqFql5VMiC47ueOl1UlQ8CVnE5QAI62eb8eBkqyuR4xADR1yYnPo9hjX9kZ+qDphtNevpdWNxHUPf/g9mL7Tcpkz3QBk7Wv8tqo0wGq12bpqzyDG1MMCdvqSiaqFGssDlD8mLSWIuw4qjfsKIVK+lI2UV5YCornwVa2CaL2Dy4US/3PorVk4UVEOLZ52zZhhrHzT3CWjfWInufCjFEGyyjcE5Nkx2smD9s837knUGikkm18X+E24z+/hSN15MKMu2szR56kwmS7MGpFuP/sN059kt1XYkER36CwbxEExit94/lalKqTZvx/1Af9eg8g+kjSml3esTKNSmkJQ+2Fzv6b8OUwJf1C5tK4nECkRSCYUlKqQcKRBOcQXvpodsOrdzT8TW489xCh76EJRDoc2IT1JWFhqHZ6srXEpK8Y44FzekIjzr7HZpSYFJn+vEYnHqlRR/dyyQTJ6aQU83NvYLrh02wsQNKCKHL4ksoinAM2zwT4YOCe77n+X/bZKez7uqjjr1WMVikqZ7c5eFK6//Jx+w41LOHT6Mv7zxzZ2VpgWlT2KnTYejpQUYqw/lYFhCRKt1f6gh/ZKDTwZDpjoDYHKxjesjblizyFb+z6GyMdqx44KfeefdDlr9VK2ksvJD4YYvHs7IfJqXX+butj7/cxXVycPf25C0GeU9TX/cJQAuehVhfiemuvFgVMJHf7EYhmv/nNoxaiXRJK8Vzhmb1ZBQSq6zGC3eVUAp4L159IKVh1wvbrrfw0Q9sSrN/d6fjFcknn3PzsoTUgTgWuJv7aUHk9xe980q/UN9rYlRO1Cv4O+QAYkkKFxqXNm6orXR/mo1ORSQpGfKt1OJoPKVmaZvXCO9ejwNa/02re+9Zcet4ouSi7eKK0BwhW96njl1likMVyqMZtu+R+OQFwGa0nL/mmaOL070ytU+byR5AJ7opwJiQdJg2bSI1H/+CMgemoMJgDTQD3VbJPsgRiR64n40dMP1+sQusBRoPCbZDGdM21TZ3K9Wy6xgw+phj0vqmygbf5wKyUlEVed/W03gQOt20yTDB9CQfn5J+p/JTc0/CTp70y0eIiYCTHmtUNOQxuN0JgS8PweJ8Qmn4Z3KohRiBmRUik7/91r6AlNM4TPwYL7K5rdlcWKVBpzEFr8hlZ+XapJbv+Jvc8QdMW4WfmskBmWGYqg1eGShBZ21VAaV7MiTZiaJQq3y2slzGRZVFh1+KOCsJgCcdxANh+q0Y6GqrrEifN1dALgIoJgIxz3/Xa6SrDMOjrRf9uRf7xTcU+Gt2UA8vnKpK5amC9IqFOWZmZGT7deSksswfZLxEPWmeFkxg9u6EaMg9lM6PAgx9TGsoeWxgMRFgg7BY/b9rHcjIvQBRC+GILXKevwdciNUd2VChE27xEVODJX4BTzcND/LyMvtjXLyfv4+zhbx2AAlTWFQYK/cEcQ4pxGNiLcV2dNf6iG4oq5zlAR+iVgthKe/oZJ2KDcKhf9IjQQZhfqaeaBvKaGyC2XQiLLOwH0tSeJhS4hPh0w+tlvtU2eBCKF0U6oyiEZqvVZDNzBN32BmnCgZ2fO2KFUgdy1RDNzRR1K9EaN1SFoE4DnKUvzk+zn6noEtGL9pJP9Iqqs0ZHl63/RkFEVCa8vHG0MaCsNHvm7T8vR0P5N+ER32EbMNPvAaDNLdv+mc9cf5EsrRBeDwp8qKsvMYcQX7rXJdXQM2aDaYtyZhtxbusHqobIYzoPcbWsUzW9YuOKVeqTmDR8LJMHsLFpSKmFDMSX07h44I5INbE6YIFIlkOHixIyry1W49fZiqjV6RrdAVxLtdoFK7hWo3LeOdtig24bFOGIz7kcnyth8O9n8rJNH2nnK61+LfXanQR6e1ioHAMX+mgdBktlwCsiDMgEXgz3rDPbcATAPot+fzj/2L7XSevZjd0fYOi74prcDvzS7mG7jF4hq/mE78iP2UhTWOLtXtqF5C0LGI/RKSaY+AAM2QapLLJ1E3xPWV53oPBXDkfxLLpebpiayk1qUQ5L89ltvpUPLSUklNntUnDKK1aN5j+1zHY7zY6IFuy62Ujucq3qSmb+/jSWMCBT7bmDufmZhAeuLiKq96/zAb/Rdva31eAmYNMWvJLVNMmzIzDQQtXHeyRvl+p2516HV0zypylKNpZpiFFtGkXhq91jGtXbIOqjp9cQ9+VXhlPsfNkvefNRT5j/Z0biFOcfamHUMzDI5SqSxAPNJI2eUlvTNDtBxjNNWVWl3XcN+XtAJB2B02oVXpdZ1exxFNuRCUmf4lBD581JN5Nuwdm9OYw/DG8+FAi/yT3G5C0pCuUUSblUXpWesKCFrJnFN8WrzMYz7ATOxoUc9EbVsgIY8v1kaTsp25Ognt5cR+UrxAqvIeAW5gpC+MYJWAfu699jp2kIHQGu6oB38JJrvhXmPEIFFcvAUlEbSrnH9jkZ+64RCVuwosAQAOl88hG/WH76cB56Uia0MQjczT6lhcaPybc7r9+UOJqueVhxbzQW88ah8p6jIc0RIJ3IEtYBDRagBDFxvg73t+S4kY+jzv0ZKY/gsO3JYESnV0xoBpQed/4KYfqvJZDwsOrJ5UEhXTbC236/GV2o2xcZnCRE3Z3FsL8+TfXdv/3q84hjfdIvvcmsdJWKF6sjp41dGYAFTEqR8xxU6ZlzdDh962zIRVIFNsp1D3EFbSZmHR8ujFlq9ryd6+vmX5iq4n6QoHZRA7dtB36yyHrRw/lDEaWTGMpNIvEJhQAL1wjDlBHZFHsZweFyGaJKeFWb04CaYM4woml6kGqK9edPGBZNsga5krlDe+J4wziFZKzDf7vLzyIsqhkrCRmSYioDjShMzVhYZHUmuA2dLiAKJdNv96RpERcXZIDQbpbnEc4nAvejfg3cVdo3JGveYVYGazf2xfRYJYPBCWKJ8511oDO68vngI7Gh6NX3FYWsLIZbfxYwnuLjSh6i4RZ8OfQx3E3TIgF6X2j+LvEzsYpL1H9u5+8OgP2r+mZdPUjp+yQVfbKWOLA1hGf8i6b0os4e+0uDaByVSxof6utDpmFRERRUuRTxbgZNiYqWV4m1s1gPcv6Ab+bY6OkCWsa0Pj/DWnamBytAqAGmyTAyjATrwr98G15sEavOdMAKe+sWEffZ7GuREp6CetAj6BmBfBrZJNkEdPmAbIBswxoTwTAmvGsu24k4nr3sT+dharY1xuOlwdlRUtFAlPmu045Dd4WKkm/u9ydcQ63xhkBZ3jyTcWrsBZ3/RdK0pLFY8n5QRxpmjMfoQIP/zw+RnRJbTVRbMTPmeKIW5BroyVeuFeA1buC8kl8yF9AERrVBtMN9qtQsEt6h+rWu044zkdIjW2BGgUGMkf/8qZ1FYef4sRM2U3w+IsovmWClmsZJvk+w4cn09o3XVL0qj/Gi+3oTrfG5UEDELKB4TuHq3BYQhGSqE7KvAIMuT3sYjDzJxV80J+Fb/fXdxaZK7y1WIcAQE1N00KmDMdEBreRnG81txLd0cJkNwP+z7/9Twm+9k3o01OE0H4EjMgMA5t2r9GkRHrHuavnVi0V/FUTsle8tcKbfKyGq05W4dYZAiP0xHTd3jcX5We0hXq0gIMFQdn3wet+vKQDGcT0NFkQHD9maHiHUwcsMnpNpNGHXVrDZ4ATcBmBRrsBVdDpJb/9OMpZMWXZUNaY6Tz7HqI99dF5DSpJjLixGr1FVAWaiFvbvO7mgxmXpwrSwUCN+r1rDVrA3DpaaIPbEb2BCWl9Sf4LuWhu9wsYoTGB+iedoIrjI3HnibS7Ze3FAPShHGFk4pZKl+4oo8btcZp+fuqqJLVU48Z14b7qbKvfLRVwPqfSNR57La1bEoLzNaB+oQG56tXQEaYajlKRVgXiMlLlPjEabrWCwLBbRZO/3rqaslvLHECkZWW1755xDUnFh3K1ciYXUZN8RVHHPYbGbrvfQ4aNLYGFwp65cj/ujuybhi+Dd9/tyXoB3F2dt2atB4EsfPzwh31GlFNKWMLhGU7sQ9ANTdYx35SodVQGU3kjXStPUE9BmneSPRhiPmI38H5zlegM6MUInKL7OmpxvUr5K1pLGo6GClL7mZcfBvMrieHrPqxRpLrBJGyaQZAlnvkvKBBdzKE3Y4nltWmiejbZuhzrw/QmISehkrwrtCyT8oviVt/WWOmMcimrfeJQj8j2mPPJweRoCoC869FEt4pBlayKt6nP3/3XNLPEKqVO9sH9E7b23nCaeZLayMEn1DpAu6MsLFXR1pfl7XuSI2AWVejmTGpWSbuTifTL1JtUxwXQhFIShtsr5palTQwY6Y/8MPQe/Ez3Cvhr8WXvaE5QdPCEC+/c7aOZvjHdATp0lTNCz/6M5vgjYkSu8Rg8PMQdnjLX4QYDlyMozvnbH2+sH76lV6Le4W1iy0BWca1fK35YlW4eDeaSszVyRX1cFIxF8zrLlod1Z9CIgv2u47H4QRg9E4dsmppDMLlKcjzhqNNqkgccPFc6Hu3bZ8S0ZDpG/vsgadAq0jF2CGb5zn/K+BX6cGk8e5yZJuAHAYPRfLBclAr0og4nxauGyh9AoJ10pc7bmCrIUvRG2j7KO6qo7+KdfOZ0bbNrIWiWOzzOz9+odsBNg2XMQH4XpIb3fFbFv+WHjQIZS8fJ5RAEjMl2wk3k6Uk+yFDq7TGzzVpEBNBOXpS5G60UaWttrMTxkh8ehelNvjBBFwaaLaIsCtNO8pXBCFoayphvD1XygBJi5+NIDwKQG/APs+UE6UXeSa0tZpzolTRHgb1avuZB0Na8Gu6FthjDMq2+uuFZoUDWxkOX8IYqUWOr/OtYizFV8v/yFMcl76N+gjHy2l3GaD/C/VkYcTIHnvQosLn0Q6NSim2U8YKS4PVjefnSYkF/FLqA39X+oSTBC+ep6mf+CxGdY9ieHdxOrtc2EcwtCRn7bSqMSkfT4h3a+mYck2La6xQjkwzl3S2CTTe7zd0ulHT46wrD84AqhgSMPflNK0EhEkKq/1jMtD4fDwI09BVFvfjRB3cCAms3nZ+5mPYfW9FYYlg0sDlwswc6Ps2t1JxVSU4BMxG/nLVVgpSEw1pXX2DYwtWCJcUO7aKPHvRHlZiTx6afISELZwApXgTC54R4MOS5DmjrVsXfoyAdcmFAA9TouZfKYTc1cqUtw1ANUt2js5qHaCw66xQyAUfXHBU+3NdkSGpZ1bP3BoGWSHyx/dp6pOPlY0JaSFxFXeh+HUmNv55bQ3VLB+IeoBGxsmOXRF/NBsgQ87CGsFYlesHDKxVKgUEZlVeihjW1O8r7iOiq5Bzswhs/WyqP+vHSoK8panAmpN8kSvU51MRTWw8fL7e9JhMqdtsQ6Guzq6GZzYWjWDh+LKQeD5+JmGyQHw42M6WS1ATAQ2YqHJuVhIuwQ6E9N5I+2l3+G40wQ3HGCMWV1RCWgbBm/FKV1ek0Eo9qeB11f1fAQ/pkHG8OHymaEISOATFAcgb/zgbLdKtJkrEWQUEEu0YNB61MmQEcPgFHyA8HZbX3gLmTewakKdus8K9ywLRa7Aq3kQXygMdQrUW07+1krtWcbAeCke4SWPVZtxNTy3fn0upouGwfhoc+w+Dbq+ZFLQez3jmzYn75f2sV3Ypfx4de7QHPQahYEl+SaJkPwKGB/pYXZt5SdmF4ZhziG5f307xGPWIVxy5ZSeydShYZ5EGmKmAK1A/Bb54/rLyhpK9LIDLT+mZWjZdIdsZG+1C0eDWl/Sff5nDlawT3SDA2lMBIgVc63IMVzSU7GzXuc5Pn9YkVeaPG3cjPYSvpdzeY0yD+IL11Fmk536lqq2jbzbOkp/30wN1kPulm8CnkZASgpC1+Hdnx5zf6Idwi3umv75IU+hHQ2xF8OX+c6bTaNIwcMH7Emnac9se9dsXDoNyUD++JSCZ2kVmzJ1rnmF8bI2cLFwu9ja5Ot0JTt+RDMtw9/nx/ix2KHI3YfcPxUsF5tJfPjnmyXn62ftHWtUaCdo6Rq6zggQEGs3Ba/l6EC/xXurMZ2VRmMNkTYb/dtFKJIgLB/6lR72EOc/A1wM11oP2jKL8K4NhDlwFDeGI3I9Eo46RrHKvG2OCqsd3AN0qrNE/Ckdq1TmYYl2IVdZA3kA8lV+ogLRWR0/t0pSLD261J61LvBAbNiyv+DDQpVTosKWzNHMtb5sOlafsb/7842Ne5fD2dnh0pC2WN11dMkoqam3ilyaZPi7Z10FKGWSIz9cw+mfY8gL8Wt0fskLf0LofEN5Dk76RTh0kVBAJnHB6QUIXOHbqwhoJdd0gciKQ/ZZKVLltnFUoopLD180+dcP8mXiyT2405KNPduEGXLGJ/bG40DfuLOL0p7vWQSP1Kqf29YOKlle+bFZtlFmize2dBAxXVS7gyKXsch/yyO66M3CAAvOCaz83XhIIkKrXBxg8tiLElku22/k+Ug09VhPLPJVkCMbaUho1JGj0WxOmFg48Y3+33m/58Mp8YpZgnAYlzTk4uelAvj0GfRWi/qp2bdPNbGoafq4ywZPONaHyi0xVTTzpEG4lJ0OQaNBVPaNdehxhRPEU/jBEBKCmPlf64gwsK/jlIH4BnIF8fkD1W/enPJIxB2558GlZFe+m+4I21jnJS5Uz4GPbJr4P6w/NDu7nIq4NDfI+dt9y9PNqka8rCplL1w4npwMcOkBNtI7n/QQGQ6DEmGpDjswJ9MyF2Vpi6Cw4Z33VdOB6BBqXohHnQnrwJvnhWZpvndEtsGKy2OXaP4BI257xTbV/SfA0cVbgdG3PfiYC2ngI913jLyDZd0Dli7nmA1jvUP3N3gDNvpiWfNE3sMumhDX6FFZ8RBHB9LQX7fJeQ6b9gvEaWZE47Nlz9OhmSbjgVWJ3YnaGhmHDEGPAORNy1dNqaL4Gr7WGZYqTXGloLKv8PbufNy7GArFBJVaLJlRqJjFXyIfqPz0cvPcTXuzYeTNSC0KPG7+9JN+wfvmClGkgrGiCAbD9HrC74iPhR0SY5jOtwSU2KIKJ4OTPEXjQleg/moFh9JA4nDpdhysxbWYMk28SDC5zJ4Vt7JBYN3GAI4wJF8eO5rB5tYW7v9eVr74iQMAnfQVgO/2yqFBeX0/tfgmpP/aTriiEwXGek0kJBzcW4lrpl4rRNxXOD/RtlYqI7VmCiqHWH5NnzBGvSnK1xbs2YHfmWpdAQRNTbDWMV6UMt75UxE2d4XD3mwOeHuCCJjxhefD2nKVsT7zAlFkFWYP+eRXuJaYeGY89j1wq6i/mRrIotfskJcEv978ltkxDfPGhtq2x7NiIlmyrw2UeG5TCITXPzSKZnKOdAGRbxKqxSV4IqWarv8CpsY1uXAXdss1fSOa5FxRvHCDcJxFdNuPr4qtQdLWgpGmCgITSorK0POw8EGiBCmY18DeUPB+JTaij2g3MeQnP0SSwKc6ArM/wWqSqI+qIhQKgzKCzmfr7XH+ts4uDMsxmCD0ak7l1n0NNrn333xhfbo3RaUsVv8c4zUxuijVdzTD8l6GYsPzVlsWu1/KnsJnn+avBKVpBM1VqjNN4Qc0mkvXSHUz3RGx4vhCUKgzndt+PV1v25yqwBxfRI/RaJX1wkO3odNnSlAKZJGsK/ylEr5b03XGFSeaaVQLfy4qorSK+Y0f2k5DJ98zAKfGi84fNxe+Yh4Jzcm7MdQpeAzU/Gh23ZCLpEorjw8gfoYlFHe4/fBMz7a2z4pIPUtroPhtdky2XpXe2ZOwW+OGw6KkHP+NfKXkp+A8IcJlhjzTYQGg85T+QwrbeqoyNSXCrW4UJNsqu8uNm8e/78nY0YQqXBv63+AhXQw+sdcvNydJ3oWZg+qO/np+5/s17tFABg3YUJ9QUz+wJwFdFgRdok7L8b+Zk0wSouV4sbfsKSbkJU8CeCDca+q8SnaaKflJkoS6PXomckFQGBCP85MEioxtTDyo7q7u+V3xBtruox478100bsrJIyoo2DDSc8TaHFff34FZJ2UaJQhmNGCc/Dv3n3tutnDnNbW3bgPLhPWFhhIbFB7xIg6ODtGN5Ygh/cS4pyqhN1/Ay91+ti1J0uuN+SwlnDxSKVWKIVtP11w7sg7xpmQRhZqliAG0nlu5X8Ssiw3s2Flf6dVehf1zYt6rj3dpwkain7XI9tciL9mAHFYm7MYp5zNiMsArVL4hlBT3FchpSkgjh1UvmbVNJLab1OAZzrm56TSuEun55CLKCtrzRM3N0+0uZxdUtjSNFY6n71/RxXXUOJLTTpxSM3NP6zZ5Zc8Xr2K/1RJT4nBwGgB8MrASchwTNn+Wu1eNb1o0TD5UtpFGqgr+afDzDP+Ue9ZfNFTGw1qMWNC1lrdJOkrF+VBdY6JpWTyyu0Qky7doau2v4ypUbYhwsCGyvBkWioXVQ1yoodemTB3cdbABGYbAquphgjw2e4LMaicpmENZFQpgAGUkII7391nuM7UQdhXA/wrw4mYD6byfzM1Rw02fplJXr3L7EbcbFLkcAxcmYHt5Fff/DkXTzBteYGcaAiXJVm1t6jt1v5BkEbvwhSdk8LJhsKZHeRn3FQOgpNNx16bn7CKBGdsi2Cpe1HC7b+frUa0dJJCiWue+XFHHa8imwRwEZSkYFYgGEqV+dtATdcTfOIFGf6c8zMRxGyYKPrV3/XSlPwqJUBKtQ7t6bhYKu6LlRKoo0DC6LyP7Fqcu4/4Zshf2LeRCtQj5IZLJVSSw0bzNU3UyxNpfkvChXZB4STjt7rY/wbwcfP2Ops5B2624vEK/lhRi+9ab1TCEACuJT4J7njgP5RNGELY6w9GFl13Wqm/1+FwVKX4gFJmxjAE8vah/ake9NxwkUohHk0UGoCO/p/ACXmiMVVKXTXxSM1pbTScf49lCI/osej9QfpZyxaSjyvWQEjoDxzV9DebdYbwqkztQRdD+XGNl6V+kSZLzGnpIKByF5nCB/zMlZYpnt4RFvSz3oDX1BJ4yCSE8v+lkI5gjnk1TwJZaoX3oK4skKBpbZ0v9YJQH2Nmi6SqY9qm4jn9NOjfe46Dmto2/TxiKoeF/Tf0LCgsCpPr0kDDPJxxqBI6OZWFRd3dLRQDcfAQ2ODBHMMbUcHgIN9pk3cl6+dROVkrZT8RrS3eyHcpuAXzkUG2qIDfLEOV4HvXkzsYbOOOgUai4xTSWMvGc+0UHk89BnbvrDNs+jK7rxmLFTi7IF6SfVYmhul7dTsmlwhmP+x24Xyvy5zdlQxlvPpRiESTQeUGP8N1cpxNLR/Q1t32aEPa86vqXak91++jUqXJE4V/ui+vtbh/LBCDMG+zrMimHjlAXAtyrx0yUV2uXBj+snA3+bbswyBMtoBjCzOZLdF3JerHvzGV7/vSwEXz2qgjNhUnUxm7gsa5SGOdlJiTIIV2EVNwQBFzscIqgY8Z1ANibzqt5MZTVSTtTn0mBRV2RpVU0JnRYrvWWCN2sYjinEZO6p8M9QDJnVzVYdwRNrjMhVSEaxdstg2pLZB5YECX2vtkCQCZKHL+6ataNpFS6+vE0YuTeRSb3ZabqNuzYwCFmtv+bWXENHskuc0opKOmGnuqOHMU8GT3N5jXR4GBPRyWCGo4lLyQPrw2M22HFg5IAkAqzOQl8Dmv7OKinJqbg1xl+JgLQiO7Gm7qI+Rzy9QTxTsQVNY41RF9ho1uwyrofTgq9m8O8ei7lUhalw7qulnkTgxzogOP+X7s+sZa1HUmFmS4ZuoQ+zE1e8vep8VZVVcB8E2812Jdy48GXIHmmsnF4lyxrLWFofWFFAlsjT/vsRLcQmFyJf4k3mbq8tUoGXf35SOIj2QF4ma7iK9vrxVlv5La0m2qxdhR0rxR67bwtVGYzy54N/3Ai5dLg3s6fdDA7GG3NX4Q4on4OwedM9XFibXmFMaPRGOL4XCI4X7WgGycXbcRQCAC9v1fixtAXm94/EkeN5pQc+MC6Kth4IOg2qgq6t7oUZ4SNOzQ5Vh0MXKejKKxFICkvq+WLEI8FV1bbsvr/avyG/Dz7nns0W94uLf5lQphTW5a/0s2yU+1oN+xvXhD5TIMJyU3WfHLd3pHKSwcljYMgJR+ikzQcOzbxqtMLkH9iBorv2ij3bvb54I8V3swp97eFXzMLR8GpX8zMDkF+3+7KAv4w7Rg6hP8OY9idfhhi5x7an+Et2UD9sh76/ESCkc8jZlOlhIf0ogw2/xXD5XRT7qBceTIQ+erfhkiqFWf6GronteRoAEkT34itvhBW25fVRbRVMWPPuhJqrysNK72lFpsRZ5ZAu0/sazf48Rwef9h64u9wxnNuLz4xdLqiL5s7HUB/gbEUcNHngkZ0Fx+Yyh3BnCXNAQKSLWpahY/V002Pg8Mf06bG5B2IfxqYJsHspK0sXXF5ux1SkN3Il0xe3yt1SZTDyfTG5NsoC/wc91LaaL3AETEA1eNBZUQ1sZqIVWshThIBZU2mGN3fjJCdotIpAK6gCO5G+fSHbVanmlwlSD68+f+X0qtJOQFcJV9iZIqvdVZzuoSMSpIsgO1aRfwM/rjhuQ8Ur3609lXcj29n1WKZOMs7lEAWWY4gITTCErc+Ec+pY06875Jcq5SKj3kttkiY+rHxTAU8Coz6JqluqtOfPB0DpDI2nW6U/kXpcw0i1P+uyYFJv/Na1BQsRgceGsOmD7bLAwEvkcYDAI3DLEe9I8Q85BGuvty3k+HZEg1jxZtbONhs6puXK63FbW1mL5fSX0X/iuYv7NxxUvWdUrhsHdyWMxGH/EzGo5ucx2mttRm5+J7e25qqJpbc3no30UOMbs+vW8uITBjQjHbaTOAWLGr7canHO5/v6deH4lt0CCS5jlwn4Fj9wixdVoP1LD5pLxZpHC4KU02bB+kq+HCR0yF+UXk4EvRP+df2/9V67ndpGmGPLGbk5s4E3ZIP1wsOuICz6HVgd0OZ3/KMnRnxa0CLob7knwqNTJ44XCnaHYxjcKpRGfJJzyxvx2zYyeS0quUy98pijrUW4gWTgrVGJgF7t4NCa84mcJeNx4clhyLgi5gEvryhEb24Lcwc3MOi+PkvMRYcwg4qxivxvMVJ6xlBfonRQM/ifXgyMNHRz5+2iEoClQ0ebqN9kR47n0wE6eEC3Ygn7YitEhnN23cUUIoRARa7eiLgZMwe4iWQ38Q4bB1iqx4fn0DLaAbVOcPR2n4VlJsdYcD6yu1+tlN960pgsA6Xxn82u1m1jrE+cG8PVxGrzsRdZq7C1yQXriBS2OK4SFNj2wyrDttDVhrbxrdLxByl4T5xnCUDbdxPnJmqA5PiXwjeh+rHuXFr6E9+qJ9/4SiHhek1QyvQprmTwsAdaGMNWCbKQBYzHel3gifyQv3q3RZvqndswLfHIR86gY6BNPcga1fYbpsFVjTkrQMT9B7LkG2KZ5DuLormK4KhVqTWrkXVvGSpN3IEsljBFnF1N+VA2AZ60H7KUyxv3qpAFZ03vXzSWUDfrpSN2yVxvMmA+Kij01EczVb9KiZRLs98OzKMk26pHoYLx4jKG44hnsNEA0BxJAvHEX893nN13FTfDEEjKKqJOSlj5qHveWCfRO9UA96UPjmArdcOARvs/YY2OggIZU4/MHkRGTJwjcEoEJWiQYEGkAwCvjj0Y2Yb/pVZs5VzxfJFPMy+R7VCKFJJdR1rrvIJFhDhZdM/5U6lzC3gTyP2JgmXHYE/gOGIkFy5u+hnqdDdRVsE5NF5xuxvX29QV+nMj1bggtnI+sBDnjQk4WuE36Et3lTgGh//WOQh9binUVVuhOw6dxUN64dxpKBIiGF38CtTpl8QW9QVOvGs/Do4SUkDgWzTgfXoJ6H8P06mAiPGDCrllhOgD7zTFwANJBLRzmcpby188BqRrcN05zDwtgyaOfUPnSrxHjpEnkhwLYnfcCjp2/7zsdXn1SrNbQ/L7/UEbCafsRZ3NDq5ol8VP7M0r6YE0jjDgwrINCBzjPcoPd/h6rtB7ewSOpGBatGBjB3+BDEJNOBLg7+Iyi0l7o8mKZcxw6LDdSJGcQolDtENLN4w0QNbpFybv1LgjFzR7hfWBh5fGTEfnJKTSDzayCWdPMIa7NNp3Vt1r4jqVPPZEbODssGb/L3x2IEk+qhKlGFXTLKLjT82mYnoNBk+xzTsW6yBnIqitPzkZVqUyV/l95s85PoshnvyefDII93mKVFINBxM7Ma2gya4FU2W8gIqJ/Tt8qlIwQFBBYoV63ym5FWctUYkw2dsjmz4AFME4xnUnq2dSC/cTdK1HVQ5TA5a6U3EksJbZ/lkBdeOZgaecl3A3GlU16JIzaz9mpgCfHhDXigtS4gEEXr3n7lc2dNFs0AHfZ84N8RHWeyLjrTD8zsYqWuuIiUz+xrqbxcrbZwOj7m2iSCYtFr396bMkOF9ljzU2vs1r5W73cHde8pNWNVB7kgUwDj3IRZEC5omvtxwUf6hRnI8mCeapw5XjwBcs2LifNuxul2fpjCW2trWZ5nYqRc9BwTccV9AGl5UHOPesfiDrVSO671XZNra/+Ey/EZArFTqjzt4U8lQuoXg9L6zc6G8chjxQ40SKJigND5+7kthF8ZGQSSn9p/Qxa+tRTQL+Nm8cjJkVLPzxyZB29lyXz6imr9yPKFXoho9852Ux+abJ9A01IC4bZERAGzXbn8X7mFA+l3PC6P33h3yoqFqd3027ViCFgxw+BiymYvzMP02fYCleH6qHQ1iqkB760+0yn9N/bCH9EoSz8Hli0Qb5yFblr5lco/AKKCJasaO22lLFxQTTZk3m/mvV7lKz5DznRQqBR1MRU9QozPHtCP19q8rctGbq9w2Go0UuFEoSsOf51XLOUvyk69A4ouUG38X9has8GMi06quQI17IwDk3LQkbD3dNXsDhpYB/CBGiIeO8wHed8fGSiUUytxoaBBfJ9OuYiqlsUh3ZSiAV7M173x2/Njo6PkTvn4/eKn/FURomQUYW+iMZeSVnlunhfLNhEDchNt1kGlc2t2AYH6ORfaXKYni9HS3NMqIH3WWfFh0LKTR89uFQw+FO30JreriYzWcwIiEhng8UHlQpbqTAzcAT3BxXOJ37aYkzFCZ90rz+c1ESoeadox5FDk0ABOgitMlmhePmZPAvaZDPQQqFaObPaMoq5a1Gf/cX//IUy4NyrDu4QwtZBquIkHykYeC08+bU2YnGrJ10UBuQxxNWLNyB0NB0fZdBS3/vFGP6ke2IXXI4kWa07jCAXVThQh+EmwaPAAZYOR16++HrUVsAQ+ZAR0bzV5yRZ0zPeWERs48frn4SqmnBvyVzQW4nQkSqeTGD4Ve3gedFgxokcvQ5ybmsdgsctYeXWaLdhBZ9PVQ1T1ePuOrHfQD3ttYekaZOdiUwSGVhlhYunfkFykjdV+naByVaUQNnYhEEkGvSoDRBTYKw/yYOrVY/TZgtpP9EYOoy2BW/y0JhKfv9NufqzgJ4XOKZgetvV4lXbi0s6TpLJp9waVDN5S5fdufXeZFyYcTheMVvXXl/d8Oaq6TMsmstcI0lPX2KCSX/fETAUYOdq+f1bpOOTlc9NRz4a+E3gx3b0kzmNFOwH5WB2eCDQESdv2Vfufm4HxKrlLuJ4J3uV+kPYrShYt8A514IfuMyYavNEhpI6jVAqPtWo2fxcV1NaGY2DkaWfJYQ8iG8ayS2ttN3d5C1VTxIjQUPDSp6Vx5AeFTbX55N337X6lr9LH+ShsEnbwblv3b4TBPj4mANzU99h3j1IOXL+4bGuwvQZFiIB+Un9oYm470VWkZap8aBM6GgeOF1lw077SRzniZV9PLB8IT3OHkUemqpUXx0PYpNNUgibgaLkJUItMbO9ah1LNiW9jXQC727jDq+nzQ4JYG03+mzZ4uQ+hxMvm8SShzWpWiukgoqa71dDtSjBPSEQRAryDZNRZByikjyCuknJRea4IZIDth2mwhPbzTe0k/sFPe2ZXcsP/jJ7HnJUQAGQXkK53h8XYgRp/IRwlqlHLbyrUR8aoCBhAuU5jqJ21kbDb6nTijYdIg2Ff27o2BRORI80ZW5NdjUfhmdicq6c9HoL0NoM8xG6LzHF7M7LzV2vxAwGqq+1HFu21ZNvNzeJQAMXiHQgD7beqin4UDT6cuLulZ4MvdTexzxK/mEqnT9+mQZGZiF5MA8EJQEZBCO1Kldavq3hhHm9oHgJ93PiyqlrXBsX40rlSjiXYsK+rFLNhakmkbzFTyB0Hg5zG/BBQzswDtdcYKiEPsUgOc6knLM7kFJbH2fkQgf7Tru1N1wo+cZ6lEV9wHkbYVJ1EgjeWL5z7Hpis3DmUI6mZnBiZMiHy9VYJCp41kTTM7YtH+env8zTREhsyoXoBqN9yVjqdtLmSPAZhZmQNM+NHLKAu/1f5gBdR8x51CqwoMWVGa8R8LRZKTQs26Pl6gbz7Ztd73Hh1VXcJa+9kOJmGRALYSWIeVJqMuS1Ngd67CDSUaAUBedtQ6rx6kaCkGrM9LDQFDOLwCoBcsZg+Gi3ttSvws9HtzO9MRZWBHgUIgpTGbgwgOritX1bslgsetTUd3eQRPJs+HZmf/bEM9HNp+izoWZm+HmUb3574Aj9Ew8gxw7eufrGnQ11HZQ2LF7tg7+6P/i/hP1zRzMdhritYR35wKogwUC3EDCfDQXZzEsG6N5/0NeQBLSbZzbNW2Dre+iiiOYaJ+ge3d4LD+TJS5tAqplVXsR8Xui9zQzhr4bkL+/NmuNIGcwMCbGJCqsWiizD3ah82Ds2IVhr6CSczgzQ/zf/mD4MmQ/U0yE2/4+YADqiCZTAGsbVwv/iVcSVIVAKKMXhTp3lwyc1fHmmYe4tzaTOBnjQ3msmCYrf+vawIzPk3qxWwQ3OUKd5ibVWA2eS1zEHFyl6basLFoGANodcW4zY17jjAzboJlfRlKzuuc/dhLnn4bFgdGaI+F+NV+79GJufMC9y7BM24ofExzf6vLlvo007/wp9ytG1o4yHSVDG89Wa1VKpSNp2bz0lThktowdns37MFMij63AO80BU9sIbG2j+k4dH2iA8K1R7rCrdx82xIRbCl0JhGcOWGhsZO8SYKGLeokZjCktc/dTNA4NeQqFS2LR53ZCzvm02/EGx5t1PaINqXJYbV8Rx51fOFxpZP40hUpXJ17cwXGcRNGnm6/WfBhFvnwY/7dz4HkR04+utx92eYJO8H9piu8XJ5rZ0U0mBFca1JE1HEpxw/LQ99iTmAGpISeTgXRr0l70BKfFFjK7+lu7SEteHhYl4XMK0EWl7y1aO4WwEVAAQMYBbVh/vvnn1upSoTBdhXCAXd0Me6GW6c1uP2rMm7klKbORqG0HBFGexivgrORHvuWn8ukTHtfKpyrZschmcOraJ+nSnWBUoda6ghZOlaBjitAkLQhSgDWL2UWq/y8T3o6K3U0oCdXPjuwXnoMR2Wnfz1ETwB0fw9QhkN1af9Rp/hXkrx9eRpueKoX56tsyA4RZe7YQMARZ4l3qZ35IAu6YszWqk87vjtiP8HgndY7InmjZP1fdX0oYLWlencI/MhzKQVYG5zxn65fccXU6rkCE9xdX6L33zs/8dAAZcioLJO2lNL+DBASBCgkJ+5JeCnbJxSfw0caT/Rg5c3zwvFQT+FGRJ4a/yKCKADdwrIvcw9JDaND62hKpQe5N0oDj7pSnruOo8J9krhmXw16nOpb3VBUqAmU0PA4qn/ASeATx20AKPSEcokp3Qzq0iP6fokQm8UGWIvCCB9+ccCPsL7iUPiVaVuUw8valVaN7AIIWMqVDVS3TgFd7rI+MR3tioVJMw3DtttbHmyzgC3cDEDQwU/hnRpgpxuZGoTEwfMEz11mpX6JQEFMVtywo9PT1gOiHyr0tBqWN0ccr3c1DJdL8mWhPCsxuo0pNcCtc+06605Mw6EKNDGWqb/p0OY8zTnp8fpzHP3GuAE4gEscRLwkQXY4HzpKkOcqIbimxmIhNOAyELitmUAf+zXzQVpeAylPHBEDF8/H0EAWIrQidQrmxzyYNrZG/1w4JPze6uqsIwednEVDi9nI3G52ZYm7HAjMcsdFQx9V2NBHJDi1rFN5FbT/EKLqyL0EKHPGrQYvGkjWhzvAgXtddghhWyL3vheOfyKYCnIqVybu25cF+S07IIMqH/NNEFvYIYB75G1HwHQH7PAMZXe+SvPblBbsguNLAm0ggw37R6CuE9lYBmWMOagZ+ghGdoORP2vd/kuMWwgrXiehBFM469CCr0OXAssmSdSVWOqJ+iWPYgNmZyxMxaRrBZqtMlQPOy8J1Qbee6/ZYhz/AuXSltrRH8PNcDa9m/SUSPF8byrD8eVqYJl/khJ6coPEL/DvYj/ir0xAbydGtkea6tYmf/z2Jmb0rSAhUL+3rJq5qqaj/CzJTXDvUXiVAPA0JOtz2mziARrvgzHuu0qjTtgAYUX4wpbWiPnFtgVcu+Wv2hWDu/ps7+Gdhj4E1Mzj5irwFR5j1Zr6O0/rbEEyyaUC2KPqo9OrpxJkGkrUNe1bEov4LCveLrQRGNs1tWVpttR4qqR9px3W0uFRTEXRB9fQConGt4Wve0a2UeQtYCs7Jg4lPidda9jch+H8FCCkHxmINoP3/2XNMLxZygI8xNVaKjNSPMs94a11/+f+Px7Fa78ezCNqhzptbt4l5HKei4xW0by1kBQTuNC0AHzZmPvAEEsOOF1gMERYCZKLGO4mFEb3EbeRo6YNPbslByhWPJq4OJdr6/NHEyciga2wwsLYLe7rSnzTWnxYgxzLc8grckZj/E6DFzfpaJg/0UdoE9PgRtEDxtF8EYTBtWxyqqiUONJbqK6ttW8ECPDTcEMui5VB9ATscm6Q3h2nibOFKHHMGLaEaAIhedsGsWPvnboo8I+D0bc9K/9LXjKD02SQD/h9owwukBbmIGtJFyosOLY6YZomk3GImu5dhlty/dTLTxmtZ2cR9hhIGdKfhjzfcNWmWKDTvG3fySoszzOBFGubuvRkhVxVCdwo8vfaqOxgXm3kYYPUClLtUmUeJPAhJ0FKIraWR/h99gIo/WiKFSm8WxlA5cvTKpuiZAT/VVbhN5V25VSxj5HQE2NfMspGUwtLNTzIR2M8BQoYrKNtDoo5cMd0aqd0+Tx/zcGeDQ9rD1yuJe29hyzwkQNUPURWUuUOgZRjHKbJx/ijkxDd9iZ8EUgz6uhJ/bBMT4PRTX0eZQHWb+7xr7yBSEZrxKIFBJwWu2cEetHdSj+Jib0EjsxDKbfeSJoBC0wOTERmO6W5nEAl+Ik8k8PL4NE5a0eWRBt0mpFtK22PtWEuN8f358h1C7kiWZmjCJoPWYcUEh5hRnIt+qHtkUb/NzBo5nLz0iixZKPdj2DM0eZrKQK2IqbZNg8ZIbMgM8pkoEVk0fPxsijjOdK8uDyvjVMDhyV5sUZ5g2DKaeroKKw8o79YloogrBKMjnm395i76ruMCwPMZR29Egr/VEuChrj+mJLcm0TgTREVOeaWgpyhyRqzz+yxGg0kJ2bTPSthLZPQdgYBvTYmbpsaxmGybtCPXVKoD4qCn1yeSRJBoVcnw3TW9qmtMmqClpa990Hkxn4OzIvgYPEdmoS4M24TGwS8huAfioSjJYaE45+RDz+a56B7UJFrvIN9pmOq8iWgqJ8SpH9srToSfdpByZg4Av8IUUL5RBaL+OxzuWqIgFklp+NARD5RLQ4u48aFZpCqnWg5yhQ7rj/4vhAt+lZwhDFHT9Bv+SqM1qVaWkBJvitvl9GJ6OMYR1I940zwXf3jVEUFsBF1UNGtT7QnROwdECq1RzDLepf13lbaPcLnf5yDd7KqI8yXlRvjKcw9Fw9jm8H3XUGT9Ga6iIWRAFNHENwfSbjWGwVdqqgOSnCuz+nosPs7GiekpQr3OECgZ/dJYAl0dAf/HZRKnNKbTUPxeEVNoUNWVnYAVUIX052/n7dwfY6NR9dOrUtZPZd6PgF5aAXHNCfIA8FuOrzbRDkMr/45ff6DNhdixO3xMFeQxDIwXKhkL/0uwcLMsgWRr0YOkcnvV8fEDSQttu01LQzxA2qeriH/5OJtHb+sZHo4ij22dVTL1nh1BatDJNLGx8CTZoR3MgtCvrQ3yHFYMU3xCN2bMTb60+iG9MagO7iJF2SPfNe9h1Dj7icq4Oc4s9qNQ6mXxsFgq/exmrtLTfXojR2f/qzqrNd67OZzXjAE97OdNvTmHaEas7exAn7BxI/nv8DP+TGdN265XNsgt/4r/aXriJU5Elfdei7jz7AB6FzCq+0grMbAfZXumOZZJcWKJgZG35P7xakrByQ5XsUfnLqt/Kx+MXX1YXEgq/C1jjk5mjvmTnbjDcrD8+TYUv6YWoyEhznwpmeHPakQd7H5Fp9ea0lESNWQhhgT1anq61Fg51gqiMhoByoVCHnm+KgnyXN+R01q//RsML7MtejRe+24exkhb7E7tp6pmLg99ZH+7QD8dsDcwNEuGBf/fNOcwbAcLRTjAamzBI12yz0NA2ixGk5VJz54ilTpf5uaz7xEj/w4V42vuMIAhB7HWl9dJR5CscPoIqyp6bdu3Bi6cBnCf9XS+/2gsiTOvoP//+vELdiKcimKQEUsfe28wnuQ8tFBrgSUb3BGAKyeyO+d3TKZ3C9pJXaUrf3Zzd3RqLC+EJj5VPqPU4XUo46pMtrciws4PWxMH2PTtUtFyZSW8skwtcgGcs/MVRPCEOU33t9lPWmj2xja3RWQ89ExAdYgXgGd/oyQMpB+ZlhdlDdPNuoCR4Qblcujl1uop4L6ZtNOAakQpYa/KyvApqA1iETL0cWtCoy/XH3SxVYe5geQ1EXvSOeaSSZSPxrsvq2OhVfxeLQ3vqYZ9Kh3WqjJoLRIsn64a7bB4pQatHpKTeDlb1oMB1b/TUgQsezQN18/T99sZXTFdQWXURR3OPkRFuzicBD0qS1oiKqeEN5rxuDT+8EO6uIzYm72P0R8uu7F32/ubRHHWcz6P7OwkvRASSZHgmcWkOvnx+eoi2QTHkLjbXcO80QXAsilOOQxvsDfEM4IjVdYx6DqWch3iI1Nz7vjWzvn4MiwQdYBQXhrOZM8iDTWGQ90HkP5Y5TM3OiVj11orLpp9pTLrkA1gK/sw8VzYmO3VVmnN+LfVOAI3gwBXbpvMCDgr2+nm+bltEdgqTosA/SVKfjEJvoMBBu2slnJgQ98+BCCwqsA1jMAX7P8Ge8t0Ajo6EA7OsQPh4+LYjGTVvVlqxF//q4zOIhYxaW7OY/7cpgS+gHRNIsEdLvsH9sY68i1k8jXbn/um6nx3MyJElPickQ09MBxXoDIBtWhJMSKh7lTGOdVgAC8tXv7qyVWFojv6KN617c1Y8dkI9rIVUSwaGTUcIx7A8fpJSw7bF7+D4Q4uZ+HZ6akmyOpyAhwUkbA6aFIXnDuZhIiqvAso+h/pvLIjXLViE82wTu2qzgQWKNg1THj24ze6HKGOTt9c2UhvkLp+MpY6OQWfyHYC6pXMA9rBEvvIRs3Oia5330Qv4lfFieTwojJva6V9TMBc6II8Tyt12jpV7SSgqrpuaCovRqKgP/1w7ZfKpaoauaVofJQ83o8ExrfYiDrVpH4h4yRMhm0K2uLbTJ2Ezk/p52HoIFS5aYiCJohC8g76i0udMISPfh+q8NfJUUDsdC5aBqFVlM1k16FWyG/ZXctJ/tlVCYqcVPypHgR0hjnzW2YZT61JZcMCRiQiGn9DIn6bUOq40F50q02FpWzqvGOnWYPVDYE1OXRK10A0jZIT/GG/2i+3Xo5ulCP+xpW6uNsTQK47cmuNDi+gZ+vg/1cjfOs/kCW02zf1JOnT+iz0iJZvibiajEk3qLbeOXuSDtwogYnkhmr91izcAbAmHaSRcsgIrrXHGNWX8bU+gHciOSsr9uGH/907cbwDNzugxxa/anqwNqKvGsfbjODUWCn8ZKXvA5uIzrqncRqspJeVdp0+4hFNJKRldF29XuIsirnZi2iaU+L2eIfmCg3Nk/I6R4inMHm0jBMDIVJYNt5pVk3IHlS402FOpGA75AyGgYnQ9lH5Uykpfr1HNPo/eFyizlfvkEaxBVfv+VNrKsTgmbAA5yGjzJ0XGmAJki73Qs8s6ZU/wQv6IKEjZa8gAnDjOxsa3M6w1FuqVCWGRKY5Kp1A/CQZnH/nGaHvuaz6jD2foAAHlasJHHQPMDbanVNimkhppeCVr8k4lTJQ+Ok0VXOKTc6B+/CfPDVckJeUTODlOQbAAT8bLrgLw1sMj1yOHnOZ5Lg26pD6OWElvdK4XWcVf1cN/24DqqRhavSgdS0EMo4+gEuNRX6iaNdaTc7uitVfMQGpOLWdEaZS+hmxfJrJHuT/OevBmDjGOa7bBG2D52uNNhsiTDk5t1Q0Pfmq0q+/ykJVbLo+LWTOJ4s6QqU8pJZuWAQj99XYGcmhM1Zjk7hEdlvvu8sMh3AWrU9u2RNlsF6s8uLZ4pg+EtQhHi6FQwmUBBVVKcXVF44/zDWQfRdACOBnyf7Kqp6WC2F8VTuc4RFL3tfk5no1bK7entO6OTcTAkvMxP6pKscoH1/FRLGfylVCCn63ZeYRSYPI2pNYSUwvxNrzw+5uj3ATiTFvEpfbW2j9q81uGnCbKGePoRXIGrdns0EkiN3br7EkkcVn+BpVeww7xQ4Yp7cuTr6cB0Cv5HfEd5tTED/2M+CgNUMJJHLZcJvh4xuyEwxN4H4//eZMzQFPIJawKCpNK2/Pu2BgeEHTcBHX3tSjDN6nD4qOz6zxSPwPQIxZldpkY2DtfqOma0tuo9ZiQDUQ2ZiTznuY6rO5RZM9JTop8N6TjpomfgCts1ZnEcAqXPrspm76amlRXjhe5PpQ0o4xk+DYwZXVkLe7RjsqOwpOXeJ9CX1Cx5cB3y6NQNbt4/TxIB+8tG9a6NeDlrr+Hz0BO8EJk4DHPTtqMW3FGQf2AvRN0bdP5R5RkBgLnC6QaeSN9sHwS1CkFsf7vjsLXOVOj3xZsyYTP4AW8bJjUXeI9jIJxWaNTQeLuwKOIEl8VSplSKk5NvXXqvvKZCXzFnzSB8nk/KJrvMu18tNDDGCjap17jzP/jjvifXiEm+/zP6M1KxIm8u7JUWEWT8+6L9pOKahWRSHL3Ubw2FvmH18KAAjnkn1cJXAXkRIAG1xdszpe8L6McIknrQBqCADar+YS5Xjoozapv9SYEXjJVwumOURyDPIM38EymFMHtAlxpTpX7V/w9stBsmMcQa5lhffY2zvcQDIZrphoCX3Al48YbnZrG2vtHPwaah3ABVgxS3QJXXPQzMvelp44qRLrmoeVXeCs5//fMQH2GVsMIyT+mAyByLYc0BmEgqii3hZbvnX060ENNPGspyxjruspjncGOw36yeqiizxbdJruUqJ+OaQtd6Xiy4JOpIQymCaO93EejIq3GJRSd3y0oWJaTjOxhMQISpoJBdUTdkrmtjxq4tlufvnD30MXmXVWmIRku3ZXPQESVKpCTIyBcAJrfSLTUjNyKz9QeMMUbS0UcIPXZXH9peQ42eL6G1vCl0s88ZvXSAy2vrWBVN9Ue8RpwFNBvpn/yg+eBzx6KHHR75KxdtNFa63e7pL+6qpaFQjWbVu9Yz4TVKuThr5MUP8DKL3n38p8y3gAPG+YnqU84kJKdybLaFIzz9co3pqtNLAnexuQefpo6aUYf7hs4r+tegtVVoXniTK5uhRcs0M8yoUApvz/KaVeaMbPH1YdFW8xWfF1DAw/Cveu5rksY5O9K70aRcWwGFC6SYtgkZHPpPImWUrKCamEL0KtuTGSlB66NEABL0O1cVtG7Ewz50jXJhGVs0J8XM0e18eAJDHdom8MgMngYV5oPQftTuUhQ1Jmj80V5T+NHCI0ruOJ0NHoBIwAwvQdr3Cu63RKeHCqmWdzVHdsonka53E+Z8YGbBKu24cZv+eyS9WmlXxYwBx5lido0Aa/wZzcgM6V7iEi8nFye/ddC5X23RVixdYd8zqIZYGztMR5xqsssrglUFjTpsGOxnRkZ4JvETOHXa2yN89/YwwypdvZJzFflDHaVmZ4vFXFBIZyccizmsMBjAhmfx2zS+3OJN0tH+TZJ1ivSGqcRPpC0DYRGILmsBjv2DFi2XHxHuyREC1gQ9m1dzTo/qgZwTnF9Dadjdm+bhChrL1k+MwxBPyhiyRPA3BHiOOfXAC1q8bblrLFpKlblCqilkR8CnD4ubgmc+DJb6CHfYGvWsaibBC130up5gGCojoN2DkkPAMZRzEaESdf9OpoM8HAIMTYNXjTg6ER/QEm2aTArXnOsodI5VjbQHSRlXxYNJ323eQRuD9k3oIFfUIVQYD1tQIStuCZrZ2MN9RGr5UaDoF/ZYTwo4MOfc/LNJmz7Udh0vw8Z6euP9Y3uKPYQOPC3Y8S++/Er3aSi8uR0PzJz8LoAW5NJ87+z3uUz1MDQlW0CTC6sELJyc9C/NIk/3zfA7U1g7aaV2qaU7Wbgm1iPaDrpXdVxKjnsa3kw1UmlfNvwvJI0RBbra5UlBICM151QZaO9O1M5P4FozBrKgqBJ7WZXHms9DaKj6UjpG4BabiCyEm6tg0Nl07kxsYvKVXsETvG6i9ZIH+KQJqed2BV5TAaBAB1GBdvbAeyXxOPDFd+aqvFkZv30kS+MWT+NNTGdrjNgbmyM01b14XhRIIjZi+Pi0ldhFaWxgrB8t8QZnwVezeWg8JA91y5Z1CznVKmAFKlx9Wk+bIpX6mPvLL2LjbmjxYa3rwWynLMKYlOPr8neOri5GmrDQwrjR+GlGAw+XZE0M8gz8qPc7Fr3y74EplOijLUpHKYAa3qf5fX5RcQ/kq2VYREW5yqS8FkxAJ4koL8o5YZJbXRWmYLJ3wWaLKhRTP/iQyhoAqxkxSVnqS6xkkT9WtAvsAZs6HLQfLKggfMathODL8lyI9ak1CBP29gZAUSsYkJ6oNsse0KLkf/aOmp5hSWpM2PrwfVGPOtlgetJflXYSalJ2oFcFgCE9gEi4faX8byQnpLNwxLudpIonssx57sUhx54Hc7S+9IrCNefdgrLf05SPbIsRn9OBGuowvhix5dIUDeqea6t2xFDynw5EKm0GKZpVSDnk7leQMZSZro6e3eiw8+VUZYvfwOSdy68WhE8Atuov4VwTm5Fyn324hYc+dnqJBKa0xBvOG+Hl0ME40DQ1ODiWjJLQHFnN14oj4g6j1nPQEAodaw8lsJTFh2VejBaw8BV9UVmf3KrAwDzYwC/99fAuryPk2GpIJgMStKmZh/Vpi6i66RkCoC1kMBfj23E9ddgunfcWSizMioe/ccZMWcSjLXbIREceK4PL2hRmW0Gdagm7NObGYhc2kbdol+7kvf6IR100JiB2k+c5QFiBQ1BoPGXBSIodlcxwtSvGywfn/0U2uvPbeCn3bCRNckE8yk0ZT0GTnzQRUSa6+Kb3fvxC/i+1gdRvK3Cz3Hmn/4BiDC5y+zefiMP/ZkbA/5TwEyte3QWhWr37EJxrLO+Xfd6T4LM4oLsUpmkIPKVqCezLVN1E5WKiL+UhmHOiUb7RGW7J4SAIyZaRcirfVcFSAftG6A/HN61UZRuctV0ZvMD8yI4GrwywEZFq4fLZL8H//TMOtS+d7SQmwIoDuCWLNtaNHU3SOHFWb6Hy8ZlKgzk07LTEtNRnU8H/WiJJCUJnr6tYI5RtgNNcTkVw4ySx+j1prwbu7NZn7S5vBrQoJpgci7E5HFlpFlzwCKZd/YL1Co5LLpieEcJl8xeAjIihCYrtLiLjVyKeV99Y7/iwqRBnmlwRMtd0eTR6dMT9Yme+Be0kBFUCKjzpfS+/3XBHlW4uVNVfUx89utGzvu4hECpT6ON7nh6X5OWMpAbFAwlNiqcdY0kCG0vFb9QTCZr+RwBiM5bY0SethQMA1zJN69AWVLt8pTyny5C0B7wbCM3kgE+oNKMxAriyUqf+TKmR/xE+ydIE7CdqdhNqEgqbnTXfHufitp+2S0bz8sPCdR2DxgpMrfunFnLGtCJ8DqWEQYGKxGJUWu5cYqbqqbaAVVUEWhxISLpXfAFTWLutEIuRWhuml3KoUBmyrfSA4nOFJ+81B0mpHDBZrZRj602PYQWgA7UFh6RoDPX7aXA5QI8gjlXbKBB51n+XJEOUJTH7txMpQcGL+/qI6ZfCUZ1ZxKxQZNB8Nws7104XhU0O6F9ZZc+elPJKKvKdeDrhikQILvUnZ1whPuvPQtHmI67QZBg7scXdHb9kwQgwm7PukyDyhnhE8KzC8wEJq/HTfKKEuNmXENaGJd6OvmKlPVjgLWU6SGWOv+fEEOOqG96pFP6kVep4on++BXtZGZ2j2h3l5NY1hRwWroAZ9XZ4luHVhQGP10MBPXOvQs1o/7ZJrQkX/G/IyZTgPZoBi7cgr/JX/MLaUvanNXjSVxun4uLmRpsqU4puVWaClJd+j1cfIF3seG4/t6Ie0fm8Ry08P1uLJvMgiyP7geMvBp+FBqFx3mwZZBDmb08wiCLbPupybcd6OmzOHy2XkGz6x3xYF6cIbMPJVbS5UeDEKryc3H0nsFp9AhRi4yARs/Vg2bpEOJjQHCBDBKW0GQv9UEqH5Gml9KcO7Dx2gCdwR2Lh3n7OoAjb8JWp+SkI3xhZAdVoeBKGV8fl6GFzvXrY/KXQe703Ut+6DnIWD/rPpvSQp3Mx7ffv1Ke+ZctjfAYo9ORyBTA0hk+aHhVcjcd2UUZ2mjSZHZx9jYej8ZYHmi4xhOknfpEwWQoOzF+1fKrEkzmEOjUtD2Indz+JiTJJRl9u6/NWBoijD8jS4BaN8adWxDbX9Ptyios/r4k6+poRve3+iM4ijbJk/ybqaFCwbw+uwbvX3iLy5xVPjHDYfuLWaZxK+Gv7obm9IrOd0+6gtVJsQa4bO/jBfacJ4I6Kox11dOqPPKzuM9W3rU9WBszfLY7YW8vL99bH/lBpAMjWxaOQ4iKjXJgvjBVcoX7IjB77D0cvjCNAy5TosXspTCEhpqkxs1+g9gRdRcDsPrhHKj4wu0KeTGe1Vfq5PWd6+z6XLuPqKA+FDrzr9HbTo5hYmlGbpVxnU3EHqcJvnVXji8dRN5a4+eq4mIFAZw1MfL2GyBIvzCBpN1VyZ02l3CLDooM6aBOVtdwQTOy2llLKCQOkdNVKEYQeN2SIthw5wymcs1uhWg5itYQN9jPC/tP8WpzDPLq7YXaJeUAAHiBIVGprsbwyqp+4thsyqxS5Xt6CoxJQXYInz+wxESYJIb+GMcoF5p3VJ1B6hAct5jGymuFmoE/QMaLX0X4KxzGO30g3qCUytaRouXT5+60upThUlBUzv+d+FtvqdGmv9Wv1lqjww283y3ZJJHKl7h1cUrn22ca4AcI3MjVLqaW6E2FbJAhlzsEbbfFM15S+I7IKGl2JSLCNIAsbLfIKSCo5c5UCl8ULEtg/TSzCAP6Yna8zNehVdcAE8gHZSsz0k2OPBmrxdZPg8i+IatBn6cETCmXg7FdfoTMC0B+AO5zm1KcILiEl7yvNKm3mDgh53M2XWqwhEHw5qFaO5P2snrka1Vkqf0p4GWAaB2c2Fj7TvWGB8u4i8SQmBEnxmOdJc3OJwDNOhbTfJOjeZs+xkoDnXfNj8rSHtkxX5Al1a+rj+XZpsx6Jjpszf663rBKkeR6FUs3Ol27bZDSyEQau0bI0cQ93T4gwrMfKDXjFQffBk8Ig5v1SSO9OcyzzxaA18EtqHHwm/h48PuY6MrTc8UWlqM0KYc9KfOMCjkT2cHikaSrRMPQvHcrrzZhIG+QBR3GIS3tLVxRdl0DKMaO9WBqg4we56akcf2XUgEiMkHZ5+ETC2Wt6Ck7sLbp6oh/zpbFWERkFatlRjByqN3Qx16PEr9Ika+9OARpbFuU7klp8NNrSQblfIcU/U9Vh13M/+2cp7oyjh6qo0NnmIcg+jIGtjyoJpOTg07Mxsv//Uw+SBuJDwxTX9k6jXoVS6B3RbScXX4KQCoY0X0edNNdYJz6tDSEK/loQV4P16DlfZ8dCBfuoCA/gw21zAsxvGTTKvANgevjvbhk8AhYiJq+NAkI1PAYQDzb+LTrYIzn3guur8QmlOPQerzkzODKD1yFqxyQvMnUPebW+NII6U/2hkhJUK/NV6Z/7kH7VvImy7P2CGx5NXFgKWRCzAOJxer9oUQUdWE1PrwLj6vsBH9UUUNFJIk2cOL+WTHBTBwTx+LurunGHTwMwhp30NfGcPKnKesVkr8II7yOSSMgT3OOL/kmNWkQQbovm1qqqsx+7iljjnIcfX+Fdvctr95tv6Af8YPjb6H//7PJlNXf7O6vyTL7l4Y1pR2fbOytyo7gkP6YsaGWHTy+hcv/p/lO2eZPDUOQD2Jea7tsVNNgOyTPJzxF6Oex0OnoLY17U3QEHi9OwtCvk34ImDHfOM21N4wJ6C5UhYcCfAn+em8QgL/8t6CUu4pO+cv3XFgMo+U76Eop6p43Jda3arEl0pDq6Fjw+KzAY7K71foA2xHjg9vgQC+dWv5vJr1uLgwsQKNeOlgucgUIbBA+kO2SEUTQLY1UhjTJKbmy4suhHfHGLryl5Zrfxm01ZGO9EmWJX8gNwX7cAOANDoac8D/biZt9urkuxPs0gRf/pdIYdXFH3BZdnON+5xccVkJwAH0+nNm8j6GBg0UTkp6A/ERCMYaAWfBwf7XoM8uwmvp1VcTBk7Cwhe7n57K6rV6qd28S/xPEe6z4CTj91j9g+Gxw7k2MMMOUd7uPErX8vTBNDX/6fg/SD/UnRX66tENrnlvDmVYsdgHt2KV0mDrUWqn7GMefL2BnPnJkNENTuHW98SpDrw0lRBspLwPYFOK2PVClIhIlysOXlJ7+pB97lnCsWFmGvPBXRACLNu5fmmE1QO4DCyTLWDUKb3BZUJCpbPRcNrSFXJuBR0swiSuquXIkkbNj5CGAJ+XE7hplsOyHcoWwNc+rME6czkMHEn5Kk8Ye9pYT328vR2IJ0UwC7GhCEsCalW57p6NivxL+/X331Qad6gxMgxSm6uKO8RNC6UBtejSWQTubcIj4UDEqmP5SZLQ60EWZuGRMUurRwj67FLqR4i6Gwlg5ftXZAN82Aik3dn8tsLP/dKF4Ka66GEcIdsMOYDuQgC5FISpPw/3BNbElVRTcCcJX+DrfbApyRMdbzREGlffjbr5rp0efcB5Te2m7+luIf/8OwS2h95i81teSU58R5LlNvGwURXXvFApKCZdqAmzqguYkb5JyZokuDt57wN51S5LJ6ZVS5ctERKKWh5F92YKZUh3YIZ2X01zhB5Fy1cKYpI6+FuyPaiasyLB9tcKxNu+VpTvdDI19I5VtQJVtticb780wdM9oe1TX1DzZg4kL7X3/m5cKF4dkeN48zhEWXk1x+3f8fvNxkeLbWkPYKsR2JPvNn920dZYOHQVGygB85D47zZIIYbOZ8qtTLq2e5MJLf0zk2rlcE9PD+i2r1iQ5RS1CBECyW49uwQJBRJylyUEQ8oAXJlPRSxHvWnZgGI+Wv/s+Y89m2Nm264m7nnprXANYed43kX9prcobx5NRPc7h+MdAQBm1tBEIveF7WYhN83kjmdTQXGiel27Izb2z1kZHFoJOV5OgO3xRju6PI4BW9ogKh5oLSWyqiGJFcOWIK7nGEkCrTXqMEMFIVosUfB9TLZhDxmNWq0pPVHR/hr+bv/FnTGd/bnEDl6f/WoHJNaocrVko9oUhiZMF/Ptxf/dL67bwJNOoCZn4co99wbVbhcoR7WpRkwFtQjHKl5JOX5ZGtmkKY8XFBIETCXLaprFUJp7ZaQ03fbs0/d2+bCsDG2U7VdHt9m4dEVIXmhfGYynMHLschzqsWlGljYZojjdi7VS2lJFcCC475RFQOCtCKABpIFXL23PorGtcteYp2iOsPNQN+cQuLqLrugb1LScYCXl7pMfziEt0S+w2f6gFxFscsO0Kf3We+uNlYunjxq0SXjPnMnTjD8tctYNABFyKBGL7Wm5JYgg19DhbLLbqYN9NIx8Yv64LuciqGvKEaid7F4wLuP56oTxFp1RHDZSjAIU2LlI1SVBW1oIk3xfMBVipfed26EsKUO4ONuB5FVDcQ0WOqXbYB3XKAE1CwwwWg3HMek3+67NpVEeuR0I+gp/JBYGohgh+nF3sO7LN8H8MdsckICOCK1d+gLxSGXg/fiz49HQkuVld6jDEyMYGw7YRWKvMqHr22HOH++BSeO9ZnnTjNB8TuxWI2OC7ZiSRXLpEuJHZn7JwY6B4qZO7pywnXbexVZZ4TzTMr3ctcrSH91menfB6QjOB28PpqyNCOfjrPQlgoCEAoxXow6kD1NGugwu5jchm2SPM6qFwHiSHxFuOFo163TvMf78lE+W6LDEYrnaEKAMtK9LGncBRoQbtFfIxIiXqDd4kv4NJ6mOspQygaroxXnFdu6sjnC/5vnUNVrseVWHzX5XiuqnLEfUYhwaUooyobwUh3lvXBhMe6Tj5JUQey8tN7Qra0tBA6GddIerMI79kA7OdJezwdnmAbhAn1KjCr1OsNfkOD7Yitv0bTBwvYf2i4EZAV1BGUhapFbIaHzd7hYaYBxWOOrNXUabN2v6zHooIbPCEMM6aGGjfq/gER2RHRCx1yISa6yB4EwHi/RXrQYMkGKGQ0DRf7c0WLmsluTVganuTfTNwYBq743Awq1F45j69y+G8GGW384cenvCD7ol5+i/oDGoOwtR/EV9ychLDdxJG4CcsPEGdRhcJfXt3kfl7x92wa/Y/zlS2UbePBvBWvRVS3jO64S3a1aJuFgeJYOTltXpOtPcfDFP+I93qWG040OQNQkNCDJJFwaFjf6RFtuVpxng1K+bZQERqdIwI9k0Q9bPhBeZDy0pjsLlxAGch2NbjTRgVMVhJzUCQarhDUNVPHBfo0FlzuBTJvnhEw/nmAMUGzVFYg4rXXqocNuJqLujjjXg43WMkif5DbWaJ8HceRK8pIL+ixwi1IS3WWesaukEqU7bfyzmTDKiIUm5A51+uchTvdSc6c9Y9BGBvVhJwHHC8XK6Plfma6f+fl08JRut2STgU8+QpQgUPDaOrjSMSBin0ZQzbgx1cIyeuLhS5/3QFBfIdcgpAcRt7U0zvxq41RdApJcmg6m0+q0BjBKyoO3MrUupbyfCgBmq3xDS8Kh7Yi50QIvjHQoIL0mIsu16Rcf1/pRD5QtdPsg7/kAXmxrXyaNdAHF4hFm87ODA3o6NzoxeHVL2xOWbYiwfrjg2m2ZGYmaxngvlLKtg97/3KVE2F13qrBKX0wiLItJ6gxgfsY5dqfBm3c4Dh6Y3Yr8TB8qVdtDBoUvHg/VDN0+irm+3yUuyDPAUL072mx9CRfiD9NE3T4KLgZ4zNXoTZiYyVcs40+rVlhE6aDNurQUzAwVujdsUT7foBr2iuooIMjLRZhVHPWI59RENnxUBx3eMAME1keE3aJpZh+8boEIyWuCzXPXQjX91XP/LC4JGmCZP/BycswygWY87QbHXlIu3vJonQy6e7txu35zoW+LnBiGjefRa5aPBvPMtA6Zvk83iMniqHUt4mm721sxjpnbC8SDBnGVvM5dUc3TTROQE5sKUerImjic1BZVW5P/ivpRH7JxsZThtqHynAN6zRfwN5Q1Ni4NruH3m9mr1VzsU3d/4kxidLcl73Tqz6WHZom+Mwy/LYrM9B/r1kCddgEqmuG09CG+bi5fV855dlXOfwcgEvpJdhUzMejFWtiffRIvjEl5BYkgIFM1Ls6SEVeWHN/zmgttGjFOQmyoUycxQ/W5QPpAu9+8m4UTT/yZkaAvNXKcYfoaYMrxJylQntBd/RlGyIwqGmA8XhoBsa35v2SGlr41u3QxJ4AtQnr185GmqNEf5vrm99l32p7lOSnUsPunWD+DCQM37PblfaFMdUi88I1aKqlpFRPP2RwiLmOdLh9hLJdQtQT5A375T++qsJ1kpjcQR/dBZJGwIdURgOh8pwLC3mpz0X3y2aYk9c+mwZ1rEcFIzP3LxtHws+Ty6TscUEd6qL5V5GPvSxQ2FSa+5o3lfpjRV5kOWU6NYqbl3GFyBdgPnnfNMFsOggRHAfpj9EEEKeMr31tZk9cfwPSzGnaLWA0AXzyySWclNp6RTS9yRuKrW1OokuLkPxOcz+wb8ewZNt1tj86Kys+5dAi+p6dpByHwH6vuYQbHl+I/nJI9JszKfRcfC2eYaAnMEno59WjUjpyfK8Q4PFjuTT/CtGb1IWJn9xWPE8UJ/IefaBwUJwLApZA18G6IV3VfTSDNHddQt2CQcnj4qKKiWeG34KxEPYrhbsoLx1DREQwuTkKEdCgPOd0UXoGIRkScyjSgE3wSmNRMCihmTOHHjFXsC0ZMchRTqHqfLDfg83w9Y+m3qNMsX4S2SBTJEnWHqlKsSqIAqHx6X9yD7hGii9aBpjuStaudu5dG4WDKtsk7FWTpkYucGMDGP8L976kYkh8r2wwJQ3Blq5eeokfGnbOJIifjEcvK2Q8/aAucsDBXop+jRTot/UEqWLtS3Yj0MiKPDdNKZMpwdBUDb9I5LWPXPvG25SnaWIxnLKefhXKntN7Z9bUIKS9VF/44ZL366iDDfUWqrOqXMSgmR+50xFEApcrS/GGQ9v/aQDnlzsxe/oGsv7gzDTf0xv14PRv/gwJMkxvTZ81AiI1qlxnKEZiH4qJsynd9V+uzPwejjZBO9QBiI4z2jmSl/y/VuhJDDRzwCwIBblYbIZXyY0K/RinB9dcBVDZ/zM/CWYHvf3OZ77ckmHzi68nT/c+smGUpTf0Xq9xm/khVe4B9vUqd80KVJz3t7Pe0YPymSfYOB96VKff26pNuezCL6gle4Y+NBWOgF50DG86LxtpWW4GrGfUXxs9LEAXz2KbvwWbjljjr6IBAr0vXR/tozc1COUfPmXrL9XJb7uOm8WkWZDSDG5uGevOdzref5e8DPFKlBvrkpryVsH/EvYU/sLzsrLIVNoBzaiAJ3WeCbXNwYNmI1q3sMQ802rd8T4PVxyVlFBoJ+Vuv5OyYH99XmhZQRFpjuX18PEEFxzS1KcPPKnQmhOdQCfi7U4EsH8E1rtgy+cGd4WXdT21J3XYtt4ihiqnsaSc0vMCS/cvUI6z17mD3pbyWelxxyfLLgcGsFR+Jv49Ftj7tUkQEpvDELWqDRVzub67Wxy07krm1Rt8a0yWNM51tnt68wBMsti5DjZJv7YJGWkvynifiw4Ix86DTzBk6Cc+OetI51M9G0SXB9TMzJUtVssu302wOZ4fqTB58Ub24pDjzgj/zcJLKOdCQlheTOrsoRZj8x3WC40+KvhVL3vt/FwRCoW7vkdH9EfrmjhZyx1OdbheuPyk2/qaaJ4Xjt/5o1J8hVb1MOLfkJ2HOgGpY98iqOQaQ59D8iwfn2WYXlxNRvfYJbu4gsNpYpwglv4HD8XoH4kLshBL+7gLDjM67KOeMUH1luqe7E0OklnR72w2uumJtxcCHLWeZ566lEAMuW/k8hOxi4DXpft8w783N3Kpgx8XiJue22dcfLm4N37ifECd3Q4mgFc987G0FDRDlJcFD91peVNH/yzJLdNM8fuVWQac90z+pAdqv49GHHkuVZ0tOtPM3A0/8Vv/t8wGYKSr7IlzwuUevmeYK27t503MJBN7oL4yOCsyWAl9M+12llLjWS3I6HawZmclqiahLkFRqaQdJnIPadoTONpj6EXPBa9R8Jc3nwNtAwu35Ctt0G6F0HBdrozv3qMyp06OvJcvVZYUWJQOu1exuhVb49P9vMflPmAVm0QD5kFfCKZavzMvNjfB0tSXIk2OwPkOR+dpq0n/s9TpMz8gH6H1n8vzGXA/KbyGokibd6fLzre8/dXfDAodZVHVKPy9FJlaDar4rX8nXU2tygt+ShsXt0ZVQEuL7RUAmF4enRJB6/eysx3G1VooA2BO/GVGo0H+fFQtx5lbKJvDXqNBVkcMt1OFT698XKWtB6CT4LBzbgxo6zJxw8CLBRcfVth+3Q3zur3vAHFm2/A0jpTTWFmpBi465UkzTI/KzhlhgR/ElJwKQ8oc520jNJvXuoWwcgvR+epwhZ7AH67d1+ETQ3d4mVjybIWJIRgqK2NXhYXWpjLmAkoqgjRnZXKsb6qcD9xdASnYwxwTMeYin3ls8lXswWdsnsY6Y7NzcLIoHB6GtCrEWBOa5kXRKhY8pwUfsslLVjPhi/QzRMkdt1keXzsFnhM/kI3YDj2YgcBvOM0mv5QAUEzzxmgLjpJAkDG6Oc7yNYFaEvAsQuNqseA+D3yO3XKRuOKBWW+ojG9ald/1kx8Q16agDir9LgJM/gCfBEME06s7k2rFUzto7vmakgJmtQqEjShi+b8AUePn5PQs1NZ9T3QnWD7MlLCiwO9GnFJmLJxg7DCZcwtmHVFiiwmot6g/gLL9HwnP+mFqJifVcR5mmJRiZj6QBhKe7fnt0dqo/rLbluWICFEHHpH2JoxcWI6DIB7qsY0xRWIkDTqfMJ08i40Hxc5SHGLL8vyMxeYFZcs3FlsiXt22JbL9zgOuwFMbHU5M6GgwXTBxv8jFX6CvdDDnEUg77D4xOH3lr6c/zuyrpeawvD+cErbIEksC3jcmRrGOaEBU6z6iU3wayfXa84qZTH3OVVLb6wt7yPg86yW1GNiTE6z8e8/irTTkNZKttoga0sggeI+xskrda8XACTN9Z8A626zVLvUxY+X4fIvFN8lABxk/H4PiuP/Qmf1HG2yiijIPq5t7yfrdDMA/nJYP/cXlTC4yAtCDKsvIv4wW6efr311dlWEXYyfrtpI80PoZo7kuaL1CO6Y2RfkWWBs1XVrkWuJ72ccl1Z/XUncKjhpYswAyvLYoRtquX64JJe/nnpyi3BX25wn5yipOMVI6qBvWGirp5i1EDQ7JMy5JyaRzk4pWSO0fxpzRIWTmjalvNNOIeat9pP8/shT7Wcx0oKJMpzl+vpvFYf8tTij+3Y37xXkwVwqKLlv1vO8jtaGJbaYd5dSBnGmaIOuHo543O2ENY+AR3LIZ4LblRP4Me50InASa1ecDHxTy6bW0nIVx7dL4L7Us06V/W32gG0qt2yTsmQIqNFH0K+MIA4twL8E+AEQO9qL0kMPtIJlw5lf+Pv9uDgTM57rt/noS3G87p6E3cw/BcN7tSM9toesxwm70oTvkZDcmV4+GyNqu+RUL2qDakeNpGwgwxxW3jtKSjX31q2jy70w4P682Sj4O+7ylx7JBe4KsnetLblxMki9pqvqqUZ4uqR4noJPvPrBXZtfF7Vi4Ut2EAAw8hydZLCRNitCCUm19dzM4A0gaNPmXot50CRWHIs9s9jP3CSdgb9gRjgOA+txPsGsw7h8/XG+aJzhQGcyx9SRvx6/b2QQk7BhfOPmWy+bQegFfq9mSB+0KX2bkS09VTcLoZMU0kx1DUdWxPo2qmcDbnPVQa2DAC0dnWoC9h4g8JCmGKzfVeMJLNLpxdceHUxBEQSYMIiluT0rtNrlVrHNDL08MfchJa0NrcOKLWrRlvV+WJ5yDFqTb953WmJfyHEDmZMBy/UQyXLjYn1ep5/p2SfLs6JZvQCaXXAaxClYIw9ZLRK1r2QU1uvxZdwpi8O2WnO283DjiF0E0PFGJZaetrQ+EG729EDa065GrVuGJzwWzvmAjZkD6IIOt81/UStXAuOXTYZJ51a2iWcbcMYR24yb9TJfps2rxlW7M0LMx8qndIfRHBI9yhpcNqWjBxfQjtkp/6IKW1Y7QF3drj8BTU5eB3l9yHJCvfvbZbDORsdv9bIsQ5TtDCOoTKc5JKGAhtmMEvH9oswkqvydGc82svEy6LkYq9yuRBKXDqz89PtQBBWh2qCmducVsb0rv7SxRxn6mLiYr/w/7ci+VX5aEy/KarfyxhzNK6lvaEUXBx703zaIs6RW5dXfvijcVcllJAaQTUMcwHtrblZOF1xfEDT+0lWWaxtCzVV322bFBcmp/cq2/IDr0KWtPq8pkBXl5WzAV7kP4+il+2tyTO8K8vHI0fdMWUHLD63LSTgBDV4SNi1CvoPF98TSa1PfDGa7FVhP6KDzuZ8q7yecKhCjPGBX8rsdAjbUpvTZNO5XRHtrvEs9rxL+fmwaxlUqX0+MHLBNqYhkgQmxO/plRnEIAQ/bm+pdP2E5g2mlJPx7kCyFLA7/T0f4+byv+mnXUziln0RaDvXw1tj9KXUwCUy9r7uOrjhmLdm7dMt/rQwQ61HrTuOgexwWcDNbvOAnTMKWn9zctJNlCzUTfHwwuoiOVYuPxKXQ+M10qXQ1s0rBpWMwJwNQMidTk/6KnsFSHW4GS18bLX+vLEth0nmXhVx2RQ3oU5QMJikFamzCEYV0NPKUNOUBSP9S8MLfHOlBggmOZfIVFf7BDDgTjHx1AO1wRE93P3/eWXH9ttYUZHIxnQv7heEmfAJnNe0CW0mE6H3w9lQCfba/qkB91MqE0iBIz5/yNJGJXzGBag1q/dGeMfkr0RxD6RqIFK70a7RVuOkgvSdu+EjdorER+w7PijgnB3J6mnT32WSkA4iGs3F5PNjN6i8pF0HueN7EUA/AoKs7ikiplMmqP8vjN5FHXhWIWBTuoK7DpLq6JINAIjnR6jzXmJ2sKqv5YI1DzWBVwyoGSEhe4vhTO3SKvDNzdpNLQNZIz+5lfxlgUkdZvOmLFCh1EB9zoaYUJSs2Oun4Aw48eJUSjzLlzRkZpJdU7XSc1olB2u9SZhAuYm/uPwzVg/dG5xytxwNQnZK8TpbqH904sNcubqKjnGdJHikP3AWhtzq3t5g/adt+xikR4DcwYPnDCWHtxgZfLSxYNaJz1Lv6luqrbb30PfxbJ54f7FojbMXQ3b4N9/vxyy9CdAYJwVk+qD4DCUNgryqXWxcomvkkQQWhTXXxQQ0abs5XS+2fuolJXTC5n9+O72YcSGsj0t9OXI7FjJySWEJOYb3sEfGsdh/xnbeFr+rN6GKmxn5ayHXiqJXw7G03lE1b5w8F3PTPF6OxmDjg71t3T9+vZdO+kYzpokRYMFb6uW8g66ebZ1RRp8cD4coW/pxwPz1VenViXkQcESRCjQJcfnhKT0j2hYkl7jz4TXghy7KHOQoboTWRgh3oza3gOWdS+dQaSQ/MwBKTtmgSh0nZIvjzXwGUtTnWwOxJutUUXs6Sbm7ns0e9vxhOtadKMr+QFv6qWS9iuM632KfHgV+vXk6k3gJcRdfzebEeoyhX9JfGFZ9v0gO6hurJjaY67Q2issK5mO8yCOlibpAEnLazv9erEwrKswcB7RJj/Kx9ckBX3vYtv6rsT3YLYbKIheDisfDD4/zxAwNOPDj1BxvZrjGcm/yJ/sw6+oEYP6D7+K6acl22+o/liNtlceZweyBtWpOFqY5CKG8m5sjTSgiO5Uy8QgnxIp+4oKDvS6B/GKoT7hoiyupEBVW3pzLjF+CIIQFHtWc2mqo1qeZsam61te2ClSrCwd/3pz1AMJwAEr5wSnAIHWZ37WsYFr0xJMJgdS4CEKbjnrRj99imGejNVpkPsjPan9c/h5VSZAjGzFUuK+q68beC/EX8GjuK1ij0Tn+pagY4Zucwl0bWM/BJDzPcZNsz6gi0rd0m/SJfvEqVexhhXziscNQFThBg90tvYfCGat6r/1XGM0B5RtegeGxNaBCHpUJ2+PjZrVwBPzyENwbpjiUB87OhfY6gMUyINWeaVk+VTWoWVupqqag+qsjoWfnJil+OrnAcJ5SnoWmBIW7nLyR/kKrUDL23r4Rpp/LnlUy12Y4GqNu00oNlQe9P+sFCu3SYxENMiJsmt7sg2qZQX4OfYQ5jcbYRUM1HOZoNc/GlngvC21WquLArmwZFcud778h3C7j4NXI5oC64ltdL448IGxylOFDKmwfsfwX+gLUi2e53FL1dD4CNVr+nJbfzNayP29WhMJm3bIK5Zcd1hnZ4awdzoha7/X1i6WTg1eBMqT+AcTSIsxCfSjZq7BhdtSpWyi2nYPyf/SWR8+If9YXeQDUIuJ9g8OTVXjth8uIcto2Te3+mhHAR+DpVn3m/Lufje0YqvhRGv/aFAVhzNMLThqfITCc0hy8rkuFUzfmqgUjEIq/ekdsiD4JLlcrXj2Mj57RUk43DCNHdHB+cPLU3en+/4c6SSS1z3qtSwb0nRxYgf49meQa+kDrf6SItC+VGNkpiAh8Emve4Nio5S9mxuINeaRqRxIs0A0zcOFvEfZOaG9F/5WQbUdaU99gfMrTtn6r41gFAKb/NBsu9Eh1WoB2iLXvl2m9UKFn9uKf5BNTvjoN6kauf7xSdDbnMzMUjc4MbwAeHxn5FZZWx67wxQZP/OvOLT96Fb9W5NdmMaiSyZ6XiGiWTlG2X2EXvjjJ8NozpTU0TCbNjKVOAdrRNWnVLX3h/8QDonOiahc6Sw3k2mgmCoAgLCPZBbzBiovMrvEECDYJeRaZ+8IXD4fDHHx/dzBTvnDnyut6O/KxYcVeVbLcMF3rwSIE852Zh8sXbotyZELX+N87Np9EN+PClMaw/670etKXG+5uPF4yqq4EfEg+M4yYKyvKTsA5W+GzNCdAIR7o3GM/G5yu0ChwcfXocWJy+0azP0ucseoGG89e7op2sB78JeFdSTz00N6t/QIj+pGdkmmenduOA8CEDWlybe8NznFKscZTn7H9N4uBsk5SnWAtUjWjav+Exr6WZO67Q+/Ss6JULMydXqo6FscId0wCQ1ZFn1If8HRUEmBHNTQJGSvSSImQfDY81WDoxkcHSvKzK9B6wCx2Jir3IgqB6Ik8qg2ySUNe324hKRDBP2hD4Cdue8asZIvcsEozzFrCaU83UiCduQJbvL+TYOhB4RYsKI9vsD9vDxO6bpCYgaVb8GOIEdO6GoPBDGm/gwVuD9iZKHK4IOHUCELQmlEofS+4PBmZ6l2fmCEAc3uUB0Qx/R9b+vM5JaQHZgE9aHXOC0AtnnTV7X0EwfPK2u/3O6pxD+cOhUwXK8xWA8QnSdwJTfgDEiF8i/vw1NXcozexC9leMhe6KY3iJ2hOQjsD2PspxbTMMp3lbAmZEAr3kn3zpfat6tgc8/YqGTjqcu048kjvU3o2cpSyE5B+IkjreoApxPa603SV3nc+Xcqxdc4TuR67dMuHb4Rkiof0yfumdthqi0HH+65TFINPvzrakrmNy6EDqCfJEll/TUtZihGD71+WmQioSJ5+yWN9vVGKXCO1hjkBio5lC9jZXXymT5wPiMdqzFWbbbFCp15qL+liLvpuwBXwgFLYBB0Mf7LhdfVNsD7bviMvBPSwu3rSVEG7qqlmD1b6EDwH1K2stszhLgoMplLudgKckRhWAhT2tfT8VlBHtmI5NVvQulIPNqh0Cw8pDtRg2CBhN4+Dt5LJ6dnwDvLcz4ulULFP8dcxt2FsXT9oMBEuITHS0gNGbBj3Ego1eSZZ1mRs2R7uaTguoDKLj9DsCWLq7TSDhZGaJE3qAWX5M4/TuDXsVnh/wkOjJ/6mpYVDh0rDeA8Cv9nSFpiMUdIFwTMp59Jlyhpa/XTjIJCC8q7U0P6YF3yRVFJvA0z24lOuZZUN3S32R4tOp9I/EZt4am5af2wmaf0+3s1GPynHLL4fd0hnHYjKsseocC4zL2Y4Dp6LvaWJDISGONED9B1m/N04mzxDb7gJ3OSBH0whhb6sTkXyBEBNutKfVLcxO9cpPvrb6ZPCEOQSUMb/hrIVtzcOuSZaxi4YPcfO3KHzq7EOhgb8wiqyf2CpMXZ2XTgzQSCkQRCcIsW19peWj6E9VeKhD445t6OBBEfV/6kUCSUd2s0a2WdUkrGZQ2esJZWbiSyOgvWuw1Hn/i9ELBcEEkhPelJh0DEhsLD/SJh8Qz7/InqtqsfLOLGdg4fZlTstUHUoPzyjMmFP6pAvptYHqFZe74Pq5uSe0GzfY2JRWyCvFypfbF3fkLZo+TCVKTSlppPypZA+x/fnutZM5kYOMKTduNxlZydNAwEbTQ9jHGH/rMcgEeyxN3FS9OETfPCTwfe2+xskdVlRY12HVTalUJHNJ/wDJT6Q4PjeaW9eM4rMZL0l0jZQo2JQXRnon9c8c55CdkW23gOQPKJr2qLz5lhDX+t2CDxDeAMo+tMc9HcJlQbAsadtM64LOkNOoq3bTPL3FgJpAX+/s1Nh9r1LS+MTfE/y0Ka1Sxs98KfPWlRpTCnPcDtkfCMaLtaV8wdz/DvmebrCbdZBzvFh6+oLHMr5h+JqGxhTiTrt1Pq5CLkc3mmW/umOipPKdqDl37oF/pDUDwLsS/66tr9vXYdhWGVu/hYZCV1NTnT0L0ICwX3ugZn6L7/VJ73HXed/8ImXGhzvH+RGGh7zMy/x4rnLxQCJAFIqerllRwz9baks4sm/rzI6EXE1D63zMn9CAHBcfXmIwUfbbe4ZQ+8TloRqoiZbOzSPicWkjYUKqjbBY0EF+vXZ+gdlTQPEeW7kmxxwW/CSM8++Q03mE5FZfpQ1E8hTNeMYQtgS6fnErlkhT8nHmLHeHVs9IVz3HN5UC2EM0Qso6DUjT2fOGola9BDsvyqlCB7dLYSswljBzPBsP6JI/4ZRUzkTYaRZBt2/MoFgNLqLjLV2eP1C38c00j6/WZaBS2JT6Xi5H7M4AZQNVLBDM/E1d+b/R8P8r3XjQl9Fm0TNLgFl3XmfGmht5aORo1nWFLkq598GWr1UywjfBupBtSrPzznpe4TSCxP/Yi9Be4dO8Wcdp3iamYVz36vJzVCVFp/0Dch6e/MjNfvQZizwwtS4WACbGByigJmQBshmmdmstvQGBxrQail9gVL4rKmtd9Pybu+dIfwIGfhYPbVb0fgkxUDDQmOSZC4UsaFw+ybE05rlgwjbfTWHj6A6F4szZw49zPKDQk16Bu7qlyAkO7lYLthUYBJw0o7O9Pw/hbm2yxrBNrjjo4slLzVSUd+Y2Kh140QdFXsxw04hOOLZTQGo100OjFVr1jOd2kTNtzRVsOgUfeebJVQQ4cGoxPulsJorFBbkDn0gvkemXx+hs6N3Ncfo8Njjv0w3XyC26N45Og8celOZ5C5jAezEh+Tnw9zJ//p1UmIqetGAmyevxOsiHcXfg/NFDBkV5IVKWMN1b7tD0rq7yQAWvpsGctnfRBzyFvagaxzNdyKUwf1X49KCasbwRYib66G6SyDW7iF1KmcFYo7wRYxAteDPV7398juToXQjiAGOs3F9r1t/Lqqr4QfRohlMmD4sP+RPHjMCA9nFRFNxPvc/EWxbEECltBvGwQm3fJtbRGTPZLuJ0DE6HsikBwigAqzaRHohtVIchs7WmuDAqk8gRRDv6M6/NkI55BaFOYEMXFn+lKMuGKcmaf7iPZMDvr6zzx7R9fb0CFCW2B1gF69Tkup0RVBAMGfWyom2AwCmdghWLAAofTVfSRg3USLVfdgljZUwvYGJZeQ2oTQ2XgquN2ge25bUuA4Wck24e/VuCvdwpKvaGLeXlbBr+4FkzxQGf1EB5pkvLv9GWz/qDE5ithpH9uwi3rvQwv22jQ0BLh8WvjnIjlfGFub4jmu/7DFbrw4dsNd8ZrLx5kB7yX9Fe7kqdXH5drjBDrrCZRRgu8QMNMfV7TSiChoie6/b1DVsbkjCnoAbAp6GbVNj/VsNoJV+GkG2LyLVpAYycsTjiPmL2acq5qde8iZDXa/oK/MMRUhBpFWOgYIVjV7HdXT0+x5L3gMYCpKBtoQFCiiF8Z9pFPGMCennIjB0Dg9WvjcFH2ra+uZZ784cfVGvnEVuazbkim29C9dIiJxDTo0txcQzX9pCf3KCL5Bg5FgOjvSuOdFI3ypzd1vwk7HxWfBYvsH+cveXFMzUEr8S6kyFQxF278WDbiKAX/VY9MW/9jN0xqtjtTTKWNuqwkRmXgCdinj9NGIUxqQAdELbrNjPDUPFnRxseckBsrTvvnvr2+2+HyKm+3/YOSZamTlHUjKvqww/amx9IfBWlnpD88jQmOOZ4kkjig6gk+VHxHDmjmrPV0STgGEgfK8t30LYQvDgEb20rXnFt2sGTZVp5zp2O2qYLl14DgTAq+pe2ZmC5TC6cIo0+WA1AKkiEYJtpE41qkoeQxETRy1cczVmvv7pVQ3Ar8dFrSfZq5qZVM6+/h0hhintiGlv2txfgx3GZx2dBtb3ypDiFFvquOjUxIPP4bfwHRv/LV/W5fKdg6KN8DnKVvJhuHQujRTtnF5GgnraTECK7D4+MzRsnJ08r9IH4ryGTBR9kSHgUb/OZUE5WDPI4C9ovNmR23Xwcpzac6qyKjx1LY/R2LpKVEO/81gxwloePsFa/ZhKhRn7Lr0NvgVXFaM+CgZJ2SLjYWCvD6atcnFyjMK/Ip0m2qxsBTr8ZPyJ/IllJI2zLfDdRx5QzUVYxNhl6ECxgmncn0imyv81vTjSzDdOjlDSHNToaw5jsr7cbwFcka2CUBE+VutZUPp8FeDBKVdAkAT6nnsxTvFbhugkMUdEXjnd6gMF5mo++RdAZgLxI5uK28iXs1f9LQVTFE2Wh2Vb/yeffbzzTZ6VmcX+z4poVDmbGFZszKQuaDE425h14L358uLLyrpjGUSJ4z1YsgguqNBMU4j9SvsZ++5KBeDfUfRbuSBPemqcwx9KMf2uOfeouuD/X1OWNdGI4ZkrA2e1Npw5KbzIeiDPzzPdaG97C9nQtKQhTrN1dJ/s2axIurMqgPiRWS/kP1xNTiqhwr2MkLQMkuukdCNf0gbdb+eGU8mDVjkw+WFjBHAQLSJxsmOV0zK/RB5kpSDb74ycBNkYszfEciuRw8Z6QH9nkwOqbgT59rPWlkDZki7+IJ0y2re/Po3UKFqdJz7g04QLiO1LH4nKjjAbrw0rErbTH+vtv0UedYm1xLzoRcT7/x7QcEUWFmRDF+ZW8TKbQG+oHSXV0PY77m/3FqMJs7QLGRmGBLmLIRmMlIAO+j3XwL30LTg4tvhx984W8sxyPliseaBDtafKDBvK29CDx9NKIj7ovn2IrjiErw1FO8ommSh6RGde5i3fmnqUN7dvTe90I2dZLbCuvYa8YwAxfVLBi3TYxAaB2dI44Hncg6Mi6az5lzgGnzdHipOeO3a4weStdM7IYGU+6je9ruWNs8pCZHy5Z4gqzcIgPx1FLC1Sv2pPAFQB/jaKtyOY9NPrFa7YP3Mn53us/M7BioQJN9Py/fvRqzDOs3jl0VkWhJwsaDdkpFATvg3CaeZRmji1VpfzwYfTbe1t/0y+Yns2dsCF7lBAdnubWxuwyHxkTrgKyiL8wHzZ+qyAhqSNagxMASuMPCI84ogbWo7qgSYoNEOrSD77e83yq6+k+lIs2EqMe4HlCXY7220d2VbiFBolqtF1nIbbibQzFwWzOPL71qJmlEO5wWzaNxQOD7UbG0013+GkIdIMmhUC3GQ/g5/MuNjnhIdoP8p7+M0bjKGOoiNuti6/FEs1TRtWsZuAMC9Oc5hU1xXiX0ODdiOIDDBSEl9EmeyurXE4aT8lESofYGUzih9geu9mtEV1EsiDrtnryYYrxRCFBq9WFHjNd1x8g9gm9bzoK2bye90sTIBeWdKgp96H2ZlBKT2PjgC4M0IFGw60P8ogIVCY5QPfQ6ndKXULLRJwibR45UPeR3CUoAhDGptISK2bPKwqFuPTcj3Hz/uUjgFaa1L/TztO7p618LRkpD6g1OM/wUIBV8m1HPRAuPunRSsn7gyR6i40Zm5jwggPQcbpgLNu6npciogYkg1xtZ6LhnBMQy0FX2r3XsmtsJNeKo7/JlbTMZAkOResPpo4bPTp0bBh8rwHpSteUFHYnht8EzHSe6sy+jvV7SB5/u9BV8VBCgT7vWPK5vInfdAxuk57zdivGAROQLDiPG8JP0DA8oqqY0dQgfawLC/qcxRYsIxyUVK0HTkNgV2i6fxrI/Y+ZHz4Wb2ggg3ZwwimH2GajZHTXhHvuUOMAWY9otkwGa7Bu3PGQzVpRLTLDjKCY7+UR0P64LDa5d7Zpns94zlTffJGbNfVrvSRI/eoevkY5G18UXaj5EaJDIad7/5ee9HUqDtu5HlQLOr0XdLyAklXs9un1ybrFN1QhJXcF1SjwSex0Ym6bLB58smS0p1uOdYWkmJsY26V1S69VAZipyIL4HGg3P6gnNeuNSrqxbnoKziv8TsoCSuHCO7bM7Mz2kH0mlwutxETjJDM2dUZje+t7QcJO8M+QpdwX+s2XeVtKxpKnhm/2SDDJw5ypN0X1w9h5d9HlFucMCF5Ni6GHqDLJVyZ1mxFYM0aZLOghF4uUkUQxLJdX4BiMFlJmbx8XEgLsusfDmKdxJJdQOmwm1Qe4LLP3rFT/pFXmExKo66PEXVJj02uRKYvnK2gcY7Pzp+MHbexItcEAKO+6SlF7FGc/cH+uk8oBwuxVh0877+ZCRWWikNiDIWJcqsSQUSOJMgBduG9ONne8AFkHL5yYd66FLsbn5xTguzhxTpM8B4slkiEHm8TRJBdTDOAvn0zUoQ2LKGqN/unEEYhWz06nTl6/Gh1mUAc9QwLoZw2AQsGHwkmcWQ81O1oloewJ9fr5uggeFZdw8Og3HdixNtdFJgN4FDTXdkzpia4PSdZKVRIBuuheHSQ7V8MsOzEjZr3VfMDFNxtRPxxAPPKhpOKoE75F1A/ibkxnWZrJmVgWuiIubvqQKOQGqSK0xLj7Mak9c+Bfwrcfi4ZsUQv1KWFeJTQaj7WvVqbIFMKA1y8CUefgD55lwVFNHIMV1xD9+re/sZ6aafbEX+upr7NqtT/m3xQrQmjJurjNOR/pxd3JFdl6BbuxnrYYl8DE16d5eED8UkgrNQtdVjUd7kDJjFMOozWTWJpzdcfpa3pL5ULdRF31wG/S8PNvBnmCrEaZYe2eKzHC8S+MHG+7BBfRRnmSYIrsbJWymUMask+wM9o4I7vdx/lJ5eDU5WN0G8dWHtlIHThi3/+1I5Vbp9hjbNoZ2YgH1OWP/WCw7N272gDFk5r1Lv2vRby3ubczirDeoPV1F4q6IGznFgjupNuaU1AvyqG+230WmixErQ97MxjE75K3yrTolhBGzWRazAEYEXy60eF4z7t21hDl6il/VQceQbNoX1MpFdLWndgqW1ioHKYEL+n068oYl/KMvEvYHTO/pRBFoJCrXyf+alsTTG/VLLUoUpDZ1ORWKh2GbcD78RrlI+jGbTK8tpjwdznzx+UKvN/oZqwbpYwEkzoUzr5W1l7ZxkJnlcZRaet7xzCKYEzA2AJ1lu59JqBqkUFm0AEIUItxdt9mMemV5Vj3cKR5UD9WCtXKplqkqgxTAjORtG7LPRUq0K7Wn0zpz5OvrvWbDVMdw1lMshttc0BL+HeEwKCYI+AB51UB7BNWqknHjH3oUxXO7MlhA7RjZmmImay+rKvgfMue0BavriAAOC39VYf5ZPcrgteBh9Clk6B6K2V5e7xMoV7jv8cCM4csvh7t1EB+bi0VhsPWXqBNekxQceKdMx4HegJLGmh2Gf8+zXv0OD5553QBFc41G+mTXjTnN+4GfJewo8HAXDGY0k4qze46XAO+T3NADO0K6EVR4VMpcgGgolEw1fZmg/vlfVrRfNhMvnUjmuiosXwM1zNaUL/ysFko4joxfc+fPC55kijbsIOJsAHAstw89Nkm8o0P56jqDHjhJmxL9KeeMF79D9nZJGoWSKgkJRlGDtF4m2vNcFcLhvgSCcCSgLYc6UQy9px18K/TsrMYCJ0TJE3r3Pdei4n08RrhHIznEbdfqLVyoWRhJRa7Yq0rQbPUiNvfJ+PH9neK0TBcdfexD2jZ09mWUXKVdIsgBIELP8pCrF1FYcoHn++VhvsMIRWS9Gpz3NSY1eumNS2GSpYVf5DpGwFz6E/DCwPZIvbjvMhgKkrtI21FDLvanMxTVxLbIImJYDF8bPkaQbl1d2tCLGBMMvts8gYNfeKETsj4GC64Pk1jKh9en0c/eec2c2DVfVbqbBMga8gsdxnHRvfAMcrxc8ZZNmu+6tTHIWfSLaw+eLXUurluQFdKgyexls1yU6LvhhSwPXGV/RHcP0ifQp+Pm/CU4WZILc8a4NyAy47Vkk7v5KFKLJnDL7/TyY6mTFvZf1S8uJu+BsderfjWOwPuzAt5wu5sOyCKeoSERkop4LG2fBj7xgMVf/Ft5hodoHynysSB45ZZvJDMsEtIeCLg5f/u4faaHSSAkbpH8aSaXPMQDJXlOrT88kJmOmlSSZU3+QfSRQlImC+27AlBd23rAJhFjnXUGCJ7SqSGXjFpidx+3RHRbwwYNSqwRT5/QmqVHXn5Jao7NQaEVjEdzGaCMQQfWO5erkh7QV6cgKcttjqTVEk4EVV1uiBGm2PvdTF7oBnzA0of2maihyHWrBsEviSWDl1J9AfHJ88ooiQWJu4yLd7/xw+bkI+JuDjz2EvLhak4DLjI2Ue8zgeL0kU4avcvd1ou4HOMd1d/l4vUeAF46fUTOahyhGnplgqCDIAUUVh9eKWfZSm/QuNhpD/WeONdUaTc/9RLVcGwdSnbGgPg++mvvm9yfq5Mq+d3XaOjei5cPxMqjzetJFAxMpKtT0PUgLiC01SCztXUzgu5BDKiPV7t0ycYuJmh6ZmSt56xKsrk3s2T6SqPK7EdYcUBpteumIyln+0crlJGvE792qXK22KzZn3CJbTQ+7TYIAjLarAoNaYYFyrA08FgoYEib5lKb6bEnFQIYHMRj5HF+McdwLthTcyTDbWWaw9YkpSaMmhLrFcadrs59nKj0GtwoyuUkL2YXfcXkZwjih6f8FEkhKD21m7ThGhAWAJtJBSvTpaLuC0otNv1p76xuVRkoKhjC9ah8wLGwV2LNEvtiMbVnyY8k7b82zYzp7U40YnySDKLNSkUTLsxnb4p9L6riaFeHpVNPCtPh+w5Qw69419FrBRP1VGwXpkVGzYD8M38xhqcj+IZaLEYURZhIRogJQi/kIzC/5W1YAxzkXG5GSN8heK9GFoS88DnHaGjPFKTwwUtFcRQo2/wXyOr2TDqmQ2K1FKFlm1flDAEp7HQXD+j8X+B1YBeul6cPTWpWjvhb8HDWLgoDKNitHadueo1dM754FOoMo0AizNiY3YfqbdvWFRILzazFn6w11WRJN3cifaNEHM2ocqaS8zdlhva7wL0JFUaarvddmRhlju9z+xHmdwmOwKCUiWrVHAxlGWHBW/I5ujWIDK6rYXhw+tobpf1aHlqgVdge8kwHKWT8wK/D2fpEbAV/NpJSHIzwIPBrq6oFTyNTXLZY3Rn6Gcgwu3Mkk02Sh8xHRND6J8mr4S5MXGPs0dqQVx+ueay9CN+GKu9c5rsW4spkGIZv0eVdhGsL30R7twsaBqoncO8ECM1sI5vDMrgFS6iB8diFUzCV5GshRn61aAyhWVCfMxhqN0e5tqwjZuF1j/UJO11LO041wMia/jk5uUeVHEsdBg15AlVwu7cYyC6aTRMxCsTQXeIFpeC20k05SKCiLLciEpigy/ysGGYJWqSudEthkauBAxG7fG/iB2qAWE7BaW8izshkgSYzWJamC1viEtJ8ukWXTYRVt6sBDmtU7bJewJSXkQot70/SV6R++Xtk6dR1BVSonHzNgF1cmXqpQysQUlORSaOCNoqGdPeATbdWb/ScaRotAOcNircZCRdKM9wwc7B2gxZFNxRBUKNNyn5Wdw37OSVRpvfwRvbM3zHRr2oOb5pIgyRPoVmIEwezDeVZy6jafe0K1zNLPGSG9SFSC0ewShOD0b4ftu0PTldVM884FP6Je22tfzjO2S5yLeZJdDJRp6Cb9PTRb0q6GcH/nSjmtLHAPA/+W3oVgukD5Et5kCidAqzdy9Met7bDr+RIJOfHY92EbncWeMhKyuPm4arnnYCe+1VG2NYbn+MzNo0A4u3jmLIpjvnEJce3Jf0myf5GdxBfJDQ0UHy9u3CzXpKXNY0RsOKex/ezb1xuQ68VJZnVrPyFRz7FvWMuYExl1zByg9aMsCZLt6BUftYtlwws0aRh7scQvzl5WCgW46rM8hE+ksJZ4gCEBoguprEVQu0quVkl9y0iCn2GYNFfj6vOeMTeqLUWSBlCxImuu6Zb6zfLDosyQ72vGxetIZWDoB01d16AL7alO3FqliR255cevUsZLIAXdpcIIgRMYb2aHKUlZkBQBveYQyMiShfrKG5i6tLax8kSr5Wf5fj71ANFX8NewMpW++kyftifQVzILMO6KfQQ2Z9uReKs59xGIsr1gTXdOnKWeieiQUXxBK/xt4LyJkyAprKAD79Rk3cppWyqeK6ECBrq4b0farAJKoOBATbKFyGC/62SK003c1GWU0mu72/BGwY+U6qgaQgrCPw5ua1D6C0YWvVlxLUp4yOHtDT4qfRlBlaRlkBrIRvFbkHzZoDTwvTo6Ynhiv2jLIdfrTFi7btyRUSbGcR85XKtUfn+S0h/cWFJtVPrikfYrmksy4IqbEyF7BKS5OPCyo73LA6txL6rclW4B7my9WDxE6rZePe7skUhAYwhvj8hfGNiesJ8YR922Ts20dEAQ5CD62aoDjTDGiLSLREono5Hi5IMJV7kvzsOpWyJmjICHcLA1SM+JcfAU39JwGhHEXAoHS/7nckZyLjYbvkUloJiMiGoD/HGSl0LO98bJ/4ZCv2X+HVujY15SSJhb1W/tl2CPtXG/v/5JBf5nN9X83nCs3FLdmfk5G43qbaqCANdwlqfjMuMyPq/H9TNVSmy3sOAqJXgak9EI6k5+ufAafcohWuJoUFXAwgsJTtsQm9cgzwZiXIzzPPWHjBECN/XOvFFpog6pZFbXRW5KrB+dGeU4LgKqkwkixwJx/kA8FRALVSfiv+tJrOscvC6gS9K3hkejYdHoZ3nOnp71qO1mv7bD3F38oY53/rPqJqr127r7686AhXD2/BBfupiwSjAAJy5FBZdkC5uLILXi/8vKg3HUq07JTZnIVci/cxA2l8hheDJx3/kVQkv5y+YNBBAkdmUXvIf+PMbNxWLvtSJWIR5Tc6QuisbOM4jzaA4xW4H5LRH4+2LaUwNV+H6qEFoc9fZdeZNSfpMA7g1CfovP+mS54W9F0TiO88W0tXj/MrKCskQd9++anFQEbULzzRV7CCZk0hhCSjcSp1Pf5872+hwhWco7mxKANHJSGf74OYmsBVfAKX1D1naLa3kNDFwDXBq9BAmeiaZZNaLanIk2oagJH9MZ3rqTmlZ9xFetnNftvDpOtkizegkqsk6jhc9mID7CIlz56gRs7c8xisxDPT1WGTDDQm56KuJ3h/vlYrzNTIsWPjKWsAM7gUUOfpsydFX/a+gNKRDIsaZKn8LNzUVpR3cDkGlkdTAUFlCGwpXibH9GBMxq+c6QObDQe24a8tRv9FDmvdLXGZg/VnVQYdv0wYDvN126w50aXjOsDw/DSeuEmRhKatJiskZG74R5nVJoedASowVs5I3XdQYr8TkBbj5LGOF3bFKoGA0FUDJPaaxDi7UmBW1Y3rPC0PPfY706yQQDDXwPwRPfIk8UU9MUgm4HJTAhZSQNgIknBJUNnzCQRbYYLSXEbfp7laCD64N5zB+mC37XZR/6vfwkpQjx9v1bg94tg95H0A24GorT58Xq9iEj0/SMdLB/pu+tKUzUbN3pNoGm173/eQvUfAmhDwX+0o8v8iG9h4B6ux3BPOErXMai4Zl3pVu4euZeyDPNjaC+jhoOBy31dmgQq4dT5HLC7KMQXUOoryeJ8qkpt/03sHsuis0p2Yczly4DOnE3A+9tkkK0qnb7UxXvyB1OMUkNaXkooIcJ64mp3RIB9q5FN2SM9mD4mQyVlkUcrnCyNEPeSHzE3ywfUvc9fESeNV5t8Ir0vB5CAVLV0hM5pYXBCyNhqhL7jTel1AfGlj7hLfycWGQarbds1imOCyChlDsOVCifTTbkqxsVWWF8+McLAgqTnRNav3pkidUR6nrOWwIHWBT321W1TRS4A1K9egNWn+mgrvllRrJvXk84YCRl6zCHZNlzKW03sX9PhHxobQHplthdEKl77SUSDgRST7dl2lor5YbUQ2JQoaugKml89Dly2BMNomfgPYd2kefNeoUXtPUVFmHPvwByn3TzD40+KUayTr3pktEaMNr8RcNlJsQyeYiACa+HDlXzJJdWhAJCkMrI3qe4SiWUUrQckFjEqOWzAyfQhdjwlcHeoOu6ThcMlL4DD2AMvbRBnLqKxKsnZTL8aS0FDDxl8d7u2c3NbLfMpvyotZeb4uNZ4bVKQydfO83cQNIuzHcdQIep1qfIwAj6KNVwPo37KI1V7qxyTvHKVDNWWHUieB09XnX0HglwGVeg3NSQU2GWsSdxyoHWyBExZnJrSO+dyAs44zkGjwhda/HwRtr7jt60mr9v6zMWxzoWRzQUZ/Qm+YQ31qSI0C9A8p4kbVvYUQrAR1K44EcvVOu8FIzYfArcjpWUdmrBUp6vtFn5mFzRO7w9xB2H2Q1xzwIZAnVIrZy00zHMyNEZFcH03YOlO4YjwK/Zppnmnh2F7iHRyhhgnByxs2u48s0QkZMlZE82Q9sjzG1oQuIrtQymAmoP+tK2hHULgEnliRUTAT3dOG95xj6Ixyc/NjhLQrftLnx1H4EWg/mR9SBD1sg7BJaJ5sWoOPm8Tn1+8ggjlXjGT6oUV+M0CYHIPecb5wjkkx9o9O24IlBuHOURXvM5If5P6H3m3Bg4b0yXvwIJyaAYlfUacjKEtET6NG8u9ViuKDEIfbRTCes+/B1BmkNLxnrEMCn9lLW/VOs0J982LD/Sj5fyMkya+0LZhpL02D2RWJ43m8bikHMLi5ADx9nCpsRBKmbPig2JrstUhGo2R7NvqArg7zZHYXBQb28lA3fItQKGbt1qQRLXLkUfvEl/KdV1nNn3aSWP2EoFrFcFMbMgYCEwFsyAASvC8BjPdC8nxa8ApPQvH6s+bZZOm+hFlnsHI9jAEKyJGHq5IU+2Wrhxu1qtON28G6G08XLeuGghUKTK2XCHeYlM+xD3FIN+ReIC6hycuHBZ4J0YlWTIe+5HtJanuq7m4T9E07+elqD68i+e+lbeOqp7QqsNgqc3jyO+jP2yiD1XYzsgVWoWzfIsnxf5keuGpmJ7gOCcYl0tzNWy+WbtLzEgQW4eU7Ckaf4eKyKHCgUUoHoaIfeU+j6WgdRfPYAdOaaaN9mZRhNsOyfbumFlMTMbSz8Gs8k1iScjEYlN7yK13dtQyLfbvxQmzBKs1BoZI9oeMUQSQeN7qyjbUZultKiIgXL7hd2gIf4ocIHnr2GFAC8rSTNVQtfIe8wiF5TQPMzv8ka0Dy2YuSmqANbCDdjrCF8pw7FM+Ujn9Kxlu25PglozXoVnuy5hDX8MrpThhkmLDSERf/5/MQiwgAw0DD5P5vSVfwHY7k59hYjetWXd4iwWCpKokNbwnmqqufSndymUlR63gwgft4HHN2scm0OBs9btbToXNH/MXJrlRqoJrR57ulrvotdMYo1j0SqlzdzlApAnpBcrWdZWhN0HnjCM1W0FlQbsxluw+dZwOpR/8QDPFNLMpmLU/LncqYS/zSKgm0KWqL9KtXGrzHKDSMkdGRW7Eb8UEZoiftl5B3Rz6JmKgEq+gVk2n2JqdJKenNTDIb+rGMatWgXw6MqEAQqrMkvZFp43jA08kgN1YOJnRpoEfs6RjzbpePqauEfTcgl0Llm7IdznOtdmEJDYQcCH6pZVSN7y8znMqfu+I+HRDvY6E7TJ3AaS3Ck5KsI7DbGE5g3ZR2rSP4J2sMfP21FOYHaQrSlcfCHLYotBaWpAqRJZTBkzfGpt8Bk8jDzt3P/Dugk2dLTbs/Z7rKABFY5ueT6/x2feiaztvQBLnMev13Rz3nPBX313DZ4G3atKf1a9aK2bGDtx5EdaqL5oeOLDth+csTAIPK+dy3OBPyWM1V+Ji441+7FnVNlEkFYA5V0g6ewKVn2URrFVu78nZEDDWcHjH6DWeGh2ulqr4ZAjqX+4G06HNMlGB1UQzXCWWnpgOHGIk4CwFImdAsrg5zlsRucH8kmnA5PoI4c+Ud51DPOQ0e2DUYMQ6X9kUbfguclNmw6KmX5Sv+qgzBvNNXf/BN0FqhQ6PZsko4TvOF0POOwCG2ci85t/dLNLnPg/NkBxgHAhkTB0wzqHOrKy+kq0tJWlNkRY+dBlB0K9tTSV56+BDC+pRDHZtX3Khv65xsDRL+hvdnPav7r9+aR2P1lsEIUEEu7++e7IvF9Feby0rNi+TU+9zCbDYJ+PTi5BNBbUXmYmuD/u4D4F0B2eAew6HlLksBXKjHWpWiVFHSz3pZL5TLUPeHzCClowCYD0Xbbr39/vuJc1+vQUhmFPEwuMlu/fGumCCrNLdQvE9gzcRJwpf64DBeTsN3N8oHfVghy+QKXblm4i9YVHjnKx72z3BF+xCtNXOMrMywPv5pnbj2nBwbQH1nwACslY8LjEF1Z1rBSXYV9lzSF2ZFGmpnZgvU+9Ec5sA3pbNTpTEPXSv6IK/UqrAgeTF6S5d8W90+O9RgWuUuSGmuXgYOiKJpqyQpzvO5YHVwkewk6dYGgudOcQFrbY6H4ymwqd0F4Hvp+/9IvBMxsJJpWbyiANPrm7wZyN9qNlgBvBrKSujikClzzpJ6UitCQpjNcaSE+1lrL25qQjmM5Qe0XfswsqPGm0pQHbuSPjWlU/EBvOpciCsZnrc8wajlP7z49hTeCbtcfi7OKA2jr1ueyb7gxz9c1MvJqeJ2Tu/Ys25AIz56spEmIXCZyTBI/CT1umjEYswdSEY7NfM+r6RUGdLe1DN/Z0lh3O6BFnkTZxnBNsSPcvWI7YH2h5H1VeFWqIqKk1Y1cj/EK2sknXFBF9/aZUPMEhIjSSRvP30kFsIpWsOf2LKEsIADFJablR34O+07nREJBMFwwRF9X5Q+SLFlABUI4f+qgRe52ditGOuDOgRUMOJrSUAEKPLUeuNRokKs/gZUyOxC2Fofy7nigxPpvw6J7x5n0UzxsM6oUmynqgHs4+dVTW2aJ4GqgRqtwxrD/Bl0BfiSKRJ22E4uZEdGf15eo/MGZHWH+ASJGVLHxLKzHxBCHk4nU8NwfHawf2fbgPtt7AFWaZr1Tmrsr+CbumaMeAQnVpzLYIO3A5kH3UkcmVa5a9O34Wrwia4NyUiEPE1SyAJw/ecqiU/LRxbwRm7BiHZ6bD+8TUACKOhfnO/IAMBFgcr7zd2y48vmdTTTrbn8MQSB1NXS/FnamzDJfxpPNNEhVQoSy1R/z+Yz2zjvyTTKIgCyOy1TRjRmWHpcux/VVwhVwn6Y5Lk7oV39lDMhG/zTwdbRExkqfqktwR7z0H0ihaieNWTpxx9OB+SuAVE0E7Nf2YsqO7/loxaMXn6UeXTMD1bZpiJQqSpcwTIZaVMt/+SDrHYRmpGARxEyQTYpVB1nRj3rTFVmsaAmWaYrRhqU/D94MmxPpqX93aZFblOjgezxBFBoNItLYSxp5av/TftB6XZIgA4NPecIRSZ8wv923EZ65Lf3IOTAJF4+MKd0nnVUG2EzXraAbMjVpVlQB2Wn7cEFaFkHH0Veu9TYNk/7q6mxn6TTdNL4UvfDSxvZ0bO/fn4OcR5ad1ov9SyqDGL06+a1RjTgIzbwESM3ATQSggXq5wFpxLRGAmGIauHKaxBisNS4obwGg18EK+Qls/J6Iw0mVBECPMIc2Q6iyzuvC6NKlQ3WRVLWXaKCqbCOaGnj2uSEEW8Lsj7ktnB889D1RXH42RKVJxEexta8pjH4nbDQUGyzTQIgfp22C51kSr7S0JZCuiuqnDfY1+gc3/2rBBNNCePpHoTVrxI0gXVubEt371vXpYcTaGg1rdpzR+rsHsqYh2mCs8lpWLVRplboLDuJcj7VRVxfDMRcb2vdwVJKTZSxBzmswsNF73HynN1TCLZF3WtreTcOz5oWSptmHTiKWGMs6T8GzcQaJSJiI9/RUzJToigy9Tre4UowMbjM9nLn0cD3iyK4Z5+YUy/fan3EfvTMRdNeCj8rsr+wyMnny2AGdY1CecfxvLGTmn5jAyLjZdLZZXCUAQHaCSQDwhGyPjFDyVhYAE38w+IndzfXGnuCUnQRRnf8dLCgF5PsWgWHahXrv9zzW4bnf5GxE/ctMkBksakEw5aemtCYn3lJbq7+UtOqobtWOQkoMoJ+MdVAHbClQC5fNRjDxSUDGXimWNP0YxUm6q9moxl0d1WDb8be8Kz/USTwzMKf5QCkp4RRSn6qUDEo/z7lFSo31RuOw7d89L3ty0Zv8fhv7hlI3cU4MJuOjkCyYkBjFrYo/F8Cuv1E69gYMhneczqRTKmPNqqTvegUTYhWNgERHRH5FFaYoPRv1JHkkJGviPyIGG0WOlPYNcenG/nU9TGP35uBNe5qQmqvQdDPTOFNxS1b9Q45jp4Dl264UXBszcf2t270GxHyeI3KIk4gyDqrQfrFn9AyOHu99+Jn+OYvcJqqxPjyCR0KHsxI/xJC7Yn3xCN0vDcAaMNE/x+/sX1ayxQ09S7LfVo1/LwGXvsPwHVD4AzTeIT3bVFzv7abB3AmNiHmm4I8pOGgPNYaJnxfd4CDXl92NdtTjaKRzI7Ajioc3nGoisr9SkPdQDjPpgulDXk6Fr6Ca4CHL7fH37EWAoOkpuu1PqP1qKZeO0Vz8zMpDISM7Oq0fXDWEmSBPIhKAkgDnHUIcAkwtAij6taPxyH/GMCi1MzaIMVgdLPh5aiZp899K35ic8bf8lYoS8N2+LIxKLGlVnZsjEr876C1NsJHIGMNzd3oCgNnUbZ72Bq0NjlXHLjjqwK+khNz6Ftw/uZ6Oeq+XZX2oAt5OMhqBwC7nbiHI0VGpxkiO1CpT7WIaz73R3wQC3dfBI+yEAzo8sTNGqNl4cFLx/2XXjaUXFU+PN6hMNq2tQS00VfEe/9ZEpWqMYNL7gGdQmm/VIUolTiu5x6YueRlwO0oeCJj6Kq2GOcMhAhufpfWWRyXoZ33GU2I1CZakC7QFIP9ABeTkNMYEasIgYqa0IVQznzhiwXP8CsesVeSKBpT0OnKkBpz1kwC8cmeyEVGHiQom/cMAwFC665oqXiz0VMDcGSEImLawcI3BnB26mWYzxGLy1twBuV2GF+YU5m4u9SexOHcwEJMRLfSFWKB2AhnYG67pD7kcBss0a/Dw8H0MbIY559szRf3acYB0TyoGEzvxX2kA8aQu6aKRYglhEXD9brv+X3nCd9XJ6XcW5iVTiExue7Zqj3E94Lrc3PrEm7sgBzb58GtDTCuXRB/lCE5jAc/0LY6EdowfUXXjDFfsaurbL6JQYLI4jzAHXUudLY1B4SLoKf9KVbiHUnoZ+roP9+8qjOmlTxkYr9/NMqAhKklIuPtw6XWsHMNR4Vx9A4+fYQnAxYVob0adVMJZ5aA5Y7YYLI2vSSjZUUMuGCSA+6C71X2xLsMdISkHC63uZo6Jm5kFMD/OjOwXXwYDlLKWn6UkaOilmGSK9xfW+BCz51tCq3dQ5TJE3Nf2Kh6KOyTi0p3SJNiQTiYvwvwCmMF4j0LDK9PRBprmd5EWF1YSzik6+o+/2uFn03rduXUXFVDyybL5li9Vz6R2B79/prU2TOz/MREx49UN80XXbNQnfb2TUBdFlvww3duXQmfpOZVuk8RrJhP8slFaBLxflc3hA424ae8LTHjLwyADw76VwkEgKAP04FKFwhgB7n2T6nBYQRJIC/2LqN8J/W51JncwvC2uBSQ63QfxgSguxMlKsOvAYt3QQedTp6iJisFtLsXI19BYS6GX0QxD/I715pwZm2gXPBe10Dt34eon6h7F2Y9/7X8yH7e+LdDjCyxswXGL3Fm0Xd1shN3eB+/ahlqGu/oI0i4O79+MHTH2EDxwmGYNmuWezBYqPJnRwbjJ8GopcmzCkBL5j+LOaV2DK7evAufY41kHatS/4Kv2TyllWnQNBARGxs8abLiYt7F6LE7knXDZ/uC7hh872vYDWf7danJkfAiFc52+KUKOiTyaApo0DtyE9Cwa/EsA+fSJMQnwqobDqV2pvoaVsBhjO7WLE3xgB0VqAUpx96/PSAWbbPXKJmEWKpIsHvEph7yxRBNlGrZxUeykv7x8Rb36ODssHr7cAotz7krynPuWX1JymZtg83Q7Fns9eQO+X5NhtnV2NUfUydgm5cMvjity8z2VeATMZsAGGfiohfDRs8MwU0O8jBCK5rgJV1tbFqSELZIGR1OJOrPFei9IUCwioYFoQQfzFZ4Nunr945f/od+gRy3AoetzyeQpAvWfzx9yvi/uC/Hp71vIAIRl4oYxNcEDdJ6BlLDABYdD0n9tJP09cfKIULH/k71i4Nn+HCw5VMcIlekabSH9qnEZ3qZe4dNEhXRMg1FjaFDZyf5yrEGu/V/k9LK+08r+mlBJ99YvG1qz6SpNbiUnk4MYW90c4anYxA/X7kVZ+cLV+HdP8J0ZyPgBN2cd3LWctkNFJkEMbJbtHTPq5QBxgwqi16K4rZipGD0UQV01hHC1SW4IbnCO3ggreiEAxtAITq5egE08MDG3QaxylRJlqvgP2rY/nB7VO9ih0VgCyVRcfp53JvVZCvGfgsEZF/XQtf7dpZdi8NXxz2GtYv4U36rW8fYDmPM+W5WhsPnP8wOWr/ss0X1bPitKJl3PL0wX6LeYTrf5oNQvgsszroY4ethKfUzPAxfak7vuzHJvn+XhuqpfzVfkCgfqtMteucsvw+5m3GJjlY8zPi1sQVLDoj9lXQKswJ0DdrcGZDtc3z7sB8loFpqvGAeSPMPm+k3hXcenqNg2gqBEoKISDnfIJySV494hfaMpGQX/fxwYcCNo6Tzl33zNdnxrkEU7Wur5+8wQ8lBqsoRGNAr0v/gqZOgajaENFv+zNHNsJTvS6x72pRptoCkIBL7WBFX/J6QZzsrAw6q6vwRmAFHRr+763UpUwrltWCb4PBOpZ+17ksE1f3E6wvLl8OA1wlbJg+PJ/Tr83Hfmyfq6x5MWsn0n8yNRa64BlCgGGA0ZHISp+Y0lU1OeRR3HUAd2UpWFU38Yzh7FrhTyEtkLZppfMz5i64WB4lXhLl2jagXLAKhWIcQr+ULDN/X7k7Y7WPVtlhLUpyOqOwnJYZ0TdT+R6kT4lFSAeSTYt52d3nvkDrtKWAOIFAhomSmRqyMXHqe9M7r9gc08lp5SysYjnI9dcpPStZjc218sGENlrGPeR2hIK4652/7ul/JymGQPzGq+NE2y4SNKA+uaGoYlJGQ7OHYqXrNkPkoy0EFrj87ItxIhNwjyEf9DscUZ5JhdqB1/TdX2DTbhZTCWA3THTTu2VlgcXtJWIFZTnyJfGF5lznCMWngEQCoMPJGquF6EQqE37iWqbAS5Q+QuDoW0sdMd1aB5A6D3zEdWxF6FoWb/MwxXdrIaMP/rSi3aAzFEHCN64oY1HsBWpXd4h8CWSwZjyjK/Z2BBFLVyBQLwR5X/0E0ibTBSrSAoWT/lUEPCyma/bZkWcFdrlg1U/1ntR1dT+/rHKfT5bx8Eg+ikchJOPl2yZcHkh+LFIOVivC6aFFvh9MqGCF/YAagVOw+fbrQZ2PEbnhek3vcUKoqakqJgz2nEMBGRsfJPTvc14Aqkz73S4v2kslsKQ/0W3U9+WDvTWzL5p2OguzcVNHfq/5OWw1JMLmhy28iyJg1mMRqyG6LECqrVeAuaI0CmXLvRpZsQ39U6Pvx8GJQ5alrZ+cLRi3SDHB2yfv+vRtQXu/g7SzOzIDKytkfUvHwCLIwdjbtk680R68Uvr6yC/+MWKqBxFHeVOD00JVusja6O/06NZhI0mAVb02p3oopoL9gZCnYgn9YvUScAmdCv9o19o3RiOQOB+AmkvEHS2ijXdAaYsK6nQ2qqPSgN5aEVELeIJWViQfBN3CBV80K6LiNGfBkcnlVwlApBsJnd+2/GZYkeWDIiFMlESI7KOFyq6N1yAlI3++U1rURQ5RMwEm2DE7aqEKEttQL7WmRsqjRjvM0PbXdhmsIKw5Ko/CGyuqg/K9ZODnDemfP3qvsX4MdZ+tkfOr2R5/s6qgQjMo8lsEcs04axCX8NVIqkswEGtu1FDzReOq80medi2seJWmsFy24z4spAJMrns9xlmTwgLcnQ/2adwvfqvTU4gOqUyN8HP2w9v6pDJybiXDpTRHrEtjnLGuh9RhxEJPvla7vkwNxLt6s41gCMfpV9VdNNTv1GPvDAyA0d8tUOyur8/abIyuGfzAKMEvHmBtt2IoKgacY8VgHI0CjhsMnMolCOZhYCsjiDjf+RaSFtMwFgFC768jYbwU8cnLOR8gARkM4WkJqnRsVOj+zPqGgnlL37YV0wMwC/xaI6Bkk4pj9BRIqNcy8XvvCq0UJYI5s4paLuBQja4UlY8on5C0hG+0mN6fU3jX6FAPTphj4qePpIOChRfcJj8rU+gIvKd3MatHekYplW5yjB0B8vRFPwajupo5trCzKsKHeAPlcYtKeRohmvLkdewEoEJF1T60vP0cAKn2RIQ7xghbIrNH+PMDaPeSrhUj+XVgSXAbBcCJJ8Rn47jmuOdBS3R2tvhxzpsbr/O+qQMupEOFDNmoTmeiyLDnRuyYuIdK+0onLBbZ/FQ+14TBHJpExQbkiGBaf8sw5jdjExqinMKPK4gAhJTnYouJMxWg1iHZO4YSg2qbpEvBPZvc2FVEx7mEsXh3tGq70ImN67Ok9I+f2gl1cQB3RX++TH+/HoPACmaYJkxpe7dyw1Gf/gEvOcKBy+/jWLisRw+eO1V5gEJdc3WuL+//Cma9NHJe5wOJDO6L4W1MD3GPikwF4a7QQQ6SOTgszkFXK8x6nZ4V4Ig5bq+y5D3VlyDwgba8rfLx/8nION3nyJVohR1WUxpXqTx+GBpkEZFJMu6CCBKvsx3Fz/HGFLOzk0W6XxK3OSzwk0xD1SDTt0jjqEbOpekazoGZ0M7gtXpEgmUoPIRbt9vk1dZdBYVxkhmgy7WfVh4xcOalaQlsXKTzloisWgwIWoB2RVxm3gsTo02S4bGUbX/jZi6fyu6gqCh9WuTSpCA4fN5EYqi7Cgd6o1ih+dWNWzeJU1LDWBa3wCpukaSfqusgkxlZnf8U4t7dyPkHIFtOwFN5yFmi40qJIGOyEOd4rVVX06YsBbWIvWpPVVlRW96vghSTGuKxgVsWgn2efO03hnwrMrVBrIZJ6iUBgL7PaI+NuK+2nP5QjTRGApWBgDU9fX3ZrSboN5JyUI9tUgmVYksF8nTBLzluSbpDDwN7Jv9KlnPBK3aN/YqMvsXC7wodsS0oHvVJvRseKJOn495JtRVm4y7eXsdLwY5jDS3ZEJPxm7rVKf+obVv3Kuj6w2/OZDEA8U5ccnaySg2pf45fjOpvkdkKcTLaq77bPTCtg7dc6MZRyZnqIRErhAbxiQgM5/IWGSW+EZB2su3WpTR9/D/JuODyYEzhKlOJl/7rPvMt/S+72umKjEFMg3JYF3hHVIDx6e1SNQvwP1umy+FVc4ukc4+McyVkHTnoA6BT98uhwUqI33mPqo5dceOoaO+Sr5dyCyf+eBFij19fp/0lumAwA4cyP0HxC2xWA0WEWNVZ/6vasdLBgQAUEQbLTrXOoTza9nUqP9rGRjrpKVLCgrCwrVr2/lAw/Jfz96njnP6RXv/NQksCmrjNqpFrjUqybc4lxIqbFX9O1+n+JPBxKWJJPjaXWNo4OaUmEWF7SnYylDsZdvKL4bpKWhnjqk/F+RwpSZTwvbcAjbETJA561KFKVJhWp+cNtjZDijTnXyaz+Qnn2UIl2NPRklx+Z5sR33w1Iiev7Do8Obb5I/NwXwFTCAn+n8l0wvnSoRfuuoED0h44y/jLKDUBjY249evUXAT4qnti9xMv4pfPOP41TJcmD8k+U+YvEDvIV1HilhgYoqtxNg/hx/8i1xq5WqrvNfpogNSNyi4zEcD++WWoQQ/uRNieITcqbAHfNGyOjHmrzXYr5qZpdj8GZFDWtqb6THmYelEX3DbkzE525Uxu/6w0KWd9s+DZUQyT71bdzrWBlh+bdz1ULtD58mEhva9E1IwL9Q6cqUwjBHVeYNwIKit41rYNLh8eaXfZc3/Qxe/XBc/xSR+v2lUxwFFM88oyso7xcgB9nqP25sE00cr9haZiGCfePxBy/Enz7nW0ea+0HyW8bJ+yf1YW5jc2dkRLCgaMO0ygDSbynksJyqkOrBh04uPpMS2GznlrRGyubVxW57Cocu+ywa/paXCX5lSy4PozgaVQ5tUvlGLFKYn8bEHM85Gszf8VaRf/Vx5gXj3Z2n5jmM0dGHQCTeLXDFuVsPArBak1IbwZKul12TP21ynTczrhHttT1gLZlpa/N4TVB1R1KMvz86F5jYZphZvTqEII145shubZ0qKPtUcAopjYcJzrCp2DceZJ42Z+1xglVw35/7lFk8wD8pnGz5vALuYJ2WnO2h7dHxX2hSudKdAnafxlUutc+XLwcjdIcMY7GtMnpIV218y7dStdFTBqN6sQ74YOvEKZTA2ZqFbExFniCU31z8JZKLiOKrBqYA7Vp4K2htpokatJL3nYj/6V1ktihzRaL/myBrrBpuBkQ74hBZYmi6qTlGqYajFl5EKAKcAdE8wWjHrdJQPCjPmgbMxj16WMOwExLy+DMVJMakXd8ln+IgD3muO9t6283DwEAUXjfL1vP3ctxZDR0ZyW4Hm+MpW3yjGzj1PMEdaUKyQBH+KpumaOu5A9EHRzM9e1b5jG5XkgvaIMF9ma9QoJP+E+G8HJj4cGlhHgY0KLIQWf76HuQ+4FDgEvobIHc3575OynNaA2+jreBHXYy/xA3t2jehb2C4H/xfVBpfnt4K+ktEhn69zXSFuLEcs5HeUGsWSaxnqjVUm7cxjSIBBINmuIx6QC7+Mmt9WyDG61uzhMMCo10DYJzwOcqRsFY9KYmbxsOC5Dfb7+/0INOktKdiYe13pkTwmiRnNsNWyoraXSKafgVhy67LHNEiK4i+ZofG9dfch2O3GdCUODe7c4HJghxYEBZVfTm4XTdlQ5m58dhRa7XvbFXndl3pKAG7RGDADkKFkgoY/EMOwCrh05luQpq9bP6pCq/Ibo4gVlOb8knKDvFviFwbsBPjWR75lAZJ0pfdvgYwXhY0AN69YhRl/4CA7PJouWu1LYN/VWxBfehlODEKx2QRV00XLYnO1j18rlgjiiBV5Mc5pnjUX/3hwPqdmUnzB/OPYeNNKHh56Y0PVPvLHHZgTN3sO2mFcW+iCyieAmQK+8spkh/s98WDWiZ0IPb0PrGwKV+vz/c/azq5coruHxHNA1Qjl/rkMGFvvyJ/Ktoiv10CnV5DCuVlcOl3AOcG07ue6+CC29Tt0kKhqwgObnjEboOGUTx4iFSG6BV0f8Ofixh5OVXe3jcqnGyyNLm2fsiDqbql+doYA5zhM2lg2QkRu8P1Cd3DppNgaLr35B1Uw6Y2W7gdt52qhm3S8Zh5GFc10snBjBUdqlV5vcRQL/UtXogB5MHBnOX74yKS1dJcCUyE+3IKIyQdudKrwhi+QE49KvaZgB+5PVdY2YHQo8y1JBlNhoEEjG2fG1Oj8dnJ/wJTnPbIUnudw4oVNaHFulqgHUNcPoMRIQYCp42kfDPn62B31ubytdDowfZdPyI7nUD7ruvlS9s75mt0l+ph0n8RbDXWBAlaeW91SP+NZZTlNPpDp+3XsACGCVXlt2r7/bhOQq/v0Vz8VFpdlW38cFFxJSCZk+Ziyt582btarfSFhv3MwF8s/KSuM5C912ZQhfA8TSS+HP//vB6X0DtkO3UswYRgfXJzRTXbd/++S9nYTGVbOLC301zR0ov/2IDEXao0uP+9amkyUudsGYKHFogdutaw55HXu/zArt8cO2ybN4uZqKvh/nX4FE14yj85XgiWhuAOJhaUJk5mqLdMlWrsHekvDX1a9SnRLrN62WjXVuK7kBHWFB1Y7Ov4RBgw9P0TF+ZQayJlHIV1zO+Tigv4CVuApuMxodeBV5ODhslvl+5tFUj1MDMUca4HPFhD2AR+j+BYjYQQM/hhD17Wt5U9pogYSsmk1WJULFObHMBipI8Rz85wslMrBYDhRQebFPSwnDfkVRkyJx7GwcqZzD0bxoy3AaS0YbFdcaqJF7zKASrvMEaC7t7O0WV4GTAGFylasXT1tPLUCKHJVVc59YZxzHEIxpuQahFnK73OP4LPORUjfZuxiNwZJOADY7iJn7zWehj26qOrQqphqPu61VpV73/Cs/ba1RwSzNhX1luvkpN4tKnmoatn7wMfDEU2oIuYSnxpgSlYFYRjaU3bvSmeZKfc7jgK9uHS3IuZrj9Hzw+2gxbBLZQfoR4JnCquPz4jf3kdzxbiiwH3zdSVQGSZlu9NF9LEi2NwfRgMWdWRYYYvVzCb1tXQ51He9uNKpApnK1M28lJSFOHkJpQ/MQx5jAxf0ysW03IB9vyaWXhXHEIB9gehiX1OmVk7xMn23mwEXwqOuH62Nd1rp8255zBZzDLBPdtKoMZ9TzDn4BQZpVPKz8yNnMsdR1DAcI4W2o+gVFc562/boXDmO+/rxQ9irIT5MBKOQnWoHP8SmiB3ol+awPYrmFtZiydNptJm6LAYHFKYKh3uNsy50kdq+U/mdGyg5qdqfx8O6JPGZK8PNpJt4nhX5QbRHThSXspUkXYtioJghubOx6J/aNO9cf4GMeY2dE1oMPuv0mV03Jvvxp0gMhjUJtiLI2CxtxuQbI45ws6n6utd3eOIykU6YiKs1nJMLZJBq/0906sNayH8nP8j0sxAq1OPaepW6KBNxBAxBtDTkJhMsROdEy+Ph5R2zLfH2yFyK5ZyRI5Z+3Nd7xWukRyuLSGF+JnxnJ82KPhcgAMtzJR7vpQosKIK5/FjarMYRB67+96D60gEBfchEKTtqCEL0ryEPRgCJeYMl+lzm2B4MQNTIhTDB82XLzGwEfYqZxp0q2k/CR71ulPa2AOrEsQ6u/hFTN/9lEqqksOglvQqQj91i1DCKUjT+tyjdcdOxY5mcY5zRUwD7E5USUH8TlRGG8qDSwui8p3Cqb9e50LODyp4tm6+MYAOeAFf0XFSgxgX5Pr2HR4dMm6zCZWDfO+ff1VtpFyl5yCY7L+6HpXDy7VASFV/C6woVUfE5N0IHn51G5s47Sa7yrHF6hP26Xy7iGxK9RTNL5QSLXwmmspzHi1Zo5LI7Q3rWz7xZfw+pPsUmHo2Hkzq6FONa49dt4Do4D2VSM+B5RFHioMo5sA1nPcy5vCa8gDflGV4/sdna8beTxuyzf076kD9vm7Q19stiaKI5r31OyCa2A6V/6prrLbgpqOZzubL7m8sSDEAC9i3LbAP4TMbc3mdL5Hs9aC0l1zi8YQsrm7p1KLRcmlaW7yLQLq6x1McUhZjXyt7En4HA7KbWlZIDJ8idLSxDt35j1uONebSWFc+ZPl5GX1whvF/9uenMnV27ViD7rDovSoOYDjInJEmMVleFPhlIppZ0pPvL4tLj225qxJ2BUPHIsaJmmQY0pVht/HdA5PwZPog8UAd5s2wWUXWB85LtGDBRARyFJQg1SqniLIgiaUQH8V0kiw5RkN5ba6Fo0aSVHt2OZwNgt0NYepyPR3ApIKbCN2mYGcZ9z/KtgmqpaXnocnyHLK0LUeYitJfn/oofdiPadi7u7DmH6vdiDO2rQ9oIB97WiDaWN+/kO0W28dStQlgBDLIrd7laL5XvUfdF8C10cgfURWpCzW2qbHKrAXDarcPYi9WFbEC11TYPvdqEw20ub8qvbSwmH4OD+RBr6A5WxN5HeUXVkVHjXbkc/2F0mAbqxYGRMiJN/9u4e+490YPi0WVwz2p7Yyr+0No6RFHanqkCi9kLWAne4Bi7o2YUqiu57jDROh8n4Z8SJfqjlbZcyuyEPAg9iubnveAzwu4oOivcfhsIkzy6qwriKXHBA4UK2DJx+nJ5Xspt47mrAHcernOxdtheZbExjFXlI0bP7Ix2/ibRy3jZ5Pk6wUqYwzS9+D3uiLKkULmdm8fcZWwkg2UdBcUhNNOhFwLHdZa2PBx+fCMqoc/k3iTkgbtlo9eLU7TRXCtcgEWZc3/8bsLpF46GwCdIOQsuzfhQpA3o6vapG0DuuYlou226ZcNHBm1IJvb6Hlul2fQmWxMeFysfkJMC7H9Q6hi2lOiuSWXJxYs5ABW/Ey16jPBKUjq2qSDfmUjj4OxjXpnp5+bUWJPg1uu0drQtVozR0TbYbJXTHbumTLIwrz3BEXP9T5bgoGKgaiBvK8MCa8ePSeNAi+vFziujx75iJNdIIdk1F44H/lr+d5ziwNIiygzR/cLnb1Kw1SiFFTrXiGgLJ037CkkS8MRwjX2ACo22XvEK+zdn7bxV3HWhRp0R9CrKEwF+YZbF8YbOSsJO7vzwRmNE3WfiYTQx12we+TqQrK5jHCUX1rr0ZWdEojMl1Zvz2t44PurM6KHmSYPg+4Zmx7bnkxjFLsMKV7Mi8T8g0cpe4qGVQ3Qncg0mSxB7Lt/VZIxulvSc/rIzdT4EuSsL3BPlGPIPyFfbWHwaERYxw5K/gOVrOYE6birDAN4VtVShGfM7PhMfHcX96RUAoTtugk8dDSMaAYm1lKe5GNqSWMlOX0JydirWN+drdj0sVn4vVKLji7FdxBATuPgHz6BK17S24zqWDQdJbGs0WNMqS0pg70dHpEdJn0gbbmDHyxgF9upZ8Aje/dl7NHKZaRlJ5wCyLjdi7tDcZsXIHm6feGyo1P+rQLm9yRQ+BvJhyHgKoJ+1cwksIP4GdYLw4QsrTzYYxbeQPWHil5tzNlnjxYV2t5PdZmxxCAxthvRqsv6mYkRJRT4Oz/TMYlNPVVyXQfSzD6yD1Abso0/Mau0GkGjIdm603B6GkZaI3/77Y9UKGbM7TXsH1iQ0grhuJ4mUTCiIadPfhYMggM8+Kjsk0ErLSQyroTcwOvNDPRmkFNlbqKr+aKJOYw1CeBksaSNxe9RFfLLvC+4RnOj9Eno9JmfRxW1GgVjB+U8se4W/BQivoIPaGCOmeslW6ohUyprUQgIwNwfzIFZK+ttPero/KfFJT/2u78MmkWGbLjNFCZKw45U1iZxFcflQmjYIk0zOXxvltQ/+eKtM4I9Bsy9iLrtungU1I8JfQmcG3TsIxi8vu+B0nemD0HCiDWpFQd0TqySpv5vk6sXp9n26OQohvYfD9a/pP0oVhuhp6V1XMngNl8zbczl3/Vih+wFha7qSBCpVkWhyZzo1ldSA0OL/1DYY1ZBmrdpYD5Y3wQed85sSaLphwu+BOLtdnrHHR66rJ5qnIRDDppNQwbok2mdUH9MrpjPWY4eMCZYNkxwfdrw3PlWGY83oPi4+971AkQ3W1nyWhSPug093them6pTLCl+4MH56uzg70AaJgdWqeyfhQNtbULqKHS7KS9gXjYlB2Pfi+LIeRvptFlttul/H4a0l+Rv+4sJpQgoLeAXOStWDPv7PGyU1RvA9PcbmL75fmbtnWYD6AHSv83MlDg73elf8RFTuBy5rUwi+Z8u7Y67dmyJf4wQhiPaEC73IAZhWHLcSFN1V5ZV82PhFtXXARwuuZ2+Glmp1ePgZH9eQRmH82LqLrD6V+cL1Fen6NxPqT4cQkV/MRnbguZbV1+82Zc1OfeVEuNxRKI7ijvQeFZ86POYWl9IzO5tqm1xppY3OgGokMUMZbVMqHEeDWA6g+XnzDmwDinqQDGSPVq3NNqvjtv+b9YijWIxW36jI1/Z12W4L1RTaiBB9wQlKWHTSpyYQNPcA1nmaOnpCIg1MVSLSmSq41SFVx3QI1H9DLgTxs+spMe4QgSOR98M3aB8f8oNDxP9X6WiABZ0/LisDINLqBfUBcHSchVmiCPed+tRBxVk4wDhKdYgAhY0lfTd7HjnDNlXChvvIDYIPZuojx3oB4bYsurvqtJyyxCSPvh6maox4ximG0umOYUEWYToIL17I7XO39hRf9Tzh394U7SfcmozciOsQrQLD6SMkm1Py+x49CYRdWyUre56tYNNO20CMSYYdNA7wyd5yvqLaFDnHEQq05+gjvGfsycVEMuCSMLwElKUfqmTzRg/Ud2BaOREUsRmW0Sp91RGaszAa4AwXsfoOtp0LKFK3LaDR1xtmzh36XlbNel9mimZduN1xKSQ/+4AewO7coQyoKNmr3CkX8TIrZAfB7Za80Tk5fw6iCWY1OGkbPay1xdScckjLxTzju3qIyJgCrQUJGCYkwbsagUWHBdZxuQNOtV6hdfMw5yfdFouxfFeqvfY9AgwFBSE8ZHeTpEiHTm33YRCcyjiSgU0YKRAaYVfqacJGAIsOz3mMDGzZ2BzOFVMaMugSvr0xdZeeg0ofKfeXI36Fr+Vy37RpMhMDgb5Yt8/hnEpO8dE4RR4W/DA2aRAMkn0KqdembWfCz6on469Oxu8H5mKPeqtuIUDR6HNyvRXnJ5yWrN7JRpm/zlh7eflsFCJad7olX8CncpDYB2HGxVtaxHpygESUSwMWL8BSoTwCIaDLhS2GgpLl2DLiNDrLtxbxsXZKCWHfZTA7zqA060xTF3AFU9NFrQSXQLZz6ta2llyjvBeqCuleTdxG21MxwasqPKiC6Ikl7NP4+C2f0f+Ux+L7vpypk1TANcCcUeELxwGTM4jbh5q4jnvw4czZbsCpzBYf5XcG2+yXLyByy6XTZTM0m1llNLRxnmUVRmsxonapnNHdUt/kX9/UwkG3nguObTnzVHzT6pwoCwWcnpxqhY75bmWn4BqZONBtCOGkya54pLXa3wRlBrUWfo/umjw815dMW0x9F6K9XBfFMAc8GDZcChaAZeBrmSvHNyBOxlr5Eg5gMl8l0zXgLAr4rFetxw9/i5YHqk2nGAR3iIG7U9KKwF2D8lRwCD86K5chKsXMr+YfRxbpn7dpLNwxpccpMenzWkAkka4QLYs23vFCFhs0JoALaeu+ycZV0ZOmsTjGGKrmwSCw+Lgq/sL41SffDHV7LmCbYGO0tv1NUOUhjgH5wYKQ7pT08vRL7lzyXITLlTfzg3JX6c0TOwp21cOOGk05azlPrOicPw4UFke2+TV1K8F3g7KuKH/ur2AzodPFz+ljQQ9f4xxuay1/1BTG6hMPqbGEISKqClPV6DMBA9c+IqnN4R9UF9eC2quhUroo5L3CX1RiNhqlC1Hb9ZwEzwI6wCr/ZmWLi+Y8S41YlgjCmEL4YW3EHtUdLS4raUnhnqGi5/8Y74bA5IJUTEcfdGEaP4tYnpKjj8swoLS+KUTLhJrcS+2jyulNc7fT3yhH7DNoeV/vcqxS0OHvHe8d7UVXTtE7VR6lKmY8EFvQ1MjCM43t3wfMv6RSgIRJhVoUPzT7CuOC9IrqPg9UIl5kbA5sxIdw7T/J5gvqy59uYtaACkrIkVHjgcAxPLS8FLPPuYSs0i9rGQYpPFrWUDuJYeh+hoB360rA/8rhOikaEUbClAMIdKeSmJl3eueJpEthVlf6psv1mSTTKmoqKgYmDOJeBiRJrX7MvqvEvc0Le4OuByuqNIE9j9ER7ezeoEXqHu9bqFUo9Bv0ZznTn02RAaDqYe5C7HhM43GJWh11FSZAkU9iQk6q3S31wprofHNs7nkgE+kUXlfS7yimQ6/4HcoudxwhPUUE2m5PU12anFmxE7D2hh5s+OoitH0lkfVlU37oWThvETbVfoNCyNTsR7Z0WziD9c0l3vRFtVQ+Dinwcu8O927xeq9/zyB4DL/bOSt5I2A+If4y9PU8NHb6ERMob7Mu5vT9hdJtreh5iEOvXZbWCcKkg4Pj/pI5TV9DuAAM+WcSGdCl2Rayr3PPCLHxumn5sdKtiYnplOoAS9Y46UYEwNceC3QMsf5Z5NEGRsS5R1/nsaZEDyQsvFW4tWD6IM19r1Oclf9LZaNxThCl4BCvjCS3z8kuH0xaoyF78O8LBjZiTLeOO9TSB60w8nqQap3QJW2cVfTWBIV/6AtIxKGdVcfUqJjXwr0zh1yjQdEPxp5ym4tkvpJBv+6MSghNXiXfYnMeR07AIEejNSGChLgKEFI18UNy1Ic5ZASYOIElFMOXfwm4Y4SsQulXiB370qRdVq1xKvrhozSdtzVorPRnd3XH5L+4XUmGuh6g5QVVB4kZWdAUDwdbwbojaOkvulRTK7sRyASbSeCza43rmodP/jyhZV22l26RgaKuCKW7edn9dnYA/DZsR99tj2UK/7hYe4VM+SzDID4CQWDQ7NQkMrDSEW/Gmc66Rj426ae9BwI2xs/TKXECxW1oZbXhkVhf9x3i6UWpWB/dk4LsPyypEYPEYiJ2y0gmvzsCixhqmoEBAZs5vnGJkJAI3ZS6WTLhFeN/Bu4lyl0S/0KG6PXFFg0gC75mQKR4jZsV13chS2KNS6/UqeOgGQzpCv0wkKCKV+5EokS1kXh21SWLhPdaq+U7eB+UElIZUubT81MOK9xhXIOB5idarYNCAcmOU6C0pIGhrHXqp/xqGK0tnyNPqseXfG07ou22s+Wnno2+TW9t5Ri5zXFL1Talaf6jvA6xdLBMc6B8SDs84MW50WC7fvoUG9QmyAOm5KYFEs21kO0mhhoOZwRQBMc54b2ELFmYj7DNo2/sUsb58FlJ39S63ROeA/+iPlHFMhM6UGfF/tgiiAE5I+1DRmWy3/P6OEj80DBSr9FA6CjnYAZJ5P1AsV/l92AoUPBfYJOF/Q7BU2FtgxbSNTkTeI0OfHkhalF3nNxo2fMjBBDv09WTfQ7mcNkallUcEr0QR1gzxXqwh/IFG6Z3wWS+Ah/9/KLitdo27QPWXWkRHtoc1NiDdt8X1DoHZBFzD+GtLke4DVQUigxiUKQgs12IIkfhjR8BNGbaUBrHm8nlMefvpW7ydl6Kfa3vVcEJfQWzSIl7NFOwdJ+cCUNdp6e853UxlIZgp6UMBXR1Xy3w2xJUcalhB0cNK9Jdj0sHt5m/Rcij7ZQp5G/+AGk5ddJN+rLj7HmJxYlSgWDMtPmtoqIQEL8CBaVbkD9xQRP9pXoOvGpKtjsv5yViD3cAVtJDolI86m4a/Bl37QC3nbBbuvy0J8zw8C/NAjDORUbzR/6BFU/dcYM4Nqe18diD+79Kw28r02Bwt+9ZTMYMLAai8+AfUi617WgL8WDcMsRy06V2n1FYhONCytk2pOqlrMdDya2iMhBFNmOLmxsTmczEtEY6G+NTnNKewd//LpGJOP9GFOrUjcHU/spsQYvh75os+BenyQlSu0NRbtwKwv0RmqIPB7dbdQVwX4SuBibV05TVmze9dZ1uTvvxVhLzVd0whGj1SCilY27OicfuPhmy/1j9U2aEz8KJiISY4e9WPoYQ/pFdKNUTNpXax4AGu59yohxRcctZt+l2TuFKP3PNRNJwastCRkyaZckhw3QhPjitGbQkugdKYlEtfQkyWpmJmwAkr/QTR2by1Czcsyq2OK+lRL+FA0fIqKDNssz5e2jOV6ogNjhRxQF28zOCE7GwvtzIDDVq8L3eQTYZg27HbvWZe5CqKDPH0mT17oXlagyzhC/TAO6R38y95SHeFc5T0vR54zqN1yoHSCNENbK8pgI/eTaszhugCUupfr2uM3nzDm61sb5d9kdRD1GPCSml32KGBYXNt4fKEJlQWfeMLZEsLMHNLzyi89bLO/5baRMwAK5kIO6nce9b1E41FjVluDyCj5AadE0xOV2gs5zmL5k/szVstgHkqHnnVcWXjazEQbXe7dWOgQ9qs8MhRG2KCWi+wN9ggB8M6EOyQ9n0/UAsa84+CXl8oQ6FMHAlt7y+FXkWyS0dbjqqLPNtly2XctuozIorQk3GbthO8yHIeo/4ZD7G8gKZUNwccmeWJz9ryYS39muTvvgI7lDadtISlmvQ3PZlXM5Bkn0GCaABujn6wx+YRzX8Jlx2lIoOQpJXSyQ8lwMmeres0SmqUtgTdfbX5t87CqZtAOZgU5ZoP7VB0z/UKIn8SbGklKFlemaq/0Toj3Slie+awVoJroInWj4x04bFB7aoETOts5UPLvDyLlCA3GgSN6tMTP96AdGCZTpb+xaFWLj0bqTgeDbekMqDR0EhNpqED2F6QfrQjV+WbTO009RsBz+8ZOzRwaAtmVU4oumLQa1/NmbclEJTaumk/SQoFz5fwk+oRjwDWjImpGqHPGs0Zr3c9KTWwwSWTt0ET/8WAfpjZJTP7XLVrqLBZQo/A8bS9YCiuCJc1e+wv/4Cewn0CUXty+1CPXVk68c05/8j4Ik9ryFR68kiYVsLtQCvWOidw8BqULzYuLsgnq/fJAziOWtAfSTbAa5WRZXA6J+3F91ZT0AiMqRYbGZRGp3VzIIBSArchJRi5oRAmk7pRnuFLTvbrQ62u1hymqyBnVNb9krjZc3A6StDHW307EnlRq4Pow6RqAUhev2sx/Gi622KHh1KMvgGsbhZh56Vrje2cfqpW/EW/X2vsBStupoi+zKT4G2sHyYCzNTH1rBFEoIGTpBeh5J2KTfzt1r8RyMFOKP1XGeqpB69EVrMiDffi5wfW8s0gmr3NUQsacQ13yyagTjxV8JgE1q75yMLuQwhRsr6L2tV3P0ojn8d+goXehUfcR+VxKLCvHP0ZVg1BYP6AjR/wFzR0j63CryZZuMO1FTxFJpUH7F2IAyqfVpzyU3/pFDTb/9FFri3jKqQTDCggYEGF4jWTFFqy8mnM53bMwyvmY068lNsDvYRqu71bh5rsuMJiW+aU5RfRPacLYLeovyvyGmahvx8W20mgOHqJbuoU8Q3Xeog0PsM2FryXqtmgTQ8xdRQczkc0gen88C3nZrFLxC2ZcM4bygW9yiekpMhrUzdVY/szVOMO/x0CatfRjRe9BfsetuTboByIO1pyYFYMBxZPS5B5R0fJ8VkiohWjywN2MAM1JoKKjvrnHGxX6LES3aYlzjNwS/xi6OVQ/zF0hbEmpXk8a10DZn0jFmXjLG27rgKCSZ70dBiPlQ9nAo+vanRhgxt5dEbe/vdflwbWEi4t75Xfpj7pWU2B/NjNLF+dDwDMYzU9aVIK3JtxEuZMn2s0cz7g09Eh17kJcJGZn0vHLUfP7l5Yo378avo/w+A81ACTLlFMth8zpi5v25yBc79lCfVUbU50dJNV/lmhYrF9rwIch7jXxmz9sXd99LB82au2LBYq7/TWrqNyqoeNgDP/wffphxLIKmCZaV+fNwpH+E+ztPK8jKB1i4qJ4NkAqpDqk7w8zn0XcGGd1HQkAsTlt/b7tcNJd057uLfquK2HssPUKRx4viSozcuB2yDeUuclWjvChdlOaGtxfvciP75xfg23ppjcuK3Cx5JY/BRLOETl2p7tAOw8AOEcmseBqYam1Gm61xUM5/GkNztTsRhl1zxaHmMKoNrSMyqFcpKmvxbvihP83ib1PGcr8G2XzAu0YiHRYCeIZbAZmPwkAkUc2HdFa15Q2GjDAG6gcbeL2CkUPOFk4tsrj+P5wa3xgjB59Y4z8ZiFY+aHCI+kUjcKZpYBWXWjiG/4fECd+CN5pWdBoYR9/uK64Znu1ABjRpd7kT6FWpbXdU74dkKpfmwpkFQxF7NSDvr80gPodrR//Z5h7QoFE02tAXXL4p/LH0pfZtzqC9OBv3tQgDaJpz9NNAA/L/LTj8NaLpLAkhqeeZQdwl1ybcYs6UKwLWZEiW0AJdjDUlC0fBKLko40H4AQLsNZFk/Jt1XfxpM7s95lNwBpjzCdYQTfbMXLxArhs1jpTthJtR6sQ69NrlEIpidU1JVeYwUfRCwOHoBbcW5YoF1Sh+3ELuZ9dyaa9EOSBW7O2f10pGNoI/jKRkVWPjHK6EJdKy1uNbr32Sb1qVaQnowWUNvCrGctwAv2ERqbbxqb6pSjNPUpLfQEKQICYFMo244sQOUzLanYzkmXWHZCoQwBK6aK8HcTTUG8iJQv+RwlVC7Qid1wPPIx60StOLb3RkEEtcr4k/Ep312GDOVEtsgFHd7kKbpsq47mmUAj3RRHVQDzzES6GO/fBEk1NYpqRNg4xSHyL2r3FUI2DDRcCjOmPaL0IZIoBZSnntKO3BNjw50V3XS34CGKM1VbqpzctPioVApGRpka3iRjocoMnT2RW1KtD+LtIps3Z6BgQIGC9aB9P1t35JAoixh7yQUgXhWWx+ciA7v6HkM3UuVwMyk3wchvMNG1MDiMtbZHYRfFDaPy9QphCf4WXWorfELjmCUsDZAwaDd0nKS6uTvYuDHzv9/VACScNxLD2DW9A9Xdh79T8IXU36RjjWl7A32RE1wfApc3xsOd5UfbTPIts7RYAdLdWfQMUP1KzcUHYFYTHisGMFQEECSLaI5BI+3Z+XkLrwVLPBSqqNrZrOxploqA2TIi+//jI0LQi1yOllb60w9oYi5RcgjVwfEFtGv9G5jEN9UjIvzNKR2dOhY6D40DiqBCt8XpNA9fnyA2bSCw/KNv7Iys4mGPfeVcD14fiY5z7YsTB/VOIhlTIMWXgu09v9yIm7z+TQVZmVAunRgIJEaVlxtDh0hjgPs7ddK9lKItZzXgvwWuRe/FhatLCZJd8E3bYglt2lQMsVzcY7uTGmKLf7ZLJo5d+l/TGr5ojMXrpIMNzmOanJZmkhzi5PPM3iLyBbucZS4t2MMuJg7K/Ix+eUmq0LtpxMcYuas5+zMYjs87MHvpFbGof5HHWmJeTL9k0HxcrK8uGtC9l/3SAmkrzwL2fjob/xn1GLvMWeVzVgNYNNn15JVmQhuBFSoJkRm9OCnYdQUCjvcFtBKM9IY+ZYXHU/m1t3Q2A5Qjjei539H2+1MKhKg5P9ZSKroarjtZOCaXkFQClPLxx7g7qxOwIrnTvPP4jHBYpHKgsGPSx5e6CsFd+jvMHk4jwKaOPMuyMnDdvgUSNFnNAUwwLQ+dYWNoWPRD1bnxrcmtfS79fqdai9Vpc3pI77SEChAlrr2cfQp0muJ3Bo5bfGa062OKRebMu3f5vqxZIvat+BK7pSQScXCIloh1Se2irPAkaw3Hek/Qc5EznIFGlcuDeskYbXUjFwQ9Ox3c1CDi9J0UDVAU1I4RGVe9tLx+icE8K+/0aqNY4ZQxKyg8neNJtU+pnOwISC0Vszv1d8fhrFxD6kjpz7DPt2Dr5tS4JdadmoPzOMiOM4vRAZlXaRNxOVg2/6OfWqWYtJRoTTxiBaF+E2lEk3H6fy0JJV86pe5Ol1BM/yrPLOehuZwjQLNFQaUPWWXtKN/tOCsoXDcH0B/C2V5GKgTTVHkWh0gBSaVdSTr3+6sRNJgGv/dBUGacDnILKT0H9rhqzVWmUpouWhd7q88Qtq2PR8tNz/scaFi59BPlWyDI8B9c0/Pe8WXaTBPXPS/4YQRHVcYV9iYLOy6TDZwPd2GZ2svpSKeKSoKVunobqdFgrhD95LEUJTGew3By68++NFlbZhUu/hSJvwBU0YQ4thmzTyCSBFIFA6cthQes7oVJqe96iZNER42/ZcU5yJSTIITQ+672qn8CZSQz9eNMd18LlAIH/c6AQcfh8oo3AQHMBgkrGBff3AQHbsDr3yQpCgHFiuUFRWO1F9bi6vFN4Q2Fc7wQ0kyWeueeMKgjc/NEz/pK1/Ufq9P637yEDSgqpw8ZWvBAMJboetpUvrc+urmIz1khUdg+ANHluI9gIVkpH3izTu9T/jM67OpCyvA//hlbfmjDNkihdeIvsrHQ8A0fPecxE59/siZdyF0jcl1FdIw7Rfyyt8ToM9tBeyHoLZGwE7zfu0oI9+8+JMkE6wdbKusR+Zk6JJZN01cSsUsBoCZ5eN+vzXRMoHjcGdOVhpBL3FYKIUl3vGQXv4jup729sa9Q8BShiO+ZEx0H4iHbwR0PLwGEO+QvRVREAOCHOuNsq9a/FDrlMNkT7IYWm+HTxtl6OXJeKMxerYmDrK5WwdDcXuy5mH5yev85k3Pyhm8KMGTW1WIwh/RWTDDPIqz/CjAeqerfAwCReN0COxPk/p4fzPt0w+llh4RC0CStJiWHr0SKr5qGhrM2bhLJamg5Z9y8AchkuANlyYpbLx/n1R/5FPInNmx4cEpSFynaLG0UnLT6I1I/UxwpdIJ8+SA17nPExHgjDmzglW2TvQGJv/9YjhP59702s+jGXJnq5mHzKoDXSHTMLXuQsM9h6YfMxotQdtcO4NaFB9LV7vxfkLhMgd0jRtZofUQtBfI4FvqG/a5TdduGt5GxBC4MNrAawyoaCrs0XI9r7Dv1N3cWndr409K2k/stKvSu8ETFF3u0YD0ffeGrE1f+jukWj5AxN0paMvkeGi7FgN6pzZxEb49wXLtJqsxsJlnw7l6EDMZ58qKojYJCmhQb3nh862CHLJQ2BekkkvJAh7TYuzgtTExMU7h3hDjDyn1IHUVCyGmpODuFb8pmeVhrAmlu5xIdqHMBlYBT5ZgdwP0QsRviwpLspJyczSaSozf2BeGvCrIjty0oCVrhbXBI8uwXBT5Y/SP6pFCYR0brqUK+xAbRAnGJ6vfxLmHWh5q68e2ddvqMO4WnuFcdOIVkVOgCLOjYV7WWOMHXxaUwoN0rNVJIERzd4D0HT0YnZSfTHxY53w1dGq7mYeW+WU84D9CpDVVsQHwoz0RQ85+6KcZ63UFHOFH2E+FvK9dbTW0VQJVcZb6Vg2fLexl/akPwzLWrq16Op7HjfqiFtrg8kN1KCaiHGt+BQ8kU/5XMC8x3lsbXTZGIgLG15/hL0WccC4inafNW1apaQyu0UGBLhi9H3VKbPtIVhyiHtFTe0BBtwefIf92EfWQq56TVSmQTinfonKFhe20oQHoAr6ceAHWi3Dh8qZPxLDybxtAfvVmyLgl7agLT2pdLFoSBi+Jd7LgUhgAayEpsMIiB6iBulL9tDsWiIeFhrBtaoU5m6yYAFcML0qR7msPt81k9aju7oSr1Je2dJJBQ1QAFTOoctJVxuvYY0gjCMzuIUssdk4lP9v67uA/7bL4lxaXdOszNcdbUaevSADqsob2CWj38d2422Oo4hVHbv6tjrK7ZzGb5SH7QDszQAwJ1eaC4o6OkC3wRboF/ZCVt3wbeuZLelb1SmrnkYyhUVdG1HPaTZRiNo1Va1/yzohFKqWfKBtKxQm9SskGRW0GKW3/93lcWxhcZAp9nQP6U/rSr49FZFiWD+z8J85EOPYAqmTiDsqpK+zwzrtMySqhRq4gj2BpMufW7ac31b5kykalLElSXLkdJ8laJw6NEYvs0g+iOJmnZ9B4M74kMhVlcTBWVM3HoR8Q0tGvXWkwXZ7qTeVwRbk0khgqKiGcQbnhXaN/uJ+FaPaXi1qBvu8Yf+ZVnWmSWWwTHa79baT9HhbRgI/MevEmIfSwClU5mIMXQnTNf4DurWKk0VRZOWVUNP6y8328zJI+bfLgvpk32MZ6SD5gxEA4imHNOsKe4C29Lc6IHjYB/xGkz3RIiYwGKSKOcNLGaK7qy+Frb6V6vGrYdYg0T0AMaAJ87h5Ov6dWGqBHQ1vgiu0wTB/qYHGba13beKaqGjWEBJ8GFRv2JgAyReQu3bQlvn7BWXxbUf4tVog2OPAte09UH3m1Awq1F6cJU0w9x8I+j1e3gajvPzUOtOEkANZzlLdsMBhcpawzGPAXoj+dgTJGiPQF6CJqb5Zom6/ROrPS2wMW04vUKh+J13V6u+IFKXvxXcelPk5jtyGuWeMg2J+AudRtv/9/2z1Y28lSDxA+2UXXyoR3jMSipeuMwmYpXF7rA65VcnQU3aV3XNcwlNENYvlbWYE9vDsJFXg8qsA1Hn4fNtlMMaUInEJ30fGWSJgV1/54CBsse/O3b7Ex1BY/TTDKZ8asB/awo7F0jYnHI+nLoRxCTRMmreCwsc9qzbM0/mCBOhwRyFlUopjUZFor5vjX7a3q5G3EaGoUa8Wsuzpc6NJ2TdrDm1wPKUDTaP/g4vBhD5G2p44eQlAwRm6BO+pGTt0IlPkuevmiGNtEurwEZmq1u4vM304AvPA8YMFooNsB6DI0bLSTW7NiTLZ5amdJbWBNjON4BZ3Tz+Kw/U7A6aarWoeeCqn4/hdCXGckmyHzscte2gi+mi4OvON4XwGH1jyE7aprnmsXLHMOF3PKBa7lMmkLKT3PIW9Lw/D93uKcTfXUfrIsooIZun+LCqbAOQNkMvOlZwcY1v8RjxP4O9JnSI3tEdcE8TR4N4Eht06vimpcdx7PjeifEvJXfJQW46gUgzcyKpUQFLhu/cGfl+KIIH8r3Q/PeASap1gMO0HAFxuS05UM1ctYQIYtxLQ2WMM/kVeKyj1mnYFuhEz4ffH9ICfwlrzOMzQafGQe8Suk1c4v8L6pegCIq9+oGzZ7cynrAgEB2Xl+Z6897zR4Wl2eLL/yev3pMaUUTYJamofpCdfae1j4Uzh8U6jKsIYnmsnCgqVG2n7CdjeADlRFOuA5j0d/bhZp8NskALP6/dVb8FeVpgq00osk+0+RhB7K9isSO2PChk5YnkkffXqqKkuf8UXp4ZbSWcXJTq0G4a/kqg7cZxKVClhd9EHyrg67L0WVwXZ+sS0sMSZZPVY0e0d+ZcgBh3YJh3zaa/6wG74yLtV8caT2jk9Xgum4WsxrQL4Az+l0vax1lJt7J+X9XmCUuqQ9FyfnyPnKcM0Rh9MO/B/kGnpwwyAzACDrItqakiWqMsZYSgYW07Mc6F4DH5zbHt3AoVqstK1h3jCBlhXIJAf5wgfhz/KtoTlIPCavnyRyc+VaTTFFwbtBv9kdIy/uIrWe/d+wK7+r/lQ3xqSEnrlMB0UHAkkTDIf4UyReDXW3NRNOcGCgnADzlGDfBQWWCisvxgePdS7mQ08bceAqAnWGFMpz5ARp6cCCqVf+a7o0fet2beSCv3zMDUmy5nLhCpZ/DrRs03oT5tFE+IwT+i9hOUB+wc/IHHPNomZnjJspEziiADi292UMxff6XfzBxZrU/NOaQZsj7/tS/XHqIjn7ckuhTr+mVCuoCgeGPjjHU23XrCVuL+yoqZ94b6zb9Aok5wQBqbizPoDEy6rGmw8TCcdPO6TZojZ9ozwlPqvaLzMxbx1PzLgVZntHsTpYxm8HkCixb3CZkjxBFMk856au92lRCe9j6GlZctIkQwrqUZvt0DiPT1/0CIvvSMzfm60UJWNxVEl1f+Zyg4fuRCOa+IHD1MWS7lLZ6/ZfaiTCXYDjPUM/bOL+hF4CjJn4G5knPYAJSwJG3G1XEzI4ULFCcX5tu6O/PU0RzgQr8lmO0BsExBbEoQ28cOzYwGyjVlPhdBkXtqn+e4g2Wexi9g1xldO9MYJRQo+TLkZs4SKVnd/3v1tVv5kN6Fk/UerqF3SWNEPfEcHGKjQegpGhVGNmR/9HGtKBiFVZte1wVt9QOUe6lgBG+8DTJEJqTtlut+6WGNXRWywLZANoMmUnPbVmApdwSRdk0Yx17dMNlvbjnMnJgQumO0/d1IbRxoNZp1Xbnnb23bx0wF4ROv70/C6uu7sx3gzMwyF0xNRV+UyRo/WL3aYUoN6BJ9vvOaXebcGMjosHL6YGCcstwpGNG/s3MrQIRTKPh97+n4yzncbYY11cXGDDqUU0V1DaL1M3Bd7oLGFldPPThmlFNv9sJhXA5HbAdjosbYqLwCMUHMauox7yFNDx4LnHoBrXgVj/u8Z4f6fojwhlwiLQRZeDLgdQ5vXmuUk1zsUEIEy83ow2mJW0/2CjT52sxjhO8kKlx7qi77SfepwK5tkHaqBwktNsOUxB2kMnOfKPs04b6vWt/rAVT/+WeQ5AEcZaHomFLp2wVVtcgY1aFSapgYt42bnFzgVTMzogNKk2WJ6YlC9hbT9iAbMfYn+Emd9zjptBrWWY4ysHm24mpver5lvmxm/cgOVY8o+BdlXMoozgFxycUhYOMCDo43M5m7aFa7D23Fox5Os3EcQhLnoaa4fu/fmd7JFit9OHHLY9Ubj5oY4LwjfY0LPemaaxvgVJe/FKrVXPduCFOupO8NQV5R54U9TxXwZph04HHW1MCjwA2rdoWD727r2bMK02GHUKsFo2LMtGDdT6jURBYCOeyFAGRSR/IGtFqPbRly0jV2BO7RkZgmi5AeOM35MuzYhplsGyI2iz8WqFlORL8MdVNWvi59FG8plU4FxikXSLoam3WEqN5nuZgYskhYdMzlo4MPk49tQ4vkqi9z432gvgJZgSCrejWTUEreSxKiOQiqQtLgOz9Oq3wOh1Oqn+SYqLkju/t3kosgQns2ebUT6bf6IEtGrWKp2IB51aygcTKBJkjzQsKILywM5sFus5LX1L2l2rhDSbV9ikCa2ZrLZROJJ/O0iCjzKkS5cPSOnMJMFughy5NgE0d6CxoOe/SWQ0pizqJ0/XZ6NnvsuM6jSNUe2LC5+HdPEe86U5gSf6a0i/22OmycZ9dY1MYgKbjf+sBHFMvxJMYtSo5PCpaT8M/0gPsTdzEYIlw7CYUOzUltPvohkgVhtiCNMBkADIewSWynh/6UuPcb+VIGxoZm3FzxwnEzwJ9fXXuZs5G+NFr2Tk+QLD6tawClfbP21MRHZBdQeaNT93KD8MaGb1fua6E5CxFvhzmwcO8GkeKAqaUbdHBIbuRVJmwn+nl3odJ2a1XbXjTiXQifGfASQzkPAEB7eM0zQG1VBAydwjHez5vQZfxj54GSEGYJouXbRo6IR6aCwzzelCKFwRxGM6TVxvxWCmYCgmLZYkIz+7kzESENtETjk7PcymXPbM/BZfHfCaZ1HRnpRsLTm20rWhcIN90ipF80ZW9OqBH/XSpNT6kuTpYL8IOMk68vPwaSdTyIyQRVrQeTSCVfCigPeYoFQKMvKUFprXeDdUd0bxLSSYxqGyd1CZpEPe9/RaX54RZ3Nmdt8OlX1pyQYUDg+q9CA89ADOuAEr44n+XlakRzfq6PCHCg9Qpj6blZ3/UfJuRyMU3ooH/1R6puCMwMY6yao7Fu4lwKrCKMHMeF7aHXvZ+YeWmj4ufNBIPqLAsimFvF9xLj6rVYFaRg9B1QlCcYOVCA97qH3M1+qcwdjdFYPjnde2AA8eSTa5b2fheIDjCiSXn2sf7wFZVrFkqugVewimKOHcH5kqqjzwjl9GdjfauHz5i7eNgZxWDWGSex8YDSOekBIK3AanwXyLXdy0LGAPn0hM75o2T3xRd9XYibxXzezKZCC+567vvanwbSOh0amE8tXANPRmAeZOB+FJik2amUrhKyMsihUBU92WdFgS9ws7zQErgqQmxBySCfrS8rgvk1K1RjpFXMRjimc4JtBvtumcuWZJKHIbOOkPQd8BWiHG14eVT9D7cBNFp1HxM7UMQy4aKDzdbufBd1ibsnaqPequf+a4U83jvgZwtpsnnRcv6bWIcGj+3gdpk+4SHlsl6V2Zdb/YdtRh+nM4zdhDfh8DyaI8Sn0m/AcbAD+cWIioVuQkrs2eAjhskfJYQ18CTjQCRQVsWZbEni/2X2hpfwbm6znuoDkQzS80dW02lGhvXN8Lk4E2pZFkU7CgPY/lUZl1FQYG1oaW3NvDSeuub5N9FLkQ6K6RKCI2bPlkqxkMskD8+ERZB1Fx3k75ZRBkogQNwz0Qw9k5Q0yhvcvf8rdcOEU4D3v7WZHZrigs5HvakEU4aslVU+8Qc1fQd5n4JfgsV8/MiMcOl7p4aSW/aaGVndQFJj/PEqI+zLHbEjrXfC6fOqv7FuQzpmBYo5eNioeBljbtGxAB3wX6CwQXKWUdv9ZIWfTw3uOsAM50o3dMGwidjsRc2EjflWhzeOP4txr3HmKYSGXxkqF7sUCmc1fVvYR3KfWc64VsOQKeBUMKsd3dT5tjBu5HOBYeg+gCLoeudpKnqgwtl8DjGoggULbbwaO7DohEmomTkWVteJDE5wWuDRNmEgQaAYBMsPQx+Lui70okLGVzR3ek/zIxsw7GqlmNkk7/DDm+7O95kVZ+GFSDIFFuxxMw1fWIcrv1/Keo+MPFNLzJT9dA32YluZao7Q8b8xkOjg6bMVMYWq15cz52yMDo9gQOxVECXGjVjZNUN/TG5bBVuFbOfE7+/9yZI+v6WIFnMWsiZcMo8KTgnmLhu6DUlag5VFZLefdvFDVzwds6imR6HDaA9poAvRes4qiBMZrHNFqU/DFfDFSpPbqAID0hBrqvDspHkbwKilJFEujXbNb5Zb8u1RVO/P9FuUm3abj0JadM+PF/EX22q3DgN0S0Sgd9m9gf68/Xj3/ZXN0xSVDiTCKudND+d0WeO09uuS2wcSLt+Wgx1UrMjyn0sHQGAAQ2rsW7bCeAUdWOXcI60aZ/9RbOQDymSpH7PiPIS9K47hEdM5dePgifRHIIB5wViykha/98DlFa2liTthfCCOKb3FkD7z3goCs+nmRqz/gBMU7IdEjYoK24tLdBxNQq//wGrdWDeeEsjIhlufaX7v+0TsO3s2woQrMxLkaPFlm9yCzkkWBHT1kTAxcAcKJu3dxklstl+4wL9MWD5xTgj33bxft9l4Gx+son2wV1/CmV/GrmWbOLhyEWEF/VHfiU3K4D4u9Vy1bE6wOcSMvcCgHi6ToNro5qdlRWaJBCy/tNcfbT2xNuHznh5d9B2qL0//H2DKxLdEP6U4c0wYcKBtYT5s22LDrNyZ3mbJ7DBaQkbou6QbHzj5KnZ+bKjtv3m1jy4DmrnPyTKg5gI+2hxtYKdcAoNWy29lD7T07k3xoIry6mwe8MxRR58oXXWJl1yZoqFqndGXPpdgqPbVlAFqB96aB9oZ50M/P70MRTaAmf5ETp/fEH4mblptnbqoGbRp7KKY93djpBwfdMRdZLRmoIWta/gB5WtAwtPCGi9WfyTRnAt+pvjYn0PTwOuIFBkKgnwJqy6VzVhMnrIJHg8+WT3ESbwRjxQ6bWfPeNV4eAOo7aQqi5aDX7Vf5xxfYNEi28opu/USIhWbYQZIh1nCf/ntYIXTYPihkoNPlIQxWW4yuroPSd+Azi7Smxi7Tjwz021q1NGnLBMqhhkvQhvd/6vZgz6Gvzab6hdHCnzQrrmqlePXY50tevXQEAqVZpKwcZ7LstwN5m4DRSNk4r42gE9A2A1JdiML3vgPiRGJPO40cVKGshaNcWbCyn6mEJUlnxcOQ9o6FMgKwCCPcyqa/oM900qL/Dk3fHmp8g2miziCE6cPdi1HxABZXh8mnwo9tHKhlRjb6aevshQv+2pPza++hSBqWV1G58xoIdxj8sO1t0h2odunM+GduLeeF506KZEHnQJm6Js+rpLIec/eergoBn2bbECUPuveNpNVN241KNjULy8au43lwz23cI5FqX/WZfYIxpg7fm7Vi/kV841kRC1BDrYrWULtRgG7XAVUXHRKw7K/wYAHpM6mgU3y/4h/+KNVdDddDtD4J9xqtJs79/MdL+txy6arafaZtEwK0+bt1etUYUrtWKqQfcgqvJ4XOWI3c7cHXw6asTYgAFaJ0RnYvbW0gV3/CWM5wZ4UAlNjdGrga3MYTDextTjEc8yW5GKO8Mz/lX3sfp70zbSZv6abayncFlww+qnKdFnQmsFRlwg3CK1hH/cB3eV3fDfb1/cdsVm0hLrFYVs5bFT3rtxiRUsuZqJgfwp4YhRBs1gqv7VetQT7PslejViW/Al769zPrJ2tiLoTjfLH8PcCk+AH9mh6qnsPka+gNRbf3O9P9Dhre7dOkrtKfEknHv+fCO9BlwAoUViTZQM++Z+5W7kEp/bOKjFL1vBNElD7F3jYW1ULni722hws+rSkcTT9UfPE4OEaoShjHirgY+i6fkA05mzRq1cp9kHOJpgvdcsMFdQeGiqt+mftM5nJLWaESiu4vuF6uiiRNMN27YLxfCU3FxipWsMxvpovKJGEtielsaYn+JRDFa56c5Skky3axow2M26lzswj2GwXfnAIqHKDCFzUASCrSDgJUvcO33+BheVjYPVzGlKRcBTyccaigXlwsVzqdzR82yjKmoFANtfKX2dZ3LNKmUfhnWND6xELTIn94LeAWa+EvB/4GEu79K23Uz3NSRXw7ESYcdXxAkMqDjfOXtBBBN2DtIr+AesIvOgIQPi2v2kgXa6E1XuPthZ1vBIVUMZHQ/pv98rRtXKhBga8LrE7RMY3nUHfLbPP8dTJM7pEl7akVw4+QqAGvdPrcFw1Ul4KOGjJsqkPXU23c2WRNU4L2HoOF/2h2n++HofNkLnG22WgAr9HjUFSVg9PyqALx4WBHQQTuiZd2kFqow6NcNXW3MQavr9VfGnI44FABa1eB7ol2CMbKXGOQN1D4k20pWoSDmJ8B0Yip6yE49I5kP+Q0tjqS52tjEugbh/aXhmceb0pm5OyyQIg9Q7RWCxEDCig8Xb+68KVzqxA+XX+6dq/V3IyYgGXgYi+RcrsEozXt04WjIzY0IRvgP4AFoT5Jp6EJl+mQuO6SM9RbOI1sisNOW69Z+nv3TPFxTT2GWcOcyb50HpvjyjKsPH6NkX3xuxnicCwNUZZXx5RfhMRjxnpcuATFeHP+p0yPZ3tE5olYr97VjnUSI5eeNdQNi4C/IR+DV2JOHOyDiDxLo/QQWAaFMGQ35cN17s130RZbr2AzhRIpF3C4mOpc8Rv0ckEngPbMB1w5H8JxBixkvGY8p94PQUwxVQsDlRFZVBrUvx5wTKwytA2LotWXBzfnWn4cEuY9qKBaY8X9A/NooHoRPN6scG6ItrR5fFamGJKVeO+euvIww9iKvg7FbtEpOd5fLh9L67yR/NZiaM7YgQ40aUul98U5aTg13zVK8N8Wyyw/N8BlITVcMuNMHXEmdL1XRGMNJknPSc3w3iVDSd8vhPn1shMbK890lQ0/2KWAPhKaxPv+yso16v+CBZeSXe8jwE1x3Z2ckMj9lBZQNNW9ttT1907ej/0LxsCTSN7nfSn49LrGhH8Rdi5IwQbUg97MqVgEp3Gd4cfOV2EsBpF3P+YuAzKvEApd4fddDhcWmsgue/te05gtkOOVoY8hvvV3Qd+ZeLhfKeRSWmCLzq72d+OscdH1+ffasYCm7Fc7QRAw+a7BxooH4Sg7z5wZZ93x4FbZhPHcBjcSOBR+v4E92+jc6+Rp7i3i0GcodlXvCIklVZbAaCD+cUF1hmyJIXM5XCQRNMtgOXruYkBUf7Ita7Quhdo4pZjE7hM3Ml2CBJiv2P6WnTm1KJMeKTcNmWWH3n66UK1pB0gGNu4aXrLxkE5gxD2uWAXNe7jEOSeXrPzGOXgvNu1nh525kiUpgsAdNp6EIfAu0bQvFaVYgboFwx2s3QIILV4+J63LTfstiEfaotTGeERMQSxmLJKlinah3JJodEDsTPiBqLdGqTNsw3dX1blhvl/dfKMY/FtTAf3hge14eBBL/cqDbJGY3MaFRJB3XXqmOSBqkM54BZ/e1JlraO5o1rlH5Usb1BfyxUeb6PBUdL/2HEgjc73QJ4Q2OCank0TwdkSeRlTRsq1K2Nqx3qJte2yriU434rzqor9xilM1ll/kuOpqc72Teg26ftu6qrQeZrK2gjqPYBiFAOlVdiiIPBflu4e6mfXPR/Deb9XyVUNAyhDWN/8XvtMnLui9Ai69aj6bHas08NkW59Tv+Ieo/2VAcgUeY6U/DKXpTNnE8qf3eMu62E+x23Zyu9MKFYhEjPsoezgKDdAkPCPZ94ClKF1LBy+CwMDrVqF/xIDhfUpfPH62uFL2IKAn8WbDJckw8yySpzGPQuTRDWUEbnE3hQUhcfdBDIQRTD+9VqGsPRyYEFpIGuKefKO/ENdmv8obSaXcna9g/Lgr+OrK0Zpp0G6rGesXBh24drnkOcGCFh/k+gpSEQ6VIsE4QcjVUiZW5WeCETyTliHy5KoGFJFJefkF5KM1UJ3YaVITIcS++MEBMnc3Y4S0/oZ9cCs+TXsHy1iD5XhE0sDZOQa7JK2pyzELJB2Ad3pQ2xWD57bP9tOjfsDfDo73uUna4RX4FIyjQuDnGjHa56DG6hxscjv5GGYUV+1servfZYrq82UMyhr0FtBMRT+WMtSc6Fagz3i0mk4yhjY8MkaA3C6nXTc5vMsp0FtnrRW+mhWll87N+ROsuUJVM+GT2RZqRQ12jfGuvMBINmxVZFVE0f+JoxZf1CnLAdvfDOVaG3GEAdP39XmFr6yrC717yB9eCBXG+U4RTrjwSnM6dtVFlRfudx07AsvsxPNybfLEAtwFU9POmIj+DjGA1ApK/tmLdoHB7Hz7jcbnkkLGmBvxmnFmkrjbqXJ0Q3s7g6AcmvevmKVmRUgw1WrhGcOkmndUtIJMwm6uthS1FNIYiFtIFe7djSC+1uwwJ8S1nAem1evxpXMu8h2OdNrO9Oeu9bxuujiVijDCAOQL0xV5sjMs/dt9naZsKhKEA4JVZXqkhHrtRVM1sUjY0UU74U1NkCgItrl+njX/GPGGyLgHCLF4QXiRZQol+HfnCK64ZHuKh4dlr67Lepl7eDjnKRofW+jGvEC1g5NhjSgb3R58XwV8cykXVA556EJFhMFiasvp/MGKlaGTa6+sjwnNx1dfibbzGgta9h4dQkgPIQILYUmOzngdHt0V3ZzS9mLEYLkKt+Ji4ZfFvlU+FcxL5cArZ9jsCnU2JIvArkqtnjou5K7F3R50XjSrdRjf4igwi7Rojkz6AUd2MbvqBn5brWtZpwlWu17kXVIr+s29s/XQaXUxKIrIlEZHrexyFYSLkdGSGhIP+KhBB/laPP1hj6qdjyP5tL3g0BdEV4OPSfdyzDevcr2q5Ly2HPZMIOrJut5j8eoomjrn48434ushCghbwSo35Itr/598Bf5pXZDCRm1Z0enby6ykgK+qSgsQmVXnWPsf/RJFLdb9xan9Ds7kNZJ4aaS5tCWreXTOpmjNcF4qCco+8HRpPDdKD2UQpYcfNgUJYp6XxRnsiM8Aea+ugrkbpoAJpx57tA1lUPDYWbu8Oz8YvkMbei6vhI/E+kCzRKJ7YT45YRGgCTuj7hCtTIQxh2NJDGaBCe1dPni9uedImaiDOZ/4DK/RfwrSZ4Ppwh/WlSOuqXdq2iegLZjo25ygF4rpZKXg0tDTovQjNJFem3vitb9WffSSAdAWNH1kaBygNHzZJ7ex/+jcVLVSj5fHVN2AVXa6pm+hJPPaDJsvp7nZ04TnFeS5mJT1UWFw2w1yS5dLG6atSQqbickJiqWcqJ8EVD0MOFUHHPW/0s8YjKAc2o3dj2XjzDLS7/N1uhqdDg3s/kVoCU3U0N2ijzvpIVBR99YIHAAcuskUXwelXSGUshnHm3ProBv7mLkHwiq/syBDVkLUbYRyDv4x7Bh/ZDNswQJ5XWI+RwiAWzTAv4ljsyd+1B1PtgTGCJUEk4/yrEwNAm/rHz6NiUXt9z7duJ1w6T43fvTmKqL25Cxf3HLMfEihlg9N2GDhhfiX+csvMLkFasQiS2DOYb17xA8Z6yA+7gMne8dnDV6v+F5jd4wdUTPDXKJblsKK5PddCa7OszRbcdSxWOFS5FDB0X3uJgPUrai4T5TfLJ7sYd7HtxtX5vy817lw+6hI5VaQidPfMT4MtgmQOK6GBtcFvSCOzw25krVAwxc2nL6RWKZtZwWy/rek9UxriQlTkErJ11KA9i8ygv5zgwoLqsft215kAQpobdVg6aLD2D2v3QqmTsRoav/CC1Oth/Tg99Ax4Iv8rT4wBjxQluZHnTlREhvuYk+akYFwOI3V3rXjP09LT1YfR45/PeFbkpGUhmo1m+PLoC01TdHeO97MwRC++rG9+nsAOsvo9PnBoH0AW+Q6VmMoO3Uh2M2EX7oWSJ5BtXFds70yfLjV4+t8sik8OHidxTm1uU/hz4XCfciX28SydtiCkeb/ruEvLKfGtMyW0FCjC0WuePEtQQ5I10sEBehwFJ2KZzx0s3Qxshv9nltZWR2y4SyV+jvtkrdFkOcTlPh/fgX6lQZXSgZ09Av3oZ1y8HA/Xbs2//bBrDQzCRjlR2g5/yQy03DWfugm3mSyvq3LVvAl6JqpVzEUavtEfqH/iQJ0NmnWxXe71eMK7yx4vkzck6VZOU+XQxNhdvaNDyuSPmiH742cpaXF3O3JEiZMXPh7ZHpb0AAs1KgwN8VMP9o0GsKQvZDIc88VwdNHwjar89ENJ54i98zH0vOLtpamcEj1rlI5krXWqXVms5FdGtqJ9sRcrC+5rlY1Xqa4TqDAUyci2Q+rk1+vw0jFc3GLy4A7oY6LOW0IIXs9ClMAuVFVs1pemTAtI9duPKMYDMYU3hP9RjNUZLeJ2qyhMtjUvFZs9yNKyI49JUHvw0Vte0AEbpSZjS42ypto7EoNLcReIKmr2hGx32TWMy2wtbssEeD1xlrdPMlGGaJJ4tUOcxR+o7J2Mgs3QwjfREtEEXiCIsHylFBEQCBK/2Ahi4Suq/zGa6QcJZRF/laCbX+2HW3qMiEo7+kX8e/MGahXSaV3SIDRWfR/QdQ5PXbJlalQASckqUxOiDz99cj8gBvgKvMu6hx98WW1ATm/P+zBKe8NSah1Oyhwj4y8QjUQRojMyZOCJv3xVZNW9EDF0v1/BW95dlyQIK1Mj7MPCarv9pJHtIXO2+kjM9G9L10RdT4wr5D4J3u1xZmJOf9b9/yt2luAi0//ANqslBmneJb8uEcEpx1iPlws3Umn91M22W+7hn7m+T5A1uFDiXkilY23q8qVntDuqUGIBhdLIH9vzqshHGEQKBmp6c92cgatddIz8f/IU/EraTPkqyd8ZPycHTPDWG06RWESb5AjuBKzM7Y0cS7rKpIuqOUU8WODh9DeFOvUM/fu9deaxpSp4lAdeowsXe+vhpdDQXdEeTM/nstp6GIeWUrkgZLSJojTRZSdYDV48xULkhO2GkJvgJUk/YagCe4oispv1z7eDAE+6b5vQfcOPB40nYlYz0soG2Ge2o+Yyc9+Zzbe94D0TSv7gMS7ecjD9wCbFdv4PksgOFfAY0oo0bxCuIvSRjykJsm5bYzZcT6tEWhRfKFCTpOY7WCaRGJf/6/GXs+ljejztnBZZQgdRnYi0iDVK+cR9/nX/kgn3as04xzyP9NhbBDY/fhn76mhkWsaYSu/ZEYeGfI9hK0nqU5Pz+nMc7metD+bdZ31JzuABuiSiVhnmZiYYJReP0EemY51lhd1pArih7IFOq8PucU1BQzsIcOS7nS2/+JCV6D4NPpdgOz3IIZyrav28d6azPpsxuTdNaU0idQR+1YqnSzyiXAFa7/sFqFT1SfW5gyTaOf+UzLe5IJ3D1bw0MPDYIVqxhMX1gJFciy6freFcn976acBGDlr4hV/G+oMefDIT52907uCn5RXbJj4Y8e0M1ptXX/eeZ0ewelKbe0bIhGQBos9y30mnGrhmR/YHp7hQd1BopcdGGYJx3Yxgk/lKheZ0WjTo375VYIa3kToGmCEOx1UXD/ODlirSYl3tWjOH/OV/Q6wDzDvHXH9dp9cHVn9W9HLY9OP8w4NAfofAb0fXVIgX7dj3EIN2uv9ejZJuG24h4r7I20+EBFN5dBNmNkBj35mmiyWx+wwBCI3o3Ia+WXlBhOzklBiN1YzBcqOYwfYDulB/svJeiOG8XtU4gUlxhPMsbs3Njfo4H7XwlHIx+lBbCBWFY6KftMIGc1LZHAnxvR2NaoyM7bMUbWAZv8AsYOa1buxgBZTWdfsLG6h3vD605xHxt7PJaxpGHPLbqVQajm7KoOjOCNIz12zfLSY82EZ3Utu+KpzLUXXVPhLdwaWzH7fv6oxobE/jLsLAJkrsptAJdGtH/IfErVnPJezXpHSd8SqxKpkR/MYa2uBK9gv08nNiQRNNOvyDuH8x0P4vObCO3HTTR07TfJmXC1UgP4JlC7wYMSK99nm/mWp5rcrP77HuKtje1BvEjf3y2pH34ab+cWDySYnXRTyQ1bOXYTtjWBBazMq5GSZ8Qi8B3jN4mbKxnpRjHl6wuAb8ByZrWdeyBmhkNl/ZOZ51FwjD5HI+RWe8YZNU4JUW4IqSKcthxg0wIeaZMk2InqTaZzTOl9k/UdjKE3KbGcy/6lV9XgVmelEoBwwUUzwWUPRBaK5W821/4d28u96VAuj+5W0qEIMTmrjgyY78W88P5EQbEoNT9abbAtBInxJ8MRtoZqGe778ZFnp7MEji+bVQgeMBEiamz8c0S5RDs1nj7fNTtZtwAqtCef9zF78KSmn92FdwVcx0rB2+W+wg4bu83AC7imctQ5NaehSUz9q4XnyI2iqiTqSv6RbwzcOYU329Vg4av1MFWdvVt4NFymdoVUkj946NtXWArnz+vPHxoeFvtf5FuzrW5yLAHZRnXI5mZBK7Yu5Wool912xJJ/rn/K0XrVflJIffr/Gx4FNxc6AAcdPkS3TkNo3/nZ57fvcAaUgs7SMygTqN7pPwttJBrfHF1zIWXOyU+apoWQio/yD6gSV8ShSdwbggqHncOwDlcz3e8ki7YkcTcIlQxjOt8bw7MXmkySD9PqMQd4qo9aYEDznUmmEtwSBhSv6oxhIatMAtgeESxzZNMh+1L+9N/xcOds3367NFCSJWrq/me1L7Wd6JhelkDIsf9dHSmjEQxxMGR1MDFsW86in/8bykTH8srZsr2HB6Er57hpHVFYCQwhu7oNEzPpNKVUjyaCcfsL2cytIj0oWdi8plp/Ey1ugyOj/Nj3zUg3kVLpwcjzJHXMJDkGnhaRbN4yyNeCH6JTZUzaKrgazaE5txiUCLewxNVnaCJTBkRg2Uymve4nyTyvwVSgC2ealETSpcc1/fFZs0MDdnZCMi+BPjolk6Shoq5niWXUrfCYmQ6JND3ai8MsoUI5TRBq1erXqPAE3GbYz8ScucBLcmZgWGZmMqE3gFtfuIAVwmIGG2ofNsbhucFbeCixAXKRA7ydLM+srcNNU1syNclSzEn0AYvQ1QeD55xenXkkbmgpeMeOgQxZWqC9KqdgplgIQtSC1kBO6dTPVbwgu7S80cdRbOBILvxOoLXQ8RHQ/Am4DBLhfj+oz35PkjFOfufeAwiUR5zYzDHSc63hnalJJDgqGW6TIZbMVPzI+bsjyyhA2iASogA6+wAI2SExXODiVzIPSZyzVaENIXgQ5NGEMBbSjiPHvU5EkHQK1ue7vMk1fAfFHbMaD7g78lvcob95m8IX8xrzQSZxm+93NOTu8+t31437s2vTs7iQWYorGtfixgacqkoNbMRKNg2WmVHEphaq53LQsTeRcrbmL9vLn3jGFnB0riGz4dyDx1GlAVpSE3qVZR29MDDhSox+hEc97h5wdbjspqgV5WyTnDyK2G47A14oQTyiiRtRKH1XkP9gLGx0ujaswdhFUvtONac+XOO5qBSLVExkbkvTd6JMrT6b8SIDS1lJgIGjvwq+extaTbvHOVhNV7Vyw/SC279eV1vbADzdWUJ5bXRhtcmK8W52kB8a5EcnKw6P8TNbwhKSa1DXqyOsqkIIDQd3TMcApMGQ1/ZI3xfVYvnXywfw2eYV9pA0/xQUA5X/wzV6OEikWKFIMyVaPHtO4omxeri0kCTlShFsoZDQ85KN96G4jatqPGgWF4WH0EWBUgS5AS46FI77/oOlgodIasvGmcT2bXParRHQdP/werNQCg6RgTdoZbRwvqnzF9gDBy/sXC162rFQe27hhVXIdZTEYOpVHD2U5McuoE9WUR5e9UzV9Vi2MZIdjfcxNWZTpKGACqJA7BUMrkDMAGbQo27Qy5srxXj/7pxMpRsAIZqovasbm9zvxXF/CsG8n3TPrqpBQBeKhwKGK4gdJPeXrTS4TVlUJOUnwoh14CYS7z0X8NRX7K97IbuiacOr2R5V8JUkorlLMidpyNjOO9yUVzqxUoN5FJNKwYrA0uZoyFpLFAAzHPVf4e9wZ0O6au1SP5urAz6HrKA45iJlOcPSGO8j2onpY8yQkghXrXXo8toGYq0VI8zCn+p0XG7paa6LmNZV6eDwddv7+aD98MAVQCNuyBMcW91M8J7sOt6upryxnMaP3vfHgLUUsQIgI4dbcmdTss2cJdYbjzow0Z87uHhPsWxuRndgvzN0G0XflOSA9T3R6aTgsDwgG6E4T33hmHOEMKrnm1EXvlf8e330JW2eaxvTx4XJpsEcx8lho+Nz/cte74zVESY9+XTlGpBsAaeAPnJBLSlNnGtqy6tzNDee0P0w/8g7k67P8TdZJl1xFHWwAYT1zf/WmXXIgkeaSAz+iwBqvdlgSW4Zb7xsTifi+2u+j/efphV7S9P3zktHEQK6Wa56wZxwy9DsbrN5ZWDk12tqqOBr2aKWzDL1KwajL7/EKZy9ZiGk9spdXsOWxv/ks2yZZi9gieU+A5R0+qS5Q48JSwlFJ1ksZnAqDr4rCgF3Vp25RdUAjRrEBHaSbM3OoPfUHSPoWKJiRgz52NgttNnuHOpZSax193386HeLA/FUrg+0BKKtK2D5+TPxi691H5r84rBbiln02+/mFDYAdm3pwsUnDEeGG6LwZqao4OMqG9uHmN7gQLeycZbmvEWndHHGtGUAloQLP7iaebW3a4LBwrwqihT/JLmCV+mOX9t2lZQcUJMi4AYJj6yyD8+Cx+SjokyDyY8Uk2lXN4TrVfTeYQpgkOHJwu5jUg1qR5BbBLwZL0K2bsPQdG1niMII+jjvXRwCsXpZnwSGpJDSNGsaALn7fZYgXBwLlKHDo0cG2ujip4MUnGZCyVbWvtU2p/t9Mhabm5i5RgFOHTzRJ2JZSwt3UrxVKjl3in4N/qFRKZsYqccEbf3/ltXHx1ki/Khlfr0ujrkL/cEAHLET7iB1vvI13zAdQJGrWgrfmoRBnZL2RcJJdoPPZDEJ1/wBEIzTf+qtjVcEVbQNRLE3fCCD13DyAs+VPTotIGxtJVld3AEOmPHQwORYGrDDea2mCbzyzbiV3lcn32WSu03NfVAOf4p6ZCK8IhrigRZFg+zNocAg5kBMpWvQCufTzhjegq/AhC4alp0nGUzOq6BtQb2v3OqGiWiy2qwLhplXLLxgmElUqSbvIxpcOBxWPjsvl2yk/f2Z7Dwokqqc6knj9RsascBXZDq3z6WczbKHuiL9ISN2aGhkp4nIlUJn6N/w57CeEssgaW5/qotD9qHBrLmfQt2eOcEbOw3qoWF1vFEqV5ZkrlECVaGk7sNM4lJzUMKCWu2OOje63K3PQsZB6WBpCKUJ4gztzaTif+aOnHAjW9OqQtFFQ9cUCf8lwcciJzH3+JDjsSE1ymqGzUWA0JPtsl3ftTvMMoSNuGEtKsoP485HVfAt2p37bEZ2QzyLWsswm3RfOVL9bY4jXaN+5VOhZjRh8lTUrB63sdUKk/kiGjpveby3u2tJfjxdq4DcNalbB4S7JM7VV0IsU0IS2/QGmkd9++/VGbAfVHSKL0hKHA2G45c7jIJmFqE09FfM2rEBokmY0ilWw1L8k9cKCz5trOYCWrUQYFtbWWNJCNeLs3S+rGvIH5pU4z/6H7bjPOE1LGxZW+Qj63K3I9sGIlAGwN0i7ZgBG+xb9pUoL9jRESugBi4QJgkmaP6E3LM7R2FXMCpyKwG/ypa4AO/wYatrg9h60e0fiX0gU8qH/9A6VgypTKG6b63LyRL3WlzxhR4toA+BGhZW3fLinZCuGtYO3J8WePk0T51bpU50iQyDiY8o6z6A6N8Xlc7zbhQSCSQ1BFOkw3WQbrx45YvCyghhcJK2GNrwJq2jwl0kLHUQiCS3eXJYhqmn4kRC8F03XQ6vCCXdC6xb2MGFxuYGabe0xPKiQfpf8Gxug6sRi28m20X7yrueoODyy/FA2rpW9QGT8YS984UqNXYNWVoQpIxF1X0jcwkbAn/DUkipdEkuqcQh0ykC46h7/X1UqBKjQeDFafvGhjNPxJY5B6K/HrIYKF7B5U7KmGF8K5hLEOhezqTp96Egn9DIWkGLEzNqSw4TxmXijanVe2ytYRV7jUllUMvr4OP3AmTEBjz0VCUSfBpaX+KABi1wtFhoCAlCm6mn6yW6UjEQkW5jABCmy2CGXzb+qrzq5NBQQLv+jEhvnMR+t4madwsOAAkSrvF8TNznI6oRrYrvTQk7H4xBYJnWX80OLmczG+henYC7X26ecatfjmEHgv8hnQPphTpwTWTmVXg40St8/Cg0mQdtxXeEPTUfwG3ousVTgtAnFiptWExDUQxoYXyZOVpFWchK/sTs6x94A6zXTALMMdpmHK3lWAk17hes+d8odnoUj92iwRpWgZMePoe+eMBBdeN7BiMECfXFry4wJ65uT1oJCkP6uRN3SqZNlJnB+BgHM0XMtHjYeeZXAL2PSmqQpbVajTmGT6xi5gSNYd9/yZaGgYdHGfvrRBYY/hH8K3+Vba3ZLy+ZYEbpgIF15cE08dUc2hA8J9AB29SonRbgJn+KINEr4o62kO6ZXYtTL/VB1yRmxEk5VXoOjNuThcj4wWz346KeYwoK9AXwvgls6qdy3gHJlNydZm/Cpsp3fwU3zpZSvAHaepbHKSrCO36l0/7xffkWorLvdm1Yng3YrxdnY2lybX/32H2sbesObvjnHtkMkcnzrEAxUHCQSEQ8ZWHlHJaOsuxwIwgHw81FtzIm809kg87DkwON/2OFtG+5GqBIPt7MHl0b9r72v4eTMHjFhWOQPipyzpxiR3CxosFN2R85L6vg0E3TB8r3zrRYPdUsPB137CySRhP0EITchyMyBu7j2h6buJ5fk8f0F63s9IkBulsc3JZEds9lyt6ZeudWGoR922Va/it2gofoUwSiA9EcSG+v5eDbGSnHraWRDO17d9R89pKPHIBe/eQUAvt5wsmgk/0s6n/APWd6V0OY1gTw3fj2lMBpME8l7bGygdwJdyOmT91924pCoKmzMlK8n58FUVuIWZqv3JbgGuPLnS2/ThiFN5r9E4AACOvtDEmhGe3KyVz3hNdD0wXx5S79KM0bIge4vn86a8CfVjU6GRFOrOCydxn5RaH0Xpucjtpn1/36acd3t7hjX40/l5qfJopIyw4pHRGnomI7k1HMfAfKBvPGPJBn+Y7Ytqjiknxhv5urhCOu0NvYQXnRKJdyXWL02quaIviYHqJNQUHAYHW4w9D3A0MFsOJnB5a3LZ7XFeKm58uZZrNZv7sfKcuVJC3FO1uZqF7RmA6f1UstSg5J2z6bnfEeg5BGfuDVXj8D0cFY4kvelv37AZngobBp9slj2iXACR1c6KOfR2v8WqcvjdYkWuxiBHHdnpcevxc1LtNHMU1HMYmvD/xqAiwkDt3TO/IjFoa7QbkZtl8v7Ttd8qkurY7VO7nry2mmwOfbz5iy9y5altopheot/rptzRjQCutqM8kywyNnxDNRm8EuiLEVrBYTYqNWbSKZPxwBDLKFXNx3MjNs9X8D+YV5G+yMbXfFSFHUoQbCfg/AbC0TFI3EQToullE3xP4+JxQfJFoRwsEl3HPKtz4b2IFYjGSdckvF+bYb2E6WiIdJLQNc1Wi4RCoMA9K4FMp0Jb3c2FAcXEEuorSTXwVG1Wg6bBCXVpOuFQ1hxtTHbXIdH3wzHBwE5RgaImvl6ruPl6h6URK1QkPFxfIXFMui9yHhnb7F4TnZLNNdwe8JHvt9fvDdSWjsOEYS4bHiKd6XLXso6kHptydXqodRjf0m4pR6dSEG7mimF/k5tkhvsiabCwOr31UFL6LoiMf7iX2bl19k8wjA3gLVuZC8d4BuJCzEtZpXFANx9BAb2kwpbhDRJPHd0+Qvm7/0FZlHA+fwvXiC4u7aXDEVDTNvj+FiEmDX/HH8wbdcfNlgtqwd+fqo0+j8HdvWz/rW3WxT454C/EpcKk5SBquelgzdxLOJaVSd13TXgJARhUb+yloFN92PhC6FaJQ8XEQiL/qVXhOlkQHqlpsv00UiEBZVJHNOcAk8baERSldu76PttvKM2g3safRXTZhgVQb/tit0Cclrj5/oqrhB9UKKEFO/lAQAjAamYvbekFe/de6lJ/18r4GVfq+vW65qTGls7qcxzkLdII2/4RtTyNlu6lp3yGN8y3Sv7ZbcDyS/y83wcTCIzeJ5a1Qkn+eDFYP9Ap5xxQSGJ7KUOQscUEiKC8pyEOIsepVm/Ybi1BdxJEG3C+VTWLXldWHR3UvmqP29kSCoHc/PUMLsxSBoEiZmZHRf8rEZ7dRCgozUunjeso7PijDyxxZT8q82BEwj7f19yrQq0EX9pval+cWE3qWMHBMlPYjE+tGrB4jcNqQ3ijtIcJ7X8LAH6RxuScFCQuFLh250NVeVs/JLxETji/o3ywMfySPGS3u6YCu/ipmWXNvVNT1fqZ94Wi+NiPfuXlPw/3jDV4GnLDdb0sSMcIygtSaDABecoE5HdFxlrjLnd7Of3kDMNsyqv1OGMK+w74h45nvVKWKPll5NqKhJTNwOpOLy+6x8N3GaG4DMZsaqOyXntLxus1sDUW7IW5BZDuzPVoaSk4iYaG/oux0n3ygna6VkZRGV9lEnAdYWUfbQLTE0wIEvfo/2XApmma1jEF6dz2Fc3IRF7NvyKGwOf2W6gAGnwyahKup8g8h/MX19laSuS9K4fznFbVlauubZIn5P6vjkm1E2pwpxK94Im68C9fjfQaVlS4N6W7woQAAlkWcNaceXLljRSK7wnQtfz9YaECilkcOh9MOZpMbWPPUSVf1/Pp1MmjkszDAdPhUtk4MQ82tBXtb8YY+tBcJuhsb25UiMcNJqI8kK544lihTWQ+L5DjHcPl+kV5uSQ1oejVonSSqxYw087hxtwia2Z9rkkeN+l/sWAw/aK5fg6+ByOd9FPpWFN7BE7s21aILDuDfMmUE8LQbGDnNxFTSjV+9cjj6pbPp4xOyzy+CPzx9WdFSmR43Upjdab3R84R0Q1ltNIr4L9kIlj5QVsy/QQz+rAaNYZ1JWxjcmBVe2DkYXyyoP4KkV9igZYytXr/MyhaaOQnhEVTz9hXbqy9AwppjNxX911pNIencZw6T22Ha20GjLXnDxBgihYLRCbtHIRITcFt42QfpVzGPYjPJ4Vug0BY47dVyEKQ9S0eMSiH7qsdRU4KeAchu+Pxa6M2o4lGO0ie/bSkLateXqHxvRoPqCUDUhiuwNg8q9+u3goBBpGXTpSfNpTkNnOn84iGeiZsXxc4/ugW49FFbbpdK+WEuzg6hQRWCuEmGJVFLcSD8XfjJiHiRDtjk9NoZOVgdd0s9G06cZ2irQF+nm2kqsza5f3BKbQ7I7pK9JrPpiQ/4f/mGDJK3JRduqnbhWc/lXHNfmmGG47haO43I1jGG7wmNreRPG6Tk040mUw0KppNk5rV8SLJJjqxyoVpSVRrGXDHTElgq2NsqLtmxmHhs/lq8LOUfM5+VKowiBIIFhC4UwkxdFjZv0B6hz6/5X1P3IZUTOdm6/ujMr6e4onrII0jDAdgKJ5ya8XBEynQ0DpVpVv/Oj1o3A9MhguRgevWKU03U8GVAwEDU5pVISQFXZAYotUwFLZwKWH0RmC/XO7FBsJuO292/4dBDYX18J82Rm9++Dl5LedVK6EHdERMWBxa3CxhsM6dSmPNZIHVcZa0LbwzPfFb09mODon5RFGm9QvkXZ8Gpy/qphxBW//YXVnFO+ttcXC2klFn9aEee1FQC+106IUt4fNi7/D0HQZe086KjVCdpo64wbinr3ddQt6OgB6j1Jh8HSSP0bFVDNCrJaP7wzYMMRPPYLLxyfvFIEx5HzIA3GdPIPoQrLDkCyYaG8xKVTKsREcTPdHg2bBgHQf7ugGXZNoATAyk6aoEOFTK48qJRNBDiGZafDqtJ7PiDOc6uImryDIN07C0s9jTHnVsj5tojlqGc6hLPthh8ujsqysv97VjkqwJxoLXcG7jkxKPUscHM2AfEejcYFuaXP3Sq0mH/rNlJWSOBruInvlWOabEk9kH8cRDDaQRkso+TKHVf4MepJOBxsPTYZPzfZotpOoZozzy1NesJDVZHgGpFidQG2hJeGBgPjfkwSjmmX/JJA2eIFk165OmwrDeFJ8RZtFTQPX/7Z2MQyXskpQgNCqI++3qdkVD/8OqhvzkQyM4K4xFGmvcYIFc8/w3luvEAL3bFrv5n2EmObkfMT4EvZu46iCCGp+MRno5AssGPj9xS7OLp8dl24AeDR3QNGvL8fQZWqEB108uBKNQ2XgEL+UAXS2ESlzZ3wj4ohXyF/30Di/Iw1OW6WUua5PFqArQZZG5EeCp7MPBcDfxlPB/1SE/ddD4NwuMwgEg/yz9QtbTAyVS/43WRkYqRYJ2fWYoSxjCRbxWO/JuIB88OaZaPNMnuEd/yU2INhbRBLZDRqLKaZLjGWExD8JH9aNumjEs1RyaTFDWtdrRQO+fzOzrRB/ORgHmfeFPS93LZKgSqbYdDzQ36OAZQABd1a63Ph0bFYUml1El/P1zkGt6fiqFftQNNSlFeiF4tCSH7Fj4pHl+YW8ewI4i6UaHmuQcIkYYWnbCsGiNAAN+BirevwcqA9+xnjKLIH1naB3Tc4mQEXb34YABGA/aLdP+/0FDXnLRA34f70Zu16KtJ5oXXM4iTUD2sgEgycujsaLzUQC7UXgjUUUchuSp87vNrSF8JlrQhZ0FJSO3s5LIv6zczLhOIWRdi2v4KpVaBhdtw0Gn/WmeW+V+DpJfiqNvmuYBdja553Uf0Sv9Ve+F5r2dMzdawyMpVuLU7uOyvDJVvv1NZANo2wcDE/9qYLDqx//39lYfmNlZdnsXb4FNNBrpJD9FgxBBAjhzo4bGs3uVt4oDYCOlU32x+27l31x5ad4aqT6itg3n4UlSQ88VVyoH8NZvJEPvCFyV6R0MgvSzTE8XKLzHZ1+ADqK+tIYpuuo0mCkJJGi0fddVV1quOoWqrqtQDIDfCk9loYvn5mxHB1XZi0s4/2knq4c2EDx+8TQQPzjbXb3Fo1uWybXgpFeoQK/GoNeZq1jThqxQHOK5bGuu6iRjzswbNivRDcORHCIhCW8Gtydx97ov3+pAJofi6httlCUs1fU8V2QzKSBLNrip1bvix2RCA5L+ZTnK9v8Dbl6JD7eDyseEWYSUCz1KUEFYX1PU3snYoS6hfyd3hGpbdxYQOtwVNKiNzxmvxeYWwXJm4xyq58Y6s5iL8wfb+Pheph/6IvpvZPleiXGfvM7Ud6MmdBedklJK3NO4HCDtzyRj1i0uVWw4DwlA3ckqA5Z4msXmO59M34QoPaTOj+qf3kHsB4b6MQyWjwp0shGoQjn89QSCbtLu2NJnE3AdhnWuBpP2U39fSwZchi+1I8pGbLPZN5LauXNmdeHEHhgYuij0J6CvVM9OrOpaDTFx7u2cC7W/VHwikrd6ifmu5kh7UyNQvBAQYR/j7PC0RqAOhmfuGx6obPOAWDKlqeaJ96j/D+Bq16s+Xu8VNMIARJ7WF3blu+j49EnCneBQHGvpXNsxeFOwNHHWWgJug2O+XogFI4HSq+vmbmNqKkHdt2JcgA6haNS+zGNMl9VsPitQipjBMPp0UedLiIlpxnvKqA042d7ebzxY5I5IKqRIXfM7pzWY9hlp+BTJvWsUnSn2FhaoFpjkVgnuTMoT9D4kZD0CuktSlmvnxbVjIv8NYQLFm/HWReg7sp2yuhst3ygMUDQhDhr6S8zZGQR7TiqRguJs6sVFLcs89ug5mheF5u/X954N2CAJjnifF2gxSGpTuoH1fir4CsHLRUZIoxWb9AfD/CM24joLAj3xJqRt8syeIzZI/LE0BEPCIjmFLGMuko/ie9hKwf1Io48CDpaNC2/r5Vky9HEZBrORGUsTy86jqEnOSANiEId77/8waxh4aF4us04O/Pgon7+TDLV2HZYpE22F02J2BdkHyVLcs6eHrrq9MHnUJNMNmjGKSDye9NBEZZgX/UnufsYN5mUmuN29Ygay7L5wzfDeZNDm75L/ktNxniWpq0VkIn3zNJg6wxUaEWT4NluEFZAMYYSw7dqMIL4LYdhZ3guAl0jS0/CvoIktCEvQJNfKZ0KaYexsUF3jpm1N4TUhJPiefeDL12FBZJ1gMl+GsAHeFOJs1sRtYIlUNTBq7jgBmlHrmpSMzObMeI9sbZ7oc4NHXWPBGQRmUNeDDdfgupF3WavM99VF8rGaGE6/d1fDjIAslACuzD4xtd+d3ILcp9ISMad3QIvW4eDbNF11WcTjxmBtgehGodCAe1fdKemn67A8qhjgI/iPxWpl/dbevGgf+MHkpiRMfUGHUEQ3p6s98f5t4vSM27BYPaqZKV8HroqihbB8WiNTBMfEbDqoFb3De93sgFoe3Uk2Db7Rlp7f+xeuAtOIbo5GvOeaaRAR8FR7NIF4TvDMZhK40v2Mr72skEMk2Qw8ly41rTOykZT4kGRATFo9CJ10317YFUGwKKwfsodot20M3u/h/nr13dxbSRLw/ZkqRYi2GYvd2PGzh5FXJDgn38pK8aBrFk/DXhvnVCAX0aLdcaMH/yxk5YLdQyx1BXbfV76FcjjDfUnT4YsxgnJNBqxQlyL8KCrKKlC3d75JNlTzIgaBRq8hrHLQop1gdcZOs0zEue71p2gqblQP4A2I5T+ceklXp3zSZ3zeXmV9wHvUx4pPU49v9HAPcgQaIxPmm62Hoy8DJ0xbDT+Y6kdRpC9Lx1MXjLs/7O7YXdIaHEy2LFmvWfZ6BY4t2stGY1odPCY4Tkfv+P1DWE1h0fLAy2yTe7ngPvgx+BAsyml8PSSEn1PL55GTxPgKdKik7/Ig2DD0ruA6HZPmi7Q56b7EmGHsSGtqTnOdLKjP+KUVzGhX/reew1d/7FtdGIsR0q+Y2jTsk/n0Q59VnyfnOig9BRrpZK6sFR+lYgyyFAGDxaFm42x/zfHI9NHE5ksn1Y9Mkyagh8X8PF7iXgCxq2xNW8WpWvKu9/l/XPTThi4DdYEUJIXksdmWyUj3wbPBYYkJzVirAVKKKS/1tzZpjfTxVCvPcXzozJfrCSC+pgNNcocOYL49+jCybmOGTmMUX0KchZBe7ccW7Q2Wb7iRx5lVxZd4HVQZcuMk2xcA2DRzHJScBbC1M45aEUrqBiUPiFnENRUGnYJ5LwadHJf09V8CK8fwLvM0Pxb5KT3iWs9ej4w4Hrjrs2uCn/TZwk1DnOTVpZM8S37P919jg5m/DQafY2z+/uimZj8jiaYdM+q6iVkTCZCNpsTbKpUZc4UQOT85+bbmJhyjat4DQWi/uMFVJZzwnTZTiSF61wHy5jH5iYgsWOZvdplH47qfocgisXOTfHns+/5by8nP16ZcNz5gs2AdOcf5Eloiv1i/RGRWZT0rnGnXRh8k1giqh3QUYV+VDQjpDycBGpsnJZE2kYni7kRri0KQEkkByd6NMW2PftO7nD4056B0TRBzWHeaGfA53ZxdiQQ46OmeBFL4Ggi9kFy52iOzqP3JhOSqD4wP3ulR/lOBO3YYe/7jUTaeoJa/xHNfuQpfd8UtAKYa1yKSUk/42ffQRFbf5oe1xumHPfx2QapUJmUbicKKaq3OqfBjApS9bNBbtu7+1FGo55vfGAWvuAHzB2fSiUp6y3B29poUZQ/H+CudXk+ZiZiNE7sehOmfQh/o0Tj1egcJgUWsf3FVJYuNZQXIh+tpab614KzVxumtm9VoHSMuxukdiuidzT7n680e1I8ry01v+3FKPqb0f5NxrDPfXEsaqK3Ujxu4OI2tsmpb7N+60j7W+w+KWlZle3GywpxooLFQvvpfQk4EOQaCPcPUXA+QF/BSZBMq0QTJfVgfS6w2bD+uLd6/P8G7247DFAHCL5cfCd7MGdIYK8GxkXgLcP/IBWkGypiggFQZ4jwlbNVCWZfhiaM/EcCCBX68P3PGNS8YT7pIUrhkNyFTIooCSV1mGznh7A3fy7Jt6bpzsjqbiVSqW6wgqctyqEp6kyQCKDlhSOPGCV8D7v7ez15i3oAtQ2Radl/xV6lM+QLOP2HQvsWKB8WVRjDW90WaZcmMRYwiy/e8+htb3JmuMubcIzRE9ChVVFIQfaQLvfJeaFQcsloouV373hXGRrHAHlZ8ItpAAl6wim43z9vxu9cz44tvZCL0nHTu+afiuFaA7wQ6DSgfgdLKOCsdmmwwMiXXU45hLwMAdL9Vhvt/K2BMEFLy6VnhIrWmqfZ1E24ROtRNRgbc6e5MHvzUPvlVQe1OQyV3ytH9G6k0wfpjh2K1nZaZD+KXF1UPKSRxs3IGFy9LjFWZIsPVqYGkxgnXOc4zKwS0sLRnudUWcvH7Z/xGJhuQ6FYe8pKvgVrR91ouTTLG0+fGz9e5D0gs9UyodZ3K8Bjx0Bl3bHde22s5Zp3raGNgjzHscgNIaelyxnUzzieIlS3e8k61kU5OOs2A9W8yYFT7pU/kulcfWcrpzwDE2ndmfl6bW/McSCu8OieAw2iIgEibOug5XotwfMWxfJbMOmQkIPbUeIWFzY8SUwftAobtv87fz6MHdlbS9jW9NvpcufB6o/TYyRRg4E3CikwCXBwtkiuT+wVk0lXfKK+W4enSJpkUVaQ2DNUzerMfSLEvqL4mPUsekOkPlSpgxEXfYkBE5pdwte+Tuhu6dRq5fY0/k9DwQuJ7iuEDN/QasvVNXSOQlg7NkJUKPKIi1bs/gT0SnDWXX4BUYizofsiBdwDVi8WMAB9J+Dna1LREoG/0j04GZgfmXPRHmByRwx4O9gTFTXF1/Ebo9mc/MCq/w0XIFJ570FlIkKYGHKLgl3o2kPmAa09OdmsKzJTuvEuB3gIgI6GkIIuDPvF7FV5NikREPr5Q3IjMHKbsXxtNTlRA2+LXX1V8nOaSmPmiStzQlOqyryRRh57/yvlnY6u/yOIi9P4P/iA+/FAN9WYGZR/HPpmSUa5lAJUkXNaCE8g+phgns3W6v2c8qPYK+df+KTrbg1ZrRN9lgkrnJz0RjrVJRMk7hjDzlVMg5B/dCLsjQZuCjOBoqQ1T9vyndnpq2fKpeKTG3gg7yoq8R6kPpwTgk1gIkkZKBV00kyZbgtYmCUAVswnyHp4CSJcBJ7P72RDzPSGSZgw8CxEArgOKPNwV04r/bjm9Ljl2klSMqk6r0SSii0LYsC/4Lh47NUKrqBv3nKHOwkpnMGkonWFlUQfJMeZ4gsvei3oxX5iqohzvlYss4q/eld7l+DpfVMuZAj+f1D/74XzW7FS3Vgr56Snmse3uPO882fZZrqd2Fw7wysD+NtUXLGuHv+Du96A0TwHYjtr6kD3I+TniZXqOnPi8UmfXEHcSq+2nAllfIfeeN1IMPbd3Rt4aRNMatc9kj2xBqWl5BYYI/1PFRexi992TvrwuicqZ6djP8sCFqgp/OlVldA6RXw4MpHgvHdtsYjr8qNqaF6oiwV0yxMCL2OXMelr8JieP41UR1dWfeOPS4dFJSBMlK4hI3b5t8WJesgLIu4/hmitfn4n7Xw7erj5NjAwuSGnuCFPfJdRsY5Y4Iidv2bbV2crTPpaBI1u0DJ+PWsoyLU7r4M/r5g89C+5kK3f1LlSpVAkuL+f2Qd76mK268fLhrBMOBy27DiOMmwA3Dh/kW0Qwa7RYjuMYKf+GIn/hwvTU/DH3HKnvTORGnVWW0OANX+ra28NMFMx3dSNbZX5/m2uxKu9jyPybcXzz5AepqS3yjuHqK+XRL0Adnbz8xmcJaFHlayadKSMOvVuZdKPyHtKxIOqWHNOntjrgSN2kFxVoFXyfojiDwMDJO1zCDoYTiU4f2hNRpHvphu9IH/qh610bopTKxi89WOFOxSW+iJVHtpEumR12/OcUiUdeG/CG+tP56E29D64V2u9F6rR4SpWvzA5HGNJOI6ZlL8wFsZJORxqkhWsQbY5q5tWwH925FM1TsGElWoCiC9GaCAvf8EPMSL8kTz9jfu/VxjUtggbik/aP00o+2wVmWgMAswylLbHbd9aH3CcIxKi/T2iIhEG7lqo54C1qsKTU2dLWdtFbPHSfEL+XmYP74UcZVUb8F7V7/AHySZkPXsGzB1hMIfzfsZhXmAnGwtZKXbwYjnj+5lcDsusGy5vVO57q/T8NnkKVU1mi8eZRESoXqQPwwnj2uzRjqWNolTdDrHyoxz1H1jf30ddxV7Zb2AK1gn56T56dLpKaYBqFpG/zSNiHkVDkf20Aev03jf6wdT/jy5dg5nS8xDUjdpHxSidtGG9IBGkU+owCpe4hS8MFR9YLnCpxmBIGx6Bf+W1yxZdkvtrBZfNXkuGumeCXqjDGmKwCKkyaknDKGvIeKCfge+FgtGxDUC+3uaWHO9kkFeNiVLx1y08c806kyWPZ2C/P7eIIKmqRjLc86ovv90AQ6JcbgnXMiuymZrZe8y7FEkIi6Gac9X4dT1hc76mB4oCkJw7RyHYJNObGBXlA1mt7cts5h3/L3wczeRuHeouwxBOJ16ZDo94zXsyPG1Off1SQc9iB1YZvoI7dlKUzkm1/RQbodDOjg65eHLO2KaViRfUiNlkbHADikgP9iPAZSA8lQCHiiVf2VZgrkV0VMD7T6emv3VTE+AAhR0RGZv42Jo3yH/XR49yB8S+/u9mVBMcchgAYdg2LSNbNewK2z10g+oGCCFMCJHtRns/chlJ7fYFzgmlnSjnHrUCjaDB1s3QtBTFjECWF8Q3OicYQuXYXixRnmda3sJL/U9jY7+oplB5994CB+vEvBsbrrtq9haYIb93Qnslv7nKrab7QUq0vS2nckCCoSgH/mDbX091DR721jlFNk2c+w3ofjFDjehtdc6maZsAiYWRffjhZXAW7O+8/T1yQ+Ext8TR9YWvrtMvllm84sAIafFVlPTWM5SMaNrseeS72stiQ55rxCJRnJY7Wco+fc/wJnHX8iL++pND1AloaizPh463tdPgT8oh4Ic8COoY6cew198bqy9Nl9RUSisOJywC5qaHLwXp39GUDCHt3PcxRxJuP9uY5kYHYXou4JyGhwgK7UOY1A8iPykH9+3V+5ZduGiDO+KauJ1gEjF9pr5dsaOl23PDPqhhwVg9zmC/cugzD0295Q3q9sHPoFwuBi/jm8O+KUb5o+j4TlNCjU9jfKxuuBfFt+pcPjYJBL6ae5dBN5Aud6cCeb9ZS5PsskwH/UDhXm29lTL7G0oPdUn8IeSqTpk2bPJo18CA7Ob9IiSmkvtSx4/pFd7JiQ6PAcXdNw+ryfNyFCiEm1capRdVejupQzfWpnOE0ycgVeINfWvwEbhRoE4SisoI6kpMWWjgIOPyzKoHXsbo6Fanzp8ur07Cubpn6Atjzq65Fh3tzZpE8tf7BVT4GXFFOyk9jcg3inUKtHTkhts0sOmj4jBTfMje99too5gffOJLo8/PvW4t6TMZTFmazt4E37CW2qOL96QvkH08WFFV9I52xpCUiEz5Wdo1WMksXft2Q7xE2jO13vviL+EWY5Qoxzxzc/i9cBhnoLWyQ/MRXPLGJey2uANc2Xqwa2YMvxf1oymr5QQN0I7lqqj9q4wHtM5UmkLGYnw8CmzfPdLJaaIiApDWDeaisXW7qQdBZQm+47oBBR80Tq3CoqGfVf1PtZFOGjTHwOO9j6Y3PLjn3ZUM6dke7AxGJT0cwkhOAiuAyAV5+NqEcpoDqC6MB/eJaNlJuUb5OMwA4eQXr2actd3YWnuaknbk8RKJfXHi3cIv6+YMBFAbZMdd2bnnRfF3vGOFeSc9QXqzMY2CI+aUKqPGxmMTSUNo3nBxh7AxfH3ICL6U0FWMgqmzvRjU8/crLR4WyR8Oztmj7Ry9LQ6yQFYFD5LHnbh57UbmjcADGhTdEiGLfSrXS58a+K5f5YwU76IEIbuSUFbLe9nkL2RyubVIfzqnT+mE5hP/v6WXRbwvBklmlFwGQi9npPoSvCZdLQBJWA7FAv18oJXhpYmFhL76yKtWfowUdShU0OobzAquIik2SdInN+fASs8YQNPvg7lkawo6opmW7j2zC6TKeCpLo2EGNmzj+S6ahtNHmd19OaX4YSs02lewzefYD6xHF03+g0N85kpjCTKLN8Hxu9SFCG/hN3FNA8T7+LzLrIadQxudMi3SyYwlzUs6Uz2c1eb8UdNz/XXgGiLrwZrD3VPz6k4KooeQTHQ5XNQgeA6DlNt6B3QTBuXu/2snXMkSKg42CIMCGZha9KYEjqtG0cknh935+NT4of9DLBT8llpA2lYpz8HosSa1AJH09NMgUdgYaZpKKIC6OoZpBlvIhx5uFq0lNiGjXpKT7aUptN6+qZ82ptJYiQFYdJkDJrO9lbq8mxG2lckCyxLgEqrFHTJ0C/sSUxl4+aYoZerxQlMPXxpWkjdTu39iWHyxswqRDxOEa9ma5OmZzppkDnIW6hCmKZ4tdF7kkWOm1I4iNM7WyXwBnsQID2hbl2aqySrYKLJutaxPu6Oynbm9Wbf/mvZmbcn+nMqjJoThGTaGYQ/KfKgzckCvUDcksxpHufBB8c2KXmCM8cAqKR2VcD6zMb3VTJhgOYznIpyodUjrPv9rnorsiK6tYVpvUy7kDABcf2B2IHFtfEm0a+hnfE4n1vQpGg4P2Yqpsdf9G0wvmZroDD0RgBlCOekAlDkqz3KiRSwinscLsvG8fQ2EQqZdFqx3XbBSIRPOOHl9q39diUxSpY/j1sB2QQRB9vZURmN2eGdE0I5+hWjRKTLB44NjARfcJ8gieDiV5YpqU0OrcKTHqHyIhwGQmOoIibHcK27XRjPnz2/FC4bxHpwfQCrbvOolWMEsXpQZN9MAcynEPiMK3cYzqGVbZG1v5Zi88aAn1yIqwa7l0LUdm3i7g9tWcuowCIRdb0CWPSewtk/Mcdskhce1Xr4iywvI5D5VfFphurGCYHhVBOPblHF37heE9S2ktpaHFAAzNMUPi1zjQe8hl3VEHWJvjSbfR2ReZduNDWDuBx5/iqMsMDgvzeXEs3c2y7K8ls22k/R0a0L6twWSZJ1qnYx9n7ODTYFRhczHEhN7s/hpoqkI4sKIbvmaw7jdCij+pR6j2pxUZ4Pxcaz2xVYDzgxaXpCaq3IzUrgqtrV1Gq8a7H5+pSoFLGTWUGEEU6qcTyXSFwcLRry4poBrHEbKzFeBxZczFcpVGL6WAlLpeF2btK33OlOB5IiANuZ0ZF3u55tFM39/bj9eo5j1E+zYr6HBb6oAgg5gIo+6GxLUng4JTHctjCOm8adltHrj+7QAdXW0IK3/j+ZG4TFgyA7WY9R/bBQOW5dwAeLRO1TAa3IQZClSZALjaQ3kDN/O2SCLguH1BP3x2JG7VDT9WOHLbLcXKU1fy2n0srxO1WRMZXyupxszqxjRxGrOHt8MA3VVnyh+Ibh0/bn94ksF2x32ulJ8PmOgPeChNChr1KbG8LrmOmn9AFyQ7eQf242/Z5k2LfL83spfJNoFvZaK3UVeyGZVKfbbPdlBq4Oj9qgqk9TC8ofBeHlFFdplTiT0KhszeaUJdKyyrX6jNvDJoyYQLFB9Ta95EEFvyjrUpr5G1vSwMio49BLFxJbI2EeWKwdtTObj60DSrWaddgxkdg+e7RtVBBEWzKTVCgDGat0WEwU/2dYwGPXze8zoYmcijxn6Q9v8tisbyyYf7GRxkCwnoqchaGAgSz5NIY+X45DG7EDQjqJVgRKzYSUk2XruUr02plHJ81cHc62GgjPy9VATQs88PisVhqQ//VIUZRFe/4ZqsaJlj//HpIv2OhnAf/nmm8NPOkWg6U4w5nwi+fGqW6OgB+Jf/m9pzUgQXIgDjnaqecuWSN3tY3eU10dcTV9OVYnoYMsqDrjhVRWYns7hrp1llRFRMFQ6UyZcj3WD6kNT9d32wzLxfKD5fw6Bfr3ImtsthVgJm741pAiIOQhGrbJtsrBb1w/rgVXHscaDaP/cAkysBskfk4HDZmmBJr8mmiZ8/ZZtUwj235h4XHTXi+RFdKdPVrO7SGW5PxK3TsLS3E8LFkWtzw7XY/dFaD8QDo93L1OezqcxEuS7h9uaEHrCJb4ZW2Pz1wvr6ch7F7krHmmcFE2ubL9CWejeSfvFmorQcaQr+KVZ2UrwYZK4njybMVXmDVgUVwGbvEJd1JZA2bq+Om1CyPj9tOg+Ji6Uo/Ax+RbRMKCHkfLmLpSQVHXxSLdnq47mGYbR54HzmFUfO7+FGcqcy0ch/fP283CdysyEWpAWfW8vcDXBrkwcPNuEwydigFlr72hbwjTNClkMNb9eA/+RXPSgTao9XfYZs1HA8RLbFggu4IEQS+WkXflGbTn3WaMcQvJ3H/V/P5iiwIdW3AkMxtxAB5pTZeTivkw2ZnJbJJ4VvMo4zv0/pksjjMDeKtziR9i6QUij99ozTn05ZHa2OvFHf4vOfsQJVYprZ+amw+RYM9bLyruIT5VzUkNlZlW47+eRxxJqqtSm/9YqLRtvJc8BGpu1X34GQsM0GxSbQtHDJjRooiB6dNeXPeDoZSD36HiRDM45iMbJbn8bf82TgWqjZPTR3iw+GYm43cNBDfxWprB9bh/lAacxMoWT7PuacNMp3Ke0elqQNXYBiRA0mlIqGn2o8BkXZWVbH56HcA0fXNrHiQLZwa7vWXJoywDUy9PFe9bj1DxYFkq1gtSeSbG4v956zUB2+IRCKnqf7EjlMM1jDSSOBi6HFLuNM4QpitXjOtudY3pykL56o0xkryPFhuBHdzpCysP9ZyXk8v+kX3BXIvOS3+gEa9SIp7INY7y0PjsppoAEnEFq6DQBI7f0ZHrlbRYmxBSh0LYpV1UGYhZxsl99vkr+Ggmv3aWks3j8KpHlziABqMICxpP9U3HI+Fqb4mNUXgKpHajyeTL3JRSdczHTXp+q+iCoGZ3wQttngU9vYZNY7eUx97P3w37oUvMFAU6IOYLxKLR8fTJlMBK2ivutBGg3cmffK87/QZ1cFzmp2DirVXYYbaPXpXZe+JJN9lUKXCYnGsqbGDd0DFLk9zDUAdPstuVcIFtTPoSOFpyIvw0SwpcR8BOhvhVo7qVm54+rP061KuvYI0zeGgQc6PxmjLz3KS30VY5k1XmCEO6ZB9DLEToC9/kOS4e2m0EG8XQ2u/FG8BgEMl//kdZPUdMWB3uc8nMzjBrvljcexaBPnZjpvXlqKQWQrfSG/sJm/kQAzOVtjQInlQoqCyj1yFYSkkMRDNdxv+RMRftL7SJNNB66tRQD3ZNCD3tgUqwXUaNdEI98CFQ0x3IwVUARGuGbfX3QAqizwe3CccuxBmffb+ZmraHOo5ZGgmbv8LlATwjLNiy3/cqd29c6Y0BmbCdS1V1QkhobEOMaTzYowXrG+g71QzN1qzBtsNJF+Pg797MpBA/M6YK1Vd2DBsie93Jutf909VY5Q5G6uXx6F7nxWLMSqKZoX3paVOwve0zNsxso1ZlBb8HzQmJAXmHg+ljgkynlC2JR9CPvs73d0mMh/kr/HZTGA7Kc1tp4R/I37jxB4FLti+jikhj9/1htYUBfv5Oia4xIGbWz1PVi44XvqUK5tm1gl7JiVoMnVTBcS9XooQlRhLDkWSJ9voXFchmpm8d5o1goAoHsuR64OLyrWcV5Zs735XEgH4BjcZ18C3NqVmurNxNhIhWSE2VRZHqJVqwlbOa6HQ7Dh3DoWi0hdj/ylnTVPYl6eyNII0lL3oCW1YiMyq6tiPGQbjreUh0f4702NgfPLsyjtc2OiTjtUrtQ0VyGDp9BaEtwTAAndnQdUgIWQ7dmbFRCaZSCCiDaSGVqTb6nxMxkP9afpqSzzgYxbs/b52Yle7fcaseHOh/Eb08eB2Qax1teN3E1h+syKPCDJZO0E7vdy+N+VSPiIHjiecqNxW3+Cr0ijCAVZ1eAiQEqDTeGEygphwAgH/LklM+O8GFjR6aEsPqrnwvVyqCVKPlGKnCwIWEO+dgX2o+p6nZuY3csS404dZMIqOpp8UnzUn328vkM78urzOJ1ZkDDGD+dBwV9ekS4dkocAuP3679lSGojN0e8s7agqEDnNP7VX4+gv4op49eUuvj6FTC62OCGtZ4ruH4NuOt0b+5lItypuEIwo07YSRrpr9Cbjv9sML+6BuHY0F4DonurQqjOa1Z2Xo9SK7oUnJQzTGMSSwoq/eGIHbVYBhmfvNNekvOE1hlCGy1PwoQ282T69B5eiJNO1ANxfkbCexW6Hlv6iz6DBYPnSy3KM0pu54p1436X8LoAZHfDtyvKUZjVi7qAsH5kYQiNrsidxTWHCrpnYDpByoRLal9ygvA4ZhS4bx3xrsVaReUwHeRX4z9RBEFrw5r3GfQThV1rYZjXxLWaC+tSyMpjJ13kqsyOjpcrZU0ViCOey3w+LZnBimA4sX6O6ULEGNMa5QU0LUASGUmaUQuJKwCXbz1ZdJbZmJu/cnwEuJblibrYWijZf/jcWqyJym3nVywDQvo/05zOqMUBkZs0TZ0soaccr0GKoF4k96AVy0p00yG3+oIEqn5/ulQXztNUThr5vo1qxNRDlh/BEE+S637OQ6sJF8Erbg093lQcrp6vuIjlOYebXddg64ZtfWf1o/JPovHKljCEMzTzrfSIGy99szXxcw1KsxMz72J3yO/n1aaGy89FjYPgfh1JzxGnwVCgQslrK9HJux3aZkYDVlH8SF5HJlupwWRv6PKF/tMtpbGmdU0vlTh59YTLteE3l3J7TEDPwC5z2AUy9H7Jt29lCZpJjPltGDjFz+5c4bZAQ62XCL2HYBohRCW6dvLaj3CHGmi5zWeHvCtqFiFjSkyhZ9NO6wTRIB36bJy4iEuM3hMwc9EA7VOQ1GOv0ool7tKI36RDwvtCQTsDbkVvKJFaKr/dNbyWzr3OKpWT2l2weIDVQYNshrBguzMc8Yyzt+em8wjt2VgGqBlfXs4vWhqemBMQDYvDl8q4xwbz4sleGMkEheyS/DSRDwK8pGU90f0sRaBO6088PzRH4wGyo+V3lH8zvkliX1fgd18o/HRETwqt/BNFfjKiGA5p5S7Cs+fgomO6VqrCcUKhqbMT0zSNWeNDMqYn0plCtyGufMYubWAF5i8MTpjjUmzdAm/pgHN4/U7VpGwTSXo4wiw26nCfkCbQgtYlL5aoSqJ/T8XoUqEiiSstSPa4Yzgs4MTCzbdtHd1kq+++jnkq7Fs5F5eRKRLrggcbecSMKd1NUYc+2vWoDV1UIWQ0tOgKrTWkp9mAF4OA69/JKnRfNAmHsTt6ZLoiwxeKKxqy/BmxIO5GyoJ7camiQc0MPSQ4OrQ1V378JytUmtow5u9d6icq+KIM5mdDxHbxmwiUPZ92kG0QjOb5qpcX/wcM3uN7UcPOvZJ6JC4N1O6KofACrdqF3buiRZzqUmvt7VeJ8QOAC7b5yfOXuWadDCiYM8l3YayxCiEp11QYQaIlRm6T+xwiKX2ZuAKj6pH5wJuwhuxrnI8KO7VcaJzMVO2PaEzC6/Nig4C9VQ+mmPw0mgI171Xlfez4vUe/EFOc6qRhPZJ7u9wXOrIN97HfvZJCrIryAlm6pk9lJzDSDgUsTavSTJz419B479jxFKxRUC22k67mlxgbQNzXXGzdx9rIyLrVFPYUyllR2DFRxDpHOzYcvLkcfG76UOQVG/jvyr8xkeAZvxgLzjpfx0duPPLw4RBIfuMsOMm6vviC+lRz/6nDDnixcNV4uJ4jF1xTeN/jsYVrMPAk9YKMFGK2NL3obNxRH3u349NUyfIVnmSm0wBRzzMSNNKRcmtYWykd5cQPE77SO1Kw01SyEaf+PNiws0TzVdHOuV0LvJffM/Ha+6d6JW02pSAO9mENaIzLEIP4pPcN8oj9s9MC2LAHu4vLZ0A/l5r3Fpf9EsBrnM9QptkeHWHsBVDtg3yntoS2xt79uJnxR4orF31xhTU/wN8ZRZK07kG0ulgD00mBmaoL2mPhHJZkdy0XYyx3i09U8K5Xq+YW0dY5viT5lPMMO3364pnHseAOdNcnmJTUYB9AtqYIDQzGnU+Czu2VQJ8qu8Nt/fIzvZ4Yq9UxWTKQ65CUlv+PY9WIrRzPita60MAHUUG/W/ydoAKeMOE7AuOz9rc7FNKy4g39Wr8iEkhNQhBNBLqvpSAdSgOH2yIEo7Fbmre1ARGvhQPaMl55ULQEx9gw6ST3UIA0Xy57tgf7ovVz8rzsibHntEh1PKiu3bdTdQOK/7f7lTKYjKjxYdphkrP3UX/pXSso61xEIbMYFWK0wqw8nOJoNbFM1UML+yGMPy8qAGt5URspGTDjZlBkZHZcyJrwsXZA3vGvfKe/mtVyFXPzivTtGMgw5G6+EM/aca1fgtgt/n+IuPrMRBi7T5a+b4+HmTexxieyv1aN7t+UOLqSOxHwzZlRcpQlNXm16V9oZWB/z/u/9e4mQQRYk/b/4p1Fb3bdW7utcxYEkawe4QPbdm+1Mxz28VBJ6jlrh30Qk6xlIQG1JCnxLEjv6+jx4qPDBHW6sG19Y5V9nUBYONVhAAT4/JXiANh4YnOxP/YNQCRF+CQwRZOfADSN25e527Jxa0bwA6hzaqnXOC3s0w6Fb7hcJ21G53kPJvvCn9hjwYft5j01kSdfF3dMtEhIwJg1MCto+SzQYsMgSCn8rJZ5FopUnZBwd0eP8pjda//oNJyxO1ZXZgqgogJRZMYwgRFFExWxJTw4o2XMcHxtAqk5wr4nuQaSuNIUGYSYHlbjAdM/vvV/qCmePrzYIqx2yEYTCOB7TIEWK8y4yYEd4FhofE8GIxfI5qUCVz0TyMsiCdfbwb3JSfZcxsG/XDKc2JvaEdQZvm5DbCZU0THDV3BKU/ITlIQdqf0HTFjQPvvvPb8bEFaEC3Pixfp3uSINvxTbTajzJSripzSoOjgw6Fa/j/vUyKbkkjEEzrbQ54KxJSnYpK9Dxhdjlx8t5o1cXtPEpBBwszLo9Mx9wcDQpqgK2hR4EL04n8IL8KYGfEjlYQ1Ok7kkqxaUIPstc7LChVVelcfQLmlDh7RL9sZ0Zq/FyCNDyHtzec93EraW36C7MyXTNsZlHWUJ3TGzy1AYxBgZjIiaiwkvOq6pdIfX1koUKSQk0+ScNFBoP7v8t0P9B7vsDApocdc2mLy+MMcmwmkf8MWK18Wb84d3mmw6zIRRDmvyS4LStv4xROANwVqcrlLC+yvDORTWOCV7A67Dd7D2e7vuLXVj32+7yKAHFthdExOizN0WbsuyfGBlXyLcCIl73nDPj53KmO8mQqBE1rXZZlXeTNWyfFO+eZc0TkmbmbNPuJ8Obsaf3rUT7v/wAkYy4YhzYPXFLXxIdpDz81kL+mW4z+AJ2JusUpE8SvH/y45CpMwhgedFOsxGKhDt4VfbPTRvHrkhnMKi+NZTF/3IaJtsNKDmkAw7t7xMqGOrGeJpoUo7e/f4xaKEtjqBONCv2K6h+hwVNpRYkAtiYpBANHi/rBC/THJgqB4nEms5tSIKC22FCP+J1DIejzx7MUKZhymrARfp4ekPIAcP8oATySIw53eOFqTSi9n29ykSk8tBeDNXVk5R28J9SHuaqKGiuYhOKbBSQqa2gDpw1YnQL13b9zsvL9pWM4vUkDN2YwnQCBK9LwN2u7cU1hMZ9829qxq1Vt+gt+noE1cVdZbgVuwgdF27IL20FBw2RxKRT0s2Xp+z4zcC+3Xp8QSOpOy+8y9a1hUVNb7N8rnCGj8tc7IKwGXhP5BsqeC1TeF1AyluZszSc2R1qFPHs9ZsifQKWlyv+JMxDmIiDjJJ2zT1Op2UGyXLntRL+P37kY7CSEnaqrqWlWAUK+yyCi78DT5qXtK4Mw9xX/9v4eR9svYnPSbgkGRYQlyPNmZkhRo/8sXlkhtoGHvMqy5UGaeUVDkTuDnkUMTRlx2nsyaOGVaDJMhEaR4DttKgjY49V1ztDBKK0/nJPtsS2BwkDQNJ7Ysd4wcIgWL+0/DxhrvBJxwGr9TQz11rbuxOnb4RYBCatSphXC1N6QQmrGxMvH47kTA1g4ThS/RB0nW3mnonASglFzVQpbxdAbpEDZQ6o3cHfO5cqhPoowN+8HMdweqTqCrx3mhC+0EsWCftfGFPgoDdZXwIKbB6eys+D4DPtlbpayL0hmhx76Vh6qWK22A4LxOJlngKN36rV0KikelxDWa7GXurkMCoyFUWWxzrGGu4Vuf5H2mDk4RoDe+P43o/5tKIqYUafr5uiOYhBsKGilaUiFA9rEXHKhf1JPvniUPopUtZtRXu5H6nDYwbrEp5stFRKkhWKC57oKq0gXALzVZlLHarZr68Z8R8VVudlu6XBksby35CRgFVS78+dlq4eoafE94TxuuX43kT9TCGlRsY9yIM8srNc7zqohSK5fTJJl7LyIA3f9i8ldR8K3OQZYEnruIVA0kqHozpDg5rzcTwo5SDVIE8TxoBCOxLnWCD5XuBe1MmQvBzWfeg1OeyufprhTvrdFolLVgyWAXOZ3azOxOsyoc7lE8ewSt78KeWkkS7cwjIoUCebF/Nk6YFf5nkMKvSqCc7PurFHfNb3LIRHVqyHOXBvPxFhF0MX3SqxWDIPC20gdFT8QgAmTty4qR7XuTdlpuXoNVrjthrhz3rEuyO6n2gpagdoODgWN3PXqW0O0xC/Ijrz686tszqsJDcN6CktwJddy0oKMr5Ba5b0uSP6K04VAxMvd6mhts4Qua5TdZerLVFJdNJn7SawjCZ16rcVHYn6/TwN4r4xyrDksbqOG3e7UDOrGimbBRCq2p9BSi0YOud0pVENlpy6jYUJBu5700RXAbzBBHD21h92A6QPhIrDPsXpH+3Vv7U7v+jADwrFHshc6A7g1o4aEKzBCsCpWphW7umnM2pfPz0UWVbo2sFd9veGcvdhjdSc3P8hj/xwmP/vByJelJQiBQpLh3qjPEbOIQS1Ad4jTDhG8JvP8WYeYqWdJ227GLFJJ7AsYABd4X8VPPjEaWJFAaCyz1ksyd5LIMk4ViE5BLfkxvMqoF/xxx6EhMSpGNPM/rPz1SUkNXsFsnE9E5DsQHkgk11m+hhFirWWwTQn93rysS4k9dAtfLbVA+GAsibrMK8oCeO4GvjvvhD1Sw0yo7ocaUUkLaWPDGouXPipTuw3y+rcNAHP0hgpLF1UHUbWqVaBky+LdskL0Eh9L3T6TqB6tLVTMWgl0jOYhqKBbHx5Ib6ciwC7tFAWZi9UFAP0UlKiTMlhESwkP8oLNYYPsFW/sBLLYqYUGkCEOssFTZ0J8YUHwGBtjRSzMGzmon7gb3eHjf5WJCw0MukkcNKQuoiY67/e8GjnmFhjpfx9hDQ1vZlNbiZOhcQiBRj+g2YD5a+3Ditx59e8fHzwIjEMDAGqo55BFQ3s6HDA6t9BP2UmqYqaC0aCrhbtnrWMlaQeJu06CkWSkiS+fpT7M9KTvrPujgO9XFK+M+TJlVRYxivkoU8p13p7UBE2iQysYvfea58wj1HTupIg0+OsApCFkvh3J7RoTi8h4IoCBQEoxOKcFDeF62aFTIL4XV1OWXLLsUQmEi521Z7gxTb+z+jubhtKJks00Mt4tPsO727IVPTKdG6YhokhAOkO93fmGlbZXuQX+MuCU4MQGbOsmDdfJrXQMvLWG4pxbmJ7Q3whFWbSCGuwVoTGB1WLJQkX3YE6kKG4ubp7pZ9iJh/KisJ0xdhjNT2R6Hgyt4oH7jxUsGVET5NXqCH5uq9qtRE+LJoAOtP9v+NP3jYoclltj0dsuGDXPD9A52Dz6xofkS+umPNRTUZEi2/KkIUB+yXPDLwEQU3NknsPVwOpk4Zb9HAYjKtEaaw1X7QubAiBzxt/S4mxFJNthy/D+J5EmIZbBbgoisbiE+2JhJjG0mXTAdagccljCaP8kj5ohkDv293nCtgsa7s3jEgalL2a25abr0duEip5aWKJS2l68uf1FLJGvpGM9xNWWzSvGi776UmbG2DEVw1ZuN732twgSluf92SUf1FsbnVe/Sudbt/guHF5d0nRA9/Wlow4tszugEql1GQ+6lp9wbOztCiHpCYPbrNybxuZ8+NTN1g73mbk82StH2ghQptwGrBdMifn5BQIqw4NvGkEsvsu65YZ3y0Y8R01L2ddLUSjYdb0v8pbIwLvqotES3JWPRO0txvPTUpEH9f+9QU2gBuo2/ZJsyrGovcldhuS+/UrnEland/9vouGiHHdyPGqHwTiFSLK8g6b0LssMTR+IrbsWiqvAJmG2lSwmcq24SoGfucWpxydIXzZufF1hS/7ZQuUH3M9/2xVjASM5NchMTJ870zapQk43v8/0kPS8gSGQUrW9CTmiJKGlUZ9tYi7fDu4aBVZVDphLCBzDYnoGhDvg8cL88NRGRzTG+FX1KgVxqVd+t9s15F/RdHtiRpym2x6XOBhjDUCaStIALsPD9tTI0/NFaa+H1Z5I9+y+qpsJLXnPqOqVmz2ObCnYZjHXzMCVVkF4JoYObpfzW+HRM7BQq78LviUFqtExMT3q5NtOwazlVor42TEedepqeC9C8LRGxpgobMfcM3ue4ncoE/xUcoF7XZ7QWPQSR5sIF3ag6ebfb86JDOQ0cIRXqRz1zLj5s4+/ZbZ+yyqke7Zng/bytWsoVDlqGpZzDV6WkuY+xHWEr6A6g8S/Mw/jDni4XsUNDD3zyiqeiANlvwRIOTeF56xrkrUe4sHVecS8iAJUGd4NhfaN1nmj0ODmBEHzwPAFyQEInhFKGYoqkGTSvXjTIEc4xl4lq7CQ4xKBjXFupH0dAy2pAG293g5I6xYLlA3RxgkxoNYh6GhNcu0fiulcCF4oVuT8rzTJ/4HVZ5g8G0ThqhXDu4EaXyxY9JvIzgSobbIREr80rACgYCDPjxsSB6q6IxkI/qmTpWhBdyUeSgtTiJ0LmCAu3toQmnB9V54k95v+xPhU3Q8a3azrER0oMaS2eC0N7Ke5zEpW89VFk2pYpiHaLUenHPwnveZBgOio12cgJcAckrEDhff9Xo/Bva5KE7NYn5jzobUqgXZGUBSlXMag18KrX8pwFFVgvo6kEHLWMBHT3Fl9t3JwOEsmF6TEWJo7p1z+7TOMcEgDwmZzEBKyomvSU7sEL4IpdVS4CmRG7LHvx5bef6fQSs6vu8VYXDpsVjTBoHWASGDILiNRG7K4tS68x+Az0QxpqgaJxkZkxUVnajqx8VNx8EucTTbdc2Ne0PotfM3fcnvjn8WAw/6MQtCCmPMMhCiWyr70v9nDceyANxgcRVmCJ61ztiEGDeqznJLiFy9sqLCuZwBZPo64ZHvWoi7zSMoYddg8K76ZIB62yNsPY7VefSY6m3RJ4qDkFWCABtO1+3tuCeThIp0gXS/RmtHFV1RKeZ+GoxUSQ/RG4dQS4vKhHg/uB3hYvOkRhA3ekU82ABa7IO11HBd0Du/GySRleHv4R8xz5Daz4HVts/xxaqZDLpAFOxPIfc1ukdDTfclLLkBHg4p5mbhK1Dj5dhubv6LsQMBJKoYy8vl8xokCQcS3+s7ycwSJTPUQnElVheRUeVn2gVTF1AjlFAItA/xSt5AinuNMX5agyrNh4y95C4KNNX1NpF+N9PUNBKDrdY2qquh778Wnsu0M+XOUCiJUxtCaLQbK9iphUUC77k5E4xYTOvWvNrTpOiLFWBTD5ugLWhUOUE5N0dUVix4UjEdkvjiRtGjYhyp+G/3cJV4oMmxCk7Uml1BX4JYvtNlEm6ooXg1UxRXaNvWKITI2UQNLOYM0HKnuu04ClUsI9qZvvYjdTUoR7wE9dll6tzCHj4qr/t6xVdBbFYCPSRnUZdMKJn935nS2q5ScNrh0NMET73OUsY80qcI9Ue5Lvg2S1UEq9AvfzXmfytQYHM1cQ8SMNgUBgb1HmNGAQ53Xnggwz8y2wggWmWxHmhq3kWFiByCPlBpnrX8gG62PvUN05ftWOg+PLyf8EsClINUi2YojsHIexBYsSGCKhM/iDCF35dpJxyrf7USETXoXFr5lIJaznwqrI2+0KmUc+lPxgYQ7eNAYS0c2PeRkzMxGJUX57DE9mRTc9qaHV9eQyJqAvigQTNgBENyVTI2Y/irDtraYanXubJ9+Fxgt/tXhydKws2gfiJy8S+eN2is1KrCtSR3sr721rirjC89v7puC+cj+lYZF9ONk4tp4xBrsKxZb6f7AqYDoCm/S0+lFm1UGdxT8IfzowxIwm8cl8h5+esgn7dmfqE2ciTz7fEGMga51cl9qS4lo1Ht8IsGqap4qKevh2h7LkxZGadmd9pMelfAnI/JvAxcfR787GIdoMCm7dJnMegsH8QcFgW5ynGGxQKm9CSZ2eF5nmGUv996fifbbOtUqa3qUAJ2UuikwRClnwm1tSfIcTlit8dC05qZa8y9D6TkWZlPoWEzefMRg+ZOjtqoFLfNLIpjlsHcTW+TEQkPoGmo/WwX00BFyFA6Usq9guRlEjVrgTIdFuqPreX06OUnC88pS6LPBnNrNOkKDilcyLPC7+bNPGRo00gfe2G6YFW1hROGDSGNmJkAO7YoUTBiuqS9shQXAoolj9M6JBzT4B7PlEpEGvYfs0B5T+RQ5AeJtEySFqd/O/EQ38NPAtMwH7smGO41IexU6DwFFAB5F2uAE8nAyNoGEsR4NL/C8miFB8bzwUtvB8C6mlhhpyIGnoUxNRvaA5Ep1P6J8KblrxKIYBWQAa0dy75TXtaSge5zqH0/ym6fk2H4YoKfHYrLxhh7maObOX/R7qmXXD/sWTzc5ab5WlP1LMHj0bb3QBl28czSwELSZ2/MDuYnAEHNOxdM8UhC/+YOsGI5ieFKMC2/SCLLeXRKZPNhpthqDzFmtpWvgt+zA8LojXDhc9CY3u/Kw8wy4rmeMOmVWso7MN+uYG6OVxMbBB5sP5H5Qi9m2dnfKiuDyVOjaeQ4yK/m+aTZktJN0sy1Jr12ODGBPz8dlW5480AuDo7r8jjUQdA90LiKrG3sV5GDV0OTB0gbVUFOxEpJmiPTtd/gdEj4+pGBqfFUzi/ulEz2EB8FDbO6dRxy2VfBzOJiOPUJHwv4hfcvQ4Gor+UCaqZmQl/eY5mgMsOND7yzPch8zV5Uo1NbWaTYK75LolpwMXSUGTFMU6e089Kx61e5wz79TnqRx9e0eQrKBRtwqb3sLD61CMjBjQ/N17qG4RIuMgxZzTYgnqRokZeiAqPNNfG2qCM+ppf18pk0AGQORVaatLoxzLG6QpIy42nhJAAmSl4gIiJ8XEt7Z8X+qk/5LhlobTABlsJl2N+02ImWvDVSdk/QWiyXJwLYoyVMfJDmmzA6+5tzaPEoR5goKx6f0fDpwPdeOBR+o4tiR3XzT19J3RWBGvFSLhzxnEZ/J8JjAYg1x7dCArmk+nJu9UVRFXxEpokmOfDpI454o32fWTMxlIqu6rWtCZGvaFjs2CCIt7fVpRVofZibpyMxcIQ+z1uRJ62m6VZ/iVGOVwdOuDfIrjRzT7UdUunmFniTSymrQXsQcUiESUGae+GSDkfLck/E53qM6kpFbDEUXPCfbKuuhNTVnbghGA0hiy51aeqV91nVWZ5S4VNDP4jU+XyrrQBfraMtpVViIc9Os9Mui87JyanwcUsrpSgbHcupmbr58WVs+m9XpXXI5GgrFpzPa00cynusf5vf8yoGf8B0cwmK7T4o1zr2oiPXVfE2GVB/BtKHQIeXcJsC9ZIxthCuonqknWZDj86Em6OUFj44KA56gWjx1ZwpoKXfen+55ueAO4hHFcwLIptjzBMV3aJyfqgmbOvOMM7+sP549CQ5Cdz7s/ajWRK16TQGxLfMoqVfV75nN9hYZo8uy3LVnAY++8LqiZZ7BlrU4oAJW/Ktx3d7DNTVxlSsRAS1CCpaLT0QpeKXACkLAxZVe78JaqS14ZlL3AmskA3qI6geG5k6kNXDqbprsvh8jcDWEgBMO1HjkUjaTjtrRkkxzM6XVX73drmNiStJSygicifWe8NQM334DBzOagDM/78KizuoqQgLcpsVrBg7/INpnB6TytGd21Zn3427j61llaXLS1sG7xc4vD2BSXZ0CcTMA476vzV3N/RZ8GVE9N4DxsIso0AsX33WiLgPhRyDdaofPHMpxhVH1SaH5Fd3VGAmalEj+x8a104jkHGjgli+jHfbxnwNRfxvRhGUkMUImyIdHhaKM3r6h/5vL4W80z+pO8GVtm3aZUH++kpZIbk0sHsAgSj1P4bNRRCoy3hkCgmRrqrDrLGTZBEtQNRWg2HCfoD6Nqm001ABSfbtMCZE07Gq+Okl2ta+RocMVhIm0CGCDmi4h5Vhwtuezr/bRyltOXk0qFcai7x6a/dEQjCSGBtUD2AsGfENx57LVksbG9EWu+Ivju2oCO+fp3xfT6zXRH0dCETCGUqaPTBzimaJnIF0Gb6A5KxYDIbH/EXRpsKtEp6VFRY6fUIIcWE6WHK956GDO+BXq2vt5m9NPjn2zxaX6bC/kMo87zIHlgzpWMukNDMy2J4gdCUBlnDb+M9m2st5O8SmIYmtPTqHKPaF7FXnejMm8M8cGD2dm2An42l87lyJgbHYRo+lEEdNU4d9+4QwO+hn5uphb+6Y/gQIdudFoXzA38xpwsscCSTTB8B/hqLtxRr20AfN5t6m8NoUhjites5Ti2U73QHPwKGSzVleVBuXg1kvjYfI7yPXHX3E24SzMEOmedy+gNXKekkYEAOXAi5sutv7FRjqy+zWbMlQG2GVoBDIpi3HMHyzQawAkZhJj2Zpia6gPBvs6dbIwluecgT+SNq56eRrLWc0fFs8KdBjzQtaCAfnuSV7pAAfafovKOHbVbVAELHlPst8Q641K7YVGPhKKuMrMX7ED99jKwZSOhT/BvXChqwnBhGrRgPEGuOO0ZIeFq3h2buL4umgYUVjyGZcnRzf85aWdAlbfPtgkRie+YAM3tX8zPeWuQkXcRu3RDfodo3Pq116LgLy/mNNY/b/JW/ibubx37xZ/5JNrvfqpq/H25oE7e+nvFBbOQpbhstV5M+afVShUHti9npumKo004f5QgNBuVKZehpMgi9Dg1/qUiaHjeOP0EmXxQHqbRTZcIa0pi7eRfCL7Lyv2GEvw3rZVJ+JJoKMaT62xWPXpixkSO5mwhzVl6XP8UhLR7mK0UYIdHEsN+Hj8luCjKHzWbDkbN1AlBjbaV4hVbWVx3WXMaH069J4Va00sVlSrlCs4BJBcT+pUjCzQ3gILY6VObPzB9plefANIuT3kSSLQP4XL5RPLHkhDKX9Vazm4eSLrnEsoSjJCZDCuy40o11kX87aNBVn1YQYr+NJUsU3gUIoqxqYV43xoe+srQVR7AGhlxkGlJ/M7VIZUa3n562g2zwPKr8xQBJq6qwK4TdvyGbn2OTfVI7owmn2gci8iBHpOAloidCqDk5GKrjFTusuQQCzUsw/OWhNa0Om799DO3QX0Ljts9CGciAy/xkuZIQJAU7AtHSim9IWV802THJdzo89hQqdqrrPZFLrFO03ngPqfznaH4eKAi/kdWVMlRKEX7kLKhxrl1UZiKisjQQGeBtpvGuwh3y4egqJBAEeIthq1+gvoRjhVHbcu8UrRmijcXYfjlIjovfzUOnhXeL1jFZlpIYQRHgaHL/5zX/bYsvy6Sg2CQS34ZCM38Nj6g/YptW38xOXHpuzSYvXysWxA1WJxf5dcuqFuFQt91HpWcz95WIpbjVIQYlAsz3pICQDBUl+uuph+sT4qlea/vSBtUtgpfZ/pmyIz6Rbuo7BrCwJFW+gbEy9Mig1FmkYjzWlfuF3xKojJhmF/A5Dq2Bs2D6ovIREF+18i8NgVl2MXJc/J5FdBEGjKj3/WxSsYUkFJiILkUNSRHs6r46p5ZRXCk62D4LvfqVzzq1zmINktXNL9KYY3YkIbtz2iKGSkQ0Uh1FT825TxOJoOa6/agiTkMXxQAvH3OHZ2UlgUsXi2dF3X1ToV2rcnh7P0wiiCSga+ZmxQJJ7fYFtVmQ505i68wg1E5FUwa7lXDGT43UhGmrkwJ3yu0KBe9OlSUNYv4eDT7AOyHvwX+snXu5HmG8SdGCErm6etdudkNp99DrqXakaHwUuIyT96naOkgJOo0qtPsQx6vnLPFRA1lB3fsOhBV0cb0fHmSC2P5fxvI2S7fhEXocDMgvnZPB61bZkrVbKCSKB9+CfcSJxZ6JgwUP54e+6Yyq+uEP0lsj8YzDkD5W3QairjqlkROxQbO8Nf+wTpPmARrtoFTO+xYe1rYiztF3Io4Vs765wBcZp7euIhLMQ3B0nMOOj4eK7mFkEuo/NAYtPWSJA3bZbd4C6OFBUJoVCSMnGmbP57M4JLeModrqGJbHp3LLXhg7JqMs+zvmeNRgeleGnGE5q4tWLGBshxzlQYarNTNdzfGRyOrkOkoGGuSYdFaY4FQFtv/Uw57KON2CVTufZemxNZ33oNAGxJfwG4GYNtFycfZT+zwOvfRps50JbuA7UJsDBSfqzjkz8Kl+psJ73sA9fEV4FM2XRkxdz9zMCl8Q2RDrCOeKq0n5wJjKuKPwu3ApF3o4sa/7KhNlbUBccDLT3FbCHWUf+sjPT5NAFOy6jDQZL2MqUgKpYUTIj38eT3KLfFCZSUtygVMMqO5JKaHzAz0hZSKbg9NsZ0N1RwCffoAts6CHMW9o0namAp/55A/vmSwnkHWe0MhN104VlBEaKvHNUOyycRJXmRwlX6kk5VHPA5ci2bP4kaqILdN01PgohsoazJxdzwfAoq4ciKcktw6L0QuW9bDMsQvYgR7Pp8hHMphwEKUnTSfxr7EXD3rYOnKLJCvG6UIKukXRn6OKlYkqULcvnnUR55ssakgxNaIJ+ig15eHqZdF/Da4kmXo6kITLfQBGspjPiOgyo6G0D1nXLFY8WPFQVF42tYckySHg9dMUUMl3NUaAdSNNePSvr1f9gTGtmck6gUpt5tbl0UvWkHs5NLGtwRgMqR0621EXs6WmhmuHlP/n94wGRrxlkwKOF0cXVCJHRGloi9yn56r92erkXsHt9pTdnDxZ4Uyow42DJWnhflQe8V1/gWI4H9xHfx7SlaeSXHoKKv5Oi7ab8cjOHy9U6ZQ1h1wu8hG8VIlm+MJ4xHrKNCRsGTiQN3wU/cZVuoKkJ0CYvFHVlEn2NbzQZD6vXdHFI5RpRu/SQoJ/dQy5vyXFJ/NRTt2cjTt2BIm3SzEYGNBKIWBl4hKteSrfHMvh/gQnKP+Luzwqdqe8sG5Y1UbJGjjkKzy7KH2mOlEtjDToHv0F1DzUYcPJCa/Ajo4RII5zkfnEId4/5zAgL0Ba8whoZqpN2oozE1th+4d36pmDsU+V2vfX9RmjxW4TqmHQGYMf6QiucumzdI9Zq+NzIY0XrbOaAlOGc9uVyR351AfVWZ8GgRoOsuQhvDQndNrkLuxWCUMJdAcKAG0pmgZlD/1w9LOMklBguPR1RKljv8yE67iL765RG5Ruv5qrQsX2Vv1zqdhQkEVi+u+S2k8kbkgyzpEAL33adAnBGmeiwhWAJ5puuHXTsDVdsjAwGGMbTP65B7Z14UYcp31tcjEf2uJSUnMsQHfMnz9PzNX+XDlZSi/m+YUQRNFCOslyNXZqduX7XmcOMNNAdDp3pgPxsupoQb33adg1bnS12TsSMH+OkVw/evazix36rNL2MJOGWtijlL2JdEl6ClG4ih+9paAnKgnBzN+4ZuSUCzxMIaq9hgEg3sIZOaUORRC7546FF2II3pUrw6IJt8V6UQVdkL6U2RJrTGggWXVL2w71dcFZtpMJS7iGHVFTwVYdUgSAiHe+OSf88XrWhUKnvWBpns7D43Q7w3ptfcaxj/+nK72So0sVGvB6lfNLCEu1BQaf4njQ+MTQoSN5U1Wn2hk3GLTCi0sqP3zNg9I9niSiOi9CB/QDmZR2ekSv9hOZ0yXELsMx+g15P2iYatkO6Kf92YkzkVnxjUrSDkunfHdvFbZlDb/zXFkCOljcOKyKEx/D8osGk0vFe7Zr/DQIt6v+RgSMuiLMUTEf2XuV0KtoFie5cIdyjQ7mKFdb99EEPYNx9s8GZCud3474Ob0THkyPW1UBDET/0saWatOkfE28nUVmTj8/VtI6LMuJczMawCstD/AmCwX0gZfN0qgyCn4zCmpE1qPkTS/skG0olXbWX0WW4fmvmgHMVZ9xVCZ7EcUv4cT/uhvZuUeCDwEA6wAgiZ6K246CTUWFciTCZZ1ZWcAGrZeEp+CFkruGWm4oE52y/Qqxf7TZaxwcDfsW4cCeT2ZMK7isVshJfDXuPNWgpMBSWhM7AR/n70rw6dGO0Q+c0IKVkRjGHZvr6QtsiuzIvCQOl2fku4E4hpKZTOOdewsg+LTd3mj1Iy01Funrvuv/Nzz4ALzfu/AcWWpL8y28LlvTv8/zW68uNketSQ4o9mb8RwgcldbUpk33egD7jjPKNvg7HpchFkPBR6cfPTlRH8Ir7pCyTTbCAyu7BT79hP6AFttvNHw6J7pzr+sOaj/A6mqOmKBzdqmr8N0Wz6O3yvHPms0WORqeKYbdLvXB3R1zZCHT+BKoAuNviKGqA11+YsxbgF0Kc0oDZrhiMCdYJRRW0l64L4SErdEQoLJshnBT9DOMZSyHzhyPO5e0lqy096Mh01bKJqrJn2zFhETP/g/IUyVmvAjE0lMGKwV2BW1+bYxdAmLyw3L805YTwFVMijbCbuIvFBl2K1a3Ouq2kx30Sxa+k2caR9p0m73pJM1Mw6sLfnFYZpr1rBzuNyYJGBTj11+vQop02cRKdJbzEn7R/FAe9GqV+0iIVLC6IGAp5HrqAuUQr6eRKXZn9pXtuwqYSEWR7YNsRqn34HIVamXh5djZvVDsYt7RpxZnRjcnXyYIURPG7B9YvuUWI0C+2aBNGB8SfM2if/ImB6iuf2fbf7B7pagOJHeXa/SVM0eQOoasdZ6KNS39i/mzYUdz1/GQ7rsSb/7zwDx0djzW935GFI092AajOUuhDLvoAchJ3h1K5JYGyZ70RdvqpgZRFBZVwyNl+ZhlHyyBW+Z6fQJchvaWZHt8bGjfjCnRAURWk+uld7ce7aoW07bjSF6qMUovQE/rt/rMnoCGcpymmbvVBcOojt6O04mLeQSVgm3iwmms7exZaF1s8BtXjvL9SZ15xGT4n1D5PijoCEWc+N8OeDTX8mZ8jYL85+Mos+PjG8O5DVvPSBwj0KngQ8cNmuZlbe9b9fAB4ZuZXclXeIathB9DaPZ3C+/3rRvfK75VpW8VSiXiAoafSjapVcbHrneP6cAdTi76hs+cXv8vq7VC7H2GkLHMNQtyXdfLss7Prf3sOy8MDnGz9vvIp1pB72ke6cd8r2FCuNDbT+awjjr2rFt8cNMGkyfl4fE937biS8p9kTpWcsNwmgwuf8xEXVllZ3nYHE65V+xIRtytCp38WrVpqN+ZAS9BlOFWNca64C1JIC0vwv+DhpHboi7j6ZtAGvcUbU7zmeePvUDplbD0N4mwx6B/0TRlHPpzZAQfIHp78s7ZHWj/6EFh3QY1GwfzFMp9hsHaaEunda7cNpXrOVsugEAaXfPUBqpM0XAf+3foGjLxvciUXP+hZMKOSoHqrzBpS6585Bnt3jGtihAgD+6D47iKjbPnPMmOpP2Pt60vavGI7vcGFptfwUmVTWdaRRJgihIFirRS4Y69pZowlhHKAHaNxLkks7Ml4d2qPmYNec4Q57B5+/lgZMunj/UYrDl/++6gc7A+5MOfoc7NMahMRSP+0mXhkTEze/22Qq6FtmUj5aNHkS1GocKYAPS3AkewA9EMAderAqKyqYOrw+zGK4Iwkq4/9PFdI5w1lyfYjGDvgJeX+ZiD/MGaR1j/R9nIOx9WLX8jG8zOyol/EydxhID3fFKvG908o6MSp6/L8hDXzRadOrEUgDl8/X78ziPw0J16OSi5vO2OlRICqw7GPbIJwMbxIIUsMkI5gRaImNS4gIIbJx5Xnnn9OoPcfGIh57tunKJNJ2iLY+m18jW6xzcp9oPIDanHY/NoFvQHCnmxRNx5NLjyVGOZNfwwY616uiND3isG+YS5Bum2vGu8OICPJl+qqQf0MR0E1jgSLn6VHSmHSXnuut7eetqTnSfJ0YNJiKTTU/mk0/xMMWYOl46kDZwJvcmxDJvPjs8cHG9XWbLiGD2s6GwMiAH20w5kIwYUXSCGBIdz4FpRaGvcnkdz/Z0j5c8Jo7gmfbFkYPkXVp1H3xEcQ9QA5ExVgV9uhpDEu2Y+S8yaX2kNkHSsBTW1gdwQwYhZIAO+//VCwBxPS3HlILxAG8D5x38cvSZZMZQUm/82dbWO8nzkhWGVgpN+OyoSU4Nr5/U8z4dmSSB638o8BwYe09KPOUsUDbEkj+PlvdcJX67wr7+KctA2mzusjTIezNTQckfPx/5YcSccRhy+4KuldRDyShUwISaOhQInRO7AmKxCiSQT/GKhDSp8wKR88NnkY8MssW7uQ2zorFAsF6KFFhvPYSbu7LI2mdlh4pYyg9TlUCf3FbbZY5nSsCLIrFuhv2FTyXbdT0XGFBl/HVA9DVCCHlZ0YQw/LDOKzjl954yw7LUzc40s8V6/LQzHUylDmcJFu5enTj2vZSa6ouifJENFWFKk4NXPUECHpz4VsDuqr6sl0UjUwMCavgERqT/9ljTSzJWxmZ3fVhDK5UsNvgOCAJ5N4gUkGnq0b0LE4HAh/2nCmh4ni/JHNeSwIJkS+LmsOE26c0ZpD30NgdwUC5BFMtF9YEzfpbJ7mVM3RDuQGI7W3xblwEvdxadgOBNyH8K1qaxxk+BkzE+VRe7gr+0ry9h71x1scKWWvS0EaayQxfTTRIr/G0MHkFjZ1ciF4WY6qAURGOkRc7pdTt/fiQvWUUtd1THQJWak5JqVtFGBpmV+Du2l2C2rWvmIKG4KrtzL8sLoQdflAmO7cmQ0OOrAPEk/GEdNU7cEoaMdC2J/ouvjKIMVAPpm9N90nVqzw9iekXVW+0nbSrHscYAeAacmb6Gq4BWHgVQAEBZaYstblkpcTvq9zeO7YJCHNBFblBap+m3uXgW4TZDoRjXYFKDJ72KbZvbXL7ZomawlgyN6COnygSYR6mQOC24TrjwUFVvgpUG2Yb6ylnRvrV5VBELDkFIJ8K12jrNHFK5hkmFW+2QeS6FJKLXyTQlrSyUzr5QI0RcyGIVEDohSrgSFZJ7bUn8UgSpDfyMg1sJNI/PQKGT+uJwqAc5+gCkV+AU/Pk3+Lci+ZKyPZYpV46ahy0oACIpY7qsu4Tz8SomWldRfaRUxk5Osl6gYVJMvSK8OjXtyiASoWE0zsLytHx3aaV+4aOdHtvmBAdDIhswS8t1MQ7SRYt7dXDboeYvQshHBg1ePmtczleKmeZ6XLKz0jQXCrQYbs8Nqsn8GwccagoNLyWPWGkIa2qPYQ034ZsrF0se1dREowwSh2v3xAJXyknzWG6if33zJJSWBKwKiJlhY0j/Q0NASSSmJX9vN6temcyXIJWUEIusz83h9Ta6MoE1YGLhp6Oke04sw9RZYmkE9XI+OW5ofJIA3iSPr8CPdMIsTu3GUdTe8OkRSj4684uiQ7tCyfbGxQjpcvOVpY/8jaa7SjyKEqcJdV7o5/O7NVjaiywCQkaj17yRwpPfi5H5PLXotila9tKWwL3mD6p2I7Lg1eTwcbp9r303OTRHmbtaTiHOLW0aOWph0rdLVxkOMA5A3mFKiQrMbqZdnqeV2uh9YFpR6j1StAJKjvLXwIDDtWJGnJg8gIwCQz37sEq4GqYpWDQxQi86FZAG7GLTQ5V0kP3HyKRR5S86MbRQHKek1Zx/1RpXEsGKxyAV/Hp/04yUpAeu1uvYK4Bm4PMmcBzyYa+X/4lHKPZON6fWucI1T0BxwLICfoimlYWhAcAxWj1YGbjfKOy8TKQ5WCOeiOfXJI0zlTp2WD3AFs1zejMYp/MRxLKg0SqufF+zj9OjK21O1gc56xdLNO5i6lLVR+Gfe4wj7a/z0yy73Q4xoBAQz+gryH9knZ/x510HKfBrXY4eChWzTtH+EevYybmDVzBrd8IxfSS9ZaitmK3d9+L3evcZ1fGB63ia4stfw0GXA9zBQkiYONuPgqlSZ3aM6AXjyPNg8Z8RjGFXovMQuPqgCLX29U7JShohmhOcQ0aMl4nN0f26ug8Qd+Lc5of8ltWgkB/sIRXjUokb4dYNqtP343QM92tNlQd52juw4h7LL3mDIww+s4di0ZQC17jxCpY9KpvKSjb0RA4aX01cBs6czxeZT3+tWms2VT9cecgurNhVF7UDYC8IUpaQGaISU6NLZwpdzPVisIWciDTABut4GY0LLPwlyBVuRRX2Ig2+E/WomUDX3HYBjEqNpntagOp/TmvczNXfc/IgQ5VKg7N5DLOzSComDEp+7RgIA/0T0HIOrCUBlcGJE1skfFqWuDDBUbpqLeWbARvBKi1LFEDOBRS0u9GcBcmtRTmGNmIuETDOgfy79QaB2MLHIVkTlSF9o2XE7CB1U5rnBfM9MM8sHlNojpxVJuZENwM5AVa8IlAZ9TA+yl6zZEy82AYFJn/EbqICF5ex7NuPNkn4nuk2CBbkLc8z8P4ePyOAfOFOwRWjSqI8Sat3qRQbgza7YEdRBDyzJuDjvFbNYB08qet7GciSOgTPwqKAsl/oy7DYRRj0bHN52aTt9z2s604J936nEb0tlNBbqnV0O7Nfm38FTQfgk8rJQth5bIu4ihDDZfZAzHdVHv7g31a9eTONhGuPt9VwtdKWtiauTTkzB+p2Q6yCXkhqFSlUnTEjzs8YEoBxflEjxMMpNzKD5ou7K++epuTJlTulkJ3lPZEyL9sexD64FCDfNJrH67+LlDVS7MKOokH3+GFKja+1o9FGJBlVn7LzyOXvvaWZ0mPAjW59HKMvVaG4BD+CgiNsxtjvybcKFL3wTogj3fFAmm/vbIU7Cd952PcSlNHGZFZ5qsKqm/Q+nqCzts9mlaEPZf8R/5vkrjH8mJ+bUt8RdygaER6nqT3Vz7H2DZxqpGzC3SmTEbI5mZ4Wz7m6sHb0Ka0Ya8RjMivvhAdY//JEXoN7PSNlWqeGhU+/6/JC24KFgheTO3txJuvJXF3Kc55dB2Y8Hg6cFlFxmWjgAjad8A9iOIrOzxttXJCB4bHnIT2NIvwwvNidY3oMYWJWLEkwNtQ1Y0SbPjklJnkT6AoF5mBNXc4YEmjXilEcBF7rkgs+tt40fbNH5GZUPqW6dJbrcixYHd2Wyx9FVnbF791fshdY2K2KAtUS1i7sfMS/TU8+cRUCxyEOHfRVVZEzSB/bagAQThXrV2RbGvPsYP8UlizyqjcWwJRHbouW7uQGoEXsVyMEbBAhSC2D8erTIfSizQZVhZBfEQQWtBe9xDI9hDr/lCg2zrI8FcKTD5cNu2HCDuTpvVbGdmXcWHtlH5P/NCm7qLnOXiKfQyqghWkb4h6087QDC8V4vj/nX2DNI+h/n2UY6IqKnDoH1xpcxAtgHBqo+0fthl8uT05kpmGQrw98CztPvrtk4Pv74650alu8SCUzE4xivd6tWRTe9jC9lYW3s/noMW5xWDPSI+tA4aPyLHp9d/6qCJvZtDAfngkpQY2rDIlh2Bz46uwP5dSHKW8P/Iqbv8/tpDE9Z/BOzLRDcaHp91dsYC1HKq1XLyIGKIaF1tfoWkAGa9Xvzy9i59amWtNPVwObvEb24pP7S9S3lkEXYFEmvWBKbIR7dn8NLOk25v4H2PE3Hcs+Iq7qVjwNRjBQw6+1YcEZSANhAKAuhRjUh1YUv/OkEewzXvxLMOH0B/IpzmQEZsl36O5krVKFKc2mjkamKwFB796mCTZDua6yQ5OwMRKs/ZWleWJcCNgwzg89pYpUdeM/N5SHzgsYeeFrZ6rdG2ePQ8vsEaWEjOAaNAj5KfuOrqffBSy7Pfv2OpPQ9yR8qKXpPlGJv2/Gw6LLWa372sV/VKR3e9Zi/VWdDBBSuF6tMLupv9SCmEAX5HhugjWKI+e5K0vMonqB0XtmmnVjzh500GUMXe9UwDMIS3bbP4o081Hsz2IKzC9K380PX4uVN/UmuB9gjD4i1LNHrIWTMXgBlhoTo4dxf8VD3M/3rxiMlB7/oAdC4NFVVTf3MEzRJqrHzt4ElWulRDa9ykGp7X/2WAIbYZIIeFo1dt0X9Tao3Q6Cgvgj9sQ6BoRjAto5ecrlYpG1yjYd71zkVg7+3RhSvdhoQCe++vt81egxLAMsFeoY3y//nqElhE6wgH+LgK4wSPVBVWQLEkwyRYB5Ou7XkEhCPAlrDH2tCj52hm4Xy/oFbCBmiz359QhI0WKDJPBGBTtAYY1yd2BfYIpXcdqvf82dy3Bmyy6z18hLf6ZbECunytIB0zxTJNiz/OTNIQ0/maQnxqrR93zWT0iDyAY0Ducq/g5TLZoIbN3lZpMHSTInwQGTXSJYdiy9bkCLnwRkAyU+RBCNZV9+d5dOXDA1A+aVi6Z2Mw3YJpjq1xT1kCIsj3Izl7W7c3vqjLYKuCZ8RMPZOXODacqxCnJLRRPH2sEs/SfmdgSLE+lG3B7CSEWN7HzmI0lJuIcUX+GszdvFOWtsB8tlqofcejX4UzFYU0FSvFY+jCM36J06z0CiF3waJA0Am42jkDUFE3w+4RBzfFiCKkQCWPNlzXAQaR1rt4wze9YBghcr4zF+4jTlX2m1iBUEgHWeVNNEegNOIZu2EUdn6LHTUKfL4YS1vyGXOGMVaxI6WQdntyxpUJOVWyVbju9aSdOieIxHDwEu5mu3B1bHakB/EO7+Hb7HbJ1CyaVeywlK2qzyhc2/NMsQDsw04JhzmhEvy6Eks11GOaqo2qPmX75Sz8P9D5ttG3L3uiJnR06Yc1YBv/Nz3CQeJLTFqDHMYsrazPBbqlHt0XOkIAzWnAeDDIn8kFgi3yCWxsw6UmUUbMLxGv7NNYlsm+9i5X7xY8nZLJzdH4e+VbQfeU0VWmyghSi6A97EUUu1pb2mope5+4OSBUJDThOeQ9XKSLmbIFGod5LlITbfERQDGtVEWU/olUqviAlPcWbdC1ONmcitpAw9ygrvwxU21FmoLzDVFPwpekFXuY+8uEoY1XQuB2M0XbN/PnSyhJAzPjPRtgdBTrN3tnhKV3wlUK1aINZxSmDU3AqNqsqpascDgp1YTAr/X78Z4f0hm1+KlxJEAZn2netvLKwxfeg/rz+5xuAa/Ms/oNLiTbSM3k8xeN1Rd5I4Jzb4aDUtlsULBEXFiAdcZVAhQTkXhHCP31wm6SJAN4QPfG4+3tF7sZwMBcKNTn6qCkaRe6wCA8zGsKzhzxwBAXRNKHkrLXgqaLgq0Je4SvNyP92mwta+X5AHEV2SOAyUN7kgwBBrOhxEPhr6O8P3WeuBXVtv95ySW5u2FAExfVm303K2E+vD1kEZ8W5FWeE6m9cfKMzcSLYiucvotBdhOlJzl+rFZZSKvkie8P4g74pJrSR+HihGxfGSkKHy2SH4UFMA5hZuZwgWvgAe2BD8RLmmy8J7H8MJzqkMURxlFXimrKlbfdu8RB8wSg3f41sVgFvJxmL4NDv3BcSXMTvmESbRnUPbs/QxX1chtcfsvKbV+NzbIs2FqkH62mOdRKLcCO84lGwbHlIudWQnREgCcoLyM/YJV+whQ8FxRkUzGPkKpu+DuL+96si4cZPihFkfVlypPFLhtNIirgW96zyaTd49tIQv/YTDGdkRsglmfJodPc/lOFAKoDuIUTecgLtMHy69sAUzHnyJYIHsbB1BtqQIKHHUP+kP9gVet9mnDnjtRCJeKVD7GMJcqW4A/cYCTh5jBSel0h+vHE6vO4rXcP6NrPq3T1JDqhx9TE5MuA3yzLXdKBX/xC5rzk7KS3td6U6E7m2pInjskrA3NofAUQ72fAtx0oQSu2iIEO/TqgGPybyKc0Es4KC40VsmMcaPyW2F/3PWIroN1CDV2gEyMf6uidua2ETwS7QhR1ZkW5olKR0jHmtNxBzhdcNqxemVVAx69Olf630cLtSFvo4pPCJ6LodmmHhIO7gc91uGVDqCI0/BXPjGDJFEGRcEg7/6COgbGyQxMWt/evoifDjtVQJACZR4/V6Hxyf1AcMXHPeIPEEQL4qkAia6dcpU0AgOFcYHu/mEfQ+15kt8GIGoBmVf25vTISanNQoIgFPe/yKJoyMJCG30EL7r42gtlX79DFtYFgX0uryBqtCBjX9Ac4SgMlo3eWeo869O1jtj2rPue69cJl+giBaMtU86xFckZJ5FjqG+oEk/t3h8FkB6S5X1OfbVKtNZRircC58X0iz/LlQBV7k9QLwNlyj0kFnYBzfdlvw9Aqnc1zsHQZIhKUMcieecF6W4aHFZnH93F+h3G1aIo/CcqaiixFUsWk743JzrVfN4Sfb4jFyD9NSnc5a0hTCqcm2k3VfL9x92gWhAbEcW7igbCI3PsPXIf0q/azzjXbwFtqoG55b00cEs/gLfqy0fVkzGM+jHqHSXWPaJjDBzsjLHcxv/jE5tCi/yCRi5JXUaw5UiPLZpJIoMTNKMUyRvlkRVFuiX8YuMv+/Y9EczD4HFbfPphrTNVqmKV+7VGzLpIblrRSSW5ObxjE82lql5GEGwoINNSTXp9tIvWI4dtUBREJYUR8PXH7QDssbJF9drbwawYP2f2NakuUg4ehcK2Ej7qZEduPwL/qauDDBqH1VwdohV37gLdLSDXQtz8t3u1/ZsLrdepcj1qN3CR/iH3muZYbQKnfY3Yddudp0eVl8/tyW/IUl9J2nUyrmh/Gw34+TaLk87IzOUfRSiXf0xxyig7PCNWx/SF5lUaezYNftQGn5dkm2Mm0kxtvBqNN8u13eVolvyexD5iGxZFHm1g31Fd09nASd4+nvvNz07dBhYWfi5b+IzlGn/QWOEHG9puxwDLpUYs4IIoXpTEaVYe0mYBcWqZUROa/wV7yNN7x2oH6Li3BBeObvlQHGMYzDJltjfeN/nivuxa4M55t1kOxX5riMjkGxLcJ7T3jRRxUxiFYiWZ7jhE5e9Kvi7wYlXonr/EbHbsuI6S6GSUPH31BrPUwk8leW0NMLzzXR1GXSrqtpRDhjXN9uxmiIpoQHjrnfWAunUuQnpfsKPpvvWJUILqvM1g4fzTmMcuVerPQnSu4rySGOvfB8GvtLxs7FHUN3+XPCC8+FPjM6IwsUyjCyxfkmq63cvCoAAJGtehkplxpZcJ3OJbc5CyJUZL0JVVHPhFm9ZACEPNac+iwsywLIY7OHZsW3AACBHxNlCJTllzykVSwHJTFYoeXQXjXayUDljTMijS0PvNJDHU7HypvzPdS0tpbDKRUMdhWSOgwNxdRS9drjcHGTCSO+Bw4ULrpOgH0DgkQau1kkKMPReEWl/XITINW0tWLXJQYIpSd+ypp/WUSPs31DWc/eHhZ87pRTv3PDRwl6MbFnEkuKihSGNxsSJQL50QROkwVdaaXE7Gi6CEG8ktLvIvE0JEyHIdtJeDfcAh83ZnqfstHU1O6bpdcmGHLm8Y5NsY7QGtmSQedfIv2y2pibM2qYFww7e3Br0AjOiVvSfXxJfrvjkhvDQsnLww+yFZ/7KYkAAV5JlgJqnnMz/e8pPHFStPHrLOJFu6kM8bhxsTR4BmSNTRaI0thXrFQ2F9GpE2ya+5MC+Me79koMpmyvKo3OrOkEg1zn+q2bXwd9ibcqMFeRISKqRL3QTe2QbUizO4AHr5x5Kis32Z9h//bfB43nLQpaCyGR9HZhGcy+wVVN/rmQmyy7Rz5wdyIehSbMkROOv8X5lpVGInGQo4xxjVPIp0972PPVHlSC9wVSUwyllHQulfuVytPO7BOasb6XlyuiLlIOLyM1yNBS7uHGlYwOk7prjbu6DMchcVceCwjQciqGBKa6xhol4la/QdnSYHkL/U3Xpl6b0Y2uUEQRUzgXUDcUvt6JZ3GQK92e1jLSZfx4SQn1BDsFxxAw5WJM+TKrVstvoDxnXnqEB+3F8Y+xzT2skTqdtiDn+2l62JLpTrsWiqWQhznxFuRbjcRk+ACOqmmbiXjPv9lS1YaEu3OgahJKIdUsj5hvjijitYki8apAVANY2b1Gw+Q3xEwNwuiE0Bvs6yS27NLEM9I5PDxKmlMvy6xRGdPLl3lykZDmueSHQS2K97m+WFiSunhzK+4rCxsGqBzkw/rvPcUrBSqEBSufs1Ut/mpLQyC/bBZIr3fZleippLegUq0T0n9LxmHPJwirrYx61MssZOgROdlf1LGycXM20Lt3qfx8BvYfC7ynhvmcC1PVnT6WRQ4tUoPus9ji7UrIMAeY2urqGGkZq5n+CRT7LeEPuwxIqyBEPLik5gvbVe8UtatWZbQaWm0Td4N17Ua6N1ZhK74fB8roaxTX54F145VCFbzvt/xdf3ASkMg0I9oMv6iNQpxzjeEJtBcr0GkEawCcZI+G8fLtOVkqbpBvNX7fcdBadiWm3sLH31hqFZxOIMZQOgXyubkPYHudFA+/DnInbDgBy4RqgKZQ1B5tI439yrTiVal8ES2bQoAB9kV0YqXKm46qEiN7k4A7kArdc6HDh6PURe0CcUPsDMDOyRY7saD68IbqFq7azDj9g9jgG4/Jflg1j0gdiH2glOfbXE5QnNmv7jHwozvbSMPeVqtQZUV0s1CYV+SRxXLaikUepbOtLVCjLqIo/Pb/66uEBr7oFZ/EtmF1zID6YtZg8BL2AAUoFqA01ZjY/umgGjQZisUNrtDFu12eNhI7aNjWy72xyzulG+te/H4sWjoe+uf+r0d/xl4Gx9CUlrmYaGOWqiNgBCCVDje14jRkmW1HNTtf5SwsWMr9//v6c26xSCoZxaHQZEhzApu9PZHWXEf28CksIIapGtt47apPzXvsrvLuey9bJtkcAHHSBllcOG6Si3U1YSCDJPCMTv7aSQNOvqq8kQ2eLq3JL55/8JLV5PqnBZmBoBGlErmBm0TVSufmXa58KMNBy6XIOxYOeRF7UbGp4jRQVDW/JnLDRRzHoVBQSkWuGVKCHPqsb97WZsZJJoEqwwXY5G6zIYa1R8SWb5lTZdnVKkGRm5mKqJGnmc+rh/3f7pIWUS24NUVLWgbv9d+QWvquhoj/6QHMxseeWQHtz7JI4XUxLtWA4r1Lze04CA+cg/8iqCxYDKtNM1TJhhqelZEBphUDY1daz214pA4tb/MlBJXKSkNiTYCY5RcoWjxv9Yna6OPV27B4ZnBuK9r7MmEYlJocVMsCqr7GtCRsUZB0ve5lf5iDjKUO2mJntLRNHuJT5TnILhkufeZdV7pL/O3Szdw4vgqc24etL7p2bihat9gCjheeetDTbXeuFnNFZmBpe4zTjwBBwp1FAqMRP17JCYj4k+9rYdOkMY230pZOGIGWago7/xTDehrrKa+37lAkW5YeC/QI9oYtvUtK/xI/VW2l/SUSao28aZniLrBQrs42GqPrKSiNX2IYPEimQ10TdP2CTpHKRemJxBl7RZMHYYalMDh9yjv2Q0N8MUgmu6LO87MeD1FiP42a578uwjuaXSSo2QxbX4RaVWvepE8G3I2yw97wQB2RxOiqzdJBJ7+j2d0zUUMzVexZXJxkEURvg9BIwkJXQ8MbDx/+1hwePzU455Thqc3WTAD7UHsuoW5GXkPoYSgLGsUP1rSo1zYlaLBHc6MDmHr1UJzmaTO6pXwg0hp0xDKXix7N9CbtiR+HDrDQERmhR6+ruOEl7aEx63pKVegdmNKsuReH9JteTytpOjTT3m2kz+ToLHt+Z7hDo0ZuMZpcdttZbklc6tZMx0JRUUz7iITmS4419ldkD1+KSJ2jUUh/p+HozVuVPtyAe3HCniHXyNZX9JRO5lwGvZwZRFky8CnKRi3zjSrpT7P2CQGWqFZxP8W9rSX2oEB2kt9C3Q5K8YZQ0N1TRYOA4rp8G9eJaYNHLnri62g0VUcKUo2BgnbPyYKc6t+mvbAL1drQDJmKI7L9AEH/7Kyf9sVTXTkv0CFDstMqHtnvQI7nj4gQy5w8ZQ/TvkDXdIuUg3hrymfwf+tesQIvukr8gAh7y12Wkh4gD5DkcOaX/ciWaHULmmK5XF2rI5vpxrrO+BpRb2dmTqAjGqDkOxYrGOgnjPQ4u/dN7voyMq/AfFy+JBpRdwGvqyQ/5vRDSNwxv4U6gVWFGjCI86FhFbC2EII2kL6fDKi6jiYlOri5qBzvdU5IbnwrMlmPnTBQrOb+K/N22xPEbgtqjZBOxZaUkJolTyNquXvqQy83ua4RvXOXAMDOJpvrKi2fv3cOcV0MgSvX3JV4hZhLpNRpu/Vyaqur/4Cz2FnMbj7bkKuN6OyAvoFDfKr4SaqoEe8aQnf7wAaNs8UUNvy9XHvbbq4kOUq5xMgFcFxEyw4g6fShY4FWpvTUHvU3dvzMuMpAHzmxnyvoFWD6wZg8sioH+doI9T6jFEGvVRzBvuh1xorx47n0JneGykQPG8bP1X/K19t+eXDj8TiMIy2JnE9D6wpYLwCv56+CM3LWJawoXTH91+SB1nJPpQiq5yqS6ZBOhnC+yz71JOV59KWKrquN3st1JxyMafPvkPaDDiEvKJ+sY87EOVtZHCf6P5Qc27HUUv1bBMdOsexzoztG/0KlbYij2oinw/S9R5A4qDV0wBFplHLxp+CnUbJBZWMOZSnNuOMqHNrxijYyMw2oiIm17HvD/txtcyKndJmPRXY0e6ZDPlYUE98C30ZO/Y1zEEe8yXjmFeTsv9jvWi/RdZCvWSoIEdHiEJ7g9NfoXNc+7qhKEkZ2SAr3YY9HSGx/sp+JlMC31jyDhWDi6fRECnlfFzOIokHKVaPEJCoICPFI7/AjIvG+pX/aDXK9YWjh0dDSgDXead0a7rZ+q4mbXS+u08AV7gto272TbehyDprKr/qrCqDQy69jfYrWHvxnCF+6T64xrPOezAZF6B4u7T/ANX4t5a5pwheZSjFh/HwJMHxL8L0SArZjD3IyqsnR4sGs6d3YOs+XbFTGUKUs+dXKlsv5PCFUIZRkTj9bGRB2mYKOrPR0K4St0s3+xR1DraLPtdTxBNlHihdpbmSHempKVyO2+VSukDX7Di7PNDJktwdh5XBzVRipcR82cYvS3Ymew+UCI+QmKRQNcjkUBDE8CzmH/oncapUPt+hBItBHGa6qvn5JLvlwiDMycK1BBqhTclTJdos3mPYlVAes+Sm1ZZ354hJYDOk7G0IicJi8jjIqubmIz8nSEOh5t1FEW/YK1SbXZt/qxON/WkMI3D0QPU5vK7dbCBKfKCZC9puXodekJP7IIYF3v7IKfGzvlxr2I/vHYE5dmGDaSeKvD6YCzA9sRXGALeuw+CAKIQfA+d97tLuBCopFTuD/Jh/cXZUV36CjSsN5S/lX3cs/qf9U1W4CSd0K8g+W316upkusyBm9EjwcJFO+1jO0OvaVrYInsrG5eWN595odVRWz9kUUWQh7zywdGImNEdBs+MNXp18oDucKn0M2O2Q/PGq3y4EstinMYBfy5swJ57lqsBdd7W2t4dDy5E4EKlKiRZ3FwVOg1Fhi0QqQ2IxrmyTBH+Iz7U44g+fOdtKuY1M0ISGkQyGA0NkkSB129HxJ1gcwug3kxgAD98sfbmvxROZ465Yj+A4WyZyGnGltJdUiuCyj1QfT3BK8b6imHQBTzgQIlVgbKd1Vk+pqPa71cyPWtYFfnB9N3v/OSiOmVkfOHmcbpAl/Wb9NCWr2/E+ESLkWAuNDOsebwwCi0bztolKtSUlAiYV7t10wgVBwESkgr3Mx1Ie4pPiR9E0U1S37bcR4RF7KUqRUEcUNOv47+zS3gFrfdroRnWUjObRQdMctySA7dYSIaVSFBVppFICK5jcyjDf6+TJ6XcrpuMGH/S5S1UMTkefIcVoo+t5RMFl0ZLq+l2huEAtsLoNBGMAVOYnCnWO78ozKEMV2Rt7RVT6E0dfdFs//Epgv5L9hEYrZIGMLiQRVvzTS5QlRAwCzw8OOo/oTtc0OF8oXlzfej6TIhY5ftJmctkzFEm8Cr/djJ0gflKr6zR/Kzmo3d8VbhclTGKtbsT/e1u5M3TEwzmDHugWSyG+YqqI++7bkMmJ111P56tuPNDoO8AAs5Xc9ZUtnquepEQc49Cegnfmv1dAYlPitHVS04MDHAsrtYTajHXVBFS1k7aCS7cNZ7H1W/+FWZxiC3P/TNkJSIs6XI9omlPrjjDGSzKfU+mmVUTBg9O0aDX8lT7qLeC5HQ1ZVgq3rDxJysLVO9n11X0rR6r2YG2mOKUMNzT/RoIS6Lpsl8MtCjNoeeeBGvC9PyRRuhegjeUI5NF4nXGNVyM/6rEBlINePxusTLbw2qPfbdyHeozd/D2xT6YFIq+7ZUDq3XiFmSfn4pZ+MpJr2a0rtUTxA5ZCVO+IEM+ifkSKQhCzYMfNP8aXJdwh09p21abnl2IVkKMzI2DSUqO02nJNG9p5SDw+fnKOa6H3s+SMB1SCzYI11l7h80lXT7v9VgSIQhT2FboRVBKq+ES6cvBz6VDB8CFA91izV+kpvVhY5+cNanPyl8ai9GlQpOD7azkSh6yvunrdlwR3otpMq2fIvoltXLyLGr+F3JWE4PPc4KS4w/+RdFHKmLWPyH3wjQqCq10I23Vqyy8pBU2duvkVClth6cIKxz4S7GR1e6HxEw0MBAzqph94VdTl+ZlVrZk4ZQ1omi5V+ASm1WBO4Mub9ILJ2zTLfGUh+7VkA3U/nbdgyrZz0ERtS/kLh2EbcLe96jdsEzsysFcBlf4trUE+iKU3uNEisnhgn7b6vizUD5y4+hwXar/Dt5IRMH0Nh2VCSuLFuuYMjinqwEzj++9uyoHT27RLMya3dftmJhv2MT/yMdPq71/tYYTy5BP7qNmap35tz0jYJ45agNz7LectqfVkyu3NNST2oqTaAgeVjFqkzc3FcOpWlqCMWIOG1MmOx+l2skRQvmWWDuhxms89uSYVMoVRMxeHjMcy6fOwldk+uaCGePiC9tODpqZzp4qS+7VQ7QMZu7BUNrP/Icp76CdIP1o4DRL12CHR7wK27Sr0XeTsy4m7hG8fixBLJIgias6zA+kVJgDXme1YnvmnaBL6PdbhiA43PwehltktxrY0ScYWTWd5zt1aiTlN0/NRgCU1TUxkYFPHvulG4I5YLmm0CKK9VXPxiVImpAGdkSkvLG/5MiXyphVifWsbscSrw1AQUUalcVz7u0OBvR58geumIduQ5wv9hiSgjoCzacU7KHODqUXzSOANkMdIch3UdoY3xYCsubW054pJQjrMdBm8DbwZVp7IB6RjMQyY5tdFBI5Sx6E0apkyVAJD1iguD7iVI6ZKJ+Yld2eeUf/hv8eapRxR+/Iaz+wWi17XJmVAkzzh2/DSLlWWmXOvMmL8DPF3pagkOV2rb8/uGJ81ZKiVWiKkPTYOUhf7yJqcepN3c4woyiwn5GEPfoe2INNpZkGMoUlOtCw4OqAFxlCIKLikGN886mre5AZnuBMC3Jgt/6bM4yyuS92EIxlXhGgSI9XX58i3r0QthUz+7F0nnRnhCldn4FYrO+zJKrmefV/p4Nhf6rE6dJJiwbiqtZYxEdVH/6CRmbxQBzD/ot65Sl+YPXLTkJwVDF1t6BrS8JoK4c8UVv66SDaAJL6ZZIdcaEmkZrHvVoa1GuUJ0B57wY489ZH0sOPa+8WEvziSI1bshDSSZmDifMTsNGoqyGOL0nwWlyjz9+DCE3VGPzk+YC4LTN493ViVjAyoKkYII09MVcjGoHWt6xljU25ls8kLKBEu6vVP6GtBN4quoMMF0aZnkOzc03SRn+cQn5pmf6BtKHLGbfhQTciLvM++ZxEbF4raXzougjA16swAZf12cBBQKnnFGLM0pVPx3GOgZ8acfULwK0skHvJDer5E9Houl/XdQwEsz45j1li7HtCLfnyvBbqOjnhreHX3kZpxpl4JnAqoagsmysnHXPaCqak24lL48ckBCIi26n7YVG9QRe174onvX9x4p4OKEHsiLmzRTCLvo8gsFcLTI1K618xfG9KLeIRWqbzDoRrTLFWMUpSGSKvyU2YMvhk/L3xib9PXQa4Xm8fiMUGo4rKXVdORjLwy3Vf7u8S+GyU5n4mCvAqdDGxDxHQvTul2HeqP7uaBI37kA7fwfejBScBzNqGThHs6E6DvufgLVCYsrgMu2GNlWwag36b7v4aIIVtuLi3jfWqhttfOHvO/sj4AVmlyenYaIHtPyIJz8LezHyj3b9nRpNlo8vJtCBEwmtnxTK/hvONQIOjloWp6MZ7oY/uryQUDSFzX3SBxLvYGZc9GuMw77aRUHhMy8MznvjuVOt2MKqP/1oHq084ZQwtzTdEHZUx8WRHC5/3eTzmVzUuLoT9wWrnfb0Gs6uACdUfq+qLDMw6mmOvtxk1KIFb7MiifAc+TUOw47HV90jBfw0AS6R6LO7tECdkCBUsZTb/SfLkbm+hwMchjIi0qBBftNBFSvQnH7QQqF2FD3uxHDou/q0rXwSqypGCVKt+9Fn7ZJJQVfqnV708GllvwPr8PQ1aCOL04+do+QF/OGjN86tq9oVQMV66kYYgU15H4AfaXv03WfZJtw8jpkFpha5JFx9DdW0t78BL+/JIAKnmwXHeHwpHvesIHTGzAQe60+n0VKeELm614rp46cQGiX0aHSPoBYI/l6/QG6/FnlsIR+QINhZwprHglRtrT/0fDR/mxOwq7/AJygnC4O4ay7TDrA8UwDhHT6lBr3CYwgXAUKCMZ6q794nIOaGhNPrlhR5cGODucP/rzJJRN598AWyeQ7Sx0y3RkwhxUrPaHXuO1aHH6BLRWpYQfwvaGZGGEzWxU3vdfznPwbE7we9+dlAjK803fFnbcX56wZz7EWALcYhYMfzR1XTpBAnI2rNVAxKzvw9vSe25u9cbUT7zEVrEgGR3kJ+XS+DZbAecyRpKywKhhEWtd6+uabSeS/25ROtSAUPa8WNpQQ5EtjnY8odR8Mg3PbW6pG+wBM+PdzXAJtB6PeU6mEZhGV8ctQJyto1zllthWnjZEUFI2jcOBUOERfLtnoUsJaRaQA1PP57HUoptywSrt/OC+e/uP6Ph3BKmN/FzDfCaEgf4CGE1/T4XksJ5fa8IjN4Q2hgoek3SHTjEpK/bKaLCh24SDxYbMIKoCLmFQM752dcS2ZoHr2HwSDzcomHSmhV1zSerfPke7b4q+FqzyU9AWhcOGB3qA6vcikAA/gSWsfOt0M+kHEWjQ7LLNNKLz0uTdm3vj/ZZORLewE1EybghCpk1LWF8BAcj//7sNcouOLQ+tXzu/1HYQ+bx+R0vCK00jhfryO1ESypFVVbToq9AtOr1MkTNjSX0S0iurgaoOvr7yH5JyelW6+29TZluFfZOP8xBQFyrMwGfZQNSfVgr2uaQIJdT7n1UGctVgzqLZ/J54XQhQrKARZtJYMKEtyHaUF3NBWJ5hK4275kaBME2j3hkMu7qzMR+wp5aPKqpbStb9JoPFwLYVrt/nEUFZL5g7689DksTnPXVThVFn6+vtXL6BWcSRql3EQzAhAkmnRBrGWhXRT4orhbKh+I6M6kNzaOA+1Pobft89qiZfRgB51YVHATYgYRlHH/sd0VbApd8gviFgmZrcqOjN1asZUKRM7qZ2mLTzocuOGpVzhiS4zTLs8bYKnruStcHU7bZaw6jH4s7dCAq48n7Ts4XqUB4c8N50aRJI84PfW1dZC/C5ym4B7c5/POoWhObvAh3dbX9FAfAcQSu1+/Pnwo9IxImxkVsHiW08FHKux3G+4yQr80lLzu0D+kpgplx9yNQGp0Ke1JTSBxJIGrlMj0Z+nKfslI3Qsw41BdhLSGhz1K/FG7i6sLmfFn7OwLvBIR3lj+Um0XbOfLyDPkqyNjv6tBuHrCkn+StBB7yS+tiS4zPk9OY2y2VuZpfZKXcCEjdZPAdyHe2DrvkYaYjhf4SXAh5jFpqOeQHyqXxZg0iwOfLIBiXrO0ns9oaj1tto/lg1fLMB3qGobW7wjp0461VeYC3Ra2Kl0s9JlOTTP2axTjRiS6LVRVIaWzxrs/YYVH/Xiz6MwjsW0VorVJwd6DZPTTkdjoKVZKo4cXnGtMMECmA4uFHWx2gEB5uLSGu68tlzUR5zxkRfL6kBlSQua/U4GgE32CPFhmzgHLeI7IFuKZ7slcio81h1l5ZGi4cRSGXnpvvNa/0K1oW9iosIDs7esEU3zdL1eGdFXufnAosGTBuu3IHUYtQ6SpihyH53D88jFdQRFet+N3zR3ozGCifsOdmaLehWvOIj9jGNsJFXfqmSnJrl/AseGBwD50Wa4nFM2/2xZesDlOlAIvn0W3z1lL5QWHKmsGBhTQfJLaW02hVmRsLNoD0uvB/n303P3gTNSYnMJQor9mF5fWFNqEAPdVSabDCypi7+V/vNZSLYdwsS22eMVWg077YJ19C9p2HJEXRSvIbGE1qZSgWUMA+wzKjCYU0wv88HTD81ir0u5Mb2qi2T8l8DLL42lps6V9cToXOdbJcc0yI4m5c+YssNTKbynB2mbKulnasrFTf3/cJLYJbrZonc9Ipp5h7e7u9gTRo240nzjDDOcFUvBA1sTbfba7nwaGZQqXvXOranTwwWXIg5t/3g0WuSeABE9nABD+az9rzxDJNUa7OSULrsdSOyR9wr24AsX1spElHHSfWEsu2Xwitk/Wqu4SA8uZ/ajF1ry4Dq7+nU0S/ki8uQZ7dE90FuWPGUtxwWwnzgJFOOoAbqGzyh1cuVJpbMcJ+cYDh4TTR16mS9RfZ/jgw9exSTv3/EDJlJa8Xr8dEzv+fH5biAgtLoCmCkTuYD4D/38sklwLfHuVG1Cd+MLDU/8GLJQXfNnqp0OBX+peRbSjOU20TumxQB71xLLD35X0DqWkKkB9ZE5Hfjag4N3bfIbHBhZO5xR7kdbteLzrykpl0QeTmjCLCtse9kwQkLY/x5W8WOi5WjQ6kR01JZRM4WJTqmf8Xw6MFpYc7PKrazXZc6K6swfPmhfX0aK+vk8cnB4B4W2eZZAEDPgK1ux/P8fGIglT/ikiK65OjptNuMuEEmYo8M/QDvxRZu0jC4jdzykClYodAIply7oVW+99n5r80WJcEEYQnZdDlZ1TrirP/Elbgyxc+/y96V9s76wVA8qmyK2Jr5pzwn2Jez9BpCpvEvcScGbCDLW3WB9rSvr9jJdMcgPG3dYG3unyw5riA3eWqoFzIt5fGl9IxfYR487zxwRcDVVbI6e8Zt4X679kR2/bmZtFSZI8FGEKALcRpf34FVf8lpDUNEJ4XW/yTA99UyVLgSv+Q2b7T0lvEnemSaaBhWVjX70cqfTgraLxeTMBlfBXQvRMQqhXFO8JsrbrwDF3Q0Xaq1KJnLs6JTIPYTTECnTby3r+fEWFcKMArayDplU5e5DezTIw9aiar6utnzOsEnaRYJ/GfCsZWkJf1ihvujeSJ2VZNHYx9AUX24yn/c48c+pr7yznCpZOihWVt0/FFRLoV5dmpHfWMBHviQJzH7FGTWTj4vXMKBtT8PIBKbTWvOIySwAngT6tT2xofUUgYtHHwIlxxT9bs+vxRsOOY4hLwdSklMrFINNxX+/zuKgonH/GNuLKLXieMsCQ3FBbBMHYG+Poo+dQi/xWTEOxCtO17EdcKgCLSWTW0bnbr/OTuyYMnVt3JSwcoIVQtUM4zUWVnLPGXq5lkZ6eFd1SWJnrzD6kn3QZLwx2/mTGwtoVCUMrMFTizix6+NAf/Cw42X4eY3x8x3EewHM/5IhM+CcoOZN+cqpqtXDiOkWwsQlfEpJP/Zixac5mZXXUot7CUd+0nWNIHhFbFR/3pdJnjW5YBHWIQ7WYdbAbhyRTplUu4YL5zLof0j+T/yqf9L9aKzGmgTip7SG0REG0n/jZwJhTGRGoAKbPJbeDimKi/MqrpzpRV3fwkv0kb3CQIAfFV/0pkytuv42NmtESAgVQd6e17wwiitTaat1wMYM4mYYpQZtwPkFbPoGGojR4wGVen9BNii6gCxR5xfJ5Tj53VZqGHITbd0okAxq01RED2pct2OezaAHwrj2FV+Ori4CYImOWZI65Hv6Y53j7Aud3eEd2hPm5JRy1sAsT+JLF+HIvqqOq2WZA+uQ8aeUUKC10Sh6PS7e0yh8kG//YEr8MKPgSSU6zl8SE1+ehfjQDXR43CVWI1rGV/0ijY2pSw2tUjwa0M+pg4OpdKx89ANT/RCkJAzqE9Df4Bf+WFHdkLwwvhmEp+BY31uxnLAvqoucMM+NqnT/7ow+zaQVS5Aa3IlUUeVEgBiWcLEDLLe+0FWBIrKWCV9quCjYVZzWTv7w6ha6fW2pbIClEYw6z8/cyw3sNUuzJ4c7dZE0yJHTueXBAXXOl0H9iHABSo38BVZwBvmq94Pwh/L/je9kjaDBHnLEYD2j2azq6fssjCiHwMxjsqWmuegD0+GcDfPJC9XQAbhfMO/C6OAATrrW3wEp07ApBFlH6sUPRifvI72K+UgPrRgechRFZopwL0NcSfOo/f1G0HZn4jiIHaNZa6SIc2Dpgj8qI3jJ2zrfKUDWVJFM4WEE7TOkK98OwkJAk+IsUTYy5IXGMh96ZSZnPVdwNr+Cja48XZO1FPVemtsORtWJ7oWPdghQg/Mi/6dIxArRkHL/m7qYSBtQ7qJmbVF93j0Jp4m+RcBrhXMNG8N7eQNAibe0IzmpDYmMmVgtpdIwW4Co4e2Wh0chgsUVQ3tiN6SYdNotJeL3/SEJ6oDkQcU9C3VmhP86AMegqwgOSpEsbBJGaVhft9z+thavecvPG/z0IF0NXv7qY2msXvvqyDxFQpfGcRiP8PTuWamyH7e+oGgXCpcI6WaQCTgJnLBeWWcAmK6Q1pOaoVrrvA0R66luGIEWUX3jv2CsWGZEudRMWZUwqpJSS6jO3QGSADrLWfOwWI7jlyncj/3qbn6fbsSJ9iiw5rR5eUKlweAQ4ZoEm2FsVPMQawzL95UAy6FPvDtlgq4cJmnnzdKu8EUlWPVOjk7oS8gk/QNsfa0nY25MM7MOLcsw+1wiOn7xbG1eSnvOtCcMSy5uFXwwi6AMa1p6j7AAAoSO2WL7iK6vLvCHB4a3H/F29dhGtU5kp+/KFX1BFUIFkjuS4AwQjafOJalmxPUXI2FfDteYozMYSeqDPW1KQuSTT8yak5GrbgE2PpqS8seyeqOnf0gHQ/G95L/84fNJVexA6oc5B3HRTFrXeVl/HDpNnEgKqW7joxGO45PaY18cERaceBs6Xo5YMQ2FoVzEYnbDxUXTUrRyR3SfGpRCKUf8bOVpo2hcXzf/+ppLYrqgagwlkWQKhVdCxIf8Bs+ckdALQgsxXG/wu4ni/ZvsYGg/7W89Hm+07w3gQJdPk/TLDRvLDPk3QItgJ9jphFd7fG2hx+OS1+ZhPEoQM47IVdrOvAsUbUT45+xa+CA7wy8kbndBjBVPL7F8zK1M5R3DG8ilHcS3UMAlZEdGj5l2TCdQ59voIYHf+3gCrjaCosVnEC7NYSk5x0jbUsp5MU1Kny2K0p6HyVNa9KjGPmygW8LyGpRift+Zjx0L760GF7OfEOxWd/VC5Xp50dz2tRtutsi74wd8GJaLoMYCBqbB5ifGiX+aQk+lAckambidx39K5GIhqwkmZy44JjpZl6znwC2nNPNG9GGJdOpi7xBD9KzmL8eFjGTikNKvxeB4Dc0dUf9Zm8MOoZ97m176QwmalY1ucfqBX+7WUaU0ACQ/XtrQH8IMzqYYFMAy4O57vS7OC8jNBZs9TEswoMixdJiDKAZsf4Ra+E9ru8sQ0TCP2nV2FtoyTtg4UDu5+e598is6bx5ZsepSwZYlUArWFpslgBUTKS+m60ekdWOcQbZx+hbFc6VaP0gxcvv4illNr2+x87dV38CRyJ/r8Oy+UyXtuiEIfxQ6OAzCUzjN66Bt64Cm1C2wTXPn9wmgGNO/5YCY8Ek3MkYN44uuYzeCWtIKuxnKj0TRJI7v1Imysa3sXMw0PpVTSJx6NCg5Ik86c5HmRanypfzHwaM/aGrbW1u3YetLR6gylpFx4c4CsK62leR2nHoUyMHVEMmOjeL4Q/eh3IJ3mQyAgpUIAEPp+zSXswcBfeh+9nRr/9nL31U+WEwbg6S8TCqcWjlpLgkC8DnIvqvuUiW+iM36b+M1fIY4qqR1DrlOeI0VsSLmLrw1TCZTJfgrTalN0BKOxEN64uwjKpDPCP45DruXhVoyWZrdvqAqCOCZePWcIVAG6bgVahpORGdCJ0TKqt/b7GlRNCsh5ZMxPfP14m5UfUmRSgdfPZOrwJ0qo5Nba7xYrukmHl99qRVcc27Y7ysNZx74p7wYk4t8R1NK+LdxC+m45F3k5AJM7/bDPHhT5zrhdPlBzKkL7LytgLZTIS0t6U/brzxdlygRXGUwLuQtZ7H9FLoMUWsNhTK23SgFhlVmMwKm61/PCA7EBN9MjBtgo2AydA4CxSVCGBepz66HMSlUGlvV10CzeBBT1UqzUhn/cRzhoDWUEsQG+Eg+7NZ/2BIz5S6lRgCvvG39Na6TxKsZzZgo38g9D+yk8C9RjeN6cDGXmmrQKnVLRaxA8txhKbPoD/jrQObdMTnxL886uhU4Vt6mk4OnJBgRThDWbNhJOtLb7SW0RYWtxCLoNmpEzRBneEasxYE525HhssWdKy85diUIRYYeXMzXKUbqZdmoBtmo1gmIRu6v67m2pLQ9Nd8xNo8gOjdjUgGtoK2/bNDJi/FI9VNr8zaIQfYGq1Aol7YeJJqY0d6CUPwvD5Tq6E/TzSeHNhjsvS0NWp8p34Ou6IGsCUlwutvh3mnXSAZKnONOUlOsNiCTnath174CE+1LP9zH9s3/0O+sdoSGr5pnoOwrdBO7Pkz/h8z963OF8SpJ8kstp53TS2OIHa14IjM83T5rIzPSQMq3OEBS9iaZFUROYIJexH2W1XCz9+8MJ6kgqjehRIlu8qm7UCBRoV6nn65ZHRSNbZhwbxslKUOM89quzufO2BxnvajXfPh5RO/yJrhCNRBOlWPE/59bwGU9P4ag/NcUDfArE5eNllgURliUGYAxmnVA74F0x8bUq/yxKuegrwroo9OMi/dntnEJ3mLsAbBoQNA9cgPgY58FS+Oge+8EWDfMyItbRXRthVhg3QPHm+FD8jH+P+yhSK3tbCY+AztfaZ/u7OFbbS275crNRN1UYQMw/D8Ej04Y1FcJwfwjx9KmkLetdivSPO2slQfV151pCDD0303Czgiv4UVK3x4+IFHG+ddC2449+f7pz9OISF2oeg1JHnGJ4RWYirPGarWIRPX7iBjaUqm7Ggw06cojUz3PQKF7FvArEfnpp6jtm5Mow6INAE4Dik9X+SPHh8M0w093SE7EjIYEG6XgQlv5nAYZ+xt8EtLuvXqghjAPI5V6T3o/1dXlAVOEi5VuB6b4lO33VJLimuXfqRlKyHPDBv7fdXFTPOJ0gC3fJQxC10HhvqNKlxNp3yr4rmn/fZW6V4cZgtjT99pzi1ZhkXnIlyjc3AJTAWFGr9fq9wXDHw8OUb/TiFKquRDMVY6PWczIX1GruvZFkKF1kq/QRnH1Yq5AEcFudsXolf3bwL2xMWIicMpfLPqgwDOhBFeS1FKRCck2ZVYHk2Mp07vyttY11fJfk7VUoxpMSPdak9ShaJtgNBv4gd7MLVSQJEcN1bM2AQpDNgKo3vqx2Ds3zPpzJY4k+BZHMe3GSLzzt+r7CYAC52+KPd6QSysfaTKYkPBntznWkT8HrpcG8UpyL1xgrTUOmaP8vZ6IZQef2hi5WFc3hxunhSm0WLqTuQbJGmtRI/gS7AMMQbG+Crbby7Lr1EgkqsInAfVDznRirRFYtBWGuV+jKQigMryv+8srmXaxoEJ9sK3vXqgNn89iRsJGCeiqMkg26EaTYDx6XzfWNWWe1sOZEZ7HwwzagSN3P8is02YSECbRVC4NMn0j526vSs3h0+5zY9UXp4EJJfuUqCSRosMnZwRHWIFtDd4wwoLAYmpVldgyImhCEZ3/bwZ41Q9/CRiWJgDF8rtHPH5x43xW/kI9XwCHSE8wvBR52DueZQPLhkO/uf3YDOyh+dwmjclFJ4d/blT6dwLjRT8fkNVt5HSUvnE3P7yVWSLovH24NxU3Arsy4L+g0kG3I0w2HTOJdDRPBKRLcqrnltvo6h5vSAa/dwwHz9fixL46zVJAyDHH50gfc4ihblBG/IaXy/pDWj3A191v6PXqLZyOSj0l3MenzV5eGwiQqXnGB+2cFGZKDB1f+SZzvXOh8OOiVfI7EgfV6SgQj3Y89tlalrFEIQfCyOp75gotBpjkEsbD/ayBdtcm+I1R316IHHuzNiYdJ1JxDM/BZ6WBnn5vv2qLlVhRtwGFu2YwWUjPR2u9+KBmees9UUs/PEcbHzsPpI766WdnExxwZ0U0GR5GoFS0yrObl5dcaQB+FwSniB93stAai3GuKVi+CaDs+fllmoCpqdF6tRaYFqzUDB4J+cKQ3q5IQyiqLQUwmmjl7twCSR+8wqZ54VqsUbi9S03dEtmvf+Y5S/HRCXscq33TRXJOEKC3CfwCSYd7wIxCMmPJs2yuC/HiiOg9Ss8hVLc9w+WxPx4SYQnawXvUHhJGtTxje+vSdJyJIBOasA3b+YlTLkkI9YS0cz06Dwg078ED9Aav35bfOlw3xQjleaGAer0HIKetclzOsU9DstrwCsR938MQpEnVFY78ot4X+0/PkOycbDhgH4EULazc5ZKbj1NI32keVSsm9Swj81O3JCQa49UMEv2ToU3cJZ8/jxzLiKqFgG4GHfKuz+LnxtXBApZha94MIp1O7ot+pU/oBwXIAMdXp4O93kvyJcdpwYPyMPIBRT/1q2oV9sB5vB5qXAt2tVis7rtZ5E5vGZv0HJwmkV5TpVJqExw5LMCwHoiPWzwQEP9CLGqEIGC7hnCAVdwpR9gB4XHqmcWYhWanTqLDPa1EsxUruIHuk9bi63hz8pe4FlLgyBteKk1pSSXdkGJgnJG3gRyI1rVz6TTO6cxnAS7+EdzKMLPp/49ZBMI9yIlxw8bpkdZIjKxL32oehRYhtSn3oaMej4ziSUQ3K+z3gxqd6K2ce8PYi9U8BI0DBdbdgVhyRiNrxYkZ5ZolMQTfSSVcYc1kDYDqvAOZ9a+kWb827MUNuJcnMzq0hObL4xUj2mH0T4Zx5pRU75+bBL/JJFmZoUYmUQ+OxgsB87Sj/Llj/tX+hVrLGIfJScYZPzahMDCjngNoi7FNmcwBN5/Df5uP8h3VbBjDsgJYQZOQhFEN8yLZz/zQFNW8BRIpCkmZsh5uCRUJks56tANVg2KbNuATMPSEufDV2QWkOzOzpVBj4rrjuDLkcU7HJkh6ilyBdQZDv4dUh72okU6FfUZ9/LJWFqlhwrU9ioptijF1IPgKqlVVg1m6EG9fqcYVpi/3TNUOLeALQ5NTPo136VT3lYyXPkUYjrD/aHKfCPLZZBYkoiFpVVKgjOBeQD8vdfpjAF7p5zkwZ4eSS/PZyJXRPpvcH+CIZGR140AypU4Q5JTzBv8ojs7D3yNSYwia07ntIRnLd+U1RTvy8ZLbpGgm7b1z+vt/TY464xYbgdXnQbkt8sNJUQcvRpfh5Aa6vtBtZNSDzWd4EoHAiKW80m1wAP7Br1MHuta+xoHJm2sAViqkpt3uetlCkCfmHL/S4HpC0skY1gjwW2SYqBGF05KcHnKHj0Yq1cF5WMof8oZfaF6ttBcCzMe5QWZJP2P9Y50yAa9pDR7WR6HE+SDFg8JjDVyExEPNePv6Dn7y1bfPncxDoDCVjJsQxtU3mPVJ+dgjDEBVO8I6wQY4KJyaBofDPc8usuMqmlJbL6UvY/oqXWzydWeVRieB5oDeeGZ8YBgyLAiD6qLbISH9xhfaOs6d1Ko7F8axv3NA2/4i+GQXO5d0BXC8jAUi7wpf47yUrDbOQrLdcj1aIM1uHFX2hg6zP9mt6tGuuaaZflpi6dQVS4PJhUuMHVwWAETSXKv3/oDSOTfmtWr/g7KTHr4k6ouLJqS1T7/Lj9N2BkguUOp4Ii5uMjaHQtYmacza/iWJteCpIOR4f/jpqDQ1bCamXcgnKpojjKg52z9UW8doYrBcrf33atBGsfmMiUQFJJ/B1sPVblR0MUfwDD/4cpPmd4soXwI9Nli8ySNt7mkXmrXZ5y1/YQpwLO4aj+mUiKUWkCyFs02mqu5t9sPbh2hhDqlgRW9I58Jd1lsavX16qRuBsDpQroCWGDNJx8LAcT1bc1E6mLgmZHgWin6F8dO2zSB2ilPYvsMbT/IuUjo8KA62Q0DuDghS75iGqXSkdtfhlOobRy+83YmJC1oZA36PNzq+uDvWSiNP85tOBvS2V9On8tvSEWEKnKdW4LYX+A5CN9hI5r7ZEg0Wyp7/0I/fclvVZu3QeGEOFsm3ywVLj46CvTAxH16QC8jRYd9w6bnNBXMdk88JmHRGtKvs2lokcw/T++54A6xny8I7LVmQtVEqyOuA3UPkdseXygivlJt9bE+8A28eF9vh9GbaPtaaLINW0Ctjwv7CUJXF9KVhVVal3xYfjwolr+wmMe8sfryBGHrR6mIVnSCuHDr+J7IaYXDpeq6WaIkzLahroSlMuYegUwwMHMFLEyaphkmWwv/DKsa8ZhkRtoHnFczWwVVNQBXqMhwjWtrvu4H77mfWJefc8L37BIovYQoNfEUU/bcUz5sm+FbhvRMo16+E8iqMUye4usiFy6a44GzDJRo5kXQJ3TL+e8tc2KV0gXvSleUBEs+mHsdC5Dp0NzTWopi8AuN8R/Znujx515D3Go4t4YuWFO9J74L2t5EAGI63D8y+NZT5rTFmLYGifYifptQTTaAPrO5rAtjNq8jZ3QOh8vuDHgzaccPOIMXp9DPqiG6+wZXBbwdbpLnDFTJZNIiOHHSUmabDmsHaqAKpxk1x33sg6G5lwhAND+yhE5zECtDeMfmOIULtQ1WKsrbQU5OZyRPXLImWPW4xZK77tq+RBrHpJipVOQU/ZquGlLfMz5ut2+a2Bz4Nu8rpW2sjEywrZWc+RHrUrOr4fc53YvrqZNkXDKP0NPeSwN5HLLbZTPl2LkEFw4G5z1la6c3K+dXb6w9f9N5NTQFeAiIL2IHvTwiZHYYHT+aBZdlcOZO173cSi1od0tIcw47cCKIopxPehnp/QL4k70dGws3sNATqnco6BxScCFJzX0298OMuUJ1LcQKNN88WIIoLPV1UC8M5IitwY0HdLXxz7SnTo9kX0KW4+pCSGvR1h6fPiuwrhWRy8RYaq+ZHA59f57IfhYyqdaA4wineNmyWAKoz+2WslQ2U5ugfYBoQsF0KSD0T8YqN3Y1BXQsOG1ghY+0ZsPQ0HBgmaO+00iKuTXndPQazgObonrPMGzUiGLBchO80WOS5ew7+jS9d00Dnx6nvawdvZmcxyplRvt5cxvZUAnp0DbfYsqzbYrZWEsV+k26R/4Vyvj365ngzSJItPVP5qc/2kwsLmp1nDfokWZgO5KEAGofNBKOwb+e9Up+BjlW2iPw49XTM0KE1Ooo2teYHPD4a76dTzVKF/4+1rP+BWpUP61yYK5s5awwtZe54tKb213XOd8N0FSz9lr6mS5J6zEQtAcxfEPR8FPZphvTHrOj/IQkQIF0XsmLwjfh65AXsdLin30yaFlXSkZzZcwPxjz3XPoddaCaahf2+MUckgM0Yb+ep3jiLT1hpeneGXseo4d2bUxXcu3OUAxFureK+mUg42Utz5h3pr6k7CtlF9D/t99otdoiN3ZR2vRn4imxmpzHtrT1khFVv0fxZ28LgrMTV3vmgz70E/sayw8d/t8d6Xqcp+3kF4KtcBCHw2Vk7ij/y3LNu/j10ETqpb5PJA3+U2qgnsOaHHlxSik7mMn1DPfZhifKSz0a1MSH8ubYaEH9rssdIbfwuIJ15onqi6FdvUoxtZqXy7BMpiOyMExPU73oV0244s4u1zQHTZ5UadxL5rIBZcHRW0VuDO2VfjkfrvbY2JCJ2OxxqrV5N7IU/BgpnXIBzbd/BrF40mcXPBF9Ild8NN1entJTfAEiippeWSFWaDUks9/ubUsXpfQ1Y4Wr+NJqLFnPNv75Yf35j2Uuzv+bju5O6fXBYoJqjNtioEDHsNv50BSmW15kM45Pa6oWvbpeEDriXaxtw5wdNE/HHxxIYikHWYdfJdLtoifkvksgGCpGCtvJhzhGAcyv+WHSke6l3I0aNZnWIUJyNE8T3453PyM7wWdXqjcyP9cUsctx7WlA+CG2wk5k0jSMkufiE6IzU8WR/JsQT/DccToFS480TySYetcrLFc98LmQRallA3P4OADk2X9B3aJWWPOLTAnMY3LYFIgmkCu6L2YVXA8IVUWbr4g0Rv+4O2pUhVKHsFG5POOX1HPhnHJiThgCcHWV5DwJLZKZpBA473loK12ny2DiGC9NTnCUkt1tf5huzdUiRLr4FJaANIvs/2ieBXHQoeR8l25EN9Iz7cmS//eiYtopABsk9fbZ85MjhQuxMbP6km0qQbS1sayW4LtmbG3sLs9iLz19Bz1nzLdPZ9pE3t5z+Am+5oqKI9e/LrZ6jeacXwkkzmgCC6TJPpKzZJnAstxyqfsMw8quYRNg2a81F1jNfChUMCemEdOOcPN0ajh2sWqp6A8iwEJ7mDylThOc7HxTfRn1Mn3mN+8O0vPI2aeqHmc7Cfq643K4kVFn55Bf5efGAcIAS+cwup1cihPH88SE0knixSf1Q3C7/vTlNiZ+af7YsG8+urVl/juda+E23KqFhrc0pW/7pzTn/jeiWlDAV8tK9Fe1EPWgntynGShmZsODMtNMOiKAZNLRdcjzwfoqmDCuPyZ8JwPkpvDxT2bPq7YXo3jBwwkbGBxN9K/rPyMMT18NdAzzx6u4hgFbVLMr+Xe9kTfsFXAd/7RZ21M+dOr7Bg2daacnmnyhFDNnHCQK8m0RjFXeNTYLMgTPY7m3Qh220jOUq5bqVn3CNd89Ly8Hbl/GHrSG7G88l71A8LFKKLwqerEz22AwSRVD5m5V6gT0RS1nqgv0dGLJoKCg1hjnbZj5seTlqzJp10Pw8SdXCclWUvii1hYP2HsXce+8sp8+2zcQ3L3TNtpUW4KL8qhDXGAC9zSvNj29GIBZFm2aFcJSCjRraiaVueK/vimt1g6KJ0zpqH8AlBwsyAJeNPrzCZ2U6SLhUqaldOAp8EbmsBwtrllo9JoHQHst9HIH76Al08BiqyyLBrHF+Kh1eqBlXi65rv2ra4OGO+Nh2zpzoAoWqnn89yk9ZdfeQh4A2CTrxjS+j4camUsOyXqyZjyKuNdWI8v28cgW/8iNRvJ5u8CIPK3UtClwvYMjr1xbqWnDebMtufe5ao9VwTTECUTmpls9FLE7WAg+Yo/IaXoEoFdXMiJdNNjZCt5BxZEINlhEXlghpdJWOZ5xEe3SxyvepQYRv+OIWuYGITlHeWVMHSclD9QqN0aoKJesDvsBhXBbjUlFKUUtiEopOks8PW87hWnNBtU0hRtaQp1ns3tmvjFFONQ4tq1gHqbg/zm5skMRyYWH/4XLmoZe2p71v9jfV+gkNLmLtrcqS0RNrUhofbhFWxP5Vzrqg5ppZNNNLnSWshB982M27lY78QSN2/nGqdS87xbOs+xNk8SArseyuo0UsOLuIPLLErIOdgGmSnGeIo8BI3fXvMswtfm9LAlvGRWoul+x76GTmsd0T69RYTodt+OCB2xT8QYwzuACUsQaKANWkWD82jdOklHuDrIII0hO7kmSb4mCM6pl3S1T2vnXu9HAO6jGPY+j3f5voIQp1dhD5rRBH7ZnKOqG+wh05gtTcwv970JNuI3akTq26K146WbPj/T8a+xqFXM5rmuZDKNahzll7yHF1/ZSzJWrSMma7rR0bHAvmCgMX/RKtZY+mXDf6FO1KW40F8V6oKxz5Nty7abN3Fj5iT5LJnMt5pZBFsM45uTyFBufJ/IZuG5gmI7rHCs3SoPc67UIDIaMVTYjSw/0Gt+f7P2eliLyu6ci+j2Jm7w1HwXhV8mMp7lmqgsl0Ieokb6NCaSEiYttjhqkS52wBT/FqxFXl9fMKqNOYOLuui+t7ejlS+qUzLZF1iWEUL2CKamqV+W/93pBDQc7TNVTj1jn44Fgu0/vsSMOoWaDRA75rwazvC1yeFk9UiE1mSSN2f2Ijvhr4gCdGQL3XUs9RjgnBZkShBCh8rc8bgtZ3hu/Q9HXg23uME31R5olh7DvbhnGuielaUqK4wcU9KpEuA2Wy2jW7lXzyw+E+TbzDvRTjM27nXfKHaruu1UHFUcIXrTXawkm+V4kOghYVHZT/EdT00Z6B4GU5Ptdu9VnTNMuL+v81I1JadlTdR+44JwtuD/63GVQfCUsNpwbVBELgwAVJU6RB/TnXPy2PIJ6L1UVtgNSHk4hFZx1G5C3j0OS+yZsHt1mm1mhnY3bXPDIAYQ43dvVQ6Yf7YoeurPQE2j0n7hbwu2ReXu8tuKsU9dfqrOOEcC1JM5sB82A5KpTSml+r6PxFZL53cSiCABVQdEC20SwbDImBlVi9+mt91NHsfKCEHLkpIr6Wc1WgbQhgD+2VlAmXQm3sQWkTfM5YkTdUPygzItzjT3B/PfDRnUEUx8LGknxeICpEKoeumlWI9Nui1ZWF84MHxCY5iSY99rYjFiReBPjmn/oG4DnKT9JNH//tu6QVFY6WwJ4JxigBniCGlIC3dzpDGwFFrgpxGPs1uQil6jrrDZ5bQVCnIsXmaDorWIafagwDU0wQ8yw00zy94iJg6j2poS3adJwbEzs+P/+IfeVvkpnfwUTAa4hnA8eZHOuJrhCNehnEM/hUv+qxqNuKJC507Otjl4RdKTWa12GXreme7TFf0JJ1llIQV/tu0ZSKctK/VYsUdhCY+Qnx97BlRrb3EjWaXj6XEHByY2TCgzQBp6d6V8jcsoM9D9a+W60AmW+6/tJATH3IVrdqWpXRkB7Vlskq1JUbFpAYXlU/94EV8dvcHaF1xZAAgLsTBpI1z/PuIU8mLEuaTFGgYaXVmXnOHO0K/19bPAYVnI+MYqmTkBaZnDAXnirL7VjjNiIze69YyMR0swI6GBI5OoDwLRE3c+UOTkUaRHaBZsr2zTikC0Jqe7UDr+r4dY1suxlit7t3OnLe0QFnyMNkNjEPJNgsZkMs/qqdF9dc4alBOcPDAeCKmO8ter40UIauN08R3TD6dI4sjDujbDbfgm4D2pXnOvmjZBPt/peFn/DhAv/quBw+H/ivxEtCkVO0AWNEkGaoaPBzQR3yAqVQBdJhfajWHz4oqqSSfJJSg2Xby7dTRqoFpT+ri0vVvJAWIeZEjWo+dYeORxEC2zpk0ngWl8jtDSMgl4drouPt5+W86g4otPM4/22MTJ8F3lCCC7D21gCEeTyo4URwM0mOlOkpMrf/kd4G83cH4/cOy9fbZJrVy2Kv/JdhfcHLSELXxnrJkdb5/Ox0SdF9nGUpO6TyEfJDI1n6xN7K8CvrqZ7FwW9JnpMqEpVnm/fM4ANYCXd+Q7Vps2PIE+dEZ52yUjqhilT8it7vyqGRinOVYBdqmi3v2yfnjy5CNJ3WV461mKAK5xHGQrebgk/e5DL8773mLg/XjP+QRSK23wwApO10G3te6An4YyPf4yjitDGqv0frxy0AjZIwLUtNQcinIjktwUGoEpwGg2UBR4sjknJreNNu+7y6nd+2ErLX8HdvDLPgVq7/35O1W8aQD874gL6cEaOrmY7UwR4SoTpOi+VXk+oziNX9B/F9wPBiFTxIsdFtus8evNZJJoTPtR6Es+dw2F24BLpVCMDVmg0eUMlmFbPyUCTXp2uEDdhuiHC0WIP6ztLUTkkdV0udDmOxqfjS6LmIjPBSaHzXGBrjKbW17vCB+mW5ApDOyReAWItvQdxSteQcBCFyQxjlAmSu3B70mNQNwb6N4ctUonKrpkMs6amHb6/XpAoHSWd9V6vGvaOM4p2E9TBqlEpR+q7odM8GVFusUJATp0pOuaWY+LOHneQ0AFG2ZWMOOsYmS0x/N7YrJI8ZzUS0W6iulqA0H5AcQMJvGQZB04YxuxDndgVVtsSKOT3a0D+CevuLN4dxpVkd65ezF397q9cX3XEybzaAgta90LRRRm5Qu+f7LmIF96Qnkn1q8zaIP4cWCJi6wQXN6nJf00wz1SA2vPEgPbIV7EOnrL9xKUn6tnacJFqsJCcmAEZzuGlUWG1BMV2GrMQYERl9VQt1RHxVrzAOLxd45WEiKG4wcir7mdu0tMx1D8X9VIPLGC5O/gbnOUhnDTmAwP7nsjra+FJHYOhvkKGDTiUHG25qy5bBXu1Srn7DNFv+EYI68XrOclhuTjAHEpsD3342zTSpDScaui/GuuHgxTDkYZ63sYpZVDD9FdxakAzdyM67aGZFZJT3LhtC5lOoWqUj0xLJ6UTO12S/4xCfIsfco7jxgdwi1eiiXlxJyR4elJOtUVqMoP9HiIxGBzBFYLcB46gNYtsuz9beZ5rPaV9qrY3frrjiQPVGjIr+ScouHWPz1jNwWv1ey4iAK6IMoJ5mdJaFkp90CBpgLhO41rNzp3ScbQlHHu/ey6eSHrj7z+/QiCFx5IdofpuUfDYdhHSWmoci1fR4+PPJVZNeroPpnWv4HY2+bfUBtKCdiLpEzJVAzvxDUsfZX0y/IDUzs8UC6nb8pEr+ol5Ll/iEoq+OyIpOgS1O0O3gzs2hwJWbLhk2iq7dQoLkzmstndBCPagQTBLSn1x6IS2bsJ3i6e5frtcfLWnbypHkZTZ/OvLgSYehPB/E4c57Zw83KBk+PhBPZ0ZHy2+zX09L84BTwB2i0iYES6pYfbYu4z4wAaoTgWphbnKDz5lAKHw/i/C9HILC4JXJbuqPvGbm+gVYixas8kPkahEm2vBDxmZ8xu5pQuBce8ONjUgc8n1LiwovSh//1QvFUjJVy2HnT/VAigtkR1+WTrNFlLVv6k/qGd4HLjrr+5A9+qZk3XcrOjaG1Tj+d3RryGCpTy4x2bgXfOgxHhaBluH0HHCJYVcNkXVKN7qrJqEAmdhjkSAtZHtVYvsxNoJ2qjzp6+9S3XvGgQz2trJWfccvQ+vkpgDjwrXH+/EmUZxYI7ULJPxd1UzRdyb+HvyiCODQ+cE4tJmG36d9oc5s3qbwkUFptw9rBNSKcLwtuKiRON112UpnwfxidqKOKb0Wh32OgE7sPT+HSkYanBY3W1tbKvksqsRFSwLg+wl7y6rH1MZ3qYsGBY6dYKcB3QT5O5DjZshPPAbHn7zQQ4exbc059v19WWwXvGUpXJdu7iOnoU1tpvZ+L8Nh6dAdTUBxJqifmPyADhaCaRldB03qd9FTVj/XlqkhxDZoIkth8qYCYFsBB6iuro1iVVySL2MXYDeZ55S40GW7wICPwVql75UkprDyx8wsfA7Jz0TWuG3upapGzJcwRYVo1cMHHLRzgUhMulQJyxrwW2Q0+e+VVAvIEvWrnX1c5OkrKoGZYa8UiOtCExLJUaPMeyL5SEsO2Gg5/1jipreENh5bDeTAwW8bZGdAYuKOacaD7v9dNIPtlG4/QMzrC49R8lvUQVN4A+QMew5+Uk1wtA4Iyhnz47jHYGQPozJ8UecartE4xLAYdR1F1HgXwgy/YJ79WrrHsW8hNaaQ6Ni1CogjX9mgpAn+b7ANThrDEWz9465bohUo02grXx8IK+ptVfATFZe91tpIDqIRr2Vpkf6/cLyJz4NCZolhQxmc+Cldur/e0GALHhMkXgMxNCR7agFz1gGTAmAhiIx66ttvAt+Zdx+2pslgruZST6CocpurdgIvZ5BrLMJUaBb2MWPkAyA1M6KOQELFLf4L/0itYbuCIJDQRv4/lQvgAZjKlnzpKWWD/wrvaiNJI3dOAHdS68u2qGxs3HvQXYHj3XR21xXQ6FbJ2wyShQdrMpQUH4LGRK2QaR0Nf6MjQwTysMOeVJoctoL2HdNVGKeeLoZ7RkaWdqY1KFAej/VLkD22xHpKKy9VSWGyHPALrN4YtgSHYy8lsEyYw09UGjrU564/1LFHWp9L77Bmev9x+6B7xG92Sv4OZdf6s/vs7smRLJlw024cbmUBViGUQGkRUjQE5AzHLWTTy3afr5FlJgvrH2UyE0nqvwcFItdsh9uX5JCe5bFcGP/KlpAOwynb8llcETJq2G3Jed1DQG4bzWD7Rubw47SrLxNsZyn4fRpJkmoClSgidRpXxdRVbdcWw/BqZAicIxFVuHV0yGf2ldeBXL0qSMtXXnwdlE6opsWP3m+Mcv5iiBokOF0pJ9CoA1DBVnB465ERuEKL8tfJDEccrr6R6ymG35pa5nSeHjwfiz9nqEgctsGg2X3KPMs/zMDADKHcQh+rS3d3MkmKBjbjpy7igz6nYme1eRfoWNmJDBX2f+QrKqrCJS4pf8yBw78gQil/Rizj2UXEK+Im6nPAHm3bT0kdUl3tvsSJ27HvA4xi8wOxS1bjv6GhDNZkj+xjb+nC6VN9CmB031hj6E3TTlJiKeE9bx3F5TOW1v793MnWpQKlf6+jtmBRzTpeaSzC4iYcJ2dXnJYnTr6HrHTMBYUZcN7dCKSWBdP3b4sUrcbKYQGC4RgsX6lGz9wP1M+1R+ZIUi+g9g5n0eDrZn1XYkcceOOffgPDH1/W7/eRTHbXl8AauMgy8sAm8y9LOgx5G+kyt+bMiCTyZZCAKtCQSOPBadIGvFBhvLuOe6wP7qCKKOAlrddUmPZyTJiL6JwQ/zcKmK9q1To+cvA/CyBItYczj64I0Y23WFSXCrwjk7p+KB5su3hdfyjwNQRgh1zVH3gbP+hdrdmNIP21GctFrjKPRzAKoCml0bcfBGe5SJ+0I+voFw5o6zd8/E8ECPVM4yvM2dBiO6p/MZavLRQ38/2gqwq5Qx0AQrPfMgMapG+dHc80CduiFd+NJowSgOKTneZG663Ol8BnG7B2LBCU8WIYestehsLl7CijUWEXzhaEJOcyhD7Lx/oWAR44dtInRgBCP4A0tZPMWNRBvTzm9kFVWZab/VCowFKvDees+K/Zu7V3ZBsNqE3elKgLL0eeeY13uPVNSUYOapd+3L/suQXew40oYTRRgUWX7kqe8LbAY6PYgW+5F/TXXVo8u/cqq0WRFwJOHG8S5kbQ7ctddZoQmhxwk2ShuYsYCdLmlD2QK+0j7ndFdaJ42IYVZJU9iIAILZqMgsGdfOEIUB2EV9o6As0TUKh8bjEYZSc7PCeA5MxcVnBluVpkJvOYvBCFhTk4PfDPwtK3f6U21SUaXo+U2xm+d3ewbn5UaBPIrVYuyrmFfpJZtz08It8F5NfMavCBQi1yaM66gjMgyHE/n83RilQtJ9m4crf4F4ZiKrSctJVW07DXW8maL0MAnGucfTfW8TKTi6E7LSGvNjxUCv3yQOfqy8Bqs//ofOrvWiU1NKiZqCL/awoHGCfdJU65qn9LKkCRo6fmP7XC05TGfyKkul9r1Jvy3er233FuCWbPxJ50SFAv0XbFBupyhvXy5/N8hub/Fo77IwIkwvMxZTORqEaFjxtJAXo2Fw3/FLZLuzip/KzmLrnG40myOaXlLDiBXZmYYiC/rpTcurSP7x7kZhsWt3WOUg0auBDkO4H6GN+2gYnXkP1Y6zUEbn0Qe1r8rqnzc6paILTTCdZrIv3prQ97R6NTsjAyjE+Iic0/47lTAuIAX1DWAmPpYvWCCnyDsSLmaqCO4eLQIkM7j1Zb+j0FnesWo4NqHF6e7IxDhqWoNAQtEEVHWPLwJXeFVLM/NlGCcwS5xw7JRB4vUf8RwxCSdFo+K54XcQ6z61or6jAHJD+qFW8gKv3V9H4fGT0CoS2AGjUOo61uPSO3u4Gl3HJnPra1lIUbkgs4QVi1aHzR+CgXE8ch9NTbzFwqDgmPDUPydo9qYfg7kV3i2hvyyazvsw9HIXWT0GPhuP2tGWmLqr2USS0Wu80GxL/md0CfaXrx36eymXrQGyrT29zO+ZuKUDjzO+m7B9vKqySj9XXQuPUXgIlHxK62cyToSleuvm7ylDFoqlar61C0je1md4uxNuiw+I/YqvtJoOGxkTNKj5aGM5a6eDhJRnlMshNiuTHYUoXh9RBZ1s0h5TbujS391NFLu59MDJkeBrmy90UEXzvcKxQJi1CDIAo16XciYP9avPiWQbkOvXUCBBF/2gXYyfNoq9UCf1cReVtIlkJ4qLyJrc1W5rDfdWdLFSiAHpAhQfbciBj8CZYWS274+tyjw0aOiSuK5Pu89bTUJuNVwyskx1m98TcqT5BJkoHdQS0QlZF3So6huHZyH05KtRs2op3IdYC3SdrNVPeSJFjn2X3XjZq86l3AD045AaA7ZCthPhUdWmsJ6p+0/YbDqizZ3Vo93nEjPQMfi9dgPn/ADraKC0Sc9sdjmy+qAme0uXI5G81DNfJjiHMHBFfuf9VAMd+RB9kuG7xyrz1hPUfFamrMh3NbIm5/IeJln7RTokjhjqiZVsQTdGpYnX0BF+ZpHG5iiIygD+q7fmsQoKUdoMiODseU4ESkTkXlNgUNJPttd3rbbGsvouQiTr2Uk9U3vpoW1YkY9BSx9tGsfV+pplq707GywCi6l1jbSGx3LhMkMd0d2lYM+/9tx8S1qX4UurmQsvNI79ocHq7cXv5MDSeLlhWy/lil6c+IHWVFRG1Bvlx62ec6nX2eqkHMZx3KL8/AOLe3TMNJ2Xo4cmtMYqSgYtcDlA+jpXlTQva0EChzk6vEb41SdiLQwk63gxCiPbPoenZYcO1OJn2N7KXaIIRLjTB42zrfoFw5QGJiPQl/4eVG/x553P/NpZSmQ2kq9ttwrk/5oz6us6mJqZ5nfnD0u568bacpB1lsWvcnOtMd7edVC1zYylEa1L37nrnFhfzTXSEpud4fLzRCdM9LnXba5Hz/DZKheobtzvOIgGyc+ITcK8YLc9vFCiVPUaBPu9O6ks3nxQfarjQk4nCd2dr/WGyvrosAEKVj0IRri0NN8s/QmekDQ6/CCga0UUsDtSiUO3k//TbMpM1UMzAaL2WA+ps8HXQqsW9l8NG3g1bkS40UjtBTq2Lpuh5U4j+j+uOlczyPUavchEPXFF4K8XPEqEUHfhdHjiZdch7mQDxzp94gq8JD0N/SQXcIPjPTb7ObWHyiWlR8JVwCcsCYHJxj9FJ70w3RUYnlfwQmWKTMR1+9Nw83++iUNyG6fAxmdzE/ML2W1CRww0vliUliscOCH4bWVAjmwj5TXfXWJbxJThVCD3m0zB7jUEnJOaDNjG0lcZPjNIQ5168WjyvYHI4G6cIIOTJK/bKhRfEyMUwUvhL2qA0gjorHsam6KWaq136AFTCFrNYzuSb3p5Je+mtcM4Kl11qLiOGuPX8YOeooSuLc9m8qPsoSbdL2VuRkVMdAcglSleI27zRsMtArGK0jlaa5CFZGbi02048IS+maih5UIocv6b2THgGZVeWzqHYzSXX0NuSkZp7XQAm/9CP41+4You4fuCVedMg+uKtsbjuuXNccc7v7Wa1NbG66LwE3zzHWzndYfTGOMAu7GwbTkpMc4v/oCy5g/o8fZ02EHfsQ+juJvYXPT+JA5+m6Ct9VvclDrvZegkqhrfnt9jVAY9N94oNySTJZOWC3+nNoM/b+r3YgEi58OoCpvYCpA+uVcf3UthtNO9tXJ2kPyc7MZsZhvKYbxYsEAhBwcbZ7jybpoJRDsZfj5t8hqGoAxWB3bRoR7FXO9uBw9dQn8aSHP7SrHP0dOD4CBezcapsL5C7+34PTKEgcwNjtJyNJRV7J9D7PS0r53lR/3+9VEjdKLDeT7BD8gC6FZDokXaUi7hVVsQ5AJKk5/mOAQdaToWh4W/Wx0rGYW8KYwij8n63/IXPImlFWSCup86LpxHQxEk07u1NvoiHxDobYIIF6qeTeiSW42lhLhN9FsaMRmuOWo3q+6rKR/YJuM0CQdGzXj4RHoHB1Y+rZvyUnbNbPpNSTq6pm/azlhL6e3HyrOuiuMd23lK+APeKBDxgFS9KFEMPrHxLSVk5pTr27OF4En7nWtufDMnsTvycjcngVhQSxuUMh2qIrVbqV8rsMH2fsQ8mZKi4pdqZ333CjMZbsILzpZxf90sc8yk/CR+D/eMp9a6visS6Yxqwb8UJrchXMmnHjHWdnUhuvezM5QbhIxyzLC8P7b2KErC3q+gk5Zr9rPPbM8+7sWbkicsRHUzRS163aQZcE6FEuczeEBtR3ZCkNziiRiU4aun8/W1lqnAR/pvRQ2hT4iNAqFqRiPkuW6jEXWFA8tjbkfo2CVdHOeQzWrHhIJjHY4ktgOgP+w72h3m/PzNW10STRZsGvJyXZm1Bky4ypVHKYcVJSh/vNu7E4Dz5pDcstRRjo/sLKOJ4fc36gtamas4cPqMHNfjy2V2bayElUf+XquOSbl0WoZmUts163h3RZena9r75sD/XMaLmcYvZ1DT+9BjCHITwIrWvHkLvP17DndeEhZ2FUts5BRrufYsdfDtQfMnVgGljeH5D5Pc+5nT7qqtMpad92n7jnpzMqNs0vbmJZloCQ8z71PGYgwO9qrdBZSikbz+GAUZ7C86xRFo0e7h8hUqOdfWWIFuEwHZ5sTa9GBabZgJiQFjgLI5dsP2CjYztVC1uT5c7gjOx2uMan/yGUQGvFUgu+iwEH/uBgb8kD9aYxZeA21I7gJx2pEUJcoKkrVftrDKlIXTGq4SpUU7LqU081wDYz/CM3fYxP10B8SOcruT1AI1imd9qcIxRK88CBIdzkXCKPR/N/HMAj8lWgsCOKQnE8TNMUt+wD5JDnhtQXbaDmLtXmxr7viCHokXwSAalVE0B/WaeqHSBD9mdy7ePJnackfZZlZcAKtOCw4zSb4iFyq+d5dlOYRyn6Yx9B8zVwbSwzc18uwtSoaSAxM2AVH5/jI6cQLVJLPlUsBbFRGVdIugiD2PeyqWW+yZyQzlu/JCoo/tRI/UbSjJ9EaijLRT0KAGDOYnaDZNII+m7G/HV+HfzpVsTYTf5Gp6upONr05+Mi3H18wLh+QzQZFL/RSGNkMbX7Bm9uWEgB8sD11OtixtIoZ5DOUfxTcyxCYLh8TGXBgUrxlIGRL2BuDulDSsZdEdJRPhZif2nI9qh/ylEzfo6DHEG2QebtX5uQKrdZNZf6Aa7o2dtiVuu/x5l4PDfiDqF190ApouyayTtczAYlnY1VbX5+qs3qg44kP4nR7/hwJYB00ehjFEhXnBGrKbPK5sMjMVuHOR3ivbDwHqjkOAelos+DyUtykN7BlB5A+9hd5rqvLP6r7/CqrBSpZJLwXZltCn4TMHuKMc1UOno5kU4KONOIP4ryXOI3dh+or9k895dHMpaAhOldAK7ckJ17ayJNG8wos/nz2xt8XASn4iM9tmk3vcgukeosMlLGRfyofR158h81DQvUZ3TyzHKdwxG+dL2osLrPp7v/s8Q2VsSIbjV10dAmM2jbTRIEyidSQTqlReRuRRUIdc215aZnbBPOK1OAaKZCflB30pL1cXl/j4sh6dRKy4x0FSoMbc4dShBYsnVXdPiTwlwU9pIhGEy3O+NUaCV5Cm35copKuGwL0P8WktPvywY7v3XcVKCbND++HXvJwHBuDsVLvqv1dJmJfOAQBrUPAr0vkCu/vqGoWSy6oP1X98nNP8TjCoTPzbqbR8HRuusz4pUEtAZyZ1qKKFQOSuPopw5SNJwKZAxp/7wrF/19l6OrNZiN8NBSdoe5XfS/FB7vHjmXRXYMohfrEQH+1tVGhigA63BwyOYVsXh1s4XZsCl7nMMmiglRjIbqdbCtJw/PsjGLsezEZKirbuP4R0BST5NpC3SoVO6Q8D3wQnN8io03qGCVpRkPVhbWmMXgI+7R3ZEDl+7vOnzIsQshpNl5wqpIAgiznDWot1sxwXb3CiDZf8aDS0DbS2qSXz3CGZgwSqxqvjaLLUeHr+w4kVFn0/8qQvzQtmRAZ43lSVFXo+R7WT4Gt4Yp3Ncbq+TnhaztOvcUfWN+15xT/LopnS8bl+dYsWx5a3k0LUBAI2QLXTLwQmF39aEoEoT2DMkWOyrLocuqF4BzIZbXe8aZmnzYaLr1o2aCVmxkud6PwSJPdxGzHxgQ6ZuY6EjjddgBsGUo5GY7yRv2oYEXnfr11Dc3zLPzq2x5NfgrUQD/V1SULIjE8aDjR0xYwySNz6vHlQUelRFelJdyq6H+jQxv00ISYuGuS0ME2+E+ORNqBUPsSb9pcYECbrEEkTv77JRowdS43CAfEBrHkIy4oOpkn1/yP7UGpzy5ICP57tawJgBqX8ecP+DwCSQmdFlw3fkDP1L06rGFLDVeC+FXKhNwbY1/fYSPDeZ2nFWCLJoR7yVjLdDCtm9xDx5JHa9j/ePwegYDKFFfbGQzt6IACUoe/pCQ5JtZqfz+QAW0WwPTfEAUPYIZhDEylMHL7kgjJgMtihZh+j0ImRjsO4WyCFLIP+Y2ibygzgcDi/0BcoF4ukYJ3IQ3RRj1BsjKMK7H2I8xw46E7hL8uvPJdfbfhJnkuZjEG+XGKQXNCs3ICdKaed5FeS34IcjVzNUIV703fUwFN4Q9i57ysA1nS7z+28zvh1HAx2uhc3jLgaNjzx1kFL7UsO4EqiW293bS0gzPwwK6usyNXmBHzLNSWe6QOVqHRXN6dUY52c0ZVTvJm7SxKhuyqv6bC2jJnw5X1GOFxT6UrcQvbvmCqPi643a4NLX5W5/GW3crUaU4ti3PUtKaT6UmvQ36VmUthoRI9KaikMR2kDZn9DgRVyKPey8CkLJK40K0ukLYMeI0xD+qplGfGPCFYm6Q292R1/Ljwr90HCv2dLFfVmOzdwJBfsAvbsoXznmuk648rlR0sk5EPZZELDO5JFzGCD+N9KWuCRM/9WGHb5Bmg5HLRONhQM+Uc/R6hFkzTZBiydSyJRJONd7TkgvPsFcbwg8a0lR4BhvJmZgChVhRZQ8mkfCRK0K5GX68RIsxSz0THRx3lyCybOeQl6I1HghoV8ZbZpOY8FvOiQgUDkdYYuk8WjwoRh3k4+OI0E3W0qpKQ1OplG3StmdfoHe2H1eg83iAjDXq19JVHEZnh0/0DiKpsllOXc9XrRpaBUTKyIMTY5Q+rg40gJweZFa2B8Ehsm5abR0SRgttZpe0mEW1jxR/Xk6NgPQhjnQfzJtcbLQUQFXobWHeaiDI3q6heSZk3Xd7qLfnmi/ZAHKctSALUdJuGKvSrYJvMVQyj6Qx4tdee5hpoiXINoWtx2EpaK11dYBt9bZCxqqYodAkbn9Kv75L5hqKdxUXd4R+3AXaLg2HFNg2bvhoaOTw6IcQcefefGcPxQIcVTOKCNRWxr/eYut8AqnzJdG4AKDWguuH2p/1gQc91H/ue6tUeL+ndqOgEx2EThcWL/t9SmcFzwZwwvM2Rnjgenzn30HT6WRb3L63Y+2tY3jzXu8ZUuwgVIv7uFg4PxST/9dPxavzqcwnW5sMasDBYYCdXzc60KrGlmOx7OLAlN1MfCDQdMLiu4MBMUF6QFOA0F5uA18IAV+rnBaVUVvVEcCZXSvVadkSdcWcE2VNtHN+WmKSiUnw/lsqRNEZYbE3mKsjajUjcQjm2SEfzEVJMG7BT+pWMcY+nxDsCLdA9zGPj1C52XSdhebYfjrF7Sy01JcnvfxC9hbWGMmOAjvDFipMHY/21dQbJLyT8cRU6fT7STYya3a75XKPw8qOesm+nYv3iZGvuaMxJj5jUFxjEJBmTL216zJqKd14E9/fGdyS91T2zoHsTSGNacSVz1nRt8F/cvLb1VNMfPFBRskt+v2VSn9aNgGMFEQuhGLwH7/m02Jmkg5WGxAkLjxplMPu5yrZZVBHSSSqhJG28t8s3M9juZ02xZDcX2WqCy2+29Z6pK66QKcmEWaVbIobxxPo6ENfu30aVTpKULV5hGeKPBDj/J6WiFkum4qKPxR8/WkKrTtRQMoldOj5gNykARzmTx+YksTJaQR5C1JzxZINnznnjhaucwzOuPSt7UedJWBN+G5RjJTKH+BED7zxFhmqXSIvqpSyI0ZHjHdui6x4aXv0EScIDLvbh8lBtJdWB5rn+tbX4x4SvHSFxYfX6cTWlhFVScxoxwsxaesUvV21aw2rz1JiL6zjp6op0TOQpzZGSIf5ODDV1h/xRI8RjX07mmA6jvRHsx9bJTOR9sV2g2Hog6zwee1Rw2YJkt0tnSQ/USM5aGV3WZuTZOfMqf5JU8/Ys8kp4V7J55QDOxUYLqD0gOdY1QCXnuuHRTOiFVNdxiGlqZiEVgB6fu/UFbEBH3TGswk+a85tg9rhEKoyKpZ/2vjx8npDK7/RwWVGCd6fGOWc1rZAtPxThJdPy0Wjy0Vt/vA+9XfWwXTGVxHEf9MEVDcdCuU+06CmW7T6j8brUnDhQ7DXZ+1Uebiqj/bD12tuc3pfXYWnQOFO246My5Roe8kdogHGXKRVMdjxfRxgPdqfVBFX+NTuZE8o5fMJtoejEgfd9ZuJg4h8NGZj8AeYeS98m9uHRcFvC9B30rOmUqR3SwQTtNb4+W1iATaSnCGXITs1/mw1fFwDwERsY7FEPeLazhBpZdoeXja/Paci1v46m13jNaAnGA0xMJihLj/BA/cmn9taGDwwM3GTi1cr5sDFx65EWn3DEZeu1O5Q6zAZxqcZrTZ+LO5WYqxypM/fUdBaLx1lUhAM6D01CU+ofYYPwoqwHVgDGyquPl/SiI6d3fdPKUUH4g42QmdC1JRRflthstPHHZltUZp62fu4UzfTIpNI6jSVJBjoEl7VvimwY8V9u0aNinEt7vRBpesV6vroETGs4qbHMv7cjf3GgDjPKJTe6vouh3uYtQKOTtjbVxHQcvSq63Ua5+1s2H4ZAKiKQ60Rj/thEdCy5SBN7EP0lviz7LmOmHmpYXip8DR467nI/Z4/nPDkunXhcQjVFcN97pNJz8v3sWyvNRNMboEllawZGVe62IyKMayUTZ2lcPyPL/5Cf38hYHp2hKoDwTmiPc994ET7AdmAOHKiywiBeDvWt5/2JLEHAgrxkxpB6wvTKV9nl/8RPm1oM6x+PyFP7puJBuRakmyt+Sj92l8Jffe85hXruOB4cIVsGeAolcv6im4GV/m5D5qBGX2JuY2HAL/+FnQzvLHMofbsssTZiz4iZHUjEmt5CqWz6hKu+7R/Sk3+QH2L9OxJnROan1cVnygi9ucxjABBCaNzjwtEsM42j7MbTHSiwDj8IE+1kWWcEE/aMCpUewDU1F5zrlP/RlPkkZwfVvVUG5GsRlig5BspbHv9MbzXkbf9okqFoJtS6AG+fudoXeVyowVsE56Z4RyS0r/xpH5s1yYP+bU1J4wU82UwR2Gsi0zORkFTaAJjTpjdJCwqcwlmJyuyXiFrQJdnWI3FMIxBqCjKDDUh1OgOOHlx619vUOzrR5iupSxF7Q7vKQV3SAEo+6SBqgCyg9caJp1f/NATBQKQKrxDu1H0vk4sD6vNPISC6bu3WsAU/8kGlVL5OXLV4uUfv6KGWvcNjVlaQLLTW8zx2ryPbleMIX92jKHXjT6wTHc0Mc2OMh9qnWmBSj6FiUoJFxdr+FmVfhDHNjmp6Gspe485AsoMDVHEA+jRfKu+whF6jeqfD8A8cnmOxkdGFawUqpWsVvLGjk+jGn9xPdHwUmXlCIqw0gty3WJVZQpwy2StYUfOmMG1UO1yAQJN3nphzKqB6+ODczgY4yt1Jf6Pb0jmjQtLGvWhYnYhyNMYws7ERUsgGwtp2JPFHGbw/Ua14EVERgjKc5D8yb4UWH+4zPmNoqtTBpa41Qcj6ok5XgYfvs+JXxwUibv8l9vk6Ga6FHCeikMEZIDKqRjJ1UQhMPZtY7ewSysExzq6xIjnocovUBBGZqNfxnVVYGQttKCDJR9ojgQcnX7FyI5DfLFfF4qCvi2P/Nvo5Evngh+QBlakLy3Th5jNvgYS1QOoONX8GfgbAy9noC6h+uvXrVTnXB4wJTS0Q9UxYj/lWWEPgf4dyR2zwQjs4zUmDXlrKixQuqLxgSpEO6EZJp07vJwzj6R9CE+WWJqmbem9VXqlblBcyQeV5zNdZzWbN1+Acw0V4ouHHHSGMyodwEtnas81t1T3wWqUEHYmmt0A5YN+8cQJurggip7k5fnMIOdFI+A+2mckPWS3nSfAad4wAd0vSfzvOlb7Evq8pkY9wW6IUzo/7HwxzOxPUR5uXEdzKgwV0uW+JiFYdecV1TEq3Ywmxht/ssj9iO0ntu3YICQHSOfVduvReRrpi1X90ZI6R6PgNV3FPU5cJzqOwn29iNm/nbqgakdl7l+hVhQp5PTEFRA2oRjHrW7peTzcbP9rWkzjfC9ZtFqzEnapK5JQgYyHpwI+LOxAZiZlWzhC3f3VjC+Lqa+Dn9Gl9cJu+hQBvO0mD44DxqIBT5ydqlI8C8KlAKuj6SSr0G4bTHJ4Ak1ddTSLfRgUKdJT7q+gn+ur4ZuPFdzgxlq90YyXKOJV7ecSOLjrTvVs0FaJni4ljuPSyGAGNoC5EhSo2RTEOethUGKX/a2AggDGFPqlkMLHfp+SR6KNGcsCgQXaWA//l4i+nIgTqJo+ancvoIFlgq40n0/nrr4b1xKFXWR1ffCX0vbyH3RTQ8KWH8qNSI46NZJcy8AtmouNsMrXyrOeCL90X2S6NsmIFUScLYT6js6sFb9FjW2+L5K6Q0Cy2LxQkFGj3WqJhe5ubZiytrUeYAWTmBGTiBAqAf/1gj6H3qlLHMfdbG37JvJEIzabsw/mXVxUNyS9rDLad7h2WwZZafiMlgGL0s9ht2t9b7Ud5wNseOpfZx5L1Qvx7zbxJEmujGgmKM+Ia8JFYCMG5v6KNCxRrXsan0fWfWiRTXy8Mlo7cOgATW4l5ePD1xSxcDORf/EmJWzDyrxTcf00fpv5vcmHJ5DMRmhbR8eqm4xgguOy3qGZPsSg0rL4S9zRa4v3zZz/UVc3PV6grQfKWrJPMVnWwjnCfkCrEuaBMN8IrWVjGUPG+gG2+gR35e2M8T4EIoU7yl4Czzc72GbfTSgMymlG3wr1nf5bCbrT89PjCr1H2viilKFvKj0gsZXVX19JNnwnBZp77YR4GqgOVvMe2RjfJp5fS5WCFz5Gh/JEFLeeH4atwLxehcN2xGkjVehDCQseMEx73f/SLdjMi6/YbvwU5YE7HPfWKNp9hVoPqC8U/NsJGue2cdU8x5FrN+DLjb7vSxEe+zCNXQ75K6Vz9pfeL1Md4+dSm2nkaB+U8826IiggAmUbIRMabEpJLLRpRmP9YuyABAJ767oqNo0ADWHdlaz2Rbkzds2R4cN5jHCtpwuePjQADy9NKK5VAfuwlHEDn1H3g5lHgdBP7O9BuU2qMZJXoFl++vwp0aDuarKw4ZcBWvma/C0fLrLByK6o1rr8VeaH8M0RapNKTSn3fFZBFMI+enKyOMQ7j913Fa0b0uGDDrZs5iMzjoUMKd/pL79XWrcZQBSYzEqnsa+8vPwXgbqCVKYDldEmZn466qcftYzv6jTrx7rLHrYxKP9pEpG22fjTKqPMeRHHH27C2ioo4OUm7Yfuzb91NuqRMZmxFgmXxsEKKWsVC5cIeOzwgXn2ot2jp2zrMylzTvzMefRd0zd83wnKDpKOMrHfeIAHryOcVA3GjhabwzrbQRO+FKDf92MlVy0C4ubfH+3eFnrk2510boeF9scLW8RmQSGvFaOeyqL98jKYhSMHQN3cM7+Eo+/j6xrs4HERqxMOk5E3blhOtHIklZGvJ0sdzolDIh7qxdesOrCcgYYS7PcTocUbQq928yyaLkor2qjfJvpn2/bZUDxWMQkKQ516MAr2r30skq+oMI07LSDxL9+9QyUZkmItNLsGxFUR6mMoSSWPemJdvbKwqTVM43jGGgew/+Qlm3H2aFsPveBdtEEv2djGDigUuflZLh1rxyB7+O/5jW4x9M/XxkHovTJcGzqD19OsgUBHRcoeECQqanuCNghN+WhbVUzo31cSNGjAlOAF0NlmlxuTZBp3KgNAwdJYtkaKxI8dN5W+S86af7sjSj/eopz8oz+0xgf1s5orko5NdL4oKxE2b7qVwSDdNDJnKfCH0J0nKwJj0eomNOMDkqKiQTSc/TErkZLa8D9HalxifQemAWwbRRGuHRBjlh3aRQHtFDtOhQnuf1Yb6QCy4W9unvRgbp89tRh/Bwgxmv7nLC+O0YKBpPZYWaiyjKHVXU6ItwVNVF4J8a4+pAoxFIB2fW+l0BxZadkCqIlTqKZtY3X9HufAfLL+0WKCXKDiP9sSOpUnBUCB5XVhafH/2xUhOIRA4s/9YKHrH9HGWaxk47CVl3CYePO7FhR4JskvCefheUFVm6+Z0Mednc11Bv7qxSiVKOiT8RrbnP7CcYG39CPSrINeIIRH5xfyRZS62EunsKILcK0PWPLzA8xXy0q6GPUux/mA+rrlmJ35vTUiNk0XFep/PMtwdqosYYjZWjpcA/0kInY7QfMWgGBeUq9vNnn+KHuqyP5i4j86gq5XezqkDo3SChFYabhDCKVzbfU1CNlNVLo9waB5jCkOmxVWI9/si1M47xNa176CctnSKO8v2d4AAfYpmn8Xa16ERU8GSQmKgInxadMFKaubrD4XDansKJ1VUq6aA8bxbJfMb+m6/Xb02CG5RqqRAccRWFA0qtcPR9TwqgxpB+zqaiROpdNOu4nPvnxbjhQRLlL3dp7xXcEXI4UOh56+y8MkxB5wBBnSxFZqimk2Yb/4UMMqYCCmiKyDrWBlceUJqF+EpO4ERwLMsK/JEEYpe46SehJYJYN5uBM/aNx5gMI9vslgLUCUHWdTNcaBqOOYSi91N0EGqF9VSIFb118dECc4AZCmc36h5C2YS6Liy7Yy4/C/Uk7WKuF6KqMLsUvlMSZkNyFWTZpkc1MgK6+WqZJMFDZVugvGxk+/VEijoCMK9x70mYAB00t6PkN/L7Zle9qI/3+7uDVJPo7zKgnZSgN4FJhSsvvsUzjQ9Dgy7xj3LuB5cjYs7NYNlihA9Rc3YCeByDRbcjhHL7ylJkI84P82Ttv/tlDrcdC29lqJkVxWQnUozZ15lxEg0iWtaU1eFYJP2ZJ3IYbJzL0El6PgCCnMd26EJDHmVl8GFugcKEiBhWGyeo6m157KXTbOODBqyT5N91b/r8KElL1dGV/XwtvvaWNDXer30NYKGre3MXhN7D+dMMbrE3OyRZiUWUiDKt+UbT9hNn/lzKZf2CHlGGwpVoeQLDNbJ8iBczdj3XE8Dg3E7c8hx9W3wmTz7Xi0wFtDV/ssNxQ3hwkj/XYX/BuvZvcTNLoIpuT2PhcHXAkky+0S0z0g04VqiRb8ImY7nJPxvBfQad4rGWhpyqJvpQxdE9K+Vaerf6v7Ruza4q3ZRjuHxD7bnnMVa3t/Q92ZVdGuNYOW4XNu7UBtFXiv0COBJVBPO115QOXJGiO9+0X9q4K9wORgd09B3Fc51SfGstryKd7RJ2PLX9dj0dl/JWkxva6woAYX41DiS0k4NrwNMTMAvrWHNV5teW27JEShSzw7KnYeg8qQR0pX+rfgp2TfZHO4PwiOqCe+ueuND/3o+DyIclDAukzR4uvDwUpOGM1h5R9dgGJ21XZhhQakkj97GM9G9rx403y4QRETw4HVg3xf2thAgxcbqPo/iXMpLV5U1yUIIufyk7k+nkFsvyHqk27ziPpwZRVDs0yWSYeUVN0Q4iA/OK8P+RFf8jiaVE9yNu2kNr3O1y1HpZq1LxT9NSMSss2x8PNwO813EIBGzNNy+3dDjFmEObaRTpktfdDS09CmHpxq7ackMYli2q+CSewXwn1KodFflHUtg8FUYLB1Qch+TmgRp/ceGm5lTgoGUOaQpxH/X7dBuzWj/R3UZrV9/rHlxYtDQqAc0LgKGd5dEj7N8/VtRmpQhxnR34BS8FhTj8cq7ImOd+2q68oKJw9JU594v5o5Fx1g3vmK9FGv1smA234bmQhKMXo6AamAbEwwbVqYyKTHWX3oZgXFSPkFFdvRrzrXe1fEIXp5D6I6LQICw/OSzu2oasjBjjMvNSD0+jKWtDWuCYladuhC7U33Pjt3zF+CE6l9WEDoUU3H6rnWIosP7G47DofF3GD+uG+kQtbwGvLRnaHSaXGihl5yNlH+PNLJ72PppJ9yPBPcSfGWx7yrE3NsUALllQGBdzhncHihR+21yhLoBz8OVkWHPAXXFqr8YTcGp3BzTm4FzG2d1JI9yVqx1fXdYjhzwljvdnL6vyryMncsSkFE0mtWFSOS3/3WrzSDjtCYeeVKbZQKwnzIlnCL1p99qIW2fOX2Wwk9mV2BbojTFVZNIfgx09FNUEOYgaT8msK4LDhnTnGvdJdHbgBK04aK5WP79Jbd14SWjlzTBXSztU+CpBj7V5NeJbDqsCSEjNeGa6oPbR0ALj1J5zm9onp2mHTOPE/dqQojHRdX7TByPe8948SzjR+gby1oCb3tR2JHjHGaqU1bxLsY5mw6R7w5rJuRhGVHcZCy8VQBVQBqTzwuY01uBC2EsxxiPtQjnTBs7mtkA6MbP/lFcYGIptDQ80NqazBK6g/WLsG7xRmR/AkF7vDG6Own1jUw5aIJaaaocOTU8CeKREnbCPp9rmYsVa7WqZwzEUTAt7pfGyX6Id//zMC95W1p8miiYddb7dxIN1dXcablx0Un9ytepTjpW5FhdcfKcx0dwnOIGXTXUc5Am2Smss+6GfIVG1NZPkP5SoFDagLugOl50Y+aMONhI6mTT0MGVIRwxpE1OvHai2hsZipj665ZQVY+jAZb8BuouJBvRwgQhl7jJ1469+bf4ycLDGVHqWs2XbnKyyUIC90jE1hF6/QWjci2tKeW6kcil6CPNCjGXZTj4YLgw5lRDyLN/q9kZv8dXjq/DVuFyTteEPbhqUvTPO03o27qjgktN8/b0W7KD8kgiqqvHMcbKUfzK/kQ3j+OlrD2adqGqy+r4FLEO0M6aqeyPY/lR0GFxd7JVj7JMmfGSB1e/cLzrwtekQpSIkXkRFMltuVw/D7xXlPQ+Zoik0N0crBWvVMCI9QcmmXBE4QcVoHRSFiDijfMhztaAmjQL5z5VVkTzZimR577kzX/ubgebq7RGK9OUr6pQhXLiQMjToWL6zKX2GKi8OQQ/5+VzSZsSOaaV5Io6V6evIAQW8v26XpQ7L6Y3YMfX7yEMwgj0Jl6z7yNNitvNRDh/g3kNb8jy6uAPLz3xiotnyNPmxAAe3PStNdkHx7CAIrYOyAU3wtZjFJ+wA7QpUxyS9x+zwdAfVp9yL/5njR8mUlIkSCmtkHTXJwQdOXEqZN627ZPhP9/PyoO1fImXS5bA4sEC4U73s/9ndyMCMCsV1dGkxc1Q5VgzJKhD/YDX+j4LJZgnz5Fr4Yop3kmJj1vtatP8WHQvaTgQJqR2mX0UPSPJt/zaXyXuaT7iX0cMNNOAVK6rpPRQQ9Qx/XsH/3kJiwwg7vyKxgWODLX+xKgeIwfVcV9nN5fDo3i0iJETPBMsvyjj5SzUJyKlnAH0CXpysTpx5tgvzbMY3E9Q1fPItxDaTJQj0lcUUxJ0MHkuHj3Qr/1/y2YAkMXw2T6lYUnD9BGAKC730oyft1Gb1Clz9bYpbbEg4GJgu4q3hvPHjQnHDZYwtqOIO967K++0mFrqxK8UKvJz3AVwzFQBNxrVOOKV8T+RmFt3ST39aGAowYsDfRs01434C9B4ezeIsaAyKUMr0To/7R4xO6c907ctt9j/MBPCUjOJFNB5TECP3i6wrcd45G/IdH4BL8Kji8kfBzvQ4/nGYVVKFCncEdVWGUHcGg+aFTgVPGyXxrSfNjDkcUgGbBDVvq+R0FZXUh6YeDzBGnhOgQq89ocMWxKNBzBDhLr/hEhG9fXoDZqeP6uTvDrGnn1XJKA1vrobdbTGzgBKCxuVDdgLuz0SYZEf6Y/dkMwzHj6U7Rcbz+DuOmZdXnm5kDWSghQPDKAa1MM8XPROpz6vMUqMGPrzeG5Qb8mbgTUbjzcSRXeFd2mcgIUUKs5qHXNiB67cZFvG7HP5egHaE94ydkxirHreYZ5BmgU3F8GWPqLVQGaRytnJyY3N8acJ00eipqXEMuOaKg6kXoO6PdwFn6tieO1dRNFAN3Gj/3QYhQKGzr+HjACFhRI75LPNHQ8YMZPCfUkvtGBXlGtz9sAbQGLgxbEsNwD0+ZxDu7rAxvkd9Hk1zIr7jaifjmaMCFy1FDAgHi6MaC8irI+6SvFAL7By/nMvWNFOQUh/UsxdRp4IdIr3MS1b+K2dqFA6Vxr3aozV9RxDp2xfhVmqTJEIzWVV0njaGyOo/iul5uhdRP0GlmSDr6r7PYklT7Ox9cq4Gl8OPuiPDOMhyeUr7DOlInl23MJ9rx8ARW51U7y8qLABnDmgiovSE4DDvW4idRq6lwWigmxdMJduCm70Xk6iWdUFBOkE96dLWGblwYck/u4qP8catcYOuqjSN90Hf115Jbs8h3OUSyZXTjZ7CNTNBifNL+xBMpRAjdzeaNbFBWL/f3p/gbfPu9/E00ZGgI5+uTVQ/0x87oOBtwQHfLeu2KLenLBkjzE7JSxlgpGUFanc72lJT2lJtRzvqMOswWH+Z9Q3GsifJ3IjpClF7QKuD9Z4sRn107li7NT5sKz9a7ij/3w+c94SdUfdCIwQDq82OjsGQq2oc4rIRnZTdnD90+um42QkoGrUeaoaJ6omRAtqQ7tqAmY9Xle43w7qd5FPpU45a0qstq1EjZICJ1rZK7VpQ8oS4sI/3hBNttHwxOpS1wMXspCKKXB9IMsQaQCD4O+pcy10wBMs37v53fREAX34fJ+MCJqmVDurPDq6iLx2vuc7wfwTUqsSVgXo+5ALKqOkvo48sgb1ctMxY8w7h3OkYfwUwQNsiZ8bv9pEzriZMOUcbJG7CyY0IhpgaNVbpQ+pgxo6AEiXzupkc0bPxUA8WEYoh2IBSCECG0OeuQx4/GsyYrKUqfigtSb3J+zp71JBv6dPxITeRarrJzjnvqTlTDas5AnxTb1e+zhraKvWFmU0TFP6QIegNryqIsCDsDEce/Szq4Wpv6VupXUnR+M+hV/nf7+dKI3uJq7afgAcVYq4mv9uGFx5jBRBA8M+7C8GyHG5Cyk+3GSbRwVAq7E9HSPKeCBEp3di1Knkbkc3cEEeh0YT+Aq7D+PJt4MkZBuPBim1sTTztMqkYNKazHoLV8s4X5HaIePzm2Z9x3V3l57UoKcz08E/3tA9BS1l2zdIJnbXriNov9HWAx1DQ8FNbvinBJfH6NN2hr5ozrOiMaWLHIEhKZD/vnwdnKlQxV7+KWyjmvkZDtfU7j09uNOObUO/wii/l7YNOFFeYoIJDauh1qwCld9UDOUyxg4IORctv09jj854fQVjMiTEkoFgcniM/bKHKkCR+GrGTyzOvxVrhDseQ9NfGHwcDQcXpyELnyuM6dGRC8r+QliiySzJHsQa44xGlHaM17rYK3BFzGZPDx6HphHnGJ9MUDVCX6rt/mimwcFDht5akBUdqozHjjFYYwmTEAO7bOEswrhpNhnHDi1zK3ZZasDz2iwExViHbVLSlIy300HG9zdEeAJ6v8C3mh+mNhPhLCGHIQPTtaQ+tKW3G1PTqEShrEAVssxdi5XBegYhYAmqI3Zsves+utln422pune72zWdQ3+/SziUaFD6iSjuJxSh71XzoXRqN7ObP/PdCI2g/GWB5ryqUwvsXNylReyb0/QaNnKHIFW7pvWW0g9DddcnqOnBeXL3jLwboBHgml4Xzq6iNb0efGxqqdEuijR/lbknfPQYAX1kSxf1aFytnPVwrRI2Bkg/pcAdu/UOISfHuPztDpIvs7Hu3vx7Q5eJHHezlGx3NciAe0eZlLo6iB13aKoA41Tc0LpKAoy3PPX4uKAb8gLA1SpoZM4ohjf6kgKZB9KRhhhmeSXiRXulWWTo2YvwyjZeVZEfn/d2UiUlUMnbTnkxto9SRfZ0/5CBmuUSTs610WwXDH54I5COFPHL1jrOdFRJ/m1IPaf0WYDUmhusRBwAwbAhoT99+/YZhtiVx0zouwZ6SuddUrPVpTatUnjCuT4LsnK2GfRT16pYe+prEmo21268qJvci5Rss6BeE9ufH3bjhzyx+O6lWApd0juBEBqBS6WYvHD0kX3pGuUusSEIfLbyQnJqg5HTToe+sAoIK9wNoIRGAemKeOhuKUMOlwfGracpj49C+gHM+9EPj8Ek5mZ8gb1bye1FVIaXxO/++bhz3IrobxN0EkKTqGvlBDgFXpSeKnLajlVe8UkXlprtqtrAyp5wJ+EYMrtJqlrvpsVu/acsnDebIvb2P1ZzAr/wLcsa4vSFFU1WjSyzD4TbpDfOWCSI2pzFszsb8KPrfNdTHjyxy4alIAQZjr++YIWuMQVsdepHaUZ7W1WInhW4r6J9VBBt4vbcFmO7k4DqDSPE7R7QBt6ldn7SNSs9k8L9LLaKqXGkDof+ZY/Vwiy8zVzgB4CU/PG2whJ1Mo3MkpxCVWT2/X4Hz1YkmaKnjBaEu2qWmM+xFfeTMMcTGo9/3Iqdrv9VRjdaetoi2/Y6nxHOH0/lBM32fDCF/BMo8DgjvEP4ndo9Y6WsQVZYNZwA+KDeedF3Pbn+EPzviH1ecrabguPwXA1pCnZ1PYr4P5H8X3s1Mtfoui4znEGwkUoB2oXVcLLmUllLq0QZjInDAxYSA+wBhSGbKuGq7MqjXrflvAZyA1mc99P5NAPraFKhQ2GVAhlgrL58Pv0WjI1VAFHdC4aDhrTiZARL7pB8acoxZll8D7b88O9Huiar18EI4TiMuJ3087jCOkTv5ZOALRSJQTzTLb80BjOFcsfQV+oTLGTSB9mdtdgSA8qAu7njl/MTphNRU6Lb/3OLD9NRDKFWlwYgS4GGesboEytYYrz/kC+nFHfnFLfWyFivnhww1HrX7LpX7NX9YnvXxw0NAL4liMjVKrWzOY46F9HO6+be+0FRy+U7x+/qefbBarRs7l8IA5CIb+ofrQb2nx7xm1ji0H1ClWn/UWrkFXY1tZtTRUnUV+lVLq/UckynCPxH4uRPBIfTa+7HZJMz5xIZqF1uMUE1qhd6U0emWGBtxlpER+bSIW0o8H9Mlj7PwDLe+aoNsoJ+k16iL9ZEs/82KEHpBE8FxmHzThrn7rrBgY1oCUuQUAnSDjZ3/pAxhHkCrYRClRATv5AFmMj9Zag6pw5frcBGc9iRDFKrZ/p+SV+r90+oDT+tyLZp3vAvzpVWqd2mdWShRqyJarHoeVPMa1qu6SgwFqfuxyQgmmQPI84toManIlSZ8ssv7Fc7LvUUQq1kqQHgCxV9XIaMPhCdg7NKTEU+vWclGyyQHEEjDtd0SiVaPCvG+3yYZuXn0uEv33Vpz70leL2DltIGvhc5yYTcgHMsQA9RX4ijhzwz4FesU68Da/VhsRyyzGEv4UdB5t/5TEGPFa3cL+c9p416nIMoH9fr16eRGC7NCVK5kG41UsZD4Xdu3xytPjGRgMPuWKGP1iJohlVXPaF/AcvhHByRHSXFJ/kCufWz0gsY2PbuuNL8lIiZ3BL5ieBq31vy2n95luGDinqEMh4ZKX0xm/ffoNY9MG4C0TwlM9vZAP94nFZ6bevxD2i28/wH1MwZFVQMsUflZuufSCItuImaW/r5vJghXzzadmfazZ7iOMLo8HUvL+u+q10RxGo4m2xFT5hbhwBAp1ito9MuVV55BzgHvjFXxUV/BPU7EJLLnZseto5OyB+RilCbY+mH5BxJhS7kguMHem5pIRcx18MqEVLkGiIIrlwZRIzhRvSTd6Hae6Hg+Byvw+tnzbsk3kI2j6PvsTBk7hO+C7HGt2qJMrLZb3YiMyNd2DWScwWj6ZXQs6ktE0K1U/x7cJqy7wzM6sfPLWmnyagY8OrrtNT1V6FMgb1jQnwx6IjTRbIlUa3WF28NWaYnhXG3qtjsDbfOUyO/ErW+a+A+wRlSA9uumwzSwUh77dpRIIoqjFFhmZ9RxW6eO2JKIgxsqpQdaah9feV0645ThsYoDcuMze4z+GKE4kstKZ81HO0sm8oKx9TRv9bLSe3ygI9r1QE42ry+Pved1UqjM+J03PhBcVyBzqZUxio5clpOTsgrq3eylxFZsxqqql3k8QfRJ8wbly6b6cfP39vg+IjlIUK1qJnYyhgTdOxvRcNB6F0DZicZlEUWDivAsnEnfCED7b4uDpcUedV1HAKq1cuIXyy+klYr2fSFtXIDJ4MomQepaYPBfdYpUHf4KsgG81KXjqETnu+tUJ9btaodJPdAwlE2jMyBoe/PGnvZQmQI0J8ndfIoC/8S72bQQKpLUK7m16n9hdvJxZirg/31RjyD3u2e8K21Vrvcx7W+tiWbu2y4CwDRX/VITtu5RTxIOS5DxOJ7QBUZI7BN+cUgAffQxFRsEAAPn0ylopqK1D4+w08O39jFl3ZdLJu6+KP2yToAbPx0OjUm3zHLTiMn1WPYjFvr4tD3ko9OKPVv2SVNhk8T0CHUBl/O4FIaU2AjOLpBejDOKYeuV7B2l5oo5HPtdOPjZd5phOIhrMKvyZjqFAV2T+LkTeiWrvVF7ag8sU13CSGxe0EdULcyhdoA6zW1e6c7PnEgsQqcRh+ls5/Po53Hno9iSo+mjgUsvKTyb/XGiWAE2eszBtcoZWNWqwTda3PkInnNZSbgEWX4RhIe/XsAYZWhjVZfqAZl5XTdGAKWCywOWLmUgS/WXmUrKNKUiUpLx8jWALk1m/uaLDTPKNyfdF+tU9TE6UYZmcbVxpboXZOLjh+ScQiRTyNJ2Id2hPTc6z2XfZIZSRiWZRid0ngxyYB1UIMBLkblFYIOvbEF0a2fwoHKXDc3gqkF16dGcXefCBqXpsVl54Yv3NeVy2KALp0nbmgeWXF84PyFouyjMytIdLQPF/yCpfQxN/N7ZguNSPG0RFWVpy250+VuwFlDIErYcoGmByBHyTV5tdQiKrBit4+4TRgmIfCyl2k0LyYe/JVIQVGF+6LDpejHHad2cYoiQ21I8LWBsqnC6c/dcIgb2vbueAJAzNPRPWZ5C23gZOheIprFyJn08xJ63qrhMIwtMUQ8UlzrNm8d3PtduSDHz3pzkDXGlpX/o9wHB42kYvXRgX0YSF0ybvL+0UnC8x1vuPn5okcy+F4p5zm0WH6r45AxzUxUCbzT3iChKjGosR3bRIqEm0kqWiaTNDsz+apd74lUNg3DoyPHazMXEUEFMNAcoqsioVZ458Nu3VgdpZHiGpJee0ob4ZuZI9AG1ScWFlR2GEmA5mDC1glgrrIMiDm8RiX0BRGLYw4pe++v8Oz9dFDNpxiRIAJuwbapS24rQGR9IFO2NVos+OqHEEEkDllFbqofuWi55kXRsct5I/XvEHCHqjf4F+tZFgCtjC04dqtNjGQS2qwi4lXeGSXshtcZZrQ2nD897WyqLDX58Udrvon+TZZopzJbdav+flW1llfY4kttPHPY68noJA9AJFmAlfn5IJ0ZJ+52K0zn9AA/wRVkKR1Ybw83VeWOBGdMZWBh91wD5sEpXxbOotG2Cd4mXueRunhn35VntYX22DGv1RE+dStRWe94kTtk4aJGDYCbQtW2iAuUkK7efvHsDnYf6RP3rylR/l/K4YgunY0lcGoRvi+5l/yB+a+l5L5VwJcG6/LoqCG8uBC3TaBibgPQ+vbh8a+RXN1rpZzwhRl8orl0SsH5EPuMS9JQfXD5+7Yv3bPUW1bm1hylYg8UHCR4g2a18K8ze59JzGq1yIKJFRVXwXpl7buuuKXlQHIJdhFO4msI5TEdq0SCdwuTp12I/ToYc+R6ArO5JhYAf3xpxr4GokkBHBihf9siUruYUVWCUpigPQAZPsXeOeR5Egyv+AkgSbScqcVXPqzgqk3tMLlzpjcwFK4Jz2monQlbG/kNyT8HbDKPcO2gvckKGJyFBfhFuV3mmC5k+5N+ajje+7wPF2ma8u75ErL53gJZVo/03H5Mg1/YYOK+tcS44IkvgDd1VlFq+Ltds3LOCeWDV5ew7ACOwG4pXBd5lEEB2R3nUhJnK/warrg2iWlAa4EqANP9h2NAj6+Hp8R9nhQMAMm4LEo9kZNoqgV9PP/poUInMMbvWoc7TIEW4fHQ9QV0IU7arCSnFSObYzodFD9boo7gU4/DowZqtWayMcyhqKwnPlRQhH3XmpwK/6m76Qpvg1WlMNgVftdOSbwNd+U5E+W31n8iAW1qI2wdti8zgOEkxcZPDa2a/gJAm0Awl3yeyjde3MpPSheWj3yXvKiRDuM0aLVefG2kgPlCB4zPjV2HfIgL79GyzASHVTDIn4tgP/4vya4hgEsZzfEJnuT+jztyFwWMYcUFsUVAtVOrrAvJCKTLr8H1YheD45SwXoLoomF8hmdmVeXIu4y9yXdjCaFXmfwUfdfyS8IAby8iea2UyxgYbP7nX0jdHDONCR5w4wQGcBz7uV60Z6ae+RMRdgGRQr6UXlhyvMNv4FrvEQlPLiKKRTjomA5obuY33jMoKqS6kWpphPg5gcglwzeL/UnQkmLKeWDV/0YM4wyKkLjd/EWAj6wEliCOC7RE7XWrcwgCG9nxlJ+1OVR6I67A0cvGCylKEoE4kXClE1RzJowWMa1LdVsYTDfxK+qr6KQMD1JjpPZ8zLbUJdDjG5GAKwjTkfnxWHc1rpkNnc6MAeAytk/uES13Z2p6qAUGni421rzwaEbx54C2xJjCx69jAZ066VElwJsjyAYT1Noa7vcCAaEMrl3IEQZG7rVnjUJgBrhsYVfYpb/4cuL84MzcEsch4x9+h7cnwF0PhNQE43ISERZz9pxWs7BUl0MjFT63LHsueFqg79na544LbEWZx6YrARCh6qQE+tArNYWhKYJETz7gK5k4zPiIqj/hnUu5YqTZ+FpgBrY5lJ/ZgzOtf7QzmzZqRWehMNE7E96fRQz2IizibtmTZfUxgWddgF40X1ad5mfkiCB9ZTPj3WiU2lJ4aToG6eJamvsmzn55Rv8yHLvG1qfL6TsjVkmOYdxSf0SGSGZ+MW+XGFAM67CBbYU9Ub0K7FkpherO7Wp/4h077TNYFJcOWB5hVsoFGdWQVRTmwSVHUxsIibRdkIiQtvvUVAi7g65nLG2Uwf+c8afOb4Chz1jThQZZbxwn7KdVzlN5VULabZM7wJi983Y3NFN84Y/i6csDJCmWaXnt4mmcnt3AZbKpVLR+nEHL/n13rfCqdZKI8NqvlHmkECt6VJi7TsOmLUtXmZJmXovDmSOLFbRZnCVb0XnT6nBCHlZIih8NOKeEPFVIOEZA9nJqjs5a5yGHHbkLhCyTRpre2P34V8C1459pJJ8bA5ROFTJfyCtEqGR5IVt0+E9b2R2XIDJc31nLdmHF8oKeiWS1nIniV+zr2nTZAi3B8wqwp6KoKRw28DLDzvLyD/0RonKqiqqtlItqPsDtE1RDZ1TzRelWe4mGRg4eIg+Ki+EuKn9g2ljtcDsOTAEvSKo6LlQ86kLK04peCJUPsbS3heApsLi97WvzJECsn+6XiBvnNGBxI3I9DhuAYA03UkAmrx8y3Om9JuGxjY4nTeEY3Q1TwutKZhU5AwZWayPVE+vePheAoEWxnhSl1QWPW0N/AK7AXId+zcnHNtTBJTNQSBEI6LL2Frx5Wb+DI+KzcMcJTgRMk78aGT1W2P5PMaTTqiJyUv+ZcVFqUW6tMNzSyOEWkpaW6JvLqzjdXe/NBPOyRYuxZMDwRpGDkewnvllt41UEPx4iUMG11OEfgOI1P4Dj2fNc7Zp5xX4wzMUmvCu1RVAPXrTIVl8nzpm1ThJyk7cUlsaNSX58Ap2TJzp9FsYAVbL0Z/mRm2ZcSAnFrZJuaU3krHsAxMvzlvsirLSxN0as04ViZcZv4l05NAHy8orvupKEi5pRR+WL7PapBv5ZaVBlWXg1EC8gCB3zrE1G0Rip8+flCdYKwOwFnKuIe+oBUhJCh7nHm0PHG7k2Gsn9scj0vyo7zjtOKR9uj2ZpZLhQRu9dpLeIf7tEMY8yRsAB/2j8WbAeo1noB29LwN2M2cJx2FlghCCeVj1VAHUhoSX6j28upJz6hX8zVdggx32N22kflLyfRfGnuoY/UwGSi9bm3NzqyK6Fj9B9waUyRVKG6PAdLnV3C78i/bE6M90K59fYRXrSUFuHrkMpnYLtWLULTna7AJFLUSN2GLBHsR+ImifAioVRLkmsY/8ABjzajoSf3+kInnwDJ2JljD3iUPXGWBXQCnU8Fx5BvhcjbbjqOrmECu4gGUJG6KHtDhSBXmWcJkz9JdGVxFeQfgfLV3jguLiuuR6oUlGP2cg14MHFJvFMm3dl3LeZWQ0vdjE3QrYXZvcdfUkf++Du/hFj474PNZGwjdQZCI+MZfui8Wwk/WvQkF4R3GOwqrkC+hnfSG8CPLgmhk2VNkv+aPALLO4db+BnIAEAWa0KXFwGnPbfm6GFSjDGdLzVB8ekUDUHAYcyd8BzipYN3YNagFJmt0WXmKynyxoag5PsltwQc1drGVM9UXsSobKtfJFxDa5qqJpn/+tEC6NzCoO5KK1LO3TdD96P4YtMU9n2vyLDVK9UTM0tTiZ+rlFary1Uc3CEGJ3mdaiD5RuePC6JP8omm5pv9HMFHuviuPIMKPmx+P20KtMAYtCJlsJe6KBDl8O7Uy0VkdcTO27kUowCexme9bF2w2WJrGUV0iW8wxhno3ipZGgK++D+M1gbUqLsXX412W6hPXg4P5lwteshtrADlUtA4PtXVJXuDNQSGfJh3HNh/iN59lJO6b1HO96Q3BjH55SoWF46JmV8hSIwJgmxu1MsNOf3MkKTTdFfZ4ioYdBVv/CeMxZhTdnIerztaSISo/44kbRuy8WvU7hdCdW9t1ssdNGRThxH1vn9ZYPHnxqxXP3Mv8fMec0jvvc2ZBP/J2l9RoURZ4o5fTwhSry4YrmlYjqkKIlcmsvsjcwXDPPIgS/K1yYbhvboayLPomg3HnXCd2GOyV3bakeFnO37aBZelDNESEsPgKD6H9VvgprU/1sz6mHkx48EsIQ4SKxkdth8rWmvj+cdaZcqQm4QZypWTKWAls7fPMWN03hHwY8Q+dqrjpoZCEX9z+z24vSm31V4CG7Um4tZTUa91GjJkIraZpR1NctCAtwBfsDauaP8yianWN6xRdkXQYMWjixwwVxqgV1y1DazHHHsH/BoJ3TkJ0jVsAKmKrpqY6yakRjo3MNEDGA2lOmywBsR7vFsLztSRY5JtPVziiKGyhd8y5bBwEgUR6mF/dZkydue54I7I0tWjmu941kQpTb3GaSEPKQGEFsmaYJZ4+lgDE8Q9ZE1GTZ9DiKjXuuezs+BfXpZtjt6bs8+SAzvl8eKhlHmHin+BLLcnFqGc0YfjqITYXW7WfATNIPZFX+ysrAasc+agIoNCDgC9JZh73wqmtn6Pm8nq16BXMcEi2cwD0FgD/JCsjv4IJVe/kNIF0imCThFf/OhkfSxxr37creSOq0WFr3dKUxkbU9KEzkAgAJvqfIJyD0m152z7v//47PxQdocimg+7KYZ5KFLeTg88h8TehU7uQ2TzmU6rBaO3b2zw6v4xJ4pq6Yb1lFtwaR3vranvMvc+L/hHCgXGD85A9tTYewPxQMF6SQKJbo+uZUSdU9492USJYhKSz9AeRkAuveORJJmDvBPz/TFeXruTnkL8yYcdBTTcpwhqk5gHAYpJ5Sw1EqhErRcI2ezNRpO6Wxh5UIhExo7WhbPcmgCXBYHID1fxCvdMqeFfYjtZDHLfOke3sKom8IjANfza1xYSp/SiWcP3AWJZq32Bvqj08ey/9asX9YbacyjDrnzAtL24OF0cgQWqugnuZ5hLoeSnMd/R/Nb7InAeOd6Zfc13artW6ahzvX+f8OZVM3uU2PrKClHsW1v9ySsVUXOvWmqtlfbmeFLlX1r/TFnozyR8JEgDgIOudft7yA2TZ7eD0kq399PWa8UL7NmuRx9kYUKyIiH2XRAuyVcXCaeH1vNtLR4lOsCfDj+E4cjQb8lZ9PL7+XeVh9/g09au3omGVzYKVQjpY0gChulRbDcBEF7sJIWaFwb/KcPun5jir3JyoIMcobfnAs7J9OBElJD45tO+uTp+AD4JPR1qzZdfoQUZfdutca5T+fD//+OxVggI65VeddNwjm5Rol/ccB6TFIopvZ18znkT+mNdSmzYzDozmjq/X3TtNPRDC/xSaEYlS4Dc9zTpzuHy+Q0wWoqKuqsBB1h8xfOPscFnGJq468GBpuW0iOdZoiCwGpfdIhOAHrttuwE4Yxu+ODy3Qx9GSEC6w9F5K4S4K3x68y1J9YPcX+1u7agF+GOZ2KZCGiXXwIYSP3XNwZXRCkImNCaYk+G8mLY+5vgCUBoifP88CImeUv7HT6Xl1MqHNrOBJuzKHdssP0DQ9DeFRO09hi+MJVtnQAQTzeBzwN2ApHW2SC6Cyi/6ntDEio9ABYr2uwVck2Bm+ydLbfPfuJGXtiImbSkE1xmf3ASCHc4NWWMsfrcTkR+n+8Wr/6rpCbJfq9WJzOVi4GuXGsZm+bWQR4/aIY7X5AaGnLwImOr7w7klFqpMqFdFunUxjEeDgkMCdKRl2ZL3f9XFaabvNpbNfzUt40450n+xHK9ofgL8OphXXtNk0jWR5srJcHqTUR2D6RrXOmM9X8JXVHTZpHiXcmXEMh1YQyGih4xoqNWrnG/BntZL1rJgqQ+9AnDxNFlGKD8zq+WYHOOYsEWf9stzSSxIWOlQtvdx7T7es/D1hblGpwa+NsxykI1bNJdNhQwfZcvoXocFqxWMnwtI4ce3EDsWlGlggtpMnw1mVdcsFsQ3qCwV7nc79cvHhey+7h1V93H+sSB+FRQx8cJNE55+5GfTwDigIs2W9MBlpmNrcAg5PQLycQ7DVPUcgBM+x0GhiPr7soNyzxRoDt75kO/UVnU/sOgyDJH8gzg1S0RqgdHiCmWJOKQFpUcGIOVqbCXtLUjQmM5nQHvj3huqh72OziVCX/8LNqkFYPGxAYzZfDaASZZYg981cR4MmRo6dTScDdXUYAhryQplzu4IT8ZA141O2GgoKTa11AHHwHY2/gxjQIADQ/xbPiKnI+EUcqs/+LqMBJ6xyDIQ569y/nCLiseWAYx4VhS05yehhS3qdXFpqzeLXqBk1fHzoZvq4/CHMjS11+Ta9bpTrsMbpgfZenP2LYWar/SlrqI/8XABo4yOaUtv5RtA6N/q24/tVnaWwem3+9T1XTa5PFbck94bdWKfZs31WcF+PM++cAatq5IxBfPU8kG7KXAOtTS9VD8Au0al2xD0pMioUKiSeBaKIZfbrzIu40wg+Q6KruztDvrqptV1hvW7fLn4P09Y9UPz2ug0L8btdpVTwq2eutmGP4UXToapKI8JY8N/i/47csRzjYiBns351HTut9ANuzexZMDAY3PC7nsXnlOvAiRpiZjqdBybwmMEdZxxwVJAtFrfE460B8n6vBZZmExoTVCQ2q5oXQdU3GV2IHYuvnc2A68489eIKlAOHBlSxd/Y9VDXBwv8LSY9kA0YVN7jQd13bFtSJS1quLG7gvHFx5DLvOSoSW/73PfwcnCF+TnRHjXv1UR19+YQ+xlOD2/KMIRD53S02j4nO6EyBWypL0k3Htwc+phuirdamDyLVJ5FZ9q2z79Nf1euouR6WiuqAN52HLmxNbQXV9rSdjEdhBjFE+JU6sB26FaLXzaNnpOIvePdfn3ti7YHsPdTe8pcEqpvmBZdGvZ4KZly+N6VRlagCEVFP3xVUlx0ea3yMynj40Bh7szCwBVNfOH+E7rngrn7Ojpg0VXikcsCQNBVELiIqIPfYHq653HGP5FT0sJQCFgClNZKT24NdDSE3rhTg75lhEc2gwNCeNYciM/XJEDoJV65y2+eaOJpGZhrrgJnABVEovSj0GrdUmYQp2FMWcaKDLzNQg29/Dgn8QDbdskfBiOZ6vpgtRjRwG6uRA6oRis0EarM1GIAfQdbPbGRxj51goMb1VO7ruxOpqcPYyTdn4soV8QENTA1rtiCxFoxj4g/vXYvPEUJWxpadT8dA2F6TN3FpKuuGEWhgkn6gnxDn1DcDUMFyskTh0oZtTHUM06UstcuVumYU3AjajxLfIbirK2iTBy/r6ecWO625lYGUbY7nDq8obdgB7hbIzAxp8ZArroObeoKmSln3DMzcWNUolH5fM6ywwqOBmGS+kuk2m6ZxlGGH0WzxjePhG8+8gfXhIC36UnyArQGdOj9bpIJ0pL8RXMFjqwMBoW61u4eJz33Z0/jCaDjJiu/E/UDTr05bpPuBtrihIXOBtnmPYzznHtkfU4Mxt5i1YwPbdO159Zp5Y2jA7uXcIplp5GcVlyRujDggHprDUuucS1i2QFfuATK/Y5UJK0bvrnO3GpEF6j67iqTCzoKFJ3lbPq085Zx3aIG8ZKtMbnOfAEm7rLmAw4ojPD1VibQjAszA7k4+6cTfl//P/WIeO9FuoKDUJvaJmhhRbZhU674NttqQnuiMAukAsIu6uZSlmPEvwqmM+JOFiBd4+3hk2YHM4PXR45qktUYvSWpq9uyQhDvGKB9IcbBx8e6s+ACeRXHTs8u2M81GDWsz9UkUKIMlQ1sDOJeHG9s6X3+VaQMYf7Gay36haPanttnVQoUGNfKmYwrMBYV2C6eoq8ZQaAuAkEPGrBn2DMx9psvldD3A5suoGEBZA3cvTQ2wJyqag+5YaAV9jetQ59A4A1/BW/+C2OtmhOUkRfszlfMtAkoKh6sE9CmAXa84KRup8ENPQpxF1ujfM17pM3iFnQZUzti7GoPo3tzCi8j6EqEHWIXRgPdvwcH3Ajy1IqHK8dLzihy/RBvEVonKH6MxF2iD7tQzrq4pnNWys+szcaQ+clzIDtn6V80ldmktGwDJyJVadvQVy1PgFixbSfPvGzZxcNoXpmmuxG3B1sIri4sbXiQaaGzpnJDG7qSxy/wUyqljAF2L4nhQp9q1qevh+BwA8d0afaofvvwau5AlweEbCasE5okMjMUgMCvPoros6mNXZHeZmDiOpZ7G3IkH8QP/YNgt+pACPF89g274SWJIn14Yg8WMNtGEigWkIWab+JsoQSGfCVw/w2qcR3EDBSIYrsf8+r0ae3TXx97wmOrkRehCG2qphyaKX5AELUh9tdzPtVS/4cCd+eJTa0roaGlNl9hm1KphUmabGyuzqv2CgyAb6SwRlXhtjb1MOM7llW9aLA+e7TqueRXOBBKmNKViGfgXYZ0TktFiRtC7gptT6ZXQ+L3l4jxPHuMw36MOGA4/kPyMbePywvGMJggsJRRtTErHwMfpHNpjWTx70jfHq/nWE7IdBsfn0chlffSimOFDjwY6hDnFRuexazo4FlXQgbSfaAhhPr1JK3NHAbnipNUda5wyE/+O5TOCqCSjYmfEzaYjhOoy09sa4u3cFPyqlxI6sgDYGl7scUTBrc7P79pGqRSEwpwN+aUKKoa8AqWue6/+cQFzg5+w7G6dxCT2tN54uGHMHMKImaVrBp0ExgHRX8s+ivltppNg90DEFOyu59AdwHfcfczkq6uSlADob0e38mG+cpCuvr9DKSqlOcIktyl39mKRaa2mdOHWHW70Mi17DAyFct7vgoyuqxdmnUIN3v8F93hnCn71iUPIIGVO1hOtOsB+WbE1q7FNOW5saw+QsLbkVH9M6pmYAHGvsI0yQk0uFlibuivrvgTTQmGJUTjk6c+rjHXrtTqb2cMPdRl7SB4+NUjTPcrprNtu7V2FAxV7h04Tl0x2Ji4iS0Q41i2fmOfAFTubEG+pz+Xxo0zWm4BjH0zwWeYjqaw1lbmugYtDweyb3yTXrgFxooLiJQmUkNW4IFdOG6pqZa8ZzWzMABQf21BusBJAxp+7znjhk4QUa0XGVXY12UggX9GVzITKBL1P46oijBKTp5+lTJ25Bktn9Au/x6aiXZMRYHKoe6aR99/GoXJni4P69GYkdNUqDJzE4sowIo1nbvArFC9wZtGQL2MXPZ7z19Cco+vdCegej3e9BH5rF4SdVGJLJvLt9W7aUJgizHc3mYR3xZtL1qPeBBZvzZ25QQhnBuRwwKCzRLv4efqrnnEc2yDZBK1zalqjxCXpNm9Tz1vYkAkexGMaUbHQGonUVsmJijnl89Vq1VatzNPNxKuoNHGlV9GWegwgo5zdQMPOpB1sVzsWVynZ//XeauYCym8NTTmpkMekLLBO3sae9afJQpAW1n/fcwlqGlT5FuS+BYxXzfUDhmgecD3BL05qKLjY763gm0hEasY7khy3UZdNvj33XZJWh5xOH5QuxW3hh8nTRA0P133MwoKSNiaVNHvHgD+4tEX/yXV+CykAFgzYm7+1BW52PBBBHfHf5i8u0rhXDlpzltvNAcEMUXS8a3wRJRX+/cUoY3QtuCLmYZEFjycMSHp3/WwPtqvvo53ul+5i2rNjrxHdO6WN5Tm7Pm65q62WiLOXZzFJGmwSdaq9lyE0teglXUqOPkr2L2NlpSmW2C6elxxjiLrsLEAOT0dj3+5VnQjkAmGdOUW8IgPHpGJuHI1qTk9EiGdI+6lhvqvhZ1q9ejrAwXRWUh9Z1e4LKWKdIiuUDakvuAsW2JbkK1jg6f3PcrGgBO6jpgybVwnzrN/t8PiGdxvdBaW9Sq8j3a5aJiK80kV6gw89zRVZ+DO3T5pMiJvUWwk2i7gvHnjseBAZ0llN8zSSZL35BzHshzxABLpe/L/IO+gpE6B13BRk8fE6oz3bA8i5npVmbme7P4T88GFDotaUzgmkl/6EcOX+YGueHNmrxHv+lIfvRbUyLeHqs0np7XoPkqBplL0J3SvjIn4BsPW0t08B/A+p9GkPbxyVZnNCWX1RAxkFY/5xP1xDu1JLZUv0pNmUm2Skt/e7Q40oabX7ZgLrOIVgFgt2z5Gbvb+3bLLIeTybocV472uBkwydghxmVvWbea/wqgz29g9uQGqFjsPsPtT37O3XU9ySDKYuBBqBWWgrmWQ+awP6f5O8d+jehSohP1YGGbSCfUdNFzyD0J4D3zNv9wJJCBuT2mYeyUYjhdHfIIhurJFQk8nYJMnrns34zTlE8/D2WLhGZfKDvbI62vxnzltm0gW2yFPYJSWK/YPjex97ZJYNoLqb05NXvUAHZ+OQAk5Lk53+q1wdX64sml6FgwAWmFyTjBy0NLeHxx5qEsDhykgi+bxLTS7nfX46nsiUpfQ4RxPQJkL394FZfBRZA/9ZPe36hMfX1ZuLGOaQAx6dzdAxPSwCZmCLM9+GztdxnN1Mx8+7GmPPCI/uGVi7vb1dYzjnT1uIteEHDr53bS13y511MW5PP1rb0TbQDrEbY2MZCuniPCp3e/glkxcd6y0Y+Z5lxqnL0RCWsobD5+hOvXJ4LXbKd6uJLqG7+zETQ3SfkhqGbxQzTZUpu9/1uoCWSyz0IjRcWurKdrXQqRJEbGEUumdAjdgp1ZmNyBWxNs4gIf222W/uS1t0hBVFv1wVvxai6FJ6uRnlX3ydKsiF7UvZSWY5VTvD0rEcSmwum3FnQyWHOo/qyeWmG7kKn/qH/XWjLjkKAHcAQMpCcFlpN63/fnPeYwnOYj1cnFz0XhzZKymDdPhsM28SLQvpUn2jdy1StX7GqHBki9IzobHpWEuuLtw2Eo7ALjLGmzV71zGhLiCf0oi5rtn0kAnHXtu9nU162XnWT1H+zE9Y2trbsf+YWxdFN2OPpSKdixfrjR87tQ1gKYKfnm2rQ5Zgqj1XT80jAEsMXWCbLMPLMR558IlNHLzvf4Z9ESHxBQPBcmDVBDGNvIZ/VGSz7UQCdjp6sMZ/cWKwGbnwgpHZhLdY8GHF2iDE+PfjCO5Sk/KA3eU/G7zezaJkBRvkfJZmDhVve3dk0ddE9+eyA9k33fGFpDXcAxS9+fZC0SRKAyr8uaSQDc+71dzY8NRPPe+P93A87O514YFiqJWLPhHCLWtfHkYzS4HHPRzZ+VF+HvIfd0rnLSLcdFSO3gLVGcoToyAsHTugxXvOLaCWE3YSOrhHlYk6IVWuLijWGcizu3N6HhX3buAxbX76e2ycKzcTXYKns9HvbUL6UzGaQ7DLveYGIzwxyropQM8SZSyKDXbTiUZCFWh+wTBBWNwlwbZfQzgkd930hxWE7KDZ8s8ApOguaAx/Ctb2cm8UDdk1PrDSGuf+CphJ0kYXMga1zNOUxCGZ1lzDsX1n7EqxOQu5+qLliUWdKIY0+pxJNGdaG+hq2ghgCn8dk/vuTRr+Dh256c0EKDPd6B8hpzKWJP6FUNUH0yvCVbLKeDPr89cbISGa5+tAjDFj8zXk66/pL5kAhzQ+KYTWgV6HVWcQztkouE53JMK+L0YkGEJ6ITS6kd4JAfbxCMLZma2zpuOGyNASS66+bUx1F24+O1oGtcCUZI2ikMkr/eOcbaZ1UF+BanKdhAzx5u3R/DL05ZiW1obTighxnQ2sCDlEWeNacMj94dOz2cfBLw5UeKip+LQ3RSxhKihHatn1pQR0Dk5CLOmVmiv/LHyzb1foy5aN780EGsvNJ0/0XtZfdEmPhgNSe2TpcgHFvwmvemO7iCQ8nL15B+lWIGoU6pOFvSmi8fzUjtB6pDl6JN2Qmh3j3b7eNQVCvPFrluNH5X2D7o9Y3vK7wcvylVHKwXAgwhT+rWXyprFHsufaVCRe0exw4zL2FoSPSqZqk9xq0Uih8vXxnbBOwUzT2iRSl2EsD48W0i94LanBbOE9PugxXy7TmjwrtxYEeII9ca8cfOMq+4QJ5ilNrAyRp7D2VXMrceWlc5gpb9Pa4oLo9mvPtk6pbnIj9jsJo0bARGj7oN0XlVxCEx+juENR126soYWWadH+faNnWNPWBLV2gfa00mTr8ngRk6L9ZB6yZzLzbsoojExcv34vlNCBBPCyRjApeO1cajIX3Nq+GnBsF8JU/URb1wBwwWbqL+LyQxcSpKnGCP5NRqmfv1qB7nAE/WFObtq9Jxor/97WhgS99NXFgjoMRkp+wjZu3rL/5g5ljwVQfu98ORxhQCOTF9VS8kR4YTD2yA9psl75i0iGjjeKyr1xHcahSf4hcyu5UJ1cpAXsQus7in09EYYa6hzy2Of5vVk9mgOkmJnDb6pWH80FkUOGQJwk0XDswtj356nIqoGnLcbr6JJ/hRem/5pc9YK9/NZxCguyLD4SwhoAolAjv9qHx0owKLxN9zTGom2LQZtylwKII+fcUAs/kGPjEwNGs8guVnhpAyLxEAEsJVIImtHnBP7BIjyO75RC0HbA3Gyz8M0tYkrKprf4c7Ra0shVLlIxY+UtCHPpewbXZ8JI5oyOSiIBTj/m0PttfJYYwtfDmHorHxmawD8UUSdbkxxDP4NaE4N+Z4CQgWqthVgLk7tywiZpe/Uv/LeYZfAsZTDxxYCOitiqCKsbceUzast0VIjzmJUHp2P/+qLO2O1T5nCOUflT6y1TTxaTGSoY0/ge0NTG7cqZ67C0I2qWIZ6eAYlHQbh9vFEk5DMA6ccInoapoc+j6XkdQ40q10ALaEICTwXGOzi0s8ak4K+ZyXIkjmumS50j0f4wahUnc7GqO22fPNUqNWP7zGCySyXvvKDYpPXoDIvIHtF8zlfYouYxQRH14W3kPjHd91jOQK0pi5TyZhO5R9ALryCK6bu2Nn4VPRN9HDizH/Tfs5hhlXDApkLnEiFRg/K2WAP4zJ2jkOx7fZkSgBIchFLhC4RmNKhiWPIHhXrk2QXk6LW0ZCxPOGP3YUjFQDMG7EyV4mMb15gNhUx8Z2BFlsDuU7/1o7fXDFifEjhPY2Y9XaixDLR/oCfblnTzg5nWkShRMU4RKmjUqdlb7a1TIKrWruMA7LbtbhTmoyAlmbaunFi91L98JsOaaI5YS5PjrWdtlfHH23nFEY6cBVOK2IF7Md32an+tjogOnVxz3PQ8RuZpasSearCVeM39OrJAUlqiRmkPxiOXB7s6rRnz9N2qwuoAnfjGm4L8MTfbkpjMm5su3W2LvWv41HjwOatzsJOlGTFSwF0Goh2zqJ1ImN1OW3rkAT6EDSv28ipskdPOQ/wl5oThLOAr3NfeBH4l+K7gJbeMwQewVpDVgayEZkte9FoVcJ32Dj7SDC8gIxCAMv7pJ5ynl0fFEH58my54d4XAaF44cWU9CFc5AxwNLT2UVnqGETNWrk2hdysUOKygr084OXbJsuAQfHPjNUEWZz4u8Aigx2dHPZAbVlCY1ItnCleclIEpUSS2kQ9dsJb8ZNtAwlevThDBeybCu27cuB5YF4HJguNYGBYYgyQi1X/hOzXuz3FWRP5nmvWY5VTggv7OoaMK6+2UVJz97GARcRbk/eGnx6vcMxJt8T3g5qvaNdJ1UUKWDyuYmumKZasc0KSYD10pdvQKIdbMIkqytyj+/sikr0AGqRsvu8nAsHk7dH2nKHh4sg2jkarbPzQCDkAV3CdJTaR5npmCVmW98RClIGpD6cSU/F5JOw/8G/NVNHppvmIFVvImj7+Lp9mAZXtMkZTKyJ1EekWNdOC0hjpCtmLAyESd87hDuqIN4Vs7W0jyOUN3iVAH3nM4xPkKiVi6zFQS8rlPWy3tF1aSy53d1jTLs0nVTgIj9B+8s9np+tvxNuAv0crJBvRPsRTEQAHQtCKop9pBvJhFYBcg2JeqgTSDt5K3D7MUVKLM97awGXz0RP8YXwuzAFCSVbxd+mX5cN2hLhJ8JA1F3YsWKIsO9TUXpKOy6N4Zu2KHOCFitkgGGn32FK/o03pgmaCQgNjL1X1M2HfQY5aI7L30kwY6JQqxsGwR1W2qzFSDy8wr52pIh0xKKG2U10lEfkmAExc6BPY1aibr3gfa6T8CzgwsLRAMxfFstZ4cTSRh25i+rLYhRLWMMUIqLHoeySi/JADQe9I4ZYib+v/uQqarNiA7A3KIYahyJDW9dn/Bk6yvirEzRUuZgRSA0SFCMrzV5uYC8UWklMY8c9psnzHZe2W/3zxx2OFyJUuZ4DILqWB+X5Y2Y/kadn1sEfJTnU9xB5dFxPLAJINTJIdz2lvScinZibvNAqAEc7ey3baP8p5GzBf6up3pkYJIx/b6vaNpIFTkr3A7HO+k8qsoIagx4xIgu7bLUcT2zCE12EWJG6yIwN05egqvaqSfrM4IjCxpGh3vcgdCKY2ywcnR9PEnIZBf6szVFVipZyL0A/EikJYGaexIxGbzbnwD5zedgGCHA4EyMNsAhN3zSNpOHD6KIDuAwqRhTxpIQKjbGNTG9SY2qSg7HQmqJpDXe2TZSj8mcRNyvJT58KlxAj2NaQmyIESN0w5xS8R0G3hA/BzLlzde6FUk0qT8Vn4gaxamMQymCKjUrsUfY/S+1cxR45xw2b60OlC0I7zOZoFYjh8q3lM8A9qYE0oV2piDk7QsuAYnBCcmRl//74pgYLgeliKiRL/QINyMjTYwvgLIDeBhhPfk64BeSvyfPJYsSYgAUs6+g/RqNrQabBjtlm9xK/jBD/nn7y9IXabTCDzdj3W4XdlU0SXwfwv75AnWRbC0jcUHZXUTLm0CbZkEM5kY0LFnCjP7irSe+1dAjBO7yVP7X5DqwVyZMLf5RhLJIhP4A3E5OhmGRZN/QLGqpD8rdcBILMju7aceuiuNswnHgqOfa5SbxN1ueoYtflhRIboU2D2uWuHl4XGZfrgbJOdFJRWoyexn+ArIYdXsCIyJ8YavFyKhj6Rxx7gu5+a8j5QcCTy2xxx1kXHGgDjuT/+fcC3Va8wz+T6a4SFXQp5d9iekqKvHl6htpHk5ILg21wPwoDhmM6atTRflYKb+3Vj1rDqflvBkhzTRz7IWIffMBm30+ilMyn/oiu8sKA6FK2gq19EfENPmEzQFG4QraCBEERCYIuYpkHkPNNchR9DjbIwmqq+ZEGypLqkEUlU+ox3G2C3ml0crcWIU0IBxswmPrIDcfQPZXlKGd2InNanlJd8eD5cvsYaw+1CM/n3ly0JCCkIhgYsoPx0T6mQWr16EAc1nZTgN0Cw5O5+myUx7rOdkB5fo6OY2KW94qbfJDfZTHZsNUj26Bv456wv2CWIckdCQZIVYY9iXh3CSGH/cF/fcG4LuEK+UsJqgwnanwhq/SoDbNbmKfTphdwJWzYK2ICOAqV0qh/aN8gFZ5YfU+q902Jbjo2jb2z0/cbeWF+p4EbRdVgs/qF4S+i/U5YqzRHsy5yeCSdV504jSJzB3olPBu7voTi16QNim2w6LitwehHvGcamdjDVF26BZ38cA5QrjI2OnfHs1xayfCFjeNphvfK+4I+PxjPsQa5G/xauad+t2WuKU8/71sgPYVFFPlewmB9BQe/P1m19e/FuESGZQEQ7Bv2Qi2tlf0fSEOyQ/SdShMK339LUIABb8HMeJoAH36f4poJ/yVyQgtKP9gdBCMYh/1YY2JjSExFBxv/NSvwnK8BO14nAqT6FszEaTvN3USzrY/UnjvfHif/inX6IUoJMqEsyG1EHD3TNdXBotL8YUYSZI89eJqXFyywBjMjAlcgNmn87ms/0DHBcPeKWIE5TB2Q5eubw+m8X7KIdsYN65Pfh+k6lTGeA1CGZ/I7dxH/THOpdaSEBAYg5JXaK75gpZvMTFaPEyRHPiXzTVvEJIob2sJ+4dsvDvuc4YOO/Fa+6vgRWZX2c7ymkPUNLdHPZ55i7RRGBSF4Ego1pXICfBD9DjoPpMRCTmn93A0BgqykuVraR4wvRXLizW2APKVHKXCTZAOsw7Usz7YprSa6CkA73O2SiL26FbKV9uiVNpO5eBkR36CY4cJUf0+lYDFnsXuAOk5xG7RlXBWwTU44t7bMaIoSpClMRSI3KzNa8m3kFA0ofaLSSmRAHt7xuX/Uq1XWSl3eVyLnbEXxMyMAxcKL2wdyG1EODzhFTnexA1ohDrplWIPqScGMStv+kE7vhaEdFYQ6IpDqdkXh1lb2heOy53AjtsXRHbSyk70fV0kWLYcGys/AxuhMjysPvKE40rDwe6J5PPefVYojyix1dQPNG0pYZcW245po8a8/y4qNfMKl2PQ30gmsDGBheyeTRlexjA6rMqgEGmxdGHEbu7aJ7Na6E9JN7aBsUBVV2RjwA0JcJ7rCkeSICjGTkM8/gRAGmTbpjNdoFPkod7W4jMWSr/PyVULWjoaSPCMxPO2TsB6kQgSdpq9xNyaXLe6xLXwbB5ICHr2y2eauzTDNPVrRKq3qPZqTMaUxwm/7AWLHCfKQxQf6bH+JiHxAvYTbScSmgGwikOM2dV1+sC7fiMNTXHlyedHMfYgbIp5OHv67G1Zmcgy9oXjK3C5q9Fon4IHNo/NYQ6xdSCTWZm6QakohcbBUGctCC3P4ptCdyRLKCVK7X5RSvk+ak7FDzj0i2LFLVCvFWkAV5adx5S0FdMk5/ocHtKsGUOVJLqr/zx8DAb7ZfJK4vjljMahi049DPyNhvCdfGNdJZyH67ONyJRZnDj5Ds1Sfs/MH4Pml1E6qKVD2gH6nDoIY4CxKSCZusUhOv4Qx/BWvcyWgr1LbeCaebOEjTMJU1gNvfQYqHlmOGV3aAMhXTgv4tPK4/3t7F0x/011G+Xys15kXY6UM0X0UewxRPV3fNUwIWh53Dwy0XuOn6yCxr8POQuj+yF8VTx2Tsqa1IoyaHwM2Qo/S0Xo/OWSN1pJ9oNfH1z2c4Au7pZxZAVtqwsFndzGKbgEtyJ0YUyCX09xYqGtp0MGWtCgKm2/HxkCPWr+6izHKbx/WaMs7TLN5FiRR5ifWuDdqL6EYaNONW7Hj72oTnOtIOUPK/XMla8YSOi0cuLqqRw/M9ALBUGLJpMH42mzSpcMm7tbfqDuL2HvID77AxZsBUG3yFTESm/EJiweAxP3hParGuzBvRNx0z5KK0ED7y+fjbr8+bZsh96BDbOof5Nt/YTnE86kdIhsOygvgPGq1UMo/7SV03lX/VfX3jZlNAY8T1+OZFhxhSTbvMDhbeek+ES39ZOp46p14QxS2T+XPoygH+zvsc+1KT4pzpW0LOVXDse4rQk65W5ku55C58U7UAWq+yDKUempYruk3Go0bm24OyhxfDL2E4drL1QZbYQQ2/i4JDHyo+gYbrsqwtPT6XEl9dFDuZMoL2xtf0V/KJZVZ22xl1I+fFK9l810bhpPjdSrPCjmXsVccK/JkuLtl0MOc6CqOCR/G4cou/MrGVQ8PxvJoq83CUQQ97QYa2XTbpeJooj0BfeOh68JHvKy3RLMfIgdpYGye3ehrSndwURAbTwcZ/Ukw5OEXvgtKAe1sO9ZhlkKvpUzlu7p7QYH8en9R4kU3XOWUJG1+Sy7pcV06UT6F3CSw/B4iZx73J60LPoKbVyV6bRvcM+rdYGDOkxdWNFEQL09jF+gkNGRh/fKP2Z7GJp2kTWk67/wOi5vrsw7Nuyy3LWq2ChnYU+KQY2ZeefJjKTr5fSp0IDr/P+ndV7m34mI2k9MTmGJY+RyuOoY53dpwPjlOjhYsreUpw2oPBi2PkuSTcLpk5uh2lAUps6mGf9hHOz/821ClTZC08NPrd8dZkguXHHJvyR70gehdDa0K5x9otM7yz9LPWY3uMi9l6tlLbjuOGS0TaE5YwHLrmwlq6mPRtQSqaP+iFpVLoQrS3/Urd1X5AYHIwIBpGMHCtUfrUJYCSa1bh1hwKEVk7srifA7kBK8pMePB8pPT4rG7UnYLhGqH3sd6XNsZH7MqttbWa7JnS8Ll0j+KFveyJ/FH3pLfTg8e4b+rLe4OA4z9fAjYRn5eO1S7hInQehlbQab9vR1RpU/QzbRbUeC6lnChxFxJItaDKBKmGEamrBUpMCpaRYXmPnAQn3wv9VhSlP3gaqsd4FauRJ2geZ052Qx2axNo2sMnQeLU4m1wcD1Cm0Bitlxh3DjownaXir4BIj7KYKXs6nrrFkHlhvL9v8tAposFX8hWUe9/ZlaS8JdZzUNje1ESPB2LtWMSg+d7xvPyOXgcBZrZbeWMpf9CKdrKORIz2a7T2dgdjDFb2Qy/coKeLVfOhuuhwEKvZQ2YYhGy89iwATWKBAfmeRKQsJdxMfCszX3P/bz4h/QWJmMi3+el4wJUleKtjpREQNgARaTfVEZDRoWWbcoVmadnmQ6H8cN6L2wdgyhMwxj07d6YhQxWY/J9FMehDpOoL1osQ5BX1v8Wh9eLprP9nkEVcmHOZ1tGtTJvhSM6g2Qo06N8J19IT+TxskybalwmbrbGVtpttCg4HXi+nNFEvFvzxNDM9XPLON+HSK3qGw1lX8RFMB+7nMGhlBCdKHdGXlpyWAiRi/54KHFFbklMWpJa0WBKDVqbkW3l6AZq1V1YJg3LfEerAdbGr8GHknNmbY4aRJr/8bXg/HNQQGChSU+aEjf6qQBNcAtO9nYV5xsY9xhHHL10mNW32lRgjsPZNUB32dOLVrHVetOFOlYd6V4b+pSh/vbYC1oflzk6JJWvM0qecAZwFa9IOkSC0WSiFBC3fOPQj+htO5qP+7+GAk9fRVBZXnSjSFGKfc63/oZgAic/dylhY16PR6sHKnkyWhjDdF+fcHUDiBM0RhZQyEWz6pEUgTyyQ1M4EbmKcXkdn5NGiJhO7SHJVXeuH59X+AmRH+D4Jo6bv+abh3CWiagCFyCB+TCBQg3cy7jurhoj5wHei0p2s6psIJF5qysEbYdGK755hD73loT6iyyfbYGECbsZOu+zw/pJcejYWlksq5idfrJ20yuEJiqfTlY/TwLMbhSriyfATKMmLaVwAAZOv81r78nGf93JrHs2QVbLI8GBeSkCPIq47SvZ4THAHMlrIfh7PPw1u1C4ZAyPrhnaONNveOC8beBmnSyoUZFSYPUFHzckYpUZfaVHPWWa0rl5j1/KuhrpnoFegsjauQTjRpiQJQxtQD22KMbMvwrYdvkEc3iWx/zzFVtcYzJmek+AzgIvIlIEV21aV+d8C28xWUxpvgVxAyjwGkzHOitSvNTLY7GO/GaYRuGkwVBrR8Cx35+vFlzM7IWH/v5AJZITIBAnzrBSzVX1QFGVTXL553YJIN+QZfkQjKeBe/mThdbhpAli+3nay2xtFypedSHdvbmAwnkMdNCRBJQeUVXJNoPbOVa4U2L+1lnQNqrN52z7Fyrx9TzGvHPQSGg7opGRuyLGa3eEImTEYHQ6Fp6/be1cFxIXcUgRx4G1AtmwkZvYiK7JrEuyM9FBFOfYar1+a6DaLB2JKfmj94gXnoNZoGdyVM1urHhzPkSbeI4QQtJ/b/dl0tMBZnm4zF4eN5RWyBPtMqHMq8TqIxZnsOyid1ZfcpWuwiT4ipe5H36RJhMsk5p4L9RwenG+IIWobPwNzn8JEInyxudoex6M0Z9k0OTkCnODXzuHVNlWtnkCxF7+a/6VZFXSDvEc4sCBRScTl6bczDRi2mAxGs1Dcqd+4toLoAsU2i7sjo+3B2kcnNG5qH4iv2qJAH9gGfhjtAGF2nwdVO5GXJuYxMUa9eXqKdIwwfLB1iTCmTxnIGoJrl58eu/yLhtYB3jJXO9r10VKMCV8sytYfl1xPI/l6+ezY9ozu+V4dK2lelibDNIXyTG6egZN21v2DhKMY+Jb5z2IHvfChFdUeozHMNP4A4QR6+G4uXxG+c8IBPua3xq5YXIPvoZx1bwg859hkRaMTJ2vfDNWcUpuFF6EmEcvVsgn2XULW595drvnZGd/AKCwaBXWxcl/72Z/2R5UtYzdj2XSUlNFaSaExEKr12ydMkmf5a9EaeLXBOMf0aCBSTeBmrCpqz67OYBBA+KtcKRHYaAkwHB61dUqj6anWwL9CXIzluc1l6y0meXB4FTJo3A4+6DQMfRgU/dvn3ET7gzIO9TfR7m3ledxDcUctq9UxGDFAX6exRtj/lGCfTHcDfz9bljyo74GBhjIF6pgpyvD/XeDqzrZtK0w3mTiDBsQavKqJNWT/M+XTRYtlbJ/36vxMOlCpzyECXltRJMVG+pu218axvDzEfx8Cv9BVn8b6Wv1kUx0mBzbXjukZ7du1gv32kC1B940p/9fn/hlrhn/PHW6sXa60Eq86m2/zM6VpP3AN6r83V2p5dgIP1pdPrtFkjX//+pAs0cmtJhYDGClBzY5a44fHc23nEis8vA7YiDbWn46Zf6KjddNbBBmcMuvGOAXK3GpeLchX47kECgWtTIe7o91+sv0za71Th+d8W+HRNa9z9ECbcfyBM1kHBsu/9TveQMuBXq7evxHeOEa1/2nuQ7JoiM0ZcRtTUmyaDl91bZtXhujGGK+i5D1QYsb3kzwvGlTSrtDhKfbwCGg4DJE0zMieJ6d/4NQaB35qnIvC9gEOOnPObaYzSx9RAZezd4odANAB+vtL7mfkxuFG7N/KpGpuKqpv8vJZTIPFEeKcy/wdjDCKX75gMFt3GwttOTBgdorvtVjbqRduH4hAEPaxzbZPcuTF86DuWFW3h67Wh7XhzqbzPGgZZfT/BZa412Q5hxwzz2qTrufKqVEgHo3ZfncxqwNl9p/ximahA8Xj0dtxBE+iU6C7Th7wEZWu9jf9qo0W4V/mZoGrl0XvKbf8J50Lk9L5+AdssE3amvWuABFS2BSQ+CB9akoK7iMdSAR5ouRlvNuRIHbAAxHVy4/g7N8r88aUZyuWyENnTA9CJINPmpNjF+vI3y+9kaIGzX5doWAEAyWVqkIYgSZAj5GJc4uy2lSlzRSIB2zPjCZmQQuhqWCX7xLHCknvIC7SsEStEiVjVoZS2Ga0nSsvs8tgrwrrSy4dLkpYjiujfPbwOJ8eRz5+3donSqjHZprEBxpM9Ad8VMB+gCMBVFYcBBkT+EbxF53bTM1Cl5cxakGGTZUkBGat3qGWyomJedNEDRjK8JbJ8aJjl5tEAeU/Ktdi/RDd03xatjWNkYtbaPXhZbXaPIIbR6CPOHNdpu7dLlyxy+bXY6yy1SkyKlxEdoeoU5zx3UafqnUjYiLAXSjBF/ZkOb/PtQw6MutP8f2ALI34hfYXhZGsL4ijTE+O2RhkayAabzpMTItFSy56BxH/qHtDrtNbfIu40JRg/q+901PjKKSdjTEx/cag/TY0C5dzfPtqtFBEnshZSvv1zOK5HoInKmoDvKD274eHBe5I4AREVcwp07PoGloK4wu+wGGOQW8yhB9PNo6snlzwlZtuObAcQLMj76hKo1CdN9oh6QKuUO0GJupBo0e6QuIy7DWjH3jMXr30l0tsT3/Et/iMh45yb9jGoJc3KfiMAgEMXw+FpmZYIAFFkLQ1qTH5gmiO/WgrvYWl+komynS5j4BcffoXvqUvpv0HFO/lXSCR6hZm9EHPb3jgQJgBcVJ27K26YvAhqhFcacCBOAXuMd4Dk0L0BVZslP0gvn5dU9nIVoiTUUduj+OsSFxI3SJyWy8h73XVeNVFgwWq3j7XbCFdGrAmn0vn09+iTVaPVVdQnsxhS0ASuUFlYnUcd2Ptr9+YAjzthjEtWVjwlqC40tspqojt0yZQ3US0TENz+RStfZS1S/FE87+cFU9ge6JwwZoGQwIu2Qs7NIaXKCbSWl3K3GMLdganj06aWHvQ8jVpxEtDUNUCcN8yLr9xdWd5cS+rWfVNvANERDXpkPPhZdK9Acy0YZ5cNEn5J0dDL3c/LpqvIBmUeTnnJrak9XjhXLid9WKP/Kfpwvd+6Ooc2n9MNVXe6IARu+HsL7CET6vniYSq4kVEumYE+tauBe1lWoDBvvAwZuaV6xI356AMTTqbWm/6uGMKCkL+F8XaYWf9LNUKmL0QEDU3pOjK7xBhgikzMBHB4Cs0LAaHO+/H8Vc7Qjep6pwEWnh9DIQq/O0VEtqG59lBOnVE4FaQKAZ/zAPcz/Utdwp+VOl8gcE6/TQcuf4/nN21jYk6e/nZ4zJvLZJ8I5xpBYmGuI8BW4+nFJ8NoBoWYEMy0wLRF5u0hfTK4mQwtLyZ+bApuHqXXB/tRPkF0LYFAL/YQsSTWK9DHy5fc1TGyXzHmGF0qlNPhMET86THlHyGJHtrgI+NxasF8P4rO0rwb+sw45snxGer1CTHDnwGuZ8O4VOQ+t4CW1AseCJzJZNENW0jPiaFgOH9vg8zpB+PrP9EdMPEkYdxjcSFosLZeTxZMiaRU4TOS23QlRmYU8ekFu5UGKGB4Sf5XAL9FkDeTrwSrAURzxbEKJ6NaPGZKts2zpCWdPkQs/s4xM2Mb4pkhfhJ+PKZL90RK1GbGF2bX7nHs6iMEo7t/mfdo8F8tZewWHR+UlkQumeXsRqdP/cHzpj1doKZZZKldhWEV4oxSgq9vA5u9XXQVsu9gb0H7OLw+jeK/XUFO88yGdv0xDfjWZ+Yqmhi6RcjuASGS1FMoe21cZURg4EOpHZMlFygDbDpsBRnvhamggqTZBMcA43LHC3aUJt8dwfIh29tUT1lxKGTnXFw8P6OdEmdn7q3OL1ZRcMjIGoy4Whd8qZtZhHk7M8323a80oEzDrfsXJD05OXZJYAx1ClxJ92Y3Y5tarydfRioZCDPhFOGb2BqvmZ1znYLNZYFcQSSjPq9Ws9cYbk1TUq0KkJJ5fDXObxqOWtOjRUqkIoCavpOcBOgwz2LUErzFviSb28WEYcwqo3Z4srsyMtkkNUaFHUEHqh5poMssa/0e3OVpKARnHtDCUoub2mHqsb4t7tzlrITNA2DgnH9wJqqRPqK+IEQkqsTpcRB7RWKmUqoiMKzoqNjFCMWHvtjkaJhgDe3HhirU38VeC8SNhhwpULS7czQue61GhqzUUhR5bgchzuovITCh0xI2VbOAc9D24NxJ5uhG+SOEgEKOc9FZgdQEmAtxqt2c7xpkafsUpIWddFp2+kZXrUbpNim8bZlaO742eiPKmchn5mcjUq8EhiCnRWXWLzNfvLQFGeAvCS2Wt/SsWYRuGfXXYUCp23brn7rHLeZMdM79ppXxHfz12GOX7zTMNZfpEioAEfqyvb4Pwf5RvFmeoj6V0Xps1YXfQOqc0T9jWQqNNknlW+/EkUj6llL3bPOOqSoOcwnzHzJghLHk/C7udY+kCoYySb//i+ujWR60Asjf2uBiijDz4GnFzKYPBOYoUtPpcpGraTbb/gnS29KZLTaj+yioOfYpcUKFvOd35+/0SXLVGHBpL4DiXaycMQ44mkXpEP1wp6MX3XaDBA768wxCKLPBl2nVfONrvrGj9NzAVkM8ycCzrRyAxDMnTUdXLwLEF3LllK80mmga4CbXBgBUNSAjdIaXIbd9q3M5EicBWl75msPaHnP10qaFJWt4HzMG7Viib/jzdPBRV5Vor/ywqQ0vQ3PhxSyDIjAjrVgO06zeOQ6xmjsvbZKyk/I6J0GzKbkZQbCjBj/ZWe/FgAr/ilBiNBlE1I3GPeHCr0xVJtePTwtyYC2OSHgL4fgbezx9uSGPVXQ6k8mDEtjnQiaKqFppLl9r/B3U6bz9R2A+CE/wCtPmMUpNPQMotgLti82qkOLT26iZhb2p5yFRQa7US/YkPWfP64jHDyyWZP3XrBd/s8ERgnxN6mfc49+Ez3KmhyFyorg+kc/QniOqrl0YusE52OGS5l68zwjvCVLSnjWUYglf5ULCcxBXcvkBneYtJHn1X5Al9SC0HXvXhr6s5eKqoSMtcIYsy7SAowPI6VbYcfsShsKPd/96FDm46NccCyZPHHzFQ4Iev9xL5ubLK7DVAchDLgBVmJn/yMJWpOCX0zgvOHFGHJFml5Kuu3P1z1YLNBsFYPDmH8Brf7yUiX6v5CfYwOicQxIc0jfc7Ns7qkWlDv5iYx1GTku+yC4PTFEPlLYewLge+6IMquVJiRx60sRkb5qYycyjAhMM0xhCXsOkpm74hr0et9Jomnn7zeGjuOgzlCHn85QBSvEmdIJbGbcZktzdZrLUiPzMF16H9B7pZRX2+rGyvxTANUs2WqU0elKVlyax0wbV4oXbJOdU7XuwlE2QorIBJvjAOOIknNgIZ58Pl+79MMr5HwdTz1132fyeKQTTF8o8vtwdBd2bykxdl6Y9ve/v9RBfc2uVrBUAStzqW8k2ZI0tlTS5fdoaFqXNA27aDUzlkdYljkZxB916X7vmQ3dLTHhp6AvSjQNWVlv0PfByTyh6q6joqBvq88UZJ0fwPwpMAg84EoFRE40gGfa5LpaofyrNLlyJIlgkG/nOA5SI+yzEAkD9TQXjxyKDLZqIsXWiPiL5Gg8nIyAMij/HYHrhrIX8B5OKWYujOTVlPTTUMsxh+l3dA3nQD9hgQ3X04G6h1x9r8/hfhuX/tsJeClZfBHGHD5lBVE2AqKDl1AQ4XhvmBg9u5m1OO6Jyfw4rLrMoQWgMQ7qlV5HLANA09m+v3qwi7oXDzUuniIvTPn9NnWNw/t0/3dhJ3Yw6WLvRI+nuiOr6NwKnapjrdsEvWY7DQZdvXFPyutbXnOygTVEeQ4H7mjmoWHela+8Q3F5tOQAIA21nlt7Xn+FpBhcHUs6CdyOjo1xJKanXhcbK4NPd2hjUy8tpeX3mkd77gd/Hxq3meWY3A//At/YYzHqfUdX+ah/w+XaPYIbudD4iuE8ltXisObe2QL0H0YhEKrKD9+JVHGBlKRbyqcuhvMcuraEEOplrpmbfeomuxjI19uAyNPQSCxwIjcz9ZMm+Aj8Wj1Azyey5am1f1CEbm3Xh5zaveGZqNpgm9dc8NJ3Sj+Akg+GAdcAhu0OWDihfYdSpYJsB+ez442zeGZK3s2SfYQwZKjzIUlOqjwSJr62N1IY5AJZLSlzroAF4HFdP3vB+xQNXYd9ma635844DLpMAmGCtR6TNn+FGTnUABg+2wMOA7YtK0NtMJ7YcCNFruvDZKCA+tCde3Y2bpwzzFZLMRu7W74DozjCSbw+cIOB4XfMz74zuStjOwYDXSsOTo/ScRrUco3yil01YCDUCaE+WD1ypdWl7xwZKn1VDAvekk92A3hRJjdyWNLHM+Y+BjolPVlqnzqLq3/ByssbOZmXkgsi7DeVaxJgIFvqQDyCA9V9qKqnZ/X5D46GkAGbUX+dwqZmGH1JhT2OTaP9wOoh8U0A2oVc3fqDx3MNN3iLievhge/8bBGXVTSl1HWEvayvtpZp1oChMmYfeCB8sNL7HepTg+IK34L+pGPXM0jHP4i/RXuamTfyTKs/TF6WnRb55afELKeAY0LKhaAiHb9I+6OaSQ1/auGiT/IJiiyVJ7UZH3VqP1A/Iyfj9+I+JoFApMMwuTGX5bn0YRXXu5k+tAO52DAV9UNUlf3LxXQcvEZwmxWZ78o9OiA9mUOQWld7iD2Grt7xytgAUcxujq8KdrSli6Wpw8GfqbhYdypQm3lJ12w410fpmhl99K7kYa26NBd8A9iXPtYh46PemkbR3l2KZLKZAyaeWIBrbxF3UGcHAbmHIfIEAmxo2xW69mQQzG5y1NWfzbOHSENpfa1S6gCwfFPwSQPuSiMUDfkbF9GZ2/f7G2npKHuSHtwRKDymb1d5pwKbXwcO3kZIp99qkZgX/q4JYXB9BRZLdENj/5bQWaTz6+mPkNf43vzsZ6G+TaaKpz7bAnFDJDMfUIn6tHg37m/3jDNlLXR34Ooi2FY1P/bgq9W547v7sSzkNxdYObGG3+1tCXTJ9CURdklm23PwzRXy3k7gaskwVp5PuZzb81hnjK2cckuVqTK8vEhd6B0ogzclgAOMJiiuDIEsFx8HChpmp3BiQu3DvaEjpTEIqW94lm21vZsLk7i9uag+1SMqkKymkZP16iiz7wWAPNsRrxVik6wHibnhsqOR7fQO4+Mq27OToAxXyUPn3rBIJGBT6EoBdNYZ1fmbN65J7CmWzWM1t5yBfgN9C8DkqhhwMw+XrwBn1ecJ/BRMc0pwJvPqoSQC/EsvDOllWohfCR2ebXPu96IuFqqBpNQaZflANgRcfk5fIiW1+i144iGWAKaIsAfeQcmK0eVLu2UnF+qpLtN1lK5Kq57h3OKa344Axr9myoiH71Uy10M5oFUubiCWIkwa04MjAaLuoH72Pp/rmrCmCdx9KkctZWblZCWB1uVTP8cqPe7tJSgeKmQ1wWu37fcnuJao5b10NcPJrnF+RwU4LQRsI1JoFFJEGP0W1D+fhOOzlg8RQCcsP2f8gVuuMC0kHbaF5ouIqrUB/LibzWv8ncrjLSnipDr6iVD4Qzg5IDUTYGB5aoSS3ti6mdczYmNStj3s/5L9Bhzzrs8H5lEjr1GlhleOGARDcBhla3IkYcEOOrz7YiTcy56KDVaFQTuUWGDoGdxstNWK6gmQ3v78gq/B9EaVGvBAZvq+VESd7kCqrtk51Cb43Ryg7iT+PcIOsxCyL68X89ohKOBgwL5O0CRF/hrWW7NL2XnNQAXuApiGV+7v6IAFqtYoqHMnGcs7u4GZ+DBuq708mG2SH+xIxQw4gz8GofbJSf/Os6tszIejA4lDeClcFgXq9FUxTvpWHGkIQevscIaqQSHnpg15pL39uDEfwbEyzkyBlJMhna405boXb7q3jv15+3QHhCzV9kOGV9TUntA01CgZC+UW4zau55SxitfN1A5pQLJ15sx79jMR28sm/z2XLrNRLyTrHBCSARIrEugMRZARZrYvImJMD4ookpvrxaHE6VmfLenfgOLeNIbl+geUNvQLmzKrATQKmiSZs7igtffRibBzgPIT2hJ3pJOdrlwDmpwXSpUhu0ItGeXSSolmwm7YSM3V6UkA/g3mKH+zQpa/8zrhU4IA7Ul8YSD82pgSaJSHjgk41YoStcw7y/DAhShxdRURI17AyoXf85FLkvH2xT7MAXm3lqsKt7K4BR74EWTq3GokVVuZPwPXR5pcYSFaz46A0FcalJsMTUAHikNMuG32k2KzDq2dADijR1QQoui1Jd6i2NEqSzdJJRbJcPKibJbVWtCi+5vHS4tzQXdENb4vQtbsdehqrB4gb5pVoKzUAUmJTxE2sBuLALPSpglJzta7VjnRlXCvgA357uItPKZgOLSSU21gvy6JAz0MvfNWzfaP04PDG3LmbZUIWvney6Mc/cYEVCSz6UjW7L4+My3FYlYiZSOI5k7oAA5DEtqub24Jek3ovYhJ07ciNHnsWLreQdRcpRoHqWwsg6MqM608ZtzAShoZxJmP3Mz2yqUvLad4rV1raaESQ6ayko2Qwjgg5D1dqoZfRP6zY5qCDIazWWXUVk6Fw5K+zQFRa8T34PiWsVEe0IZdGJuUV9jUpUd/0/K9khhjoL3w1cjelBmEPr52MCsANgcvXD3TyKMQ0uxYilvwpzbAQbKE0xOPLO0tI6m7GedCI2dprbjKVHkQnWK0f/DLcLMeqzvm5u4Iud3ImrOYsjr0xQT60uAcy/WypyPGPE0Gbpb4SgZXOP1ji6DCQoQcz3mKrwRlblwdYeRJFnDKZ3jes39JkkGqXEzBZ5SBOGR3MOEOylof/xAR7jWHH1XTdy3pLLpRb/40NegT/Uon/PaT0C7V72/wNewv6umzNDlzHX2RXqJVsTh0s0xnRAbo218o3b44jngZ5byei9LVmBI6yPwY+HbHofcl/g9hQ+LclnRag1nOdXT3X+0Agvxe6EWZfOTHqGyQhNYuTZOJSFU8nbEq8iM5F1BYNETycXMTatyf8ujh5bI/lbGDRPSCmmiPdyuyGxxbVbPLhXDChp2DYdpYkzxE0pYnn/8DlpvYPBZ8irouxiexYr0oR6qLxQ7qchC8oJfoCJZZv/akPbmM1PZBbIduWWXehZccJicoK4jS379jqefJxWAHzU5IRS06Fzoz3WFiAWKrN01csPAT7zRHMDCRHW3C9tLI1er4u2H7VDsBjMqiM4gK8ofRsz5N7FTeeO4KcG9tqyA2zR54TMA+226CkNwV9Z93Q4OUqUuhZyMYFPCxQSeyJFrCvjoEEF+wnZELhzFMQcF3qPoEn6haMamWD5psCsO6jmWHkeWqADQXp7foyxdKF9X3OKLNnEfnC/7LOi1UnAisBBy1bV17AE9nGXobNaMXIRdA9zF2WMwG+/cdjE2i+byYFpq1zY7HumNY6vz5nSie7TyzZ2TQyhRUf+AfshLIS59KjYGe1K0v5tppcQllFatUHHtQLJI9O3s7sWceAhT7mg/vByVjD0FsdZKHmI6MEy9jx3pb/q9ed3FGY1iy7eKbF8BuCeSfYhxvXE6+UPoQekmy3Ux8UP3LXxgSPs4ZTcg/JtxkQ2Om51PXywDODT6fMoL393ka+Uc6fJSJXSKh94tQln7wq2cW2++QAgEQhXaWH2loMRLIkuO6mxvyoEoSutJbYKVu+VfTcXaxKuApXZ4rOiAxJmkqS87prQ/hVvjwhHDwpUpCwQ3t++DxpYfZSRHLZhciBfFDVDldiwB6+AYebpup965dxcYNUxzMrCBAp/UPskLMpWtEzFklS1HK3MiPLtQft6m3SvCAJNohtI317Nvj4k2Zo6WPK4sJ8S2F8rWi2C2J/3ZzVl00t9xrp7FwZJWmyk1Ke0Lr/rfXVbrcemrtlQv6zHuu5LBIzr1EFrHX9QsYtDDcDL6duSIDkEN1CeZ4PnXdi/YiRMGytb+gGOAAgyZ+ZxkQVVWZuw0H2WawjrK20Fcmyn0JKQ81x6wX1y9jXSX5kHUu8Pz5wu7qexH15eJ0kcAF0pzJi6AE0ST4Zh4IATX/znGXDHuNNGlx6Mh1cuk0g3vSa4lw4H6BOrpiAeMQwUNMVTVRgTclfEtAItdzI5XMjaBctIyic1JOr75Sz0MjScZHcu8qD9bxbOn31LFan654yGMdSAD+su1us7ZqOqiyUOMg5yHrOw3kI6IwJABj7xUbkKjzz5wJoKnmJb9kNtsOfXzinAN9GDh4hYqUXwr8ffkKoug6GreYlBh4vArGIKuh7TaLlEl3djoyB/mTxd+RetiDK5SAgu33wTs73bvyt+khs7FCW1dfqCCXDFb5y/8dWeffqCVlxj2MdfkBODbSe/AUZKnIKFtCcCdHvGI6LQhpYjKeDEkvt4t/NGJ8n/ZB2cEr3AviAuZwFCvlxlZSDqnIVuHJbhGGDOiFa07uIqALwT4BvXx2qNAe76zK8QMr1UZ6G9SReVFCutyYgilEnIiyVOh3EglHVi+Q3B/A4ukvLjui8ufck0jVQPNCgdTNN8wW8uDg/Dj0iTslRyXTuWKAszlqCrCAarq6SQWeANpAyI+n9yvHxj/M75Yv06E+ngwCDVMKh5ymiIQpFp67j4gVl3oFYCe8PRPdxhV3cI5bd7w3j2pJrB2g4+kq1qzmhOOxR38XRGoDVm+7f8kWu8U3CHCaAoBdStXzeDC81azp6jRbtydu7Z4l9wjviS2gOb908ZjPruWxWF/DWVQBbf6uxaBzDWxZxzjdZ3Heiy8behCRmcOvn0X5f+SzbjWs2JXdSkDPc2qPgatRDZXmxAX6RiKDvjuswLWxA9GM3m8KPWoNCx3LyMZQcxsePOWgmZ6Er6Rlsby6YIfEUlVSgTNpyVgXaoSJ8sojLbu7NEXxrYP5lWXv3qxlid0Yq0n4fy+d6YC7VIMLZvrw4Qwep+bXi/mvXUk4h62j/XMou9tFuvEOYtIVuTkCphIhEUwDB/Fiv1DESXa0x8Bt13n2kSRbzGrBNp6m2kfIy0KXuU88+RAjZvooW6joI7IIELVcQVue+hW2CmF0I+lPCUoMMSkq9j1CHPo7itWFXA4cI9qFTmNr947K8uagjWZiPzSjKfVmn6bKtQ+jIYVaYpgYgSQouA5aIxKMLlLV4GqZl3i2qRDAk0Rx9JpWSt50tsswqovDcJMl9rQXU/VDwXB8cj/Qe0v5DqDvfQYcoDDdFVIvYOzYaAGQQRPWF+cOg5gd9j/slRnygfgHpZHnbEuXV2xvpyPLGVGXMFipxacbZBqWPj7Dp2DxmkOwAcZ2YVpq0km33qweSGK34Jh3WIqKezZJaGJ6Rn7ieuET/nse3Fv1qqaVGjaWkcuDkwGaMZqvB//fdd8R2J+Yl5QK+dm07YEx8zWr+jbwFxRjFBZTXzc1rbUnodPn74ZTu8es2X/0lXvg5rhGf/vDhJJqHg3hyNmArIc9ejbU0Q15fkwbFRf99PJ2ap+7BWtB5pjnZUXkIwJR7B9GGvg0xW4VWR+58wKWOvSa1lIrGfFjlbvieUy81MQxkptOsDcFAZtCdvebG1i+CGJEnkUT4uAps6ch9XpzpAuTM4fOoiLTm9foDSWolGu+mkezPWLNxogm4NJkAjrEAiBLN2nGl02l6XCrdLBqP/emPrul/RDckfEnNbZucD9a/Rf0/oaHqTE/G8rw9s+8PwWBpNPUc8BIp5b7LT7hMbgZKkzIvZQlx2EEUh9FlEhWT+3mtHqhP9mIgU4dOKCr520uMvOCGsnnNaQ46se+IhGZ6PzdfxYYpq87FqtpIAiWO/BPM+eU83DMe/ke4YqtVfFOT75CIt7/L8qFHKt7nNqszxfpPM0DBFnqv608K1/QEzCqft5LMPU0okKoK3Vbz2ZdOrODhT65b6KHPyYKCTsZ2IAtY7VbPK7WZrtbBXchTQ6qPSL3xAK3QczG/2KkPbpem8Lw9yLBjsEfTTJBev1HmCXyxGoFawm4mXDeYTjhpXVscH6NvMcADS3JDPrMbbOMqyX6HumCgh52iCCoJwwpqLjQKmoXdMUvHVayj8Crr7ZCFWMTWRTzKms8m/T/QYOmz9vqGHQaLksGXgJzVcJtWwCbwUg55P5kxBh5h0arc74dKBmRCSyOuMazTdi+rsi+wSphgMV2wPVxjOblAp7incnTixYCQtBL8/Pjs4UanLnqdwM/zM9NkJGlO9P6dD1h1NtxjyEmrCoTuQE0rQJfav2CsXgojCj78zyUBpFh7j3dGivBzRjvSWNZZGIQ8D1LVlDLyQkU5TSgHgcoekZRZsUrw2ag7RjwGZOp7ZeZznlnkzt1T3ZVtd6bhRjUIrzJ9pM0Sig6EYdwLDyoMYwLcMgJrodbE34cS1zR+L63QZCrQkhQWpbhYRESUhnOOZ+6+VYvkZGoBAVvW6OFbt+INda7fRCaW8pBo/78ODn7KHto6OozN1p+5kZPBo+k4ff3W/hJFrAnmR8T910BSGzl/hzJYKEpWaoblmOxKnghEYQiiJ00VFPWEb6YmkZnY+qbyHUyga7PHcd6DmSdLdQi0emg9vhP8REH7R2g9ire7YX+/6RqxqmyhFfxvM4bCu520k4pbN9bXy4Sx/MYMuTcES9/FAh86HXGgzE2Tjw1wCBnFi/9n4t9X3TyrZdPYYppamvCx1XQ6B2CuYeiFk5OkRj/7PB1vBJDEtQLxK+2swUF0dONzTXRM9hs2VH+OY7u5vznkRsQPQt2EKMSrh57WJ5TQq4naPdssW8F9OMjqlz4O8iaz7FZGAgW0bfeRRyQhUKVIXzscrxHgOiPTeUc+t5oxlPJxHT3gycn++eNRIy3k9kIiGqQTLi5RhGX578f9cvDqk7WaJxBW1eMrhaUxKlZSEZjmpUURwPuhD1a/gEWKlvoRwcLPzEwNVPq0K8QchCNGn1Ksa7J+UmxXUAamtIYQaNskZvNerFAahXVw4SbWcZSLPwmGyUyEIHjoF6+ellLsG5JSUFyH/QhA1zDrsL+OFHtgoNu0j8ZfX06sj/5faeR+jtsL0uSQbdOsNoYqQVJMLsKqExh2FJpp4BrBKZaFp2SHh8krjJ2jtwHnX6BLebXd2WkVEsuF50J0lcamiNCeaNHIR7MdMW36y2uEXWJZV2tdDnM7mODcHPA6KUdImD7FBGB+7xUAvJdlEWuaCb/TIdjR7BsJJ/ElfPy8Au/WiIkvj8CGWr7yLVvByleypcGGOteJkauYVdiACij0wxEcSKc84Bfy7zmqBo+fJQz+4Pt/qLMqVMIVCgDMGD714AYHgXszYrIaS7zsRSQizBZpeTgMApJf7JaRdIg5bS1G9jPFU+eCj/hzrmbwO8KpHLLn+8So0YU88/sWwqW8kjH2fJ3lhKrsEbwSjZhVnmYk36V6cibG8t0olPAcyir5Ndu/clIhjcO6HXa6axyINtcDHwBfEyh0n713baPwvMuCYCPi+LC9h9+J3XwLe2XSbksloz7kznBki61s5EVBtnQK8DZFBPPTouh/EFeEUH/pacGw+g9uWQlL1RSrhF0ZWLvTnmTSaSlm1ZzUdrzHwFw+Qr+6rLYfTi7KhL82kFHhf+BdxITGopC6YG0wdZnKQu+MGhBKkOozmgAYcaJFNDl+pKNRlm3P1W5EoZCuHDPpDNkZAY9EFaed4IS6B1EQoQ/G6eC13M6BGmcj5zd+qtn0k3C9xNHnGQfgFnxnBReDyzlKaIL8H44n5ImLQybbVT208pAGSm0OMhp+rkO67akF6U1GLoRedOQXyi1OiL0BfKaM3aBNJM6PHtLPeFy0u5wA3jA8AwG15kH3jl9ZtrhDfK5cNACPrjr2ydS7rcTopN8hJ3QpKyQqQxRYuDMlwj9kz5hJjDbxmQoy16Jwy4iE3JDOsIuO1gjCcdBtFhYuuSAv6mX9AAcxK+8DYS8BE2G425U3XnNLE+XBxHxHsKQYV0IfOpte9vfnqljesOfalWKln2cqsB18SKQFtPiKcEagfW4MwMAYHS/tBNkY8gZ2j+Ukja22HPtgYhvgBMZlsct7FJaOCBnUrEEQj/co2EeR0cyfba6MuhdBr/ZJGQWOxJCnZjVJm7zAxJW99WB+WcyVOBiCSNzJfd2IZ6d+2cRkVGF8+jFN3Pv0I6AWiKJlCTO7K8Vk8Hoic+l8lA2Xpt+zcD0+L2sFEF/8dXaV1mPgEP4YKaQNnw3YaQMJRwFZjeQuNQX9gR7rNaHR22t78LW4t9eVX8ZpHiTcwFm6HkPLRkP+ogQTrlgOlBuVPFCdao7vgykLv0K64sjAOO63z3Ei326pSawZ7dsR3rCRD1rg/Yup8MRAaWs14kuDeSg7yVexay0Vs58G6PnxXXebVS5EiWt8g4GPaxSOKi4+sKoW4Q7ozccy+dLq8kONDs/GJbQtFwSp2SwZsC6FYv63xoiepc3SKJpuKP7h18BeZSGRBpY7cQmOXuSPhX4rYLbCBcDFVSWHzlSU8/9YaY33Dqrx+se8lekdIwyLbhL/O9q58CnflRbM0bMhAoTziZI/Vml7mel+VYCo1GB6Y/7LzHNa2OFvSYxhVsb2XCHT3nnab6YZ/+QNH+mdDeHMLwR5cGixxTiJO22hI0VT4xqQIGnVsyeVDppq6aFxsdQSP7bBKqWCDZrYmfeihlBjRAUGuKtVwKtFxSKA6RZPGTsCfOp82qI9kvwFN2/Y/oBr8tvp83DEI6kDKSAY0DOfb39k1oL19q76iu7G8H3waCMoDcBbLIcib3xUgfpF/Hmzq8qOzwQP0B16dwMY4HjN0oe2yekyHZJHnSCE4Xsw7U7mZdx2ZWYH82ifXk/d+Qr6i2dkPW8MIXMOEV8Fb/w/Kco7iYNrNTTCYjYzGTxeR1AQ49bHibgE/h0cWRGlB0o62HFbSXVb0N7U1uXaYt4VOatMNVy2xJAF7wLqqdzQCaa03lDSJxxVM7AXMw/8mZ4WiAfB2nq0LAcSBFNy4x1ftEaFqOldDL3MO7pQwPV+TNIgBaDB9Z95iXNAwa7cPpbntTfiBHbfCs66GlNzW20RgYeKqVMU40TfNC8pcN3EzmJzSWY5IDbpJTGKqkEmBV43uCfB9bs7Vq+BPBEBoCTrQhcRSwtdxV6aR1SKyO7M/WVgBCSqP3WECbE8Jcbx0J/d7GHJte3Yhjg2/3fqAdj+iuCCFQ/BYpOeXFsTTX+qTw8+ArRsaUHH2dzCVRAGLnwGI2R47jnjU8jroQqxpcoe1DdVhNlwBXEeNcM3XkyfVO/LOY98Be9TYV5MQRZRKALF/UtzAhntpj2FqFKdUKKX6TJbdktcMK0vm3Cv9oKE/+4xoOEYaKisSCzvsFkVK7rMVeCtImvx/yJX6A1/tLnjbNo84+R0HDxnrulJh2c1azchcRZsCYKpgMsPIXm7bwoNauXXaBcL7AaGdKGn/oEumBDlhFsU6Rcb63mBVyxu784jhwG4gMAl0RaZq6Lf2gC9p/tG0USRYpOzrUD15CyE2Fzjajplvu2EUJOWPmwdA1x44MnDZW3ui5kdQT7lQrb+jYlsCuDAPYd+7BoGcH7L64uV4wQDT0nSaXNfkuqZmo6xVQSJbtakrph+RXk5fh+G9UQ4Ru/CLqmDwCB/BY7y6GrHXQOdzQbX92UmrgfhjpEnuP1zTDUnm3SJIXvG0M4thvUbORlswxwKpzl52ICsWYnvgTbCfJKBsQCEq5YRxVV8Owo9N0h5VCBg0xT2ptRw6pSnNMzpyPrVLqk628gvDIfJnOHUIujDgvjJrf+847jX4/umRoVUMRJaqp0+nURAWlDC6OF+8fR2z7h+fpgcHFFB8gliectZyeWyaDcEn4lC43DM5kWo+R88LFCyFTcHIAWgdgYX9O4Xd0TSoDNFTj+H6JozMUcJ/SfIPWEC1659aWAvwohzog/bsBxygT6fceSXzVp0NDotGsaYh4PvfaW56kXf2coAiZDqdMkQ3NDJJ3x/NQe4PIO2KQOSPFuoQuLk8I22DIBLZD/FmPipfsoTs3jeg4Lb2YL24y+7LeixSoa88eyOiujBFozYQpcpjL+d5ebe8cifpKIl3EghSrYsUf0GI5icSaILx9qfnNsoxDn8sI2f3dIqysYzYYzwkw0o3A5dgMcDtH0w0CkGTHtTHSiH6vwZO5/PdtKHbmnJCB44jGAwjseA8D3XwOgr32uTwlOFeE+tKpK0rukY6wqJN4BaNPZNet3SGkvfkxVkx38nH6hp6Zsxtlnh1anFNQuFq8lMZEyfkOlT3qHO5i6GGTBmk0ym+N7guD6CMK62O2nE2WCsc/yoxH9D/YdeTEN//EyrDIyAXTKZf8Vv139EOv47WMEAIlzrUtw2bsV6RUCgv/BqCBH/9VcdqvV1e0v0BI+goLKN08ItgqN9E2eyUqAwbhVFZgPB8HsLGtHPe98C2Z5DL3ytdYq5mUqw05WfbU+oOcfQLW6KyRUTVV0CX9LBuqTZvuj/Rt0HkT0befiG8vNdLuxQFU3moWUz6wIrczMfwndzxQK4y+OAR7WA6jGSxecjubqQbvEr0T6gSh+7FmyFKEVuqNTaUdRFs3HmDKJoIVv4NiUnHDWUDuxH725nbOPjbs99xcB0fH58ArNins6JcUYfAADyOU38/2Cp+sL5GC9ik6ao2rDOdJaxf3g00FnQ+ISvLbUIgxMlTOwtMLyKpvzI7GZo60wlYfJ4SSj8VRNRZ9Su219+XE5q8Riq0H+xqS+snE/kO3+m7SdtxbJ4SUA88ROf394aE2s1ZIrybfyebUAYpwEMj61VqqFtrqTDhV1v54i0PvQpmGail3N9pH2aalhhbXSZMyEwRca+u9A/WNzJk7kwkW4Lnf+JmOa6ZSUq1U+IGAyirpU7uwgKXg4izfSoYfNd3TVg4VChxFZZT3xFDh6+cLJ6TPd3Kni6aG8oS5ah2AH4xOm5e5pbpKZxxS5INIbddUCp+4CmnWtfaNpCFfEAp4H4hvqIYFMBfQtHQ68V7ok10ssRzT65IDLYuNvDWO5eU7RkLiSRBgr8FyDDSgfDFXlsX0Vysh+e4EwSMndTqJzc9tIHwKLyTvVFHaMwyi2Y/YfS+TT19ycSxCi2R3xLdTf3ttl7XwMzRuFXDAKoWyaWPQshZ2KHuhpmXrJ+hA1BLYXboYQieXWoEy9thVybl7+XEZJ5/ukf2gBu/vUDEwL77Tv/pOLKLq1jdMnQmcoZP7HgngaE/5dSxf54HQ+XcNPzeUkmlNjp6cGwY0RexI0ouCgbghFE59ylI1aMerNLjxlRSxdjJFt3Yy/zdIG0bByJ3O2iIqz46IShqOwfstFcYy2Zvn8l2fLqqopa0+OkVzHN1DYn83NgVcVTkpD9QMT/eIEuw9JSwwAG3RhiO0sUFrI4HTdQ28mE4jVWGU5pSzLXv3h390ffdxGwH7BrV9FiTrUhqY3E9Ppcm/VO6Uw9HFEDtV9wz/jTsR7P09uK2GtUpezb//I+K6niPeodF/23YypOKfHmVEoO+27U/M3w05X826buKl/jzwwT5nL6onlDFPvlYpUDpvg5S2mgSjmNsk1rcQZv3cM52EPBGARjIWQbXtYu79zsE35LOsP/s2zrykwSBSU9el9A5Ibzjh6VV98PYSlkz+0fp7pBt2ASrI6e0niKDDeNTEMvvvhh2dQazFpbbWfk5w1SHwcVIABtxnPCRJVChma9hRV0zppoVldcl1Dd8+bWhYBFpOP3QaPPpR+TcDyibNXcDAejHahBq/k2EbzygojQC6hLDlalDY3wIhRJTFZ8LPTo5IDs1cSI4zObCmxwNgB2E/vs6WCiDN0QRZ7NBNsKHE+znNtru6CWsxwuaHgBgXb9aYfzumXGtx/cdX5UV3J3gZqLMBhTHTGrQkQA5vqF5dZVoybCz//Uj5IFLgOZIpi2XL1scJn8+0DGS7EdhfaD5kpUCCft8Xk+a87clc72hY8REOJCo4ECFYoc2F/coROa0sIg0xgPqgEzfQBf4H/PaNnFxuAqNV4GtxzYINaLPbtrA1rpouG3N29wuHEd3NkTUDwQRLJMBYpc34nctucfKxkKzaNyUH638SYI/9lIa6q2N6X1RoPAS7CgPRVH1WYFtrM8a3FGGZY2az8CcVO02QO/LnhFgE/5aVbzPc2cFKwsShUAeZlDojuLPIt0OA4KyCMgPWBBCPSIukASe0c/PAwN0Wsn8HxRZTW1S1h5gAixnxrkuAhXf5CvbqnF6u7ycg9jpbrxh2uPajolu42Z/RmgQSS+4xMqpShXKd5Q2kJqBVNKBGxjp4PcYJzshzaQgF67SoqgXx04PBCXPVqvkxnxNRsQG5kUWxQVR/E6R/ytgEr4ZWdWfPtHMRYIGmuli9hPe1NTwU/+/PwSRKc+ly7997WaBYqdeLzBHBy7SR2s8X2cCBErb/XmiMj9VwuUspUUovtHwaByyF9wW3IVIfzewKbzrvE99wbwYpZhz6uHGSaWTyG4Q97/VPVcPW7difRI8btw01IZ/M3YpWMwTl1Bd60BMVVuub9D24Inf5b5usoPFSTXi7F3Pi5A6Ul5ekTyiFN70YDRg7U1Iou9/hWxaR5E4fqKTnHn4O1F1HsB6LeE+/yYKqknCIFPEBakhNi1xhAsW3OxteO+aGAxqarxm/tIFxJkXr0hjdhUq6+LG46Zu+ALpIRE++YTnZyPa9Z+nUzrTdD5hwPF+ifZwdhjH62VulPLSNCTTe9Z7GJqfe+H0Rbp5lZyEj30bvpnTCe9eWslRPse2VzVVzFoaYS0ZUP2DoDQErXthE/5IFBVFGkbKM2EZAr50Z0e4E5x1+4x/fmCifsHENM9NdAjwyYDmVexKJC19Wu9eNOumqrOKKwyI2/kx6n7mojVKsox8sktuvdMqg9/4lbtY+RzAD+ueB+3GNc9EwEqYQzDkp9Z/fDw3zrzatd6gxIq1u0aAImka8b57ABzkEKym+aq+mpFmNDOI6KVZauToHAUFwfo9fA1rODh1BbT4ws4dzbR/jVsnzYMAAirjlJ9hiMgnMjpBF5zGAlK8GXk7UNkQxW97nYcZKMBP+6huBAilLg8Q2fyVzStyjhlXVy7UfjtSJsYRDxXnxcvhuM+Zy5yAku0lxcOWEjr4xMhmjZuKXTj53RAmFtn2fi2xmtPcezLAfMi671Azcd4b1+Lt+q6i4d2+6EJJFQhVd2rT4V7J4ubV8vJ7kMPvmVxoI2xJ7kvACL31EQzW5Tbmn5rgBOhaNIs1XkOuscWB68AolTN0CdKmu1trksr27V4TPPvRYEQkSn+FzFONdz0pDV6oxUrQp6xwPqBOUgCjDEE3mdFW8KYwsQITzFk2w/dYyvONRYphzNrifeaEFrqOZ8Klyp5CHNI4grHlv9VStjxCLQZUQ/pFhBnVmxgWVcIuLJ4tmhLFV6SZnB9FGu2b2HQafI4uTlJJBp2UcI6iucBNx1kyAN4PGC8Fd2/44UTRV5imvzXbXgKuTcWAZz/f0pY4mFAr7QAjCs91yqmhYLur5wr3gxSn3B7/SW/EaxRweOkFSsLypN31d88n5mQM3NF/7LrzBDvegYwszi/Ylht1N79LwI9cH2h7RLqJMVFait2roflgOE9TpktAlKNLZ/vXdDguLQxwi7E/DIL8u/LSAL95mwW7G59YErrYFjqXI/CHBeCsVgKqJDhGXkZDB4eZv++uoqtXzHJXIkjcrX33Y33NvkeEpM7LgX3a9pizk9ZLlGcFgL0eCDVFVO436NOWZqVVY1uk17jsTW01xewy2J0y5HE6craIHue2q67s8CWC3u+AtW7OMBvnQGBSHzL6GuE/ZeHpoGgs4JrFykpS1lggtc1podUljQ7TGsjeP3vum7iRM/GgzIt0++MqDW3k2Bd6Cu0XLQ5GvkB96BpAyImWUrpdkownpjm18V3cxyvns24u6XFlsxGTn9ZQEMNIBzVLgncqRkprzRKf1Tvis2byLPkJg8IxijLySufYU61g0IZbitErquH2hpyDF4AEWy1RlzzKcYA+V0hx73aKowiekKQNZXESw6SplBJIrkfk2lZfSSdFtRGkYhJ6du0e4gPBKUkTCr7UJPkrWADB9DqOUpCFH/J69yJ2aJA67LArPkpLKu/dZdXNEBhdrhEGGNfMzAWU8LRNkOgh4ACppWMJiPXSrIEbwcnuwYiiNLFGgzKRa9mwEiUe/n9J29Xy+TaQyZsCWbygeEkVOcXbhe42hA4Z8BU1xJeNWSPGa5JYIbFT+XpH4PIdq4Jblctkc6iBkkXD1g0UBcDuIxxszQk2d3eChxF77VB70frbDtnBvunX4Lg5elLP35WqqUeRCJ32+iH5NqF5W8TFiWn5cHfihgcp23ot1lv724HOl948a+Y336Z74NsYXTpT5QVEjPlbqWN7pOMnXSaOmaLRLyUNcuYz7YvplJLY1k8x1aYQOlexWLot0IfBDQhEYwYDlkbGoksRbjkAqGvcp1T0cGY+grA5IBr38vILNkEDZqwcCt4Q+YgwjjkinMf1jjL+njYa7vw0fVShPQd4ncRxgQw0DX0aBgvKWa1tDAAJkO18O7hA+J8GKidptUGSBlw1637/5druJjmuS56YgVI6Nz32mEDMr1SVmTCvw3Qu3pTO6Epk3UqkSrq88Fp6zXM7TMRTudSmjG9gDbmaNtbpQXS10+M17+XtIdtlq3U8gbwBd2zxvP0EY0WKCtMjtXyTbsaJ8Otvx/7Fpq2+D0yHjaEq4vWXGHysZ4ZG1gfmFwvyazayGDJL6mSCoJzFnFBnluZ22WZGQexZAugPHpcnx7HfAai3/ZkzA7ssdMl1Ew3V35ZIRuPG8mdw32z+j52JUGsVPBj6OOAQVEmzQcX8feecFxVcJuHoXoL6+0ARICQWtbzwuh0il9l0Xvqkhb/pHRYv2B+JgmhreEfwjhvifW6DZpWbhHKpNtG0aUJCm3hk9EHM29QZ/xP0d5yx/s8ocGjk58h/dNQzhw1PIqNXA9jVCNSXfDRNt3BsrJiUF0ZXylh/DmPxD75MNDQvc6WHtfwgNJQbvQvIFqG3gON/aHM2yoxZusKhbTMzjKEKzRIxQ7oAiF5EPpfOUpoWiplLV6Qg0HF0JssALHhkL95U0l2w32q6WpQyH8z4d0nyjmQS9Aj4K0g+qp3fvci3yWf2wKT5lYL7TxPu4s9w37IeewjdeyxY6KRA1ArT3iVw+M4CMO31t80V9IQfG9TfDJoFFsM2eQUeHz74+PdTJyLlFwtTMaKi0bKpWA0NkfLNYJTCi1Zp/Ma4rSkSPkvLng4iNRllc0mAsjpNMQXHoi+rC605khrwa3v+rKsIJ7aY7s67wAJ4W6sbqsHvXV8D0nDPDBlhkRSLziUQB9QjTFAiE/c5iknjUqWJ0jXlR2e8AL9mt8jTfTZesdPyC3RsdLI065hNU3SOQhPjyOdaLzO+9YAEbcAVEiFRWKQVDHA1zK2lVIGNbW2mDvqxQnZDDOga0ADAa4Fcd1BMVrUuSRrN/VKXkLjEdkPqAxAG9j+YJPdcqAHSfQA6SnD7l3LLn2TbGYOBIBF1VcBGpCEhxa45LZBKQ5UTYlSZ2F4+bO7dyKPI+8KLcYHZB1CB8VCGKd4zCkv56GlOeABSrcuT2oiYGd61pupiLGTK9O1BVZVA7UL5fm7YScXIv4ogGPn62f+/0UkJs8TQlwzh7qsVL1k78eUKvTGdfZqZPrUuOI5hRYfqNpa/ArC8CtQ4dpjBm80mUbH9nRsPIU+rxGshVtBvn+vyw7WOBPkcQo+z/Y3ZcrvOYL1w68GYOlZj/TvVQm0e6NXJPFVWZuUgOqCS9CHdSrs9v9Bzm9dVscyPDAd0/t6LzTHK8Qq0PvqLuBfkONy5xB1OaOOTuTMiOHoZRTwiTU/AknnJ3EiUsf38o7pVkzn3q5RZEqbj2eFkntHE+ZUhwN6jIHjfBvPJaeMbB8i+uvDQU2P5gRNxV7bXYh1BebW6EmHX5iGQoNCH1YPmIGSIF/HpBvMS7/yMDL5Oj2Pg0ETVyaDArvMcQJ4cb/XFL2Tmt+aSJlkmAZyXNCVvJMa5hzAK7gzjcsNqr0X0/sGEwm8m37rw41/260+xpC5IT4GRip9lk4Zw3ePwYzXgpkmKnjyR2Svmzw9fnJ5bw6cOZqnysJt7k/qNLvbkkXJuCrCP/0QWOfJFsWjc1cMf1iT/3Liigtd8qB0BpeS8ln2cpRMqZOAou7cGT5s4nqIAX5tvRfozAKUUdsN1mSY62wNGJ4IjbLmmqZkxnkv7jSsKYI1LZ85NSxf6dIaIWtnCJBiM4TctLIkjcQot+r0HT3WlQFcmQs80N3bVvei7dvdVsmUAajvF7o7KY7cnsLk6/bWy7UKNimFNSE5tZyH8+BA69MPpvJ1wWCCNMaZOC8X7wj7mFUrNJLn8LbQZ8iRp/LejLSu50J0zbelKngBke2Jp7GwbyjLrbGIXm0EjnR/vQvfoLKZD1Mx6M6pshWCkQy+v8XII4Zbo1eSh99BO4nT87epfhQt3nO4nq+WzsuHpGs0Sx261vpHFv9gdvPHIxwhWB8gH2vLZ4PfuG5VpjFUfFPvvy65fJBodGADsEdDSpASynZvgjV/QwvOdFzpj6Dped40bhX1yOMSdeO8DpLQQKrLu0e1wXGZHYJ2ZTwpvDbOpll0Mli2pHxau5cTIpz3AVDUqDD+nL0O2w2NgBpWscOwT6ngXQiJOY91fdVPLjOA+bYfBJcmOLpJRZFaggA8Zgq/+MxjI/2h9ULE+JRrqiItGRM+NqUjmNaCVbzON/ear90y6FxmYr51+eIlXHGbpwcCQ3MAX+cLzw90CIObXd8NAacgUNxNlAY8Pox/KybJJVkab5xtviQEtkZ5hcpjAtdu8OXrIWBXJZDuuUN2aJDp+mDz439Uv6/vAkKUYlD12s4He8Uieo7wHYFsx95jgYcxUiPutbMmMozl+HR1jgtH9V70xIHEwlckBq6TtIF+vGQfxMN4Z2ibuBLFjsHJ8+3gWBGr2GkLjkouSZxerRXTVCUo7wb0swTRr+NLG34PjUdjSitVKZHsuH1jJyPa/XfycLAHzZKK2PVWpKtlUKczHSbndjrVBp3v0o++eb/vi3JMrXc2B6gxWfZcYV0O8I7Vm7rLXuAnqpt9SFMyKhCpQj3i/CvPsrpr5s0fpCwDb6IDq3mgojn2dNaEmT7j8aWqydeker6GWj6XLp5gCNtOvzr78lHQL7sae/SInyCqP0qcAMzjzLY2LZNrpHZlwGGL11xamzLFuh4XMQUYWEV31iYX7guOLCSVi2LnfUgM0T6YDBIa7Yj/4v+//F9GkZnoAU+0ywjsjB9r6XbPgrQBhRku+OuNDrjurkb8leIK+pGaVE0PoC02jLqn16lJRYgcq6d6F6AUH3tZds9EMOFA4dOI40rbWhtTMGfNQnif+OGnTYK58wMKP2Th9JDztOyC5weiAcLCQXZyYdPamNP+5mGMg+0xo6IICsLGDMJhvM7bOsqiPoz+wBvmuEybC7x8jq+dVffC/3Lg1BZDxmMc0/RN3hCV4dOQfelmkw3YFkl4J1m7i6O/uZGb/7QjWW56TrhxJiGZsJUlHtKDlfL0neXj0Q6HP4pw1YPgsLnIrtoVsCj5KWe6qXmQltH3NcUj/I9ReZYaczySz0KEmj0spK+8CaYQwENMkaokquUhT6U9rit3fST2OCvvhYx+o2LLs46+CS56579+zkQNDX/48aBrOdwp+kE2IzLAzF7EjkCSck8U0dgOHxXUxoZXQvmbVCqkleac1AzmehPjw+GflEStjBLTD7DEBhrKy1toKRCHDtHkkpbZ/mQka4fkT8FRAyMcL7ioV8gwSOmyUJUu9yQj0cMmo+oxQVfkTuWTrcrPhOXSj6uRTV4PVd6d2Ltrf3oJxFJHO7/Vb1Ss/P3R018uHzDgFq7DSWUvWxeLYRA4bb8newZnMz/0GUKA1rA2Mug/W7oWRnycACsh6vUh4anMFOv/3sBRmiOfxp3iNuVGIBHGD8lemzv6XgI1ZSBQGd53YC+d0tmkQT/RchLDZhwiAJ121ayZnz1K727miLb9UxkfnEJTLPxjvIhmAnBp78ui5dR4/4+A8FhuqJioL7+p5Dq5UvfW6duZkWPaqgayiycXn+dmM8y3G237IgsPboSGgWYtqniIOuCxnK8AmNb07wBoC+VTk7vDGiZdoiNPzuqhw9Lp4otvpglVZArsCt8cBD7IGHawS//7tmNLtKLgcx2fW55eimpdNvthofxL/Z3GFoCuiXJ7o5+Mv8sv84SR/W4FiFMx5hqLfCqeiz0c0FRgNoVoOpdF00qOzE1DnwrH5rJ0c+ZfLqtFKy0E1xc6RcBP755yfI11qqTLqxF9hEAYciZUPQoFrR9qDPLKVqxJ/3y5hegpZcSy3JP/969kAJVA/DOyzXRNY4kcARyFSZryBHv+4D8UoE/4A7IVQRpWAM3nTNFwmqELMRghgCeI172zaD5mIwWyVjJobhKpCFSJdEuFRbZPRP1T6R0k4gUXk98cIRHF4lia5x650YQ8jFozRu7AnVyhwyKLTxUgsAYSRH1/75IGPq5lEAs4Slwd3hFqalikbl45FpAoKCcuhn4/kBMKjntRhQMDfxY/zMEKisoxOJjQe6F8remB8IZzWcZrDbEqdScyUsCtLXmMXx1io58oHhVPWrWwYwsBQXcHBW7uzqOmTGgi6grlz3yuUc7FX8NlUAwggSIW40ta36+kBt7hV5829W9K/7p1N+LKZbDU6Ebtqyb0pYA4FXrWYugiXqMotR4oB8w7YFuEd4dLDyLJBxVDYd8eQ4i68QhGQRy+o3Yi/2Hfc9FBL4LxnpoD5HmHe+/lixLR5QclVa627rzjZhc+21NZIGRLq3hT6jICpxIT4DnAwkyLw9hNwe5BtOkcD/oYSLXew0DA/s8REckpFA6OBj2acv+Jmch2EfHojmqyJCJqvU0BwfU8pNYr5FmjXU9jFRAKc4GzrjUZAjf7NIfk34ndj/o7KRDzp1j722vJCMUFe0ewka75al3Jo/wiUXeHqiZP0j9/Ola6OWEUVG1sciKnI2HCAroiUYry2oHJD34EimhFMl5vnaZvZlKlYks/A2iihV0cDW1dSoRNJR6tyZGkAveYTrjeohVthR3qAVj4Q4sCLYkkzSkevdj7QkkzhbCPkJ0/4DgXoOi+V7Isyoz0uuBo7KrMCy08OhC+N/vNl3i8KtBLjd39KtOOKlLCR9N0d3T8in4L+6mN8mS9PVbQ0X4r3m9KK5RSYfLbCTyXqJoBpCns6ZEBK/wxVIljTz6k8+sRCz+I86js/MABGJ8AXV9uPh0N42THTmwU2e2yDdYH5/zA9vAyrwiKm+MJSoW7lgRmq/sUnomQ2tqNMi/3es2NTr16ksnANxkDdWiDZxzqx5iVqC3ApEi2FqTkQ9FI5bcJcGNsY71vfVN+KWrxQQOAcuw/1cgPFjF1wPVwR58OJZKiZOxif6AM6oQjKfYTv8AeDDEtrUsiYc1YMgnP8GrXvjUXU9+vKfmqVG+vyGCM9YYORJLtxLXQOswi5K8uK4360CVhDNcmCvYB5xPjDSu1/SD2NJgWlNtzbJne0Iye8BwUPji1C2U9ZF2Diz12yie3ZTwTP0b1aJtxcBmt9ySS/c0/oFCULuTJaVKk5kG/ajg/xJ/M6samUfuDJ5SCiuuirHvMNXffdkoAnNsJW/uH+rUaGPhP9Fex1+GJP45RCCe+zSS/RvVYAmRn2i34rn7Zbjsitla7VLOrWFGZlL10+VGA243jabk4LhrA/NO3VwC3i78hNst87ZIURqEfJ4CZWcpjtQbPl7llSMRX6YGnIIeMNjeh2Hu6iYQMUWsHu7Mm4SsWsRluuu4DStCsa36Ag/Ynw9NjyLRVc934XvddkWi0BfT3vESMay919ogepZJ24StNfi4NtqeqPzV8D/uEYPHP0W4y4c9UpjXP4G4QVV1B3jBH9Q/4Jz8P7NLYnm49Ne1wvTYrRiweFSbVvoxAC33njDSXdARwLSItywZQ66z6+wFHhXD8dcWX4QuwVXcbBQACT4DgtsGhgp3/A2vYSyiz0vhlsAqyCffyigy32OkSYaqe76EFrMpsFJUxQs46dsfZ49ZbqgDKDjaWu4NbIy/s7HrvIzmhOhcO7F4oQG2ivIUf8Tf33Tq3DoajSpr/K4ApNUdGJ1IOlOB3A1drdGXdDYz0LfA1dUvADHdqFIqvMsRTfwpq4k9tYJpPoxJE7vvmaxOzuswtrzzUbiNW9+JMt27hQC2yrRNskJ5DFXKKa47COjgf9BE624KmWRrj8PUclkT0jMUr3y3CXYfzjDi1U/8m/4FLYpoDMZEPcAhKk9ZSNjUUsHYA+SUE/Y0PABDs02InofgWhBv6o/zkgdTCKwBZcTMxEf/eTOBWkjP4ZGVN1Xyyt0tpmpTtS0eacAeoLirLaWMOr+wz808Y+St9OlS0tJ3uwxsOa0uYbmoPaGyGJCpcfmpBjNcLofn7woWd85Vq/Fz7qGuAeKCk7ifbh9xnBBsRGxx1W2X/ZdvaQnGsxi6PNxOlrnw/vFJSFUmsDaSk2cDArfx/keAWwEL1SLcdAjqfZ6tgy2yHpNLxqzXJQqBN3ESwlKiOreDCZpDQ7fwIW8niko8x6FVT30ssqGuPNFubAcp26BYJiZXYR64GqovgGeKqIZuJG5kMa219/GzyaWFL157//hBxrAYyE5dWhmci7CnUnF5UiYwrRe54qkeQERSXI9clWS2rWHFA0nXJxZbKdy7WAr60l5+DLN/mV6xtwhUatoeoNRNAyVHu+JKHkEKJrUlhg+UBRCJJwPvupLrJZk2nQTx5Dd5C4VomP59jFI95klL0L2B/b/0+uV5e1h1e0mHgEvceGygJ3OCtXLlAJCAW8rB6zh/OCtvy4wVqfbCzi8oWxSSy5aOU8Rs1om95Lh1wFMGN1fg9Yy6JcG+kDcRDy/krfX6cH/LXML2SXcWTZINUOzTc1k4kVqO6hFQqNRt0PTxZs+Ql2iu3MYVmhCu5kGzNUbX87jzyHfdEX9hUNcTM28pkZJeGlJqTr0SHA4scpnnsKTWCLXAKAeMXLeooJTqy3EA43lxwtFgYa4l/7rH/HjfaJS5dJKdFu3vRvBVy16fAi8oYhdqdi+AQVg/yxQXpYH7L3kpxAs/Z7BLuFi5ONRTSg/ubJ6dm2Cwiw0gLv1G6EiYPtbJ5GQaNzucqSxYD1QoC35Q7s6cjGU4xf5yaLSGahXThy9/FjUGlvvtidDIb6QeYYl2GzZ3NVTw4kb6sBHAFEnQSeETCWVaJnMsviIVm/X+4twWcjxHOss0XWzus7WrMCGtaReQ+wJ6/TA3jYOpGRWo9mrzYD2CCjMBixl6gkIpkMzeN66CW2UHWeD5NH3ZoWM1Ef1L14aVJ8hosvUy08Vs9/sLOmyFjcopByZb0fLigX2DgN2BhikXCMPWHIkewY0Byd02OM5StwFfPUXnAxo0kLwM9bz8bivz6TFaYCnShhDDGrBtkGKnvoKI0Abkg7QHmuJ8SvMszIHZ7cGbEXXtcPsnkhd8MtZklIxpmNpnTDWeX9AVfdGWVJAQ7WUO1984v1TDgS5sxnlxXi3x6f2ByQ6CiFJ28nDQMJ00PdRLoTOLycuNYkckYXL9E68vrAtuJuFOjs8bpEcFbCkvs/t39oT56mR5aBkEnvCd45XnjpO1LHSp2eGbWFDayyQxWjHj61Sk02iTvFBbh1KmFFL01I2gBvNJ9PkATwnCUpXQKFR7Toq5ODmeY1aFzvqU9otHZNORQMLJeIHHR5zYqbfD8eMERJ5Q0CQX/pThmjVuk/7/cepgYRPxc+fplyg12sTNWZSRCrbk4iUZ4A5CN+Rn5WBECyYBASUxFk7WMCW485BVee1aqiJaXs8qI64M7gcfchvXTVQt1TPKGmwCY/GNq0Fm6tRBhqCQQ132D2j7ceb50L/F3Dn88w3DRROkkyE3VAKWTske2njpKVcEyPOxuQhMHiI0MJv1Q8/n7Pd0HLnI58MKXXHreJzBqrlOmHNxIQE5m/oXTNBsnC8pKAvYDZ9VwUJfZr3OfxO7YWzX836lYQLX3TPQ2lELDEwGEq53wBMbmlzDf6HYkM5KHLKO0rQ5WhzOe/M/ws7bUVBRZuZtNPrY8UWqmdcW9Wyx4/sktSgekidu1F2PDaiuumvTu3Tr3GHMn1qUTbHEvqMJ8IOz8iZOv3zzOheCKx3y4zPgcEGZNipu8bVXIhpuoOjVyjYNQhKGf9BzAsxKM/Ei+CaER4l+imFAlN17DPDzjC5eUzHiV4qJF9yYIDCY0Qf1JNifgmZOdKEivcy6Jzr2fwZ2Qw5pTot20YFB0AA0IU52Z/F3rVEOLqvF2bpLN5by4jbq1qYseLsZ8t5yTqB4dI4sHknlNTQsRyEa2B2WOzZqEFw+dOaOdXgE6/7xI75WSkTTpB4Zh6yeJqjJ/6WvhiO3fLeB135XViSWrE1R2cjicl6ebiOqo5pQ+vrFtrg8A82h+N407Yf+ZzYSZ3reTTF88a+q2ZVGVZ27bJPgKQAG51FLH49k78DHhn6YaFEg3Br38VF2BNZ+MXywCW50SCSufdTUVNzricB//z31HB/vQ89F0ISsxlDTP1iRt1x0UfX9lk3xYTRlRgu++MY+6f3X+q6ZEqS6BMmKnDGlWMbVPXCjJI4yPsbnxhliJbF2Wpm2kS6uP1Xe9WgF3w4uEVsv5Z4uoEL8T4zLDBiv8zh0VlbmYXpDD5S92rLb2KIPnmJByGw/JfDxAJYsKGrmXNhpQ1lK6SGzbfo9f0PHWEaeiBaKGogUTVr6QXHE0oUpkYqb0NbF5o+eGMOU/DfOkThxSseEFY6pB6MAeL6oi21wNyO6ZvOBZ8eWTfLyxamVFeXU1Q6N6UkXM1gPqnq0RzE/CQRRK8gUy0ZUCUzhPCXQAWr0NUdcKTwqdHUW7g+wnQpyCa7iUSt1JnqLdm0KfYxg0pW6z6PkVROcK3VBBnZP6ylidYPqGWoIKZ/UOkWOuT8BY01IFQgGNovySczeCrCFo1vt/NRtnncW6qZuahzdnlHz5sLWFh2IFNe4IMT39sCl9HZ0LBO5bVherUQL5419G97dw1BsStxkwpW1rdpxmlcO/m/Oc06HcQokPTHL4QxeHmTD4vGdPv7whe/UsvZMUr6bCmskV0IiHaG1pSYjw2OLP1Evowxup9Rf+nRY2hIVidBkkxeLsfyWxw+zGi5OOWzZ+dfiI47mfxOeFKPZiFhN+rFr43DWVyUzqMA/nl+3Nl7TSplG16ml10dTy1pVS3SwnLadnmflWJ0FMmlkxRYZNMskBjV0r3Ai6+jtcqU5C8e/W+RaefYzHfT1ahwk+tX0LqzWF6jqexQZ0QR+QowLyNXN0Qb5E3PwE1YSvU92VEAFpSMe8y6lLZvfxrpxLV1DXw5oQCgcj2P+90qc8TDnvzmnXP7sZyvREF+0lxu8qcghSIl6hgYqHU6unk5bHK15C5gb6RpnSEbOjcn7RYseEmwvPjDNiylxPz2hvpprLa9zM3AuEv6hkFkUQXHD8ogVVlDA+PX2eTnXzxlwEu38W0qcpn1iR1npryjfWqf7eBFdeKczjVm+qcOKuf84WAfMAQ741cuqVcW1s48ZISxipWznRRI7BKnRk2hu23kRWMVirojf1z1GP89v5klJndxWaeyto5Vnaug7Wch6IIEZonYgu4ZUhLB0Ae8sEOWjL4Ewz3NyOoqYMOhNnIsMsgyi9XqoH0e8W323VBZE8j0qunI3cUezDQcqpelIMnkRIQ7Qcz/pPqjqWG8i/OZg1kvvzSddpLenhGI2Gf29DkAwn/V8Uo83J98LUBqwRjJUIf0DXj61Ieq6nN97w6h8cgay2RjdLkmqacMhl3nYMejO1wxsvuvwvQz+9iZH+J6AB+AwnBzYOrI2wMKMOG5EAEzX3Lh8GmTt+0EfdpmpQB2u193OJxwWqRz+ClubHe60JpznhTE+CjmKXVzAIOuCjNSmReeWD1wqP3d5Ht5o1vXui74yU2mvIpM28bJLSoyP3GxTbSbqbHW7XPcHtTP1h/328PXmRzr7RJ0UibAJh/Z1TvX+svVUo/Csl3KfbHmt0bcw+tHUzFPkY/ogaqF9aJKGWb6Pr3TQmDdmvxXUFEDutS+wOXAHikqHTJfZM6als24cn3LnZHuzPNEBvbM+PJXcgF474NT4Ojp9X9f1DmRGeb7fb65+tsCq1qiX7FQ2UGvKUD2Kn1f0tibufsDDZAprstHSjw1lSzs7iwW7mxrS2mRAEmbDh5IwHSlyHN0XlDlsQB9RrfcnhedvUWLm59pRYPDAPZOVkzy94HyiWX/RJvyi1xaSSg1pX79RG/cugX5AMLfBlCRTRI9ZKfP3Omuuq5M52OS4ipYluhsWhiknugCUV7cRwfT7R+gIH0Aupd8BpH7e80eElffJLwh4XSwjVKD4nlKrfnttLJj62L/i221Ey57sUYFG4ahzMxY+m/ApW347BgAEgyrNmCfxCDnaEgVdT73NKkJh9hhgg5OEY/8wvJpZVLlIYr/R5d1qBhdKP/Nu0xbaiKxgpih695tRjDbhoKrNjc8BiRmTUrBHDvMRoetTYIi+IvEWgeTxry8pHlq5zpSzWWlus4VOHMRS0dsirjv9NJGhklRAFzCLfJ/4ymGY1FWk9XAAt5SLld1F965rqIWl3POGH4132DYbwhwjREyDp5F6kSP+bieblBjQdBgWWKGXchbuRoXJsLlclcrVt1Uh3WYzJAR+VULfx6Nyp62UmwTiDRNXE2XngcFVp1RVgswuzOJ9fEKWGoxCYECBdBFZjIQO6UknFMSJNpnjdlXI2NlaKU1qatkPnIHj2TqPN2Xo4AAEfRe33bKP7oTIQLdJDTK4nGt8ZI/TFtzyPwIm+qx84t0feWNsDUmONapP2Xe4QsK4/9701+xt0Gjf2IkCIFezGuq4WGiLebLewASCWjFw/61aByhrUJcxJ9oJtPcenRq+hRqHOG02QXi4dw5hHP2ADStAURNQGTmcPbYKIYSqkS8CFw+Z8KWQ9VKSrxsdL7mqpyZDqR5UqoM6ZuzO+5RpH00Gb4WZ0b3p0zrY+ZdfNol0jki8DZ3WCYOB5EYKQvdAv70vjNoMcO8anJ3/eQwpRJZLwkuLggFOFx7rFqTRYzlo3cfNeFfDb3tOc8VKYJxeJrF9cKWBMWm076r+rg/ZbvOY6H5y9CtDvt6luViXxFeMUdfiUupQU7UT9oDgoGFUNZHBn7+KGb1gV33N4ewDed44XKs3fVNwVGRE8gHp1w46hcPd4pgPBANnph1lE+RtsiAqgDojHSMJPWbalDKCV4ejQZTIlYbZdxAAZTmixsxhPYrBrcVL7KqZusPOZsj/wvIiEJmNkqS38zwrJrml45uLMTQYBAwjf5PURM8pvsrrKEyF8kN1Vl+FLujnfwHlZ/bpPcumW1UeGqqoCbU8HkkjZ8Y/IMAQcGSfuRrgLstlthPW6RSupgTNRjIXe78G/ceigRE0hccgCnXvCP4lJq4hcSerF1SUQJSuOQckgnlxH2252oORKXFc+KG/YY51R7R1UEVfKLUgAfqc6/wa7YixyIQs31eb+yAFZwyVv7Mjp+klNj4/8DIFV78SnSTH+l89CnM9JBb2rq+oXZ4gWFxKYGkZAfCQWGuDPYT3UTO5HQT3Wdtf2P5E0gpglj19WrYbNMf+AlL30tvrya+XbRF5tCd+drqxKi3ezOVz1mrvZ+QlW3wHkC7VTt3Dgb1jR5Tm810cMezJZRxB/TL5avJfTSNZ7DUNq1OneNmlSs7XWPQccz6viAGM6cCVpTgnqBS32clpWd0WoCl0QmcRJuQuZh9KBUoblIQ9+GEJ7mMErhE8exSX7SqjzJ4ss+cg8L2Zg30JoLe6QpUGv2DmnniCM/vWcWc7+ad3bzxLND0UazID/7KDHeNocF+q/5lKiyNYO9yMDLAYHefc4kXL34ypt9ujCogYcgNcCXaV8N2o4nsk+KhjS0O9gRaJtw4vCsXP/oZ/x4FCOPOcM7im+hwQHXj4pwVdxo13z/Bgr+EYe0rH4JkWZgWWTdJzY8QJ/FtiHprkg5+OazEPqF1GDhgpyrIC0Dmn7K6Psz6reO7mGv5RcFe3ZD3+9b5XNSpw13nFfkkssPay8jwZP5CnynMZ4uBou1M8e/6EELmpmBXotvKD4xJDALDNDSUDFC6lTeKmk/dUljFE2vGUiVOFU4283CLcl315OIYcEGINzUj3Gmo1OmtYsebYZcaTSdnMjOH066xDR9GNaqK5ec7u26kh9uJcM3vMCi164eE6bErgZaiNhjhkreO72D/2hlGHi5sc1qn59sJ0pRAcvmom431SFVG0d81qVP3VdJFlHZFIumhpfsf0Otg2ViegN+DzXoWc1Di7TcaFEme6hG+MF45Nf9GycRUV5Xo37bybRvr6LJQoAqvOBLvdokli5wg9X64inNCM58btXSVCZ1tBtGWr77PzUdgzGvDRWpH03KWOGCKKsFU/KICWvd1jWuGcL8TNbC8do89ftppZlGrpuGSpE1a6Hz94yXD6vWcgUZkJWfPlHOMEtIRh7Y0xsEt6iMQU70vQeFPTylA1LlzWdiGLiUEmtmVi/qoGk1ArKQkmsOFGQ/MfZQInjHatqABF7fZff7aLtxOa/hzitrK12m5LV6tLwGFRQ5xAPV8lJJK3thVws+fMkTlsCBeQ2w56iyZBLHtpIwovW3YA9k0fQ0RTha1I3fH/j0uiNNkoBQaQCk7a3OftGxOPn21ErVTMG2KrTbkINGGQEi3ABVjxDEjpjo0N9oe7xJgdMSRz0LFmlWnT//c8DWbu0XYP6VGecfnIFlFTL634Rc6C3l6PWa+lsFXSioamAdbRJyj2yDS2Ybp+8A1PFT3FwlgRfWBWj6Wa0ZLC/PY5oioG0YfkGwPq73H8i1cMDc5vM63F8Oz3M8ykJS6DGwQQYXp5CEU8cER2U7xduHVFlb9owOeWpuwbmv2oAdvXCZGUnPeaLzo6UrtgCOKM71IZ+vXs3EfExFmzOwkISysV7EZWVvE4c/9wdicQgrCJ0nlXC7PM8Qw7raxBbIXQ30iG78fnXW/8UFiVZ+t0lAbFdJlfkU2lxU0A8DpjgsjVdFOZ54SHTRDo32Jz4l0uE2m+8SCbsydxJ4bWhLFnHuOVtmSoA4IlA8RnrMltrwyleVjOLjAJgSHt4+irAKsJievTc0H6dkqJHkQ0G0T9gJBpm7MempO+1baa/j0GNLQV4Ed30ObUaHrKCNjAdhbjmsQtB7RBxRhdowiIEPB4flTTnp0E3ftkLaYp7EEzVSqLsFiecbixZGk/4Yyh6cDKpJBC5mUnTdv7yBKY91eQpmyOlDCSM2k6XWSpC1OAQlg7AcXjoFj5xZKF3BSw/0K4ZkSezCi+0TTWNYzKHhQS+5opBeBnJGdwuR6Qr0H4c5c+2dXn1Gq/PnEoQAixDQdbC/hYbUAXbx5jF9wCyAkLiLTHQJZCDKqmfCbLF50huFLQ7G0G2kZuFQOKjyzXn7+DuvSpl3xQXJXq8zj16X2+tA+Buk45iNyq1YxCeDCgNEahhL7fP08Xa2jwBIkGirbTkuDdam4iJ9rPBR3Xcgm1HOoTSN+5tOINyibWhBTU6BtgwiARIdTTGGRykwOwR9Y/I1W9J8eyTGvlkBOX+Izu4VzkB/j9s763uYQu03T99+DoFgXiwDGs50reIeNwG9trijrbVGFg9ZbSXuoJAObpJh0KgQrGZ5ra6MMIIm87mkF6f/m/7/UFfuy3vMfu0Paqz5hlBbY3+wQBYbf7LizpaSj7z4YiI9FC4oXOokWn/AHUCQa8dPpqE3D0yIjHCVS/QQu08AhXoQb1kCQJeqt/sVnbtd3vh/TFy0zideONY4TnYYxwpFuutl4WEVZSGN8I33jybbXC6An8VF0/OBHJoCJ29tNUEYasg2cqI5Z8AILNY9Tf8lV24CqrN58yPtEMdCgAvOlmc4u+cN2Wz9uZ3Vy5M8E8XdmRwA43nQicEcqzUHfd7pWQ/0jasAhPhoUM3z39egIkElYD4XPN0xXinT4zNa4HeWGaqf2MUOkSLqKe00bwkLiUFsOh1p0nUyN0W5SdCm5aK8wFUBaphDYijGPRcrEnLt5BXc8bvc+LGNsJ6FUnhYHuXhGXWTqnkYaq5xOhMgk3YHshDseqX6puv3PVsHKaALoY6B3lydIx3ghPS6hJoLu8r1f/yeMIaJFpHReCsvw/qr9zlr27b9uMoG+R5aXAAxTejgsjq72Ah6WOoLOX63nWFnxBm0xnIiggaCzrj7XTphSI4WVVU6j/Y4DCnNSMiCEj/6kAOXgFNgNNLGwfqpXTncIa9QSda6EY0AAI23j+1I7ycuhRPlI80N7ap+FcYmySvne54jrlG9u+pPPN3dVEHF1YPXDC9hAm1xfD9OLI7JehjHCOXWk6hjXxdjVF+lCOPfyqxupfdaWvv6ydCRV4x1yzaWWFqwJ/Ms48Q5kVPMUT5LyjjpiG6S7mqwz6gz3PAQ5y3uQrqu6kvmSzm4lw6sDuw/+ltyubJAhD7kCix9rDsTM2DZazLEGnlMr8svz8+X7zBIEMcUjZhhOjhb1I42yU0SPWzrdOJNtirhUbFMb0FteGz4TULRfLdiCz0Alvr2c29OuffnqksqWcSX/UZB3Aq3vMpg4WuEh3cES4DdyxmBJf2SLFtrEkhn43ccsF0tw7ziZTxieIZhTLmhnAMvEInHmNpZNMhxgjpWtvnYIFRLthUS5ZbCXk9g0rsDvuSWtwVBanNzOQNe++c2PffRN/z9NcrcBPkly/tOAP6lizcODxjzb5f8n8aePugkdhzNDWLT9dcAJMQ7s5iWRyQazmUR/IlW01wMuIwfSLeIS/h4Nqa9b2gPbX2WljLbVRZUrijsSEbhzKR3hbBc9TjFIRxmtzgh6zurNLhSNQSqAgllwwOmDpd4W5ozvasky5BX9oY9+/7i8dI5zluPI6gGAQG56Qdrqt1B306f6P1ucR1efsoCfC6KrF1F1XRjH4ueWjNtrzfWJkbp0cbYWgz8jfkTU3IYLyNntfEefjWIf1erhA2AnDfGjdpPSxnPGwWzRuJgRMvxTeKhMTQVi4Ldy1O1cLEjuwFyjtCnoNbP0oq7WqklOY9CJnwKb0OVgFExsT57FIuLj6WrC+OsBS0L3bj2+nvJBUZm3Z0vD87p3rilbSuNe35Wtbvfhdamy8s1A9UvLuvGolEJw9c8x0jlVYQtbMcWcxN2mESaWOS2X2qvOJ+IlKlrb9YUFT9d9f3EN+4qlEpWCeNGtiVMY1GuP7Q4c0Qe7AmrSfrNoCvtiHwAflo4BPXubRHxWQQrvf2OpzBkzr/4yun0d6yfuRtDqyt9xT33XEoJmcN5pEYWeFRUb+hSQ2wFJwh0DPibOHEB6fW7CAXHkc7/H505XNb53o4Ci03uNRx6Ydp6RxO+vcgR2vYRtzT7hdBDvLCBq8pNWLNKzasAOoGCK5a9kKgQLp48BbVK/rLVm5ZVVTy3Ea6uZHfJQSh2sJkyTYRvA0W00URpO/Zi61ZWYXXcz2NffNtygpkmnfP67vJ+U7B/FgJa8zCiMuWuSlSgQwqwLrRL895rUSaYj4bEUSSYjsHrlxYPRBJBRp+IV09vxg1NENTg7ClaNuKm6zkfOKZebpSK6yhHg1LRk85XFhwB005EQPSjFAATwXUrR1CBgxC2IDjghZuSkZEiFKkQ9BGFclXtm4GW0jO0R0RfttrnR6Td3LjH21AkFMkJHmxeH4IZ+It6opnzgaUz/6sp/tmQhwbZCcZakmFn0N3UOtmbmTreOipMP9hhc/GvU0CPOfgNYpRtUM7fpH8pDMa/coKYwOq+ZDl/UTgYlr5xUWiwANCibEpUmzVY/YfnGeAY/tI5MJ2FkTWzsbnV+6M3Wc0uMvRFEvqZcDHZNEve7cv0n+Py0aWURewxNLHZXdnIXDKos4sOCZaTGgaHGW8BTbcF4x4EIJghI7d+xGAbTY2/e0GYNR6W3o45uM8NReOsgV3xnLxjxe+14KbeZJrhBMgRIMa+g2Nq2WeL6O1UFqRJ4yyV4hWqmUBPPwkJSl8YzN1lY2pqJGEbnEik5sU7FyuraqNPr91Qa5Q572TBjzi+fmN4/tBVHZnPfgYTDOD6ItGNldsARI4NZq0giKNA/Pv4IBIUPootpDMh5PIZH2pbeE7RzH3de2e04TTSp+1yYHZZNIGYTuoWiZdoEtMOXZ99SZckIMw0rrYjXZChn0SC6m0qHqM3gY6dBK4o0XWmmT3ZOxubbeXqjKENRtsSjR4QOM/vc3FltM6RrM0O/t5kqcQg3TJkWZimtDOwKADE7MeKjkxvBY7T5ixXalCACRGXrIE6YSPgij6RJXgyYTvmQTu3MkMpHmBmdamizat6FS/QbdWX/0MjxfCWtxNEsEbcGLIAeLVy0rHXiT6TSQ77FmUZICTsZ1UA6+vK1ryqh23DRLvfOp9uKI1H4SDlSS3wFqvlj/JOgJmB+ZixC1gkAxeK+pm34QqG1PGh32OB08T/fTmgSDomfxNyZZBraD8WWRPff+KvUhSW2FWprG4q+TGtDJHN8pGsF/dsc19J3alQaRb/z2AZLbET77gXD53fh5ucUNz9nClu5Dugp2W5OlbbUhNAuyiVt8zrkLAdSfOsiwbdwrvxZWI7gwEt/90uZVVssQqQEn2LRJdC6teE8QyBcX0i8G5oNDeMhiZtgdHQccRpmCOLH2IWcKqc0P/iBv1oJWtMFEkXXIbFwyz8SP52shx9Xm8GkMg+dTY2GPvm93au7/XvBx8Gf0tSHpDojstH3hNPm9BUsYf+oz9xPynLf+2fR+1VSioCpCLcNLB3IQEuoGWvBRAvKJ2VLhGqPYm+rSsVqBiejTZzfcx69vRqao5xxqN+IkDH6NYM/D7K7BQHHAihzY034wcymFb6tEkTJ+rvBcQ1SeXyrCphJajEAHlS2F49YMyJRX32tuC/stak7BBGaX/YAdx7XLv/448IIW5pw2cVCzlniLj0TWMi5r94/Co3/W6j694910iCJ2zhw451m/WukO38o9ZUBBp1xfcDoe0Y8qo1LOcbEOZ+uVoVysmAoUEPOGc4qpJjBPqVB0LUO5gunBcWQb5d3DZ2O3ZHcIr7XdFUIpXs9wHKG830ogLlpSKwJ2vWjR2dBN0F0RsjbybX4ZdLOG77amSj59pmRhJMzmfdNQvmYKsjkmZeEnxvPcL0wCIkH9xuV2yLzpZbrQxHloDntRRLhYcNcgspTZIcXY4N5xVO8Vsc/YcpLGahQeh9TIKxtsEFgY4P+ujNk9z/MBUoN3yerT4wDMvt0tuLx3TlHorNrtyclP7O4HEg0uODA2zi9bej0qRAcpVc58X13OS8f5mxwyjvhxPxXyYGx9xEuQgTIR5vmH9LGrqEc0m1PLPpS3JrumX9Zar5bpL8zhjsy0H5CKEDQ52Yp8Xb6p+jyB3nokEaAC+fEWrdGj2fHsrtdthoQh5l5uqNoTPgPIwQmUpOM7GEt08Z9uh77XFA3RzwsbIqyNAePghjiOzywa6LxqCst0LjjzqSo1IpNYc+5Lxexy2W95q060YaUQuKl5e5XxNilRnG3qr5Xh1JAasuqkeX/r5HUw+GfhudWiO7rMg+b1Gz7iuVhVjCKiKPXPIWGdFNOsiuSZ1XxTPmGQnzDsizzkzsJZVhc+ZCnMUd3zxAfKV5WXJPCpu79Sta+GxTkzpolG6oubPXt3kKFdNkvtHhsKcYKwumegHmEFfqESD43tZ+GT45Oqb+3DBMP/7gf6sEeLdxD5C5voakq4HqSy64ZNWmsgMe80uAgJI0Bc9BVRWylSstXmSnokrM31t0IaBFHPfm0rSae5sjzmuX81wFPgBrQFjorzE/3HgByaC9WZyJnTMjiLGqP0cfsg7FaE8/GhSSNaKD6M5BKmv3JBz6V4lqiB6rD4S/9sUptUacZ7npDhSx0M5eHJrpH6Vs52IkKcXI7+LOFHKEgnW9FvraCIKeSOzd/oUXy+MC00qozynofyIfy5lnPK3qwwzuChz+uebi6w3+HggJYozi/P8J8m/M1IsXsmTULXKXmyM84O3BbvhNESdykHn9C1NbKLvUmLxpqdUrSkdbomsZc3jTC8RHRggWZ+HlCzWD9Xu7CC6IOE48DxQI67IJ0xE8gmiQpETi/nLorYCGj4NJkzF7BJsS1LkW7MEFhEzOu7EYsbjNdcyW0fcBvspy02N3lN4IDG4Vyra+d9yTAGEuGJtVjutiT27Ji5MIJox/wAx+7W6iPJVeq2BCYy8LbFILlfN576c7jwW4fDQoplFiUT5xNXh3vY75IhGsTISkZeDoB9/WfaaIyRSchCCu+mbAMuUVbkcaQGzlm1AvFWympD9hWSrHSo2yvI511VZc/x3GQczBuHZJ7R0yq2CnFv+maeH2I/x3nejIzP7PMbJ/D0XTeaDEnXRcq1ZS2zGUfXiwjIdqhQ8pci5etF4CV/ULcneYQuijWTVlgxYBt41dOsnhCX9aefGRIq4qi0zWVUGnETr1CxAr9lxbJRMimyijlZwzFyet7/YyQpTx+UH2Gc6yA6wUsJO/yv3DLQaHxgJrgPWaRFBBQR2oXVILOz/2EeXwRYrvCmo5OZtLD/MNfRKU8OOgglKN5Q2DJrj5XHkCES9yXiqhUWVPNlEXBn6lkizgPgg8fFZDKJL4qmS/fH5CrSag2CKTGwn8CsaECckgD+HsQ1YpREQJ2V/NYNkxbmcsbYf8tZNzA8iNCso85QHmtU5LDUPLo/QCx22++AQmUgYOgdQWgXKq8JaZMp2gNJ1kmM4d+iOeW1GsEZf9xLG/Gn19L2RapLCBRSnCQzmjbDvCU+CgbHczZsnXac7+DYfr8TX5KZSahmfEL922W/Nx79YBH1jpvM+e7ayEuEQXPTEekRCMxfOqOtE3El/EHV/0v499wesAlT0qRvT6IKWfDLfM2UClhciKrUP8J04OdGjLV/bdunYBq3OwFBFJJ7CSlQfcQTWP6c9vDj3acaMWztnPP+Iud22W1Kpgj5IHscQmj2PDzVYaobE27bNGgQubv/T599pNYAQwdfOa8/Cy+3hyoRzk8cMNGCJJAUlEsj9IhnaWORIXaYxcQD96zZFXlTVtpJeQRY+SQJnUZLGeA6iq3JPhIbLrcjQOBkgidahk5YHC3YpYF0FslA9IvFryQAKlnhbsQRHIRZg2s/A3pH4MI55ZMG0oWPSQLoD1Ixgrk1WrPcsXM0WnIvxfXCdm4MdKXBQOoVoJUvfep0Gv1b5Jzk5PCF5Sk/Qea3rbd/jVEW63D7GcO7XQmvsStOg0OKLHRfUPW1gN0OrkahIjLtj3Cn+EM1lpPMEI2XS+F5nBbDWjFGpxJoh/WoUXLYSM4bEepxPbJ7YKw+CDxZ7fDuCKuSozTI3wF2fmJS99o0bh1CrvyMaGXq8v4g4JG4jrWVhEdv6U5wSi3NwbAZhdSIYKrTW2aPddpTAol0tv6Yg4j0qJ6iTrNLQOLPFBh/qW+Ua3vRTWEMCYtIqSy1WPL7IvbNl9fp/CGm1Ozc/0giqf7jkdJOceA+hGscRwuW7jqDeDcF42SGUyZSzTbBS49A8+zrW/e1oSaxYR3ubfbYsgzujpGmHZsB3K5cRvyEAVXXZ0VC87EnjWn8DjuC1uzf+ING9ROzjXBDvgQ/Fz3UTxVtKNqkxae5n3eesBUVkLfABMfeIv4qx7h6pKICN5vQ/lVrcam/g31xN9lkHziNsHTDNiZ1/X394nVmhBaF070JRX1g3poVsYsbVqrRp5M2eYVsafVIAmzZgkGbH1FT10q26Xv04ymQNj7HS/c3wd0Yl2jy3Lgn6+77M2LHrrve55O2h6lcOAqCzESu/sg7EwuXBKn8CD0HmPopcBPo3fNJaZ03ZypDl5xnh8VIjiESv1/XS288boibAcpO/DO1GOcvS2RBjlXRKx1Oj6/r4iGZ5945ozIgyMPfWlvHYGQbKj6Z7iAEkLK3HeCUkJlQLAr+adp2fwPjj6m4+wZnbd93tKCIoos+3sb3eNSyK0RQPFvF81XgiwqlmRvQu+MdRS8LL2CkjnRjvhs6YO3nV4Nsv/mSfOy61R3fSJipThBHXz08BKuoH9az+yudlmc++3tBYFiiz4cw+chboxVMf2FkzsRWSNB57GGXD0Dwh7LlDJOZEyaVlneZiZ0xR/wd8Fg4eI3qWNmp7og6/R82w808GqnwPud2zGTUQufvLEzSFcwgSkctItz+9roRGIbtUwOrXjxHulFS/R3TcB/IZAq3My8PDFmGgUSuRUTcUOH/1S4pxyur/fJf9oWMspYP9jttdSKq2WWcuJhbnsoqFORSj1nbmcxavqMOACSoOWhdBFuIYfv4vSIZvnWSh4WUrxyX3rdwbyEOIjNJ7Gciq4MnHf5gcAx3TP02itv1vXG0Iu7Do0ORqw837uFcUyrBY0FzyWKaW13oRaM39uCSzEPyCQszNv/749hU4URF7PxxjzZPUCswAky24ttGBIzxF4lzIRPvNjVnrszXRPIH+juXyizh1BJ77sRSneS7cCwAjQQx74v7PBpMv8gpb7GjoaWP7EAqr4S1eiQmxPOuv/reyeb0G71fXh4Fm3fi9zsb5CF+RK1qPEcifDnHbW6h7atdIXpZEx2fBkMMmH00Vd1mGdavDQaRaxBE15ad6mb+fpyqdr7+KZLOnOdxq5nqmgiLVLJrYbr7kHHOnKuyAcYeKBdRK8c6pDrnvPx6W/xYpIdDu4Xt17KQgHyxPCiUtyTgLz/fIre6swb/3fmFCU7TB2Hi8SIOSPonH4sK/OI2Zzr6sIQxnzp8r5ukbtyHZw98ApJay2ePbthgUPZIsJVgoy3Cc7d5l9n0ssdLP+l/mwrhmElzvKk9NLs2lcAm2PlBfkwqCgud4XHPuAFGzA16DIc3TJra0EhRcL1G8LBqsRVwsM2mIzj/q3mH/st9a7HfwdecYLmpu/oBoPZxG0mlpIiN+LGmDlGXftc1eO2jbYfKB1NzrhX+odzl/5NhtDULDr+uziLz3EqzpAD+kdFpyTAnktgcu6DW0VD89nIJACxHF4cv8hg2hxD7tF2UBGD3ENnCx9ea2JxV6ORswWqmD/VbcdEPFNDFrjmWkkVgVHDxLe0459SrYn+VQ2a8V3EpFtKJjmM6o8Voy/gaDygg1iyz84KudegV063058W7DUcV2gOu6Sj5wCZ8Yu1nTw9mwpq3HwkCh+/Qs56uB6yQbxX/OKLOvleQf6VZjhYbqIReYwftwWBu41Jxb6hjkBbnjednQiEABS20lAcaVrRNRDodgMvXnQlAWM4Qt4IVCt5FGA5MXpIy2Nhp51fBPu1edU0mVuxoE588A8UBW/IhJ1FyFObdWQLA4HLMg/8KeyG61o4m54mhv5Tgdsw3Vn/D59VeOBlyr/fG8AHYgxjZdNmtM0sFJ4lGq1PuIhMvc8u5w1jzRqjQaSuh/muelPBu4HK1Z+3D4x3C6E1mVG3+m8tNpcDgbOHzY1ZjzKDMJY7vtc3YG7EAiorWm7YgmwLaz9sDYx5g9cUH96Cor5HvDNMMcGY/0dhEpT+2K89M2lhcK7Ugu1eJdRg0dWwf1Hw7N/4h0xG71nM2u+T35TnE7DpNsRHWwBJhUwvq/yv0sE89cLtnytKxj26H3wuA9ru08ZKeTTrl/FMQOUzPGkFQVczBjMOr5Xoz3McrqYog8Sx8KE7cs+FILNWNe2RBsAmis7fpkz5BKKZYQKKZ8Po4MBsogVIpSIAGPFCXjXE2A+e25nFcsG2jIDOl1dl0MiUx+KbAL9q6dKOkYfxpq8xbyU8NmRehIivZbM9GwJUktQdYAURuHByEfxrMjQHBuuPqxRXJDPSx61fpC818nHuSgbVDEzuscOZ4u4Yt5oNYPHGxqn6eXnkNXaAYVYGPdEmlFJ9S0D+Nhe2MyF6WDyQXfcrPIHOJozoh5MJJZ7thnuwS7ImICI4+Ggn04tneHMt00jCwGN26MEqwBmNSXNP80MdzFLQ1EJscbt7JyKjczwMeHAeolOGrMmECPBN10qHvXKL6lxmb4GdjicWO4ShEBKMe8GAb2wpE1+iJvOUoZFXIkOvcjxJKruj1fD+deGcoBKODvWcAvrxwCRZd8xk/vnI58hAtdo0GrxmimMAm/h4L4dr5j3oldeB7uL9X6sE1oBrFtfDt9ZHq3hV8eTE/PwtAK3Jee5Qtuzp63Sp42BZNQrN3M8wE++m2rtCyscTQrOhsQC0hMcc0nnLvCxc762OVfpbx/ItVwc7+GJ3RjByNH3GJxclkdv30bo811w6LtmVnru9AuW39m436IdooLqrsgl1sgiQ8FFjtRe+MRsQChropyPA2F0FKvE8VaaqK+nNvm2bVkrfLpLgSDWHuf87yUr2ZnQBs3fNsQJw+SY3iGpE/3BStpiImNa93Ab0WKrsh++vjiSM9i1t2eStfkMRARMMDMeupHlEoFedR5dMYDCf2YhzxyMGBIN7OOUtTrbi46dIOaWbGwX6m55nXW9DiSNdPkyhTkW9Q2dZ6m7H2yr3F5pZm43RLgNhw26Wvb2B5NizUnK33MwwE6WRouwQUWUBffTXXS6CDqofl6s5NvMNjZHA0WOvkr4toXw5VzOFT3KIsrSYFK4b6DxDhkt89mECLSiXWu68YuuvkKT/rBttJGaRBUUru55n7kYi3BfVVvUtF/qUV10waFzqCBKUu3L/lndNUaXbGEgXe9HEKNo16Y9EbNOqsiH5h8DrBc3EgFvPt00axgocYmsXg7b8EO1p1q6whQv9lQtWKhiXzq0078JFls26X/9h9mK7PBNc2d/s9g/0046Rh8bKKZ5WhXEkkE36hx8ykGu40m6WG97W+98iY6OJDpYKzXZQ27SrDMS5Ez9i1BU4Zm6TdL6qfxJVlNS3gHzX5A564VXDfRT/Fka20hFMfEuS+zYnK1NtQVmA9ui5Gnhgy880UNQNuxMqZbRWXwD+EEvg5WT1yqdiTKUligir4D/0/rwns+3BAFtRlOFsPHakmsvoR3YTM5wRemIZJ7tw2BFvDYjMSN9jsgOHE1tCErvWCuHeEW0Juw8zoQbMj5RjA1gmv8HNcv9qoUW1nn2vqzIFC6/TYNnDcpBRBACqVvGaiQQlDrS2jwyYjBWi2RZRkHVeQUK5fn1VbVq997j5cR8qwkbiryCaBS6WnPUgVODJv3Bu0R4cqk2FrpQKd0KYRq0OXNPbqPpJKNOHjPNubKzuNoQzA68BZNXHukqGouYoQwbIjcZ/R9vn/BLYdnjR6U5Gfsdqoxmpk0iNxt3uhjlg04aM969uZ0zgp2ojNQwNqgYQB+r4ua/jWv9TQneqARHK6CPbb5n6yFpmqdrX+/77Qt5Z7lFh2135i2FfHpgX0N8iQD5caDS/RuHeSzydqyTtrUJoTiHK0OdxM0qd/nW0VdAf+FinonyZlBjvm1t9zoUHDCLQZuQ6skUUo7DoINlvw5nhH581+aojuw9Coe0Bxxq1093FZEw4+P6Wc5YQLvFc5QdACB7VmzhuQFeybXmYnEv5ljDo8mL5aMXYK0Btp6rpSTwf3rTIBhKBr3p6zRcLAGk9AMTXwwCEzAFLtK9pfcVWzX3BV6Oc456ElfpPukPQr/80ZUiNc4Sw04juESZPhc/ky6XVNeOQls6wlact/XEYh8Fj8qJg+PTnEQiKRE/EiUVpx5UuYOO1x4mxU5X3trBGG8y1FxgVH0LQ6uqvng/jYmni8VqzbaONv9nUJrDmCVJXHkCMZJ7+gQwYl5LVLfIPpMDOovOOp8JJQQ+PPxKoovP0FZMGGBFW9CHzpt0atN72KcO/8Tt1+uRj1q8QaW9jvoVuNW6xvIWhVGZveRYjGui740MzZ/EqFgg6DCLCtL0lDHJvrS1szgyGDIqUVzuI68wUcor6/3xLTGUIUcIGUAY+Izeovz8CYKUm6mTYnTauUhnLRHAhufzhZrWsFolNCMjYzX2atz8BtGD961s12/BBx+JocKdshS132o7gdMQxq2rP5SAWbvsao5rTOqtKqBDWkfd7HTUAXTBqXSNEOtip3gingdnwAf6TrE4HIIqRfpa/GmLEvmuxIDfcSjzUXM7z3nc9+K95q71XFmuL4vGp9mBHPOOfbER62L50FNm3GlIt0wEJHatGukg9AREPOWqYq4Lp5CZQd9/0AIW14Yd6ec04oAQ924AnWwEzdg+T2mBijgAzgXbQE7pIgscr+WHv//369VlgcrQiCo+y+lWtuaQZbwwbGJdQ/AL0pPc72U+B/VFitZjOZLVQe4YO7lVBwgSNjaYiVH+ZRbz95feZCuICSADfE3ByAYNLqAPmTAqRONwWsT5h2fWiquLt01YNyzrabejvJVQFcAziyvt+3hXMeU95jSegIp+HrgrqYNb8ZVBngfqnM0ru3ToY51ZwM4/4oNfVjdzaItqFb6P3gf+A9xRfJCZH6MgcnaaKWHVIpJYgmaYtTqGLtgdkmRXtuKNZejzS27l9T1vNPNCQ6OGmhFABDXKG1XeaE3Var3NdOBTUJWeViQuK5u2ig5OdFfSBAE94krpBttClL2dzA+McZcU6hGMikxdoT8XK1M5OqjXHiKwhuqPrCDl4ptdFUXXlaEM/te+jLcwZ8FLv4DvfWY4q+9UslXLaLpY12KqN3pL7uTtKKumloudzRDOPCmuuw3/wcgXxpVVt+G+JSS4ko0/BDC9dkuvO+gCMlD0PW0XdfCw3phRZ2yucIBrLRqFFoQvShXKqdROp67u+lSOjF9x33sHTR1ZAKFojfQb+itYznxZWNgOtMLpb+ZeUwlItaLMlzSQci3aBaXPowhMt+b+0udhwJCv5wiK22FdrKUTN2UecFl0qY/WdJxV8He4yq0xZMb3LMPQEU1hftFlPANcmWFLTxFbKKhGIqJdhK9xmczDYMTzXiKWTfvpam+hkz1lr0Xp1kJbGs/dZR1EqgNxCVbf/q/bxaZwbp+fOQwImKXPkxHQUx9DbkOyR17DsHNafvaXyBnB+IlB+Cljgy9gA1ZmdOsh4WUVd6Un46iEycxEdYNXvSUd4orhrzaomt5iF1tVQptQ7vELWGPe7F5fXj9ob376qMskiGcZXm8Ww+5md9nKGC2Zdc2C7ZtoRRQuYpt2iWFokwEzbPVhKbOH3Ct916JH2L3L3ozHX1jQoh3I/I42xciy0telVtfQ5fdrJ73SIJcxsNOOGZaRQBxc6wKxptjIvmj0b/BzvfQY/ADOVpckwtBy9wT3UADjtlUKcoCdr1J8Qqowcy1rDLOXrcjMUQrTrDQN+ClpUUtfG01wVwJ3HEbijXNQFE4+iB5ZQfMx6GGORFAiZpbHATtVF3hE9KrPi9O3B/nx8LHlko0+nUrMBsftEsyFSBRK2whWTqKjJo67GH2O2pcJLn6PpOJgBknMA8OtgxlNUFxy9L+NEsRw+Jh7s3yO+DnmuYTLkKyzzdgIpxmzIqHxMFVnSdVkOsYBN0QhJNpAGRerd01Vk1LpVMSPQPLqybkjKvdl5/L6Twde8Onlv6hY96DV2f88kx/XW4PWhzHRqds0jPVFF+OjYCvIUsEPuED/c881Hy/ETiAxe6GEMtjJ0MgLRtMkjbi/4qERF2DT/KCF9hbY5OwI/UyuWtRDQZP2Uhqcv2XDFXLZIZO1q/JdTaERTLdXvqMY1rI7a2bJY59YeqtZZsgYFWc13x19x63/Fh9PognowyQ6pP9vYxonjWvD+U51KcPpSas1aLZCajUbzyl+ehtZ1UXYme0JOHjDvZOHdvbGx88ch4nGzSQCbJp6ojQXQ4qwtKHz7R3Tx4EEiTD9DfiMZd+2n/phECt/gaXS4ItvV3JgrcfDsptuDnR65OQKdBjqbdxHsEbpGDbp9LiN3zmUsaaBwd1o5NXWAZjT0aGmBf9AnbziJzPxRYtttoYIF938NYR2/NbHK7mNdOhW2Q/4QWPHy+n9p1006BlXLcrcPOx0siedHxcOLs20QeI7aArFoGyBOLCVG7f4q8C1pAtqO7vnOV9RMaVoEWzES/wNi+wmZj0alUw8iqqf2ijmcq1y1Mbsg4X9h9WBtmSLRsP7vcJOULYOL2fxo/82AKH2qyFaQ8aQgBvwISakcTVzJT7IQnDESOIrc88Rb1AJ4dgLUjYazH/NTIzJH0orRnZWYmdm09zTOBwwsvL56o1UyuL6ugICUDTte/Ojp/VPN6PVQbH0FCTIPWz2NCyVbtMXmHt+f5NQRJbxTCvt2EBapqeC4MGiAtySxuF1aAgKWE8RnT72FVskgtRfb/jbogi8qdD2rep47HhAVTot9cLFg9o0rU8BnDHiWLB6wGzTxwfYz+p0zgt3N2vRxglLEdVThpwo4jCKzVdP096aFwGjaMqQQ/21PuP23xcQTSqPuO0Gx6Wo8X+Kswaqou1LTRAT7xxgNw5srw9jdZwaX+bZLG/9i4D+Bjz9RMOXuatrL/VLHAkHW1hoyN4cENLZvgcZ5Z83d5akqjEcnRuwz1+S0k51/I1vsF9R4ORPKUBL4nIP249jWoP6xApA2LMNCSBOTRCK8lIPF3zUEBh6iBrvgCKwws76NeVlCwsQ+e50bBevtW70mnyN1Q5yEuGmzPpZCJQgvRKpqzRJWi51IKUztIFSmBPoDNCcXo7bwNlU++TUumCPG+mfTtvFjefoIk/1ORYSpzBD+AxgU+pw8JbqJun9YT1DMHnVk4CkOO0IdLRq4lxIilXmQbnOqZq6ruOxtTvMLil+5aUyQ7gHxDOMFhIU8aCaz6kAYQrs0J8BXUMFLozVAwcSxSSm4MDU5JAz0sk1YHUzJbfaFZxK0/ZVgFK1H3/SVzRSfcAMn0vJFzXe0wagxsApfimFDaGCZfq7pfIpUB8Tb41rri6Bm2FvhGuRf/YvmfRa2og5orvwCTvqlZPxT5NELPDO7VZs/u19g1RsKYTFpJGIAhN5aH5CXQ4nGprG6DI/yXgkVzEwpoLBtTHNMICLoXtQ9UYc+8OYhgPuB80svDVudz6fJAZsmXeo1ph9bUAnpdgi2R45VHFwSyr8YLKThcloYjZSdQDTSjNgdALfCTZQKMOJFVWhifEOJJqGLbjRTunhNMw7Cg3AkrdYZ3x50st1hgu3YdnGFKQ3g12ym2DI4LMcplEYnBzxjsQodmW1zTfTqWI3UIAO47zk46aiIFHIsXNyJU5Dw+TxOWUi0i3XDNqqIyS0FK7i41vBhtB55q8Xh8ZTNog9UkGhQoT3FKerAKwCBw9R7I3VJU9vx+6asXMHqbV/NWH4ew4+vTuDL2wGWWid45/ofTC6mvXKbua6lG92klVeS3HCx55c12T4mqpnfolECsojFB7HE763WG4MlZQgaW//K4Ajy+BGj/jxUQbtxcF+lAUspCGoB0nJP4noK+40cbuLyn1bIbYHDyJ73i7s3HRo1YgTbLwdoqQ8CQmCals3dqEovMomncRDECqWa0Dx7zfgxzkzJMCpXO/oNghBoIItEMefOkpl7svcTaqle1UVonDtq5gXZ9hBYJTRlasTAd1gr624kCwaZcaxBdAy3XCqmFCq/dqaaMXTN7dJdryX7DBtaza7JJKC7ySpCZOMTyK2P/zjTyjCHCrGvQ9QjkgToCt773rgrcRYw6+WujnzDYHqCPaJDc+peLI0nO8Q7eMQAP35Y+UH3qUSvV9alkdvtLjzU94nmfSjPbzwuQ3jvrPiRi/KDDwfOIRQBozZLLLgrSDyKNfLpe/B1i/STysG6/i2ky6gi9P412p8B4gWeReoBZRorVTMjI1UgRaXRznjzy2wRpLf45vN4f5db4vAmT1YD1XoIHeMAaqs5DFz0xp4u1O3oJkshuQd8XTuSg87GOENrO79MGyAnik1iz0ORgbIz3Iu6Eojqs+TXlzMWtj3mHIhUdpskkoBDGFxGo07lFPK6ThgwTf0RTKYV/T/vOS/ucGh+W41f5BE6y+lLAalR4cPDgMRzvrj2SlDukMUvdrAcfJIe2g7ah/nX8qImulFaBA4OFsKaTmNencwOWNtfDJXQkYYh6Lh/Y1bwqh3e+QPgq0slDcJzz2tY69xAStvYkrnr5xnFqn5zs5lNepBL39u+uGSAagkpTXJvlr2YzwzDGUX5vnqKbG1cWvIj0x7jt1zPPKlN1v2qXl0XU3UWRHVJySYYk5n5NbEUmihZbwgj5p908PJsYmzU+IV5qOaUCE8KJZfiSIpl7l5PrYUVXPU8ZE83nzUb5cwdrO3g75v7UNcv95RgyHcE+vRLN9QrnMuqP865ovrJoAvnW91aiOuJyShSKI5/hnRM7F0LiXTHumAEVmJoV0j+FRkIKiStwhIVLF/u4IdLCktWHcCYBfYeTnm4hUOtSkK7i1MOfaPFuOAiwFaKn0EdYf3RWHSiGiKseTiGuplrvcYdSsNQlmv/Tg8VM9eTyvuwN0wugBFgzn02pab0gz4xubqYkSpSVJ3FC1YlZtHHv0yG+mUDtNWDvFAn5A2XJQYvdbuv3x4s61oyTnMKy96/IpJ/7Sylmdk/CFuODBxoGeH4ZeU9lnFc1U5uvAFXxfmDrskC2QvszYY94p+qHPNFz8sY8rFlfAugpbWmt3N7YhYbGVlL29ober4xK6BJDPTt2I23nh4tElcHtoHVnwT4rM6V6GNpGULjanP03el6EIOA+e41DM4ptRqw3BOLoWiS3rr3SD5eXVvK52j1Zp2hjgjTSCv55bH/r4iv09UKrCUlnur6bsP7tvR5p7BuxmZM8gDvA/jRUhHgRKheL5f5Ei48lAqkbZwZTD6HfryOOJ5eMe65IC5HLSqa/gbS/6KnhK6/oxH2FxaLu3NjPAHJcwZsgQUWOs4858Z1/eBRZVujd+n6lFheo7R7Dbt7NUthgv5KRoKm9Oe2GBdcYXawCDRl0isAh0X+ZmhKxNgtpV2X+oYST3kRusGV1XPB79qQ7YI16AQXFnBIs9eZIuRtdu/K20b1/rM+mMWInU12qBbYCtOjWfomKQSvRDq3SqQ3PyIheuDLyTvY9iPJxYflF14pNtIGRfjIQK03s6YkIflUmLk9t/1zwvE3PUWEPmMDfMCxMCbXhY5Ndq5EZvUdYuXsvpQQ0SuysQZpx68bMgriiwwnca9JqSTnsPxzc/ttYGzAkoCXuPhOH9Jifpdn080eB0EL84TXBzPoCLvmb3oqyPdRzLOrnVqK0cMRXxfXrB8XOI8C0x602KQ0+X25yZkLPMOkuAYPgRqLDb2z52Q5WJyQydgcmzaPPJoKldK0ibooOP7U8EBji6SiYWEYknFHVlqQD0Y2gfTzcxFYa2dzDAKO0kwsWFHwfmqZ+5MDfVA+azlMDs57yCbyV8/VbAQ2VqzwaxCQka3Kde9Z80J96v06mBAwkS909byNXN/UUsBKUYAFaQ9KkgMyzxNyl5J6CAMH3UHFqJKoZHNQfKrLJe9gZLFiYWDhPBW+U/PA/X4w/cgUO6Qps8TxRd6ocUn8j0vfVUFHMSXPBRr3fmzRBLMxb6DSKTpxtkouErLbT+AoibsMwmnBdJjJBEdjDoZqf9Pufqs61blJDNesUrimrBU/LvfYyEqh3qFsDVJLOAdfnXew8mBLojHRL6o4zna2TLHE3nNHNrd61a+cGfhJuOnDm8TUVGpvAH+zeayFT2wJtbnDQs6mQeOoDTd/cCf6u/B4RXaYOgynxIVfZ7r50Bla5TYTOdzsSKyEJK99rJtGLGjKyiaY5Hu6VIaRhFu0FCwlpuoDpXOX/6lkb+ke9TuzQ8U1he6xidCjQo7ndTWVcsFp5oqhWhH4kyLgDEzzT/k88qEY4x7XhSrhfgpydm4rvAdxlrb+LICDYRiERrA7KfTZKvYUW0Qclj1NTK7PYvXxLqJU0vB44CDpCbbBrDCWjOv5dwqNJ+lGMnIQgUh++BGdmsdFk4pDih3Q52KN0jGJ7gTd0zngp7iXGFcWbgn3Cd7/0ZLToXS+xyrRNsHzugzzZLM9GiWRPg4yEgkQvOf2LyJZ1pnyCPibl/7PxDFLoN/5ph0kSE1WGJhO3rdSsZZy5smrBfZGvBs2huPcH3/Cp+gyxwudSFIR386f+QM8bD8E4FFjtxW5ZRzmiP8EoZjVqWqHmT/i2SdUEXabxgbgu4jvRsZ7Vbe5Dj9crYRwx70AbAD4Zq4LznVYDXJavqTZHtMw31dSfTS2PeMbiApF1LTC3TpcsBFd6nvHYRLgguJtoIrqgoWiBTqr3Bl6U7805GBNv8dyKFDSUmgiJjb7zV558MGmI/p8mIWM6xsAOtRAQNkwIjXY44RwmbJwOFg3uKSNnbUVRwL1U16PZ563focUmKwhZRpaed9VVL5tOhKeVi6RwIFsx5NPe6jNdRJy+3oOyk8cjELTGbqeEjc419Pj/NxYzNDcl27y+sRD+9C84KFCeY5D0+axFbRdKw53QspLVBgL91/GTOJj9Fo1IJ784g0ggoqLx8D+Tg2qoSdtEd4Obt1DA7FF+Y9zz9u1T5LRXX1o44hZySOL45eaKJQqX+9O9UAMKTSHwY/uJ+nKYkx6B2IdfhwDtrRJBlOZD/XsMFvjS6wJ5dRTJ0qxwI1equbCbqPLYlgE6EcHHD8V1WJhtNtFOPf+g5xX71Duw0ypvHGjAsjCkusqzp1AR/bwsSPp/kpVYIk3fWwzQ7hEy6l0qbnfJatAeadDNYyEx2pNQzaIOIF5H8YiYlk5ZQPV6kKG36i/zvi7jUu4RfQx0IZYPAXfpaoSb8aCYJ6K/b/GmoxGDchDoOnrr1MLwiDZcSc4J2CNCIaUyykl4PPaPpwpbLnYM5HtWNFTSUncBWRFsc+MgNVCkM+bRnzDc9MD1YXRtGpseswCXpDL8w4dROWp0t5C2Rxz1sLouWS9RySKhzEGHPdltsE72Wf/njVzsR9Jp1JOEuDC9pPdplahWkGl1zvTil3Dr0rGNxmse8i6QlIXs8HKA2JOTCJfUzhodG+41575NEteyvWkR8cYjSXgF1rFmQLGa1GlQN9RR0VyaUSSBpoYqyQyuVdRJvxruKQCA5UapmLABYVm1iGUnOc8sTZDHg24OWl6qcmwvmYJfyt0PfjZuFMVy3gekGlSIpPuQLfsCBXZjHamteYUCB+HSgzo9mALtyED6E2n1NiS70JlyKHxLB20bMezdHycsR37hYgnJPtY3YzUL261OtdumF4iqlu18jRLf/1HRDDFsMlKG8szZ55n/5sCDEcv6B9PWMCrUNZtlQq+//byfSXWF2q97/4IgoNffx66oSQRMhAv4TgJAyo++iR5mj19+QSYi2mWGUuR9xlP3BsrWzUHz7FGMTz538wqMZScd9fTpWJHr6cFTCVu6d26FMZ1DTzwJarNG6TK7sUmZYHFGE0YoodjiSVF6No2foFe9KkT/mzzjHRDsSRADROJlu6YmQNmYvAEHpLRoldWCtvcyfJ+zDIxBwhU8Eqq5MGq19lX1vUr/lGrIchLiQviFQ0Y6NEK5jrTS8BDcLcOMUbW2eig+xblHKnFce4jvyzyKnHAzfdPVD86aPq9SWe0808syaz/uDzVsLsTB4INwVYc/2lJiqw8wwrZyEtXmakm5nJNdE2cliRGB1Cg+Hj8E6psddlWrbzJ0FY0p4YRyPF90ZNlUy7g6HL4SwftpmebdOQkXPd/PLxqqcXVXTHU2JgMMFI18l2YbpwyV3fsKytxaINnC6Ta0jdFTuFEgeftqsrMrs5LHkSfPvNaBXbUaJiX3t4OW97VyABea04mzlb7kKe4eDQJZwA0ojEHp8TNSBgwWv9IBf5vfauOx3ph9vY+5Osv04FvdKQQUl5yL/X50sOo0oESrqthnLBe2CikejSmxsMItvzdaRZpxpqsNBEeLErxMmHbZazO2g/N2ZXQSmmsnk2Z4owr9HF+Im9AuBJhrD+O3KHyP1OWi0CmBVteEbbuaw1742uHsV+d8b0/uMQ8xl2YNI66INZbNDHeyyMLYleiLlUGwXCn82NlRIWhj2twwWc3DZWO/Gb0bx7WZmu1ZHUy5a3Royzt5myHfSi78xAycTS+wiyx2UJ3VxesT7EAxEc7bbmPAM/uh8nhCgQ/Ctmk4ycAj+2MAp77JhQi/QkqZ0SIMGdw3rvwmv8Frb6qN2SF6FtFsoOEv+thc5rAwuJ9MSFMxEKOC1mocVwg5ybIag63Rfv34CzuRWC92K6xvRZAoCLpQxWejDB05mRuvylVVd3H5D3dpwWZY+317aiOK8iN9k6R9P02+HrPA2nRm1MNCXhSyX8mV0cmWgp/BtCHY3zXaC5/tTdrfJ4tF/H7Bk43gOL8hdZVOUQvbT/ON+i4rgaohSQiFNneChET4p1itY7OP3M74rvBVsxogP5WkDCK8CU2F6NkJ84zYZQDaL03ycO7uCsjRRtf8lP4mtzl9+qeF+UUrErtCVsKfkGmFXBOl0dyZaAsxzJQoQyPwM2onTzsj/QoyyJ7Y09p4Y9xvMS5OYp+GY3j8z09Ir3OYzCF+ZZMDZeNdt40o4/B29TzCXl6hU5X4zDor66bLS2PP/t4Euaub9bhtNLVu5zpLuFO1FrsG/RYoWWbR0fWSzO4WPxKEwgA48BfFe8iQzcEr2ObLgrboK2jh0uWC/8MfDmA25kiPiHB0YYgRDBfIfbJkCajBqQtLpLR5JbSmOV2ic3Is8eAHjl0+nHE/mfCmuihp3Gasb6IETZwb8iFtRiBvsRGOUWlA/OcuJAfodFSKsQmeO83j41ABT85UanahyTkj7WyrZYTo2NDJqBN+gx0BGMLy6/dt/CXqSwaedWodxxSLaCnNyOp+ab8bRXN0sd4EoBbd81Ez/lmFo8ihxTgUj1W+0u4zd9OMaa7KD7/ZsU99CD5KeoQOkWxx+FsRu8ZUERg2zEBPYxzFcksxXzzGy3IFhjNLlgW6AvGo37lLwrpNVVuyuXPkf71GpOZBduKfDT8zdBOxEJs4HwRlYddeXoterW+G9CdsI+TmGV2IbLWCQFbpMYnYJE0mERqBs4hcnJeJRCFLnbeNgqQLgLeb9mBhwgJ37nyzHsVpseFY57vaGp3vFFsfc0iJl/aHgctwhjqirOIJo7AzRZ15PrEmP128r6rpkP9Bu9ya/jShFEtTrGGj/Qh89xGRJWIcoT6lszbJSkAB9vCiHa7JoV8gjQdr5O5zmCO4wFIyrybAtLINJGWAWooqT6xvGZJmibOlH2h7FPcTpFq9bvhPnjPU/ZWZ0yHh/JWzUfePWgMeNJ8/PQDXvOBTN2ppGdkNdw6q10Zl3L78uI7396T1yLDw82JWil/8OjlHEswKa3Hr/xO4/e1ci1vdmMkoFql6lJmHkGWRGKNk6q7Ychfv0P3X6NliKLHQKDiGl335cVadUdixff1WNiSIwjp/QII4637Pc8/zprcywRucdn3Sy7MhEz3/jqca5Gaju98/kuG08u9fHHjgvBOPe3ovn5G754OoX0rFMyCUkBvYGN/OXPENdvZL/bQ8nnqW5aLworr930caxjPv+6txGxPOA4I7eou2X27/PxGPnFCu0+1qx2GQ+RBuZqemVMqhu1HLoeERjrIrx3GP56MUZhQFCkzjthZD2g+58WJPg8Aynruk4VX42QqE78xgV6xBZp/W2g7HEaGRRCvVdjwC8ffOsEVxKc00SfZPI0rFKn7KfYfDoq5ZiT5LXcHAZOnibrY9tunsxE3MjsbdGrGdosFZTN47ywUPM0Gs5RGWOIEiRdiVV5ukEUjvtz+BiSjqdTvNWu9Neunq+CN2BiLV6oY3eXKLEeZyuvvpUG1S6VGhQtJdhum5WZEw/S5TEBM3eY6kzkeW763QkKKahwjZHtLFD2umAyvQ2dEvpojdI10oLYgFsnPAB9ze4EsQ0yUMflWAt7i9wcQj5peRudv4ffuIS37gbAvM+Wzel8bsodwqAw86VC74p7io1D1LVXAvFqEsznpplcjKiyzV0L399CjkgDM4dwHEeUWJwCDBnJmwYMPg8E2BEZrYE/p1Wd5M2wNlxXLJb8fshx4d6f1Vw3lX8stiCafIwRZgtQpnIo0rcY+haA/fMZCp2IKCF/6KTECWJEeovWdcugUceXRmf0EBU24q/rsJRD7OO8lQrkz8gexFomhwDphEetdRs3Dy6ZCISUpD0BaojSH9XkqIDozn/aPfbUEbLdSchS0g6ksIUTo2iyfX8GAdr27lhFSDaV3bq+/2Kd4SxfujgA3W75CaLcoZhGN3qvsZcA5L7ONHrN+a7NWn2cIo/wlCI5azmUQhmIAjrhCXfmd7wCQooUY4khe515RnJLDTtiVui0GJgxQSXmJeNxy8cnfmNgruKw4ym1HEBSs9iJk3SccshWWr93Mx0pqqCGdUwGLgSYAGJ8dJoVcGXiSiv88i5yKtD5vwBC3F2e4FE3Bj2m2N3Gq27iNI3JlJaTNFqxnfwWDi2ekMZFpiJD0yr/riRyi/U4O8k3WIzBS+e9AT6ijBLDdCT7/rXTLK/845JW+rYgOQyMIUIoBa/2F+WXRJbSd77aQJKzGmgAWFETR190o9q6w+mknoSMWdNK/oBh62WacougL6SxxYQLrDkm3XBTxCZuDQn8G7QYFZSi8vCU4a08y/XNL/xwxECe6Q42NHaCbgsa2noZ11agcMcoL3gnmCnDfdvpISixnKN1eEzLfpGn+FSTU/MiZ2ZCTdHopkiC7bw/snWUjlbPzwQUk7CjScXXfhfj7YeuJJ2udwm4KCkrDP9UBMhx64NSWSzK3Buw3MnaSo06czLBaWIPdbKG9VYMO3iJGd9urzpHe7Re7fkv58DMcfgZN1hW+ukDOwfc/vnU0laBmjWG3++P21MCtoQvskb3Fy3dzXFVCo6BgcqX7bjqu9Q7tmAwFLILX49QZbNdCY/h7Uiij4JW5yaCPovq6keTBPZqiv603zmmh0GdzqafT1WYu60edsx3u+J6g5nz7x/5kAdT6V+H13F2HnT4Zls3/pbjazV5r9eXVRtnJhilSANxIWD1XjtObUSxwv75zUQgn4IQGu8csrKZUr25G+SsrHN9/yydZW98PJRzOGZHvbkfXpx092idT5f38/VxPMHFO7Ou74iyNk+MKCMLg1Xd5ja9ygIU5/CjH+SuR4C1va9bMULgQFkmiA1Sh8Zz+p7PWVscnBL9VTJBhMmm5uhdhH7XTVPndNBfL0OHMHINbmP5c5rynO4jdy5Rizfwvohyy46X9jBpwcD/gpXBM5VXJWmvDcMU6UJQkhTQHxLJHC6AmQKwIdb2V8JEH/JB/qI8IMQgI9Lzf2N2e4HuFedMdkTp+ZG/i3pz69pCg2iNRRy+3xV2KbGAi1nciswgRmfP8M7jF5F5NAjQePM6cMaxJCpY5l0367ITz4Rl9+03fQ/tcT54pBnY2HRhxSziDqG1HkXKNE3mHos66XXEakWezKdRefEhVGWWaMWEYkuXOG0JEhEPwQ+Vusvx48o17bIX/4rQDSSiqlWGMZ2FIjJD4zc0nmgQ2xGECVciMkd2ZNAe3s/xYYZzc6dwHhKrmaiqufKWcsuGxnsp7NEd/eQ0j2OfKnPufiIfEiARVu7YofIdOVQcAYDsU+ETKkFaNcbRk8trtDiyQfyBUWAqtp56nNrF3lMeb97vZ6WX8B2EG+sBGSKv18bQIzclw0LCD3aCGy3fATn+elRMfKySpmLvmCPvsF0tULsW9RCo28oYpK18XSmZ1tMwwlfQwNIqr7WDLKHhGaHGUoCvd2G76e9zPKRlp1tC7Q2ueRiOvSg2tmW+yypgTf9mVGIzPXMp3ldWyiY7FTGEfb8BhgdtbZ/6oqnUCwSKBhNdDENbo7Rq2+1uxWi/5pI4PxhmKKtdS9b4ho21DZ6D0E7ljeAIYhota1KHTVH6dO9WNOFAUIOMhy7yhVy70ikIFu2BfJYxyW8Em3We7JnHd61UM78//tZvOChq/b26f0/8y5DrFLiTXd2MDP1QyCJjZE8q7zxrMnRPQNMxHCawSSLGOeL2lnD2h6CFccpyD/p5Rj8Akb0lYI92Jgfj2p38fL0qBYcq+IHNTQdRQ9UaJVoXd5od7cs3ab/YWgnH4Au2/TdM+GD33Urg9dxfK6KjOtpR49S/5BtzGnEHlMUUrhiZVY3EjFyYVzgbdjhm4le+Hjm4J/ASfkz1v8n4or/cRYW32tjIQ/qsFLHyFtNde6APWDtzJRW00Nfhu20L302CeoTPWdeunv3DoNj5SjCCh3G447zVRFRy3GOjXwv2Ku+8S0GX53gtTKnvYtTrwICfNNfWK3JnOgZIII68H10E6M6LSgBJIFNwvgPR4Bd78z2ZhKOosolU2cCYYqHKEP0rcXzOO/gD1P0V2od/ltjoZiGVtuBPNdp9+eusju3U1kadc0Pmqek9yfVwIZZT2nXaSkTy9q8yy64lkrtZcTEqNNt3gxw0nYfbkb2GuvttasNgUh9+YwB6oEaX8RA9p0tVup8nPukWYRrvr6kxJ0Q3YLUma3KISUwKY4dtlLNr2ROHrVtU/jblZWAUtYk3nsBDi0M2A6LaKvB6aKZR17MxSUTWzhXorY1U/0VRU6UbT/JxLKNJHXHEjhbvrOBmd3HdmZyFl+m8uYEoF5WY6ly2anFOlOSpOc3InA1ks8oE7q1+2H9loTYhXmd17AYuld4nhjHlATCFlvqejVJxXfNcedUOPcsRmvEy71pfniG681dYYnOiv57CoF5UV0UgDZSmDxUYPMzeNC1Jc3OOV4Rl3NdQ/rVmXcUqfHyrP5ajR8FMtl8TWGkeT7O+IJythDDXJ4YGWan/1jaVWtGsmPB/2MKxdJ9C9G6wZ3SxL2CTUUY5AFa7sul0oNW05/F9jTfVVH+Mtq7OfY2Z5Ep/D0wy/qmeh3+0jgJMJgOAUma5B+dnqbT6Y4lMHgJv6q4B4n5ZcFGV40oo1vf3UjryJRIorjxZt+BXkleTv81TFpycoh7zcX4Vv5tQPAImtAk9YtebzeHKEgtem7sMJbGZBsRVPcghC6H+Z7Emk40VxWKLODjIrGx8J5UAsIf8vMJHED8XY7snZtiQdoYvAa5S1Lm8dYcqbDQhts6sOio/OEsNQaCy0OTYrj7ePsjm/vnnPT/6llSZyKJAi2ReRjU5vxlZkJhgNeWr9Dwe5nbJsnR21FKqGnkUG5DuI7S/kJ5pC7sxq649dnA5V4LBp43iMUCV+dEl+pkP6ltY7vCRfiLWPdMk1MwXP1iC0zf0Siu/yyu0hDvdqBqs1nX+qr1zQoI2cxKLye7scldb/osrwhCSXl5leZU94czsUcEN8ljYvvLVc2CIUKI9EbcZtI4aSIWpIaDKYkKjoatnjEP6bnzccfo2DUvjIFaGwXTPUbdnQFaiDuRWloVCdtQ8XldYevRYfqYIZlcNVhpoLz06GTo4qsM3jhcfsDlWmQDebaM+fObBAJ06U87X2KcJY6bDrJQEWnewFB1MeuSGxCzPp+YvmlOQhV2qk63Iaaz6W0xMTWOhnRS5yu7KjocN2vjzenN2Z7ju32eQ4pUtSqfQImKLWHJNelIUAlpa3qHWRTTJvdbuC8O++sl7/wU0SWD3gCwHUMnSVbBJNkrLUuBiEh93IAv5VZMDnQ5dLpOtsePt8MPNYlyor3e/JdSMMt6FDIthI4/xeAeQcs7qAvwwOH//XggW1xzRn/miohrh4MPOYrlyubesHIAJHCg1jDltqRTibXruRKOtwGIxHfb3c4Hlnm7nP5qoNgBDouABkBGS3qs8TfMSe9nJEkqJy/4stPr4znmisN2EQ+hsViEqNu5lRzj+j2R4TVVzCEx5D7JbMEmOed85YaoQn9JEwsltxxeQ8M8vGHXl6wkU/vjBCpURWqw0D0QNZP/JOX8aXiox0T0iKPZoS/CXKfUfZuW8s86ZREAOksU7m93wovs4MaOMusw6WSXf2PoIXaQ/77/uVylXY/wkBWLlpaeq3K5ONNLiW68aadE2srs9nw6kH//DVw4XSQDw0Tf4+Om3oCnqel6dHsT3JoA4lkME5TFzoKQB2wNRxJ3y1IIq+QiaUiUTPihbEjqUbYpluX6DSeZv86Uh3EhYD8n30ECmJ6SVJJArYMpOcRBXnkzRP5frvVRFUf/nsG229XwBRsxrUF464U/xCNnH0WQ3UDwdCjRYagONMWlwVt7cS0RP+otWN1g9l7MbnbgYflOxa7w3R/kie7E1slgy4i9xqfQxhBCUshbv5p4hDBNDl5qncUotk+tn/2uQElGw9HXXBUNkDpcliAQXW3+4cvgzoNcXMuJh3CFLu5198h7RkY6h4Bt2X1rE+MU85liduuaZA+IrdA5sjtXuXmx1utiLhyn3ml0qotVHJDUK+bhUocU90FMeXX49LMJ53GNOewKnm42EgG7joZRDuOyHJibHtHpwKs6bPx09P1PzYORJmKQIrD416QhwBJTWQA4X1eyStVww/3sTc1nLypQG6jv746soLw4wOZ6EClsBO515/C1bjnsaB/4GCTwCiLAZLvr/GcUQjFa0DJFXq212Lrqq0kbJumeGAquW78HJQu4eUk2nXPv0+6upSOHXokHEzB9U7uMtGii6Fspxq3jAEyTQvlbftmpbme91U2iIyxbReN2SmF2XTsblNU1jNKI/FFWuyPJ0NQTZsicTZVSSYI3PCONPU6wdEZ9+7x1VhuZqdfDQem8XUSC+G3cl14Yn0XMlCjvDtQwVm00uTThz2hvlVIjfPmE30s9aRc0BJXrY+X/Ls9dJa+jr4zXTcheMlpJjb3C5ECkHON5Bs75EzNljbTg5M2/vQQFnpmD4GVGoFzJihVNPaseksopJU9cg1iJjDez0aHpIa6NwiiEPKaQk8cFctLMxroEH/z/etFbs5+RPlQHNoeAaDkPQne+FYp76XZPkOFg7q64esVxkhyZ5vt38j1WyW4W6aFBJZmuyDbrAXHlMz4YFuK3jmNqdrNwYCHVmdrSPImerf3e6ne9lnpInxEaVGVwMBrJNRNtPaWLuUn5GYoR6mkUpqLrYPs8LEbJFHJrNvbRMGA2taGAzFvjNR/fsQPgEAxbE2t1NF8y1dxKdz/MJ1KM+vtYOnkVNBhwD1q8mAs1WTEV/PbqGHNamozEENJRVV9my0cS6L+QJqadxIIxjwnO7X+5xVbeoSXjjy7iDh63/i1PWs+jl5IYhzKFIfGs/xj8+eex8PuhxTA1lvwo29FEfxM0t2D1agWchVJ8i6tf4sxNVx76mE5pBbvEUGGvyACsl9ULG9+v9UsC8Yr6AWDI1+0ULLFt+AmEUaaoQ7K2Z7BtD+nHGbW/skli0neM0COxSZVEdFqmOCt+T29mTK+SqbU0cs6rqqLQCjI/EV5WpkXdwgw99I3OrjNeLoKUx7wu89i36vkPcUfz05Or9o+giKx/rgEL8FKFLjFcXOC0h41RglRQWY+5t7eDmRR1G4wbQ7JnN0qn44SfiQBudIf9tW5aJAiGjIRh2XtNAglgRRc9NEtRKjnF7IIvQVvmBsyjIgX+EapRjI7g5H4/WMV8U64xl6x9orcAEJma+ccV3N42vsAAEG1fh7eoomJafQM3TM6lNNPE/09rdnvzUM/rwnRncklLmwjvz7hqshd412dwhS2Tpq/EecC7i6wcU2N8snu0lE7YXLNf6ddN8lbDU4/SA7YA6f6E1g6XzHs7ElH9ZIrL7LvTXPnjGBAlvi3LtdLi8jESbQi1844qBVYtQ7a4uaZBbIoS9baEXjyDgnGLrMhUL/zhRvaGqgYi91HopAXSYt9bO5UBw2aTI7KTlKeqeJgNEHCgTN1oW0TRU7t9REqetC7VZcpNUlIRhgVbZfWX0hoEi4tAzZMY6jb4IhjMrFSbXgdn1QotROlNxcmLQIOvyGv2QaEtXIjN4um+4m55jwXJIL9Zf82lbc6rD4t7GpBNWfCWPsAvcoesW0rKcXOVcm2GzKWtB64seex0jhitNfc0uzfi5oPSz+C44J7JsNOEYSmL6gwuJhrbVCwVhqtXCWD8o874ByCl1swDPaRpf6+2Cllu4eJWIqxDILXsdloEJhIdQFaxAyKmPSFilQTb4gFMnJCNZgw1QSm82+76GpSoe1vDsAHcFWF5S3GhR9Gq7xCwyGYHrcHA/IPz4Ezs2IWmLhWxrqwJjFdmf63Tg/G+d2K5nEuHi+EjXheJUdD11RkMHrkVElTqNZK5T5GK5xyiPZPr0NELNA0g7UQ5i8qi7EktTwsSwPW3QpSefp0jbQKH423dlHoYScCaT1Nl67KriLBQtjxy47PFmIJD95oqp8sehHjqTC8lPLjoOftnJM2bvr3KQfU+t9SjpKD5fkA3nZtC7k60yJ4xQkz9e3hknCnh/nVEyHe5d1n+AKnzLj2zAoTMaEgVOBOAkyS0qlLB89H1yPAhc84Dz2AXViLRiLrauT/oyRcQwJwQ9GCwQk3RyGMX8k/ldSNzbpJ0h45tAbprVlCJcpBs5D7H/A7buoZts92+GQ81h1zUNzW67OyqjNhpHTd1zQJivsj9fhCcodTGGV/BYRNnYJr3MTZxNX4idJ88ld46U6MIT17XOQy1DkYSpQ2IjDokIYt4y9fEclToSgOKEh8dr4MopxQw3iUeKLmsyf9okxypHrRk3t0gxamHp77nNWx+BXdWycZ5RPIsM1zylmoUp1GE8sfD5DX0cHERFo0sS4FhpUeqm7Tt9nyPu1iW17sShrC2rdgMBnJiAdgC/9Sj1EPuZvftAjHGbC94we8wP+2Sj3GcKydwCXxtVR4cm8/LmGKcPAGOAL8DY2osL9Xmk48RaKJzAQm8LKH48Kz9AZGhQzbmvFEP7SYlNN5qZBPe/0SCrHcx+D66YFhivW2eBAnl5EwxxvdZkYo9y6lIqqXuP7eAFpiRxa+8IEeDbTa17UO4AHx5qpKcl/3Dj+WMvIOZxaN5Y3pgdlzKmUMkS+qY+nu6LG12mChGYedO7cibwHrPt/zQay3NIqxyDfTdIr+ypADxnjjfHPtWZgShgA38Y5lKa69cpYNidbyHuEwXPQBYsgARgRazeKwuqc+LmQ3J3llZczso3IneKE0Ei9Ayp3aEC9WMYv+SYGHH1GlMtO2QwsovSvU6vwQKI/yOLd0DFasUgS5cFb4vxYnJl3g1uG4IJN2fjjJjgGW0tPVxa5vR5F/pig/uC6McjQYE0BMBoLXdRTL7+6S4SVx0h67n/HJnFbQ3FU36CVUV4yc7tko6APrz43TRM9iMJllglzJbyFeH8nOrrs31FHAICIMMwfekGmFjpckmIdf6I5MljJzfMZ3+GA/O9XhCpmfeoYwOIlxTSUHUV9NeoewMR+0VTu0IzzCZKl4Y3w9SfNc9kMkk1DuLVCjgZFEipWVdmS4L9LQNlUunmG57jSZRcMpXkxmJpuqgAExZNssToQDUJJwBlTcYmE5QYV9R7z9qfqBPssu5pgvHDHDWOwKkSnPLyzzouXp2LHG4wM1CFYa1C3nNomwCwWjhnQyG/szXFEaSJmRc28whdBkZohUYv7pX+x9iMiWTbiS1+TOtG4yNJHKicdIrYa6/4HTsPI2kIIiqPoI9bkIUS6xuglnQ4+dDOa3NktFSTsEf5GUiy5ZbzMMD57x57kuup3m6LEL/9u9JuGWQGOL9flsxtVgq4tzHUH46a2n/ptss6Z3/IzJ8ezkSo7ZD0ZWixs+v0R/ZZ+vcJ5WmmPCU23t8SHtBR0jUEvrvr6EViK35FKH5Sd0Po23Oo3kMeeHeIPiPvX5q79ndADzrbZiByRfVI06UXe7hOSltFLxkm6SLWo5qe/cm43YVXPGdKFz/3FNMsESkvtD/zYvhIh58WtDudA60dQWdi2yVVG2lPFWZJ/1DeWZYYoXPCmt3mem3GsjpC6+ksTd910KxIpsWa5ea0fWc9j9ys4StOCItT1kgQSK2y0DU66oInc6L3Xrh0/gC4yxf1ARhFrg8A3wdynwOwXmSXaGoTDwTa85u3wCc2wqUfTlCzAl9Kc20YQw6LG24RiRhuB8mbt/GH8LZ6LqsrODCSYStWKZ2Y15cTpFNhxXdOvGGsfr6NgkGDFiP9yUV5SR0ClT/nfCgl2itJuXwoE168LEn2E/N8WATjiooW3t6EbD6XKIPeGOTAc8tcq0r5eiNzhD+ySBBbnTo30xklCcp0BzXSXfFdTWUAOChKU6r6WJ9NptWbTINlUnkRal7OPt76peu/ORA8frCeMzMWJ3+mz6GIcuy9C0/G9TonuC0mez2YModNHr5RZIdSa1YFPAmFqvlnqg6pEjY2r0hoDnzygHQUbc/fjT10IgagddIh4tjRtCifoNGMSTFYt+uhsi5A65Nf7zB9pIoED7/3uW7kyCY5XGdB6ajlrX3dwZd2z80+XJ8elSNvj15GO+ZYemnZ8ksNUFKoaYLQSl7vfup/ggMwH2JxJVdWuiOmUQl1FhSxC3o5vZ4nEUlnPV/dIuaJLaTlrh+s5eMFP195aDO7wb6ILN246zmDp87oObyyhVeSGjC7AEFKk1m0Ugh/Vs4fUUY7JtTUdS+U1eewnJw/lJbiEU2DCQ3uiwiKWSnEBuB0a3vBXkDYy3Y+lR6B1QGYOr6VoGejHfj7mduOwEUCbXn5jcwxRp8w2oCr6FAnUpSYEIobe2UGTfpQNwklNB79jPrPGTN/HCFwMYWo+0H2DW3rlzGAW1SN6D9jNkToVil6bUdYBXdYYFld6NonczIkr17Q0mqlHOrYlXtgh1y5KQ1noH+mDtgkYlrgxdHohjx8cnODB3rGRvxbGycOfWYsn4MNp+yCrN5x2CYbtaFIEvWC5mP3ofPd5byZ7LvAirycdKFCvUznNaZhVZYABL1oQUO0qAuROpePn3OF8c1tinvsTpWManZ3FTv56vYnxLdTgTYJnCrEgcmZjp3IH1mRLRW5wvMCFBxgmui/iDF1DBCGkXyi7u7JdRVo09Sjygs+F3ot7Xyruk0WnsOPjRq2teou9AvluFguxQNb1bW1tuQbIIhdeh0Z3Dv4WjiuPekNRp4z4P2LBSH7GDXY+tFI2ZdN6o2l+XU5n5xEA/wb5ybTZsJ3hRxSz5ahfdqAAfpKFi/4ebG3IvH6tZQ9/bqyznpgDCAXIv6yPNq5lHSzJZCNvAeFnQzYzIf8MnjOLsCZ0tQNe4d5xP5hzQ46pzKPBUSLrDKrx6g5oT0Qnl/xPXTEAhQbMF2q+X6SUzkZwXkmDU44h2ej07nyhcuRFuTZAu/3cPhdHplf0WBU5V6wOyvsynPg+ZmwzmsoQCWjilKvd1oWloxS06b3SMHKh3TxJ9u4bHf9IKA7J8bg6BgbZ/m4kpjwIfnLMghWW2xVRMVZdLoBGDeo/nxy4PCJXJouL6tMj4DiTcVPHM/oUYQwEtLH27pdmZ8s+CwQtNNWL8qDPan9zGfIQVgC8jYQ/RuEtgEit05L4jbLErwWZ/ExXyn8vtrDeOMiYXfqTER/DV+dxsHfFnSowayKU6oIe+1J2e24Q9L+X97Y6jDmTjqsgZVt++MxdeGHT4awYaTgidvK8gGNu1o0lfCsp9Lq1kmV+VCRJINmJeGM8ClxCX5SsLVs3pskAfF+88vKgW2axQWoAyPnnTyqOxPwJd/1+rThypiTDXYDquBqQXVjHPg6bee37racBjdCnxIhkywL4eASArTh0Yph/O89rM4FZfZkIOEg3V5pGmT7B7LN/nnk12X6ZvkhV5nRySCzFV7rh7BsETY7jyDxPQdE8v1b2ZwCTB57tAsqP3FPxQxcEJZa2ukLpkzBG4IEPA3TEDcsp2X9tS9mL3Fowbqv1I4te/641pQ38bmuAZ1qz93MrKNeoyscQmUlKdBo+/gDjngkNwKWOvbM7DLeCt1JxmWUnrwd6T1tT3k/kn+9K49RbdApFLxmEhwc7yNoe+8ypw21TAnI+EESsfL9CHUmWKVVc29O2sX5G5FOrG1vd60lrHMLNoOr7caayKcyhxZjNHAx5jH7kcTbgGCHdn6PumIhMc/Czt56oSJhshv/fgjb6z2uKem8LlujrenbNpedptcbYJJIy5PeIJ/38hvUDQ3FZwNKziv0OcmHNrx0OcklYTJZwciyPgz+dKkfxmOFJuX+sloV2p/TPydQ18lhX3VJhxIcBSHYsjhBW7SqoJU9DmdanD1OY/JAMGhtqwXF2TGBgB5kP030zcKWhjmLU3zST/Ti639ANJLO2M5qHNHjl5OKWxwXNsfWdQ/aauMjseW29NyPVeUiaiOQjDmttCvjD8cdxM5JSccGCmQdU7+yu2r2SiWyNfRI5YgUY8J5l0FSmVAaULBdj2lCpvBsuSAcgi/LCPFumqRuJTygl3/NOmeJwCN9+UM8ZSHxShUJvznxg2fq6776QmAQxtWK9NCXmhb65egfKgY2L4IzUbLbPKAlmR+mjuK6CoQ/RyneSjob/fAp04ZFQ+tH/wNrZoZ/SfN1yF4z8H8ETznc1fz7zduMG29NYjlhIHrwLouLQIYM+zENg+sxVpTNuaGvfN7SpPzsm7taljcf4YE3vr7QnN3Dkz7n4fQ2MQnMmW/FZ0PTbgyNp7IFr211+cNSiL7AypRBs7sZUMTVm0kmipOLMiQ9YJmqVSLC9N2kAZXU+1mNX6e5PPK5rtiXBaWkA9piWrTaHAJ82gAENqwnGi9BpvZ6Hw1We6gDqNGFW0LQEhIhaDivarYUh6yxy3hySZK+kzCSZTH4YjxD2ZCpnAAP9boYjIhU93FvgCLf9T/LadNbedZ8HStKE3jg6LmZPz5JEzU9Utte/j0c3uD6BkjTgm7ciy5mM8JH+KgXa2eAdfNql3bXlO3JHsBNADU2aVTnXb5F/QEA5h2Nanc19DiTKMqYX443BPrhs5705kb1UrrpKMhMPUnbykMbR2b87J3XvlYcjfxlANVo+7CQRYTDBQ+zqig+SQlozlpXSetNYRF3xDZ/YmR2P/sv44DADGWD83gOJsM7yc2HoY1rUu6Hf1OsqVxN3lqVYfzHWL4zCx6X9fABkY23e7Jgfwylwjvfvfr6Pae6dL7zHf5/knVudSrjRM0q4ZKMM/Owrr4Y51NqOAXAN5o09XgwyZFYKC0rapHTCHfXyymBKfWqchDNOFVIqep7/IYSc5+VKEqF7f0UtnEuyYX4us/lcmrw91cYibbsLL/DgNTumZgmre1MlXXOtcjFexuLCquH0NiCHvBIFZwEhJJLohd+4ycR/RuW13wd5Ga8QWlWMTkc0vQkFeWw7go1kkVOk5/Fcnowt4Fq1zGEE5l9z/BozlivtYXylVoX3826y610/Wkw+dHD8qfkmSALH+uC6ETF4puMu8znJtogSdbpALbixC8LzWH6+lbjl3Y4HFmg75JmoSJmqZp/cDMUQwPYo5KfMVccEK3afEJ2wgQSyixHX+rnXk8cxTMjmeLZ98PxeGDHOPKyNqUEeQIZDGtSCHsOfe9CMJCLCWPvv5q2ganmo9QgEZdqnNWSzGgqwyjR/PcJJ32eC/QhC/tDCtg3bFeEv4w6rFgUxggWpGAGTP8GfHkGIPKrdPIgOIlp0BIrjiWoOy31LdrnWz0WNJ4FLz/tthY4/z1QCjU7XjsESpF5myN9i09cm1FYPxETUKVPYhNDPj/hAbOuJGrqJLHYSlf6pV4uL/T++iJk29jNKIR56iZhuSkfVEJyU74ovMhPoFIj3unUqV+fAna7TQAgpUpjO68BLCswvPSLd9QXfJ5A6KTexaO8nl8CG9Bb5kUfLF11zpvK4iYf269bpYw3yy4xvMt4Q9fQ65YFO5GJI1tRFsxsJ/iGczm8k0/fJ8a20kpC3DeyAozYOtV8si6myIjiapTAsrbDHt+bgqKy40YFiI4u9bJmEX6kPSYQXmFUwYNldZzHh7zzmjQsJ5IyItJUltlGGoDxDVdE9zhOVqZYOJRd+lcpyvydVRXU0b9b2sRWISgY2exKO2KKt4uLAQse3mpx2SwyUlr560A6ajPzTIZxqSW5V9/6uPDvni2JdVo5IBXX89q26QrY1pGPSHKZXiugGg7s+64mj7Ww2JNakOB5IxRQgO861t+MXotDmKW8Fg4Shq/0XRHW9pVwrl1EcBJ0ULZ0YPkoKfMCUUHh7NFJJSUw1d6XF4Gz8+gl7BVpymTDkVDwN6OvG3tnghDa66fAbcI6YzcjwqgVg320jaStKjNY0azh9tG6udNlmZjkzf1loiVUlWa0ao/xagkUkSKHJD3eVNba/lPWLugGc3Zz56gO37rnzuF+sNRY8PTligz19AlrYq3+pMvozdFps+e+nPqbkghn3Sm5UWmVP4ETTk3xOr0SDJplGpXV5AC3Ds+Oe+/OgelF78UKmiTNMw3gcLumcAI2GL6RuaaOg26hO5fUPTiVX5ttgR8Hr+E58T25cTShjKlEz6kVBqjKnk4pi1onxcasR/XY+8J/+0CpD4dNcXE1BmYVDQ7gn/LEQCzfq+xzQgmEzWKvKh92nXBulf26oKhGDtdsQzzO4Bb7omiDioELJg2Y2oxfRaQfCn6qemc/baXbe0ouWcgafg6tkDh1WkUSGK5n3wYHLbyiNuxemosmJZY7Lm/OFWXaHyHt4nVjraAfw0rdDt7uCFDlVxKkcHtiSVvdszte7kASuEh/r9hku04tC9FtFKRaRQtPtCzsty1TGcjDCu5lTYMimjp6D6vY9bUL24E60/4bijt631n8UJT1enCcIALb0gu4HwkNtB2vFeEfCuqOi8KHKu/mJrYsPy+zkAoI23VwowkkN1UNTYVjRV4UoXcRMR3QG6/lnJY7oICAkpC+bbYDEsT7ta7fGpQ5FJQMFg5a+0oY79uVDhSXbjpJffECv4snndGXUni6YtFNkVFQjiOE1EjBx649YBU3LXEsZouVO+aOosbzKJT2UCyn2E4xFqY7KXnbhLmtxXXZ95oI/RbARoprmHMfqb5n01W79Q41iiIV0rBzLitUQAYjeERio/k5I+BJCc8MeGUwVH7GPH8TZjDw8C4d589yXXDdQpdohkIBSUgIgxQDeAFTq6AmzVtLkuSmSFKdTc9IockKWGXd+SbIlFb2r4v3fd/2obtC/96p/bN6Uc0A1UfHEZgwEjEfxacc1OQ1x3F+Derrv9YQXxzVkyvyvwg+IQx6Z1Ei97hM+vLJ8y/h6cvrkJNXHS/QRmb/koyXrjOvR1URec00C1h3zIgwD4eWV7YuUEx32vcIXo0NqKK0nmUQvsu0IgCj5hqs5QKQfK3S36xEZ3xuJcX+gb6m65MBoMRXx26TC7dv0kSINsE7N1+Zw4YNTBGd+MlHZ+N7amlj23ECT4hCE4Izk4JOZAz3iheHoi+5hTk+85YkmwTOuNbF6ERmPBu6l/cf6B+Xga50/aBva9Iy/5IS0AIQ+453FUIq6Cfpj7YEVEGdNsHHNnT46MsZ4AkI1Bov6us6QyAimfGz6+uQX4GGaZb7KSmjnzRIXDew4MWHZNncGrwZq52vO1QYgOP82mZ3lwsdK9pt7gube1joZbIx+5qPg7C7xsym1tl0yVgO3sE6jLCwL3DJo4biJj+QeX5GDo2yM1K5yf0clhP0+GaGi2qtwVyyZEfmbhimnppiL8iwX6GLUlMLtGVfLM4sl3d7Fr6/DB6jn7KaG2lymrjWV4KPasj2nwmln2DieIObkhJ+Tn68w+Td0QRNH6Z4tgAyg5opGoUQb6wzgwh68CdRVY4aP1I+Mc83oVGV2q147hpY32s6TU91Djc/jeh1h89ZYbuMsEpmmZzknYZujkqAdZgkkPuc/jM3fizTdrDwxyhGwsQAnNUJicfGa6GEpXUM+h3JxwWwfR9MU5ja/hpUERizraXmOraJe7s85H2R0ASK9d+bG0+1rXpzUjWbcJHuMNIf7AxSrkLCj4GGOUqUmyI0hfpfdkMDiyLvG0y7ddJolTnlIc1Z4XPvHidOMW4gpXsPSHglTqfhkxNxIiYWZn4/5E3cSCM+wyg0ODz4Q9+3LFQ3n48PVdoWNYoJBRN0OBMSAoiLapQXtgipznB8xtyLIJkyPNu72w5KKJibSbvYeQHaLlBtIKpkL+W99HdpS1ewynAfTvmebN5IrZK5RCkRKqJ2dm6r6ohnt7a/d0lnNYuG58IldthkEr9/b1QnJzgY6uBVa97ngerqzctHVsou0obVS9Qqvqbx8FCdo66ou2A3aBwLTDdMh9sCIQrAetmZvlcCcAHC1QsOHWwvEZtDYkEKtNIV2uC6Hgp4rVk8RVUdG0y+Ba76IKJTgxfpHr3ntJs11weDqY5DYmWSjroK35AI0hoKIAcLzFjjlWLm+GTVU1aE0+EXHOtZcsFgxD5+waUOjpkGYG89JBPLF10usmESV7pKuvHLIeJd1X7YMfSsqq+E9tiU88f7BjC2O3lV5BrwgbvK9Rrpypo54hDFRpHvRBZ0vpTk6aHrnA18WXOb7IT1yjrfcmIJWBuA/DvVRtiYevs3uRk/jwB/+lqGU5YRr8vs5ICNXpCqcIgwap2+HI4C34++wK7VvW0pneCDhK1dKJgp47GeexzEMK+dhvdmM95R1CfgA1pbqMFfWgsseIOyNP7a2naTFV1jvWclSfcgZMKs00DFm8TlZtqkllbWSixN58dU3mN2Bg0zKGzk8uO7rOu7AMRaBMpyanROCuMROzVygxOJEGBY8b/o5Re6Ffy+rAtK/dBjsPwxuCDvfUy52xdHsrxALTJ9N5H1BJ9aaBOLDycslNlJk+7s2mR/b7LQvJX+WTznvHSzaCn6hcITAvGJNWuBFZseyn/Ja/gaFRj0ChsbwgsnYPD68L0R1YijRGTKwHc7LPd9MX8yoGCb3OeBQ//kNjtFqj1KaRuxXbzNLfcRgHhehnjaC85S5pJbZ929OlV6Bo4xKI/Pzbkvxs7hUqOZQBBbqn6tt3PGu/gfQr7iwXXBuuwlOYdhzRkXrmoVCDkeRiD2A0f0Tfg9iILDQ2wFltZAtl1rO1QtCaClYmJEvvAtjjy+Iuv0n4MqbteErSslAxJ/bSQ9jHPR/4LNPF8MCzDZTU3UtwHITQJjAbH+oet68wCZ9pALjs10/4NtEW0YvtdJamKy1BHvA6f9VyHSiMWUiFu3yLjIAmHiTesLvM9pRq05Vn0JQ2Da1XZ3rZhj5ViMXAxrtZKVnfIXLSTl15eo0jZ17UmYE7MnUrtGnGzZuV1mfXOAnRBIE6UDOrejoGls/3COwDgobMDrfJBiyAbOn8bLGX7dc0zaHxQ+yv0uqZzThalziiIFK3n5zzHvXO1rhRGi9oc8OB68OjeZx+PQ//FD71x6fmv/gqcgekm8q53Zk/U/jTbojCNRhQR33iuAzf6NJKkNnpJi0deexDhuF+nh2Lf/QOJt6p/CM8RllFCA3xsee6NwnRS5aWXnYsoih323IhWAF9u6xS6vVGPE9pP5fAoDgbNDl3pGnfdkskS4wVhviCl9qtZwtDyrD2pVAA+rK7pyxBNVZzoSzExxbDbHpM26HT8ndeGUNc1/oABrwg6EVvJq8vgP1b/v1CnGhx0Y+uOFQNr+AUvmYApFyvYwwwNDn4dGrkdE0bIydYS9Tnua93bQqGN3Ndzn6F0SLXAauYhqHu52lJ9lQDubrxE2IjiPF1i7ItGnx9qfHmVDO0akeP4/7bO91C7HEQd3I1jPxSI/eypu7IJszENYZNP39DrnDShNmADiQ2OQoxNB+yL+nt+AuBzGeBUM2vIAo3l0wSQKvToESfXtZYAdhv4Xil5X+Rw8lb18brcE1Z4OLMPOdkNrGPHowD6YrSGTjT/baKrQTAcIm9yPBK84QPaUsaA8ZqCL8id/eMxXkesI5xZWBFRsDrkhooLLSC2Zy9H6Bsx3m0XfiAfT4rqHr9jSB5Qim7At59bfM+Yx6I3XEZD9jHUSfF15PJhM8S8qJc/Zfjs9uFSBPglVm0KiZbKPD+FloWl3TYce5BVW971VQ6Tre7lgXZpVNlc053AhFHWignKkrVTIRu5UtPGa1mNHj7mNlZTq8+QrKQAMptzeVvDxqHvR9FIQ1xjlRM5kg7zNRvq9wF+jpJ1qCXTOCyJShEOuhgP+m9HJoXLJyHdYri0x/Qs5Gn1rZVyx/w0rP59uVALzP49eut+JPEZDRuJKPbhmeteJdO6XkboGu1+X/SlIzSzao/3zNf+HPC/zJWJUgoturv08MOTqv3qsGjztJIrYsKUazY06wQo6KVaSs8w+hpZRMOY7qGfMYMNBZ9CViGKAz3Ntt5XzUDbibwy+QzOYYuD9GUBWcax6Ld9beFVbrdMb1hFv3BNZfIGPTzNQg2Zm5EOXmhCoY9fk2pMifc5KTGhjzq7oHS/Tsj4OGoY11e+unj9jwbZQWQ0RX9mC3iPhFClKK8rf1gQvBMTrtF2EotNsahAuFUkQ/NShv5SFXEYVDPKpwNkyM9v/tXOls1lmQjZHdYkjU6Oh8lf9PImFaxrMGgmVZ4FobJHKLFqehzk2IW3ykJsj2m3RriHJV2Udgxq6GSF5Ys3S+OMVzTS8D0X1AoBWetiq31kDiO3Kz0iOOpouM/SyVY0P1sdlNAdanl23j/85s50LB/L4IG1PBupb3wTWbLCzJvLZP5xCl+mRhJueyWEbgNEnYKqexdXoBMENZgvIJCeBwHygUOqhtSyt73q608KqaY0w66jRQM0sw7igAx36SQeO6R5UyvcvxzpzIFGQGZtlqK9HJdgzw2E1hgkV0JzBK9Q/PjhEXZ0SOvsruP3yIhKFfp7zGSpTyb59IihlsPcsqFc7199XJfmx2+zeNdbNeMN4P4J3yjDiGvEnrhvnMR4gZ7TjHGr37jD53I7FDGF4lmESawgpA0mp0yRwgeQDYfsmLKC46feNdIminnkIZyh7XGzf86zTeK4NrsoauCa4QY/QTlMAPsLbvru6IT7/YhkImypkmxbRdDgOmEQtWGTiEKFyU6Ez2sXdMsaX5BS2Hr1N7tvD8MiHK/tm5Ms7BRDdMYNnKfsaXo70uaDIIF6H3leguYv07UNghb2STiFgg22dCi/U2dBBrWYgYWokOv6Td1LWc0ue30eaz3KyFdhTJDrvRTaZvsBZOAZT3BH/KHUX80r4TgH3+JK6W9nxVQtjV8Np+qCTaMiii0wk5yYoGYBbzvA6xXCphZQmlU1CAXY0rMUa0B3V4ZTZ2mMIWH9fbbzhvsmXVt4CHoW9xXnJ4njFGrSq6z3YmM4dMaGjVKa3fIqFjEPpbT5Hq4D90655AXRVQUxajd8n0ssXuI6ifBhLo3y1fJGPPlxdeK+SaCYpViQL/Uzm/VhOB98QxXPxnlhlW5yTy96hy1jejy7lndU4yumUmZJBEHrsTHfv2kzzxmruCCZmTny3RAgkBAXjnsf/7OVgsdzy7cPVql7eAWMcAmz53/KNHq/IzQF2QMMnkoVXn5lEPigHnKvV5qVNtZ9QM5Ulyrh9v4wVdNH8r11HIIuq3Jpzp1M+FIUU991ve71oeJj8Imw//PoD/qsZXhN6+/RLJYYILE0F8JXJqftJP3VvPiwmNm2OQoo2bj6e65vVG7ZTJ9eSd36mmFoIyKqwHO9rbhX/4DEF6LGWuS2Pb/4yOb633X2k5ktGj84n4GWuIyPCKeuUK+BlbtFhmOLmaGsEUdK34x9K950OQWUxGEVoUGgvT2+PDzynsvLsrrvsmopcmgVUXbsxu7qFOgbaxkhZPptR8aJvf+sM0oLFUQPDtY4B7A9BnsZUU0opx57G5F+qQdCNGJY6yBggN+jlj1xCf3nNMkRI+xOMczLtggnSgeueoXp9tz55I8fuKQrTbrLBqCZEBCdUpaeHDXHYdqGLoRGeX7FxqQD68MS+1wCUoR7sIhM5KTMde945QitFTiMQPU1orHlmKKvNs3EnoFT7GKSfgckCikon8hnSh8ejCr/5lG6vw7vEjq1naQJtRS5JEsF/hCtYgJOvCFzmr5vyXX8zcevifsGUzC/+8/nknFCR3g4Z+iOMTON+XlSMDpSbM4IdF+yFUvZeEF2+s/sH0JPvTkLLhdBlkbBgIAwB/NULYOy7LCf4iN6bvgKXAWAloWHYldQsAMVXZUkxA6MlOP2W2dts+Hjrr1Q4kWKckzLjnrOUc0RC7MIzZix4hgg5QS149kUfkTA0qDksiPmPtLAIuQHwGK7lY09ByuhnFcw/zYcjeJfqv9YkGYFynKyw90LtOHqZ9QC0WY/DqDM70sJ8PqYjh7Mlnp3QjkdKLrJBL6IWIwLx79jGuQYGQMTGSU9biiP5DoF94xV9zEg2CdutmkSDAPAiDEB+AsV3x4op2hfmfVfy8r9WlMJwDwnlUqFjmDd3H+Ghc13r6EDxHEdbsOL32kMY+VJ4QRob8BMr1yj6K+YlIG1Iforj0nFDWIgKm+V/dPplYcBgwSwC0j/641EWihHDXHlY4xc3TnUxTps0IsknlMc4p+RjDlvl24LwVVAuaLKQ8Fn/A9amkPewbXcp7Ain201Y/daALy03UHVfPfB2ofhcND5WC9x7qFOUjbGnWxtDsqYGTPCdLlXtaeS6begr9ZCUiopQcuUCcU+0170dQWkCZj8fUFnBjx1OH5zlyLWiSH0hSiahbQCfashP8KLlvoe3hXt+KLBvFMzqWvAgExqj5JisINYEOlioxlDuleS0PdlSGh0dp4g7kvnuxbECD5TLqWLaT6DyvWO8lZns/CS9bGlcTMzg+KBokyjwUjYzfqPzJO0+mNz0c4nm0VQC9SR/MQnjGkx3Z+Dd3DffPv49F8KBdIzc6ChNa9e4vfligEoVBUGi7AMF7tDpPfqoEm8WfQ0/U3iqTHkWXmDi8r0Kb6pxtJxBVkj+ZJqGYuKQVICwITYEC000XfCwItzCpcs98Nd6JwTG3QawQ0CS2wFL3WDsp3PuQzZ3/QrnnbjYTc1V6p1b0KD0KCXxfoAe73/mMt3DPnAjWoWHh6dKY1CsWG0uPVvtFTsBDXPUukcS3mSbJVTsnIo/V6AH/SeWZOnfspHxaiEjgM7Mrq9Dc7ucVlVTNN132jbm1oYbBzZLquDFwwTi29kpXDOlyVTIDzDJoebmZ88PwmJu3bevm0wUTgdaWMbeBTiPfz94DjRs6fn1ldzMY7U2AxZwG5MaZhy6I8Di/s82YvrcjPe5LDiX5qMFOUtt84V5BRsJYMxBjk+gPrCl++Ufi3pDWLA6natTgKOyb7VSZbBFVZNvZWz+v3uQlzWq5uvFSrgJunzS6kMSb15/+uDWvmGZzubbYxQvz4bmoWCaDkMN/xhfr4zFREztZ4DtZLszeg1dUZuN2BT1xmLehzE+GkguEpapMiO+h3eilHJQ1KQkaO7+TMC9LNb+qPqjZgh5DKxtnVrwrz+LNfEevga1NR6eC1aLpB1+s12EhvnhqYcNOs2PEwjnJoXTr8HN51dGT1MQhkk4108uFZqeGpIFaA/jIJ3F3LYVCBtOCySmZcBlRQ8d+0GoNxb56MTCPjr4P44ADdncrB7+G5MDlkjwqybjQ9jR8u5cjgTAsWZz/MQupvz7Y6XsZOHKCYSwvo+jc3cPoHOygJiJtrbcqELpxC3PFFFBPRZrcAbkIwTpesUky+zgo2K9ke8RY0abob48QRWQr0x6X9apDmQv9dDiCWsqaDBCaDVB3rTtPAkecm9nV4PT2lRaby/foFgt2LKly8/3dsi8xMxZqq8lT6BeQvDn9VOciEhWa2HBb0M1C0ukYlVfoK7bCVmcUJR6JT/yhwokGailzSzj8gRzaIizLkA0/0UuTpAUlHGX3bzioJy1ieWLaBkuWbVrqrq7IM19dvXvuJRgc7l/j4WT1a1DP53C7RgxRDSQfT4O+n1WdWb8iX+vLDRg1gXCaNDGGO6ewKjZiXiz4BQcJ1nsUah6t9ve9VopaCZFsDTUaarajz7XTZyr0EGTG6Ye5eErN81SJA65KELLR36L6bTtZGTMInzEPq3Bgd6v/YqnPT8sTUdQy+BOSv9U75H84mVsya+UzPuz2WCG1yZ2iJ/wn2aAqmnbBce6eJE0sSFrViDpKYmycBCu90YNONA+RuvzUadMxbIkcYpi0SIH3CteuME1AuvHLvPNWslBKyGgepvdfaPLOWxKs+gbqlZfIv51n+8CoZyOOszdWlCL+lGG/nVMiVPJgUx67vshP1Lj7XOxDAmiBCB0m5CkKQDDMwoACNgFw6bL11aQIwmHFAWmWx/yEIc+QJFpP+EwjiV//LY9wfLmdUYS7WYZu/i23KOxxasFBp5GrY9ZxNV9bdUcrV5vJRWAqPVPLseNxC0K3TB1OK67xtHfCIl0ITYWp8qnvNtjIKk8mfHdWrPLaUsQ8J1LLMZ/kWDTndPNHwza+Rf27dLBvx1KYkZV1DeoELDgsv1jWWkmCXKCSvmgL3yKJuL7hbj5ko340uJpPdI3bY6W9gbg2uATf6yDa11+MLPMJFAxWagp/QB3uFRZW0GCCaiajW4sbwLOL7xWXwyjqDDWpJWkLH3T16N/gOkJEYCprUk0pjnsbp2osfjDBoV04+pWV4naa3TshMdlSVMQmhl0CsziATDZziGODnQ4poHCuOMZncLqZ6toy/edQV2sl3PdBsvc30GGBBFm4LBT7avvziuAqsVVPvDB0QSgP5nYuC/LGqbn1+3tomq+ttnsN8rRIcI6mS8jP7OFSVebTrd1y+QSru6hhf8YHhrbM/SvOcK7CMUSjbFhXHJiuABjkT9ALf+4ZZcxSsOIGmtreLfPOdKCrVrDSXvQk9jrZALWZC+mslJ203MYQv+hLG/ICbB7ZlBf2/WLUZbwDOcDBwbFbmHgrCFEQgn3zUFVz3i5Jz2xue7xE4oeufnuj9AZlG1faMRRicRSt8hjWLj+JmP2S+vKQYSrBeEEjVVNpsFgiBlWsXxCUqegOeV99F8MRQxuaTSnVrHdUDzAv/oQ9Jg04hcTcxMX6eBadya2W6/Ppna5rdVv0P3M7YQH1X/hikIJdFFis/BXKTtsPl+t8f5TyGrCUo1prWxZLN7e42a2iw3SEhMcQ2As/l+IYx4K/SDL+TnKxb1VFKmJCsmmSWl8Rswdt+QKmgtwfy+OguMqEjtcsMOdtlINEoXSCxE4BZKO8Z8vJ3K4FZZjjkA4g7JiXZHDFntXO+LnY+4TttCVcT93dKL/HuI5RWAFd32/9dbOx7D4PSU7wpljNMUUDV9u7w9Q0KYVMDscxZAo3e2tZvdH3TFv5GxXYDEnDrgc1v/v+qCjmwecinyAPgSBKItVXOk0OFbHyducMWlsnSAPSYj8DSwaqabSSDpNsTcv1p0+I4hHj6Izf0M797+qPzJu7Atj+vvxYsqxVT+ZhB4X7jeswoLVp/jFGMu/3Gm1FYZCV6qpIeOrttRNZ762poS7p1nss2xsIkhy4hxR3sA8v4Fh5tB+dhdAEaUjI3786pbk5X7YEiqbn+UChN+ekR3rO2WMUvDX0V2t83sWLoPxgutasL9ijbMOtYhwoLA9SzJHDNByiVD/Pfe3vdlN13y9fOlDbUFptbROuXO0ESlrGppi1dzbwfQQpxnzTaB8Lpm8jRsqiFjv/e2Sqhl6yCtnZiJk8adnCS2c7JFZ8d5te6AFMPmHSeebNGgOPCxTZqcnKgpECgC+jzjaQkGuWz/nTr2d7qEUHkUbGS9oD22pnubznTYVD2qMLCchySoM36QJVoT7rpz1XaGGaIXs84T4jb4WUKgB11IqSFuCRRGZwCgPJRP/Fl9w9cpQXc8aZbMvSzB8Xb1HiCNJnPoFhz9ozl1U7EpqxwQVf8x0vT+k0lMJS+4+AE1VdJWcqz1QYXPN+DKCOsVlQ7HCvIfSaP8mB7uG6NSYjKIDFhBb/R6vBNHVwuFzb8l0NpvHLa01hmn5VmRwKg3dEoxUR/luxluFryZVcCC5ceT+4Hlg5BArjjBDDbvYBvE9FeSGVhlEWWJci9lh3f824oPVLIVTw3wqYBhRQQivsfx3+oI1XkTH5YiJpHQ5NbdsfmKn+/wE6isTqKnCnBKSYkcM6Cu75hdO5HNVSeSmw3TO+LzA7OQZpGdj6LJn4RVdyMIc4xxG8WxedUco2sKhG1Hd3o5RgQns9KX3cOSPF490ev77ha4PC7ErDdktQH36kJINzPAiBjMa+gTucr6+WMJf7WRPrOjmBSEAqgC6mWnkjerpzRlfoelZNMgvFYsHZfRUxX3LAIoKy8skTWDJSs7tl+mX0zcQw4oYblao3/M3uhUjDlGnPkSjAS1l1jooD/slaYQK+q4e+59YuVSM/Bti014NK7exn0KxEcQReqQtLOLbTgf1G8tbMzfEd80mIVs5nFjeQgB4IxC9bwP0cDX6qIFdtoZ/Cf1wGCLmimyXTpGLaYq47MN35GS7t1MIrjz3aXnMjnG1Gpf3T3QR89EnShA/sl9tNPgfZl2n4WDcdUfX6Ga23l7U4E66m3+o+uAUNLGGK/k6noaFRmEgkZOpIgD3EPhm+2I8z6DLrYVwVaUD3JYll05eWjrOks12EIe9xdhyCpiyoOC8EBCpSXxNsjqW87ErKx5esJorLPUqCg8asvhQNLkOs7Gdp8nZ5LXhdP7Yx2cb3iWBbbY0jb537f2Ai/ytmhsBFfpqLtLoiBstA0q+d17RgIyPT7efmsVD2sTqqWIBTITF9LHrFRcKadjibJFpuBrGw8ty1yDHvK7iBcLdrX/Q6BQbTiT85W3qza7CwO2UXQnXave2tr7Zacpy2YW52gAiOj7/gdxpL/Chl3I55rIhqfUMhXkM2W8ovH9iY1Jv2c/IRZrYja0YqHXoOLWl285ykJ4tZyNI7fCQmZGGG8nAGmgI3ukwfHVQQRxx6vDVmL7O3AhYyK8Wq5/Fu5kALoYSWeHj65YPldvJ6sD/ToRoU7vhz3bMVX4gw8p5VyaA1qqHn7q/Vuc5840ZNRB52042oIbKCbXOMaxHK98kIAhM84OmKWwdMia9hgXMWU5hG8yLQR6Tjdd0wg9J6LYLniW8YNvJzA5GkGnF4XJ/aS+OA1JZORKLxgT2iA5LNJnYO8WrAZmGdOgwu1LbgCx3+ohFmbcij9qTny2+/c1CcE0ZrtQF+39KNumw9zU4SpHGXs6cHFalfnkD/lH645lliS7y1E5oilq3qPrTBvdNNDgmkc1sf9JrLK06A3+MJtRiOhPBoousTpL0OobgMejMnG0VdP5wpq0Iklm9ESAtcPN5Vzo6S+kttJKyxneAdUeyxWKSxkFV9GfNuhnQVsQVydp6C7TQcXrgxwLM7JOrnxlTwddkiHP2fMyI4lJSAP1p6nR82Suk2TxQsE5Vgu8acOU9JjYwJ6AAOOr8nN6sCz/GeYpUYc+1RupOok7FsaNU8MfqA7Z6A/DGFtutD7hNWECS+TxPHovzu3cqAc/oDbWOvckxSK73yvye92IoyEVa1kyEc7K6Sj7ZBjdKe//wvyoEWVF/36sYngO+2z1qS4acjvfJNU53JwoNDmzJFQZZSJ6XIsjaXrlG3TjCLyWx6NmwltNuHbfVVBmI20dKR7z05ni0sD1Tb3Ut6OL3WyKvovsFLnw6b4Uvc5M00ionqy1n/7j3t5U1C5naSYyqo4X/LwLX3E2Er9kNL6E/sNLqj6jUWS+G5HdRUxP51UDwXfCa3gogytk0MERh6ok/4CBgK/owOCBKvYLDtLY5be7s+MvFDC4aIgZYos0kX6YagXPAXAkDeBYEc+ebopOfjrBPTToiG37ygMBVOcup4wka6ZaGjL7QLKURADiAPC0N4xAmsgrIUe49OlqaOxvfgPxkfE5XsQezX07OnVkol2sagaq5IKQ9Aqh8/Ahn/OYtxtnbyBY1Db2oLrYRKSyfSvhCONBwlVpJaa8ZMFKWA6AkI6Se1LI1KMw2ubp4ICyeMCVa4TUXmPj/mBYqxamg2G6Hl3iVxcFgtOsEbOwFep2tSbnYr15dQis0l+flzllpG7Md6P5exVchGQ8QuULesH0DUHQwh4eNznD/0XsLWvtl4IM9aDGOmAT+qqWAga8Md8sDG1aROsm9gf/ws/SeSV6OXNBTlzqjuCaf9AO5+BH8esdoMmm+1TBB8RHmuY3fRjRgOTm6K7qnlUFCRksCsfRwBTQzQYskZs60awzsazfUMfw/wLdRlYJSYLL9YVkKcTxstk5/ULoK/Ak00BEgEhfSZp5jm51o9rZ10K3oXd6Vfv54ppeJpr27KXr+IHm/nfR1E0+TiivZNJspPwCt2dQJt00XK5A3kbCkSsplD5afP1HUwsb/F3TIzKWKax8hsYabb4ZH08Z1x/rymCesXOoizHB7yrA60+nKZ0MWz69mLuOKnJHmvnRbegw+rGAW57swkix+cwplgGCFDo0TO2G56vzMf3C3e1cX9J8gMIWVmJFmDwI8ps0GsW0zgpKlo9zENweAg4wAUz0eyC9bfXyb7RqeLlsKJx8udzCe8ufIZnMETETKsl0HBUvIEv+hGv2FYX7sU0hsTBkYC/avR5eCdH/8Yw3uIA18+CbeNpIbvvNtwNaAR8b9aiqNWKlH+JZ2Efd48HnZ9yXY18kbTxQY14i8lKQlRW13WkZFi6nX7evNAsE7V6lEvac+ucDZmXSvYF0U/qzHrWYW4S/MQqqhIIPHsF/lkK7css4SIG/+VWKJDitToIi7MssjyywzZxJSbPXEsLSl5euefs13Jbh3uTZRmIZ3cMI/fbvE6aVKRya6Z56j6m+Kd+LHEkakA3mZ1HBIoW+a0/ZNLyLDcUl38kOswk2/jiBbxjOhX+t5tgpVnleKJSXR7K3CK4qu20jULD5VjPKzAXHjHiY2ipu1w0wE5t2BbYKnZgYA1g1NuDcTc8ubNRQQzUVH8g/W7XlasddcoNVU5j/gbeouOBKrBQnK+9vWrOAeSyXD9MDJPZlnWMzZrJGl2c6d/M6i064NCi8BMHxAhkkbUjj9Zj4j5hpnRrbrol/jyoRjhDp+52ox/v4Jo7htuuVaLHaHodwbgSjGSe9+17Q7h1FDK0bJlIrjCCOQpW+4T/9Z4/dcdslD4Hfc68qgPBsrLIqeX6rXMOz0kQdnmAnb1+M6GFmuHno2Y5r4ID9yH6y2lyWYWHLytK0QhMRwn0xrHehUrk/81SRDYJEDI4oCR5IK2iaMSiVPnlv//4sFUwGOsaAzGMoX+ILMTmiAwEk3s24c14yo5N2oiKUMc1nAYZtJd2a7wB1oSki8Afbk7Ykbi75hfg7k7AVWHDueRVO2AD/a5kAz0wASKfTbQWt9r51b+O0slJq55rHwiZHPvfViO5tUhYyTWZz9DGXpWzFrmfrp1ybx1Uc3RNVUz5v5e3OColm6n8af0MO1lhnHA8+3dm/sO5927433XknyrqKKJko5cFpeACjY7sv2Gm9Nxqe0i+v2XpV0/J5oEAxh0Gck2U96YhkK90KYtlE9DdCoi9ftrpSpPF2atul2zW812BOp+r6Ok14GXD6ENeNQiiglX7gRtpWxsUILoOeTmqsynTe2saIRZ5wmLQH+6lIW7S6RPGZhBVVinuYUtVG/AfKSZy5XMUKJlkmzMRiUP+ASUy4/1hEO0zOXQzlbSbVDOn/Z30gZR5nJ2mLrRcGx1Lw70JnxxBClanAOgo4CdfYmqT+tQD9erIIL7VOdGrBgI74i5Oyb5urkfNeoovPdo19ao7KrNkds6LXWNnObamGm3ufBecj3QEW7R7DE6nts9wZZsSlKdPuUvCkzmdOTOBbcbGq/WTsWz0Rr2KGhLgumVLNthgshn+QwL0njZvxCxJSjIFzhLVBSZXwRUr22lWE1QwF5VVaKz1EML8MXlOWQ5LP6L1Z2RvU0C1vePFQgLdjTcuKoPIwfBAVv475e64wCXOZV+tpFA3TrxPISwcTAeMdvGPcgym32kTJwFRviR5ICcHQ57vz7spZxWyKvmhPn9hLPmP/iKat7kAptMUyW+eE14Md9kZxoN5jllpf571tH0DSCPPTeKnb4vlf3drleizRJcgg1hmRRqJfV+1qpXMwnmPegogVUO86T1UqwFyPNmQ0YIMGOYQWON8bW9UHPtgFk2bjHw0n+OXIsBTwsGvy2qZef9wzw/BUzQk4TPisFuMgA1//6wXita7sMDvjfhSG2OhHuAzQtgODyoUINu7J5BHQRTw8QDj2btdbIA6nrzE2ccZGO2vdTMUnx/O4e1DFKp4GRzpTznQ6LyJtix6pPzfYLNRpjVGklmfDXCG2fNrEslZzrBW/WpGJ0pgAyneqQ2JSZE6TK3+Q5BkRLEm38rUOx+43exHjCPDa9NicV+PVPQaa9qdRtWYYnpQ/RpoRheKGnC8lUMhkdFOFGl9AX5C0zw/dsZ7rfk8BNCoJ5b/7kwhfbZhPvB9NR3nJIGtjIZSlv2lokhnM9ONO0x+ueGK1RGTQCngpW0Fq+ac7pIcPkdqUbynsVpnSWvuyQauR9hclXwloiuxencbYWo+NTkviJlZJfPsF+Fvcasc12uf4kc/lq3DPL+MVUmj0/Yow4yGESl04QayoHBCr4hGm+5qkJfCioIK0fqi0xgN/vKJ7I/cACdvtUPwUvPBkzIB9GxqlnOQ1iwrc4dgXshc2T9osQcHl3aMTk9UIJqvgairJZKrym/Kyj+/YTAKS4tWEaZ06DIF6CDMtf4xxxLXEzI28NpR+U57aAbq6RJRK/CvhZOjQXGclK3yBjnEL3Psst1Ko6c6H1C+y8nYOuaLaw0Lh60/bl78UML/VgAPQtKQfOXg1dEqLCQ+ZiZCXRkxTmQxEO7ndj2MIRmYN85qNOjKRrdP7t/iDE15+ZaDicf/kaFbgNMwkEUoFG3bHptLH6VtjV2bLBrOq3vDz0irtPlWFQo/2vpdUKJt3S+NwnK01dzX9SHLK8Lri/qFrfmAYT/PRcHIolJ4RGsEnIMOHVCn3hMcBFJ/8cc+W7H4HwpKBclR2hnnGZEaoujzGaPXXSEFZO02fwJoFqJrGD+bJ2+w9QGYaDOtf27tj25jwLnOTKohYB+z11g/Lj8b0zSgcPw0I2FgbsadxB7+foHgGpL4KDQbrf6YvkF6Hk7aZINotgiC/UU3m4NUZKhUCt87rMZKpOif8KPhX7JQsHtCv4T0gYouQi4KdkxtZcVByzeZc45+gapL+FW/A0ir5pHq9qOjlxnrv45V0NUfEt3q4uKwsrb+MhTQVBu4JEEKmnQW4ulUEsIzy97JbpyiHF+h0a2OS5dIOTiupq1WBkEBa8bqsIiQY5SQZMuEU5UU34T3QzvgXdKcIzBqne71PHUnQKck6ADIP+F7kTQr+YpdwoccvT/0w3IQByswo7mYP6rRD1Qc6oQcr7hHR4/UX2px0xafFxNhH8pvgRtOc0MJfdfDm4cegkO/8H0pIfVg6LrEU+6c8WYcsZrARysmVVoORc4G0S9Vg4qosn276SWRTXluWZwNbE28iBCpHtNvGo5BLjJk3YW4gcMGSgfcLYlaGI7eP25/yN2eXYrmweC/OmWvRRs1Gu60gPWiz4JgA2zpPqIk0a1eyl5nURjMm/wiMQbCwYbly/RAHZhki4+FB1tY6+Y0j/HpDL0vuL3/chFx/uSQBE0sQg7qcE91sVcwpXAXXh8uAcduBy0f/FeqvqOllhxcQKj2IHQUEhcpIVXwOH8Fgc+MuxunDal8k71TP3L7lpSCiFch3CeUDWgPsJsiuZ98vOLezRycQ/QvUA0FldunREwbhUzD/3GAs04xSI8ifZKdnMqhgfBqUg67Y1m2PvIA4Mce/14q/a6FXAqkx1cq7nV9gjNu3nKFMy9RifPESJW1/Rp6viY40rcvKhxl0omKhIxQYIfVlSTAKIvU1gXBU1jgP6TCcb3xaFToHRdwsMv8vZNm8MCu5CsoTqsxdy27EIsnd6ERC1YP9LHxLahjmMtbKG2dHmkWyl/JYN1dDXAbNHswPWuS7rVWN0rud4eD1QG0nc/ctqo8jgvgIormI3/xoSyd3xwOXcE1iu7u5vqgBxyVHQWVcCeWK0Ji3GRh3tDsw6HZOpTqXWuiIj50WHqIN8At4bQdLFHNUvElfqrZlXRj2nRpz7A+VAmhPp3i6wP0vU/l1gjUiuFtpebtXsCGbDZzNJX2O6aSWjEd+VsZrbvcLVBTIjDPFJT65UhGR3YAtQlNSt4EOs4x6Ec3Oad+4UKZKcy7s/7wdjAJJ0Ws0M0PHVl9db8wuy0ty85v4eXJEqEPf2shqO+LJL7dwgVayYENnixiz8KNAeoLG1XSUWSLrkiE69IYrKqKXunHON6RK0YTbcRWCD5ZGQpej7qQPAZzlTXrjD0I2dtRgQ/LqWxYGkfhZ4a7L3B0dTY0jzgODrWTi3FsUqMjAN99E+LEA8e5muVU4OEz1ms7SrNk8gw8jx8QQbmrib3rssnUVBED/A2ghBZEUoaw3xvXIV+W75Rg+cT0XiEbpJxVZgQywdrOANH0a0YKDLqWFyu2gWjmyld/4hhWE28neitt8WEHTuOzuQd9OBQhyK3iKJ/iBwFwiRr/msy0wQn2R9QnZYXAEs8yn0Y9ycFi/PzfPbOh8G3Dxv23CMwcxRm4YTWF8tu/GSYGZkxfeNLeUa11EHbdOrnhx/PtGJQ+cKzRSH1bqSmwCeiXhN6/6RAACq+NLb5wHn/OmPBuyX0cRzip3NvsEKWRy2PkXU3TOqGUN4oWkMvM3jda6Rn3t0Z34Yzm4VHtTLLOFp/IB8gdDEHYvn0xqRXYulJBkeSsbsV+q8yY1myQqoD7zpzL6Ehk4iE8BSUbJWDlXbjsQ39XU6y9qMGsIAdXFqymHbwi6K58rbTTZt7P24qq0q9dh7pMDAd5OcvxhA3vezYjNjQaNGF8Xv12E1hJ2hSwESKbxNn45eT3n0KSFYSRR2ORfCr+9K4QPFR+TFd8QEZ7nFe/qyNKb9NZIxMJzl0cLMEU0EOeKUiKvtnZAiFKYBz7SA3Hv5REhGNi4h6kj6Kz8AX5//Yg5ReZPJzMzGv69+1nqAJ0H4FokozDCZFlYQD9oUvcIzOJqm4sEyKIs/UUxhhCLG+8ivEflvDgrNY0pXqpI8wYWO1x/knLaBCthkOOHnUm47wwcXYHAky+U1CmP+KsOX4PbtpbMjGKYnxxKp88b5OeDOZG7czY2keBRf7uqoub+WFRfImXkxTS3f7LiCrMn0x2hGMb8QFuU8Ok8mQHct05kK79HNMVo1NOzstz6HYuhH0Raa2bGIVhkazOrhZqFaLfpxWe1/jqPo3XPvnX94fzwL8bu/PNylU0b6F0XEfcF5TDtWK6Z0l7eaa8nN/YPrpyNRPKRK7Ut8xbB0TjhprxLMXfW4u1UPnEtYfppOHewfSGgesJM5QW5YkQ30hKkb5bfCz+kP3LGWjcuMszVPE3c+S6gw6WMG/tgaJpRZWYAJXcPISyAwd0iwVsz2hNe+0Ot2Kwfq77shcTd4NJA8urAvoRtjcHYSBFAoj2FPnQ+OJ1E0MfwgklHZS4QQaq4euhZsw9n7LghVGhI7r+SeXw+XnPOKZ5Usi0Xt2GrMpRg38X6ef0w9j+Pz4OWXfXSPV4QL1qL/TwEHjmd5RWHhX3vGEq/Qcq/Ngzs8WH7IeYkRCY3nk/Us/QxykCeAJplcwxt7bqM0ZFoYnKeLGU0yeFxn5eY3UvvQUPVX+BLq6xUZkSnGl9IjeK995P0EFe2hriF+HRfPmdXV9qDlCfYHPR2MrmY/wZAtKciotJR+EegaiQ076LuZgB+gRbcNIlHUWM2fH/5sY1ljjTm/qbya3S8SqKdPu/n6yzbG4VWg7V/0s9JIYOx3SR6pQGAzqa93hlYka89HIC1uJmPkUMM2GPlhGEamY7BeQ8pWCbauE4uxb4FNm80k3wa9tcdZPMxUDh1ETJOVNQ8h8A7xldeUn276wbu5LbqlCxwOvKCBuGjYXo+TuVjKkAsDEbmWQAO39EeH6K54RGifVAY2I7ijoioMFvb4+H0iebx7Q/Mn5W2d6aGnNKz9Uxb7rPBggyJ+cTMTEoI32QPJ2fP6gxSIZh2yMHldHkcrb89HbuHa7+1HvC+rdj6GTqqJ0twCDyyrmHSmssPDAlzg5GUkIowYQ/GhZm/RtVzLs7SaNjSi9a9mhjAnKTtGhBoi7yRR29eE8CfesCrO0ThsBFSSI7Jsvb9Q4kAeoog6hrRQ7h6qjHoTBBwer2nIxFKdGZMyh+a0PAm9hccdSFOF/Lx613zgIg4bpgEnV4ckXmpBoUnPPBdfGMpqaUtTN3g7RPnkwUzCeKVy4x4L1D8vsBZK6iK1OLNncVcW7FC+n74S78tDcfojydZOmMqeQOmTEM1zHVziN3VVjHEo96a+1UQDRgG7fUY/9dxKbb0T3v3HryEpOYGqwA7xd2g7u/9B6QoxvO8VB4fmaLISXjUh5KmisUa2C5AYx0bGlLaP6FCuCC/uBQolZSPUNuDPaU7WvjPCxzXNdxZ+MZwy6RKicRY3TuHuoEvLsEwatXr5siO276QKoVw4rB+BVN0cVcO/+i3X/EKq++SKmfPPB8ILIYqLvyH6jFogHGOWw/WL8lBm+diuO8bpxPEOSWunRTDhXW6OD3ylfywa+EYg1CxiqBV3a60zcw8KOJUxx6h0AM9umJSjgXGf/J+tqNPCKe53+1Mnw/RMaeYRoBnZDkDmz71R70iIhUV6vnZrBJqwIouugrzlQN1aN5mDVQasy2HCmGzzBw7vl9vc+jZE4+ikLxf6zpFbsGhT52lkYT/Dl9EfMOvFvsJhjRKJlG3wGcB/r27FSH2Rp+5fueQUlbZjFmwcHJaM7pFqxm+rVowYywNzi3K9M7BZ6gSHJV+VJSn2o1ZBdur5F0EphKY8yUQT1j1K/2Y3UdNu9q8kqzwGkUDcLISqYTuPK39zV6BXxZDW3mq9afsshAvCb42PKMx3jbKdazeeeMsyvMvpc1w5ubmnn1FyxSYGw1zk/ekcaOKot6PWJUux6gXj2aGsoSXOF0My/InpyZiQ4kAFtKoBxNZftZeTxC5/rqQZx4kaIp1KfryFSaIxfcpU9711w53ASiuBnx9tYEUTRsSH/VfEpUDjWRDTPvM6FL6yCOzQAKWPrJFmPL+bVjPwIsCIGwycZWaT2mnNKDI1gsKsvoSnXJEumsOl/6JMAVuCa/Yq7eafkBSRkhP6a2BJ23G1s7YzYj1LckNGvCt64nzzDCMnCyEarX9Gbp/aMlb+xQ8BlYhUxCgbY28BFn/U7cWglrxu4o79vLXzkhwhRrxfi27Wn65xdMVZcQhBOfC60UceqwSuRmocmUWzjFfHwYatChXDjfKAHu/TIeBrtHdJdyGLF8tc2DSaZJLxbimcZTdLswCdBKZYUmtDGGGcx52712KYQZriGlNPmMJTQ8a3HCDfdcem1gOl1PYJwW0Ca6UwXYK1L7ms7T4DnKJHYkqvtXfj5R/2ytGjHqS6QZbXV7jdSPmG5qXck+3Swr46+e3AJi/Baap/pS1iLiFxLdNnQTTaJSVCqFxbuVgedVtJBzT3TfIfwJPRvIVNz+k/2Uy5ZiaPQBtIJroZMTLNHydJKubzkWy4yItdn8R/oITWfm8llnLmzNvx/ZS+pM9ofYdONvJKt42zM9dTYAZxcQm2ZwX9wtM/DHXaPHJPAGp4xJiLb/wMiHQAvGlbzAG8aiS5pdfc/3I6oAMXsIEgTnqA87gxUAquAQMoTadWKX2oW/VZsihXwWu5Ig5XAcatVjwYYZFjIEgkv49n0zzCd6Esr8Qo6P0fU9OYaJdYGSmfXZ0L3J2Wd0cRG9t2E0/N/w/AXU9Wb1ZYzea76u2/5vDXmi5IIBfRRR8l40F4YfVmBPZ+QA8dyoLg2+JGdXZmRF3ODqGuf2pxfS32Npg5CWlymGfiHYsps8D7MOiiVBcewGBYYQV1Os9kbXgM0bX7OnzHc4gqHQW0tXLh25vrIPcCPwWI9bThNJeeGk5nmZpJ1Gam6blha+eefikbKaSXRcG7cir2LJ6KEJ3GM4G+uOx39IYkxk15E2uJsAsrSkvjrhDC0HdrycNnk0Bcal0xh5PZnNHfADiM51MsDXOn6U8nEBwkZqTLqbzq5FHH28XkyEvLTQcrT37KO+myHCU1R1mM65cRq9sgP8Cug6cegTD1a7DbLKZF95FbbXiwJh79U/+YbhuTen9FidZzufp5gUNUhYmxBPCMGyi0kbgG1K1Y6jHucJmjhjtBErJW8MZ04zrm9zkt6zHl/UJPnNbzq8BrnjCPeiaATp0vz63Hg8mNdfFEUeGbvfmaZymSkq7MoCfGdo9touayhEf5BXqfVgS6Vh88sLkN1oL+A8IlHerzNRRwsEfIiOjv7HwPEQZiPBln9gmKbIZPhf+9J3AMKKjgiVmilojyLxKuj7UIBL5KMkm1si922cSB+QWweZZgumT5gJ54bmQuQyevrmTyKioDgyeXRPSdJU5KqYHBRUhkpuLd/X+fjrd/0J0XtobRZ7zLiBuhIq/X7kuLaex4g9F4HetE7bAguWQlzoFzH/Pl8nlqFS5qntwZSNb/MxP20aka7iZMdG5k0VRhctaqpSZSL+KQy7sXPfzcqemk77G7JB8+YIvMQx/gNu6cjQH+9Dcn2MAzWfwtXdA940qC3SURLQoUQfjGeR+GGMAMBlrTU977iZ6z6CYXv7lqSkl37y6dydpEcgYy3H80HBWNp/zHXoFobY/Ii3lJZQsl5eB/XRx0GqMcjjZUj9Q7xAX+jQ3uW2C64uNGVmFFszD5YF4zP2yUDXBXn64Y858aQ7J0jeKhrwdbDQvBt+M8B0mLnm1+sZ/HOEDuoY8VQeNDycF8vQd/Hscm6xJUSA7MROQ0F+ondjPEL0kK0lUPQ2u3vQF1dcwh8o+vI3NY0JX6ZZ3w+8VQIEk7t1ylYC3kqpLCENd0QknLlxyn1bBzGME++Czx68NrpXrPM/7z8dTy+bbJ6+UmOSfLYHUcg0QFnor2mQvo8I+pOPWC1MoRvxmR9zUKYr5pJIm3S6Fgrcb6EuH65AxXqhjViRNVoDmyijwqlEVn8LJTlRyi2JweHFHerQeOMILu/Qphp/4Oo/F3QyXS+LR58It72IFt21Hee/kxozERMmTSvJSexLCK5UjU5BN4jPmaL7D41HvepYLUqTu/jrdPzUMn67pNQ7dCx7ApKWG8BnV5bhX6vXuVxVCLNh8zlxaScPSkMWFxwrG3zPHVDByruwhp8aPaECn9KjJCgslz5CohSd5Vv22Ab2eS2a3oVNLADJQwa3flpd6F2rHHuLeWVVH1CDi6fi5gBDkR1xqBV9MTFQQvhPMEHheSta9r+R5+pcsOQ9OOToXz20W/cnKXy/t0MLcZqPrEdqydUtDPbZ7W5zzXruSG7m2H/cUmz462cVhNqfzvkEkMmTTvBrnfVjfhkMj8EVI74rhL+kyna37f7ld+6cxuWs1QZ5r91Izg0pXVFEhBKrkGqCVe6lLnXwXBy94uNgl9vq5g4HxYE2mittNDl22J+pTerj2rWaxB2/XMl3bp66vSkCSEMtlZB01Tpk+XHbwpRPV7pqsA2KSsA0hEuBoumgOuOc5jRZAt9+KvF5A8lhsEou9O1GfICcu1YEeN0G0M+kJ+oAeC8blNLsyPSPpxtYckMaQcWHlpm4+9IugN92TpnXMNZDPrAw2FH4MMZzUtVgptJkxpdgl9EeW37gDeJkN4gOILNww1ADvETVRKlRng5E3avg45Uq9cD0j6SGBuTnVo58hVFN0+HC3kjuC6Sb786sN1SUY0f8yd2rDmm/FiJ5wN3kSP1I32iRYYNwWANkd+FYs353GNFVZloHlDpV1bJgG/y1ExC8zIoMmI2HCvd/xsmGBOg22gLjBYHIxmcSyoXye3YNmCBcfeE2cLWSy8OUQ74j98AjS8mCCxwWBuzEFsRXccAyccsNJf1msVhXPv47PPFRbDsJvDwuhz1OZF+uBAbJwkELTz/RQiPm5mCVGmrRgXZwRo9hh49RYxMS4UdnWzAT3LyMnILBLvEvxKADaJRTlxmT3SUakmTOKSqAb8ym36ci0nlk65DNsfeVADLwaBxTl11U71zx/Co52XfwXzsfcNX/XFaXfKmcwtZpt//xHKjKjPXi2Yc6hzrreu8K0MCvqY/sOcU5W8bBvwrNYMTwDHElSEP3faKkKLm5tI2tmSjgA/Fp6+oGlZ5Mbjd+7IpBtovOjI1zOZVxdZ1nx7Wz6MXDPiOEgIzFlstR5a5jwxJ25GoV2k1BUzZGYBIzIbPR+EMQXFmkV6BlfNVldgxo3ugvioE27raCU2ttBMOMs3iimRxs7rUQWyddeDdRd1CCD1SOL9uoHd+0xzfQGY36je9oAFiI9CG4I5YOaaIyKF1vuj0hD05CGsToAlYqgyRr8o3BToeUzZvm50w0UwqYP4qKw586BjDrpe0f///7XR1ztLCpJkRfj6hBQiVn8G9baf7RwLasX+HL6nRDERNgeazTbBJyEboSleCmuHtEzUaT0FsVgu57uCGAE6JyDuv84ZvD3ckd/jJYdajlDLOsrZfvryBjUYoGYthngLYScny3l3JQIFjR2wSOxd/QzCDp18nBZ0rW9/hQh9TO7uew6oO6WeIJYMWSxKo6nPmWQwaI2UVl+L8zBXJZ1noGj4ebfmKa2IJjgqFBH3laIjY4sgc2AXhkKKW5uCZnNZ9FEc3FN5v1BGwHCwpsruSXPF7MSiyoUpr0ATw1dtLHgxRcYYAxe2RwoMT0ptp5fPTN7CLo2iWDc6RkUVmsF3TQvrweeLN3Dwb0/LpcNlCiO51gwjGtcrst1mY/c+2ehA3wmIxBy2F6aqXVcVq6U7UCuoAjrFi1FxS7Bcc+BkRK8gbZhGa7wiOtKxgeEazl9vLNI60gmEN6MXT8pZ7ms29kE6+P9OpXTtxvYVxlz5jkpE9WugEpv/IBusVE66LAqvjxfqWg1ZJx27LapKLjQt0Fpl4zSeCPgBawez2Qs54J5CsWSkP4f70AWjz0duS4FVBSTd/ZE7ru5zzcR2kiCnC/jbY7EH9W9L6lkkYix1t5ufmb7SNkPJoA7wDK1pVWMjH22Ry/8VUAvQKBleCLChlaN/hxrsQns4fBxdxo5SHiNI7H9Ida8gkqgSFu1WN4Slbatgcxac/fVGuSSfPHqI8k9fcEyKPE1GNv6eBNd+2ZdY0WsUZuYe3atlWj07Wl5oiX11M0ucujrx8ntcO9cdEZVA6HBl6Vw8ebYWZOzIAIWOG8wftSJIAWkzuXwso5V395qqyLKevEd+UcAPNFJZdsRf7isH66GYtd09AP+/CB3ktY9Tn/A5hYsvCSxKQc9Yyoc/V0sfKFoQ6rOarRfkgcuKewTkKkXi4tnXy7TVfsq5Im4SO+HdSLb0GfXKkcLiztOcSvGYnVr8wXDoQjGOQJbEVLu4GB4EjBK+PHogYaMmCjccuJ4trpQ1LFTUBcg2k3RIpG26eVPJqjcvAGpcwoZuLSo0Dg0mG+QNg661ug5VaM7hlfx8E9mwAFgKTkaPCadGlZ7eVPbnf8eBR6ODhEMBxVARxBmZRAg8xajER54EHINTaUUpazHMXK1aWAI1xwJs5ekXKWR3TgjAX8Qsv8OeUMoQRkRJkiSZTtTERLX2oGaqrtfN5DjGyVX4lciSfGLnkcw2I663ltc34IEU+NvrFHNG75MxPsVxinpb6Ky1BJVUCYrTm+bk9yvD4OkwA83DG2oEm2meHj46lC1T4THDwpstd1dH2H5YPGQaVzPassU0PGNixxf1l28vktPYfXSDyHquKTaBQdxctmYWB+3E+mlA5lI/d14jFskD8N9lpTZYaDcmQVrgCDuwd03dIqP3XIF+o6JAyQCS3wkwbEWZU+M7q4iCcN2+4ZfBB6q2BC5GIxK2GInU2ToKNViHAv1Sfl9bpNfanGmAN0g9ajc7nUvrPa2wRg7FtPtiG374pCV4IudvTwnv8uRnqob9JvL5JAbDNzu0h85eJUtBoe5Xnc0AyGzOjThXzlzp8zlUJgAVQqziDqk6yuERm8WygQ+6Y+LsfArJ7V7jDuIPn+Ll8dbrNwy4QMsCnUEjLrhGiOfWeSh9/g1SzXaK26UGgm9hqGwmwe6H+QIx9rmfyLtzlSEhYgsOY+jyPtXXAJeyvEwANyueGuU3CRCmxflou6lNi9GHovdw462tKsreOeclIQ0d3BL9nIp0yCtCGUku0RquHq91RPh7cMXPPo68bVcVVtYxaZDzC7w6J+9ckndzqePgs37ZK5S8TGOHBW/h4oqW2zQ3kQrsfnbWPJuOfkBEzllb/UOizVezBGznH7drL4m2nYIY9kRnAHJoqc7r2zm36jHkJ29Gh8uCwpXU+N13suQlcCaN6mULiLxiIkZ538umwCqGbv515+K95+7kdaUsNrBr9lyNabJuRlmninlEFNCnQJZQkjaWu6BHdhP708XNceWX4z6RvXIAuXpVSzmF3H0KWX8F5FrQcvlci3XE2+OY7YKJZVNYkwU2+ICBOI6lMM2HbmlssXEehoskO/4WX74W4j5cUJQlYSzilPXTKkErddfaPLBbXw8sP/G85fQpfNHdGYlMsNZnhfU9hwhnkVqbJXBuDGOSJlzAcZbkBWaE4I0RcK76jDV/+QhJj/3tZEUwNUQiEOg6Kx4GnySeCbCQ/BSEwyJnDoVon8K8v9qh5W8HD3Ct6dNlcjKZbIZ12S/tTTKmTd8D0/AOyR1R5rgbbnvFsxqQxTULWGfArjcuA8dm91bSC0w9CakhLjf0oN0RYqvK0KAMBgLQuWsha3TNd5BT4nWS4l6+jC4QZLwZ2XBBsFxgwyjkDsf5RAzfnksV8oxcHaMU8ihq/7B5zrzRn8SJYQJxWMDDF4Ecj7N2UQ7pNReeMgrOvRO6kg809TRg5aUQ0z21m7WjVo9fiFHvfLYXYC+WLN0uaLGg5DS/ysNZUosadJ6gdgJPJaqybpIwQ0+yGLP8NyOU40p9EybdDmAJC+7VPkLhhaFgOQ2j54sZcy6Z7qg00BXXsCAM/3JW8b3en6fUwLCAhn31tuVssT8PA0BfLQDZczly57juG5QIcJMgftiS27ID+RcHnuR8+gRMnFzDOekyqycb7wLE9/cuCEMQOANCRZehte9TUIybH/Kb4800DSu2GltXE4LFEY9oTT3IyeO1eL539VH5Ab14JbE4gQHT2ch0xAW6AQMQWrm9FyHd2GjrY83OJ17zW68GuzsNoaQGCxpkT7Stx4cHRh8melwmtEmPfnuO0DT8awU4D/QdbIxHhptqqHnmxlINVYlKQ/zi0sxU75Blgk7XfRTRmc0y99VH3mTB32hzEUzjrMt9R82a5HMUtSdPPLbux7iJhIa7EazkDXaP3bMqRM2QH8TK4cWZUFaQP6JAEgIhgMucN0zI621z/FoYDdu2GjZ35ZYLWnNFC8MjuFUK55IRpPhN/rGjsFy3qLirPiZIU2VXQL79kAC+4Kh9ds+5e8dkuihWIhFviFP/N5D7hugWNsabAFDuqFMdhyhLMCYqo5bfMCMJI/KzrIDyQdWRg7wCpovlkJ+L0uF2z2erMIBBTxqUhZdErEFVXKf2QHZkgKIW5ydGGinRVOUDKGpnhyPrjDzysIFxvpb5JLB2By3ohMt8FbWqSHClj2x4B4kReVTza9qUB5oSRFnI4V0M0JO8xfxzs9riUQ2qSJfrNlQMDuB+VVMDf6Ehiu7HT3oWk0/AOqn2TDULET2FLXj62FvYJQ2GDIZcog7qXRpEmN0FW2H9PcXt+NtqxA78+1bhCKgzK2JhmCN2d0rhBHndktZZkkxnJ/lTTIYFObtpO7x3yKuBxPVaQJi1kLa4usDxQPXlSHAF8LUdIx0K6XGPGwNsXyoQq3WLFphjTdIKZSKZ10FK+dertcBLlStmcz3EUTOR198wFhldQZt/MUHtJDH8x7Wh4Fntr68eEGsG8NFP/VN23IAiNFbPyAhzF0LZf7X5JsuwmdVeHd16L3XvwmKBtUNsFZnsTxbWDyOpAZZZkM5bevupRFwInuVEyB+A+ojv4JN8jmatlLaRT0tZIkvNFUuz504xWewTdkBpSFmsS7MmQvv2Y9IpFZJwGE188Jbddpc91FwW6SxezKoD7yXAl+HT32GMQVUpAtG6l9yIUxgnryX/SHjPAFOl3/NgXBCFsVniy/Z0Ku5wzugjtwFDEK1YyMPnFAdHf88xbrZv6tpwZYkUB+zhi0fVozUnwSonvfiUNvsgEciX8IFITkhGkzSdSxs/8FHmX502KhV7L/jm4n6KX5qkGuEjqXAloC+l26UDpQa/kM1mYQoH3lrks56pb9jaSp6n/+v7JhVhAY6VpYF9QYWaPa3gkfuiyNOChVN+qV24fah3IvaMTPxmIpBfxZwUQ8eJNlU8NqA1tzfIBll9eAbKMZLIA7dfO9B5h/8WURsR9ZRe8jIybEQTT7jpdXk7q/anthAHSiDSUV/kQeAUQ0DeOtUxxESSZMuSkAopxfgt0L7AaZo2x9NNmeg8vtxbKmt/9Wr39bHNAOQrnV1SQ9Sa2amraxuno1j1vErJ9bgLT2Bf01SERPVXhhD3+/4mFL8Qju0ypoykBLm0ycCVjEuk7ED0NMkCgiQZp0px05u+Php5pVtiidruSpcUnsHBqWo/ddxXdaFSJtRH+B2dzGvZ2EN6qluQv98KWnKMGJXhdKwe6NANUWugrRXrfoMRMIOVjIx6WiwS24ROHGSaU2OYyVSkHveP7vUK/YA0YPQZu4VFOgyqMdy91t4wsTwLI1PSKiuM69MoFsoXedW2+8YK5LiAa6en2MgcNWRjGFdfSzQEA5B6LG4j3iGpRQnUSizSjXdNDkHfL6/fmgZvDz7c8rF6zlXUgEiPxgW/jgfKQkKr03xvSJ9WK63Zp+cHGX4bcUKPwbtP61nc5qC9Nj2FKRi5Oywb6wCiLsR4xKIEcNwmod6OUEsGbZUwBFRbB4yHUTxUFKThzAA1iHgn2hRsPstpbogN3QgH6p80IMhO4ucPIue9eaTovhCMAFME6E6LNgzxPrtzN/Wzof+2rKYB/m9Ivkp2JBpsz0alP3gqH6KoZEkDDcUTwpi0H5e97Dd1v3bRPxannEWJxteeP8OCrzxsfINFXQcIcXbso+1d1yB4wB9ow2sYy1yrZgVw1QM7QPBjf2FFE6dFnayvcSstyo4Oyh+sA0FzciNwnz/zd9EahIoOiesQC5IKiHt6OEp9Uh9vq0dFRS4faTD8xDlBPQbY+WvLWhWBdypFS4ng98WKLymFlGc7e3l1JoqsrOytr0GJL0JFIopj1AVBiX4U2yUG7/O95g/JDkf05Jl4ZsrKPsUfID5lOmodIN0FP/CTwcSaqOo7o4OV9LQOpdqklfrQehGeZaHZbTdn7VJhCIfczgWFqC2Uw8VKDmThAtxpgk1huCgcTmGOI2f2+Qle5N3L7BhUrU+6dYd6s8h50k/uRfVoIhck3897tTSiXRY1cFdw2jgO2XqAI1s3cBJXoeVIBd5bb9QbEMWuTemaWpI6WIl2KBdRZQ7oxmcYYX2Kj6+m5AD4nuxah01v+qO+lWtYGw8kNu7dHXil4YanqpRcWeC+J1Rx2wrq+9UVAHKyqgs5MGNSWkxNvBPcBFtTiHXpFimNwUdOP8AmLoJOwB4/KD1hXPE8VGey6NEfcikgd3R5nqj65LFyR9DME5mc8Bv0Ne0AhBaeroQZD2wvO+IRqNR2pHHm9mIV32eqJCt8mmvfGeqX82rOvacZl5k62EClwuTu7WG6ctEsWEFNyyrcmaE97pBn6vZWsbsVpOy0UtqK0hFmp32B8bAq2hfkZ03jNW0UTWXeimToNu3W0z2istcNLw3Z420UPKQ0gt64vcvLZDcAE02KrbNiubvnOb2QO1E4JtsvMSxLpL7DGijm+gvLm7VqS170P//8PrH0U1A9lTMU/V+XXiEs7+3vcZWHoQPwFvLxSERtWSgDnAH/mriz6oFhUlhnfvJaP5tYd/1CgCQKKghvlf9hpjyIZGHyKpe5fSgtg1irM8OoeJBR2bR6uEyWvq0BmYkMoBFSsEUgmtnid1d9o8Qhzv2FbUdVtZbHqX97EtVZVSbhszTUKkwIx3NGaGd2GtqQmkJ838OgnxCtSGhTuEQ/8/xqnkZ5nIKGU2owedE51sGfmOrIPzMZysHdQHGU89/2Q9ZvUwibn5cU/XUCBER0O+kleH8KrH3f29QkPbW5gRL9yv7QGjBHpXQY7Ohm6Pnim4UMhSQ2GM+HgXWgPC2XWJXEfQ6Cj54VW8mjkzwuQaFHVilfvFcXiC9yH6Ub8InjkideMlEHuHz+scf9QpapzXClOSOVeOTXneb3JUkBT/bj4f8Sr7GE8vi3egLlIOW0JnhmZA7F0eX86VSu4VGEm93hRfEO74tXJiEJSmuXPmJWxR0q8/ySnJVC9lBuaYGKy2QyXnZ9JBElElPWSNCSZW4jtH9desMZsUuDGAeWCPjea1qqKt14+L7btDCPIdAFg1esfY89OXick4G30bpp4+LwGzsJM4BksNSHDE8pgKQ4FkHOfwazy5gru3h1dWkMcA+dJGLf2HjdqzpMj8bOt9rtwz12tds6LyMnV9UnRfTniYjZbGbh1xL8AdGfpx4XChHS7lUcBxqTblzTqyz2fG3MRVYZgsBu9YDlB0HKf2TkxfRDRbpKRZ8rm2GaIbXYGs8C2i6GyZmeBsWqor16jE6cy5qbfQ/x0cRglMG0oM0MKbiwhyxWh1ZSF1J8Vm7YJ6Mn0yPCu/I0hk/yivqjNPFe8XMaHiEi1UGDfNgzcqClkCwCqjHTBkMP9G419ELq/8c/spyoCMzbRZizMdFJXUx5U3zDdeT+WaSznymH06Rw7JfaPFISVRwlFS1hhPZDaTvA+sSZKbEFj9tsWVz5Rrq4FAjnPWXi03/PqZ7JRI8ubd/0RebhMmp0W8ywTMsJ3od+mlVGJBEUn7NNG8APMJ+hwqHVqImUBxzU+v0ouQMR4Ly/rz54U0Y40s3iJckXo1nfhDxwOXrTbCuaDbjcS4F3MmQtBXFasOZ3JlQFPTxdxRi3K8If1xNwTcOG9mpzg455utHVFnkGUn+9tJvyh7wDPIUkL8PrtVHjWjfoR9AgvuepzSKdkfL0IQR5laXVB0rzxa4x6rE8Z08nXFyqbfxCZcIKk2AYutVIxrX1mupFWsVneEx+Hojtpo2+sHjwZs2rsVTnooV+if3Q9DhzIU5gthdv0kxhCn1DT7PgtkK8ozm6yKgj5KZ3BAYHDJrn9xTDwJDOqaal0XR97RcjHAlm+UuRfyg9bkDKLlgHu6noC35nS+fZrLXWt5H0gO24UTLWP5WxEGkBbiUE6MeveskBm+mo+mQIrJoWGpVdfSesszUiAWI2zrRylDlV7JbVutDr8AE6fuLG0wlh2I8l2QziOrV2rMRjv8lWWB/zh2ZflF2emcbD86OaGPrhFEVhb3QGd/bukop/RqxFV2rDurTkcHVtewj8TthSHl/2Wc0JU3lU8mgc61dZ3rnrFz7rWtojy7mXuzk4KISbwG/whY0c1rglvW1yENmSlIRubhLzSagBnS4XL9b/SzZmYRBwUXISIZWyKFdUbuqANYTSvvgVky2cesr6P4iAHLvberh1OcXR2Gi3uYCJpyk615QXIi2PlA1UCaFztNKUSWwX/Xd2lUqhitRiokYJJvRm+SdEueV1rKRKvDelxiXMfH+mApM0R9wfnxmbDy3e8RuhMxHDdrJONDiLlmuLQtVjlzWtu9B0e5tXoke800bpW8PnmrJbUnu/3acK7k7s+2YQvgZ9u9D8FWoFDwM0gUM5x3I5cO43pjhwpBvrrBabVxL+rj6O1dllnkhoqIrSASlf77iI7t63hw/WBiSZ0/1PYYY23TrOfX+9eSGITeAe4w/UZddPBHmNaCclCKA9B1eQlAB8RGqsaJD8PrhZbaBklor9YJZz7yg8r2buTFtVa50E1skDrIZiXtu1BLASNZa/icylsKaGkSgtH5dCDst5SKwMfQiEnjTMQo0OTnU/bcfvlm08K6lW7zhBGdmmGHQ63KNbvFPPxtMs9iietvpxzu5tIiTVr7JrL88mQUeCFJhKvS73zXey9RsviSliH2UIu+z/l4dRtlCpDJ609ENPFuVgzcklQsATewzhDwwdHLD/rgLgLnEwPIRw3aKeliyjm5dGCKyS3e65+tZ2rAUobmiy472umkb/kq03B1ximxzgMBO5q5waOwaZrh34aUGBdenvPbhrddyiu8kLqZ8dkwEKgtuY3FvuDFl5d/VGwBZZk03Dx5fKxDEwQuchtvHAqxSLX+ISO0r0RI49nCZnw0+EzfvIJaO35LBiqDXVgdjz4tF7IR0/57tUp1X5T+N5AdK/HMNr4rO3YwsqNpl3fuYagA/57e05XUBJ2/UJzc4S/QIfUp11DTcoAOE8uVQb/ela6NVdyp7D3HCOIv5/b+YoQOEsimmRckhYW5rV1eSStoHvoUdcYznGJX60Bkpli4DMX4v6q6nvJJeemuZftVY9p9Rex4jtm8ha+BxspHu5KtEhRLAagtKYOyC5TgU93EiNkViMz5qPTJ1LnPHL3EF8g+i8ezc14+ndCVdK7OSWrwdgXTjqYIpyaR0T5LCnwSy2r1jzWxi/43V8ivhTRVtGoVlnf9kmPQWZTqOsnEFLrMfgRqSp/wwkWkVzn+cW7nTP7fJCX0WFiNRmKVL/4S2uaH8/FQco73yGSPd04Dt7SR4x+U0lB0TAwIJ1+7qsJQTYmhnCDGaISfDQDg/Ufvw0v5i/ISHzV24XdtpfyFLO71IUYr1qL33SXH4yj82d6DBYM3GzY4o5hsUQWDNRvBDLAlF5zbXfRzFMmbtIB9bkRasnAta2ZN8bps8sNnEn2P8GMz9EjuTHeLERcDnUTZlPFeC/rC/HT/bJDTb08s95jeDLKGZPp7sNhSfOHq2JVWU96cw0uFI1lDbWXDDNg2lzI9EktI0nD6wGtY+JfMtXmuWNrtG+S3MRZqBYMtLWdiCQu5+bIMKFF20hEAijjPxGYyTu2iniOp7O6G3MiFxwaEnXNEXO0bcI1vj8gLgodZ5enUsKfkDl3UqXfHZI12RoU6LldCMwc5/eM7GcRE8a7Wx/GzMFbUP3cj82KRkH6Vj7gCnkJn135iUD7nD/zz40yDCzfv4VMOixzFZZEqWNInDQU2LDdtBU6VlQMvpo4xhAQGkxB08amamzXAbcU7EcL/RMk/7BZ8WV3Qe1THBth8Mo5xf3tG9v77VCjlqbeu+D8XAHlxfJiU2xb0aTowQAcphbl8XpjLT1wzXHKe7RFMJFbdWeboaZpSGc6OKYvi5QNwZQ/afndJIDdc+Fa5Pq2HR6WjapaMKheWEbJwO2WSaDOS33lJbn0MaETFDWnLHtzSDQwRTH0DYt4qNrCkW9RCCkt2uFWb38Yu9ketNDCx8obb1cvn8hpCiXi9j3kmPXlWbgO3RN5LTEIhQtHIj3KJ0UVTSAth4Fa1Hn4cvOwvL5ijt6s2HKk7YySRZASoy2dvEJ6+zzO9V2LLa4lA++PHOdKxuZHeOikRP3u6u0uoKtyWwU8emuOlBg+9qLSXNQ+Rw+c0MsnXLYMbgT9EqBXFVTssugcqyVxwSdu8v60BBXZyP4KEkdpH606CdDBLNCudFbNbN+5oZ7nW1H+Vs+gXKocAfWTm6zBaiGdH50uD/XjjfUEeX0XlfDOFf39A/N0dRgqUsq0n0TGUL5OismN3o122WCwlzEx0YHGIX0oKFhGfO3Xx3XsnMOaTFf3oBTBKnx3vsMxbjWzbP8WaRBz+ahSFGLn2qVf4GCjfZOzVRB3wMv2cizMe7/Pd1UjTRePFBjKLDayA5uqjyW6m8RReFyeL7zZUu0+XOIfE0FgD6vAyAagzt7glhou4aFuUfky6++W5iX8rRfBHIQn4SwkHW0o0klXmuYb8p3V2F4Vaj436HWOPGfnhHhHEGUCNZzOsr7kRge9o0VjPzwq+ZJdgNIjINBsJnHp5vWnADM2e28oY84Eq/RXvW+k3eFSC4oF2/5kRtsGH1nJYyjOojsnABl+GR+UIiffQWwJwX/XKN8eXSiSfbIZidoncAC3vzDstgWkAK8qZCpxWi1xMM2JiLzVoGfMIzcaObj4yb4K+KQ4xGeCfzW1uvn391xNA6hKfP+AuggovGGIrvGFaFcoi50/1U6xWHSKJ8w4kbnbivhKENtGyT34Z20ceGt0D2M1ypEWy1QTSM4DK7xgEXtgf6c7/zsbrMnar/ajKj9c4ZNuSrYsvLR/a5qTiQodIWnm75+UU4KcV0hVWJ2eK94054y/iJNRF0X5wMRYb4M64Tkw+LPbHQS8ld8QF5ynmUfwJAxYPGLBN7Qt9vQ78VUEpLenh9L1AhURhmZU5Kbi4cUobwr131kQt0ddmqgDEOvQ6RA05GPPrLLooCK0j9GFmCKwi0G6USBhzbVL+E9BdVC7lLkjFS589CO94yf/PaSAcRr0F8I8smo1HXMJR6Ve8EV2dYceGkDvMA3KJeh9lQEOJD4CC5coLRqDAXkiP1Fd6Us1VmRkv4ZFlf8ZCFCKlJbD+kwJeKZyzzZkJh8lmoLXB6jla5cb+XzJQ/0PhYBQwQwRvMK8wid6Ar9E5yqQysRNc/4dHwdhuE9CEO1gd6JP/7RvX/0uHFxfwSzOUw5/PBQsuWKky3zMe9DANP42MvrftIM47m3PoYVkCztzDQdqXLCk5DuSRfhosqFyrpdoaKk0dZ0lL5roqUmnuW5GdKkAsFa3RDmiJtv5rU9BLhUZx4RWapoCXkqBalbLPLnHM5iLeu5XMl8it7sjXD/ME72MfUzT2Zq5FF0XsGSiWxnpjbXDgqZF5jUYaPvtIj1XQn8qByTvfw6cqERi7g1wrSdSmf2d+MA0HWZBpilTxYqsjN02dMZ874kUpuwnF5E1rJCvkIHhtYFreIrIrLEa0NwhQEQiSeFxTleP1w+Kh3syUXa0rvi3djC125VA/t8ttrxLhpwi2rXdAqN0BtziTqJnerPQeSOae4G8e4lp0t+JfRqlgHotegUKNWvI4nOA+h0DGwACXQ6NaWmRSyMs5eYinYH/p8vURMIvnjWfv1Ex4UlK8kMviW86onjVg5kKwIvMGt8sT0Wj6FDtM5rTXMAtyncSBay4q0jp6nOSdiOwuaOnWQ3SOt9M1U7po+pbGG0q9cHthJLoiSYodCO/ia7Y0Bzz8eCt+hu6v+xixPWw0DTOptI8E9ZyK6G5Jhsncu3r5VZ83o3IY3Pg3ju2aqer7C0b0whiY4lG4Hyk7gocHdxvDMpUlFShlCiZk+O2O5GiQDaDX2Yjm6WPDNjGbIlfIcrpdaSBeXnTneTjcOKjRxN0l+JhPHCwp9O+i6WkUZ7QTwobv7aMw+JCjtNQZMo5voduJYFOx9lXf/dsDcOil7roFmMDAO4ZK0NcjklngzqEKXvCSpRQrq7oDRavEFrFua0H3LEZKUDsM2xJv70Uj4gr6CQLWNRe84Jnxb01BzS7boyAUbMssD5T2vA/kHthV6IxVLv1OQa7ykvkL6FnMCtbBWdyhLlaviWjOhDvm7CJHjZkht1ckgmj20Q7kJnwp5VPcI3/fcDV5ix4jilpDElG5Ukann6qGXvCvhtNKiWMNfNRuJL1scvwjnUUn1nFnM0c1YzsbJEsQud1aJ4BQZVlKkp3NnZaeEKzELfUi/bLMt5ea9zNGkvZ8o0LiYLj8wKr+SiT+haVJwz5CnCtc1i0ijX5GWHYXFj1RidlV+Fa/3GFoFS2PO3/5HJ2JQ1EgtsavEwTw1zKEzMOtOrZdtl6MuBMX19TwqRhpThq5YweoXoqqS820g3XZFoXYC/oo5fzikCS34XuzEdVrtJY1Zc8c21uMjWe/YHjFSYZtuxwkIdHPngh05eJU7FXndwrf+cMkopKRVHG56mHrp82PfCpVO/8szJHSN0TApao8WQ2mw2JsqqBqvTMANmWyV13i/F13XEot8pvPiv9p/2wsyczjsCT/jZ/NwKUD2LyhF70OMlsd5QbbVMj11Nv98oEIVj1bCr5F1QyHgE/YAjPS00i7UeA7smDVWcqhB17Kl0n6RVSFC4CQRkyW5g/Y2yOAOGmxr/JxRcEAGCh0sAyQS9nMII7TDPFR/mvYeCwY3xEavsXrxRkfLaVKmP/ePtcYwHweemEGOrHNIV6ViJeqUNUiqjdHe7lE6aT783BwXBhAzaaP+t0DT6K85CBjnAH6VGDPoMKQCfnlSv9Sc+6KJLobce1smbrQiL+wNpBN3xIvtqQ3B0Fi8hTnpWC0cDJxPEI5y84EmgrMbvHN1Fv93lewu6lf4jXBXhYGSN1ZMVCC+bdCaptlGb9vIm6qdg+ZoDu3CEWeYUaFk7kdiK7Wv7WXaCoQ5u0oAzVCL9BvpnliaGGItglO9L8iv0Jsr5Gb3yf4WMCg8comHe6WXmHaM9jhy4geiNSEZcmjMUEjCmxnrvLKpYCMwkx1Z5GrEOyRbp6pzBeycQq/cW7vJ8rLx7kggwzEWK9C9M/kbDioI4LR1mjG+BpMb8S3Ixvj5EHJEoXT3m9/rjfuYtDvTSC3/H+kx+mOKd4BsbrKOkp4GL4xAXjCtvcyJMTnnPY/xQoSiwOf/Vt0RlkJU6ELV57jS2DIgoFl2UvaLXHZX7VgdNdFZd/8L7h0e3YdM3CT71tsyVPJWnbtwgFVlDkveXj5OaMu2ZHR4wbooVt9H0TDYPQOn59OgOlJ+L8im/ot18gaKDabblkLuRRo/WPMq1/+uWHzzSeEE8EEhmPhd/HUQU0E29f3a1OfFyjnbCVGo9/zlW+NR8KeE0x624O34oTYCZTDzCU3XRPncyCy80BQaVxxv3ri7lhfXeHh2HYCF5VjP/uSmwZFDKBdqhskf0jsOim2diHc7n+fnEJlANe+sexrbfoRoRkkTrA5jq5hTgMNKGQDZR/MkwEYWulGBT3lijMp+wppLdKj4q+i2e6MOwaE0+98jDLgPOWt8FhKSIrTLU6iAX0LjUyBW8WDjakuF6yjFP0l7easP5V7CpoChgDrIiNJLYvX4VvgM1Aq/9BLM3msbRs4PnsXOh83ae38XeZFlUr9H7xOJhOxdpwRPOX7Mkdb2zXqPq2pZTOYy2xNzQYA5zTwEAPnKK5jB+gJbZ/Inza7twpp+w1h7Vd18odr6Vm9YF0WXdVTwMJtBKQbsEhtnRcEJ79AFEaekSWEa1i9TBCmaUR2rGdQ7MVgXeGJ8NTbbkMqlS3lhPvYrIDVte48xnnIm/wdnZHtC1UFm5msRvQ4oEEv4WRkRQ465u01lkpaoMH8gE8UMba4ZRqtdUfyXB/XZa9Dhr1rHBr/30HcYttwYWtmJTJWh2JvZApz50g1PDNO97PJGqLdsx6OpSfvV7aPnxR1abAoMHJ3iaq9z8CIKlwDMr6shNgVRNXxPHiYXaAr+o/o1U2ASF/9lz3n1WiWZHsBY4BzW2SeLWBfLF8//JClBkKzkq2IdRZoJ/vLw1eALzyYxbQc19a2Mtutp3nD+bSxXu+a68tbNIm+Lrj8NXcVSugSziRYIw37gzWgp2OmTj38ik+KQoZTycLYahR95k6YtmxhzIK5h5IjJLfu9+kXY+lNRSolacS6Y+756F2Xr+5Yia1x2B4lOYanrd3zBSm8SQOFKVH+Fk6UosOl3MQbT+qKR6mvgqPtom0dXvYHYCACZhAysVYkmItGupP/BBTeRBQi1lNpyKUj9PNMk703hzN74MukhskUhtZBFGNDosPQ2ta3c5PzzGPNTcFMUODn7Zb+e0BZ/prJcDFaat2SSFzyYflKLvcK1gpn4x4iGegLm0B1oA3CbULv9Jpo0j4BaG/5OlF+Xd1skPQMv8GlbNt55Bch0jLnlt89QfIPTD5JP6P7CHhYx4RD8u2AZgvXgCyx7Kz23wzdGVx99Ks9ygTB78GiuNlVMPX92aDwsAQwcm9xUWTZjfU0jhwzRSugtqwKOCyyQG8NPPkOSLPMnUscC5WwnAAeNERG4ZkQVrUbwg6E43aGthWq4TgUwkwVdEJweU8UDrMQmcc5KWcNgvC5GtK4NILNs1WrFF2SArI0R402b6Cl5pINxzxHPA+Ih4c02EJZu6gNAB5acWrME9Luk0sH3saykvnA215UhRFG8zg2/HjMHW0BATl6larIdYvvVobbgiU90QiJy6WS4XLInUSK51IRFYvmChnPW1XtSw9ANM3iTp3j3pXQzfS7uN8rJ2slyc5ekJLe0Cx1F27nL3QQsANd6gqVlO1MUBEsm2t+YOpSAUBKx/ogqQaBiX8EWJqlZzVruhltcLrhkkx4AeL4Vj31xgGWhUQ+97qYgIWgpTnzp0296AzYIpQdpUAWgHWkWcrPPpy5P4AifBAFAMa3SDJ9bnL8T8rkVv6sfpOSbb78pX05200PT76QHx9O6FQAnbFSPdKl/DmUT1TfHm7pH7D3DZO1snZ2YZEENFFiQ4B4Z5cjn/7ggnfsnf5bl7Tn8aw0pRnDne5PO6czzqT1bNTKu/qvRzN7Eyu8jyjzmuF5kjL8l9NyD1x2gsnzDH3ORKMsqXF3yWE09xuAEMY2CN0zAGMuVMwSmHNoHVYs+EifPoIdijmd237flzL+6OBPwZBjqa+D192Ck8tY8rnWS7JH/m1xVOH6jPaR0EEZSrYManlQxGenkOas/E5Azo03o3VZTcKicvLmwWkpUxrZggahcyNE3c7azhUmSU/dilIlYJi4MZt8HigWLsY8lz4rmkaMFaw3ftSBxAyOAGYOIutmX+uF09BmmUaQfjFNNmoPGMl9X3th+4exostTFTBzv4ZvmDARbeQfjBqRsgxiYqp52NHeNxCgHE46Xj8iJ1wR85WpSHUNwaCD3ledVrCrVx1lyu26FALK+HGc4HLshr+0cc9md3sU+nAw6uAG8JU2Vu818K2iaPQwUQ5PZZDSHCo9krGmNRXrCJ+e0tX2nhOONKsDlhyPcxgGx3VnOeBjiBB+IEwFEkKsi/WGH84QteefyQxoiBlUABmJlVaFyXhMQBqti9dxvKXfPxkODsxMpYqtV1lhTaOIqY5GBWxTlUA6ZbDtJQxtzmbe+3kzI6c3MNaZss1emndMNnSaTo4h19tj8oJx7E2dGhUzkwJ0YysoFwyorKe8oA+wILCOuTFl1bloUdJ0bFl90I7IeeyOu4W1JUFvxlktb7/8xHfDdkrCCsJfjc4qR350InjR33a/pvUfve5WdHUvy5CL7relmlTwAz6iiZvGyT3GqMBKTZQM3jgKWcy9gMydaq7luvvQ5W8/zVz+51L1FGRnynLZB6zdz6DmG6BxP2qKgef6BWrFFAeRj3ZmAC5OX65niypUEOaxcSMLrG7PCf5dmHJMmofghmJGnLhVpm84bHRPDS9fp/6srq1FxkvXPNiIUyBrENOWM7o1R/K+85Oy/jRVKg0xDTyajiRs78Tbr2AChCgPYy2sVHeUZwIVEAfrOLxc2dItCBQGSD0xn+hb/0ps/EbVW/Ot2RO5jBIWXUCDr0KsK41esvw4bPVUhvLTU+s00XX30+DMrpD8Pi5DkX6aqr72GWHR/c9u0KtvGNJnov/5UY82gS6OAb6LBHD2qWBX7X+buluC7mBFFvcHrlsx9A5h1NNI7SsMirZkYLPeyXpQEgCEZwqXyTeyslNhCuO2mK0+ySkvbLrclTA4XirZhSiglVv+ATuNg1Si6TMIGIzbDCWl3hzNSULdk1YHcJK1/YDSX3PkDs6zrTTVwu11SRhWjFsKT6o+px/pR/v86VB1UW9USr3LtQg3K+0cgytgTQV+hG8hNWvb/pffeP2+IrCZCOk2zxw1hzAE4d9rlzxVD2Lm5fGMtLA1/6foqQYSkxnIPg+ARE1+LQPNHTCy+gXKZTQ8qpuO4HZ+2Mqwl9OqcwomIJ/UL6PxPAt/EySv8NehNirhDE4l28vozqvnoSeF95ULj9qwrBHNAFhifJjFK3elyjvI7vf3xMMdfx29wmZOULVuGOmpcPqMo0UfU1ypfNELJSvOFI8rf+Zs7EryzWCXepMzxxfSFadXGvl+DEuHjCb76MdU83lg4378telGpTCbmDoVlbpbw1tzRVSTKf7POzlbMvJaKjWYWgl+RKfvz61WiK35J/BP9OKopnr2ze0JsbR3Z/gW6gdXX0BujSyJBOuodxWb7nr3wienSBxhlRbB+49MKPO10O9TqEu03SG+VtC6fZGnAqaSXGFooFWQGRMjEfrCVOcvf+SZNZYA9/ouymFFP9Ic/V3lQy2RiBG4uhpgVPLf+ggM3PYOEPFsshCfGJVFXRVg13VHlDKi/p8bBH270g/D5bcIKY+552iW/IGQ2C2tU8s1cZf/poalrd//oCTEy3J+Xrz0t4v073htOcTK0fsL+iFExpGfPJhQfGy7/8dtL6es+vsnLlDO1pkC0/IrnLOqUMK6tfTIgrJOzprCuWbocWxJSrUMJWR69+bti4tRXhHW0N9QByeDHZgWivdYYQ4a68k4QKGRA+sIY0Iy6LQHEWl8Q3ZsOPiviTVg0tCor2MisQI6MfrilS6fNoy+ycrPHoajWLYAbIOwNysOcPNOQ6Z4imkMsFY91fMB5k8FJcLoWUWvgOWxSkijgoaKg+gmCieGqhE1Ke46f9PzWflR1rsaRxag1mCh55PTxLETbouvWRhCXzF0VP39FTYwrNUqzVPztR+o4BIW9A9lyavB5IHmNtrkgI6Jj4gep/bYWnbmb7bc+xqYY7GVJu5jpJ2ijo4HiLVEyaaPC7XYjBjixu2+0vidzn6N96tW4nPh6UwN0qB9JE7z8tvydwvyU3hVCYxi1q0juMDB8JTh//UzsuRLw+8WEMt25M82LByPXTyVnNBbUvoGx2KtKYgBqRtjacD2/nBkIB9nlkVgS4Sip773bZVqY9wdqXTWtboErOMQ89SPUWAezsabUGbVuOtPp3qtSrI1+bZHlTlZmWcv3Z6Gcls3lDBwNgioPbdDE64TjcWtYLEv5DvC75h9mofSrtvw00u12l4aYLYVneRDPIlpnUB4flagxxjrdDZGL6gv7CpmnNsUxsE84DGUxi8q9eKNcMY0dcswfwqOzMX9y1u0PjCTeYzTnbKIcyv6q5gYrh3yAp6Jp0sGvJPlEN3vL5aCivfbCHPPA66rCm8gyk8HhbKM9U4kJmroW9tZi+8N2jgGtPs0/3oCptRMgkDz+N1LDPTtb/nX2UQzOyCyAnGr93LYsPwkW9b52YcPVYIHPtUy8aSF8QvvIXAHxCdhmaRCYkDGDkicfxVXPAl1nSr3kpHIfKa614l8cmGge3geLnse1RDCJvehGURhNqIczB3Cbphzl/6yoJHIuAECHRFwhmH2JIuUuMQGitpNUL4PVcgAJa3RCaaa0XqoSsOE2nGedHzB1T4zxPz1coHI+GrvXuVS8zTWD++1qpa+sdzmXqhgECOwudY4+Y4c+9O6OlT8Q4dGnqxLpW+ooKLus6Kmkme7vecbIm6UbbZ7AdppUCAJmv3Lmba9UF4GMZlKBmsXRboCBspKnBSgRIULWJUJpZuiUkRjqknby9xJ33AsFzdk0m8THNWgPx7yB/+A+xwyEz12c7lhYzwJnbLtdpdczWAWC5MizuFHO8ny4ruoKVD0n0UAY57QvQ8ypcaT1Yd6Zwz75O3bCJLPK+Nac1fG2208FeYILds15i9kobsG2BoXlW7VgVo7/2Vg2Sh19J9mC3mPrRqUB+1KLvRGGqTDs120Z2YVXwxkuU87F5dXlZDKQSa8UEgTxy8+O0HyS3KUg8SxnRG58nOrq5cUd849h0C7q757HBIoEeU12+syJB4iGH3jCgWxv0OpgsP029iGa1gObk3OZ11jWE1pHasLS6bIeGO+tKsi3JqYzgOUC/CcmquNlFPxZBLdsgearGFAK/FdgMIpDw+3dzIeyCFug4caS1fo9kaa898Ngq7MrqnNVndjvGShMvdAugiEEaFxBARUuxHiqPLfW5X6aE85xm/uRZEN2Lpj3JtOB7jEu07Z+dOseXzmG2OeF9UyAeZFzRzTCWFPaGmzpg6yGR1EwPRn3++OF9VjLn+bVuPf3EwPKTcnKsj23d/yZxuEdkiYGSDVHu5noRKv9rvvvqbd5uaIGlacgrhNvPv1LCwCjHH6URkpyjdN1CF3OYLmnrbAvMfn3ga/osYApO4QqUgvNgotxOVfg6hDeRFhGhPzmVX/7kU4RGeTOaVj8BnQov9M0FSB52Z+CQi2NWhUhdaF/2gcwc2+yL9qI3wQwzxYAkkLz2cPt79vRJAoyeKply/JH2qfmUYFtdpVPgoWEYS8G6ev/DjX6Wem4qTFwKhaUXHsOlIaCmQ14dAXeATYZ0aufob7BrJyEijPm5bzNmqXTTj5JUyANh9hMQSJeWSpDaj15L4O+eSIs93/32r9mDj332dn1Z5WCf5H1s2DMtFpr9Fq7S/5U6m1XkSyRGC5JjBaX4NRjiLedpt6s8lx/Pdc7WMI6nGvl66CvKHZK1hWLG2Y6GLn5yPF63ydm2+bEvGFJflN1XUfEY8aDyXBDDy2rc+BgzexNw9uhVr4pbn45PGWsBPzChPuRt79mCdXHlI9OxWiVgojz3uttVst7p5i6+6LOU2ZIuvjAWLIiymPHgCdXydPc1WTAPPOJULMzNDVHDe9Wn7kmmJnQOMff0r5zsHII21yl+Jnra8wsNmDfM9k5AwlBJbbOQlo4RtF4khI6PmVw/jVZ6NVLA241odYHJh7+87UCtomGBrMDf8CfC90xFuCvJiDB3PA8/SeYklXk8nkEesyvHbhvEBA3H5dZQp7kD/YRly5NdqNO1erbkvHRFE6N+UFSP9+tAFXwY0Jv5MPZDBD/pts8Yf5n1bzgJPUjPV8jEJNm2YisTV89ytlGoz6bHM0ZBU0HSviTvhVhjDxpeoK42sTdIaG0NrVu9FvA0eg7G4+3YsFQbAa+B56zB8E/N5MTVX5NOwegoMJhQot/WieN9+wNP44iTVbTf7iujm9dAN0p//D/KmHsi3KzSiRcYPMrYG40qA3+fsKgPj10QPBx1VcqT9ISl5vdmD61g7xsKS0ORBJ8qS0mtFWFfJftemHihD6/MxcIQdKfOg4x7z3dW9NyNTVqGRKkhPbtAoP959jeNK9JFXH/CcEb50U7K9eyPP/yuaPdrf2o+xUOHQuKWaJxrB2Ogzx4ZpStTuqEV6wA19OyXunMOFJGtkb5LP/0gOG0KJF27L9SaGsuTObT32qGhZ13DmPO61Yk9TUq8NtPidkeTeowTKOcgTV87KiChtqo7QNPyUL9Kp9IUgacKHsdSrSJqvIyxyBjegS6wi44QQ9b1eccTDrY4P1gYNAybSkOHFsX/NoSWusnDaQ9DzisP/mjEXxwhED1OMkUIjXVTRDXCKppF7k0X/gGmhcE+CaPcDdwg3Ehjz/0+a+d26OyHSV/SqIu3edbDm+4xNj3lZOjeBmMfP1J0wycQsjmmLQIcoA4cJzaXzQRWK5lyn9RWLrmO0zWfNU1py2+B11lBH/NURR57booD7dzhFeo6f+eNKTxhTHPRsxswt419YYXcPLHxpMNQtXt+LzV0PIxEVeGkl7eS3LrmD6fJSmxn0xDuZrsJgXu1p6QxSZBVcxk0CtcK8M+MV48mhed3z2pLj3YpYS7Ibk/Eu9ohDU3Fp6wYnPkC/nfbigcKO3Fz+REkB8sqbkwql8kIXH1SstHRF0WGdYDOfeKBL1yRfcJu81BWlSOFHkfbzTIOaSkvwnE8vcV+dL/YqQAF86wRONGQHLS+xeQVzZXzsmLcLg2mxWnAeSxklvOy5Ymae0cVE/h83KidkIS/YT6vghl+Zf+co98t03noF7GvThG/t2VS2gMTlf2b6Rxaas3nv3F9hLUHV5TMvWM2wCpO+ikZVXCjHEPvu5DfbrV0BJ9Q79k+erHzQbsAMQXUMEMAZmYRWVJXaJK53bczejcnXPSQPvQfX/kS9v3DEeUHxP5q4Uz6K+o4fh8ff6vGjQng7nNbRYTLO8Ht+iijQN5kzoX+snECQ+9WXcDEz404E7GxcTGbvsXAj0HGkMEJtd8/7FmnnEUPdYhXb4jnQwaqm9TUhGxDEnzdomLhXZYpOEAf4F9t5Khdm5R190o2VQwRydRLFE1OLC6M0uxzBbY5OQQRlUGKLB0xZpLSgD90ju4KIlBDjAgtCrNViowRm2M5zgEAxX7hIL4athTI81FWYx5T3IKok0jbLLCqWBvUhiAjywoa+Wy/MwGOu4oLU5LgbmOMT0xX35uT2CkJql5lvzUQaFHPZffyyLaUGnO2mGoR/5m5zdJBnwu0i0OqxYJo6Vd6tQB+ZgROYB0wAgntgvgyAiY8dJYe8+lVaH9u8+zSPf8VyFXb8nGT0zvZFr7hxbj683niX9yy+WnYmnMk6ohes0G9g5s9ONn5sJA38XRqDnow77yzgAYkZ7DPHZNRvW8hJWawlh1qnbLhlzt1vQnec+Rhjho5jbPPDsIvJ/baMt/gJ0k6v+bkLVRwkODlm3eZBIrHAZ6ozrtw1aWg38N9dwkvcvqpK13LxwY0Ysi+239PmPEF29Tu4n0Rnmt4gXoTidiYDdszrBzNJMlHpSWYSYXjiUmMNgloiCtTcpZC0mXHjTB0UKySBD0bZ08bFaglOtAxcQ6xwTGkNOf9zN5wa1OE1ST0ExTzDYZE3XHeK6f+qUl8VutitoheHxDQ+u4I3qM/TYzObu/+mZ5bxZCrJr8jilyxhbo0XFwbsGdMHGNeG+DrgfHBudHOsc2ti6w16l1M2y/EGLBzzaTrWt6MtK/BuQDyZagPYt0MfaQV1acPtlvdl9dz8X0hQ9JyNhhTMjXC/A2lroy/SUnAKs9PYFBfhxL5l8Gsduqexdym+7SFqK3NcJBNKOx4vb724GhlsC6NlNTORICD7U6rt3lRiAU5DjX/abVucXz0P1DxQOf5Frxnx7J0S7QERsQ4dQoBY9p703SnuTv2H8MDSUAfBcalkO2viXCctyr9mnzDC3MFtS+MbL/+hgC8Nn3PNSqyb9z952r8u0eI1drOyElUiBJB9LfE81mwm40MVDQGS5w5xiw7V3dEmBnd9P9HDJBEEnD7shRq5IWRImUkniDw2pOjMzZCmT2vP/sNdUN8wV3Hj80Vj6/ZXRbDKiCF4WzJ+/MgPfjE91Z4HjS3XrE56Ov5RUMPgCl2eXUJXnHajmzRF/y46U2qnJUgbHVVVgzFm1nxLJi0cApvTbqrfMzVEkXJ4x+SKHPcA3fds6frnMt+dLfU5ocZetLUhvKmlVh7duhw5DuZxsdRvDT4QUR9+oHRGwZGwHaplHjTHJtW8tICVL+J+ubKSf7zRWoyV5U5+smM4gXe0KcMmrMsR8W6GywvjRTAqEVA8yCeCFjf4RCbSGvDbVmhGtrSZwZ1kMYRzJ9EgZ0R4YDrPJ9BZHZN+E3mW+tSnokrTjem2bVDVH3hZlIdHJjO/HVrxbksgaEjLsE0owP3bYl3mRIBlt2vqtj08/8mxv2GyseWKesZ1CKOiZ08WylYLF4a9nN5zOi023ik1zizf+c3C3zG3RIZF8bG8skPQmsSmdOviaPXs+uTuY5+1r+XYeb9VEjWvc6R30X6TwHUJB5T9Wg9Gi9KktOOcO+Cx80GYC57kK+1nODCR+yVxPQKRYZAgGQ9ZM/63zuIaSdOiFa/PtVSjYzhtN87F/Owe+wtjh9AySrddWK7frWiLxKuCzejuDtBvPUPG3MUkg21ENsNhHtgG5uddbHAhIhE/ZfRRMMXDgoC4BiYER+jFOupXSDjDNPYGYVBOrrfyrzoRh8kR3fJWbBTeDsTjf5ZVYb263WU2TUxEItCPpRAaBj6mhSlATSbioJYZq9vroUVL/1mZrIwqXoEH18DJca26bvJ2Mq6OM6bopxoGPblcenAqN3zwCjAPQ+G2Pdwqmq+IyJVyvJbR/sO7l9yPHzdLw++VQ5vYIv4wmn45mMUJYk4XitJuR280+jy+zo0yzdbi3N8HqI2Oj5YW2gtm6lLiAL9JwqpUZFW6VAxbVSRmk00z/RRSiPkb65sT7VC52EOjwY9i0jQuhfppDaynyvwAowiV8DTFwdhSCrbzEVruiuHssOYv+17oyC0JHhQRLsu96DvQa6FY9j00ObtUzIYnK96oPLdG9TjBaJeAalI3JzZ7LWUZEal7fZwPYi/iH8WoNUhPbS8pc/K5a+IQUfaoR1TCMkSwYFljumxZrj+1qPwBFg62SPm/c43Pt78zkHS0q6H4FiF6uaAMfSg9Z1wOyK4+4KsfOpkCHIs3Q8x/t97944aKXKlJS4motX6cV3GJenGRxTc+Qpn/hBzX6ZXEyTXQKKX7OWueuoXAy6TsFnvwKKweiFye00f/9RWz6XQiGeZTw3HYsR5NUggO+2i4dWPqbIzVxgMZhnp1J4QKvOoxQAlCvEuTSvSC22uGs3gV09lEhC0REhfaRbiyAaOH1XNzcXuucL0/Ss6lzT1P9yT3NOf9bcKVHC8i0quieAJzk+w6HGfPinrdS+eQQIp6Ep9NJxfl9ZFSHR2A6/5PxkYRNXWZv9ymKLA6E3MDSt/kDM9qtIN7s7uPIlqxcp8YInR2vE6LgYXZ2nk6bk9NNYQ32T4YbsFfoiZLIL935nL9mg1j56Qb5LggtpkTlFEvsrqArCSfdEevB9Y+klJz6K1Gu0OwU+RVwTPd6hHlDckfH1NSyE0V0U1rPC351oo4z5y79yX0b42CFEuNWyUexiDWoJPxlZcIhrAIk8km4eSjWHztekmwJCyK9kOLgAcN2q6/d8w/9dsAv0OEEqRBdR3D/ywucCYSZiIhJF+RHy2KsRNlvwMY79xMe/wbFZTf7Rl963l1rTsr0Maow07ryn7bZnauIaZDG8NN0F+QFSOj/7h/aPNWM95YXchmkcOuLcAj+pOudZyLZSnTLq4Npn0KIH1C7krmkLcmNn4nKumJlKVk34VjzDJLFILBYyeVD7QOqC3FKqxWdihyszT94qESnojYZeKIYtVakaIDO1ei38SHFNNAwJs9xrH1ryAh9pUQhNaUHw+TYTayPeDmYDXMFCGKiTzkot7QFSyzhNrbZlVPliFdGzc2C0ihvfvXUGoiJvskLb1+MdIHv+E6Jloii1lemMqpHHyyZNnjm1gsE995CLN9BE824QHUcQHhwZoWo/Wn1OYVLzVG7JPltjr93F8ZvHE6/TA62a5HKSk0DtVlAqZ/iD+cunjPEjV+Jcbak/kmWfdlKsrymdvBNzluAAS8Z/z4swxBzUw8qeWoFhJCB7GkdlNTnkYUKWjQvKS+rT58nw6xKpZ39eWWb2ZfmmSoURpOAFFwd8CFAtNF7/wWwGDgLXHFYlAebJIoNT2IQfNAmrQSaA0oEfleauFvJLD9lo8TiIyWY6/T5YMObx1ed6YQ4Yna3yR0UXIqibABSQo1HStIuBK2CXCDWc+9UPq027N9R3LC+9LUBpMWY2Wv/3Jek1vV94nzvMNO6D2Z4OVkH6uGen2TxPgkC0Y19AuRl7/oCgiaie7X3Ru3Lp+/x34OgynRifvUGRvIb8Ih+j35hFp64ioqtvK6Nov4Wh3jChJMVEMPrBV68duDGS3AZvOelPQKAcf+mz2jwXdBH0qiKXQSwSa8FjvQioVfZcBN0og7lCuZpgvDZ27skc6zB+7g5MDU2bfh117K+3L+ReceOXNJgc9FfQssRhhfNNPVZ8nckSiv3UGsZYLthBDkJmIXreUGVS3NXUS81Csln25F6wshq+pkI9ql9SnpX1XduY1TT4g2ZMWTH1tKAepFEEdz0Rfsv8EtgnmtqtGMztz2omlHJPQ1FnJrx5AkYmnDnCuptmDFic0JedXKF3rnXBM6X9JlyvuFllMS0u9PQs4xfq4COMp7DyfxE3BQcU/z//Na36quxWqEtqmJua0/Qwv5S33bs7z8zMUqBPpiSxxdEo58p+2org7EKnnZwZDfS4W5xBITX7Kt7vSbbCOu6RtlgcX5fJ9pALPVyuID0OaFJ+oViLfTAYicWBsQUZlgnFXZ48uEKkDvec5rZeI2/XA/QnoVOZ+LUHAVTqL4Kro4HV67zWbLVXsmfd8BYNx0bqiHVk0F5K0aMeBa0QDXtNLtknCiw8666H9PtmqQryQFAy7T5xwAC0p2tV48C7Yj+WedqDYr9HymBivRcypBNnT8ROghUpQQ/as5OjJhry+J0cAHmF7mQPO2FpqEwr78M3l7IX1s5zdihEcwuMCAG92E/m3nO9A2bspmXayj83B/5mSMySRLU2ch2D8n60UtN6fscdzMAvAlcUXlmQlzEKv3eCUcT8Dy/euxsGBWA4nGsnciy6oqj/4o2Y+rsN3chpVuX5meSGk/j/vGw7swkETbS2RqH3Fv4OR7c/UiMHULECVtIZ87hkytkfEpy2t7I6rYRlS2+EAW+/C9myeDepyTJWUTxtK3Xl3fA8Y7KuT+4OJa+QL/1zAtQVybnexFczzpw7Vnnrto2YE2Y12KoLmFXB2u5wblMgAhvr6ilGb7do4iTjvwhN+Nzftw31jwkhOt5ywSak3iSgNP91Hk9NiYUwhVmvtOMNGVIr5npS6b6jlC6thlbHeRP21X1PjScjl5Kt3f2peu2rYEzNhgB3otzipuTRtG+BYdkBrMEKy7SuxaN12zm/ZzClH7guozKC0cuBnjby33Wz+uOP2FPZ6rBc6nsKHcterk8Mmw5yqWhrGeg6Vdz55wpKqHxWsd/Ea4IP6K0/R6Jj85vzj3FwUoFWjaMs2gV/xOjAEOJDs2xUFhRHM1Wrd24ks8ol6EUDHsyBZbJmDD9PwCF+rL3aGJjce7Uto6GHkMXQGxCI++6CRmvvsP/CrbYT5oMenlH65dG8Eq6/AW82Zf+JlFHMxqcjtHpituVz076vJS6gJ286sAIj1pmP2ajUCQ1m+ApreOdc+Ut4FtXwIRTR44xDGp7qfhQu3QaE95vVr/Zu3EyUxu/T6zrmZS2QAtwLKKBKXTZFs9v1WjvYXI04CR1VVBnbSzRMzFPA6uLR3kpctpVyqgj6cFmMHjeu+SuJ46PhGX12FoLbhSLHaWI2x7JV7NRwBZfMrBlCllJpkJ66K7N3idzXMb1b02B5rd6xieL4aZkp+zpPGTvHOXz4azRMxiRLcOuYfI85MQ9v6wATXgqx3+pjVqhZqT44KacLQUbZ5ffD3+YRrgaZRrOmFJpCI4bA9RCO7GctnrqnDolMAts+tZqYyB8px22eKLo3EBzmIDZr71ik+4YTW74ZGvnWSSdmClK0PZVczCpRO3lknaAls3OmVj8OzrS3xoVIlTZEXkBR3o6o/F4/IT03cRO/Dv+vQIi5lXDX7y2zOSwLmJ2KxXcQFLC0P7XBJo42NwxIhVqNNwjqikpR0GYCbaPpMd1cQs36DFpF8uF+kvzpiBtGnbHgXOkyKdsKOJYBTo7UmOvCe1tRDXBi51SPsjgkW+NuZmwZyX8i47tQFnjdGeev3nshSL213zthMVgcOP1n+/R/NzvcZtwKgC9+zEA1fVS6WWxdEJ91cVRbWv0i3OVC5i1BOCuciq+B60cuxAoMMYuBAiZQmNsoMJlTrKYKv6Gp5Ir+wlMFe6MD5Q85b+xK++Oly6NfKqkjbYeOohx3hDVidfVWml0kTRU36tIi+9Qkq7ug1RK7Ge36fwU4TMRs87p78H1gsYS6TbCRSVBbaxfY2V/dc+8wQfKxQWLgXwvmyKL5N5rKto8SzCPmlQkHKnVxLqvSQNUDrT/0k5c9h0mnX5wNYoXm43L9/Rq/ZU/NgwFB/i6omSfVoKDBld/I4zKd4Takpocgp4UxmIb0aaH5rMwUdWv13d5yEm18AZPZatuOhH8WzmWnV1GleUJKR08sPZSKgUfQOtMlFxeJH1qLeX2K7vNqP63wd3S/Bu78hueKExJ3bqwYvweWL/Zk8J1hQ9KJN/uvKCOlMfazRC0goRIGYTdik4vtGl/o6iR9nWXq1TwvY0H1Eh82YJ2HR40O+J7aHKBV8a45A0qxRG2b7QYOP6dnz/1M/K/0XLKTTR1+XoQr1nAF9SYcHs6C8049itutLbI9llaKYjjBX1O7oRHM50uwwG5gKgmOxktc2vOHldWUMmA51Ne/DxwesN326yGa5GcNOeGU6NdcpyCB+gqwqNoCtJFWA3buEfLW3XX7/eZ+8WQ5eXT6OopteygPam5pH6DHr8ovKkkhNeQr5AOwHX6jVSzicOp1fiNVvZVUnBAw1tLkLVoEjqri7aXiYGpd+glhT+NAdY4v9Z9htMfZ6mW8T5ij+MUn5mIovFm5DuROygv302QiNb/++2h552JlfpKs1W31+4neat5xPE6RLmHml3ZD4N1NwLC/+esNGpeUHs9TKkU/yrCep8CZ+mUJwXi013WM0AToRviz4YPXUACPDQtR/KxAxfwro5WFSdyW+HixW51cm46+7Ii5OuSc+WD9U2DJNL/z9WZolLDHUcddMl1tpAF7xF6xi8tm7T2viZLsITeD6pqOcZn5f77raS5E4ZXdh1VvUMy9wTMDlUq36hQs8dOWCXAKsH1vK4FZdFi5IBShHXbzGQU9GI/9MPKgOEHRTBgnSR+xGqG9OQyesP35kh2HwEGSibIB4qOVTOlhb3nJkZt53ZOmnM17XHrCpLO54fuRvqDk2IomgN3safmDkXSSN41z5ZhF2N8SSfqAD7uU6m0JYjnycR3KFlO1101dQH5TlSHOryID6XlFTpkjD2ZKUWfnJiIxcTfMnUDdkqTvuN0CZTxZ7BAyGZXanqGzVPI07x21D2QGORfUmVo4Nqw7dKT81+M3hSru7KoFWzKpkgmf0HLpitWJUsVAikww4bPhaMMEiJiSnLV/VdzNVbbXBxtaeVfIGW0pP57TTAcY7EggexEmly15oG06kMFVfok2XXSVUDzfhtIOios6GAGi/ri4XpE0eN9Nh7fgC0PGNeKFcCLVMtcZ/hFusQ9KbVQW7cRuNgHI1KP3eeTFVVauhp+udUrV9stCEbWigOkRcLdkw65bt5KKbx7xRq1+07hyhKjmJDPRdaQyNGUMsotjtMwwNoROrDXgwc8pGKbQI+xuGT3vWY04r/9lgNYfvxoQ4WjFU9VjZOzxOG39ZkYB7nOb2jao6rxrgh4iKyIUcBp3mAsqgIyUt8XANra0CzPSuMSkE1kkEouSbbT5yxI88QnsOXg+TCaJXNl5/FJxJ8v2yJL5WGtSsJy5Xu+FIEn8GfHHpZ3+5MJgcw6hgIv7ipdXPCxbVc7vid5ywXKBssrFfAUhtDzzUjl/w18mS+XUvDeg5DILk7CldzzULsfsfhPv2l1/UcGH3j0DWRLcG+K3u1jzc39IbNhcW/jcUJ/FT619NUGmFwfrLjUBSJJnch5tJMARSKFI65KifQIw+pV5rDa8u0sNmmkPgqVLE2mOjJIb8Gtt6shFdya60HixyqWPVIOrIV38qibL6SlZcH5yOyD166eBKxJxP2ujotMb1aPIPjfm64Du397aZDQ5cfZwU/SvS8czYZ3lp5gLt0qKt7f0Wabq3qGryOqBAXcUe3I2lb/vEqY2n8kS/ScbWaka97WH7RTBiWddsMk+n5a9j2D/eniAVbHH5OBF2M1kK1XWNxyuAacuLrYzxoA8bZmIWPF2CCd0fgm5H8fZTrSjRmvDFMm54KmsKu1LZVPEhBxzAem1lLZOACBXiCrfdeOeiRUAb8rAmkTYq8L91jVc8NrfdwNaOY4uySzhK7MF+TF1ala8BWZxoKvsZ43iiX6RkinaP8Xf51STCO9uDNB3ZsWAq54UKWQ/lazysiWz2M4hh3fwzyFdE5SkhVbfsO1Z9LybsWRHqPOmdiStUgCJ0LtXlUJFzgKCzGzOfRqHp/sc/MFLgpg9pYj4I1JNWL5TYb5Qs3qQn2bzEPzrqBrApWkx+mXQ/xHZ67w3O31SIskQZEZ8sC3E/Z6ytMWiTSzVYzVZaSDeyYrIOUClNQCzqBqeYvuJQbycAFRXaTFVmqVGejnaoCVpMp0JamzlSZdsFZ8oFX9EbvUV0HXGP2qLDuVbvCIuj1udb+Y1eiZcAHwp/0Lwndf8M2X4BCzWmnKmp1ekilm1ehQNUflCzh/UhZJu3sL5I0l4CTbb461oy7FmtEUJUK+n1shkEoh5WcKEPwm6ZnLsRWBuZcaaRCt+gGUdGGMC0jg30PmIYUWrfDn5f+9vtP9A4aIkwQAOsz7w7ZgKGwJqbx/hv3sQBiYoPkc3viklmlhyvyBFiDClYF5mFPuEwp/J/4lwoYcKqBvn+23O84dDIjEShxXsweLQSLdhWdBzMWjz1fPL1qVmNFAHSh+Czn3lUEqs16W8Ejd0ZWP47MHSBkv2igfg3hqRepP5kz6MNewXPUjq0R4Sbp/vK/iWGqP+4pt+AHH87Ycm1ovQL3SC5qgfrOVxvhutBjcQ2dGSjx0/KmzIuDwkYbF60N3rf6Kj/bs8IeO6Zp/f4hjDzWtYR4od8DtIM7233VktCEswevycIbLx0nu0Tw6QJmfN0MioidTU8afFLZ6y6eHcXK33dwfe0ojyJnds2EZP20InF6T5zckLs7XQYcO/UoyOwIb5479LLzLcBtzA0BXJGNffCLxTwmjswgDGJoOEz0yKZnqLKabM73G39D6jVyPcHJ7F51ZQWXPk/SYbHyc2gN4un3vbUHmp+k5jMcn9HOF4BoII+lbx/pMIESIlSO8XhpXHkHJiiev9YeOVueM31t+WTkTYJ2Vbq/12+/3SzqXcdQxRHdbGbeY7MKHFPaIblzzjfUbH3bxJRO75F9pRKdQv4dPQ3LjXKtDub7gChTUelhJ+Kjf+Hon3VWOXj0sykERWRPrZ1NmFABZ3FXEftzJmX57kI7H1kcDtx4o3MYwNmqPHkCKOUM2+5APESw/+QINdHei23qO1BJHSG+TQ0RQW7RU2N96Hlyw1UrW1kXwkwCSE5UE6wx7X3+yYXuiPXuRRKOtRc3qtQpSxN0fWLRvBWGHAT/a3q9yca3Wi5yI1SAU6mPTvclWXtCQoLZ/M00KqsHUDEDAL24rOfskv8b61Y5aF8IRKvPaKe8sGgrzz5CszyfRbwo890JGE/WlqidMoZC2lqFXuWkD9GNWJkcVfeYhCW6a5nq1sV8s/MutiL3OvTLl5ZKzO0+I7dI3+8wTjfnQ2wZhBSM/i1onFWBBq2xoU5ZtWagVxPxgd8VvHAygE1fCaGoJ5USvGNjtEvt0BYJ+q2qQzX+rRrVaHgzTJP3blDtavLTsimf2bsBckafFdmopFNXb2l4t+Qps+I08BNJLi3QUSgMAjDN3AhRIPeV8biP1o7Z2z/OD/AvL6y3beVvLmHmKsl3OpbcuaGG1iNiBhOgW1R+uKrZ5WuzDRIWgLl6IzMXuvvACRWQcdfqgB4cbpiL+sB9Xr44tC+1GdGLqsu0ygI/oGsa/+OuS1FaIDbb4SrBBXl0cAC7YVTIa+QWQyJEkwD0n0Gm8lRn2++iR9020xuJOuN42sxdvt1MJT14VVDYSabH2pr4sGTpa+r3gjzxr8yz997nuCDaDelB3ZYh9Cb2tnHuR+2IILswpbqEBIxGHZ7k2Pxq6mCknrl0nf4QdcyOFzUPf2ZINUvvNs6qkcyVnT0VlA6F8icpIhjqVQay3BcgJJWiKrC4rFFTgs2KXx2Nr1/q8J+Hpfznuflm8WG3sET/r2wfBgX9HilREqLiXjXJHa9OxPwhRt9SsWQGNR4JL/Rk1QTd8eTOBOUmqOUMgyYgydy2ewTxkww3Zr2KIAZsBNGCjmJ3YMuh1QxlF8PgWT3Bm2RF17pL8hEVR/ZWj8VqtOLSV/ONr8mbR3iJruthZWBglye7YLAYOpJXuzoEI5yYdzEmONN7l23hjie/9Jku0lUFBHj0xoXUlSrjSK545K4+OCVpb5Cm3q9sqDL9ksWF6Wv5QumhXPu/CEK6e6bxwzHMqaWVzjHHGZiOGwOeUfdOXcnqIwTkMI0Hvmo/fridL39DHbXMUbhNkx0B0Fxr+XQBLEnkDefJCjau1VeALSDZixhn8uu7bVremo44eFVjNkTsILBl/qeW5b5u04bL4ADqIy6Rs1kRbshf8AjdUNvkDYOiUyK3hNrVhaXu2ltlW0XPvGORdVPQXAHcjbim6sGfDVjxbI5CIf3p+KUxLWCoAKeG+l8BXhUOlWRpmqptPfqm7bnaFZK5NrkMfz+DBJ8Ec3kV4BcwHp8i7sUvmazaWhIm4FBst983b/NfBk2zqHuK34AyFQ/nmDu1WpFbWmwKTDsFGobQ/fDevpXPEaHsUYq9b3frJqT3ZypLb61Sod5KgZZN1+s0dOrhbmywWvYLeH/GEnYXl4v9FsvIwDRznAN5IGxafMtkRepqgbRZcFNGvkl9ZhDkho+lk49jgBxOWLQBG/Ck9pD0NLmJSAm34QJW6Ie+RP5MYusPZtAnkg68NMN8VnrtZuxBNHBAOhFb5WrupwQRpiCyuoWT3I7PyzZJSrCsDKfdXl08vjgEnYK0s7GTfqrfX2qJzdh9dZHt7lACdx4EXzDyvatfmQt/JmgBKruDidaB9JTrKMqUzMDFrS3SWuezelK3C+5IzpK8QbM5fOD6ZmWROqZRX85GuQajnLfAkoc30EE5/x2Zfa/TU8RmN+RbEjAEgNcIQ4yIHyx/pF7VCMTemKnhgaknLD5mWi05zeBhHCkjtJ2wxvo0Yamu5dYKc4kPcAACnPXzkFvUz6sGcXgpY7S8x7nnKjMBbyyCsn1c59VqX92UGIuP3wynFlvQoYWm0a51s3eyM7z4ETzu9SWPDGHPKM3h9gypFee17dOa2YeQXjWxbiNkhCuP/foqf6pb6xFuK/Vy4cVwSRkerp4mzYnWdOgHLnPloBTtEKcb/+nK7gkgzzzdu19tQ0Njaz1BBZnHh2ZBKQ2gV0kc9OWKtiIdsPugbgIcY0Pf4Q3Y45xboL7yP5SQektum4GhUiGYk5LWHA9Y3Y9ZS5NgGhbgColPy+WEQIgkJUFro2jVDSD6T72Ih8MOR9qAw3JXG9L8sP6RMg4Y7GRkMOTPb9VjHfCtzs8Ol8B7u11pwcNYJiVgVR3/Q8FcVRnGtxksvMW/9L3uACCTc19MZC9h5M2htRuOdw2Ek5Fu+/iypI22xYbNeW/16jPr+aM0949asAzSgQF4Tx+74bThZNurLFyveTltJX499CH5w87vuq7xeVgmwfTdlR+e+86uIgrOkC8+heAyCG9EzObVHOf9RUN6MWn7ZimsSiR4pON6ugeXD2ASxblAwKCPx0DY+SWn1//QLlF7pXDc7VfWUVuCIpu4s9VBLFkPW4RktSEOLXF6BZnvf5xenjoF0PULNrKjXIYXhfwZzBYhhMyuF3idFThhhyjS4HxDPvUmdWo+/mjitGu/+WZpQFWgTwbfAJdPhK9IQRfjEyMCE7tUOngT3FejbBpCvE2MZJER3SY0QGcy/h+yn5k7Vudjol2FMlSUhynf16dlxt+eOgqXpUo8rVBcm5JD3w5YES32+hlKfuAkFUtCUi4clNyknbDY0yUE4iBdNXx+KnwCCEsRgnPzhPYUgfzHqbI7nZA+8YXuDBXLNaSHQ0u2pBwtnoY9PWDa5OzdpUB9wXan/MmNbiY+fdqZ02Vyg7YOi1isRH3VXbs+aFmdd/jIFC/PehSzjbjZWop0UssNARZ5nT08vyzDZbvmFu258dyKY1//awvHxr+k97eG9XmUDQws+5mb9Mkw8JnJ2d/5XWqcHJa/lJbB+sfoJmNxBUKLdU2b9O7zOvP4dly2YYA3KMMamxppV0Xjm83QeSnswZr89l2kKZlmv/1G5H/5XtFnMM9YTJYRvDqGNYhzHLPFSWKUlg4RRUtpdYdRxaeBxlk8Dxk+sAOwa2GTv2cqrJ6Jkr5Ms26Io6K16l7/7rVCn3ldPkIdEB5SfeYrdOyJXTVkJYvTSKfv1Xrv9ZGUJCB5yMy2x3YK2waYoR7xDYQ+fhkTYpXC+MmoLE+YrUv2a105LjFFg/UPziEWn0+77keEhVXtTla5CGoQzdFziP7M1AddU6OL2plks8I0Kme7OTg61m/GvyDRCoeLCP8fVxpkXM4g85hzXvu4db4epZUFkBcji/M+T7vuDvNjDB1KbyQaXTYD7xYYDMtmHBWj0Irn8ClYZ3bYullDSqvwRNY/r+EnDsMGBtqjG1pv+ay2fq/C835ZNCecqZISzNnUkUV9EGl0uA2pJfoIxlBJjBr8dVHKQPgz1X/zVglEVZp0i8WPEX5xlSvdswc5nCmejcW3o72d7mlFXTuXrTKuX8V1m08kNd7uTKQ16m661YWBfc9gLFUP/x+KJSCVCfx2wVjRME2fKUGNQwyURlYBYPg0zPoRDk/vhRC7BsmyJstPu/BtHpLdjdEekBtYmvTiftG25tGtW7Uh0Qbcg0BrC0DvspCPbqZC3vzSQnn2LKY5700TJUDfTgWLoxOsYjW2o75ZQT3BLnJERVgO+/mDTejK53dzWE88ebfxdbkFfqdSVR69WyxNsjETI9YFE9wZULy4FN3plt8z32ja2RSTzAUh25Bc1/mrl3MGpNLogZtks617YGVQNecGDJumC8kDTGenNSBM33h3dV5hYLzAISxbUcBulYwOVGDwFvHb9hgme/DsQy04f9TxvJ7QHifPtqoSo0eZ6k68BaYq0gGItQVEhRz2vSIOacSCWj0zbatnf/wJg4xWOHGi6fVrFMRwHdtwWDlprjZ8hwsRI8ccKfZ5S/YoV0n74cd9rHJDZ3VJl/xA1THhJ7UhFiHbVqnMDag/XzPrYSNbyEnfaZ9aYx4tO2Dwc62rwzd6jKxbiV24ma7KiEmRr2ugVBjgVkyprtmVXFrfun+JBsR7RbqTgoadcWdqg/tnb2liZ+2M4ZUOFT8a9uz7JhQR/8mJfwklr1Qil75Yqtdqd27c27tvNYnwxahNPbjAr6xYYxgmH62jSLz0NKa13sp9BpfmpGNB/OR9kWG9zv1ZrMHcuhnmuyLASGmeJhZ5/aNqePivOC04p7YezYClsF7f991igv7b4AsVJBtaZzEfxQIyQf5rlMPETUT8zR3aB17dOQqdspI+oxk3tH3IgNjkJRTCoMZe/HIHUUT8unk4B4zV/cQB641chqlwOdS9ipYtRkuBqg8rAqwe5brRFXk8vx8qPb0Qz0M3DRbtuTedkD8z06ndNlES73du/lQZWwvaaWJ11kGYuNjezFRcHBW0sCI5jiLBfOsI20oIiRPnLCpZU7/Tpr57qleIyFjVEwnfXkeNcevivXHZtj3c1tXx/vjp762cBX0wiY4F+nzhUWYBQyirxfdPndjrgboAOJtw+lqd0Lbpjv9LpgB/ZyORVA0BfULD4wp379qKyQNbkMHGh7L+OFObVqxY9z87BEv6zyTCm6SuJwdyZLLNkszTh9oG7nOYwSRbukZbcPAmyDori/DeDhPznnnr9kGMLdfC3uDyLJPHDOfFXgn04QWH/Takl0uJe1qlY2pZc4i1fylVJ5ZZhdL7u5IYE03K9MkPXn1T6eyHoAWuT5PcZODWNVUzetcSzX0pPajN9E81Fek9gKzJKSXz/wsFVYm3Oc0Wl5nalVn2n0guENZlKVKLVjng7d4o3rp39nB0LxaLI4pJFwBWfFjpLyqkJt52tkeE/d/Ajrh849lCG+M/5i8Rb7w07k421fdJuJlaOdgdpZoZdQsbjJvzfB8FuWoVcJXCmOn97j+PEsA8hgAjVix52wFSydDjXT246MeGS/QrVKeIRGnrikEziAFj0ApsrmtcwZ92dHKKYIUGQA0SA8/uX5pv1jBkf4E6eOeFcW9JsBDHxdp9sZOdY2wQ4VF2VnValvb+2/ITg8LxLqD0JKySwBHSpxyTZcL8jrfwTCqZMhbH9S8fP0ynt05JIhrsMkySyso/fEnNOXSrSnobXPCAiC22kyj0RrGZfCKAL7zytyaf3Lokwgcwy5cH49acWGTLfwbTyThTG+qbmNhdmBJLvEyzCOSoKhYSNIpjTItzRtWaWf4gGZ9olPczsVifz1uaD0vgLBXhF3axiMZiG8xaUK61KQjHkvF7zuX128Y/gAA7Hq8sbNCi7R3Krd9+9UIrLSbC8u9Y38l6tWAlQc5QyAyakl7yuAg0euwUWyC2+acsVdfUJbsFWgkuJIw1q4TlXJlsK646nU3kVm2u1xAju2RacgA4g2uSWzf91IXmGC5MTHPnsn9NMXFcEB5F0Xb6VW9SoaAd/V+TMlPk5X2sahUt3h3l56Rv5q31BJnVRz8hyzjveYhZp+Sx4oJsYY0tXo/Xxe/DvL/HAu7oOJQQqh3ZXV4ONG/HJMh3PdABxThHEwCJMjesn+nXlgk5GwOaDIfGVDNoSWmQhSHOoCUBzslBjTOH9gB5i79PbN3KxV0x5dZ4eVslm9LHIZRqDdw1X4iWTvjFi22oAHJuxYI6aCrr0EIS08/SZqjrHocFhjSrRNvF/m5twqAZBKTvyIgZTfExm+TWytRzYozG+jknQk+a9L1pfv4Uh4t90mN9aWlu7+wr+TR452kSaeY+WLaq1jR0L6I4gnj5AdbS5zSE8D7UbdEFU5smF4t1MDyS5W+Jrw09HJebiulSPFavOX8fUOD4to4eRgoCdlQe/Y6dIMn1s/FjdfPWbziapyuHujAdFbPrrYI/+GGMu8T/a3Radx2nx9ra1GOkbXdEB3dH28KNKSuUrRpdhqp3nqGkFIl7Se/7ESE4D/wUATt7CYeY7wYB9Ho3/VUMdliZHhZe4BlcSScVpN59fhT0MDKgpcHroX54JKaGFYvCy36OBdJhZA56XYB28ovs4V82hCjmSHuSeplotvCSMN4zpWDLGDbTElUvEMMR44vLTBJRtAFAH8rGJhN2CmwyjEhLLdA1pDapTrdUA128M5v5Ih8/pveG2dBHW/FdjVI7hcLTKz/c5FgIHoSoUqr8AxKjKSuyiN2ghOvCYfol0t+k+SKL0p5gQguVhkWZWrSTqcIniFIEdVX+G0UkMHHZIpvZe95/70Nrn72lROa65okUaQD0PH1DNnG5o8Cbein7j51gZTnVYakbDMn2F/vYDgTjbys00/l/hD2bRrRoyHiXKUrfWmCwNPP3aWL0r7PH5TbhZ74+A6sZaCYnikTnxGG/5Twd8q5bCDWy1thqwAW1JIFfKMMMYwb67LjTEpMwe6MwwZaEGKTojzTwgpWukvLMyhcyOx+f761mnwrcBiZHmz6T0Kdi7YW5XYD0+HoTMBLR5sVWd218TKB/Lz80Pvb83p75AgWKohhcJs4kQLlEhBu6tbNXdEEX3iTAz+F39fvyEV3T30DxwhQf6B5Xq59SnPEpMKWD2+ohDFVYIZEghn+Uu3mw7Q3wkXYZ2YVm7DZ/z/q0+pMNl82FwaIEqTVc49w/bp9rWXS6+oQFc93amhpuZgq4gYEEdrG4atPCJ4oLsZM8e7jPffmn9QOqpP6yAEpHxRTSO5N8JyflXQacL65Qdak5OtXpaBkepKi3m3x17lEExwl5U1ntV5082o+NnKgDZ4/gnMBSHuGWMo3IniWA5TbVyC7Gez/XyPJvAOUhVb+t3Wvt2bk3eWSj5OB84YqiB6m4ZsvJpi00ULIYQUaYc3pKL7puQGukKa0i46LZwfSi+mbewWajYHdn+UONsfOCE65MhiVml+QuMYb4ZJswnqAx77cnRxDn+/1bT+wAXIuvFF0UJVlfiWFhBVSVi71hE9MDOwuJ0Ui1+62oRVe5Uu0P7MqT54eEOkPBYVeGYRLGc6udx9otkbc08wdREw1/i4hMz2m4MCoAlvIEta9zFcK/sP7eTQPoTFb115OOCTplwlBgHrmRdz5P9zo6Ob+64zTnShl6iEjSPvf0FaWH9388f3l3/A+gotT8e97HZJH5fVws3XFHKRuyQC6b3A9Z9IO1hcD3QI8IFfBKfz/+Z4NGIb0bQ3igArPwmszhuAZT6ToIdgRpve+j+AhNFTdAQRqcv+VuSkb7qHVJv6dsjtyotE9lEuL5cXUgCMxRQBNizlVhh+YwUsAfPcODGQepQg4BvYpTsfDwbYverlb7XQE00Eg+aW+yGVqMJM0lnK0NbF66WRuD9wdaiay5E77ccJdEU/oMoA3rQzmy1F2SE0SHM3xekqri/3byx5esSmGWuXlzBdnVC6O/+Vk5tKXgerB6qE+N9G4MoPXC21EB8F/KUSd622L8pjjG1X8Z16+Ya4u446PO4kkM6Alzc+gueJ0WWnEUiYfWRVRZHCVpkqHIGVTfspsRFG7/ftzg8brG0mNx7a9kvWH8BotVUy4U4yAYuuSWafSmyfEYe2mlnJ6/muLyjphqHHsIQLY7YeYRSP32nQ7ci84vMnTtGRy93oJGgAjbR5Y0KeP9peeCy5TweDUkmNVeGNzb2Pn0y02yUJ8yhKVFk0hI/QKoUVrZD2eDJn+oemStnkEWt0GSmmzt4RiEXtArQLGWB2UMr7UUs2lXYftqFGWNRD8qUWcMjfREP2acGl87I40C+R5QCaLcpR/9bbzrlFERtG530s3AnbhsV2ZqLXprTPCuBRNzW0phsRHkJ56EqNMtwNPVPbnv1XK6/5+jCGEKbj0LdarulvFCEPR+V3oWLNY593AZaC+o5Lo+VKElGN2TTe13Ob+hVSJFGFp6oMfW1cp6FHSwFIMODEqf7tCnTsZ764WrmLl/D8tnnDJ8G2MF9Ztm9MlUGXjWhmXdWlh/Qh4Dsn/cfGp6ym0m7LaFFidJOWd7q/TBHVqDQ05FTN6rgVnsE5+3sqwOB7lf80xXsB1rczYN5WQqrshdZOQiztADRxWhiQI7CpSdlkKWj5jBtnetb6l/13wGMsNT/Cm/L6qduZ2cOVEc0KU641VoY/GZaRZlbQiajGH7P0fJOlcsa74Tpxb1Ku89MtlFpSLnGJvtxHsWdFxNleCPB85sOw3V3HoA+GpT6Oo4aKOkECILnvtgPDAl+BZ67JTAYf7WbXpMAJn7sjKCdmdbbVs4C90mgSKCrxQHbSz147dqCDAN4iw8+dzrdsIM+ZMI1tYj/Itd3UfKA/4Q2kx6+ie0a6rjByGIADvpvbELo/y2OhMRs2i4Mg1rGcEhxTQtw4HBjInKnomr55jQkc3CBptDDn0vgSILD6WQmg5PR3gRKqTKwLwSl3l7fYCODEQJamKpH+/lulBptzQDftmgyZQtbYWjkEPqOsTIrEk/fhyirWQ0r0Png+bRqtAqbOTr2lwipmZi+L1HAaP+ERmOF3jgKLBRVyd1ZWNxbY0i2OVkL8ef69Y3LIyCxJ/rp9QAIbhFRObZXpUDcriMAxo4aJ1rWPcfK/UbGBW8vBpfyqh3nskyNJFPdU1NdwcFFmRUSZq1P9XYIGrje3bIBwl3NlHiycDCAT1CXkzrGiFaeXcNT1Gof3FEt6EVs3PxZz5ch9yhSy6uRkMYZlypfrk4ogxGP93EKz1QBLk9/IggAdZmlG4MMifSvP40Txw4PBVKK5C4dlqH8yz6z1zOyPzL/VqFsxvXrGX/5Ndgpu6aq9SlrB2S0rujHt6pmRra+IRNBcThohyu5doLyy6S1og+nsBsuDNs/fExS8ciC8TwpJg3brVu6bC1hK0gZ7HRBZ4PvUffCAcusKF0xVU3SdmQEBX9XdS27tOXISVYVe497SZEPcqKfB/uj91BC4gH2FYOusar+jjd782k2noU9zFeV7Q37jhKKdGeS8yafhYIWIq6Hvbr33wYzhf77YAp3jR4XQg+4tTwTAb2lzdjB7q8lCC1reSaWDOLu+hABh5f6LGtlMw69Q15rQOYx/7uf8Taulr9tZSFRL+CWEmGJAPWWD5z9k65PB8pP1ovObKrFyKSQy1e/fhR21LkTmIXlquUOj5yJBNdQWPpqpQmAlC/pqIRbNQ0BCU+7zM6nKfh4dgUaxlkxDXWXA6jnegI4A0ffDgALEx9BUlOWM75p54KFbGGGz47BdSIRzSK7xufFzbEPSm/KjUUA3N6kqdBV5DbnbpQZWgDmzlgXtaCsGEeKiGeM9B56ltVbrnSK5BpROdBAZOSF6ux060VQpq7eVgB5+s1yzYrL6bmXnwFJarPTh/+jjcpiFHXgc0PZlxvRGdPwNVgYCMxwnb7SIebR4WEzO2K14V9A8/e2olPs5bEhV8AJLBasufxTTLISXGkwu4c9ozi5fuJVBjR2JYYAbodvsyGYStLm5CChKHYqf3KR0B9aEQ6lKL1is2hJwDsU8KYT713ZBMJyo9u7rWrLUHYOC4ZpBU232Osej+9wG0rtnukLulFi0HSwRGOoqvzovW7xvISX98knbMecUOPnpqhMqQoWlJl3SxtPZArmUIbdFRf1FmgtddR+733Bne81dmAnV6HOa/hB+MsAm1KGjJMCxSo9mMYsND15b/2yCFjNwZXufdQIFORRFwuov80mQwWlWKTPOo/oPnCfQFeVQVst44t5X3a0JfOQOYeoba1jA0edd9hboTLZ8tSDg1LwaM0GgAWV1lEy5Q0GtnY9zYzs/l8BX0D/r/SwQkKLpwmNNWfpsV1qU3cXIgO94MTTFBkJpK/7qfh4Jc90XBHTqJNwjkRsM2L3xpY82QW9TI1Vh45ZpDMytNJIc/Ql+7fpIuDVu6GFma8aUKpYAMl28nhCM5mZrCr+ENR2UaVgrSQZKmiBtz/EIa5rqfYwBnKlVVKA+/CPukzX2QRz2c1HSgKkFxDxelEddR1oKPB7YOqnMptwHi1Ghi+Gn+FQc7LiKf+bV7eJQPt8hH19lW2exFlZzuRxuPNZlMh9o7bkfQdtd4D+MDcCE560cQRtyfW2XAyKxTEvhJZT9OV4uIrvWEDa51YRK0CYqCjqfo9xyI+Wu7zwgM/Z0/qczpAEZDT2KmHzrjjjF48SiE3jktd9U+hYbUBKVi1ftINVaK7G9xH11VRtG5jjKAWXygk3FCtKebkq6j09AJAwq98mPO/RDp7EMuN1VOofoRxMeGzjJGCzPvhEJtFJfqqGdpQ0KFvRllqEWk/jULD5qevcTcKlgxH+KwFOZ5eS11Jc962ky/GsyjBrk5NaKn8cWhbqN4SeXz+cMCXKbFBUctBbK3GYHkjL/BxjITkhSMOxnfHJuari/6oONhPWQh5c4SLCojDdaXtH6AV2SYFgrq893MULwDpGvbtBx1IPTZHW18xUOYKWHP7RQVS6A81/EGku7jH4JYIO5+PGAfKJZPlIU/LcajKI9OT9ykE6sMx7/h4zWU55JFVMeE5EN0H++d+oyWPcuuNVM7uTB1cUCt3yVhXA7wBrovDs6+Umb5+k/i+osUNXD4PZ2y7eRSzYSsHtkRTlunN9mlAklIijPhWGB7xXRLA5S13mXV5j0aez/xx3ESuTY1VtbebqynpSkGhBt9OOsxeE/OAOZZQaTbInJ9Q/o5z6/qCSXBaewiJA9yYUBF9FNo4/AgZHLUVuRymzz6tNS8a9MtDikzf8UBYDJ1cNb3En+ZekOmwJI742rs4lv2e4eNldwEHXBHCwpUxzLuSVX8osBboxPDnBY2/LoWra6vlQsmn1qVpghtW+WTZMDTvtWWh9SeymC9Dus9ziylIk10ZbOzeO0tMvlj/ls048R97EfSAVPjgXBwPr9to51a+qMbZor+7i3Ygx8Li2XmZOnmFGTItFDxNRWP21OBq3cfjTCysYaRLu1uBPocJr/TWOLnqdHCFxzG1ZpX7mBY/YiCjsS98aVC508sCDPBQNQqK96luqxJdqWdsPBc6n17cVe4PJrJhGKNpLyMl6CjGOFCZ12vij7M45IT5v0Ri7ujh5kJPb8WMWgCHJnRGlqHlcFRONOhQUhqqNrFkJKQTX6aCRurR/559qH99YmlqSBnEVIlRk/rSz875kdLlWej79wQnyLLhAsO4jjUSK+HX7WpPdn4trQXsLD79+S6DIpVeSylwsYT++XNBXSwbFAJf4e+eckvk9pak0p4AVKu+8WGOotn0AQR55Vpt1H3/COvgvfoWxc8wFX382Z0hgNl8NEJvozZB6mWkGEwhvd+wBRJPrb/M933f9ziXWYrt7Xqw1sYjdBJEsXdLw1NWoEX+NUjuIJYx8KVFhRK5XivAYlfMyYmXpvsjjV0kE+Q/X4am7PIlYkzud5s1F0+cIxFk2OD4qHOugLdz7MalERlLiIkh3iOlzdXpmNes2BXqZXC3ExOT6zkXaefkR9G6m2F/l341ZAljTRE7JwZo79+0RMDOf2OVpqbDcQw/1TQ681PPgwAHOmf+Fj6pJZJc9BgUc4bdjQyNNQGMPLNqocn+kiYI3E7nXVEF46WYzYzIQFC/d2KKc7oKjaLduond+y5C4onR7D/4j1MBZeyk07D/5wi6wzsegQ1W5CMwr0D6lyYIM9ZbjmA7NPcbC4GDb4lQCDfMdcIIP2Xk8qfCDs9e0IK4wI2o0pjri7AwpQ4MJpH72JlmkhwtJV4KRT2jzX1tsXalJWgKxOWHFZ5PCvWsGSF7RARw8gnSKdJBLEfyILU1/CKRuI+W73LPT2gkpGYx/UbDAZEMdCgP8YghiuettvcWNBY0+gcjDAt5uga5audnSOkmAi6WtiyCeLEe/HTuH6/GcoHAQAdPvKB+6mYgz45sJkAcjVWlB64h/QzwpgEyynIZL9H2TYxnBO/UDWSeaWeAEFRwWAnNGV7bU4nTDNgt7qA5qcRxGV3QLKne9dAz1EG+Ix1GrKTqY6jJGcS0OibG+ydeB8M2PxWaTmTSWoxtlzXK1yFsmTQCPR+BSRG06lCNy+7EyGtnCZb9J1ETSWJ67Gsq7ctvMUrMOgpRGTJOty4GI+PiFiKhw/Nd9hnbqMNrYZ+Ts8y5nU6i3D/tzOUcj1Fia0ZnjYT3OTLviXCAUyP8rADZVqosmYTtzNTkE6DcuUe6kvfpGvhWOHFYRDWOt4iQzAChHODpwZaUyety/Heg4BKHqccbyB5hQhE8iXlnCqvuBfFkmU1Xf4brgRxTl3buKziUXS2CjkFFvaUXCYnu1fryLMP1MIBRAnGEIjcrWhG8rkmTiglHhKnBn9apDl9YlvAT6Jdu4FbN4ERWEyBiLW2B/89hCnKfPVNiB3B2RR2XgqPaWEVWPK/o/sZDtBo+zgPu1yMyuw2Gn6lG94LFhW548P9TiTml/TZGcx/7RR8XOa+qnRGCjS6gwwlqBpsNq6GaqmEyW/nw+puxfhXZxi+zsdPCesIls+5YmKUkN5bWGBX3nduamopZaUwRK7Tqv6KoCFf/GrcjMcSXrpm7yn9F2iKHGwZl2CUoOVqgYdfrRmCIGAjvGeDJp/RmguFaXMX460Ezzych7dpEmlRc2N/ulJ8T5BSX/r7brF2QaksssltsXLAmqfcx+rqHNPIXN+wde3sxVNH5U7BsiiDFfX+8NcJqDePG3OeK6Ij1ImVW+1QJO4QTViGs6M67Ip5TrWV6SF7EPqyQ47xJJceAwJFQO+oeaf4Rw+0j24WowQ1Hnd5LnuD1eeRIt7XcBAtvPvwxXJe5ZV0AdICauUvdfhFTKpXdJmypB3kZd82jSDci58BWXL16CaTgScrhrYCiXaEWzCKqcFXsIHX17FK041DiCeWMuC1ODBDEqya/LagZQw5nxyQ2SuDSBAQ1vdRGOxoOKIA2A5Eug+iKYKHvYdbP8s5qnhjsiNcBbBy3eOyFBMCD16vj/7JJZ6+H5HZViEE9TCwW8eOsFsYU0aAplKTG1TgkgTTBijJjfstondzdcIDIyaw0LMptZ7rw97gkQCYibVIuT1BVzQCag2hvwF/ufvcjo9xeurzODlooiofJyhUeiHD/PSduMUJM1CAB86f/agKjgFRHHjp48TjSRVNfX2CBwCnM4MfHrRNyVgcpjr0N4VzBI/eZPAb/PzWNDBUkyuPbxOSNa7nSWwN/Q6cHub5xd13bQtMT7R/WhobWDE130ii+s6TQbJjK8bqGXpZ/681XW64ca6JKex0qzW7u4NpPV2wsI36Ox10aBtsZ32Ednw80NLTRlbYNkm3u1v/4ziPrEzwGlLVsyWMdkU+s7U35JW2LbI4F74wxycO+I4oWOtkx1Wl1M/9GrbBoKrGeu8O2pnn7gkZMMHo7ovvbYCO0els0ILaw3eaOKCRw19OQ+jTUq+Qc3HuQERDzZY2BBmANPk56xUvVwLNHWiF1v7CmSJiyw7YqBl78nmyIhnANdBt1JH3W6T7v/uJehwm07LcGcl0GCmcFvZT4aaBDzmiIEOPt5Sl5YRkZh+GBYCLES6+tLDLf9fSuPE3E8E2DPfcAPFgbgagLt7DSL2MTJ8u/2DUG1n2Ovq3UpICG52l5p4U5mRRy9/npSgcEjD6ZyfIMHqefyXWCLUvez/QbxlfM/jxkqM8DiU/KcC6YmMNxXdo3CEjCEKCqWQMeWjdyUF7glqovbduTO+Su32CW7lLVA6MgohW2pEN1K9anJ8Nl4tiJKsQvVNhSe1ojTrfGfZc7gjPWYSolZ+dnxkzDzQMAysst5NAFuSeLvqLJmYhSN+wvEs1EDRxX/NvMYuXZdNR/DMoroO9L8gI/SXPXy4E9RCz7B2gB8h/wDEOrcanTgRB3DeZBIZXvnL89Apw9hgW0PNTLlnfkkwDuhkI0wAafPXM2DU1A0UGKbiqHFupOu4EMg0p/m9xYgbaxi6Oei49djnupXn/1ZiZFBIRFIXc4WPHE3GgoQx63l525DfdqDwdmvMmOd2L1sgf/s8J2ahzANlN6RjiOswkCy2UKmZDmfON4JZWr+SsTlQlqt3JSSL0UGyz95PUTFiQ4oKAyRUcu6Ba7mlxltM46g7GiwlMzuZY0ckZZsTURDEZKOwrad3ITA6vn9BBLyGV8TNh6EnFhViRQ0DHpnJMVT50k5chMm4wT1tBaJSWTvBk2HWA7MREEThkdidhVSfA4Z+Bl/wd5jLv/cHoIVU98L9aWUCUMYN5/pktv1Bh9RHD7loAt6cB6o8CveSmkjC/3le5VcIUjDt7vL0/nGlnnZAIhqurR/StTqRvSc4ivxAX5YSIp7MjDLMHOMcO7DMGjDlTGUPAyHCAenlK7q1jQopuX4tTB6OQ63QswXsfP4X5hBqHQWqJJf/fX6vAtpJuM4Bq4z61WvAVKciQf+iiXHDoshEzXWva6i+MvakFRR2s7PNFH7PHnpuvKor7hXeUCN5JFMKcGCPzMdaF4Vu67afBfdck2Br/n4jctIcMtJujH0yAUNycKaqfy3UqOp6cbOmDMCeK9oX5suioqsF+Z04LRYHxS/Q1V5AWpQy0DBuGb6PXqhM+PkU+8gZHcEHJD6HNfI/F97U1l8EBhL7CyoaXvYN1GQUY5CC1btEb0QS+E8uArbRA3Vyt2lzC+W0ZawMMPC9JgOFRlO9wD98mPhvq02O9FtRs2ElczqgRxh7EQFwb7dQdQlBjvdrWnTDOibvjhCasHkqrNb0645vIPLW6Al0/ZZBImeWNeSg1BI+Wek9vbHUG85KqQRoKlm9bVnIypPVPkFJhIBeJcxz+yzAdmoXBs6ZmKCJOJZU43ND0InVCQs0STQEHRe9aQrnqGDlUJSO2oWZjwb9pBFzORqBhRpcPFo3iOxlJXBAdpYqqOoyCTWh9kazmrahAmDZh4P2sOgKygDfLTipSAzE6SQe21NauRUNPB000nU1yc8whjua72o5eZe4LF9WwZOn+tSz0j6QzGZdU1RGOWyLqv2zb/EVlQZ+Dxvo+YZO2g3o7Ft95TLRvXNpCXgmvuRkfso1UaiDdGS/BzKSITNdz9IV9HUnlizRcQnrbsgEQH9OmFqBGq/9TODyI+kOXQj0eqJlAfKrle4HhW3aDGIb49zO7hTO3O2nZPLCMs6uuNc4ZIpPooKG1IpbAOa5jUNmQYoa/JJxT2cN9RiNXDM/a1UGa2UX1KYjLC3IWM/WwG3g74dMbiKNaNb0vNnvuDaE259PqZ79+xtbzIuPxUNM+bflg+wXEIPczJC7nSywO91oRbwoSS81cL8U+o6t97Z/oIqiIxTj0+4QDWUOCSCsm3mmHmQQEEhuvGTib7dIq69o/Fg2tYsTnYPG8b62NHWlzanKkNvNBSD1l1mzcOFNPuP6IJgzhBpmVcaMGyhMWc3PcesflkDIdCLdSQfj+080CuHVlWVVosl2s0/5gfhv1xPwliaZlJ1KRzap9OEB6ItI4L5A0dMofQPxPLs43rJRv+xZ0W9z5+xbnJbcYJCFIlpLtVq6BJDAW9Dmno3kn6GRucdai+t/0epNLvMUlM0kqs1mV8542HDOdzRBqEDudJ/9Q04Jk36Bb9bWwdufJJ0AAStmZ/G4KJZX0jNnXQW8pAE/djTO5CoGB7cO1bOtgCPFYDvNfETAQhMkmxonKbj2PDxGgvubrghKJPT2l2OwmRq4fkCmT4mpHpsLa0TJLYQ9a7HVmZaMe+CsPtFvpyOA24wP2u7EuJKzI0jmW7Ldy4XB9aBGQZwE7Qekzet26BeYky03m/dOfX8aHFejBeMfMZfxcVx2RvcVXjPeY2Ukb189LV/dRHa9kAt45nNuV/Wp9Tt9sIU/GufiurEpQ9bYven9kOBGs9uWExPhZskQHVmCFZKw0eB/TkQ5YKifMadUITE9RHsnsY/GG5wmBY5jafH2ostyIlFCU5JTU3Wamm0NZ6tnW5Y4mTN6zAdmT2dNJwkFcUg5LbAs9sgoEqToH0Nz8XmHmFix+snP9wm2kixmwf7WsMsOXwT3LglAY3vkWQ15Rfd8yrzhkzuWZ9/aQHnsZE10FGyFPR24JSREXqt8FIFjS+9ojH7sDq0TE6fEy7XxZEG8mhZL76hYNvSdz3u3xCwT+33N1RXR7InmiLDt/c3oa5geuXg42oPK267/2b1o1+WFOWWru37lDcJQTM9/KzbZ5pPhZ5I9il7xVQUglwJTP4JMKzqragIzKw9m0y73ton8H7dHeNb8ZkjhVNxQaxJVOlhFjp5BGm6EAj0WD/OZUE9d4GLMDz802gzY5DKfB87zL3Go3vTb9T7L8802+ghUlzPYGL3bGaI5Ud2WLhqjROx+Ks8FSzn0ZfeKGtdJOrw9K6jaJLciIW3two2AWG5tjAOTy4MTXVz2D2OI+wEksDtHhb6ha/UgbOinlMK1sr1lIjly3UvtbDy8Foz8ni8ew4hAh63Bzerbi6jcPEbZQNft2Z4bHpB27ZSRu0IRAQBZQWUXaX895/A+tsI2CFt006shD20uosYEE0GS07kEllrqiKmHkDJuBDl0NHTVLsbOjPqL2cvKxsQE8hMebhIe/MikIshGDtA/GxPl6I2GZd/Mbc9WUIXDggchzZmUtzD7XjGkh91/SL0SaBX9CDZs+TXdq5hAVXg/ks0LqIM05twp2sbrig7/F3Fi+JpcB5nlROv4HwyRsxzfciHK+P01QrwzACpBQOQcSkBhG8m59rAP1/qjC4Z3xtXWOYigwXQIODqhN+OHe+fEeg9c3g6YBiiKEkx4gP9rAiUOVOW9WexyL23Iqn4KKL+gKO58lAFepSwYErlg4Pb9jsPzuseI3ca2M9Wra922p1m+53H6aeBUUX/dnANmGU3G3eHJbBT2QhFBKEkVLRI/2KZ/jLGJi5jP/AbBrUhHwu+Q/xM1BFvjNs+nwaGKZI2AWIOCZbV0xS83eaCdeSHXUyqB1y6QWIJWUYl1DGxuVNY8rEo6+jef5y4DarNbl+BIKfMHM4D3zWSkHJ6DnEB+drA4dW/xWaADW1p3w0oQdAZWF8TqajTcU+VJHRwqae/sImZKp7K4dhxAI9nGUdS+TuoSIu9vbp7r4UVNeraTTSd7l3af6ahfTwBbJbnZhpWe507QeHJE009mndrs1CRUIo46hD4mbBp9xkVKG/Yc/vT6xefSGhqG3egX0JZeqawyGty8J7erzSmXt52d2Rdkp7LTN0OrWw5bZhsK2LOttZvZbT7xFQd5lKaNOctPKVuTVqobA5gdySvIdwb+zQ/wnyM6LS83m5o/b76uWaRCmVCK066HVEKaeXv2mQ5qAAcDX97NA+ysV/K1qc8sSFth4o1y2NlDBQc4FFbhSnhx+ZMZJu9N+4CuEmBE5gqSebAuSoSVQSCvrq1qE6E3GcLb+Z9TZ4X9T+qMOQ0krAW5E+TUEq0llg/WryRfHZ/Tlx8uZyHWEbNyDzkHA0sy7+GKFrnXCgeMnYNNv/djJUUtyz3mP/ht1W5+bGZphdXmyYJmq+OXnEsbnED4M1mLV9uKF13dJlNCngfIX5atyhhoj2CVi/fRSfaGD40qhoTznnxVUJmtXVJE3OemkI4HtT7YSxG3Bp0w/WU7I36t5yVCIGxcHdyXt1jON8jeDPhXBN7pq8nlx9KnNevv7qVc8/wJ+I7gGgeBW9tMv5Uc+q3blMSaLAxMmT4k6VgYAIhObzyQDjWBXJ895hjYda1DRY/yet1kHtqQbXwMf75PzG3WhPxjIzI1oXH8h0+aYKC+GsNB2Gou3mmsHG6Fwi2Eso+EdSqlV6zBi2kYM58z17l2pAJj7jFO6nJ/H2PnAGBsR/fFfIm/e3GumL0GXFnWfS9TE4hyyEtTE6qWDvzQtTgWM7mFXWMMgbtyPdwRhLBUbtCoKfqYoe9dCZSKhFJem+Y84poCOPd877X2csEB3kPkTHCK4WHV2VNLMvbi83bbe4vUOeYK8wYX5vHAEQNMdV3Lt73sOudBGHkTtyeZZsRhgtJjihpR8CuuPOmCDMEVtKefqprozef/7ur+bKYvkMlYG9JL3FOkiebJXs4ic8S8P9AUU8snpBRzfukTTr4BNgWOCFr5fTuunmzyz38m5G86SeITywGi1+PVNXZhwpl3xxaCfm89yVP3rxn3wvNNsTFbzpBRSZDtRluuNA3M5NclHZHHbf57e8CVmWA+Sp/sdtvKDnGlgx3aDi235uZ81RKO4M9GMHaAhp5hWrNdKgopOvKsaxHRxTWcEcQTzNS446NnEM8UOkkn+Mko3PfFvTP3kBi98Rtzlw3P0wPf5i3ETyKNcpi6dnUkEKhOZ/s9c3rcQtre2IQjRQ+0yoHh+oeNuxRCwcU1tBA2wZjoPOL2aRT1oiz24XYHtms+hjQMgoblHqCoBBn0gj6J5FdeFx3aE+6SUhCPAPtkg57JncR08/BgfYDPUAWHBwcYbLNJ2OVUxZ2EU9nJ+amFWCkeLUWaiHm0UIzQMASQQVoJ5DqQVm1ZkoltWXy4BQfslJSZcjXCTw+nf+97NtNj7xgdilcFaEP4gJxVYh8qtuSP3Cg9EBdhFWMd85JpeQvF59W/pviUEdgDxY5rTYwUb+y2So2iu9BK+jhOv7m7tqw+KNRTblvtehrJU+oHbBdMFCrmV1RGXU+g7sSnioAKFSHdNZVQBQzc79exmKBTU1hfNN/Fn73PWab37ZTQXaSpHBJk9Cm3/sFLEHPdmpvDUquBEOIndp708ikSChHdLuZsQJ164bE6iwh7j/dPUu/MbRk0iXIqIGiN6vmc9Y2Q1fuekeI9ClK7AyLEkMxuEX6ixUyB5dLxfnsmHGBuMfb9N1Czf30v4wS5+3yRfbieF03xfKyDsynxaUQPqFYHtBQgeNPGdo80UpQb44VLhK37BqN8TvLnZFCLzi/QSn78J9ADQ9xKK1kQ2T6ICTkbC/MdskRGxdtpcX6sNbL/004OTRSp9I+PBo91Y3M90iU2r7PPCMbmkaPhDgXxOxxaLcWmtnmFZrtAgdEDEQ1qGskaKK32zPF/Pg22LlhESUH4Cp2YdS/0HsU/rZbp716ena5PTFtkPR2X4436mpQr0lBonnGSAYnk8AuXpcRDGTQUEGWXyiqdruX0BJz+ns9SsQvSgobkR3YUOKgBWAXIwZs72KAbT0r/B4s3+PKLe5EXlSh5qtdUClujAeN25F7pGlg/606CcUlksuDHhv8Na8QdssXBux+a9achCbbTWK18VibpOmaL6g7Ziylgv1gzNJKCLfm99L1x3KcO4pM3gJss/uH8L04r0SxNKTMoQ3JTY+NDmPbWD6f1N9wVnRkQfJU9YFXw2CcP4pgjaoQOLijssDNw5SSx/aE1R/ty/n4rR0ecuCAtg5mda1t7YRkIZkuw0aNAPxmvAsFzYvGNyHUL+buoY49tfte7+agDRyoujuvRgv2nuWTRPry0A4lUCdp6nr16eyhkAJ+vznvWndsx8SnfVXbT1we3t1tONzmpwK+wM3si9WYpGXRjWbKQyfHK0aNcCQ7L74zQ24K0r4r+/8Fv3W+iklyCOrFCaIe29TjX1sIyley5C2u+ecOL7ffPbx01e8eWSty3BHOinKuNNvTEucD6zxlRgmuCvKsJdWE5k/XkPLKtm0QjjDNG57TlEiDPQOx9GbBhZ9Y9uZq9t7IqvOsV7udRJZiZdAdiDO+pkVClOv3lQSQlhlxhZyK+gF2xBpiTYy/RNzmxmgcIFZ6FGKnTub26gAdThyIGGG+xWjuqROB4wA27NS0jxlUMtKbEbS1WylgIXvBn9mLAId7dk7STBf1LELFDeOeF6LSsNYWCkJhdnZmMIGphV1WxMnzdq2ksBiWpmbyh0itEvJnzX/SfdbDEsJ8HCaYTNQOehNWD1+8QBl3zlNJ8rz/xzKVx6Lgojr2DjH0OCcFVX7qBvywaSpfYlT2SVb+swagjenCusQJkwBaDqslh1OnGooOh5fDN5Zz7GQ7XZFhzQsalyhViZ1NUPNgXCcbtG0xh4sYHoxDgC2g2MY5Q8l6+OWJSrRAKe3iRXAddUyGtoF70Vh7invh4V0946V6CmVfCSdhLb83ce9vXKM5/vXE3xRM2Deh5U71b8yOsOPELWMr5/BgJGSu/ygO2PE9nIecU9JIi6fO9o7CjXdamHqKVnyhdKLFQcMtnTYrQ43Y5OIR85SYmWU21KcTT6n5zqDMe1fbSe1uOZd/HzyiN+hJ+jnVX6fLTwnchUrZ3SRDag2o16oCFlcqRp7XKKsy4fozAY4kNbCMKXjWA5KU/ZJMdFqIxfR5ttpgNrIdTBgJbcv4w/TywAD+JCmrTxyGxtDs8uw3Bl93rsBL6Drl3oOiKmpGuQvYNLRMPqBygEDEQfAZx2CAYxrsOQ0LH/wBsnnlNWEinKJVnEM76ue462wJz9gkiy3Ii8OZEqzbSbZQSEYi23/eIYgzeHpUdIV25scFtrLmqsLLZG9uksSEwoakDsdRAMTTDuDt1S+et/Dmn/sLHwoiIR4gewQEG2BBdUzfMpqWXlvBzivE+9Va+VbB/wwLbWUo6VaNXf8gHsqPCUy3/eA8C6a5tYhQwt0fPA6b4AZl5yw5uievTSQhlZWVuSnE5rx5OJoa/rPhUAU6uEYO5O/1OMooVOCvNa14uHsyQrhfu8pLnmvCU/uxIslA2ZOIrKNGK4jIe+2Vv30sIs2EDGRKDQ8ovqjupnzDmi3FtxOBP4GsloBYZOAMjXRVFjo7HrQ+nvIIXSysCkrQ9havJRDR3Oj3oI0ColyaA0FSpDlhwCnbsyUIrvc4Qv05QhNYi94ymddj0HHF3d6vEhYLaES4Sr5RiG+Bt8KmoljqGTPX0Ds+mcumZJDEi6Xc7YZ5fqrvPfaHVtsXLefIEiel1gXfPUzIKA2mHFIrgGdI/KkjhARd9zn91jSyzrl+oY2eoOSF6bnS/GSUCv24hLk/xDBqdOXHONEfAMBRsozU9arqHiH6ed2cUh4bMt+k6AzUll0Ih1Ertu0G+pwpm20cBCnoOb56wjx39J2lYeFGO6nqkFkUQ/GK/7gUkJN022vIosJGo5NR+/1Duf9gsNJbttjDbLJGOoCJfYocWjdrq0Xmsip560knJBeW/kCGEKqtFsPdnrVUjV2vQdCOQBydkiJM1uw7WMxnZyIwhqekBtGoOOFxm+Di4/DSztC8eSxjHOPD7K9Efbql+Mq9hdqVDn5MKDAiwq7Wrhn5zdhyoaKPgfxkDLkuZJAG5ICr/Qelu+hNNzAGDqP8egIMM+Tx0bXQvJgtiWgYQyOEzO+YWeWnI8MKwy1/igwHHrTO4xR6UdkeL9riRXL3cfCSh1Jda+jIEV0RIa5Po5nwo3Rgub3ELIh8XgNdsHDB8OcwhIjqhwKSF5+04c7OWOGuzp256tz+WhECxt2CfZ7vCkyl9FrKKqIExew2N6cIGNLxakRyiCTpT32+pJLp4kuwCrqwPLzVm+G930fskvWngc2bBHZZQp6MmD879DCvw7Bz6CS3n4rq+k+dJCtf/PSAY63vxL8Oncef6UQDoSHYiZ+MdMozqWQsCHq9afzZCbR/vVZZldrAy+1OaNrjaKaqAgaqVp0BOy/OMsLjmspitiEmf09k/shdW3PqG4o0+Z6i5XfHm2hOyG2JKM9rwmILOmS56CojaHShBML25wUZ+ol0ImP2nOotyNmLNriX19IQb9blroQYSIOmG5iiuCAbOsbLKpSMEivtm2YN9Waiq12u6zvgtQKL1WditS/EdLyek9hDZNdnlGEHVh6J61U9h1eDA3+AT/6mvksZF4btAl7StxnZKc0wHtysKMPMf8T7Fiz6C9aaXkPaHGH+syfC8mgDGtEmA6lO4EPINUXgV54WVpYacoWUZxq9pULnuncFRipcy7BMC1PqFixxu7GKCG0W9xi/eAX1xhfK8jNRbvKw1OViBq/Zcgn60NLKRuNR3VgBros6r7bV/MzUgc7M02RE58KbWxU8XHDYW4t+bH/DL8+rxWRzY914cjVeSI1ElcgysGwy6pxrt57FVZG7YvjHyDSS56CCVD1qffB577b79LaCliYjuHLa7UHz83eT6hS9mLMGsGS0cqhqWevVODEW4x6qLyIVCEGy43Csgds5gOs1zOSu8xZEzOofK5TSOXgp+K1BrmtpjYXw1vxKwwHPlB/YyJa8mrNeD4/w+/D/RxYPIhl9egonhqDV82yHZUrAuFKbJhaSLMq8jA9Mg4+od+/cx5UTzoH6zCd3J/YzIG30IpNS5C3wmVzgF1gn6Vq846CCd+rXuTGKa0xvs1VqWbR0hD7gLCbAkMioF6T9Vt7+Q6F9ez3ZvTh+3qZ+9zEe2Aq2suGk2YzYU+jvfWGkU93AkzsJYDCSO5lzw6NPLMeKoAll6ftp8cH/5Le4tN7P8PS72JQ4AS8Itv5lcg2eda/AUw5LdQ7C7E4qX3MQiTVTAwYhn2eBqfG/5bl3A5UF02p9ZA/wQiPPIxeiXN/TPeqn8sTygtzbR2dlJgs/wMpcJX1lIBo2T4Dqp+Hin8sszWNT4BNmgW+i2nubP/vbQJsJC0mzt92inK15DRsXgUBvxHvxQUCA94ILb6FyIcruQR82RZEe7v3bDAfPE/9/lUvgGA/1QXH+r2niD5F4yu1nN/R788RWeX0FdCp5OrIKOAK2+B37kppsrWTb4Mq1or6JFvEebkunjdprJlNhEhwFNI51ZDQ4/h71Urw7LGkYLTMqdkALG8CfFMEC1BFXLm1kXEQQceHZB5rNBHvIdg4VEhDq8zDv4oTGUzPJQrXkFJydk6+GcDp1uJ55qm9o598lMlpmRHfy3d05JrAmxJBpWWRZDtmmSGaN8Glb6IpuZS6MVrW5SeFP0tN/QifLebNLgiR7TNEMFGIdt/mx4mbKJVEDLqmcZFhnhO9K0JVFKd9LMXhmz7fy1Dbfwnpv91OfXXIvK5bD3t2LyQF2jcttM7xb4K9nHsgklFykJMtrYqdRMNRvZOMOAMSv6G5Eqb5Umxlvj8dXaxAlbkTa7xzsFyTKXCp7fBEkuU/20Nvb7iYuj6TXqaW+jidds4QQtdKCK1/Nsq6Zhp2GEjHj74T5YfNpVGfhvcLASAbvfF2DU8OwaFQHdfLRPzFusl6eiWKNm+nVLNcxMjoG5wBIKdVlTfUrvipWBWSN6GoNQ8vWe0rrCLRdCUwZXugEY5jZ0sFp4uZu4GT7oGpuCr185l9QrCA9Of9YT5o5004ApYPHRC32UFJRRTWkRIwpItyGQhCLTPK+pS/3MSNxsn7xIecwktmW90eeKL/Naylvl2Sxhk1UdKFq8wrmKpK1R+ab4FeW3gw9R2sUw7OXUArs8xZRF9WawmB6nJJtKYZj0u9At3u/bJrvRIehxGixLzspvyM+yNNXr75J2bPrTiJlj9DaRznqmPN8KDPxo0ZffSqR2lxoQPx4VqNpl0PUgjwIfC+b9E9DH1Je9l5DTu6//KbQq7AQVRkuG8ijsfHwwkommMgS8ig55q8kjdufeagXTQiMRlDslygj55YXCSX+5PJyEd8pLHo3dpNQICWC+oWTTGaAY9fZSqfV4aDHfeq1walJ198Fb5Z2kq0jXjqY1zbxCRoAf/oH42rbRUqBT0WIYhdrZu3fk0UMibHyS+kWJ4HFH74U4SQ36vJeYBq4O5pWzheFAqza4XqsHCM9rz/KsH+ITMjo/OoskVX1VxaRZmqFImqIviTunL6RBCWH4q0jSsGsBCQrDN7ftTELwwMpt8ipIADreYB3vN2j97o/00NJJl8n8j9LtT5tw3RZRgq359TkXgmG2QCOGIVdnjedhDrSnBkHDSV+Yf/yjOwNWXR6xj08iFTYcby+q9LCuRNSwElfiG1R0GRgMNJZ/hGAZwNPJDjCIQ/Xh0BMSqQnC8ooojyiwI2RZYZ0EYAf9tJDeFjNQIOpFN87uU2pW9NC4lYAMoRyUyBsP9/AkeN/hpoQhTOUs+C2RG+A1drO1SAIntxe9JMzIKhf0su3SiL6PXboTZ9pX+jKW8RfdmeWkABiS6rDjMFSz+0KvstcNoLXN1es1HkJNIpbh1w1MtAQCLSIcvylzLUOb/zt0dcybzInYDamE5US4nnftcK6E4CQFWmDlwQOhNWyRB+i1ydG8qR8ghxakw6mZCdqiLsHHbOKcajLQFxlf50jWABvlF61vbTEksnNNRxqbHEGbpVoJucX8vUtIRig9mOHPXph1JCCiSfIC68kSRMCl3PDKCLeIlz9d0EeNrWlPYRt+KSuygXqt1jDnbbO9x06vp2kwJqSxqvZ3EqS/CuhEE+up2v82S3VkSdLTyBFplD2HB3gcQ5T9XIiovrXmtAUAUYH/vWTeIC3+qr0fK6K1LT/UUDeCfiPYJDYl4C/g7db1sXVnfx+c+D/B/2BgoyOlVmNaKsC2jlbigPJ5n5zAjWwVzy3UrLTV+uj+8ssCoBRpWhJdZqyUPjBZjX/OOJjVHbAKtVVpngXoO9mg/iGVAkY9n7fvwU+y+laMj1ewEBRH9r0NlNhhV55xYhcIolc3/MAub22XEORnalyIzcfHMnV4nqwtq+xLF5fcOEsstJ/xGHjrO1cFtJ8iPu5zn4RKWWsG8M+BNZ8NvFsRPyrcGbND627JUdMtct0hVML1HztojqCRC/77pe8RUQ2PZS34OvuMfaWaXSb/FYSu9kx391eMN0xX35BFXi5H/ngwqc6OWORDMyYnevUBE7iqcVXP1MnEWV6UjfQrzx5fgXrgVpjzMi8NLs9Tf8VsNBt4F8aWAumfNtlXkSP8aj3Rx4h8rMgApNkDUmANyznYPrlUN1ZPJoc19xLURPp7Adz3g2OUMleenRx8c0J2sZx7wzO236SGZ2EDS+t/qbd6gQ/R2f/KyuAmEfQ8DybI+INMj1RzeQ2fJjMnfrQsImOyn3VLM2luL8kLAjJq44ZtKI0LBgaZJNs3qdbMPwgYGwPNHgcMrDsmvruQDB3dWrWj64RmbbGbLPblgd9B58EaUy7kSjjP42et1LKpd6Bi2wXkknDmL5OpKWHy63KrP8AFLx/8kMLP12k83MD80g5k6Xy4t0QvvDLGlPNjHdyZsMkJi+XEMwZTOXFzrcUPSUaIPwtSFZyXv/mIWYji/d1osxiEtNp5C0qnmFAZ+OwG7tpHT3FG7nIlMPTxQINjjV2mshrzLnhrhY2/l1gW3BRBhIAIz0J5VE/3IzaRocZw1p3NL1kZX/2N1VxqW64GzjMAoqK7lpCW94BHMdenNK6oFEP/s3VeAU2J96coQclxJhAPOGojep4MvxhguJjlCtlIveHeAbj7K4/C53QbFskANE2xK5uqffUcO+u2pzyVl7+DsOVObpV5PXd00hGsmpkYDUV88YzCE8ZYKGDAgAn7IhGgsy15WHLTCB8WbRmhD/N0rNMzSGj2pGDl4T3eSHeV4p/UC9kldHp7xp0w80RD2Rg7BWXOY/W4iPQ7c3w6Cwgrxsu3nZxTHTf/60Y1no/20i4R14lzHAaCyCClHgBlsENrR0QWt7y8tDSuV2walkLTIJFM74S8il1mBM1OQQFWJDffWuZcc+RUOLPbkc+Q9l9czSoHbbrwFkLRGFI0BWQ/slSWHCtddpC7nyg5gmDhY6d3lGHZWdLJx/rYkUAc0ZuhEyehzv+Qx32TuDfx3nku0MkdgkXYnROpqK28xoOApqmrKliX9HWQBweL0KwfOn2og1QfUG+uLKTsXJuf2TX1EZwOrdAa+L0nKkft6dmiNSpbI9F/vCr8I7BuNGhmjhtI0aPyC1pte4fFje3I3+d88FpXLQ99vRalLobUDSJbY7qYfT0/UfP3Ry3wDqwgeG7hW1xvU0SJgx4nUuiYf29RRDjTydcAl1Y5sLVWDUCj1FEM/3E65wfcpqyhXgVp0d0Vxyo7JJttpjpb+dvdXotBQLxY5VntLInjkBD9grCVZxXbV+JTUd9Yhkc5BzgkkD75Z+AYH647FyM9leyYvTfbcQX+7IYKTAijFuhGN15MdRHG93tyc/aDWY4DsdKtRRh6lSeWSv6H9IlBb6MnH8EOGnqDQX+yHwOQVzx9AVek40NBo0DFZ1BB54cDZhEo4K/dvFh/1T46vMLv/GRbx9eeZevPio7i1xtpudWdUUkqc9G4KTL0B6NADT0OKBnzVQEiNsEuaeN6bR1mokvy9Hqe++7nimeXtFXwpf9AS7BOfAGSk5vtcjqqGy6CCM8PPcgVIGAmALxa1b6HlYdu5fTfep+o4v8ssvBzR+buGRTZUk4fKykdjeUPmNZLmkKsQmCrKZh6qYQ4NvpiO4qcR5T0tCJkqx/lUteW89VQ/8aB5Kzl3z//H9xvGtLUbSbsDMeVv4oGAWaZIklJ5ca1tYI29bVHP20RpfCDp7ewf+Kdo5r1yWub3uWrVoE4gcdiN72ueuPRx7nMYvbcejJDzBSExnYqLKVe3lemgY93zodspqWEgPaZIg8DxEA4C8mwdLlkGarNU7oGFSuqWFxw+4INTdQp4kO814mZn1jqt2Sy/RM/SmJEh9NVIZLFDGadfOOW+azMnKNF1Ffvqlfe5qblNkXAqINqdMlv1L+l+Womiy+j0us1xx0gVSqbXeREq1wV8xFY4nDRWM9mpRckSfyMtNOB9vMOBHnGzrZyGp7XSBZqcYDfK0v9MnYm/L0l3GEVVC2+/E5ur+Mh8UzbtMJw+91ik0sKgfJvP3133zzPQzOjfRqBqPA7+CjUgiDvUlMSchWh+/EtDx2QCRYkjPMSK1VXt1xjTu+viDeEouWp/lDxwUFsuMceRz0BnUvO8u64/guBKoGzVhmLaTcRGT2oXHy0pp15ZVuLzBOyd4vyBVWV/R9eBVbvPcQcwMb9wGnvskFivwV5l/8e7ms72Dl89tz/YBm8xAPfliQdZODsBsBksoZeD5MWyj01xMhuv0w0cUlnt1cVcGVvbYQhaMM8Xg+G8fRTE1kIlnnC4FfkloW7uXt4mEWJ2zfz/MM7HzhdrdAqf9L45zDMmlZBkKgLJFoYGl8CsaUpkzI70/TD/2SPrfkhqu7Dj8QGkQ3sZtaTZZZGfMu7xDNvbaJWWXXNTYVE/oCLvqKiAFRR+LuMhObJ5hJo+mKES1TQJBOOx9TwZs/pnGbwr/DpZGkyByHncvQ+SjDDETH9gIim0su+hOSMxk5H1scdSomjxK4g8w4G3WnpgwKAkNKS8er6d6vCVFOgLWIqT0HtEAJHeHH7yaKBVy8iZq5NuBU6QtO0xBSPC6pUy1pOZuIk6vUQswmpAVQpXmygHt42KdeUkv7Vu5kt3zWEqkztrZxjmj/rthZzI6U+V1CD2dFzzaPWhvQ0NuSjdASFxmsC2MZVxhMVla7KJfLu3jpmSk5les11dy1BEFLc00B564pceh7cPSZsEQGZzj4WtnaHVtv9bFxOSpwaiQgHWFpCDucdYfC82pEgC958t0TPyPWVqKVqilKKKpIx9T2aSGAHT2zzz6C+GgMQGZjY1kVeLjmif0+JTZ0pZh/EmHhmEFKCC2sNEjXPs3SO8qeDd+c3l4W2l5xjZkRqSVM1Uhs1IHQgCLbA5FDvqne1U38/V18iQ1RH+hs1WC+FUs7FED0KC4kg19CYabSmNIQ7iKcnIEiFg+U8eYoi2bLl4OuaNMGx3EOzT57a6Dg7oJ4nphF1iuiFQlRC5kK2gCWhbK68ywaUE8+xg2n+ZMm8JK1rsP3EAT7oVYOxbNbQDnwJfXk2S815mbRceUVVi3Y6An0UjKFoZaqXPA9Vc2Nx+9a0cBLWynNEH8TmhzFul1xtIDM0MMJLpPII+ajendnwf4AjZwFnyl19/Sm4oQOvJIWb8z5BvHlKNDwqKwqVPmR14RstS1V01mQemfY0XQYp3HPrDKIlXOF/GSwz1NIhsaDjuFeAtU60uvCcjbj+3E9VfaWvkI32hdhUhhYmyvPENshNQKbQZtIDwYsiJah+wMUyFTzRTg8IMN1t3AeRbZrffKAz9UyZ99RyQMJEiNqlKgS05jQpKS2NNskIjAGpLg8I3VIL7VBa9d7/tkPHM0efoscvVKvH1yYPZM/1ZxglLnCKkplFaHpzVttwn+a9jzyKMulinLv106/BgXy+p37Y9s+en2lA4KNPK7bU2JBwVHO1izNkyWwKo+jeIdGOUuGvZbmWI0vpaNwzQcXgJcZ5jMIUbc3CRDO6hS18OV7xwSh1AkWnDZztKhjux3800kNGXKJ7vh9RmWT/IU2WLS6DExgDte9FLs2wNtDNWwoCKb4SBEaR1XXjM2lCL9G4r4qKF8/clpQKh+KIXMBFIAB+RZwRrTfnzLy9LcdZRQvOXFmlUyNrJF4QLN3CfVJJ9DxTQoppNq2eIvgSsWBRnOi06LfEvVTwUE9RMXVzJ9bMsTRnafZMEoZ7FNaQUKJOcfY5UYzBo2rUrJQf3ls5l3bwboS74nvurGzNw59D4xcJasavQP4icHHkODti9GpZed2sWqBhOGoiHrmzt0zPy6U+qe6jiXkMsGM2/FX8/O6R4nxkbeSvTrQTpumQ7ss01EN+Eq5NyFqgKqbVQr9HOgcLJAwj+Q8P/vYTNZKNnadkRwy8qT4N9HqOVRU/2jrzeuzkGKyMCbw3y7npiFsA9vyLDoFraa/iavgcZ5tTRlnfCfnj8GOdr5akhguUN0tdysl3I5I/mJsnTcEMu8oi/YFAFDhbDF5dLYycEdl0oKjGp9N//O3Eyl6jRGoO6lUU7xcNcC+axkYp5C+wMSyUBsmKOY6cuMeMjNTZOQWxtAKMdYF5uSpQ25i/fC8vf3Pnvaxsrfaijc+jhP0IniMIKwKTMsGci/kOpDFg6ZLFSc7dpHtvjjDCrCl8GOe4S0EDTz47byjmmtqMk5/GkBwRFPF7Op2mRNOgRz62a75tO9SRZ0ZrlRBTo2Y312KqgfdbKWmIxUu51fwZii18gOZiQUK44FyH8Tm+VWl+9IRJ59bJvnoIO/QVsufFXHx7JaY3QI6kTyFAg5oSa/tG3p+Wa/RXIvneGAhA0HocOZvuVzYkHVmDbhnldeXnG9pD9ZH/nEXq4qsfIKv97AnwSuaWDtcIFd/GRp8sLavlCmjh3965FxnkJoBKXMJlFTORy8gBMtESO0RpXUAWwfoFvDirYstvhQzzDMKRUvsGqKIGEyDg/v5D6f1itIwPSPX5/wjvD78KYsjnUaw34/NOQoRx3LofJ9sbtLKL9/gvnN2iQegymrKmN1rqK+2prMH3KG+qRclQCJfMkhUru4WYvPFlD3VKw5ogBeW3gFDGGkkiyJGgtwIpY9yDv0cf+wq5WHPNLGAs62PXLWZ0B/BWT3U2H3iQmAPzqf3oU5J7wrHhXO0QbsIXdgWgKKgnsywnzWSwSHMHwSy5qtW/OMmzzKVgqOFiktyobN0itj5+ldiytlyH4HTI3uFy0oxGUNnnwsQZdGT6iKdAHhVGjUrVLqKK7m4s+Dge80I7Ot3Txnrlc5NLxDi54Q2jFi/cRRy8YE+uMqraNpQNbsvCg+CiSyzkCcd5JdfHVRQTqsuu/SWQELF7EZa2HQ7t+6PUYuLBMwQzZukkR1kZbvFAAfyOOA0+n2jhu7An7+3uN4YSZrIEylK1j/Bc3PB5lvu42Au9FFAdJTWW1B2SbiFvqb2R6tePtXfYZtFs6lcFtFdSQD8f8lS6437IFLlhrTKuH85ITzzD5DnMB+qEbDQrzzIaD6RQBrQUvk3d/y9kotnuRWYEpALyE+fDm8ZRkuPx2NfVkHFBMf+2WisaGYrl15JMY3/PF++8O2TawVEkC3RdgN70CZxylNLz32iAUG+USU4AsUIAWFDjogC7VHzfxh3xQdW0ds+wKIjZYzYjhZ/bgMC297VFGrpNDBumnROeUhSL6LigJtljGquQPWH/dYfwLtMFQ4EuCqrJEu/wlRx+WEMK2e1dWSvdLE73Wd28c3+RsYoHs4wBsG0EYstcipLG/Odv4N9j/RFps106keasVWqR9jgR7FtnV/v36QC+ntYmaytyyVfdRrEhH2F9F28+jHXnOGGdRLavxW6T1gn0RreT/43MORU8Wj1xI76UJZ1W29BefPCY+7RWzDnPpAJZxHAX9ZtNQNoRtSlsgNkiibO2sedxDxiasA2yXgZcaLp/zNmU6i4STcfeZxmU7f09l1G5mFbUfObfiKUXhgngcOS089FF3gdwBW1Y8s8jlFroXQI5oTZvEBIfA1oIJu/+Ajwt3DZZ3OXXDjobmfscyEkPIFR4osAXCtUofKjE9yKWk5+oOUDqYIYxZMHm3bUXgFfrc0uf+S6n6XAILkEjgvwWnZYcD/sPPyEBVyUgRwzI3A7n5/sYUe39RyX5TE/mxYt16sLQsWu2KN17I8NHZnM2FE55u2dyYiNeudajsZUrF7f5JIGssLzNc2Qmcj0aIfNi04beNaCs11DPslTlkHTgHwEzu9rdT3BhJuuRsiI5q3XqrI/UWwdcwX47Qg6hNYOchzepdq0CYeUl56HtxWPCCry6IlyMt1KJSWEICmn5dv5xJz85WNDa8QRTRkmNqvgbfmi8pIUNh8UTbPP6RzdXLElS+SW3fgJpSF72HP3c52GfT3J0FUOcT+5MR6xH/M1Vcr4WcjMSzMgG8qeWKxLY0w/pRux+JaTGJPaR9YuWttxUPSkbyfSoVaYRPVIvbACU8JmzTSYq3a6DCegyNyJ/O9xWc2/lPrjmjhl2jqm4FEIWj19sDlBV4i6GeMf9WxXJPWKzyW6YB4ReFjOcd9Tzjh8vokttHOpvKKYbkyYD1PsVP1SxV6lpo5DEivY1lfHtrWErX0iEhrcLzUQt/ubDtS+0nZ6we7lHobR8CP0mZr8gTiHvRyd8ADKiVZf9mwWxMfAWMlaDyjLjbcU+zR6vGhnvvJJtkAp4Akw5a0lnxpWBkjgSpGJgacB0ngPT0RXSwVphe8Xybm8am4fxdzrNYkvljBigycrnxMs/PQPSDeGl5ENzGubdrYS7jD9sRFoQbQVmFvXW1l5y+D8j31I/Bm8oNi3FkYe1ogqlyE9lkxuYC0RhKy50gt1wAGv4SCE0ImYoY/BuLLDwypAOOgtBFn1yeXcCsbvhbawuNuociXeoY0qDA4zDQ8ElKcNkGO3+XP2R2X3g1TmJm1kN8P/+CT0AWaawUdFtXjaNU79whVxyR7v8CaxHkGS7pAc/d2pQUAiujduXo6sQEBD9feTbj9EplAuoPdoz2Ji8Fcr8ZkNktSugrUBuL04JXDjHg0n3N5n+KTsxt+4ZdEPW5Fa3IEYr228/utBnUnpNG7qhJiI0SDGt0UQFK8XPLG+vQXi284I6bdBAnb71Zn9dqmVkQ0UQ6Hwn9azWxE4heZ5zpgnXBzJZiooLy6YNfwUVcshQiTCZKHyf/+yAHct4/1VixzKqq8+H2EdPYZt78NduxkRTM+Ff5wJdPEqQjps28vsQ318mt0+euAtqkYfNZoCfJULXOzWraOJg2XcO5xcocZ5xaQaU3kncZfKXqwXcovKSdsyN3Hw+sX5nb44vLfpbRh7TvLT7lbrfC7HZYM7wtnk5H0sFPu27sdwrAn2wZ38W2VX7dvCbal/mm7VjPlNllE5qoPWVLYu1DWuQ/7ECW/x5SpBnXdGIoP2+HEwMSy2Nt1iw2hAQACiAydNOyyiHJt8gmYbfbk+uIK91JOAsAbwbp60N0NQ9q13WMA0vBZRLxoRLUBqj9DH7eOsNZ7zcBEUNGECJcIeNQVwjDIPZzXnftpXwpTs0qyc2unC78GcKzUAJ9nvjGudmP/UM21ylU0zfZ7iXI3hwGL7Kni+YLOBH5ItnbF6eG4K3G51C8WcZ7hSy5gMTNrlYDotTXnW08wkgcLCJx7VrwqUpFmdQxCPkAZFGy0YSYOkLUmCYGCpV2rWqLoKuDsqkL/lib3D0Gtn23YTL34WBUFjCVzz46DC9Y9iHRZ2W+3rtouD0daTcbl8/jlZsYRQhvPhIIWVDcCp5VTlAqV1r10jivyD6aYOUjcW2sJF1u1I7l71n3TSSUbqcKbBSGNLeJDZ8glQUc44tzveQf2yL1WG7+DVNVpu8pF2Q+eWoHb/Mq7VpF/Cx7OhqRdUvrGg15mwJMS1bfhPBLDxTGEfKjMyMNVUFxOFZeIrbM+f6Hn/aQgY96Nj3GSVHM8netmb6oXam9DJHor/m6TTDIHYzoitZ3JvTp2Z66s8DBy25Kcu4+G2jYnGkmmnBNKhHsUAtxoHHKhajTSuiiivYRsPMCJaR+0m/FjpRfJcUhSjuqGOaQfJSAqmjKiJDBY4Ea+kATKOJ0f6ukPCB2l4GxAnUzPGyr80h52AvNzBmoDjn5RygNepeNRPicYgsM0Y/fftrk2M78LBGMNiegTIykZhJFBFzRumxCIKNl8GvsqzwyA+sxzQsmungLhTKwdrWr+BlJ38aNx2e+SMuBrBnUyDDyiBCzakJhcnB3jQr0ikdnqrv3Cukz4mRP1aU1paFwfI58dd01/J1WkjXyUTwfY2+RU4/gsrrah3FCUyDRM5D1MwAy/yJ2O/t8YV68tMzXSJ4tljOwJtmNEeypKrqhdkGv8zeMjEprrLkUsiejlt7dR4N5buDtfd6cxugF5d4Haa6+zsDSivm8eThBFNctS8p+YmkwsPlz6DAiULTsmCMbVuQSQFtabBAh6Ufb5eGzsGFKoQjKf2OEpWbZANGH9n6hN9tMpcvbdUcNMEiZRmpMpfB7xGlhOiAaH+cNBoHRV7iQF1fi9SxJ1d32xClbWnJSWWjRPsq2hEGew4axmirE05M5moeX58WTcorSaU6nDnZBUm1y5TQtvx3uO9Xn9aCss+jWJysg/8/gmJu1/D/AQ5XbU6moApEtzB/Qf9B7/vPyfMEXaSdtQpPZ4alSh/n3e2jZa71sFxkvDXzanD9kSVj4zSnap6oEWsmJKzTPxZ10lVGpgcknfSN751jKT0xN9AMhNO9Ov5iSF+m2E4cn8SXycJyZUhDeohkgY4AdoXXeVwAWqE9cKgyYTHgp1FNH1Smo9Ee1ZfQG0pmfEzMYSdJopRhbSMf9A+IxAu7ms0EpRTMQSegkbGvhAOKGyOlPoWIrsb50mY8/fMadw0lQwbtO+2JHI8m2910RY7eNXqHyHMuk/L6ZEv5IULWA4wVE+9IzNV6svc4YUSjb8skH4MmDpH+ojfrALyCNT5IR8TZgYaE82fzdJQU7FADmk8CLE9YMynyq/xm2tg9HC36UR4WKAX8MGvpZUnlDv0hdQI42yqpCng3Dzz8yNkbZ9Y86kFvVSjFh5SREVvhuPol8Aiv58VD3qtSUP+RxKwZawlvhbSGMYUN6CkzeyNj/bZO8MKc87vv4bEO6u6EFWVVVgKnAlUOs+XAlQo6m1rYaldqIVAerwxd7AA5OcIvEFs35TGzWuJpAl8RvKSEPTlfNHgvucyLFOZoOjgkAAH/8yUnJkiuByZBaMtTX3fyuKg5k4/qrBi1HsF3oRhjCRS9aTGxc9qbLC94qGGrOZIYU/w6Ey7WTTPAN69Uy976t1CfBHKGezdtHRWLvPN+G709vLo6gBLiRNkYbw5Li5hMAPKhSJ2diAH8bZ+4Mb19gDPcjbf1vd7vjGVAzzgIkO5XiC0WVevbDQTmF/JGX7PdEm8NQTNrvtSpYtDCmAAc9KUr3Ip3hn+IknUV/sPb8xG6LFt2PSbFSChllWvZQnYBQyxEgUSIazPkaWas0oPhOXTx9oLc2CHdloMMJfzUOaamNqi6scEkytmN5DR1e0bKFxNy4SlNRvv8BGyuqD0eQBD13BRcqidUIPVvYaON/D9tz1gzcWtF8iwnAvQh5Bre6XTHVld2luannORK+tbM8MN0QQ99bnAtyZ7H7/Ts8TMd3FFL3wc9fc4NTZBytZDtIgS7WDp+iv0tPxHIK5psT333950ZhPfr+qOio+FDktbpSU/X2owgf9+ykO8J3BNoKlKpXY7CQUcLUfAXAkEhL0xICgiA1KJsKQPUeEVqfkcREW9ltwfq8r4hwIWY3Q+qj4ESnC2WQU32LDQZIj6dQZtRviLrm52G9nV9RX9VhpGvnG56o1K4BZ4fAd7Mk+bLSniiJXkh9+ZfVoNvMyDKQeGTXOvDCFLFQWinRh46o/7S3I+IlWweIJzitbRyMIovyfHr5b/BGDSA/jtLpmuQmAjSV1kZENPlpnid+aDI5g7kQtp+hme1XaOMyCR+6g5LHZtyQxvlNRuu/2P6aAQn4Uqm33HoL1HB9s4OpjtUzaGBLIMoVBg3QqeqCDWVywxHcQRt33x92JZH3h2ek43+c2XtRZbJmY7lsYihKtXVFOZUk58iOJdq5drAlIBBpJrwDJuYY0qA87PClh/M602lzHFQc2uN/AAt4/nbqbaeuofaPrgjMkrULYsUefTC6A0m6G1uuYObIza7cDR8LDEd9p/wc4J/MoqPzgSCcuMGm2NslKn9Lbfy1gSY22xy/w0II7PTv+DPVziuFKgKaVXusSsoBNjhVy3XRZ9sJr8wKjMIt0yXWR1UaPenBthWSzzCj1eOx+702buSHNkya/q7CwrJywz+kVBJcUWFv+XIFOMIyck0Wtxmv3aNFQ4kLeZ3RcjZjB2KCHG+xwEdU13+AfmJNGDa0IVgVG9loPYFtDNg1xZ1xkNQ5QUt4q2ZTrSaTBaeBsnNQg7FoAQYmvKzJQwcQ4ckQi+o/P6co839hF+o2P7cWMr/3WjZ1haBstGMyPEhqpadi/x4ma0PAFybqyRx++BMZStLQoeK2ap8aTiH9N623FoBQw8hr0c0VAlLEAiy50QSAsa66cAqh2nhIDGWKSwfKBDwN92WLbgruQAzHqsu0gF24TqC9lUV96qCnGZxV57Wk5Om9wkp9/70BjiB9LmdEkKqJBr0vFBhTuOS9qS2yh52JvcO8QaS30THei+JKwBHE9Hz+i9Ed761Lj8w1Rw/YfzZCHXEYb0d8jxITDIu8k9oIrIE5aHJFWZcnJ2Ki/LD2D9utwg0GgOjwFYtsFGUG+i0FmDKOv5azVc6GpYSEXBSOZfj9I+AvtVp1wjUfcXfxcLUW552Dj7r0qoV/KEuIiP+w1udJxFlZPmyu51sdBsktgTkPS3lnfgbJz/M+Z7wVVt6o7kMUarDc/bzJ7omgYB0pnM4L63zd7jdYbZA9Pi85Ol045H4pawN6PapPIHBqMmBmS8ReUtH13GRkYOFfbdyzrPYmnFKj//GNYxuIWW4bY6z0ARcP4qxXyktZ2l5Ev6jV9tsAOpdV9sD4baj8rpmfLER9QOZEFwuQX8mS9oWktRWAQl3mPZuhxRAt61qdvBtrlj9884R86il9pMD6x89lZZFNSosdcXJYv7exHgkSlwPZbwI1KQOucCBJozIwXLUpGrmXQRatJXIFWF+TiXxSyqoL+9MLGoAFEBrGrj5MLfE635b1KCOhdUaEXZTXnL9JE0rkqWTOjpoGCBFHt+mlJC36bTHKL85NgXNi+V2E+/23bk5ZWxmEK/3FYwXbBQ7vjWqt6MdoIigURRYuE1InP0ik8PODCoIfoaV1BVEfA/C36tw4wW7+QjZICfKHjd+6QHhb0As4O6q+UgA8eBys6kKjNMc53K96ayASLUzExBi03ZD71QOnHH3GPw9iQRLTtnZM0vO1rv1jtS07mtXTUSNQUHV3KUZoSYl6qm3/xXPJD8rY8EDurnQXZQDo7ZiR4NmXcwhuBQG+fYG2HqdOyKPIq+F+XKD3wVdh0cjheobYhHh9kLWM7molgHLzE738yg+GKINXXO7vfr8XbmD9fUUMPK3NV73RUWpSYirW+NsDIPtPNGG8McYnvtWgmAm7GmVvMIx5SGFGiuOwpG/XTPlC7CA0MXfezeJ7nVBl2v7EzzfpaTqEKQECPV3JocccXKas10AxKMPx2Nm1hYyqr5OUzt3KT8lyKXkCEojVMrdY9q4qYEX8HJlkap3VGAfktdavMDZrPa3Bd0NU4A+PZdlJT0J0xN5G+OZsm27sQyqSjS05PrwCzLB37D4MkWUnz35qaYCR+VbiW213PjIw0kMG6EANTqm3aTUb44mNmxX6iq//LTgdY4hdAx7ahbEZGg56rprwte5lcqg+G7Npt710es/XhJyjvMwpgEfQKZYgzZemJHhC3rH1TyCUeQsXfo3J8zU8EbKpf635XPZ3k7uNfgWXP9kI4uEZTYy5nKRWNsgGCfAUu874veF/gFBhxcorRUYqHru32LCscrxrtitYmsTY/hP2aZGO8eVis8vSWJckeKg1Na37zTqvRSOtt5tPUOmkA9weQ+L+7BZMOeB+tpMWdGSQuR1XCcYhmWT2h7izl+0cyzrIqLfXn/cUm/m7jCbafylr0ZtGJdiNbbGbdmHvq9gVu2GDpVrZhrrNWEXp1aeOiEte57VI+vTro008CGL/D1NvJHYHzKmewVbtml8E5x6D7aZBCNpDlmbksr69WfEEBllAvOKqDyWE3uUcLqscALhdKT4aUaySIKtTI8Wa2IT7in2h0q9cXbVNccm/+epBDMD8RyHw14Fz3+/YAS5FCTTkz+DQ4TLVpMvY/oekmgZ22IBKlI0q7FhuOWwJPkySxa5hN99lNpD+9KA/YioZq7A4daPpz0yvU+5utKQb3eStDUkOeRU6yxPTkPeOjLF6S5BQn6+dr1rDEzets9wsNTKRQWGVSq3ONbJW0awVy0N70qrI2W14lh1QSf2A8haIgzgPMFAW2O/a972UAhSQbZY3EHURIZsIQi+Zc7ydHEaqVy6R59mRf1wp1Y7Xy0UljDLExvgJwtT/sOG94dgzh/lY2+M99BePD7x5FEoe4+btzNwDmNzXt7o4djYs8k17vrBvbjyIkUmKDIhXEneNpAVMIqVleGkeNupsaPzfsVtwZXaVjLFb+Z6gbH6kLuin+9uSBMgwgUFgFd7OwBwDB7/nRf/kQ/KydTtQhtbDRm26wrXXxlSlPgsNljtNUoCWrM6DvrjOf4ARPDbU/7SIrvjWdbPjvGGeou/ll39VJawpzbw9lzIvzwbu15aWfMhce5PYUOM3MP5itmFElA18PPPk93UeaN9YdVPQdL/nVHKt/H5ti9QmlUkMUBzsbeIJKrN93C+nLRrdflH/Dz1s1HALlsg1p9/l+iZux/s5dURjjrvQu6OV9Yokd5HiOjmIR7sJRQwqGFDt+i1R+6/A0iksdQv1gB3hjMCyx7VfgUaeanj1Dq+FV/9B8yElTdTCkNBEQ4BdNW12V9m301OoyRYxpWiIeZu1UauQNL1PDQxl09fO0A3Y250i0Vh+OXKKKtFv5VlsZmZrtA8CYhp8FyR0DMkJwbvhRNeDGWqYPyveBuruKKo3PbBJTyTUGfkslB/6q37+fGw2fOknNSTMfHG9ix+WY6g/9/6YyAEL7LzbNDFZ8vUsghDLxINhPJRegmV8phmW5Ymnfek13sS6LStbw8EcsSiK374gmtM9uJctPBvoUmtbxJa6PYt+1rFce6MzKMulY90ZOMo0qSKTrR/uors8lKneAeX646HOalL4nQhtJKm+MYubBH+n/hBts+SYA0ITMX6dx8bpbN+jk5igIVQ4Xq0AKDHMFt6TpKjU4SQpjA+RRCc9w6K37iDa6eHxC0ogdobFPHlf7+Ixdn1GXW9OPiKYuNP/ct2iAPGJq3xxxY6hpqZhvkPskzneb4TehJv/PCffsKrSKePtw1lSGPFgeZbWOzcn8JAsFOVTzwPMsOARy8B2uWcjlhZc+WwLs0oAqJcd0k37UI4B2wjcnnahuhrIYxkURg9Q+T+SMh3a5zBEQme9s0ICKV08NTdQ7+GfIo10ao8NkF1ZQJU+riMz4gAXZQQTwv4dgQtRG8HASToFdo1bA7Gx7tONVjfQU4khtoTLl1i+8SMN8waqE5JOb1w8YbaTW3Uam2DR6G9O3lHHI1wODESXlVJ42is7rYodxVttrzvgZUY7+oHkim6CGxb204Yph/2aqB8UUUn510RnxTohLbNgiqwz9Dmtf2xUI8XYSGZpqafceg1qrMlHnpmsaAX7bODza1xh/f4Og8TGaJyR9Cnadu45ze2zUJ20bDvFVrVASlmlUWIu9RTxP71j64x0l6odw/f70HmN//upNX1fLAJn84nihseUbdnOs8JEZiuCddp4BMlajHxGHpxVnpSLeYoF2EBb/mKsFihd1/uWrJQWGYgnYZVyS/Y5bKkc5tAXaSjC6kwVz76i+p8R3HsBGOvnQM3/r2IWd0DVT53gMo78NJGGcujgBEMdkDi/2oGxKIyyzCROZYKZlsj8SdN7gReI3CYr15KvGfdXKWzbEm/vIbhwMv28QYBfUX28KPGLzq0idORoiw3g0Gcwf5vGnVFAWDlfDwjOUOlnPxYfGlZCVCxOtU3jj26XTnx8BaBdtN877ZpdNHuSNtEfdYgslyYfBqWduGOmTtmFwzQHpW0KjEkhN2vBgHUCkKoiTiQCYpM/L6JoUuNC1V88eNtxTgu+hX0lsk8TtTm7vl1mvILPPAHYF0Sixv6t0V/WkVI7l3hONegOVxh4nn8dvZf7Y4rRViYFhFwT3g2kxR642vRdWARdBMtyLTAoQSO8R0n4erJRu9Rfwnrc+m9UFyh0lgXa89kY3/Q4Q5x2j42CZpHmNUlpt4iaoq/sZkAQfLN0gaTBm050OPKHmi2ZaZwLvDzvCgZLrpMopim/Uzc+44PmrbMGYuoUpR7R/ZPsVP3/rbwbauJ/ZwT0LP72Kt5HQqV25aF8Ll0TRteRiAvqJBN1GlImnHcHzwSmIvyJQSDtj2RGZSenncGDXkL8OV2uuOBkD5uYP31tJJLvKHoVUKuMpFL/3Stjajzthbk/iuNCFCw3x0NkSiFewnanv10H6+zmDIoMBkbelbGzhGIl4H1FSI2OHn3eLyLVTCesHV7z+trEDTsO0LICMUy5XFFT7dIzKfozTRFqX+oXpWo0xgkItybblJH6m8O08PUHwuOpxKc94MERy5o2HRbxJcqlFT/P1I+qEe+IJVavAsbSRom05WtfXk2HCIyTwE0I0iII+9f/CN7VEWpBCog8KZ407Q48rcOUcBQmTR9eMJugn4Fp/TqmdCeVvkYApqa0ZYzBLejbA1gCM/0uOt3QteKYS+cdELy2a1PjiM/y22iMWC4naXufsDwkSLfv6wwQdeRT20zmDnsU8GtBDTNVMlWrAa1hskKzCrCQ87wyrAzqiy1Oh24w6GAk07lg3nKydWpY9jIS9rChQHs+oA4dwiIZ6GLGiCXY3TIGVxbPs/UPmN5g5pWr19WNj8yqIriZXXLI1G1CdRHg5bsZh/GGp/4SPY6jyHrHSl/kKBHM2rNrp/jCS2z9N0+RJ3Mz3nEPjVWPsX3ENTFEJ/WKY96czPQHawh1ZkIOp4DOqFL8tTIKyqQf6uR/hwgNAWFAabW3WlZVaMkW1sZkRgLJwvh3CDOTRrbI1rdExpCT6Xp/Fd/QVp/xD0HOsPIcwHMvtlLg8ZKiRaHsebF9WLgWIBfQ+ixMODKFfnwvZKEndZIpCmGlCRdvnsos7MnHAPpgdlBqEVgjYDwq8fxIdgR+VXNOEQB1RqdNPmKZEYaFYFSI9JPgZgK1jAx5fR8JprlAoLngyUBZzJThvD2JXUoKyG7yHbqirNXOCAqrVw+yC6xyyb473aapjJfnVH1c6jIfWxU7aS0v6KXcTD4ntOm6A6VQUM1FOYQFJFD0hitdv1CrQ975ksJhv5FtSMZ+7lqRRvkyg1RpTg+HLe99GJtlDvPexPsGmiPWAFUy/FmUYThwhjr0uY+QG5n5wCZpenQRagdt25ipY7UBz6jOh7W9G8a26tHygGR/INrxA4YOr+ny0vUY7OzzCi++kxEtU0rxbVMxSXpVJkCSoWLLmr6MinvRKWYOA5IXsCpCAcXlqt+8sh0V937RFTafduMjUuOoEFFyOxlYZ+Hyhr9EwRh1hB2YiZ1ZEIMMpsot/dXnGWTnM68EpyCAesXI96JdTsN4gXS8b94cJnrmcovo44xpZtS5b6WVIcbH3SVW48ttOTUlgSVByM0LpcI6PGM86AkwHsHZ8U3v7jwTAAesHnrUN16PoSGUSeILWEhzIqxNbg1Npmu8UiTjI10DtaqQmJjbUZqxCl444YbT9WavM3F9hY//IwxrkpJkqndYwYIoAGardGU3w0R9VfUqVrW8WMvo6T7ZnTbAlFu9RYrx6zOd5KFgubu/rV+PzfvyI5BiOxyOZYFhD+o+8k0tjxL1BKAaGyixFQa2rxE35ybE0oFK37I2nK8MaCZ98U6lAfmPghNC/gJgfgM8VjjsEnkr3v9RYxE4DSGOatkJEJnY2+IfHyz5aI0T9xHY+boTjcgEuWVnWBoQuGHfSCV3tnSyXIywA4yiqD/Pn4GQ9ucvx+4dsuVPQGm7Lu8le4ikuUibr4pp/dJqPHPE01UMGcDKwIEQ5gBUQ8mKisQ5Gh7E7ANma1SOWWd+g4ywzk+n7oL2hF7lwca1AGj2kvZFpMrpeIpwnOYfaHU+F8SUtAPWVRxcHruCY3elgcmztAFVW1CI+LN477Z/vHnMhxcr0lAwHSaz7ZAbzCv1xDCBIIfqMGnUf9mARtasMpNZeCFxxUZUy0/XewYjMfAVHgXK5FBhxjzX07hU8FACpY8axK5OPrLJS0V532UlIthMpHtepytk7ARylfgm8MOYbSJn3njXMYGOSzonPvRbGXbah1lHl+cgeFR/10TB8tqu1VfkSJR6jdZteu+l/4hfIcaqhcTAvXN+5IycXQCcdH3rNlTNN0FjXB66WCDYQOQ2G3ojpe2s7OeExWXrepc4YBGa9/PNnZbRg0w5YNHL8BR1CtLrRZbXsENqOFvcz72eBLe4fYQB6yI6GRtYOvVUI2x5ZCX4ycwbS7/K20yn0zNxAw7GlEa9gyHadd3VCN6CdDSvR7uAJp3i7llgEZyV5/lNf2FKHjUy2W7w0eeTej96gA5rpb0RagDKB51mOS9H4ewxYn9kgBUKqKoktxdmnCt38v1Epb7J7rjXP8v3zkDtyN2yLcr+HcSQSgkcVVUUHZSfRqwszHwQdCvEoLFvGjcEFcdIe6Yqi4ms2ycqGCkdoZ1DsX2SPxYM6EMKZ1K+lvNlr15NPc7WIpSZ/LbxHG2bsHk6d3uOvvsgrWHFufwoqalsKBVCvsUNg8x+mVzHBtH1QowjIau0ytnBWTncOoXafeEHvhEL7wukw1+jqULYMTZgvfYZI0VOBQsTIGg6NZ/eHKAJCunx8cZgz9FYJYFJT6IxSC1JSUxvbD98nboMHG+KSwh4cgs4bEr1pvr+MFugjeK2nZm28Ey/lhgE3MluKw7x9rADsEZ2vcjKADyhVHO9wU90KlkVB3NAw6HF+v14FpSUtKKYnAFJcyfTrtPgheot23scbSOD0waP9Z3B1EZCeYa2I2fKwNJwLfPjIbs1j7nW0cEuSFBbQ7sNkgxa/zkqC+HTTzT5nDaIz41LIfgTPmv7o4lVH+J6uL6YlDIwMli7J7KmRdTAuDY//ak4scz02zlt+QS5/FAKRUuPu+lSGDLULPapBeNTcfb1Y15MB9jQq9J3eTxZm68KxaU7+hSSAUJqyaDAptBeE67+EYsnFMYRW68sVEkTSPz8DEwnrYzbpqXlUCEzDpDXQaGmNPz/UPYc0fPTzOWJH/fhEmjGT392RIEN/xOr8zRPxK7eZ8sHB0PwMMaCdHJocW9tJ+BVrxqimVx9OL21OQgbhInKcnFVpJN/YaB/v4XZ6LtSAIsQlsRbd1UBHUEBQqEghG1joD/7+cZYXHdKtLE7vzBkYLuIBr+9EHr/tVQfSS5fIGB0M7tW8n9fYJvAkUaGYR5VS2+C/AJEIiLz2gQRWompoLebmnRXWRdb5EjLocPlHRvnDOZYAFFOdWEPyHHq0Jed6XjJ1Gl4XvSAmYKOzx53IRH5gVi761YuS7tugMtbhFXCPHIkFsjzE55an/oLZREJ6fGu/goPb+9ogMKfUWGYsRgH3W0d6FcMI98FquzYwvn0gG9RwLVUC9a3qj8Tz/loDnA2QvvAIef1LevruZRJeknWFGf6Gwf9m/Vp9nDVohh3w2DGRb5GNy+1H67gYc7F+52oZUU2dZu802aw1yqgEOqZm9Wz8A5d/4iCm92okqtk1v7RjBJ60Clp8tVFg96l0PU8zpaM915pfebgNtelAu3VIo4zmuq5VCme4voDFxwtHLB345bHWVdwpFilLCYVxyFxaZMivBrDS5BpX9RuegC5OM3VfkfT0TgfM4js1vmMm4geDjijtFL403bkURk29VMVVnGmpSKfCpAmtm/2RVE1zTAMGSpjQhEAkG4ZW3FtXXEpoCkeOzJjRk6VmDEfC0s2Q4wtI+4NznhZxA8L3Yr40I7h7tfwlaU+gkWvvxzvMr4xpFTp/zQ0zG+J35jY5TfHkeXWYCgzorgw4Gu0SBZpKjXKj784kPU7SoWRVgpty35OMuF11ghOaa/MJcSPOLPpCq7HS4r06rF7ksmsRksXAckPutMlfGheeg4+AQhkUu2n2m6r0yLH2zojdUjE6zcaP2aOB0oPTbU8RqHSsUcX8NUHLBhEOIvPLtbTf6tXXILUGBiPKR4VTYkHfCQpGPxYALQDc9RhspAblt8J5f6OqtXt5gNatVnyx2LPVlY1I+FKM+FhXhUR5oNirkZ0+F1CEa+5OgbqvNxZMMe3AsFqW8unUiKMwplpAW7SawAVQZfXWPC/WCwXXSB6BM71bIETAYN12f+XfuhYyNJYn2Ev9bx5OkEEtv44K/3cfSjnrFRpP9O5CkJit8goYz2wJSBw/dx98hzX+02d2YxkKpKjCk572oIVSQZ6TwU9gTMtFVtrCG4ei1Jyw/7Yqg9uBL8eMYs6zs81fEZPe4uwfeu+43DXX+aXlQfcU+7SOgGzvU9avzVbuSyGaVhLum83sBwg+BlOxH5CpIxhJa8duo7aZw2mtSCe9tJ0yXXTRzSniFckrmURd/jY3I0xOmUswp+4HoOYRjCr2SjjgQyP7ijZr7ePbTj1E6KEGbJv8hvmHwKKVF8bP9SwAk5E0PLIfTX2B+VU4P6jPlz0mSFdqi+lSRk9LwO5ybSr6GzW38XiwMt4aohNS6NJ/pb83kACKCexj6R6vHmw2h12a+jF5DShOvF2js7J7rNxokl+XlNkd8eRhA8dAsXV6oB7KPHrqIBiWI9V7Y974pfX3nuOjW2vvoLDz0KluM7C2gBP+4kqT3atCi7FKvKhXhIgcEWttCsJzHR+L1p8pt+k94/XRXUYf94T0gFN3C8SyOAwO3ZnWM+keO2VmtzxENv08EWoHHlMfswjYvKcs0MLZkfsZfV2B50k9lQxIfzAqmj09VmiAqgoJrkEF7SsprqGd6S+qNn1f5oG+ePsV9PeByoyoYn0Sa02nMKj2I67Sg8FwzZpNbEREd3ijO2HQIaalxVSkEOcvWFLz6uQh9fowKD2oWRg6cXMugyJWDQ/KQauA2Iezb9Dk9CQC+Un0TBlqyQfwkW3xkvDmSbp8bcj2QaNVmTrYyTn+aq+6PPwRkENgnOQj0luMphDYP57L9uBsYMIxQIaVs0EqvmVNjZrNumHPtpOza/1tueM8bdXY2Osl7Wo+ISRtrflCq53LaxnL/KCk1Qxgo3UMIwZlBJ14E/7jAKNoPXtJXWrRmORmxQ93wCrAOvVosgtLwAM4LwYanERvd/LNi5uFoEHSDD7AAPzrB3SWpv6fYfNahw6zufFAnOYFKyzTD2nlhF/bMR3XC32VkqYqibDyIJa+P+JK4PFhS/38G9U3aXg3XGWrGOUk114nu9+bECVwnak/NE/+I5FWp94QhVPPxJ8o51TSc4OUp+wtWzFSn7Aqw1W89Ti6PrOHDFPN3W5yavpKcJhen5M3SBgw63FBw8rItmkf8Uysgey6MfNJO3BXb2sJ/jjanZXjkigexL1tALl2wkcdGBtbasro6zcCNNQUQU9v8jjJKfY0xXyLaccK/KNq+4o03G4HIH7LxbUBkUrIzdg6w/rMJfgWHDrrEPDuN4DcUV18Qe2tfSRnpsQ/7hMpcgsz24cY1s+vBJ5c+O7Yjy7rhBFmYEZGLhZd52F78pDd7s/z8oQv0B7w3AxWyHKQ+Nzcpf37+Np8r63xLdUVJG9WgVQNXGLKqzcrfbE7r8e7Es3MvU+mSEhlYBKN1tPvaJ3TraahCBvgJVvBDmWNrtj8B9nN+P+kDd7aOO2/FOIQFNU7PE88EcABr9wIkKz4p/kG9KXip9n4RcIqoy51FEyTtAMA6X/FYb9tW0/7bAtUzaf/Dm+GSQ9KWwGyK4XtArsXqY4ZfOPa/T4GaSaMEV8QUzC8CJQgIdBceq3W0eyQbDXE4ecg+U7F1Z2dBjTrdSBGFjvAnMcjA63nlE7gzqPqRVS7LoVPfUzTEka34mBkqULcrpdPcO+CcSEBJhr2ymwIITV5UbioIxWCVCfFWXtPNHoSmV0RyIvWCco8873yvlJw8NX8vLZo4gkKVi4SIJqaxdho4Yb8I6pLtC78cUsyY9uOEWPaoyabtHHHxrMDCJVeVeSJArez3pOK6XaGRMmWkkCyfea4u8WnQAF7fwYWvWFpTl2Igg06Gojv24pP0FrQ/w8sMrAPRk2zYioTijv8LTKWzRe4Imn6LzrZ/Bq4/5prlMNXUliuwWa94sp712NPN3c7OOvVbhAeZ6KLdI8Wrbk1eRw1wDK/a7hLYhsb29YDCvTa41HwYfzMgB8IUDsEEXaEXBKZKFMWZ+zoalI85iXqkMDjY9K+xlcmJts/iN7hZUsuEsM72cpkyV/X3iDfhb2GNIew/0g4BjohbZ8tr2COh4MoDYxxRZmKYL4cgrWxwbtuGmpQsUaoEz9GCkp+6K5lgqen20MZSkNhDQ0EcFAspuUHhN66WOx8i5B2HDESdCxcmUJLhNfK33+PX8sXZGU3BAYUAGUEZhB6dJAqkKRjh0FyN0pMtcDCldl2gErze7dBMMwwOHnJRoQlRd+0CBf4zQv15oAjQWDL6pAAHpOy/zQ3BSlL8c1mCGxtYjsyOadWVEZjW5uvRj7Q9HwHmdGJKFpyCe7guUp0FoXRXtnXmSMX5Y6mJ1SfUtPbbk7KHE9v7mtmpfxlntSbR2Au/I3YUmh7CDVF4NYDkXUTdbG+Vx9Yi+6XsW08FRyEnvLDS55R0EJ8lg2tiX7Llss/vYw5OnQTy5cWwyv/3m1O8DTv9bQo6pQL0t+NMpdUYRILeS9wxF7PnmEBlTyJte2/Ezb9gEEyORF72TmmDaFVAs1q9FkM5u09btsM80FFrW0rzlW8cZohkBRuqeQ71TyB4k3fdmzcpAG3eikUnodLlMv7GYWHsWPMwtrjSdq7jvzPBfVcVI0T2Sd+Z8ikrrra9bYFO7+B+4HZILj1SSRx1OeHsTCeN+VTVhcRLo8QQ5+Ad36rceQVUfY97Ue6Lp0l1CnFYf2kFbcSZmRX1sWjkZlHVBNof9z9ftkrDTKva5P3Ml5QMt/Dv1BJ35YLWKmXZjWLvmeQRSQ6hGQayiRiKmGQukcCxtPKYVurj2DCyeirXoPgCUcHqto7Ua5lp2m5Jkg3VaIu09UHienZVLeB8js5GmedALOqpsxzfVZPyvUo/ZPFNlJ0OtQCpYWf8lmmLcJ66/ICfu7r6TK1wQUO1CGjQP+eBuKQrsnqgLVlaVkMyxUguWNYTR0EzlGeyuRlNh+KKCbNijFhqhPbt2jBeCBrNMhFjUPl8rbmz4XMYTaYb4XKrl43i5n0kQrptcJNKfllcNk6OwBYvQCc+IAdLvntk4XCToaEUabSp5goZxViyjzo7yWG3WKiP53sxbS7HTIhurajlT46CCfMLiLisu7UTWmkFibwjb4K5bvLVPbeHoZBzgKyrU/52zgxlG3iYNQqm6qyGHRInN/HfnnQlO+IbWxKNJQb9BC+DVAeYpUyalqVh7WfHDIIQjMCw6M5ioP9qYbCjCzpcb9Djz2/AVPuoA1xnRv5OkTSP5t/yd2juihGh2SZ0DbPCU9/612xrwfroqdMkHyhSaxtrcVR8sLkLeaGNFjIJ1Msav2L5tZkB5T7b6tZipkWA0C+H6YQnyFvYau3MyxtfB3eTiJwtJMJYtCr+eNLkMTYdc4bpX91PB8xsWl5aEzox7exUlwVg4iXhWYg9ATKcgxHQ8wellcPVIBgTP//4Fd1J2h03jK91guP/5Gqf28hyey/T/y4Kwer/7D2unK99hpQl9YCXre7+eQOgAL0RrDyi/32znKyqFtUG2r2o9SiCWc+NAE53Rd8bUCefB2Ijb3vdGWwceXc5+gzbyqEBbDJpuy0dOQpW+Kd02Oqy1how0yageOeiZBd9BGnWLWtIjBua+ola87j3MghsALlpKmSonGBhAOxmFWk6dARYJXQvFWgWWWA5L667XF787YsdFrGYodVgLfw+hf9kvUyZkhXRZ4Db/USmdMj9rbxhlczDc/PyVmivqSwiEYpD4Kyq7a0eLhF4D4wCPwTEYIeK25ZZ8+5M7shmvP98HzeCm0N/OaNmHpg/LPLZSw78BkliKNxkuHLe73yzV34+oCKodIZq1LtR+u2ZKoYWh9BoCVijyEs2EhSlyi/sRfOZD0so4AApcwswFngXox/weGl1J+DIG5DnTd2mr1JVWLZEyF6xo6WEBpw2QPJEEfBa3mHXLacCvB0egaUhZCJ7weOibUJ03PvgXpNCzo0z7B82xu32tRuA4MHm88qPZfXv9VVZsyOKY9KqJMKh8vvHZhhqwjaM38xy3H0GG+mARsLNefj8yBqwaTO/g95vXf2wkQ78d0ydtBLKtzHvwqfVbI8wc3qg7wAEalD85yF6c+1IksRu+fcqatGAdNsg0iKOoV1YPLBnYIUU+zAQm/TcYq7fosdm0Iajgal4If+zuDFjZIzeJKsCu77cPPzi8X38SP1tAOI2UbHoP8GpAnST9JF4aOcp+8qMZcnvi25jOB2WuZMtkD+IipWBdSa1/+Tr3UGKO6QWO0618MhZa/S3VimmlrFHGU4s+5l+Zvfd8jKmSDFN0aXZ0ZVhPXTs2jXS/wfwaZAjC+dBTbd0XgftZCTmr4yhaYyd90p+XmaXATq7Y49w+16Djwn+2Vv/HSJaZXl/lCJgvNd3kRu/jxnY35TyO2wOmStiRd91t+10D7BN+p0c7LiJyvrAiDvOhKANPkpE053/IyaigdSXslQ5ES0G9vSHAYNjdFkpgEyokxtyAVTNX59Rgi0p2S2+UsblrYeK5udmb4wDNq7t9JdtfvUkUFKv9REo8IVpbOsCCez+WJI9KVl0yTHe4L93ryB0UkZUQ1oLrBNSsHEeTbzOnwIieBMcOlM6e1rAlwwMTnCy93vJAQp4xNJtSBuO+U4d2xwm58EZYMLC7bCeyyyMi6Bi6+XJgEOXChkz8HUNT34W8+HYPtizbCWJDPCxNg9sJ2DT15ny8v6xN8KTN7yuAzE4I+2MkYjboZLDd2CnjGq/khNVK5CmF/f04bnS3FQGahmqdMIYFOcUlw6nWLA26tlW1teaWipm0PqrypgJqbSAXc1dapBGA7q7xCvo17H388yftEVDrus9/IBxdQryJl9wFwqlZduOGUPv1JycKMdWtb9iYDvvti6Dv4J1A2zXgv/KE3Ss50MVnQDw/wzcgDQwp0CoX7LzMRHLpkSdfoQTatMZ6DHlyKxhxesb5mU6HzNysUAVzQmJpp8wLs0q3dD1zPsaZtYFR3H/EBV5CRO6DrcA8VfFG5hyCU7RIiMHopFhwMf9x9sj422q3C+6fbRB7UrsjSFyHk1Wyo23WtQEtBIRfoy9xGdzAKLlHnS1cIHxsyKHVG9IS/Lu4ZZp9HhWWoX6n68NBuZ/rMrdxPlMCeTs7T/ty3HetD3Yn2Ilk5eSsHu9A1Gd3v3M4NouTpY3bQxOBeQaaGHosmY2XS8AuJXZTbD0djIB61kC6pIVNNHh9XP4EuAhVWBonSasT+y5H8ghCQkFUcDDvRp1zZ2RbvD/+k8qFvev6UqkxTynwLAngcQr3chlFpdkMERu+lRes3vwnXmsDwVKyvgt3DJkJ+073FMlw9cvpQy97RwTn+IHEXeZy0eKRiUdj2CqhWnPSnDtlC8TBdS4t/UhERzztkydRyfyIiamFdPIBdqjIc/GEFGDmVGmovq7pes3cKXE3gIJaK5aAVA8jPp7SbY7ESH6FAyz/S+gV6SZU0C3zODYyNimp86xTy/dQunfAB42upnQ+IA3Szztk5CZ4mtVmpKvxdST2AwNgy5lTA3E+OiB5GRjHU+lMlmmAdd/dsABkuBPWESg16+LD9fwXj4S5WzFfrC4zf0DXlaA6w8r7cZLYQjN5VpncL5J5bAIHrUEIinkjzqsorJ1PYt/191zOgEqsS6ID8X/cOqfGiOpDFlJbpFrmGuJUvQA25vAsuy1Rnr81lYQK7yJePh66M10dF+mE8nwA6ymsjwbMUZ9rGzmpLJDwDm9TC4rRBkEEYEQZsWFgd3jvZzRGtSCwmr871EjbjAuSYpJtAC6vWz2dTMbZhhOOl+8v3zRI0G4xaFIDJv9WtYZRhvBq6JkeJ19EvPFDxNzfyfxxSmufTCQ9RWPgE6hfkacqtCytDqSB6YRuKTI7qPYmEJ23Y0wq64Z/vUJ7L9TOE5IvbwrJKmuMGDnHW/XInzXa9gTExcavM56H07ZLIRW2hBVvRGddj3FctehFc5pGA7S9NJ/77m+Is9eKUNzZSoIKW/KUd9cXD2V7+Fm9hEMgi/aRtXHId49pRZwc4gvTQSY8Xk+SQf4RrJSXb3n79k1YEBq8DNGJdXp7vbmsAAYNn0qkfwFfcQ/cDCszG5nQQlExfLIF/oTPnH8gYq7YR7pLwUg+4Xa3++cHq0/5qeRV95Gg3ars4L2RYiiEdBGvJDzrInIYknWzObIfOR5P1XEjcvd1oO9hM25qhkhlJXtFSk275rtx+nBJ1dV55qrZeoU2TfLtduYAATidejxhh4h+iZwCdCYNajMITm7nVaDTnBm/6sVUWT6q2a3qKpDqNKI6VTWqgrBmhRvNMFoyx/5DTMIRPg7KuRR6xzC2bYnhVkoRshl+XCND3BU9Xb4WLJFdd7KF5KeDncxDRLGj77m8y6AAuAl/mVSBNsF89XqdK6+Ws7SYyK8yaSr8ZDKC2Bfy2uA5d8Pu5ifhdhyyN+/qegszc+4lgvmNpjRGT4nmhaAIVtDENtyD2+9cglydLCrvCyZLCaXngiKpt6JHAJQ9qd3jTVpIkGTgwzZHiSd9aYJVZ3VY2FEv9ILQcjevFu2s0B9VfaN1W8sT8hEwfgtl5K1l/KeYZoVL5VgGK52pqyZED4JOxwwPRbnh8a7i1xYZcmyJ+yk7w5/zsdudR0lo8Rw5MSfbTV48aPhVnlvwEvqmqnJOV3QrQsWZrCxveQ3gnhxYxfB+l+ca2cyxQd9QH9Um8R4fqtDbga9FMV6PXKc/nv6eZM/4cWdeK4uAnB+7Q6PhlmJ0wOv+E9hSi1VVs06iVqkxEv5hU6DplA3Xwa36RD3NGGvW+rIVOSyzOx4rDoFLpKJ2F4vMU6Elr2S2UYS8r40AZfZ0QDovY1catXZc0LXa5ewpPVXTylDVTgdYqC9LvIwUrs/Qf6+TDe29ImFXn6u5tGAfLR6reHG+OCnBd/o9KaSSQ2lPxu1MmU1ObM1O3hJQlTJHA28YehdJrFOs4Em1ygb3Cta8RR4Nf+5yPKdFEcMPJL/AWW+Pqw6PPoGUee995RktIFeuruh/N97ExlSuma2MN4e7VM6hi4tME34NIQkdzQYpaP/Mw8YRKaq1lP+4tLXuIBO6z+td5C/Nlc4DQXNQfP5lmf7UnLE80h6W/2ie7TAVyzYQ0QFfogz/4U1KdXirJEiJt7CutBjspwH9IMLej0HtxNkTgeW8Tf66JEvftzdAomYksbxmNxfXWAQy5bKnyDu/sIGD45NKKgOkVbWAMd1Z9C9ZKdUOBKCeVURQtTfrHAMOzIF1jOuYvdbUh8710H7BqNYSw07bIUXkldkZafcrt8mNCvZCyLD4U1Oj5weLGb5M2glfjhdSVlUZp+0K71xWj+sqLcg5Kum6QCKQ6dXBsldjM/xaRPOM5eI6J+Gmzn+QKpF1WBCbmS6Nasgs6ckbq1IZN0H2QUbm61STA4/F0bU3xjoJTjG9EE933dhVzjCNzwea7zLh9d9dht5VD0TY28DGRvo575uWht04hjIHlrkiBizqMetWaqiJAzKi0L92FHTQY/TwGpvMPNC5YPKuzm2KB0LOUeekB/vOgWIG4NurhwYnfnTdis/0+Ydh8DnFZhIar307/hOSzUIgDrk+AcPvFDtvB/BcON4PRepGslXxTsT7jWIfwhPTsWnu//XzOsslMzp6a3tth9u/1YIJ5iRhHfugE1fR91nsU93x4ZApbnuESpI+LGwein1SoKP+7Hr/WnwNXFUlr+0+Ne76bs5rUY12kRSgGeOznntB66i7cpdRYYsp1weXxiLP7s5Ct5N5EVm2zmMxf7ajPbM3ASE4IdiWqxUKYfmNLLBTyI3STghv/dNZoU9UQ2uhmoBEZIIY3SxcnejNZP73d9Olul9//4Sk9i8oq23kmqY9hMB2SUZV3xIewd/8GBJViu64uJzd8rhjy205z6E4fhpCp4VVlCvpqHJhZjubpNP53BNDNRElwmbmb+i68Fgw6I6cVkRbSPVJst/tUr9PBYnaAUgyuE8T5zeCOTLf5OLJEgmbvaO/dkETTzOkdwoSnzwqwI02IHPRmYUTBFsVe/J1fcSsv0aUNpgIskCK4gQSy/PGVSZBXWHkMaIGrWuIxU0TbmSFg6VrH1ZbUD8EZFA0KDuON1sYyVTCBMs9KEXhEcuww7IlyTrOwBl9vyGkWN8IbKl/f0ubtVQftU+qy/ScVsbrLZ/DdkZOEEuPAe8NWukurNzW95/5HgKmu3Er3CihcK0bI6wiHgZ5Da1DCtTLDi9Y2zeXy4XX0BKlyt82xnYegxgSZZHk091X+YtHvCOr3gtY5w5DkjB/XCRTlKkt2u//C+Z2GUOH5ja9udWqMog+mXK9G8tT83O9gb7mw4wvdARwQrv08saXKzsbBd0b1wtQWzSzzjJOgyJopBlvVQKSfD6njpnDJksFe+wbmOvVyHBRAKqlKg6vg+6RnikBkhi1orKTBVAI5v74f95rtlDNXBwamXUqvq/Mm6OMxnTAk4JV/lxEIqFdzDp9FJImDnLdegcO9Pms+itM/FdUmEGoIpXE0goECJ2NukeZ3MDEzxh2FuGLFaStFhDQVZnPvHZ/UONicnzw2L0v+Px+oqJwSCk26Ztf62jc6xrXlM2bFORhJqY6RUvMdyZYaPn0FNqc7HUi/1iIiPS+kuMFUhJZkt2MusAwn2lGH9dTRis+FJ42uv4sLOmuu55fM6nrIpK9jfi582oWqaQZTlUfDQIdjc+Dxw76QcvvrrZIAxDMei3VKyyYWGmuVqG7YcvHI5j9d3bIQ3EdNSnjycl+SRIU4iDGdv8AqCtFgF/4zYpKDus9W/vzoauFv+dxYoyPs6c4p+ppRBpIPVgFqAsOhgub7RrZZ/2TAJ+TaQfawAUC7bfIMdvGIgCriv8v36uDmZY+u3gknfVChwhdSr1sHeHNgpkzp4oonfhVgQS8Ty32sQGiXw/dDKMKXwGCTevvRgBuJKkAEF/QZJcGmVOJyU53/m4RRzfe/QTSooTdlCVQgEuu7UHO15HvUe0SDHfsxvUpxPP++wNjaiYjmcrEukB6so4RuBdIgymEkSltKPlRyFMSThV9mtWhrv5cVF9OiTFDuCVdHcvgYF+pCipx/DMQynwaAZPQBccQAgCsvDURvx3TACwrgpWGsMjtd9u20r45XqbFNQ8JlH3ih4YwzC3cX7k/+cBhdgaDu3VKHTOt4yYgnbXXdqz48YppFgRKSmT3LttOJF8+DoWuwHm4yGmqpA8M7FBvou0liinEXPyq5OwOSop2Shh8OXtBlxoZbR9t+0BcZ0X2l0OLn+B/QrWETDUPvWVEsKYdpjMi+fnYaWlAtvXRSbkPCPhdzPkK+iND2jqUSWVOT4He8vopR/NMalxN7qYuFk/SaVQhspzebyrS5PCapa0y23kHp7twW/kANx5T+9WnJPVOvbo+7cw8XpoimjFo4wRUNSGzva8P9v4hb7naL57ZjeWFyrMkDJz6UoI2JymtCY0mPzMfEhO6Hf0qJwlcOfF3tsslzdjb/BUA/3ycSALiGDgqYM22betazFftfeeWM6MbEVUclhhgJg68wBIE2/3SaYcCNXd68hdlLmN+UfDCSpE6kWz05tCAHN9EUyvsimfe5Sh3wikxhXFCx5td7QWPm9SHkDvxDvp3ZkHl+dnui6o8hdjKe+Xmlc+4IeX1PLhnjVVP9/O3lGY8Ct9X/rkhZiq7OTcWsRBzl4Lks4ZUZBeA8ntoVjlAdsQhPxcOR6VrDh7H3Mog+kDNiswmagX7zRdcZR1MDAiDnPEJO/ZJY98cN0kIWzXerw3ZiRWT4CNtNMh0i/HzlDn/tBc1A2I2UZQVMMMrtiecAOmQjQJ/zTKUzwODagKv2A1LYaDunx23XIvWifq+7cURRvjZbi5O8Xm4/zxLrQY2XmYtlcRkFU47w7k2XpgBo6BO2JUzyC7gr5z+VEwfxnerHuMHAAPCqbxH1u59963LHO8jfhPM5GJPJq9hGFq2ildja3C724if+XvEpIv/BwoJ7GseuJrBIUwrFkuJR8F4bW6YH9nB28499LQb52bbbmj5jkc459w0YEzRYioLJ/s509OPKwHPxvuhmdEEnlB9lPoDKcyHdd3Kw8VOeCYzXmK7U0+T8fTtK1S704E5jPui3qUiZ+23iSJ103YJWjAm6sSPRXJAutoDzyRqvRE9NnUxH0eAYLy6AHv0C1GMi8etFOv71KyFAGSb/WQxkIBCHuwB2weFPJgr8M8Lzrq5ahbysDf78dYxNbDBULHVhD5JM3Nz5vSnHLCM3dR9b1ZmmLu7Tha+OWnbbWk5SmfvupeQWEUwT4grj+V5Dt0/eUDNLbCE1yOoyU/iihw1N3GCb7F7+lzrV+p4HadaBXb4qGVTENzZxRoDeyHbIuyI8G1NHQyYN8x016PAlcgyuR8lGoydCKKkI9YLHhJlOKDqVxiYlS+gwbg5D8KeTFVVf3OPwuLS+3UPbawY4oSbPhPGXUWGOGAu+sx6JKiVdbqlJWF5CjPP2P6g0m68iNGueCVncx9apnfuxR+UJTUSMDODyHlPpQYkO7bZTCtebB7Tj81tk3Pjdr72oRELHkEj23cK67rFWU7xIAkCtjQyTP46S/JyFstu6OiwSfdFgFTFCRvKZ4LTJfhsALuf8uynCLCwYdgPUXxjP6E5aPThE0DbSJLXzL6zKGaVY16wf1gpKakMY8ewlob4ZeYW5k+t/3ctZblT4b5r0XgGNTggO9xyedpvBfUVPbb3IF5AiAZu2EzIvrQ7oUXi2ivQnAVOiwwp12T+LDu4lPL+4coCxvmoX09lmHcimRbeuZVonVnrymDF+85qockCXUGqPN14lBQgwS2iBJnpL/9P2kjwCoNZnlKPFoj8yjPRHTQeCX9lYW6FX+6cKnpCV5JAuB4ddbm04pcpeYLWc5/h8Yf771Bz8vqV6EtflW/ZkjB0GmGbNzHQyRfcWC/gxPtNDj3aAkBzXai3tGP55n6ie4Q9vfT6mOlnIuy2Li+sc34K4DULVA8b7icG3hJIi4Afc1nYk6JkbqawMT8Pf/5y+mruG5gJ80tFRYAsfscBpwSB9QOqzPEDAHVyjW25DpopFuJMVKmsMiC4SJTIIB7dKngaB/DXdPJ7oS5xsrkxUdlsyhmhwiMkxGjBkk8r5pNAAihPdclhBL5LZnpDeLfgC43Q8JaNL4VToEHtesxYJLwYyCtB7aEHRxKq82NQ/jxiUTcYJOpj8bU1mnkZTnDytW0LSxtP6pueKKP0v8wsRDPYxyuAor7Nz/+Hb+/mJx/dBUF8SrdaTxpsyZa2AeF3Tge8bCswaJ2D74JZKOGg/ieohoc1zb0xsj1J52pw0oRz+OkQmCISXR22l1nciiYePFPL+P4u5c7+rUtHnH5URl7ftX07pYemvA6cc3xHw7FqziSF7hlL4askJQHS40EUtnaUYTQ+0OjdXk/KmhEn9v/q0WacdUFsPzL0VHm18VXgDI7EJOifq2lC+3UokH+L9OrDqbU7e0EESEgiGQbaLV8NBJANBwA98TGgvs04aaxP2ozV9FLe7ZrCXgCGgPwUUg0kwzLPIOYR0BxJLbSuTbpH3dqO357AhKwucQwYR6iTYPFehq4TLPt0OCdHAJULBKxCXhh0Su4BsAO0XbCip9su3LoN9iXCUAlkDYmnXTeTyVcrOCFillTZpvwzYmbWilJSDQnsjGSsFXhNTbtrrAUhTFGUrkwlW8xuZn7bmjoSHAOnQVBZBgjxRszUhq2H1+QkbRZNyvjWgTUVku0yEInr9GMBTvhQR0gO9n4WTrjB4J8oZ8EEbmYwn+x/C6NPOV8WdDTIAIjQA/viHctt1OHm+tjpPoqKjTFP/N+SataZcNzMs9ghoMO4gf0bXxEHtA50jBbK6OuJHStLgjyascge9jL+KG0pEfAv+cs6reooZ7zK3jtuljOkEELKBBl79cF3enUxk1nTlCtJP60covzur6CgquUv841tzwhXP7wdctqdOqKuGKSJAABssX4DbHbAZbpxVoTS8Iu3ZOWlmGUXxc8VA0BRDkO0CIKiA7MTbo1jwI5wrBEd7G12z/5scV/oUkp6RrLBBCDu4DxTMaX5z/mG7YtqnSaUBRLAQSKlpnNd68kqf/rRLNCuTMdBBdLnakSaZH/UKuCJR/b/PJiA9/7PBHfmZeo3qn6bktTViTeQ3b7dQLFToTovdpgRXGUxYHTVFOO2YXE+7BRoOWHuGCU14BFEIZlnu9lXT7EgMX7s8V1t1wcIXqTSw6lJe6pXdFkaANub5vUMxFQwvGU4Whtvj2vO94qzBcSdQS5XmzOPeHeqGxqCxalBSAxGv97cJk1nqhCK0iezJ0PevulRLfvbptCc2mDNKnX5bCeyK40HF6HXP3exnKPzI2UVzGPlZa3s/tLeigBGaNBN7xeX7eQk1SB4FVTyT2Ji98iq6SglidtbvwRL00HKVA+GbDjK90B5X0zF5L/lUVTAHVwXhmxJbOFldP9QzxRkxJ+mkiJztdQw5eqOoGNEKBROLF3kB5sAaMCK6cC3il9q5soDtZ2lR1jYGQcRCMHFpeUhaUrgIWzLz2PyxZhZ5PZVuiEHlY/XjhOx+uZMoO5afk4jDKKsysoj1SXMcjxWe2xQlaT5KFwOGnp9kF0fGxDFgr9SLSa+3PG+mZx22aycPB6QyIHOrnMtokLbm1nxXzfbOLo/MX4VskxUIrbXiB9iFFOCudD+ax90nJMza4JVPFX0joc5WUZOmb5qodm9RetS6o7O2LpdvdCYssu2fpM9RCHzZCFxnuHCAbt2Ipaq+ayiOad9mCQdIL0EaCU3EMi/cF3r4W/5zm8UN7gTUqwaZYnvyuZadUKrCrpmPOZxfqdguohRYfpLnVNlmL1NZVoJO8av2y+fER3TO1UDcVeUPfP+tH4BpYEL9GvaalmImkPJmwHk7c3mK41lZyNEr6ci0yoNvZTNqkm/lvK60Mqlz0CAmCSh/ciYdWJjBblwEUXLHGunWaai2fvbIKNYElMXg82Ii/otVmAmfX0m0yrUsTw4cjVuOZv6pqPyoIZyryjIgO0fp820iTVS4YX7CFO7NNYXOE6Rpxc/rqC0U+j2xj7EyDcL149F12dp4Fy19cy1ZuS+79llW8ERP4UYPRSoFoyR3OPICDr/4uxDpgKpN3KqKjCjH6bhZmiBc9mkBBBPMfI2YLPYxZQrQw8jcydPTHZi3XH4uilqYWnuaonfWIb8C6mFyIPEmdw2bORcspfTZWdh+7k9hy9M9b65xBFnV99o9Pa6NWrC3dMh75FkldU7Mr18IB8H7H00voQpX0Sy9cPsq0nD2K5qK1r7aidJQMKgmz9pH6pQv0IkqXTKAj661yVQ9x2RSzwkn6KxYEQIfOkohPvC1nC8qvzjBE0iDWtMvDgpsCvvggadqybMyEoA3Dm0+fIXLtnI09BCXKzvJqrAxVD1s3NWsvUuYV/2dmhB/3u7wkTX6Fnq+9SDBNbmg505yb1KJs0tBZZyKSnD07SVZZhSKmjyMY853r7ohLHJrZ+D0/WORymzGwRYUEovinJ5sZl6DKRTjA0S90jnN18jVYYq7d+mPYyWNN0r51ThW8WQ9ld1MUZxkbH3+aUoYpbjWpia6xam2Ad3dzpl6/fhNAQ/4HuhMZKlJ1160IdjvqYr8CmjPUj2TKB6bC17ffiB89GUYqHIa2RoOA5PQN5NrIwbBciUBdaydSt737x3QK8REthRfOJeEJSSm1QGRTApd7KcnnBtkZ/2r1EX5yTnjJ24yZJfR01M5JIOh6YxhlingsXuQEjLpGMQiZNiBpyPRX3JEgKQvCx+Ds9E6yMBK4rmIG+ZezOyo9Teuh0Q/k1wUl048aGgaSbbPM10QAqTfOpgitzY6D6xVK6SYTHwDSM8ndehwRU30J4TGxpijH0F3cQ9mkpUtFhOPZfhgZIoNLMn9vf64To/rU367Q5AOhXy22tdA0n7IEm5CMel2TwIZJAGIq2+g8yn7FWna2NRhgRq5f7vggq2ReqlaxoRdr+X98gVot6LBzgIC4TUmSGJFKjQSRHF7N/OAM7j+cOVgzizuHwbML3IMKPDELIIwV2up9SuyyVLVUgzMytUdqPINNvEN76Wb1CYgtF1K3EvBEmJxsbynQ2qSYAQnI7KizPjeH46e2Yo52E0e8KS0n9C6dHC7B/MOeeiEjfKDJfC/Em8IkrKJhoOO+CtKvH3VH3n+lyrQVUTu5buirqM1BNYGJqZWmcgeJKymaCBr/TAVW7hv0QtDtg+uWd9LeRq1TpXMHq7EZkt9z7vse4K3Hht5qQ3FSykhKUkdJSI4OwBRY5fhKvTBS5/m+C6Z3FHuM4Ij7ljSGzZcV/c5ESGNha/xKpNQSpdyVxkOK2urZWicl8vEAp3Ww0kDYphDyutXATe2QroWPYOQ8wE9Xn9bdgTPwPasldmvm65Ce3qxeBGxzwpGGWA3cB6xooIkvi4r5PC3nZSK48peR2xg2C/i5uT8JUk65q9B6iAGy49P/fp84zncf3JHUhll9S4KPLXq1Z1H121jkTYK8xzCsJLq1v57AJOYy7nqSmOabBhaPsfogl3Tu6ftZaczaYePhn0wcMUlzTFlQ+v2AE9MHxlTMgf/SLqfyACMoKi4YVZEKhye6aqgwkPROXFf52Cqfn0qvnCcTbNT/x/my3a88Y51sH1g543ssAo14C/dRkgkiCD0wRmmwTHXp0tOgJ+CpOoPGd5VnMD52xXiRqdKjVgLOhTthb8TARZLz2UTqsn8E1SZk1JuSYaOViM7Afs8cfkcFleNUVJDRe9lbXu3tnKd0ILIFyqu3Yf1WcEWm9bOk6M319FbiyLtp98HnR2I8eBVo5sevIDC9lB0jsVSrOBqX6nCKCSfzdyihiA4wB/VCvT+ZK4wWPccaRcxiyExNdWIZGQLsdOC17IYih11+v391h514PSa5q5wy7ZNPJhVWWZknwTtbCRvALX74CCEQtGasT5MjzAUnrYGoYW6WukKYwQz6w65ps8/s+BVmtTIxrzIzeGEbL0GekWcY3hyPCkI3WpU0w8E/8JiTkAgOwsR5m/+NK4/IoNsFYv1FXK6PJXphlCWEp0StyZUorHBXd2RqmRp/wmXD41VJYIZ4dFbZJame0eoyMxQAYsa+OCGVNNA/3bkFQIDgCGrY7PKb+Hf6R7tMOc3nXTFm3/xa4Je1abO5zyYS4ZhbK1ft8J6aEm0QZP8EpM2MElhx/ItHMS/p2SxRQl7iJ3RpwdEunD969RjkBcjsLlFGWZdg54c0myXJwQZc17gVvGhBejH3OUyWRNMAJRv+Dim6sxkLp8Fvwy4OX/dy3C6P1/koxYIAJ1yic+CuQfuFRpOlTIJi3r+roezlAKVLL6I+gZ4xSGltoCK2jKWodiFyihrG4NOFrTEp13hxkx/wM3xM8sXLJAWTVNddFkEhhcg4WaBD25hsqSaF2HkcsXBKv1ldg3m2mAq6uUJU1RfZoXvH1UNakxtRVxJ9RpM9hrXBhLvIJ5Z3GKXuO8uPZhjRP2WjlkO+2hQHJR6qDXeFqwIiCL08sksE8GplYHiGAiHE4jF2U0AUxph7GaQyHy74UCPvjL6Ojooxu/rtMZzWuUFy1jWgnM83qozJp8WoEaSAXPUAdQPSX92qhzCRWjeYxcgAwuPXZ+CX1B1F6qbKY8QdmfZMzBa3+nI+YbEbmDwszjT+DCChNBKV+1LX3yo+/LNfx9/pfTLv03nldCf5ppkD5Z9PojtAGAmMTC4QbBz4+FoW++A2FJy8IGfPNMdxK0j82ovcGNH4CGt0LzxVCotdOmX6xNZ0Oxvr8UK/cOMmhWC4vO5Q6nk8PzV9jBwMVgNGntUtVEqjEE7dmUH7n4XrDbOMhFwwT6X7eRS5ASjZ8vVF69dRpO4HWYgq62e58BRNgtRNOqZkqkFFcYLs2Jowwu5HvtMaWaUgYdeavQrIn89MqemmoII6w9rhu+hMD7hrkMX8r5mSNPkG7SY0oJmI4WWxhQ2keertVz3yhDZldZPSbUzXsz+r9qCJLIxzs66PI5qqXGVTRh6wk+PPZdaRcNOsMkJsm+x1/mwRPd/rDDFTx5+5q/6U4NIUHLVm1CQLaZ6zX800xgT0tkCEd8DV3sb5rfp5Ud0ti9WwbwOLpYo86bs8+8P4rWTJVj4zQgEQnfIlap9sGSh44e/E9ZSg7HpqOXLvAEMsXUyTkdkc6BnncYcPsStyFEq4E2dy9mh3oN0q8j9toQ9gHCdBd2NvCvBcl5fM98/ZygZSTKZHL6Gf7M9+8pkVRKvLeZu1hw49uaAF4QO4VYdXr1MuZBXC1Lhc6NhFjSJFERZYni/7oqnsj/aNJID3mPThGUUFUazTWH5u91Bv160TcN9TSh937bl6fvTGxLKjKySn8sHHSg5UU87CKV9MwagPh6OUrGhv/S769M3TrcMVAoAYYmk4C96dWwMTA8vEshV8yZhK3HYtNXwpi4ZC4RfNQnVLN8TouVxG/GsznGTIvxenICUB2fgyb6+uSJwSU7uXkhySfKkm8c4LIF+cocWxWQ6eh//1GGfiTW6VgvwIjeRvvQYHeZLle/5szqbVPDdCjv0PA/zD/8cDQFIq218ubhQqPCnvByl5IgmhdPleAuMIMlIi4Aaxu1jzQ1YcxYQYkApSMaafF3xi7rwugS4cffsRS+pn3Xjs7AMHjqDO0/0Bf39bVUPM11kSNcQNPRHDkk87HDbPEFZ70p36jms58jDrUkYMJBW0HcHNsLT9nsoqg4HF7FKtqeVkJlrNIoudL/kFIWU9yrGMclspFZPOy0rEKsiwy/7eo45nr8C175ufJ4BJEAIEkX0Mv6TrPt4dzm5g+t53UsXvfne4RrY+wKGCwmaj1VR8o3gOitkgrOXVTraWPIXBCoHcw3XihcskBYHOHP4ZF1wHe1hgAkLWZc3X3R2msnzDpYhtR48yBc4P7DgUcxX7/1Icp041towD6C/8uTAZoFv5wwn9co1fxxrYT3LOzXHi+DYhxNKs39XyYQ50E+aHfqO3FUDBM293bepylK0HA/B1NIOoBAU5VmdLntcvUVTMSSRJHnit3MW6LwHmBGo6kuqjg8yfU2ccw2PMJuOFJLLtt3x5TEjoCciPx6sA3fVndzTs01whYmCLlw3/Q9onOoFLk8Byi2S8KL1FbNNvk88CyE3en6OehY9/dwsC0LWe5iIF1NIKX4U7BCM0rhJ9QpJWtlr3XfLjfXsbZe2EDTSH/LHTz01vkaTsNKgwGOiDgdXD7NKCkyZffEaZkgio4JqTxnkxYfK9uxyqF2nM10tC6Dxu+Cwjb5BaJ9lkgYv2iOD5GN2tZ+ehS17ac8kFt8r4faHvj3a9zc4m2IGiotkH6A77py0iiZ3Ol1yReFKO0ihkSPzDp96/t3RzIM2ZxCBzE25JrsElNUVNraG1QNUdCu9ZkLXmPBlKGEMgqcD34R416optNSrQ5gKh5AJ3b+2Pz96dXSj9eOTxKHHlygisIbbxix3+kEOPnUZQlJhSbS8hNhJ7T/gBYboLQ1Unp9au7TDwZUhloXuIYX29TFaCNRahnV8EkcFTIQ/xjdTir/C3JmuyS2D+CakV0NNEUmQ20q7BhKyoqQrVJ62neBKuKBF8ElQ1eMqUxnxZf/35Eosqb24gMLOEkKpTl8r9zS5X1Y0dWP3UR7kcXo2eeJijkjKemMJ/T4u9zBKB1U7EWEe+F32ViUxYPENeDwF04D0B9wqBCNISDcaV4gea2e8rG8vYp6ysq2ppYLuTCQvCRf6ykSDN2SdkJDRm7Nmz25utXJN2p6iaxpEQy1OftjF3dvv2/JIDhAmmvTg1GjlQP2vQBc1mtCWzfrjl2yb2bjKWuPl3jwLYVl5S+P/+FVSyFz22BSLtZahtMvmxziXzriwEusWV28Rob5FO1+8EtS7nUhvatSu5gk3llrhs+YSfva49h86caIn+HQWOHCqI5svDroEfWpZEBEy+HUGyari+89N0T9oQaxcMm58ZL77jiMpqLGoJDJdw/tHiZb/mXCIi0CbomrrvgFWQkkLIKQ2QWN3Cnsbh8KRslxBhKybvPYXQRfJhNQOtYwHTArrQMkODRyePtWV7PFaF+xhSJbgbbd4ZAOSou/UGzjUkvN0b8H3wO+XLMIRwvb7weV8ExEhL0UhlAW+2wcKJwGORN/m35OQS2ilfzQ+hXsGg0/R76tzoiH9aqK6ar7x7qcMNI+sh5Ie2piCA58bozZpr8zNNKQUSa9JG5TmsvU6hSgiUJ7o41ndVQfPiInyLVHnoI1yToHLCEOfvj7CSv2JzIntf/CWztmwokob6+35wM2CRpaqCHr5vv222D0uJbynoH539inMOQbgvZFABxvwtzEUv7pSesBy33dNhEWBjvVySggCWQ7CeuqCxFvnXsNzx9K54B9v/m+xYNJbVMDN7SOHJYH5ls8+SxwnVRFq1S3W/ieshqLb5KQKL0lXtWY4mwFtw9sMSWVG0z7xg+Sn9H1TJSyCbidbOzwT0FJQmtuptc3suTH8Zj1zXkbwlizgv+lcOPjbrf8t5X3wIBaTjpDV+m/AdtbkSFvGvlw4Eoymgj0Lb19vMJFajkUfN8+EkThnu5ci4PHXby90r1z3+xEep8ZgKKY3iwd6BARl7hsUVUlzY9Js7aczb1x/851MaiTM5S/WcKnExnJP2u7/mIqH1JCfrW+OgoBVK6iHIEw13ju3XzKClli0OhIlAmiSf4N4F0KsdHq5x65JOg58Z8wDMJ38tgC3kCUkDu8dXsGYrYAu37wnJf2ZtZFcgD3IYSdY1Zgq9w3SGzPF4rp6LdsmX8Drg9IJx5zGzdzQjskYyAT1CyiJgZHwzs0chZvZ6kfYxvF7rxn39tLzGk4sszPfXaRqF5R9gGrLekk7d6ITD8frCT+HAfA3Aac50Gr8/ObpDPyHaaaQdDBu+weI+cNw1p8YR2aUzzI0Gh0zh9f4a8lE1r9lHS5cwyXj2xawZ+lZsg5YwQGQvPcQ1cET36CYUxcNFbmWfKOITliZJDUkzk0pukVy3aLUquyaYebNpO7qLPiRcOR3U+F2C49cZB34RuGX47ADM8HbDY6woK6yfzd5yhiyvX/QNW9sl8eKjc3YDMY0ycc7tAW1RRhf1SkyrGjmBbxVKbI54+OAteiK0r67bnD8ZBV/tkt9bzIQWW2/7h23l8Pd3YeYfI6SBexPO7PRpEdpyY7EQ8cbJ2WmGeWgCZbN9iLLbAdfzOBsjsiy363xKBHfPI2H1hSlPy3dPiPPWzb45hVwe17VQUvXuKGf37KBiLiElmhbeQLm6quUZyznGYrdK91CzwiGkevdMlm1Ebl/tFe7+AFHvhljPxHXyIHhtQM+phCMCAJFEgnfE6Hy17IFNf8IR4ghfu0UIqs+MCPHME72v13k6olkaoQdesUX/ulPYCsQ4lBjIs5MRBTe4qzLN83dbobvYZ6Bg1LmSqWXAsmntMK7MOHBgFGlv99r11zJis4CoPNxnd6uLoqqImn7zs4x0z7bNmqT8hiic5vA/VG4k9CnRZngOOANDxF4Li/Ko3Zpt1+5nAXJFR4hItZU3s/wQCzgkK65jNhDnNYVDZ6gnrB3xan3Q8E8inJtqfX3BdRn6EhrxSxlZMxnQTs/5BJ5oDedTnps/MPa4oqAiJN77NAq4+Y6R3h8j3UhsDo0n7mY7dOqO3VAkXwZTxAgxjAbfBL465Le1J9Cyaq+lyRLtHEYnAyp4SB4O146+tLqUpuVEIaeK/avKvT+RZxUs4FGU+p9BoR4lhWu1s4pXk9wGVsdP1u1H8PgFkAYlTXkYhlpYE8tp5yNkkKVZ9mtVAvTgtMmzgJfCl7TpZhTjCPazqD7sikTHlz0n1bqeSEZ/DiyL7immSdnYdRnBp6C7gnxYX11G8fmyXKjGvfPdwVBLPv3Viw9IoMcOplGBJ+M3NPPCRSLgDZICZZU3vWWTiXwtXpLvplvszv+9vED16U6WjHQY4DxcV/BaDYvvvWRmEBKyFxBm4c0tKT7QTA5j+cqBK2Q3gRg+3R7z9RfVIim+fnIu7IMfRhEA6ChS2ma3PKYOOflgOLBjFaQ7EeQPm+SiJYYv98CwSsdzTfhZOzof+LXF04NO5J+iXFXyVnA38g3+f3fU6T+DIJk0e7EOK9mWWNPCziKT6nbt6/EKW79kRpoNUbMxYikYK+X62ebBk3cL5CZE26v2uEk6D5wNNboX1hSZ94/0WtDgQbizQs1VcKs5SMLYVrL/Y8jvnh3GyKcCpgibAwsimySj+oZeOgrhQaat/XfjeKqHmd+2a+59cd4KzE6Am64H/OmLgFzsFUnWE5O4+Mei97T4qgLlyRZznV3oJjxWeCNRCTqPBjkrAKXm4uBlTiJ664yBIDapiKMkUVpyg0WFSw/XTlAl3kvmY1/CGMh/A1VKVkTYh0TZopvYNG/+GYLLrRRFvwAm1ZTBfRcX4fEN/WY7v1PSjcbarKnqDw6ABfRyXY7lhPZoFdErgiOt+RwBz9lTRvgjoaQhofQgRrAe2wKnIn07iW61E1e/0hC7owfBSoTBywIxt1nSebjwSeqdcQIWSYXq7i6fhATdSVgf9bGxB2ooAlOVF/Si3pO4YHwdIxXU48VcL+wNft5vShOgkdFPxw3J5yHEOVHE0N/iKwrJuVFLBV+4hhXqiP9sZIXkEGSzeEPAbIt0Y0Lb/tS/Wb6sN8kw2cLk43qfRxdG1CtRvkhGUfH0Xdh4AN533chjlkm1NQH0Fo1Lt6FuhiWjzw5pQTTJHWTTujW7jAuXQMcu8ta5HKhHz3ZqmZCQPMc30wznGHMh5+Ts2UDq7tNfYFiOBMNAo3YW3yTbxDLJa26aJ4eP7W6WGO7AItaHiJIEOdHTcXGGtiLFK/JmHOgnuLywlBwTJEZIPzc6kcfWaMq0uPfl0iDU83mV/Wft2pFXXbmfApDskPFWwyuR5eNCg0fITI5aFL1x5lR7fMx/VUaVfc1hP/MnZuZlQxRyZiooGWttNaE+LWeECp2xEPpm9Sl2Lmx2QMXB9WoOjPXRaZpJWoBZQTaBMiLhmG7a4SoC4yiUfuBwex0ZOEcPSVV6310AbWa3jrDV2AsbvQpce0GTNkeY5Bpy9l5ioATto5xSSaKqeyoEdV/J16GzApbqsMlRAjlwMkTbeSezst/Int9OC9Hb4Oj9cCMSBDnmkfP0EWQgyWg/r/qn5qfDdkqQFNr4rFo/roPQi3JO0IUcaadk8USbv3fhRbhUKrf9hV8saU0jDh0tspMD6LO6xOg167uZXFF8cgMXB8rIFAbBKhwL679nizVKnY2QcV/CcIB3kiu286wht7ztaSx/0dVgdDNUP3DQyw7KLImiYCw6GOHMiDMIqaL2+AnsmyrVu60Ju8BAVawkXCy/UJ84V7ilcggogrvhlzp5/Syie//eLU2lNLLpxnI0G9QpQnIktoCzpeQLjNJ/t1lRMCvXPfN/BwP/qDrHiKN0wPiNYjexWGAtp1Ou9AZj/uU4xuSp/FFfny4EZ/jgflRtG7R9LNpU2v9FfgE5enYOPz+80Hal2pYuFcqz3qA2t0N66UWqaoFc3hcWo1jiu04R32Elwz3M7xSptmWcqlm+Y8MmyK1A07Ucoew5HclJbLGROL1eYUc/mhp1+NR90vTjvZP0RfFktSZ+xXg/+rRhwxeekPEl1b0CMbzTjc4rDnX+mt7acoiaBBeY8Hr3CsEZNjUuWh1Y16XelhoHu20MNBA1u1H9HBD6560K/Fz6qfeCsUJ/LHodd4SUcsq/NNVb8RHBdoHafeupUtMEiY6+vhadwEuj4RxdmdOPFKvr7tI5yFEKSjY2xCM9qOOI1HvcsrAAkGJnrBGSbbTktlQb9jIlLIfIq5mSMmsVoPpwvM2uiQi70v4ZH+eK3ShhhMoRul3I2alnAzEcBMU0Q5IlG/2i562/NnsvHLp4SrNji276u+dLk1j4svbtsyUDB5w8rxfKbUPlEvjIg7qSqtc9gSjRstGPwPO2LrTA9XAwQv5z8MX4RwBBdAHD5p+/2RGw1DCZkkRcUb6d0gjdn38+cyiCblR4ImtejyNrstqWYfq9F760Y8kab8VdrAjCDed0EjI8dMU3H4RV0Fks4rV3sCKNvUE7Mz/xSYSvKAJFbOnas8tLkCK7uPX963+L9PN0K1pLuCYMTQnb5GT0hIQIKzAGDAAgmfec3eX0hTcJijybR12pUgwQngSXNHtsQe9qocV0VwDIenxDvkjl1J+pffQY/P4CCARTgOs1czM8Fi2PTAPoizP+PdpTaVPnUXSM9e4kfHhe8njjIMgP74iUKB0lM6zbLIIbWzklxEwxezfODdAnRE4WGlQ9ycic+Ueg5EUGOAQG6MuJNvHX8U/HD+PEJaQ1CxXqvNjOqA1Nrohy8d67DwUf8jOrjnpWC2gON8/GiUYgaQR/KIN8KQBQ+sK4aPEout6dY8y9HWRKb0pG3bp0gNlWIXEcsFpvAV01mjKF2H+bEcta6T0fWwen59FpRPV7xi6VNUUIcm3y1dOjWpbrsaYnfA6toBx0+INPmYrlrd8CSe13itsT17sNARx4Vh1U5vktXc5MSjoON3QYMv5dZZVdODHLueK1/8cYizg7U8tf58a9fbA8nwfBd2QBPAH5CFveI94CkWVhsjXtYeCrhYmSDeREhPId1ArCsliWntepGLjlItBUhR34MmcH32P3pZJzVgrPKh4ZqjdhTmPVmBS4jKAja7tlLWsHYlWOhhIJgeGuF/CL02bsAgvMH6tnXgfl+IgKz0ANu3aP1Jq5StEA/HlsC0V1D9bcAxgrredqdmymAVXFOru35JX8q/srrsOA4Q8VBziYZkDyPB885JIfwfV0E7/hU3SwYaqiQcsC8irvk2PtdAkwsPMns+Um0nCZKTDrvp0FrFiFK4/WZ/c5bafXi6BE7+urnP//PY0Lg+KHutF8n7YXPbvVfegoeVdSziB9WJS3BzxWgShZMNK1isOF0goF9H0YCwGH773ZH78ltfZre4hV6m9NTEUGS1tPR324lPqVOVkWfagmV7qJ7KC3CZZt6Ydgzwgd5EZ+aiZL6P5sV7c0Cu8o5X2xJRliiejd4V96ZWBxwjGqbvgGEJyMU54kMpakjr1We9H3faw1KJmZdRZ7sTr02Ub4it+VdtTBJ9wQoR11t0MbFi73PJ0ICA5q36b+QLFsYPZREMyifayInNubo0GpmUDfJ7hiC7/H9JoJ19p83P02feAPmGrTJmQJZFDNDa+Y0tGIA2GURsSYQ48PS2irSQBsnHpdh4cIohK9fnlOAJDq47Q8PdzVfTyUpsxnUDbfoEHPp6T2IGYD6QbppCeb/8D/Y+JPEf1u8nTgBZILS/BWymFdnutiY7ezm7soMGVTBlGf6MQoFww+8a5v0ngdkRkWERwnJ3IjMFmDUnqKtlrX77DXsj6fOJmBEmk2lAUGPrMIH6p+VY3py9eYFqqfwmw9Ul1sK0DLwpIbO1bt6eHOMfBXPaVh/ArylqwM3HvgxpviUMfbMsH9adO7F0xNAUkcomsjrFKGKLtUMYipFbIP+iwhNRypsw3mhMVijs3yhVmAjjQuaH0DkuaLbUdPODTZAcjxosenoOhYgXxrZN3Z4v19KlDSUMquv2HZwlsqYEzJkQNofIMYWZ9GBdVG3pOJqkQZ3X9FzsnuX+ycBaLPZov6ESaGbh1qPTqC+BfNiUZjX67bW2X6QWRQp4DUxGGpS/pn3eMinWAq3ghSNeQu4b0Rv/veuKTxqGlYgnsM7em24YBuN4oPzJyIZIyYHEMdj18/C9kPiGToQVXmsFwiwybE/1nMinR8hp6WBr8GxJmA/se2iXhLGkKr/+5amBWz4qMb51hm0fy3flnuamgg12C5j27gbr76MEHdS8mZsbEeNKTZCZ2/DMhSI/m+59avKBm8FHV84tksIOirFhXIayXsDRm05GkjKJETP6hbeNS/oyxb0WGVa2XYOw2FpzgVKpKww/Dg0w2Rk8YIlLZ36Q161mvCVyfXfGOCsc6vmheLuFZFdj2sC7+Z+N60T7F+x7/EMAawPBOwpCJSMQos62xUjgYE1K02+BXyVPBAfv/3FQ7KEwm/dlN0ZAvkAvuCd617a4wQ6ztV0P7jSsS3fHYnF86SbWYGU8j6dehzFQQaf9pTqvVFBD34tmstyD+IymCpoJApXWd5P1BTz4OSE/u7bB3nvckUuh2eFz1z3AxoGmYXeVs4g0y29N0ykN6slEq7awh51cM0tsyK5/2vuqkAnUgPzxU4iPMg6/4yXH1zYCm8Eh21XurAu8ZbGhyZcvQTsK/0CEQlH/HEQ0JrnBEVYdDidzlp1LRMJV8YSanIz6WgjhbxoTzdptI/LQpUWFczcReDBcVmEAVr6o6mQlsFk2Fc126heg+nGV4Z3bOakdVAwh+I+V2sb96+Fe1EC4j9vwM02eYITQ5ZqczeGJFFcpfMZJdS16I/O9eb79wCdpQVrMMdrUJoaYeGUPEYydnFmhuI5DRLtU34YVScqFhQt6ayp5u99xGuBua8SjxFzj34Vlmfoe4cJcHgAiuiiQjre62AN5q5BX8eZ+6YtM7ytewBHepQe3azB7NjQiyRF3l++cEq7T0LWy2FK1ZFt1r/ZaaPGHZHWT5vlAUd5Mp1NKNulANTttYw4YIEDRJYBSeUBG8SVy1z/IQkn6eCBgVB+9yzgbkHi588xPtnC6jZFujbImv3GOcslFAfYmtNrTBqOQRcdLJbMPS4XzhoGaQ9+8sCER87y5T5IIb64d+tBk+5ELtcUfuGvYHkyinYrKrVGQtXs+K10u44mPrSSU0LNVAJlJbZbl4p++piFhZD/CmCaUqRt6gNMXGV1V4p+2tyzjKXMI5PlpCGVPfY/onU1kqqF2uSP443m0rueUpnTjRPzTaKrxF0pUtnqgeGZvDC/8MvpakWx/azuxwMQR+m6qyXKlN4S4x01/sJQrKaD/OMqDVeO+lpZe7LxTk/m7VczoHEPA9k8dWauLAun+np4Ratgv6X9HiSnUgwxmWvn6WXcmV4cbiKFoSKhPaTt0wiekz9Sj8ijo9VRO31TmgmuqIdmw1uxRiZHFfWWNIRYNm5a7W5cc2mylVBmnC+NzAX6HpWAax36hulPS2kVpWk0C2ddIeYRT+9yKcTIMHdB224fZkkA/H77P3khw3Ub/novkC2Y6RPElPUsC/YkoUFbG88neP5Q04fo3LkzdtNWbYd7+UG2vsHP78h5fxWi4wY1kcOMdliZYjU+RWIaMpdYjlKlL8Dxg1SjsYnuhzL1Ty0OJsLPIlFhi9NB3xsPU5jAzCji3HjmsAAtJtf5sSQd2UwiiNhjUYa0mv5tnVNNOKahT/9I+pMmB7uInBe7hCuw1TFxG+/FBSOLgiVQ7Mh7gePIwNTh9gKhBK8BlJYzN3M+c6kGZoNxMZdAVfaBQ1/tYTBhLUajPGIRl3mERE82KS3XLTKoWyqO1rUUusrm6fIdAAa5fXgwbIzKECap1WOXuQFysaSKfQvsT4zpuIXTUYqqcufmFSVsEQHGYct8cn6vWctGD9tdwbfaHvFn4y8NM2Moq+AuYpdwJSFBL38trTt2sewNUy3Suiwg9vXP5C+/aHFFLXzscCutX6FO/wBbVnLDxqpL9UkgJxYhka+/ym4orQyjr3oJ2PfGPqsDvml/xcDDl8L/Z/62c7WylzRPcPOravDaERmR4tDHgNwMOX4l4DCSO8vp8XUbwBb8q6FZWjzPCTQHrGHE0wgKKEeQmmcPSNf8Q/Wewo2cLJMrVQ8+CKyzqijowcXT3xByXFhE3WDCUodEeBJT6zZ6kSw/aisWgwMlGFNi9tKBzh6P8RZuaJ8WJaBj7/9cCTc41lBxSEWOv5pxYXVqFiMdP3pTX5heSVRyKt5ayO4sFyufc5KExjAsZJeKTSXcw1sBg4OIydO9itewcjCZG2fRF+ANYCqV0XYz/X1ujD2xcDaJIjTYU6V1ffuT/d+dU6dooyH3KbbkO+/eGWG7L5qwifEoXsqYXt0XVckOWeAS1Ow7WnzJjBODQvZY7j5t1aUzHAV1/8Zgoxwi2Jftl9ZekKcugXLIIbJjQuZZaS8d7xebHIMf1f2cS3vjBL1vxw7nwRwFoe21UukrH/SeMV1NzDEe795gpHqT8ZmWNh6n9Fswqubf0RF5l3LGKq6sbU6hBTRZ1Q2bNT5u++BDuL5pvPu3fXQDcAtaTkAHuajL5pSeZak0uJARVMCr8EnwwIbwvsnUp01RyxSFwp/MaHVB/HNyRbsO+ZQNGxWAnj3vTO7Kt3WuLT6Ve7uakOXXMJIhugfwGgACzax4YiOjuYsQsLqq+FSfyPkqFL6dfA76tm40IOK2ZC0mLrWRAxagsLBLXGEbK9LXXAPSOVcfCrpXvcCpnF1Lss4QSZEJdATm7GrCDBn9BMoWfB9W4toXzRYhsJDihTPk5dwpyQkosI644YFdZBXo+O685THO4/UPLpPlm8XAYF4/5LxHQisSNzt2tF1no2GbuJbNy0BM2/wgcBVgWk0FdmplAVklU+qH50gcYDktHprh/MhNQ2S55T66MPBUZWW2v5IFnf1Yqoj8+ttONZr1Z+6jjKKB3u8q0sxPAwIvLvhnnl8pPpZQvg0yeNFHERLJk8HINxBm8VgTuLl1K95hsHPmFWwugA2sRUtB5CQHuA7st0LbFK2Im/trQ4FcTO+sF/tZzQU61y37MyivmSCtMGYtVchaW/9zmUtAgVIypiRgc6NBcMqiVvyERhZIfW2oRXagIj9mjV5jelzUUJXEBTky/esEkpFM1u1INN6mQ5/LPMOA0/F5+ujbZLr8gTDhJhJmJpEoOScn72xRWNxNx7xhjTPs6+K9X+ekPAnrLUgfgjHHcFYG+hoZEn7eCu59OyExbUXskr3vLRsyUG2JsBLbbHEf7zFBPh2Wj2v/pW0+I5JpXEUQWJjIP206Q/mQvzsExbkPBgaCSQdQLEj4JhuJLhTNYiFvFBz2Aiy+XoKzFFzd9nq8dmFNYjsRVUO+e4rbzy+ikTq6wGqbBODGWsju453vivT+5WSSLM3fbBGohCHFfu5eOGLMWJTEk8UycNka5YTsUPvTG8jRJyAzW2yLXbGAprkezuLnUxYncLbgNCKS+zi/gN8ucc2yBBF/djf5trFM1eBJV1muqh1Ft68uHX0KjdIh1BpVvbaumPy+zqi2sg+H8pUYO47Pi/BtJwE9hfZXH6PIfpQkLxBzm9vfMI7uwoFpR6VZufF7bmXoM3oSSJfKm3xBa5H9cGIkSPTt5UuzfEfz91ydxH2S6i+VBbBzBUvouRPk0DRn96cwD6m9Upfd7dcpL7z5cxTlIMSJ/SzBuLAWS+l5BsUb7q+gAKmzDJPeZm+eKgwXHbrMjVzcJ62NPEJpq2JR98IiyMa+GBOvgmE/9hYJ4qnjQqH/KHyYAL2pg+YoWwZex971k53Pg8Z/0i+BxaQkVSjyd5KteIN4zzmINeIoW1/Sk3S2ccbxGGuPqWJMH68+/r4DP/KC73IX1C4dOaitC5F8yni37ZVAGx4Mqvi7qUiipA/Snp+cdbOuVTcZ53q74+5Zx+tAqkJlnaRMkA+KzMskECuecM0jse1HepEj9y16y7Dy5lGtSDdidbuOTjv5kcshrXgaume+IsTDNAhz8Grv1/VeuLxRBS0CHH/oNVfrx60wpRrjOmOtmzEkYBPS2wxH4jXOEL1nIZXx7MCVydfF3AB4pxn2Y7rsbVphqoo0/ChmOaGgzzqqOPzJ6MhtQjdKbt/CkqeUV4ZH/2n0tRxuaJ5ffuhhoM/3vN9tOSO2H6srqgzsam1Kp00yAUpgixmKDtuYwOc4kvH+5Oe+E78+jcNVOHrgTZusTuRThskyU/jXSm0rf0gDLPhXKnVvdgHsBOTRAsh1nZ5+za49UKgTKCQo45NOXpNMnVq+iJ3AZu+u1xhAorZCmRClRs2nych5mQGNgu9BY3yiKoFirywk/6lsJpW00JbnGZsRZF9TibW0A5d4nz6CtACZOFcPNu0klGn5jNNOm+Y6wtTTi5BIdKTgfYJ5xmL7+v8GDGes7jpYKNtN2XA7rEYm7yMRF55AHNYga4puGmPkzuvMdjviNrtVcyI5TR1+eBBmWamF1A7+V2GCScU2m2/Eo01FGNUZb0PYL/LFX7qf/LyA9MumHCVHB07/Y7g5wHZcO6NNEnJPbRjumvu1R8W3TBtj9MRTI0vJ5i1+5XfDwwaEOICYKKPXtzb6Bc2tQZa2NR3vsI6v9AgjtJqk3sPIbRG0XFPuPzaAHDA0fvSZwvuKKYsCrdpXxu99FEFOCRKSZi8pjsk9ogav6DPpafry4gpNWGpVYdHSfyESoDnr1MJmdCk8w8VC39pPYBK+Cg0w1Yy+X1byRgO5thxSDBeSG6dCrD1sIPx0CPKuAKgCWue/0sY6F/8NWjJXA1KSwBXLPoHZy7l0CjEG9bgDTnufCTJGCeqH47Ux2tFxLW8VSlpmdban2ACT+/BaQVT/ytR8/Kf5y7FoYE5yii0bA1nubZat2a09w5mbuBG/teETZEBZyfs1rt/7rsh7h6202a1o66wJv6AiebIQ2POrjDGJ3S+abgCBAClarECELE61wKy7jRjyNqtTARWhkNVRzITg88s5pwa94nWGeTRBlThAJEYP7FXXmzhEPkxF50DU8QCod8vpmbeNSqu436uoFL+jYRFTe2wpuIMn5n8+377c+rAWQ+vZkPcqQKANSYhZT7athyOLrMZB6Qm6qf6LdDoi/QQfkU/CTr3wMJQk9++Qn04IgRcgajc6OegsVySB8crPFpJSC3pljV0aAcnfhmoryn5pDpIyszGuNl5pRIFsWRLzvdrcXecXDJDDXbiS5mup4UIcNQuG1a9v8ed6NWCdkxJ0cUvhoP1vuXEpyOC6sWsKERiCRvQaet0ujWRzw4JFHIBpSIaAKzNX4ShG+gsMT5qe5xVQMqL5VlbqQg5+9uwTouBDGpuGPmUOo8+MO3qGmuqbnbQXR0DZoyiTaN3mEq9jQ5MrnWkrCpMf2RbiPnjaZyxBcz1h/wq6wRWCRLrJjXYtWSMqIY3tMkO9eXCpFTYOauxnGaNCbq8vU0ULD06cFAsKXudTgXFUW8kqSi4gf/m/nxbSuqDJU/+GMJu8H2ABWkooNwjFkEntD3q5I/RSincA0wrtiOdFuN5BSzryOsK7HKQs/lJhV/WTYr7AOSyRMdja/tvbtucv/oKlg8OWcw2h3afptmR8FsSD74hgpnI2Lx1pr1RxuN4FUjxpssUkNSltFZJmcWqGiOT74/w8A0aVH42OUyP2GMnnWvMmWYhbDyAy5Df2SDsrAu+TNA75jAv8N3VA3bEsyosPIP7l/KZNg67YfVhoQH7+sxcL5zJeJ5UJSPiF0Szb41SH9d0tVc3PVJTxkcTFDopRwADrPthQuwGwlx4qYQx1gyYciQQqfy3dexWNRNhwF1E3TFMzMak6m0eK+sXfx/7JFzHY7DMvdLCOo9LvrV1sItu/nl+kjQ5yOJd3gBAlPsoESsQrDdn5+sazAQ48/HBhkRE7ShE73wTvna+zqkPA0RfhFvrFXnnE9sYxXfk1yQysbFdQ0uPPdfZzN6YQiy1GjrLzoOLh8B4SDTR8hWhwS7bT37KBfvPb5SDfUtDr9TRExtruExOt5V4W8yCBHDyNdUEVr2iLB5buTpwxEB8MlY53FmTXMPFPK9VITw5M1W30m+yXRzmVRFYp9ZakhK4BUG3aTpTB8+pHja4cmX58gb+V4o4BAUTNUBj4lF7JzD1mQCBSyqQ9AeGZkwDVLCIZvlbH6a44njTtKlcR29LJPwNDr1irbA2U7KvKKNrcsyT8soTb0nABAR+22+awDDx8wePF88wrikmdIElBPvqdumAPEAHv/x9wlx3OVjxTEl3BqEd7QYOb0Vebd1duzTgVpMub9VDQNhwPVn1KW2n1UujAtG7tzKFktsUmO9OZNZ4o6ODanKI+44yjM2ULN16qEFbJb746GAPYh3gOEHINakD3IBFSQGlMsXfmxti+YTeiGXHzTv4bCfQeBqKvQnv46w6dnhXHdOQSV7S3X3CsQrZ7nYPA5kTjog/glNgoOqCQCWvWLKe4MCW1HXoclYyRg+KSnqIpc7CF0eB0dq4XdmZ1VqlO3BKCtZQcTMgPd780uV8rjBoLbkK26krotBIohqoKLzwBuppDJfk/5lKiln9mvakgPQ7KnNqOtPT//OMYCQpyBWAiBddNs6wQH9Tn5xnPTssGmvxnjojJU8XDZhlGhIowy5I5NgajuddEDEwL1ZwPJfRibGhjKHvIjbCMx9sHQ5fFYbWQEIvPb+FDQyJc3yNX6hA+0VOtnSYTKLhcIn78axrPyy5cRrGxWIMcwvLSKmmvrdClB5fTC66+bev6IxMX5urv0Mm8NsjMFZkBhejXjJbyD6b/zyfdVvh16in6GQsOjLMJUj+A7eXLdOIzJ7++77512AZ+cWY9YLmUw06k/SsgGGhDO0L5PdZK/pDfM+oPsayIoOkixkUCSRDO6AxJaaYWxWP0D+Ua71CK9i65P4RsY56VAN8E50FVJrEoYqScOrknm9jC0CqHaW9bRAGLlrlR9RSnFdlbKpvazNIPf9dtmGYy48PE4mwPT6KlathfyyW9xqQ5cwpUmeKSP+SouUjg8fQIJyfZM6hn4HWDo+PxbrrSJ9acnffLFLm7TV+XZnhbmlIptO1/kyCUS5W8vSp2Edj6rtt5/wT4T/Z/5bTW3MIpTI1tKgp+jq3MhFPrzjUqmc8rSWuhw1IN5wto9de+Cf+aBbW0aNGqREqB9qfHnExYGDerMdx68FwFtIsnrJlYgcTqzU42mqn80VB5N0IV2IOwZjwZBBwzpXuiwUVUwvO1/xnMqM4YdBgA96kYDSWFlAfExVhx+4HsFAzbdjMkO8U+cxpteAkfk2YQ2fIRsEMvbcMxq3TpvENibOuto5CZyj9B1NohoX4CAu9E2MoXbjV+JQoMX+VFVRu2HE3MsGupAFGY7qFLnfLJLAi03nHFFzP6mkjc6Vrw43xe+qKkRMdKDCy6ZZFN+uob93gEESN5vOtYsLkktsydhOqa377+LxyIDYBzuSUrf9mEW48DEP7LfMae7H1XtXhj9+vtlMjwwbB4RefG9zNy1UchEnRSapZweg+vLcu5F42WdNW/oe1/q9QC1B3HjvWseuY+OZNprvKRf+XtJw1hzz/Hn9sfl4bnfV2IBUjQuGc6MeFP1t3vPXB0OZT7UtTMYhpRnq96Et6GUgcfEjHcnEbUBzxLsp0K2HQp7v3XxMLSIfJ9sO/q8kzpJiRg875JZWfxfawG1GWbBS5A+yPcMmCUp3Q+iS/wGA8Eb9Tc0x2DyFdvJayCh0LoKGwe1sJr2wFW2CHbw9xHpZa5m2uolAhO3uSaZNy3aiFslVKnnczmSslixYett+KGOYLl6/aJ6IuD3foBYmA9BUAgsR0Pbw9Cm44uGNAFGAO6oiz0CngpyU1w6ckR72GQvrXED5HYgOnkqHGhx5YTyC3CJE6XxgGdAufaOwyVI+afdSMS3WkHTfJpmIayq6Yb6yp1/iwL1mK/CfLEhxpXLW7+LUCbeXPc3K37eSEtqzUCRLiiJI3OoA/1Iz//2+6O/nYMw0MCKZCTmNQSCodXIwGeUGji+FXWTgxwZgleeS6mV1cbf3AFIvdQSLvVfsYvsvR95hJrj1829az8QZXfsY0Yv1I8cCtt1SJ5cFeY5zf4edYmu5Oc0WO11qlRR+VxPLuIFBpPsns4EiRVylFcO2C2X1wvu7LicSgXnXL2Epe0TE/6qHs7ClNXdjd32LoFWCuH6xSvSyMMJQJ+5Wh60N4unb/XuAgwo+sg5sr1WDDlvRGwGZofrKoXk6a515tFMFxYnrZu6qKvrzADqWejl+2vu6YYFSBQwnrVdqo2vLaAGOQc8fcs3xM5zPC176QnIrbb3tw0RxBVhU4YBlV/dRDW1OaU5WAATyAdrMn+nrGtGVsEcU18uXs/yhxF4O/XKUcY9BDVGrzD4R4cafB+xlVMbwIntczaWUK/6mMINJrM48cWoJ3rc3k6RR4objzOeFq4WOhkdsUiuuIm8PKkyheyA8CsTy/lHMRh6+q+9qr7UeHfhKnu6MQ0K2kXZU/kTr4wUGOE3emucAihZ5eTS9QctKQ+y5ZsHuVEKdXt9SJOXPHl2jgtC+Qxduj3j470//XLLiuW3guZFfDdFnrOubkzypYgAaVsb6lL9It3KOphz8X5lSJOr8UtRcH84mLIrSz9PZ8HmVD9V9XM83CyJHGCSXISYmr7McaD+lXQzb0VZGA9S64FX7rZ9+5x0fBz0+wylvtS9wKnVTcT76buEdFGolJLAWMg85PDXMKul2butqaKiT792QrAoA06UxWZYE8LCD479UM3FRaj+PcfDDZhTGKIrXbrsl9Gm6F0oS2sxoWfmGUfbRCSf5pFh/WtzDXWEFKZhPtmr02rQo3nxTF7orr2bqxHM3N/pS6P+gYuWB8/pnr4F7N9sLi/KT3F0kl8oXywe9OidXGRhCk7STCs6zieNia9xwmzsXouB5LO1KftAz3uRAmKzZkanUu3Yp6IWksMF8YvF7UnSEBVZKw+aK7UCJCPHf2mHRwJS2UnK93xHLAcjKaUZ6npfODt2PoFdxIgPNv99it5KusHkgA777NISvtE40EiEnFBgi2z/YDKD0wWnwGDo67ewtBpreFrdA7Tbhuo90022/PvjkucgE+G+geD2zAMJ9nBUPWEaGz7Wax/7kEWHUV3KBXB+1Pti2VtT3wuRyZg1Pa5QVJKx3xgQuxDODcteGGse2+kNjX3l/jko6tYp2PkWBG23UqTHC6JVIUQZkory+TxukH7Ok7F5DBmoaQjDfxxdHTWou810wMNswNCQhTxSLtYtLmhihq1xYB47OOb+c19LfLa5sjRMn9Vb6gzIsQqk+RFRcf5hVgAcSlWCDmpE5yUcNLKtRLecB2GPvTnXo3qJd48Nh7JU4hLDRbTld4C8KToV6Y5QlxmiOfluUA6VtUHLLKKbZ2blNjivRn5WCRKAT8vAEv9BWiQKyQBGOvsNQGr6kCIUUUP17Fsl1R1TP2yCyrgbIoe7WX1RLhoOKafTtjd3Xv00PZcredUc0N8tQRMPIXWDyNsFtsd9GnOTedEeJ9ZR7+0YjAnERIKKPBkEx5MTGDRxg5SNBksd/qWuVYFFHj5kRGVm8DRUdWsi77tFkeJkneuLkSThN+LQSJgcbsdequK2HJ7cOXu4lldPPSIxgPr39yhWNNHdSNF2n9r9gC47LxlkGW92Jeq6MRu1058kf6aQjROH/DmcYx3fTpRKFh5g0nvBTMffyx2EMWDW84PrS8bXF5Zb+IRs0lMZ8Dlf1ByNntHCxwfz7X2PrgSJbXmaogo6mi16uncVA2brHSEeLVZQOUKHQyOmWaKRz30QJOGb5tKzH2B+QsR7THwUemCtnwlIbmkPjdXhQEo5cRuTUqVO3kVBp1CtUXoSKAO+hxJAS/txq0dQ7njk5h4x42Q/RW4rOneECcQL2zJcMiMo28wGMcyghmsQ9zZqXhdNi77wW6Iql2B87s7xEVjfhuVwYZojN/TWLRWK+h5On0mGI0q43m1XMnGU12YTpVwKvAhpGFjP8Mqy06N1dos3fBd9MeLwGBKcFgMJ8lYqoGHpRiakyBnH8bpvKiZ0k6SOqz9auhp2P9O+Jo+CoKEM0B5fEVx3olFS3Ioxlxz2oGhOiIaqxP2J/yXla444FwxgIC+Mj5eSCPeN2MwvcahQXyusqhrLvzKQRGtaK83dK1RTx30NSY+HMC0avEKwCI3UU5bzgHdY+4t1+gDbnM5UtiKhpPcZBTqWFxAkWzr7GVd+T77DfAlOBGk9NfG33fPo7qZXzCEjXyjV4KtCFKhH16LZimV3HLXzaeQ/jvZz1OD1qXuUSmGsYsses3VPL0v0K5UnGqAns3NLMqIomcUxK7wB8DhPdrGhyDLk19hlc1rL5d7jS5xftqBVg0CH8MMknbc6FdhTEiO7ygHQN3x6c8b3Qwt2VIYzK1v72dBPucFmgmRzbGRFdwP5YmzTr5wE6Zfing8emEKrucbgvKyphVD89yFFSzqsA30UwsYnqbOxLyupaaEUU/mphXG9B5Rn/bq8kLk91xCFNPJk+MHwScJGsLf7MUMf6rl0Gf8SXXbgNte3aXG9X+vz+PR8MeGPo+wiCW4aWsaCd7YVJkhGSkl167wd/qaoTmzPNZ3yrwySvcYE8d/wN0FIEuUyFP2/zuvIGkga9IMHKwrwyGkNKTlUR8HQDsZ7o2KTNeOkTYuyOnase+2+bJQ3P7Dbso6ynbnw7uc5rCXuyQPnrCKj46A4n9noXfQyXskqD1zAHyGCyfnApHCO9PVOEuexPTOSHrbx6xFZ+c9i1nMdGZH9cExSmY2H+axzcKkDxsFPOA3U8w0A3jI6DfubKiyp4VHnBXl0imD9KYB2lrRv/YP3hN8fIeXl5/L8bv6ri/LNGWTbZZyrUtWjvQ+yKhilRBIdWCQX/SrCTQ0/S7j+t0o4W7wPAVLxAH5pLgf9He4onEK7w3ZV9n7QqBo9sLa4Q/28USsqRpMrl7MCQK9z1ZvvYBgJWklp35vVpRmgs/OcQVrz5xMnhRntRcdHPeQyM6fNpGt5V8PEPKJ0JE0ByGiTKFrzLc6IK/dzsJCjSTVq6SqIp1rSoS1jDaMPGhNn8HhOtOTesxQhTaKpcPx4MNdGFbviP2jZaAG6e7cbEOsXvOiFhmhtK6d1xAcbRbUoOagVp0uPaJ4S1HB5if9KA2PMcSwb1xpVH4OP56Fcb1NKO18TcevboRmETm1tFUSsWehCyhkvdbqlrv8pSfZadgtjz2np8O0xu+3GgDgvJCugtgMJezwh5+lpuaDCWVb0NzNjU7qyDz4GKHrBPy+7z7rvpJM7LEJlNIxgoTehZ33x+Q9zN0SdNSg///emM88l1XJbaR+SslKd7KiHCv4tNQvYwsAd7q/WVHDCWPoKzUMwMOEe4RvFe6WxmgqwkbO0gmJswZu1DLYvLBxdpxg/o4uKvA44cJbnrPfQ4IZbzsDmPS8z16gtuRqsbk5sRU2DWh3Zu6UEgcsWpHDt21KMBkyajSusnQWo02TP7XIeLZzHZMfLArykthgnqc0vF7pnk3zzXcU7sJTUiNem+fgbMm5kBi1QcOLQvnr7Azeq31MaMGEKlJFO6A3BqU2PJzx0PWuVC7a9QsjljIAQjrqeFA5yfwxXMkpgNAqAw4+wlE0vb4yuZbVqReFjGxCdrJW9IjMkYDNpYTLuj7L0tOrgu5zJyG4AXdK4USXUcpzbmXg13uamFXl3iWAXwZYDwnyq2oHYdRBG06+RPXQxRcmlZXlnjZuWouj5FFfGmGodMe7S68etlEPWbHhoxF4vk6ym+8lxM1QeuFUzIrgEU4YJ3ZVh6rlXcb2I94VsEPRQ8RxJ9ixR4sao2wo0gKso/9J8HVIIBcx30J9iO+XHjlj1xQ6G6bfqjw9kjbzErBN4yms/qioj2MAVdVX9Jt4JWfTPf/5EyplXcsX4SoLiU4E+OHQ+vtZJ/ViMeYvBSNTB921MQLq7DPNGZmhIeYSu7UI8Kd1ZL5UBt7qo3k52PwSy5fBfYWAbnume8Lz6ZRRlG2RZNO6bIeWIS0M5ev0Rz5RgH1p76ogj5LMIWf2HfS4KeRBJmIhPmSnr+IEVGYTL9Iz/vgxJG2XnEjFEKACPwbdalrE3HK1xWluRlkwR2rPWgHQVOJcRo59dVXSAVcovGfGntdr1AhTVSOQyQkjQN8jUrtHu2UyRzyXUBSX9f2M005ujKgvWrktP3pyucB7RTk+XmIlcz1yN3wD8bv503psNUoPV1YpaJdV1teGWm34uzcImLAi6Q5IplejtTHseTuc8cQ4Hi3WfwmStHCUWBWiHJEdh60zdX5SI2u2qsQIn/aqvwrZlgoXTD8HaRpDeKPO6Z8Erb2bpRErp4zAOhNrbPRrOHNV3mQD7AYxub74fLMk3Nxrwzmlbinv7+43afD47MDH1ek1sxFds+csc3qYQtAsKHMcc/0Hq1UEmAXphh5XMtKKGHa3S1VK5B/F71oQLSEVQptYNuj8U2Cda85oHlkmWBWmUzhu+Dlmecu1OIKAroGe3CktmwJBzbaPyLbvFEU7Yrfoz2RhVO2NikvZtoDpz8N/tYDaWp8XLP9z1ovi+qy4A5m4UFiUjKexMQrMlXj/qg8j+aocOXl8/Rg5EnSDoL7Sj4T214uxbzzgT+VGV7/M8ehqK8IO/J7+LclmeKMb9xXnAMjbMS4AmPLJZshuz57Hv3EgZix1GUs5F+H42MdTbw04lfBEier38WnPJxLusQTmW4odCAAvTCtEtAZieiQORPJgmpHhmLdkHGoTu2Nb08owwr5N1ReFSDWe7xAUNB1vK0H1T84kMN2cyh5oIEsA/SxoiQgoPSyoHM8tNZknF1db6RC9wBMzgXF+9zgdOG9BSFdNWIyQ34XGQF1EYJWUwlKBRVl2N3AAW4el/1IQxU1IZ8Sxd0W0IzsMZQc2tswn4HAqTfScLkk9skodBw3PoU8jVNKOmmBTRxFix/P16e0sFIyhfkBHM0Zeykg+5bOPiWxSJitf0J+0r4xPHAnzwGtP2W/1vAjm38mjMMhoYRIsLiLz/+zefq8FxFJIFbcIF0wSAXdeHEQJRliCtJTuds6uSl7441ooOXVhlQBm2HIHe3/Rer869jdP8BkZDrY5rwvN0C5xuzW/30dMFjAaRIi62tDFNBQgWNAcPGYe4f4ynCsw4oUR7rnJZ4szrwaxlvXgNpoqdft6VO1Ku1ycrmlZrtSCrbnQMxapkk+bG0QmTEWFhA2EA1pVUhNwsF/koVUqhY2T5W122NcWknDi5bpYYkzHjFQEy9YDTDmCXVx0RKdO1Fyo2u299YcCwz0dNlUeIDSG9OMfBWqZz1uLhbQIFlDToaX+sHjo4eIyNgZx65RtPSMowae2BqaV6DaPsZldWmDuGx3bujb8wh5aD+ymujh3k1qmKt7+ntbctrzbfsXWccclxp25p5ETaDYgWJ51hMLrJqyFZcZwd7+rcbQkoSZ3Up+YJXtKkqsocu65+529ffhRGoi8lUKMvdqiRb91dwrj8IK7Gqxn8xkhMulTzF4kO9EH6oruDySAaiwM9TJMh7TPmR3vZBPAYfJFBzQXmriaMWj/uNDdlE37UPfiismWVJ4TBTIvYENjNCJ7c+GFrpvsx/Lxz/1zgA9TZpRrXc1na2/meYLLJpyHFXmX/5lGW9LJgiqVGHQrlvkUI1rt+cQvBfU983Y3rfZgZvtU5QgcfXLGmzOtfDLh/Td3br7PoiOX8gmNVyvEIY7eVAd+RfBLg5c5fRvOl8sGKpsuX5DXIMw7osycPeHQBmuRSlX4VKSZGfsWGP1fF0BMp2kMdxvgBs64JNgyPHCQ8+HmKeb1ltSrvJ/qtMKrnx7V/8WFEiz4g1P7VbUUVxUhReXB5I5woQESDgSAzIBcpS7m+rtFPBcyVHP5jThJ/2JylVbcjG+b8FlM6iO144NwDD+MbYh826ow02OpnS7KgbX8UXCgUmmmSZg3DauK70yD12n51+1W+aBpXG+JeQClU68RtxMVsPFHKf/shPnqNKdgrQ7YVbJEocou6jXqinRuPS840w2EJ8rkPv4M3ULsPjHUkOPAulKOgdv5Ml4EpFCDFUh7B18ID5/leIg0H7u8RlR9kdvlDRzFrjfx+IrmpG6mxIj522tpJmAbRN/zfFFtab6ipCyTaiEurTGb+pJgIiJglv+5IzCcDms9n/+arKlQnYiAYxujSe6p2rEUBwUJSOa44Eazj21GwNbe/o8w1ILKXo2NMfQbfTWUFWwMrSBCKGYX8Xxk2YGPhAIiE/0ovRPKIzGtfrWDNPkOeQHYJ7+TSBHjigduyBWaGnaTbchVwC5blIyt9mcVfsV93i6hJflgaWklUCuJNJWHR5FoHm/q+UXubtiB4igfpTM1B6ChDBFqqo+7a2Q1o3Bpek+5TocMmi6G2kstMJ6N9gBYreQp8X18sQLENAOfusYAEL4WEMZHBFTqQ+UXtC9wobuSkOWu4mIvDAEHIKanOHsph3IRpyAnh1JMk/bby1JpVvlN6Xo5e+Vu9ilYYvDURjMvamG5pSeBbl22Z9umhr+rDzJYAFeie9KorxVrv1KZxa4JlqFJF7QJfHRdGvENFbXbGAjquRPsfKU81QWicxbE3lrBFAoqoExGri9tmVdUkUA7H7PygaZOkR1RTEbjnIV4eM0Mxgq9VzenzmQnetQf3XXFOYsgdJdjTZzoP9Ie6GxzHbwPkvhlMUE5OA3HCkbioh04HLsYzvA+8T2beEF/P1Dvi3f/67gqQ45eAeAOrvONhHI5nuDSe8/G+si+ymX2zdqo0r0NN4BacSxwihV69fkMump0RvBLtOHH3ib3Wd+ikfigRdGY2kqP1qgBSfw3RZv8CrQynjURN5wWd4xWsy2gOkGZZioB1lURkRN/tan9zx0m4iRfucUfyrJHvb889vKjG8Ja/SnsiVjBsPEHh1iG/aLfJEmPjC9Z+lA5PWwmMuAUH+7XGg51zN6O1Yhd3/D59ou3CoyqWlsXK7ulnupwEPBD0ul07mX5XrXmRu0CDQGQECOtbVsB7Woj76gZGMySYXb9jKTpcbFJpbXphmvsDMprqXawy15ScC9cEsd2u7FPpjuES39LlILyyiqQnBeVkzEgw5Vq3VHkGLLgLUSZ1Tc9iloi5timw2CRNAh0FNjSKFMuRf1Ofqhw31PaLuk6TWAMSfQzEetpkDzD5unRoE2JCPUeUS01vlhKZk7TQD0dNADzScsfNHNM12QdpffiLE3n6KVRxQjhoR0zfXHUgPRFhEPAi4Irkgs8wnMO+yyq/ddpQUA6BsZcX54E8XyUjbSWo/goTAXA+/BcoZaVuUqgjQyD1L00aIs3my5MQTI0AD9e1Cm5j1gQnwAmtH8et3KlCgGHK1sJSLQsCUZobwU9CzAGH02T6qFYu+Jl7evMDXYH5jJlYE4fWjh46aejz+ohtx0a4IRYH4sRpXQEKoPCdhBNYO8XmNMNDrVPxtWXtRBSNDnOV9CW43uRln/46Am5d6BLCQd4XrTlYjVfThFNKNCJ/nAaCJUZrnng4PJy6G+lC2Q6bUEdNiHOyRkwAD6D8CkX9ERXgqyGpjvKfaxb1iy/zkQR5fPyZdigXJ3ybV4kTZUNKcuhygQAEo96HxoFCTjotG0eCCbutgmjvvBr6Q70tT8cRtjpHHK/hrQYolt/ilJh00daZbQ3PKQADEVlvYEIiZlabGB3uHygDeG1GoenCB/4b8n0XsqG6AkIHDJ2q3RfzX+e1+VG5ChUIkKya22YSreHyJA8qQ84F1IdusvbUeCQ24j5JCAIC7x69UfWZYdj09H9NC6D1ichMOQTRshCTkBl1Zh/2yF3axTai4brSM5iACgmsFOlphjdRDST7kyfXPfslkvdhAjEzO6sTxaoVQp4zyAL4EPpXR/fmirgfsc7VsmMs7CsE8TwIM4tIO8EIwsEoAZUsB/uxAoXNnsIjqO485b13FuGWqN3zahnJHxXrpan9PE3USMOkRT66h2uOfMyKKZWjrRrdesNO2WIA+nsQ64qHW7yNs2U1C0X1qt+RZ3c59y3VXbdWtKWoSpowVJNEm75vOaNa0GoosQO1R4xOC0PPuxTvuAE+2d4cXt7bwedHG0IYPBokzDj1oFRjySGBZypU8Ey8E4O/KeNAknnEvegjWvw7qWoax1hAnaFWjqkdUGumRlDjPiw0yM4f41Ho8iyqiuuNJ5Bm3WCThI5Glz7Ed24bM9hWAUTNVSj+nnpwm/fx9ZN17P88BXShPkbfjBCc0nKVDe0aDsVqZE3zcHqtRFJwG3PgS1K+mChNZcjhC9No12zxcb1D9DlzrooX6JC0fGWY4QYp55ujYy8xRSG+jBVBqBEJ0yt+E+WgAqHEQemD1VmvaOc56nuFQV5t2WzCEzb+Wzk3zGvlRuXQKLpTLp23b14ra//Ll6p5bZH+uPSXt4rEo/D6YHT/eRRd41bvQNRzxnPARAl2a/T/wjffmtesrW7AyZORW3xTdGunBFSvswXFfKpZjPGXoMRGJjDIKYK8ncI6jwEiVBcbVx1e+9OpApWvy+DZ0OaMp4x18mz7FC/WFv8q8oPqsTiynmfR4+lVthMYmMGdsWzZR5f1zUC5TdhIO/x+fXyFvM1LqUfb2kut2jUtFjkpnDzWARkP3SmAeiP4NbF7yIsSQL2JDRjdw1Kbz57EKAWWjk46huW5QLVORQzwDLhWs+4P2F6su+5H0QftiHoVkZ0uluL+ASmGY2zkbuhFJCgziVwZRREiWlpkDIuNYPdOT4n8nzq4uLsih0JLjw+6WMLSd3DeTQu6YF2mBKHWF5E56mkP1Bdo+tDeRqZbmA2zaMyrxs/hFGMrgQjbh1ZEFMRtGaAPEdNW6uzQcLGYXXLh/9daH2T7058dZt64ng6C1u1JCoEbrZEHXT8KCvu6kp4HfVppi+pZNQgLC79wIK4bs00XY5R3jqWY/7TnwgRC2zwlcAvPY3M6s8kRqFQMM4CJVQsOh52Z1+m7ssMcCVhJWs1m5G3uJU1O/4rWVpztVfRVQcH1vOead05SKpdvqSvksKXTCaJjE34Rce0f/Nhv3HVz+aFhvzOX0hBbLqbowpClF7z/GjOw+hyJgoPfirUmuEwmUqXCH4Ur+/0rSsySkBm18iXFrnqn0PHFHGPQXp7napx4zBSlR71qgPh0FSoZiVYQI1pKx3pGCCzsNz0udOhV1reVvnBpIrC5ypntoc3ZU01WbkxUfp2CJjDxpUD1UpleUCct9XJ40AjsXuTLz9gBmbDja5lQtBAfWo0RRLv4xwp05qkkEw8LjWm/TsBuirArA0GQapdWSGnW2OlCuv5dKSMYcjCTsXUinxRIAyZENaXNFG//iJ1K6mRQo+MIyiBdpPqkocon6HRTzi/epG3Dp3n0I7JhrJSXBnMTfrwhzU+7C5mprdEKDQ2UB2m7oNrz+7ZGy+QRHLqjzg7pqIqim/vAoUHbrCmOO9xK0wXqxXN0+Mq7ahQB2WSArFzeqtm6o8NXYqWHv04MFPntGSU6Wlz+0VjTyThhttb8YkUgWs5byOpi/rgZ/Ka/BAYKwQ+JNKvAW423FZGfeAEJaLfhw0phyGze1p4q9fTb6Zcq+V5lytbUYBLy9Wev/2X9V4Ee7GhRMhkS7Mx2rB0ANZmcoOtRDn6+7pCt976IShLIqdhhoF+y8bWqroJTtsZF5iTZ6En8u+3s/4zOpOXCpfqz02u7YXiU278AFk2fE4BOu5jdrylbh79RKUHbPI86JIyRYW556Jr/F6pBrpEsMpw4Wn/U/gZlFEXBcGAacU0ayhNuxhhML6dSPwju2/UiPgzup8Xa9EYqfbPyUwmtj+nHJ+MNI+g9D3ZqnppVhH2ZJCUPNsSr03PIWy5VtRBUz/LP8TXF5gjoc1cJVyFUhLq52DyfhgBxqVkIjJxyQDgCKc5ez9rTBztD1A5n6M/JjFasaeWT8NyK8i0UL9VF16zqyym2IMBZtHoce5vUwhsritlPObgmstP2OUv2OUxc5z7XuGn1weNHViZuYz98248GpvatLGotiRa7nC5XCAzPaikVSz4EW3zAzbsRtIpA4N1swGuoqalxgxGwqxmRQkzPZH8VdJRNAgFVRkDRet3P2dDFzOtar8lMiLmmmRd3elgKaNHrNZAeeK/kLAu7268cdh00/tT9Z2e0tGtUXX4ahHweVcPTSKlNmBF6x+L9i/i4/hxh9CeIvR3qh6GROhSX/P8ibHR/Mtu8zd6+lqp055Mghl4j+5Q17ORkG/InfF6aQUGF5Zp7jnC5OX/bD1bhXsx2dPrfL6PKY2aQwXgljXOwKELK+Nymft3UDMcf4XqMa7Yje9U9qpPm0X4tQqVy0bUhsZ0lLE6m/1GrKvRIFdhtlgBholjShez5DSyaST4oyBoWUHkoGchsmA2RkS9fvb9WsG+Nq12KYAugysYbgU1LYgBYKQd1fRM47BBZRLPQrdOzoPc/7gG6hK2z9v6yJGAgFnLbdhSbQdbyMsBvmai+GYp+P8lR4aFqDYV9oXrbU3ABQKaFNE3/ixl4gUEZ8U3OMRsNTM3vaOQO7+W5Zt20P7+020oeqMfVlZPt/Xw2V5Z3eHMFI2F+YBxpz+VIZklN2OChbqku0SNyuXQgqzCjGhQa37H0dlikTrJ/VfNDhAUwTD9z3H42t25vlwPia6eUWEMVEbrrQ6oOWE0qHL8b510/uvPT+vgoPFVCjKfqTuluPVPHM7/gIRaPteJHxTQ0laGcHqvrC5KaBm/ssOGLZku8J+Xvbh7PEqVQkXP8tuKkO3Yg+fF1mytnImmx8rKiopyo+HI17tjo1UoMDDUnQqNUiEQbFdxZCS32Ou/5OPRBw2xtbeRollqdJuCHXX96jhTh30gZIdzdFNXFDW1KAqNEanY4dTgFPZ/1c8uWycHRCLKL3SYKBhvyRGd/dUiwsEsiNVWvoQ5WXJPFF7SGDEiKPxY3kptByFa009zEclO2n6tcOfY3HCX1tQaZNIV67XkKFnVrgmTacd7ZRy6ZHZzxq1CsVPGOocn75V9aFg+4KZVeIAktw+xG9TtS+CbFwyvHq/Oi/mha58AaAi89TPpRu6nSbu9NigZLRjDOIz65MugE6Wg6nYyyOVdklGhNePTfXnOsTB5p2so9OvTP6Smtxu/puJ37k4dC9VHXTo67m/83wSyaUxgYn4dLgKIlj4P70RqT89kWrSleQCh5qxHc4ZdOMa+6zAoozYAQ/7DITpDslLiUHYtdpcwuTOasScF5zGAiK+Gc+m/7QnBrkr6iSnQp5ok1QDODPG2XI+G2D7oxI7GKFU+WZPACFBeUI0xmfa+tOoRZfQZx6AH6dQPiK7MU25uDTU5fPwE5Efp3TyGn+AxRwFrWyEUvgP33SCQNwFLTMDGqImGFP6fLnutncpWWqT3lOyJlhedEXN6ZPB5J7tT/WcQD4jPsBuhzitzkXNI8m9Y/dkYkeaYhJvk3t1UWMNtVlutwORnD4bmy/fxsqCh2Ub8TMdyRV0HCMfqoKDqnOWbNV6VH0bs4GSErxg+FQMNyBNi691cdRfkey8Ropg5sGiwLL/yIHtklcRdy5SmDgY///RWGwsDcRUxhIp4u96slgcdsaznfvAo/DGrNb8KlvEGLwxp0aF4E+8czV+8l2VgGue/fe6eLDiK/tWlg/4rm4tijjbl/RQ3rm/0bf0ReDIlC0OJWvYenkzHfEKfgzL1kKOR5a7zScsE2tQmd0FbFqLZTwg0b0SKGi32mw6kpChZhDFM34ssHP1NHkqXdPZV6M0B71XxI55cS2dCgNM6qIlWZ9y9Br9dVLoVcj0GqCA8jZJVBFd/7CEyFwjZO95LGVrjGjpumts+QJ62Tfdqtp/5UKP2DeH2tKsqPH3QM1jPHEuEYw8ydrrwkc+EvojjUxCoUV3fOCBcdlhp4hnFwIfRiR7OgmhdnqDJXpMA7BXoP20OOuHj8skkxDtBwSDcDddOMO/qf5aPC7NQ47MLWwoWZl+IfX/sktVUODCf2RriEl3xTm4VCyndiBHuIor+wxCWnh5yeQbJBaF1pERDx01RIXX7ippevMHAtoZT3R7jeCYfAl7NAj2tRi+dtytQd5K5b3/8ul4lC8LGAtoDpx0kJVtwP+vHPvGuEiKqI+MLNUtBDq/zaFUroprs6+9qEzifX7MyzJGuQs5EU9DNJ1H7KNe0DHfF/CWwJ4Ca8XOfPnj+HU+SG29IFkUZflp2J5jyARG9eTFKxHpB5e9oRw9clLL4CGN8gatQWDptj1rByZ8N8EC7g1P/d2Kx/oWIcWU6mI5/WgaCOTFeSNiUqxsDoH9MGoohCdyiQSHfpcQgC+UqrMDc1yxArvVFQGnSR0WWCvJ4GPTq31Rimksf70gClqoU4mw91WYnLwzk4GIJtA4F3hJlCHvVQAB+VmVGmG8Nb/+Xed/r0M6JgWNQJ/Nxyxka/cAeE42djeUQGCE0a3yTUq9BKUtTIIPccra9AlfJbo0k87HzPWIOEjDIhOvIniIoMlwCwVBQFo/yOPsXAp/L+dmMwsRdEPKHM06EAbyL/zP6TS1hJ+D7IpsnvApFzI0EkBsbLVmNnjRb6VmrQB9n7qy1PKd4Q/HJogNPMmBRbeq04hMj7USZA+iZEWTf9sbgrzxuqpCJ8TMNT24L2tR42/pge/FBdNH2+hDymS698/fdxgXMhii8fThHhAlY4rtOGDM/CoT1Ura+en4T6ZBOTNezjFkRZOL0mNoPXXKQLNH56EFwqF/5oOLdgzFKqSVMtSBTp3BpvOkwa5G5MFc1OdCaHemfJRhWTbIj+gEFi5r4gc5vatNUd52n6r4V+0XNEYxvbhrMKeB9xKMyKmzdfTQhtkDtLYpSuVOAMG2H8kSR0p/2KNPNdMPJOQ4wZ3LAoT7WefWLIKF6Sh6p1/KeK26LBA1sGzYkgs/ArnbAM5Yd0QGEctbH/ErE3grfyKQAZ+fNHL5VvccY0OOVBV35nVaZ5r+PysaWWOhmXNrpi+d9dzeXQTtMuDZ4EVTWC2+66WFUF8xtw4UNJX9seHR+izHM6mOGhnyWVsuGR7kfkXYTYDRm/JGLItuoiGEh9smH9mOz2xYUF+OuNZs6Vgz/sb/ACQeWsXpiIBJcKp6BA8zMEFozl7Na/QS3FdhyWvXdeGxm3CTUMoICGAOwTZU4hzNy6HgStK6+b2mD+fY4JdJmYSYPsZE5DmwwoRab3IxjYGfzs0MhSi/8rBREuvL5RTBRYlxKXxjhUYQD1cTFtMyS5UyryTkrnMp+hQkjFrshTVBXmKUWLVaddAh//tP2olM23H5oV9+pZxSBAy24f7NJxqSYMDCuRDWR6sgnXv3OdrPSb5IZ85azJ0y5PZACVsyiTadhpkjEet+LcFqwDRNbn6DeyZYhAh3wZFpmTDmqHSSRlKTGxWaX0IJtbOZ/DcoLlA1iPvPXq7ar0ZQgp3pVY8xWAISE+lQTNsykNUK6k6ujiMjEkRDYnf+zlsiwM2tT8F4Dl4+EVN2Lx77VSpLppJffE+BIhCZkjD80STbxqXctFLHWoVkM2SGAITOkdEpsn8NKVo6REUL7bKS5OMIdJK1ESQ0zhTO9e8qtdcYNAFD58nTv5AXdNU3YH2usETiyxUrXBxYnJsOQKr+Zd1PNTrhX+56t6TNNo9+NxyYIUiwLTmuHDAJuY2JytMxKDR6Xvv8jnAf6mUoFg2lmaCkfYMLJf2IrFihCdPHniLW8EeJ6a1s9aJV7rEhEF9wTvPgJwI1rHD0rKRnptRprqdUlGDOug1QUs0IF6J9KzUyFgAkQ+hHzYDVLS2xNNTibuaeowx+cO4l851/qMY11f97uJzn+upRX48MCMShXd/IiIJKwJCNNUqDeIUirpMKFG3QNBCgTvKATj+GR2Cr4PisG5DVKOFsfOzoKwxI1osh7tnWFIgB8k71FgkFYp+XQaSNIFoLEyk0ROOzkb3tLGb9rhfjnfWckIADQdquncDMG3p4BdPZs4qHUx77mstLA10xOTPh6u6zT+hIXpn32xVK7BduH69bgMZmQSRiczeSrTL5b+7E1MuGjT7/XyAFx2/fKPC8ibjYqbLnVsyBXlgodqBT1adSa12gBaC82gQxEkDKVXBMfy9BlDtk7dJN4j4AwmLfk1lumULp/G/l4Y3QM3jwxIpISHswWbN1xsR50ZZ7CEduKTUYVcOESLNifN0/CR05h9JVh/AAo9MEmg0mF8aLYT5fybPfMut/wWxU9F7vwTsnLa+Y5qEnye8EfcR3wCfEkZXaP1IGf7BmPD3oYI9TPE7OvvnaRmfokIYRdGZY6OhPQM322VJN2m7/Fn2tyo6vyd3zayjMjS2QofZlBm6fHFisVb1u9hHub3hGohANr41Byv5CCSHLDy3Mb8jK/jPb/+stoTE0/qWAWwRWsyXj3rahZMSU28pMKAjd1F81wLEeEkGV+dfUOFH7kN8CZWOIgBeGWlvcNabadD2yCWDjutSF0BaS3lqg0kr8KRBzJMa0FOIAIqZvfOhlKle6w0IyqzYVziwYojJT7BYN2yUujrb2XUI8Mn60f1Z/MGqHoO01qiE27yaQgNjaFZml1g4WJd9oK7UMsJqRnskKvSaW0Jp8DJLoTC1220y/A9Z9IQR19HXxpqFwXu1YyCJNHI3AC6Qh4Z4zdA/gMFegv3MmjIabmbzrr3zWGG1E40ue+hOLwa+UG3Ye7U0WAtkS0ykuPSKX2VGgpM2p9uwUD0wfdk7XJfoIndCLbD5UjW9DLLW7BSPxS26dDB10UVNVCLKyilVPB5zU9mib1/tcLI/uJYC3bw+PfAQV4f7wxL4cmHLCZp5kCWkiMxNCeRR/yDNJWyjXG3pHh8IQNMSw1eBRHm8wYs8YD39hlUDSiYTvpP62aNiD+Y5dUWKRBZS1Mhbj67ErZVNMaAGzZkX4nQSjr7T+GO5eU5Eue8/x1yI0/+Y2t3w5tpLy+dQhydmsQPg0jboURzS/xF0gRZQ4iMgHfO46RWur34RttdYmecqUqy54ogRSVoNk5qtj34MuyCWDRdMnXKKwVPevSVS4y9kXxElTjTaPKvQC8LR6I37F6HMQ70pzonp+EGx6+VFzWMvqzBfk2gaqa6qdegVZzra5canvuk9n+HbE3YZ9m7fdpd4NjNHceHbDqQGmlsusAyPsrirukyRvPRSnit1I0X02ZcdvHOMv2g66O2nY9qiuEU+Xzyjaved0X+UBkdLfr9pLflyOCmRN7Nm14lOpYuYUnst8IDZliYrwnS6fhscj/cmJwEqjhn9nLUsoy+6RRwgZdqVfCG6Y1gAVhLOFS6FEbRD4A5sPBXLZNJncTdiKCcccngUMFpKSs/vdy/VvNkpBxrTuSzjgn1DjijFypUFp7a7Dh+uDrrv5xrWSvJ8KYYP9oTC6i5jFq+5n7HZJGE9m2DHzDiJpakbuKfg9F2DROGcueGLR+WPZj/ifktAxkw8rMv1iQISQLJIDIJBNbApUcr3TePxBi9NUPLYKEwbWe1DQBVgKUZ6UZTkvR8zRhYnj9droFibKyTWippqg4AOZE7hRPs26gDIfRMrTxt8WLTaQoNaVXokpjBiQdnbWLOZAReLgI7t7pgI1zOmHiEkpWrK9WIwQxcywcRqIUbtFXlNBtdDAq3QvIYAWOcwGYJx7l890M0yFBjWbFSiu1CA3RomGRS5dcXz23KN2OZhPlYIZoBW+s4hqTVGVvym0BBbHtC3EVDeJOVt2ejx4Bbso221WASGkvV/IgqcNeaGiqaMfVf4VDCC0wz64pK1cZlJXLxgR4ZxdXAO1DD8BYTtQm1kiueUFpyr36OiZacWeXM7Q2ZHN66cY+GtxDy356C2F0Hx992mDB0hnU3GUbyuNu8Vgguax4wdTmb1vy8VKW7FuPJ8bCxNjhHTyTGLu/uIomy0eijfBypbSNIDBeZIpvP7azexV3nzOBaaphMMlQmZKCqBIfhuFP0kTz+S5x2gunQKVJcMsY8OUCWT7GI23/TlzOAHvGUMkHKjMcfdK4UtBX3fGCOSPlawAeMlrbnNsuJgxHGZedx6HiIM+Ziy9YPCvvVwH9aqFA5t8rhOuVKnlZyHK8HVdg5NNhSyWark26GOvhI0txyHneqGVCb6tZujQ9lNgixO8jHTSZ2JQHfgrSqVnvtPZJoIZ3MDXcBe4J5ZUl6SbgHqpzLeuTe8KzM7cegiTgV9JL+9JjQDaVm7qxBH/GEwyp6menJDjFlx8AQ6kwPNfELu7hCHjKzfI+7fCqJDxfCyjGAdfjpMiQn0cJuDIJcsKjNVGURMHr8Uk1FKO7Z5bCgC8ohH+1q4mfQyMNJOXA8cLQlCWVEu9a2gGbz595anS1pFeiQLuAj7QrDWvqqjb2t4QqZbF0xt+qq2QMvSRqbwQLl1JPIbldQyeFJfaAGw5wwiSJe8xeLfbpHaVAjsy+rZ3oJquoQipipFKh9Ajd9Xacke/isXATBBi6OM9CWdbZM57AcDiTWkLPy2O98Y8dd/7dxpL6sicKh23p6jjnD5n8QkCwcTCf6qNi+n8V6olBWwHsF85Sa45kzVtCewG7eqFJuoBGYIxncGZYHmQtOODacvdjgc/x6SU4eZFSI+TuwYuog9KwWX1A6iyRFn4f24R9tispKIdGCufdulyn/UeNKhLgmchkIadz3sJShjDbIf0b2c3kRqCs0H3wV9yemc7aQZEfiD2T6ScviujkA1btlNEiJCgHKBftqnbksPXcOsJooOHVrFq5usnzNHc0c+dhkorMkCwKH52VUETzmx3QH/eP8iFGJetUNOX6bSZr1McvyVMjIIp5LdnfrLsh3xidg2qWRLLqdy//CUcc9wbaOCf2j9kOxJQ2Mo5L6ixcVQmEhEthOtBYCoNtLIz1c+pM4m3QEo+GcGKkpJMBU2S43nII71CQrWdp+CAqXt42S2njZo/Yw3r6zHoho7MowbDkYPdq6d/UdI/aNofCuMs1sGdenOOcTCGBU+j6Y0UAUgp9+1OHwsTSUwgmaQJvH7ia/9LOpFus03rRQ5xQ7NzGgsm2qvpm3wyhE+sikJWXLMpO+B1r2K4xfC7E5bbw0GPjflk3JasEdfJx/bivhAKmgvhegRpH3OHkB3L2MrM6Hxv7k8rEHLdxm2UaKKbTP4PY4lzhn1fudw/L9yZq/v1hmWrfxiP69kl/tM9nsedHsTKWezcd46ePqq+5Ow4dTyHv9sHZNf2YkxOa70uCe5tAefH/Ilw0/1+nxI0hRdVwlJAzYMmUK09fLs8q6dXUySYxqw1Uw10deTMFQpPa51lq9ue7MMWRhD1UkFG8DwAvfr+aUiioOnE/jPgi4+V2IaEa3qj4mMg5298MmbuSjjGKVe7NwwQNDtEjtlmXMxBDg7Bse6who9r/AOoqpKKyXWLB+uvf7QO5z76limNvDGTeBR7C7uYaIMKrmFKo7rNduGSwB8z4IyZGj7wjSVa52NE+zwSxTLtj7UiVFlpI0Z+17nyFrYGYEVWIsIKMQ/pRjy5d9kIztXRSd8ls/5a4yXgFr2rk/cI5H56WZfJwwuSQ7Z2KeMxwowDY4vlfegKsf1Tjr412uM+iOIW3cqWsk27mBsFbdx0yc2YdZ8FVxsTesoNzwoQUGRDzTuZ0Prxb//4jFta+dj5MiInz8HBMoaLSOMmqM+g3f5H9OHDyjxC7KWtiAjQjJiu91fAtMgGfgkNsY6L3tjnF1B56WTx3tGYofNAlvdIiRUAHOG3Q1CUOkAtZ7nSVpR0TZRARSREKkscoXugYXdSyKAxIPllQEzR1KTenqpvIr4L71oWXrmj9lWTv2wAJ68axvKX9T8aJC/Rducf8hPunxxpv72pMaWwDE/Q9HgMsJ+fJ/E/9VBjgs3puCZpnHfIDAsREG6CiVffA4ik9RIwDczKr9Q6BUhpTz9fXhLHCc+1DALXqZ243v8AnrBlPxmdT34C945Kwf6CIcBudbf9I9fAhmIPBZHENhMAtRtYoBQqZMMmLxR0jTUCkGlRcQ6YmPKor9sVYKOAs6tSOBfl8UGYgZ6gvGd5gEGQRxnahcVMI5AyRODUjj7q8Ujh0f9NrcgfSaX+u/g44Cgu9hqx7C+S2gfJhfDu0oifbMG9WqvtJqD98kqIguR2THPSA4aRMRzF5BzpGBpSMvvEnkQOTa9Dlehzx5W2tgTwf+cEPq/c0+Wmcyv/yeIOigNAbRwJuNWO5HumdUOVXwF9CpTxD0iLkUyFqOfbJiMqdQCR/iSWHClw7IC+1d0hu5RmkPVWYRYL1SSuK8S2zrGikQ+F8LNYx5SS7IKSR0JxtrsHBEMhpXLYqbEkenOoDobF3Usp+thnSWdf9q7+1ZSukacIiiIH6s2tBMr6qCDY4YNPqHaHvFEfmAMi0wM4zgIsLO4mqD8lSp6D3A0ugWU1nKNKMLa0ZQgqaUJQh0OzKD5PW7vooAhGmWtY+xmJEmLVYujNLoL9CGsEu/rrM55A64xIY25sJnroE+aGbF7pyyxESRvfRRlH1Pw+xDdeEvrcoDsvWhYUiKcIUlRkOeXq5VGMJFlCNt/7onbXTawcl5hX8xR5NXhyZtVelERqWQ+8kORLvPf0w41qA/3LB1/NhlgGxrsW1aOjliMRYAq3rMCgAPzDlxooIrUVqWq7Hz4hScdR+Mks0POIV+lLhWECXXIY5rZUdnPAM9Ka90evoT7qPE2fm8tu2gEl2GlSiWxdy9+EDmTUriTxbsq2Z/OkbGMp8DyOCZifoD7sX4LGuEUJc5xKFj/LEFWQi5qrgHceiiPRlHmtUmUCkLPe0mnYTMFY5RcK93EF3slWFW5yYSQ528ZuJ9OsFLA2yWYQZmj7fUmsRyrXIZvu70mXGV+rdWiPW6m+deiBoMbK1rIXo+fmVJh+8eFMR6Evw//448Y0asnkCjlrkif+B0J8mvwRrH8AyQbHKP2wILnicQ/cPRA3c737d0hV3lh50P/ZYsf3/n32pz6clYMDKlGoe4RWMUQ907XBmMvcEkLjmRk0aXWrRSfIZmOZET0cJj2JRVJdNFHQU1NGt3sypk0jxxOOcZfaFFW8Theac+i488Ayp+uUo2Fi1ZIZWK6NebUOYRYfRa9NuA8ac2ZOjH1vjfV1goY6LJvf68WXBfzDRjZJ9W0MEtkeMo3AvGAaGYZy1MIvNxXLNuT3KVFy+GSgqgLD64DCyBTRnfYslsyr9fyvL5COEy2UKPqP1vAXD+VV3hLWLUXJzUkSt+JcCEprTpnFE/mmYYG6fHHq0Soc/ekjFrllkcU1kw4vgR/4LxsRxc9EXve5DH0VXnPZRP+H9tol2bMd1AbSkVoqmnNNP8PnwalpyTimSsLiWW65JqiB43sfoC0Q6VDcXOKKUazzaEu9qkjCuPJrC9eaH9cehA7spveueTfLOHsTIm3KxSYgFYW79+QX07bjbC4x0k9qj1Ls70F6jiFhJiX27qGK+nKraWFHSmk7yIvbSwYm1cXj3K+lFrFa49UCcloRLiZdhQJbrTklw4u9zS6cEIaAs9IB3rAwQO9sFKdzcVfUc7AHatTIHmt8Lj7lEBO+AAfh07Emq6NH4ablbnbJ507lPsekfYtYp8n5C/eVfm0F5U1DC3BPVXpctmH3gwWn2ITsHTt5oYAMcJ+blIvl7plbeIxo4kzES2pwmNARS1KrAj1uKRG5m3V75ZZRRMxx1gxRIANozinW3/zOH2R1OBmHqe5VQ56kdgwVDwACKINjqrCQFdYWx0w8jL9z76lCKL8M9cZnFh3szGDQqgtY+PRHcpFQ1Ml1m2IbKOeqh6ti14DUwLT9iYLcsuS0lMothPxfd3fu1UkIPenCwf2/R4yflpi3I/rDU2YZYMmZ2pmpl6SWT7MAvwA6BieFmvpUdKTqYIcnC/Bc5VF11AtSDgMdrho6CeOXWgmNR5hdg1AVLRzTYbCYgpt3cIvLFAgKTMit+Dk6Xxt6ss1Trjde5mG22rgawPA/VGSotA+fW8AlqabcYRpQKX9NWGIhQ8MHAAfo2To4ApQz2UpHOzaNYxhNglg5Rtzf2PR3fBSOVrWVCi2Ff9SdX6v4PYn2Q2ihAVKz1Gjr8TOUU4fYska3ce9o+Tyncov/4UzhTb8ECjV39BShP0yXndU6+D0y7Scodvi7zzW3bqS2t0k+/x0KOz62GCUj2alQtiMgpTib1N8iSXGWMulDheClyGo2wyLUo/CaCvQY8/NExClDF4T6WBN9R6ys/uyTg9OFHYlwFlSC6ZK3xkO3nE4+UtcE9IyRSGF2zlo4xAmAej/3SoClkNoJ3F2kht5tec0yD4k+zBvIWV2/mTcVBd1wuvqC6y9hfrRL17rLhmiOUJtZWg86KKAkwH/LEzrK0Xl2ydZlbjfXXvlGese+hZ25fLlLw5O8/6mOzBB5WZChejGFWi0fdw1nChEvam3YuNDPxOGgyQrYCpRgJmemVzrOx/XTYvrIWtTxzn9uya6EZXn7qDiqh7MDri9jeVDvHPwTIkdW3yiPKJp94T2+R758p974RDzZO/FDq4XYliF6q9KyS2YqEtxMqaPXU/VFYYHHHfTbv20mRcFf716jqpYQP54vEn48vMx2Jig7jRFAxtAh2Vl5xSQ8svZNWvp/HzmyeQiEVSsRx68mSRtVEHlDl8BdjDFPbSHhBhD/3IDHi3/gEFu9e/mVc/M2hhRaWgLACRmI2L2lcyRyoQTDxnUoWsJWL5LtpFoMdqTNCv/Y70qoBIqLkz9WmT26Kf0om9r8RxRxI79o2v/VG4vcVL8VV7PWWpqiFxF0ChmPE12c/zS6FZ27dqDaBLxzch5ygjOm5vfcDzyfHFMgHhJDmkxIjru5NBE0VDUyQ81uNiSPOr5Q+c5W/od1bLJyAOOFQ4Unw/TxV/r7DFot73j+C20v9xwGDDJf6Kixj0rLA7jCh7JzTD+ubW6U5LNVujy4DdpCJmvk8c2S2TWtgWqhhZnfNsloqAH8Pb0OzmzWpmiPdkT/04R3PBHPWY4CTRAAv+t9od7Fzli45KvGgVk8CyPYVHBOHxBLZKuDWDJJgUiygNaE70NI4zcCY2FG58bncP1qkt9DCFWWj4nwKeJYjpZEt1HOz0yd5ieBBfuOKhDWLmsEGSfwoYD9Ny9EtxLqNJO6HFhSQsu5tNGAlcRj9pkS0jBAMhBDLdt3beUWsMGhOHV2IZAJmj4ViMgCaiLPE32ANr5m08aaIOgvXozu6ByAnOc9Zm3e22Tltzb6UUo21qnjs+MxFgg4EsCkpRVdzUmsVbdMuZXLIUyvmwTDNBygVONJejSKNPQKaCxOIzhYBYe+BM8adGSd5jejND4fB8hLZFXXHoTpAcNpj9dJXg41OLUq3QvShQzz82W/bEta791tKQZjNzJ3zYv08B3Lf1GybPNlURfWgdhGLqU/eoDGxEi2MQJRJ0TyKMIE8Ff+x+GRkJGcpdXepVDnzpTRugR+54kNumBLqGRCtsZ5vgMuKIMMmLPApZL4HRLBH9tYUcq19KZJx8TcXSmdsBWLun3L69oIEaQoiYSYO6vhuCG77dvg/xytDbEZXYpbltlzniyeLX33+nC4nXdGLmX21Gjf2iXoPlKyJ3o2dr5Uv3oTsH+IHYiN26a7EBBK+i2eAsbM2BliyE0pqB4bEJNzFksrr2NX0fEL3hqTj/UKRFyCLIpYcWXpVf9UgzXy8oAEdbwW+5y7t4ClwJZ5za0KJp9qZPvsWsQlwWnuGbjLEFCkoAsQpKOwP+/E0nA7eKnBd8cjVUNvvrpML+nLeT+RfSAy6Yr+QqGPFzY1lZYTir11nrprM9JQiwSA/IkjuhtHNzVnYFh1QBeIKbBB4Lo+G0QJGTOC3PdHoL+u7b14/QYTnOzudgYD9jda6n+P0RV/1y21vD4xYnlMkHxj+33kVsvUguCJWO0TGHn58V+H4rUX3ggZaNa9HHaCExMg41QBTUN3CiH8kmN7N0jL84cqIW+Oy1+f2+sLmb+J1THiBghPsPRZuCbY3iWC4jQFyXNLXRvjClosDiTQWAxf+YssWckDt7V22q67s4BKvSdlrbLuaeJNMVcV9Vm7A9UfAINvLbwG5LacKNKL5DU6w2wjjofK7lfnmvCaphCmpdY6aaheVciqFhgcQiW36VDwR83LHVmAD7qZbH9FJ7SrWxejd0k2Vtx/r2n/72XkPZ0TTVml6idcYRLCCfHuEmv8ZCyTfee/XpN1P4BcCezjiiLgtQ+r/fLy6ws4eoTBj1sMxjwbp0c5Q2FAVeotByNd1ZM6+w5dwKamMer1iJworxQ6CWyLW+oSV6UdlXXl2eo323OrW2iH5XMIkuVkps7b0CvAM/faPE48FtbQUOne0vVEgK3yGcqwkikxF7MyxUukqgVCvUYONMQTDQ2ZxPaH+CKM+4Mcb5przrC9gWT9AHzaAGby7y4gLpYlt5dQ/G/wwTZFIzh8BUtS+eqUEYeMGoZQReFa2MmRtfTkg4CFjCQuPv5NM5/Q/BFztDPo/wMP7dz13xQNIdr28p50hwzSQYyU8JFWkA7KxkGCqYo5BUTv5HjVH3qVYL5zMd5VPfDzepg8IpJFa8NhhV3Qw2hmcu2slwaGBTSvApr28IG1n0B4cVMz++qpXwXmIpuPHBztGigeIn9lVREaRHlY02KhKrlIXIQ5wHT3jZTPCR+SKNM6hpGcK2V1vXaah61fiTByl8odRWDVmlNtR6saC4v+h+4++uhpSbliu0C2ys85NKvmBK5vT+dCdJn4lD2lYFy29+axo/RcHhjt/D/V7SBjdNmE+It0iFBh5p6RXSHpoRUF8BWh+7qwPqlwRYOHE79A72oDkatiy1zMs8Eln0+PU++9ENIXL/N1xgSQGBnZRY4oT0uOSvWatSQ3YXi03Jz99efC3iTZCJ8ISWfouQqy5xNUdRT9ItOBuKVNMCBnQIVAImeQgdmHUeJfUrE3V5gaPt3bSYL4LWCOvvPu34RVlin1MFnvge33cDE8N2LWmMsP+7aICFmUsh6wi8R1Hx691lkzt9MWkPIxmP+peHq5g5Sk7QoWSSSaCXWtn0obubuGysvydQp3KGzsk9wrlAfy1dE99Nwf6BF+fY2aXiBcuknQSNcU/wpHrGqQVdyRcx46THpmjVz12Bihp0DiRJOEliboNBZg3K14i5OO46l9TOGn7lKrmpiMMxcJDCY+04qTNjjPV60D/Vs/0TuM+ymrV7aTvCa4BEj11nOgD2t1j86Fnd8t3YhlEMMaQhy9lmSnTuasnkAU0GrTWAVojzCm4yZsTIIoS0lEXUJyuXL8BHi+ZYIOlhtV+QP2ynFfRWz9KOy1c093xpc9u53hRdhDgQQG7mkZdU+5lvlKkLgAyrdzz96VUXAmCJYKhR+6JKiNQzHmr1PYES4x2LEHqwYeERieGoqJUEvw/vcDIZrAWBZbjIGAWygcQG0iRhtjEXTjVvVGiHIGFPNxF/wOcm6bZs1XQytpW43IHk0NiXNx21raXUpEgXGXmcw8qoJli76DlMQbWlK0HS4hPoBFxX0FmhIMs7BxCXLHX6zqXWlVDmjiwBcNKnw/yqFCqEr3YvlM35+nxhB7egX03sJfrDlL2LXFe/g2jRjVn39ANf7MRuWWuOgOkYjZyDeNVQLYLhGV0G/+QhN84XgywFdTVGq9Qfa1chkTodXuaaSIr7sToXYR1aLZWMujiav87UV7SaGy7DctD2qiZo33izHk3sAs22z/1Xdhb6ZSGgm6ZbHs0ey+YziTTHTMGFqCushOuIsWIrbSsUjaPofLGRxTbBmT+SQY08OS0tNyZxVFT6TGc7eCc4vjpltc6swo8lZYEmrZmVpIcZabQAyAqG365rxtQB+EuJUOCkV+vLWT7dS7jJE4ALhF3EpVoEo/Cf3JGC0py7y22RQSt+01KtLyHIlIYpHT7Y5LR3zEzzTabVAR655pbjvfzjFsPbQZToBrxdpWcdyFo4VrmhsfWepUSTfz8rADvhJx9anQqVusloJix+ODsqJ8tItluBXW497FM3j2Q5KkvMVQQ6jgEkwvWUWRq234/0Mmx1jcqHiSjNthS7eqE/F+vlfizgW1sDnk9yyHfmLrInIWHRKH77ESrJoaU9dtJzcz2l6JD0Tyj8l/us44VlsUO6R/+k2hVGpuJ0o7CsVRaSXP7rAesp9hM7kJbhENPwUFp4sAX8ko9GZzXRSpZaQCEoIM8jSKueo/BgFmfYEgR+FSsx206pbIQ1dR2BtF3tNscWMY0cTMVC0F6vmXe0QNsR0HVQdLiLCpC4cdHrFNq9aEMZRqyymDpEyJMSr4fPnzlFeJaVOOjSulaWtLjKPIPAWC3DJ8hI4U3o1P1f30kQ3bQxdkptZAYua6eJyJ/j3j0flTudGpspQGC0YNNfq5SkA5R46rdCq6EjdikF7FNNF6a9+HRDBA/QVSkFCkGA3ybOX5pD0v19ToGuBV6FxfLKbs/E9L2dfhaVn0uekIuTRGY4VtXzRzwIR4jhb9ky+/3hH9KuKF8C6xGqJ0JOVCojRdU54CxyNiLsB8bEph41LZ8fHxODpuLcNLyxxfSfXHvsVBlM+BWkv9J/UgWbjsiHSm55vSZQDGdUbWSuby7L3mCES/YSZMppYXWTnayMBSqVdhZ7/3YJJtDkxKoboAfmzSPl0VJUQkoYkxYLJeA2S5ezjewtMVyNhNGaYKNYfnKeTDQtbNMuaaYd7im2tPjQqptDWmfTzAk2cOGhKtBTqdFjxuNv/NA53UoNAPo5CrieTI3vMZ8CBdQsqxHXhGkzt7aAeL+suUvZWNpZxPok05BlwkHaWkeuP0M+duHK60LvzvVWMstZ+qZvnBRFjbFMAXQnrCHjB9MfFeyXoDXfkSPFETmhkSnlLT7qKHwZ/En9GGJsXKP66ZtDCx4DLjPBO57TDUCrytoEdTK/mwC3wqwnUloJnS3C37TQHuhx9e+c593n2ppMiEhgAby/TQZefRPN1srQiffvkn5f53T9zsA+r1Ey2FopyHclPNIn0KXjU0oWcGtgxw7mi//V0JOnwVsBIGXqY4+fiSXFELZiXv5LYpA5rfLnkAVQvCtcsuuBav2aWSzLmVK/Y36WbTPS2z8YJeSCgyOsOHE4Fo/YPaGJ/Q5ZDH7H+1elWdtJctnZlkj8rqnyEBgZWY7bWY1eIJAkoiiHHYz7XG895fxyYhmMeTgeuZwCTFv6SutJKKG+M7bGju7ZInwtEnqiRfOUftvIsuE90wsOEsPWvZsRqafU0DDjW0dzk18D8EEKxM7D23I8vvRAIx4zmxwEeGcxg7CFEmT8hvMxlFQn9/1etXjUkflJQxwdF/nws2Ky5ly15FExT2qGXYLuoyD3IBRcVBPEGGUyKfDO5lrOU814lkrF9xikiMCY+5kAe6jA2dQ5bLmZ4rcoMBcKMkPW0TCSwZVt1kLamDN6ApDZNEZYI8HQn5cYK+uJpECQLAZi8tYxYlDNS7qb/SzFBXrUKeQBkG4/6RAzcIeHUotYX7kJ+u/s2iM+/7fpntArGVsf9XUmU3QiPMkT329H0FSosmiCg/i9qJ/1AB08Aeo18A8VTOVRIZXUJ1rZlQHfTyXibkS32Bfjqjga06Umrb1JFgOlylDNPMHYk1l146pc+gUB7CNO3ho3MZbA3YmGD0Dua5RxCXnJmjrK1sojICYdfYW22pUQGHdvSwCTbqLcJScBfstsf+fXt41Bz4bbF2TsyPtsO+lTs8TU8+4FgKdq5FkJf5JL0aiBMQj7WfbXkRpT1KbfaYaQ8jeH9dwhyn7o4hGqeY5Os6UhzHh7LL+2tdFtv/o3LqJic9XzFduWYzcVIqDpSWfKWrZ4di5FpCKJekZaudPN5kppU1anecVBvaV2rpBT2CHhtwpJMNlMjbPh80x3D0YDtCAJb/VvbfyBxCwoDR88GYE/SnaK+uteuSaMrKJxU5YW1MHawBB1qGx2acWgxm2/9Ox+fDtrr3Jg3QWHLbGLyHrVJOhKUZ4m8pfV+xBPvXifSNB/2C1UwNq7Mh3Bk5OljLEnxcUWwi99JjJVtEsRFjXQD0v8qfo7FBXw6btVQqWSTG5dk60mTex8JJqBce7kvXXDIykReoq9diluTERjYZcD7fg1Qa5xKnhnnGT2WlKmN9HtM5eyLiRR6MUvzrW2Md5JErfhSWyVwoG/6hXPBV2vKn9wQTHXtygtz1vDzRT0KP/UzOUMEB5MPvd1t8lP/nx5t5roODndp7pib17Hjo2XTLMirLHFMSCWN6tyKOVihYbGBmHL65NFRwseYdu55CWG3nkfY4GALEqA5EgR/frP8e47L+WThgMNB4Tts0iFRYfZ522dMoQsLBuxgvN3h5o3W5rwq+wB6FF+Ig23hn7Ve89C5xPIy3IjNS1/13eJ7yX+ZTRCE3EAKz/Qqy4OgjJI7160eJOsDGPzylIr39ZCoWimTQWg7LeMztY6009KmZqvXXxE/MSG07QRSJZxhwVx5o1cOhCJmqRCG4vz9P+XyQP4OSIY3txpOsKZjLoPKaRNXnPRHWsbHrNpAgauxTUkZTt0uttEpSkX9TkGjfZe2ERGPCG1yGdHkv02BAYzMDuifWs35uej3u+pZXQ42T6pAffAkwFQVAqj0KH4swS4I4v2Akwdj0YbPyrAJvbMWMgKbEGaGblAwdgAdkkyjIsCYAHgdQ7qc3G+knufDO5e41OvVAlLLPpktDUZoLWLJNQ0WoW2Cjgn9UR84BqrlMNVKBhM0iNL2aOqtoue4r0a35sWx7x2XiI2G1xacEKH8wisqFpWX8MaiyBZaMctjSCxbZwK4lnTeiJHk4LRTCUwcYmANvD3gC5mmaxjz6Oa/MviX2fTRQsKWoMZii2CPLMW/uaRPEiQyVojaAXea8/F9KzvSIb6NPYhKpVkU/5j/rawaA3eMZm8DITvHduR9L7os48EJq3JrWTN4L9W2h33W+vHiTeXYUvuWyQj0WXi0WJy6g/gJVk+V0cAneB5YHFnSaXb5E1cZi8pOA/yNIeyxlwz8Pp96ks+aylp8HaTY5LykUKRy7MgnrmZUXzUy9wV7HDQlN9+t7hm+aO2erOilAW5URk4xbjioRBqY0TnBP3oqerUgGbWrjl7OJpb7R3NvoxdUXn04daSm1UDmSDFjKu+fO6y5F+Khe7HHBdgzRsANIayonsss1CG08wy4r0fJBHjnIAfkQ1Tu4hWRVVGFL8SbUSEjDg5CG0ldjBaZv2VrCFgdsVACS31+eeJWKPJgUjz2XxtxeU40ZxY2viuDiF4/h6eBIAUJkd5Ph0w+EIdVKexYTiMG7L4dQVasJqPO3I2XvaPleWwmf97WO3rQlgrcZIqieL+Iad9mbkL3XLwbFp8j+dOxo3mD9zpauTeXt/Vx7x07pYTDTnGQ2J2apZ7E4+GnIhzlj27RqMpYVFejGdDmunLow5HVippqrhb7hJMinvdUyV9NYhEK/y09Sr/JCvcMrtEmdAQSNlxFFjIl7rRO/O0rSSQxDKGV+4Ks2aRWttX7IB44ZgqDdxs+j49wfpWVuHXlZgYLmFxuWsPi5Obwh8X/UnHOhD1MmWhG8z99xFM3GYWpHNYWn4RP6GmxhxTfnQXYjqaTwtFvP/ju6TdHZe92bQCufs0bvRYAmglu2Ty/Xm4PTF8uDDuZDaMAiZO+q/9bNI+E1ySVRkn5Bn9i31w576+YTnK0LbT38Ov7PLWRuWS8BMb4NxK7mR9rXdnY7Jv8A/2vPwzsiI8ak0qyQsADn6yEEd2x7xzhW67lQ5MP3kI2DrGRQIR8t6J1g2H2czgQXKsvE5mMQ7CGU7/8dffFK6di8v0ugY9ggYdpoqsfejBK61Gbl2kovK+MzUXX+J4wCiNiVQUBG7i5tVOILq1nekXZ94gNwLJfGXHM8JDmItmS95K2LSazXjoG/K/Gpc7f+vuIEqDRvyxem13iW0Gf96gNQu8dcGnVxUHWMZsBOxB1OliN9krYqHDQlEBeOOVOdstglAihW+qn9CJO2AktjSgN1tYw6j5sHyboGymA501Hy7F8znIxJsapmV8CgeVaDqe1fByb17uwYqdE06+6k5L0ZShAYqbhnqG3IaJszrb2iz4blIWbsHRAgj11lZ79ocLVSrgI1+mFEEadUUjuWZ/OLIfIkP1ii+IkLs9ijtLaa+WzfmpvwE42Ax+ZZu5Ja/RRZCNJrWGHlwSgt/8NBkgNbOmi/PVo5OWZJfs1okV+O4+tpHwdFesP2QZ2hNRTlMtQ/8lFZSpYfGYcpQfx4k1DPsmiPYxOnNhlOTVn+JmdAoMu/kjUowRHVpoBooGnV5Tz8vMGdAnz/B7sUXDzcUckisXQIw8nrcXtHnuT0Pu9sxF7sEYuLRGDV4Kts64+Sss4KBp2WkP4CVUkTdPLQWS0BqMiE0l44UNm5aq/wXkkRip7ZkWihTuassrk5Wj9TqcaB28mgePMiwgzu9MHntthn5Xub/fCCRnZlUlpVTPPeopDxWwUfzqFxdT7bUDeuzt6Ad6Swye/msLiSSzK+aChj3OZcPeJGFeZGdRynLyjVbFQpgtc5EAiI7EZv4tiVP0YwF+6HsMz1BPwCOFE7xNEdyTBD/UzSnf45Pv4q5eQ6BfLEDh3TmtdxLrOtDVGS3GB7DGRQxRwCEkbGKsJslPOtO2v2reC38eaJi8k7FAt8rSctsLE8skZc9bRJ2xWSVLMZvpPHNu40jzBK44JhmCfaXgoC07inoLAtPhe0vj0u3xXA4yqA+y4agHC80vxLCLBQK6uLpeqNWaFT0+35sSNmHsFVaDc/4+w5A8ZogxNC+KFXtKobJFJbtBEphdyIbXXoyF28XJPC8aurhL03pVFc9CdM5BSkwzbpNIv9fWilJvfb3pts9LFZaB2npKt5ab6EwHCjzH+TX7SqWkKkshNXG7uEL7ycKPXRacJTRPhHZf/xGEcLGSa6k7cuZGwq+zlPSDcqjxjemvxFoc7uIF4urU56pICpU3DsSNbg0UsxlsnXohz82AyREkKtjbWWDbYTj4hNXp3gJ+kjW6kWSo5Qh2HtznPdvN83bT/z4WNq007QXi67qu9Bd4X1GfMu7bGZeijlnfgb1EWt1qweZ+glxtDddRDqWQ6aaR2xkgnwFnY1yI7iIzKPsEHQRCTHTQjqDu7VRHGZ02TqL1hl/c0B7H5Y1jXLjOBsYONw5L+CecvcCCQSwbJIAW+tIkObH5rwfjpIGbafzI7KAZfOT2JKZych9VgZMwTn3ABiTN6e6NtafU2H0UEV34fjTbZQ0VrgAX+ov51H+C6HQtQRFQI3N6u70HTNSC2MBClIs1Ny0PvLaOktcBTcf7XXf8X9eeUeLYgnMlX9wkS6yRxj/LNAYvVm53VX7FMgjhyZmftvYd62DTqu1oAzXa/0+JrVpdbsCHSPvFteJJp49QvG978YA5so1cieqX0OVR4CIA1VH/zulvO2iOPBpLlP5uf3joBGNN09bOGRe0ouHa35D4fE737CV1WicmBfTx0WWWIVZXxRSCGITwzp/3YGotM7Og1f/IROSOyDzm8kgTnS4zsuSY6GGCiOW8llVT5uHIVye8h9n+DRrQPpJ924BrCvf2rov/4qJW+H6j04UtEjWhACCMgJk26OuQHwSDh3Tbms2/eDTFMO82YgrtJ1fTsN5gpFF8nxFRru+KqS8vDr6rALP9abzE3MdFNsXn6tB/n6y0GuwOEUPCGnXKkasoSTmSSpJTNpqL7sgLsuPm3JsiVM3BtAG9h+2PVsySNOGHXF0k8LbSC/tRJf0Xj0hZ7TYkZ4+E1bDk0dY6XnBbQgFdjD62i2+nk2BI2AQvfzeQ6aNbGIU3dwrBJfkAJccde7J3o3RQ3cKUuEjpI93d16QgifMEELy4q16FQhn76uP6lnANL7o0Uc5fUVu5xy38ZXpBDnYfeOp5dZz3x8gDSSt39yjm8wcb16f31r9qYKcgQ1dAir1eYiV++6onyyYJhchKNhxA8CSIfKtne7s5iigchl+bLkDVN0pPu04gU9vEx2qINgJ3D4DsA6iUxICU2zdzxZoJrOAob4gQnkypXNT0m3TSOzeUQ8mkKYYdCme0irmDxsn57IModFRbjhqGQefKjf+YXc8RTNEdmJcuv0hnGKYOA6QTx5QoRcVZc1AE5YS+FQ9t50twWS7J3vikeV8CCSWJy2iIAe+3o1/IPAU7Qp/wAHqNNiB2PyZTxYDLxl6xdt8S1ax5scCHPgtBYGE6YaTmV7UM01snk1ty0w+hm6jp5vTpkMIgC9WgZnIDxUA2WKv0bCmZllAZKfdgx7+tdFrxMLMlz3BdPDvkJD/+H5ZL05AqL983/Ow5CsZfOnhl95CWAJgMZwLNDRqtx6/oXnVczwPsl6qENfU9iBbynpfADu6z9IXoPysygWjG5Ef855XkaFxQWUjZGKEVnu9O+qPI7uf2qILbAleEXVMSiAkZM9Lgw/VzoIc9yRdLWc6N9AwqMT4dTUzkYTRZLbI/q9q7N4Ze6CZWIll6GIuZOZSqkWKhPrexycteqCtDP+/L2SiJDInpbembqbo6f2zDuAF3Qaucz3AvMEsTBxbyEu8LTg5KgqRbNXyI5nuAkmi5bWv3k5KkgXnBxi5gMw4al07g6uW/IoNpV38UUPt9tJf7YQxI7A/pLSIrnq3KUmsaEnVU+zrA+pIMJStGwXl4eL5d5GV1b8EVYQinjv0xGw5Mmf8PAQSRUEc+FQ1hlOvBXEH6r2Oj7qEsf/IUcM8wo+MDuCMRsjngghXSBma7syAkybGy05M1gFdhDe9elatqg/VJ+5tywfsT5CdF1GroewYBcsFttgurrsYITReY0vv5IpWECoCKwaGHhKsaET2EJC6/vFGHADRXK0FrSJlpJdrsmQP3FjeSLbziweR3mNKiGNccEBDXVXM62BmPxDE/rAW3KGiBHPT4LpTKKiztL7FlhPLz+saJgFbzOPyA9b4PP8mR+mRX9YPwmtR61eIlqXdp3fLVoNqbR+YM7er2wjAt/f8VLNaEIMHSmTYhuupdfbrtLcdb0QH3ZBzmwXfNCsL2xOkBUQMC5E+cljT1uxroXFDsfrPWIshZpQVCWgDz+Md1+0d/3TOT85emWTGvHmqr9zYsJ+vRHrmNGtB5gmdc/i+TGtokhdb6rK0Rjlw4ittrzW/LI63pxPx+p5VQ2zh8F0XEjk/fHYwdGkmzBkOC3ITSVz/ftDL2uX2P8IqTftopaWk1cU8OYYIjxKGEmjjetgRZ58HdJeIN291uJ59vmV6HX9i5FD47AV+CuowCHCR4+4jeWhbYqBBEdYtyv+aTbLyeDYXJQ3HmlLD5hPeZ7TOIvjbF+j27ksx4FhP23+B83rQbRBq1VYNbCnT63iXTpyLE4lmsTrpDIo7X7lqhWjpV7DFgGTtA6O5oE+1Bm0EBOXmkCDNuvz3fGRrFmkSZnWe7eIAI9EWNtFtLWV7m1VZgrfn3PTN8XBw+aD7lEWYV/iOQ4ya7+Wiru/m/q6A8Xd1vqyarWLIW+Orlh3EfBS3fJuv290xvO8wc8ZBdNt2u4QbJLu+qcyoJ/Hq5l6jGph/1suNpXfAFdTW/g9BInLE/gPXf59eMtc3xoM6esCsCrf16JjM+sm1LVN1TPlrab8xdaoyL2fYhySe2xxKllDkxO6hZxyJqLnMqSUFmSb2hC4hJIjE6clqd2PHfQMW0RB/LcML8ERQl3tP4/Uj7F0fyC/yipW0EGhpT4GUXaIZxuX8gu/ZAGvbx2reLzjMac2ul7XDDhQ4B6OhyHpEB7s3qy3lcXJ/OHspqoOmgwf/R6xGLOCBlaom7TpO8EPoV7KFWEwpyG61Xcj3LVGLlXeUGSm/H33TBKdVImzy+oI9p4yksnpeMjf1I6zTGYVvk9ROOQZ0Z05awlvFxYJQ4PbQU6ZXXz9Tszf5+M4cYyaQkeWN8V9UFXpGx+Z9G8+s+BrV3Z9AuQN6ZC9MFngP0xsrprhjVzIkAc7h9PDI0kHm9hExC4Q+CYTbU955x2Alhyv/FmIIF7ut12PjG4Cqq1ziLhBiF/OnHyUDELjokfZEh4mnhhMaPmGQBmPLkbLK2dkZks4ALbm7rg8WrH4oJqqHucOElyXYMS2YhQYBl6HEgiVMy9gSw8heuhk477isvYP3/QhsPORW9G6pCQqYlS874hEg2FGULconCDkf55DNHlYkq7kCXwIjABeSWIsJl+CDJkhBWSLCdLgzmayseAxVRyeH06dMRWDjT81+LVGXog/1bXTIpuhMsPSPRg/vKLtjFEwpnABqjvfjAh4e5AHs3sJ+1i4eUnbRW5XL1xnbHcNeZlT20fsl/Axq655cSwz5sRD08bA2OISUyq1fle0EiaGTczfUzeEfR4GUQzuG+HkvvG+O+4IvOSvXiLqBnbXjjZNN7ZqyudbicbSxnyP83F6FdP0Gj8hDsh64hVlqQpUhrp6b6/YfF8eJJOHNU3FXMuIBma1Y+xNcpFXh9CITelVloSYXPS9pkIBqeH273MzPOsIIHuCiinUUq4ytBra33Af8TKe4vPV65dDWs/UMcT6aAi+9RUgWKXlm7OHW72gLPXq87j3UAleXLsYhpucBqZbDUC5dUAoyNAlkm9/Efn+X+yLQP0QIqISADK740tYpPocL8XcbgQBT3gxyDG9u8unTOB4mPuOT4k/2DUoewUszNGCj1O5nyxVzvFoc7y52EDiTOIs60WCSYmeVAcbdxc9nTvtl6QhyI/EZJyQNMkoTQmvBTMfC1yk1qkqZNOu66eR72Wzias1V0hSv05BCBls2c/019LHqdl/m2FcYoUYQJoQNElzvDoCphbPR/lBSIMz62V22iAF7cAU/3yaE3HCqaI64EY5HrvitB5+sbh2J+339+b0KI5seaz7m8WX1IZb7qhofyT7Jewq2j8AK7EE0KY+5lx3a4zGRrM60yhGeTD7iwhPBRycqZrSELo1Vs6TVLKpfArZer+zvU1XkKEdP+Xhp2iBG0nRROQjQX9D5ujB+OLzE6RBmYr7tgpE/eZX/W+56j8HmWEBNn5RuADAPMPSV+FeXa+ah1Inipiv66HQsVW5CFgRcLVzNfTRC68JYlylF5suRencEU7L1qwScm+io0CWXlp6qGFxcM/bTjLTBqVx2hiBL72EUrLtxAPnvCCP63fESFiLEf2+VDRENqVOW1B7a0zNx/ow7/ekhl0iUNWvM7OK7t4n+52jdPoXw4F4gLrfzNQ6M42Q9OXidpvXkkxqS2cPFPgN8wJ5JqObXLV7t1jmAYdKNjaeBE+TftXm4ijd9SYvKP+SkeGtfkVlvLRf+LyyzqNbEPwVeaiyA/Wwkz2Zv/pksw8pymMI4Rr1Fsw3VN1uoXRiUkuhdvGY4T1dRUN1VXi3SF5iB2dvMgPuNb3nDmAtYSgQfjP/vrWxmgiksoUBn744D0QhmeK2wW+xGhbrxMfiArVcBfUC4WvoNooKauouyRdKIocNJC8dQK2c3dfovLUmThPbk3kFNfQDhVUPLkHuWk++azaqKyIv2hDhw4JW7yxsPdLlfNqAxTc72tgbSeSK9ZfwDtX4p0Q5KgK9rf9JPOquzIGgpxQq+5czxHCZvQQA1eHF6aGvS8beNcnjgAZiaPRMGJL6tUqPYYPfe8XHdyW4HmnJDyrQaFAPPVJOqL2MS6Gufwqmx3702HpSCQ2Sim/fAkrVOZmRSYbIbM7n2g1ptDiU875cFhmPomUvZ4wgsy2VEtj227rDSJ44GD2Dz6LTy0kFUQ/rQUjQnYd2U8WIeyiLwtipR3NVQung1Guw96r3krQiGjsEq/y2tgH5zJK3kgaIbQo/bJQkDMAZJMwIfzCYriSHYr3Me9HaWphAibX29nBxw5zlubM2Cy327uMPuKOlTkR28e8HzeSOxFSMlLYwu2vGK3SEyrFbc27tQ3DDVKhKedfzR7DvvbE+B1Ydge4d25PwMz2q+MPfk36pLy+ybxLYhgNnmTLVDnhiDYESi3QG0mJm0Yo1FvvPNCyGHHNDV+3B08YtsTO4jN/SnbSGKxLVIX64IInwKKey/S64skPgEVqrZobUck6aEfi4F5XzDUE7ZKffQRLVR8lnb6Cfj+2dFNRswA8hSIeh2/qG5Vf5VYHTIK0Z7StlZrK3ZQRd4ZWMzACme8GO1upv9i8dhvn14dOVWrF2eW3FzOIRSuhLNYcLksJpUQsLltLz5GM/LHMlEkB/l7cXra33rddiF5rzdJoxpgJolt0KJIyfvZQdVvIBCRi+SfzG7V1g899SznD9vc/w/NbP4+P7vbTbSxsmKdTmVG0GkKk7G3wU/JsFWC34GnJVu22wK07GQwoW+MVGNBuEANDdXBknkoJmSG8JpC3LhSflxUlDjqGEK7a5+qhbBdp1HrmVPSjziVno6zZ3RZ6eQRiXycXLClanAoDHJWorPOmbd6hhj/APkY5f13Yoq+PsLpizxx2buVS/rQzZdQtS+TPhFHj2wwvUfIrwQJc6oGOoHUWFWqJxsxYehEiI8ut2ctErOH6imtQLwUe59qUvfkrCTtm0tMJxxqRt+/dOl3RvtiDVoQ+OXzIXh5l95wAIruCKZpZDsfZfa66C50quRcgrMXSO25XrPOTwKffAR6wFe3v5C617zISL/AhYNw0rgoA+GHSq28bRq7nBq60iTLBOZkMhCikYJCclZXZv9nimWM0QgX49y/ahIXcMR7tw1uAHjwxw7VkYtJsrY1gpNHrJbs3XChp5x6cOep5D1e4tCsxMuMkCP/pm4HEY7juXVMbNX4/QN4SY2yqD4+LaUpNRiWz7bRI3YdIarBrhJj/W/H0dQuAz2nB2gij/kNLSj9Yb6WVxRlWx3lp+pIMwFA2YTAqrBapvHuGkqfBSIuAtXJ+LCezFfHvzRV0gKDJCEqMbtZPKhGuJLKPj5/qZw8YRHhTvzmtJ+icE6qtIYA6UBABPnyYUVmZPZFZVyln9bZGLGNH1jG3cIcGVJfgK6flT2c7Xv1z8H639EZrGr+YyCTxwBHgQuu2HKbjE1p18xxSidROogSLN1BFg6KwzWgQPJlzbDw0lDl22jNGmbovPidbXOrFEeD3IqITmZW1f3hJuGKQPQbs1JZlpH8AqPJ/1fzEuU39e9P0sGlMCV06uaG+4973Sg0ycbdR/GuHfsQxYqvnKxfo0UIsX/MM8asuZiL87b6cn1Ky9Rl9z7ZCo14Qj65XTucBAXXDTerkSo0kPJIU+gmgqIglfagGw7hpgGJ8HjjG/OYAzpEEEI9FZqs3QGTY4Tv3IpDqp1D+C8k3HPIECNy44uKJCkYJiHyfsiAIAqiy1Nq4kvEXmwpfvNfujKLxAdO6A6PgRilJNcxz9AkZR8NKp/99Lkz5qKbtrFEuxVNhnlyfem5NSH5h06BO5LoV053BbZwNmi3caTK5DO92SS4Vf8IvNf2eVBFgs69YXlWXXbiNNAG1NRM/eK6OMsvzPkcZ0K0eGhrc+1xwCAcxoNOA3kIeYS+6bRis1KiDFRA3tVlEUt9khYCcf2Bv7zW1/Hb9s9W1IdpP2t7xROzMoxwEsgWukqLR164oEeajOk5ZQp14oPBVw54N8YQnmMuTimWX/wrDrN0e7zycwUwi25xBvY0gpvlA7eg2K/iWjxaNHuvIHkbQTu4nVESLVt7g3qKZqYtSvztq44LuFbvAL4riFrCNzLwrRuGwCdx9YABOEj4zXVS0m9AD3K0uTxOHJKujbOUTOWa7DBA+3nJDrZ13SKyw1Vtu8uwzoX6EKgrmkij+Zybqp5bSgcetU3ryK1ofFv3akdwEbpO3eE39xkGVNkbs2jDCWBkI8xLz3KDFCnoYyDvf1EMwO+Q27ybZds2ehqhqewpmZueCDpIvISqQq6b91J8mLmaD143zYULoDDSZGOvdoecc5eP5TDng5rlimn5E0zUGr5kDVyNfJcTGGxki4dQI+5b3AI/tnBoin3i7AlgjrM7Ne0MSx198wC3tWRH2C6rYMlUgMbSQowLh/V5lpmAefUkwIVl8JUUXxNy9rloTJ3l7f5jrrrK2wByFkzqRWKiHdjPaF215XbHcI9o2b8UxSqic5ZGT6vFXyM8ddes/0BeE4pDyaYgsLNHG/gXZa3ji00Ri3cFt24e0P29ZSnVz6il36I4cfXcj8gwGasue72tuWs5/xVEtsi1As1XGZkYzRlTy5Tg1ZP3DaRsYOyRUJ2Nt7SWqOuDQ2K3c5n69514XTzPV0RsdXtslhXB7iu/bfQQmw5jhmAHhWSPUSjPSzuazhxjwyslIi+CMqaDtUgN7vz+924UpTxi+YVzHmwwnYKeBrCbmsichuvaX/WI54TA/M/svx2SRi7B3RoD8peR08opI7X+qOpI+iCMnTeq1u1tUFlqSnl0vmkBqDY7IalWwCCC+zKopA7DBaOFJIiL8jX10376YAJ8+NKEw9MIe3XUPSNHZOBqx6mHuxDi4zSkyCxYzuH0P58EL5lNtonmLFgUhEL2HN62rSo27/xe3hazewIXVjdaHH8UJfs5ZkrfvtlmXAzOIC+txehOOL1oZ0VyP2DFZIa6r1JXBX/58QIrQERFDkzISiG1HB248RLNbf2ZsKgTsnxlYYusUxhsq0xxSYZAOB7Des4N9blWJSplDrOeGxFZKWY5PXGu/V2e3qH9nAFSmYDwSFtylw5Z2lenriIN8W83aq+mmuxk3DkWOaze+yHjSjnwwc6HOy+tL39XLhzhpVHnTLfp54dnv+6K4JNcdYGnPg/J9ttVhZynB2yxkbjPKpv8Dx4bFDgvKXXtbOMNnQFO7rZJN0eqSryuh/FiZwnZexQSo3Hfq4X55RTca98SyGIePJ73/VgJSgf991TDy/Crf+p00ZOY7680UFGld0QcCnQSTJikNvUK1ICUoaDNLPKuUw1Sf1AQG/nx2LDRGRshJIt8AanFQXDhCpmWmAXjWsKgULiMaCvwV0sW2uUvzkA5W/Rda4t+M6JQP7p5nFB3aWtJ70u57WXpUgGC2CAQXcYhuZzHZ8TSeASGhZf7HOOEkI5dyny/gwNXOiwQp58Rbvwe6zqI8qntiPG2k3O2mlZf0FDTAJHcT5mqPJq6KqQf8S7WLsD/fAL1xj1GuftRMTZrbPtUG36yAKEZrX6Wubs1caI0UDFueTNkRCe42vHaePokmOBrwviggfHsEO0J4Ikd2sZoZCtL0YlyhVK7a41cK89LhNVaNvoEQd6+vp6ItcQY/j0P5R9wx62GPXtbd030EqnSixbE82gYT2rTBoYvSJy4A2OkcA0vBMYySiBM/Zg2ZoHRVdVAdREIk5kUQv6iCFSf1vncer0KtThLbwgQlYYWeVP/AAasHdDOgW56+1Wr1zFcWJhsVMSU74+7d5jIJ7ZpFohrVKe8l6CYJsA614G15vZE+qpVdTpaq1QLJz2L9g2rbu7zZbQZix1jaT5zR7+U1+rEQ092SgtjNoPVdTNcr0+OHL/80aqHuiGM6+iRl3hBRYTE3mzBfU0LZDI8GoYjwOSjVNXpvbyaBuLMYLoqN8LlfFhJWyxCaHk1V6g+0ZsLTuFgdWZpKFxlbFiixMzl3T+FSX9PUmQ3XA9QlJfJKi/sTFHJLN9CXa7ai72N74ijjnLsXF71adoFFO0v5/PZcJ3ACvHwO6xfAYK8wtzCACAy3o+x2EOWnvLGBzGPLFfbS/RpnBbGCQuVjNH4506tmYuzVxfhBoLzjlE9rbp2v4xUqrTDtiQgoeH/SccR6DtxzTq/pYVC9M2agEYMHcnIhExUYNce8hPT5fvVIL/045T/7IzXmvb7yRgMDdQCr/zKDVbx+NOnZqkmEdrZYzIDAf9pW6zLJsmU8S8BXyYfdfZeyaK2nPx8WsZjR9EyZEzqqqMZbopKmjswbK2LUM7kgNzIkP7+C2Fjy+7MJH3BM5q7Cv/fvPIkwRVqaaNOBIqgbkmOsbKQgx1BINv36cqnQF8mi0NRSB/Q90tj0K8VGBOT7rHpKaqjdbm8Lq0zpalWdf7H81WSFKeEo8b848RAK4GV/TeST08uFuSH3h0BioBdefQFONjAjAVBA7PnRByMoAtbK3bJHzndAiTHEhC+Kt1GkxLOMnm4r/M86OJShAsVf55qG4fvrWOYhtmppD8KETlt5dTmPk7njmTJtFQ4RjqhJwqnPPVMJ0qq6WlZA+GpEqjUdhF8rgN/sq+w30/AdH81YDl/1ofwRPktRz0wFxhdu+t1DBoE6g/6JDCLC36TJC2SR0hzyh9UK2bG3dAaXvINRTu7n5ypCFaCGEnU0ar6mNg8/2ib5g4G40zJ6Ljb22/t5jJNJ+dFV0I4GfDukuzQAszpoTD3+pfwYyrss+2u+pyEuLbbZO6PF5asxvnxjxaIWIv7Vl3Gu4+1PCslzY1qub+TMlKe+pNZN5KVi4Oi+mBRe/bF364pOj+EUY8RvIShKOCOlFYjm3Co49e62hSlm4hN+bxZL5O8Bzei7r0vnRZx5qJcLKvi08EQMYKU9tZhTpT9YMM8wIEMB5W3+P4itz8dX97VjDa19h6wfDnCt83Y99KDF/xN3Ekyg9cDicaovnWU4XozT3VC0CVLcWaaqr1djAl9D04NLorgE78F5RGHlY5EJBltRgJw7Uxzn6HZvEdVzUBgFcFxCYcKYonxRp3XmkqNCPcyA17KIF6gpdPyr+yiA1cGZ5RCbicMUvn9AWlF6k3m2jF0eCQEjUDq+UdwCJU4REoayqC2oXqZXsEbh2GX84aCpOcm/Ec7kDjIuwa2YO+otI+zz5MOzgKem6WndkuINYZ96D9oI6cSwUYGQkDmudzJdkUhC/hvm+ckLO5VYvf1wg8N3UWp+hTBupSISjEKHQXpNcZ8XhhqXCznIsff+KWF01JLS36vrzPb8HIw0IDLpS+czoc6jGQggQC6QVsOxY0gHQ44D7dR6ExP2dBhRJ63M6Qo1/IC+jiFq3HQl0+PE2Q41WMgbS9zhr8BFXw06FEj4IAD7JhbvncPQXLzeDV0ldVDLJ80V/E6mRL0FAGQgrkI3lUb9yNBlpRbMdew2lRtl1lr1Pmyh1qBp3DmUeG42qRvt4x2BxEGUScZwNHM0wESy0oNKlHxYPQwghwRPpKxEpWvrFyxbW7i/bBepaXMtoi0zul2N734mhKRAeFzLWSORr+0yNwgk/HxIn/ZGfsXICLFDIppqbkbgD4PyAoHzI/JDq6jNSVYo69GYj6Awu9pCdv1dSS1qbfiPBZU+aWwIkE3Kmunfm9P8Mj5DM3LE7/JEslM8TdF+VMm/g2mBVt8oX/v0MV7tKLG3vxk4yu731/Il6c3jBdIp0C2D1D8DQCVK94K2MHFCZZjFgXShYRY/cK5eXjq5wczPQ0AZj6mNyVoRXF6N6BdSk2w/G5IkST/2hUDuO/r4+GlZDHgksQLf968atqy5ZAAS10KyvhNyY59+uaKJD0Odww7X757Ib7ZmrzEXUDeCSOhpIQ2vqwXobsBxWt8wZUEgnNQqzuhJ4FNZW1XPHboDr0rsqm0uoIohIyU1QsBT+XPEzFZUl+FXUhlnLXA2zv7eN8OMSCV6l7ybEDOmhgacC+0uBn+k0a5Qyulsn46CkNu+1koaHtnTyXjxVJdQ6p59qcxqxiFb22BwPcFblBPSLXoLylZd+s2l00P+a2s1gI0rahLXn0y+RTMHnmXJo7JxvBnFIVjhnBHat7eIndTGnwk9H3ZMavvEBuxmL9U/BXUqZXrrmNrhDCWu4OHLPKYP1FmOlV88VIOqCOpAZaUIo1ikaU/19obYb7dP8rGXT9AqapjMPhcmTCTl6uPx03lBiNM3kCr8w9gRWdR4II+4GJ/q7OjolGfOYtN3C+cn2k4z4v4A0yC+WA0LRcun+zkczYkiIad5pxQ3n5Uul6qFc6ya4hFd1r/HLNTwL2putGJIr01gw4CqVWtnRy3MvdmmtkdDnLAnOCn1lwqzGWgXVdnGJOLxIYNGUTw0Tan46MQnB08J+IcXmkTdhLwBGbaF47lFxnGYNUq1fw49J/h1/NoubF+cxaeZPr7yxa9rtZXhgccbnYuiJY3FU41VEUHcaDF2cxB6CGPJenY+EOLd0zy0LajWKurUkyR96fC5X3llmr+EHt8IOkxLQEzWPvmfjLg7WylY8ce4cECQdnhJMUs8rok6SjErnoGmY6YU0XSOGF7oUA+3kba4NtB2CDTvU/kUqEQiZu01Wtls0GmeOjRTQsNpqNj+n+WJhvC+QdYjPkrIrSd5BGtFmTz6n8fp4ygXj7uwMBD4GueNApG6rt9hEBooJ+Y1ywUcL2o2382dL+rBcrNmK6rQ2nBgABrVOftaYAf5JLHpNJRxxepTIeL8CZNefXskZUvUNq24QvbKJ6bJo2tvcyBZObGZ2mWRjH44y/yZX4f5XMWYyhgoh4wYONjuR45ST5xOpcTUp+eD/IcpEWSwXwbZy6amLL3oBMTUjSPd2EAofrT04O+Uia2pfqWCuLvMVYj09h0Vgprc9pG2x12Ae04OMIWqtHg85jOAamY6vRz9V8InE46LIw3jMQfxO+ILxEu0jFezgcfi3QxI6xv0AJFMprt9+U8Qp/t4ro/7lVYitr6o2MejFGuYCvGH5G0LZ8/4V3SjJV4T/IzcuRoqHCz86v2NTT9SCk32bFLOCElMCsMFDXSbeWJ+zz7XudKToopt6dx87dIdCZiTPcyCNY1EXbHiMjE+9LuvBgwYdVVZc1/NhBto3ucFMiGj9ipMuceC1ownBy20LolcJwJ1KTeGJEUzZ69WXs/co8PTc54+WFkHVMPFzRhQTc04bEKVsWqdakfK7bmJWshdBev3WDm0Wlb6F0URyDn8gHvwhYjnz74Ktq1gcfPDB/GplWGcy3cxMTrHbLx18BMuXX650Js5GhovcmVT8PlhKAWUJ2ybJ5r25I10kd9kUU/Cm5j56RXzIvPl9EMWOgWJpNwZztSqKDkLQqLvouftTO1QKrwqJ9F7siDMc+jKb7qbiIz/I2GU5woEpiawLjJFPczQcY4PbMcwsNIZvNq0LjSVaQeh2HyGuCu8ygDBdVQeLqCH2EyXWuFTsXaFEIh8MQsV1XYw7eggCpjuExMDtl7tp86E+ZN0QSqQt5yB28e6EgMqagfw9Wl8t1AbSGD22z6Y0egeXXKwYzgBSizQzzMtqC8AVhVFEpyg5Uyt8AJQeQxvBkw5p7Cn0VLMw+3493lL8ao2VSjR7X4RvHmLeu+u29PvZ4EBNlq223LYrGNBs4ddJsf8Fc4VBwsux2dvgvXcIkm8Iv7sbQ0KvNakI/u8ym5LRT5SgY2kov40Re3oxP/RhM94YF+jWzEol/Aw5KiRjT6FA2g8IyBC6E43vup10kBTtqldeIzbI+Irq/B3HnFYVqYkp2SSUcDfxhFsfHxTQAWwzWq+aFrBsFZgc7ZWhgvPTlwFN8qxLE1jPSBfsgzGkbU3lEPMN7EjObRZM+vTDsiX23WWdXmc4I14v9fAJ67m5gGgDOD8vL8KG9HXX7g3sagr4OvdZKnusSY/hkLa76kSS4iX5XWWQUyZOHiXblOvAyCrGTQ/bFQXjDO2KxxL6VdI9fY4mRGk57bmM7q4o6suhIWdkzCNUVB19QqqDyo9aY5o45bTYz8ZS1J6kLbEJMX7ZnSJtKzjVyT94y/yGn0PY9bRxPmYAu3HiO/qAK146My1q2FSW6MF9AkJ3qwrGjykSaPNzQMOVl3xvAlMFX4NmS1MOR6JI7IXt2AYufKs6gh0CdU5rJZClhvsDzlcUM5RHkqw3FS98hTMSiGU4Eza6qz4jDooRGNwzuorg2YS6jUE+vi5MARFzFrOuercTFAOoJd3lEsrGvJVBRmFCVGoAZv0xu94DbMBKHi39/LcQJHmR7n1GXCBfuZ8e6ChNs4IPvRAokHjsjmGsOhh5qqB/bsvFcZhb8JGnxGGsvuawufRtNwdS2ikbeR17pJShv/GvY3FaiozfqMstIzFMxPMij9H9S4fmiq7pl0ulk7dqJGrLVo/aYmVWNyF6Vkcqq/qu4mo/Jm48T23M9TnfY/XqvTdwBhJwAZ++Tn9vNLlxF6xSGEWF/HlMqzGyvtgnsXS3S/VYp1gSfuFS28Yrx5RzdC4y2FcuEcoh7BYnzgqsvkVGLGWqvyA2OiV/No03YUvl2L0YJDL5wny6ShcG9keIx8EqIUS6JiF5r3FLCaZq4puqeBU/Wz8cnLfQxf5t7YACm3KB1UNELeyVzrAK2Dw8ynii5t85NiaG3wiaObVJghaYUemXt6lcLDfVihjwWciR1gws1CJNr7z+hNAh4eGqMSD8DnwaJGsAsAcMdFupv22uCDNvduFgkRZuEyJtUl81G76i5N0ANdMh75Ytf1aO4DrYPx1k9kNd4H/VHEOMs65tAXQxsfgLXvhUIEbvYzSZtV6PkQGNDqNZnQhTzhxP8bfZxOpoECyNBfMtJ6bE7WqGI/xO068C8qKos9v/8aN2QiI82lbKifDYmIwk7ZqN3vGnA7kRn5DV9NT/Flh/teXC1Ltw+YCf2OqayF7MsSx3DchhYZt6v7JjdJsXS3mSo4sofxHF9gEjWaSHpq+gG204GdUM4TjYsOkJa/wfM/M0sSt99K051DfOQNLhCnIqU3ADdW7nSBw8JwQbEIZPT2OtHGvkC1vqn8FgcpjdQ3pp6gOTkmTH/a099n+nZApJA1KpVcWXL3vZbZp9Gr3MASPRrLpwriTvT4vjGatUHaJcER2tbYEyV+cCB5JQv+xneXAe+YiCAl42IBvvjARCWL8BlfK+9XW4w4CbwgrPJe+3WlAwqbIRQb1XVTtto+2vbIIr7P3sqTczd9vniIo0rThMYn3rFVTFjsmyC1xJW1oqq/fOMWuANkcHkeEzDNmjZUOVyMRaKB3JcYdh0Q6D9xx74xmqEUVfOpSIoktwjDZ8jie/laMbc/upRgfbLB3hqsuoS1j1DaPwTyaWPe9thugLwYb11cGWkjFDMLOuzD/e6QtIi3DWTePC2kSSWeHNRNA7Y7E9WglKu1NoWGQOOgUvVpqcIkLy2QaEA1rlHvtZudfurVr7R+ASsguWzQoKRuHElq6YO1I8kRj1WP4jH+m+HbkBiZ0suTuLsqF45Mu62ozo6icDt1+t5gPl2XQxbTa58b0nqejtO00IElvrK597jnTYaKJkiEjxe7Re9t3BQGqbT9VmL1Wimh/aw3LqCVJgvsiNdpWkO45z5wy045oB47cVEQ0F1WftCPanzhYJXz2TQqCVpMwjwVoDtAoWEHITPkuiRhfcteQULOTpYUoQ0AUVEUQGwUqcrPQhpkMcEzVxyPxfYRNcmz6cKOwp7blwwMRUsMBL4mtvvIlg/aqIxT477Z9Htqnp4+SWM+o6RBfWNzaCzZVadeUB+YQR6K6UQcCZkq9zqPfxPja9c9W65NV/kvoHHp41kq7CMWypnWe+s0/CTZPVXX6YUZA0maDCicIXQGelxghg1P3uQI0Nd4nNETe8KSs5QztH0lzDWmlUoSrweiQcjeAqbQ+1R9lIsHIPm1qWLEzbcE5l2ccXRI8kKghNztbeXOIa9cRvhDlfkwyxWogWjUJJRirqkJMMy1FSPvG5UVnfOKJ2u6JdjcNtUFMbqZUEp75VMCApUgbxKKjBj4ImSRjxFT7/b3zCAfN4T3WHLLU071FawlUWDCSN21GI1v75HIAJPlnjHSxq9h8lV775DvWzIs1lNedOnGsjjncpmIb/09IaqI7v8oCxTfO+HhC9A6vzoV9SQNhmhxaNlj94KDNmDfDOGsGSiNLAhx3axt2A94ZYJszDmPg89p3c3TM6YDvV8lgD3hqwadH62uEG8jYxKbn8kxe9r5lyhrUAEVF8GY/zUI9cBldGcCpD1ykgY1H0E8YmhFFII6Kjds3Ye93jnOekDrutpMsy3XjC/1/cjhYKzdtKheBR0Im8iNIXS4rvWnUQYcBlvsp1YpSyOONQDEYgc/PinJDURUUc3SZuucpSzsELc49ewqg6c4C5oXqKko0VlgtNLETMM6lIjlXCAneWwVOcmhxwb+UXGQUoW5erTBnwJxVyqbYAK4F7VRuXIJ8buGehwp2heK6Nj66qfFd4hpg9s6ptfWpiFjsreumtC4LQszdfDYrOtJVnw/vDl1ndjR3TjK7XNxoE0KcoPqWosYzFxf461kaT4yD7LsPIczN+u/CgD0lys32r2eq/rBGPoLoUgnbjEYOwj211zTimpWNf2WHOqvUsh2pZtllTQNWhp3++NkkaQM5lEfrhchNo2ZBLzKv3bqIbqrc6xKqgEnvsACFdtVn6D9NMktpImgIWxfkpSF4+t1rw3XxO7xOG9HTdZRaeFIHE1UyeqVE1W2gnDOOBEzvcr+GnZWETTekw/XYwm6vV7X4IfuvRRG0dJ7kPLlxpH/vfgN/nD8rinjX9ESwbKqJ8HI5uwHeIJknz9EpCnzJTmYflYcDMgrTvBL2z+1MqrabQhPcv9YYSeIx1E5AgrHrNSNsOxP8ELwK1/z0Fb0JFVUoJiUc2pwN08FnKRiGNOKfE4pqWpO+hzAEeZhT1txfXxdCE7dwsgztWUBnkrtFffIqdjeHV68gm11krlRh8npy8AprIPO9OX1N5AD4zwG/gkRFMBCFvsPbHaRdsAQxrQjoeGBq5uwVlIS+i7q6eHwV0/CZRFwDDcuRswNjpupiP16PMPcHYE/PHUD7EGc4oyL3LaWxaZj4iiKY1S4Lm0GBeRW+uNPYkZM8kBVwDoY4Pp1vtlvnpHEFXmcYS4wLj2/hIhgNBEUvyQtEOE7TMEpkV2R/SYXfgeZlIN7pxNbv18Q2Pa2rN6I1O6x4XXKVQDSfmCysBEzBUyqQDk2d1a407pwftxc4jAdP8Vm2I8A7d4TP268TJVmpSR9G7+heBGN+a5q+39fBCjSyhskkA1BJzXdVZmeGOoLRM6xFk1UZltaq++pJm7injT5UvBCeUKpFEO7k47NxqOe1YCQuhfYT40BJFQs7Kzth+zTz4iIm2l3YrQM/CznmYgSxv/52mAYQEbYAET7uPSKVajD6sRg/A7wZLPx/BvUd5ea2I8hEuBLQurV7xNrtuvct48RyTe4ChnlwYz3T36Y1iTwTgtTOSmEwRnY1Oa0YRazYdZ7AfvbDna0GubzSWO289eTp9pVNmxcLLS3iqlv8S3zmcpxpqY8evVIH6Ezk6BiYLPQKPa3+IPBgDxBRRK5u+h2ZwXtG7yZKQI/JyK9q8pOEsUUcMjp0CrBhaCZETrnADhhhXzNiO5B2JNB5DVmKuUJnn/H+9EJDOrdvCYrzM+TdsWEDVlBaXJdmSZbTqdAPtQ9mwDC8Sn23VMnkcsTrDkoLEdA2P55WEoxbaHBiEP5JihUdh5KyM2y+hlvOSlT/JblDAShCsLhOW8/OXzY+cTwbtn2AuiYtnkYuaA3Wz5QxE72u67oYVRyAbXnJSKC1lHkzrvZ/TFPIucUYC2sFOKEHXuEkd8tfRceEmRtq8wUwyijLY4D+GYyTdJLX064t/CBejuJTJ9OrfTyOB/eXFzPneNdWsdh5HqWtw14lHOzqtpCpP8lMf+oodhhpMlGOFKFhDX+eSgKqnPUABumKMnDvAKGQ58bCNGTw/hzoehoVUqbzTmONP/txGG6DiCP8AHNJqsehXicojTViK0U1LbqRcBNAnD/0HVTSN6BBP/5oEHTaFOLJqAdOtWH5rcyGoaea80+amLGqnMlZdAgWs+pIH6ACpvCjjljQj5h3Oj7LcdVAlvAD5ToSCXWaDwkb++Oi0cqGpYKLrSnh4jc1jEUfMWDmaj98vlAuhqyqBr8o3ZAr76Il277DNQWavfALzq3BekEhaPMIUY2KPwF3vQMFy+u5uvsH5m8UPoRzYizEo38SP6GbfQr5b8ezxOz+3rbqUVmL87N9gD5vJ99Q5wneSJcOrGCqXmNorVjSEvTedA90/wCPdTOpjKRymuq8ZREhzh4kjNp3JCYfpdCLlmU+Ct1t+EykyyovWifCF05xzzxE7ktdi2FTzIKvdpem8iFeUFPFmaszLhdXkFHJZIxrvtVnAmiLgwlVwW0bXscF+kh9DeuktiSYaH3lKPW2So6uRGxlOL4/ukae6M6WjMGOb1cnOh5+BhCBMOBI9HkywovQtlNi0C7DAnkGz6/KrfDHh/a1mzi5ZVkgAb3Ie3QIov1At+O5Wb2B31Sk4BQxCxwYs3vzvYDXZP3bLQ7zAZ7C+RG2NiD7NxxXtSqu9ByxCEoH3fCAPz97wAtFIVwLEcf+YtiT9VKqN0CDJqGFZMhLp4hiHrbdCug6o1RpMBACh1G6bYuyJ5MQzEvsUr3HERK9h2LU278frgn03UifwFUA6lpNaLrv1HFKQWlFtXmeIz5b4cDSlLrim8iH82ZoYNrZ29W7mPcDRz0uq+5b8uQdIIBVcac4+M8xxgxZ2Pn1VQhfV37zXiDSfvzJUCbJB07aAAUrmrkjb2c6lCt0G033uGEWtF2FD0rTznRZ92rBQGPto1cTr7P9ImDZrycFVUgLemUNb9UwXFvCej3eJz/cfNuxB0u0XponHPbZD3vV34iTAawV141r7X2Lz2qP/HXP+S6iaupqK8kpi7opxKvZvRQ5Zgsi4GusOmnuriJJZUvTokLVmge31xK+hm/2zCVvbgrO/9mzcKBZBhlnxrWD8t2hg82qlt41WxmG2konJ2QfR1/mU4TJSE7lu2oGmMd2FqUpaH2fX+ujONbalUOe+H1WbdMvE8VACDaoxLejE7wG9O7v6P6yh7Fw8Jtmrn2AKlLTGVf7Ip3OOFbl7uqiSACIBDJ+cjREQnQ7j7RFrNyAt7UoMGMr70Dh5um/CXol0nPEu55aq/eU4wvHWVfYvYI/ep839bDuIS7KkD25qcEa7CtcbBp0z5iwR+qfHgDM2I+1unn1PACbVcppRUIssH8tE0pmnJwdJ0b/iCLjNdRr8l/MQid35MOWlblHYU2hstu4eBUxXXae2w0SW3DR3gzxiAPtcXsHMy8/6IUMmrMTxvMvkFJumHRSt5Ene2fHm4y/dCz3eL0BowJ8owKvJiEyh2NF/jtAbZmw4GGmG0D3eWcZFjdgWQ91j3sVCozIDWxvz0qjE8Phjd1vCjQK7FttrNtLdfsaqJKtcyfm6J/CkUYw7gTt0vPvFRku5FelSXx1bhcmDzw+GYfRlPVLJT9i0dkiluILymHo3tC0zvnRDrKOC3lVeIRi4QMnHYKsjABk9QpPKAaj75eLgpUjdwtd691mPNIUZ1DuIClpZjj2ReqoaSR8ow/3HwLYdmYWVkVVn3S+pjk/De5COIseUySsP/nMNZpU93Vt2ReerQP8HvNYfCkeNLdF+IVx59Pqk4BBYpa0ZKaS9cKdgga0TAN9CzhkPKcskrCWWO2SPpQoh+5KY1njJQfAlMSY/eZ7k+30QzcWWRxcAN1kefJSFnW0bdtfNC/5dTKKPBkVJCAyAdObtlyFrD6a171t9IiRa9Y2GHujmm931zFh0R7zJaMgSvN7aXhZRKJAIrkKGyY2EkQeJcQrbofj/qp8U96EhXqF9zOGgizfpoaHhEWnEOhomNAMGWM56WqVOX/YLMl9T8gxN+X31J0EkQEZ4tNF1j20DFU53VRfyDhG8fwVKpi2839lKnw1KEwYyAOwdmCrno9Ait986MKqApDI9h/8pFv8h6L+RRGY695tK55+eAR8+WVWnweGCjCdlYUqXWa+fUuVcyFgQ1YNmfvR85N1R1WsH7L3Cx9LmXG3aHnnzpycF8m5E6yvgoBZiUF1OcxCfGWqzdelelglur1HGkjMB9JHEFXPFT2xQIcsqUKg9Di6eRPR9G/L4owc1IptyjqYlUuOHCwTEAZmKu5LPE57nA99oXlMDWCRQ7Oyz6sa85b2PU1Ss6mV8TnkBpYe+gIr+UVl240cZjHzXgQWbUdxO2hWHNnyo2kS8pmU3y3EDtT2dRAicHEZQGailKBP66TBmef5m4K9c2K97aLl++CuCK4BpJgOCEzNrTumJp39HuWrBFzm1hbxh7X8EpyqkzUreF84QBsYbK1cg+nG4mMSTlQ0PfSKLkgf3UOKhspXkOyhctB6jD6uKF4B7JL6LMKkWJMJ5wF5nOuEtZN8uMA3fC/OAg+fFABRVz4Bz5TgBX4zYm3qM5wwscsKCmUVbAtyVRNnp/9bHok5Tve2LHbSs/dg5pmSctxt+eDMRQfQ/nHcEPDe4NsJuQliPE3uw8tWfBarcePV75ypKHqhK05TP6my4GNmfjbDsMQrlUvJ0O7n+j9M9bM1b6dHF4T0R1E2TaRLyn1VxdhYH7j5gGArnBz/OgNkoJ9XXUxBcBbVevCH9jYCeVHmwyUk6VpD2k8e5yn7mzKPImGSwDpMxdzVrp1o+lIuYg65bZSo+sKveKFFI3/2CCWExxVYTrKeIDdhS08Q4ZfvWfMx7IpWKgz4d3/C1Dth0stUTNU03H2fXyKU8abu38bdDr6j5UtuKC2+YEFjgIKqlvMaVJnyIqQhJ7H71yBjxc344XmcmVTpg/vkfh/xlXWbXUmSnE4LclHBLYpScMiYI/jbNsoc2ifwsdFbd5d69z3FyBCgnNsrMZ4/k//2nOi7cwYBOi8owznzcToN4/dZeVtKJnSklSbLUafJRtfwgaGRjgn1EUs7OQMjRNe/cpN3Je9bK4vz6nCJxwg2CwCTj4fe11awF1KoZ01mO5BJ6O9PZcaKlXlyj7krXdNqqc2DNPa5mD93Sq/SvW9p7kfvCU/UXd+/GiN8ckiCW1TD0+qXOuq2arvS3DtnJCYr1BCwvipsqfougA95d6wXy6gxQo8dnObl06UTd10BfFTN6npcR+LmiApVli2MFy8GUcv9X4VvpI9dzLtx5gmCCSavMGFqjNSIzpjlPlqrRgE291V2Ik5haSCSZ9q5vxoFxBml/oOMwzDXsRoKyNjP6wAzq7Yv4DNglKo+t8y+wrzZ9l/RrozemsiWdGLyL8U8LvGhxfHZ90xINMierDtrAiuOAdSYR2HM+aRcXmXIS89XNfySXoE0gfz540e26jAW6P3TVEDi7wrI/uNrqbnxi6HYid15uEbZIYlgYGr/5AlOVxUKhy5i1h325MDQsTymv6KAv3CYEZ1h80jhSe91hEFKXMx+EXGkWHhLbw619RetIQ7qJHqTA6x4ntG5RvPUEUePfDYKhzHwTREaH6UnnonZzycXu1D2nFSs8SHPB4okGbgmebjPd9/fijMT6p1stGIRIn5xZ0dzXinPtd6AQqFloUdHiP0lo8pvB2oO9SQjPHzg7zQYRzMeKQ76toBOOZCiKqlUsE+x8wUeoxndM31P1XT/f8SgphBipLfAfKp6CSuuav9IBDbgWzGFD4Dnipmr1pppEyRIbHBXrgxxUpIOrcWarf6M6UrQ3OPfzd59TkAtQPCwuAtex0mrEtOFcAVN92oQy3YPYR7WtRtPa01UOwdUu2oQ+1/x7VRPEwd76E50Z4WoicK9BB36ZblP3dxwQclr3iA+a66YTWX1fbq16xJDcfRBwr1MoyGNhlSpCvaZ8PYTK6HHkLt742zLpV5l6pazRVuk4AP9y+b9O/VFfqdygD32SJ1jpcQsM0431vWxM/dtcsnuNCIA99F03gFHn1IXBHWIrf+roGlRIvQ4SFVB1hQfSxKsxaCGL67usae4yprCsEYavV+1PCo3HBVQj3Rv+LPNZXeiEfDBfRbXOQ8AnvIOiR7MPW81RfQkQOsQmwu32lsD35iq19EpTYkNZt+XvgyyYwoHMWKbz6omM8IVCKqGpyl5+iok0dD1ZAPJPDPyBmYRRsMC3gMwtRuF4vUlHKE62hV7ZSOYKgoca91/goe5SldKSQNQEhOLASLJA60MgXyEPT7iXCx4wY7W6S6EvJhtBodwSKBHYh/G8kDClL6raN4j47JHrR6qXQo3hxgCR8fzdXOinYVq2ZCMHOgev0iTei8tub5wSmK0c3dJNhq45OaRwpt+8tMlEEyt2OWUD3knmyWhMO4v53fPEat1H557ANUmoomZfv/zfDwOFh/sMqy7Eq4wI/Ib5R9dEZVpvy5ZqQJVal5mB+2k4GlGWPKODIv+wmhKUvxeFLM5dfJ7gI+NX4ALmIwHCZCBI+nF+jOH5vgXDbWNVDuFyvlCwcUcqBpm5lFmuMDT5jKKhdufllX5VyrRnlbanfdr0NZpEJ7WEGi5YhB6DPf7xca7JqQGORLVxV/otbXU15Yca43uH9WTEpBK03ErAPTykraQIFMX+5ixLyS7q6TQkIDofKDw/72zG/x7vw9RmgL19nnMPmDiT376xyrDVuI61h26CA5HAPVOoTAA7VcFjgS2nFdFn5SsRcpCBDI+lj8roFH9ODwoBxP9c09owQ5HBz8D/6OCv75L1XfQnYABASIo4U9BY8hDaeLT0BxLizLv9bF37ImRu0plMx53W+pM2kADSMJmjCQTsRJvlc/39gN2myPcfdmVLWkgQ1tL6aE4C+vvFPyKsDBDoC3JIRD8kAp9F4nauQYIbeKZSRRulAqfWUuZZO94akmAEwe5YpxQmdVhtPh+DyqLydUBf5DSPb1c5mEhy208jsNZ12z3kfj0YGpaEb2HVgnl8g3w2lPVuTdh6eh1fSvH2Jwt2jlzq8oA+X3LkNpPrV+YKCP0AfyMYHzyzMlnpZvwhaRposMiFDtM13WeImE/qGoneKtPlp4k1KLGXApXBqR+LV6N6ZiCFoqJG5tPu7wHE5bPItHY69tz1vbZZgUv4JLltNb+MX24yGjHrJR0b/yNsZ8WaM4vefxLYSFoTMzNR2oyfoVigoDnM97tKNmVb4R/s5KfiWfTTSXgJ3aCxFAsLJE2X4K/6n5niXvQbH1MncWWYOiYUFPGqzUuQoTzi129vPivioPr10lhGR0HPxx03xLKkmK5t6w6w3MhVFZBYZq0nD6jZqDNMAN0V9kONKDgEyloP4vWgGnNpcIDgID4PiPgoLGYlenXbgnqr0byTp6H+x3I2f15gaPBK6o3cFpgMdaLqqHr6ZlnvPZWBr2TzUGGNEMYPY50IOel7LnFlK+qF5Wi08Ms6UmUYUDSmByUgDt3XCsn+uszP7Bw3G6x2suDuqP5+xxa/hTBjcEvZK5ADPXRXRvFSYe8QRX/hQuknx7JUEST7fmL042+KpqzC8ShvAtX5VDniuIYdTYVt9imWLR5RAsTEPL7z0+WZnhSOlABbkeoqYDxdIjrWhIiyJ4LYmRD5gH1ggcA/X9HXSo5pSXAslbacpAguhxvODuq5H0E5mgSFFDPFKbpiWWO7pCIxtDMwQ0jukxccnALssN5uOl7vBkCkmjl/TUXd6JG1vM9Pqgp0MIXFRgJgmJdqrFgLX+S2yb+JImJtitueLVHkvbVDKZOUkWV5Du8trpzRF6rj/h7jSykYjGgzDK9XCzYja7o6VeirJngmSHZj40JKjGJ6ZeJX7GtW4KhZfFpS/guEnEJJwLuQS6dxUvGAVOGyeXJ98qOACYrz1rMeJyJW8K3jhP8I8bDtOvw2j6zMyo4YCHWhTu5cOSPs9aV2kwDLetnW2p/L8rQz7Y6ApKpUf6RKVdjRjEG5NQ2S+9O9QIQLOIiz2IrB9JhRZrJAIdhrtKEi+T0v5dbzSwe6uWk3dCGBInzzZ8+2XmnHSfSFpanDyH05g5PxmlErMQxuATrYBXEDCJapBzBs0QsqUcXjcXPdqWfIzoOa5iAAHm1aQVCdU6yfnNX8d+E6ncNh/xJmvTv1sa5wq8Z3sh6R9jQ+gtv9R4DKx1svATXo30JLZMpdNLbEkRngJysb9ZQUmuxN274YgUcAzqUFUlyOkYAmEAk6hwWhefS16dD2yMRtOIRD21Pmj04Z3UcUi641Y4QGf2CLkrEBpFn1rX8g33Vz4SG2GMP35tnzvu3KlzDANEw2wNB2pC0O0s8FCOBwVpLSp44R2UJUH5wBsII30a0blByfgHJC3ypcTrvt33rpytoCxO9PWGEgrHZrrCbL5+ycgHHlbIKXbd+86HTdUNJGUZOxh2ECq3A4BkU24sOYTZiKqrvTsaRb+StIxqsD9gp7zom8Wf9ERgcHi6c/PVXCD6ua217Lh9Xs36gPDno72MNa0psm+yI1Tjvhkmy0jYQWHn3hOT1Ktp0sxbTnnDDfSQmMwqgfdgj9ZHM6+/OyNtBOrJrw4/NglusgdBQVm8vKYnihY31p131UT0UmRpo3tVf+2CMXWA/8fBItSRt8EhN0G+mKNBtC/a6TAZYynstF0beHtcp6P7yL8+BiSQwRIdq9+7jy2PqKE3dSGdLtSYdoaL5i0ogiPH4ZxhJ1NUaXMVMgBzwUfxTnAVapes6VVdJbClwaVNa4AOY5RCSFQOS2yL4yi5AKIeWjPYeSU5FsduDaTxz8WFEt4a4kP83MK5HyB+Yn/cfUJrsSbzrCZMxsi3/07w7PK6LS3BpvvZi3wKRlu2kK7QJfkeHgzdu0l3d+YS0F2vrJJx2Qh/izuLKwls9hRXWgtIMP0KYsDY8ushGbcCGxXkrZTUDKUUiLYJl6amLX9HAV1ooTlUQSnQwA1DC+GGnAJ0CF/06rYL1hLuccnVrJKhdQ60wpVhJyC/972idojSgYz7RNTA0hxZAK9wb6f49qjBm85plKhoPDbXQDA7iQxHdZ6jqNuQqO0yRHp/ZJ+TQnpt0vZ6NUNK9P0LuJucgMh9XWPJpy0CujkaoEngAgbU9f3ByJ4BFPCnY2PbLNKVlS1AwUzGG2PqiFFoxADYYCBNUerq5m1NfirT7OgJaGm1FB0mQbCkp3G4G5YcHFI++6lgbeYD9IU6JqMbD9+h9zEPpn7yKUuOvLVPuK6t18bJ0xMp88RJEiFM1cz6y80qTINftU7d2U61jfB7NcWJyX8ssk4+il2XkDzYx/Hr5JM94sSEGh0QOmhJR6Y8/yk2BRwHvCTE85v06ewjCp4lgJ5iFaIOmv4Q5kMuXYFR82xLjZ8ppNSx8ICTmnLdMOFRHLnr76U/Ap7bPHHkwur0efe7cpezL0IdT1KyWOZw5N9wDLswrROG9El/P+xm7CyPVxYrrs309EUFNJ7WA5eOCiCCeNEeNHhGm/wWEIKSZ1wH1b41lGXR5m3J10qoXS2wOzPk+VQ0nMXdPQLLUcxE0EWdl6VQuGOEKERidPwEofe2ZZmUjn7ityP35p4gFVtbS7o3PDuYw12QiqnUUBNZOHerxObkCeJIGblvtM3Y3NcyeFaPt5qO1UBpjAWhIcOlakE6AHYiLfIm8ahu6f7+ibr7+J7Q0/fpLiZsq681TylZQkowL4ku9nrLpKma2esTEKhJ1Vz/mSPcY+BRwx2QCZWG2g40x+oZvqJaGAEXZbR1cJ3qsQXlkb7DSC/TWvIfRULSu3doIMiOg2lPLVlPJQSlVBghNdV3J9umJuoHGS4Q/6aBYtNBAYrsR8EUGtgdg0Ij7nDqHNfatpTo++uEliV50yOGVlXJA4onBMpydvociTtPOHhuweWA9Lm7aRFXMRqXkt5UvSEM/0NRK3YoFVG8iBUlx8MJDAj1jUwjf14Yi0feNo+yuLZGHjvjFzJmRAE/+/qTazU8subg6WdXNB6L82l3+BzfOue8XfXLn+NMv9PytgaRrPvLh0jTlbgs3vo4gaqSqTkcDfn6hwgQmBPGeh4iDGFW0NWR7P4XLhtnS893HHnrgKk1CyAtdB+bEvTa7gm1jAank1Q2oQWf4VBoBz9hevQMA/8YajfHwMVVmBRWiWYL8gbjjHGU9K80SgTg0CjoSYaY97IW4JQkdFsLfZyk2PF/NURBmwJv7AAKh+ThQ6MPAxFsO9wLR0POdsD1O0Qd/edKJJeLjrQRop1TA3hxz9LlWdy6N/kl1v40ww98X517p4bJDvaCX00lg4/Es99S1vGCxMzjDeDxDhFIVj7YscdEx7b4X/HzTNaGRYIHJ1i8uKKmwQVPdNnFxB110e3hmWQtNhRp9UfWfwk4PIQ9wtXlGkstZo4zA2UwA2nxc94WnpwC+30DJ0y7b0g0EcI5Gd9dq5T/lwWff14stKQ/MWVuZPyYaxgH6ET0LHrzU/xvhByis74azV6ChZnLD//9CKy9Qdnk1nCl7R3I1MFU7eNjruocWHSVav9cpNWldC4oUBFkGLwt9uwtr+2Zp2PAbLv30KWgc+6RsLTcifKoekLlh0UAjKBZ5BLiDUgfsbB8Pu4sL4vi1p4RIFhmQNHV9tYA/UQxmxXztqvmvShg5D/Ck625lzr8dvSNNTVeLr2pN3eq/GfE+m6WYRcFtrv8SdKVFUkmXYjZ6T+NuyulLl/47EA8JZkV0//N32pjAQ4m1immoAcW0Xy2gOP5PZ+JmRu1v8avyF/3hgGP9bG0jdLrPQriLB+HZozdOBir/InXZOuV6fEB7STxNvkD/PeM2P8I1NL2G6KmgXcOswWjskELYZyEMlZzmAM1jmmxZ2BHsUw1i8LHRoX0/4pG6KBsiCBzJcZhYEP8JXV8ZqFIWF0D8Ti3Z0oW3VBUr492pmzoprcBdao3F4tbWwQftMIpX+Q43CQHcgmvoseVHF8DxI8f1vVZh8Poubk/OyiU284llgsZECVhpXAtcxG/BLO/gYnHbK0c/wPqs419RH76yJMFa1yNmFlFbUw3H4k29qj/z7zYM8/LexPWJg4boUYB4Y6BpS2RiDwe73MalFGKj/RJ4CEKgSkemVvU990GUKxZ06ACKUDF8IGbXihlecFs1i/QtMWHsy9QE9ohp9mIHBH7JDpvh9UuF2OOed6BUcjU/2YaPZiz9ExNOsQm6Ijjz2kda5GYbvboAxMsmfjgrrjMCciAK391ItRdRLCfRHnpbwzN2URtgVAovJIntbkhlvCqt3EZ6aJeReVBEm/BrOY8EjTdJJU9j5nCKBlCubIG0OuBmbhZVPWfSAOFZssXO1ibMPiCLzldghVyzQlZJJg1YBxAtwp8rH5Oul7trBJhWB1Sdot7i4uT9XcwwN8DrkOeioE52/KJPpdS3x3KOg6FXzY5SiBTfAV7whCN4bMvZJSuI2ruLBURLxqFp5mLjZUzRRG/05EaTiCVmHi4TungqXPYWBjqiTCasAFyZgM/VDfhvvJ41ceoMvfuAOnOgt++QqFOSfig7WRE0Gqp18Ek3d7daKGVMx5O8BzDOyXRpyTeviuRq8aePlznIS7FWQWgJQOGEp60JrlLCowz7xxSphYsEMsbxVb0pLWsELw/qft1HdePBKg1orhmYn+E272UZgl4Y3gKkGryPFdcUc+m17M4jRcCeHBk7FJVIWHG97j3gHb81GaSlDAQEcJ7VW08J7W+AgDo9T1s72lAjVQ4Xaa3MxxHA6Kxl6fB9zyM1hrF41Z561Yv+mTwoHBUFmRqtmaDfQMpWhTSz0QHmicnFfNyBsKbo/lY9xX7hInuNFt/U7Ur7hl7XD3GBVaITyqjwI9BuxW/9zSwe9gA6QS60EfYuHWbpE7IqbuS2JlKCisGT82DgHZWLjY7WnhxePdyKVLuIAgUNHGckMOhPxmmk8Xsvh0rvRpBXwFfVb8zpE/baQicWiRp0Tfi26AbRdGowdcJc4+pGYLdNF8IpUylw52mxbqXNs2KvA842vxbVTk/dbc7ohMEV1eaU5lUCsnTuHoy/vUbzguaXrwFDoFUiO5noEMgdmOxbf2uidar5R8esAbT6HVGVTHiJ6XJBwKXETNFeujYzeABxWNxEn8S/hFqnFUshSn3g6qurD/Os6/k6ilWoRDNfmVrfI+WRXR5HVEs6nBz2w2KQM8FjXlE+gYwgU6UtigDuCvi4bg9XF28aqWfjODB2ACHBLF54Y1YWbDy6PSjDRo+MT377dOQrTSaHdXp8mo501hHAprl49T2jr82kT/GZyjouaX3K16i8L7Jg5V8PpnGn4N7Xy7wqc7p5gHRwqJhyKFMaJAHv9i9//3xn9gBrD9pxTxkRsI68aiWaO84y5/KfUEqf9vQp9qZW0nEdBxqAwnDYAD3l6ysSxgN0s0L9yJLG0EWDQtB8QNVZUDbgXI9C0D88bEcCPhb09ruu2ZcJZ6BLsPl43BiQNEnqRg2/Ry+HsggFJTmKJGkYCFlno4amAh11dcIT/RcsO9BqWHQsxOpy9Tny5hPCFDTBTIkrldOBLLRd7t0KILc2apxtwLgjQgg+RKuVJEquoq80II2eIW92nBCutzNahKAyzWTyzaDkAX5PYllmvzG1GMrVYZKYrKyvaH1idrEbc4k8RelQNqOE6A5eXVTxBDL2Q9gyMLjsVGr6Kr31u91qoThRVN1xciq0VNypfWgXZhjcWJnlH3UYUmRM3QuQd7C2EoaQcVpIuhXmew62CfNTwx8GXvBqt9yHClDBYGkXVO/svwS8VXNr5n77+9L3Ve31rpyUvzBsL83qkkI7MeSv7ZdRQFoQ+YOuUMW1GiMn/YnRxR9xxCIjFjeaoXxmgWLrTvVcGB/6NpDKlzgZacIa19CUz7YLdq2IWUddz3xNvY2u+GDr43Y47PdJrhB9sVS3bfJuGIOEQKKSbq7s8sQd5KoATivY6dZvWcBv8S/G+LvErDwB8PTakuSJ1lY8T4gYAkWKjle8lQUN/QruPe5T5DM6xMzZL81rmXc8m/2jkl1eHztJsH4Hkx2vQqKjkDvwmUeFsL3rEbKY3e4OBAN0JiF3SfU+FjEYqXo928yy/IYa280Q3HDhr3ftsASfYYIfn4XgE3nWgviNtSGcskpHb3IDDkobW8kmUsimqKLrvQZv3Igs0zS+Kopbagi3j3xTJ4Zkb5stUdjcz7rJeRSlPQngu6SK7YCqbOnF7+Wn0ePcOYt9gbWDIKzMB5sfJBExOZj8jNDw/F/nlnTwHC2Lw4rBCUIHWI3ftl5AXvRvTavMs0su10kyd6l20ecBKrZpMmHWU8bU1/PvoZBHJmRdmxnJioOL+Paz6+9V+0azX0KIxfgAyGwZIZUfSqmLJT2gR5HVXCK2tMWsSufBzUtw1NctBSCEkus7NyeaOpLRbjH+Eu5IwFNnsGw6eQ3zx/amAzSxEYF6L+gKITojQ1ci4IVtLgQNcEoBkajaZPBG3HxvF7IxzCFo5miz5aGQGzO9SjMZRCWv4lhrOP/ob46zzwQfbEzxRsK/b1t0S/S910kAP8Amb90kogIF966ygcFzqQ8L+wwlyon5wo1vUTfyreh8W8HTTS+h+PiuMV/bF2XcHeI7CjZIck+lNfk/6F2fPJBjF44t/sJTMVt9RiwRChvtjg6j7PIDW68xQM6nw4Y3hxIQRShLnLRxXfMmFPF/WEeXvPpp6eRrGLCYQ7WrFmwcAVDcx4+tOMhHEkwX8kXNFPHRPFe7emgEb1ejUc7PQNwUex9HTYXjE/+2Vdc0D6BKHdvHb+AinLrv9kRGQWGXwPNYylXgBNrepCMIGRB037y7IfcfUGw1S4Y5iHJkfCJMf9ksCLWRLr/Vtc2QQRIUDpijGbFyu+k8NcVZhGLiVUNDTS6od2hwSEok5J/7IDO9WwyW8XKNJg2L+UVizfocKxpgUuJLNBmH/527R7HYu91dBkasaJfvxjial3KHGI1gM3kfYLbxA05E2poH2kO/WO72vGfh4bYGnoHyvf1gAv7CkLgd1Ov3wrT4DU8JqXtT5Td+TehotWAQD27iQ8TDIsVCin2NhBSgYdztltGV9Up9ZISkszz+5GAd+UsPIMwxkMWcRDXJvp/mVF1gBL7CEjEQaqo8sGx/UlsAk231PXH1rmZCeJq3TX6AxZ+DoNTGwe/w5imq+7onQOGpd9tDeuXm5Q5ONqxQQxwJk4YFwod63fWfgKlOTsQdJ8Ty7HA7hYzXIMiv9UbV0P3CJ2EpkZXseDw0bW1lrZUztVlkEh7lAfia/n5JHaDBBMSfO1qApiS8bR399IYsGEAUTXbB2yOzzN0bV0S9T3Z9x/+lklsGp9Q+LGnJNpwXgG2NNYCChkCC2mdIu3FfcEzaIECTlVliocP8cs8z+bMcVWTMZ1aL0c+J6CldWDC2ZcB3o3ifqxNyKuAt22CtUp+Miqh1ttvQPj2nqJi/UomqxMOUXmuIUhKgJv0sSKSgZGMr3X3drwzubUTqtz9bzgj3AxyyYdqgLEgPO2q/EM4mw4R3VCrnmCqlP7raSkGYL2aq+WZYYj8ed5eia1L8WPiSA5OK6VRPPH2gYYGAOz6hItMQ7GReh5BjLgfx9Phz26GRXxlaDbsPoZNg16pJGbRa00cSEnAItpYq0CVhenIdJVzyl/zZQfOMYXa5UfUVffaq+g73mlMeJTf5GtP3YeShUygpiXY95+zEpEMaBnCN5LVL1ZhYhtMrwuNKT0JBdcjG71hiffBnSpTuYG82tk4x/GFEBKoyhOmdgZ90BIK7obUIdjDXRF/Fe+/R10xWhkO91UA/Oepc5EDIiE/BEsiRP5FhFbKei3IWohHnc9mDMeS6MT9NtcZePIWivY8+24abVjvubSIXyFhTFvuHsobKFpm559sVLO93qZau23yQ20rFAqGS/8EMvGzejFJRn6pW+zGuShJYaGpOycVeVKLp3TYAXCaq1N/A4fnywSTxIbHmGfGYefUBlc8g1hV3AQLjJOj6g9u50SkjHxPUh7LF3ovbQJQoSVYCFu/1/XEVw4U3SaqXdCHu/qXtysbormStK37iIBMuJ4Wjjk/A8rsrwAlo3hToRHDt4hhBHKDw+lQJz8faqJvjHCVWObuUsQ/BW/cmzzRd3XYXdOISz40Q/jjXMPY5PTf13nRwL4rn+K7a3matsX7OMokOFiDGf3Wrv0O2hfaOE1n+NR2HhiLPRdiE6aTOVkJt7lSlauWRO/YNxeM0bgZk52ZW1Ydkx5LqtiDzevaDFwdpjVVhulAlKmCgtYCeYEkoC/M2xIfHsaxtkdgcbGJC3gd6kC+5p0A1dZGdK38zkn5O5GKRjkJ/x8nHKpDI+ZD2dQzWEWAYfTZ1FsZyWHFUuTNqSfuQ1Ub20qMEK/lEe5+ow4EpyD5gb6icwwkAXumODXtXpL4PjTQ9UQUtsxNvTBVXNWz+o95IeNu/KopdQizlSStbIXTlDp0M6hJPLq7CUqk01r61okw4gQKGAZkhfTya8EqaPBvKyjxZIx87alimTFvj/SNbu0eKJ/pnb8uFrxzyeNxi2cSVPAceNwUnMnTv//Dp3DyBqLUmYFrU8RCrPZfj03btiGK0Wbf71es+iJEO1GOuKxoR10gB01G/svxa4gk+2KBIhdXWZ5FZcsj6IsgPxGP8qgWVwfWYTv9OoZ1CC3EbMrRlI4H0j93iz874UqEk/ySsjprqpGvCf43/r7TJ2bvf09fd7HkVWa2sJ0ZZ5pC0GVU2Ux0TulSuF/SkOcbp+aCmc+Fk6NEXeVCmp86fTwuaWZaUW9EbQ8gXDNRiIlO1z7SKKngN6GkhE9W1uTRB37YSY8z6xCsfIynq9bFsQSkSRVgScnGsxx4EQmkrW5VauTeBIwyxePwVmqcpBAzXn5lnmjGwqSiVmk80fnQ3l3E0zkM5NCJSnDAmUXvIDaY3ZhtVVUmo+QnDYTzwp3QTA1661NP8j/6h1ocI3aiqXDyxWfh2FQyba9QQM6x+Q5/UdpCPRpXZDdkjugbO1GhEiFs+Ld10zxDDj1rRvjniQVGN1Pxj1lRaIrPJGcpzH868yU8aL5x9Y9Qh6rO878GSHCmH+CEO0lmhfgXcL3mIAJjZoC1Gx/9mvSAeWKnewr3DH84LiA1XbHmGuxz4MG/LAWwUFrrM0e1cbbannEW8QuQBzzB7Tp4wz/WqImSGVt6HziqooZi1oL5smcEkBZ1u/UhuDm47PSGxkUQyEbLbLRBLn/hT1EByFVXpJeOpz5xtkcuhRdeatunJi3nx4gHxHJy7QqzKG6vRWDLFSAOk7Yv52ewfskBJp+IVLc8bN/tJbk7dXd2Kn2k/YohKjsJoYPAHdH5XLgBZvsDdcmlHX2Yxog1rIWvwkA9Z+kIbQunNuFmj1HV94Hhxh03L436vA13kcweAFrErY7PjCYk/VIaQ7Cef8yV7FKK5BGBZ0PO5IUVUEb9cC+HqFanYhg3gZA7ZVCckQ3wsuBapsQBQbXEF1/Lp/vDzeogI36C+UBgIzudg5Vmh6y+wgLsOc67w0K/kik2F4DRwHGBJHPihRf/C+Dtfeuz6O1FrrTaWrDvjSm+w6Hxk7E/oWIXPlQUduuqPDSurMKb3fdClcsh1KJG68AeDmPR055LL/gdKAioDSjxmosIcoHnZlOL0i184aYYVLSOTypv7luDUZQM0ueJGdtDykpcCy1nfuCLtw1O6P5hM+4RzMpFuzsR2IhAJFBytsKhULJoYuFoqkujElO3DB7H6fBpw8f0MnkDcRSZ/fmf2k5MpAI0mlADaBCeaO1GFJYNbmjiAxKOfvxxt6qhUK92sOGJeTOrAv8yGogoN1QckMtdD9N8+igdB3GWzqkE11tspJqzKw8mF1F1x0cvE9P8twOIEy4W/1AXnQFV7044cfj7o2zGD1VGVls+Wc8oA+JtwzeR88i4AFMvMsG2SebYU4avhqdsudCjLs+PN1ds+UszFnHBeiW5SyBuhlXpI1xoHLuVfPeSk8i4tPpyrHwOlraaKL578GTeVwO/76kwjyLALEH/iyM0ovtlG8ucTwIPmY+W2FcNstT6aKTM2ofN7U9EIb7wKARy42bh9eWvGJjf7QzwhCOFX7G1kjV0baXrpFo7W9PiIroGlkbad46DI2e4iuMhBDh6fojf7xaa2wxSE5u0LQeJutgzdDs+7xt46RMtpjHsstsqUAO7t8jqQsb0NuEF6iShwZYBqKtcoZeGP+v0/G9MSpjh3rR/Xi19vtAfDOX00X8WKVmYx39OdMTskhc8F1Qbg+Gq1k1Q5jfIBg4UKRcz+xbBlFSMcqz3+ypujGQQm3POv4qWXVEYvJ/cVNUTSWzERz2gHaNhNENX9CwW4hWfw91NRsHqx2xiQ4Bxs72ujKIQOdmvsOOuJA9sPSNsMpDfe4T6cUJnT2h2YMh9SnHpqKJm3h758KiYmGXBUd2E4Nl2L/U89YdKUUtGAThJcEeQ1sEPI276sgu/gD8cxikr7wIvUPtnnzcakcAmYcfMsrehv9Ty2eE0/D/nS2mLpKfHVMra5RHIN88OoH4krC7WhUmuuhhFmFCKnDXiRxUxkut7jJ5wGFg0nqRnRGyt+VlSnPz2r4Pgzp3PxlT4RB8TQv95yEL5dV0lQhSFk5FTtuNSJh001tFB8omZjd/u0fLjCdj4WFxQq/P/nQOU31lxRQf+MP4aox1NvmeV+1ILPfg9r1Bc3RF2Zu5fwFXQS/mhjcDEUyPhxTqXCFnXnr2mUb7ctYfpkHdLxjt7yy/FpPf+6vG8Bn6g29I28TEilUPNho2pbjpl/Uds+W1e5PFM5Id65PQe1NoBl92CdLqasl9MJXluiy/AzhAWWguLFZHQ610L3xR8C9Ho9yDG++S506UPlMvPgv+MJSO9Q2PwyQZOW9DEBfiW8N3jdM9DJeOe2mncbRFhv+O6VwzwGcZWCzUfoLpNnDkhrKxs2g9HOaleeLdQ3bHViWc/nFliqNsTKQau3TG0RaDytN3M4YPjFzlap6cYDhHZr5yvywYgm7U1IQt1kREDjRlErsJwbUNRlmylFbC3HUknNlVbr0P7sRM04Isbx6V3RnC8bpwkk73xucJG8kumt0YdI0n+kPbfqacUsY+/CnYj8pstzG5ofmo4t5jHScETtqLXaZoTWLYp14SyZ2LzxLgXBxDI/KBnyH559RcuEIHfzWXB2PdGjQwrIHtipFt8R+U0sV78o5L6htJlPu6kCcGBWphdi5HGtfSx5LFHwm8QJadLqwbtBzJXnZo5Mac8JSha32W27MlIqkFvQzYHmuVZEkMObUyZHk/tayzu35bVRbRWKB15+r0d+B8XQ1iKQfphMCkv4+aHzO/pccRgVJdtzTaDOW2bGYzSzIw5pVIv1DBWzLHW5joHmIzVYCtwdrZgorpZHjxh0xuqqQsH6yq9H9+cwfjinwherc3qQfj+jBSOZE1XWFPxHKu/c4ZU7BcZd5yt1HXTGVzO7nP007BD3OJ+aNZAar1fkaTqYMZ7rauitN72Xl258vybvsHRXAjsVI7COmXDzL4dXIq1YpuG5mQIryjHaprM/0rmPWxy8eQyzPSz/WF9Jamo4P7FOehA76Z2qTaUCMMwU2pxqXZy+ae6unwJQMWAcbfdvMPfBxZPQXbHG6UTSU2WB/u8PV5T1SkOkEzKLxsjvH17VSsqUQsTw93JnXphUlQrH+WnfdnjjE9OSqGCTSqaBdAc59hHENWnwH21d2vieiiC2vRhpo/32mgSZa8T99X2uBmx+wlSJM0vs2dotoLw2TgtXgXGg28/R4eltXnMJDnNTPBjBjmfTdEuxCdop5Y+a8tALttQuWJFLqyCTrlHyRKcnPZoNiXP7TMIxBJSvVqkm/c209vErAxToE9YK7AtMa5MF+rrXYiqfmF94WLEs7bsJXNAHGvbtIlnHB9MGBYUlnEPeJlisbu+TrlyQFQP39iiqA5Ys8zRImtIPoayTHllk7MjQW8tcanrr8qN1CWASP1mMlwRdxP6UEplHvRiic6k+NYU1wpGeq7J7x0aGzKSQvJ2k0MgFJtr9A6C5ckLzbfTH/GnFd4yNTUkIRAeGFkforJHbIi68Zz5sT55jhMGP4GPHnvwBEeaT5s0xa9ry6IgxWTPaLmTtHj03WJi2rEMpOEBDZ90N+iWr9HXqfeV9PaLNLm3mo6pzCY+LcQwJ9ziExsCa1TezeRQ9qd0GwB6wmiGZKET0C3yY2qK2ZIEehDF8DfTNvQEt74WdQr6MPBzPCkHFbAzQFqTDjwDNZ2I4mFx1lEy7SC0lYs18oG+tklIJSf2UFWdDVhEhN2NV1Ms8RcU6IXKks+EqhsDqBUoxIBwcc9J5IPOeYevzMvYk2G32ScdYqEN4TjSOXV4PTH7DZcrM01QkxGeYpmQ4rpcR6zYz+WsI5FLEQ0+rIjaBQHkts5R1ycJA2X6e9OboLeajnRgTL5fatPryvmdydB9SLRO0ugyEUqnYGHWeC3/Ck0+FMutPG6vUlavt1pQ2OWsrpYVfCRPSpoSvncEzno07XKpKBKexZFhz8vGHZLMyqcLm1vD1T9Kx+lwh0x1ckRjo1kz1WuWcCMUju/P0GBQR/RAMqGwSrVbGSqma3a4VYQtF695DofljUT1x6FX39iUHKbrLeJag8K6R3JhIThiOsvQtCFaTcEWLfYqnIQkqLjoFOxEQBf6XfyXxIRC/kIbxV1dt3BjnwvarXlH50aAJaW/u8Y/mI/TuVH0KX0ZUV2nw9ODIbkomu13cClmoVUnWF2+UFEm5tihLNK9wSwr2RnrFGF1WY1GQEIVHkkymgZG5b6Ekg4RkONRiUFeiJwHySEfs41+XJZP2P2R9aq21KLvNvkBT5cQAzN/auhQIMZbVz6G2aNdbzyByOgUc6EX6sWTgxVtXAvqNfhAOUlMuEXMsYEIYTUZoyRdPjgAFDGfgnOb/cLVvNBxV/YsWV2UQOt+mh1zPXogr2TX1rVDpKsCj6uiCL1N17i+RwqBDrVxTJZZtcCKh9HYUDMawpGclSLf2k79c051zAHCkFLXVDdO8tsD68bi3HigZSBf5xW7GmrJB+vser1dDjEbviU6y8bxE3fBUCmpM8KaeMHsFewrE5fynuBBNgxhU2XDfLx005cbX3L1BZFaiMsbd5TElNlwzy9q5/HPeIHLuVwfnXgLYWBbsNXgon/yUfwbMhbtC0Uj0zvdZCS9X2p9A1iLxajaAFcQfO0ILEqWhH1E3pLAMUko/i4N5OPPj/OC33QXu4BC3064ChruhxPw5Mgnx0j7Pa7pkWHzOJwzlMdpz1mRNyKCC0+0oZLlW9gfvtC9XJF2qke4VyKhVMct3KygqaGw4AvkVWHHZ7xC99Q+FMN/lK+bSHrqPamACNQrixuEVosI5ld85/9qG2ixgcBeiwHgf62Wro6Jm+RHFCT+kTqegn8n2y6QZogWNcE5TnlIeaj0fdCo5QKMJyD9WxsAMJYJVVgHT6oggy0DKGGi0QDU92yh/VfPbEbySeSxfj1h0vuvK5n7Kr7+wS3PepQGbajxpPIEaFBrhTVSUQLEuEoGOv2YUK6akXh10Ce2BrgRa+PSFAzY7LoptdWAeI+f0bFIfU2TibpkUSizYZd2y5YgXdUJnr8fPsCAnE0nJFqomsPkuZs+gz8G9SLj8ij2Sqy7m9ozIQRViRTUyfVbwrLO2kajSoaxFiCEdWS7hcRgZVaQpsVOCXHjGHb5tNQADxugT7ATGo8MlDxdcv80fny0KUSe4Zswaw9biqioK+6YYIlXeOgihLnjuJV39SQ1eK9kmLdOSt3c2VUZH4Ss7+t48Pv+e9mOfuocrXqxlsR4ocGt4Lsw+BPtauVoFcQ/rn3zkrDUd7/X1b0NqHhkTC8BZZ7KSYxs1KbuhJYXGdFjcz/q8SONi8xo7aj6CrH20tdWBftdBhDrH0AgQM2PqCffV434H5/XQ900DlSh6lKko7zAbVyD0mj7uD4O+IGDpAGGgjghj+OjZ4fwoNDQjvo0sLCcS8kstF4FGAqrPLFPQeqWxlobFp7gbJ8QZDGUJWTzgSXnoFuw2vIMNZC68IGghWqrGAZ//KjIUv8R8k+f77Iiwk2nsv7MwDr/qAlUtfo/P66frVdxDmhF50tCvzzTuf+y/yLYK2ev48d7miFKHlvgNIi1Lt0uG1L4bRHVs4YAlKsczGra8HxoogIu2MTYqK0RZX7rsjZz+/WyO6RgpOfxwMpNm7nkiGOEqrZfVru7ojJbPBgk8yNRlVfr3OFJ+hXkeRxgSKBjwboxcnuLOqokM9b1RJFm/a0Gx5zdVnBGWzGEpyPAUVStfiNRH7XJKFnBN8MZwsaVnSOCmmmXn0OGMeWlKkIxaj6YuFAjc7a7ZFqgRRiqZfwkuCIpwlEaKl0an9v8EWUZSEDDK2xCvLnw88UJsfauE7YWlbqMu8yA+YBMNXATt/4RO7JRauyl0kkjuSY0/6Ext+4XbXs/y8lXdRB5jb2SqomKZvqPWSurX75m71PVI8Ao+WBO3K51fSgbr45Tov82l2XIhCwAWGr4x30Fa4POK9yPxwunoKY0db1/sG3/LCHzdgz+nKtbPTsirHR9JdxlrsTSEZSJPG5qf3JMImczAZab9cwyfDI/98pGvZc+2X69TmmB/AMQmlmObgOQ5CqtFp/xMDhaGNvVYFioAkdcgkH/4ZtaGlcq4OWDV1r/gnrvDE/A7UFYThIvZOV5nLhPcwBC3rOluY9HiBT+lwbF51zirRoQwfiFSw5hL15OkuEJWJHJqHds+Yl9kowBSfaN5qKDXYFZlCo3ylB8y3m2wsn0DpdS+4m107Zti/lUtWVKdH2ZTCUOvMQCRXAfr6/fmnEF6dZ9w0ILiV3C/qtsmvRvuQwwPilynmeaAT4WlFmRMx3ocTt/Wv7I+Cp5OnWKdbEx0RJN4USgFFYt5JyZveEzzC5DxPymIgLEiNPtr1T/pk4IOsp2WMDmbXaU1ljz0aFUEK//SV4K4AEz+nLSxpP0UPsAXxpl+pJwo4bxx0XQQ2RVFV2+007vORcagYQSkz8il+Vz4MY5FmxE/XSvd2YULABdxt65cNBPMrh7uhyiuskVQfr6x+I5rzfMCXCG5rnUR18jBjiVQ0CPjtsXa8lv4yK9XAIk90T2HoXE+TbmA9Kpd8vegjMI9cBEuTa3ehimlJQQBislBfgp8S06Fppf9Ee1xPoGWZrU2HnM1UkozCHFE1b1XI7qq3Q+jWncqRXehKZUk4J43kBW2G63bF3HIcJ7ODA0iB+2+LIPO0yndcftzdsgQPNGvXL4BoSWhE+WyvHw38Vsc807Obz6O2f2uxQsSWshjCanIg/ma2IR/Gt1svCWISfIDz2sLpLHOtsnejFcFs7OhXxzozbYnSAWffrD/vy8r7Cks9t8YY3VP2u/hGcj6QJURoIRQJF6CEZaR7VOkAgnBCjz8XUKfjhymXdCw7y+aBzRhE0fTmbYXJYVssgwzGD8AXfidmctvxLAzEu0StKdh4ONPcQF0GBYtkEBKL14FAPJCKWUR5/kbV/zKaDeUA0eO/6Q8BkR+2uoVdseiW356Q/LxjgD9xnGksk/ABzJ9wkj/jqRZI2Msv2XNKI7V7kD/g98LKFL6t4AvFLwG9k6tXAkyk+kUr/MyCicH3npZdHDG0NU7A85ctlQYOhNkcMugSkoxxy4f8vedb86aS+J5yQqwdHQ1Q55M/VgQ+jklv1/+ZVDcZhpLp0Rhg3dJ6T7ylmEratq6y1GLmRaN0ukSOLLYSmzovtx/ikDMBmNmBFGtWfe5el+4EVXBkk1IK1RO6u1Vb8gPBEc7JKmNAL99sHa2z4c/v6RKRPv26XYMwApzGupU8ahVgPFfQ5+rSlRs9asRnkiRsN99VyCo0taKzvrZlzVTQFcZ/0rqUagG4gkkUeOo/nHGApGW5AvhWt83rCtl9lMvZnU590rM2utozRtY+gJk+qNzBsCQfiZVLaA9i8QGPhVIFVn86KGGQxR43AF9+kJighD9Vh9UloyMcgsgLhcxgGGYn7Xe7ZwlNvASEroKwCplgZ7aZsqKqhZLpJcH/XUiFhYieiKcyzJ8UePEMsR2GvJKk7A+gK+4NKg6uTko4BWADtN6mZSBc9SBXvG6wDby883kxhJf7SKoINaFISyB05otHW1DdMcumbZWRa3+B3lzc1dTo4k+4Gw6cGOGiJj/gXI0FtoOMHR/Q5c3t3g9wNkZBmeDPyR1HGuEKWqhfcaEVEUSE35jFxc9wJdRMfNrdHi6BiFhrucS9XUqfWk/HOBa8jVNbl0lAwWK2kHooWV84ODbeO6HlqsjIMCAVckvl1G1KNschy37Zp9D0Nhy6hgzpv5C0I87qies8P4NyLyPxe3agG8kzUSnw88HsTzZdQjf6liiKSU6PFq6IKU21azTOMxqlIPul9V8bnk4tiSHQtHjS4TYDvmzDPK6DD0VUc7jre32Z/vxQhZvhfM47pJzVoJKhTFZuAHi48S/NiD7RZa1eotKkCfTp3LP6f7TyDWfvagN+z2GPkc7dKMA7r2DajPVT9F+2tff6ioi94K7WBZwbK3mtQ9QVZKBygAcICdrHzGEsLCv2+PzAuaevVlyjP6B/MQSpDJhMzUoWzDN9ykWVZ1Ply0Z1D371xHf4AXOysdAAIF1r+DbO1quLWLjKt8nDVop59MxEcZTGnY8adXzNZtYTcT5ydLo18xIR3QSTSgSkeKXfR/ENKT1k87MO23LYoE9P4qiRohoRk9f7yXwsJbQP8o8XPDpLkWGklTbD2/+vlb4tnx2ckErxDiE8XBiFLQtkaGzbS+uP2LuP/oyvEM6B7W/zMDIfaf5CXsbsm/0/8OuxwuCSYCon5SUR+MAKDTbZ3Tgwi/r7WiiSH0U8vDoBlb14zC36ciYW+Eb2YxT/led2jOE6+MWHZeQTUubPN61zVgsKnz5DsHJEUwyIIgmFaDs/dPqXmxoUX1O1fqtkfD4IIAX5IZmR4ghDy1Z2dW8wRrMcT22UnRrouKRlk0MM+e8/O/8wRtaxyCWiJSt+G9LLzykqG9t4ei10POu3GQkwFPwMghbYpZVqPScidXY1VPLrfgqwTTxG1qXrN/aMpq2mRUmkwYLSJFlRYJdAWNAs4gmFt+JRg1aV43Plcb590g2bgaPNZREPMY61Wir8Wfb0OBv6zhbJ40EYMyxRYJfd5aPEF6JadsIUjvcHimNZXt7zqf7QBKWTGvDNOs0x9PZn4tpy/veUUuBrBLXs87lw57oYiauEx2nMAEvsy3/7EbcudzOAiXHp46CNYzA6yXypxSyACWuISzMyq8wewotEij84RBHKrgcNzMRgoRqLK6h5R+tXa8NbfaQEBdNOMs2MXqEQY8PwxuDKbDeVX1bd+XeMgiR2jbn05Q9IKfuZoSBE91vOQ9UswQkGQjRjTKtW95b6GGHpW9vXvJIhh1m0kjXfig7ljWbukvzuHuDEZ+hxZ/euLG7CcQLuAgozL3tZbTTSmJP7CBNSJ/K506bBkH1uRi3IiRjB6X++BBdqdOtPPOPX3v6t3bO9tpGq1hSbTNysccIbI5tosgulxPwAxDDYUQfsgvfHLxdkJlSe0Ljf+aBF105iI9Z5m1vWymq19UgeIP1qAS53voLfMXkUAi7WgIvEYBUldosFU+17gOa4FGRzHwlrh9E6wol2dj1icIv9KTSqu2gUaUgrmUuS8rQxJpwal1dppaIX2oO5HqWjP719WwFMs2IdgNJRWOM+9tX9/cTW+QaVZ3j3M/w46xGlz8XOK7Z8UZr3on3jCFCu7iNjpA+OlmoCC07xl5rg3zVfUE8zZyCQLNh1E/oPeAy9pNOoQ+qKHKI5C/2QQd9TUZgBu7ybsxYrtVdbiWHp/TRclPeHpYkJYWHm+v5/jUoavISC78k0ahrJyDuY5B124ulmJVtJi7NvwtZsvMbgZiel1pbBCiW1ZkWud+WGE3r9u3uQrxX1lu0c8hl1vM4fY48mdzh8+v11pHo8lYHDIbwXalN/lJyq1493J2wk6jCONsn2bKQPEwtYyRhr2FjpTQlq8fGp7bB73k9umq8qD9vixLoN/7Drxfptso/ZNe9ms7petlgNInlfI9kt9//vt3pRIl7xdws+ogWEdC/9QTURJDe+BbmwUmHZ7jiT3rk3ty/ZxkKjUHeTv4JgxFvnN1NmI+cKuViJ6hNrn/DjBsSlUePI575mzlmyJckYh5zmkSq4DgJ/GgY+kLu4VI/zp1LtZm6fd97Fud5cNYgbUe07KLCOgw5MvezCz+9W5rcM97a6QCinl+7MSjngzB+b2mIq3aR8PpKtIkp3HH3Hx9ubTeQPatKX6MMfOVejGuak0rJjm7wlkSrYsxQyabJym3f1t6QotXScxvl7uxSTIv5VgnTsF1/ea1b42cxad8ubgvYejeFNItmUuVRGjECEygkmeDmAijWu5711spIMa9k8ZHHFQv2YAKHfv13D9RqCwmHtef1Uhp+Kox8Yp4twgTvaoPWDSonbM7uwHl0yZFnh1/AmSFbcSQUKBSpbWbQChbdBqGci8CfvVWPPkuFoXePyKReQa98mBOst1BgMlqqJiu96k8qnpJTiRDQsInA3HN1zdL9kVQ2hyJ4If5z/74vM1SqbX7COu9Owu8H+wPEMI8OQjyR9b062c6pmpqW/F5ScUFn7oslfJno5N3I3ejVdO6CxHiIholEKuu61Z71Y9eDyQq9pNPD+DCeJU6N03biWE8VSnAuCwlIK4JO0Ylf5D3/xZTRroWr0upX2mvzg/TDoxYraRaBpOTP70MqpzUxcYUK7rHwRaW2ahto+Ap5UDNFBvGIMXdp8X33gfTbwG8Vv7kZLL4MqR6fQvo+IKkXAJ6EgYsI3GOT44D7bqb3+Dv/kitPKZk3Y6hkGEhzPau+GQn0x/0l6ndRttzALRHI9b9Bf46g0NQu9GLqBnkMqWPVFmVgeDk31HmZ++dJWw9cg6soejMZvMXouy6i3EnJHQgrQxwqXAOKxlgC2wbwxBuKe4h6Qp3DBF74z+NqDca8eb9ehM7Ky2G4L0HAb4YBJ9i4WbmOg5w8WMK57Qy1Y04riFGGNIxWE5cyMuSF/rvwHOOU+flj135N8wwL7HZ/ruEZVfBC5YS8NBYRwJnYo/BorXMR7+6QiCg60yudn6Q/nVqmOYeLsbcsemVnL99Gy7wkk/5JKm9LS6edC2adazlZ57xue4KUjLn1oD9tyIonwasoaimbeISkGDn68FPqh8JC6xb4396a5Q5WFFgiHKgPhLFfePDva4jr8ijk+dozL9wY9Phg7VkJLyQjMNfXsa7kkLDkHa77depjNK76+J2vkgnmKatlStHp3lBFrC4OQdxD8QIQd38tf8YxmSUU+dGKXWpAFeU/68valL60YGUq/iTv7UCH6BKhT+uZT6WDc2/GJ4NOa08BBUCjrjQnDBdBUOem9l9+H1ArBHNSQHSXZvuBnoltefunuHyE4Y0t6hPhpzrtQybxUv1nn+vxyiPwEDixhIxUJHVrKkhAIoMcluEK2F5DEWjiLldrx7qWWivb/FXg5ptfFLG9He5sb3jEUqo4HuZ9QeTLhgbpJEw5ch0MVUwSbE1mVeLygiSg/cy2v8OHRQCgGcyOmosxCNUHw6MoMMO4H30zDqnaBG1KfhrfuUeCi5z8B6N34PGXDpbcEqQkf5qge77eIxFsH1ua0Vz9zcr4y384VfuVLFEDWfZtERkctd8iVa+af46Vz+TvznJYaoRDCuQYi2sFo8wi6ACqmoDRM61Tq0Am+h11x4FeJK8dBs5l2RNJksS0sBW8VIIrbZ3C2IhEkE+NHSgBfifRszKgVza9M6YbDCKih02yT4/rOxxrDLdNiEvpjCkGyPMegeA+tWq0XZeJVRlUqOoacX3Vw/9v9TW3h7e4D8NVCG4u/pJD5eYCsY3WEQxUWe3cWcYLO/KgupgeyCujJhoTRG77xAMr7S1VsrcRQ2tMP6Ro9c3DQ19cyCEsHxuBbB//PSCeUh3Qr8+lqAdNbL8TMPiXEhkI+Yr8vdhV7SW0cVB816iSc9RIeHTfMJhL/FZhivzEZDr8IFD3NGxnsLPlMtgqVZDDIZkqLkQZyKJ3X+vbnR3G7mTZ+XDx0/Svhf/CNq/hSKdya1a2li6zKbYATDOxtMhTz6Y/veqwpA0Do/p1al6ytU325O15IaT+q5bpXXZK3f/iXggcliNvKqi+wAESiFovWwttKwBjEjKLUmhQ4dd/+PkvTd1OvNXNR04FhrFMUsPYBDzF6QvN38+qaCZ9L3pTqcdFYZYKYCjZBzHKaWEtf35borqrfTp41S2FlmpP45BeZNoFzT8eE5L5bzKhdActa50q2WWD9Ny77F89LnwBuxs4S4TLHZDK7fZm5weBWbuWPjDldkHFoZq4EjH3EtXkOWpTuzpsl3tBhAo+6uyW2Z+8x/df9BHt+fIhj46HFkoUQ7YAXOzZY6oLsM6zb4G3ZSx3kHRnaCbAl9vpW3QoYZjt2s25LoV2pOl+pWsYhLql6vO833Xd+Z3OF5ywxzVcOcjZuJajyXmY8EaDABWx2S+JQ8q5ksN0yCv3bPNBXfZNZZzlrzM2T8xArTKptvoIbd9l6CZiVRLWli370YGEHMYIqTCxBN6sc9O5GqMV7cp5VN14kzhdG3D+Dg4Celklu2vtsDq5PmOE9xyF+mIyWtY3sx6UU+4Mrd7TLxO9KQ5QMceOmBJbweu4+43S3w/eA406E1/x3Mt1spHbubA+zibsVZ5rROpDUUDsScDI+sis306AG6jSVbX4Z9BgHlqcEtBWXXX0ecrPNFxBrU/HZCz/VdRcdjV7+5rg9InjiEzbnJLWg6Vv2FF4JsuPath/Rf46t3Rtb/NjFJGr9OPCsEqR2XTPREET/eV2oNBdPztYchycP7sUPmZysiexrPGgILkvcyCDu8hr642WEYoQ4mhqqlY9JQXJyTZVCDNccxWiLEU6qYDAUB9my+My/vNm0VC+kAZoiOaxknJreQki6XWUQt3YhC7ZJg9pVT0/mHxConBLNXGXXDcZ/BTWubwWt0xqiRgFTLtCLef85+gkYGmgHru8cHchUxTp00gEwq/3r7kPpUCpQ1HqD7EGh1egHxX4yFAvYZj+LzJVE4vOoaIX8mo5XSYXzmhOUR49DUif/fmZtxpnxGc1TwZacsuqA4VNL2qVkJ9wm7yB5ElUTYBd8t/qFzI21CnEYrF1XjSlbOLXYY02+6j/Ry2XBBqVyefKvxehnknoFXijJrc8JW1N+tpXEP8dErK8typBwehOrPj+Oow6RimwZYa2LUzw4TtkxZyw2vVXFPeslffCB2iA01DcVwLaQbCMDtPYWRX450kkMkmwO5x09R4It4LiehGNN23NhsjFX1+xeX3PezsMjo2TjOuxGCpJ+IuAnqjxQUr4FNLQzDwR1aKEL7qC7hsxmX37nFXJNpquk56jgi8tWyfqhtDwu6zdqQwNbhDZWCrQkpCbHH7Vr9vrtp2MLhkuhqetyugdZJiiRgi82/Pk+Kb/JxJjIVc1cY5UHn9JwWiSIRskT7JQcf0Abab8aY2wRINX70c5dqJs6wTY306QwhpO06GGCCfKIxUk5I/mBFyT21UqEUcRDmhFuccUbYp7bE40eHUDWkz8L7wW4Fov/mHWtUxb1yzqxhtbCEGQ6xpQxTktoWyHs6MvHeupJjhZXwrLTIv7o2LqydImmXAQmq63UcVlqLV6CloNV929hfibmNE1WIAwIJlVcxTqSZtlFJxtIk1yFvReeDFs+G3OVOrdHPlHlkLGYp+QqNClx6VQmWO5AUQfqUQ3Q2PwsVlWRVqQDeRj6vudfaz5UniscyQ93cb3Bb8Q/xRic6TyD5TkASwGpLRABoKq6icC3WjsH4KRdJT/uVkzd5SY1Kn8Kl21N7SR0ur/Idn0nQFFrEie5EbzaOV+yKJjSaCbP5T5ZF+mQhn8uIZZAxkeloE/pD0KWrzsYUcekSIs5fuS3epPOe8dEV7CAn23pBZtRAIVx2zEG2smsqm77T8xCnlbZSlPZfUvkxEiqjuX4BU0EvgZtpvhVc++2iG7GUu61NxiJ15eQ5zdQbfFCzwKyYfPRj6mwpDkZ1DV2xHcA3/87IJUgPxzhue6axC6tCf0f/z7NKxLr4AIArB0KWAkNgA8yZ/ozJKrpOrtdNJLe4Wwg6l41sRMgF+sm3AO3zIV9ii6A9oXrPkeYO6fNwtt/R6KdzOzByaWxzV1OqrKoc3ZfI5vvXP8c6ZqNETgrwDx93BEp7bG8xixaS0vPv7eqmlXXhQip0943p/HewIRw0o9fdsNj7xk7JvLRp6sYTMwilb0MeWLiNndV36q2/c5yMNpng+eJCrq8A6bkkwB1o6bQJDnBd9+oPK6WtRy/taBV+FUNM5DBaSp55P/mZgGbktaK0eSwrFQk6ZFEB2gl5Y2dC+u5LAz7PE5b65ooqkCwlmSDNjwBLrLtaprP63wtf6alKErKyk1wpP762uy3Iu5Cv2iDuMQJEGEvgt6W7WJv6NaTQlFzFKxmVllEsLjryI1Ubm9/vlI3mWEBa70H1NS1hD0N7SKhQqWvVeG0zPi1q2/9dIzEZPU37HqyP8/HRqOWbWzXzx1KOIIanxgsFoVTxzFxGxtmNnqEpX4Q5VoeCtIDpBrzGiVZgaQZRPinZsKy3SW+TFUBneRl9gs3xHfExQWDfUGB/y2VgLbg8H++Pgg6f7NOZzJnTZbzFAgALwS/b94U++GpTys8k7TTKm72gNJv/M4VIfYUnRijw+Qg2ETxiA45i62TxGmLadz4SmffAd04GN/L062n2+86sM9WRmYFQ6zeOfEx6nRZq+8oZIdPJKdpVFUtISBDtpKyWdrL6GhRmLLeKzkBNCIAcd5Xj3vqBsEafCWRzY0jUqsP5g+ZhrRj5d9BCkO1qBEAgv0xj6E8lVPYIiTr0tz4cajAuzXhdkoItj56I6N/PRCr2Lw4uBKBufEObgaBtUmDmewPTXnvOrNuNBFCVK0Ni/0leOeR2GX7U07n7zzcBQBuRqOOjfM6v7wORyHxTSA2J2M6f+cGUh4cZqYDM0roTnAwys3+CewCCTZiothf6PDSyHBihxuwBJjhRp2dAYFblCkF4G7sKJhw5qCmcbG14OQr6PgQassBQIr0ttbOx4tTYCUWPYoYJWPxJKa5WuTVikJNVPqM0JeYI/hzLvezwUDLGxSNAcP2RG/+viRPsBb8uobpyigScEzmOJnGAYXRCkwrmeYR78fY8LfSALBmi2hOJHmKCIq3gAZQXcmBBEpOuzGdMUzx6MPDLpV4UCfbVLOZUfuUwY9aZdgAJYHz95lQXhKIWTEqWgqsoq0qRPDrJ8yqJyddrD5FedFQjz7u9hYA4cv0brsYnYa2EJtG3UIqL36LAZVL4soBJPt4FmpbWP2ct5/yW5hDjoeje4I24bpgJHLXPZwZaXOkjBn6oivsd7YWuko9SxFtw/U5AwC/xIgBRM8gs+RzAZ1MSe3RnGcNzyp102AoBrqaXiGAMKeBxV3d7p9ZzESeJbnWShUbsuXYU0umZumxG32v6weE9r4MDk43AvNA7S6ZsBTac6FGjzbzBMdbefs3t1qggsbebtaJ35b1u1s7ylH1dGIPqSHuWEECqlbUpZR0aGcjdn9pJnrZfUZLOktFq3BqOHsxABFBSMnCbGjoI2IzibXHt0CbxfYcwAk6n7SI599a6Q2tHeDJopQ8Wl/y49OwXoyyU8FHa3pfTO7l0NfPryyUXd9liSQ8kZejKtWKRQXE5VJXN486uRQH2h1Yk/0nZN4yJYATBoTWCBD+yfU7aZye7Qi2DYJQsebz/5fA9Th11T7YQ8zbY8bFlQONOYysKz+cJ1JsjsMhKpL6k7Xu9U//IzdKjF5WD4wxAYLx9IlNuatVVjqdRevmqWZlwcMvTWV1yE1pntKR6F/uIwREI7U6TZGZOEODg8SMdiM/1Gb6lwFuRuOyWikDKoUWwh8BtD3dFqIkxQ/Otx4AMuFoW1B9kFueDRsfAAgD2k8BwKUVoxHEEHuSSgEwc/l6rN0aRqEd8BcKUU/41ZolC7OaMEH1AtdqU2ybqlWcLTpKaAWm5i/F9olDFs7+wgq2ehJD41eAjvJIkb3VNwfKcmfKAKCJpKsBIeoY9EtskGp+TNonTvpgKf5LnHowoKSeDl4A2YYZgwFlkigL47Wc8lghjis44EqWZW4o41nbhy/RibaOc4T3jFASrTQnY25So1QNjlFUteiGy7GY4Sq0K6LjsR6fPUCdwNFN33WSZITSh3l6003gG9MXx3cq0j2cMycLYfF8SdOI32XEwXIJ57BHDMTe3ggoTFlyUlpuiNflS6m0uCjeZDz/aUcm3y+0Egb+okwGdEfBFWdZm2LH3sAb+80yDQvAd1zYW2K2IUfZ19wxrx4MQE9TmeI4V2oi0fizUPUdpV97ZOovjwRjwtLYn8um2fevUQSazaDLZD1zenFuZ0754BpP3hYAUwa7K3s+wKDABFzWEZam/lG2WiRAOTfPjOmbzex3WNCNkJKuNqUaaOHWVcSvI7iC2Ja+12nVXw09tWu9Zi0tBxjT0Ad6NTLKABmnjuTGorpHcxjHjSLPRdThaW4SGEEHXygyln5KgczLECteLJylaVclHxniFzaxqAG0l2H1Bxf6wWe2H/X0k24zWp/0bG5e83b39POKoFcRmmFuqZYqleYViNPqoPUBiNw8EYKrU5PpvW+5arEs6kyhnNkdBTLqbNH4AH9ItUH0vUxBbeIraRQNoGMnEe8YqzseWuDXu01NkX6VlEi6Zp1YMXQI1MoQfC3uWAsl6sxUQvdb5TdikP/AKs55LjMfMpoFaOhsz6WMPhcGxrpEu3148Z3TxIjWlhZMw4bNdQAWUkt0EWuENpy63iLwjp+mxM4U3qe0T9Lb6rhIZO9JMIiglumU13Gms9q1VPnNy6dVHoJysmNwkAw6jIwFMpMxPSERq1aN3E96IN78e3G5+9v9OZ10I+ESugkZuYPOYUd7Kd/uOya/achkgKMjst5o6wyvptk8L3eB9x0AkbX++XrqigeJ5kD0rvkZW7/rfY56fsdkt70cRupNCEujdubCZNyfzbGaQqO8hEyaf/Ggr7MV46CmD+ToPAwBrJTmwLExwsBz+IicqyERu2FKsmcVLuxuWhOmOcaLu6thOz3lLBn3hrKBYRCk7JrP/GimHQVVA0QGBAYgWmt7ktWn0XlEt0/PjMRC/HdtNgWJRLooEojEkaDyJaFMu4R4VSVI0zOx36OauctiRvETGJM118EouW0gmR2mVgf6WTFXdqeHwJvKSwT5YL5EEyBdK0Y6rLBdUrbE0MYDobiBwu1qvHeYdh6nsl80fRDnHHqq1cQz8luoQ9iqN7gSWaYIiHoF5m4o0erhHZ1nRab1hJ3xnRvUNopUpMjZB2jBnagzH1NCEy7Ny0iOZ182F+Ojq8rq9I26ytpTBoiVemWi51m8YchHMDa2Hr7RokOPBXtExY5Y7EWMlmz4YlskLnu55vhiK0WaQ38A+bPxPKmOnvCpzqRuy34q9IahJWlpwDyeCkBwmbZRsNHLGFMITMzXAwIXH1CaUkbvWuCBm3nDQmSxDRNQ6XJiZC5BYO/j92OQDf2D3D65yAdvmOR3+YOY7U0xvWOufYLXt18aqUn3rykrhPpG8gfhjpLIwYaS5VHrVLG0bCFMVIg7DCsN1AbI8WR2nlye1kVDSV2B+pq6h6mmI40X5cFEW/jUkLg5aCi/9oGfnEk5YGbn1DaXmkbmUZivanpW+4H+lu8tl2hqI2Y4e0ZIOPicxY9xXtLV0hhn0GFJpixdYSmHaW+gQ34XoqPDLmv/pqIub2MXwv6vFHPHfuffk4/bbo2mXUOH8VevHO3meqK1EaBgMFghxmnWM6d7O1FxBDrJsRfPqHHWsIeZcO7yZj97U4IoDKQh1fGxgnY7D933wdDPgxCeMhG2vHVxN/usWPA6se7D3o8/HJV7V27B9xqMKV1ZCr7fF/IV5snNXUyzRTukIhGHDhO9Luxbkt5ezltgrtdAyLd20HnfKk6HRA55gOK/M6RADdL/1vYuR7nwKQBbYd8NQNmj0H4VegXvg2X4wvxQ2Yb4x7UP9bAeuBvFHAZbuCPNFjfLaaq6sLei3zmXvKopl2tnI0+9GnNSPdhZs+3VaI+5rvAoC7n5fmCWvGWRtbyrTRY7EG9eW76QqJGTcTFZ/U/pMVs7TaC9Iv1xy83hSxA/l7POfsbb7fmlG3Q/ocPHR6wB+SF85uyGVbAK+yrKFtLhzhO7yyuE50Kf36W3u5uc8iKGrd5hDdDzqvMvj7i+hwSQDvCUba3bpzxoC+xM71RyL0Cie8bylVoeXQEaFMx0vX+ueUOmYdNTI9XoK3cyvwIdT+po9OJg7h6bw8HyE4rT9RDGQUnffhZGCu2ttW2yOItW+Vf5/ruQyhUm6k7z2Pb/6PlUGAiV/2Z6oh2Ht9LKrXe1roPboqsbtKdiA5r5RenHV7pn32y1mf4uxrD8s2OnS0kXNnHXS1smBplbDoFRR01TRPwwy1m7G/hejrcEUy4nBa41T3n6uhdLyruGUdcoDSf8U5fMTvAnAI8rY4AlxDlcgujzuggLE+GnAF06v3dbPPklmWhaabV0Xa0cdHzm9T75RNyT+U63PkojpQQd7jOIh6PM9MrSchmweEHbUNLcs0b6OpE31ExiJw8tNYWPYoJV/c6LuteXCJCjhca/2dXbdai1rIwc9grv8SLh+2sPzJXmMduHxbOvu2t2AbX6e20c5ExfiFVp9sEzHRyVsaKZX7b1AdmOx2f2c8D8jwB6eDHztkbsB8QkeqvIf0PfInP9LhHbaRAZq6YkvElqXGbwsnnVWHb7egdxhH4povoH2FThw5QS4A2oXFacq6XUUNMEXQM7RNDS6BEPqI7bWzjP/Swt+t+P5mn0Df4D3gIy7nDouDYtjECIhRuxdGhu9rJEsk5q84y4xBS96Ela9KOKt3kvHlB+aTiXPtllIfj/mTfC4UrpvVly+VB9JtOH7sGQG5glLh7tq+yw+O+0C4J5GT2bn+llHlf8aZQ7ASJVSBVR/PWKdOYYshIe6GJF33OwCC/snDbjx0KfcrHBZq1n4PWw97jDL0YCqLhcae9e/reoTKyk9+OeaU7Z5knLsJLhcdSiaqIjD9/3nvy4z2FbCz1a7lx5+BOGHEMPGwDIjit9cN08i9iUppxyzEI3JHwIFHxmeDA6WQCEFliHGgG/SOWPqcOWTuX+y8/aWVGSNRrchAn/G4jlLPFwzECw2lBaA/dnFiEkUWfnyv/vg18nE0+1krxYhFqBzWWoyJXwFv7S7g0VUcD371lS2TZZi1Fc0pUQ9HmjBqtHaf522jXeGSihoK69UrkV8y7IkFWepp3tj1+l7aI4GGausJO3S25c9e+kcyceN32v0SAu8ktPuilb4GbwDKMP9Fb9yv4XGfFrvDTR6E65cLaQBGHQEUZB1Q7kdLBz3Eg7MzfcN9V/MyFL5PgsxNa6pIpxYrzSJlRg8RliMssPI2IL6VCgdlHmV8cJ9b/oOsUdoMCPFjBbbtfFn/hoH65v3a13mP3weBHv0pFLTfaRtse3p8MJ5KV5kGhRzJaL5PvEVZ4k74ETLYZ2exxxfaCzMxJRCMMLvsK/ihOZs55Vtc4Ylc4FnXJMvfItLcuFyqlV+rXRZItXEB6ofMf4Acs/GIgQsk9QysShDox5slar/w9Rwuyhvn32wlh3u3VPwA2Y3euBnre8GPECsAZXEtv+XfCHXkpwZXgDdprBdIW0s/qy7y7ffvvx6WJ7D7YBqhPmS3sXOfTLfb8RwQXJjwPeVDz+TGSSoON45x/Zn5U+sQ3PlNvD+TT6arnxboeIcZtCPfIT3UghoyH6MVvu+LN9FU/gZXWlwfRqeD3Wo215n5ZCNWTeJnNWk2PhvcSFF8yXkAALcFcZnLILcM3/RfMI+GODBvojhSqZ0e2RAMEqlwAK82r57kmbpwEZGp6/u10w3nzbUmKPKw5AawsOl6Ig62LXVSHFMz8k010wapTRgWE1whD5g3qa95WhkMJCEvzp7AWVpXghjwNMiP8K+ypsM7kgabxj4TYScSu91EQSKZQIUms4sIbdCLagUh6h76gjn6fh42CbPK/CGFoYGG6nmTHyIpPcbo4x5fOoCLd35P5oPlVaxbKAAcu3lLXbsK53f+FNxibEWRF/2JOqkJFP9/kwbjyNwlVThKWhz/pBisf1Qt5IpLG5QHHSoIq7motaQKfu7FPJ7O2ug5rafCb3kSNLSHFUxBU1Mng4mmjyEbOYVZjh9ihcpsW+jQQlTGn6mz/PANjTeCIpxKntbTcZGU4xyOUwnvw6hWD5LSvoBlMF9TLOXzacp5EIBrEdvFg4npNbwO+mcumyOtgyvmURa99kK3TQDNMUKT20RPZSq3kVzIaPO9JYCxuMIUMeNv8S2wguUPGDPSAjMTR9SKlR7Gk1FbJYO1VX10t+rcT4nwOj2jeOhNa5sm4A4CWPlzmrC2llp8npnrqoGd///UsAGDmhNfrwEqKPxOxndc84OzxdirRPczzisX+58QawrS5+RkUI0PFrweQUdzvMP53nPl8oqhXRx56nHtuO7v/ZgKnH45s44+wmbc7kYidZ3+35YffzAd6qYxsRfx5leCx1SaGG3LLOupUycbI+8KqBu4SvJWNQPY0abv/ZOmiQNMgmT7RQHDWV4BRCwJnYVPwD6CQl3p8O5Qpc27H4N2Q8xVmbi6zI9KyGnT1kS0cwsZjfwRslFHG9E7fvGxQXKjWeZayasMmIidtdhszsa5lE85jyNLamvOA6jWx/UBFwu+w8iTVH3A3yZLiqxqRiEkS3489cP8etkLx8RFA8XmbLB/zEcaRFhMJ9Cr1cRlyWEVQqAZvpiP4uB6ht+ubwgHDtoDHI6OiyURBIGRMH9tsFAZWZk7tNECVdBcR29CAE9X0HPVsVDuLzC2avYklCDvfjXm8IlofwHRAk2XGRJoRodyc8Smer4cwXJrf5VycSTyv8D0Ot0CChXVUwddz8VyraCseNoZsWyd/o3srkSKEw481PVk7DPxZ6qaF3ED9N74Ok7x2GarDCKCrack6SZabQCqELlwwSYC1VRGotY3/iPXPJK8iyb7h0eSsKjmXv+mecCiHzDMQrtxU9uM6q0FXNnGca58JPr8jvNF8NStPwyyCDWWkFHm1P2+I6qCDYiDhcs0HZvR80Mykpn+l56uPtNTkAZl3RHRhqGnmqoCn0NLKGize1wSn/f29PuBorQzqzEkIe4mdAgCzAAswiqKxY3J92K4dEwa+dlhpdOX5KKjJFwYSuKLzWpepZlsRqatWqkCJAIb6yDI7qZ87A/vfdTGd9SqZhFfS61ZxYUSnzXuZzA0oQzeKuKTonXOSN74sW9o2fI2Zw6b1loUe48C+dk1njnODvxDvDyNlLEQQHqUepY++NNOZiHs2/IUcPsBYLmL9aQg+XQIVkWF1wX4smnBbT/A049Y0y0muoklNZRGIu0ANeVhXl/eRF0ml0zrGpVfYLd6bVvDRvYGPljzkMLO5szcDPIexYanCVzStE8WqC5wcSV3ZmmWLPi/sgB8vVM6UeoV0peS94WM07lv/Fig32cADwHyh/E2zv7wcdPq+K4IxHYrsG+Y0AYlQFAsKeSBfn0rS3sS9eFgEXM/V9nI1eZEeO2pqhMkz2ZkgVjt6ifm36XcolSiOBQbirzdrhvVvA20hNZInteAOiSUFwzQCYIvpyAqPhk6VjttmrgbD06QkAetdHzJRgu2+LzfU2t2VPjla1bTLOfHjBe58YC+ulcNz65QYRORpKk7KOKWPLDq0GRMxFqrxOFLTf8Dckri26QT7NN5aW0VpCRbgl5y6u67LoTstUheYJYDTpr+h+kvJhxd8BQN1eVzKatE5lgL976jqniGUgYUoP3twlljVnL++SGkuU8UW5it2vMfOPJuDrJuJrgiWVptUjCUBJNpoAM+eukuCuT4YTukbVcGXdVK6lgiTYO2fkFns6PKB3TOU9QLi9Royy+J7mbF584EO5nquWobNUQ5loEEajAwv/SI1Jz/5t7YJIVZj1bHoDfBfoxtqu/kDvHH+CzRBZEvZvbQb+BvOMKTT2sTeMaxuXqPYlQ3EgiaSqpTtNP6C73muCnV2jf/dlGJcJ87V120l2t/GuV4IgaZSEs9s97PSmRzR/OYOy10GE45E+ld6Bp1ViYP4XAHZCwI8efSF12GpI0vTzLKSa0PVBEiI+D4qLxaqpIMbeWKPnE9cR80b8zPiIAGPS+hYCxZMQGDwlwV2CehsrLatCVIL92jFKNHdXUwribycM0qIk0SbCl8lP17SuF5irpbnC2mlRpMWAlmEnPPI4K34Cioypkojwb2yVO3Y9uzlOnURM0MkO9OdlL2WWIZnzXSu4dLa3CBAOhVE3ZOd8lVlrFNLA2kY3F7tkNjg7SfNIj/D4RUfk/NVtLbfrZwS2xuKfRvsT8etZlpRHOt4HNReivtRIiyWL7DzmVDRU4AgBUBLI+kXt4vON/lg1f7odV+i6drkygK6n9TwKQzjRYhDiURryhrboaGP4+L1wT+kuhv4n3vix4nwHvxGC5CQuR+NPmYNUU8+hQuKKUYZUmI3HCuX2rNFDk4lbtsLMLL/iGVlQ43321eCL6pCVx/YkJhZO0I30t8+rG0zFU0YxdPIPovbwTcR6jauee1tkA5qSYOCZbJCWRQS4uDeM1cGCoU3n39KEHtawQc39ydIG5h/ZKJTEjimJx7DalLQe6YwDnI+Cp7MedwgLIYrJ12YT8FZiJvXva+VAK3NN2FJtKCLfjMQxV2a96LGVwa4iOUlabyJtsEyIQuVLTE+4H5F6nmky4C139RjTfXiQ/N6DYH1Nt44CP1k7zp/NkUINP2slnsHVJ5LgNmshAaKnk5Lj+foTfMK36eBeeYfU7w23iKdYzVa0/OglEuB05mP0BqHWG+lkIpDSo81NR+NELl5YxfHD3zf4ffnBKKOiFDxEsTdWqQSpDSdsu5zX6xDkM8/M8fxaP8vtg7qp/1bU7Iik1nZlg9IYvd4BX59ux4uN7hIVlaHRyG/eEZA1pVqPpsdw69q3klC+HHqid+/07nr0PWbA3IV1NOZtO6Jjnbytr4HHcLyIegBp3kAfgMRVp8pdBPuqrp6VJUq+aHHWADEGsr3wnD4osn0JfpV5SMThsdY42i+2qetUWaMnjyTI39n2PIKQcffsNOk97o9v0EZhW0bcfKc7hwlyOrhsL25oZ4n+8Uh3ejrOMQTIVJkhm0qsgyrns/jDNPuFxoYUOot1yPMxuIuMBG1rw0hD/mhbxxrtTKKwPe4aLnjRInSp8Jr6sNCkAFqggurO/M1INXAp9wdTri1xESXIRM/IGA1UJc+RM7vahA8HchwkuCbPtofqS4SSC+lS+EekSzxUnwfzxrzG2tByr69AAu0jepkSm/mkKJMPTrKbKQ7+Bk+uxREIsD1p242lH4X/vEYPwm8CRdq8QclToIqpNnrk28qBDFNNt+0QQw6iImZ/U46DP72JfIgFPj6MIIAWfGfWpoeHQyzdDe9RNWXhRYojXidsEQF4nHQhGSh3k5FkmF0RhrcVIy9d2gM/g98bxLHB0fjS7oivtVf4vKj4bXds3VQE1BkkQkdMsCL0FSD++dNBwoUCqWug7Mb+8YoMy4xrkXSa87/a7r2dVmMCC7DP2Xmg2gQc2cIUUabGaTf52sAdBXk/KX1kLty6f+ZXep1UZvoAfihFWDjgyDw2wKp5iIz/Ne5w+exx0xlgujFCrr7Prc2a3jSb/GuENhROWLSz/e7Ta4jLEGWLi27ymyIoNN1UXm782utleDJtSjB6hYcIizjHhk30MoNJIgh6QDkN04j2gEUMjbkJWtdWLzA+fuCGweIOs1c5nwgJM47apiiYxYBhLSmt6wjNi8xLFwjbpZCHDuyD8ALbq8W811FlhpPk+YPfcoLGfEr1Ux73EvYRWxWJiE7c720rkBT344TIAz922wzY5fkQUf/yu+JpS9sexHjh6SqrpqkYby4zlnoUqZPoaPJE1iPCHrsPXS1mfXXQwghu84ABptqA+AMKmizwBu2ElQKWO1fKUhdemGWFqmznqBztYI6Q9GB+ea6HNQ5RXjyk083E+iyjBlbAIJ42dPlPFuv2Lb3zvQ6TE8N3uxXSHj4z1WgRrMya8CpH2Fa9NwsFrTg6JMBgEpknmujWYziTnDTQ5+w5SsQsMcDzLNhdB70KCNGKGjbeMfMT8p5K0Pno3VqzY6GaKPfSm3HGFyLC4XTiBCTqELtc49i5M7Si2IP7PqhvFnIz48IpZBbaJgEvBSp9r8wWB2CbPI9OSvBFuX4t2WnWafHHjPGhptD05+McZ01pmIXpURNlMWqRhAiIo0YbY77/HYW/uOe4AZcbVHgUfiupLNC4Z6pLnFsysMp5cgZ9bRUUWdIOnxd71/2bKZQOGUPFJEjNCikNk8WdIv+l2RF/iLHzG0Ze9ib+qWHQmSVlg7wqkFsfHcXyAOvNvawoxhFqaTZZUWRW3vgOuzKmk76bmBJ0J1EEriZFlsZxU+ba/coH2zfbNCx+SX44Ja5/AqkClvR/OwxBl8MTlIPTcawlnPvNhXjSl2R2/hN8ZCL7cEmJYrqyfvxTnYlg+ZXWLE+wI6gPA5lVL8LB4t5NDxaHqN/HFkoLH6PrdowAgNKma4EdqBg0gto7GLl97OeWuhUR/N0r3BeBYlWlRvxzu0Vh2M8VDIL3vX6wW6/XLj1GXV4IxFgkfkUuNkk4CyDe4rQyMKRzYwqK+SlvD+3+DIFuf6JRNgDWva9WtT73lhVf/ZH8uYeiKvcJ1/FKGmpFMDWAuW1gE5ddvcr/EuAT0im+b8FBa/iVwbwvaP5zoN0CgNP8/iIeStVeytBPiwUKRNhkSkwAUyqBLT9UJ9MlWhCzjxdnF9JFUGCgEN/XOOn7g948S8fy0pBNLtgHqt8OYcDof0gVCZ4SFyy2qqfuGLrGo3m8uOa1iYC+A5NVuR+KBkN/lUWzLOn+F3WNi/fxlFVR8flObpE18P8UNt0DttSD9s6X+cz7FCmOqwHsQPdZOJEcKXR+sM5jFBRoCBRa/sK44D/hCwwNop1ccHmqgphMGRACl7/55b0qw6B6fSSnVvYh+o6K+ajfubfEMyn1maeMCaCJnEhL4MI+VywxdF/ciOHbcsdz0gbQQxd1p2CnU7vlVYKr2lROERUo6PYc1WFIJBkM1+J/fPnJUPa6xB8UJ9bCGRT77r6npGfjfjCQA/lTvpv4Z4jjZAr8AoGCjvWoGZkAHWn4/Sfqhn8+JIX4Tl7AiQGAzBwa4Vkw5rFg63nMp7urOADGixsBg+URbSC32QyMyrHYFmV93Pkb4NS6e/0ikdsvm+7Ujsh+gDfpIy+591t7yM+rdEP+hop0HqbXZ6yliMBt1UJaOKYbDcOBv1nuw14uVzbptl9blG2/GbPFqGKUjCax7Lw3LE1zLbgzUbLbOZfXKTTsOZib6DpHkTEDlkIHYaUFSNr3yN0u7LdjXPU9h9730ONvFQe3YB267Id4y3Lf4yZMm39Dvourq669XMdVxIWneX8nCrVjfanvA3IMv9fev8kG9NLE5MVQqQUJVnY9wTEN/bgUSb5zdTLs7n0xN39t1Y90quYl5l3Q+q3REA1aZY5cM5Qae+SWTJIJ7Rcju+Ae8ya+CidHdgfFbs80vRfr8286f84CikShy1Eq0mypI1uKLWNptjHXwNwOCUcB/LGroP4BPr3tJYcIAmxRLyASms3R552ekNJlClcMPW67XHcfjnE7A+0mEg6jpcFWSBjNrZq07AJvfz8ONaPZdeDYhke/SknTxhSagDEFLK+NyRSuZ11yZmq4O5ik93dJ4fhAiTLRnULhzERK/0zwsAL3OZV3yJ+e3Xoh1fmEd/splShbn0SRLibXa1cOmcjVb+rjhkXexNcX9T6JKlq0rXLv7ucuJ7CGQDUlmt6hk8zo1GhKjQzZCa/Jxjn2rNMMDS5rYfG+PDexvvZbaQ1w0aAOUOV1zEzNAhQVDbW2dM+saaIS6gM0u36fc7zsZLFrG1JLWYtsvN8UqX9dNU7UV0DtHyh/nVS6xbVV6G/a83ZXDN1A3xL6b7dvCwuBG43qiIPYrf5Z4M9J0Eg7oTxxMsQS2RKMlocl5xpcL4mtYUeNYSGr+K8CyTwletuxFmUX5O7+NTfWqdlovQ0Fk6FbFv4YUiO/DjDKF3gDt1oyWlH7jkZaPGVR/uuRwdwE4tRuWZccYLFluqRJzu3jKP5VnM2EUkkubzM5rk55DnDfbRi6LcoaYcgk1vAjcDk1guiQadFZ/i70WxUBxjqEDF+oo4zty75/+AinsRueCrQ+KNNRLhFncRM9DXTRgyVaow3XMnlsBHwT7AVCNXM+AQXcZ3FH1vQyq1Qtx8SIO0W4vLE7ByQvxqUMYT2+5POOAWAHupgXbv/7bfbxvUPgg9vuqwMNv+36h48Fmak3FN2ud4tGtnvc8riRZTYv2qlu0NeMSeiE1NWAdllm8KlKgoTVY4daTNRTupb5hau0XcDRztIYuoQDhY61Cy944xcHYt0sQtBB5ZYtQDdPXWJ9Zd79HOYIms7yg7QbpvN3f4YZuu4aC7OlEDDeyIVXFTmW31/cEz7SmkJkTl7y1SpUKPch3vyPg+ETYD+CKcLaPfd+1+zBIqDp+5JhuBchdaAYR5D3QE/GtrauY6a6YzUBmCeZ0TcAmzGjhYU7OnPC+JSZ75/nF8wLo0O5v5LgSI5g9RQpWnfkbueBV6MTE6E5xHwzIk+EhboAgIVnVsFUsfh0x1DlkJbYHJEO8zQf2H9Azxr1C8TnNHFWsk/u9cCypWMWUFYr4F+uhp4Ztm1IiVRry20YB0e1F6tvzDbz9SvY+AwRJKuX/28DFfhU/O/vLd8IHFRmhpCg1Pe9DXk92Neuw+UiGI4E+SW9p2SGPuSXpkxZnarWRyV6WjslJ06eO73gp+q5AGXuPEIgoF/c6sEHnWKmk8glPSIW7Bg6dWZ93YCs/ySLaKsOxs9q6Q7jSEGQp2k2vYUvGKbF/Y5asjYC76xjTLWeQfv+6np0EuzUEY8W3lSXT8Qxrh0P3OkgirEF0/KK9Pvv4ohe+2Ftr2r8DT15ufKYBeyiF4M2GxwjFFgDt7iUBtoerhofg6dUHrCmlS/jrSyJppxgtXO+dm/tGyXz+uakRfydycDEmfjfaSWDzXOvdhIQFcCEvee5DSxk5KlTwQSJ702o0iTr41h7EttONkVFp5bEJ53nGYdqlfbNgPBU1+Opq14NBQl7BT9u5dCjhDPO3RKpwCBMzZA6zmS9iXSScEZ7mmqzKw/Gf8Yka+azYRQvTB7IreQ56TOvIyucUUzEGZSg78zg8Tik487YjG9OE2+/5Ils8VnAd1SJeuoVD0eVLHKMK0VCyOhFgX5uXAucn0EfehABi2OtNYTgPnKz2s0hIVoEwoKJwgRYLyTVpXPhZk/vEAoWbPcvXSn1U1CDgDyFjzpFjF8laNbvKo6H8Q+Lg8aKYUugdHYilRiSYwsN/esDDA0VOHH1ftrEi+M7Gfd6MEKQePJ6YONDrL8xaHAsEh9qM87gDW5fJEiMKq/eH5z1t7eL40mkVHHNezD0LCo0+vq+SOn8RrGm45HME+Z2SjKvHtvTQGwx0F2qIP97wB3tZqzY7bczT8caXW09Dveb/a2pl6jP6e+aqpVy8/sZDRqmPFDL5hDv9hPH4ORPef/EkVEiPI3iSwyemnOHQMqd5/SsGFkwPj2D64v5hl0+vIWqhbwDwu1DaoC0HyQ+Ic6jDIoNqWRK2v3vim/0TiLBLzpo6s2hegPHTejc+cOZVsJ9jqFmQ53XJfQ3Na+6WlELWqClUF/KMXc7eDipYYVRhLQcbe8azSm2NWLQFB1b4v9Or515/4yA9qM1Ex5sWCSIBdfHN2EkGeQ8dLU0ZpOdMD3TPJzy6lD9uJed8Hy1bBM5Sq/rtOGslmIFCzoNie4+cyvBJ9NMraLSy7tjMAEnXmpGU4WEieKux9vcZkiAsjFK2fXVvSFCQlVIhigSpp2JAxRMrTjSa/sLVH8f5fxk+VYaeAnkFUvfptzpPbJ05hrHIA86GQdeqSyit668XyVz/y9MKyrZPf5nVXd+L4rGRAaGRTVjtHYfcu5hEFdDERhEUv9LMiBsXT7UyKM1ReO7wpMzbjAGIqrZxAL73S5CqYN7grpjzNIlnYO+mEHnp7FEpCoNS/d8Lv8seOXeC5uIfegel2BT7iSKdy6s0O4uTiA9Warz5u+V9NeKGaTl/7fbiCW9mAzKd3Y0P0XhFZspztyFGo6LuLRCxQF9qVzA9wTIzGoWpn/GI3rffCl4oammopcWE6OrGkij7io6txtZ6uVcKMgReYGSCZ4QbRqIfF3UQBg0WfDBqloQ67vdPBu/DxD6OwsagbaV9Bwo4ZhWD1Qwdb+PP0p7iJmJGU7EFyaGn8s++sQ6cPIDzj75auH17SuZVZVg0aHKY4pPwq3jNp4to7QsvRmofz2dUCKHkwMEiWb10nvQpzrVUw0rx6z6rMvM1WVMp+kgrGslIzjCk7fa7/6w1jnJXkwoHP9vW2olc5qTGjTtTIsSNyUlRe8LFaYT7CUckqTelN1z7z0Iwc9A/64EtdAvUnwCSNCqsdhBGu8EpgZNsnmok7NapGBt6OWVjuSmkS+Lz8gVDk1UULdO4CVfzZLxzPLdyZ2vxOuMrSsITdplwa9QMYKUaAmNhoFx+lae0yCjEbWs9mUpr5xtULUbopGj0k6u7EpHd3A5OirBF87PM9KdTf6q+iT77qSZuAKYseRBFaasAsQ5r4iO/YXrjnbN/vltciwU8gxsQARJDuv3txZKXXpPxhhH9i8igA9Hs1uT6jM9jNSWwdTIP0+8fI4ssbvvRRGj/eXBaWR4OoZgdS28/GxHBcUITXXZ6wcXPCMljeL81G9qtI6vCeIDoVMsOwvx0juJN4wTkykgKThe546d1OEUUJ2aScRdh4N4zyfD5N06jlI0nqFXnTNzyBVTLxye9HM7GgZGEZohkr2OFGkk0/tF6Wln/+Er6VE1DXPV+iifDSR4Dg6vS6GaC2P+eS3CmvkBjqK2LgGbVV+yF0WZu4XYYYytDq/ymLgQEikGDNu3BBF4nL9/XnCv9m8WCsI8UF6GTX69TBOowZqEfpWDuadTVGIKtJ7MCcYTUvx20VvvSCELhyReAoZPv4cCJqubCaBleF20VUVbaGTxxdnZuXpbeI/ZfUFvCq3AOsxjPAMuX3Sa25ydjvkzAWPN8XbRdWAXZq1qAExNm4QYX7xCARUYnf7En+zSX9teRxko0TRUv3XVxDA6YyHs3eKK3UhrSNd5ixpLMqvKSb51ImkeqYQsbP5a2XIWhjQ9hJPMxs9+pE3gkfSxEnJeq/R/wLqnu6fsBhSP2LJpEKEvRYANoreX7hdcvG6c8QQqdeIg/cirf6z1Aumfcwx0aQQTOrK85G4U/SePaDpiOexIR1hGnrXQpCHg9ue1NFNjiBJiQ8nxzQFTsy286GeE1KPH1p3Xfgz/HgoFYhEHh9WvvQNHIREu4X1CqsEu8d3X7MFbsaFzST7KSk70iAcE8mVhX4pBHinT7+A7lQ5Jm+jl/bkJd+yLkkFUphWxBn67ZSauxHkPM8mmZIsNngSOr9TwMP5UxFjvPuKgdKdIGwnghDgzeYlPrPIkFZajPzM/KPaJw0ZsDag/slG/uZBq7flJv/Ta+1PL6uXDp0JoYQjdcH+cqVRyH9vhwibvkLmBoiJj2q/MnIQrCgGVSvFkxiUS7QLzVHcVIvf6H6gmdqXw40RpfoTcEUmDq07yB9doiAE3wG+dPWJfYu/fzBwSg4OQe3SPNp0O2wTLBOyMDLA3aa59SClxVBchit1SgK+tjdXDJEA3v90VaLUOO+XLeHgSn8RlQKwf/oujad7b5ifOS4u5q0SLsHSyA1g379WykFygoJrNJDFbQEnmG/WLw/YVzYb4qZqAmAPFazrKMKU5aYlJaO17QUv8U/BL+JfSD0OmGyhQsGYAd5Q78G1n5mFyF4laQkvbdbL1QSazyubAG867+pxqKgfwgnEIiTOlKgQBoaNaxa/NfPDvFhXbAGZ8hbJ6BAFJoLcpxSzPxOk2fdZBTnVXIPFHA3CldP3T6AOp0EEK1OzyIg+DPwLSQOfXM96b//VTcHApixdGeiOayItHbUqUrLGWUw5HmiYWd0QxTlhNy4UxR6KmhYb8vzaG0aLZ0i4CU+1JbbxkB0eW5xxTA8WRTbm7+RHVDBrZIGTDzay8FxFcp+Bxh8vsL+ohzOshX2hL0d8kWYLklu4R3AlDiOEPfL7QNu+tGB9WFAmOZWcyKwcgiRKn07jzSzbar83I5MvsZEgIFuH5k94tinm3G1LCVdgHPPeHjUv5Agt2TgcxvfRS8anweMMkE0y7XfwPoDlG5aUXWD6VOWiC+Zoq0FFFPXj743B2wDVNDEcOyoOL2WTVvRhQUqYZowjKe94DvIOoP4ujMr+6x1cEa6DsSs47h7PAJcHYI9anUdnJnx8Wm0iWHf0tPncLcouZWeORUvAu9O9reN44h1y1+PXK/XlnGBCIru641LzbVLqFP+UzDZCqmviEdXOCSKhGqAw2th4tV4zcnhP8/eZccfRveAepapQFKHGk6veQM2lvJxWO0bbWgr0qlHbYJ8nwRN1kRMXk0feZiVsJa13Onay3aGSY7od2KnPBVteRwJDYrSL8asJ6i9uYSdM4Lahu8ut/1YnYEB3mtBLyJc7WthozhPkrmpCerzihYBdKbkK0FVgfOx67ORArAdprXfjoLTSwrwcCqx3j9/FzD0uEexaeoDOzWiLBEErJi2gJ2yjSbNIq6sUpgpZfL3bybXIaOYpy773bZDabKYmldDfL6y1AYunWCgbXuhRIdOGdZtlxfngWfjH6VuN2QE0KlEYznszRxDZ4Ph7aPjzmISBLhpuvDGlfRdD2GsqyS671LbnTmRfoHRiDD9sSqvNgx9yipG5byo8En5QFV1UtAyZFtGo8I780ZCTsJu282O8BW+LJN9uJIuLqO2hUE3zXjmWwqyNe3GlYhhoF2oYQ0ljd/Pb/9ZSh5u0P8u5PPMLVof4N6D4m4fo5Qk6ifsn8yuEc56BW+DXZm6YPgWRC6bdQoNosII7q8F7+cQqLFYaYpsk/raMM7yyBalbuXixl15t3/AhlrltZLYArgnbnYxkSZix31EpAwz09yeOpv8V/GkHIv+S+ArOeyRRmNwgLHxudio9w4zzvC+aJEqJ2D3d3lBrLZ8KL5se8+hndOb1KLgmrCSD4KLeyMKHkUIzjOeb4k7OW30u7ssh8QYaGHEAiw+HJDEky3CfATI75KSqEEBC1Ivu3JfEq+2Z6xuOxXISj0CYQXrg13bxQgdv22jtNLkEmvHZ3mQXeYVrAsBV3RmH41MgaM3iNA7PglfeO9oAFtvyCXI2clUuZmU9CrljmOghkuI4BO6lGyHj8lyHTOkg20Xz9+OVlTf77evrzuspDL9mmh14gFcNy3X6DiAPCdGTiVconlj/0lLY011CEdIFvvQV4+ahntuX7jV8Ia1oBhl2Nf/kzctapE225c2VrSdCmICAI+kBhpCnrwwRK25Yf0+wpdPdiuakMtLZtvyFYcxYigxiAKVBgkPVj34tocv1oQLqP7DkpiPIZ30w+GMDLjrwoBQr1nSoRoHnmPOyLlgFeflf23SGUHR/jdVqkAb6brH5wrl80SkEeWDY+Y91KQ4vYRPmyjkv7WF8+AAKTIsdQdZyno4d8oGB1u38HVwEnbEjmjAjTr+Q8fP7iVPq4GLe0Xg5bWcW7c9phFJ5jkWi9gK03gxjWghTpGzzdaZWrmxAcDHYNK/aDMJbvqdgVsO1qYw9OOtnhL1ahgT3i+ynkgM7fOVehHj0fB7VQslDRpdvYSrnlF8IsWHIQKZ/PqpKRxaupsDYTDbI0QAUS20l/gLX74RSzZ18c7Sw8GjGJhXAh/8CI51Y3YWJjKSPEIMLaofjkt2l5If2OkEH1SRHNDQ5OJr6YMMbT+XHSUv2fpN5DJKpdum91xd0SETGFIw3aEwq/uteNwgiRM4O6fuKKbtGoJuCPeYkVKVOvey8+qyWJtwHwzkd3qezy/S88Pmj6xtNTsw5om263L4lU2bMrkmn5+AXhHvICRkZvqvuG+/ZIm+Mabk5YwFOoa0BbMcyttSt1OlsGXjSGwcoQuRTBdWARDl5ozByB3Zv5LBYtDndDcpgWO0wSFYWYQBV/Dx99hzgjnnIIyBZWmbjS/nkWiWzo3s+aGl8xcpQ0R71yvMSeoWSyl6QEoMeqfee83FEamS43cQ1Fl2MNCVMR2sc3vnHGf3jaw3lI8ViQFZbt7Hyy9ljrmvjAL81gVtQABtUNLpKMni32zkFoz/3AFB6ZdOkLg4HIWBVKuqgGssop2/nj6Rr6POPncahMBzj60ZbzxCjKAJC0XEqKHDI83O1ZA7gsJaJmXzI8SKBc0Pw5cjRAZy/8jIu1YNWazPxOXZS/VE8pIBo6/TSEtbNhfUf2AWbuNtxsDuGThctlr75rnR2qfkFDXTYoUVrICF3ShDBRvaAmgWjHukxEdTsx8vVL9G0ALn1w6PiWa928GFm1lk1ZM6AClVUNYMwK2BdrSBi8vVxvHIAHFUq0nFQBG2D2qdDKy4NPPc2hphSCLLBk7UQah//jX1Z7GMzkaZyXUm4NMcYrYK9sP9+5PGFR9ExTIvIe2U/DNKLsoBjdRbjHiu1FPNrgdTCMNkj5Bx6b4fx7nLZyB1f022KzB1xIgYknLswBxIyxUrDIUiBBlk9uXvSZyXxLjZxdV9OMosbYFjq65sabMJS+BqRtfcFgnN2TqJWveU2nNCcRIfk0NZgwV5SSvA7oN7YXz2dt43USYmnhqIEmIxoLF6qu/g/+sAxVqu5qYSmtJJWGM2CGYrQuMFOOfyvb9C1uXYJuS1TfnCOpHvNihfhCPuaNBVk/ABnDc3l295beORQLCcuZoXW/qxdRdrkIaaFZJrNX5dgpLFTErO3fiEM/27pR620lP2fwR0rAMTkGd964bTW9Gkb3g0s7tNCIwtABokHBV1ledPgr6RZhHfXbow99kziEa0cbEMY4YRPtzci3by7cMwRJqVFG+p4YA2eBI5j21Nb6C8GA26qc6EBPsjWP6MciOz9DxmajAVGTe0JiellqyppJaH3aw1O0VMSFHxvXIfkvOOlybFP77vGUZ/o/yvWH/9wkuX/+NjMPwLdCyTJid47/TD77qo2T8oQpKqA7tT8Fy5o9/VZBeMUvUVnspz8M8bZfS0GpuXavKbNFuyCT2dIozGI1swtfOYKjbu5olRyaBt0B+uwir2ZiLNhnvRLZyMHLncKS/j7r2ib5LrDoHisLgZAtPr4+8AXmgHq5M3eD7y90UTte2foehlnlV/0fa4EalyFXWaDOvjgqwnBlev5kSDwFFfO3PDDt3ugSSaYXCggWN0E49KLaSSXUQUUidrv41n3Gy0XGJmOYkUfGSWWPpFraR8z45iVCn+c8MZjCsEy+PWAA2UBqHflALwE9m+QOQ5OFTYADNZRL+SqzVY3O0t7W5vkGHahWO6xfvbw2x9UwcW3BTKRC+j9QCHXKxCxigNHOlQeMOjQ3rUA9mCU7yiMQZhbv6tUIn3njydqnDXBhsyjc2ifIr5f4fD8so2UZzIwIy2WM9KXMA5A5XcmrGc2lc4pwWq7DdtnL6MQW11D1dI3atU7T8o4grR2/7Tfe0hkiMeMs4HPgxSWD/9CdUNuIx8j3SIBPs/lToWKceZSZHx8swwJKmtuzGsBJtbdEX73uS0sb+9kel0onZKidlByed0+p1/h8IF5jYsKobrEYML1PO+sahfgoqQzOzb39Z45q/CG8+QG/YAYvQZr/AIXIaHdcE8+dl1uAFc1GBiDBQG/aLq6IVFHI0cDYvNVy1zPaRNIn5YJC/8LFTV74IFSjZwvIEdJBBt8GBizsDWAalH5tLw0qEV/Wher4gEIuAvqIV6d/sNxOweZK72I+wotmfcQns4/seiB62ktXTyK9aLf5IwzMPOj53FeUMUhK0FoWwuJqYtdTjr4GA/zjtGgg4CTgS/y7nxri/K1du1J/1DHn1Z0xYVXx2t2DVn51EUAeimDbDmwGynmNnqmr704VluZZoj8WkeXLEcMx0vwcfyd1sfFtyE/awsyEoMDs7VhwgtvsYruwLXcZxOGSdpJ0FpvsWWPUxhWflXN65YO2ubT8xPK4pfcPNP3UqWit0LTiG3wFki9AGgfHNKeh6OJZOAZSEd/W7iOY7IssfLPn+9UsTx9jJ9tgl1lCl7Cia/87BDpDw41Pcl1wYCS3L1LVrlojW1EeF+wtOK4SotryBz7U1Z3ZImGaySWo6NWEtVC0jqA5olig/ZkcXG63pmPoDSK4PNonGJ3eWegagf/+etrm5DlENhD/9mhdHYIAPvKhONZDOjVdEBVmhfye4lVUc05R0dyLBH4NEWHhz8PYRctek0TrxvhT83bO+NWFqnAW8z95YpThivNTbyZIG+b4fT188o5ZtqWg4GqE7veXHYB/FFprcs+0BXkU2Q5jZPHxdUvMGlxMG0pCJkfRg9ocXBply61KkQntKs/HLCFzW2ZQbSLerHtjEIPSF4PQ8rpOE3UoR7hOm3U4eM9F0dFnmI1q1OxgSbj7bxldGWAM8K1TvWb3ZQvJimebaDag1li5s/Q1Ncffk2hCoK58a33TQ6Fe9AbIDafNmQbFbikpYraCiCytc740+wknK7Gyp/DqMjLe38TOQFkbm7mLASFYOL1qW8tiMp2LOEi01mynVWecy3R7uK/Vj+Vdc6a0T10EoRX8OZHfdlCNRGOF7cPndTKI01uNpkpFAciQy3Ll4+g2E7PukhND2O+CnMeSxlZ/8/vpy1oA1u7cJJoW8npX14/k00bC0ic4x2WXWnaXVqit27JPqM8nY6mG3PZu7BsQuH/0y78AIKtUnlErvLZc2yA3hDoBlIOIdXBJvleoE1AJSjLNLCFz1Db1E+r5LlrFAZkQssUAGHYbIzXXkRZMxzlGPerLjx6SmBsz+knfEpwG6xPPy/FAt3Pe+/80o7TO6ylMP3035Tv6a9AcT5IUE4uQbRihhkrfH7fbLWKBAnwe0AtxDvUrv1Dc8WnSsWzO7/0DbWBIr2YPLtfuzgRew1ihHEV3mNfOx3TYOF0/8IltUOtWh2DF3RhANDzsfqJJjFaJ/wsZQNnk0rfYIdydTIWrKeKk2Md58sdb92fFzt5FhyOCupGDmaUNMnPnsigQcZQpIgNIiEPgL+jklf1TtnjdYwENw8wnVXTWcAWqwpuY4/VSKzarHvqniU7QrpcOoW/dG7xiNii6w/oCGUzyfSSCn9G2RIkvQNaZSpNOxPUW8gdelQxvtVSJTkTAwNqP2IV1Dzzk5oAYkNBQph21phWxpvNjW0pgz2ScNK5MqIxF2lEjX7HzO+wT9NyntsXTJEsAXSt+wYrXIKeeQk3WBxtn+BsQlXTrpU8B9GW3KwgaBiXfnolCJfqmlLjTZ4u8baYDdpqA+HQVGNYT/1Xt7Vtam4sx/5BQEeJCLefPBp9fuRKI5I1Uc5Znyo6tq+nVmno8t/foW33pkw4TfsQvZJBVf2lAB/ttRKAnPcdk2Qb+21S7qdw8ELD6bAq3Su/b4nA1Go8SSKq0u0zyA1BHnHQ/BPl/O6PNUU+9f1HYyvwxwy2mvBPAxwEI0AkdoNxMqSnhOmfQaU/E9jW1dgtv/lAjQdK9s24hFpHqnu03kRGhMRTe9pU9R6CqhtQxl6Bt2Pk/95EjqoWTwzOWL4fZn01w1NqG1DVVmayNdKRIqittC6le/Kqz+fETO9k+BmCKOXaTSnEiOkXtz5fTLZdswSymwOy0iksp9HXS9BefDZH8esV49g080UKM3s0ty2TC/y8sjRw1jY5xI4Trf50GY0649+0TsbBVaw1OUZHoOr3YOt6bPCSKKgsxIv/b6BOTDbGXv5Ob60HZ6PPPlNUvRcS+rMYFQq/JoPN0lD+ioMq9h9D0DX7ZeflUC9CVWyLg3GWZ85OxWMTYTGyo5EyNJ5xj2UJ39kV4cALTMBwIbZtRu68wAsb6Uzyg2XutpRdTg40fKLGwj3sIlPVaAFJy8gywBJRmxxMahPm3B6L7Bu4UrbUahwc33y0pFUCVTWW5gQvmFcVaNeRqq/vmEXosQokpMl8dZflRmWJa2p1Z14JdUStufmLZVnozFVwkNcKov0QlXbc8r+88oXTkprdN9FJ4wYccrsNiiJkHMByvDAv8AfPJ52FvCiQrrSxMfcSr8C2wRE/IWeUXpUBs4MsPQZ/ubrsHwUypTN4e8QJNhyL6q6l4MrgfelyKmTB/QN6qd9hy0qAdMUrOtFTQNSAuKAWTS89DI+7aUC9ahTDC7igpmFv3FnfX2Go+R3ii1bJUmbSmtD08Sj54xgP7sjsirKj2sRFjWkSsmMI/xB3s77uVuXqKptdRlm7mfhlK1/X4hut7bkaIUh5lCTXO5IxT66U2+/yovmxtuuOvchAw1fIRtxgPly0yLA6T11Qbf0SYzXTTgwuQ4nkIhVswMNrJj1PdvRZdZD7hnU2hD3jb96iAAW+E4gZsz7u0pLmOOjdDrvco5/zp9VYY1cJOVTd7EBbNNufxgcf57C9lHH8BB1+jJ8vMQ87vTGLa3gvjlhu46zqRcoW76c6TEGD3+UjcddDdlDQBvj44OZKhRyJm4ogy5LebgWiFSugvgGnFkWggRGR7L564DNJ9l/pf4gYLaoUSByb8r9za+7bHevYBPimh1ZGGdr40/SOhlVtMYk1gBzeuXCjT9SA9gu1aprT2DojizyFGpuY7VFgO2oD62ZZEbRSX8mFjh+TjoQTeUL9RVBsqeYJezK5jOKMnWEy3qwhyyk+3z6d2bDXFoK4lBrCONx3+sInJ6fKkRMAJGeEjeX7YVV9A+XTmsgJ3hMhd0xoMphF1ksdjrtiOafFa2Y/kYZL9G+Lr4O1ApsK+Le0kJB2m2Tmk6iy+OVg0/nnEJi5pYNHy4PLPrB8z/TbtOE0sIKwAT7be7Ga+fZ1jfA2YtZV+ZiBWF/VYTg8ohN+fU+2w49EJeEmPAYk6g7OvThCm024e8JrAIjWCnWxKktaLo13cJiVTYnz3l4f87VaCpWDOvBL9bbONiwkRwnIXjV1/JMCvPXDulKxdotAIITVgsqQiyaPmWjC23/zjGVMGIj9BkTJKZVdzRYDUQLC/lEALtYYaBtqPg0TP+mQ3jJpShe8lD58Z8nuITTNkVvrKs8/6kPnNWBFDp2BqAv7Jejv9oBsizNISqbOkrbavfHvVAi4yU7D+lbyQCHUmGqNH7DHI/IHRZOFwm7o2UUyDa8+PbgqhVyD+GOzz183B4f+MrgIrDq+1g+vfeCwqgZJ3oVlOc2/OhfpFYdP99v2hCpcf5ylPUP0FzlY9UrUz/H74U5aK6/wW90ChqULcmtd3ev1UCPHIeEbcfBbW5VYghQaJLMoOMYZ8irjIXYZqIRYjCRaBai94PsUw/c7RoeKo+Sg51ZhvQ+Tn39Gvkvda20brw3pgT0bVfR+WW6BUzHNwL+3xIZnHhX4enSdLsTjaMDowxhvq+bxAu388CA5TzYQfnj+xt9O07xS10iqDnanX/fUUnj1dzChu3B4WK7l2Bpb1s/QHJj2UrZMuyBwEj36M7Qxp3p0G8vfnM3oy8jVmrUjodFNfaiF04P/ABfN95HLbVE/QY6122eJJjoGMfxItYtVYV2XQfyzzolXKYlRQ+bj0SQ/3y5QoReJ+fZKt4P5IELYLQWuC61pU/9FP9BdUA+HtEzJ1gmF3yp3Qs6Jhrs923qgKrGTzwXLJPZqYXiB9SYTHcXMFVHb8LCzTG/SXTYFMD9ZuI4ThORVz0hVsmO+erjuRhkExc0PU/do+pBSjSGPiop1xEzctuUGG1QqsTW9vzwvNHKxVzafIGMdH0+YUYHld6DfN6+WJlOkvEzOfYC0EkK5NoaYwH3fH4u5En4k/LK3NfvZ55nMgRQHd8hB/bNk13gEghPh6Yl11OV2wjP6HsflUfWk/DxH7YioVjzQD3TPB51WkmowZP1BD/mmMnSw+RBUB71ooY5/Hs3ZW1tW9QxL65WvJfMZ6R1Z6XOj40JCGutdgPAN7Xa08BNdAzjD7x5KPAdvfrlTIIffFLdRI/knk1f0uFPgHaBuub9eUZ8vNjWGU1QqNjG1kMf6vuuPCrXzL7U0A4SYxlJxq+e3a9Y/molY+eYI35okMSZdXtvZhS2XVJi7Os1zXf+BCotnZKbIZFOYSv0hzZqGIEJyf8YpjVg7d4hk1nv2Yv3VPvblFXSmVfS1sHjeh8pBzFxEA+eMlsuvb8V4iYVu9C7W9v2swpmAu1a9xRsgD4RlOYjy/mIjUIQekKU/heGHw23XITqkCVrH4eJv/CSGxuwc/zyJMBgtOYx/0W+1mT7kfNuJcVkBDIhZo9qiu2vFOQY1T8gx7rQkpGr2Ksdp4/fugZ3b4ofcAQObG+DhRvgbce17imvBwzDXT+0iN0GnRRX8DnpYQu4PZW7xTTbGpzErOMmF5C7KHIYtIQIqJ9V3sx0fvnKjbmylyB6iQ9fZWYS0yY7RhVJFnW/XzhxlH1ef0/cVnDg23l2acsgcgdKdqmCavESAI9+/V4yiJ9IFh9/JFtk9KAxZuW2UzugsE/APt1UyKdY6KAhLZ6yg4f1N1CXY61Qs87Qoe/a2I+tIHX2gFHiC6iqHTHs4dTRECLYU57f/LLdTGE5u/YVPyubmSANe8aVKbZyT9wXar/K3DqggZM+fXev0H+2exQ7WOX6CTEFMBi/30NUyWztC0L3AU57genPrScRD5fOJSEh4zIurKpCRzeo0zrGI8/WPWnVNjzc2cV0u7C2n3Hh4JRYFe2YXoDGnvqATmRbEQXa8Ip/ZULUPkn2LJ0v714301Y62eonQlwT1aURyA0uNU+vzLdMPrCqK6P3ASwW3gMNiSoCaqB1Jc1rjet1a7aVHwwFTpVhbqamJVGYjljXmaC9kFolA0jyZ9BAcCIUqu4QTpas6TsX5nqr+/BoOIF4ysz9Y9ibj3w/FK+nwe2DFteb9q6pAOUGKfH4ZEzCySWADkSra/vgZrcyYZ9Z1cXJLIEAiatd4bAImuwg+ZvNqdpHNVVHEAmk3SKIoNbE89aeargO7VtXJ2UJGhR3CI76YFSaHNZLO1+Qrybqc7/Lw+NlybiM6SOuOEfV4t2iTBq4iW48xDqrlXxA1U89W2Z5+xjoM8bLAqFmyGvGinq52sFR3I/gVBJLhayWYcEqmlTpbkpjqtR1upENYuLwTfGdsDwXczNJrXKrDkcWLHq8VcY6+uuILPj5z53uRSWdXNjM1J5+qV8fk28RxTOwklyOO8sbwEfrGB3S3dxJ75ZHeuuXYhOph/c/Hdma/3SpqLBsepEgdpGwZWA1Z0jeU6T9b1K0t/aTViy5RH1jXfAlsAR3d8cxQCEEkhFVUSIWikDH4+HritrOzy0W4Qq8K322s/uwVoam8fl5AjW+w7bMgf6UrApmMXsTQtypHYcFWAOGbL2bfPqOLHNClPdwvz7kXSMQTkrg7HSAJuRPqC7E4PXdEMW1sukvC+dvJW8lEIdSURuA7XGT78yoB8GeDug/CMqkl3rDBVgESEtKjZnY6HiAXFBZ6ne7GFYCj5btM7w4LBxVBt1JJwUHw7EjNh0QKeGXO+OuaYY54qeuVa+WJk+wYUDR6CW1hxBTppwt80czGWv5ijMI7lWKyd8tCTeZoIG3KFz0tqdt5fX9mgerG2qOaGqbr0Id5i558i67oMJM5jl6EkcA0M7BylmrwH8gv2yEq5Yo7WbU63cu4pE6pZHMt4Qc4smQzMSKnWtVBbmFjbSPITKUcnf/XEu2BlR5lwA4emWbpZ++mND9GPG7cl43v1VcBNJuMwjjPGLAM8uGWezpB4C1GUcuOMOw+u3/BMGQCaKIDNpmVOuS0B4l8ZkQ/MRRzkn/H7nXEwNing5LMf8EMRDhMz1O/1vaJeQtqTd4OnvPR2S5zlIe3qPXVyVUyW12iwkYhu947RbsFbevZlxaFbZWSCs54YNwEEAGLFY7N1lEp4yCU2wEBu0Nfqua0Hbl7+x3IXtbmPLJRj3Lt49TAc8zf4ia64kMvPdus3sMSKFjaLHXktUc7HDPxndYd6r91Eev615+UgqUpF0YG0Vy2UQxPrAIlZG2LBPmhjt7FdrWhahbHxNwNQraS9HRRym37ga10YorOXNk4dHhN8+Fk4CWp426S0nm3ThyKJISIdbiNZcgfNTOl5lbsdmLD9OaMXUg6uD9uOTF8Qch04ESTD6nTIMyxtEhjSK0FW44oy4KUh4R/rIn4U6zif8VodzPZYT54sEAELlOMlCXyR7QYbKckuP7F//O0PjePrAao5kqL5n5o3gLvGm8oVzd2k0xN2/hstn5SWwUDAKSyCB4y1s8RSzyxuzhH60uWpFzb9NTdNxtFYQD8DXwvJYNN6uvrvBGv/jFclrPSCoKoJWPgRKUhmw6C7SUQDdQvLTNMOhtckF7/vAb+hx8+sFiumArEQHcralyHdYocNXvRC7I9YiGdR+uCNvNL7cWlSQF3RKyhgnHMkJgM+n3+Qyi6TCaXioaDcYqR/centiWG9Miunl7TH5Bw3509/j7TjL+MVUtCRwjOhjd9IZjrJCNpNVUdzyo8+iLyLkJ1XhiLYvpzmOIkKM7amEEDbhXYtrtdmcr8NMMRAlp4awaGNU1aJeyLgYKJeVhrdThdIflGQNnKy9s5XnQOXDZQtBIDKlK9PNYVz1bSFnsd2AxKH+T3nvV0ocwQA4aQiX/wSHm3IBuQrXQdGrmfekuzPlenqcaeZpPAvRbMMtDh7NhnBqXBgQRqbI3I3sg2YwS/I4IauExCFElZEauIzkJkntUpzOzezgEzzSGAS1kuN0nw0ZFOPfgfia+qwD/WmDuRJw1V6xPWDebIjtfFZtjHdvZPOCXms8Dmxd+aSEFlWKznXI7eBxiGfRohOY43aqHBOjm3BmDALogs62mgTWMzjFy9jo6/mTXa0OdppWSX/gfpsu8qKdivlt5/m+6wGZW+XeahuJ/BR/uVieifARdZfnVT7YjqF5YsWV9ZhsZvdR3x4YPKvMixaa6q6EpwQU3SOqEt1u7bfRaOpO0s7rG9vpNYF3WpkRz0HzL9rp1q7WDJkczCjCvxBlWoIirlzUT1uW96dYsZOLEZLu9YBzBzgbNnxDoIwx4o4skQ91pfliM9SsaEld3jRAyYn7eBVIJi2PgXxUtsgKFQZTDSoWuy5cJAHMsokY8JY6ttbvPqA97pMcBglDHwnRW0kI1VOaid3pFRUI/rDaXYld/KddKQZNqJMCP5Pj26DxNsR29bFPUhoOUkumooVkxpRz2GADaT9hfh2CbxXNowyEpp7mJ0x0Tg0fZkcHJVWYmHfufZ1ZKCliZxaa0CIiOMR/+Yg/+VdTQvYcjfWI8J2GmTOxLQ5IfrvmB5Dmbr6xYZR2f9+FQXXYMCZ5TRwrsuJl5Y5mGaqBUveEFEDEeVTrxJh+CmBbaGMg+O14RLMLJzqNU1ZViUNTxsA+OnNP/pirZJvpxMBIe3Hq9R2CjhJk3DKbeiAkrOJptpzEUxdrodDX4+Bae44RyV0K7Gca2O2iVyyfM4nidchrnIXOYs9P4e801W50yb6qZ9xCWmD57okCf8EfCkNFenF6IySVY6G66RMFKDl1yP0JJzFcnMN7QFagBY3eBh2yOSiouTH/WcIHwWEkQzkUZBuFDbaZvdbzr6qlNv9OKjEuCTzSebt9BH9/6uJdtKz0GwRcK5rE6u35vGHk8JooBkwVwDsQ05x2eXr7Lk2Fa5UvFJZEsxvHlaJTLinNajGZiEamYQ7MVvXGr9ylXXDV//jIDQdYL2IcE5zL8NToPcRwmQqLeBL233gFc1kxtr5c13IctotdWPlFrcri3o1J+uoTROWwZuuTn/+4wPFEcOYzgcwOtA6Jk+5QAlxzvrtO+scvnX+qPyLR94fZPdEdjXp5RB+9GPazGtufFez5gcZul5b0DjcLuUhWS/AJXX4pfs/UYJ8uUVtIttEiRqYNFRvlHz4V2gls5779TrxENMaQjGswsNsYVGHgiPS3N94TU0H4sTrNlOtc1EsQSuB2g9z2C3CirwoQ6Lp0KwBb1SDiHU5bDLc2q5US32h4FPqoSOJ/l+Dcidpx8/CCw05CEw4/OgoORGQPtlxDRYkmHlc2RIFKyhW5yRa57jwA44KBFuBffbZVbuoZ14VWUrwFyRnKqlCz1po2KPzdEet63vkjAgEWSH8MWxnCncF6UXeVBBJ5pHlC3RDW0v6YUdhKk3JGWP81MFYK8kvGcAyudJYaqh8FJb+IGBWvS9nlX5X7Gxs7eTEV8WWq91zFGRTdP59zA7t8GqxH+v5t6Qje4K6GVQr+BOV5U3L4EZt+QmbDP4W7TJVwQ7k4yfJriFetxwol5Rk5eChCo0pCvfK8Y3wkrd+vCuMjMOZ02VLkIuD8lOBcuZAEwSxiipW8HB6PdLHLBWFqqmGQIJHsLTek1gCN2eX1vhjB2qQ+/X6dJNZAcV8kqmFL49plBBigAtwZ1AeXAjBBbGuyitqwTDtmCu8gU0BshPZma91zYiA3YLBMBXTGFbfYZfr+4DniNwP764WKhQQV2Gp15HtA1CSVRWLDCBHz4pIXrKqiWiFCh1PngUa3vWC/R9jAUzuRB/3iNmbg4Zzua70+2E6H1oYXm+JEsO4p8V5gBo3bVkcrHkiFLblmR1qgjziWAvYlHVqwcKuuQVaULC1l+vfcYE+ypbFaFfrJmuAatYwhYDV7uNrTpzshKpSIYH9/dDDe/gjkypyLffuO3KGzZy+BT2qr23dkOLasiqfOcoEjT/9mZGnQY8Q9G8EDAhQNLmRD50J9/nsQ1nu2RzbS1SKOWF2FF5wF9S84a/jHeHCMibkKIFEk+wv8NGxVkent/KLGhWEPsiDAOCL6JNGGqkjeoG3VEXkAvFagj/N7ZFJD85dnwg2NqOW0IxPE3yLTeXxd2Kg1LC2YPFzmZSaECkCv3S3FL8GdXkumejRr1ciWe3s6L93sJWi5mmxiWEHWjxophwcUhNO59K8rtWED81fq3HnwhshljXXghnb3FNKVo9kIWGdP94ycY0SGCpC+leca0qzyPjtL8cJk5vBxzJ01eEgaS4a0pyg2RHpKkxAYYrGYwiAz+TulZyCQGmoWjQjWGf36MKFP8F1Of8shF8TEcjm7BFbK86zrbalsFG7yExnxGgivHQhzwJPJL1MwZTwqXmpB2AToa3t1acmXakrDgvgxN224hpYnJe+ix1e4GoKPEbM86751Tf5rdUBfwD4ts6B34qy4cvk4M7wKU5DfNcrWPUFyb84YNx0EVh43khNwCrEu1N7XAxHoPRFINUBjYh2BohkUsNlTaMxBF0+Lh3NOZbZtxyXd27FW6vm69rkhn1nkimK2xX/S7wSaym/rhFS4VFO1noJJ0w2ynOMU/n9whAiMpehX1nH8DMxIQbhTcwg3RMAgVcS/nRaUuzHJxHHAOA6F6NgS0MYy0doQ0+8L+KWmCsZIo8xzvYxpJqTr9+htQ/Vn6hYVet8EKGzIaaMnvDIHUO3HJGP1SVx8+/rcW08kxcS50DAhnB2Er3SskIP+P+xOLV9vp4VslIsesFQrznLTwiY6+/ZWZk0613rU2IfMAYLPBUYemYv3EvrEQKGUygA5t9DfeBY/8r4ky3Wrsu6dOwphuFt0maF3x88i9VuZYwZHlbcYlD52ckOEsQRNAh9M42fkhfU0kVLYw1klncJiRU7Q3lbvC1+qLExz2zqfTEyJCwOocZydlSDb9VjSR3J+Qwzgc8aacPZa9ZSYO1F2u6FWTCu5oOV5JIEvaXr8U+u6WM4l7PKbQ6gpdlqmkP06cKtUcPhPT/X3aCCFPuYCXheX/D5oiSjO6FPFMvlFUSxjzCycWBeB9FkK5G73aS65dshSQMTUIGzcEdl5DLvjlTvBcoMvtXTWWK2dvrsk7OGDtlhTwEZ63e6bsrnC6JA7mjLZXmaqqaKie60Yr+HAn3AElxalfiBQ/UfOBCYPGcdmAJmy9w8WMl6+Ug8NLkc6juXU9adDxdAWIK0dEbfaHlglHN0Xb4oBaCseV+aGvGuoKBo9/ejPWmUcLGqGYMLKceMZzGxn1MSNKy9E7nM8lyC6gIj2LLlHTP/UpUJRqvPKAgVWI54y4bqMsL6Bb0Eo2TBfIi8to1xk4mZXxIZrNp92HJE3tSro44N11jdmLboivN4RNLboq+6sX90ReoM7z9IRqZ1W1venYrazhgfYif+e3cs32/wzZMgnzaDH1jF/6/7F8qxDvac9/UTIjZA4rFTrGSWJFDJNN3MMSRZXYeVryBIMNZAVZHDbn5ETLvPAeXiZ5T0X+4bCjaCoZSkOn6xcY1JTLpkWwji3gCILajzSNwx29t0dfIZ325q/t4txokZSFAT+kyRxhYkzi85PRD9EN8byToMRnosz8BK0pxRRThGYCY7x7Kdq6htez/5PG5rT5Ckgr0id2t0Kg5Z2fIYtiXQObQnb7uzKBeHVbVe+v3iPzsWZ+4kdrn3ODaurJFtSXeBgJl6Ybb7nmmFJlqOZJ1PF1LDxzU382OS1NA4n/lMK/in4FRmx3RkRB1LztYwkQ+rJ5GAGxboAIyTFGLswUxECjNCzCazm1yf+XxCJyqwULgo88dLL77/A+QA0YyR87r5CPWK28y8Wv2WWOQ1ujzA6HLEFg/0b91m6w46pE+K//TdmCLrU8TOTwZ4Umvjou60WkFUx95uDXPW+ttTUJPJY3CZn5xrGenHQa171ci7NHv7rClmak3ri0JP2RXqZ9W74BRE7xZ9xvkzXPwWKv7XeMjR4bmmOYIFgrDdFyLgxWOj4Sfaid3gYcb7zspbNBvoWVhGt+SqSIimRRibkiw/p7nJYsKb3JT8+PH5hNMuBZZTOQddPdieqBeTxoQe357aXc6v2npCRkuOcYk/15gPYAjq628Lx+akAyfVmpK+H7Smm3WbDcjfha25UdsokKUr/I+XRa4N8rmXuPRVjIDdZGwYhqiO3RX4Lihw/HL3U5Ft7Q6piF9l5qxsrvMlUite8x5zt3EBB2jMcoyRgST1hz/kznJUxNYytXlcYANmQmRqV+BHzIAP7CC7CYRtk3KiVCEEzf7qmq4kHlQDZBp85dt6UcJEifQPLDG4aGKP2wzH2i2rp6WFGXHb7BMnl39WwTUedA0fRaC+Y1+L0+VOv7fuD/0iT4Z5XkQCL5/REm7PAF4CJE8+kLHHJ5C5bI1Q1YwiQwNcWGV89h52ol2eE2+MjGFa7dze21RxfX7+JH5yb4MqkzWWaWJ9YF7xHXJVziVPJHCoBhJjTTTqyuFONlWRctI8BILplsPiYwxpwNfzD7eBInACtEctTsrLuohRqIh4rop+QJ374FWKcYHdPK2nI+3CewVjeQjfVKfHql2F3yxJI3pFxZuVXvze2aspGvly7z1s0+kBkJ3adbkfyxYFFLy6xNKQRKAVQbDwrlDCKEcveoHhYSgKddg92xklYF2kwc9AkQlI/DXzzXxfhMGwyoKdIiLdwiIPegxenRcT5nK56meVBCs763Uks+7gKGjrykVZiF2apv3uH6i/kyeUZGJ0P98rcP9YSz/BwN9Q/n4q3BQsooKN/w92MEdatjkmXbChPRiDokigszhERnkMfAqBsLIN6ogZJd5QejSHTuKDodIB7ncF61YWtqHr0pNs23udeV6yDx0z3ZPRQoYC3UFpiiNSo/RmWf3sXIagzJS8UeEgW1/uwjSmAeeLPlNvUTcB5R63cuUvGNzfkKc8Z26Z4MhF17xpZVrq47Zu39QCqg2oBX3xJcf1GRROa+TNkL5jVqfAhraeG2g4Cc0zrZudRzxUmKJ4vbdnnZDstRqsfJjPuW+5Yf4/iiVfqZvA8WBID8zMsGgFs1QeRVQV4J7tc5JOo0XLPEe5qa4kSk6u9f7+6l1qTBRDrbElFKn85yK/7hASEauEdvY5k/DHndkbgCuUYLwAebYQZDfKjfmMlbY479n4lXIUGikjDGjBmXuSHUb0xz9ZtKF0CfUfvAqR8pPGi9Trh2ltDzakKhsfB6QxaJGk8XOzH/2qCZyf7EqOrWCvVQsUGgQ/TiIQBAjx9KBd45znalI0ztHSMmGXzCU7NWRZwX/cT+rPkAb2j/h5/+BX0kHcZeBRtVtLVgqlqyN9zUN3dNWGhpG3yyCuLMgWT/LXuo9MTeFF9OVAWfHXcFkAkEV3ounIprUbm931YqXpyTr1L/Vl7UqeBHwO8nmzlJO2nXFsmezK08LMEIbYVmyzHdP86vNpmoeqnSfShIv3jzlx+6Ob4W//DTvROsQcm4iDW8utF4zFdPlug7hGE+ayUH7fmsRFGb7zk2KIxUTBiFMiIx+iq4RyZ0SzgS+CulgyeVIBEFbPGBsdu6ttq1CzVt+wbO9WRzznt4zK/xytsMag2XfBg5lvjRtMA7/VsHXQaw1OP4PwcPWGmXSzzre1BzDuDWJFjp+frPH7d3LZ7JuUOTeTvXLc6f/z1aJLfurow6wd8Ra9gtQ4EkCV0bfVrYNBjI0IqVsb6qErw6Q6DxEJWJ8MizeIQz5Tf3eevQFofC4kwSqQy5Y0TGIchMI80NZ4SxH6FEzBxKG9wB/4kBDK9uYpWbam/tfwpROAd2ALyDBzDYr5w6CwMiuWn2XVAwpXbM83fpeRnoPHynVCTQ8POnUmEvMfjTb48huXwGaC2p4lQLKpZ/vu93Y9ghNkKzhuvA4V/AutH1OmD+C8xsBt4/lIgGer46fc9gFHU/t5yhtIbnuk0JWDP0AUZOketfiWQdcg0/Co03nBV2rn1o72VUDHqfVLv6cy7s7BeTSRiZ031gY1y/NiqOrhnsQdQp1+2CX49wig6fT4t8mE7s1TONCb3no/fgzKIGkkrbGPNf3OwqXUDVYPu0/nAKFH/nBjrWcIO7H/Gj+ZsMcbS6PxDUJlVXfweTZK+3puWV8Mt6nbBpg5HZwnAXNU/EbdM01IfPBWE0e3kxOmCotKBU4Jj4xhuYsp3C/CStRw+VAPK8rr3T7IvVMhtBHJfUD6+3KpvD6lTYy2OacIyYCT5Pi4R+BTDr+FhcHPoBPJh1oOG5zvRoN/LBnncuZETkEzcF8/1+ok3NU3DNsKXiP62kfo7jM3C0ktQGD5w13YiMwLJX3ZLRgiqAHRzgnW3gnIz58O7C0j0FEMO6WZOTeq0YDxNK9ne81/jtTZow+RGidzlPEW6veUFKBtzFiEe7/SC38MtV4tLnEj20yiM2I1q3d0/vPuxbdtKV0aLCOMcyDBz7e0aIohJ8ihNEY/6nopLi3SXA4z/yDitbyWikjCP/9ePH1uf0kiqP1KbffAzGzhKCXNJ8iln/nypLC0F0G2DERtZIQTF8Lksu+Zo6gvCpygDnUhQ+zglnzA4pgn1XR5rAYzac9LrNkAF8UW/EUhkGwDVa8Uct8I6TiOb3lBqH65ZtxFRyMcEDq2khME1zxml72gFUm8KZyBTxnOWmEddAVmo/fla6e0zizCq9SPt4fboWo7mb8+psv2Pgd64UVKb9UmQrZ5VN1nKNCiioiCSE3dnr35/2cietghgs22B+1im10xzGOBEGuG1+DQvq0UPPqeZvrZCbKSfkka458FfPJpgvq9JSiCi+YndwIWWMNhTSWQbxtvNKHXRCoE8oVAjrfN/QvOcCTJ0r+3NTNE9/LxulAAvDd/Zjhvtc/Hh4JMi6yxMIM1Fu9Y0gia0vZX0z4EpzsQL5VQLIehqJODQHrRmrq2YOFFKEi34hQYLaTxnCq/N8453i7qEWTWPhFzh8ZYGsTzTa+uAPhoI8LMXR+9SqLcb5rA82Jv8tYYCjq6CFOt8u0Ye0nDBHfms/SbkeNWOO5VSRi2de8IBZgk/p0pRx+dLw5OBY1y4HWbwmfr4uWrwspKB3N/6IYfRA71TgNHteDsy49vhkmOhyqCQwDIsALb9ra7ZSeMhU/6xBKzK08DMtLK/HgdY/P7WWRZr2LwFOMF7BZ7xAe571yRrH3AD1dOuoU0ncmOc8pH+N7gxsy91Zjh9KrKVfrK2qQPpkbkDHwbqIBOppxeMCIrSKcEwvZ2MXGouatb2f0cjvgT4DQwN8WxEGMMPRI1hfO+Mg54cDftKbJRucUB1+GJ1ku8xCm45mnhQVZGoO6xlWrZaj6UDkEQ4r+leKBQF3jdPVswz720k5WlNtGdqKy489VSjh14M3INHQrNGkZdNzw5ypSB/rPattDouXIjoFawSBD72QUEmmXPLmF5wAzdq8QrLk9FIoC5swMv9C6dUIH4KnKRwkVL3S8OrijgtNR1mv4vupjoeVAU8ZGJZuwZ0mvEr40ldvW4bt3aiWLnpz/0kNIfTbzvdS9urGxtP51KeElWATECX2KApg8dXoAb1/9wvD/VY4ebefXjOeRcakhBd/xjjrUDcJ9EBRKfoMBYA8lc8IZ/+FaxJhF+UEnXfSowb6ECudLSOfsJrEFgngLMYP6AYa1wghnvWyZ1tz85ThHY1Ky8OeKxTKOcIG53Jj/K8yhMGehY4KfC9oaOqHMImYwfFcpC21hDc/Lc7Pd/PTA60ZxPnh44luexgQ5iudeTz+fA67Sgqe9ZTElLNi5GQRuy36inY5AQBPQeTpUflzfh1142JKt1Uqz/q6DQSoYX6lz0cVPJQtie8oez1XwS7gpCQQWLiFaHLmcclbb8TYggHsnT7M8ymRa0vxsAjyF/B/d7XBV4gJyxL1vYVq15UZJSTbdT54FKq+OyHe/uZakbtmuhsHheI9B5JzYOYrP4UDz+DY10JGgZJuxWSPtsAD0uDaYYyMFPBa0yCHrkK0uKUWMKDi94mP5Vf6TS0XVA/YPRTW9owssjnxkRmpf+RCfNlWaV8S96uxPFN2M/wclH1ZRmdfZfsP48SlrDpzKCZ3qkPc2TOgL+rSLBqgE9xIAw10hOUqTaoSIQP+J3sXb2cxTZ7hiSVJyi4XhGWVZMCTlHWoJqQRa+zTbdR4kH2E+uUB/4CPVNq6iaccstKEF5w0GzMUcdkBE2JafM6IH9klTtZF0XfHD4xkuuRv1rYlTpaNlF/KaxMQq88mF7bUK3yx86GhRXBC3ek6qohOaI1FU8lwyD8UprTv6pNGLT2ujAIg3Ht918uu03pxyiMVPs5jnbQKTaekSO+1Ytvr1V/TYvj0+88jM3SIdaCb/OinvRx5zaR1VE2aYh2M3/wZhRvjhf4XtFQbalwUa/fNNe+su+rKROFWduNZO91npfXz4RFWJqyp2mm1tpHc7QCcl5ifkRILCH9vh/Pu+GAFqTOgrNdxzPFBGFjImVQuDSmq++6y1asNKbIoYWxwPB2iut7cnIa4B29egQCCY7jTZ0S2VYhg+QcThgJF1ENspu7BMz3OhKj+u6bkInKvSsC6YmuOiwyb2YVtfkRkzTcOKgQ5X0jBXzqL9HtdwEFgHfLY1ml8rZO51V9keM2w56gDnwk6TrSSfKK1NeppeGUdbn3tmTmnHORKAVIs6fgBSDCglWcvEB3rZF2oZkHT0zs6kIAKL6keI7bzSaC+H7av3RVULVU2tBU8OZgHX5FmjmmUoLjiSxyiNgzaqeX2mMmCHPVRkHy2VOJaLzQBH7kEyqDObLmuDXrOZ6KTp9X5YxN4QIvwdfbWFMmwCKVB89uCBQDvCReSofKsl8OECsBf3oUwn9IHj/hT7XNgEMyADn2pP2pKw+vqjuMc00cHyWLm2I7HCFcmBt3W//AHlJclat3sxjOwt34kq5Tqhj4SlVpsWnwodfaOnMMLBDvgv4b6lgIEPPW7D77nB87qcVqVg/tYTrSj6xcQ+awzPth+vmdxqez5tDq/boQHzUNGGt4l4xDS4WZXnpHiBMXjnynRSvEIPak13cIfST9k6borpQiGtatGPzB9OkioGpjuqgYiV7plM2vdW5WavSpDf6BmD6+ahwakT/Pgw6iBcSAMuwn1Rb3GGlgmH/G9CCw9Km3FNq0pEUkHhgcRljeQGcijCx4CPt+3kJ2K+39TLVDHHjnGQNGhqYzsk2CehlAxDkaLJsphuB31oFtBWPZ7q5quFQ6DYkLWf0+Jsi4ag40FS+vmfX82ZiRDeoiPhm/WQbmZ1qFpJ7KI5Z4GUsgufXfxugD8Ws/k8sm/28qu/UrCDE6DgdTXkIXY8fdMWs93eHONQt2MmDztuhdOOjfGgDOwspKeEsCE45yapkRdr+P3SvBDj5wc3MtCzXegamLVpEQbitA9X7t+Rh1/b7ZSHT9layvXzl4FMfe0goLfDOGdL3UkpiHMi0NNoB21OJHXaz2UZbdEKC063i/8+KTi71uFPeeVruJI0g7qKoFVADLq1PDSUgCz0LUgC5PLtIqs2BsWlcH048Ej14ZrefD/6v02yF3bgw1wPN2aIvY0RFdc6xEew+y1PeUefANdojnBmm7onu1QTo7VfWKkNLhHRB8oyBaiGuSMvYTjxNUxYVz7JaHhW98DJZyE9Y82gMTUXglD+xhQOHTsSgFaQw9f4jXY81d9FgH9bnUa/QEvzxhu/Vn1cKstEPqGZD9iFPeK07sEAHSNI/PcvG1E6f3w7LDTVzX1SYYMr7zNkQIBG/irMvdMmAcpDx+MmKCqK/qBzpzKqiPlEUpWvo+Z1juCdozWcB7JLU42y+cGEEijRCmcTSxmTXqZPkW0+2jbFizl6tTo3TDYq4bc3PUIRL8mY2qsCxIPL0C5jepEG6SlbCQ04wx7mOrDNIX/BjVyx1m6TJaDIceQ50WLp2lweNz1lqwtI3JkVZ4p7NiIFM1FfTWY312K53AhA8v6nWv6S4S6IXl79fas+kitss0jIoHnFLUlY4byOe7gydZj4lZ2a33CRICn9OLmvKTMkUTyEtbBja+9g5FjEmT/HI+d4jwoSawGNr28fN7FHrz69Vd/aqUnLsGXwi3mExNWne9mZGxUyxYJU4LvfQ+V7mm/uUGFhl/G+aMoHMupiqMcM9q8jkW0NiWZ/7o4k3MpWYs7YV0FbsPZc42WLOne4OfIVMb07yk0JHs0qiQv0ZqfuWyNw6So00FbGMqrwDnq9jcWzGqzPJiKsUHXs88mCQUkVebK0R55GZW9jnMe+hnh6NOpQEELpfNejjzjzRoYc28ntfpKoZIu1c0o+x0FAWENKlSDHVLbr/F7mLX47V/F0ZGeO9EtthiW2B+NTbbTgC+abSjM+CmWyiSUi3Uair0IBdb/y36IKousenI5AslAX616ttzjlVqLZHBACTJik3DrZQV7e3F3SnBHhg52vSUbh3wT7zwiDSPPVKzt03CGh83waH/w21wAljzs12cBUU+3oLCGIEydGCrW99Cx8ZkWSits322Ybd84T533AIlhSDbx7TqpoJj14MEeh1UIhnVwnEdWSegQfkE+DR4MVM2zcLXCCb498MdQIAiVic6NuE0P5a8GEW54MU3jOagi7gYq0jV6WRXUOnhx+fjjlbGYBobv/VaXSvbEtmI5mIVCXMscwDb27GCcwwfrBu4ke9v6CGhI8ZBox/OA6xsshNdv4KDCrpTrK12LVrWrs5ekivKoMNHSFmDt7ZCbeYtK6YfDV9Jg/N7gf4vOTOcWXUnLqahe0vJq11YG0l/VndLj1v5oSx67sLDGCk2tw4XYsL8LQ2fM2Tyzfc1i378csfa+0SQdGyegYdBkY1O1gVl2/kqpGovVuy3KQwsA7zfIY95zceQYMJePtcce6N5CWHUFxxHNXmRhEUwIJvY3KHt/so/qFn6NSUWZf8ZzThcG9ae8Kodfmhgu/VDLtx2kMzWDDOdAzByPVsu3zCknsAnmv9UF6RauKAwAWOxn3BHONuZISTE554GDU9Mc4wO7MMCQP1eUIF4vukflCWgZY1j+1o2OzJ9Dee2/nIq/peOyU1KZTyC3DEDVnnuBeT0MFtsMwesfTi/D++4OUDr84GQ9UIm6nTaa8EE9lSWueNtoAg3IaG0vRy38HQZ0upTrHXoZe5vAA8N4BFNYEA91Z5Uc31o8VjOD1mNhe/BsE9JW6Ess4zAOJMsT6a2f+mEpkEe3Z/M9mIJD4UQjsLQxkln/5LRaEYq4mkZPXPsH6hn0B3VRkgjENhfQ1AK+k/kpZFVzbtLZuNFsY2vk6S61YA8hdz/5qRCDO5qWX+jj6FN35Z3LHNM7tAjD1iwqwE2D45zpdh9+A148G2US9jMaVaHtu3yykDVH4n8ecHR/p72tsv6OLvJiZ4r5G+puaM3r7ObX75XYfWvcGiCVfsWb5QHZOmyuWsRcjsxt9e7ozyLqYu4I5eNHcSad5xGMxJr6InQYhShJI8Jsh/DNcX1hUVr8GFl9eCVElBAZw3LBjdObrVfSSxUTrGX0PEJLrJTwk0ADVtxKuXIGKqlvtR2H8GkblYOwgxlmowUMT/fhhy3OUdEOvUtp7dZDSvJb5rBotbvOvYs4HGt3Onsr7UQS/pW9kiBNLLzYohqz743fnTvrc2HqeEfv5iXvrX4zJfa2dL0Kp5MNahkAisRhiboUISmZbubggR7U5XP2tyNg1pIN6dnsNWqsTwtkqZ9axzZ6uwNIWVD5ge55r/4cBdOF8gna8B2HNzcHUNkNZ9AL+9gEGavjlJUC51hx8PUHH2zQ/XRU12OKQF/0Bfyt5o/BLYUjp54zWWlJOhEsAusBOzG+U02WSyzqRFx30dTN9HuY3e91Izwj7mJlaMZk1cEQNGhOHm3DUrsbN4u6dDPUK6IxU9ScbJus7uaVITR8+y31JE1wh9uNdLr5epcTKVG4AAI7fgdGntCQy8iH6CquNmhrguo1XDh1aKQHrgD7URuJOpsHR0mLUxtKP5VZtnTo+W5Hvy512U+tbI9Ue0tgtBkx4hMtyW1LQAYOmfzK+UvLwM6owtoZC39sARldbAMBoBWmEAB5dY3PrK4vAkXo3vXTwsECN4XfO4sxLHmL9NuMldPhUbqnyLDh6FcfxsJT+4bSeeB7felAoMQD3J+Kp80YQuOMnSYYCS8oWFYou5H95bAS/rqIsaYSDXHz8DzyoI3rwvJxgEb2KN8RWlbByGYFE/YxH17nlBF8D0yqZ/6HbwX3YbgwU8/CpyAP7jpYyGrt7Cc7max5+MVOd5HwPRoFCdNtYYyozZLRqCGnYGvuJ6bWmW3oLxp6aZCpIE3DzuRMkOKgK+lKhIANEsdbP1romdLygTqie7OfU2KphezEmMWA8+hI1EctQn0DIEws/vPT27qux0WTZptoVrNIgs+t3sMSseW/ciMKmOuTCnaE4HhjPjs7gHolgDCk9fEvSfchFrsn/wuJz7egI9ZgiNeFY1KezwhWgFaH5wRlnepKE8Lazmln25IHvSmioALnm9bKIoVoZwYL5iy6Ra3l+xBdeSLvh6istE/siN97oO4zU+h0wSoMnqStrbh+ml6jP65B4BRe7QCXW009crBB0cX6Eseo9dOD/C/8Jh3iW92V4JIP2xcl/ab8LGFx7BXa4KwQgTJf9vdW8czNk9YeDOSrpvhA3WNFyJHCVIpUXvK7EP0M3ImP0VtiYwSk7MfZP6LRmXxgh7zKFA9ZeOVrFP0dqd/zy90DNlfDfqWJBxM3y8S4gyXAjfd/+lajprbs+cCEvtm7xeCvElmUqbk6UfZVVjLWWPQz8pysb2LbOkuBACBUqXcDrieCjXnWj2gw3xEPTaDMLl0Jf8ZSYHm1w+wQlzaEN5OXlGARbqubcq/32gZfeeAgXwHlj9i0c9VOklnaI2J+zxZgV7Klgr9e1UFQGz9BDOaN4yLSn8M0VnX+Nsw2Yhmg5nbJ/v9rRNdpI2QxYPv8tL5s4H28YxBEyeEloOzMV9D9t7MHXlO9lafQrx7vRgkn8wXd9B2dBARwEwsxEGH9J1q2bs5nYbT8wuiWnYKUM5gHiUaITo3LTIpEO4I76Dh2oLiFBLXQcGGjZjYWv7GQKZBfXb2k7zgEiNmVIp1KRMsMMpkT0l179gLiZ82poSdcDdB3T8JmENOQl0NLfjfDIYTe8SSjRNKGFwUWYMWES11xaM/2Ur6+OsY5VBuROT8bAOEIjgzg5o+czPgQllQWvUcb4rnb5MSxty2ZZnMADDBHqAXXpCOGl6uW1RHkLUyOFrDqErbQYJDFAHgLpTxN+w2w/XVJKAnZ+yXuIvXwzuRvZyw44g3ARjiBty+1hPKAKxUcorMZal3v/QhwNQb6FG+Apl8IxFz1+VcjFhcmYe5SaCPr6ss9b4i6G6JEZX0dkNDpsTDk7QUZ6uKKlE1v9h8y33I+yE22U9Xo6ic2JSo4SQlmDzlads3zxxOxm0t4w/ZR45XWKnbS03VgLzlnUYKihTh0OlAhaOIdsVGjeha9Xx1+uVi9U22peZctPcX9Gg2D9S7I2qK+K6HCkX9TPm4hbuvPFLn8hv9kCvQ0tSjK2j6xHfNr6b/cx5jK8U7MVoqXxxXM4odABiaMVMMPXih1t5wZ13N7y7NTTH/TLDMNhyBzbU3ABU0CuMOtZThR4bJ01PYVsEO4nyDboZGHxiFPB0/WO8azs925I9K3OtYSoLCTiO+1z9he0Zder75530qvuHGMoSaRSJ6GwgNYrgIxHCG962kgEUJurOZH06LAOdYaHdJC1LetNbWRRB9Li2boCgpyWYB7bWi3f0A5w3/WVbgCkEhT2PsCooPrKkH+kdreJeWcns6DPabc3hWxgva6OOUhgOeU+PoHUVVgoDU3KVuE69WLc9224IBr/eGGziDtOYoQ/CVwpcWTT61flDaCR+zz3ZIHi5c/gtMCBpfTHxyRGuslMNvc/lvPq8gFkwSY+l7gKO52BhWkxL0VMN8gtksBvAsnhRP7+TuG3LhvzZqIqRfiUkC6cLA11yxm1LnUdsTaZjDh1BGoSk+SUD0tLE2Rw88vUKNS6xcYx7YuUgXgI2yF/1WHpjyTLu6fd2ihOClXygwPyjPQ5Gt4GM7crSuF1DOxGl0zOZb5wkIJ8rrWPs5vfwXpsXxXEiPz6lTcODMPAAWF7zWYX6UNzz63Nrkf30gWmNJ6b4zU615luRKtH9RevghrAwyK86K3B64edCckN055UW6hgQCfiket8kehsQhhpQuAVwRFKYhogD9K+J7P4CO2l5ADIT+q18W0aeDtQzFj3pcdSr2COxfPb7CGd/3eGy49Z/GaYZ+gt2/KmM1Ni976IEl0IM95inquhV2z+bChG5CWU7QBcNKkzHJkkhUksUu5wDmgVk6PEOV9WoLEl9QRUwizOqc+0pR7F7+XXXpTjHRtXfVr0CZ9qwqtjGc3Fr+8wuFoHmD6cCOaqujt6H+2fKXXkBY1zCgpNiQSgsZAewZFIOqVhuvJZM3NtebzY8G0dxTh6WrC9i2l3Idvtym3atxUqhlKiyTevlgOi27J56yWCCk4gx7VdDVDRUPni9H5BSILbh1rzXKh1ztqnCoO+Cb2JzZyaWoupZWLKcPNWJZu7GPoCAI1UBodyf926x2xT5bEEvTIoIFkW1fMtMPv87Qf9mIqHbicdimR4zXihFcldJZwyYrpRMC2SF59WQu/KHHadhTW+TS6eL7ZFls0Kzl40cNy0kd7S+Ve3QsM98xnDuBvoXRe9oEq5G+vWmsB7PC6CSQTT9KRw9Ik6Xpo7MlFZHqSl1MjlJjvrNfEu9ssniVXPEEjKnP70HlJCZZzNQkLVEy0ACs4p51x38ahcUHkAjpuaZ/h8SgiWo5FVu+8bXo6LkukWqKN4eY5qQHjeBxe17yvxQeHcrM3LF6HsYf7WCdyI55Ds5NuUwqmW97wdpkbWTu9UAEvbcdT4m1qwHPOnjUhBSMviFcuzqDshSBlrDWXLYg5ceL99FOYDUPwXtAi5tdObVDG8H/7cCUvYCXgoxqbPqkmJRN6Jbf1Yso1tshc0SWZGqp1t2Uh1ELepGM4mh87GsPpGYSwf8bCNLySnRm5XIwTjBDjVb8Cnx2h5BvAPNd4T4q8Q6nT6D08EEPEyU0v/h8sQoEQcv7ExWTa7CeeTDFMoCYY4PsLWaBxW70QqDwyPvbKmDfB9sdjzfpReuEethkXBdGlsWCyuv/1u7WDHl4pUUBmuPiDR0bQU6XhZslYPy+JZBS1skdiepnsUVcRPxhHE6KffXkHy6oENxC2dfxi+AU2mYmElk/bspq1bHjpvvXZQ04kGo/Bw7bZYHQxedr1jGtLufHjAgg6/pUtEf488QMSoi/eyQKJlwTg+JVzeVJJuRZlwZFQbiElvBCQdkl7P5tEbNFuP0oa4LR0vvDLgA87ud65uuu+ufTTJW83w8VeIl2RX+ffhfIhS5O7NSXfYcMgm5f8ZiBeaIhsJZXQtCATrJCcpsod+lHJ2ltiL01NhIwLKD3zoH1Koa5mHyVsTDHlO06sl9CG0yJTqMxFzZjTvaJNvuai57T1ox5aNjoaOx/vNYf8LpwOUDjOVYTMybjBb19baGy+SpcMUTqCnHNxkV931naK2z1jdMcAFINwXe98hQmpLIKxo9ZfVd3sWEwggdMq0zojM6C4g0TOv5WcKIr9lD4xxWPx/EiQQaM6pCPNDjyKNkuhILQjO8dOTJ3fruNehmH0GwIP8UAwVU9sI8ygfvp8FI+pSBN4xQffHYbLN6UNk96iZmvWQAYbR6p+gyAfVVWqB22PVuYqeuqECc5leMUV7pjJkweamyI0P21scwfx3Kt1ZdJAi5pXnxd8DeZ5GvXJj1ZLeZ/7+hWAWTxOIqR0PpWTGEDSTv1KDUhJUTN0ZSLgl/+Kw94fxn3thq/DZ9GtVxAEfPSJJiauTcBE4puwxIvhZ4nUOeSWQZ4bDLQVDGhB1UUj74pB+Ys7hCvex/THhB0MWTcF1akm0C3eCJMkVPOG5FtFEpQscj6nM930UuTVtvGvSP6xWr+Gad/EScsm2pXbfsWTbajYxCIg3Z03ZD5eYumqprm4etZ9srpvqgkG1F/nMCPtkiIFRfl2l9z08SqgA7044ZOAof/WVrGklXKXckuAGJb+XlzD33xHEgaTjZ8nFy2+BmoCqkKFACqiZp7nQ9OJJfQC1y5qvV1BMqVHjH66cD8+O/9AD10LLeDdrxYQCz4WxbTDuu3x0Z0GhjTS/AzL8pwLKC1y4kJ8Ohi1yDVTzGy0LArDRnoYDHyjkAUlC0BR2eThd9zPqYUWAHDcXfhSgYxNxju8AMLtIL5xS4ffjgM6JaQR2fmu66X8iFtFjcvoUAsEP5566jt/zZ1pdttsZ7f0cIUUTLEooVdwzLlSubL+uLDLRBL6p9NxUaqtDg0qFYkabpSxAu+KqoBKk1DYqkX5Qixo9t5Q0gAsg19ttB+ovyktdeQKh3IpmZRMtO/NL3+AQ1yrpyokWluFrkGsgeSeXx0kKuFndfV5pE5nmLopftDLj0QXgW+A0naliSb+vRLxwLqfGNdwAOKshEExSIpbwSMbBVGYFQc+m/xxapl55YZHr6qRdYdj/Ys7l7u/gGts3hI5CfjqyNuGOIFGu5fzHTATZxUbj6lwVE4GgyRpEytgBEKqtbWsM4wZNXY66h4YfNOvRRkg1JZfgKdAroBxVBmxAGUXq/3gppmzbQIfMgvfRflCo6vm5SxWywZitvDg6m3Jy7sjInA+hBfi/0lzqkBRzz8022t7m+gFLvL3peHH/WM5xUGB0BPwWEm1TkzSXbNxo90Xf3/lfmN+1h6WKqccZDzmThY1ok2U3hSpmGO3Up1whtYd92fyVG36PqTmPHXHJaUlDEWUe+P68cBBfQVZm5R3HYU7gOXm+eCivYtzaKaf8HW9SFtEDgC8v3Htd012r3YXqbPQjkzdg/Kkj0UuQlhy9PLrJy+YoKB8g6yEaWdLFHMVvLH0lJDRC6wQolV2ytgDP3BJIU9vHVIPao1T9FAAGysCU6EDBT+OUFZur8QalTjQJRnZwg85lYYvkjH9E3t3JFH1LL/6R+NYPQdhPIOD1G7rQojIPnrm5ySKuRsTTqXd/Ww6hdOd/LADE/02rumsTsuU4BGcLdWcpEvdtG5vqktGgcBmrPll/GbuIW/ruRqO6WbY1Xf/nHPDDAzBii4UCsyVPXFy4vSbrjwDCFYW34TgQbR9rz2Ed3YIWBpMJDglpjYMZYhvwQ/ujY51MVRKAlmbQdTr6DjUmSGP6M0jIYDwBfalRkt2MSAvK39rbL92igHr6rTmI625pSZcWeAnrnvaHJafPX/q3KIGFNwgHUVgKib1d4ftQwL/7RFS9nkYYIj9a4A864zFDSyAJ749DySYOkok8dyg/Yr700vQOo+GBip+5bo4EX+cb7WRhBEz7OMANbFjGz1QmZWmpL5Q8rc0uIb7/1ElLrQ5SnIgSQZvc4utHgjmn203dUIsTEMKrkLf64WRuOJd5YRxPRMbrywhvdswYtIsleI5VNdfc7paIjfuHHKE1hijTcodvwEJjj3UdNMYPjmm3mvgUQ1aow/e3y52l3eAMTKPijV1k9PO+GAmDhCs/vwNrifzhloGa7cPg6boXBUWYQakwVIaFYX4HomQ6HHSV2TAXdKxfkZ3q7cJPbPGCwTrEW5ySKOWjKMkzEe+4N60EVCisOGylKZL8t8pcCR88+cxJhNF3IHe0SMLK+EMNxMYOLpjqsTjPsCiiwX9D9wcruSVGtHWo71x4CXOwgXN7Mtc7XqmENyiYqNAoPbqAIM69QOyUFoa/GeweDjWgrjNXnYEVVWFZMjdyX0NO4zCRvTVzOYzy7/rzR15JajBfKem2uZKnnPnJwTsTWQjRomjWKD1HK9YW3hZnlIS8USPN7U4xZDrRvwv73uI3ysdDLA2cIqNwwTpvF2eM4DE7wPmuSS5MRmFhkhgGu6jLfmnmwF1DfnkZMa+VvfV0sVKIT4reJoF8NrHZwQBJlnUZveaj8Js8qpKfXdGWFehEfRnw/WfPxCnIrQJFyTJJ/blBZMSWtyWYICBQDW1spAEKO2wFcdjZWgXQW08A1ZPD98Fa8Na4hUhT4yIWkb2bX75waVhtODNXJEms7y1i0XIVD7aF2asz/ReaMO8M9FLEBCtXBCCnf4TPIJ0y4LwdWzRZcY57bfLyNj0HvfVwI4ANzk29Ok7b2Su9C4I4wDb2F4mx/mts+0A5nMItckknQZWC6lGmka4rHZTJBnaTjEXm2rYG41CsdBPoT/rDR7y2YDMc/vg0P2k+ZZSBNVC/xdTpi+BldB7mNs4F7yNq+fwOwe5yOHt2BgdNRHgvBe0uer8iaDXA0MpXdu2KYhD4NfEQ8gBPzRbgb6STY0Lcr/WyObAkDnIgSqs7DdhUj2pkh/7i8+kAHHkMjMnB0LlJjUGSqVMjsisB2EnYT83bWfcya+qK87L4u8Ab4v5RLSn32u82KKsY1hdP6zwxX7wIZ3nXu0etP2DjmQBV2V3mANilrW7dgDFSW6872JffpHCRT7FVWgykuKeEwB5YfAaYnP97RUPlKSgjPq2CVo42t++YX6+9sMKoCvKSnC/jXbw8VexpWwYscsS2wA2aRe/qPFmPIfxDpKKoXlLQNO8IgYMMBHoyv2/qjJYIDzr3/5Ba/f8/LoLPbvnPw7qQTbicEOJa5B7RNz/Nf/8aakWLqQWRfV62GTDY0iYlSvzfBobCmDvSXN1cN/gRbw8s1KY9V+UY2bEiBRpmoULcxorjebJF/0Jn7vmyGistuR9jQ/+CGh+zLb83bdQBDGoDH9fSWgBZzUBs/kdbZsk4fI0Fv5go0EQImtX1LNra4kvhEgH5cQu/IWZByQoxVyG2egwz/hf91LSGywFiHxqf/zrNDwFv2GbN7xbkrA8LOAcKTUfTj7AW+bZBJV0aRjH92vWHzopGomx3+JvyyzPSStoAXpyNkqxhC9x1vOsFflvOSY9gdTOAcQ8mHkEZZ41nkROd3qDid+HOj58OBZGm7yGgzDv4IostwvwyN78uN5v8aVIy129KR0bNr30CN3oVeBXWykU6BSy05OUzMc3kYgl6PyTn4Q6CvIBhcm2D7UiXUeRYl8sgQ9KdzI6xB5j7VawI6pvIA0sq3yah50uaDT32ym7VHYImwK/3fpuxwXVBaQtNdd+LLke52sCvdhypB6fCcJbhpbNnSG/Ce3MgYH8XmXeUvTRZPv1hGLlH9fbTuLWeiddG/AMt8J+jBEzFil9XKpgC9jkzyDXRQmL2BNBLus05BIvVUBrionZAw1kBLWgC/oXSCSUthQkPmssD5F1pC+K6FWKiuTdS3muZPCCyEWm6dYSlGOOavXBURDEoWZD/sArRRxI3ByuKOQIilUQtTreR8ztb8HI5E2Jz1NHL4XXTfvChJ9Cro3YR49ouU2ysGwalm67pnGiuAZ1R0zBJz5LGZ78qYxFRt46BW2ZGobCdWR+cAVelAA2EDlqLMfv5sWRD54p4H6H0Lf6BuRtkcXeIAUU8USNQ5PVvn7HDBd7ZHxfOxfPOMjJIJpkI5HBcPMGDhL5r9bSknk0s+cNlCEULGsnvPsnPykpXIEC7qdkoFIxLRGCLgmcDc3CxCtvKdNvmpEb43PUTSAn9CLTHaktrbC+0sbLp8TFUfCywc2H9psriHLcr1d4sA7EcuVirbHAOoz5VA/7UO3000AExE5gpIVI/KJ3Hy3YZUfgx02g5ap5VR+9DTM/BQ8QpQ9RHpkeolpyYO1H0b69rCaj8OhaWiLkV5CVEb3v3WzPZ4e8o8m9A1kmPhpyAKFJNi+UkET0ra6tJFJXIsAW9kE/niD+MIzNtEiB7+Tjo8TpL951FjetSafBxiiwdTXDWehK5dtMaAwU9/YThTvVnZ3IAfPjBCoDy/ObjvoGnm+GfgOvmsvVYy0Ljrif9NogBx2fDbgFzRQURqaOBpLNS1oWbYyaF2TtmsvXit0e2qWpqbX6hotVA3l6saNzNfRq3OeTVCj3gaM1WvZgeNXQfG6yY0hq0ujrxhsReVLUeHCJci6AD4WRPUbgGtQpp2gm6/to3CkeK3ADrVyp9Cs1WKdAn4zOCaZ7pq682yAixhGi9JRQ4/KV6GGiKoNvgTUbHX4crzK9BzX6chWuRhMMMiSDOih6n0e7tJv2z44SKL6xr8af1KgzsN4G1d3WdK/+kQZ4A6xHxyHhpoUsJ3+/xlRfiB19psAxHqH8HyxXA2KrgMo0p8C2IUPnHWQ9emthkoWsg0RuirpCOV0F9ejVJo6TsGPCl/sAEl44KFcRvj+9gvs6Ly6a2bQx5BFZhHAsep7hi6UMcL5kKHeJLdZFNCNC79WzIZC9xpz4/fYDCSK0Io+PDD6KPBCOmbFasPfVwjX2ktXAuBMyFX+lssUY8fTKOMWZTCvs6NbKHKXD815OUAYrofYdJJxSvKRMTsKnqXhxquBND/UtaJmDwxcbPV4QT80T9qq/oSyuamYDTucPJ/nodQgcAFYrakg9p0yyiqWF40SLN8sK9fS24PPNLX6tI64PTF51Xibx5hQiwYqDg5/uxUgHaHlqSVIZFzndqobVn5FT575TOHWjTZXTzVSmAMYs7Tu2MxEoDNXZB7yVfOGhdK34lBN6dxWjNTLI7Ib4Pd7ua6bYxCosOTHB1gCukXvtAa97y3Rgm4MWpE39o9hUoAEwykjmEM/GAMW3YjuQ+Eybph0f6vqhgw0+9O1OCVpBduSDA6SwXwZ3HEKolbh10+pmV7WRv3eL0G1F6ka+j5PC7uGzh2l3vSBdVdjuSLRxZAI7jh+W1FAZM5P9p7vYEPCw8o6bvE+hcsO3hbPIOeiLxNmhr2ha9/awEpSpcOZGMyjgeGmu/PvQ7/pfQNqnKfG3qcwd8N04rmTn4aQMPkqwmmudHn2KWVy+7D/BTGG1NVcMTFKYIbOUysAAcvbjPC6/oPktL5RZ77c9N3oyrwLJtTo9V/7LhNF0WIggvwocNfVL0N7PDDAwlJOwMDdrJMDcq1e5qjHauwOQm05+JGBbVj+ZF+lm2OQv8IP8HYZIBeWWHAHt+cF/pfPX+v8HA9wqMCqGo43UukbrefAdtkdWRve1858b8BDlZF2nClUI1DCEiU7WUGeunCSBgainSE8+LouZE+WsufUXzkpRzmc6QKXr0QSvN+zijKguAMnfXMbX06OjYnRcm66LAGIYCzfy7QkyfOCW+5pEg2fUfPQ/yDEepQKFR3ZGBaInOIH6iE5+yoRkGEAIuPQqa5p/YcvhcPlatAImSg9thZADO1UeTsMhENnGW4LchCMtDEhPfQatv0JDmy191sWe0Sn6oW8+bDzWqz8AfHV+mC/+Eza/fNLcWGHpxDUgutLjFdriVzWqH2FrsJlAdHKvhB5ZB45m26k0c7ICslf9oF8m0tRs/t5NeiX7taVTKMsW74ADB9rVVR5YWRZ9psWOdHcByUdlXmR+xjts9TAnGUvGO5S5+w3hzcfcaZ+N+OJVZ28B3vLf7r1El3+gyLKxGmRQ80G2U5N/hqkFz5hBnR9gCJuhzqyhnfOipulTVmu22K8HdmxBlx/llKnX6zZSndWaOsnK0IqoUBrRruWGaeRmgl2UoHqCsPEKMHIYHvbTBKymQ8Acg2pN4QM+nMCU9ntIQuoCIqnzdtl67BgZDk+Mg0zOjZqdMM+bBAiTqo1fg7OJC57GAhPN9TLWLKvrPKM9ZxwN2oaBOA5gRPvyrHzlVXV4h9+0v1tjggu7AHkpHI/CMHQi8U2fSpDaAYa+SoUrvSDfjt7R4YvuSLi1uoTICRH4lfCD+vO8GkplU9zbcJsY1MitG82NVzRKlOG8qj5FVVhMUKV8xzjNC3tntePU6EOHrttXjEcynhA3i1kX0EsYPQPomueWjXVfo4WQZnpD7pEMqAKyHO5bMBw3e9A7qJdxBQ0j0DJj6gstvI7C2lK0/ePLOKmrCoMBP18FDg/0mtKobLnWju29TEMyVFPRWNCL3dI/hpJ0r6/J+4tDKmFLwW9E1JqHXhA/X6zcj89VW2RoTapUkV6KUgDWOr9U0A37lxK6MR8f6E/tPdH4n5mQkx4YF06+xt7UlscOYtmIkZTmFdRW6ZQ29Djtav5IU3WJR8654/tlW92q0djndvXKYFpp+uvHS1Tyzt6D1iJnav4PMwz+13lB+qcQUFD8v4scXwYQLzKKWKXuN7/IgY/NEvhxwdjf8XYAjnLO3npM9tNt5gwPi3cjP3wThKemqUCd74y4KiIxrzTLQP9+igOgIyfe5JUtYUBg313LVzsJi3VjVugfjlYxGtLQXgQ85TGJ3zAOrHvhwBCoPz95UOWE3ZFOKlQfl3WrpxayxV9VYRmt0UJXYC79uxA9c9B3IYULVvkn4RdN0uFPz6Sw5xYziusJnrnFWmgBp0N2+/QxSYLN9zHI8tpcQrQIKAmjAeLYJo6jLV9+B5xDuaFGZViOr1+HNkXf2pYCqXzycR1QoI3zn5RgDdNO1Dt1TYfr5B56mGCNYCBUx8N4jlcE3BLVRryzgWTu8efnfO0IAamdk5hkNQipcUDu4czJrRw1I5SPo/ZeKTME+JolM90ulV4yx2hC61zF8F3WpFitO2yRkS9WMq7B8fM/k3sfZHxT5Qd6parhxDyewn8qSuRjTD2LZwDBE45cQHjI/Z2UaBCRpLuFyT6BPzPcBsQb+qCIWVgvO7DhWAedq24STVwo3/c5GRohl9KyqtQMXjNUf/s1lyKv13qx+JURbiVLkn22JUPvdWhqyzz9YN0FGfDh4npQ/QrO5wDnfJK1NeH51LDcu4nDDtzIUO4ChY/Aa2KGbY3S4gWKRCU/F9cDKDIcaZ5Ko1rWKIy8Zoekct+MfHDHKY/bJz43s8CJRYgGzz+0ZxDg7DD0WcEPa4AZdAWZjMt/906S5am/k2OhhgSQ2m8wg/oiwMgKwDFGo/PN80v9bfQ2Y+I5/Kh7r8EsgkhEw2oVK+itTfvS5JZcpi2g8ZmKTilN5+UPEsa1ttGpWAFwCxlRQ00rrqOXZUwQYhRciY5Af6MIj7Xsc/SiSTKqHkG+YfI69bNDnEBzxCkPU6Z5XEdSuvZRG7eQ3hgFLbPGuON2/sNvOA71Qef6IElyaIO+XvRtjhDIw/JvpNEyZZVh9eb6waYqi7TzeT1QnH7R0xhr2Mmn28BcFt2LNcFZ9dP23bjMpG2pRc3AjGAtqVns34r71M2YmxlpFTpd9iqlGeEFfHWPLL3y/vrWnQa4IFzgv+EX0mMsqWDql7xcu7qebGIg46/hgIeSEJuxQ7PGVJLyyE6Ska4Jshbzl0RtikHk3tnaeRSHAwyauYIfqyNbU0P/DoNDOGnMVv+CvZVBdz7Hj83KcVVsDwkkZUN1oMpCtqU33MqmLTHSJve24WCpgEGDMkUSeM+GvRdb59XrEcr+hbLQTDFP3Rd2TKk8qHE2LY1IfoDR9osnTl8rTYDlyw3iCiFTK6d03OLll7DT+1mwRaggDQ940U+1iAPFVATvXP5gZJwa8LOaS/Iyqf3JqVAEIwIzDVdhLTdj41+gUarzEX7EPZdjlJOLHECqxZgaxkqGdJD8usNQZNRYwJ5mxTiOFGnZnFqf/BUzfDIOgJ9GcJ6v2scv8Rw/04pVsImZNvGsgkGwzKvi5SeBuoO4ZGXYkddvYT+Hm2qfKmWofwrFgJcahLPs14gsoKaV7qrWbuqFTQMayb8qJlImVUCWl1Q7jnJnsv7+Z9MTJzUwQpL7v+GWKu1JsRdC9kwlgiQ2x+/vUxCViMH2GWLNOLtHycoOcCAhYexJ1WHffCm97jY5EG2yeScS7KV8YJZBEY3F1IsnFCsCyKRjVeSemlR7d2scuRu1Wi6nDlKc38fxpU6P9Iu2g1QgpaHJTFpLpCoOR4C6mgG76xTptwIrwgRAET0Q4UxHJMEXsIS7kcFxxRZl+B7et3Hxa/kd1bD0N1ykwhKV3wuiO4teKpmOJLMcczuZys7omF62G9fWTQa6EYRuUt5IO4mE0U4n2v/e6ikWSTfvMhfdqOLP0z4FCUBzBQsqRX5Lj9jzIa1tJIpgvh6yhROEuHHJpqMmVZ4tJN2j26d1Buc/D0tlOcmCSzPSWaiIm21Tal35ieeojmvRoqrMqwEQOUhFyFLjX41NULOgtz9WV7vBrzvXOkHLeiJY5tomUN9dt3nFMVeycZlqIauqdZI6MyKISTolwVYMzUIpQWk76yszM/bbE2u8vzJro/v40UroYONm2ifH1mCE+nWgt953ZQwYVKV9RJkUy/NbdJLFvJHmK7N3+DkCYdCGsnUrHQiRy+WQJiEnzw1J5rJJj/dRPM2sUfJyyioKTV9+HdrkkaRxrx+EB1N8LjmjFJPWMD0QLhH5qHUmxFySdZhgXih+8rpaQ3PBS0XzOxSYXtZyCKoPdnHrIVPNeow4dq/gruVNdU6kjfR//LuYVbuOrTiLWQbR78p3hMXxFW/CsWU/lmVWhHnuR4z8Axc7OHgAx8cgCT99R/OJ2oel9nEftP79yubihzaOLgR7y2CAUNQW9gKEQmkwpyUZb3txq6IQr8XrRSrkxdrDGgxYQeiPYijjVaQ7DT5mLzZLEuuKwQ8Rle1O+numGb8oKHgFOqhFDjkH3hpVr51ZCha5Jm0tFoO+MaBfeQCSOKm/KYMJieDXxUdkOWGcd5s3ssGna/SmIxkvGxQ45MO2SRk8UHZB5AW6TwIrFOIJuUy6CvxYBwUU215/q7yJGeFSQJ55L2YZa1Ww+aIs8nDQLwCKBxE3sOq92M8Cfjkl4J2hXAghVwbWeJXpJ2h7MrnyXN5WhLNQYDTXjYaDZJhpMygL/m1bXJ9y3wrmR3NPZx/OzSyHl7lipDta2zcLFb8juX+TMEvMtalL/E815lRG1oawJdwa2QtpBqjEgxDMYw1fay7CFh5b0r425t2SFH3j7q/gamHMegm8ahDgsBtbRO7Fymm3mKBLIrPYE7+Nq0wTWDxs7noOzBllKpZOcdc5AcQ2cFy04jlVW/Mv8P5A21nv/PBbx0zdM92/SQyczPzoFQqZMtd2nIoyTrYsbdK1SNaYeUulGY3blFT+089RowJobhvoZeYFAMV2m4TjfTYJX2R9nWXWVrZiLpZFcPrzloSvj5g0RGIKoLNjqNzbPY4t1dFJ8SJT1aFxKdkUvd5wfnSQU30Yb9f16zLKYv00KUxo+vkFmNokzQs5CznwEUh6xEGkorVQO76fv8g6OqkLLdgU3zJ0pD75OyYzGVRW2oxctcRppyBswg4wZCJKckOmM49E+AQ4VLOyLnpuROswBEY8UcqHHgTOhnQGJXez0NJaOKpc1rEn+cWbYVXAvwOYyZr6UicPB6IRFCwcIXcSjX5OLzEu2FkXDOKP1I8BhFAmOf+0cnYXVlcYM5bjOy6a0hh7XuDZLHDPgCYihndZ+1RzsEqoEkzPP5/C+B1zeWjujL6aFJWGRuvnz05KGqee+1ySeLy4KOE1inf6vhTxbFofQFKP98o2KhPCPihqlDOlLIlrfNZEUdgXyuNnw0tHTf06co6VatPfVlqpxW1MT7WgO1O+F5Mve35eq8OVCQmoEabiJvBb4GCSXEC5pcR1tGJ/ESCrQRgJzDuPDVCFLXjGPz7Muabx0vX9HcpalR3qKQ69hUpPzbPoluy+6HEzvvmfK/za6/ia2vWywgcnzkgf0ItdFiNYG+s5XX1VOrQUK7KvEGp3xaN8z6EUa7fTsfeYR3OXCCjrN3lkiXJI8xTmUmnz0ct5gZCfxAJJGhet/QOV8SN4EgBKtBTA/DAeXh0Du9H9BbEfJHmrozc7nvyWgovFBabhuU8B6Dz7yPHhUAg2AsLPEcu329yNvxzesO9+nCwe4EEU1ZI8Tx/Fy61aJob+bNCN2/uTefbHwKVTlLVVsuX7oyUcLmyVP01QUPY5gYJWPpDk+Y2nx3SRBXPVhm4dD+QkTLEPrcKDo3Qff0XRYzEqi3v/ZVES1f95yrY9qw0mnnoDPnk96y0f+wAd/DFe3LehSqTzvmsnB3UnjdR4q8hh2sfY/wAWq3OhxexLV2wiinLkgYAZyQNor/ensQKB2ChSZhaaI6DaNobIibOXXvV646UFEdZWoqPJYzS1bjwOiIvYt4PzxnPgFCEK4AJCxvIoJ4IPLxYY7fvUi/+5vbf5l2egP493KLjaHOQCmPp/KaYLGHypMoC3hhc5yACn/bbvBtpyQhy+r5DDQJJJ4WNc8eqnPL1r3oj0Mg72MyLhOJeO2xuoON8l9Wgex3T+2tykLorQDRvrLgQxFsDbcGeGeUaLI1FsKcyaSwAkax/clCKsZVe0BM6x6umM8Lf5qJyK+wqAvplCoaKcWOConSXQAoC0SY6bAIF9MtXA+quOcMNs46hUY1HEZUpn+C90+vqlo+HC2lllVVWQwJHpVCjeYuUi4rsWR+BfYMMGFpQebSiNgMHzoZP9+c75pcV3LP5XvXD6RPSdIP7LUzA789f3DqmyG08xyeKU/N60bbMIpWyHBXIVF9hXLDYnahPsk3ls9POfJohNaJ7kfzPnsRdUhm+EVMm/i7ku/pHOYz2QCPMKmVYJB58cfAPNXNE3tNS5G9XneNqT9g3Tpa5+kfInd3UssVVf77Mfb8G9MbjZ8OxyDWyw+DCrANr0WpRzaVh7HAfz4E4UeBx5TLQ6zPaXHQH5k8IYed1pajprnhtqWYZB76xzvZI9bZaV2ceP/EUrLnnYNYRM/Fq9nt4T6nP4nAgu0N5T/myaE9BRH6lLTV8epagTJgTzOIO619GG1qBjQbIxWYxAtQP2Fe/ZD/Q2d6TUVDa2gNCM5E0tbUmOnip1fPP0jw46yETtl7hJqYmDtRxvGk3pOT2kfpfUJse7Ql0f7so99X5dg94j6n49VTT7OH7339BkuItozVqd3e94Bmfb07PMZn++IgsJiBeldm4hxvdwoXRa5pYX8zWEsOH7jIoiOsYkxkO2tYydF044C6NGjS0JUKpG8AF+WDcK+7ZYed/2u4Ic5c6Z777nypnYJl0ZvHOm8/CvgeHrb3gU2MuOAZgnTqH7UQ91S6vYsvnPAEzSEht7r2H/cnUODKGuS88kleoKjHhy47P3gczJYkT06njT9/l3NDX3FS+9V74XCNZ6sTq4D9iYjx85XSM2PlYnROvz7v8k+jVeBA23dU3QkAAV53qNcjEeBDLU5Nm4qeBjkFW4kpfSnQSQxMx0ZYfw4HUp5OxS+kDKj8rFoQe2fqaTjmfKBnTRW44exaBPzpTUk8gy2+44hQvnqYbAO5DYwZjcwTqjRF1NFrmiD0PSvin2gzP4QAEkdqU5R1N2bhlt+2OEPGCMsjjTtdL0PXK4GjsIEdqBk6NkqVsGSHM0ZkjT1q9UVwyw0OtlSpBx4VuqxoPIoKMrp0vcch5hZXtnR62TGDTEIZbjxpwwZ8WdHAXHUbR/QYxEHsWxqiOtHeZQhfFdlAeGiUymHemIbgSAS+kUNF0JVuSwEMeeZrtNrvFUvy/Z+A58tj5APkmjK4U/i5TCu019FTWlaXjLl/aBMqqqXDyyjzrW0npqGltZjwp48ZrQGSxnUaLbzm3kHOX/QJoAyqGAnfVADN8UFBCbwmIeWnpKOp6oL0J1sDdQ+vTnCs1qboRnKsy4xXdS0uDt6DfyHsKSg7qGDRpXH50jaffJTKk40kRgLpzfs/N35nxpIzw+kdlC5ETL5svQcMC/o07JlfOcalY8RHw1OXOFSRo9EReO+ynr6mNp29JbrL02n2XRQXJVf/7w5afChQ5V44MEzpIxsjf0Kn2hEx6F4mxqX9DMyJTsS/fYS38FSQuFHJJ5uYWE97ye4bCFsH5lrvT2J5n0z1KUBV7eOub0+3GlEy0GPpOnLXHG77EOISsVfU8KHggAkudfwHyS94J4DL9NZ2v4JSAiHdQmbA2UtPtHtMPqIwi1Cht4wvRJiUjkzaNJ9xRduYNHiu2xXawr/Nl3sAhc8qgivZoWnAnngQYK3IWQQYOhNv9DdWmqAjANsiL7/I3UlxBlHYzzJlgwTC8wgM7CUrzeYGAcgA7/gPlwbCjO8gHLM0ELRmNgjmZcYpeBz+QqHf/lXgwrcONwhHwn4eXUj0wk+EfCkUO3LLUmFVmUQHQpNa1XPGAtWdGwozBh/+GTEK7h7Unon6AtoDamiYRKaulqqVv5fviy8i6YXIvVLxaRZBSQz1W+cm4iY6X1FDtFCOKC0Q3nLpRlnAchbAEIsKCIh/1D7OhEf5nrpgVr1h9FOrE/xUiPLin8Kjv9OEH59VInRoWHYlp+mwgjBqiSxKyo+Gx2uQvwT+curamJeOSedOSSa/qDJ4PAjfyjiuR19hp+RckI2kwh8CRb+nw6Bk8CefGxw9FJ6ysuOkVzy29uynffsWd9pZtqJVib641fFUaue4rD6HvPPDl0pPVwEyRM9wSMwtJPtREJ13wihY6PwwP0a/EuQWLQkb4I3kF7HNChSxDkzvjk+5MCVKkA38vGbii+Lj+2oZhxZfWzvWyDau3o+lR24j0WWqIfFO0jaetbfVyCYsmumE4zjYBX0zu5dbDMF/JmNOM0MThIs+MYH2lz2k8wTT4wqoNzTFq6rEsawsJcS+9hxFhK/jxuesncKO8YbOjM3NjpASr0k+8IMi0494bB+e6N5z9900kkMZV1dvL3UplsjpsYPVtk1sL8/NjqWwyc+ibki+/k9Sft/5X36gSW512dx05x7xf6ExflcXZiQetWOK0NUjpOUQKxZOKidUcSOYAYv0NFuQYFdlqLy1l8jtLFXD9qAikMmdAPGWe8SXyDeQEuptFZOy1MSk+pncvT/wCK6LRDrDr0LD6w79hoY9Vi1QLEaBQtas1gmkM70eu2oXRNpg3ChGD2nzSGMpSQlLnCgNIjbMfiyvRW8fkDSqs4EwmMITP9Wy/KayWT3hkbL1WqHRcPFqXpleoWv/23OV+B4K58lGAJPQ5Ur5FoZp9Zn5NLcV25LCjRu190Oq7RKMqu3RuGxOGE4HRpLSQMajBuKmVkZ6fjfxJCr/WFoyqTEvg5bAzKC6jznGqRbJeFC64muqX9atBasC1O6Ub0awMWIhks6L79vREQAhpKv4m6jfGxJxQ5zcGQZQf/Lmv8pm28W+ypSoxrxrt5IbuxFIMeytez5RIKWC3jrr+bOS7jA2JCY+eUBGtRBPd7N4Oe6zdr7gjHtiHUEQWM7mn3qdNvAEFs0d0dLlK4EJC41fRrq1wx2Q37mYWKoEFsDtyxGv7RcHpRZh4EBG+146fLHg0rjB8eYto9eswVGaKg/Ecj7M0ONEidKx4756enxfS9kpamZ3UJFS+W5z5g1w/62twNSnYmXFhdsMdWeJDXba97mgQ5U+YI1i8HOIDPDzCx2VrstqaFtSkgvTCdQDhpZKiaC5rmSO0ZTmLtlx0cYk4ZV1lHMigYgMptsnZn4u+fXt/rLKPS86hWml14H9DsWunkQJHY4+lQmiHvwXipTC5SAmMGRckv6XFF54wQZhxAAQxEMAGrCdNrvw0kdZq2Y2eNDVOfZTJk54u0gS4XDi149m0w587QybyYUQgLJQ1GS8iVhCDiUF+m0IsBob5Xo4QdMLvCf58wwDyXvuRYuGAqAeKOSdlKQ0PnR9N5DDke7iDx+QljJm8n3KveXu4NOJoQGhWdNvRpZ6ahLoxQX1cUCG00zyGRuI3sDhAmuTGVkoeAFHZm1dLWjxVsk9T0MzyTtSxywV1cXjSEoNwVp+yh/A/UzWVUXlOWhx0ritylAlEz/KgzkPyONIDe1jzXOxt6EEjbBTA/V0bGHeOKnGEaT7fgJBLvwbl8LfDXQEkmCeE4chjx0kaiC0zrPwCpe2KfJJw6BHht764yK595uOkDSvXF3snWuHNsZRDfWjmbv+I9dXEqiraHg5i3E7iuia3mIWGZtCikOCu0gVBltdCud2jWsfMeFkvZL/bMiS65ZLwOMLhDvdmuoU0RJ54FnvTLcfbLi67e/gAO/wht3YV0wpR0xSJ0/Smg21nJnjrMBW177hUiq99T6Qx/Ewfxw8ThyuuuwAAQ3xXM/OX7T8WXhcohGmylU2tej/kGeirnnXgok8ux2GCS1tpf4z7+6AH31hBbaLkOWGkfKwns0rlFXfHQTQ5PrQIovWmL6GhyCbxkL6bnft215mLZSbnTTGrzcsFTAIEC1uuVTmYqaNMcGYN/CxGkG2e8upNC8g6LRF+bY6l1yiLAk46vkdLh4HYV5SAA7lBRkCXxp+6xivrlRiRS0QUubRnfup2kkO+lX3qqmwIasjYuEYZDiOowVC8z4hIlGp29FEfU/dzx2ktjx2YBitHyG/WlCXMQnOQQsXr/8iPYQm/EXpe2J22mh3WEvTtjkr1HgZ9CfurMNY8O2qameXGc95LjAi+uybrPiYBVdgTS/SyEGjXTUARqVIVKXDcFAxX7dBoso/87vcB6vtuczsbEHmQPNko+jDJamyaZOmA8zeI8WcBVAwvPx/84zgqbHiR/XWjoeAzkFn6TKq6PgwM3xuc5M8oY5OBeqdpBfSalTsIeoz9+E0NBr9dlcX7xYOLRmZcI9/K4D5oFuBvo0AoleOjd/xrc/y7JKj2kSo8oggC+9r7WOatUQIvX+CLHKjBMsKc9neC7M2xpTGk8LFz3ffluxbyFHQJpxKWqW+PAmHCFL3LkTjqJIxalnSRAtt+UhJsDp4CCqXfuwD6VBVYGBmh0oSm02hHrfftgBRaNoWApdTdUu0tjOVn9eCLnubcqujO/DLhoZSurpbToY9ud1sEHAMgT1Z3sbyc+04vZb59uyKYXYOHICCYkVUdxbStTnYpCt+i/NSZHs42STaguhEeWTkyXFmWNHh9nlvy0zqauBWpmENEwtEPo9MZZs06zfsFIDxTWcaRQ3zTCwSUcFcqMrr+1KXEZWgfKmrRi31HAZ8fk+MoTOriVurG5jnVGwP6IqiacAnGBNNrA8BlEcr7BWkaO94ACF3+2btgCZeq/pBt8ACSioUeuywD7pUqM8ix/YezdNBkxqrWpb3UceqUUm4fLKprGy6g0FURBfw+V4t7wQCk4cw7WYWkO1TlHl6YtIkAgSh0YPPLAfJRk8bq+hPIE0j9k5KuMMiY1AABzG8fQomaNN/Nn2H9MsAKZKEIAk5Rea9LZritI+XMUskU0orLaCnxhubyb/bGsEHWyTopf/Gnt0WvkYx3XpkHQcXZycQodqiGptJD6yWQ2sJ42DlWmeq+aOCQ/uxmFS2A5SZd5Oxo6dZ7IpP5x46cpRn9gFvvQIfNfoaYw51Tagrxrwx5zWGoOmLoxfgFVshNHjET758NPeGwLGkP2B5ZqgVciY8e22MwmecBve+uN4PNgVIsLl5KPQOeXwgH+8LcV37nxKPvxotXcsuDJsMssJB5JsbEs7902jvk4TJQxkAHIlfRNmdw8+Nd3tZYomNFqhBIJiDzWvKzGzNobeONQ0QydHgo3iD5xr2IUStUzuNMiNXgWb5wQrL5rlhLyWWuRR15HbGkvBOXS7B4H62gsnCUMaa8zRjFu8RWVUMHP/nBY3OQyZos5GMmfSsjKn/siBQQJpJ1BIC7RMMSxPz+ONMCVoEzs8jJZ2v8iqMrJ1xt4YhmsGOHWuyu4ofMCuSu8CyH2gj8y7b+CnnILBRBE7mbLXY42hpcuk1q3ZNfLcx6Muaw8pC5gmEL0eobdLBdGTde0Wzl8caV3vechGRFFuNYxIwOU5IxnpocYKevOPgmu1RQ3U1+ky0omNcGEZTVhslGbUTenoX66bIRpvzH2sHvkav5LL+JvWxu/jI06BY+DknqYMe41tp1E+G67hqg9lj3LGH0CaRkzq2hRYEasGKVnWv8hov762ef5uI0u2BloV+Iw7YHbLQV97BqFfcy6tEeQSn1KS3AVrfZbz79uoz648vvtBdp5Afe4d8lFgfLucoHBg32+rqmGQkkEMdLU4MBQ9GTXY1TXyZ/ZCQXyVz7LZ3vD4bCduL7YNQrglwKNdwBczo8ebv8efS9ygJMdGOsu8dQD2YOSuycT9+Byc4kOrb39Otm7D3R82okB5HXjz9p86cp/H1+aZSaorKLF2ntDlZF8208pUQ9OvMtTkjgr2B0ezTHXAAX4A6eSVOlp0sDo1Va0bRNtN3vB6yyujnaIoxiuEb1AzJXMVM8QjEeUZK+MYMpFsFnG8bexZOXVUCWCuaHwUnv7/7p7/yEyhyk73C25v1VUYn5AYVSKSEHykpUdYe2Nu5gyVSIB+GDf3gjccOD0KO8+3+zNXF+qGMnxf4u3xRk/NFeqOnsj/0KDRs9Fxmj4AdWGA/gvsVUT3Xroio/R1A3LEuJBrGx5EV/AqOC1e7l9hOYVHPrUJIO4rpVmS18KMpI7KCWZMvrch+r81sSr2xJO3TXPd9GjXBEPfBPKeGk0bGo3NhM9XPHNW+Ajs1GXZOv+s0C/SG3gvEAqobi92wHPueRXQI9niWvLlL37cwXyQ0OuXlMqXoIxLTz6APzyIKjre2BJsbDpkFdz18KPocFWBq7zvohoSUf+AO1gsv4bzj8M1ppEGqCV3nk//sHaFCJRlpeGaKT4W5PgroicXCPy5vLCbSRJ0Zp7ACUcO2YSeiaAozUp2lP543uSg3ORU7LYJkDmWGz2b6KPNuD7KaWl/hh6GLKnEX1SQIQiYzCzq73tfL09g4E+PABFqNKixkZabb5LPwK29IhaHR/y6w2pCfuvO+rICdVpWJnlAx76pGsTp5kVNzLvmDUIjev3Q1jVuyQaPm3x3aey+eXrFBPoJURcSmrC8AINHCOzu7uW5ILWv03dP+V68E7T9WohstjTQbz3Q0yVSD7WAZKM8FxuTIWvjaQMKu+Un4WMA0cgMG0jxz46ElxR5ewi7Oo56gZpXWGUkJUgLpgyRkh/AQ1KF0IdhAYtcpVE5MT2KGmo0dDwxQp+pIS6KJm14lGkBSzSv+UViQF/U++W3uW8ijyJwLhTSxgkCoNzRiKfRWF/pZ3fStKCi6r6D6o2fVCKHNtX95UpUphQEDKu7HZcFSAc/AIZMVZi0nLRfqQ3ueOOMkcfiEf0bT/RUc1uqdMfadHFmq+dUpjUs9lBABZDRTqDQxBuLOcRIEOpGwtAQv7qBKf9RHSAIi1TUE96oM4ZUKHpYp+qhn3UI+XYFKqt5vCU7iXfUvYXk3qZWtJEFNEomdcDskXXS4JY2joD7IfnMX4kHNVCCOuVXpHNWxrDAcBIdu54Lr+qycb0/C8WuYFMyy/f3fY06owiIpODvMYc2V+tooW9Cg4Sh1h0IeAfll3fmp9V6AXRbcUqp6m/Wk2ARtdprp9nP6QDdFVqzU+54UzVotAsLI0wH9BKd/NsiESP8Pi1i6P/zk5LY0RMzsjFh0RHfgz/KZDkICI8aobPg78z/QK6nwPvVmQgUIukKvS1ewCHRC0/Q4uPy+CVhZ02rA/B+Sr6RteQa1sOT8gnvoT1JyRDrwkX0wPlhVvqRAL566XlzKQrL2DOZ7gnd48Q3CruTVY6V+tKPKxlocynwUL5WU3Qkw/UrhBJDM/34WcoupzM/P6UYhL3mK/TLk0LqiIIZIh6qvliGPq0CP982fmlaQy+JMPpgy21YxrZLsDHsXRFUycrkKa78tdVsXU+HJcgOHSswFlpl+raVvbUtPA1Pcpiv6FZUiCU9GnMDOj0NZ3EQJ+nicocmiCn601CS8iO5XJJYcDRqyQ3rtzjznDKT3OMYfptn7v1yO9mHRvJEbK8tm8DyQd6yNpE8J18v/xYw+ooatFZZV+Kzr6YJDxfh+9w6CrScG0rdreLrnomAtXI+ZEcoXDI/mZfFsIJSxxk1+vqnlwZtRBfLt5ywHoBLa5vgn8AMk/mxyTANIVYuC/8ccRE5fsG7AmqiqWj3FpT5ZyLSGC7VhAqGEPOVheedzUYRY85yhUw/TjbcEvyu17dSo8yLkG176+DL337gWRF9UU7ie1pctMGWCBUjmIYWxyja4RnBKXMtenNRu0rwDygmjuSMR1gWSg20okyswfg6NGXP4jM2LexuBhN8RlwKweYfMLp9Xh5BvChQkxIPs11wsV8Q3Jr89gdaEZzxCA/FJKF+ycWp2tpxb9wBjOwK31+q46B4tkGAUqPvo0otHFSBMaf5izBJro7Yqm9hNNoiN5bXiVR+ZkVeKNizJPQ22ChGDqS9HNgnT1kPuO2Ku/IBie3KOlng15tkGUz8rxo8HdWwABVN4C//43vKz0i3WwVetXo1r7PbQvzYDmebb44nqEXadZ9NAc2HnRe9ECNVsq4ifhtsBAk5SFQLjtpdMJr+gWFyCCue8Mu6KFDQc1SHESdSbQobJO4i30+n0UetyzQS/FWQZeNsXVIF9PpD6Zo/b5p6acADSXB9H9KycWHEQd/Cvlln3lVqLE8zk86JlkGTB/R3Q/EE+LKbFd2DVP8xV725eYeM0Zj8J4K/PhkxfsSyUGeWbJKggAHlPv7xNULS735F1y/XswNfmdMNN3PBzF7aSdftgBfoiZbk4XwAWXluzjZ5R/2TM55rGy1Q/omzpb052DQp/Wa5YLpQPs5H/UJrA8l7A1eRO6nh+ueiJB0Uv5vnO6qCpEIUMaCsfO+sCFqFMwXZBp9h0QNfDAM36xiM2qqeIWCj2QK3CGUMI3oTWDzxU9a6IXSmmc82QoT2gYHf53RqQTuvw5luzBXQUyAeC9ScWUtbM2HGlAJWy8m1wuWKw3o3TBbqnbsyD5Z1ljERkfpy/sm4+BPJ+aL6WLHVuGA9SCpRRaRdEJS4LAThTSxgQRVHUiLtTYL6733T/uP+EoqfItUVnxkSWBsLhVnEt9KeHpGg+6RQQOVVj4ztXpPpfRIefJCt5QrOaPzPhRfVGJfQqGHBNbq7hZ3b+ofeAzQowi4h6qyGEf815Rn5zs35oXTWfg2bbc1WxYtiRn2YX9Duk+pTZokjWlkizzqVJB8cTsaoi2JW7UnmxxxAsdXmcsxet/6N/A0EVDiCwCwMMFHEwV9IlcvTivD29ICTyhcxJZOtk7j30velq0pf+OsrQz7Y/0PDF36p866OfnDwQthBxFCtbQ3NHB2/dGeFcJB3CexEfZ0siQb0//x9mFVjy6aAd84RuD16W/+CdT29JBMQPgbCaVc9m1sMIbUh6Sv+b2DhSFcW0mv7/8vA9q3GVfnZKN6y71FGQEz8nCmMr0go1HCil2075QQBDdkT7VJ3n7qEAvizQw+OSxZqWf6VFSyfDI5oekj8aHBcFrpot5a4AZgjq7/GvLhITCVTLtMoRJez7iX6q4JM9jFiEgVBZgbR8JzkCvXSLvvyUv8L3nD1uHVQZ3Bev8nzCo7MFloIhbr5JEahNhbICTAEg+L9GlGnm811gpJo6C3pzpuXz5kJG4f4UFdDa2Ybmx5gnW0b2V1A37tbJNCyD0Qbl0fkVcfvizgoT2UNOZ5ut6pVX2BJhiGRm4rOnncZsqVNYr+jigXEjb4NECh5lUuB8qlOR3z/vNDu79Ki68xTauL4vZFBQ5J9o3E0fJHPB5ZHtiPrN6tl9VY7zjBQXZoWyYKoFBbREXqo/b7V1dxXi/2lAcJkSWhXRtOH3JubMMD+IHxofzCvm4BxayAc4PQIrkilr70J8hMbO4iUTQPmwy055JwkYlsTvTvtiZvppwCfXiPuwaB0e3vdPNvtH7DhY/rJopekuqIYgRffKHJzdmqwQZ9/P1HXiPeiDjJlLehj3R8dj98VsQHNXjzD0cAYRPDWjuXTCuzXNGQe3DTjZEFmu55vasXlV46DWFNIMUccNZFzXHCFfdMqWqTh+kqFBhMfzFBBfqre04GJjAeXJnWTiTGYtLtZE96NL/Kqg/tRHpBB96JYRoirX1PwmrBIpCmRWQvgcK7hnoJ0nRa8A+yOLHTBC2cTXVsiHv+/bGUuovwVPZTAhN8kxJw7CPZOyYoRvwC2Sd539pIRk2DNxjdQOraEcD+vSkt0ASwO+sJsS0+Al8fK/RRCnEnjCPh0BDrdb7aE16e4rzgNUwXDbsuC5mdOficG9h6E4bDNIpPRju9hr5Ex+9kOXzd+uGHHstlV9cHB/X07UvcxJ8WBm9PVdfaHtkUwlEuTzQx34RF1NTCZ/K0DUdm3O+oa+g0PApVy/zVLUAafdFiPrhmkk2nFaPtBgTFwpIuHrtETU4J0r7IYLTQg0ukbVejV9JWeOPtr/5gba6oKrlZ/zWFSotwNRkjHjSX7PiAYgW4MET9RFakW8k8scS0iFKXVvKaZ0AvEIRx8xPtfOefmHTYTBubLzcRr1z7EkClaYCr8ZIQPqwYHup78nx20J8ANdmcUKYTkmkqoAvYVG10bjo0RX/CBvn9F0EgHwSpFCHS/4O92/FVkdgLPHcTXjQwU+b5r78Sf4CT34Cac95+2fbcTsvb+GcJU+AYN4bUww/N+2T/AZuwr+RMSYyjpTVPQcXidfkzCXkcVEmuwwrio0J6dh4guHaQpf6n8IzgFsiM0Eu6aMVzHp2Gjr0dqnGS2j/SXQlNbjmyFsMlaYTwX2W1WyKyewD314gTKCm4xHo0QV3Mb1I2qORoRkWDKMRdGl6Fu78KLecBWDhHppuY8M9isjN+5GGuvgD047INuJgBGBtMiDA23b6g3l7gCRILJsEAdkwl3nvw10280y6KfCQ0BrK494zNGb3NfePcULuPlP360NcOdMERVzxAIWUV74oYiTRq9/Rbcctjv1ajkiJ7sdandOHkECrHL1WgEcSrgEhIRbQfTfXBHOhTl0XPQ/mbYNHVzceTycRyyiHly3p5rONO1bcemTfVrDmKkY0cgTj9Skj3juWiRc2Yu0zPBR1KImfJ8F6k243N3cYgfG58a6YtQCReyomHMuVZi+H7GfCsQNJajY9AfC69pfjKWoqfDUJZEX+V0qq1vaP1YYKgQNxRXmIsVJlU6YDBf/Ypkj4pZqHEL+7r/pS0eQgMmz63/u7k2j3rvAx8+Mj+LWVpRv8P5V+jCZyOi2f9tz/VcnEFCeGBVHt7aukfJula9IS42fqDxcre41vsXaBJXX/hRyJOayaTpCMfUWMBQpfut63Eghuv5hpo6HpwyIBBgfcxiVO4S7q4amdX2sQUH51psD08+DhiQ7bhtMjfR11+4QchlNKTYHgNRyDXh/ma59n0KGVEXVMH6onJ4JP+LfSAllhrve38qEHuxJ5mUNYCo/Pm9seVKpvSGCAbiAOSF8QHZauPwRVK8mVqrSSFnOoEU/QpP9Ukeaa7LWjTU21adEWAZATo9ejzIaEdUeIYJImkwRtGHdHViO4A4GBbjuV5Ry4XS3knZltUC4Ss+C4+L6hkWzYH0Y/e6LUfZ17YbxCHAj+O7n6RchmT1HXL9HOa+IR3i49BQIbOQ9NzMmuQd/todC2G/fugv/GkDT7X7x2+9Ao5b0//ZZ0gB1VSnXhoVNM+HtCLLDpWbzu0FB2prO+qqqpFNhkU4WipmFMmV97J4OgPaujA0a7aG8PrvVujsfSWqeSC5Zj/01WI5HW8JJwC6WW7Lxt8vZwe8LcdrfCe/gGidVROvj5aM6E7yWhJlNY5xOsCKYG4MnWyiiU1stUof7BV/KTjUuYI5ITMWdJJNGiDEWB96gjYFw1bGSKMfbjnFapY0iT5baTmqaDgSqCLW9Vt7y4z+i/m3AEvKMpxqJq/sI6kmr9M3NENaBGWR09WJiMP0/djG2j/TucLQ6JlMICqX6w1RX12fAyOfrLyC7wSPEgq2TmQlhKeAp8xeR5r5gIcoHdAT+oLhuKhNiyvbjT+yRbwLXog3dtz9Gd5D6Gy/C4OHBaj2Ipe7F3MW+PZmXalYJHKtc1Ml2+M8KQz4zGg/CPk1xj/Ucz+K/Idh1u/JVnznxOcT5d3UKXMYNFolROyrTd+ujAxM/EOLQACVFfjo0OpFUYlpYowPb/+sHTOW6TnjVFbMo1Zbte0sJCTycPCXLJpRdf1Iqmit2GRtxDVbrRHZ8Ajn0e6fkFFEMBF3dpSSU3YCyEzUXrHJ+3jgW68ukF7ywoMBFXNohWm2bOLVaQOdve3zIlT8UVfj08RqDaGtKAkbVQzfY0rdprCby+QxP2mQunn8rW83lrHn/XHUrzoBRF0BLvmyt/xW4ul3mJDtBM1WQYsD2dVJ713qB6HaztUy6WqOGyjlkiCud7Rqce4k9W9y0G8aaLnYPHlzw3nplQkDx6psDB6C+erH0Mmk8qUg4q6+XnBgkmzkipyov36eV7PyIHezLy+L39XN8NzMBTTaHSMRWK2BREIMl1gBL/2HZmBOwmT5JyhNuaoFT/3PopJ7OnuCXhW1mHbBtHlg6vbGYn07+Z3AfBOowTmexsvKQ0Lo7LJ/Bj4gBd8+60Mbw7XaQcMkAfAQSHy687q+JVXVPWcaC45jXLSjbsth5tA93C8v998x7OmGE7BXEVeQOM50xrGvSgOw126ykUXz4Ic7aRj62e6WSa7vVaO6yKuEBx6xnSuN65zTC7SxanpxMatsip3ZR3nUanNc7KhXcQ92kSuOWUN507y3f7QtpV+mkkoBmX/31nW5ozUWhYgjvd9HNnsg9PS0llW1eCiLIYwUOYMximXs5N5D0eBTmlYqs82SkNf/vXFAQihKeRPloHIMOe6D42CV0k7yZVgqIxJTkSkZld+o0H/ISOla+pHyv7Zx85lPU9KZHdRKhxlCiAO8Kq4+Mbir8NGi8g+cYL5i4zoJYCelPlX+sVgNO93sUyCsi3nq0p+0sbADJYbzYlWA4gAykbc0Gk83ORU0AV1MeoAfsZIVOwsUUjnoBPHbS5w87Dx3Az/ctett8/tDCiL3eHgiEhcC7AYdplRMCjpbZMUIJOIwK9YU+vJ3H1Mu6xvsdgRUsrUk1o2Nht5snQvc/WxHiSpdFA6rcNxlxP2m6BO10Z6IuvIS3XbbRPYMaLflJEDXquz41DpntTcblJlWIUaUndEZFIqEVCqBdZMVYRbap7WXvquqDzn3LHXCdwrf48CIvZAHSOnnZinrMaMSJ/m2Pj0oQA+Tbe2ZvAqxO9byN6wuVWTKp6W3iYvXhvHfwi/vY3Tgb2wMA/Z2F2o3p+f43rBBXe4i0pkrcBXO0zT1WqzM9RfpT/+3Fd7EOc5D6pN68zQAfqXtSFhDca4edC4L1mlK5MEE6mxe8z70sLQjYdIAmuG/H95VRkdNLXwNwV/ZTjy+eKgXtdrymUfqB8FGvFSnFECb2MYsutC3fmcPDZy9nYhpXYM2n0aWDhjEWr6aSDuI9FTwMOLHz+KqtV2bYS2HV8n9hlyiCnEShBhbFfbXf+7IPM8C3aXSKLL8Z9Opo34rpdOMcI/RbP2HQqpVImAcbCDatNt9wD0Vlcb/rUex/Zmca9wyNaF3cW4gek+Cp2zrnvdqof/88g4Vsjk8EXEpVf0jFeJ7wpzhIilEQRhpLGqoWLGpjdcPr/E0cIreZxwWK3yg1mCxIdCeIsAop2/zP0N0o+JZVVbQIAQ1ydmolf0HieuXnFWHFZRo/e3Uhrcr5tNN93tXOK6OCk3XRPaoA/1NTw5g93H7paK0X18xbz6azcWe3rlHL0A4hSQUSrCQLvXUE5TuHCpHH21F69FUBSnIPYn0RyOA4zsgS5sA6MN5gZ5MN9vav9hZrIxwBa5z578yUc2vF9N8Qa2nf+qoF77okXQI2wHGgIWEieuW+gWdb47QuOUdRgDgb8zag7P7Lr7K5sQ6UiJOaoYUI9MdGdDDOyB6QcMokZAKXDhTDV+eo5JY9NjpW+2jBlYabkOlGzxFJCgd7d+ilopi2FzcyJ1JatISywwmbbpMOSvnlFGqgHH//DbQw+oJIl5k38+b3WYI6hLgr0d8bWSJp12dbrCx3uuRd/Plpko9SIBovpeFp3DgOVBCS+A09roa0m1ma0hjDiW5Xxzu2TPUbrEV4wW3T4NHuwqCpGJr5kU5y+Q7YB19/mW9HP5Q8ATqDRcSzkZO52oEV148wWb/ctY7dCrxQKHM5gao/0azEIgkCyxDm2451xaaCS986UR2dTenWDNAeAHPGXX0UEo4AdReeK3JI3Be2mPAmd6gHzU2Fq/Wpt7akHFI+qHlV8uCifBa0PsVoUUxyEpxWGtYS17pd/l41fHRPiR5nFI9uAFPJMvSm9wakXLcHmjyh6PD5OoONQtl6rI4UNIGO3aPdj6amLZr/VgTJpuhrwhJ37DUv1BaF52ATmeD4MVRS0DJjGpZx3O+Cx4HGESr1ikhmWEju8OzG1wOraW3J+L/H75ZAGq8/yFk+JBMDSOFKCei/IUg4WSwQSQhoWVC01FABpyupPSZMzmCXX3aOMcwPnYssSP72gOuEGja0Ex97DsYNSdW17F0ZFNyRoxr81PwMm7vQd9C5mLEL8GUOklNAHKTRVpr0QtdZlstqE2gHfrLsokjuqAzKAiR9t5/Aw8g+7+gn+2WuEWnXzRHvrTv91T5I1gYI73RTQo7ovQ16rmVej5HimZE3NGWI/NwwKIIKwYGoLWavB9P9S65zJjfC9buZH2uhKVJWwJC6tBzm6VIyz9te2L9GQQhLIlqhQQ27pEniwPTwx4P4G8TD1pIryQZ2UnqntrKOOhtLhQutaMoMomkC/hwcv900OU9b8HL0TjyMNfWVAS/uw1DZgxDdRhuDCPWf37Nz+jqSp+2mnBHp/8BlEVHW2i2y7p0BjACNpx99MRBjR4yI75odDL/s6TFkw1VpYUMCN0vO2VRZVZYUxx6O7Jr/QMwHUeOv8dvvMFvJXuDm1MJOinFmZGSfyXllI90CPwadiQBT8bPp8oArTJ59I/SqwiiT9KX/hXbxgijiEHjkrd/pG5Pxj/AC74/gNBCYMxzfljolhwZ+31Ax/tjckIjt1+uzqDEvDvgWqQFnxnqgWl+HB6NUXIslO+w4ck6fiLUT9LW66cVPdhYqYj8/2kxB6NAuPSyIc+UvpjJ7Y6y+bcBKm6mRCYqLPr8ocfkqS9MkBfx4u0kzIHddIVYWZniyvDWLAiapAD0lyVRCXmu0QkMZnS3/WOfUbWHfeUZ+57OqPWZwCHkRT2qCt5R1L1atwe2GDb2XfqmtaXRyFGlk0EQDgImvs8yAJJipmi1V9bbXY6jFV1TV2ztgN4sKlgbreovteABRr70uGxICVqHrJ7shDay7T/KIQZBg6F/wvDelNjuV5KMhma23mdQPBrIZZXcRKvpSLSdQqpTqezKsar3RP7RN2BUScp8+GCK60wjlNf0rd//qv12fvSiAqg5x8oLvBEc/G6uraMbLV2ZVC7sj8vtjOmiJi57lxTEI+BZdeVJkaVhOBh0oDd4d8L144vg/F/ff3YDyyqvZEZpcKlI/SPweNj4vYaSUSwNoN2NLZ9zF3yWPJRAH2g0a493j4DH9iq6JqXISeeQx9lP+/G1n1Z80ZfmYOvrCfcNdfftDjFcTWQgp5J9pn7fwFP1ajARhQ4/47hdzDFVOVaCjo6HWmci9NGpKxwx+Izu8+nqCKbUar/jlCAVDYMsDdb12w/i6d8dNjYbMHCICfxePuQ3/KiTVGokup38oVUUtRBJoiXqKf+uMj5M9Ip/8st3MPk4J1MzL+Z4h11kmoAhTq8NXuZiBSAmrsobzxDKUIWPFHYk4EjSd9DnXvXOSeDWU4IBZmGq93qgj/c6nsM5d7DvtABWuVmZevy4JMZlAhtrwTbr7frlsSIWB+TH9roQlItZNnvNEWRu/DPWc5Q3MdbFRmQsCRJWvYazyNdTQw5jtbAVk+VnaAM+7nglpBtHHFVsPUZE6/5EmlK2537cP07CDRpDgQIRumTxxpBetgGVBoRS2KopZs7gKLa6Iigya/ND3sLhY0DoXJ5OWLR2GlUsX0/k7KW32bPmT2aeQ6zr9vh/Z0sZIr7Gv5cw5CsvQekeRXGyc2yHjHqDwQzlEZ1iulIoBHlI0uIpLz+crqhZ2KQNUAVpUB+uiCiS7BcmLbMTsQJecZ92m/j9JC1oIUbVeuGwYyUlzE+/VS7edImpxFi7Rp2rECyVAbgsNlxOkUiuVQcaaAO6E4BG+QkI044bwJE1cWBRMOR/i3u+FbaEyGDJlhqyCtwjIMMKYNJhMJubWNwNBcVYb6+LJ8AHBZtNe6tem2pSXVx+7aKCifn4oqrWc0rlXe7gPVVN8TBb+9mPIMwpHASeBbt45dlkY5z9OB6kqjWE4d9Dno8FjMkNjDUKZcIfqm2ZPKu2GmEPpIJk8t55UhX2YGVfaHRmS3DYSdNF20bB6vk+AByws4u8NKSvJxHvI1uyqfymb/FA5DyRT9pB8URCflbecjkrSF5RtomcnIk5ynLpT+wrjHdsauMsRlg48dC5eDSB6QQcyG+ODgHmaCj3vUatch4cyj7uE2AT2JcE4ZrT86Id/lt5WVnuo5E4rG/nMbPi/4567p4OXStf3Z5+EutlcuS37V81NV+Ezy5m/kn3xzdCKgeu5xdQe708GPdLXcYsTWNbfxAtNFjmi7GDfa5X2u41E0BPGcRJYW3ahvJy701+vT6cYJpqNZy6UvDsEnog8PB7cKsBeEvkTk6lD/nDGLzB30JykUIs82eC/8uOJABC10v5hGXBWX6hL3oGqLLHQ7ZL1dz2jVSUqJyKefK3br6x1cahhxfAhpTU5e778FJCHXPntBRuIU6xTnAHit7wi1nrA13OQjBLTwWpOa62kohfwVI9UHeBHAmswWMJX3nvKpntpaEaBb7DDKkg9z5Qe6x+En6KQ+sZoaeoKuzgi0bDxjlTH0FdBrrdLRzWF0hj8plscuFlhD19gRBDvHzlyV/Y/PnwnvVAJnD3B9kjoisxhWohYbOWhPckSgeIt2x9GKocz49aEqyUoW2MkbJsfccQRhABg9MJn1JVv2rEBHdpiWvmyy1sUXbBjKAj6laqc/Z1Fech2YhHEHVTzuviFdnWF/D5Y7T9HzzlgO5Z1Kx29EkChU4C4j2toQZCBieS3ai6pe/sf47pTpbqUnDnitBb8guJo+uVgqEdF6o2XO3z3RfKbcPySPrH3CkRtqMqckeHLz1QvzTmT1u+7b9CqCnn4bqBTSQwIrrnQfnqq+diC60AmVPw7xdMZjI5HanYNvugeSwvPJqHSeRJkVibiWihG1+mSBFFRYJ1EmxCIrBT6Rh6m+MZp1PKUCq3KX6RpwQQ11XPeW7Ut0hiElNI9Op9dbEwAHqE7B4IpDbfD6WG/bIpZ0YCqfHZG86P/V7b9EzcSc4kGZ13wntE5T7U7XjXqgk3A5JU8Dchjdhz4UBqv+HItFDzELu6EOdApRWvHH+iW8pSYfBqXqj8Ze1GhoFWmss0xYYihdMh+fs6hD3aFGM64qeuSgroljybuWYyTrSYe18t8tY7nGSfjnOx9dJ+EheO9uzJeer7Z03A8IuNz0TXNTz02Isq9H6oKpHxNnvErY92gkVSEETVJHR3fwKW799/nKQJ1dexKEdwQRKFjsnG52yWjHQW1wXiViPE0oPXqjXoyizI99K7jdZ1nmCUVousBowV2qUZ7nyoacLj1TNNwgiKDX+jakNYNnwVxFKnPb1TLSaMKZjDeZjsBcJzQMyMZS2Zfd11UwuF3pLFsVSTaT/6X4Qm4fofzRGBKYbgt3tAmDKLBZ1OqxVwvHixSl1gIBTTTUn9Gx5u4GFBk0llAagalHrv/wcrIMDYU2j9fi8/U2Pj0Ok4msoipjEH3fEthRilYWq1Pu5mCakp4zBUQhslx1zdoKN/Pkr6v72mgKwpI8SlXeKkXn4KlFj70BarMfLAO1GkP5UBBsHZ/Jsp3n6rIXUsJkYl+uEsyUCjzew8yQwJNWIU7V2/hpRXGLsEvKDleOL9B0qWqV5hw9IVl6+d0EVwkvoRcALwPkvprMIMLTJVu8elkZvCNvc0KARSaS3jmzwN4EQRC3eqH3lnbqguVaVGa5IiR53tHRoRqi6bZBuf5xz7xPy2148cgu7s0UBDgg50qe2V5Btu/gmu6Ke5ZmcXSoqHqKtdeE7ROyW3cIxnqQncrnXq00vr0YJlLiKUjqcVufetFUuTAqiOsaB6nEPOMN2shAFt+T0Uss1TUr0zgwKMM2k/C/Q7wk5BGK/0PHMMMPfkbXahCG/2NDIPIY1bLpovbK+eSQT+fPWBT5y0PHyyaXrzsMaSWPiiAPiDXdQxpJ3nDdqQA0xf21ohoEK9iggimQdL/ijzJqeJLlT/vh0jhv1Jq9O3hGhef6c8MmvRIkrxnrMmbV4qrPz1Xy/kWndPHPqBx9XTY5jkeEAALXX057XNjoxKJKDThC8NqvOwuQr/a/Z6qms/EO3dNee2aPDCkG4AXXTHreItdMDrIlxg6qPmKzRqziKPMw6W97sgh3JB0oPEYOrilhaGxcdPlRG9FfKDmb2srhJQWbdQG6krQx/QO257iJ+kg5urDgXVc6OCbv2HQQHDrrJTShXOgPZvodWCsDeR7VYTzIGhqtg6Fi2DDbP+87nQM7U7UP2kSml6eTGiLwMHomT5aP0Zxj5N28ReXQflV0XTulNg+zEFeayxrL3yoX5lDjVBM5eAYE1DVsqpi4GSI5r3+iMIjXDZKR7EO7/VYetSBMf2nyGJCHn2azp539EvWQlKpkf9WPZmvTOpwBchoT07+d7tjQekA6HHucJCVQDacDOWoNJA6WLeKQwD3AsTHH3Z13EpawEUei4HD3H9ABaePcAzhiLvOnDEQD3hE9nYSKCOlzBu9o0h4HKx+1raG92HaK6Fpkl369KB8KPOhKunN6/yofziq2KnsNGZysuT4+BxzVbCBBYNGQCn+aomyDaZEO2EduHTzT/WvdZWfl9uJANJetfe2UWhf1wHmKVA8Otp0NtAEaJRuIE2oOYmJbxJ4hM56yo5SYRKwzOn6d43rGl+F8JGlWlYUFXGRjBYMWXF1ASPC8rmv1Kh+2t5hyy5EoHSQBJwLXP8a+mmTpS8KBw1uxuvLuFGNIwlpWmX4vaJAB+9d5a69Cf/IWtxI0gjHXGkkiTjapxZtSoXBcm0cw5HOZ8BODtTOvZwYcZzH3GmZc6zjB1Lmblgl+4mXBBpScF659nvsgdOFwrDALJfYrugvfEKo1unKsOavX9i4WItpVEpV8AwnPA5DkzMVKNXn8duoGSei35XMP8vUDlTrfi34bwqwdwnHv88Y0QI1xbEEZv6dcTNey+2g30UBMYNZReG6tfPe7kiXzJdWE2ecd8oJJq9OcEoIf/C002RyAY5dC8yW/C1Oj69eCn/YCp87wAr6jOwIP/kVnJxbekPCeqTZdt7GhsnmCLEpqRaEgn3hXosPwyeA4oebcfCUuXQEPhp28YjZJ+RGKc0YBUrQGixlnyTBMp8ibkzkh8cF5Kzqxcglfpfsrea+BiP2bIi4bT9Sve1WWwoH++gOE15n54qaZ2CQIrr7vIx3lRfNpUzoK+VHdyCq+L48GE5oAC3F1VFDoM/9yPFAqyz67rxSmYI20Ae3a5yNCXmgtrC0mKFEa9oyVusBOhdeHE0tHKDDwXfjplnRLIVWVFXNPf6+kh1VRwTtushqjSAL+2ga5Z5h+KnJ24cyJ5zNHUbPdZyhvf0YhuvIS7BmXXiDwH/C/mYh6rvSMwKuUfH4jAIxe0I68dyISBLooKUXcwEAeYvL5xkZKmp+lfQwfOUNJi8ZlPo3KdpSofd1gJjngBAoKJQiimgjtd6tkXQ0xJzC6Hbd73h8nw/n8Zsl/NKXoWGQ9hhkLp26aoJ4cKelGFikX4cKfswZBHYaw3506xlc/ZaZv1EZbXXyI0Vzo6VO1PXbv9TIQAz5HXDalPZmZmLXe+25XYcc5YdYISB9m9nUv3/aOz4ZLmwk7D6thZTGJ9EjEUaMtEPwqz9EIrPMGR145+q71/oo/CoFB+f99kTEWh3DiOOrsXlhj2g3VBiAh9Q9ihjrA3PHAJSKcGGaDoYIvJcmqIObIFdO7V5P/Cw25DzK/7DRzQPtXujzrTXCGF9wA7kVehKH3W6T0gEQR5dx5MjL742UmUDjx2qUasRdY9uW0ulbYFJ0aTNBltaJppSUM3UY2xtg3rT0uJ3T4dSi4xlAFdqhK0NCXFN1zvJSoRhzk65hFj3uNSmz/tykew1v2PSQYn4k9enDKP2MKIZ7131p5Gt7v+29PvnxGaXhAUs4OG5a43Vbe1ndpOmyORjgohxDjXP43sI0/yxC/VXGfLKJ1yIAcNkMGqQiJKjVsPJy8hLPTUbdJRdR7J1ptn9PRyb/pnC/pKo6G82RU2axSuvKh4oKWkvEDPpvzPHT1jB/MC8R+IhIxaeIXmSJnQLsHV/RnZd9iRa+7iiILd6gDwNu19e0xBkmgj4ghtmKrH5AWS7qYU7LpfpqedX3N3PSXtPcSEBvnZbsSYMQE2HQcL/yryOVj/JV/yvcpwvio8ebUd1JAb8DYMjXeIotRwsTcV2AwnOyIeHdUALeL69dFLFA31wPqFB8hqQbTVXo2tfrsAQd7aVzY7jp7Wq0L6nWyiQu6GLaxO2Z5P9iAhpUczZ1d6VZfyMPQ8FXSfOeOREzQS36J9ISfBhlmj1NRU2pgOK4bCOUClFv4tuTGHU443GEQDrgMLz+r7YKUdd/vxHjOCz1nxHfRPsKG9gBld15P42HWb85YUMfcyvJWnhkulc9e9zV9WbUPtPSgA8kWrOKxEMnQnle8eRwHuOgCYAhMTmOs+ufhVrqoGpN54dEJ3f64OlA8OjZhYvZgH2JEBLOVKx03KVw0kdHsVp1kXfTUjLF7HBzvCUj86MGi2YQLFEY6v2L0wqFHPrclFApax3tmvfZRQiiPGdl0PiT9UxClN3BYnFgZn/Js++sMWeuwgwP5UjwezgRKX/rYkhaH7RcIAf1b9tfxEFuzhpMafiQOEaLNeKcP+6M1V3FOkdbaxtqLcZ52/lA5HKyhrhs5q0wJwEZpSewpTZhcMH3WOHL36/AwNMK9M9MmF4BdNp0S56U/kaL7A3LOLF+0Yh7u8hqsFqms1sUmmO5WkKRBse3ej30EBkIyH1YDgovmCY3mryeU70G71XcZl6jZVAjL+bd8EzfJXCbNtqoFf0pHp1nnCgDbJAK5e2M0wK25ChkuacR6ZdbpcePOIPQvJ2JrTCq5ZHnzoQnl/ctaKpIruM15499oqF16wnCXCO7RbZHiWqYPYnPTwDn1VRb9H6PUnEuL6oCErRxEWR0PKYxc6muRWxkmR1k4bpVCzJTrucC65kwI/y4RPxhCPZSbRBZlYnFsuW1r4wQlAClQMuXAlrO7u0rucNB6P/a3TXvRROGEwuMFGV6G0OvTf69+VTz49Dr3CMXYZPcAJqKQhqnbRa9Z3ZJqb9DXxSsLkHKA+2GhuOiMYH2chIe30p8s3DgKIV4KKUZ4vkRj28CD8VOy2xPWVjlk56Ci41K+FloJnGRzNQy3ooKvWSelzwhbqLHL+LbEE2leEs3lSUSb4ALFNKzDTZXU+T8hRt+3bVEsQlPH2YIF21hKLhQVORrNYVzB4qLl8NB0iT4xMp1rLERCJB4JZ2NkBGIbyybUOw6Xfc1urTTviu4dwjLPImRxkXpik6ef1eX3aEi1/wd9l87Et24C9o1TDhtMJutEaGShvujpend2GyspL1bysOCDELrsAK7nYism3/566tQM+iM8MDIe9UgOP3xCiZviKITb6h1BAJRECyzLv2Ad3VmAGmYi8hXQZLnPe8eFYnc2yGFxKZJtutDjTziTqPxvuuQxdClLtiy4nlyDQ/OMf0JQtj9HaOUs57y+E1vEo/Vbnh8Za+sf4P16Jh9l/LSwbjMXZoyZ44Jicx75Wg005Fkcie+8VYss17TwiTQwywN2HOCH03TPpJ9Thf8KyT5q3uSvxLw8T4F4vXbp0uCQmLX938ozs44dFywS2zE0FjE7cdtDoiafI0HCWYNI4Kga/VjC5lExbgeymyXmJ7yqNV+36IsWyX2AlKZOiXZnHcBE2z2NxGWvuEDWXGG4OmCzCP235+/BMvLXkbxFAaY8runHQqFThOTtmiRtsAhO7Y2Noa25nPn0fLi1N4ICUc3WlAPsUgEw6CWOdt598MV+jt095Yp7GTcQJhX7ndx+Ic0UUpg/L8Gz+Jk+e6VreCDFjqlDI5zkRBu2hguAKngTXuDXrXSoHxbB13NIgObhSnlvqmOy4L4rnBL9SLZOWiGB/JyxIypJjhy5MZdky1rRmTJeBAqKAEo3sIewjLNigNyR5cakCALm+dY+vb62/pD+OQWg6fuprhlSLauk7JoxjJkcBqmoxci+F2eqh9gKDCx6wInnNTDbAEEl1VpoN85h+LoMevMO7NqQTJ4Ozwy755qi8HcahmynFB2aeJuLoix0NYNMb5XxEY6ZnOAS9OUUjFkpsf+DQbU3Zoi5L5qm4EWmSSwgcyPsEUV/k6uVeRj7u5Mn8XXwm/G24l03PimSAdXXmWXqZC0gS0CHBbexikLcj5qpJovZz1D4m/981dFdD9BRIoxCF2K9gtsjv1ajsskgp42HhC276m93eEnNeAqi7+bTe02gqMGaPmpnP8rixyFWo+T8BUo+8sbHcM35GtRDUKNBr6DzDCuGxq9bmX5Rp+BIoqOx7x+6yWNiLjRR7lXDfwyuJeSqWlHP8FJgxqgm5jP10oloTHEslGMJHZ+1qtP1z7sAynv5CS5z1Kdrcc+EE+p4XIz26T4xTnzy57FM1iPHnxU93c4TffZkT71OTPQSZ3Np67g6qwmkFReabyj/KuiTvdIP3x5lum9OWb+X8Zzt/7TKU1sInJsYGb+EzbYIReA7hBr/qaO/t0SrF+u5SL05DDmHNBS4SFZU12+GueP2sP3W4lf2pPKXYpwSdrFtqs1j+RnLCfa+mMY/FhqN+7FLyjyuFgNWn7gfUv8xL6gKgw12BRFIReL1Ren1Pw33BvnHpGSoc6S8hMJmkY90gEoZDPudO9jVCodNcx+ftHXbn4rahPoE7z30i/kXE5fB08141HVgzZmc8VhTWxmZueodqk2myOv9ua1M1D0o0Gu+CPtpXU1pq51/ZMGNpQdis8APxundszYGOlU/BM6vVtIYizCRN8xWgidAQzNupzlyZtLhOIo+wQqzfFYqwR5D2rMNm4Wu8tlE6HrMZzvL6PyrYubMapDZM6o0UaRAg08IXRq+SbH1cxQ39Cg1RP/U3gFFnInMbr2UTEzrKBuE8CKCds2pkmNwAg35yQtVJO2yoGiJ5qXAxNpfxvPycHui8raQNYxszW7MFckis1naT49I1W1c1g3mdkjh8miH1owJcCAGrkRSAeg4kGVxCqKfU7mPloqI6xWAi3/JRnZDrOzwuI9HPBRswVed4caswaniDGxu0AJQBGDqFKWH2mjO1TP4NLVRdEOb+vXlY0mKpyi4GpqE/bX5uYsDWKXQmN3IOH89MNXUIJ4KhmzYtMZievazPbSc8htdfb8ro6ES9+qauOK7Vh8aE3fLmY3/rTOgWhZcpR2LX7EbRCKUX2q+4KWwIG91dp9CKv5hLB7f+l3BtYZMo/KK6ENvQmkqyNR8YLyqVGCMnCQaBxUEtZ25GA/yrolPSmpbKNYfjcbu2AvmHdUVoKQ2sYhoJviSKdEN0J+RN8qduwYcIluYpr4kHLaJ0au7JqpUxWlrtIoXMpzYn8/QB02/lh+BU78+rNqPjIVKTtUVSkr2CtFaLx96uF0dplIGscyhoSYDsFmVAvG4N5xfoeUUW51ggR/aN2zJBQPtKvEYoPeCYx6ey2DqGCjGtRUKlGwS6JAXjOyVIlKHakNZNvK9VvJgQD6aO4bMWqhkFwxxHZOTO9ssT+a899WivlIX/xE6MK8ddle8mj1pEMFe1kSXwUHM7BQN2xsM/bwExGPaBOE6mtNKK9WrUxxsO52cYq3GkucCQ8XwyXifgtkae4heM1XSf8U5G3Ly8oOEQEHCO3sFqhnVYWZlK0pFzMgplMvlCwXHj7bdVcBK2oDYe+ZxbYQoKsylU+OYELLDL6R9r7Jtorcz33HNQwVazxj6ovBozEPBfgTschlGwPst1ak+Ji221iNc5uhmxw34Ewnl4hzSgtCu5aw5FGUfilSKdyckeAf0P//aBh5xBgCflb9APIYOmmOTKh1WjTmuh2ypcJNBvlpCnomMSofefiDWzu0KwAzmYWvuNbn0tENpNQLhpskJgD5KyBsyiI9xKdMP/jhRQic01A/kO2mfXnItbQQvvPcwWjLsrPjrkJQVVFxxOZ7HM7IOEbQbKSHEB36WDR7YTUlZnH8tJCr+GbdWDmHslLOQWgarUlScjQJf9evTnm4wgz9pi4NuIp0ZX8bXit8+m7+v+nUpPBqt8xtw99mS5YUN3M5CKgnj8aNDbcPnuM/G2hV5Osty7jAho1ILUQbNQOpsxM08C5eH/1Yx4cZxm5YReYKbcDLpBhEfU35DetwfdPttge8wD3uZWAtsP913ef2w5bZzeOVEHtmeYDAolOnb0oyEAYyFlOsJ3PndhzJ5HatuOwwRkogKzraEpgvfo2eCoIMWp1PeMVN12cCIL/k0UkIkBbRVwdnwPGxZAoGe6cs0nnjRXBOp0K7WXtw9bi6n2rfZzlqDKxV4l0R/wz7pVI5nOHsAKqfyugaxbnZ70R/gpZPEmyWxobfGK0EFti0vHTLneTyBkYAdlg+SlBmrIihwYRAO6l2lIire5fYSsP3oE1+/TSgdgaqoa5L0k04mf1hJEUFyx9OtdK0IlSxMAKPUcfD8nihFfs7+1aeouyRR+vHT0ompNcoJEOQ7jkHQeiLdbcwquhqHVAINAo0LAr6s2QqZk1ruNywhGCwnyYpeL7IIzIXz0fFwGIGfpmn1VxQAvxiLkJjvGYGeMmrg0vEumx3MqoenFBLaU+3s8CqnhxwaVaRXrBqkO9uVTR+HQq3DJr5QvuC61hy4YMtZtqmMjj6ZhRkIte7Gu8hVnJEOEiTfRVm8IIcrTiWVUxrJCyvx1of/fCEUHlHxZEYtijgOeQghzpLQFj0Spe0vTyC9k3KJWcHg8+kx4DhEx0Apx9hMBPqOZ3qxFMCDWBO0piZn/wkNPlYuGt7SaPc2cpLcRH6KwCDE3VyPtR+f2UsR/8qValufLhf/L8qJzjfd6uCYEcztkLZhenD5Fr0kAHPVpV3fMkUqggptmq+qC9JVJCo90PLyAp15Jp/tHWUB9YlJDIii0CRTIzdjjwVcj+dQddgjkFMv4hQJZhSoGklzLHxGYtACk8bnBrz9F+r9l0QIlIDHTggOUpeJwk4/8HDoS9FgWm83gMgvv0zYWnfD+EoLqJgVpVy1rcYdXU24AHQQN9vQz+aDnDhsNItyqIROdj4vKnLn4T8qBxftCBuIs++G1cyDFmqzp+40nZg73jLhFia4o4B5ECGUMrmCYW/d1t5JtzZ2Tf7DN7PceJaDth5lliqo2Wzfnp7wOeGn0gAWPByyFfhKabVTNoZQD7gajEy9jxPSWjlbGtQfuDXul0lo78G9WZ517DuP2Huw7Kqs1VO7lM/vYHx8FSpyNpKouHMNoESQjPkKXR3CLyLjEd7UyNsAGpM7J0mgJTwfckyNS0v/RUVgOJyslcHY259R+0h7/8DwIJo9Al+n5TAlDEqQKBjNSIBFEBsTuBOchO2yHcnU+EGev8DB/fU3VOIIPelFu5nKhHOtUC75McoKt8yKhTCHoWaX0u3Jkag7TU1p0zdRftT6xiTGuACVbKRguqUC+s5QTl4jRz3E7dONDByyHU96RCRn07gmglCkvV/qWBmIs5ZdG9s5DGcfSOPDQv1lOX6yzzuFxOvKJezmfrEhle42KvO/vMzkCgC3MKRyNIBhfUNIL8PrQ6+uDqtTRmn5R4/bsTmLvDULJUlECjh3WnPYq/08mfpJ12loM7FqZaIksjGTY4Z9Es24W8jm/lip5jyWq7efyo0c0eCHKol398OGemjB6e4R4yejAyNtuQe7flGLk0BycjoHKQLozLwyjo7Gb7wbtVTC62lABPY+reFoRq5VAWtH6tdw3OiXBbafOY5miI6UmSz16cuAjmfFqRgMCvZp78g3weSooH9szjoTypg4Ngh0jxQ1Yf3nAwX5b8IYgiULHjbHhm3u7yEwVNU7G8zsIZy+PS8shJazXOfyqPcQcDJ5FvhFjpNQdisRU6y523ub0D2oi13nFtWHneeb0vr63RSU8mUdraYMHlmOzrpwOTx7kIMYF79NOEV7VEDokfqBF5iTmQGxjCNrB4zxXIB6laecjhsAa/i3kcw80pc3ApS7DttO9INCRrgiDJPHZtD0aG3GdLh2t7WxtwXSwc3p17vio+/PQwIzTr1uA6/6tomG9mgbLpzCGroRa6j47RR6+/w6oRzOZCisMWcrSIqPvruzqmKsD5tFPbGlrP0aZPWmkiqlvYAYao9vM8n87DCan1dkIj7SXwT4M5gEwkS3qiE1dDMzZGqouU1FbpY3PbyLqKPffIW66ZwTiFzBpypeW/UpJnSq4YNi0uiku119MmPNRCJAB7rNLOMynYDo5ZmzW7cmbdM5x3asurqT7sSoETtUQApksYVR6r1+dyDgvJ5S5pIl/OOMoJEIwf3aTZD95LMm39wje39+6vxR+KQfnzLNDDuTbBSpO9btIJ5Ky8CjYSj/Lh2G7KbKGGFg5Tgz6mT0pgREFM8UpTMx7b20WZM+Q6OtuXBJaz224DidS79ijeH5KNodiSbOOZuRoQcWes9BD2tLBa3ebQtCHup9GhogsC+DqgWrlEUWAbIKKJfylohlwvuv1KkuHxM9r8nkPKh79FfRttVU85huu3x47TUV/ANsrOcYk4k8BPyjQMUQVnnBihBnfv5tkf7BMe6z85GvlF7Srm/oz72eze3wNsc9KPY2GH6mA0kzIGG37mk6KKqOgKvL+nQV1t+zWQrpCVBDMbVALf4gU17U23RYOM3FHiihVjEQg2lKbfHvNhPj52wPdIGY46fL0YyD9PZgF37I/xLPy2mQaEn9CJEo7jylDFJvbMduAHEJ7knsrfr7K0IHw/zRsiEwQ3/sBNBh7FGAvmc9uTmt20QtngMpMThoAZpZ98vrAVLKB61WXLkLoiGgatPmRgTswOtYrDPDdEooxqopLl/Wc3bbk5kQJGb1sVdP1f+jsC1VAYae2nGTyTF1Nvrp9FsewjkAsgzHxAbDrmwBUy4EhYf78Mt2KkYCraPz8ryfCZCULKWaNjf8+H7kAbrMsKs9DyyM9UuInWEjKz5R4HNWbytvL0Wx4NJ60aCRSdsFfMNzaEFszS86AuUaxAGXRRLhgTepr9jHfia+6cc0Kzc7wyyIqV+2exgnrzsO3/6dqsz+GWhrAF6AHKEulUjS2tEG31w1leLbboui0Ai7kC2EsHmPzQEIAG+uEROBi1G45kXYzIZGbomUlgL+gRi5Tk+njJbbGB8iPf3r266Wfyho/0Rv/aDidUckPV6vc/rT809hKz3/BOOXIfmliqS0nS2y7kpaTkh6pOU0UeycbaqHRdFuVuYIL9D07jFbjmamqvSilWeDROTmw2h5kBD9u7vqOkYhCFD9E4txpDBqA4HD7ty2hUaC10J0z030xGCO/I0EvZYsDmRr/d/l06pomGf4eTYSaBqOE1i1eMEMjJucbhaOD8bV3/yMaRv5bbLss8gX9s5PxbuxOjo+t8QEmT9dJqjbqLkFxRsdluNmNFc5RSqKLYaSBYW2E4uocdJVcA8acoPltcxER1bMqaaqei7/w4vyX0gYsycyBRPuBIb9PP+MbQG2L82RqSZhN3arP8HbRTXGuOZ2Dr5rVijVcDTt1uypQqbj0q38BydOMNmE7qd+BeAA9pYsAoBmurdGHd24o+fSaXTEtLeIgymvU2IqzxuP4YgvD5BYRVSYEUB4P69JjlF52BWMLGF3dpi3ytvESP1ONI/NJiEGDDLSsO2lOTiRyZlZlQifeCqPkPTQyFIIv2WS1t110PvXELAOz3tTvntZFweJ+aYSSg5oIYWZzarKfn9ANZstwgDO4XyofHUpmm6odGH9lClLyHE5XPutb/8yLKMwMN+hMBb2pByB4BEOAoaOfS6gNHSZMs+32QmrbC/0isQZbfXAagSrdT+TWntD4g7zIvdH7llty8Cwln9ptlqMglC61uSBtRUIh8AO8mAVQ+eG1GA7lcy4p4T5jvFZnb6erWZgC8snKsfClRi0Ppnt+0IpyUQS2RsxPnNMcFixvVBtEtlxs3TMMeQYh4ID+4TcvM/LFWLIn0DIBSTC4TaLklwq9EQlDUDqzP0tnqqh4tKOYMDQ6HA2oD9ieUw0qKVN7UUClS1PEXHs9YDMFw/skkpHq0Y6u8kf0lkr66CV0vw6f6fXhfHL7lSXLKpe8Nr10b27cTpxwfGiY1ff35zkYiqoHXU+u5/6fTK16nS1GuZxszaFGyonQzJyZNL3y6G/fBH9y30v7t7C7nVcs4CP5gierFqcQufntixPRruSAAZaVB0sFBTuCzZYH+Ti+QVNlzTMXgAHrwfsiUmp4dcBBWDRub0KnKe40RJCkbtyKZUtJal6NJdDMOQix0yjk0Cv/w1B60LGHxEOkueXdolfafRZv6m2x0q0TzTT1TRukv6Dyxoh7CpgfywYL083Gzsmf6LWbSHuOMTWjdj3J0dmvIQXgGXzmjgFr5BVAxMkGNyarkospLuEmOU0yRhNFdX+MMXPBfqRXcpq6sND/2Sgftkz9VwhSU+KgbnCsgDTL16wV4QHG5pGqcuZLVwqjjToEfG65HnaGVo9m+fKOX9j97F0eOLEP7jctOn7BP+d9ISEaobtdff+73FhqUNVCLW82SQiqutxP96j7a4O2eB9Dgy93DW+W0+1KpJbB+TOWQSrTivDwrYjmQme/ClkF/0yhUrDX4ZKlUQxVVXoSEABSKWsbGZNT3GB+eKLCG1SXncGQo8Q812OAQhFMQEd1mekv8boZorMXNnNbXx0PShxU9rjw94CTJdVuOcuSWEvZSy29cEUGvUtHo6X1DgvObfD9SCwqlABk9j9XYimHztcDDdY3neYNKv7e7IblwumvDhiNATFJKbM6+JV6NYU2k2mZRGpfwIZGnfW9n+isZV3IhrzsPelgNbRVXI9/470MLFBKAIAaCjrcLUD5cCM1bC3jEj5iJxDoI+ftnWLSkNbdn2nt7HLTa8XlXxbQmLYDlpIWdGHN5L2h4Uo5XrqMbGmag3RBqVp4apegmARSwYjeGe/OUeig3tnmPYxuYK282HBZscPHaLmt3vmJSawn7y+D9bWUfTHHuGAIE7bSMxGe9slTB2DupP8oF/qDIIK54fDJH9cgT230SIVgLEDR7dw/Nh+yp91sLXSAuS6FHGrJRvStKqTDhCZChZusdtZgyGe+ZVmkk11pPrXgcWOYL4ZOzG4P23KlgDK+HlkDkUXqtZRX629LgbZkHRFq0qEdhMjPFbdI13QYffaekkKfYeQ4Sj/geP9PbDnR3JMPhHu/lq0csjn1osjkRFo/cSpRwH/PqMZ3D9Q6xb42GupUJaDUPa/Pw2K6+bSGSGNMyDk30JhUjehrL5FLSe3HIFxZUfZg2nUKxbNJtlRljBfKjV+Aw9gwHZekdNix3WDJ+IDzRsUXk2XQqDhq5Q+Py+7TrKw0J8DDGPs89cjj/S3mDeKUX6yo91NDGKPeTmxQW0wxzMKk8Yh9BsJ29M9Rhk/eK1o3kp6bMTg7WPfqaZfkfvrJIXe3J/K5PoXienL+oPMtOGR7IE6WD8oJ83DoOLIEEKWpbnqvMGrZD/cyc3jNXxPKpzup7xY/hQ5qvv7xbM7kRiJD4k3oJxtV5LM3tIUGIX1l138/Tcijbyv54Ruz0Jyahtd49OD/sp3w1UZcUqtLBYTheqrltUxI0MuSV6za32CFzf9kcrqqIUx8+W+8SMnouBUMksEVJjXM5n8sDBC2buBupvrsa0ptGmiBgI21PtUYOFKmg3jTA3AxC80+5JVl7lKKpTtpza9rJ5DQfTboT1oTLdc5NLd4m9c3/xmYiYti1nvhsGy0ukbtK5kPSUx2rg7e5cFPxo1G+sC/7RHBYadFvfqu8TG0lN/+pEMR9qW/y04y2KVtYt1/2C6WT8v4mI+Odbef03hkLCMTDXUWWcm1eUxzXqdOEg8Oi4UKr/meCiKPwwFqjJBlY+hRLVHSYr47grXJR8Uu/tPqaykIUWUfsAO8Smb+hLWgHZ+R9KWAEPOp44MyDdX6irL0ZInvckpHmJ4mo9C4d/c/NRu8Lb0aIe90pfYWfEg0coVN736Jdl2peJMM8ovcpmh4EpMSxRdffYStDWLe6E2Xy5gYbsxSKtH50A4NQjNfDXieGL6TlBuT7KSmst/dDqG/hNyjRKP5x8/HFQnrP0u/PJV1tl7YynsEVQjBveIYILjV28ZcHFuNn4tu1B/FOhJt8/2dO4v9MTPlRV8kLfONUVq2ZVVefBdSX9W2qr82sFfZSsduCTEG69S+Ps9JYutBNQi0s822cG6l0dv1pNppF40E85M4Ib+0G6RLxt85zHwvqN7uV66iR3Gd1d6bxcFEq6pseYxhbrLNU8mwbIsjisxgb9mxnoxEyKdL8o4MAgdDYOvm4ifs3WgeP3o15yavTfwHxfm+RYTkjY56FgMw6r17sN/Ku7Y1CHGmKz7anwlhLTFOrk1Q3VEnX57WVDasdbck3SOFVz7vq4Em/WXy1rvG0z9LAGxoS2gmcGH3T/GxUyvj38VD1/u8mp8/GnVR6GnujWO9KHBOurw9kDKtu0bRAdq0E/NJ8fGAAWdnTCfiLczUsnt7VweqYcgjDQ3J2a75ARbgiMVmygbexhe/tPAHN1vxZiJRDpXHCJNdtGejNXltAkMO1ox81XNjm1EX7AyZD+JnhzBHJFQGpsl1RyLb0xPke6eLH2xAO7Nl4rC/rg+su1U677Yj+1yJRWbUUNJJ6+t0BkxQ8Q09OgdslUUluFT5lEM8/q0g18cCOzRGQ6sWGTevLcQJXMDaM1Ho/+vvrYwYhRXyyl570JE9LBxZZMRPhBt76OXT3f1eitIAK6np1GOfUD3zfJTB1HHFa9QF/yT98WPyeKjuekJ3HWJZS+Ni9hU0qj6qG05fAOivq6xKc1kNZFp8qcJdRkuRWcshmiTuisFIyzzl3Ogliv0BMd1j0jWlqI007lEtG0RuoOIk/TH+2J6iQxmQuoVAC1IgqrWy9qNp7kgtICfXdCkVl35jvosFWQCu+iyDBKyQyfeFOrt+Cg9g250Qpa+go0KU4N4uVm3AI+RdTKZBgaF9kr1ifowcoSB8bb6x2cs2TAmqE6sqkgIODi1hQsn/97bnx6X4kXA7oBvec8OAy+Twi89wu4sUc1dSFK0XavLyXhnRWfSy1FTld2PJzP2zsY5w9Tp/2EGLkaIR8GKa+gwJ0BqYCq5h7b5tvPGBFIqpfn0+AlW/GfojvBADzABZWICrWRVSPrk8X5e/8dLlHX65gKCfXUViNlPFgGE2mo9b20HkFschEyFZJPxCBniXWXTkr+4m+5uQOyJY1zybFi9oiM6rxgumF8iINsP6mRbsMKCNHoEHF6Qo44H5Wji48eFcp2P7r2JAshkR7KRAd00SssrJsRr01/lP7PyLycxjffsEf629Upin6XKKLZjEQpKwt4RtJ/XwqxeMqzYLnDwd+w2uHRI4eo0F7VWjTVXt5DLAN+n5a4T2M3NjaYvlbAO77ArSgWpa/Wr7fzhuYB+WeNkBlgN9Gvf2KhFvP5vaa7PW5WgKOa6eHZytKn+QbPa2Xvuk1sJsD4xLn+7QWioF/WGqEiYRPrDFh5DVk8Wis3CtgOA7LSSik2Hb+vx//zsa3qS7AzeutjUFgaticoygpDWNwKmyilHlbAMdE3OL467OnwIBuUBJJ+sqogY05g8RCnQKGF04vW2VDff9LkjSeRe+6GOlDxbTO7E3IhABKCqPLrV0qjzceN2G+Kto9V6bfw5YsYZg5RBXVQlzn3tD0vseUWSFuovxa323qV3zBenwwP/BDsyGV51biqXqh1s+v5Tf/NilMAzW5WPMACSE2larb1lPLK1DyZcOTWnXn9Ne/0YDsBrACi2cxaFh2MBUxXFyctIck+hhiWVcS6CsrOlI2rYc7tN2k96XM7piY/gQgV9dkXAcIkAvyzyyRhN6jqpidFKIRplf68/SFRn+WoGQYwrIaIolvB0Np4z2HVVshS5cQM6VzVEsvyWKQIP3hw4/4UBC219f1tLXFf83ejNZri8jeZDvkoFBpK5ajiNdwvYAByzneAr3roQzBWCs8JUORVoR4Ixm0hKnGpxWSgM0K9571oai3dCgaEKaEWAfzA8qOKVKrd4Jf0w1ui8d1uoeTOF6oYffPMdpb+nZA+l7wpvd6pToPjsMGlm1QhYxaLSjmfxK4dHdpchqGVSQdASOo7UrHEwZdVpafKM9EFRvgTqDWZTfz2DGz7DkVLoBGf9R3QtQetMd4Nr3zomHNoEGVFrWd5B1N58CsJtoAgtO+dx/MVSE79LHDQlTgISiMPFrutWr69Boxbp4ds8kxIDQn/MjO7T0gxK313q/r318lvyGdP/Wso4nWQWP42yEQbXu/NcBuFeX66TQBgvmqZrxvYbK6QGwBh3PON3dAQ3hPm3SwQUB7C1gM9XJhnI4gSCwX4YPqCtTewSnP/1O06LSa1ql85QZ/kHcHRdKIjwSFYMtgSUr0ofta4g4QulOj20m3XgGGvezQeyD24PJaMrX7puyCndGScEt/YdvOmAEk2q42pNaii+inJ00tpTPPbpbC7u9Joaf+XnUvDyeqMc0fU6yQCyXXl4TnSgUAgHQho1TZs/XhzcPwsNL76iGqDmznGTkloLITcLIX/Eph+WQ0luy09BOvkD14lCQYaFvflHjiajFt/JgkPrJzNUOrtNE4rpQF2gN0JETf3AVJTiJBcJpW0AzROClpGWuI83AjD8LSYpcjCWmnxKL6iB8akVPoI73gGnA0A9A254G+nMUbLbC1dslXyhyn/X0JewbR/2uqTLipS7qZ8OroPDZKm7qNWHykJLlup577qg0t524a/5TaAp1oknM0++P+gI/hRzq6O/DR5elc42Su6aTNPiCvgZJgr3y+pCaGd7efyNKfbeUc5ZFrCVJ2iO9/VZZn1C+jPNuKclmzCwVYQwo3WKarS1MA/oLNdkMz5ujjoh4AZ8sqHv1Kwn7/IrDXE3iNM0oIKXxDHYOVYPgb59mw3M4MMWApqWLDHziCBCEgOPoHq9bkhvhzWzLDugD40H1sFqmDnCWbTg1+pKdFfU9ICC+vWPx0CUqdJjzpmv6uJ6HBdaSdzUGrkm7H31gNoXLvnOaEEv5m6K47kZ4EA3wHwMMKVQnOI2+N6KTGm6kdwmFKMjSxRbLyON6buVWuay7AX6ebmrIG4AFFAwO02qqBkHyIuyZ910dcrbbbSbAcDTH5DkgJqi9aLicRgxWJ+zllY+i5Da/E96Qr1IfcmGj7WfB6pyC42USkYkzwefi39qPmVZtP7hc2l1D1worf9baWqtRLsFaA+bgHfaoY0F8IGLpAMguJcnqkNekJxkl1WnzgzgL9VwrO5N0BMswEu0flF4QgZteFwVEAXxS7BtBq1cfS7tPGnm6okpDlGgAoJelelefZLL3uFEOOc8F55F2qWv3ERo2iTdg7LBH3UPFuX68lPAcQxTrWZcEKvNMkJo0V/NOoaG5gKjDoyxGaSVXIxQBlwzTCy0zrQdKsq8BA+gMaT85/SejOqJsbYMmzWoW07fiu1+SFaSSxaVtVM04isXNWDActvFVM9VI8x9/2Q24pGuBrDfSOO9moPQxogilKno5lULDPbF36yfXEA/aP0pL6ceJeqKxLJvwWGl8FFHq4e+DEYP/ioH4E4vD8O5E+bxuyy0cWM+4MQMxlP46B6fLep9cwHg0EIaRPM6OS2XuM82SeH/dFETdUvtC33MekudyGNFnTVIwxko1w0Q4mVuXxNUHXRsrQ3Lssn5u4TncPJzskUDsMqBJ7QQgjnrjyFfTLe8apH14fxuw2HmZEofF705342Y8y93LpU/j0PFPr4Eyo2xgQjrJG185VLMIPlPCfhPBGPE5wn6JtJTpy1E2SHmkqEEJE7peEdfPoYxVvgsQWd9ijMPkiZMN0RIbFvvw7dve12fj18wk+l7uLdAxzt4k15zjqXB91BACcmvSJ+AvICXTCjm7iPaO9ITpIUnPE+0wKmYQV2prAkO+0YwpW2bdFRgeFN8fwZhXGZJOsDMQ+rX4kQdwqK/ye4GKJB51+K4IS9GI4b/9wwgF6oDh4OzX8mwiJw1yxZqHiQnWRY07CHyxqSGVWEUVk9VMlhJTp7oEreaM1f2+6d+grrxj7GVr7Ra6D46OmZk5fOjQWu0PxFbzG4CewvnaDSzD3JSqJfkCIJiug193vh877ae37In7sdix++6gG03JaOy5wiXZt39Sx+ENg5WiUSzxqRLxI+d4bU7o2Zf5WZV7vjwptj/T40R80LvaWMVTvdd5exgGtTpGRTg/cEH5BzmZx3JeTnoAc/81R8HsnyzjsGmj5sRiuDdygV5spo2j2gazGTNTT0Qls5d4z7U6EThSY2+47AkdlTu4BBaYixVkWZD9+8KfUHso+lhVBOI9WWvOsphv/HnJ/IEgdBJ4yaa4MWmHlgvyAJHfJO9/TOVUCDPkF5PAP6+sTqSflQcGjeCRUGu130xdvs/KhoTDtFEU4tVK6/oDC0IY6+MgxurtQHDPqEI5pNZWyRe+olpEJ7Mbn0iJDcYi4546prtqw08mDc65B4KabMikPy2PeXOg5WlaA+iX76wkvNWODZI6kNlFM4vP64Suw62YH+BohjX3X6vW+yaq7W3XWydmIlTKnIAx7QXOkeSDul6BsAUJty6uX9PR9a1mzMyKw2H4Ft9HzE7bKn1cMhPl10iMhFXaT48Jfbl1LVkWVEi7OllIF0gfbEifRev90NrpXx/GXMN1k+j3DJhzwGYSYaXoMfqSh4AeZwqoewZTn7Ca+PbEJiCeB4rgacQFslGvcBGwhaRdNssx7ncSKeF0CNMz6tFZ/1sAmlwkF+kAg0RY67nwIz7p0hcb49rq+xmmCBKUjmUn2CC4oTpn/2qR+Th7jhB81If6KQv3eqV0dKo5xllIBWp5siinGdWPHYGxzgcKSItkJDo/52VPPH0P+U7eORh1Cu9kfF+//PhQZ3JOBl/QfmpCVxonsgIj/PEncJUTP/iVBEcXAtzMkyn0MQrBfa4qqtC6yDfBTXyoXMg/I3UvI669Vz5rjA8MAOkyCjHLzNiwonBxBVZUkL4kjBMzl9y/BUVpH2w6f/U1WWHN3cVQaJGZ2gNcAEnlM10psx0gRSMyx2LAjWpLmitnzPibTemcYE8IRXvUl7Ro86aBRjV58vKVJJvw3b7hheWBYQmXB/oYPbCM/HfQAEUe9qlEbdlX5Dkoe2FotsaAWzV0eVwPtmBXqRPg6ZYko3pysbPzZr6xhCJ5xO4LUGdS4f3/6X4a0MppQV6Ts6ORE5NhtQFS2Wbwrx1zw4UFPYJqo0FXP3GcCH5W3LYOUl/vFSnc4rETiUA2bHo9t3tokwFoRwTcbbKjDdcVRcLOlWENOjpLmCP6ckhlss60HE7iE6ROPTE/XUkaxhXbMj8h1MhE6Ty+Yto2CmNIgTeJgN2ho7rTj44nJVOOu4Kc+KJLKZh26uz6D8ZGuvfwbpPb4SW9Tm+OaH3FJARRNXt7C74/ARVSXxLEun8XuWVrRvz2Dt4SeOeJENmnbfadfdn3yUn7L+buQvsTkZEqTnT0qpD0VVaSVPbsM/TVN/t/Tb16vD8aSxsY3Xxt++JC3fu+TT4aJV1psiETngj6xLhDTg9a2EScohEG0FYFspXH9IikkpvzN5s8xseFnUFmPCiX4O3BCBrfFnj6LTcGpDMgRudI0lFEJkmn15mhcWWlwsSqyRM18kypJrVPx/RmZlndpmKGYQK6EKDjZA7WfEfVcPwJfyyYQIRjNLPZcZ9vsmZif5zwM4pNfslcmKGjYVCc6ii+XV77HxJlOPORJpplXg9sD0SPAEZuMpL2md/AV3oodliivgE7lp9FmL2MfwaYz0X/bBirsKqeB8wZnK8kbRqBrMHjLHMTQYHmkJ0NGHN+7eD9pIJR83oAk2eh4M3dlaMXJWquYkSytQFpnkpbRUdBVkALDxm3jGNiZFvK4CoSacIHr46f+BJY+1szMVEeBfbXpnU/+YeHFshntjNNjFTWcQ8pdcUR93kBxWbo532P0D/7bkNRkZru7/dUlrV9h7BlQKIASRq+ekZgsehMTJk+KSpmp5C87Ot0z84/+4tA+kKRMK2u9sORNAt90esT71Y1gme+8KbvxAiSvlLwBZknbCl+JeJzei1arMPTv7XUMbaek7tyPFjBa9bpumXx85a1kaVEWwWULkwyQejO0MwfCk6z7/7ihxjdtW22WlI5Y82ZSkaCpEghtLLqQI85cagoisftl9kuh7A12btGxZrYkYDijGf/RRF2m1Zs37S8wzIYza2NUzeZjM8B7pACpcmX62HZsTKJROLhPR4n29BPNjHiiXPcB8l2TRc6M3I3ir2XWnqy9y/KYNrvCqpoNBGvrsMU5nZH1BWVkOP75q9S3MvhaxiKVY5rFar+OPm5Do3ozHDU/A3c1nohHUTH+YyKdy44m9sxVhnOkk0j5Ik0RZmn8V2lMiHKDXx583SQLCuPmlj0P4qiAJI5ClISx8n5fOkElTpCEX1vakYTGWXRdc7qxGtorDyRtZaSm2iO4dim8NA+Ax4+1x+O0A9IPDMS/E0Q1v8EEh2n8IcVlICDSM9MlCyM5f0PAYWcGX56BqtNC3Ac1a3v38uj147Nh88nOTU6DxfaZq1RcaOCNsHOeXC54DcXvs4ALaWpoLPrXCVJOC8/TJyIpd+qJ82BhHDK2/XNMSTRlgivJVFGvFUBTSAbb9er6Jo0Jsml/n5OCgKi/8QZoywveHyUadDGOoTAXb4OEaCvs08owMl+6xRxLFrFepIzcpMaveixLYLg2wY9KWufgeXrT+5eh7xzmA7SJSi+xp86uZUmFPCL8ZwHyKdkyWoHuTKLBgTPYc2ac2nkLfL4SmnK8jCF3VR+DmRIzf0a1zQx/S/8MuRZsl7O71THszM65QnLysga9Lw0M3KqBJciyhYTirnFBQqjnCPezgBs6iHgAVqQHDI33BUTpwxPdPHLBSQnFhVfV20dmsQ6slZWTUXwB3l+moj4RE61MULd7f3frJ8jkAn4gkSqNBosntVx8GcIFW4PcPSdLZ0tunO3BtXAp3G8aT656JBD5IpimmMI8xSYBar/dxrnwJRbXVv4DVxW9yl+c1JyGkMf6g0J/waQZ5di5zPWyrWG2qEm0mzSgoPizShK83B942bIUGaaCrw9W+5tH9jSDN/51n0ytg3/+gTiHEk+w/o9YNVdqh/RP42ITc/a2ed38zQXHLpoxgO2hV0FNd5ziAXArXHKe4oJ85/HNWFVbAyTqA90rCHO/VmCFTJey1CqyFMSnbnlnKjPhZ87H6Ih+naLjk2J0ft/cD9UhpNMDFtfyl6mucljJBHD+k/EMxBQCVzj0vslhyFyeCkAUVWYtteR3wsIfq5RjrbJKh0BD3WELH5JIEtBDPcHA9NvSDq3lynl13Mz5Nb5xU//gFrFcHpfTjBX1UwrD7JZq7PI2mRHQG3M9t6oI7DVsVFb+1SGuM+g/hiv9hqGV4eWgCsYNJXGt99H50Pt9FPgNNmF456nsK/OOi1ECzT9NPghc+PSR1iZWVzSbBVKiatKoNDqJzgb65J4/hj/T+nMRmrEuBcH5xFAP9t7kBmT63lsloIjMsK/LFXUgB4pQG70J7ezcLQbEedlHKbBmPjZI1pP30D5F5elVQduv3nvH/BckrBEXEeOUkPzmNjLTc+MgJCk2Fe48WVwXIfjoug/EoOupt8FLy88Wa+iBh9PwNj19RtPy6eaUtHb52iVZMkZhODuVF2128a7lQC3Pj/9kBSEteBkKaFAx8/jC16fSaAYHh3DDeMLMduAG+JgPjWe4gFD2EKN+EbckmtSy+K1A0lEUKfbz9jgYrzFvtwrl+E9Z2ZMKjp49UHCyUXzpDOZA7R5YonAqBBPdgLtj4bDfE3zn4c0W1x7fBfn4u35bE4chA70tYD2XN2q+ysgL49D/ao+RTX9BYYoRnmB1+wVeuGBcghWbEx4Fcp32g0N6ObTYcOVVtPEeNPwjyHJ9EwUFDYRf8JSGEgjTIB/2qJIdCC/Z8dbCD2SgzAtKQy634QVoY2aauG+bJqQNbSF+cnnmoJAFInBT6udqn3W6OFhN4NnoxrpoxoPi1qHPk7CCduDJBhItiyp2a0FaSAqFeaICUHBqjJhb5msjV28j6FzWki5CCgzBMq0VU8AlnUN0l2SOxOYGer4vjaw1c365FHv8ePqkGzIsm4O7tk+Tfke9Ji5YuS0sfB9cMH1CrIxmz61Txl1GeUOzK19g4Vb4Lw8aUtHtYup5uYqMij4BIOnRWEclAc3aBCkFkExI86C1yHWvNrtXisSVv4iu0KGszMelyNUoguB1KWCAQXBy8AGFaNFhAmjiykZO7s66cOxT6kUI5yi/O3z/cHUfUNeLL9NUKu0xJKDBVP1SVaAHHWZTnu1/zUzxO2ZPFLUSip8Ba7XlPmOcv7/aBSC1p9r7LG0BRGEWm9B3m8xQxDixQL/siNgzgqRUkENh/SUUXa/fkTgM/4oKpRnCKR8rhudW97DweXosEIoMHtMKgnA9pmQA/NhyBFtBum2qNAOZsemHA5SS7dgP2AwP1sNmYBTv8A47cxFmSAJrYR8epu7n4d+DFxzgPURU4adLOj/Y99mWmN8j2DEOpvEaSDOCG7E2OfdkoznlbDfgXPVekRRot9OEMUJlzH+RuJgztiDe+CsxXhOuMwQmTKg8cgBPOJGvMfdq6h0vBtgiKvoJNAFuCOq9tCFRZEV6MRdFHOxRmBnUp/BstyHdppu2QquHq44Y5lNljVtGtoRbCgPMXedpbTyzPDv+cBIlIbSIX1NT2Q9vmIeRYUiOZuz/icQVVA3PIeFPxPlW9i89YazT2WZCPG8PQ2c8f7C7kjPKgGnryB8RT2FCsKxELlgpN63u0/Ku+RrQZxWo82eI4f4EKx/fbsnNgu67tdN8HLvXI9SEpi9GAEsD2csdx8cRXUdbkg1/i580j61WVyeJe72Y7qPedRx8LLuaZJqLLhuSJIsBQF8yx6dsS7qHT3mC5PPfAu5QHeug5VRdKf1EAIliEjA4vKQi3kKhEoki+MYkg2DF9RX31t4Oe+PkDPXUL1R16MqviATEeH6apne552hER1o1iukN7CNme6RiwkFmcEQZOUf/NQb3sxkDXZxPvWFkwFLNCOuHslp8X0xpkZIPu+tHFhGljG37+5KKNdNW+7+PLvmMpwmA8sFEXS4V5EIi829mCUTk4cqypuglS0t/MeyInRKZeW6Cxkh0/EHJxCEY6o3Via8Gr9WxAKoPkbpV22/J19HXBLdFDTBifTttyl6FIDEpq5VufH7f++XpINvjHwx91jRRFVfh2ZOdbU/z+rzZT5hQDD69wBxAjN7h1JBXvMUMTvMVTzzPnVQdb4cOpwXtsOeBfjC6hyCNiui8nYQljXC6kadc2XrLkqTPcDW7Z6LbBhINY+MRNedlSROYH7/sw6j0zxX7El3VCOB0C4U1kLc4BqAnIz+Ijeb+yoDivlfYpTsgafjabUdDsnG2m5citgP57SpPyxLCWVu4o5wAMy/28XiHdbnRGumjlA4Mf5kY1Da6qHHYp5KoFKHR1WFEuJIZsxIQKZsvDw64saTGiEZh6LdnEi2E7eomrhwBr8yM+AiNryuySpEZdMTSUbW1DQcA7lj4R9aMEHbxtGGuexJ5XFEtM+iv2qEfG+Bvvu1kksMbjFW8v8cX744hE611bPbh8pjQv81jRs+P7SRPyxOII3QU3fGKLu+vF7TztlEcouxBr60/zo1Vut5z3LMRUMjwspshtWk14Cd8YwmkDJKmbfXTlTl5AWe0fPOELjmOl4dTG2ZYqwISdIodYishzyBfGr72B6DMK9avoaxoMTgGD2wXRG75PfJ8u6aZmrtqVEJp6MKDyy8/cOH7IkYu6MBCJL73D79JCTn8MKi8IPOkm96L0B4aLV/QYAhdOav6wUooJOj/PgJbrozFmpLnWZeWcE9bIIoojvt8ruZNVFxzVLFxCoDQWc4wa4A+GS6x4Q85R9Feqcc1/zbFKxxtQk3+Fk+fHP14y5aUJrzJInezF3A+st2OavRcT+3eD/f607c9Cgbgkwbd7AM8UuT2iYk/71rTzwiBpQFyhNck809J1J2B9EOSN7RF0+Jk9gcZSirCNMi90O31u/4Fhw5F1lnufkOXOu26isDddR+unwdNN62DtSckcHAZ60TKBTrjzt1OSM/SmyfXeZnMoNmSJcTzIWayuCaPPM/nKsn4T4xmM4DuezBdTEMKfmlgDbzSjwWCF6jjCyob3sHXzjo3VEbxizXiocKlYYcbfU3pMxDTtoE0GHrDJ92tQxVWqXshkUdZ/Fu1WvEODnmRDJrm0MrDV1vS9rM+wZqWI6W+hrnPUwp1/k7/Ebx3JHa0DeUMnS/BVaRkzyidwJPt0ukfv5amiyi93JWiBeTV9kmn8x2PfHfObuq6PBy9pi0G5ttsZHcZlx7m2ukssOtYmiV+Lb3lz8DJk0Zo6EVy9IBce3fS1mUbOAyemHTEvJprLUZXSjvF9S2eakfQBtuZPNmdeGWAOqAfKNF5qh3suNFoEKyy2fyt7xQlTCoaViPTJwhWzg7Xa/B3j6LM+ZK+G1RWxzitVxYEA6JfGHDjfmlw98JqoV1R+1hjOihNp1CE83cNqsDk8543/abQZhodQtONZQ0KKqv4I9NJ8E0gYG10RfJud85FNqf3PDqz2Ik1DKyBETlkASacsQuWdpJCUYh3RhoSQQwNPH0Q9ky5nAKDWFGu0T8zfw3ElavsusmeSzgxRxQudrIaQ+eTGngMFAov3qGOI5YnedwMJsIllEHQwHjkaavtkBVMB0eFgygk3utHkSaR6bKZvu23FdcnY0f6VAIEOmMOjj53YVSZveW8RxJEXvpayth6rYd7fIEgQOSR2FpX/xKz62ASKUt/CcFhHSHioLZ3lHgw+JyZZt7Bq+oUXcJjzVGup6DYHS71QU+HDCIq09NP0n5ejZzmrJ7GOMFhiv1b8zwK5MIemM3xtclxgplikpCsFMXzfVb6QERsy62e+92KO4qrlHoUuhxduVF0vfH+z76s0euumceIP/zAMqDaxI6JgqvGQ3enCkgqyYL6rvKgNHsC6qkglWxWjsx8Phl0tJ9bdWbD0mq7WUjKybwibtZrvAfLfYd1hwIevwiOWa4lmlIsssu68OnqDqriukXj1gKLRwVzTF2zCgkIsB2leERaHlJ/dQUv52jK/Un9oEvIN97i1lrhK0TwiVYynKo0VW9vwGoWqz1p0XV67/4ZktlmnL5YgLswsY7qszKsLRDRqIuNGSdj3GILUBRPvRydrNe8/Y2ojZFO78XEgKHvbS8NFMgMYQxC/46QJayXiivaOxDoySqjhdeO1aGwkvPAac9xuoSLJFwcM9oWh6lqLGwIjNw2pES+kbQg+KoLV1qPYfSLAN7aqn/sujEEZcHwYsDNIUL8fMhMfD6S5LOoy3zoEgsmWZhlzjWVKTySjcLdauyxHqoZOD23dh7I0/CvP0q36S/YWWthOH9cAwctkALd5iLOlP/+FXEMjm3fD1i2P1EQuoiCufxdxamw9zwef8Nrr+P77HHDECeOpfHahT0LiGLz40njxwt06uiJdP03c/ohxldoYgy7cSipGDuvaf4yf9I68KpY3wDT9d6f3XvCBe3cEmKmPCTaKpFTGjsaUwF5lmp1XIVynQJWvTdhviwoYNjC9DrmbkwJ0+qW/SnV2S8iICk97gogdiLAaqX34UVn2chik7LUUZ6LCFsInuxk5ujlMF2j6Cfb+0SN+AWZT+4Nw32wN/M1ygalaO/d3mCsRsDBZ44Id8lfi9ExvpgSTS2wTvxwiCbqg09XECnA6EfI3X13JHi0AQWkZ4GSZ9NJWOw7uAaNvOlx5HX4oIg0RrBCNAgzC7n0RjBWnxLXFo7tkQ31cQdokCVwCeh2qhvbnYK8vltpZz7MEmoF2bVl8GBR6bMrpksyjJn9+2aCXULOMrAXBQQUxYXP+u08ed6xWF3MBQiMlT/XDd/ZCBFqJZepbfH9sKx3MqszvGgXjQbmKGNoit2PoLqmPAfzR4mY8OcDik/CYdH2i+HvxzG6aEcy6Gapj4mjc2QtvoHkMudERJ2uVZRLowESTDBlvQKlJyiUvcL/vqHv54jGXlfKJmDmmUByE0Pr9Z25RM7aA9rODCgAdjYkFA/t4NiOxscb+qnSk3AZwdnNRR1AOsceNTXWyIQyyWC2UMlIbzquuCT0HaCIc3Y5bfnDR87zVRT/Fox4vQ4nTjNH9KQLBqR+B9Ik05dGujxQWBoe7yBv+9kphv92XAnBYoOd2EMD94IzAa3XXSCymWv99xMO32V+v5BA8brTKaUxfxr80uy3lxkrI2PlhLEObOGRINtR3NCWpQbfqavjcqp/faHY/GMZ4qiTnJE+OBJlnp0TERRh2xjuJFn2wt8juoHKCZpujTeX3ixx9n0/6hcTy/TOnIeLB969Po0449IT6dEBKBGDcZpQ7wtlW92yku0wQFI2rzZs0bBZbi4rSt+UzX6gHQTHugz1jmChvG5v5IoJMw3tHQjvUvjC0xzTRmNXnNSWckg9Ioishqotc83kNXvgf2CB6Sgz+AewECLzZkeqB+AbsVTqERnSnWJXTz1Lq+B+ZXMR2XqF0jdWpU77uyXxeMxFDVCox4m8VZoRqzjPhpqVc7CMc5oHnxcNwTJj9kg5GAysjg79VdZs+onWeww2HZPByKXioj/EhMAplpyDqC4NfKKDlHEJKZXLpu5lsYuA0Sd5TT6a+HfWmCjQvINJavfFtf0Kngk5vSN2chiHwUL6ARLw18VOBXPFOQmagPl2zRNBve9kZy/yCA2l+YrcTFv6/HJqTQ8C1GNdYQlizrisehiblXsIoXFzZauY6baY+nT5dLTNLvoEI3cp5bAqFHbBB8Ht/bon/tzo4WTpQtgnJ15lmIxTvPnVMNU920fBD0xSilZR0Fm24AtVhqZKTyXoDaip5mooIK9jz8LzPQvdUvtmN+YnliSssyliazG2YUQhy/J4fP/2rCe9wl2afX229ViDzkFb65uq+1U5ktdoDGgV5WshuIg/a3DzSG+NtIu6BDgQ48yaN0B+KbkZOcAOkfq2dVbodYm3L8GkD6+siwCG3WVQuMz1/xiVq2wvaTK+CkR4yDRbhFSEu7secVqNloUxPu8R0ix3OtTldyeYN5ZS8B9cBU0DrbBT+ADdOLkSoBhEDVCfFEqptvbuo5dMtnQEFsD3auqCCSBLxEVjEV8Bmwd8rz5pk2c4DOLM9I6oTk+fjSoMrhUUCx2knz8s8Fm2A6Fe+MmQ+w91T9oHVKzhzPfDJKPtIga/RK/a+FntWKlLpjLSf2TveKy5xWB+mXviR1rSY2DQY10LW5Jx4BAVj+PevpWxM4KAns1fmcctJOQQRRnTL2oWLcPpj85f3VSPT1w/8Lmary4Dg5wl0fTUlmaGiWLHwwDJYSzM5UkpWJUb7gVHnaaQVZdseu5TfucKGImPhC8nqglYrsMiDT6242s8rzjTxuYB3gzJ8x3RZYUzIFrk/wCzwVEvhWI3FVSZCbzHfWAHC67CoFBoERkhoUCob0C9o3tFfiBbRvTK+Z3eLHVyOnaHqHZ1SCxMqVTpflGS29l54TEEQv8EMTTIpj7eQulkOFV90AOomHaYodDfMrTv7r299oJP7ZPsdGdBuos9WU4608+Y74vayn0J7Rs8hbA3us8wa00PgvNJXj6O2tt/ujDkrR9EOyhpW0bZuBpdss/+ykNI/1W6t36qvrYBL3DC2J+yqgPz50ovE7Wjdxi7RzMd2TQ3+YVnqkre868ymtCEZI5mKqEeb9XHK0AHWicPZaJ446ViZSuLavKRzjX/PeR0DMrWcpgyw/kaSID250kbHzLJyHF4OKGmWhRZQUxYGHw1/HKb9Pm5sb1r7guTzCW+xJg7hOcKrJYr184CzcGII4wI/ZxTgQtfqIu0PgvX8xRr1tZVRv/rIW3NlFm2/oprYdhf4o3bVJwlBovSUEagTO98dxijmhZKv5YFc/pI/Dw4lm6xrWqpOIa3i98sJ6iTg7aPAyR/Qbqt2Wk7ZUeVf1DSoomXTLfmO60bph7y4B09AauKkbkZb7XqpsS8tigTailaTb3RrLXen9WLqdVmcYuzgaDkn8wuN3HiW/nOPd/xkeuPGQjUJgtAdCgheWq0DYenERT2jm8CNQYwShQ65mKOEWRdXQl4QhcIOUrbqXM10pKZX6wBt7lDzMdGBWI7gRfGMg+Feth1cTBgxsgZqnE0GdGTjy7ylenk8DOHLGeZVeDKQjfU7xeJob4aY5RwCf2tvufh2xWthW+XlCVtSGmks9j9A909qJ041zIBBMWdfY0lNsM3ShC7zRGzN2/oG23Ns3uows9I8RfdFW8FPCPa32GcpHRVn9tx3XXDP5FIIyqG4l/53Q2xdGD/i5M16hZAsNuqHcg8tR/aX88d+hw51xyC3fgGqiyfXD3mLp0sCLdeXXRZsrRzouClXJoTtI8keTlEIZ9X0op9NsCkCpIFFF7/pcJmecL5U2G9qieHMf50t9oOYX5GLMD5Fw+BKuLqqepbBGDAYs+7NY50Sd/RiCH5J5KEdFApGNafZwqgiH0YruN6kJ50iKoFZbMC5DIMOb5OZIfZkSd4dDCedbGjf0aWTObkthbZD1yYplvol1wZOLaEu7KhlUT+JPtpwVrEwVh5cbgRnU8B2vBls9y2QIUXpKhJQ3l+2CQcdVqSUcRmOHoLCSG+JfIJhg8rOzZybBCCzPwvHRcrxfNr2oSPOddvOEQrdHwuZ65huVQOw781mjOIQNJweOSEK7p0XnRmKURauA7nrDU7iZA7QbQBBaq/zJtaSAV2+K+oxvosyLJZK0xiX7GfQ0F+oClidh172tShVrJmj1KA4H+uhvHifWwkCgajQgSF/0LWhYMk0/Jvim5f9kVxSyJ0yNuHSfxbMH0DYdxAu7/0awg0zELxPiNt/J3GtY/HMp1Z/9wXaMa2js0I2r7hLUDJzCrGm6IxMEOIYzFw1zZCKbK2VMv1kmj0AqiSW8gTU6ZTVDH5oUhGuOWXzR0Cq80Dl/Qk296U1Us08EMSE1Xa8HPEvIbY8Crqqepqn3NVI5jsWtXgQ3RcWYzx03h4TtMi4bJ+X+bYFMZ2e6BUNmMeNvnG4r8jeLrWyJkfb9lf8mCSx0XFdRHy0q3/EyC45xr9ZCdncqQLGkCWtVl3vG76P/FapDft2SRy861JPWtH8PIoMruvjyw01QEEuFCaLh5v8ChpZEvoWhJbplN9oN2oRoYXeNGPsQEUQPpjN6fsWdOmd2oyV7nhZ0QwMmx1QSLIXyttgOXERxjLR7g+q+jHctBkmfEMPn7o/baM+wt02/tmxgBEd4bQAPyXyrq28tv5xP0ilsn0VqOKys4/6bpD4Xkq7n6EjCD2Yht6EMmjQMuFRGpfYXZP1Q+ZpuWpfSzqCapomuRF9qMA/hUimo7VPN/nz+11/84IVwFd7zzBfLQhQ7g1wkLyDP76SrK9G2yvQWDjoF8wOSTPVIhEdYbKpijeHMkn0amtpiZkZEYVd5nhvx88OkrWbQ7P/XZUsmDn6kknriqsbGCMIGOW12VMyiOT5AiKJLOyjV3keLlX3js+ITYQ+4N2Bu+hGe1wzgSw2uC5LdAxt25IIoO67v66QDBkGbXEitauWn2LYZJy6IzvPwCsYQvM8YFDffVvc3weeQRuSauhJ+QCH7MbaXjlgt/kYtm3LRBXXaYx7sKbZodkVribKgCJZQ9jS/HLthV+DEX8SDcSRue65+8Sf9uVjmhTYn4H68t6ZdYqiXX0FOEnI6H7UtgBw3c9F2POzFk4VwhkFAtgu4501JDpVNYArxI4D8l69TDt2GFeEL4kmjJdeVWVWhr83c79ZGEQ9eJ0RswOqXkFFegBe1FdeJuqDYlbXUmzPeWqZXwmCZrPAmVoS2hFQy7JukiTd5/f1QFPIz+++0vLUw9p1wEKGyzH2O1fNuifPUvF7JGXVPXK0hIXXxWM2y/BtFyUHWnVfeeOI4K8GeF/13eKB+BY+IbfLwgQMEkyB3XzMtMwwECiMTjGXd32aiHSnsNWceKMnNwqZyVWFozVPXIB0liX6ZsZBMlbZzhJnKisFSM9Zc8qfb7487EToFg+Kb6YfMAbsj40GvwQAaDmGmQu2TwguQ/2QM3dKxAGQvr6+nz8LDx7I08z4EaHmKmd0x8PkySyj87nN4InhdPIOzKsBebvWzFQCBtEpk1uS/KSgnzf1JOiWiO8FFXuvxaU8qQ7yJ3wwSNryQ8NM3gQ/9A1oG+RZ0V79HxYogklFNJZp17r6q3l4bdKsXm5qm1wmVmnoZTFKmWYbpee5fbqlzCpDDUUvxuJSO/tBEAdH91cRWxp1k8GRa2+9UYXVJ57LitePjI+p8c8utjJaCp71Ff/YaIeb7DyIM+Sd6dkyBGgeZZJGkxMNiGudVyqhjKM3E8rkt/FADjdzoaw6aGH/MXmN/oLYfHuqfZ7MzHzsN67mDvf9QLir97EUDj0wNOTmvsUIxSovDQ4D0raso2AMnUy7fxHLu36rrFaXNvNNQffzQAaJbQ/GukFZZraY7Bhev4DF0cPe2MPZTZrWSCRUBzJGHuZViLS1kte1097TNYZpiyBlzNBtA+kojU5SFgaNGYk9eBRdZiHp04s7C4wB9nQ1HbRtiB2tcXhnewtN7k3/3+qScWwg102ZC7/AM0+yWm8IhFoFr/wCHwLbpLAQZ4MrcjCTm/0dbfTH15+Lpr1rfmNMjrNy/YZJcmZLrF7Z+HY5EFzXxhgE1f+DsVaLef2iihPkIMWnk5ulsSuj0zTm8/z6t8B8rdbjv+8cdgqcYX+aBDJn/HIZt3TIu75FFpj5Uoh2NL581NK+7XHX3wDBH2ZsYdbjHh9vOJsObk45MTGj4ydEbp8MhCuvCKnU9WZaBkzjLhhL52cTymE/UrZt3QvH7J4JsaUBpcPtI4EU55cOws8PldTke6FC++BH02K4dZr9qQEOMMbWPPbd58+/ziRzdKfHlgqViV7AdjDPXplOeZ79LpQqEi+GkpTtQnKnBm0GdUpwRSTCYpRyBugaUL/9NAf/YcmxOai5DkTMjgi4SnM4Ds0+Sm+zMp9U+lYrcisSaQBbLCl4v+TqefZ9pwCi5FNR9FXEJyKX7DKC/N5eusHoTsYytzkojJAKYHDcz34zcaV6maoX9VJLW2vXjDws9F0Cb0p2hQAkP8EFq0gu/BoEwx3IuAvBY/b+yIsOTnNcfAzvbhgPBiDBF9LzwMr7FMib+CO6f4mnle+FfUlAfiTf7IovJsnDrRaHXXvEpAJmKAiXvrFv0N4IS6zh6QG/bf9W2naZFpBVhUKJ+3GCsSsw8/YR0DzMAe7jijIE3MyRF5Xzdu39DOPMG+yfA8wAbQQZgPGHWxyUbQxpk0RIN4AzFsW35VS/tgN/XPKe3uPGvli/7SH1GkZurlyBQep4riNWmbDOJumDKGdFjb3+Z3ynDtUdGY9/rfzLSmoBe3XzSUt+17XsXYmiC2bkpheCBEmfeIdUImSaNbtlwLSGhtjWi4fsCHXoIiYo9a1K1WRiy6Ccub0uEHvhssAr8R/6Xp4awOo9OnjxQ+e5t3Z+PoSOr8Wl66obM/sHGnEbZ+Elfmc85S90cchpFiCbUw5h5CTZo0SHwDmGQUobCQxvP+Sg78K+/hbZn6nYquhYyUwzgP4f+UVGQCE8jlRIWVeXPuLUe5hH+QnC3fxI6pIfiXBnmoJ7I7GQnzuL+hy0e1OaiFkbRyWyBFLCj2dBg3+/ytmJSpivQqfSnFEGRhqzMo4Fx9KoTk9I3OSNUmqteGA6qGvkh8veRwlipM/uo+5jGfAUzD6WB8hcTNwB619TkCOr8F+A7ebt9VM6NYso5YXRViP0Eomdkb+ygbgAS/cVoX5IS7MuE8jlufE0LrshVjG+X8qbYAIZyInvcfKBlSh4LJ8FrpJWd1XoE7gZiAecyy+iOiJ6O+6bAke54LRqh5RbfJ/83cAoclcFRTy+TaXyBUM9gp+HZeRdX+S80GDnfK7xK1llN4LKDXN+FhI09opdDOqz63D/xHH3+CxeU1bwfIr9vTPLy+WWC3jLMQk9o81F+3YzPJGmUK7f3ItKr7GKKerjToo/C6a7hIezhSuMVwtLzNokrJ+0L6zK5gQp5lh3WVjv3ZIaMDOweVjgSheJ93oUBMlfyrlAGcDdWWCPWOqvrOFlyHJzyLQDRxjZU/8XfWCtpKaxbOXyvayQveyHmi3CGxbA5IS82+iDYSp8qRj0135TVgB5FGmjEmgOE+fAKqFNSA9dgzpbHWrPTd4wMchV87RxWE0VWmxcse780wwTwGySWGUNEJFpfHu32P3fUXfVyDZwqhMtA6XVbYziY1P6S2EY7iHoNiC2fRyKGwhi57BJycfEiko8iwq0mB7btlgeeXTRBSQYoX3QpYKz4zsERGuGnCojHYvhPfL8LpIwk3fo/Y0NfYP6lJVfiN1lKBvV9CR008gtUeptW3T0FTT3DS3MaI+X66IVwCrS3FwhsFtpPvdDLEMsV0XI1bUsT3pfZbUZ6t57OLZt73VPlLoGvM7tY//rUqeubjpmgbU2mqBol3CPsuuM1m1V98Rwst63DOkSX6Z3KNRLPB2QdSYZW732y8bWPDcO0yCjWUW2QzX09+KKkh0zaocQgFiph3f2+Ht8xCN4yrOVf1x1i3M0t98U9akFXLUqSgP/eChMdPpGOTsDgxQvJtJoNQtXYos+tfLeLSQAhlGKDNWLf6Cmhtn39lqKTfQcY47oBttu2oP65ZiyZiryTTXgzqxlB5ErnaBGVCTCzPdxCJl4aecCb7xWlCb9C38Wlx7+Gnj2T30+7rxU10n5hq88h7hA+lumED3ZXmLFjyL+UgifkzAKh/mRfOJXFB/su8Dp/daHih/KYboTvVOo5m7Wy51dQzPBw+MGbcSIyqM5NGI11g1mU4ofmD/PJM20pO5rewkePIr+n8gz+d30Ycvoq9aSBhnnKe1TBImRuZxFHo+8RLpjNL9+IbgzvEF2dxXJFNlePCdzY+a7M3x2tmFCHaukMKqNFosla60uRE0LIZnnpHq3oQgf9ilgyihuddZuhenkSNbhR+Byfrjwv3GQKXaYR3OSD09ejFchzJh4rne6JyJb2v7z4YP4SS9xvWhhQ76icS84Hw8uVk34VxJyB6x2khRP/wWhQRsFi032MuvK2PJn3gsQADOce4nHlPCaeJeCOVJK4W1YxwNk3C6gcg7MqVm+4FBUy09Pk+cj8k1v3yEZuo9cwFtVIVvmuAGd3QMyzAQZwHkkHMhKMv1bIGS38mdKLSJv9/hU59Vc0e6JfAPaYsvNpLFyFdZeKMR4Ia6od1NnCGNeUuCA+e5tglYlT/fPYZYnTE/QuGeUW9CxTgGxxw1DWaKUYSabaMc4X/wKBELzMdbfBoHLukBtfuMRXWWEsfBhlmJYVTLlwcgC4o4aba5cWUC+DlKDbugl0dMs6ydla0pGVmbupBdBj2gq2IX5xsRjZLug2GQOOxFme8VT0axo8R3uC7OouIveFNzSQWDvFUoBrMWiIvXdzeBawDTgst0AbqqxV7kEyKtSzZ/9lhnl6HRHtwLfU67IGDBWHZcRzhuwevRbfZk5S0/W0hxsVml2f9Rgobjf260gH/F3eZFutjPQbp0J+0FayQQ8DcMbNnBFDSUJeQVKNh70sRo3IjxuqpvWqFW0DdJmC/K8x55Cc/tdJMg+Lqji7DpM18/9djJlGc68agBHlYOU92AV40sUyWz+VWZ7pPE5XsQzsESBNtOyCA0s33/C2B9rEeznRtuGUO0MtZ86f4ECWU/p52OZ4JxpL4rBsH/mzcZSUXV4BvcGRZrLcTgHFX5RhEumjoNkwbGB1pdl6Rt3gdc40aVvQrKr6iqASDtwrR+acllqp1FttJOmKxcsxgQu7sajKiKfTzVgm5vjOCIV8dKteSpouO6snlb2F0j070E5YhFnVCYWv/GKUklPVWjTsjknNGGgrxaqlIST+iwntcP5dn9vnh5M3o1WwonhZ7d/8LfOb7FGZHlPxeGi/RuCP+OXXxdz3lG2njAQnUM2c1o+lBQwiSUEBrU5LkxP3l5a0+vlnwhNpVILzlheKq7q+pRZEhzHh4uTwYmsM0Az9drhITd9URvbCclJ0wtRYVFWOI4/MODnp30KN/ypMcbTncsuegFFzU/BOiS90Gs3I/CriAxqlLfC0s5dviK8L4BHEOi3H7gox1IESehNUYfcrwxwME9rxV4i6z6/buVyP0sYxK8sT/ApTwtNkenjNL8VaIotaL0K5OrEYGTdhJP4l7HjKWgoUUk5H6Q/ANLMbMLN4hj1+gYRKmxwi1XO1rJg6eckEooZMVW7j9P5aq+NfeFKPg5EivuIVEICnDEmwxMT9rJiPKZbjLmHdg4G892aQhtUa3Rn7zZdPFjhB7jAf7PQLsv8+G1Y050s1/APuMaiLnn3wLfsJ7dXBNXR7L+LfTAXSi0fbGM9EeV0EqQHEv55F4gx77SQLWphcXSLH0vcGbozvaeygbA01f3fctAM+Nht6tO4jILygoPePnXj4goMH2eyUjVfcJ66veh5I1xiwP5wbT2DLu5oCOQFh8DRp+0Nj021Dnxfg/3s5pG5Avmc+3qYv1W0xb0WqE9sduvtTg2BsLklIRW9DQEPTTZFEeF+vKvtS2vJ37CNy8qU8AV14yH9Mp+lcsPZna4n7G4SSSDAefX75APSo2SPBMlSjrAuvtrm6BQTVGWtH57JFj9oA7+vDDXHkeAniirGTXrz6BxyqRmm41Zp8Ki9Dh7bTMJwG3wU552vNAz5vFvraNdFKPah2o+aCb76XM3rE8xDtg9uxo4fpQ0shGiS7rgBq4bS7/JFQuzaLWe4O8eLSHTnYkwnwnwFtZYLUhLBsfuWjy0Q9lPpLzH8dGt5IwxUHaC1GMpEfay3/tczEqzw7zwgNE/qZQOovtB8O/YecRXU9a50CFZHIWZMwsL+RjHHjzeaD5grAkjQUVpKkQFt1YO542VG1gTnsHlufzVM4LSwXqWu+SseH3Z34nR2XloS7VgpP1e6Cv3M4tR4gp9Xon21McOwaKFjO9b+4vckwq95yifQS8pclY5LFvGEFG7eJs4c9z4EFPMlKSjwIiMlwtu8PaNMgVlP/0ezcljDcINVTx8AuUsWYYvfIYnRHVOy7BVwwlQROfSqE6TjB1aXwDf20WfNInkApdUpxpI3dnrCI10OeqTc60q3uPJfMC8+Bko96NWrEPXBl9Xa26D8pXLW28Kz7yKNynxWKFjEn28AeEK9bLfqpvN4PFPOYb/3xd8dzelHkHXsbqLRsfFwqcQT/8IWBeJVVBA5Y60+woOlwuOtbPzj9pwKl1WqttmK9pqq3nrYuhwJVeJAODRw6ffM1IOl6f7yD0FMDXaEitjV62v4QpObpe2j3gme5tCjSwa821CG55ICM3SRxZ9BNMlTxHEknKJvqogzzQa9CtxfeLjkXkRRwIpioQ8kouk7mvWwA94q9a5Exs1QX80hVV8dNlAsEYNvNsyRbBq5CeCzPTB4wr3R1EXJty/91ructjLmZqjniL/0ikmJ5XG06LyIjqlPgaULJOP7aXZXKBET48FnR7pxvcR7UUFG85RwF/t/a3IP7eOu4OX/FMxRaRoLebJEgf3GJYlIR2uf4nCdZQ3Q+q7crSF6xEWB/nlisR7Vf/9oOPfBU2EQclrG219fVyMSjC++9CzCgi3QS8efSCfaxb3OGLm0dHZ4RV89hN+3L12H8lrz0A2DeW13KVi8j19CnNrdOBWuUDisUpUeJ2sj5KT8TB3tL3ycGEXBF2PxaA/kcorU0On5dz5ly0/OXN56FP6y5Jle66FT5/VLSlOCY6JmRAKRnptlbKrxdsvkqMDVnXMdT4fWu4lnrejOuL/X57LzMJ6oJGP7aHhy6ThPBz+pj2CXKrRPffzd2/nwfN/LYUsqx1zqYb4dL6N+bFwn0g+VpJX1AzJu9ZsDxLkEwst8YUQTTNB3nQbsAbmu4kaeCV2s8wriJWR7FH82U/J7fxMnTlTT+w7z3heodjfsM2elT/2HmM1p+s04blUysU/3xYRWko7MVik9HQtwEDwLtIYaq7D+Woite3oM4XS+V23UEeAcxlzzGn8yZPM1FxhfEadGGewkmXEkl1/5OGhuaSUF/6vCjns0olQMnIODIw+hS3vtYLD5kjM4YZCMuIDMU1cHfeDKgW5H5iYwwyXwKpcxwb9hp7NiQgiFHsWIW+A7UYf+SI0JcQ/G5xekiYbRMG72KY9v44zo+4XHM6xjC2LAl6UQuqe5+XQODjLCL+5MAM+kwYWDbpHLm2oJEV4LTSlcwcOZSYPVcw9ktat9Bhru9hO1Z8p+vEYSyg1qh56bo122z5JMdMA3ndTGdNFFj/YaZiZjs9OENODorYx3I+aYTtA8U1IvSLGeZXri3beN4coP39MRoSJkt3PxIIC1lA0oyfj+N1LOJFgULghpC+CnlnNDBRD99KigXtGIOXSIwbEQniOZD55LNdNh/3KZFQ/G1iMwd9XqgfKQdYt0ZGosarbfwx9aFPWy8DPkIeoKMzmIWm6t5/Au9SYB4SwY+y3vPhetrJwdEliJycTZ5/1GRKGUFzhCPTbr1IFkHSlzAQR9Vab3+Hm5HkXXe+ZZaelhVGyowHWE0kKLnDTAaRpd0JLBXEKHhjoLlU/DOTwNdVzT/5/GFXdd6EGriLNTxyIMP416uOPql5U7bFdq7IlhPY1ycCsnzC0ssR8fQjboHWjZdZxg/Gt/vVUh2tMJ5fPtbUZ4V9d8FMp3JOj84LQE2NLP0sPSQHfsWls1DqxKX/TBvY6zf1IvlCGkBGSRsx8Tv1dTlJxmuJ5MnE6UcQ6UG4Tf9r9oVXeH0PNm/zMt59FECkYBbjESZIsRacR60ZMhHQSTV2VpJ5+9vawwtI4mdOxqzCxirAk+bf2goI5v7iI/8OXGGrWrPh18/EehZ6CbMF8K+wLkpMSXj1wqkvAPBy/IVpSv/TUBvLooNUBWpRr+sch93yNKoLsZJDhIRUdfOKi9vjkqMWhWryxtjCp3daeTwJm6CTQQco9xxHWxw+ZvC88cwcgrMT41D4WNOijHdOUVcHIDeCUtvbafGnZeOkozgKxOKcbE+KK+8Y3xApdKbT/gtsmtZh+qeMYZtvOrXKUIkGbAmWOv2pZaSGGKQL/PFt87149OyP/+NuRVGQFW38FRrJJJ88txxINMLUw9/bROMvSvzEXioe5eg3wpnKKJo8hxkC2Fvf3Nskzbs5MPYpoX8A02NnH8n1CByNBYp1N0ltcywjoe8k95IcrkJrrhNd17nSGd5/j27hcB7in3AwwcS95egB96E7RB4rhZzhCRQL2iQKnZikcqHFT+icOyLJT3bOIymoDtccMLb+XWvNY63hnMIATdLcsHubrkh5IIXPWufrt5uP9lqsnNnQj/k7yCY73vw78MP+lo7XJRUfuh7IkZD+nCu+7ZPeK9xhofryG8QmnPi2liEfogcV9Hh3rFeo+7WWmbGigC6c16WBWKMYY40kd7Z6hY23wOnPGyWdM0nv3a+er9DuP+jRz2MxfmA2DfPlM8ou+xufrNAints7zhWO4qE8RS4VktApxX42YJqGDNwl/+hzIippO/Y/0PHuQ1c5Fg9qj/7OXnMiGseerKE54hepEEWUDFsn/pN2dPw/MfJ1Hg2XMOohT3T206sgOG8kGlwNmhDijK7XFZ//zvxjoo1SxO3evdWWqIj4NKrLqJUNz5dwGb1y1GkvGFWP5Hx48K3A8N80AGZwric64NU+bPzk36A75QuhCNbwhVrqXyZrWDpJqcIUiB4m1bP8dOTV7RilOH3B4dpRVhrmrIqZd7cd4ypUfI/ywytB3O2wwinfa38IXXN+aQDMIPbOVepcsJl77Lfux8s7//kcpa8rJLzcfQirTd/iE8zagitggqVvCl8p5CoI6gBWloh0UKg3bI5YqYcBLkpkvjgdwBTvMSiVabfnJHqe5j/yiaHvjSWRJ+OLnm9WfukeeLuQj+b4Os/BRHtyMc/J8F3zyuHj2mlwFyOWdr7vSN83/X+3hEFAZ/E49ShsGIlylUbZ47hNx3qL8YHDee1P3clOOjy20+AKW8GuTxZLYDZ2RN6++AZQD7rLTXjRVboqMzXli6d3JYorMiUmscol7xdaengNyDIV8+INRQBTXhORb4fwtPcdSetEtq45NDWd09vcw3nmW3RpvAboRYMnzBgXqgjs8Aih7jorz5zgYvE/CmKS9rAdaphHJy7BkfnX8QUdlAfMFs3J+LkC7uug9hF/gcE8eZm1JkDvG0Qaz8R1EjK7FzkAAG4nJ/pweYe4VWNKHzhXAnL/kyZhfVopdznFE6zPLjoVT9dFz9eY0/x2Lk+4LHyfOmWAJ/e2rSAs2M/4ECNfvb/6XNGum/XIRUQ+6hHZOqTP43GWKcFywgsRTfqWnb4s7neZ/s51JhoTjF6sgjybz/PKHGCmD+PeEw4dytO6kTScktIu+vfss+NFXpUcgA0JG22XSap6kEeyJyNiXLrdDMJF7gRk6wvfws/WvZXP9k6CKFIKNxfwRbpr63oRMEiLOoEsIiybFSv2U9mx3kaPAPvEYByI724p7cYIx0sxYZX8Ou5azZNnrGZFfOkdTKINwwWFuX6Ta1SO3QJ7B2Ph5x3KNrhyVH0xZxTx3ixKPgJL4DQmsdzSRLoixMeHiIrcg6tkB5PEgdkfmknDqh5V5jhICfITkv+ecuslutFusm9cjk74Ce/1HbTm9hb4wk6niTg9v+YhlSU7XjaGoMNvJYtU8Wnm8sBjr9GCH2aAvd8l1NbkQiM3uFgBZxFTZskue49irmq17lg6Q6sP+0b6jEQFCEICx7LJV3gxOFtJ4iurVVqYmLMuopAiT/4BSXOWaIfPY4UcNUpV2UaAi3tsvx+IwT9aDk/hynJ6Y5DZ7sAfnLngMk40AmXCa5Xm9X5p3l08zERfk+Bn32epnJabItA+z/Z/5pT+wZJaRCkcZRqYq5nkAKHuWGHDjKYHbN8kkHZlIbor1gt6XeCn0j06K2a1ZAoFptOguMwbdoOw6VNcj0H1T25Bts8XC+TFgoEustfvufEVCl4JwUwjoFiPD9OtUACDQrA1vJYEk4L3seWr+cRh4hrmXfbB9ivlwhXa37L9dxwcByN2eUGPQR/LbH7cWN+fJ1BibwKUHat29KM7G595484sbhFgFhjCy7gukHHvf/zCT5Vrpsx+xu+Ez4EJe/IJHYhp/OD52DFiL99b/UAgTYbgj/TrHSswrd4onoWBo3XFm2JebtOPR9jhS4SPLyQY0+OQzM1CZuY+E7Kc4/EqOQFBEoaLVdQ0BctuNCfhvLScz3TedrQC6o/ZtNGI1Zs4Ilgt9Zg/FN2STkBo9PsvOkLw8oQfM6ykjmF80xiHXVnTz5HbQ3CqgpWg7czpq60Fra13/jzIY9TaPzthmvm7hgOstbWMsNnL1mkJUGBWlqPT9l/muGVVv5LX60AJmEKFcFFvVjtKsLograTBdh8uMlWqPMoNZrir6ct2BCeY2diW4ZRosenTLbEbw+P418uWUqtgnq3cTXtLLdPnUWUUmIyIzFrAEtZX0kltlGR8TzHRUMmtgu+8JehyRk1zsnSbinGP+sdMKc221ogLY/ztvJusXtGyzjldYAC1OxPR3z2NHcQiY63ygNXmsShueyCMV1dLkPJXy+g2Nd6gSF64AE+Qww7uovPiBYSwvedGVaIxunLhc6deYuox8fKeN6VD+KHRhamUavcz/QB+8La6bz1RwdO3Qy8uitZ/Sx1P0myu+FLW90ZRWkF8W/XT8tF3gakjfzjj6DqsdmNQBX0qweBVpct1uSsB4DluACA1FUM1fBtxR4lKsCRMTXsc29Zqoyv4SHxeSkK6fajAJ9kUFeTXi4aWM/F+bPEwff2mq8mNZlA1Ue2AfLLa6nr+nwfvrjgQ5OE0DV+MImV1GqFkHu1ceMHRawr0ubn6ZMrwi6Aml3IAQH3n4dblKTxHXQLZBCBxekll4F7Evjl3j4gxn2nEUNT+dxCGn93aZ/lODTvsOBriYjbybfiKhxTWF23qJkldzW8JkCa1RqoPuAw1v2XYgm8H+NLoTBHvc/d5CZ9ciYBPVmpFWEQNUXIaCRfmvquy0+obKtw7mamrOB57lecIcQt9SkIxFxIOtPVTEpE7clgKbs1OnVbNtZv34kIFhHJmo14b5LXsg1JzsqAdPZtCXEn8wbBpwhlZDZ7ZJpsDjMuR+Ul7ODiry1nuwOyNQfG40UFZg27X2d7sgLAEQAdCSuD7qlCxSBMtqUP1W1vUV5C9jI1GwrD9/BAYMK6Jr8ykmhE83472PoHc/Unycd6GnAoyICUIBsMuHkeBMIu9kMKDiDuDcIhUGq+9KTF6FAMUvSGPbGUGlpGXsZeMHQmtnO4eTCsNCA9/FmTFh7dw7cMjl+r/QjwCAdi7KqfAQYxoYbViwYjmUwDZx0mdX8xiOLIyUz0CRYAB1pvtNWVXFjBHIWWxW10EcN3BdHg3wXH6HM+NYabHA7cp/GQsrZPPVcFnjxqW5EulCMcJXF70JkClsaevf0f5S+CeNSpezMNNpb/RI+5J/N7CsGTjKcehe5H9sre4IfJ02nOk9z8U/kIz0nMuECmXHnCDfpUJZU/qgqQ3WwKohTA/epWkfCdDbx31bTk3TstBs2+0xkQ0Kc4MLJ7pTxE3DlotSEBItp16XZAWksG53gon1p3vltrbfPIhzgBWfreXqz6XaBQkchfE/RC1t8Dl3Q05hNjn+BX8AqF9ZaQX4cPh/QooqKGpokc0if43uZ7/lI6wu35qCEiuLR0MqyTV5z/L5abFccwVmQITxYuloQnTsGfMtIjIPpdmPOwY7Bo8s4FVRU7sPAp7Fyq3XJYbmZh02MOT0HKe5Z4Mqn5dCnftvuJoEW4zuGXFFiFdTiT0Y5gqKyqffgCA+1L4QHNO7ojwpjyL76Do8dKjJCiXU+beQphnhT3D0gJmeltVZghiSgz1wIuZ0A1mz6g1nJYyF4S6yoeeaygWduymYqkfCkjoyYp7CfMgP3GXuTlVV3e3ubh5d4jS75CbKC42aI/INLwqAZ8Gfm68nNuMGsdW1FrzcxftU2VjlYu2c5+8k/U90gQTJ/s+16hiwbmzZZvV58FuZG7SqX/vgY/YK9K5e9pfYKeflDQnPVhDsZ+sS8Jqu0DuZJSTd0LaQeMzbBwq+KMqQQ+sC65LL3hnTyV/27FSelUBYA2cNOwkzYhFQPCqygYutchYdb+0ii37T4GfCkbJg4qZGmQkJ9F+F/+L+cEXRo84mGQTx3ZUgf3SgYfocpe/uzU4O+64UnXv596t0tdc/qwmeXLdrCZtNVnbE57ksypGjpm8g+AyPtUj5Iqk6h+KsyQwH82FihGNYeE5SwfMerzFRCgOvW9N02GOKnbtRFWXCSLNe/e4jj+BqlwEtvgEdtefMdhKSx2LY3EQk2VlksYuRf1grA4VvKPVub9WHLBf4+c4ztM5NYQz9a5+IkzN0v/bdd5L4GqaxqECkJOklDAK7y589/RwKA5PjZs/ErYkS7dMt7DoapDb+CHkt7DAC0O3llt/80uMZmQpZ35h/N7AiAcmC1t2aqN8XRO/Pa1pFGmXzetPvK6/S766qqIIScrWWkuX7Hv14vQT5/nsMjpXAMNREGJZ7ySiTcJIH8qb3ftaCaGvkuQ5X+wDdMt9Q5IXR64yAl7XGmDpv1RihHoWZ2CazrK7DUo0QJDwH6qRkj+GkoLIDTFHeCU37lwz/MCdkAEDp4RPh1uK4fEZFbGgcNw9RYl+r1fpRZSxSlTs6x+OJMcesqF/fzBxp5kfJOKPfs3DqZy8jW4J3mMjWArI2/MU6STAOdUxgFqsPgpQk8/5h8X4mutfMRfgapqhrdZsmhmhFMav/W96idRBAe3wZVs/+MkKzJuUYKPbv6ANfb/1i9AWHg9PZBdmqQHWzJQF2wwJNHK/np6vbR2SB838gboXajE8i2nsDJRi3iHfXu67A1RpEXzPQbk3mqgSVILhq9aA3vEhzbSk5OSnlavBR7X2OQC3CbnpFWkuwV/Mhgkb5FQX7OJpqhTZMkcmzik/uM/oG0Pqr/He+zVqEbTaQiiTiyCkZ/vK/KS4cNHhUgpE0o+rsJiCbdoC9sHorcI6/wTE2AeZpGFglNTGDW/Y5hv4Yo+7oDumubYEoLitM0kDN908FQ/OJbbqztMAWSkhMUyhRRaOtan/izFclygLXwJ46ebA8uSONsOAvWaDhfOZQnEkEBP7i0kicIP/A771QqR3xGclcdFE53xVfinBHQkJilun0oCtqvVv27+wDySdlN5pmzRNLJUvyZy6EYbhvd3KxlduIbnWkye/OFDtBXAbnt8iSNY8oqcj5J3qzPa2m/oZVUj4Dy7S9e+X/boW3KVaE9KjsvlDXUxLUdhKBAtwQ4O3/tNe9bEl/J3cFbfYO8lPT/eRMCdaUVKqikqUmwehzM0MlSissbIgyMYyPbfKzlLu1V/2jayKIyaFp7ltCKCTLOqqOOtrEvCcTrJYR/kaMMLtbf3n8U+KkSKZw4txsZShxpA4+vW0RqtK00EkUS+UXbrg2Vr0BdEH55SiNPlvw4IIteNmsJxr0GKvX0lXe9YiofINFweqoFzovlhpqZLPLM0lTKcWGr5JXWWBHWKAK9el8diBEP7EuTZaytr7xl/mtaeJA8Kya44Y17Xj/JnnDKf9Ol4S6VYY/NOmZni4EesLPjbGEdDyXXxDhYoTGqZVrENdPfZxvPmLVw7SfdHAp8DELN5nU8yqmzHLVq7mQ6TznhUqO/53kJgkhUA2ubVLZNqaovWwWb5eSbK9v6yASx9O1Cqu2n3ox3RW2ekLXB+YfG/HwWNHgCyToFT/y/ouFHHu57aF1ybhYWcwHa/UWavYyzHiQH+4RFp0wRF+TSc+IBFde1Sfc7SI4hfFtzGGDMW0+DF5eZAlHsqQoIBFGjkxaGvB6G8s+tC4+/6OYcb6rsavVw5CAx9epFltx50jUhTY1yFO+HOjmn9l51IG1/auZ610fQt+MZEboFoy/TVdAdX0cvCKGYC4VO88BJRgas2fcJ/4kLf3+DkQV+CcdEqicVxxV3WcMPvFYTycEzH/tQlM2afsV03LUo7SIl6+YSnNz2CUdL9k2lYITdJVIRh2Jb7uS6FYUQPaD0zOdt4xHdk9rbWqj1py15KRCkpUt4zjna5Z091QJmdMaY7jOBjsnF9JPHWnahpxO/PzOu2DTmQ//ia2mzADltgz55TCKdmo7Q3UAhZLNjM8AUKbHbl1qAeGUEz3S2e1CnZiPpT5w0Z5JpM5QpUCWGgq+Dl6Fhew0iVeMhi0r3DJ9bQZ9Yqd4HWTvJ4WfGzcbkWBqcCrqgC9xxkknCuM4wlB9VklAR2d//qIVAC8j7li4A6eybWDGql+/kEj9IRa+TvFpZTaDJOrASR11GrdbatOITUEEbH44Vx94K+KU2oTxB/jIglve24hx54/BF0ywnH1iZPmrlrJinGedfhp/1Mlj+Wl0rY4xttAXPCPTvwRLTAiGEMxnU2EGNRJ6lxBs05FXreYMqFE2Yg3w41/AdkgSTHladdTIAV69lnnedL5S3XEaeM2TtisBVYdF5TUWKVNZ7pfwHNx5Za8Wh1S7gEoP+W3fK0oqQ9pcve4UYdOu7g86UFllqDoP1jH7peoIIH8wzE0580ctCVvuadYgCcauaOr3exc0btTc4PC4wUoI2vjiF0vMd7/xQC2Uw8YLWF+bZ3lJ/ptuhOcNnoKil4hH+RFCc4bTqsTfkFdxyQxJ0g8XojbI1dO96Di8QhgEjWl1fDkNIm8GLLzx37HJFRZrsBjUkpYvz2mzvnVWaNVNeLpoTk71Z1uXGXlHFSJNVNy16FRldS8Pxomvsms50gxdPXLYJQlAp1d/aUFaVq+fL0JCOQnPq/XnIT6BajcjZ8MQN6eBsUl5rxrwaaUB5rYTeC4ijSkKyvxdR+u+e1SwZXk2OOtTD0AbJO1W066GQynXWF1bi8NLTPKRefTohKEyq7oNmIuVTWEVEvuIbbv9JSHoxqc1flRCvJwt52WPlVcaKVFTPI4yX6G6ojllZWVnVDfdk8RjMf0jy/qvNS2tzZEZQbSUmo623SabCRLWxXoqyPGPzJFEB4nNwD3sHa5Tu9uGjdDXSJ5VYQ3MtPAOnT+jhCUPg0icw/9xlHxCFK7HSO0aloe40b+gUHXzbuW/MDCjLf3L7WXTfyYLqYvHrLxSIY62kashDLmcxSrgrzKaVJ1gSd1bqcOk1Veu5XTMOKQmeVTHz383VZnaYOJx2rzfkpzVU9obrCwJw2jQGphUeM4ARv10TfPYfP3XT0ZaVZIorO0uaZiibvEquF4ObIKzIIiBJP2AAFVrpAc2VPliBIJevNmD/+/+EKjRCCdwU0K0H/37qW0/5wXePv0x41XwC8C7nTXfpSk0XidWuIj7lcVqW02UMCTBqOooEsXuotfYntHosi2CivOyzaVx9iyW8ZB9WO9AZ/2dk7/a5nJ6Pfcq1rhdAyEFGvRxOBxcXwRnbMqPUqMA6aADVuY8UyqXb1j8kLLbkrqLDJr/oMSiXT8df0JJOk5v8lz2vY/2PjqF8xeCSw66GE8hum9x8VSQK82e2il6lpBpKvE5RPuunwr2iorrjO9tsm4hSV/pkgkDZ5ll55wyEp1IxIGrGteFMIbMg3ts/NcVj7exCotiHlD4CBfTKSPF8WyzUXMxR0G55n49a+ZC0UylugYPSzbHR7eqSvm1aLsdHjfYbJllL2ccNihC8Uvw6gZMrpfQ/scwVcwMGqh0HtS3LxKZfkXFFkigEPeuQowSUYrUSY1dQ70no2pRyOwC36SmnKcrskd+7EqhRW8S3LfUUH0Ree0GbclXcnQZM+k3H+7rPJ/tUST+x92iqCrpGSm28FWMO4RzVqpd2SUX22Ur+gpjUtdY/A/mzMJqVn+s9LuWVM6QTYdLDi3sjBrCIC4t9bSRtid6aOUR4GqvZJZToQEuZ+fPAuyMjmCALetoRzUTQ0VEZv1JQKZUCezF6J3Een7LabdpfmEByFxv54lMN5HfJOSuULMWK0rZtnaxMxchj5ic1KtkEHP7vvKu68QY18QWZXUEC2SG+9fJU1AikeIHvAM3g9D0SVsiMjhtvUiFd+N55QBoNmTn0JXeSHRjPHfVr87/AGrrqPGxSdgk1qInbI/+lI5LUP8Q8LODICvFzWQXpWbsKG1UInIIFgHO5QWbb2Hkicf88i7r/PGsbdTWr6B6J3ke1MuOGaqWBk+9B9qECIY0pEvy8geA+K6Z/qcHRWF50oL8sBbbv5KFccqUuINE9YUb/FjpGLCbqqpzojAJLX3rL05ppCcA5I+Jh/ha0YuqTVllwbYc/jSIkiyd+rTPvfemNslnIH3E1QR65uPJY4+osG8WalhzMlJ1xMbNDA49HDP+lhWGliMDCF+oazSWu4MhJ8OnmfWfwK0o9CaCn6vycF2d9t2oKWlTfDV6ZeOL7vh+w6tOniIUDk4WJhuRnf1ISyS0sfLQPe6aGQQhbVjYFAvAfleu3jwmXWRYIWsx5hnuCyIZj7ci/6cZJ0mopFdACx3RwiHsrSAyA9ehT23SrQT1wYd66qvLM9ZTCtebEY5CG/wsAB2xBqh/tlRZ3eOaW+Qo3jTEYZB74jMjhDpR870XwAEi3VKmfvjI9LOV6iqIVy1GE+7W+2J+DKTczUPFTWy9HPPzkbqk147Uzqt97fM09FBMIxRn+ZrzxvjoLKey7C4HVPXPcLAHm+decq50uIgk/1dyFzNr7ru1kbwo+2OOMXDrXCOvV8za/u8I9Ygd2inF91UAIJuqCOt2LMKawZnpG1kCOlgvY3gVuq8Up7U3/t+Rzp+VyGkTZGMfvGvMHBOP2sWrT2yadVQ0iBwQvzl6qQRbbKDeIuAxipQqhItNVssLrnHqOw21mjAun7EYXHA4JaaYAYaxcWK9GEITf7fKnPI7nlUj673htp6pye3qY4EnQB3EXEINaVuWxBJK0xr5+0jGwJr5TJmikWUByxOpt1eXWlPNudeSMI8VU5zCI/lX7CLMpG6q09aeRoxFryCF/pqlDmZDXumHYIToquBp7q6t9aI5aXQ8GrD7w0EewH5a+xhDpYK6uF7dsYhY0LwoNuEHw/i8fFi5/WqZkXYX3wfKBICu/aS3/PbjTgLBgeJYkBxRWpwBe3/AEhoUgbd/uBsW9+JCKnDy5hwLMYWxsYk0SOLO04fkymXK9G75dzW5F3Vt0HFIA1AX7Nt55sCx8rkJOsfPauGWBRMeFZ1JL4g/s/uwCzWpgJMw8FPLXIQmuT9pdiV5VdGanv487HQGr0dhtTQjc0bhPlGot8y5KwU0TnVL0ERFqyWF+Skqrs5hnZpZZzuLidHEkf8D/SBOB018VLWLJPu9xrHthWG01LmVFnuRW9Ko4HZw0j8OAd5BCr8uZUpc9HoB4kWpq5/f3h7+8ALmFuub1X7kTFr5Wk66Ppow7Y7JlPQrlWLH4CYjWBZNw5duqgZgTaJSEW4eYkUT/F+4uKRwOHO2FfT3drwA11kEOXkVTqYsf1geKqZ0wzUdkkLcBv+F9MljMD97JAS/+Myr6ZEojfXCtu4a6q20O2Cukh1p+M6VWX9gid3hCdIu1TEZA96BDLpPvIircB5MqPNdpfsSN9eCPDYQa1A0fN7Xk10S+bOvzmylxFfT9lWBLX8xhtaO1cgimoCWqz3lSMpb5+Zw0GjIb1PwEQR75j4P9LsDW/ZWtKhdavI1UIK3+/dQUv6MQhxMr2U951F2mQwGAWlJ041CgzRzX53Cbfv5+OWUFwDQFmt9MOJLSAQ2wmp48tj5dbcLqJBT0lW8WnWl6cH6TiysmO7cqeh8xGp2bbnqP1BYmjuRIDFwoorCgs5Z3ciMlO2rrF80w0WMcFJKWkl0YpFZPVDAjbEGW0T4rZCNyEn+BALw6qH2+1nRflj/p+IXQb96MXL/xSJfTGXtQkSvOvbl/Azg+aYuhJKDDHkF2tNUumN4HMWCs1H4+K3LuVOQLYKmowLYST+f/Q1xDzoPJKr1U38YHYxDwQHPEecToN5smawFCu3k3KNAp4za/KVWaMBALg4LiZfnmy3eEjas/kpsAicnUxXHnzeRkDL4gQejW673kPCaGPgIb9Uuq5AqmZzlxtFswkccDwsZT9IMjsBL9dkFz7wmMCWQb1OzzhspCX+4j8tgyq5xTjvFPJtbSxLzX0TW94E2Iqus1cmtDJtIYseHxzVtkrBm6Pl6VxxwvmVvnuxWj095q79kXO6Jap2aSOvejZV1CkAQb/FEH7VJrNoDYbbYdbKdOqQrvKjQOyVu2NFR+XQ47v6vB5gvLNPpmymK7jrRLzhZtWaj1SYyW1Cy4uOyseqB3d1ZCvjzyPiDjviTiWFrvQCFvMteV+7pAYXjkdMImzX3aM7vZlw6RbzroYumLn2eBHrMa7lXXaXxxnx+Yj9EKUPViF/YL91wm1cTRdxSmknzXxxV/lAhTC0WGKNswDGdQ0ZObg3spKG2wAbT/iuIq7bE10pdP/jkK0WscD4Lr3AZj1qqRuqUuyuzpNlVC5Y9VY5ZzSbnK7CSlAcBaK737zLcpT8ZStOyrBJrR6ensIQzIrvABtltskeLSiTN64u1MKXml+lbLc3/Bje2GRfXpiHGnK69clvQbToY/s81qtIaVChjHgkgjwmMeH40Ymo4ByWwEvYRKdShIw4qG5ge3dlVqUVPSh0jYU5xdKqrmSNU2xdJ7bdsKLr3J7MGh8IoLJN1GdqsKgst7xoTAin7wM3rtDmdGjJhRq6NyyvZDRm/cAMaXdhBS8RiSgptkIyervgkj359gUGEC5hihoN8vmm9g8U2pYnPExjZ7v9UKPfNlSvSneE8iZF37WUTn4y15G2lj5M5R+/Se6C9ydATSqS4ExpCTMyVQWLkdrx99oMxe38xX4jdfdIPDG3V5bY7ImUeHqpkTMNBwUHrKQcEXMzk8oJhSbt7u+SSRZVq1NRWdO2DpfQAaKO+RGWlVe41h5dM5wss0A9ttD0ApDa7uD+UBk/mRIYIVzvibQFwdqB1hc32Phe2t8zGNeaKIzlWx8+9OfOX9GGGhNdyZOs0R0dHSLXiAz/rF1+CYWPdDhBhIjs0yA5uCDoHFuE8FjkMiaDbWg8VO8BWdZpyDXpuzrJbO3B403jTzpD5XLwGv8F8K+THYJynQP4K4v7loRpg3Sxpz2GQtxuHPRhofaiWnWGL2pSYjJzH+HIpthmGQ0Lwl6Ywh8f/Y7B+6YinxsYK50Y6lQ76Syelha1O9xt4nwNRRxX5bFuvvk/lbYlZFYR1tG5bLNyuyVrrsIm0GfnQPdO80BwluGyI3z/1HXYZlFJZlTvW39f0p1SMuPhEnRelgdXeFB+3REZuBG47Tuyk9qQKomK/QxiAtjWAB9mUBV6HgS4RBdCYO9JETidORX+N3nUkm0qu0YzZGr5k4Nsr3V7AKuN4joXnM2SAjfI4m1CtPHbG3hxwq2RJDlOxw4fPVlT41yjH2Zta6cX9f5SgO7fwHylIOqfzCJqEIOsjsJa6BF1EoC7Vj6Gng30TnSyG4s51HFEe1hDgte4PNopqEc6U+YdXfnRsxRN3aRehc5+YkaHpBgRh/vr0eXAKqZFu7pc2GjHlKAMKYYcJl7fQ+iFP12dz31khRb6T8YQt8QYF0xIox2tacdzo9zneimu6mOvzibIw/r4nBaLAHClmtjnNpBFGzLHiXIkKrljJXpN7vIACTdnaST6IftHUltQVszxIE1oF8swLZGIzweCJtDnNpRgNa0/OGmQfg7fv7dGYyuX/9petJ3uRqyUm6a8rdGZ5crGLgDS3OsKmewJD6iJlNBav4a940yVbL1j3lRCVUBvL7cRAy43sDv8Y74fotrQPijrWpu3vh6N7SvkMH4i8fecd6hcf2dmily2lsya2+CRDTPxGHjsYgrMwgINyESQS9qaErMlfWDW/fdbwCZO5a7sJ9Ck0r1E9DFAtRoYs8EUyAw1unPmLulYmyHsx9MK3/4692Re1TFFP+bkrwgGKNB8ZodQhSepM19wubloLi4oSIcW6mFrYEARqp4DEdkz3OoMGwBkT0rRDr6D79j+AvS6OIPYYN/hdDI3bEBmD4/qxuZWzdhohYcXXC9CiGHPj8dltMc3RId65BsUfrJ9LvcPaGcehqP3xnTTz3l1llI4r/8O8kpJOyFDwL/FdcFnjp5A+4TpWtdErUvFl2Wqap9ara+NpUoLzKT+QM02Go+ts9jqeZM7110PL465WqKCXDKrjWQzCuGifBCmC+r0sIjc/tEegn7WyNVK3P0Ooj1zrHCxWGI1TyoTyHeWJKj39xHSKHu+/5bOMWQf7Wu+apJ9nBdEn7Sh3Amkkwuzz3fA1BSMCsoi+xPLOIoHPwnAtFQ06IJpHjDMJyLQa8gGyLkIGwHBqYb3eLv73zKWwsbiinMLL854716EH/wJm/1aMStp6sFxSUfw4/YumEMsTqL4M6szDJperOI3eOwxWjFlqP6xsWBeUZ5cWLG5I7/MdoQBl3rwCIlflYPlPqnPVMelL6vd4TZyj/h0cFrGw7CFUEoV9R6vKLkXl7cez0hSkFQ7JffjCOYRdva9yRX9pKdZcNsx+iTgvqL8pgrZdagiZwWoTA0DflvGI9GB6pKfwsH9CiEpBwGeE6I3PgZt29ouJ5A+H26DVrzBeRdi/++qnpOHTXJe3ajA/jlMsRi0tSHiLpHGzzMZCVajdaKene01iYd4QMlcheRrEy57tW1cpyz+pC3fkVpndKnQD1E3wo/p2Ez/kEqRqALDRiB4XcnHX8zaXv1HXaNXXckTLfn5cTUxD2Kdp+sUYlO95J5gDPQ8fe12r5Pm8QyOBKxbYARy5Jcb5OxxYhUqyvSZT+sz3RrINQEwwV0jqpUgh8O0QC3aKv43uZe2XVLHNQpWeuGyxIF9a1Fy6y5x3VIx5FPDUn6eq7KmwtFTte1KHnGu5w7rVBJRx1klD3HQwSfJrwQOqbsII+rcdDSHbAI+A28OBeRs80jv5tlsf8ArRmOwhHIrJycLVvvAKx3JGjMWrGBG3Hc5woI2EidnzDy9+7g8dsM4ssYp3tudqFoWWOxsWN7G7aj2WedqrYAEWmYCw09U3SuO/U8v2nVuBQHP+FgULp4cEfGP5uphBU9te64HK6/jpEOUzeGtCJyqTABGxWSvhGmG+M7YJlHqARyE4Mv12sJlPxJmFDoeabNqB/rMyDtQRBNj4sGwzC5HrVT89wv2CC2PC0i6KlVy+hfEl6jCMuWGGzPGY6lGnS2+HQBLWx6Dy6kHOQXS92E2bLlOHAt0EGfIJNNrWKFAWGH+VVuMwifgbtw2xZ+8n/KlJ+wK+R6oXvivo13FCR3/58E2F2RqxLTO34OrtMRyPb6IWYZp4BgU1pDG6fkBLoQqKaMYF+Jj7SQ/0Vy9CqwBydt2PwiVCMS4OJsmNVPSGZcVADWPUW2Yp49yXGZ0e82/J4BTFuDlixTXCeYNm4cfDgXPD7og/lqyIN9k/EdLB7zvOI3q1XJKUScMImSEhkm9LcS0n+rsKRzLBZvXy3JezBK1rSoQTZ7VonXE7kc+dgObA3rAz3WK9MkiOplllnl6ht0yivdX4CwzJyjXRsUO3F1vaoTBdHxR1stKzYHZ9rRuzHEp6SMXstixHnat6Ni9AqoNacZV7WdVk7doGb/KaX3a4WNUCddbVDtFLh12KUalWzFE7XXFvynY2J2zFii9HS3FFKHifKF5Q1RdFPy+dBBiiXwR5+U84647jrrLvGnNPF98RmOb/KhrIQ1tKvXscZLozdmsTYELrhPOBZg3FkXtwY5zA+8AgbikPs+N5UfM4BMzS5hC18ryOB6EKwGa17rKMal2A5otdvHlECVOejeataL+7I8Nsae4HZNv9NftewJxJQdaDIBYsPd0eWJzhCGuq8WBevP3z25kv1U31TTB1jX9WEgZX2kvibvUnaujIzwP1SrSV8tHmTAELl0oRwTam3YhOQhXqw8+IJ4n54XSXqrMlELKeEJ1nKapoQYBFTVwb2rYhUD4iJWo0zgeGlXJ+92jnIGgP4I0BHsFtmwK2UkXmIWW6SxQPP3+oocGHp9AWzp8KiBCHUhVO+x63xy/P5JRNZSi82l+mxmCr/HIrAtLERooVl3E2/aGZXoV/mt9wOj993tmk9N9WR9z77LjCGUCbag0d+Xo/jY1iursXnTWPp+06lD7vlpRaEegfr24Kl9J7qqGb6CEO9ZrmoCqUM43R/ITkIRvAjQ9TJrSmpqXGNv7eDm9zJC5edZM1msHryjasbngQ5yFYAG4GvnWdzZGoaE7XT9FZd/8S1K+aQyU8hpCXRghbxHynJXZN7nFS1WLURQkYuEIfnDhwINdcsbYLkD+my1RB7q3qlXtJOe2qGRYGqZIuEnhxY5HTjz6D7idm1eeNHnIp0S11o5IcSpMIPw9SEsyNdjwDFoBkTHFwqnhx2xRZxjLQ12F7h5KytzPyUFuF7tudwj195yJkW7AwNS8RAGLe27mPrUQ175qoeaEYxXKSE3MacVb/mR1zR+cVZD/jDhxFzdPtuj26mipz5QKXq9G6cMWUwKQ41wEdm4ImbXP1MTdy4PzNgRqXmxs8CqEdWs/h+TSb3TnCSg92IKBjM0wSB29hOoallZD96T6Y9Gww+SOyVrpZ1zfwahWGEzY0pXIqkkoHjDSyqmcwP9HqvLqpwVgjq/4nqgjcgR//K1qSw9jVDpl8lv2RyQyQKNopup9MCIvuIWquPcnXiAk+6BJj/ICZbPhOulRif6jQkqx72vE9B2gtJq7g7Sdrxrz+L3FjuuFm4FKoeoAKyPUVxLL3nhbpDU+2yyCP5S7jvpldL9uJWKrf1JmwhxpFX+Zk7FDvlUU77+4uyaZv1QUrLfmw1bKHGOEVv0lI6NiF05dpVlHugtfjPO0d9i4jFoDOWAHl9CHEMauUHI86G9eZ3/tybDzewuUoGdZ4Gw+AGhXDnduZ9lfVL0G2R+SaNdftjoXBs/+g/bv5+vPYyZQA2FqqgLFgDyAGjkb7FpklR+95MjXDMsJZplmVykEl6c/e9//Rdnvj11O/RJofrHwT0IfToWKSlGa+ZdbTncMIvpSBWYr2n3x4ck+1HfqoZa+fG1NVbFwfd9E5yQNPVdmmUuXjzLxkN6a+KAb6NWi6KxoMq0BtBvFWTEo9L8X37hkDc4J7j4rCrvNr5d4lngyPy36J6n2Wb4KK165VUpMYYvPFm6xUwrxI2lcYU9n0svq0M2JZaZFVN8TQ71tSrdKyS7lwu7fzyn3Nxw6BSrMWI9vbq5Vcy5X1QXTvGK5pqILHjMoYoSQXSn3o3Da4v9Q7ZNO3q4ZOxkIMIG1iocANiLNYde4O/iiXiP20dA3P4YIChq2/TLP5Wj5scgy2eWsDetOO1xjC3QL1IHl1xOd+8f4m9fK7wJmEOhQQ58Y9YQ6G9X9tnxWR/R1qYEAOwuk0mnNfLiU4FMm0Jwq/4VgS9ndTH52uRyhWSwES/ZxUvKowS0+tkKeZsY4twycT6porVR38tUFMAeCJEI1227qEKYTPlF/ZoEzQyCy5RwqerDhYVGbddcauDf7aM8DTGhJUaqPH3hkDgL4g9MILITiBI2gtmpdx1Q4e6UqGoF5m/CIN9MnBd3dXZLrytrjvv83Wv0Utg+HG8iDYWBILoaE5i+cuDpJSNrmtwqNIP7Gh11AXUPPvPUl4m+SUAlthr63Rc861ujlFXEIzanPkkYunDpQKSe1uTVN7+aSyiRw9bU3Zf39quxIdDnqARZijKrUMZDEO+Z17lzdNDDpvNgsXNTerQJgSHVv/gldYwPqhvP0EM+3hiw27k2AnSiwpkUztJX7Mjditaz3FpNFCnBDs/ufF44NcDfWSwuI1MN4xhQZTFiq0fjw6T6gcCNHQBra+qVhCwvLVOeiWM6S7/d/CMmvAa8agmYchevrczIuPug8bXElvk1WtZ2I2v7l+ant7anvbVSuuQsqY7gicwJ6A36pu7XaL3yEjEXVoP0PaGWYZQAnquSjkrGjuXzMVhYdWs51O4qfnHNS+FK6OJgXsoM3BdS5WcSpDwl3LlZv4oIyKbIoh6vn00v5vV9ift2dH7mu6lE6p7LjQkCmUoruUSz9G/L9TCZbE7hZrGlJK4sGO0mQ3srYzLqudOlJNyqeGHtpHBAu8Y7n3aWCo2LEyCQjBTj48vKzboH6mJvuDpZhXi3qWm8GcLlyE5/HWsUciYfT+06lT48y7zRmCds/HbJqs1YonPvYV/ayyDBklOCdLfyKXyLXts6ssUb8XAVDwg2LoX5ldvjbPN2oJau88e3r4MI5RaFfjMQrTo4WkGmAn4abJzW1dQe4uu0NUkOGOvsrlLKu9UqBOgJYClxqJ5D0vMtOYd0DQlhbZY9YosqYJVqUWlkuNXgOvpPVUp5R5c1K/Gsx6yDMp4b8utTlakYKZWLlpQ8tAwUJGVNaTVBVHWDy67FwzeYEZLKT4JxdvHH97IOPWiGNdOpjT4JbfacxFR0eR7MxryrWpjjnfRcoVBErCobfTaznPOWc4iZIi4WKohmmZz0wZ/Dhmdg406A4KFM6BR7ES4U48yKJ1NAlqT10IUYjTNTRD2UC2gQNluFfpN9h2Q1GqzS2SEquzfn5x1hw7uoZDsybkJIzEnpUJUT70RNOFDr1MxXpqvW4AIBoaXoY8z8bi9JWEez6fZ0vLhNTUhp7XDbO+e/pBLojUEZheWL8SUdyIkDf9SuBZQsyQKeSOZOZl6WuCoKbYEGU010yBaTQAVfIDb21LBTYhpkxrJ6eHuSTRC8Zw47ttoM0MGCdbQjNWWpHcNpJprAk/P9X79izfrBP0JTZsEL9KO1pyXZDPcU7KzbYMuMMW2nC/PzdHyyOMNT6Sa1w6u2JQUO9Rilq3yYu+YTMghPJZiHxas0OoJvUm2Eb0ylwGkcIgI4C+GDG8EDDXp1xohuUSTRRfD+ynECBV1H+Nfz4FsURFeXQ9PFmAKCGkkzM3nUj1bocgCN6WbSsXBIYPiXbSk1kJG7dpUxQ3n6LvmFzqDvj5CPT2S1/kUCQtLu8aEUoazU1nJuaCl6PKPWpLU0p3OX0kVVSEoIwCW01crQsIfMtE7AJbjOxNEZOkKe+QGPS6MKh45PYJqF0DugyMMEOx2O7AIIWgUYjxccfiuerSFzvzIevEsky3D4pyQhKaJT+lszfBCm9mDtgazT7hcPS78BDyjk0Rqq4iKI7Imj/y3vY/uS22gwVCTS/MmF1apScLtocDlgeZf0J97umA62JmFaXj3wOh5LVkdIs6VJYHKbMZtgkc0/ldseqv7AvM5mkEryDInvr2V/PeBxAzbA+FE3z1tTN1WPFZogs1n/w2HLApr82zpzxi9QhO6cz7scJigerOLqqpo+IaVEMp5mYwds4tI4qAxRMiVVie/Z6CBbvV4qzZeU112d/qTTu5MnkJrFDw6ml1O1ikr9gNSR+WmH4QtqFv3mtaoufErpT04IgGEje7/C/b/6t2LAHT4Dp6DGphFmweualPSokKBQK2eNKpRSD6PhfzJEGZRDtpG2UcjARJvwtnJ1rHC+Ep4cYzmKdkeZajmLdTWd7AnNAVRPH9T07t3avmK9C19lRaUsWWsP85ZPq8EUmCtefTlK/lW31Q8vBXwcWy8pLNkUWF1hxB3RZBFwvqB0oBT2IL/oo3xeR/pUXfdDB3yYDC5PptzRl6TfLMitLHOxtIq9YbjcPa6DsKWLHilyrkSIZvCD5bWJVEKYfbaFKnKDWMBS53FlNTPrgvnUXqT0Kk+1mTJ6+AEf4RumYF/h8papOLKCnstXnc4zVz5vu9jGYOKClYUexdMA+/EYeHmrD7YCSfAYx5CyhV8xw9WCN50woyVsWUsXuwwqg6+ZEQt5H18O1Vl2AwMjDcejVnE96EL/4JN7kb9KuZ+ZWgN7yhvZ4iJtNmMTxDLKEDQhi8QmvV5OSwp3V+Q0dJbNTwAMskssEfcKr4PwdWU5E+A+j5MxHWoZszkvy4egiFYhhj7ZueYBX/ia2Z/hD9rPeCablzkaDAthNuAfw1HO1wdyMb+WXQC07+arnXl3U0MCc8uNnvy4pWWSzrO1zmOu6oVBTPwu7NTrNdRhK8ZK8yeUlOyyuWZVsXeomTfbYNGjbpMZABad6sl5bvvWeKB6HXGb57DNV61gcCD3mYRYTSL/qaMS8Wdp3g7PIFnYBqBRgdj0LSymzuVZX4e1xPp3ac1X1rksQ54akXh6usfFSug+jEMvWjoqDt22PXtsXqrjbOuuTyQxLLWiJ5wuIAKZYiOhF1xu9dGDxg+9oqnwOe3ZoEyxNUBkjuiMMCbN/ipvOn3Q5vsNqRVqGqoxdvWlpV+UdqZGVEgLmpQOjDs38r01ND1uN6+pCuHrDjT1B4KevX2BRdRJPr5QOOK9Lz8w8JuS+WKHYLXUdMKYnABk5/u4PNx7E+OxFVOAlDumRHIof3LWoIEFlGqAGkjbh6T7xK5hfuoH6tJNlB0c2+oXmtYbWIzj/PaivGhgxFH4JYgphMc9MIkza1Ht9/4uwQs5WJZnlXdvKfse4V+o9vpnUGO8/nUPB+xUSklEXrZ8ly+y7oEc86n/UzHEGGQ2vP4qn2KuKfrkSB7QGi8vHtNwskXElRuTtBPA85lnV6SP9/k2FoGPLg+1sX+4shjT9poKC53AJjnHdOJbA9Jeoyh8VX66RjRjMaYwTlvl5ZfnEUexlmkjLUjcnCLsx6mMxMCqlim6ER/cuHHzZltPLtvYstmr1A40eWSW34kiFUyVnBrgHI4JoIympTCLn4+jn/d0rTBGXPAr1ZHFvfXhkEevrb6E3/s1KFBaRsK2cerhtc328VBvrB8Zn5amBqhA5lutQAH2tjIbkXfuD4Nw9v77I7Bv6nHDeBzvKlCpXEoFjvdHHT576s+/iI7JDR3UQ8A5SgoTDgG6rYFnjz+nQoo9GhIAxXhlmVTqnZWVUO77ZerGe5+wBgjPjWTzRdeKyQH7PTG34CXJyEJRPHvJWqvXfhYbSPoJkA8G8Nevkb1zrQJ4bvOzggOH67+UkCYHKlJLj8VB1HSjTf1dPhbT+YJ5K6wS3ISH0b9vHrZVyvr5HM8E+2adyJKEhkMEv6JBK+4mwwYfFE+V3WhQaaHfRmY7esmlb1v/HWa+jvlQUoN8IKDeVOJmKXPA9IqA37b0dOA0lRxaZGWZwcKw0//fpJDj4aoW73plHOiuZhxXgYq72vPgroFTVO7JxaU2AnY9LgvzCkRZN+ESHCt0YatPnlNI/TGlyKq9/baiaoTSXGwMf/olsMLrSP6vLC5NPXLbI3WHBTz+or3dwsy49whdtNy6GdZwRRDG9tQQ0LjdFjdFYwI5BWueG3F0QsNdyKjx44WQw8beQuq4Bcc3vtP08zx2einbV+R0/67gle02RQ24vuXomV79v/RsYz8wmIPYb+lwdxLkPsX7K9o37wrh3TjWJMBqDZj7jmPTrmdgE2/4it3lkZG7aUw9nHIl8lwKReGijCxGw8EI99LBrOa7CcSD5L0qQPltqFIaVzIEx+7lXXnc/hXVRInriIf8Q4Kcjn1Pnl7YbAAi2zkjYze3nFmP1lD+9ykHNlIR0ecr80dJHmSz1HsjMwgUvsd97VQIQIZXvxoXbozJP47PxxnfSpdmplj9eV07s8P5KH305TZHiizZ0Rrvszx8VCW0xMOWvKyRAeViYpwlT+dUjcIEwagMDFJGVGnc/+XxUI1tJEVqsk45lz5DMdFOwPFXrRMvaPwVgWDKJOxt5CSYG2sEOGprGwB2Dnq/uBjg8g/i7lUTYXYPbP7+r84AGSBsPO/lhgjf+OxYYsNv6F592hvK5v+s9XFiqVhxdU2dWvyOdmeQIx4DEUKbI9TIK73TcoGMgh3vP+VfpV8yc6L74Lfoxjahba6VC+2Adu4Xg6L2bDWisb9qBvXNqvITDyiovjnrm1xoMHYCTVcflKfnStgAZumEtIFRd5jM3WVuDboeIQmWL1ZKT0DlErE3OZ/7fbvEzqA48QxhHWUbzGRUkWXu1YQ4ifgTyWAdjenSN6x/RsEolwKa4g1R1yV1I/PTh1HSHeI//bkEd+GNhAxqKgHiygyMRSXm8wjeRir5gwxmiXVbbUIcYrxgNGmIxpa4xF0hYl0zU186in5u0X5UnisKARmi7Ci0UCuESLgWywd9JN+yRkURXzynuDMjhfghv36+p34uFTCCWA/yyf//+C8jph/bPiTNOTqMqme4c6ujgr9y+fUouTSdvd5jXxYUqIeYDrKV6kE6IfTLOKTkpc4mgDKJxF+t7Wtqy3hCgNEv4DbEA+4E36tSrGKUYAH92GsW9S7mjrEQxuWJdWDuv5NWMp5Z+/CmosD6+jBy7LHuopbO4j0UEgvO4mybgZA3hqjU9bq8ASk2fnfGuUsYQRPGWxqaAnkC58oUU8hyc75FN+swrBF9MjTtLQXM4HNeVtY5W9przD7J5po8Wpzys8K9hmormdK5GzKSUWEVmsv9rRfH9SDySAZGaMQALy303MDpeH2VpLwzk4h3a1F8mog10XtZZEBakAQqtBsJIzBmGfu9yhHr1c7v7Fprcbmvsa3N7zJRGibg4Wfmu2QaBilq/5jbiGQVhJr6GC4uwp1icoMERhSSDpDwvWGnV14GqcGhKplpjRC2SIyH1os42otAaZsehDQbZf6FZZIQ3zY2ujepUpws/63HuTsKUFK/jAmWddxGz0ejERe6N0fK7RFelbORSgi81YR/CMGr7atP1AVWcumEC+u+aR3Nl47G6ywqrOOrIirs/kwzD9tfb4K0idP6LTHIgKSofXqt+e1bUQcoovf5JhWeUVVnauVBBbNFz76ug9duPlHWBOmAL+C95sQ+5mLPdX+QVL/29EVxxkzZmRx0xcsYJFYmPxGjW3xMgQYOL8gvj6L9ccL3KY1Luw8C0YJrZErVaIPlOZ0SRoRhB+dEtvV7g8w1rqcng+AyKP/PF1vjnxmWyuiJG2uRZDbpqgTSd/57uaD6sqS+PTnAVW8UN1bBT9K2E6om54FAZnHVrAobL6PsLc3FQboYwCTv37mKuCJmJqK1Te4OKOc3InhtQhMiJ2VqomXA9T96LokJQ5fCR4PUxuZwTWPipJxeoYwJexSy94lzL28avAPyvfp3Fp59Jd+PNWEGSK8KApzDYtu/dCc3/gJbiS2DOUYUUCumzqIwv+aNZsu3cfiLZqpaatHs0uXc83n6SjQ2iUxdz2eu2KdZfqUhDpgD/N2TQiGtFQF44+CvMBfhcC4v9+lhOv8faS28ljnqNvEOCJ1irRUomI8IGkZFA8nkmSmaxoVNaOPanUUaG1jUp0+Is2KSqY3Qqi/aLUxH+WJSFGashFla3znvw262lqxW6fl9/OSGOu6eKs46xeghJNDZrJdrjoq2e8UZXCARZGw5aPNVqQbR0RAT4EczDzct0CMGIhJt5uzPurTh8pwHc04ZWMQ4pxihFeQuZ1yIbDqPzpBZggzY3ZUmzlHxh5JiPtlqzK+KM5ZeIS8QQwcjO3Cgu3ps1VyZMIzUJ4IRitk4U90NVUPEW3ZuaOfsCREa1Ax8QG6wKlupAoiU0wBtwkxDNrtOpDHQFocZq1mckL66RdRKYrqRRe1svRUMIXfaeaTGizF64SOmLiOtp363hm/KRntYk7MnZFnDxpJ0XPI0C2LTkLB2NRXs1YGKndt8At3opWuHsV3kOftfo4blXAd569DPWL3AOVKxQf0VdhaqYKW3qKORGjvEiiWBlvHbt82GQLW4+knOrqh4ulOYauKAPXkNkPcnUOBOMByeNahfErq1O8hvoTPbwzuVgPVQOJk7fW+g7/ivG2e2rLp+75DNRcgSfRdcKcnS6/nPraVyamdMu6BljqSeoq29m6GYN3BEAXcBqeMt1kNSQMyb0zuW5aNRHQu7qnQC8O9wvQaC6tS72l9FbXgqtrlebn3V0VzB6mZUbGHq5XV7R0NxXQTAY2Ei1D9c4UDXEezSM7karjpEDvWW8q0RUcOax3MQTjWf4IZy93m6N36c8QEwvdMWD5YaJzR+u4DaD0FTKN+Gs6uI/64KZuEf2y5paVFCslQcm0bGQpBXo13M2guxOaEaEFzydvIoRo5/OPlyn6WDdgaVUlYVZQjXfcp6Q8f0Ikj6c1sSyHv5gtORGMD0D78iaNMU6L6yhiUCM/qtT5tMpJ9HyWK4SQdOC0k6SkZdkB5BL7i1dXBpvHUffeu3oz4iVG2eC6ouC6nMMGLOWxqOoW7QaUPWYDLIeF/IaanUR7bhahp7rsl8SdW9h6SFVrA4rF77zm5+qlFPNfKmmTRJiDuPCzey+M5exG1azURPXM9bpJi4n7ULAzep1UODmvz80VfpKIEFaiq3dq5As1kA5THf4Rnk3KAuS5gQUcY+DYOKyI6Uum9twGK+q0m3S/KBL8M6/kr5xWUa0Ssl43uFjqzXhvHl3CCSOZMu73WpH7HyavonJBgFEJpZM3Jpzy7ZPNEYlcixj8koyqwEQhHn4+4xtYjn/84TEGwNEu37W5h7J/2TFFGmA8ibGgc+yyOdTGAX7D3Rc0GLbrnr1oQaB6OTmRCkib+KjSJ+yMpV4EpKAWqKz1xBTLPvlE7gTJ35d6TzzTbDxg0sRxMQ+8z0IKiNioFZoG1PA8MmmG5PrguxGQbH9eZCKAX7td0Lpdofx4A7XGUKV/QsJNXWYX6D65wBJx5d/3Py0AMU727IeT/oYIjDZPnyERH4mEeyhFLuVrLfoquzmbQ+2O7R0XZLxjvqmf3IFPmHe+Rb6TqUFB7dbQnxABIqRnFy1mRT1pLNxNL1LrZbHloHoxT2PZtSA7rPfe0/B3+VIfaeCMRRBaZeelCnF85p57PX6phzzb9VqeztqWudbox16OVEr50M7oNiypSRdWIatfUWI5HRFbwFM3kKlicPdQ4CGczvwrlxx2K6Dgj6UMeKAsuvf5Y/hB88QWn0kP1nTeM3/BITyQpAQZFeMcmHUcS9DLy7fiZRKiUqNNSl+j3b7gawYqrcfc8D46AomecjYrDjtEt8w2X5Oh6VVnc9+XZNVjZ5YTcylsICs61B5RIaiG6U/cbMb92PGyMdftrKpojaBLeCFgUj5mw26WaFrHh5wxv0HkaBENE5GvV5PIZmDLNc2NNRdz/WO2YF4lsZcYxoT285nnysL44EatCVYbk/CWPHQoGCNx+pGqEl+jsyKDtESNklsab0yBqIvEhi8NsOEyM+K90g4r+HJuwTZFNgtFAt8gjSF+cnsuOJYaSlOe4cFk2LuFH5ayY1V/YRfxYeWi8GZorD7RuqzPDCxPcIEckZTNM/c8sr6blxHahqFLlGuRoToubIlPcIN4iBm/aSr+A1X+CkqBHp5v9GCQL5e9k4Q1N3RJMJJ2znKAMoCCtUsp/CejOP5u+X6nY05G7YxMYaQkglyL5ZZ/iIklg/ssupJ0Q1HnXdQBj4HfGY0Wvcy8Q6MeXzqa5wkaevaRr4omHFI+wbPBdgUv0thmi5cnbwUXwUXSp9PP4jH1s1azPXlzqUnFG2pKIrvA6iniBmyyt3T6U2RWbJf4cMzsX4YKkBYVJ0u+YkbQWql07tivLK01wvPkRmkjXEqV/u4QmBPPa9FBbKhsMB7ATx/Y4JHZvDsS9+GqG6TnZmGdu3OANjT/NffwfVdpR2HuzHExzkV2PokMjH554NxYmxquXLV2efJaPcC2qm9IXniblUGjEYi4ORdobFHJytjs6lE29LV3ExRitdHfuZfPGWIm573Td506SjOHE8y0qSRiXTJMaDHUOH1AwDsAfw4DFx+wMYOdrwx9vFTNneAi93R3cpSZ/twSN+4fQ/FAxjBRV3vZhpm6zaoGBojQfq9nbWowqEIc8t38N0YuVe0wht9vEKyETXbV7ur4ZhEiC5/Nzt6EDSZ5OnrjEql1fkgkT/MzrziKltdxZLzUH9tpXu0nJu+yjiK+A3ak/KsCJ99q5encZwgWSgj5mzNdHGN8kvY+ly6CJrJijSqUhwyj3G47E8382aO4BLBXsv9XkunJ1WTyr5PEzHdGSd4L0IZqd69M60f70La5E+aRa7HGLz+NCYChziUKE/fAoNJskmREeFxWzerkhYN1cTP6RVWyjC98ZJBQtDhRJSVWIQGumthi8oSIXP6h58x1z6KoIsZw60OBeysOgtZvCYm2YFF6VdghOX+ewyCOG1c4+s/NZ6Rboflk87OJz+DHhvxYLX5SgVcY3REsJfVRlELUQETqxIU08R/T1QbW+05sDtaMbDxfIqhegrEnTp366IEVlaDVmQgs2mrDACkJDyB/ALnbQRxSk/vitjA6xQCJGftU5ZgAPzWlXbt+Z9EyyGZ9M5bnc7EZO7MbW/eR0tmp3rt5vgVxJrchAnIlDMv/hzbFORztkk+q0wmIMrhLmon+0q+nxNxLPejBBjjrOt3Vl9erKzrMMnKq7PmIFFcR8Ds2HV/67zunsOE/YezYbWTWZnMOKbGuW/o6BpGisekn8vIUvxWuNfkuSc7GrpZWYEkkY9hA+BFjnrMqpc5/wlzWp/E5t3k9PD7xkaPwAdUMEe70qKMJ9QUjP491jSNeYQk8bSMLAsZBxsI1TH0nrUm9jZsXCBu3k275RwgIJoyXGSwQkwNWeyb2ecIrc2psAlKW9xmL9HnF+N83fJW0xyie0/3i7KcY/XW6urwBuOexgC3q8EhgL8JRN0M30qc+f+7snCF36fiTGDHpg1ZdACLdLuXpYZhH99e/F785Nc/ZsZPVQVFN5NzyStvvPS7JDab1kurxcfHxYJ4KDmS6zS3LHwR8UEU2086+SgGEH7LZlAbsjSR3kGiCZnSxXRshy2WhVNyhe+RzhwZqADrJKAasNcR/QkrtfhoRU4LpzeGTdxfWadGtE/M02BglGF6VEqGKihCxow0D9V2IrLe+W3O+QySO5kv3M4VZkFbS6sGhz93KM05AGNtTX4K2VoUuTgTZN4atQIvZv39cAw1evXAFRB+mMVVtokkjcR7IZlF7eo2fkIq8B/VvBIhFlkBe6WTTTU9HT57tLPAYtz78mPvMSi/Z/8Zocl8oUTY99Z0X1udCf8z5axib6/86BT5aeNDmZPiC1QGngahIiypoxdUk+VNDkhvJIG1mM4YnV83h2lYJw60UGjFdpbaEzSF0S1+XcVRUCO21LV6r3F8A0OLfRa/v1YyYHrPUQObYfekOvDyI8lZawdlhELHQ9D7HfgJf7EQmO8xGeOWssNJk1dO0r3epPEWaBDGPRgNxkLqGpA6+yUTvTyh7OFGX0mXASMGCVUY219LWaZgyJokr+gXy6/cBfCAcoH7gC6vA3Nyox1pIxN2e7WC4Ncw2OMRVyhMNHxA0ealtVvsuvnjFkIo917uGQWEPyXVVcnEgSkmkrCNcNbmjT/OfshBKV8boGAV9j/iMC/92EjvIyNUWvWijVQx+IEfVfomVyPd2J75enUm5qh494TQKqLN+CwGVRMvW8NZg4URpa0AlnJfJvWt5WR6bfjXJa/vghiu4LecjqzCTXsy/T8aq0sf2uMlE4UB7vrECD3c9Z2NfRVyprJ9dG071kdnd5cQ0dZ24Nmg39zdkB5DHppvWmKbb6Q1uwrPbL63jPDGnebpyVk/Y2eCB2kc0knfPW5mtsLY1rAChyAQxIvlq1EpQfxaqQ/b7iJ8I0Ql2oKLAlcBaFzkU+QuefCd+HlVWsNVHfE4DtJXwqfxvI4fy8yzFw67sAP2JN09gqWYohaundX02tFwhCaobDMh8OA8bpQIuh48FQjMx6Fyfl+kGgIvBmdtv7df97t5AjiUhaIgZNxVZsY1/VDYdv2SveZd1EB8q7NnMZ7fPbkm1V2ViikaBbs6INdiw/peXO42TFo0vTSWFON1kjQH3RDqb4eprQuaOb0pLTA+hlzhJhlDzQARFze8HNd+wVEKkJBetq8sYSK+ZJ5VwSgK6kcm3a+vyjdtCB5O0LxBpGMdhrQnbRhUlaWu+A1iq8zD3cCAaX4LCFNYRvX3NWcdjxuWSVPrbU6i42JDBeXMMLDjc3mBC8R1o7Egf4+7RESNFbyu+og5Acgpqw7V6sFcDb62FSuAoyifq0Gn8pSgivu0qSpiRbR5oIowoqzbLQz31DgtvRjS0wAvF0J8p+t5i9anKLKMs+/o5/3xIBpdAQSEfkvX9CYQ/mypwA2dBkx9My3zvSfPxo19pH0qx0Yd0rtH6dxv35jTg6zJUVzxWUToVYjd8an2hHwgFyxCxBwcqLxZeaHOZ5K1TUeW1NZQSD+8iGJ9LViR8x5K8v+XlzCV+W1/F44iFQtHSSHnj0LO+WSkDmBhJ21YHdQ/J+lfgZVF0Dd8ja0GW8bK6tG1XXUwMxwd91F796e4IHkMBWGXlKsDPgxuD0eXx9+HosQ0ScJC9TR6LhsAYOT/gh0s9lw9st0pd5SVqD0h2k6ylSeIWLNpaTtxRPlYHvrq1zh2kHhZwaDO2GtBodQ5Pw4UYmvkf8GFNIuYgAN7hKPh9TClVa/bpVKfuEPVyDjfo748Ps/qsRhGJ1hyZsPDDa2ZHueEaprrnstQMnpEa4hWBygoSUlHIp5aMjQhQqOObzN3aM3PURqSeCzaB+S+1fGRg0WQVIEXVoNswgvDxeNuEj0p02iJCg0V6nsAdv2zjo9y0EEZ299QeR/V+c6lU+MX5sn4HaWB9Q10wC3JE1ckCivSou6Z9ChI0wBNXI2KuyVlSWKTG0Lc1nSo934+DQ8GQELgNrMyZfx+VJFrzeWctPcIzobkO4iBdenDVkVQeEGvwh3ftcBEXVMd4SKj+Dq0GQ+n7+DmB65iyM7HHp/CSEysspcrPM9fsVe2Uj5EVFqY/Y+qi9HzIJKtGJPAvlwCNQjc2GW+2jjf5tYUuFxsbUWbsvsV/vdFYyTWjU+bEmxvQKIMe34xhrgzsm/7AZPyk4apTBFhjyhdPKbrEjCwxsMqlKtKLK/+oI2r3hhYWAxxLIf1IzuczLP/3Z7VGH0V14nZAzNAWJCmwhi+wb/IJ2jDtHcejMBXoJjKfyK1FVqGXZE8+tH+RtThDB2pZhhMiES5Y1oY3914LPkLhV5RD3LXdqixK9iIygn+PLZ9AqatT2rMT31LxvgbVGFQjrmeuRZvGR/rYZiSR/VGCm42W/P/I9vQr8dxfpHjXAMsMPWxKWj3Nhu8BDT4AmY4K8bAVXUtbM3g6Wn8z1iQM9YpeZGcLqeFoymUHdqHfto1AdcATew5rucNvTELeXPMR0Z+IiqS6R6HaXRteHoPnGs9pOeSLwb0nW9rWdX66YsJBujeqyOi7DpGARG2g9AeoT+3MD2sxjPWGhXV0id2fJBnBR0fhI84YbbOx/FbX0ofoR6ESZuB/aZe81ioCQFgpvhWUU7UwsWUm/gqHJbA0A/MerJwAbglg56AYABOvAamMBdvE6vylb8ciYKwIyJAqANHTKlnmA5J5QjghIgPDr2j63bpiM1hW/55wIFLRc+7+1euU/3Jnw5MoHmaWeXLKUAwIqTdxiRlLV/0MmSLsXkiJtLpyCUJ5MfJDCLGPjcOsN56o2aNCZRVguxL3hzpOXRye+F/GOLp4nUlZke8wtOiVfqmWIKiFekFdxtDKBlVRmSHyJ8xbu8A/3oLyou/79hmQvHKZ7DofTdyERmgXUmfqj2pavIp2b2qYHAV/GP1Z5C/c6BWYjwVhAGUlhG+g/0LjS0dghauHCZBgS2L9iZQTAlN1nAVDOYUEyaBG+FSujDYI+LehnZxCfVri98LDY5fbhOeuyctFvV1HXwodm7yqZQ0SrXBc+aIpgN6rqr7oxSs2Rkfwc9y+hgWMkqYUJfQQNzsEf5SgEQoPny/yifWWtnxfjbQMTGo+OvYlbI6LY47McbSwjad60oofHEsJ9wEG9P96PAI8dzE3n2FEOBC5t9em/GhHog2+zlGw6JTYT/TaEAWB02AUupOj/arMgnPRI60fYoFrIYfRxM33Msc2cDK6wPaU1k2Jk2RXik3U5TxQ+Dol0qxz2fGgIIsOJlvicGnBCrdwGjp4b5cdjSOajK4ddJg14a23FQy8DOFPBerVjDjGYQ4ZcZUwP169DjnDtw2j9KwjePBkkZvabTecQJDMA1tayJ+rb7bZo52mqFJzrj5Th4PubygDdlmuorBrlFrC38bQ1261DbWl2JfLPY+ktMyh5ps3EExlK/A7+w3JfGQwAteQ4W/HFUt/+iIo3CakrtYQ+phL/MxgBzKR7ehyyQ8ZLOiKouHhQC+OD4ZDfWrd79Q4bs3ff7AkgkNYLKxcD+sekBovWClVLr8/J+aei4aVHRqT1z2+CyPYL29tFpqxZYfLhNJQ/6weYyH3t5STaGO/VkPzC6oOoq36dMJwNGfZB29Q0e2UJjlb9/+esMtQP+YCJ4Z9DDlbs1pYN8Tl3C2NPzqWL1aJOEQwsr+c/R8fHXSAll5SVq60vFnhM5pPica6J1qelfDtLyLiova7OfG90hrVwSHzAr2nK/q6YQulLTAhxlLSCBAHdqRHGjmYim8Q2MJYlY5zxEfGcmX8wuXzLuYoEDX41vpAdUbbXnY8yh4PLCD3NccbP4C0CGqlAkmmgLbHNSe1Qx4kZJs88WJGsS+uvXJZYmfRUQ6rlmHyF+K2rzuN8UzLrMJF3FC4LKo/81CWSp6JKiMMFXxVfODVpNxQc2GE8D7wzI0HObxLe+kECKGw5eVuioPj8Qrnazm74kYMU8re5jYG8SOBxA4r+oeGzw3GFW6uBMq7C9iQVjxOyeWb/R+gnSJNWbWsEwdeAdi6/udRi347BinyHKIRcslxoOwpXwYKlgFR2V5e9Im0RWBMWZUOfVpgEZbdjY0tGshth7wh7IJsAcF4Wzs1S9SULqKmQ69C+ARAg+S+6LJ7kND1dD8GcyYiNRyKoqwZDpdROoal0cq9338mBsHHRqgGmf1ty/Ifmd6K3fAhVSyYMG4O9vdODaIKCLpPP4nAUw4w3BOLL+ivksLen7cTMj5J08gAM3mZ+LxllzOnuGbCoZLF9B54gCJm06Rf29s/V+R76pqtMQU3zTItIibyLBWnm9vTOfVxYuueDQeWidrrZeac6DyXE4JQL+NWJ/kghVhp2ccjqXudXfbyny8Obibha6Nh+Hd9s4p/n3rCCR+IAbs8IbwOqEYVntsH1ywDxd/Vq5WKJSkdUsSdklWxD5GjUbkosAQ4+BROF5HIxLZZEKd9mmw/U7zBlc3dUavP/e4mHJM+6RMwdN5WyYgF/ZxSdvdkplk65UGgpeObBJFG8RoQ5Ue6MZXw6ml5AGWfz3rX9ap7nibLKFIM/Ce1/Ew6VpGcn5gFp7p4rJov5JoDXHgozaydgc/hTAt1YLPDWtx2K9vCxAaiw18YdZcoNJ8UICyoCqy1n0FxNTM99EzbllmD8XRZUgdysOG0g75AVfi0d8frxU15E0tZjcgOgDj/5p/NoMoQTHzJhFi+be4e/vKZzc8hStgeYUvNa8QUN4ZJwMIEQHL06Ke6t40h6HQPEgGStX+saHXzp41035Q++rbFdgUUOvES/gmmhLaA9VFQleTLUlWBlel347KmQKW1YMQ7hPvEEDgAj0Hzza95Do8OGFnw/zHwWeUQgAK3bu18Q+py7+050Rptj0tfBJb1CZPj1wcBSha6D+VkC3OVPdAe5GVGYr3NKnSj3ESWkRdHAdRpyv72NWwwjD4RFf9ApHyCQm4MnIhrJXZAOuV1bzdUbusICa/4c0G2UM2iFc9FTtotBz/LcYrc39o2uSLTSmHqBlVh57ztMA2RZtT9Kxgs0oa7H6CfuL2TWFaAL7WU1nzW1xswwcP7XFlKBVQvWtPhke7xA23Xrc09Jt19QS9ZBzpS6jO36jKKoDZV5w3RDVMwqB5dQFGAzEnmY24owpicfHgfgN3XPfEwwyDgdqi9Y/BZsfIZf5BdUuuuNEuKULY+jIWwKa/cCnlvWVtRsoIhHg7spRkV/fiLsOTnSDrN6cjVkoS88beirzrPvxuDxVPOKiXIyFhw/er6tF1MTaVURfgzns7FunQSY4r0e6Mp+nDlQfBBNcrUArW/KaLJJliSAHIHsaLQGQIB4jGCjCY3mNoN7obXdNf3fWTTGcvsgHpWVgjNaHDJqZWL2MWtfACFlbAcUDvxf6iMGtN7Yu35TZZo9cwdnczReJw7QNIMYrul+u7tumJ3NPPLg0USxMm6nMBrP0HxMO/5HTC2pKMAUowLzEMBVrKm5HL4RPKz0MfvEM76Ap+wf/Ma5oBbCuijXA3LHwzB4TVI9vy2xyyqfxFx1ai153AaOxV9AY225EBw9pzS601aGI+icnTcMQVZxnqnxbV8Ywwrky6nXaCXB1qdsOIzHmIfMI24I3ydM2/izOywfsesJvhLe5mzQFd5me+QLOqed9utfBIfLh571ZiM8aHqxAvBoSmv9+0H6dIrEtiAOikVXw4WBjquOKgmDOBcxao5ECciDuU9e9SiFsHLbHZ9s1pLoGrrKfmCdJ5IZYR2xJhPH2PgBaCZYfKkvlNC0blVoGutGZEE+eUR4BjetWSqP6RPvq6ba4HSJoPyvx4N+681SBNKeq8Wy11CdVZRSRQmLhAmI5klCFi9+ZZMleEEpEJ8Gwqoa+7G4UYIfhMs1wpwDa2MeCklBh11m8+7TmC/IRR25D6zWlCtngALX6Nf/ED8SbfRaW7haa349BXY+oVb/ZsAMvHDVEzQyuXq9Iqwk2KADY59AMuLg0VCEVfT6lFj91n7CBpOgJvLG/rDEQmiY91VoUsPMWdCkV0RD2+x5z+dSbyX7hl1y06yaqMfmGUc5O2rKB4yHOKKY29vt33RX1lhTKyOs9lHL2vBhssRr9QjRfR197bnI6N9As1QU3SVy/cqGAOUXVB9OUhMl68/r11rFiz6NB+b81LvEJ3lk3B0kjFZIRnXLnhGZr7wZJSo3NO2zInxZ1n0QJAVMoQRDyiVqAYdTRXuCQFN5WSK/EEhe0plfmOuMSLpZ5UfzdZkfjZ/g9CYLCHkllQwo0xqZ3MqPBuT0aHZrTRLvQxERBal7t1x1xJ86oxjxdwK+r64ACrMJaQ4hltURRF+amEWU1mxTPwpaoIQo9Q33xFip7cj7uGAHi/spA0smZO4CgBAuvpuXcWcwQjUjTDJFBw3qBvKXf/6QS0BtqeQIEqbmtDKWDcGlVYPxPC5KahsOINyi7dKmaUGliiZKpHDnQPaZ3EY7nH2XUkP/qMTGZtF7Mt0bB092RnTKTKdUP8mDxeNK34lPKWdQldXyEUo8DuFG63rT3705OBV/JDvVwSez99CXC5x7XjTsr7tzYVHj88j8va0/lQVHwRIEgGV97ReS0x+czzTG8tokzfc98AdBJrvPLTSfB5fKsdQHIM+JAIvrashJRyHbpEMb7jaGbwt3zDIWUTbWXZ6M5oQ/p4J4+wkAe8cai2swTd9b+cTltJD0vaXSPnx5r8tv0B3mWSS6IuhiR/Ryt1JeFVqmiu9GEqQHY+BoIp7Opf/4HIDbAybWFGonFL2soCZoxCD59ppSAq7S1gPXufnn6LYYWMastXDU2RGrcAh3ZVAV9AuKzMDcEa3Taeyd7Cg/4HutIniLQJg185di9e5RWnjW/ZkgY2Ua3/F4pC1UvhNS2V9wpa95JeJlp/NkGate/wYUfKWAWBKM6eQUoSVueUHbc8szsIO14V6X/Ak/p6CfSX6ZIxMHz/6fzxNbvJHvf2MbmDDSLDDHZTMMAAmcQB0yvQDNzYctnP9Nh8yyuxbR/an+fLANJCyDYv5HSzA+A/2OPe8mcgxmmnqk/+GU51S4XU4xWLQcmA6o7ZN7FAFjgUt6purW0yfYrBqj1p5jctrfru6abdsDeutDmEFI+iKBGrb22flGulxt0qdrFGf2HjecqGmBx0Xrr6rqDUT51T8EZhgEZy2ubbjmLaWX21cRsG9fFJvdP1tIszDflmrLaWB0vWCNQR10cL54kFyDbjRp8JrwuxsW5jjkWc18HgrDq76AjEYMNb456iVoXf4GgPNWWadjW6M3S32Q5crQUkzz9ZbZcGt5HZT7zzEKyVQ9Pd+t7ZJM9WIqAjgAynSVkhMgQmymUyhlK+90vWiXL6jXsV6keWQS3UutKfrHiYn/3wCaz9oRA+loGUOe/cqNwnRYZSH+cmuOQNgAGDyrWHsp5xVPh+hnR9KXttNFcBkFYZaftoFe2gce99hAIbfuVEYL2YSDCHQR7740Dxb+pzIjFlX76tx8afsgiA7oTqzbVhlzfCUj8w56UP5jPFKORO+65FUPXZCbPaJ/DjJsEyZ7sVuEgNOYdkNYF8dTxSm/9GOEXIQ7i1VETqrmHyptjfj++R9Ou9XfecUXW0YhYrWzggiWsrN6CHD60HydQpcc0fHz6QP8vvsoYubpjMMEerW1pg4W/Jl1q+Oi9i8D+VkdQhx8sDmJRpr/MZjGeLxB+J+RsRRv5L3OCN1RVM93arZKq2KBuflB+7zqMa8wvx9lj9MM7qac866By40C+JTMzpITZVIF6zs0MyFs8BDDGQ0wn3oL1qCvkgd48YO4rGsV6C4Zd8idRpYtM3iNMJ/RGf7cJqvQ2XOg1p+zOn0u4/LNokBJDggGyamIKQH2VsLhWb9fmOgxaK5ttpUXLjoQRGRJZrvFQRSuoShgDXEM4dR3yzpiTtnGRCUuwjNDyyQ/nFyRyvPLlX8sr/AvxTRimqV9RwsmzTMQAYbP1AXmCF/DcPxAZQ3NS2jWt97uIgKC2HBRyD+NDiYSXg5YoOTYKk+48tEOHOhrBS46uQTi2lbPha9v+oz84zwjAiwE79oXeYTWxy2HEnjrgJ98V8OdJnX0g4a/lKVHXtLo8mq/SVO7q8d33etLvJK/SlT1XpDNRwUv4yFkK2mBTQZ6O9vtgTHXGDlLo+0XTGrpTYXjhWaVhanS6KNtxa1wab2u3ia56Ehv6mBtoS1NvxnogTudve8cwcXm9z0wN3pLNXdFxxlGZJosf6DbhkWDV3CVsZ1t1+LB4k/GbE6YvS4ANsZbOsqCt9YFZgT+t4ZmVZEL/liEuzLqaWW2TQ/NdZ2zV27UcMPYqts/1uyBLVIOSrOQE0D3lvgCrA3kzreVdYpT1SpcUracBDCjOX7X5uTz4OMtAw22DdYz1b8uYGntQKTkCpHL9ZGxDRp85avpPQETYUnjxlL1t7r4Ix4mwPYot7SnN9N2LoyoEKdbSFtWC5V0zDhwOOFXx2Fy95AT5jCqNlCzXCD1cI2Hiv/QDMSnFTpGJ4O61/KeyaumltxHRoA1o5ydzrjK5HguGzcyJsGzTpyV60n2yQhxHVOMDnySbTRRAfaZ74TQEDXjG1L1/SPiyX3qO++S6SO67sQ83I5d0+q90O1Fr4aNbQ1pPPP1WoWwdNf+tONw0bkSiytZM+0OOuICfAUBc2ZK9r/5nwQcqzzvhzZjioyheIGhiBPU/1yYAZKHny2Y00GiBv6x36CjgLok29LjxYyPt+jxx/w1Ft8Yixucpbwi+oL5qGHVAjC/im/U52kxs2mLjWDOhWsS2jJE4GafAPCA+Z9Cogm/myNNROMvD2R8FsPQbcQNPgEYeG8I2kvJCb2+mHIXwQbLA7vb0ZzcFDvt/oilCzAHQfOPinqkFAsnKY8ghXIbaIImRyMBJyMk3LFHIqUUqFhibGtE//UTPlSpQofeEwfdEEgGEvWa9plqSiWg6UhD1DZK2lLWJs2aAvaDoTLYkHv6hs+HAe9g9+A8gTcnoqdX0eob9BHgiW/O2/xE5syTEHu2+8b0k3F1KsKVC+4fflb6xkwYgYo88AT6YLaOo4CKk8ixhjmgvcJPBZNk2UzS60hXuYdXv9KgDFS+MOarlbUL8l8XK4tdp/cM4Cbg6uyOWVW6ZvN1QCkGOz+1G/7VdkgoVR3i91IPlyz5Bl0c3XqsZ4a472N82+jJo5uEk0lsY2rMWU4FDLolHAfFofLKi+ElFd+k0F3bczXP7zfg/Jrg6ngbOR5BxpdlimLtvQdf1h4xgY3elhdYgcRYf58tD5IZnHE8UPsHw3DmOxfvXu+lGeU7ct4hNaFjI2TgMtGvWAukfIoKW5MtWoSkTLXC9Hlbbg+erbMluuczImp/wDCEkC7SAlkpJljwhaQ+NYQcBOTB5cF1jqFt3RyRJO3TyZgaoPM/gAgEAUPunrl2nT3ny0EHaEdpovkt62evSCoKgQH/3q+V3KH8daVroi/Q2pwk9hjAd+mDJ2s3B+Y/ROKC+8KuQzTF3sxV7e/NBL14Y62rK2MBdJSULsO46kYtsbqOd53TUkmKNpMjsM2xtvxqL7hwJJNnrDCBzejuADTID6x1a5y08U5dGQNOzY9K1NmGoXKy2ItQ1wxdXwVkN8e6DapBfAKI3vHya4qpR+OXWnzpXGQhT9KAhKzXwHEsgMjMRRqLotgu4iVNSI7LOJgrqWsmyAa6WLC6SuSyc69Y97hbI60PUXGOgidNBLIi0fWNJZwfHmxcfUTXEZjD/kRWZuxZqzMDXQptYKRv+7Hygo5tmoNQMLxX7eJ6rxKCxFbxFeSmuNWt9QftdNLV1Toc/msf/uzkYMUA8b2wSsz8fu06UTyVbLdDMRPHrMcZuUM1ZSuZy0IsbNZjIrpITJ+3B44oMdxa0LsYu4wyhYMRRJCJKIemErzjVz323UZKplNTgzNkiakYwEGNpF735+dH2JKCMyH9e4hT9L/wW90uWkTFA1QYdjhNA5nKfmCjUF+7olYVkRiWCUkVGQntIkOIX9fJ5J13BgcHlGh/J/7ooz5fGrKASopGggLSE0sEzA6vh2Y8/QaDrhfbWKbdte9OrcPUEhG1lsx9LUOwXDpibo5ONxsT8jHRHBCfkYYH8btbxRh34SfciesJXTL/RBWxfUOFF8yZTcg+7i+rdOfK88kHhx5JWFM3hkZVNdgAIhGaKyWDAlF0tXFRtOjX252Ok98DWpEElrZ26cIYxeVH8GURlxbfBmGZ1D/TzQfQiTDYAvleSFuq22UjEDMa1CHn/lEB0QqymJh4ztI+Zviyjb0keeFuL78MAzl2GbuVJf2P2Zpl9oXp7RU6W9YxFVJ5yAKHyV82NtoNAzp0TeHQVHzjR2QDWJ3B6tRNueach++rfkGRjgC5UiSquup8ZM4f7uOg0I3EvXWwMaAMaj0G1xeL26VpCg321wl+lfh2aqFQqLhQVXyKAyjcaqeMqEoqEjrT+j/GdqCVHaFesB3X6SE78WpUp9HrwOjbzoS9q6r23QOLsD1Vg4/eTgviCaHIMAteaXozybyf4mTHP1XKk3ilfCBVu4UC5UtHVMHhvcFSaCTfUH3c7+H+P5hJz+O70OSM4xuKWJCUCKHCW19nR6HE7LSzksnE8UgIw/8CioZuSRmcZ2rsMGp8jIHd8kKLvF/Kk5EPvNcElt858Vh7/jx3+B6WxKchNSMKd7+I+C41jUoMLg+LO/Qj2QyIE9jB0bmtW+PkPWzQBADeusJjy1SpZ0xAUOAKEnXa+RRvr+WvuzR/uLlE5isF+ldhrB1rQEiTzcIDHExMdp8wTSoCq+kB/VN4xZHGxzWuKtM0jJlE6jOrVw/27AN7Qe7MaVk5KYLU2aK1adUaf4nWWr3cqvV+ycNNtkawgiTeBvPMZtPLB+58ZGqDQ7z8VFjHSC1ujZWBOabQRyg7uGIeFQsOSMf6k2ZMOQ3iYWPp/vq3aVb5mljRFeEiC5vqgFvZOaocBePf9Q5DYxo46Dvk6eY/DOPrePKh/KH3PnBibtYjDPe7rU12mNjZ/Fegh3bzHv0cS2WlF4+/9PhoDB9o9QXa4J3SL/kZMdy7khgROOYFdfFvyluOirRYQwAlEKILK+BCgXRxOWxj82t3TVq3RaXXPI6yO5qLPEK2zFEKMJuQnBYTwN23rW/hp7xYxyPQm1e8Ifvr0uWqDXNVvOAHUWPoOdvfXH8Y6LZUdh01aoWz1WlPjzbwhOLL/l1+hwV1ZZIbxX3WW3+xRqdrPAmx0UvPz1vdtrjEieY3zHnIWnyN9Dgf1oOA7c8l+cwhoVtCIkPNmZwv6fG0QARSkLnVc4yq4L4z2TZlUsxBqOdPX6EiTUjpwsp7hK2nPhQuIG6KghxpOdkVlY7WywRrQQ+w5tt2ud71jedj+kTXAXjW83b7U4HA5LrZzv9nbA5+guip/mx4mh+8zCp/JBO1D3ro8GWPLRAGW9aY6mtcHJWa8SucHQCjMSHZ1rFKDPmcmaM+6yF22Y1B1KGosR3Y1MVcTDne6y3XAD3Cim+HwBlRCnlyHZYOYh84a+4acg7Q6qsvc8RK0MbcNXclaNxxoRH0qWVBRiTsmWm5F1HwSHejzXqJ97dMrpoRVkE+LbODoRB37ynzsmLuqYqP5pjFIlZDXvxzXhHnLxqnkYjf5ezvUM9d1YjiYcaZLrlNlOacvdxRPDqiVWT04sPZQ/LffvWlMKI6kPMLUZmCyzo22VlkBgepewk73h6TyZCYx68WXfTkFwGEcGPnCNXpORmulS2Wuqw6cz1S2lryLGVkaGGIti0WZM943YEAeXvxteT09Q+Ayvzmyn8Kb+/MnOYruWCvj1hE5XxM8l/Qt15Cyqx0OutM1wppR1KHuaTmISOX7ZDzWDrLwtLhjxLpt74n22lztXKx54K9slMJMFqKYhmge6Joe4TpkswG9oGVRklzzHqVB3C8+VbmfbTLRnczZp0pVVYdsrX0vryKBs7NnK1nreIIAvV4MPkdIFlWfamshBfY8ocJGR4fQNSP7pLt5WJReWYd+3bjUVFWcvEPGswhf8xS7qhkzZwaj3oQYZdGeye5vQsngrcnfmetAE1AE25vfsY1myguMC4eN7LA/j9FI0A/Szl7mHfRBAnYvmTflizX6BpqFrRtldOIPD1W0zYmcw96+MJtNIp1sIpqHEgggmy9wzXT/nZS5usajOp52abZMHO6fCjCY2lGEoaL0zt/e7pndHhgMsgei4V7FXkPaTp7RhgSV9bq+LVvYv2i7EE3FGc2mGE5aTeWQEaqLl5Y9hx9uXRqydgSlP0VYTy4e3KUARqoPWoo+KxiGYU5KYy5EkGd0caVBxajsikMMazrrgaESYynrFGSIu3OP3RCrLTmch5iUUUacMIgtD6U9VN6gg1r7vaDX9yVIY8KQlIPuI8ZsoOe0yqlhT9fZo2aCX0MF2dBZljZQBfUJAvaSYCYgNHJz8RDiASjkjEaM2/6RlKru0KDcL2ciD5HnuVxgzeGvunYfCL3G+hR040b2VIlom1BsNDAKFkoAXzuMevL+522dHrCqEv1bF+wuep+xBDjSzdIiUetTdvkfkiNN0E3/4LlYaDo+3SRAF/ANQFHuPG75rrDG7vw773iZB4RFt7FD1alt9IjBD9wDeuIlPnJiVgaG7t8zEmO2FZ/9xYxS2qFUhdvK7upg8wl10xeGMViolcMVGyM+ROzcjOblIURHvVDE2QqjwyqFddpJ/wQjx4rsC8xIJYYSQcn0d0H0Qa+INeSmwfHMl1r2I2lRt/JvFCMI8pU86AfYK1ObM19jgEECeOhckmI6OrAc62BvjiOkgUWSMV3EK4IURC12iJ3op1cfEUTwKInZCjEzpaIgg/MWdDh6w9JkfUHSqwEREHbbBi2/O04DGglZ0OOb+8rtPp9jHXRQ2cARHIQRJEIxeE/DKob9AK6Tg1NLyZkd4dxZEvzW0uwxO5zO+qgGJvD9JgeZM7hFiMfc0D6GQlRpuKzjmfSWPZsU7mgStv1+0nf8EAhq8gG0Mopkhgwx2e6e+JYpJlXTLFiMwrIwV0IMV8C0jUyLCbWjcDsf6Wy2v6IQS6ownOg2liRufKvmgLcvCSSSZF+3twQMqxpHJI162IMOfIvp7sO9TZqwttDHP5EycvD1xi+jArLRNqWhdOfc8VlWE1tipGjpUxqrLAZuJgmApZLV5Ru743uKKMNNpf56/TA4CD8zg72lCcXkiVRqRDG6HFa/1mcc031eGJ+RgQCN2Mcfq4AB4mPqNYl5t/TVo/VK10Kq1mKcPzqWfoHa1AAnahSh6ALSXbfG9I7zFrA7+lOhfSzWqbvctxbWbL6mcJExQcCXwWihLUeDwUSvF2ijSXHGVXaMoxqqBAGcZlJOzO+Vuue182FTdwxh43s9jSMaBKmgI9/TRXtrlJ1mzcePXHtFaXESkGOsYQCPVcZzdP+wABQfqAXICkv3HQg4I9fNgdcorZFvRgsnMc1gf2IMPXqk6zcy608VBisO5xobL/hW7p8yy6mtfh2M9zFM3uc1gAihbWfkJty1AzLLLkg5y25iHYrm5UrWLIOhhQxHPs+XWQNs4IWzOXCQMqxTh3RBnUEc2VRhXH2lQbDT3FKB9FlGW54qxAP+h0fJcD6lmf5dqhrHVct8gbi1qBn6nui+L9ybsK89HPYx/oAgaGurGl9PsuyNnPEqLy/Wd+hItvnYYH4hshHLGNtC+msQ+PxDj4GcgltUeZ9yQhiYB6bV3tDyh7dhbm9SSDlDTnbvP6EtRy4LSmk0kPQHjy6dRe3p4r59B5KNyPV5T+Eys45UnnS7aHEgQ3XGJUDjvt3UMACEgnVLPvcpn9wXrWP8rP7aM8dciOvyizkaVufD/3F+R9mZBX5wT725qtMCAbdCe/i42jKF/R1kmJa0ZuKOtLY3dnjZotMim4UWfCV/fZzXNkayjDiIhvtbFGk09HnV/KOz0i9Lk0dCF61cC9ThcaQan9PxyfsjFgWDgkof89vIAJ9iySsU9Xehvut45k5sHfTp89hpK/150oSGJgSIHZ2cSGAEN6OzAD7QEwMgK+UIYsiX8ihxgBoP2QfjctpE6+k9qz3UTtEh2u1ecgRhRrcJN6OH0HvXETYvlWZeq+GGXQnR1n86vfDQ2btyvP3bmYy05PQNYZDiIg9HO1S7IoGSMEwcrVcB2RF2ewIyJVWVmt37Vgx0Ve5jH+4QG0n+mpJJOjUh1V5/fTBFqTw2yomr9HAptrIo7fDqSozsiZUTSM2GrtlaQXHjLr2RQDPm05p/Xq3JfCcWq+d3bldxlAv66LtVjzRxqhI18yz4tAzPSKOzmvDrh/d3fP8KhAd1EPsFgc8eNcAzJma+YteLwnjifPNru5kH6TAy6V14MVPED0AuD2rSCpQrzUWZ03PvZezpUVvuWAJ2/C3uvxjFQ/ywHuwOwdM+BYCvG6URoARY0PM3tA2XfiQmLtKcJ8TQjXfQkI++OnYFVe+Fuj3wqvtu9LznXiwdsbjZW7Cb153tVhP6Q6D7fO8ESI6XyAevAD9nOfuNKN0VpaVqkZ9xwi7lm9Ehl/ZWW7WtwapHdCWaUrgT3de7CarmonXMjwG5/ixfEXELuXZ2qCGk8a/gW0+jIlITss4+7soFQ8aersjJvg7+tgpVKKsQj6eDIKE1qa85vKkIdz89nczxUod75GoFESA0i8Wvkoy7TI2Z3xg7+eNEoId8Wlw+171nFujItNtQEh7KPkvThgyGGs/LOPxE2Bf9qJ3aafPTmdNIYxGkwHideBR3qtyYJW+bIh/G/0nJPGuHz9RmfUf0bEtj3RqwuJF3O3b5U9AKfITZ4uFcKwVhB/4QpJKvMKqbd4W/p3icErKPuRzU2SZCEe4d61RHxnnQv9Mj4pO6WkTk744LnzVpzZOEvZPdTfEXbkcGhBpxfYYNUoR7ccy095NHoKgAHFcJ4Dfq8UZFeB3rkArOdbzxh16hzV9XoSbeDXKm36Zgy+bOkBFXmcmDjpUQ84Y+x00nzPwe0O5GNh5+0i5W1TKfPO0UA6viYSh8ChdBF37jZh4lFFnxki7R57eLe+9kPxMmccWE9ZUv5Niw4/XxWxQcJQIbUuALmckk+6CnujT/rhB4Fcfg8yozmmYsHZsIOWCz2dFIVfe2xW+Uemx+JicTOFQRBphRmjk6hcRgKWmr1FBa2vgoS/rAl9NaDV4VJrnEXXbQAxr1eIJJDNtHdpuLnSM78/CXlv5a78TpFdqXNpQi4ONNtFd1KtNBtOk0ae5iM3OPVxyPTkuKhq/CcB/xoud2FyOJPdn1hQamc9QjIaMOnDnDXWl3rbx5242daRlBc3CuMOWmKReud5yEJ0DWvd2tT7hz8CQLOIQDQ8FuiQYVXznmITET6gU461/+iKwbBMuHFsBwneScfKkhthSR6zGidAiR7ZX8FkTElCul+902Jq2gv5POa1+RqVKPgCNjl2cI+93TAHUmCicFvSQ5eItDK/JK5iRidIxaUJ8VCBrrdw5q+DT2CEuI+5vSVfI//xP6ZhKOgaz8AU2SMRBGZkl/7m1xNI0gDX7Zbhz7QCWrg4hQIDovCQIqrEpFCBqSE4280TLzV6EEI3DR2XmrYJMXu+IkJ6TD/c9eX8lYIFNy8wOsivkQdAmq/UrqrxqD0jxfbFZ3AAJQ6VoojHBINBxboBExzfumDp6wIMXsEC4oprRBQIUiJrVl2xhVfmfyMl/84UfuGP8RX0J2IFvd4TACbZNqP0233xFbspFtwwRedsX9JqfPJXAnC3Mq6RpCOzrO3mTpunYnoiQFSdJGZNTe/bWmjhWwbeyOoOTszIz2Ezk+Z+YUd1bBJDGwMzQrJO8oDMC4yHNA7kgtLFxzJneHmU99hLQqZa27a8EgNRkzd5f4neebKNXY6pHnrkQLxhyflfkb1VV1Wzy0b1zkvaYPogUd3Jckgc8owcvMhQzWIdkQ6iEmX7+Sawz4E//6PRT+SkcrplIRD6YbzDNA4LRJ6os3xHFiBCD52hmwvZE8/D+kBY1v68ESeHuS7dpVrdtPZSMonWWBQeM1z3yXDEVLJZn9Bn0Ue+TtSZiP3vb27+EVPVzXPEssycWBH/2fwaH37YYMZK4T9Bry3UL7D9mGICYy45/rI/NbJVf/qV5rlo0Uz7mI43aeCW/+Dp3x4hWlclEtEWnipvdM7hKSxny9vCtj/JDt9hJcblg4xHm5oAVyzKyzYOCdx+DGu5U1ClaFr5RBRWCWLK779pP4gtMJ/WbExFRUpwlB/dPVvkBtMcvG86sAga5ihPhTTOTRx7cNXd69orBSYVEcw420ksFjSA1hYlfW90IjPuhl3RQgt7rCqGDOcQAdQLe9z4yH7vM4vp5+ll8yzp9pQtsoci2st6gBElPepuzI9GFUhujPkrelo5ExxyG1e6R3OT5j4cIp95DgsMhZR3Gr7U5EsRScR2pU0X2MBt8w8upwogrDhNZzZXYchl3nh4lG5GKb/aeDUtil/O81ivdtHCONDg9G5+TFNQzHUhuOM0uJouhSQ4vkvfqRoQqco+YwBJhgsxYgseykS48DYraD1gzSUf5iY2mW2FkLGFUCuXfJIje65kVWjnGiboAFwb66ETE2Bnb60P5GaVjZdE586gXP4PrHSWEKKnP2Kg48zLn3YjdcZ2wO3jt9IJb5zTaijC1izbmXNzyiSWdMgzNVgzWIf8jWQIlkKaAQshsZ3sgdUonun0NF1aTn0EvLuIkfTyUOypt9mf+ySz6mxStiZzGOM2kntHX5YhZKX3UqAhN3CdkVExGvb3lHIiU9vCEWezsGsuzr0Hvocw1cE/YhNSJ1eXE16T4f7cUafgzkuBfGIPyHGon3J9ntKMl1b7yaqOISxX3eTUH4hpT37z4eGM4/NZNa5cL8vBcU6LyctB289qlIFpN6RTI1C4BGLIzs0kRW9lxouJX5fcabPZtK/yxDmSbDHLlkQIb/Cg7FKwhfqW/nmmo8nGiuBwnpcl+ITth1CyJmJ2kmfTftVR73gsruXLkj7Tnr5UtTCFt5y39bC3EzDMJEusAUwr8++G0IfDnBHfSM5kDgQ/3bA6ycmoinACg+FNELE3KKAJjkpyD+lyNrA5puZ69GAfrRT+AaYUGDpyRoI1twzpDjbgpQyzWZfxJC6UL025Hu/gwRrw1z2g7DofIS5bSs9pCvV87QorioSA6Wdwf9dcy6+Oa9mqK0Jm73KblUbzofOcB+PCz7gLDzfbnCGfN0IXKKccbX0jf2lTeWyKXWbakcT+5cx9n+KVP5We3dnlJIdfSIu2T0HxWJwdpUEYJh2ObEVOpSut7bfxC0I0YGshSatVsdOK276Ctl25+0k1pfdicpuyf64n/l34x+IWQN3DtDmImGep0TH4AZ2bNB+kQ8WsaHs0UhKxtJmUui5Y23PWwMQMVfQyn7mNoazMPtEa55Fn4mgqzYmTsWhaXXlCAu293uKEAQLMm27dh452SNbhCPTkSLmbNQ24ksy90P7XfHCPkWkcmom4pbHpX22CmDD0vtbcZQOldu/L1d+ffGYL5dEmDkPW5kYdWojg27OPIxSMnFErDTbBdT+ogUA83hM7WvOdN587v3Hzk/99l1l3NTkHs0OgEuTpwk22+5Dg5oRFPMekSVQrliIQTwnlnsS2Fi3ACy2sJ1tN0WEBFREad+KpV43TEHTZ/FSoc094CZSaj2sOj1JFRN1qaKF3ow0/psIaGszHzhILpELzcvcJSQlRdjOkrp+R4Qg8rjsP6iAHf0rAOVOMHSCPU9cFPtQCQAl0dOuM32gVOXhGZm3W6cWKQsgwUCqZhwSHS/D0QH8LIiiB3d6SMKhPe/5W6JIn3F/24FW231B0CyXOBmAh/Jwpb41R4pmNEKMZ58eLm3j3ornuFEp18tyIyEYDnBDhCaaNxQLxDRlgcQ0cd3lbgEZH5wPWsiI4BnXk3KnTjNpolmWvYoHoJII38xWFtQETBbshRuersXIig65Tx/Jx9ruOYxY665K/mfyvqerFVVboOC5MyzFdGld8aeLnLX+FtkrbaL0LobLAmV5/lWy7iihY+HvAl287VjgtvKB//l9XkQP9N+3uFXXowHlJMAe8B9affzYQor652z3O64yVBH3pRtGWHsigL4puJGhunKVj0pDYDkcu88FQtRtH9AOFViyIy9HGCT7kDq6RK150rEFklWltAVfzFoVp4GoqikK/GMkrsckVboQ6MzQ+9Ud4vJBnFGnQT2e9JDEF+MB5PE26h4+ntH7lHXMsAGlz+dkqfgp6+d0xogtgVJBQ/l/34hlwWx0qt4gOK1uqrpJ6v9jOwcy0FUyZiW2E+dQ5mVWQnCbGMILIkzrf9zrefyTDYI1AhWQeDBzLwa9AI18PjHAEBd9Ly8N154dkKwQcH8WDD6/lL7SskBS1DUn6yFPUgGVitLmfYttMmYnZWZBm7Wppv0PJN6qX4egkrSjho8PKS74M7B4TkqKl+J3S+2DV2oF8njOhy/TUevMoZXg0s54IEHfydIVVisrLK9Tp+sCzbtb+syn6NrUGQ7/eKXSpYe1GaxMBsS4pI5ncbZPzZ+036G2XlCPSeTB/9AYA5jAKUlSgxGUvAkDfrfbmvb6/xy+CPDSRxp1Wm5MVrLmzE7H4xmFD/Xebq0wPT+cY6C+hvEUp5/aYQvYSxHuuNePRpiLilMakx3NZTakOGDy/cci7wa2mQ34IECsRtloarY/KuIeFLvWx5jFpzz7mHszwYE9hZacBevbtqv9AsAFIPF8BfLRcAbTCUUre24yycknUMe2Ir1LOqD5mg/9T9dRaPpXVwmdLTWhWrSEejyxyh4a/33OEjP3pUxAaR+oqc1pDQbhwhSqGtlpD7aHu4aNX54JLyezsHKRgKx01XQlgZePw8LU12it2QqpAJYbRylko/+fy03oHqBRp2gECKzHHnrgguGQC336FNWR8hVWnCA+We79rRoqtDDL4VHjVnZIIYr4OAN23Ui0buXiJNOtVQ2cZBVlYfd3JjodxlRmQJUmvgkI0REmMY2bhlMB17FflOSDBkCFzTzVKkinLdFnEE64mK+e+3Jm0nXS92p72uXhTzM9C6CC0WIIX08lqz52olqbAbs0Zi3qQM4Kfh86sqX+ZIyqKaj73pvWYnWcAKZS0x3Da6ESfHQAD6bRU7Kjo2nLOCviBP1l1Tht0XD39bVwTSwO4p4Y2itHqXcBfYna1uq4+sKrMisl9HvIj4MguHgFuaB6sbcXvGv+Lmhn+OWnB0KlBk9MP/fhjq4P+XtS+RfmvQ2eeCfFuwRzcHo+88/o5CodrlrVdV7+fOXPCNZsMjy0AGemL/mGGN6Lrvcy1V82vr46P0cxabAjs6l9D11xtJNQmocRoxPuK6V/IyYSEUV6iS4eFzGbZ5IS0kkZuOiA4zGFBOQNd23Wth7xc5l+3qC4mXsAx716sHba5+BwOViNsdWokj5Q25qozf1AUl72BxiYS+XIVzUQTyU5Wg1XOf5ko6mbqo1EOhBSikl1DEclheufoSFhv4iF+T1e5+0Q03tvZZSANlnhuVaGwiD7KetKTODf76LUeBK3kz7w8CXQZw8d/HFwpEzYLR3y9o3yugNdFLDje9GBVCJA6rCVVC+RGZPpt4mzn50NB4eZZeLZUv403C8vRtCjPhqW07CYxWWmCE6I1Vs8mIkeaofTuVPEwoNGIhsIdxatsbRX2t/qX+0fPo5dDWGFmG3mGlFH7yXrapeyqWPGmiTCVcOfvT0Ep1evfr/WNNXoSB33kN0j+M5lfbWKw7g3L8vBr9N27uQtIj15JEK6USyYiXMiOB1+/dDvWhYzj24LN1VSGH0D+VnTPL3OUAqh3X19pJ+43Z3kCbzFwiydP7rOmRn5Lr0TC3ec6avZUOqeFTtdx1gFzC1/j/r9VH4KIWvb69sZDzG3TQzcwUrze/2eaqS1yn66p0fSt69r2CK1gbHijLcH39k2Z42uTfH+iVVQNpHR09+ARo3+Q7OyeWgCgOHQVrYOvUIdx9yvzfHB/PBZFR1+AdpYlz1FFGKC8HZb22hvsHe9WlMNxn1p8Zg4DgfU16cmCa838tCXCrRK5oVtmji/0hEvC6WbxD1UMRMkF0Yh3TzVaM5ZwLVNhKP3oYVQVEUKI+lMsyL701GkcDVKUSD0uwftJhFXqIJeWB2WtmHY7j3A9D8DidaoEYpjnmsVDTDBnn8M0hqn7SWkwfsp4DSnNE2qUhyOVxVTP+cwoO+rUuvjvXCzPYGcbTJyHZ6w1l5oAV5DlJnx3DzVam1BHj0hZKNLxY8RbArU4d0t8sOEU9w1xJY+rGjION7tMyfZJtao2kEGUL0rfpvDxUz5Tm8g5jwyvo7kfHPeTcDt9yuj6oiV7cqpGV4bsMWKP4qQZkVLN6HEqTmbAI05bT+/QM1KbXrskA+k/cMPdhlttLv5OSoMwqJzz1KB4D1uxgwCgNsaWaETAubOeQcH+nACzJvxWRxYhjPXjwwxTq1HFZY/LHaxllMF1UIhHK1GD8WrLO5So/184U5lGrhS6Dshos0hWa5GfwcyihuCQjXnrSPIuMvLMfZG2Lbp7t0RQ3W0T+YxQGzqBKJhPjRzs+7Pm6Dq6Vkj6lGqer/+05zwkl1pAmjd0Bxxd4qGG/Kn3dAijT3A0osfZJLCyf7UM/cIA0Tn/sPJbpK2NHsxP9MOcSmtwfhb1V+t9q1NbQzRerSHqNn/OrahaJON9T0y9VLNTtTKTwdp3TE5DtF81uop1f0LGJAPUywvARjd3y4DpPmYoPESUkqI1crJwOGhVuLCpl+hF8ImgSVyxsdwuzUEvRvIgnhTLsjP/yjwpDTBSsP3UN/9hZ7dDp+UvEMF730H9e908zrymQs8fHdoC6h1CCFJbyuLlVxcgfHKF8Z3cFy7LgPm373qIeeF/TP5gjLeVua/i8HnmxKIYh9GKUP9Kw78hdIxhFXQg0sKBRXcPH0N1kSuLfKpDID7Okgb1ZrqqG7QHjwgRGN8mgLZ6uLRR7A4aRXx2qHVRRfMGySdX/yyt0AAGATJ5LCYE0prR/fYGALL3DgZHejQb/9Xwc45Jpgzs2oAAvzFu2/2XOwdybj/sl7p1p3xLCBzou61Z5eZy+8L/wGCXIAyyWivr7IQCwXayj1FPpJ2daZkX6Uk6WL3BulONRkDkCc9oKfVhiD7jXQzqlKiGNuVbFBT4muWfXD7eJ5IUIb+onQPICp4966E0m3uzhAyhpD0hThSofrLtiPsf6hdfpfCp/M6uLb5bRY7TXyRzADsgK1cWUekEtOJ4atz55C2EQ+dVq6338I35vKvuIv5JMMdVmdW8WDY3wPvu8tbmcAPh0LZVy4eYBWbK6AAYuDH1ROADE3V4TTcd2J10l3NmmV22XqpiY3ctoegr1vWWMjalQw/2TLf56AFxIV2m3zZuYLpqZjvi6xjGAMGP26Jyoly8BLzfkuzU6M7shN1ZvxyMokiQgUIukc9Kd3n+bo2PU6ApgTxGqqA371BW4nirLrLUD9wK9B/HAvL772mAUGwgy9w9PqE2p9R6V0GPKc4nsLcyVyNcZ46yCKX8rtb1lojZa2PXmcneAxyJKLd1kKsVdj43zeCLpvX6hreJsE2iig8yhA11nx3ufBcKcRDn2sqAgGdhRnZol8DhHpegd8OqvpysWq2FNYO1A3nYZn8xErSEGa0TAy59ds1J5Cwm6bll0O1tawlLLAxpFLIUgIiv4nBOBoaCyEJ3U5k/8MkLlwTYw1xQ1aSdOJpZ3jm08RORr2JmuIph9XVkWEZtxC5WsQGxD0dLdIL0wE/qmZXrWeF3bm7QtqZMwWnduCeptUbW4qU21KvSguf8RN6zYu9JV1UHa/+kFgDyCOdlk5ToHydqV7UyQo3Pcw2k7M9sus3gZXKo6BB/CrdjghiYNGv/lMDA4HDHVDN0QYejPIibSrmgMQbgi0LvdBLxT0dCHlwufp0lClu5ZJU7SxQF1idc5vYANLj3dwjJnRCiSRyxQbUt8vFy3HT2TW0chMuE9lLPFMlOirPevVaTGykQ5zPSfFhXVQV8sXon6QHD3xioRcsofOwJP6kh346LM9FIdPES4CryDwD+mq/GByFwVNWOFJT0uKkaREgfOATnHL4fmTjDTiEv22rtcE9Q0Bt8qtaMeNvWlyEoe6v7zer6hknZ/1M+KdLtwLobCqe2oCSr8lFgfAxZLbQ0rcLnCN8BYiRQNFTMmhDjPbIXM5SafRk7uwyeAs8zWu+Rz/Fman/6wOQ66uxx5ApLSveV/EYZJFyMAWtO4+U862RtX7w1i38qEG+WY9qp1kaMnT5yHDAgIOPV9LmKgL9KnTZ9U+7iX//pBoT1UNjBB6uua0PH6kNzJmGJwQt/xw7Aj19XIqw5eoXrMJ/IlVaq5JXXWnI5hdXzp6QBL0pBp/n1aOHZm2sxY/oVTIklMlIhU80qcxNkmZwl9XOD5d5qAY6Qk8X0ZJBZMyO8lDMTlDq400vVTPO3heXKKiiWifYDlam8PVUX3CGrmiSGwgl6gqDx83DJWYu0nrF0QTWHggkakIkoKHsqLFSsX6eUdcRjvPrEjduWQ76m3m1efwq0zKzBvh8d+B4pF4W44gdjBC9tFw2alFxEFUHfD8YgC7UU2zI1QGXgqaeXhCb4lJ4h/EdYXGUvvBTsGECYS9HX17WQFwRxzyZ/nTuraorZNxn7ekT89NeLWYDZfbohv7g9O2P9c5uOSSMQTz3TpUEWovyY9n8Obrx4khfnjGi9UjWuex4LL5y1zC5BXldaJ4BsFGf5kKsdlkc0jBwQNv/TUmBR7VcrGhcZyMlZENQaDuc44DV0VuKPr53MNDjzgooROXkqGZ1XviGWDIpfzHCzVjYZD0LepsTvPwkA98j0+AsXkjnsHmzouaysjUqdT6ukg4J4w5Yd+IjcucdXOfM6j5tBham8yogRGOJjD/5EkK7ktDmSC13bAsrD1j8Qnr+CVOr5L7XOJnntO6tg2Lo0x+XpRvuLAhmsIXqeHDmoboTQN2vWt1MSoVUCEeSfnROQvBy/CzY0wy1h4/Vi5vrlC6r8X/PrUv8vmQQa67d5Ua/gGRvhFDzf7kDkE2qYE2BeKHBFbUS+MwsHpbsqtPMAPrdsQLO4pjeCiE4uOfQXfodbEr0Fg7K55ImltlO36EtPNbgT+k+XGF4VK8EfuHPGlg0r8lamsiWP1xmKQ3k9I7JjiHu3+02TAXLTp3ADrKpsnshxIy0Bvrs93wUk5pgRvMiucJIMsIoy72C6BMxhxQKTDcn6Uenupd6Q3asBd+hF/vAU6oquClhSSX5l/mBp8wnVWIrRBfIOlK/3pLVf8UyXTlTxvdUQXpsCS0bdEIO5GoWvafIPobXQmbZPkZgN0ojX2wZQSCmM/Yjf+5MVA1kHMwtLil/c2T4YT2GkkB3p1VysvVmKyFyra+JVEuD7NIhf4X5gFKObqwarulkyI3x6QXfKKYDbIVkwCLf5tdEH5JSOXlAEPzwd59mrIqYF5qgKW0hyoM+2h4d+FStSqf/365aj1gf8n45HnuSBN3YuWZ+EglUgtD357O+imGP3AyBnuwMBeiEBBIe/ek2SALByDddZIxNfX69cBgGPR+w/usSVG8SmiVtC2L89TybA3Vzojm5dRH383d+LqAAtAdPYsmNOOMMv5aum7ri2ZAv7Hbcyt7ilQcj1olUa8Ow7kDl3Vqg4gZYhpnmSGH0UDFsymmQ8PKFXmpkYGUtbBD3JG+hurtXPja04rHJ0iR1A9LKmw3oCE22oujyWAK2I0cLgOcFd23Lbqp5j4Uy9s9VSutQO3JcydNWPVwv34I2+C47Du6ME0sLF5Xq7iIyGAZfGueMyR8RIaGFAti1EuzR5FyTZ8EtfW1gLD5xiXUJ6F4AiM6IO7NxPzBJwSxNp9oGHvgGph5s87dLxql1bDDz+avWq/2YZmhz9oKDVcCXJhUKEprKa+5JfWVTNbjPv5LFhEdc7plEYWUOhP7jReydzuOYoAl2/HGuWII3+AxmGw6dHVGohY8nIvL6S/P01C5eUtAgu9o83w0NwRy4qQsZu/ejdQZyaTvYwVAxOPbBVUaa18T5KeDLWidOnJBNxP30qCZKrpTrELwfwo/exJsQurw/2ZSfAXS7dq1GD2NwgND+oG4+Z2jWhQ6Lxpfly9NJjKeDGilN9N6C81IahOdjFuxcCBERjtkNu/JcsLULByQS2cKKVhNBNIwY2+Gmgf5xoXGMhWoyoAf0WaBkOdL9t5irJmFnJwmMaKN/gxa+sf1cRolhngAJdY3SoZ55gtJUy/4+S08VbT0XI+9vKM/G/A0dmyZUEHqvwo2h8vtf6z4IKIR8gJYs0+rNUW1JtRNYaFZcxOoCDT9GjzEij14DYiMCUEVFkBudnyldth+AiP70T8/ajaKCK1cSbmw7Bm11uCQ1Qkvm4I1wFrgALvLapA5uNTWykgLBW1NGd1KpVVJsGJe7/MxU8jzVS1mB6lotjTPMIdG9eOjY6/sxcAj0YhxKbEcr1ed2nKMGBcW3ndXwj1i5vRtg8mNqUcnMprwcsRNAorPv8X+MNanc2JaXnlvY9P8fvFli8W/pyS8wCrheC1wOVx/THUjsk0+4KBX6hlVq48kxZSiOnAAWS8jacKdri3t4C2iDjhxIr/GgdWwBREzVEOCl9iiAnyDg9mI2nMYfvrL6kghAwkm4TYSs7u7hrlJCdTTI3yXcxClvvK98xC6hSDwd8PdfxuCaE/W7/nHm89dl2czx8cXnAzNcWfSYgMdXTRW/Bv/JJDF1xrkqoBe9hIOp7CeLv68OaDNC9IE1QH3Ecqx7xRgfdf7FPxKEOBWPp0O8jC433Oept6oRyJouDVCtHvrBQ7hrKn4cN53mMxIWXmV8WlNEx6s+IHTHxcFUm/MbW3uvlxBYbVXyxGMjh+ZVspQIqmiYF0OZBujF/uL9I5kFZRljNz95lpSFhPD/dx7EE7xzNQixtSCIYzmmZJxO6bkf5nT25OpIeVYQm9j/bAqoIG38iY8OMP+EuqSPCuolr5vgrNkOevE9ArEZtI9pCtqBPaapl0V3CYEkpLqMPZDeF8BkuoDg1qPZfXLUsScEKb3oAfPIx3qqF31TQt6SsbIebOnvySKW83gtkFcvd3pq5qbKtDkwPBwuOFpU8CzX38bzUaP01Gx15eejhkbTrk59Hiz0pRjBHEhCfES0Pg0putq5YMUsb2EnigV62+GPGn0hmvfAF1IeJg2Kii8MHqE/CK4TcTy8JL9F2zrm7D3nc0vWPqLcfnaT+NbL/h6TZtoQnBDjU7iPyy24Ilt0m4VM7+EVU9J3dLb02MMzM7/IcKd4IDnOKQNXygm3gtplUtAv9u4RtpuwjswMCkSLcWDuwyTxuDEynDw4OT19pssfw10IrXBEI9R8sUYCCByFJnXLWoRQ2Fd64aX3cRvNZq+MpypPrPX2dQxL4wHtC2/+NjHg2rnI4bKFKLXlstKwwlH7Sdw/162F0MwI+fvv//UOQIOyTvFZEhz+bsUoiDrjIFPVEgHzo7W26RE7Q7Oiwwip/JU4wImzbaqgJFoWuvUHrrPCL12/j7jQ+Af1mOC6Fw0tfgg/ZDUG63daoAYlawdXTOdLWqZrfoh13i6862LLyYb9u7VdrAnmJheSBOKEl+sw/exAhS3gv981+EAmxvtHv6DH2XXA03FgZCmWiQoJbmdYQ5TLCjZY1+IBDXTIyRE7IQL1dV+Zw5CcqP5BY8RjaErjtoZnUysYjm29nOxf+WqjSerEHeYlFnsWcrUIm2K9MZE8T2zP1qWDIsOG2uENgew1EKHCnL0ggY9JaS0vN2isMxrLRqLEm3/Dvee6VEs42NJYIIf31t5DSwWJdNukk6gok/Xdi/DxSX7pmlnb3+GpmBv4to2gN6I0UPElkmTZGfdqCwQ8gCJD4pbpAGQvV7XFNtKEKdlrbve+w7s+KFpVukGqtJvPZqSVHFY/r2FGd+VP15R+Yi/3wQOqrMoHr3dn5tTZMRQMUS64oVkpXcsvhk0GsnLWEUvrYNCKw5EuJ9COCY5WjivQGx54RWPiNel9N7HGdb16SZD/Kt8kkO2xbi1KrZqfff1oJyBVMZjlfJdaqTG+DaKhnab+YnPSOX2eSooAaGLzws/4u1h482bB52Fn8UGZQFvTyFXxneSJaggAqqme1AT8znY5l3o/QCTq80j6e3vg8AdA2s2hQ855Nsap2WmHFuP5t8J0EG54jF9CMNUkxsH7U4x2W9JQX6atF0Md6XMLR52gEuzPnfeoceVWqEat3fMAkj6bPYb8HkQZG8H6aQE7VisCvMYHy64ViLFq4mwAKD9PSJjuZaJ3rIbcbe4AF3x/M7OuLg1dA8HL0ciPaWUMZk28+3YUvdSIYFbpkkI1i5TTxgaL5lpiMiOeyc3uR2ZNTKl9fdhpX4EMBvrFRrSZhjVTJeHnpVj8C3lRC5SylKdsPnaBhz3NgG2bHqp/GqvwNB1M0VLrdP5hwSgsXOhRGjpwa3NkxuZamzof8GjCv4BykKLJbHfVQjmCOloDlXHN5lEjBT0APqfbeM+6Zh2mCMdYsgfJRirSoQ0w7FpTNQhS46G7YjB24vrSIk+HBzyBe16zHGPc+qXJSejhPl+w0iTi7O/z0/ln25ZsZOvvrJIFQFJKzaO5Yk4zpknqDgOKa7q7gEpMpQ3sMtJ0hOT5z4AYXJU93/rTx0EXjim5Go73demOEJjgJqFgySDm5mPjX3MKCBhPU/5rxa6GuQPBjZPCnsTaoWsOtRQMGFj4ZZem2d1+mJLJOYwBnqRFbshz9OmHpBLGdCzie6fDLcKzPJl6Vm6Qcfz0LgZwGueKaqHw1aaP+IZALcfA0tobmYiwzFEKKryEcwQdobvkW4TfWUoZVCQNmRGOEdIPROdugQ9Mu5zaadhh2ZWozC8S3SNGnxFMb4MnTq8H7PhdqKU0Lae+a546vGgSombsKSliPRwcLhbBzAl5xLvqSbpvCLyIsVMxBRxLEaGbzE25MVNRdU9q1HinOENP1eit4WbsjAfTEEGfVJGHLDbm9uKPhUqX9CoQN2Anwj2h4YEt+BCDafcJfBfceYatu1hFz/Poa97vHNd//pN7brrBXFNkLQoHtCIGQ27Cbp195KYA8AEMMQoPCSRgll+DXR91lIbfIgjYHrueIpBYsdz9im69L8TtC2Nloh/mIv60A94wkc6T2L83Ont+ERjdC7KefaToQVeXsF95eyBoxTaOSQGp+fU7R6QrIMsyWGOxPj06jrhSZ9L1Zwnr5CmvokhhLpXqBG3Un5aquTmHz0wsTKVPEG9XUn3ruksrgDB+Q4fGg8zAmz2gb4InIQwr0uqjjzId2bRM0m6+7+OSCLqRT09ew8e2wb9II0IIOUw91ohCc8eDA05YA+CXJyD6PF3kXtMi6A347FqGil28kGsTafMabB096P8grwqtTnftTlQEkOQIOU3IeGifKtQ7OcVOlLCJ92qFV4xTXbesn8d59XM2+8RPHkc7YxiWek0ASxDHRDJed7+N4ID4D6bAp4D4v0Q4K4OxfPPWCj27EtaJlpl6Y4JyUiu+XWKND2ROsxm8FqNCor9CUQYZULHCB4RmVzkSzA2fCd5N+EoML/Garq5YzCxQZ9XBGMxjUiFBoHy2+OtxQrpisCZ9sqcKWp7bmYUK39EECt3GEEaj7uTfmyCPoaoQPw6VzOaI4wcx350kTfbfBqKn72Rr6qvo2xeCpYObLL5d2tz5sAJLQ/d+9tyYT/fwOtWuO4hhlrcb4WFW01O5RHUOd64p6fYalcuWRDh7ysQ5WukEaqdjtGdQQi/5MWsrpXPdqqGaROglufwHoIGE/t31A10a63F4LnMtT7idL1uIDp2MSsL90G/PTp91NV8MMEidtpjaK+CAcLk/m2Nt+XXHM7WLw5lDv0Nw6BWGByTTfD87UbI015bhA3kujpNYdxeCnfH8NAGBKoXKNL/WgQiMxYe2LcHsI5N05PM53yZlixiAngwi+0gYhEKCB8Rr2wghkKgfOgPegovTSghUPnttIVFI21x0uLZYIZfIz2iv8EQijvyLQ8ZV7clvzi1Jv46RV+ms3VPgYzimLPs2oWKDYkSfWyiQZy5IIzIglDkmajDEAg1Lz6YrpuYNn85axapjpxWSeLrt2WjDNucOg8Ozs27MbLOYdU2zZSrNSiDLBB1e/RoDyxvuUxcNZhOY+CsB31vu34Z/unMEBv3DfVssxQyfx/H3QI3SdxzbI+FmZify6i88P8QgMURVeAF7Im3UhYxCeFysERaiVbxOcqIK+23YvtOZ38AN12f8TW4UFsmmzEA+r8i+XhrcpB96PcOiQXg2V27rbUZjYDi+h3infz2ySCTm28M11s7kPLLSIiDtE2FnEbc4ncN96wrU2ctbYaeNUqDAlK8cpgrCNAV0l2G0wLHjMkotZTvIT5hab7i9TqCY3iFgMt9EXYEDcL5ycT6zKeKkcuOxJrymAIF4ZWhx9re8XjLIRlE3b3tznngxAbD9u05dmSnnwU0HOsKeyegzSXkNzzTONgPVH6PoIBOMbYb/yMz5MohFL6D+xnYwbQy2a4E8ucy2sqK4oDSNN13BrBUkC3/7y+QiesMX2l0H7TFV5eb+3pNki+M32r7eX7D6LPmMg8PpfW94N1LYXUSuYqajpG6/IfKkLD3gNB5OThREcmE3rnoyyQ+2LHxAAvgUsWTlOi1QbNAuyCu2llBKp/PwPjJCyaloTGpAs9JpihS3Oubdn33eUiJTJ8z9uJlauGDk88w0BIahLiskpsAZKfGzbtWNbPhqcII3KMmQHaF+3guhVx2Fskaqtf5WL11Kiw7Pe9qXdyxY8L4kZuUSxLW5bveGOqfEPkM/i7RPYwqEZ8hI5Nq79k7X40ZosUa74HdPiZ9B2FaV/jG2vYn/qBVBl6AsheFThQEdf2FzbfRdvulzOPGFky/vdrd+8jRo0OZlftwrLZNI14hoRaXffCqm3sXEXhdSddp/rFvZGQJgSK9ARy9ezHgyq/qShxSR1T2YL+OIVBJbD3fjZQpszXfzyqX6eck25NJIOJmpPH+EvOW0sg6tuc0YU/rPrxVEF9tEi2Y+0yS/cIwfCdpF84y0FXVPbWMeNxfScWNnXce97aW0i+J8TuUQruZ5329qVZhwS8xV8WI7HMJpnvKW0ef9B566jYKWelarwuTBtzHU9+is/dXQxxM/OaAaeoVRxc+dTm8jyEfSkJxjC2m2xYlLtXh7imm/ZaNHG5XwiDGFysfCrpNljwxii3nDFTNciX1H8ScGdPKSI8qC2S/3FXcZ/Q3nlGPCpXn7g5ioQHIL+xAM6lKibLJWgYuJYWVhkP6oonsnBec3md+FcTd+usjPXrMqoap78IKHWflnBp1EdxYaZT8q56tM3AyJGvXBytW/eagWoLPpRVmPzF+Ik4RyNfcuSvCpzKEF9AvspE1hKto7d73rXLeorGSWY2g7LrLi8+JBKFlNdlt4uhmCpRWwLzkQvn1LB/AIvDGW1y0bhHd+79TeyHrcw+C5ZERmUsD22icXnpjvBTJWBzLRkqF1TB1zl+xPo7xayB3nbkvVAi8e0X3K1v/0M3HFVPQ4aBXAGV72YCdarBSZR8O3EbAXsAsGQxFN0aAwM3VYEmkRSD843mlaFM5tSj0BLpuEB/oitIgATCdNpSQ3DYWPQsxom/Rh4tInLnW3nD7mWahl5DOhIvpUR0Yih+WC1lnE4yiCVALz7Owvl3V2Kbkf6r+qGHt2FbMA+q/TKCRQbjGbji2ospIZTGtFelmjHjzFYPzdK9+v24pjgNqYBSLonsqewSvHfS5ZrllmF5BR3Od43zMoowmqdOktNjDkxobNt+4chRyv33MmYE+ITL5J9rWmPbXxVZo5dqdpky6c4Bo4sWXpE4UkKm6zcmsD5iFXNNWF4AYVP79wKk+44WibVvgOHukgWBI4XeHnoC4PSQdQ+SdF1i3lybVldN7LA2nV6w0Skdpp6mpvsCqWcXqP9CNAZoqRSSYYpTahSw5JZoh2oQaa/ZtD7ZF1GoN8VF5nak4BRy1SlVa7OtWkh61Jpl7nSEDSOOTOpoOCy5TQ/HTzkWzZ6HsB7YHxOsBQrkkvvM8qDooPBEhyicqqXl2c4QbutAU5t5hsb2uSYne7C1Ll/4JC07hRZE3ldkxQDF7pMlEslhN6OQWoUr/jnSzX514HdjRUBwnx70ar9pcy2EKTkS/NkTYzFQ0AtGisqrKOqpjgwC8BAej/6zT0Lx+i/5U1pYt8hxG3FQKzTIn9PaKtaewigfq1YB+of7kNiE3QHLv8Y8XT3BV4IrD2/yE3G/khNdQuURidAc8vlDb7kUh7VlBGub7tOADZU5+qSqu6bH0rOJRtBDP66wuq50LWjQIJkrJKRmLx9t7YJnQS859uutJwD31nkkxAb0gpJhkACa/08IaHwd4nTxdmQ4YuKnsuvcZBeC3NMqTnPzo5inrrkQLh7ah/ILHH+m4yozuE4Pyr6LYJnBzTiThhfVNjHsaaqCet4rSgnsiKWWU7zAXa2J2UiL+f3Za9JCmmGtEt/bIkXTAgQ8CkkO5TvfSKaPTHQF5JQ6gR3RZvDy8XJCTBnam9Fgez2l9LQLsIj08/55eXbQFoq4aG1ahqVuzORvoeyseuCAdhOOX5yqTbvbdXd1JwOQ9Q8OlU0GE/ur3OIcQ2cdhbM9NDmsYS1PIX1zIBfipGal2BbuaJ+yHQKZC/4YxMDM7x9SOukvZM3n177L4TQQYD5nhB3b56LtBAz/TFrCX9CoYDXSrlZ2oSue7CbzUuM3PR+hJtKTK1MrrQlDDjEmH0LRtDwp/8ye5NCYUlS7Ka2X8TSVvIb2fbfSG6pm7Qm5YhJngQgxcPob/4jL0uyUmHIzG8rW9zHuGHcmas3BI5YAn4owrKfyg4kPsIpQ4pwqLkDui1D4kprfHmEkgLi17tH3GjOKP+JkKkb4O6J9/EyQRnd3Ux/uQZlrxdCyLWnM4a5dqkG2zyIJCk0vr18LPp8iIsT8fgbBiFB9zH7JCJtqWkY+zrSITM7l15S6DBmAAyWqggGjKsGQWc5KeN58W6i2s0e0KCQrtiHi/wNUnt61lNmewB8jIw4XDxCCAdCUWbyeQBVNfP3ERGNj5j3FJLivz3+nfQ4gRiYGdL2o7CV1GMeC7L5EHvQiCjVJ1ZMwpcqeAovDlh+0nr2WhJgTlkC7NVjzxZiszuQr/HDmg/9l7hKCXGdXw8Z8z+DxphiRgoC8U+Qv2EP1ToEpIBsz1+Kfr+vpUe2xeRA5F+wrmkr6pEwTAO0lImqHDYKC6uMWFMPbMHLNOUafhPOIM33TrUpeTkRG5++kYsY2mZrlnM26mOeG7yePiIYqvAdALMk47JDJ5IuxWw5Yj+oGyCjNTq13Ms4smPEimkqHGROYp8jXyheWBxJnl3fMJ5WGLsdJfgqsU6KBT5Sm0mMJdiL5uNNqlWLcWe7F57YDeNiCfRW1ZZ5G/WKRfZpIcksIUoQNgGPgvmtEo8hy3jVJXkwOWrtMlKIzKw4p930JXsOdFr67jnDiVzpf1ClceSbXVd7eoOX6TBWIWsqeFVzsLhvjUQDQ1FNiZOZX3TTfcpRxSYEmYq00GQ/loLuQ2sqNNNaO1Xnr3/ZSYdKRE2n9cv5KDsP12nJXtzRsoIJOpAnQur4/SdbExbJvcML41cFHOsL/IW67TN3SS5srhkKLMtwERdDTKL/NY4DubsonEAq54+zprEHzEzSwTO+LRO5+nWDnz4rb8EO4CLzfKitB/a3Ov2bldtRbr8XpunUyPrudLdXS1VL7b/kiokNlQ3guwV43mH6aW0H2EhksqIT+W+YwhBWWZMAUzj5j2rHyTxoWK7yGSegnWrIkHf7LlvpDSXS3J6Zf7E5YmEPLY4mYatt8Ze8wWFBWP8GvWnnqLtQygP2FFuDMBC0iRb7AUzd3IY0JOuSrQMMGhX25ppaEf+MyfbguXbKbKGbbwog7bDdvep2b/UqZ4kGT43AjD2iC+RlJJrNE6iJUWyo/jTznuXCFuKiJqQPT5/tF4InEdKraWWW8p0H2MVXp+R/Smw94Uf5Vc2JLqqlo5nGTjmniLauOracv9C5gqOkkHqjMJHdwRgh6dFb/j+9+NlH3Zl93cX+iC4pKur8DfdAxz6U/d+bOJ5wcOhAHeyVK0iOGxQbsiIOqKaRkcrt1n9RBoeZwKcteF41pzJIFuYs2tRVmuUSXoJXBsl/zyUF55KpfCQ4kAmyWIQa0ebXWxrVnsfe5dVGb8nM9X8rKk0WtkOetVC3KZhtwYI76FonrrSff5nWJsJXKZ76PzJH+G8fwRiWdWnqwtwhrsVBKV4pSusQt4rQ21IbCDiIJAce9l8kVgqowHQO1bHeM6WwgLPBVfCgKe7py9ePfyUgHtGlZxhGw+LtnmdJhMSFIAR+UZ9bRPx8L+c4W5+AfjJ8l5hqvbEi1MrXwmuqCQasFRMMAu3rl0hMtjWNVma2pZVcUtMaDAnzonZUb32ExYWu7RkkclYKZXCkLVkpQgTdA0BxnwfeT9hY/qpPafa2Ncep2/gxsshRpGLaW5MelJclBsNWwZn4T7a0ldHYVuko12WwjxU1HDRoEV4Z2PuPfx1c9TzFt+UezyC8fCSBVwoeiXq+RPxQxTcZGeF6bVtxhhzP/8pjNLOCrwBx/Uupgb9NHoyZCq0o3h2f9j0+TlFLlwi1X1gKWQ4T2lCbB1m7OFnTqZm0Rsbyh5/5F3yEzu93PP4OyuX4PCq/3KXtRyS2nj+GstvEUlWUyF0tpoZN7HoC1kLdXf3JaaEfMd7t48OyBpFLnfyRNcNKHBEOe08isyuLwix1n+fcG5FBybtXOa0jUKH84jXuJOMUjns5oYOWyZpA1WIY2xXLPTI0sCUAe5cbgzWwbyQDNl/XY+uy7w/Fau78WXnXGIosTnvGjSwffBQV97pTNKWYETfi108k0tWPPVMjJOD72Qg/eAnrhAdX5ce2myBQx+8hxIPL6V+50s7Qo49KG+7GDD+5e5MSMv2aheCnAoZhay3hFcIBruuCj5FnH4bJ+MQFFS/82OVbm69l32oEU6le8iehU/6/LmYijTEo3LP3wRm+TxnVBabmw0yeRoaKqLRcLXMFZu9hDriHfZIUiowVkYaMzTLhzp5cZYJcZ+3s4UA2lIcTkCQrK6eG5rF1pN/mB4Se+2oqvwX50M00Pue84jMuAizrTjTQO0UF8QczByoPYr7RwDreXTTf5WS1sf2QlQDeBPk7YwDzKbKp/DJAe438B1ha8BpgTRu2YhMh6/umMBy8T88vbNdRkUi7v7BQfQH6uj9nfi0o1uWfDZF9DVbFfIsARvZ4pKk3cUPwhm2or35G19DEp+Z3iDk36PDfoIzbNNdO6tplIt3C1tpRgtEHXFEm3t7Upw06s2llMVMsZ8IcTMiJrbyx9Upp4sWGKMTQZ/WM3AAdtRqdYBPcyO7YzWgTXoOEp9kdGrWuU6KBr1eRYZq42ZEk8aCGhKIsKsF7Zdmlwk0/NiZc18yQrTuE8S09EiowDflNuiDYrkgYYTE6KUnvtYVXeGL//PV6LEpPi7Fo2sM9hG934VUoZ9CAy2vLmqh6V5QYyGeUVbXbXk9qjjUikgvTVimVmc4alQX/FjaWNJqH3UUFGNcRxpb3lcYdpRPhB8sQ4cbm0KLqyH4QEstHzZr8JlaUd9QZ8b6CJ4RLZUDCYpMgl0CulFli4Ytkw+Adz+37PtQ7iKXk0dossyL9N3jgmvrcbROm1ibydJWZdvbTIk02ysJXokuyddWH3nUFIh6RQqgt9LkWvPDa6q6e+Xj7OqSCNkzvomH0fAA3GP9XTp89EGKvVkzRAf8K4JKWvSDld8N4ZXrJVnm6K3auXeuw3oubYkyvorOgASMkeh0Jb1h5QtxNRmWdPb/F5FujNpZnAbo7x59burjXBO8n2yHaIaMQOGqNDFb4/5vvc2KXDK+aDyd0GywK+A7rFGx0s2lQy8OUBYsbfHQe13oov0xZjarugfHTez2GLmZfHqqK34opkSWiD0eKhTt2I3Abo/MM91x3r9g6iCvptTFrV0KrkHdAtNm6KK7EQeUsagfCO018M+rAKDxNu3ppvEedej6uITgLGFUDMig269kCeor9sBSTJTFEivc0hmRynRGWZsnc+Luz+kKd0QSCH/XSUD6VL/WyCma3eJuvoYLMUWK06fg3lhv/sn0+5IlyR3n7p2ghZ+f+obitEsvCoIzovCitdWbC68fP4AZz5pnAHBayAxALt30qBG+furnggO4OdSSE/77bWds8JFm+A16lBwQNYthunfDWE2sgwcwROhQWRHunU79plAoVqIfforb80O6LjPVnlO3dUsaX3DLNqMgowuqbQXY6R/oTTko77gVJmYy1K3LNFYTZL5IiBXFWzHUmKyLRYZiVb4kxwd5iLRqEmwx8BFZ4OhXxDwU/sQfkoXKDKJCuu6DuhzqhP7JMnUcLHyKBj1bZAzH22tdentANiVxVzr8yxthjfSxTqjWDotlxA9KGp6MG8OcYbIjAClA/V6Qf7Nq9CUUoO6rxc7853OavAv+2laXxzmNSLFf9R0eqyTkRU//lu+MuXDhrao8Qz72XgJgFi4tuweGPtE9wxys0/6GgZGkb9+g33arn0HMXDtlpuugtY/A7A843BzMQCzN5FijNucU5DSUxtsHCCtqfn9T78X7FqY3eptcr2AYg99ESwm19Ez0jXoNoofvWId2GdUqy5tXt7lys4A4O+g6+Qy3E35fKxjXfdFj6Sobmwmc+VRns01g0Wm4O6s+i7RjTM4QnaDejL6rD8bZjzbgkUMTXvpjnJ/mgBlmLKYCGrPjhS0Nu1jKxzP+ycYaP3dnpee5d15x4FPQ7J5Fh92mHtEAwhhR470dJ71HZTDpFq+VbaDiYeYQpOz+txL8iTYOVZCPyoODyQuSXPbNZ9fbS4BDzON7XMghWSLgz2X5+3ompO0+YOUki9fUrUT5KGfEZyOLtWeQB2W/wqvpaPM++f/5CnYNJXJWu0ZRCUfNecDyPdaXMmHRBaa051Sn84cvZ9dawI20jiSHLdfesUL6+4o4btmngMtp0aFA72ohCmX8xH+mFR4hpCUcOgTEMOMiTO9Dyh7zIGoche+b9NQN/rdqESMgYH5fMOji4oEgg7utOXXI1Ud2FiQ40XQrYY5NWjBs6N0Sv8zxT/290MOa6bxmHc1J3MLpEaaOOlo6rOFCDmRSaFDOdsu4iNDPe8+jirOjWthDEsQWsmLlbWyzw5LCj9O5I17Fb6UrG2rVB6cNi/iQPnUu852H61W1FoGu5Dmkt2jsbXNiorAZq++fpwi1KLR8iEM2UlxKGD6ibWZgAkW2pBtG4Q7F+4bBHoXKtq3GfIBR1qdOwKxdplECGTP/N2nShpqkU10qm1Nz92/DJFoBfTt1bqOdx3VHRAtxCZcle7kalYgj4aigM9csiqYnOewrMVHZWM6g1awg+/G6fZv/Ln9swbuMbR7LU5Uj4PTLbE5Io2V5a2V2XChMyA0V506bMhw9nOv8suUiaf7Au2tsWwaOrCVWWnwU1cKk17pRqJvEC7+FDGcIH26DKGBqcie6DlpIeLfYenJpJBEv5qVxrFv/SE0ajnlkAm+Obt94fchRqs4wP5/sK9N23MAYmNbN0VakqBr4P7opsg3gi2TKF+hs7Kw2qOXwR3lUoCqV8I6aRutmNW65urTjDn1chixsPniKLesqIMY1pjOkkorjfzyIzIlThxsLd0ZFp/Z70cFWIrmGbCOAwzcNgzhIf3PyiTfKaDyTvi41tD4QgocoybWKszwJ0+VeKUjweRxMGxoqsDdNoZnDD06FbY3p6WE2CwhUvDZwHzqEcafl0+UswnktlmHpWWqzJK/e9F2Pk0TuSIdxFjYP9bmHakIVLKmBLRIWqFtxhcip8UK2RMdn2v46XyGIGCU8r4JLdIQNd/8eGiLOd4u0UBQKfYE2Cfh/pGL/zdQHSn7KVLw2EZjSUcQpFrY7P0r270hseV3vtXOa2VDZMXtj3oYUAGSu2SIdBIkqqITFdmt23lPj7irQW1g5rkWm6r7Z3G+8k7ZZTi0PRw/eUTkaF76QI/P6rgHRH1AfaYtHA2Q3xR9WF4MlsSa7/40ggvYxqpAHKZ0kNMopQhX16GS8jaJwyC8VDBWEMD+/DuzHoIzc9Y8l0JY+74loKhJnd6OOR5wR9giby+u0Zw+4LYExDs1Up/c13RlQLCXsD6kmvkdcrlb+6D6jaz/WDZ5uHZ2UVkWrnpyVCxz61C96fTcy2j8YZ0ZFi80se9YfC/ZMcdgyZ1eXhsGV9m+2snHOOi9h/B08suyGfGuwwVroRYSckeTEE1HbsMCU5v9BNExszyeMD6hKAHd0w+531adDcSwRA8d1VdTt83JRJjNpbkpfPG3H4T1q+r2gH0N9Wsg5QlY0jwcMq1QJrUwll7YaRFRxSKHd7EV3tGzTjeedEIsBL6eCPsqUWJKtqUK4BLj9KwE7wEeTrqA2w7XVGML/IiWhDeu65wN335UVR0mi5YXvhIYIrLRjttjdYnUeIbCXDcgdeo1gw1+/3MfbBul9N5P3VjpFXpH4eHmy3sg0fSzzwi9z8FRiJJc+S4Pz8GoAgQuzVtvqJ9057pVLxuapfUuR7MrrYXLTP+XCjof8EQnNfAye298hXD2lGIO4oDje+mZlTEeKyE9asjd0zk5bzSnb7xkK32FQCrKpqKEoJCW39rjlNUdWJrC54mV/QBuhELptv1HuW+IqdiL3RoAckXuLrSc4UhCdMTiYfq3KdqmJXz83nxNQWLyl6FadX/9CYXklJFPkU+bDxhw7aV8c5sAA4aZv6VcrRhYOAHc/dRaWEm08qXjAFhJ0MiRmp2Nxn2j6wTHy14Y0lkgRvLtlVm7BFB/ck8w/PBBbHRi+fZTdQcyKTEpoYo8SMCK9rFN3i60VcGem0h6fUoI9vUgIRss6eNzzIcTNJtnu0WpKDB9PWsz7D72negI+xTkGcy7X+sx9L+7Vgddy3+UCwK5L2yUKGyqhY3LVhbzcQYl+IsiDvqbcgZUojr0mhE9/eqCjnqp2b+g+EIoqChv3+0wdhI0ERGmwwUDHI//RQ8CNrWR+UjQjIA8LTiywSyplrIi4+zti8KYGlmKLXFKOTIQsSAvcIea7rMwc3T1hYttxhf9DCIM6dR/5wtdyr8s7a+ISZM6pOMqM7IcyfvCNcwX0r/YflTR9pfw9rh5MSUKLwRBiM/znuFEMimp+2Bsb8T/oWytspEJjTLGSycaId4o6EdsQi+KlzVZPk/BhAVED4Iy+426Oz2vx8D8WkBVmQCux/uHZJ2E1A4KsCnvR51doLZLzORzdeoOkDnApLeGuYydi0xL3d92fy+TEWnLRpC5/SWOUfN8wmSo416j75yx63/g1Pdu6EyEsJNOxAJywrZph4ZkPxeoqtxQ34xbtMmpcQVX2jzSPIksJu1CSq1fo2KdEJQs1koE8OKOgBJrsREd/rbA3VGuQRBWY07ohzCcx45F4xBOA1oZZVeg90U8wzIGpcOt8vFaySm4r5/FZjVD2oDn5E88+JXILEHHbQPdVlFmL0JXMoJMnemewp5NP3EDS0rp/zr6cvXKUi4KGNq/1LGDK8olJo0qDdH1HXiSc1mVVSBjaupctRB4RxJ0YWxIwT4rezTym6ACmbDzHrTv11+FXOfNjo+gi2cItR2duhUhV/OM1fSEjQSwjR62Uif3p6pZWADNE8ybNgvWtL+EEvyyfW78kGIzFnWln06O1Arg6EFRvZUMz0S6MHbGCEUvKDSgwZmI0W6XJEDpI9nU/JE0dAlzP/otaR9vDFx9xr9dBfGweO1Y3DYfZCzyOBaIjdI6MAussOHviVsu6WtpV/5GsYWla0OI4awrZ5AaIgj3vQhPZOGNMWCUvs2PDRSqCa1GQwcdKXHsHPlW6UzhBeMhPyUj15OzbPoTLHl2j0GZGbAeYTGdYHbtJMJIJvPmD0jckRb/bgwSEn49hgAN/8wHxYYHiffJiE0xenqiWxPNFwW9qmCJAFXWwRk39t9laHgI+WKGchpL/cx/Hm4xw0djkvSShrIhA/jvW5/0wOzhpg44e+N/EOVC3eGenMJeCvvZlrYzY9xTXsv7+Q2JXuSpBka2fud4Gf6ixLmWS+q5yt99G8YFq5BVJcNxfQYUkD95Gje7lU4h/nIP1QhhY5rHKqix5DpIGJmnFde+moG8pcTo6iZ+mwPjAEe/EzGbWdV1ONSfYAKn3izAeYJFkHyz/B3hw7QKsqx3njALSaj/qtbxedLLgFKhMgtpaM1mj+6lyhi5VZCh1bPhcsDDnNa5i8Etm77PdBAKpt9qkEz7TZdaNJ54W9jgD13Y9onl5X4TSvAOTT3t0Er8LPnS6SXjILpxPvX28VY5dVWF5OoDgZ8bv80m/6zg14X6pBrRLGtk5f65HosjhEJjvzOKZbQsDSgwzx9ljkfInoRGCAMF2KPvljc5Tl+ckWNtPAPT1jr9sHK5gkK9mYCMfAdrxwkurijcDEEGMHEJ/JnlumiNR1pK/Jnq3IE19AkMscX/upbgFdfoWbNMBkrQ2fHoiRgXD5Jf37eIHttbnIxRla2cThvzAqJ7WzBgh6QEVqeMNVkrhxtCuUEULZKX2Vclu8/xpM2/gTAhbkExRabzxA2GDsxfWH277eLOOfv4QzTZKVxlhQoNpLg8EyNxr5lPenGN08ej5x5xQq5GCfqMR10MExeBFt1AwAl4LsbtCELBVgYAZzJOb2zDnKsnL/awefkRmf2GMdT3m2GzTlT4QUmZzfq8ep7RwngGv5vCSj2AkzS8OZmDYj/uTBmqNeBr3JgrvcYBEQfVm0ZtG5vw9WkWtnsZzk8ICbWqxb/qaCDWQgDNGYQmOgWWNYQWqxPq8n+dxXzmPt32f2a5IctkvHh5fwMyfOXrsFnrgnQOgWhMCAzLEi/CNK1w+DBiJDCu/zCx4pzH8UmUvkFsu/P8l0LaOk/Ux5Mh6vZkfGo3FcnU8fCOCtBt22ktBnMr9qHlQzOsSqdmxvrKnBV8Eh/5bo2gbnxnX3b14QZYPLXiFacRTz4Wo0wbdlOwc+Xy7j3G1f6aCn9NV2GCJZg9aPBmcz5GlGug/5u/Z7Z0PnA21PIFGVuwXEyf9kOxywKlq4B5Gx6ZTA74ZPuJ1eYPZRcLWRwo/M8ViSnNkJrwMpmssHmHU8ARIQfqJj06U7r7AyUi+T+Js4djkdPOQQvG4ubvxHXoTpOb1mlxvj//FtsWkpy762aPWl8O94efza1dyOQ5t9QNvjHkLQ+qQJjswPEbCCE6CtuEin2/AQeVYV5STbrQBw/nXItge3KXCSrGNR7E/Oi/2jzJtn/LzKA3rPcO1lJTRxM+PF4QQXQ9SgeF2ZXzODayy3PoW5SWtZRf2BQjtPMF1dOAAIDcD8ppm0DeitdPJzO/ib7au7eOcjPEJXIqtmn9eJnvLjxum5VFdxQcfDTeliHD7VOUSV+YIbtbT6bpnsDnbYdQrg9uSBnXipkR3i6jQYvq46Dt1aUunvxNFaNM3hgJVRI7pE0zySpig6nnlZFyb/yRw2cm+GbNcnxhNhSoUjohNyjeGd6RQ1HUMv/oH5kwCqra7BrHYOvc72hrNPnbBxV+v1bHtEfxvHdMZYlvvxUPkQcfv7wxajhhZExwFwnoGr7TK7DP2f405fripRDnROerlKymOL8r8bIzyuuK/wUqcC3J6lsgv9LLtEp7pFQ1IY1W6FL3hAi39qcXcFmsETbnE0MCAqz0WwrsYiVNfKOpSj2ieynVMdqixHpxyVOByLPNYr95IpE1NjKZFK/DC3bolWEUaN658gNH9Cw/Dhxic0QxrWTG4UwUVFOPJWzFdcgfd9FXL8cAG/ieNSVXLSwQkarfik/4nKSO0/36h8tOpRSduh5d8+il3OxoWOjtIv5+ImOu1zzoW3EjbPKkZnmxzt5kIwWEXkJS7+ty9jDr1WmqtRUrIxI/j22LsyhBONlYs9a5HdqckmgKa8Hu+InNwVpz9hAo1Xb4CKdLQCWQf63+9QVVZKZhLhK4IaUcD0Z+sE9HHfCaIcmSy8ahtjUCTqlWUvVUzHdAty4kTxIqVPIAE171HOD5yIFMD+fZH9CnvLCckhojmI6kJATYm11BaYz/YY/DlyakMykwYtlyagkmmJSSLad7J6ONyTYOFDpHBN5c8SllcDVZpeSV1RybkCrtyktNvGNrOF+t/HYOxvKqutZvSnohOZTC75Zz0F68pELyh8OoyP4h09EjAHDsrUKF+xc5fYKeBZ87psdHaZsXvoALTEFb/r8UQUZe0AnRCj/ixWP2UMIULlFiGdZWveXh0YT8f6lKfA/oQyZompoOmDhfu63Kjuq5/JkGz5+ygBHYcTn6iT8eWvRvBwQKyEi21mheMflCYWpOpNLf4ySMKtL/yHoDNhg9jmI7az7FW5hO1H+hHqFW1kWI/cE+SwL0IUUz5arY2ZfEvNqZEhrexGRCFqDS++KLuZhM1hoYa7rnBcqsz6giPcsgDDwrNxZGv0hm1I8rjDly4EqxWmgcFQY/ABVtetXNwY3G5QJCbs73MNPWFx/QHxISp1j1rL+ZM46mLkiEEBKj4s1+jHxBAfeNw04bTAbnpzLeb7dSZrcXHquDqSnBhpcsMK9rLdUDzRfluyjGi/S7gpRd7MMZRyzpfSqtD5nYuhOn2eIdPdw9Vqy70qT5xW3mhjzuCDhGUzzgfkx7hhgvR6NBu9SIKZWfx7MqbXC2LpNHPugDQhvTlurb76qYCTqj6cAFRUKuOG24rX5AoUxxdegkIKFcAhdVlGaWisgiRfLmCT1zAl0sTSDsQa15SyvKvxIsJklk8LKITjYC/e0jhBcB8kkmEfQ3IHjO/gE1IP/ukaUd1aaQT79VFptDfzT8GkVuiJOzl956qxcxc4neQWDu8mbB8wIDB/naJJHKjrJ5xIQZ7jMuT7IySpXxpu0PVMNT+kmvYoHh9yooJbeMeflbBCJ7cBhxfnaS5+RRFZ2hEHozbdYS3cel0v+QV/fha08EJFHrbX3ok97WoexGlr06dKfJELrsYqps51cmr9NotLOxoTZmswHAPIxA00Snv6VnTuXctutIn+0jd8XiS9Hm/TVjQKZWlz4Bew2RuBiTvuBvrf3WOTDfNPnxIXNsyFByCFk8NnET8nLID3XIDTnjWlETudjkVaQfso2HgFG/ON4yIIslhn2cek2r9M3Vtx0BDt1lG5V6e4qDK8bvTnaWEE0+7hl0Sqr9K5CwGLArie/eDNQRam9CjLoNrwIzh0NEuN1OtjU67zRFHBoJpaC/aFXByy9gJriFX5PZtW+pfnbTShcaCLBpJ2ppXc3ZcTI/svIQhrKz174wr7q6Ed6U8tUnda4aoWHUDtieBTwBw9KcxH82bRZucf8cgyG3XYbar8F131b20QMQnyHBkCcMpaW6Vjds09co9fNQ0UVqSik7QPQCR1cpr0/pwpz/wWS8c+azQK9redFFT4kp8oeNS4kBUj6A8bGcq7Jz5dAey7KUWBHbP7sEjMCPoM6yPVdeY43QAGn3T2BrCaQbmal3obPYaFkkeHAcCeI4aEv2c+gHjpuYKSAlTlKiPL2VjTsRMbIju62cmq9x/1d102UbUGr5q5AflO11HKTPgaAQoIXdd+GdA3Rwp5JwsE/QnvBC0pUloWP6t9Flhc4f7HNmAfanEawtiSaF8G/wvVlF8+xtzwm8i9nzJ9vkXgxM30XXtpwRHEwXacTiV5hN9o1LqukKzg5a0HJNgQA6iQyN163AiwfSNrOp68+AsNPHhbzA4sr2ax8tpe5yM9vSt593yE3lLq2PKQaH/yI2Jxm19smJVsPRJySNEp3YarXWcEu41v3a9OIzb2bp9CjCChBv+FCslDZbrqGSOvIoAgTLtADM2ZSu6MEaTiKYvqBJtB62dWnBEROFigBgvxnq81o4qVklXK5fo3tzprpAG3XtccEZnudLvBnuR1a5s2No5t5xERLVysjwLj5Bce5E32pS90RQmJO4PLCBPuf/oSEXSJX9YPcHqc5SkUEfiBRSZSl8K049oVFji0vj9R8ov+/PYwq+J03HocsjHNeBOigepBfx5GfiA37at9KCEB33KQU9B/sexXZbK1xgo/7l/e5CTqdU0Lu9pQf1aBpX6fD0m6zCkZF31qHPEBXmkKjSp5ByvhniLdJ2wJiCs8PWOFVOHvunnEv/e5GgEd7PkooKAgIo5bdYLLQTus/UZEHY8wTo7cXESkM6xafVvND4Kd3aJwHmmALmHh6+dLnX33Xtkq38HLVU3g3ul0Cv65kLqgSAOt0YN3ayh3cnilK84CrbYFKeChKp1JErVZYpKK+udI7pqJZKiwqtJ4Gjx20YnnPwPBgFhR4kUByMKIFe/IuRZDH4IyuRSL1YdlFj9jhD2hsu4aBEqlu+x8FHheJ59CMS4E9cRU4euGyYzmz0j/Hr1i4xFrWz3XeGaRcErRcKFfq8zPrO/28mJxpyDAr1psZiHw4A+5m42x9ANVaDpNMHkO4s7iaonKqKW7ogOEhMnX7KYwDwpDoyZNnDukGYg5dEgQrGQ2Hh4qmnyvJGawfABiMsL7R7kZhQf2hW/zcpwDRltvxVXEnRHGdgTVQ/B6/oV+Hbj+OiOxYn4SrC2o6fk1JAX9G/B7NACi3wWW3eTWDME8jVV1TAxq8WEKQ7UcWr54E6+j8Ukdj1cVaBMHLqQLrwAAIWCznD1KlJt9N1TKix8b+PgwuriIK4bvhSOm3yV4vPXcOvKnbZS78doSr5zl8nDXBpwhVkSrX220mcKCzQhZAOVswVSMMMwS9K7oKLGTdH/I7XdoXelQ/PCqINyP2qPEr0Vrb9bmIHIxdoUE6Y9VwcUCIAbN/xw1LFGHUsj7NvPjNjhEs2gRMioJJHbDIBsv1OIl+Vrs/Lw1sRvL5eVavR8TL+1oUzkZLmifn7DRfRcHYsJiqwiozUxmtvAQurPgJaoPHIwqCSQXHTmNoSJvFiPJ6rGMBs596Ccn1dHCZmev/FprrAekbZdfpXR6ZFe3z6rTONKCpOPZJfowyHQ1d5jgSmRfQ/XZAFI8WXltGsZKoeRB5W2dP0Rcb7pJx1lnGTw5HVyK4iqPiDmZ/AWahNJMaqqWIeuVrs4QtT0tHD2Kp9ZTwaKkcsr0p/RT993vmZT6i1PkTSM/+PW1rhyhKHZzLHDP9IjE+llXMvVjkEQvY2akIqJfzg6WzrDFiEZsDQcezlmNt1JGIb7m7vChu2V/gEaS9jimr2vu6iMrTBu/xJdSIBKPbjQcU4CKmO274JwjCZL/ver52/T1RkimQRrAT26V3S1KE53LXdnb1TQMqIADh/tBmtMGhrGFMwQZwtMA6G8zXEnaELZTpS8TGOVP9FTzZPCp3nso02euS2MieCwEXZVsun4Y8sZ6PC4awZ+zL/jvhkExbVwa8tniwjXlusX/R+WCahlBf9WiYjImOOr3W9ChwFNDC1MpNSRR7Rjb/0CfIy+VC9S60dtPltJqnZYmapStNk/sAJwS/FmxwfKvcc+aM7JUKqLUmeah/uQPRkEsEgp58bYhbh94mLlmG5LBW+j3wCgxvMmzvHElcWUUI8m7PlhlVluA7g+2/eM0wUh08iAYxBTuyj4NYIiEY2ZyDN4xaiUSymV6+NalOc/WsvRDcK6iLz+oIYX7FVIL9DRizEP9I8tYDQzx0IjeH3tRO39MgGrRoeCq0HsYcfyVtYxXl8oQyRuYsCuRtnpA3eXObbi5Ri5Z0JlRJ5UKmSI+k6mBC2g+56xsNnFDoKY32QYDMJp2YmM/J00Aeuov92d09s67w4a8PEVrhp4Fw9ZQxSF83QiJ2VdX5BsXWQjGat9N6UgsMMROegAv8dz8R1mObe+o9XyUIDyMa+8EteUgd6o0fVAUUWwqduiZW5czNNmisRFglQhjvJgsETk+qtlHce/RL4gbGDDFWhEK5RW69Nnq1M5XNf3FaLBXEMlXgNThMDbN/ovJkx9TsmsdUgj5IOUQjvOWXof+5/5iSfe9isUZ7E4F9gPn6m7us8nVRdjiWptKxco8XYxHuItFq8qS4g+6EYdlNsIXCxRe1CYA379m5Gi2c2x4+vvib7RYb6rwOMX+wkWJ9rkgd3qul43l7rAjIhCxu6ywnrDe7DX+92cJqbGZtBXSj14R5CiPKnkJDx8fDYzCmEdLiMaXiKqwfhGj0M7W8C7VP06OlvymFzIyx7mXUOfkygdtKv+5vbLHQxmlIAdYS+Djj9zPixhEeUhs8rsqoS3IPr3nZ6rOW8FlFgXB/yND1LD4gp2ATu+fZPDjV5GjgB7UKx4sp1jkIZLBxFcyquXCjNaZfSi84lLUE65MhphzOcoJvghUecxV98pC3D6pTit+L99xIqs+KSHo77ZBamaIYTqKcNXlltRzjIWdwL9aez2SMLxDVq34qmTWAze9D/CURdmxd9plfjhTxtJkuoQpD+tj5jgNmkIUutpInglzC6I8+jSRBa9zrmEVpQjFsqzZM22FG+9nmYes3G6i8pHHoTzEWi8n9PCsGaCkMX/Q/eeeRy6ehcI4EQw4XUp2uXxQcz755Sf0HnE0JPWdJV8ZOsNqbBcXH4nYWBmIaqQk/kwsQQvY0WiD2SX46TNqP3kfcwu5FIhN6swg9at9wi1CW2gTNOqotCIn3lsQ5R+egU6dUr+S5F7Op3yLFfHq/vaGcA1UyiQ/7VjK69INK92PotfTJvrJQrB88eb1HSfWbHLITMrdznFczf3jB75DBJwUbAQMFSB0dIhnqRQfIsZzpM0HQ8GS2kXfl97yXMIW76X9Yf+lk9GShCI0nr2kuIXjKzpiBIpyEFNMZvruzF6whguAyrBb52ci86LmtEHQJYkHIzkSLQcZGFm9UgDpK9OcWMk9FJaTdjui8Km9nncVn66auj3tUMSErqjJaiE8D1ONOKwHRykooaPv9+8oIoLt9dsuTwSubuy9yW/cCyRapjQ+aAYp1dnX3slaUdS9K25LT+qNTDj1RePA4KwtGXARF16ToCnLpM0CM/3220BFmMzCUlXsfe+BymLK5YbKekt5fwcnWt1b5RUdvkISFZL9/SUI3CGuc4lJ0hAZYiGoDgzg67jFY2Ra9Bb3AFvjnPlveZDpWy3n0IxrezFVKYur4bDM7hSz3QF2zYv5qdLBnfRCG2+lVmieDPHP0PEUCrHIqxelZhtcKpKarRZPBSrkj2tG8YCUzTXKYYhO59I0Z3tIyJyEKVwkHUvcFZpUDJbFnRJ3vEvYaQWm3ktjHtqhlpy1T1JNjtzglAxtBGGNLNyJI5MSg4cLvRYbGOy/e705zN0Nt8t9RNmc88weGAmA+6j6H6XxYBsnpIBPADEW/UXvgSoiqmOzflzpBbLUcOH6MMQQgE2GSjMYLplp+ED/fhyj6RtoPg7dqpCUEgDV7aC7+rMOyr+YTl1kYIZZnW85rdmuvzhXxmBqtlb6XArp8VQ3P1f/2ZZWxQBXVffDGAHgWQUKWAWP7VsvpMqTw4tJ6Qluq1sWMvQWXMRKRn/FNhB8GfKC3a94V2aIErLZfTs9qkxqbvrYyKD3dR4OeW5STkgkE77L414cJp/xGsLoGwfoGnYtm3UoHR6vtNLvHRrTO+0Dt6WaFmcbGoa3Xdch8zBhZa1E9jLyI5G4XeaHfB9b/xF3+m0MRhpEDDV5wDGCZwL6WDK/gsygpvv1CTwXqIi08sFXTLVEzXcONk9MULMaahPYYi5HAeM6JHXclRxC7L/DqfrTZk2hDtf44ugIJgvCcdwYuIPijAX7OcolAAAVt2l2JRz3XDaT72Uz8pZHJeNk6QY+g8naxqO+BxciWRSCGS4/gXOZNJYi7khBnXFAvw31UpdpmkaA1CKYVis7uf2JdPjLtCl9yMQba73OMopMr/hXi1dj/Pty2K+D/+p8NuiGuec8fLwH92v9497PwvmJK4bXkSk06u7bXKZ6miBqThXzI0I0zsRlWpDmpjKj6o1pYN2u9JOG9lqfSrCfZQLOzgKu54+DsnkwXj3Pbz5QusHkHQcxLo1v1c5Ejy8Ehodkyp6On7GfzF43YNJDZEh0GNZd7ADJGc3f4cIfqMEMcQ7ZHsRq/A5jpgeJMIJ1RlD1QBN1EWDbTsTo3gA2J6rmkSDTSy0xTUGipj7gjVf8uvqugQN7P/hZOb2+zXNuDZe+xrrEgg0MLwsFQenOwCpvJ0NVWN7h1jDtzYf5WzYzN+6zLuoX3aEbLq8lfuEPlQRkAquIJ/2uCD1HQu9XCjUfZRJrxPPxXBXd0ecUstnmbpt7WrMDCEQD85AvlYTNpjcIkoN83XOwN4w6yTbq9tkWrh1Rzz6C9V9a/5DyG4Wp8DiUB/2zw4Gg770eBsea468j8j4rYEQxPPdHkAJFDL6981+5H63f4uVyWL7icgJomgescTmBLydUg86Hg8VScqaM87lgsultIq3IGi+05expQ1PKrz0fHhY8nMOYi8DaAIoTDfT+SxmeLmzBpFIgKodFrr52H2R6lFRI2ZP44sEII2tW5CBL17SlwFMShB56fr9iL7tIoDvfpYeYA2xPPWWNAOTOij/gaXVvgrvphkucnnh+hi6Biyjw7GMDWTZ7+yrJyGPutrgnbxA2PMRw43Bs+k7yICenO38bXDoeiYfDg6AwEFKWhIHxz+5v2KpnYr1fiXN9EGdMp0OD95MQTLjWyNL5gs0IvokaeQ53Gx8rMaTCTtkgrsEciRniQXhWUq2+xzwKrOaHVABpoQ5ZiEkZXM9q4IjlfEYU7hx7K2veNAvHUn8mAqIYAhRVAJRWi40CKsj3xYi0AHswdkEDr4aG18LCTKTMFA4/L+yhnerF6xdjl4nZu9Mm9ltm88GBjReyr4dLmw3y38NLjjOtPXyyUleiT1plGk4WTIe1jaAwLqVBQcB9zKOjPU9yoXKF8FHGGaG328u64drUpCHVNMahaVdPvt9bduwnoTVVH0CLXvXK2PjmF/eL6Cj1bjC8UhfQyFWSJMcuScHcnGl06qVN2ZIKYSudxPOTzG19gJa95OJb6nvSXsi2t3WU7EqFyN1/qKL++pcA6B1oEHGK4FfUwZZzMxK2hZTvxiDstxShrpq7fOw00zLv0Kf8dECYCQqcfdJkP7EE5kdSDLfHp7LC3KuYajath2uQEJVcwVXgIZERafdY4SmtgS5y32zGYKQsepI6i/QRTnhMeRDtFNkAJ5tMe/1inr+vnPCa5oxbXmmZpCvCDtlkKH31bMeiDOXL9zGQfSvOPaFonclDHPtLtIZbbW3Ra0mltDK/otM0meojT+BEcx9mhW/eaqTFJFD7drlOmUGeV6NS+byWCqwR7WK09sV4gHH4NVycRfEEhRgIMuAUWjEEME4qUSYHclf4m7Kg8v/QojuFn7XRVLUeJM6rvqsCOFsl/KoqLGOdxG6sKSwZ+BNZsJ/nv0g69O3uEzQcHMA4E6x70lRoW6zAvlTaLU/XBZcWChMqESGvVUmUOP3ZEJ4LjEFZYfLZT4lmuDe1Ef6X0wknhSd6IHVhtBLJ119lnZyIUEAjar4IOJtThMor5a2uBF9VqeAQAT8fTspLOaGjjgaFZxmt4BB/khYkBtSfQp8DV9zHitUswflysGmqqZ74rZm4ESDWGbujrvPRXjnP9+j1zBznHYg0366tTyplkTrb2QnK+0Mvp89FyiDE9wa/+1kfItfWSy4l0UhUlheKNjH7rHyHony3T1l6YPDcFPD1CKwq1ko6KDPZ2kZUTWbZ7t8N2Z9qlg35+fpxk22TAHExnAbQpmlB71y/Pzj5LuaYVS87dHtVy7J1Ak6qSw1NEBAFQFBDJWIhusk7O6isn5gWVTtPWQYeo43icue/NOT/On/ySRSK98YtXcjzGi34/Mxcu72fcMpnwHiBhnsFb93BUCHNo3GUBfN/7qHWhf9DlsEnA/8KLfbJMsipk/KTB2NFN85SIVImPtDN6cq32cU1wlQcNzqLtm+1CgprT/EiKOKjdTIo07IeHIGSODpkWMgMvoiwd6ySJlakaAQwSTeyMQp86PYR5vM3TPzy2QOmzGdovD36cHAOqx/jjaHfZyXpSBzxacyhj1fv2yFe/W1dI7QsR7FNxEVG8Owrr5gh+E1mejnhP8DI10V8FkGUQBpc9gzW317hYkrCRZLeMFAbOu8WrOpvOXKnQ5DqFtACeNtAnaDRir1M//uWIHZj15MStt7UzV0Mk3/fwY27lj0TSWRx5Bx2++Uy47a/Qx9FyvglSgaeznYGHtPXQh8DcDZyIXqhJjBWSvscJJdgb/u8T2GzxwIWofF31JhQTUYl0j1vII6pgPzLQ090QgfIhAZsh0gyAlwaI2wS8mS+ClLop1FW2tfR/BOv9LRWtwFUWCLKykjx0eQIPgP+8VzrxCdoRgpJUSixAYwQ8Iqe1J3bFWAjCr4lMjY7ophqOohqOHFEwFlz7UMFnD+YQVBMCXyl0ItwC5Ik/6AIEa4Hp1VOTEmtqYNq/HiHVAh+rzZiblP+hA7Cw/dAbWb8OJ7rZQBuwHfM7Tku4dXKE43h15oLWxJfhpCgLthFL7WdFBgmBUtBnTg4i1gpH6rMQcL8/Ydz/Da/MXq76I11nmyjHv/klc4+VNZbf3pf+hQ761tcVoAuTIf1iL/JYTUaHPaIYvvmvTewJ+TE44MDldeniXkZVix7O0dkufqUIuMI7ByJoBDroBjODb1eUFEdKRE6UOWFhmWr7DlQAh25ymr6HrWJ+/Tl10wviV18M3UdexUwI46MRwry57T1dR4PCQITCWcf/ucl1pnLo17nElKHu6D8Mnm/rF6wzk7lQ+QY1EbZ/Mxc4BcRJEgxbI9A2jm6jOCmJh3ihmexswz2kJ5aypJKzm/sJwQIWiSZ0rZo1wLlMxbvcO6Y0uzrZwWpVy3WRzifpP0v5Ak/qNSclIWc/roipvNbu2XPQvgDVflFuyRD4+HrYagptrzacrOVT/P7iEN++/bFp16gVzKY49eZlqRGd+0FddKhSIhRot/u3RHdCjDkD8djl6JP49MP2ikBexujpvzS2Dwn5HYussZE7n2v2VeDqeIMF32zcNTUf+Fky+8QgWssIoHykIW3hG9upuZK6T35ddXN3IlMWBLo4GycCNpfv+KNK+dscgxsnDYCLZI+NgvEYEa7gbX2zVzV2z6N3oYlEZPZk1Pd0y1DwRSs8Hj8pVwOCQr4UNZfPtW/Sw5yGl6eqVy6FxDnJ3vdmjA4zuizDppCAv1YfxAzR4GxJVYw5Wg0zMUdBNRIPpMYWmHhUJsftwaXiWFtTOk7goGypsm5X4TjSQQlM/CL+PpK6jPEt5Dh/vhsnr6axIz8vNZIXvUFd7uBhu/YMLJ+/ISx5c2xQRFbsI0v0kPitTboV0JlZ4R0pBZ+2f68JTr1q46J+D8Enhmz6Lx7DY0OSSK/krbCWaKwYL1uKRigrmPbYy5hsKNRNgFxnyjX/THQjzLj2I6g90OEsd4KEILnWJ1pvtNgTGeaE198drSZ6aFdHf+UkCGaz7hFKogyAKjUnnGuq3U5cscsohdXlvRAK+Ef/LKEw9A4UCWMnJxibvomdee5FTSn2rZ/zBfwr4JNZ3wG6pK0FKJIDyAdPXn2lywAEvmrmoYc3Ih6/wsaQwLnWqS1pT3H75xCn0ZrdOjWB/nqxZogfatb/NQZzlY7tWBV47UQPRtD6drIAXDL8NBQlzX3Okt28woNeZH/OhNnIAMwZx67OxOiEd6NY+msbLwqySuOCL5uHY4UqeZInu9jjv6TpXl/TCCRZJGBzGNvADL4+8pjczowt5Hr2Zigm+jUXCX7xT9rTOMVcCaVbIUWCrVa4IvyCGR0DOX24rZcWZVBhmkUR9jJF/WSdTPY3o9R68hPQMrI15MAbvDjgUfJWxkfMyD1398XBmCe4ymr7wnGO6TEkUTqkPcvLiAl/3BWDIXx17Py2VNQdLsrLs0tzkLkIzyCqzNBY2UYHmnR6uM5vZsq4ABO2oRWDaV8uG2GTK4KlWj6IL3y9QbJziVkvKaEv8B2rz11sDmS3FtSyLbEQT0e/a8g4sgtEcfExWUAU0Z1r/7PKn4Cz/qyMR/Q5auQTvZnnuZjq9ogf8et4gypPCnzFYC0dYDz0Xouh+gYZeFFsnl1rLVwygbnxShYP5V7i+xthqwqFz/zg9lo9ZYsYDoA3y8tp1ry0IqBb8pti1ZwhywrpUAtB8BB0F+2YAjYJiWeBLi6nkh7tUHHu4f/O5M8dRGv/CtYtCjhTekSSSOmtoqA5fcExNwhQwDq25CNpncEuZpi7rhEtjydYKWS6jfm65UmK6W4H7oKV4XRhm8t4lJMqosugolJdWNqrgOhPLIS4HEu8okA0L+p0OJestWNcHiZVXIuwFnCNq/3pRucehQt9wdbc6f3PbTHLMxJFi9MyJ8ONTl8oXdpORBtK643ojgPUk7PvWDsJFaAIfK80QVYUqbbDQm7CT3mluQERCTS0kyZkDd5I+6XGsOAtPx1SOknWIUKnzB6DkdLGuESLVBWmAmxdYoblkJ2kN2qYTvC9hJYDESzy3pQpZXb04wWUy6louTgCFKlp/8MK2n6i/iWn5/oD++M3oHyVxleN0nS0nnI0R981G64p4e+g7RXVQGX6YOUwSRcKpaV7foNNkJi4xZlpqJC00S5jYCbA+T9WSFcSobF/jOUwcnSUENNGs97h8iQg77ImJzXPKJwsz4rtt/6vP1YuzordZ4J+yj4DvMbZRZQWahn0RgtBikVZGcICw3viTv/+NWVLqMqkhVQ9LpjsChO7XHjvi/Yy9mRNLQ0HYvQCPdaN20iNh4JCfIXCehXgjDNSotiDhqw7pSxVv9vOtLph3o4xCPKfUKdpOhIjwPlRNyFL+469vPXqVe8GA4AMKRjOdV2rPxdRsCR60VLpn2CyUdKKYyXH6/jP5hNTqkFmAmEOWhGOlQFYMZ4hyX5g/OJz745ondsufjqCEx2w5lH5Wcs/+sjobZBTEKqAyn720oRtKubTZ1FIB3ocBAL9iVOaaC4tiyIJTstxaR0Bf8DogJSIKAVqHB8FSBZQhYR47OQ0VQg/hIxVlO8VXtW4A0XbXUqr9jAg0x+tpYN4Pv0qSFmvq+rbj/tCd1WWyL0eMuMAP0u1Pz6IoOkO+d15ep4Gp6nmkCAnzTxeNNnO4IJNdMx9b8WzJSu0CRPIF/5CY2wM4mGp26KzcQjTdtScWbgRnD3XUZxdiHEflyCXfqGtQipcCHKmOO2PPoxEZTWVAyLUQOme7/gHSZMtw0e5dWzuMBNIj866cETV0uJzykb73SIdjy7Tx5KPUBh17FQOYi4yRjGAyuDYIwW49BF58NuW1GjC/91EcMPnKz7GayCCMBSqTJ0Qooyser3QZmTByX3rIOKBNJx9A2H2bvrXegJgb5VcWJBDQ6CKtDsYUs3jm3fcwYBTNFGRk24KE6LrsWy+gxdUCevl7SXD65fkRuNxiri+3EHG4JKFekBBbi37w4JAle43biKelko3aOsZtNdjRnNGKAejIsU9CWcVCCoR4VK66Q55Nme1/JOJhguIDlOjrI9qQXqU8cAa+8tdUw5yGwazD04AFHDwRvhjuFLV9+XeWAkI/r3Nq0LxpdpI+UlJuWReN3H54wl/D5lk2h2mb7EIyKaedwHYubvu6mbjzOyTFo9lWCmEMoErXpJNhsqr8P+2i0Ee9FEjjMdz4jJPX0QqYAPNwWZTqc6Fx3pvyDSTqBMEUPu3khqz5aVnOJnquMPrq4bZlKvHdR63GMlNxlXxJKxRghI5P9JMLOvGMDpV7RA4CWt19YpbASE1k/5kk1bh+AaeCxKcGSuKpVGfk2SQGTImFi9xE68TvjMuvR+tfJMw1+3VSYZ0voLOW4fiITnhlwG3BvecyrAOsx0aIuIkS3OZy7aX/fw1wRXo2Ca1GMiDDfyRKzpxKUrFvjlHPGaqBIYOd63wZkYwG2Qa1UBvXDJSWrfau5PWPbuE3/w7RNAweqjdlOCUjrtB1MK9nQQP+uAkCzgZn3PbVfTeKPmXEKeg8PXMibVvamD1YkLZTs+Gy7KzN/6jd7H1Igm+gHNFLy+iKeFihEsrVOgdX4ebQ2x8tpOrD5aAhkmt1LMUBw0vWnI6yn8+LTHH2C7RsT22AUFGO7+OIAdYyv3KALjiooZ1dVjDOeLE6jrZrRsqlrq1duf3yEjZozc55aWCiqVSaQNKMlRQOv0K5kOEHyWaRs6W007dim3jIFCfk2XnT4ApeCuJ2UrciQrOkwouFoClVx4h7sfmRFN4lSOwo8KfA0NTAHQuLPGyTu1rUYjmdJ1AoKzSaf3HWPSNURWd7nOV8LS0Edl9Xdo4iz9DJy9U6PTN30sPQxfOm9deYvZNAVNQt0edYarz/gAG0PhcXqOkDoPGmnebul0XVodznWORWnU4H/x+4Ftck37h9W3slxAeeKs6x5WgWDRic8qTUM37MFRecHkJGMzlmhH8CWOHw7rYif49WIc5QsFN+kVkXtEcKc5JTpM5UHOw7Bh0kGhntQJXPehtI6aXL+476LsjYZrfFaui2CWVEhSFyif7LyeQXNhV5eLff1eYkE54i6G3g202r1O4arz14demflISTkVLxhmzbn99V50DZOlVPXDLt+X+JndsqDrEG9vSj44vJl2W9/XETstPPQ+NyV8Y4yL1ESqhnwABmeekuk9dBd812p+nRBAkfyNvHC3dkiOqY3Ke2ui7z6DoLPpSIuyRwJ3loi3WJczwr+jrpWTKdDwmEj2g0Sr1d3tpiu/mIY01z4y6nXBPsqEgUNJq7G4htmBAS98UXcSJKU/dtHTSwJW1NEFghbFh0997Aohg6f/I9EDTpsRhyHedf4ySAL9MLkwjP/DfJYfetYZL5273xnsiR7INmcglXQH5dIV/MR+VR0TccOZxMWyL0yGlCuU8Sc3ORzYAqm2VYbcuZcMihOHyfSqInNGxxssYxUWXqU5oFIztBa7r5Rl/txIme2UuRof5bJ6dyiE1nCrPHJEcJ5nGjVFgmswLKVfBJlCfNFXiD9sbAwhkUngObssQa6j1fH6IlIeufGyg5tkGPqaVPjjp6zyPfMoS78iwRM366uZGs0yjoTTG1C+lSnfxPC8NrO1I/CyOsSaiBPKP2FZhtsWo9K9gx6mifqMahE8GIv7Us8YGJ9mgsKggJiBBhBR7azkbVonDTcgVsMw7sbOcI9eZmta9xFBOHO4C8c4mUgjbQet0FKvEoQScynnM3lGnne8vmf1B8XL1z1pUJSdoiVJl04LpKn/nJD7b0cN0f/DLZKcnTsNGSMLar8YxWqO7fymFK1tQw6MJc09fndkRbiPLjkyZLjb18TMDrHemJVH5En5D3hyPKrp1OxlR6n3Z6danWfWSoIkLTufOXSXECkibBlL3jVIDZV9ftzHTcpFFRy8w/MbAsMb+v1pB2P/F5lJFpQisEfoA9FBCFc0aS9zx/+tnQDAgsRRQIvXnPU2F1aRU2RiyrnAmJGy8PtzUF0Hwl+yu94lqnE1yb0wYYwrIu6klSE1079izTJXTQW4vwjKMpETS95uacka2nepCPe2jW/wu+2MQksvZ3KXbEkUh5T8qpZg7s8sFY0JU/1Izen6KLNuABLn83uZntBB1KYn+USQ+NAKyfl5rBYB1ok2pDU5KYpXrzFs7e4lrRUK7w/YPgdwvb67z6rRG72Bi2kGIYoyR9NlSafBIh+a6JWZnFWR9p1a8vGiRq86y57XkmbNIO/1b4ev921jNYLds+EtH8CechIFSAK4KsqNc2hSLinibjhlwkjx8Z6gFe6ahZ45s5aNlnlHJmDZGLpjVqe+SzV7Nu+wskgV3vT7ZDOFndC7iGITsvoBoFRJP0/hzYVIdo7w/ahJWwfttYRS9Q+tfjKw8UkKDi2lxhSed5RMioh/tPft0ltDAA9HipqYCFtBuYvSZhbCxWEJX0YcPqsdffcxGR8rGR19wQ8z8crLUfRubLyjDj2fYlfLGMZYklxYMOyaWvCxz9jdvDAc4xrAT+OBm3awhRwXVqmGoLOtIEQ1GOmgTU+vJB2D7gfeI4mdlts6P/2lzvN1crZkXH1h6TFtXwk/8CPWG+Y4F8pl4S/x9pj8ggbchHgjZb+WKK7itaQ/6gz8KiWwwm1B40/Pm7EhFqi6n1E/1LkNN4bTiKtNEM4LPwbGoHAshcVnw6XhxM5XCqRf98fSN1Bo9Tg0/178tq0BPdNFkavWZvoyZPrWMlUuY/gmL9D9/J0UgVJAhPy/BoMKDuE+A01CLqBAMG0UkFcAxl0B0xf7oDgLiSW9M5zfLxpCNNLLYEUpO4DE7BLywp71zKrFHRL0b2IMvLR/T1usKihW7vHpu/gcDryf1yiXkmxyVGeqoiW+IEzl/yfwPfGvngLzKFCW1j/MGHVl8BIjL8tosZtjPjYf6PbGERxkg90HYxL30CWxVlvXtcgoPvR4Nq9R0wBae0VUb4aYtgTOa2r6bl3PyOV20rr6iYdGivDyr+P/mh4jk0taxrvIBOfCc/I1JU+c075m9Bhn5avb/h4yu2+W6AkVxpS2zZxelzwyiEHArGSD0MWmfARCfPlw1dlEkYUQ8yVQ/zK9DHM0/HxBPgNt4YcFUlQcktikRv2WdqIjhpr7YY3zkZyu8NbeNRmow5NCf8rJxOhY2ZgwRDc2I5ylF7bUG3MUotTkfqmNVJfqOE8NhKTWXKapuZUhECHdC1aoiv+ZMgR/mBBWG5WldEtsOHK5Ch5rQuTdyKEtEzI/dzntey51b74gdUvdGqD08O/LiUl24bfgtM8/mNVzhYN4TLSC09OVFPHaZRyJN1W1r1wAidTQBxq0p3NX/zFaO3ZcznMnkewIPjmhJ6zEH+87o8GSg8MbVL/Bh7m3W5k6mDQwABynhUlHX+C8NySDNFarIoFM5eZesIIgLMPOIG4sk6y4wpOFw9EY0bEiGj3oXeDZ56p13RKcDSWZJewyMCxuevi9pJnDp3ByEpuagksREjEkSLxcBTSR7vs2MFVliG1w7/yK5ifWY0zvqbq3TxdisTK2myqF5lh15jCG3btcbaOWZVdJXsMEqYITNeW6lec2URf+aCEOqKLBs+VL47nQ95Rj98fSGv2tciyJi6fF05cbuLH/b3fdexSJVCiMtmViVMTyZ2qrSW/1JRNAbGa7RbqmH1fPxdUBczwh16UfntpTrSv1BiisAASowqafwppw5zHOoOONWtC/y/OXnM8DDdw9OrbEH/oTo8YjGpIW96IcqdAgSER2sUKA0bqSRdCAlF3oYXXkIme8M5c0HaV9m5Nfx/T8HpkHZHJJEnolQAK33zLeAaHRF4dIGK1FV7CZV471pr7u8+yg0NOmzZb/200ZFV7mzQjOike6QdJk/GT1JGF6Av2SEwfLjIm8xhNsb01B5GJ+4RJU++ig5GS45Y8ZDTb2qEFa5OpNEn7M1mmy3xx/5IkK9XVsmi37cecMZ6qanyMM9+McUxPwwFPb124SG7dTyxCKfACMDZhsgfldkXf1V/5ns7FRWaF07TIDiAxMSj5zShGrjDU8P0PzS6LjMSWJ2hGD/FSeB9ivr9RLxu8/3Q/KL32vlDS7tPFEVx7oA3LbMDTRVF4MTycYKei+M8tdM8tqFX+cEyphVlxtrH+lhzMjgRIySmjNWzBqsFunL1ZM/bVpqnX6863/X6+IzrpkyhVE/BvpmvLc2xpMS7WTvB0Xrxv4bc+JF/Bz5yaGoooqSmZPAmqkDxMy22ySuYnzvX3m3Y/QYL5u8u+IgVZF3MsfvlTpHNv+Z3AyiGp4rOySs0qXB10JjvdA2nlJ3PCinnX68d7hTOofyMLvJsPioHwKILnQr8S0dvI6i1vd2agzNvntBvJMmRN5u60KoEIVvnYix2v58HB/icLc4w/0QQOLgQ8eZGCt8mtOQ160izELPd0sdh339a7JR0zp3O/yKey/E95D8eyml6piQDs5p8eiQLvq5vTAeCnR9sS586Qxk7ZcSuE9bSg3BkTZ/2x4iN/MR3dm/PrNToTmJm/t98VpWPoimQMHtD+aA40KqosUx3RVX8wP8uUtnhFl3EtLdk/iBASFXfpvAswlGgsqGrcbIYeApzmi5IWBbGtQwi8YytkhMCRemz2Kyw1yaNBT2h03Oka2lPB1HEv395+pgb8AtMOXP5bRBvx1FckjcbYjAxpmcGUOx+30SgHmlTlg+w6eFUBLmaIDIWIrvJI0/Bp77rJs3uBjTwCpY6fOr+BJr3cXjFKsf5rFKubrHj8EbrcVkLZU7/7hTm1L6BGQdGtvWFxsfBcVdL56/99KHOOUxXO0Sa9T36ligzjqJgexoE4xQuBAA2FC5hB3gir3e3kyGRhk2SCQ4q11DPBg9MbOcg+TcgU/8Vnu6h1yZUb1RZBDpTOU/1f5BW+IBeg1PT0SRxTBWXcQ/3+E25Q5UYJYDauqANCUU/By7AEP68a99i5eCLBWc6A4050koiUu0L33eFtSmtflf6jipeagdYDd18fKPFmA0SRBpvuFz6gHXLug+DyfNhtb+gUY7sAgQzOwBQufbQNkOsUEe9KGzP2gMINMKsI8GASMtnnKmgkzC5ouBVn+kln7s9vX/qDwuvTTMPU+NJlJ+rBVGqWjm4WUEZVBvcKE+wMBPoyetSqvd94YHjzcJMP1OYvwJ51ZrR35s8PBgzWJbNKuaD7dDTZQJrK7VyBU6nW5pUhOoqO/N2ZgNZgAkjEmXbhI/f6bQ3dQoWXewTMdl31FJWqHGb8lYNXlS6ZVdAjppl/kRCE3JtePR+R8gLBXv0e1cPwQgNJJwAcT5n3C2xaLIwfx/8H1yldQziu40/tGdxv2NQxAq2MhUi9YkFFVRR8lV5O2jld3P49uZg6Ni27qwPvLyJ7q9PXjhnQGmU3NiRk/ot1me2zIhdMgiAz9m/5Ze4o61Qydy+7xzRY/lDavOACFRXRsAb9Vca0FZz1Wdc5TqFAN8tmw1WmdNqYkWjDnaG/B9mUpwFXO/WWqrxDym3iLlVbL4Tod+pR000IrOdqJV24NWqjzuGhOYuOQ75I6QfPM+GeDeMtRTpMFTGc3pmKhY4Km/SZKo8tqzFT/jVNFSFiUQWqjo8AOpO7KzEMBfo2lXF7Y5Fl63oY0sC9NEfwlzZ8P1MxwY+ff3b7MEVecGCzRTLCbLmP8PCNhQ7o/Zlhy/tnoiZLVJ6PZAtbjyv2M8Oz3/Zh8cwm+MZk1eG1dsot/NUr+65YZ7+c3iPRSf4f345zW0sL4wBike9/0+5sgpJ5/eh7dmjMJz8ZD305Hda+pEAuZR7nFt372xF+SdsvZX87O5nmwvcJQPoc7oOLX8xX1popvRdIzxR4S4KSbFxc7oHW2mApRdj4EEiqxkjAxs92cytKSwxwBVovzHn0KI7S0TPrm6C4oFX+wVKnsVwNjJodibJ3BvsEhwvCrgFqZ7KI88nJqAhlzPSDVlQtNkvM+0lnPrdXQkHPTSvRwguB5mQ/OecJJt4tyzUX7zCUql+uy1c1Hjf6IcvNc/OfJZH11vH3UmVrIGEopC3pVbnIVf8B2eHKI2yHQ41RsbPw0ufa/1Wh09BTKCW9U7kDrywTCX95z7TgFBl4OA7uRfWa2gJNUhxALcCqRLi56relfuyRC56TlPyyq+OX8WmUOmDRPm0WcBAt/uiXEJ533ubs4fZHoUEc0CT3gxvrIntbXMFDfs4lYNurhAjm7EG+sphhDfRgQFU4+cI8mPesuER6ux3FeRYKOP2Z633CO+Yi0Th+icJjzryV6De7gyNP0z4AC3dhtLQWsGb30WpUECcNiANfNzrfWrVjDjMo8dEkbYp5cO8RmItKKxRN61+YeP3UygDMb5wTPpo9VihyFAw+LipnhEcBL/EQxye+GzZWX4BRAYJVvd41DnzNm8AubSSGXKsw3SSkcLt42tL0JqJDpkL/rmpqGkFHWB5rJvHbLz2aVJBvOh0C1rwEFCbD0BbCRi7ouU5Mab4c3Vv/Ne1kM0nqBqsdaESqjVmlJpjyTO8w1jLUhS4647dldY/pU8r7rsXgvGifDChSGTf8UjyKvCAVVSLVNjyNuB1iuVpnnBvVgzkjf2lTOmQlOTM5sbKDBifLZ192IU4P/iN5cS6GOygLoTz/qTc6nLpUIitgqeTDfELuX6XdlkZXORAEBxi/nf0xZPKxyplao6RqRjNd75GGhgpmBvWkYIRofUIh2jsi3KXj0vR908dvPZ5+ULvQB3nV/+TAANXT8wVrRa678L1amRx9GeO5d01I8gMaSXeZof+7eYiuqhRBxXXjSnBf+Ynr3MAjciMhpmsk8Q/ObN3OyM1kPOwvtunYhQi4TfPKF7Z2hLXRHcaeXuB47kVE982L0QqYfAn+1SeSYV+I8OQXgo9H+4oM4rZvPmCmfl6JqfcE3bdDnKYr7fFGY+w3lLAJnb5H0HXWjDyBb4k0dxP88C7GUCv5Y2/pHfnLTw0UQRVrP0i+jIPtqyXTI8DsLkMYMgDCXvMJbEASeLqLUhqwJ06rAt3oWjeYTpjjB2albdZ8sqaGtF1ynMz3P9OhhRoxOanyaAkni/eKE3Tz+YNswK5K+uYPJy1mo+Ywp+q9PDSWjZt4QX7xBe2qnxwRbFoHCwXEXUxspTiobn41MpihBlDXFH/4gXDUF2wquaRfzLyLq0YtW63v/KG6hEgGpXiJ9WNBeGXqmi0YY9SQECaIghY4C6AGn/4whd6mCFdgx5PR0qAoCTm4TAzeMIKx55dGyu3GC7u2A/lK/jyLnggOn30ocJTKMcL0BVl4c71mHs2cf7cRmVO/F4WqJz5Repn2bnCxPlLg6RCDqpxYdXei1ymDIhNwsUk4Ief1jYrsph0Xvy5wmt1NDXawpaMpXaFyEcsC/VFGePN6SW1/iElGnnYu8s+c2h/ALtgKCdp/syMf2xm7bx19God5xzpITgmroV3iPY8SnfV8iUfoBSBzUxjgoYnMJnua+EYQgylEv3sQk00HQnsk0KCKmil/BX741kRPfwW5OF3QlMOf5WvEbrVKA+k4SLe0FETPeg1KuiGZDRVzfhXjF6jj0il+gygW4yp5WvW902rPdaoqJDrj3jxsZAUPirZ0tN4OwqRFVPm3j658rUPSTBYtcA4DKGMWa9xBvUsXPIF4++y8FJQe45BOKwMMJgHUG1IDFKpDM8nP1Iib+F/6zaDcPHe4msbUdobxzgV+Mx3nCdy+4FhIW2NwSpYCX6cdPx/97h/G7LotYxTzrClZID1IH4IqhsdTOEzMlPuKz6ASRzw+cQzBI8DBTmWcrqdKzBIpFvEJ7xFTWB0AZ1Zd+JokTXTxioIUKdnh3PFf0bj7XPXNy3ri9oG1EW0FxsKO9iXcOoJ1/0dV03xEqEm0Vphc2wKcR12rOPofqpSNkReB4kLglZcKLFHRlZUd/tGgr7MWSqeIieX7a0yg5cMkM0FGlpKjrAyp7QOZ7zmB01WAGiAzDLJteUQmnpGkkcHsv9Gyl+Jh3ROw89XzB1HbewItdHzDh8WbJV7h4N00AnSP0+gt84KmQ4F5BpKW9279r0isHbn22mKr13mohYhd65EAJPX38+1J/7LYc5CSrdfOqM8a0MA3tI3UyHbw6yZunyT0yzEVfkHlJ3j+HtQFKVfhVWGARJfomTY/qMQEv8mSUZmQk1T7LzPuPx+Vx0wY1QMJdq/zxnMQwJZPTpztRxixy+Exgg9CN1WrGViEsLiFKN6UVyb1fdjDzPXZo/j11rzGAkk2Jk0j808/ZOZpE3bdSJYnaSBEFAQ1zdKqErtqrGTqjaeanZNzJeCi1sfT62FdBKgtO6FrH/O2g+0wHHicqib8M3x/JfJCQTlcNWwDYQuBbeJWfvyKrAZABZe4hJjezuwNSdASIvYD3ym7kLpXEN/hhLyA4uFh23Vn/L3I4QiofZJN9WV8jkvZ872Cw8wXup7oUUNMo4EAQDxc9bo+i6YWLLF+yy9WIVdzuYXFIF3bfm5tDAZiB6RqQ0i2n8Ce69ph9ZFzVSgVQBWWZImvFiHF7ZoF7lBrerlxB28bisMvsE5G8Ik+7l8S4/1HVP88n+JJb2j4/IfjQOciFkCRKnWXa1gG48rv/13qKmF8FMGdEdqXyDzVVeeRQuhwSd3wAqGUHSgFcHMdmEm6HPuG6NMadtew7RqBwAsJGfOkc7tOLDFf5vxFAZtYvNbu3tKGI6gNFIem76AKLC3SBFrCmvpc+wtPcXCPvsXo2Ej2jR58ea0YTo0494AUtVSK4ArzR2RQ3asTISu39n/YoR8CF5YgEcjD0sNqL1D1l0VsQWyMDViSzox1smMU6wgou0cK1bu1uX0l/naITnKHonQqLR/3TPBsydsi0ythLLUHBQoOyIS44wc/H7bbd8/KzecRkfR2JmvYfs8c3jlpMtkSRQkpb7Juwpglo+v05fPbHzgdpMwI31+hYuZd3tTfAVZ+MDe6Ur1phsgD9U/PY5EXnQgTGbBT++GGIdUd+2dswEDc4YyvLuKelgYLWblKQAKTEf4vxoSqxNShvs6G+4dpQb3POERVZ7rwKCU6t4vfC1RMN09eloyURaycj9wkFyBItskhpGHMeDE4+cTfDhnZb2T8n4n0PijS0UGX8oqNTwyXLizJZVl/iFdN4FA652Sxl88r68GyuyD6VS9agGmKiQINWzfOQQGFm8bepYTIk2Z1x7W5sN65cBi1fsV4jx+BdZ31Gf86RmYsfLpUkqVVyvHLdsdtRkit2O/QGV5d0rSlus5B1Zy+9WvCzG99qUM3NT2oxMiIpCbJxAXQSUgHxNLFJWWIKvj7jVLzA3409MWXO9/w5Fd7bdosM8PpLB76n4b4L9bNTvR5+KYoibwxfEekmLqFUf/ksGITdmG/5aoBQwe83v/1Le/BypQPOw846MDr7Ux05Jlkl92WMTvPzss4LQx9CiuypG7W0jrIQPot1ZrfsF++HIGTLrkoeaGI9tgZIqkxzDg5DlpKuDUM8fiv1HHsjGLzFHMbmiNWIvbnM6R4yKBAP+KhCa0OkZUStq10+DYphyUpXBDprXBrJE260Ipthcd+usTZoW7L99gfAUgQk2LgR9FwZuz1nQ1DlllsnHldHkYDcZoRAGxQa0OgPPBBa2VQakTziC3huvasrPgF3q2NkXx1lx++o/ivcfGpLXOTvwQdi5SzeRf3oPTd0uhzD9GHmMTZguapkImLRpxGbwuDQMqYjlzl2Qw+y1DX7T7qfeZQNN2xGZ3qk4avnpvY5rIXhPoUiqSMZZUgfvpuMmakcnen4BniQgLK4BzsPT6uDuexX2Hamvz7ztVy/BuaheOdjNe+X7CWlWNmCZ/ERNw2Z82RpXveOMA1ppLVmoYtEEXcZ9xsCzTrWOMYBA5P+jvpFcogVNKecGEgoy1hAwy5tX1uvlLtv7qqCeM2wfv2WNucFHG6BnW0bdY3AQ06sSpAWCLhVmp7/n/l1Q+9vFHjBcYfoj4jhrQli3goa5GUq2HdJxuazpSk7vpbtjBWxj+rjIcbnL7Q0b48jkJ5rri0s+Hr5dBDov3gcU4Tio0A6VqTwEGiXXJVF2AV6lpzhN/5lqmRE4aCIbjDMJEBZ2jd7gk6xy2DECKgjyHGkNrneKjXRo9ZvcIM6hGEgRQbKghJSwzyvTzl4MbYXbLAz5xL7TZGjh90EFh2pGz5T6NfkvX0SASVOYljfISjRu5kLzRDZpxDw6h+iHe9Z6pcf1a0NLXoxnQdRL6+GxAHLRAV8qBFXLhstx7zzeks9a7ijP8uloqm5lgKtTTX4W1QEKFnL+YCdZOqFpUqhDCjTEm6UrVjsOQPInpgLU2AMV0ltS6OdjQD1KJhl3/B41ay1pMFQL/D75pdoS1izy9l2AO5jBod0zzTQ944/GdDN5Z3+8rifoK3F0Ezvw6izhAyTRVJ0aJHuvPfczw3jWoapmysorgEj1zu4Mg68HdI7VUFjPYMoYk9PHuKZgKYroRe5eg+YfkiWvF4WOggsIHkZS2zDplErtNZTjOjUIgacb/8TfIcvSEy20Et/AREa8YaRJOMwvotg3nFyujhn/zcbFWb7qdoVNtmA2gvFf0LFBiONVyRB5Dn8NMBkT7VNB0Pw8o0Lllf8BXZhYpyG2yCm8tm9zOA7qxwA2TVl+oJr4SC1ca6O8q+faysnca/KZWigVpLf6W+I8m61wX9eluolLOEYfDFmOw7je+JJEtba/kLp0T87JpS0A/7ZelNenJ7DR3YPbC1OwA8RDLrA/Me9t+0U+MMOTTZXlaJQBBXVAoxzLEL9pfmGBKMGfPNSVeTnkmt4S8x9nheAocswoCJM4PY/QyOGThdrN66Pz9MN3a3NoagUTNFpZbNmu/5gM1l19T78pAtTevQFs37FfHU0ythpWA/Umw96XC+WQA/Uz4TQTSfCSHwLfNQlJFcVOeBiZ5agFeiZClZyMsEI/9oSUbQ39twEQhPI8X/MdYtbkE+jowO7D2znWxFqv+e5XNdyGIDOrfIPDopLE2QX5pT1iMFCphBkmy2KYTZVd3Ob1/hK4804vEvihGixgq7TxzP9/weg3PjFzhTsmBqlvm50fP07JLVuRLv1kBNpf4PqCwvQld7O03MJlgMRO3kEqsxtdhru/FH7suYioNOukANdNIl9i/PNbmbhRBnf60GtJjjOJVJplj75oFvi10GL/qLlbkOux1D9+4/841Y8GzzjPLR6WvVXf4k3hCf0KAKMjLqbRgO1FMa4fuaL0H98GrwjfAX+RT/RAUlohuRbXLx07kg2JKZBoVW1byp5lge8/6XFBD48oVmJWqmNYBF3xZsWvhyQq/c+9g8GJoR7lOXMiraybkApJXBiZ9K6aeGZQ4wjCz/gjOASrdLZuIc8qttYCA961yDYuE/IOtKku2InFL03Lr90uIVxgCQMYJZgGpvB5J0GcZ0g9C1/hueFTytNbPN40MtN3Q2lrpSYbwHMj2T0n1D4I5lhYrJHrlIdCrEPDBDXf+0Qvcl9xPOAAwqTMQ+yKlc+bveKYb2vpsHJmp390oDJc/l06XCLzTvzof3J73XGt7Uv8JmDI54qjhqDanaXss7a+/A0/m0sQs1NnGsrgal7ccL2gYAzDV/CBYAoX/B128QW4JejvIB3cBLulSn4pcaSfijq52awSmMfHKd9fO2qabuWaNYrPCMKFOeXscgzT8A94uyo3//EJGXFh4FjTKk2iHehLFG8NX82f2c/UgQVobK+vb1pwLNrbVkqmUVTTJFhB8miDeWFE9inBtjK6HzWrF6+GT/W3t25ka/qWTl9GY8vmCNGhTj6NPuCSeYzG0+eRTYjQvS2pbXC0nvd/rhv+HJsn+AuZ29WeCnl4awVZdV5QtXA7YeC+Zc/AYymUqIDEwXBrILEUh9zJ9iHCfVBNuNlxmQ0DN4NVvT2vRNythDlmMqXPYnkUBtLcFK6DjuWj8pK5BjGrgewEeHviUdcy7uAprmzhMPrBlwawp6lUA/rd2LdJU/h3jXmp/sAv/Q4v08GfW+cMc16zovbwvh5jKEm0bDAVPjr6EhOjdizQYSF27rgLuDoKkEiqNOn8pb3ja73aC5HHOTRwmLV0HUjIVRiMGYtPRkhnIiicRK5iGAZQS9FbxTxSVsJhLmx3gC4A9K2xjkt7oOS5gDzrQrljwFfXLQ4aOeywqENIDj0Zm7Qq5NMcWTG5TMAh8Ot4dyt3V43zudB2RzHP53tePW+7UxWKVMaRJ053+UcQtdhJUb8XBh90zpyKudi71NWhnOBai9A0F52Sp46tFcCoArl4KhTd29hPcfRD1Ct0VMmRnEleY8emulfWlXU7aYH9fcZJZ4naXUDE0irLNC6EvkxpoIWtb0p1ycwo5p4tWW23qb3pMgssS9xq6I+//FQ3T/H6ka5lw5cVRsaMzJDtP4uJu2nNMfmvwpCqTs9knznXs1W3Z2+bJZVRqicKNYz3pWnHE65SXkGSq4uClCIs1hxS6IcAjcN3MLSXx4qmsrrSzWFI2iD7Ypf2ILp6Ba8RYbq35Qe6LP6Jwrd/cX1XojVTThBYpy+mAG0yG3JqN4mNciGBXbOmeHwFezMiEbKZ64cFXRUUy52GY5gdTt4nYwOcwv8Ox//jf9+jxnJVh4qwHSS1LyCe5fcdbR6XSS7xsxPMpED+v3yfIesghvbCcvGhmpdC+8SqaFP2Mi4+N3/It1Ems/V6ghXvwRMjR59Bsybuyp8ao6OyM61tw7uCx/wKNosWOsNVAOr/4TlD7EkjJ1zVuIWsinAc3fRODOyHFCBOWe4GL+fDoNxoPPnueCUlkqNk7z+JkNHCmNK0CNjj8Da24IIluCF0a2XD7ZOpVbQ/LPmAsWuw99vEdlVqQ85NFFlZUdQpC1bTY6FQeHO0kGcudIE7pY0NVFJnImjDBdaSdrdVf0LiQUf+fc0asb14lDkrFpkrhfUUypUq9OE/npWkyANv9dEJif2h+PIgfKKWZz7uG9kNIK0Kbyky0FKV9sm5YOwOSXdo/ItLN47mozwRkBQj1ZZ5zoxRJZKaVnmYO5+C37Qd98WpfZPSsDZdWE8buyExSrfftRZo8+rmlyLfCUqauBinSM5LbJtSYrVFoQU0Teg3jGfE5xTW9NOtZk/wyORkbAUmlHtdorgJGMQtbTLO5v5tBgcnvfGmDITSHzaCQemvStknbHJj4kVUCEE24OfSkcXT2SADvr5P7sJCdCoR8+SS0VbYI8b/v5K3JssWVmuSivT89TjD2mZB6l1jKqVHcMZdXeBe6Grw3Ar+DdazrwDMLrhquCka2MTf4XXVP3gEjC35ZAnGGgyjkFrPV/TGS3mcmGVtxRd2bZRbwOfrqO2Sr1BF5BQZ+x9y5Cj2jcuVzzSwwUSMBDqmxRhx9KuvGy2LAl5lrNsMNKH6DFV13GdOEYNGpbVE3Y6WPqS+ejZ1HChZ7lT4jAlIeKUA5oR2RyldbS0sC0e6aOe/dcj10kUt65p9U3ZacEGHJmeH+51RZga/v7G7wsn4D7ajkCLPWPev4mkwPGPBwnPJCOFXQT6Vd5551pJyMnnQ6SiHkE3Y2yYB+G9a71L4fd49cJoM/ccw0H+P175AiXOqzuXINsss6bxRNKPeEXE+MUajDFj3NR3R/X4BvQ+5G3UfpxKRRsqmZYd5pR+mHsnRHyEoEZ2lHHyUf9niDphkkeIzgC228Ct4nS5sO/UFv7d8kY2mGf6FYLRr8WF9ZbiF4OIup5CVLUFzTzfDBZ28+MPpPwDX5jV9/1h9Ng/2mdQerpGcv5OQuHdK+vd3TpcOvGQTOylx/uxf36wnYyhvJvlqAOxTNjWTF+Yk3nckAJW9pkjC+KVdTlWTYrYtU5nuMgSrB9op7KL/Hfx4i2qqsEYE58/uFfmfmAF3VZ7OteDm0Ho+lSI3mom5nLdjCyax/9k02/rXO+mjzAIgKlqGhVc3Gp02Uklux5T6PLhGjcVmraJELUFMMxJxU51x9L+sct03a9zyML5+fCk2tZkkHUcQQDM2UrZsenR1+ZE8HPZUL+QcFjHzfC6AIJjV+p3s/zBGZjEdB5pV1Rfoa66SxY0Zb3AphJeok360qQHmzXdV3QYe43o4vjH/LUsX2p5UNwKTQNMogUER2INGMAytgQr8nmCcpIsoUsESZI4MrrWET1mMcTLTya+7RLoAQcEXICUCr1l4AuQvzcRcetWDlZ7WVP96Du3Z67Zx/MwDuhSCBM93mgXjZoH87rjYt8DY/pGDF0jQO84Uh1iBq5iIx7K8MTn78CuUJe48NQfAySGsbAirCF6P9yZgniHyn8+8epWoSwjyQXUG0qVl1yJyecTTuSVvE+qkwle17iOf4rm5yOoxl/yx/QP55u+qXec+U1cUUqEPkl3XtH7CKxtynYJUJ6yfdKtx2geiKt7mudQZk5SMLp9BD+lwYba8Dnd2VEF1tAVmdcFjWfxTL/vtx5c9LeVRtTdb/AthvJV4h666GHsYml0o8M2ffR75GpIyPJ6w9NtJcHA9LpddCm+o0bUc6HT7yuMn6tCxqKouvaRO84oWilxcjD+O/V78gOWWPjZ7UVVNvpQPAKZ+R6cD2qJzx0JiqOp7/J2M4nXXfKvOFx07hCXBiXPG33A8NR2p78ukK2IF6JDyvHtGpKPsFQia5DAx38oC5KHM6JyK61IKEtn0K/b/klqJO8GurtA2MlyP9GtieiQIYrJPrVCVSCymIAaRLrzDQqEHNJ2moqo0XReU9p4Z3LMgtoj/5C3rq19Cc1vGAYmtRbIYUNPYl/k+ZHyViNp4SMz1JVWNtMDIq4vtCOs9xU7slA3aYe0+R5xJbISoP1L7+fAyiAHXdLJN/lsIFdQFf6UjYPTouTt3G7znECe65qzyhOSeCMa2VhruSKQjAEH/fyCklIUA5yqP0AwFnyhRXI1NulY8uwl40Bu+Pg7F9UEIwHt2Lr1BNMoIZwIz8+ZQvbAT/Gk/vX+bKf1kNneakAmZ66N3Ys4yS48o959s3A5iUfPqM/deQCD0Kf5V8be1f8KWqndZMf2NiH08MV/4mFVUTZAX4xsaIvYlGSS3DTvAby2cXzUXZXDBPkYlmVulpoiXZAuq5yWZpkSxnTajn4apWTfWhKslDOSBlTgBPmqaOerRyzc74WK9v7cs13TXicqIkbc6W4buIzCM1MALcIJBKtZ+wN9PrtyCMskuPzusrVsAR6Opo8lRsm4nrETuEkCQnMWTmrOW45Eugx6aBxKufK0bwuFB4OR1PkxKqrckRZAjtpe3uKV5+ocS7TWLqFXGh7a21GhesmgzZ7/YljTkBKnfqEjHV48KE2bLsoltJiO6Kerx/Ki0vqkzU32EAMq8cfXB2V1Q5L25zg81OKeT2vvn1IxeLqgJpxySqbRz69P0TyXLbTmkLqA+7ur+alp1M7PIZdAVg0KPL9BkpPBSkj8+lkRfPXQNBWIZbMMHa+kPUKieHexObZHB7sOXzMWsYssIP3L1pqv6lJIhBCfYXDxbWdpiN6q8BLXEZcWwlk1NPPqkfdowvqmPv1uLY7C3KxNYMUVD6Tr7J2WcpaJXo0KsCG7GgM7+tbagUod/bf3vj6xJMutEOsrU+j8OcbgIDvLR0XsuEqtEhgod8UcriSYgxFVTON4aR+Jh1KwaryghWNqVY1zQEyjFLvQa/QVnpuCMpU3dDsbDWjyLcLL+L84DTZcAWb1gxkQ+sqqSh9Bd/895PRQt0UYSj8gMP98bwgpUVX5Q9bMYy1azHkX6HcelEMNNVM8HbTaqbPaipjrit0/IzpqgUAakUSxTy9GMa0XdSDKmEiayQSLCJKxs+UnqjQCU5lXg2U4L+sJqnHWoLn8aQfKsGmObR2UDCCJ+/pgrr1IFNhZ1q4Olw9avHvBafDIwr1O56IIK+wcJbOfAjaxjj2VMDqJlOlmr+Jb7DmvyZCgnTpvIfjSrNlZ3lfHIqHFFtbY0BJCbOKjvZXRZMfef+/hX+FGJl3c5TzC6BtKwav8alkji6wRPJPROPZVmciVRd01XKuKjgYticogmHGdIjoeeTox4vrYtE9Ye13nkJxnH3vhBBUX7V1fy/nf4ZuHcrV3xqDm29R5A7HeisOmpMY+ooafi/WVDMb+aMN/m/+9H7L8fM6+wEjZcZVst/fbqBJu5+J2oGZe5kqwRHfIP61HQeCsF4WIYEbt1kv/YyMx7tRtFJcxQi/0CyxOzwr1x0jxy7KyTPHGP/EtyyJ5gjpD+OunMkjg78eTZOs9zyzqh6w4ddl92gf3DzdYqDiNm6Zdto7UIPuFA/7/B82OZva52QG35WmT81XNDtuHbqEs40lReHfmLglXhYJuVp6zuHRVciO17Dc7WwoojGTHHvuQnxA80HUTaspDqm0u/APr0yabWsNQ634N0ex8kbFniIJ62smgk9j0UBt2UbMFMUd5vbn40/jE5UQZRXn+QVpLPxCv/7t6pet98VmiHzTXoNB/utqKD3w+VxJa9kKiHECQkAaRB14/BKf4tj+aDi/KR/84tYCl5VW5MOD4OuDBX1a4BPp+ZY2WuFbWoC86yMFyKHaMDtQ0eh6JYjmZbMKubkxTJyLSqry2LWcGXsMRd2s93qqC8v8RIG3QWixt0Vdm9LfT/U3stSzPMa6rRzrx3NcMxK1oKk3YUaQBH6PsDSYYbR7fA1RjkwQPpAdXX9WIQuw2LZNfKNKx7OPVFa/5CG/bBhWXUnTQDdcjH64YoeFRz+w4SA09sqtEMbHG3ZcUUB4hrRn5rDfHfL+KMqTg/3Rl3KMC7g9w0+elPrjuDJln2Bgx6lURXhSfUW98Fyyw0HxQwXK+qn/Saj8Yg5xd1ZwPRdfC07DcpfT78pMac12Y9InugxHuDJXJ6t4C2lcNWIM5zLOdlWBVKuqGiunjyaFxfC0nS4Y3bPeKOhh2Qfq3JH2VWvEzPny1M9Ep5U2KMUJA/s5o5LeTJZLiE3HnVN9LfNQTDkeREQDeWYmnl6LsIcEyZ/cGKFGm5sJKInDY60Gj4tz8SdZeg0rOwxxa7QSqRwvXxgh+0Mi0kggbhzRe0M8sZxLMoAtAK6AXt2Lkx3OGd6rFHoz4+1/nNQecsYrJwgFV09PwBFlgM0jT9+i7nbHHqrBh7KYayYXVCrRN7IBUgrH5eSt5fHCpMBQPqDLLoPl9ejQLhGpPucmaLmHYKmYEPLzuAyLOcPIPQm76yojroopCUKmJpUmxlhouqS3MWmaGfKa16Jn7DPkeqE7woIwcA/SJaYDRkuZQkl1+uXjdIvkF0FVpXk3RKozyL2AOM4wVBVbE34faBUjiwkCvlzAhWmTszie8ac2iEfzekaI/K55Ha5fZfDlT/dvP5VGDq9K95gBK1pScd9K0wvsHtKdouw04K87YL6ySgHZ+mD6R9Ci28GrX3+Db6Mr5Pa388MQHCk4F8RI1/Fx2BfwA2nBoJRNl1mish5/shxkYk0o+KDFfqH7ILGxP7RljcdcfUDUoft+Ye2cqOncGqaExC82d3Zi+UXgl07Uqs6Np8ZyJ7hxuH83Ax0ybr2QsxUNpo4cjM1V/ZPIchjNMTILKaFaisDBCYwY19dHU9zQ3c+jiCBum8iAEcAbrILHiFjwk2qQK+ctJJm10CfXJB/Hy9A4HXtwgXYb1Op/kjFvegpo5XNnsI0727YcUaA8a/7JDM0xgD3RhSjD4x8hY7dHsPBN/OBQgzhX87C26dsW6ux/hV2M5+XcId7UT6DSYV6P+MPcoNNR9yHV51omn9mdA8PK5s8KSX/GEHiOPzd7kkbSW8gR8xSMghP91p3EiY798qPzrKv8u299abQsQnH3Ce7dZEn0FrL+ac6Bq9CN98R/NyhD3zTUArC1PHdcpNcsXcTKYHw/foATMHt/9Dw1NGDJY2OW6XdlbgE3PWMIKBiQobrSM4/Afo9g3IOEgyA1+M/B5qJ3KLg77nBK+joZw+TaGbgGomrA9rpYw28gYLXaH8PXSQ3XugtOOLTOVM/Mv2AaSQi84I2TPP97yT+u4LVY+Yw48zdy7tEYQbv36mkkwWuY1vlmSmbceJgKrbSYu916YGrkOGFSOP7PaMmhqMdhCLXMA8wuy+JEViEMQjhqulvAwbhN1Wd1TtooAlXZXDJBs0woA/mBIRJlg4JSHMz2blet9LNiOyCqKuW+XzEEGGtLVmkjTAwVWckOxdcb5O0mHC3XsbUtaM0eA0knDVrPVkmH9NSXcTFC9bXOOLqj0dNVd5Kal9+uOM3HRHwUut2szH0znz+5mnwK4PAbyFW30iWSHMw97i9FDFEAA31XIwyIM4udRBWv/yvfcEDdFy5/IP8GTeFlb4IJSI59TdHgjyCxXkaW6iuerP/MQcyI9oNvqnpBDIg0mo5b1yNIi6VHOLKa5MSo60PTMG3ArXxzVlaSVCxqXNuaWAEewc3UBJmUFsKom59ZLacEVz7/A3ZJFDGMeUVjztABJxZU9GDCBw2iIvTMf9YZlJztuqzEg9pjd0EPLmImuirx8c+EPcmTYlwM61M6rDJMZ0CGJUzY8URh0VKm4M/pMD3N9JVCLOQi/hETqh4xGijVMVde9n5mkSuSMrnWrcish44nwHMSiG9KJM7vkAYZ+GGd3s/Q0eCt9atDeK6D8jGQVD5HXWeBWoCH9JDWfq10z8shgLgEkTVuXEM+hYBTnKtSQRol6trUSccsB+vJll/734/4N8beCCz34xc3oMF6jyJ7Cepx4CNTw8vlIZlAXC1GAjo9SuuZXNGxhXFHCBlvGkKJlK42a7iVhUsubP7VToXzTdU5BWAL7IhudMXfkdiS+C6WodEGhl5Q0JKLB0vNfVjDxQ/cM4RUMq5fG0BGPo5Uer901lqx/pWU7Vla2oJo+Lj/FhdzsWCb57wZBYAIvb6gpu080u6x7L5A6wyn3100LGs+2hFGjzAgIe8wqbJT6dG75MkcP8587PdoyZfWV76sFY/mcQMVAqCIM7r4R2XzmpK/40K+wNyT3h4cOkUJ667pqip3kBvxIC++NKIkkle1pJG3chleJO/UN1S2tq5t0zv64iktnpNhjZPJVGNZy/esBxhFMGapXNXqvZfhc5f2wRmRkZrSI5/ukGGOCHwnBOCrnIGy9m/JwZ/UsaC7tYEqbcRvhEg1KjvfUkqWNl+08wLxKznbC9pImRRfZb1Y/uRisqb80ZAYKylyzw7lg5Gy9JALFDU3fc+E1DYPfFnQoIsPT71LYAv06BBTKI5pecufId/8oU3arzTB3753jgHuLcTEFqay77xcUCy//Kg41orJem4vO5eZCRVDZbyINQwv8IVyZa1BHd9bCIflYMgVtlb1wtpG4gJa3gBI0AGGJ60s7uy9o7TtLNjbK3PF7zlvuxFDrtEN99neYoCG1n3uY3NYZZPhMEWuV8PCOQ3VC5m84zP3Stff1jNCqnwyIv99SbdWCweHHzf4HcByZ/dre7ZSzBPn8vgt0MJREt6dVEjoDpMBTJQg0v475QOAkak1UNt/R+yYXr8pNjR2WrLM/YDru4tfR2daQ/nWPtV/JI9uyQ01UfUSBYh+Z0QqhxDCZgcOK4jMI7iO3gOAf3NzObmt+cqutBir+h1cuva+6k0/PvtUW+B/yGkVHumF0Ip2H7V9E4jlldxWRiZZyPLx6JuU9hOuo7yByVCVKtkUOExeeQSVqUjJ0vRnWRJ9QlMRWWC8NxBqXr+sshdXim88DSxZ6L0Z/U8Z15xMizRhfuukL42pHRtrL90l07W4wfMTAu3w7Ke2u4v0JyJA5H7STQ8B3qKVWWKqDNINPmRjLG67pAQ3XE0wVKfiBLVKmUh2i+4Izso3JK31lz2iY3Ws1aLq+NwWTMRi2KDUF1FOio5CF3gGjfn7PY3EqBgKjhbmXmhTn+Ykox3+LV/YnzOBwwvfyPNF5Re6u3GlryyA4j0Wzitq7sk2CtbYqQ9RDHJqHQnTm66PPb+OgWzHUQjyRVbKYDYY6vP3M2ACkTiZVV/sK6hNCqOwZ3BEBeSpmm+Bw6PKxTUl+xWYEtNhgo9DZUclJprY8n+L9I3WJIbHxLXHsSh8tiSmU31h72B8KC5c++lzplY0FiOlf438wby1bA6KSAJMjutIIq0EiJ+uOquHYLUWoAiTcC6lizGrPmQP4rOtbMnz38YNhdhuzPkVPqZVL5PWzE7AikXn4W9eTuo2Y9d8BvzyVpWHvfDArPdQObbsRnEShednzBQLJjTFVAmWVZLRivZNhZpzri50Y/botQkAdxIdF1+BR8QGeTfwLlOKlU8cuStNZa4IK10/sjaB5WQ3OMIJHTMd9kfrruJ3f4tMDzy4gYbX3u180TzWwKFnnZccDV3j/GJ1HRalEpKsQ/HbGwHZjVG+wx0S7YbwSzqKoIhfUny+RhRp074YUeou5kkJObm05qHVAAIo+u39/XipjVSSU/opOseAiUAlnqifhCTQHl/dEzjJfeWOmk7KRLpsLfvLYUtVWgsh0wKsTYw2gcb8LpJgosDH558hHOEoIFhPBn7TyqFIsoseYm2mHTzcQCH8VwPBrTuMijrXdix/9QCYgB7RSJci4LLwP/4mPmBvUcE4jCush/wJ58orP+/Wbc+MjAEhSICsL0pPv0UVT0A/VbiW46q9H9X6wPT99OjcclkHiQ4R29Yj7wqLVM1hon/qVnp3TZdkFwaww0eMYwlUTFMIFbkGiy0pXbSMJNHQOc22vrKSxFjx7mLpy3A3ShNg79FBfg63RM9ubksQ8WbnnM76lKG+BpQKOAsmLlC6CaTbIePrhhx4wc/OaBJjojYTHaeot0n8Ln8E+DVrtMutaU47Pgh7L44Nue4ULiZ8rmZn2lttm59lg64+JsU03O43nhAMe5xo/j/vH+TcmpfWKTASsD3Xs1NE2KZPGVC3/EOzyYX60CqS0eQpjIiiFbHL30xAOvXkS8cPw7G1WyduIrR2UnIjjjsv+5TaodwELqgTqONg1byYcmNxG0WTbdnTRk4BJHd+8FiZgIaa4RWMdXceMXljzAPVMr2LSbvn1UIic2ITXSHNT/CWz3gmbiX0s2KawgiIUB+iC0NrSp/7TB16jO7p2t0Jmo+80OzGzpjD5YMoQ3cd9ffdF94uusncAd13F16kcqiWekZEvMYZe+DV3b5Q5eqObkZmJk7Fc6aZOtaxq+OQ2n2WjbArPPVilU0GoMUNrKT3/WQ5lugl1jL7y1Mq6hDjp+do836660kJo/4qps8YvkYGk8zDVI0AsPj3I+iAtZUdKMheJ0N9hEYPVYbFOzqzr7MCzC4EgsbospTwOGtZVh3V/nNB+Mk356VsDnF079UwuRSdaPgtl5mNahR8aFcCSaqLERiZby90blS2Wo6hqtgmA2NSnVBLlkOft2h994ul4PIEkNObzVV25/TI4i8R+vT3VbFPlobrBbNGOV5xH0D3a/wmM470vrRZ0+GrE7NXj+e8M1+sqRSpVbH0O9JP9PHNHQkNX32ArFlyArNHwAuFjeD53XvAWK610PRMTcum6pduGf3uVI3vsR2ovO6zHACBUSemVNQFTUUN5uBIEewK7EyT1GpIolLtPfwWhdmxo6UAhh2SdPHti9eJ5n0w36PzTWVMc/WUd2kps4qZI45vEg2iI3MtNleQPOD6QhLVA9KQP2LsoIoFHwqcnO6/Scaf3EMOGdOFkjoXsqzRhdAYg+F6uikMNJaeFGvrVhR0M2NSOmLDNXGQl2pECN75wYlp6vxbQW15BvqBuiA7fze2+z2u7aC5+JYTfP3xtx5hQ7PODE1t11JIPh7HRQtDIaekFKe2uWm00HZn8jq62XCf+jno7weh5x0hYoY7DnZPA1ortF2pgqRdg3+z08ODARylcZWLFHJ2qDBx/PoXIEnGZYiGPs1eBK4MQ5CaVVRikhpvc9fnHKq1w75rWp0KBCWsWztShAxLzyV/Ef+z2hZcV3pmdOUmKfC7dkOoaXSZuNb2pMheYifua9nsZT7W81CCLY5IFzpaJbXvbM3HEeACND0/5XZ7i1iAZtUSdP+h5TC5HKdriyD+F0hsGK0xYXv6cFKEyZKv0+8fWh8N3UTpuHRoMPB3w8ai8m0MUk+WfpcDpEyEG7F6nwXHF1yIRX07sxAfW+aPSuVnIPV99galvr31RUXrh3O8eOqXv/BB+pmIdDNnDjIHpa7oPU9nE63lVPbrsCrrHiiNqdHAwtcrbtvOOZNCxEHAfL45B5Plv2yiiYOKOlN+TmMS4Q1F+7cZGiqIBKovk9BKdadQu68LJdlfseleElNira3mV/FWHR1UTTmbLUFUDA2EKxB9E2DFYgY8g+3IEYdN3fL96O6uw5OnKDx1golqB9XJa2/cxO8bJXUCyW+3odd+Occd9liLYfgP+eObJyocDM7NZkGiF5GziVzZVDoZCbUMsW7GLsXJKPw9wU47R32dh8q0moOsYlQRkX17xib4gCdoKXaTljCCUZjFlUNTJSFH4Zs7ZZH69t1rhZXX7Ib9Ak7f/CamZg7zXoh5A/hkvNk2gPbrk2T15pvlLYbVrs9FGg1UwTDHplfT4WfU5ZqMDyFEEDcvEdW360m07Vvgki3zgYQZlEy2eJnKeqXXwQOUefy5BJ4AicWCYWxkXzBMjFkGO+J1iqDZYNTB7C/4kyVODII8V4vSLhDIZH3G9ecjl+tTelpZaqVGoGq6Q63+oxdh2PPpBT6DA1cF3WAzPXyPLH4GV+n/LDo7DZEXZB1RkCOuZ2rBkpqD1ksDtD1fcNX4tYWjd7wu3xEdQZHU79UzV5Krv+x3Bva7aVmBU5fndlzrwXlKMv138u3eGDitjggSTd6Lm4guCvO0z1aI5NrxzsL2qV1oimW56Woz9rB8mpVuaprj0W9VViWQf9HIanfyTH/FJKBs3t3CNVe9j6QkeSbHnHxFpkc+CywYuQptwOBeoy6O2i27Vock8oIQbO0KrHbDFBSx1cu6ADBmiLV2r6hCrGyu9JIC0STcxtB5hNh075bbdD/PncCU0LjkZYZkBKyddShml9C5umrPk0BpIN0pMx6CS5zGzzQKos4Tm6gR5QRaKmCyhF/yYM0KMFH2IjKoqSn1s4qgpaf+Ye7wLHvIsb7jnL2YP4RsR9NRiTlQ/w3V2jBfErdG8g78Nr8YS1n7jcB3IiC1TLOQvd+54urtjTEA5hent9Kh1W4U/YGDdKi2bG8pshfW/cFVcEG1jrXfXS7xOwx9fntQ8BcQnmmkD3sq62GBtLYmy/jvbkkBTYlbIEtj1cOB4MB0u0Ocy6V1Y3VhvI8sX8R3nCfPrzoPyXdfdeVpA26O+1a1f0uY70IitTdbzAt8ej1wPzpWzNBEHllJsJ38Vbf440th0iMMiYBKXNgybtIoDa/9jkh5NwPJI7IY45car+lh0LZkGaefjIMdA9s6pF65J7NSKh1BUMC8MVW/DK3kbAGbsELbBXbWW7ysChvdoqWZf3OONa/w2JG95sPSXuCtACpi01i/gcMD+9bNskgquGVh1jh+UxP0dYTTEHMxqG9HSm1UJ3nkIJzgooALHyDVqWVaFOpNCs0ZmvWE1QEjQZZJJu83OH/spnW6nnaBdtW6w2QG57IYBqNYNqPl6bHktAPZZVMw5dI6XsVq0/9shitghuJ8gwDW30gLuBg+vmdUrsuwEmytpFYGBxW+GAEsiYrlSbhR4VCxn1zLHM1Ygu+f7nZ+ibufxzXg8JgeXVFhcoQlopcd5EK69l861e5b/snAV30PeeIz4wMOR02fZhmwf4oGOVs4MPAmk0x4D8fKqDvgh8aogvri11LOcKK22znJ8Z2e3IVHMBQgMmQUlvhkfy6l6omF5Uoaox63Xo/NG0RLWtxKUBarXoQQ+oh2CrUqk+UobDBuIGJ9PEDn25Ck7m8sJv2NGUaEE52MpdBGaEn92JEMfbYQ8FUayFHDLmMMpRGNamZ9X1POc8icXlQB8XxrfglZeOd/P1ed1PX7bshmQUs9nnrkIabXhXofzYMWP7PSm5En6kQ0rcCqN+m3iol62qLU0KDX3nixU9LYE6usd1UF5nDkYDz3gZxaOL+7VGF9cBnjKfqBFFPKT3+VU78FgSib9fGPR3w90KCn7AG9w8byMKqr84Wu4F/AEIeWMegjXLf48wPriUtaZv+MeADQ6a3jLq2zAlbgZE45XYHC1a+zxioaxPbyPMjiU61FKBcoI3dDrS00+aWl+WojBc2r6EZo9/inTe7QCeT5pDGj5xsqiSUbPBAXLl9auqIEBXI9uydBzxMIIV2ACh+XEYLu63zSEBGaHyfaKqIGcoG+FrdueuaKnBJskgTlJqxTb84NbU+lB1Drk4PT1eitQmW566MP2TYLKjEXiXedNalo7WkpHGwyS9M2KjtQpuVc+1ti0nKIkM6kmgr+7xw5DGrg36CNOHbVoWMA3Oq9iCag2G8twk2FMnqjCipr4Wo51fwtDmoPRWWIdr3BVF0UvVC2F19RrnFIh3MqXAWxo+IuX2D3D7e8rrSNbvxW6y25kp5Nq+COHk84oGjSTbdxlNshVXWBBI+UpsW2Th4t7O4K6ORGy9Teav/fuMqkI/T+4GU6N/f681G0LAUFtEOLyh77r9GRfqHwEQG1itvSW8wNRlqCzfV5Hox93w9aWpHknZVqRI8GDZ0Ow9hJBhz0pk+TF+ym6/MEvMX+bB8hgARZhe1iGXbCG3duB9UZlp9Q5BBzQr7wNYajUTnbQqdG+JL0fkqARFKS0lI+eDRNNfBT2s4EHuSK8OWWvch+mGDHUWc5pikt+hsYh6J0yakOG44GVYG/MpfM2ln/L0nlaBU+8SXbXH8OFKqdpMKaHhaFYgo17uiv6uMnsiKgBsdQtwKDlWvA3UewvYI6DiA3/jsX/WVLjxXXHTjdmmmUgi3h9tbppO3RiXj+lxb+3GA410xwO9Eitdov3J3hvdDD36Ta1u9aJs9bn54whqOH1jkQ6dq6mU4jjY69tv1yyc+YBx1B+gcQda2kYsNjTDR+qGXHgBrFT1ykHVN0o2Lf/i9ERkgMUGZP491mXJvqehYPKk/vYxOYYDUB0FkwR0bkgGhyR7RFgA1Ed4eLn9+xUDpA+7gSTzFdW95j8bnGGIaDN9nMFOyQspP5QEYtoqatKCrv8l0qdDovGnieyu6Nz/cAWGBBvNLOEuSRu1d6PInqEtx9m6NwvnL3DSRnDFAh9QYHom0Ozhj3RE5j3jkPINeceeXuHLjIsjmcYwA6hjYZahNBKk5fJV7or+gqrDZxvz9J4lNcpHohO5SpoC+GtKVCrxG7raYeFuj7Kgh9jJAtRpntZSH7bSpzWWQxsbiOeqU5pGKpORpjdt8x+qeQxujQhxGLprvUST2b0sqxNxZdat6wqEk/JVCbsBO/YSG8Ks7hUbUrJdtnP8rrw24uW95r6O2IrESUSVETYU3ix1W5t/2RpXTg/er2OL0QsSvbVcozz+LR6H+m0eqsVzofrqdgqFaKkvhCX/h2oHyaB0DAzJn10jRIg4VkTPIum/UMJM54ifHtR7JEVjM95DztryPOEKm1P6rnhMK/NizldpBbM4IB2tmi4GDVTkCVTrRxHoc328hxv0uNBR6BP42zoRoWlXNB2168f8XsZiwsWwI6TIRKgN4S+vYxHJ8lNr24iRqbPduQKfTLOOIHoYqki/TQwiU5RMyxKOIfDJaadKoZ7bqq4nSLzULY6OBII9YO5u0ShrNUInw+n5aaiYlyg9cJ3rIsIp8EM4Fz5Jy/wM7vF2eIEX8l5knrERsEfPslOiV2suK54asQitf1Hz+l00DUFzssAQVOFpunCDx3Af596oJQm0LMJfu13NGCOOc5ygWOeCpL+QjqTp0HsqnwhOC+fkPtto1KNqu1GrvEoBp3NnB+yn9+KG/8haDJ3Y9TqdWtiyeNcZ5oZKUGsUFJHela73jDpztNPI7vy3mxq9f7NPxmKJA5AYMBbVHYlM5E0Sf2tdmQMS06rkIDrG/oCdyHC4H/tHnisBlmYjSvRzoLHX8DvZGb4P3/fmeK9xxBY+VN38MQPKyk66Nk7desfxH/Nq8nZHrRjTFmPSlOmEw5yS8bmiEpEv9nFlVuNiAXQzEl6tp3brAkI0s92oWPPB00TdDunXIg4a0ecg72TTMaA+rJvQ3DbKmpwiVp1Cm6tHRkOSydGxh1gxOkR9QldJT1xDGX/HQQRlu2QiR5SzLe+iFC2hx4RQ6Ll5E579cj4UFkpVtLaLan10F/ajoRNErTrMJB6FCD3YWiptbwQc6bsJFTRqlr/e4eOfRRqiomH7fR/32FPVhSAzrQOetECqqo4UJYeFzqRHYbQhuBijFDwPZ/MMUT1theyUdOUg3/ci7Cfd0RUWdm5V7uHvx7cQoY3NtnxDcWlBMCvLmRpscsq3YKvmgfaXoXHY6ht9wnWpRHpuXqWs+3bMP2EV96xpQQ3QROj6eK4daXZxdFQFirCA98canYgUvKdg6E/9rdlrxfRJjFqr8BTQfG3WQGORFIJCix4kMdRJg6f7vRa7RsmbDCWaRNVt/1jJLosWu8Lhv4/jI83JTkzMbYZs9Z/gIBSwNs+6CrxrvfSk4rQdeuJgU8ziGGdPOFm1VVjD9xP/gm32/ys2pLnl3XQGDUJkyAQQtLYWZCD7qVLUYzITuXHEeV0RXIOyiQi3hndfQSFiWnY0kNqXQ58DSKwMCgG5aNtpK91k/6sVIHQb1Waut9hX5rLnz/va/gef80wZkEKBJfRYaiUbK31t13TrNI1gpPgfiq2C9EXKalT+SDJgrCYtfvhpEmcK154Crk9LLQJx02KzxizlV56rlmgfxkI/ao14t6wf2zdkLmDPq6hVg8s/dxOeVZuXa2IKtlBphcTL5WYKG+W9au8hDit+vDqpyZ8rHXPkMNFxgIYwjBsPo1Yn5QCqCeLSkjF0hXxqV30tEiLPgE5MOmbhX21GtIOAdBxO+P7uAOrudHv90S+H4zUe9eYINL8vz6u3N0H/rqMzQFyVHtZTYEetFWgN5ENTd0NHqFL4L0C0Rv8KjxdvxzI8Tkw93MSZswKTRZcyLKTOKRcXGKpbGa7zZxsLqY3oJkdhI2pywG8DBHW5lDW/eeYxCmlzibHSqduAYSQNRupCWinRRMoR8lk/x62fSPs+uSXUWPpZl7a7/MHtpC9O9iVDVMxZFD3UAL09RnViMmM4ZdrlFYlR8s0bFpgPtQOYXuHaMjRn/qov8ubBhy/XYdkAK39SQqdEx46Z0/7Y72OuuZRrKEhmYlWccqTvd95JSeTROrzLivGhgTPYgPui5gcvFI5QVbjLNS0ETWM1xvztWc/NFWkrerD/Bauzi/d2Jg1/mjZ1Ahmhus+BA6paw5P7MW0iIr8qKNcWq8KVYwPu8fxcSm1poXDwlYb1lezB8Aq8vtWQA7dfekfutDpFFHosYIHDVCbxRhXOEfFm+v3LjYhsekBwmkvicTaSz3V08/6MxSu0S+sVP4/p4U6Job923GSDBRqCU1LlYcdcWl7zFpH0q/akXduIa6WgU8T63yALqcHehxteZAajjDn+hmaJsd8kl+ISNqVHM8S3l8Z39o05EE1326r7lm2A2xiHsyvZsl8QHQg1cL3b7ESmQ7sRzMvP7imlnc0j2D9zqO5YPoUuKVijW229dLPbv5vOsWQEMwDwNeZ7PRWhbf4uHDRTkT8gzn6G+mWs/1SPyvbv/VVgQcag6yzUOAwNKAtVpIQNupWP+acL8Wi3s9WTOSLSy5zawoC39U42gKRlhtkkVmxfcGEo7INrm8PRsuIu6MC8LArThgMQ9paX+DC+53jx7OVUzREAWP+2DGONrCVEDtkPkhwzO8EODvaTD21pRTZKoX19BKBTWT7Al6mMMrgYeBwgXnv/ZOsAT4UGd6lJ8+MlBsuC64mazhj+5j7E8iSJYm3LgYsmvZ9yraK6Ud/yCArenvkQQzXQpI3upwwbeO0HoJh7m+0ntNnL5YYDcuoOKtavgsvcaQOW4CNgNwGUOoadIhYNjJFs45kcig4PZJn6JyzpnUpPRHOmrlvgP6iqg0+fxauUQD6aw6kN8mgdHlRxLrp8rPlk+pN0KeOCLESp/MyfQlMFm+DERGfzChnlwVczZlSwLZSucboxrEh3+xRlP1sI1fvnAp0djoEPkAB56nLy/YzClmAQGMUhiQG25wXhLhlJ2GuH2o0lhg/Dfwv8W/NtRBmuCxiluET1Q7R7Y2j/I+G/ixyQrPMHKi1k6+k3TWK2cXO3LfVuPiLi7SetK+cKaqP+2PEKLiZVoQMrA0y7aYmCxI/+4svKY8uZU3N6ELQYSRsVABFpe4Xzf7wZrCYcCyrRs35jHqA8hfizMS/skxrYElTZzD0zPJpnjt/ZjMoXAOg/m7pZ/8jPcQlhgndO94ovOzN7w0048I2PK/x5wJxu6Hd9hVIXwUWvrne+XvQssPNl3hJi3ii7eiTFNDFvjrm7qTTm3P1tjV8XnH/itMUWTZzpnMM7Q5toPSJs7c0HbqkSL7Tdd1oVxWPWl4Dyo1LmH8V+WwzpciuyhtBh/r05GiAsUx/qhZOeLdTc1jlBwpfP6BQ6t7tC1svDqqtW++2xcQSc+q7JSb0KAOueBiSFE7XHIY15Cpuf0Fa+lllYQRA7QqwtOUE6+Wf88TD9LcLLugXes877/58Yc0Adn/T2u80NxCPBfmvR8u7Y7aWwvV2VBRD2wxmKSBj4LJpNxvTMko2iFRxt3gBP37lcdyIzg7wkQzClyu+MgZ4Ar6xxJJ9timyeq3ZT9jl1LIBheQ9BDO7ztb4N32Ned3YHYyFjdAqTOQhNlL0h0qp5eTRjvfPgjz6FXC/Z0QluQx4E1FcVe53bgArqQAi+iPtqD6BU7mN3YTB+DxI9nxE9jF+L7e31yYJ03902Gs5BmsWwq0VxK547jSU9oSHGL+GsNNfvSDfbJSwbedu88bIFsAEiZZ63juXaSfq/Jjoy9y1cvJ7kXURxFfb0Q8EujEe2CXpSTPRKJVIYsNcNNTl05mrSeE+8owo+Hcg4AWtAnOGnw8j5512q6UltY1OrJeJX8vh9HxgLhsgjyLYdVzCocR1p5KL4t1Fk8Tmo1FCTS08aVYEBWIC2gFr9NcTGl+k/BqEObjRg3O202dujM7CXKFVv8JjnRr78bPldmuipzLjBauYiY0XT1m77eimFOkPnzASmFzAJpejR4srk1lEzGGinm5KOy5VPyIN5kjnrEDgepgvd5FJ1S5R03X7cA4Cbl0AQRe/WPN4qqnQJ6j0HG7cC0m/MUK9dWRq3JTvzOHWhxQVJHYREkN3U/JLCEp8B50Bnw6Fu9IAee3EiQvSB9iyQWxzFX6xH1J+IYBqu8NDzE4W7WA2vlRs5437eQ9nl2os99a8CBZ3LuFpFMB3UGKSTRuXMP7V3MD454zGu2vvsDIAqXTblltE6OQoycHmIqtgCe4dq/t0C00f4NWZ6G5P0mzfHdFRtpf2orI6a3eAc0As66CNee2DwcEaqZdswii8kJDKvmny8dOeiAzLhaRESTkRZ/zAJDjvYYpDZFfXJO8HmL22ujFXCq7dJAuQgnwP+9fnQ4MII4ligZKFkwbMsEE/1GTvgv7A7yUrwkacOsoHJvWL68QeZdgJjbaPUHsX2PURIVF1vJrHoSyjBcD9cR3ugEMUMts5n6gRBRSS8VmXiIq6dU7VXH6g3gU4/nN8RygDryeGuzeIl6RQW3wQNrcWBNriN5hsYf1+UUDAF1URI6vBI6s9aGvYGjCpBn9Q9prjeREwEgX8f5nlaFuiqBUZWWktvZnvcECBwHHH05HBRQmdy29kjAZuTpNymbrA74LimGJHXttJzoK8NnPgT0AiPotUfYllUkrl5PELdZ2WK0JhbG7jRkgRALDhiVj6D44m77wPcZrKRKE3njH+jJwTUM5a36/pxq6sr/2XyrFerrtQiA+zWjhX2AaEKHxd3oaeMo08Xfku9AkBJ/3Wtddnu16Or5Z+2XSJ7TVbT5Dzda/rmM5NLri6AYfnC6DYkFdDHj8IQQfpok3IfGza7e2eiRtwvmnc6TtJrQrEnoql9m42UL7JytURkNp8zqHV5tQ2FeDwQSDEnMlIHFaExrGQwrA0Mh0xJy3K9ubZChqCtr49ggwyC4p2Lxbqi+RpCVvttTv4MTNy+PQQXotkroLEFzlqLf8DkN1VkEl5eyZleIu+geqsAOKs79beFIO2Dydeg/GcWiG0i+8IwbjBQQauB/63Ss/VUQcS9bI59J4ByU48Mf/1qi9qM++8SHcrtSEXQrccgqi144dFohogRZFA02fxDdiYaSClmSnBFEKFkHSVbkicW1dD4zzM+jxhXZIXzUgK0kOJXo+wAjS0sDK6m4iIYeDwMt844KLdRXfMPJh6QVX8vi8bueioqv/ZhDQ6D/fBxqx9aYpUIvzqfBhLCAhmFmu6zUEXYPWVCfUUP43fRkS0UeRqV4LmYqh5SodTksLXvnpb4wXxodc7p2A4gFLSTnpkVyZPVG9dItlghdmyl2bpopXYHiUlxODsCe6AR0Cmgmgvf85pMEj5aAo6T/QGsjpT/It0iVvbRHi0/x7EA87leKEJJSGMqy/mLWvjW2nvm/zM+OMc8WdwJ7+UF8DPFnMbAuxpAR6sCSaHnkbbUlD/8UpqX3ptyYBf8OCK1hRz66WK4RPpMh8iolijPDT9DX3q3k/wGiqrxQHPsU/0k5cSBAr+OAi0C+ZLU1stMNF0EFppUon2zYs2lAp2qywYAwWeWlsna7U1eRGR2E0pT0mhsF4hymvI6N8HmNPBTIfi1+2iZb5NiBUAHICVkqzqBAdIrGrcvDBFUEqs88wGgudH97tp/VT4n6tWvt5vbWpmzrK6FtwlqR+FQXvH0OpZkqSAf+Lszg61ilta2/o6a46iWGoIdv5r7aO96lSdurU7gZrs9S1vhOIjrKpsHz6+Rp2vYYEl/Fhh3ZCDNNfwTun2q+8M/dzo+cEUCXUKuxtTuodvjVbg5O6ErvENm2LTUVbCSLbxAe/QmxZ4Xe2HhqxAzSIoWGuFkogkPhfJNTK9CGK7dhg9xvmYa6F/Qwa0bxmlspJWlLznhZOvmEUgzv/wTFuDH1cmV6tOzlQ6t+4lT8e0E+mfVA6NFK8YErySRwkQVdNlqrVooF9+VtfT4KOjZz55SmbRl9bvB9t7PIwt5EXyzISfeLdcqzv4gA77+A9OLRPTehWJwPDO/GElbSFQNoZE1Iw8TEwQapVylDzQIZTX27byeV+DHfKHwgm37k0/jHaSzBLRyEd8FPTays8Hk5oNxhbipnGEZni+eRJvC9NERJtYlRiyf3hYzeiyepECA7EbXhP/j0tikHrhyIVNRJUHQMZG6j6fjFZ+aTjQUb2fzykwrhluzrqpHSuStHQ6iUVxAZCkwzdCFh5DtepZTaayzqRGOhR79HYjCRgU6yaWPyZmtPsf0sXBddY8C57WBDcd9Mfm/D+CJrn/TfNPGiukrs6pnAHeKoN7i1JaRpxFuEDMP5lI0fduXrvArcL4mtXzl8uulYa3JMgdH1tEzTGlMStBxs/FMvwTAVd7zbJZNw47cgDJg1nXDNtxm8k3aKlIoXWgi14MzbNqwamMOI2+88eaABIxxR/et9wu+eaKzW0WTDVdWzdyij9xQ/BzmESd3Sgb8cb6bI4wVUDnb0qmodftZ8oAb4hOPbAFZfihEaIDFYAnQlLde8AdWBJwjnGzcVxdJ29yvQ2nMtUyEE5p9AcG9kJAde1CsVrlS8xzYNEG9gAyMphodWhbKsgwEr3YHkbaXX19dPDw6bRmeS5Ddeqx/7MCKuwsX7N+9EoXAfXnBLE+9bgeZeI2sRIIEieLGR1faUzntrkRd+PrGUrD0ern13bSSIhvPqPjxymhU8W/5xzpd8MZ86arkwj2YWayGY5Tzq+DYMDtKWA91fdQrS/cDUCTnXnHV3uOKg9KQ6uxAe4q6Oj7M5cLi8TjFqEgimZNrNvBKUDge+mz70Rlk3r83Msww1x4n4Be2zN/auKrZjkFL3Z8SOvn5udZ+i1qecYxoIkpN+aQXvRZB5lCs96c7Wn/y8fBoFO/RHpS+0zQ82dIFH98rh5UBo7RVm8pC6m2ECT7ibpUj8YOj/28AsGntwYa3L6x+8AyNvGW52AFPlsWVQRi0iF44SoL+EGUcreaFrchIQsimcvrKyIw69WvhiBU3Jp3sI7NtovhK7nCGEbBIVNb5XAghDQcAVyEBHLV475WCwN6woAVQxJ2Vr9Xyz/luCBseeKv8l/txC12cUomlrhdXFkmxVWisSOPOS0IlDWclqmCr96GwIXJtNjz2QUtgsBFjU8eUPV8/RSjF+EHU1h6e89IcoA3Lj+RWog9c4jKZV1eAYoFspgxVRbCizWSnClzjsrIKc1gLkv6yhsZADTbpARiZOA0AF+zPg4PKScpElFLQN9Vgkg+F+CykoDoAaqBibxIgP9w+446zB0rlYkEtA+/Syghrj6hpduHdVezzw+ONDIVpgiHWKqJl4WymNLpZqxaG9tXu0ECFakyleRTsVWJ758M5LYPBZDlWSCW32jJCtGFwqzZqQaDgpWGiZkRKqA3i9IS4v/+nTcKBhL5CNL7ZdP1TZbbNmvBz7shmrO8O5V4o8Cu9dVfsAhiFI5UhoiqdoXcY8EP7pUym6lBS5adw0lBBzNGQNxN7ux9359k5L0FisuauQMNQIeiX3qxXcBG/SkMru25gInmSnpEuXoQuS14e3NHSe1rzXR8npqDNkFQUIPkcM0iBxSpKSVbZTkrHM7GjJ5+HQATu79URLPgasO145Xo5pOi+J1WntPxxe+zbz4YO4YzoohOcbvKAEFLouEoDLIuP7AIK3sVniAmgDqVyFG9zeUTR1gWcKwvB+/Knken0sIaC6tBdzvYBNiihWCZKbuNjCGBnUG+fHBAvyADRrbKTWPJBKHU65yd84bagJlTPh0eO19nGlVF+Im6HL4SJHtruXDHK/UvH6z7qvcgqrw25BqTUeElLks/MRJBVkrhxYA+W7WLQPLtU54hryQ2vRIMpxAY1dUzuniWboyUzjbBabnmG9B6AhXEKsdS36jEGqM24P39lU+c6FQx61EVz+28oeOVOVhZ+U8DRNx832jNN/nK9BcemHX5Em81WAj1iEpeIox12fISgDKwUGxiqNi0/QPL0qZVXBrhn5BpqvA/AoHx5f+/nQbrYXoaPnxxeFtDHYfVRCU6M2anyqb+bwQZ08OtPop0qrnRp9o5cCphbbKUk7CbEGnAFUiglos2pA4rI/StOWlJUcvIN9WBzJB53Nyyy22hjPROjJAxxQqr5ouyQ5rMOktBih66DaoYOzhQ5F19DVxQ3MYtyugCEufeKQOmhB0U9jk4j4AqsVovaDVs460zDATB/23/V3dVTSbknVjoN/MK1PAffbkFjCyDoco65cnMflK2OW6JsqqaK0N09CFG1xCOZD35k34Ad08BGn6cQE+lfx7m4PSa9YHPDFNsyTc8ygdfJbwHKUsLjdPCzI9XSn+TW4tq+CtqL0kc/WqRRZ8sw51k5lSFzokxDBACwFqgRz83CzArh+ll+W1iB6144tN2el6J8W5kB3UYVtcle0oi4UvqazQs032Izavr+CaXuVHUj2LBitJp1XCmUF6aeX/FbSjrAacznXOmd8/bNc/HT0dHfeYUBvGCbTx8paVI8TFwWdKe+bZPskYnmITxw3BSqDXs7rclDHdd5PI5B/xS3VceLfT3lj+X/xdTNWnT0SKz0/ufxvqkx3U0sg0wJ5VFSqrKtl/9yjcWGeP5XWQTIFHcpTxm+oG6IYKTsbpFNiO87wZmrodUM66lQ5S3fg711zx5CX67gNnsgHUCp+Jea2Nhzgj7+pME50RJgobrCR8ufMzfStUCGOdhLs6T5JO4n1kCRZ46a6q/uZQu74BZs0zUVyYN8DT959GFDWPBF5RLPachqRcUL2QeJs2hjm5QIBwmnA2rrqKPyjv/nXxuvowYapS9UX3yTyPirXBgHOpk+C8WQ4rn1HKZ9BLYdng+j51gc4newzsToJfH+zsoINdwcXrV/6+x7r7acDUmNiHnF+xAOrfuWqtOFGazO3fvH1AGjjbXD3pcmRSQ8gANbV6eBrO0rezMZzQAFMTsZuCzX+uTPYeUKQcVIJJ0sBJyiXJVqB1WTFqgI6cPCCkSwtddjw2RCjJLS4/4IZkTT6RP2gWUuyAf941tx7KdzyUAxesCaebf0k6cyBnE0444h8VFWcNMroRL2GeH8mQsoE1wrYZQ0ttCZGEKDspdLL5jS9Z1C7CE3qe08RbMIrJ9Z/VLH7tDcmLxeDhwP6H8jtfuqIAF92plGEjbDUuIX+/cVxcUL95zl6pmlbhvZIAYalaqITk/qNpvtXJi5SdnVepk4ERTNLuqBq2RmYR2xVRpjmLMqOt6h0WpPbFZeG+DeJLYcdG5+UB25apKypf4QPSDr77QyxRoE6kyi2WOUDaOVwdpJvcF+Vu/mPVSWo+PSH6jRA0QWiFmgmhYu/SNi0Nc1tIpyn5oSvx/jHzFczLkk0fyMoJtFd8RHiClwexVDckQOSBEon9qT2Hh48uN1dqTZc2ImjiLOQqlyO0bka/UD7WteUqslS6saxXwzj69pv+hGpGuwe02Fh0CRNxSu8dcyAjDWcEjyI62SOSVSSdChTql5jH2ibI8tLwS/O1UMh+wIGrpAEvtVPxvj8tR/lJy5z1NXMLr/SkMR4Zn4FA/a6SJtbTJVbB33gf9/KIc9zx+ZEIkWz/pWyqLoZOWEwqkCDpBrefeB9qcSOdaDj/eFJbeMuMkrYXwP0wuQUIdTfMK8B9/LV2uDRzGRgf3jU2bUe9e8AEfQEGmv3dY/lUvzrCSHxE9suqO5FgFJRdTtXpK+U1G/4nvdh/cHii5lEzLjKdl9wuSBwdbnMpOOnKzwWMHBXvhg6oQ0ngRQck6PxCLFCNMCDh0rr+dohGyoCYGxcE3MRHVDugzkfuiRfGju5SFA1aVrLNY/xApKP58pRJv3gsejZ0xxjVkgDP2loKZHrV1IkFTH0DuCQlKla55SQn9z0zn5kYY3gUgPQeH2KtPRR1UpQZj1cHoQOxTHLxatX7+20uW1srwkjFuevi6EICancKeMdxWq1L1sG/PD5swYTx0zy9gm+sQfv1I3iesfb7JPb+g/LNK7+V0UQuKjLLiSpmeTL626QagfnmDCxZdcZ5XNHaMlym5aQq/BhMvFdjACIk3YZvR2TxS9BpdrstCAnP+c9gmfbdUZA8RyHD0gc7bAKR0HjOYxqNYfSa5JifCr2xkxjKxhtVyFISNqAKjJ1edVFP13dhg9UdAWG6O1Xg4LTvzMcI8huPwMAVplkr58LRxxtyk1BRwou+et2fwkoHYQTEYR/JcF90UhaP8GAogoUKVs4DQrrKstZMIl9G9miqYRAbUU7rNln7rxE+lJuIi/xQz89wT0Q8TKaxcOuWHUp3ZEjI+lu2BBo8gk9S0a67HqTQHr6hRbXxx9GuFVW2oyABoah8R176lEShFqztQAd3LsSgM5JcKq3z2qSB02SrGqmkhO/cq+/4eLgzNcjc0QLlUyANAvobuxF7CD7CfDH082xJjdPf09wCeAY/SDCxAadIV7kDn4ZCORbgnJt6vCxOB+eu9cVcyakQNMI7u4fs/rKvnPT3RNblpxNaJj9qZCTuyMaHaY9QqqCieG7HdHTuESHH5csZvcqx8hDXTnzMsUqFYWVmhQ1y8fRKTTYGj3tcwuMWSeRIkz5VjQEMDAtNYs5N8T2V73hTllP99y0WHDHPNC+2lfZOXNH0ItigakuBehocowE4XoLu9+8Qgn+qNFwGrkPGLwg7IwWpQioptjLu62jpzwOV+57wmmRBIDtOn1/PWrdWC1uXIWQImNJI1nEXtjIH81sv/APbF0LndpZMp5fpdi0iwLDpNtrGYDvHktlIdpFSefOIHiIUP/9Xqe21MIOwg1DHM61oOv+VqIiciOKfB8vpr7jJeraGDyzhBC9iwOZEfyV5kCQEcIbikSj7RR2p0aXKykfJVgvfCeNa1h02HGJaKujIMA9omUv2xHOx3v/nothjCIROSkGoyyDLMp60hH1XHIKBEhNviQ3nWCDgMcwTGWpOv7pm7b78o883b5OXwzKV/slwmHVI/gJMPxj/fUeUpCdwCT5tEc1VH3HvEc0rU5GyjudNWyb9PG3eCWuGh+Qn9DXuljQa3Lwzask/ywjO18m/6mw0bUWySjCm3uHyhlQ8iezFXR0zGok6p991NSiKzCCjzlLWTQcV8UVBjMHbTjg6i4qPqwuqQu/9uNNL5SXZW/CXRIUW7eWEkBBDVsKNniP2tSYcnsR3aWhbHq+acfDivk81y+Y4hWtb/Xdc8nIOJySw5IVHU+qiLH7thdHvCnDdw/JNAKWZG01xT3M4hFIeOQYE3gxemc+VHOFYlOl18qcfGm9IrrnLkJOAgghjDLuZbhj6t+CAvmsUArjlwR+HozyaASpRpiwOsf5kNI3D0j0jeSU84upofMZ8RSMLeU9XTM393L44UFNhdRBHSzc2Kurf9kpfrxNqQWpZ/tfmUEwod56yP16rZmFB01eN5C1M/MRC0tGZGa7W+abbWaBrmr6CQvO89Yb0PPHVOsFM0UQijtmCKWzfS5Tc3P0+n5ymqfkpMmUN7MOisoWH3hGXZ1BGiEfpkvGCuMQ2r2VRDgI4ULvTLfDBwIpSEQvUaQAuTOxxH8EDyk55/xebXWZHO02E/bPsT2CFUmHA66PXQwIGMYbNA72/sTbDuygV0QMPS0B7mifD461/+qAcd7E63J1JExZCcLluFaNfLJKpL8EeJg8pQNql3OL1wstX6psN/X1lCTz/wJYHU4Mrd9Sup2LPUfOCSeCJwRcTQZZqyWXFVb2YrkWYjqRo65axCkNmZC1L9+PNDuO0IstbjpjBrzzstzS18Pk2BBheujer2cB1x+GJGkJb9QPwNOmEyYIruacI+SzHcmQA2tyt07nnzXGTtnIrSmGUaXrtTBIdGs+ncFiFyNItL60b8eEOUSjfmnzTAOVu3+nG+81KNmr0rCVUnQmozXM0Uz15W7JmaXdauOK+EXIgenHUR73Dgpwk3DnJdHtDBJkNCeWVbviJxXbayDaXEDu1nTuQ0/1Ggqql5eu34eqCkz6MxwvrCInFJMkL6UZSlOOepFSNLx4AB8DZS6EmjhpVncNUftVP3qakgWdACQHzSzOwBhU9TZG9LGNMwl+457Mmc8rVNAvhskPYLqapTF8F2mzkpy6wPGSAyIX+TUHNktkLZsgoAX/JPPIEriaHPLUm/wgjLIVYSSsJchDzvBo6WyvqqL986QzlBYrcw7JIHHSJZC+N8/nUeGzXSwgVIDTOeiSb1dld9xWHXRcIWjb7wijf9Sfs5ZB29b2DrV/MKHNnYo9qdHPytErWBGz/UtQ4yzeQkXjX4R+t1W1wfEKMiQb3fXqYZeE+sJWEmuDSX/PUMGFFaqv/6+u4rTsc1zSYYCsWVpfBmh7cU72snLjSQQjWVOjnQs2Zo+ooBu2KdBT+PDThY3OisdweFpsYgbF889THTvz5Y15TzoLlNz+swORFAq/d+OgX/AVw9XsUCBd1X40s+SNK7CVKz76m9uRvj3ErpXpbMccs0KUOtyKzKfbsr8GL3p7TqHx9CwmoLsQLwz3HeiJfoRE20WbxAwYkdpKRKW67YVxnCYm4kHMrMZ8CGflv26Z0b8ixpAmY1lx6lkqkuvd+H7P4ZJ8Z40Wy9pts1/kQDJ4WNPiaEJoWoIC+EJgfzG/IM67ULIFMPPHi6kS0dfCYxoQu54obyiaA5nd3dAPQ6wraFZ8N9GlrrrlTjKFdq6j6HZ9ITyk54rBci8FFFVD7mhMRrnOuUG26lklbxEdfBM5GNWJGDqbnloTsj6z6JnTN7s68Um9rUQzLgG1kVCoJ/uZLYmql5XUh+dMZN1UGp0MysvFgEGenHWNQyW5MqoQeegAVG6OMRcDNqfRUWOVdPWjKXb9/vbsJS/EaN3ZB9oMW5eWfxVe5ZdOrhR4R6MZnfwpfC/kuSvSGeMnZ/4GpjlNX8qvxkeuUjaMenxQs2aHdE/3PdLhbfZWZP076D5zU4oZQbLM8Cqo/SWwoFogm2s1L9ulRkxXsA9J8i9LmoPJK627U6oCMeCUuRn4TVYlAD5qXuAyKb4EgpOCHJ+FKWxMpVhHtHeT1Qy8c5fJFZ2UyT7TM9ZJMjvE4lh+SqyEDTPRGjzZec5k5+l/CfqCB0m+FGrIbbePQwRDYADwG1htbTOU7L7XDZWTheS8kY63MbblTPstXFiIwgTDhud5HJK6LJ22GuhTpb5JI3cdUifXXtlRRbUYJsfSKT7/t455IuDe2xcB7B1hrRJeaFv5HmTRou5DDyX/Y4WJ/wXILjkoK/xorJ7AawP4IqKWjsIRJnDKhMBAj5dmSFxVPSXx3KtDfddbRq0+17GwEbJrLntZFWM243Qk6kOeAEv6tg8Nej9d2B3rQ+r62HHgReKFopMHDzNlGl/Fu8N82nzxzzSeRAGUzDIGSRiY/cybyPiLsY0bkorOAE//4r8StefPDpGdkkm//Al57gjIKXZH38xHpbQoE0lspZQsMoW0nS6K9dzWm4HWufk6so9Gf00YM4Zp5PCpwOx5QDAbOxtpezpv2s5NdEg4rUhGe6m1+eitKJcBBAygh5Xqtsf4v0SqVn6ZDFEORGZi828UPBSkfBVldyCwFunHT40vKK6Y50Am0MtCct+gFfs601vL/tNbaRO4XZlusXMvvAVyMpQzaQfaCsjnKRy6mc4QgPQRAZ+WGrF1sV9F6RJcTV+3I22naZkkYkl8MSAhguFYVqH1zMp776qAqkRh8ZbZqzpAlO8ExkS3LcTUD9U/rHgH/BBXhckDhwX++bWQM7/pyw04f7k9nfZDxVzt6N6Ez1SX0nZZfMplbavsnmbIRyhJJ+aQxaRGvoHeQjCNL3JgwDabQOIFAnikFkvAVqk6cpB2ye36nQYnN5drg0r/9ghiQa7qmPSSVCRpBzhsx66kTJUgKBpd9hZIwyS2Tjw2hpc6RvwiyAZiTOx1LHM30lPBfqMbcuUIyJM1AYF9Rzh2zkBVX/I8xtgHihkT5UUEW4Q4G4vAFescSJ5uCnSUTAyTQetVIsSkPiXqgRmvo8mK2TvLij7CRVGMPqeVyzdg/qZmmB89cCcvxx6hRzE/hL2GUjlUxHLGR0NNSgtTjjXBf4L+gH4cjTbm6vPBvgQd09UsbZOvVpAfpswTBKgumPKiLrvr+FBNWjsCjtIJgxgVvVxCAPPWvEbmEP9Y1Z6dh5OZK1hWRISUL94YsV7ZY8baNJSXmg8TZzQW7WU3F0TEBgroKT8pJXrjTAa2oP4T0HCo7mJEwb3ADaeu2VfF3qTJoAEBlaRRFPWFJTPr8WfB9u1ROi7sMh5BKraiqZXBdGkptbzepWtEuhPDx48qIM6mmQdWRxop8S1AmSl3sDHXETq5nYTzE4m1MROtbJ8X2nyw0NxuMIL6MC8slpxSSjMabcppmSDj5M/mpzbqGa29h8+34CpT1ZnWZmbwQwcy78YTxlK626L0S2OiCwr6f8SV60/6panqtA0Wl3pB/VSdUMQzFNU71QYVxCulxj7urm1V/Lreqd5/gYbNDHu7cEux+AZTpSsx+o/q9X6CoTiu1Ndaw+dvFRTUsz3rR0xUDJmuYMtHUZuz4qk3vLaWBoC8VkJFCTG7qDLCFBQScjWDQrXpmGWZjJiH2YqDlxYNB4r4kX+D0yboBUeTAJsthzbNb2bjYGE1eMSLagvt27t2FnV9QRKDLuiWRJ0+CB12y4SHk9nH6ubocFsWycHaHxpZIw7SpbJRuj2uDRl2F7ubiHEadHvfcsuA9HZeXMDiZS4XxL2dFOCrUCc7lXA/sDBQ13q4cnlyunYg/p/tDzhyl7jJLOAkf6dnoguZ8iGLckbPkDGxT8UmgAEZhLpfpl9t3fER0FSZ42FXaW7jP/u2iny60YxkwRFuFDXPB/V/aNX8cLL660r7ewFywJb5lu8rylpKG19g5MB3toDbbPqrs4pKVCiZf3xmB/wWxwhqBbLRv3T5ESPScwK+S/4FOVnWbiguodxobCESovRwy0PJMuyi+sAHa5Og1HSAkgNwOwBp9FJeDhWNbvik69i7eh/YS5upcmGNsvqcg1MI0ALgaMJV8HOjN8HSgKk6IqaR5egOcYYa3D4kpBidlz9m3lOomOymjiDdsRDRGVWQGmwyqh1r/UMeMoZ1vHXobQmU+LrM2Mp3ALnT1B7NzeT+CqpCQqw55EfmhUYH+F6d+deZPSInZHCqGJfhe1lkMaQMw/1dVww3ddCKVhu/au/GLXLrY1ecIDgc3LgpX6Noc1Vd+H/TDNd/uy2Z+zXr03cKLMgagZ6zj+bYl0H/osdZs5FgwnjGMltZpK/C9tFelpY80tk59s52GwEnqWmBiSm47gM5lejzgQR1j6bUJPokarpra6WhYixqXpjMy/4uj7ZuEgM6mrgDeOYvQmba52AWWoDERGKv05KU9uFk20avh1nsYhm2fYs4HWlBMMRy55AJyN3+Llok7rCQ/V0IzvH+CtFONM/DFXYDXBfpIWcjXk5wlSnrVA9BXm1e/D8foWCApkjMVuKZjUyb1OF31JEN4vum8l5Q7gHhRZb6zUWPOF5rShqyyUd97OyxgBRU4MjLHEu9nkvmP4eZB7As7hZmccq5frsEunB+twTaTh+e5U74s3+z3AEMJnxhwn7IuAMjB6to7jiEofQpPjLy02Ry7Mbq9zTa4S4HZCZ4+C7KQQrzbRc0MJVNx/p/Nj5ZU28lHjevMCuUe/gloj1dk3asgsF+FF/NO17sPlfrxknG6WyeCT7rHwdCC4bnX9AvBWAe+QXr29p7SP08sDGZ8JpJmgJr6vTmsk25C/vHYv7scXP1ReB/lFgu7EciFAzleY1ywZOpgfe5qltIGW5PoD5xIkVQ9Zb6GmbLNwwPfOrIbnG0PRbwjiI7w/ronVoOOA/kgfoJuJzTw9T5gUToK7IDWRrNoNvk/se/pa7EFc2GGKb/7oec5Jci5KlV+4qz1FsaoMU2PBEKlampPWnunqgr6JOCnl1VrlU6w3GrcIpbnPbJz7VBGca9fUnv9VKWkqI0J+lPojPHnkXgto6eXK39+s9d0gQQcmv3R3drBRnnDbZWpOgi/Rk9IIoP+zjyDqzg8OnA5ncOqH4Q59rQKAPRIqLute8f0BhbAo4grJ0hVje55DUklhS4g8NT2/nyv9yYE31qvmh8BCHfB92XDrPadjCrYgf+eMll1/d6TX4oHUYvK9npAjcGg6KFCGIgzBJj7X7pBsfs9ZRE0VSbqXdJkkbOr1iHMegrrWuf07cvlvcjo7+P7RGBZlDjtNDaRqmmyD0NlLb3kyK611mm0JQQvtBdo25Tz0zdjzMf1RakrHq9ar7jYMJxyTKTUcKZv2BXI1j2wuXnfs1A3aESUgaeKGau1wyzNCeaCZXiaaihg8PQVVX04ROU991lIwxmOKr74CL523mKZiXxZ8uHj0+AspPgatK9KHowmGRc7+SRzY98htEANelM50anLT5ucv+zz7qpmoTIJvZoVlZjkq2v1tZc1RUmTz9xBd2trUjtiHi2zc4wXcadMFei/uOdK/7JlwrCcwNX7W4kGuv3zFy9DNQ0vDTLlFJQCAE+fk40JEIcKRHYULtRGaVoTLD7eErZi3GsBX/p54wIKQZkNPHDcPmtsR2a9e2xdHASKt9d/5Dl+3AXcXKdz6kvRtaKttgVhVBjmQZX+lR5eh6j00X8jMCUCqGgonUtO98dfFOl/jMFlmS5CD0kLKUGt0HO38A3bwZI6NsALQV/wq70By16HN5fuVjKMb1l+YVGmNiUZMaGATOwWI3EZuZpTwleNMKkHnnf15lcxnRK0CRao4xnf36Gx/qY6pOrrl6PG+xIy1uJYWKtRafshp5Jd+4Hjz9H4HGZ19cVcBNndJSJcawFrpBxAp9Cw3Bo8deSm1AQdTXay+ZsD0Fg0izFemFnqthySiYLA01Z70zppM/U3OGtZaiLQZyrO8pOvIJbWh3lK7xJQ4pvKJO71SifHZwq37duZL23M1NElAjZFcMfNYIt169+JrwBav1CsBVlDsHscWCKKBpSara77Z325ivQINhsV+P2QpVOP9ptzirNqKTWBbOXh4qZ7jil+V6XoNkZY/cz2+mq9eCE17Rl/8nqoRfuCfTged2wzpZ98co9r02F4rinrZJqBkrysq/4PXQOEstWhdfU3iGJ2PinCchsVvKu+lupoVBEZULFiwFEObfQ8sGoJx8wbfXogjsv83yH9IuuqnpHs0+3qNkvAm9jkQJ+qou4KM8v+BLgIP/6dUYeuMbjdMc+ucMmzyHXwgOg5mavbCvuwb1knYgwlzp5A+rKwwcT1im32a1VTQEi8sT6fNjSqDeyvr8ljbAuJ3dlNHbgmnitpdQQyUoVfr2M70uF5eqb4Zn6M3I6z61p3tbECyTJWwohsxKZNPBEE5rg/xTYuCjWmMWhrzT0shlE8TkiyzgAMGKKkNwqk0/oTVRHK6RU2L7LoYF0sahgrBHUWBHt0XVkwk8nIN8MCK42POph4Q6SPSVdpHfNINFb/PlmiOliGfLuZQpZ7KjRAIS0Ue1IcI5A5QjTHJx7gRfnf2nZt2QtSVmA4E+0AZTvHGEsb68GW5GOi1u/OMEeOJBhDKSYpZ1NEBcu/3qcxxrWciRelD34hGwQdksD4eAd0lAbpnfYW9/obc0cXMTZV8G42nmTtgM36sncJ3jLRc/9Z02rSA3plbijT4TbOFfIe+0M7VyPguj/q4QNJSvkS768aOTlAZNu/sH2sHh6C9cLFIJBv+AlBikB1/20ppuvko855pgJvKW1pgv+Z2eOUJzM4qVlnr4mZo0hvU/Ftqp6UNr29UwsClqIBer7KsR5xI2/HwjRENE8moaQF0wDu9PNsZcipnuX5Osz8EL1I3/d9pSMqQecmdk9yTZQHExb33UfTWTwK0l9xz+ELZHt73b2STIklCGrFpx+tLMmG1+sv1mjeAIxcXX0yZru3DzyDaW2hlPe+NuZCl7KF+FYqBQb8kiQ8TnVvxGHYnuTkQfwLc3NX6oVjhR9YL0n4rXCyxzXYYqL6AlYIxFLA5DBm2QFK/gJne20pgkam4R13l/qFBslC6efT6TrBKXiaQmUj8zljvw4MwDBc82sNo30BsPOnI+x20WehILxsv94FzOTOBPmadbPHUble2gj/eUgpSjSaHL/bIHcogifVzWucz5I3IJjvtpUJRgroWsxxQtN12g6n/DmBmJ0OpxYnwMXzwxcVI+AYtg2LkuNPxnIL6qG3ZGZh/bVuIaN8K8eyVcPQVI3M++72bwF1F9ybBmLdeEDAvS5bcMd7nI+jSHsuLL1cNExQz4KOjKxlouN+HU0OoQBwaKEQxp1jAaFC7O3BsmyKImln365jojv8bj58k868rGg2qRL5LUrCdV2QwA9ecc7WQVTIItCiMlbCUBFSR8QhIA6gvJNBQyyuLeIgTeYcUczLpEN9+szygF+PtF9Fh3etcypRK8BoQ1NNPLrKmnG1OLaERkccNgERQlziIMnQf4G2z0OlFHry22Felz7t4TsBsRy8PcjuFFPd/2NBB6k3WI1szqznaB2sPs6EcvYgsjXYbJkYXBG9Y2226nfnQADMwgUPQZu6U8fS5KbhnUBgbgUrznaAbC2krm4ojr0lysmjHNITV0SuI/SZ+WO7QWiJ7e5/17PZKEFwVKCrZcDAStKwscdhBwECdnmM6M1odznwdyo9mAN30WH67/mu8N85les7pmE7VVTvnHlyqUNugy2w9rNVolLm/QSmskgCpQb3w3EOqFNAZDwQerKCKusyum36EU95HkM4mgnV3doq0rV0zF3u+RJkIZCd7UCTuPkWnpxHNz4iKx6mIWIf3HkRATvxFqTqCLrLuJWmDSvD8XpJulhb8qupPf7vwW5glFOWuLFmk/OnZNm3YhwIP9NfsVFIWIyiNXIwTNoxUdafB4E3HMaBvQlmZEcHjKda1KU8QKM00zrPVBo2+XGxyIwkMKQDB75QFUY3CvFrRKm/LxYb7KByMMf9JcZn5WwaSctyu+HUFFkDg+x2UF5vUE6mxt7adonnGb1+gzlZ+yy0yNx/DuIM28+CXM1JkPSL6o8vXxS4jSbi5VFZqXQCmWlfX4NULS+yp7zRBv0RhH9PfQ24KhRE2mCBEuG2ESdvgb/pMwSBJ4KgxdIGCKyhtznsTUwQpAq8uXHWE4hb2pVKEIqXK1smn8dnM1HXjsl/dqj6Ay+350nxX8HJxlvwGrfIf1hD4vxtoq4SyuwLpG/6HipjQCuV5yjKPSyTcjzVnRFdmA810lB3jfFJxhjliCms0teFoLynbDQf2TtvbiB4mZAdFMiXqWABTWErquMVCaHmlL0H2W0Au9i2IhvB/um7Vr3x6y/8A6PEVp6ddTV6BIH43Ti350eIr8+YLx2K0XmHpvWXbrizxdhC0EHWmstgEEGCFGm3ggTh6YkSKKWGMnQ76glMnhC6TFKSIwgHCnsVXXi6AE5hrr7omvgg9nE5TZwiuP8lrjAIAcq5q0uOulD/15kn8atyeSvC8cIKzoWY6vKYciGcctGn2UemD31Hf01foHgvANXL84HP9WVNpwMmccWYDAzwWBdiKQmbGbSfR2fN+czgoN5kKjhRhQDwAYqo95cw+TTKbIovrGrD0m1WOgaWUonRvXPc+K67sVJSKHQ7Ehrsv/F891aPJn7sPR5bZjeRox+WgXfiGApM7ogmGqRRD4RLDpwdWCMtIO8W4ANdu8MlwK4Ky4FlsheNILHSj8tioCTvnu2FCmqHdR6XOA5K2jZMHhzb4Zh7fJkya6L4/m6E0pWqaF5GVW7ZFkgUzAzfLADuRMeQ7IwfORgXgZTSGmlnsMQSBSs+pePg3MQsHnez9RuKctUUy98eD5DPhRqgj9c17sh6Aqzvsb+dDcSgEUsE4ZqBUg3hezl6c2GLG/IOjVXV9rO9slon2QH/P2YysF0QKltCnC1OgiULqARD4o2esZJZ4UPTmYwUApFKOEsXdmf2i03GnscXhJvc+O0q4oxy85fUzUpLYJLFb+qCnwGjPQDwRHhX8Y6RlOioKccPexIeLTcf4ctROGPHtx0fg9cl6Pxa6roRCpQtp5+OUW4NJt2Z1kq7p+nQSpe3kLk6HMub0M42OM5nbbOi4H6CDyiGotCUZoRlekMlTkq2gb6nkstTFu9zjFZym8SQxmrhGyDH86BKx/aNwA3XdH71pFvYIHkCNy+gmuq5f+yZ22sI7LpuaMQ+dGI9fI3luxOGee6S/4jzU6DbNgNfhtX6dpn7YrWGQh+RuxSDnEtecerXHanxFAMgQSBc1NX9o76SlAUTDARDCa73siJN2EV51SoRFKAwISypEJhchCKj675MfV0BKGo7M2szH2ZInMu779kI85rP0eGraZqWU7atIpyW3pj1rVWgpt8ZyH9WvLQO7m857WFPXPPRamV9Vd3Ihlkg77EmnnH0zreNcZ+j1u3hQXN17+CxfIKwZq03M+eE3WTOWIJt2CWUWG3DZTz+cx4PZRZ13sVxVhjfznV4x10+G+uIz2OqDyoOeTCS1gXMQmpVHHQHFedgK/0K4nZ+MCKSRwr6f226l4wEWd4/NMdF0dZX8DO2CkzXv8KZ+iA5BvnAXQuPgUi7Bv7xO5V9uKmtUNp2YsSEzuQ3QQxIQJ4M8nl5KDuKQCQ4Hd7D7cM+eZvDE+JGU1CVG3+JGKZOn+3mqJ+4VwIsmnda5fmgCiEYpesemhJo18lBiLXqx1gttPOybuPe5T2Mp9ygMt7u6k9LoPaaFzJqwNNL/VtMaTowQgWR7Q1PaH+iIxGT4Qv4e6uNHAMLSalfHNoa9uBPFVAzCdzqExo6QQe3jnyEblP+EHzE9RhVHk9hsN5Eo8c9VV8NX2F0PZYu+yyf4KcNKXULhpOTf27Vu6FLb0yiks9MtuyVKml5kXyHKPMxMBWim76djJiqx+PHDocY7GtGYuYDRIyTc1EdTP2kfHeEIrZJm5iIN8PxCA+WEFz78+hzbil9z4FLNNL7q/VqVHxnm1i2MUF6KU0d8ihPdQA2Jkb454apxzwwGQR7Td1aSCcT3FVSIjUrWHfxJ5EvrG/5WQH2Pg1omFrVa+01MaJQLb7hjY7f4f2W1HrmcWUYbren+P0Xc/RAUoujIr206JHuHOu96beiwQLJC6DCV5e4Yu/OQ6MoUvOMlNDVwaxu/3YzIf3QDocEZVWC2WpOFvRgxmuip1vBNO+2WNth8mP6rbNsUP2qndBcd/ne5D1SG1JSSRyJSG8upnjfQd7HG1MCcvBv9TePSu9LDtrazo8LG8Ji5lRPhRZ4l7fc90g5+g9Jggmfq//WOQdvLM+ZCgLWHO39H+ZCpHzrI9GhyH3muxkUSnXMEgr7ep7ks5Y1JHyJAg6MvzjbItKxSBzyYOIyXzgQLHq3QTpYAphHAaRT32O0m6+cM3B8Wx/NiTCfJtVpdI39Q1M+VpXe1ThRrqgc91NoITrl4nTc22S0a4Dl1JcUo8JhCepu+1Fq2fo1J90KS5TBkC6+qvXJsJMFHvNfDVt9Sb3wMihQ//jRjXsziszgy+ccEazvOiDzOF1uZvYJWDRwME/cOPXAyZFohnDhYzcnqbfEEQpRA3vZqqOP2n67RjZGtxdSPfbML4ln6boIkUrkra9A92hLV+nYkmrtHAg/PMuhy2fmLParh4FaJufFco7hl8gsLWx0ecs9TxB0081Ct331k/V+1TGjSAOEwY4qEm9e1prFRS/0lFi84exnXNnK5TcGCKGJboe0GVw0sFxdfglwBPqzzhYE4Yu+FCRftL9i8EWCnhTc8u1HIAv/4QJtMgZW/x8MjQcHWYP8xt+EI2xp9BC8yo06+kskN/qwlhxsmEO3743IhLX/4vkg5t/4lB4ZW9kSrTKF7aC8+4oDOYgeR3FOFXSkZFj2h7MxYgs82foIWxGyAxab8o22e5ROl8Pfq3KVo98vBYWWZQes/h50JtHnHmSoJN+8P+bje40UQlGJaEEuQgeDM0OHZiGIPDBqlr62DykV5Y1V7A0WR2EQ/u+CMXjRRUNEL5ijb5UO2RF1vTbS6auGTq4dSroCZk10g1ywqDCcBeoR5a1dwxRVOzfj08du+clh5fd6hPJ3ao85q9Fu0YNhLVy3hvTEB9Dl/vcrX3o+SKQhc0PhNWwbimOv3e7gdzCEhbm7OXlcUwVHFXC9a8TdM/BTCBLFg9JYCNr8QF9UEE+gjjVZtfWAxtri8CSS5ui23RPV+IXrzz1ncYBwEgDga5Xglbwqqq7WC0FeAvBA+ZafdTH9IauSay+FOJI3qxo/DbeWjP1datWZNkEaYpryg9AzQlHPWfX7qLT2D2nCANemAlHX7udlxneygpZVqPFKYMWLgYMGrcttrAcxlLnGrWdLtkzoOBJvX7xa71p1ZQGzcCtI1KnjoRJX/QnN76XZ7w0cqQlLG9qmlFaxIkzAM0i+bK9+ObhRCo510rUX338S+CJjFE/t5PtzNHYERUq2PXCTqhjY4Mw/w6qVLgAkZqk5Q0++ZQWvCPPM3fZJAWZ6Vj8G4ENG10oxsW2BDNY9wN026toVpAPHhXwYRwObRMIrniaPpOoWwKWTV46idf02ZZby01ycjoDUzhL51O8COlt05t+ISWoEK274lDoIDFze6+oKyHPBYeF9P0P5Cmlz6xRNfbXad3F1EaRUtNks73LwlEbUN11BIOHGbEMU5TpGMC9VdwmMDBxcwiVF0uqnJ/2OO6INk6onLs9Ibz6bHh3GZaaRgV+60LmwMjqfTDDdq9952E7VwW795WStU2VC+0v+TA4awjX2DA9giRY1mz3M+0+pEIjKN/aLkG1Sm7dtjUfKCGS1rY72wxdnV9AVSioE0vD1B3mkojhlgJYMrwgkQeSUqz8uuT/OMmUbmlSajkwvRL6lJ0NnK407ALLWZMdnqrx7hU6ffg4gGtsIpuAqE/esxrUxAEKrCYpzATKD805jNSd4yPjdeWDjSN4iKBvsTO2ctyiZzH6zwNwDOCeZ+OpNOwPIqy7XmQOLoAFeFGufsFSWtW9p5Zi45rvcBynUIhUwqWaGjuCIkpgcCQvqxCrPEDgF7mG+4UzdCB4d/jGfIvt2LTlAottbHzs2ce7qNqGIolBkuSgfenBvbNOikLnblxPEHNw8JT7uL2R7gbIZwu25MkJbHUJxJMACAvb8wzWNOcGgNzkwjGHKMhCGaGlO7oDw1WqUjVo//x7V73VKstlbjmJhlIVQhdvwzUEKTDR8PudZoKLx5w+6iBebddC1lG4rILNlvKGLosBop76C37o25X7gvpiALKWzmw0pQ78Uf8T38XLAsgb+koJh1GzSuTZOOISQfNWYsUO7/+OCaL9+D0M2Ukv3oSFutlUVsYc/ytt2+t+tnSIiUGJiiNornsOfJnBEHT57CqGD4RYsqJxNyE5opfXw23QnHecqEXd4Hy81sumRQ3/ML1sZSuxoz6SSKL4ZtXnSraOyXCuIOmD+nGXhYNaIfnGJDRllRWjC5Dmieogv/41klBtonF+ANC4a5sSMokEZA6QJzVrPokqBZLzX6jK4TCbvMqgYvi3JbvSl7WlUSm0CEvu6Pq9sETWOU+DOnGZHdBpqoJRxrZxGYFFSua86+cA2fG2oHxplTBwUV8EBKvB69K6VPeHl66GzIl0fPD34WvyLImAzJLfT0nf/N/yrBj+04BJR2dveSh7CFrt6V562UD8stQ9w6MVDkiCzWilYczZm9HUtpehrhFINm+l6NlQCCFqYR/VEE13Nt4c0u9J5Fstpir8AC+r12T0DX0nlw3y601bxGzTDecv8bUQFrIJkEOSpr94eWj9+kQ4gSs0tcNkqqBJgZjQSVWIlMRt4VlfU+ti+nrIX9nFRacpvpUVlf8dr575XCj0KXBIEbelMJyrxq4fz2Bf1R0gm7jToRXxArAkrUop77ItpUc3lGff7P3qblNztRN8XNvMlBOugV6UAHL9sxBk9tJpFYyeDQ/UjiEa9jR+dQxzawAHZ3NHgv5xWU2P7hsOfxfPgCGb4DgatdshjMaJIK6SRyQh8gR5ifSw+eej+9oSy/mFs7iIvMmVvOqjxwjmx9haEPDsnuKzjFMsfJphWjRCBDVpnTy8/+TjNIZ6Rzo+6vd+BB1hApFUkv5+RbIP7aQ5XdcxzpcVSNs1VKug+kWTlFmAUqtdqhYgw0thIV82Kq8xOE43P4vzIBgiBX46y0umHi2exGU+MqDudf8jQyfn146SS2FNxH4jSvtL7Nav81L58Kma3lgwfqHinoRZ4kXwGdzu6WGzftjX3iYekjVd/AbDU6BwUYmpDYrrLMMbr2HE/UYSa6UWKEbzzmixKfXRRyBZcmuin7QlnafwEJ24FEB8XwTbVaruPTr+WweuUYPt8hwsvkiDlT+1IlXM9q5okAE1j/TbW0PYd6+bNc2A4nz0PCmINlxJ33ePOA6ISFNyI15wVsj8MUkkGhpPVWaPkVl9FiXrVHjumwRGMl2rX9TVLX+9rbLSwyHDuoIgbDlRLHPVbb/0NAy878wU3fYoWiAGqi/BmHToRRWlnkFM3wjhQAOOtwaf+wOTFYyNcLD5H5qL1z4x4/AxTa0vtkf0n78psdi2lf2wAzoO46DRf7EEVK2zBU03ZcjpecmF1bUMCAmck0ae6Ti0HNwI8023PVi2IHTPPkb/jT58KpG7vww2elTa02QhX85G93SORfBhCBAjgCROfid6BnrOeU9gndTjUXEk8ek7j/mJBujtijTd/utYtrcp1Mjb06WXwRXlOh6FDjlybIlTEYgvDsckic3Qx5jANbtipHTzvPtd2Rc6S2k+kjZkd3wa7kMukE3zq3bH8DrDCtp1Kl3akaUoK2EaS/M9DV7JcuqzeVlCN4MUD5HTHbVBTw/N3ae5/+K2OpdEipOVtdpZIxszRMLUHOvxQPNP59AAWVFxdH6732dJfa5FVaVXczcZVmL/Fmt0fIuwgTC6stuedaZ2oAQ1Ud7DK3Qe6qfI1M3L7PTk8n+/juXXn6aBO5f/CnRXsUp3lnsDw6WNh4CHQC1vB4tUfymd3t+MSaPrZOA3P3z4Hay28q0BnRmsZ2jTh+L9VrbOiSGpi2f7s5rd2w2C8aqFGnZ2dRX8GlMqAWkkvgmgpaGEWOpBhQIEbP7cc+WWh+arGD+pW+uZpv+xrlbGgqoa/+81A0OPsdAw7FJzhUabzevaBPqIFpgy7kHBb8hWVDLHi124Sboc44520HPj+g71367/S6ASE57znrCeuo4PY3RGS4/2G8qRzQwZlh1DIQpwp1T1o2x4kOnr5l1/JBIX94OxcnuTcRRqKpAnbcYJgkUjDnPv5fJTzFQxsYHXp1/bzbUgM/e+UOxTsvXZ5et6MxlePY9HM1fk4KBt8ogfMJG9+F12H1wnEJ9kJzTiwxWjh+WDs65aTo+xkOWHo20vHN+Gejg2eQit1paKLj3cfabX11fU/CDrt+i0qMGJ8Vvv0YWYDUVqRYB/wQlMvz/vvVUrfwri7X8CFMbN0qg2ZGKO9oG6cZfq/kJxsyyduR6jBIGD6u22oVD+SJAvTmRRoYcYiORq+fwypS/mwQRpLocmrkgtoCkai46P8D3y92glBmN9skNtQQHSPWr0ds8pCCK5U2xt05wmCVQOaWkwkTkx6ufPKmbCjrFvnXyu1SZzj8x0z6oFGZIo1kvEpP6XW+3yRljFTSZxfJ0++8Gr9UQ0j3yl4lkEp3puLzdus5cKOr4Rm/ZDV38GYNeZu/xE2+QicVmPZK8MB8z9v7zdGPg+otTa74fDPQMYRGFtNnhG7iKOXKxsmE6zgLEdJOMCY0jpgus04Ws03IryX6VuFxKwXwNElPo0qdmPsxN5SFB5TfzcyVwxC8Qg5ZqOLWPV1jiBgINkue02xqyBd3jjwE0bbnRTPb30urHqho7rMrAEsJSM4e/4Qder0C0bf9sVB5EbXQBSfjh26hFoC8g7t4pw9KCsqtT+R0nyzDbvNkS+E5/5qH8eS2U+SP/jMo6Vq8Oopc1/1+ACAF9SJO3ByKLbIVCk0V9n5iHiAIOM2k6E+MLAZOWeXltfJb91YYIeILr2RTlFdooiTfmb74xjJdYOY5PwntazgGhgqRerpt23arJlQSv24zD+8sgkW4mzi+hTsikaRaPcaPnmG9aNP5Gnad9dMQLrPJOGOfyww0JxEB2lQQdPhaFjL71ijMOzQraEc8AvTNTMEgUrrPBuj//wF4djMcXoouTVgBcLCzVVH++bNvF59m2flILduEBYVYLNB76pUir0jFzxBB0ZKyG988uXV9DWZlID4J3EMRN21hFdpsfl+VTy/Yctq5yY1bjFfUskY+XSmOl0PMiWXCLnX9ythJC3MG/mhjL95It5fk2ZKIxk57HwXrxydombAsT67N9hlskIPjhkR5jxmuz1uEjmy8+3ggv/oWTxGhvVZvpLD/urNkZwiIiq1EbvQPHs5IL3ziU9XI02+70uzBLNEXIHIZmnphOr5ld2W7VaUqEGvYInS7JBhHxNMX78n9l91QnQbpoNZFvecx5+gXgvlLwLB5pd3MdtqZ4ODoHpook0l87vA9Zy0RMbOqUz86faBww78Q3Th2q8NLeDZ9ekOFX7DqP/3CWTLOCnSFd3rIfoqpG5OYDuBT417sH4rrCWFC4l8ceRTvl7yzROQ9U3DRWEqWpeBSIyXpGGdV22KNZ8MJ5BjckbqQIt/vYA6cZkXDQDRY5nXYcV5wcw5XQ/qEvhpxFw0+juoTe5ae7CSHCQZ/fyDNmO8ISfkSpr9ftFsHhE/6I13PWwV110Ix45a/2HHEAcTBA8eAEJHmt1oIYKVWcAEtFz9LpziH6ufSUXLyPG52oUhUdyCGBViBjlCpD1byts17Py4BxKwxekatSh9u1G0hV5mxPp7Z8zFSZwd+Eq6Mj64XH7jG9dNnqprXjuTmQEt9dvLCn3IQuJSg/fG5Q+Gk+6m+G+6DXAqFmvHWc6eV4arXciWzbI3EYlg0fG0sq+qJnsXKDYKvLnF/ROpV0vQi8LwwHJDnKOwKPmo1L96HQXZrgapRar7iy92UdLEp7Lwnb0YsVsxh3EtqUV9nRKIg8fIb8MLBGcoyirRVpEk8rkQMV5/tN2CRak099RBoEILzuC8ZG8Az71fYqZ1RukImoaWlqc/bJYqXM6JUGZcZVoPUFGlTPjytolOA/UDyfLqThkYyCJqvuCXTv6suHiuusdnUhozUapKJvhJvHb1UBqUoPytu9UDIlImTLnOti6OxoG/VaIrvhn/OVs7N6o0I+gXnvYXcE3/61MoJ8ZH2bPtfLwmhV+UEYmqXGrttuTYEZddjpwFqnpS5KOCZxeBOSa9EZjxWbuUi8d5J9JTN3EhvpbNxtdHSmwiz0PChRM8Z++zrsx1sAngn5lqm4Nmg8GqXshX6vrFiFt4lQgdSin/5a6JPdJ1R3pS7SPzilKryNt7q52gHqyw5SjP5WOudrkIRzeLBgqY5YuVpFqWMpbrHrfBl7p5IVzdcFWqDXFaNJo6YbwXefjNIR5qaEyk2SnkqESEjDcw+pO+7BtPi2/Buq4kIOhNZnYkiGLKlJGbA9KLL9HYSDdsaPe7AQPouXn1JOeHFzB/5PBFjnUb3ZJ9CKCuaKO8vgEozVaXVUY3vrNDN5N6FbQ/w8jG0Hk1WD8JBxcL1BXN+QqRAwXFXCstM0phQ4j4NrK1bxgCIwsL8M6MVocwXSL3POtO4CV0Z5ngPvBu2NDiUCQb2hZZjf/DXXo9R3PPBu6FuUkCNLUGBu5gm/X+0MdI2jTNAJ8dPWX/uBgCy6yKJyXUDeAnQYaHGppr+ktebUoWnUiUqboRiVH1oAgTFBYL/VxrYWbC0spQJtuegLoNqbyV5Qi2QarFqN7ty0Ifopw5KtFO/CyKUmGDosF7frqsR3+rrX8BgDlWWc59NO/Fw34h4c+w4KSapEruGuVnpKmCgreezoID2hZyHFEhXhRFC7WgbfdX3L2sWO1W5cnJkFiFtL8D0LMcKCEEBasnpGNrV66dtCqS+ypAny9HleCNxCKNq0lW313rBw+lcFJm6mrAv4tRx1qegTU6ulyL0RRsRpmXQDNzh9DMxMyRszB2mO6HVKxI7lpk4jNqcErF8/pffvsNu0RyOvfdj9G3cR19mNRs2txHAu2WNcwBAGub+nX9LEQCUE53qu0j2MVcSSwivqU7tXd20zPjMVUTjpaRn6Efos5SckVrGU8dgqj3E/3XfcHPuCo4Esp5JJ0yr4jqMdHNX4TdGIcnwwfA+zqNIZGXRLxKt1+yBGzoKEi/iRl7EgNrpxyRRheUSee0bw737BjQDQNSfTLewYeHuxJIKbL6HnVmaNDxn8criwMn6TlDoJ7R3kXUzegvR/4mM+MXr7uSy4b9nkK/1C4x5epAdK9QIgXyASozl/1u9wRm6d2y2gh8BVVX/9Ib/RM2HqzgQWoZf+aMwsSPIlnlg+dRl3sGu+yAaJWVcNXOhjeh//490MSTb5ObItuDIZQ9RVDjKqqkmPTqLOOwPSqwfnlauhhRe7a5/iMNbV6VIoSWcJq+txSv55iIGToJf1cXMA06+Lryefn1ayZYTVJJtkM6LIiLZp8zcwmD020zmtgxqdsZCJBAP0OP1h+HEGIKRvofeQ1GV2uIap8Hb0Og8475ZnOz7Q/6axVB3Ail/hlyoodClwpW3e79LU+67GX+2tUvj9q0plxv8Y4uc3Wo6pDu6uVO5/0vH7CH21FhkJQoztTI3QW0GvPqipfRxJjV6bFu/yhDnO/S4kxXHSsIfMqBc3yV4awUx2EG2+CpdUXHoL4FAhF08WcDAvGcQL1PTZRfK7yneiux/uJ6nlKkczjqhnF0OCLB2sVEn+pO9wcmLHI0ld8M86M1iYwiPUeJmC+EoT/ylcBoSMhtBZjFNgUXOoCoLM5cevY4VZhCjbHxowlJw159hWCTblPoA6g6QBk6wm8PfHUfGCaXYM5/k6HGPB83UaiOloJ5492X1YLiApM1vIq9TveSzK9cyNwk+gJJMES2+UsRMEK4G5RYwJGdGL8GE7fum3uP3DFK/x8K+axmj2rfEgDmp/uu/ZriAQ4XeFbyRsdM2yQHu0cthJECfYxEyNV1ZvhRpYhrvF/zQpA+1sEw88MIDlpnScGumZCeLFyhSU8bM7b5Xa/ZUSSJpLOvwDbU6NX/rJN2gmHOKjB2Wf4N3FMqfmhbk5OoIZnCi5Oe/xx1z2+aoUjKf1cB3dMbpGXEtdHXIF5jzWd/1CxMkyPtJRnGMXa9Fui2Y7G+7oCnMgVSFnXclCDQzjyto7MzOZZb0+snTMFL12P/6OOZb+upl9IsCXMlLD8bjqEePjDhaAc3nrEIszCJmv8OzJWMOrkIbVf/NmLaHuBkzX6xJeKlE/uVea0RlP9s6Gfrz3kWpkrukY/RKyfg1z7utv4SfKs7uhxTx5X9IgcovsOkRiDgQ5lcJA1RzZBdAWJGfzPTCP4I2/bE+V7/CYTKX+CUC8YCVnRmqDMlbZXPlgdtrgtWr4xnevpchJG/7lHZGNf8l2sGM4jOJ45o3vkG7FTbpTRd+NmV6q7NiDF2ghx4YYkgbKaN+nHQ835jFzPGJPtNFOMeOt7Kgxe8HZfL5ZS1nn3sJNLgcQwvAr8VFJdeQXaya3BzFWk3Fr2JyzKk8FfUrEFNKqujHFcSZXRrT3REvI0r0YUPmoI5ol0gB7pLK0dbVH1jgycwxwhKqd3cfKVqybWmdjqX0aQ3N6g4cqUgOWEA/rV+9ILVnZwe33a/MjuxVXDaaSZfBrb6BGZaGaI8thwKky6iZw6Tzi1C1pawbyd7/SNtvUU4/kpn1F2UPg0waU14s6bsIZUSEE8WW8Ih1l8ikMHDRm+C/bh75g68Pyjeu6oZJUqS7YHmJ+XXD0zhHjE+dYmMPloYQj8Z7GPKX62yhSLXlxc7/8+lAP9juMluGhZ1X6p9ZDlwK1IMz3wAVsbvsJdsYGkalI5Md97PQAzm1VU5ZioaUoRPp8GXNQwowMnoHMEXKvdTdHR3RCsPZ9Fsf1YlVt4T2ebFohLmNdVEUyplQwXlqFJgrEcva6Lvg3lxbaARC3yKcwta+hkkTXRHsDwtTQDe8cYE+bmr9r8SzkzzmmrNTa+MMQSPUC+Hg3C90yfSsvsMZjoiidDbfE3nPXgDIXAN8GqGpXWi8G0e9NPiJTfdiLqv9/GN23n3w4OJL1D8vbratyr4ft9ZsfgFHHuwgVnx3aGYv1qal2EqsrC7pSyDVtPVfz2fyUGPlsiLwuFnuH8IIJj/0ilAtWYQeZG0cGQjFvLV7D1rvl+qW4L848pFsoR4KEOKbsDZMiT9ua4uDWp4MSNTnGKMjMI7pZB5qfuvq97/II8KhTnxO15YE893Z+oa4zh5MSUHtP6SmmHJQByKi9mjE0e8zX6GWNxJMF1Dk8Oa4/AkL7CBDWr0MmzaWUXiKrPbkltQgujvGFgY6tORjunjNAdeIVB9UQOJMQJOOi3WGb3/wl5u8QgPsaRJgcL8mlHs9H4ibCyxDuxjxUZGkwZNQYhatgrBy43PwhCUvxKffXA5XE9FADvRsq0se+wI3LbUqDkuhddq/jZGLoCUKLZPARudTB3Fq/hAiG8M1nCoXS7jXYFSAeCSb7F15iH6zfe2tWhgN73Hr4aCyZAScdXwHCVyTbeu3YxcuUpUi2mr/KrLll+9OGvZWoKvpGMZDOwCcB50vPeA1fYpFmMzhQV+Int1nKqkPgfVbzud2vaItqhEC+kUQkr5+3PEx9+z2X+cVf1chQQiNLgIwhs0n0CefPK+csWmlmafI0tj7v3BKl/uSU54qfzdJQBXgjzd8HgXyBlH1eEXR1bZ/A4Oq9qnPSVlK9GWyVpvGJ+cIxy7JAY/fSihU+n1a77K+LZ3QAXiqQvrgM3PBLG0X3JU2fQLMy2c2il3co3zfnQXH1/l3+rywcPITVlzkV2HCGLAUHNiw3xwZLQnc+RaLV/rM5JJkouSujd+DNtYEULE4xBfsoATuop5jUWiktUJTquNyEeysspKKN7bvrizBmqMukQklxUhSJlzSsuAwq3Jzr0CJSbD9GwdP0LyBcv7vq/DVdPIiAW5jB6fkqD/lgJCT4oTIDVekpGNkoSOZqB37kCKTYIFeVtE/x0P9BG6J+RrEBzumyTgU/PztRPeF+CFDuNXkmvnxzodfCYlBpHDn3F2xsJeh08vQvKvcS0EhPp3/6gBo3FJ3Cge+eB4atspvvzO6EhZGjpyuF6Gm7gNfI3axt38gA2Ua7SnKBc7sXQyTVqBkcZdUebTZe2Q79LQxyyPRG96TJfwhnzk5ooTdZzl8pW6I3FYw70BiySsrE1uhVU4zkUCghbFImpi7ZKK6gq1v/IfXFzB5z//eJqpydvTXw7eMlQdyGUlCPfbKbu96snLr4+/fvRI+JRwCQwi1cDWG5B+eG1aXH3+rKB5ivlzTNazr0KWPFVeK0QfUfDib/q8TeTKlRoKkJqbEXJ8eRjHGGOTQ6c4sG8pAqOxGDtmuG8IHuvJ2a+uegAdd/MIJeoYMFHuX8nrJm+yQnBXlMYtDSWZK7qFp/w60recm2+3IlV3D3IxwLBnYiTUKln40qe8Ny26X+MQerfXVSIXVsnU3BdH16cn/bB7WhJbn9XLShkzBdJv5bjh7X+tjwyRelCbrVeejtxAZmfwccu4FC2mG2CPHdzqMn1krw68ts+pkQTyfH8aEJUqLqeRwbYZjZcGft2rqF8NgAspLpOpBo9kzkOk8VW7QQJVClXShclOmnHkYG6jCSqWzNrm/qCS3tIgEZEmETTHDvWVaPzWmSB0QIedInT2F1Szlt6lHHgQcMQCzSogUe0o2tGp7EU04ee+BB48e97itCvnRviyO1RiX69YcPyEsT1mMXLX40OnvK1xSs91B+jjqthbr5Tm4PoFHimj2AdQxtq/uLQ3I+seuf+p/APyfe/GW4R8hnkteCXsr8SUzH6G2BodfahTka6hum3dK8eGJGbvn/6hGMxiH+JPkd3Xid1Lb51qCClUsYMz4SFEfgnKjaflt1uQFMUNo3AYZrbTTFzY1yAeBQO9ecGI5HdMHxgu/eF4klfh4MsFWd7xB/707knoJIDDlFNJwNg/nA0LFA3y9euWo0fvkgCbeXszKMfQVcNwVz/HWxiO1sC3kkzlrdBlMAC8/kqa8F/Ww5wvxxhJqrzQTjV2/Dh8SpeivCH2VD71lELZmzwQ27DzybgrDBUNzBJRykX01Qu+Tz2rK1Gc8pRqBG2Etw4W94YA6YIEqPtg05vs0kFiN84RJ11Sot71N4wviNr0SFOqxubhIo9/BVHocTyKY+ryoFdHmt1LC04Na0YHqXpE6vWo1gKkIQ+k4xbSz0TixWqyyCVnu5NXAfu7MPeo5DQOXU+MMTlmUidgIejJpgVOpxGKr7frZzTCP8of6LLrfWwRGO3DmJOvlgTgs7Dte+1PBds1GRpjZLoQ6bHyfQ1T9V+2KoBPQB2a3mT/Seyszfsw4p2o68snNxCoG+Bolo7bOry6PxniOqez6saOGxdUcKcAPAdsVdwISyXjnND/dCoEYsUTZZIFvMtHuBB/dlcTlr7vzGXED/5uICeONq30n2Lc8PQjJCuFk/b3wiXHIMCtGsmX4R/1i0JbJz5OoY4s6ZOWVOixPn58zJzaHe9Le6WIjkpwcbohfZTEIjKZ5zXma6a8aehAqQwQ3oNLnvwyNWX22F80Cm53Gf+hqdqzoK8LEWb8QP3Xkx/UdvTC5CLE33ELblY3M72DYye3Vex5Nw47wTIkHLr8/TeSYOlgPJO5FjDKAOZvx5KJtqPISyTO1iMYrjwXDwAUUfVSMum0PC9uWVW8y04PmHLlufK6mW7QoJj7pch40KGU1X6IFu/Y1OsJJeA9+ufnW1lJTWyc/FDAI3T+iuJhwZePC6wLjifGPfFC9ExdnuHh2oFk9RwEp3s0jYc0/WGCEHkUtVvsUSry9JpotuMb7Ls03j0kt8wd9+f6LAv2daI1i4VQU5njC6va24oSD29IOls4YC8PNX5HMexyXChJeI0Plk/89iL9mNmEpVm/3o9Iw/XewmSlb+Fg0SVOPiAXEvSK+e0VO71OSLf+KHz/PQNLBk1xpNIyEwcwTJoLbhwkQTU01LdwDx/VtQvClfV1+FBk5k0Vt2TvwIgAmY87D5ucD0y1eo1HAh7qgGG4XsiBDgql47tduw41yML4jGR6ui4fBmIQOmK2Hn14oZ/7daPD/vSBSP0eh4UYqHIeZo2kBF+S+dtVsu21wJKfxZzaUXO5z/uR+HoTc9E8easSPOiV+StH6FLxbC6gMmeXL9GbuhsG58AJaTLjJ1x16WdBccdL4QgjLwl2HRn5ClERr1jZLB3UZ+mfY1Baj+lhEj2VVSMiJipgjD7KI+8GH59xv2JxFB7GWUYrKG7atOAuVwksVUjOlcQLtODM6Ik6dzvyunlpDlJylxre9+/LxI73JGq+EBktawMajY351GqzB22nFkv6vtQH//KKx4BkMkwoEmLLYYevA2P7iTB50fpMgeyAg1WDUTssyWoK7o3tVy+mUIxvJ2H1NbZHkXkkjX/bmfdCG1jmK4xv5GTAmW/A1zETRCADe5IpZTSn9zyTw+EcWZxMpoJWK2W2qscgLhg0mv58Iwk2sspu3TIeOKzHJw1z8yhWK41MUaSbm2c3YW+Si2YEmF9RtPBGY+vRyjk0Bpc7WNiItXV4gKh0Ni7lgzz8QSLylzGnlGNm8lw28wfGGLrFXxxd0qZAnXHs2dtomMNyK4afTqWQB+8NsG3DK8COkNWSuu1eU8aNKU9N/YTCbBBg7OzfZvu3AylCTnrcxvyyBND5/8kfUkRMXy7zbuY5vzRBtdFlsm6HgoIxWxmKmYq5LdKEu3gAlw1rS33nzn70p1r5vh3NC0gRS06pZfgeACuKm1mOEA8mrZB6iUI7lJEuRHjKaW1okGZZ9xlir5IChPKfZcmTvmiU5TM1yDrZG50b/LlARMYiHShjnL6kOzdzMO/lqR/mTjrq2n944Pgxanb8NpzG2eGHeH7CPu8Zq/eY/t4apylsxtywsjPVmoWOjGvqqHhzrW65jX9jslWl4E3cEt+7OROk3wWz97/NWD8kE9w7VQsuOQxy65bW9u95/pJn4Liu8Zs7/Buo9inTE7LfI6JB09LFaz22/JGdcFN2ruipWiOaDxln+dFUCFRbOEfYhxxVnAtwCT62OXfNeeOYt7mWFg9xgnpCdteB0ZPcIxbk7FO8cWmVS2MF9P3cIZnQbCSCJ3Bwrf/B9xHcyprfS5MOLo86QTKbhetstHuUnPjuApFv6hW9yXOBtHandihgVvKZjK8rJ38b8QvxtfPoSaYbTUIUrFoh+7xlGLyRH3NsZ2ZZZmOi3LZV2MvVnIZ5MlYZ4/ftvfVu2OTKdQx2fW9Migk3dyoEOePm+DCCKttmdk9FMFqsOWEaIW/G/ejuvf+5wrjgBvm2M1DP5gJ4/WjJbfOHjOJnU2KIdIcNk5Z204sOrN6ewvelluGWcpuH+1Wc+CLDD96KS02aNeSV5pJGqBvY3BzG34rlI21Jtw8YDZC6iexliL0aP7/xOkq6iI/GpZ5iYI3WJRTcmnqf+jjtgqmWLln0fnbB+TPfE6sxZ+U6Rk/X4RTHvQMb3gDOS0YDqciNfkr6i+HmCyQZx4jZQFudGPC/7CPARvQp56dJOwzG37fB09IBNG8YGszX6+WNRLIrDh9ZlJp2e7dUSCD9vAOxyUxFIAjTda9UrRfH58vdqvYX9/SuHjauQYUknOxWImEHEBBYCoHb34bJWWiiuPRLftYXxgOGs37PmZ0gspNRiIpOEn87BHtC7lqCz5JdfYilVwrG7XzsgwxKdJ9JO9KlODlnLMX6If+SHf9Qsce6UIhE0bFDihiqSRh22IbiL/zClCj0xjXhpGDrL5cagCxWaELnZII/mgqA4PNYcO1FWT+dMDFRZeAWlgJYjmkmHhEKXDmiOE8Mssz3+Cj+JzKmWtLcbMOizQZwtW8qlwYYS6lbn1hzYI9gEJKqXGDwErJhhrbtqxUp33hcisGTwRY9SIzp/PlbtkWFo5wqLQu5N1NLF+S+ZIHHflzFfT3ASTjMxFiAKWLthl5VDKyzwJHuXAtS3Kkhiyhsf3e72ln7I1M55ClDUcSethqgKeXt4ZjPbRkvW65Aa+lvzCPZBiFp7iFO0sVL39ZLu2Cw/OQRW84iO/4xftSlWM4QD9z1vFiteqhY0JjPPSK330e7ria8oq8tMzJvwxhTnNVEqPut+LvfegJCi7PquS3rUTL/weL2pjA8kxJIXPanP/ednwBoJfRC8sKuUuGlZXdaOibxkyuwe6+SeUmnyjHYOjzWfSyKTZqfwfuvvoGUhx5+S4OyzvlZNWdcUEIZVmqWOSVV2SivA0DbWsYChJMCKuqMFy7xKZmiimlIZEFvcKesjiOgTDFJk2Cra1+n7iUHui07GjpjschBVMZclo+yvmQLl/oT+v9GrwTK635nZaWDhS7AxJHgrvVkKcpkVBE3ptZYyFaA/rEMSkmQVf9pCgNYdTmeCbHcUdcjWTtjLqcBAvzA4hfHjNA/ldr11LNXpxgpEX7ljxHAaJ/JXKlP/IyecWQntRI4i7IlIgyThYaPSHn2WGrqrz0ZqQYUQS6y0466DhCQh6b6982XCX+ZMmLowIYPWOaHHNt4t6gmZsSPMdEV4Xjj2qeKl3S3Z8J/Cef9k8iQ+jtTpRf0VXAv/CDi2KumWlUHKbyRzogDOcy6Ib/6LPeq1To9Tvgo6nARlk4Jf+I90/OPtZKC6L/l3olGFNoxkLs5bjJlpZpMav3rqBxhoPNldfU3SOKLLzxAcyubCqLVj7E9/zcXwj5ghiGLzKYb/1zymZCcbtfJwBXJarh9m42RNAIuinUOmHZ4rkq1xcHd+mHQrgU0/p82Bzz9z/IT47bBPHsUD4wz4sTOyjFHPGWLakH5c1/0kx+m66D2AY6Gi+SYfaAznoQyErrqEHulvNAIDtS5QM7IpC4JTBq3AerSUKqy5+Khv10I39OzFTJsSL9OfkxeAFBEkbwi9U40ikMJQ7hY2eG862qJ8oHDP2CRVkjo/AsKSgKJIMWA0u0z8gr90mGw32214/bI3rcGs+nGvTQ0X7vLxbE3R7OwwBKnUssISnQ4BKuovlmO3hle+eJ7FdeIWNOGkGOn0jgNDcvwhUXQYZT4YfELS4PATDzGWs9oJOejmiun7Pn/r1TzM77wMpNjA3au8zm0unImoNH0OkzW7O9S6bl32fRIcYp6U/jCPVPI+bH9IaV3ROB4DO1+nR1pMNR4ooD2QZv8fg/46PAjICog7hCPRg3GxAL0210NE6tWTIATNOJfMuD67EJUkOmS3wNhIw42mS4gcQ1a89p4frXhcV8Y1+AEgwVvRshAOxELqV1VJfJlzJ4VPz0BJqe0oE4xbBSpwgJW8Mvw6k1QhcEIAZ40ZrU1YUPDiQ3YOsYKrD+ogpRpV9+vrQy67ARjbxDl1nP1/t5+hhCLSbokRNSWbH8wCVvC688eLnPilMEkA9porzRAG3rq39Y5h2m63JZQGdknhuN5qXCNoAW131UL+volAO+rW9hEUxYqE5evhzZzk55n6L7Ke4mOK1mjkAJ4q4yRJRX7aqprGpj8Ghu3ox8/9cgx6ovAP3dx8a5eQEtPZiBp4m/6sPGBcGRRuo/AyasNCqjYrHmDz3Bmk5SK53oncuJlRedT6msVKUbDPYaidtpOOTYnBgGzXliXBphRc21qRl6EPJUmWJ9qYifT6sEqPeMisdI4hQrP3qQJ+wJV0wIhtLGYlMlwLs6iGnakv+kPLNlliBS8Hlqco+kXw8IKVuURs8GBgW7Uqt421+94DydwdEFG9ZbLtRnNp4A2utFojqNywgAvBnMlz6FLP8D/5W+7scGhB5wg7/E9kdHtgv6SiEbE0n0rvcs+VvKkKBm9F+McJ/vHvmWnI/YZF5XOSSUrocg9MaKil6SH+FzYckmtfbGzMt1aqbAsRqGDUqvcg3BWJcZQe1aueycLezZkB3aMU9WRzA8UpLk7yiZ5I0PaSBBIeUhDbsGwY5xz39C19VWAsob9eYM5hjOQiPYFSQP6J+HprSipEk2k2VJ1i1Gkt7eb/AqXnvPZ+e+KRZ6MHTPxm250mVpLdSjDlU1T6HsE/9UD+HenVRcS1ePgFmvCMLb1/Juo6WIohmlxtrZSvfuGysO2h3lHyVCs6B3P83U6rGDTTE78dwOv2wT9c8APStBZbCqQkF1VG9UmW2lBIZIcQ650Bel4gTdhLcs6UiufJnZROLTl5D9L6mLZyuC+G4N5XQTTc7g0PBwq/t1oRtJ4epy4ruHchoOXWHxhbtqiHcDxd68ZfrHt0oLQxLdyv1knoQesxupAkZAONwoN0aRkx+S36z9IHgvM1+ewXQ9XOMI5UK6ml107eTiLCCcvb4VfyQIOqyxD841/IPUSgBkhPgVkeCLGRvQf/uJ8yxNJod4chHy3hPoRIVtgjcViZzxIcp6nZjO4GWgIEC1BgCaN3AVnfHq/WGzTjk92umhojfGVt4JS4XSyiDgatA4wEk6jU4JE+o5QQaI2pS8fXeHvK0ms08PLwzRehmUBslcyQNwp4jGycib07ZX+/6Q0gja+ORepLYI7/Wc4qGrTiV7k9n7N2pXLmeZ/95nvxsrdu5YJ7VCQLbcsUxE23N3/y7mNvAc/zr7daqmGWuZcNQI4FNENyQXyOTrLR+N02nJ+7LpzR8Qcibw4atBao1jbkbOUNN8FLCk+pWgotoABc0L69veZKZ06s6e5LI29YFwt/7gSNXiPvyq44oTYoIrmGgUaC0y828wdwC9q/XYhtq17Rv3H24d0xOIPYvWXw41sGv+SlwNPxowEwg0rPFWZ/I6r3DUCONrTbt4x2mE8FhDDUPxBTszV5gNc4SAetwKRSXs2lwfTkJIuFD5HDYXuOxm0UbjbPoy+m1pm7GZBk3JkLWbU6aZBIFNx7T9My60fzhCfphYYsnd0JApuQ1Wa2CrBa2qyefiDjZkQfpbH4kObon7qy1O4KHOAwc/ds/pnzW4rAGWnu0U5ssoC1QfrXyI1M6tFss98X+XC21Vzia8YVH6ZJfWMxYAcMMfT7U5Tlb+DGOP/FVaKW90t3uMLzZM+fAZSHHhLr1LBCH9269Njq8fnzXBZM6wpPpByk6dsrKOwyax8qH9Qqe6qDkk6MoJmVLhVD4s9hYQn4vXfGNFmwqylOeryUiruh0vsJYhE5QMMhAQ00Bcxo2hAofQy6Y0sl/Ttna028r1uvHRNt0mtt1dED91FL/n8NEG4ruKY1VhcVZlr1pVsbuDD2Bd7sxwzX7FNxMzBlk9/E9j7YtSteWlnDVOLqfL7HNeDPl+y0zcbR7esWWE4CKGBp5hCSoAmi4z8uPwQ5RF4n8h2R1VvQGQbPoD+JFEbBNunwoR0KFGRYHrRmVneXud1VQ9zYo9lXNElYxCYy8/zUz/xvOnOlS3C4QINJLE+0oVhHGpXI0vw+zpI5GquswRz3qnbRBsBs17xhOPwC/SmrbMSgyCsqzxb493EyZXUGGsArvc3tCAyLg0tGK3G+Lr6XNOlW/+MnRZrkgIpuGbTrvuCNlhp1ZGJwvrjpV3x0YbEGflWjIJftT0ETQ0+2cdy85qUzFkLgaMlhQ1lxPfoY4QTASvQML4VnVHhJslV9UDoropZJf3o2dy8OAsJQq1DGR3GRGDnY4SJPeBTCMT8PMP9uyuLvscABZlg3MPo2hJSCpYEzkrQRfE0CkDonqPgpdUvgqXwalIW1o7UjXC3oqX82saZJCv3l//LT0zJBMdrox9MCHJ7WCcruqZM1lIlQha+QehD3spUeU4iGP4Qy5ZZ1wJWEA4knv2PCxXwloo1E4cV5sjwuLbqkbSO0iQ9UGtre8Lv8t4NH/dVx6WotsjEGUAB0kNP/OF1XBPfV8htiv7kX/YmCUif8yGEDpLrjS1UTJLzT+T2tc42YwIrkn73gpInPL8sYZczG+7LpdL5x2+Dsk+PyhOXMYgS3mP/njI+r5JeCD92azK3fm7/QuP2J3p62HZd9k+UWBbiFniP0vJKnb6/FyrrKkec+ZEa76nAaTsDLEUdBW9ZrVEbNty/dkmuTguZaHwW4DzNpJ6fT8xpnIAA/cK5gvOw+W2ufwnKwnvbwCRh60hfPoPopFUb9yv5+ZcWZ4GTJQhcbGrBSsSA72qYlkn3R/DC2M4q6Ya5ZrKjJuAaeCDG4BVlREm5TpD7QOi3izuHU8oit3SVI4QLwDs5sUgpF20oAX7bDM/NWraYYsVHQw19bgtYevGi7CuNh7hKm6f40qfsZTjg4LH9SF9kdzMSPEbICbPwGAWC5jc5hkMcrX/j/OZsgRra9r2U+5hJKn6gVvkccHs8jUifCbv/tcvN+vGhMSCEQQr1BgQ1/h2zQQ5MMdwCyxXBlmqFcxDQkiF25ZN8R4BFWhXb682JxLfs+J0QhAogZYLSW3Uyw6lfiR+jP6b+mTV7XczUP4YDCBRUEee2OF+5u3vtHZgnSLUCOxmzUPEDFR0vFDoFacWn1Fu1/apMYPgZ+N1R0Ef82Acu+kGqq0ywXL2cQGkj6ajhlbPtuatGMXSHR2vEghtWlq8gG5Uft1ujX82JNGuvQtetAnMO0O4G51eWQG7MXWA5B7wesmwr9gf/mSAHO+jvDHRqdYL19I/yed+gpvz9guZk9wl4NFTJRSgh4KkMuPaTMqENcFT2XksywBpGfYeWOVvwQ+POWZhTmnyoI/Nfey73e+mH4yHwRtTz4RdutYA01K23dxSEoZDX9kt6ZTjrhBwWlTBLGwuBs6IeIlAheQVISObjAxpZNBFVnhpoXaf+D2eG2CBwqUOkqpnsnUFl5KaBj3r53D8uKPNrJV1E7G864gGCQHqhZN1o7c80Xe1FX6QhqUYxjCt+azL8sE80AEyXa2/ijcNAQMUM4cznf9RvI6ajLX8Hnd9XGf6HVIkmUNMAZCYVjkSlUf3EMXYi9U639Lc80d7vEwYdH1NIhFR5YF2PBYw1lvWEYv2NLVzf5+xZUWxcoGn64ckNUkEHgfNGy0nHl5G+8Nqpz+ba3qMQob1hJfGU7IlGHJTw5Tv7JgyBADAEIty7r3LJuddz37s5jjkXJl9UqHEuePC+dozmyzt+uOlj00iZSKv0LSkL5fXjnaOQbg8KYCOlrcNirnvLsN0XKut2XdYUJHnF+7F36PZxe4p0+bmyDldHFk5jKywdcMeH9/2jYCpwkJ9Do6PCn5lxjchPoZNNNEUyHD0qPhlrvMlBF16EdNxaK6Fj4rr2/SIQlRrKu2k3lGv6RRRMHg0E62S+raFXglzE51NF2kxL2q9g3Whtl7gPFcWAu+kh8qLk/aeUe/ZfDd+92lJTzncoMXfyZSnRSjmBwiUbAnvst+4OuwhxMSv8UkPg33AAEXR/704TAbat0dxPMkzVdcUmLDL1HR9pzXq1tbTP71HyEZGRWdTpsjdE0kJes2LB1UHJQbKf3R8ZZBMr8yRavnA335ktPyqFBZXL4DJz5pJn7ZEopRdtvwovyDXNXPuc1v6OKMnkFWMZfko6wPS6M7HG6bK8Fhwq+69ao78hy2LTGl9irJJcUl/lLUuFvvmsyL4D60/TDCh6z6CaQCqrOq+QSYGrp3Z7V5Ulrj15d1wc2+8ZL91D/EvFnUDGKhkjRXPqoAJ5jG1vL6NTR7zG7Bz5jpHmIk5aDD0nOhmeNf6IBUexZ/lZU5nAPqxcSoX62fFm8b2DUzpXa2oZscljxkQxHo4mGpA7/xFYzK89nrGiZWcbQTnycpoSYbGLNaNZxlFv8CnQLzkQJt+GzumG462ZJniuRbAcJtkqNPkYp1ouWbkBT5Pkh2khJKe+lx7TtdqsbgB1xm01gPGFFCA69A0dikojt8D86qZpSzPjLyE4Kbg4IxvvKiVlBS2W5fCJxGp94d2j7TBf4u6KaCbAFOw7Gz5s1SgRuDjWKY/EstOvaDvnVz8Og/VdqFbAeERsAKzCsA2/74uRdfC9HiZJs1OO1ssnOvNG50ZqBFglYcxuX6HrIOMHb6kmW3hgQZh7esxXybjjbOrvrr0t172hSp35y1bbWEEmDak/tpnsfKQD5T8S8sxkEhc+nu6ofVYXLgx3UlGyDitMAlTirivXfa3yf8O4wv3uK9OimXt1vqJggEjRA0pUEEIbB0XlAlI+oYtDiNFfLxVAtBzrtqlt1o7k7M2SxJxZvG+Wr3eGXMzNAbq/JISwbPsV0pyyCNeeMhkKiY0WK7eAhzolmHPh1SOSHaZR/guq7h/lgiY59iqHx8GluK3abgtDfwcWqZsMgMOw7WcJk18wVs9vh+l8k2clp3UQf/FByQOp6uEpTTcwfkMCoWC2J/CnE+j/5+/FRIV/7CTwRWco+nD9guWiXrq6r6GSwKlNPnKzIRmMeeG1SNgx8boQE05XpjbT4VoNwjJuNom5ucR9ZJNBU96S1zGud/4atpnbsWlC6/Raiwfr7jYVgFYI9oCPJqiomVTjdiftyuluyrNeGzSPJatRXi9kGrbjH5P0kIbbB4vt5UlijE+aqJo9zZyt26BbOOP1fUlR7nSLV2zoBsolFqE030PlXKTBtE6ak8vHRdZpkeIt1EqCYQ7tb33V0OI5VEP1msLyV/42ZLHDpa6ADGMqQTm0FT358sPZIv6NeKoPzZ3MmHKfbWtQVag2YPR7wDCe4VCxo2zsjsAnu9tI7w3xlle5JscEHyMlimKtcHTul1vOo+lGxUFYVxpk8rNfaO6UYz0g7Pf6/L4dCReLu4JKyRRKbxrUCynixr1x/1b4LquxIHv4hTcwvWd0hjOYOtYSBuld4mTlmxSecswIbsFPiuhFao38+8OOL5CCwSp9SuRdhUNyX3kXWHxK7ViPRZiPjgwa3n11eIZa/MQfB4SA7+Rkf+Mcss9tkxNRg8conXkzKWiGz7Eb5Vq5vobYEwKg5LP/G0xpJAHBsZPuTyMEUII2Xvd5FxrxORV5zSPxdaaFNkp6H66SXyQ9iSZIxBN/mWFZFR1uItydVYEHAp4rvO74EeUMEFG/8Y9GG8rPKwqgHFGAdN1gv4LROxQ1pv1gnGm3/vMgepBqFe3gCK51u5+SvQQchYoW5J2Ev7aruz/iWXIiCMHILOa1jGz7uzjHe8zjg2mybGuR3t42FrA47Gky/E0KfpicWDhiietrnidXq7tFYnDChPPGIZ6kDgVo8i34mLlbDG3HWGv3i/R/TvdrdNaNrakli+110RfzonccVXjnClA2I+Init4ikOLz16vigR8yr89s6ljkyskHhemuhgulCXGyhlMvf31c668B5HA4Qw0OcyYPjLgeQxZPBWXz8V/lMHHNfJkl2TlF2zLYuG0drrEQHpsTIzg6RQAFrIWXrlSiJBTG6pd2ulEBgo3AZ+Ta5wddKyMavBTpiYyZbajXyH8iTcgifCVr4ihY5Olz4lkLozjflcgpiQWOOY+adeFq3J15DdT/SKb6ZEB15ksrXKgUC0ofwDyLV+cI1GY6FirKl7F31VLT+ZtAKnRt+KLXKdL6a7W5/OiMyN6J+bBgMc9hSTiTO3wRQzsCFdlWT1RaGiF5fl38dtVElUPOrRsh6ygupYcHiVDsuIfeDT1MZPgHMOnUL9piIPvwFXH+PgGpfEqDpPJwNW6zXGVYzxlEkzrpPuT3we7xWyAvLinNTL+eUROufmEUYO4WGD3PYziimIN+FXf/vUZy8qi2vMeYHXft6jd+N4U1T2RV/rYQM9p6sOJIGjqJzT58j7FsWvgC2R63zv+wFzn+Fo6Xvn/+Rkq5r+FVsZvw0PXWl1IEWfyjIkqhLcv65r3vYMtgqnzXih3ki24BVQ9Yb8CRQVLLGPRuQKH0FlzYVFh7pwO6gx0npHtai1x807+Y2tXHPHdzz5TpXOFvUifUwTUovpYQifRpjbFW0JUaQkqj3CRx2gS9iR3IRJqt4f39KMRd/lrYOGDgYqcQ/8XCEbFFprDDUkgdyhBVK7dj3hwpPL+gr6EX5HAxYkKSfIgCGbC0rQTyTRKj0BYBm0g0FQ/B/erQiPjW16A4NwNcdLnLtu7p9AnjXUhtRnw74OJffupQcscQSxChERujeLgMbHnYlAWCmlIRPilsyRDudSrB3EWfE4QOP/31+38gu+z1+o2un2W4I5u7dkG7arKpABFMuSpEjRKxI1OZxJPGkiaHhxjX14c9jThdTJ5bMYlRW21h9Z5x6gAUA379709ZM9GZw8QWO6cjfcLxwcK0Av/V1JR/GzGeq6yZ7oRFVBPMYWk+5DUN1J/moBjE3t2uasi4FQDrP1uZ95t3WawM1by266CVXP1t+D75MBUkbAK3vuskSz+KWvurD+5nCJm+4qTig0sVrcSie+lnhsVg5dQCSTCSLsiT80iA3N6zDmuKXUTtjYx/XzRlcripL1zkYHCi+DdLbURACuzR68zOY7Z/MQFzZEAKDVUxqQJZ0/0NeeIAjsdXh68BBsv+1qsChtA7SdspboUD9RXRWB+G8Bww1FfOtYhp+/4wZQ8FyDYxzmeqRVje9PU5wOsImUv7icz0p1l+qJoUL3BmQ3NOzkUc3f9STBwvhuOD41R+091H5sD2thVqz14DXTQX/7S0m1Dljil2GJ01JS+HbtURTZNhpfglKfvex/V/0xicwrw8+su7Ri3dH8gz48cohmdX+6gGZAeo0ITD4/p1qOnsWlvZvChs5yFRi7d3XTVaNFeockJuiuEu8+Nc4NDJbS2wip33kV916KLZyhgOHi4HNUMzQNx/YqD/ISMF1WyldafAwa3WswFvt5cAqIAvN8hQHSEm5htvdpRb29J/ZpEkZEZ/icySn6OczwYpDgPGNJnGn3NlexB83W3qAJ538ARdnnbJytksOKfc3dEMhqhHKaIKQT3G6Dfxw4jrzsE0ROCbY/W+HMh5ybzn6FtrDAYcbEew9MeBAOtwPlGcQZmBPZtTuRawokDq+YwOfL4rocMQxEVkDUDoVJKZHt7/nzqel/ICUmY3vsKwZPbbMPInLsrUxIOSub2JtAIZPHTn7h9PypoNaOEcWNbCJyAmREtIvQDJ9lKNDFPi0nCful5eZoFSkxzvyepFF5CrImcJOo4fHswCZUDaMVZcsBzFPoTM1es5qySaQutfzhlAux9Ny7ZzNP9k0CyenL/oR2Dmlt5K74jbAi30rR35Qz/GfloFdTDswbn4+ROq689z9LfXudnTHqtqfeqzPqOJH4ZpzHYDg9uIv0yu7jHyG6sYYKL2dwPQBS3fpKBiyve2EzktHzXG1e+xoHuAPZ3LstLHyAoSqE0i0OoL5CBvurAPSR6eI+aau9JcAJ/a9/Pyfx3ZV0B/ymj/+GkJHklirW8XQqjaPihKEgpTybycXViQKq87rncYlear910AdBUHJPHdWxKT9c3iTQbtcO0Dvgy4f5uACnlF8tkG438HrqI9btJq11esRvq7rj1tZVJwchf5GGzExstddCXbEYxXB9KzcgikePtHWyjcV0qJ2YhMXaL7R/VdWD/k/gYQPP6uAbAC2y+dbZSaRQA6ndnv7KctUZw0Z+YKglndnZ3ovEoJQHEOE0nKfUAMrIIR5R49UuXv+LKPTLfsJOfwwDgW+VJwU5k/BH+IQyl6jLsp2FdKCGC+1PyVWUh3XN3VtICH3X9bKw6B1WWKM+dKcVxzeXyWQpMi7LSU5YtSmQWkZzNfVs3YKygnjF8mLZ8mFFE6yPMe4qyvLhrjyG8YydeF6MFZAXUv37/VlN0L9oqal22VAdh2MkQc0M9STXxQqcuxmVix6evmyzOm9Zzm9TAig6y4f+jn4m5t4yZs7RxoPIuIQZcIdzXXcBoKds2EVEER02X5GlN5/qHy1LGCu8v3p9FSTyBy6/QT/BmrMjocjAauqZzal0p0SkVXuZ9+YJ7Ak8wXHZtl33FK/A253p92oOkvpoCoGQkK3BpxJx9KPfnAbiNCtdi71l6U6UrxtDxikF0EqbS6lYZ4oCw/5SoH4kCvlhNC95fN248B0afjLoKiXOcl2tsX+Y8vdXDLOj7W7XKAYLCg+1rvb2Si74gDh0XsE/3Ji3mHK/RY493Q7XX9UmZHdwnQDYKAFi5sN3uE9zsuPMQolnBqk65ldXihec3+f7RgvpCyQQj3THdJbYbDJYTpkeAgh2cVwHZTUGf2UzC3yTmLMIwQglAWcmelXftyiUmnT3GQxxKraJzEnh4pGT3T1JcKXNH11H6G8A96BPg/ydgSSWLV7T2sVAKqTszvln65O1NLeD+bta6jaPjk8IKnnxouOkyIG9WY82Eh+Er1odrfY7XiUUt9UIGoYbf6U2b0aH+2ylpLn0jqKz5bp+ZBRf3CWaveeG+sBWZesPo6+iW0x81e3eOuAcSqa8T7lo7nMmP4JmILtj4abjm+0b2V6P8FE4FW2tkn+tJDcbLzAq1MnBA91mMRA92+i9QL9G4c+t4FpYPPXCbRgT+2HtCGgQlosx3u/OR//ZI2aiKrV2McEdNTdH/IvybSH8OW5EphJKrzSJ/aQndilionOOXzG6DlWNxS0uRL22X/W+MpsdRIS2kBUv+nl8N0jj43Nl8/Q+QVkgdyx0iEkH2m3MUH7eZCCcCE5ad03al87OqyBk5u3XdMQu57DZt9MWvDTWMLa9j2A8kJh5xyMpcLaTG/7ITM475ToGhpBPkTmTcz0nP9PmCg1uwCORY1vvnawNkHmZnBNi2rJocaJE2KZhgffbEVAXQHDDbdnMm6ZeE7+tdS5Cpj8UVo3lKEGLxG+J+WCHsyvs51y9PQ7t5tzu4XviybYCNRJ9hJg/NUb7Lr2o+ZCHgtvezbjr1QJqU8d75mlFiZS6L7MvD+OYpOF4vGpbaczngn/YARH7CFr0zZG7Bqd1OU890zyXkdo38c44LFpGpZ1C2gUDVBK7IvljrRO7gwT7UgSzJf9oNRRH1mrrY2ocamsjBycQvIoQWokcb12ORQSkp5AwieCYYt8EmsRzSF0hRsa+TxocBYiY8u4aOPCWapy4bFFmqxMF9QwC78KvYYd2K9bE/UcvB7ISmve49/yMJaUpuZrY1/pL3zpf4t51grcpLoPYk2U5pbdiU1dgKCUFKzNC5RVbt8N2SXgA55N98LeUChfLMj655tc5gsGhLb+nHP8o7BwRm+hbea+o9i5IYJTUr4ISUCGvc6P1bvW65TWCU9Zy6dYNJQt4ZoZj4XU3zoctd6PZZKbLks3V5OeS2HVB74zMscoqi0xgfsqNqEOwu9mrM+mu6sMv99uq63VL5dlctZ2xYuW6rjW7cMWk5vH99PPCe24u5LTM5ct+87nvBQ5tF0mEtSnZV6Mpp4zij9CyP2dDIdcuEJLzK+f4b0d4RsL2sUHZ4U62SKLYolhEuoIkG4JLHm83jj5aJAsnEGlEK2ttQrsWKB9Qb8HfpJ/yUVeGrYPV9uDKz3UmXlwY3UcXRl8jMjsIbM1QWuBueBlXaO+cKFIf6hBmcI0qmuhFeFR8ME92/KIauv5PCpaFgGthjsZXUkVN9MkfDffyWy37BCsZQp3kIVVZSR7wrPId/q1a8g8jOJr7mN58lQv7lxDtredAzX7rXLjfx4hS7gDcdqnzT8cK0C9kdrwcnDmO3xYEZeg5bM0ve5BBuNwqeBgAOFpPEqWQOby6nuu+Z26xOfI67/9UHk8Xlp15La8BXY5NWq0Y2LoLuFsAyoGxSROnU4xCH+3hyHEwJR9GAWbecWA7gHV5Jq5yO+4miqgr46x41t+NAKl3DoP13BjcX8Mj/YQmmE1E3708tdN5q2E3LlYQXlaZnL69UQXHOIgEnbgpPiXoqUfNawknEY2EKjmX7ohwWv6fOObMHq8Ze5w/g2F2gh1G8Hu51iexo/9gJBi+rP3HUH7pUmCkfwkGVpGFCUx524NkjF/he9cKNBoMb1HCsvzLVAhB/V2tSHzEn+Rada1WPhA5U69LPSLG8m26xK+Nn8X8qlzx5HSrpb2wPxAhfX1ogkOL648k44qoCMN8YBiE7hYPbK6O1i/hamstegQiKNWCKBZUaQrldT7NETgClQo3rrA7Ah0JDGspt1ZLKHWPZ3oDiNWYV/uNqUFWJW898nWIwUF7y0NdNFmjSeI5/VsiQ6+KONMoatAtZDRAv0m53mx5ov/PsL45l89wZMGf+f1Zu2fM7amLbOx1I13+iA5g4ra9TodF0mVhSFUzSMpKMUkObRih8a9e9SzCl6jQ1wKM7Gq1SIqRB4rWL4cJVuMZekKiXKH8zuAOG2ExkNo1G5c8Bk/lgOAswRcL+EhO7n6nFNtYaD8sOQoczKE61lcWNH4bDDGpK5GodWwHu6vu1cYRqAaYdlPPVjlFyLBS1/zSOGf9NEXy4smB7Wot4FQswF/tctUAINRSTSUS/ErWBOnCb0F2rdGJbhxWxC27tIkB/6BYeeV1onKJxRCXiv3fdxkVuKjnwWpQPmolN9ruwWzhKzjF315Ije1IQBPhS3i/3fXjgZ+H7+p6XpvyIxzcHMvZ6pg/6ndmmDNQVYsybn1ayccqSEkyGTCVZgIqGqvIZmhltkh15Snxv1ruy10/RNiXJIuJqllZ2FTQw46m8jLtmZlPVNVvQx/zoUAe1sWM1dOcHYdqru836+i4vCTi8ByFd94gERDNrP3tR4I+jCrQEbXtVjavi3vIY8sMAKg9iFJKWUPzMmE/3DUAvwB+gUL/+xojJwqpmgJP/Fpd6vq8XQflXcuhjQyctNJ+TFmncoqfwAtMAhY4tNfaP28TC6jpDo/pFmtfctPJK332BDnX+t6JZSHdCEstiwcQnGXyxfu8FL/P03xIeIGcZpQOBH9LQlly4X0OsfK66eK6wvvmTB8yiLWEgZxLoRpnqoUGWh9nDdy03BHEsP055oIkwzrrsKuC2sm9HzMDgM7jMEfeGjV+cMI2qs4s3KdZb1KAGvACVPjwxJuRrCBFcTy37IWMPPC3/zXPLxd7Rc3Or4ddQPNYtg0LN47+cI4nMw57QbELu/kgdOqrOcU0NCUMxGtyN8xCqir6MzejpHWGLOtOz/d29wMFO85yslTDCo3iAQ5/SSOyHgOZArT6p5UzuckrR9xXYh+YrMSvnBhP8o/VGSbReSci7Lg0ikBI/B1FKpHMwncewCpy5I1h80KL6l1QB1//fvKJGKKAi8le2LrfrtGj0QbQdXhH+98sF8sXDP7SuyREs/GdmIa2ZlbXIHpFpGCtcQ3dVhb8gjNUN4S7L9PUjR5Fr33Dy5lopY4aK9Y64YGNTie1Iq01dJAkphOwbNREivDtmA/DFI+YG4sz6+tA+T7M2Yj3ZoT/pR9FqRgIS3LanQXHxiwtPcI6w77Y4Msj3wbUejwnwiOL7DjbQz35B3k7aMS0vTLIjjfbZY84uBAYm0uJH+2+IU0ktbigA8dbVS6yNpX2j+UhTaSiZXfqhE3PbIJG6EOdMEfnEhT9YEGWHUwqGlndda4mRCdof4u+n3UqElz7S1qdRTDvLb8xfhX72XF+eLlVVQzKlKkB++vGgP5Fh2hfdlvaasu4M2udeziPL+MjrisHAOFHRHBhC6eD//ouc2wbatGNS7QM44zG65Zbbc7HMsJ8FSmKsm0v7EXHb9sSTJoPHfRZTMZg1XgrU41IlaXYInhwrjz3M3riP3pPpfJcTImp2TH+rsNv1woRQgaCJB4vm/rlK8VD5qo4QEDCUmqip/bUrChIW2v1vKyuGYDdqtta31nb3ShoFaGajFNVjG4QXqvwgBDsqCT/UcDLGebYTmOtppxtFh1lOGDG7QUweOQEjtFHulRw+GTyM0fU4QwW/Z65/sPpGhjjj/EdFmbjmWDydfamOUHq2xpJFuf7wBThOYkAN35Vaw3wlJLa3q+TeLX9cG28XsarXBjsFXZD2jkF+keVRcYE/AG9oq5DnEFqg5iQvS6s9eXSNy5UWIW2FPZ5vIP2ke1YDxErqOVg1TYvFqXVDvKOEAdffvYT/JbNN86b9a7pk9rB+Ye7EprrCjcN4yDMSwTdwYpDBrtja9S483KaPnJn3lKhRucRCrkNgBk1LmG2h3f3CZHXWDcPjAsSZ1YNlf1uVGPthH+4yojMtckAioXa1Ib9af96rLyTtJ/1y7wzWFLb0LLGg4OKXwz3n0OGwe+R+kSndL8iGDhnE1odZK8mkPtQO3cOjTY9RkYnx4gwpiClxVCe6jp23cks4mYw0qeTaHPTp8wubyMXG+jwB1/yyD8aO5wpPWnTN2PAauqbp6UDexOzac9vopzZ2SwngV6qiVqBth+4mbBICTg4s1vgtebPKMLsLHcKgYdVqPQsgL3PvmexpvoJDfsADfuX4LRdzXPD9vNRxpq5o458wfPXvZfTcaX4Gdja2PGuPEDlZ9RFE0wzvHEwqh5N1psse1LU4ZKsRJxwfjXC1xVwLavmZ6PU8bR+b1q2IN126cCLHxWWB76EVO7kApIRE5+wj1EOvJxPCcPp9wSqkYT27xpyzh2S93+BCsDB5dJhtWomWQvmiiw+oYR9GyjrVX3ypZ88R7Si3B/CW47+POIJwUvaGx4wqzGvOsyGzA9WYwkUANUCwyFBAzKspjtsJBdfd8dVXKupy0qQ5+BJNTd6nRphtNGjX7jkYl5J5Jhqd7T79djquc1vZnzFp4IWjYaSt0mSYwfEOXj++iJtTc80LXAvxWm2NioPQCkl4Q1n4CrjcI6y0D8YqLB3tFzYVZW7rehLR0AN1zN8Vnic0MJaPN5quUMYnnHjtwm6N29J/z3rJVzAR/MLa2gQ7bsLoJCLXBYUOI/tFcG7qHXb0baJErbK0GabjB9JGZaMe9E8hpzF3e35XbdxG7M4HbTc/R1ztSnFaLntAs+1LKtmtV41yQAp7wCmdy9dGTiwKvmny3VABcUgwF8pB8DgP8K6F1RCpTt8zHJWuz4bhrUjyZXn/C1yFLN10Sa/ufpji8sWci7HZNGTGKDSwNZRU4xeYLBWtjmMRwqciz/uhjN1+/j5e/5WVu0PWptNvwzWXT00EOp9VtQF80L2sG2SXV0bI3A+yLsuYQPDup6/CKyeg3Er47SskyGOdPiWO/i5mJCryX6oxbMi/KvjM15RIoeUjeAceYW+1m4zYHe/nWJSNjXPcxx41FQvbdUziMQ7/KQlaEipH1h/C/T4VmC6KAcBlkjfzJ2fgVOd5dnFCQtemPJzQA3QzT4wrGVNquXUO1nRPnuICHcRdtcDQOaTR6knKy+o1pzhL1rKRm/pHEmaXrcyfLcg8WVxJW3OOCa9785WKnynjfbUaBHtyM0wYUunEMNwUubm1Wk8o7E2BITQLCy9Jyxs+cLe1AtAp/wwx534fhzuzy5qUEcIX09GTRk6XWQZHwdyS2p3IlNFd+jMriIdJvESGJQeLr0Bt5td48f5nfJmPTm5jiHI8GE9ivcb7vh0CW1+9jpa3cgExbpADtpwPI5FfZRFPyN2d8rl8ERj+IFCUrQRUmedN7ntd8qaBLqDvjp0GpkVYl4Ehnpd/WslTjiFSaY1pGlQxekpkMAYM9QMxPA3Jsv1+qx7wCPoxi1Fnf7oUZ16viOqDmQXhoaq7EsaWV/vp6v9AdxpE20rvJKVqCVoOdXPmef1lUuylDPpWvFVxDPmciKWkEPjol46mVGcIIPJZEqJO0We8yTMQi3/aibzhioT+V56uiLAmyyrYdsdA5C0cYXjNjWrryQ7EieTBs0at06c1Ua4kLkXhcsvkAAP0HicOoGfz7xXK3wAOq/lDsxegs7mzNX4P5SZDQ55f3FhllPA1ipMoc79yu+Va+iA/V7u4pO0k7Oxc37k9sgXSfspVdJFOyvp/gA45End1BAp6ZafkB/VZ6dJA7Fj5oxKPLySGp1FMVovuLHTpg+vJetXYqzBow0CFh4uNLdxA8jSJUnBQC7au/gtECbJEOVEDnNKTf5mfKHd/5SJFsxn8LZUEnTrlDNrZ++61hxT8a8TIqm7TvVgtjBw0hszLF9B/xo4ag5aJhGfNbp5B///RhEKcpZ1LHAsEgQQqZYbW4goy9ShHr41CcV6xmHL40lQmSATzLt1bFIrLX/yVnP4T/jwE6Q1cqyTFd0zDxx5jzIEBLUlSQUHSJgZHhMNDQG0m3nxEDdGAkbDv685yADy3NbF3kq8WrE/qGMWUhW0vF/FtP3Cdwf8H6zgSvQEUtFq0BFJeFo7D+WVshOxyLW2dmmajQQr4oFr/5tMWLdMs48yYWDL/RBogfMA6H7bAJAo62WzRWM/CC/DM2N/Rn9O2ANZJqwIYkXSzO3qlurf/IXa8JKAaKdTKZKdUVreSAg2odjTFjgVS7PM63TRCaNZYbjn7T30hfEmhh1Eip//TPePs3rxOq/+1U+mazl7xNdwymmUwhA0Kkb4HX9xGBzJVcfMaJPVNj5CR+VDmFoP9XVzdhwiU9VQH7En3o1S9uYwDJkbp+2TRxmry75YyG2zv6NgmTUoflIPM4uBB+80S+kjdSRS0gSJMwreVF++FCx1p461moPVoPbVuXY9UbbRtfDkcy4djRGmzRtYTvHkhWsgq7b06hzb/caWunt863Vj7TTJoAuGm3DlQ/PwoW0MJU9Gtl6RtlNj7qKyE0uC42kwsp38xL/hlepJv+gCFyoSqXRaFPFD9OocIqJ6hT1f/89vpFxP4Vv3g028crT0jJ3jyzE62dzlICrX7pK9Lm3t3Osn05U7J4lwYDeIwqFwstWk+AoImi9TkaHTJ2ayJSR0SmtsP0y4Ili4Nu5wuxBkb4n7xXkB/OGDaKFtiyCng7aM4B8/pqW16MMBTMrGTpKGvaf2o5hg7OwNYR2Qyi+6k+8ZEkXN49j3X7Txx64icN/TVhP//LxTVcqmOiKbW1tfDLetSWosy37IITl8F3/S0346Hj3QxJd5oH/PVAD7vsQNtgZidwRHLDBkQyO+ZeWUCEMFy8mm1i2sciFVxvRnFb53ibniGiwINrLLNZ3hEUnaokYltPEsAnmXIr1hTSz1TptxL7CTMWqr3A/HMrFL1dBWxHlN91oCStcMqn17QrVPDQT66x/+mx0L+MK9D9mAxRmQGTmP6kEG3Ta14fWXEZ1/qbbX0bnSBL8f8KHGgxbESWhgSVrbP62zDQVsLj2V6LzwLgZuJGHhQ35SbKkTHhlii49exG5Kos/XVuymGRv0P4Cumv3aYAYBSP/DKDpieMoE+ozXLeKKXFVTJqXq4onWwBKPqVWNgU7nSY/CUsTrTEYYCTD8MXrQ69gQlnyrm8323RUlnu0epuYFIflKMzD4PR+8fEGqVRHmkAOywiuV8kVNre5H2zoxae3xRATfApd1HlVJ+FT+t6yJlHP5N9Bvx95LCDM3DSR30EFgOApe8y/scasDL0qTnGTMEdesxwMcu4iatYVIJyxtlxxFRhEwgNNP2COmCMu8FTH2Cn0PbcKJHxxN6UU2DOgv0edWnEr/0dF7MamcDj+1e8sXAutMWVznHi2gTFLNEopk+rPG/4YuD88BsjdrL0FYf1D0dNsOV5P3WoCBLVh5k89mFsjRMOej/cBTXxJAkYD/5MmFYz1Ch5Ev1DMqnvpAH0p6Eu6WrwuaLjQQHrY8MwaJTRs7AkAZP13xFc7mlMYNfK2JCye8xAtUcFuLSFTspaFETzuAtx3US/2NFGoXzc8EmbhSHnMjeJUtko7GM6AT7W85ykO0UQ7C6Gwbc9JEouCqJGBoG0z7EnssczEje9ujz9j54QX9vj/QZ3WdcNRUe4H30/xh3C8vw3j8j5bckeMJGRFQmuXgQrutpMMt+/Y4GQSy3cgIRV5vVjAhFt7AuoaKAE7dsaoK0jrAVmW87tkYdagdD5hYsm9WqxTQTTYcNYJwjt4f+2c3ZVvuF70kTVksB/EA2ob5o3ioPTPsbGGXSnDWJuKlO9muBf2owlit7yXXeh6yRs/KKHyh0MYZZ0Mx8DfXERiuipwfg5CXbmWF7gSYwM2NJKSQnb4pQLwTn1dsKxEuyK0Vx2XDVXWmDyXRrRSF6MmKdFwlSVkMggC0pjHud2F8mcC/c81JMxfXPRCMJlLZC5Eayg93iicd2JXrjML3oLTROYYc0rSpLbKtHWPNFG7lvARmoZ/seeJ0cD0gTRQSsYAE7K0Cb/4W2T7N+4CiGIEbnIYXcZUNXHEG1TaPain5DCx85MAN85ES4uKHGXcGX0y5dI435J745Cm+0KsujPjYdd3QLCcrxY1biNjkO2nQC/ZZJNcvguauZ8YueaZp0ReZy2IoqW9e0j9EgIoLIcqNxezi5mp7dl1Lidh6VjVe3maH1BqQ/QecVZmPtu3Pb5DIsrKhIDoYsgHe0Yw7Yaq/mGrTwa7K164g7CKKCb05qjjfdI3/muDUJ4dqxriUXoe73gdIRZ4qttc/t76IcgrmSJX8kNQCqGckPEW9pb0Luo2rTsvbjzGvF/KpMGs3vWm7A3FKiQeodXvMCfMZko1AM4F3IuHHmFnFTfCaLRuLsLaMNUWZGyfm4suUOBiyY/5ac24jEEru27xlJbkUhNoejKoLv6eCPzCSdXKZ+IJU31qcmMU76SzDiqWlsClp7zJH0AKl8WDg8h+keKkGYnhbGlELdLBfRo/dG1hz/gFJb5dWoONq1qVcHNiyRVgcuarg1pDxkiEfXLkOPerF0zEvittb4cifTnGeDxjmoZQca2hMQ7LL2rSty66uSHEjcB5WhEsGQ0qis+TPpkrQKn/Fl/+f5+NGZpBBvcIWX8Uh0StcDBsAm/Uy23jE7sg4Bb1e1vJdKIyB+/Efw18uthTcRtksS6Qh+ZXS442KCs3K5uKyVULZFYDdi0vpMBNSVLPp0W2+7nnEvTpihhZuszodYA+86JiOFfVa0rvS8EWLFMj2DMi2dyYsb0vhKWqD7k0TPYFmLhklvejNck2zP2bg5sLcdgP5h6s07HAF9H63uHLU0zRBYkINujEmCwjFP5DAe3DSAEEsSbe1iOzH99EulO61HWAZucnU9pODqRObXmFgljXSEvRLSvRRZ1pClH5iOLohOO/gfYrMT2IwzWFzRLfpAQozotBIyxvjQZWkYF4O4/N2J/UQA0T14k85IijmOeynYM/zBhgalgOQ5xum9SWOB5XpyiJpoJQM6NLJ/0jTkHktRvUZtMguVKQO1FL7vRdMR+mPhxYc5fwfgnJzSIXsnQIY6P783KGCpkk77+mMNIrEfMO6/Qj0M79G0iNBNmLk2bp9e2HeFXyhN9nThrJsOkkUxSjPOe+G1O+xH6G4h5frZVuntGrxPWKQOvARxuVErQd1gbGW5REf+9y6SYUp4JBBB22qeK1UP7DPVTsqEX7lyTihKjQfmzA4RTUdgWw72ihm482pBqr5c4qZg1rS1A7MiF7zbZ7r/qszTDMLaBCt/Jv6uLLHafIFQoNSvfOeqtR9PuSMAQniUxpTSf5Tma2fr1itU8u84zb5dEmiuYQ3oKlJQTUg3DOMENQC3UIF+n+cNUu7UV3yuFH38pH3vOJroueBUw8oN8PBLiGDKS+GDwl2pDd0t0ZPDWrzbNR+78bQ5q0NcYt6WDJ7cGRx06GKuDl/gmpPJstvdDzwx0NtKG+xGT3mUiHbLo77WRy3Ph2i4C+cWJQdWA5ePcpwzp/gqtbd/HOjBg09R6Dsj+ouAx9jVTSq5gvTsM7OJdMbu6beIIAaccWO/mIQLj2qYc1R54CniFk0KVevAwsC7p/dMCQwS1lEP6pPR3Aw5bxkRzz4I0dz1iVsT8CiRobe7G9A7HJ5HpkFxm0xpRU3sunj6F5qlQg9nhKilqGTtiI4yx1ZTsTB3W3DFAX2bP0zNMj29dGcDAyjRqs6p4KPgKV1gBwfRkAdA683kTc1efGUo1HIKptcCLvS9yDHLQhSrzgbTMiJU7l1n11LebyPCsKFGJsWMFxaGvRD/kF/70PjqxR13qQiLwaLHA+qctF3gBXRt0KcHO7niqhPxwMUFSRawTjJOI9Axl3gPcW1xFy1iy3tMz3xZknET+IADo8Cz9y+Xpbywo28gC1MUN8ph57uBCarbJCGn4Px93tMso7DLZ/HVZmE19GkSEirrSqk3cj/3+8vmMaYXjUcR15mkr8dOgPsKTyWaqnQGzXKafV3gmFTfCNx8P2YtJiWiV0EXzDXGmpKsZB5iQYSNEkD0StN0SanZlvh3nIHomq3X04nDVmlTeW+bsZz7KWk7KntGJOVs4h2Xi8+BOV/Zc3BBdCH+R77wu6Tfl7rYVNSC5q2nxb7oxEMWtg1h2R3hzAT9MSJpJ8LJUUacTt+x94pbt8UvKfEUEjLfI+G1dIiF+kvhqJoCzVvaM11rsQH5IE/hWufHwSru6dgjYc9CjitCgd9D/Sv/m591oSJb7uTOXMK0g0wFZ1W6lqhM09yr2qdYWBxjKF8yn5QDrG/fnng/cV2W/CdJvB/gGB4cwqTZkZC0ghzr2qyQWUGiQswUToogUUDBu/NSJpDj1iGPTb4msLIvvxFITwkhtEvQg1C4Zgi+dTH0/8gKQsLNqGyxczFiA2oRjolo7evbBPtLybqql7Ymnmf9QH3qZx7+r+6JQ6s7k8Fl4RNIljtBUQCXnRSCYVySO23cI2Y15SlojhZvKdLAbV+pPvKtswzW7bhroRNuzDDxK28jefZKMXkH987x7IRGndGVTMCOWaFRk5ZKXg7N6y2+qSUJM2K9OQ6YVb7GnMhqGG8MHdKujySysJfAhgsHiGpL3OMreUwFNPe+spE0Zo3PfPT+cO3ISMM0Bcs0ddkIh5D1E1NQQPNG79e93nOJwxDlrVYBR9Y6hEoO/wloWIF7X43Ir33wwlfGq3sK3UGrJnvAFWQXcwzwpKBjPcT8D5WvP4GGVs6QddgHPG33EAXmAZpANXieuOx+8rogczokPohpUN+8IQ9jXjAc/PapiQy0QR9YzwQ5DElFGgGUg/aPdOxupMoy7dYSR9SbbLNOFIhkkg3xhHPSuWv9Tu0yuftUq3w0OXmAyywAoF6oCDg/i1ijcvx/Lrquu/9D489rf+nRRJa3LQdtzK0haatk9Lr6N/KqPjxniKIq/l7aHEjGeR4TDjhBwMQt71a+/Kav9U8Obn67xqkIwUlPwLvcgYZVTq5r0O8ptcgBVGyBfxfCe0CkGwgVtuzAkN590g/rTwCZypb5FrPPxRFCq4FtVY0pADlu/GqWh1rX6uvVb3a4OqEw2EWI1W3Gg/qjZsPWdqyCC7lIaGoUOGvGhAIkoFUQe23vugqUnd8Gi5GVkaKxuJGUZvAiC3EQqORJ5zkRZdBXj8zjU9C57cK9uNcrdWkTfOTR98B9DNpJeXmczJ0e2fAxQoUxUfYdG9qdoGoYtszwt/Yzt2MTCmgIne5BbkeZjXvXp9BORwXNXTYpJNpg/nsUGiJrfBuvlBI3yIHo1uqfH3zX37fJTF2saPsMGsGeGeirI6x74dBGhVLH//NlYcMC070ecp82TDFgA5NonabrV+r1WDDc6wtP+hM8LjARXr5OfJN65W3by+FLUFy2SJdvmhshyJ37w3/4MUNAhLUj2CQuCFk70nxflBQTZ5sDZ3CgN0e+DEjH7WRcncpRq8aJSRNZoV0lqms0BAM1fsblD+Q1a/uqVj9ka5xMKi9xOk45+ggkNHXW4BDS/t5blrtSV0ksn4V5No42lg2aeIxY3oNa7+nRg5QtwZHnT+s7GRBTdpTZ+HmIfNELidIvh9wXA+Pw+Us/4FrXUQnHwKP1wyq4TqixpIiHxzGovVBAq/bFAFeMpZe44g04FUQHT1aDBZUvns3a6rR/725T7XOa6EP5mD9+ZYYVvQeKRYMJLRkCUTlLRcgz/eu6u4enVKDPTHST2rCMDoceNCpp06nQzQPkbJxLPbaxyFmHkxgdoVxu27IQ6W9L3ZJKq8XVtAkEvA7CYhg3eRcYQ1PTzpWU9oI3vAr3rIsIepKlBVLZg3futcblrbdC8PBeLyM/MIYcWjLyXBbCgnWeT31UWLxOde3lM4G+rQHJ9/+7BX4ekuratq+lyIIKGMnZLtWXRV50ZLuZiF3TYETppx7XUEsr09QZm9CqEM9mUwQOfh2yRoff2ZJAQsWD9o311/QJTTalgI7ywOxxjxfmdxhdUbJByvS7oJPz3a3XKAaWjdHC3V/OCXcGUpc+rQnvnWAMkUhGPHQaRGc3rKwApR3JWlPdgybFkMD81a1jvGr3kWuB9P7i1NFH9fil0qnCIQSIlSpbZzcluQZaeumVpdbYGozjMiPy9IRJUJ0NEQAk9XNPddMUFCuUWTXhb/ZCgZwk1n1BPts76x9NpfecrEQXQ/JE4GsTPvoVBVKtbJVeJ79hkcnga5zBS0fWgQLKnQEeHLGq5juicku87+bRun+Ob9pOd52zcnVdUoqSR0BkN1BNPLG1E+B40n7eOely79fUgiP8NVQRGXWJT9FBTK9z0vCeW+TF9uZKcvBrtDFCCA0eakbb3QvD0vSQeRu7syappkZQTkF7X7HBjNzuPfbzNUHDT1oKeR+XH8YeKrFAi2LgaGlJ2RRFgOEEhwFtIFPzaz1f861/RPz3QTouEuS+xjYp6XxS9GtsxjRL5bkc/IAl44GajMrHdq3/2gcW8sozzvxwXeE3dWiYbfCmgqIKQamaoB/fy9xcp9XcdMLhV71MMYpxTXWoVZ2ZQBu+b4zcM2rwug3PexP4IfMPHr5BZ/hJ4PySx4r18uYgevnAKh5dUsblPrNRSxk5Hq7XJ3SGR42PkEBS0ue2gnz7rbSSjkRiVjtao+W/xunx0yLRHp/vM5l4YKVBjdN3VfGU2uuNcACzEq4hNrnWpuFRWuSoIYZuTpjDFQkMVmzg2LImiuUue5oW7EaCutvGE9N0CDrodxsLibsShnNVVHTEil/LyiJyvLM79Gwj5/Kk7Tb2/lBPJEHuFK1BhA0joe+8wDyheJYHbRvfs3TK3eUMhwkNBn2WXwQTnXFnQyul2zi2ebXHVnic5LNTJ+CyP1cUwgxoMvPZcSj+BP+hX4b70GzLpjLtxD/5vzTDBZRHlV02k3GMcu9funljBJ7t+AJVwaVLrDEpV9yreE5t4wvM2Bs4/g11fFgNtK/UQYeRQCIAnxAs2bD7OuUNqRD+kEBvF+TT2krjgy/fbX3TY4Sp9eKDmGpsBzYa49AJEvC4zHIlR97u5Sy9QrHpy4nqJynVhtKgNChMMxU3k0RGf77ztR6WiLcROqDvWtiZ8Im30dZSEtniZMgHuE7TrImBR5xuzSi5DQpTrLD5CXGj0/KUKz/lFOO4cMAHg7UaLKMl+b8YpSoHzlyIa/OSZ6p/e1Yl5l2CWzQy/drkmaf6WidThe8GLbAnR9sm9weou6SBIM99/aMTzYY4O2VXvYMKL+sixF7rc4xwR+qz0HdWPdgiJw50awFFmFNHNNB91w3K1J2Uvuhjsx6KHgAeXU7iyAB5s9W+tqrwgYDBZszZBiGVxIBQq1CRKk/GGhOsZNAmJKCm3j3VKwQkJ3ACIBOqf1icqz2tVi6mmdZaKPskN+I67XRrO8Y5wfSodGmbJXNa9V3iVcLvTMJw9tmmhtLrSQtpwqEZzWyTiTBaZbZ+C9HhbpJ/s3jbv1Pb5ZpZSEfLaVjtQCJPEg21aM2vNbsvI/yvbIyTB6sdftbzJsQYoa/YMqdCsnaMUR8hHVF/GqJ8f348KuVRz8AmJMZCGIQzBJmumvAsCwJoTJlF/OlBqfaoR4zaDfqKiv11rBEYNbirwwOZ6MUd0Ww9aErGFV9DuCjW/wOGHeTJiFgN/YnWQXAVK9gTV9aNq77fk3GqCebLDWRWaY5Wk1neLEWkzx44CaxEX+Y5uwOC6qkPc5vZxMAXB2z9lyFYZw0INVgs0PSS80dcEgnca7tADCLqgrDoiODieOVR2zgtMddcZ6xr4ZguW0mua1vE4r8Gyv/Lp59cr/7WKsdlHypkFExRFi6FqO6vjxNLeKJmXuRflTw6fD/rYHvOtSiexjSnbWWzsYid4gA2yP6DlRNhjauYrWYarW0MBCZk9/hzxZE4rNawzKVbPWY8/B7XB7hyM9RwKRwczWAFsOIrBNHtEDbjt8bd102qdFn+972dRj+jgJ5W7kp6vuYNd4CpXgZ7WiOe82YVkIVJgPQayPNuHxSEj0ZqPoTlxMrCl1OdesgTC+y+zL9rzvorr7ZkESozvISOj8BUZ2viBcpspg56nhnOTo1xembsD1IBDBdvB5A3JcsDA90uEDjFL4HRZHFpoKMm0oGsW/kc2IyFQnEeG2c35Nfb4eVIpGtvNXBeIDercFxDQjjL8BN4Dun/D0770hJHn6MEsK89lZfr7y7aJdvi+eQZ6hgU5gynmvU1OQqTV58yRnZa3uV616FSjjqcrRkHelzrLfV8L+2PCi5fqWcroYx2oDQ84/vNAlOyaliCUhk0yyB5EinuXYojSrQjP64dxOVY96tx+CFyohDgshgRF4s8Q5FDa6VR20gxPJ2VzNPQqCPeQDnYgtgq38nFL1Jx5pafosO6TzkpKa/mfyEcoOuX0W25MWQYGYQQgg5UwfSikt9/1td7KoJuneTDdoDYaOpTdfleTt1GYXUNXp5AhWd/U83yaFH45QRbHCrL4qrEyDkk5oXArS95DT5It59dLGwySXFLd2sakdu61aJlS1gk0y+XVjqPVuRvvz2L17tFBq/8isiIy5YgalyxnsMx+iKRFBLSaYx7w89ffov97yQjp1uFLtEwOlXi+IIQkHJ8xqdkGUwR0ycaC3Pp9UI2wnr6d/CL/TFC8uXrKy6u9Pe7+4dB9jyLRVYFqzFqb6JuvxaLqiCL36TkqN1lD1NYXpge056AM2g6rLhAkYnniru4qvHEmA4LUZv8zvJUgjDsFjnNhgqdBzDJGVYhKurhjhym++heeiJF/zFF5R91Su62ldxztaSNqd0J2ClUVg61v64FXYiXvzeLqoBCtRE9l78tN2Ty+b5hpxth7lhExbarPyWWHLA+t/7eIDSfoK8fDUzeciOp4Wtt8p7Vq/OaJMpUHuPuN20fDBYsy+vFWY0yl3LP3beubTY6iHTjgMCBztW2KE3GvYOM4RQBnPB/SRS2KWzm0BE7ZwP7HcKImbzyw8NLvm07rVPZYjZxo98EoSx5Y4A5/nuLyhTYikqT/dApX808+kGrVR1EdIDfxy6MkEJ5vJdbBF4yow2ohH11bcrgtxigx7BCAmYP51bIKGvbOKI3u+bd1Pys6kI+rEhYzw8aL7a9UbmAvG5qY9CYY9JAzaBl5L7einY8apcm1AuZb+lNH5w4/rGnS0gvSkDsEp1RLOeTBBTYK2RFknfHo7RskUyjLJkI9bDzCiM6lNt9WfcDB3NtQ+VlQVrwP/+Mzcp88ay7tBhhnvtlEMM6xIG4az7m6rM9ZbP0ssUCEj8/WOcJOLgPuVShOQY5FKK1XO4b8Y0FDIIPLO87XlYQ5P6pvbQKbL5ILTLEocXG1Ix7Qd9XtN+RMn4wdQPIjwzYUAzZ0G69ulq0/dTgRYxEzkyr1NS6ah5wqTCP6vlN7yeY8a1+SD0fwCfHd/nAhUSZWmpkmv08Q7FMRJwBQcqKz7qscJ6uDMYRPfo34mJjojGCFeUI7PBXf0j2EVCNKsezEfJ5k+FrJq/pVE0q6In+GPqxi/R6E9OiszXzAvn3lVvEUP+ZF1fYO4iloYT5tcY44hrgk3CyZ081E/wPTBoTGjjsHz4X15EQeGeWsVdE+lFqfXxldD4vR/0C0VxQhhCsNjiN0+mSyf248rXbx91QCvPsnNh+2t9PADtAVJCAasWvhmj2ICAcl38zbH/0XYIYiZPWvzx3H3Ji+gIMoFAf1KFmFLgE8Nw5f7j1sVCTwyLQGOBrZUuid5wzJuUSsDKAHk2O8+/yEznjqCE4MpK/uFcHL1oOO6aIVIUHnYsnc2KuDM5ueqs5QMGB9d2Uux4OcmgZm+vEwtY8z1qQgGE2mFfFPPdYCvHk3cfz7ftKsB/SQZaIfgRJVglWmPrcM///evE+ROSxQ08/20iLMdZAv5ApuofFf4TCElokNkOge0WHXwIHyVdsMVryXzgAYz5Ysi+eZstwwtNo8ksDHs4gelWnAz6PXRRxtegDW8YTBcZA8D51rMpCl5nV5LqCmDS8wtVaY+/dPVn0aYJYy4sRynJ5WYuNbOEXjy7YFuhRcHe8HV1NNVHVJPrvDUf/CmWQMidpcMUxhzrIgrChDZ3R09DqSzvXADcYwkY8WrHpbMkpQ1vt0JVJAigXxIQgt3kndvIU0tMXBy3DA8beksP4rpnlJTT2JmQ7myiIJEGQJ4IZOgGLWL4wO4Efp1MYpgM0N1+hfdmV/FwCGVAVNoyk992EHhzwf/zSgvhzOlpatQRIQT85BxDcS+nx0badK5ahaU1PgjTUA00LyjAc3OadOswQVTTVaHcC6UGuDUKTtiIgHbIBknjkMRV58pYI5CxcpBGxmOCOeIEyxCDspfC+ee0yhqbzwXMaKi8OB+curADHQxFffOjReWM1cT/drIMMo1fIVHkTIdX1BVUxTeP4RF3LZqq/2V2NCv0gyKOT+faenfPDO0QqzQYpm1GABWXymd1CCL/hfvGiLwSdvKLlVJu4+JSuT2cCJ+VbtqDxdTgwN8FNwau/6bGrE46Lvb9n+82kwzYEkyl4DbwjdHejZZGdki7Eh9QGq3ZP5Pdzgaayq74F/PvGA6KBq5HMTfZ5W7MD8YFh8dDECN1/TIRlNZVHg8mMQ2CZra8wL0gd5jigSZyCJ9La48KXLeOW7v9wpXf19UWvrdIb0rYdBsTHnww5pgRyc+v99hFVNYHgLPsMRU7o2LNM6vVtXjkTKU+2ysDwn+XMnjrMYSjEyAEImwm3A3U2gQxyE4HnBnQrQs0352TLGj0EhKMkNc6tAqk8afW8uYX1b1mSZS3g8iborPnVqr514fe+K0yoQAV03m3X2DiPC5UzsrOrj8d6fHGhZtTOO34UzCfSHiZr9IBhhjoGIo+c9bBiKsVjQVkusTEYfKFeJyr4/ojws+/MBodpW5q4wlYEHeMZNqjgfWYEdYnf5OhXDTGE2OFlAQ1ZuROfNe1RPYrTtn0ILcNsU5h6RHXGrqp4xubv1XWC7DEWK+e1tKyXYx+bNstGNXhc80ZCrILMZGy0N+Vr1+mkmWkxYj0zYi9zK64f2co9K+sQ3E1QVBJEo0LNrlkyVgesdH8DiKLfuCihYH7RkXzule7ms39e2FqAsz/i9TFk8A2RD3md0IxvPHjM0mTB3j2/SrQkb96elY4n5yHH+Nk8XhHMCrIjVhrG2EehKN9berhpMx65SKYb7Y24OApUMyOA7q1hXgh63o9svs6Fml/cka9OtVjLrP23yxsqcYgs2hGqcmYOYvO+1D8dFZ3HPgPI6Tg/luXv0R++ZekbaBUB2q8jtbsd9Y3F3z4ohXpHPuxKIZxg3eeRIZK5IxeT+ciJhBlNQX35sANQM84p3k9xjWN5nfH8ZZ3kKRK2P+ppb1xM56wsMQSWOSLULfzDlVgsWMue1K+BlhV705emTGMxlVVTjnHR+Y8pxW/922oE0O/CS51AQkFBtSeFU62Jn8rYsd7zJQx/whdFDc9r4uXP57Hdwo95AgH+WE6ZLc63ok/msm+mnhlDZwavSOhP4fwVWRwxHT8Mz1+pbVPEvNRaaL2saeWsz8l8CthyNB5dhORX35XGTBSQ8wbBN7HM3LCSZ584AhNYzf7eFP1/3VPH2Lki3zl4fdLTX3LzKS2EU2BSjktrjeR+wUmhdNyp4RzgwbAx96FsHOpSIUJWOA1KF40fLG3QbTPic6Ta5LA+hLVWNc1it7JeT8QuoEVz7OdHD35zgy+v6tmV6v5x7Rm6Onp6KTleo6sxSAByam+XRsTzqLK6X9GCrLikgtMCpAWeM1cIpy6Dnmtt9xRKd2N3Vq8zEJ5HvkWaCnDs0VkuCVrXpV9mOdSFxmDng/qofjQfp4tWSoiuo9dXQzrE60OHtMhUlcM2EqFW3kLh8yj211Ft/Vk+ywGBUa18V9Fapg3xb2MyhWwuaMOlVo4Yirq4HMeYHcA34IbV6hS1nbzKyfGqm7FZ7TNZvPhNcSMm23ksDSPQv3WsrNB17Ldx6QVL+QnbXTQOVwuwrFPpDVfjm7XtHvZsYQCdaMT/SFXYN6nvbajlVUCF6rVSeKW0L7XrmFJ3Wo/JZwFJejxBGKiGNpM7SPhx7tAlDEHdmMdB+OqkGBSjVuztBpL/vVXYEXKwU3wWJZ/wz1JrBOVZnT+dz6OGiCeO0iO9lq8tj7S7vYdxppcljm0UGq0hcp60l26jcTo1UPaxhm1v7SKufquTFeOSUNULcjvIrJ1WG+VyGdqPWbet4QMAgFBA0IfuGM2bQ98xNJyC6SaJ6klKfYUNLT9nHe5aLJhrrZgR9L5M0Kuq2x3+pOKMvd18gPIVcZo4OiWuY9ib5jABou0dP3wf/Y0UInH6Zn9DyckqGMotHvHsGuv/ghzJIDEtSoJhxF02S6M0HViZERTtYnFI4eMKi+Kr7vl9O/z+vkl8ZVJJQXyqJf19al+7U1AAeBTZ7XyubUOLqKlOLecu+Lz8H65sloCEDKqFFwdEIBMjanySYZzqFblhU1j/Nvuy7OBOFRaes1krj4G1nE2XYs5r+MPYLNXHSGCpaOvj5OwTuwdYkiJQ7MRmMIKOwVt9rxfBwgrnoHEUPb0ZeAlLcu7iFjlV2glgYefTokxWUZ2C7IWaMwN4y6ZgYcY7iKWr6WL94sJns29BOrTk6Bn25ExYULvw2MLYXEwvn9YOvVD7UyhagcDA0ZDBRn8PRvYpn7mBf5p5MZWlZPH9tWaQ20+GvRgdwLH0wsFBaqnnGM534ka/pKMeU1Y97KhRPEcvr3dUvg+KpekP3H09Db62zm2yosa6frn6Fa+MHJ/nabsb68TmFfc5bIboZVn+1AkJIqYe9QiSsAjUIIQqHsH9mHmUi1dCWtW30vDjDLgX3T7A/F7Y1/svbd5gvqan37eq3CpPO6Sx0c8b5uz3Yhx8mi8JHVHCqM7UaG2BW+kKbMDewix3sEx9rq3diUxLwwSQtValZifJ0lDJMgoCzoXPvD8fGUcsWZQqXoI3pRUWAwkOZ0ZphIpwjVeMJNNTjS8sbWYhaVsa6ztBowkFqBvyQw+50JgaWCyUMryClE/aIg6K8YdoEp9fieG9tVA4+l1XsbNiQJDSBj/3K7vHCRLK3lgX91p94JRpHHio+cd8i+JBM6pyL74PIklcywf/gASsdxtSKK62qMHQSqevumnePN3mGHSsBuvc00z5mpfxQm1kAaYFE1hJcSJ2tS/VWEz/J0mOpHQs72+iecpjZZR6+Ss1ychv0JI7HKXV0KiH45RpxQhskVwsa7lkiJDZFcygJPW9lU5OWxnLocd2i2JTXturu1X/vn9MeOQm3ePYQom7gY4IyIGvmcMg7emB+iIyzWzeZ+btFK3MlX3rix1C2CHRIycyteTo2yjk7x3i2SPNkrtJSj8l+FQB8tirCF7uZw0GANDHAX1WEZVsCjKeedq4S6GDRkWeqcCPsFfd5J8np9bohIjiobsvF8+Kwn1+va0HIvRQa5d3KAIYBa9NNchUTMDBd6fvdMVIzysaJ+XBseMb9zIiIBS7LDURV/88t1G4SpSUgRU3veuWBECe3QPodS0ZU2p5V0w0tm4tyEeafdSQWlVNiD9LrfzWq7DTWZjl7qx/kHpnAtXI8pOX10r/SaucRGMLTs3wjKTBjTLYzwlc2N5rmQlcGyD85QYvVLz43x3Pp1H0mITAqnokRlZQJLDlqdST9C63iUZ9/8lq13thqjKxDKg/8v1kR8ZlvaeG0+uMW0vdhncidKh6Mq/nxq6IYrTWWRYfWemcZHFwo6Mc7/auISPleZM86LV3cL20odRNfgFpGC5Dziz1xA7b0peyCjyS9ttNd8004SEL/uPb21D62MKim1vOSfJu9CaUOjQ0llkoSy7J9zkbmK/nvFqVPkLZ8+BHdkS8D63xqUo5YrEFMHeetI7OpS5g67L+95X1rIEg20r1RjtNyuFfnBjguZevf5JbNhBt7T3hHNlECJa5zAsBhH2JHkZVSqgHTYMwuwIybdfYTXTVOc1IFCvPaRER0btqjbbZ/5O5Dcg7khTNgPL6muy27QQRsHP+fgVLxOS2WRRBNKjl6puXTYGJaveZ2Yc5KDaQo5aK6rA63xxmWnnFHrv+w1vIQWU+Hgv9JjRmhJDQoQfo8+dFhh3u32BcwApVtaXVa8UASmCJMVt4hrr2UoaGCj2L/qvGTkj56B+3nG2R9ln9rg/5y/AaCBc83WNCaICERo9neGAYe4vCJ74cp6A3WoV21J5Q0blar5zrnQdffJveaEfBH+Njv7hvAgJLzdePh8LhyYAGYR+B8ADNv81mtkfdSqW3NT2kl7QEQZ28mE6MGEDR02N6by9XWuFRWuhaWnu0BnNo144+hcFT4sTKkwX3U6/kwieRzTL65+GPVJEUtWrLjrZxGq1cJsAC744sentCTIXHog/Rxb0KqY1qCndPiY3KQ4XXir5YInsDHhtajkujS4ptOOjExQ/6Nfd9HrWrwQqPDoe3xkdJr/fj448GbPPSuRuBPpi2zIOrJpHWzfE6fIdqPZ7LcZyeEwNAATuSP5S1K4CiIYG+KcdxYwJyrToF0NMJEDoQNtQZjeD6Um9YQSgs/jlmqL6jpwEnT35h8VW/cVbqmOwAWENQCpCet2yfQp1gbFkbBzAKFP4E+2pbUKH+iMN/PxZlKnOePPgXPm/SOjGaoscFmDhLkGiJVt8RiRvlXZLz1B4A67U/pG7Zx2RJN7mLLjJC+nYDPF/sxgLnv80nB/OJTmrE0fK56E20zW8ANlr1z6c3q29pboP8t9/IUTaKeJT574ooI1tBoNA1HtqXV9A9+ZRKzWf2s155SBi1D4xlJsMN9e9BSCYHXkdJ/jas0ThDih4Ndqc6z6EnimYuEne2sMcGqeVcGsnUFt4LedXEsT/1PwJufpXfB1EfD6cadXrfdmq7K6YbtWOqO8GmH0kvizE6VjBEpMuDYxt1EzWApWl0tO5u3vCy/gfASOWT9VhPFhupwzma3B2xRk9qyw/0g2+e1xWcvD9BXz7WOvYfkJ7toGuX9A/ZOEno6IngJA7rKSz2/92eblW5F83XZ6TXAbpbh6U7fVF57rubFsECznh+3M2iHNiigm3ODOBU7F7wFzvLlCD7FXx00WF/IPkeMPAptvUoz3EEVS57m+w5Y6MN8lxRiMzhZL1GskcuwLIKrHrL2vNeU22xBPWhBwPIwLTrdATXT0GejIwZbDU80o/p5rGhXSq+cKMe2E/RRLBJuPoC14bKp3vT7BBOlPy/VE1DEe1uu0ifcVUAiOZ2CfPeW5goyXdWiIazb6ctiosp7rCnxwM/jE/Bs/tVfGc64uN59NbzPLaG9gTjYDRF6eoZlIEJCOgO6rxRtqJQ7+qlmfcDmR6dRjpU1/pmmG+RvLIfvNRBUJ2fEUmht4atF7P9pNTHCpr7s01Yl810BkbCJjrmhaK7SxsNeT2BG4oWml5Ctygv6bzDiE+1v4jw7YQsYXeLH0f+mFVdb6EKUwik0Bxro0wU0sNmgZoNfSuKmMCkh49cKm7SAudQKzBN7aa69Oh14TLLWc2VbxVxkrdHMUsLmqKd0lhNQiLppO6sSVAWJiLdQaF4gLxqjpGAzsLfZPLxh8pDUcG0GBV9TLPrWkrkcV4rTciZUlbY/wUWjQaguYtdb95m4xSUvWRPOn3/L9qXgMpDnBs5QIjpUjsS26BQdAH05I/ZSPvcw5sgk+5nkbNRGWaatrfRQKp2eCBBu7JfT8OjWVjCKbIUkuu8P0fYlGld5rDusFaZme2CRQihT2JNZjHQW1dRKbRpMAF3IutAkTLjIjvcD9y/KQipa7Il8kZNkH4fhuqzzRQ3ig8LFPyGJ7BPnWdNFCiPMgAvFZ0x79Z/QZXIFg2Ty9yViUGhUfLojtWhHiIKXPh3pGlkEGH9Vhv8VWt6/j9jaduwpDu8bWcW1V+gzwj08/EArc5mXPLB9Yf4h14bPtjd24s41LvmEyOiqqr2mgkKcj7CDtI4WUqPjTftKHbiPZZHXeY1MIuiipNMYIT9bkyWmPb5FiZFmke8zWMYqWGYFl5COeVz+u1Wjn83Fav/RrWgCxD9UbQu+ZV9jsYgR7OJ7Fo9P4vyS3giGdL2VNiY7FscVc+lsgbNhi3AB3ONF7LDfik46Rrp6Y8W7J3ux716Ta6zp0R1Uf+yxe4Xv1djT/v3awmEYncKXfZivAaeOzhQMfQ4tAO4gSZ1V7ZkY7ticLXrTRW7oOm+bzWl4nIXcIs/oLUkYkmzJezBN/TGMR6CByI60xmnh3mNNs9how4PqZwVmJHOCpro5ju7aQ1mVyAf1QIWqJoJcxbmZOqiEvSJ79KbRRUyfOafRJt8nUnk6YCFaLHM32SmRAycbTKT9q0Axi9Aw2i1sPcft6CsEOFUvULtRiH9dCWJ+4YbEdQ1SIXpLsDznFO03P7ilMPRU+Blo5o66fH55s381fR7OUBZVp/e9LKmLXqoyC1XiQhiv5FCzUVqMm1Ndgv0V4O7MLhpWufgz9TYi7NgERCDTcyD6VuArQv62hTtz+u4kTAc3gM4dDE4AQWT/cmoXYZFz2f4HtawsKwydnJkgvKI9KG5ThybztmVJQLtYNhKp5Do4fYt9ooCUobouFlYUzFYa2mJiaQ/JffX8qLUdfaDcxf/OhtAODPXl4NOtjSB/NLIUj2MBlX3iGnQrdLkf0bg+ScFc2TVHbyH/tvCf3Un836E86d+dkVLz72RBs57aeQZpttmejACmM8/wr/qQS5BYqMGKcpWIW7Dt3DMxl3aQ22Q7Lyy4FX2Xs6l9u6izHXO/tzGOzuD49KsWhUdvj9yuxTZCB8uTTtae65km2jnTcA+Xn0sDu8eZgwBrB3ZJTGv2bYZ9uPnt67n6d1imib2GMPC/hDP5RFaVREDqWCmfXVJF1UnaWGHzUDn948W6cuvTFDJKT48dPy+W3BsbHk/uBzDB7m63kQ+sd6bW1O8ZvcQKfQTAOMrhVK0yQ9lovL+n2tYx8BamFPEdDYGnQ4pke+iVzz5UF62dERPg3u8xRaHT0kNmojK50egYLv1B6hOb12hQMygKNbEt6isKPvrJrP2Q75ndbOEI+ag53unnAVC649xwhlc463YJfdOQ0+DNRQrMN7fAiyKXVhSu8/RMHUiOACg45UNsGj4XxqcD+xnyPpgUpIEvPOc4liQ1W/tCPm1I3Bx86dC1PFsXSXUIEqJuCVXwwGjkvsu39YrctPfh8PqXn1lIx9cTCGR0mq1AdqoG+D/RfBoF5fT9ew8Zb60hUL16hz9SGPGLfvAzZknuHq5hcBGG11YBlZyf6QnlQ5j5oeyUTOjA5h7abO1VzIqIA1ipOjPZXONKwu7SNdhqAbmO5NiSwSOhCyt6rvXNruDgD4L/Y5gbz3Le5NzrIdy8zMpYSEyETrcsiv/2K6k4e7JKkpqwEyFVsIDDKjiF+btTOCL8kn1mBEuKtoXPxsaNTvUwetcNXg1P8BF3wcW0jbweyPqGfG45LnrzkS/dOKAbWwwiFhhAMSehz3YLRHYz8UvLgPFdCC9pMC9IzS61ZuLAFS0ND40AVT/gnMVuseRxNqF9GzGwAtZVV6aXeB8q3HDXtmcB3885EFVbhb6yNGmkgGB7z0/SuV42LIx01m76TLw1ClWNFATtzQu9eSF3gugZ4icoyrk+Gh9bKISrXWB+bqmz6MhEDH5jgDtbXgwKryCvt1weAHJuL5GVDX8dIPzvZ6mvCWv+gvX4zC9VP3bRldL8JwUS6Gs1rwWFMX+vUYObVF7LxaVhouCubji6uQiryrVtPetolU+skRfGGfls9erh39QhS0QqryQ4Semm5OxUyRJZVz7sJlKjJ71JWlGIUGG5n79+38aTRaRGCAYN6kz6y7FI2S3LZd3vv96prfgUYQf/fWKxL856/DTXCD5/iyLeOqkY/wYSv4xdDwd/774ODbkpMI5SHfB29+TiBp0Cifep0otkQUml3H2bc7yJ3lDGNmvw28GVSok6e0YaC/Zlq5mlHVmSt6eypriY3RVVMxUhFVIV5Z32mgUB2NB7+8PzLCZ/RUFdvPPmdcJuAe2lD3v3ikZ/2BhGNnHlpeORkLMT3+lJEk1V+KvFgVqsotCTzRzlUftJPTMeQ/DSeaEBblKXkozeHJBWlJlqNAL9w2x9g8PpanttcZf2dWEzdi90k9B3Jx5AwWKfiCt7l6qRdBB1O9sblZE806lfVCxUo6A+TrnRwq8azEj5UzkM0IYUH0tE3Db3v5tDCBYMRjbu/6TR5eRngoLRyJplq7bbHgiDactbXPBdd+Pd9p1q2L5t6rBL352rkN1vxYapyIDU1/uEWAcSOWPyZY2Qo5PTzjcfjSoQM3EWAy0ubHiVHHwJORTwA4UYd5/l2Znm8Rcj1x/VV1hYPoXnKL8vCVwk5e4duKZpdLpRGJ1mXkfyfRIxlXVqWAXGPB1XPRAP1bRXnbpYJw+Fw1XmSUt3fasvIQAzIeb1M8g1cfRIEGw5335kmsDYBwIdq4149+pniuQFd+pRzna7jXmCX4zf1DkKJP7Z+bTVe6DoKWkwti/mICFAhr8XFLAhcmHsJPX0reJZBH8sBHb8pM+a1dI1I/Uv33EK65XEIzy2mKQJhbxjlP5vaKoLd5ICjpaMFtFVOMq8qwCFEyt2aJlCQU21zX1OxcC7DTLUCJ9zL36sUVchhegH3/b/X93wo9y530ra5TJ2S3Pm4Of76RsLXgh6q7xm+t40ODbpwVQyFRdLiekpkvlTmBPmymMGIk2/9AagJFmwaeTyFtdiyE9ibTYKcJT/9HAcxR7TJq0sANuFDlEwrl4ZPn8q1UVNWA/oW8G+O0TV4kqCWIX+lR49hpVhmw2UyEtV6TePXEcZvckxPt7fRu73biQ7gnzmcNIYikkb3irF+tfImq7fM2i0BO8oXfu/P5NVJwVz/n//TdB7p0sfbxmgfMU0XwhTttLZZ8zuulUzBase+5ezL5eLDoyhqqDGPHB+G0cxLFm9InhYZzrcTZsGfsdW5UbAdBtorGQrvPjeXYBaNzyGgPErJBOyryq0q2hQFMOgW3BB4qe2UlejO0jgEkGwjlpvFZiNdISRfachqEuBITQ8NvylP1eX4GCXxP3eUzEFc1CiDwPvIQkiQx5Vvr6RolSwz82ScnwOKLpuXhho5JLvXUVSei4ppDsgzymbNMrDdthjU0hsjcbyPVPaPlfvn8uunjFEnYDudFYVPPQ+q7VCctdbdByqmvHW2ynpxrG07qTsPaTIYB37ONnwdMs1r4yCSwnfehzf7NqYtsjXUiWViXcGUkGPOI687eAzOKHIHEfUp9ZEZigWmPLouxpSMy5vlHi/u3088zY80HxFaXZKajAk4uQBaDYltYr0te8QPgo8An2hKLBduc2H2+I3f0f4gPVxm662YHN6+GZ3aTzIaZuTFGCs0+xY+jXQnD5n+v30R1AeuyQlyGgRJ9oTzk1smOhFSKitoOZUg+yZA1NHqVxXloEEMxKiih33vKL6vANlGiigghe6vhlV8tBsTBMoXbJaoCC1FC4sr/SPw3D4UGFw7temCEVkbDE722/bhXq+rLrF0HyqRAFcryyNszuwXhuFYSfaa019mHUaNTN/L7xBGHjYM9bwzjRZ1OLAHTl2DvI5r9K386XYQLXhx0/9C0OYXGWWyDJnxHye8na+NV2/sxvGuZ/1FeTjM5S6T+AMH//r9y5RNVEUNUDWEuUdDcLgxxdiGlvdDbBXD3PN5Y9eZI9mX2kpl3KNgJvQvDQqPO98dQQik4jaH3NL3fRSG5s3vPsjkIthbeL5400+tJrIYM1NazlbCikC4NleWyo0H482mfWVt0CF6fp9e8i52sj0XT8cImB9nctMae3BmSMrNDDCZs3kUclaHK9a5uCeMGF0hArG7fJBotfnNpkFuPoGCbSk26agg5AgOEGQ4LBHlToq+MgTxwEeP/h0xmB7CrEj3RwiViANJc3VN1AI8/52PLX7tXPn6rSTuEn0Y5U3KErX9orFA1d1XUqjPWcCVis8vZzUsbJ2EuNAUw7gxZBnCw6nFJ/coAc1u0NPArtEuY9D11j7X56vjQ6HPxPiWAPtvAtxQFccTWuwY/9J+7MqvzCQSG7q2LSggqESafYjkn3CZmFjvB4yEmVZ4rbBE9BSrHnsevexmOB/fBZKtm2ugQGtbkZDPrxZ4DmDSDpz/m22NVbv72nPhQA4f4TDuyCDSyAYmP+r6B9FkUZQAUKfAK0z6j8PSr3LmQ0phLSjbLwP2JgOYkp6Toen99bpCbxlowneiD9pLDUAKhpv+KQZyQCuXYDY4fvCIVtNW8RtkcPmF2GTC33c6YkxEjN6IRLeRXSRT6SWNUFzgvAOjSOitDtYspk2PRAc1mRl8AxNWXeRWRHaMViQXbDFnYHuK/2f6XcS099PnhYxeQCxqzATiZCkjO8Ifh31mpYE1jjWRyceHGuR/BEyVcJj2cSPNj7oi8c1qdeNFXWe03LToTO0WyOPaM75+UofXgCfXGD1js5EoQdMphMN3HM6BFkWT6pXkKxqavZbDdfTxrwRg9nYsu1TJjZkVyCam6Ji+6DvMQTdJQJf7Fur7sCRQcH3S8wgSUZ4J3Y2SqxHjX2bYnSJiQ34fw44xOYxXWRQifwbPbr3o7wR8lWk2EkfYdVLs7KMrLPih/ybSDMUU2xGCUhzqoMnLYraKWY75cfpA0340B/9FalsuHCGajMu+E82QJxFw7Q116OskIn1ptxctkMUf/fzLlzCi4klyFBq2GW+Mmm69gPNo7rzlipdQgAfLhrtbWeAUzjyj5SeN5J/GHvj6uflGFUGH8iqN7GPLGoOu1NS/nf7m6x2Cc5Wzwf2zcG29etzxgz8WONB4uK+Qu+d/XryGyZSzTPKv03r0OtUn+XmtHFUF2Mslw0UpzvEr+3kSMe+Dtv8nv31+oaCdC66rIKAdK1JFASbCA1AiLXbfsa/5mSiKd76qeuWacGEtQAgNRk0ITLL25FPurp0PB1j2mcrTPlrxsbaeSi0JK9KIV29ERrK0JjyJiPYVKN2kIOxTOfYWV4jwA5WEFg7KJQ3edm8nWE6j7GW+D7L63gNNUIveayTYwoYHq2EZW5i4RXkrO9j2zn1i55o7ApzqHUcbSpDyWY5ZGLzG40vRcrJB4KRR5FAGLQCKOMpvHiZzKWHK1izZU60Ae7BdC3CsJ/3b+C3HcV5NjvZShnlf0zKzdrGlTYGMCKeH5XcEE50KNRJ8V+qa8gjwwFAbTPJGwPYur/Xp/gkiYyt1XPVzP1b6HFepdsTk4LKeiHGjRxTQK20l0zs+abV6dU7Sa7bVGHXpIKV9CgxnX3svdP8+rB+IrGbLqyIMSvrn6Bm5J62yfCighwkU6AdzGoC6yXMGYKQIlmPFh89mP0aupH0K6roh0h1pr4EXA994uhag4zI/SsZEcSvr0iYFzvMj5EOAlUNkhJnoQ8fe3Z5sK/RuvE4CJDoZdV5uLDVIR4W4ek+upLaptYdwSmsrbNQZYMG/8qtY9kiNYTeGGeXmJ3kk1k9F+uRV7oAh6Vy4N39Wi4EBqfH2rT8URS0nBxE10ADJSal681oL0XQe6lvsG1y122ioU2ALnuTyeYlM/bENshrYZZkeXuaO/Zcxwqrc1MyPFbWl3GE6kbI7QeksuZeq12ukTFfK28cQasKvLMzdRAIuEchoVuuzZEfCLzcngT1MG/sfX8yngRrNaFL2QXZIpjSStu9Noky1fY4d72TcsND38H1MLo/qCr9fHWyue8YoQebskdzIbSarjIiyBY95VBCLrHnuW+EIVzoRZJGSW1F0LL6m8Bnan90PgwGe3/gKTZfYxRlyW7hlTL4GF4OtsdB+SNVucqvZuyg2o+7eRLR85V5kediBDMvW/uX6YoRY8gJsg37AttUwA0+XI5pwpzyvl0ZsXveJzLeiqyX1+ngUFd8OPoQdSO66uGHsx2tBGp55Qm/S92V6y5gLJcUz8LgvZJ2srmttYI61s+d+V3oyOwJrAqh+IDCcyHdDgX0bd3T9xgikNqFmJasLjfuFyhBTHakIXk2+C8GSYnwvBAKg9InBJmK+W0+TQvSvh2qU8YluhkGVlGbBBr7A0XqLVb1fRG/eEYcD/o2j7TOiYjFZeacwb7Ag0HinsyZ6vkYEyJLd3eeLxB9BrU89yNM3LOWMrKRrqCv8xg7Eni/38JT/D2qGHJCmqaGsq9sTTGUTVJbZZzomh84wHaSprg7I5fBwEZHCQYVLZBRYmOM8SytHcOIYX+2VtwyGKwwQKQeNC4X4y1kBJBfeyEAVsd+RQrQGitgll/5t+5m1kChvPN9G27zuVeupaB9DRvMA9RewRIjrRex64hfimWJSUrIo2r21hSz3O+0QlYwxa/K3pWkfy9EwfueyHiDr088x/I4HhiZPuSDt3YKrHS7m7R3UyUz26zF+yAKruCI3SYZx3pDL2XmEVAnivmMSqObbSoXYZ+M8l2mD1F9r7G0y5Y1pAEk4kip2Y4SJtZ+OIzDqCJ+2iqJ05gw0CKohqhgE1Y/9S9au2oY/VjSrpTUWirG5PmlAHztHW68l/pWqfHvQP1C5Gvqbalx6+ubC7JlVBazkrJv4dJQbAQsuuscER51Ciqo/HexPMhZfGQ2XuFdqgUzQgNp1eZgO6RTYkcdSysMrzaq3VZJmFFr5/RB+e++0zOpxY44BDtTVRT6MgaQxUKXRZ76oWylH0aGXC4J98ZvA/79Ja8cS/pHelZFhlX8PVzoeGMnx0PGASwgBffztFGSIWEqq56co58LgsENg+TgwOvXhoHhfHftsoDtsytHZjhJBEBSnRWWmqucoS4O83o+cMGZ+UXm6krHXFOzZHjysAVesq2ib985g+2NF4XQ4vAgbrtv5NYlCMF3sfKXmJzhXdeVxmLCmvnVF9Eohta2h901/vfE68G4hQLMZS+fIesSy28EMyB5HaSFVPOUQNLP71xS3gGi9fnTh0BYQFufxHFd7ZC20nUlKmJKE2mqK6lwlsiYEB7eRZjpyTV0KfgacWR70cp5cde38clfdgGE6LIBcDTHjeVZaxAZ33k9HEJ2Ml6EVyOYF6Pd50w7/2K+dKvhXDgDglySFL8zvRBK24T//4uylRJwurQubIzcpeNe6/vd0NC6DBl+J7ewdix02tj1l2FIxJrWI7yNXFct9ZiulNhQfMn5h4pqCqoBVklgpUFfIx86Sedn2D9/dMyL+/r5lCoxIgotOflZd8fLO/VfSatUzbZig6GBaduhxoNqBN0yJ8rBc9XQPvACvauzGfM4e9Z0udidbfkbpbnxvhDoes7anGrgPfYlTSV82fz0xcbHFFw7KEHeXpypLKek8+sRrCl/vbxqgXqk4k1/GOSEqvBmJ0k5BMLwMHj03YiGi4CjQuRpZ4tJRBRCd00py3Vbsx1NX2vKDCf0D1HICiFKb9nQrt3qeOlVjLmH5zdtxgp2GDPj9lQPk2OcmMrBuwFRyVXE4ZF0T8WQ/TaG5ZQlpc51hMBlZFy3cXMqhRrz/yzL0Hgz8e+7E1cPJYLdDeZJO1kEsI7zBZqLILP9+OtTze+Cjp95cQpXgUVvSzGpo76F35lClQS8jRON+AYfEXjxvwKEhdbs57V0OCoD+7e4kJzOn10xQ6IFnJSKStpk4vNl1N32KzMfEtbkA9MtpB8dLizWc1NdJMCM/9q5CRiSz6PySguJXdfli0VSL/T0tqxPEUUES8gXzPtZ9bUjlI0NINPxgMv5ZLARgF19Y3xfz1HG7oFp+aOHhCtm0YLGbwuhDpvDTAK5yIW7UTbhlwyCVziF4nLBM+CO31y1meRBegRdNBqC2q4cLDs3l2gPWhLVLGA9s4l5Y7/Io7RUNAVPpfS3rmXTw3rCHsrgy3qbu87TbKmPhVGl36+4fMJRwMemUL6yfgDB7TnZKE61sZHyOCO4A+vyrmpPgl9jG5pjOgbhNDTL2ft2YOrDiHVlq9BPCxcRs2uGQltQn6S5fhJyJk1g7rsXm1OE9fNPmv5NbSOLFL1zDbMr2TmSGD1UNZWs5YftFNsFE8Eikzmy+EcTcMDvGfp8V7oLphFNnwMbVka9waEbbU7PQYxgT/Na3JFhvaaS+8q3uqCAH3dTyfUmnjb9Oc2RK/uLKJgG7t3u0JKqGwjhf28nQFLgb5iL+Z4Gex6XoK1mdtzHUyffS0D1PnUUbapfaB32fVeDJfCwOrIynhh1N2dS4jsKqgEdgBeEr3UVGtS/ZGAU1n+6GFwSL+6udnj2kLMet1KhKSDA7xxLAGMDYOGhGfrRsJw0JdRhxx0SaWN47zjDGJPjDHjXgbJv2WlDNaa+gbolrsj5JzFL1f41JSYvB23T7I2ctdSgzbsK3mKN7d4aVcAce139tCM77tFF+M9aOz6uKoqGa3aJd5/guotZdny8RioqjuqdN//uF48lMBKulwXL8G2qV2ZK1bHZyW2fjmT5nhRH+TtwK1mX6Nz46+82ZVivu+V0uaarN5BziXUWe07Nq/bEKag+KBYYoCMxRYfgQZbDtmeLONXRXfRiyNrw27g3ccCEIALRevkNbhfuEk656RgrS3vAxy8L/pDHxMEWJ0IHa8+95jphd7rmItVAAH7f7ls6ySiKhdJySLYfwusTf9OXUiFoXs516ipXb7tPH06NauTQCATW1sCA0A9cHy5D6M+RPp28vxuzn7dw+2t3Pn/+nqjBp3jjuED4x/PC6N3yMbeqh9UKPJCP+d6tH/QrD9o5MIhwjzPT0shtdrS5W7y/WHOuff/Xz5lgc8mHklhHlzDEQeEYa10IVXOSfTCqfsmzwurZIRyF//TWGMpzurlEG7vI04+6SLSv6Qlm7GXSBcSK0LKFUas+twSM21YaSOpifep00x+4xo8zMgG3d0PsOAm3suJpRt+WdWFtLnuJLqwy4Oa18QgVsHfsgLqFFzK4ltHHRzZTueCGQRFrHY1rDhm6TGhgUHbJiSzzUSpw8CpUICKpj7OZaA6qg1V/UoAkTZgzc1huPVPAutSKSlWHntHWLmM66ea9ejmVyMFOX4fohEeD29BT6PsUKHFvdhBSyyt4d2diXbhJk5pj6yBtAWMlPQKSZi7rtnTMcp+IW34tOU8CVYnJm+uIJiVxwbIcmUyNXkxZnP/y60SjXQUbpNLiPLASXdupXS1c+zJHNA6FGFZQhDLazAPj1xEsYSn9WLiWiEjP9ro+kY00yn4rV4qVj3aOWQDrL6EIcZ5uDwxPUp4YGiYkp4HuxYriw2oCt0Chhmc4JvZlutDELdtawalIQ0D1J2O0mwOCfaz0imL/aqpPU1w2GMEWMqytUEIkzAoc7IxITRQg0qegrED/xqydKW39MSvxhNonW3mr1AY2yymw1SkoCzrhg8UKUSHXYGxQL9UhWF7vbybLhdRLXhDAXzmeQCqUROGwlKoP+vsBdglEq6ki97e0CtNFeoTt0sWLjsjuMnXE6+nbAxLciWZSYhFN5Gw5miP/KkysOYfM5iGXGVhyZRT3gyrVx48BMguvT74p/v6QoQcjgviN333P6W1CjbNA18AKK8QwvQ/7/k7sdIgwK12KCi3vaNE6e58WtFTHidwILWCAMbeVUMZ6CUnTgiruzoEwSj6WECNvN5ngwJb/AUuVHh+Vg3nsJIIPBrbjhFm41p2B1ojYBP/Gbpp2aTg7euTQGoiBoj2RU73esp+o+BJ1CpAWnyjHvsp9Rmnzu3lRcuv3OBa2F640ChUm+G4NYmB2sOsjYzhY9sIcL5mh1AO0rhFrVcwGJQHIm5Ft7xC4WA1WLGMWRxa7EaVoLxAUjOMYvPwhfiB8XsIfmQRC8Q8bR6NFlj/FluNst4RsPUTABAaI7WzrMJ8OKiIUhlcO3CklU94amkwjdOcDP48CS8PFr7kc9NCMLxURN2RgTmyN63d8YmmFwlRw02VI3jMIFH94scLzfxVczxLkzIezbOYQwHmpeeTfPRg7kY4yo2doensdkzPEEE0XeWGeRatWv6PwkMHNYpAFjpU1FQVF3BsQfgouHUuCd/alZ7Pv2SMWTcVghhfoStcBIrTslspgmdVqoJ2BP0eAfDl8/2Ec1GRBJcYOGuhBtztFTzypmjxf6miGZdi3/R43Wvb8Qw2w0KfubudEj4L2USZBWdbJNnoi2A5pD/6HlDukIqvRI3m+TbH/nmAc5OxnFM7bhoCFNGaYM3pv4a++EPhQZoQ7G2ze0KMJkEKIXyTG9z3OwlNRkRyho8aqDHiOKHP38ky8gj2dnM1+Trz/Dd8/ac5f99w33bN4AopQ+ImTWQ9lZmTNIajMWrcMVEZePEpLfS1DL7TTfjMtoJ3aDCdBCOO+nsu7qdQajyqnVhsMq0XtPZLD7So5QG3aY6dn0ufYviFTXInTCxq0+yKwmQl8enufQtVSyWYIpEWmpbuzdtk8qlIXaKSR4dIHo1/Yb/Px4a/2XT+C4sDB8FB9GlPfCfGdpnTxelMycaNZqV8oOzAgFh6e9HtUuNFIyN/0r67SqiUFBdC9ZC5sI71n1MfZ7xgZb4xyxGfZuAJdkiF9PW6z1FHoSVjwZvS1JbosuUyAL79M88xEIJHpPltEV7cWLtW3EYE8JJg9VKUBn+X8Xi2X9dj2UtcDPwQySlE20mhoOHa74W3VPfouVYDcWHNm0sdV3tdk+VHXAHYXmN/LF/E4P1zrBog2EYPIwa0lwxFoKWnh1vJ+gzAvpeC/39LAotpbCIUsxa0yU79QVfhJU8reBh31RV0jY9kfGSlqAHQA0uH65FnrZSmU+wqGsWUXgyCkdYWFMHjZoW6/H0kN97Cc84Vmcd1YJ36xF9WwL148TG8t2U13th5cga41Z/zGuafVaBXnnQtGhUYMBnQ7hco7YGpaxAiu3lBVBnbzXhl2N3dkh3jmtLkIj9Nwr4for4piS9K/pK9mzs2vP/9JNxCFEv6gGEBUgvDvqv0LbxqmdgIiLOgA4+KKxmTTdZNctOwpQ1yKWhGW78VGKbR6jitdgVGtdOvQipK7qUxqghMgR7q+vXtLLv+D+nfpqDB5vKgowLP/oicT0X+FUw15iGIrDRoqImOL3R0AnFfUWB+YYW/9IlqYGPhfwPafFra0Fnl1gVUtfEXCIayGD6jlbN6EmYHOoEum98fNxZXrGcFCOSCoc8pUQVotyDUQMudDXE7qDM1ggTqBM0JTCBqXEJMuVr+3VIhuvkvfO6BAgx4rlgWFAv9oAfciiw8o0jJVX0F/KOgpPrD4POLbiSkc0KWxklDAP5ERqZu41CBIin54C6pW5pM6wr7pZdzPuwxJV+2cIJSSGOMqjXgDbdVJ2PYyNqPe6AbpIanTbwkQkpcoEJaI4NNNNtA90LhG63CRUV7CAyv7rGaM8AVONlYxw4s3FYc+Si60xn4dVd+hoynfJ6SQGareO3X9B6aAP1YPn1hP/c2rIlkOgCeOHbR3pBWP8ANqgikvknWYZoME1d/hr9Qmg+PnxKO6ZG3+qPr/FAktSPY6kDnEakv0Tghn2rR/XKmZOYde+ODUUNZrvmbNDCk9vfXUindOaZWQPGn928Hhn2QAFu4YNwP3lmGo8zI0+IwNbOxgzzHZ2pt7ElwqiPrLr2XBp1PF9r23K4/j2jE8t+nr3YUO9ZLN4z4C1FD/8cW9e6JqzcoMNRXJen4wqJWvDnAL1kqC3AT1E+c6s2WxU74f12H4bh9rhAlUbp77a90CBjNz/y5AxkAABE3yHc5l2Zh/30XqsMVwm4spgfZRoKXjH+9zl0rm4a91hh544wblIFcvmkKen9LaRdSVHgu54ORn2VuzzMBOPe1y1WzGDJLELY3rRRYPN83WZW6skzqX6keMaZrEEABmbdtg+lkyTQZEeRhDzyR6RhuDfroOpKCma1NMIZiVXZjHtw1/0j0lKI9GlH2vS3yQF0DIeMYE7TPXz4TzjzYd86WP6IpggfBUFSKn7FHEHUo9S7VnpMiIAWmak+mR2n/5rnzP+wXddR8H7ZvtCPqchWPNVO5GjPKgRbwBSeXbDei/nwNiLaZIupxMW90PqpoGJiu6MHKVp7EgnL6wEokUWPIjOTiqiJc3xIBwnCcO3G6yQn+KG7DjSVvv33n3YkBAaIdlTDQfk8E14B5xjvpTqRZVdc9+9dsqJ7V7i/CWTm1UmLC/6DIOTPD7ZTDFMtPz7EeJ+ke10Q9Y/G9HlcGGEcy92FNZpQTRP6qgNSPcRWgxWsUyVj5hLnTUfq55eXfKJoMWgG05LtsusLJqU3ss5iP38Pwqmxs01cMStdE5cDL3wdmrirjXPNEbAo+3QWd32pPlk8XimKxwZG2K4Efr2B8JVwLmZrtRwz5+aAlIFVLquALFVB/TLrzMBl1TasA+TRUUNbQwFfWmnDmgIwOXHfuL7q8PwXb5NJC4bfg85ciZqKxM6YcxRA7F/88aTh6cU/yoF71/pUc78XJueW4l5hAiRmOZe9Y4bu95tbcBtA13lFSnEA9++xlC6hUcbEkPFMeHuEoE7YRq+EgRxr6xga+hXqvTSBpENp77gN18A2N3Bf/2ntjYB/Q2aU5SJs6UHQxtO8+JBXae6eH6AyzAvRPs/RvhujPztz9q5aJB5CdfBPxaHuHGJAodpWCwS2rwr2T11P3ntMV/sHiz/ybPfQi7U2vntw+yerHMh965iM3qEwtEQlB1pV0rl4GJ13GFtvldYrN7sMij61biKLuV/sLLEK0PH+C6qBJZnSTjEJezVeO53urrboGJia6Xbai0EWy/CA19ek5IurO6Y8Uy8skBFt/v+ZtnyruwV7K91tWeIOaC4ImX+lism3lMIChwmRdgHh+rMqa9QY0SbpHFwHEbgnXW/ORBHZnanrg9E58sK4H0wtx+5/wEXve8NPRWYY7Ar7phiFAQn/RNhN4vIsCvMIQbxbY68+ejtnG8W4jdxwXCRsXXTkASYYUoVC4sz8knQJM9guMHd459Vt+CUeWujvAPs6r2KTvaDYPyJFnz8vgtOhaN8/cnXTSyUG6zRArFhP5bvyHZrGVP+4D2u2ezfxob0W07ciTsc0rNkjx8sneL0gvUSNZwXddBHhm9EVf03a5qo6y8V7YjoQ5MJemB/wUuzVJf31hlQ2wAn95IEg0gsV9g0PNW9WFKgIgJkjdiZJd9xPfx/7JOVMD9R7/axGCHkW0k4nYxCXKdLgjeCekqXTbqZETqzwOvSMyUjGhnw5tklbN/QXtACxPf4wnxXmPN/DCXFJONIBGHDtZr+7VlAh6IM+JHU0vJbg1YVqtytgnYEijpeEM3f9SI7qAgFnpxW2NVy/IrvKUL19FbY9WrDQxkvU0i1m3LCzGklBijgVFVXQbOuMgA0ELlYWuGqem2v6UXrRESxXmL56WX8BXxvtbCMfT97qnS87JhkPUn2bWDis+Rq+epOkvr81HBLmUFDZLMlEEQdmNMY+FF4jOzyhDlwd2LY9EJcUZu2ssbEl8W2QIqDM+uEv0kOkOPoI8SZEfFxg9R9aJpshp1b7B8F5BY7cCN/L+0upP0YOTwEaMevRYRihtUSZadmULNbEpDuEJXeUuSbx7piskR6+woBZ8uGVTKAWFHBqQZRephE+0wNznwyzEhk4smhygbCWKjRgtebSuHsn8j2xvwGyg31O3Yjd/obTyp4a8OmeAu1UdtFhlbXI0o7mFhWS4fXV9kB3Ofn6kEKkY7bFcvw9N52KvuIV5/Y6CXWQDbNmBb5TWN2MDIRc0nrzb08k7YDpEoKj7uxWj6tE7/+tvNHOx7fQrWM5hweRmhPPuq6VJfbzkdBxnavIYLARyFTrmBb2xGXuGMms6Das/tmBiHtqhQujnYFmhmL1UMYJsa5YfCg25/qQHA4Y7xcy6tkauf6f5SjPZiy3NKGhPNT4Sg0fTaufD5hnBSTs1H1sWYTs6MDc0xU1Rj89MNXRuKfXA9q9Aic5FT2sk8bBKpP8mE/iA+joGsBbY6UEMrATEmdtUk3hVkpthyCcn/FRR0/Bteow8RHgi+eKw4XyxEeUt2zW8cWRz+3z3sqFeOmi+6CFeNyX+Jy9vYSt3VyRcPfBaL5CvfBI9t9g0dzheOPS2YiCuwuMfi3jp88nc3LBuHJx6WDqG6fhLsdHSLwkTR5NZUhRu+b1x5n2ziylR1TjLynbKSz1OR1jcmn/O4JhSyeinj5nrcaZM348sglsBSESPLr0wpcwvrjaogE2MxjWnuBnWfQebk2kfbQ7mChC6aRrxaOvexxKiscbjJKuja+mgcAkPfsfNWdY/JHX+IQKaZJXRXo2L4nipx/fplDLtgMaVAKbLevHvi0a43Pc0iBYlF/Ol3fLXMLZTVFTYdrjs/RP6Vg9el3BdyDJa7h3o1FlZzr2uBzyBlUYSZt8Kn4iHFRdsQgm8vGGuqjhgy4Y5MdHok9QCyObir3v5cUbUK/vCyc9b62vxgxOLjWUJKBBmjcifWPeNJLnK2I/2Ts44Zc3Dy26A2wYN6tzWKUm3lw2ukxuFBf0jwPVfQi1XMD6isA79ICveAZnuoejfsrObudZgV1hm4IlK2gMHJPEIaSE/sKtIrPEgPifpyjoGlbwPrtvs7gb1pGh5oF7Xdm3n2ZW8VqQ2YrCBHuE0ICRnK2m0k9Tu3dz2WZ1af4gJg6aNQhw9wC8JJaDZNRUvbF+PLd18iGNzs1CrywvWTF3s64uWWPC+DicG838cNDrjFmiMcfQVbkEltbsE/SQfo9d6BbOhyS+tzcfWMKaToRuP125JdKTQgkyKv3r8g77zAqECTk9txyfkRkReecl0KU3wYpvcw2XUQ/Tad4BEV6K2quNvp4n+H9PPn+Q7Njqe5HHSv352dYAQvz+LiIMmuGYI8OlDT1+4UMllX2Ws4XEyeO6Z1yubGraTrCDMBBnD/ObyBxo1l9aPXVPKIb021OffKSw65Eq0pVfiTi8Q/og02P/7koVuRIzZ+GntbJrOb+T8Q/zLTjxBnXqUn9CbBmswTzQgyaeB+NMO1Zad0L6hOfJ0xsZPZx2Pl68D5nZu3EcgfCtmP6LrzZNotZfwxxKMRiTd/iJr1YJfKKHFec9DjM4sy47ahCkI2yw9het65kprGH58jXgqHsvofqduY+djmf6hRLtWHR5biFZBS59OGOnRFfWoPOAT22nAoCJfww94dbuKXPfYF6PrnePYVEcyiBxnxzmK/XWm7v09s/ZyhxRZJ526y9ykPTGUlWXg+UvThOdbqeSwyfVGnCOyt2peY7pEdbAJ4XwhYBEBuOyIH7yW/B9a4qm0QF+aBOj5BEfDLBg/LOIp73B0fkKT5ru6nt/xh/lUnwF4EWV+aNp4OaZg55JcwZDGo27mY2BaNpoKDYL4771sjUUgPOn8AmkrTIurFWI5ZKoPolzr4eAGdJwZ5N6LpxrRyvn15GnZxvX+aquwJMAW06U4uikALq3tKO5G5b4putpa88ZEEvsG6imwsRqakrAdlfJlCOTMERCowUrJsus+QJWhBhSkokanpO+6XklAQPOcNXbHaAqTS6GXJRZXeETW28EYrHfKCsN54Y7TdV83ywigcfeJFLutpLyayu43HM2lfKsf9AK1N8Nd2tDHcg2AVJLlK1OiPdXaVVdblolL4FqKZ1QNq0uIWGdHUdjqtUkrMm8lqpxuT8M8KF0lde0GzF5SCg3QtaKDET/3qnYXhd98SxO8SaKrIexIhOVjYEOhtzaRFVuqTM7WeSVQTLV8Qh7qNiGAUHkn3QCNWzb5SOK3cGE16RAy5otvGcvOoW3tqJUBZbE6F7Y4sDxXvWM12rhx9aHSFODdP5cu849cMxKWImrp6lR7GkRbmjxhe2anr9g4FkEFGqvZeidWT9Ob4ik8ZYNDrIxHyF39/XMkOfDPTsZm+h3u7cH3lqci4KGvhR/BBrPKW7wBksa6sLigYEdGv3EZkJbcwgsJD2p4PrWHl/lpTQx2ALsjLw6/yOp8Vw2QuWaxjSsneu6g3QMjmwW7x2rgbDxz0oWqWrg8GBjvtGjAsuBORnXj3TDuD1ivqL3T5ERtNBQbJ9xOM7IoD0MxRs2rwQ25yTlt23FLPiHIwYlur65Eh/ZeJGNEpu5uQpHQXd7Vi0WV46iKbC/34IrokesUTqAqrkshDJpOgzD39euKRuBi50v1aylp/wyF5RCIV8odebWcqZuAhBxPcj8kF7jr5kYiuA2YYXD5smvULH3ZH/+d35Mxw4LFHWGtBv1weY8g2DIr5bEmkvQmhKOqPNHSBVvpeNx9wftPQl0QxU2hod3esCgAr9nUj1wJIk43L/t1F6wvWGZYoClc/ZEeScyilpIbm5ooV9Huxh52bmq56BZJ6GdQSAoVxdjbgLF4He+pVveg0EmCMOr+1J76ucoICIeYVxg0/EJX+OXtJiXp5+ADfTOg1nHNF6Rgk7SgfkTwWlNqybNMS+bQty+sgUD44+gZW64mXscaZ045E1HcJhJU77J2WUks4z0Tfc2n14OXELN3FFfMeSPVBKigpAd/xDTc95x4E8mss8Bg9S28IwzhBbANpRpuWjn2agtwUAVF94fIjuemCN9240dHPXN0vKJFdtmF7lb89M2vUJ1v/RFCq0slBYjFJl67oWy7Bl8bTkk5vNb7Y1xMs2bZeOdw6218+PpNOaP5IdpZv+wj7eGA0bQ6/eGt+h2sxxTG9O64AI6xB5RN0WpyGyCEyI1yIu8SY5BOC/Aqs7EW2p/PpiR96L0aaNf0umfFSIybORNAvZgU/UtVjs2/DqwuLu51+2gz5EQiSVwrpofgo03uC2KMS1X69Y7TqN3Ruj8UXGJ7Ky+Q2Vtj8PLDUnt7AdHX/XX8LYXbZu0CakqfChr54bpoKnXr/Y1shW3d5Tgi9XVbfHuDTTv42e+7YSydrQj9a1mMS927cjjvocluY8A4G+r2fhtyK2jbAztkDT7zAyb3mopCugyIq1p9y+QO9e0oC2WQWMS6nCpblNNfs98M+2Hlh3eTaCRqluypj2+G/jJVbVayObh1hwIsA6MoKE+HdUhQTgRqxyee+mscY1f9z2164HZyDusw3uZY64cw6T4E60dINC5tR4vCGI0FWMF4M2GK/x6i738vVigDBAjWCdLBuy9Ticgjqp/sqhCVyQ6kFJOct0Fq9+tBlWxwlN4RHp6/XhIhDXj6jmW8xwkmE5y5eS8sye7gV9atGw+p/XCLF31VL6Gjmz6+nD1h5LjLEj/qGFXnO4tmYkAcHWxEPrY4WVMWxbGTDNYGLEldZRmLTljA9tT/YwFsEZqj0XGutGwF/KhdsGhSjmA7sjIvP8+a0MvE+TyAApiY+6QAhi8Oeos7IK9cfj81den8ZBvuWV8C76z13kjaDF4VxcZYpjUUHLuqVNxKADfpJDOqWCf0mTEW4D5t8xeRBkr7TyKb/Roi32hdv4Em36cQ9Gj6STkAbpCq+DWziTOLTDFSY0gzn1KSlKn4HJix16lAcKjB35x3DHJ7IEs+H3WzAykAtRt3ghFiNbBJGWxngAC6X1sGJJXaWUa02rLXHXle4stDCoN0Q7r4+NpDdymYrb4hd2qLa49HVFgyauOGZ/ioCxWXNQSA5lZCE52+ep5wgWgaLcqNgU+x/qspMVpH1d34RlrAgmg56kFXjrEcVE0QA4x0OnPBTAk8zD2shoqbKAxCsHjVJVId6UuofzPMOT3vGSrP22NMGIaywulKcVUHZRb8pgVv/y8970FaDFhf1NzbztnqhdVzYgM1N07FbR75rqcD9il7+2l3n21BR+K0FQEUzlvY5oBaqdfTUoyUCSwXnEuRT08HwFb2Oa3T1/KScOyObbfJgK1Ob/Kk17KkRGlXCqwEs1Bjha4KwpWNIDSXCowsmOn9EkgQnAd/Xc8KpsVBbRlMh+qA3E7eyYO/G5uU9+DD2KdTc5E2o2d+OAK0QjJme/6f6UqTmPe4LNoOEoT0j9FFRVqAtwQoJRvsFspBXTJa/wKVtzKzwUDiytUEXbTLfc6UEsGx81FeaLDUsO53I98NDGQ6S6/7iHRr62O6EPeEtIqtsR4T00rPBiXDDy9Ti5N4V+bpyDLCqbVVKtR0/LpKMLqRV7aOAlp0gZNSqmMJyxNMQ/vH8a2ohh5CzpoB1TpGrKlWueN7D+S1f7QgBq8gXNuFxeNP1/t0m9v4v9pH5gab8dZx1iXJMlRGWmZ9N9iT/zkze35Cshp6utce2emWq9+o4yZbZNW/QFex9iyU8UbBXbhzyG+Nmxyp+HK9O5x3fbeH/wBQ6VZ2rkKdb30L1h1vV78NQ8fNsC/JZVgqGFI8oKYLp6SoSlQqFpk5h7S89zh0xeDdYbcDNClxNNFrm7cMMHkxipc31qCy0GvtgW2GNUg1WktABLtAfDO6hCRpAy01ywhNdHQX7uwWEdEtiq1mxi9K433PBIJFM6sp7TkqSPOnv2crJcBlBmZ9cjp8Db+yHdYNNxfIriIB9ALUoIwRyP9Acd+0i5m/IVlAhtJFkok+XOq8Vc35Q4WjXuf23IkAboPwegU7v9/IXsdtZ6oKQdBzXZ+LI8TfYf2vJHZ/y6sj6DiyVg9PIxq+sibnFESJrU2qHpI+ymFASMMSPt6FnPXCjziL6IQJzNPkOwxdShWPCDaeNgLOjtA60QcGwCiufJJaEyAx+vykoql5Jh/wJ51vm1SZ+xD3tW5NzF814j+Lkqp1usjUKofEbH0J67Dh6zAkWAG1rWZHJRLeZCUiKR7xzv/PIIT7i4qHCQRJnoGSqZszMHEwT+eMlz77aVGnSSOcl0zqdpVLFb3gI1x7WzsrZdDUNKm2BTjleSMT0VMBtR37rZCWwAxDQS3mwjdhYZETpXDP3ludXSccCn/DqUUE6RzqKmGQmcojtgDqiiUHBMaVy30do7QyUOHIqne84ew/5t2fHHnmvm5x/9JT2RD6VkmFXaKyXQOQMemISdgYm6zXpL/uoc7o36H5smycqXZWYp7yYkxSwAXEkpwfr0h/vHFPEeWh0xiqmsjKSrZbjZprBks91WqeCj2rubc3eVektNqbmzJxGFYeWITmUVd8GQ1wp+V6vNAZxmcwdrVdmuJgem9J+Q0HxEUkHiufehDEOhDidgAkX0fovWpoYE7Z/vczG+50HbYCMlYfplcI3OBYB679KXj3+FveevPstWt94XYFO0dTYt0I020zxVjLbVZ/j+EXg52cesquaIvKqYITSD356BUd4uAEFxv3yrz3gBYAupoAnB04kgf+NEGZfZI76Ad+7K2NEf1QXfutme06crktgc++xbd1H266UIYsHFTO3T262QMIUhmyWKE2pxHifFka+4g5ckjfz5XzH06Ttri6ATEbZtlFNDz0eH/PbPKnQmU5sbePYT3hEP5r8Et2juiKdW1MZz0VyjR8Y8Oh2n1KIYQPCYmZ521mBPt+kBLyy8F79UOGADnhZoj7gCrq4xYp38aa4/sz+91pjvsAYgowHu+YD3DSp/XtglmeQrTaNZJgG8/SOFT/wHQ6Kio82nD8NyIea6eog87z8JJZMSzcHHbtw+eCkWgy8plH1zKu0CodnsBBonOXcRRGyEOrPe+P6YwjWVjTV1H+g10KN8bUVQzSUGeUiqHPPhFojNrRiqBsNZ8JiLBzQ+C7e2ZyaPulVyzTsUlpdC32+ybi28TF2QXe3Dadp/lPkcxKrD3cAqIn3avvD4xzf8XgGdIJe5P+e2lNcjhnL7n9RiSUUYCSOpEHacryoGie3CHRQtd1UMmXMnie4bMF50bsZpjy2dNN6IvXMqLgxL+UsP4lbcjlhM82J8JlwXEwdPBH1hACkhvLCi5b8Yrx29WcqcTgB7C+ZrqYhsZiOmpiwJqiflvOisHntY7ehXqY/aatSHX15Ct1lkElRhRRBYzgf17CXMP7ktg3Sbej8EXvYxYZFoHRcquFsC9e4N2n6EX8Amg+AhPHZWuqR9S71Dev0VxvKxpNaYH06jVi0QklqMrD9Ie0OnozLVsLtJYEAgD2Mk6L9Xv/5jgR9U7f1tRud5IMD1YoOU41ab6oOF4iIjg4+VK7nWGcKESrRLm9RQDOHg+TKi6oBIl9GY8hbYpHDEred4ScSdTOHPmp1Eqet9bhml2A99zp6ZlzwAn+ly+pnkMQus94/hAVA9/H305zpYKv+1kHEKZO5dNv2PF8s6E97HS4D+1KPPj4kTyECpatL6WxR+N9rX0SKes4PXQsVMGxiIMqAJRRJYEL5z0Aiz1HrMxhoUX2gAB0JVvs9ALFAH4znhPj3Ng/5AKJ0lgdNQCX3Z62DQp6/MD7ybh117Hzxn2WiEitYJLbNGblcg/FhVQyUer27puJabkn4C4FbyJNvp3MiROCeCNVe+UMz1ZzWuYBjccXn8qdxQUCEmxVyxF6QR+VpCs1YULwzEEP2USYDWUdbgSNO+XKuUjEaPttmFDazW1ND9LPdO130nmM+7AYFYybtiysOK+yFxGw8cX+k6V0kMyhMXDf27uoeNdMXGQUS/tIaV/QDna233lUdItaEjrlWqadJa/8uo2FdDC2OgSOFpdOTLNxdmuoR+GlvhpZdBLXZyfQswfbp1b3gH0sVzfzrNMEuXtLwxQFTE1ic27h85o+m439ibruOHBoSAEvfrckN7BRErGlwxyMrZGZIwumvOf12+LOtxLpJiAWxR3pWVU6cukBuPz6uLz3z/jl5inGttqtwQx2fZRYURgsa7I5DeBW2alsNW9Zln0kbvvDjFxOJsgZOmo4Dz9PpmOqTorOrlXRnTIjJIV6jELxz40uWakyPblvhjFjshF1oO44qQ+GkVpCgG18oIKTqGQHzN/vHoC82vBWD1asfopZwxGLnpFaBD54CJhekp7SMpoBLjZZ7YPSwRAbsWZ9PLdS+xtBhklXfluoNMd4+eTB6rWv0C9AWz3+WHdKfMgZ3bzvDk54mh1/91UdhoTMSAlb4XtesnyZVzZauyorKWFteXO6zogrSHVO+eZt3oeAe5y+jd96iXxKtBE+7fpag0Fu3WWDpgmuy0vGzH/r6q7Ae+gqvre4ubKbx/AfLrgoLWS5mv+Kd/nFdXea4os7O3mWLeb5rA/ZLkIBSI7FgOKqeEYuVbuNpoMGP5irm8LLcwAnRvVvUaKPqdc96+rr9OZoE7mQoenEjYV1CVkGu1nOd+4o4BXLuZiyzoWLXtQm7eZA4DAYV+SN5HFQabmrNUggHzggjli+S8fNLJNnDacJedL6gWOdp1YzR98g1GiTvj6nJ4E4aZpuufkMh0W4Ypcq14dpWlGtp3RjvQ62tYSrOtM3kU3N6BdNvuQroOPLbVAOlHEJ7AWwfgobVbNJ4w7cyZ739dKaHxZzQCeIWKumZtrxs4QTr2Oq+ZBp8Vpk9eaHKVjA0ggZGPAsynvqM2bb9SRmQNpnfKIRAGc/m5sB7AnXMYUOrlXzyYn+a37KWJeKB1a6RDYVLTujaVO2sGONeklse9HjJXmjrHUs/pCwe7uBdRhpK1qu4YH48IpCtYtNzhW45z3pk7aFE97LYKv+HGepX+i36we+7jOac0XK9djXTDLnZvb+9CwLjfhbgvHa7zTgCLeWAVgJmWakHFgmKm35/6r1xOKTbuue6ZmZM9F9Rwf/d0DWiUD11ljTZ4LgWXSNH2kW2rWGp2o1OEOpbH1TyFHxbJhw9VcBs83l8i2mNcKlfagTh/edomHG7/l2qaQPeioQqTWNZQkJ3LRjPLo0tCmI+OSzhRObMSQZbYBKES+o9zAz0i0CvN0fJU5EKps16p386iJYVMF3LTdKUJ2iYAiwi4ejlhcpYTx1qK+Nb6jY3mIo6qjkShCZD+friwyQdreNo8CMHApmCZVf1GIXQmEkA9HHqR3aCAy/e7AMSuVOcqFwUk8KvNbwmyRTJ+LLgq71UuI2x6uS3P0gkeTb5uuIlUvCEHPTIIJmE7uNfNNVUnQP9b0aDo3qorh7tbf/dvXPpVSqQzenmwPa0VqG3T33rgdXqTnSjJDuodtp0h/ycCy09b7RT1K1hZsx41WQZZUrGsQBUJE9CVfc584O/XYhus7M8s0XondqKT4vy+sJAoQdPvgDRKuEyGJCxG1AC6qd6vZ3+8/rmACi4B2+GUlJQmKuFlqxqBoZDt4Uio+xJptI7Iiu4pVJJ1+bOFeQZD4xMCvlrJGIBFEBz89QM9h0MT4gH4FI2j1NAAVBNfDCuF+P5MBHxZbv8a9ROjoc0dMWDH8+5XvykeT7ToRdH4HrrTgAyHbELvtKquBlN+z5eqHdk7+/O4l1ut5RzbmXn96s3Oz8TCp/NEs6ti92x7kpuRQwcMi44oKPZsvhXiBxfkw8zWPrmj4V+7Au8mCKRju7S6DahzpM6c8Gx5Fun9661PBYFqT5KDm7L/uyPHYlwX7TIK6zxczClAyyxtmM7E6FThK47v1lmx3RnNMqhmywdOve3j4AwMR/Cw9GvVCU88vEXr83jK8+kU+iiEaskq/HbncQDoQLpzL8hKmnLskF4SjFfKMSX/QXv9emUGKRE9zeGK+7yCBekx8FNO1suuowStfb8WE+mBosJ/AHID+JXKpPUZ1jR8nIxhJ1df6oLELixvIARbsaT6iE/1r2ICFjWjf94V9Y4gpd9adXQwd1tIxtKFJ7rcoAvoDHfhpcfpl4aTWUdNPiej3JpJUl1IvuwWVBqt9EvwTvZnFAJvcIQOj+qiB5dIjLPx8f6cwl6pWzLAkFKG0yGE0vy8ts+sEa/KkZ2uszjmb63lNMJXWhuju0xGCAeXvXiMCa5NNJHkhsaTr9l8uZbOBSPK+E/t8kK3Uhywhl156l7tm8XmK0KZ10Fvd8cDM4u7nymU1euRkPZQoXTIfUC2k65rz+877IrqXBVoaC7OaaiPbNmY9a9D48fufeHksImz++xYbb7JEtnPTbCqUWFyYgsIxeT9P1nqZT1218kKzUNtJQ8UA+13oNNT95Tjs/0G4DzNr7SjtS/IMaL19BnS30vWeh169QclNw9rUPbY2HyNFoWMYB8Uxbhq5c2ga7/i8VXcBiUAXAIOmaEUSTMzzHoG4ahtAUMy52TUxIaIJq2pV/cfLMNpP+uNwRKLHe69YN4TGBBCsfQ71y8ea+xgswb68x1rotuYHZTsT2x4lX0JQNzCypeZXkhOPGPMcoYOG14fZm3j8g5fHfMhiUkawR9WtsZKLDl6cj/aNkQ0wdqP2UJYm/hgoC9S5dVD+WZ5c2FDmddIyfwU1lGlnzNNctH7iSWlBfuDEq7DqGvZL/ago2Oo88y+71wA7v5zAVvV+Kl6n9qOzRHO//zuWPXP0uBcC3QK1vskE5OA/STmT00O38wMjf1EzrjZ+HrtoqUp6R7HFZnQVc4eIQXjSXHJI2koiAznP/SofiMK1qYy+fKwDwh9y1JpiwE5lmSZilmZUBDHSClMVE6IywHYWxzYNMvTqQhf2yUF51Ap8I8oM68xfiz+k8Pb0GRwFKQdPNSpE6VhI3pfjm8uGhLGgk92D46+IIQ4wlmSEhJPFjsD9zodsJpjsKMsOzbegUaKf/FQEZO+pqCWNAN1XBc/2EjiEtp9KhjygZgwy41QYTXUer+vmnivBnlCQ5H0grtEQJtoRQ6uRZjXusHaF6YMs0i2rqFtAzVkeNw4fsDfKe8orh+qInGdo8HxjoSt5r9z132vsYJeHs5wPoMW/ca37aLzZnicSTla4EHTBrPK/A1j0QmbAgkUcKm4G7TXGFs3M/NGldS7rjpGEhRgO72AUl0WazcA/2rmAVR0zGzChv8gjVW6nm8grTNjLi6QNCsrMN2/sTef8nDIyUg1He7SS46GArj5cSOVRwzBvs/yyV+Ugyu3hHuDoT9/C7eTaYDO1VujbdAIc+UOC0C0xxKhzaepI2vn00lJPX1ypKT2j96Pzoffsqlv1+7IiM4lfiMYW7UokrtVS2WRpNSLk8d4Y1jDUzC2scR5xbb2kZP26SkljaXDjIJDc6V8HQKsVD5n04b3U+iY+Idsqvh1Ds3Ivy8XLIbHx707+ZZbxZMcHfHMwG6f3lIL0KeWhBWnqktmoBnE29imV2aL5Nz2E1BuL57eaGWnFcKc/4iOx113rw0AvOLZ9b5I306qn68VH4bDRSnPMmAXwpQiltMxRQle5Q5S/PDfZdwe4dp8bZLLeCL3iwBO9zxayZGP4ENc4Ru3+C/xQHO4V95NjXewsnnff2fsbbyOKRKbr2phb1eHLlTeMK0NgbgsLmVjN4U1cT6DyeEU9sCCY4IrBleOxRhiQxC0vbTGFA0+j2M71oHExvnJx1n8RIbJ08ADwMZw9E/XaKBNCeH2yIZGXu50PK2hKlXcq1iLCS4VnXnmweMfYdjW+HbX76VaFfFuiAuRhAB787mE5azobnBCyopUBS3DqTcBrL49N4b0JGjPVhWq4bZE4Kwot2apSTMwrKN/OMLTDXp/9Tq3MvHjAs7HZqLQM8vyVStPGv3HOICWLxITf7I6cjG8wPyvCxqfBQzt8i8TejKoxWcI6DVXAK9KtgR2g3Vnsj9/siYgLfmUZ9pHTVkvs8TDuKMpSkbdyk8Ck3J+FOEQ9uyHlFLCdbqhBKH8IDo6q2X2fT8QOrk6PRTt9NkYpxVqY+pz+Lgjmh7jJyeSjeo2q7edv08+G2g9I1UekeOtE9mhkV4hwBuWoeMpjycKKZ+ru4wgvaMIWhD24UCayJsZP2w/LeN4UW6ejOB+zOUoY/Cr5nZdzAkkiq9eABE/0SUKE6nunbAWSfYySyJfIFF5pi/qt4seKff488H6oi+ZsUvTn5+RP2ItNGHShdTH1XnYQWMSaA4qRrwGoU1qi6DO9ZThteOYTRxN9nqsRMzWg7vhLuaos3+/yztBu/aerz9ff/2BoZyp8qqwOqkiNkeLQURTbWpk3ApelenleWMZTNWB76lYBVOJ3Gh1Xef0PPA8Y5E8tlxvMOAZ0QiaVdvFKtLKUtsNBSvz0vxVwNjBZqJOjSBI8FDqF3eIHvTT58vvz8bOGT4txqbKE7TZXcaC7p40+jV2IM9Wc6MyH9G0gZvD0FSSkP89OSHbklixtZhtCi/Yy/xjWZnER6eERhBhC/whfROpQWVZB6e39NvIzetqErrcM+Vukr0GBCYd6skHQRoNVg5SfALmxX34y4Aq2AJiyCaJWvVMtEU4XrQXiVAx4BhCJ/6rESVXyZZgZZWyKTIrMT9uLJUcwxR0x1wcN2QAo306OA299Y5EmqsZjhAlyQmg2Ss5yYnLFGltfXxKf7UEAGn+xtrBLb9bHdE0a/MJPzUB3jSDA41UneaaaKxzaTyjfYJ0G9ez0+y5i5kbjtfcpokg9eS3D/5C8ynI4mx3rvasmh+L2ZCvAz4Dmj/26uc4eRQTSkvT9FKdnd7MpVo3InAPTgH9iYc4j8rFtHBRxopf/XIXJv6AqbJmikemLkdgW8ScKUStD3uAntHhpxQb6xD7+PzSRsemNepvJOCGD3lUq7TatWViaeayD9cXb/Wdp/vRxPrEPkzN/zcehWKtsUKq3+E+Rypa7zZUxjip0fKJPxQG19Oo03nsMHM4Vm6wWuND681BiV9yuhlmr0JFEruixFBgig5L4KsPDFqY2mjCB5BAmJ3Rpb+mUPuOaM4dqbTX9HtJHyIS6qQuLorcjCWJJAcs9aFNyiEy97rLxV26CCMpCwoiisGG6nJtIyWgPSGvQ8KX/yPxTEbBLMEzFnSsQCS6h5PARMyn1g2btc1yokjP90IF6nHinoCFVDC0iWXglEj6ldL1HU3DjTYhc8DysM81HgKGDXkYR2s3OyJju7HioB5L/L3YPJ3LsbIXHJ/GnNqJcDdyWpDQmleTdjVUWaUln7ey91Y3JwfQKlPpD8LGar6XSi+zQEGFPqjYv485gLr2eokp6ghtwI8fmbjEkMCPjF2ML0UjJsUhIAQGsdA7uod7OujPXomqCVpKCbnPkZrYZk0RPnyMzOYwL38+4fPAbCXEBH+o1qGGmRNTQM5aMbfWgIhFCfGCdPkaJyTMUvsFnWMs7unE2VsneQNpKi2LMULdQXHN2VB9M347iY12qhvCmdnn9kYXAVYOkCFDBCR5ljPSiqvjk3yURU7Y5GSKF6ir+5xoqDOo9Puag9uelt5JOfi0q6nJfT5XjK9jTfE7+Qt+qUgJq2VSbADVNaIz09t84vECAOY8c95R2BxU97dZjlz3T9BE6DngRYvJWSChTxunIz+3hXmRhb8WuDHzS/ma6qL5TTxB4NfzlAsrVXabx874FRMLcKcY8VpXWu8csPdr1eaDUNqTpdI3Jn1oIxGN9vFHafXoxuoii+wS+oj+1mjJb5RGcJue6qODGgv5MGSp3g+8CAZqTYKtA+P7FKBO+fKBif0JFUE/b484gJbIGloMXILUE7XBmlCrsdYsejmePvk1cQkqjL3gUq4nzY5Z23bVHQRyJ7OuqsPs/DLKQyuT5TNYUYO7NRF4PNpcJPZV6Q4d21KDQjdp3ca2c/j0R5mZKxHVrB5UuYj8W4NafBzNDQb7lnf+Ieh4rSwQzvzInmIPKL6vFWrEutb55Z5w+uOlR7biEDFkeIa43ojHEcpdV9s43f+c5JOFdGTso6Hf9X4S8vYm++ai8+1P1qBHNj9P731M+UgkUEUDlcPOFAe4LsfeckZteE1ay5r1seu2VEUWOTpAyxW2AiW9bA7N4pzITO2WVI+XCkT9Jk3LvFSIltdJzWBH0J9fZmxmd/IlDkCaTimvsEUOGBpO8pi4SmiijFBe+YbVHPIi7cZhM1DzR+b0bV5Ss/OpHFpIEkOfwuB4cLnQdq7osdhW+5Zjo0B9Vg0gcdyp5IsfAbs8g/QSUr1c4NmAaoYKI5Oz0aIxtY5B24Db59BnIrGTfGcUM6iUG804ufDSdFURWn+wc5dN0U4h4gmwsJnJ7p+m82MASAnj4VTBxOU9qwnRxxda6XVn88DNS8ONadEYcplPGV1Y/XxUW6J/FWCyYCIpQGwB7SJeTW/MjWVGxvLIm6oQFBVFL7DGCPzGF+u167QW66gTJMSK/HagsCtK4rPm1YaOs8nfd6SOS8M92hQT4cXY5nY1h23wusHKtqmYMCFfMRQ96osvHdSse8YfYB+U38QrsVV0/yhyd36SO5H52+RbbYBmZcHfVO00kfLbLPOqqFjYNz5rNHXutmwqtqVyrW+0brxz0qEQe4AdYq9+zmgsBeKN/UqwJ3r2kuXBH5fTFmY/rPxhSk0PHmiaoqhV0lOcwBP/MRlHp9CcO2wn3GhWf5PBMdynwzZ72lhpE6YtDzuyEVSqfDGWFJJCxiR6Eu7RJtvXSQ9uHLT1FcL+RyGdKevgeBaucui/v4j4f/ePi4aEXD8is8zV2IliXWh0nwoIso+YL7FfGeJe/twIma1m1KjHdJDyY0BfpAsR6RgulUeXsPp1GiBciRLy3ztxvWhjRxEJI+JgXC8CGLx22/xbuv5US9hXIQHMbz95tEfOUetvqNibmfy2kd3hb+s3bryeH8K6TSbW41/0kh6b2EWnUlxOe7Kbuql/SiAnClNC1kd+SZLxOyRJ3PKakonFxA7YjbMAxuBYcuCzRWck5lO0Rdpjh8+fWhnY9Gqfj/NhPEq4OZFoU1mGb+5PuB6azYf7bb5/9HLZuOiKHwGhkscpawZTZud6uw+/cAahTJaA3GcJeLmhzyMi9A0fXjt1aU0Hxyd8Vv0/UjAeW+4WvDW0LyI7iIJzZE7yNXIipY0OWJZ5vo9WzYVdhRuzwmViO8csGICkfrSFULJp2/5a1u6CljiMJwwHcxKDYM2b0eKdQ6E2KX1ndH/QSJCFX8u2csEPIm5CrcJPZ2TqBvRQ2CrEh88RGphqa2rZuB5+y6gPHV5gYqgSWAcl6tgKz4IegB4sP3LiZ7StG9pPlKS67/XJWwzLRIw8z0Y66Hz2mcBC4Sf98L1gC1ZnfwifpSqP57zeQ5NW9oxTQ86BhHlc+KKJXf09XXgbISB3QTFu+ky2/2aQXFRzh7iz7Jvdk9Dq67QQ3odwAUMTMVhhJ24WE80quwiKaZxNPXvQ/47TGj+VOBryMp6E9KH5wh9pQqiB0P3mAcqBCYPwRdTie2OlxWHpkGi36Zm8yj5u9ODLBqifCo8dS6zEJco2YMtXcnfDjSgj+5BWtyEgV42EzstemuFPbumgmEEq/d8rQUERPSHZ4QWc4AwvKOu6mAUMqvn88kdhELw4DzMEbhC+X0+ub+LoC+Z3qsW1rrDotgbKzfFJS/0fbMr0VCceTR5crRKDZegjV94sBYT2HY9wGmfHiWH0K7GvuBePfsA2iCgyZj15LLwVvvhQeIDejm2WvhFZHByjGVY61ODjqbjaKxVBxyCNoeSuu67lmmpKbIbIuElvGX1e/N8rQPk3dVMy77nKHputGlxg6GtNbKLs5a9u0kNx58QtqRSPoDjyC+SFiKzr/eUXgyOzx3WJ1tHIQ8rFVfiebLTgM+et9q+GdmbOu2q6KAM1fzj0d5HBR6DR8RVsUnutS3LqpTw7xnvptmPwXzTBg/MUAKoMRONg9CcOPfguuT2df92frX18kybT0fEYiL+tmCWxxOg/hXA12/8zT9g1OlTuDCZeEVA3hGp5H4fiq99fVMMTB4uLbIl1UsNju9CnfE0+jljUVw8dC+ztMU4a2YonlfReJNYlDJxoBsKO8VK/DQqp0KfCOjWWo3IVkdROGlkEIQmOxLi4bAOuGMP4/mz53GQHA5tjLOILKQ1dMjfsO0h/JpIKa0bQydVBKGkBiu5C8DxCJXfPX7yVYtaphohEIevXhC7SjwjviKbHE4HejvlEZljKCcDmDw3IU/AVCnk/Xnm1z5TmU0EMeCBxAkcsqS38i7FxiEZVsx1b6oAsB5TnBHB24mAUfbmwhgHxW3Qu+Nk1PyeMBBh0LO9KntzE9RPTLkItWrk/iowmCHXO/cxkoGhg83WcrgQ6QGfTYff38MY2wgXNCXNUBY12ouMXPHW1MmuTudmbH42gp+v8vNwDO3TWC+VKCtuxWJjCRT8iT2IJ83LKU6XrRHmPrk6ddOm+Tn2PoW65roKFgdL3QP4E3PB4NyUlKQsGx1UiBgn9yU05vaa87q8INQoREk6hKqv7ObOJkGenXsRObQ0Y9aUNsxOfbl7GejP6FDCdcLEUfRFfN4iCi1UkeCOovrHBAmBkRc1lvGF0oYqZ32mAjtWeykhzYtSzydxGmODtpFb3YRkCQRM+iYN+D6l/r2Nh58S29df3JvNE2gRBW92zNSv5IszmZFd/MaiyRuP5eOttD0FUhBfc4sPi59berTIqiHjD7vUgwWxYt5gsSbxUtLJdfKqCa8SS4iaz9vkavg+8bKyqFrx/VRPrxMorfSXY/z1nWVcYRmRzSam6I9rZx7HfxjyEWdTENLQ1jbI3a5VWxRA1akCi2YjenIJkBX6Wo+MDYm9jOmhFtgG2bJxeNd9LX07KJVtOF0s/fo82hkcqOINiVE88OYlcyKiSIM/uQOjY0TSCFY+sJnxm33OTWSJ90cHlfj8DXY3OLQ7s9x2xhMws8cyZXH5qPu4gWyrCzIVeDVABCoa+VmUmlxqrr+JUMUAClcZM8brSncsuGFRKSJovOnHMYwtjcIPgeBXZ9XC8ACDAbvljLecvuSCmJNWQ5QWlOp1CQ/bsPeJeVUo40xAnYVdjL4Pyy0yHiOF+0XpLZgAEASN/6jpXEjeToWXjRNdFPfRgE/9RFXysPjiDviOGhTBo/GDhCz2UaAXP7kYHp4MFvegKX1dWvSmf9t3A3rAVX9kcAZa/vazH9wZExc/2SjByUIdBgr615XIOpeHsqkvkcQPy+vfGk4vD12zuJ4MCW6S4pTVU5/jk2Ozgg9fafLphyYZ9osTrpMvh/2eHufT4ccsxLp6w00hnHi6E91RDfuqQuLG5phkKwfGmN86jpSIUDw63YRvSTpbhY/r18WLvZ+bwm6UBeDMm8NN61ipy5SINnxVXPlWrg1bKI77C2KyXxnZtNtgEFUMFZkfzzZQ9ahtFdO3GY8fk9Y2mv4xjcQfdWbuB1KMSxi5irNSlV8UCvwgTFBU5vA2RiRpyW/u+rlJdgPa4gL/lZdm3sTKstp+vu6/EKH640kRfv0rmk4FvWSZNwOO7SuKhf/vgW7hQ/Z133ZgPyxZ1yKfSyn3W9vx6kQu73VsBsKlU5m1/asLm7MjoGj4HYY8H+lZBoCJ6Zs1KmWEg7k3OY0zj10J7+hElkuFl92B7KYaAhNgINr46E7bg6QjyHTlQdns53/wvMYfL13fK3dFOH1nbEq5iZx3hwdRAQDtjj0pQsayHAD7yzExbHywgoXbhTqbjlYQvezjUXCnfrw0s8l/MZuEhqWDn/aGVd2yTXtnwdJ+d3kajsPGQmoKULVGgWY6sAr0UqTgSBx9z/xzEduFdCjcJQ/9qtG3vDLvplMSQoPfsm48/FCeFKxBEHCwSSUhjdxwiE2qSZ5sfbOa3iZYGwz0XeggZJlF1VdI8gQHZFSetdNy2jYSvxuEvLc9WVCwHERIEC37uxTqcOgajFSqumxjCmeeSKnUQSLrJtD9akG8K/QCidXnexE7XAu1LAudeDe0FYbOOJJNRmPR+jcHuribhcrNDjoXZb8mZksjCcELhMa55C5byf47Q8aigiBFN7XrA5InyyUjFskI4gVfo4Vs/qF1FgrawVLCm8QG/VcBq9q9bjaRLV6ZXJj6FBlB44qX7F4XHuwxs4OCcR3SAuNZhrPCiWtk5HaB/6Jkiy6d+lggHtJKnJPtQFDKYHgQWB25qNdAoEgDK7tgUVO5BKvxatENr29khzpLavffI4Hvd9eWqD+NBjI0aRwgTdzP2jZnsC7Z4KRTwuJEb5yCANpVLWCT9pOCgBha9DgDhAw+odWFdXUWBt9szpz93BoI83CjmosS0eSqiANPCFknRpfv9jM4sUPwgxT0fCfNaS1RUfK08bRTWhlWMWXgxBjV948hAqCM9mrIzI8OVrP6fn5nmcU77UFfJ2Gb28zFuUAmIhrc5f1P/o0qtamVxxhM70N/fFxVBC+o7TESMvssqb1HVkwGr9BBS5X0EugXX+hVb4m+2DLh66UGcZR/lUj8nv+/1zvs7Y0mU2v6P2kQF8Rjh+TSE/Z1LxugIUJ+OEK7ro+47X6luJbF4UgGdzjoDP0HRTjWJ6KCtCbFI+wJRr7uyYOGN6LjLNy7Q4QCCgXwxfqbJDgqVeZ3bMYMK3e3LRwWSw0sr4Dz7QiTkWJHTtfMi3e1J1NKQZ2DdaCI500mvwkJNxeaX7uis8at/x9JHrY5243BB66NURt1iMdm70pEbpTlNqCWmy9I7m4KrYov9XdMrluGsT2HBqiPVmzHgP8NN+4AGiJD+z+052+DhPGY1T4MGsPkNr1cXU+LLoD7rWc8tObM221DEj16DokdsQbviiGvRy+JFxNS6fwGgakehb/bYkQZpycsWJWgAKPeq7noBV8FkPAH6ayASYgNove4/QqvlXGij5CjbNjzaIun4LnCUKNFwKnT0+a6LOBHCDyBcbxY4AqQZar+3p7KBvxcI4JQdNkssqZzqxoC82MLgpLYNz78LHtXjwAdo2i8VD768a3KUs9WFQooT/LACH3kdwy+Ck/wjIgY+tW09J2U/E45FvPPDXWTMyarTMZOXTaO5/PXE7KndLRFhFwTKOqakFBPOnWDWHZvwU+FSZQd+PTgf+qIvhaNDxFY7Gf0mHPYAqD80t9qJ0GIHyckKUglEKpFuEYCcT6QmQkGLSauF4PcNn6KQrg1a67Bt3zCV+trzRg3EbPbs/Ffk1xWXToie4x6IUSXcpVZTH/GBFpqqZuO7YBfM2xDGQkIDLjF/9Z/mMzW75VabQY3862TJ0kU82qdB3mw5zjldguPDzcYncygjvcfvypIhpf3aRJssx9gOcaT0+NS3pbwkJUU3cT2uPnbPHT92gqxUfjpnmt/zgKBmCTlreaKqLWeBz3jY1g4QJ+EvVAsipfIbR8ISM1zvXw+EyAjkcIy67JbYM6054pALrMz6G9+DlXs1ItmBnuXsI4WWcyv1az98KX5tHx+fRV60LtoH+0k8D2BYs1p4W+MlgQtgoWXb44mds893fIPXskaGFOF13GiPtj2Zm1zUsSz4WJrJEtb2oliorD+3zYri2D8KFsKLNSQd4sfHjk2rTX8Fky3kZ4vidMOe9ZjUgezlhLe89uPsvAGFqFMkkTREztdtSIoXXbRXrbZww2a93lmaGrN+jb6yRop9t+UG2r5cRwkAiqGv0nUopc3+BaedgBGFd8I3KxINzLc4rjnFmWJ+FylsbDzgIxxi/LVlA8kHdUjMVAZI2zlNplA6qPB0ceqnQuiB0rKJ5iZZfnPR84AWH1R6U49DJHAbhw2OIRUKKVpH/fvg5v5dhmkG1MujIGJpP3lq+J0fmn2r1SNdl+8C5cpaEVtTOClzodGwB8TVXhl4bTyYRs0PsT/hDEcrGEP5BGZrTGhqEBwgamHS/Nj43DNqF0nkbslKmeDBjGK7Ixi+Y7TjmMArfsYg6l0n0+8LyzlRVmAmACHHjnpCSJtwgUEbHeF9biu2EmRc98xj4eJ4eCg2pqQq2Io0FApmT0u1xTCo3d8Rs2VrUKpDkafr5SkeLfOkf/ZZuFygeH8QPmgVHQWwa0FRpZK2nFvtieXK0v2GwBGzCCfWgGye7hbUiTj3eR9hQOsogRGmBORjN7dt8rRZUZ2e0Bik2eGkXyFAnTtCAqRnhqjwBgYg0FJxapGW/f5yuGM7OhM8EFMtn8DCauiW2um9+hnzSpyo+74WO6bK9WRw39GfU7UUo43oyzYq5LpYQmbWjndgkmVBs9ej9NIvf9IKWWC7S1aLCfnEZS4ejxjKlIIDpwweXgzfQhIXoBXcicJQ1OKIpSpq++c2Bek7FaWfITfW30y3QC3nn9g+r57+fP9Xj6komzVPhNb3WUuBJ/9ILaJz/nXp73BH0/kBcPhuEicyvQQwXOEaBqDMxrsg2/FT+aQ6OSVDQlapMki1nHwHlOOtYY8lcmbGJ1R75QWZtRZXv2Ed767WMFnR7cBDeNMFfI9fagNwpnpunT3e9XD1opAM1yAjTmOhXZUxRwG9fmUvNturhnAirlAY/Js/0JC8Kp2VwVTkTCsPsX2wj/kaMgiuG/MycBALz8rke9+hE05U+iorft0kVN1ywhvOiAWxLrYCAEUTiIUQEsEQ8/4mYFkOoxSMnvfRe1xav3FTcxWRNBPHDs6Kvd/ybuw5VJE9GIK0LvpQRCUF5ljNIflgsatoC0Te9UMJ2kELgBxbI5HcVXAuZ4vj7YFK27qaUGwdEesAqMTEEHdPo+Z/ZKdpARyFSCN06/2Qj6BBaEcfZgCqnsu5R4OAmtBTsBGlwV1GD+L8QA3tKokSpGW0aP0Rk02uu7CGSoa4fZ8Pcz+Rcq2JoTyHtFuYJipQTL/2kQrJUqczhGCbOTm+N9HUMm2MurfNfDqVWKMYraRb+k4akTYDFa7FOyseYWdjKR17RFIZJ7LiBrM2MEacB9y1BwjfzCqKRLveZm3bUHY1oM5XWFfUhq+313KLndibsniELzoHWS843N6O321Xb8pd3QcqLDQAnQFRT/de9frdSdgm4dDL4g6n/zo/2Hi9ktek+BXY7dbDOXffKfhcuJ1K7nP+XhJxzzQXBkoYqGfu2N3jZENkDj+rqi0L5ZwDgUHThcXSqu+QZbY1oZmUr040234rDTOMbfBZ46AfilGcjQq5AeEn7jYqk0/mzhq2nxPPr70t+oP0qIT9orU1Ug0jd2Am8gRATV2NW5/13gAR251KVNTLS3VvF2nPpjMgjZhaNnUKsF3+0pJ7sWl0Bdcy4oYuNI8TvKntpQwBKyAlhcWL8PEuRYJPWCW03BvDKYWNSomXEzrT4ZbbbAYKS9HEr93eSs5/ZEo8aPxYt8oVoZ5lg1FjnigN8nlT3UVE6U+o4UV9HGqgSDPzoBOAhqMT5xivWapOSTczia5xuaQnVE7v2W8c1jHaSJqUdo9Nx1Nb1wM2OrzWlqeX1fWvGE9CfrmztmoWyv+1VdUxsTm8LFLdA+QHVfAtFMqZUWYIw/rBMEljK+7gE+1ql1xOKm5pj0V7XN7DmHilGjZVq4AbPs3FKhGieYBAfuByuHYmLKeHZvKnmoi8l3CjA0InEM29WUSSEc3yKiI8Nq5oTqTmoSDiW2gPr9FQo7tJq4jeLATidswG186m04Uq4Dh+uYSzPohnzseI3E5tCv6qsXzpmYrhn0qkFgH5Tg/YuZEYr+xmOk0Do57og4P39spZINCGEkGAq47dzz1U+Ne0SavvAy7OpD1/MPfYVH1ByZwAex0gNUrO1ULeI13kEnEes+5qPj/C+1FWirwXpRZRyBgzJnvdp7fv2uWmiFYD8jVOAvqeuYoZDG2fRxltj2o166O+pKAoRFQ0HCoIiF52Bw0w0YaRXWAc727Dhh7+za+ldDc4LOrqgIESMYX5Q2ATMl1RhdqMXFU/GO0VeoI2s4aAoDZwiG7/5cwVG6xapfvZz/0brSnuWOCy6NIsAlJ69XzOfSRQWhG4yihXtL59k3A0MWDvqDmxvQBw8Qcg1lv+MqP3pdin1NJN5SjRvgY3jp8CpFRZZQkEo4ogB65JV89+P5/57s1LE2gnCZoRZmaO8Is5G5uB56GFF94Wr/tGWvYG4pB3vs0ys13k1BL8A5v57GAnOwffAej1B+ZJ6CBxao8W/AYf4DRYS1/OgifmvQEgoei9/eVnYeD2T+/DKB/viILF7X15jIb76jqRBLJE6S+ETOc9K7a2Ak3Lhw7iacsv7jmtC3y21eGe4mEVtcbiXSUsLkWSPqQT7nOJEwt50PAGhZ/UPpbOR0jsGmuehJsFZSXUijAyD4z0Mjo2d2+PrOc0gvDECLwkZyWO9Rdoqc00He1+VMwwX3VM5BnWnVagA/zVArdJis+ZTEAd0FAdJUVyk4TnccOb10by4ZQuSyVqso4nxHTMqsI7Kev0q8/2zSTr6SDaDqiOxrAZhGQJmMi8vUpJoXONs/MLP5F3toI4adLnqci7PIPUsMW0cgcxiUdeA/95Bm2zym32Px8j1IhKYkgaVjY/XygJsfEpC/X4QGAboCPay6IYq6GxPuQnR7q9hOtLoCjZ8uzmnNuDI7yzXY/HjDGf5MRSziq+Jze3i7bMCHO/lbB+9Lc7NQRYeTO83e0Wf7+OiBS0YhfGRkywRCbDxJb66vjUtKGDwsBcu4u0cYlBDciO3F98GKtJYQDICtOeZymqz5afcgw2wfC71PuyljdyK3ltNa/0JwwAcVFInutUCpARSVGfdTsuBiRXolLf9RMw4SwSu0R2z23THY5fN51ZkTeOkMmN0kfeeRS0mQiMim2Z/TmHcIeIU4Kn8s9twAXILduChIpKUk1uc+C3E1zgziaEumEyoTmLTsEsgNyq221by0RlDUCr1+ATcJ0PGF2BFqCmIA4j+OMlvkCcJ8K0ay2UKsUEIb+V9IroYVcIbdZ8876i8rdXggW4jn4JzfaWJV03IP3QIgh92lxnMk93RfpGWzhvkymro91Fhcg5puHKW7qdgVrGAi6mairX+esg9LK6YWJWorFeUYnfvv45t+P76hL3w9nNdxC0MGnM9ijJTmBSzh252sUwNdVEUYFZtOA+iclv4Vs+1WG6Z9vVf/WiP03JlCygUXmgEWL0pQXVGhXHfHu8ejb3wNw4LzPaqkK27t4a/XZK3EO9ogfZOCtreK3Ou+wVV9hEQDWEuwK6Id1yYIDcuBpIX1DNwvT+rCMOclkG826XojqXHaXj8zBJ/tQ4ZlqqR6lcxg9tUL36UPW13nInfl/vrTGa2YTeM3wTmVqNX2U9upXhgNr6SPW9ovQTK6K87Gb6PP6yeMFyaYGZUNVv3h+cXsG8TCnrnMek2/K8lHbx0quJsfYwhGzPw75bPz2KlcXNOCxpDkBixfp+xnKGG7sHNeqCcBjPXz65HifshQRfdEgJwZF/tSdV7ts0FPTyeyDm/SPIFuu1kU3Iwt6a/ufwz0+Lcd3qL3KwsiYMGd8CGR3/7CYyZkKoOeGGrBp+idsIbr5saOzmrDDoILnY41uYh47jRcHqhCQP7gAKvsCQMpFYgMaiBRlPfUtyFtKaMkdCZ3AlokAkQBKrnTIU+/MQzL0iqt40ueCdqjbwvqCqOEOpCmrT3Q4YjcuetPG1AOG4WEICfOK9bAdb59XbPxqeL8/6xmRqKecJVasofgIMBZqgIebxNUTMmBKmZrlQFSi2lfM/tn+lAL5+XQMFyW/Aco5gZBS85oSSL1Z2ny4Z1/3bcMIU7WuiT+qYgdmG9EFwJhycdAvSZhuxWfc/dblwhCnRpkX2JqniPVxlCHa6Hj4762kPG5Nxu2Uu+GqDomouj0ww0S0n0UDmDmJFywStlIt+8/JXWzYcQLbq9kfH/BsKVfXvpAI4NJBJkVvcQTQnPerO2FZY1Kds6oeeGEpHXSdbo3I5Jy8cKfSCLyUS03/Bgx4ltnGoyygEavaVlZVbu7HeTp8cLge/3Lu8/UKsjomqQADD0WrBy7jbV4KbUofULvEGBOI2O9rpGrKHVXAmcHNU2bGi5Q/z4MKU4iEW6RFxKGaKxrCxpL8e2zbUjAVxFAJJgtj95JnTDEz6tpbhqGOfI/PuPWub15AwkH72xGbsqHzjcbij3a4Xys+yOL37oeldD2N+LZS8ZE7+q8ZkUaL4+B9wex7P6T+GMNwhPLycRf9jzQDNRSPSxlpgQhot9iQ0XAmr00rnaOIvFHrrtXjoMosccBn1sNX6uJFTclFMCoLtDBpRWwyXmcykKCpWZ/iSfUE1b8ndL6FCJDx7EnAh/1pMPyTdsTkjmke+HAQX8QV50Ngv00jlTSFGy5zQlB9bwi38bhc17qb8Su3WBzxDSCJvoE8YHDOXCuqgUxbhcULQxc6rQ9qXiDLzjME5ri07TSLg/odnTC1Fhtl9JVOErlbbFGAa4EizpaYMhwZ6XVZhwOC12ZZKS4e6pwqDH3iD4E3S38qrO0RwOZL/hqgTVCl5VuQd47MxoCZyyItEZ6vQhv+X40hcSkWY8DrSFYAv/FhOprZs6hjMZUEaTiR1JR1k17OhPXJoxCuG+3+JqCP6JA89v2i6i1lQWgXSP+znymUGLEbOzWGNSbYADJWwvyB7azDeayYKCgTB4hh2Jx6/gghWrcW6O0KuxCclTk1/MBX0PPI4s4kgzmUw5GM6ydyR6QHLhMiux+H7zDdH1meroucDimGc9K128ucot7NCF+PRq3hPXK6IhRtWfk7LDusjIg8De/8hfJK20RXB4KXdjyJqvq9xIDAXMEe/usxSfctuYiu2qmVZEHkHGomkfKSG15yhdH3SJsNuvNaLMyT14sgFQqEjT+gTMIiL2x7o9t/9sJzDtCgVP5+aj1oeLNqxNzoBcYxevEYMyg7rQxB3rYmKtwR771fIoktmUpzZ1+yLf4p8TdaZXYZuyMsdhOGBt/TIE2oznFTku6hQQTPN9/YQWIKxa2ud6leQx12bFmxNVq+a83NKJ08aMCFq5uDretnkcOPWWXNCHlrx8n8Cmf4PK8v630qLHOdwjXlkOs/9rfiYj1gwpb85SQX2SRvulLIrF7IRPMvj1t3wWDZjUE6eGBz6rrR/hN5gOwoYkIySnyANPOO5sobHOxmhvkxQWYAJaAeUVqMnuvVGUyyUSpx7cHX7WTN4WCM8okZobcB1y5DAueCBNtjhj+9WBCAGVZnJ/oTWoU4S49JUYa4QxIELskjSTYXvCoY9stNuAoQcbSdHvaspIs5R65Et2mT6Vc1L+Pkv7nvvU2ORBbeHdzFRsireXVu/asSLzKWs4PP+LJuNuQBprj7xJYxdiGKhv0sbV9F6OHx0pv8E2TsQaLr0AevSJ7uXs9y09cfxmu45L8TOn+lAP/M6vZ4JKXZf0djQuFcjSv1fMxBARTkrMOygChlq3VmUKcVCy/nnX6pwsFfwdjhWmUbc/Zoa+vtCaZGnVXLY/c0kK5bbpYUxqPtq/3SuC01/LBzDetkJPCa0iFVUqt036K9M+qwJQ6AJvHV62jtQXUncnW6U9anY3TqkURTuTYkPCDbjSDUbWgbG25VwHM9Y4VYx8yGYALVrwwwG3JPLy7XIUifGetKDoVyRWc3+Er+xn5ATx1ZRqooV7//F1cCcBXX81o/CaJR8GO2LslDJb1l2RGLZ5DCRxBwSSW0vte2/9dW1NAzBmFuRbMj5z7T0FOa4aXlOWff5YzAM4XHUtN7j6S72Ztm3Yw1MXLSmeoOtJvecllBXyYHLyhbn7lMsjb7yUHJe4UX8v5xpD50c4FZE+dFIR2Y1yLr3h6Y/CvHUGbK5KP4pr8Hsnqo4MNTTHRhoPUPrEpvwh/ftLKsC6JRgsOkDwBq1PacpSrzNqHVAt2xrU+ma3IO40AC8jgyascQVEZd1nd43g85S2bAdUCeKFbQWwLZb6KC6X6OV+4pQR7dbcHhJBx8w4aWglES8y3pFW/Hpn7FlUI2sGmv+h7fg/0TwlMiJjHTUrWQomaZLx3CVua4gpmeZMQ80M/fk43OTXvKWVauSn6qweHbnr94v78yXAblPR8Bf20+/KvRU+oN6tDkoq2TRo0fdtW5CttnkTj7fh6UW0ksUiAg2gNsdt7DhnqvWkMyfjAVCplwfjV3CBInYkA29hqTLHaG41lRmxf3JE66Nb9GUrBUt61OsTxEnUlNSZipQ7XzNCoB5aLpeMIfF/WxDIbxCUNWLhmDX1fPFp9sThwVTyhDm+OxXsz+1MjZSpv9Sb3uj0WnveP80/TiG9SoqMRdbB15Z98WawlAjiC0mIz1R0AqDQdth3JAeiM1/P23UEsTi/ngJJbphmi0zN3tR4zDm5tA0YD/4ImMjXiEjadb15skW+maNQPiD8PrzcFjjUBm6CnHVgAh3qP1eiF3N7t0sZCxP0Dc70To/xZLYBqyBqtHohjv24s0q2gn6VYXV6wgDN37xM8elYzxoeiHKSyaCshnO2xpySWXZO6h9LX3qNuLor/qvzIy6jFlRVPfPP9q0QRfH60ZlKaDtPpvlKAmikVRaDV33Q6TgzPwMh7lIektrAEU8FFl9j72uIewOWWinT1wdHaOi7YVt47CqAs2UTh+xx8fMdvnd+zg10ysFNzo7hODPKqWy6FHiTdLJtUzwahDljG30dvM7VeY6WrBc88gNKmcf59F4Gw/dLi98/XZMCRO+wGjXiPwSckNVbpkyCJCdbQrZM26Qr0AfyCys9Zk9bWI09XzunYDbOeFQsQ2aIB4atR8aCN3800rLDuN6YK1nCanSBwVPnupJEGZA9hLRDsO2T8rlcFfC1oLDcr8KLZKb9XkpNAzNZKVoe4kVCVndW8eipBYYQTTsUB3XxB7M/t2Xo28WuGgqpv1K9AfdRlOZTMDhruUGWPxAFfPyLyB9DOJ5EoKts8QAz0c7G0+myVtbBjpwBorTIVGiacZ2FH+NmqzO4G0vHhPD6Dv8jFW+NfkTV38XSZYcp7C5Mj3Tiz5B+GGubOes8f2O0gUHEMSN0Fj1d0Ho70D5pHoMY8DWi7Ns6tuN05UMOYlSrwyfo1qBS+5meME09CEiWoDbcTOWrxbRG2UsxH/evTzNaOrriKEy+Xbia+blE1IlXjoslHWFobb+isroDfjy4VuKlRwEIsmwcBPX+48xhVcMYbY2i4YTauNsoPNYkGmP+S/NS+cEQB+Y1cje3WIIT4kD3H9tBEA1Q2ObyfqTunOOGVMUb0b6f1c1vRAoIY+HubppzpWqFSILULgCgaO9tppyZknR8AeY0OR59018VIz3C9x6dXFRzIxLDbruIUA/NPwppOilpLo8dlc/TSylHlMow9/2/c385JHwXRXnNKZL1ohxEW55Fd5MEtm+al9BqWWH+7N1nPcqXmFThMwtZdhmpjzBeHqG9byw/mZuKpB+/t5owOFoJVf7R0ts2PWchJ9EINseanAxZ9a42a+LG5gyaWqvQZQHsM5ot8sX4isVv7PXe5Xn3EOoFvKEXiX+mfCE9YfmTUpnMKLIk0fjFJQAmJrcq0o869xud50iYZLF7IQqRKL2opOYKLNyvWKZOWJ2hFEGmPW6TeVG4KLbLxMQf/8ZIwFKWO7aKoBzluULXTzJAkqJhTI6quQe5DJcepCMz9/O7tOGi/NfxJPiNo5MQQkPVx6T6fA+KzJKAB+siCwnegrRgpTsdvTJnPrJgpm84VCVosCG1MP0obFXCSkD03jE2x1ujTmQa1wZnLJWRz0OXTTakXxZ36SFDePQBacU6EL0rGyIbfs8DaFAvgSkYP37LqHuPkWSxbBvOjyS7Gvgzf5OvBnXcQqNh7dij8dPplxdS8ZQ+KQenePmHp/o5NOGLZOp+J7hTIOcscNeJ5ZqGxL+5aHIW0iCQQobqGQJTYsPP7tagjykqxK692K3Lf0UBb02ycnqq/R1+kmtAjGlo4HlivuvE2s/p2HPCtbXg0E49tKEEXXrAqvbu2M6M/CKMcn4EgO9KxvjHxMjzhpv0yrdfZUnjl5wQMucb2b/jMl6nqzJiWamLZ1mopHamjYLmRogLkY0/4qOkhCQcPJaS46PQNI4n4HN3nxObE2g1/DXWhBz/56fU9iHkc1inLTRnyKxYO1L3MMpy+YLMpPIJ7ewAm9RcLtsqStYN2ioORxm6d3fzxy6K2NE6Dx0z7awCY72s+R4DH3vyZOG4gxuxHFCT6tJ0AzmK93SQyzz6krMfwfMyqxEgjBqNtfMu3v5p4FwWq4cIFXbM0bOS5nJ7qq9RoM5ZYnydSe4qlVYC83tuTWXKLCJfDmMhaToAFlkA9i/9Okrnf7MXiYaoWe7C9tae+/mDPItXXrf0cmtL6pH7drPDPY6U9KQI6LDmXaKwKPv7We487qCcfzVMo5EdBP8UKjH7sj1e5zsb+SvsQTmZd1HRK5G72GER/6CBBdycrn54ceEgqW8y5PeupFXztuINkIHAQ6o6pP9tEKlm4ye2qgJiMM30+5jbjv3cdjexyUAZXDsWo8qJ5wNXRf0re8rfwJKJDo5jiiXVWtMuKEgvD6X3KziTIbq2ywpdsp0uEbor74W3kMdzQbZYX+PAeom1BgfoaLVbicY3cXtyFfVajhW8wOlENHNSCF/Ak/p5TY6jVen5zfJCkIjBvAt4ibuOIGTjmC8FXrngWFvdGRFjMXbQfqbZRAqDzkQcS1zNnLf29xucKbWGglrThwXuc/9reQMa9JkRSJm4PROjO+rroZ2o9tvHMLznDayN03RImXNFgaw09FfFoVny2+/W6NLd0ZGlLoc0oIS/YY4zzkkyWJliY7pqENR+WedfO3wD+NNqVsL6u5fWrStMbDPqvTe0tu2J7jmuyOeonokH8gKycvC8c1meYjqWHINlOVB0QDSv68xrIhGLAiO3FeRbfwC3sSOcM8Wyg4ZWbxhqEArRwsbcym25Xvj/Udvj+IxUIoedcQJP6zLCcUeDi88GVqpHRBNizHbVgUsioNstpw3uWpx5SQ1j8NuJmsnzMfkUhKJy1OBWeVsaTyc8+wkP3UK/PMSrA/7zmx4j/lCC0dXK0AbGO3+vBg3NYaWdRWkxth1iyW5eLXQn+As1qMtbLxkLeS8JDsOAh5SfGcFWd8nE0Hp21GOjwZfHrxA3AFoJZuBtq8cMdWv2p7q6kR6dfReMRJDQe+hPVPfVdcyZDmQoNTMBtJKDYJHCBg6iFg02jtWJ9l9SPdzNcc0K25mT13sQP4fP9CLdp/HDUFwcZrnLj+TlSVBblYW21bMqS2v+2hLE6bDVDOOKCX9uV/rRGePTZ0REp+EDo67Pa9zNhDDAcKQ4WzVMFN/lWDm/D73WlmpoDWJdSvNhpJeak1DReIqT57HM0cspuI4irQbFlTX0jKdeVl/JPQ05WFlCiV671rJUaE1jiH4uycwCdh9Qfevw4vx6lSUnI7fMpL9RfplxY1HxdqWWHKWuxOYY8jKCxWQbH/m9cFd2vmZ1bRI+E3FWVd34NubMSb4bkv5XNrHqQgdu1RgLa6BKc8oa/B57x6XW+8SlMg6v0h0LRLqr46rP0QV6T0SE5OcW5SVsevn++wWVdl4wU/ZctWQEB6955xSQqRHW5PBBXjY8x6dZ6KVyEY2+bxvsSM2VhDSCxFST3k2ipLk/NI1eRZ1eS/Y+aayJ6eu4Q0BS4M07x4ejbYSTw5iHyF00fumvAUyYDUBIwMYPf45oi6z53hGD8iRWpwO2cK+bFQTpCxrOeaay84Rz7HlfMuFklbEgbh2se3KKyxJsJd1JyaLs4TnOB9eO/g1vqUIyBY4wY98cPXsswL+3Mr4BrR1XrEmL5PWM3P0eRbbXWfb8Ev1n+SC/7Te/pChLAw6/birblSf/9nQ6YWoQ9XkzEQnOZB1+98pXwIhBpoZ2DMYZw9/soy2JeHP3iyREytK3S1Yo7H1eYkPSIL73tUaTNIzbdCXWSstMqB60rzmauzVUC9PPOtQg/R1WKQMABKXwy+oxDYFICfw6grdY/MKVJaQHpTIUdV3XypAn0WYWhCj7CJv/QzHo0YFFOCHwlRzTelBJfUGLB9byLlRqZJFKeE3UpYcFuMSNl/UfN5gfEsvD+txIEFHWtlx1yQfromTJr9Wa3CTjonML5bI6BawDBUuX1SLKihgRqCjNwOyHjiRh9WTIRWL77m3wxyWxcONcNfMUu8qSWJaMigU51QVh5EM1mXVRTfFHfbNb3fWlHyhdWhWfF+5ghIlQce8kkJnMQPPwhBML/ScEmsmKiFjwqcri1mNgwRL8r6urz7U69bn5iZJbu9BtXfA0gJOONNGKV0I8De4r4VCLq+SgzY2EJM4ApAVMHrJS8n8uqzTAR0OTf+OgaKdaNS+YjUih+u1r3WGOi0+chI9LVLqyqqeE5KAy6EKfueZvo1BmRYbAZyqkBwBpFlWGSOoUZ9TzJ048l30538axrqHAwFl0WUEuMqv+N49zjv2qCWg8lvXnUe26FbhjKQ/v5FdxPSkVirqHobH3TKgjGLb4i0pnMU7dv1wKOG7T1Z8FCjCUPvhNltXIFinqXrAZPKeQgEPWrVuI87nMO8NB91rI3/uUXktailXjDbe8n4I2zI+Ovw2GFK8tUUNk0tSET0FOXL+/ZQ+5OAAKBIu7NpI0uHiQRYhe70sChf3jjhh7Bc7n4lW5yx1AOJHQ+rRTC0ufyAkOsQlL8pIDOTTw3lW79IA49Nh4LWlPH3qDLJnzzkswhkTqUCWB469dCDkmO+wdrtBSVMc9lilOlcuFsgsE7jc1DsYG8BUyrC3WAmGvlXPOc7O9BiTUjop8nlUTX+jFUwDW70FiwwmNCJPwI/pD9GV3lhzjIsJhrEGnhBPXQaHkkk20DD5OJoW/kyozWyC/JeTFi7hk95qyVwWZT32XvdZG8Agz8vQj4/mADEE2xxVVx73/LY18AsMPlaoZQLeLy9Ror2QU81atU6JPSkMi+LErSfU2fOFjztbstGSojIHMG4OiMZtpaYoyzmhMPW28qFn3Q2kyZeqAmZYcRueTKK5ijl/0rFDBKOgG6wYWdx2A1FrhR07i33lazj2nQmV0n915lt+r2DKC2sxSF6Q32FCR5TxSsjvZAMQdNKx86Ou4HXq27BFc7zU3ZzmSr6JjBiKAYAfSFNILhJKZWsgyg3wpo8j7jyFGECkwKa1L9c0+xzCzJQ8w+OFGFpyQfNw8IZQpH1ebAAIP7vQnUbkLAmB6RAxnaoM4r6LTww0dRxk95BupBEZpAeqV7XSawkt/twVWt6yZlSODbj1vsyvPF2e31QN4y4oiaCdSiBuf5tms+uDZcOw2otc+uyy/FyuqMXsxHs7xU/K2114U4ZEofvPPEqZ5bZ0+5M5mNzxaFNsOs4zzkLnbks5pKK5HplxjPcY4+uVzo96py3z1htZSfIBMV3K0n0f2DjDsbJAetB6XnQIJFxKGF2hg9DSvjZoAChisW7FvYPLVyzT0UFgQjgBBtaMAXmd6Tw2S64kuGgQDZfPYRyG3V5KfPy94LiO+KcnK1PuD4XRTKjOj5wZJGK7C7SBLyO5yxCCE2c5Osf/Vh68z+7Q3FGDE7yo1kFJz2xAtnChGm+7CpMcUt1yPo9D68wnRoqTKXG2Mghnsl0wCO7anvsVYOqc0ICjKk0ST5hePJ/8ZnZRHEyVrJRkxSvY8Gqj83a4WTbYYEz59JounEj+NUoc0cjzRg6Gw+ezmDJvS/JhGBXKZQJld2rNhGZtTzNa1fzHejishyFCPWE2DrBuqMoxldPB6pa1C647nJ0QYdHlCVT47Xad10vUGa8pjLs7NPb1X+KciRULB/r7w79MJKmx22wyc/LbDuAKWXFkWWWNkmen6a20N14wh1uvuLdJ4E3JUiBo8meejd2fuydCstLR4eaM47u5BG2+EhWlG1QUkTtolzhm6wcD6RQCo2nSknnMvR4nZFIOZZ36WyIXz7K3jK+kbduu8hBytfEhwML5cm0ByD1qMcmfVdrIhOke+DnQsjnD0h+dmMhH4fGollRXz4zwsRFWnG14rbcKstCmK3OyGCv85TNB7SdXcHV/0RO9mRZOg1J3VaurO1K8u6OfV0zPVuUByQ5kttvPKVkxWyTzC1LQkeH8weoI8cT86f+TruRAm4EtV1OxvqmT4prmEpi1zZORmHTMffU2oZbmIGCsK+IeJ037VZfo3glj+1jQ5KYvmSOXUB9EPsKO91hA+r8rU4dei4Y0kgz5Ogp2jEhU6Y8XfufNoFNFcDcCBd1fPJkGX7OzjRkl1bqz2plrGB1qniOJZkCkeYr0PgGIcUjW+fn5ihXUodyhj55xuu0siWjGh2rpR+ltt5RPVEOeY+UueOcWkP4Z3znPT6yK/BiIZlDa17fWEKOLWKF7uCPhvdv9JjYSVT7DAkmS+lQb1Gtt7bvKtg60PVau72HacjX4xc2Ubai+09pHbMNIGyEfBzPVrTle8CjVtPTi+I885LlpfBiPJ7ygPOarRy6riwCs96wHKzUZF5FyRSA667UJTVMVS4xRqsJXBRFR1kyyQcGRmXBlLWcLYcIhWwcjFh3bgwnsEPc2D7r89DbWdgZpnBjYY4LBQS+q+U/aCmSCDq5DNyvWdPfzlW2iHcVC7zQr6vO0DSaJw6k+AY60RL6db8+Fg6rIWQqvyk7cMy4B+fjg04kg4GQ/0myrxMEeEa79xOnnfKL54dAQ0i+Lvq0Li/FcukEjJyZ2pNNcIl6EBlKpGbGB/04I26Zo/RRVTJ1tBWN++7EOc0RR9XCoCtu5JqYd0N0pviT2CNI1NYc/pb2xMh/MhD7rGu6+j58X8e6d2RQjZk+9PHD2kvqdTZy3zKKuyrshXt/oXyl3poZYZf01C3r5+CjkMsy21zoYiWToCfRokeYe/HwueyqGsgbNSehuAKerFhZBaRaiuMOCiqxIU68+1ct41yVqPsB3W4JBgyUxsg03JtuSbzSYkfF79Ssdh8PKc6K3jdswfqVy3iReJZjGZXoRxBhdeldTjs1t3QUSsmAOaRrT+M7dRVTrE7huzke9jaqlNTxClsvwieFwMJeuPhQcTrAXH8tcb9N6Xez4tGmGueudbqt5xoxGNme51xLvPRmX+ook29kE8UYxH/1qH9AtEQ0do9lfcOkAgz8OT5qk0KzoXHZlG7Fz+tI1lFEYm22QyCDc7WtqTlB+DnMn0we94/bY5HN6zwEiDiTnveHbkXo30TkIhQbGY875XCIPbrxdVCsl17J46Gzq+YjPBJemKaFLeYpG/CA3jL65UdF95ZxSIhL048H/AzkhpdrzjcSy6JzDQIMo55nXutGc5BIl73ikz/SyJ7oKbDQ0uy5bOrth7ywHHqzqnXhSlM3uU57KpLSLwJLNTgoHiUbzeKT/kdd/e0KePQpAPQGEArnIRTEydmxB2nmYD57OyiIZeF/YXV5fhlnRbTkKxzqgCfYs6567t7U3H52Kb/aeICRvnm89RWH5836GnvXwQ3X+C2y9JnlRR2cbxN4uY/LgvAdjKSzKXuu2ozNGr/wW1UHtAFz1WDVOioSDfWEazCtRMm2yYuEtw2n59lU6HLvr/QaONbw7QymQ42rbl6WoC1UHGkQlHU4/F1rnQ6Vcy2O7VXsdySxGOABr28pbLgWS+aLfbZ9y672RuahrPtlfqUbDOuxj32ACK8+3FvPecU0yjwwcOqNoKn3A8kJH+eJ429s6twPgJPPC0BA8uxA45pHUwxAdpyVey1cfsOHWeg6HDZfpAYCJxtTcKfj68s9OGt/Q01wDYD1xQmVUgkG4k02gaOxGGlBdQQP9yL4ogB2CMmhSV2vrmE7x6GNh6GqvCR4w+TuHb4qBI+lnx6AxIur0mwrYRvEpmRpIhRE42FDIMlA69gene/c4zQUztnSJWjwriDHurkNskkUHwsnf4BYZ9WZOVnLCcX6xiKGJGTdbeeNvQ78Yghf51kPF6EA4SX73iQB2s1FRoQevd651GyziXGee9XqM5gw+4MCFeoz7j6QjEYKDeRgmE3wdtnlQ6FcBLuOdEPd76p4QyCSRiirsVLkSKCO6a8t1ZqMt1sAdhm6mP9zaprWI3bd/QC/PTGPxn/4MwgPWvFvGXJLHwV3IwnmLPsOmZMN18wOA9MqTq6+tzwP7Ccf2z3lIUcesJL13JTWxryhwzcrRbLxcIUXK15sMge8iqujXKqdjSaNbQrHniImNpuuI4tDUOoYx5veuYigfZx3HIMuoYYcMxDwfugbVsfSXwZGSa8AS7ewKBQ7dympsUjIi040bSku7Zjoejm07brB8xJ3+TGJWkj2qGYLWSKD/73vURcTyZzNgLum60WMnkafMNInxO0NIU46a6GYb4Xstrb75RazTz1UWIE0DZfsspr8kIFuzqTWwcsIGubnPcpxZkGXP5X3fegP6YP7/xwej4f+/uAXNq564z6ZQ3vj4BHCwmHBKOlJ6ru9jbLPs7WDggmXFHAmRYiZ3iTPqfzlvW0mGsrpLrzVbC2P/0Ied85veSTRbNG7IV744KC7r6lWuZVmywVkgMX408GA1ocEk2ogYUg5ug206BDqYODRikWhjFm96Z8w5jiO5m+6vKFJeLpuF/AqKZe0z28yqO4HQ8tEhPWlyp3udmopTQS6YL7fAbWe9mG4fta/JiVV8GcYSsYn2ehw9wGeqz/sfdmMQfPUyNphCqskYN9sJ5e7vwDqkvp1F9tS/fJH7HYullXcbDFC/EUGy416NF0ueqMB+KN7B70DALuWDcZhNs2BFn0TdkYBxd8sRn+cHedUcvmU8p2qvSGpEjqSrV7Ga/GAuJlJzzAsrnStsaxkIFRkfSbxZWw2FxxadJpYYE57NXZrP9pUkgBgniRiCNnoy1gFdYE11Tr+lfdefFkwvXoPMgkOFI8zMkr2s+bz2m1dC1REOMR6+Y0vbYQ9tmRKkn3/a3E3eLHKXExMIYacq+mVj3Gwi0g9KIvJF6mhXE302tQrGewBzS62P0CLpBhii1DRELy+gdqf6H3opYNb2TNSeJd9NBx0mATxALr43dGTE1f7uZvi0viPdMP55DpPGcg0Q+Db/r5xNm+KIppSfTRMf1TZNfR4+w79UhLKdZCx6Vu4I/AoOYlNM3zV0627zeuMswLiGzQ/kJkjY2S79Sl/IF3JRPexBNqAREwaoX5Op5XvP+xxxuWkoyRsP7tkhY2Isxm9MB1Hi2Cn41ov2skK9qIJpLeYtnyThh+4UuiWKaiVDpMOmbGBTiZDP08Oz8gCfV46grDrnrmMAerKKLseEwiTYKtANTBIkcSCbDMmOkUrWj3/37tZD+QiUUaTk2re271ZEaPPzP3MoSekMIfEdyZD3ikncbTxwCGGm7K4EmYiIbAYzQs+A2Hxs3kG8BAHrLezRZ0BgjOjDmaoEIqJBcEp/h/nVsN0CQ1RI8bhHpWhzD6TKYaruvZl4XMXjEBojl1LmukY/oeMFv6Dzk4PawMCL37Y/tJNZ8kWXt+5Qv2H+AcimMaOhM4WHoOo+zjbwiAVlo5TxiUOq3CKSBHY5Nqcos1yx4xR8+BtjgiOyAFYkWY+HaOLwUeRNCm6V3fsMxBpn00/tqtphvajfqArtfw1Rsa3qZ95n/WNN085KO/7BXjPMqgo6ygzhA9kwubSaA95F3LtKedblRMJ8bubgUEu4++gBEdKBkkLzdwU4fn0HdYVHXtMhb0m/2LeW1Rn9tf3UpAbVW7diPOwXbShbGnF0RX7Cjh+zbNCHtatAHwY+D1fddMbrZtPS1ZqHc/nR5nbGAuszqLPAezWrTR71SEC2UpX2mnV7tfMZMIZgcxXC66M433RJ2IfpP1VYe4891V7GlzyQAq20jPqXdY3n5e439J7X+izu4Yaz8iD0CEGSwuUbMcFI+mb/u7HT12dT2uoAvyLXBQxvw28ceWXPVg338YIFyWFyqcy9CM2i5o2YAEighg6tx4RJnTO64ziKX5Oe2RFaxxYD7xINwUv3IVPse5+m0U7lteYDaIRiXs77zVK7EzvyhvGC2Pbk/YRu+bYie544YP+U3XubynuX62NKKp5QRrHVHQHs40rB7FgqINqhp2uI1rl0Y4RE1BT0xtavVd2nOcrNsUtWCyu0JxwHCh25yIPV8DhbaLg0m1/2/IOugVgPAHlVroC1uT3xsdpoCVRARgw6LWGtHWartNwBSbM3IYQqR+GE8Ny5T3bIXsr8/x67zOOryjdMXe7b5y0YOnvA5KkAuj0DelVHN+ByUqfjzPEEBs8IJUT+hTc3d8h+BvHDiqK022IR3tc5P9aNxfbVa9nDvbp4ioIlLyEhrYJo/ZmHg+kv70rI9E3X8RKA5IfDUObFxdwiZhAaSd6OxXCTIaGKLngg4OVln0ONpcuJAaGW3+83Z22q1R9vzWlpGoXTqXJv/5ObUDEgX5DxDmebm7GGDlQfxKLZ66cvjcBr4KVClxjuVUzC+vELglOEJo+qqnRJqzLWoi8kEFTDgIz4yMA4fxELJiS3IbXHUWw1JONyK2By5vTZHuQ+eztUaF2CJ4R2dbNWc7QGJ7MZHk7kugE28xaiWSH3zrZI2ir9N9g+2hSnwznb19G0rUfvz+Rbt/8jpFWqS5GKuOVh6sVzKPJGJiY3esM+XATKhL9fPaJ9oWFjlSkN2gf3yGxo/IBLZzV/J3Y+H/yuoVCaVIiWz0DtbEFamqe5UvbM9E0bUJ9S8Gat4dRBrRugi+oEILRVsLsYEostCnHqvxD/QjAciMXPlVfYYNHeabsftE0fSz8bmWwMjFGtWNy4ObJXno/9xCC7vDE/wvXAjtG5Kpd9kZveDGoFmr86xLzgyuZyyZv31GdTAbYj8Jo9ghuNx43J0deKzv8AQQmBlIaSRcz1yLPlduW2B4+N23GxizmVTAqNTk4XWgflZAVBG4EsxfsTeM+6/nQ827UL8K608HiNL9Ag9HceC46MxUDdaAIx5uBb46MmDKfz8UPJBayzqgL9rJMvA+LZlb1tOkBhp2mJJc6B8DLkl6H832ucBalC5N0ymdMgK2u6ufzHC3JFVcj5N7+eIvIZGKP2YbYDxvAbQTOzS17F5z5L6yIgxxvH5yPl1uuBSms22DMD2Gur7qAF0zK217bTt+8qx+93Rqb5V+utmSZ0nIPxSHejLP4+A0qmVvJyTZ0nVhDJb1E46Mv4LnyvoOyzhEzPdW133DWUCNz0lpIt9NppP0IP0l6OUM1GLAmxBi/Fmx4TOvm2LEyiTa5GS0LJH1a7DuFPQQ18wMJdF667NeRdK7Z4mN8q9pZBAhJ5xdM4mFULsL/vnWY9zRZjpEVDk8UOOivgGrui+w8XfgtTEQzSVRWcIzRD140t7XNBordAHmttpSkeGIZTrZik6xQgQuD2iNMulCeYImOhefE+3ffQ081Oyxl2hHhGTPzFr2HpE4HymEkWYCDnTl124d+M8yph4x2N7etQzzFg5hxfeB8ZtzewRrSAGMfU4I+j8D0IwBYBKq5stdX3yWfHbMJmzZfXhmvmoCO6ppNw5qqq72ycP2PAlB5aDHCROgB68DI/Tu9fKaFRclpOqAHGs3bV+tfpv4dfGHpktWEFB9w1IRwuyDNFpndx/Ao8vHpJ+PUJbbkKtlZ/f0yv8B5H9onPzGZRm5TuwH2UDh4y5WBofuyic9vyy1k4G5wpQVR71h2w/Y40KtMYmacycENYe0f/uyurbc0onhXJ37DiQuRsZBHptWtK4LJQSZcsO3lhghReW9dYviHOyAhktEK8KQB0whdeca488sOxuKlGApSbIYEJ+Hh7EiJr3MD2Ywb716zwNPlR/SIM5vOeA6eh5VWbmuf5tVIC7yOJ3XIcklbSPh8xcapSbb/DtpNI3lVLdF07CZRWaqSpu/Qze6uKnd+lqePE01QBXj/an3dRXL+IB5XSiisQftbqFqr/DJT4V2yj+FhX24rIWv0XkfQ90pgyVRl4vw/fVFr+W887/VauLQTbL1GWl4nXAgbjsH2DWh+khSZm9qPHD4cq4v3jYK0qd8rvLVdaauiYcdP1iVr2vhssE256MDNW4ONVoW6kf53DUo8ojATteE1CaRFMXudR9cizdv7ZHdJFAYshWt2f3SYkrNe1baw71Od4nxaph0qYUSTq21SG8FGUw8U6F/Ho2DuT9Z6MPv6ESxAWPT2UId4OuCRPInn2tiHdrmbGRwDwCN9iUgCL+U/ZdBq4s6WOz0taFfsIsQdtW5OPgfJyemRU5ArFT4S1XbGicpvSd8tFpasZrGtsL5O3AzxYVDX3qmNP9X9BOPPTq7LXLdynsKthmSTU+C7NnvqiXHzUAtFFlZJE9pyecJXwqLLLlMbxV3170C+mAJyQOS7zuDJFH0PqNh4yMAstwRU8rOWpM+vipLqaq84AErpjgpHLzsqJi33DQxaZWzeFTLP8WBPvrRv4Uf8GKVnGPJYeRkMQXmruSIJGFpX7MYoqaKHa/N99tId1jkZICgwxlp2TQAetRIoh/v3fn3zUoS2VL0fxhjZ7Gn36vYTFK3sAV7vvY6KkNEC1+neNE3yccaWyVL2kbXB1tHmXZMDL48jWr7+gcAjMVBxSA8pqwf/Dp6rQ5Zdueu9Se1wc6OrcdhGEYjle8tJv1WDd7XUq/jx0x43q0SERf++c9eshM7Gk+udlezRJ9OCnrGbWhGsEk5q2BWasSwg2NVKiC4o3onh9wiBC/EFBGxUNmnOpC/VLfca5JHgMd8WGJnvXk22NFmCh+c10vAc7kkO/5Tk73eLFh9KvDHpEecMXRhGHsP+2oUfRx/V/gO+xwJGWiDdH0hFxWyJ8SNj8rJqFVe1+Ed7aySSguSLXD8RVbBpKSBi+clwWbQhUIEvwilR17jConkMLCfngWh/o1Vee73uGCRCgAAjs0yXgi65LD/L7lMQyVzs1EvBq/Veh96bGBuftggocFKbs5J3mnZc3OrwnN9niZroPlQnBqphPwdUKTfptwb356/xEfoChYf/BUIclJQ2qmgYcwVKFXnPRNSVj9UXv1UmVmikYdAHLLBoElHbLGWUA3+AoUWwZ8vKqwqdtN+EFi8qRal8o54tocPsSBqskce4IQcVnJ8YXFZucaY552xo9qUASPCAXf+oXzp25kRpMiIBWbt+7Lvr7UoJg1GS/d66v+MJ4WzJv0buM1I3A7i/gaImnsVvGixHKRrsoq8yn0q8F1kV7tzHRS7+mubUEIduNdS/DkCk4Yat1JBM8jjF2T3sKjWI0r+liMIjWAUG3kUa2UVjITmuvODrQOuqXrtA7c25xKmOZurVUb6t68WpB6yCVIODzV+71vinZXfJVbdM3Iahtj1sRFAcFnU2x9oNrBxzFfaVJWiEHVlx1BcUOt7Ft7UBJlIX25vu5wVwALokDEr5vN2h+5QTGL/3RifaDDuzZ6bx5IxbMrcS3CSBKwM8AMRGwFNAnK9v1/OZpkcBXP0PYEifDkzwI9eOmmh8Y5mZss8ouojp/NTdCjTgf/SUBWceyT/AlTuZu3veZ09daGtAYrTWpGKyP3Q8y+yq/b5z2eWF3TpbJt7iXsov8Bu0xAvLepOR2Bd1SM3MdebSCxaonbuvSrAp3Wmgj5V9kdIJ3Eyk1yjfMFvXzgLS3+MYOhheZ8Mf1I9EO2E2AlBXR47LcHU9R2xz6iej0SOOK7aGMUbeDRIOGG1iN6dQ23wZfNqNgoTziAXzgd9bgsPJ7ptPLsBYh4XYDlgnTiHV1WcBIYmabgJSTRb2HJNyhZ8e5tR9kkYJ+yiqzlL1mByGRpueC/WkDir0YpmLgIWo3tBetre2ZD9T8jhBcAupQHZxAyyFFgHTnIBKJwSwCSxT2JHNKunVDg747IGeZVc8CpGLA3gVTzhPoTnvxT/MtCDVsrZ1K1S5yFz0X61FNBw1zFZ7+Wa7nNWt7kU+iGw8oAdtz7IbSSwEj2EmeAegNg634gCJ3Gh1fwZotbv3U0Eo5bn3EG9jXIf4WYcY3GTJnzp0MvCKvPrrWFb+sJTtsy3GjIhlunH1DMqEpBQzFSBWXfszrQeAFiV7N1av7TyEKlPweHKVmHFuWrVPLOdq2OcX74GRyNv3o01iQ0BvT/N8BLJq6MNvqBrm83mOzR2u4aovIHwNOG8owPnI5jWh39op4r+xpH0OjWu+j2epqr0mD71SG7a7v+4GDk9bFOQ1BLzsYvqVzKIq7tz8A/yp2os/TVUsWrxUN25u/blDzCZd/AtesvrpGc6yn0DZhh5T0EaNnJbEsbISJj444lUwQBLNN/L89Wq8K9hnMg+4AWrVvrbqg8pqrQOFsD3kpiMUJL13kbOkkAfg9nlncu6ZMXbMQuIbcWZN6HECVy4LygoyLXpbpwjofUZJzeRouvc7YiL+NGkyw6HolS0oGkAbvhPOZQK2/R0D2VyKq6opxDBXDV0kN3IioZuSDaGJkEQfvIHls9hebMk73jr+IOCVPQDZLnd3AkpK0LVdwuy3gJ+N24JPcnBs5J1ewG5Utl8RY8qLzqF4Lp0NXRvm3dLqzad+TiKmBiA2CKWNHAgQ7wknYSweq7JjggR77ILQ43AyOiW0QWGnbuoiqK1A5kmQWH77051GYdQW+j45AncCq9jl/ynYCjT0C7wd7xbA2m+BtC0ymbXwSrOil7L4wD6XCwTO6ULExBXC/mvKs/pxtUnnpJaTR+0oU+j5/6t1Za/myFSkla56KurfdeOfyMCPzmRKlpwkuYiB4OZXdcLrwNHPMJiUw8/r/fYVBQ7nG/mhJ50lndpG9E1v65iIRREoLdP8Wx/Ts6B0DQKJ2KVYOfkAgqbLR+kt+3w7kp98w9WVWtgdJgqv1GPfRX7bBw8VqlfOmF/e/1ZYrVyY+RKQkQs2HSOOdiuKhzG2PCAnhRc955Zu7bQCGZEbe3xYT6MVCi/5Fo7NNG7c/AK3UhGswwEqlnCbOkkYBViCzWo/0/fjviRtVhzMOI9YveWYvBIWfde/CwJRyW/L5KnQ4tzuwcdKOYV6Ffq9l6kGdkx60RJwH/ocH8Otah3djkhlAj5n3Kdv73sRj3LBYqF9MV22x4A9qbluoQ+RNB/gYYMuZhODLVLfRJHTiMqD+UkJwcEvAzc8EYPzgwHK0zMZEokPF0vgIEgjJIy0zaqRlOHtD/+lGzlU9neoazWJLFmnq+MwZxX8oWTQoeqgknPdJAO5TZUiBSjSZg78HFMh7A2PJk5021vWUS1qV/5xO2hvbjaszeYSPooHiNqTw3awqPSZFTaZbe4W67y7KPtl+S80Hlz44HxL8T1LWAB/3MzlCCFrcsQiCniB0eYFdEvs/l3ruNElZqshQP5SNz4+7f68pyGKn5G3/IxCERfbgYcs53AY5T/+OmBKOv0i94Gxe5s56rdDBxJGp7I4+hLsiVCPDQDJlmueh71f++4OcdaZ6tUqRqKLFRq+NVhoLd21axYQKjo45X14HqOzSt/67XbbF9aobJ3fqCj0xF1F1ZMsk0u6z3E1YZYHGRegGrfypwrlgww2NY5O02Z1ewpSEtNkn7MfZ34yXUWIkjDVUTwAlpgqPNkA042N35mWHtgzXURZm+vdOUFnRnX8T5xSf7VxPUrAa/Ih5IpcBhyp8kGA9LBkQdVC5Mgocn2UxUynC3SscVrkgWUJHJBSyiedB7MUdc3kTTatA04mYFrFBtmRyui2MLrwAr1kQJSh9/DtTqtT8yRL2gJhE6pcgR2GP5lQQIU/fv5g2TX1lIeHLIGYrb1R5RfZfdkl4Ah4/X4B3rl5Tl+gy6odHIfnkXjrhK96zFtyzNhctbfF8P8oewOeHqOoLZ4IKxZEAH2EczHjgZjyGxyWBbzLiRg2FfJTveB8VVnXHLO7pzTRIRr1gKk85iLvc3WqogEDWTm/ItZBDZPGWrspI/X12xH+sng4/taCiR5ewGF8/hUHfTy7uofW6upFY6qk08K6r143Saj9Why2pIEVuTiasaGe2gU3muWSUt/ShNG3lbwurVtTQOHTnYnUszlRFhzZAWW48rSY4kANeqErv28JwEEFTUtR0wREvI+DeprCVt1nB/ZFxRhNNa2a3eJw19/7A+Ow5dn/Ep8cbK6LOPjEa1be4avT9+jL/5vJ1uDb8PcDw3yTjc14SPUgs996h0UAwSv7RglYWOWQ8tqfNSmtgNM3upTEwCiqIP5icEvwKRcRQj89+rNyUSNamZ8agfAIx7TpBtF7ok4drkZ2OO+SjgHjE5NqotJe+BiSDp9X2xsKHmM2ZkD8OnTAObvuXA+/Pr76sXfo5b2u5fqf3qlpIidjubYht2kMOWYXqVg3CMISAX8++Sd/lrzvV1AASLHxcmO+eBQXpiNriqWVNgxLxecu/suzsozVl7XvqWB10bnSCSBTy4NOrR3Oait4njVyM9JUIWh4iKiF1ZX8kRdLrDcwK+Ggcivdebr7SyuPm0ioSpAIJ0beST2ojetCi8Jb19VCBh3zNotu3gchsO3MJgfe8G9GH2k/25+AihQhrp7ckBE5etw9nzjDZ8YTKtCd3cIZ1H47oEV5o6Me4oButA4ydjCXIoksdgqVwwm7ZTEGQXavkUqP0gY4ItzQh/ov+ToPdX7UxB+w2qtN7iLOaYEdo157VWyAQFDLF6b1OMKCl+DIkLhtq50zkbv1ng8XiQ3S5th2NyubHrwon1/dfaAwuy6G9aAXZCrZciHP5LIyTtSDOnwvcpnbI65evXnDaJULMXvaNB/atWDlgHJXgCyWIx+eyNeNXY9pElgMwvpGrDPixAiJY7SzVe6kpyTHpDqKi3CGDzMVUQLWY6tXZ0fdhlikIJ+6NjWJJuZK2cENIj8almZ/qrbxSIl4guOWHhangtB0YpGvq9gQdy03QUS+gl2n+LQZ2SWA5LX6/bs8I557Xp7UJiooCX1OMJ+lTJCnc0XL+GkQ8t/bJkJdaEOjYKkGt4cVgKjTIgG/HhpHIQlbRkGgw5aEbQ/cusT68zkL2ixLRsa7odOiHzzA2L07onKQRJ54KikBXnJNGxru0PpU9NAD0KkYRr6Cs32KoZXpJvevNDuTslOIbo7UfsmvKMT8inQawUeoxZQHRUnxxoPIWZ0QF/qXTPDZe90mzLvwq1qKGYIUtaZ1HFTMr2/BJwnetO9d4PzCfBQ4yJaYnZvz5InGpMyQrbn54fslFtrHpSWRKZJHCIoJpf/sex/i42bUUSaKlLDoQWg1mBtxrst8e1ZCUOjXzdnelgzWZ9SK80Mn/rSgfyoMQgbO75eP2DiDpvmDG7Q+OkW8Kcc3O34hF0BY6ho7GOxaL+o307K+QjnBut0qc8pXeoiffMk8mehbYZcd7oqEuszTve1BaXv5ybgiriyw3c5Gq6aofe3cDfMV4WgV94eGEaiOp9KuKTSI/y9GGXD84tOChTENWFqwwPpR8ncdGMmVtwGVLgehtrlLn4pJ5ee+rc9O+PpndEjKsDlgxO51vpiJ7x91PJOTnz4JFHdWwh+qkPoDU51Y12QmNq8E6sShd+NCJk4ImtPrQddxFkIrwSTgr/Y4nXybceMKnLJh4OKmJmkW8WLOiKzKo/mcXW+zI4br4IKRySpH4/B/c/TuVztFX8C3jFuoWSHrwKBhXtyujKoiHLKBLP7N+PAd1AsU6X26aPp4ptafvHJUOY5u5Gy8HxYsREGFAz3NxPw07XFzhzlbf66pHRVM66w5/tDdORmWlX6o5aQlsOP1MgPxO9gjNQToXFHzNEFd3MYJk2x/wvhgOarFansFvxjbTi9bkZY0pJtLTXJLHA+qAHc655yJf60Qnrt4Gfz8ou6aNUltBM/U5fW+Pq/JiwEAMJEA++b+U1Hozgk37ikiTX7w9qdXIFu7ktkA+pMXDVcmR9n6ksB7M1cXgPBxiUvONL4x/QgJQ5NFeGQIbEKSZZb5PAdS5T5Des36B+ExhO8A72jSZtl2WvjwHPw4gMbMMkFVu8RH+v15iuwRbiMtlNaGpZ/esNuEKO0u7KTbFOLJTMAAf8wlMYF1aK2vQ+L/CuJQlKB4ThbxUE6KfEm6GY4XJGm3k7FsHj4vftFb3McyNs7oso4v2lyETp6BtJVTTGL00DSGZVJhPO0eYTE69EqaGlbhlVeSA9u1lTnVZAoYhhZsDS6TRe/pB1mUqmT2YjbwBs57ZtxffAFvDZWg5wsW5azjvp0oZS8qP2pJE1c4X47QJJSBoeml8sOITa/eafthYHBmpVX71LpCq2GhGYfoVBcjMlpu+H60+1uNi14t6ptaHIq/hU7wZp9VTxN7wYNbrWd466cnXHYfc/g1bA6T9JLJSk1ac54qAWUdsUllTXc30qRrA8yRHpcTXCVPjsTUEBJhrHDpL+Bxh3A2P9OoAZ7UpxzuvOiIeIKyA6KhUsqustgiNM4AxkLRMKU8zzrk9tsJLIkreSEoQ56ty8gFF9IhfT8v1LV7XMEiWFkNlZkrSuVe2RY6LE/stqIMdoEMuCPZj/rjsQGKS5JaudENCh8pyabhzfj8e6fU46p9jCIulUAy656daifzNGQ47bAsz0X2tC3lC0Gt+oxhrs70LQSxpAUOqNRErRlcZJxW7ncHYwVuS0Ty4GV59hOcTG3vA+1KLKGmi2XMiXcMx/7Bf/9V8li5w4TpMF5xKFtuRFIJsFZwYo+PZrQUzz3w8WTkqUjLoseA6mQMji9hbyZtDdU18gL5uL9aWErU3x+1+GozCWd9tdpRJ+XMVC4IKFN073ey8o7+UIv9EBC/57bJwmLGn+GBCaVfOmBJ6gA44myQ8bgWcYwEEaHHUlpyAcJEHxvwkYQBwLjOJYaFE3xJK7AeffGl/ePCmA3+faxA5VPWL0WKXKl8T7htqk6ChIt7ajVQGvaMlN9QD2hoP9kc6BrsTrKvZLNT/WdyZYASNKM77P75WyGE+XEFeFvP+mjGe6Htc/NjRenPq2huxUnv7bz5zMi4VgsHM+AeGuTE0quuVRdhv9TVIpOCX7/k5ZzyEKOmn08YuNa64zOGoIlrp3Tbfav+CcUa/Xwgj1B5/q2Mqwc3tExhZ5bB8zCinN7OeNRwiMzCWcV/qcqTv7S2B1FExN7CHjckAqkV2wNF9W71d0vNNOsEuh5vSYBcedE0zNoEmcV1hOXlysxfp1/UtDTjBEG/FJuSLj+ym0vKBSbBSbMmo0vldxECsxeeCqw5OWuM912W4c4FkKo80QCmMOnakpzxdRN1u5HSiSlADRM8rFXqFmPIZQ6k9hu0ebb5Im+LGhFEL2jQpOWYdoKmqSOR/1IsVpdkmmpYk7B3STgSonQdEIwoWr+w/7Je6KfEX5+7uX68Hbqrlb2K5SJq6itKZ40BZSUu/uggYdeCryAeCbwbTIk+QBmYIHj5Gy1FYuIJ8KWIHf9yC+MFGERn2nKZ0gALlpIbJqKKSawRV8cJ17jqeXdrfHhB71AQLIGK7SfCnjGcb1q/CFXG90PwmyXMtNZ3fLF2emfuE7D1wUQJLl7US6rwKFgFe/Q60zzLT5nbSwroK2KkW4+vBntFvuv9zazfi/hH+TBkljPTnLTI9rs6MUtjEmWKkujRNbP85DBLfkr95iF3voI1MH9WZrH8aAajJvc4SotB6jV4/+wjGed5ICpxnsJguMIP2D6lcbuMKYa0jsvUyGLEC/ZYzof0Si+clKxTZVm8+3I1HWhBBYc8wNxu5urb5Df8A/dDfLex0lZfNCClCC/ohfJlkwTPo1G3Kyw/IV/JHgAEfHG7rDvy4x7pst9CllWFdn7t8QtEuEGYZ+hsg4LU07rJuz4onFz5v+xHZGwl8YXL8hWeI0ItLfYY43kAzGxzDMdZvoFHTerbM3ZFaTT5CRHv+WIdAGrbM78C+OBa72z/BtSl7SGKYqkmxF+zmG7gZ9sYTbharOig4sp/ZKdPVwJKIw9aSkbLCKJrEdvHKWLTy+wEAfdz/dLl6qOjfarL5j5HKgFv+QHY5ntvY5IFe2MMcoP39kri2ID3LyIjjgZuWHxCRRDZcaK40w1wAcn+zbtn726Zqnu36lgShFTcD/MHm1edKhjaD5/uS1KI669Px9DX96Sx9MsW4ADYmnE3HhKCxdORGIxoLES2Kh4ulPopqSXsqSyvJfBU+G7igdoCv7lpe5j5VcUHjWMwUFOVeTAkCiHs9Q7kQFrX0xuMxYiidDaaomhs8azLwZy8PncoAJaN1lLC34DkBsns4x7/9JTABB3hIdtpl0pCi+Yo4j2KWFTAD0ArFK/nmNwDs2mknkVbatN/53KxRqHPj5QAQetJ5ufB2WEWLDbkHGLRfoSEHVrsiwc6+TKY0hA6Ob+f/rj2TxpTdV9myeGJaVOPsTWhA1SJZ7fKIezx9N9I30+JxUsFrFgxECO+KGxAtne3q0eavbZc84RCIJJG4CllLp3s21wQkUqJQ5i+fceSQ8gm2RryTtijEwhYzPEIBxA3ANjSbT/HWUfuggVIb4NVGB32HTKJ88ob3Eyb5uBbtE3u2ahSO43y93jUBhvefJ5TOhgr/RAbOdRmTKONrt4lZtXWoRunvSXRh+zjvwieJpArdZcI9Zetex8j2/p79SuRujNWIiAeHRkSfdWTNhW99YNJj1JRSD2Rak4GyZXzHVhD9+5Jq3QGicdUvQf3VhGZkjC+5nixTWESGIPS1toFn/xY3+k4wDh/ZR6V1zH84+wKNVsz67ZvriojTnPrg1pemlO9Tguwqp8+Ea8Zncg+tP3YVquIpwWW5B428UTBAOsRxQiB17JM0iYzgcbFrz25/3xu+JDz963DCZcs1+xzeOAm5KHGO4LwDXLfUlGD8yl3ulfo3U2PCYD3KUmVYOqko7dB7MgM+jAL97NpxSboMIFaiIUnbG0SIqxcncBPYVcjlF6rIdRKK7x8lWYvkglBGNL9HqdVYAoM3nIZ1WbuN0x+paviFhd2WWxCAOmy4PXhD1q3PbsaE/8YdumwQfbJ0c+nLoXL7AZNEvbhuuOA187K88KDNzLY+QpRQBBnOhE8wa6JYbMZEoGmMUofNOgbvIpgbA+PrcjspgHPSGcSHXG9qqZgOJjJSDB8saLZFWTxYaQL6epy4BRDVWghgOjJxOIh9SseB3oomWW6gh5/8hHSv7HhLUaZBKaWUXrLwyNR6YhiDled2K3o6s7Q9o6dV7GLkWH6BFphs9Z77c1CeiL/GmQsZdVsMvyJP0nSUwfwhDhBjDWOsDr7jfe1bNhrH3oNh52bwIEn6kXMUIzDnZWGSUWnKIKhVxD9Na0bFktklJJ4bmFQ8aVAHZWERR6lpYFfm8VbOosLD08pnB7reFrm/vqvCGiAjHJFpYbbhfH2LJTjJfEWuzjsa4D++cQ/aPKrve4XpiqdC/ake/MHj8dwXOqFeIWGS238EAnhAeI+xNnB5ZzAFnmVf+SJvdbkiM+N3vdNtcHfrmaajEmZRft/bxsrUDebydMxVGDOnJ2hOgfgVk3seg9IJpK4e4S2jN+iCVd/SieU81gOWex/zW+Rrlr8oNsqjav1dpUjkbjXJNbxKjEAkh27il5GLIT/ZqthQ8fPQ+NX4Q/v0RdxDGoE1I8pniMOKSpLB7nhPYf4p0PgS/z1R9DezXNBMmgZP0khdu9OcMLsVs0wMpcjn1HoOLJ+Z93A72dFNR+9Tasm3aL1fKZALrZ9N4DuGyGKrBQLfugVAERf7THQwhsKCtTJ/1KrCZ/TCYrfv0G9c0F7njGqpn2g5J3Sk6w5S6GFKT/kd2qr6Xilfki/QNx1gt0xVOVoy0VSfw4R8aQ2fmS6+kpER0zp4ynibrTmKss+Xg27ypSitzZK5ZjWQNjmaeCxKJCVWsjJESvuIWeUN08M/pGxjlS71WxQBwMTVFm0iSHKBxgcSpWd3abAoFqsMGPH1KGVfAiletSV1JAWFcjJK+Dzp7tmOoZGkj9JkIHUnkz1jBmasBhDe0m1PPIsjKdfgI1ovt25ObipBvA1796+mddAE6N8d1pV0vElw2EZSC1kFYmB7j/S72aMiPfpND/AjohCNCzO7fZyQNuUjimSS4Rfkpr/Rxk0YiPq3rOVF0ajrBLIug3ismIAcvmGquFcjI7ZVb87f3zYjTRkouUqeOPD21wEomsSulcWkjKtTae1e99lTJ5yMS401IthZUKfmCp0P/xYHVAsnaw6XMUodF5QV4MUR1xVvWO1fsP+xBioWJ6749g9teJZf+Lq4PSJp6uP9wrYUpNM2uikNArrG8ZChx3UHKnyAMqQiTNgt5zloWY+xLedrkCSppfRJNmi+99N13DCEhMfwi0yGLUWa8pwAViPUC6Rmc2pNl/wB3St52mPBpZZeyRHx/rpaKZ3/yuQK+XEQM5iYNF2w0I9UXFgQXnGymealtchuYCbeuy43pgSZYv8+9sBJSpzgqi10g9QpGOoXTsvMaCwioj7JgnKXFlv8/YUv9IOvTxKJsBCqM7rAgb6tsUqhT+7RuhGBaNzaHxD0fcdxiZz5vTR8XIWru+msPazhWirOZd70HdVq1sHzpTdXSYwFXqQidRPghPUQ7Z5ItLukaTxv8vemctHoJ2wb4H4VvSli2NMClOjSV9SAJebP3ABzRHrJEm6hIPnBbw++WdmseK94p20e3QOkjFBKGj+69VIf0f8kBHudkXxtTvQNlK7lROUxSf/lsZTuFefXgL1hPmiDn4FxZf3joyNyFLz3dnvY+6V+RQzYXkepofUntVv4tAiDAXFvJ8vjcuVblBp7eQ+dBVCi01BlnyzoSZy2tOMx86VAEzDnGLAEFvkqU/gjoLor4QwNX2zwpBSwwhRb4aA8Qrj10NdWnkBIc7MnnrkXTmsWR1u6yYNt6ldaF+M8JE8qx88YmG1+G4c46hzz2MHnZwFrFDtFWw3Ssu1qlkSrzu16yXRXJfEWADSP6vcjef8cxNXZZAG/YsVJSBYvfATWEIhYag7NPLCfG8B7FouFoYZ9fr1/9XfMTv5p1CT0+YBs+skDXRCcBe0+qAUU7/DXH86O0mVhyWzZeztmU/gp8L9Yl81uqUZe9oovt+pbVna4K5DDYmnXVQLxpjYZRJLPk46LYqkSHyP7xb7n1q8Zlb/uzxykfJ74HNqbjsWjmgX0IrQ3Nh2YrFc7oe3vHfn6n1rNzzT/DvDBmJpan1bC6mluDumaKZ96JssE5DUdM0TksoRe5T7OGU/Z8LHEfslFb4fsysVd6d/OWSFgYQLgiFrJWyuEhIoEjBfIoPXV6Atj40tb1Hyu1PVPheZJdohFiPWdxDFSxNNmpPh/ndTyv3qmFIgBqM0ZVHz6v1LPeiC4atrPMNCwOAnlLXiNb1zW55dcAeLhRgcS4ug2wCqGKxg45R2hPn0spT5EYaU7zs5FvB3SV2r9Dlq9nmqkhtIG8MLuz8TuTyR7Y72ueDW8XMV6LH8VpDlCprAzwunse7fp6EKHEJsh0FCgQLqtWFn/PJbcLO4e3H19ebP7Ru7icwcfhoqpMD6yqbr4HnsrM07me0UmNv3P/EsVJwL3fparBIPKxozX0635LnHXB5M/CiOZidowuyIgxBpqc4fcY8P+Ls3wgGzWqOVkeTDVftYdPEju8Tzrk1GfRcqILzo8je6PGBCwlZKYSmIAm+57sF6fFrk3s2awICL9aAyZP61ov9SGbQm3BR/5R5Sw40X39nayuJqPER3XN0fuv5j7xmo7ry1GveutXMy/XYdPe9wGUl3eFTKbU4S7N/HCIIeFyHt4EPlkU3bp0TXJQOGRlGwA405KYtS3Wz9BJjzpXxYVpQSsf4te4hx7EU7xOoDxhlIFaMyoXj3FiIx2vRhByMpsHQbge6hP7fxJJvsuHVI5odTfPW7ZNcxmrNHMCFvkjquGFc3HfaBBB/7/7m5ucLrAd/Jg+8/XJ/BxOB6+IhPs5dk1vXjoLemKDAQxrqaR+XI1+pcv/VfxwAONQ+bEIoGc54d3SMocZ/g04taUeTyeFgUsCfE4J3tmlXqH8QIskhHRx8XXIIj0+/xz1mHIiQlMiTgv2Q7aVmUJtNP+6cktNVvcdmNz7b0gquyc0eHMN6pY8TL7q6bXwt0fxb3XaU7cN7dOKmflXyEQzIqg520qmPfKap4ceup5fFK9hcEdS3vZ3D7HK1wjgjOJBeECmfeb1mHv3gaVg5L1/stv3HWKVkoLB2lH3iEA5aGD9heEbl+a5Dv+88/gMaXfWGTUMHtynd1YGtt5GnSePr0UesaPolA5DG7czdmnggZ3F/uAN269j8SHGiBX/dgVGEwPEge7C4yRN/+vdQ8uW7NTt/wBn8PeduiBCUqOAy45Qms0exqXnjYXtfPNq6dtHyqrRoY/31dYowxiNoCGhgKM33tHos7P9FuOrpHlkTCKpFkOt9X9/DqGThRsQAGvPP2n1d6wBWkPGp31Oe4QUlv1YJon5HUnGfhVMADXQ73xvijcC5w5HHYJyVNsn2fWAaYn3GqOLteGHe2QJghkorfbfyo+8esY2/a48dUpF6xyRKmA7chuCUGZ6cID1IPqu15Y4OWVdlqCqASmmk40na1kZu3mFksm7No9l5KMSwZA73Ba1mhWZ+FaekZh5rwa8tYMLWlKblgYesmz7cDTkKK6czI3WMJQZFOtjf27OMkAMHC3LwYJ2t47OhVpTCuvnbHSwNnPEgo+XUSAMTs7aqOqWAcY8+R0ohLLbugDMk3os3QjE1jwcuANzpeDz0DenhAheM7WAYAIpd987ylPDDBAxGoXlR+hcKo8qwyVgemd64oH6XMVfyP8LxpyT467b0gyEVzYRdqO/WHhf+Us9H/PX6SxSo5JfqiOgVJoV4bZ9hxH6cFHDrgejABd2CK43JlpbuzlGPYFJk0g6Dg6b/bvQP/e3G57Ck9ZME9AsYejipHiqDre4AbaRG6pDrPQfsUCSC/72yLlWXhZPzuvS8PWuCRH+B+I1wKaUZGsnJBXiWwGZPaf4QuMHjLCFXshF1ikRSP9uu2SQO1ectBDf3mz4/XlttuT7mCat1PCaMwZUWnzoSAw2T4Tw+q6R/HVP82AqCNujDZjlQMIyPcS6ya5lVZqTpcOU54FiQvDznIxYnkCXAFq7YuJxqBA/pfhrPDK8HO0Tf0nK+CDRMdjpHEQGmnHjXBVpmGUZWFvS/XD8xH9YB0wpPcEGvQlNSQd1k4/EusOu+6pab8LVEA8O8uJpU4g3P1+oj3u/Et+WHpohBnVwXL2gbj5peBX/bnt3f97QBmiQia8+hXLZe3su6IWEHPd/oWtPiNnNUN5aLD061cEg+/QW8A7RzE2XBtw0dBwwuaf8TR1k7C9527V3jnJnVQndy72HUs8vS5GKis1s8ewv602PhWbuTjYtn7NQW79mM/IHY/HLbwDznnKUeRrWwpnzKupcu0sfTxE3jipyYE0XaL37FFcUIpvx02Cy3dAUi3uqaLbd3b6PLeljOdJPRFDBBlwNeKadjAw13lQ7K0e+FlyFkji+ZjVqYXMu3oI55aklqYjvS1A+5oakBJGkRFSS1tK+4KWOTtcsbbV8qwQFf+nLckOFlaTo2KVuHJK92soVx2/B3bnEgJrYpFs0YpzMTkO1iuqxK6MrD9eCs20V5rpHJ87NXw0Hes8YAArpbnzTdiWvrbP8X0FDDaKxZ0KsHLtFDmJVPjzeuHh/PO1zy9LdYGOLtGxUzhkRIZbrq+v9AG4Y4YY2SWqTUG3wV+upx7iGs7hS7cM581yzk/XLbUoQRsV9VNEXVJUFR3d5e3OWMorTXM4CYVorM7egS79fVscyRKyfOnx2beKZtma1pBnziG+JFaIQi6R64dkht2INlrHPiuZsuvZLiQkkTd1FmA+Q/qP8QlhI6hGDhuhxdTfytRP73ZYmL3eoLb9AYC74qpW878BqaOUiKKsb0k16L1V1JSKmyaBdvSmKhOWf7iV6MlymJEUebQtqtGUgfPfELUO7jE3xBCnHQCyCTQfOSyrTVazv61Et5dKm+vFKlJrjoclyEEvxvvFlJlN5oQL08QNaha0nlItlkuelp/0c4ysKKe0cqzrrw7aKTxFqz5n94Iucn8DxAogu+QBq90U20ku/a2ij2/q9UnSKjw7PojxfAG0QWrU0ZomK4w1pvRr83c0zqx2NIWH1s6YOaN6acPX+gkX4oDAkEFnR6NnO+W2uS7sZ6QhCWThXwzJeRU290ZyG0pC3x2MRkQ7fVK0no/9pvbjDLLzZflABzOJDcQvvzUzz1vqxoM0fTyoFsGDcipevh6lBOkDDkOUPFOQyYzk9e8ErD7QcwJFv5fR3cUNRkEQWf6t63FFGNWmE7TBWfHdoF+Oi/gVvJEHDiA066elpWIhTJzROwGFs5J+JgIcJD78SXBDuRMI8woXA6FJF4zKOM6v7aQJixLEkXSfVLKcg12Zdlc2ISfcSaTR73U1Ocm9Owb41i+a3WpOmWfCQSw1Z/NN9TcpxBwrBrznwtoMQyIfcj9bkfunYZxaF/SAQ9iKlG9YDB/EgkOsLBoCb9Vdd0bTkD23J1Gt9LjPsoIML6KPJx3S/fJ2TZ8MGyhWepZeV+YZKwTK5inN6NBDrIzZ7YINrInULLUT0F5FupR3WvyVV3GrWXGuhUl1DSnv9RGgH4vjBSlASWeAoeUytwByuL2fv4hqo7etX3z08KwtcSt6p0kYzMo03btPFW1ajmFqXMsf7DyygeSLgjTpjVmKW2vEVC98wLJ2OnI1gYLvS6tfVpE8JhPEcfoZaNZ5thzoyYeGivTSHr4zmm3bLBX/yJtroWUOCWULfjTXh3TZZcUqpoPTOs4CrOKJbwORBNu86bf791b4B0B9B964ABzffzZc5ATYJcEwxJNgtAZU6rAmu0OrKdZOrDBRrAKVYVjjYRhxU4a5CmV1G+LNmozofgSWwTOjMNymMH/QcdFSmY8+rfTO1Xm70BjbsNuWjsESngIq2z4SSxLzyTAWO4UE5CiPWSFx0sw9+gBgRgQYat9CWsLgW6ihGQLrVpii1ukQrjE1QQ/9KyqSQ1KEzwnLwIZcT1jvB88Mf/rtIDr6tzDDoH6T4RjL9Am7QW/zhv/cwr80MqffmN39jr3av5C5eQ3zdug6gxh2ujoeEEJJxvav+oqDZEcxuvR/km4HYjRXgxAlRISIDjVR9q0fEXuL7ojr2NOd9M5YcSitLG4Qp0nmjZmAJE5nVgJqo1V436tWNGvR3kCtlg+K2DDMM1Lxh47T8epzaeuszUP2BT8bdz+cZ9f7E+yw8TphVEZrTDCI6/OBKnc5ZSHQHyhOEQJFHPcPTyCQvfbwjPQFQKS8VWHSyyOi7yHMaFd/0RhQsjw1fAJ9gQEiJDvfzkNyvWWopdSiPJtsckH/hzLM9YJ9Vds86BjsbSC+yDb6FpnR2DMdUQyOrE3I15oQo61aaB/WS7GZnuSGaoptjEKZ4+aOZcN1mW2No0ii+lQ81gpjEDGYrh3rSNHOL2cHbQOACpX957UpN4qAizkPNPeceCOpuP7YJtcx6R1dMTDZAugEFQ9iQW/HdxMghermzM9IQiGyn6lr6cuSBuIzCXQZmQ3Yf4YNwJnTq6e5KP2wX2BzICN2pXOwFRDOkKlS5Ykd3X4oC3RHlYxw1UXpz2N+oW4bvz8oTgWVYBLvA7LELexVCk6M1RB05p5qx9iYXkkyUCgeLKT0Ni79FsgXWgmJGngAUhahoz5UUC9402eGy2CBOFTQF3TF8/fMN99MnvumJEmTglZdOWAjemjuZ+Wko2tc4c4ZEt64t49be2p8d8+FbS1LNH2bI3arBFBomhncgJc1oG+7kvTdXlK7ItlKWKD9PuVkUpY031N958I0IuQAp61A9zNnAy2Anik2Ih8Vkwb5leYxMKSye4Q4ReoW3zO/pdSKbTNeBT9YqMpw6jOpF8BbCzgu8sodm9x4k0panOIZL1IAfReH9t7i6c3bdOMdCBz4dwz5SOdWYclqZVBPGOM5uk8/3SQyiO4D0v5NATlQfhS2swnciL/PSzYtqKJWE/TbjuiJq6WvUOXg+Kn7vQQ4TGLOvXwuF0Yiif027fLy0fK/dRHyXimselQ8RPcEEbfFvK660Jf4l45+8gEYJp8gwzIm5qMNI/Byo3VYwvu6TUpncsbN3T55VP+HGK4+jJ1/IfnjJSP4K586KXklQRTJu5mj/4+TUbC+FmNPwIqkKbFLy5Ugs3CONyc9LgYQjiBbhlmqXEP/nOGoUS3yJzGGtsFq4ahY9/rmWfR6B5nbWKBnxCeEf+9PUuG/EV8PqP17VgDcu83waPpBHW4geq/e6CrbN+4IW8WNTU3k0w62gng4PDkHj0HTcAd9QFsf6pAcaelgVTE7XvfFOXA+dpvAzeGBaHP8Zxw28tqak+03q6HVm0UTwjxd03qJ0VVtmczeSK9hJUHbvTr2VYidbWj2fisLhWritvDyTzW3/hPAgujCv75UYsyhejs7spLl79ExGelz0U6NfDe/RDgWLNdzXAgfO7wTdQt2isLV0fm7VNztjD3F51Fw001v497JgqUn2vgbSFwxK7oJfKN1woksMfutFwd2xqO2G21pCWSg9ppVCPVO4JWjmeFUGmul7X1+VcmqydztOFJpFl+Ge9asuOikv6Fd+wwmK8w41Y7mipxjSzRPNBL+XmADVVa/7HLVQcybuft6BBoGxCVatezLlLrCaG75f0f84qREJJC687sC2jJZj5+1wkNQQs8deVigdn+WQXdthx1jLuvod1PrOP7/FH+OwK0jW35hq10mVRz5SyxabC1PEqKyEDERdQxX6VYsYaBQ6fgOkj0vIHYEMRhxCX/Rv0LC2QQt8A55tVZHAbOdVoBgHu7gOrjT2keYBjLiUzt9fxjaj3nsN79X7pKEGwcFSOWZ+cwqdapZVIhDOgw/rIabjysH5tlXfak/vCBiGZhsWG3J8+5VQp+pXGv8tOOT4HqxyyJYCZeolP+8XfDMeAL858DywSu8jbXDEXqz6IHH9wwdu5nghP/8L3odgPnRpr+Tzn0DqYdzBGda972slkH/cnBHlv36t7gyJcEAUNqm6q7XI5Ei/xw7fri5QuIBytG6uk/84wC1pJetsgXGUKGpxRHgUbR0kFZ0jUQFvdAEQcf4sB5RPjbZWaRvYas12qDNCo8hA6TI/z7SQcsHNTmvCFjcbQsWEOz/z9meXE1mOE7F2px00BY5clBoxL/w3SBgfH/QYlO+rnFDL0aoO5w5XY7P4eTLvfCw0/ZlitFD7J6Sl2NgIIwhN8G1X3LCPfufh++mMwb+vCTkI2TH9YkYMy0PWEDVPVvEeaa0QCPizHGLYl0nWzRXoxdToUW5Uj+/cSw/lQ03ajgK4Gh/WvvIwgSTIpwV8dm2Nzgst46lA+09DRmVBZhEEcnXZFirZyjk9CMymRn0dsgyc4i9QXXwfjsiEM1zwcDuzQ2oZCMT2MjCulYgR7olUPFoAQHKuSHE7r1IZwlUeUAdknZy4Jqm03rvSfFDZtF9q2ok/NPpggGJmRs5/Y//ZCcmZBNExD2rSmM3AM1cwEt6Tdx3+yuBBtvgb8Jw2WlzNL1Ijeu45zrWRzRGGkm5qfIaxMsXHmlzKYaHew37rbdPhBXH2kM/wlDB14fKW8JpFAJfE+q2iQnSsTpxjaRhJvdLviZrX4EYAPqKf8HkkFfMovWEQtdOf7vcin9oiDj5WE3dJ8eYItL3ivGuitQ02aFNkbLSYqw16YTLcvc6SSP9PZ64KflsFgW6Ni8YKeWMtBmna/L0v4lYR8KGF6+GMknhDNF/jhb1v4Sn5ig+3Go6UEsorf8Easjq3+RBK4kj8q5xZXhO6rvtZwLPe8s/Sh1JDSYcWKsShe/NYoaKrqh4g5xPhg5Ekv2Es2oSAz86wR1RQS9y00nFhRIDL20gjfmfOslQDojMqaQuWcYdbOh9wpGAj/PeXD6t6i8oO6e453B4jLsYgBVMfdbD0s/2wCyKPy+7Tf7X1ECZW77914K9r7lbrj+kxKg/EQuEgCCualsBdY5O/4Iktl9jcINmF1R3Xg6tlQQvCZdS3XNIvJk0leSg1bCBU1QcIBJzJYc4gmJys+MGGbqeXvjlrjmZnEDKyjAMshKCfsq2/Vlkbk1IXS0pYkeOY84NTtOvt56SQCzFqBh/iie2iee8n2LsJW6NkKWUBPJXa3HFgrLkrFDMFAtj2NZqkMdvMePrFhHMzp0N5WiwmFBfOV8hlpNFkrFdXWT/NA8Mt88XF5F1Dd0lhmB+ZInwbFaprZtrYkECPvE1aohS+Y28C7XwsUopTMzpn5BYZKWltLaNNCb6BzC+tWGMDMTdxk/XG7RbUxEXdB4GA8FYEWUh7lgWnLNkerFKoqDre+2UBFVPBLNa4bJPrjKV+XBDXBirOLd/fQ+vZJWzaUu3FokXmO8LnZ7+r6/fe2cE1Uy7iR72WfiIYE/iHr1fUSdjVeMz5QRT/Dtyp7/94Y8COApMWvhBQO9gbCrq8n6IrkLCu3VqOpLNpff+HgtpYSDVmk32vFDRVZbhaI6mYa3KpAbsQDV2d4prLTvinXm0ON4X3WcxY7zdVHL31X0or2X1w2mpwVr5K8F+v2faHD5RKVUEIErYpHLCVCbpIPPSOYIu8SNtF0NkBVK00KqheN5SQW1rt1qg8zQI+XTYACbl8a8FgoTV+xjTPzcsD5xg62COP/ABzjAMZRgWe9OV9PH5guP2bJJaRBZ1erDm8XmV6goA1eBfyTo+NePSieT/ythP2HbASykkNuBNtlsT16VZ02plfb7p/H7zn+7cusYmAYPE3Ah2Q1EHZkeCKt+UDibBq8IW+cIgfyhuDH1Hrwlm+QDtbjTvZkDWCZpNgAcTeW9pbDwD8PlWQWceqTZvHeC62XbmrZjFL+zPketuIfJ5sl/cipPiYyR5jpcx7oOwA62qmd2bG3mTPBzdGmBi4hzzjHeUk9LO/CUQJd9bxF5jc81cj7QQ90cYczcci7U0gPTyVaSnJnau7hQq1YD+dyysl78k6efeYjd2qcx7mt8yuXDgVcgkKF1NUKCRxXeh0q7ccwXZGEyNoQzmk3kdX9yErXjfM5y7hZIdPh1IkkeE+zTVCgSPYz3DJpTIiH4A6ItFQQ4AsvDwYkSW4nF5z3A3g2Ya/L/StpAVWGHPw26AujC8ttUMZU4siz6YdREQUYs8hne+Lz8D0wTnFUmlXuCSSKnyBK66N73Yobz4xzJnZm7Lzj922G/IB29ZSG0CSiIW3TawMtxDbUcnghZCLYMzMPh8dy7cszbepwYWPLZTH1RrcoYvv8aa5V8n8tQuYZmCBsGG5dDmF4xiEuKphpZbzXBZdxNWbSCrKKFHm4+hwBUlzzxw905K8z8eNbSzQHVw+SxLRK7peLK/amJL/8R1wi4Z98gulSCupF6OxF8A1wEilD/wOaqE02MWdkLkM2ASypFtePY1aengEpxCWVOqpHcQsKNYF8rHjVd5PJyczNLpP8n7XmE4VXicQ4bhzTflhM+ymM91cBdJPad7pfiP0VWTbejHCHy0kNfJtrklwkQR/EOFmu/I9QExnVKRRU0wXeSHjGgSVaDd3XIMan8P838URyHFbUkbGLmNF3xjEF3+y5Azm/yrT2Rl78vqS3mq6K63Ogtsw4sRwiWLmkhE+CJDhN186mracved2KHG3lU4o7LPxAHq08wue73IhBIXNLW92iAlIA+IBEAojwlt6LYO/QwcfQ3t0gnIsJN8fwbuDtDZiX/FZKBw7b3CERXv8xOM1l3PWKnlNMaQ4IcG6Ol/lOviOPHBQG67zxM1I01o4pRpV3mtbVjjuSg1RT+YdnVtXvnPv66GO4bdyCP8Y76YzwgoiIuiGfvwN0Bp7mW4tu9X/9h3hw7AwjnQWcErfw4mX7es5Rp6SUcRfszNWWDg7kmsJFdq8qsVpdyNDoVI2TYelDco2Znn3Spo3UKVLvfaYfg04VRTK8UsEUp9sD02PGF3DW6BV7nBtlxLMEp0pfE5tbcmKmYygi8MaGCMlmvRY07GTywKHUzlWkYm2ncd8tT6yTSfkLF/LQXzgpN0wjqpcmCm/keVpdE1iWldMSCmmyqQP5wPBEW8lvfrzwFbqZFT29ztXYafas4qrY9WWFwUIEURNdNA70ri0ORpVAr7oGA4aYpTmmtAHfjnCPfuL8t/9XGuLuN4Xo24+XpqbPTSO5uqSXZiNNoncXn1G8ggvWtY0UHdr4XoceuAM0EKLLDlMIgmHFTzHeo5sCGDtOtv6oOeQoeRD9gj/Nd45Tz/ouwIYP56fVaHlWXx5m80ffKhhDIHzqMqYp7H7iCR6Am+/QsQ4+xG7B08pJeLFxmLTv1BIJeSKJtkQ4iPO8i53s2Y8YzOjvwBLBG18sTel1slRveOwQSHvHHXs1AcLp1IJ0/Mdds+t27FB/h042DELQJGC1wsHJ4EyIXJSj79XDPracAlkPvJqmND652kLPP+xYW0d1d3u6Wv9hOhN/HEa5efdrB1sHBRRBouMBsbaNUYo6K3XahpBuXDYsKaGxi7xbjqeTb9Si9tkmgskbq5ljl2bAJHe7hga6zs47+GVr6UwId8kQjxqPSiflobgKXiDSWfK5Lf6PyfEI+DQvxsoRsJNabNUu7nZYZzltBSojrfY8yAT1yZaCV9sOfuCM07ebWGsUWX78xSF8lAQ2vhKtPPaDj897KqymFhn6POxQZNW3P7yCITyitBm/HAzHrfvT3miFVpGHWARutQvODpbdevNOiJCwFsNXquE/+OhJ5E92XXXjuHVlAdX93/SZP2W0boB+jT0n3mpKi/hQmg+qalnOQ2MGLnDE1+D/Jag7O1XWHC7X6jwwS9xoLsFKgxG3lmbO8GQw/HA/wd7VRbhU2jrbI3nX8GQo0k74EpWOdcuzX/Ao9lf6x7qAekIe2AXYDBGlNPrRgJFrbOs4BijlWm3TqESsBWjYqi1LabCZZ838WxwlySWn5QgTmcuj45++ZgQX1v0/zXxFpHHI3z07HaU6C1pY/pHl2hMM667e9tzvZ8pwDfflSh1BJqLTGTD66kB5eq5Fa3HzEJaPrC2bbAOZ8AoafKlOLKHSOzbFVqplnjfo0DFlMEOtXay2jXyb7bmMZgSLQDts0aem3SPHJn+wDsHA9RwAeBlrM/2ekfNKKDKZNBVNHl0Cv15hmGIfIVRdESXKdiB7GdAkCs10O436ixaWlZAlvJBCsdEe1IuphwcT1a8/aCGkth+R+Oiz1auz/GGr2CPkNxsnBKyDGih7zNT+AxIkbDCOzfC5ZEfbRQ1mL6D9sSKie+q0QDtHGnr4wRBTH1XNBLUyZJcb1oqCJn01ZQB5LR9TTKhC1G19cMwOi23pbab74yOVfOvLQirV9IIeNrm7wjVRqkAGB73ZT969I+/IXoiBpOhdz+Yz2niPPWDPJYHYC/5ZO+7h+xI+ufaQ+1kG+yvBb7aw2COGuaNTLd4qZc++u/wpeqHYT8PV+J1s668rNVtDqMNvZTEeJOJImrZs+NjTqWABGo6fmx88MoavRG9xaVFVh3JxIWA+cl8gyeCtZqVEfGVLHdZ5dFqSQTsUI1LnqeXx8EnrZqR5SLaf8u9vLn5f/7ancmzfbu6c300K3CI+lMSccyst+bmoAScVkhOM07NG2mdsw21HBWKmEd+UIm7FtzLIyfahYEw1GPtBMdu9NpgZLQekRH4Ywn/FCyMp60Vwjd6VVcQzs2/WEuq71B1Pdx3iEvrkZFqcyuD0iPqoyCm+kN8hDrJ1RKyU98UQDPq935XxMnvIJKrrIiOf61Vx4xyLm8MvVDySGDtRbzUwQkrQVz+aAEJCZ2Q1Dr+c+l9z9hq6yHt/Mvhgp7YGGke71XevjpY3Vvmv7aRjkhPYgQuKmqTfCmzV49wvF/LN9ZW9Y5rt9xbTxHjeEq/XV3FGA2zt4aIrMeK5WcxjAiIZ4zM89Mn0AZqgBDPqTvEQzZk7x4JOq1Op017sYPl7Vuim7frjpq+YGuO2dMqH6lJACW7gpPwfr8bt+ZTVUfChzmgwOY95MlKbx78D6Z0eYVnzm3Q5eOFaUrSLFMxW+MCF5b/zi85RIynGW4Ue5wOcwsgDS7bYlighaG2h1QuEY3+IBWXM0B20Hkh6tMzZAaMC//GnTE1JX2j41fQPzS2wKhU2b1WGPsamQur6irz5IxQrl6+yfxcaTOuWRUuwWOxoMpBAK2LhvGb6MsXjbqjd7co+PNYe5JOo/gtBXMgNsLwGeCIJdfACnBPN4RmYoha99Wrc4h/PW8rn8YjHomNmy40OpXIEs8j2YoKeBET9Vq8DaVwJTMSr/hUv41OrBM+EhZOUMOGhSAg4WlM05HWHtaFDWeks3uJdZcnbI4v8+BHZpZ7QyBY7dDi4/cP0V7YKNhUzLX8UxmYt42txFYjl5Pg6/Zibk2x66WzZXY4Cev/pa7GKxSvMJnO7/jQvzHM++aDhwj7M66OgQ5ryzx+CHOP77EOY69Jn9H5yzNhiKtxTcD0ZcBCHeDQSlW9iMKF5ueDNun4X+ykP+0GTUX1YLlIZ3njQVHl3GsXE9eaWnERIiuE9+6TehNmygFfceY0HwbuI6NFF+FdrK5z5BN303IhhrCDARzk60yK0Mn1v8uYfJDBZpNfqwsLo5MjpG6FskwPlKjg4GcLVf1Vu1lQQM7qSJk7nGVKWe04drHCwHSD5NdrMMnjxf9/SEN0xzXc35XpML3PtwuVfuXIGetrIuMyiRM0tO0kemUCv1T1AzIuD12O3LLHxRdTZ0dP6akV9D1rawyuD90pyqqFQBnA6BVJjG6Lk9ppQa/DYYzh4vPATrtssG/sCafHvy7dA0nbwRjBwymOo+G4zm+cc+mkONJKHTPa0fIK9wInuOf3SLzOWLme2/XeN67grRhibDaIFXr93SPM3o1ZMeFfHlxwgN8JOX1wFVDtVSD+YTsL1CKW1IrEWObCLdVw6W7AxC8UoiofzZLfF0D1rJNDWbRc5sbdT2LBpZ6YOQMBMfv4y/DS6OUd3vitSOQm2x6DWCxjj8pw7dGz2uJgZgj40xjXQZm82f3BvrRcD0PHZyUF4fb48zMLX98GD0lbNunSxjuksYn2a9g2IATlKZgj12z/T8mXN+SmCoq3RzKvcrEFUrAQQnmGElLINpXMO+CTj0QqDUWfiq/jdS7IyIpCToO20262C7LSChOQMAQRcTiEMMtmDQ8PWTtE1bpZWoOGKoGK4IflF7OJ2hALB3scZ24wdW8h9mYiXTzyc1NI83bsDTPHm5iGKUfGOeRU4vA/6Y1XRSuGhKRVR+LRWMc7eHjCzgRzC21OLyNcNA3B3J+N6fDpYOMf0njqzWNnLsp4x2fqa0xVImGDYn8TV7HFHtcFgZgYorJYZlE1HjIclJ3TA3URiefDZenqsjxosOzV6gakgnGpwIlKoNpUqjVvsA7brLpYwGwmmHl3Fb81bZawiCVifh10D6Af+D8XBMIVSToRgafFpU3cTT1PDryDEW0uTCIO1Nhgrnjx2Nhhq+eeXdx6a4Lz6FCpcaEi+X9YLde7Vv5MNpsewQdXzuEfywdoeMx7AW0XjPOEwmdfjnbl0mAMoIS3WDz+kN2g8XPdoqQN8SJ9iFWAL2uBg1/+6ozioAWTnEgfSQE+XpTWYwqjFGiqkjce2+5wpJrWRzPorJZRtmEdgoW969ZMgXAW21x0DJrXK/HJF6q2P/PjMtzwkl2pgHGPxawjOQXTrvRWmLasAHOmQ9fsrb7QOz6qEXeWA3QsF8SslMJNnB85D2Xisp0UWzxi7MBiKAcJK7hK1h8dsMn5rE1zadxU7n2/BeflsTHPXgq/32ucNrw+0dIl0NHq1RyejbG6RnQZUMBKD04FsYIGzZapqmsZaLVKHwcQtmbJmvK+g0bBv4GMwewbnevj4TNc+eXeLIo4l2beY+GSUVH2fb2GbpN7HPWUNFesgmjHJ4XYV0YxrYmfAGwMlRrd8VpJbnRX4+9mPJ3U1GMpv0BK/6G/nFn1Xpr//nTHCCTerg5jBsjUS7U+MtHZ7dpTmL+OEg1jqBpxDlKu/SY/CR4I+ZqlAZfZXnhYrAa4dmsi5KFBRCTSaDVX6rdptIP1Nz4nFAv696ws+jDOH2b4CuaewzWcryJSgJJehYtcMH5cnrVu1jeiINsZz7UCXwj02kDfS0P+gkkBjjl1H9CA4q9LfUNflx0owV2x/Tk+LXhcwJZ0pOrH9qbIUeQzQwaO07cIY0vlNJjfPh8mRUGTS8IlslQSLIx+cSz+133JhTEu01D7R2Ty3gIqqdc1uqZDQmUhugBO9pNkgenv0TAS2fjfcDol9qCCl2m3aW1+wDwNB3+jmMOKJPnY02adIIoVyCqMB887W+kEuY7QfGF3mcxyik4faCkt9+SgypE2V+3qmNl7O73B3VYIJaLPWdtcqzlZ3N6ArQN06H8w4bjHnBN5hJqKVc7P1CTFUJ655MiW8Q0EcJU5mXXjFu7pWhY8Ba9BVLCtQShHSMjsK6vOzHBGPlNiKPYogT8DNK0q70wzfGjLcgFHk0q1K8v16rBx5FiB+CJ4DZ2m2Hon8pU+Y9sDkMbI+MWcPUESoRQ4P2lqJ/eQpOQOAMCumSBOTw8BAjNELwHHBFWr/Tcikykui1L6rNkJq3uCvd0jK14OOHay3RlIRWubM+ofk0nvK235A+uXez1/XoAtqyRMVanjsVaiAtAz5i8ei8WVbsuzhUEtox3ftxdBFoxcuK6JfICjXu5VUB14Ukc/WEWHFm+Yw3o3HXSmCbl6svY15OlLXXwb6tp/hUhG9eze1MuED9vATL1Wrxc7pSMns319a6++YIx0V8HZEM9YyRYmtTDmRlklE/vBQ63hv42Aq93MQSsy/hZVHfrnI2Gi10OIpi7Hx7QiwdFDVSyxNzNYu1pcna2YK0miHfWMXWK0SLDLSxD7Rr9r8SnJmPZdhoTXqr5Cyv1kuHk15UpwXduMUnOJbzWffTnMmUTRPTjEuIanoTex6kQA9R2hJ7aEdsUpQC82wVR/r2gduS5K8UYH8fG2yD49YN1R3BmB5l+p+fGgMTgLo3sofIKogOzHi7OArDcunTv/HslpMTPXS0R1i0gp5AS1XgR4jzYbDpTNOcPBphrWLT2Eskki801WIQoqBzrT1zndvm0sO8YyqqhRvOY1jOFmaJZts25V2T5XgHuQP56VQS2Ksdljl0ntRc0Xj6XY6di7FXEirXQZwwNKmil/YLz16zLc6aKMo7BbEdlpNSGZ/YR/lHCGAnJ0dKdeKgwv5FJdTLkieZsLPeAAvDCwV74bHXxvm5rfu7/DQRyryb743lt6bWsiBIkIL4dY2gpGbipx0FYaRT8oianiYBmk2wDVnYFFQB39xEEc4sxAoOQbKZEhpY9h7xPMFffsjY81Vecd1phbPuz57+TpxtN2IU7m29kVVOEqEhsvFNd5eeWdY3t+/P9YRQMp3RLVeT1tCtai7FaaHIIeCqP4F1xzc8WqPlTlh09e0X56lYc8KRO9ZyXeuqUG+5aM/Yzinls4CHcBQEISedClsQqvmtCTYglE4SIiPxgj+WkGhmUfH8jEfYvwBG8vy4ptRkvK2Tf6kHrjQXH+XIuqWjsw7zwOMb2NYBQA+LWzqWJHTw6u7cEJ8IMJDjZnDrlTjbzGp1YOsruy2YHbDRzfuX1aWziwVetQWTrJQOPCvKyQnV6YNcZTwme0pUTbAKxWKsNjo10ndwzjij10+gQSUcXGA1eUyFlRYhlq7Gr4rvHAZWVIOW+ON0ctSO19SSi8ANLzwiDn1V4LGJS99pPksflqTJHg+ut2xs63tl8Des/Wm9vAsCwotvJMRh5Vj8bGKGN2uR1pSe39dInmBGrzfYPehXIpCY3p/6JD1ivb18kw5F8kGUokyKs+VhmHOU2kZTKKU5CggWz7KN3KcvzCwwUVPwuzCUI244GpQp3ZeD5HE3JtlqRQ9h2phiZQS/aVuxA3ECa3WAIRmks8I9SFrangEBHSF0K95/eqS0uAtMv7RF2P62fRRpGZqUp5Cn4Otpv2u/7uERu3+R5dOWCD6Ha0ATGjmkV356c8e26x5cGnOQhAVwIrXP+Zb1WGjGNToPWqD0OIbIk5BdnrDdzXaXEjAstrXEXiH2vfqGgfmODjfFUYgvv4ouMmj0JQMQaCvjmAb/Py6YYHlM398vT7BqB+fcqirt33pRaK87sl1uoqprT50hJMHyfoDyZ1PHJkXlvXRUx0if/s8qVjMyIWfwcdOQJqq7PmmyHmx+b8jVPOYbZyTBubKJbr7Wg10FV+rZzBOngT2vw6OPCGeAABjnsrvG3yNgBl9zU5bL2hvpn9XxVlzx1P7T7RitDq3XBAz+kciFARbTPHoM2129xN9+brLDAWlPGYJAfTC7Lswkuwr4WnKakOqjyz89LFil7rrnLRiXv/nRoQRISub94o6tMKJRPtHvJ0C+Qv/Zbjl3UabrFBAmV1OrnaOhhDx7ec6O+/LraUzq7v2fWt5+RZWPKvyNTItth++AnIqXKretktQLhnZ4bQN8tc90wEe2OlE7vAlKVul5WHHp7mVhKcsqOyft27M9O86w16Cbv2hBIVlagmZOrKXvtAl9vvjbpWedXDqOLocOZPVvhHCrSNGtDIvDlCD7DMISThz/dPK+QKJNm/Htfi7wcrYOf05KMaeA4Gq16AdD74mdOQ4EVYng501h3rJoNKh0zUMELz1WbQzV6rxDZg0LWGafvRLnHdbZ2puTygtec5QzuqpeoyQ2N3Gs8lrayIUxEkssY0rDXIqXbncsxd7wr1EoiE48z6krn4sWaTtj5PWnrzHOujZyW2OtuQ3cmi4qhW3dmZnTDy9CLC6l8bnTIB77sCgksNt+6gSZeeOPKloNNJjRph7yPnen1TOoj/ll+GG5oITfMDLN57r0qgsYE5W45O4lPvkrE9gEVxzlgmQKf4dgZBd9OmjluHtHeHL440dfkE2fG8zyt9PjTgE3j7RWk5Q2K5YmmSjgoT/n6Hfbbs0WX48VlaDNJskqjDgZlUYr06OBmRvItG4ktrfnDjfdDWiuAIdgieLx9bHK/0e3OEUutdkGgZLyFoRpvfqjsbJ7bSki0flLq6pJ/yG50tJMr5yXbwJm7ck7O9XKg/AstLnm7/Dp7wtO7QJojTM/gjMJcRHlK23qh0dR2/rFn3Fokv6NJzRttUOSYqn0Hxx3DFm63oU8ljew4jSt06tKRgbhSBMKXiebWuRrDvnSFMj4XX30SC0w+ZwHBp1UZGTIZtKmFjZO7NAnQeMaokcEwW1lVB7d5kVl31v0pnfR22c4sngjRKcXVKAk+yexWIH1Dt/GczoHAvn2ve1bsD7owFxtrfDyYSlEcxVV+OjU7FU1Mw1gYAAHVXYkr9/Q0HwlgAD3ZpAFt3AH5afbkMgO00A3AVKWRY/Zqh6nJnpiSYPgiU8W7KCVI76G6DjJkUhFD/oEPbUraX3lVcJ4Sp/IYsIVvHWIukcQzg1390bpgVe/1HLzD9kf3ENtC6LPNWLwz+tFMPL78NtqY+waOvSxqDTjZ4sengZvIMi7pVF78O+mqciYfgBo4WHW5hR+eWgJxVWZTEsiGh3RaWy2LB/rDeWg7YkWx7Seq1YytJ+8nhvwSOZM0w0hdZi8vueRtUDSJeiw5a8J3mAKhdETcP5QGBlKhlX5/3bu0LJ9eDUKe9/EtjoebgUSor6An83HNswA5vtGsor6CGKX6fmWYTc5U+/EU3/N3KP6lgSoQuoru8X+KkpUr4xO92TQNw1bnySHK8r3bvxa0lwC9UDZISJL7vBR2oswsjURkXpZeEvB/wuST1ueZQFld/MeiwPyNo3YmHC2sVbn5VDCNetYyTVrYUTy5v5qUrLjKCME4+z7oRorP5RCPzOLV0GQQYDv96MI8v5CgeTjPG5PH0hnmXofBcC3Oy5F2AZ3aj45oY/0DwAl/j9GIM2/bU3EzkUwqezuF/hPnLD1/XrPd+uZtcb+FUGGt4iWLGmknwcK4o1fFhBnHTkpHmVd/KJSsHhRVSRVARpGdywr5TGcTWnCyAWZyaYm1drOfpw+ycZs36B19/0QH8IySHmrwq2dWK0nex/mMxdb3lXijuP6CCnRPdBPMJug8OA8KLjJV4L2w2U6I+NlF8skdfeaZH0VtCdKHSRltM8NX3bLd+E2gzXV1gGyX9LtclKwzjzlZ4QXM2dpBqH/ys3tRe72mDeCIODms+Z14H/O0MXAKm90oiJxmAtwaRDA0fuFqcfgqBbRHCk79ijJo0y93F3xrTdTfvgxuUJ4FWujvC4SESxjAnXLyE63BrGglOz8UqaWJOpjX5+S6vueel3tteAppHaI8JQQit11Y3nqTWEhU5kdFkzmgIN1tREDlITPgw1yf4btc+8oEFDtAvPoCcxtyEFbLiJfDIuZFwkB+WAKOh6G1aIfdKoBpSBm6uxH/YBiE4Rfy5luxTprz3S/q+BhhWvt4cblI41j/ghkTczAYlV3IIJgptMZ+8iX9ZAt0pAJXStrfdnguzMCEgg/O2mjLhAFDLOlx9J12nHyBUahq/e8OcbM+4hQuPYJ/j3Cam/LuhQ3ki3y31fBAXolLjlqjM/OWnSwefFOkKMaJIEDl8YDNA3TR/EzYN0Xzin13Y8BRXs3P2gqQfGtnzyoOc73AzNDhWeFVg3ty27kJ2Tye/DdJCpVxDO6/WoFXqgyYUr53xTsdY+w9wTc7ztXCtx/XkYRZArYoCh+2wRyPnLHY14j4UynAsouVw/QCmKtckk5waFLlXeNGa/jAYiiOOCm3Is6Ftvj8BcMJIcVs4l9p4m1+PdWX5djXDrZovlaY4WkJh/X65TRruMNEvkyFJLUuFSQp10gGXisEhgT287aTyrZNiLmlNIX+rqpH5tB77wkr2HeMDHALPzbWYQGo2nEZeP54mEJCHZLgt2JDIXqZxo9IEX7WDyoE7WKny057y4zNOVXTlFScyIKaTt5EO4OEl5J/q9U4VsuXsMYr1VXlENePuNGOQPpdTWu5KxXafaIT0Fd6iZ+wFa9wkXJkQD68h5zNAnTk67g5VSPRoyDP1JqXvTbAF0B1yA3Utje/qCPDKDt3ODbPbCiNNbfy+bXKiZTShcy+vP9YBQ9tUDu9QhYnoTHcJ7RP4gdIavm1lTU8P9W+VubdOhshLnGynzAWcFixgBjMI/pMSSGy/8bDl9yzrWwlrgkSUL0q6i+1nrLr505plH4M37Ueu1l7VgHZNDbbvIYCcGzNFSGsJ+O2hB5wv+HC2VTKvy9bec5kCvzydtYn9CUDe+nqs15gxoEbiHmzr1PGSJH9tpAEfgs4zjdlxQVjAaFOT0lwuPpMYScticBb2ZGGkIYXavfzG2HeOHDzUOzC8SVm/fpgV6E1xOJri/o4HFbNPAs5GZwXyzT+IRqxlSXRzBTGp7xWWRkr67AVxMPtEHLiGGNC8fwt3l2XDFCxenitgQo38jN9kr9AsBgSVlTnNkORJMbL42sia/kZvjk7nFsubjMqvrPPVRoYagDFHQnjUtcAgN0V1klo2ll6BhlMuXZts1M2faTOuCtvjnJTsQ3d46GOnM5OG2Q5ZIeg8GZjmPKcTwViKGco+e9tTAuxohQPEoOX2TEBgsxMMO1UV6j0ewbX27fxzvXkTM/J9ddDb+9eKedTM8FkvPCTZSA6W042pZ/CUEz20YeEOL5ZvA3kQc30VHrWhDSivFh9Jhpa1lEBbKT96jg+S5iRLabbxQyGhDX/V7Tkpq7oRiDRvqMl+qbQq3sR83gvoVg9xMBY+YKu+Y05PD+nBpAGkGkVnHjWXTM1Rcf45nLRX/GiPtgf7U3MB5ASQLHrE59Qw1cr0qpUK6SaCdr4q/dy60WJvGa0oeiFFurjffHNyDkFEW+gSWCVDsLjh1rkbOLs4FELIXKsBIfBlxGkfLH3UF5i2lHaZq2rf5kO1K4S5+3LSaL00wt7oNLDxso91Lh9dmd+gXWAoAZ2aQggK4Xqj+eMecSuKOc0gx16BrA74U2Zcwx+yql6eeU04MTklKxorL9DeuBQ+4bQrzEQpYq6ZMeC0O8k5gH30urgo/W+BNgntKVV4w7bboC9b3RTrVkFZc9SxuTymk39Y7fzxLJse8BZSHGKADAAUwBDMkoMl1ZDEAEhu1SEBohdA2Uq2BSeG4EpKUNEqBscArWbjXFVdAEccwOMYALwani12rWug7AhH8LOF0qRTxf6s98qw9ABDulaKmAcw1qpvFHNUXSbalgoU0eOLnWtq3NPGflt3woGo6tIblMRSsgTwS+aQLxK8crPLTmfANw+vqU0MvCfcdBKK45s9I7WL49bIJldstK0eERGwQatzx2QzWctCuF7BkUd5hbLGP448VpeYth9qY2ATo7nuHrUe+aoi5yN8DfjCAGpDwNoNuDHVyJHVp6OKM4IhJxEgqeM+c5UfqxD5gTbSrhcxlpopWW/xE9B9chDJYapigaQkeuyQGXtRRwUm8gwQSO53dN+TYSYjqnQH/a6/KEnBw7Pxt5HK5olxhHqBcsf9DrTcC9QeQZHXKlgEyVJQ+AB2GxY3DGl/n9hjbarkV9PhhPIKEmUsMRFJH9wbY/qq3G2kCQ1FYO5lyiWO7NajVhORt7+daU9NhpoiQY4AeVbjl0Tjpb7j6eZQCEjQ63S8GsB9EYkoGuhkP7Es0AHlACnPLrXWGNSNvaTu2Y2jJGJ8xGEcUPq+CQcMclgIy3csHFGdqfq4c2DI87hMFMHG6cp5VAjoHzBkoi1Wli/OHblt+UQKaKCSY4wlWo8iSggffrvNTYnyixMVJLBKUtavymv9t2UvvBuWF4fuHFbH0GQzj7B7ch1XA4msEfo4Day7n5dPEg4F1wfD3RX4z4MfA/tMz1cSVGTzykHwoIIsMc1DU5jcObgLa4sZEwHovgsfDbmx7n/PBarEUq8C6dPRoXWJLtAg436iMoOFJy0WNfLUV5l9LlWn5vBiKcXaX9APMBVG36reyVKILtTEum6B1FgTQIdOP18rirVEgqB7HKTtA2CPpa//qDa6D5Fa9A+SN2CBxl5lczry4fBotdZRDDzLqEiAxy85gj9esN1pfQ1U/QImkwjc/LumOJ73jEm4yHbAEvY1OGob3ooZDIZ6DKnYV39tDbDHtKAl2mXic3/9MNVwqZ0unfuqxZ4bjSpNJpWL1eyVt8zuyedl5LW+PAbyB9A5H5Ybf3vueabiiG79W8Og7gxD/m3b97dLjrFw+OVEzLcmrM+JfjzKILp7V+2MgRsoyAA8VqcVwhfUd4V+GpTqYqLWEeso5SRQElN2Iak2y5WA82EVIQcvI8EN2ZHZ6LO0/iETFyYwpqPQq28605CRRbCg27UnDeEIcu95L/r5sBTCeCjabQYqfkUaKiIm6rm518OrRGvEfLpD+D5Npbl9U8I+1aKxDxgg3/66EAHrST0blTCyXSIYeMtHHyyavuV/SvQqq+CBWXlTruTM5s68XL+eJ0KcZtlxrdBuPXSUrGs0egTqAzmJ7t1yezjLKtkXZzMkC0455QIOp5HlyKyMBtn+7JQS3oWkvwfFsfUsBO6CQ+L/QyRJXxmpuCbHG91dl4C9KHOxDwUFjxNEKI57MjxYK6i2FzMZvNpdYz8jEAtgSymWCkPnGudGnD37jMRDgT6fCfs/l7PT8lyXFKHFQV3kkSLRXsjfX3c4xH+diNrsJ5e06y8jfvjcaMwEIYdUgod7upX/Y7nPO11tX4LOmbynzcnhfUNK1p//Qm81bd6iIAqtI9vyMxlC3YVHiNiK3pzF0ERsg2p5bFbAcAhXj+Wfolo3PoqVifByQStTlSBt4qcdb65m73OyV1MZZHMcy6Wd/nzF756Q66KlFYL6dQ83rVPi8XmVKeo+fKzcZPjzwwyGXH7Mr8zOvlir18nkOXXheIrMplGutL+p/tFPR0MOBgTNxX2mJTa7Z0nxFqG7c85MRlmD1+J+86seOc32RExoWYU25Y1unUeIHjCR/SrYTAp/ICUxrILCNZSVorpSqhgszfVXGDQOyVmbQ7OYRL1Kp6FBNtHjE1NVm0a5HCw9jIwl2hQx6rZg087HxqLEL4ilIacPjiEbMr2yKly/RVcO4eKiB3RviIHtip70Hhxf9Rw+IGLHKzPMJvwnIJPJegBZssJ58r/Q5oALmb/ZasPYYUvESIIzQvI6QtBp4kp3y6PJ7SBp+hXRaeDNhj49ztR8UR7XMOQQ//CYwrb3cehy4YCv6XWUflJVWT26uWLEcH/GWaF2QSvRLDHJZbAtkkwDGtzYpUQQK14bND5sfeyCArQs7oIzPrXQGBLAXsBADbea3VymIYq0hcQBp2E9XgpJrTkdkBNnFSpjRW22AiL8HciTWoaImpnU81YiKnjxjDkA9ZfLA7pnAPBvMs0iwwyy/7Q2WF4lTPR2trpyEf46+Cn2VwX1hLOPMJGCUooaXTk1euPVGHcVXZb9gg9o280WivvPHUTUQoMiCCsIbpxQasXSkwg9PcTQPUKuUitEj4LUVWIl3l6skJLFlXbcYEbnoldrNaiBuieZ6Em7iLqN4jpSz/MzaGvdbs4+SR0i2uWkLcsoMjbe15ktoQ1awQ41P9m5g0zZLNYJuqQrJ/EOndSm0QuD4FbNXSr4MsUeQEAmDtVyIpDGUeZnjiSZ7Y0y8N73lXwbrLgf0JHlGtYEFhVQHbZy9hO9Kxo4opO7hDqb8y4dx/AHe1wSBIgg0gdT3gsBwW6cgmhx5XJury+LRELHiln+q8XCqncrAluhSNtAffa2WYy3KHeoTLDMHUamlEzw6giRGh7GhQTUVgEPDYRiL6RJh/zRuL6d+qKHFBCb/4lw3TKbqHOwbrKA7GtSIl5TEGOpwuIq8ANV1iTfFjge3f83DBFQaA1Yhx+pKXa7m1ru6YjFhyzFL2JyeT9JImGC+uRwZrfmRAdKq0SaRKRO8l+Gw1Dh/QRCtIvEFBLac1NPM1FWneockg/DL0CfgtByvxclW9zSSnDwRE/Sc2Dh3sWytbMSEK+99BRxGyQjdA8+EN7wvL/n4APoDab/QMDRcm5RvkSYg/XpNTrf+A62d3QLQ9Cy3/ezeqz/MQqIfrTx6QP77H7Kv/E4wrcILaBtCtAukGgcCIao4JW7TXFV8QBalmBmdVEAWfggM9EoPwCOtYdHlyamQ2MrJBnUHMrLMvvCynGmRMxC392QhDhKzCbVibVpUWmGu/x3N2nsGk/zMCSWc0OyJ+l5bBQjRygR/1iZmuSpS4QJ3cUYa+8AKhP367efZjHYpOZc/cW7TWuORMfgrAGe7TwUlWDm1Cufj7IIGasFLTvG4P3HFiNc45mDwL3ncjjyvAN6NITU+FZqFpC4dQ/0YyUo1a512H+ToZkvoxJh9QCGYkKwF8cOPH7Peme6hlUnceW+zm9scNIk0Ycc7K+4+LLLquE2jbhjElw9EoRm5c2HR+wtKj6qDxxxsRLmzm2Y9uAt5NTcdR4g14vkIS9cmdVZXJ/LV3jFdR5FmG2t2jjri8wDzFxSzWkloF34FHHTciv9db5cc2vADoNxnO2UofZZpzUu5xUeVwX58CfGSfbRNTEEN8W7sSMKqJrm6Lsu3fek+prvEgWQ9NscG4TLCJ0K+/V6TkJcgKHRAuGJVsHNG08rIT8ynEh7T8Zkjy47HdAnV33Cmwro/6nFXj2OIeTqdhW4o79zc6bF5zJJyp6kTJGyt258u/fCvvMLthVperv25OmdDDBfYXHn9GlCKSntnsxFnVde1oKvs83S3alzgmH6ZNEp2Ai5O0yO7RF2aU5eJNyeAII+rxCX24TKOk3uZOHDicZXrgyB+Hyt/BRp5u0kMQPuSOmG6hQqungLaMDFtmPjd+aMKXDN/GSh3N8/p4A3abU100RfTU2zU8ozBlABUp3Db3eM7MbcS9LXexxTjB3/P668lJYigWHsEVwLvUd+heCb4G9huAgsO0JxOlW7P3UZD3PWtG03SJL8CrjRqNSClU772A+zM3QpE/PSbB111HXTSQrAizoGptgFBK2JPk06FMkDSGNBT5Cu6An1TTEQpYs+xRQpBH9tZZYn7uee6O/700fJg52VuhcUbjQ866OeY/8YPp/Rh+ImB3tdjFY1PQlEULoIH5SIKx+bzaVbleU5mtofodY9Cl+rbQuFcpzh5U1O0wenfODKW6mRri0lWi7sw/C9ly7SNDZ7o6mMuSXgViu1ZzbhHiMIIkZs9WV3uJazogFqsaPIw02bvibo5RONPByWwAmDYx0L6ubK0cENIHXfu6vVGJK8vd5IPWVsl/eFXfuuTyd2uYT31ELJEToKIQYRBlVBboQNf0lt7UhfdZBO+0+yBQAHAOp86vDgWDvD1i5VXT1z8acb6EzLcAWfHtTfKIjo3Dn9M6TJs8OR2q96wWOIUKTP07aiTjUifbr6DBfTFgk22jRIw/0HYSA2wnGlDTngyN4VYZHJacTJXQ194JtCgtz5o893ChbbGzk02NmJ98BnDPjF8IMNapJrYs7BCwkre0XU/ovqOorB7Xxl7TquPowXKuIcsZ7rZQYz42fqoluFu0MXU6RGgc0XKEnahBBUwbBfyk7pnrvFWxabxQO2tWdmb/h+trlHQkxu6MNDMHZG1AFVYOV/WWRl58VHD75izRwlHSdvaTEoHHsL+JQLEcwXPkrB5XuacypRMNlAqbqNnRt6yOWUNEWRZzhklANlDFtrqwUQ5mvZ24J5mPc351eyjuzZZwkzhgjl4bZsvzWZyBYJjCAJLiFMRCRs5jWL5LUb6uYb4ElnJLoEUXrLqlKVfDUQ8yzAlXZ3PMIOCBXVik2bnvI8Iwma868CTdikl/Lfl64nOxS+DqFT/LDYFX6wDALyzs6e5A2d8Sw9WyCaMSsU1HyN3NzREO/2Hh9FrNfmTxhgarautyZJQexgCjYmGDjvGF/04lYY2vIY3xSzQsyv/A46NdkCRe0p2m/LpuxjfpSEdZWNFwOu/USh8+hlRrbj73Oie1s7gHH0nqM/otEWSZwbxe0zIVDpH/Kzd60jbV8qWzMl6LM9UJfXUZHQyd4U5/4AyLgY0Gh3JjQHZY93MZ7wMdodxZNsIcDq0HzWwprE+ZgPMgtDvVg9iRgfWJ405dgH4pQYubzgZdpPJDB20wpufRZY4OgGN8j2SYrPNORXhfNfmgVFKx7i5QE3HIYSqz0mQKmHpMSs8ezRqIknC9YeDjQvr/+Jl6kNJIBfaYnkudKUNK210xd4ipvZCCcg3GBzsf6QLgJd1tLAT9eQW7hE7IBjE1i/u0aSwtuj+02NvmvO1l/p0m1EOam8Lv3g59eSPWI4gDXDYQhwsWrXujy29hS9VYIK2ByzsBFHsGct87VOPUbwHdgjolXrcJYS61LLkUZxjQxHrVET7nMCOQ+lSi2HlFzyJdDI4guI7saDn33SXXI+1Y/UkTnd99LmGNQ2kSpp43Zf+xmyF+A2gT/bmdxCBcq2M5srEr1e///OkXeF05/REzR5UjVk0zj0nLbf5szxg7TM+e50W2KIMa/0tfs0rcqrexuBQHZgpTxstZCRDrVq42OU6k3WojteFt3IQMn5rla/mQcnpRIdMf3Y32c8EmxKkTmbOUoZ1sgmpxs/BkvxaytcJbviIyMuXSHYnG0zP80SGaHGHVKibzEFo2vGS+Ljh+afgaDqrCNnRzJaTytjNT9SNwgvx1QJHidH4KrhEI1BKeZaUXQbZS2woGEgy49eN+YFnSeQ4C+vlT7daEm1HqziEBcA+nNu+ZcT6K1ZzF/fsYQ3EJM+fCNkN15DzYCO0QSYJhO3xD4UgCpb32e1g801IHMSbqjjElBc3qISAj50tORSxse+DE2/AJfl0jBUS+5rC70EysvbaADkVodqDN5jYwSjQJDl8RJYLp/e6TPXRd6pr6EZxeooX9n6UPgZjMEfoYddoIclj7k+blMacMmCV6e61AMglAnhWXw19gbHoZHCxH/Bxba98fZbgzq9AwSGezjMenIv69GWm9Ntd3LNrpTuW36ieXMLiT2SLfAcY+5xXtLDQ+7329QN4JipzabzgZ7eZpuquLsTekWH69mCxm2ZX7G9MaYEAgQp46I2pFb7AxyzYbAaswJc2d0Ta+DHoocGh0i4WWg04xEhEGQiDLZ1FWnzhQlp0GY/Kqa+9FSuRIJt4u6qr2j+tg4Wiky+VDipkL9Gj3FnNpXgq/5hUoL0LcTfy/xoKoI2x0ojl4xxjjhbhv7xUwbAITg9wpiz0wrh+TDHPNfqw8FvtBo3bZlkZoXrvYhUkl0Ywg6oObkgFqjNpTcRFQIfFwgbbXoQ0u6y9tLkHf6daB3UrxB+mOXTyNbaThLD+WBLEFF9vB2NyBsco1HA5DcGZQtG9ZiOY50uOnNq+upWxdEjy7t2MSaFbaN8JKPWaslKtPpLCyi2LIE4py/8NJbvocZEWngvWCEeqSOnTUA+M0P9The8mH0BbekvYzLLrCvT6P3FobYvO2vZHuSwTgDhDrmQRyii5daSIPhILuS5xdRrg6AdtNKAUsP39MfJT0fAQz4WRaLa6uJ0BzEGOD8a58gdpg9XhnO9RpEBk9UqFz4GVsSvfoPXZ8leQWhNlmCXtagDkLKiBu64FZl5vUnSsKtLpb8USdhJG3fisiGnv2JY4NxnvOtG4EWA1iJWqU5eSvhpTwLfNpdJMv2/bD/JY7AWnIuZCBLD+pUvF86rww+Qre5JkSefUDQf3v2shxyf8RDIynxOldEcV7DukypxBg1ixQkfFmlHeDnXm8I29Cw6tBpjHoQ2nRUWjKmUeWQgREZ8AIFttYBQjKSZNF7+V1TZ3amSJIi0iTKMZAkZw8pqK45CtRqFkmvo58Ta6va3D2RGB34vg/dNm5kb8wRDuBKaAQZeL8QnG12ERgoiemwnggbRxQ6EMrgBEKEzh1VtjlGqG5wXbciPz3PwpW6JSGmFOQ2jCGTT8N+hMntSw80rhl49CZyRdO1HsnZhX24Z3gR4sEDYfTN/JLIVc4iLvnfvxZNjPq2lY0C/d2QSJLVMFCooXTabQrIN1rVZI1IGUNrQ0XzdLUcjL+22rtLREnNfEpcOeKfVq6+7900AnJPQ5vxg/5sGXLjXpdsmG0ILDTuFH5RwBCrgYn84KTouzugy/ExJRFi8mW0psEGobsFNRSmxF6x5D154eOUjq3+KxVAVAeKbZv2EIxMVThuY1mIPhBwq5+fH0M06r5kTcJ7AQwXVpdbSCEUlxsbti1j6kUOhcrmQXMlyhGLYQSzr4PAgAIZ8gu2smycf17FB91BvcTKIcrPhVBFKXaQopXfmfTqR5eHCukGZCwMPzVDGlpR2uFgUFyH1MlNkN7Xv7eyXWo+kiTMD+Dj/9N4nB6L2reCQf7FQukER0avDyKWyCh/f+FyF7CCPuuo/ZLXZN7W1JfwDI4XT7ssHCGKOiHwLB5/PvhOP+2x0HPhFoMXqJvEXWMxN2PaozN7abl9eVbl9LveGRrrjEdjVRHZg8yyMZo7+BDMrpOe/v+dbJBzBqi3uId30iRRfArxJ/zHSXc34HzuimaEWG3evJnPUV48l0doWuA3ZkQU9M9Dqo/aO81ofNQuONL45dKwm0TuIOl1a5sT8Wiqm//5a19xn+UT+8WV5ap/EVrsjbs/d10cz6HzyEDgymcmyVbGN4Ko9a0cwq/oI+gpxU3TKhyEdn3hk7Z7VyBazHicCS8duhglYJ4V3WqEvBC3Rm1HLYcXa+WbRkNtzspMHtBqFJ6/qpdy3Q8IfJ0b5tb4u9+3hqwzq0alyS9AjZR4yQFvNay7G2/zjrVBZgdzgizwUESNxGn8N3Knx8TlfV5ReS9Xyd4Xlc7o6ChHti9Om9DLEMu5BYMkhLtFd7cEYCoHizjFkVBZEvJDtrBdTfZGaje0jEBAzDASFr82Qk4T7cmzqLlxoqeiGW45DStudq4J+xv3P2J6mqOsMrWx1GiJDUlAk6LnAuP+/rJHVCDPHPOELakzZTB6sIdcgKODXP1u8p7Wa8o+6pbU5vApsypZS4udIE7Nh1wnyU6Duv7WBLuyJvqs0MYAMcVhr4KSFn9I8RBMW/+Lb0vTH61fHGE8cH/VhclEwV9CIgxnF3r/qtDJG/mbt2yr5XWsZUlXDVpYWtJpw/QThEJkH2AizS9lQU2tQz0BJNJLPW4aB/GtxaXCVfCOrQDPgzr3vnrs+02SdSOKbdu+oJrSzwTDbxI94TPmxjlnK7B+ea4ie2na6rSh+9bFFty9CMsEAggfdBLgz0hNgtCLmIgYORNLltenF4GX/AhTRYgZlEfPylLmhcfjF13XUZfqccXR/MIS2B5SuSMSv1JDaKxtDpyrJen9AN0Ab8KwrWZ66lWptDS+QkcMDaYir8k/A4YvqQ/dByRebEZqGlKAESjcXgaEglP8FaRCBCh+LUwpgcxdQjKRnvgLO+q4JGJMZKTagduX7MCz6uv6P4OV1cvyZEdxAL1BITwQ44NjfCfup/vxhdeaiL1gAxkIUTGd3YJE4G4wg/kVKQcNI4HA0v9p7CeMKLhAp6+kzVASuY4SjzvfWwCUx1aWAk/LbX/YZ8r1FNZvV0LkAUEai+HI3zj/S7QRghDXVUP7T3t1MEDAcTZdY7M48bVAwrRIIupNSmSTY9z93iJIAODDQQrmVwxpRFcv05uG5d6hXz3GpwgtzRvPTnJ8BJc2OBddxf2oVI6yV7Ih/94LC8cVfDqB4HPWgseuBHsLfvMdSrB/WDVMTPNQhaNJvkFhSVFpQt7sWEagJ1CA8/voFdZ/nTGJxtM4wFX97yQIsfvrudpKJ85ilXc81PpwWo58taeRpjfQpzBauZTxZD8RZtA3lEnGdTr2QW4Yp4OhLTx31Boyi2yOn2n0+liVL+LZkRedqbHHFjt3aM+0xq0PFbaocEnSiuCrZ/Xqwiw2uVA93tVctBQGVuaK8ES8/96niKdVsWyPiHE5+xZLn6a2gPTCL1krGmPMlfIGOdEYAO8sILbzdnkLA9fldsc4HD0eOnHLIzIyw2WBDKTxKfEB2jKCkiamsgl6HJaAgWfExGsIirtrvfuj+KxP5ztZxPUjibPohK7/nPhQj9Qxm0LuhPSgiwNff7in7MNv1xBAo6yWl3VLxRAT/ocz17+9QKYJDjKg2kUdJu//WRaFHdDZPTMxQCY7vYTkRXbZ36r8gmAGCCc/7Kks0Ku/k1BchdwI+aLztheSDIlRIjfUK59S8J1IeDJCSctQplLEglSPvUmCGyA2Dm2cOlTN8Bt0q+OX+5w8MtZfWKtH2ql0Kn6xEnOrBj1YmlMMgZsdKH4njDnko/qtR/BSzQ/a8SXZkjHEhXLXxTAhiNqHge69/vSK14PSS+iAQdqKH6AfwOA9E6x2xeyxhio6KcB0B/c9HPQkYueyjJeBkqtLc+dXf0nts8URHb7mGcvPmxybj8H4FqFLD7TDiDM7j8eP8gN8nYBNq1uE0jgvvD8e2kpAQHIJS6rpFwR9ChmjUMwyj7DHcp2GVizcV3kRLVPnVL8BD3jsfm0xphuMqts1PhfJY1tFANIVNyIhe84k1NespysIH6qeDS5gvgBc8gUF1E/Ge26NJe26OKSI4UcMeWm+9MvVgbWx6LnF9/mzSs9pADiAZRe/YFJBrj2ZtVz74c0uYpy13A7lJcb9WKnmy3k+PeQw9P5smwwtYj8VsewMNPVZPyIVHTesSb1QVmc14CjJCqMe529gG0p4RsfyFLc37fu9qrh5+WOthG/RSRE1CtY6um4WpfOV+QcZluMQHVpidB1hpxf0ZRjZ1rPY99zKkAg6XG57ZTY1kAnxRDgZFraLwzAIymgZnzpzXb9obAEao9XyCKnp924A2P+tV+WzAdrd3HOsN2d+EHhXF949Zzl8NlbUFG+OfwreX4Xpx8EmG/vtREOmipTbp/925IUDzgECPYc/44cnEq9//8eK2TN00MtOjaKqwv3fIeqyiG3ZHia33gPgQrrIMeNuZ5QVIGetvOD1OHUmUxzbfkQBlTIK6+MuQOEuDROGSaKblziVTIBqq4C6FNw22XFHnYTQnd1LHkc9YMX2I9zfodMkmUlNsl0LzHONuNDSF+0O80ULtTbl8qKtOrFcLXsfdZJyNfcLzOQdEwneMmDdnsRb8vyKgCH2bk7o25SXm0oVKgbY6/iZxjOfM1NVWUdCOUDLsejdOcu4943P9DwOvMbIMSpsf5zAPUwEMBkw6JL50ZUPqeVzLj8p3nI2kqqAGS9QTsO4Vl8mCAFsaVC8Qlb8QbYEl8iVwk3HfHzjiMI6Vy2GyG+soBJmZLq8/2hWpz7wv2ITZebDOJbL0y+hoch/l6p168aiuAGIe153RmCBq4by5lW5VajzQt+cCO3f9n2NhqYWgWW3agJGSUALeIGVXeC5Yd9HcJ59M3gVQklG4FJ6mNhMdlokAiytmhxyqj1CvNKP0kj2CaYhrRa4MkWv4wv+fd1K+kJ0Q3dgcsuuCYMJTEhcnvnbss8qGL6EtMsSdn6thXuOz+rj+euTpKY1/DQl8ffPYMnYFz7MdbRisjLIpZBOCBWDzR8cZaMWObMIk2Kypvhssu0n63S1BFMtpcsQqsnBQs2nsbMmi7QlfyM17+5tl6Lajb6u2nsvcXYck7NAuJ4SsunbIucO9i7u3OFyQtUPUtdCIXSa6XudoKUQemJ7Y2VVqbNHYy86YHkmN7PhM6FS1k11yWKKcRlIkWBBJAzrf515BglXlaTv0CASzRR0z/DtP+WvvSb972Mc6i8gsIbeEnb4OZxF1zQ33TOOppZvOKsbTFV1jaS2o/o/uKTgNOEL1HL2ZLwN3F8AEuR7WKZc7ImzRgyx/ZPyhe4q6tDR6cLADeqpDS77coymqgVjSWpMFaTJ6I9aj70OiN+b3hSKxiJaP1QlnpmoK4Rc7VhE7pal0zo2ZLniJwFr7D/tOrbHnx9fOWKLOexbqGgfBGNC1vprhESiqCf1wmbFEb9LIriqRy0CYR9xsNtvCC37TxzRP7Z2ST4x2+69xEzbax2Xr355P+vzpA0TQLewIAvwmcSicownbj2p0WF7QziQ9nclGMiTVAQ3NoA3Hw4hN40kkoreKBOg5xmcMWA9+d8mO3hFGVVlEeWFixxd2B4uQpOGKxoAsmTO2iwzjMWzL9XpxjYvxBXkoTPpjlhAZPqFVIcCDrcSskCvgYIB+IAjljTt7ZCLEwQWrWB/t5eBj5Ad4hPp3CxvbAJBplB0OMqkwYMmQ4mFu9i9r+MFsrQVcrrp7TLr0KNGscVDpeTL8JVcBoj753gWJYtrSqTE4zIoYsjYFC9yCfDWGCCGUhto/b38XXBe0yU7zIXuXbvowLLV/4Y38h1HcK0kzHwT2vFtvF1GVD+Sc4d7/pj8kRkPyQIia4haS+D/wb9aPKnhRWzmfGkMz7XbrRcRqZzkxGcpNe7lN5CXPfFvkoXM/3/mlTLCFUOuUprKmnEQcOw5vdYumlE4RRJswU4mrgkVJBu4OBv3vNf0ZSxpxuBg0wnmxGD597zk6sEh3bad2JS0glHgafhYadCdXcuvysFpESvH6NBZOgdpYQiMt4orMFYMy5+wzbr2wWPSimhxboUqnSql7Bf2eOIEhZFXzGlIirDASUG8EBmGkd7vxNmXdDoOm+F0gwIgA9B0oupwt0kvMA9BgXvCQG0YBXBUGvbUDisnIzx5BiKsDe/ylpLA3bgnSMOV38pmQL6BFaaQBI9Mp7/pwotFnK+0cyeBWI7rp0ogSdfHfSxA0TdFYyelnXdtJwYn+wCePIVc2T+NrtrfX3+0+WRgmzVw1mAs6xFP80j1wP2h5x611Ifnh5aKpT7d2+AwnXkFN50X7QcOnYGgTvhMzqarv7NXDxFg7Z0K/FDgjINSSn17brOau+m/3TnexxdRL5GDrmdy46HnBjuaZ/v143ScsNywabBYqwy9R2GOBN/Od4gwHFvHb1GcUDx2TfjP6bZGU4SrtRXeSnWx/pHN1xPeEpkX8JVr/pyoyfkd/XzgnnDgZ34C6W0KwM4kkiPkCYafvTd2dYJaMw+2lWYRRGufqG/mFp4cRPF8pvz76+LWOfDSDIG0/6pVdG5TWfhhfixS7Bvhc2RbGUJtgoWUfpQcZGM9U9CLNKUV/pi6p6fhwwocOn8PTIboqyw1CcV+v2cbGb54Jh9MUF7hAYvMEw/x/fq6EjqMvMrofkbHZxGiTlmp7l++1YTIbgmJxucdNW37E+bxWcY+q9hOkqtnGCPWWCJcM1Lj8AyTT8lOpyGfF0tl2/MixK0vm63Sfbvj1tizHwAHYVgQeN9VjNPjHBK20M/EbSMNeHXFuszPjmILwwEYAfrPFipHKg5QfOFiIw4qlM/pJ5CveF6wDwCGTF5y5N5WlUtW6Z9DQ32JooHPko2837ovLiMYk2zrTXfJyItkHFYON05dtZybXr/hFQH0R0uwPcyI3jCzA5zFaxedMj1hXOhNS4Rv7l4nO3V5pAFBkfv9C0WEqpyp4Bw5qF/Sx67KyHQi3bPhXyYcZwj3bAEAMQ2UsifFxX17WVL4nPRxfoRZEvCpHze3hhxal1Wm+6l12VC4dcIMPxFkJDWgk5KA+xVC6BhWwflR0pf9NIKDPupUe73XGMsvdh0e2ej225+YJUxTrlDc4FK2S5K8q4xIzMLLtPkStW/cvNghIsF7OhQFZ6qp4E8DucXFbvTsHJhb9nJ0N/TiQwmsI4KHJQJZ5a6aRMgtFAjrnc8KTB/WiJmh3c/zboBR0RGvUiduoZ9yVTLNBSR1eHk2LsxJBaP9M6XILhFbiFSN2btVcRu9f5I3TXNwTyjeRkf6LjCTHnijfN7q0FGjKLQwtE8Kliinn6Sj7onU15cXwuUuZLyYxguDCwl9P9Qc4K8wOdqsnNQuxJM8BWP8knvOUGas0tuOqJMClK3KvCX4wbGZ5wbbMSFhNCc2JvtXBpvoUgllAvKROCT5QqAVi8luO6PMaAmwWx/+W+ykN3aA+TFtC8Sua3264/wKr7HpyZZSjB9mzEjyQYmsuNxznY+gKkyOwF8HwsODTAPbFCtgdAXRUMdBRs0dRW55A2mWIwQBoFoFSSPiGJkQdG8CZa00truWSElKh6Fi0dxk72buY9tEh+Ju+92huxjHNSgIa0rChvB74RLQPDGJBNfWV6ClfqMQ+hKMC6/LDAKRKraP1XQ1XOxEOQtrqeS4Qzu+HV/cR2phPusKTLE3Piu73sGKRoFxxSIoCVN9D/Mt0JBgfarWR0zkMaQq+b937JV0McMFugOd78kfubm40WqAwB9oV+c7v9+Sxrj2i45N6vF3e6FJKH3e5j87WmTo2v5gRiRlhtkBNEri0JMO0FiaMfRiQKP5/2xG49TxlnhNoqXwHXnt8av5j5ajmJX9ztV4lle3Y17oK1nwKzwCnisVWg40nqTpN7wKTa1bjWL7mNl315g7Z4Ki2aVpi029Jp3ITiFwmBEdACX9EuHnLIZSoCXVdI3s5OuVMuIS3UvBmaXVGvw8gDZ1yLRbfnKs5SwZnkPXeFKUyU2ctrrycgCt9Y18aR9TWkbSh6F1i7W8vE9+kyAQiuKrsLbSRAxTA0r/bPbYMbwIUChEdmSpnf5G1gRWxUAjERHlybvJ0OcttGnIWYbNaRJthtoQ5OrdNlkYKd4HXA5D4xLHm6FvR8/g+PUVfC89q6NugswV5LUScvAgLZOdYzhnOveOOkNTBqv6rmAg539WsVcyMTt8dasT3nYbY0zdYqckCQt04n9qovAl6SLescq5eM5PHIYzyPDPWQibiOh72IRkGoe31E7m2VnTjMdgw9gWOob9AzDfkGZGmwS6rShjxQU/uP5AyH6VQn4Lw1UCUINrBjDqpT72OYWq9hayVRLAcyjlYK4y0fk1e65cQHXCmkY9H8/38xSB4bh8kzltR58KD61dFZQeRqZwzb5u/Yoz6AmdL1wQkOoAWSQYzBAHt2x8kLTbqTcXxtpLa8xS/4UgFjM3Mq6wNlIld6Ltu0XB/EK6c8TeZxJxJs9kpZOxpxtLnxCgBBEJEDm4Mf3EdzizwBkpUMrXrhQFBxY80lLsvXSTIPSfYrcV0B7dhq9a7OroIr9wlYdNQpEgpvEuB6BmBmpxuyzeyU3ZjKeUCMFMNT3Ts1+m+PYq3G6EnjD3B0b25HtdJhPrDQkM7+eJFOaaxD2+a9l5dyGn+zMARRPy/BYcCwoO+1ENo/Lc+mTjTL4/n3OVOMjMTWWjRlchtyiifrhJaB+MZUSPOYDfkzp9Ap0QVtiGCduUbB623fDgfVyhLV+ZXUX7N+hVc80q4/True/OP9+coCCbz9coSziRL/N5PNxRlAIY2uXiBWoukeKcMsLLGjQUZe/Mp2z3oz6Fnn//cefCPDvhlbrsjZVrJvDuGMP5w3btK2QFdgnYrjk4+jZkNj9ObdfpytntIJjCk9FtEBKN+C1S9y0b7sIpwC0FYf1AwI4AdalI+ZxNj+E5+Uthm96bNeea8GGKjqpkDPwfqbGZgEAfPYce1VzrujA1k/dCUituMiQpa9JuektDYA+y+Ls2yaQUkWNhCFN1bxVsvi4Rkp5pLXQ9p3ftj/qS4X8A78PVRAbGU1ZEbwa8OJx1+iZiCEgpYOJyNih0+4m+pHT/M1lAIsXA+pfbI/jhfT6ts9L67Gf3PJXOoHEYlWtKtpz5fz0oLXHJGLE5G2gjI5pYAFZ10e9KmxXJ40AWH/CS7K1YsYHu9+UswX3MMWW3evoBKLB5kk0DgnUjstmcejaKgBebTHKAULPyTFlg5JwPn/tpinGdqzljnXq48vfeUrziciF3dAXFebwinlKjZdE54df43PikZe44IQBPkA26hdyTY5VaXWXOZz2rAJodc8mAG2usoBVXaARK7WOA+mHcX6MJn7qZG1IHU/DA/5pEahwWU5kgCdRmSGywL2z1gCvW7kdNZxVCGZkIp8xFMtmqAzQu4PCjVI6YO8MW7bj5JbT+v1G+yfC4YV1xiqNCZmSQei1m2fV3aUmjWv0FtEtQwomFLN0CRUAmtSyDdcrjKU3jaMkXw67Fs4hBl804RgoUi/x1ffRMZEESR/I/hrKiy8IkIMwJKiwM3eWqb1AZOe0+nUtx5QqNJ6n7NzqQtr6xXIcBWYnmQCUPrcCpCKj+NQfOcOWvmVt57YVLUkJzpVafdkPI3rgT1ziAz9Gg8uLYY+8im1IQVoKr30hjtjNeBXJybjYkaCstz+/7ylJwpaMVFQ+j39BQlDcxs/pxPjS1lE5JNfBPScyBkjdMbnlaHacGZpBBnYNvcOfGURcienykApjESND0MHm2Y5Eyxr1IieeIxmzjVUVKWKM/DgwVSbJo4Ryf9DiCA8jXBiyGZUh44S9j/lRWaId6S5mT/5MaYmjhf58h2Fu/jF2XOLVi/cJ/3JoQ3yoUAv6bG5Ms97XHTB4vQE2S+yuLGkPKbc/Yz0DtDuFGz3dmwCeXjUXEvVc5icqHN5vInEAl4Vilo+y0cH78jkvgw4TKiSz5KkFRZurdjpF1WdPlah8BqkhK82xxzQr9FjL95dueKRgk+bpsQ+6lS29a4viv1x0I9kewUGyAjd9SAAcJfRc5rEeCaG3sZ0+5DLwRfU9nhNWsUAJFguGYMqqghY47eQ3UjHJYF1VY8qshQ7LFgINSs1cI20A8xV91BwvpGUm/HDNdtzDGYxprU8ZUddQhbTUIwRbif2hVsZ5kV4JBq8Dsx5fyJ9tVfFCue1lvjjn5QPJC6KeFbklUABxaWH+QX0eXceXk73a6YYoM4vSyYLtZPBtU+cVfro1RxVjgqoR/lPWaoynmtAQEfpmL1gAgno89NlT0i7Snc+I2jZDzgFde+mM3ed6D2RoGIMQQJ58jzNenXYc7ZHBNvT7BN6ZyAKsa+ZRevvWOJFfwWNiqOTk0ljfWOtfIjlHjmFuAVfJNAgfZdzpshKkR2oyMvk6Wos1Clc637S69Sap4v4Zy068H28LjKL0QKAinjubVvZuMHsm4WmLgBBTBJhK21Ynbah7ZUfRfWTc9agCdBExxuPh6ePUPKFLYDD+bmYFHsHPQW8m3rt/5e9HWDP/0z99pA1wnuwpE7P9ERxysSrC/mb5qTVlRFflRIWatUQqPSe1k2vDb+5M8aY8snilfeFNzN//0i3y+uM5MrM4cbxlA/ZzeUWdATjbSKvVGmKXg0vevLmMB963ARtYbzE3MVuz7vVjHm9Lu6t9PGiQJm+o95DlDuuIiv6cQiRryNosW02b1U+92iFVB26n+Bz4Z3ArpZKkcbJdDTQk7zOhjWNRSwqj5H/gkUKcflGrlTdfJ6nbRImlaGh92+VxZ3/iedqJyQwXQlt8pBMj0w6jG/jz2eb1Al3fkRpeogFodbwbMcr3TX4vQozzr8A0+4gkZNCeskMHjQHUmk580wRDwsgXEv6fBqx9nOXDmcBpM/cgxhsJTl0U3KOobu/zuic2egKkfFWfvTOARiSxpzX2mg52IHLvK9KhhHz5HJm1fqMjbfaV4p/TF6J/Y0OmQm0W9dleFZGXmdSfUGbFnSBNNPyHssrhA4NWwzCRdGu+EgZj47U2lMzKZgOOB9mXswSYFN+0/LTMdN+wrXHMVcTUfJqWHQHu2UQOoJR5C60bBxGsrQhWfYZwYEugBeQCJAZu4Axm4o1i6jqbWvCu82WVbvB4slg1Mf0sTViKet30jUWDY6j6kkw4Gv14r/vgejGfcyXc3FTlSTAIYHCEAOFfP1vHWS2KdwE9tBrwRpzXyK5yF4JMMCItZypXk2LpblbQGMpyNIHRxUrgDTPb+Z/aN5FgbpJCBI3RSQrfRopLzw/A9jnmPgbuWOD+jPf2gJ9Z6lfxW++H5M+nNTFemIQw7CNe2s0AsKcYRPxoGgHCaMMAwg/6/X8e+1gjUVKcu6Ze4WDq5NNoyq+inA//OeujdAwr3PHrpDfMDKHXy0R/sm4Zk+pTDtIJfDJhrljFh5bkyBhDs9BArk3wV1tz3pIrrwrD69jGnhysMwizubfvHIvt9eXKT/NTa9yrbZRt7CtXARPR/oc6JlX/1XnUlC2FTQJsCIorr38M9/Qqh1sp8Rb9POUHuSszwUksSZ4KJ74ZdT68sTQFbLupCbvgH3LBnLL+siu7wgyE5C17wAccdKD1BbKMureEEi6DBzriwopNTKPJAFux2VNi0j3SKuw7SGxI2jzD3zjaDFvcWhWt/u0zGxmi3YKjnPk4HL3Rfo6QlpXMdZblcURqB85yk9dycIJ207j9co/UX82kljzpe2QlENLtC/WoCyoNjyGDjG50hQGs09ECyy6eOS4Vbh+dA2kEvyPGm4BpImEffzSPqoD+slXVaDKiHnPMY4/jZAaEAjM5r2sdNm0Skol3ucRSUtFGzPLlwBH9RZduiLRy2gLamqiwaJrKbt9wCsaVfz/UVzV9l4l1CjjdUmZS4Y7/iyjyFPMCgNk8nDYz7vaKxb3VuKqxOs6LQ+8Fpd0UyIc+fiLke12FPGNjwRaUPYoUt9VgHVsCjZ/EwNP0mCO+wlflhcwmajdfOGoBpH3PwbhrvYhJt6XgpMAiWufRZtyVCdiyN/JFkwFeOS5YObJAFoxUIXVWCH/AFpJFiAmKiV18erWqOFQ9r4982cYRssNXWhNM+KPCmCimTOXuWFk3FEE5YPJL6V7fGBU/0+CVY64WGI3wQa8NAnDhE6c95kqv5uDtsrArRDzrIb1TtUcMJquWoN6WYGzFfCB1FBQGJK5N/3YhO56YDpAizrtBTYLtaPrvEtRJqsCr/roAl87as4J+YP/IZCsxnMNtVuqxB8+c82lbrnqijBjABH5bva5biSt56MReviLMbhPNkIpxQOd0O07OoIWQTLDAMzZXv07G1Wq4IlwzZHZADYg6X4reaXh3H+ECcf1J38V0ZHRz21B3rtUE3Mt6puJt0ccqBX/MIrUrpRW8K5qCuvwPKNAR9rPElaULPH6ElfQOxWj2KM8I31nsKxe4r9WUBsNvHwwDg29BihdPj6YwutLCMluz/+5bX31oKBeS/vQ/2Eo3p+M1getmqr2zjMB7iGnANrtOvSnZhcdikJ0CYVyHm5gFgjuBsP6Rbay7Sojeqy3m9/sSFvIZg+ghovhAfp55YLOtXKlL/3FR4Nj4NkPDG89bPK/N2cr3HkzkSTaQVsSi+6gelmRKGNRlHxv2a96YDh7NsYxznJ2sVI7HWps9Q4DjN9Iu77C9kRdqSFE8cueQJQaMZ8Sgzz9zQfzG3RNUEarqdOsYJdmMV5E8moSOcZA/IHIjAm5FF+krrbfvcZVLxx/hgGmrIoi/k7l1ppyatRZI2sGOPR0kgW4t77PjsVjFSNNqcQY9W8Xsf0G7Hid4TAPmkKLTzO5zi9COyMt3sQFPpjdrohBHYxMwE57riU7NIygcSWlJ7MkgTUkJ5RXJ2dUG9Zwx5FDuy9vTxh2UHu6pqLAKXun+AQRxcRO/zvnuXww/iY0Yj2yrrWXxwcoTVsLqhnudNLlL6FJgAPu+L5YaxvHbh06PqPyVMCbJoL2UqRNrShTDaXJBVLydcVj+dFA6Asxzfcj0AFcB/hjhFKbNwJZHbbSvB9j+HPe4InU+f+q3OtD+rxKgjTQlMUKQqQyuAxxSpKyIpyH5xQsU+PMhJ1UXVwpav6/lOgAIHle3NhuH5kcDFAq3kRS1ds4dAYfNmbNVhQy3MfFtqXJ6bOTF4zfRGk4YJK8cP+y9KcMHwkr56tmL0XYIZh7KL/aMsMzaUFBr8G1SXtQmtjwYaq3ZkaYjsq+IvoIetQIQtZdyWWJaNI6WSv5pH83HfQvDPur7jgEtvmopHJRjtBLyQ+4JcDFvK7dKkF5jKnjUttY7q/HxLdJiKbo0m/XFvnSozHD7JaA8DBWK/33/CwIBsbyaRq1iGXZpYH4VcG9U8tyM9gphEF0BOrjTj/i0SYwvNDA86j0laQdxEsHAtUoEFHwSoJYfjAwawwB4lahxgTygFqzahZB0iQjdVIi4OWJwErPtm7jeXr7sAvQhwTR282cc8ZEoQN2LFmYkvR0pjR6itPOOs0Rq1lwLyUMJBuH09eG/wKADogQeeH7n7pXuw/GLVDBW+0PZTL6IZcESGqhius7lOdbzcdowq+gjEEL3DGPZ+/J3RpAP9moHEyZTuewIDa8eT+1vfjzaTc49NSh/VFE4Ug6ag7Nw3mIgML5ZRJWfhM5LJDrRTZUNdHvDoswasfnfqqiqYnbmLaIdNDCJ9h/0PPL/sbGwKSXA1fF0mLlQJR5yguN4PNPoffXqStX4s68x1wfCc2b1IszpxtO+jZtZb5TBYC1JJYpL4Cw1vB1AAP1xks1PzKVj27w/UoIEnXKsgJFi+RXraHaqHHg0f5ftNY0wZJPET2VpTq2ChNMvkKVIjBK54IkrVcIlicxj28XND3DPWLryyVs3oxrHNOvzp/aorYFWMQvSJSSQi6XbOuugUXu2ALGBBiEEMVQMYZX1wNz3J2NE6mBbRAsIUHgYYSldqBSGCRrAYzWp+mVSNYJz7PDIlrHEzErXGFz8dm9KmLbTm8Wvw4dfG+voxy3aX6ozS5XZ+neCaxKDI4Kcx+TJsP/8unwl85kJSsFb7LQrg8GmMoM1IBFE+dswbAYAeohAf/SYl9hjaeZeiIJUx6887NcJFM5TF/tSzNwcitgH7+sSZlFbxQWQGQwUdKl/C9MWyMQgK6Xe+b+ihk7R1Fi3h+ianjBxStK8XOaam/M+J6/4nioDwipPlAbu4s2/hQ2IfURGzDiyaqO1e5rgM42Bt++CkmRcihgw8JFRm7nLXJjZz6N/iFVNoHTntBnRRQqIOq4+1/pUEoONyURokEO7LdAQfQeevoeEmaLHzDd4XEbk4kUlKPF8rm3RIeh444ibhh9NVUIeIsewOKdAQh4mo5oEngV2IoIA6KDCgyf9iVnoRtTdanUclvDm9LezikH42AZuYlRqphExp4PFcPw+9e8rJEl1o5ljLunqCNtXbPwhEQ2TL/+KexLcWG999ufR4fII+CL/AXO1BhOv3mhfzCPfBqDi0ipO/lp0uD44dlQL7fXnnk0C7IzWkjHVwBKMnDsPa/qU5e0ywLcpu6mzicijXrEyxmSOed8FFYsaKzIFgVPIO8BUqqQKejj36BoWarMU3mPMUpVhNe3kEsVfccj6HSdTjt/F8aJsU1aZK5cXAkxGYb6crln+M1AcnBl3Q3KFcKjh2YcFcnzGpqtBpzAYxxek0ESWt5XyLQ49EY7zKhDuFtuMRp47TmeELkqrp1MBg1z1ho8uRzA2N3nKgMA37YfTNqxzal8vdflul9aJGoM8vMJMu4CJGN1zR39aUdPiEQyR23ifmP4AZcAdx04rqXvPjqtGreCUPR8re4KhDOR6X/xUA0haGhQnv9GLi0DJJXx9Yj9ArkzSoE1RdYJm8x+MwQNFfXzoBSvNChdNGr1ReXjq4blftv/TfhO3qbbtwmhacwLOsgB3EtCjat2lfOgfPD8qD5JbJAmaEHEc1VypItGSpiNIz3Btl9ugT4fd94v1l27S/MKYrYZIFJWvbDSjpci4tMTCck7oFIrmsVc8KpIfNATyGgRTkQz8DVewmJlqYciDU8XUTqgzGs/vNuOW1RlMXR2PQeQrkXr3cOeEojk10Am8Zm20BloA1Zob7rKZi9TbMLQ4g6JrTNZ2Vz8sWpQEg3rvY0Kcv0qgS/uu+RgQKLPpRk2K879iR3xItPZGwYkUQNZPrpIJ0wZW8IZY4owJ3JKUunHqsd1W6vGvQLAMEEagI76LUDzo5lfs/d4kYGAryz/BodK0krlnUkSy3Alz0T6Xvzl+qaTSG3dVQzAmrU0kxXTF7yQM0ARTqbBDWng+gLYKuO9/6pko69FvRoTrs+5s+ZrBAUPsNB/JUTxGamNI8npD87+cBDmiF/PIfvNj2N0xrEwqonNnI2QdcFh7Rb3IA1zDotF80Asm/vpfRTdfjHsE99hXrwC5KLWaO9x7CWu7h1RPdFyg+EreWqWaijDbNcB+/63CN8fnYQqmpgixUEew5gXrZVVoTVqioPxFgkC1zdPCpidoOHPDD2lhFe4dxNfTUNu63ocFl1l32YJljLiPmdMMq8FSrOLCqXaB4h8q25JxZwuh/DbzScsn2+W+s+QziATDBP0Ba2BODeUs6EXRBfcVmKy+hbrykUyWlkvWccCwIStMG96Ly40jY3DCi6aaBFlw+03tet0bY9NNsqEr231V5tw1P3vwJZ/dvEv6fx7ojVWi5f93nAwsiZ0Ccn+hprmunHgmXCxP2IUNwIr5IeUKVjLbERDhUUjx3YALIe2Q64KOJz/L/7vELoU05mhcCbPRYHHXU5tXwGazEk9qpRpNkVWFMSTGdpYIlhAXmXa56t/aIoOIEyxoUv7Jgs7atSRrcJv0HDwldoL22VdKPJ6mWc7eFGFyKaNhX97J+rjp4Yrl1t6sf0aJ0eVY3pDzCibLej1QQ9xwnqrkvTXSbz+9PTTBQ9JH+msUuObeexqrCb29Ow59gQJWQlTh8KCiv6vz26lTZLRZZOgNlQrMr0DsdIHesnWAbgZ+TSc8FB7yGy7uOuiGgLszKMjRxyA0bMT81biArJZhjdu90IQ93o+Lpv1kMeQN3H28CIwcoOr051ochuBWVxldHpk0eyUsaZnNZjr6z9KidlURqbISIX8WtbGqNVHVrJCHnlu2R9XM6FH8X2rdpXVV1EdY+jTdJUpi78GKifNnChoVltTjNJx1LfwXAxtknxYmsfs+LmaXCSRuGnLgofyw+TiI0ac+aj579/4pXIJ4IWuEhSKBwssnYJbx6BIsFb82+Z9TAgqyvnEd98vttJ8rncL0g6ym0Y+z//tRz3OkvLFF34H31FFPpTdbOxTrYktSpHbnpFOMTr7DCri7yJI2FLTbhnzD7r5llCv+qaZXzSZZa+WCpaQ6450If7ep5FfK6vu/bbw1G9CeMWbt8LPXhK8P/r3k4nhfVDGS6qubYea7V0z3dUoWKCXUw7KKnzdNe4+faCu4mCAce/v1pNi0OUtRGx8sBJ2rczGNghpZRJe3ksAnOL7rkSsdqDfrh0kZNzxiRJ9JyxwVa1hHslHK5SY2T+ebhIQU1qXKIxrLYNvcHUBnmlES2q17GCLk2aHHxIm9NT84G1xEh4VPt0JYuV2yimI42/qD0/bdXQAM2F1TvXPT5uVn2szAxI/haDYiv/pz2PGJ0FLM1+w0567pmuCVS71zOqSuJPvVcPIaA0N1At/YOXmItpwo6RYlEp1ILoxPB26jDGz9647e/hRVsNhC4W+RTjkpRlZEtBpl96Yjy1IHmBnCsZzShfTNMAvvM/Sd0qaruX8Yl0LRnoMi5XIXqWvqy5+ufWUi6tg43z6QPt6i0tMj3RXhSPJQoPpZVFfk1CzEhfwI4A7DFQ0jMsNV0PHtczEceUpPtHAGzA16uj/A1cbhZDUTBNFOZFUJnz9QQk5itADfIzZMuWx6q0KSnb/pcKCPCR6Zh7boIRenKvnKrfjo/CoCEIh9Y1OiHkh0iggGS5Nbji4eWAu6gqrdpAdwkmdVSVFJt4uLRzbtwUTgHkkLiNq3KGzKrfFQhiHmrbdBplaonRBVWirBkhMJGvb/8oHz1NNuPjZ4MdpyXY75ZCG9DbFma/khM5ypjUrxtb1+8jAL1YQB9iwSQVkzChYaEZ7bisZGN0CUkRtTDh8DyQACg7KMFdEPwRVq3REkNJvvZGso7/LqVN/2fU1EduaImucCUqpsztovAm3UrWWBfx0VC+WjPF7E4IIGFC22FURYV8ChFf6n2zlL5pihvCKPTYxDmcbNfYoecubI3YOLJYTfkwkqeKHtr7YCUTHm49g77GBdw7Aqx7ERBkPSa7TjDwqChPXXGBfektGBXRVmxHV3hKXw2UuQILmoMRwtGXLb1PZBp2ZDC/sCmXcDa9Eiaw6qs2/klez0q4rMvAAb/sN/SxdKmRAWgWx1q5ySsbjJhctchshb9uqC+etk5LINa3OR3NpTT/WiZNey0hwYgNx7wvFtmopa6Z3QUGA6Jpi8wkUXtAQewd/pHTBuJ/180r1GusiLKh4116o7yr6cUB6LICpWfp4vjRxhLEIS96PIiSAejPnQovUm2AXxDM+FW7+1St+S6KcTXdKu1338dhakefJxfHm71DQiZpMyqrkUZ4EQyB60DRC+cG5EIxh1jUVvINK4HjeOviJC+8MOaEJO1EyammE9oNnAqvIS3EKvXoQz1mGKsGtgpBGv/Uphg7JvCj4tMuW/4Xv08XspQQAyUZb8iURZIBoAT7H14tO/5JHmX5txzTC6n33Oh3Q+LisVYcx75pPAPVsVoZxUEzOcYNB9S4uJgasUQfY9yKIbs9jWBrubSc+PKozrczz1BT0nIfkpVjGWJN6FofvjWTiVwQp6MlkVruKpUg1miVVNt2JFijTTK7hcqmTyd7ylG/DFvdhKfALaT2HbZ3+pHYVNTzUXoceKZmWQhHLamH9uKMa9E9HQ6HwiY1gMx6qut1Irz+Yg/4SszdBJ3OysgsSljk9mIDFgCzhUwmHpm+a6F5+u/Q9Py4hOPotAXdg2h/b4NQPCCREQTGA/0wVHWa7gQ++W5JbtZSZEg6FYSFKId9PvmntJrqARigOav0QEfUyCJaYx0efC07+Ef9shkd6LcRWYSZmbgaZchsD5UoUVCRrvTI/0q8V/VygFF4osTgxg50gdqS8au2FLefxDFxvHPkOp2rp/ff3LJ/spFzmj3YxXTNfUlMBp2lJNjtYj4hTs0hZIAVM/bZ34r2PpYVt1ZpLJKbRIVJdGXSCwfBr5jLDrL9XHfZYIlG5pWdpzRhO0pPQsfYrrggG4TI7E7tdNnjVe4+MoVI8m55Cneyvvx5k1CRSQcS8cTJ/WBiYYIL2Jf3ayjslu5hbfiPo3kIUL0T1XgcSSlvj/00ipBilJw76zy26DmJvRdfKwybAie42WgohyBJvo7ly63jBdGY1HUHi0vz6I6nx4hY4SIqbUPu1+vQLASgML3sW1vgjMncqGk3prx83lEc/qICexnQQxSWbyK/nEvSEO+SL9MU0ZiJmG/z1xs/BRxDYPc7/aK0LTCkXdhru+88zUANnZ3PU8/n5yQilwOUCuSbiy7uGc7w5ebL1LTirNPg+pVIF5iRPkIuCcYL9bROUS2LEgVzs3Vqesz5isEttp+Q6wNWcwgNeOInJLyNJNCxaG+akueRI/HX29r8w9Xq53d4ZPnq8AWCBrPkz562n3bR6rAQfnkyzURrg1dDKTN7pYYUNM4VpNT07UkIjcoF8jVNZWWlWxQn4xqACyPo74kY3rDQZvUgPwnDI0a4L4UQd8mvtlu6otTEhUBOi23l1chhnsi6B08f3kUFbuvniVn8JgrWTisN+p6pXKumIOpc37D3/aWYjaDFOPIBYTaKUiBoIVuGnBUaCPvpTsxvY1naD0c1+teJlvm0xof/FQpaDQHcD64XoFovJVaLix0J+hP1gvR6GyNGOsmoCwWgWhsmvQ2inld8m6b3Q0dgxIJScUFFq5vqHM149DzAimbIygMfy+KAJ57sTNP/W+Kqop7rKzcoyDs+r5Po8N53GMz+78cz8WNoceiGnogADYHNnGh6ej36T6Omxe+5+QlA2OWgwPO1U5uPXZcnuh+Xxn6Mzl/zraDJQ01JeyZGXQ+kRlEKxjrL1SNsCJlsuILKCFM2QF8FYHNq1xCjzuIhT78nKGhZM7RZQG/LyKZNL60it28SvpQ6USgY5UAvbf+5NoIjkZtA6jPVE5LAfl5qNPZbfULt6/op6RlV6Q3txmHSChTqHlRX4ogbP7j+zDmx5uS0FL4Fof3Waa2kF/QHJouEVRRtMWkXrqDz/X0ER+fEI2wrCFW2/swbkY1BjlydHpduhRHYwSmb2fDZ5yDoPyLj2rZpD0wkizvhY+F3K7VI8fEZ6N22R/ulDdpKvN6yQAHWkSWoW1yVLnGViJBZ7DEY3vFcN/dOKHgnVwAlfQtPdwsdiUxIFT1JFgcgntKx6oktS07nzG0d4QFP34oEUBdwP/37YmpgYjKohMuTh0qs9oyUVX0A7k593Xjj/6lEyc7TJdaVyow/sej1PFUkHIXkXxiKq427V93hlvpTc+j9+Pd/v/DttxF7YWIYGBHFQf3r8+KN24LfneYt/lZBjzJDIArYhcsXHm1wHui+9KJhkEb4n0UvFnnkFF01niPNbtHN9w3MQe+vHlwtFytqn79hQlJ8hopv/484qHwWrnHMRQ8NrZ7Km7WnWmkS/yDc81/UGX19G0PXP6VRWNb6QlaTwyzfGABEt9XCwPHRoJpQ3wTjEAn/o/KZcQNs2dJ+4afISwY38/SXESWqyozlxRcfMlMADFpfOoLBU5wNe1dGj9t/SAyrjvswM2CWsHr5RVJzBo33iX0ZhqrBIQhM4iYpKuNscvBD9zmE1seZZjOxARl0nz7qh/XcVOwTPi/mHiTNFlqQgsClZ+lTZE6JkDsBwmwy9gTC3XDujBj3AcsAB4EldTiv9Rucum9wB7Cbr2Rz+6bsaE+qp7bsfunNevdQ8vbIlzVQ4qSzVs1LdOvxiX4p1jHObfRMg4Pb1dcspziGWwK7Ape7FWQpZa6+2j2xlKf3KERz7awYR9haup2fmRnI+kVtXZ9D3LYv6J1PT9HG4Z7zB4EyR9eH2iIOVp2c8urImk1binxi81NRBpt9FXFEf/wYmM7PyX3WnM0oOAI6QYFJ8o3ffsIfe8sY29/wA3H3mEpeISy012oCoNMyOwfXuQtG1fzi3yQah+NkV8ZglRZ1SG+ImJ+hU4B/wJwDjGWodopmQavkcYa/1acUy2wTLJjZuoUrsGBS6V7OQ5MnLa4lPfYPtAgADnC5RJSiaMWN4bW5awHikR1wEdcQjvfUEs/HZ7G+EZFSaQuEBv/LHIQm5m/iMqlBCNUs5KdXrul5TwgJd71GW+6B6gH6YbOaCwrr9kWKAMYzmckCF6n3g60xC6AJ9ccpcUUSwVTpZtXhlRvXUSCnGm4uwM8qFR3RopGINZm5YDRrziqljAgVtAfiMwuWAsviWcmPof8jl/8b5LNpMpakGSGXHTxje4Wrp+Awo3GGqlhO6P6fTrk4KHNq/3J0BUZOR4BXkR8E1RvuXwuxRGnhhJ73H3vS8om4DgoINdfuC1icS/3ZhaVxOzZChA1lkO42hvXZul4FiMks55UOtgarUle/D3wWcnrunobOqEDVjtWqsrX7ame5YZwWFv03rNuvrxcR3829cLiQjFQ8uRVlr+LhU5ceUt4oPb31tLxBswc+k7oQWfCG27OlUJox3PUtRBZNeAk/P8CJGBTYel66b6N39ryAvZ8FVZqVrL0mkXLbA7a7ZMZtT09E2OVKZkzWX4OSaw893aCNABsICzd5ETir5MW2ni3A44oHnJlWFkUXlCqfvdM/A1XBMhVo3+yKwEwoJPzsH7YIcgccYPRRSBc/xrpal9U4Xx8oj3fPjXpa0iLOR0m6avwpLmCamEQQnwkucnUo36CvalkCPbIkhLEy0yRnifx0krCelzlO2V9cegZZtYO77Ba5jIg8RR8+dPXU/koHVygCa7+2rgyNC3Y9x3uutSagHWsUp41p2rSny0NZu+jICCqklawySs8J+q9V03vcCZA2GnyghM4sh5h8M2ALwuEb4dRK6NSXyOrCu4rHyho3vAdpYk6WIhpoUvVqm3xpzNiWUsW7R1+Os5QbQ/T9KZFxsW3ylrKkAKZ0XlffKOOEBiOr0IjNsuyhcaFVHmYTZ1B5DDgHkLswwjDgZ+0ZOQqMYukLaPIk5a8NYAdW0GZaIJgZy7v/KU1DnThM+S1GzH7ncslCF6P0uMiGxoMfR9IUGwF7RkPRzkGbNpGvfNjoVCsk4kSeD9FLMd2OYFERc124B3MTxId9J3M94p9XGPCPOxNXHMq0KI1ukmYLHkQPTC+UThjzJ75R4YI6FzjXPQV60uHSmdwZYqqjD0Xrxte9h3LKQJRl4ZLQx4iJ7GWzyKbhdUctGAQ58QkTpg5wwLg5onmB6KWRZEfcKKjAMX+gpUrwPwuMIpaIO4ELmOmJkGkVuOm9Pbtihh23jzgOxOIEpQ7FQNBK6Z/Ho5mm9qR+3cLkk5+ISPvp1s5hFMCtddFZXeB0kUc97p0AztCeIp9Byn0aNiSHSPcoGLZqAym0Rz7aaTbtoKltl2Vs5Sr4rHfZffcEzqGqoM/lEaMtsktQ5SOxoCoalu4tzzKsr94mhUlEzur4368xUAWeHdwY3VSS5DB3tPoFdzN28Lf3SxJO36ytbvAqZdcLyCJtIakfPmcEnoViuIPYYuI+AibTiH8GhmbGBTwrUSTCu6PqqaKdWc0VxfZr5nIjYZlsKil8O8nk8npZTUu6sbZz+b0L1AS0R9sDLWnWz2U8CAw06cCRgXcqObXnBmN6ve62mZodhYZbZ1ScpDES4PYvPES8+yp9vyWnnwskBff1II9oM+mikYHj506tyb9AojB2EESWmhI68HY7OOCSs+1ZNCirTQ/6RqoN2p1zsxaRV2Tj5pPNTmx6+ZO462pTPVhNwSuZ/hKQ6eHikp84cjmNMCVc+/PndIwZdTqB24mCxC2EaDOKUSY7S5gBBchEWwGjjMRUSrW5P1Gya4uNKjPgk7huGkkEPveybn4ICErX5gJ7XVQjqQMDhArSPP2TgFcgAUbxpYTUwuI3OXTpBTjyyod0Gn1Rq1M0P1L9BScXbf5Q+u+ne6tQU7MCeTS3oVvgnWRufcBzFRxcvp+sRI553HV3vDj+vnLusLPY+qOdrPIpPdr33RowPWkMnP53HzACsKcX4ZHmy3Iipj5erxo/62iOnj+4oNo9Qb90PWRGwkVN2xJrAZPOML3JGx+M1Vyr/7icF85Vxdb/eGwQIqFFOpy5oGPqoCTLFNVPxJtY9XcYlIscJO7b8a7qg+GqLveSUbl6uuUntwRyhfbZJpfKtb5H11SWa1IrX8mNkh6U0LmZxTi09uI2T3L9JzmrBc7DEPiFg75GuGnWFTvPCUX+rV99QMsFzsJV10aQFFwYHV7/pfwczPJJ8l7vglb6OCBfALy1qr9nFTAQ7ohOO7NZ4tTbRgUo0jJ3sLq/7dG7Q4imeDrNIWoQCGKC1iPtqMtbMVNIXYMig2sRAOGPQeYotbU3m2sb2ptsExPszA7UIt8jPcd8RhkzuE5iFK5MEp0zUFH+mKT2EBy/I5HeejkEGbHq3JBxMgdiEWAQcwHuwiYz+udJAhMQM54/qQ6c+gzd3OJ8Yelavck1EXeOytS5vD63t8D9HX122Zll7hU+WNtNcQIhziIBWS7u2d15+tWagC5ThbgwIgIbRcVDzyTKuJO/gXkca18igNBHclaM2Btqyhh+z1M9TES+f3OewWrEnXDqzZWY3QLYOTDGZKKpw9p20G4a2PG4unbPErInulDWbHwX363d9K9kz1TZsVXIP6mzBLXweQ9LzzdGdu0HWN0GddVkvqDF8xc6fs5KTgiec1JVZcJhW939n/fovBTP7tbx1EDm5hWgmrO86sNV8UlRdQtjgGc3zrbyCQzxe33DJr1UYIjwKzLgBVJwlMOtAAPRDjxuMxtwaRfWwK96YF8EOuZYuk30u/FsLHHSv7s66q3sw54eqsXa+/NR8cl4W1/9yMiZShADIpn8QbKdudpMth0q/0UFTAqU6rJvEUCkVCrIOPBPVtkSyt55kYILjvGvmj9ZoIm5F9aJbx8f0uHGQA0UTKVwD9/Rf8ToKsWXgHASu0rdGknVWly5V1NF5W3km34IloTmvGdSJS1FL85fVUdmGwnyWHWF8Lb752Y52H2tp83RhxPSprldjrojyF7L6fJexq/8lwnhQOSnVp7DT2YMlFCLZs90fTG0GKJRLfknVNfF4xll3zZJLwdg4OgZ0SUFy1RU4M7J9ooVkJjb0k86U/+B7KcjTsjMBfiFOwQYWQJ2mydXHusXUi2J9jpfNj6goXuudn+XNLEEl1GpfppLf84UYTedsk8dYHJb9BzgS+ECcuSx0t51YqT4lTYErgpPhD8tzr62z3gf9tcqxYCZFtGvf5RxmRcq9z6MzcDe9MDeq+ZskiWnXPYGJdsETgwEcDPmNPV7T+5apRwGzfn7R9kx0yL4YXTKGsmiEhUtwZ76uG4XgInG19zaoesWVq+6NnyfZ1R9tacYyXQ6LwA/8/YMA9hggg5UhgOFkKu6zRnueJC8heiUS3qY2I25DyYPM3a+GRFLPwjSuVJWhxSoyr4YmNj3RUTEHDav4IsWpa3cAHCVz12BFCqejgoNi43B3IPttnJC75UZ90xV3IPyi6R3RuI+BAnPIIIfb68n62l/DRlsCgfPfzNcnOT1WNe3zBOTznrCuC+CXY3pZttTYN4vYBS1oKgqFFXnaIeUgn2rMHp/6f4KxSSDxM1osBlfB94djFd6Z6GXAhcbH4/q6BNsK/fO06PVGCFCJCtKGRsVdgIFDimzXsre7pyla8kkmoeW6I8Z7x7I/P/rHI7z55DC3pJc+Yn9qdr8pUsPi4nLSD/z6FW7hfVa5XbuVPDQypQQFeuW5l2nTZqDR4kn9CPTd2hD1W59goFmGkx3mqZTnusw65mBjyLDjczosQ3oj9wtrbVv3Y2xBoKD0nCvGtvk7U92G6j7Rp6dhPQBBWPJDXM7fYvSl/Ajg0OXgKKBrgpPvXSaFloj+bENOmQXwtincpNJa4gsPhHttbeC+FJGcq7H9LY+5c6fxb3YfriULFDCf2tWTEelkKxFr1EplMPuDrEQmY4Zip9QoIY9hv9tFDBniIChx6jaRuAENerbGBZzFYnyC0sMcdi5e4BwVuSdUI+R+lTFlBejjZ5d8489H3wHNQwXRipU40qumQTYFc1ZN7NCF4PrRr3NOGt8ru5/oFneQgtf390NPUg3v+ZjLAma6h06KUoniq9wgGoNtDobRWCA6UeMtumHVRJam370/iJAC1HayKQOnINJoOv4xPfFj9Lf0vGHbas3ViM/Aq3PomQkiy1u0/XxQR24VNhgiSqQ7PW9kzc+4nx4tX7wcih3odpdfpSS86cHt+8aFLr4SC9EbSikvnkNlu92v83YHrFbLdmp4UIOvLKLj7JO1ZpWTaVEH5FBzA9BG5kPuAgBWL/Cj/ZcR6XmyY5Oacfv9rXO/bkiTXEho52j6J2LwXFZp4V195JwlzaHvdRcQ+3y9nclCHa6yCvKi6x4E4IEzUyITnWV3Zh3/F13nyu0tyNVIsZyVJVu+iy/SvgtR1B7oK/+JqMy+JEsskGxRnfzqwPf2y6VDosg8RQyPHZJcfMe6hCv6YQez0Wuebu2hVHW22LYn3XGuY8FzhbuyKgTmScaQGrhKMiGFz7/nmcn6al9GRNVh5UKeXsRXy8TM+VuIHW6vcdMr1SVfWPxBZ99ZuTCQFCHxRLomlsH2+JC8Pl6s+ZW3r3yhTzuitVp99hX8F1QdnXYAty72eDLdF0cr2TZYi73V3xQtzXALZ4Jq0vrSPh6pYzkXRB0c+Ry/SGUH9OoA2UzuhwHRYxkHrS3odD7yas8LdZ6DvsjPBkP40g6FT5V1yqcP3D8uI4oTh6GAKAHsXF8n6AGlpMkmQ2Ee3uG6IOvi7u8RMjFqe2tHp2sBdmz6hS1yk8VDP+DDnF05vJDZCgWZfxak4rGMiY9Q5lPK8AfaAp2yl/v1TGzuJ6lDAScxoAS+aIfC1z3zlrLGZxD1D9cYMXpDuJjpgy8nIJSpAVNJTiRpwSrKs3cnAsN+PKc+yVppL6ykLlKIvyLO8QZciR25Cf6lIWBDCO1IymEKmdGQVZd0m63gkTU/m1wEPjezz0EBCF3eznZVZiMVac8d/rB2pZE9AN/6TZjj4E+VwRKrBTV6h1rRUwsoFDiCQXuqmF8OxUwpdDVlclH8YPnCW6kDKviingO1vrT7tFmZTP1+agBn/wRvOT0pyrCjRPr2rvtIH6Xw6bWlv8/LTDmzALffe79vJRGR4q4NxY9WcN8zzaifv6NXkgStVgW/0b3JFrq38UBDrWHYvM7levfFEIAX0x86Tklpzu9aLABV+81MZspux4tP+S7aR349kfg8H4oA0RXUliWEvVhn/6gELMICPfiDRHou6ef7GuAWPf//3ad9BUvRsxny2IhLLYv+VjJNFIlCVxe74Bxq6sAI9S9+aeXAe/CZ+nhNJBlbhZr3J//ZCkWYVDsSOQQZEWOf8YUUfPE/iylUeIqdFGwhxSS4dfcH2pFT9M6FlOYKKw4dWollW03zYOhoqWrnS5JuP83RULZXYv5vaVmPEEiuYD6UBMNbh7TFjhkJVhBH/FaQqfYR7qPgj6BjO84XjpffcbILoY19GhGwy3oMefNqIh03tiI0RT2d0eiA+w7pM6uAEvEKiDsF3nyKQFo0/07iaP6TdFQ7X80LsIAkjZxs2QHxYmqknTZoIB8TszCEeI/j+N50BuyrLPzHLHpxeJ9WbvJLwS21nz9JxrL/ssMuRKWSXU+9rsn26ottCkIC66NNYBl/yczEgpRD/gjpExw8W7QLG4E+J/6UoSpIzXIU8FMNuYpFNdVRb5BJMEQLzbnoa1060WSwf6jq1E9XnNoKjxkZKloce32r2KBUYEjMg9x9OZ+nspwpb17iivDGv2gSaSkK48QrrrY1R0sQP7uw3QE/olQbdHEwMSJs3aTdIRW5BYLtSw4rUMBAGMc+h8tgx3fzbdf3jfNTqSmDNXGtZC1J/1FgfVCPCjgzru6pKwLivWDQZit6ELbxq7OId1HPQXLIiLmH4l/wqG8ySeszsE9H8iq/pOMCxhVBjDGxVeNtt6MaSrgyUeV+0sWlbbYKc/JCwY+TI7O8oz0zYSUjbJIQhcfYMUzaaMvBIl6PbUxtVVe4TXRlXc4XWOfxrb2ZPdB9ft1NZD6q2HxSDab7p7PgNX7c6MbglaCFqd9Z00BHRWs3OzSCcEVept2gWan92goiXaHJe5dENeAZubnucf4ISfUdhK5J1UTHpk8O10EdU8Vf+JVjUN1PguPmHB7QaU0XdLgJjrSdmKnMETvCu3+QyBLc/spefXi6wPpE0UZk+SE8bXGhsqHKWsZuSvvdJgNjnxoOERBtebRide0fLSztlFkKMk6sDLGYcRYT+tq7wlbU22V+KQwsJTRrt44Ew6b7ezE6R8GS3cuSW5naKrHjZO6qyapCkCa5XOcGsJwFdgv6mDmkwwUFFwn+3o4vPsatoQO5NKP1ewkUGL164nJspks6shK3VhUBALib3M96Mj8QHl7FUfn6yDzMrrXUhD6u3NCRef9wuXRhtdNKq9KBqXQu6QSFH/QE0ORGMXFhyC1z8RxlI4Zx+SdSg/LWCTxt1+vqAG2fKMogFUUpRdjrpnw9ay2nS/yg/iAL2Dt/nSwIKruoxxvtlcveXzEunhQ9u0YGxLjZgCVespVFpWHkgzvVSGT4vqoQu3+zobn9D6Dq0ZBCmz2Pkysen6bwM3lkWGO05M2Dnbv9uIuHrJMb7du0Ujj8BJycEVKD8MCcVX7NZ785435T2OX9RyHLxPqkpkN7dgIlykgRppqapX2IADo6BAf54Dy3NqyM+Wm+Ax+34M4HyaVOZCh27uPQe6zpJ2my3CSNPDIQQEDwE3mzA61MB5PxboP4eiXHaizzrv9/FX6vaL92jbdzXVP8yyEHZn4o1u2hunKgQz3W1XOgPwzQhGf8avt1kPFDweVbbXWD9EZ8mOcv+k/q/Wk2WQH58+9+TWsO7Tk0Vhhmj0eeve4pByVIbZPYwt7dGi6v/1jsYLB639TVWy8ny143+kew1LLVEwSZpETN9OdS7nFDmAUpxR/PrVg63giMp703kIAdx9ji8YCY6HHH1Im/eNDLsUR4h/fb4zs7BtUgTZJF5a3e3Jo4P5vVl7onqpOxyKgXFHm6erPW1Pqd0B9yMf5QSsem8DRCVB8piqqY8onIQdTnduOuBzbebDOdnT3eBLn1O9RdRtENSoXPHFaytPV5cth3C2Ni/LPdXwx2smlt3Y8sUdUg98vxPH8trcSxx2sYFqOvO6mS5B4mkh2e2mu1P9Eg30xvPbkyd+AjEm/92SCsGbUnbGkoGW+UUZ/ltgKNwOJe3+n16UloVzE1+16ZJfCUzNQBPITFUYxlRJTlCjEjDU06I6ZKVKupz0JWOSJCL1+remzeMtRFu28OW8Ixq/eP+29WAsGcel82kzyjmwHqnK4/6yRl435stumf6zFnzgLmtV8eIgxBu8dqNMZ8nNW/yUs6ZxgPZvctW7ypH7zvIHo87bgHIgFPquq8MbLJcPtH1Yz0AVBGO2fo1gavUjQ61ek4051reBKt9u332ivfV8jwMHeUhSVz9QmTBWpfPsAPnHq0jw1lT0034uRWoXyd09lttvlm6Juy7z98GNpetlXQc76qlvW0VjneuojBMzbO1uwCAaiQ9OfDVp1FUgk0uhSNPg7Z71vTk94NlRoXtK0mcgGSCfM601AwB49ODIP4M32aL2J2MHdtNrtxYatsfU93J8xx+LnC3kjbV89kp8MUcnFstxKMD0BAa32wAfhjIjOfz2w0ANoZKlZM4Qnke+S2lY8uwunnWCByT2qsa+iKbpCCJIa2H1+9NiLMKe6dn4NkqGnXks37BeYLV0vyK7OCPoPDSKlzThj1VKVnuKflrTsfhbVpxN5Sdc6HFUFJGOdABR9SubJdJ+1Qof3sUN1PW1J9DALuF7GcJHEVM39mnJZZz9x1WET3mXZc46NAUWInIAs54sllKJo+Ad0bJcLUugttyNy03vBnqdfj7J+47/si4nq2kQtlvES3+vSdvwbRTIkCvmuHmhoE508CqibU9fAlE/owMKjsocRsiscU2dzshtqC/tQrj5Meh8D8L+NjavGDghtxcOL6FnOApNNBrhjGS5sDfl9EnCkUQhrxeCdesb715nariGfgKDTPxaukiAC1OAHYEahRomKbmgSp0LojXcAFxyDIrkdR6Mnwml37b+y1PYMmn8ohcd6iFZsbqC5AiEZKnTV+Dy7aizexlLYR1yE9b9cqpAe6L87eeLJUcWRucwWA1ei87m5zzuxX3rTDlYmCyH7Aid4pRCDKD7oXo8TKdkE/XrSR7B9GbgjfRpCAFukwSgeW9GtogQvHmoguswb+eKmYb5eFzeGv65946zPvpmabW2hCcfSIz7II1ky0O9ymdW/eCN1IvfuXmJdEmQynH+kr6rtCeXSOJtp8tVGDpFfigPPd0T0cE9kONGUXT/DpmfJ2sUR3S+2FLEAycYH//386F1hcuWwSwHo5H2m7uRozu7ZFpBpO9/NHi4y0QcAe9sZ2aMSBHcNJTmuTDnEVZV9kDJetKXpOJyb4txYktURVP/66fHHCd9avP9fWjy5e7puGfu+AbrHa0AltsP10w4J4q6fSh7ARqjf0dPeZ+A35glUDbReMKtkQN4r4CoHkIfzsGj+nC2pUatRGw5dZ3PuHI4dsWR24SKPdEGtc90Z4CC5yDxvVdcN/9i4eWoBlE3aVnfmUd42GBFgHUJteS4dOUpgsbanp8B52NVlAVNYhkwKQ3Ly4GcmWBqEeULBdtMq4ftPPenJ5RzWODqGgSVnbidFm+AmDT2WrtdIWhbaxXYefCracJ8FgGPeqnFUAZNWSOMWSM4mEHTUpFkvT+ozvsKN+9UfUhfodoHjzV0emqPTw1FUP01nzZJcSMIEEBOGvmppT5hSsjszt4Gy0U8B2QBiEDIgRfYby7lKrQBPqq3OclUjgW3jsTRu9bAAnpKB6zUQjVXUi9tWYZEhBmLj/qCseomcJ/Gqklq2jbfyPuikf872cXpFBr1TV+MjdH1xERyg8PclRulM5YfKQA5yAxxDpZcFadYecMMWLGTsQqQDZvInqDyiuTGQ6rhRaBWcZFnN0PqQAJpDwh7vOb11ScRwTPZaCo/YMpt4VNQBnMIwuNhJGJrY0I5Elz6LVQLsjqpev8jK4NS2EA5dyV8L3mu1+6a345ohXuwu30X1aJbffD3Vyeqk7vFbvXz/aJgDLLxSkbF4nIpdx3ez/krN2JW0VjUnOKet5fMnCG3+II9q2UWuX8qAi4RNdZh8iBK4c9rntjP4Of2jubnokH0oDpvT0n9g8+kOK2HGqDDlUFkUDoiUI3p876Fs/ZLdf2vR90WxWyo3g6SAogaCzMzY3lkb11QHSypmqOFLwVozmqtsXC2ISIO2sF1rJ6cvfGYC5mk7adziW2LRknJEkvcHCnc6Tb2Gd14+B5KATtJZsZU1MTSsYWOq17l5rAyvBMbUvOnDpdYcp1S4L3ZGOPjq8Sua9XrUvLnxDLBmsddP6Rr50kuLR7lU9ozoWYmy1WaatjWuIJj9/bSjq+6TQvMmN2dANLJkYHa2rltbXM5h/Aj/eK3UMITq7L4pw+HyFLnMX8gbP6an3Fk8nxLiOCb9UxAEIAU47HHQ/Px5lintpF2jmSC4oNSd9a7v7jie+zTtRJRBpyOn2l08X6WbglbX2K0bLbIxIyWIYmX3DUCSml+Tn5KGnHyAnQLGEqp7nk+OBgDE8Y3RWacKcsjMH9bGfCyLcjn6v9MHpN6XRhFgeoSvlgSMgODJVPcun+rVXX5H82Eeui7P5Xwd5n8DfhujFTAZXRKdn/zn0JynWhiTbD98eetGUhRryuXDc3JDL0EHWMdvS/L4MOQpirr7sqYH8yEQtWkZXwd1dEZNzQVHt8/Z8pC6Bf1u4M9IRnJjAChSsyRWRDqw7sVzriFSDcaTYxQDaF0j2f8/psc8DaiVthFLlDZ46GWKRDFfcjbvitZBr5sTX+0/rOQ65pwdZwFxYrO+Tr2utzcd1eCDJiDQUKzfNrHhior0igkyzhWE1JjnTos492wE3gUBGL8voU1LuYEJhge2YN1pqUVzlmGvq7Jo6AQmpvFKKLAPpOwGzwpMmAMCw9J7rje+lD04FqwERQB9HUJWFyo9W7sP2dnWUHauhEhbA44+4lutjCWrtHbO1vmwPtmTHUQmTXKpDuIXVNeoULm+h8Z+gD1eHONK6Pfd+oybVPt5llzhCLMpUFXC3uHaFc3luHzvnerUhxwIpPp7xpdAenO3MxIa2rIstludh9VhAvi8wFFeMilRls1RIzjIHX/9ukJX4x7mvJi9XVm+bXP1H93vEgggT/Hz7SwiIspO6vEMUdGgygD+N1HwZG6MlNgKJQ97jN6v2e0WjDjbopalY26TCCYU+CWBUQ1+8uBG9hxsIrxg7CYXWHbpEz2ba0IkaeyXapiNIZ6T+YhYjKQLNvcny24NOwFfJu9nuSvRao9Ak+y3qunuXElqdXjkmUozzookYU3FuZap7jXGz5Zsgzq5ePCerC66+wuRHIaLXQortS43ZLI4bwEl2zKO24Ozr19ze6UaKBggxw4K/R+QPg55TDEZIl6l2nZzxZ1GXSYa2874cJESckf4vM1cBOlmcbk1G0gC9BfzgBk/Y0WeMVGDjA87ZScgCCDi0TDkyh6TQIbO+uTq/cl+rPKdJsAjF7Kn5NPp6coDOR2s5U8tZeOpqm5jMYRCPabnot9PkUDTF6qywo7i5+3X1BeO0JAouqQ4YDXwHKOBpuC3ZPbjuJpJDCU22fB3McBxECk3ykWNbxcR0k275B0YChw09r9Qu00xKK+pFXd21wFVUa2Ah02Nd50no11Ky9zp0zfke43f1W7V6cIFAnlKzedauBng2/4iu3LSjp2yOtNQ9ewYThXKVgfXqfYAjePjM9sxxKJx9uN7QoMEz0R1H+n6oR3MhkS8kSjDRfYE9uXsh5LTrsLGLBxThJ6PhM3URILe13R1M9lXiOxRc4DAJqCjBwqcGsO6Pktx43ko/jCal/earPCFogpOqmEEod9lkFE0dksgAeRykioKpBI5ksq1tNqZgRB4d3SM4HV0q5TFgmOai4muKQLRl2RtQaU0CR6ytmRXY04NkB4X2YzcqdGJkX/zmVSDbe/rb/PDjD5Jp2HtukyDoAG7PK9qOuGCMLQnNrbZiI4h0v4hLih3vPcBArS/ch9ZS3ue2oI1w8SYqSZrOT/K7hVnpVYvBZrcm124CRlDkn2f+HQwDwp6TPeb3clf+T1B4WpCEkoITF5cECkXE5ZzkUp0EJXBPTwhe/lohbkn7tDjBNlNjmczIwRwQSoqTx43UWDh9ttt0ocN2Y4QpF7yuoOpyVRIIL3dKkc1V2cPas7VJzExzLLjLw+IJ7K3BTh4QqSpz/vrnkaiMeIOt4H7H4FRLgYihVIHor6Ocuc6jaHacEkmHEDzVE/ASZ72cJJhHFENS5OSVStdg3vV7KjDpvrcf72CdO3ezCsM3q89cdTrH+2ptmulD+LXXJcwIlBIIwO0qKULkJmHNEYuya64v0Iq8i74/1xRjTniEny2jxKsTr1vGvIZEvbW1wg8a3m94cTFk6BvYMg879THywXUqW08DMn60JB1QzIi2vguruLqbdM9E00rlS8XiELKfP5zRMcp2LUvDNbOymhjq+E7O81eWcpflR55fDx3nF2O1u0DH19pTcQPPu/MFeY3mV6afzPVhDmqp60W1m97LiymRYm9TQjqZHPjrXvEziogdR7HbHO6azY6467kn8T6Fdj0IMBs8fIOSOdtQ8WdYtSYgDcm8wyp3J7SSd1M3mgiR/5V5lG1prmeXafQV3IlkQF5Xs6MOR5rd7QzBS2b6LRuJDBcxWiN2tWFotAqGQE8l/5O+iSZgipDTQFGtNz2AlqHHS9lRnFU8zNoxUvebYAtYaCm3dUiU1KWFDBOGelEI61cfbMC2DfTExv9acDfezKQ1E/ZDUyeOOiTGxckUh3VnNA7m6Rx2MKc+3zzJVGHuH6NtmzerSNpM2VWq0GWrA3fyw2TlSQ4kbTqqH9uLRfPTfthOD3WsMB9B/2PwvtUVdjHYJHCtaU6hH375+vNbr8dBoFj8SLdkj82uqzN3OE6Tty12A5oDBnoXsYdonwlLaCWmhzhbGrOnLlaC4LflxF5oMyr07hLMOB0G2l9kcafT43x79hbHy1QFNdvqhEcajTqhctssVjYD8kjtFEpADlv6YGXL+WElMk+SB7lE7keSa3E7r1JeKGd5vmvK6ydqx6sUUGVntWy4+sdrTftJCywgK73ofZ7QAzWqf+IZirtsr6JUTKo7dYr8f0B+L6gxD+vabuC/eyamg5GwrESKvtw66k58vqaAtGaFxPvEYl9gPIv9hWX1iNKZe3WWda7ZBrgfk6gBJXRDzE485xqOpbRRwT/s59ejuzdh1UKseLMT+IPv5hgznFrxpW2VWZVIttYBsyEqr+TSE5jiJbWPSXLblCw0ZhZ4w7p6A7vvKQqyOzk/3Fx84Pe2T154pfFE+5VlPKe/g3+sMoNZUKdGE+Tr1At+aHDNxIAv/3fnYFuSGXbMc2YETrxLiXAsQC3VfgZ8SFGYRon8Wi1bVPe6HneHEcpwu8xWRRBq9MRSYch6SvlR9+qEpRHTUyO/uYBUTCsGLNSQs4FttV+WMeIu7Pi3N+3KhnBsB0AftT5E8KgJXQM1Yb2LT8izMye/bYXjelhb8eZ0FxMUphvFxshzKc6vNghFW4YkrqnDvj8woOzpN/tsZAubVvdPEpNSinI1gUzlHsfaJab5R4Zly2YM/3RQUxbsKI5hSXNNirdqP43B7Z08EnLcRprOzDFXH0IvmK3y4Q3zypTVeeX5V40YXXGi0Woiti+kGhEGKjNgRy5IZs3GTVFUhXLXtw01Rpjlx7LY07+m+H677JXNxJJPXZRwHd/psQDNLtAuWHJtMGEuXcXU8EshXZ5gj2mj5GvF5VEJmGJrLGCjFmOCn5HaTpJ0/LyMhRhW8fNmWWPdnx9CoSHKSw6zkpxmb0QqeuqEbovLHegEai0zgKM7rG/qxRVIACwqh505HERXjVxBpUc8973ZZBZ8HgMOZVkteeCW+XRHTXswZpXAx8M0QYxLHvr56xJviZgydldLqgQBu2n/nx08oe7U7/dQEYe369Hd0nhxrWAnRVVi+fg19NQIxsMqCRbuElLXOrAE7yGp4T7yVvBeiBDVNWZjRO3Th4HyZvLyWta/tZSMIX6bOtn48TDEthKXxd2fChKvWLJja4fS6cl2fjas8lo+CSRCIPhH1KS3dABIO8VeTZAwQ50S1fRF0o9ZJW5nKXJV0auBwO3Syf2NrIrkB5VOD4eVWbnJm6qXq1CPFgCES4LTWVZqOuegl/OxHSWm4pNtY3EHj6QeWVcGMBkuqj7GQfQ7Mx4BCpri9RGMiU698PichTvjzuKZ7cJnATx6O9K8vKbdG60uN21wY7xHAvABuHHh25ib1GjO++gXXw2z9z+UtHJ8DmVfmNRUXItwEJ4UaKoITempTHlC+CXWfc1yfcrtWZUJynWSJwcjXvHjjaVwPEUrR0BsdeYk6oOMAmXsZvAk2QrcP17mASg15OODkzfj0y55rSdnh4yUoQZpt3f4ZaQjQ8t2RIHECiDJJQGI4ST2uLYKAXeNJ0d0OVtehzCsSXoyE9Kmomk5ksVCYtbcSnyqwEwpDkkPax+wOsy4Fa/SRK7zaPXV2VgOT1oqFpUk/heAggJLqZozVA+FX1CzWohBGLYCmn2cxA1kJWnoqCZ+i8WdWg5BDAKQXXto+LWZxTpLwaBFqPv3zVP1Ka18BuuyyGvcn1BmTB+FUS/GAYjOoz+kX4O+DWfb+s5bMkJP551suVEBU+8r/xYUzpqYVeFkEFLeJYs4lYsGSqr3YAyq1kM/wESMBNMAvOWxyxhZYDjDEna/ju1MNoGY35AyodDr7aBaFF+jwq7KuU2Mxhu+96C9dNt1H9oRjjsD+LtCQ45qZawu1Gcij4vBtmnjyieBCdHQQ+rggdZKvX8bkUiTzLVOJI1GqamqLjpGRSNvAVkNUa5DqydFzns+E2gpPfEHfDk+BZRx3r0yvd2bcCbMzJ7f+a5a29YAIM95ZQcg6epQT5zL0E6Iyvb7Q4DG67He4GY9wQYlmKhzlSyc3kJIqIJk7MSZIdXoreE2gRBCiuUt/yhrv1Gu6UIF/3ya6dCPZElaVYehDEw356Z0GJHXukfNGq/EUjBHoBSgTRw03emkTF9Wm4SkB0UH74NKGbJ0Nw7bclXdmvyXOy/ljVxpBsKzRmrVeYBpjIw81sBEdKXqrC2Ca7Cre1k5pAuS70fM1PJSmITLR9SnUoyhw6++gOjwGIoO4//s2A3Su/Vol7JhRVVHT/36ksuq7P1l2LFU6B4wxLpvSNLvXoK5Fu9d6lQlXe5aTWyxW9/Jt7+jmwufdvNHXM8OFYuUbNqE5++PQycbsNztDX9YFzxfX07C9I3uTPO7/HdavH2DqrXywoa2zjKjyH5aPze1l96woe0JLXGvFosEkHDiPXQMVCEEN9fpWej3sZ9oXLvxJzILLJaJRT9oQpaYO8osJKYb5/334YyWGo3gJjzxjghNKnFZGMVbETTXjv9PLpjYzERI0y6orS4bIDP5ttppzlYyaz/S5xFUoriS1r1LTVsClOrl/a+k4LcjCVw4N6+68dcPZBZJm313tYdMehY+raieF4ykdL3YzcnIA/UwczQjzgkBDKtV/gX/5vckOkbk4Ya/C3UcJqERNxMC85oFVx5fNLd90i9V3WJIrKCbnCogxGeacVkA111gv3hL0ziq5oBD6U2ZQCrH96Z+IOrTQWJJfoDnMnKP/dZYfmcyDj6f791MgdSw4ttZ25+X6W7MjiJERWJ/8gID97K8FBo1W63Z8StGg74JeV7hB0ySsBekXxHIDQZs9GUIHNGKKZoWexsNXDa+vpP2nBoLtnWlQ3xE4Yo7I9/HrwIctGif2NO7lk6tdbQUwbLKSEMunstiTC7Stz4lT87S72rzuzXExSSns1tTJ3WOhBDvQjMsFvRzM9Z8Q2/ZsOKeUxYvoHTRnGKbg7CDPkLLJdp+oemdZ8sWza4PSvzAu8wwxI2OO7KIRNyLZQeoQpQ+d8eloIUMvBCtZ4QTLdjlmA5+Kv2UEgBZgci8DpCqjPqYAyFmHNKZc68thV5ncnjGPH0GgI0vxGqimguGU4gLyQFLAQGRgANBEtqB91jcdHiLhqXvsSLjMOWAHEF7q7TMUME+roYxTwsYXjjg8QGK05Ab10y+HrjCEBlu/Nef80jDKXOrE3vT3Dmixh3zF3DkYnqZApEjng2qIv98xUru0KgjvqFod+ABkb31qqB1Ldd3IGstuYmfEk01PVH/tiwJg8Kater/64k3qERmILgE3LkjfLqmHiUIuHS8Ypt+vZosMbc8xhi6bobzgJ16xrBPvQqua9jMvX1Iv0WZ7Fy3C7oI6cDEWIYu9NEZZgnoilQSV4rQCL1XmT78z6CXcdvq4TgF/gypQjp0jHwkGDhlLhQYHjRU5Qc2bd7XZI4Y+rba84R+YX4bWjQ71K+pMN0Hc36P5W17KtwzxhDY1LybYlAJYaM1D5EdvGcv3R2WjSX6IVGg29QcmTNNZ/xp1Zc7iay0OmpGFyAcRXhII5THf2whFV4eguzbhNmXHIp0UQzUmB74KyFCiV5cFDFKBXmWrDjZCQvi4kdTcxWReCuEjjMuN+0NDn/AmzqIAU7cS4prwyJM7ZO2EK6ota4c3+oLKh1gQrk2EEI457htrpCXvHO6cWNsyh8l9ZeckdBcfZO27cmzZ2jMW80bDcJvvr8apAc9B5eJsfGTJDBcg07hviX8nspnboGM0CssDSdYvDPCuXQzrlDJVY5RWPP9FnYCqWNZVhPPmgpha4C+Djc4UqTeBuGgYo3YgZXDKVedkLAGN9meUCayNVH4uRzq/IBT9HRtO88d51fe+/wE4tjfxHrsRo6ZIuwoAQtokSSG4K5y2n5835bYzpERaNBaB2N3xCu2u07iesLSnLwDEXMQsWNFYR/HPKnECo4MjFqSOVV2KkqLpzX08T2UxB4hvtoAl+zlz8Wdijhomkr4IIHqV/Uw9vS7sW+MHupTJGYusAAuUBKoP2UKErqCpJn9Esi4IyqAqJwd87MRThlXeHPQGoPjM+Xlf3z1m206H3WYioeG3/Jtz3HFSvCYOkCGcpuGZts6GmAGKk1u0LJ2Ohj5yvSODoswg7vXNwjUmseHsLD3zYmr2TGTi44YYkiPIqfxgG1eZRLyn4hQCWR6zNHnqjVd1VVP50AIHm8A++w2BFAye5kTRtXvqWDnpm0LHNmqNkE8dh2fv1uB+ldLhUVlrcON1I3LHhVGBQ6vWYjzKkvhAGMD9LeP/lrtEzobnhaTxQEFLEwZPXUafVFL47KaCrrSeQZUO52do3pkvwky32A1HRNvBXmVIIuK23nQoJDFXMpfSllDgbKxlMqF5mH9/KPpf+NigxMzjIY8B0Kjp8ubHNk/+SLtNYvI7BaDFVUAOV2jrtSmNdvBqcJB9Q9tJwfcnEf6Sum/be/6fLhN24HoWIwMzExIPvj/62rUkAmEPLauv8pb+iQ5+5rIzF7M4KBf9yZcWyp9lwxeU0HwGx8IQ1/+0C8qPHEyEdjygr/drykSZ4419YCQ/xsyPHy14UzR68E3R6n/bsKmwbsBgatbBSqouBtY08McF0lM2zMmPjx3lPMs9VkPiJSsDoUALDQFOdTaNPuiKt3rDDI4VnP81EasR0FlmfI4t0+NGBP+kYNxrFK0JVL5pXMCveHtWYpAlRRF6AxH9RDUq9Uuc4fUWFCNAGWenX7Q9D9ZwtTqlVEWwMl/TFKhYGUaBVhnompn1dEFRNYHS0IF4iwdZL2r80NurqVgIJKfQhwL4Vv8xbBDyGsHVXjAZJckHjM9ofNW6UnVGUIcSVTdPTJC0jDRgUN9HUGK56nWrlZxri6Jt7lachZIjJXF4vqse42pvzIRka2T/myaikBxPRRHDcrv/dtGqy+4YDhhc+vknQb8Xzv5wXT0tJSXP7gp2xAg2rlnsYMn/v4NznoShF9nqnfFyxM6CsXVm1lLEbhWG6foO7nj482vhMbkdSGETgm1+ELkJ0QOqjvG37L0dsVJdqGI5PmLKGlHD/C2rqYZ7LKWhsDCG94oB+RCnT/4gkVFb/LpHasuTBeTLMhRbQByec1GrG/jcxReYFQcsbRCkYlAqRyaA+x4Coop1BOREDB9etsqhoVuy0g6zTBFJ4hb5OCKOy+7orf1Gb2OcoQj0SO3iNAM+ElehG9chjzH//USU4VCFI54W+kkJIJ67mwB/ppavnJSffOwBIMdX+6C8a8Uw1klgaIoztN8BABomLiG/EM1czoIO0fQuxWaeSPDhlvgoVf2S9RuUvEw+7iNDhsRTbmgGyGNqoT3+9cRwdBlKQh8QHb+zUbHP+A4MM4/LeYjUBnmgJYxFjU6ooVjyivzVQckBhgNiGIc2/aWJFJv7DM1C52SVodmn2UTPuJJS07DCSD8foWg08eGPkRgPNhWQOA2plrDKohWhJh5zR4sDy+NbIiLY6/k9P7Dsg+pPgQk7NNiXVByAB6YHJANqsRnncuZ0WJ0Da9FQX1TY405AWMFHfNlEjB0voh4SzdsYhJGlWwC47YDQh5DXSGFRuQLhOFFo2LeQZfLZUE1J8xg6SKw4tU601oLo/1vIW+fNtLOV4q4NUndvkinAB+P1AtRfvWIIuD+yZ1pvJiFIAUNQm9hRZgEhwNQ0D74zwSQqg9onDZQ0AdpIXDNF5UYH9ZVWw71SS0wrhfeFcxwtc14ccYjuPa6jKBicyiGbGgKM1DdL7F7DnmYFt0c0NAFcA4JkrYiophbh57PQuZuakVmaCVTtdhuSvL8CuyNMsnTdy5PbB7Ve0GQlr5XtqZvjM6x/QiiT4etBCy+3HT9KDJjYoad3oPVwM+RpYwv1zWPP2jiB+TSN87Dz0ucvQpttMZtNItsBp67YUP4FEd1r2WBUl6IIZGNjUparqS3TYmcVB7egiF9bv4tm9cVIP9D/HziY05//gV1pXnXmaS91ZviwRCB6svGd02ihPnSZA8gJMqjm2sqKL3XANzos+gwOkXW8xsUGwpbzc1kK8X4QobBOCeq8xmmDiSbtlcpggSRSdd2R4jqCBxhTRf6MZ6Fg6LFBeUeY5X3AqInmbAG9UijKD28VWNhxsMVpwIi1SVRdhGffB6U14awe8aOJcUbD1z30KRqNf6B549AjHcN5DEK2CS2QsR4DEGVXZwDG+yDClOchyHPTa8YR1DRT/DfId4I6FMX4aIXpp0PNwFxe1jxdyW3jT6bu4JrBr7TxEPF7RGSmLWT9GA/pdVOpGDDFwVErT/SaZD3kP7KkxJlibROr+riTZ1gd0CrMv/CLowBoScidgzx7yL+2lzk6AhoCbVBib9N/3wNb8grnl12aY6Whv/UGRPDxoFQqy2DGrry7jfWbWLZIRpzjclEVucpYLAxpt1Y5m++LrTEvBgakfIHzmBgqds+/cueLDdpVSW8GsySekaNVHEWHXQeQx7e3khFbcpDtmK5UxbPkLQr/RqwYG9Fm7JjzhtOiPFXi6G3CbunM1qxIi+yL6xcU8UaxPfNXstd9t2tvddQcxn6xk+ReqjpzWKDCDi5fmDQ2PQBQGOUihRhfNivlKacXnHhrlfrC+t8jq2/XCGCsBNtcru7u7bw9JqZFIXFLyupqhvi6ld7VD74UtN2HL6MF1zwMnW9WjJKorYOehDu8L8YP0TiWwF93oKT3ge+gIBVfz8/2XX4IcQ8DKx19QNHI4sXzwPNStgIqw38sTjcQUg5DU2ynqBNavdtDPYOpGkt+sM/kcH+pb432wEDgwE+U3yY0SqA9nKO7Jg3cA8RTGKV1ZeO4478yS8p1vfiQ0MxFPCm7I1ZbJ5eXAdYdC5zPpMCMgvXGjkG0M/SRbep4P89l4o61hd758SHFRTF3y8xHvfWhSykDZ0CnkKrFl+e6S9Hf5gCW+VpD2wNedP2qA0BBSuG0oJrQEMdJ9wGc0N4dzKkw07D/lYJg2WOulLi/T1qHzS6SLQikua3B3/dGAd+MAQ5jMliPn+a8r4Q8WralsCI3bMPEY61lZ2+4iyDhjJnSMiS8i9Vx/pEL15qbkOki1/VUjTQ/wrcug55KTtqnejubUToIIFIqqF5w8ueUjhu5U6WUQQNA6sOmwK0H3YNFqiH15xTYsZ9zwrpZir4iHQRDU9fbb/dsoyUDVBvJrp3ps1EQWwIBNZ8WovxmQhiB5qGvbuO+w+ZCHgww6Ovkrb1TcGg9szRds5tIvQiN/opFbJjWcwY1BqQLx3Z9qQgK7fd9L8d00LVob9dqxlklqI8dPVKKuMrUbxiY+EO5TAa+F2bMwOcsjS+yMOSegN6qqdsHQ+17paaYKXuzrRQGsgWQLVdAZI0Y0rW3TZ3bB7AN8zq0qx5Nl+VHw5vc/4J+qn3fCi3rX731Scri9l5pZ28/Ai22XT6mqXq1jyNiOGU3Vq+a/rZWA2HcdvGhOdwjLDSsi1xO6kx/BEgI0UQ0tJtIjgwH3e9r8c81ZlTxXFbxuBSLH8SPbiAGjhpRVBqrqloXhP/owgArkfL0Jyd4Lv7QwokHsuXB56CD8ve6NGc+zvoZUQkPUCFUT6kcKgA+bAGwtQKjznIZRC4IzPULCPpNhwGbgTX05ZlrFeYkejDDNNy6WgsHYBE1widdVOKXBhSXN4pG+XZ1FxbVaM6TLiAgkoiVqb27qLgZVBLKU1UXoKeZKpYa53kMAEgmCNXD0G9NYqPXPg153DtJNBzS3tbVG/g0QfZjfT4vJ6yoUER2N52hX1AOHnUx0kSG1B9bdoUAcNk04L+KJz8d9tWy5R5scsyapnUwqR2mDWDOqqC1KRav6d+5jlYSeiTpmHVut6LN2/R1HLiGyBpsURHpBIYf7VK21z8WyAbWzSUx+MtuGiWbqwl/2TwzWntAcxzoAfnJneOSkbqO1yUE+MRjQKnwArMiu06bZifaS57VRtbbJUzLg1B3XP8k1to5194Mely8fnD39kUeJw56lFKPp61VNWY4wVD4hKWTM8bmuJ7M1el18WWef6q0wqlXl16OL7CpM9ccr+BQho2tGq1G/5EC+zg6LYwPPyQCMMoWjjPkQpk9911/C2RZX9Ie7jBqFnCFr/5TYM1AHlZqxwU8IwJk0P+CVR+Z4OHloG4lRiqi7LIwBsPEWml2MquYCfWF9GNMlKvf2kV1L4vYkfl0nCnSiM6HnZ8kuAtmvSXMJq540q6/Qtwsg6HOWDVUjinAwtLSugPtWy2UkSYQXftePTV32Xrs7PI0xOxz1tWj/eEqrmRWE2APAsGk119icvV4Wy3iWSKRW4g+wPBjpeRy4QR1Qc1EZyw/Y8x+KBJfpYTp1zfxpL2bkT1PlM6xWLSn1QvzxNUBwoFbk6hZJgqq+qmtpBtARvSQ0ZznhUyOOW4KQbp62Lw3h+juNp6QnUnL90GZGCrPLydBJR9G+t1Sr6xBnffsAla2D+dvnMEvEInmhE6zolkMHmZ8DBv9IoZOWXrgrEU2UjrIVQhVtt9sVEFzyXwrsnj9AQes3qyuYFl5g7aZcIYcdzji/XOCgowZOZEGuGLhb54BNDy5uftgA4N4NoshYOqFxh3IrTCcel1Am/XCgUvkCilZhW2CxPd6sbIbhqhRnCaMjzziJKHB/TK2LFuiHDu8i4441twtMUDj0qF7qizA1Zhm2dA027C4AUpMcyjIg7qcMBYvPuW6hG85EwkeHO3Wz6+ovI++4AwVvfHgxzTWgPLPXbwauVXeY6mdjXdjJKE1QHTOuqaCi2Cvl3HF/h0w21ttyLwB01DgDJZJE1fU5gQmkTM6kUgrjMD3xIxDDSNW4hQ6CY5s1QanmFpaEl0RYKzRc4EIj0XHMKXbqO0A4tPkggeVauezz/T3mxTJ6yurU8Qx9WKZLaFtTJ6/5WA6sTwzXPQgy/rPK89J1pAlMoVSLfTKSwGQD2PFeODjdPK9HeJKdQcXA4DTv/TU2uv+jbuPWa85jnGhKYuavfn+KKT7h3UeiXdy5OdE//rTCuNq/xArE3aunJSkjIOA/8ln+OuJ0GDnMHzA6f9SCzAbVSJJ5EWW+o56RSFeQ8e2PHmlnkDSpxKborPxq4HbVKp9Hd30AHq2x01GcYIN7CeMtYcDzCNsBTikOzTWUijjirOFgtljKRAMH7YUbxaQyvEQob2VWnQAW8Jb55O6k8FDRAYm9Rp4sddeWsHlaB4h9lsVCDYqfj5e+tFf33QnRRaBTZomQCc04I8PYDtsOpFG7r8cIVSBfQZmFblKjDbb6qcwwvYdcbeVNATsRz9Z9PRePdHpbs8GmS2VQgPoJoc+htsTAjDPYB9l1hnx8oc2mOpJVS9oPOGrL5ADOh9USJbIJKoHoe9Y1R8r8vjqot6a6TSN/7uJwT9o387wiB2/m/b9DIzZEmWNQwQFGc2av6x0XPI2eA4Ge6v28goCxLYwzOZ1s4TdnJ4uO1511C8Oc+chVDmJewtQ8RflHZ8CO3QVlKnIf41E5rpEjiow6xkOdEyldrnD4W+lp7Hi4LC3j5npfp1w8fWbsZzt66vnJ4IglVEJPvMKnSBmQCXslA8lHYtKReIBu3s4I+7BOIZBNL7mnw76u1yvQbJD/Kd3LGOePc2VCN9KdvA0iZr85hvCKE+FbIJ+b984VrhI+YXQPrUP4E8f9Hq9cHLC56xx4nIE/ECL29TxG2NWV8Ej9yN19H6QQfQtjThQYiQowfQJrnMbEhy5iNkfACLHn5fZteBTvsNAk5mh4sI8oZ377W2wQRcTShW1gLioCGfXmUEU6bWoYoJTbohU6SicovCvSfEA4r6M8EFeH/oYc7Hqyghs9RF5/JZLeg7YcYea7l1ed2QjDk3ckLDi3WiTDBxhcNVmSKjbwPQrtgur4TukAdA3fFRft4Ew2+RpzTP34la89k5i9OupAtY1PL4jMakAizxzLhhBnQQmD4S9nY94KZ23S4KFPkQAz8RotRx/RW0Zv9KOobcz81Tdu+DLglHvfu4Te38/E8ZljDjwqLuQGaL2pAqpCTosKcwi/1Jep7P1iOTlXucqXC8Uowp6ol/Ef2pb2kXjLN9DyAIYtn0aDJMOjJMjUHcCNXLcOOxKDSfs7z3NbdEzF9I8hEKxptDfbrvv5iI9mUqdYtn81U5SC7pjPnAO0K6yTZRB3wJuGpZXWLH+hL0S093PCDMlbjBfpCNEF0/kILOS8gU4r0Gzt2AN4HJi0jMyqiuxypNE8MUqSdj+0HsHQh28B73ZQbo2wn8cFguzJZqFiw0pKEE4UyFdqWfryugnx/6KIUdcEO4yfc5OM16PCt8uyWm/BaHhiYthTIytu+CFvizpSqlNwa9q6uu4wd2Grh2a3w9L8g2NEeOZNA9oyQoF6WqVkcDA/znbjkk/VM/hIfOWI2BG8oD3n07zQHoFb6YZyakFEwR1eq/VZByJPYRL8ZLa6mB9OwK/DKVSIFwhULhEW47iost6YrL1QANx5GrMTmHv2g+5E4z9iTXqGty+rNuH8JKdqtXEmoa8Swhd+F9YJaLpgIE+1bEgV3n0Sd2r2yk9gL7SiKjMRyHkU0MdPW/cNGShfgVgJG8763DaecwdjwsgG2/B/522TCJTykWFfvjydFWlX37mrir0X5b0agz63+Qe4yRJyQHdUZH2oNeNUC8rJEQCgPq//Lq4R/qe6g9flJm6AVYBcIEe5kT9ZTQdxzkFHLApA4GAu8ZqMb8Kx/0WQDdd+1MGdCXbOIJTUxXp8kFueKQsjYZfgJOvCeVDnIkYLK9VoPxDAH0yGPrXUPXwLfK9Lqy8b0Dc35iTNx7Tm435nl+QwzwLFoDhL0HKNK+w1s5M4qjcOsxm0RlzdXVGhRQW/PniI3cMfhXpYBsg4gn970VZ+1JtWqt0Kub+eKDdEaOzyzlKawRr4ZdDJ2wdaem8ZI2KAXCsP1wy6MuOtHRQcKXl7noAlS9WQhVL71qnal9SZMVx549QSB8iunzHaiO+LsSFJn7OUNUhxoNisoc/1MWDPRCqm+8NzNoC9AOnSQnP4vmFfpSUvBJ55KF70saJ2PEefIaq7Tb/B8VBl020NeHtK/Ttp8l21szDZZ6gFP0FZ5y9BE8MVdsSeRqSUHHcn8HsQOFoLIPtfxmIhV1gvbtChQ0e91FXQF2miO0zRmttbHuLUmLQbg24uPVU6T2Re4Irw2ZfEWgqf2oDoWhVhCva7e9/u+OkLp0gbKq6FUio20bNMtOJ72e1L0da9boiLi0lkz1baf2qxwfcdMMi4c+pKpKJuOmLU/v67ElzcsDvHsSEf3Y73uYIvJhQm+tgFliMWpK5xDK8f7FuBjhctJ0DAWrWrL7OWdbrNveOMIVfgux0SGbOWs0oNVlOtX7rv7LqcXdIstDLMdUEM7o33TgLwUUcAR3jseEgP5j3b/HaiKeQn4v2gADUDIE9HJedph5/oS5dUUzruYms3/g0l+AZxqrED498fCM3uDmYkd36DRQ53ZvN1pOobJ9NZXEgz/9yjO2hIuddtp/ioczrWHWlB6UI6do+B7APuFYOsspgxBAUILPqWKEPhhrSob9W2DrBFzIPDEcUUdKRRon24c8eZgiQZRdUCO0nNAAQLQtcARhFDRD7Rl45g//L2cJSZB/tLMOMRZ0YS1fUK+uXiBjEKnKyvwXE3CdwhrzNenrVyG/JgzHbWrJNuHJpYzy2x12RoMHjfTCG0PzzFP1RlMjRr5eDjn9qdJizf9dOWl9ESxcUBwo8JzKDf78XCcMgQTDlfjfu2UP1/KALpPHDPaXKBCjRrB7uIZECsDgxRWfp6XD7oTojk/OU/YOwRX2QzRAmkDTu+WZHqhops3qnyT3dxvILg6G6abWkZ5tmowMbjNFAg3N4IzCO7hJDkCT14OarW8MYqeOr6HSDnf1Jw9xT1AwHtqscmeiuRXEKuosfs5e4owlSP5IAXIgZVwf3qtI6DpXA8FGAo2sGfAxjUCXS/Tqrn0UA7z4D5ibhIbcSFkLw99YiKxBx6lE/bs8r69G2nG4cgURYMkNUdgRvZ572HX7Uj3IaiJNjqeu7BkMQkZjuVRF9GrpLQ0bnSUV5op5srZw7Yatvg7cmWL1snBRkD7ECl8mMQCJyZkK6zWWIF7cwp8ZLZ+iat0IRcFLeqkbxmyrVABhsAWYJzjT6qJSD+/WJK5H1UwV7HDRusqWcPT9FHHjdu6A54B6M2V1YE+FdzhWD9dl2IdNfko0K4SOWBGC0fWbGoMEAr+FWx2c2++Qhy3mDWCV4kLzzLntvoBBfzx4N+KPqJFIgJMkirvPPiCHn4+CiBSK8PJAetBq9VsAPJoK/KflFZUaRWZ7jP01AHVs71iVyr0piQT50aO+bk+5yDsXvSyD7oEkHor4zFh9EtNnaIGP4WDxtOpvi63qth88O4ttWnsOleVfLYdIaiDdMrC/JgeKxGCuUNs4ESjgOb9OMMR1/wKfxpEwjSYqx/VStyCzyd9+1lB4LnVOEQEFt8VhWflrKOOtkG+e/mLvOOac8R07JyquikQPs1hKGmUUTkoxN3pfUYioYm5QVpUVjd7OqeGCMLztkskj/80i9QTi3eagPsYLimXYK7QCJULOu+KEFdhqgHEySN+84V2wlgz7u08lgadVtueLrg9/QXe5hkn4U76jvqpDWz/1Zx7JolT9HJp9mOhBKw6pyY8AxrxTDdNS78mLDYPFFPMlyFmSdgonHjMCwet/2Oi75AV+7kG1/h4LOkMbpYCDU2R4WyRQO/oafs2RcwXs59Yzqb/i59wPuVfzcaDYRJ/0q1SjiFOnDjEP56r9UNSEowMNSvNYTSlfXFMT/SBiHPH8CZM69E6phlQrlr2jL/Qa8Om2BhyXbx6jP9q4XvPdkF8M6aMnChssI6IuUe2YiyprtlMAtdNxEighHlwe6gs8TYfnC7q690sqrOqBwqiF1LQBHzcuPDwDtBG+SoOEZHeFPbtnCZpPlEpFqkx+Pzhc5yEtka0VWd8h0pkBDzaktimCtvTEZ/6dT+Kig95bd6cBXQVV3oDwdWU8Y1w0ewnqgiy0gByK/dus7BpoL9MQzDsUdxOsMdQ5IdukHl1rMXLSBYauJZkuO51LRcUfZ+9YwT0SvwTD6WUilIg7FH91Fp3Lrq5Z0XTrjgTZBdqfS7DdVAxA3c4khyhaX0FnW7/2Sb4oSwG4cwFBhmwgZ2pSbETFk80iDbAKlEiGR3uBnTweyID9ze74kJXmQFwnL2orn8DsR8LiyazajMhsx/8uHLIe9ZEA9GB3QUGvc+d2ffOyz6tJAald2YxTHXo5bqvcBFF0jVKG8OvBzIc/86q7PjHIvzFfTEiFoeF413ZR0WdegbQuwZXRujS4kQBoYhcIpAmE1KB/V7Du3+FKooCrrqR69rAJBk8Gq2fXKZKDjSeTECjzbnhoD66+X+2x1+fq7Bmu5Yk0bJ91VMSWB0RkRvUVDG4pqTZz5jgXnR454aoAbSsoodmmHYDl2rexUGyvu9dkep/7MDqbRJODGfUiUkiyVxLnjPzMzjNsaek+eSmVnAyou+BmpBnDzd4qHvmllygB/YxkFmwGDlsIaxYZc+FqMvUu2SHYqIDKJo2HVNss2Q+WIMUxMfue4Aj1tjL0S2fCkIrKla7WD16fIHt7IfjkMp9FOvSq5BTd/iiIKEyczDPhnlXwCuv6e6WCUO9xW4T6s8DDPmSxS31T9D5VtwLOzQOlaxXoQdKl1dwkgVzKxyEjJUsH1/2f3TIu6U8AM/sD4oOtJU0CsrzXG8t1s6MO3NKQp62BTsrQc0K7+vxbSj8d/QVEGveHFGepCF21F99mSJtjvywsu71I8YZUPTGipEdty0fth04XMkGGWAVszhKYOIX4y6Km4NE6rf8EWDY8e/7SwRbzX5c2GduSWM2bXum/rw02LORyTVKAHCT9bzRZFX8syzireOeop74d7dItiJiW/2oPQg0zPuEiFyAJUA8Y096K/nW7lUZa1IaSZA2vEjWb3OLR/yH9kBv95V9o1nB8a1b/9Jvkc+/c0sEq4xqBKfiVd0I+EVJClYIairFbZq7nDkaT9v0vAL53mxyHoQe9lhif90NgF6UjlZG6UpssHsdnUU+QXHhGQ+WtGRoT7WayriOfiHXQPWE3syN8gF6c/o/+r/Wv2z7bek13T3C9BQADSWB1EL25qbgtUZGpFkfLJsCR5DrDyxSQ5Vwiac85OacZ4Gq2//Rr5R+c4X57wZl8+pw/qvfmgJRsWq8vz7XW7ZuCs5QRDRVccQabc14yG8GRAqrWJFPFcqHDJM7ReMQpDxHRjd1ALJOR9E+yE5NmLi04C3noCBVIYPNhYVhPmEllpf00iGDcpJBj9mfoPO1vb8CDhrBhwJTAMC+gfNUplWZ3PRplJ0e/6ujouO6062n6gbJIp+ijbaojId/Te1RNPD8s1PsbXQqbMWXYH+OiYzC3wfNaraBwyIOElQiHsy6+5Giiry5cn+/zgRlBNbKCzEv/H6lPBrT/IXOmViKnGf7pMhA5aWH5UWQbfaiQ+1+gpmPuyZeQI/+TnR5MaPTxErqGL5dpN6/oPtxURsmdzPPP1xhQeQJozEfNSR795Hb6UVuiHI3/V+X+PCh9xeJeOn+YVVWz22Gct05QNdx31nA4sjoiDPn5gb1Ckh3zVybG2o65w4rArXGPAAeptN6/oQR9VLZjfgqdkmt5Ef6U2lYGDPxtG+7eC+7KuRXetFH6wEF3Uk3p08UN7LFxS6J23uaSmBsuQS/jqDgK/GyDmmfPTDjkiPpGZBx2ynT5FashtgZBN3ndAOwjxpjbK+gQCnGFbNXkRc58U8mYkxBs1tKzJIjjtnpAnpnyYe+5CGtn0+1VPXBx9LX2XPfWCet1EJDBah31OnkwQPJ/Ivkd2YykDTordHnMTXY0TCpPxPGFTw/Mauxl+/j8D9/o9x8PHOSyF27Mr+ghkTYX+dUeXJRveNaMoY6+blzf6JewIllrQ4DvnZTtn8eb2gDzrLyuk28pJLshq9PjZaWOv46NjHMcZugprofWYAPROEUWjRtSyA3zjYCmn1aURdXtezDTofSfBcjMux3BkMenFf3/fLJYq2Qx/vhJPhG1bD0ifuwNtroccnNYZX5W/rSTHU8H8z8OKKKXFp0GvFQfV5oUKG3ol4sGoLfQUOCTOGqzGEKIcfZ++pKxfvL4570h6DRSxxs4w9+P01tu3yZPCtBsdgoQjqZXAgKjJPCveKCKLiQovGd2tli3ik9Qmc5qlzOWUMqv6Cdj5zJaeg3mbHb3e4Siv0hI31NISD6vTQJY08DUNYSv/mP92GiKlTyuM1JDoXhU/UrCuwadZfc9wr6iw+XZFyxM2bYJxyPpxgRGbnGf738mvp//x/Ay1myeoyupgqDHgjzmpdJJO+b2meQEust/R46hUeifRCSY7x9AEnVMc8S+szGIjWH+1LpT9E6DXL5hoOmEujF/vwtiOixbHmow98biWaJ/ejVLgrUoTPlaaiixFO/SQIyD4wq41Rv7OZEh+vgbw3Y7eOMp9Hxauovf0fh4/0xVp6zWOygoG/YiOCeYDEG2ITUfTYVh79fU3nxdaEkhFkUpmbl6+w7lRNcUrdwklG3r0UZ9nzu+N7j03WpGRLXSHH6lBapaQ1Kq5BetcqmoQciv4/BnmSjNcMetdIqYhnUvVMmPwlp07+BmYiiqcrruupg7wqX4+hbVl0mJeaD3/Nyp6f//2wJs7B9d/NHG9GRTlVSIN0oTKblLInCgeElW04dxf70MPo7cCtwUTJn7K+z35Bk6gLXsky8ZRmgnw8daVDOrUD074n+sE97IQYyAZnZwqZFjU2zCJZkP5WiWY1iciGkUez3DZVnIclFTogluPGZqrtjRKU/XtLxLWiVQNSnY3B0C3DjtqCTXCzo2ZQy7klH/3MjqC9Cp/IF/cLrwPpIvIsmXgoGsO91RoFrZfG+XR2ru9fBM1T5cIJ4kZrYCzthJa6fy6Qur7ngUEhMQtbxux8sV9gCeQGF26oqYevnUz20RTIIvLUBKiuDE5UvR1IJfTeow17Rf4AJjqdqg3ydEggEteqRI1eAS34pt77NEwsBeaKnRFePkHO7GaxXZcdnpZBBUh38rxxP84lkNzXnM7mbnmPMwaHYKmGPYAU+2xWvteRNvrUrmfaNAjsDbZcMInGWR5MUwIBbNGD/JQglvhEmtVaUMi8b93WYCiBw78BL2DTPBrkklpp3nWGu7F56zvpC7fWirF0tT/ZLS1QKMUaZnmHsqTxkVsdUq4go5wAbNwgi0B4VPlU1kcPuXCCCcPT9iOoNaEgFdpZpnievN5MeDCt98Q8cmINmG4qQWKE9Bbv0Qq5xe0ssIr7rtxlJxyAsHpJf2s9pEw5rhTeLcoHgvaQYUc/7vuv8Ryn5yt3W5RRv9wC1KIIzU1oIzED8xvsdgUmiLK9/+6x1rdUcGuN/FJto9GRm1ssKLMTWr3I/xYatr9yWrZt+pBDbOtG+Qe+xEUHqwu9M0y/ET8T/iG2pqLMiqEN/uV7ewBTiXNcT+BrwLOCcKG8Lf7Y/Vo3dfikEm4xUzp5T8vlwymzbRJc8nzE9ABfvxWhlmzAkm9lKza7uEZphTOJ4//TZdULA1K2AHS8A3PXfnkjjEtK2gdeXo1v1SDfC40kF4/p5aBCufe5/q1OZ5+MnrYsFq8S4TuBLvdFqOLG/m4X1kywTOoFMFasI37MM5wolXlxJhvrLYGJyOGLSLEXtmKuimX7Xd03cxnZmu8hQAa6b8sFazaiIHt2ND0X9SCVtn0AuP9bWzjlXvSJBixc/4UDp6GfsP/rej0FxV8YlXMQxLUKWeXz++wLnPtpgNxYuqBPuITeKbQehpLl+NlDi/lHJtiOsaGJIz4YbbCdeFOtcaiw4AKWHPx4X+iQyV4DpzNKW/jVkvxxjWocWoNzidGOL91ppLuab8wfffXEaQXznKwR9k6IZtheNSEBmiWmeHXeYmN8Sh1ujaqF4peqHphLQ1lp+Q5sIV6sC178KFG2ymcCBxHZp0NK9H2enyPjOIIVUs25JgsGTc8vBmQQax6o1IUuLWk/B33nbYsBUy6wvRgb4USZDfLxGE6I7hR38CryvH06V6w+nh3L4HSF4kXZjBF6KpTuHltPzGztYrP5g7VBBGA3stUW+eGEz9P6uu3LIvTXDelNePe7SeOGJke/oXg9V0wsFfDsyQM7l52Pv8nWoJFKPtD4dlc3nRFrdwWHIiiCD7uED1QPjNnC0jrXP5YMkM+8A42n38zLVBypKBLKehexKB8q6MtA2fwTpAMI4G7AK2oN+6Fj4yqJzkAMWgudBvKjFJVV7VVszCvPas+zzEfdLQfLSotBTGdJ8LUgOwzBHTwVpwY9NhZpxCriSsFVtg7+Mg+8aoemdUy09WlOhD1ORGfpcjb0ZtH+S6Mi/F/zE6InO6Y0KzJNZ80/eEvt4ny8pXJ6bvO3KTMJ4oa5upjc7sgMN+lRvTUEZblc4PugOiFcwdT0crh9eJ4MLJGF8gTRbxs72ZktPOFUPv/WHsnZHtDBNOcj44o51iP1HNIGW2fYu+2a035hUa3UuT2+++K9kLC0YkDbstNTazLYVN1eQh6Vbdt3FypLysb6sUUZNLwbDAckh66ZHAJr8ZfPRacRj9JMDWYINSsl8kHRsakd0iRyafWIQJZkgErp7fC2i/GpMZ36nROxUz1wqEmhkEkYmSZW5Hw8GBavJAWn4aWVMmbqmzSDYXbdUGrBbvxMqJ+AEPCZy+gDv1QexeL7TgJi7D/Tor5zI4olEGFGc12LNLIGi83KRNOt4gzPuz6BBYAy6l0nwsqo9qc3rrJBxRUHFzqpubI83itRQ9qagelWDHumRp503Y8ylMxM0VYufdQ/+kCtAyqu7kHTdFZdK9fDuBAyWWKODgMXbIkZOb2tRI28ruHEwaj5xJNMkz0zpaEUD2/SdlfT1fUXVSOhlplMSfdgHDuIMOB4F7g2DTiK1vilS57KtPq7TF7z8wlRRYlf1QjmSnV7xqv1Hjn5Hqa9R9WdvUAKAmKc2KkX4Y2Su31L21ClzHTHR2ebUVKRC5YaN26wOtbDT3AqS+xRAa4doDkgysoPzNhbAnyOYrtGo9tJCg2OCqvCdjfImIZ4gCEd+sS9Ni/I4Qa1IGPLn4I+wgyCrbyzGolxDys/w6YhF3x9RnZj7iGFgu3W0C7Xmm6oievDvdhRzfstaoWgXLfNUSbVwNTPA475J5fjDYMZDjjwyezycs2Jz+Oq7t4D00CZ/WlnJqAHHUZuhqTBr6Zq2XIm3q955V65kd27mInhNd00WVR4bSqltTgfYksCMM7WaiWs0i8Mw+tJjDfxwpywnACJXkgvFaYa87B1dbMHz2GMXD5lQ/F4PotCHp5kH21tT4T3h199z2nIx+/ncLlPKSGwJ8v69GlyEcx+zy2VKHOe8nm+uzWqsXqkiNh7lHUyVMTOU1P88CjmakDsjrC0QN9HQOQS3JkUwayD4B786/ANAe005++hm8eedHCGhRC3aXmq+jCIUme6Lx5knkttWSC5TVWZspyovcEfVFq6/aqwR46CCw09brO1ooeLGx/8tTADkjGD8ebunAkNaWHv9bcRkkJJSKJqD6eJZPVGwMdOzENcttozDcjNuXQ+0kB4/Fd9Sl12qHPkl/tKdlYVJSQI0eYGmXMY/As20YULSVALkC79nsRVEA1SAm9PkPhyGxLhc4fRD9JP+ulX5jQQgg1mv4QrmXbYilq7e49SCb1+JnKkzR3XX+k4+rLQGKlCJYyOC47kEU/pNi4LwTh9MsYDeRdtWXDoknzFoWEfa4RM/W5ZGEBmMmP/PlmR6IXG2AILDKXLxGFWVwsZZt0l71G5Ze1tYqcLdCX5wFj8T4JnaVYw4xWlOQuTfybUPEZiNO7w4WTKuEQD/H9ymXDfPrQXjxJkz5Bf2p+ZaDkMkZu0Bp1q/I/KJivOMbPG0CzkQrnokPA/NyLmMl4/0nXkKHwfVWAm9QIDXc0MCGST2jb1FlbsPJqdyZyXjvIC6AEb3en8KN/KCLodsW01GBwuXkPHUfArdYb7MnX4S4Cd4KDW+Vb0gqc1jv/IENWsLPgrFSMGwOzDgpxjKLohZs1kB7ESmwDLylnwOkcTgyWiGIJu2iA2r7lJzM8pE53HQanOEFb/M37cuYc0+2FGmE1RcQpBDO/7ATVImJ7no02bwwhULXtintdBPskxq4oYXJ2LIrtBkA1irmuWG7BrHAbjoyMgtEyt3MXp29VuuTSgvZajRJQgzaDButdfC1O/HtpC30F8JAyZEpkIxOQhBS3K8iIfrl1arYsHxOrGdFZYJQoZjRexk6/GKJj88Cli5b7bkfVRPk6fgXwuLuDfhxrviac3iJ0RkoBlLoDnLwUSUTpoz4TlOvVx4LMp59p85y4OGYwfOxK/rNyjpLlBtRamrw1kBY5ucD+SjBl71710ZFjUPFtXg5cC+GJ5MPQLYGjNF0TNRqz8zjgbqzTXqGRg7bxTvqyEUd/3cX4MIc6g9+QoYgBCic7lngKudMCsOykPKUKNO8+QVTg1k/b/8SporW64YgRM8puCSnP4r3hIbZi/RAqAqLUe6YhRQ00Eo30gjvn5KFOhCXG/J1+XDfQcwRRl5tVXEml+1SV7s1nmbGY7zui+K+vaQZ935fLQlyMtn8alJN9IwzAYlYXtA6pnZPQqGvC2QYnIK5NgVydf0fVHiDqAdm98Fxtgh6iOJ5I0wf5CKNALVsbs9BrzcPxuta0ExWKy+RG+E8gFyFZOG+iMRnj49bw/sMogNIKx+7wTFo3+4Vcm+//T2Kck6m2ojDAy78Yf7A7pUUx1chgn0R1suemqKPKfKdjgM//0wjpbOVRTMkzkfmU9ux8Di7FT5lpDEGg45HBcUpJR1n1FeMPdpPTLuw5g/UtAQ3Cnr27RuyX2zBaVo/WI3anXf48s5x0OUKPIlcp955Ow1Eh0uxq4WrmgJFG05J7n9kD74ihFd/eTGMZagIIL7+DKG4FnGu48gz7cjfsnqSrjeAu0ikOYf9uoOMTNewFaswLEaSQDe6a+YwFk95HJ4vdgXTgUpPG0/eOS1Fcbo42ZH7vmDFQ3qnAVHVbJSzPBz+M9Glxv3KDlFBSYN9YQjYnIuB6sfGPFm2hkHXeviRz78Xnc8T7IRZx06fECeofOLyflO5FnohoQyj5vIRkhwb694PZ2P6ReJtFAjryPINGDJUZR8AsATL4IqpauEqPW6EGCLvULjeUHwdVXuUTng7GbgmBzpz0M6FUlyJ0jrOceNWzvDhMOM318W53O67dem57K/5TeBpiCuHy1iUJqZ3KlhiITNYCcSNLsAjnuQFv64PaFVgZCS6rao8Ep1gB6J/ghzuKZ4d0R/vuv//pNbIf7E7uUbOoUXmu7A27/UnPRMEB6Wbvn7ndpNF/4yIKvXG5j3zDagySr3+q8/jHgbwHyouba+zrLeMpoFJ2JxKE6OFIuNpcvb8/A570qVPJ54TkIF/Se2IwiplqGwWKtrTbWigAGaScmwTNAzEfHyE1zBNOvj3yq7GPt8wmDvp3MXb7+VrglKH6xRYd60BSChpsAsHbGnAVve+uS3inPGjaLVaAu6rWuNJIPB/igm7VGO6ZpibnwMOPPRlJykd1Vt3bxSm7wMoEMcxC4eBWpSssPdTM3p9Lfw1HIv+UKLSrZ8JJi809ABRpM4vTv064M3+FE41rWmoBo5T9WspR5OJ65sNfwv5IqVkQk/c1Ix1QRN7smHnn0GARM1acuLPCTnmcOlldeqplyKLGuzCZ1fKvyE8+H422gk4TTg91nnAKhC35ZiArdar8fHDxUkbmi3a9+m2yPQ0HyaO02Z+76RX3AC9nnacRDu0Kb3xg9vCx4qRH/Sj6ElGYSlcf4ShuDCpRClU/GnnC22NrLXPbQy9+TdgpM+qdHjS/tc4p2deO+DyBpavbYVj3EVgxiOoEwuzo5r6U+mzH+poGLBNQp4wLGr5Myi/Nl3hdZE70Z43GtjUNBCmYmehiud2HWORCOr1Emb7NPYG34XO1hy5L8NS3FXikTtCI5nl+yzNT7xO4FhygzIiIrc+lZodVFVJ02T0yOVlrqF5G+FLPvA8KwHsnLWhzgsnZdZVz3N13bxRE6onNOlcsygmN0TGcmlOkvWaRQpuUXA0L27n6ZuARXdB50Nf0wfhmTA99pZwrdj+O2PA7s/8bhOWgwXl54ZTA8Yj0Yl3LLg2x1zQhwH2nqWDLgzGIt9AdgETGku6OhPwQQawGrSIXVA+H9bNp9a3wk+c8tOCDZ7oZVnk8kwstlUtoFbbh9Ua95zXrtnvuwNhhuADT+M0vc4dtp9vT0vbls90qS7+jFOw/YSizFfx37v1AMFjzaeNQSNGlWNqSNPVQJmmAtg67lGtR9WuuC3Mf8Q4kqwowMRavh0tSk4dUudReT6ErAr4PxG+zUZAGzyO4eI+MWRg3j+L/Gj52AVpJmmv65OJ9XNhP1LiqSOaA9Uwflf5R4WLUbX6Vl/v2HTNfqssikhXCZGpn0Syfm3UMMFgTb3kSgTDy/3e/EKiyIMDKQlrgM1IdtCEGWhdoYBKaJmBkAwjDyRZNqtZQyapX34QbbbvsSNXiTwajbeZSpsBr1LvRDYnL9PMkotUUP8s+Qq/bDPxRO/AmzqyJL7BlaH6M7YGgPYaI5MH0AnbbiyO+riQ8YHnbiPGRmM8m2zdaQw73ODJAjeSAAbFjFxmhXlgwsrSfv3kmCe7mmORjGoXyokcm5HyRv+y80WNRGb660gKr3QeesfrdbC+ZNuRJi10IiFbx1tflEZHh/tMfD0sgEMT+00Ji/uyPIo0Kr/rwHlwI9mvMApmgdFIf93GJJ7hW7JPv3FbQqAJ/P4xnC7PgvK7PIwlv+yX9NUquIu47UZF9IdTWAnyi3crOpzgLJe+KdMUwmaensHvTcBpF621NoO8XGa1Jy4eNtQmBL5gPSVjJ5uXqrENSyR4ENPYrmPhP3gCwd8bB5GkeDUX0ugf9raHfFQ3UTI22Us4MXy/d7mB9ELGU+ZfYqNNCqmY1cl9fkPQdH0aiaaDRo2AuesB/KgxdteOtbmA0lVvOopCKVvUdyjhF2iSrPw6YiMd8lOus7z5rA70yq5hsyr8PRFr67Vgbv3JghOoK8lUYIEnXztGxnIED5rknBZhsuY6LIIaLEzS248gKE3Voyqsx10hPzMNwkmMCoG5+bNUPUyh+gwZvgSveF4Xz7ajL17li/UuFmZnVbtQG+uwUAWur44nUMf/p585ae8/ilbyjgmiqQ/Tk1f4Ckayob2qO787lnPxBU6vELF4rwwF4coMrUcay1UB/wkIOA9HGjrPgCBhz5T23uqKZUK0ZbVU3M5JinwE+QddIRyMtAW0gT+69pU5COiSsivG0YcLu2aeg42DhPuQbSz98xlqaUDisnNd70Kw08xC2oyBWANTPgVbONfSk6KCsZhT0CNCn16eh6250Iz8bsCS22xiCZFdajWfpQKY2YaD2hMe9ddgK1IGqRX3ObxAKkUx8D8pKOa2JR8rqycHSjhX/hIb1ZWOcI55GB89imAsAooZmNhkD84uLNXANPk0Y8dg30884UJlP0l+0ok0DAOb+VmLsaNaDzU1Avzhub4bMIdeLzNrtLmVanXcZ/dhJzqqcv3/puYxr9aHaSDY3ijphyso2qyD+lAoS7UCV425lTBmFf4SlH2yajL27l2xCH4kDhkpaBxvS6Byd7LJkChv5gH2h7eeu+YeRwpb4IkubSVIPYigDd/fNmRLY/Xru9dyPkx+XfKRY/ZqMeoKaGRvA17CxQpPo1lipJfWW4aWIuGxiUIo4XhsgcQzpma6cIaVHoO5GCDI9r7nxdUxp5YcF/+waKNPlWjumaFCClbgh2u14vvcK9UOVWlT88OLmrq1TyFXKTJ7v9bRWHnMC0Qr61VEOrJck/1wxQeChAenNGAtIzsmhm5PgUnPdlk9F9t+zz5k1d3eEqOt2eA05B/Fd74VrdscXfoR1FEvR7te202GtvJtHxpcOVOVKSCM3tAIeysnjWV9D0hJ/C3sVHNtCz7Qg5TWsf+KwnKxWiSy9J1+IeIIYxP1JR/3N0HwMV2eBlpirrEry2o/5IENEh6BNppwkc9ynS/deQBX7RsWneb9PffYwy2VJRxSDW9gKL2yFnlU2oFIQB++KTS/fJjU8d4SwcA15/yi6PwKZ++hVdYaIVacv5BfFzz7X9kYBqIsPKCvXs2NuQQ6Nm4RBoRVPb06P4UOLvR4Nb5aYyk8wSk9cWmXveGkBZles2qS2eVTnzn3JDrhGntdmLjfuLB7gJO8OAAHA3j1SbGuupd4n3/pn+odt+/3o5afaTvt3Wufmczvny710Ec8ONG/bzpv/yuz/Dkdqz460kOdFHOusVaFDhVorOCuRAzQgkmfsrtne4/eFx3K+vdx6FCX06MXwR/ooOb4N9Q02D30U4yC3iQ/MqrGhgRBoDOJEtVCXzQ3c+8+/M4fDnYxmyJbplxpLe/JDjeDffcHkz/VGZDodIrx/gAWVLuSeA6rIfRWsVxB2XbuKIk6/PfBcXcjcFotfvDrBfQj9tep8LfOWb8bqXT5XhpFc307/zvxjBSvsBb4etc5ujQvt69YujPTLlPb6q57W9aEFsTedkK3wHSyJHHNqx5ie7kCsGXctJ491PwysVKj7iy1017GN8SwK2LkJ3ltZcQ47Skppgfx1Sxp5KHgB9PLlAoMfDrZzuNI9r6eE4diENCcAec8dZQDi0vkPssVUbdligl71dhSRnrOIL6bGqgtqKIViEM1btQDY6JI9a0X9ykQcMNO4j5Bw1ZxxA6hEqzJX/EbqNdumrocnd3yivRmWrOKEWwouYw2C6xRxyK0/9T88U2k9e+Pvmcq8ZE3Mur5L//KoltPYxIY0PpYFVAh2zcubo7CSgCf95tltbQ+eXUtAF9kZg1Vf1z4jSrB32143KAYze7fGdZL7eHgDQOHW/eDr7DGPaIGyDuSdOJsYX+BFau9iMswWDInuDjNI4rClmC07/ovGungtA3PrKe/btjO+mWLrVFCoq2uS2lPaGt/h3g7r26BOMXAiukz7Xf4sy0k0P/DSER/iA5U1Gc63ti5lBJsobg81b6FdSRPv4yCT02LBss7YsCqh9nKhMdSYfKwq39jj/18zTOOGR5ydvPAdcfNcQ/jyNLVSsecFeRzrb5DimuU1UNx0weJkJS9GxprBuK5q//gG04jZgaL37BHRhX34FerB+lTlWXdn+brtHAL06/FT5iHv7adGTDcUwCy34W49efsCeglZm8G4FVKajXX6IYlBw95nDVfLRVuFpOo2qbwvM+YVCSSsq7c9bgQO8Tvkezmu/wOUQuO/e4mdIvyYTCqxUMgWohy4no0fguJfQ7D6N2yG1toAcKrFpgbrlzBYWvvsyW/7JU2s+ht2xoMrGiztis7crREP+z0pJKmu2rtj1/z5rODGhkiYrRk2BDS4ZMqa1Fv2SYq9FA5DUG/cBOmUPfJdOT6baE77TLnFNHW2i4ep4AsAUUHuI3tf3CeVa3HOcgyQjLWBzjvA5MZY6exC9MkJHoB0cBJhrTiP/cQ0E1jI2cBOEsXv5ikNyOn6cJQKC5x0vBTM2Qwfk0pszwPm5PvEpRaVu8VC0ZK+tUVpnHbu2nWcIcPip6mOlb1UA6uI33AYqf11M9bfWNFSTLFUExnqVyilJSJ6hP54JLVL9EHDCF1kE7vR+QZDzlXlb5M4Sdo5HHxyRE1mGyFSZiqKdp4tWYHABxay9vI0rMANK2ZJn1g4GCLNwqhmWmKsgQ6xQRGr5yOldsz4JNo0YljQ7Jk+EI/3bPZK+RJKPgaxchjNpuwDflfDNqie9kKKImD95SxBmaTHXe2zDGG/R5p+V5blFlDN56DMgf6k+hp851lcI9kn3nDUyafByrL863NktTaisEUYceyyWQaEIyRBDZ9sbhqD2da0xM6Mmiv7KlWejJTG3tZU7O4cc/BU4uwFGTqaywawusGRBvg/4PIsOyVy52ge0ttuIarHR9P6G9tBZhaZ2oV6jYNWMZNx/zQGg68dAc7e56Y8p6S+0dilIkmVtP2nNBZ0zKxUWGD31bieRl4UJ1cBqWTLftHz49AJ0hftBlFcGyr4Ls8Vz9X8+XPICznbJa2nuq9Do+5IzPEfGpVFBwz0rRZdiFYWsU11lytPctuQhhcog8nAFKGBnV6/FSTqhjPyALJN0EdApe60wrPZOWq20jYwHg6SlynvNazBcE7wZ1LeEQ0qU70ID0J9jTnFhhGw32uzEkNnwlShPNH+GPFFz5LEWZM0G+pb0cNG8p3At+ly5iwe6x/JefgyrPmrCumTBnQRSrn8U3/F/EmOR5r06aHn0venwW2UDikWgP21AdYStC8tNfrone+/QYKbLDEcMVA8Y/AKIncNWXI9LNj7xX0Pe7GQ8eR+dnoYnNEccw7PL/liH/vef7Du/YE1YYA25KeCq4pPOT6/p8hjGuu9EEyQHlqo92RDO4akw6np6SxUcrYj7/qz9uWt06hjfJgerR9VVaYels3hEvdNVnkABlHUxERFcilelF7wv4As1VmMH4xo19bvxCallEj7CQrBf7yOVLceDPd7kIR9if683vcpA1kGCmvGGJqshml0sLRWJfo/GJOUOQQB4QqggA2+9OIENdXXg4ziD458YSyy1lLQW0/Oy8aUVbFtgtlGlxiqjI9ByhQugLoqLAp+70hUxoCSXfa/xZUB/2Ar+WFCqapik4KcG6OzMSwd9FHwnLXgQ7hnKF+axQhoBmegfRj0TjNgNNjhCyjEh8Nmv3h8EjgInsJBwVM+06NlaSoTpb2tigt7OXSs8wa9/3lUVmPApbiTDjickePjGyeaMg8HuUrGSJXbJZX6IjSB6tlnO9R+j9v6rO1pKMgZQi56EvlLLaYT3OYsE2zM7G/NyS+5NFn0Jc/K4Dcwx0Clw9xdkNxExQOHIcokzG8dvPB0IISXA+HqBARfwDEZDQfHmenybZxydSbOvQkTHw7ufl2iD08IxmScYSaFjlUtlg5IBgg77sjkfHF5NSF6XLMWijzZUj/Fylr6LNDAFjcjXf4i7ThP65etjarE6noPveXQCtw6+WJAqD4D3mtichEk0fwZrrKGQK1bEN3WndmGI/+944JPwdMJlZS051vDA6A2Z1Znh5rr6IC4yjj/7ieuEmS/FiFSlGGSy/LuhbGDRv3jrmGZ5BwgKpmvYV2oZkcRKKauQLMuIWBB0CfJfaGHvJfBHBGtUx6JybDTcZ8Zvzgv7iiDCLmAwmUozCXQqcQIBFvf1InbOtrAio3xjyOlzdfrD21iBOYTh1DPKsVZS3IiWKbJ0SGu++l9LV4ewTEVGQ322e5Z3NRfh0XbvwLNWsN8Mp5YdjjVYTkpm+Lpj5s4F2jVtSk1YgUnSn6XQPyxp0JTja6Y+BBdC+oJNvKgb0QFPhWiBLWNPKnY/KPYMtd+/A1Q4M+wqYthXqIBRLYfiThkO1NYYmJSpD7UIqqHoGCMKbB/2RHdjQPrMXnU69vWlR2XXo3cIBbwTY/XefUjQsndWO6TpXSfSOKKWtSaTlVRhbM1vsz9B975MAIp+0Bn0294fLT4gX59eV8WNKIAeq550QzXNHcRx4VVdvCoTO9TSNJLQvbR9ZMsPl6E2a1SqEKrL4ozYdnr5H0DmZxo61t5YRdqD27y12km476JnyFaNXGVf6D4EbgIe0ULHl/0REzm+cLEcB5OeVMCs6DHgCYxqPad5pUTaZ5ZBXJBoaXkrEbxXWXzBZrE3cDd8p84PH1/FoZZ/U3VxOozTTBLJ0cw1Pk73c/6oyPYlYpICyefj9+4fhmTkH1o0iSR5qEY3vCGOgYBW1kWnmnnIyKzDek28d68bAiI6fkf8h09YNPNqaPwiWlwWt9X6F6+2YxBC2iStVbRefwTK1Xxd4Y+RUxvzA+eR2ppviJEWc5CNEjpc7QPVh1jm55flrTzqBiTEPiL6HykJlHt9h1oaq5Ytt6JQbCuyhbFcDVoqKYemD8M+gmeKA1SbcCsJEDH4K/ZCHMg9B4/N/vwBDAKgEStuceTm+8jITuUSWI0xy8yBDd5jGhtKiK3KePKS61QISdJg8oNv9QCZFUICtGbiBpDAXkKp7xlNPsQ7QEJq6vIenZ4XhL472mvhW1uVQoV9ZvDahpiIxcvdxBMP3v9xIm16Dw27sxAEDnXkX3dnchLl6hQ0rr+rFU4TQvKZ2w79pxF8VzQ/i9wpjrpQBsFmeQsaLkTXNH/qFFSrPCrpitTCeYFMocAS3MXmKpCPe45+b3YsNNncHIiRqQhC02LXPCuSGs7Bhju/Pj8CPBYlp7f+jf3Oj8xebbYO0yOONv1YLZsEwyBf7MEaVtvOvs64lfo+M8sglbp0aebkfRxvaxRhTbpXpycWKVjbyRdOtKhnfgGuKtF5f/QDXd+a4KrFH3aBthPMTRYYEGz0veglqW1vV+cyoSb8IWBS6RMOoa9FFsKJW/rcUh6P84mVsxVeD1mWcnUyCigxcBO5TtQPclLYBfE+sUgWfRqorccfPGYxy2YYgBHpiR162QDUBytM0nJ7Es8dszXear1q25IOiTa3PNeIW9vlivXZc/qT0Z5+PEq8e24Ura469Db8gqv/1BOCZGqL7cYzJLuhMZpMSw37SVVdK6WwoiPIC7qeUbuPSgmdxvsrw1NeF6RZ3K1ITmIzwNwPu3xpfZp+yHwbRI2Qa7qdGFjUYIzCiy0m7uyhSuNTDXJOqJoRAwQnl5Nkie+tQeEUtH0iQBNvhQeaRD0HLN+J8kzAoZn5zc8FUNgRMZYDB6pW/tpGyMjO8p1mCcoH4RG58pdwc0caNRnf+KK0gKpSagQk75yiur06cleUs08RQErmRhjb10vnlnXhvA8vRqoOkWwobSXMnb0v+ohh+G7HyU/6PZpz1l45raSpOEMYhN7nGkN8bUzHv5o9fcI3qTxg9uH18UqtbNSS/1+bF11bgNw+eHWH5kIHsuu0ecGsYctcd8qMgWbFWwKyoZLf9lIB63+te5NGQxO2wdReBqCK5yMXes7sGxSzvVkJ67qdW8Uq6Mrh0DJ0+NPZfU9EIYb2Uw3h4Rn0Ef5tDjhaSICvTxqbdu0x1NiGcEMio+p6UU8OnitdHmtR7Cm+/YO6hRZElcoSzIw/ujDNeUK+ONgrmQo/JvU4SoZA2jsd9CTJpj4GMuToy7VOK9J4yZFQ+UhjdawJi/SqUGVnNdpAycwcgyKP43Vt6HJLM8Bxi0JnRsqoPpn8ziG5DsHoVA5mv48BXYVbmwgQQL7GNfu/BXj1a8EKESLTXKMWgjNeAMz+rqUU92wbbPuaQ+DpJiKL9VFuRG6C1hJDz+Z4uY+608A6YWfVF2M56GIt88r6oSbEKiPXbuYqZpGX3Y4msvD+7NB5injBBdFExk5Zh7WRpd36IYgQE/nOq7hpKJ05sarSlVtBmcY6/4AqWHYoEfUKxXFLxvD3l56C1HRuZCqastQrXQrD9KiSPFC+mOxUzK1KTAm67wlRsURCqfM/VX4ke01Qox9RXIxoFgN0zk1h8iBqKp2ztFJII3xp5iNBLUEe3fYZzqelIF7Co5oWACM/sBfOwPtC90MorXDccWKAUrqciRmmBG7Z7+lh6rDmbNYVIeKFgHbwMbPhD3jD7p/dAtWcZgzf2TSg58RK1ZUWmmRVok5JzzjPBxfXH66HAFPGraCj/niwKtOGOdbV7sYjFRbQT16etJmGbXgnVOspbYFETPownlli7bDb6gi6G4ItZSUPJxhvrWa89lNJIkhvmJXreJmm1gBGMXpUCbttuaaD1fDRJiHta88/6GnBqJ8X8vjisB2H4S6MVp8Y8PCZ/jb1w2wxJk3g/YLoSUMLJZi6RlQeWwyx0N2zN3qys8FuFjsZktXcHnpjRjrUXnCeSVwQgFz928kUajSWbOgEXVf050FLy9FmXvo497WjyQToCCmjupvunX1ML8Iw4+xffZfnvIOXoBpHLN7wbLymmXDe+fG2czNEfXlAU8zxKsAZ3eX3hwzkbYbISurURsIe9YbtwX2IkI6UcGzdRngcU5sZ9/kjtHuBawkRtaomHiflk3nP7AIsQSmH7U5jDQlh+ocOwmUMDAdYg2V/7j1BBSVypdJ/jic7aRppgfKpP5JVHXmzU/cTt3sKwlGubzl+RUbFL1fo/oDWDCTc4fdSSbZQcMpgs0ZimA2QYLN9OgKUbPf0iPBSck2Vahfr0BWVHKPCGNBSzQA/X/Ev7NW3h7AzIvmggOzUMJIQO/vCwstSXZfXrOYfMsnv3Bfn2ohg5TuY7l8wlqc7/y4ddpHdoqr1ndwmS9LzeFsPQ4hJFc4SODV6mk4zUlPhpUoTmw39/9NU9mvqvgr5/9g2QqnVBBhPLHT08p1fcLua4pp53KJyV1iEvWT19LoZjBFTDIay9YsheYL6Fs4R3Xtdn22UJoPII+gbyae86/yLvbm9WpuUoBSE3OpRK9TtwTHKI1mEnUA+P4QbQtgq0MIjYW5DwlD2IqOKP+O/UWAV/shrsJU56T14BytQy3bbfLoqiN7H3IT0fPY6GJKg080HoCVHusrqacYy/ca+KI7djMKdHC7AqGmKgTYRH5INY/Pg8nW4KpQNzb6qwdMnOnDUFnTfa+oW3bDjD8l0iUjppycS2UIwbJqD10ZHS1tQI8vZ4mHKUuWZ/ZUdmvos2CPM4CzmVC9uZ3K1WSgoHbou+BKbKuDF+f+EeNU+DoMtvMgmJGSRGJtpLVNM6TPKoSJp0EwdPqGoVY5AncD2YtpITSB/oLuqQOTs/NT/a1WQbhZ4noge1VhPL5WmNP5CapXTelFBWMbAy2HCWLo9oftPpmiudvWsJe4V5dpoGd1r0BosJM6SPnzktxYgOIRZLu6kbAo1Htcf1lZOkQpqOxmiJya/Eg+hCuxEct9TcjE73fn1X6bvxCL1KO0JnUx5nSm2VhqhtRgSxoBlvaixF4FYrx1PXp3ZciGFALaJeoU3p6aNdAq2xofvNqTzKf4h5FjjiDLYbUfxRIq8vp/hJ++wzKsSJYo6nVIVtsI22Xlo1GJSZ4cSsb51hn7YIY7sdT2qJ72Tw6OOzDxgZIoYUv2eaOpU7+7T+giINDHFNoIlH6jlHy5jyI3MSF2vpvE39Pp3uHeQxCECyj8n5o8xNsyoLaQZugMO1tjpKFHzDjjfzp2UpkVAXqUV4XsVlTvxomMgS8oOHKPdNIq0s6olnUTGgydxLgi9gxIksyUvuTtqs5AcoA/KTKoYc/w7QqaW/4QKNrLAeA3esCqV7fekrFcFchjRHPlGWhpnycma2pT1ao/EM+na10W07anaxErvYESybwNc9r44a1P1+fC5Qzs7Qq8AKKy9PmKngZ27Y2AELqEcLTP+LHN7lO0JbvF/gm4TbNU2F6w7lhaguHONPRQwNa5W8AfMmfuDkHxQUkunHKxaqBobj0wXPI55as8TMoSIzxxq2SYZ7wTTL9yNEdnGrFwzKlkB0f6NVz1oMfaLBDBly0+/uJqnxV+TCyXWgN05iBOYOFsw+0NprJm6hRXr0wLMPn6FwCGCVatiz3ilaplOYYGzUBKNRon4lYFvVpKAqtTzOSvZxEYkWwd0zry1JFsKpwT7hDoOJzmdjiMDv6ub3h2XNsfuv/IieZ3a+0VKAgMyEunbTz6wxnXoVTq4FJleC130hJzCelhmoP16yzedbs/vZtQIBueyfcixZDo97+5idCdLQ4fVCfx0Mh8kzJz/I1c0NyoK+91KPLUSDMj08c74U1WoHMnvF2/fZ3GuN5gwxh4U5OeQa8WQno/Dnko2wmW1Gf7R1C0rx6X7VvHeP3RQmMQTzQZ2rflWkg9LjtnF5Xtp+6KJH26WVYXbCLd2hObhyTA5SgQrFzFEHfkSby257ekpe6ZKevmM1v7D93FWXGQ1mv0ftmc5jkDUYLfQrgM/S9+Bi/LQBETaxYyzSwX4b4xEm2klBZBN1K7ClWg4jGiU/hP7qJkcvBRocQu0QegIUo95Ma0bfirmmuUFHdu0zfkUlF1XjzmTI7pAqviRkE762xJSdjbywN2tmzpEzMHs2LLJwamtYfGzmEjKCAIpMkzFEtPU3Q/+RvSOoSHbzRjrnw1zBCL2bODIxj2D8rD9wsEOhI11T0gk0V67xgdpYwX3fA293jAybTPUSltPHiO5Ylq1DLd723HU9aFgq/sl+4RXAWGW61zvl2GcSrY/re4lH61N/6feQts2mu58rPCTWKnStcuyaq+jTxkgCF6Y9C5P+mM3kxFwlGTjVx0Y44Dxxj9pOxw/bTxpIIa2D+eldzQHWYXLAw4Ga7gZoIU+W0C1MPumgr8qQWMLxb5KvwVBBhp8XrmYw+njUBQJsNyGuqpad6Dpa5DSnO5uDU993MnmvGc9nP/3bTmVp8+SbzfQ0t3MESTAvVnFcSnlhPwSHhuqGE+01VNaoCp6CjlcgqlTyMZRz8CPneBkcklRaD3IQ0jzFerh5fQ3FD5/p95O0kTH8wQjGym0ZIP+XWMUKYD0XzCiZUWULVlRwuFOklNf2yMJPe0xKntjxKiS8FSUSSyofYB7miHDiGTBMW/KT5v5N6Snvt821H3nQrRq+xmzXcwNlHmB/wAnU8gZVVoKGMLrivwmF216d33o3I7GGdK9A2wF5qunrMfS6/ifSOIKS6ym2VgJxM/xeVNa2S7fygBODBla3/gx1UrPFTZdOU/8mw5Fm40TUF8n+jTtjkaP7UiHuWBy0EFMufa7lkkw+efG6kowScasmgkierdi5usDo4Sghz3Js6Z0/PpbNsZpKpJzzOwfOyevhDfyM2qhnMNOwlWB/1A71RSXRqBgaWbsloNRCxK7wuM2Id+CpAyE9IbNW3f9FZF/fxma5gPTxR42YnBm6P+Wpv99vw7WzDTyeRn90+txmmGAYOt/n9xksFlsN9+Rnpqa8WO6wzp9z9qs8qN1bwcvNvI42XvAVS46EGLxLBDqAOCD1ONy/+cHjrjt+GiiKFRTQYG0snYtEC631t2u7u8hoiMMdRchRceYXaCZzMHyMVZXCVVUn0JYtGq26Bof4cIXqv5RPBXRdNj1F5Th1J+ZahFagKlqXZRIA7SmH2FyMKYy4Kyd4ht24zYHbdwNWyzXYA+7SKDMYZhpmo9Y29X1O9yuxEg51voMjsTyg7hbhpopOHehUeAZG8uEhmLx3EBv6u9mf1LggqvIGsHnV7B8UGt0H9ImZqB7a5/I7IqwYG4sobmrIF4rSvBaEUuA0zlIrFNTUc2MWwfIpjZpaE86tpX0H0HqqsMAH3AaZip6GChLyCQxzkyU+1d4GKtFcXHG2riIoMfbB6svgiZJ9EvqnXUMzj8PVIZZIDrOdimcb/C3vMYVB+5Ua1lPMKaNYHN9NmM5Mg24oDzB4cfIa1r6IVRG9QLmHlHI9XPWhGpwlIphWQcK3WhDH+xAbTluIHRFG2VMVNolLG+NSf+FLXUZxmdBjqn6Lm3n705VctXsyATjL+7mcU3H7usFlqtm2FXBCVAuXwJzpjE8JqEHoML2fXygeMiMOg9RNFiVut3WwnIpyz/gf/9E0BQ4qp7PQtD+V/fc970E1GQYXlAsINx/++WYDDFkHJk+GxbJLbrwiMRMFU3j+N8C+sb8poKVt5x3JVr+Y5xr9anaufuT64wIAF5Oo8QdswVnH+AaE0mug1/4tko4H3tFkOBT0UZSfruKPYQMhjKiTeOTKH7ab0u0uRyeCqVKes3RclkqOH1tO4uY6YBLN16cFPQelqDyIGBJTUNh682YBGBXMPoITwiQVdpa9/nXnB/YQ8wASy+wMQnmjKvIZRgkJZjQ/bk0UJPUPEh81KEn4vY+M5eQl+4+qjExelaEcFEa76iticHob4KBLK5s9+nUKvLwdH86RPklmvDWXixLaC1lQcYLrdfWTIeKCKfKoxezGLmM1GYdcnEmd56KpBA+21tDVv1l+BGFdnPic3ilHuEqlB5UQVp1AvMTPipLCfnfbkf+t6I4jpktNw5aDfNewmAQru+GDiNq8Pn0tFnNd9Sp8ZEyMJQwvFD3XWiM96D/N6AyBFYIo3XedmHIqkuvO+pXZCyU/yuDoLWWjV+z5YMyq2V9Hs+JV01QAltp1Qkm+mKDLC12wniDXVeg362Hk+8GFu8ybclyBZnvdVVrYGf92jZQCf6BEjMsu0bZ8etpYPN9LBLF7gBKOczGCllPgUTSZ8vT218/8MUPE9lDnZsSp+t3OInFDrnwyemYMPnkU6fihLdHXLMSSJZdAkNJP0iYaAe/NJna+zJ/1goO72T2cjbLmENq/DvQNFspgjF0TsInnaysQoUQZyiLlQOBOlWYKiH6n0XqQrrbKj+KozSica5lJVP4bSORDYtgG6htoVx370JwRVFOQjT+ziN8lE/roTFoT2cDNYs5YFDhq95IV1mQQ7zCMLGLccE/v1iRcz+uI0KxLK3CT9aGG4IciaaO+EnuFKAYoHjjnYdgt0BqGZ/g+k6Jdd3wZXHTv3M4oU+z4JhbR57l8K/rVxgSozUko2VWzzZTQV+vyUeNe3Y2SHeDRVitSF+xAnyE+Djokl2n/0B6hM47g9AlqGKYKY38CQFI05iG/m4lC0ihPYyW+EKNkGXd2vno7Ja0XfT0SoY8yC4XjGoMS+/Z3SHEjLqb+olT8AZ0BaFG7jz90VZEIowd5FjEMxwm7c4dKjN5fK30NoJBgRsG8QZuv5hqDDxforJzjVLqXxgsWWLcnfMgCPgfLQZgdDtfuxUMJQLdnZIsaW4T5REokLVHSNWmPYFXR0s3C5zC9uUJSN9fQ0uk+i0cp4bKDWZxPUUxGuEPrjXewhk7Yd5B0Bu8vhiPLfeqYM17/2d8xmJuNA8IwhOloXFMQyFkmnGwEFSXpSn2taePaeTj62sKX4/8u9ODjswKi97Jjseamj62YW9iBf0Gp8hZCYtD9CkrTfwzrptKt6ywJp4rjwet5PtYwSVLt+DOHdSya2PN9q/zvYoWO7OYRKA1HqH79dYokXFDEbA+r2NQKkFwvyviwXTHJlwet6pSi9+r/z3Pt7Ufu1oyK4BBXO62fozALBEub789+Hp0sDQJyVebNRr/9ehUfghl/X2yx70phZC0N/llxW2rm96hdvfYP6yPXhrP8/GvyS4jubGY5HbqoXswpYqFxHZx131nZU6FYfyFzasKJIz4EHi/Dz+9X5twT5PZ2vVc+m9OIMY0qT/tG5OsPBdTUA83rNGnhko36D8lHDFRguBDH5c2waCHXM2i9pTfPLJsVrMLyDeVyHIVu+4Z/pQUFy9uItNIz0GQPEH/MhdbMfzqPbkwU/pOrhB09gsMtEEABglGuKSGljPSvQS61AsE6DUluZJQ8NdXMWn0eCIgtKIoMe7MhURYpZVOH01B9EokvKgVN1xMyoeA5cEYNOjBkcnpDEuWuqN6J6j2ZrpFoZzazHZRLSiGxVwN0wVe/9YlOr3URg1vUMX5gJX20DMGEO4Ea2yzNyTnt51GlL7fWzRc0bDABZLZgnSHU1uqpISGMq8pzIYAcsHFpyzSo3GdlQYOQ1fMRXN5vQh65mQ4tp9xL0DVk40EC8qHyOCncWuZG8CMkwsvlzcryb+U/eGG94rbuUvC7UG+0nC8zfb/IDSMn8dfjwUcwzyuzNHuXmqCWKXXnmAEB1Qv9kfFHivsc32wzpY9MUQ3I0Pimu3/U1Q8Js98TxCaSIYK+wM4+8LAHg+s0aVfbIFlg/MWKTu8YHrkLoayVTHvb0f1j4P1fMrYPy677QzHQGd3qyZEn2TD/PGbnsu9IXYE/ajeJ2PvzX88Dfq40W66PTKsqVaNJ7xLKfpsSJvwmPWPexyAqEUNJcvkwgbH5/ImWPMU6s5DtYibbwlmpzp5H03IVA8jMLF7EX1mw84d9p9KxvP1qltDYq6Jcrb9AGmcia/TjOL9s877N3i6T2i1S1oDtkQJrfrcJ4X/+NDkv5gVkt6AqeiXUkh3dTZLD/oNk8yVLlnoLLcl0l8a2IM6CwRcxxHGxMxLFAqg+tjOjs3QRH5WvaQMmsSr6LcIfginUxrSN2gzx+pO4e6IadgVpiWtC09WDt5J+w2F/OaFCAN9hv8HdO4wMMYFGaii4ua+6ureY1nQdThiHlc9+QvhdvYHtlAyV0+Q+B2VqUL4DMiVYf9CsYnYTmcg043ybOsVGSS1tCNDXD8rwyMW8mh3n72/GYU1dciwWIODzjUXyTkBbUxE+C18KAKsvQcJhz/WbR4cHvnSO9r8Jh6hMmMweuavGAyoliH3jdLb30Vqc/8KrTWcVhr54vLuIFlay1rTNuWSMbE8fx4MEH4PA8fypCse+QA9A1Qqoe6e/bWgLpm9xHG38euM7irhHqsFQAB2i8ssWpKtoDClrg56K95vi45Up3/HgBl9vxwI7igf5Kl/DXFwDYwMOhuqhdPRV7tTvTw+cCwwq8c0qIv7sydg04J2UrPl26LE6F2fCE4WVNcnxIPEJKF7PsB/DYg0ar7UL7hBhFoSa4Ooxkq4T1bMUYOVGLM0ES4G7fSS34ztx0ff11q5hE7OS7qzg7pcqdfbkXjtwu19rAahUj79IRmx4WE/0wW4+dVLNjDmAuFJtCCpuzzbdIF+GC/4pBqk0lP5JF6dhxsM8w9IyzgmfquZ0Bu8XkD0LeUMSXw16tkrJtsXZdJA+qfoovwN3dN4t+bfQsSqZKNrawxUeJjIZx+Hb8tDOnKxPzoTZhajPMCCtd+SNOZgVo7QWZB5nLFJEK1fghrk+gsdxmpp2T+GJEFpMEYjFgwBgKEW14EVZLWTa55+tkciFGA/p6ViddeFcCbIjsV9awukTvMQo12HkyQ/7JeA5Wz3ylCALPw8JamsUKOvvaYN6U5Kz6bSAJgMLl9bisZ+zpUIREREd4KYo7bKJVJee/YPQxnhED5HkLPB51fQVcNB/FR1u2Tj1szWKr8tIUuTkEzoOVrpqBHcTC8KJDJExWJw0VGax467VzP9wqShiw7xt2oy92BhKJ1Ebar8dpTK7sKoiz1KARfw77tEqF9t2X3dl+//2dj/gvlc2cuXf/vUjftY/s9yzc4uMyDZsxRTeDLqu/6nMngCJM6g06MiEp5Bbn9gl3+nEl7gdoiaVlJgUXzpZts25hX/7HSa18/ziJxKwLeiCr5i7n26DmAX9VWECdx0ZOQMu0+wC3ENVFKmUWN6lEW7pswYwqIcVkiNw277WYt+je2VJULGERtmHCnwcJ6uhos8yVbRepHQmFw0Q6CIkWYsy8yf7vKSZz2QlfTAlgyhtKBnG37rabmT38cdW20Giypr4lMRBK9rpRJi08m2OMKoKsFExGs/eB8N4SnkyPSdsuH/DE1FXEIKihqrYyMwghkWpPqGXiwCukk4HVu2Q3d76XreSpjCJCwWHBmMOFYWNsqXRoHiT/HORaFyyGUM3JxoX2ccTiuUiIqZ0QR/tDASudyRCXNs8jMCCuYiYCyysQB/pQXz+kaTvurhw6JSMs0xWAK34xVjX4I49tKZfRUBBu5JQEuzUksdHtH38XukVwN58kMAbYckD2YwXeNBxLsJqY/a94W7xXaphFLthJaRoflDwESGKxmWiSFL8t8jdX4b40twxknOHkE71yIPxqf5dCxbwrS77MZ9xgnd6LhThIISlGNmqiTGYyIqEpXx/fSO8bHANHnZnQ6o+YMNGK148AUFfJKBWcrSYO5+WIWlLO4Sqt2bVRG4hL5/RZkL7kXu/jFmRrane4oCJKF1cjsdTAt5yhJ3QP3cQuDDlzypK5fqNXjIpuBzQX0G7gXFhU4gVfDE0mUq+Hu4zJHMSUSOLzHdCEoUhQNDBBWFP3PqagjhS4qki7wLGxLYG6kxVB9gx3TeZq/ihJqSenh+gRd8aUpx0GkoS89bha4TqBGiSU0gBBuzyAnN5BK0sTewzm5Ctax4OqBtJ3ZowIp4dhsA5jrNiG3NXgqI438TyqHs41GeXVMXgK4KgqC5e8FQDauBZhmN8r8pTWC9tg79Q/L03GSgOxYliJeokXsq5yIsG6V+dTI8VYounEv8EHnybVJbZCz1Paw02uPf3R3rCceaikZCg9niSGTDM8m36aefQXOcFKpVmTE1ntD8fayvGXCgS/XcHhDA/WapXZrnwnfA6IdsgfsQbWK17jGHo7ucFxnpXVWsezOrVrpGfcq+JKqSnjHGhxSV1C3QtCs+LsMevhDd/bbkHCwiSJ2sMVllFEW2Sv0EjuFXfDfPDnOPbxOFCkwDP+VP1EhKfFs3pKHFtACXyfa9vNG++f2pcYqe08b/NHfKcgT3DngYZVoDghdvFJk5u/PafPQ67f1QhruIwmCOm50OjfCZvLWb74dZWFIiWktKEHUw6q2+rcuX7Tua5FlHo0lfaMRRGt85R5/1kmPIeJ5wRFGOvW/yTcqDpx6bIr8h3r2ePwQbK96aupUuoAPfZRjvI8uBzGQFCtYmHSicw+wV21ecT3x00FLECblWaNgrZt9iikjpGNPcuWs1i1xVBCEOZ1jdtb2yZtdqcIaCk7kcYSVrRuB0zwVBs50toENLgo4E8QvU2eYSPdNPQ8hVgYjlCN7z6H6/iJQFwt3A4dVWK1c4NjUBtz+FhEGmP35P8wtnJmnX8p2lIK5S0+8bTQxlO9QI8ag2PUFgqaFx/odKxN0AbFb/0g3HObGBErInM5wmKG+vWZB8hwj49/EaFyHtijIm2mFay6NUAi5CUFbQKdFNxePhnbOmX5nhWz5Iljg5ieHgLMM2UmhIY0STNjXMdUQlH8innrDdMdDWGLNcX/RCO/SsseQihJtkAvySaRdb1DEkmGbIiATAicOeIBsYETYV8zrz9XHHDX2cgDIMhiJSgkY7Cn1uYQHt/sR31u2wD3VtPSooo2BQXMhayU5dT7uhMa/XoaQxqSr8PXd7VxiPA35miTvMvn1GAQirY09RHr4ow+6+DUgkQw2CyfLGxwycQzT21+aDWq2+sgO2ooyghqFF3iOVnSf4V/9TyMFXjoB6KGhryqy4tXKLHl0GnYr+lIaO2j7OOVR9zI2t7k0r8yJjudPsFX4KyPFivGcmAdaFoH67YRDo8DVOt5r5XpNCU6mW9gb4Px5Y2I/TNZJxqVKVOS4N/aqrt97C1Py7V5ZldD7FEGPhh1rq9oOERZr9rnDGYIEsYRVxaHNNLx3h2Y83CNb+GmCJb+QAdOApAVaMeM52Jb2ezNm9VyP0I1eD+0VpnVNdGnx7bZnJzoZYwNUd9ywsPZUkHj3+0Mfwrlbb/Fa+zrfEykZzGfNSgSv3Xj9ZVBXPD7XNd109RVGadpIRop5s4iiWLvweoi9T2eTbSO8IQ0umbCadpMYsdsOWzQ7EXC/cyX8hEI/SKVB6lBvKC3xnMc4l1n0S0+1Q7qcS/ElWIjSHHfu37p37CNVYFfHeMPcYmre0HugtcGE7ICGz6UY6481Cl6FLBFnU8Uvr+dzJRGn9X92KLQ5AgOreXa1aQpGfZ3EOlZp8ftxUwvXVlBHivd1ESmxPLcgKXyOqzg/mvZxbNwZywSjGNy9+bjXTgrDX1+gab6b/otjg22tVpgsvTGKqxbCmZAVL+xhMiH1QKLkLSB186KLdTTro7hdjkKYo9PhNvuJZa/uZF5WeXC9ZE8Cwecv+44qXpujrrJUYMVtTr+8abtljDJ+68cwae7Cj4C7F3xM9ey4VL5xsTodR3Z8mT6F7p2hKViI5YgLMku/KEgODg3EQfIHM2hw5Dhcu6fekhuxIZQBIYrO7MhswrjjqoM9LBz2Z+KCIc5ESpvfBcYxjtRm5MRNvjD3jZjWL6PBN6PmmLoxSTabgUgm9rn2kyFa3xmauuOk4A9C9I/Mvba6A0JPu6XGuK3KP39D63RfqfDJie5LCqWRPkCMuDhcfULtUwPJDKChho3I305tCz4bks/PHMhM0JYfQuMeBfajpW3y7d0lKaFHzI49gLSlIXQad8FDJaO8Pp/dEnwzkOQpR/9F/AsRkKT6o87LSXlQtHKs1DZIk3i3olkYuqHYUAr6Gg6Ic8ZRXVhQWTIhaOU6la6k5/aj8O81kHaOt1ah/S/SPsu3DsI0qSbfmVoGJvX48cyaFybcc7I6thcdook7ZJrRLfGMF4Gx2KQrvSljlzYFTBARLe8qdSehWLA3Txf8G5KS9mQTgEdaof5rrK2JyCYX4H/D3nVl2SXjdy00DLk5hOvYglzQvAiCWngmIU4Uuj+zFSidtli0J2L+z0eDlRiatNnw6SfVUWi9ra2G2qBPje+HvO9FlgN+twsEfougxTEMGtEWHZSB6AR9XkFJaQK3pK12YjbYYuCbI9H8YGsyvURPZtcJPl0ZO7dny7r5GIdg60ptJ8brM1zs96wSoXT1sE/LUcKr33zNXvktbAFVBuctsbHM3dzdFafkhKstY3irMcPf6QmWuc7MasBaJN7G6V2kChYlzBwOUI+Q22t2fbabmpgwI9tGmTOp2baHYcTPnWbg9MU5QsHrrnhPta/Ldkv09ORV5Xafao2LBI98nqjvc+V4yvgDskcb2GAPMKYiOTVX3TpkQnJ24TbhSJRkl0yAmkvh1jcv91773aszD8sxkQMAOwD2aPj8cTzm42uO+3/Rk6xMu7x/ZlavCAGip7MG9KaeolF9tIwyAjxDzjuCW9txD50gc96x4wHWtJGqLvDdh3HI7JsdNjcbo5O1BSmcdAw3cBzJhA04grh3BI1whql1voN/VhtB4JM3Gw6PKn+OwMVPyquxuSE9Tps80FizOFFEPFR24DU9gEQHWdOp67BAvkRRTPqomzZXZw+/fStas0SdwVBU5Ei0xonM5NcktxZqcSHW+guS/9Ts1iZ1R1QI0ZOVseEVhddPoE8IfDj8GE6BWXwjihFsnGlRUAgPLNKz40mQKfaQ+g71X2uNCxgB05O+AVW5R5pxPGnIryjx8HGg5PZPtnlG+E9yVkOM61IJfPVc/geTjrXvknoCxpVM31W//uwTC3DL5f7/fnVLcFEbPN8Lc8wEhNXypaYPX6wuKnsNn0tm9L9KstxcIURm0qPPDiva3YrAMuIuZOJVjGH6y6xDRUshU1BPA3g4Ke4fk5iVeL1cNaWba6Rd1vykPBGWL9RdWRIDVDyufrNjOgXThSSuo8e01MDF1jwypGS9gcONrGEAgSgPPR3eCir7h8A7HRtjDFgfYmsNP9E+1ceD9rkNY5X2T1XN/gHK7Gufd4L3LPkCKHy+h+U2S/mFuzrlu072KHy8tGCr3piyzjvhYveCkPj4cAlQioe2ayyI8Xlo7UYOJfxSg0jt0atV/9fGcI88I0DK5K5u9qp0hLwikgxFuDiCKM2EPY/srufYOLfegl2uxQh9dPVO3amgH0LReOw0R0iHZwiUFBqxLdQfYp8yKwfXSuOJN1Q/LX3BbWT6JNWA5bqM5rAc2QO/LPAFTQFU1325+71JT+g+RnuLKWOkqAmxcf/Qf69RuVOoTD8091WWlqjAKXlPgv1JK2P3FCL9XtbMAQNH8h8TqjKzgIrUhVHjtQgxp3dqhBtFQvfPER18NZvZDEQHoz8/cZBiH5ACOP4FxfG0+Ir5+rpWu73z02Jow8B8y/16x8kqC8+J1wNO3ootRlBH0FW94LyC7A74D0Nx32yiWg9ZJwbbJ5sglhhy2t95vMZLTz+y73LzrjUumeCJFlycqn0GPWPzU16aLISVYpSuTWW0UuTzMeZ7vGUmBUlf7oyyZERcvE5eNsTnQYx984L9vnhDQgreIXj99uZNuQqcAeoMeAlbgzyC38kGXEowKZ+W3LqZ2vKksCF5duBcspAdfjCuEILzPH7KIOpSCvsP+3KfBr73cOnxRo4cgVj/cU5RBcnKDlqOHDnMs5BbduYH5fOCIER1aAbDgc8Otjlb4adXWnMgICFtUWgBmluUr+TZcNbbAyyeGH/GqAhYJ0iwgIDMBj+s9TyMsZZRcZNZCQto5U42RXkZAdHJapHoZXD+XtwpeCuLmPojkvRDeXsJopt88SE0RSI7Vq7VrXDdJ/o5700Ul6A37OpGbTz8a9EoKLpd7KKnuR7oQpct03h7cMdZG6gQE0mI+Z0LlD7NHi1dpbDmuFjOzpG/MDL9V4ceHMx7L9s8F3/1K5/Yq8xY3e9snaEp/MsbuXx+Yr60Q5k9x0XBmNRrsrzwoTE+W2EEtOwEx0V55gORLrnBBdZJFXGw+DbBNYTTAprGB+EDspn2LLuoQQjufJRQhNASq2HQwb3iUvmp4TMXeTuf36Cn1OOKuIxYVhwJBMcQEmHk2N/Y+K8sGbr7Cp8+GJ6w7QsNFZgSnyfLkZQyuTxn6MvxPoYfxV3uUrANbkUt/+5puc8tQKE7bHGbQ4zfKkzrnF4vvKVQNkqDFHwaZXRyBs285OZAGPvM53NWboLcsLEpHwwqVzSV+o9cDfXthXayKTxP1sMK+MwLYYh4rCShywp0icjSC9Op2xop6gA7UluyHk5IgBw36iGSZHXHwMm+EUofrYwbbMy0yBMgyx1cmZGcjafbBCPgtWeNWz2ACEW1+pnO3GaxB6pnBcJ+SinmNgV+iVPsnP6m2d6wxr+F0juCFK80kfT0A2JhLiG3Qiyegh8uA4ZQe4jNkzDdIHpL9nwu1lT60QId2DW4mcljYfPXLThWhUKfGSuAOBaWvMVr18sjoxQuWjuPXr0BcvnEBZEeCO0bdiIErQBeqQ7DCg7/DVBjiHKM44XKUzi50T+yjJ0t/dzQOd/EnL+v7b8q0BI0VIVltqsll84DGtldTnQNQdoGCeZQAG1PwylT3rwb66lisM3RP6Z0ye+tmoD35zPfV6+soryHrmB0lrBsdKZGh1w0B2JFZcSZI3AS7N/gHcN1d39fnmJWpfb31K5l2mVgNOp6WPE8QFBr5jqlAqYq2nEWGaIa5derfkvae6z/RPjL85PgtEoLFdcryQgYzi72CsjXFV31HD7nDqGJt1L26VH+XJTWRJimBxpuhrvwrtbaKtpS3Be/llkr56q2xBI+HBm+VrvlUnTxSgDPylWQJJJk7464o34OQgKuitDCGutf/nBTrlV+M7INh+rw+4fyj2MG/FaxsBj6qF/lN67eEcPhN5DYj7PRWqtQ+T9UMcXfZdjalz7WTT/40KKobwVDXEyAXYihnLSpsYCoHOyhjju6bPwV3KvSkCiVoNC+Ss9RcCNr7sOrr+nzG/Wc6Jz1P307B49tmPxQlmVj2mBvfh2X9gszDqJYJOw/y6Xk6sbsrbeBKZdjRDTGFfhh2e8+llWLcDUOQqC6vykHKstY7v7ld2ZMUelzYpTlmL2k4gZvc5ebyyzMTCRlEvFNjSvBpPXE0wL2ntFMYd/48VEuANhNjb8Rg2DqfTJdDJixZDZOxj3cithOzgvAS71elIC+B081lkyMIbVJFehbksZnCqwg2ODZdA9wgylNkmEes6mNH0BKy8L2J0qOIuCbk/OFTQDBa1T8R2CwY7XhCct6fK8psP5ALuZT37/e9W/RTVY9iK8jATcjfdVBKryu6tn6f/I5YV1eIhKZ7eNSVw4pjAS9XahbfmW1Eoyfy4jImGaqXpzEgpk0ERsnS0oBCHpgZ4WWhQ3q3sniYbgQHFqBIfJTqPfHiJuMclX6uFbZ2xvZRw+FbNu7mKlWxFw7k5uFHdh0O+nK8rThtmCtQhCn1iy+dgBV0wOM82o5Rx60eV3CsXxkY1vlNVEBzOaVYaE2XWsKZyazd7Ql4DLNFZ8J69anOwxbkRg8StlkHQ6EJ2jMQOYhnRM4d3SsDACaKjMrl25Vx4JRJ6uWrlh7e9uvVaPkzYt3oFx/0TeQbpFvsGQw7TLcqKPUEf5RQPzBxZcGnJMphIkzo/UmILW0tjPnptbOHMEFZ1728plkgBlXoig5aiaCYXI1GEwWAapPt95SYyxmyG+nM+xpGLqGL+PAgs3TOvU5xJBKW8ruvsC+hBlzp0M410+TiwMAcmovSpiIZ6/Tl2UfXjX9GynstYInamsYUax/DWGsg9vi45Yw7EVKhao+5stUMwWwNeAFAaO3BSfN/WOtP2V+uJ3v8GR89dha+RJKTnXalATeep1R1REmvAZwKPOnVtZWrs4rwOzogsikbe/Dkq0vDOBfiOqqwVsYD6mvXyydyq5ZRJUprY9xYgUfY2SYY4DriMKOAlqHElGlhp8suWlSuSoyBIpDrluWpSzP42f5dYGruzqiViUwUyapdxmEBq/vWlMUJfZMb6OCJghxc+KAWDD9+7wrag1j5FsnhHfgWcFgK5LOWqwcxta4mvbK80xQvRil+yVpBiet/tYF19cS+CCGtQDRd8VABauQX1PripOTvn6xmiols0yIQkBVNfTt2QcrayHUR8ksAWzDPuhRvyMvTKkRvPCnv1k7c95rEqB83iga5kRV5/gmqzyUEBD5hyBee4hARw0UZoOsWWx6xfz4SpvCgLcW0XK68NBx2X8122JQK+MMJT3Wke1glIDxz6pRVX3TdX7+lF6KXwBfUhVnSNQJZbWtYzKten9+/MIVdv4ZdJsO1kJmHpKcM4U/QWUP+rpb5V0UkFCWhRyZOkQZiF7l3aWvtj3UEAnI0cQiUrWpz3ApzmW7p48gXeO+EnB8uMpFPGiYW3trXkz3huWM3JpZ5+neGcmklLKw9Ml4+AtvER6uAHInxRRz4yKf8cQRH6dOvzKHesPePRi7Ki5RLsFSCsOnFtKNzN5TpENeRtSThKQvef7lzFlpu4SHy41mtoH4TRwJR0fIQYsiuJr4uAPyGgMkzcpdr9BxIlROP1I9sUxYvjldGyHsYzONEa4vAOmWL7VZfYGs5v6EPv4uYhGoFrtYTv/netlDt21HOiR4sxviVXbnYcmjjw4Q2X7R9j1lgew0R9su7PBgMBeXpymg7BQRdVHehyo0PpSqac0WJCBEDVbi/JBkcwqi2vRMOn97GUjKjI8C9poTnsQETOgO55QNBd1KZL/8/LZ9bfasFXEqMeHSM0fKen+b4zP3BP45E5zzEh+Btv1ByFV7zQo7mwCCPRac+v39bpFkaXYCdoH5DkHSh5HAM48bo5ACQmTif+WRoEZqMef2EVV82DBfXh/DZw5i7w3zYhX8zZdsW2fov7tVQ+3Hd8Wj5i7RuRqvsCXZE+1Xcc7Vq2un/dLOYjpZMtrpbacFtYDXc3EjFxPxFbzFxUmSAw7qEn4N7nmFH9W6Q7RPu7GqGDeOyCIu+67IzyIMmFa1gHrxviwclmmmqVuQar8H2gM0L4StYth7Gqbc05qJaniZHtcGTO+2irxksPfF5gyphkCaSg+kh20fw3GqufUUbxHCfAlTkfOYj2yfbk1sunH5pet81g4nnVUzMep2PtkOUyYsKPOpuWNXG0Gcm2DlUzUiObySeqcI9qt8vOUXmYPWk3dSy6khVKEDaEQiC7QOxcx8TO9IDRxGSUujzT4BrFXMbHiL+52LLr6LZY6Md048wKIQ+eKbUzLIAjYU8durbPTOdyJJcXa1UOS5+CHTqIJZ4gEfjBGBchY8e0h7TvbESUNuo5KTXSAC7YsFth0Sx5dCghco/W5/LjXr/69GducCcVLVjgxlbWlcsYxlDqUdFMTZF2za574N/IBVkF/AW/AXju9KbzXmgp8SkDsAavMH7vv72xj4K/qKu5E8vXqO+aPSHcXImW3Xv23JGWqBAou9bY78ovHpb/5UsQ95+GGa/g9qw1/Um/u004SF0xaIPjO7+yXcWQ715A5TaELMaTkFjsPbP0AOVQkKwN1lqLvZQbCpyzydSmEzxMprqL61EfEQdKiL/oI0uPIfCRU2z4KZx8aXteMc4dF1GmflN++IH6Uhrtmj3rcDPdK08e7iziSWIEQWIR+Mlwsezjl+4YD/RtQsUVTQB0ZKkaOnqjTTbPSP4KppMqZJETKMofo/zA5gojR2diNkTkg/Rd2vSGbEw2x6ZA6PxOWwSnNvpeH/EOInuiyTjkG6TGb/Cg7Ixhh9/t6ZSALQo3O/vOBk6qRaHut3o2CCecYPtpT58gAIigkdNghdZi1EZg6Auh2lEHAmn7vAi5yA0/Gj2lzdMSESHu8aREfdBLbaCk/rE6QvD85GmGSeGkPDd7lhJEXf51i/1RFqNISCf0rF14oyleC6RI9siV6WOVYumdMrdWUojqycn7yY1fZMvQTTmoYRxXcdMykALg9P2wSCHtI7n1Qt0SKOB/WgvRLfO4jnfeWwspqqgLGHfDBN3Jjfbt3X0dDsCcvjUcu1NQUObUrKnWYFX/rxsniqvCfHEqqUdlIzote/Q/xR/HdYdKyIiWxNhpREL9ArbB2QPiXNGgqt2nROhDWguMKgPEzoPJJvEY0UpFndBcaLnsVZksSUd/HG5yXjv47upGOHIiHSsXcTEMgZa2wloCm/T+s+nj2sQaRAjoaiqujBWiobEEu9K4G6pfkf7ijdjZTosf/WHT9UGAXpLfG4fvBDg6tvvqnmb5MFs9LXXZ0koB6vXCJgVK85sWYvzBJaAx4/SlLaq7UDsvRLcFwZsWk8dCt+/DzZWmI6K97rq3zEkBSxreKIvJJicO9NYHcFO4CleA42BVDkh4oZdkCNIrqGPV3tYn207DbjUz6CIB3KdCP1jZDJa/Ebhdnl0/cLwZjspoXNQX0VxUXHNfd1xY5YnimotYllrT4zski7O55N9BHqO1X5bo/70jOsPgH/31z8vt75vJ5AqpaV+6osC1WSO/XuYgIQiLmr9gAzmS3sP5HYYtVmd3jXzDuI2C3M1HiO3AmT8SQj7R6ii0OxPMbCeCNVeuFKb5MvHVt/53GeBM2UHHuwW+suJgkZJZTUiQloksnz2mAJuhaKVqH2EJcsoXyur+V2rEGFZAf7TkSddc6+WDEP6KwhrmEW/+IvLu+IeTVjTkf1ZNgThKHOZ/8ikyGPGiTDiHGD20pxTELoD1+r24il6lv/lnY8DcmpiAjKM7vXFKC0SeUVUq8KcdbQq4hpCTekXTf/SheH+DNwvnr+S2HgZP9OR6w9O4SJlNfpiH1H07ElZ2Shw/fqhjFH18yLao57Ge6WQV452XjY/rb00gQVnlbIyBsL3I6EDpQftEb31NWa30ANVws1LDKr3P7daXAcIunhJ81Zn8Jt25N9RJh2UjVd8G92IXt37Gn785u/QQNvCNcN3iYAI0VRngDhvtwnaAq3fQKvLeZACCmgdvilbsnzqCvgZVrm+R7YWAu82VSajRhlPyYuNFfiaA7va4DRazaADvbEgmdhtgC6jZyojSIES+sVFM8sUkExwV+8lNAnwTvxJErkfPl9BxqWpn8rJerM7TOJMXgXzG9EWZUN7vk9NKXy3uPCDsUzcfWDvc6uOKsucA3z9XBVno5yYZ+fmNmO3yK1YOGnsl8RdC4DFfwOu5adGXHBIoqAqearW0mfWHoalb3uU54omTDIdDg/EGsWpPKG7sr149+J6eZpz/5pTU6bUrsx9jTl82v8PEHJZpL0uLQBwnyYbMMoSTqnpEbbCkh7HQEeIUfKvm2yys/t4eWHrLONb5LjkPSlPKZQyCVcQTbZZQfuiRlNBPYDcoXpFuqBZZJtqCSKKpdyoFROS1eU4SJR4BDAFi8OA77xdH5OnMC4Wgot6PpwWp1d8m0+x4rwakMkU4naYlqYoYwxMEnd0HikcFnLGqlM4J2BLlq33qOlG6Px3NQCMHqY6VK0SwoyKiILQdxk2M6I2KD4feZvVPw97O62wJJKEEdZVnn6/rEi3QSu+BtB7bYT5n8xn10BypP5Jp75zpXBeiRYBNVY9zpvJAjHAtwa2Y+Lrw3SyckB04RJNzBuDgZKh+6rEwH4jGPhs0MrOg8+k/Ay/sFUu+g70DTg98x/HFkTq9UAquJz+HYmUSRsgVErF2hf69yBemcW5AZHTKD7wXB0SdigD0kt4d8Uj7LOc9n2BtrSr5n8of0qTLwfHHUUTO7T+SxgLy6okfWjFspb1RNb7nU94JXv34FKOfpMQRRGRGvWjBp1zPRp0yjaFHXeypL9GGeh2+r5r1PI9vfw8XZH/8nZW25VQDlr8+HskGbaEKgnUTtdplHG9F4nUBLCGvpMRkl0JvmpbH2JwlszP4Dxudq5DTYHY9+KQVUpycOwb7ZsjYmyBoggOOkidEysqwy+ndWx2AciTVyBTygI05nAY2c7Zw83mn4fEP3ZtMv6DL/CpAuJIuhWWcRp8asz2YC+hAywi3g9gga8VCWUZCD9l3J03xcksTprKmIEpM3h2hraqqnfBtLN0IdDPLHly0fBEXFGg1CJqNMwCDStXTewjoMw8BSF4k1sgbFqsy0xc9l9Vtz+m3WpPhde5CUmiEyvkzDNm/85MYesXsfXlTeMr0OXsWYnG1O5BPfd/EufwN8KGssGLonfLQHZe1JM/LrVx6B5E5sACSyRdNr6LfgNw/M1b3P4fshzQnQ55PqayVUe/uo+4gx7kLJ2Ix7CBPdn36i6shb5QMsBMlx7ulYVFDeOtcS5sD+DQ+KmFXtAVLcSbQgB/sCum21HkPBO8LA8H830WYFSRVb/CpJwrA0vaePKQUQ/6GCW3BjB2gTlFL567y7kz6nXMC4I0ObQTAUTZxHmGMRucRwwCZJCC6bbnTMBcg6qMD8mVmgTUzrl6BsXHe+eJ8UJHQUUxG/xQ/9kgkQqyn/aCDrqj+gwAlKJkGqEn08s8KSPtes8JRMCv24Rd16C4VNB21HaidTvTsrViYvci/1C1tAmbN2igWdGBID2mxBosERN8lkgtGPEK67gr6brWn4eVa/osmd61w78yekh58K5k3JCidXHSS5NnWrbS9GirboPpklIKZSpKohSdCT96jg3PPd7Nsua6EtkWCfsPhXp95Zxum4+LWI4GEVrzpQf9qqt96ti8LYP3A/DbdhKmIU/a/Te9rDPKsCyIYw818KqMcc6/S3+YA6y02EH+YzFeLz8iy9F+n9ILq8FwRm0aKGX609Yo3gVzGM+dXG2jsagZrMH07Y5J5gqxsZKguCJAW1Pm3p9yEfYJQ/gEEq36Z1Ai7YkKFDQT9NRYt4ywavue4Ehc1cy0cHlqSXE72Gx6YEkOpbGNfDtDayj5TizS7DelnmdllT969NUSu6xww/P4A0DtUZ0XsXIQedsyY//WLTAYueXa0CufxBTGb8uL+mIsglwgdjXob/1DZC9cUlFT16VYg0sK6Lp6K3CKEICsOjzRvYkiyx12JAjnSkIyLT1FQbmIBoPDatbrOkvhgS5FrrEXIm3nUuznrJoqUAKai396guWv586dQ8QcbkscoOssHiXs2qsTKbY8o+zlUtddwlbBkJe99MMq0NuHxAU+dLqWVkWU4Lh+Tyg6gxgCdPR+9Ypm37AS6zAXS4/ZI6/Kf4qlyIOXj1yvNsAZO0CZTlw7WGnN95iBgc0jb1OHZ0IVgoQM3PDqU/BwbxJnBF9zxZ+koMWXxTls2K1n5k3cdDmYUYdB7gW8yzmVxtlN8Jd3eSYlhhC2SMFot4yFPAoIp94HlXE5oVLisviU/fIofwJ5Vb7rSOM5PseQNQ3GWM6fcWQ8L5bOS6ZDV1iJppVF7fBC0QdgdP81oZA0FCldi+EGcPop9aaYSbfTVWSNtLQETwi/1JlYscmC8E7IwqCaREAdR3AJk2xONIxZYYVvO7dQL7z08ge4jfQ38fYBJHDjPD+3+V7ouWoT5ecWOuiCbFTFM8DFcNKMqNOkAZIj8lUUQfv+xdd5n4BmTOxvkTlyQFVmgEA7NonwHaqJFGIX0pWgG2dzZ/bn4AKHPA1Zg2bHszouJfutLPTlS4HW0I+NJljWtn+jB0grx6bOKVmaM1NOVyrluIajUKOC1FAHM1bbDVRck+fyx/DZdG+mM5VykKA6rxjtyK72O4jakybWwDNLHJS2HcUsR7yeYOGdWUDKaUVpscB8OYPWJE5D4jWsXgmx1klZEPWO2FPilFK+ihFzjNAr6VoqqgevZHNoOZSL0vUZCk4VTnEAiEcS7CD/d5dnr5m19kKaMGhIDkeDpfpW7H0vtc4XFn3U4lf3mYcxxMkQSTP16xHyooRlXqMh4uR2LUz2/pP2yFyJ/v+CMM1cUGYnZiRdPyFaBBRlUO7wsCZmJHpNzx3TVpyoxYXtZFubn3llw4Cfbz8l9VkUQxkgaFrD/OABNhljnyeW77Xk2TTAY4vSJHrfqAA8gsUKyTSOckMHRRRTRAiGOTqNeYD5E2w6nQGV8crjVcRqv4f4AhTh4v3UoQrP8CtRYNPe+8PDG763Hy3K7LLdq/BeRQwhHeNh3ehgehdgcv36r3UEb3yVq6s3wdnq2FhuDSylSKQCa5o9Vh3Nu/OGjjvyWwRhC+gl+fXZgsnMjJ3VtAqBJfb5e+PmfSvA/6csgobPZDdzc1k8gCwA/+V2BJSQkUj+61VHd2A6K4GGYv01DGjuo24HRfO4mN7lAOPTS8fkoaH/u0Kp83cqvf4QYAP5zKL9Hb4sY4jTQpLYaEcOFTvcNC9AHjgUmoOOBme6qSAa6NDzCIQHf+6zSL/lxlXh+EokoR0k3IxLENx06FnuW1IEzssTAneHJR1aU0+Fzs8FPGbZDoVEw/vLo1vye+i5VW2V5Mu5vtaEFlbDBA6FPgS1QquN2hXx3lldjpR+0ZWObCFtJTB6hg+3jp7TXgl1ucM5uGhhjwVqjrrGHVu6gEsfM/Ff3IN4WfO8zJtEvSMxIJN49J6M4CT33F+jubUH8Pyr8xn/xieW9eucUk0IqR7uu2nwgXwz9KZFXLh+E2GsIrPSwpV8yxVzfyqhzLI+EpTQRU1lOKxA87RJc4Jfo90TftF2B3DwXoW/etKjzSdPDCUyCYN1f/3/ZOeVqEZxCFqQhAK7R83jP7sQjnZsP1CWe05ZNClKtj5+zRyxSdq/OOGutett59GaoedLMp818xMjJJIeUR5SWrqgveq0mbuE5CuzcrmdxDiDX8t7Om4bupWyK3uY6/YtjBHnXNJDP3qu7+XEjQqB1HI37VvejA0urNs2U0FTexeCl7Rm3jfxE8IIXn+ZXqrRQ7I5D9j43yUqdgSUf5hmfyXQyZz9JqUvGjKmUUavQRdS1bYGK+QtErZCkMIG7bhK5z+cr6S2DQCSM3n0y8vAVvMdIr+I1+/fvq1jfkmbdidfcseyHZKFTENuhxDrUJQVtr5KCGXnzpYbjVl0OraSml12Wnrh6V+r6KztemMSUfIQz0I/RmMyGPv4zjbnUk9skN7VVErIMMGedcwiOcA0GXoPlPuVCbWuGvMQ+bHKTEB8C98i1VjxDakdfPy3Z1Le7aRaT7eJPeW/PfiaYxXD95L6it+R2VS/hc4TljrKSLBAL2bjPS5CxCsMkzYeiEHHS2imtTFUB6+ys4SuXJmnomvHHswtENbLBTYiJK/ckbBMIhOhVBakn6hTpQDU1vK00oPMsXdkTWTefT9wUgVGzR89FLp6x61jZZTNT/vGnSkeIqmsHVKv4dpTzrPHu1wMi10uaYD2VBmMdEoimarGpuJifBSVFCsyqfZf+0TJE8wKC1r7g1y97W4AzqaViiU7hCdGFwFMYkdWCgTO2mwrJPcC0nHeM5EOCvo1hMJW8CIrTS3Yjrckx/FJ0gH6t+xJ+ROI9TFKdoF6ZbqYn7jBXggQsMB2XflwQuLU0AOV45oDbvP30WsMzPum6ueQLot0SeA+Ic1T4s//ziipTSEapQbWHk4qRnKPhG22GjfjMqHqGc1j2mUJmqyKeKPeJhr7RQBPpyucRdAIBA7bqEC0UfdIaTL+D9FUWjKt1x9kRXHoJbrLaNpiX5vWvEQWH/MiTI1M7s9tpRxIz37mdNYITtVrhAj4A9T7bbEZg2gCNjSEOp++DT02vtJ8LnPlIo2LuasYZmJaalQVU3ZeAZnQBPtWqXJpEW0L+8fVZJb29wEbvCga3O+GzxZsFHg2kypKj6zUtC9UkMWaFjAIrH+PQaEYU1FktB0PnXlgyRoOEpwg6J+cMwUguHrMnakW8rdW25drFCp80RqoKKglJHvE7fylGRh59JFyk9u2Kt3hSRHh1RwdNmTfEhKxmwcP9zMkhvW/Nq1gPVppg3C4tL8cS5KjOyeTE/z+LE/4I7DTNoFku1uOOIFsukysxa+/R4X7eqtHkX+gbD9TefvLc1EKysbEQZXt37HFQ8VAmfF5I6p+moIiXsuNHKuReQORKQvoenwZ+UiX+Yue+uh+vgy4K/v9siuYupz2vvd/kmAquzGfybesLyz0cLDSGgxUPGVwzP7DlGRtZSpRtXjFJO2dOZUBY6ySZgGwnRboTcVE7ktTfnfPc7PflYouQcvSXuVyhsU03OhfLu7eg/ruArFnEoEGSwgAy3WUYqpcrz373Ez6wj/wI85wLjlF1ujZvtxLytRsOO2/NjK4+gw5ehZvwMKqkUZmrhUphA/KfIQZ4jltIUX24Q6fi/WNAMEy/ySvBANO03oSiYzjv5YMapbt7dMX1ySZruI2P1MuwMQX9L4dl84B/xRNtdgZBWA+DpMPO28JcQ43+okzFYkP0kCk7TK0MU5dDIkJGYOWiLGdHdiIcz36Elqc1DwEQp5KcSVTUHHz8tsEPjlz4gy++bM1WSCwc589RICkUEq33gmXnCRDl/2b364DwGpFPjm4kalOWjFKVBHYDSQQz4Am3yUbFnhbyVlsegh6kmXnhGvmml686ZqKbqGki9f+4Txw0USu86wn/fStYbH1YjxoQHMprAhZE+DL5oFLO8svBrLWVeNGCQatklnuKZ/In3SiFh16ASB1P+U/ewPiI51PcYekMPh0oleosFaPYlqkVgDVndwA3gEgJBDYsxDsqEJv8hvUieZgF4KBZbmKiyJjD5DC5Iw+Y/kiR1SJocY+AhRJHGgiz8NkpCjOfLLHtg/sswZVYld53rmLdYb7u4/PZVNF8YEQallP3gEakLAhTpx4kEe/B89r6YFc7OwIbp1fnMPEx9hAeyDe+2wZIPWcZJl6vH0HSElVyhLoFqr2l+3Rjw0k8rxyqeTfVmBFCKp0tw90xI/bK5xqQhItBZZwSTArC0aX0JS1eEEYohy3tPIpionGi1yW18/IdliXa95HNGnA4e3cyx7jU1NM3LApgwLnqsDocTcU3DN4LnS/jZTcqPlYTa9gm7xqzF3IXdyIVs8SkIGFK1Vu0pQDhwx8fdtL8V8PQrSnsRlwlg5fdhoLcAj5fMjLrNwpeDZuIuSo/mK5IY32/RikWhuWfIwUJqc3WqAVAE2h0q4oZwHizG98ulnWmbCwwmCFSFwYiQHdrYGpCON9I7saRePPShbpnV4BrOik9kKrfYWtDHYDLYY+XqCArVBtrwn4a5hsUFosdRQT5dGZQIy7MHwMMysxUBSEcJgDYNgaTTzg7K93le3kU+YWE+L/ebKw+wqSerRmwr3AuLt8w25JwpUpdkbWBHEDeWKwN58Z6WcsSrT4R3BVWi6WA/VJfaOFtO6AEAtsmi8VNFg8WwMfixHPMPzNx8Nd41eSNQvsNN/0NiYGY8DKn3SghNAHO6SBCfwVkKf5JhpAxt0aNZXoqjg69EZs8g8rqHPM9+qSIMo9fMNTHC6uC1tqxeLZCng3jrCzcwawO1f9ZEJQnB3JG06R9Xk/+8RP715Ew5ypbRgbHVu3QBpjXwjJ1JWDPn8n+nBPcBvFEZZWwI9vX3erHeXhGAqXj7+fCbsZwe/c64E5QbPccho9TiyAA9q9s87/D8nJMDkPR0EGa0b4N5c8cndCdQqxy0HuxLOcNzCuxWQrcfRkphrt2aVc3Xn6MPYee+0WPrriEi4JNsN44Z7+v+o8gsPlnIqZ1ooK6CP6CKCN1myRom+LD9FTw/e1WzhsA4C/L3CE2/uB5H+EDTDhpC9ygZrd4MO4bwdpvsrwnwZlf442C0EGxD61hA5fI/lOaHDwoxuhKK3fGtUNu9bdo0e7GzcdeSU2l7+K33hnFCoi1trFPFUwquZEycLr0QlXb8m3GDEF/i/XX0rqyxxjviQfT/9l5A2GrAKGw+0zx02ha5f4TXhl9pQ0r6xt0u9OeyeK5nhgyC3WW45kBfeL70OBkS/KUpa9Jc1Lw4b8hJpC3G1XTecMeG6BNeHpcJ+1Lgr/1u5a4suJ010HlUiScw2Z37BpjNNFeXZS4Q1mrLjr9EqArxDB+YLHeKcUuS85ycnNHfQSgAe+YlzaeWZlef0KxoLUagEWtPxyMxuoiy7tlriaixVrlpgohAc5u8lMs2WwaY0GqwDNhSV4XN0dnqZ4iGvtiw98O7LYpYzijAOKHzT4hoR2XCAiFuWP1LKGR364u6d1PW40Jzmtk2ZtrqlQ+1ATse2hU3DYexuRDe6JlUR3NTEu6WSn4OC0d88BoAR0wF0Uu73KXjlJiOEN3lOnrqMse+cZQeTbRo2bk9+YKM2kRhCsM4WjjEPHwxJXC/cn9P4im+AmpNGrTzDr32SmZgYEuwBmb77HComKw94qjXRu4/nl0DoxV5O5AJaMCyiSNy2OvukBld3Oin8QBmHuKPTKjbhdLEXyCeqrCLxcZbAtWY3lilPel8MeNYJblJl8foHb9vcdGo0+HlqJ9NMHYFlBd1upoR+ne/gJuG1nswdhGQ8afYVjA/sTKoyyAatA3gyFsk4VWNBCjpaz8qK9JpeggHfHBuhrPFTqP35qigfkz3J6jg9+5q+PTLFklo8BYyGvOJeQ7Ew/QIDiWqq4zKoHc2YG70PMn4Q8yfYGEGR84ThDqUjcFStMQ1lD0qvKFlgBO9NEal+P2S5Yyl7HmWFZICzYQxtL/RKLaY9PjkqmS3q4Du6NGvq7Tvabm68ODc1YeO6A7NR0pGuccCI3xlFu6Nw0ijKr3HZOOWPskdT6/AaiRu9s/l7Eyd0NG8B+EecgQIO7CwcSp6bY+UQOAWM8U+HiqD5VPvOpwsiTXVceovA86Hs0vtaWVNe7rkKh+Kdcy2lJmclZ04uGPL0xBzBiH8RdB8kZxLUQ4OXWFfoKlEdas4nWFWU42DDsMohN8OKJ8vjcbxmig7GwJDd00uwxRD2h9Sor7yleWbwqj8KPt+daACJd7EY65Xtqs2FKJZK9KQl4sPIIbj41cI3wS1vdyrHSz6ZS8zHbsCIGaLwUZr3pRkzpPg8JFzCFZVqzwHE3ptN1VRzIH5vBtQei4s9gZGIU6wApTuP/F36wC50zYOnp4STfHHIX2G1VouauKKeevvJ4a+Yw0rVtx6MoziSt7J1BDCyci8QQuBdvPGFoxgLJ+4wMiMUDeseI5uQZUOZtMTYdZAK4uVElA1tfvYhxOmTEoNkOXyq7OoCpBPTUH8Q3cTygJerRu5RjReuNxxNrUIzisDBpv4Lum1Q+lgQa66Pfy42kUu1vPzZZvCFxt43YDtlfTntLyRp2eCcL3ODPBUp0rxm6GLURR4F+z2sdq2uJ6bql+wIcGmPypJhjrfDbtB1DTtZ6Zgl2D5E3Ykx14QLdfylDp1BZBghVVNuoiklOHb77nQN2VBFgjddLdgkpSPts0nZoAQawRhZ+khVRH0tKTkf2eZqTNyZBE7u5OIp2I2I5GrZ6S3HlJYxkPjmNHuclbzW+eFvYLGM55ARVNlVrLdqcD5qHMFDRnFaAVHMn5mBEr+kKsdgun0ZFTC36PRt8nJF+pYn9kz9RkuqfWfmSacBpmwyFbM6VpTIO76ecRHgztN5hgUlT9krnXKTuw1ihz+sjeiFxaFOXMAMT3ofqcZfF2I0UiiQjRHb9aBEH7mqakdsxaVRf/2SYCKk6WcwdgZ1FvnQqVx+ekiSFRBNhDvNjD0+ZvrIt5s7BiCfISblMKw5srzo8AKTXT4793UHOSxhhO694tCqZQWAFi5j+zMOUGjJqdNAMiysIqH9tDi7RiDEe8LyWjZcfJoDIEq2oIxd0MlSsOXai7m8kQNc78Vs6k+JHIzJKvRIPssc/ypRktb2RkJDH3H2aaHjc0FILb4487BYv+LKNLEy0d3O95cAfGMPZE9AkpOAxxUiDU0bkPW7nK8fHyK74pfG5QHRZdKtiouzUyfoinooVkEXmb2gDPhPbJqUeYkq8uRQ1DYG5+vbZSWpLh1DB5omxxllWinIRIdI+x3d7TTvjn5ukTexLW9jZJA0ABO4a4pW233ycdELTToMWawcTEOuckemLLnwuu02FOHBqMRV6SaMyBbpfx6K3MGUCl6WUFq/aYzu9tW7Qt/6zji5cq5jUeHlM/sRnj+QvZ+fGUSykPQAeoKB9aMln4vs9GUJRsaB8LNeRCzScHxAZ30C55kQFtQm5sZbuQfk5Vk9XdgO3AnHIMq8qTyiXMX2sVB1HBmZguxF6ClV/JCzOkU8NgmJc+tSFyXHQT9olSqguIaXDKm7zOrxGAQwKOIbxs899dRzsFZ/yP267oEfknzQaVj3KlSPJ7oFMKhbHqEd4+vuP8gBMCRkEIYSyhPUSLuxn8nsvO0kBzsT7ljySX3vaHY97/hqYx3MT/QosH3ZZhVhfMr6XwCrsJgARE4XV6n8Zj+7gAmyEwOvR7Z5tRqK/VGk/I9ENPumzw7FHATRU7zCdDmhB/xJJ8JjdmP2bFE9TMdPE8Pbe+VBXrczg1SdC4PKnScjXZTCs6F8Jt5QEHTmsI+bB1CmLfsdlWxhFsZSI8eMAXduZ/o8myiKn2RfOjgZxDfVh8YcjZS9PP/2Y1piy2NS7mkdGeXLkXRTvwtIuo8rCx0q3vDXxf4WXul5UXSd46wWexykF82sCCu5cFPIp/IeCip473d0UqL+MlLUe/3epCJhdKjtL4vV9qxosqR+iiVuI6kPd0IXBH9Jy5HGLWzzlWf1o893TDQykKjiO06+48FOs59N69+WWJ0Rk63jvucEL3xOyip+LIGK5g+A7er3v7Chj2Oh6Zc/BxqKRXeJPZa8lkz3edozbbmrvUnswwl1zBS4R2ngbw/VwgTWqODwbd+gx83kYIXnEMG6nzvhbjGeML71MxpcwhUOR5jtb/TYy7DqVc5LBoEGAmrOpIG+9yZyNTMS0ZnGy7ifuBDEdO5chBs1+WcbiD5LDaCRIgogRNxPCJkCwvVzZ3y8iF/h+7nI5Rfqfy+lddSw1ggfzE34QBeA0k/eLicYqTSYRxHv/aOFtQgD6OYankY+1b1ANL8WvtvCH7WQorDYSyCB9+PaJNBFARmzEKUH+lgMBFPASnl/NnQ48TJg3lyoq8nIYob+beR+FzyA3zRbL2Pnn1M3av+Z7gFiRjRmt7QYqw6knLFDgX4Tx2I4GtGInIpkodp+0KbYErzNEEkX+J4tVC0C7dwSZ6eolKBcoEPdAngv+6l8WEwFLRF/JdyKP4zg9JJBmgrUgxKtluTMZQlt0nlNJriRJv5U7HRmINMh+sDYTfDJrrf62AdXdcxCkln+RPfi/yj9pMGwmuNBf23aiwAUt66DiN4YU2KadmiSo85BPRovTtbCKXtT69eW2JbxffV0ZaagGC+hEm2Nev2QfP7rguO30AOJzqV1spMKaW+5K6UvUaPiATPXHqSnDD6eThSua9IyFukej04X+fGKTu64VV1RLiCyPEXoaJk7VxfLgf5+SziLJVn2AkiPi0tcjsJQcklJxtfrikL5jhlcvX4ChzpAiBBaT3QEsRD2bFEbw3zUU13hWpKNQJEDZ0FsLaUPdsCufhIs0mzV4MbyvKzOHA5lnejOR3D6B6lW1Cxg9nhL1D54DXMWrRrxB4XnSz8NBNZprUXroQC2mgotzwbZflyNuGlzY0Sc1S03m/oSBymHV8SuuhJnBpltapLZml5IhbcoimNPTIFSnRkpRh7cEELmvUgH8NlQaW26tCCDPF5dWhSn/mZum0OZUhDctS2eFPGHiLcEX0mwl7wqJ0FIBBls6lNEp7hPyKBJB5L7VsKWwVqZcoL/rk3P1jzHc4puSAmmtkETAPrGOZF8niT/dElMovof2dmQsp0WuB6SVN8sO/F7SUexr0BVQnQTwV6ASqeGq0bcxN2a3CbG4ZLlRwssbrhNkJjZQohODysXFgVw3P9GzlPhWYTLJh6hi4W8fLLoR5wpc/hhgSCuk8hlwjQ5yPC5dnQBqaiaq3DqwuciPtzz510MKRNxo+JSiQ0yxaYHZLHqqfBztXIqj8645h4P4VjBoT6x6yiA8a0P0bhjHOkMC1iFz9R7/bzZDhl+wbH1ZEY9YlA0OG27AUaeT7ZWNa+1FxHebZJTvlOf2vVVe5UigagXJGnp/J1DGOHUuXLPFZgCiTNURunIV8PYZ3LgC7JYW1u4RixETmHg6k8g+XElI9w79yVOfe4XPcbjWWxZSNz2qjHPxxq4qlfLLaL0mZXHRelkGn4DGpLNlnUm+EoZfAHjTBKKCpwQ85JvmWn6a4v8RG5QAj+zyQrZMusu5fB+fts+me9FTYheU0iKhC537Bwk/lN2FvK08rmiJEJmMsJCS8A3/mxO1NJvyL1nuyUK6kK2o2s8+1p/5kPhwc4l5rCzT8FbwWL1STq+ZjM6wGX7cHq+F9fL4hXfNESkdTFem5nmnI1ePmko6x+9WhI2Hfg9KZZniFVBvXclDJHjVFVbsp+21mnaT/Bey/ZZv0DttV7vlbpPQLAdrvmxMtOg8JEihtVJeXDPh3lrRNsX9zugzsibrchOIdlt9Xj6HfAFZxVnX8Yzcmh0JmUMkiZA7bieymBTiOjTCFN6HPg6SHCVc0mmbHA69G76Mi2iqfqHwen4j2+3QDivpBl/+XB8oi72KuN2TYQ2ej20LaAnHTKo3mVUXqV+oiGoHzlJOS+StonyZOf7Jzai1uw58Qs0MIo1CfUecCOcKst64v3GrxSuWtD3J1J3hElmGYj92ZfFRy5MeBkehWYpgo+qh2KmPeAtQpgDAHhSZDTPn8Wc115YrMO5PAVjsaNn5KjJXc1HSmNEObsurxzb0Eb5dX/as0C7rRBsK1ljWdLiPISMzQd/urpq4JdcxL0jEYjPo52xhdechBrR7vQDVRzhwH8IAkd9gLZ5uadFfCl+XIe+V1vj28oasqbs/Ksa4FKAtndTDHbXqig6H5yRYthhxaOYH2n9lp5/VzLcmkzxf+QSHBG/B3vIKq8c2Dueu9ppsPmjGZyhNQNP3RWWDMTvmm8BNKkx2jXTbDM2Eh1UShDI5AbxH6ExfTnPKkV6K6QF+cxwHavkU3SwmQJiE7IoH4mWrfmtaHTn1p/a3VV1Ic68i+R7MlSl8kNVm6lK+qemIg5I8XvRzq+dnoa55I92nzou4f6hQgBzipdy8VUtWwhyO2V2h6bgfc8RT4DZ4PjvFalLzy56CqK7OZu+gnIa7SMaSbG2LyYc7wgHT6477pvruuPNSXPEw1hHbyL9WbLd7aVeCnB1dYwUIwSzj/Tq/JNamky96A7aEQSJy+p2Ha7MmU0Q3iddR3VUt6d1Zt4KegXy7noSCUUi3w0zTMw1Z6aJ9W6pn6+SpEcpfIYiDj+ckx9XNlcj60zxYZPKqXwZBHxMUINkLXNk2AlP/8v+pVk2rJXdZSut+RNn9bg2g+qqHgUF+Wertm88cITx8s9xoS0wF9lH5dcHO0WGt0wJuJu4dAAnI6jiw5B0TC01U/ISEdPDve6u2dxQHgJmnIhJA2K8Tdvu90za038G7XY02/eBz4LcwgKD7xmC5XDP5rWaytwfiMaRwWNo8Z9+I9Ik2UprlZbWuH4zCnN4iDi6VOKqPS+VN0KC3PiB4JY+3YD89RLknfJ4uxK9VOn7JYcrWXNVVr0BhlGqa9/fGcrK6SMKAvKS5G4H7UpKLIX5wx6OlHRnA2lQcb8vuutlyKyfNgrTecaLXgg9NnLP3ZZoNVUGg14YSFoA7TJr3DQvqq1pfbGXV8C3Zt3Mp/c8lb/SFm5BxoYrktOeU2H2Ucp+s/KXFYZyfsy/Vf9EZj3WNL4koVSpxGk/M7H398AMxzoPdBsHuD+yFlooywS0PBd0nNb2Uga16fng5/M9PhQr6s9t8a1d/mccRCNZIXdpeqv5V4MiSSBgsJui4TH8o1sc/CcesRKxNsqZtFASOZsYbr75kGwv4aMgLU9eoCmeAb3vIyuU3kraBM34U5+WNV3+PjUvn9ZjFPYqk2ueyvDNxhG9Rlal+IYlnH9CIIuz/2zuLqOwYr7pHlsJWbmOTm+H9+rauNvzgrMAnIdVoVd6FcW6GM26Os7P0AdImDIoYH6jFr1fvRqxZD64zW+w4AmHsvKl8lCMFDKC2EZuZX6LVXhW3ECbjanvL/6SSJZNbXRwPn3g9P4QS5n9xCdV7XWaxSi5yRV1cCaG1X0M8WUwVZeIhB33szeRgkBNz7uNAxgJZqr1JucCIVqqrntqO0sy20TQFBSFVQfQeuFw3mC5itTNaKu55hU98ncpgzyh/PUdFB23GH7QWNZjVTf+uX86dXq4ZTT3GvqqCl+SAmrpfVeXBHwJQ2R69y1o7CtxlwWpnKiCIT9Nhu2qCeH4wo9vOWy7XbCdR1tc3bW7Hdkv7FgG5xZHGigZnbcAbEDmbDorXGP1dg+egR9IFLwiNZZNViPp7rxDniho5+xrSnXjaak3Qg+jRur56nqYYrNqGmS+FgrqEqw2fGsP7QzB9w7YucbSk5tCILk0Tn0zVQ8nKzCgKOSKLmBC8fAQHBxKeICPdrajTVFO3Cq4+xTfqj/opY74c2IKCWgHCBM8D+wfg/61F7xuNJPXM1B67JovoPH1uv6sI/d+UPSvCyGhsqzdFSFmM3iE8pZLnpdh1JZC310LmfaIaPcgEQuqQhY9C/Som6I34gDn4x6uNHSzKUTGtoWCzmfQV51ChXRU/L+SV4SM5MU3xog3+0HG+vQeLtZci2irCrZ+BnkkMtfjUPgL8/xdwcjmBmvPOxIXUAyWMaCGByuZNhD6fIHz5O9l2g/AH5VP+8BLuBHTGZMIhMOJxo7KnDpr2DUrH0uS94B69wdokvRerM2lz1cS98JtK+sNdb+l3WrTmPA9jJgjO1Whzdro7IR2RKfeXSaPqGF/hfLn+ZNGJARxfK8aUPQlB02m/VxQej3RozTX5MjpbOLcPhJvmP8t7lAh5TdXWrhsrVRqdMvjFyBhBF18aJMh3ickkz5tQRj99jPwURk49qVC5eWdVKNbFH25V1yK0sytEPUuSDpyKO5mA4g3UP25aNhDq3Hl5aTAAj/3sk0VYB/ojdlbrSgY5EdvS8UaIS24B1Ncx/Dm6e19U9PL8Ea0kotHoBFXzRBCyUm2hDRK/hz77/YaOcdpfjSFrum89gqPmFmKM6E9dfbyv2sAoDGZ0Jz8ZfRiTX+9TpUqUzTzdlSrIqjVu12DZ2rtgqdWObKSWzWAf1PL00dnRgPxJfgvHL+x9liyhEZANE7AxgxiPm+pTEMjg3UfwsiIpWZTXmmoW/WMPdJdVFv2hE/uDA7IneLY/nSae9CWOseT7DwiJZIP6OfK/lZWhhVEH7vx6RSGx8USUUOvTl66hvqq3caE/U4Cub7fJ5Giupg3290bJX1Bt7RZ230oItXRem6643WnNLc5mBO40dXDecLggPu60UaVr0taaLoJ0UqHSi/KP5fb0PXl16mvTbk5tADXSFU5reOApJla4LtIJ1JQFquq/sTN/KkMf90M6gneQal1yX6mpl14hyyXRQVamH3UFDjJP8ouN6xag5//28osvc8+McqSlVlZjlDgIA4MmdoM6t+3zS3r99j3X7pm0+sbTRYnNCCUsm7q4OzHv2vImxriIhg5I/6CkLvrbI6xpFZ7zrMDlw4esM/zoWKNbfJG7IRYyqsqAPEFuboFpYKcrprKgoyIW/MMCxgAITYGXqNqGgfNTREQuj4zw+8IniO+AV+v9wMsSJMYm87kfVDdpUwMhCRGoHITXa07WC5bQ6VJoz8BKhfwtrLU0G92VJCFcnpGsD17Bjfe29+908GEuvZs4jFmTu/PJI7RrPDVfZ9DnshjfyPMIrtcuAQHMd2VMvGZc7ZTholSNeb/D76B4IAk/ae7gmvu8iSE6rOHKL437kRteoFu4x/psnzkhcwzQKbO/9DlQv25op93NlPeyTcN+7SnnD0w07NRM0dwYikKzSgXG3TICpvyxLiTxO5QvKI/H807J/JiGQhPqpCFYW+j+jxApNkVegoHdf4PETraFbiiIp7Phver2L9440lf184CRFRZksULAu5TgzuwUgk4pih/ePLy+LftZzkU/pW6mbK93eQAk439y3/If1mZeFY4T4WaA90jS626lfhkRij7fyQEivNuPqw4hBcFx16sjustp1arv3R5yBSlLp4Lek62KhcvHZjFIVw15cTUdO6aTWITXasY+okzPIsLjVYEubGTl+/InO4i2QsXT6qcnZI8rf8Ph/EFTOiZIB0FMKHWwT99nWe76YgXCO63TgUla2/2gLr8PcbNNyrvazw0B4CFi3Sr2DzcsAbFtdUaOqIhENgYSNcexgBH7uXXSItvrvnPHx1gp4YS7Y3V8684fzp/+dKRDOxRbVltbY2N8zstf+JVkcBCgHOeaozTMgyxkG0PuwZnniXEgwMkiiFXykLIe/TRLM3MyHrxQ/gSa5fMkkfsJdR8W9/PS7PCWsN7aWsEjrTuKMiHMcH4cza09eyouViohZWY34xb42dTJAJjL3XqjzTantSFSbtO7+QqlOxlxzot6KR7zITFS4CWBJUBTVDfMk4zF3UsgnsMRY3PkjvXtjZPyhmxzaYLUvd8WGDhvWkxCqk/6jjrr16QIfu9z+aYFaGRINsc2qz2lCdWNVIa1d/A/Q19ix9r6grs87RVIoUrEHSpHvqGOb8nILNAjpuQurC45ISfUcVx0FIEl5byFvlI0elm4ucFlEjRdt6OQFZzS8p2ZY9w2O94Kpu7BUFmDwQY4U9Zd4IxRPm7BjOpBy2A87KPX9kE5DnZUDzKRE6diIuBXPJ3+TBX5drhpJuH53R/8w41s2MV/1Z/79dfzJPWLt7uXIk9lKcHwNCgzxYyQzivT4kVk0dVt+2IhxDSJ9oWMnPlkAHDicTO1j3CUALj4IoxElgRlBnog+WdgRYi/Pg8cJAgz7pZWMTuY73ZboR/ksPXkhpSoc8eka3o961VFY2tqoGvMgHdGeCGvtVntZwaQt9TXiJvrvOUe+n7atjaT6x8yRyMDJXcAs1Sl7hioaKhq5hCyENuYX7I4FXeyEFm5Z8Up3RVhaJJOBBHvQvzQ6UM4W8wxBOchcz9cUFQmmHKauRfwJhIKRDEBp/iW5k82jIlxruPxAooR916hhxjrkcOseR2SAsoamuwP0EZiENq/7oBYqIUsSpCEK58xty5hMlM5KEIMxicW/H5Ryo7utyeP+jzTbVxhWJPsYfRYVPa/nUiHeKzWmErhMdovSBrceF92zKtmO3rLIxZ1Xtb1+DgcIBXLcG8qqqKaht7QXlQ8dKcQ6+QE0pm2gFrFVQtaxHLdS/CP+r9r+UyYR+mhM1QUY4PGF7itaqxuRCNw5gsHdxoxtoSwXLQe3NgloWv44WVkF8Rt0yc6JXqCy6vjWzgrlWaDFbZ1hoLAhukd6+aZwib1/uPqdcIHBZjb4xFj22t3PLmuy/x+sUrjmVnGCdLIkEueeNIH8rfhBBCxBSVzKMg6boNJ4s77eEErpumANd5og22f/LLjFZI+E5M4Y/x6kt0wCRMezXqA8lIcbWg5T4Kxd9odlt5y1lwIrOLbk2Dwi+d1/Jk1M0kJr+S7gvWicoN+NRLq3wRSSFuYhgWjRZFrzNt5r8H80m4yz+SKAQacmOPnR/mpqCosuz8CJoP6mtkKLn0VIzl2xL6XTsoDiw9EJ5UhWFmaP/hOUvA6pr2yc9caOKJZoXH1R2EK8IiPFV/TRAfbGtxvH0uwfvFBu/C2y4dkxK90PyzrPD1vNUWaj889Gv+WZyiJLWF+uJE2B6qg+fv8Q8nwRS1cFf9XxrcdWr+W2S4EHSzywVPPL05h77OjvyHBbfPYr5TFxXpE+21Vj/7/iZxuwetCz+6rcSip0ySOyhioM6XsnZAm15ncH/6xwdlzqHlxwLdYMnW96bIQG64jzcTXJd/f7mKP/ybmzG79AA/cxrMO21HKsKEJXoarJm/QRTTzcIvV5N1K2TEz3bcJeLFSmioIQoVS+nzLx+G9rjMMF2D1V85AtTdndh42kBIgHuqFwtA79xd1WcRWBxdSWrAmVUemJITSTc1tqhdoVXaLiSzVanhHvJz0wsR/3NFa6jHWDU7GO0vqrkXaMqYUo9FlGCKHi0VSGvuA7fsMhHNmaons56+/YFyitf5IW29jkYWWdgiQNuf7h/B+DYcT6ZMb/bVjSVm55dt0s2RAEb89BQf35DdEyC2A5OoybaCtTsA3/7rIl11uz+ZDM8EA3pHee7vkmrhH+KjnhEPykMxINwJ/YXpqKZJD29CB9LQBkfsfntz1ziQ6JWe1/kLqsU3iBl8ivB3ZQUE0SKB/LEa9Fsh3XM0MwvOtZb1sZ2XWQ1GBTKya245hyFt9c5CfJZ4moIwJ64Pf28MV9tyGIynptK7hflT6sBBqCC7GR+O7YgIzTlQ7ibwa9qgovH2xwmLs8XnJafC2LpDeklv8cwXtW0rDH06Wy/t8U/+CB1OBUxHxVsbAIkoahu09jRQqBMJhtVw2kxtZrWkX1oEFiZx04pIBwY1+GAa9ptu5XPzPALrl9aHh3vs8Mn0agh/0iJCZMlqNFNz2hIU9fM4sgn0+yxi+r/i+hkdnMO4/SA/NX+UCPJn7h2Zpum+76lZGd9Me4eNih5m3sVMBibJdxwVMOwOHiPipNv1zvZNjsHtPPyozDgsMgBWC3TpBdrzntKhmW+V80UyaEN6RMacDwkao1CnHe/X8IDhx5toEX32WjWmxXv9FAGemoaoRX5O7VfgUUSgUSZl8hwkdvYC8IrVlw+LxO3VQYLvMSChRZP90fE3InqScF51/50Af9QApJE3sCBSBjbSPQXWJCnKyWXdO4W3D67HbM+/Mi++Iwb5PTUhDlw4kBjyEtN7X1DVon/x0EQyzfI3eRGgVZ3Kv92/om0YhyDZn/lQX/gZII1o20ULvLpU+IruE/DdrT/+UPE4GZwAYbAcueeWGUuBdOAOoUsuHJldybaMrBg+KyUlj8+PkN3m/aHdn1z3O0Pv2Uf2kS4+hXcVrrnweWEtj8Bx3TpwrbzHXY4ERIkNwY8nor89thQDV3xbK3Jyt+U0ZaZDI79dK3/ZTgS11DwEb0KFijfWWTRdTamQDZh/pBzTsl5ll5TkNNfF4Mu0u9reLWmtM+3GFLFdzzXoaqtS0Fadbh83fY6X+iJDUV9cCqS+0D4M5kNEJQYmfP/Z9gyjKbDoDCT1OTzUoyfcW2MnTX8VZ7UQqWQQg+DsRZ/kTxCHKhTxabkp4AkANiGiNhNbtLrtNMW6ZVNGpYQ9siwlDOt4pAVZqhV9XgXF9iXMsnn1Jl1GSvvCmwK8NbFsGHdUsF84er2/f7HM+9zwdGnGmorAu2X4LI4TLTKlwK3x7WrsbBSRwIiMhb2ClmcI8dlbStIZgXy3JcDa91R0Bi2d6u3ngEe3mKITzLnqpb1U7oJ69sdozPc6vGalSUBHaWnU8ux3i44VzPxy19Vy64wjyH7KjXZzbg2oAEDX5PTrijstHk0n9S+f3MLnE5emlYRoTal6oLkl9chbWXzlhfSM/8NYifQiFT5gc37Hl66h8BemqtfOh7j5TvdG+PdSwfuLdui6Qalg3dbKDryh96yQCvfjdUejHW1K8crGT0YaNYmO6HaQszBuHpjcopk2Hgx6QTE/D9K+UXei2o0KMcXPWW17DK1HxpllyQik/t+8026185OhIz0kwa1e1XQyLt77s7/jt+B2g77joLGrI909LfFuFWhKvFItpWO21QF+leqvSYHeB+UHd9bbiTuctFYQtG1JJkojqbuBP71TJkGeu7K8fl9/e4txsOLfiDhQ6548WkelmIP3LkQLxvhNd6ffTkEI40dOYcFZxcquSkaCIHPs21Uo8AF8h2h+RIOLRRkQACJqoP7yR21H/u91kFXqlMwhuyHUhfgi4gaOaxqvyWytQ9qzrA5+pEe0JiZqB6vCf5w/GtMrfsjvsGZZJqoGsjxKwWWv6mLTXXrBpr7Fd5c/7XSiOUfirp2M091Z3y2xPW9Ep5NSkgAYzjoru5HxEwR5kFrp20w0hJLw7CqVyT7JllawMyXJeRn5BHhG2ZrBIL0Aq44Imio7G5j2gq69QuLF7dBCgC6wiTOecdzzWxgXQbF1MvtRZU0Bt4Sa6IWKOoP+1eJcM1Gq0DvSOaWBaeua61xUtV5MONpXVQJ+mV41iuAtFfI41rK8sacL+mj5UyA0g+Y3yTDKhFBXqa+I+SBfVHfjguoe2RgdEcndJ3AjSCb22nJjbvXqcVhKdI4WlAhjdZe+gSdWXo4CTZJCHNQtgQEWTAsOPC3UcjGbvp4rotKg17xeFDi6lHG8l4ylwDI2lqe49qgFWhXbqU9ddKcZZK2FdgN0h4ahbJj2EPIYEXuwjJCCkMV4gXZXDHWyjynMxiFn/oqxd1fRZ1fFgIYew+mYR/V8uiRhte5mS/kPJvzwtuitegJqu3JCyIJfCv/K2DaSDItRaiajOc57NM7QiyaULQ/uCed0d79eYi9kl+NErwVWgaA2SX8ewE+x4n3joKVl5Xlbq0ZW4IOG8R97f6PiQGesUGfXWZpDmNuIU5eWB3dUCw08HKAK+v4eFFNK6g6MnAMUuAv2xd/eLVbksv0WCEzZZT8a8TmUvtePeGS6FbXwiOIiriMvSFk7wjaVem0RXcPIlgk1e6aCTgX4XJ+fv21TsoNuAOcXw8343Aj6Lsl4Ev9OIUh9MGIGTU1ed01NCe0gjyB1H8TcXirr8LkX8EIZ9XM/TcYL5TADSx3PZjoex8BwPVE6bxQRE+UC4N52Dy6HebYiFf3kAIbBiqXyr1saXxFZxTd4B5LwG65XNQL3zDb2n1pHlOqUezL64B2ZPng2twnoDdh7eIYnAHMHV/DDeWgA8GXHWAhSU9BnDfMpjl9C74pKprk9JNpNGuMe95ch2aRJVXTLhJWQIN2ZHLQZOcLwhc6OX8jRUVy8x0e0wL7XaPgX3CpZlvZSKFy+OLLPa4pDEtrcpPF7AarfqwdVM0pCoPZC86J7g+iiUTSMdi19rmv+4vmW0rFb/nuxDaGIj/vYchOGIO6h70DL6EwX1A79L8cMjKDF54ciXzXUMiHZNcVP7tKiTTQolVIILjCULy9eLiv/JWabLTT2F8oMQIxRYIzGUHH809TGLlpqbR9oFwFG/tTCQSleZtIKq4HCi8bNssmyI8oMES5BCqfMvYIrrq/1Y/OEr4/RrbeJBsXGuKfw2l1zPOL3Hv0oKR+OTQB1VCvsjxx45OBAoeLHVau9gzX3Byik0vVbf3/EZO1F+Bsb+HrewR0dCzVvdfTGd2Mec6Q1lRoYvPZuHhkSXBYqMjqHmFMaRfEUYT7Uia7hNOj8mF+ThTZnkC/sH8V7OuvD5gn8QO7DCsZQStLwyckYPIk9P3l1oQHQ9RxFkqozzaavJVitJjRIGiuZ5LN7OjqgFf5hmX0b10c5E6UpWsk2kQby891vwzg1y+AhjmY118QIyfttMW529iBCQZ9Q69TGkJEjp6puR/ykC38E6cQosmYHfxwMhColuoR9busWHWB+I81CCyeWfNfdVol2uksdalxHPy0NQ/BEPO4HNbLHPkBHkZBFkS0fj6LqLocqRIymOUyWwcBUJ95fUAk2bjXGz+oz7xgrNVt5F6QUNgXbxFfBk0g2Tr3U6wSPiSfFJpw1toT5+tjIlxI4wlqto4nsilGDKlQks8AKDQUc1LCVeJGJV5OjTFhDSC48by3nt6VLYrk7cMs4/ESqQVW0WakqG9iip+OZuBBaJgUwIwSz7SsbSehFITQvHMFqeX0AQ9uJPV+tBO+VNNO98UycpJLZ7xWrJ/rXsOh3TVX0rd9X1sU1rJ7Gzqu5RZRQOO0FNKiYDrxS0AfwN/4SQzMgu7JIlCCEP/1CgVJign42fOT3W/tZIZlUZErA0SnE2/784pTf8rwCKZUmDWKIgZjiESPZqXFwNSyddYtwBkrrhu/q/zceKUNC5xYJWxRVYxcaYdo0dlVAsMToVWNnbehBCzfcBZfkRoFPk/bJV2JmwAj+u1hTSCoBG/ZSPC7rRc5LxuTphuBprV+ZrY4/yJmxfZ9aNvLcXzJRpmkxpx1XfG34MuA5N+DT08CHg1/PKP6a4PSwRPnBAC8LpI8Sr9EieCu7YbKJcyMEFYtb83owMp4a4T6NyQ1/9698O1iimATB/+JlenVphqDn5QPQtk4pS7WDFhHV9xqLTXhYJ6ClfI5FQWLS52AJKTCFbcanM77in2Ic8psqiNDq0nfmvkmxUMc1iBg5E3DolrmF3H7MLF+FU7C4j+OuRa/ry7SLsr+3KrHuVMBF+Sf2mzTJ2vH8pMi+/X/ZLYbWVmKewGfWpdQZwLNRy519ePQLNNBY771BGYDmecm5IPpxcve2SJ6pN82EvVgZWYUhjY13Dl/JcjrdkIoxWiH7aBi0EmQdVpqZK60SX4r1sEBQnyG5cv1R+gr5rP4JNBXtLuPKr+82bqqY7qpPuF46hL/UJGn+E+bOUex/OapNMZKkYOkbheb5WwHMXy561AbrTWkc9VJ9mkuJHeVS/lPX+evhmNbBmMplLNHMzqurRfVu2ZPE72XXbmwrX1MxOMZW2eu9qAQ4ms8Q8oBA5W94JFYLdt2Ltng+G9I7MGdayvlQK34481jZeEpvg7wn9IXS/pRSscsLC1DPHA8ybySS4qpRjm5xitZ2bpUY+mt7+bbL6YLvVmYiWynnDjqezYF1qjnerTFPgA9U9ht/rl1lEUts3ebAfMNGDpDuM5dfUTQgqe6YxwkdpqsOD0lDAuFN9EdRQFVrBWCN/pc94WNPG4vzesGzBHaGVSPPMhNCOijQ82zkyXDKzS8acaIAK/105ZmaimXROWsP4waOpzRhkPAUB7+gJxRZNZaOMbz5eweI2AK25IFUDjfZeaNbVhiK5EqmsbIis1T1s6aoJw8jaobPSkQUSgIgixA5iOkUvOsMsk8DniN6htG8bmgxDgzEWpu6FGG5fHHS+KY4MxBptQ4IX1jvhUtO4rWbrMam9Ytd8X1x/7oRRAxuJ7eeHqcRXwQ8kpLt/LJJN/t0aTJd2J+3yp10wkH5PyUgoQ7vomYxF1usdQavDLHegoy4GVoq7zAbHlJNrRVESW8TulZYcooOXRFTPcV7ZJpnphGJY4K/i9YRhcBPvmXIEoLY7/NOxCr6v4Ray6rkWG07GcSQ2FnExJKVo6XWo2/gBRstZqZaXINc+dKEs3nT3lv08yZAqDr/Gql1rCnHeY6srHtmGZ0nJi4Zm1DKvIAvyIvgyF3c/Zcaxdypn4Fc0o74n222d2Nd2QxZZeR2Xk9mThQVbhPAmkb4pXmqVH2mtbuNzbPkHKXt0Eep8d99J05LGNAjumAwJssGJrkv6Dl2CzIfEYs9qe08L6df8xoXDnYF8btSE/V4wXQWdQ+WuopnfcHR0KCyM0vZ6RxtXG6xfgITuyOQrfi19g0pubyYZ8vjStWDM/x5eZa3KOFls3ubAVLpIwSpAgrFLnAYC5EQxlg9cOFvm0zDoCkMajvDUuEEtEyMCmVeeW3xcvwNsWDCiRgPJOObB8g4vFYY0CHtX9Y3ZNTeSmx7wO+dLPH6jVt6yrhNMaPUholcu1FpKWjk5kTFf0wtNCOpDzPYABccaIgh5+KFokNA1NEXLsgssi4ZP3jAhE1CekyvcbsNGcSO6spn3esAe3j7IcqGgX/uC38CT1RN++5RIvVF7iT+B6aJbZ9c5vzcKn+K3bgGY3XVivBoaOeiYIfluwBs2Msfac1Gx64WnoWjV9/qaR623tvXdeCgbu8MCjWcw9qNSBG5qs/v60u5u83Uf8e7LxTbRemiTLo9mdUj7mdujQRyYAMLvJT/rZwUQ749e+R0FZTp3bRECN8yJkm5brBA/W6YQtXObeYhAQ9DgkSU8Mu0H09pzmGih6QwYzVfYtYzsLbGqE9nkAf+LhxPTsJMI9MroPpTURYWHhC4IzGnDtmnutmjMw5iGIfaSPTb2tmqJWn0/Syw8F/5J6CJtzqlpyCHoT4uSBLUt8HTVlDcuaeJkulYr196KK5Su3njOSLVdbTqBx/p0SJVN2dn/gI/OF/nz8MZw2nDaahrGCEYi1PXwQkBcoY6EUTkyDsmXpVQjNbp8WhSvtaqwGem2uxzDh5Nv9So3digNvQOxJS/abRGumZXR1bmkxe4MGJWw1HK8DrVEHqC8FbXxvO6TYOkjE1owPLZ96cEKFWfguBH3rSA5A92+UGmbEI3dzTSByMejz7oicaovTvcV+sPRR8iGlIFtrJUNQUrtUzAsFkgFx5uOtkDfP/fvDHriAsjYVLUkaZttbH8OPRhonJEhnOv6N2GW2ehbMucjgwFy23g84l9ks7ilT/M+m0qciyMCYyd8GoLjHN4tG/ClX7bxLezPwnSakQ1YqXM/CllPFsP0pKTl/1WX545ezjPBfMw1mEqUMbnVQg1fGgHvWDUjZO+KDaZxKwnAnbboHVEeSPj9tbjIiAUn6WbEX8apOdrvqQSayoN/+re1KP2knNrrOn6S79JxqpzuaMboybGEo7KO1lTLtaAfn5tSWSYJ4jH42jPDFb7zLGHSfBv38PoPzpPexZjfNMuU+AjAuUd2vQA4cODSbqfgmDzQRVQZrUftHhzEy5c/5/FEXLOvBUCM6i8veuGK2Agy86x8bvXi7P6stuJEvGcv233Xe0V5uyfHOGD1NHtFsZPViEEL4uJR8Qcn+iZeBYNZDjHQ1yIEf9urlSnldBo97Xk70Lse0i1pWG3ae0F0qZFU5q7RDORl9p7vtTSdSDP6MWn6o0V2sXZa2Q7Ej1rlyEaKbqrL7c9481L8ipYJUxjorEKPvIfgG/gdTSmFYiPvzQ+JpsArPXjHaA2l3A37qUzZW1ZOuhKrDQXluNfwptCYxxe5QsOKRS+zBnV+SxumiK5gnmC8IrLEGuSv1qtzYroDI90wae5ziSP7xO3Xzg3TcyeFgoubaD9ADWVjr78Bv58tZ6+ydxn2WPdGrPGn4oinhteMcIPtWVucY8cVX//4ktU0f1GVrU+GhqGIiKua874assQxxwZmLcOa97fLZszyWtw8UV5eYAUBSiEe9Ps5xH3rRai2w03FDubXXznWnl80BbIOTSyNPl+FC1MdHkSB0BbdqAOEJ9RyOSs2PzcUATM8orpjodO66PrS7EmKawNv17M8jmPYqh5C/A3g651FxjbnYWfk2KfchDUjz08lV5uE/cf5RUJrj+/LPbrJwJo6NXlYbqFUNoBBQ/HGLZ/ulNx/2f1CG9DUkr70x9VUXPphE8HNJmOozX5G81cj1CUh51qAMggiLg2FCEWEDjJstaYl1A9izShFTdPUUG365P5ypViZRqKJyYhDW6GPsFnttHXcD3hg/GVeVo1hX55koUrEAaurCg2hYZgSSbw+S2qVkq3eewt5Fm3ltCQu0UZHyDBecSiXr5Kaa+WoeiQ0GCDbXh96xfycBJ+Wg2jSfTmFATRKPjVPqW4dq7jYrq00+pmES7KJvQ8HhglTVbT6tkOjCmniIsF4jseOxKDcc8oU7Nx4q0fh0BNzlfWVOJNXhM288c+m2iheidNLzD9ItZXT1qVnPzOUEnrYUpDdeH3ZRHtl1kVjQR1ZZ3dA5bEYWAb4Et/kpQ+KlIelv0JcKvYg5s84kKpj9NRq8rnr4otyEdFpvoJANv4+7jcScN3ZIygzN3xjh/jd4ZvyHPppJmMKacq0A1juGBrSZzjSLL+PafE9j1WDGH2CWpqasljPfLA0ZZxaMxxeVEWeUgtl1YC6mr+skv7dL4Xieny+fzJUzyaVAnjXONnBuBPugu4NKXCyzZSmyF0dvrL7jn21dlD53ARmid0s/X5y3zUOb3e2H1+k+K+FtUme96J506ntq0lXtNBCWIw1zq9fkA90+Xm2bIQuEL0FvUE6FFtMUlgr4Ve90UAWDCaGfZoZF7gtVzV7UC4JmTblEgmP9jJigP+s8O04O+sCuwmj10Wb+OEIM7eVNEBXhAsVVHbwilvLISceRW3qd/SzmcIqNzGBmNQNGzddMdQ9hSFNiU2Q9H/MIRwnqXluYdchYxx0wtx88MJ7ccjvjmeWet3PviKHEp3EE1esN58rCmFfRLYeGDezs3r71z8bcTJsINGih5WJNB6ikmiqeM7yQiDFl1qNVGevAaB2TjZ3Ak5tcacKuVSdanyQm4ErsjIaCy8CC4995RKPVSPn0h+l0kr1zePcYo+WKPX5Acblx4ALQOBVZfJEdCo/Cz15C3JC1RtoUttpqzBXdozK0vZgL5PaYYP+yrrEwjf0c25/xy6ek9bQeKzf6Gec9SiW0mCX8Dvv/jHMfrlKvz5Kgu9mtKmmrtt10e87cK62ysbQTPytdnl3dlUcOPbnny9jX2qZ7ZdUGUAr1JlqkFbn3UrWDwWYOO91JStPVOzYSXDsZ1BbWw95S8u70IqyPQWjuQpXdS/HaLItPnYvvgm33aTd5lf+zJyNskw7IOBBBs8Y6Es2Jh2obZOaC0vn7jSH3b9FoKyr3qK3PE2SvdDpjKSNiiymgaXmJE7YpH+OmxdPG6biXIv1HRBs0QT8P+KLZwYp9tYFP4IcEZ5Zn6PuIuYKuu2n9ZLUGEYmkPvmMFP6GnzIKnPIDm54xhiVzDW2SqZScZNFSzWbwjFWTsi7FA/ygmUbXZj78zrUpPNqFGwvO+6Ck7PZI1nTaqptnEUjnXDzdP9oQ8L+y7/SYbAPMONQqvjBNuTqv7IsUahZycP8grCUD4H6UaXwWBmCpoob8a84YojAhOe0qnCFcG/GNrntuDeGNBBfgY6YUquMonvwwwXwZfYKIvrT+qaRyvOtWecT7nUYDytadjAovgtPHX3eBfmnPNVV1OQoQN+lHaBWk+PegmKIimm/TVsIr+w57BUCWTCD5A96IKbXMWCzaeLQ7acU5CqlsqVD9R/XeoAGC8z3QAIr+CxixqEndth6KS/+sC7A7tL2U/ygglwszYOPowcGQ6/BC8lSzdjmLGpEVAzHXjHPGmJwUTT1FCSGNEq7EFWiHKnMo4bYu+kycWz6cED3wLhK4L/mRxcLfRbYHqpt9Vsuk9bqTx/jnBXUduIPBOPGXC6v028qz7Gm0KsdLjFB+OuYZHXihFzivBbJ+7nFk8aj46wgnT+tF/aTo2MLl1xFbjFWgWI3iOGtD2+z/qKVnOFCJU1hpMoUEdgMoLBtlbRiO2MtEWHwXJiIh0XZmBCm6YYlb3pWA8qOJTqHLlTTfAnnYE/xTZ7Psc6CBFjtLmUaTV5ign0NIHGzrNSbb/tCArE7cPi9DON7JCuak6AfS60Km2N28/9dTFsho3uWa2ccFg//fCv97JDV26PNNHp4BKFzzUgny5BJvTvbgGOHTOaPm7gPokyTQrtxr7WOMM3OCOMAIw7UEDCd5yhIRcgCp4q0McGdj9gfgZohf4E/5mR/bR0SvC9YDu5OE4WmiSBh1MYogwqqYXteyqa7CHhBV3vfOS4bWet1Xmg/GxSa+XqryI1pGkZmDt7eR6bRTlCJbBH/QSYoUmN7ekDw07QNDGxou0iPmyMiYDo5sT9dlvWLlM6Bp+BAHs+M6jQRo04c0bh2OyFjhzUXno3sllVWexocfN55291ol1KVlRjmxD1MBtNxPpFPzN6JwjPQgUlWX1Xsq7M6WqsWy6vTifFPpZ6dJKoJP33d+oe12OokVhlVJzce0e3B4sVXd7jTozLThhtjDS00ghpMOu+ocpbgpL0eNcKQmfg559vRRhosEbBx6lZdqUdqyX7mnA3TSO1ljnf8k+aY/Z3qCRxJvLCVIfHaOU0wiPtD+QlDNJmrs98qupUVXebIfmY0noqG/l43Op90uUpxTQlMeq4kX0fvXutINBrLdgpXwiG7ZL1kI4d0jJRQNJyXys924rwA344csUhLRyFdNwPfj2DeDPXIIKda8PRaxW2f+d7pXTZHA55nqbs/jIgFo/BG///JeFOVuze3YqPL1pr3E/pVVBClTxVdoMRWmkCoy++5gd8Ku2MlDeOl+K6Shqud7FaKxrJkHL3sS5T2+Jv/voOScMYP+g4NoMynZgPQ5BqOA4MOf2fiGRwoxEMc/ZmhUkgfPOki3lQpUsB7PSl8T9S2AEx0k2Ho9/e040BipuU2U1Wlb2fKgycire79gCJqkkO4JGdDTt7lzO0guLugHXPqgm/jlO0Ir4EQkvzlrhu8FCzr3D4tlekMhTsLmDFVAQI5Wm3ObslnSQBwGQW2pvlKtszyzGJEa5dL9fZpFg6CRm7S5WQ+lTIMhnAsFgzAs4muav/Z4d5yfHwFAccM3ITMhMeFS/3m2FLmgHo08RyfBPnl3KmFUP8b0QggdXyg+QVcHKCfZ5cw9Yj2qwq8NOKcE1lk1Mxmux351TCszML2dRUb5LT5NjU2UeNH5RfeYOo7DrhxbT/26jkPebP3q4iPvfyxdi78Ytd2aIwtwsXXJxcWRmGy1txjeX+gKpmSv7ALJmCGhAH9/wWfP7M0A/pwpKpxqk6UEaD8tugYIMuDVT4IHIKB/oy2imD97yZNfCQ9ehLAYi/sB87k224PsdoeljraF9MHZPdq2F5BJu43zEBBE/pJ6XsXviK/QimlYFo7exQfHDDKN5NwynjLzrstJNuGscbK8Yf88OMDn6JnWoUydodfLcStPQ/7vbJ46ntbvuLYKv/bGiXTAoScE2r2jyUlv8nf/VOQGKYml9wgrEMaHl2k3XOwCRazNmoWiV2sahvqanVQiAQz6syVAZQfz4IgQjyIj1JjpsEzUGgT5NMBkkuHb0Cy17ofN7QMJz55emSXKPeMPw4jQ6CyNKMkbktUzgmvHY3W6ZKV5RdnPOFQRJrqysY4WHWYhDSV+2SRWhwA4w7AeQLdfM8yDVxuv+QNm8Avl2aCFOAcRjiPTiSDnkcyOI6HbsXWG+BBqBV1w+8obG3LOojHraqoV7lnNb7IIkqiMes7Ii01+ZTLtVZXIDzNx01VAdhKz+RmcBp+v6o8/c46FERCjjLibxMTaoP0LE4VYB818S6osAVCd7vc9OQvzdoP6NNUCWDTluuCtaEwOR7yOa8vcdi01lHZboKZiRqs8wsyjuuh/7JPr6jVmYY4SMXmAdxkwIA1Sga0+nbe6V+SvZZtD90OMx676VhDSocRlbF/AJSjfJDWx1AB5bWmEFt2018bZgC6QQEbssEjEQjUNlZFbsnJeHeq75FQ6u+vLy3+ffah0hfsxmHnhqnfsg3oyAskwpomGexy2MjVeKDyBMfFTZMpM5ohV7YK9vxo55TpbQz3ePAA5/Y8lZqAHV0jCmnwYpNXLkL4Sqc1Jrz50TVeRcpKiTVvhbW7pEND4pL+6mbyEFdJHsFGPsuTfb1yC6sRSn3ufuDcqfT9MYarfIWpvjK/UmOupMEzSidFsnxILIHBirJlqggRAtv90gbqYPXVPR0KLIXXxd63W6WJhUQw4lNRwEwMF7wtf+oV5DdtopODcEkeOlyxu9yXZjQlPTRUGpM06SmIQ09sJgCpnLvrFLkQoXo55/cud0NGnJ2PYYAmrnhmJ+5iklMLktgxtNj0a+c5vjWtDMduKAT1nA8KEmb4uyX8/7Jmop8/1u9AW/s9VvEM6eG7l4ryyTSiiZhkl+3wIxvbhygI8B2Kz/P7RRxmS1x5ymCUu/ZRoUZEZGD2Mo3L+aNRnwk9D7yPSqIsq7zYr1fUKJowPvv24hYug4ID1hAtOBwLeRjIdsrKI4XN3yePnxENWqnmuQTY809lXrplQ/vlhuYLqtmRBnjV2o25i+Z6jxkjXrn8T+MA7HY+7EdSa77PQVQkN2f2vpq7t7hrJBvyuu5Z4lDT8IJio1iHrRYq5t8aqQD4jjFjR2gbns3wH2pxvpvJVkZ8VAcMd3/OFQv5qrKEB1jZr4Cfatl/g0GFkRHac1yLXcGBl1k8kz/Jce+NbcT25BGNBL1QHEKAbhy+tx75db3nULIWr2qcRA3q7dgZ+Az1qZzFYx5HM2WO1x7Wy+CSByulYdGU1oAcS7qTUTjNEwJGiSzdNoFwnwppA7NpIGZW1PcorQ1oGei2NotAcocdm0kZTnBIz+d7QuCr4iD3gHCMwnOnhMCN6ny+jXZ0kYs1XdmtMvnk4nZtj62e75PZXxIkNu/SfJEqidVtcmlgkwVRewt5EpHpfwuekR6zUCAqHTvEdEVZHg0OvJaOIkLaokENTz5MvebQF//a4lnZI0kvbOpgSkj4xUj/qXa+tCq+KkDD7al+PwnttekYQyRcxu2eFZSGggXckiCBje6XQdLFmhyUV2Gg1uld8yK4f0PP0bujYYXn+MMc5C9ZKR4phlhyJQrDgV3BJ1ZrRQrNOfVvVaRKteIKdA5LJgJ7dxNtD7wetRh/VqKdADaBqEc2dNsERE8NVmlMNRlhCejsNgmqIh7B+DgkiSRw4f37KBx/DK8fX2TZIcqnwDznlrxeUCqgo1Jef3cioOtPalS1LJvMw7nAQ6As6PpfkUegYES1LJcg3g9eAE2BaSDXtMnUz9b3PbpR2PWn2R1n1JPFaGUAtRp3RSzhPyoQvRrNUuzZQBnjqUbaRyGy+LyqOGFoSYkGe7YaW0lUss6RPaYJsGp2/c3nMkzaHdhuYWZj37KaMobUkY9i7O8TKKioGgeAG3x7C89bBgG9DYZv6x+NKTobibZu7W0H9a7NN2FGbhQNnNiz7iKxMaKojqB9ByPAk+s/16WJX4AqONJEMGSz/chBPjbjXGMA49l7r71cZCkz5VUxfP6+pYaTq/KmAdyXS7dDQ/0xiBqucEYju+x+49YRWbTiDu7GKSMkIvLN3ko2dPy6HBuJDCUb/dyS6OOhez2LO6TeDV3cjhN12B7oagoCrlbS3ZpzgHpWG+No7HIClzd6GJCgJo/mQLOGnA/ffCv4Ojl+UqjPZ6vDjoAiKKAY1zWw79Uujd8YsAxlUXIIJk+jpIGqFm2UsTpbVHPqXh2LEt+5bA5uEftK+S1aRXFIGS9q3HDUP10xr4BHM1jURgNuNm8Z6UkE+kf2UHJACKXWcFPDwPM/fyBofWomGmfJ2iEHSlCeqkxvtioqbM1r1xJts/F4CBjFq/84A28dZohs8aKZR/QNIEReVtT/KgCF+ka62Jyn9jPBAzgAyOobCVE0Acx/ehoa+PySq8JqMwRc/9hgrLb1lJqKe2xFlX/DM0Vlqe4kJxG9NHcVfU37VQJpZ4YJj9/f4Uf+i0bAo4VcbgnaIIpEcshW117fLWY4Fo6GJr9wY/cyXmIWk1xqOAue1Qf8a7SSnCwy1R8G9HrJftzGGYD2GvhwINflcL6nYxrtSQdpkjy4+7gPazKuqPQAmM/77BpDpBYu/T1dGJWIX6DPxsSs807hfPYMJQb82tbZ3SRqnf4vpXDsJVR4rUU/Gh/5WRB38IFhJLVYqOj0563qzqlS85ph7gnyRteX5mK5i/W/nDq4irnTQr7mYiQx9P/KRAz+/YPRNtmEjBAPxjXkjoOaT1i9k5BB/vHGmqUD5wFjM4Z61KHF66k8Bvw2lmWqrPXYAOQZnnPMvZgPnfzbtHXfbt1V2TrVaLXeyNhY3VLXxZ0dowHaqA6V55uHJ1JnDP5/WD4Vc5KlKEfIMFMoa3HzdIJ88/uCdjDt+JK6mRoD7kHZ4BXO2JKk7xdxv5JGdwAeHkiVW7ztQVvVhTXdyAyJx/ZbglYfSkesgd9f/7dfx8hk+BzZz/hAOghvB9tvsVivv4J7uhMLkf8l2Jiwcp3kIQIHL6MAnqRvGkRgJA1fk42ksTP4kzlfLxQ4IanRCvcOvYBg184jdnjWPB/hKP/Jr+uv88ib5EGwSap5ydw5BZOC+L+KYxsxXgwAtvcd6UGJgO6+OCbMv+16yyL1+/1TqfVcwJ8Y9jYi5sP9245AxPpWKrgUTvqCuFR84w+im6zMwxo65JT5nWaOOSKVUqYpcoh5dfwvKa+HErvIFv9VwwIxad6SBq9NvXAGQnZKXxFzXHAI8zKkMbFJclAot/bCEbVXvD8qTr3S5+eP96jBcbUOHYtjnbCtbCb+hpllxKecmagyUs3PGmV0YxRA2SbHCsE5WldGy+F8+aRqTCpH8pocJslsa1Tdkz0ly+4/NZSu1BnBFOFek8i7sA9LxXUA7i8p8lRiiBce4wF+g9aL5liXuFBVx14oaoEf5OksyvXxX9PdPbV9DH3S0rmFlv2U7/OsEl5p9UovWHVcVpiw0d4zkacxO01wGhkZNY+iriG7JHGDuRodt2bg8R7Bx93/7xEz64Aatxpl74tKA6OaPcZvI6uvollwcGeSAFATjcK7WnGxxOYtHu3FxdgPlTDIkKNwg7uaOGJX34OnvJDoPHiXuMyBwS3IUo6nz01Tt/SGfQ35OLAr6Su6OLaZ9JM4axs/tr0NUCKgLwy9HABLtivie5oZ7nw4iXedLR/1G5uevk9H49AH2JlwC9ARD2QU5OTE4kEOvSmqjVjtmH92F6Z+s9XNiAXrP2RzVz0PH2rUCPlfIO73+WLGTU5KhpKQZiZPNbvr2b2Gge3z8CJZCe7682a5ly2qr28a6bNHYpGQz2LrZFJMOOGtL89MV8hxLS8vMSo5LnR+PpzI4QlXvAaJYFldyGpTxBl1Pu4JyiLI3zy6Oc+jFT4dL+liRfBCs0xbWXGkoJLhbKODbhjVO4gjfUwxkGmK18OfIPF63JiSd4aKG8SN49sEPIivQR7NjhgEbEeLIgkOwFm1cgzByXePsgL+MtTv6+bdh/Yi87SP/s6z4oXaMzLvDSsQOeXoeB5v9hbL/gkmehyvpBKr8IM4ADWL78aA6n86jmXuGNqB0IC3Kouk8IuY4z5ii9TYni9MC08Dbvw3roc4URg2EzUeCFVTLXjqdK5DTuK62dGxJ6MbB3kUdnshxbNxE8QEVO04cKmavQIjB+KW3Jht+Oxm3cnx96fo1ptxTW1DbPpP1mHgABM2jdL7SPT+Bkn0G47kHr+nKXuOMCEKaMyrfji6Xj1V+j8s9pY4Xq5zGcIO4xrO0kOnOMgPnxKJivFHWWRP6mBD9RgKDaCDXWZI6xpCm3Jus4G3zPSf8eYKcALmNDo4ZrjUTG4suTj7luB3HVe0SkLQtmZTyABwxuZ8NYqc+bSvX8zJMs64sqFKKWDBJ7zGoRHVtwKOR3qc4HRs1Vw1DgKJPd4v8C7TMhIJdk/wZ0YR37JDwnnZPmgOMEkyYBhAzwJ+x45Xek4JkuWCuTRKxTxF3RNuVRTAVbCrl3YUkSI4tM/u2wAk3fxcz23riZgmFb3/YqSugetQMNIuMYLknhA1XkoLvOBDRpfR348uiFOWmDafIpQf7OPUIGffcCuBSop4e33DSKyQSYZoqcWpBXMTGehOiQc/KK2VQj6PRAwclUWPdY6sGJPgvG7eJ64amvz1Z5qbNOS8zV4uA8VvsMqQsnQhoTov+rOWJWu1kmI9Ih52JsDeapII8apg9yaMQEsFWsKD1T2nkOC4NqUMe6TKIQh41MXkfpTc3Q3jcdvJn5ocXa3lj4J7q+Z72kfeCiAjJB/+UpdUNgo7WzgksruropIeTCct41xS/lbXQbfd+odr9+QyHIKvHSk8t6aC7HQj/1wdKPwf9WYJFDHO1jPxivkK9B9RCqmyWofS3/c7uDqpEAy0YWVJiWAuvXJpR/kIf+aBmgv7zvgIbWDbxa5PeS5koChLDyCqmjJHMhoTq902TZCNDdN11246R+yJKEh0Q+DdEa5LQcqY2ssck3xFkPB+fmgbk5+AfBCEffgsjBwu5rJV96nt1NTfgEzP0lz8BeowrU6BNuxkhLsI4AEOV0eOao6i+MZaLXAWfIW5OW3OLS06jTz74xbSd7+jckSebj9s9pzqhJNP8lKcnUUgzaJ/fdNQmKoJFi4w/88fB0SkqoNxy4/wWa3xVANg8spNMMUcLsASmN98A1Wm1gA8xwcoh7whWbEbM5kTnwxP4MvPWZMnfD3ul8XubYzeeutg5bIKQqLsfNSBhssddQ1FGpcmdGI3mAlXhPh5ITkGzOBizJKUmfUKywTYpohWkxgBJrU5E/ZS+zOYakncoLVn3tOEX7eTuvR0IPbnChPHPeMsJdZE9i/k8YgH1+bAF0AtuWhXoLEWXgy2L5IhQvo33jkRy9T8YrV6aBs02geVDx2dcZYvWO8mQGRA0bJ9mx2NRm8Z0/v9QPCVFtSXu2Wjwh4EwhYzz/jfLswVH3FsZbQxEXwYiBQiH2C0vaEXI+yuoxC1GA9LqlwyZq47kbJQPQOfv707OKWCfqMt3RQTZZx82W7dqi8be/mu8fS5lP4HnMAvMLKGgtNY7Yz2QYPWqETTAIdxdS2nAGz3tt5Jakihg0dCuXnSZWMrooXpsf8IZLN2c93Qd6tkERguPX7w8LqT7bhJKx0pCMe4onGKFMKzt1B67gIdmAApPdrB+RbyHbhcRMX4NHiUvo0vYxHo4aKi6A1rkTHIAx7GwnfWKXjou74dnzqATikxHLtFeMEM+JOint21X4yJkRNZN2pw9fTtw6WSyK2e2Mo7mT8jBozv10PGbyRBL+8B7XWRkV/I4tPUoYxdGg8UJR030n6PwZNrz1VqSbAOLiCSXPn+ay5EXzf/fpb0K0NgH7rj2RSeCuohRkv51KpI+NBXUyHbRlWFyRCPiClGBUOpyz0v+xqoYuN5JzfQrPtbQOBmhuW8YrjsxLR4ZzUtef9p9GgWR1KP6hBaluGzTOd2DvCKeGOOpmAyJRmAGT1xIWSx6IhJlibDK8ZjjDy9DYS9Sb8Zl30s/+EEI4/03bh3Sv0EPG1oyP3MW4ym+mXxqBgQQA9T7jfJd2U84i0jYlN+YttU1AdZZgKBHyUovFqvl5CPTJ3DW6ZsWIJXATcJuhS/3sgaafXFeT6l7BJ5HeqccvnOHcg4wVo3uiC2y5EDtsSW2NfKGk0CYS64YjiWIBTk6e6LRikOj/NDu6liWovrElBQ/HpWHYzCD1iu0H50tuISQJZ7+L1cfwamKPKY1W26z/X/leXvR5PTm2sHm74gpdc3m+qfnMkIzqXEUOxPSR0YBo5QV4ChWhZNnOZO4Gc671APhzs5a496GOL1+ewxuHT/0qBumMvSZSQheiJOrpnkVIxB5yeTMkZwQfQKM+T4yeBRPThOc/PEERkhbNzuybEzydpFeK/UownA72fYsg0zw+S70p0zt5hXbDUkJ1bdUOQ/gesCMIgTpJyejnrdNKfqJdV8ZKbYAqCyfEX68N9sK61nZE0W+8uQL7MeGJisNqrW6qNP+xUtfz1rtFRzpSwmWznP4LACCHTAyPO15ML0IpBDu7nBIWnBvcEFgQZN/7W1KAmi6FQDr3clfFtXGxrTVTFFduIh3Dw918u1PUKXVjXYQpAJm8wq4W+tVxYTBEHK4YIzimbrGXduix0lRIIpHKlPHPA5H8EJebyQVbZrvXraEWaKzd1Wp5GLKjKMSWgvArFYLYynOMHK899mOfboJsFdk31I1jMTZhm00jk7KNewiHoP+e6XobaSW3uq6HNod1zA2Qr1OB2g8N3gGVCLo17BkPKQV2lohugTLjaXmyT6Yaxd/N84kEf06a5GDlLGM70zgbLVj/m3Sd8U3lmNZunQlwK92nyflzXw1ePS7xz78BJv9wFF+GRjwyD2WUoO1tfYw0cpr7SCFQVVMK2wOo3zRgiBZKeHUxUcbq3zkZ/W9+iR0r7tN37GJXdFFW9C87QFUdJmjSgnhXzfsRobFQmhU1NgdW52XVKOdxfkIN6CO7WAxLU9PD1bqN6dp/aI8zfQatFnRLdy+mkTE1eCUl/Ght4CT4nVV1n9Uvb14KOQneJVEccmgLxQ7PQk/ZiAYLg7Ve3U6RjZof1L+n3knQJ3NW6Qeu5e/LU3MhVCcYL2tDV7LwJkySgDwo7jEEXCLKq9cK9HPl5nzHV1fhvPq3u9dUmBOA3ZUe0o9Rq5/cKmBlgSGgeoLhblGPVbfT4UFzoKRuoSg+zrsf7yDW3RhnCjT8M5mfQd6H6u0kWWv/bEbv/dGQU4bQbVQwCbBptfn/N8a9kAGmlppRPlo8tIIqubDPipS2kFMKqpH4btfAPrkn5E6Zq4iO91c75EnsdwUwcs9Ht72Ivmaiq2xpCJac82epEle+vKkT4tlifspQrgOefNQI6Sh89Ytvg3IMKwqzE+weXdh9ey7h4lAsTpnbUbccN+w21RzImYzz/HyTJOYhG3OyNE/XQf5b6s0HDvLARnZ0IYOwXo9emIT53NYVlB6EhWBvvUI4a2ydLI3iSPXKAcLX+t6QGzOE17OmwU39GA68sRRj/t4k5MI8m91cPUeJ5jFDjiplcXsh77yqVlvRYO5kZtXbZ00pCoG4REe8Y/EWwqapVHpk6qU9rTodeHsmlkjDJTZMZVItZNrM6We23GurENkdsVoXj0oK/ov4bdMXA51VmqkAREdsSe7vEZjN7XULPd40j2AY5xCqoRAdemVbojHI0dJJXrp8db6+jpnwPL9CftzTe/g26FB75dIJ2oE47Gcm2MGMdORWrxhLCtW0FEeC1dI+PkUDcMC0yAKs5GxWqvY9pA4UmwRi3fDOr/nJj4TxAPlVz0oBmimm8b2zKPkRfXioPDOcFZqJV8xdNOWy+0vWSdUMUVPQpZ1D4FODAydG7U6dZ4beGkEV9EIFPR0gbE2XbVtEQVrh4kpB98FvzvYFr8V/A0WB/cxZtw1OBaKbiyeu8IM/1s3f1ygFI4oaVvvJ49lmkPKRwCyuTFDkRFgPbrilwV2ekKrUI0ek8Cvr+Tr5E6bIlxaLMnwSNfkafzCc0H+msPBjjRkpEYEYnsxrX8BFZin0697X8THV63U7lWyldjVcBdjrGK7k0iP6AD1QlRMsv54+ci/plyPe4DRLiWeD7FbDVP/kB3LRrtmC/V0y+51J/eYuvSolxCLBCY+64GAeWoERl+23aFXqDydqCQ8bFsxpY0fjVGQPHh+IRYt6jht9dWaTW21H9CisWKzwZV59hicBHNGJUQ0ig9cALfiNVCEG5IJ/sOg/EXbLOIn0sjrwTrTjJy/8fAZnslCaDHz09GAYFSryYFw2ZctjkiWA2G6VY+sXeMI6eBDjJuICAxWaVPAnS6vajqfvJJQEoIJau1/qA9qH3ad3KmVC4xBnErAGPKffukNRgcCNf3BvslRRtaCg1ECaeo878p5geMY/z6NkdnhmcCKqRT8Kx2XSLfIHruCK6o06zQ8N2i3nFEy2JNXZZSMhVvKV30IUyGgWw/Oe1eI6cf940YV6S3Cm5BJoGA/tmj4lBlWvpaqcNo2vfyq6PE8CRw0Kbekz51eNCgEYdCqwX/Y6OTFVo4gmwvHcDXMjRdN/wtwjgHuL0d26hpkWfXoMW/ocOzfOx2616qeLP7nwHFy8kBUqDMpo9sZlJdjYyvE9r1fGb5B6myrVZ70JGupdEI5ldsSQaZNuD6OQajAGCW+TOiog13UngO1eP8StP1i0HZhOJ7tjn+4kpJkAbD7614yIFFVOT7QFu3tkYbCTo3fqBdC0RjBqMGP73cd3zgoYLVBeUbKyMCbpCCKsXvMHfW4ct7anGtZdRYyswUAZVJykFQNTfFzZJGCO/DJOHbE0hEKovoagPzL+PZyu0/RAh0WsKXwDxUmVc8guss5BkwzzX44tP9Z1zpR4kKp+/g4B1Te8EeX4vdpwOF+Sq7H9mGUR6QRJt54SjN+pbM787fVvVZ7atcr2KFtENystMSiXbAHIZeSBlMuj0Qpim/M1j1g+Hsu4lBlFrr/poxMH2guJ1E4Z7XaPLPXGFI9el579vAOX58avOKxHz+Ox+jV1WhxwiYK7GhtypfgSjqVJUN7eybcA9gmfIujvM2monzAWxnkgCdk5xmpkwTCRjW1Ot4/FngaS19oCYEIIsfl0fwzf2ivuK5x/qJihSGaWLhtkeQYqm+ePGQe/DWbV3piSqG/hu/t19fCiPdz9t08/sainS2z9NJqEDfpiW9hVkFBGyZ3U3T6hf0d/qR923gGKWDbdgz4BPs+5l/zlYmXugRNzOiYSn0IAWoWfXbV3a2U4WcIp2j+IQjSe7ZRPGxKRfkS1ln80xnk2TDrgPQ1RJgiR0bFgeuNuOHeOG4SQV8u7FbvhmnsLWSEvlStvYn/Be775X4IOxeWRiYRmAtUYJVge2h5y5Jhz++51bUSiLW2GmZXve+PVakGDVC3e1qM9NVOJ20sHh30y1OnrTQrSDl4GS/6RzhzGZqou9QhDVNd6ZXY2Odiv3tEjodsNlmqfzzdcpsrJ4V9J4G+4bWjzHn47hoypOrf4+m/2AKKiGtrmaST9QRADxcDPjjD2xXvCa+ijMgUufqh4rkoQN9DmB+vGEqHhW0b7a494ChgTCSIKWsSNCpnE2YJfRB6WdpI7scho94CyfaNTVmIkIRla1cDkmdBZaWOp+P/c9pZjQ1H3LGU44P9Eu2LXYD6g8U1XiY06++pj3FaO9KwLoVu4gs861XGL53MUFipkkKBiP8lGKW+pgt6KFeULYRh8aLqRLezxwnBK0EnM4WJLTFys8BxOHD8EBKffsedwb/b2umE4kSclB7ZOpHTCc64g7sTxTCYvEVfd3YqfF8tdCINvRMuaeAKtznHOGLrvAaUI0sc1HW6TwuVTy5jbKZxcfsB3fIgCTn8V03Hjsn0iN7vEJvpyJFLieTTSet6x2z4vLcP8h2VTqQ/6U9mgMVrFcdPqgAubqOZRfJ3s/JwVjYsvm0hOVMum8x9hOX9Vb4QDw0LMSvQYNtGVsmlyEMsj3g1pDV5nVu3awkqhqZ3TrRbDtFE5kUgG3N9viX3ycdPcxILSI6c6xRIDKFbo2sqDvITxdU6T8tAa3eELHys+g8HB5ir7gETLLynFSWgsvnSRSAwfvotnRKxDQvM1oGJ4LUQ9oVGNCBWxMNG9wd6LdqkTUOAKXmLv++KsqTEP60i2zkQByK6QOzOXr7s8hTYLuu6W84LQwkdULTctrgdXtXYxCHnx2q1EwLIG7dX9alOocDKjQgLettsVFThYV5LSi6H0C92GC3fIoK/6pfAMNJZFV3Px0aEGLanNnLHtX0C1U5rG4pG5FGFVaHPzVCW5971n3K00IV27NHAd6FiXZUrzW7QvVaBs1/JDDtRBKYdu4uQUsbCz9pJ6C2lPizBmjdZjO90ARa7PfjjoCpJedaFLBLfk1t7HJjnN4BeeaFjH4jZhVKdX33kQCjOISv97CYWhu2k0hFCj6klnlCRhzm7b3/7/SK1ioX8+pQcdXVpOjajr40PFkg3Ds4EMvtzA1ZJHSC0daZwOCXP5EXgY2nlVL/Ahyn0fn4+OiW1Ev6qJQzxUGGZMYRP0XMjHuE+yle8hORoXnh2wiBSmlyn6yEG5vZujw81tvcVQ/kSM/7iF++WXz5oRkpXF07pM45J7L1JAKDxbaQdf04qJvOKywOHtFt8fnwIEAD7AMPboySbYjwJ6gf+yK82cxXClQD4JySzyp1mdJV15p309gK4DFmQz4S+a9Gx91e9d4i1KbBABafA4iLWCc8XYWmlhmZ0l1nDsOQYLaq8BRKWcFnQgBmVOG439q3siGyMKhiEaFqmYwZVS9Ws+0JJ1l8Jk92UXCWc7okTZ79dFmAYJdCLmwmAKRD4GPv0njVSJlJQ9M0HTge/68ewyja0obRFqRtXwKTCCRRWqRijl5PhdjliEs2nMPj+Fot6IO32vz9oTdjNlf1ZZwg4SsZ2Jwq4ciKXc3WADdmWReDWEdPyZLsmwyAM2JVb7KRzBoXdH3bmICjAuitpEvSAgxxo+Tx6F0ViFjh16fe09LBizVwIeYPv26ZMNqUMHSVowddlbgZ2o2wqzsFab0frojqxvMiSkdc+mCB7oZb0AeOSpElBlq+vDuN4NEIEryy8tsU+lvV/Qmm76eVZwvtcNmF3pafDl8MN2MBieHaKDZRAezPNNzp4kzryXiXO80esusl3C2Wigp76wNPMQc/P/dvp4QijSp4sqTJCifq1fI+wFzJmgljdnRW6kbvrKoRFdDmpNaOo0u9pDW+JFKJcsYZDyXBWaj0sfTh/3U6F0xZszHHbi6gj96PpzlulxTKVAZOk4KkK7TYVUNs7WGZ+1X5kmNrKAEboE+5Juzjw72PSq6sZ0Pg2m5WYPCzHVNY49d7stgNwgmUkRmOAR5K41GWQudQMSASoCcVPnziMx/3u0ESEWMBQKD1yda6KxH292RyOaGFXcv0wmUuhlWFGT8oUngYyRiAibL93hK0nxLdAfDyWUCV7gS/Ua/rsYlDPCTqFJ4gpVsx6pqVirQKSPGZC7YIVWYLO3yakAwl1UqtNTlwucQBTiAWx/3wqDqUN7UggXBDLZVlgplQVQreKA1Olj2yGnLJT3ZCzK8j4wXcUwMI2jCwECrQY6tAKPvQdJBNjIDG8ozu+IMaZJI8g82wUA9XrtfuFo4N2r/thHCiNytO1kks9SPmygHB+/VFeQZopNTWxqfIyjoEYvMkEgvVLzaTA5TnainlWPSDSuKkcKpejhSZm6gh8Cqi4dluhRGhPsXdgyS6w/KbGHRTQHjnfPaabSW4WQqwkVeDEr37yUgvi8FUWa1sCAkv4qrxEgsQwlYgp5NVxlOkqH+eMzW7Pvd9vfcND/xJbnziwaOscyVzNJzfyF2NvWst5dsrRZKGTyzTmHYvAS0UH713skv8enGl+FWcRur5UAFIaMwk4aGxiecv0/2L85yBCv78/UJ8SY9skuCQTo+rAVNcGGSp+6Y7XpRxGpwkZJ+qqDE5Lqdy4LmPx3CKPo8/vezsPmZlvDk0jgr+L1JcqyTv9EXjbxNu1MuziR6X+a9T8xDjomY8N5AEBs0b7CkpaKUsDLX+fy7gBYVOK8ZF1GOGGD1yyNlhNMUCA02FBx2BekTVBWrB/GH/yAxuWiXzETBW1cdlbCGZqlOZq2bYn+A/cmIhQ67C4todN9H2T4TY5k1Jn6/3kk7nNdCJ/Y+gXyDYl47qtyJ6GHJ58InYuo1Q//4EZfFx4AURpyO4r398zuiE2FvPz5YwMgDhPTS7OeGciWR+8SUMv67VNGMzgAKJKPuI+gxox8oFHPVj4AdRS+T58/s9XLmmkovJGX5Tjov5OZVFW/Hdh6s2zFXvy9brM7XFev8kd4iAruYoAaaglvi1m+D6Y6gE0cxvJjiGPRH4MQI7+DOwopxK6kIQDx/QCLfdZaNafVyUiprswliydy/fsIMLJMc6FVcfvWz7uEJjOxruO9UULM8RXJg5IpCArNknrWMzNeGh2kfdUin85+2mVFSxxJCp3qfIYJdJpEUaVC9Shk/wdd4GvqfK46AROkpPUIj1hMrYbG8FC0V8hoIzBOzB+c/o7OUMWBzjHT+9h5tmYEC8/MkvJF3OBz5qVjJDCUVN/hLXye+FkYfsoHN3Jc3er9EESpn/4oqWKoS55DPaWsBLeni1q8aJzKNcRmlostqf4xb53dblJvguyuof6R7hpzH0WvdlQggy6n/jdCuk4FJ1hvlhIIyq31oJJ6uGDF5oQJ6DHl1fTyveEi4FYIX+DfKwOtZZ1CaeByhLOmLtWUFO0z/bZg/WusUZ+s9DE2EuI9p+wPisH6lB/t2Tlq6tiWvZ7I2o1WM+eEXWZ2wff1La8u6pBYX0XFye4Xvs/tB5uHhLDzm4QXHO6W/kqOYz9YK4qXMXHkbWeSBH/QBqJNmUK8RrVKcdVhIIZyHe8Oa7rXQ2k87B7bEEQHr/h/S/mhpbFxe9cGvQ/eSMG3VdbM+9Ulj2Fywj7kBvmeDVAjihupXwhhhdkC7k2sKSh0Z4YAe+ps0aSp8C4oUiPCypW892hzFDb837s0iZc58sJLvBEQEl2XIERt4ZEGEbwqyMS+LY0HvLQOFlv3GFJzNXNGAsElOglXUC+aRVRQOqKIIV9N0myGxPwi+pByY3BIZ0jNiAIvL1IuuoLIaMyaqzvQO2MEhi+X4B/2XBTepa8ztEBOQMUZnpqEDvalSpZKP/Zbc/v2UZwA1CjHbGMxJilID8UMtE0TzrJuBpes3kVU2LvwSiqw0B3oxaXuIzQ0r3/+J/M8OhPczZAV9h3PHGwRtN0N6OWBEQ9XmvkPOlKhvTkIRIJ+2/SJokg91n6Pwr3TbuQ2cRIRxEw2/M20AXK2cvrlMFA21oObMoPEUAgDbbiiXQdS8UAGgS+L2d4ZhQnIvQtGY3g4RQWrzyCtULm49/nMc9FWC8WaXmnqIxeRDPsnRwDlZpT033pQBHr7KWr27vPrx5qOMoLaBy5HhCAro/GVPzw6JHwlnWKKTzTj6cZQB0xM2MwQdn7JF6JvOu05JgOiXh+rHzf8GiFNvWjgzEDg9I33b8zyOp3aUoyCatlktHPbvgqhVStC7NtSFMMPXfxNDp3xXzk4gr0X6JStJXkbso8ozVWCvfME1Xdas6rSfJb1R3AB7HL5JKFaSyuhOlxTxBFukULnE85xhVJBlwAYFfjKnAooxB32s/7yQXwatTxKhyECB1/NU+2i9YySQfOsuEiBoZ5XlymjgGbRdMPUQ6SCctxZh5jEgYSUUL5stGvo5V1WMUvZxQFHTdtDWRJPxLtKzznQDKekuNfmVQcU3LrVBecJj5LEmTaK+AzUsJSqV0ks0/uHr9ZtURqn23p6zrArmHMXx1ctER3qUqD5cfW7XRMnwD+RhWKE9VhXp3yAi2Ayp2q0Z/oX/on5tZdcJWpj1gsTXKp9odTy9SnjF+ZJxGUpWMR1DWQ4SIVtLJE6pkCwnpfhQThaSYe/nKRzkRSs1wr1MiJNnE02e5VrX8rdzp8onv6Z25ORBYbJN1e2a1YMETH4BlnocIrCYrqmNQ6Y6Bn1MXSSDSUGORYWjmWCArDfGBrMgyLGVPe0REb6Dl5Aaes1G/reAaA/5prnDVicelHRjj96JVFN7Qw4vJDrzOt5BzvApk+Jx1Wj254GdX7/SFSyGbZWHpyTTKngpbupTyjMrxgW2EHQyxuBkGbLUzAvY3p+Jwuv5dVrpJEoYjks6XNg0dTDxbXSuAc/ElNTlHlhqfjkf+6tAgkMmnggpmlqhnOEfRh5RoBU0bKgb84mTb7T+Kdn3tTdmJF3ELHk/Jgdz4jLzHIBhOjmbizGndvhPe2+P40P1/QU40nzzhanWRiOFdm8Qh7LxLJurvKaGq7aopfteE+4853hXwIL8eTZDBpJeZExQf63Fg3qmSG0h7iMyrX7Bw+XGvhEpFpILW4zvQC8ueOO22bg1VI25Ja0n0h56if+6HdbBSrd4Oj/NaMxE10Tvdu0WoStUWEOUGthgWLkyBTRDdVJf4tIzkOUUOXhKl6hYmbI3ULwy/yxmZWxUm+jOs1Vp8M/eAcW4XCJM4rjkPJxV1LxUQcpV0/wjfdeqfXBHlDWkHiWsWvcbKxNMLUUaY+d/QJNbzwA8qX6A6J6RwUMvdvc4TL/OS3eWNVeSiEbemZQzOaEYEqPukBlt0lQw+i/GKPhXF1Xsr/aebUldJPJnO3ZbNmEAXCBUl7Es0Sqs/0FbzEwgFAu7K9CZzMDdH504y2zeMH4AHTdHa5j64dc90FQlLctWb51aBXUSbbXORQnQ6hEzcp/AW2sQes1ZPhjlXpVyOxehU7ZAkh8aFICtmGAtwP2ktesaE+ASjVDq37LRRKDPfPaJIis8XnYG6UHpCBDioBwia5H7evwo+RnrbqJViw8iQBbgNn+6XDCQlDesOfEsvSAqj5oDSjftx1eL7BEZDslg8KDGVWebyYhf7MmDDiQdZRAvwZdVCMMrAFrSw1SF8dYaG+QZ+bydIQxzuCo1p4QX+xmE/0sQKz952T83gB2kggs+aQ4yfREbP/Y2WrwlsoNW/MCdRGeLfcZE6+GHoMo3/fkUqOmcXpKNReDh/JBqy9IU/LfXRPgmHPm+doXJ1KDA1MHAI65t1DDr3pdRrQriM5IP0PKZgDL0XtQzxm3MrmeSFehoywIJ05b5EQ7r/j0Kmmq/TGNuoNUuTI9zxLHZ3JlibvUh2GLPSiWl8h5O0CwSjCCcnYJZCVLZWhemkrh+y8SHW+rP/OA+wRh5Apl/tVnNj3720y4USel6QNu0JLOcEljdqRqm/dDQijdDLtOkRQqvjSERf5jmYex+VrOVzG41rPSKm7aGPLRK+QJsANtIWSbjcXRhVw7KW/sIocnk+lzaKV2VcmPo2igdsvCPktf/n/npzCyIrD5HiDcxV1xHXpLf7TBkfS7r1YaZFVXLM7ssd4MiX0EUbzCW5G7g5bqC1LpXLUmw+F18TH2QzGLq6nM92VXZ4PE7DT3H3nrbRfPF70ooUGqG6P1HXrrN6VPNltDtElEu/R0mEMnDw4FdsI9r3jrgIWxJSgdB4vC9MtSS7xf7z2U7KTOiMiDT0qXg2DXT0rpO/Chw3JfEYTa3vCR3tuhrAtpzrKLL909GyCm9p90zUTCHHeQVwHCK4SWJMw2zBgBXttCShyD9mMO1GKJBoQVlqLPYf1ATw81jL29jQDKUkdtzBEnJ1nNQfNU4gRfMWSgFWzjg0FGu7/qw13PLrSivNOylyGFVDOgubHwZpOVaUHkLrYrYonvLj2C3HYLs3nLSElYSGw1b2DXSTysWBQYDuND0WFdJ9bITqJEQYqioiutZLBOowZ3fRxPCGZ1DiPOzsFaSEDt0wFF8BXQgnKSBotLhxGXZhKg6fYVwv/zYRddx6+2DABW43RJgp3f0FzuujHUNuuuWsYiYxPuK9tVDS+kvo1knL17KJPNcsyCADxninsKeu6IbZ6bxYxF/Zzj53doHXAtT2VI3d9eVBzgxdRTrwzpAl3+mHlv5JsF402xFfD94r5Wh3HtskI8vLpsuwGvGWKzqFP4f/W3JxzjY0ieqK5byYg+2arffuvB1I6Dy+D1qQCTKDlmASxUpdntSv695nE5Aj7LoAHznJEAhYk9JOwtWNJsaTYglnpxDtmnjd6t1GAiUH2tIt8Mx+rp107WB296CTmNmJtvhB30qGyp4sxZ/VJ4sX4OVd3kLgo3zDPWwZqzuZY9bgbMWASpQFj9UANapIY7s2PRawn+L1nE/fTZqQitwW3ygitRFAUiEPZ683hzh/CkJDk9a9o6+9PEh7YT/86YOGQlRz7Vskg/aGMvHor6ncaq2BX42/efbWH4rtKfZEUGPt+WyqhSPEZpPy2jMTtZK5zmqOHba0+af6yg+ty4As3d1EmYZ8QArUzwr+qEHSHmWjWw5FjuaPPZgcKsPDEhhrr853npa9NBvhljWq6eU4a1F70xyeeX6/L/f/4aALqpskMEuuKdHTE3o2kXufb6fDc4fkQAj+8Rj8ykt/T929+yBTToVaRzqf5W/eKh51jgkKiWdLOwW2gCALY/HSexmF/nVOM/d07L6B/8Em6hANGuQG1VBG8XyyBOZ36sIA9/6eCPLjxDZWPv17rihrZKSkzSltU+hBqYOR7YnfTd7K53tjKJsh9ZsEn/0WoZnrxopNmEMTNgvc3D/Lhfr3mnj9IB3Zl12y3MTIEMH2kDIltLS669k3QNV/65we/8fAW3APryYVWHy37FHTQzBCCsWd11xvDKk6XwZ1CunTi31w0rS0Pl2+eEw4lSbzsLycO37H04NI81vIqnXaXxjPbS0twzsVQ0okCDHSkMU6pYc7l2ourYVNDWDOSo3WWWcHEqREjz4iWRczvT7VnsR6rkeTilg8QkmkVDjzrWrelc2fMMrb31tW/x1bmVdLC/FK44OoxuBpUOpDWVQgfI5v378euLlqiLI8tCUhJDzlGZEIkJWfFJ0BshkUm5j6qKxFDwFBIX1kc3eKLNT0q8UFzLDGhI2ATXya9DXZjZjesQBUOS6ySUU+6IHq2hQmbNSQpUaU7kCAp8rW0J1VBR/FBQp0UOctZjnlHZEC0ioid8S2sFXpF958dD+betRbgznvRzReTUxY48dsTioIvQo6CmTswpWIMqtLN/9gAU1VEgAIH0/lIDNWGzASZsrNn93ArDzRpgufMEXFhubu5WVDIUtoR025OcQsDr8ruDX2iYQj28Uy66svr53KzSW9BqGOWw6onw0FgRzZ0aIOGsukdS9EnmOLBuR16QXSZZaK4fiMAMekncX/VCKquyDyBTiUmhDacOY/iWCF7xQ5whDQ9ZA9TXKu+D1gg9RrlOHu2Bkv/GgKwQGhbaLwJRytBHJJi88qfGzCRu9vUJkGrDCSmRDIfjzpHpfrraUk2vvezzCw2GpBBRRQoGU3f0IGvMi/0ak5YMEJdF9FXdrlartEJ7TXwWIl1Qpe5GVM3qtC+VAi5wgzSAsNGEG2M1jszvag/4gV2DhtNanu76tLctdS6xba+1W6qIbYMS1AAv3beM/44el27j+Jw84KoOhFhOwzRMRu+Ubfe5BBw/AgSN9BCiVfT8gBpx+S00nDjRROaKcP5tXSB5/M5DQ40pM+hDNwd834trZJ/U58QwFCQDLv40XOa1/gjMV0QIlAyluetE0eQoW3BtB/+SfN7Sv/H1SoXXzNaN2T2UKLzb1CUw/YH2XXS1LfyXtK98mh9rV4suKFYSgu13PD3PqJzKaNWCWoELxFGnv7xFT1dv4vCS9/P08IQ9TMGmQIVC1UOBPaT3z7nRD10oraEkXWeF/BvMnBlC5PeB9vKWPUbV18LQa7btzBPu/rWYuN3TD/ZHbRlnHfxumxspfDJKCndg9ipwM3ulRMX8kqrOAYnfnRexZUbiGrxz42yBYX1cJZwzUZFya/qpzeINP4WC/OX7SdiOzX6MOthJ0WUD7pa+8899Cxjt29+52bFfzRqMVKSFVwsRBpwNF2opo5zVWQP43f2p1zy5SaYWApzJmMalUx0mMP5hPk1fZiu+HMlEDqsbW8MWrtxLyxG5mTqKRWJhSsLfTi/E/5M1OxvFp0YIwAX+RT8V0CFA/d/tuWJZbphZQkPy3FbHokn/NDjMMhR7x56RcNNLPAD2z2E97yXlA0gekiLeD/BHY+FfB/NlurmVEuSdEooBVGLRVFqkwhUt7+2XV1hYQJ32tSqHnIynthowMWnGhwV6vmZ8fnT8KLgRSy3LBCz+SzS/pHpjAxqHbKAURTvinGcLncGmVLzHy8o83QdW/fqM2Bq6g8WyHTz32tstupzSV8Zth8/V42O3Q2HPyG0FRgATHGSzkQagUssYfYJlu3tW2A9g18jsftw4iLZ3znYT0olXNAWUsxOMznJaIkrD6zgPpGOfmwT1SH/ub1ZqXSnaw5QmwOjpaUZcMU9vkbxfI4FMPEwJ39NfIznIAm931K4RTSou1gv5dzcUmywHdWHRZ/mH25VnVvJTZoWLyfF9QSY5ITTtzxroONJL5CadAbSRJYae+yjtLOEPWWf6P269DtSaPaCLpz6cZ65Sd/20WCxrJgOrQ81I8aJottE6noEkGUZuQ0PVOGo9WimFYjqxXlb4LS0L4cuHqKKBgUolfAtS7zGp1sLqorl2vm1FnT7niQZx0PHnVGLKen0GVAt9bvSWabL3ROFw2jBMklNWwUni88URCZ6RsneDsHUh/EbT/8pmSRLRWwHDSNKk5DA/vcjSbHXr2enHAP8u9qvyk6Gb3EC+z4/JJlO/7d09u9CUlRka92nwLLXIlxrIvrNOjEuKhgJw+HXW/inkivPpXZcqRe1NqGZ0qDQ21ITOO6QPSDUajCZTvqyUwgrdhSMFlMUSAXVfmxl6T/XdrGQQJZ+PeXnXtF6eoEnZ/Hz73hLdW9QddiQ6Eka7Gb2Epp8eCVlXBFRKGE8cykItX+Q1nE3kr9SmAGjPTwhpEsEWT73X86a7rW7Xda7nSYayXunKKLH5YfPS1af8LWPNGp4gG23F3aM7am+hKNY/69QZU6B+fIbdAGoB5VX3heIYT8t6qyYlONfb9RObMXNFDXTKZQe6Q2F32mM0YSLhNVkuoDsVSn0/2pfxsNszHKDXb6sU+egqo0LeSjHw1tiRXsF3SDvnA7KshUUgZMqkdUypQv47JsOB2hPMZ72F5NlSSGM44bWfYhNSSOTTgtSJwUL/ejAwKechQZMqGTO06PZekMbzS5Oo9LwXN9G9EY0pGaP91j4REL59xBdeB5gmrTxKnu6Xl5mFHiWRwBq6eEqOxgR7TJIMDxjv/l/GXgByMXBxv/zmnMvSXeK8We1yjCvgsnC6xkUFIZcOU5fxEb7tk6yCsZRFQ8fVXUXLIu5gcDVZzsVzxXp/AF/Zxt1OSZP7/m72XyohThKvf0D9sC/J1Ar+7Hu85Mzie1mkv6za/zSK87tvG3ORNeJXpJhRUNVa6ikmdcikZXOru6qdVOcy9NrwpaB7eAjhlLeokqz0ixEewJ65AFeegvASL932/cgG4RpzVwtRQpuMWHTpa0TsINvlxbeS3tvUcrdO8d0hJm3a1c3ERx+/PsHqgomCBksLQ+rXlAcGScLOBzcC+n0suC8nqqyCEZnzDMTi92Q02rocJ2NwgiSfcgRMp35PcGoWJpVRylqiyEYjhv/zCuMxV16nkNEduM3mu7IexC0qTuSYMv9jxS5DmdjTkvR73FIph0DB6Cnnr82GXsE3aeE2vj8VntIRvBJ9uI9crYx4Xn8CaWA0lboWZ1Y9zziGBDxQmLR2EGmTo8qEI+a9qgI5/23mvfiF+tiyEH9kmaJ6Uwob4i+gzq+MS05PxQNTXOWnIet54vnVYkHi35ajVGZaDer46Z5djbV1BWn/jQX+qR2UZ1Ei0CTvRhjzY7WAYYchXUfwJUY/Qv3pP0JoiWvWzjy3EosVwxy6L0f3ayNzcK6WFiW595vX9R0zZuZHaNPMfz1QzkV91+pUmfan9Rei2QqA/Wuz/O/ZYUriN/ZWZ+8gjUUD8wT2Of/agHtpYsHnQXmNitlZ8eQbDFdcmRzejvmu+68L4GCIPbaUdUVuwD0I+oU6jAC1k7Sesy/lu7e5yv9ZLGkHd6W5TfKEQ3kYXRQJppVQ8670nWr0rKfLkr6szj6TR1LyQFNOuq6N60S/FpxZHv3a3B86JEAqZbcD5gred/dmWru7IP5r/HbX3l4veGghknTxi6h1yNJ5CnCCqzVRseOdMucBkFQvpNNU3Sm9CmI1hgzOZmx8D4rM/fZyUv44kgK0kEi7BGaPkRTmIndZ6aW0dXO1np7O2Vb5BYkwEds8nKz341BRH6jCBKCgPDImV0AGYfMlkRA8eWngWulQhoh0Zj6bvC2uswuXEtb/cDvtTZIiDVxqlfFzm7GUSr3a0jU7hxLIuCOx6nb/ngQ55EoWTqw6Y7PxqMfCNjjeVmP2HpdLcCG/+803L+ouZBs23L3wONwiIKLnzHG7Ws96T4CPFWTSTKGgIm3op36yFF0JIMNH/qrqvz8V/QMgdaqlmbhNEml+Vn+Ds4UxXPqLKXiNbo2imVN7wZCKC9qg/RoZqcPWQ5O/PV+YvFtcDMVKCjXZewn91eB1axhgrozZpyHYvjvexTVWUU6nYt9CyGi0Xwcu7JLJzXYF6NvYJg0PuDM6I22JpKbzUgDE38o8xU7cmXiNjCQP0pd7BocKzEQQotNa+QAjqzYUIDWY5NegcQQTRDZRHnTSXtVBkS9H9Jd+iLHEG2Q59PahWtYNVtT0Q/gHR274a9hf3x2LbNNA8g4MSekY1YOjn+RuFGg+PUuQgVC92QGE3Y5UiXjgASKajbgt07L2bWqMJaq/RTNTR1QqyTvSNgcDOIm0j1UkXYpatiE8AtBllK4cG1c03uudbPO9Oie3ThRmKgDhHt8wHUmIsgEVKveIDrOHOZexunP5h6Pb1znks9e9jTyb5ixb8IYB6vHD5t8bNgYdCzDSALVLAx3ywFtf++M54x6Of+JxZ9WC+7gPZZRjjI97qnvj8VteHbo0OtEoUnUSnhWckH3LdgOgYxuOrCGlSTVXQnfA2dD3pAgzM8zVtzFA/UOa89GpvdNdhDGoBiyHt8qwyT57tubktjwPxr9HWRf/43NWwflsq9Ip1YnQ+1rWYVK76jn/RQjS90lWViskod88i/QM2g0uLFqQ1LGELE00+oWIxy44yEtaf1jYYo0ywUXBhPjg0HGc8R/4dvVHtkFYLu4oyn7zFC3bUN7YndzgJLi4G5FJyp58MqQijGbBwkZD9AGuMyUqHkwrVwf1SUJmk7Ku4QLe5OYsXeNYwOQXPWDauJtKteYPs6As3MX3zKHxUjsY3qIi1Kdq+wiBOb/ublg8vQr15lG9KIn1lfis9zLxkm7X5/ynlSaBoVqt4mwE70ZbQFsC7fmq5R0ruWceH6K3MCgKgH9EYZ5AEtRkq1wtRGLl6ko5TKO84B4hggNdB335P7BUcftKSgjGOZJKdrDLGP3rwjH1+0GXKR8nz7oSZDSLsEaDJxE/YiFyrN7qGtNIDByNsl0NsxsYqUv2zSSIEHIyl/EFDNHkYZ5idUboN6jwwMVOAAGrYnNQl52CtXgoBmcRHidKJg2yebKFSDkArkndxIgzkgGid5WrJs5U16PhlTTUJ1RfvBN6DmPVVtLBm9rhvLIU+ZNcBaGEvRhK6B93EB2aooBEjReqW2Xc/FAwInaMmZJZBiQNCA45tTl2Qz/CBpoNAIjju0amoCGutQushqhEWO+Ovr6+eO7RSzczhwu4cFFkecKE+WoX/69fPh+ZnEok2UVy4rP/unidYdsi+owhyUV5TAtWuLbU2bwpitLMUbA/l0dWDha4hN+WZaY0+BlG2yncCmJU/U0xx/2Y734AiYKP4qxV0u1ZpPBvdjtOVg+rlyJx40leyMONhB0MSA0J8xWdLELY0sBrITu7w3fyb9YmHqBhtVGrryPlzhbg9xa+1UhorelU4XPNFk05/fbj9FadA4A3lfwvilFSoo6tdjOXFGnggr5h730v9Mm/Nmkc19aTdiXvfAk10GcpvsZo4QYqH2wle6H99X+9jseWuSFxqZ1ighXiF1q7FFOvgAJY9NmG+trT8kB37nRRsk7D/GAa7ws7k0zdXFaYk3Moa1aFxNMuXuJzrAQMbwrMsyG4Yt9WUo89Ac3iVyJQjsW2TYQwZFOeOB8d2Px47zSrKOeYYM5yN55E696+gnVUtwGnQCBwxAawWd2otMNY8p0uOBeBWvwLXIPCfG2EVNmTbBUj2SQkbhrMrX14XT+2sIwsMKunX/A18ISNFhd8a2ZM2CTd13TB4rKwr0OVyZD5ahI/PugttCn4Ne1mwEcafas1D+i8qJ1r1qqmcg6e/mVWmn+4iif5CTpcmg59QvALN95RnGs3OSBcLgfhCan/Yo3yF7PpeG17CN3BCayf3FVriiFURFWGxp4NKmhFR679k7bR1GPqDO3UDPXNN1xpPKBWNlIa8YCwDfuRJMK8DdJhDSIM0+9ngSNBPuYTL1DxWhiDAlVwe2tCwQqi3VEq5HXH6VDAfRgdaIcdAj5y3MWuvM3yq1yZrQ+TTqoKWHdedHLuy8JNgztRrc4Q3n6QjtZpAu6cpcootprQuEo/GfaqIspytFT7M1B1rXt660WWueeobujfEE0DjPOkp5/vSInSFvdD3Zg49VFH04uftFHwd5dPN8s7Yrly+xX30FqA169A/0x2EX6xbMeRgjXDG2stIMSBHOxBlIeBJ6+u6dnXTizvX+ndrOID9czUrnjAkahG3oMEEKh156eYoCE8aQuQC8kUl/Oio8/DZpja4iXlGUm3uTD0zuseHFkD7VqorKtUNVgL5xMxPD4BO9ZJE5nzpWt9CKIQcw2MQD3n2btyzllRuHu8b9xHalba28i3G6t3sJNpNRTEGNGBC9KCM4RssEs5oQXSRL0zuUKMd6DZ5f7u3XKGkD0nu58yp2KHZhQGxQbVC8QHqKHgx+MR1vfpgfdCVRhLJbNjcvs7PvKBqoeH+ImPcrm5Obah8UkMOrgzsIksp4MqmZHgILvsDmx3lg1FmIgd5iTr8C5lj+4y814lI2vzmlPYOMFwPhvV/q+2x6wk2dLBu0AUu+7rP/uzCKdtMOTpv2R4dD4kBrXXtYLdtUtOXr9LrWNOfufAS8cJPqjjsyBgy0zp73MgpfHq1TpB8J2HvNsQ17isvS74AMvL39vGZZEfPKPyjzZqKsBUjMe8auuiQx0X3Y5HXNkAN0q8FSFtExg4odd6PERFOJOei2hDuTzJ5QsxZG3CDQWt5v3PopgyGwP+XHlW9C3Dddr7uy+DenIFdpjPGEKqj+N72+oRYMsobzK3w+l9wRBJ07YiO75dVeQGPO8sxDOr8qt8UdK2wHzcVkbzSH/OFrmd/YfCRXif4SNL85GX6Iz5RbD3JJCOXsviUmKeULKM0lkqCsLeolvYK5NAqZyUr0Tixd7gHUzTGXb9k9/wcDzSjIBvE0K4RaVK5Qq7WAha+jxhPcwC8bo8KLsB7dpuGjsg1LMh4Er8SxD7gwNHKmTVIjFi/k/hmWf9J+kdhIT4ztX+hKdq5PJ8NV4v3Q7kCXGGVnK0Awl4JwJF1TgxTqtxhym8Cnj0EGIOPrjyhkscCrxHKNjms6Dtn7K79EclDTUXCX1eAHaeHJHNpfJlDtt4OcSJ7Yw9UPfOSfVwz0JhZd0wiG6+EP5yr8qosJp2VRz+EJ/0kNuuOQJjUgB5z9LZ/8V1grjrmGfCLZ+GwRaBOdtGYgzOw5zjB8uYY+gK/PQ7G/rQKtM22FZcX+mqmufqgDKFYOGp6jn/5wryijycbUvK+pRtyIUh+x3isOegbSIe2Fvu2XgaiXcgePlybvc+eyuFP7uVD8C9JqUWWkM4ZpoYIVORqb80kIdsbG2UoX9KM9NpIgaKwtjSIxH5tOc3HTojb/O6krd09o6ng8NDGyq1qQ3tvQiOogq+YbxaKoTxwwIfMWcrqt3bq0O8ODCScfOXq/JOeIkAvrfOZ7TWdFIHAjcRSvYHBcQlEt+xtAwB7Br5fGmLg7+NqPJrpCgCbls20t/yCo5KZZ27kKrEHZKRy4X1W+qDRm1XF+p9UuaNpYDnh1qtAx5Eev8/JK7QSS0L2sToCYd4L/BpZwyjIY35fWXzAHs1vIBssN6YXPzORimBm7L2Tp0gs1tTRT6nD4rWwEcZLfaY44vIzuOacJf0yi3IGvbCTgPOqF4AxjwyYnzly9u/qxVMuHg7Wn9v3Yb5hxoeGOPjcLdkEreSzvZF8m7RMKynldtBy+GLg9KIEep9nCDZIXhbOQOlhGFUrXEqNUNxV6X14+6Y3QEpKYfOTOvRLqfPsxT2m6TFiGVnKbr0YFHdDgl9TBv/+zF4N+E8WN8r8NmkQpE+PF5CcdrmhnJixh5CVpe3H5+rJa076H2ZYviEHnHmf+nUK5/m2i64AYlUeBBs8Sw1ixNllezV57q93u2k/wxA4HekMhWItt4QL+v7xJbbs9cJrC4QlkN6tYqg0+uI5g+gVdhgXbls6W2X0NUGXwNLgk6iCG279gaQijF6qtgO+7kESQ2+lkMaWurorsxSqX94BVbL1uFl9WA2FNBTSwhpVztCVRLoXDOZUvLGR9hIBlRFkp9zeexwIBeOyz6fQGfy1xgR/JuE7tqZmX2WamdG7fADucvcp7y1Esjmav/0/n7rHjqsxzLvngrC3J6zpmvbVUBvnDY+F/bqQzrEW6U76Py/TX+VrUpH4OYLx/W5YfwbE3MJStJ1wjU6dfWUN6yryY1V/DCQZCWWDCAuaVk4DEfBUWNycL0vhwmeFpkE/kvfjwbGtjY90md0KRIw7hkwRttE9BdB4dhXRjF9haWKjO10G7ngRiqdifc3fw7xi6vJ86vDHxElvJN6vla6R17wqN/tP2XQGlJDyk9NdCQz6EzT3ZWVcxzP/0zL087kj4a1mbNWXoP7p6cqC1DDa5ovn7IA8Vz+EFuiEppWOvzuUvQ/VI7sfgeEUV4YwVSKTTkAMM3LenR1TVZnfdFXKuwxDKeGFjk9rp9cD5GMYdbq0U/KsWy4k25vnvSTi8uP7LzhS7ZjZfovQzrK1tIT8w8IT5ousnUUCIh+6iHzGT+1iMVskda7Dtx6g2wdA4dzzeJ6xIBNsXht8TQTK15L7qXiSORbZxsC0lU+WbBKB3TCRKW5a6t+ZK7hFcsrXTH6AdB3UD6YIRQhBTRQ6Qq21CjWrBJFzmv68NjOXcb2uZsAAT1IhSEHo5XW37xbaN1Q0ES2Fq8vwP8Sd6dvLiZkbO2VnlLNU7hiLJiUos15WQpZ9GzsJjzfp4GAC/ludBj0AcM6WIKQ6acq3cx7Nb5CvBf8PE8QzcnZb3A5YYSJsE8fn1ZZ4bbC6A3zTeg9hwl5GVOwbRvqidOP3vArJoX9iIHCPInEzhLgpc92GimRijK9bd9uYr1N6ni0EzQQ2M8k4PqXBFueC9XOb9EEzHekq9r0Rf15t1yJqODgEffMYcGcodWpioSyRU2F18VXJysz+KvCrs3m3F1f+meDtBNO5hrpXGs6vdP5o2q2p1P65RjcIfhzko48MCXjqfbK6XBdE5V6DGnb9KQ8DiNCHHio4Mqz6+rALDBnvastivl9ZgOLp3hs/EPZrbKcYfQBsncsjHGn1c7fMVPXuOYaPa8Wn3mkbDiBUqhUl80rF/sy+Ved/LStRLCgK6dp4tpzL95ApCKUns+MemyIHKANt8BafW7RZinWgPhVlUYzXmmltIhRHsDXKJHDmfsyDpU0eRe7OVD9w5f0ooKA27E5BhzNGNjfchvUxO1CWbyQU3TB3NsLzUN29TlC/IYr/gjY62zB9mKYHQTuAORdSp5g0CsA80SFtks10NpQKl6fWqixjZw0yG9xyyopbb7nb0wAzYCy+FGCL42e1H9rTwow6v96D7jpM7CNTdRjhYHZGpRTZGNAnf/fv/RoR/8KM034NBI0OO4rI057LgjUX1rBK4uFb1CIIyuxaRvNQuGuDpbpOYYjFAuAhLXO80wokAC+K8lPI0DedviS8doaPhtcK3NKFdVsKkBrkGLPnIdwSbIwfVS3/AKFuINp0ugLrSXuo2lz+UqU55mRvxPCcjaLUafZg2gm8kGOAnkzymp/yPpAV02p6LP1xl8py/BPK4QsFCmr142UlSUyzxdtViR42LCKJKHnhw+PcxiJfGyj1Ha8ZOq+hzdwMP4HwZo6f21dFcFfMdE2WgtEPJV7x0Mo0ueIx+CoG0iZCoIGYkM6404UtLM0Qi3PdBL9GETNl54tgcpHaK8KcJSnywdGb8gnFQDTIeiZIAEnLJDMaenLuSiTBOymDFrOA/AkHt129tEHnrOOsVrqEkdCkAgyYZ76hqyNNSE59ZRfc7WcTWOVv/JPKd96QyTCn9fDw9zbOEIXplpCN8imde4JFA8FT2P8zx9OsRfF1pKdWcvbw4Wy3gD+tGxE9jzOE5In1tnHiTgr7M/soqWhYTjYD4DFeixNklLLMTGY+L36uUioOFj4Ll0aL6VHLY7GefTsc7yd18+V8+XgGzrx0MYfiuZxz9kjhjtH5V7z6S4koSm/X/L4Lch3WlcmV0PPAz1Qo07MIZQOoUzcR2F+gAiK+JndWygqkVmvuBIBVbBZrpW76XOzTIzirM8ofDBFupwZoNBfAxOgV7RtUqCDWpeuNAe0bKIjMnWWc90PIC5oPOa2A+faa+1+ShECyA+Mb/FghPA7Z840NO5Q7pb3qzzrbeVcd0QILXtnDJD7d0SHFcWLH4T8ceyLg5Bvawsz/0MagIznIR6ALwtOm6iMgWS4Kox76mIgaFFzW7dP1LHCThQ1Ob/EhBgD71TdFL8vg/I9B2nozQa7ELesVwj7ytIerVH0Hnd6eAgDI+tWCdoNAfn2Iqty0yI//8BRJ32mUMUk9rLdrsxnV+TdCzWnOruSvBf3vQ3g2ioUM31DtWeepw5MHfV4rh0FGFPwDUKbeUH8S6ldDSEamgQHEeZ6rm42rmp0VBmfjf50lZoKYE3R/ePT1BMhGB7wkxmH1BecjDfUUSKUqT0E0YJNIojYQiNLJUIaa/QV8HeEA+mCWb2NyDbizcIAHdP3SpKU4+3lMwrZgTbcrdenuA1cGHzDCdls5tyM3CDszcMkpkkE/MTphe07fi6QCfMVVsMh5AXwYo69LJu+4bcnQ8x8/HNC3nVwL/eNbtz5Ei3VXn9oiOAbWIrihIjW4z5EMCPTkqPS/+TgQ6hnCMpIO8O/Wnb2d5qgrNE36oJqt16QFQv8eMxI6uEodBg0U6OVY2p5VsoYeAPVFjRULI1hb/piDcHITe9qLMYWCHYFcuUA/su6JdZVLCXAuck6a4la2q9osgQk4Wk72LPIEQQvdT5+sM21hjD78guLIb7Sk24WpwPXGYfSjA3BhXAUuaJPA3Lgnhmg9JzBwpZmRZE7lO01jWa7HLAqIdokv0rnaOK5CU/41ZHSWpnL693RDqmwM0nPap5nF+xufnw5wR/J+858jVJ+P28InrGEJ5mCC6kncvmxXqyCxw0SxCkampgxoyRXqqJ5VW3LQchADSHGAw1w0XKNxF/dfFu/0fU4ZVfE2SrAs5wFfN5DLytjiI/EntSoRRD9sHFYyJ4aIgmSUntJGM6BxmxPZRXZXVrxz2+uy0LEczGOa9TKA2YGpFrtJCZ+QMnJLKjajUfWmsFtLSu1e64xVAprKelwn8eDLqVx1hH6ty1cVlPH0d1esaouCB5zQxP1un08UXkpOZGhfg0WV4dWa+xxgcwlRdZpgHfdYv8rdwyKncTKiq63J61RQPdayn/oKFjX2Ey3hCx82p2+yEunkmMwazUE278Zjw172KCAV0iF/V7VgdR99OtTP+g1VkKbCV/leqQYBXN6kxUiapMcLLlJyLHtQldp6OGOA9i3qibrFtUAS/OMTgvP9ysfXMf8tX+WvssGRbj8+uirarbuBFGt+ez126FM2VoWK1celA1Wk3gWGeH0oJKjDRSXOY6W3bX1AtgSNVGT6TIQ/ZJQMmcJyuSGiw4Gj+6KCbfMqOFkKEW4MuZeKAraYlOzyA6E+odT9kBqwOlS8hiqymBra9ZZKRDepV3Sq8yOkTjJwJ3++oSEJJtt138ClV+0+6XIlSXPVrrvTs/x0iP7ZN96KmhyPUnjrBUC4FxsKlVz6fPxZQeN8LCgU3RkJ2yafG9taYkscXcC2YW+zAcpnH1p21zn1Rk0a4i4CNs84Kuf9nbQ8lJbG/jR4/O/WRVSi240CGeYIqZVsQq+idGojnmijKUwfHsOVWnyVkUGPEh+7piv+LaTqTo9AI0CZkhpp1nvLGlxfKuMeS6RYZRL8HFqt0d8mxUtZxY15VhO3Gpu3NGMpwcwM7b11tzVR8Id5xUke6Uq/ulLrIID6ZnOw3BNJ2KLc7gLFRctlTyc/MaYtYkzXDz27omzSzQXJW2ZEe4fO8p/vYthbG575unlrwOWj4wT6135hsqrXKiXDkTtuSXWkMPHOYCqywKSQrbACcaLimaLcmPIDLmMZDrMumJ1jj7Qi9BVB4xmqUNaOCGivmvlxWYGvbKvK977DtLBqyGW4SgxNNsZ85traXsfbYn3FySoyAeLvpKx5byRLKuNbVUMPuj6kxATlCRpPrbC/Vt9RlDBEunS6fMqhEw6O6p75w/4Q7wNPBdFYntncKM66cA90ejsVd5JM5zl95TbTJqPhqy8tTm3vkmppDBJf1mp5iSw1yNAL5haHUSODg3Zyhtw/uA5v9b5SoCYUCipsT/id7vyW1VQNKMovxCfTpC2FkqAYLsh3QHphQwqHWAjiqRr0vx7WO2xQ7GNrpxRbqEzhxhXmWyJ+W8Ak/5Mim3e7k927dA92uFJcISdgtdRn/CoT+IG5chXWhlrzNQb2UhrWoMDabsc8H/zfctD7G2by+39zCFn8qSje+QWmQOyp9xGKiHsvPXz38r7xeePK/8ygWyhK1m8H1RsO7Ssz5Dmv0gVcqXRshyUGlhRo7BFMhimPncQE7tbdBla85bkQHAInkAYQre1XtoKcek5uX4uvH9a6+JNuNM4bKDAix4osYtAIwHB+MpZJ8EDbMbpHH+7Uvnm9ufiaLG47RdxsKWOi31XDZMSMUtz0NHsTZYhLieb0+xh7860MweSE5iUZ001JZUOEA99gvxVh8+8IARvc+8lWpEY3+7T6IwkygtETDw4H0Yr7Rse9qMyvlxfOApsuvm8hfnKzL6ESK0WQ5G+XcL2jdALrGniAeaW+VcajnJQEkwnz0h5mfS2hAskeryBiaon7E0BRgsryN/+1urD1fnjJ2Qs3hOBCCDebBInoTeaPYK5NCvavXCEYyrVepmvfSWr3X0gFYWPM0sCSmEEFACy6qniGd7VEJ7DKrWeWG/I17dUHLbcBGsTd+NC3dsR2Zf3A3jhf04azgIu4c/mLeJgF0KW0FgA9JYQeMxGSvl0yWBQoA/O/Y6QJ48eLZbzv1mcWeFLUKFWFjIkfhA2LETIdD2oahxc9IdK1UZltRpxTM7d7VxLREiqZ+seThjDtjagW+4EEsr+8BTwSht5JWuTyMEK4GGfWaUqFpMI92AxBOW7B7jn22vjjOJWhE3AKgBXVzsASI5e/saAaxCUQTUlIANB9Ny2iWX4k9Ef5PfD+M0FHxy7wx5MXqcwkP5g+4+rJdICoLl6fKLE96wvops/lUsHi+Flg0KDaldeNWa125+WhX4tEkTRay5MBOJmCSSVChTHLjbaivOHYamsSpOXBGs9lnNq7MJi2rL0p+bx4m1/tP/FYWUOqyvgcWLXJNC958nPa9t5L3x6y8J8aHNq9yL/L/uiGgMDEC9//H8Tk76K1FXfbPOuEXDdThciKvd8qNWmDQDQN8kBlEgwy43Uv1T4x5zdeKdHoWEeqk6dtai1r7tDJT9R7v5RhlQamOwS/MQys+KXSUn+68qUWA8a+QBg6pphaHg6pOlT7RKXj9OpBH4doaVWmnqFDZIAUMvyObv/Id1RmgOZtVWJaFz1zu/FzX6MqHGa5QEWkPCuRAmF0zNGdO13/xTTGqYbheyfEJ+OUcEhvKTfus86WAf9TUemA3ZnEVmrCWq7WMC9jgOtzeAAaVILXkBJA5xDrnAJ8B1718DFguZMpQzio1REQ8IC6hWIVwYITxpmWAiyCkozy7FQ3wX3YpQrKLYjzvtucwz/J/3Jntnsau4i4KTlZyPwbHp53M1us2mu/Evy3dC0HAtW7NGQu+ayoetIhaBx9fBJoxIsYcRTVNm7jg4Iu1C5sm/nIObOlddDXyHTw0PrKO/+GpwHTKaa4jciwY0MUFZeqyijJHyfS2YTUsUUFQ1DT2fT32uvNrFBI3vP0O69zbDM3WEEn1P1kQl+dHkaltzYKeoMOa/ekQmDwsHwnzji4uz1LpvfZkDhKI0+0icaSZzCbuY5AEN/dZi89hkGCfGswuIydVynT5hUEUtL1LT2wQrR6ct4b4u05l/BPCLevbgRPIsvVMybovLkQHfCJAwlIi6mAnqXZ7PVK3tACComMfFtaD9Pp2q1frdk+q8aQMWlFbEzEM/N+ZVCI2PqezWq9uN3JPLyx7TBxKN/fChnGJmGltm0tnCyMXLas88nMLAiFyufZTP7EX+m+dhCVW+AdR1QiRNHxI+uFVQkWroIP1q8Pt3ixyICQH+28TRzpDwRydrRRXHmMhOioXPnWfeh44rprVdY4xIyGm0KTYfOJ3M4Ok7zfG5IX8I4XP0B1caMnqNorzrTm2eu48lD/nRB1PannOqAtxpCEsv8J3FvRy4O9BBxdkLn5FOjskxFaVm0KJB3L4fjkZWv0DHttGbPmqm4a8QarmhT/vtoJ4C044pmdDQqh8o/8KnOqTA38cCv2twDTOIrHHv+t8BEdmk1FAFRFwQ7735yes9Pxkj7kSQgD491AvAys/2FYI193P3qmxGrIfSmlWvM40YG/W2n+3FHNkUhGsyQC69/5FOzDHGZfpJl8IfWWroB3//HXQwKyYPUuvI1T7sGKdGriuh1KRbBDBe4+VSlLPI8ZWjj7ymwtSvbExnTvJlwL0fOi54jXwbbZBrabCjqkSnvd5ELvV5MIdY72GiILDUpsblAjSJiZeV4RSz/5JRMppfVCyz6pxPAlwC8uRP9HlKakWB3ln6KTgQR+Xujn/kqVN5Z1gU1XnYjDWh20753JuQEwzMnyt3BmGL9SaOpd/QmF+BMX2lobjZZVA5vKhNly47EkylwZpNH3CtfaMmlzcUOm6HWsGUPHa4rLJob4kSztqU5Ma4iTezs0cpsbZ0cOQfLc3DUBTrUsswA7KEvmScdAOQnlG9jbJRdo3+4TXf0fSox9X3MuNbr09a2UBvK5ljt49LUJS5TDRGKGa8545COz/jfklg8C8luSoVY6y4cDiUbuK78DARyoQXYdXU11ol3ypLBOd0GK0Yh7grnsF6QqZB4PClpsR+bN2GZRCxvEFSxLGXeT65GVKsxWyfrFhEDvRcxvEagmINbJrhDe44ysDJEwhj1idCZUGScwCclNA5n8wlzMX0HRfFKPlzhL6W4xdWcqT5ZaKAJGntgsLr3WMAWqXrTRewKqC7Pc8BeV80ov8R+F/k2N/brnHZHX3wIyXFkhCVvolI4S4CLYCqKpFhpvLv79/9i8Ih8M3W6bsRjqIr7Akk20QqrO1kQlq40rXjQ8gdX+bZD6l6BfQLDuWGh+cenMqfIap0G1KceqhX6gsrhjTSo8Bl5Kyv3EdR1M8KOMAGeLGgCmHr8qH0NVdugJ5lH4LtUyQx0D9V09i6jP8SzvmkIeiVSRyO6XlwZyXMsJUe+xcJRXCcqgOu9S0YeqO5wz0rV3ElwQvWtdGbLSEr10uJhcTGWNppL14yLCNmUwp+5gYtcF6bN7AD0xhfTh2+DfBz6JSFd4yC46NHiozKYO8YEjZmlaxP+hLpPOKJvm01ohOg2bDeizlHdj0+TxOCZu/+fyNHB5vthVenzTpgRnhlMNt2acMeN9DAy0GogP1TjR0eFsx+m3LtMgrE8rC/SOyJ3lvRfugU+fep80qjfg5O6Ww/GYKGgpo7ZCFAcsjOHxyoZBnDfRHVyUwokqNzPFdsysJ7occi+GXhsKoUTkq0nr4NXE5vlz1P1/UylPQN16Gl4gwGhXBQ9sLyYJRMtayb9rJ6Nvc+bEecWmBbzdbgWeLmIm46cQODQ5gECZ/aslF9mbXRQzfPDHKtLNrmc2KhEeiwLRosaelq6OkFgukmDv+M257cFXXnAg+5DL7k4LI5GEsY/AfoJxcNV0zzd9xiY6RyKcee570mb9XxYKS8kzSIhlw0ZGW3Dt2ebNXSDubB9xTZxszqdH67Fd8seb1Iwcs/mwwcsdlZ9hJ8w7IOzDOpzjpcYxkPWBUqs8HvIPpBPOopbpA3wwQ2tDjFevIRMvViHpugg1sqBu50I2Ia766t7x8jPSiZd6sLZTtblHwB7/w/zUhbYM+c9OHJvpE0pXAP3iV/FCTv29XbomT2tbPCJ/7aauRyn4pYwL2gf4dxZeHBPZhRdevW62vAn8hlt09CzYOYzYP1vsggEs17ZmFMi+ceQpzROAXS0azz3a17ffRq93bioTj/pQ4t4yYaTEkOZrWgRj4uAGjAkp10uFFrGh7qkSRefAjtsrK9gspzKDuELbOrdGX+TQxiNBUOa78tK/XGqzZjLuLTWiukEW13cCdUhwuE8TWuyjO2ZviFBBHWcEe+tm6gyT2nutng572N3ywe1PcGm30vknYR2vxiHvi/lA02V8TW0p2jujiEJn20a2eYQEc5g2Y94k9gjkrakqSxhBbfHIoBIY/J9nre8l36DeGPH63JVvkPcib5RuI7fuNV1CSzOYECE1vxU027k+bIUuQ5sR8MHHwdQGAWsyu/CIN/ObmIC88fdWA7b3VQIRJqL0Adyl7WqfPk/OI5hNwxblfST5Q7FNf+wiUvswCcivUiT60RLm2hTVlOGZivw6pRQSC+ay4/3StjErVbVBYpX1JRgtQa3SYEXnIxxswhzSUWPYf1sTJhZs/BJQdVfI3+Nb8j+cYXK7xUGg7TiqM56BWqiCGrc117a3E2IjDgUUQ21p8bTKg2b6yf4wobc3dl66cWJRKItVkzveCQ+9Zn90irWOWcXJs0ccKL6GivYG2snF1/js7HZCyzHJvnRaADM79aVUGfCXCo+j62jpJKzMORU+odykC1i1Z5HaEJUP9ic+YShNzWhZn0K5NMcU//eN4SYpptlB23NMNJyN+qjpvPECaAmjIfvRdhOeUh30H7u1e0JhMXV0wqAmgPdYYVH3rcouIT0+G3daw1FtgPFlGCAZ74eFES3I5ayb3Rn7AqWqjIDyAj2jYvqyRdxFG4Fp0ZfUUErp4WLIRX9QKLzl1SSYxzEPAQ3V5NH3UteNl6wtr/TFky00wIBAEZOyZXtgbrVuGtjMJ1UhSX8+WUvt9cpvv+k9H8FxK/t6qb/dMCX6V0bpuZ+ZQUWxdZDg5blemi4YDVkuaK0SmOLGbUyRhZEZS9GrRTVL2tl9YqLv/c8ZIKIokJsH6xwbg/cuJg7mDsCRAFQNUAab+xUVpyl76av4g6nbZQPwcER4c4AABiHIZvKd4TTOuGx8zyC3jnHo/eJ80ZtLml3u7u47fEoECnn+HAcEnuKaW4Ph/Fahj8PueYwbOCjC9T75KtNaEoV/gEoFCV36nr5A0hb6q4iZu9EUiCNvZzAJ2tJcpq+vYg5+ZBz5g3I8ZoiiufCHI7TY281YxZGaHCQWMdQ7umbeDmGnwMyqM0W126W0ymlydxyMvIqSJnN/RKasM3N4xU8SC13HmjemZL44M6bioguCsQLBZyH6OqnqveDczcGMKNnWWEhwr784v89RqE7EZvUJVVvgSgDaEhfPSULELujGENdx+iVTmL0lIy2nsZLLqSfWQxb83crTPInCOcDeorkTVwYVgf8veet1qzatmLCWEBkU1lKQ8Gq8Mtuv2Ymmkw8qMyroBkDCm8Nl1xqDPiBIxGhPpp1JgTh6d8sglGj/gQAsiK6AuSOHjcJoh8/CQXtYWzQRH8a1PNRgVRvuLcEwUSC/Iy6PTj9Nb0Opv4w2QBygs2513Nflzx4j1N1wfi3ZhzWcrCHplZxbpipFy4D7Y/ElpsGSfAWY9I6NVjrvJrFYmABtkNZqi9L/tElcEebLk71/fUAhcqQxXcVXW+Gm3UZCC8e4RjiZj2QWCS6AdBuMT+1J9YR6KVZHgUX0hQ4Vz7FaZtLzwd39MvwcDzQBHB0fUuBiJ532TG4bTigiuZvCxczh27/3bbIuWhMquXf1WiPdQ0N51EPE9vyt1NR4F2y9f8K3v2hoUCCx5uWl1OjtNhRJOj9lZlwlwf9K4530BWqnyj5RnyxBvQV8l33twHWPJRpYFqPxONZF7l8wnMBEaklGut9YoLVCGjJW/OCYDUgrvf1UDxRjTnHsS4DZFML2ICcuoI1DT88j0KzGHlXiplqTkdnvLsg1th3huBxr4NjDgC12f1dsGAlpeXLjN1NpuKrd7/XOQ8XckMoWoZ/QKDkxHFeCUmzY9Hj2eVcKzq/KrQP7QtAyRrJMSqd/I1F8L3c+WIvFJGLYXad42B42clPxQZnLFddktj5Hlyg7tzbtfStr4cOm9C3B5/CPZtPP5L1wy8sRWmeS15tyaTI2rPr1obOyjRPc0gTkp4dU2Q9QLuufiIUoRwsYRM7ohbPOvvWgZtXtM979muz+tvWOYhPtMue1PiSnp+pX/zsHtybdlXW9eH0aGVeC0s3Yn/tHvvvMY2K+/9Y4XWDAs9ftEdkFHNqlqcqNNhmnlc2Tub2ksYT8+wIDG6Tj6rObOsfvII+rFEB15sBqfmJFmqxn/3rGZFZ8nZsRJfZ522ycbwkAtsZGmK7lxk9olHmrbXN/K2ZJUXMWE7iZnscOPluDqIZqBiWgenhWn3EG1vIv7oWT2QygB6MwhIjCFhQn0E61rPkrWGEKbEeRrP6aze7LVULuGJTZyTkA+PLdtVuULsHPcqFW089dzc7e6CDOQvvz/3BEFcxqgr96Xlkg3dHY9tdVdBvpogDJil7M9BeeLlQWZoDrL+eyqzLEWlDD56AdfIExPenl+DZ/rmW0HqE+nCAqQkQwSSfWAkiPd7jjXUf5oOa15/6FI05wqy8hQAoHV6TZNvq1ETZeB7VF/mJUS6Ygr5F+phwatXLT47xK+wgP3M6fc3GsvZgokDk9Fxmislmg6RkXo+7AbTIHEjxmggXizWc1cnYf+UVTnt/jp+oZ1/OQb9U+TCCFU7uimzPxTgU0sry0+7auSUQKi7COgd/sokhqc417DFKZzs3860bXRfKbNt5QhjkSXC5aTfvVLnsVxKgYLXoTM6LVLFstlK/yZoHEAIRDhml03eyVVs0pxQ5TqryvlJ5lR+O/B/7daGMdWVnn7prGyKRAvoOCuInNJM4DoeB7siejGiFO9IFg1kcBB2u8PgFY6xMXkHpiNbudjj7MQQWv53PATobQnykRfR/o0r+r8oRcLKb4RdprJw2JUH1wKfm+TMnF8gudZnS+IcRldz1cUocjJHdYTXy6PIb754bSJ3VBJeZVfE0uAVcMvu5BJopAU7r0a9fx9EUPhA9n7YmRLm+2yAF043yIP01ZCLrlQcL7dWSMNwocZXHrZ4h3aPrX32DM6pI6UQ9V7/PdkmD+/4Iq9AGJhHnCnLuHtvyOS3/6cFg7Gw34ZDNvconFBaCiGE51sYMUFWNGyuko1RGXzsVmd+xO7AT2ki5gRd3Zb63AUHkYEZuTrlLP5dvrwCF8eDfircOnUaexr8PQV/27n2Y3EqIs8O9k7Vr7wZ8DyA8+uxEGD82/d4OMZ0SvVo6NtKAuzwMCL/pkyguSs01FaLwtJjn6Gk/OCBWp413sjKw6SZJT7xn6SlIPC3PjRGgWlebkMOb17R/s5Ku78S3MKs/vejvl4QJi1kSMn5tY5K8pJj38jIi5nvSpNXXkSWuqgWz1GsE2am2wsK4mMm2BIj0xbzlhFHuoRLJSUB973d3FPyeqOBW9q4zw7w3CHfIsgv3F6nyqiprP49JK9v5eRFoiMa7B++9vtAad2qMpx4uzWPlwcUVa11g8UlyTuk5OjZkM38UnX6krn62ADxTuinlC/gC/9v05D4OPh4U0S8ousZkK+216M4g5ZdUvMNqkJ7qCd44BW0O4bwTC3mUtra74gY6TTS+dP6tpG/RoRvaDo1f9/+gafugGSb0EstyzlrfNdiJiC4IQMkHe+bdmPF1K9I34iJkhS9UriYGFW+780vJtuTvN+oJF7OhFHh9EI28gVPxCf+jekjW2pQRBr4fI9lMD3Hx8hDX5ZW27bapUa1qRocBsQT5ClhlvBzI953swiosEdbHvODv3emaWkt8W7IHAzVi7fzwSVamxwfWC9XxIFCoX+3Mo0kKBl60dhi/AfSI/p0sv+rnBEYMWWWdQ0MbXmYy08j0S9y38FFMK7ypEqbvx310qAyL47ejdGAN1OCCM7gdAA3/dUs8Uq/6sLiy6Ypys/7d+dtc54ZRXjqR+wfwQO+dWa9zJfMUjM6xwJFv1d6J/QMU68bLe4xAASQRCo78wtOesqz1D8EnZkcFqmPhAgzgVfnsxIyysL4s7p7qJPVQB6BIgUPI+tM+IUb/Qe0k8Iz2kmVWO+Au1nTAkRJEMFlNqH8wys9Kkoo6zjtFlIVkucdDFXPe9SfcE9eRdMVP3Pg3oircQ02tFX6pUtv8SLIMt/ypyiLaF9oIwYhyKwEHCJKt0tkJOdWz72TY4ThFM0bMqwNWEwNUM2aJC0gtAZxJrrhWrXXx23Z9rCtiSxPQlsIBnoK5OxItWKxPka6vx8AeiGi2d8IAPU0O0pH7bn/0o1zE8E33eb9iGosCfXaObmgK9ez0GNPfwU2ZUOvOcRW916t4zXR2ZxwBYXq8emX+m5Atkjcy2Nre1Ubrk+boNI8TK99iEJydIpzwATa4aSJ+Jg5G1qx0R0cSTV9ECVadxtAWWID5UDhaQtWzL9lylaziAn1eZWnswh9t7dEi3Ve9ViJFjoOW/ZHcuyEog+T1xdryE+QCnooCAydBZsJdwrP633W7MiwPWCVhWQHLzu4EmF0pB9TNNnyTnd+gtixVnWNlWz4DwhW7kvR1+PuNpOBW9t0+TP/S3hQpjB3uyp6gocqJ+B+T4g5xDD4W2yKlYPhgvEsG1poYn3Sy/re6oTVrmE1rtsKAicXpVO0AMW+6AuwDW/+tVn51mAaX/iHxOMmF5892jfU84qKl80GVnbD3zMhQCWgxUNLG9FUBH2OG30Xbynpuv9F5jQsgbDsRlpsSuTsvn36Uc67h06IiRcE85ZRkyNCRUQ65UbhFIi0PWbhxW+0XcFpLuETaEtfZ/NvFnd4wwwqM+iPz4xS62m+4rvyNvmLFj8a014rKgIG1T7sHXuuBYU3mOVvDISOHrFl3JXWWZPFhzikfZ9qqmiYejBs5b16jW94a9YER/Oba+JXQ467y+ez91Ps1IEKOqfioQefdix34iu3UEle1tA7X9bYPqQNl0QHbW4UUDDji0xJ4uyWSbXXMKE1X+kZcxK5Njh5hXOqUwuw2MQg8F2vgaWtoej5hzPOmvC9ZMmizzjcXVrRlTIPk7zklcNr685zksiMSfG00hchLMstiQm0Lddjs1NpCYY1glVRBGufH54dCKt9FmnD/EeBgcxA8NAlgVaRWajoF9FaHb/MsmyRYJzGmc6yF8iRni5AEZ/qoFh+zLle20XGQtL6wAGer97tr7QVzyhwdwB+XhBxZ5ZJdGHHL4+IFeYj8sFM91PIujN8cDqEuOJLVix2AL9QnuTrF8csZjb6VBFiSmv5z1nIs5OuxALjnlf94ANLBJt3cOPEA+ZZjktl5jfspAc+ojex3LPI6CTQhRRVhG+L6gSmAq1g/MK9wcCU96M/gGeb2ngyJaJNW92xMjeSNKk34AWrG+c9r/zXoyR5jEYXwGGZ72AXhqrEoVaFyxcMPSeG1L49r1NPcBFdoBej2GtwVfxNvmRdg/K2gKHIzAsO/QgmySyy4eC+wyBu3ZAvwLW4nEmZQuZXKKUXcUXvQsH4HO2RDWM8YaRCgAnpM5kTjfgo17kAjpk9P2PLGKcFzGAP8AL7vl6dnC0rSJnCUkyy+5Z9OO16horyJWnJLX4NUMdtXWTRvxyH7rUzU5PnxorotHwJZzDidRFYLiH4wFAXbzWsA7Q1LTpJpB0tLvjiQ1fU5zYUsneypauz913WwT1f7ouXDVBXofnwOl1X52H9OWBYJ9G+AU4yWQbj30QOKERgZIX61dFZoQLaLJAN327HEruAQ0MI/gJyC2MU5vn3WIrPQBDSBSePy6NyZFpCXypdCUWnniHtXoNKBsXmVBFh2GH6ziKElt0fyOB4pAZl8h5aIHgYVIAbfVhRw103H9jwXcwnCnYb67frOMMWvTcOnXORyTDWgif4X6uTxeBZmQSB30MVxTf815EacIqvqPiMFBOksLZLwKk8OgRCQxrqZcRlWVgAIJzPUzPgfFjx8q2xkBCVkcIesvDneGy6n37knPSNNEhE7Nn6SwctdSZXSekp14ZhU/SvhdglyEE0pv6ALjqzIHdGy8vvhWsmJiqMOq99iHOzy3e4ZOpMiALtnIdLy83lVD5/Lm/VySitOaTPxm/+J9X6LssdqgEWcuyv8a5NYTvX1Wio1Rfce+4MqaiqK84IZ/ig3rESzN7LNXn/Upuq3EX0/VJKT1Psdmy4kuqAAqj2D4p/tN4B+LxIr+NG6gE2z3MsrORQhHGcHBFBiKQxzLQf0OzQQLdHJT/WXAYcqUiGheeRZlIiW4R7EWsPBBQgl4XU8cTtJ8XtCOFzbB9LC0QJV0W16UQ7/WPBw4KSfV54wp4SVym1J21L93oy2ugJ9+fYQB+tdGUpkbSr9WjjVZUSjh9xcKXLcf3mxj9L9sJ8NvMuNRSm4wYkshQlGhki99n+DG676OEIqNbG4LtMofUrC7fsauQlE73ck6lBqubqWlOhqdUGXhNjePsNHtVZWaeT3nHFhPuPMO8BcHf9kloQTiOJIZQ9b1hXuCXq0OpiM69AWIsdbdMAwVLdMd3eOzvof5EDgZh9NtpK7dxYD2Rfxt92dOY995yc2+R16TFPtNtcLwySr6IKAj50CsWgqR5mLBSuOpHMqSxrbR1E8WTTUwPqJqmx88Q7yL8LaukNrTJSFWdR0cH97K8ZK7KH9lPxkrChmWyanUmw0LBpiRZJRHNIcSk1l4T+aY7+fnsCJEdTt8zSptphw8yIbhueac0YagR+dVm4lBTuS7rPZOeNynyh3kAapF67/RBLo5ApiJhRiWVFdoXekMwRcWmIUdEsLWELrrdi4rILVrVZnFep5opLHIvUD9T1lDAbHygzGJmoBTPC8kn9wkhOp1PA+aEa8BdoiA+ZAtcZKS1IThg9YFsYsahZUlvetPiR/7Ctiaj6phGgfHUozqSwG5datT90Mdp5vl9Ogas3U307/HKlduAULtt5kZdmqWOqqC1tSlMZmYVzKSBxvD8DpHtaOBZUjWlZevGugmrzIhwjh0ItJXFkqFvu3ROsdxJVDJotMRfp/VTTTmrVWLW9hocp7X4c4OC7mFWAHp6fLzs90gUB7BDcZBIXNTtM+TURDU87o2l22upAKZ1q4BcJ+SboOHqV1OKSx1gELEec8jMY0z8uy0/zpNGId+B/rNfVDnktZgJviUYplTSwdm1MXhKdpzmqLLa2+XLIkYOcmQgUUl9tGSS1MYFF4Zjqx+x6Tu5GeljqUlOblBjVSGOQhMkt0zvVkjFrQH91UHSfkJaQn0vBYvkU/yurDX3M03XoOhbJm1WhElJMFBnyhxB8zsInRPPYXoxoINIGuMxuGkI9GUoJTDVauakGJSp2SwOdMj0dYizhL62eBWolNUMO3ny4+r2jhuR8NAY9UL+VzxnDzU6LniufwFvwVbYDesUEIgSLMhF+/9oCvLsJ+feAhIIVsJ6TSF+fFbL6/IKt3ZJkVLQ4lmkRdgmT5zlL/Z3CdzGuoNJZykJzPyR9kqC1A01WWKD32mZDpA4+0nBN8FHilHKQqg5Z8Hz66LWwBK6BzLrCTruea3jPqHsl41Ft1lY+ke/GSFH/LBgIJ8MeGvTD0TVZfVJykEBIFNiOgOuo/zXCuZF3DuJy4NVZbzvvRJGShYJfumaBJnlnB+yR7LnnM44u0PMEWRImZRBCgp1eARZPdf58xWCEHdgTyE+AaPtFi+1WAR4nwc1gKdbZQ1KLAB3ZCVG8X3ivwN7VM4eG+oxlXOKii4l8VV7OqzHt6flZQFWzJqvvcksL0cma+irCZXavuzybHpC9/GkcMDBAnHfQOpnhrxlTk9pNBvgGRUFNuxR0ukMPFNd18o0AUp/I0Qjnio1OZxWlMG95Scb067BUIkK4soMJjHCHC3hq+ElNdk8hkrGvzlxFwRyYbghWNL2VYnFZ4bElpwaFcHY16MQpV5K0G3F5ID1n+KNj4yq3O6mlEmZgqzOhb1Eap92ixR/tJ9Ttvk7/twfF3l4jfybkBNx8BCPjcPjjjSFziIOJgFfdrTg1AOwhsjtUaVc1WmhyteqXTUjYgz2wfWtw29PlxezCYM/raI/5LfiYR46XsQExsPBRYB9BE6Y7ioz1/yvFWoZkM6r+9+VsFG522AsY7iOorC1+Qps9zf1KHhLGi4l9WeORmxrLN1ifsSfQUrWA/AxUANW18WwDYD2tEcuGUt3bQ86Vf7gxnEbBPeDSaov9LM+2O/4cs6QI6NcV7z6Raczx/Xvr3XiV/PnpOVSLH4jXp3rWnPwawcstmxNSLj2ap/cWBP4o2SJFm6wuYBYZJEz/nDz8iaYBbCwsi+H3VDqgp7fOuOwRxh7QIcttVvjHSwBepuZrrgOx9SEunJdcU5KlaBsboATAJnSUs6VRgjrBmHiqFueiTMpPkoCvFV1YWDiEVYD1zPRzb96nF2vqGUFiimDrKWTwcvNJdwH0+CfinDub538JT5c1IkVj3AuA+id72EIqE9jb5xcXNydS+qii+FDYGGnURN20nrC6TaMo5IRN3e05myqA3slNVDhGLq14V+x6+9dzNuctL74+mxrpd7d9cBXkhrHkLfAkvrwCxwvm5zEhQyx7CUcfNSMqAHbfsmfpHO/tfDxjPN8UGIhUr61EaR7KGYzvJ5J08Yn92MgXT24c5MUxYu23oLIq6VPZfJ0Eh4l8Z+EdTlqY5/l6DMNv2kIHqOQCrRM/Ne68uqb5IbJkem6h6HHScyG7lRU9m/GF38UgEgWouLE+mP0w8tjD+fxCOnIifTODolIYJXinF4S09clyLsNR5iN9LBlyTf/BPA8i8KIBXdmD9to/zJPpz66hXUgfKUlqzy6UbxGjhOpVDr0X/AYbj9UZC32qFRN7WbR4q7rO0FDnVdn+EBhiCYUXNKM+vV/RYr2sDeghSZzDqHCJSUjpXF4ysS8PXiAJFHVsBCpD7r5TbJokDRYPTjKKW8Czr0QDPeFVZg0+10+U6cDmT6Jwy30d8tDRyb6vPFyb2NzNNr32RoyWdK7gae6EAXiummyfi9fmsGpx8lUocxHxVT/Ew8TKRFXbRAp4IAxmUiXzxtPH0BzM5qH70y5aV5IJvBCx8CamCc9cDRopfN9yBkQu1ESQ6YDZ4IiRiYfkfk3g3mjWrB9pteJsrvPuyNv++cHGRgww6GtNQuHlztqZ/RuxOq5ghKPsCxS5zkXPpE2XOhX8yrc9MjyfVEOwfmkqG2uBV2BIa1LMb1PJd6Gade0yqmKiPMvjCLYO0HshEpBoOlixdDqFgr38BMlpevoaK/R1k5JtNo3U0ZwwQQ0NEUTaD2FibQuQ1LRFKwYr8/X5LQlh2zpnb1KYcxHJ6nVtbq3ziu5ijJZAdbiOZ9Cx1A7Ne1kChWp41CVY7GHLO64dlUzAjid/DoGSCD6mofTIP98b42iWV5QMoUX3bbg7M9phxfHnFidFiZ9earvqf2UvmaZ6bEHKw5fF4nRr/zt4gPxwl18a227bVq/kKZkAEAecD5JB6Wyo6MphUFog8tcO51D5xnaHCpZRLRj+Si+Fg7TejDJuzjYPWFynGINbSMvh52m4RH0F0XNSwak7rTT1PjYrqDykn4fb7KYCI+ogKwyMJg5AWdPYchZ+kZ53hLlYaigfWUs5VdK2gSDfnjGS3EltqrO5UPU+7Be98R3+1ZIaNLPxlQ01e4VPQmthqXM6vEgQAt4xhcArUxlC+dwzN47jpBwGpy7qR2sXvSSw2HHI8yShAOe9EGgiLglWOPCOzxwkgRYK3qbskIN87CTBU28EbHXCPmg5femGrOAwXcDwXhwkvbCVlcIgSNNixvx2SBVVSgBGTKIb0mceF1/elFShceO3QWGuURD+zA5tHxLqIBbEOfVh3jtV7RjjlRgt4R4x/THyn/mFMZMt8BludHJz3oM/p0xWw5uan6e5v4EMPkFyBq+FEe7j0VZ2edzl5OZHfEdiWP883kUKoqVrOOdwjm0XSBsnneqT3vhk67V+802r6L4hFJ8cTbUoSM0K4yFDpLFR0Im1djHjG1eLjEW2JQi89e+DDgGF7vKQ246LTHoiNIUE8agygxtTSVA/Wlc5CANxgzVbfayn3f4/pkyIGhKckJGqUWNTFA9LiJ3f3Two1fOLm/afQrW+W6anr39tOV9okSQafsU+flliiDFQsyb2g+nKcSBYBZgXS/cmMyA/d2ImGm3cOi0ygLtd3OfR/c+68gxY6IB7hMGekQrOCF4OlTGECFsWSkZ5pc95nxJ5z+GqRupi+Q5f+0I6YSelxQaHKg3CAp+9XQIRX8Mpr8AcVkY/ZbcWcOXRKDJzaA+SWOAQqaFbVWT96v3Sql16AKoIYkR2hWQhJVrzQE2kjunxe/0mM1rkXmB9gnTJ3piYkoCTZAdx1LaII1IZy+1hk5MgP/036LbNrb5wGYg3GUy/QjfkYZXj950kTTT9gFlriMa8nJvQAbOOjTvA2kBEGgc3Rn3vQAvW7rXMchTRPbuTcPBAkGerAa/rhTSdHd/Af7E34IOJcGVO27GjNnH5PRRmp2ROT8/1SVoqFZdh9mlhWIkOcj+ZqBsUPpJWI5BEXe3juAe6BgyjIp8/gwWEYrF6oPH3AtkJ8BsWC+3tRL40Tjnb3C5wlomsUCDTicK1RJyqKyB8y9mzKh3m62hE/sYTt7CzfB/1880XWERZlVdbVZxWs4V5uJh35aZNgmR1dtZi5r0t7IftgdcSyouaIJYJJocjiUl0f3k++AGgRE2qWKlBmWyNpVrgHARUCaV610fmHAbMAVq0JgHWv9i7QD0dq1us8yfLRz5WoLG9XXgo+w76rznTzvHEvKWYNO5SM4D8TLCxuR2fhMSSToJhUN24iYkV1AFxh6F1xDr8kXGl3IoPesgVQoDvgtCRsVGh/HOiZqrzFWy3gBZtme7tTbWAnNjkYn0WXe9STSLjeecFPGvh515T45JYDH/6Ap4feI6rHEUO1fGZ+4AYvAzWRMG1L+yRtuNmUQkm3uy/lNI3ZELmHqbXuNLRHt3qOliYNZmPK4yMFD7xSN0NZBd71AN1zk4cIQT7yc5tGIbsd1hc0j/LEK5s8kDxy5z18OlB48Am6DaYO9sC09BYiimzEQPM2hXckh3juoFY/MrNZJu3HWPUtUcvQPb8egQAgvdMZP64QDQfP+CX6fnvxwvKAoUkAk8bt5x39jdD9DlKA22hvpzp0I/gcId0NRwhityRaFyJMP5p3q6m9nlcCzMQWfnjqdYla606yYBdTtesjebdNZ1G2xue17aNKbFTRyMSmxAaqg+uyV/jqKO/Gvd1ofVLCzQ5gfIThXw1kiD8Uak1NQWKlJNyUlBtidr6Fwg72+FjU+kFoXciy69jNMk/vSW9ik4px89d+ZDynl5HSyxgygLuTurX5ZRzHYKJcdKoUyMDjThWUdGqNK4H70zqDNcMJw4KaUG/XzmhuKDgb40Qb7HRtAHNfNNeefOo6Hs2Xkjbg38TKR4GBB3JU5xO04tZWLfMtcVDrz4rLqwe2r8tRQy+q9pHO3B1H4RxWZ8VGAo7fwqZtrKQTq//JqQcsddHnHKUDdPTx7JGs7IyupoLWq7Q+D+VWRSG8aVMik2bfxenHUW45FDuZp3N1BPwddqQAFwOnJmMzNaT9iquVH29QbpkV5PJggRKCMi/FCPtsYgMnS3BAuFexmp8wwn+zqROphTXXISz+DRWnuZakvPACocYyN0NkQNZCz46EFLHBkk+IrIgj6NA5uolfWKwtmxBe+gtUgy2KUAAEwLF3Jt7kNCyjy+AXpImx/GmVtqvxRHdjpjtNkjFUazwg80/2OWJl7r5bM6k+A6SEbloiBz46PDZ6hZYD6GAj18ElSdgSBsUqMcXOnQl+b8kvEr58K8+xoZpCSUFkpKKqUDc8sZR4b7WR16JbhblJgMl6tCGldP9IfezQD+0ltBc5b9WS5Vg58iHU3fkhuu/gyPkYI5A1YcuQ+kNcLVKsg/Zq8LIUizfKtJ/06Psgpf2ZnAuRhenK8xfAEIBT8RwgVI1Hl4dGK1BxIkN0V41TJUGQVNOSsMrtTgoxkMQX+rxq3/6y/qBX1+zWyDUntjjujGCu00x7xSNydpGMhf/FO7sA9OfwBqXHUa6SrDef0O9zdnYsmwvV/egaMWz32O+74Braew8amPAVD6QuRebVTM0xjN9dxEtMmuyU3BX6Dks0cyiquZX8BzO8uiCpciPOTpZSunuiW2llrfbcOHAsKeoCnZzUI8JHqRpe63kuVsNiS0TIC2+4ybKCibbWKDGcxKOz4A9xbc9mrOI58euuefUNky8dvvm3EYLHb2JRA1THdZNCDVzjR3FMY54xQqxmT5IDMeVz8/GmpqGgD/7jVRMAKhXDPc6lyJ82NZWdIWmyC9sKsOaGH9arJaUk/Wdj1yCjonf24Gdzbl82/jeTGJ2cm0YP+x9/D2KDYeDFAloc15PCTLuM0dfB30vGpGnnVZgYVOdpl4ckhUO9LPxN6gaq39FVbVe9oG/ejmCv75/XfTlbbqCyL9sdd1VxcHK6IrMw1AUw6CPzxEHxyYhdVCnuU/3COKWzC15fRCnVmDNp6ND6lwgi1XyY9nin9C8T5HHHzYOTWAGS3+Na9d/uiNr93SfonJ7XDGCYoCl70TXS4RtzWn0flagte6RAkjf+cIolC/oz5H6JtxnpzJjjxv95h1N5BIHDgHekamFJi2r4xaAHavFf8AzqZaXh/0EYaf0eRgJy4qfcmRdjqSnxPqRnAFl7ko6dvJBImku/P7JTdsQCGiVpIH3ISC6EJx7vg6vdNd2734REQWowGwNP5boTDij2ZMQig3i7R6VPo4Jy8YyTET1emSDnEASDw1WbOoo06cju0B/z9HRSZ4YqNAv7KPo0NOcmfBSOz26JM9AOech1B1J5rhzFlw9ZFqHCKs7e6cJwJCUHaxsa38sC0Uzs0WLy2lYvCPZaryCwY5EucXf94UU/k7y+gCNYPXntwmCLRiEFIGWHq4xv5sUPmClsy48eIBQcngyg/KVy8aKycsDNoKA5atYpQPsLJ9mfIiRe72A/XNbPzOS+XILcWRTvwQ70kv8vB8/wggvKnUmBSgIvUuNOm2a33K/EJxcgp2yMjwe1wxiyYlAg6lozAdCVTyLZF1n8r9yvb+A+K0tt3HpwG3fHgPN7bhG5lg9gBDLTZ491SEe9BpX4TW4BC7/avYaNRP5FEwlFFeFDYJj3O0XD1NZb7clouUAVHmGu2/fP4M6x2xB1CED8hpxcw2x/i30kypzSiRta/B6Dbue0qcPsNCWxgdas7dowMl6wWolwzUSQFBZoEwl9whPx7GEKtocbnsFw6Or1mVS7RR6UYodzoa3WLGLYEUmtocZCtUTxxeUnkstgjrTGly1U1oZEe8k7bwteVC5T9iA878dV5fF6m0ujnyXAiTDuhXS4uUVKXQtyb7blFU8nHLRuhG7BciKnNewTbDIONIk+G+fj7L0pRbFAQweZOLFyASrhtaF50ATKmbUdqp2Pfo5qaaA0mZi5UsC/CXw5og9BjVADkXGryboyYl/uNFQfm14J/pP5nLM/5PYY9GeFVn6OgjkC5VQ4Ifz0+VRoCK4J4F+rvyhyWzI3OicWo6Oe1ZoK6cNXM6nAOZPKWGUqurZofGjwjuflOMTXiPnYI7+x4ABfZGtoJ95cpNw7VnhX85vhHCaPEDPLkJL9TbwT2vuNTefHS1pOQJ7noojdSzHQIe3ntyUpok8N3n7678AFAvPhNim2HUmZtfQ2MEvCPgL+gLSGYGHozl8LRtZBpRTjKRTm85kyZEODtegDjOPce0Zf3J0oYfo7k0iezG/RVZbvJqPkHJ8AeULYiFjjYlgO9d9O4HmD3FTwrvtof5uoCrYuJNKhD+Lm6opriBwPkgrWKPYhwbwl3MIS4bn1IQo58+kxvE+VVWzIX6+Xq9rdRE7X6xvTX6bkOx44FiObwr+2xf7up0qGlTBa6lWkCWfXpX2rtg16XL5j3J8tW51nCjFZj22QX+7K0ufHeRIOliAt9blwILZRm3DG0po8j7C0y7s3fkPlBz7v0X05iTPLNg9lcCnxAhGyHYTXRVTUmYSplmfLxkHKhoHUoMyh/VXUhxjsEGBZI56Nd5NlVwOsKRsFcWmdQqvbXhyVCDE6wbRYr5V2FmP2Payd9yHlLV9sZvAZflTjC+oRLAjYnmSl3hWnyqajOBb7uZ3oJ/fMLv6QxhX3drUEsT3wNsHFu8/FbAq+MFwb0zNX4XiIvDgXk7ywWxPo8Ik+i9FMn6GF3vCsL+7W451bSCrh3V0dYi5cFsNOjip+hjTYY4/TwewvJqfQ8KoETwiIrvL89HKC34nqFRK/T3R6Ny+SYCV1JRxFc9Yok55AFE6UzyKrVVysSqzrLFU+lhFMJKcpOOoRFD1k4A7TGQR4d01dOH60qwA9Cj7lFrkcsFOYilWnAvPfjrzlv58sMQBfzOAuCAqAzyCJ6uSL+AsWF/pxETMOfEPIaYP8vMbazGEiH4yJVJxQS6iuOdKoMtCBETJPQiEmOdOdWk4vqVmfqds+82dmMb2oJ5MvXb+snbetPvGX4wBS9cT/eo6gcsj/P2Qp/y+dAAmoJv1v4hZvyNr4VrblXOYzwqXktMrAr7Co+oZrZcGjoJQmC5aIF4HMkfuPOJpXKzpwx+2w+jzY2kLSr7HHqWYu3uICkdimErB4kIdAyMcgjN9I+JD58HKYbUBFEmXOucfHHmp9g5ApzTl1C2f6I+4FR+zjjcO3x6dMeFVXg4sbeZUoqxb+4/2SLmspBRMKaTqLFURhScfg7qyE1ogUHkSO9gaMfpF/LbPhgR1X8fcKXc+GdzIAYxOhX5IYHewllWymnIP8rsDuqYIQ8TH/SRGYWDmsfYOrP3zPplA1x0ZJ0vHqHRot0ITiOTk9EtBs01rNUmOiVbYtl7xJZGGq93VIfoNfLxuuVJfyKXWM2XSmKhW5VGwYO9+aJ5NG0I4eyvqR6fE/RdLtztt6C8rPn2qkHXYmXgIJoojfzUnDsvgvTc21TgiXA5ON3ekv8Fs8MHDkgbg5SlxjA10jdgvJIl3uE9kfDpn8I+d6/vsYI5vF/vFVEWDH4sHxvRyAMlhESMem1kK5sUxcckzpByCbzhzwuR6oDZbJv9i1lkNUS4lBJNUV2FX/EQJFA/i3kuJn7QKolSU9t0E5KjOuJ7cGghnYaii93tjnV9KejL5n8uUNllSGIylUW98SPUCSIvHyc20OJe+H7nAIVKmkoArDej6M35/jtm+jR6cruMSaKy90VkAA7ahZ7APYu7mLghWWyuSGnLFKl756GdcBPn6rrNZCrsTD4k8oZS3j0lmssZwwnxllbxkxWlYej4OC+mt50l25/evToa4LMGGGJ6a6PqSWbrnLxQbu6qGyQS6hMHZQ87ubZxA1v1f4CSI2RM0lQZPqBFMgVvLQKwC4Opk7fA0U5aeX8AMaZ8dfS6TIbWunJQ0xf0+0ft/gkGFf0Hn75O7j+xbsUWLvabsWH3vYQnazforcouU++lYDbKZACyVBDYmQ0Y07tlLyWiOhuj8LA3fG8M/wdtuDAmzgrnzN++mu4r4b7RpnVaBlBmeHqp0He+v+G0v7GYn0CVGSvIgiF59fEcc8RCUbVpiWJERSPDstLl0gzyU2GSpV3mskFT5gQXrBnkFttY47Uv3KEL59JHov9huGMe4URC70qrOxmrdSGwS4sLijEhwexB1FhDJBdUbFwKJkqBmvQFz7mSCLovVNg5BCmp9AnmUGKoABgjqXOFqesLZQwpQRQAMnBShyW3NMxnWbdTXoVTvc3gIGAPfVRwa5eSv3zf8vFXg41ndmkjcgDYT6WAZAyXQ9sqzY5X1IS5cvAXcSDeWuRVvssFvopOryHXjcuD4fYHrZTypNt31/7K7O+lExLUsDPhbt7As3rW1cS9U5T23QhQGTvEFqJDK1qYM2rM4/oHWrE0Lk5Ss07V0EFdPqFZoIbEEh0q54t/FxiqPDPBLJ9Ghm8iO7j4UdaH+8gd2BvvOBXhcTlbAU+CF6m+aWY7LtlufVrfLKytjxBT5D6gle2sGNK0cGkCYKa2YLzpe5gFP5l1eg/Ejw+o/GbDddz3hHzKFPBbed50OVbpV5sierFdOQs2w+EaL8BfwivrZdqN16L+8508D6Or5f6PpTL9arF6a4Rkke3iyFrIbWWB715XeqdS5WKs1G2cZJkjL4hWNyizgrZmHtgLanRghd6KfNIq/jn812QGX7ft5EYm9u+QdZpSgeNlUpzQ7lHq2Cx7HoUSAuyDvPzBRx5QglpH7hzlTiOXspm+a57klwIuWkhPEC5SJARREjDGk2fjpNPlVMvykYPh5skRoiTG1was69eSQiZHtkPFdH+KXuteainkJJ0BxzCgbS4ZP2584b2XUktffBb/gGZsXGvD/OhHDo+wN4jIXebWdmx9sMh6sdkEHtB7rovPYdz38oKLB3xeZvcqT0t7y7Rj8k/ko/KpPv2W5Dv/jg7MPMPRvu7FAE0HjkHOGTtXz2fNqBweOZcic4owpR/U237L+neH4uN0v3MAW37XJhNVkoubOIZb/zRa0J9eUup4BOSzFPUcAvWQZU+eqOsedmDMRQRAHKsGP2dy1W0VtPQi0hYfdt6bg33eHwli7uBSEuQZTwLndSkDvM0l4DIX/Uwn+V2ZZ6SimzZzQkj6NxN8f49neh6U0f/IMmKbZ/MTSSPVIDSW7jJ/F/D85i8t5QBSYxws2cF4MSf+vKFuWgxbLgxW70cWJa/m1iKcuCvMAwXdHcbQiRyZfta9Y7fOZKcpZP7ylwiAvXhNH+a/+dO6TA+zlYX4DsPVcj/Yzp5RQTITjt101Fk+vHqmmZbn+iA9mwz5cBUW9uWLc/xYb8g5FC80iPL4SoFaXUpn+cDJYCgWA9P9gbKfBVR1+qJxaXZ3yjHYYgkul+3d4HxhrEsMIEEQPi+rOfCJfx57lX8P+Z7L7dDvCLMZpnE5g8PgEzeCxzZ92mtyR5kpYsmcR7QHDA8gedkGGwDBeED9ryJ1qLsUZqp3waRng+BZCx86e+vN+mlbV3xDxKQiBFb6/8gWTr9W5WYRgrNhySTMbiy8+jiEBmgIEUzCZ3AsbIp9m+Phcw+cjtVr7llYHrrWX0swrwKcKHrmHa0qNdv983bdGHlKVMAHdh/wVMBU7CjA8P0tOoTmWUyieXQYlDCVTrCTJp5vyEWSnYv+Vmzl3y3wMWzJuD3Wovo/Gi6ZGsFUI5Yl54aXkZzg00Tx6w9VMc5XAkY1PHdXfdNsi7WklOTUbOnsj+pTFEynat4p3bOG4oknKeurzFgGaUF4hzpKj2VgbhVuGAj98br3esu5vuDLA0NM7RUM04PzIHPPZWP2ugmAskA+3LEKEVT9fJBhrZbnu3WVthBX8Tzgr57qxoe5cO8Bbc2LX4JZmEexfCA1MjyG/BF8lcay96dK3qrWuG+uDBG2uvO1Sm4aeZuB7yvUZpMjtyCnuH30QOletjeNKWhAKEsLVfn85a2DChOlIA1B/O09MbtYNRsRKIq6dTbr9s2ozVZLbYeLFororj2hL+U0hb8Y1BW3nbVf0NctWd40LuqfNDq6txOQPIG4hX86aVoEoh/mG3ftX6zQWsPBPfX7WYeHzTGUHqVOYiwcLOmIXjLrtnQpnuqAX1Iaiq1rCrAGg7bGaMAeofJ2o3MfWq3xfngIiyx15CK9uCBKUNR4Xh/h5YHa9+T/7TuNGcac8GTwI7oYVmILUEMMMLk0JT03qmvj84Ff0fgq7retkPDrTTsgsJt81AhqCqi1a20i3p0bD0IVRYpuwjOYZztam2ewDJ5dz+y/Xe6vma6DkJzy+JMT4ThyloDEJ8Q2TEZVj0+JXRoAeXqf4Kmo6EeWxWzWramC+v/PM7YYCuhs8AKbyAaEd5sFZU8OvyjMIIpQkeKpTEKRwjm6VapBGoGxjsNHAj5N7931qwSmPSSvkTTyjRzc12PZUvKBMK3O4Y/CSiroqjIuy5SSamXfXWpZJ0y2/hXZRSzB2y2Zgw/89dqzHoEnPBxuuGerUYJ4fH1l0htEHL4KKgy0mjEY7SHjCAY+gB2b72HxQWyRwXnlln0ZRcHCPt8dCdF2eNK87qLWk4+T5DH4T4NAtBgIYDOPFDj7CJh5fuWhy5TIxQ6eAlqipHXFGNMSqXwvUsBjaySgq1Wcsb8axPssvnk7ON6em7GzecLFWAIOuGcxG2NxHIXYGUplC5QHX4dVqXiRWVZlI9r+OpR9lewTS2TREvOhGHlIGzSXGFYuw8N6Rq8QyspK3P8EgoxWK+hvX99C4Uq7IQBlfkZnmwzANCup8X3sS6OSXUlz2ZNYxw1uf2b4nTheLRvKHOzoU3DwErLBTCHe4YU7WTUZT4QONv0Uh4Av2EjzDdEuFjTCtx9+0uZOeKWzJ9TH9CpRhKNr/KFFC1GCVSH5vTbUZV91UmPexrOBwJN1gww8XtLtOlpaxXTONN1j/xHPlb+03Q8giPQ7v/0MMiQ6f/i588HP//BrbLt9hZ2b8diH0Kus8Cj8VCswUK842SKGbZiuQkDEBTxGnlHO7yJBbpNCEE8b68hwUGovNpcM5FpeTSYxRrDaZy9A8l+vat5mOlQK70zDdxruUKAShlBD2WGqnQxau5h4yH6lbthZyxBGfXAQy2w7mtDJHe2zkZOhh7TbvPIRz57tH52RyHNXDCL4hTl0h6U9/ng73V9akzhvG0gHQElxSktHn28Go2rInplq4VZ1Pcz3FPOGQsflXhI78fXDyPwDCdPtDwKjzRMy1T8idF83nsTxtKbUlL03te+XuJDOERDtFhYR75A/nKl9AQRJfd0QZtoeihXfeL9n6fx55+iW8ZLng3Ld/WhndCRs+xuftFNUPGu+pelBN0cSfa1W/4wUUqw3a41JrVex4Jgd3gCzOuK+PCBmMjAZDddaGOw9dOQorzt9SKIg/y6tbGlz2iTWf6M+RfQSVUmrtZ5PqRnqRRdk5/l9oefov6b7dPdxDf/WMVLE/UHqbtpLPvKqLSX+KGTOaB/qgAOs/CpGWXyixtxMT+1Avj2WOlMybmMS4hsCdx9RErs5aIC69z0fmh5/c8nnaqLnNljnNEmM46zYmVwd6XJgJwsK6cQYTBN2yQB0u6+fXkP9FzFmkrAQOAUpxAuCt+owmhSAZZ4VZ4jivpcJ6+S0F7HyFOwpvS8fGGaymDwFptUCBSw6x6RLrh+9D0ZG4sH+kzYfHPlK+GgpVQ3hBMj1XxrRkwt4BgfaB9ApjPQ9FC4h2BuckZPNEkzmAN9MmNdVyLVv1JvhXbU+TPNeVmwMOsxB6VHd43RzCLMg/Pep+AeU6DmVE2rqcfamxMBJfGPFwuwtlJe1v9ZL7cpI2LY7H/FUKDdf8Nhb2GMWOjJQhWGQ1+FkyCXUpIcPXdXF1DxC2seyYelmIHBv3N/usOBNx7LwcePGHWfcJnl6V6iveLrIXJZBWxj2ClXM96AiN+hKTnyy0c6luHk8b7R5wOVKiBtMZxF31jQ+CrZBet3jDCutX23bfCG+MprtjQlvxNaLwdUEkZkukb7KifpJ7lCInePmn6TquuCKS0fm31oti7QIboheY0n1H+Gk8Jsxmi6AbVYE0slM0novIkypS723RxaZiOi7N5QG28AnhWAjxIHjJ99WHRg1DQE900F583de4Og93hRWu5/Jo50CGMif3HMDxD1+cQQLWHmwnb20q6kbR6cJyx26O4ffAml3NKQn9F7KsFKMe3NhXEMyiDnlhC4PKFOFHYVFLKIfPYTnBh+kgsPDwTJBiBrZuzc0nmgizqSMpeIvN892XNpbPWMPdx9sQMEqhFQhiIWbvY8DX5ngWhxqtNtz16/N0757cGRvN+7dREcW82yy8WAqz5DPDUDM53NcIt8NXZpeMrdy7VpYMvVAEimJB4xBSF77KzkEqmqVPC3jp4YnFza8vPqtLX/tg+7P8DOVlzsu8J2wa809jz91B8h6BXlV58PgupFzHyplPtaYwR13+W0jZuc7l5mCZxCSQlkk4z6JmK1RmgOD7Zesu2yBti6FOxd2c2VqgFGhF1a36e3aPucTm4IsRmtDO++l9hfq4pQGInkMK6uZPqKmTf1+wIR3diqLDbpLq438B9AbQsmO/yEWwWmuPumUVVGQa7XtII3z2gkDZfhyHr8LinLhSYpfFGeAa5pDUHpzymhgWIQV53aCUSFx//rLbu98Q6+IPQzZ8XVQhH3Fa3NJYS3dUIzl3BJfGRa1n5Pes9pmWMOsBNkeesi4L8Pw7QvkqkVjfHs0v3hv9cKJvXokuKBr+QIx/aDHvOE2oiGSdRjRGIwvNYZDlX6AYKgXeDGRlfv0VtJ2A/iM+qxouqc55Ft1652OPkl/c7snNxW/JVf4ZkOZtb4HuJd+Z/Te3HDGF+a7ItPhcejAYG1Fu7xNz8kPQdxXx+Zm9TIzg7QqfZgPrXIkwh7dNIwUAlyHzyuOjBZx6lcUM+metd+mC0A+jq0Daxy7Fpym0rPtVHFWzX/C3HkP87Y6wd//RU09sP4YtqX87A1IQF1c3p0G/Wz0TIdcdMmv3X85FUzrJjlgyglafRTJkhkM1D4ezSO51Lj32RvupPSANGmGlsZpaZ2Ze8kiaoxib7Y15/e/+yOSSynsCSsYm8D9L2clMWzVoRqyJcNuAfI7k4Gu8AXfmWXdkmMrUSKFp9NPn2g0SuRPlKfLAWUi0qG37Efzxj5YO7Yr/Ol3sRP4tv6KBfk4Iy44VA29tCWtktdnowWJIEV9gbANRqclZGRKU8/tTwH5wLsdIJ8uy3BgVQln411+WdGuVE8dwILkyn7iojUZiUby9O1+r9o1U6XXj1A3ngY2orrG2FK8TOcTi4J1oUysUO6eyAceVmd8Fq9YM9Nqkb8Q/61NxPxFig+OzJXoVMx2Af9i3XfPtF9k8uLi4i6kRX6zsVkkGgYBjD92GgSO1O6KLASBK2eBfUW6kpPmDn+wmh+db9ChCSTlLprraIrOMyke7NCsRwFQMm5IU8p8cpWHhw8AEketgVC+1sXbqSindRDLbvB3wNMrxltQQGCXSO3EbknM9ACJ7EYQqvN+vwaV0IDsprFr2QoCaqUsSohBGzEOh83YKV39Q6TTh+lBK3YKLCqJxxeA3Rhq6GScMcldU/aQk9of/9ijj9Q5jgkAEp2e+d3D8FvmJKdUFx19KrQcHVI53rwYkr0cO0uhxEfnTN2iLDRX37okMJC39x4Iz23YnYmbTvQ6LGY0cBXSybiJdf0hrM7wI9KqFa5rjN2Hl5q1/3Xvmb8w5FE0sOYraQrdgolLCBuZrIrxPTOBaDkdIX2HeDe2dDfXkfMmWjqMX69HycRvZzirqzMMlZX7baRtAaNhlM8/mlgq1qbUh0lXKZKCXjGnF/XlQ17npB8Ei9H3vc4dzAs0i7gEsjmMwe2c5OIoHMWNnSDnwkdY9OM2BPDGDAlWr5fOTdLUPB+J2tx5Y0Saghs92ljzc0gSYlmgYBAAToxwebbpmp1wvDD4JmZTHFgrG4BPo04D6Nzl5ivYNTgxFIteaUPQXpJnAcixUTGlvHuGAKX/yBREFXVYkiwv2ULvn1EWx3W+o1WgnMR1cp1chFbzjnRaNloyuZTsniGU2WpItsr9FBpCOod0mUQBi3MEYulKAuqwuJnrl/3DOgvRgqADRU/uVG58BI8w0vqI8ux0ceVxAdOIfJIJ8cOyuHcFP54I3ItYXK/JUQwvmCLEhh4GOPDSY+3FZFvkopw96khpefIMb4NlCBYW0sk0fL/RceoB/tBeZYAiqQqyyjhP9UfIFWGhTuGlI+vM1tlljuvL3hCoOEiGBMB5nG8ZQbr64ElOu/2xgLh2smlzqd7LIs+6b1KLZALqT5GZHAwmo6O1RABvOuQIjTL75ATG3NfH+AEOuNsKLSZX0R3wh/A/ipV1QYszCwB3Yjh4I9NJfNspcbadQnLivx+S5b6zSmvn6mccA4S6Uvl4T8L/rDsXyCiYUHvlPwT0liaoVJkjl2zlQ2Fw3ov0AYaCEpMTaKl7PrJI/B0hGodQyopsIbHg/y5od1XTei22MR8JhtvLaHsefAB4mR4HUMlTRFBIGxGtY5LoodfjRlJ4Jufq3rYsHn/+zlrP5Put5KD4BIRA/Ld0Ni1WW5TBoASk5AlO+OvQJDLuZ4th0nX1UlUMZ7A8CThToGHlc7CM792+cnEZ13J2UQA4b9OxVDhtJplmxRsANMTzJbu0wgiRFC/o3UpAiQWbiRmrZNDDNBY6+HBfF9ghvg19KH+kesgE+slSaOsWKv9oLOEiZBL6xwldSpQOucJA1lxeG6qpfl0sBIds6aR1EteM4AIWR0x2xKAqenXnEpV9rpC5Uj0g0LCU74Qwg34YQnqmHypM7jk0mDURX+h+w8F7lMcOVuiKFZLaoZYkpOz0z8B0FjpH4i13YYc1A6ipvMMtZFvLkOmCwDrK/BUdewbbtbRtMnvi3Oyo1AlAIMwmIDQvnavMYhg5pmBNSA7/N96IvPczT7k39W3SVitsFtJC5NgPOdn6VoWnyq/q2oRQEb9bAUAcvv17qaWDlo9gmBd9YAQFx3OLEzoy/gzPHhv2UjF1S3z5dt6SUooyJyigec7a3oXN+UpsHDydnq1X6gA08DXet06pTeGwDFAyvt+OCJUyej3z5UrQspMZIrHqH8+0qTnBLL6iWBKJxkDS530M6JBD/fOk6hCqcLuAwgUAuuzE92qE8yn//CFxQEq1d1LeYk8kIhNLODJEGt+7LMd5TpV6+5vbvEs9HXpU9MAHCnR6IL3iSKtv4sA9BMV/jWUaFhhI6nRlXIc35dRkDAgQPz2FzWO44iKYqpa9AKpU6T7PFG/X4nTDAcbOc/0qKyZ1GIU/8QnFbUMnaofY+wB+uI2XlxjYJErfGJWgEEb7J8doJKwazifhEYVsVIoSdE+oZ5rRdJqLqnLK606Z14COulbrTMAPMMGXoBklZUoBHYZjUQISIoYvmI+fc/CoX/89HyFmWjm0cUmyukgqFM04Lj7WRcYajOqHtU387AXNcr1fZH0GtcwawopoBhlu38M6/qIGy7WGxGFn8YDXvlMp8/5mf/wwguyLCFNjNOoAVsk2wFlv1I1m0UYh0FkoceIB2y6qFr1VtCQss8uYeoLuByB12GZNZ22nlfId256v8XbeJoNqKaWjIvfjmizs5x8s0XDxqAfvoY99BCOR33d1hZKWlE5MH+k1ld41PzKjNiTJu+0SQLxLQxqdBcIWgyCRY8+N+l5mg9UwPOYxUUS46X+NHAKOoqoNnzS0+MMITL5+e9dgNuufqDxRKVsedJS0mjQssEYN2ltgZp3RyJ1z6BrX7dktXupQoASJ8h1ifCEJOLsD81DATSKlPzBCt8LTGoz7kvw0OSvei4NxLKmYe+2vp3iDywPyFErvyl8xGbmEofS4ifR+tx6ijvg6N/bbOJQ38cA+gOVUNH7mKNpEOLwJV8s65kNqumZJyj9is1viBR+yHecY02RIoSAnA8kS2wtuL4ayNfBaETEydT1C0vg0iNxMJQHuPnPVshREZzY12t+wDwCcB5YCvPEjXhxes1TZF/Mbu1OiokHL/Ebh3ro3xHubSHVPTdUt06+kE6P0nWjHeoH4wp/7Ze3BxnQDj1Uj7STFjEsRzCi2zRZjS1bBPzVG+GrB9JTaxk1XJP9JdwlbPLwaEml2L7ALbHqrkwwqVwgJ2YW4sedpDnfUhaf4RczC/Gc2w8SCMikILxccf7tIfM6gqvFwT3bpn2rAyP1SgqdO3bUSOjJYixsqFl0CAf5iCTBZ5TMHKQ9LN53wDzl8u78Y5bzMBiV0esG8c0/1mIkzLyIv5VCQmJ0d0UL4KVlwkvAys3Gk/TvYvROT8dvL6sEP2R3nlDVUz5h8w85TxkAXFdnWLYEvy2PH1h6OnbJC2nbrQHmw6ce3WPZjREzm2ykJAb65EcW7aTXLDhuSryerNewYV6eNhdAmhxZ/oHLuBAQ/39M4LHxZbncxSn9BvzIP15wDOV2o421nHBvJOZ7J1lj3F+TPS2YXv+MQ2RZ4lpKH0czXa62p5kuqhy+te1CproInIMrg8uacBY6Tk3fN0oxykgvBEKR7TFGT++cR6Vscq18hCS4En3LuS9rLzeFdFtzdE+6Qxjv18h44pePlqFTP69KPCRPmT+zMaWSCByFpNK1mtNjJ0BsBij+YFrlbq/mAz1jANdlvjmjPAg/obD7GgfsC5X21bTRy0xN0Vw0GOhr9BtZspQS67K+tXDlsjlw3phdXtbjl4/Qp30c/qwfosyiaa2pEKZS2b7k5KvabYYFp+wEQszHuYtn0VbSdGqRIsBe6BP6EHhRaus4vasZYKGhYadHBuoGV+F3acElLC/bNdX2WUZR0V7iWAs9aJNqK+dy8GW1AfDOeSYxgxfevgQtwTXK1kEChQ2W04ko6C3sD9HIv+3uWGl1haoXw9BVJcb/OlSQhgCHOir+rAXcMcM9ou0sbqd2ON0cZvFZfawfWKx+v5Bs81ciS4fUyqyNyaUb4jo0nwwnQvk+KCL0OS5W8p2sBhUesR3NFmjgbKMIoUqNySLhns05da1QwftlrEutS0lEo6G+jG8u6l95SX9IyKXD2r8oh4DGQpXJaucNcFhOZzOixHaEEhOTNm0lmVw58ZegkIacJy1ldc9kJaMuwn0EP78/p796w0/QaKx5yAPQe3FjZIg8lqJ0rH6hD91/HNPNGJP2JXxTflBBhnk36avGrZi6uWiA0f2ZB+IfdNrjPPMdYUH39vVpewjkAHg9Xo+c47Z2W1EeXLOFaAIOb6aOw6BlFWhinEk9WtgchVGPp8OsAm+X/JJAwqHeFHb8pbFRTecqkiPvMmfxlPRLVjbb1MmsIRZxCC0RuV4Wyb98xZi0Ti9D68F+49tdD1vgMolSXr9ervEpEk2XSzGE33U05KnpH18jGZDNSOzHgl2sF4U0F/hYA8RyRBykFLAtO8R28ZGXJ1Vx6pyNZWKXFkTN0opMFcT+yuUNpkNmTukmuHle5y2yXvj8yE3XTFY4r2bjDdSjyQtqsmwS7wRGUoT9W3Hw+pPXiKFvjI1+Mz2bNFt25cSAzsgaO5mk6XrwvzFeroaQtnEyTLoHsJ80IWDINtn73GNdrnI8NevBOYZA9X9Qw2WXUIo66lM0N+icOparzvb+f/8jni3FwbOcuOcp2/ywYj6ql0EjsOnYT23q0TTIxj17Fc9wrNgDCQmJz9l7Xg6lcCT7J73r+AX82J6ahS8o8PvQwApD8EKeOOYTwm9ynPq9VW6bF4+sUrGe1I7xIg0IhGl4AXWD05e3jqfQnoGojWGiZuxKjwi1HOnRClcbV+tyZNCG1DIv54kVOK8Nih4dNl7PNUCzPV3yqt+3TfBE6pUCBlLtY/pg5shk7x78FbAW5ZdAy4kinQc5wTQHg0RiYXEeF7fxBlKaQRbpo9cELUwMBzzzh5eKR5oJMWwhilgraKrDFUrVhdgpIzPwqLHVCUra6AqVW2Xbk8CXN0K9mukhJ+9GGdXWtBpsLPhmD6XnCs2F79FNF+zbAbgK/aEeHi6Cxnn13bblL/sqaJrP8ZvjO75l1ifNmYLarESHTrYnLCitT3BZXUjL9PHoEFW8K8SALtfS13lmMIHZMUO64qtc87wds/DRxbIlvQtMAyU6YpzvXylE0zqGU0rxlBPvWwXVvwOcwIgZ/UfSed+Eqcb4NOTNzSnLhywh2YgwtCxD3mWKg5gclSVu0PXEUgEGkQOhbQc0dcLxlCAdr7yOprolU6bNDYJ6uWys7eL94sQjzwe29iSkNP/VX65nLhfC074b2k9tgipcTLsUGn05GbQ8l4OqOpGY40/pY9HqALiiqjIFvXFkLjpJCItzir0k1/4uG0WOE1sX4MsTANAVk5treNgxMPWt0MGShzBAarqDDmt+wBHEr2sHxMb7izphMvyF90ItWyxyx2PKkXyBUAa+SpPkaA/ZbRJzhWnGYrVynffAuvDBrw+PWgm/0auXNfchgL6jkBGN5/hWs2dGRjDxvJDLIDSvp92HVQdnEZ/PbvIfkEp8KxU3V6ZqYGT4tLrlXOpgZhuEt8uynm7Iz8dBvG0mSWuFOq3bDyEzgFtBEAVWqsG09O4Sc00TldhfIseLSCJnVIKYEXUV3ewMZzz7M0d4ldWAebwiLa+jgjbzO7HBaKu8LoDym6qiRRXUi7TRs7XIOBJ6DLcAs2hGHjnFojuFWX7rgXR3ty4Y+syqwLUvNhhj+Fz4eCStlCFbxPtznIXYNoqVZo06g4LwZEdJpxLZ1/QbNI06Jvg2OrZ9Jn7LkYaYcHSH1mQYUHGseA1Kj1zoPi2spCKcXXl4R3jgUMe3AtnjKytMJhCEJoeGsh9Lc7vwnV/YQm/vJYrBImJMxCps8vE+y9EThwxWkEJIv6UmAm19e20nk6xvx3KYZanvSV/3Xtg8T7E0X8rahgCREjYbIMs1UklUY2qr15Gb6d3C9LAS71qkociPPZyKAWS6ChadebTItbHMwSg0Bcj0HHpLESwi8eoIktRHZPHBWi+c/FmyT9NjfeE0WZ6FS0yq45p2qgsDWjRG3jBKanxIiJF9qi2Wl7NfzL5FFM3DL79YGNsOVSFQyHwfIdP7ujcKlNuG+Td7L+l7sWk8TAexfMp2t32jDfnPM+jC7VJHPjqoHaYNhrfHZz3/zjtowJ3Cwl9f+e/2W3cHUkHRpLGzF7WeId0zdFF6S9WZ2x5Z6lh5lZhAMV0U1NKZqapBOzjrOvQd4sjd+CVKEnZhNjP2LvDuqSxsIsRa34RgouRE7VupkTcmdlnKBRWGIzDFPxmJWvN8SgYUf+pm4oNCyOWePxofnlgo6r1a02APiUJpXAuqLrYZpa543ezAu9075x/W7rJgpkvyFEFa2WAPlbJfL1heV+fLM1QfpgWBwVI5+lELq6V7mSgu+ndehtkPf4OkMVqdnWy2EpfZ0S/SU8D2rz2a+V9JaBqqC/wUEKcvrAjwXL16NU7U7D1udp2bd6As796NPQ8rREFqcEL9lHY7cm4KVy1p8PyqaKi2ZjdTlL4H/Kr+LXlowb6xdalSUcgiIrl2LHInlUinXH6e2dqkvw/QZjP3lQqINzuC0IekzOi8fC/hQzJo1q6D30529cKWvbQ6wGrPAGHPkc+x/bN/tzwRTqwo44/srvSCIwrEuZ239HtpmL20u85XHssclIR/w7kw+4LEaTs5eVI6yLxTAzhcTNvE6xYU2uZ3cnSbAyve4jxAs9fZrrCLLI99EKvVVAOvqgreQmNRGacr7FV4VgRKjTyHImSJP+POVqXUHwa8I3hfZuk8MpwleOsgLAAj7YGcIQTo0J71R53L6PQWBODeVHkWZm+ExW1fC6S1MbFNlp8T9WfiDrv1U7bw5QoKmShJzte/+EOSFawacGg3wD1bHLinV3+MGvyNNcp+BW2UjA0U2JX8SeB6arXMFEJcd4tzBW9Zt7Vo1cLtonG4LIR5Iwnq+mTgdOQ6+bdy4ilEgxmoQuHGTYnfoWXVdqTT66tRemsqdpSAL+20vbXxG3ilxNuWOpCHRoJVUa2jijB9JUfXxkt0CddiwKwjGPLVHJeqysm8/CmGZSVEBPvKEtTB9ynOopIdU1WzG6zfvTiZ3Z+0NkTJclNt+9/m9SApNTQ2THlRNeU6Q2d795rUET2cLt2miD16b8S/EuPEaHh17K1ihUcGWJN02Ps3NVWi98J86fL3FJ6yGwe09HFVJws0tWRcNyOJ40gDnipZvwxTp3nvJaRECc2o3VMRUW/fNNOdDoeB0+32KIj1wnRE1TzPaBWGfbQsgEBxp+6j19NnB22+X8qBORfP7EaBi6Z085TnbEG2WXnSBm/WQOiNiWdfzqLNTc/SrvHqqINVxCTbl5HAiCZBtBhDaIeI0NDDFGzIP4AwaDK8tJzmxttwQXE/Qnap8XBWTEbBNCKqiG/7Ky45G45Y+wEZmtLOrVPcJYlcitOh9xFlopnIFJcjh4bxp8y6cVkcKww8v78DCIDB481vOvJv53xYy50prCdASReFfLpYI/DGuXW1ZPTITWoLUUeOb6+QF3Bko3ZCiZ/vj66I4nk2J+qEl0lktTD0etziPdu2JxmHEr7is81dFc2j+/xg2T+UPWtjC6o+jKaN6qQ+RuBSsyhA+M+GukKPX9q4lq8PxTL0d2IQIPBZC93VXZcDYRHVeNGs+IF8zetLLHpIG3dlWu2zyEWAHAuIx1M+Sn11Flfrx50Ifl8oqTK/xHa5vRmBQrBM4WkBHjMqLW7F1WvhAvG0e6l83bkv/DGhX6JCv+1tCRs+zl/6npVv82y4UTz4Pn5Jnu9TZ5GLskdLrod0xqx1/DMMTz9XDtqpFuirQy/1ScJeFPBdJV71eEpOZae37Zpv9p38N+xCXUe3AqUg+tTEPbOv0BrOQoVz4StFGUJ6Nz8xojhwy9ywLwhrxbYAFsmvnMea/29GuOK5uzllJmwRlBRCAGCU4iuXPmZcRmsjoq+pnmiqAQf4ket6g+wrCjaTAjhZAPd9mgkMaTtnHxx8fFL8KDrb675kn4FNAUIzDPJy/9f6S9MnpdOiRvOOs9fZd4q23vd23OqlWSRVRSUBbbyVl+2y9JGhIF38xlz6U8+TiYmdd3N3SMzD2kH9aui7zrDZEoN+K1PXxsJboa1HBraHxEipHQeLzzk8rzv1wtrfPsGJVF1XE5hK0iH8jkO6v+Xt6p5N8N5nKGOTJBWsowrotTW31bqMpHR0XVbhJFHZAdQOqO8icx6kYbtp3f5F+LsmDDmYbZsx7ES6aV2joEEb6NO5NZToAurZbpETlk34Vf+T40XI+pm6EP3D7BacCpWqr3ZrJAydqo/GJZpKhWmx/AoBniKu09z5aiGdbzyNVVzJ822h+Dhk/cGB9tsDo307iYrJPHvOm5rbiFPd6MkJhpMSqVc8Ra5Xi9sjvB8dKoARUDZsoV4f+D1o69f3RAfAeEPuIdFMkkczd7DjpyB/llujenprBJCjDBqw7typHBZH9cD2EoS74nMTYqQdWX46L82IpDYH80NsdCsf8Fn2TQGrf5BLg0UiP4bbX48E/sWUvJ7Wc4Luo6yzSlB83IjliobvY1jv2kBZEXHrtonn6zU/Ps8CWSrx/QHTyohnX0bdTZVk3jbG3JbDfgl2Re8ejtF5LZd84MQaiHjL9L55v2UVV/VGmDL7scB63whsa2qYeRN0jKobCu/kcEdW0YTeKf5SGZYoiksIvyGwIZ/rzo6g4dQxt2iDyMN5yWmofCE+0D6EcL3DRWKSjJhJwmSvGa43P8tA0tgCNmCNvPqodDULepDkavgawRLY9W/YETbtT9QpSwfqoIdasTnFyWjWIrSSlwsDwMMOIZufZbL7E6c+POD+c2ljlKDO2Zy6ao/Z7UJLZu57Aesg4sBHGDwTHDWQzCmNNlKNaJhFvI2nHiQKVrM/3YyM1egLNJ3HzKAxUmqtwttfPVskQgBY3cjScKFQrfYiB3ORyiasxY1OadhbvyovmOCVSJO2Vdn1A1j2JGYBATJYQhsuDNaWGaUB4/ZRyUh5gvdL8xMCVIeKJDL3X4UGOt2Clez9OrdwqlCnzGHlp14hWPWd88bIEdoLAXJtunpNsH1nm2qeG3dp5Tqa7SkM4udvGR/d+hJnxQoxTINwfFqmjvRAC9mweSoT9UYfykn+U0bez1qGW1A1RsHL9eKKVWiMOQOKtOowXt+CIcMA+55DvE0yr1sTD3BDRSd07pcYm8Qs2bkY70xh2UhxfKHOg7jf8Q41MFpBUmIWvpKayIIW5ms32K2YgneZFZQa3TFTTB58GP+ts6Pj9svXFAvv00YlFvMTR1vG03Tbh84tuPT/Yz80Fjc079+csYgjZs2t7UMGlW2vITggX1mQmMTXeCcqv98nPstISG8+eoEBfTmFIZP5qwZUKe5dBsKQ369+iXClyLhOGp//6P7txneaFwpeRNAt8x7xQWo/MR1JRmomAHrc2CZ3muWdxqnwhEmnHLohz4IKIlUmJGMEuEO7g22VUTRF/FyvbWPbgGu0IkXHnBanJRNBB74rUxYz/nK2p5gTSvtsoCvYuhfNIKfGVZizgvOGDpZYrELJm1riIcgC8cFwwMlPHTSpWiLvVDrfslhS6/vLNsxbBwrMr5g9sjp8NkI8YIXOtIywCr57TApzgkipc4OjlhjuLAGSur8l8dzEZvIgvGaBldtwQPa/mX/olVsvMrQsh1MLWYHf2FDoTLIh3UB5J12yt59EhfSo1r0rDfOGEDpRt7D8GUYBRZRnQ90nYrNyE/SJiZ8rFIJHRahXsXHYYN/OI21XOjt/fDwYV9D+sZ32Zwmr4Cukp5hvgZ/fhNY7mnVlHdf7SqTuEVMlmRzy9x7aQe2Dzu8f4TALUa39TJODY2NefCthe0mPij+AlGRP1bXkVgr5lPtQeutZK/2N0ekwPwN+DZRliweWN3xEyoEIf/qXg4/NkF5MlNdnjdymHOmYbYliest0CVnZd84Z9LpFheQ7rUcLajwZiVXOtcGQed4FOXvLk61wHqrm6l5gOojdTgG9y9VX1BjdNW7SzCr0A1eJdd23g2DXJL6Hz4zJ0qp450NHCZJduh0WMWANx8lg6+uKBlWsBQVAdQFXyqhEuoLOSoZ7uS4lya+gFxrA3F383G/WRSYnsKRdXkTR/ovLdaQFttGm4XkJEqRjXoDGW+mNptquV6L8Nsc7yQpd/FQ+RLpcIXIHtKnZJGhX+v76anv9V/6xEonQPfN07VdlmFmn91A91FJ781PxQq967trWQAPfrM6iGqOMWnkgYMmJ3zvks9hV6UhNhfayyeKqlJroOGXLmN8tzoiTdknxmDdTaN1ftyXleD9p6JPGXiguhN9cc8WFnjOp+4Gch/Zj+hZn3Hvv3NsuGJzJ7HC3T5+UBeKMssLFzRq1M8AowpHtiO5DsIK6t+Wf0hTPOpRoy1pZr/ERpc+HWsixcSLZZYg/jUvCT5SjZ/xAKmt0zPas0GruasgUCICtgtT1L+fMuXtfpjr+52J/SzAuWiQy7az0U3a/K3pZDSKhhiUg8nVnX94ofuQVOKb22rFyEbK6bPFF81d8cWRfJKtS2wnB2pzqtfXdhxWHv8YU/pQ8NCPLbIRLqQdsdaaEqCHpY0hFKSE6beWBZQQFJxd1+Vt/Bj9SEC8W9pC5MKklWSM0LYk1Db2GmAwpj/RdESBrg8z+sxqyDdr9qKIlBy1ruv/Ono2aFB0Hwg+NrJJKH6tG9u4ocMlh9G5/L7utsgon56VfafZbeYMNZXtHw+Rg94rHysvDg5lANzhG5PSSJF91CiIj89GxFjifm6Nhe1jMzAHL2q6vVc4qZVpVT11dLASrYVFizmmWkSrP05bRsicZNp0B1h62FgeV/I1V29V59OvatqKe4gNeRoJdv5sQUh90skvzzzHfc7ustkdOZZ7NQVWbVOjNrQZUh4iomVTEHLYPSu1+p+yiixJzqGN2cZ4vAL3qrdxLAVaXz/K006f09w/TelVUr7N2U4CyDJSrnXyDbqpFRfXFaWcv2bTfB0Pz+36RzMhbFVkS84I2o3tjnCCdMzsCmwdbYDjkplLREEpcH4LOPPSqxDO3jgJ7omnQiVchnj6qNuj5Xk/qkGavnEAR2/RK8NeP6simCeMQ8nEUdmWlY1CnFtxSGbq3zsVLw5gNf+FdVCOv1MeoRtRzWA30nyaXhuR1OQLbXET/ow7bJu2GQdCdgQKce2OpTpog7LHs0DXlLRSg9gNXZpnWoeo5YgsVx7fZEpsJnGPw0bHQ6W4o52iPQxF/P1T+NeRbDsk4o3g5W7tTB0QJTwcauDb3DRhsSmiyRgqXi+wbp6QiEkKMr51rjjazSjvsuandzo2lexk+aiKOuAHxQDUEwc65sdgklhMzj5ZO984ipZl9iKRrwlrNoMwmYXU/zNnqyOvC9AaLO89AUl22+1OUkXCpv9oAIOVsd+/N2R3nRyd/kmWFZ/JjoGTosQZwk2Nrfui9ZqpZxs4ZsgS2Cp2NkxKcKXXSU6eZSbDNG6iPdXaqXLK/70VBCU9zh2e4+eN/88Jnq0MdbXnyDOV2qslpm3FYjtogfrSVvEIIwq/upUW5bAwBum9sXN8TJbh4wwUxIlivbQotvVypHYjcMsSMkQ/JZBtmtOY16X4HQEVx12T5reyuk0fRPYLxLPknj9oFIxurRmJOkkxl0UB2jqN5OlIw7Vc5Wi51+X/fx2xM+dCYTCg89G0KP9QMIPGl7/urJusCjEl/HQo21wnYj/ilsdvkuK+OAUQqNboqgmRxl6RZpLqbyefVGf35fFO8AgZlVlu3K6fWwyIPfraLbWPdbJvPl3nrJod763FwnhlEcSy0qDjoAm09VvyFZvapXcYdTgEYcoHINQqAR3UsumP/XM9PlDbyJFelufP9FzO+XVwZHifbfcI82bcyNv8dqOr4f2BiMowCLrpSrY/845w5yl3YO93WKSC10DrZufPX8wdLkE+mxBBdlE8NTk7Ct3bFt0A40ZLBlYJY+CuBFuCdx8HSE/7MDnuvHFbj5beJeBzrVEUqNoztPVkqBrVtX0nxD6MTiVST2FJsBp154tzsQPM06oqt3zES1MMS+M8q+NvTKeMM5w02VpprwyZvmfOR4Mj1BQyw+9y9D1kV4lGVmwvTDaWgX2i3PccOih5fyXtAJi4BDwsAX0QJkMe/jNZMp0ZdZ8q/TM+EtoFYo6cTpz0DP9DQ+n3DGwR+r2CYGv3POYgNAIi+H4UUbL0wjRbk66qVqpHEq3Ry+PmSbGBMMzos259tDn9ep2HWjKx6Dl5A4k5nZldFEj2vz+zElDyiw3iidiRrYMwehaq63YKbokDgXFrZKInAQ3BcrhiwPDJ5yAjAHfdFr2SHrZWc6EN9Hy8BUIiVQaaprfnE8V9slSXeC30lubZPPk8k0pLhxCsMIVrLFK5mIW/Xp3akysSZ5LZZzLoxaMNCYKQDvqxeToqSCI6Cnl4w0pQoNV50yG9VQaok82XI4dbxZ8OiHw1ZsTABJ1n2PjHlNynHntfA7TZBK1BEah5Doh8pDgr6XaLP4+cBYIGLPtod6+Ov4yg4xEPKuzmmMLQJrWAtxgmjyUq+x1sS1MKXssvC4g2XK156Fq1QTRsWnfR94oj3CluH1IiB0MSFsCpcIAxI6zMuJSDI34T8HCKzL8JInkR3fFARLVO0iCqvNn2bY8mJzZXu+d6/sHiFYP+6MftGc0if59oyDiopjiOlfo4xcJ/AAMMi3jkuTRnMVL7UW7Ut8rgd2LUWAwJ1fBlFmWruSX+wZ/NONywz63DL8xgXnn09fhhcF//bs/P4q6kCRhJhIFIYbKxTsQydjh424RG7t0IJV7I7755cVvR5yp97NIhJabPZiy41LTs+nmZtj60FJSM7PaQqHqal06dD+lgke9IDir5sa4AUPYo+fFcL9yqW50Yqnq2H9eyA7DeDiRCw39N2TukmPrEPN99IKhkOZqtVCJw1l59OWHQIRXRsuPmvTadSBKnNeAhm6CT9uUsohfgoDiPgvH4+T0HCEyAL4jUNJKuHVyGpuIah+oYAWzN2BRpQ3HtFdM5H3Euolgij+ThiM7k1SDh6d03E6uIxPttTEuzUYg7tl/LYdYPosYrT7XZnQxY+BqMRprO67iCnooSIECTErUk864nQYGPN7LB3c9s/GoIH3laMECOKefBmtKp7blbdMiIcCe/BB3Jr4/he7OwnHd9eQycyD3XjV/tVqbTR47Pm0uQU56qaGQChEYUC0Q7/4r9M1tqW9RJLAJGaUTE7gcLigEojysDfWiT1VnFaQQi9g4pLKaEh5ZgoasGfKxE7kAOXZHIeCdA4z5iGRakMXMZXOfdk48Q4Kbglt1B4KvMZEjhAnSG8wnvmH2SFaUKHgaTHDtL2hmtWl9DN7rZ+v/oSR+JV7/IXfsFoGEDAycEqbY0ezS1wYE64NGoJgngriF6TRGDiRR2vZsQJAavhDI0e4dnX/sVzoRp58qzpSdcj5MBZvSuYrgloR/nxY9bWEbQTY6r/12HNIIe0ZZsiP7zddxV+jSsOD/mbc8KVkrZsx1TpZbrmpVFka7G4QAeHKlG1PPg8ptsRP8BBwbTgFXJwOjFTbgv9d94cZMlJW+157P367/P1jqQXmrBgMuneYIpcozpdmZXjPUidyL1Yvd3hx3UI32YIod8n9mXaG3CvwZM1qtbIaDtAIhY97l902JLnD+C2uBDPvDso25Yu5k+pWtfe1if/6MyPmbRKyQ0yFfpSuEhFWRpiwD8xqFAboim0tD8XB7tzE7tEIlKOhYEjIxKE6ag40dyCawgBowlwpIzRmcdJMp5oY6tmqIu1gYLwpBk1iMhoO8g5fkrgrFMIYa5q8XgNtwOUnDy8YjiTakyDuAhaoE0gD9D5Q2Z/FImrnSCQQG6vFJUTeqJkS3siu5VegYb9sb0IifdscxW9KXmgAmXpJLU40HQUVPv+Zrjqn+ToClc9VXH7mM+bKlZoqZnyTPjA6FPlFlPJew+k2n4+2x3NwBOOfUVAgfvUdW2TxlPcmCqqZp8/Oa6L41B5NglB51ca8nY7TR7FNyYb+8hXc/zytGtOc0fPVqMm0mra0gJdfBbiXpxEcfuyjrwicvaEOcHTKV0iEQSow7l1TICBmZUrko5Q/Da4rAaCja2gWB3A2dPPyj1bj900clhPlELLTU5Ji60PyOf+fgRiSRluq61v0UdYGvpI115CRQUU+eJfdid6OIhC7fGvhdpTss4b0dYa8qUMKp5MGi2EvFV795MuIHp6vIBZ0uAme7cxsa/RhoDkPRIifFSH4zlImQeOy1iYQYwavTq8FuX0V3OkVSMshGvMALLNvTMAnE21cuBy/oW77XixsGDocyojc0XBZdMj2LykWvSX0Z9vfvloCb5QA8S6zsKh/NRqJldyoSyZqVRXv/l9i9OpL+O5F84WuPENsArfWut0z92xzjXfgLt6F11hLBTawRSi44EgT2bG1tQd7fE/MWXFDRaCoNQ+9ZF1MQpurDbvkCZzzqYO8AKS4Dk9XFn6RMq6Y4Xpw91j3WF9M3wQz9tC1GRvxXp4TL3mjAg3y5qj3Z59bvcx6wDPsoaha672pxajyOnVi5B9iVBWyPA9s7ws3sAm46p5P08ylfxXU4+g+OYV70s1y9kzZuuQCwg6c9KDFc6mFMuDhQm3kNSOjgaH1y5m1YYapHypfbdgP5l9/a8XBxCvxovpW34LG+tnEYHTcsZ9neLr1gZdOFJRPNnMOfAUzdIueBgGkQf2f2xubv/XcIGqgk3+XmFCKgw5g4jwWgq0pjKh+n6prC8mTBJ1LcxI1FNInxMWSen7SYdG2e6d4tcdI63YfUVMO/EhguVOgrQXIg1vSYFBIMwgHNCYIj6NwnAng2IXzQsLaq50F6TpECNr9OyRhGFYUOExuhKmhP1D5QJraYgoHVES6PYuw43p+1u/Y4vGtCh4dxibsSWyKgqaS3eN7iqz3q5+qxm/l9QIDDBWFwXTnekaD3BqtAeHyWY+NZ+F9XnVxppA2jCqcK4FmcrhTjyUr5FhM15Colftyc4CS2J37POR5IJEclnC0OnU2znUb7vdKySO7EKGXqhaEdJhPOMsHSK85t2ojaauZ+Qkvp1dLFFHbhQ8z3HLN/5pjzaL1K+wWtnmFarSw34dQb2G3Y9CqMwGeyHx7Wnx1DdMkabbL3azpRqCo8XhZzEtblTEE6dd8+EnZpbXHkFyrSkXrNM687uVmuvTc92mAA79iRkxYZshHuuh4gcGVx+MCr0E40o1/cZQCMWU5vtjwdgS5fm302SOOdID8O6vFfEwySGcQL6Y0+lI97/sgppSOToYuzZrhLhDwPf7bXYimKVlhM6hj9wqXcqti6lIoq0x+pjqBbnF7LWf2pqi5wG1u2OgBc/8bEnwPJoYPork18YFTR3X00DFajZof6bv84SJhavIrbYALmzDCokmBINPZtYP/9EFWDl3u93DTzdvw/EXwkVqBoiMkq2p9RdzHfCNle1NFOWNfR9caa/rHS/S+7lP1xbOM0acelTh3UFSzhxQC7YdD1z9+CCCZu0mrfDcwUjy07UGmV6O9mllhmYrWZcEbkye1+qVpP4XGxFcyxOXM9of9sZgqYenLeTXvYaiv4NWsXm7DT1VN29x2HU0Mlc/0WNGaigxzfFV47XCBaJENbvKvVTnFftIOgga4LvqMrOIAW8PmCSwlS4+Rch84+r/V/I5quwwWqA/ppMcL3Wot7uYv6jyH+hDBURBSgunT05Ft57XfICCvrp9DOprpPZ+zQHIoq3MhoYIlbwxNlaaRuCTs95MrMKyUVCcuKeyZVLHB2iPA/k959NxDbrZ2k8I6yxoCjeWaj02+3TFlWT0L9kyHRJwmuvhGGZ0g3gXnIefHn2cIxWQ8xkdVDnjc14xgpcpaApMF3JOBkc9rx54nIzZzpRvrEJIhDzSs6IBIafiVc+wJbOPcBKDYdSHChhjOF45OlqThYiTbq5sS57YWFIAWeQk7ZU+08V+M3UegJBE1TdhH4YSASXRF6m8ksvQy1GM483jCw+rxlhJvb1uuKmReA7MzooLtCm0rwAzrHRwjgcM2oNqafldkTJDorBkuXAy56mytcTaz+9E20638nH1RDPnGrXnOI5xT4m4v3ohzt3cThmTU68/C+wiJMI+7T5Vu0uQhzSTxey0FIvDsScM8oGYQdu85l7bTu9s/8WVSO6YWeHrcTs3GPfmGyKnExQzscelXrV46cv6yYXn8dEtDX5YUqqxPGc2abZ3FRylLxA/pfZZ67pYmmFExStUw6oaObUHkhcWEmDdqqVuarPegrNRXx5p9rrpg0CmcFnHtmAstr0HN7EKucFpXJPUopEuBcPOITaN3J8w/vnn3sh8CQ1YHrmVQzyTi1Q57p+UeyVMxqSaFMrc9h7IDC2vxX8W/4aZ/hmACMFpgzcXBtw8gu9yO/lqz8cufhOFhUb2vrrE0a6FMszpCFdf0m3QuQ1nMpOGCSN7YXoPKYftq0YrVw60qHRhPOI+wFr6mXpkqLkEZs3lsmsj8nQZ9+UFKzh6S9VTZppB3b83UElPxiEBHB0WHRuUcOu8IsCIVbFIU6zm4ihPE8rTg1CoEOdrqc1HizabbMRlgzqFSD2xPdT43o1j18FFUYvMK+o4l/Sq4jF3t9g5Z5O6KgDe88gPpio5OtfnGKoVtXd+J934cOJLsPrPKN9PeM2tpJBC83GfN1BmGsmuWeghTp7u4JONWFPgqQsTMaXXAwRHZJDd81JVPZwPUUO1ocK8AWszgW7ODM40FUxnts4VxgeWM7sBadH/MCu0TO2fV2g2DOvsNDw8ULauHvnAxLgDLFOwGje2IskmOKt8eRwDo6CjcpF6kmjpNiq+iQWAb5a9zEtDGlimRFrWHfhSCS3ce3o27fXs38ygSYPJ0OsWhLfEgO6VhwKoJwwPDpgporzBdhj7h5DtZoAsuJ34jiol19RHJme9lK9x+YpPG8b7t5BNn9UtzBT/4MlgKlTaJ6jXPHLLCaSzdOuw+Y+tlfZY3Q/Jz4UTBOlBcI0AtQG3HQOLNLiwv7nag6g5cdQr2j2nGw5srPVKR7DRBgMPhFGmx+qoNJYk5NmI0oMb2m7fwiQ3Ux1mBpc9JUBIpsoS6gSvZUJ07Fnevo72dTvuTLeqPYdLkXEDuNFeXySMof9Zpioc6Ra8cdm/Au8f9rb8nkygXsmfbdiItZMiZ6dDcXKq1bBEOT5SZDSHii6SKovNTjt1PmONNr/KjY2caw7/Grrp7jM1AJCbcjGROwlxiRQPw3qwkFdP+fKNc3yYVBsS8rCK40Q1h6P9mYwYYouMuihfQ7+aLqlCfdah9dqg+1IjqR2qamojDkLeXPad32DO7KevhmWOKXyiTtJ6GK/S2BZe590eHFAC2fFI+sU03wDqH0wtkPaEh0Fxiw5hrXTsRgKXQgzUJT09ZrkgOtHwcG825iuBayB/q1qfLqpmY73MBx1ogUUlvayZP06Hoi1cEFMWk/k8En/XCby42w2FF+CCJgtUzm5UnNWiCeqloeqcZxF5pDv92dpGr5krahAfF0h6sYYh6iAeolHUkFIL0c08xAH7cmdocjBU2tIg37/gNRA8nHcFibTWJ76EsIuSwrIG/aK4pnEOfQrGpDe+GcM6rOi5RQ6NNHVVMIBtng2kQRWtn2hLYVAcXBhQNTzKS+d8HS7m6NBdri+IMTnek9oPDW4Orqix7fGuwI37gxXCGw6Seqohq0isJAZLtRnXIxqqML67zT3BSPstrqZC7wcu67yra98xIVmN7vJbJ2Ya+5Js5Va3yDQ60sM/n4LUwXyX33h6kP9SKtlZ3PfnadIlfdMLJtG2tn3jpo6vgV895EpM/ECj9PEoRUYhvrEUlbCSH0OOMZ5YDrkovMN+kK8dVZU0S/aV5LPcuhq7VV9/+yirNZin41TfuIzSEB88fidSBhlmEYPtz0m8DlQy3CHecgxn1WgDy7ItLYyVe2i/ySuUHt2S/iDPLkjaHgFZZ0x6wA0XXWmdVwAqakZ9BD8gQ3X1aQxwZdyHzAQrPOvR9htz2WJMC+xir3wICKkg8f97zRS+GiIu2QDGXAtNNyF1LbhnMPWG9gV4NWa0NTWmt06mSaa04IMCUARL8iyZkrTsWuDr55VQOewlLmXkallIbgfO5VYF6yR2HSzUtFFHf4YuatTRm6fUuQZmEb8+hkO2LP5n6y4WgLTl0NsyohpbfncLYvMt5NQOrj8wOJiMxdG/WLILJICCwLfoYMcHrogXamFubyYnI5Lc6XtMTNgR+VSxXvl//OCe40+wocUtCVijcGYFI8qgK6Skhllsc/qkk6HInQXr7VGY74cOKisa+A2YX8dGKy1dWKCE1SObQKGuLjvkvzjLxJJQ9rUu20MUAbGUKUZb01qn/n+TZAqp2DfvbRU1xAX8XmWoE9XuVk/8LjrvgAM3Ql2PRbjs09H1bsEbSIZdv2yXA8u/5TPLVqAfV0wGb7/GR6eDbtyk/p9TBNdXtq4AzKp9e9ow5/gEXvWM0vUk1DfybeDY2+miutuNN9tlL8hDIjzD+9EsdiuiwzJzKhwt0Jrq4VUBZe5GvlTEpqgr67JAV7/lqgD57BDIiVzvtscsK5REo0JCPNqW+mxfWxxnbub+oN0COl+9bK1oYCFbtEi/PKpwB2436pzhmHrI0/eJ/EeDd0NR3UdVGoJJtz8hEFPvC2y3yvDzWIC+fhyCJWADfW29ndm0zsM0mZNUnFZzk6Ih1qj7OaklLgPKKLn2pEM4PM3uVW+9S7iBfZX+tP/fT16gSO42LdufgzxeEafgltWCqSjrBv7dxBmyuVGtXhSHQpWxzI+J5APpcO5zdVAFjASmQKfSDoeQ9dwEvAk2tyRAdbqHYMU9vEn2QJlpShvUnqWjSIcGH4jMuHRkfDDQRWKDU21yr7uRCeo+adfCXjUX5QM/aGOqZKaeZ+RZtOjQaJwUJj8dtAHkcAvij3qqgeAL/43EZbvr5PEcdGUc41IgX6ZicWDMc6325F8sQ5cqs66whVNaOLvPoXcjGdTzQXHFk4pGqqfcFjUqm9QlgR0Wlktrd+uSGOqThmthHZJskEV8s2b2ZoHc176HXIBaucH2x+3j985mRbupNy9MCL11qnVp+JtcOpsTz4UiSlSwxFuaIdxlXXT1qmjw4qJb8DDSR4HBFoCm/nrkE/dnr9bdL4Zxv5Etalg3k6hDJO3VEupXXheMbJ/Ic2GeakXXCrOozL0T+pFjmfiLfLew63Y1wnYQec4w8szFOsTE25nLCzTtC7Z4mkrj7nWb6eCOiRofIUAXE/LqqFN679t60Zj+lZsChUi5jenMiLoEZNzt+HLiWvNbg21XWIH2cTABl7zMb4bK9XzQCUb1gt/WDULO5LPGQg0TRs9RpbqwOEcHN0dckL2ikFEfm1eIovzo52x5Alj2jumKIc4o/8Rf/0E8j1gnwQ3ZzVIeqYdOzzoMQRqsLr9WzOAVQSKYgOSVtnZ+BpPmywnTEyyoMRYE6KII6qTtOI/jctv/k6vynz2Y0yYcaaAUSBvq3onhGs3G7MCWOwhPNu1HplzpDTeqChVtqb5XZSGsWWdnwh3uYqkmy/4roAlZk0jrSpN1akjI7PBZA1gZ7SFQPV9eRnrHFj4rrm68kJXKwm9+5HrBCwM6GAmBuzWF7EUhyu6IvNT4Q8bqpuUG7nXqPNGhT1USqiWU2Ysdmbpvciv6CYnHBge9bNs1oIEPgckJsePvnmk6QaNnoJMzBu7Ll8PJhoZSCWvqYYJbvdpWgSWTQwg28981J/NusbGfS6czfQWvetIlleRfa+mlICwu+dcm1/SJM4h3xSCpSOlM/XXWxTCVSxWCT8ppVTkB1uA9hEXkUxzzzndKtlDGZI98bWTkCKR+mYNaI4bkAYZR4WFRd9I+OrDGKtjt8B3HJkcOc482UZ/VgTdM9gAVfBkcGIfvNWXK0tunhwMoyVbPlFbAEjNPBmPi+WvS/QuKA4nfVq9Sqdvf0DqmqvUcjDCy/8+kWFKVpFZ6unv2nDlcWn4u8/3efsaXR1sE1Oxba/qZqXhwhfY2qhFq0oE1eb86b/1eEgu6g53Wx4TemS7hkDv5+T04TTNL9IngWyXJfP9SoPIsRdlDayxjE/cI66ShfiEBsKgigvSWGdOjLfgpHR62YyShs65w9i5FbIAVy3Bf7ou5ldIHk7RTVVztLJSUWhZfyIzcNIeSpRv6F5jo/aYSPcPstDo1ZdODG2/yI+egegmhyqAFAjvg7XsJ0fHyMQy5RCH7k4tP2dyyigpkFFkQuhP2k6XeMlH6TPbAR8vXsS9AOfjbZ5Fu8rOEPcG5M+CS7QLx7/liLo1Mpn3s6TgDe863UpRzaXpGyvZvZ/k9FOZQJyT68RPuiqjUQr8ogR75wndEsklPgltSSw40QjtZWqbRrRQs1RFN5zjKFsOMlxMO+M7oaTES0iEGRsGnX+10WqyWvcW5LhXfTYJv0DjrR6CxRJMozbS3UeyHxgKznGLfNOVnLG2ODJQwjvptbS0LA0IBSswd6RhbWIvjDncV8pQt5ZA9ryNvz0Ttmmy03XbqGbjKaLAnJT4JLhCVss/ov2y415ivZw4NR+aWBWcCbM2xp6LzyPeCGaaKptlLKFQZqj6+2qS3Z4ux3hy4HOovCLEvBIu6GzxntU/W4MN4dQL9a5/+s7JBCzM3EpHN28o87tf32Y9Yb4o4ay79Z+LVBBr+EvWi5sCuJG8RlRYwwFllgHWxcdCBQB7peweGHAZdn6IqHcV4Udqr3aDRImfptAw1QOQ2GzCDsLyr1RjRqm2TulatVLLXhboqmSqy45rQpJVxMlTLRsq21Ol7K1LZCf+XHcY9wliKdsBOiSpgm9zjloZBNRRlMbmAqaMqO1z6z/e0SoKxL02Pn+JjMYhjSQAtAgJ2Qp4QpV6ccRoZi/IDJsQDn66RgHXB02jUPMPlUIoLJ7mPlIBQQGExxP2FwBN7HyC4+of371gFRowGc7XqzKgCOX2D2beP+TjM2GMBH45CjVct8L8VygLhHO5xYJKAmPxEAIf8BcU5b6nG5svQmnWus8NABAqIILXxhUliccWMH/bJTcMmIKA7x6BRDV5sf1vrPtSi2bggeeRY6KbmQ6CG395WnUOWtBcUScCVZ+D15XxSfE5UdY/h5ntlbWL/N/JuHs9O+Z6gnPaPwF9MhF6qJPOGzfW7cB4c3t0mSDeKDmKEluDSEk4Ggm728yCBX3+SY9G0D9KGXNOeY43gnlytYogM8M8AxJe6gm7hXrGzqq1Nf9q0xqX7YI6r/B30rYSNZM4sZy0fHcdqecrXjRX7OQIe6Z9tuFKXrP7MaIynNAKbYknwUERmLTAtCqDvkdmmgOLr8O6l+x+n7FnKMzr7V8x47/VEtxPVuZglY8qypNi6ZK3bZQ85WJOP8u7yCOoItHS7Uuljkj+Gp5AfNPYfW6FD/eQDkbCPayl812dJHUkdxKWbcFw8JQ9dfqfV+biIuMDECkbcLKzNfedDsvuuydGnWGlaTnegouUwX6lWo4gbQY5BNT5e61JQIMzFbmkHVdnjmFQvcWKXWWkF7RaJ1P3ZmchloOqUvJ7CtCHCEqV5iThkj0xkM8UJ6y/AtOK/LMCDfDUYlBgLVMuBlScBe0WFRTSObPQbFXDocLYxKw2qpXEWPtItji7y0ecrtIDkcCamKIbvkervyZ/I6ekAqmX5anS7p8sER+f9VtNa5wAid1CJw06ikHXPpY0i5370DdROi5bBvOnkAHG0s07RONpkKe+AKrwCdHyo+EqKTRFlFxkJeCPRCz6sFb5eABUn6X3/QkVm+ZNF8rAvLhHHkh0CG1lyd9C+KR9qeJTpQ1meFgcBAfi3+q6FCOEnZwdv1LcU18MY7PSvD4PUDJoLjncsdm8FYGUeesQPixHywv/IW0l1lXppbaPEC5QXUkp7Yu1KDBd9B5IPkRufxxFLyAY+F2tzwfl56LACWPjPLFe7KYd978O99CH7+RcPqibqsYTbKTaGE55M019TLB1o3t+WTsIc2HzxqbLNGwLHw7gxSVcMir7Ljta7/1qk7X+siIHbovVV/D1K66HByJhIjrMO4WsrG3fPLerkQawT/1DgVzK5zhZhDoPpMymbVPRLPOhJH9EMLXNw3bA1+UTJdAaQmyRLxrkXxXPwbejK25TELg3jOTbfcNJ+Mx0N7+HypLpcD/NJQ8KoAb88ErUA0b6wKvEBzg8UVk4Nbii1REzshlv8A2O85Qfto99/mEyt5skZXJlsdOhmeFu2q/3UPLXcB6jHh1Lsy1WcNMPcuYb4jH8CWJMonfHRMBb633IrrZbC5pHUmzDZXZji+e4hDX+PXxPZBg1IKh8P3yVjH0uVlgVANUN1MbF7kh2khvYmF9Fpc1MA52x9me/IEJTzhV3s18orjhlpGZ4L+i0ShBizT+j4iHUKFAKa1QE+cjh/BxptKk61xaiFroA/3qEdNXAcO5waQ3jOxoqI455f7/dyapok2eyVqoQ3rurFJRVKO1skmf5rSy7f7l0zLIeu3AuU6bV1Ca7KSkGdrJP5pML0YF1eY9zkNkujNPiapfjb3+8rpoJAl4NvPMoHvTKWu89PO4dt/Hxubw1g+GyJcT7OKeq2amtz9CszUyikpZ6DArVtrSoU2N4AQKXBUuOPMScCfbfC53xgysN40fvW50pTOHJwFvWfOqAzUioKu55ku92ejKnq2H3xZE2/Tfwh4tHpxzkrYHTIPoDuHDpQ0rJDWrRDMp3egBfMOdsQu15L7A5nh0ydO/mQzBhIvQSsq9IchuVMC8AlopflEdUwcTswdZMSxsXrpBLdbvBgsqBJJz1q8+x0VUgXLBUKy2p+Y7QmZsnEuxL+b70EJdNJiFlGKx0k8c0oQsyY359YpU/ChnsW4dkXBSfEQ9QM5/+LRJp+YX7OUtO/r72ZHfnqXE2WlnAfGU2L/dkNsnWWqUPIe5ySHO8zxRvYLrqoQutqMylHrkUM67QLniadPXLthCDSccfZ+kLeCfD8S6vo2/xoXdGdedj4ozOl4sZa/q7BX1II3kVa8FJdQzGGN+x593RQffHS4cz2OvnqumoBTcoXVEeaovXGk5gROAAyMiGViHViMFUMr4ieBdqLXHp6w2PrTrirQdiESxWnJG490tw2rpNo7hT19AnE9RPuVgBkKEirzv/3QiIEx4gjIpNT81n6O/MIZm0lxy8rAg3AkdEZ12MxpB6ozSBJ0RaIrraYovPt8QYOcZl2stYGY1WAohXomO7Xf/n2sgm7+GT2C9DfEqZq9TTPhDnyic0J6Nn/OVEBsB69ikzwQgnfJK1wfAfB8z5/x8XC13u6e/8dTNmR6y4w7oJcCb+bFTVISBYJ6XzbTF5MLcT0gEe4sYHYgPzebPwcvCiI4nDkeU9acEjvS3/3NpS3MvIyAAweBwZqniHMxY/ZlqiUlx2ExZf1BBokKe2pvxXCq4P/PG8YJ6vYCK261bHYoPAfH5KWOEDZcPjkbN9Jl5pVLs2lOfL8JstO3bgHpJMIVGVCqlVkB9mxpZJEgOp+6B4QySdjDq4cVw8ODdbSjGzXQjP05YvZZZ2LOAV0Puu7mjK0sDTDKYkG6yzWRh+BkFh1ZsMhOBxgJ5hU7Su60X2c5hvCG2JAUtTQHL+cqr8LJL+upmg6JQo5ayKTzc9OmVNQb6naVYTeAZeEZoFWI6k5rF9GyotsVdADkUO4x2BC8kZSAiCZzFuzhy7ZzgdI+3h56m5eKA3fhUjNEG/S04fbZDxbPwxpHTbuczxXNhvTUNLgc0y72urQiF8JTB0uTwNYefEzjxVZ1BwPx2NJh/bc6qW3Og4elnXILI9eetus9Z0yDTH5fi7B+ro0iNK80Ub3d7I0QhYWjvqTpIcI3yI8N7ntfdbhYVvLSaeiYKV9aIwsjC287ixpjKCx1mqwdA+jjVW3u9pqKxywGtnJFIwR1toe7r4qxOlMLILrRePaksCt1yWlYI5y4DUzYtBrtezIEJ8qW2L7tOlg6qbvpeWgDKazMpyfmQJ8LTb4DuVzR+ugH43OO6UiZDDz4m7Qn7+B2eW9ZsgfIixtK+tVbk4RkE+JdKbqGoCw7onM0S+pTHsix3d5+ZuftpqD8Qiq/PLaBC09D3S288g9OlHRLZuYymFWznB3V1Ns88y+MrNnaXmAyPISY2nN5Yun2k42kd++6mLkAoWl0fmLuiIEnrOj4ihL9bup/mYMyROjwKH/lyVpFc9DFe+kRuR9A4MLrUkzI2ZzGItcd7UlXY+HnICKGUiMZ4U421v3KU1CIAcVirpBdbkvfYBo9qaDZTkHyWlmjlKsDs85CV2y2aF3qeM410pmvm+55wX1YUic/raKxw8XQNanUW1FxQ16CbZ/hVxZSS6tInKJKRHpR0307HJ8MU3tJtAl5Y+LVHAqDQN57/c89edlaCDWRsQ2w/gTgwPLnKycnzVDV9EfuU5/0cKY7f8EQ94wDLSijBp8dN3QJPwWIgukS31h3ChL1aS+J2EzQRc521gCVbp6XREIOPYSgQfypl9/KuRtVDszzVnOEemp6n9Hg5Z6JS6HvsOX++Ifx6aBq6e3u4B42WuL+jgygPx0IlUTxABndaYpFEI6VTYPGym3ILWiaAdBIJYI9gbRQpq2Ju3styQqVROmsNFCd6JJfh7/qpvjH4xy1MIgGkAmMYi6zbaS4gtT2+WwDHEL/6kvbxWyuvSs0Q1D5WY/chZ3t1G+S1w3i75dzo4K/Nt6NE+ksjoLGO6/EQadK4S71cF2nHHm2Y5B/ZQvTzLcqSrS+oMCPjT12xxY+J8rhUK32vlu6I7QSxdr1NKQZ4BRGWJ7l1RlXeFNB82fwGxosINO9fx+Bv9Oo9QDleGneMbF+KiGmRSFUl0oK5cyA456eiLL/zPa19U4NoCSGaNu1j+fH05jmeXudse2DB3bU1/QsEz4KKXO5tx3PiV+cBCT9bft4Njm2fYRab+2ZVU9SKimrfmz++/nVSVwYoo24F2DDiOWyHp3iv5xUSmMudrT589Jjz5i9vnjNaBJg9dARlUoKNddYZSNOfMQo1Ro5c3o9vXn47XB10m828hCEti6O1qJ3zBqdjjutO0evjQrg38AVvCOkqOwTP0a44cGcF/MuHDWHGxcypyI9g4PClc0R4J1ky2FoBmVm9+Pz1E+cZ2y6488HdzgJbloEHoX+J9TR4SaBW6/HkKC6eWgW9xc+qvF0k0qGfqewiRNoEQAx2XYj0oscFDNHfk6ThI6gF8Q09x1Sj+tLEetsKjXtB6XPMPRrVU4zTnNkM90afioVO/sGJUBWHbpQtphEETBEvovhwmEv4yDvA9ZXgu0AzJlLNROdhHvsqs4IwXFtxIPfavR2ruiJXxQRTFgqRnPD818qmWOe+wN2DkSTfR3v2qtrolSbZPt/ZX8RrnLsJuYOXyUEaCxipPCG+zcjZggznRlxULMR5lHns6TtnF65ux3+NmH4FNVYAabaWhGMdPwKbfgUiaSlaHXPOvEPGsTH6tqUkoywfxG/1vlZv46f31lFQScx/MiTXuazgiOHZ6E4GZGATlPbj/+CqhRBAuM+/AQ8XsCjdKc2fOb1+Y0zW+WPnkJrA9KhRD05tNbNmz3pVIjM/pNya7gQad9gt5BFRCPHvakBZiwufpRdZjjBQ19f3SADJjAG4SPX6D6HaVT1KxY6MzDWwdrvO7c6xtKDxXc0lTd/e6YzXUoH992DBB7aKGO3EnfivEsCDfKiiu36KLMPq00Rg1r/pAqM2tldSH8fJuNZ9bbEcDgO8SN+Wh10a7vUCwyejR19TNMw4KMlzXXYD25IYMTS8vU8VTYoUg/CA4A+xgVn5HLv7Ck/tPJ6Tqs1e0lZPvMNxpBkOfZd7k9YPeCFoAuQ3aehuIpuXJpfLCva2Sk/uzgx7g8Q04RsQKzurgDYYnCLfzRPNh9zbSlI1I2G0uoEgNYPRQQ12IBqpfngsrwcJBxCuG1FojGZblKSt2yGPAJgU9dX8Mdw7IIIrQYVs1KLhkHnj+yMKR9HD8xIGIlVnUAsb4TauHM4PQeG6vY9vF9CvTLzqOdbZsNjVlyq8xFdKk0i3oKk+LuHL5PaGb1KHKPtJMmAYcJbufzMY8TapKXr4WjO+IodLQcX3TLgpCcJOBngVuvWaYFuZWlOnfqFtZ4Zd301AAPLX062mLPysig8OwebLFA+BvEN7zMrQC23NJ+dXh0Kipry+hKpHSWuLzDaJedq2ZGK2+CpgEjxE5aRDlKE/QdL3UZ94jVHw25eg2eVAT+C0D9uwDVQMXRl8lBjy62UI3xXfZoP0rFaUuU1lL1IiMlMLrm6PbuwU5+fkC5t/FW1exWH2cYYzybAakPLGBqAwMean6FRa+zgqblS3nNcEAGVl9JzcVhhXWHRrb4kI3TpB+RM5zlnsXm0c8wz06nMgC7jI19/RqNmIjxZcvwA2i8Eb+5Ur49Mq+0Sp4zqwxrze54Z9DCDmBl1wq1roavsC/+9/3+fd7JUfTVKMw9xi24Zd/Zqybi8Y8CopGB1TBFL/KQMCPDUdzg+BIvbmnr3M2PZsj/DcR2s3CeQ8Zb/yIpcIrPxwUzBZ3CTzLkP3BuPPnDUoNkk2K7O4jqjmbpPlc8x9vZ8psw9je8aSVURi8EgqFyKHF9WXmt8+XdlWKRJL/cuFxLDIs+djM3qvBmrWrzHU+FUF1e6FrkXvMxlCmlVj9kNk6UWsZ2kOjqQbom8fuzgtQH+lrkSYeTkzzhsTuWwnW0eojgx2eEcCt4ikNRTtHcBjuEsEWnDc2u5NbQFVk+qQsuTRB8R9uB0AVgGojEOYpXsrBwBIS06F15W7mSnTo5Efoj8RnjcQdSv2BBNRPSuYm4HfdWwJSY85JWnEpMmyhWpIVimU73z2paeID70gn5GvIC/l2uHuh5kTkYtqnQnOX+IiPrnFtpm74Xkv4Bi7PsaUsgwcXi9Ds1sTDvmCr10bJUxtGVZUmeDqiE/6rI9NgCWs+qvFRFU3MyI0XLW7wo4+M7H6Hs8rw853QNlSNoyVt7zjLqBA8rtPWwraGbZFqldnu3rphbfHjl8ls+EUu52Yof6G+Cqe/DHbt6eILYuminjQfFx9IoI6vSxkiOcmAEhcgs3uNTuB3PIlgogk90qqXm14WpvWMFNv61CZDw8PY9aKCdw2qkpA13Dkw0MOvaSJyDPch9Cs3RR/PznrybPqqz1H+99rPMX1VcTi/Fih5qulXNIq9YYupAc2sEe361BFijHuSF6NLUwyoW/uGdIlMSleCqpnyGYx7MqTfSZ5E5TVEZFO8GKAj9rwYy2OtzE5GHSjWYck/PmdSkKXD+nm8M7NUW3XbxH8T+zPLP5X6Z2CuZWHqwPM1uMj8st+L74iDphKTqC8J4+oev6kZVtpoutbQ2kRfN/2f59hfAtK/TYQfJGtJIEbVgPGWfAvOdZ2tIwDizHH0Lo0RkBHlDU+Lrx70jiB9a4AxKDaMkiSOhCWDHutn5OmoEXr+oxr1/jlzjM4tfTnbLZMNa6+xns7aVXII6K5w9KycWqErZbLZwp09KwLD0KFJ5M7WkeMEASVuTAuFnbLe41RnHFup+u1/y3RB7nOZkaEdkTKTnunjP5E3++qBAxe+Qs78PGPVqIiGbNTOSX7FsdKWcT86M+ENc1PaGwmH1NISt3cMd64q2EJEKGyo+PDbJLTyU900ZnSgtHsZLWmob+yCrlSf6pIVXFzkoPOXo5DPAXEeuK1S9P+VYS5sduRH31lySIHsGzDNivOmkUY3Fg47jRGig1G0y1ggFWYQZGmzLLINCYE3dCXRENqLDAhRsUeQWV5sdrg8ARLUu//b0riDS1bgQl1SUbsM5fipqZ9SoOmBLYu3XDMP2laNjYHQ7VW3WSPiCOyVcolvdaAqilDsyFDaAmFQcLO7HzjqhqnXuiL5ZrSlcZSE2nSKPAOx+OTmW2qnFeiVNWbcrUODLnTpmsW2SnLEXr1yA7VvOAfW2hxug2pWMWcij6EBm9XoAjTfPOyvXM+rhrAqLXV2EDvNDNGUfDsXRozksqW99uYNhpWly9VmS1oibaErgIZ6yF4VI4xua1HE/j6/FIK8mk3gSUPwmW7TsyttwjnlKskhD1loRtIzg9sfe0a+GvVIZC2UeLCh4wD4r4YtT6KDttCOwp8crLE9V+qdCq29JfM7pjhrPphMxZUrGJJQFBRf+eem36OSDgLOCrTKaJc89K2ILnYwqn1k+VOkLsbEXNsfo2YGu470YfS7/kvoBLjzN5vVZuSHoI9MRdYIusdDVB1AWfiIFRrbMpvV9Ud3NEdH0OkS53XTiYUZ7R/UtFeA2xF5drFE2yx1t/QE7K/bEBq66HqFc/+SxkxERPZzobtMj69XcCPBnNT+XRGh909+P+9nijBDy6turLwlYY/ZRtB1CEOrlIMdxi8ZUJdI0HVlQm3g1JgEY0d6LGvS9Lm7SFJ9LhjQmdEOFfRpzkgaf6Tjjcl2wQ7Py4zSMWzfTy3TX3XiQrnguWvvX8gpui1KJDseH+44NhJSFvEUYrDxzKdpi4STMT3yuz4NEG/CUtO8XDWAJk8o3823nh7C2GN2BOHKSBZBkhFZd8YS8kTMuJPJEkxDqdE6w9uE/PHlzyNNuVIOah3qyxmN8DWz1eRCXhNndVwwFG4l8Z5Eo6MKym+g/KyL4pSNsBlc4uKCv2RH7qQ045VofZOxn6Qg+ryhMm+GCGT+dlmSVzef7N8GOljxGii/eSy+1IDxlEEpJjNeE/26gCW2gs2wXjGHwgPbynov9Fxu72/g2HI62QZKRbbP9q6wU+BkR7I9zu89a3zUtrsbbtoIHeo23/QafoJmt4lzvBgoIYG9W4wDJZrPzrvk1Dm3Qyf4HWDFZT5NOfcRByExvBMvs82oGO60e2qOsAuJJpbkA0eyrOfz/CkYiBJ6CIF3ALI+m0qwU53wMeHw/Djco1TsNFxxKUh0LMX67hfSOK5vpVPkc7odsUDsGbVwwAPHlkMNrb1M4h5gAKxEOUwmJJfqcsKhyOkJyOkbCY27JDrJWb/At/pvCoskS7f/ZNcxwmR3Ph855u38WqOEAcJVEVE+Gg/7Eoq+1pg8yb3cPI6Wdw38JmOP50kQYNxZ5sO8JW9hmne1jAdSkns+qMYPyG5eUGp/D+PgDXVMy/CWoOt1gWE0KsdAix1o6/6QXX2BM87a2Pla/DuVCavkIdP4Ym8wAeL1UVZnrcs9iJkq7G9/7jvPo+cldScfqZo3ke4YNZ+uQwnzL11kXoQxXmPYiNkFUuywBsWMoBa6z0CpJw3EPIS+B8RGn32XR67nVZCHDeGFJJB5hL/yRR3EoHx3JjkT0xiR387utAS0YIrXDNMofuKkICK9SCvS5Tu59ifj16n5aDogO5+xovOSmcQ5E9uTjlU2GTnw08FxYBPGxZHn7GK8/KThQdjoAoT+0tUWCYT3MIxlRIeTnaC0rGLSonk6lqB6fOtf9cPijo8Yr4iSft/VggEP9mvcpoTSHF/XVG1Bu7kO+MZa7eNT7w2Cpji+kXqwYWVltRcVz7yGGvQ7Ii6S+A+dUZEdfh0bHL/nV6hArbY8Gv6lLOju2WoUe0xG30+hIqoE2RyGh/KBE2EHOd/oGcfv8r8BFuPfGzy5u7egJOTjhGUP3F0bQqjASoIgElqFWgsbzWLjnW9BdtB0z0mKtGzWLZu0nXQpRu3MiTF1V1In44GYGIGxgVqKdJQjAwv6x2SPyu5R1+YdVQUoEpgR5TU50deKHX9JZoUnSPyfy9RFHffGo7HfYCJb79EzKFhsPuAGe5d22aE0DrtwfrvconEKpHiZNCjWyr4rTsKl8J0KtJSTYXdpMo6cLryWczHowMZlnsTpFNDzHb7pVQJWApx0v7PbOj10KBXlXlOokfzE30j2esXDYa/EUksNxnP/VJ/e4SNldxZyhivGFRDtDsvoV1LCwwG9G0zBtz5vdHsTn6ljNiAZcGcyn12ciadIU7NfNFA0e47zvOlEoeNYVVkuocV/yYJIG/QTOB1ZVCx79NiJGDLjKS73zxlN7h9Bi4Pqq2XvScy4Nf82QfcvZai1tTTi4cbW0j+YO6LnOwsiIsrUxi+kfgaOWHlUD3kJxvG0GMNsCPJEcUwwkff6+2lmYiNZz9CxfTmxpvCXKZfPpqExMY1LtgEYGHXvaTvqQw0/rB63qDAUJNJGxw2rSZ81R8HmLsZYBIGGcouEQOkb9lQhj0hQXhgweYR4An+yMRphfeMXFLkUQYeXsRks5DFpLTm3SGnscTea6+wJRhu/yFaX9LOnu+7GmCH7EInwklV039rSi/VX5nqbb5zKGzrgioAPCKAvr0RrkXgdwOW5N4juxMgEzoc7gvZhYiGj2BMBUenTYGmAN5zcTkMSYxKI0bnqIIfoxJG22aS8vJc+z5zMUduGMng5ucl5b+lRlbQAK/lEaQtYqW78al23k6akL9Tj+p7fh0rKbNsvaVh6/2Ahos1PQUag6hbPP+riKACh8EzgoenF3G2YsY9pJUhL/gmvBmFxnvOy4gohl+WA0Yadui0kUtxBq0uXZoJT7wIQDqQXwSG5vWhlE//iRrdUoHaQKgDXcGINY7scjLhmlk9IoPy2390tVMhJrBPyLUVCA1x6/+EU6TDWBG2OkTi1jAHUOxHIiicEU72rAunTTY86lNRaOpy+FjFHtZ/PDm7KIXnuRiqQjdKA6b1GZHWTWlZmEzmoOVROlUZpc2un/s1+I8S4pgKfOEEgO8hQv79QMQKWoHg2pHCNJnNLH+RlRfIctOX6Buktoz+RUYc8m4x6xy7sGWyRJgC6tYNvyM5THc1vxJ1s8RCfUcCWnQPDV/WLRWL4K3z2m5OzqJdh6mbVgOU1OJ+jiUTSfak58H6uhPdbqM1maUHcGbdqv1zfycAi4h/UbWhIUAdSc/tKTwNp9ht2Y7HYPDy2Qw526OIgP5+/SVX87kl7GfpwM7krBz72R6q+I5xwti4nHiaqaeMyauvKq5ZinP3ubyrPM8rusYy2XlxRdLXE3QgwWE71MGCztRG4dc7bRlwcLYYrFP5Y04FUYgYg+SE7TPbITQfhQNUMmYx4WaCA67GO0FrXFkVyOxURk2YOI+q5JlAquR28pVtTdFvqLSv3ChgRJgqyRnesKQhjCG3nyc7i7qFRrHCWwt3Ng6J7ggyJKclbgqyJvT0rHbAdpygtmjzCfm//RTNb/XPlCqOGwIuIfBuZDh7DcHLEGHSGlEqsiqglbN3emnbf696aJo/LUaoz3Ldxtkonwh9EzwkiXMrPXHuq+mRtkAA+BtzU0R/rFD9r4iO7/BrEnOB79MtKcZdkErbKR6MH1rR+6MezDF/nIMMMzBoDJbpxnxAvBeE/2fvoTiAtO1ejz4BbTfkllI+9cUU1mOVRzu1NahqzuVIHF2+Wu19f+8ah/mrVhVkXixF0zwnca35GRPZZxqj8r2/FSdlwr1Wx66GFyVDFrUp1kA78DQiNIfj1dRNokkeKUd9Wnxfw4DokMVgWuK2gm0cHpVIKvTknE9fNJ0aS1f5GI8Y0g3s12CF4HjsMdkFQqESkEw+OK8dX6OMINFhHK4twnSIbJX5w/B157j1gwCXwBOa3y2V+lDm0wc4NEZd4YSQuPp6PLNdBE+y39Q73i5MPH/kNRDe2DNk3uM2CTQCSJwQGIJfYNkRgMLJ4+9KFLXP+JoQ3I6S/HH4IiSJnvaOQ99xLainMKTzuMxl42pDLUKReyYmUTJ/vMcLjU35dUFDZWQ9ExMc/SVDAFipfZHo85jrUSFskavopepqE3R0SlEyVI6vhmd0WlcY64Pp7dPK3QEXIKnrOc6zzhbcvCd7PWSfqGU27FwjX72kW0Bb7WJNLRNyuv9dvGkwrTqEvz2vRjzLE3Rr2EO8WiCrX+YFrmsXvig75A4m3YKT5iPjvClunUtfrhtaURWTCKdnXEO/6PajHBj1kINaXCn1lRvp0NaOJ3kI6DDZncjj3pjwHNZYQiWCflqR6C5vBc33nuTYzVxEFv7efVCZV9Hlh8Pz6jgGGs/ErBzuNaDExNWvC/MMH9RjmqxJp/fqoZi4MVnHK3OuIV0+/8SZTf2273eLdbxVyVaBYyIByga7vAR4zmLqTiq82Trxw48v7alreDZp+oMcn7vwyx1iVZf4M1WqMT/J8WsxoQZuKYVfEISAE/IrnVd4gRew7AyXx9JDWLD2SGkAfd/iBssIAZIo7Wnq2y2AD5NSW60kCUjFzx8Hg970BRYpAQ071Sb/YZBAlLUDWzEkgqFsziAkpt+DW4hJNDw9NfOSGyCKbCe6uiGbVhet/26Fo/pzhn/bj/id66tuF1zOOdqMk2GdClQGXO7edlsPmO5o1uJkQ9M75gIiSxnv6e3tC6PHx0TNQ67MPl7ecTkVKFLjdGDMu4jXLg1nNhqF+Bb88YA0r8bPttrNOW+aawYCHs75Z9Yxo8sfMcI7A1mLn/anNCzo5ELs+DNfEd6mb85ddPKwEashfoWlpr8ssEPFuoYfSku+8gd0ee8EieWykbdxLVV8O1Ia5IgLk9H+2bSxO6OQ0pdz6lUVR/nmfDZ47ylDj6dwTB2YRqK2naKxkqbiz0m+gGCPBKELxgn+rsBhxnB5fAmIyxOVHR0m0sdMitm6xWaIgM9jfXjekrNR4saZaLI5CWVNaliTHAtUhwob/TB0Fzw8j1v2n2aMTnb4yLtbA4NV0ATvwBN+XnibNCaniLgIlJNvK0zaXr5bow31L94DiRkeurd50Cqi07XDZkhujwpKmvR2mCr9EP43rJVTxRN0hq8RislLgwSwEcMqFIQm6uk62cEOJGKf8ufyadbmqpXJ217oeHOgB3hb83G83J6ZDyG6vWq+11f+ibQS9AtBYywfA/tdd+uYiWxzesSXzsVIM989OhWa5io/jdkuWhWmb0wH4IHL0HB+AkxOSElhW4AwX2tCW41d82lLjX8s752YOiRchEemGcORtst6JRi6uPL+X5cYSt+ceD56sFwJWX0cvx+xY1Elr/l60TuqOS8SIJgX/zj3+RT0IVTYKATvoUs6SRCsAqJmPlTGAfqPSqVEixDcPFoHw3W2NeESDS5bWJR75tq3uqUDddtNICDUJg1YXXtdrsB5/KNQ8MblcIC4M0SqhgZmR7s/rRACBkCbdlA0KpLV5g02mFlF8X0IFdX8MF7rikAfUE06fpZNjO6iSH9jWXY65EOpC7gxjQp4g/qFTP4itXe2YOCoInRplPsV7D4TSrSNDmVwdndyhRBuHRcAcarK7jxDioo9lsFaRXBT9/zmjDV3D4rbN67/P4o7O6gMrKXcOETDkkSSOE6kCiRBc7DwnYIOJfNoOjqCBoatH8vef70cZNx3o3N1AeRse6LHyvpE8sWl+OZQwiU0zV2Igg5CAu57eJNCm36X0efibL5dp3wsgULsRSznFWfWlx0P4CNM2X7YvmetGlpSlCdIg+NZqwioEWHIPylTnOMgwxfK4afaFr5kVKEzOYrtCnde2CuFXfchsMbIl3GymEPmzuHRpYdimvJbu4GlmBbKv7vlbtqnEsCXEYGRiEwkV1S8+25lnVK14an/e6l526ssO++sdseNDrKBQnROydXGiHaNUrELcWHA9LtMG/FCq1pgMQmVAhqPcpLpUbl7LYy9wV8guMMseJnfGINam75s8h9y+B04mkMn5DlRNiKsX2dOCJ/wz3kzZrnj0jy0jkFCQA7PUyTNNHxDA2dhgBncENJEVsVZghaAL7aUHApLro9l3h0h36B2fZ8ZSAt59Z4hds7JEaUEow8mwqI9ebRk1LSDuTPOduZ5PsFru4U45aQOkQDZMC1CtYHhiUfD3Ns25tD6+5MFxe1/GK9Ufl0WcQZ1sL+AdUUS1vR8yzoCx9hLug787aFKm9b4Q31ylf1r7mwELrnPgj9XECZwMu9BWH7STIIrCYTLIPq0DSMoJGQZSJ94Gf/sR/rkIUXnZUGwFFbqUEzk2V+2vLqysiYjpxtxZFzhJ2MvEvaXYVLcoAtgdAnYUYjRn8gJ1aPfeYgHjv9V98pD98jawrMGSe1F8vPaQboODcMcsw2Ok7ESda7VfBoyUeiIRWcRLxBsVLU/QoVvnHEprpeoD7UH1pGlQm2fEY6s9rkx8UAG4cD546F+LssmLiKUZW5Nta/HETeuhUwI7LYiX/PtsZ6bV9GTSlBQXAQArtp9qqFPbu2K09IqWl119DBYeXz1vjPSxPPKBOQZJdGHg4HmjEJ3HO8YIvpyQ/9BfsMIKxw8q3LGPNGevtvSuuIvLVxj0LYi+0mZkCgvElrUKKQykCoMU8Mx28GQt+zKcp0m3nl9NuFwzbNQYwImYgtUZfLp7n/cAx9HmegfzJM5MYo2egvbXwORLRZ66UnMJUOi/epf6xWsKaTvZLrNvrbZ5SpirMtltUDxgGjzYb84BQ+nHH58k/TZWGWQNM7CFeoKXvkoMMqUMNXRyH6Sac4Omosf9cON8iX9rO3FEyrL7fpn2Ad3Uqfc862+qm4igOl3yNAZttmGAoZsko/P/a/aqv53AUCb7Q+7ma6r5yXUBw/30O0GiQPFMHF1GORpgNfUdzH+mWU7wVsUQdfSoqcqIsRhF8Qz60Ok8IT5LLtryxLoymv0dhIgpwxhBo0wZQOoQt+l/ypGCRpH/CiB3+D60Me5Hjfvm7HuBSEQwhonM6+okNQsIjQjI7YviToVnW+BGBHY7Ubxy0WdsDXjLnA5ajd9D2+HrD46lDv2M88/jHdB3HCxPHKu/kwu3NgY1XK/tWwnYJXkN1IJkDYx0YxHrXUAMh5wgCTXk3AlD3eW0h30L71usnLr8yuh6DvIy39qlosz90f3gHTOBRsdBl750VbVwm6ZTft3LPmktSEuep5+7dMqyzlJ3b2g8BkdjhdqzpqQ64ohR1gEl/9X3DsxTp0nwH5WWmed5kb+izj4YEEsVxGdzvStdmH2FczULAM/5kHTmINLxqlVr4TnduJvsuhUJh059nnp+nLce8WhLfW7/OGH/N5Mo9T0f/pu5MWPkT0w9ELSD7GufxXtY9yflXGOZzINK84hroKQdbPRK/BbouPjO0XJd+/y1YZqh9B99O5IqzylH07eIm09yanAUnLO8wuq//kaDiXa0cKrBj7/PAsmn+YpKc9RSktRfFdvn5YeVwDAw0yTSw39lGFZDSJSzeZRNp/dL87FAvlA4QoSk9pfS/u11QV/OSn2vvUNmN63NCNRQFe8xVrbYwztLoHvvZMNiUxdZCEnJYD9SpV30ITjkLVoHXptBYSZFM4+nY4Sr5d6dbVk3E+3ocjZEvvvRTnUb/evHamPfbY1R657A8s/moaZckTrfnkIsm37+uNWW7OEaKzHvUHgbPg39yn6NtDEt8Q1C+k0BQvXZoiNXo4RzPM8bD+YLke0MBYgU1a5fqqA4ziawVeF1+R3lD/XON89ohdzUsM/GMO7KAPuR8PTbthtkeVxNexTnV0VZ76H4WJ5osB5EW7kg/mvA7OZDeMaCnB7J4kW8ezBHt9MvwpNV/dTLwCYz1guiqhX0EK0ozwRPVckSSCpfImL2HxhfcRbU/vuJyM1lRhkNyp4F8VnSm0vEkUOYbjfmR67wU9qWnjLyQksnLZiXCVGl8RcfUyLb4IEO7bsBIpEE9+wlIPm2my7HuPJesyjRuEoAhZc/MwRfjsdxrWuqZnJ1GPO7MNqo91mSEKce5y/9y1SVGTKktKf1/MbGKf2MRPUqh7OW5d/+LTu7pbreBfQbDsE+AsEI3yVBumYcGiDWrq3+9CXl9S9J32ZMIJSfwtSOJ+U0+QUGPvfDrNtRUm49zWZn+j74lmwwnQScjbblksAq0TkF/HV3t8nQPSR/6A4BpzjhADLQQKYqUJXqcXAil4JTF8gY9nXtP9cSqgZ+1z3ceIdMEkaMVPEwRuEZkxMhyDcmWh4DudODE6gO6jeD5/a1oQ1VyPoFKWNe8UTXUP9OQVVQOroIuWEPhM5+jSLJdHFU+19zvEx1Per2QeCPfgBOj48sbhlxe6zskUwkqGo/Ha8alQOUkGdyc3zfeNKPu/8+lKJTDd8d3exGfk7ezfEy1BkySmdg4htb+jwa9IuIxZToRCRkQxDtfd7Dqsu2IJdyBh6hECHvdV0xmc4J5SNH+Qo9iHOrSW3vQMPjqsoguuwqhn0xdComEHptACGb7jBLpcYDtcwvNOpeOoaAYH/rnFFVoJ8nrQhNhA4Rm5LpB1dLy0IfldM5pqaB1hkpgiKaQXcYS17ZccTzp5T5OHx2+Rs3W3Px0t2VqOyz+e7/+tgl9vy5YJSO/RaHJEeui7Mw+kblSJ8Q/6hlG2RvTCGqhqBW21n/ehBXlFAsQNmxknL0zigfyMfg+ngTqD3nZMdOYPfIx1w2NBvPEksmm0mLk5Ke65ktjYx81LDXWpW4ypBbS+RJdy7BYz3KJVFJm9S9HDuE/Ndw0cdt9a1Iu13y1NwuFXZxuIe6zLXzYnqIJO0dmgFqP27Qp7Lu8AQ2OK3lhDTKBaEmPEDHnkRSg8U3J26KehfEvbMmOf4VKxY27ZOeDQxwwglXG0rmVEt0uApvsQbGkSip9ir1rhx3QpRdr8QO2WKRBc/pxmrdNqFpGYr1CUjFxJFKK/XZ+jLn9jZ+kkbuk9cZZOqYvkrpsynviZ+mefcgci27U5pDLu561q55L+25Sldmohqg4MBVV1v2cn3m+e3z3WFZnOgr2XEYWlfmPc2PmcPdHC0ajbC5fEbvQKLSgIPxVQNe96k+c3PP2U50qWoTZLFdpX88locQYKlHin/rbW/jTYTBYtPXqcOvpNbp6pL5haiE5JGv9q0fz4IBGyV4qdBY52xf2h07w7bjM3FVwEuvmkfY9qn/7GuulX8Aqs9aVyJftjhk/o7gieOMdWpEdBHaIuSDxDzwnoqkqOBGCJgcqD1WNeGzD2HARhORpTYAjECard//gnxA1B4YgZnk+eiMNOoXagBNc+b3HOBa3RgZfRn/fTaYFEo4nifAR7uiOb177l3SttoPKVLUUIdlSOY0o6tKoDxCzFKrpPkAqZQ2LL1Rn6v7b3C4UR685iwjsK9EDD4443H/3CrfX3UtAhuBITjt5YroA0sywroAggtHnP9iPvHwOxPFNDetYbdPKZViz/hlIYsau3aBQ9T9NCGUF+Nvk25HwhYBnb9cI2hHg17KdkJ/Ow6bEep+djwRsEFvEoUAr+EWh/5D5vCzzimJK9hJeSyptb6E0G/afNWMIPEXuSU1S7jQcs6ackF0uNspvzl9i7UuHql8m1nmS6l3c9VARm8B3R78aQavxe1PSSvvwYBvEMe1muxXEvnsoXvShc0L8sV5qn7wjEaARXgahiZXAlfI/AQP7j3v2nx/ONcE+k7PlQW1aINfTUEAVERMeeVXuAdfhtXqe3JcHHlFOvICNhgm3GiiDYjQvwRtTWjygdDrNh51dWfM2AxuzhQH+Q45mFtrbpEHJgBuliX0RikLYfY5nUMuykk6bz58uDk+dIoYaIu0OA1ZPgIGpGO7TvDxB/tkDNSouqm2Bi/Qp12U47EeyaZpZt1ZXpSlKzIDUmSOyTc4BBZW7UjG+4cIKFxNw56ms4bUMsXtzoTbZRJaguKu5YOdy7sJkE4SKscLM0kHS4Dg2AS/+f8Zfn5iWgOIOZVrB+xvptRnySFP2FJkn4OFuPvRKd8u0+U/sX9PSblHxb8xXgCoVbDVCB4fW2eQDkWNo5lIQMDw6SXJfQduZLrsYwTzAhbZSvN2nDlREOyX7JwmbHpnv0pluqVjaMvCHUx2Z8+KqlocG8x1SiEeNbx44CMvg9+/KRjMcL/Q2tfSjEZyXUq1x1AqDc5Z4kzqKiRVHQYA9K+Lc7v4YGCq4SxSLFTK4Z0unyM2xn4l3njXg96NHU9G4rahTFVXXytm/u51xlDvp7A9h5UVyMZsaBL0gErTzZWJN4yN2vZc9JGu+8Tciu2e9c81kBZnNfKugA2l7EONWEtemjgqi766CDh6NGPPpJDWBMyBe8FpwtO2V0cmLyOlUIZJXBv4SHZ7dAxi46t0HYNH7JKQOIPuvh2TYESiORd1Zc1z0n+AxMtZyK6XLA9B9vyQO4nNQgUAlP8Hm7TpqCi2mrgK5/V3p3SdKmEBLhaQz5PaD/ahdmGRSn8XHH6X1Xo9gE5ea3H1r+02Aptjhm6JkzkJVnTDVYKBarQNjj7q+uZbeEaRgFcvq6MofYvFfQ1jeAv6aKxEoyktcOmTRWREPFDrltjGzx5u2PkZGtf8ZO9o7bOndPIlw1oXtIOzf1Xw2EsnzY0yGi8NCE1k+UJFSQHUwp4METmvXVeylrEQuLCqRu/kyBqLKyb0NZlg6GrwURIYED0n8wlDQ+85k2FxwmNyR1bP5gWMo7cX0xDcNs673GQPHlCU/5DWEymq0mOfGpygAjSym629HWLnuaYeRA+IGBtoUswRQXO2SELyK/GEjYmKuUZxhK1RgsdOZT59U+8g+AixBCQYAFbRyExw8Bd+w4//BhO7nnMfSKzaGaiDm0x/V5j3eMPImbRB/XKWMzEvTPwhwwburbHvymoH1KX9vpq+PdAOhkrm3sar29rtIFMmq21/V3O5bBO2H43G0yxgtsU9XyvpyYRxzq+H8ny0/+rYRBhPAFh6a6hSi9ZaJVLs26+4xw98ChvZr5iytRmMfPtGGixoR2bf5/hf0v2xse5NoaHW0o1a5caXFXM5lWLop1lsp5Kmf1EIt1F0ykug8rhMvRw6WwJuZWQALSslFgb31T9TJ3KyyB9XwqKeLgGb7qnrOfbDTxmONyADbQ2J1B+y+5cf5kCE0bnbTf4UOYWy763dJCG3b2bYOlLTefTeJguzHuBovBdzWMXaY/+I+GuDSlzE26jsTwxMGoAl1rDgDDZ5yoBOIhX4ztqAj8DamcIoBiriWNmigSH55pJqRW/0lZshd8aMfMliKmfQtGGex3qno41TjOjS2omYY4y/4HxC7mYQLjJP4lpvwsWGf5KH4k2quOJs0dGisXw0LxM9FvpSw6gW3ZYAPTpnga++hXRPrD//WAvLvqk/MYb5hJ1fzEf4oWsUwNslv6Ka/wpvCgBVPAgQt6yjIDTihyYQCbYhBExbOzvuPc2LIrRsIK7n0qAPQSgp7EdBZpMKTfTwds2RedTYm3grRvE9TCpjK4irLGXx2HUYodPXgRbyCGkH5aeJyD7bdOr6xGQ3jbI+sMFBJuzyRJyuj0kqDqN0M4FNJLUaKnLyptivsv3KPOPPBRF6vR8+vtD9stSn+K1cZFkUBUaLkIYv6wIP2rxlvc83owu2sKpsyKLZSAo4PlXSL6Z7klRHuxgEMHz3WNr0kh1XFZONFe8TFRQHLbeCt91g2GjHk9dH28w9ht+NZ8XAM5/iu475/GZIcEpN0Q4B409DUPV3Ogf56E80YDRWDQAIJlLEsd99n5R239X940nliTKGC8CLaLvSYd6pEKTuCEkqC15r+nlyHtRCzi7zHZwchMKqC9caDKsLP9JfP1ZN3/2B99JPY4xaK/mX/42lCz9l7zv8iTrIEVpH0j42MNS47QseXo2jqllHg8BtkuPmd2sfRLe2PmMSMcCxS37uj2kck27dRdmcE4b/YfFzm9oUC9hssGhVHEJuOuzvscvZXQskKpj1ln/YzX4aSTslc3R0aBLkdfG/dUqy/hNWx+DS63ci6Dz4/qTPATwmqij2tsiBrgaucTA4SbBp9mUxpSYVCdmANgyUQtwc8gqmpkTYP8JhNXiDlLIQHe6HlaVGD4+L3eLkZ/Vuuwo28gUNrV6oUqdmJ4YcSvdyUrXpnMJXodnEfGQ7kQjVJo651btsIZTylbdXKeiHppnKkb/uY/eJxMcFjXsR/efKdbShZ7Fa+77+SivpLfh+Evi/oSIkDB3ywl1CAU+t0KtqBcUq2+kGDjbr+OoNuodLc7hvLL+M8ok88q/X8TNlWyaZDzXl7aiobBWJ+X3fvkkEBSn6FSuCDdcEBWfQnikbyuWS/71wlmORMqh+t/Z0XEYM650KVcZGjaueCwQjeRxuigpcwiD0YfZZbPCAc16mzT+AHxvF84ZaQ9dMyzM7UraFsjWs9sEy52OBH0LmA60qw6TKbpIu7CNEJeusn/ww9P6Ldzp5B+h8apAo3+ZzZF8tJCSmTTJwQVM38mZG23gULSeQpl+kbBo6nA5O0VpW6C39hZNI1DIAXeETqa6dCBA5sT1fDU5gMGQrD9qoqBp9H1HZxpEwOFpX99edTM2b95zShQu5CPXAJec75ijI7niHYOnstZ3pPUu/qtk8SlEffnZgBk+IfO4XmZHSOGB2wNybxdJY+EiBtZ2XoE0SodywyVr10X1yeroFue6KGxE//MRA4vRio0oqsnopQIBDMPxWYW1SCfstU+LbuJhWsxmRwu3HKlKFcTSsm+WJFxmWaZvLXc24vOlmN+pYhubaHtE9NGHecqgciy/hq/Gr+Zl0oWhqMCyrDfwcxkCPkG2GgoWVY/c/tyVCqqJ6h4X8xvQzEgmAQtoUH/xaWwkKds7Bohicf+B6iZdDTNzUr1SItpO7cD5401kVQP+YsF3eMuWW4AYlOlRoQrPWpH4etfA6v7B6SU8jVaLnA5CdesmA05xC7dH3omwFE2VVHre0mNusNU+xfc3Ib/eAUxR0oMwgBBepZ47uvf2uB/FBXhpnFzCSGRGpfsZKnf2C2JdOZQ2igwZ291kBibUM5Vo9LTa1GcLQmAaSBdcQecIZnMWn3NXcXA+oXlcGpakJyH2zzXjTIsHOPqvKmfysiezbFxsMSXyvKmtfUnzYoIGir5Jz7sll6tKVkAzYTeqUQ5vT7KVpMNOm7eHYg0RLd4VOhjfYZfBfb9JRm0+ie8yAfDJ+9dXk0NNKHeCF7XZ+JeWRJQT1e97uU40e4N522Lm0z0/+1EpAs2IKDik8F9XWCxUdIClNH69E00U+L3hS9SVyNAewaZgiTOIzgzosvjbDXfW1IvBqSyFhnStbGo0Ark5qNwT3T/8/umc+Sxfu/6VmIpOiuj7IQlcLZe+YtF5kL5Khs1zCuJv2PLxuBJYqDIZoykEWTAbb6fXjpIE5IM6biLftuJEK7yTLDyrNQTHiQokDkcHJqxDk1yllVYS9mAGeNOE4tAjTxmDjRwCQfVoTHeOBwYZOPyVS021cUy+xoNuRWsxTqcX092rS/sFE/J6657+3dIkW43jzoYNotDZcZvXRQR7laQ5FrhZrEpP2NJINAItzouc4LryLYDj/GbcLSuVRH854VbZlGYFMAGeXr3fOMz+jV0HH4lDBYxc3z2gIPfY2zGIexykJjd1wrgGQg1lkJzwY/LQy0f+mLlCP7exfECgYcJtBbSoAHQ+8ebYyYFM+BMoWi0p88Gw+0aW2GMY1PTR363ItLnyRP9SfXKooAHHrDmiqLZIRC8C5joZrfwF8arLzOFjp+O7FfZrwTbLKYIZxMpwtwtVgfR1dj7VX+hPjohYF9b7yBZZKUgrG93GB+PSZPcA6YPGnCCaned/aOxIUzx32GAkCcVN1VqFvivGod19kPi+ggtR4LzL8T5wl5A2lsyIicmc5ESupMbBmHGk2VwYwKiOIHdI0rMnege75WMdy6x9S6Ezk6MYLDogymisvEFqejSvNXJCR/l9L9JcCRbwhMoDf76LjiEpkntPQjfET+y5XVHyQN4da4KVhos1hHFdvgkRGUQewkA3yXsoK2lDGY03ySZaiIp1F5ifercslILoggZWpKZIdVd5m/gH8ng2dYH2YfAZdSLGHNWVrs3+RBS62IUJacgCwi1DyVEDxwXBvFihRHB+fFHDVUsD5N21px7NiRBl3mQCG4Ol1XUnNeE08n8VfycwdKb7VTioiEYtsW+zUXej88v7QwrA/vjgnwiX7zweWV4Ex/SX5hp/BOj9LLbBMOVM0ERCR71eXIFhlOeZt5ryGKAEEvT6/6KkwxH8YG+RUlmVFpE8rf9F3JRjSZS9YV8tOI+L4ZQrCteiliGRRmjQ6lvufOCi3HqTdCkcR3JjiGXUms0nzBa6Id5k6qPI5FZ4oyg5USyeSEQCTD/M1FyczUukYOGN4rDSWcCfDlCD1O6Fma61/dd88Pyd6h+8ABlLhm4CC6F7xo5z/aXyftvD0u8KsFAOvhMtQW2yZkG7tgnKTXZJXacx1pwpLgm5Pe+65m071fknV49wV1DwgoLUsl6vxJIUdFSSAr11LC9aPIM2rR59N3zKFcGn7fHaAPLIP95BJKCx5YtO/8Y3PsagVb8XrH0V+vpLG2RGWCcRO1ge8kHCtzNGtedxE8wLjneCmQGVpe+wRZl9JaM5yZAVC1u2TPI8bITP/lprtZoc7l5kN+XSHlmVe/nynnTlrxsj7//RB+g3gc2LnInc/QB82zXWKQcaGIkyHLGiTzI6OoE4F1rR1TjILb4Sh7L5k+QYktiHwyw4AMnDI3F3hdnQmf1Pla8daF+MBEh8bRdK1LLwZdrqzYLdVztYOjwuG111MPuj7dt73jhjdGy/WOKE4vA7HD469Fq00IqIUUvHGhOcNIQNxXc7NH7xd17gw1IIz+O5RYVltBntmTJvl6GVB2+sglhjKLkWN2I6bcyGwfOBJEGLA29J9kxmYtswVUt+r4b/ERDJE+NR3TREH2Jhjd+++rxGVAgohmSACA4+YaoW7XJ5X7VjTYFcwPJzyEGABch5PuRfbxJ83tRmNAXFpDvppb7wElI0YjBxlVrdvYWUcgytPhpktifSIRk2YXXFA91khpCn0M5gSSXV5MGPWEGzzhAcXK4+n3GBQ9iUi7LCVL3XH6VGsjqIeQLIFGLSJ2z4l9SZu1tPUFVnHzJdlMEVL8PcnjqPDaFwveGnOQevbI8W336e1UV2vgFl+k8cvUiBte1NnuF9lyb20ekmvNSj8J25nxeayQmbYtX3iFxhSqntT52ccavyIIDgntcht/eVRyGv+99KxCWG7pQrRlUJrDCVGP52NM67A2EAvt5OCbY7qompizal7jhdqSFFC+0o7f0510jrLuHzKjeIwuN0QYeGzRG8aCnq8m51xExv/oz4Z+qhaBW/P90Ghi2OAf97v00iITcoaQ5j3EJLwWVMO3DmWIIysGQPMaGNEN8yLAfHZdsvhahYxpOuxP12ntqmhC0x8h1V7QEovE9SeKgyF+USKP9VOd20T34vLXad1432lcHDhcdA0PKfuyBCkrFeTjkohrjJ1DLn7aycyY7QOKFYObq/gEbdOeiVjoJMcVGTEQbZydgsXNLdHcBGCjQO+5NhKjS4EyZLChO0p7FsM02r7asmvgqx/XHzhROcbxGLrImQlMjOvCmsfWGphCjaT8npzVex2ncYEph9iKr2KBLKfQvc1IGmHrIr4IL8etafGROionvCuUzfcFjeBguOliTz1seoygGsBqjR7uDQfVoqRFqvrgdNkOucX+xM1Voi1s+TqEKVLvxvct2uTBEx69duYyHh0L3xJzNOFGnzq0+EzynfbRe2zsUVO5FipHPCP9C2iv8TkGlEC04OV/zY+5UsMiqhhaOO/aM4z6Uc2x4vhXZ5XGgu4cGzu+w71cIVJGYiHYzor7whvnrV4+wLwW0ncs/e80xpeuikpTs8X7EPXGKC5V/RnmxZxRexm80MpU2Ni1w6fiNRXHuv0+ix9gENWyL9m5krNekRDEyNov68cQPbWhgmOQ+4Ir+X524hLNFF6hVyrt+4VKv2G9mgtjXH3eWfwWzvmzCL+JfN00g8ytUiRzA30GC1gODlmcno9BCxf0bKH29Ut6isbnym2TUsovR/XpXZUF5hokD33JNr6QqkOjwY6uVgKhqooonFnzXSPvMv2S7pcgaY3PAU8x/c9nk1O2FVNaA1se/3Qu11XkoukLR/Ecjbh89TP4wRsAHAwc8/4k8nWfB038lhV7GQrIDHwZ8yQbTp0nWGYvTbyI1lGfK1wdKApr58wbDT3yQluvByYBxnLDbr60kY6Yd1d4/3S14bLbpdQdv+Lk9rG8uugO0owBFCesDnJRTqHtp+UkUZHmG+ynRwdkgTJdOm2EAmi9NCcMSGUmngU3haZ/OPa32uKmyRz84nb7TI6t5mkr7TJ2udD7TA6q5h8lMeR+WUP2nuUNiPQB2KK2cRtiFAq81mqa28JPHgg4QQ6K6kJOmu6c/tWEiXkOtbINQeNcQs7U/Lz++Iy7DcjxqAO041ir/CrBVHEZpVVR8ErEYv9xaiZaSNC8/9hDe7QHGOdEmjKcKK5LrZ2px+BiQSsv+oEq5rdXHMFQ7+VXeEjF/y58yqHtrLHHAGctyZQUg0EL+y1q2r+VlCt+U41aQZ2weAszQtkCxGCXaXG6f4kSWslUSgVw41WHygIDgbfPKcRICSlqEnZZChAmJNwmnaE3uBbDvRLZzDGCmhQadlC4mV9rYOlC03NTriYWv0hZFGweDDoqvXxNZrCILp18/HboHypaQjSI8rZ9t3+CRTMDNyHjbrasf0vAKOkJiQKGaPPXqy7LjN0sxfsZCPVqTBqmdiSy7HZ1qsS57aF+8Eg4ZjqufsP1f3C44TbFXAf+rqO9v1E+8zQOf2NWI6nSas9BnEG69GbTwputY01QZK2pt2x/PeUKJSuR4D4ar8y+uK5Bo6zjP1yTC1Y0rZYxDN6qQBja4ovGvZdYLREsHtfVZWlWauxf+YzX5CLQEGa+1K7g8QbHRi0YWvYJet19zjEBJ/7mnejWWhY+dEajolJNeLwLEOy9lf+pOXiWIBbqlt2YMGWvV1sH237V0OsydSnN+TAMAf4kRcmE17wCCcbc6XHSFkRUWry8mNXKdhy/s6YhhQjPAH+Lw+tyRE8fdMCQUODLODqMmxuyNHryhPTzuEEC/Et3x660sehpxL2BqagK4/NDAaZKv9q+iOkhakKt6k71Cr3CsPk+4EEtglv+IGYZffuhmQ/yA/78RaHw5X4fROKLgKEcd23kwng72jnVAJSLtTIU3+rlY31cYtfp6hKh/2XznFFD34up47dphd0LMXO2UvyB+ueXiVFz9Qq5k3gtr2jVyGKXw/IY4oyupLz4eZPRgx+o/lVo9IisUIQMCRN43rYbvby8r4DkdQ6Ms78FujDmBAkdf2xBhT13qFQugTI2qaQwj8VWZ+CBTcT5lbw4K7pJ+fP/mblDoNDHOVmspblKqLUIpVudLTKtZLaeHTZ/9Fn8SB2lnCSdc7YssWedivDiygT2qiGf9ZgS0pW2lDUK1k7VJpf3WNfiZTui0V5HXwMuNZf/ekqWJOgWiC//ziYwBiNxCvL+g8rHmskQfrPuqOK7R5vJKFjdSMSh68iU8Fir6Y/3foP9MNnYexzCu2qcZ/lee4RAojb+ESYaTXZPqI23ZsJa1va/oj0vpxsfDJEKyWV/Zuv4jnmwh9Hy7uJq0HJ5qnfMmGxqoQKIulXaRUJ3WcIg/HDOVBBhjFAx1hRLQdszh5RPeXdFSdMUP4CB8q0E9dM10fRnp+aqzhW5lWxPRl4YLUZOZ2va7hN/DK9igAGIlmWkNZ+XRTn1yfpq3iPliDOpM+GtaTFNfSuYfIDURXC/JAt4ZRfMMnpNN0GMpAUVA0LfbYPwAUvGp8isnvbOSb9vr/suoM+PMWexeRwMuA8MZx12qt1dSwg4Ob2L8z/KwUzvDyALTc8wPG7Gk74VxZgxzcfzztIQ/DACxacJYCg8DjSdFj13jdFaY3djV8Fc0CmtvrckkkTgLJBqeGKqiN3rls5p7icPIpFwZcsBJ3Ot0hPrgi27HDutVnZ3FD6JUuJ3C0ab6WDbB6BCwm3EPQ/DD958u+DjeYo89LMJbLRLZ6gK264YtUQKg/Uk1jwdMw02KfUThHMBcZ2H347c1OEpSnmqoDfpJsZGmQUN0WGupbbeIQH+xnX6G5l/xUFw0rDeaTWIbmj84/fqLSW//hUu8HyxKrBeVfQDvmFp4WbWufIEwpKJfIJgpa3swLOAm7xJ6I1/BG1CJ7WYI1ArZNolXSFo7TvQyrEUBeO18IR+1Q0JuUnF01y/NJEd4REsg1vLxj8S8P4Nom8eVdEO98LU/HF0URZFQMaHpMJzJjtRE00KyBM7OYA78NuovVkR9iH8s8UZZd+X4ZJKkn+dN+70hZ8kWcmNVI68cSCFYQVKYZwW7S00YJMWyk0Ms4PYHHUDjPPhQrupAx+3CPTU72dnthPPE8i9jqpgQa32L7Ch1uvqO1m99C34ATTOleRstFmClykX33jXHVo381eCXC7b7tbOkIuBSE6+bis45p1SHfyyW0hK3X0uQ2WweqtWdiSegDUJxxqE92OurlAC+cmPdOT8XmMDzOr188P1TUGFo5+CNY2H8Uy6cBUc/bzAnhStEZBe7BnX/VcxRxuGBYDd5HBWamLGnGwVoLYyxnIRiaafyjv+3nnpFhUlrXKIHWy752cWZiXyR2BuTWdKKjMG0R5IOafrq8zvonMEPPgGs4ZvKMHVxMluwFZf3xjJGw2Vwx2lAIbxD4RVGplAUb2I/XiVohWtNkudT0gnO8/O5uqke9jHlUn1vTDItd4PV7Uve44L7AZaixLmT5ANb5YK5o7Dtx9cu24Pg6h49UGq59CbOSK0P2fn4GmZ/dlN6cFYwUneCsg90RcKDxZdJe3yrz/vX8VAAmgeioDl00SuJC3PZBovqudNcivpeXpqRlCZ5c5jwtp+9zntgpXJwUvL2LFcY58jXWyV/v2mULmk6pN3NW53z9xHpKpQgq72kA16XSm5H/BY9WC5KAGLV8R4lK4g2lDESfyuPGod6EA6EXqyZGwk31sp4GXDMaMZIYSrQr+7LUuKD/zUxsiy/Uy1BGW39sSBPMnNIfgYfJJnN84797ONo2TFT+nwi3Tua16HQfcQqCOy6J5c16GmAISs/gh+BOmOcAGggNkrzpuEkyIElporTtq4mB8NtpHbitnEwp5JasE+VBSkSd36YdwjiS9hajRDOdiQqviDNF9A+zi6GgmZiIjpsnEEx2x2oGPZrzww4wLUoAQx2yqJs1rhqxWIjenIM92eSSgQ5X4auqxTGVpZS8qbgl+oDxVS58qPFoINO0Im/x/tze/XGp1Sow03pyWhYAoUNLs6es02p6icKNoF/L0CDnEOF2bQK/BZtMJIOUgvwRAXu0iItmw9Oo726TTOJp/cM5v6I0tp7gZ+hy46NaboB+lGvUBwrgM7bK71CxrKbUtxpQkutb9Xvy3m4VDzkrsUkmK0JPP2S5RqeMlDbMRlowR1W7viPRSfOWbXIzuRXrAfsOLBT4rnz50WfMl9dJNErYhxVPYCjb5Sm5lPOUg9iaOdhO67KF4qJyBtRWwPQECV/ydRHp5uomzfNvV+5viJt7Zmgn+shu8jsc1XXvW1cPZWiMW0UIvKZbgI5iRQA4OZfp7dgfu3vXeGhfDXYNsB/UP8wRcZjcIriJIAz97gWo2+VS/R7Kax6jWB7PEk3vVtHOXtuuHLmXI4N3/l2Uf9G0dO6RdW+3kHxc5tWlI/n6YeBj8/PQxxPSgPm5JTyhphtaPc9CIfF+9655uwxnjjgfc4nMgxNiWx9utsI/ChQ1EKrP1uCF3GwpSwMzXuYdT2PbxWJdErpNvl4r/uCbU27N9cxYiZm1QYBRfGR70rcXcmPtWnizOHhoQJbT1pvsg796T6GNCfKzZnN2sC8tI0P+dW9t/RrCx5t8TqT9GTvUKU2C5/nr4IBRD2PHcXpcnJy0Buwjh7pkYPsmGXjOPEdcnSYt7cdst2QjBp0pEJjFPNX2CWhMlkESyWCwz5JiIOpIWV78oUw0w4ydKOfgBplA4SSEUx9Z4SAdqniciA9l7LeSgFYadHKMu5Pxvs8RYwtAMWJ5kofEPbrMCGoEkvNUPQHPcgXf16FQ98CeCFrwt60bvCG17ZPB0/V7exOabrETOPohBwwuIZOiWHpcPyPInrdDLJYgoWHYpl4+sctAxp0a8RORFxECZf7iEBKdh6nW1D/XbI+oA+10ovIYiNqQ3vaLNAcK71Vtb+3VhXg9yi7qbn6394FZuMa9qv15Se9817mUhhJnwc6sPRq/4eYWGIKSdeSxH35JFYPhDVeoTsOqz7SJfN2WSWxHlkrDwHLNi+eRPukKVx+2iD20ibrQbIIE7oOhTb7nppfUG8MQlmqsGLJ9umX6q07gy1xGoTW6fZvLQfWDyTZ3KuKKrNHaqo15CkNC5zkRFyNNjz3hXX/yT9uGkW+pJ2qJGDwyQmony1b0B/ySfyvnvcJj163jwLbCYu/WsWX3t0zeRJge1fIWIHXyQuHwAJag1/DODMFrMxac4+s1vvSj9Hff9hxC2YGT/9YCJAaNoQcHjzTvZj6CSC5RAiaS8b0uwLfw23CXj/kHR4xyZ4Ih9MYvNPGgQKwS+x1EahpZz3LHjODn5sClEXNA4XjJDslLotdk4ykLCDgt25g/bgmGfMsAj5VsH6ZBON/+1jDdpEV9PVzV3vz0r/7hmP4Qn5DDyFY4LTM43nMNc1DaIKesHwomF0c2xgv0OZCAE1vLlf4cXl435up4rnG+TbbzdIt/JfCHCHuTluXF+C7Yjjg4HpJFXZxhwVmx8518sRq0Z5rz1DlUvF8eXcEZrn1T7hbPyaKAsE+SICudbd3aUs7ubDHLTuM1C79PAbKDYtDOygWnoNe2E52Iwf5PPuhzfrftqgjd2cCGU4JQdjfO6bv2mpTDvH+5xxbkpYPaCzNLUFRXOr0xFCInXA9nkC+7n7V+yXPmsovPBwwUZHLVERGD+1nV+mBGiJUgNU8qZGGYnBxgT9kP04Y1HBUgDwiNmy19rZ5yO7rT5esHVCT0+fFJF8ZFft8qgu1KnEgcueGRQ2pacySXnowtU/Tn2JQGzGqywbCMDDDjlLP0DXgxxL/zWuXHkM/w+4oLyiSQimmStSWQoZ3o7VLXO88kHX0UsMWL6bZqCyLYMx3XL419/hgBVV8Y6UliN8H7R2Z2HSfWSHrL7hg8fGqYDJd68bhXnYkAgntfnnGVDYHeTWI2lGnUVe7uhHTWFmZMQLvbupbSfxIQBfCZOHjS/BP1ILBlI/yrj+WXGodBuiYuahwlNIkDF1zaThRUrR0fbDoQYDf+xRJQwfKkpdSmtbgmRrvlNTsxR7JBsZ3pkkRAo0RmdKsVsWit6drLgmUlQmyYEKJHGg4+8lUsFL2888DjmEitDM82X+tZPglUpny0v4Gk9mn5/PuiUzJjWa57W1bv3PdW9TvF8J5U02kJsYrp0R6VQqGCeS0i5wXc6lJlcx9qjo5dmMyxzNc/a2XxB3su5mChjjHGtE2ey2e9SeX6UCZivqqoAvE0JzIlS/vmRCnz/lbLAXPrkKnPy7o8xm0l7REakIpOP0/5rCTMeg9hqAefq6ZWTy5cAAT8eCItCCD8ncmV7xt2GsQ6E6Fyg31lLDBM6w64weZQeP7U7xMJmOM3Lng5g18Xg55p+uEOfyeyaucyvuv0MI2ui3FDtgvQQPNDRtl+GhSx0UPwfDwDqLav/vXTdwUGAxJYNcBVAMGKnOAfgMJ3fFkzM/PgYdGlNpUSYYfMgiYrquHi61XOJYrSH3LqZ4kQwDGUBm/6Ye47kKQW281h9+Y1DVKwHWYKNelo/A02GUhkV2B9zPJdjcuhRVn4oTztuZ4q2eBO8y4cYIok1RLUowOaG7HxbLXI+bXiPEfTKBmEjsyW8jH15wWVuSp2i+lbQtlKZlW8jAh8n2iTV4STo82JNJexoElpDPjlquZfy+bOOwA/E8w2FIY712PnJPdxBTsL+9QsbHKoBZt/xVyO+zppTLaIqlANWBaiEZr9Ll57OUkcBYQ1quUTMgEmzUUl/fY6tNOA5M+lECI2qPPpF/HrGX7eBvr8t1Lh2P02ytHkT/tqfa8+BPESoS+N4yxz1RtcEMiPU++J2U9kc7ckiKT7l7sLFF8NtFdfXUn5Q4zODDKhY26Da9Fskz7IWzkihV44kJfwYv+8Kyot/z0g4rbdGWKdd116SLzaY8tIxjPwYooV0zLb4dhbbJqMbGe3vok828rOJqHtx1ifLfc1hhoZvl7/dvWxHJiksa3ggalqUUWMgrGVBpFx8Loo3p1PQFTgQuF5sKNMfomDrT+LC05eL9Oeh78uBbIXSvEBsSTpHdUZ7L/GoIOVRm0nPWu0f4rRlVbam5qDR7iywhTdthJzfORERaMGKZQGtIoja662nZWafoKHiVSMtzpIbkK3BfQELqSzQgwp5zhXm3f6o2E7ekzATfMPqh2f/jaufNv2wt5xNA7TXPrlJCJYHHvqw9EnIPndbPtevcHEJjHS7I4BmBVm2rL+IW+VrCZDPnM34pIOtFeyX5HhdhFva8vec9W/UFFG0WbLVI5x5p8Jl1hw3LIciQPC0RYZnDPS+P+0Xiffj/EnXHp6Ib88MleRly/6LjBc35aRTSNcmm5BC7NJZPkct52X/rImWINWcfbC8wnfcooZVnYvehadSMuxU7JcP0J7/81IC6uwG0siMFLCb1PDw1vhxsAQ5C0lxU6bCd8sp5TgBMyrKZBcfpqWVjAZKSyqtgp5DMwh2gNb5OYG7+n0jGAu4OUAw36Mpz/UOcqmXWSBHXmj/ptraEWXLx2jezUBLmbE2Zz+DOuHHQLkSqzl73CbWRSTgoo9K3ZUo3fjusXJbCvjx5hrSLgx1Z9Pfc3tqPeSMTlK6gIQru80cyZmzIfMGobMkalAVjmnujqF9VktDRdd4+lNpUQw3XNNr2w4tfnvUNihuIgJ3G7FD0nHIJ02m0NpVyPCP5eFiOPakhfdmtV7kAndb61PV6HMrylCxY/wrIZRP5WQ6njTtAFfLxVa5r/LUbSmHLpbJ40tML4ZTu9ld9XltufMVgya4HZwEeNx+ZVCnep3vHtPPCJfPALeDSKtKvMb4MMFAq1XyuNWMWpxHOPMmDg1h9QauoXwXd2hv4r2UuFrbD/W3y5RZ7YMgGcmUhqsNBiLS3m82piEsCVvxND4hJ/7WQXZdPnLmqSreEQOqXlTAp0S5A9BldwDhDcAKis9qBhi8Cl9nMekRaTfn0/8OrZDm/tDuOkyTPAQTyCXfQzN+Ll3Qyle8QV9hPu0Htad40sUv3NJg3dMOk+/qyBouXEp/0J8X/SEtyE50SfZpZl5W8XqUdsf4yrUM+qy4ccJTdrcZxG++qrTLlkmMeWBBTkr5SqKsVP78RE1auyD16YHYXjaSX1ALrZguv5TL0IxIP93CSa7S+Ey7t6KANxOChp7w/6faWrUtKb1dxRqnZEFU4aLkfKX0NwNiww3o5TqyC++JxidM81BufKwmEREZY7B/nhnCLfGF2IyRV6t74es+29SunsRr1jCcg5d0sSTMs19yvc1g7bF89nQ/f8VDW0F/KahgqM1nVBeqqff8+ZlEoLOjBshI6fhqycyv1qzXBXaT1RswevKhsGesRCLWJFNiRMxlfo+iWmKF0je+4eake9RiE5QN8TMgUY35QnnQi3GvDg+RFlG5vUSPkzAYNj6kqbiJTsDiLjCSFBBS1pZbkjM9rsAH6EyFCli9l+KydJAfmcHKVza/14Hj5aVn6wXtFx921ievcbjNihadoQaNqSjIT85ku/oDto8X/LSXVFA95eF3G837TYlYfstl+kYHxklG2UM98XG6RJ8RGqwM5WuaH7f+b9hlcGP4W8H/U1YodiSY14r+l0yVNfsuZOMU19YOFiyoUdPTXyS1kjrc+7lQGxIjZN+hwJigEb0AXRByZrvgMK2PFqZWb3UkN7Cit5Sq0VbjSmSflfIyZOejL8Uwd3sV4BGZ97V4H/tNhODY92BIjXp0tP3j3uMVdOwWR+mqdKrKno201hAQ7Faur0o3rAW7rF5fWrDljQJfaPW9DR9M/++LN2k4yEkApfnHP2XDL4Qi7fjSXc4RUouCh+bxbZJvyNaqtM1QmVVZBPSXLlZgK89NEj3fFkFzQA+2pCMqo4qJ+uLdxN5tw2sKKSteFnf/ZyITsbYTZ+7FxKjzN1OiEEYFm6OT95cytn8ejPLcORfbIzqBbqfrduohwnnmqJWrAjL2GPMgsCKsA6CmT+rcHw4ALjbguXWLSo6Eq4Z7sFgu0Tk4xFVA3CfIUHRUvg1nKrkPAIesZvz2kuG/SuzTeyxJbhI2L++A44zjLsfOqS6lyzrJV7D3UF3+0DQ3+7xVqQPu/+PVakL/D5e8qD2AIO79EtLHYVg0uJGPW/YdiejErAYq52qEQsqsMgFn19bfXz/sS2FwwsuLYNe//tB7gxPIDnQMOcxDrdkhbZrqDRjVM+uugnDRItNCZ8eE6jKntoOHjbY74jKgdbwIsLCZctY3guLbTFRLA32vbnPDOEvEm+SnKsIY7d+YXryUxKMKbtw9L0JZQEqhnpsRDHjRTj+kbXQ4P53WaWY5Jvep0wLj2/y4ieRwNvxfc+W6FAvUf9+G6SelTAr8iP0+mytFfMDmdso+J8BeSnWOC/apkejOPeI3fAztDSQMjr/96vyVmc0m7vcYYihHJfeIspyg1JnHT1y4UPYmTSi9W4bYq1Zx8IheGcRix9r5eREqsg9njGsj8vNBcy+IULNcvuze0mHj8Rb5ORsGzPztm6XFBUM7iqE82JmTLywA79mZN25kia59TGeSbO1n7za/9Iqp5+yErFk7vBOTHPG7GdjBnmSEP5pXgWMt3wnR95WQwygrj+9reZMWsQf4FLslxPE/r4HUjQZkJ6r6OmZ2k1IRK9uPA6sx6SmEDe7L/TNT6ukGv97ooT/AMc+731KYWR/7caeieS3oj89pkQhPCkItg3qkyf4NXSw1Cl+dkCXkvK3uilXIZ4JRgO6WnuDsZ4juontBUSbIJLlNaZWq938MIjDhaxAP99d/m9dPZ5IE+5I6KGtCLrWPGnGIqhFTcB3aBvwO7ZvsU2zmFX72z5kswDNNPaS/ga0bDL+Kh79y1bhgMbOWNr4j5xACYgNdnIp7mlh3so+mh9e1DXIR40uxWhRABu8D7fHZicfkrN4ZQmvtvQplf9Mtg81Qh9B0TwM9ivhcqYH8mjL/xOMNcCOVcI7yW40Qhf1UJxcWuBwMiOdN5IQq0q85s2pzWQ1sgJ687dqsSqVl1aAXxFWHji1ZDtnGb8/u/h+WdjAOi8jYJMAVYG3b3Pfq4e/NqCoNSeH8aabtUAw6Ki032OHUP48p0QkbLJh1pHcnZXyyiQlfNPNeG7Vf5uzSaT6QUbEDL8jw3GZ+20AJRibm0XTye0VOAAu6oMYOJx3vx/YJx93u04uUmXZAZJlP/1VtZMSf6HvNQ+ppgjppLrpLmf8MXSwZpRZovcc8SbkwwaFiorUr7bv5yJ1TaRzzyDiuMEmz/jDJq5wF547RiFNdsItWJxLw1dSLxWXiwR3ZsJL6aOEpzwgd6YXPr9RAeG9O0+hv/rGMNuiXD+uH1ZAEUFYkgGG+eTZ1Qll/eUWqsAvmNwPSYRCyBzwFo7AcZdHCuCN+JZRO8aAp/+sPxOfdvTFQUJQAQTM2TYgkbU8rZ3nB5Tu3EXYp4ERIVUJrVve24ZGXixYp7OOBVKrIvwLPwqkc7J1dDz7HXC1nCCFbk637dQbFPfGrWK9HUziY+y/iPIiQbOr0awzoyt/wCxBL3pSZQ5mrFRDcljtf8ScPIrGSH1F02ChhdvdnQBPPbbIlDOBf6vhdgfXb1FjfnWJHHmKRFLp9U9hzr+a9vpccrBMZcIAdmC1EP7W12tS0fY78rLSKn5DUDHB5G0x271x8agiwLGMbzxl9RRTzlKETDEpMjycnIak9OUUY4PmNKevznci9KH/Uu0cwPJ8DaHm1IVoeU+e/spgLrCjAqcYHRU6aYuWuevOSAOpUuHJtFaDfzIcufO5jQRjW/gOJN1cLm/z/BpXmV6QGlgyu0pQSMcxDBvy+cC6kvMUrJicY9OFm9oA9Kr/GjyZLPNqm02bwjeIF6gQ01lbJoc/cmE/TObqlw3JfHCepPDz4CzrL/om805O5KoMqvB5RduAYPC5k57knZTqUWmN64bMnUDv/tscGrf1pCy+K6qtZS1aEChchvdYMrR9gNfXNrns8XpABlDp0XvwkT/P9mApXn5U8KUGLT0ZxkNbTh9SpDE19UnH9ivKM7hGZKYVSYqkoNDUly5rT4SoWYB04Po0ddiYijvU9as4S/5as4ahCTC0N8SoI6u/CBXTrStvPS6i8LIPtEoorgp+shY23NOSoKnzAposFoQno8W5NwlvPaxfrn6hfO5SuhNVk2+0hdY+hLlRpuZryQ08l3bfFH1fRVBtf3Kpa8P7CrwRtiliG+QWDHwz5EotnhBoHGASyIsAUQmHkZdrTPXRKgCoMzVQvZM5I2+cJfVy69BMPbRIj5tNMWhl/OZP7PiN36MGFSFdjh0XEY8avJZErDXqMUuvTLx0u6leSsXmR0UMNzowuYDvcty8zWLK4jdWjCuZbrLfqUgrEMSdeZtnT2ewHoiGinUcUjcuQzfac+Cm6g08D/1lKPboAGWTW/4MKxIzmE6ckZGnQZiTon0wTYJ6rFHpgKBlNMUghc0+NyrZGxoGsYDzGofwSqhU6ArLodW59eVh0VmplhJuSGNxy6knTn4Xal6Ji5DeoIz66KW5gqcrpe9BhhjF/YsWfh9Xj1qH0qlD1sOPTmhmSWX5hoWlakxaRCfQEicNjvEnS1kB700xMCCy6McapjQobnFhOtWc2fCNdf2mEsrGaOaqBzDEMCq7H8qlhqKiBrLmoAhtxDswS1Iha5JZkPKGKvELxfQmK56vFI9G3HQ9qauHn9vJDYYdw30FO8rbGhB8bZpz4WYFkzuK+xb903OaNQEWVakou04Pi9JRrPi616y7J8MpNI+s0IJecdVltaRn/92sU84YhU9SeZt2+PatEfcmeV4lbe1ni+Vbv90BWTQT9A0HJ7AYqwqMIRVyVyqesMGggezgme/qX/hHAviBp4UwfnRJPspFjzqK1vLDkZZsMTn0ru9Aofq5MmkkKfjF7O52Vy6D+T4pZOLPdf8ZfFOVYETzW/aOzhw1EilGRiz6dt6aoVqCdu/+BoDQvINQlmVtTjC5hU0K9eDAI79WRYvC4Cg1BuebUwEkl9gMe4bYo6dXoDmpCJgi9eVSLvR4k1u6HYcepg9haHen31RJpTHeGSsWPtmFvltfttDhM9mOlWyrVuY775Y1qcR1AqVEHikGMCBN1ihz2CoyMAosVIwg+Wk2EaV1Kn5J1W9OOcOuBJajO7yYJpqwshkIe5czhF9Bx6JsjZl+KTa1bDXlpfTxYRHIzjK6uU1g2vq/O25Hvt9dV6afTRblyo+G2WLeabdnQ+2xVw407Ug8HbhSvH+zC3zg4DnSTM9oBep81bLlkBNvJ9Ok4W8xdsnP6DOohjEltey1wks69B76Yfn0GfqTTIdWJBaDALCY72z6pA7iSRXzfWmC7JLXl53al0p+JHa1QBqsKgAJqjBNScNFHp+GrS3mItzaxaqSlpdqT76yry9s9+O48RcyY0XUieIrMJdFjETcM92sCgQ8UXxIL1oXh0iALZTB/vsSDD9YqLLeG402DcVpmWhtXADqtVbdD4drI+Z3OSwiRXEoEhQifKuHpsHsDPwEMCl/CzygwOuRmafLkCN5g/af6d5CawE6jZspi8kPC6XPqvVSMf/E6yuFTK21XMvko/oY541WUhf44mjhgn8OvcCuAVK6gY7CL1ud1O04VPGgaxaC5Y2g1c3xEHLEamXfAZWo/9dfw6eVPsiQTaSKWKPOX3WDwv6c5WEWBlN7KQGZgkP4POfVDPC1On3kKFjOahU3VHR4kVViV5egwCPUrirBmc7NmpcsUqNH+zQE/8b3hzAdDD+dZITTJFA7i6NIrYgWNEUDqGsj1Ls/jXhLLc1TfDsxBysNiayXjNHsZYYqpSDtB0FjGaSq1tCN7UmixM0tkQcH45qjG3NSzcQLfQk2RR3ldHN7fXjLk0Zdlr9LjJh56c0G6cqUivsUBU8P+oUezlYO7n1kpk8YkWAu8JoT95clDv+86on/VDImKmocmZdAaz04lyDxfelZEg9JMzmx6EbJKS6el+oI3nCUMV+p9OafKGV1OFt7uD6xJP+k1SZNGvqaShVWo/dVxaVjHe0O/8Jl4lX6ENrOUWuv5hcGXbJ8g3MOjJaHMr2Fx2EHPr+SXSsaw3sAB4F0Am3/cgje26ifGaSE2WPv1MCJT0XLNVU+5KIC7LM4zqY8PabAWdxhAICf+pmlP9QL3VMp0VR/sjpI0D2eIsdBBsyMElosQCZH3/z/Aqod+ie53REQqqSMX0dey8JtujuoNLxv2R8MlgdfbhZ9fZ2FSbeHZjm/u0vlNT/l8SATlKr96jklkAsyTcXKdQlDWfEppEv099C1XcwsGthZEsFPttr67/GZKFXbcJ+14KgjWHhXIih6bwuyQXaSXQvkXqQ0Gg3Hvbud8m8S4Ds7KNIeQmoIEltNQs07hxyE/GohFnGlVkdFg/Agfcx/bE5pdkZEHRiscJaB9P5iagGfCmyJC+nZefd599Yb83F2qoo9iSvnx/LFTQAU+jf/zMQJkn1suUimPEn9Yl5WUZm6dj0FkVNrFl1eGvYs2WP1ED99EQu3wPShgiwUQp+EYXlJoMu1yCS+7pwVesFuC2K2RsEZvmSmqZNTHPYLWmZLytmPkHXTnFYtP8mzL+ic+UUI71cptow0FI7oBSQSWQH7FzDzKCMFIb8k8hPF0sbLKl0yyodNfP+Ztx4ZB8GQGOwm6EGza7+nZPa7yuptIZ38R3h7Q2PtdA/6q38uyxbWFiPnV8OV2xb4ePZO+FkXUl1CHhha4jQs8HipP3lnqdD7bmzOK70tzg6vbQ/mUE9D1VuGTUwZOASF+gYCyWo+XFjoJPJQT4Y/2NCbTlLF+LcOvzMIt73OPZ9/8ulzVdbh6EBnqSvHwcyvhEvOs5o5of+eWQaXY5YDbM5zKrI0Iuze3fUBcZKthJpWi5AeumzXkwls3ecEpB2f8rk60GbPD77BXcYHPXAlW2RbQe49aA/KLgtNWRScd3LuLyNM1TPnJF0swBbCJJc9zS5qHuF/lZPSvZvemJiO4Q1/EsIizKNM/aIcx99Y/XrGMCw0D4x3UultWYhKurTFmeCmpPzxXxApIYGAB9sd+/ph1EFAdDrRiMcWTLEXoQ5mEVIZLcnqL3ZtxFZKCOjUp/C/mkRLXB6Y1cq+Sw/cXh45JovHTljevthPKNKsA08aKO9rGCctPlYNA/eOQxNmQ6Z1H7tQg0F7MzkW7TvHZmFwJGtlE0UVLrsL9Ov5NhJG/8Y41hcFkYROCKKs7aLo281LWfttFx2+6m08C1OwRZGT5mGPYCUJzGuFbNSMOMtTMlnCob4YON6q2nzwQ1mklsZ7jUv+E3NKzxPeE0rE5HOWcNzwvB0fMCFNioo6FBMROce49lTp85rarT5/YZHPDuhDGp+hu9ve7FjQD7aHz533GO9nTjEqEEco8o9JaA+fuXNOOi2iSKSLSTeKTR2Fem28sAaN2go2sGyKb5JrXxqZEX7MyGJO7NHlN3kAzeKoGDaypRp+XsyQ0Y94VRjynVagFWilgbIorQ13opXc3SaBmAnzvtR30cJsXmZKIhHTdQxPZHbsjaUzRoDZRMEkDcYtjI4NBL+GyTkYvnUUk7zApfaZ/1pWJPG7EuL1S9AXqbTvr2zdL0v3OyoRan8/Dw4fTjEV/GZS238zkM3Jw+GfXe2gYAkTHBwNXFNSwfn6Iqg0FIHKgzpV10zirXpql8AfPkchNzsMqpCXBwA+zcvEbSq44y8AthK6usIoAuennfLTe80dnBeCMWosssnAbjhZEhxED5ZvqzGJ6HLJhYFQQI6DxWip7u7q4Qqfbz0lplpFZI7LyUCndnpygzJvdbkJDJrGxy1z/rc6FCT3ii3GF3+yYs9snQRW8tGQ3Pa0anLz/GHH98/YRH1GyVQAqW2NzeOdtT7RL8llk3rUERBxaWKugasDhALUBC1AuEprNpwUcFtbMpkL5cEfwIYAJlqLjoV+JYvf6nnOI8l4cfAJybKMHQoUnqZqL3Om/Dvkh/8FXlixvTQgXcC17GQFNr/h/zovOUku0ShRtK5gRXUIgc0tJWAdVoEvgoEUxtkRaofsedJdQcW9qB8Ht3FwO+2EVh8+2BuWqcuj/typwlcuwusAJx4+qfSaauY1iYLICGWxEjn1W08GC2MdGsQlpSGWfU7rHgyCZuJpENSvtViF4jeaafW61y770WyyvIjxO2qXgHdCd56eblohJfBGQwTKCS0tISbLPgiJiDy7v6LQMKKlHP7xix/K1YIARzgs++PJtP8l+z1YIDdHMeBoCQDuB6VXx4RTVie6imzscdNqkWhQ/tZ9kElCSJ+DL00lGDJedJMXTle4bN/EUgoVSHQq1JIhzeeGnfym1ORLVk+mdlaF4sJTtmoGMXTvrUg/34wP6WfOLmSb08Y0snshUUCbtRfGCYQdK4sXm5A5kA7TjsX7SYeUl9vq/VrODPbIcBeBQoULUZ/vtywLq0Whd+tkVURTPVjyTfns2YrD8BfJka8q8fpHLixklDJR1IaGWsvwel0zjmNJCuIhNWdQh0Bi+GDsYQr++pvDI8UVI16T0jwamcKpho6WD1/MrppustzK7ORofMVryPmMkEkfqrRreWrNiV9cFrlKBWaAGHWepReSIBU1j/1/d9GZQftgmsW9WTIMgc69C/itKtLIWYVyv0oxT/siqNe8n+JhSnMShfUvnlqsIFgweITTklvkdlnRqvbHin03nXlAOJd7MRG07epaDnVlIbWBa33b2BSmpG+hTMXgSiVgV5kBKAXmsViZ0ggtbM7bUkncIQWbJCDyDXAcm3A8++cCOP2x4YTFVyHzGysnTF1K4RW75laq5Xxt9oEOAd8C9wn1DkcSTROxT/mLUasDV+zJGN0LPJu4ouO8mCs2z+NipcYtBANN+Y/+pRV+IW3O1l8W9ZOVr4Ozt5bl4APYFQqokvoy4hU32rEhHf+7Kulzb8bx51S/YSCUz3RKtrlLje1+wLtErY9hDTl9jNggic+JyHfeVPvY82K4oidbj0nXwvXA5F2I1U6xH6B5Ga7SkDBi8YNLs4g07FPrbSnFp7vLp7ZeoylIVp+wtqP+KljSAMvYSvGBDYleaF8kIHnIrUlemLmYDXkNP/sETCqISYV0CWIlgfZoXfEppSlQ0O3cTx54Q6CSthq34zaEF+oH0KsNGAcjnZp4/ugT6/qOe/Alt3WvGkV3s5oQTo5vSqneQ1OFxNtllqEw8GXI9u/K8myZplkXZnIZqe/qDR9alyBL2TKBMrKgfE1lPNMo7RLEJbGfHEAdBmJzxzZO7+PNr/EmaO25VgP5j1HPHDSAt6E78KAE+072ZubBI9sfdwCq3fc8LBK77PzEoMVcQ79YUXgffDOVL0rx+mOtuL2E7RCmEXu6YilchmnUnTUSC+1rujFk3tOZM9PNvj0ZhmVvMmlsOzWLKDdNLArQwU+6fJ+8Fcmmqk+72+AMetG8rXOC60AlpvCe1S0KES2nq8xd/rQiukBlt0xXR/uZWHL+SnSkNDbTHwa5wUEgt7c/tR44s+D+NaS9Nsi914mMVTU0r7FyAMB4dPgbkKWVnyzVxDUYDsW/jlOHQspJ+flGUPYKyL7X8jWAcecKRSPyu+JvKxFElkhW9D26j4OERp48jF94ES6HPK5W1QqUSUyuIxkYpFmjj9L+2O1mi4R4S2gfH3YWF79hf+ZqE0D/P5w4E6V8fcqQF4QAc18unlPqOjXF0/EnVjZgxh2UrgBQpMLiwz/aIJpTYDIw4AyYbpdizaXKLRjgmlwEnJHWrhIyrzIGQgGt589u83IP3vhS4VsTXq+AUwAYjNmhhMVCzNuQsMhEG0wseEfTCCvwXztN0gmlsUMt1J+sk2A4v4aEl6qfS12YgMDsqzHigy0hLXBTmZItBLOW3iiQOhGdmCoCJkYgtaUjSr6nI1k/snIkidRo2o/8qWMGvN5ePdZosUFzPharNc9qXVJOPXqy4ngn/RgYa/cKRjcJWzkbc64r0uEAmkPu5noxxRNb0/LlKpxWep6+hRkOIpuAHgUqC/tKOsRx9jwBhQ0MrClDuQZkBhWuulkZONxuvOs0f2hyM1v40T42TxBEw1QZfSqL6OoJj4Gb5BvYy6JRe5WI/KNjAgodZoCyzjvyCa+ORZZOY1UIHXzNU8I+JD8/GwUYu+mh8OtkS+iIQT+panjL67BV7xegO3xxSehYdVxPg1eE1Fc++cyDP7K1hsiDWRqdxnHOKlw0emLJ8QzZDgF7avOeo79hi2YNO6IXMjs2wA4cjEXqjRkoGBW/iGbTtgIDdIF87ungpnombAH3gINadaDciFfhdxTHV+OIYIEWrhw8NKWbbutFOArCqMA2L6mDaK4xbjW7P7C9CKW3j84hVgVED72JTLSHMipedYAdJAN9iooZhBbKno5A3RiwWCkiWfBCHhV0hT8lsE4MXwMScmzPD0AHAbTsjKlWoyOMOieyc3NuSaExF5/LY35n2ympfmRGd8rqKnSCtCwDq0peDhS8Hv4dwcgK7KcoQI9SjOPoffJVm7h2kLvbNjsJrVzK3hmuPOxfu9vuL2AymigmVr73Y3iAG+G5RBiwYDwmxJp7MJecVk8P9yhnA8tS0lSFH2++8N7K7xJ1BjVfqfJKRq/ZUf9l55rxToc3bxN3+yS2qn+XW8lhXn5uZvEtqmXtkScNOuAMJVtj7Ot69lSxDE/FZ8zJa0kkBzXkTFt1odGy+LgYYQ6csvzzYCvxNRZjUrczeoWFBwyZIbXJnCRvmLQZnfE73+qQC7qaQLiTJHFV9JNITkFap9uT0sB1hg5xUB4/XAxwsXh0LuM15/G0PuGTNxGZJNuMW+3e9GBoWkKFBtJu01uhYOMBXSlr/Tq7ZMf53InYTS6j4b0USJYFjgC6D5tUrPFVCrYZpf1VcYEoToKdchtg8zLlysJXOct3idXgyc1GcNfUgl2IQuMOHDbjz858GnTo2q0Qu3aMDZjmlw1KGirnL80kKEeSGFuaECSAaJ8n1NcqBFfR+dVhqV0cbdaYjq+WGvh231JVx4gTomk/BAJpEJkcRDyVbWpRo7A7P5n0t1b1JKaFkVpjvX4EZLHUVIEsWh5OnviySVXaFyAaiLQKXK2wHWzVL/qQji4mX/stK0LUrMsGP3H9x6y6FWpMLKKTmIGtxVKowoi/8KsolOb2kX2cbnHBGJSLVxPQ2OnI9dlTTP8ldgJjSiKKDcZF0q7McBavVreNzpPjkD5N0LsyXaOlIlF9kKkmYwwdbdls6zQ6KaxmCkV2Dw1cYXPah9CvT6MVrp5ntlJDbc4JeK5mNsJ601YzzRapd6fGQmdPJDYMqtjx6b44DjGDktBuKrVPpvtwSmwlSJwma0CV2rv+jeOF9FYMYfxxyUlxX1FMgor9VW2cfoXNHQJbYxbCl2oBH6L6sB0+set3jj4q/uCdyVKTanJMHD9xPhW+CEYr1yConn9xxuctd0SiMy06zmzHUgvXgL54m6hfJpy3/txxYhFVNwGTWto5M0GtbAcacFCShMl1Lm+nLeCJz4yuf4qeiZ4Ys2RhnLjvXSj2RDLtGcykRyxlMjIykQbaQ1EpNPG9LWV/aPmAHmIeOEKaGDBIWTWyesUy9u1pYz/flvh1kI2CzrPdZhJZakLJpe3OllxZq6dVGAIxA+2CBSzykp3wW5CLMwQyXOZDMngk00/I4T2iQMGhmP6nMBXNbS/UL3b2BW0Zazf0+M317K3SfMurt7XBqqwwgqrH3YUdO98u0e2tIbPHvexytkFCJDB8NB0xCC+OknVUnONlnD5iMfT0GV59yyGqiOXkhlrmkpKRmjmj/3A9q7QReDqmxrfRNU3xOGDCIGzTSFRT8p46pTsWVhXo15tJ4UsfSSxsvRWTCPn9rtnUoqLPSTjvBsL+jlC8c4BIqPx/Jj58w2JllCoNKbXndI+TQlT15e8T9GOiv5GxZYGxE9+BhpzvM93wqChIVUQZrsLTxmo0UXfVHe5h3KbGW4fcWHktZGkU9oGCRbTx2KQQgamixTGdtbVOsUQQ59h/5mZA9zyhvD06EMJm3D5qyIp3x5DvbqYKkaMezxfHSzEjEyb30hej/EagAjepwy/mSMz4eCxVZKjarWvP4VdJi5k37MJ9V20lCOke7+MqV9eNsjVGBM0xB6IV6dAkQIoumihCaNqIsV1VMjegmDtL6K7aFmQE+KjFZmu73tMja/WsVpAGLhJIqxn7RIdtfp0Ne49C4CNFwhOxPtpl8O+OdmWAyN+QGdDHxfxd7UV92HqU2kVJWiPmNQ1eT9brXcN3LuhccWPTyDbFs9uBkYT3lJyuGScAYB/aw8RkwA0TT2ellirdfv6HTKxKOknFgCpvO5Mrke5K/H9+9GvJSsVbE/X9oS2zxxMKdtd/XBXxekLQEGAWymQeIYXL9AQHCP4bfOP4pYZP1hYdsFqZCaKdAPGtU8/tZR2BEdo0FzU8KMh3VnRgDm+9ZecFGDUicYeO1Kc4wrPfER/FNSVUq2C/22tdZ6bKAbgjUHfcjrcT0V1voHNIWFJU+WnU1PZi4qLKLGIoUl8MHBR9BYMh3or64fQF+wbCrR2BEvCJ+ZVMcYV/PeHXx+6cN0qZG67qcaCM7m6sTZsRYDc8erS7+jbZ+T0rLbRS3s9vDQedi63yo1lz9Ry0h1Fc70TXj7JgFI8wXIw815kbogSOqy/EEcMJE/t+YqvDVXA1l7z44nrpjQqzZJKfsJbUujbyUHyVzN7QYB0UEjr0zItbXYF2gxxjbfOAFylAtdfhpeBA0QQHIY/tsX/NZ9VOWJqF9i6JbjUTj2zr29n2j6on6O6p4d5hwlmown9IlrkVFwn1F73zdLNL//yr3CVBD1Njb/kMm/ScJEEwYTEH6NOEGtWSB662aRJ7m7RWnxk3i5FWhuifD5Y3N/6PyXIDzwT1YG1wZ3i4zFjH70alIPLtlKgv26/7vQWDnKlPo0J6tsUvE0oNsqAZPT7ZuUqRnm664d+BtMg5X9exZQ6vrLAg/2Np3Z2fkCPf5AK9ZMXAkZHOOjVNOx8VMRLNSKIP6SlSzYX9nnfVNrvvr9h6NKNqEvPH3y512jZIUhCMpbn9Am6Ian4jFlOcL10aepqqVH6Pvbq3Qz0XP3E1Lb1kbr2kbJ4oyVvO1zu54g5gtgJNeK54uovdLw1SaUmDDsKaKiQLvU/1IvM3hBc5wLIsuxusblrth568ocgb7/DhHBLTvpS9bL4v/wt8FmOIrmp40ugSJZflPTo3iQztIPqiRUPhP6c2u18glUzGZqLNsTca5QTiPvd1SbddTmTXK3TzQAVKA1N/SlRfLHa8bDen8FUt1g460SMa9PX+t/v1NVi6sUMoHtZHgToq3/BDpfBtgrXqJ4uIAA2+9UxoyP+JESXOYqG2NfJpBw0z0ecpgifmFh2UdXEgKx2fHUeXNJyEhvwll6b2wiZt7RVYBl/hNkw8AZpllNhgXTQkXS3MAFW1cQByqi/IjDfaM1Nc9kv7hZYbSgMtHia05kjnrPtevK/BQCMNr3tzv1LJ4TDMzv+RKHmIsVAn4hEBuhmbTnctkyKR0UlN64a3bf4vlkF8VBSPK0A1xXyNfzzX/tMF7Y+w9elYQpIM2TNEQrXY/OBML2+bUCG2bGToM+r8KTHWn8v4X6LlSTjAn5nryODw34X0WMHIU2q7bVskC6euXmyBbZw6h8HEexebqRoGn9XDQ4b/Vm6HGXwE4gaGFPo+qTKBmys2WIKsbfoPJiSj4lAFQdezHx0761fJB+qTEbQ3orFOhwzG8Y6AoSws4NgPT+6Hlg5kgMotvBhxu2W0S17+j2PbDfWyAjJthia+cA1Gvtl+ugs633x+9BCtdnCGH2vr1KEXvp++ifum+S5P5kw6qJsOMsaXzoQFI1bMVtp9m17HFfiimBiKB7byT3ct/zBLoz47RmIMm5+sGA7eo4rkWuX2yGqZPUvTzPm7Tbf9iClL0TTWtJJ9okcJXYC/iJSw/z4OoN4KywgJ0wOSWbvWJk8+HuLOQu32H2OArttAjSQlvZwtw6vna2K7DagTk4nvZ62D9lNTGLV5XI3WTrAfRW6Vo2k/jDBR/4K/Q3fu0viNNtK70/F3qJ7I62Q37VnZyQPPXUf2maCmnsE1AAj/1FKDIeMAizZXF1QhDSfTPLtv9oVUhcY+GciqseV0IDZlY2mmsZOLc3uyVSkJ+WsdvpvTPpmZ2tus3I5CdXwvpvV00+yXzj42sWj77DmgqkiCz0YEOA5iiAAI++8fbDBCLiUVnGrpzuwhcKIisJnHfkMJlE+6ppxZdYxWiXmFy0YQOVA1cadg7hspQQLqA+RaxGvHZFbqUDf9YkC4GAnDEPlIUNmbM45nrE8Uj+e/aR8/q+15r605q0Q5pmHoNLJHZFUOvfHMp7VOIF6jNlTaLS280Up9TjllR4fL7Fpq4ZRBgzRI0O3IDeMjtKAU3K3ZqJswa6ra4AFXCej2CmoLkxmGgqNUPYLLJvGWniB2JLp/+4O428m1BMDjRUEGpD17LgvTdLOELMNOYyGYkZ4aS4ziVp4sldOPwtqjMtLDfIYZ48ylk4/3QVnZxEv8dP4//tbiOvyalFnIyTqOcbSN0q55SXqWsPDSCn8N0TlG7kNblQh6Pu6iY+z4lSQR/Dpkft9jtO7jNeHEZfeCBTHvcUwuiwQHS9FlxPGK7Mf6DkxWTmrkOMqEDW4oOSGVMl0wIVeInCehcLuOIbBkM872NPvYBe74nHMFL6JN3G0C9qfhL+tukq6G5MPo/5OFlq6syfCrGvhQEf9O+w2h2NaTPPfSCR2+mMiAGeUjhPGqQBYKw/0MxBQL2QvKKCVsUwf4t+AEu7EzaVvd5bODnsLLAD3y6aTR8J3yQannYMlaknpOKAJ6xH4nUcYi4FUXRgDOnuXa6xATbuLCgqSSc9Ew7CcjzcOLuZ7nVN3dzh3EpmY34KH+iwY4riX+b5kdlqpzILLBJU++TPWcAluzhi/VN1AQyPv+b19G3QWXY74PclaCw8HCex/OxJBQh+YYcXlO6LWx+gGLkPyHRz3GfGQ7T9UucIKttakjrtL5UzQmWLBreS7YVOU5rkirdc3NP7x2Kd04fSa4UxdoImWkOz+J86kuyIIrTCbcaaTR/2HgXNoa5OvY2T07Y6AL+mbX8gzX9AS7W8GylowHt6DR3GrfOBXJw5Smm1jA+Q1wDdNjXwkGvJuXib78uG/p96obeWKWIUPYs+4ys6EoY+UTq7lcw7lXwE7FhY0LCIC3QJJpCekPyGChK+GjxXyuz3qEf0pduL+9E8HvS2+IaQ/m0iy0u08Y7jXI8p/zyXhiTl6+C60rZuGptX/h/mbQqrLh6otlchsXWGPqIqtj9CL5epRMArZSHZDs6GRLZzq6XkiZMPtO6ipP0p8T9ZK3l9WIg3wjyuqqrqMMS62ghFe4vUhlq+rhIw8sL6rp17dxR6MZYakL8xNHF9gXfObFrsBstyN2U3PaeNrAOQMVZtlCrIunmsgf5YebIFictr2cbJcI3ByxFBcP3r0xIMuAzov3K375pjv+WBErqfAMgxRN3o9RKxQSLN+TJcFcV0OVQkFNKRbDi4DBtditD+0sjLyZJngBh8qSopK0mNVwjZ5+CrHFpLyfwy+D7xMi09XuR9FI3YPZJm8aDkW9z2q1Kr8COBxgDbqCjysSpRXoO09gery4Gc1hxzyflCnx35O9v6KKX20Kq+BxDy80HJ0GGHbUeyLPEON8t8cNbAhE40vekZd4v83MFGyy4tC2lRLdLQFYIh8cxGaD08WmGSY4OtTDhvByhe5bLOGOG01Cbhp4+UWiZpQaTBHvp2Xjm3vp8G6VkFvsMZRtnguKDEE+b8410f6cL/io7XbVLRRcaHSmtfQEFTHjkJ34iPlZHkoWBr3qRX9sw1EmAocHMY75oEhwJO+EucXJoofeECBfFdLr8OZrCq4fNp5CF/t0dWOTbQZDjpRaRQ6Jt3DH4I7dqNV+FLfHsF2iqMWl1PyeJ5xPYmazR/ET07WHUj2GDzjVAzPVTzW0om5muBP5crq4YSP9knVgf0b0vQLLS4LQ5USaTb1QPg869/tG06zx9WbZGwc3YorMCq7D0HYGmrU8KFtaUk2YNn7aaQjTDNWlit1CyvIDAQkxhGKp8nbtGc7jTArKvNyjFsrsQ0aloMz+75Qw5SgbVpX6So8nC0V8QsAKsgUoDqOkVxCV5zbKYQmtfVv5vcZe0Valfq+1LiRXt2Q9JJF/n3xvEssgF+AXPDeemy3w+1C3O0c9tHpWhSdUlcyiuocvPsQVElU6dH64ZSFBRhuywv77ndvsAOVPlYXKWfXLWboozQ7zrZ6j5KaoJkn4xG7sYHGmSR9glDC3PeuBMTHS0WWu+js0KCk6CDup0MZFBpG5IlcYkOYT6W5zvBgkGB5598EIEqSeYubFD/2VMB9EE/U7G0EqFIZOAtmBiOlFYPaixER8Ky1t9U0F5D7i4a55U7T6qHVNxMkNb52JsY3PqflbS/5DmrCJLlKeAb2wVLfJCRC8ZDWleC5NSZRFsiimNEs5v8QDZLVCPxqTGLfwBnkEvXy14BzNcRRgePiV0gUQkl9TUqBuc95hPv1mou9lVyEzJpE+b0KigwNylNCKWKJjOu9WBRWlIZGBOjLnEpT5OXn6XxM1ENMchNc8MWhRVwBE9VGMCkmLDxYXAoovR+MGCYX3hrtYEpzZfNvNefB2ZnRtE3RtTLAA5oRhdODcWlmzZqcsgPFfEgDYFJe1G3lYr2oPCDzbC2mWQgUPpqKGJIiYZHDQzeQBpLIcZbmsuis97jxu+Jnr879D5iZeMGwMWAOxhe+RgjSN3JigOdr4lYGeGYyFgmYfdZ+1cPkOG9IIzHDGS+mN68NgrGafdROFUDO3/Os9v60r7cCFJgon+jdTdhguVUvsG1e0jxzk9drWMG8H+q3JovOscNb6nA0av1Fww6ggIqCMlxcR3c9JqGQ7AJq5M0XjIa7ujjsmJrGtVQttlqs49qMQj6woyO6QgTk/exfLk7diMaGjstk1gyce5EGPB9HdUHS5uCiLOUaeyUJ4XYoBjZeLHdTxqJS0OKmlqHy7v8h8Ss+WBvUoCFcFZo+UDRDg6BrOWVXIyiZwx29DK/SeyPlh6x6TLb+SyII+4dpnr/+vWcbwHhRLIyrTd8UQCTn/h+k1V/cw+4wnUwdhEdIlaCvA3WcYH/HYyv9eNwte6G1EMeCKYXtGMgeR90OZi0gecL/j92z2kqZOnaOLUVcJ3xVei4hYWidLzOwt/xLuW5VOpRRXLwLlROIBz7y2fGlAkLkMBeTst8VtEJuAQOtXqj4XCwn0qT/Gc+cgZwzH5XY32z+KCeKgkLQd1DYJQL8pkYQDgeIiMEMi9EAjN5EhTFDL7zwn8A7su6Hr5dx0gI7RQoHI4tqfvSMowiemHqNs7+qi176OkTnfltxngwwLD6Sf1i2oD6wmVMgW7V/DtU+WpDRKreugvWE9QcAtZtm73Abf2B0U2JSk5a3Elqx49SPf+jNVelJWBzM9IK2xhJydVCRqppKk/7x6ziGWJLSxKW5ussM/0MpMgE2mORVqKD+5ExwZ59rbqqOJY0Ccn5+ZGYPUTEI88+DIqayytGsRbhK1tk56Nw/YdPCMC4PhN7oGAUzpyrQt5oRlrSqUV+kQsNR0i22bOz5mK/8Zrpv2BFTrvxA9kWHZaqgYoW6hLm2turjrZMEXFrnkh73sRrwP8PCrhymAOvRlfUF4qMBZho+0wkCyzgH19TS4bDLeKrixTzafJU+INDi7CbZXtKqG+Sr45PlgYQ15XY6KOek08PoRIooDQAX+HKBfgMeDaO7N1IlhE2H2XxwzKF+hEk8gk8XTKrtkRtXU2MmRX6RjE/rG9XwURgaXwNSp2kJ21V/5Nr2WY/l/U2poBzHQ5mj6aLLIbwloKOEMYCv20IQsDb5r6coYNd/16abQ2Z4AQa7Q7D9WlzsJ/YRzR35tCMrof96Ji89dPcwXVFSigfsFggs7OXV9jKZrnIv5VvqIZIbibN+Ud9odPqnTpAoRG+h1UQR6QfGt/QHmN4f5CiLquS5+oT3ARbuZRIegjCkNKRy+9i6FqnBEW/7o7aovnKPmErXWWC9/mXmaWsa2aPmoryxHDNK5+fZ5I28czrIRnZBQrZ1U63SPY/pUwMtjv+nJdtd2LgivV/+2SM6NdG+W12rH50gYvlZZM0Md1g+oxtMNMX/Klfbl6CBibBNxUtDaZ0I72tZLjvOFeQ0PGgVvBchA/3mF3F/WXHvTJ5vqGa2Uq0L7cTpAs1hIlVdgLGuf7YQavAMVphfzc1eg/MZiqJhNp7EiJSKQRqMYxlwhqL945ybJvK06JDwlcdBcKit6oSHbDR6d5sWmppCoNBFRMXbKtQvq6VajZOVLrEioc6moV3VHL/iV1vmHSGSuv7wPIHnM3W+RXoFRyznZhMVh1k9D+6bnVsv25JPr3KlVYqJa06rnS/2gI/+f7ogA70FcenyTtC5TjHE+Mxt9zT1rd9m2WpvWXfz2xG0V1JwHOzMvoPtpUsWniB1pPcUsjaY55PXHr5Et5v6CP8b9d2zOnzZ2KWYdODuRSzhit8ZCVRai8/PFn+bmeth0Qd903v4HFAHvY050Xo2Y38421vIZzq7fI4hYhsFadVPif+ZQBbGzWgEP0jf2NF8Ha0WEWjSZHOjtHA1zeOZ0q9+r8xTpz2zsrGuXFb2zr4qQzbqo+o1VYboFdy/GOXarYwWBUnZVXhjZ/zFrAP++q9KcaupYX1Go+sd34ghtj4Vag7u5OX/DPzWkOJ+G+yJbI+id6hcvkYaBwKUeVCLur3R3aSLHypw6JJOkncIrHdG8Ip4cNSInYkcAHomyLrE6a3AVGusE3IsCA1+1J7gN5jQevPVXwLaBs9knYH8gspHf1oOzSs5+1E2VFxRJO1KVTKGwYCsN0ZuTdgZlsVVpwO2pXc2Q45B0fCa3d2rek36ygZ5SjGgVhvfvWitk+ItiPRFtPfriHzysEkzISwMetHwvMoQokrPjkIz1XxvSUQpiDLOQWOo9OQ1xzoUj9Q3h5mCvXzwrJuuOapBafdjLORCDpq1xReLXWo+zmN4WNsszg5kDcfQNs9GjRSvFj2gHnQI1FLm104Hc6J+lPScLCsswAMyg3K4bc80PF1yFmZSOvYHemsMzkKGFrVkrt/jyJ6pqpnlq7ElBIE+DCP8xUqkoRvGhjqlUQWlnE4hHNV0pXjuU9tbtXfr0QQl9nlka9oFzmZEy31+6NbvXLiQm+PI4e+ZuZDgxVeY+GVAuUrYSctXIqk5uhnRggcGhGpZuBGLZ7tmjvDTUHrC3mgI/Y5l+4uSiLRchFBZk5yuDepBIbPCnb/vIv3VFcm2kvFbPhzeUNN7jIt0VdjHIxKi17iWwQghuMcECY8yRpfVTSZO2MRDXQ/beP2bmNc+D3k7LTFK7AYO6uCpKDlwNSRUcBRTZsZmFOnQIPlAb3NIbIQaadwqZO0TwuNiUthpCqqA48VY78Gm3k/VQ72eZKO0ti4YotgYD3sXadL+yBZWb9AVvqo6hc08xh0/wTV+sUWD7Veqv/cGsZ2jD2b8IS597pPE7hp0WDz1dAD3nMmz/gIqmCO4+7TI74/uSmHiWHodH495/KXdsh2tfIB8GwO72MF776koS1vZm05W6Lms6iqt9IvS+KenyxD+8EH1I4/frwVgTFjlqVuVvwjHae+sZN8nEVejn+JcKkQviQqujCxvL8Bl5/xixQIGqo2idri8vGiE+joAfPJydc7I6zoAXym3RLfCmaBsc9X8FNfXzJk6sic3Qzo7gdLXjTJGSAQqJ0+At8yHgDsSOGULaq8hIRiHdnYapdWk4N1marS5CezTYuigb6CRepRB9lK9f+rb0bdm1pzf5pwleyyz/zzSrT6Cw0s0aDV/ZjsC50FvMnjuxFTubKx19rzLV7ONo1FJK0LtuzNXMpE3ybwoIuYEwNqnfsxNXXqNK/5SkeEfsvjfFoyCOAGglpudJ25Nw7MLdR56j0gS8E+MVtJUIWdL5htXoz+m4L3OKoimWmFfhQljwBqn4CkjCeZ5vxxGV6uTD6KzJ9mMN23IfhEmq0G5W2MNtGPE+Mpy/VFxaZ7sZJdG4G+GX+yqjER9nP4cvDnSA6+mF+K0z6UbFHxjU8fmNt+g4MMhzyk6wr2+GoelZ6n0jJpCgKd99JJjSeIw/4cqjWIb7X47ysZgsZQGzr9IY8/rAeYvALSJ5NIrffNm7J3Y44llG84y8KbiJVz086IW+uAjkPFNpk9Uh2OL3KLFUIsfQv1jFRvlrP1rU5F8xbI2kKes5UCqxwYPwdSFaOTQnnD7jldnNADAGpXL3mjBt3weg7GfbniUmLBYemyLI2PGkvlsflPVT/EO8HS+MdyQrY36sxOEvzamiZ4BQtmSEeki3ZH8WSv2Jvh8cYGJCUDkylodLbA8XyqkdyvZC8PNnl4INrwMUUX34Xf+Vxdh9YQhbu5qB0l12t/P3Ai77YTYa+afcvB5ApvUgyygJaWGbgO24RagpU5uay1q0wGYXtIycsASIQkCRKJrK/A1LTYo+0WaNPAVFU8M4qcDXopGmft8A/To1acr855UhfAGJ+7P3zQfsqYyF8c4IddurZyISqqIGOH55PTPxhIBZhBX5sBHp4r473dce5ixnePorrVKYwtCkNYXVMLEkklEt4/+NETFJC7b4dI9ASeJ5yAjQk2RlBF1NbpsYUzAHFmnQoUxNFdHKiTslAABcsUwWsgi0BZkDWghgY+pl6clOkRNu3rA6Y6r1pnCRBBzL3qFroF4GSxexOCBaRjl1fnKZq4nbg0g5BddD59vG/1U4RGbNLEBl+Wepx1lSaUmpOqtsuVR5d7cNIj1ik6YfFdGOEcD2CmERzIk44Oi2l7sAM6Dceo+ojrHLinVIlzYhtY2eRVv3O+F8ZIcosNygV7HN2pH9CSDpJqcaI2L/VhMcOQYCKQZVSlKC0Su4yAYybUpRxpgPlRZ96blJfF6fAnisS61iiEVVXvS9iGM63CW5Hhe/5GasBwtU698YCsnOyDDxfyGfeldSDy1lelLrXZtqj5DWL/JKv0tOOeFbjztNnU2e84jNbspxMETv7rWwTqWhH94aO/Kv0fJy0n3qkSjRSAsHZmq52JN2s92hP+oexNO5nI2SPyyUVe/d9jUh7ziFcZBs2falf+8ajxQlXuRRICU1cdmQGKpNkXpTI2jZN9jxfxqh+hWjB9SGBWnEcgPekI3buQ3bHxcwQfu7iXsDmh76+rZdDZkkTDQTF43iiRP6Yq6FgYF0ZZ3PBoOxT+3pjmXXeugMbyOPCoobCd9QZCpoEz/kC9KKK0qAju2I2GH/1y0j/U8bQmBzXBrCXoUvwYEawDAK0tt4mbXe4ep03szS2l05RBw+V6J92rtsZs0uxpzw4yMGnwEZcriDxsLBUdvfz/KQLanE+t3tOqqFfX36SbwQX6YFRhpW+vXSKC5qaItJzDDJpJehvJ2ZHw9KxZLdiN7zJQB6OG792Ap1vQercB9ydMbrbqtMJhUoHO4AI0P8LNN19CzmSSOITZQ80+D/C04gdeuRvnMTXlOPCo2mNt4pL80emkWIFCAF1cH3ZYCymzf/qbrfONyUVuEil66/XV2ZHG5qYI/UsyPbR0M2dT7hxadEDQyjE6eo2GmuTdW8YSDrny9NelXx65Od8OBufDpg3ANYf+Vw8CYLLoeUXNnkgPQfqtgudg+mVQGXdDCcgqQi5ufo1pYSWlrSEJbjn8jLV4YYbgISYtxcuog4/djiqsOhiIuuXgSVgBnz3sQdUDt5N73KCe+1pUVZSgsxO8mzdU/fj0D7yhQwwRyhUSdPL9VEww2raYuGFQe3lYoAc9mp+WRCCkr4me5JrItIRHAqPWtAncUeNTlQTzuA0/IY8+d9/HIKL95KtLBP3BMJOmidPed2WijC7wZ2LlT5Ckwidz8s2UALe2TrXebU2m5IU9LsmMx1Yp2XOzIxGOGNSdcuiwk1F1ZVceLHQQKV9GftU7KC4mlLuucBH5Q41aDlzkqbAsNlWyw/fmncrz/7OvYso7Wo/kntvq0zCjiiJuuosFUCV2Qd3hR5KOvhR37KER3R3f4fJw42xtCwdqWwnP2ufCopo9c20QeYZ41sSpYI4jSSehv0b1natpZz5iDLZ2jkYfvwkuJlHje1TEJffD8+tiaTlW0sZpIskQRmWCUpW8NrAuze8D9Vxlki08WKyY2wfQL5HtL0fUyxHyXSdc4ReeEfHPE78UwcXXvdfXdVmpu7AHfSKq0TLrs/QuYL26JXQ9bfJjOXW1GTreVOUeQnRrTL2k8VkqaT3r/MupM8E7NO3F1JGzCHPXpsGmb+g0rDAFXAUGzoFM8T7XpAUal3w2hXsvtLzVvUZKioh2ffHSAmHYyEmE+REOsqokG68RdKaT9q6R1efu3ugRfA7c31cqN/vP9Y0KfA0Ofzy82Rei6Msu3Jewm1YWXeyVBbEfXcyA/ZWYnBSHTrChIiX1tuN7pkmTP5eDNrUxwULk+vMGbHHAp38ZtTjr4jxUYdCDZjbw4qyUNnmoA1JSHQmrsTpyK8vhorgbh6sRt+iZBQexjWXvwcqJcftlQpKGve0iZ4A6IQc8WkYeACmj+yga/Ou7iwprTrn2SzY329+ovLzRAipKPIzx+PbCfQldxwD8RpHlVYCovCPkPigeIq5sh4Ww84aC35JlZANmKd0Au0xwJNxB/fEsFxMiQPTVvAwEa8b9VbFbTJGpf3CKiRsbt6VOjUWyPHa4hgPHQAmT7dT89SnfQkCamCbVTs4Jm22vzjavuCsVIDPnt6fN7376WJxd4ac647Im3kxEZl2VFkOWbwCNkIZBORygWycL+lQG8E95RmoyKYrjU0pi3XPN8paP/ZN0ZyPR8YsfLBBHkbLUKx7+H3UmeT6mhzu0sravtsNhahXnLGU14uVZiPDSM9Ttb5e35sUDMFUQ+rsXorbqx6/DtNpYDp9Ebe703Ib70m6pKR9CCY8idVJwIWyP3tcb9Wt7mQpIOqQTeiuWcUVztG6WUh3KdVC37zd79P/CyhNBABu5Sfdh0k6alOM82cRRgOp63LPSdI9/v4jakITDqrqbU0voX5FMsD+o6KaJr9kobNPeeXFqPCF/yZjXZqdVN+r7b0Gc8soy178l+/3MhfmRrbCx2ynP74i+hee/fjEbCeYq9V3jGpwcK451qd3RylP5Pn+Z+yKE+V7logZkGlUe9zqwKqncqs+kSVLkmTLGAxXEdAtG2+euEoVnKxqBsNBLAENQsN7Gx+3tsCZ8WfM0qCvZ9uEA3sdIPWjzogurcerYlgE/aRiIA5dwSu9wm4cBIJfvYPfZUQmRPjv0XD0ybhfEL7deQ6s7TLHY+7nIfWg6YvB0HD3mC4sMGw7zdXqNpL3b5j2OEtjlBE810DTq5uc1k4BGtmI3N5VGZQz+YV/L0IbrQGNkSy8NAB6Wa801Y9tVkhVM0PxBrF8V6PDpf3l7v51avDD3wpbj2wiQ7f943A3NHOWC1MGF3rbFQCU/Frn0jqGHLlbV01B05U3SpwSEpla6sc6Qpy3rwbBGpAUUu/WvsAb9PsgpeI7VA2QpcNIRJVqYEsbQWNaP52qcUSZn/qZQ+fyUJ5AQ/5f9bjwGwfi3u1LrSS/YvUegxMRiyShrs4aHzlgfjqJrKBXVAgbaiGcZAJD7JNWFS4NLcwvaSqngNqAql8idYNcNG5bgksw+jOzQ+6Zy3hRyIsIydKx8CQEYkY/O6XSiMEn5ZiMbiUeRViDzWQxPsPC7URQgwRjzp7OrlzFNCzaBeAY/Hebl2005O5kL3GTiOP9EvUzxNbYYH9xjKAdh6HnDziJhPcCbqaGWTK7aI3zjG7QREMrkSMRZzDZKoXK3YeTs3USD1ykBT5S2435w36MWH8UhkUeD0YcA8WZLY/fE/m2PMINTRYC8HnTxZqHCo2UuHqXCcouvwv6OfGWJIXYfAZuGB3IuRH3pTckZW4Kd/qyN9QVgBfSnV8+NfTVPNU3IkAg3eLGVC99A4Af8DpgshROUQy4ZGS5RB+iPLxPy8+KQUltMacUzLJr67QGFIF9w4i4r31WSfWbpT3KcceU8T1+v0EBA/fsLy0f2XLw/azTK+YH28cluNruT/XSKRb0vWC9yXM+BhaPYwJOQaXpShBbPlmiyFPJ1WNtA0zzgunZ0RZW1LcX9CvzOrZGmskmAMSruaFtAJbpO6WoI4IYV44ZS9kPu2aQPO6waEsOXtMhJX1f7HQ0DIrFRrWFkDqF5QI42UHUdnhla3XCo0JbJmVngIwYJ6WJ0U+GmF+F0+Zc43KA6nuHJR41hPzw2onnbmhewBMdyfz3cvBOPqRtsHIVyTmm31VIdwqMcxB3iJrpuM9CeK/9/FCm/V/hLTsILeDdGtZcm93sUAgDyRxSdVIr9ANKzHzMqQMRbG8r+2j71ynPTcCUd53fnOO1lLBHCTlVaHwOrZHOvOBfCb4ELU0f5CD31C2TTtZKSrZN1UbVzUY0FO8P0Uu33KSFAjtJo0ei/PUPYHLdOdmzjIrwCMiRyFGT7CQQhZa9GYjtVbtR95YHqnrLCjVcuLK0JJJojxGwPNNpCO3Xhtzzkg3J2p3s4N3l7BaQUmL1sLENV1K0Os8VCPKSDJecyU5NVbUnMSkAZOnpKiS4wFfEaCzGqOHe34DWkCuQ6TGzWYbudB06rc2xc9YD5btm8Hxh6rydfrq63o4PxmZcTIfR3LEU31EUJx2eSxiAE4ewr8l+Km85AzTP1OrloOo4xoPoHzsF4fdEJ8d38NKgtfvUMWA8R4sEV9PRLFPB29X0dkgQbdn15R0OklKqJfb7REq16ThXGBTh7sGi0QByimUn8lscprfdHieR0BRkPKYS25HJn0y6WXp03g+nw1ea1yVoxzlixTNIdfk9MZK8j1EIuXJbNjQjpMNchBAihSxE8dPzYFlwseOvM6NtDXnRYEazmzodYQjEbxMOtr+UJeqQFJX6hMLFjKEvArEPCFSrkB+wM8yE1sLFsB//08l1pLHhkTSikkHN9ub4x7Md3sUFnTdPux6gcJvgMiUMTz7xtQ2qAuzaBWvcPWH+4x9Ms7QkNsPNLpvXHswSWYlCz/IQtew4yN2OEKeyVLNXBpqd82UqRc9GWT26jgr+2Xjq+/3LgY5aIn8oUV2HNzr6SWg5RmG7qaBEkjCo5AF7+sg6tVo7SHNyNJZs3PcESBmnGIiXwF/qmEAEIPcncbuyDEISh/E4a7g10k1BG0a5GK69lvcmqLxno/5gah3BeOJuA0/+Fv0EXFvqdRVosX9uknMdG7eT0V8VenRtks6+jG6Rf7KA9xM2FuJLFNaIZgDjXsgrn67a/w7CgEGRiKU0AjEquabBVXSFYjp5CnUQzpqXBn/e7M91povNEdL4qE2JP6uqzZnbEgRFNDZjQAwiaicIruEdKNpJV/NOc8IMFWSkFgJidwSuMXvmjgZZ2w9R080e6RVOOLqq+8wSakfHWh5VfxZ9aFFYySK5NMbj1glLdGtF//iWgbd0jnp4v4ENA2NCJhf63CiEBvSSTn5574v0cVI2YiPbR7sEioaQaRanfUaeo7QjheMHVrhwzlGhQHg0nux6O3kHJIDdca45F0G2q2korv1rwQSrrvvrTDrbCTaR7MU9SYEnpXFH6ybKRe5lPm2auPkTBKlZH5oSNK0Sa6pR9EIrN3R6eS8oLkSvLj5CI5usXweG8ym3ucMgrvy2oOmkiY6FZ3S5IAzUXybH9WhFYHL9SN692aMa/f1D0+IsgCWC2Ej9tdoCnX5V5M8jMn6zkapHOEoGEjYsDOw/vJFl4AZ8n4LBMwWp4JlwrjO8yZ9T0xbsITFGgqCeACSvLzf9RYnC/V9YpVPH6OchetWQ3sX+HciCiWOig0P8zcwe0p5KAJMFNIpulNnGmawOPquPmh2l9/Pn5zKcaDA3SJngveSw8NwlNKGRgS1oHHJjt+idlXZdp9oDTCluwXza2OlVbqpz0xJXEr7i6TsaiK+qXZrM0DB7xnFtCSM+bYiSZWw0Wli+/YcNZntDiAltKU2Xpi3viVb65Mb1b+aQrK5vCHF4uQyvFnMxC4UMkxbIoQ9MxbpbqhfmqgV63cJ2jJ+iCeOD+J4A1cAICPORiMLe25gjX7j5/dU2nJt7FsQflGxmjX6omyNB1miyssZFymo9Visb5aKNRiPsns6iSSIgchyseA5m2CWHGa4a0UFVtCPVdEWnBIuYqKWatMJmjYmRzwSrnkcZoBEq8Rjs0MJGlO22NQUjpp0z2uAoD08gwjcEHKiws23hhZFKGdMqjCCZT35qQ2fqSlr4voLHA6YyVN7lG3fixf5ekeoF3whxF3HdEFBgB4d6+N6OcTdeHfuryypjym6pqt1y/22pUlKmy4T2lyk7VElgL07r6or7mHbAqWvCcxm+ANgVoRa4CUAmFui80SMFT+jf1l2y0OjI1JBr/Xjb9tC13GAb/R8lu2bstReVjG3hPhQR1J/W/ors+vQx7/Iu2xtqOrodpimkx/MNgzIhUhTMzkqVbD0+ZbtC2xncVDQFd0MpVRCBpsHpeeaSs3ui8jepr8I4ZnADxmHaUBwtjmuhMsWNKe8vhXq3tOAw333WbdVXh/eai/3dxGKIAnFh/P4yjWzhyzRmxy5WWzKAr+sdWbgdQZElRgKZT4zSnSxwoQ5s1Kx7l4zOBFYapyZz5ZTwMaw/rTJ5GK1W/V8+huVyldI6CI1xuCTOAikAMlJps8Gtpn7QMivBKc4zwQzdIKrjZVjLJdJUu229iY/Hn/5M2Vz8b5qmCXoN6LIG0SW6oLDyE+b1wBjhwVvP9tlteIs7zxWldOx/G3yoA8HS5BW8NCT42u0XuT1KjARr17l9g9lmKD1PwFFzXEguGcxn/eg31oZ/bbKmGDdT/Yz40DXjNIZ998/060AWKLojknJhczyvlYdlURcdCdWO0ZKlDNuV9tGW+KdFmD8JZHk6pB8KCrbdqSULqJbRpMwgViA5E5Ch/t1o7OJYMW+5r3Mnv7EMXZLR6XcDIzHo560hwKyY5fiqpItdwQw8JHFVJ2hBAIfKvSfBcoA1G2TWjhBNxMrsHzz370mlyVFeSJVzwEGiybraX2b+Fox8T235aToSDXy1SdAqXuZyK8kyOhR+dx17pLDolOc9vKs+m6KmK7JlrmlIAaPsfdw8GQb7ZQg8zHtJpry8IBPd+MHIX46OOlu8fl6HaCiubIXGuntTiXsqFrtTmwDqTD/f+ygCkwDhBfXzy7nHDnHzguAJYnrUj57y4oPjVyMvN7ElFN5aUQVzDcoOPsV0iNTZzKjoi1WssHM5bnrR3nxjvbWweyjpSYmLMzSkMBEdvcDRg5D8L1EqyxqSvYUvcrIj6g5Na15zW6f4R2dVIm8Ltl2mmu+yT8anpEezbM0k7HH+PD5uHJqL/BqDHG5aYMtjMnJMcdSnnZazBv9Er0EZtxEbuv7fG34vBP+6jbr26xrQclixnO/X3XNaAF0xXnNTWA62wPUKASuL5iyWkmjp30D3YI30lVaERbDCOn5kT9DdEaXH4eZdOA4WlIirSlPjV0HgTvW0jRCAJP6A8eEAzW/Olfxj3fQ8oAKOIX9wvdaBBsoOSA0cstIuvHfNAjsujPLGIWuoqU4MLXl62j88X9XbiftiKBfHEXN5pMqBB/Om4EhsD/IMyB38sYfuNoakio3/kZpS/HXF3XTu9W0dZAQKT5s5p0yJYl3flrbyJj1Isej2JI8yDDg3eO4b4ISLNe5a/CrUcT+/nx6nlJtemtKvJAsUDgjXzoeEsdnCA1qJsD/AC/3pszpoHOwrmcaIdzwTK1/D7UUp4MLf1esNvjMko5iotNmI7hmj269cuok/RCX/71OnFNXS81qk/6Ud4UiYKJndE+ufpce9IKAufk4Z8L9IoZW89pH13JpT7Xcg/hJaUw590+i0MirsFXe7oFXwuUeje5ZhXH6mWSWhe2wQewKmdm+qwPo4v2Z2/k0ms+SMSBezdi4J3AQxe9liCln5qr0WL2j9CspvHZBS6NviD0CKfuZwV2NNEbzSWLUKZE0mW9TtAPihVnRCZ628/3XndI+Ns/o5Be6q2DpiIGnL1MSHsiukX0a3BXquMU1q1P6uwUIB9B44CzxGhoF1Cl9Y7gblVFD1W9nJweODGJREB+yNZNt0CRYDw1UyM1FZ7M1H40arcFavb0gHYXtyNjnAENcsTkgc6snnXx/xZYYXudiVU/pI3IOD1sMf04jBKQBZ7TTtUujaqcbFnKqAJ+5SlIk+oIKOU3L94QUkQLrAoXVwNEHrlHjjZ4ptKPLRxfp3arGi5DMgr+Et8j5SkCgSZJKbwDCtoa2rOgNT6Z4rWUIbv3+qn3PMVXduZA2M8UPQwE11wNx0Jlf0BqI6OA3dBy+YAGzEbiH2h/RHakBDduOUO7TGwKfK3LQsJAtVsjiQ1qOn+2vDBuu3s5LtbwyqpAzXRfAqTE+8R5mODF9opGcL2+uZESAXtv5sGJs4P9K5oJurj7pTyLXQiWtsIIsKFhtDhNcZMAmAdFwTX0gQYd202pNJ6QRtTcorFgEWAi6+7DYPRQ83ia5gUu+kuJQz6Lv9YgHdP9nSyVaQNnK13S1EZpGMOKI1UryQmW8jfwXiihNCVQy3rIKz28RqP6IjMETllTDhU8RWiyufUaiLqarY66DIDWPs4lBN1xj0OH0fxPn7cSqgraN4vdoEn88aObBeuVat0QyogW0LA8Sa951mxzj2o9dVXEjMtcAFb9ZSNKHNJS87EjpGICkckQiLh0ikTjAyrNfCarTy529ZAZ7s0lzslPI+1aP5jg9ApJseXa+QNsrbvUAnCAZI0BdGAyLSzfw5uq7/Uh7q1J8ghutjYBKfV1RPQDnX8Bk9lSGwOkzEhAu60a/y5QoZHoLL8LnvsH9EmpVJATXySLSuwcMsd/rWYYpG2+ICDYtcMTjP6H3H6jRoJBDlsQUHrzM7+I3nfhOEveSXaiUoAI+MppDAqn2TAV2NgWN3xpaYfQsq4PW4LcCbHHc0Egc+SdhEFjN+thm3bXyHfjX8Zjk5gEZXcbNNSytjZUBPWDKQ/7YBr7woH/ONNjfI6XN38SWxBvgXEttrH0e3sPSQASryFRZ6hFB/VWLMmfjmbhOhKkOEwGAsjDhnSb8N55ZVcVpm1PR25hpnE8QoX0flWyCah3YTKmrOHoyLmjL1ZhAx1+IUet1viO+aqvuUG9t7+PmrWKtzX+j5K5iPKDt7E3yx0Ugx18TnTkwB5u+E9cBYYv2gfF2Ock8xKATs7FzIdvvFjjEj39ZOr4KMROedxuxp3Rcp6NG3BmUcbTGaQX3yXLX94KbhIjqqQqTWiFDfxa80bfbB3QCdzW1gXjYw6BFC28Hd2HC5b/7QAp+i8A4oQEo0WFpuwCxZvOZD9JBUlLJcWknqXzoST72SeaDZiQsAxax8Dz3RTt8vwxrxhX2C0ceP7UtYC+WLBRlquJ42M2NF7S+Ot5ImFWjHQaXz2VHTVfQI7g1TcDKGudNureYd2XVFXu/RWmuz1R/5xvCyDeDnyT3aasZsgwxqOT5r0JFhtCH71DkjP0ZvnATpMGr/jcMTMnadKL8vjyfwu859mtb4qlh3X+rBmFKJY9w1WziF0alOfJFOgrzI4gueaLAflM0n6muznu/WAxZukAWOziFtdraHuj/rKOC++BGK6uUaXoP0YDGzyUkc4JMVGsxgju+N1QRFvpgvUxU2WLrEmwWYJuMIjS6m41N94nsyKheZQ8BWW1k0L654o5cnQ3Pd7Wj5wfHzP+JPzGxpC3Fheqp2Iirp1aXlXx1iaHel/aLm9ly+H3cvrSTpM1AqTSjzxS8xg/0HO4pq5xq4DJIR7MVzLc1h4XKVof0k0k9pgjMcBJotUS1W7ZgmMnltMASsnWiMUE5X9s8hcJclWt4jDEKj+YMIE/1ag9hqexWfj+8VU7Xc8w7yMfRcY9BjZkm6ZRD33nFQO1DEbnqRlolxsvfptoGvhf00Tg0Jo+nLtRKUn00na0g23Ag3GGziQgAgJUgXf8CTzxEzsWgJU7gOdIIbIfnIPi9uJk4zJVIkPtbxjmhXP3/F4TCvW4nzJX/D/OueFCj5BQxKMJsTru8AwvIGBOoA+HoDjEDrILoVQslsYggybJdZxoqSGGO0k68f2HKqozCNA22mcdCg0VNg8VteJm5/etmwujhjAUclFuaLlM8WX7ivfa1/gX++KRYhqj5Fcuy+4Km+OuLGxEgJ/KrXvc+M7ZDwHtbdS93VaOkG12Xa7jtFAdQtGV+lpfZ1+8kqaRbLaDAzHDkxxRZPXHDjMxZO94m64SNFxA9DylYBT+dQRG/9JnNx0gasXzxyx7tnRIQqBsa73kOUEt5KsO8vqoS9u5wFRRzAyzIIX8Kd1N0xVQV+e5Z+0y+E8ywV8mD1wHPFB6qWKBU3F5BbbKIbJOM6XQUWUorKqtxZo4N7J3pcDG3dIE/l3aGdTLrXBwwPixklsjlaEhOxd8b76rTvK3O+rM69W3qVgoSWaDRCYGCBiWPhg2ZEJoBij2U6EL4C0xs7c08AZuwF9wIh9YgwvW7i8yDJqsB0SgzqMwx1OM9OfPZOquvR98zPIiCl78aLkBOseUwnnA6T+/CauTwDKjaFreS9pad//dZUufVTiL6RQuCduj40M9h/MqIC3+fZ8d/t54hkJK+EIjVZYx0oizi0XxNXtkCqf+HIEc3IKZ82GM4gsPiRtwxozwj1ogxGFZbBdJX7fj/uOQ7cxQYlBs5lIQetRDQgQX+DsGsIo2Sz+G3VRCdbzWvnybfUa+ZWZYdqPsXtlXgDHux86DBwl9sNYTthwncElJV8VhmPXvk+BBLzYe9fp9g4tuU3WYpn1Yrc0Cz2S1SNWOpmXzrZFnsOrHAOw2e3+2MD0AGFg0omEi9r0KofZYrissBBEtk1/2KVdLh8kW/g7XZUq4aYMnxuA1FkHosLOWXGmdBOlMEdiU/yfnSc/cMMqyKIngFm9zIRepCHFPr31uQlnS3nbVw3kB9R/yCrMjGxj49U2P1YvcJu65ABA7EE3QQsvrgsi8w+wmow96JtWBSxcZ9Lfcj5QK+mhO3NUGg7kgUsUo6NWr5X8lDlytv94rw2X+j35nrkDfWqSrQ9A2eRkHVR3GlGc/tHH7otk4P6OyXtP4wVnKi1XnZRPh2uLfwYSd1ZiB/PGYpy9KqTbvByWEM3vf425pqJrUQ9AstEkOK0SNVoClSIeQjoNEjqTUY1ayMgMyNwg3xSiVLD1mUUnqjxVQ91fSpwupekzBEkEIi7POcpmBo2IjQIDPd2ca5eYYbPzijDATPAcMgErLhnvcQAwxYAgh16YhIGsPlMcjotBrH69rJX18esouqPQGtISKM/J3yUEwO5u7tFrFIYCtKzvkgCTbq9lKZ3jyn//8aIunT0JlmRY1K6NcsZW7127FiIG9cDsciMekqt0mI1L9S6iVo9v3tT1Bwe4yLItwxKqR3/s38+snLock0UQcBnvJ3KhNfYvkS6voga+UzjMDboOW7WQNcROVG2S0z2RGIn+kO9qe8CZRV5YiinZ5+zhVpQQDoZFB7aV8kcxiXdDm95gyaDHPWl9O8LNokMbRCJzPKS3PzSwwXkS50G2nU11p/FB8LW0WV0d6IJH9Y7DhUEYw0Do5ADk119NeUxzO92X7l87fm8CQFuWPjCljsdh3YTy3D+Eb8+v5SLOX6Rz7oUQOPDldJmZbQbtHjb85I3POhTkT9RZ0QNfoW+ZFIo8ENxlMj9cC4pdl+JhOs9lT4TQfD2x+albtZjv+jkAdrACBPyPSr2C/pgXDRh514YVYHyY8HipFx6LMREYdIu2c+txEDOK43ZNkdDg6uhAMNxis/NDoowsJb1LZ2mRS/QfGnRN/O4hVcnCqNaSfdk+EAvBpjmqEybVooN7RtDeCgMRq4XSspOXQt1fXyWa6mtZPaGNEgU4vhdefuDGanuELMjzZz+npoSu6FgqvTdMw3gQ6nCTncjNL+v7cTh6x+Ise4j8Oqov9ouz4L6YQCsTKtHujmXwnlsIavAJPOwciJZh25mxsfFia5LrKxSyr27T0nRHJIeun2EqcAUj8QaNptKzU6O8j0W2VAvTa/N0BjDOOS5d+ELPpk2bv3h/5XJwXlHnV9vOrEDc87a3uzKC7J3W2oFgW5DQomxFD4FRi0qAyuY30essIjJ9zIx/zeWSsogUIoMPS3H7l2MROgPfBFSf6WPjPKPYJxUDw0AQXePMFGk2wRB/mdwsq4Lr/BgQoDzZOWfJKNZVNMfJk6XeyyXwfqzy/WjHlozIwCDV1agbrc5AzylJzkQiyqb52NT+FiD/KOMl5Pr28l+XC+r2Rp+8b4JpsmDDNYXNJ5wUaj9400E9OnZuvNzagjfNrs39AOy8x+7GrC42uKY9raMcyG1Ea9huRHojrGAlLtgwtUmnqRQMNLBR1wf5yk44sCeSQB1JFwpZMmtOCraqATlG69UypxftCc2euvunLvv7hMocH8YIvNw8EDMYfHq6MIAlGjJeaOX+7QvDU3bsQ245lgVKoyj6ZId1kFTa28FAmAobURYcKRpGdPzeQoJS5lQvbE17iabQefQewETt4GdgYJvi2uE6hpFIYuHxbeQWGcVDS3Dzo+Rp7PkN8hck/0Wp9V0YqXjDZt0PewIvhdKmcd6jDEeB8fFcVIlw3gIOvWXVz7taAZRfZDnTa5AdSMk2k0rLSCxU9m1rsgd4Xs/83n/1aKKrzathG6aWhzKnqCXiMwJIA9SVF1AQV0cbRjkl1DRwN1MLZY4LWtF+ilery4n/n9IfZeqHLcMo8OtsN6rjyh3QXF8m10AZCGxwNqaibgv/mjdTFSkVpaYrsxCOhvT5rMuY9930k6u45SP/2jdi3vauBY0UCkMks8/+XYUdNNo3Bjn7Xj1AtgKuoNqLSaPQXzBeZHRyyV29uzC+Nb6yL8x4NTcXV+oe98qKQDTqXGvy9CNhuR9BPcgH4BhJlL9bMTnDvoZNxXvIY+GlPbCTkQaDTTTYJ/abXCe0ejgu7vCdzQ2dzmpr1D9QrCiMfHedEFAB3Wy9ipwuUxA6C2NUmAz9IY8oqyAeR2oav7nKAC5f/0WIh6KbxXtWcFvEweRhGzupNO3pcY9wmBG3fE5137MkmME3KhyQr4COSE4f+iT3nGffWwPFji+z3q8T8yOxgDeMhD9Zv9Wiqh43X1ns/EunnMb4M5YXDGkWK/cJo9jn8MNsWMUkJlHDAIruqKCEyQ9O6MYkZTNJTZThMGfKSKkCnX6mx6pRoLwCorumG3z8fuWk3THpmTF2OhgPgixfOpLFkw687D9leVY46z4LMszNpGDqAT3LXuT1pgEhkHgFniEVrT1KDSy1RDrvHE7gFgL63q1viK8Bf9CEGUm4TUKSrx34l3TZudOH4E7P5T49QBT7dYenIrWI9k39y2IWyPNHGdPlq7rdmxvKd9J0nIWsGlAkA3lfImFQUhmnbR+dmwWOHNi6oPk7kOVtyZzmHCWbiOX6mwQZxVFHITaG6isnNtIMsdOxjsW0o6xZavGx3H6/2eK9hdnP8Y6MfXJ3fHuSSruDMVmUBPCVXJcoCSwjD6N1C75CAZgEqTD7+ZjXB88GVXQ1HfqEXBhv0dnnattp2QzzbA4bXHG7Qd9nYXN50Ffa5gtqTJhh0hzbmycIYpL5aPQmCGqZ8Etdti8P08CcGgCu22XydjM11MbT/Om7hdAKlspdIvx5v8KHE/w/KLYNjVKmSiz6gKY0okYXB70368T73YBpzjaVmwsgUzq50V+MeKeLAN0Xcc988xJ3JZ7WQApubc+xEYQIwhbrmpJNx5XHbjeHg/RTTJot1PuUdpoKAt2KRBctqVYPX9csQJmnmvfDmRCre8qpVyvjytXuGj51Hw1A3QjyEICQ8W20gl5DBOee1YBP3d1n1S7L59MknFyaaNBXRBynCPkOsEnF8PK0tohlS1Aj0qy143YmR+s57kVfcxAahImPkNMvvE5jAY1QLbJGgb0Tsz/iDK2CkncBywXpGSGUSOC/MM8U39C9YpKOILWPnoydPqV+C8uZtQcu2mmmBZXsKzVqhF1Ew0ri6kJLnbP/Fo6FJ+375FvopQvYEsidL7LvOQBqKNzXaTuGN+wkVmxK+3N0FP4hxardTqRsNvpVW6e/gboRInSiz3LjVpIDlgu6TwN9To45zbB8M+dIQVWyXwU1hzb5zC/cZ89S++kT4vf5V7IPvVAlE14haOwsG3r1fNjBQJ3U8eeeZSHI/WPYIz4OUA4I1FjEYbD/f3DFUQfl+veNklNhUtgKm26BnW9IHhXlyn+Ls9x7Lay872mDe04bBXBZilsaP8IK+rHewHfiL57I3MQC+7s7kVGrjmgHhYJwX8meXb36TUway/waN0qA9YP+SwcBAYJphKn35693h8XRIT64HOH1Rftm8DXg/CyGSU6SDBL+A3xTmAbs9YpwhywHFGlRETv73uqCw2k9eWcxxboq32eEFRKoiwYxK9YxAS24DpsuN44F3Uk+M+Rw+pSIfxLNPJF3wdUAwgG8WXMoGa/Q+lJrg9M8NVY7chE3/C304/7IlEKpXbhbBMuI+wKQ4A23GaWc6r9S3dAe0LB448wmMLv2lwq9SEKcx2K9iAmETx7kalxhtdIQ/asCm+8moBYDG+i6Q1FWrNtxMRLk+bdX6Df4bA0eSj3x/GlZQxIdNar2riDb+ZN8X0BR3My8RMgEWiXzsDKB8bpvr3Gk19nfOOVQCyyH96QDF0Pfya/8s0qdba1for14ikpZSJBH79xke3b7LlQxxTaal/Eu88u4vxe47/Pu+Q9cMCGCcWFFs5wharMiyeZDROwWylSTKYbJZsqmrgA10AYj6Ai/NsXm5DHnFoQoEJyI3eTnwatteVodCnWMFw8ARNk3mnE6NlL5kmIwoLjva0J1rmoe7ezgg3dZ7qRPyxVhcqBQrCBG+7O4BuSNJu+abUOeaNySDYj7Cz5P7jRzUNzf0fjfw+a1BObs4YcuwU/WWeQ90r02SeZuvqqZwgGgztyYMNP7VEJ2G0TkOslKINV4HzriaRXTe8y7GzvVsBjkVx91xqpJ/3BdNnTvSgjZSF/x0fjNAw9HoMCiSPh52My5Z/5w8futniqI1moTOeQQ7PYl24Ww4LwliZmNe7dZCoWBoYrrv0RXmvwIqekCyd+QQEF7NCjAD2HPcKIjCQBBLJe9cs6D/w2u7UKfVH/pZmVceFLijBKD67q2IDiLJ375LGGY3SQfk0B3XGhYa/+DAWC158n+B1oc1ZiUnXXvi1+gdFP5G33UpawOX+NBS+BMZSl2ieegVcT0GJBs1Y8P8hsXe6jTE4nmoN3i98gre/vIZ2Vpn0jtvlU2olxzU+LCkhxjnezRvj6BazDzchSxLbQeh704MF4p5/S8th1ojaofTaLDaaP0KV4f4+PTxWCWdi+MUYAxudtG96v4wB76eKx1NKJuQkavk+ARW3eNyZNVj+Yl0h7c8MKzOE9cxmPEuNDaqvmHVELEoPqFZkpwKcrDSGuhwuXsvM3IJKBTsg+Y5DlVteZ9/TlNHHSiOdmRyRjk/B3FhPb4whd+h6ei2zIqSTQ7KDOaDm4sLEKVclSktIQwpVsK6n9o+6aYqCO4H4LmYt+F+/i6IHM8oTW6jRlRQLZFb/8MLF+OYrhe9DvdfwAW0Ga/6JfHQCsvGiWzxxycML41CH5gJJSOV/JzCACBhp5hmgYHuYU3gdZTHS7EcsApr1P2rtfBxk9zRlqOOLgdvmg0YOQ76PoKNf+7SF0FUYllChUdD/s8EYhiNHrkuKrod0vviow7WuwJ1+lOVfm54bK2mX1OAmpAst9AQ7NjWdVxOc8DXI1rmtHru1Ap1N2/HzDPJaeGfJkXUGgIuJ2zpbeYtXt6RWAM+qMT4ZTaJdcU+UizVubtRS78+nKg42Enqlk9UcH4WCMUR7WMhFXTR1BtSwuLIb16wqKv1OHiqAX8sNX7hdaYxJw8104kMTXOK21uXcIlZ+1gDVRHQkhlUZvcua5qTRYE3afvAgtcq2I60sKV8s4VDeBOtWXdqV5zyRYBQZ+Xi1haGK4hV501JiXjZ2WUotqzAUAx8QPRJhJBHzIVrOumh68EnNTYr0jOZ0YPnClVhyBgXe6UCzOS/N+lX3wh2cgt72OBd+mw7pVef01GC39xQHm/p4Yuyi2r3c1lk6g4oXpzxc1yAMaA9SyduCs5ehY7amke9LLumWgU5UUwQRpUbWqamactGiYy16hEaMNTHdG4o6gQjtK82K2MxntMQKyNx1sSqCYGLguoW5UJ727Y+rWAYyhvbK6sqgTYfgwBJV0o/flcyZWEYfNyhPPyVTMc2tK+QKOpkoZfe+w7TDsAys0X5FTEwblML8yn5iYIrwW9T8/kuH7Wnxiq7WBLK+NC9rCfKuf34pxm0BckgGK8PkdW49TnrqSJOp157mCNbv9rTmjyUekgiSXma7q/Z3fKRopEy50rG1aqO1H2q3OMdcsdyoBahtHkecqlw75DAD/L7iQnJN9TkVP3aPf9YKgra6nWgm5Hn5cQgh128JrIm13+CJ94eDDZBHpoG8ULyk4VmKINjW+86LO9ESgF9g9isct37oDuzn1Ao1UM1CdyyrFKcQkJlOJ01D6SySNaD6N8ipG1uV2QQyXSTNzGixeGsyekkbN5wtmhLQbREQ459CTDe6GUn0rLf+S4xPBeeGVeBfYJWi3G8prz45AEopt3kZqIt1/4GOrH1LOUeeBAhclFsx9b0QHWFrb5ugpor/LGmPkDB98RoNuOmPqg1L3gv01jdbfYVQnCw2dk7m7ZSTCVamPXGpDKn4GJrLrOtjryL+rYgSPrR7pZdAGCItF/WMYE87eohqluNhNBpuMqFjuu0grmj2b3FsbQb9oIR+6+a67N+BHc1npHPSkJZQHSxKtt5Ifqv/r9GYijvm26fVa0MgiQ2jy2yzbTxl1VnzGvDg/Yzg6Vto+umzybHlpp1It5PsHNwYda/73IslMrL2YL6sKzkbiFOtJkZcFIbaEw++aUa7GjzMay9Hv0SKxo+w+TrFapuDaBNHOnGU+JlIPsf+J9y+jcwo/279h5wD39Gkp2twVIkF70Cl06JVYFToOfWY/9XrIcSxrCf+7OXVY0Mu72Pq5iZBqosouKjw9dYRBopW0sQFfQZy2lhIoICQpTa+gN1sjUBGuaICajsFTXgFK/KxvG4YwAAHw1MrXzatS9E3DgNWKrhcg6UzJr4Zvj/n3IzG9Mjh3d18oKOq4mN9JqUYAymvLUL/GC1gEqLU5f4oH7Z1hCgYGhHof3E3oBqy054K/gJZVu6VpuK27AJJWLUOAJ4ukmzu80iq3h6SVoZ55JzD2+hkbyeAV4yG34pHbMVdj9qeRTBhIBW0/OlAFjrKO6PCuh99HV2ixwKpvv2CCgXETy/XbufbdEiQIkAkTmT1Smh8/wtGIdEg8hGLuHwDAteyWyMoIhlZCriHm2OYOQtQXDgTU5iuh2dKMgngDNddxlD1+cO+zilnMTJvnrnjn7S4ECJDG6hoo2MhVEju19R2wDXaBY4UOY+lGTGskWtsWmAT3CnmxywrGRqLONSGf49tFwgImr/mucvYLXxTr+NczMI2caej+Sdn19ZmR8AW1RADGNODRprvOuoKOsfJiH7kn1fItQtPAfdlk+hy3tfFqewGK1j6cnWNw07UbCyppd/9+KMZFAZqlkxc74RggQsn1uJIlkiBA5qhA8kvcGDM9tvbxNFHjvQXfqyxPXeRYm7pft/tOFH2aCJ8r3n7PXRiBJoLPgdlmMEfivE0DlE6hhfIBE6FOXkKNbYweoImAm5UtI0KuPddh6IOOgxQiWsBJVUwGjUUpAst4Rn5Qkt40zf/VRUpe1HE8Zy++IhhQHq9bu/0di1rW4UkrdZyqWfdNA9JSlPYZkftmo5UP0WAg31pjwcjCHpCXqFawYrDFEBGW/6KNQ4t3ezR2f0iKWRIPRsTvWUObAneltoRslFDmQr1Ax1Ip6z8RUqMobrA3BmrcdhvYqYjFD5eoQNRxSyYSlPxadkFPn3RL9/gExSWwrLg4DEOtUsJ2hYRIaJShH0KZxsUWesGIHqD1x5VcNynxd/R1oa710z6jcZMf5xMfOMc4xqXmLl+DZ5Fs4lOecMLhlrQLJbmQ8fr6oQRiWjtPlJYyxW3tbOTOGrQnMOUpHodUDPO5hNa8+br6tx8pMy4V3uvpID/r0wPk43SpE3r9EVcLk5JhqmgppqdpCoLI9ybjlPIc3lpfuOhvcbmVdECgYtx8vNj2K4jbPWrw+JhrsZMIMaFWgRYqb9lmgdTv2OQI1kKOmenjrQ2xsx1ez98opc0UV7gfxNMg9ImmDIBvHGjmF9YM2vBbL7aPuks6bMFCVCyoTAQZQZ0rrTbTwZ+buLDnryorzzxMeVbSb+phlx6p7zaRsFwU4Q8W/36dZ/02pEkEyQbLkjA8UlGZcNLvm2nD0/OddhB+CKaXEORBVlsYzxz+xAIm1uRT33FL/mkgxsO7t0iOyoMhjw3qKzpNANVGAjcHhMnfbhfdNXcRlAvHUBwvbg55Uwjda0dPkBQi4nmXVZ49xamtbNM/MAeBYrTmU8RiXp6cn5xu9oRb76ukUj/2A4MgEWnL2nXnFZ3GjN4Ek0iOldAxosVj6JyNsjrPX0/4ksfZpftYhjqAZvD67SnO5fcGQOUsLiZiF7vQzqS7fZG/0Ab8fdtBx+5s0dkZ0HEmk/Ik2i736FNDgpIi6uZgEDQ4zjHCY+7eFxRGnsKFh2fu0CGhzpudGDSK+A3gT8v0hhnG/7bGWc5eotBAF9XP5e5eS1/JhucOVjX3Slxnb2qKp6RB1HEHTdH3pYklfEnWNSkzashJEBJe++HAVSrpD13D1ng2XG5qDvDKDqFzrNV20I36JqX9VPUmW/wUrpJCw/3eJEKwRwtJXq6ZlAlVI6c8/bqWWm2Vbxs9jM+Zrart7LBQMYGz4WH9qPapUETKWdqLvMsiSjBDF4A7JNR7SPNSR+wuwrHONwbfUe/mNYD0AEQZr/lhenhF3LEYeMCIwWXx92iZH8TovezK+UoEuDmGd8AbTruvsFcm0IPIIdzD/Ll4j2a5Hs7DQ9jGIs0QSDiQrKCb6kgD4Q4U5pjg002PM+fzooa9Od/tuQpakKft03DKv9Y4vw/Yw5Y5qkgMm7gYzLDS7IE6A7GB2MwRHo7+m2i6xr3beNTME0thrqPFawwQx+QH9hVXx4DjFy/cflkdnxaNwL6i6MoMEx1UOhk0asVy1Vr7ObbMwX//nKWKRX72OO0u88W+3H8/4lAEjsMdUkXeXZDEoT1vjifWtDNm7kHumCKmBSLGWPHSvcWCfRgmNPGr+sT2fAUSFw4p6fnRMsR8lw70Lop2uGNCcJ5MNDtJBObobpArOrfQm9FTiLKC/l+gtITvcfO+KrK0pzpSKWdFSXxuSs6YpeEJ9RNmHPNZqaiw2paq5CGMBqCqStiM/Nzl4gO44sGofdpwJmgYwRS21/0ACxeniolswFu7kgOxxJUqC48Dfhh8VzFd/mST0BR+SGVt3U9FgG6muaTxpvcm49RGPpRaGKJOMWUDnu+67fP0T+TobvAR6pOqbKoVRQyNNqBE5S2qLgZKrUmR/WlG7NtOw+3GNStzMQSzE04PLbc4BsVTav8kUs8No0TAkZ4MVWbHz9EAZT+qjeXoq2qPMbH8fMOxjZJW853ssVDSFMDOjX1oTN6NkztzO2ReuXBAF/5bfFzsMdNBH/g2HV3t86mcOGdChjMzevDtMOMDC4QvALPAC4abjAFMCIxbq7vb+3RPd8v8U0l7SFoykaEqDYOHEdJRcn1SvXuA4ba7t+/yyXt+QylNEugEa8FhuV+rnf+SF+R7Nk7xBgj85fGpd4pDra1yabWVxL0XwyEysxsmIFEmiUxD4vSBKSB8v6Cw+RnWc2bKHFSIhSjy/QfdZD3/O8hHgxIBYWqvS8c8dBcQrazO1KAHA3U7UC/tf8WZwIcSXR/noezNh/ImsJ6nhcvzkp9tTakT6snBULA/Yl8rIKvKWgTcJVI8Kv4EGxpaM8yrICnykqkyqdo6DHL2/+bU9DY2TGTL3cyPW113sU4Vd3qhbFY0DdtAz1Gpsd7fN+X4Z79u2NJMW/XQ9CKOs1lYzqNw+JUEI9qq+Jzia8YFyW6kipEJdPzIb9DTuZklQcbUh1czfoK0Kjh32d+hwJjAHYEPHoKcGo3gYdaYKnW2x+88hoXnxiS0b1eWGrVYtJ9mq8q9m49dWL34JlM5pbkvk2oKZ/SZik/2eIEwBzOHAQyi3d0HwdJKCcO7m+N4Lin5H28iyg1gPUCrUCoEwunEzovE7ctLQaRdB97awZzpe+yKDo2UErdiGLIMyqP0pJDV7nPbj9C1sRtqwgJbf2qzNqQB0sHYAI3VAP4blYOtdhYC1xUJqTIxerzWs6SnFId8eUwaRkxGklXADoRTAY1Hr3XR62DShzyT/bFdeOcHKch3wrEm2O5bWl7xUBZi5/4VQqt+heHDRpSRIOwt8RIrxE0J+QUdWikFLyNF/GV18axk0QC0TXN5wY5Rlmb2Ee33gMvohQ1FQBAlRi4+z7MLhLu6MF5WTcJm4++YzUo6cDNZyU9iOy7TqXEEKekBxAIT2Ftt2jfwYUukN3Uoqi530O3nlxTZeEdjW+ekOgZ2RGKKEKt4ZSrnuqh6OU/IKQrf8EFlq/0JFxGWH/2r7Vcmv5W8jD5MbmV1WJBIyHkPv23KqwwbjiCg4mI3qluuFOr4Pj9+Wr+hqZqhnGqZ8uIhjDPuRmgEK/97XlhRDIZzkQOanwKBFf/xS4pVEmlLGbqxO2lxW4X+67OjZghZa+bDqPuKcEmL5GrJLcbcGPg58txf/jqmfI3UBi2Ksn7NL0getSl5j+B8uOWA3FzKwfsONuCiH51iNf+sQYsswQboD5ipRA7mibSLoFlGJ+2QhoW+F+HIY7YLMzfQf8QFhiVeF6+EIerlgIzmqkKmgqNxCQv9x1r76gUZAYrVsLF6av4rSd4rwHnYHR2BYH0Qt4E2wANgUBvG7VNZTTTLeh2LKyb/i7iTny6vpyt1BxBj+QBkP+e3hoOo1b6EbU1KqzBRVNUFz7ThQ7ewlr9D3jyPZPae+v6a16GsuXnIYyncNGVSpwpSY1qT7QtwNPbLF03YvvQA8u4j5oZAH6vDGK8IxLucM6prgnict/hJmpvpNnIVOI9dRfXtkgASkKDRQumfFeCdbd5Q0UI0ax1uvPNynz1ea4/0ETtFPVwL/LbZlN8TjEfjyM/5L62dVuT41T0zMaxSeldTsBCWify83mmxaaQYeVcruz0buDTzTYPfRFej0pz/Z0SONNeuZtD4Y1mbJcrvPkqcKFKwNI7B5OYXeuZbQyhlbccs3dz4S7S/38fElJuDe8ph1yKOl/BITLf8kGWWRhUa9kONteXUth80/n2Cjv62HVhDrOkNuJhs5ADMH/JH1+hbnmcHBwSpquOpXO9LqyE0bh5+x2xu0ZqWwsU9iltaECAhH6sofg2hjFS1fQ5/HhNAxhU6KY9Eny4Fqiets83fkEqoKIRE4Xznnv8y+eZqgxobJ+NTVUSoTxcfTraVqhd5UX+LGbSQre0pb8YyV7xh4j4vA31fIMQLIY7jN88e+ZVwmwPegG7mZfA7KDnGOaw0wKc9b76n5UCb1uGKm0xL3F7/KT1gjHyH9ibpBYXmjoYYx9QQ/i6GUEcU66FHw0bUeWZUH2mx7hNhH7Tol9rpdAzormXsKOVasKxhjOzdDX9kJiWY0c1/JUEXb8Zxb5Eyn6wLROcYG0dIMB2r0K6M4gFY4MdwDbrLryeTlIH/nrrAyto+OHzRYiPRewh/AtWNrbzmMSlDyU/qx4mhUni7806rFOhA3E/iPOpHcWVx82suiPiKjH56io5YCzBpetOBIW5XT71R7IedtUQ7UE28JvowiEkCFj86DccKpmRG+RrhL8GJDhukX+/8GN1Tx3yKOvakdsLXDGgdrUNG42kJH422kYgGZuwCtwSNt5ijyLPCZpaDLwDdsEXH0dfC0oBcgktDD+r9hUK9+j2ZVY6Utphxd2j64/zOgs0uo9OI4Vo0WqQPgaYitXx0xQqt2woiEj4DGNMH7mCmYc05zLXcMxI5DT6WqeDyXOgl6HDX4McnxuquuFUfBIFqCKrBXtjXzBeVfVbPg2Res2pLt6SKaovOMtIvy75YPccQPfNAWv5+UDwJI2xnWijM4Q0lGQ4YIyuFxAJHn/CEaGwiu99d53rhdQQa4wVyZEMJATvY5akYrnygzm81v2ogLp/iW9aeuJrySejHZOewaxu8a9NPqtnWlRK/LqwZ+bgtMlg9FSWb0nzzwuJTNwbMOuYD40KO18tZQ9I1OatV1Rk0tuAcEH2W1+JquXZHq+qYjr+6yXhUjOveiZnYS//Lm/HpLa95P13fnqjR268EKRXhCCs6F4eK9H2TEdnrWySriflgh3qKOp1Y/e1TVaiUKguxnEJYy5Ct0b+yUrVfDfQWm/mrj5gckbmK0aORUqNfmUW6kLCY9BgBaHgEs4DE7+KDbpDr3Vq7a74i5GwK/b2VXCeu6A03kyVv4oLc8XLDZFYSo9K8mrmijXb7jcyNx3FNv00KCDO2xiWX5mj4KMzTDCzpnQOsnDdCF7v7vD9poJrfEOQyxWTVkwoF6clXIc2jCdTk1eP2VtNYDAbjRA/pW8to8QxbVHnTEOWo3iQP7/QpuREFAj836CInNO5JHKR8l8d6GTug+IBISc8V1U0u6kWFA+MQXcVlvJPckllgc5aFfDZVAixBZTJZOHiz3IW15szdx7OCa9tgSs492vjF/8POjeIY3CQKhAQvs2KwT8/0hxSUT22H2o1OE/e/7nFkF5AjT7EjrcErXyW7iCLUvfg2033EL+Gp0UkJFxh5ehrM7qomdn1VzHnXV06sogEkCr4veQRmh5bS5GqhL7M5kFjTktGsEtfa4DiIvqZM+AnBkHezKLh7DKHUnjj7FJ0zqv0IrzyffgusngVV2fs8vcqK+bbnsYsO64AzQVvOFNT9lpSvuAvDxvNvi3DCp3HQwybu1CUnjAixI+Q+FJDSd5CI9eDGTDgQNQLxdREqNBm5TXEJU0W0lV1y5qljsVReMrnd7W1kYSIYetO4nVYX3qjqS/Nxguxocjew/nKZbeRmsUdh0KSsWFPvBV7VAP56BdfxWHXE0YJ7FsurWWleZXWKNnjHJ3EdtnCqBUBAuhbaymcq7gllB6q9BUaSj0FoVg3Rw8+bgA5kVLxXz7UjDDc5UbTAmZranHSXaXhTnqAn/GrLviU/4c++skMKy4+KZOzQfz6l0k/AnocUKUyca/tS3i3xYFkaGhRO3ZM5WjlUwPpWESQP7TLnZlwuVf/QmOTGBijsdxEE9y8oLoWfmcQKdwbLn2SVyt2obmSsOA4Fckw5+T3ZHbuNOBRJARCSp6hPjrBsQcgLdwFFk7ENSoyX19wPOPAJYE6lwDjZSiUteRLRokN04C/5YnWoJ4di4k3SvRuOZhBSnLhscREMeOcX4FDP+0gtddQQUnEZBYdfQfXCnsmop8p4AdEB+kiF8pdomV8Oc26v09qXmMA2Pea1oQn3Bs/nQD1Cz3DL8FkHokqkmhQXmo4rQJNUSmtJ1LtyJ9Q9bavmeoJNNE8O7hRFL6ZQV3M2sj2QnYsw1YXVrvJBrheQ8Y5WBfoSW0c2z0IdiTxPeC8LbHBYNxAubr9+drBnekcyiA0NqL5ZAsgSh6CV4MkL0lB/ONeiOM7ANvkEEblQkJ/NxDrytU8u5b/BO21pwycq+13GLJWvOOr3GFn90ZKttp1SQSPdBbBdHfI29tqdIcam2+m6FTJEGS1G/xDAwKtLLbLynf4cA+B6dSi0hEN2pItien7FHRoCNOCoaSQW2SKvOTMrGI4kbIEp9gv6sR3S0MLQf+7z3bTvAbcA4YehQQJTYSXgWPTnFDF1yro2PeuevTsEBkOg+ieJWdP1Jl1kuIJmAoPOuI24fKB7JjOkL//uyX580utgaODrXrcH0gbYEWtPENYwnvlVsjSMee/QWYefLurr7rKJFP8UOsV3jy1u1cFCtufrS3BJLIIxZBOPCqbeA1Bf3Q2bOWHuptvqCX9poRGBUChu8CjCCCNsd5bUwir5OcKvL1Dvf8Q10WoRMtYcHFQxGOSB8RH6+x/YIoZ6M7EullifI1WAcyVZx38YtiF+n1NtmHAzysDJbAmfxjfdyqiQaxAJHK8dKYnfPP9sH0PSjY8LQE6pBL77R6RJ6yP1+ILYtzALEly0N6/ONS8IB3gJpEaNuS/QlMhNUU9GnWn5m1LB4zzGwRB1U1MK7qytXlUbywvtGPVtApvyHwe6rUlEgpwePy/hfOLI8Ru2PGan+pdRkas+Bdd6m9nnhoo/+1Rx6YxRHbcQyN4oXVgjbmZ2vpW5qJShz9v9kMIcJ+Sn8tLDdMDRtdEh8G39iO7wwY2S4eM2dQ9arrvvfpqHCpDr0JqwjZUvPtpDoIp3ENQgB/KeevuXbfzHvK9ZPcBccr8IRzfJDppUNsuZktI1FflN5Kogen6TqdLbxhzlaWW7PDonOFG/8ukWiaIefdcKbak3zfBrKo464B8Pi9nZIGPBty9+LGopxThclTxV2qwjXzzpgNz4BebUM9nrDh25oJAuzTnZKUjWRPzXTmAD38yeHah88IF6BcPBwcUw+YH4dj/nJf9kGK07AXx4EmutvwKg93wATHRlgq1tf2LucHLtsh9QGohLGe0cXkPy03sTev4JHn5Gs25RdN7GhgvyDtaDM1sWcajSuVRKM45jt+rOjIGQ7dRJDP+QXiHtPY6n3tDXU3KmMF5Hqzhroy+fjMoHuQiPW/rdBdsbRIB6RVK6GVnkGmgkwayosuduuBoq+kbSlAL6ef3CzcU6eg8rloVqW6EPPPCbYEllD6+kGP/vbZao5Lt8WqZxL2UwGqJViQrNJxZlOf21kiar10it5HXAhiG7a9pS5mv6w/1mVjIfCMg2G8Vv6ErGZv1G5f/w1OW/zJDmLg5nyc2zYLnn4o38HwAHya0Q/zvyNUi0e0L7ACJ3eH1OvCOFUKPFXAmII9XxaRpvK9/bLwphw8AYQXT+7QhJQ3CERQg8Cl5d532QH5wjm4LKFsewg6ACB6Irzsa5yAY4UaBra50FcYWF3GHWRKfsI85/1A6T6DRdfpmYU3IKhd4uUOX0DhD2wypzfirtWqj7SZP6uHo3IP/SyixP/11OtqGM6wQ85G8mxTqkBh5OsQWuZEG2Ppia+EEd5M6hcy0uM+gKCy789/QEEz0OEJo5plDCiNBU0bbLfPB5ga7t4cgqEgRWO8r4LWS857uSXke4YgsWrMIA4vKq08YnwampkHb9sMBDCTwBq0jVwe0v2BflxTiPuH6iso+tpS3PQTjVxug/u8SiH4paqEg8iKhB5/4mM8OSF14vDg3b4gvzlvZVgMyLqJCyhnVf7oxWCV8CBVeg4wnBn40Sr+Esby+RGg8I1DNEZPrOA+iTrMtsS34CRh6SRZqRA71o8N4SZEY33dPozO6UFSRY7MkIjF16ZKA5rEKm6GYGSvaF/LK4ouXtFwoqVylcT1ROzcvZLp3/QoyuHXXYqgcGhTEGBPL3fWoGH+GOcg9hAbkicJqMgmlPLJ3zlVBwWOXrvhb9qvtvJPo1J1CFScBCyB6HjJ3XLxRdHqMacLLGTOtrsWpXZWf+RPPqqIFh7A+G4REn28oLm2ubDvmv0tisiY1gHgLEQB/K6JLfMPFa64MUlAcnPXH49gV+NwF9OrD6RaTgGOFZab2MK77hnJfr/p3WS/7XmrYceflTJ7sxC6WVMH7jE0i60HO5q0K7hpjNxKcODmsDhcEjzsfhIf2K6S6NYrdQ9Ruo9PL9ratsMzbJRI8FUm0351IDTKIm+wEyT+wqNNwoVA0MFXQJjKQRYTbA/baH+rLLOQYInM9r93hCz/nY8H9cqXPCvG3PkkqqutmsygItSALQLClctUAe62tTTg5wE3l/eEcBEztfVbMK9S7STPs+6pQahf4U+Uau74mNc2+q0cJ8LN6QYwXL/vq8o9BCWnSGqvXUlpL1/GPWBooFKvS4A7P7TKX64VA56Npk6tEOTpIV9STxGtbR3V4VtTAL/CJirUypr9VofEUDnNasCZrQVBhSrroY1dRuc7F6Ha3kAoFcXBgwoQg0GeZn0KRWT+ATT2D1pNwH5y9MCSFSxtQiMGloyxlYpqMAJnk7fObzyoEIHalyMs4XKIdICrgFFucTIvc5uUdZU//J/Bgh8Rebgp4VCMzNr3GJSryboLjwlRZTx3wlpCk/fRZrqd5+ifUfiRDBIwRcLGMzYcYx3SW49eeBpwQEzObrN0F0DRossa+/EvFO8qDpLWzvHBxTYGdZXkbjbf3y1YejRGnUWEE2fCVFXOhmKLKeoammLmXJsyDoQHsu83Hc4nc8Ew7grcJpYaHf/tHb3Z5othJuH/E8Zv6HuRSKrdiMtagc9cXhNyuAxYc7p38L3Mrsxp3Md1OdJLVUGZngVAy5k3D9cle0GyObjUQjP4qg6HY8XLeSCdGm9FRaV/l/48qes5T/tKakmCUz0z+Bmkj0kKISfTP1ZqnzWuZcuN1GnyP3HZtxmGdNOgqqpTv1dKpMjThwnehWLRiRJ+Zksgjv6lbK42DPwB1k9v2ICoBa/TDjkd9kCYfa4YSX/odzusyAY9et4Lb0QzaYknPzmxUKvhOxIuyIU9s8zEp+uAvbAe3vdEC+lgs3oJECBFpJPhhqUYfm9eOlTXBAg7zRbrwGPYeylqiWUB4JAk1CJF5WCPMR4WxZt4ftT8lvMP6zknF/4/kfpws1RQIi+DnDbLVW3m2rWNYt+JMAV/p6YYaaXmv+RN40wUlkeTwLM1VvVkuttuNHTLtwWhs5K987hCBBbqCEjWYC7fwycLDW7WoxE0jDF1+ZR+CwsBQ3Yt/RuvViz58jh3rLhchv4HkrtpKpZE29ZM8c9LriFP8z8kqJ3lpjndgTdUaR1STXxosBQKN9gLutXJdUavnWd0krC22rJv0fen533qKO82qgdbWHVGWjyBKLre68h/6URHXlORc6Nvv/jr9rk9jjTpwUEh8GpQ1xGWcIJ5Nrlu0ZHvXXHzG5jKSSUaNY0yZ3lNq0SO45dT3I0MgusQCHAWWP6/OOTP/+29GW7ZDhKMN+Dl73i+2K0BX0gWJWiQScANTRpUhQ09p3A5bW9br/toR8b9F/gjZ4B2D09e2qtCXhg+dkRXexFbV76y0ZHUPhSWpYMhTK+c4qGYo6Sij5NfWw6zZMyNfjE3LaKrrBuzLIDr4ZURrk6g4ObSdy+fZc+eWrJaO1hwPlBRpEjiNn5IBgN24xaFEmF4jhmp2aPpuQNDsQiqOv8/Xy9PI8g/aCAKawIa/oJp7ymewONGvgwAx3kQXgl/i7eNiaDCdVUqzdrPK1pgZr4FVi1kYpznD0ZvAo/c/RxDwLFDo4Xv96PQ/qlJnf9OE19pr46QcnZOwjlBBNnwmoTJm9jr4KYEVJSbwecvdCfHOWiJIfLMQo9qeqGKJaBfzrTFheXimSRoDFgE/MMZJuCLOm5DlwmE2He0oDYqF7axdA/L4kT91vtUt/t4S7oqWDtNR0Ez/YHkjT/YL9umy3zZvMlZgWcTqYUvP0cFoYEFhBzj84UUivg3SZGDzyrkj0YmeSt2uQNS/k5uaiDxjivRr8phh4Xt5Ye4T32su02+16+WZnFKumezh4s7R9Qysu8H1NWQ5ZGlzcsJwxQV0Oio8Me1qNin6AeL1N9UmzAfz65XU9Oj5e5LDeyvNcw/JWH5U6x7hs70hpEz5wUvuvlxT0TPWJEcBP4CX6ArAO3WXuRY6hCHbWoa2/L/jPA8r9uLwA2vhfeOjhhKu0cu/VGceMJbj3B6XAGzzYFc78YqCZmM68cB2N7Tt/fmBpKbBlzTqKF/qGFOVXnY8LDTBeTEQY4fKS8YPelSyP111///OIf72TndWWPryaFVKpmiQxLNReZz1/+LS5YcC2/jl8qxd1bUza62DD5PHvtaq0bjY5hrkyhRMbcX7CjFgEfWo9XYL/5s6StQs8VG4SW5bySfVu6rGvQew+vxdZHPEG3tYbpon6jp84ULtCOtnkDcedL0vZx6Y6SEIrs4yhSoKRiNAFd++viqDp7pnyy3Xu1Pi3cE+cd4xREDjTtLr5zxf23EshdJmeALTIUctStXPtCfpiUljdoRFkqFgpYd0V9jxb5rz76G4aC9yiNJ1kddie1/x2QuVLWLALczTt6mNqE9V//VDXQvn1w8uHBUC0BmPrzj7CSWvCKEpjkUKrHpbfdDh9cTw2gm2OAuq+KBal4TBn00fCKIofVuQSdLbrWa/nWBLbHxyxLeEcv0vvJUahKoe8xcE7OBB4YMeXj6Ueco0zPPhz01Cp9yQsIa89Dj31+09EoJbKXsihE72ubVfjO7ly1DIW1NNg6moqvJtpMaIkg1puVe7F1ioC/O8LaGeVIoP9wpyetj2HnPXN56oBjxDi7lSyuV8Nx4LXY1tw1x5Z64fM41fGuOcSC0CsgFlh56gYCWlU+6cheLJejVId0w73nwh0Ouhbdx9zWuSsnEsY6xX2UoU/uJgim2WQJ7UrcPLcz0fgTmoE3iAjxUHliaNAF5TTwPN/CuWJXLLVvH1daSaAwXnrAgQlmjzX+PijADidu19NrUcjg67RSQftijdgyVY+XB25mh7EpayLUKsISKvD6MgmHmsGBww5Jg/kv+nuxzEEjbVWPxmhtZ/yuFM+FRG2xPwluzPIhPO4nCvmpcvwAzgWRrzb5ZeF5GzbiOMvakh4N002Pol6rBPwPOmMor6Tk72Ipj0bx+gcuXA9WrfjbuNsg5XCUxJxQzQI7eL4C5VLssvEiRkRSD5ybi7rDTGa47Q22++Tc6f1UIEUKN711/LCq9AfCXxx8LQZYwfkK+bKvtscfPl/GoCeDzZbz8LrbiQZk1l4BfGFxfhOWo8aATS6l0z+db9bN4tk83crTzHxV2cUVNO17jl5/R+f1mb4oZKG4U2EkoZ0zs7MiAbPFrc4jz+2sA/E3VN4jkoIS6/cI7gCZEicEAfxGuv1i9Qr/2HwQ+m/ge0RFXUnFo4V2wmR+NSqrlkwZXIK3G4MDj2cFa9Ifx1f40qLcOQoYL/4WIYj62loNSDEiVviHKV34RGX88HOI5w2FpxMF/QjTIRL4OfM8zX5yCZzdq4XJP5xz5RzCYvwHamVG+to7hMUgfh0zpJfh+JKUv1NYafXnfc4ohoTJRXyqbLsFsYRCvk2hTYa4CaCanHiV7nTuUcDn3rvtQ7RUYkF1Eajio+nQIB/3dfO+O81s2GEHaVFAJsfnJhEoY9VUC7yKN/wV+B8oLAI5DOiyCKHQly8JpTE8krA5lZ/pQUWjFinDL8rrQxRHPeNmx+6nG4QUFto8oREKB73HR8qHZPEL7DNVJjGXsHPWUH8O2mlu2S5vhojlE5Kn0fZaL9Wvqj68HDC+Oisgn6zPu0g2OXoxZpnV8j/dSws78MZUsJElgjcmejVRxgOZXtsL/vIWuu4qrkP0TEX3xNfK6mCguzoLiwu2XSYVqH/5K+/POdzsRic5LbwBaTo/BZv6EA8MDAmksA8CaVPakITbu3G6Fhgy4OGwuj/HqXLmGEX3fBTovWVs6lbuzac2xKN4I425af+0LLgMui6i+xDnc/S4Ecbslfgt/Y0MI4EDRttg6NieO7fNuuWQWD1h2s9lFxrMp/m4XPDuilqW+pBPG9lILOH/IpaMp1MNN5sXNzIwwBnvE/J88G8XROPPX14P8JbK2ta2pmrYCcwRWRGvVMumG8d41It3cVqZ6W11TsHkWiSL8/iYp98o52A5Ymnz5K6vXlKIYgD56B/jsK96BkT1ADJBgg+dnZRuF98vJViNMUiQbkduf+Pjx+bhcAKEbAnhMrGKmXbXyl0mQnMG3ErExGNGf0kSS2cnLG3G2CA0kauENdGXEJRS3q53Vxu1t7k3SW4txIx9tFGSeyOYe6O9UK2PC7KtZyuXu27TortRka5Kwx+vwyoBXlkbyMrRbtYz+DymBnla3iauyADLVknkMZqC4lgfgv+eNPnrDidObCOEBkCBZUs6H3xbHvjOk6nypuNbgbsT8thMHOEsmTNnMgwBlQiXX2KwM+N/3/dLa/ujv6T6liv0eTQ3Ckr+IS7lXhTDSVNHgyyxS8NhhW7eL8vqREGm7FedAx45AvI2akpVFzBfghnxZN9C7u9x6d8xGxuE/hTLJFSo1P7SPP8NsXYycSZGKWiT1qTGKmWNZl5cBqKksI6D3Q44J6qIq38Pxzqq4v6yWxLMdl9XHcStVI0Krjk4GSfAuWhQc4E7AojXKTGivPm5HWDmcal+cMQK5BNJ7JL8nzJZ7jkcrJaVF7PYz6ioLAu9yrpXdUheCF4WxWbJkdtqnzMf+KcpWpm/Gu2TZoBRcOwqbCWPao6BvOoXqsCdZ7PZiiCYeVYynek0UpGGz5lwOur7GPnS6GaIvKSDLQLYcCQtEWc57yEIPc7jjHZA4UgLDggu6bwXGSqzKRoORkVtPHWXuqSc2+wBiJrPWaCM3oX24IvMPUGQkIXqW6yVL7dDLDOFMJPsIuwidG+ZuUw6v1YVN5WaH4K1yyhqGdnoDOkcb1azbEdfVDTkMCTsYa8krdREjo8PPDDJGLIfWgJ/R8U1RMCEAecAzGaRVGIri+0OGUa9/FMWNSC7+rj+qrcK20UHI1RznYSzQVcNVql7ScjzFAYi44Hr/a1t4fEUmkVB8xVGmAb616BaBZjBknHumSua0OYZvYpexQ4QCVFMnItBIErkZsTeq7rjEFkhrNszK7QlkE53UkkvpZ/W5yrtq/HOjhbEnQWp9KYgnqr9lJxPccBkFvAWLCVD01irbw9Kt5wc5UyS34CK/4ewj9VyjuR1BQA5wRzsMc2GlxlzQf39BHWYk2bCNbwwtS+t197QkfLc9sCc0JysKyL2RUkM/tS/kJFHyKlzbeWX8ihBy5KhcKWAsaJ/iiQEEpZozjrrZoI45PjB5Hl3yrcnWdCEow0P1KYkddRAaxjRl0vuh/AVTwgDSVVqcFq48L41r9m4C5HYwdHjfeBuwJXKAHndwMM9tox6kWAwqbVcPRIVdH9ZV2NTjwgM7i4f9OmwEc8PSlVWqy0PnLUEys5VAKt95+oSZK3RtakJNZTTIcbMphSpWI08ficYhVEYLuCbepgdWnNS/r92O38KDWHvMsAbFf/3DN6VIwmeTr7hl9dcnfTP5OyKxHyaAwbC8Qr1lC/eXzLtb4uv2WLKsoeZtRwWf1ipPpi8/vesswiPGFPegtLdyqv4tG/LKbGCttqllXZo1LP0vKGl8gsXr4s7kONmsQfYUPoipvUM5AXWMouVhx+HV/95WDLtveAppaeNnnxO99xW0SrxeqUdfjsYaJZVtXl4Ecw843J3/KrsoQ+uyg+g+dT3t20lQ6hsXmSCYDS7sld8Rg0f9hcuRWLhmcc3mTFETl5F0cq1VgvQ39rwao6vivAgzggKQWUP5pl5LWjld521eGtQ/xbJhHj+/WqUulBnhoshLY2vdShkKIdE5qZ2SRkFlbr5VQYhXVGXGNVVU9Xh3H+5svHws5Ax/5pskkNZ4Ki5gBPFt/x1ssUfnL7PdqipgwgNreFtp0TdLL1xe6a+1jjxlPqHuGlADf9MavRzearoS26lV6Plwtd33cj6vc6Ofl00iS5Sr+XPBYPl9FKbkUl4lkbEc+fZ2uH5fJmXKKkTV5yD3c2ri9O61yZP4IkOJVnBISxbGMMVZUiKa0YQtihcWaKiJ6COP/eNnYcdtyI+7Z3rCvROSCJnlkLA4XB6ZLFVJbkNvuYzEKCJk2oKD1bXm5Uah40L401V1XmVF9LYQfYstipqWJZlY9q3VgsK4e7vP5S+Z+Eqn8Gai/53QiRFUOE2bm1fApzaQg1I53xsi5QP87tVN6wmJrCYkZiXoJUQCMl/6C7dSOYO+q/TrrW7nUVkXVgHqlzcMqZ62jjHSL9xtI0U/XSHEg0oUSrEfJESBNk6Yf8rxEgnTfW7YXx7NpA6WE7ItHA331SeM5kVWikhauqjLYK0cUCQuv9WN0D+WM2H+lLux8UE4UEFP7Jurn9GJQUGf6OZ6YjoIR5DFcVVx8lj3RMKG4Ce1VJ9uAa+Q6FRVlKgvM1zQwU+BjF/KiwOyZTP4hYmDSkLgdE0lGDvOT4ULlpMj5S6GU7+bHaF0hiv1FOdMiQ7ld4DyRxCk4nBj8TM7cDeTQIVfKe1+yq8WDAfaXDGWm6twIOspbOcOj1if+RnHqX5cPP4F3oBd2S84EDwt92inTFCOoal4WmPNjqo64sDYbm1/qETqiMXlJsleKdAoklE7NPktfz23/dUr7oQ2sDEz4cnre7+n6EXniqUTir+C55QXy/Z0YU+BQ8milmXfEmBj0jYpNjJ16SbvlgZxUSfDIntjEgYBUXouKEbkogmQelw3Ds3UFwGop7tJdH2EStqEzQZH1oea6TNm27/CQHbZrIfxaZxfdXuV0XYvEpAxtaSXPokhwAk7wdc2EcuGtHP2KoEmQBT2Km+t+kcmJYj2aotN6pGjOBRtdL6/jiTdmrOBG1/4SiAge9YdlOr0404QZBCTj2nif2LEnJt1ZwUCamXd9WLLx3L5m5CgHBlmkoLg9Chg231x+2cj4nhe7RcUW+rvtM7g81BleyFUbhdoBstgElAnt15EpBHVt6cQcjUQ6LlgAEBbW8OO1EcoGNCsI2KMk/IJkc43zNOEWYc0tBpzldDp5T/7/UO8U3DYzAPaMdHVRPrxtXgLTYhJzuWCstKN1p/SJ1LSCHhYtb22STpNnXReoNfjwJb6Xmto2m2RC5i3HGXZg3pk2EcHwzAyF7KFV4oq1YtuGqqAGsVoMYjFnN91m3CM5Qf2rj6X9deRvCqxWlxiEFaH3N9j3vflhjz5eKdoPmKikkvS6SANelGu+/J5ceuP9kh0Kx0hY7adD3yzRgtCF59XVoHbRqe2KFBFk7htjvtkA+maYLUt8XtoQwNWjOWLAwseKVkAS4KZ1pN5J1kiCUpScHwnNuU9uFwhi3Xs56+kc2ZiCiX62ZtdRjl0U1kPQ+iJwRBzotvMYdlF6GCoZqt/IU80vWP/0eQ25Yv+XgilxOChGmGXfTqc4b+ZsyR5J7TW9cR4F2fBzdEC2sQr79/hHY8c/A2wpBRwoNLTfeK7BKN1RoxqI8/cUuZPCva862KleIDhQypfjZTAT/znlFwIrFyKFo+Zw4A62f+XAFcGLQtv2JE6Nz3SXbOLc5lBrU3tKoLbWbRYJt3b3H3t8zVp9hKQSXXjvKKlnyDoLyOhM5M5laaEi87WdHIxmvdRmqklczfAfKjeA2awNLhUsICHnQLN+dPngCZl9Jv5YsRMcONzKLs+TRninDJDVe54xPM3jEAUyrLAvnhZ6MoTif5dI+UIWxzhY74m2SbXK7L7gVWogc9ozu+tCuGYu2xjffJP4iIWiPcLKQmB73RdbZHf/V4l9F06KRdMYXJ+9JCco4w9sSBD+XAkwKEoRaBs4PwYxr70rnE9oSTOsy6bKGAyq9JIfR5OOqpXbuUKPK8ZGQpk9yD91WpdSdn+/dsIwU1i8co1Sp13ab7aLlr2ns6EDbf1r+EtJ4XyGfzqeARrrlh8ao9w+Oim2DFbh9uYAk6buDaoyH9YGaEwqcHTCgfxXM8YGuTLygSmKLTMcCk4l8tv1row+QC37gkeTXVsHoVUe76TKarBn2kHwXLCJhzES6z0ewIz9I9W6fOLgCldD3yvGiT/XcMNEM8X4HZY0p1LBSDJAPwf1fzkf6ouPiaxJsKzsd7hY8Xuu1y7j5Zm35hKR9Tf69HiqFTihKyW616wGP3X2g06FKh1demq//u6YJ2mGBeA3qcl7vkSj5yAFYFerqNmondir3OOFHbCe7ybGkCoElhSb3fdxK1Vs0dF+PMeu/OpAY94d1j2KS1w54HwFGXs6IBizqOzceQHDwNnk/BqxX5YjZl0m4aoHL/TfzIA7BMLa4TZ/ggQVLpJYKAogaMq5tHRlUEDcP80zum4tbnQI7nePil8PJrlkM9YqgvynP3HVL+v6J/uuglNtLXgVl+oJ5mV+lH4TVMwtwIEZXfYDsx8ISGCvWHIoyx6jrWOKO2Gmf0Vs+qg7g4N/c+hs8t0KH/sqeBCTbUdZ5R+2VH67MOs54x+mt4BgRIkee+ID6FZMfXCqbat8du0IXum25Zf+hqFz9TlJ4wJadHkNUdeLlgRrA+ZLfPPotxR4LPZVz7OdIOgrENK9Iaw9dWOMPtWgDXHrbV1pLTzyUAzxylTRYGMw3wyfdmbr8PNKjj6EyHtvQAusTjm/iKcDvhPssg7Q2KPvpDzmkmub2lWbAd3H5shGwWuJNjXsG7EXmWmBO0syWDymXLRBu3+jIPl7CjRzYG1OpgiVqf+E9cOcTqRqoKe3XFfXUCTduUXY/OD0vp04Jd2EhNu0+FgpQ2JIPIECjwalTNJcjC3sUCnqFwedWIrGJrEp4OzhpxhTEhOBv5wGRzi/ks8sVbKOUAUDaocD6LtOJMWutA6JyENgp4lhsojZ4ivpBVqL5BNsXn+r9Oy2QzyN6N/QikVASgyQJduLF6l/KP7O7r8TAZqvT250IhXsfy6bYNLgNPasmGAzP+dKwv4b5HRASme9jY82n2TajeotYCugpzEubSejeruMFUhMSX2AOJw6NZh73KOgVw7gvmQPCkk2K2RWzfFDyuHRYIHtt3Z9iTizh2v6izjM+pN+GPBo15DEJ/kDAoG+eAD7rFF3BPvVByJ3r4BRXKd/P/QqU48vCM5mz7KL7UYUmf3CdkKDVMn6np1PZxsK+w4Zd8G1169HKKo6dyS70+OunFF3JKAkaTzG+YRYjZiHgxV02bX6doPoZWdeIENFPfoQ5KTLp9z0+k5sPxuR8R+WSxyNslZ4LsajPwr4m2LUmSRNe4qNgLdlcbl5XqEKfmtR2cdsqRKfJ/aN+4lBmFgwPJvFAPgoPEajHmJKuluDukl5dJoHsjZbheBvWimppC0YWtY79AmtVCC5Yho/Wqgk5qThp8dQN18K3FUooqnS4d1f3wuZSLWrV0wHSiVkXEKSJ2H4IAcTIVclbicMZZ9N0tjwuz7BVTOEVxFcgJWiHtO/gmQ0TVd9KJpcwPgBJYUaAiPGIPSstcgO6KWY58I2/3hG0e+vXtXKyXPlT9Nqccs6ce76l1Qjhl4Lx+n5caDA4hhzJlG8b9LBUba5C0T4chGC8r4XU9rmAzJtVIkbp/V4/Rwf7vt+MXuKDDTC1+mbJzxBTC+tllWlrFRTyWdx/XLvIqaRZ1yntrQiQ3yytb6B9dVZVIBzPSRzpys5V7ak88groGzvtPg7H9tPXpbS1p+57d9zTng8g5FMxpHKGnicd1GaprTOhfCiwMZwJnrAwzpqIN3kE/SRy3Mcsz2gfvSvBBaE0SB837MOieWIAGHAaxYLCOa0tJi7MayWeQwsenumTrmnsJJb2D3jQRzWPSrjt46sFiq6gQAb4BoP5FHwKA3s8wWNr1Hu7MmV0SI1zP+kSGVsVzPA8BagoUiceKAPtiflGv5QbnQYJ+r8RvnL7dMwL2Ijueorc0gEP/uLj0RVlvVbOMrriu3o7cLlf4rP+ptM5CdlsM4aaLe0XQwiDzM+vxM5oWcsl7IcrSn2kuJqH/SL0Mu+SkqvShIuJwgScw0DeB5WJqI2zfsEu09sqkeedPG7WY+Bm+r3jBg209j3v9bahidUmGEei2FaWiTk2pwh9ov82kDQq47bOLbbl9qWIn+Iw2BlC417B90A44i88+M+dAcfTYinqLNUpfMYKScAqp7KSt0x6EFMatzrsO2IZLnuamaI0YRfG/iBiAz22bPZbp02LT8JYcLftfo6xz/Cq0OQ2zkhmlB9SFhrtQzmYU0hKwAQ9rc/+f9sapB5mPkBB2KIZ8yFgJzBHHYSIAYE+NCr8BOoWDwRjLH0uEitIPXeSwQy5ga2qF7iQ2Nc/5MQWdOT7CGg3+wBfrn0GyNeziNCrKlQieiPUJDDPJwJJiMrffpTntztP6WGc1l5TPkzEsopjiOdO16u1OTKocDeaqQcs9ZWKMzWzweNLpQYrooLkDLGQb0cLKI+cSg17sYLOV9sAGReC06A12h+fXFOCtzohMUC8U4NcxOmOkJnhnKUbCAxXBkayklvDeswhE5+1nlbljZGQo6DlP4ujRai+5drNryWK1iuC8H8mADphyLR9KJbcksBUB952KnCCbI+CLJKekh+s3ErWWr7hySBvhH98f4x8/8YNYfG2+ZX0PHvegTP8qb1N5bYo/9wTA2s6IJIdZonppqSUL5Fj6nvRvQerMzHR97ChTBGMwbKa2YXPbh3LuxJlzXeOJKpPvb4IP3mnOcHvnqxXln0WMmMIp1HchBCYwxmQk6yrzG/1/gKcXLwdEx8piyZwVK55v/0hcCnfYPIceXMshlDJKDW6oaXyu18p3jnUlqFFLysHqfsQHLDh+0X/PU03D/dodZWaLhIFDrygdrIpLjo8PpzGTwJm5l6HDcIuYnzktHF6dxUC/KkgnTsPg7rXvYTKiye1nfpqniOwDJ/wka8jdDUBYbN65xH3Z0ZDvDB/1lUMvY6omm9YTqd0RaZ4CoDOxHLrnhjdr9MeZFJaLEOhLhFg0tkEh91oG8GWCB2hcB+ZJhnKvhXhCwKtgLWvCw3oZulIDcM8AxvLSdf1I6zErhmTSphaYYK2QGM566T+piLoAIi5aoJUkmRK4t7s4Sg7fmRQ/bchAkqUf6ebDp8Bdg1o0FG2+mNOf73Z1MghUDMbbxSxRRjfdog0vvLH0s+iu8PJpcwSHRgIFaRS3UeKmYaMkl097GRUSh8f7JcLQKUXTrGPfez+z8IlHos8qgPfSqQXXDXsRzsgV/yl3v/o7ux+eSfshfhctpdWVDUU+r/rOFWwMt1QdiuPmAJ4Mu5E6Jh2Gf7plv0pjBBQkvLAn+NUWHE2lAPRaM96P4FxrnJtm6WZcFOSLBLJLusrWbE9/38ozSPM/XC2VddRSzSHzxv5OfsPTsYPxevcv0W3j7xG2AWwFfeIOqCjitXr0pnZ2S22zQBcsPpuiTzYVEYAQCkK52iS6JLdmtqM5sxIvRfEKJjL+BmVghOR4YqVepPiYx+jmvewfBtXIag7I5HRAKIq+TlDz8/XdqsPGUcsxSMQvnLNCy5meONWZekryunm7zrn5dkOrtM5zLVwwo6mRvQayyf+yLWMzvPLpULfoHOZdRAoRbOXqvB8xLm6uGYIwvu0NedLNR1M4gqNptgSoNAe8A2YalxsKUMHHaw4l7u3JQv08C4jskfjCSRQVngjF35ju3xLQjpCoAt98Bg6DGSHlYH/ImVmwMV97vpC8RkpJ3H9lAUdofgYN2EymmY6Zxzj98mztIPf9GU7D2RfhjUmMMXEegBDd4/qZmUO5QTEilBcL5J0ohAfzj+95ZQ+U05jiTDZRxa88iKuhEiFO7KvZsIW/+mBPiyH6gN24G3eNaMMG699QF3objiW8BGrmqDQDzmAsAAfV9qTu8hx54gGZcwiwF5R7AQlFTF7KMAHQE8d2vgEGmOc6WCSPv/HRK3oKntx9JN46hGVP0gwqf1cyChyZQu+zGy/PpZe9LNiBixuV79fzuW6rVUKLs7OB/2sVBKJF7t1yP19wYSs5wvhoqLgeEFt67L4/Bw9800FaG9GmiqTHPJZm/zl16wLOaFVZWSTABd7m291eUGKyO5XQog8niTXsFPxSu5eeB8KIlk0mpnqFrcJcQkLw296J5zrmnlt41N7z9g2+LKxXg4ogBfUN9fHSQaYzwbYyuu9gOq193RPIDjQneOG1KPicRnimb1nJtlA7mLKoW6Uk6I1EEOJCOHSfstPw8dtfFw2gtwqEyMt6gNVmVcVioUBdjjy6BTUq0VEm5O4iX9moWYl3z/iXWlwnjGWrBZTqr6L+/cOntQlMccSzirBRpHgIiSDsQg8n2MdXKZ9b8L9yJO6aX/YqFxzV68luot/+fV4IWtwRrgNG3Zukb0Q672zWie9Bru6lFJMzLZilfPGw2cmjXdKAoqiahUJIsKzvplhL3MZ2Ba4sm7cW/QATLdGtKjRgaw8Xs6k6WD/p3uq3B8elKFY26w9S2SJtSrLOuR6GMxn9nReDcOqDczyIA64nVN2PCwPma2JDlpf5eFUX8sOznjsBj8MmoPfD7nCmOvo2r+dluvmLGsRsS7kvsm3dCD3//fvhywcEMoWhCs4ksSlZ2qP7tG/N/5kJVGtg1gABBpnqkispPMNf0yZIbByCVgb1W/Q9en95j06Y8ZaYV5e61XBdIokYC59f1MIVefB006jnTDnqbMWuU1NxqIanUO2PD2yjTCr1o/jFMXok12EXpR0ihM3IyQyRvkhCJO8IWMqbfTLOAEnN1ftZLJ7nJMzOaE8ogrqg3nsDiiuelci7Re6gXORz9F+qA6yzR6sTEVzu9RQrYl+SFAfwqB+0pGJbxKSba7DqpzzE3MhSOkKzHFePaViGe9blHB23O8KFWvd3PbsylaS06gbW4QX1G3KQAlC7PT9daHvgU2OFjXpbw8ykdUiAX6ApxJoVf6ZFFebm5P1vY8vNromXZLBLIPvoMH/2QVYRb60K/hXqYBfQzhy3KSbv+g+4cWpGTBeb5o7vYbBhhBY6qcA56wYBvRA4irQwMfwJVl6H038qxbOKHZQxbFP0q0Fy0mQOVavdRkXB+Uee34t8OoWHNrGjxYCp6P4mpmIzy1RlHVJ8oXMXb2Rnni729f6aut27JhS9Da/vf2LjKB2NT66cCeKApJNHhiM4ORzoFOEoYETBKpc2HkNGZ1JdMfadyNx6FDkGYu0HEw40NcOLP/+tYSFAUlDeBaqVuqCo72LdfyfhtOtQpGB7hBOPLI87MOoY5fKBvrLQG6jLT/uVxmoU8hhf7eAPgp++j3pFFU+1A5UwnKY/dZICP3ShNMENNl+CyJsVUHfBUrlnik4q2+o+qr8xOiWVzWiO9LXW3mzQsY2RH5A8TDLxENMz9xFVccUn897zvxtjh5JiDYtC8jNChuiKiVdIV9sm37VEMwlBJUHp8R6LpbuwjwxthM2YQ9cZg1lwkXWzV1Wf1G5xywlL/wKObCfRQBfcHW2ZAqpQZM+ejr9RjkzDL86Si3zfoWlapSrxJmL5F3BpRKF62lO0ebazCszYYyBFkFCD7yOWkqiu+q6GgxaiQ2P3GtFcN75I2KPcrYa7ORQXs/QhtwzqOWCXoF6YR33UwxRx3W4auAR2y9NTxDTeN4PMUV2MQ/75fgbItG9CgLqAC+oUyq12EjU/oH+mcAnnNY3czd3DjQNt1S5qh06AX8zxvXVQORfPtnEDFTTMz63ZSprDGttx4scgq4N1CmFCU04lwAmn47P4PIpTwRzpAAmCA6/68QKM7mSsjQz9k4a0oF04YA+0nywu4Mw834FpFtZ65uSH0bY3v+ROTDbK3akLzpxIJ1A3aXYuCueGxAEdghGEwE4iwVhElhqlwssaUtrh+bfvk2ET03CBSKwoxNV5ye7z88u5nxNfyM0W+u+PJr/Wmna98gmKlVi9Vl4Kvlitc3A21FlQ7sgKZ+orQuITrZp7V6jVvP3vJAZkTRGrv3fnTbkzaeHrAeUiXGCQMNl6RnismsQ1TNNrKxEH4JwVbZb8CfkasW7wD+mXEWhogx1lDaOHBti3dawmyJg19CkEEnPogERO2fsO7mHRN92uius6JxJCAosXvQ58lt6VrGl+XhwM6yb1JETR0fFkFXFuW9kaFHD1QK1PvO4dUysmwjGX8iVrLvuRaPEFapqCgnuv1iIaMPqwcERYySRppj+F/0vluIi4NdV/DAKxTlWOQ0liSKvCbrNvAuAHtyr6b8mOdQK1oZLfAq6eI/MbCVMeqKhtQ56v3rEaqbs28iqg3Wc0IaEOVy9PxN8bKwjRaw/R46YjKOC3ccW6vDM/RhRssRACpcAENDaUalWzqqoU7jR/2y2eSwqOPWbJPnPyH04SgAEv1GMltcoeOLn2Qprj1ndwB18nB7gIasdVuTQxssKhDWhlhZwFgFALOJI90LMwsMo2nvTXxaqbuRgV3AznAtW1X8+4htqR0dmSHlYge14f1fuzhpPi4Mr8Hm4en/V10oB8EuLddizeNUBCULj9ZzeJOyVjgpcIkvKfRbumK9n48e7c+tl9QIot8dE5fkh6Iy+VsCLcNOBimSGzG4iE1uTpD/Q/F1RE4pE7U8a7fgSxnA3X6uSktGRHRQmay2ytsJ+XlvN16n6CK6IdMUY0ATR0TGz4vUsT5WZod5LF1XjAz4MGhRPviDjsInd3PR8qP5phD1WnBg957ae2LwnUFRkFyyNy8QjPAZi8GMEH/WwYQ8L8UCW36eCpNHolkSuSNAd3O4GesObQCXsAdB70HzvdLtyPlrzKjckl/7J5IS5GZbnm4EYvMonKC/mt9i5Ja/yT8lT+iwGVOijQESXroVVXvaHRzuYOgybN8mBz78KZlLQfTr0NWK3nFhzKPN5EGD5jPP190gV8GZzHFm0xJE2NZPX/0LO2UE5EEPbfgvXvKnAcngvVsfkH/zylZ2q68vDVhtkS1Dju1GuiLBYJWmV8FiVA4V+HrykbHkpJugTnqLQ15kpicxEVrUGNbT2cHGrewQVxXwfZCGyMtJ2Aq0cazPyJpAjrK/CsO8zMvdPUew2LbpvmK0RZfsN+0b+DUGziiuVQ0N+R16lWvNiekgHUpMfzpz8DIqFhcbi2EzgW3W0o3kC3YScn0Ez7CnHpsRqUkBrxoSvPMe6+Wrg+PvoqMGWgsEZBfyFECgoXauXI9lbTsX/pNE+JP9tRJi7I/UEDfMOfLr1xv/mA9MmnKWo0uJ1eSALVwq6tE4EepEWqTpPRMN9utMz8WyvqLt9CjRmtSERcaPxSL6PQ6ktuEeV6M1aIl/xpyWMrfUMouQVmZV1DHVrQPfNguST3J8ZmI+R1lAnaCHzOjSti/vGFJq+Vyd9uAGbMfg1mrpYihlwNA3vdimf8GCb3Ib226yUd6HXBWrp4mx66e2HMZiptL86MvUVnFcjbcqefMWiK3iBcbOqyUhnAj7/AmvuS5FvEr3o8NwUQNWXRBcPRiznA03SPUmpPTVccNtvukehSptuuSWAgoaVPEPwQq7X8rWozv0726tMbh5b7KwaxoQwvknzbsiq5A6uac+4LkfzTrdB0wpMB3bwW33zrNr+9OdLOVOSV3zFBl4AkvHyFTddQZHkcA3LuQ7DexuSw7EDxcmaNaF07e6xsS/xzjSpaCg3Vv1rlg+i22Xu7VR3t/WOTLCbvrHhVlsAXYxk1FFGlE0BU1oVbCku2sr9tM0c9CdG0KQs2HljeVjAVGiGrbZRkA1ybE++lfH5iwq61fFPRhmrsAwRAuy78SYkbWnuC6PxKUTCbSQ+svju749fV1TI2V96ehl88H9j5lCTj4UCJRTI8CyznTSc+9mh1Yh5YvW09IyCKoM8xa3NazT+g1Yaij9NM3jI0GlG3+msxC3iQbkquAVQ7Ttmkto9hS3r8E67bI7nQWk/2v3gGkfvhSZ/tjuDoHWklNBL1q7Qe/V+zn6BuFSY4rjXY7NSQIZ2EXjZwkr16NK+rNVHJ5u3tcDejX0VUDXM8QrxIe4VlYeoPqDvkXo1DTArbKKK69+fdl/I3PwVssqThq+JSuGd13C+cP4Ufb1u9ogYoWK3PblYVrEB07gRIXMvdXq03bbvBMMkRErEbrPGerWxEjWrTF2eqs/oBGfZ1Y3AWswuoqpaGWVmEpdO4q5e4U6JO/7WJZq1rxAgIT0Bl0DFXL/3OC02KespemMmt7gQG+IfZj6VzHaMVwmYxyZcLi5MLv8MK8QfzMVEcdTsxdZEk0HJYEfxEEiPehdGcRz6MQneuQ324CcibegRnRuJY0NUefnHvZrQq2NoVxtWODh0raHMI3951zFYyt2/4cVaONiP5ecuS0TRBOO+e++QP3pSsHHwHo443zt+0+HwGXVrGw0aYIXO5CVS3E268goOXWlUnd299BzjCcfVricXDT/kcJ9OLEI3dij/x4FhMRQJUGcNRWkSE+7QNYUd7fqN9BZsx6ZneFihJkiD3pvLeMRjeXFrwStT5EUro3DEs/+QRVGjyYd80Vm6T+J0xX4uTv/aU70rmRhMBOaBu+G/+LpWqmGhNT6arb1+12p7zOsGURiEJfbRoqbGaTXzHMXahT5f9DDhAVfqS/OyMM/Ud2EA6OGZ8AQgCv3ZKBRI3CRRHY7+7AQ4+5v25YLLqu68++keQ/JMeM/rpuLzc+QnY1rtrCeljXFH4vVg8M7so7gsKklPHakux9hWpn5dJoPB5jeyxrK/IXaYG+PC1UF6mAxTx2LQW+2M/jaGZ0LCZIajXrXMaaebi4nghozicrTA4luaD/ykVW0vDT3C97kpL3aoymCY6jHZG0VI8NTgIJmhIrIFwvOL7WX2fyz5Y1MXRIUW98k2A1y4vZZl5Gu2Xsc5O0toXupn2TzUSkaXZ6qogxeYhqWNYbjLNztV7AEJj421fqw0JUCZgMyifYxlPPderCep3uj0+L7FR7MKj5OxIe6JENtFB1qy2RDrOgkQY1joz4nsSobCN66AwWxEnyYLbN/okZV5w5jBqvzlw+l3frpFRjIGY36lMqVNCu1EGCxlSaERIIWS8ifONHPzFSFSKUeUMiQ5zEdsr0c3jy7bxFhk+ca1uzTmvWInl3n65jW4lhezpKbADDBf6LI0Iph0Ea65o+eb0cRkvlCphNtdlSc950WMI11e/irNej40IG0S3WDUYsMae9Mskadj3K6vCu7LA+LVK+7C80pyxPLNExid1YwbNCGAmeb/2CUF+oe32kaZdI1Q821wPPghsn63n6foaNi30e7cBrhcTqhmnlTTWu1uLIdGG0blxRTtpd9SGc3ihp/EVjZOihRqXgCo1nNPuFRD/zqzwpu4KfD0ff7mFvI0sSScyn4h6xA1dnlKgnIr0gwpDpL56tCacvhJoMXMvUpyewBMcbDp+NG7om9hohLO1Lp08wbxFNdaKj7siLpv/51m6P6Lzl7jcAyjxK6nQJ4sMGZIABjmQBWgNLFxbv0ku2e9ZDFn0Hi0kwJMsbTDH6lBeZbGqNtxTR9WXeRV02mka2K6VXhQUyi2NDZlJGZrZW/1t8FHq81gFIOerzpZfdJC91WhPLj3nnu9OhsyL9EQW8V25XLVIMza0RxuIPR2DgMm8qT62ZU19Kwy4OLXq4/zVR6og6pqcLbfS3d/PY/ninYD/C71IUTDGtzb+Yjm7Zy3tkYog5CIOciML2wvoVlb9pdAxIoEksRdPXuMizokvoWdxcjL1cLQ8D6TRFuz00O5YJYw3K7fgmrB345knEj+/orueg+8dNrl6almqEaVHKxbU6O1I1uLlCDvTbrqbpamyr6NUeblpxNyzkkzoNd1Kd92FStJrtfizr/fw1QP0n20AfzQ8e7rjfNHhIPgE205sapUKGjG1umZaObIR5J1Vh4mp4pVllZ2D0+Ib+maEIIM3CaXDIsP++C7doHkOYjBKwfYSZ/ru2tnfkRD+J+sUfzq5o8/GxOstDHa2nb0CHL2OKqiBVOylhU0o16yQfKr7eh4YJSBjCHV61sjvKfpwfejpfe+Xbon0dPSDVwrnKwXmb6d3//Jp5uhXkXed8QwgP+QPVnWlHWYQSuZP9kwXxwo0URsUNnI47L15K82My4XiEGgQO64FwLvs8jBQ1kl8Rkb5lZtjJP9EBMJxk91P7TVfiA85oXdKhg7h7tPGBfQQcCYd1FX1LJKbZ2I+CvraESSMMn7njtouIemFnHHokRLAAJ8niT3XX67FggMtjyverRKj0xUdhIe7/2n787mvhUGF3vZVKIu9GiyzOS8tO2piW1lGDPUSEsTO3JgAptfoXV3gQsZUIAId/ZAlrh63zVjW8PBUuzKkobMftKDVqypaR6IdHlkbn/ftpOth9OR6TM1X7Bbser+cySmqBwwY8tzDYAId10neQJqg+jgwl0bNPg6cHCtHmjiF1cp0mRPDOBE3Ftbp2XqncUZxUa7nJuVlim1AmGYmFzthrHVIf05fDHY3fw9HvRXQYoUcLW3PbY0WwGsqHS3uVuPsdoxNgXt+y37JWBbQH05V+bJLOdO7mpbC5e2IGti2tvmRf3CeUFE1Rfdmibgq3Dwo1vJVfZiZQTvm1BlY4nKILkutRo6khXyaXoIGiqkttuB6yem3g8O+kqwoEGEOkD23/AjYNdfc5Fxuw0F9/Er3xJn2jTlORiYSgsP8/j2zotTO0FIIfDKpNTp0ILPo+ZbXpHv0fn4FIAZ73HRKmqunJBX/kSNEzQu9mlP86nsqtWUNFE9IpnidObBefOOOSx6hxF7ZHAE1ntbO43dj3CylXaWZZf1H7uA7ss6fZ0XkC7yjGxXG2QAlVHNAdw4oKcJNRFPPmefOzXEpHHtjtjhttT30VtsW2QW7S8w15W/jZnYr9sF612L1m6mueBUtsjsVOL5Twk1oc75nKoFSZ0HUPlt1zrgfLWoLwFhd7VJVVmKgl9dI9w0KeYpuxMuftGhAvp86RlRkdMQQtND1kPAJbUUUCkJGnw7DbxfnelNfXd/TAktx8ict+gCHK5M/VYvzGhPDk3naxUc+6BmKnHkvXS2fMQ7DnmryvSpEUxUPydqogSUooyzQmH7vf2YCp19MP6BGhC0S2NaWQHE3ky9iw0ukeq0LUBUW/X9uUPHTUSn10W6EkAOuNq3cBby8Z66+w8lftzDCCp8e0nCUyEQAoDpjp17pGN6fWMKJhISZRJmdnFMhuE7+U1PjJ2c/c5acaThi14nyKYk20TfHW+J9pZv1craNyHvDrDWRU6F2MXmY1CiaLlQXvD2QtjA9fKrl/T3LikDN+jEeg+g4lQuVIpQ55jFpZE7+hQirGl3LDB1FpxXtu4bRf7u/WPVWRU8++SDUAA2wTDL9h7+8XoYZN6grNmsDibSxsCpQCaqfgMmohnwJXkHoj2aOz3cr0fIT1my+rdOiTg2Q5m2lwjSgYP8xVlQPLfYUVP82IQawVpTmNQHRAz4RgUjNewmKjPBdgJyemKgtNXqUGlRteleexV9cvou42cQB9QdwdM4EmfL4CF5c6m6YXcWNNbkH7pry3MVYIQeg5venryc3jc3y0258xlEzyjvebIJt8E9zNeT9s5JnA8A37cF30ahlMf41dHnTpmIOE3YbCttZ7LPnFwWQTJDdFfQY70qjvSrqN27jIeEv3cc2ZxNXCAb+Yo3g6LtINDPiulgFau6RYJk1PRCQCnOh3lmBBV9wm/BZRB9pN8GPWnFRHjEAyFVmatC+i9xKY6S1Rw3KME67NvsDoUDy6Qqqc6aiiB3UCpH9QHwVFE6z0OWB4CuFE7AOuLWl3dFE8zcEEPdKZHnqKdozte52/C2j5ELCcmzYJjQnz/6fnHU8TLZqrHuGWIoeDIw2WfadQm1zBkoFMpSAbyp3eroutNYrSN7aN+Y590GjUOBS2/7/gK08+e7LRaOQGIzUo1thTM1WizsdTjkQGERH/oWJ8nn/c2NHtt4dOe7XGcfu1R5aN98E9SEmGZxCe07YDcZfmeucM5bnUXaFvnkphz/FWi3TPW55GYIr1nqtmN3e8aYluc9UZcv40SOMnGZznffRjNfsOz3GUFx62/mXR8WekcGMTGTLELbI8c4rbR5PjOU1d4sK6ZDPvWbNz1/i6B2n25gURtIW+n9wd4wPC0QpRYEDrfZjEkGggoB57YViZ/i7LN89VoDYfV2S+Y0I6q1+kUcqTMHseV/xM3jdFfqpJu9EH5cTnb2pW16UiKGWxRpVV5gn0oCs2qwo1AIqPDuyYWj2mxyRObV4Rga4gUT4e/gJkIsiaQl5/PE4UC/UfU80wpgXqSfeAgGIyj1XgPYOKz2DISqL1PtLRwlTINHohxnTtFRVN1Lj7O8QyFr6l+XyYsH7Z6BWnA1wxT9VKwKVGwOITXmqpANNt1j93wSAPh2kFPNt38p94rryVvaaUgEKOOeDF+FKE8//k7xf3xBbklf1e75nz+uzORJQYPiOqOR0jZjPgU4WfQMpixWTlw8cP1b23ms6R/CX+i0D655wlq6aX7VPu+RyHv/c3HBBH6jh+Kz+7sxWVoQfO+75FswOSnb9gSqvZ1/6TK0YSoD8u+g/UfS3eMOXjId0j31wbCGx7oFHAt0uGCk4xaEYMvBiwKdMuNIImvpgIje9zTXd5ODPV7mC8KIxsNYWTs31CQs4AYau6Vp8fyIKLh/IRrsj0xDca1GKGNNryyBG+teZw7MCttz6e8FWtWeavGPfLCnPOqPoKvbSBHu0rNXccWo0MuoZ7k5TaPaq6ubLz3yl/s6wd6nRZeDACYixL4u94c+8xbWySH412SAZ6BnHAe8O9BX3VzS9weUWtPbGnsP3SJzcu+2aJhwz09fcbcJ+1XPFgkv+WN8hEbZ+OSOQlBO3o0p8XwKjltfO0JcTvB0gDdcCyxeyH0j3pju2Ic/j5PyKFqQSU1j5ig2x64znv6MrJpfMMu9KSCklHqipG58SS3kX8D0cnhCmsoMwtcJUSDj0X77yO72UwWl3tuhw/87RKJCtct+lo6ghQLw7u1FlP5RE0pZgcNIiWVok8/jO1/bidfbaWfe1f6fWRvbUxNHC2b/1M0taHvFXHDlLMoBuGL4h0/vhnkzox9UQu8WoeKjRtIccJQ76mQJqg7Rou+n1bHwuYqfqpB+yIx3fm+2ANyTiYeeo1+I27TaHgEptSIZ1ar+I1cTqsRJU56NMkU6SPti02DLQDl59Q7PKqwTh7jcx2Gp7gftKJMiqcc1/OONO93A9j1a1PAjG+1xTvLq6ab2xn13C4Y69+bM2VoUX9sDNoU1jJjgZAqsLA22O2imnnztcBBI9kAYPix2MLw6ubW8zwCQ/o98Sku6Ggd2Kbv/s7/ePYjbxC4GqvZBTVgkZYIJo5VMoU1oEQ6Jg+lmDtlRZEBA9nJioMIU9qKFORXOtdBVvk35aK264TYjsZA+NzpyYJOON0g7K9kSTBmU90vzTidDubabXI1QVSpROb64PZ9SVLeKcUfP5P1pAuQeLkHSNheD/wtJSs7MChKQJv+m5zb6F9EnPi+bJ8fxEysIfE3NQtVoIIthIqF/IZxA1Zaq6GILjZJz8+DQmn/Q4G+0vjH9l7CL0H04346ZRgsdMfvJw2NwUvDgfysJe0fGH7eZPZyxi4kq6bqzm+4zBmJOZQ4QiIY3bYGQJPQ1frEOpC6jcj2TNpBvKmEJM8FLHXi3ZOkhyCzqq/hLAG2GkD7LQP4hhFW4/xadtMSaudmIta6Vcrtt/3/qLxpuOqQc+1M1jZ8Q9Qi8Y4sXdAf7Q6hGLKZ5c4ShnZpPojmuNaGV5vjFzFJrKXwxKs7XZvk1Zin50rRhIFEot7HrenS6lENMKWMlz/aWhN9aZC1YURs+fHwTFpro/XfIPlpGaLh1h7lPOrEvErsUjUei5pPxRe2zb/w1nMO62qTam31Vka++5dUe9DF7UfIja2xn/w5nmX3rgSCVxeLn/P4YZlEvotsCMxdl/7fwE6XUk8WnCEU+7BkSSvOejTYNJYxp7I7DPFDggdRduHHIwZcBTBI9J02PoKkR0l3YBLsjzTXdlPcUOwjB5A1/pTT6isq1d9pF1OIyFy+oQcU1hycnxz0gipCa+xX7i/x1XTaW6x8qE8EK41ZkK3lTQHUGdGG7rIMBy0BasbulDPi8oF4irKYWqNz+iu/hkHy45mox4GpY1f6fu7yo1wdidL0ZBRgTeml01DKHZMw86MR18NwuW998Rwj7CEhXZR9/Hevyoc3AYpEARZsULpKdeFs2uMqo/0tjJNB386xMZfpC9G0pzLcuNHcrrw2Fs0YCudpxdsLzyqQhT8wjGoS2lwX3n3IDgZsw9cVaR4Ao68qsM9qDQDflxfMdjL4Gc9g7ohyxlpu4SXs9i/v+7pBacA3NjxkaSoRD2c384m6j7iREa8BI1y4Zenk4dEZHF37wKRl2PNSsugcJRSUNHZg1mQ59lgQ2bYVnLeqdiFKxtdMQ3Py9OeK7qn1CZOfWC+7rBiB6NoiI3jaVaO1ZoVS0C3WAgXY6pt/G2z236Wb/Vmhogt0/sQGOYV6o0AiUDtiZMOyC2AxNcLumdsS5va++JahqQyIr64FOytoasm/5LDKed/HB0rByaXLF+zf4CsMFWGELLKD2WCUyMZ5pnTNzGVDMBUQqQin2UB8KeB2KzNX8UpSm1mHIQ3WLl2MlfbCQRKpQ+vkaQYKSh7DtIclrKeVvUFAzcjOdBSZSvIHHTmdngskvbY1QIgNBvsQ8zvLFfw4Wt3KBMuWuBCeZSNhwLjHJBHGYmx3Jlreqs22YLJvChIMVTfQ6Zt/VLRbNcbIO2pldN1DVE8D9pKiZzh4bWz93UnqbVTOuBreTUTwPYMFVyw8hQL9dgPnLaOay47nQ5KuuEHAp9S+LaMyoGCpqsF8DcTRDjopj8I+acr/9ygHw/mHchQCgFXcpUCwSWDtqkBQaPEx1R4Hqmesf8jqLn1BGBOwX2Gm+p8FY0W1rSB8fP+7MnK6S58Zm2ARdbDWZUno25t/DPx5rzZddclIM5C72q2oaq7CJswidGPrhzHAhyTs4arSI2WiXTIWwqPedBp0iLzzRg59OzNk3k3+1hstYzEU0Cyu0EQweXA+aOJXLu0LGEqCXKA9vNLsQligGeqixeK941rn3bFao2cumezu8A0FnqNX2Vw5ydUZn46DbdUYT6xf8LPKJyrA/x0ndu9HBOdtSwdiN2HPuwugJxNyy+BO8qAKcJHJRSR90UO1+sliaxxX5KTkqsIcmhV6tUsMVPGg2vHeIVVxzNO3jr7Oci1WLdtdmXg6OLyp2Ng9WXiWN+kyKaeghhq/WFHq4EO4AFIZYUdGnjmZYDFoHrovCSLRYT6g2ZhbyZrxHrh2l8b+e7l+dIPRIjw/XqsmNjnxkd5t1PGVbMGEmAqTszTwvtzFPxZYMO1O5jAB3SCvnOpIeX/xY5n9O0SXwSP1O8nuc3SGjqpUyQILG4j4s1byn2qV1IzBpSbGwRP7cD0RC4eacDgJn2DG7jmtRtTfPHtsApAEaHhoJQn9fEWyI71eBnvPQwQjtFypZzktYJXFQydxcZxVW+stKI4vQ5HTTFvJbE/iGx4XI96DVsuT/8bFR5JCyJogPbL2EbNuxj+JIeGNa8Kc/rMW2mLxEFqR/92jy9xsH/9TKemYmOYZGyeZF7b02b/kduCUDqVJYGXZFsNj6jMipW2W7mX8WqZgWgPy7IvWTVkspT77uotjFzmdw2hRpQ4ph3533t+wKXi6iVg7JJlzCKqD/azqKJNKxVWdPm6/1RRWDAcP4qtfqJjqQKNj7/TjCV4/zEL3iH9pCH2ejVYf8ncjZd+7DZmk0PDm3H/ZPmgG0zE9+EYk6v5slng/TPbpQDjYXYPRay6PUb2Sw6owm6AiK8nYNNbZI9QYUNcGUeEuTFmBgrqsaUHcJxd3Quu1DULnojzTJLlqf1Nn8sJQpyqnQCWvyqOqhjtMjyJFz0IZRdbXkBNM9J6+hRN93KrtyAStx1XL4ws7xXptcM/L1mXYkNlRRQK0kHFFdHGuElkoLN3U27cylOR5cUv5vZIDE1sB3gouR3OwPN7xRALchvDl6rOlSkxyfN5T786xu2k3ciqLQpupI5FCzuqWFLI3awsP4ZkXY6JNRHIClprXfZRskvxichFDwWTmbHX0ek5x4Lss84zZ5FcEZzy9zmTKmJ8YI3x1HfXEiit/PIfULz9DeAxjJNwqyT1E6LshFaEM8X88nNtqJvM67s6zbwD56BnbK4s0TeeYuaBenZ+54fCoQAiVZoWUt3WpdY1/IrdwGg9bt2so3BJqV2v3Keb90XQTPbyhHyL9Z+JlOi3yimq5ZhPYXodE+/+s8m1XUVUmQJbWsa6PfrQcE0C/+SygWqL0aNrejNrwpdu+d4pEa27O+Un6TCclLYEcP7Joy0gHiOTR7CsWZ6EUIpPeOaqTtnlKco3ownD3fQ1r4fxvdByLSILt/y5I4S/sPFpwO33EePTNznoXCxWziks5iztBX5pDj/N6hnMj8gk8ULi2I/WQrrIQNRTOZbPG5G8eiWfO8sJ5kkstbbG4/U24AyZuLGOPT7yF9qRLaPDEpcYOadG6PqGbzdYX80noaX+LPrvw8jp06ER9ZH2z8X6zx+zpnuDHLD/ndCwWhhnuIqHeEOKKkcOD3xoZv9lLV7msUfRWDxcCr5GCUxnC8UqP1Opj7JFNB9v5eJCuzqjfTqtokUSghZLLy5+9Gck2pcri25u4d0T+6Rtg5kUGei4+OoHJ93UYFuJeoPXWI0kvOjf3G9W0xAcHgsIwysf5Xe0+oGVQu23Qgmdq/wZaTuJaG8XvB9pG8qTepj850i0vugu+lI54fFmMf02i+jAAcPOmoJQEP/F4wjLCOwqGsIAFeMJD6Lja3GXy2aPA/aHl06DoCDIP9v3L/azx1jtt3HUu0PezRbWYbapDqfRSbKF2X+Z3GdGBwwgh+lNfGVcQUleKY9bvPoWq4uvFydF2V7SrO2wq03Q7lwm61/ULny4sjFOZnF8HGTMqvXC6dSB2zGXigpBZRwPdvvUbK0OXgmBUROca8QY5yxXrmN1Yofh40hWdjQtlMGUXibNfNJRaK/ilz6DH6z/lugr32If75NfH08cvEj2/zeuN8gHb6vo9l8eSEvnsgHuOvyWTk+NqC/ImHGSiIvadOrqSsExG49pvOS2SMbfeTQ9J3b3UTKV2i3yiGV3kj87pT0GDRpfkRLNFeZ3q86B4raGjqky1sVLGbk/TiujS1fh6RAx5y4UnqJsqOFaGBYd/CH48bQYTcp+U2bguz80H36OaBzw0SytduljJhaDlAq+gmfELT41IlTCxDPp7CUInKwsbsH0KhfdzRi5d5XsoQrGPe5UrPbAH/9WxWurY0FdKRLbKZ7hgf1Y0vpTQWkS0Jc2XSv/UjaeapxFDhbADSKtaeojAd+N3l97bJVY033AQNQZJhBGNDTXRbG59OZYpNV9A1jyU13Kmz+1lPgiO32GeduwyrnZYuqrdC+A7DvlAaV3moVxlLZpWG41brxbm1qS0NDzigPgV7oX4M9qaSkGV0XVcq5RV2ugnoTYv8+UINizV4RrnstaaApueWzAwgBBlxlw9WpnMvwNk67Fq8gaGYC66pNE+Lpu+GkdAKlaDnPzonnpKgB+aAAk+F+9BnjWPyjAvzj031UX2FqaUwymgBmYQvljc+ECtpiFSvHDldX2fAgZW6vzzrLC7/CwPXBsEe7PE19cvYgFQ8Q238b2XCInrDc3372QFklh8WMbxh9oM3RVP7vDGdOJeriZYDWtYP2RObPZ7u/kuq3CqbrS7v7qsKFsrxx72ntSb27AtJjspkz+Z4ZT8xDZuLf4IOnRpq8uiHzcQxqaCnPmHqSnUh/HnHmFfVgjuXJakrzWpQUNMFJeCs4neQUI4b9J+VZTt5p9qJxWhGeSzAJfbrWju2HltuqjDuy26qo9293n4tlHM+AcwzLAR6oAiQqN3p2nu81zw8rWfFkQS/xWwnhX5UelCj2jPYV3rvnmhAvNDtx35cxgEV4UozkpaEgBBMkOoCVzTu2bF4j8HGZlmKz0bCmrB/wav7O3Gsv+EbXNNRvzroub26W9PuHNQU24AEjEzNf0BYDz8H2M2mv0Bo2ShL1QINM5msQm2tHp/uUOR8gR4NxZ8IYgFyBva3Bnd3jyET0gdW3I+1m2qZeodm9wTRw7/5tsHotYXX/QrxQbkl+ZZ7DzeJX4arFG+s4kAkZG36OiSOpzBw+DewVU22zDHU02cw8RWNVePA/cLWDyJI3sgdxg3wUefQ6a68tb5lQ/TODYdeGS3gsJnctRFEvtwm3yZ3LtPVY+8OjilAPb+Yac43R3EgfeXjMb3k7KYC8FteKG5jHJsDYMbAEzcQboSCM0XwYBjXEcL9LqUUH7tbu33JjZDNBXNpJ+/VrqZr9LF5V10iJ1rJt1KEJaygTNOowlPvxdLiYs2HE78XmC34bIhre/ee6WWWmCETZwLNiZHrH6o28RH/cx3OrfmJzM4M9Op9kpIeEpNKJRKsYFUch1CI8+rbn3bd48m7NKdO14O4EZecErEKo8LBYdxYpVCiJaulxDkd1ODlsPsMDDHxiWVwQVul2YpV9Qi79AzpF/gJRY3bLxV+kFS3FVCRWjgw13xq74Rj7JY8xAqa4ClZt7v2row7VaNpuOt+XKe6jgrjHOVcopqpvLnHZMe18CZaOU5ZfZIiB8VnS+vD4jvy0AwKehMexz4eCiVriS8QoqY78aDOovVHUIDT3IDKN74g3jfGP8+IEqLhpFbbbvythJOMxI/zAljNhz/jcNiFMXox416/16vOISWnLh68VYjvPM/N6U/32lxA5FHJC5QvdzTlg9EFgEF/dtDIHP5BtIUBCux3BLSbMHtLanFinoQ9G3GYOTqAOqPDwmEePOqh5PYL6vmK+9IIIBgHzgoOdtCJEzVlkD0hXdj6Btsj9NMYsTYGdP8CA6zVd/jZceVMzWgdAwrfyQOMvC0RjVstmH6/Mtt4RxrPXbvDoJHXKnbBI3gJA38bM+FF3Ap/BOvveD1lzdZNHpYtOE6HjOdnWjCasUpfgwHEmDtuA/ON5H9JdDYkYbyzTrPYo1LxKF7lUIS4g6zSnsYN7a+aj7Izo+benl3eWJ5WrH1QFZeJMln6hNyA2NXNQanHeEOpFipvH+T1iJILdic8A7zISVbYnhhgjdqqwjEr1idHSY3xfKa8tROlTdxo7QvUVEF212tlUz9rNkg61H7wP4KMkq8wX9V2kom9qh9MmzTfxJJjcm1JYnES4TF1HJnt3omAUXPMKHhFmVK+/1dmntV2NQ+pPRGbWi/0SYFXxvZVI4ocMXkj6PE3qp0G8JpomobPQMvWWMRIsqQhwzgojCa6s1eYCy6lUz2gnIXJTnE2x1BiV13UyCmUWiFVINPkzFAUZybCcu97J7gzsLuAsuSkDverxyYJIG/3XnhEFPkbrlXJ4NtHG6LHrREmTDCGLUYHwLKjKZFd6H588QIwr8AoqmM4e7/vBxKzz0wv5P5oH0epOMOMtKcAhLgNvB6Ho9cMklhkPpW9LEBi1EAPkY1XOwanALylX09o1XYyspkZvsIqrKYjEaR/qLxvkGENAP8dsSVGmN3oAU5aPod2mOpwLPR7VvEB3NfTT7LyHjDRsumyolvQ+NmAnxJ1EncyFkNXH8PihcwerD3CLq1XhAVJlZhNkVTG93+nO7Fc9Xot9HpHIOFjct1LG8DNZmN3rbIlWopIFpjuMqCXVlHOuy2JeLxJZpNGAKGudJNeLGf6wTq8KeUmSPwLRoxFhbZD3Gx2LuGk9T53yVm8f3ZVg4A7Spiuw9Ex4udYMQj0whiL2EIDqF2z+20YMFGai4oVTFcfNp8ntuiOcnVMJYNrjvqzI1KPoppFwX4Ok3kFpohJnE25dLoyBxomdj7rx6E6ckOZcsC5J7owFIeTxSqXMD0+itJrtyL7+if8yoIz7JcE2ndne+vBI1Wys5y6u2TWSvlRTeYzWmlm7u5olVL9THByhHHFzWhDM2WXZ2JuufdG8FySptkY1dWj97CONwhhh58CRc//fo2JfBdWXW3PMrd0P0eJ526q5RWb8RXIaENhrYu3Y0G558LmY2UJvBNpGT4zHnR2Bdx+wM5JDArlNBKeQaX6YlvQjmeMpgmrkeatqxzjDfnDYaj8k/4Qf9ID5koUZpKR4Ov6bry8KxHjhI0VESeyfdsgvcVfwV2TxzSfCQe4UUiXCmW8FwS14h0Zc1cdCAfBIWDiae8ke1eBjung8NZHvEPgllOj39bNINAd0VCZaDQjCXiqBcxfoouzi6fxszvqb7qQwxx4CQZabQQZXBTkB4NIKLqzRRtdivGJvVfDbNyySuG0FQXYC05Ej8bprZURALXGfw06nbnnRCldvxwhjJInr6Xd7PF4mJBho8Z751ph2RZhQFrMee1JpcAjKORkpU5PTVfWB9AlO/P/gfHBDlLHkdFlIaaoKRV2WovJsTV4Uc4iAgDkU8d9WL5tqsCaDe45syxp3eqO576HVkG83nZkwkhVkTDfzW7BRVlmjIrPkTRWpTlI62EGnxWSeieq+Qmjjq5WE3pzhGnmhGMT2+02q53+HmN7gu/PfZDChP6aFiieKXe4jFbN9Nl+mQmoAqIxYX7ABUPBVWlnYIHtEiQ1sFSQZJFYR/eGDiztbRXr0Hbgo5aCdN1LVtd3OWzBXph/nhEyi31wSei5P8suXOe21UL6YH/HSQtSmt978uRA/0pEdz9cLeKB+185brvGzqw4nNy13cxUw8nL/XQKRu5UZa2KHd1Cz8ATx7WNPG4ItpknfXlJekN/8O0HL9HQHjo2q9v+5/njRQEkwbFdpWmSmQ6M83/gfwjWXFJ6L5uHpVy3pczeNvq2aCKCYbRgKXzXa/xRmBhUCa+zgaEDfWNkNof+ilyF7rC2yopa9mtWJlGPgVbo1zx5duWK6AHintB70V+hwDBNHPZ0MOdVBBKA8RhlXISoDJ1Cg+0hzlQ6KFBUGcdyzP/Ptg41EbzAfInnvFMCbD04cfoD34vp/CJZ9S0TLytu+b3GdS1he+9ABvPKp/gPWNo29/eetoJ1BxyS6VkpEALaCH422V0k2TY9/2Zus2k+borR/2I0MzEiF3diVY5B9XAkxA7HFQUkF+9ea+GIM0tem5CzdWOEZxmPLJqUMoWA0BYbXC0TwkfKhtAeNFxc1oPEgwDOn2bU15I0x52ZCcvoEaqxT9mf/6WaZxw1ZAOzfzdcJj+VH++eVVDo1/IrmZXmWMAdY5+RyT7p4/3l7CaHykGndEA1pzFL2Sh4wWZAvnv7xlUear3D9kCL/1RBFiEKi9v17jOOFLCGjNR91KaDO7cshE84FH5Gam2ifP6xMACPePbJcUiVVXPDkzpD4cqPiGoTOZBbJlLOdDI4QGifqeeR85j6cVDndhigkPuy84Wtq5jJ6AU9m09j9t7VB/Pc1hkMp+NbBDfetKBQgQuYITzc6nGdQ9NHTqB2Dw9AOltrg7WsoIzYXISayjIADhud5coTBL1tXKhgMqMHNVvZiivaDrOkm3e6O9DO+Fm3X8tOAx/tVYsqDlvBAPZ3fZA1gXLDup5isvZABuamJ93dNI2Xdmy7pfl68pXWfacT1K2YSeOl7YeU5va1UkexAdEWmTD2rzfuL/tcBv2PQy9A+cXwzM6qS3VT4BaNu+RNQZpkrdclFkYnBxz/xTZvhAab7HPmUiMxs4AsBJi8hzeFAm4QUlCZ/DGIQ9cQpggjjKDKSHKGGQzHHHtGcY+NVGcFIoC7Stc7dE4KD7KCrUTkWneIDA8m/nt4zq5RG9DmqXdHEGw1RMLMY8O0czBD7cV9okhtNCFjmOLvDQhiieij7+BBFHYcQvbFueWr3U3F8xc5MCgz/H2SA5uNeNIi2Hnb9hl3ioXS5M32ATQkYLwfgxah2q5ajUVzjDY6YdSZonWD5AHobkQb8JeUlr4GJlYO3igsUAHLYAh6HMEmOLOXhzaQMM+1viy6DnRGY7vC68/x7z9xRQtxystNt/IFadDDlVrzAvHGMhdL3ymsaf3oRTlwxlkizirqZDbMzLy7bqjF0iB75pTA9UO/Av4IJSDZMfW1I3fDMwVcl27jmJ6pDrnm4QJk7O245180ozU98tmeVGEizPXq15MyYkfwHV3UCeaz3/viHAYVj8kEvWVKmKM7p4EmN+sP/6DYNGbuaTYjTFfpbzl3cDmlMI87vXvKqaMqf7+IwpzuENV357XQ4w42Oq1S6ZL2BbysxHeuMeTCi+qPWfFWn5IwqIitp6FUKWqq8leTEdWuZQpvUjtgDNTIgUQVsuvuphjUH5Ihu/Wsnx0VpnBGlIyjLInIJy3iMvtBCqD19oWjQ0SvX15cqO2sd54R3RZNVdZ2b4Sp4rcgtDP6sMy6t2l9wdPCmMcFXX3lmKtQvceD7655UmChhkTW9NTnxuwhjTPSnl5f29imLSfjgG/1mgpa1kzrUIc6OOy0lfarRjGKdUHEGhp4AFIOhC0jnFLsMd9lwGThY5uhsXCS+7ZPJ6kqS8HjXP9s9h4tTQ9sGRziQfcdlnq2wpRK0wR42UCEJnOJMyaGz2kLTyJvSxi/CCpIMR9SUFXtHmzIgjkWYSPI1zlTTXYUe5GNtWuoi2WfjdEsPg3jIWch2R5SHshLMKTmqHlE+LPztNRU+2ywe4oRf96Okz9lunC2nnt2TbgaZ5Vhd/EhHvl0A18ZLaLFPDdIiYwvWnNbPzdR8woVC2i7K1S2GhckmWJ0UEEE1YTfik6ulxSxn/nF+hgAcwHqMsF5gJH/K2w9VO/3r6P2h1i157eby0/XF9BXf392DzrO9hVNyjFT6cnPLN+cJbo7k0TAyqG5vQDtkU8qM50LopIAl8RALPSmVA/VuNQ3X2KTGXbCtaNcx9f60rfEJsJ5amYeKZkNpjq9ljvVNvVqQ6F6bOvnaY9+jojly8kcW8Sns/lfC8WFGDy4aWovB/EsKfcGCydxUSbvfJ/jnCoAdH4w9Fc8/hw/Fh9HE3K/iZSsScSokF6iaElfHbgkJXkOvZkEWEIzGTa0M0c9dtnntiGV07d5lw9IpMnHYpnh3HYyqwSxHVZVoI6FQzpaJ20QFLK4jjFUdgX7izFMRpeOXQ4Q+2x0p6VTLJYlp9T4hZA0gD6AUouiT3mj1UFUEWkXuzN7r6x+rBUnX/xrYHt9vpPJEXFYlLygYq25VEClNDgMOYwSmzx9MzweeeS9GQ/Cw8d5Qiz5tPsw8VNIeKl8qzfqSPkocGH3UY2bjnjvKqoB7IfpfDkPujjAMP1pREJFv5CDllnWdbv8A3KQMof2vg4/dMWi2DkGr1Dm1FzsZ4KiuJuomL6sNkabhZnOkxmXQzzZUUhjJoAajKdxveUrxIGZM7duwOnQ7ZKWKfIWTzlAaAApwyqM4yYv8w4wMxEUVzm0y3CXYX8nll0sHmWVTLZPAsxjTURLM9lUv//l0bptMSxyb+FDC1fA4/sqexjLc0EGbYnrtX5ZXmqkJyCWPGSHFge0GyxEzpCMdYfQpqulNNNEHB8WQ0ZhfJvdVkMR6TaW5SqK70houH6AYqRMGEkoeKv6s8cl9joi9ukWCA2iL504pV04CzcWwp9gQxvmLBZQPfZ01ntYnMLUpl63eCyFhuTRMsnBLHbNqoSo6R/xWBVBmDYckWzRcuxjTn6oaFVIQasTnDqNqvWAzZnDqdHHdmeHxZDoCi8/fUi26rLBB8u9CVlQ32GKQCcTEDXyBd8pw3l/XkDRKb5lHUPWPrywJLAJ7Gyk9izSe6MFKm6VCZbAFcqYy5UoHt3vv3Xs318f6UGZPrNtqNsa74ly4x2ObCoLOoXFMYcp9R/8geZ+tELg7E/Ej/J1VDqS6MJcpCkukTky4RudzN//7FYBrblgYrKaR37v0v+T2eMcXoc8olf/Zyqm/gKUdrx450bj6BubIgkV9MLYzx0n2b0wa1gqnNbcacqpZKEdr3Ngpfq0E8w27436nW42rdeIOyHpYvfC96gQngMUU1l84HemVrQOeZWr2L5yKc8XGx+2Nfc2WCNig4SckGdE1Vu9KRzQy9neh357C64WqVirpjbaYAIZz6Ld43AzDtE6Y2Y4Dem5IGFtl9x8ptQxLZmPJ6qN8aUrkCgHmxGbbCNcsdTwPwe/3m7u34OQI2KmMhOtICzOrxSfIBzEpIC/pojQmr/tWnn8b6Cgq9C6j1ZzbA5uZiwnCYLR3Vy0jO1lNWk2zCsS3fnMOvBfQfWlTTFYMsUPv1bAAyK+Yf0+vJK111zVuScHUxXX8nYlOXQPW2tnMzeY0pSThjyR8M005m4bn6ODsci2XLQXomncSERbqlOvB1kgyUkkg1+vJ9gJoS9Av14iGQufgQNxLNomqIv0Hf2qIEjZZBQflzmVxrXE/PKGFFdvF6Va3XawBN+IuUxDBkBEpW1z+XrXi1n1xYHRYNVIs9FPIdc+sQqtUxRs1f70Z5EyRaeZiHx6UA+UHSS7MMaUSb1/eZIe/5diVxiY0Ju/A2MIQkZQrVjrhdkClbaA3m4sFWHV4yJjrivNsrFCOt9BArSh4B9FmZip5rHfhrHcq6/hfRadQGofnyzyYjfJoVW9gqI48Z6nExieBM1gd07L/PLGGqB5a5N75NosmQr2UkSKeQIXmlLtZaTYXG5RRPBK4weytlWoEEkmlvCGIJ9ImllJa7FvXfaxg+wYrLHYDU9KYV+G08wjuOpEVJzqJkcHKKR6GXoT4i23qWOVFXgLwtlDvAR8vt4Z2xix1rPCeXKbsW5qVheAxnjQT3eVYFjBrlPA+GqoQjBF0yFF9+tiVmh8q+HLPQRYB7J8mmdea5uQ1QeRKyESfU9zzBqqWlbFVa7FFMmvW8x8OyjVigO11gAYjTkXTIi0n1NDIYzO3K3K4sGmOUOB/ahGwAGpp2kCfIkAHrcT3vjvXoOemtT90Ps/8kxTiTzuURlWuYO32NbXYZOqFFiEEBbXAMQqPUtokFqHP7KHo4wyJFvPYRCO0z2JscV8e3RAYMuSVcbq99jnBIueRBHO8KOMmakv9mSwLkIrxpyrqBDZSbJFXa/ikYW9Dths6/9ChnfueJo3e4OMy6fxhoJqmdNmCSH1O4GAgRtxAscAILi90wW17Y1ISBbVTBsdx7mJFBm+W0Z0+ACMvE3Ix7Fl16xF3IAYFhlEzQXPbiZk1kgK1B7zY9zmvkgegUBFuwaJ4oMIBLF2E/GVaY+JDL/yHK7z9BdK+XD0lhyoY8BUKc+qcuI2C8Mwd1dzBNKvrU+NrIzaarCX4j/QuQH0BPXCw8Ugheppc2kY2zWyWoRVeUHNYVr/+9TVXKFvmTTgg+vuhBy/xrIFisqcYR8i45nubWdxU7goLFURaJN5BSc50vBWO/Xxcnx5OrNRQutLA3zy9l2loZCgIWSgv9KGsD8BuAtESEK9VKHsP83xhCP/VhmN/gHjI4kZHrYGBGPhw0xpngvNy1jzpUkPF3+GmQi/1bSh8hVRixitPbMT3FOcQoC1peE7uoCBjc3WoIac71napzSPMXQTJgIQTznc8n3GAd4H5+FdySpQQNamtbXHa6Bo7ms2kseOpuG9Izeyp/hwfj4wSHV3apMa/z0urXcjHSTMyxgx4HYn/8fyTr2SNSAyFePwR8q28x0ExZvZAa8do9nWV3jqs57zBbpXQp9rxKw66ppBmSTtoOBjR6e75geIgi5x/F0WyBpRlKXnKUEN3Z8BoCSziLlU6PqQAGXgUnS5lnI48+7IKYP0kXZQ6diYaDVsKCEb4hbpeFiHCRdd/M/8UOX8R5nCnM9w0z7uMoD/gygAP8Jpu8b61G1oZ6KHFmdJEj7GNy0uSBv5umk1iTKjhTEt6YP5jLi9A+PxXFaKtgVcOByGJpf/gpim8j+1ZZy/sjtunwjVoN/MsDWwX9fLEah1ZiijkIlWsxVQXiVx6BBJwY/8d57BuTOZhBGCBPk6almdXQDFrXEaQKtIZPnJ1/L4gbHR7Cckbwlh9ypqHzhy/WjOzojEd1b4JThfWukpbCp8aOFb6tmGKHHfrCWkFe9ox+zh0M40axF0IePs85pgPzUByUPGdAJ7CS3EUZlZCuyP61Bgrj+Uaqvqv/zMPkn8knMGGvoQFcwDiMen3qbi0vRZs7kQZht/frBtjA+eswWax14KByMLkgUfj+o7QWkxlSGaR6W6+DDxScNAREv9l0Xo9meTnD6OJ46qcPXjEbJHFebwBhaHGu68X0wp1ClnAFZ0W5qA6bbZj9LTUX7cREeNXhtySSYM5ZiGv+nGBgfSDTxbFJGIQQlOYTdW5qrTqupdhNzUMWAc8SbAZVLN+vQV49p7Tkwm+/8A0BfN6qQbQVtFuuZOXOqnLfsu+OU+ggcJf+rTcsztuyseydmSEwazgKT7aGeGXaqg7meQYDyhwBnlPrv2pBdxi/jGsJXJw5tFjCXIoXFv+UjktNWGgBYGD+ZNgnot2JOxBZZBmCeow2aZ00RVUeudbtkqRE5JEMjRIiIMHwH0DaFtKCh3i3cuHQfszEZtO+0V8e0TzPi5W+uC5LKHzIPXGgpnxsHq2WCWmujvIA84OhgbPUPrd2Li6SHkRahyDdxyo6CxxTslj2hhWetkONzmkG/HzeRqJnLHNXZ6rgineycJkqGJdk+tAmspe3NdxLMxeEw7BgVzW2kIkwQxGcw0nmeU0CBTUxvd3RoTGJJrwBGkXjGhRDjYklDyP4VaE4ltA6be0lL5EhBik3Lj9XGUXFhXFiLhkX547+7X8hfa7dQg/jKKgJ04QD4cP1gdm32vu6UZJHtG2KdsTBDFWRc4zGX2PGBUySh7aI8NmD5t0yKyPHTj0HFbm8bcm+oI+HIWphcFm/dz/pggUK5QynS0jqvb8SNtDHOJxGi/nQvb1EPBs/sup/4pvnaM/et5kMFvu9Tq/3PA/MuBioffNQ90xOXzaSmrfIuMjBOs1rbfRstptPR4o4QftEq0Xuo3GPddUz+Ii4mLJcUU2Pw0SmNujJP0LmbLjWd/nmSJLqJPvM4/bq7kamTsgmOEEn7NGhBZoi7NXV123kQ4MO6DiLBKgNCIazq2BcdnMn+rFhlglFnhwscM2MLXdecsDGsfx3pXpKJR/QMlXe+uSV9FXmAXRTYT7XG3Kby9Q8vWferRKoosknO9/1EU97x226K5LIs/bLYtqby3tw0sDgslaH1YRuVTMGkhxc21Y3Ic9FU6VsyKYrvxQ6474PuRLm9onaQd1uDRrr8h+iA97sh4hyKhUTngkSSRIi8bqGXmdb22r50g+k8J1IPeErG7Wy4Ssyk30IW0z5MHMHhp9HdwaHIpcZu0G59KM9nI2k4WSoTRN0W8wlJXZBF00PAFQVCPeQGwFUT8eFlKI1m2RYnBDqL/SXgxjjAvO/86p1ED4Zp+lYdOy6f4nIN/1flv+c25+LH/JFHhHLESlges7bN5wMrdHKPtPhvRur8BqLCyZIBUIQUDwgb8k+FF5DkCiazCBdFsKVQlzZE44t4wAv6rasiq7aRFuBX7D4BL8KRoK9t5bEAlfCEzbI4q3yc7UZwrREAp7WALP2wslClUDx1C4y2zhTN+YyWhe2XBfljctZ961muCOHw52a5dXgHx5vbtcLHtfMCu/HtIor//TxHM5GbTSmuUtyVgw6HOeniVhffVW/E9UZRyQXajBSgrFnZIVND60ex5H+E9zK2TKMzH5l9dY6OwAnJyvWEjrEMeivO11b1TtfwLIxvb6cKYBz/F4+7oPVCmAPsiJHlSr+DNva7gVi7t3gl2IBerXu/i32CQ8KQlHuM3FKrgoAWgyQhN01CDzr3Alf+WHkPOsJuwAQ3JG+l9KnhiMdWJRnFWo9u/FHKEqacuFCGpI5nNneIj+L4j119vCCzTBANc9sCJ6/6FYD+rpITcN7UiRVePdnyA4zB03CZS8FJlEJ82qhiyh98102/Dx9rx7p2KY30yGs7Ijx2NDzA9ZN4wNZdb7WZu7Fx2I1jwIcP4+u/woEq+e/wPucp9HqZzdW4MHETnFuDZdiSruTgJSgKHArIdC4r8axoYTzcKJCWEw7nFXOV148C8hkaMogFpRACXTHbjvVHhoP2JFziYmrp/RNNcQ8nI4EKZMrlGte1lVQUd9aU2ojGqExSvclcL8zkTCYd6k1DixBdm7zJHtLipUszDbwKUaxsL9cSuTfP8YCBQGCRzF4EK7uuWZMHPAlWV8IUy8x7aRst7+l1EGb2TFFwXqpHQe+34GVMHahryA5Iy72Qfe/zQ7ZMfHfZPkH2b7aeo/jeB9R63TsQIRn3VoKjuQ9RrJPCxXMs4qqzkHHu/9jz9H3O2yAG8vFJjf2B+mE7mVYKaAV+Y2BS1yGAqrNJ6QaMOnU4jfcu+MCbYB6+Z3DYAJaPTZ2MCzw9kHqnuv/ygAWdU2omiGQV3K+H5h0kIxXtZT1UmWYh2fwSMAwvPrwGlm379Kl5HrWy4WWbxa+zOWwGkOb4d9LF7W1NjeDf39er79Uj+x4/hPz+bTRvUiNF7P4z5/EGpP1zfIox19tlgPHNzkidXJSn5yB+4PjKsf2JDAL9GxYB0BamJkOtHe7IfHlPNNfqhHVzmSEQ794j0YlG0R9tvSi2lptIRCMxC6dKAD9bNvM0LYRsclCCaUC8qMIeAUi/2LG5nCsemvkpGAMG5EHTB1nI90d/+mnmulgp3eck8OF02Gt6A9FRXSEZFwYxNIqtDZvkkd1TSZ7MhhPivEotI3LnCBO7JBUJUsgGGzShci26+tTyLRTJCxE+IQRS6kPcMnZSeFN8Q4SamtBj7JnOzyCCsatfCjWW4JGXq+CUZg8yJmONqYWoL3HcQzz5g7a62/nF5k6aetP0xMGmrG0TwDkMTowiemPYX3oOQ43KKleZyVFwCmlQU52HAv65uPRWPu+aXfKOmxS2h+yxGoanhlFDRt5pGAf/lgYumaX1BXH/nDXfFZd049FLHdqjSIOUSqULtqwrxMDv81HqpbElf+KbXoL2st64hgasAWYVOL/bPOL4mbXcrHo5GTY90dqap/TVWvL0CzcE0y4MM2Musfvoc1n01A+TTlp/4yQog9VbsGiD2vGmO6zFNFJP8oR4wavy2vVli+kYdJeJVnhwWkWlZHy/9TGCYB5PsRxDxwYHSi2+kvE8BXr/wy4voxtkEnGhOyniAPOKf/L3rTJrUVydPjA+/YkRmfX7MotDoWwEaUhCV+sOoewOwaJZfNDaEu7+L7hpGjqKGwrCvDb7Z16lLvGOdRXaaaMt1wkGN7grYTZceR13bz10YBYdBWuq6yOw9SHmyfDX8Z4hCObhcqKmflidWiBFPbRq2fuMEtSCElH10UTwjI9A8pswUatzExqVj1aDCq6voME3eO7k6iYZeGQjr5T2bSxpNXazD6vGf8+VU7xa2XXp+ucGMOL/t5x5ozHeuGpjv/7+bbWc+pLo26G6v2CHMQwoxqaR/1/DH/aUX/P8Ydmn4qUrfzZFn4afICXQ3Lck7/g4/cLCyX4jPdtJb7Td74h8bvNBE16aXVtyRZ3+0XIFtH8lORHdNqGHepRCeRe8qHUQ01LIvNkUlzY6yjDggjiDH+BDHXesE2ZJU1/xzIAQal4uQd2oJy5k5vN4yB4UHsqvoZtjtjxBfV4GO89ck/xAWkhKCktGxh1GuDKWfpJE/lxuL01hH6rXvIACDHhjSv+phWs/VrijwzI2tzV79TXG+sHvXWVBAyQCBfEA6+OXrdqtpM8fzdTzDjfP31wm94UOrmC14gRrtMfeQOeIK9wuixeJtBVUBupchZJKy75CpPgMV3LU304b6cCEmfmRpSysBwwNGFyOhwv4vkkp3PjbDZDvz89QW9XgQ0VRQacgUn0mhjwDmXqMT1dP3t/46KeHNYY42exJr1IzXbsnqQjZfxhTlMdV/J5SpP70LZG7LyDuNPeNi3PUw8Y3YpJRCNT8y3fiIKZjzxZVH6j0bJpYUqHwLRcIOQoUjTOx1CnLv2/MG5IwgdidrOhnsk/gyrsC1rWwaix9AqsMMLWAoob/dNgdqklsYDX4FioVvcotFhCISGncqNzCK/0gKrWVE/nprn1BS3Rsp0BY02g2pLVn8PG++ah3sK3cAikCjJughlxXylORleaB9Mevqd7V0p23o0Zory1Uo/+MrI7h+B8D92ZBQNn8dX8xA9usxnKIRbh2SBsi4uLyke+6zePdV6VMWn40U7hRPKzJ2gQu3vD7TtrVXPKsIOpE1FSJyafWPeTGDCB6ITrPLi7wd959N9Hyhpp6KMdQMRQC0Rsp5fIJl06rKi7SD8w6RU+DsKo2DfnGTOcd8DAU9BjviJ0hoHqqTY9uhAO7qWD0ahXyGg4spmxYuheV4GdFlZqK2h+h59M4TW5lbqHanO/stYX3Es5fKVo1e7hmli6ake4rdF/nKi1aIO7qfcTfM1ppmns0WhybMZkUHNu/bfGOxEl/G8wR4t0dZThqGqkk89LsGIWBc32JUu32VX5mNUAeU4TGcnkMUYRnoXz8yG+C+/IJNoowsfW7VSZkEB9yg2c/giR0jn99WxFMXQoW96do1INGa35eXPsd92BQxct8O7o7C9Xrg37Sb3TmTL1BAxaXS7TMtwzKOIjoDm2K5Uk9rJV/P+LbE+nTESFuQsKI0UTxI6ib18kMGpd4Pb2sg1495GsUgQgI9KiXoWRSK205wQURMrWvScLCKgpWvDL4rABjIkSFSLAdX+eMoScYA8vBqq2j3Fb65pu6pfmxqn6ibvavQ6UzFwveFl6qYhaTpXRJPsG54eXUNfJ7v0fS6R5yCMpkBdA05ZjElI1v441vXIwGjlAJm/inyBhE1sPMVzOQBqSd9Qj4QbBhfxfu+iPMBKomvZQ2HyAqxuGgQFFv0gmT1HCvIWv3X9hyvwgWQhPxekuhX92eqiKcFyeZv9RlinhcaU88kantW94yMdk3zEzSCRYT5P3kMxNtptqQy26g+yer6KI901mnyKcUMcASfXQ5QLsRmOeis+iNJGWmV57YjGK2cLxbOXQzWrgXXY+jALG4+n+RQrehUmVPFio4McvQzEHEbWOq3ZUuJP9S3znzILSin4wch7VEnlOLhFMI+15hIjY2ZM+Fto10dL7PUvsyRqRB+6fPUTVDGUn3xDjXzbO56sB/dpBQc4td4qwHBRc/fuqteFeJV2NPPSIF5pSGe62ogq6lBNrm5hzzzGB2/rTAlEEenCXW0eqc/TyYlw3JskdMsM4Qm5r8FK9O9+eYWNBTPSbwxl7jkQWHZtTiRjtNroy5ltIX+n6r9f+qYdCBoClcz8oIz9MjdnSL0qMypafj37AKN2t+2JmbTVX/5ORMlvXVHdKTk1fGwrxh9xL81p8dw4tphpzwJ+GgCsIMewDSVgRkR1x9hiffyvNXii74KstFaTZAsvJ6M+Ft1qVmB6UlA6LQFyNJu1ox0mySVkplSeoAsdpIHdKZku1ingU5bk6kxXKreNaMXzQuL3+d2Wv7kgd72p/Kvanzz0Vp9Z9mQ8WQYLbbWBttBJ8DH7ah52EWEestzuWipcX8QzbBghYjcsMULZ4kWfNaiDdiRNNgl/17boZqvZ2rnLskPAwDXb+KP1DF4xptPdLA158vZMdp24iKtP8HJpLMtXpM4tl2v6Ih4hj6eehZpzwOB0Z3we9O/ySW0azHpxgmIAjzjf0i152rA7Eg6pBughIm8x4/ceF173qBm0ny/vQFPKCVoI/uFsIrksFYEOjokEP4E4mvK+fpxVKi9EgrsG/t9AVdRtj0kV5k7Pj5xo42I/ruIpASdzb21jmbb4r1bMjf1gROdPO4IHhMkcXjR8OFTrzR80kNwKfSG/RlpuHLGCxuA6+EcahLPK8gRClhVD8FSgjyiKhOgkQsx1HRg916pDdkcP5bQ7/YHLaVqBpDYnAgdzeezpkXE9mKGTnOiH2P/wAwI6ZdznjLJkMSMFJSUPb4TKwUDiE8msQAmSjG30M8M+eXnrgKwVzdCLmRkjaRs/PO4/+KwzcON3auYHmcfe1As/ZBB9zXyt0xgOgAkhLdIHjcsShvb28q0OfCRntfSaTM7klwGjadkuRm5uMPv0D66cv91fow0TgUM7UZIbCTEOWgiGNXRycV/gpdshIqx1oTstLGJywoMjTIoTJ0Mc5chwocYNTL3uRJiQRKQJg3PQchUWQjbn67lC4wfoOjm+IVomRO8eKcHn17j+sdgh1nK4siiN3yDY6XkELfLjehGZydpiVQ0zrp7al3T4sqxhnkAqXIR/vG1cyYvfVIT0RZT5x45rfVOB4ZotHwzmEXt0LPV1dT8/DqaYI8tbU7PmB+EG3e8aDd58/3gsQXMgmK6M7UWWad7IUTaQh5MwxUN9Vu47LBjztcBkWdskvDoZN1QfTfQsK6if9uuoFUjQtJOdvqvRPOdRR9K8beU32pQ9MXr6BTWnomFP6iko2BykEapMhGkhcNpCBllNpPCeci66P5uWW36HyER0yoMKoRo/3q2uZG0yZV32KbPB9YqtdyN+KoaGpbaocmdrWTa1JK3A4dzkZ/Q7DsRJzaKdudC5x787SHOAuS0d36oQgDhshrY+OhE5/VgV/FEgnls+XuPt3Hl5oOEJMWPoKWeEbcuL7dpjIX52/+7j5T1dSndn+EXE/AhxI7Ji2Zq6PHo6wQZo6UfGnbzqGYHj05iNF73M1NgrVxkz8BS5YZK+tMmOMLNxZkiS2dZbhm52v6EzRuoZ+HAxU0dqg0BpuAFLEu6Sygmg2GWLpXV1yBQc3h3cPDxKyaOuQpiPVLeW3ABau9M0Do9XLv9G7UajJZKT42v0CFPh6qaKUT7Z3CTNXxiono5chGcF86dcPNv26RdIU0nAypm34JVDwfMf/MzgXwci5J/RQUbE0tG+SrExU49oodFnb2iz5CFVg+wF+u/ZfMtpumR3KF4zbi98+Yk3D6dhIu9UY8K9Z6AytbaxkEP+AwKZRaOsJKmZrRz5ohiVVAC9vbUFnsqJVXXz54NOewI9umeZQIdUIR311t7bvxaD7d15EB9oRYIPEOWDGxS/7z0fJh7WXX/U2p2nrneacpYcQwVoLTq40w/x/8Lly4OPEv6mSc7te3/Lxt1PnPmUXkyzNPI6TO5nM5KWikWV7eiOoBky9FrhGHelogLxtgLg9ojZJU7lFrCWq7mtE+0goEFJah11bgoFk0YjX78z6hcsidWlOnMRTq49Ma8UuqBVwM4tLBFBKfS/VYeEG1cVPVtn8221D7vy9B1rXwjoTevLR0M09PTrU7MSgXOMQLPzEUJi9nFz3gMiylyPlkEO+Xte1hNQNenI0C8IUJaFypn9jXWhVY27p7owux5sfn+ThozTcxhPIo8ZCICmOh3lCrJP8mYsar9KPUNH23fSAlLydGH+3VPJVZ0wf2R4ZrLLborqQHXaNjwVWkMge3In1f8hZMZfKz3iCMtZHToCqueh4Bd6ir5s85oMXLKRIw9g0EpmwQpUAoYlJCd1z/TcXoYoenMWGCFzgN6uUGn0WSNtOH2cELWoV+HyODXQ/Ey+Pu6LYcXabu6jD/OS9hzEgHr/Sl+knQPGKqHj2BhZMm4kewDkKk/umb57IIblz5qkz+wYl3+DPZlGSQrNqS796pvHirBs4d1b111KnXFcE6QkVhhN4q6LJj7sIS+t15C+XdXtqmud8VztesF4OKfIW6+mMACourUmA7hG9h9FeuzrPVjY7ReMkVcWH0HL8vEa0tIMD3sHtEPJdgxZ9Kr6FF1P+jsO9u3+W6Rfbih4MvXiocIH0teWkIMj09/sOvbp89j3eOfFNVPnVxGeYIYbV09I3gZE/J7O4KhldwjmcicwIEC79K0Rl7ZZEiteOA314t0TJ5LRZ+RbRdXPuD3F4LZG8ZnTY/kKLZ0wre+BBWf4HQAzquyXZWb0gjTyRji2CEpU7omXOnSqpnnjlUbbedFwFpCLA6xEazRRYdBNIunnYupyWADX6a1frZi70FaatZsZdCQwzPKVkTp8S4BO+IQ5V2Cfar7Dtu8cr4ZqzjmsTckbGlPnaVMfwyNhQDu8vYgLE6KDXOBmitJeL5FU6zDed4TDonKeDoU+90HEXDcRoZBuWTz5MHs0OY1kopbEsWScP8JCtPqGGaI3yAmpcubabqypt5opGddBoy9lv4CUqojKq3gHqxizZV+ZsNazOiTeS9hLIdkb+hVcoJH0SbKUxkdGQJACoXmyYvfHoBh/Xlm12gEmcCIh5dd8Y9pL089V0sAhC9Qb8mx5ZndOjWuMFJsW4uGmL4U7otybNqhMBVOD5JcZaHZQySM9YIgWuRx6KtvmvmSBTLwERSYdVb/7kEAQ1ccpFlxVSBHkAmSddNQdn1h1wK3pwROnwa6rgyeFYADYavWgeAwSRcim3seH5ZE8CaNKp7WfVASNfJ8viXvAiMyehTGyD02Ab6z/Um3ZaJsoggN+3hDnX2heTcbVyVyuEgzRDnmm1GIUeXIt+gK9JHDEr72xOVG/vR//+S9NXpaXxsa3eG17dQEsuVLvaT/odD3VJ2jtIziudvZU7vAx/HaaveBoiy7SjIfoeQrazIMUYPqrtuAF3lxNDn6HB6uQh/yrXNUVvvX3jWLKgetmL9xi3U/GYGT4N9709rAL2Sz9fUEoenrajrpi9q8lnBqr706B1+w80a006FhfnYL1a/wrlAwW27gXnWaUqvtKZwSqtCtLZMGZtQubna+5y1aB8zJUormjJyihhn8xTRUewDN6FOdUuWesyuao4ib0l7zsYn9jJmvrbwu73TVB8PQvKbBiSOMcTtMdoXNxOmF9YX7pJvjfQAKu/3TfOfRgI5S7kSOYUqckOCNgW45oLoXvi4qXD/LYJo7XyuvxO7+oWsbM9rE1MHVl78volPaI0oPeOjvzCKw4nfmupD6sy184WVlbSwq3d4ssjtEFl6KBiPtLHYwFv4wOKKVR05tvijic1PUp0lkUKxYc1f8a/1ZFpIDD+/AVldDAw/5xEvNALi80r2RRXYEfX8rFaPnM54ppYIO8JY3xuYUXy/lz0nxszAVQR4nz/MwbDvo/uKQ1h+XZU5e1pL1iZyJV5A4despfTQS8xTyim+gh+gaylTFHW962337hBWehp0gXkQrNHE4amfqk4QWHmDa9a4xe/UktvP3pbDQAF1SmCCOyigbupHtdSOsn49uJFElWAAaSL+a+Np8auo2UOqsS8kuV7KX3/QEg8chc+6u/qQHw5pxrZ1LR72sUeDN5AsTHDZe2MenLvRPH9NC/taeKqyXsN626hJUv2HrEBpcOxR2ktTcktMIe9C0qw++rs7r/0IqoI9ttKnh5eVs6IH0dJqkrMAR2Ilkr/HKmX1ws2fkASjg55h4IxLlfzI9aYcMCDYuVGM1AS9dQj5SVKF7dRN4qCxiIpruLFYZuweCOWTcwTwxVToDe1xbQXif+emx6NuPKY83qcg3OM4Bl476sEaYgXcH9BRzulwhgRLkLKn60IlMZtBISAesm2yfKUxH2EwISZdEyVYWG0v67kbmuU6I+PpgFwEolLMdaT/uTYvrj/wxkBXMl5H0CtNU2SjSfcTS1X4z55dm+oP5aCfjbBWJ7wCk/mFSRcav/9c7M+oePHNmECDtWvHzZG4Ir03rNKe0XM5pjJcV7rO2o2dqJP3FU+zyGq5YGP/62JpNvlOsV6ZRm+vhY6O74ld9o0db7ixDFxXTMDLuyNKJR0LAbISiTg3pxwuchLG3IEpOtCOf8Wnkl0mWlbR/+0FP7M0OoIgbNoxZmBYGYOiKNFz6l96s0wG3q0jvSreIWy6ph7x5256NsRVb7kjd9KcvK9ubTAQMYwrOO4IbdRxJZBYosHY3FrFAuKLkg/ZnukkwOULIl5mKiCaVb+JT9iSezezFjGdRdt6BcXv1gg+ZZ9BH8gp0MdpaExsbVp5n4DsWKHJdW5Yd0ECGd3ciPV795f6qmWJY5Goataxi5mJh/YbcllSCXwvChRydTaK0V+jbPvcKmVs3MJRh2NztaSsoTujYxRsDh7XOR/VS+/LCMNwbSAOyPvKwyIb0u73c3lu5ovehenJ8Ip7D88JDT7cpohULj66TBOeS0UoferB9PHl6nzMz5ufXhqw5b2GlF6m4cpDLQDnd6n+Ux80Y8Gi4U8nt2i38BfDZidMNxsI6cH2T3iDMisGIc2L+dkuDMkOko/KwRdy4aJ7Bx8pBBwwjJp9xs3w0/QTT8EQiGyzvv9TOCc7xdidop9BeLklYp26g8I42iXnpLufNMoobqnKn1/srCZ77nyrZ6jN8Hj0p925Px0NzIxEL/bOLlA1PVNtITN2Jk+1PhchtKVSYXY6YMbHme55638viDIvUWxDTit8EcXarByPMy7Oq8NPHtHXwLJC2t/i+3bI8cnDQffpnM785rccHioAQjD/usduXGdAMIDh+JWMdeJOnZGQu6Ph+hFN5qlTTDql6ZKTdF3HNGgWahVvm0iEcMjGCmkRtK6FqjHcfm1ia2beA8FRv4t7DG2B2xsFBzym/HVUk6d4mL+fIzOAt/a9vdqwXis3A7pGKoFANBPYS/GC9D7/eJLjRHMfaKCIjD7j/ZDqQc1Za8JNYvHV4AGIH/QzElrhUcCuhJaypt/XoIoc9EpifB0fRNolgxCUhq5U0ytuC0i1+GiBmx8hNaqInGebLsO3Lc2lX1hlP9IRrbx95PBYE/SZ6lN4+AVm0f9gj3KaP6/zGh8Dq6VB8lji127qzTM7qETLe7XDCaQMCYRx1yRTvhWOW7tdkAZ1/tdSER2SD85unt17rPGOQpAZgAEKaY7vi0sgv3S7ydefYWV3KxHi9hcIMBCgxkV8Xhkrbsz4TY0UbjHb0t9eeayDvG8r+AqtSwOgfBZpmHgJZLj/I4PPpkeS3Ocmj2ebfCJfR5UiduIGCJuxU4jpOdyzAZ7RhSp7gxdpVXdfvZ65+tcx1dOe18CPNv6cbLyaFkyqhBDJDghdEom/GsO2Z10y0Llppndr2NjaaZUcJ78//KfR05UnvrqXY5GUoo2/wkIyhEj/+BximJmZ7cOY2qZtbET/pytBppihKmjmNgngz72PYYHst/rJ+mj+EFHhRCd1UeEvU1/2K27aMD37ffOWXPzsUEgELnL1SMkXkI+1WT8vrF2VIUnUrBTpn1qpmVLA/dLaYz/QSvrzhEI1ye3glwEFowrSmwHKWal+hnWkZEyWtPIOnm/0Nk8QPKH2edtolztuDk/5aP9oRdh37e/ovS4Q01b3cwngKGLeXQbSJGZPw614BEwpQn85LYxArY3rdS3I9OjJAHDj7EEp1LySZMFLkbs2Fab572olGGi5W+6IX0LnlmWFueE369b/2Zv3WSc8twPcuIT3/z0JnuZx6iOyro1UJFEC3A+KMNMdv79L+5FHr7IgNnHaNXqZKFAQTR1dYG8DjC0HleKgXjOdughfHMGe3leHnYsL+fEPLNZ+yq+F/wUpD1XF1Bt4rYUpnQjAQF+U24miiZK1Gnv4QL3fk6UuuswCUNnLpIHBtWK4m9j93cDdLvb1iV98gPKSWFEsQfSL9kO3KrfIE/CvKU0TwdF6AoNV8nA8razTb76gAia7ovduekziZkkaVjzpHG8WXnUQEZqCc0TLvMqrXk0v5D2UIkxh9w8BC+9pAyEBmpPzmcb53GZ1LC704rYj7H9jl/CDz4nT4i8GBhHasfSN+qZZVuEGQWzkPp+0yrZdG5kD8zoPxg/HSQNEfbmqVrie7mAYItAfyCbmAfCCmfuQMhRaU6Cv2rhQM0/lFufari24sNrfBxx/w+A3QdWigOrTRwWb9BYVx2xzhBuicTzuBc8XmhcKrj2cEQSzP68hPq9XWsJ4wvgHE1FLEZJCNdcKXkzpJvRJA56+bQanlunvGKJG4bkxsovI8jG5K1bThMOik+tjk4mU3ah0HZ6yknjPDTrD6pZm9OswSzvsP/aC/mkYK+I1Ou3Vxu4XgWzhfpZHRdQwtPZeBRiqlEuoIF/uM5xZQ3cZp6K7h4dpNJc6rf1+pHjrFqECuoNmEXunYJ7hjJ8NpCxGkaMpXdlyhAjdVhoVphzbGEHtTbWpyQg7c5mdQFZq3FZrVXDhZigm88+HvW0fWg/VGTm9OFF3ugRsY4x7yuTh25fWmZ+K9WgP/aicmG8LjgYaNUMBgjNFwl9kxhj5A8yBcEOfVvCstOjru6jmXqH8skMt2oWCrNue7E6zQn1CJTwqiaieGbCgXdID7jbq6XQ0p2zxB+qnLzoGjBxJrwIRLZQJgUeWfnNfIlPJ8SfMrkqOeF5lv0lnrR5+xTYZ0vhcmuxYscdBWAiXAhJvn1mOecNDLJF2ZjjkvAethIoyDNyQBmPSjkdPEnHDCN0KWqeFjt6G/sSQtd2PyQUvPludqG7MKfy4LQfCdIc7+thjgs1eb+isOO1frOtadKyhoA2LYs9fBc1yeN/il1Km6QelPAtp2Sye328VXhDzWASqZO4DbE9mFtNbs3NtA4kNfNnEvBVGEPmG0TelYdo2xQt+kz/Cd5msKS+hta3dOW6LRJQTUQKh/uSPzenCxPeXiQHyv8bwecL6j9X8dNbl9WXFx+Vh/+WEUzyDzKI1aKMENAKkITn+5LQDfVwG8wiM6DuQ6nZg/epl3ALbBBquiKpc1duCq1JXVnCTdNRK8pE5hGAsghF5pOHpofIlebiTP+vvl6hzd4kACoRDN9QA+c1umgntNQcVz6mlZXilFZ7WwZ1SPE9iFoChDCoK4HS4NKEYkOrERCvC4wHFvP23mMNdJsj73JVnt6GqxmcTTkAWIh4mY4q8G+fdQ3v49M485WP17RS0HpX0IDUyeNGMXOODq9WxGGk5b28NVwFGFE3IMaNtg/laprX8zziERfiuyi8BmaWmFsc7eXpHLHg4fDTHb7H6HD9JpaKl+iYLLvOMAfRxmf3WvkW1Z4JhnMyGhy16aVD7H/d5lxO5iZJTyLazuiBlaHagZkfRK/Oh0/629ChkBMa4V5+yAG5S4NhgNiU22Cu8YYUdkuW2fCGlH3Syt75+FFB/wTGPtu9M0QBX34rIhXHQxrIcKvut+y2swOs6gX1fsM1TamMApTIfis2eOrYZk0BMkzBozi8kLbQQiwypwnxDr/oTf3FIndCJIrXMx/L/thGImPKy+VKwpfoe8xAjQTq+4VakKNysW5xjNcUjD/h2lQZYVPPT+VE6G42a+xXRucr+H11tvw2IlPsfo1DfTHyN89gYINmr19jYuPOX7iCLgaTfQWBhFDwvxH3DH0hwkdKjyDY0wPhzOwvGceCvTw5n4Ih5LfkwGQT2c/UODjOCd+nrJqKxh81/rQfNVQ4Sob/BPVAVIXt6mzu11b6WVLG5Ee/78HA4SRaxp05IEgekmNBsBVE86SkQksl2EceK7TN0vMjryx5PSnTH6USUiD8662y61vaYL9dktA81u3VEEoatIrlFbJ1PkLrycSy6L/Qe35FBKS+Q3Eh6n2xX5yut0nwAS/8nVYl1CRk09PYVyc3WiF9AKY7Ns9kb8iw7UefBRROTZejH2qpluVptYqWL+6IRDTOQNybwe+N50L4MpzkAVPHm2seiya9o8yqbNh9hawTb9kNpgZNNwWnK4ZQV74qZmNgq4gNTDrMGPZhJyu4NVj6vXx42M2iinJEDRbNl1RuDZw2rZX7nITc5/uuiJJ7l6y7oLbrGtLL6BDCIU8iMoYbuWo4zbYQUMLGiH/09oLYLxe5wTAyvRQK4xK2rGx9bIbsRDkGfKMIph4Dg7V/1KiBWhXOfzmGwkMgBBwCynw0akrfJi4xCgZlhxo/JD3nhRM30K9iikcnegvtaI/6WrXH0KCgo+xGHBTuk5mUbrFkZfy0cLkR69gPxUmt8nE0EJdFGEXCRuLMyuqg5uKx9zYQBXkOkKqOSRoiyfw3qMwHfhpKNZvuG20yB9vLqnWbS/03oKCffExhaHMU/F9pstMlDGm6ujcAiEc4fRO2n9aTGPbYAnMaKTFYzT102QxF+feLGk+XJAjuQNDFPwgeOEq4X6UeMbOyqnMpdtwzfFVq2U7ArPEAWjXoC5Ow/W5v2wL63H6vuo8eASGZT3tUu/2MZ5rbOp44ybhJDcQp+D0bfUXk3wox9PXV2Llm0GM+XRJ0t5V5hjW0WTBXBDEWni6+LODmnbodDgMfoRnFAvFiGy2KileEDl+ELXIU9z7a1aW7uUeBVr7oHqFv72fShVVosc4TotDEpfKAZ/JCLiPJOuEjypgdqKYj+yMVQBe2dV/Wd+yqBHOcN8CZG8dAdcPwIVm1izPgWjizz/4b5qFvVYn4xyd4jJ3/UtrTal778hf1VZ0kqJbEboN63K5OQwutbsCoxKjw5dg/PR6awh16Kbg1UhAd7cl7nTYxm9lSxHeZpcgw9OECKP6pUzWA4tGo6ZmowYGrN0PjNIBgoJHIvolPVCNCTSQx4a85UjH+ZO1rniuKNN1MAfZ16P29/bVMQUaUqZEd4FA0EKnWR0a4dm8vwqI+DJwnnMJcUIrxU+FWWJrDw3fqWR3BrgONj7nLtv/KuGgUwaZNPV8L0Y9zEbWYM+LAF1IPjnuqHxErg7RJ/YZKkIl5lZwQ0+t09jRvDP2SAuWYbH2tNsvDnY5KD4yYdyxMRpnBpMWKQgmr/SeYnxddEOQrxcTmCrmQxWzLxKbv50bpAkfWbxbmp6nHJwCoXxkPnjJHYXZuP5G+oVcUPaBNkUQBkI3b0x7H9GsKl3Nnu6foXgHA2hvKTl1kFk52dnzKmmZPiQF1+TH+mendWkf/2JhEVrCRGA0X+yE8Up0CNJAyjWBMAaTLhgEvZroLSD5PdR4bo1wWyi8BGW5W91cF8Vf3QLU2zm8gFurI8S/QTueaHXyO5b5ZdKgvIwNm9t5uh7RrG5ITFU6bHivA5xLyzbt9VFUYn6+deDUnMAen3BXclgptKyaWSa6YteKhg5OjCPyGDWC3AATcnZl/j0DJiv+EE6DxZUTH0KC/0n7tg53sj1FycHH1khGmX+l+nNU+wJJ+gUVjcLt5WcPVHy160JQ8Kb41drgl3qWca9dY24ImAxnpil+2cPAPSPDHkf7L2LpCVEXe97MryQbok9jJJ/ncEMf/ruma0EtDOnjqTMd9rDPpoZrcWv3W5Ls0wdrioAwqHq7e3wdmSd1uYhlSb62bvBQBWD5qk5LnBWi3gAQLWWg+7FP5h+q31Kmiw0OI2w3kdBHWME+iG5dvN9FsE6OC9LKFBMt+N6tmem/+vHPSvhb9gRZ6IBnn1EQ1FoAP6moGe/kvq4jc4XXkrLKgyDaXdrrPrdkWajaWDGAiy39vIQrKbXjiE45qBdJyjBfkfOXu0ZGbdyU8R0LXBQh5d9RGY5YQsGQkByQNRAlrUWaT2ytM3inQcdxkh86CA3pEwUatP/e5/ycUf3F9AAjSS1z5AHMCOgIQ2R2ezA+wXfsz3NChPISIx0gAHZZzcKnr8Un22sViNP969CPcJ6OSE8D5Yp3CLXUtS3/Otea8j3rYRs2mhEH2e/6+rynxEZUdYl5dyLj7X6/CDyKM/oJ77w8OHQvcDEEHyWs0LwzmNpU7ajHaplV2awXF3U4ZUwkPxV2jWzcN2+VBEySae5PjzA2DkbORHPphScDZ+qyM3pkoIAUNA4JpkjkLESuwQ1dpc815B33VSnQGzauvjN3mAvSTVyr37VFLEUcznJMpIM1A/Tn83NNStF2ewA9PFkR/jA3vlOFm/OM0N5opMowepFvniUV4qO93/EIEw4Pn1sNKMg2ST/1q3t9C9AcZAHEPH40D7drecy1n67GzFN2myFFeilXv4MPAYCgevkPOD6gGChS757mibl35B9nU8wDtshMVOCFS/3U5dpqPBGbHv8TgbAkBefAUW8xpCNUSwziZsAVWB45Z+BOLq4Sf5xHmidyQpybuNt7LSTnYIA0oYzEQ9K0uWmgzYZvoi0VSJwIknf2S/bnkySlfr0EQyFKSyoPDNKhWtjgSVbY/4W7mZczyiriCA4+tRqIzcmghp4Z//BfAHs72+d3UwGtNrTeSJCo+idAkwC+kMWYlIQCsOB91rUCpCxbVIHo+9w8U5CcvjotNz9qaneelMNJmezb+cX/bRTaRsHIeGyPffs3Zl5EYH2bsJjzIr1t4HV1yvbQdKQMYpJUxL/XfzevJ/ZYKN5NIyhHEzpemcmyWyGNQBW8SyjmS95Kb8xnyJooO0sQoXBJwdv55bHL/Qlc1Y8PRkbLI4hocConvKa1+gtUqkc+OSHHmcXSNVZJ2JFBEFXJAKhmUjLuO9EgMM7NIuFOWLR9lC6YBHtog3Lw4EFofAw+Yg/U/+fs1F6eUks3L9QirYYS3dPOGgj4afbKobP4vEl6xFSO4TDwxSCBwj0Suik4zbaCHV1SFrg/wXEXSpb1fMnP27p1G7KQvA3w+AZt3AwxhDA7KFnlb2Pf6zV1g35wz3CfKe7En2ZJis6mIR77cXrQQCRLg31H1nrLCSbHhuZ1HlNOIuJvGsCicqK8P0wOHxRYV2xEitJn+6fi+CFHxYyaGL00AIYX+C6He+SXw4m55BIsEpghHV55KcFfYvgqjB0Bc2hxXooqoRCHPcn9EagUUAuNAwRhDBXAL41vpKkH381mT6KPfs5T7z+wYox7B5FMaPXSDWgaRZxWejx8uQKNYVXuV4mZSk2QXj8ycPUPHR4m7mKqozrHlq8VM6NR7P1Cz0sCCj3rC9mm8+wfCeZrJVr9wjyYjTg3F3G3m2Og6LDAno9rEek8auiJ8GJi/UZVlw4jTqFuyfAleOotYxoCnY4072pPo1Oz1YDNkYMyO3k3PsCffGtD9xGKEZSZ7xa2H9uICpYGwhR09bLnM/2Rqpm7mZCj+inrCIjk5Z2kJJpIZAUPngDvbEbdq9FkaxNXJO/60o86ND3gg4wLgLFRl5/eceRfyxBBlPS3sqsLka6W+SI8/6OUZ8kZpFZNRD/jW/Cm4lszMUa78iK994AY4j73H+LXfD2GBhH3Y6GmB2k2M+Jx89yAXP1VzrbF0Y8gP3LnDD3nDdRGaO6sMs3fS2x58Kaz1HxyjgWogzcpmEsQUCC1jYmpdZmaJQlGlUuchkOtZggpFetz7ec5BRkwE6NlF0bjZdlBy008G055/fjOezxtNY1j1RWnQwdP6bdqIVuxrijI+aL5DJUsjhdjt5s/UZLt90Py6G024xFc3FJ75uGPVfbkQTV23X+bh+NVg19rN79b1gc7BrQ4XW40Yj1fwMSM7Ae11Vlrq8FHcLrvcrDyQSnrApH8Agsbwlu2qErIMqy9x1xOgfStUi3pzEUTkFtl7E//LvcJ5aJjwsAdi0+JnZSkHWYb3Wp8Qf/rFqBfhbswYW3cFOMjZbmUYyybsIexzZjbRbq3LUgfDdRZiXQkxAAxDta0SJQfln4zs+NMFmgT+2mzSAr9UsDNAuz7W3uYmbvvFwLfNGKXGYUvDYcLyB3iSv/GPQLSRU1zdWfKGtyVWrqelxqU64R/Rpw0tXGW3ZofrkyyuKx25vH2PC+LS6QxbF3nYGJIu/IPicAS8POJtgANerZINgtq6j5YJvNDKpWHDhqdwhqatZ80TqcEAWDWK3WeKWI69X46sTUHOhQkpD8m1nNoaFFmRcKbnth8UEqPk3rS0HGQoGsYWNNk/vLDjyn8z9V7DupqBvD6iuWRjqAehDn5Ocx1A0JSGipvuARHwKkL0LynzK0QSo25ENbq16bPj1d6srLY85CwrT2nKcCo/0HhOel3fcKRLmk9Fh70TfwIC8g0UvGGQWwIMpQ2IJO1GqUKBZrxtmmJ9a6LTWltd4eaD9IM4zJr/KMaEwBwjP+4dYd8Po+vPBs+IQi2s6VBOywV4XEWKn89RM6KQOsz4YJplN9UC0oehthNkKdKAIthGI7bngqaPJdj6hjFwiNH621GKILsJGz42vwcPvfcdePSIVP0dIbNknWSCDzrRHEy3EeCJSBGX2KlbnUm6mVo+HRo1LiEpZOseRHZx1ZyZ2iJB8zZikTiWvU5lsHRoeo/Rr2hDzDruU5lgAJp1nuSEkucjtvqNWHpjM5ekHEdz6z5ElX7lRpj15/NNu2Jviwns5caeRO+9IMM307dyheQWEOxFNzHaEvUdHskejY5ICNO9lSHuQBAT3zBWjFEj8w1C0wfTLkvv53YarsuAr2+IK2qoegnD7Ez6s1P/RS/j1fWZfW08phAGabo9B7RfbwDFK+rDwnKMHUi19SEFTQEVd5MW/xMU5bCghxDNWWp0LuAiBtIPVaIx4DPyXVohYuST6v0QCpOoBsr4kIhZqU68EUeNW47vTPTty7+e1De9qQXNFn2wbInuwbJfMmF1gsPnpiLc0Vq9I4/v/fNvmb4YGpIkbX73RYVZuS03GCqpUUnxICXPudtNAkG/iEYTXpgEJKJKIOOwn/BxEWPubPmXjHHONsx5fnaS+Ys0vHj85bkrtcBbNUF6eareshdfbzzwiD+sxBD7M9HTm+s12++pCW7KZiKUO4siXRXNfdKOlVKjsnrKgATNi+cmqiqshiQL5vdrn/GZy/pt3JJ6MtnMzaeyyGJnMIY+O8SSivoM50jOj9JOCDbrkqXBB//muLXq9VHm567ZtYV05Vcubq/U4XSJZGRGLBBV7Z+vML8Wy+D+LS6InkmCvY3BeaAtqbG7QAnHfkeOnihTYy+HcKGbgH+U66VsuuycEsduMQX9qh6iLsV0rVjkaZteOn8EScfZSSS8lTZvdKp8fG/+nBE5xUtpXyWSeWhHHcrvpb/4WPZOeXOSZZEi0X2dkL2UEYxxE177wV+5CCjVUARWF2/+Us0AgOCu548Y+3gFFmBLTW+kSi4EliJXJeUPmE0HRoNPXPWAIHgWfAaJpfLlz9L6t+I0q5+uxT0bVLsPSX/lZIQ4RiS73HYQFzocy7sd4WFZ3XpOzdqM9HixOABkNjg/J4WuSG1ShekG8GY/osFXRBUICq4mKaBxI5qpEoXsovplimnFMorehx0gCcNug23ApOsj87Wi9DTz2u2Ke9fEsMdEabNCKu+BEmncjssWPqMvjTnPpIw9k5kwLx1XRIBEKT0BufUDndn8caAy4+Z4wH/vf6TEQqotxKw/Sa12Abxe84cs4SMRv8YXzmuIKkWKUFyX9GzHoaDiAHVXsqKePdW36BNDLasxGqG/lAEzAUno6hnDTm1NY5AVjGxYJiV7OjXXJ4e+t0GmUlsU4eh/rnZr9IwMXJg/127L0k30LH5Za/hKrzLp8dnc+G2pVp5M5mau5/a1FldtelbJVZ/bwwwvDHqwGoJeX1dt+MRYxBmM39rhiJxeQO9YzAgVwB42ZsXdOSO6Dm4kigV0pRjRUizkR3vXg2O0zIQZizEg4SBrNoFKnxrhJtkNxez8GOUqH94p77f4TmlnY4uasRLEyGLcX1EbflnPZM2PQbvfOB1ADR+FlqhSEpRBpdrDAB7P6FG8+dmzZ1LW3yryiCLdo1jnfn3EC6ZyGJ2iM3kz5h8ehozfnRbNXOmOIPYP2b5RBUmTC2AF0IZgdhxLTbc1zQCPBJUMt3uhn0r4WrMYhSOyzLV0bPIPalKUfWL69INBBrgM/FX6/NAKkKfitM4XJf63JnChNakz06JTVc8RMRhoweMngzR0/mWJQM7rYm3V3k7cXQKTJf5ffgjfoJTNnr7t+VT075J4r44B5yTM8ywXA/6cU7Gskmwu1hMO2MG6bkGUxF4J+s2qwbhxY9ZOAbIFjIJQKYVtUU+oiZvi2HleDnVTYno21d98VkB3VR0gUNCXNOV1hQl8GcPrwoCR68xG7lPcRinIMHfAM7P77dYnigOvp38agKfCENldxzNjub1LH5j10RAA/cHU/or6g3fwA95p9Jb7eTAcUbhREzXJ5QMqBdFAZnFvhqwFxNgpm6tb5e8KBjiWCYbkYyY8Bx7msaGOiloBGEIeMqyU+7AGE5SWIt+wFKvyJTQO5K8EVyKxe724dkPN+lfy/ZnjHTVu1QuJcbFEsVqaAGo2oua50e885UDuBiobpzhc8yzMRbNznq2j9ZSQRd+GNhvoXt2wKT/iPQy2VduXOUiLwnpEyY+CQNFQQ7cXAmmXAACAFt9ZSWDIdiDRpTTphnpDfyYkkIWOpxPfJXKhVHE5sLY4tRjLGiq7tBKqyfcrV+IG6UfbgalbstJsLrhAZ13SmRUZoDATuenIzlPmwPj7HC6PB24Y0fp5JZofzyc+LL0m3Wa/lUcyXzp0mvNjR5I2l7we+HeLR2NBYro1l9sWKBEYMF32b0jfzb4sMTftIkmnXFyRtevFChRR17hNOAtkS0hvAxZoDroQrZVqvjLMx7ee1NqwkL1A412SsvR9q5IaJ/+J320ez2ZoCtXuJiBh5gY+wG70BoIEZjIpR3FCEVISOG8PJSuHFmxDLVggh9fD6RDkCtu70UYuuOAB39oImGS6a3urQqwc1cyY0TZLAGkhndN74JOun1G1b20yGwLuqQbJBBKTJ2PrC3ZGPG6WkNPmIzZW180k0Yv5DUHcaSDuHp1VU6/oV7lrW9XxLFTu72vpy7i1HFz+xg0GsS8GK8fNaJCtinhZuvtwtwho68g0M0KtCq9tX4NORece8IfN91zGXomZnA4HFNIjM2aJYwXoY3C2THSpr7PWNdS0WjPA/8tV9k7R2+3orQoiJFHwl6c68ZAEyY3kD1cQYrGuJ42cHimZmDy+WnD6yoBAdlR6UhGtCJ2NwdY9yKaGzAlIftrWYOPR1fZgeawNpMSRbZNf0A7XKvqVc7FVuzsw8/MB1Zt/m4KaFLs902VMnHLlyOHU+CQbVTGmFd+Ym3WmrVij8sjtLT/A6MGAtpRT07rEZeOE41uicqlfAkwYVpD2vsCJ9gl3VDHsCqZu2lCnGBT8+urIgG7zpOPhtAfTmumPstUnPqyIefr1MFCvORdHqOETI1bHy32oGzOcMXMVoO81ai9fgVo2pR1VPhaZ84NYi2wznibooL5u5I67FfCC/vQmRdHmZyCQMeCkBw/l/Y6gZ7mscF4v/sUxBbFjxX0FD+PTuVW4CsIo/rkmERF2YtodejAPajT7NKRQscMXCiX+Y4GcjXtV8DAOSPpw5T/qvajqXD3PKhbI7ORKe5HMVq4AwLDNJhF7rFodJdG5XDV2LNxf9Tnbp+TgcFUlQbkhZEAA2DCBHjqKS3w1en05i9wpd6JjrzhzS3ncmpmwF8fnsADZDfT0vMd0ZWbrO6zJPxa+qxUnfdWmnG16z+l/hHpyhrOFG71GyoDBezr1eyUElF3TBKvLn1Q8Pkkhj6u5OFxHQvcVyscQaXC9U6TzAIq7SjkDiZF5g2umQiX3g1m4XeAaIHNX6Lt83n80/kvwZc06+ReXpk7kYr9rzoXw3hjS1WV4IrQiPp98Iu6pkwwHfnnKYNEocSfktNGWflM7S111n5pJfXAcuxpkN7rwdansSqdYbTHPtofhgw7RPBLI803/anD9KfXYSkEiRh7nz0eFM73Sz+qiHmn917C0i+jLKqeDSuMVTUpzqEdsTggje50BYG0OBVEYr13sIfLmYladVt1SPGmiueR2cMV2ZkPYemgsZ3a/kNLggnpfUjqrKojecmrX/+LbHJRl/tV1f5VbzPAxb9HFaZyBMIoFq5skbb0BGp8HBRUpwK8jy7sOM3omm2YJQ8nSfNshggi2J6hQBPTlXmq+3wngTY8Zl8IeKCACUC/33z1gRS+SxJvtOcCM32h1lS8Kkm3dBi+g815DWWemt8mj4p0MtMMMv4dp7Q6cYI9dEOo+J2p6VtDd52ZD6EI3Lxf2Q8DfwjJ5EEtlTYm4U33KzZvleVoksrMYEsqMNb2B+1yqoMG/9im/tvxuO9lp3XKy8VpSi6EkTfRSLF3uaDLKWfFl1iLSTgide9U+slDKxFZjmuaEOp8XoeI8PlLT2qzmd3JxvQntUCLRMvHKUPFpNtkGz4+UIT7Fm75ALxPo0RYFmrbzRgCuMux2l8nX8FXLiG+BA0HwLhf8a3IJ9gXzMGaMKLmI3ZaAc/k1ALPsoSib6eccrlh5lorT9VxzX2tA2KHDWuHRqHveBcL6i2LW4661i/XeIz9hhoO0Grj783tt3Yc5gHMHy7esqFnpBnYTzm9x+e0qtCuA9978WKuLLiFhNCjp8/CTS/5GeetYFw0KTGOcYF5vk02F8/6puT2a9O7maFKZQEi2LfPG5rtU/8ofpbQIqr1Jy8u7d9phdNiCxGdHIw9mu4m5pCrtOLY3zQmgN3ATf0b3ZVAsq/j4JEXFHwZStvP6+sxaZwKwE+1svjXL/8N1bir0KVZyT4tebzQKorZ8tP0cx05VtaAWY7t3wjJYSReFkBHpCp7xPT1ToLXRLE00mtLOrcpd9Ht0Vl4pIrGQtIcmrGLhTip+ZFHyzDFq+kVob4jJzdpFpu+tGSp0TNTpw7uUThorHbkqMJr0zi0QdDd82qTy5sCqNhAVQcksa2Sw3CxGrBXv4VcF9DSVsCyWWEwGbQtpzC0DQWpPL1fljntLwllP2LoMum/sdi1J3rpq3JEgqabtrVQAavQ+Yl1JaiDr/PizIlktc1OaKmAMV5yXyQlsx0ubN8F/ULT4rTDtxyK/cRvOdZysrImOZiDAC8j05gBxkzQ2yTBUXJF76R5Jgz8eXPa5iL1jQMr1e0KGUHxzfsmiPmyehWqavFh576TlYLC5aLMCF9ozqXVwgitqF5SYQYZ5thAvMqxmO0PD5wpq1bx7I09avtU2WXt+7mfqBNNqYJwKn4O3EGqcN5lGazZmtffYJTWEgC269vwuk/C1+dxdhBbMyfueKpM371U55PMXZ6ULvSWm8mJae7/rMjzklhbgKQ5IgzUIRLMzPFJUl4GvJ5/mznWhgwOA0i4dOua20tIENHuvH261OA9BJySv8G0qWProg9YcWl7X61x2z9Cb3YEkxS3vO+IrMUzHRaj8SYdFhRy1+XwnLcADlZdR/2aGW4yYFoBzmOynRR+UJzjqR0M7FAK9MS/pXHnvWXZE8xmgT2CfsZ144WxqqZkJRfRhPe/8LaF2HJ7RzNNvVNs/hJSDBd5/wMkwzHJGvkiUCLozV0tLXUxBArJFW3vFI/A2V5REFSY8Ilkg3VIBZ9qAvudGRN2MDPxMHW6zfw6WKJMKi0Q8XCWWxJsFGZI4Yd6RDAn83Jw7TpUhtWQ6/98ERcTNxnxe1Zy/zA81CpxSKgh8tlYWL9kQ2u2sHf0Jb9ZZT+co6NI1nIFqX471bX7Jp28O6wI7bb/aws3DG18Tm6G5Fq03U9ne89iO1yXorOZ3xKOr0RlVg6bK1+Y5oZ0XtsH/NRXJEh0cW/8yQr9l30ugrsXna/ZimyBc2TS9rch/DcDjFfatxgOeXv0UtfhpvKre2TrlZi0swfI3pmcrqjnWmjS7MdesUQwivcdkggD0GWiLMOHNOeA+PmRz915yGxGBrRD8GdSfXPkUeFfMIh7jPPQhxBxPa8rs0e6VnADR/T6tplfqRufojSTPJgZ3mq8V1lmC+0xSHdBB8huxXftHGVYNKFfoGC4SLYr77EYhoUMsWBakrq9Mgx176tAovAqOO5xALjxGWME2hqj1NMV+HF6JSJoLxayfl0UXSwEasrkuULmJ7LM3MyaRPprrXRMFYsfcDjrwpvFH60PIj/dLxGoMEtiTbUwEqsKq/J+UW8sEo7rzp3G8XDjfiFC2M+lQPxGhws0DuKWNrFeW2DBGk6VOZIDyqRtXMs/vKpEeGwPWKdp1Wj3GqxRWb22RHkwj2VIbj+gYMFqFDN7Au3N7zaWksirFHNI3dC3gYSlWNVZFQG7CD8RSB6m4jcPKRY/wBlvFapvgEw3AdI7qLvgbxyl51PJM3O5flbsRcXyjcipdiD14CeR6I0lOLGUkMgDeAwOtdU272JXJkEmU4ukinlWqpvOws3WXEF4xw5vBybKWbgeikqNVViDiVptOGDqHTHzHoVG48mBNpc9vehlFDScgh+AtDhxuKWGpqW4Cbsd57TyEGLS4LnUPhTtpjCmNLWPSM1nRZ1S5pn4jrGdrZX+vVpaDQ2OfGh7mWmBJbHPELWkvezPf6C79Lzb0SUKraHoLfSsutuPFm2oEOTbvMCEx/R0hYP4Jz1dD31sAR2sbjULGkt8isVQWbhaQzFsJKAQZkpe1TOJ7EuvvYS9P5JEDSoleXKnLHO27vtkb37Kxl0gNWnmMK/0EfmPFetmIu6uE15JCbrbvZpPZWvvDwixeZsnwsSG+ujVCitb+au/SlnoeTR7y6HFSDUDJ/IeD980UhelPYTXGXoHS4IcFaWgSy9EhFkKEfTlNgzSNmF+s9/s5fUlddXHR5AYgbhXolBWKEx+58krP7ZMAC2wa8S9rVqiQyANuZy5DNm77j/Lkz8M+CjDoQE+1m7nzTFzHX5aEccWit7x+CC/5I9++Hdioi2IOwQf4Qa+pvlKMSfgJd9uVu42w4eHWXZiymGpwoPrrVL554XnxfaUsUHqBA0G96PVp8dY6JnDUYYNFXE3tQOqFqjH8vBC0FUc+3X1Eh6AarA1s0tAdTe0nS5fIP1nozhZc9adq+mwCYEnF+JF1n0JLWYMh02odBAT6F3TJYPcMyKtlLepfjjzIMySwHcB6A4yPkeSpkH7ct5yYdbtcQdmTyDQFPW+npCTiZQxlMaiQaOsM7nSdyj2NJy2GhYhcrG7RNQzprCrIHaTgN8hECxrfnzMfUmdeyXb5vWBDcB/z9ZZ2ICEo84R1/pdrcudk1suHbfWFL8GQ8FGyAQKA1c7hVoddN2sVSOpjAaArFvLQWWD53ddo8dOxoV2O4Os1TJfUBYymKjjlbtco3rHie3Avjt8N/MUxjbNj4lD5u2olE1pGujtMC4KTBHpYJNmqVTJQ9ELgSexeq0xNninJWnZBHH9bHf45SV/vGAy5aDoP1oZettoBHlRG3qvz62ZJebCMvOlplZgvLg3bxhCujN0LgKGdF6ejpSWNGlAc1PHYf52d7RrVo3t+tcFFqmOV5By+Ejy0Ty0a4P/6C2tJ9DM9EQ8aIfQueUGsg2yOHv4Vn3UwEyDsTlpXJ+nfmaGduJuD3FqQMXPTYMVpgbaxNZaqIk3tmC19VTDDqcR91yHOPFtMzF7nIzdOjT+sXCxv6P64+otYqL0XUCd+YSRcgUoylDu6WWyZ1ltCSp3OisZCClzrDW+iGiyN6J+M8IOHbyXSBnpzdKkv5TyoM5uuUJ8FWeXkOZHi36Wzm3SqPRs8rEeNGby9Kjo402aBivo63va2+i0U4yN8d+Jsq6lLTP0xiaQE+jtKux59Xep5WZDUhPc96OX9SCuGsfUo2JxWS7y6izdnxiehcJCTqrJ5nWGKUjpLP7VdQ00Swng7oFm5VYvgjGWGrwB0xarkwBNybIh/GRlipzGvCkXqtVZzwe1US0Z8EyWr/tFR3g8C4Hl6tMU4KAu5vVw77LFNMIlMlXAFqTwNZa5r+nTsa+lFxg7HmUV7kANpmsSDT407Gas6iIzYZQooeSls4pYXCszCSgCRGLxLGiaYH/9WKGgrfe0Qu1yswUrWsB1V8Y65j8r0sq/lxIyJQGlAhV5FLfkcl4KKlcS939zTqqp3810IAwr8QRadUcRg5mz+Oeil12OqrF3f/kLlVG5Uf0R1PFz2RVQaMkqsl2PKG1Aj3yHG5KClw8/CFdQxTk3BsF++jXie9SsN/Gva1tmeCW5oIe+AOcVkFKHDWar45GELdTLwQxVIMdwYBekNeclxoyxy5RIgMtTIla/ISXWkLzNPF2prcmeEO6Sj3q0qRIteWY0IN8LX0Yw+8MFSz0S2DITHshCA1ZCAKmwIu87JnsORiSPvsFgzx65RAyQWBdDBnbc2upq9FAndKq8oL2Hd+bISwRVM8zxwFx3h4UmuJ8hmcJFhZEctt6r3lDgYsVwywWUDYu6I3SL/zN6jBbBk9iHXgRw0xyHEZMMafcHZ2dIYm0vAG9KQstDY8Q5QPG/I8S5tHtmlt0uyb6uXCwr1ypgvv/OYEOAQdvXzVlbbHavNjcV5/7sJ7OWhT5Ux2JjhE3MaZykInRLOQmjTdSUI/s5/c1l8p2rWPPbJnt95G26kiZvMxVKPXaJd0GJr3LwEnLLjyW2jUy7DmsavEiugJhYA601oUtmRMY5vrQRmIHv0mSeyVElcYDJ+z2bM7jObMEz9CB0GXmBggH+bg80zksrK5z6CjdkRIh4FqbCibgRVS9CptAlZncr1GLmDwpLeZvsEeKyCux1fxMGwdz2VkNCIchxyHZFjrqpbWYeyIbdDvpYbuzc58SvsEqmcjfdiD2pX3/zRV/QZe8/tbX5yEOwBN4GatqUB/2E47vJb+9RnZr3axTfgGNkxBSXbC9/q1PC8GC9VQQEHezTSqgOFU6MC441bI73bAU7Ex7vdF1PfRBLqeuCXf6w7+Zm3Ob3MJnpNnVy3Yiy6noBOCWy2+NrXR9mNyaO/et+l9KbdCGJAdVHWbg99FBsNDLWoU/50LBJTpbQhaTP3pH4TGOwLp0OvZe8gUy9x85R/Pv2+kj3ogSgDqYgLMxAQ0pMw5+yOsiHO60S8MtoumxYySD4/xqQSblOTZqk7SBocGl0JCRazfmat668K1U+y3AJWqFp8szkOZpa2m2vdKHEu4cWy5ZGpUGRAFcvhNc9eZx9cWa3xmA+Sw4uoIuWN0R1MWgcMFqvMHdk5jw/x5W6rx9X5ZEysAsvqVut6bXXEle0F0NjRw9nWyA8RfJCZBTM1qCgfJYwYrJ4c8raAxjrI/aY/nP/syAz/+dqxflUs/kkEufPvcuiLm0sBl1KCCEmRE/OX1AHdGYbdpYuL90O9iZyJWD19rzTs91gR8lskVUPCbqGPrZ2dP5roKYGEZ/8hQOXPhkSz067Txn6knnmBXtdybgSCjVfvrs73aj3lX/2teHKAoiZjve8n+ZMLdIUo765tJJf49XHTj6fys0bCj0m1kT6cGIag6fTin4eya/t10VakldgyijQtBZ5DPQDZa9oKlTpLnfF4iPacZpxY2d27CtYHnAiLCYB612TfNkd73KQVBhcNfKZG6h8ty4MnOeHs7Ida8/evq8haa9ymPi7OdAQgqLnuhXjyVWi+GuXsOw4aK3gn50uGxTJxBSA1vWzypg/kcaQ4ZRO7AR2G5Qg5qgpEMX5ukJIPRENERdNJJULh4n6yX8U10fEWDJqKiUHpGSYNRtgow6WkNzrjknA+IeXJ8dUvvObogi45WprogkwQzKKVpj+us6QCPX07bGwmFqXbo1MGFwQgh/V+DlbeojMOR9r6y7C1fgrShdSJe9HnuZOaU0HPccIULBEeBSfNKuUCeibfbynYcoLEbu0RtIiqM/ZM86nbWRti3aKo1R4ER8SvhPG/zTJLOgTHEDl4h+JGsAIx6HwKIJ02xCB53oEb+IfeLoti8EOMXs0YmPLeLwVf3vAwgZ1BNWMl/hqpyEQAWI3uFr/9tW20lDBgYXALHNSmOa1FW7C61TZ2HBbvpEMjs9DStVpeXtCrcYTxa8DkadmrcucHGfp+oEFqYsJs2WnBkW7uwJSReiIovn+/Bnn4PcYNvk5kXS5gb/Sgn0a8u6LJ1Kgnb610E17OHX8Ix29oTXq3/QOyOFhULsCxJcRIbmz3s0lxsK3v4D8gh7sPODBuAV7uiI0MjPuM8SOGQFHCIxK1YnqzpEhlTWXJJmd3FYtdZu+u/V2Gwyoex+sqBGF+GPkDuqRwg6jqqrk+fFKUwi1POSvGZiLZURNE9IKKm1eJDGirhCJrCCDJXse20Tl4piv2dkQexatJxkajuFwhxUrMPYihkma/vPuDNfWplUlS/MqcHn+e0buGw6ZwHeXPnjx/BsiJpjQTC/kbugtxbxQpxlJRjEnv5BwrNznyiwJPVvWuUbOKLsO8rvw4bj+LN00L5Nq8ieBNuO74Qi4XwD7RBioHrilcBCt3XO4ECUnNfBboxQ7N+YmrWebgYHEZ0cYsv+VKSITdaflfgSeYmqSVWbLT6Qc+nXePjBTZWyfUc53ZnodwatpSydcDIh80cTlUT2INpQr/jfhDhG5dFcyyJFa5w+XzhF9TKYitaGcsWbO7k2rw72WC0qmjSTk2jXZ/a3VE5KgP7p2mW761lEnFjqfITC5vljy8n697vxDatwLqX4Tt87YhCFp8vv/45rSGQfDy3VYZcVmUnXht3LevsbHWPsx7/5u4AtyiPQihyGSh8T5h661tw9VWw88ruFCAoewiO8a+Y0jWPM6HMviPyNsqbpc7cpPu5c2bki5USBKJ75Y0RSuSht4UaLTQy8ZuqgTM04Yd7j9Qh9RA1XgPXyzTzfiRVk+6lJ6N1EOPuH6tnWBkoypyPdDefr/ok+eoPRlteudrjmWxNsxmZo6sWU2oV5SzxuKyoYGe5yofr7Yb0o4DPodJAkX4Vb5szDWWPJzv5WL8/m5kfL0pOijXEDHoBSaeYJ1/EdqFPYO3Opx6GkPHL3Pm07IhnMUBxehczvRbGPD78GC0L/KYXR9ZtrCnasGN/chE094gu5nYGRrBAsbr8kIfO3c5YvjS/MvVoiDdY/wh3C/7uXVBkysyGmSDI/laVUzZLnbwEG84z/IGysiWUkMjLtDW4qINJgxhE5ZZrkYpnjLlVEVWyEaD3bl5fr3Yv7y/89XsvSnbuF3oSTt9500aQSthDbTHVOy4VoaMcPdibXnsSUFTcSDnbre6AQBrHwrYiMYaoBZDatspjblhvQJ9sRYOnveBTguNtsYHxe6OSSDS0Z+OthMZy2Qrp2zVn/XqhTMsdOpgZ1ujCrOAnZ53vmg39OwQYSDVvpSydC3Qn09A3zeS+qVaSXMUHllPIN0hpQWgo4oysQ+yJsOg13IRPAf0X3h13ub40HtTHI8xWbxQVi90YKa3F9t95rxWz8jKgak3H2AEZty2iQ7zGeZIKQ1OrDlF520RajIF0gVuPpLePWSfYzANouAQyl1X/ZxFkz30EUlL6oSB06HPnvm44jFEFt1Ee8h/O1SxmNQoDg0PeNItjp6xG8xWOynElM6xmVXfttPlCSgt2f2ujynIzB/O3i1/hdbUOo8+lxxN0K4NuTLOYyT+mPHG4VkYGdB6cdk0ndhUZ4FZNTuS5y++ALFT7ejOsrtBA9hGMKl12q9qOSXGI2WBi5LIJ6c1TAkmtbKsYtCb0F3/xbC1gd6qKMz/HV5B2fNYnJFRd8m6w0TBtM2a5PkXTxbfvsV1cO0pBkNO/iUE22qkjF/ShFvoohEgwDWawGY4NpVYEcvP2rRlPEuPVJ/hE73EOjuNj5HqMXa3iI+l3OG83C8+b2gsfu0ymU2RzERzWfWoetcqhLkYvlhlx85wOydjhyjKoS5c9e1+00Df4xz2ilP79hGcZG9PXKZVMpCBKuGjTofCtjdT2CP2Q5TNNEDlJJw66kauZMQ1/vYbV2hqJNRPauM1zEPcUo55xnd5cbo7X70pvezz9iHHgFyef3Uu8V41VpSeEPsygBZ4NceE/bxEs7z7QnuKmlN5FOHpXAvBZbNeb/VkSW71uJDj+8o//x9DP8KvA+a1tyr8sZRh6fz66M6wR8lg6c+5mdb6IeVJnY5i0FUPc97rLe1QEn4GwGnoRoM7OAFbw/fzp6ckkne6eHYPZq/ALubgWAe3D9zykphYCjbLRRK76Bj7JXJKGqiP9PU1MEdUeTkhlir4pYpUoVr3VxrNf0M8Utfx5+lyOnTzPCyMUtrWY6+FEuwfvv46kFPFoXPn6M+jG0DtQQ4aPzdS8MXplmHPWmbyA1G6UuTFEvVf14gbbMUIutm3abq65wzZKZ7bo0A8jVJLU11SW7liwl8YxEUYOQWiOJ/vZ2x7AGpxFbDMka+xUBTIOG83UkJxWlFCFOfukYVa/9CJK2w5eh3blU7sMJLMoCXSzhzjXuNsaO4n0XHaji3OgxoCpUAuhLWgg4F5rU5cjfYH+1Noj1K+Vfhrvb5kr/pOwoNJz+/EyLs3hSIbbAwjcUSvkEUBK7s1i6QTfrZKwcF9kINnTdd1B9rkLjKMovWEuQ/82ibDTTlx5N+VwcsLmy4+paAQhvS8I+A1eFykcA87Is0okQ0c0VxjIt5FzVKxtKWX9aitidaL1j6qZKqL+gapEhVWDbC1dk1Ur7HOJnia+kp6DraO1A5eohOaKNyUCLVeOKy5NmxHFDDGihX8DFCFp+DEjIsg7eaaQwuogh1V1KDXMWBnTo6dyZAn77BVLET9AD/Mwg6z8V+fN8JqD6wech1klfm9c+/pbN1qCZJGWPTG6XUy5umO7BvxjKx8VwxwTbpyxC0NCcZDlZ6OfAaGGoajNYRLfqGL48XvEXqdQruHqzWCv0KPF4xTsNm6Fhwh7zYB6LBNv3bgyPznUH3VniB8K/zg4mO8U5FsCEG4X8YdqwYwgUda2AYo/9b48OmRgCcXQT7PUN9NLJNrlO0XuugNMS8tyFqn2NMZjEkJoLRcBuhXa+8AiUDj9Q8moHS1eTAwEAdV3jcd/FM4ULXZ/pPxNS/CYDGO2VQZdhSKph9k/ApnWTzLP6GLPKIHD/qtT8yzDYBrGBjAFA/HkbljN/sDzfOsC/X9c1SAhec2mFcD4tUOfrQYP4Im5zPqp/wjF167VUZQYjEIgZYd52BOHgUDBsjsD4cEgR455cXdbhzPQxYH5dKcD0kY3iii/w8VhqlEQPI275sonwtV7Rr1JiZM/d0L09CkIH791l+OAoucUw3JafThEtW3yHLr6lPqC7MHPZvDrFCP/WzhpZKy9TxY1FTOkbHyXKWIX/QOSqD0OhfgN5ZFd2VXi+83hMRc/hT42zQc4qn5zwQ8SLrNIISiiLZsPRMQ9qLpF9//2KxtSW0krObHeR4HC5Oom0cWLup73ceGGZMcqnTgVGbjBFyhOzVgPnqh7y6zIV6N9seYYy3LuxqdlVAnUiboBk9e9AcTApADxjbh8gN9xhfY9VuXfhkKo4AHVDbZTf69FzwFXxCVAU92N4XKsqmKcq7qHaTp4ZnwIHFqodXK36f5LbE+9cVqll41QoV9Zlqn+iE0sYSESVPDPnO3amJTM5zskJZP8kOaT9Ik7ic9B44FjTo2Vzj0dlUdOwzDebUmTqzLXewt7GMd2dntHxD3mgpj8QDfHpjwRkxWThkC1OEpWyhB5131SfqYFBE5BjVP5KOwA8DOz0BsvtBEXBu14kiCs6NXRgr2g9Z+T5gqbOZiYwXIRbYQEZio58Q4N/YQ5IUp2EdjqGIEXZ/zSqOsKwmoDo81eedSXqtAb/kovo2wlp72mT3Qs+eWUNkQa8cb7wWAr/Ma06vK/AhrCSRgwISl/0mqXMCsPWhOsqUI8wFEuqUurMQoPwwyYgPGBQAOfvWaSnsEEY0zojGizJMlb950rj0fwQyX/HJ0zcugtBkFg79Q8VIMrDKy1Uk+KkY33YBEPajc5SWLAr5P5BzbWtZ0pVCKnauaCZdY1t1JzDXKwriI+BElx6pXO4z+82D9AivJJc+YHLN1eISUgSzcFVklrSyJpbULi+WlTtbCm1YRxickfVH3iqDdJCwFh1dk9tjCfUgEeksK6rtxcgmonmP4y/De+pzNtfq0g+ArfIdS59yldf5kt+ub1g9WxrX7g6/DO27p2rOmL4+YjpZW0VVntegW618VOWUvPT+zuLUQSvKj8Wk9UpvX9AWwdaHhP4rJaLEJEVIGp/X5KaKxU618nYg2Nxk04AHVk2PAs7HoxDjORRFKB2hB8jy2VUO7rk49qL+M8JmgIorlyOj94Ji0N4F5glITKqV6aAtSLroLUjykoTDe+D9Iv0MhODhfMtbtmftTsYAhEP5c1uZrdponrTLz9PXjilo2hx9kUpxF8sW7iztevv36r5XnxiNjs0poUhiQPR8prQIU0Hb07iyneMlWllNgHa9fzeGEj7N2kkmDAgUrlZ6sbp/B3hW1menTaCB6L27slNQFZmyOiUODyIh5xOx5t2V45lQjCR+AMWs3VNtoujwaloG1OH0/1INbrBD5ok6xtxzwfUAy/5AY9/G4OD35JpQmKVJrh1wkh+3KFcFjG6VS7fyp4SviVmPOBFKMKPGbjg21BKan6PQsQK1Nll9JHFDlA8/8Uljbaafxcp12Zj6tlWRLUIUVEsCKdS4O6ED42CAQ/CuRzi07D6WvVlTdgihE1+Y27QsbABOgj2psvBI7qs+l4zEUZcYTRKG8/TTvtY2NMYZwaOrbD7awZJ+YSoCj5aqGdxbpowmodPDdz/oC/uH9EZZautotGrxefkkh8YNgTn97FOSDDK3WFUSUhH0rEhVW8FnxF5NgZ4XOMgbEA8mTVrDRq2kSZ2CpjioXsaGn/g+cjZC66sx8EXhrapuG0kMpgFrVr7uYbn82spZVe0SDptFczaMyh/3gElYsm6IHxbIZi9NA5OJ/l/32EGW0DXjGFqIXiNYsKe9TkuSLc8SSQHGz8AgClL+OFCH/bzGLBRV01eQcu8+idWNHq93/JPle8kkkjWvNkUb5KDlhVifPD4g6bJkWpVDV2pBT2U4PUFgCorU6EKk91Xd6hkEU5rASZZDnVj5U2CWRhpUhTMxYFSqZCtAG08uGoWuOaQPpmiD1siG5P9J9yi2kJh9UNGV6mUSU8UU/fR+pMqSPootQzfQklkSHyy6eoNK2kpsrmnCe8aBQzPMCtf8jYeQM9BnEYsWn5Loc+6bdCnNqlNuZwTy3qb9XuCT6ftvABkYz8RThKifuHyuDAiJIlTpfEscblli+/hRt4krqi9bOFB+51DudhwnajVYJfT62Sf+YUkffHPVwMMrx9AP57V0yZaHuKUwjaX+PSxH5mVAihWw0hQfnwRQvpI6QKkGNRNUJVVh6ja7Y5PD8VNUtnj5upWQdpMnrhv5t0n+ZXLd5lIHqcoSCT7vILnpFxftrRuaUX3bq2frvP0bgylJmTgPLXDOgCnN7slMl1+NdQrYysN1CTARgNm7tj0/K5NTfOhAgnqNmLonPOqopYNd9W5IE5Q3B6uFwGaJDBqPyWpAcw+BMFYARMeueyd/s0IXiKofQHNsnfj0/sTpDOyfsPtvs8ul2v74Im/a2CdtrLs1zJYIoWKxhgsXRRdyQucyGn3Y1HFHhs9R8d5+wIBf+QOLq4CaTN0+S1tlc6niPyrByOSmtEKL20dAxjSo4iuA33UreSpYcdC/by7H3oZSGAR3dmpAs/91RYqt2XiwN9/LRL1E0SQ8giphz4KYMXRZWlAC4qNF6XiubZpWhENhZcHt76bHWVksIkHGGBzWivskO1VNw3NkM8gxulx7wf3YbV+WHbKbUVlTFLV6BvPHE/IMXRaXSydFoVtLlWlBXIRsNCvceP+qUfhMNOsBu2nbG9adKgBR4BmZnb+Nl+2IDEWy2hDrToNKyr3N0QzdF4SoduizVqnOGTnDRoZ/ttyP9Ue2OKjSgr7ToXS5+ywRXYUhLABubQqWyT3xfFpyOW4vtSsqJ6gyOYXON8d0hmN7EfJJUxFxEMKzUsxOflAOunij2cWEadt4ceY19gBm/BPpM1aQEWKuzbcqBHyoKSxxBlREERg3MptR5n6tHmiF3bKCUIvoFWD8MgQ7Y9QKE0mX5NmADxb6HpnhJxWmNkQFdEw6pTehBQ7TnhHvOE/EdycgLz94k1x4bRGUSGk2eDts+lkKWfOl7njOE77EHLkx5uEvBFxuW5I7KE4I56E3z5vk7cd/350ZShrRUH+/8cfS2JnJp5OGizQ0IjSKG2jiguHHx/zLbMyeBd0TM1lLfVKs+yP8g/Cxy2woitXN0VIl76tiOS1Qq88kaUAlgbvLSrmrqm8ixTFVXa4fhuFsef0Bec1D9t6gnHWuHqQ21fJwjmfrijjQTXqIlutlWxDdQ7FTlnuVTuui7iLdJgKSFX7jJEx1NsR7Ay5y2+h4P/KA5Ekzu/K6uZ6hVNa31n2EGOICJLMjKP0G0rPdYRJUq/JAnMixeEHHqQsPkv4tCUzxdnYRUm0Y+mzXQw4aXxsycR/T+Ke9fFpSuBntWOPm2vQs0BUxQXFO2Y1UIGB90MMdsJ0abOITikEjSDSOSve8z1WqXYFtgKIjqLyWBX8GWJf+gJly/WYDgdE2J2VlQKZlJM/AzXuQQtk5QljZ+JzW0uiZbzI8X3it+b+3nsLplup/LnVnHoLmQV6dGdfJ7BqnrEJmWWLAnMoSmEFg+uzgs4D4srS2M0wwrqBcuHmaAgwgEtZBxqE8SGyDZABiV9y1iY/8dqfantd0h3lZ6327SdZ8FAOTJuevctzdQZXgqA34i1YLIyvcwj07CtjqWna6Txse+5gaEvQzUDCyfPsaiUiyzvems1CHW9ftE1/J2H+nOiUfBIY9t8ErynSvA3ICNp6o5aUSy0L9cdH9ejVJnfCudCSr5k+31WBlapxyZgjRZRAV4M5nwTaf9jZ/2+1ySuIudp28E7dcDOSaW8LsMekDaZVSPOMFD3SLymcLuMQ6V/oEoZInu2u1ExxmZOsz8Vpei+NUKWT1Hk8aX/7BQ1dp3V9MPfAABORMAsgs9sHSp6MvKP4V7+ThF35AoVvaMtqXNSt/TVfBzIW046GlxCSjes4cJBC255tZmjkMtJdkp978tO0m2MabCX5svZ6xJaJe6GW54bE45/dAQ/b2ptORtuZ+gxBcUUkB1lzHW76jtQXJI3wYJsPAqiYkibdVVvzOX2CrcfZFX/S7S0XThtpsAGBFYeRGyLPJbK3wTcjxb2IBeUVnd28DEp4NQF7gALvdmAIAmZAhpmse9bwZ/edtaAqQJKoS7siQpGSCPJf/We/cmD9tW9xdhJmfJR8RqsXVt/RAuhmxM3RTZnEyt/DKiN8vGYGImVa/5Zz7a9psYIr6WxmdMo5gikqnM24vS6HNicLwKrGKs1DnCi0xlpVMHBs5Cn56JJgH+fm0FggCxCDMk0GLKS6yJGiFvQAb3qBFmjfwTAC8YkAaqn3B8v/OL/FGEGrDaA+KbWoVLb6KbrtPSbjf+OovZ4gaRdFHfTvx/0VNI3t+FTFoXMXNgIKxl9C2rUXy22jvYrr+fawE6J3+u0oGLaVwvlvIbj/1IvkhgWyf6gsOwl/ghV3a/md3HuPAQ6/rzycMbglAtXfhxK6G7BzbwUDxyedKVPlvpVKynUH6BoThq5ow7PXjPTr4AH2X/CS8BR0lmBpVF6kqNh54jgWoS+Yx4bbhsFVmnja0oY1g+mw76IFzyyElrMPut+6M+QWRvnd9S0NFhllW8silMZzudckLJ6556mmRSGDF3+ie8H4SHrGvNMys9jC4AWWZo/RjVdnWezAZFGABl5ALXLpFTWlodP8liHqDL6hRwqPKEtN6lnHI6hF8VHZGciNaPvrMaL80m3TotcdV4ppjfwZIW9I3Z2SmpqNKYq7O5o2xSF9m8hzDoTYBeSBU7RKs2P/gUluG0eKY3AHoTSfZ0bZnXvnnb2TzgVIqL0DvZqgCqHfVfDI17cf1c5Nr7WKfVXmWZNPDWJbThYGnkaWDbzpvkNo50mtRKJfbV0RtfeaCePgQ2N1rQZG+srORBgzV3E8JDEz2Y6FQ6DO21IAipqCdNQnbqgy9tjyXqhvsxBHY0fz/zniS3Qz9K56GfTMEyIpd/d/FBUe6PywUfLPlN7LE6g5UC9G+C47qlp5NxlszZ+dl4btzlMF5E5f5iD9p+1UpISRS2C9TR56vRDfgPqLVs9aJdzOQlpMPIS9TdlNof+ADw7itI1JEaseCqG5m/oMwtrbFCKUOSlbH0ezMwFf9HrefDMRnEvBOxtOlphmMjYIR9U+0IPBAY3ZP4FZm080MusHVgHO9bpWZK6z4T5yS2n6Y+6zw+H/EEo5srMhtZDRIv4bsmIW3nhUWuqIzq0vsDCJ0XDtFAiVP+yrKcS6s4W0a7XUXwFT9eOqcXkV8Bl6UL7N2BEpKP7gzs1uYsmJMf21NHBUtskzeGeqb2xA0B49tc2seGnadULkUIsdhidn7J9sMgooVyBTAZ2g8XcX1OjthkeImktofdJ7V8TJ0/OoD7MBkZ2BVlY95HGC3DLx4kjCbFkpyXr1N4dTYECNEKRtVjm7AybO52LgEvIbeiCOpSZZPleKLRysF6hYakTn6DG3jgObjEczsTWMZQagCQjwn+7Lt59iAkk6lUgj8tZW+n3uNqFHzBBr9MaAMDsWKohCiJR5QnK4Y1yG4GYIsE9iOrK9H8yuWQMpJq0lf4wkAXiooQJgNGefjIYY1OZQXVJrlRfnNfmmGp0v+26GYhfbiikxCtK6LkycxXFTbvSY0qFUWxFXHn6ExWBq6OOo5Uz8CdhLAtbhGddckeAPnUwC6StQzUP0U9uwJFgwQckzFmGFdWc3VhcxQG2bPd7ipGjc8KR8Y1WYdoWjAQh4yo4/F9SiyT/Sa5lkJtNgcFhIANZpSRjOaRT0HrESn1pTzphUyzoDukH0e6vCJqNn5A/1ggEgsLXk9URnz1BUpGBk/1f08RzN+7h7lCEEbSsv1bWXLOaZZ0PTSJJcGByotXMMvvC8frJBeRmSMoLCX285+4se73PhiTyrIJu57tUgP5uTRbPh3vU/sGHelfqgFYZe2uh0UAgyMxl9XxmCwlIOiAieuiEs0Stzz6FiySnRPJSvemO22ayY10ewWzdkBOpYgL/N3ZbH8V5ZuVvrXkG5PiNnFHqvIAT7ilk7ter0EpvCATU3ZLUcRhTNfGu1ohmCCcLr2HqTmYi2DZrIhfS0K9gBRSCeU30fdirGe/7jG9AZOuhCffF9YfTQBrS9ZD3iOt1Gw1DLMhdr1b7LSd2h84lwcyR0mOhPvRyCYro+gMgbe4CnZf+AHHMX/z4Zd6MypxFsbHFJk+Vt4t0zFWg7NocJ2Vn9+h+fZk4hflsDdAY6kBHzxWCA+30vV3fZiYzTmTCwcXRaxPIcioa6R4j4gR41SoVQtF++CIL+Ol3W6CrTFjiWhEsj9axDKGfLe8II22Um0GGZLSzZwzhYs2qiTWfXnYg46osJWK2giTbCnPgExn0CvEWAk1De+VmvDrjoCZwEN9Hq3P8ZLbD+F9fKQj12eP5Xlp6oL0lwn0lcJ8MrdxTz8yrqo7c4Hb3sAiTzgswChe6qE5wLf58LXNqNaHFHbrn2xnMI6bzGYXVWZGHA+dZzPVtaN3w8IRZIoNUDRJ6dqsePiDLdQO28/scVHCos+DPMXT1+3IHe/avBoDy20weq0BDcbsHT4QtNSucHqAtOxySoQ0CzTLGBkNv9vqP5lncjHJueQ2V1ka4F0p12Y0M/zWd/79rQdDZgmZCaAOlBifd3JSZyP/qpeigpJ42gYJtt7NyrVxA3SOxJ63yRNdb55i9AmgJB//16mxfdTpoQxnkQhWsBkth7Dl14jRwGPd/s/Kf/ZVTqW2Z4YtM5DK2ZRnLCV/d+H/TUR8er6UrdguzZouKbE+jywTO2dNOL4NRQ1mu4NKYBzfwx157/1CE0gqvgkMYMKkmorzMqt8omEhRrGgbgOcGe121IrJk1Y2mYeANB7qJKY1woXtzd/TWhW73yYhbeUp8JJ6IMJXFZ+YtEFqHIRggieo3818KIVLvbcPm6/xBhV5tvNSzhonnyGeYsxNiexzdM9Zme3amdrQkGk1V+Ha41oplhm4vTNkEUiNU8IXO1wcmrxv+9pRtgfIL/BscDfXC/OXhQvrpJwwRQ1aUHJKthpD1e0TmpNr+5J2wmYwGRixXT2Fhg5H2eMj6b1mjcUvJybOxPUuYnVDqvgKHIEYqsnngfluYhlSy/sb+o719a0Y0piWZfqGT1AAfe9Lw2ojDildr6+mviWA3UnfvcLiTH1d8PIWH6w/3O03NH+scKp8HxemRF0iU7A8m165ChWWucAdXti0GhA7hzGggQb355wRoipAX537IDU7q52vh30sN23on/SmC4WP8vpPYQl6+LiANfPrd+7v4mz/PML+1P0cn2WK9SEOPKFwKD93Ilv0YACV6x/uKCXgFPTaTq020PNJFo/+aU+HBgkNisfvmrWzNDob7qtYu7Klua28W34XnXH8sb8mlNGBVpS1ycUIwrWjBGZySjmhfPRXVzuKFAJVUZ4Dqqga+BWgra3Okc2Tj5w3GuR3E0DQ5gJkQeKpZKzgLRS6ZpVPUyIo0D8e7RKnBw8/wc701ENClePOmAeD7o1OTrQxUlaIln4oGBpSz6I3mtDTyhHAgtUWlDSwnp53Qy9QJ09bzO7Ll0i1mMAKWqVn8T0SgFpIWZaY7B3S9gtwzGVM27B+fCALpWFTWbUYEPqyvwwcJ50dtAXKR0M8wFY7Fp1FqXxQVCweknDF8KdwmD60NLADJrQq8Z1H3h8/EtgBGCubdubpNHKai6WAc0TZvKqCQqISpH4R924BxH6Cp/O2dlZ76bfT4KEI7frxVh+Dc+E5rgPjpbtP2A9OPrCUvxuiiTFlk0GQQEnepLz/zrvMflFA3sVWTR3zS8mNht80FlbhL73a+w5W8CCEi1DA55xF/AlQM/rQK6EK4aUzKfaozQ7EWUSKaMudj8AEV64YmFoByZqj2Rf001VGt2gUu1JHL9rya/55YAI/7bJjVPkfT2Puqc5HG65HI4/MgbmR4CfsWQ1IkrYCNFG+KnUJtCPF78fey8mOvQmlUeYyyR15SmjQWFdVAHXOrmEUy5MAnUP2dbaY3QQO9H+akTa7kF0VXqdRkdsCABgIHekVQAxUHpY6/8Q+mFgZRDT6xjaQJX+RMsm2yfHluq6gVZi+OqfmNRKIL9uSWMXmGNgZi1P+lKNXKq9xNe/p6DDsduYyxnHQOTvMr2x9G963bNiGEivKJT5R+yfJowACzB8uvdWMeuQo5hMU9U6WAjymIcwG9qsBYeLHRcPG46CixF7SDxY/iMe/V31Bw1Q6IYK4zztxNTYZx9KJSbzfkfobmh2qzqKGO67mJ+pe60wBSwX0bfSYfZpqmkYkWc3+gCjx/M7LuTNexl6jM0HJh3zwdVJTisVjJw8tPX2pHhvXIoSB5zKAqz4JwfRv8Ly2IVEdXQz1/4cdih4uAVK9FJEra3hCOlzjxn8rIBYQCjHxjjpINAcQUGhNyKw66cPOORVt1zi+GFqZjQEQCD33NLbkIQ59kfM9BYYhZa0CgMi9a7GhM8Ir8hXuo93aHNLrcwe7L5vr/m7eqZd0xa+/Jf4OyiiGZbNSpie2nbTx7naQFTY7wiX/6CQqa3WyvDHsrc3Uu3DQUIaWU4hexLYwHBMCixMF2RTmR2TYAN1G/QQ9skxtyHZdhpYj/Q1ZYmfvb4LvFoMCcEIaStvKQFAco76syFcULpkOsPEV8fJA8WonPQ/Eu+UyPxedfUFGdyTcfSyIVA87uSK/7DgRsz04K768A+urI/eVTfwf3YPUjV/J8K0K1Vl9kG/MUq/B7Vd3CA0YCgT19MRQ8rLtd/GBxVuCXP7+0q0sF8hcU0hBiikjvXyNyGyzynLSqns4VxAUngddPBiklPuPPdV7byKoT7sUKqdPX/INszBZwmHfT4+yWtPbruqe4brV52VY2BMabguAz/WVFWJQFnIwhoHqinG3QHDp1uOAkelO6jwysK69lA+SZZMLKHlpA9hQduFfx4coKml9hBS4p4QdvZgwlUo2vZIb4txjzNjFT5aVKUnSMNsFAKSoip1xRyMmP03XNRcAMCC5/JLeuGWMJm70zOHxzshs7NnVpsw6mrC40riZNp/2jR01ltHn8JhUtX5YCz4SgPsbLWQp5V3IVQjTi9FB3WDz585x1om6BqwKUk5LJVXRc9zh3HncERjgp6jbnV1qOdGFISkazs1+Xs2IvelYD8CAg7ewTqFN0pVQlzHrBhGXmYB2KLYdg1pZjgrJq96VlqVsOhOEkiRU8b+xUZARea4/IjXN4JAe8xJPT6GGCyMlEaA7JKfq3PvOdcCErIje1d2QUuMPGzcKn7ivCShDntSkHBxsUc4vIclTriiCRkR7+oI1a8C/F5RRW4KI4csyn8MRAoVVh0Paat74dXEiRFWpog4+sJXjrxUgsn5j0vMhvG4rV64pBuzoDadkqwzKDpD/W9NiiCkWWQUx4OBUonDS5QWtQR4Nrfhr/hiWM9/EPpeTzmqwIZtpuN8d9jSPdA78JAilRHaRQ2HkllkzNdJs0zRisOCdF5IV/qTH5PDNFXpk7sZ1YHRB7Q1IzinUP6zKFw5PuCvqXzJHe8+zet5jlHtuf8lpg0k2U8hG+Zw9X2C1a3KX54ZUkXkmwzv67t84GisYpf9y8GskrHZI0yGVTKbsAadO+0rDF+zkmraRuop07R693d948f3NsOb4TUoHF91WfmUcVtIgy5n0Q2pP5HbbELWOaRtW+h8qebr7qhuAuRURePYAqMDVD/+ki/9VcmxTsI2sieyjX3QgMscsD9Qis+4tdoqgCKCCrIc5ONOvtuAp/TLzvrAQZcOh1WvnA6wRUk0v6gTTiGyIpsVrdMJ3HAax+UFXZbJMiJ5XuxhaZUA5n6Qwp3NNVBy8jqw5yk3uJiseRAfZd03Sj+jirqRLfOiqDOH4oN3J6C03sEn8xkMIcX0lS9VQAJblc4QkCxB5PXsIJb3qA9pU9nmlWZezEevR0MQFkxTyfYbdTLMcfwHO+Ajn4lBRUQ3RHCA12n6JuGA3OHy03VlInyzSjKBxNAl7OvD8rs6sxHXJYsyvH7HKOZImS2iQEafPtWscazc8YufhPTsRxaa+KeE1X0GL8OUMK1aIYtv61roYiW/zLmVHmvwvYgSbA0DQYKn+98Zx4YPVZum1NdLd6kFZCHSBsD7X/A76N2qmNZTdB2BbnmLX+9PYYnxtV0IDCzmQzSi3ql4HfwqzIss/ErJM430wgpr+QKgZBZQIh1Uyk54jFtTzI+wwufa2KNYQXYfX2wCFERH36afbwUpW76Z7eK/vuJHOR65hZToIYU3bRfAfz5R9axMFnFb3QAdjuW4XxBpBQkZFXYTD7nMmXNAGe3jfiRHntAcnFJ2xuSSaQsLvEon6LGj0Mxhtjq1AuqCxhhJiJHPnNAkci6snOhZJ8jXnVsTh1emwspPLSRHwXaYhKbrbEE9tN4PNFPyeHLD7xbpi9hmtpCdzJ7UJgsDZAagCKLLliUZiL9hziX1DAv33UX4s6PcPVGVSOaZRQg3P3q1FgvIAzNViaRobcPlKYo4SJWjfH9JbMaW61t6z2eFmQFBIPLDfT3EKzYoVmwIv5eOaRVJxPO8zWDMw2d3W7uby4MF0SAEZ25YnDBH9redhoVe74H2QV43djA7NtJVt9voeSTWwOFfP76AyJVpHUTzmVAjwJ9aBL0rFpNtOc/2FGct/VHy+Dr6l52r2uAtGZdme5cLuA3AkhqA8qszlhVoTzXA3j0neXxIeukUgkeDI8rSeTmZBC/E/OOYYfCbdpn2AL7f2LinFWLSucNrscobuM4zgQtpMlhUZendMoAb9Nf6pSMo0gMj/IPyy+pQU2jDt1jEY4KRZvpNC7hecmU1Sd5quhxhoTWcBkwDXTbukp7QAj3ViU781EPY593Q2axlrgoifMhEBRs1lfuGjMCZuU4+PYQdJrE6TNQDL8amQ6Xky/tpT2xgdkOS2wZPAYWYW+Jd8e9JrmvmhtZjoLdHWUl3DWuL8xnVqtIlPAXHmPpvRwZDQPLaNQylcjneSKVvs0pZoItbz9GxAhzKz2XfFu1zjz0A49jS1cLlM1Kp6J3wjpagL+dQYLuq5/GSntbeHzFJV/yrb3EbRXXaKi/UofVzSNXEG4JfYJtrAONk0we+3fKhGxwGDxFD5XiUTNVpjW1zgcFYESoV18OuBCW6rCdPSYkCAX+hQ2t6kSLdTjXvaQ/krVX1ma7gPaXHeOOx1WHlmNQkDDZAhxiaRilMMU7ygcA0QKHlTQWGS7LXJMJSF0viNjfrMyb8m8rWxLMZOiLHGrcQZaU0aabtwXG2vKRRW/8l/qyV4yEDL0ehHabT86WNu6vfKfYp4pzDVs/jPaDp0ukBWVNRBtlFai59a6qz+E1+5thrFWPTDjc6wtTrOUWAdIJZi6LxkbzRKjcdxppF87VatIaStFzO13NF/Z1wq46SAsEsPaFAvGWAp+y1beswWDWMkmzip/dBa1PxNndf0YAlNg+rLazJ7f5GC8qoSIv0jI6aDTYHrZ0EYYW1MwHxaN7ghAwrnqadPR1D+4Xzi7neRsoNGUChyNOWgsvL9WYMp827KrF3tz+QI/oWnioyIyHS40uy8bDD4/z3NmI2GiRP7wxOmqa586SoI4AKWP79QBnRt9Ctxuj7kfY2Da6L2J45+5L1y0SAQfHo/BE7r5B4rhwfFuy2Z+Syx3omeiHzHCGk+IaMGufhtZvUeemb0Ds8XaX9Zb6HFHPSTRlm7CbOf6KIaGn3Ss3XA/rRSneIdqt+0yOVJx8OpZJMAtNCLlAUUdCLUnzT7Zk+haAxbg5HWN0KsGi7gF+ib+KatvTWCkWvK4btgh6ho02Yscw47sL+L7dg8dyWJO2s2RgLSxzU2RZMp/G+2NkZUyHsV2qIXdTr9U/g/izK1vEoIvlUjtvmJInFu628Xfim0D7BoI2K1vfSVbbIRfLBRTxPYARX/AVee+iARp0S75JIZr0HMmjFRVJzvZAsHkEMqLWpPBYkHjEXVvf5gNgInR/YohowiELjHai9cQRXX4D59wWBJa/BUX0fKXZMW7nF8uj1FdQl2/CigaK+8CJyzk54QRXjZkuM8vVrM0FDw4tCQVzaj7PohUDRHrfqJ5VF68nNWP9qD/2BuGdQEP1U5SAw+aqc5dVke9c5aZbIUvbj/4Olb9j0CWHyfQcO5pcIQaVYnvP0uSNI81eJxnA47q1/Tl/7eRpypIMXvZFpra+0+rZ79yObnQya8d/hQxJGRdZd4FBJ7C2v2Y/GNaFbWi/KqnED0oJRpqqbhx4OwRBmES/dLFYYSdef2zKNHIki/bZcs8sL7scYklQItNVNb9nf4SzrNlXOFw++VeXdpSpml5ZDoaevJraLOyxsLfU7fGP3m601Q/XVTRKYAu5ElKqKHf7QeNjc8vTJSgaLuE7i5N1zluxf2I3ngdP5xiB63zKho5Pld+NjEpgSUvyJ99E7BdH0iC8PrDmQVd7hrBrKiwULTVpgbhUfEWwKG8vvHGrmFCbumlDjgBB07kJPXEb1L7AxiCO4iSyQsHfE7IMhf3CH02WJM45zeVUXs99oNIsug2M5QKleNvt/qHnoYZxUsrBXjN5xkACpIWVw2rrXwy7LxhMh/CqJkFPo7pE/itWAeUu4vCMiAZ1ADX6i3ZpF3drkhAFfmhfN9UlTpIgVJEj2qnUoXMZ+okUhVfPTJiyWBQZ1/VagZXBczfkt1o7UEbZHFYJLZTzQVREw/JGkJnvi/dhsOJos1lbOjI/mqDDTWH7yF0sVC0Q8271IIOjlTJvFPoSlT7anrLB0VCXbPH0mNzSOREq7euk9AmspnvC67NmSSTTo9YLcStXi/I9DoZGTsZzn9RumQPNyl+mz1oBgoA2V4DyLcxO2SOkc7GZvcqRgy3Ofnb8vLmZlMNQT7a+CGR66LVmsv8Amk7SaaquoNTkgqQoX/EzGNQIOaioyMaRQRxKH9WQwwGcKhBMi9RxAPxfs/mNY2Cwkc69pIcOxUMZbepSp0r0jbXa7eNUxQ3QpPynActkQyJVzOz9rUHF8GCpybGAo+x3HrVLjy6tqEZuqpQu8cLKWmrNWOF5PwTN5f0N1+H7czPM2YONJeeUlU9OGBVnM68iY4hiUB2nK5/wGovCetQ1tWi7r3t5AcBIRWDSL44F+zvbQFNxRbDCZeVu8tQ/kWYp7VK0MV4lL5/HPUCG0YdRRwyrEJ34x3R1WI78u6qW9KTc3Ccb3CGOSq60R/SnU7qHfeaEqSM05TtO3YZ+WMOQWAL9fvnxzCDfsqLUi3nI946C0qWeFRfsWe5/jk4RzzVpz1WuKlbzkseeS75Nhv38UIgX413WjCiUmO0bHX2fRm3ym7OgOiOsvgL43PsxTMGiOCQt1+lAjzhM0BUiBKK7iETq+FRzVMmJbmYmm76Om7WzcGDo6zHDmzq/O9MFSuURYyhjkbNxnD5Ef0/y2iC9TKihvT6lMOfmaIdj12FhSA0/ldaNB8qO0SPudKfTTKK6cDWLkrtDHOYAEmo/O/rbNX9oexHvnLaqsaheCHV7uswCEkxAqPTcS1eCPvV6IoIdRd+rh48ZwW6IBOco0nKs64aRec4ZuP0BxbmoUUxfUhVqZgSt6V3VvNpl4fSqGSBp9pi0vQsJhmpMpqULecfBIlXXGqKn0Am4KyOC4C0qww9GysVkJJ0i+G8TYhKBDNk23KkyyFXjQdg9uWf0iV5pQADmDFPgTzkBT04q4EYuIJOYpyeI8zpx/yrYOWJXh1XJMdRxDxbdzDOcyHOWSem9lTbDattlN2RS/Oc1c5e7ISqKoq9MphntlUxKqIxuG4hHfmEb4ndiyDFIt7bClYfzi3Ay2VHQh1KIDXxAwEqxMmdcsU8R7k3zWZLBWE/dl/fIKJejOuRrK4UwtFAa9A+hrsQGYfpD0jziAq/uwQtpmadmOq6YBPJD94sDbSuzipRNsLRaYvu9iIqDWUdnk9fz4KDp81N6+sX/0eDHDiP8fw+9utQAmKHWYMz7vR31BVtphKE7enY8LwZRjVIPmC/uW/P7AVWOQ9xq/59B+DscrnPm77MPFHdGlAKqcLnYboEQ65RiyFO6wrSuxRxWLny+HGx00PiaIcGNpYCLw1vR8h8DZo6aPMDE5sQvczi0gaUDH+nxsl+HJKCH+h85cBYTXE+RpNM2bkAguGoayPiqw/TCOI43/jH6LIQafHNUIfDyzlcLylUiwZLPwnIbrXj0pBREoMRuPaxIBx6VaT03K+V/97lg9wghA8EGanyMojrSBlbQF+Fbv7SCbhJYf1jhoe7jYHG5Cu9jdDSFy/CxLhvW7w7K1TCD5kDriq+UH23H1ssUKaotG659ddeilZYqwgXGnsTEDlnvHPytpt1l4zMkKdq9sr371+IkBSsL8z1gETN/JzE2Dsscg87SfJfKyKzAC5fo6YGKbKAvBbSW6Kic4T0fsK8jLAwA269qdxheNNrqNFE3hP4Tf1VEXXbYlbP5ALvqFVEQvA2huxqVe9p2L7XeeDgpE847OPg6ipq97sJ+qmhz1rTyy9f/zzaeVP3fM5qSIsd0G3EqKTp1BiJ6NGqhYVzP0CNGHSm5Gv7uJ1nKXtVIYqZ9oLpUZlay+0eybvAUJHxcSvq5sEtxiY/GXGQRkWb5lEdevXpVFbd78tU1Jzxuln0G8p8yPSkEnHCJ+5MnT8TZ9pMLT3ikAstCjcHbHfgsiZvOPOlR6ubNhd2YKUnnBVFQe6Efnd8qpErDtjMYL63hE9+fUzkY1ZrywHRwWlHphIBpM6GuT7k1dEdFJHIHO9Mw78A9z0YL+pbI0Pbm/K1XCmVReBUN20KIaII2CGnk7ptMKBiE5MvAFDC0CUe1f0iisSegyWM41JeT7qwMd37kZzfq9yqwfQJD9kCxIaawSm4TQ9Up1C3fuJ6yPWcIThRHDKb09J+2pm5mGfE4exRP9aFj0rQmypOiMNCIG4EHKiTiXsUXHmb8MvsxjiExhcrR5mzFkiMOTtpsNZbUh/4vsdLhSMHiW+ou+6BGf2Eu579xMPoFYykEyzmNj61k5xiDQA8dHKdmRy4bp9Nu6Tzv5i7A9eNR83EWerhKxNwIauBtt3TwSpG+5Up4NrvMnAj+l4DNyozFIGuLEhokvnVmJzo247LOuxKvPAUuIdQ77J8GLh3l6XtMjUFlUl28zYcDX0AKL4VGxbVQTFEZEGMIh1/D6vh96SfN3zFpTYpClyzt+QLI8i95yjkbRjdUb0QldK7EpzLKsPTwtHD2fFTtHdrqRUcQiSE9c47Rri09vDPuI9jEW9Hy74unklqtmh/c3G8bmyk/Ga3gv6XK9IFP+wE1UYqtwcpINzlsPyV1cEVuzxpbrWu7oxV3XHZBNLSILrK2NKTs2RSpq/ZIDfEFK9/OO0p15VawXz5gD4YLgBeLI5u20wxC8W94vgeoZeKOiJ2n3ysT94wAQOl9Yf23NDiQSpo65h8p2CnC6xwS1cVm6s8bQtcoAKyYx0W8mH8HQW0y+X8XR65o2EfXYZZbHnQQ7Un8QYxWqxD8/v1FP+frx+zvxMzxscxmy7qRbFQzAFYb+cfcNT/irBjnkD8eupaMf8OuHikRCKOJ7Zi1CT2PLzRgX3MWOXuzGj6OrY1mcyvS+cZdrJPQa47LheCcmLTBxK3tVsL/DdTO1wjLTrj5PqsWzhnPgsveLkG+36Y8iL4sxzRh53Notvlspa4orQVbfhnlVobF0DKXD7uA1IWYJO50EWbvRlKSBJDyvsGYmBlhVGxBBRtkY30TgG1OA6sbD/idOfJXQgzpMO5CicsegzTpKmKDsIcXizWMTItbVS1FOlpk3kE0Pr4XgWAm5Oqg9NffI2Q630h9ic9CaSF3K2KIpgyeL32wsYLK4E3bkE3MOuM4s6i5Nk5z89jdSPPtd1kJY/6J/nKze1LGm14DJa4l22JQNuDyvVYdk//yaMsT5lfXdVuLWcC0j0EcXYTTwRbdC1uP5fP+D31cWNmMbio0tBIxjLeZYQgU6wjbZAgqRuwLjgPKbhxM1m2H5HYu1OkKKc7v+AMwPoZUkM2GKueYQH9IW6S9NiLkspGeMtB2lR68Ni46qg6i2auAg65WDvBi0mDosPX7uk7obXz8qEnbAO07cBDQwisXroBFsf9IGIVSxB3KFKjURk/VkLgD5Zx4Z5WvPBUjkdPfW+0G4A5ecy1Sn6mQzpHZ8AAMoqIHEBabDRJ8aYzDJN2wFtwYlZyJTssbzfh0NLia5WAroIl+r1lMpp4qQgPBDS3qHsaZiGzhtWYYBjPGKRxZ1I8Ivjq2YVeeFq+UA5KCLAw7rQ0sbiEEOhQtRfmNa//JlrAmcgv0GmMJMTeEiHvTQxyEwzxCpKK5Y4O/S9VJveAW8010AFFWwcHZFyWJ91VWLgQBWU3DLDl+sLE+Oacv93oJePY1OOOGRwdbbIDjwtrXtJHrRs3TBGBQa0IqP/6a/QNbFoxD6Mi95LlFzHFNtvIkItTFQ6J/JUN/FgL7EWZ42koM5uWLKRf6q3HKqBVy/o43Y2rU0q1lin4wR85FUPd8z7Sa4DW140AXT0Uw3RK+vLZ0N4nhljJABYxmYIeG1VVMXPzF5uEksWsGzyVPjGpLe4RB7jl3Q0/CbE3Guwo1G487wHrxpDNHqmcwRe1LWynNCAAFXPhMfb6DekOQ8RkKUbdLlN/1S5I48Ceqj3wBvvT6JANXRTTi8++n5SyoMjntsPxWzr7OsqH7qVHCXz4H/03hJEUlAp4cZToKjgSz3CHn1OdNs5TI+2q22ZC3WiOh0HUsBBXIaYSrSKnX7m57mt1mHaIOLU4C/FGa+SB5RSxGiEYaCj3iUz+7juXJMpQn1ntCXfWN61hUgSZF2VB0qfWIO0DoclC+o58OmY6iBup3k+SknGHqDIBNlIUj3nC3sMr57dTM/cZwjcWegQGs6wxPVuM6hLO1h0oA3gTNzN8CQJEvY72I8fvBLI9UV1JPa4X9k6RJTQWwzZakiotH3vVZvYMWzP16bnWbhsUQoxr5tVngQBxw6l85uF4n2vm9peftdhlVjrpQkP3fnLybkqqlUZ9peE4WKkPFgLVVKvYxB8Uy2rLP1YspdRIrTG+oPnuwhgXZPL6E5lx4DKn6maTkXvk07lczyKL98lDIusO9+vi4DyTFFN88cYjOaxuQV2+lhB6CyucwFF4Mf/1CnH3u8kWNWErIye6STp3gNZlGH+LgQqF7XAerJO4zVtTp3FenCrmUCDavIKvVRfBhkARd0eQA7EAgh7txD4hFFGfiufW+gJMR2ZCq2N2Uz6AkdiqqHGkTwjfQJ09hNRuPUVqlfN+sQnwJaUYC2q+gt7L0usRixBynknPMw4V9yMVxFulJUZWIXNmDg7hYU9f7OHPKfYOjBXtlworag/8G23QaoMDPkuOfS4WYKPiXBg3N46Hnj2WF3pymHRuLSslQy4ePFrwMMsa2dBa0Dw0OVbzE2KftEawsWpj3phMWsa+fwR+JlebhtWJXzOigWO4APXm7n5FQXxZC2weypU3riA2Y4yQNdteZ3BCzNToi6s8lNvvWsXoeXa3WGpbiThaZCnmUgTRVhGfIb4v9ciZdv4+yq/sZwScZXG5FjMHKit3zmJc2TzKsDnbrd+bLsxvXCptVvaKWvTe9gA8UN+2a9mvTTwaZ8UkN26/4LZTXF+2Au6NvBthPaukHKGyeIPB8eBC8xKNVcLEeKiLeZQW27t8z5nTG+V3In09uf0CQUFUsowsKLkuox25qoiifKpCbj3MEkfcTQSscHC/XLd/jTG3SBBvOpMzJSRk0lbIjjbuKFNledieREq9MHGoS5cT6M3scq9O2dx+FyGmR+9v8mwW7bphk2x9txhx4wHFUcAg3gDJrS5LGhHL3LFHoGu7XMOW592Yj0CpBYuucoc194KPlpYcNWLV9QrRKC7v7ik8RTU+qBlQ9Kq8nkepYY6eQufbIhmhmjxJgD2aD47BjyVuaNZ3xA7hfPs5DgyrXUJS3A5u6k80Q4/EPu8tPcWYVcFbn5U45phD+YULECBmMlf6aCFp6kkI41Slzrh0C6pjVSZCmaxoIPHD9IjtkwWXEfTTuj2Hk+C+d7hdLYnuN6F0Tqoj3VXoGMExozASg1RIYfAszFxi5xAOs/eKdO2jXUVwAQxJ0F1vTLplcEYTQHYU6xgeWXoDEefO9aafpVPLdXNlpLxrk06k/Q+5Y9coYB61L1flmJ7s0VUOZGTNc2Sri9BwhTpBHKIoCyqYp8tMy2g4Ir+eAKWD9Xhpf7LtGsAynEfjcFanYR5vKCEuDNZF1kIBpxZCf+QO9L6279n6j520OQBtUrDcpJwfaE8paY7JReNAdsG+RqR+BfbOefap18I4jyht27wH53A73pNB1vDzAXtbq7EcanDJSpOudM+MlM9twAATbcd5B/xqh5OR/qmslj0H/7G9Hz74LD4tjLxnNZ3JZRGzfwjbc4p8vyFdKrXr9YkGWJzfjf4CBn5omU+Cg4darnQ55hLrM2k/9auJlKZ0LhYX39iNnTRi0NNpb6WWg2bKKcNhI1wLCqWL9SfHVBcfFT5AMfEft+xazPqMG3/RFknVwE9lWYeEytNdr/GIUjkG56MKs7Lfe84M7xSga+yFKr7WVDEb+k1TmMqhb5u6cbYEDIuWMTPwttPZ94e8fZ9em3bMACtxEr4PfJ7kmI8A3sHfN8ug+u6Q7EGqwCFNGcrP/oJJZ1AtBHjvjSPP/OGZMdtKao5xlomReH5WFSodI/2kF4HIbFCZcyl1C0h0QqR41ZszqOH3b3UvU72HHdN5H/FSFj+U0/fYSOBezkPNAvGVIpyHPRvDvDhcefNNwDRTH6Zv+jni4tVSDFVT14GSdT++HkYZXUdwrau/5T77sROrkluOgOpfxyad7Ea9K6WDW07P+c/JL05EFTwfVtkasQbLOQoMdx+h6JtdDzs7UcqEwSEUfaU/oVrwjXI4cfgvbn5rEPI8JadgmcPS9Xbo6Mnzy1js7OMnzGRqqebjqgcOXsz1IrM3EaxNOuCmAT7LcaPDCJa2LRIrqxzes1uGJco1fajwT9bYw2kAMQe8/s2hZpBRfJajqr8a9KEdFuBmnfEl0eFR+g9YOJJK7CgqsZVzlCOazMBASQn5551aUKbi052vRZ6nt1RQJJo34VGw0Zt2I8rMFvrCZh+uq8/3cFp1u6dN3nc0V8khoTEMgNc1DWH5zpUUrywCOpUyIMFueOzcZvq2rujVD1QinCCnp8VIKj+jJJ9tbPboq6WE73JM3D44umqbaUfv55/7NUzc03upHOTM1snQJsP1AmlQFvAqgaKD8VAvNnxiyEKpIcbzxUvD8I7WvqO88yilpGfff2qFwfm22hEhFogwEhdcCqbMH2OpF7co5F+dzLDPZEXv7eMBpWJZ+bve/1HxszvWCfosfyAe1qoD9kc0FFSnLhQrqlwVCpd76xkmP4hRGl5UJ7ZWETmZl7YuawjtF0NR5BZxjgKcJY7KfvpGTdwUL14P6kyxp2nVih9xXqF7igJft4awtifdLfDYyxcdBWnHtprzvI+nR8+VvcR1BUCzK9JqCcXqDIJwh+DV4ant/4T6lIGlkCHrefcoNkybW7pvZ/m3OL3wJhbSMCSL2N+PlYi8gs7lzrnAeM62+mR+t1HIPZW4y12RMZ2am/3ZiCgt1/Q6SgahiPnR0dznNXS8Pe05ydjFelI5IzHb0uiyY6wUdbH8kIAedK7QQCvHIIclUHBiQJr8z5gi6rSwN2yF3OO5L7EInZp5f/03zcBV0YsJCnmXy/D3dyTJ3x8mhRfUoMUbr86JpfnW5N5wNcQjBcPNNwCPh1kG8TJEaAFFkSbwbc8KttAnZa0U7SBTWd44JFXFmwtvMg6nr/jFpZTDQ3Dh9AViyKVNTzkoPDHIItX6oaYgODCAQ8MKhaS3HVg/KHbwEkB4Zin1hBd3dsjDSRx7MuVjsYRVKHPakiXJz/97HWu7dV0qBUXKZo6HT2UfjQvM/eKqEk1/omsbmp9SIwoQuJwFiYPMg/RmquxSLhthhNeFkUNFV8AJzB75FhDdEyQcr77rTGA2Rg26pBo3/caFxSKqbYsswjcKaSNcxvSNMzS+kGuFTTCgPo783NUVaknZ9X2weJT+iYm+e6pQ1sBm6EUw39AxZM53v8PgfXuuqvg4sdWU/HuKqul7R1S8Uezh0JxLqc5fHbI2x4hhEC8ri6cMwU1zjjjw+qy/GDxGnXdeaIm0zHjIsvBw5QjonVRDA/TaRWsusozZ1tPFowWPniRDgg1NNduxhrHNBAJDBfdFauUF3cyFSqQbCbTpOEIUtLwWSycRGftJk1w5Sits4ug8R1A7oS8OGLqzV4f/76k+Z6EH+i3vXFr9WTcN/9v0Jt32JrWxAjTciNKr/EElOcixXAPZGSWtoPGSP5JewWz4PFY4m9CHko73rBh9nGUXPlBn4luB5P8LRmrBvaWwxG4wCw0RGiNnvo8ZHu5jIdF+DwXAux3JC4QOgsfG2EV01mxIYhvUGqr9ZvD/OTZhN26owB4+vyjesP8rJFL5Wl6P4wwG5RyX9WkuP1q6Qr+slzkTAJ2A4OB1/TlQa4CTt1ppFGz1SezrPHZAMFh/BKChHc3Gm0MxRSrbMU31Vc78iGpXnJ5gXgj1IzmU8y6cExBvygl03CAhcx0fY6zew6qVXP84Wezmb8EdiWOeSWtjARcqttqDOH2WGMFGLH5mXHb1JfPcRZEa5LlVqLB6TK+X3kRlojgF6DWH1LKoosWL3Som82rzOJhpJ+Frtd3tpS1jGeKpOPb17B+voy+TDA1SXaY/TEmVmbkxX2d/h2vETAZRKK9RDmYHU9at8ht+qspr8YSsIjk4oZFHNcvwPlM5EP+xXKEartAcQ8gOOMUkIm78e+QVnVWcLZijQFCmejT+1Wbsazd5/SCpP5UfNZ9DxqU4Tv5YjlmDIZBvbkiu2kPbrlHuNioBO7C8PLU15yA6c867dr+Qo3afAtTCz3RSqgs8r+jkI01CI8kLJTB0A8xXxm1D3aKPlqEwZgN0bboeDugZ4M4A+tPVZz58KircIxwWu1ehwTCWr8dR9+wUhHevAXe6f+aSWQ7nFcHhkdccPsRoH8UdOmgVyIXohUY91QZWzyV0Icq7CiofIBFNLX0bxzsuZs0YIKH+aT21/r/16n7hZnHDH87dbx8hxDXkYA2inW6xdTFESvRDCmPcTSc/3d8WaGn3QbY1nWon69dGxUPAg5OtF0hNs7WpzJ6bBugyeacPWLPxHZx8qSl6MVNkNrsTRP/8V4c3xmWjZyxlYtN3ZnfpQTUfUY1P0a7wQzpFL0patqtkgZrGuEyHguoyuPVQCVSihQgLfOWKJ1PcMVDxyr9Wc4cVtqO7UyU2ixIvwj4k0i63jqQ0YdLMgNcTHoxTfdpxJ8e9hOVXq3EdoMAkzJYQ47CiohmkmyIBYhq3fT5WewK/+Xbl1DEHIBSyJrUYuv/6eSs637xYiVIfsPeDc3pQdWfdMhs2McUuTGqGABtX04lLrX+g0mGBaofNHCIfAkNRzm9Gbk/wwX6KxSveo5T1RdxomIYoSh4l9GqTGXNi5FL8DUToB0srVbpRn87apC694uvWqPGZzFVSNlaS7lsH0KtFb+0Cfvil70cE1sMV2TI6VFd2cpg9rZwKKqeAvmp+kkEL2lndeiEpmVm1jkUD/385ihCQKtusuUNy+yMjy+Ttk5dSWvWIHEUz2vu0AuTj+XijcGHM5L5YFwDlsdsNL2FKpHVdbt0cQENFn9l/6QUOs42DuS8Uub/sUvZdWKbs8xMM+uNz48GAuVOri5NFeITwqh1QPo6SPb9VzNhW5YU3AjehY3VS/B1h2rT5uIxXqx3XCVa+WFQl72Hxc3lfIj8NHUptFlFIvWyY9LlWs9YhxHN5qzZp7NO2gfKDT/62R68/4ssi2ALfAamhIdgmgScjZjHIFfSkQaTBb06Ltnwj5MgkEbjJw7ysR7MqQLfjb2aF0u5trlkR5Ob3BLgaeT0hSkh0X9DtJ2i3nhdftTo5T3uab/QCjnMMSTEX+i0VNDJ5f5ki6WZjKKZcrs5VtB/hlhF6OXmc8ImdM4z/UxCq5kxjFQTFTQy+wNypeQv+rzpLrh6EpEv1xcDRNRnOb4EHEqQPeIac0dektkX2hginJBFSa0pKOVsgBKlqkgIbFjzZznkkaEX3CkNziRy2k5xfROOGE/GuFvYF7wAAtI0n9iO/3ZZ2g6keSVf7ede8jxYx6rCxGvo3lFkVmd28KVcWxNL6sdf6ZhEa8Van0KSDGvXQQxRs3nX/Bwjm7olmdduzRE5q4BXIVEoe22jzKXWMgGWHZbNIYKhwdj9ZsFY/bmwJ0254l3rDkKUx3Csf1wN7MYbkLh2KI5Fh7ki/uRr1iHI74KdYalZthMeTT8ENLTvCooULsK7qzb0t36Eu6KjJiiVb1XAj0q89Z/67VGpFXad4UWzeP5zlhLRo+Yfsfx2jeLiYiT+vlwEbSRi7Ci93hjqTMugsVdYL6suaCzHlzCeGj+PiqiCs6/VSGVA8pgK17X/zMqpw0NoZv2uIuZTzpfr3dBR8JV/kk4a3INbEce25jpipe2aOH6GbBJbqUHGD58zy69KQ7pkytLyopy2nAcfz5vdp33Yua0orXJB9YO2/q+OtfvPsAF8/DCiBu21JDfCHpaxsxzQmj3LG5znzp3CEG2XVm2UcUUn7y6uF32C6aEdKXFM2dGGwYEK6ZWaNUk5wHHYqWnKGSgL6GBWfh6T3QsTns79Xg8gBejxuqCWxvrdP/hkTPwsvrsVpcWei44XYFVkCI6soEkPWxLWNlpJr6UDivVzhZIZjNso/kbVEoxeoO6yhUji6a2k482X/Mefq0o5t8YWlhjdEqwIxzWMtROd/o2iBPO8h+bcMRD9jFBFEgX1JGZSwhiWdQsDT8AXGN+fCf7xncWegHeGODb6pfPSJ9OKNMxNxgXrVix35sPdPiR4NGBOJv+fed+BRCmWAPzFpyAvamHHRGnyG9rOKrAvvWfZPRul4UQVrLAvoPPGfYIRcluwBQw/KSJG1KsSbMnumRf/y8EfsUNX8YLDRZw3WMAI4TpB8PVVy3L/xw4zv7ZzmFhdSbSqYuaHBa6nR2ZHG+i36q+r0yAaKfR8moz7PcdLAYcI+xWiGjAyJxf+O0hD7NHRkEoT8NOkzola+BXIBl3SsVVwD55mEZlEqepUyoF8C6ubwkFWW/bqKSAnqxkzf2oTnC2FYKzNKz2JGkGOJNN87jdKm7TIutF0x4dQjaBFs3ZNlvc8iYsvbJHCa4YH4l2lXj3r74pOw3DwXoXhDBwrhUWoW5W+bj2BB4tRqVu4f2nf3d+wQPaYgUVu5zSW8zVxLAOKAaINxxYzJmBo5W2QT8Kjh9I1BCRg+cK7SB/sFx/G3eWYeXxsMUXpa3CsJdln2O3aznwLpDX+dF68h0AYJ8roR3GVnHdRyeLcQid+lmqP71O8bUk3Dhe2HWiODwilYhR23eL5LDqh/1tUg8DfUZUJ2yTwFlfpUcrYKgQeYFnBaiRkMq6eQPMpqAgDf137IiN+VA/ccfeqb8o6vikLp0+9YOfdQRguUi0zH0swiT41kJaIiLmogmRq5ikp/S0MBMqiRMOZk+Xlp0ZHBX36gzA0K5LmukJy+jGTi1OPUS+uIYwF5pl5hMmU+0YFCObXUWAlpeCaDyo9hMEAWeMyi/lhQCtCof2XXmTKNRukJ/YJ4Ktmwi3mRMRTX8LB6HmdgfLoD6CSDIK5bYa66lVlxqTcOIUHO/wjt4aKl8wPwdFyU8VoWBSWWHJ2dFX5CE8TcPmL/7O6hPLIDE7/AwhzGljRF6MHVJ9RSk1KV1wDGAMOrGsZ05fOuLXV+eD6grPjfMI/t8WrZfZem8BxDfeea9QPy8+tfNTtKv4Ai9NLYiggHGH83Gef6Nd8BA7V9KkFNpZw5LbeSnWl5BAzg4qBwBKB8fKXM9zMr06VrjHiP+RHBKZFFLjJqGWJ4U9u0EJkMpcJGZLGWVts5G+bC/ps1GO58uHnzoVEUDMgLod4NUksny0Y4GwFeETtAQDFQub9fGnNtlWrVVKJIrNOrgHno+QDOi/4qs2YOKjFm3/4/x5ulSuY31xQvSQlfMmLrIL1jPEpZ60eFYIjsmewO+uZh6cMSTDIPpRVzqr3hpWoK/R5mVBvngUzJkdbj5+o6kR2YN89z/d8Lfl4qzXxRTVvBRcHNl0O6LP+kf6qm06A9ruRLmsss6xm8H5AuDvwhjZrsYV1HmJBNS7cHE2Vm1kyo5dhBIxjY9Al8WFPhbo3a6pVZZuZAeGA03Zo19rsevDSkQOrXlPJpMT5fBO+d9Gtjn+hiWnBTDGRfmjf0EjSKOcZHHGcv9SXoBZVVvyWbMCcN7nzV8K/56MFEs+e+33CUxdR1mp4OZV3Q4LLqRsBBVLZqJCgKeHgVkCfg97wO6+rCblJmBA3I4KM3GLVNzm95Wtt4gsdk5wK5252yg4kR1zq0H/9T23sRdaRRXhjNVOGpYb3xy2RfG60Rz1XU69QdiZX9FQvfTKVlih+ZwYjH6EvgbcieBGkbbUzFzOrfkJ5/jHOxpfznKdMt7LhPin5ymiYJLGFTt2Szqmh04pVsckW1fM4s6NMq9dvTEpBwet0HkCqStz/g3eNM9P7OVSP3U8tQs41juqX3Lg2HUDVQwrS26Je81soUO4Wqb3vUXfxTpa+5oOG62aMUxAqjUkpLlAXXYckJmmFiShNRkeeTZTSFjxn+dVjyOYXV4jzPxJlIF93iR0HM+qq4hcrPwPD4G/yh2PyENEvLmVdmAe1OVZ7IvRboCJcVKyvnEnymWztinVaFudq3Cmal3/m+euLC/wp/FZfN1ag3LahJx4S6KzMgwZ9uipV/m+E8P3z61X9/yFlibhNiCD2+H0VJSkI6rw9Zr8MO7nsYaHQxvikptTb23Qq123F5uh5dKE89BB8WeDysXm2RwsBQrW1JGWWo3/deYnKUQj/72wlWQuKIzCr3h1b2EG0XtchP8pCmZSnibFE8wkBsrIGJ8DspntU7XHGNEx5yqqe2rgvvK867lKSEBIt4U6M6vcRUky21nuvovQJL2d6bpERYu/6oNvtQi/9OQqi5lj1zkqE/jS3L7cGvvXY2NzPkfhEU0/XKnWVwgYNQD1yfLQLm4EgGwE4vOm655nzhPI05waUU3U8CYIOlt5BoNltEVEhyj4A+0kSWmRb1QlvRVpGrQFIa17s5IVJ/QM5a4VhAqlUU4teg7MKJM0VHIVrnAk3EQX8JUtkWhtBP7Sj5/4x7wthpnd7Z83j7QRVeFl5ZgsSK2F9vGG3YoIScdoFbYNWG6izBzwBiO/vMZu8O8janRPGVnUbP2kPyNG7is+cHdlJWu203ToEJyyIZdmd4RxjBCKSAt6Unc7+U8yT8xOePn+cjLZ0S7g5KhNCBGlx8xlTEK/0cehpz2XAKlg6qK/b8Ff9FGgH3xjYzo2lzPi6xCD2BAnm6LUYzSSVv2brz5eq7E8eCTQMINzWQ+0APHwc5rD5Odtn/R2e6tdCJvuo2ARMHXn2xW59IpKYcgvNXZu1Z6TD1AMVXtFJnDETYrf8RYZ0QD1YK/ySocoLjSrz7K0NWZJljWA1ZAPz8//UJB1LYafX5puPd/PLWDyDUd8TTKFFikF+jGLTPNThbDCPleNBUo4Nmp2fNqp8GYZSlcLVfVv3p+2ol+TEpKPEcSrafnalBCrUzat9hGHUfJRD5Dyr+pLZy6x1wSfJYMs6c87+5ZdLXHIcsuFyOBD4MZDfEkZ/a0m9xAEqJzWtp2AY7Qr4865PQtr/gIbJyOvf88hg79wDAH3imwB3pPZQe4bCCs6W2Y9motpGDG7byVKNtNIUeWONzqAThW3CciKvqSZ9m7uV3Z8hNi1aUkgTg49lJO0LXZ37jptm0gx6R0ft8UB3O8nLvf8gZdwr49tbpJTNfXJpoPfV4B7vltpN/st+U5kDc3HDLbKGauFVVlyJZq7ecQY83L+EQGeTYlgYXtg7LC5tMxyvC7A7gASAfC9PIvwvxOWyFSb3tJtPENAwdIxaS5KdMyYFzDHYBFafeDmbM3rTOGC0hq9xVcl85kFbpSVVx9PR3M6ipLl4JBi6en0gTAsGXRXk5TSjuP6pirJPmbig8/jw14wc5V9Srh1jILGqSQ7wHgIiK20SM1iD005uogva82oxXlm8W5q6IjAIocsyvHP7zsPui3UYS+4CalVKhrjUiPFFvcZ0FzmkivlbySvYyoGyTS7oG2fJeFsvvXaiwir9A3dcEMHlD4XMnujQsX8wjO+T5v/BX1WA/9Wa1HoTC0TmeG8U7lLqQfLZjJiV8yK5jSVYRGdDbIfFSXQXLPG14W/CMweyxterJzhy9ggaGMSUQ0w6uCunzJhep/eXw+Ei6wA5ALe+sYtTAMaY1onLlILA8qSh9h5C0Nfezlkl3JiLUQq+y9k97423wad9u8/paXPf47ORcZQI/sEe7g1Cb9CSHHRKFEsE36s7v9onkvjCmH47mW/SnE0jRmmsfTXDXaGU+F9NBOUi8EuYiHrOH/cW2e8h0zZxzdMSxpEhoV3EBSNNmwZ7ViiMg1qCs8OV9Ahb34pGVfoC2kx5/RThtytT6mR9rY3cadfZToP7o0lEjNxSYOzgCVQTLzxa3dYBoXxplrXWbXV5lXVmPK33duKJGPFvWrtjaiwSRxIMMv5MhfHYQgY/YxsPOCKJK+Ws/trlwlNbPdQvT2aFYrrZ2Skwfhjb3XFfzPwNo4+eDJOkh2YrpTXUObLpxTA/VtZT1F7xza2MYU5qKgEKdBscPJYSItdRkNxi0wp0xzO7UtR7+qhN6GG4TI2fAibxs7NudbfUX58SCkW/GyON5SkVETdtGra7QwzD3ww/gqRq5vBhRumwjYnMbH8IJIODhKJvHq/Ahd9wNfq1sv8+wfZcBo2y3RuYw5/cr/a/Uq9rvQqPZU7PDeZg4MEId3SREF7UTHKVq/lWdxkdB4/O3FPtXdZxjpgYGjfuYtKvG40ui4XY3gJcquMLaXKBFrmdtach5fH1vfO9WEwT6DukB6a1vspxS6BfhXevqqKkmVk2suhjWr9/fGdN0GMBuELadSssS68JFWzDXMcduQCfm6j7xL1O/y0k0iXzIK4D8PV5BxQlwvODwGpvNEnUj/1fsLOOWwu3zQ7Cz9D4TL9KnL1PtprlMQp24X6LbRMd3r/2dX7SwxfoSQUrTnbaOS5JYIBtqgo+xdy5UPSBor+Qjjm+iBi9ajjxHq6Xa0o2pXhJZwZ8owvP6QQuKBTOwGq16IKJP6bsEQWR2w/QzjP6zAeVru48yJHCkGeJSGkV0oboXXpHBFeCnrbDRoLYG7OlJLlHEPpSqioOicF1GWtjWQhxvGC37+7j9HJFA1SQtK+hgUoCRXaPBTxhpISWOoljHY4FRyhcjwTnOOBOkCPXCYI98IykioRbQktS5BdudrD1qk7sgteDt7fDu5rETGXIUx63LfE0/kCBa6AbhSAKPOe8sP5I2DMNCKJz74I/nqCwtu2JSO3JSZd3MvwPKZi+SjEW7tERKpWw+56WmI279aSHqVRDIQBrFUf7Mm/xTUjgpFjiFFz0rOoKzWZ5W7qcodj+xm7RksbY+uqdCCAZ29HxqFQdDOBKvMP3GSf0vMC1d5bTweKeKYxlDKBUQHof6APWVm3T2s5WNZmZMccNuZtjSXi8GPcllYU54jnq5HaO3sL/o9vjjlU3E0hjOp0yzDRaNj7iUQl/pk4nCciKWqq8mxhI+cpvUb/gJgEJd/eTxVMfKNUp3lo8w56+UY8olZpPBPdlrcZMluQIw5T6HogN2krjHeEa1ljSUK/AR73YXUJfyY7tzc8J0kj3fWGXmg5HDXeSMBwtU+puzlvFwHNykMXWEMwIT4MaLf5FlLUSFvvHyMN6dYOqzbsOKbED5jZhijF0HGVz6QcTy3wcxTx89AwMm9FeV+oPZZVJ/SLUKKpj80mSdvdSB5S6YYxCbK5kBGybjRAmNWsG+c+QybJwYA3qzNBwAwzqM8gmBZCAzkjLEJkvnnFx+dC+DqFr1aRy8A2dmzgMjER5Os317dMmPF6Jp41WAE0WxOpTs90HA2dKodrPMfC9UJ2hQPLV94FT7O3/ukWFWELjeVoy5JcsF7CBYQ4bGT2DDiHQBMsWy3T96mbF5RSNz+yBPZOXnv8c0dbD/1B4hVt/+9POeyomBlP7HodvdrZX46ZUsuTmIAhjo3VXcUWJ6KImFivt4FJcmRlmi+yBh9xnMUu6Na9JgqLWZKTVLYYA2DVbmiHuPIbGGOaueIlYmurJwq7QIPa24WhqTWXKDpHSKwFGWcwkIJYvl/mL0euv+zarI537VYHLKQPodgD/w27rRUb7Im1REA2FZyfUKnuPN3ht8lWWJ/2ME8HZryJAEQC7rumerofDZ8xR13HOMlTdP6E079FG/qcwVdspZXuiRZQGQtPmBgzcVypjQ45HgKECHxW5bGHrxWvgiEjci/T3nRGVdROmWD6ApmHNDZPM+ZHj515Y5XJfOH8EbFNyiAUIVrQH8SYlF9e5n1D3uRDnPl1Hl9XURl+GS/TD6/ARXoHG4xJxHV/mh4u6bNuSiEx+ZgQcIjO4buZcELxU+tbOJNgaQd8zk7A+KZaHkhJc/P2ZrbeB2bB+vtbTtyD0Ws0GGje8Yq+Mk6yFgVLPIX0lGbDF3EAfiq9B8Awl4WrU8e/xVpE9OiAJb8hmJkuXFa15LhQMGVxY3NrPTAb9CSi5B9Hf6mHNFXi9sWezBC6399KiQF7L+tiqvzoqd+enTozM0R9fDRcH71UhqADSyz0vXTZbunU3lwmLB1PbIZ0jmMkSKSA9XvqeSDUQ5wG2AXtVvM1ayMhWavmkT3hhL40kPoJQI5XJmKxisAgcEWao56vZ9RFjt13PvTMBwEqiTCDMSAVBhKxor/lnHoQ2W+JyW70pC+sQ68ClgeNYy3LBSWGsCa6oLS6A6eGjRZ4MZUFEXGArlf2S9CsHJsrOS45df3GnQcJNf1TkjSp9NVpXVD66v5TIoevhvxJ8lzchYQ0/czp9wkLz6MacGcX9/Ou4d3zwg8ie0kIS5a3ipSyQThY3wKp5nk9ozSU90z3F0if94bKB4X9cmK25OhS+ZDBZt7ug6gWivdZiZsyoItes4Ip/ayBXkEDeS/3QmdwsZUNryB41TcAD3x5zkm10b4Hu9V2N24XXgA/08L7MqrHB4nopsYsfPjaW/UpIxP1kZaDvCbnDYeOwl7TQzWceEnkq+T7r4tfhIbfDU4vYtXIJ3Ppp1VGLBDsJ2pWsShdAhAe4aqcJyYiDVOsUznSXP90+8czFcEvkOOitCZQHjBazeWWbTOxTfYbFFQDrJRRdPQUr0mlS9W1vBahJCfdpxZ/9loPNR55ck80lpN+8SOQyu734RkOkQbFu3y7IK3Qd3AZWabtYnkT8HAZroIJA/qs0Zdp10IsZIWZS1p7t4sof8TG81hdc+O5nM4MADy2SaU+tpsuoPuQjxrbD6Jk55YP1zTLr9hf+qucmt42rh4sd336zAZalBiFrSpVFuXh3FwS581KhErqQvP+u+RX4BxBThvhkx04S6lX/Afqf1xa0BoQw1ymQyMICyI08lPisiZpj63LVKSmSgZgWNPrnRv5ccyG3karqjiPRLdkJyT/j93RqAnRTg4oomWKwodF87nYzRRwrEX2+6bXIXHX3rPflmGrJwmUN2Ld4aCBMk4IiYcIm7HgiAoI4nPaBNI0QOIZiNPZHUjKQ0LvE5UQ44UnB8ljKshpnLKm8ac2iPWTzU5Gb8KBI5b16+JwNOWQ1HXTgAC5pMv58gDSEDzPnBfG05rhkzJK1NMSm9RHf/H3MfRQanahtogKn1tmhFNbvkR3x2DElr15wg2S2W47qBcY1RMr7P/jrtZ+h+kxxJNEby/UbBJqeXKHrE2NVkNBYVmc6xIDA6KDbEPf7/WRlMTtAUR6KKlw9jCfdLqFIRkH22sFvfSF4wIFHhNChAAWWDRAKo/+tVGtYYlLXGGrZjh1rKdRYS12jc10lUkrKsAZIQWyiX85jsbSBzzE9JoyxZhX6xaLf3vGsIP9MPCm+55UzA5RKnjPdXSYFtp5UB8J08czwR1XuaNeho2I64pYkD7P8av9vf9qfZ6cntk6UxKhJTNrppZpDilPha/Do3IJoIIVrTZZd4UAC02keAN8tjENzhsWfM6HWn92Vn0grpNsgYqKm22E9SMN+oSGreG2gkP+ImeL3dbawikJUNK+AQMFPW/Zbqc3iIweJX0lG7WJm0igSdzigeLwU3OrFPMPsaj+7oUYbNpr9usyl9y6j40EI415Ywe3J4wbQLBFciOYGWAiDCNOao2pv0U+QrJDLS8Ja2yLCmY3JDr2kFv6SsmF8jEVmkKWPNhT/A1bakJdg3PAcp5xXje8CXNFuDSATocKHfWE36PeAgQmAGdQODslhs7ejLQJoOzNvHhVq3OkHvyH1rM8OIxHYczpWp4qLdpm8boEnXw54mUyZWKtdj+Y8b0kFYzyblzBLqD5i79EmjpdmFWj7ZHD1sLWmUOXlm5KC6bvGvjQ4rRpfIjquKWsES+7IsGhalHzyJlcLD0mWSysQR+WryNl8+UOzcIal9VBWku4oyWvYWkVCF/bDCHNtCpxmE7VcJEXwchvB2X8f9KOcU3xvnddWiISJckU3RDDOipXmL6zkLxTCz81a/Tu0Av+tY17z9G4WvUF2RToSI8v4v0++ta2ky1AJiQbH/rwlIu1Qpq79ymL+IMYH5fPqZ4FjaTSbzM5NOxjVIqJZyKnRrDj1ZJmSvdAsKRSkgLqzDHtW5qfk9pfMjSv5mHLd5LcbUO6dtevOe+jczGX535IQQjiuUklNgxltb1hDDat8bSqIV4BxgsBgJ/g8rqE4AnvgCfn12U5HjSPORgrsRN7GRFl7+lld5GC4y55zrlgetVUPgi7e0zk2PsOfuVsz4r293zqLujWMJyhSFhRdOPFaegLfLYo20bpveMZcVRqlAEO7D4ayibAuaNvBxvFznNFKY+K9/pTjVwDtZUgv4DVYm2dJSls4J7GdUIzMJIIz1cHtiYmj/WXo6SIky1uGo0+fRoPewx1i7zCGL36YywjiFgP8yDMlPFY3ogETTIlPN/Tf2LlflCfv/V6aFx6iJvFzXWGNbJE0dqCPJHjAjmrVEnHXi4X3gkcJvE5g712foQ57CqBDzTbwuwin0NJvQzmlUrb15oOTj72/AgM190L+MitR+P4iWzSavDnFh7yI40AocObOfg0zHdISUmeNuMTqOs2CSSX61iQcT5AhsXIY8ktaHCy/m4wkgPkHE+w8p9USTK6fkpiNIx3qUprSrtGKj1Ew3kcU2Ji+Y6Y03rLfji8bFZbc6vI9Jpl2qqID5Bfctn5APuklr4WQux6wL++n4BqQIt//mwNCUHSwTixoe5NC6A+DsMU5cwaQLlEABLfnYH0Tkxtd2FLUhlGL8D/w3miE7HfOupFgkwXT6+tmDo0/2j7NsKZ5njGEV+U6wjNFhkSZqvbg8lJmO/xOkBCWnt9Olya73lYprL1nbVNytRIILrAivhOg55uwQmhUtrYwtbVOKun2uNSix/0DW+AV9yD8KnysOgYUMHZqh+Ju6q3KyKbGbZqlOw/5sdWlmFaHuYSY2A7EGSZYiFn4GNEYK8jc1wB6GE+fzoqFVC3Rh6PdwueDJ4uJCrRORwk/LueAvcb5Dmj5LQaarK/SDrMe77KBbcLxLKvTwtCKWWr+S+ecIX0irQvU9+aJNShvozXUc8cbp4mAptYxWBrLB8qX4QWxJ45h/ntgGRXvQQtmkqwlC01krdHz/SIzv84AZgqiMG4SmkdAczphYNzl+lUXqQHj9t6DUcG4Z+ulLFO0f4xl0IOjvEzE0Y34V9gAToFt0R2hkR47+o4P+SRQwES5Qo38oQZf8zGHiB1jz8/9CFo1C07soXkHlsJkdzObXLZ5fb7Ue1grANxHMyrDBxvw41/4r0IjnR4RitK8rB82O+OV6ApUPDB4PJBRG/gEB7ERFAQJZ9do2BhxsiBL8QJWe8yJnb5P5ooZMwHSFRbsKhLFDgp9SPylwmzgpQbO+lUWDv6FMwBhtMgDjg5NNJBslVvPVdvI8RLnruN1rtej4wQmXbaGmupIptSAvzdywVLgWMzIcnlIo+0+mMv07Iy7DYa+1XJk5XrUViDJ6rf5hlwT+NPurI+bxq2DJXGZUbvQwhlReRTyu9o4gjhOVMUzwz8VFvMIIfmXCu0LjWiC4pBLOzDLMnWO2OUTw2WSsJu/jI0hPgw/MoYoC47JWSlynP6tywN79m7Lex0IbDHoGu1hivagQu6nyUoCn81i1lQRR+HougU/9b0GqUB3lXyzVw+XXbwB9QKm/Bcb+6t/NQU9ZkXg67JU2K+s+Je+KJB8OGEVo4eraHqewQHV3HWYlNEaLVTOpki027c5h+PaZ3zybpNvUl/5g90t5p8agA9kNeGdONj9wcm4b0KMGs9LqcibDaD1A1X85n3FPTwhc2vQeloVekBx9b8b6arMo4V0pRUU78b0drZKCUk6aUJxVbs0PqWDb4LAvCbj5QNv31XwDVoMiNKMHru0BLxGsesGMWGnsOIMH5a3cNGGVfzh3ben1RYNRwqZ3jIVRA2vjGnI0WOJMpYSWnoKuR8w+FUsK43AyS5QoLblgCyZ3x44N9bYUV+e4TjP07Vk4h7Le4hDw3Mwhx1OEx6W+NqxtyQ1MDWRRWcrY+vI8jORNLRENvXNeFiLSMtd4RUk7q+STFi1S7RAyaYgYHuB4oMOciebDFiQLA7/nEuM0WIDgqaftfa8PoXKD7VZ2svhfZFiKXs53iXyP5kEp6uw7zlRC75AeI1KliKvH9qKjqymXZIyxfAjET2veOjtmBjC+Woiovnpx/1G1y6BCAXKHsWu/SESOY6zhygEHDE2dR9k2mRflZpKQja4cDhz6zV4AH874IRA8G2o2oLDPGM3NRPuEQf65lWdApFIwINqZfVcPLxBSUS1pYRUNb8cPUfdFUYRSHGV7Mq/SFCdwU0YU7wslUVKpsTkRqvmEN1dSu7EeRHwaWHqSvt69svaljbp1Vy1yaSY7xFEDuZKvkDrBZqyuYjKpPBSnkH7E8IcIXJMJhEk4CDczyzzIwQrMyDwv9idKHL1rESIMr0WhFXw3XKvRvXDEOfzOhE9SWK2NL/8XqpRku8+oGaASjq9OuR2yktcCvl6MAgI4dr6c8SrIoop21yFG/Lbm3GGhQwuJZA3lj8x2mHXcx8MXjph2Hqsp8SofV5Q5yp2rL24uxs8cC3Li2lzmjr/satAHi6VoRGkEUTtTkwFALCNAh6F+5PNC9Q7z1ft3yZOPTHc6NNY5FO65TLNElgiREQXTZV4+2MOH6/FGhonUFXtSZzl76ykIO28u+r7B0/CpHD5Zpcw04Xwwil4MJ1VcsSG3AcwnMBPBpYlbaL0Jg9iOWi9hJULb5XLSGXb2ZmWdoj6l+XasQItOTwoVHQCYi7Grb8j9hRFe1ecFKZeG6uK3QhV6Cp448ynMdABhllT4+5bES+zQvkexhst30ajZUhGoda3bZBNESJqAhMI4hVQa8leHtRgh1RwWlUB564lign92whkc9NBSut/2UaTUHbivBM49b5IZzMSTRJartq0fnOgmZY4fVLI6OvTIn6xWFMge50qhVd3PPfFCQTFbgcQVJnmE83wZVwr5H7KvY3HbBMwB5ardUwRjd+UAQaujnIPRI0b3c0murlFk8SLPdpMzuMHyVn44VoyBmFUPR5TIWKaJn5YGxYGxaYJLjqhS5+wV5xgjgNuy8phWVyR/RwdKPdmbHSEWHm+is59pfdgXd9sH/GjBOT4DzG+CmdjSwL+l77a5LNpYe1jYcW+yILK2U784LrevSek75+RkXOFpBxaHrVgpgNPf/JajgWNi7PYn4JChsh1a06z3un4POEc3DDUzQBQlAT/n7VjajgeI4UhazyG8P8/Xasob2WfofKM/FgMY1ZDKCOPRZ+cWQZ+xegIg/JQ1gKztW9DJDv37KSFpIm41yGcPzSWfNH/BSmg6/kLhn0I/FBA0wnqh0MKrgdPR5FLd3NEc208J7pARg9XA2t44X4Ql8jncauYhPzLxfseZxCFjbnXw+dojI2MswLPgkVtfhuGZ22papcgJ+Xd7kT7Sh58gXgTYE+ykxkxkf8WQ+qegbOF8X4nvJWfBxovwM5NO16ONfTH79jGS4vHE/zUvHkwEXUJkESEwLsbSxoMFHFWLkwoOG+gsXODILnCeLpSUE477VfFdEQ9F0tazVGkSXrjlSFwokTxyxcK1ZZziHKskWX3jRrFWJb+qeU2YkDdMHTfgk3dkGtZEgNRcnimqDkvQ5/3rlYPz08pQJY+lJFNAak27wzmjCwLMYM5OKlV9F+449fSyt/kShEimrZItrkWyKA+XwiF8CvUHjwLCIxVIRGIPpoxfhG6NAV1WmlSAWdfzwPgOG4aRigmLNB4V/RT2ZpYfhiH7+GSn0Eqq+b0ukyZuwAvgv+CMo2FMGNbO6kFmQB7GpAarGjs/LOhFDNHpjpVM6ml7bCrLv48/iD4Mdk6ls0CZzqk9iTM9i22b6xqE2t6RBqOOfm4QnppPEWt3dgbrAUJ5tic3JZCJT0+9Ai47lsR4dfRLVSkoC7MC3WfbPiZ68NVelReJfqfdw7pt1rEOXMua/VdPjL+Z0UPKs0dI/RIh5RIAuTDIQFF+j8jWOCJxcjRywZH1PbQCO49kaeJ/0CcPcGOFpT1Pgtlb4d4sIEY/V5z60hR11Hc/MLhhEL6inQGlTgPoiu8p8Yx4mU4iC+Uqjp0aUoiqKF01bthjztCXm8JsmsxtaiUxp+9rOgKHO3OaOIT4kAFQGEFtmy8MIYzF+ZpgemCqykb8iNgRMzev4NmH4wxr3EdM601Rv0z4X3dbLgawGw1bldcRxXADKwLBE78WBADqicEOWE8JOKA/qUaNTpN3qYayPfXI8uDln1v9yvgC1XFbL/dkYFRzuDwpLV3Tu9MXwNq87YsjE77oJvUnuzUURQtqL9hrUrAem4yuF7hI2tS8ylVLu1gzCkHH8hTlsrxoeAcXy2kbU/fSLCKzW/04COAh99pSv0/nUM4Gw4JzwbhWwzDVwua3CAzOZmbrup2O1g1ivfL9Lx8j0pnjQRWm9mL/A5rLlSdwLXDcwabvm4nkWRpZpO7A54EolZ7IRZaFfsG2M6B8UycxFoYwmoH9qWZeXrodUMWo0WxVGDWnNm1QnyqV48D9lIL4ZhmNdycJb2Ox97ohAl2jAFM+4/CTyzzUJqw0W5/6jMy2Ur0+0iUpEYpD9JKXn+k8Z8ecQRapbz6rm2HO4q/qCFscrCGPVVF31BpqQJN09NBWDhdj8oehv5YKyIaiPncjVuC/A6uo6lLZEOhbUCSgW0q5Utug4s5GjmdQdRzbtH+uAVhlheW8EYNZV2fixeqL/VJoJTzbNOaXtiC8zla/dUD+b7mVn94obCDQZL4BRMMc9DBYvGhAiUAcR5K+jE3oD5Ggx2HCyyGX2Rs57aoHWPuCGZaS/p+VT0toDcvfoBgswkjiiBjGRV3Ui4uljejnWMrHQ6QEybqspiw8S6O3Trhy5b88Z8PuqclvgeCJDFv+YJHBSDzPHoHKYgiwFSa1/F5btxNehHLWeh0h7F16kkLobGfTdGqmFkIPXTyckwfWcDnDkWRlU1Bx54KeCA3EDmyTzrCCuRMr4uDa+Brv6JOy3MdYlsFF+ACwrsFaEMg62yefFXfWEef13lMtVECG6vnyVZiuIwxOagPtPwLOFWjWV5T2UI+x6fyJ6qgmGr8ojrBqxFcI3K5Mwt49ZjAhjJR9jj4/CIjQUyCozLvoZJS41xyrHgeNOuUIMvBWni7yYOfXIUOPMSQszjtOLUocyMZLjwyvoD7C/LgXlsOBvk/xHgtSnr/lgu7/sbrWEYhJA2usKNOjC1fs/IwLKIp7T4aUZoFM/HfNoI0WsQi5+5ZI5k4wRJIS+30D7bsrK3C4qmkWAK9uWvqDto6oy4jmA71bzM7wqvnKmayll8FSvTMHjsWVU369Gj7aanAhUtmqEHp8jgY1tJBonEnag3x5dyp7Pt2WX8UrV6xzhpzJ+Kwa3YUj761VZz4t+HYpPgvaifwvMhXibdadQ3gLo6evJUjpl8Oij1+tprONlEYb9mXPiBj7wc8JD9/f8dUUH1Vn5x/269PqCSffySAnfcBkqb+dOXAAH2jtZxjLDKlxnvmtBeACzR9HlQ904tddCb/T2Cye/9aWgLxTvfa5qVpOX5JBo7pkwYfD8WTurTRxgUCn0r+XbSvsdpKYfn1fd9C8yfPCGveVDda2gnGTR7w/QmJV/n/KGT1t1nHRcWbtVBWtbPJqVWkuCqa+AAOgUCGqgCZN2I31+xH9M2Enwf2S2w1xYCzJXbL+LSSShEiLMKJBhQcPD3AQujCE2DTid7/b+fpe5aZkRWecmvSqytQIxewmLd4Az2y1bzWRE2249PyMutj4QKh3baO4Z8svmpq5nvPIGNzdvgZjF/lfrBmh0QwEtZ8specH6n9vCBZlwvCFyLjiwu7ZwHD44FOnA7KnmRj5gAAmql7q1fKoaO73ta9g+0eu+r47VwR+Yanp7DKKRKHudSgYvcP6xZbHJcCcCUZZT4Shl9DpsY6e+2r3BD/iB94sfyBbKOz4MtU0CD4PP7ExAWYLnKssNKfP5qMa3u86tIm1cnNNUxaT46yX5IsEEbiIwk5NpPKuBBdgTW8e9RNz3YglbQGwvN5Mkm/c8io+Rz6pBjLJRuaIdSMSNel97K8sbGWvcHDXX/ItgD18kGOoLg/PxwwGrLBwwbNqcri24wCw3fnxXgUDEDVPNfa1FQfUVl02/ob8vSHiKZj8OZmAOniktzhItIhf5Zxm8RTDEjMvJswbS54GDL2WrV8jla5UwkzyOhF4c5///aZyqWBLDoT2VnJibKoKd/YRNVWG4t0BiycH5KTBUFt5MwYPmMq2mINF9+hbXU+duai0ItbWueAXLy1+RvZO3sj2OfrAUK2/jwuzwExnXLEffXWOrvV00hEDfHEGlP3m+yllzNX7sF+hCY/5GzxCxudtFR7VW+8LFSAS/I+fbMgAUVKf1Eq09DIS4wiuO1sUfmHLQM3bIEJYExUTYB47sSDu+HHc8XiLXt5MloNGJE4RiMUQEKe4T2ZHvbFjOUKFy0hhp/nSbGvYBGcD7HoD8JWvaIMo9XsJwesvX1TYcQhCVreCGc4jEyN3WfKWfbCBaBOlgMLtSpoZFASH4ed7Jzixk1tgdYsUgu5Tp8pPJjt6Al20Fkkz90dQa8jWCaxtw1DQlgzu4gn7jKMbSg/GSF+8NcdtDyYEyDBIi14QijPyKU2qAJs7JmWiN9/0NjW6QzOZBffUbEWTIqM0ceo8obUxzhF7niL/TLBTmgG4ceYuH8jCQF2FwCzY/MnAZj9s4cgKgby+qLsJ5IM3h5+QJvftGbMDf5PmoY5JPHuo8Zh41RDMlVWFFm+rkE2V59KopHwcNVvvUz44d75QgZis4H2xS4cfqaKEd8RN5lklRe5mOYWXf+TUJFqZS8QPqne9oBljkVzd4q47dE75Xyj4yqhR1tuCaVTMz4Fq7+hZJaQs0G7Fq23hF+IQZlct8Ly/VdzPrblpRZxFDAmCuSVE/1TUSxPizugDCOmo9x2k4jqdCpXYwxMkfo0ERqEbU+jpJRMso6807XrbUTLP0k861TcQZlVfrMhruUG3FL2DLqKAAzzGIapenQRyNPQThnUJ1WZOou7kCDq7BRYadT9D2N5zozEQeNoA9JKUR4GZ736Z7pnchXPrT0QH2cbU7GwRGd21HpJtVHqhrCCezUGT2HhAXobbSIWnW1FwZm3aYo2PtbPZec1f/h17LgZJn0OKXp1phBOtKsjk7B+Owsu2Wm43YvIvY62n551F7386VHgYsmsOXhoCJUTJZeZxVimpCn/+s45Nmn2MseTbuxHWHZHDGM7JK6BmAwuw+6pLOBNz5WJU27DqfKolCB53yaYiLVYvbIaLCuCjKwK2CWjY6raqLoG/erjXC3qhXaemLV/0unukn7sgDtfZsPf/aSNsteiIiiUqwG7qlx2V/kqAItoW4bMKD3lf8z055cFpqOD76JJ6xDZLHNBDADbVDI8zD/e6D3vB9TXRS2c+lJnTBr+6Efye+N0BuKqfOCxCZU3hu9BhxGyZ958GTWpkqjI/E2z/j3QY5P0ahv2cve+e5NLjsFEmUmgWjKO8+3q20nvCi5qgFGqMexn0P68PxlhtM9h6J1kW2QJQDN4aAMi9wJCgWits0L8W46tzzO89Wc50AH+mZ7IPqOqwD5VdQQQ/PawepIZ5jwLpIq2Sd8fmmsaVXpOK4k1aRhnbvZh3A9ptyxKdfup7VZlhR8xevo9qo7g39EMUKuLA6aYaSdYalNGEvJnqZOkjjdOoSQ64EBPXIMArCgbGGBFbeRwG6WN1Wwr1/HBH8XStZx13gv0FhYj6Va958pnLv8eiKOKXZXfFfFocSXIIk63NKzaIFfFwxT1cnrruqBEhrsjKgt2BEIvt+wRZEeyJsA7kMoKvc9CduTXgEsLjLmDSBp0vVGyxA9XdvLQ2Sxa+KAnQb8WV7UVY6y2q85sBGGhi+PZ8mCXcPgX7a3Y2IvG5J95MZjDW9R+F1muXAHnFCa2fSyzJfVWGGIPgshm43KR+9y1MKEwIFzvwbGiRBOmwm3ZDtGsfRAxIJeoRw87Anw1eTljX8GvVZ0d1DPu+HqUo77UorR+oBPt7B7All6+P27cFj71ha+jY3gzClDN6lCERz2SVWCb/KA04veExdTN497UfnN0xuIN5FN7J/oL563Yc/msWdqd49HGMCK279+fYpSoYywMzuCe5T5cEjJQZpQ+AF8u9cXIjqN2I1XS766T0clVkVyYREC9LkEQ5aLyASk6g55Zb0hxvcwFHzL0WveCgI4OY5sFR2gI59QlI8i6nEfE58G402bTUh/6qjxtTpkDz5RNMxcHs2cklVtiIwSkMIeHI0vSeJEZTjuxNpEtDyqMi+iOmI8mHtxxeJhQ3yuaN/dr0Z73RQ01Hcw7apsogfOyDyI/Q6OK0MWhZnajSrcWZFkvgVpnaG+mkWeXn51IkXPVXQYGWm5TBZiNRwYGatgH9eMHrbgksi8CoxzuQqSYXg1rz8yJ99aqRrAfSISuiaWNJcfAAzibfXFVIoYJdv6Bkqn5JPPRbNch/BNAGnnOp9F7Yk5YnzQ9u8VNF57Tg+7DlzgyqHvVdJqS5sr0ZY3I65pXVmv3mRd6f3SMdiLyEJ0UmT1cdTUO86lxZ3Iure69eVjjIAKPmIJPvUiAxH1w8xoDPTSs3xk2YRi0Mlo7MThaWuEnMVNsV+emPYREE1/ek0tZGeTlh+bC+lxeo+f2SoQFXr73bEeyYv8Na4PRItuB0L/CkZeVAHkitZeKk7eiEZHZNLZZHDku8qNLMn+CEETNKn2a1eZ1lzL2XPSu2FoVtZ5yicLUkJZpH68gRTakX3RlN/FKYgxndLkRzAytOg+c5Wnhsf05GvdmpAAEKD8frFQS20NM/yTArLSi8Cco/0ITnBV7ALN/d+XLOouCKaIpxT4sj/yoyr3E1vu6/LjLll5yMkuEffUqHaF0s5SRX8Wym07ZKF5XoxRe3s17Uktf1JmQokNLj2T9ETjI/mI5eYFxZDzWqlbU6ePb37ZJQWAZhP3BS3Z6T8JI8Gr3mLfg7XNn2x23pTnELM3gHGOYQoPqD7bf4946zfIV9yHYcOD4WfT3zCldOVEGG94ZymitZZ7vbdJFSVrH6jBx5b03wtrLrGOSYJZ7rjW1lGcq+c3lNKE7M6hRsu7TNkBDwHDq2rzyooe5TKRwL93UF5OH2vFFHexZ1++iYghnq0mJhfl5BMzIIiUvd+wdc+0epY8mvaAxPBYkkYmijB/tj5rl58rt17Z8mim5QHbPCB1EC9G9jSdaNKRDSasTN2fECUwxKwV0KH+StVm1u9vcj297bkv98+8TLsoGnVaJ5ijU0oCMxYKy7samP0WFm7Y1W9yMCw+9m92E88XYOXXHgBbHtjIIu/ZenigoayAHRnxzC0Up1CBHgF6voOv8C6H/G8xSBnDPJpuzBEFcBMF9ekfZWQESOoOtzL9Auucy66OwOuwf8GwwlwxTYaMRuGnPfHfeIMnO+r4+5v1Ns2IslwTKqhjpoqkRQEo631/KN1ezVTi1dyoKgI1IVhmQSioLbEpQCpFCXEkcyKwNnm7h6sZMiW18gzzj5g5zcpKBK/qJJiS2ZQsLoj6t15QJsDWMSgdIiDNojZn8NYkbUp+E3WNX69HFICtZu/af46+EHQgFS/PlthwllFm+kM8Qeqo3Wu1w57FAZtzQlQi8QiHwqgwYHsBmJqLk6dfxTEZXkxo1oYc/shRygZXoA/msVcbSLSTwocGNuC2StGZryOWcLgCwe4W8jF+75DVs4xaV2H0/zhId22lXMZIg1D8pzBHZtAnmcxvW9bSZ6mzmTXzSK/jR9Sv52UeP6oC6luc/GWhhSghck+/zK77rN9BdWktnWF51ooFb4XNSoiYm7HT5JKtAJMFrau2a4NCubks4oJjUaO3htOHknupU03Fb7IW3JmQ3nRxYJlW/Q+VKT8MIIdDMOX+TAfOG6JSOsoLATI1JBsJcTmRpS+z1luLW3KP2/7iCzY3N29UGFGxwPEwzPJMPWWA6JCHM09/ec8iQHH4lP9Vq9ibQESqxTxQxjaq6a6cGMi7kJcg5V02lqFFWZ3xeuUrhR4pQBqHbeHIWmFdvhDuzjC9RBdvlVjdzXd+8JKUW/6AfmIFVl+0sFihxVPLCsVw17MFiYDlBIYD7qpBbyUsqczUd54Kpooa/nrpaw4xIvAOYm2sYz5RhbcgdJWb9DdYNYsG+TT72iOBuYOHkygOC+5f5OvVWTLdICGuMeSRG5eko6OGUEntEqI5AueUghTP+AVTkI3JoOKCUISrb7UX8L8axMnmdZSbRrD+bh7nYj9r2MwyNabkgivvC+9mOVPfTP3Vs1QWtLVrHA6y3hk6143g2itsswtssZx/YKhbUuRkjY/k6GtOaJvX7lgkjiHAg0AQwwgDulUnd+5nWJO5NgQ0s1EKByZvtadbAqj2k110+q6uQ7VMbowMaJYILGZA9zeA0WilEDYlyxsTiLWQ1mJ/nGsPqn7Z4yh7fhSRlvTHr9zdwX336pgwthQTueyHzKDYWhdhYCZsu7FpnKhhjlvoFvRnbGggDvw54b+uWI/2g8D6iLssGZA2OWxajd/J+vNeePktBHRp011Zx5tiIB/V2MU53Hpqn/n8AT/3V9yGl2XM/3sDzzux5dz6FL6bMBiM3JvCCBYag68sY57/vUFs64MdEss7UC5/XTo6HsYrYQDPZj6wXxKcbjPr2vEXo/Kg4MKEwW7RYZ0Ue60PKvlje4e8I3y4Mkkf2Cj5y+gaH+UBUj/ALYtCRstZvuwZAlpByLEUlPzlKqQYsF2zAffsBMDy0hgUevMzlmvc7kst+BNxhc2RKsbP8yb3zNaAtyJHSPe1BneK3c3JsPRN2m4p/fEOGObsaHQbUB+6wbh9fPs+MY3bPk3uaITOPsXMGsZP61O0RVeJxTB4kzlNOAwarskUZYMBKcIts8ERx71+Ql6NAtrTWUTsCwcUmkqhkTeP5EBIq+bcv3cY/vdQtNNjrcu1MrVOFfos79abkEOyO6TcdZB5cwiNuWgoa8h2XlfXRNYacdda5OLhqFfKij+2WP/kIDcmoDJDfHv+vKM6GP+EFKfkaVS9zJFgC8oB8ItHsa7p0NEdXJaTchzr4L8LQSsS40BF0fYdjJy8PglF24ltQ3XDSrCBU5dBwCkbGG8KDgaGRwBeDFr+ZYAj88OUktx3l8B+h61rcKASgMjfRpv3qFdA8VYDggj9aoh4EDY6dHRqVE766zQmE11XXOVhUg51LyyVBOcDySA0FXNT2Ty3qhJYu6xts4AJOCs0aQLxujZE+JQzchYTlrfmfUu/3rbMTJRyNYmsT24UebVCEg6lpJBv80kmgEy2wOCIjJKoRGV4RthX5zcQPXVIr57wTaIeq6x0fIqCfYmjNO+e4Kvhd6at91guH0mQZCMCEO7a+uN4xHHARX3iN4l2YsvUmhZcrO1AZmgqcdTEwfiNEbXhmfJrqHmTEklddglXAweAbUnycUc4V12luIITWFtkXWwKnfSx4aq2p5dNLssJG69tOqHrEo9PTaW02d0t8atNNB6ahouEfKk9WNXNGDfHeJjyY5CVjPnZPfPRtld9nXOe1MXaKmCtOcxj0OeuESYXV3qXLmMyJ6U2roPlZxtFR0nrQbCWiSLsg/bUM/BEN1yDiFhGh8IVJP1uKvO3Qv3Xif/iTsPYeUpC+5J3ZSAa4Lz6lwty6qVDO3tvGhbzPhM7yRlkKRXzMnyFv9bvH1jnkaNlXOFSmhMxx0S3/q71IsfEx5Dk08hSQSXNOU05mrnd1a076t7QToZ1XuEua+Syy8y4wsKWO6CO+syKXpU9i70dwwWVeuHVutzUOyz9CPHC65uh61p1dkrn+MX354nOI1Yo/rZN7ARkCQKcPQwyutdViWtMDLHzlCwThzPcCwhqFy9JjMYlerOCrPK+aNM52bzpnyNfrhDj+5vZFOmcAxADwA9SIsZ/49tT+wtybzJ0HApCK3SCQKMcGsEowLDG8dwDCgvZdkogRrFYdjnaLMbddvu91wiHcGtW7DFEUwwpMqb7gXI9bajGY+KcBhqf1VNmgDTecCKf1ogNl1dp48gGHWLXZFIjbznkgdUH/98whlJFdSHO+B7EcAlN9/hMxbkXu+AhpoOtuVUV5rL0FCnqtT+IcTFBC1CssvfM/dzoKh++3wu23EI9KbZMBB8mID3pXURZRjel8VI3Kx5bD/dBrwxJvD0Bv10ohGXxyNrXq65VoBYRNvp5+75eeRrFCTBJ5P6ZMKbl3WZi0v1smlB1WNQfsMQ4RS3bJQvM5aEmgEpyuUFy9Epfgrdgu1rRPv1CHwdNMrys44Azkr+exYwziZK5RhJ5P7cZte/gG7nZNVJ2hcFsMhVIhsLWbR9PDE1x338YLVYPKSHRH3gaIFKkEP1w5MCVfkooOAFjEGTXWhyhCFFA/VFmN9B+TS3nafuC/bJxNVzTdqS3Ezv3Oo8hkiKaIYYpN4FSsTmHv+Z6kgJgburw7x3cRChdn+cu1eWRy8gv+IJDxdhWwGL+G2Y9o8EB69/F3RBIVEoYljEA/8pzYWPWNRX9+1yDLLIqGPhCXIni1PZTP/zX5g3q4hbAln9ezFTHMcp94KDEHc78Q60f0e5Uv9UxI9i/qjDrhPLVvmCyPaJ/cIyEngkb+lJfn6hd801GQeCd8768hcfnsQd8ZOn9dSf3rueeug5ifqiO8MyDdHRs63P5SPQ3ryGDhZXE+x9N4zFy5ObOeAy9MtItbZj75b0JAFDzRfhWpeRzLtWUixtnF/UiQu8qlETZIyA579/J8QJo2BZLKBhLdDuoc7ELzgd8V6Yvu6zzXW0FJjv/gBuOB7eTcIhn7eVG1iYsqXF2Dv1b0HED0zXrw9vGm6JxjbCXslgRRZC3BWdLn3yjp1BM8QwmLLYmAMXo5uFYqxOecjeQOauUBb+dOg4f0McY+n7cJhK79AjUnnfLtoup6+yIZ9fSoQzPl2FI2pSshhG4BRKAzLbOlecjBkRD6bGnkHSQkstshU3CwqsojpnSjwk2V3UNsJhYefRITJQUh0WVc1N/3zDYaSuxxD/3uPCSvdWx4dfUk1EAHmUHXEPIoFQFEjLLUvlHtOQFLCHisaQZiHKldlvUv3uxg7ZAkOzEJaF9pDeB/aTlJ/ZSx/XkLjXOrYKsTwZvqghnDIDty5k9vV2/D+RZXww/zuwC64js4R5s5yxsrR57MV4S+ePaGJhxAYepImyezd5lyWhh/9EK9pFRsL/pmf0KCAlVq6ZsHBqMSOIKYSv1pxHDOYZ7u8CXzNh+R4ZKDCCsOLhE9EgwWj1edMKHlJoqpJrkdOaiK7VltmAqpvPkVILwkCA4x6ymfyLJMMX6HOYZ1xscmrr//uuTbirDfVcjod5jrZahyGu3nO3uO+UeYIXGyZ1/7JGis3PeBX40I0SKDURebo977/UG/PL/eRuVLiBqL/bsAg3J21iZMwvgosKq77f393kaTI1YBqxQPHVfoZzJBWip15HRzB4tHSvPgQPDsRrOSdUDBBZg5AbG0ipPX/qNRJ/2LESU9NXNA58PndSgQ7H2b46nnd2UxM0CsRG0KKH+ekL4TttGhOQV6mSR2a+khwebmVhqDWD4wMwxf9HhFIA9xlhe/vCuXi/0rI7x1OnTJ8eSgMXyVitNN31ScUtR8ma45pN1zV7HET25J9/YRbK4o7N9FktVp2VBf0us56jcr3s7mrnzKjxqu0K3MNnBaIDcVrDhXRLUqDqkyKf3whsM+9kfApNCAsUgQ8OCFusKTibA97KhAKKJEa9eTrybWSorjgdCbzXT0gtMBVlHnTZHATq9TnyBHtSfIURvHre7m6Z5rqfoPSbo8rq86VOekBTYOM9gi8ptSoPPjsf9U6PyELhKHSWq+Yh3Pwmn5BANYgrquWlKYZVjH8XZfMu/eaMlBn4r6SyGcCOiGmfanWqUVtpYRt9bfMFifJKLguYh1OtvTAvl/+Ra/PU61pg6A6D4ZAibQ+DRgWbGv5F+7lOB7zBGlCsRH/psO6Leqhk6TWkDKPYCA6cEMznHtA4OL2CMlRKDT4Q4i+Y9Tix5VeEdvkbch+SArgjad1RCqfiMZ1wrgFnN+JIyLYyveU+/R4xSCu/v0ouOb0X8V0HePdendrqJC3NUTiLxLKhiH8eUoi9pqtlY4dRybEC+zS2G+sVo9uxc+dcGNLxLF6S6Vj2QiQcPRD89URHZjQ+BBKYmceT1DA74Zar2AxPw6hsNnGyLI9VUD+4UOVplT96ZNmQz0MTqQ0qzzCTM6cWhwX3AZldI41XEEZUEIZj/FxWkqHE9fWrvaF909Ffxg5ZmLIZSWYghaTUBA3Qb5UL2HeKQfn9Jo0DquO2zplJG/KmeR65DGONy0oK8HFm7d3Sg/GMBZRRXm5Q6AM8Osb50cV49r402cnCb8T9n4lREoN2CJ3C29tSMEd4efZv4mvW9usqwoluByYfvLklkVEHTAA2OZVkupmg6MJZTtKuftR7I7gIuTBtT0lKtHXX6pFP5z4ZK6fy8naBDdT+/XW2Y69SqJB+osBRPV8U/2XVGzUi2GIqhGi8Km8nmPS9FSJRZc8py4RK4oRzyoO0o5if18bZPBcFY8mRWBGO9gAjD6gbT1wppF8ekXhEtWHgwl9NNaB1dw6yPkNtkzTPV3/a1QUrNonOo+lK6cIk6M/efWiBd3yhX0rGM9IYgmdDW9Q9kxUG7UlI38QWXFitcyT28lcU8RdPCreeDVA11hYONpe0hFsyWpX+W6t6LE82ghaShd4iFyN+gVsl/OHgp6n+1jv1lYY8Bo9GcX2aa3+kEnmGy6oc4K4/SaXp0dDrYbG6uzwHT2QgEYUnC9XM6xk2s9UXFnZwnERRJDxnJEmQxZgAgJ2M5/ZSFEf6P8gNuMEM/YWd5HVfPHmk5EtnHpJ8fztMOFSMiehJg1C0Kug5uiexwXJl3TZ/teDhNwAabZpNrTxEQ9Ha89YRRYqSLnpQydXAutNL3TN2CpgA7Yoa1gI8Cyd+5D3YHLXWk25iAPIRRDgJbAPpLrsgYR0+QZdn0N2QLS0cqUdm7YBGvRAAtk5GjKJoK3Oyju7xF6l1ea34KqqijfgX0S0vOYrz7wtIIdgNg4gZDo3BmA8+nN1yiONO/+GSw8879DP1IZiz0Z4l+lwlJdDTqUOookLjyfLHI4adX+1KchwJJ57Cww8L8oqnuyaeIoaPlEOe9YlfeX+JeViaobS6o+SXOfWGXwjVP0pZQ/2Ue68Rcgd/0YN1J606FItL9w86hLoCyoZ7aYaw0bTqFngn5+yzBGhi0FG/mpQUJc1IiYTPSbMJDNwiqXoQL4L0eh2bqp551A+i5PjWoNrIFmVz70+C1Wvr5FVjbhfVC2a3Srx/LHvnb5tR4tLDVKcOq/yr43DNPEFz3VjpYYz5bM2h8Z4wXoY58aOA3AOVgy4m9Ku8SkiPxdL43aWzA53CsO48g8S7ZJ+J2PXKP+fZfhHLkRK8hh8O1MVTeWQbKpX6wpFN+iVkkbztajLpeU9r+kK5eknv3amQi7Kb8mdty9mndbNbkdrxXCo4UBlwqVXpNv4gXpi3T1tnzYfde3sis5kgXynDBFJa0XjOPQjW55SaET47fGUAtH9j5ShgXlnHrD842Ftnj7idRAdEnDSYUjamxt9QknF1iU1eepPC4fAAze3t42DDeCtnnOhJXYAlGBL4RzN9+i8Qx+BpQ4/wtUehe9OmDTqqvJtTyzEfOkDQ6BDV/yDUsszN6NepN7FzEVYaFgNIUcBZcDTXF7pn07fkVnl8ECBGgDiY6q6QLZdUlXdLE8FQ+o0yqMjjN0OHB0LZ3IDdGWISbcDHr/CpAhMvjD4of9wqauor/5VNomPBwJii093/KIcDkUDH0fh9QsYEkVorLQW/c9J14SEb8sPFJs/KDKBF4DElsfim+C+z4V5yHs7cx0StyR3TTc2lbXUw27nMXHPWBQMAsa/0aPyUgxR5PTmyvKvDU5xhIOofpk3eMHrHgEkGRszyQ2ZyM172sjue5MJj4sgnEVLozSYq+FWxtJSQd6pL8ANlnsui35JFr2bWGkB/FfUatsZXlaZn+KdyF7CsVtSQZvrcVtrVcyr9fYEWYLFBvSYFjAAzQdFR1StQeYlBFkE++KzOjAt+NHIGOsYCQkwA6YQ42y0PgDfu5hqjreInWs75jQFQi3PaUSUZ7aIDYekvfaXmzROxKWYAoraxOtyyIlJQ/2owYTqwR3gqCLZ3T5vNDpU4znglrvl2UnSoCYAYaX8LaaaT5OVxDz/40y+8U4t8rrIFyhx1AGlchOlQMwdfQVkxZsGo39FtG1cOUz4lF3rSump6eVZvIXDg+JKyBMRZUx9bNfcfKUWKlJdlKcSJskY8UORLX27faP6VUGlFv732OlbfoR11QpDJHA978vA2boA0Zd2Zx5eCAnBdSmRggwUSn6J66DkZ8xnRI+vHpBGh0nD8g2RfZ3jGyxGbjneLFoK8tUAC6/YQ6kZzIwYrh1rRgeiDN+6CuYLZB/lvTr0oPGwXxmRMjaozYO9xUq97+gEfKOQMnpRxdZzly8BOX3TJmsnJIoFQr+GcNuFc+voZmt8OTSlzQfP7NqqBKKQNeS30dQuAEIeM+jlTZPCc9oPytT3GIX5X6u9Di9G3p2xxhXkYBxDXFeur2jTYMGdlth+BQ8KjAyW61KuHI6h8zUr8peg4Oi+wgCu+Avd4aHF5eYflAVTrvlN62gNW6XA5JDlWHpLgVn2Gu8PdQ0pLgwu0/Y0YOGTDFgbkvffG5kMOWd/uAGBIGCDAPZpKT28aAyNx3ZkhG+q4EZH4qWJr4f3pSozT1VsK57St/glqBb1CGyRJPcaf/li8Y9ogMQNF4nilLVcw2QjeM3IB2RYn3CL485Wbj11TurN+UZ0u11vpm0qjyGalQvEN/9Ab9YLTAwDMVQXoVfCX5KRqTceLes0bTk69SrL3O+43/S9F+fu5/sEiWIppmzCsI0cBhwChXz/w4npvhuVBvYsAZCdhw9V6u70tkAqSCJSz+YCRhlDHqp1VJgbIttv7IfwnXccOWuYUm5POksOC84rN1+kKT+Ac+ToZFIQIodWCS6I1DINW2v2yHLbdlO00cxJqYGbeWsrAJwaFFkRvHOmWC7iC4sBl73kmViRLJxpwTgAXSj/GKUVLigiyy4mZ7NS4CnSS7Iv05lX52vmRxwOV+hBqc4m59J61482CVuvcwzRiT1/QejMsmCDFsALKKTS1noEcrM41y/BGUWsVcxxq9gBpI4XP0QR8aox1tIolIeE6aXEeOf2ZxJHhehjzlN6PPW4tjmjFELDj/54NbxDP/VB0v75fWa1iMsHtX4j8q7g5od1jT6A6PpPW7RmxTUaG63j1Kr8OxQbZJhT0VMdaufPNTX0yQS9Jcbp4quNZbt8gPbS7F1NEZPl8kgQs4gos5HmAWv/Eeekz0kkuFdHisRKLAcKwF0LrWeDW9picdd/0b68BvH3WSp0y7/5mjQAKkBx8P09eJfqfoPY3HQysnYnobYNv3adJCsrxq5xXswdbBif1waPMPvE0617b/JDjY7a33K19rvgWBErzvxYFmz9MfS9RXSfwTGvvsSC4enzNEDt92D1w9qQCbqi9PWqGeyuKWqp6sRxN8wjKntMl0L6x3LIpU/1EoiXl8xhlfZWZPoIJ3N8wSYbcK/57s1yd0MqUkFXLuh+aEtEHb753yS0YF4ZKT7vEbDKw5HdM9xPmQhhL6gSMuvFkrfp6Pykk9zaS7qAQMV4f0jBPzWN4dycZ5u0u1WrjICNZSFXoY/L8h8+kanjWM6ELnNo10/uPQDGEewY39l7bIJ34TmALJuhO9UqmX6vTWxJI0xImFd4IMSsrIQXUA5iSPrWgD8BinUUNGpU2yibgtSpnGbagLHj8tmvdGWsrA/UeS+5Vfw9GMnKIza8ZrMWmiRDlKRwdnCyZ+LvpPaFK+IejhE7QDGcptieWqsroAYb4Utln3Qr3FashKR+kgd6VyDnF+OoITQW+i9q8avVPl8zbMnQqM5l0bxvXeVIkI3PkdKxSDrBXfEC6iAPFSY5HlXJoxNWA+EYBP/7bVYymIULiarVSEUFSgEG8yHkShiDa2k5oQGI8jaLg/iIkzEgKrGgPjdir/wzxuwmCO16lTz//aFT22glHO1fLf/KQqNpMColtPcBscekVaXk/u+f3HUCfH5gaxAuUedw98h1iINEEFWcuNv3Ejb0retlOHILRBA0s/2+dhXZBLkuITCDlnKgVHx6g3FM/7ozthNkTFtR9/ofbCCyOzwCF+Alwl9Fms7JfzxsebchQXh0YO/410Y3O01PvQ9CeKK/DGuXoPhGWp87fIGJbolL2HRwJzJDanGE0hdIwK8QDYxbAlUUg6c+G8SQrbWqBMwYAb5F0m3pU7ec4ZsaTNnZnwEmEcFFHCAqxKMrSLnMI2U1eiDO8BcXfs2u/lpjiLUE/F5oy9GmSNtEtk4yrlVkn44FYdge4KhfGNT4214On48Z8crIKhF49SVfdgsKPz3pnR0Ba4cf3eJUkiuAe2clb6lk+9My/xBP6637F+ZAdQutry0/fzXvdE5pC1/IdL9kV0kGOlP5jLKpIPAPcZUjwbNHqZwOcb1ZRx7Qj5km82l0IrPxdzkLtErpHO0LYSw3tgTpaqGQOWmhpV75gQ7LzguWzDPAHritRWrZj2z+mjdQ43GYKJv3AzN0ma9ARj69L3U/RdePBK1sAEZ+ag0qoIrYdSF+UNfMjec13gA0ZFHvXe8p6mo/9v4+wSs/hU813Ma2i+ar2HUkETnuqW8wuDfPFlbdSRzkCM/8+aViy6MrK8K9yGO3lPyfiCzZ0hNyx2RrkyYigRDUphgaqoVoMbuZppmLYo7TQ0MfQooY/ya+jXhGR9Z5ZGq1qbTofnSD7PJy3XSM5hsqreaKZxLKcYQft4ioVHnBfrwtR0swwOWjvPllKvF0QEy4+WQ0PT+hL/y+tbxP4lumsnOdHpgvOWIe2YYdq3PbiWoYrekLbvu6Yo6qx4urdo5sYNowg3+oi8JkxY1mA2mcoy+arhSg+bhaivXkBobLA6dxP4vWJT0szssxfH3Tgk9BdfJ0RdDuMKgJ6MU74uu2O2Q7NJFi4n8pmUiWJGD6x/uqjZc4sGYUDoFCfbOjkNNYBjdFpsWR82ul+RUftNKs5cN7S5MougEE4gA6Vjjd99Ir8ZVCYxo5y9LT8T94/6+kVtbRSDZw8O0saRF0XS++xIGPJqalt4hoO6PuL1zNr4bC7qNGGtJeM7UiufYaCUPE2T99fsOqp9GPEmHQWL2WzRAip8YC1YzhZvBNhSsCMGO3WMH1SIjUSFP8apd5GPGSQJysvcYqIOa0RkYbBeWurE3Y9Ujp+JCQk5pofd+N47qR3aJQGRIOFx5ZvHe7EA21AChWrs3GMI0MXxYcarKmR4N35antY3GKaMKGMsetQ6TqJfPbg0Qitp0kAyK/f+nJqrr1eqX359Jehkuw5idXBSMswecEASKJ8iJ3SPRRBASmWtgLs4e/jrltFVzE89X7odCB6Z9YRjPI6CFXSRyuyioDwDjXQ/dSMflcQu5ayENZucgWFaLOl+Z+89uBvtQ+VOEpELGZFwGzJX2L9Ly3JZHlShxAxSjVa80EGi4JVElvXcB1hCQKwhO5oZDJWcYGX0Jp6ZCsoyLv0vjHMKWc0wRt0Ka2a/qzBBjGM8GpcngiLC3j6jXC9hjpHkJix+K09e68IuNf35rxPza6AhyOkQY/nRpqJUI1KKaIxYZZyXQLjNpn5W10hRUNge0+pL0N1WMFJ97w9rSkG4fc5+oKMsFCLk9Hd7NBYF7bN6O+ulsm+Dpb/613DRT8GhZvkMsSWtZyPwTajLeV+0L5EnkJWmOgtqnNBDAdWUo7mbui8BJQQNvSSbsPQDyueMpMR3R+ILPagmsgHG1Ppn9q0QbvRD16GZIoqSvAv2uUA/d/KIDmAFIRJJB/bgFFIzBbu4JlwnTr07io6BeuSS93dHXfC/mp/dFBZ1IcSBCx0Y7iVm6fAoTXKof4ALYqXcz09wDv6upXTX/TjO/yHaJPQqfmHI9CmhoToLx9+xwbNiXMhOZHmkBcRpCPk0YTE2x8puimk3T6t4BOy+lG7mCFI337snCeGCwyr7i+kVrisr24Lj/dAf12y0d9Uj5E2ynCrI9wUqGuCYpENDmx0bWT7A+eKLkYotHbUo2m3E7vKYvIQfA2NH2lONpqqmqcy8f2sa53vN5g0lIXGQjqthoSXQ8muZ6kCMw/NCxLr901B887CbRfiIP/MF30X7HkYKC6HM63CuYVgRQ3kEtc1/TSCBleQ3Aio366vQVdPcLkVngix/Xm52p4Mg2p3XKZR+R9zYmFrToJ8yTxoaf/XGzYr4Tcz27tcOg7nf/kyP15LgnvQWuOzm0YdlAiVtNALMMnVc0oWDjBmSYiVXk5W3HVmpdUfRxwjgiui+Uzk/czV6IaudQ9oz4Jix/2VnFnQFntMuTpYD63rfi/XUk7pIrvH5VYm71pvhJtpq8rvS3xpFhV8N71mc69M2w1sCGXOkA5sH5YaEU26+nBjALZW5AnUeMCF69+2eLWLCs6Fn+0rHRgglq+ggJZVuyFu64iQzPSCZ9WZ1Y6niOEoouwL2prZ1y//gh4r1gd5FG4YyyLgvYCWaSDNBjF1CMJtgoGp55AWIPg1sW7z94OFPa2n+viLSCe9IYbZ21Tm3tBXeqa+nY/h6uYvWViQoS6QGF7/dnxvNNKu2dghqSQLqaEK9HnelqpgQ0+LnnD8YmcUdoxSRMuD3RvYAPakcUuu007pV7iHSOfTWONYrMDj1ex4rmaNIYCXCMxZwRXQPkZ5yjBwuJd+ob6HVG6ezaXmTYzWvAzexOZWvnKMOXqJElGthbi+hM6+vrcD6gN4XuVG03VTQp9OkpnnonvZMHgEA2HaOnu6L5aZYwYWXsslT5yYdjHXwOvYG1edrW6utTuhgR/vzM0/O6PsGIGKjtXSy/axSKpFUjIdgaBMdG2yeX5Sd41bBKMF3gMLNVWXVfUj5Y6LVGC2yZ3hflHLJzcRLivfsshsD2nxLJYrrNBKFVs4oNIgit+KWu0FpFJ7xv08EF7YZYhX9O0E3XBxsmLB7ePWrGKCe/TQ0ih48bE2dwwswP89A3cqh5P+kSk59rk/zYw0MZyr36SPVlfm1Jhi93NuG0l17YlL5xR+oIVNZUXmmO6jA1u/zHdA2pTfjh2+V7zSIf1bjEPgfyHw/jWJP2iYcqU8vJItMWh3kWdf0LUQb9E3lpH/cRFYMgScBIPVmbvxhXSTXS5R4SZA6P9uVROJ7gPAp6w5LGjoI8pypLCC8O3GRSeVRJuN8VUFr61Qtyg4/sGRoyQPgZcp5GYvXp/5wb5hiyI6PDx8AtF0vwmZj2Cv0jiXWtDrQeQ1eBuv5wScpny6K82dpcCVHQeNKjlHgGIWSPeYmYiZn3VcRo0VWg8FsVykPfIX78JxzBIcwtwLP92m2BrbqEaDI9Zv9qsFUajYVxJacX7yqzXQzKjWIp20MHIO7a8Da2tSysYxnftCxKbKQJhfXL89V1BTjyGQHAfP5WiDsbDSecsjWDnLPq9OdicmRstE4fwnbSPisyApPXjm5P4RvqfiKl0Rsl6d5vgbwOtXuhjE5XDE86tZY5f4jPxdCeuVAy4xzgkf3nYZn8CFzG6eCz3ivnwYI5hLZNlx1kiYieW8uHaHDy1akp6Cvn6uYCsr682tgP8vrj5Uy6Pm1oKG3BbPD5aIyqbLwpwp+6oQpzzxcofBmU50ya8631io9wrzA8Uhlcrkv/62swt9xMHVhs/LjSmHYlfzbQCOOtuRjr6R47Pvfa9laJZ5xDGT+MR4LOTYSeZ7CRwjIGk8uflgXvy/qm2f2RBmFzPwargNtrLWcVjoRuEKbNQ8l4pKFjTY9XaFY40al4QToudB7D25xwf/puiec3FIcbX/mkO/9kE6cZq4AnpsIPqwDtcWp+BCX3vW6cNeHK+S0g4RKkdyv0xdl5orfjiFlR+/gY39Jb6o7JNmh8hnETGii/8/bHuyOlz/gPkdC1+JcG8JdJjq1JaFKZU4ItvWPzXuWFJgHeqP5A+lvpTzv5EqSWX3rE6E/Z5yVIwK1roBAGXRm/JriJuL38vk393mBEGHq5pN4o0ikWkAATyHjGy86hmCdeeXlIOIYYPU3og2RA0d4CGEPApVYcntZWoGqu+OqVooQ+uuR2bWYnTxWfSNX5TbmGfNoV6RWBOrKPwYMO6bBZNjC8zFanIuy2GLe4JQBtdNw5C943ygXReoV+lXjzkhRIcW/yV5BKS6fEDf2gOTQ7j5QpHxtyQusaur4vaFiyyAGkSAn54GMmDTzA+g+ytRt9aF5S2Unl7jiQY/Jq+H0iQUzK9Yb4UwmJ6XQSpvCMEKNUldnPayjOqBxHYp3zSmqIPXIuJU64phtt+r1KdRDkhrAOSsMYycXdco8JhbpkOX+w/uH6V7vQ1Fs1ZczJry4PoiAdZYqu1tO+xdifUFuGJjxXNXi4SKQg9ZHEHZxiu8Sbmtes3lTA0S+WDLus1YInwBhCG+ARyS/YKJhI7+ueZor5xVfvgFfj5XAWDQNpgvWXMBPA7DtfFngySWiecI2IxprIYgtHMGQFOpob0hRQDdqjeMuiPV1h3VK/FQpCaIshQOmXdXFGXivO8VemId2L60LzGnrxPdYQBNFHJTYq0VABn35iWJ7gI9zVyLTnHoXcK7o1nnbUirGH733PEphhWT92MRQjCKOJrXBvnBrXT3eck5ixWy7WvqrJgCFs2W3hwwrOWQtY3gqz0eIHUbiq819tBZi/ds+0cBPPUfweYNUW3zHG4SNS0EMvx6pcmlWVeWISCuXl7Z18mu3HB2NfkUgO1jOv4kGiSIezyGqimgRthhesJkFnX7x3T5ovE+cE5OWXJqCceKMuXK3Eype2nhyUNwPa/j71NVAbkSZJqWVIFZTji/9KlBqQ48lYh4XHJq3xPBVokZ6NreXJsEUXF2LyPgADL7I/FIAaVK3Hnj/BYZkVkpergXRCQ817gOzsQrkqIK3DPpn1uELA72F5z/SwQY8RAnI4dHsm2ouu9Gjb52Mz0PBM0c/LYR4Z9ZoJs18F0qD+xye7SkDGmBowsyP7fRN8Z6jgi2TY0GuDFBfeZgwn8o8eFWsOkUuUg5FRz4VVvNhHfmTEFlMYVS/GyGHU+8trn5QFxb2lLWtGNXtqXt6qfWO82u9EG3pD17VarZwBDevmzPZ4H4jID7JZiOrnkyDrmH1fEJflq6V8jeBAnbhbxhIUEPOTpzykv4814cKC2cW6nb5A5yL2dpu7Lmt7FxUkBAgE6tf445X5pRPSlsd1yIuh9hiHLdNIAawa8aUtTOkwDhaiEbBp+p82W4Ff0OxxNmVolcrNg1i2L8Q+PJgg48LKvABOR+4hrFBXLdnCCD4QOH/cUV4H5zrg/n3uPBHJwGKSEqYnCtRibh0J1rFVPJtW6D+XuRP1/3wwswCCYqmPQjvwMgAko3YnWgxT+zhUIvbJv8rbcurceOgYT0QN5jBuSW7iX4TG6silYJWAz1ojZ8TNAFwzKJv+6U97hC5X+0gQrC8IwFdIAtY3m90vLVRgpV9XQGzXjF3fZnhnnwJ9pxtOoD3gzhUmW1PEMnluaVsRi0V5NYmmX0d3vrlqnopGoFlX+7OhW2BA01SatXUyt1NRvHwb7VULX0/82kZMG2VihjgpoiFTXF5zdS/NtsgbjeVQqyihJOrguxETzbS1uyKkOAebPng3rf5o/fVhwheMUOdsNKteudAm2S2DIYqFvrwH55a04nbM89ZM+DzjdL4JwhN+d0JZd/WO5gm/aF9/nc1aiSwLX/4X0Y8VXoUQseKY0d2egPywUTpAVnOq9Btu7+2cXSyJVVoXXHQt9IfidJhrMQmBFZRI0B0i4CFENd00EJN5oAZn9hJOt3N1o3C6djbsqATMEBCN4KLTMhX1tSZRACq7lLCUUEqecIzmM5Bdt3PEFIFPvDlGbn9C5oKI1oEJY+c1Llw6kQdlv7/CP2Gh5x6Iil6mNw80vYq2GpXHhO4xgf3NpWXqtW/P5dAUnw0x9ClOpLeIl8UJ1/1hFPW3D5u8ym5tJQsocyqeZvp6/dfqUSd7Lgq80rJAVLNMNANrV+sHtjS++aYGDmz4Vrk0mc4pwCHMzl6keL0VO1X4kJiZWBwfrXfzLQ5zyX4fxxyVkfBnIEfEoFZWQIMravoOkjttqSGBmR7oRMLyqhFbf3/e9irwc3Hyw0dcNBzz54SVajekPsWLgQcLa+NRTdhWccgMytxnL7TGEfxAbY0KKZx+4gdKFjptzGgW/B1NBgnRUrGx22kATeKmeBYwcQCX71KhyLNbxPG+i4CctrXx7NljKeniqgNSgANZzGCpEMZt0A9oMkcHuOiEdxmSG/fFcssUh631eafKJbpqHRYDGLHDiuS9gdeD/xEVmeoTgvitSMSeDhkgF7cCNSiJMlIyKHmDa1tBbm9T1bjX6YzclrJ1+GnVbCtrhNOPLpCBjHUqiSx82ym71uDTH/NaHK/nQwJ2T65GovgpCufWuQT38q0inIp8KkgJjt+vWwL+5WYs7TxhfFGo2HzhLV85J0sVKzA7GZyZJiw7O1D6KoztrQ/jnYqkIqWfTSAFG58SdHz8WRHbXm6RnF/PxJFuWATOkCdJ3VX1BukVs6/fdfGj1s73/7EyW0loEhKt2RwE8vyhK+AHpVOF7bCvSRkEJ9yl6xaURoGDdT87XPgzH4h7J6auo0wVm3R4p/jaBleWOXaKYxvHUgQzi6Sznt5l4tjdEfJBNxgy0IGTjiK0daf1WQYxf1Ua9GbO2fuIK30ErLd1bU3jbFBAthJZbpNm9Y2G/qHeWfo4stE47FxdHJNEYW98Y/TwHaiZvJ03scRUP1ZefY4Z5dON1Iv3xzZCpzffGl/mdVJAM/K5QvSKW5HSp7UdeAL9exj1m6yjrv0mRKgyKzfGyLSFzejH23z09nRCkuZ67gE4N1XtgnXjgTj0XZj6PDzR7PPeLRusCBpUCJNsRMit1x+9dlu48wlmz+mkd9cIONFwlQza1XDAkvUSzHgtIy1XCm2aKWG2Ng8DqRrtD+Jti27DGFR+W81xpZBDLVibYfE+Ygktm2WDZuIJxLb7vhMNUF1nA7W/OdOQHy7u4ja9WEpVeej5NuVbXGEUQ8y9+kMMpnS8MxOe0+n/lxNtyBhqhZcno/ntYbmo/JzhxKBXjmbZ0YHwxtdWsw/anWyPqYRNShBVn+2KtmpVZboBwsAyak79oowVzyVOXPEo206uHQs244etW3CU0JO8kcYq3RNHSU1CM8HJQyjn7DK0N8n6iexBclaKSOoZpP4tCOFQrmbmGGfE2nflpZG42CyHJZyv9E4W4JPGhQQS0X3edKn9ANdpiZFoLptA4OieULAHZqeWPE6+who8+tTECi/wBR/c7SF/Ud/fusHreIed/TUzgbjxZgTi9r+i8lg0LYNohUSd2lK2nSCqWIUJwFVqTaMtvwfDCg1e9ToPzUiSb/aOuNMBGpHDZGgc51jdb6oPnSHTAnEDsB5NeMcQrZ/CYlthtlWhPdh5ZzTT7K457p+5lsoD90eOJ+thR4aq3cqJyagmvtK7Bf/Z+PMA6P1xvgldu9sED/Vic67OfnsXcN8dFVkmmpYBkcSPrRCyzMLQchAhco8x6wFvQy3BSxf/rxuW8u70nH3wKw/U4CF9vUXjVk4Qmkjy8CvooRgs+vwAgJ38kQ+G0odV4EOtnJDVmQFysS5MhOBxihmINnujkccYPjYGuaabkhH69+5k/TOabd+a7RmTnYR6Rixg87lEYSb4+yVAM39FU4MJxFt4by/x3xmo2AbQukAgot77a4Qkr0jjQHdwQ5Aax6by8GV+iHI0g+BkJIV7SBqQl1yVpgHyVHnT2WLerC66xuEq/BuwqI/AAKunhd4+m+rFKUbvGPkFu+UIBzYE74xEDOFNkWCfyJvHRrnE1R8jB21cvEblTPi291YSEw6p807NfX9cuBb/UYWDGESmh4JmSlgs+4FT85jIx59dvmQBMXi3FQAMgAcWZFPOvMJfwjhXYq3oUcf26wQ/6UdmKsqN5J6A2FmqX/387PdrdvhYxFOqbj8WifmTSxm0k29dCS3rmubw2kWwkbBzm9k6U5cB94+BqeYj2W/gU1IhKTwaGoZ15+aeBdPY/Nok6VnIBPKua8fadeQbwzY/FYYxm8+TvpIoP+oMGp/Vk//xBv6YFWXUifxUk62m6ndNuLPoiTaUM84uEO0vvt8gMSH4q6gEzxBujZQwfQLnQytGGnpbfKm+FQ5lFXhgWUrI4fvAEE9xZzJtBlMcaS6EkyArKGrJTYCp7R2L/e/YbIuj17RCWbRFxtPQX/5TAWf4k462t7p+qG2sietfrvSX4QS1tJcEU9XldHNoMD/lOxELRi7v/lNrZGOD53GJQbcUJasU83W9zt7624lsO1si7b4XNDLGZFXrJK9yNQkF5e0r6nhmJiHNE8tvO3Ji9K/lySlGpluWimN/HOxY7uMELdodJQDaEUF888p7/3bqLRsj4ZWYQc82lHSWP76lwGSfXsHsgvRJxPNQgect5yMkICfmsBgOFzdnCiLNbqiA00zYZvgnkp+QZS7SOHXik6QbsyffMa3QuPCPtkr3lS+17Mya3NmgYY0WRiW5TxsOsmYNIIjJ5dgnbNQbq/fmQtOrVkOLJkW6oS+Xw/CW99jD9BTxQ9+GAdmWnAaRWOiNU+V9M0yKFGxEP8OWdZpib6DPj23h1hqctpGRqjzqD5D3X2nfYfRmVQQHPQfr9oz+mPLVDTOA4WQX4m9awgiqmxUpbP9dwNKORDf5xxsgfGVKzEuIR8MQt9T9U/X0/TB2h/tPcIu1+SKtAy/johZ2akxM7wHBSzx2ty0KkRqjwRSmK+12rNJMm0LedOZAErHomAKgXSMr/y2StOQuBdiBS3+aNNp6Wxn0DVoNc6LIyuI8aiaA6nMARbkhtyMpOuofL9lZOlt0CVofGzejSdqoUlZkYWszYCnivZHJKTwsnazLw6KF28MYYGY1ZxYHM1TcKAr7hk2KrIb2r6Nh4fE/EUd9azGfcTzR68Y/I2NsVu5zEBQuxlKOiemxD5aBezz4pUdOvUjHQp1Zp1FUyIF5cn8DARox05dc7AIdCbfBFi8I2lPFRopVzk0f9ICxYlzVGiCW2jWbQYl62L44gm8d5ZKtnFUNJLOSTQccEs6v9tS23Vq3FubWj8yJql4EVkkgsACHS9YjvmVkZ42wXk2nUqRBUE3+vCIk8DI9gxuk84sw3hzwBE4H28bMPOP6MN73wO7mzG1XZHVxOqKAsuuDKGAE76HptkWGsaXyR0Xo6sHEDOkVdEfURj7J1IgT15xT/MFPpMttGUvdn2gkohc8KrIbXEZmMycLyn0sI1+9IZQiXMpMlOG319AFtk9xfV7kbtRtKPakKi5EFeg0jnLL1FRU/w6l9REiN70rjNd89fMXznN1cYhhcFPUT8exmcDqAwPFP6Q4MEv63q8UcZ8BNvCn7WDXFdiolBQbPKKq1vr3MRD4sCReBePwd0+4/5uO3CjyZMz9daBqm2SeLkKscaUxxFIqso3e7rtjjUT42286i9xEtlkDVNopKS8H26cwCOZNvoqmIcTyOhCp8oJCrjxRI0+uNjoV7I12hxBKGoTXDUwHkWfoV+1sEHTsTS42j4C3hhFnjTNrsf2VBgKjivmzIrzM1HziVvY4zIiqU+ULm1aVGNr1ra/Fj+qcDvNxFrX14cus0NYLl3MeD7ZxwEG8nprvwN1k3b6c7hj8IlyH7K+y8QVMqJ3s+Bv/5yUsk6NXMSDp++0M120KdyXx7dVTFO89McMo0pJEvY9Yez2NFr89o5PXmGPJnj6J6/+osGatPIE2LfWYp5aUf5PdJwkFsa88uPpIDBal/iC/dqQCKiUUXdlq6TrznIclFMVQD3ZTrdyOb7n3sZIAQlwKFRPiz5ZakOis2gtqnyMhZpLHBsIpQwbSPLbAakinoaal6hz6XR/ihnmRpDeoS5AWAhLfYZAnIVUAFoAQ60oTsL/Gm7pXdIX7iLSKS21rlKcUxKYePIn6/FOFgG4ZTggSFgpXXO1Kgp1KtOkSvnBBShNkTPksTQXK9oD09sko0ef+Y+8WoKJz2ZMhS51CEeEK8cvWHZxEZhtV+jHZq9mA4KWHC3e6/s4BUuk+TmajJEnAcOLLnlCTW73PXZ7gajNqvdBC7kStSsoQSXknuXBrdZ214fy9j7ytPh+1LprnJo3uH5lKW7zWVsj11vguinPr94LDQ3gE+LI1vr9gfe3dzDa3X1TG+Akh75y/uXETPrR1kum4LLv6BWMW+EjtixLLPa668dmz0mQyLcRzULU8mWe7xKlq43s4jscfRVN/871iAus3wylKAvIhousDj6F1qCv9xYAn++1shLVJb7lBHfXNCMfq/7+YHSBKAbT4RdQMWHNphvThMoNmGkufQ2KliM7bPTJ6MGRJofCsHULrBtEhWVTQIYlDWe2yvMmUKGUprs5h4pMkLMFJPTonOU7WBDYivZ4c9rUhGylCJtfufmtgP8zYYjf5BKb6mgSyncqGMDNybIjQAxW+5sl///u7KUEQ0Kytv1nTYP+BFRH6CTnbjAZwrSwxLoIwXu1SuldlcXut/lIwvpPF+RQscoaar4EaDEC8ZfK9rCPXDSyUtA3EfL5dHaKdeXV5S2R1dIHEtzJ5izcAS7+WvfnSXxkszdy/P1ztiKO2Yb1G4nNIqlG7ZW6hIJZCtr15ZwuOyPZ+8cUI8nvpTVxhYDbc+k6HWe8CwVqv2tz+wIc8vo00t/igYShmweMzOQHP/2Bc7VjKsVr78+ylCFAjt9XEW4R5Mycd5EqLYwu2OuGPJtW32SVXLx+TxyTfd3ynlvV8VEawCx0jGvNCQoYZorrWHb8bHZIwlXndxhlSN+vVTMSVKwlvIiIr4xIiZ80hgNuf62EBawAlAxZRtoRwUWOKL+eEeMLsRiyHsI/Lh2K9oDFf3kjUjj2by0zKnDF4m0QGODV9YOKjorXBU8Fs5WPC2VBC3NOF9pNQx/jwbA6/oXQA9NARgfAb68xbRgIdj3hsMcXm2HTVS3x/gBvDsusPzuDN7T9n59gZMm0YAtVDTAWRgU+CbjBi9ySbJukB2+kehhbLD5wx17t1bBee2dN1lpJyy5AEbW9TMYgwub6SCK29GFStQfv/Huj9TqIK6k4lUg2Q4w8zPSJNk29rC4ujyZBAz7txwVJ6LqXKk/37LE4AJ2PJQO77zXyzbk3bjDewQC773CoBJ3brU5vsZzBSeZDTPCYYhUGgGemqfF2T8BkehpH30ZgKzTL2pSTyVSrYzsu4++abVbZ4ZODNUjyKjXAxHjTJ8soN9z2W2lMeMRgu2W31nBJBoZoyNO6xd3KrEZlsyCdsQrKreP4F1sLH0avkybNMd3sxN4QDaizc1UoX/OA4SsY6FcLU3u33t3LLqvKZ26M0iiBNVuQrD0gaFOZTyVS+Fm93huYQfgRvW5fKX2Fb9OyNwj4ubl3HXzcBkwyztZbEVB5Fc5JWnnquhXS9M43E+EvC6JY2xI3cI3qsTg5dfZrcsCc3vRlAQzt5c8lImZ57OBmgGhU9nEh/UlSjFvamiIMlclEMMiy22jQOID0Pv+WwoYqjeMBuCW70hFyi+MGe+bSCVjK7yqG4ClYvDxjdBJ22TocyPTdkX/Xbd2iLxh73wDmjuaop5/v5ZfDRopsDaXf7d24apFXe7iP80MEFMh0QWlmSiPRBRnYya5i/mttUEnPRQRn1JpDO9TpMK4dkdk2PVNQpnD+kSPDyRdPdFVWl6yZovvhHsrsf1Sd8ng6JUrHOl8nn06q434c7LueFLH0oeBGn89Af3YlC+TCpIsGSBnhMZl1NgDNECovukd7i0mcDXbRu+7KwbH8o0lvKJ4/XsEjvcsM6V36RAo7XGnxpzgKSxyaJ7yfiXe2jj8CF3LofKWYtUVvxb8ZO9zV93008Oh9hogRBSA9ZHA+IAFtydPgU4YHylhvrAvZcfomnZiDaHIWlfzoirj0gm5odRjBWibBfpC9t+llYiPmTs/Xl7veoFY4z7RT67acfbRT9Ux2p8bYo1+musoNWqmc578sWqpeH5DQNMvLdwWjc/ORThfWN1/buhB5bs3zxYRo8oGmzC18gywPtWlPD6PR7GI+Vi2VbDwmExFTA+51sTvUsSGAJWRX0oPgGYmPjsIb1Dq5GMukJALyNAwsRNHpj2q5m06+3Ovj0bKTEjlFBp+90lYTft9/R2x2Xd1S640EiWx9H64vD669Z8qH3Oi3+Bqd+E42RQaRJlvHuD7YTZ6LgTP0B+q8oyympmEfTtlW/A205rHAVHbACf/5IkKveT05cG7MJeaA7GZVrCkA4f+oEH7PWoLHuX9x5ZoUi9yQ4av6Oq891ddqN8vo7NBbRzqR1P+zfvZ+veohkXha9ie8zM5o7miZOhq7EHNugOlAsABFQNkDd3gkkBRwXWCf+u/p+5tPuSYo+0SVWHl2Ts2gPAIYFRc9cklbTcvougsnknaTCU7Od9wmYAJ0r0wAG+qdiUpxDmoq6c7K8g6bQKxsdIy3pDpRtMGqFzIVisFmoWVfabgSb0md5zpF0f+h/YMKPStSkFvS13hq0tYZbjvaGdG0vhXrVZPqDvvmeu9p9lUZvoO0WNWFm0hR6mKheU0NlsYA7F24wrTx/wjvJw5ByHLEZq1IYxS1iJPGhrs6c7AZJiZCrKxk462L1H9ga9WOat7bp9CfmhnD52l5Ce+Ci5Ew8Zl9AZM1zj6R1KikTbmve/E5lPWmIvNxQSiIJtMgvQAcnzlzcUq7VUHxpQZ5l+qcNN4SwmL8yl4GZxqEej1zY5wJjgjjWbDmvyXhr+yw6asYqMBF+zJ0H0ML8+QepLYdahBLoKHYktE/coQjciayZVMUVM2Bnnwc21yD1yreVDclnSfev3knuJOyU0PuTjP5gQzwmB1CRDOCbtir/5MgPqFgPcwq8u4fgk+CEgYsFjLvqMgkORUiHi27vrZhxCatgoNgGp43cWNTDgodHhJaAB4leTZ4cl1LO2SrEhOxQc0xlRZ1urGrtHRrgrk6CojFJkC4GAcwzs5i4+Y04TBpEpOZgqXsRVbV2f7LgAnyJ8ziLTyUnR3MVBqQUxW58Pt+RPZcV/91/c5GPZa9Npjc0EQggKd9OeLe0bUp3XuMv2oBhoISZgP2eMtYDSUnWXZqR1kaTEFJH/QmtODljA8t/OuSxpTQvoFH99jqaBsq1inNVZamfl/IfpqHDha/8XY2U+aB4AVDcx1Fa3WsbJQhj2yfMPGpUiKdFt1ee29A8QvacmFOZmn1V7IuK5LmyUKzNHU8LIdC3Q0xWEisAv4gNVwX6bSX2He5W3GYDxA4HUVPi+jv2vP+VzACF1cgVxjGOLEJ+PcnmbH5ZxfCwjHAj1d+IH4DK/32Pshvsz6QvDoGxnwZ3a13UAoUGX0KYacCfV6JDAvmjV8wlj6UHgbYOjc7CioWaoFHBJdJ53ASHwylS8MyKF9ZyFoDJaJIBXvNVfp1YKmgpOWSiWdKvlQVEV/ZqrHVyVlB/AusZCnIh3ykB7NMrb+1EkLAJWUVoKE2NKGdlJO9FTblG9ZSgwys0jKMuNxPFsbNOITjHrnZwVkeOR9QdgeVM2/5MwUBLuFUuFLaMZhoholTwRzvNRu+Anud7xRVvkn4N1nTp9h2rtb988pXIuqZ/3/nUP3XFygFiAgrIT30qEEKLcSeP3A4uzHKumNZVWqSWHFcV9PlMuO4P9DtSlQ39lbrcJfFaJtnhwRHQnivBb3f35VOApzANJtjaUOqJTczn6J/95SSTNo0i3/SUA8WlBIeKGbNgYEzlMb0Nw8nrtAE4Icmkpyst2EADkT+rstUQ7CLK3/4LdRIXGMxKDJ8AhUMo7rKkCPxmDuZTYSZOvsS/5OKEdmdPNGgwkNbpJ7BORzUw/xysa4IlJ/4Nbuiz/W3ngKTdKxyCgELwVwFVVYxlVeU7umIgTRafEu97Ff5N4bntnImggcR7449lVmwC30VFPGHTNmumHtf5cBXrnbMW4zu6cWz/Psgp+Gj6NeZcK2QoCMHTYwv874OSmpTQlVwfDggktnPd1X7sJL201WDSF7vbdhGu+e5YMS65d6aZDRO0F6sDJejlHM+W9tTbeTSCeDCGMoJebsXL/h0feUlnJAYH+K/INejRCxdo04vIuL71JV3HU19kGpgOVq3roi2tYOYaRsAIEnFzpIx6jQSQ1iiDyfU5pr2+ZkZBz04K6d78rXETSyUoFcWHAnVOjUo5+OOAZrMXx3P6/nf4eOSMRp3h6v9WRjZCM939ZQFIPhKyqyK6n7huvHgAvlQYjxxuC4VIQuNqvBoOpQLRoUYIL0q2+rZRqx4tsOvCfXZIMqmzMTpMAjKvTyHOoE33FU6lW17QKaOlPN7PNmqE0dM7s1j+byB0GeBzfdzg1k9ki4zIxtDRVczhl5rfuJ1Vy3oHDIpY/citWPogX53Zwz54RHrSs2C2HrERncKNjhlmXx9STA4x9UWzyD37h7WaAi0Sk0xjJesGouepJOI0CCi+R9m0J/OKT3Gj59/YFJP4UXY+KCEMNosm36Ip5Koh6XWiNtNtzz6zGFQn3nOwZyaX1Umae8k6774QfkgAeIoa3h5zsjjGPhlrzEwEEJudUPvsZVpsSAryiHHXF3VQ8CvRu2lzQmbMUuTYKB6gLPvbbiLXsybL22jK7mOXcLOt+7HHk0ejc8Pei+RcDKcjjMuPJxcFutbCAq9v7YS8UhIw1ENp2YKtPzco2wBEDi63tvjdSUVYZ4464AydCgXhTTP8eqNGfuebn2ztbXMd6V0CWofu3tZq07PEY0g418iUTUiEepyaCGl4lUvS1N3rXUn4zfD6x8y7LYtZzVJaOCNKqF5bn92Uj1hGmLfYrHyIYCpPxmZrFwLPEbfiY1UTz7fRdgvufeynzXEbxKMSiyfEb0tVvZ1CxWbicX5wJsxm8o2yMiw7rhPJuvVGmuPcygXUgXZZ8eeYv1WmoEu/v8bo0JIN7+EcZDKUEg54hH7rbGtq4aJumNsoP/u3SgQLjFY1VPIdl24f1KHeWuKH8WOvx6GZi2wMujf9e6sxRdDMPSSJjK1+qT1POQWNKODJ4W0eN8fkEWdmgsglvfkT6wkuZW7Ux+Ga/kB8NNG/niOJGjqXt+7tkiHY+t6OfQGeSEzQQ6uYgLYk0+TDE9iVjTtXUZz1c8q1Y3eJO+bXCMl/+/HaNnszS8hViMAdVKtXSSppDYDUhG9xEGjb0lr/1+JJTbISDvTRA3nKtkJksMucCWhYseJ6sPEZbyLfX13HAWokKVK9cn11VuqLc0TRs0/c+H4w4V5tZkYp9VA2mma50nWeI04uYe/6v95xQpAldcMSUEdOs6rlcHGkJS/0vHx+Ww5dw8Cvnt+G2LdrPTBQGQ5xZH6elnEUVaFMzkAsVWSH63d1/7gkEsu1ahWW3+9CHwMfuSrUSdYFAZvsv+SlizEtW2s0apMysOHvM9xiXqJIPV1LCNtGfsv2jTM1XVwBCTMy6TXiypTiZmh6pIXrvxyT0/TOhQ7sNgCg1DXibbCZPw2XXT4/piYG37Is+qgT1JiUM4CMzP8i8FVyLQzurOGOOnHfwzjZnafTt03iuCiUi3n/CZa8+liVqsHcBJ8zMel8MwOxsiEv5+VckX5XHM+5H8o0gTusMPYRrX0ZObIIokasM97PAGm+RkEsW8y/mQMLRDNBjfVe5tZS3FLHBcLs0RI4MpToD5mid+6T6nVh66J6EBYTJsHHVqhpeWlfr7fN3ZM+RCmB4hzXeyO5ebgXCcmo3iDxbZ4xV+id6a7IW76BE9Oyhu/GQlK59S8kTkjK/siU0gKsLloUuAAMeDKFxjl4xMnNqJGfBiB0q64BKGGR9xyq16B4//POGDVgKG4eG6zAxwq/iDsikBe1uEon9Sg9PHYezeUDaJjvyFmSkbFnHmDid3RwjJEbUqPMH/P4KI/5xpjRA1nWFTv8bCF7BS8lnLl0Knwo+KS23g07P6i/EHv1tanM/QYqLEQvtL/7eHjvgcg8gn4r/JPJ0mwcZlyph0xgPbawX12zQxI4twoEf4uGpZlooI7FeoYWWyCxkQYTV1hm2zzh05X8K6dMtL5xJuhZcZuHaA8xB9cJVqvTgaUvpWcFTiBqzNl17elE1MUJsU/JyXGAiVBjYToofqiiQUeYbvFKO1ohDyR9uSgIYJzKcN6qfEW8+tNEmURMYZkYguly4oTAGgk3glJOHvZIplsVsct4cbGgX4srNUvOFEyEHatFcTo050VjuKZZdQS9QOVRwG/wsz2HJ16l9sz2j4jPJfzm5jcJCMcSMnvAhyndBOVoT/aLqR5J9/CYgf6/m5oWxHe9h/yoNb/IDvRSL8vPp+oZt1blX0Off9GCIlKi8jhtcONK0T55UR4SEb7YChEiZqk0PpOPHGbbkQFAKnLL5Gg4vPpYumL5t00w7TGCNuquexgYjlSW68ucOve3YaKMEk8dWSwhSHTaQYsJVfWRt4sp91aywIHQ3xLXh1s1Lgrz3eIdDs/RhoVW0ZdGTvEg3mzvjJkjh/O0w6iIjVsUrocGGAx2n4okwaqyLfm0TRaEMBbA8C52nBBduqp91jThTZZsud8fRql/8tPbtqYB+UJCvuAMaQ8fJp/IkPZRZ6gkUF6ZqUkWGD9diT/j1iGcso4hJwux5/pi/JEs2YCpQvXhKOePNfkPbNJZWwwYZCRJ01xjdRRIXoqgNKw4PxQlaWwgnadcKBY1xOhIpGX8YIALUG9DrmXZg4EbbZyWWPhZobuH2C1Zqii+2mGUMDa3htlOy+OUgiXPgSiGF0+3nfLF2bAPQPemlhI3z+7Hkypef3PgvDWOCDUHXc2iW1CqZemuqcrBaapxzJMg26Q5DLAnBh9Uasf7JZFpOSb4UIg/5AuUky9qYvmTrlUjH1WIGCKFBNthYQ6qVZUiFxlclN5REyUad+TvGL3VfIAChgkZnLqfxVHHi+HGAV3b/LcMTnPv9IXtD+lGT9DUF6YrfVozK1m0SQb0c2d4wYtslQ0NKBNAJa9I6XEFe/5O0DUnpXEygM5/Pp0DE3Pu7tfm/UDei4Zh5Q64fI1SKmwnVZVm6UG8rKIRlog2TUMc9h3ImXhxMjRLesdvXwTqb4/XieB57pTzzCjI1qB/wChUtKk4ey5+2jc9cEGiOhng0762Y77Gs4HxzljaT+6zsOupSpDWnv7y3luzea9QP49j6kNlQQ0zA30HTzRij2LwdLbFVu+hFc3hp0t7kbwM+SRzVVgEcPVKi/fAX/0dnmvcbLOaz1nsF8ElI4OAJByUVV4YZb25+OYDGyrJXfMrKA+9+Kj5LgnHUeKq9GvbJIMIZMF5iC2jS8NtVDUEH4+CLfYXRMTfpA4ePs4vUZ4Y19jK4t7J8kIUtEv4Gjcq3spP6GmHlm790Sk4XpAeSycFutqC0nG/MfDA6oO9Tr2CMEV/n3tecoeFryiE0BL0Tig2sWAXp/27Ba/KXP1RdwKxwt/G07lY7O9NyPgFoJ0JOm86Y1zU4Jzc17/l5uh6B/ql2hBHny/I9MGXUETZ+4lP7U8iSL0gygbKZpG4nG4m3noa/Wq81RQzq4llUfHlaqy17An8y6RcKRZVNNPNWFOK+DfnxD6HEXHpa4xwsZMxfFwvmo/FMVMkxzaHZv97vVHih9vDSJbGo8o3CjsQu7vevfoO7/D5Y+nKqkBhh3nPP32zasWO2JDukhioj2JdYSfveRc7AI7lEPF7xdvymXk5dTVPXJU4XgrGjyR7oNXOTzyKM5P8PU8+e/11gFS73cZ3hVd5tW4+qCsZPmlOnxsHKjAJ6fPnHN2hjmyKECmZ5nnKz/rFozILYtmwff/ug4kpEWZoJttlZqgAgunNSJAoKLeGkHVzsC/lx4Z55YKYwmV2z57PkXqhsjh9cVB+U1kDLkM40+GHbsy7BKNsvJYd76aD0yoeZf3X1ap5i68dUKQo9Ch6Ne5Z5wc/RxOu1RwgadKE6t6dS+XASsU4hUpYCbQo//1aHkvx1t2AOvV/pQQgewaK7ibAPcAoGvBRaUDxTDQA7AOcmu6QSeVzeya3GblFn1FiQnNg0/iLzjY100cKd9rk6snVqvqKueJRT0+ypv8Vi2TJIT8UnM7EH3c9VdEoWnBjpXggKHqr431YTPS+uVF++LobcWYxBZ902KolSfrhzWv6H/6NYNxq/yZupKiB+hQtKp2psjH09xRGyWer8bL9sktpQgUjF/knXLbj+e64fDOHjZH6Sl5FCDg7cHgq4QgObeh3jGDydE42Egdr/EnpF+nqqLKcCeCLTJVj7o9nWJuJL9FR8NoLOpk6Sk3hCLQhQstZ5Sp36XrVNKW8eeMx2dWXAj8S2xiUqy3gIVVHGMzfQ+H+KF5Q2Klh9V4iAfm6/nUbgNKXM/rkYemYRh26hnMWNLUMI9dv0uaUUeskpOuWiJW0bmx3KN1Zs87dy/nlebIW6W8wzeo5IDRySev1lAKTy6ERSVFsuZTVPQxFBLMmMNc6gM+jEHvFGCTAIWEwkjKFinvmBpX5CBuXKcIWXCaG0747LcF952lnD6bgsjo1Y10fK4AeiDlUplfuo0t4m4n+7fsoFfRPzh4IIgNsrlm61KtfuZgs0MgsmGJja+CshhUHMqL8B6GqnG1DpiyEkFmvB8KwvbVzLi9lMzKFLBA/STwJPYf3+dlaMJUpTMcWkQmOvlnnt+sIhOa0IS5a8PEvIGobS+vLBbDIgB+akAVlHi8DO1geweG8B+6c/m6zyMissYJB+aS25/aXwxuGMrWIXN7zKD+T2OevFOSSu91AtQqDHztv9JY9WNc7MRsrClHtTda5QP3f0S9IIR7uwrkCYegkP1TgkIMHQM4uy/0vESQA8iYqbd688j6zeYfA+kQgpZt95KvSJ0mkrA6rlZfiNIqarOoj73KssBHv/VVHYz3OwVEkAuwKlxuaDMIc8JjD/inh306vUekSmjY6+rplC9uPuMXj2GidO+rIgE5PJlSII6f6RP2iasFzxalpjjhLv0weC/4Fv2rB0dmyPHJbOMDTzW3dASIOY+SALmw10YzMPN3yXXNGLEwEzkvBTBJ8S8TLQhcNfBtVjBP5GsQRFti9e/YM1toT8empIl2jb0nsDOmEvfgTFNdnxeao4WW+rll8PCDO7GBMkqx9Eoi/Gw/dEEf2XDBzW3caR5D51YZbGpyorUJsbIdw3Z8ZuFGoAB3KgLc9BOq7jyok/k/rUoGZ6VSfOIs8rV9LjPAxg04wT/s46tSKIWLtqCGVfpl7pq29w9zgQPrgq8UvBhmXLpJJXnPBwjH8kdfugXylEh0paD0IQL6PDoywYJaW+MGJqvBKVor/2BynMQd+U8Bi3nNDBiPwZXvcSeRAzWC1n3zQupO54i91kJdafYIFO+sUzYDIMLgjvqMN3yv2ey1HtPL7yrttIfaBMAhFNNpxH8StN0QwCKZlNLrCFCFG2F+uswiVhGoJwz4U51QslMYh8Tj7RSvlhYt4RWu92gRff8KuLXmmoxB/iJL5Olv17Qm81Lj1FLsIfotmgCcQPA7YRA0F6KB0ZBgDuYK5j0lsJj7CcziCxKuvsLv1Si2NKN+8JZ0Zx8lubNlovJHls8dztO9qhihisfTyB+TyRWuYbniCamjijT1Bh+nz1Cjls8LmULHCO1kOumZ0CwS3SbcczHfFoqFHBsalclNYXsW6qc8zAiqY4qmgHl8wWlS8OwOEw7bTMVLaCKEMfWXVbV77tcxXSu1WY/CioN39bG1zzVhusRadCjU5TkosEzRJS1wiPNWRRVYZbpDsn9zPRYryG+hpzH/VW36wl/4WyAh8AcHdCXeykhENnwUO11NaAC+AvmGWFKx64TR9tigq+D16JQxZS6JwzAVCBI2X+G6LtENEpx+XibdPIsql1gr2FfxVw0CwOmWZwbDPY+VidPk7Efydx7Dc590xBrTcbUWq23TkS2C3VZOFKcj/nvmu7tYwdB92YoasjnyN2qhIoajP6dITRLqNJFYB0OHxdyCJrGVea+lAupGVkbkJKA9Th/GuBmDsRzI7WO/1AJWhxrOL17gW6cVyPE/CXDJP0qXXfCcRiMDQUP6Q6IiuQCfYUZg1s50qT/5Ddt1k53o48cV6zisftNARlJoQFRI96efTf+O2MXo4rbqoNzgXcTrs5sO6BK3qhi4nbUDn+o+pI8MUGmWDf/3DCpyf2yDVEKFmYWUiZMnYSNt/FX7IRn8AUEvwr41Ep6saSueEi/93Fu6m+UTOQTWMy7L/bpwhu73q6aKxgMil9xbY2hsIK5E/JnBG/HSpL5s8+cC31GdjIfH36ShXpcUNL9aKxJdT91DQuRx9yYVwEtNgo0fVmQKdgXtId4JlF71jNTRuEbZRaaUeVu+EyZkLdlMOMGWThhbVcz1bR5X4W2WW/0qxqUcWHo8kQGiJAcIuwichyKCCmjNoZhboQrkOOYgsBKZs7CIcG1TmmFFqbRx/mSM4H7ej+Vt/AGWKjoqoCgCCyyE/9QB1M8vRqS0Rj54ZcAkELZWPHcXEfiNe9jBNc0/agfF2JEzfCSj2AVXaw7JgzrM0sDOagwwtsqg4zNf6LVJnf0Jr3gdCOnEEnWe9S+govdoS/YhHXhUSk6idSUzBHcZ4quZOS2+OZl0R+RQLTNQmHDI8pOzA/jyJgVxLWbTsPShT/nRsCHkLlYXLKFSXEbYPbkYUX/ms5+aQiUXKvMbqkMSGFX2AYrrWVK0Qz15HOa/EE9NcCR6MWdoEPw8weZ3lp58PUOBMVzMr15i2fYBLEBsrYwLUkbNNU/2v9CkEOIIl/eSwacu8bme0M1ReFAUmSryrlUbNywtbxo5xlpy33iKlxaOlQ7C4zE9MLCWGPS6iK95e50iGXVWai4bq3ZPtzy+w+INw8/cujSmSLKSSnkO8jPjrlczY4VroapMDp5GVxOysMqBHzgvtrrVfjVP4viupR3UPRsp2EolmjOlL0K18GtIgmG5jE/430+70H6iNeRG4KnGP4UEMyr+MM/8Sw2Mau5UKd6J+Ori/XQ7sWxwvFxcKmmAemK4nNewdQd4yi1pAG3FOYejkR5oOvHUoMHl5Y8Dr7bw6OBRrAavyHgap+p0y1tpkcMfe0gOn73BtpZqfJuYic0rpEDmu4nR30Phb1qcQL32/1eCVwzygzphyYjH2fb+lXy0/izWfVrF0+j5T78Xk1weh/vglyWuD/fboFdgqwR8DeYvvz6JghjjMDT+FaUMOlXcvUHp1JpDAC+cVj2g2QNJR8wGHAkjnZ7KMgYW0FkkTR5ITUjcx/FAX14oV/Wi3WV+v3WZ5sjum82KWkbAJDaoTvn4nZsJ2Vx2WogTFc7lyQe8+A73LPVvVhwKYD5MEYlOSL+Svgz2vJYsGC4Ia1l7euh5UzTpgDgp/nmSHAw022sNd45tJqMQwi5i2wzz8D6uAwmpKqobkxVoExSBEZGIyfU4FAui0KvFJCHpSxU0YMnWLTyuc7egMAYe9+77mE8Wc/nPgFD1UQLT0j42h/tTQ9U0SiulxAutzRn9E1aqw+gYgUGQmr75FqLVnHPdYwNgjWAL1XuJz6N7u8yYx5keZncS4MRrDhUcq8YONz9PFhcLilJtzKdymJodELBL7PwJRAxkohl1uHDZdyTkvDodEManX1/8g0eAMy/7QeKS27FkDIEq1RcOb4/bWVzKYdtBReZx+D+oPWxUrr/30MngwmvZzmZUSGqbbkyMXAY8hIPQ9ypiv3Fn6gYw6aSZ5MlYcJraxIQk6XcUPJ40sjENvhbReCsD6rYdlZPRCipGdBIUgP7Yx3Yuy+aa3Mz1aEx/OrWydnjOlBdtZEf18Dy/ncKCpTSyhpUg5wikMZJ3He8ed5R4FOau0Y1iK6OU6r/2GMVp3YYNYt4Xk+PyeAPkT7gEuf636boZ81QWufVDwsvDtIvmymy+1L9Yc0bJtXUxY/58WbOBH+YaQwj/k8/Jo66i4Wrko4myWsusIXpsG6BAcfedHRLMWmgwMfxzzgHSMA5gdlfunl5fNY5txXVjS3/4WztCPBP8iboPmiyMQ71mJ4N3BsqyQi5D1AKeU/LKphZcUxGEoalm1Sw3YaRFVfZg1d4vB2WnBs5NyK4pIaAjtEP+XueiuR8qLlu/KxaezEZR9idM/CwG/zzDPJO1sho+yrAUcDg6ELhzqupzGBfr6SBqj62kD6I/js1dagKWQCYHP9EUu90egerFHxUoJvVOIPzWVOWuLDVUTy/U3u5VxhkLxvh0tdHCoe0G5odNUAVGWZgtAHoCrqYCBY+zgfNMLEe9fafmlVC6blfNTBTaLmigpaekFhryo/xYELUHV+Xe7e6H+gDvzzmRWkiFtHjlAXa+dQj+J2zYNyayPUlUxm+FB6+mBcH+J1OuG0LO0L4q8SZxu0p7NLsjx7+A4coq9hM7IpXT8U213SLxhHjuHCJs3EEejQZPDeN12K6IJ273/qV5ECvWUZvv3CC2mgHSNpihlmbY8rPe5vl/U2vYSWgZF5lpRPynv3iNr62BSS8QM2rcASD4A+YWemwFLOB99BdG+HcCL3es6hUP2FQ6O9m3Tkk13m48ASA61GEShpfmFgBb2wwBlcp4X1YQNTkTpzxqEJ2GtbJdKSinmfASrgGgVkeFyvV5AodQmiMAq2KZUfInQ2bt3zH8z7klwlixJ9ENI9xdedw6uxmNpe/KBZkvQ5IGo/IwlVu74kpkD/TLyoYSTo1XxqQquy1WNCKuf4fxVK0dSq1rbhfVbznaizckzVXytjtvUvW4vdVkV4tWdNcK2/FaOmNz8Ngk0uM85DL9ydyyFzYirCBjdp2t88rUlI08dnZJoofecrnAkNrNT9qnCxGnpQSbcPZrd8foY7BDOmbML123q5Z0+kTK1IwfKO42g6jO4Pa8c9y44zgtZp9qNxfeR70OKgKO6t12rJsunzI5l6oMI2qHrBLrLgxRQn34/L10iFitZwZ9S90SAsMs1oKpyJlLItFZVhE5OPfLsvCbWdB2z32/81K4+mTcH9DzyUeA8JSYoogMLZAdj1zu/lOmMUPdGKUoi7CXvEsT6K2iQB+MeEjHnaiNeJJSSrcVzq2wBRu502cr0wsxrhaCwzdBB7Nkp5eLaeK4PtUQaainYDrRkOpmVCBoPWds15qCbgxyg3/KQCVUwdbg3dITyeBc+sw1Q5dEXHinTdL8A9rg0qoOfHH3noFzdtrpK44bO4LcyCote1CUVLn1BS8T37GxwZzT1jgqboqxplQBUwdUhHlQej9ugnw1lYn1HfOMrZ09+0Ouxsa1srsR3rw4pn8nJJOPs2SJqD7wdUNeLHfxlydI6wnEHl0x3CBuP1FBtS69/acUwDFEn4Tg0GmIMp9ELj/D59q/p9gKU9n1Jog9MR575mRbkWhC70gntaqCbBvjghBNfNCKJAUkWnPqxlDY69QtjBBcRwsngMynRHnx4Sco05rYkKpNKFuhoXkN7Jvwn/p7xxed8O5BoNxI86TVoxgxy9Ac3Z1Q0NOWzqjkRlJtJ6EbVhEcpsNlv4KW8H+yQQkIaT8LCUDo9ZUzPplNfs3hLnl3Z4Rj8H8sMJTDSdyIvg+iE8AdPqy7plwOIU0hDVLfcRjHDZp566+AGiYGmCS5Fz2W4wY/DM6zE6x4lj8VhrVl4KPoQGpxcBVqKPSg+hkl2vo1tShdPRx+EpRGPVmox8zR/wNpUb+tXJU571JLJKU9JiDsWTBMkDuTNgQVuL9qT/M8va5cd8zomJdeOAb0BepjtFH1q8BjTxRdChZvXbAHxTiXoa7OEcG8qA1qBb5MVv9ajefGiBbopXwvOxa314M0XCSPMeFFG6p/UhoStBL/h/S7d8A8sCHMqJ0rnTWQ0SSCu4x1GWI1FKKHJxeEN3ypuPO0O4NdlMn6+AFJOioMIeD6mbbBTsN8Hwk152MPGhAfgts2ZQI8j3VwmhbrM8YDvXLgf08y19EV6iw9Nx47R8DwUGD+Qe2PRR8vCI7SA9KcJidZTXdgrXDEQT5qViAlaP3MZ+loFyxvLTby0jsWzHx9jCw8rqjzjSUjIz2oAWilpTmcLfbulD9Psu40wSV0SWZC/ToJ7e4DoupLnQjNnEvQLiXm4u7rSMPnV4oXrdXMcDiTxlzRHFI3QQdrWbr/2S6kmBQJWS2ejKBaild4n5ZATf+3Bw8jdAuMhziv/5MCoN5xTjP5bqebbpxNGbmp8t9u0whd0LTJLvfCes9mVtT0v7ICB8oAiQMFEx6pXfWnZ2slP6jSlGD5W/k5A9c7XCOC5+Gg0Aw923fDsZQ5P3KL9A42B6jBUCMAEWHow8oGIOlEU1DX5UagJjZbTEpETb9F4XFmfllCvg862h9E6DLphvukYeXLBBRnQF/ygcEJ7d6rQIKJYdZpNjRCebda6XvT6QPcL8FhXeqUqZzKZ+pFOYuyUM+o9EywEZ0b4Gi6NkKRYJ6jK1CuHQgQleUJhY1WeROeXZoeYzWlJna4eitIfKhFyYzR5F6iWeNkxvovHMZpgZUdHA+AYKBgMZNrWNKO2tbPB0d9Cc6PeNa1mHTYMdjngfYSeHDPdYWnmbQc5oXWhCe+cIzntm2B8JiYizdKLY3JlYyqHNMBmuvEYQoJ67tG8MhPknEyxsVisx1nXofuzz41AecYVAbEadoW03X98WbNJSG5D/2zC3gxyQ3P/iywJTFTrCGsuwURJdMVevK9DBBb+OhfNw6Tkv+6i1fEny8ZLGV2kAw426QnVR/fM8OKnE+4diTEJ1GaXE2Y1oLHnSOnhgK/Abf00yZ5JjsSkNkg1/SMVUcGmkfyXEnejcwR9SOE1iS3OU5tv95FwxFW+BVw74jwDOXnQU7w3pZ30gKBkT6jb/gx3XpdMgs7d/sNEOLgLAppx1YPj7RxGcPMf90McoNLEmO4pwDgxNGam4DibRLj2G+LQjp4VIbI6q9s0nKD0ybUpXPiVytcVMJWhvKMJUy7+J3jXsxas/nAx0QOKefCjMpcllCEKlWo1u7656IP/RxdruxB9u86OoTktZLsbhTP7Ijfj07jWqukBew12x5YtFAIoL/uaS958dsBhkB+Mn9Yi596DJIMfNkTrrT4ggtsNOdJ9d8m6nCSVXhfN53yqB8FcCVHeQE3R++LWc9PEPrwu8TddH/c/7XRaHkGmSa6kEauE7mVF3xxRuCeQprHtkj//5Tiqrwd9X7D7VD6NydKET2UvPpN3e7e3tNBuwt6yPT4a0NgBPFHrUC40HEnBIQP25L+Ba7E/ark3n5up+O+EuSP+lzEHOaBfyTZr0CMyrOFL31yMZiaLxga71FqWrZPiEAneK/vIpzuovH9CwQ0vmFvvxyFUCI4/oxVLdg3ylfYXS6vpJ4XgCdX1we+NgJqdStn+ylES+uqbyi5ikSw2djx/NNcwZJraP7HlEHoiG74ShuncuAHAyptatlMSMGfTMJcfmWGJoiHYf/m0Y33OLFIooOdfeRnyz85JwFBPN+la50jBZqBK+4w4yPOVrxO76oko6/3KJMq5CnQaiU9HeNH/wNYTZOcD8YzSWfjtuneCfnM77lYKNgfHTFOy2a5CU17QEqqC6I2kxrhf0iFxvpgu4bDs6d15MnDPYY8C6A7Ba26mFlokv1djDPYw1LdpSDMcUgnXyOkbCyoOzmSL948+cs4FWNoFCHdTIL5tNDBErGWISOfRlLwxmTKFfRZRiDGNUY20bknEU6TMmcNRwwMudwRkNJmlJqAxO/89gNd1liBEF5DHOzJHbJ5yHgUPxqGDcFQI+6P9SVUtt4hsfRVyraavmnRia9xE1MqHeWJHg4v9UuT1kx/6qKmkc4RaG+n82b51NVGDacDPV2vHBwNwMN0bkhOKwntBBbS1wAdgYPrGceQC1h9aQp2BITH4Lweb5ADOanY31EhdatoXMASY6d0hqz5TKBUIJ+/K6froC8z+3WO96uGIxmNlR6ubxpW9jkycOtBjEOKMdxCXYzEfT52Bm/R3jZG6AqCi+XcLBnUrmbblDQdQ6BYRMFPADIuADZvtVNnZtIc/OWVzECsepTJDKZYpEEhPEmrzHOxXzfQvoIDZof7/7jFsyC3j4yaVY3Zt49ulWuvCGI5cjNYrLeDqOEa98OYgbsW9gqyWIou3jri6Cqg5WUg/zgcPSaoMyJyGx9JDYhcLERZcJBTtc8PKr1mnaWVeLfhMrffE7wUQTJeiqO6pzLzd3EEg3lkJ453AkQIlIraEtUdUads7g9/xZL1x+LsoxeCdoJ9qY8/Nn9/VbTwU7SYTXzn7CxEKSHrzbUosb4r2QOdKLxRar26aABp0iwCSczqh+12ALoXa5N5g1NUDEW0mLHjvjDAyh3xR4p3Ipkahco1U6C4PJsc17tbKcHRLOGGgDgoRJSUwmpzCEVNS6zKs6OItsC+gW0+WVxwXToqtIEtGvsKONuWR8Jd9d3FOp+MlmDm/0CEsG+oscxTQU2g9aF/TTJ9h32iJ323wPxY6eYW3fhIldUYAxxbT+GWjMUDkKSTRhI88rUMStTtrvGNfpVUJ3N6WHq1SKmN9K5Jy9uYd9Yy4oxz6KHArUzY0AiX8AltBejdtTUOH4ttae2D41UZ2yO99r8Qv7Ap2DCUg8YtnqKzLcFkSNdi4amXgmhesbnqnvoKk5qiE/lTw3PLiPkK8jrRwF510w3Wa5YYVTbbq33icHj7dM7kDVgWOUpMDGq9zqH7iV92Abq1O+4Tlb4wXUx4bgv92zrW0S06mAdbLggm8hNrLBc47i7x8Eg8AI4dUFB+tQmWf1o8sjGSZVuMGbYH8MORrXi6Hnef6vgBQACAMcTvzZOMYwLXN7aP8tm7nM9/y+vQbo/unpzYtBpn+x7AVyieDmGNwx+MZ5MgD+bUfjJraUrxywKcyJPQjjNzveLXh1Ph4P6+2RgMeEjf2DSn974PsApurzg9875lovsu8/iKu2vlW2pw8rmxjgrwhddxFyYgNNsLpn0UTmFivYJeotA39+J1wJO/cAmwvAMT4L8YzX8tSjhMqDHapw2s3cnJX9+qH+7W17s2W/SkkPKSSlG/O8h40x0FDx0/YcCY/K7pIoGgQIfYLRwZUg5jLgEKN0Nf6uL//d2hDZQn1Pgaq3YtVTkFY43xTRxtLOrvYddcl1XvkParCAZEkJwFIl2ttWEDC83NdF/QJz5DsNciONlaMIBs5BhNRV9zPzjZN1lOgtIkrnQgTq7b7akLsMO3qeHTvLa3RdSXScAGURJLnicTcRC6XC+FHYhGLL2Xf3HaqG8BaWamZrp5BzBjT2VTaE5JqfsageGApzXyTAW10dJiJbzwyyeBcKj+dOgYzN2D9kBMncBUklrRN1yWHaWLy6Fckhlc7jhGSLSLC59sfGBHabmvFCVsMVxeUto+V/HIfcRKrI2YdklQ2Qk5rspAnh3JyzanT9STSU9gOASA2/f5SKGWFRuOHycUVqs3SDikYoDyAPKYrk2hbk3XDzcOu2xV8NRL6HSPgoMRO5DgryyBfrFZ0xIMnMKcrSMl6jfmUzEuicQWonmoWN/PKFIYVND+7OSmtb9c7Amyk9PNvZZlTRCM1vFPTQk76YixMu3w3H+RL2LGarijCxORZs1QPjvYwnJXDobFPX5DpZ1LuFBQaskEIFeC5U7ICpObBT9QP/567G5XrBqr6f6s3ido04h11DN65nlEJ6gSTDJC/TUY8jrbZWbKDigV3LmUZ9obnFLUWbsrVkPOBmRGEuag/w9oOLtAAUr6FfVMSnHiQnLy1ReFfczOBVwpA8i6IOjlrpH4EVFkNcZ2/oL3fEIhWV7z020j6iBcdpjzu/pCLAeTIylgkOjID5DVcqewzcvcwKnAqwI8Banbzz1fpUxOyjJONLHMgYOeeFwaUUcGzGUfEbk4Ge31Hlz1d1RZEVNMRwWjHAy/5Cl97v1fBSG7NQHjW/265FbV9hhY1xpTVmzSBPk4Te8Ycdl/K7/tdextUuFH3QcMWocj9XABdN9sBrJiCM+l7xelfv4F5EuRXjlJT2bSM+hRh46PPctkFBz7wOQmBDRIf8GTeQEfGB1ajV60oWLd240/WG8dCdUs4Glj6nIIpwuXhoxoQUqYM/3uJeZ/yUFz8963kWCK7+oIPgCLJYACUr4eY+pajzxF3FrpnjMHM6TQQgYk4m1R5ZVEjQVwLxLUYN2Y1yIXhFdwwA9t+ybEd4cTwVPIgFQn3hLZBv7wlXKfdFi5z4YTG0XHXD1BJCkCu5GYLOPNtLus1vjRukcGMy3er8fSV254BSduWwf5BbgG6N30YWBjGsu8ZOG1GGCCvpz8di87+aSwoIcEFTXwIP9zUhsL65yLJD9S88Dx5+X+nHtEwXbnnnAzh5V5SLHM30wBKYQK05Fhsesec4IprO/S3FGJiDq9ZKXN7mQHym8D86V1HzJmW7AhzTR1MGKoPtTWS5DMSSB8w2e0eRogBkqVmSXQRkUWXuSiUT3bOnpGlel9ik78CGHkcC1+IHYoMb/snPjtBSj3Fbj7Yf76CGSXODwywc7NkF8TTeKKnHAus+4lbmGrM2rE0qDxRuAhXZ3+5ATXlN4aE4uPGJH+fsPUXOuTIk7omT8dYvly6XKyvIbr34F49lohot7q9pM6fR0+C2SL+w9Knx5HSAvRCJ+aDoVe1Gcb0Uf2sFLd4tz/JBe3xAGjByMd9CReres07CwXrxwitJeBNDtq3falzNbn/W6KDBhNPlS/tdcxw6L29jUyD3rJMjiDD03QHOVOi1T1vjDM33GEICTqtIJ0VqftWYDP58iV6ptAQrKmYdTMQuK6+nckJK0DAEtEE8ntRODAgmHAC/tJA7oqni780hY4+NNZOCm9DcJ3Ynr3n8D20Jx0y/luwncrR28gW5x5Vmg3mPdocut+ayZjF7v1X1wgFd1VLXeH0z0izqlxXRWdXrhNy/XvYIcn7AJj/DgqCNd+m5bh0581U5U9u8kXxcA3IdRZ8lv0zTs6QT0mSaTyBI7FrN0/Zsb4yoUinAiVXG6/tiDdCZkGrgRryhVvrArreg8cltadumon9xx97z/jGOtdjvNfHCY+bLkaX/ELjZKxChIoJ7g3dSnta8MC4JmXL9VCb6p1ajPUtpWbJHd0xXwcQiMS671m4yk2M86qfmDrOk8zRs3MI6YPx3UTlC2HCssor2BcBZGVrX55IgBQl9iH6WamsccCiRVdJ31PheTXILX8s1C5QJnADRMTJZOYl3XwkLmUOqZxHwo9H1k/bi5D2PEZ/2FSwmihiQSi5y6jrGLu+MxL6llknDKOWSuQXOREuEZhCcLZGNrbcdwO5GRlJ9YfJSEgxAjPNyH4b0x9W7gPLNkErlHEi6wEtq6EXM4OOeMTSvfxcpKJseTVpmINgakZyv4E7+jUC3RvLlPErRr0lwa5n5JLGlfq7BpK+SsMwCU98grioRRxTU4T/o/G9QK2nhI0tz35IvOCc/+5OuZ0Tmw7m+Hop4cxav+/CsK1y2EpFQ2pQuO60ZFK9moVn5Ke1QVY8B1egBF5xjG/CrHnwGePvQnQlMpbWiCGND3R0NdKPid17Zp8475b+DyLi86iUPKFw3wURNWyjaDtBqGgFhj97wCf+wnuCbA9G6BYzFzeuMU23mfiExZTpmhi4lebqf/GsDJnDGACOicFnetQnsvAIpgis8xpZtjO8INUNsgEBoxqpgpL4GmFtnB4jU8KpARD+tXlrXRMbw8mI70q6f7+9zDKggbW4k/edc8OgndIr63IAXqb9LsoBl0jfd+F3/2+ibKD4U8WgOvUNrAZ9vTJhqcFU+Ls6dpwp3UJNWXfeSiomftampozxW5G9u8nfGFWti0ZTI7ZRwsZzghqPPwEDeWA1VpxSgtuApSOAErVmBgnVc4475xlu/d3RNIVrradsQMquFkUj1x5+pEhu8ZZqg8T9ZgIlUrY8gqUMdpdQhXWvXnJUZy7kNEth3M7u7KEu12/SK2gP4Am3HcOOnGmLa2tO9mm70MBZVCqSr2bsGguvZ/DZ4ubjeQ9NpYdoGAIwutykI5D1PKMV/Oz13mmo/Gbs6EjdRDizyinb608y3McCovPXCHjHpfVflrV2N3AyW2K3mZndypDwG/kfBoWAgppA7km6k7g0M4X4dSn5tCFB0PjyY/zxEzubKRPnIUT3WotqEx44lXDKtdVw1uPf+0b0qpAPdaRtYMcKTsalz9944kRwtJIP3M4AG5o6bl0A6/VlKlGyzFKnkZ/IPclCgCe0vP/0hv9P2Ktaq3vA6zE1CT8skwCC763WkQQPgvpPExiqjvHGnPIVNrYzb0yN2PmW9WedLwGDgNuB4RRno14e1mppCsDszgIEzVgnSQHbx97InmTohi6g9ayJRppi4NQQXihwyhzPpXI8+HbTVpDUGLAWIA+23dt0XoaD77+O0UyLTEhIJpb+mMYODVWIdlIlqcn5RytosbM2L9wcclSnA51ELSWBrBOyh8/MgjSOXLePivVBlXASS0vgmwo4TgLn/zgHDQAQErpZ+pWhH0qifg63lQ1Ez0iP8YcChsXxRYA9UX/nJP2R90YcQj3x67I+40o8a1KJqdImGZl33Z/3ob/82dzCqMO3GxPSotScaHy1D3Doo6VXlzIvVKalUtEZS4G5Rxn/dlYUCW1XB231JuN6iSbdFnLy+zIRWVQq2ojhf6rJKOJS7+3cnXMVJ6WTZn/a1K/414eTU3G0yMrAmoSeerTUdn2xJHtJ2hzFwdhKzRdU5C0p8yHLMNf++EHCGy3IP4F4cyxVp8ciQUimTaJr7S0aHG/PS1QuD/aX7Dkcca4XFNLt04K3beHWJliwv0mlSGAoBCPttuABbOw83YGvc+fSJHfz6Z2Mt6cO4ImVif+M4glv6UFzxA93+jvGdRcJtQ88syacIATQktaCKkKu84KSURU1ZJj1+vTUSYEO1N0IybH2nrpSumecuX6JBe++K6SrO+Z0/8xXgyiUIWFQLRD8DCS3eeIbHBLL/m2Iipz0U9P3+xNndZ98ca6b0pEySWPOAxq04oWdFv0J96EM+9mO88Oc4mMIna1Vy/nLWPNQ7skURIc9NWsj2wR1jA32JjHtSvcUR5U5t2uPMud1gREqEWiObut29bxYdLr8RO0BitmtfSK1eUK2cNT+BlPtqUpT3r5mhMFCtBKXryAgVBwl89ROkp4ZR/tNXiDm8HLsKEIZAVJ2q+7SgRS3mCBEHmzGwDQCG/nEAvEaTU+sZ9UtKBjsOlQGrWPmi5VRI+rtanaIBNusjey2Dr6v3xiK5AGlm/++NkTIInavcSYR/Edi9LRfZAYaBLm68HbAw2RaXVfGuWptYKIB6vQqS664W4fmB3OC8p/cX+C/kbNn5KzeaJWWiW/h9pqWwmGhxhELuXmfgx0eaXMNGT11HyBUyf2y81N+RP7lEmSayEgM849gLr6J5hpeF/GKhU3raUoNduVwwyYz/Y5myEWYgHdy3X+gt6tAZCebrJpt/TyxQhaFOIV96XTvvVPUENpKF6rUL7E+BpmQ6PcCOr3zSXWCoi7uJeL+UJmFrcEjHtHuND5Gc9pEPRySFuse/fnlN0ViErnE6HQtJQxuytZBp/CU7VMSAbODfMDyLOjqGqVhm2L0mM3I6dDIeKHHNi0NqpyKNL1Ny42EB9H8q4ika8SAbKxO3mrQFmN7US1omKuVCncqdxwdBc7BlgKEQdulG22WW7n0S8tmLHlGY0xymgZ4R0uS1VMGRX11t2GMnP638HY9VxkU2orCs8LNUmDI1QVl1tiIpX9OvH+MARj4ql31Rkir+FJZ4p26fAi30mwBR7cYkQtUyQUJxYaF1dzXJnRHkwnhf68pS+0RZdDpl265TtyKoDcrfNfLGqDQiFFME7De3xPRleUATG7tp25SGxxKbU3JgC25GP/sWc5tXuiM8NNMhhu1uRIlUtszNfhj7Ouw7Fa6me9IJQnLh8tDi3uWuw7sZgfUR6SdnAy6+F0MYQS5xXgTQTsaABtEO6a71pxfEszf1/LWG/SUI0kOVX+FSWMKwGBmbpS3juagFJqNvh4BZ00qGaCErH0jCdnFh0FkkAWCpxzhdX8Fd7mjNF6PyNg6GxmUdc6N2nHNDyGYK8H1PMD0nBe6H95PkkpMPsFy2704OtkIjTeAACjtnZj+yEYBudVsfRyRU3LH18E10qRi8z959Cg0YRW5y5IPD9Pm0HdMI7gHPDLqdkcJl6Fx5VCOHXyjbfFRyX3VaNqOZJriXxTHRpZcVXXt36GJOeCdo8SjlJt8jtMKgVkjmp9l3bKqJp3JbdG6Ni22xAlk/FNSkR2M78+yHm1xlciTNuOKcfqQFcbdx+QO3a4pYd6c0o7XAWxlhPAEsmJX8ueOa3YoFw9ovnLZIp5r4lRRkQxvR1LDL/gFGyOHHr5ByouZ2AT+mN5PoYNaByGT0CrjbmZS0z59dN6ATq2esfPoGnSEmN7Pa4UfO5L2TShr/+3UO6cD/wrHGxbCj7z7Frz4cqI34RIkdQDUegAOTSDO4lYb2YaYMK4uhC5EOPSZxb2EvQ6xGimafyKk4b559s8pd9tBF1mzAkHuFsTsf3KIzS50rEQTK1FBBY327j4fKC/SlwjdHpMIb+oQxcyeDBHRelQKglAoelvGR7JJv1ffjt0ga40R2qixehPZpKKxPIb5qfcpoyA+cT3fmbMBvRiTRiBLP5UQTHrFi1Xy7ZzQzA6qVcimcfx8bliGni16vq4uSDWJ5q+qMThzQpuQPFwPGGo5GXO31ePO0E76Ey8uoKmX5bUh9ygaIYdDvBU1R56zik8HAGHKWrMGuJj0tjQX4VQbk3uK5gwZsUaYsrhwQE2mzpTFHlaJqQhP6DpVRy4N566wJUnpLt/vonY4neDOv6a3WGSySmqsRdAl8v9T65qoReMRG9YXQeq4phIBVe+e1zorb8fDKMnKfPRHeV/6O4VX4p7KGfenweWShHVUax8LZOcpr8RA0+puvrPw97q3aoTGkcLS4LWPKwuDM2My6qqnx7NLZtW2u7jXa7Az8H90ilNieFANdRjoYKBQuKgxooxS3kG9FUNdN9HrjUxWYa3Kv9PcTny5MmqJMDF1vIUDi2ixWqMcnK3eEQjskMf5nyAxyMrXyI3kGGf/pVDGO/TDccrwL6gIs+nYtbv7Tay+xPV4/Qo3GDZkCFoRJGf0iq8ZxrrCYwVUoDH5DPAxfnLEf25ebBJHbXzCVDQlQ9Dps8WqQo4JE525JVWxB6DYAsa8h+BwMnIzaQcDLlmdWghlvXQ6eGih5wOwco5k8jwy5xYp7tIQKzXNJoWeVtB2e3ZzQ2/vwMzy2CvqpnkyCyrlPTsmd8EoVNbjTkjw3Fqa+O5N1lkK1CtbR9eqEvG+K1Gam5xnMZDy9j2hEDXLppzhUErnMupTZe1iL8i1tVeziDpBTuqEwn1HEdA0VIWz4wvoWjGOoSKdVm89XnPkc4ehReOnskBSdufLrLmx4GnhIEx/g5971e4Nr+t64G1ZixpQBwFrlRTC2RhJcuTo/U2iDfDN3Lt91MegQ1KtBTrBiFMtkMadnTuHlTfeRicZgsAcF4/Q5s0AnQmXWvnbpfvvt83PaMHQsfYNCRkh9U706hIjKEg3bYXI+VxHVUfA3BT6rujjTByHvsClIsWD3HT4ZSkrMyth4X0YAkonqoiZ+5tdayRLkGpA15DkMWpvfcBk2EW5HGZjnsBGhTrdH8kRCVtyBVXf2m2WNKTiPflTFkURC18IV8LgoIPZZmc4FxYVIHDbTxLNEgzMoMUFqwCzy9ci9eIH6MdsKCmBHOwUhDc8UUj6bGmoCZvTzMejNOM49PlP3ZeTbkauhQ2dSKX0P3U/ttDtL2swVKSEzmkDSp+XBh9diy6Z58g78zLgYRwnLko01I+udVM2MVhj3vwTiL3ZAa/zI8pRqssRkQjvvyw9lwb/2nmzRQ5SA4RRdglU2gLCuiXB7b/zLD3ku+i4J0QVpC9ZxEwrvHExeFDIpk/sy4CLIJcL7vDMmwlZG/LWcGeM4ftINQwuLpLUR2Yn486kN2WseP7bzD4Fp1yKDqIxKYTLjhG+T5q262N4xVJKMg4z6lOI6dU7zwip4dXYICtbQMVAzcLybdyWEFSfRKety6OtzHlNBt6uCbH0iqF1x4juii7vKD/7q0FPPJ/D6nGtlOuUWGKXFPl8AufPC0FUjT4YiX7xFPPYpBsLF5mMpW/YinbwtuXqjFX6GMh0sP0+OI1j/j8pdH9yCYBQnrtxawmlzqN6xiMDVNGlUYUnF+MOdGcWTBW+4T59q8GhAOFF4qF1tePbiReAFaoF+ayQMqRL+wpR+o7PSWItfRG2o0pXmFNfMKK4ScP0D1TVBI/hZCHzhrF3kg6LN/yQwGeJV6UURyDLy2kuEFUqRCdnjkcs32vlG5UroVOreaLmkuTAdEe1d8IwzhkbKqAWSULSJCe/LYV8O9HihMpDpUThoLR0HYG1zaXiHDVOL12f29JxEk140KJ+1BkvgAl+ZNf8BpLqbz1c1DH5pjOxg0zMw0YxbSnGCS6xHRotzG51FmLIwL8GMQm7sEZOicHX0NH64BJErSFCkSTXTKncLwx6ZllyXIJc+5HuP9Iw3UHnjgtlKiTViUwKieFhynADwSnRb7MEpiA8W99lKD1lB3nRxRegpOh8AkS0Bn7SzJrEqwVXEJ/zC5dLJZorScSDvAmveDdSwgVf1iTxnrzXesPxHx1CCF38u6rO6icbLGW/dy2nanlDf6pShpkwKcpLOUgzyCc/wu1/n9Of9lpKWTgZdfJhHYPAjNJ9qHyPe2lAO3Z1wEcegCrxVpQFJltLyEB0qZnb/hZ2RZWVqj6iZWUJekRbaxV2ZZtQPvI9Rwm+MaYK0mEuZ0SIDP0oI1P85+8CFkV+qLep44m1c79XAoostp3ePQjuDuntCt06ea1RRpZCoR5iZ8swW3rHJ2CFYm8pgRc4e6fTTIBNFSe0Z5lEUxLsdbSslwcy73iqXlf6jtIBejTkIednyVgmtWEJJn1LdtjnP2fufNzNxHOgP7iwwUK93bSzpTCrRXovCJ6DROFMkcVeuTZcHEM2ljK+794yTlIwMMqWucImjCDtfobCkHvm9zpWWyYBjEVhnh3hWC7oSEXDsTYoHOX60yfCi1crSi/3493e9UeolEBCj+Zzuo7d7E0vmfynGJdPpipEArCWurD2+MHPc0bWyTG/JCTy7AIi46RKv98GzkIHm6JAyX0A46hoPk7d1zZl7Nz0z2oSUYP/KslPjOJdGC0g97Slwup0DaCKH+ehKN4ci99XoVnNHOtXGHaEyZ+44R0Kf333hVl33oPjhNvfPKa1/6fb2C4YMrN41B9F96AMAfGY/N+jaT2dQZMTUqbZAivZVCMbI8/JJnRG641d0XlJLsGz9oZbd6YQ4IQD8OwOdDfK85rmL0rIn0Id8TYW6EN/+ukDSq7Zlu+sZgi5e0dPECR8rO2kLhnQdrTEC2OZYmvPAzjtjHHq+q044MiLFar9j+2ycPkpote98PkVki1F6q7iV4rhvuiFzC+hXtYj8Pwmq5g+t2Sw4lSPFoeTwiYb228HclInbJiAokvpxROXP64PDrNcCbpJj0+Ji8tv/F0Gg6CiAVLbekblzLMfVnuk2t1gbBP8HfYgicrofWD9sxYT5Ux4ZgwezW3whtZcIwBaEZzel6TQTEwMGyaM4tNf8fTaPkUamFZncfM4KzCQlbFS/KU/bkMYv5Md7b15GOBXicr6QEYXS7rnuG3Z5QtWUBNHYIfCoIlrVXiyxN/981qhGZAbW7+GldHbHKiLV85BTSZbxEGqWjxZraRTnIyXXnC6hh9DrwLC4zeY2RDz1zes5rhr3G+EvpAtd0UbHGwgKFQr4zQEvNcs7fYFe/5VfCntxNWJvyQ5WzgBkvbKbvr9P27bBGK6XnQMlwT8BD5wmB+RjaTHu0wGWPbCLW8p9xA8Z07K4Stucas075Pb/+IujqKr1qqFbDx4wfDr1ostpaBXVCeAcb6gRCLAcB32Qh5aF/HVWi2RUfb8fHndGhnHU+pw7dIpPeG7l+QqiyeZrq6e1HFsX3RAnUNsonhZ1gNjcDKx8zxQo3ircyrqYoN6GNN7wiHSr19g9y1Nni8nA4OROK7U26rUmt5Aa2OaGMAw7NOYWcQk9XvM3XzG89f2YuXWh94/NPn4uhgwnVCYiwhMKjmXLUhVE+OxhTrkHjysJoYT1o/2u9lp2ztlPPaGKQQAhJsxAIbdrDBqL1fKF+WCJpS+tp5Pm+8i0x0D0o4G96Zu6TO0pFuFpvlN/1TvFd613gCyOjr01iwazVIIjHQtzZCmIq+MnzlspB6WQaqPpbM1jSs7LeFejy+YqKvN1aWmnLh7DapCoJN2420rk9chwo1L+dbhDs4qUoCu5QjqiEfEr3tI/NakWwHaIbc+zvDWSe2owkmPHe7F2S7R05kEUYOZUb2O5xW8f7DAG8XP6+Qd3O4EWGdhRjCe1EdUxrtE5uAfAhxR6ilXGySL8JKMCidQruIc+3WaoH4LDtsKxWZHod1YlVhmfHPP92+PM7rcvm+tbrwKgYfIyhc4B3EQbqXSFMn/U15ZZAD/8GmZfd/A7w+etTkTw/2CwvYIEwsZrsoE2PJrMNFva979jg6I7MxLFC8Se4h1Z2ttLY7mPYeq2raM9oM+T5fJ6f3OWTnQA1LzpUOumdV9qwVdY08ObmhptVYUbxfDY4MBI/KJkhFHPygV0DBceLWhbmgXqEybVraK+8aEC+gmpXoMlJiUbiRG42UZVYgHk7pAC4Hh7RN9gMMJ98FlrpB8LhuKOkYLU566NUvBGFY2R6BmaYiK6u8krJcRN2m3AOF0yY4NMTpJFFTqRN2kUrXtV6iopP0gg3MBp5jqWwquChKilhBtBWugWnfDModp1qJdzUzMSMsdryJZjGmyfo2kwEhc9Huz0wInM3RU+U9Mbpx4oGaFU//Kh6Jfn4k3jSIC5iJ3N/yX330QtaOurcpgc/vaXMiUHUBcP3AhgFk3ffgQHHbrvTRZd9U8hmtAFLo9bGLpK9Bafz495/N7hovNILdwfBz5pcpDDTl/ENMVf0i7lylu83iT8ToKDU+R1uxiDHiKCw/W/nzzJaVjxNna5XiXAGTTcKhBdYNLlYjTRHuNn8D0epu2fcqqdlNOPORXZrxCjV2jXe6VZ06EZgcTo6dRxTH+rFUqZK5BrBRV85bFM2egPxpu9yj7wF4lCyKPLWj+mCWdTYYExYC/GrAA0lvrzCpk3i3DaGLfYyBqxLGD0LiMabTBH37rmfl52/g+4cWkfTgMmK+0vKCqO/sqaRCz/BRpV83QrMpwnE8Bi/FB0q3g+uZmB7DK0tWATu68nInHE1SAg8pEaJwdqHnPffqD9olUal2dPL1OPj/fBiO0KxsDyCXyJeX73RmZ7YFom93M+Aovumd3sr1jDaUFOp0o2QH+NkLfcQFdX+ckYdC9xSGy45HCEOJVUSlmqJtSeCNf8a3brhVE29jRw89tdRVtIonNkqQLjOBE3uVi6eMBDOc6OBzMnasiGq5O+A2Rp1RFUfCmh4jEN7M7KT9PGgzvIwl+MsFfjZsQiNG9FrhzKQYOXuAVxS+okkdOcYXNsvu78jAQPqr6XF8if5j/CMnd2VBrGKR9dh1C8HMJjzKDa4fzKf6Uvp37KBWUaYRUdJzPGJ1LEB99FViDsf7HP8Rz2NE9PErSBt/DLQQH7DY7nw2x0oQoL1uPN6YCPOfmXHIjagcgEhVULclqcCMzaY7Z9bZYQiGq6H7aFWLavE8MQa74GlxPqEJ95v+r/Wqk7ip3o87RD1E0/yGgew2yimkG83p4EhrGzcbAK7wMcvnXxgSVaJvIrEdZeyoWgmYuUvvDSkBuYg9/RknP0PNIZs5LP1acJ2Z540yJxFHQGw/1r/nhVvUrBfC+CqWbhF0YvCuNkubh8wupJt/c/NYmTYydqYuoNJtgV6/cRvgVnJot9f+5/s3NzE0jIMAUVGL0pAJH+1+O8fwBpBr/6K8DSvt5xCIQp/VcM/3JbPjujj/c5Q6iAhb6tv9eU3qy2ymH/oT4Lib4bdwhRb7hpz0MAMDzE7jWDlZOTW+iJnbI9GoWo8SsJc+fe3Rl6T+QmnhKfSXJbFLOWF/LoXUi5ROpir/+xpQwJiplbbjCQ6IPrQyz/8u6etEZ2W+fF7gq5ON+N/pA+MXfku7K8gYF/p5Gsp6SOqtC/4Da8OKnWNyMMW9gpUYnmN+Gb1RAFVc6cxoSWvPM9S2f3DVnMEz1OFphcYz65LsMlu6Bvkry7InU9f0q8u2OzYjvihN9a7XjVqPJ1Su1L+wthV7JObeyPRgwPKpuY4L0sBby64R7srwI//fKDXR8KxN2Wg0pYCnE6D+Z54ip+pgjScoHSvsOL4DeRcnN8R+Thnu8ah1kW8CJguThzer0a6rYWRJ1uvOWFJxWpEqfaJa2xAIcNoRHkKo+nJKKwFK4ZRq1tKrFfe8/QfqVQPW4OohZX2H1ieBXdoCPJvMCn91Pb60BHx61F+Sta9CTF43wH4kQ6xc8Ld7cPcZxFYTnEgaHIpE9DGgnSqtUWzCfGerOxy/e8QRCTTCew3UGupgEORPg70v/rX+kPWO1Okl2Vag09hMIV91TGRa63yxQXFpfEKTFH1wgGSK7+RD3sMsOW14wRdi/YRfv1YYD0S7y+TG+9xrz4XViVxVKOX0EWZYSYYUwf8L3rBeaLl2tt2QnWeXEYcoosqbQWuPN9vszuuni1jqZMjsTm8P09OyIn7sHjWoBKQReG2ryY3i2PrHpGtbjLJNB7ZOFkOkmTk/myhWdFCK9l3RVqMTpBJioGmbsowK3mkOdmEYeKefB3K4fZ857NvTNeTqNLpa+edyslQQd5rTn+RMc6vBlKK7ZssKE/q9eFP8bR0TaJDdUSaFt6oBkS9C+uTYC9TNMiqzwclJEdIXS2sY5KITUYmjgtjZcvrBobgwpX9huhQdaJtbRYgWy9wEYFLg0MHmDYEqbLDsMb+04IzGkadvnS6f6dbvrU7jg51TrzJ3VnHjcKLy8SxSrFjc5HAm5UEnrIGfU8b4Nfb5TxArRAcBDoBk0+unzBo5p+6fo0Z79twlC3kvA09mt4QehuS9LW91fZpKBjz14PEaApdYaFSuVXge7wNylOHmnd4LDpo7L4uGLEaOIupDkTM8WuMiATQvzV5AQZq4Jv/9R79c3c+QaJQRS6nt9XtYA6Mlr2FHCFJ+g7f2fIH9R/u+Rt3WtDZ3CgiFLl3UkPr7XrY42c8/eHXM0iYgO2I1rsEJsnQJRWthftyiERpBTcVJreEA9mf80FngPO2Zsc6SNtCWBLLz8ngv8W7sQAzyrp/Lr2hQWa9JEAhWAztGNhmLXTN5Wlm0SWDTyZtYxwaVVM1rv1RKFj/eWNxDpTJcraxW43ocgneYOvAiWN+8nvMheXTJYf0tG2q2xR5VGohOpWSdRZhmtheRjWUM4w2jiwqF5AucqSCa3PW5BCPa/p/m1mp1Y94q3fn6qiGFXsREFeP2c7PPpO+FFSLpddzThIBPvWikYISD9DvY7HUMrcDPGek0CALvxJ6zCsmdsYKcoEW8DCiwx4BmmPPUMRi0ZxhOoBq+U7BjnaFOYnigbtAIymitdI2t+x9VSsaiYDr7OZQm6fcqlvHj07XqtZAhIw1bJZwCuoQFYna/N+tK9OLvni5bpxNDRxAVBwjOBqgEVfhVY9XmxrLFquyJdYp/MAOP7mrKXYvO5nr8nzohuMaVznFALZFZuBa80SLoYUHYqgrrnaJ/D4J3ez3JkHmYiw2zBrB4xuBolPmT5vvoQX4gqkT/wiKOl7ZVKNA+mQfUrJUgK5K0z1PMDx0ufhpyygpYlfk9+W3RnopHf96+86pEhQ0XA6tYvJ2lFtkJKpLr9GbvxrHnOD6oFkMlhOaWyEVfykbSixVsQ4ImvyVJeumfHdILGdCDS3gYEEj3aUm/pIFMeEoOikDMpYDMWQVDtEjz8JJILKq7ymngckfM5YFdkFjHRolGo10A6m4uRYcES1wDQW4leIZcpnJTiZyc8DkGMasMimD80CtCGaDmgGQypjgHfzKxoVEZDEv2n6fNxlpgv82g2NsTT75W3XK81ORdVwvcyj3Y3znH5BW6EIfNkUdQOQYMzZAW/40d+CJ47DuTlvzQdUDHvngIq7NxH3JSt/wJvrbvzOdnVkqtA+5BaclYvqNk7gxEdV0U0pewOM86+aWpHvHHcD4AfW70QU8tYMV0GoUkjfNBtaXR8bMwzE30Bn1PBBf6HEOVlblTNIff4fc0GRk1wHqh3BuzYLpX47vvLkGeQDSCQw46BWni+Gt2JxDXn/JrxMVci2LjsLSd2uqHc9FxQnssy7PORqlHJgdqW5QGOVVuiiz9khffCeBd3+rwl4kb3bYtUpj150/mj3umbJFRrhdjk817r5gyJJm7Tgi3cYsGj9d3yN1bgEd4x9lCGotNpNe5/5MM0pntSFpamAPWHsPS4cPdsnXv3Vr9dNeiunVm9FO35A0lPUsJyIrIA7hLqptZ0y5veES9uc+UmsrH3q63FK+0L/zNt2Z6FWgFxfqO/9SiGnPL1s4YPbau+5TjWzZ8hNA+zPT4mXp9AW9p8YzRLGb/CqZ38NvsuxYWrPa9ly0Cp5nj1dH2RPjOafFC2Gom5okZ8EfexvGu28t9g9M2rpDTOokrfUg5IF0kn95vFwKlaex0TaNbU96ky+9lEnvSZxHrIThnCGJ7XDgtpLFvAAJZMmSzxfWn9bmWBqMgqIqmSlu3c+lFPAseoOkiSaK7M+AIqgA8xQPZyOv9QUCYiux3dZfpntp4GgtMSlE1sgU1XPHZFWEwunPoIsSFQCy2Z44LMHIaDbtGDnUzGj7rOHuqq+d7TvPk3eNMAT7D7iD6/EPSCRbOpgmOJLOT9AjhEVaAN738lBa9Ulhn1iLAjY9T5VfmeYL8sxcc42iR2K4ZZj2pURjuxc1AaVJzZeVPUpfVHSMSflgg7MzR4aBEF9u1OS1P73jk483u2aHbXdjcdiIyCXlXosDxBbueLzFCPmyC4vgePd4YqBl3r0RLfKWX6/X4inolu6fSmDIRyQJh1vxoblQBjck2ovQqBW1X3KqanUiQCPc55vnVrVD64P/pQsp429hR1z5f7RIyd39xbU9zd8bNB8GtIgcOtZLpjHaikGVcRcwIhbTKtm8/z1qhTvhrKsuyck9Kwvlq+UEZaRBVo4SiEOHarKW8XApsdxE7m2qAUpsf0Cxv/puy0vD88WY48QlXodT3kTAclvDqe1k/edEEi5LXhIE1QLjRyWKdCb9Si+0GN1ADkMEmJNc0rWh39/DZ4nQ0NTm9OndmDv4UM/P+SD/LMEEQDYhdZHLPn0Yav6lchSqJ9Gd53WSW84cjX1DnMWLN90YK1j+o9D4y4EoHpQdqD7t3u03xeZaIFgXXngC0lPtsQtOlCIp1mIAdhZjR+o0289ZmRU1AxsPpGAhBKowyfz53CXCV3y138V2HJSlisbWl7+fpOUzpTlrR9tSuAGDXCG8zJ5nnNX4ZH0jQnzhO5zED8/qCYK8LVefVOS3Ct+XH4HozKNSmsqWZAdb2Yqo3WS5DHiaFjL6d9V4gW51DZ8kfbhSYMDXssYQLkmlV5ScpJUCUxja0MlAJDv7V4frcRWrRdqCqxdNkLEpf8yis2f7c459sW6VKhNA9grR3J6pJn9hAQc9AflIgwXX/AI7PKm67+wX3+u0CQ9Nb/rtb9QL67+eX1ZwBC/j63j/FRjkHGv0ZazygjMBBsWodYbAUtkp0OVvCpQLI68TD3EXOei7DT4wTP4P7fOBvz44MnxXpfz3ITY1iqdjcjr8Py8tSU6Mc+QTLTc773///Biu7G2MGUKtMfnhujG24MXTtob3mnogtsTDKd8Ai9S42I3s4FeonkL2efwuPzQ4FuHU6CzXMBbvWxFOphG/F5qbX/Akxa9QZSR1mhSPiX1MGchL7rPZYZLC+divyyRxRypWhLeMGULvP4JYryyId7wT+pnXIM61JmoSb9Y9apEP4zaYrtWR29gAKnh3ibfcBoqDcSX2423FiRfxF4JMbNweXPYMI2+tzwqlkhsZhVbf3ziCNYYK+DPNav4CdyeXqM6WOmiwOOuLoelAEUb4ITVORrxJ0m5fX1u9/n60r+iEoab/bFxM1WuMyS0lzqv7ji15wbqn1wnmWm9/dGWlegLMN5hPFrZAfr1iSSnX5F6yYTn/RjOzBY3YldlHMc+x3W6vhurpWnV1cRZMG7HMdsBnxX8+4De/KQIsh2n2yAOo2BsxHoU0rYjbKnOsDIcl28Iyf6HacUAk7PSyd87loeBUSEaPCxUbPu22ne7r1r+l+pRWS3HndaXIaTUQ5Tt0SGPGlHv5WIwMt+tOzXMDdbAFhQYqvJZ5h/jqjHwKPZUpu+gHifeKCcqcBvAbN5AZyDssHyBYbBA64uvAKJHnr+enMkwCyXUWzZOMsIXNjEzqLWghWdx74tGXmGqaEYXdJo3aPoeCnyRlwGAp+73ohb7hPDI2kNi4NnH6b0VRRL7cyg7X8RnC5W9BWWr0UMLjd58cxObVLQOC0leiGE8X1VorkjX8ZaD3gyjn0ECX32YBFqMWk1unM5Lc9oo97/bj5kye84zUy7Ahd6OAL02WfV8lPl3AfXMqM0i6+1XRxD4NL1yzmJi/IrL1EvwJN5yl4gkf3pD3/Mj40xpAO64tNat6maYfd1UnkmjYuy+SDW5gF6lMjhpF2tUihWs1PvcMIOSPn4mv2X8V8RwCfhEESRTrOcAEw8B8rOyave7cZMGs0CNdygi9pU3gnQExSjYPNjIX80Wf7zQu4wPlgHFE81jh9AWZ5qPMrnoflL8h/Qf0BaD3f8yMHbk0fp2a7O2bKHXwXxm3h4J+nzEkfLfxBm/ZHX2QrxzdSAsPcTOzfyoaWzY8OI/y0wq9MCNs8qUmIfh52CNAaqEKyBWcRuJ7HWoPrSk5l1dXcHtrRUYL9xX3Tlj1hLzcmKHyrjLXz5VUhVIx8FrgfrqwTCtdz3MaFKKK++lYPCX1QIYEBcTlOhIozn5kRdSU0vHTfuzLQdprzgWpWVdSuT7ytRHcwq45gv0yg/0Z1AxAwF1S7R27w9aFzKjHhsjybG5FZk8vX6wi7JAFD0eli9wP1lv/lAqniXDEKe7GDSq1zbTJl/qdnJZPX1SfgUe+pqGmqx84MQ4Rcno78+2Pl4OItENP1TfG+kjQbT8yiK/TpkfQIKdvcdlHv4fhO6EH9Qcvz8q7y9BlKkl3v7DvG7ZRtEHerS9ss7U7LWc3Qbe2js/fdjv4vPuE+UI2j2iFs8BmRprFFEz/vVvg9knRzGfiUDvdjb+nKcMwrKfyZMckq56PHDanYt5+2p+IuBw7x1sr0gHLTdp3DI4K5dcABtsor7n1rDbOg4gLFr75zFNCvP4Z+v9w0VwZOYJBuQtT0zUNuzl0O+5Uy7mQIs9Wo5fPAQLtTkNNFHkMX4T92unzrrdDLnBe0UmeKPI8+Dnj6S/3fn7h3suWV75r9BQ0U7U1mgLuXN6b8OG73e6EdmrucVkBwciUEbsYt/iYm1yVEGc78rAmqQXR2BA6iBDJQfMkgp0Kwoc7W/u7YErZ8SX0wrS0TQyLbu43P4/4dbyI90aXFlQWGQFGjKeJancyAiCwMz4EdOGh8FP4/n/9/dQB3vkvB3PJkmmPO5VFoO4etgySNC8AQPBq6Z4z3v8BLX+8KxsF7r4zRuXKos+Ol6m3WNufj2dMQr02AA8J6QTLrIwl0MfqV4lUgDnuFmcIBDU8iSLPTHBOuqzy+KRcWNscTY+hwgwaa1RyOHLb6RkqBPlHGMIYU0RCGsIvhg6EC4xb+eUInb7z4s6Zlixafurn7T1cE7/GkYcQ/bzKHYJMgMKWj+eEFkQpmhL0vvEM1rXhzIjA3Ievhe8TvS15l/exPcpJMCROY3yZlNW6g9qANiWsT9wMMwrrhe+vvuOfoTmvBSJ982M9wMOdXL2muoVttuyrEKYltnGUQc980ruBzZu0D7BCYKpEDwvmJOctUwHqz183BWr+PvoExvD2eQUQQ7nYYMvQ07Lf9VUy3bSf1pn0tsn4VoqKd2+dpdvl4spxEYH4M2V8fnXO2+wPCtZZhFPOVkdh2XjpmQxE/1TUlBCtj2ADbSQ9bKuMah1UWsBD9eqYELbPA3nBsDuyaAW8UTFUD2OwnbyuEXdFNKXXCX5PIk63tC0LsD2eA7+YjhU4lIkQWxCCYPFxDarHkDwDFcb2nrDFmxF4jhuXVi6jT58o7hMiGdcQ9JwFUPM5x2QKh7eA/g9allgCEc+9N1WCx203qVEin8gAM/t0ycyk/9PrSAPOtjLo5aBYvwM+srm2UiKwOsBecDIOgMkYDP9xy0qpCMBuFUPpjoYWV2NJj9iC2ibeY7jWx1uFcb17/6D9YzB5+b0N4j5DL0+QzUbdYjT/M8RunaO3yH65IPEPUcpHWn4PbRuAWQN3SO4Z3a1m1JlzHc8eBzMZdFQzqEtNkBfQN7kZ3TF+IoQvbS2muT5qjW0UnMBrJwHd4M/UHcvxDQSw6Mxp+ewtZzdUZsIwf6QIjUcrRjITfXgOLjW4Ty1yn3B1kSMbEgjw2H4IAQfeWCk03ROH1o7+2Ecr6ypR47ZHt6Kv/0XWK2LJ91atdCLjNTKhJcL/WT/WJ4oKSQ8jpeYgFz62Sg04aQqQolWI6Sk3yLTG2l22eA49Kl0Tt3/7slufghIMmJUQ2scI3XqVIfWaTi4avydxHR1jneaBknDPVgmIy3Gku3qCgvHQXLWYjkfs1Ix+JXRb2IMPzTRG2meT0Avwmc6SNIu3Bnxivnh3l9n2O2wmc8qd8+O9Kqow3fqDFKdtRCj3TfrbIw3I1fNkkvh1Ow9OwnA8Si+ocrmviY5CEfUf7/EwCfuHGYKNs26vyvmRy05aIvneh7MohG5AKhwYFZyrZPyqJsQ6bkoWmK4XwuanU4q5GgtCgxwS1yE0h2AjkL76OF+azKeqk++3hpfZjKnKxwO73U5MtFZeRrHYLHXdXSJHOJ+575joj8LphGlDy2onK1wB+j3IjNcastxqMRkaKanxlYPKHdc2XE1aqO2aLxeNLtteAgwqRfXRiwkj2gMrMjR4jt132uVjyqiNjO2gnzxJ2A+w3Iic1DDTALakdyH62PVUI2SWq6ny/LSQ3Mb15bEdGANrriJIORYIzSiEKjRBoSRPnYyTlDZkEhbEK4c55Z+nyBre6qKMJJ/p8OSHlxOHx6i9tNn+X04RBvkt/DaK+DJCQm2rYGo6uA0FPGk2z0ylTJccRJcYsdLZasqq32WAa25K4dZucT7ww1YVg0v1WB9Cjw9qVGxEX0L6jX3b6yi3HAAZDm4vW9UjBTGL2FTYRYdFaSTE5OEncGVNoMIFjZCkmHmViZjNcMLAhTZvbtzng08Ifz856e6PjnApSIQsJSPK57RDDliAcLlb98F5+h8X66NJAzrX+2HMetx2nC7XkJ+OFmYz5OTJfhYt/p6clKsaeTU/QD0JRFGiDzTLJhtmOvR5K7z0OBQS3+9YtvTNYKhKepz5EEHeWizSu5+D1L/Gv004HjnI0HdTWlZ8FuFJw7tnIFc5dlyN7n0pIAvFKkG272mNUgStl+YqoS3kAfPhhy7PzzIJRa4eKtyM9KZ8eyzCeE1ZA+EJoLUCBiZPjgd3S5B1ci/j26hL4JMKEnwy4TgQRKnccB0whpIUIYOmN+Rvg1AsfMO8LV+LG2x/dChh7iKZvKvSlKr/5Gs6AP+ttp3hDhB+2llykR2wofJL9oDVSX8CVmntfQh2iHreZ/farUrbgy6C7WCk2Xk0Pt0YMx13fvMY9WFasEHPD2Ejvc45ePuNUHPjykswx/gFjPDuMp7YZhDm6IvJV2ifrU2b2nRNJJGhAo9WilvmrkcXauCatTuRLoOZB2+OFUEHlNc168NY2qz9y8tKEYKxTG81cB6VbAHfaQB+9NHrBn1BqSRLO8PvP5UPHQBy3XXXIaFsrqaNj/JOYf9Gcru9ZlOaxeDso1Z6wKiCgNbUdkBoCRu3Qkh8nxTnsAEJrceuBe+/JKRV3yryC8Kcyr34Z6a/WGKB56YA5gSuE5uemd58c6OgTs+BsPSrEtC1J9vEHvS5gEcNuG+t47XfF3sPGFDdUY+8BPj0mavlcI31kdiOEQbZAMWh8EKGpsAI5XctxJo7IAyfEKhdlc+DZ1A3ynwUP3NR8z0Hqx5jqKK/iSaBN7lre+aL/2FKFkI9/df/9ZFrm+wIqfthNdN+f8tbwBU7TPPbcooEQSFh504mEYrUdznk+6134jxIBTfLvNY5LkUqje4ddmXdBsUzyOqox7PoHEbpTQnx4j+4UOoVeXySLiB4IFRZNRys6O2/8p+r0tEYi5SFPuMrSK1K81tkHappBoP+jPtzFkPwYbNV6dWmchhliJvUBSmbnPwJUlSUW/9barzwZEm3CWEso5JK23sQbties5v3IbIgXRHOFcAR+bDT5M+qwI2uSr7lf8JcRY3a2jEYUYFmvtsNCxpRun5gmATyNUag85Wv8CwTlfAIER8eJRnaJJA1pY7B9Zpbb5PzUSiHKBhkQY+aCD7L92JpNaofdXyxJtRm4vNchkz2sHbripJJHzYzUTaS6X+p7ZfCJEx7lI2dGmMUzuxPsF0tfACgHQFf7Q9y2BKWxW7zIk+uXg6CTrV6YctPiZYFkalEHjcZE8Vx6/ewZD5dI3qTUqEjqPlKtkfRt8hAPqEvXDnE3ECu+pRdqiJzDnFNQJDWklkejpFiK/bJH3sNMKvvSM+uoHY8PkLQR2SodmCBdtVe0IRrK3X6uiMIV0IQ+/T0oMMOTOd8INFSyN3uNqzhq79LrgRKbLQ1C6rMpWFEj5d33XXdBmuqV4glGtcbZhwK2xKE71jJqx3BbaOuu2sIX+XbaOvrR1gHs7TnryEIDWqImIbdMuHqRBhXOuCJwcIAFR06DQwX4uaqXoheg8wwTscTgU4Z+oS0R1FZlGwTWzUVHM9CLfaVWWJ9RItRKx+01jfNeBhjCU0sGufflq1KsiuYLdwNara7K87OOUf5TW/rF21Srp1jN1JQ9UxDymml6VK0U6EIqGLhEjwO7HYXdMPRtB2EoS9FUhrsr0ATfLmH6PvFSkkdgE81dsSbrK2ok6JBDKOncxfhxbKfDyWj8KSdxjrCaFiStNQcX4xRd6LuDkTEty6+rHHLZfEzBdS+5moggPoCICqXaABZ+3EFFpA8ulCeNcrVgXV5QZOayW9qh/ZoxImDFotc/Ezr/dQuMBBnEmpjJAzqnNvuEUc+JbwuNUR0eMLv8vXyrjZ8Sb2yLdZxR1KYIgS6risLMfJcY1tkRyxEABhO/9qFhA0E/4Y490wwAyCNNuQHF3UsLHL2M5KXI4BxA33ioxy3HGkPPTc7nNQYJ99F+CZjKq2zoU6hbgs+7tfkzMKTSdD0zv2DSCzgYop4bKhVSwB7EKxQ3ZtcBhP8iNDckEnYMdSBLz91L6nSQnCl+tGhlPmjxFNFOkZp9kgUpr7l3Jb+VySDcjubHFfOhuHDqCs4Lztbtwu9zWiKB5iZNCL4W7KXfuWEgCisnn04s3hzSVgvig9OjZKumliEFR+U8iseB8GflVGQjTnp4qCZApFpF2T7eVKvROetSOoh9CK+mNxz6AbyNIHhDxdIdn5KBmw7WOo7p+8uIY2a4QWlQHaJIcinujLGNhQt81ngjTr90urAibIielUazo/w8axLf/Oh3s2kRQM1ymzaeTu0dB1GJ8t88fi/khyCfs+onpODx4RJOF/qmoB7NtOXjdaUXusPYEHIuhnBmXe5xOFbSmP63HEh02PXuCIL8dp2J25tHtNWzH3B4Fkn+BriieAcJ3YGRHZC9hMqKW1CMoP6RqdWJweY0xp7A6pcZ2MC3PIR9UBvWvx2TBYey236isoIYOFyoSLO7hgVR/ZXdi76hjG0AVdvVVDycnJAadfQTvkXxHiJ/5VFTGeQD+7LQ+A3GaDccIZlpKsT3yjmTaMi0C6QKVwYbFPrBp4QQaJUGru41CeNZH+xppUgZdy+zFtgdnhMNKYP+cQWhKRyQmQkG6hdAdIwNaEUKATpK24PBGrxMr8PLYe1zbCVc+xjGi6yjYxO6ArNHQf5egSKKfyRh5Gx/uw2WINZ+BbnzAvQZn8fOkfYJvQqOBbmYnqICdvi2vgOFr7CqdI+Vgvgq7CI56DUhD5WEPLRUzzm/5HGoNOpNzmWfJB1tMxTZhFmV6sayRKE1tTR8m+g7Co4roOh5QUDAj45BVF5Z90NsmuK9gM8CZUFPJTkRsRmuZw8XYCSHjQH/80X6q0Oe4SulqOjbkqoxhPcr8Teg+zbSkA89+6SzhppJeaHZvwk1ZBAES8kQMccLsUHd08WAyYiEfMUH1QKnuYYEhv0rfi4yGNPP/7bzkrHEYvvHBSIkNOKAxyYq6UYJcCxok4EFgBltO0U5ZK1KmrxGFQEnCYJQYfHSd7IWy7Voq2ig6bWxpR8nmruUtRHqJ5b9vWSR13T+M2GCDH0EeyJoV12e0Tcjh+M6VNYjTzYw0XydfZ84twqSp9TZSNQ4u6Y1nYuJkEF9JXTkK/kSvlvGwu/1tMU7fgHhH5Yjhm/Tt8ZTldXGD2/v7PEB7YNVMhrlyPCnmp3baRhfpp7o7Z6mTE/H5OYPCo4szkwvcMUfouBw0ZNlJsdSxV7yFtekX8YMfOpX4QaNw1+0AU+0YxRoLC2xaq0At6L+wSON7Yq9izpGWliQwiRkt3Pu8pneEY3aQfUnbaI0z6HCNREcOxDngQ3KZNtW6oYr3wwcvCf7rtc7jQZk83jc95njjP7O1CJdflVG9SmawxvUi7XgFS448qsITN/8Xq525ZktSjIQt9WvODe6rl1IZKw/sf+BiPvIvq19HKvsTbKNA+ZVKLiOcyRa7wMrTOLZvh+Mor+SEtkfBE0GXK6c3x8/UGgUK+91jnwTcYuR2D4JRAaY+izgBy0z4uABphYJFSKUsXO4n5YZsXgRx7JLTAPsuI/f6+F4hHvEfbRi0AK/vP+KVpbvyxgeN2I3urGgviL//Mgtrr3JbC/712qW89c+Odc4c4v9RDey9Jg4PJ5bCOczBT9tQuMlaVGIniYOecHm8ssZE3GKn3iYJ0oZG5a+2EEiICV+ULGpJh05ZDhHwUJkylxb6WkJY/BQwIFyz6snXD5ND9i/XOq/R7W4UkgAp++oYJ8pON8+TidxInYboaaUwNzqVj5DxBye4G0zyU8Knq5FADsw1/h0x6EuajGCXQUtHOyMmDMaREN97z8vVaxt+izhnIc9hey+vtk7UcDs8p34PS4kHeTk7v7RJfA6rgWej746oG1mzoHFjjG39w6ggut7ygUtdQW/h0ncJHErhi/saN60h0GaSaO11zQqshFAD062UGhQ/NWvi8Umwn9+tQnGHSr+uK7POPX/mHwa6AIqlJZpEoBj+Qhu70xd6IapwLhP+a9eOFL1hdFDgZAF556XlLND1tGjA1NjCEO8097Uv1n36V934oGIDlDOtNR6OEq4WlC/kMTkVFPqVZTp4FFjkGwyI8rAzS0GcPZGyCFAk8W90IB/sWxfekiK5Wdsj7RV9qw+GxkToV0XSRwbfW7bc3poslX2IJ7/wC+Ev1u4d2wCNxD9UH6ccDdMnhcNwYEqTeOiOmXBtYir3DPHJbCuYA1Af9jbyWO5It64BRieTfGMbogSlCdnz6EuuNI8A8q87JPWzw8f6F6Li3D5/PmJEng+SsCsxKFRhM5yU/t578ZUS+gOmaGQNQydv+McAj0QB6w2o7WlHovulArxllsP4QJ9Mm88sbkFSNOBVSzmdqfVIKZlrlen4GyQ2So1Nlns5OnODBfyjpdBbvbWZZxeN7sR3RvYCVo5qIfto1xUSKiMNeePBB4G6eNSPOUgPsyTdQakM0/4BmZJHCKEGfV/DdzxOcyBEmS9bCHmH0LzqfU/rv56fIRxfiYlBAhFhenLMiiOKTJQzbJOMS9ZMXFZljY2CIKgtwrYOQIGUYMI1fv0qeU+tvlik0Mpq2pXlCYZBFQL+PggtClhIQBMH0w6a8gMgSTgiwZJjlcQ41ffCeq2RTLQ/FdauJss/4g4Bv8hBkS6kFJjnJmmAzk5/WavI77hP0Xtlvx/k33lRX2hxKRb/Z9Moe5FIMKi6iA+c/laaOCX2W3nRVlXES16fSVX530Te0xfVGxfVdSW+B1FB+s7+mSf5/1Aehh4KSzreqrQhyu31TSJaIQaaIA0W4CArx8Ftmvdclon8fFOPTioZGatuX6x+/X7Nh1Ae7a6PX5zGag1sNfvmqqejb9PdMdxH7crL77w+KqMy4xCrA59y/F8B/KtKtg3bHwl78Yy2qgZECsBZsepWttpakRNSdwslcvkJgdmoSNvnvfBrBhinsNPNpn/j0eRfPw8/84qgZNAv2+sn7uBA8P3HZ70T4zFQASsRDzR+GDAvxs27059jA8S2RjWPYSZOoW7iqSVplp0qvWVCKMP5jyTs+Dupn4zc15kEdA+d3eKF3KuXpYNHS5lyY9HhJDqSsT5Rj7NF7vyXyZJx+9xkv0JeQJ2VC/iCvDo1PHd8xmeL2XHY2w/u7Y3XWRRrYRwPL1aRhF+fcmzoYu9uHuXiB1PJcsy9sD6kToGc7b8TfqzF6sYIeRG5QwUcZcgTitjklLv77MuElcR8yjP8NnWTz3n1hyvPDShNZ74qoHpR1TZHbvVJvI4ZbvXEeQC+xt/7UVgVZwXUL2LdlZgwAC2ek80C7OaQc0WgoD3BxgTwFc0LGPi4Ma+Zpd4TebiUQXmPTpLGZ9zI1TpxMuadfCXQkuP0pgn7otqqxWTjiNDSdiV+RH50ZEovj3ZdZppbfSBLiVWecMS3G09cllZsTBcBWOP8O2kRaO8F3lnfbDPLtHYP4AD+5L9QXK8w0Tdhv1PpSrR+QBu2qfPwcfhgbzXoYTNLIAynxFMFAF1LM6AuHRS0Qy+2e0QCkec/YSn5KretQt/QUxIS17jNV6DYWtLpDWGBHVAXdTZfgwC8ShvIlgSinkVPAfFeQ5MSKAZNUB0i4OVSBcD5MAf2vTd5JCwPDuFckCbFGc9lpSpqoarCPA+/ntECn1TnQ6VY9kPxl8XmHuRlNndBL4+4Cbey1Eta4fXb/36VZh3nY1mn6yqKZSKxnsIaujhJt/BSAL9n2yjXJ5iFPmLNwBKtuCon8p5K14YV/ZhzVg79Hha65CnsLPbQlKeV+IeOsVDWJBY4drM+/ehPxEKudzDreMRrKiEgHi6Y/4Kbj6CewOeqgco94SjjB9xD5jH760AFydr9Tkx9bd/+BJXqRaXQPGeEsID/SXnt3rj7iGxNCz3b6PbcXwyyhJe498E1XP1vqytBMI3mWAE1Qn1p0xGHtactvVuDBuQyK0JYgDeRPGDejBylFK7uXSz/GDEAQGAPJA/ndgKoyvyer8O0LSEKTNj0Rxs6hsqKtPyWe05b58eeWLOAZ5ybgfAl7qllMPkXwvdvl0Eo+Xy0K5JqQ05QEgZeT47cXaE+OO5Md88vi3LxSzbTcK0C2VFBV+epMdPaYUih7DH5jBUS4/c74YUW1sPwumzNDm/oIHsmMGoxoF3KKY9RYnHwzMkdALpxYT/FwP4dCXk26mN0UAV/fcDGeEpB67hoHBY+hcl8XcLpuYCXtG8VX0vAYfiqCh3ixgX4m/2WNgD1eZQ0WozM53W0FQ9Nh57jrVxeDgaFV2/QUl5RENaZYe62JPxAIcfNINrWtFEmRgWffeOmSgSxpRj7Wycsur2lL8o2clprv+Kt43zbhqzOsK6Cl7i0J6NLb7MZlsgdxb1kViwHpCbu+3dDzvX2RYoCPSPxv5szHTFQE6CGuPyCecPGth8S/PDnVFPuJj/rwBX6AdVAzt9DNQoaYDkF3/i9uBZJcz94DTVYNRMgn0qiqCCTJJR7vy8jHi4CM/CP6pJUm6kUwMVx8hwY4Ecwo37jj5l0+CEWHhcgWWRRJuAm+43abSmAdxcj3NPAoLYvhrXMyLg3m87Xpstz/iltzLHUH60IBZoj6XxKnZIEyqCaXITEtV6ttN/H11Yu7y3GIyFId4gSt/iKke7OQqhaCYmBzSLtxj6GApjxqApm0Wvov3pMW4vsxvQyGPLLqkhE1lgq2YgAnAr07jG4r18jTlprcBaAPNq3d2AWu/gJ16bVYPlDmw5cnsmaR5UFNuAlATEh8JX5zWjUGlRodkVGFZM0mSccEsQwv8nYQ9ai2jXMewaSiRNRFAMdej5W4XRohxcHifORiZdRr9waTioL9KP4KPUHgnmDkpF9pcE1sEaGNI7cRPceVqdkTjBA6eoVeOvajQonYIV0K2WfWmR2+INf0y9+IorvIL8hdY6GSjNBbyeTYD5juyTZBR6yTtkL7YQuGO2W7Z2DcgnAu5tGSMi+Tlc6Dh4+CYshF7cfA8zCvwzFNslyZqh2V3/AjpztvNi2CMIFcTVz/il7CTeDxYT0qpSvrzdf94eiNSF1ei+vzAjygVYhvIhmY8u43+XeTF0h0k4tvHDp2iHjTRe/Z9lD0+ezqBSm6sFM2b5IzoBNfghrb/8ufcjb4prnv12JKwIDWgchlld/LnE9xE9RCzvsqAdc54m2sQtkdW5r9iqFYrNf2jtaMkjURxblPxTko3hNvTiAkqbFUky3cbJieI5oPU1YGBgarqaXNdm9aZy83QJPyL2t9z+0ZHcnoixEetSBQvKDHeXd616+foZohuWgkSLku4ttljycPWuMSsIwms/lPbwrCoAWUIIpgya0zBzKVvIoK879gZV2v7EdA7XGf+Ed6RgMJ8FPXYvIzUfi+voVCtB1098LkAjqecalAhrUh12oMgpCwKfTJCGlRvUdviUk9NfW2rSUTWp6PognybunS2LkqtdiHM8QUtGUxlj/8S6o4DDAMhyK8Z+fPR2WV9qZpWZzzzE4eMr1IAy0i+htYposUv3k/1mkC2bodA6rb+5MlpZ+gCfB92n2wDVyQJhIZrNy3xaj6i4qazP/S+omXYglRKttYK+m5YBaGSNH9nWGIB20BfjFsHQoFjey5mAK9uMP4SKW15zWZOrpdObHyxJC8lVAdxWXdB9T52IMk/WG6nUSUjYVQa7DhNRUMMv7LwZN8DbYDSKLRREWst6FQZ1Mfrj6lo2YYTY3Vge2n0NVWv8RsKsMU5LLyH6SnBZOepbk0G/GxaySSrP7FGG1ZKyTURjyeDaHNwQ2Oaf2biKJ2jqyQVXPxGrHuLHjfw+ZrM6H6YdOB7qr3BfPiv5Xwat2Id/r+WuZm8wJAOEGU6032vdcwboRIuc/kNBs3BLRvg9Z0gFkslN6u6zeXK3YTJAvr5SKT+MIubXcVd/iZmtC85Na+PrhkWeWUu1fG8dnSXHikklOSbm8TKw/id79jFk53aC3quIl20wQeOP8cyb5OB2at6bDejA/pj3RuqcJF/CAQhtyuVo2tLyjfaGQy4WVXnpxKcVk8ioIT1xFko5rGdTaUprfb3SEI+WWCg/k5qlnQzSwtqrV9TzkyNi9wBsMs9OMvufYmXo+76McDUjhyjEeRJLtGo2WkPqJvQUi73mKGuEgX9qUtGXX6itL5vBZr38PLehwcvgadFZk5hSmXDZLxglsJA7pqr48nzMAOHSVQOhJKyIB5WRgQ9rqLpJeIiKf3XUCQjN4pT1COcFX4E3sNxZSTIs8Zcu4BoqKOc85Y3vDXMzux2RnmJya4jHb6YwVs/oAj5gPJJ0loqRcEU4R2TFuJtq2o4SjhSMqD/qiH221P3Vv0r1C5GXFGZV6JC+Hk8PD7juAiRnBKZe7XcN8aPsw2F8Mn9XR5aeaeJdJKga2AIyfkgPEuK4XfqAbh2aVWmilDEnUytfTRkdwO60nsXSwMXAJk7hkTT9UQa5QMkp8LpLZ+a8x8YiQ5FGxjKHkA7lCNuL14oxQDYfv4Rj8f1KNQGhYcxYhP9y0MfOQ6XyD5+Mddtkj8aRTY0vKmfWuobTuJY387bxPetB6RRyAxEHva7e6Zje80DJV6v597DYg78n7FkO8fW7XjH1DGQV1wV5FfNKh8JfelD2nXWS9saTu9jbC+msFW80nuBrxe3Jfc+4pjmWZy3mEFxT+BJofJ6jbFA08QQ4eWEmdLxj0mCZYmpkWuYjuhLXDNeWyfGVeVu/rb0Hh9Rcmm6hfgPMORKSF63BK8mURMdPlh+XomHDWQh67emwY0DI9WT7CDZZ2XOZwLJ73QNHXXBndTv242SYZTA5RW/zp9/2ZCMIYhtDo4ETHIIqunerHFrPaQs0p+Huozb68Vg5ELhg9UO2uOGza6gUk4I4TF+utpEYujCGQuTNW/d39TjO4rl+N8CLXH79LuPICXa1Hi6WamgsQZHEKdCI7+CpMIybhEq7AztPpQ69z1W7Xrm9kQOXi9dWUyL4P1tHzbv62C+/RiYZaMWVv+TPCAQ2ThziAX1w9aTniVVITTW/h7scGvoUvu2INP08O72LF6lKLZ5XCU2FsGVFEujJxRwHRCUpqqaL8RYnPxxcYoz2lh/rAx1QxLe6igTwxSJp9DNseBwoQO2aY1mBSLmKQZgVU+4X/fgt6g7iXHH2a9aEXqF/KXxNbzaCqktf6GOW3PwoTJ0KDUukrsYrIV4BeMpz7eW1LCH/sT9EbWfFHdpEYD4TpG6YbVXaHPF3XAiQLW0TQHQ0a+r8nJdsJ0sWeOGNIk/loDdyrcmxy+AcHADZuEN/BOeAVrDx4Qyba3g4BLUK58w1RwImD8sf3uyGkJPYAPwVzLQcoEEx8A0K+FpoZGCVUm5qyt7/oQaDIsTjPRSsXVjSF0l+ezP/01nSHCLTRUlJ/cXAGHJhJJAKUIeOGjux8KhCi2tPL38ugYt8AYMjP7UqFe8dgfOQc4tqdT5Rrbjb55N3rKt6XabeHRcYuWho4MmIq6nNZZwLUuxRzb8YnOim/ENVB2qPsNwCxpzxROXPzdg+pspkkPEZZdAq/7g4ZC45a8IhF7O3HmShKUme2ppNrvTkYsBKah1E56i4iEmLNl5mWOFyq89dkgOaLV5GJIvOkEpp/8zrSwDgnbHAWnTJFLEluEKTJ7zrQh58oM80Ikx7ACoE/T+t7jmqKb5N7FVEe4yhLwRAcnOf/Ei1RCG85qP+vKLkJKZdk58osvk2KVJIq86y2L3p9D+QWkbHVZ3xTXoirklsFe69TtQXHGJDzc+XgBUl2Kho1wNpneG6/TZMUjT9lZi833Dj3A4rNCvzkKGIT587ac+JGGOR5dmtSVO5cxHRz09nOT2ul4vGUTyudlUFV22mho6iqfeqZ0FvkbOUobsg41517VqmtCiOl0BFIIKq4CG3/O8xlNyzT1cQna+Ca80GEBFKX5vBK2jhun33ve9Rbi77fSmvfQ+LeAK9JjBoj5kDBJN0W5QGogbu0suErk4VFCTJuasUl4fwmNvOJ95s9uDc4T35iZDcl9tUAWEsOL7ZZItKPDEo8ABio0I/ghQaWdn873HvZZdpqRN4dmUDHfuSYmUc8xb4y7Gpp/kPTNJr653lr7s25bbW/6PLoCZXRwmtoh7LsRTEma9yo08CZ7RRR1+KdYaBq7K+OeBcvZvcCBwLQI6JkBrjucshXOT6u4yikT3+7yecczii5a1BMm2ksQwxrPz9hxMxHlOgcKmt9CgV25Am8wbuEVJbcjV5ocSHEXviJZfYxC8AN7olnsVEVz1Zx0S4/Yvw9zSuv//HHQCc3eazexWscIyk1UqIdX9jqY5jYN01qnbSJ+WdYC/JsTHr7gIg1Kg7oSEBoe7x4f5UNvXGMAVt1UjMKsOnIhz9G1x7cQsTgavPlXvCdTXN3+LONB4JZloCx2yBbfXFk70pLumxRwwp4SpZT9G2qm3xQx39bUMEp936bUQvSbS/KYH09XW29XXZsvL40AjtRexzc8gPJAZD/iLMxzVqCq+vzgl5CT7B+wlAWvlWB4nkfS6Pxvd7oU+18t5GcYE1BLktggaS4AcRrxz3qs4dE4B7SqhSOg/XY+pIuGgRqjsmEqqqXB+mGkggL34CdJNFHTB9axAw+ezcwL/q1Yi+to53hmxobUH37M1tpPLShqF3qlTx2rvNFc94B0rdjHUDZVZh4CQ9EyEM5uKhnKNAoiUVPBYpOvLw+D24LfgViGnz8p15DCQRP3Ykoi24CK3hfDDg7bDjvSH+XeJG+jnsRwxmqa+fWDkPmflkrUsD9su89356UoCwuiFlI140VqfPEBcWSnPm69nny2zCrKXx0wEp1cD6smHuniQyYosg2wZ3ILw/j0wSq2UMnN0W/fvkcH4LMWVoiiJriFw1AnwFV7Fp+DPSumm/vvtfTs+vhsJW1hsd2zb4xTvG8rK5IMA/p810R7mySJmJ3kP2u7kKvzNgjTPy5tcZlkGjUaMZsf7EAyb1KkbZN/jhBpppE6Yx7Qfw8TfbYR//zif72HjK6C72yiwts12ff7geMCRcC/QJ/KpLdR54wcNF6EnEwjohXyvhFcYOlx0Gw3PZ1Qgk8X8ii4noXtwaDM8dvnWWP5Lk7moH7Ojj7LJloEZUlpGnyukJcouoV00bUYrugKeVVHLnGBKIn3GB5TKss76OkT34keSVN6DYSJQ8/C3tCOjGmTqLNs9x5eqY9vWpybRO1S/Xlv7y5n4HVue8BYJfEbwXXQUKek9EN8ijgIXeXMEeOkx4WuVxKf5dR9cnBJ14rC/IY2TUFJ2Zs8y/UL9llXAS6H6QKLGWlYvqrMF1L9O/AgJoTgFB/f0lrejzGcwHo/xuLXnGIueSGdVjYRRtBSnVnNvMeAGEmLLaIxcfUhixOsw58To/muh/4EYPDFh0KIAgh9ywbEY4si8bI0snJmwAO0bMD0vzt8pmwmBYdbHhVbfm43G7BbMOGt/56RaiG/HB57oDizlo5eXoyTy9aa6vPJDY+EP8fhAePzyBovxNIslYOFV34eAHNBROVOkguhnkzT4HGERpQYPigUpNyv06OOThz9xc4CC4EPw2V18Uh0XpaFVtTH9PePXH55PXFdLx8RQygy//iTO6B5JH/21USf5bRB3me5LCb7KpDZP9B3UruKaq1GOhzWzIWaMbe4h8/xVcofe6YlwOzlHmjXRfeQ628cslDbNeQARMaY+HWS5O/ZypbI/z0BDXts4IYkeMGjkDoKIJHCDEBPpN/3y+taaZYoJGwkAi4zBybOgyoiOja9CObhaUkhJe5ZzW546JV1UpoJV/O7MmMohA0nGrrT20l+8NtCzafDpX1jaFqp37azV8rs4JmQtykVk3YBryxc1HgsqQU38Y0UoXWe4GxrsD/dCd90eas4gq0YvWPMIOMYSBcE3aXMfoGTxSmABi5nZG4MibemgmpsenvkEze9E5BxuOM8kS9rywkLzlJeJV6/MsimB0VlnEKibcsYJ8lDAY5RaGkZ/1lYuKWgEHvLkqFig7eYhOV9FEKbVOnd2zUh9dMYdN3KY+9Bsk/lbPesvdBrWnTMqM6z2e1JKoDv6F+O7vP44/p5WBg84rcIm4izGBxBBayRp6KXbPdiuHz6pJphl1NuX6noSqp3LbhHZg6vXk8e1idDvX7ExHRLTUblr4Q2gmdVcis1rOJQW0W2FDMALhA1Of101N3oK8XHOzbc1o9s4zF8unEWM2JYZZ5dm3auTR/yWLnY0n6mdEqQ1/FRLbYpbG+rIDvG45oEBGoSQC82rXfp2hWM2FLhgXG+0Cyicn6tgLkFDjAfIE53UIlqakr3lp+Y9u0ULfpkCnVZi0TOCnJgerEyv2RxSoKHgjbjphQVIvIQR5QyojvytGaK7PQhY5QvLJTWUvrjFZx4eFRK7B0tGZpPwy+7Z9jcFerc8AzFOCa8lgEkCEgABvQfU+RIAr807jqFy4dxMWQZiBgZSYCMe9scm+ni9Xx0hA04/mMRSGRDv9/AicdDC4EWdYfCC3vI2w0xVuiHtvpjDe6Gz2ddM4xdxpUpcVS1dq8PMS/35agIcenZcz2rzVxhlEVoixm+gOYrXbphiDEYFgX3Z6OoiRshEZ1yaJiqwib+X6olgo1J9RGfzxEQVE4E3XU8YzTZv0L29pKCiNRnrGywUxyKLB6EdFlPfaYub9U0sMY8qwlMVpkaA+O/kSacCvfR9hsDk3Ty4EvOZYOTIZESSfpWaNEohtTxWf/MebS1HHcJivAixbxBsC8MurKILSTF7yUFXJIQ/gwdr4J9ZesIyJisPGb+l+JSuHw3l8AZcT+INMMbv4d3IWnXAckzosJG5DErFMYHv82yjpIjJf2Lu6n4wbWQFHcuOyUV3nO0FXb/4Lr8a/itHwUT2XooQv1TtojURD48RGgMZB4oHBytf7Xl5rxy9XqG2m749v9XyKPZ3ln4v2wCkYz9Om8ZBKLv3GTrmOqtuIWKgW3H424UnZcoD7hgMM6908St1ZE4m6AAW9UcHp4JdNDICsq+dIoIJwFytdpKh/ANDQcFwbY3h19O7dxUn2K0dplRMMl6sheCvgc2vMLfI87UWaqAW2un8bs1wnhyGfz5v9lEN/E44sp9j3iSas7fySAI468mky2V5o0wuer9cqKt33+b7X6KO2mOKSNAIZ8d1u4Gs4+7tjcI7IG/8NH/FX6zvBOKZYXiGVj0DyKij/33ve+eGaH85iXHvpFo4GqzPsl+sv446HpBJOsq1uLLmBsUBCyCFzZ91EvW5YcoRBYvtdEmbVbjhs7fOqRmZvBzEJtFEqm05klXB7BY2SwpN6AlEhAHQmm3pBUGggSFzt8X4C63MwrjX1QEP0jWXUY5e+jxwi3BCxIis7fyVYoold4JqoZ53W27PErEC3TLJuc0UuzIeLYSJGH6JDmCdRqPlIqPPGI9a8K0pBAffil+wPRxR//orPJYXu33qcQ5P24ElIzq8T9pSgGDQqF3LX6PkJfqODkq/5GNhHkF2KU/jJ/OET49mtlGbHLAZYe9fCsZegyGDrGi0pnn9/F4Td0IPl6gqAVtFs8bGBaczMyuVc1HuMM8EH51f07h0CrvzqXa7ai7LLn8LccEgKTRpW/+mbvCdQ70EsUy9o8YBMMS9WQ6ixCnyAc4l2DcK91ILgMX8+9ZD38jHpaoET9ARWPbo9DqcRU8o8zuthPAcevnMgj25NNalxKLBqFHp2aLjfyeWxA4vmA3Hj2h0hgVgZoiFxUjbXlYkRXuaNV+ktFBzh5Wdvb8QP9raK8GsKbm89ErvKRBWA7xRPyV85VTu9cHblZvzYBTfNJbwHt+SNi0Xg+972qH7RgyFqDlC5gYyWDVIdApQWG65qMZw7EWYUJTqPsuVH6xEULTYwhfkiJhz3L1RK+KoIyd9zYROyZWAQ2HRc9eAeDYYwajBy5OU2KHL9qjaZxhnx3SfJenmEf693YA0CZ0+dt9Ej7vErFFgR3QIn0HdfCPhUUydNR5dLudhObPzMiwfISf69tTD3DosWuxP+eBe4i7Q//TFQ+USKYiRXQRE2swmujODQbgIvLUjgxZgMDzl3j9A6njmSBexZnS3cFOLtaLEct21yvRBiSFBpzRs5E5Ig0WnZh5bn5mM1BkQ8CqZq52Oa9BHTVG/FirjS93eTsGl4v5YlAlS6pNnROubyJ2qjs4ftGpzaLyHPVxZ1fMQXUt4+TN7e0MlqsyBb5uI+J1SYCiiBGqz1EgRZD35+GhV1SVFcaIlSSfv3Wxj0BIGkH3QXdprSycUOz0QVYHwnXhaDaLsksUzrBzqhCZVApa61LtY5NbQI9NdckXegIGBshxPuO0Qb+AID0ieElWUvsGVvq46OtssraHVJ160S9fzyhRgx2lQExGJejeSx37Cl8TRQbAiqxrva++Y2kj/XU/5WaNIClDQq/c9eB/yuMYTf+NRPI0n8Fogl00Pi/ml99Hos4JZfT+6TGX5L+lPEoO24RWJlFjiiV/7qqu8Z9RFkSa0HBml0E8fMDKo7VF3VE5SViaKsGoUABrVlimm/ESZtfl6G13J2YthLyxVKPmqQns9lSVZ2aJ1zC0KeHsIAeduu13lOEDxRmBP8TsT74ARq0AkVerGJyxTnkXQnnBjjbihefMIyEXyyL5AV/dr9ocpbGf1U0DnTwI9RbpY5nUf6p3wlIPgK/PeCHaZ8mnuaBfiG8qwA/jRbeXysvMCANzA1UdPWzV7XqOHhrlHE0lXUBVAYeAlEMATBkMd6LuujVsWdd63vJMA2+Y2qQWEA36Rbi7IcPOqB2dxVYS/CEcGZvVCmI6eiTBKiUlgi6PmkjLZ6vs3YnAf8g3+IdQ/Jc02xUhehMiJ9oFohJ4ISa8Nd5t9G8IB9qJ8WWpB0u1sDRiOda32Rwx8F3QrXnOlymsRsEezqwSKtS8kRycgHz8MK4NKAc7OaC511E03MXDTPSwUgeaZIvSpQFLRaQ0AsgcYjK4s1JezYnNMoM5bUg5dJTee4v31Wet2Yy/37sOGEyDNOBOuTEXNG4KdP78GWoG1YMkCsWtuekcvBcvbSjN4CGxcoShrKlzK6MkQ/N0rERnSD8jkgGBVyqxSta2x3sTjkgUFRePkvgG9wcPqGdtVvxOgXcbgkbUTChjYLGe1YPUPUtxEfnmEz7R34jJDjUegRsU5/2VD/sxpSlSvbFez45rSF3LvgOladpgzQn+d+8fgdRwJnFNFDvezIvPkjVybdmhJM5HJSt1uXGi+N8YzfKjWQsHXWqZHn7vnX0EOJcE+VSB6lHnrR7eVXbt6um3Ugd0AuPtTZKByIi5qEbkL1veu+ha0dLb1AP6i9w/Lh+lmOOWORdN/w1PJn3MkvF057d0+k2LbTR6i7PnHdU5RA2lnkgt+QszlamcFBOmAm5gs5anjHI81EFPAweZJ2duTNR5r9sRYtYLiXBOQ0P571b47+ViHXqUmn42dUBLT+Z5eQ2TPyQcFGNaKdXq0kWS3mgiVAcXOfziKQ/9XveoFnmJtXXAvoqbC4MXMTz1x4ItrSAciXXO+cdqKS0cU4ZBt4ugwubLOKtRIieGU11zxqB2kxsLKmSr+Y/zbQ/xtCrCvgohbcpBA9bwkzcyqEWrRwtXnyLv/zrD5V5lxri2vdB7cB4Cr4lVVcSmAGlXNpjnE02oFB0PC2G0BhS8Bu5UbkBYacb4FusWniS2pJxSn6QtpBLgMKmkeYVw8+yfIPkSrpZEHOUD8nUF4dSzVkJSD0esIStFhzAIUaqoulaS81F5VmBIGT6ihofJOd7X1KcF9UoMCGMt/TGVDnjHexHgFkZRsoxUux/p02rTCQvxrU3//c5er1kaQ8VF7gfS4C7crijPwGArKVu7IPrrz85aiYJQnh5WND7ahaVKe6sIQfXIpxxr7E7xtyTTLi2KqiSpo4SB1LxMEW+UX5JI8PVhwFVwVxORzgVC2PcrfekierpJ2qYEFdePDCk4DNmcn5XiM9snmnJ9742fiB0/XF7TEhiW0KdwJTE0fmp0HnXosrmqOZHxvDWNQQHZv96mHrPQ6lt01/9yME7Pfm0tPAQh9HNSnPU83DtHmL6p5psEAHkMPuPH+MpdVhLZ/rlKuSD32Yxh64KZ/5zON7DbRJc8WQ2P7rteP/I218nu5Vd6/1b5OGJ5FNWsfVY6WC3plIcM+HmHb+TOXs1jynH2k8FxFvw70v1ALGZ059p37O/RaTf7nYX/+FuhXKHiOOpiDPMxwoYwJI57b9I5h4qWCfUSrIzrUzCuBfBWJw/MIU/5TVao5vCHphXw+5hT2leUtXzBuCV5uBZxke0X3V9e7rrHCa5pd3hiJugEcr7jgZPYoQwJyfocPUGBx4UKbkSU333Y8aFyqVNawhQfrctIIvpb8QqhcRyNrZCTYjAp5EozkGnQ2eNoai17f9VEvQy4ztpkvRGGdxMFKqnbRIOTt/TJuIFjErIdc6M9HNB8z/abu4aA3K0/pipul2wsrItcinygkJiBJGK79VJpzaADkDHXMIYz2xfvu/z9k1MG8OscaiHOzbaRrDXlChUOTNag/q/EoRTCwwNDVRe4hvzMJIho/Pr3f7G4Uafb8oXM03fNPJHXur/iUcAQNV2jlDfoWjCWCD5+3cXwrSgx1u3X3hJxW4ENLYm3OJ+ywRRCqTA12CKiJXGujf/lKvZ1RwEdbeKbPK+NQXuaJrRgkldj5JMUHOrA0x9p9bRxjwD7cPQeF93WNWbiw/vcTqArQTzrRmX+E23XShEelHXuXMqrprvfuZ6N1rf9qpKdWiC5HSSkO3edlnjfW+ThndkXC23/w+G5jCfUQCRpr57N2JOgWeQbKB3QlcuJhkgS6ttGFJv52bOh9Ey2BedX5kHz4RX4sJU1CRrvSHnqyqSbFMqxeH9dxQI6ms99XJBoPrvxznTTGO0PGLzq5GhTeWlDsITon9ipiGIbWZdcW95FIsLrn3KGD1SVW4KRVNXLaalQ7+pOy4cHXVIFpl6R9ByWxTL2xq8i+yVSnSW/6MTkhIlIsC25gFBWk+7as8GF153uAcZN8mwHXlsoc4AcA3ZQyT60/0qK56eWrZ32GFg1ioIrhorPlE6i4ORv4WNUQSZStFWaMAaUUs1604YI4D53ofT8CeewubTb1+jYzuQbF0X549LpYp2j7D2dMPrcYn32/DLqtUQMXqHLF2vxx4SuVmbrTyv+mclmroqzpa3GOOuUP59lwacbo2FWIuFnPITd9ZlkG3q8yKhviU9/cSOMwm/GXx8Q7GS7FsnT0swVdlvgz5fH4R5p08ak3zAmbSowpkHeELblmPrYQgj4X4fPOFuYADkU1rx+3+5q69ATiECFxSfqYTXj7oktSAjh8+Y9s3PJ2wFuqR87XW26N+OjxPHvN6qcfVxgkcAGNLMXs4pG+tZt7f8astwjf8FdtUYlMPbHALwIlwoW/MhdzoHpZGGj+L/I5A4gI1EbcTIOTK2YZanHdBtoJfopFzpfUPjBitY+V/kTF3eBPnyunjkXQinByfPQjJU7vMZCAjMiEhFZQhVNgjDSW7Lu3CWskkroD3kaQbkNFw9BsrMpkb6o3RezxNckex+efh9XEnA0uQ7RqrsPe2abrWED1dX2tXS6sca3RH7udRvxnHH5RdrbqcqWF9kF1agTJJRfAn/+4K1eyrmBKMTUdyxw+tkA5mP5OZ36p22+qUTwxKoPsBVZXyRKMqBDPp/emNG+vHziLHsPbX+m1RCkyS4lIUcNb/rENJQINE4SmI7sJ/5dtUaf3eV6LHhALCwxD8R5TZq5Hs8OEGxRWP5fssR/PgasfpoAs4Kl6YwZOuna5rIJQEHinDpVgN5U+Joqgipl8n5ioAA97lIBiP0NQ88EW/BRV9bI7xVRFEWodu63MJ00gRjGvMztQMlTgWf3u/GWw84+b2l29WnUZkQxHwfKd3SQ2BJhtogKJGE6cwKMd6VtSKUxv2gwgheTk7hg+9t9T+eJw9RBfrp9g+licIK7RXw8zRLg6UcSjQG1bNkCNqjAy1jSl6+3rW1uw/RBug+B/s+7Xi2YywopYRmQsQplFUael98a5b/aiufviop9WNUYzWQwkW3zS6QFPABXAcHWfQl2Ji8dC2PG1U1Kgsgs4KZ+fdNvflR2gAh5B1wKlQ4sH1mTDVc0nGdMqXHl98ICe42E5tQ3b6KO+CLRpRY1v9Ltg6J2HQQt+pdnn6VbrnW5HYiVTrrW1WCvTjNdKRk9UC2yprMunTSIydVsUa0iJS0m7qEVLeB0HhygSIxB4DltlAp4g8AaCtdY7dQngDOUU1o/9O8zEWFsWFYYKcW1qxFubaIRMlvRtew12dtQSq5uOH14qEjAbV4Kz3Upp3+Ze773b5AuaHXMVTvkmHyqQD0s2+OVvkGfSTbZHpQBNV6hwYrIaUzcZYIWGryTIBptJVnmZEe8ne7jbITdJTIj1ZLPq271LllVsYG/4OERSYCZuPmuTz3lPpPjwW8C8bIVLO68vkPhnhDdQT5iGrIgu8vahJoq8Q5USrz1Gh48ZjsM7XGoTBuVEOJIKyjHfTCUVcre6JBEx9TKdX2jkLpfbj3QT1kxwJaxxqdu0hxNi+65sNUNPsnt4e17VJ/oeRu//8R84gpPL718qTYXYuVi8WLNhZsyR5Zo2hcNN1k2MlD0um/o9hjv/pkIjs8FXef9LF16Zw918R1+0LLLuSBxDKHC0Xs3JHiyYPVVAtFq2vqLiOXqbxQptgFucRN1GHG2XSBuJvSGehyYIPP5SHXsKLCfFSPQUb8CX61sUylQn1m+MwZb5hseyQwgL8yh+BccrpUIjbllAqziQi+c5HaB8k+H0ZTDrqGrqI/RinLJSyQlGrc3HJDSfhBtKv+FgDYoSFUHQLD31YBhUlBXu00L6JMby1BaoEz6C7b6/7DroXF9hYS6WQKN5H3nkAfkhJ/Y8aXPZdCe/e/nw4nF7ZOGF2PTr7acyU2/9tz7hV/dSLsKDFe8sutyX2sagfrga4kQ54oUODKfCXFc6Fid/67L6XNx+CODt6r5ISMeM8j7mrAOfut1cwMtsvsspCfP+hIiMmhAPEQcxznx/BKLTw2Hdpa1fKwb9fmarZKgA+ZqMRKNiF3q8TvZgs4ftrGwPwy0sj2a5FtswL0tUHT437yqS2gLoOuIq2CPvIQTUx7S+Q4zWu1yYDffyfYeyaMLDqedvjapC5DJ3MO67x/tI4Xel5J5z/75eGYea81hjy8iXHW4ltV5UnUx8hO/4hxe9yIZcgsj5GQAm50fYvIOx506y8RY+KG90oQ3WIyGJixpv9lXmcKl1QzdFifiIAncTbxtM9amSCThm4cQZDruLF5QfYL4SKUJ4YwDEKnqew5xBME/NM8ZGM0OziYNWttLF4tSxeptXQDOUJNwPnhq1bVq287KZbGd0SOwY2ppEAhClFuBZFFxes29673ghZVI2FrwINzOZLqP3g/4QJFrYoo+VgthgoTv7HH2xMgveZh+PYz52oPMMTpdN4R9S9y3MNwOkzxgwu2S9Nj42bD3dgfVuqd7QFtq7pQmSs6demmmEFw/q7yhOCmFmsUK2vKSEaUJlku3cFFh9T4pSuwSKDlUoVfZa6haIVDvNt3u2Y05MZ/EiR/P4aRE+8qRFLR82aW6IuKvzz+tbj2EzVQNJwtCSIm45zphGBK8KB4HA/7SFFbhMXOqRwTA/fowv0t2+80YmdUUo8YWnSDffLOv4o6H8IW9/uLGKHsG8BWxOYFnpXc6VuvKhNq5KWIXKCoC9RpoQhmSyD5X6g1GS9lxdqtNG3tp4HWId4JBt6KPCjRd/NIzR17sTPwaX/Z3CrInlWLtScKvbOgxXsZqSGdrjBsRwZw4/g831AJw8OeZzzN5yYHSGiFdGulTrHqF7nLeOHkYiR23vLCKjcdAp6EEPCiBbjvoD39ehqcOZTxiyRMHsd4W4cQNSPaBsZFfG4Jmr2dJiFvBRS3qhKKEtq35WYQj9p7KCrvVBozorY+YV4tTNh6itJKNUP/dDRQ55RqjQ4o5MQMdTWAa7QXThkf4h/dulWE99KWTNZG9yE9gcTA1cdcoUN4QSXIfG2mcqNKnj7lL6EY/JizxwESQQxH1Z4E3y8XsYsqfYMOQNWx+PflTIxI+4m23jzYRJL6CZJR0Jj3cFQXZTC2gCMqDY39dafKMb2P3wjDTG3tKtbtf0569uloCgeWM5G+5KHU9TrFC9SJIQXh4p1rrcllUvDepm8JJDLX3wufE42PQH+pV1ekSHRj67GMVxfhYL7DqxTm2FDhSEoy5fobbAhuIoHoLny9fp8LIaBFQ6AffDMp4PeEXq9bj90vq/i0gKbpzWTzhro79JD+nI9YrmB2p89m11lRjLODjpGIFdvTTxSN+gG//ZtVtzjWVKVmxkpJG3DwzY+zMN6a38l1O2nIb7Z93/bcfiTRL+uNThBZHmA0OLBwLrk6eXXzq6sUt/xxLSAguC6bNfUz5ib8U0Lhm9RBJA8ZBiuZloY/YA4qQDF0wgZ4bel9DMg+ur6tSrVnJPc9Xe5wo8i8yQtgqg8QEOaBSqhG/JHaFPCvbm3FwCTUGR2bxd1UCEotq1gWuQxSpGoLDuIxfIOHARDsMKMGJaFws45gpjChr+D+nAmIVV3Lua6awTWJG0FK2VkB7/zLXc/t1TweRtKtXvryxw/W3dd0/ljV7rMZto2M0Nx1Idd5hHxP6MfxGoJw7dEHSNOoIQxdNMA4sh4Uq47bww/c5SQ2iGoZ6ejPbLyq1d08IF6dcOUcbXHQjLPCKrThXAzEfqziZjAovFQZGKDyW7X7Lw6beUeR3GOFIiQ4aFU0JIHSwTaVHoypWGuXQ0YdltxTLfkFNnPKbyTO0zCBECI0ei/HdkFyKQWISTa10vKu6ZMm0Dhc8nO/JEdIUORoHPM/tcOMVOzDNraD1jfZgrw8j8hvrS1d5HfTeUyu0Nmzt3h3OXAq2aV+1BqmpY8IEoARfX32DSMvwp/yGVJ53VBumY3u+fQ/qTcjXm9i8e6o/PqmP4lbNvr9qUCYddUFC/0JC2gbY0+R0bvcIJsE2ftKp5/wQLGqbk9mRCWd4cpJx94G3AdEh57tyiAxQZpFejzess1rXFez61AsSyAkhJONWketbPCob0TQZpm3/hpSWsGUMeQuLFdcLygyP8WhFv0AOqKtrSvmVx3YCMZ+sYR6M6xTapoIpRG39QkLqcU0KUR04eHyEkRYWYsLO6MEm0qHwFHiaAqmTV3NBlWUoyghBxSVIWt8xt2hwp2mrqCXCVpJXpFvlzoXtz3lYJIAEMGt5opD7JM8R/yvSgoVNYT0wry0RnZBuNrL1/zeOhQ+GhIc1u+dhtqXsTOuMVTvstED8PjwCkFXZA+R5Zjtszys9nANdR022o54yuhHVJTNHBmS81a3pSE8sWcLQfVaDfSmj5dHGEFFYi6YRawn+eiKcBOCvA+sDHzG5BG3wmOKnOz2tYcoi3m5iyToHtLueyW/qyKDWtMcA4PYNhqHHvB2Sz0/1jTyAc5TB79XyDmTnQ2iMWgfg4J4aC4nTojCRO9Rm+sNz0gtx6zu+cP7qzZAqyLjNP2qFNePrMZpporP52r2wwynBL9R3GNEYA0KghggOcbQ27Zw/47qZpe6lX2PdsdoDAAbxBgsadgXBgrwhbbq52+UJ/WV5ncCdoRANAuDhjnikLnbc+Dr7Kh48L0X8QI6JG092bkuQaICcEDcdhr4cWufui3pJavEL0j4OsaxQhqHN/xxyWbUJkrRuiIAaObJFAPs6zjo2Z3hMeJKDNSRXM9+CA21UWs2DRVhDLcn6aDhXvAzLXL7n1a9cEc+WoUUDf5s+73yazXUuDKGkmfOXC6HR5HmobqbQMN50BKq0QJ00eMrDroOTnGSDipRDcx5N2XlKeFp1AzmAHZqfAtn9Ws9zW18NBslLYOASuvsUiKA09+CONSw0mUI8KFsuPM9NnFtkcyrlXsVhdmKtrN7a8V9KfO2ecgIw0i+mYzxL5dLS/zJv6UtXhRRMVIykl0/Djr6Hx2iPq5ylDJAHWOgd4+vBAkovFx95BVQ1puOTWrswU644yKL7vJhLALz5jWLXZcW82maa/cHIuA5ELBmIsMpVKcUDfFQEKrluaynXUfgUnhB2TLa0GXpKIc7GnGHdcExvxXLnCgd/fSblCufvbPMg+qw/gVYLLfoSMHiYL+Rn/2HwI0i1E+ouk5aXeJqEOfvhQ9yk8PAKb+DTLjJwIH+q/eKKseRLJtDMOqaFn7nm26rSaRwqXN172HvxMidZd469ZLH+/y7WB6ZlhHOWxTiTCjomYRyP/Is7qD9n1vkpi/kwiqmHVzxhHuL38JYJQ/yys61D7ZS/v/S90BYUmbxjQKjAq+kpFrB+xMNfCWk0IqgIPOTiKTkP9205FccnGmh37EVWGAMBG/rhZ8BJP5YPxDjJAh1KvffwOaxCKbJchKsW6byuFPfsDZL+ZxGgSKx5pE5py5wVBQ0auOZOoO5nUcyKsnKIPQazof3MPNBEnLXSy9d2jq2asuDIMJwKOq3HyWjzfyNmhFGyg6oQAnUXE2ZsDkMoS3nP51FsPxwLttljH4vFHsI2SyaBOpDmA46q41+JwrMcUnuIKRISwW2qLZHYb+XahLneugzeXiTnJva1dwSJgDrl2RuIiMTQdCmJT+lgE7HpqaVHT6s8wnID2VFoOKvNPBhTwgH5gEB34LMGgVDxcr5NCsDkgoau/SUaknVod2+kpZS98Sujow5qx8yP/Vf35aAUCUKDvKGUpt1g2l8nf6wWsa1t+XiV+dOLp2z8A2iYjIU5IGuC7iz+EtrUfMM6o9toy6qnhk0TdHNYGRmbo/HVOkhZ+HBDLYtzdyFu26fv2TWNO8RdcsAZ7DgJkiK4wWJ0/WnBClaZ7UQLAKn+uo+hRSJYZ0nsyGCezbTh1yQDrmFdbd2SQhlN/Xiz9OR1UA5/UoKrNw5bYi5UGWinfHIE5ZnTUHScTYacHIo4+SbUPqPoTSzU68DgULjB1Wj42sP/dzDJwpqvvAqjnBXTlOTKB6sz26N5nIhS2zUodibAaz2QJ1sDhlE0OMX5vDhe5rjnBk0KYq9909SnFSnYOD5AbbGXLAAKdZ2jKRORhtaFogvrXlUqxRKWvk2zZ5mbG13OjkKzx/Ihn71f3QKmXi1Rc8m1BBdldoyhnIYOAWLobknHy1AH046jfOUOWnxWkLUg/DDpF7rNWeZIjrQmQ1dC7/k6SMm3Vie+wSwIyUchV46hDwivdzQdWfWEXm5Ik1lZi6sw56DKKW+8rt7CFopr4leYJHBh3DiP9bXUpVW7X9B9JNgD8gLT9BaDxQ3Rvh1yuJA6bm75lmOqobnz35Ihljzz1SbSubRdhnNMvvBGxX75FxP6olCSpMkJTighM+vcGKhb2IhA9OZkT+Hn6J2XX60kmRPedRtIEsabfB4PACnWiof23D/D46LRYew094JXfB8IEoLsBhmIOVc9Quc7U9O9Hq5cEgBi4KimGtRzhdrxE+mjH1LZEM7nj/eGK342Hrlk9ygPuitzyV/CrpzcKCDevYzVrZp24p8NiFunhqdAxc5OUmQrULsSA06cSvj1RqyE7ysUxQAI8gnK+k5Yu4/uHwvsj8uFtNayiZoZP9DuzqrcIWfAtpsp9QGevgbFK24aqssUve4vD7WAb7yW9r1R3TnvJfcSyLR/8TXFOGx0VUDULM6fqOogqiH9ys3ipOYrZ7IIMsWv3wmdbNS4w7qilDimcUAVGEnnm0wJqGm1md2UnZ3BP2qUdGX6YhmJU5px0iIOPF/+NDP/wEYisyHvyZWG6kxSlY5rvWFcdLM75RhhOBrUhGZrT8qmlKyY0d3c6zJNsqB3pw/KK2W1ynm6EQpthC9HHv6CnjEEJLOi5o5ph8smh50zW7U3zW2jni5qgMwFQhmptaLazwii4AqcJA0Xp7fuVJFcqrct9D1EFaBFC6IC4Aaln4zjrryqb+7HDYfRPZtZ3uwHEVQvinsdXlpNyRkCzSrFIaa5zvaAeLKXegswM8ROGvJCqAy2dsQgQp8N29r/dSYT1TmYqMf4yOt49aD2jlX7mkJJfjujg6aDS5/FrHKTdV2VIEVIOrSVvSD1tu7V7vl4+bNq8pNicjgdH4GdaoLI0rB3LEvMrYSGqPdBR316hS2I4M8KRdOe9gAY9RlGGggb3e3njPhT7BPNSii7em2TKhD4SU/lOvN364qJCHYOUijHCdjk7tEpoBaNFr16svOYBTx4Ai8JqvvYjdzydGB/bzVjgLh8ZiHUSrnq/vyyZxglwCkS/6BcAIBXGIMaLfQgWbgINFbLBtX6eTWBMajwHWRiwOQ3OLFWK8uo1xuJH6TnfyiiCaL5cnyJCg5tlORgdbStdu8adOOsVDomKVLAG/vHP8GVy15a+r9iH1nandQej29nNJW76+6KKP5fpG0w0wXDR+BbMpNFHuRi9CO2DvGAup4yN5JNiFok+lTxB5aMriD4FPDRsvjMpoMd08Fx77OSDXmoDbWIW36NziZaBoJYKmElwsnmHfRvBi8HAHtmNjFpvDqdsasE++k0wzyVDhG+YC/6QfrxyJ3W/5qI2oJmhj8D/yBr7QXuH+O1NG4XUfg501m/zhLtskRopMJvCWo5fTL4QyT/IjAGpNkjtPVXZ3ONnpeTuRkq0pMhgW/DgwN3FsjymUU3KjfPjF7NcUdVFoFLRZBIqljFsZ6qILD4rtycpOPtBikrF2VGsl2w5hdqSejjs+rt1EvokmWW5rbs/nXqEsVqh3dUtmxU7i2u5fInw4JhbKCREjRvu93t4L4LS1mAiPErKhLp3sv2/JgzFq6PyWDhVmIR/L9ae34SkS4mfPQYD1PK8y5pk2wcsnR0HkOYJrqS14cHW+CpcPRCh7uM+XfZi1mfOyWPsow8IuleXdyWYL4au8LFujPxwhrpFE2MTafLOOKTvItQMRXNEls5MlSdXYCokWl4f345/kmb5rXQOQ3Yd5rOiUqJAWWv4o29pR+FAQTJXHBpw9GbHFtqvhjD8D06Zygw3U33eHGKyv5TjLAPFwEL6OV5IYLmO002lmmgifhAK8ZeIIAenD3Cu1blYqPk+Xu0evtMLPrNViykR7IIxsoiWgLJZq8d/5GC4IoWNHdOB3EXrhAmvn2Y/fJFmZTYjggmz4UMvvmHsNZ89TVDOrDvlTc0IG1iSH9u5tcZlaT+UACxl2Z+bF/o+TdjH8k6yNVrrGDfIyhYBycanUFO2octxsKkTXKqhZGKp0YI0MGyK+RARjjMyGh5fmk4KfJ/nOsnLBOIcHwH16x0T6FTT4xPCp28Ss3zKh5YXYO7BgHimw6djLw8WQYDiwGLSLXllMOr4T1I4lNSLJEJFFX9CJBe3q0+shbpNRQExZ265vifDLi/UIromwkyzw41acwJ5YC5d7iGdp+XODdMcAIWq0ssjm4QokWOQ9xiCKkgYsPBcecxosmIf0itIdmZkvViS/V15N6Brh418XgECuCwP+8FE5Fi/M0lwN1fp06yicU0KZ5PVqjQ4+K+uUuo7KxE7/86j7hOL0Fo1pNTqVzHjkl8ahx/f4CBX9ATm73HYF0HaLknjVXWjDfNP0VNaatut5f85rHBwSies/RrilNTGY3JrB1YiWCPsweeFRV0ND8JQAYIkOBTE6LbC2vGvp2WuRhuAUXkpcgNcWFGc5Pl5PYgNzS5TXAoi414fjEAMcaK6W7PtP/LP2GLn+gZBoK4TKW12jaGmMrtEn3M4OKLiN+3crs6d5bfqER7Gk245JcDythGLk7HSlV5Td2gTkxeNLvih0B5yNkzFRvwwaTd6+B644iD3MOFOfjIdAYIGdiL+En2d1HpUJLq02AlPdzKHgA7R78JCNHxYFT2cBvKL7NXvYrJOG5jkt8ZnYFRnAUE45niKPFDdhzVw8uklitDRHk6AgqGWARwJiEXrkF4uXxm+5+Yizz/2G8WVXW5lOTMb4H6VKCJ/p5t3eBDY96jGdEdDV3orxjuZuR4hxszmSWG0DPEASFwcEA6N1L8cO2tgYH+K/8jG99IZnqSdgNQi7Lq4QyKBKeNsXdcBrm+ZqN5/3lHcpuW9+ZRVkmccJK6s8NgHAaPs6jiGFLs1tx8knWlpQ9Mstd2+E6Vt3mQHVMyAe2nYhZbwwydDN2jzh+HtWNrbMS0KtKsfW5UHEWLGBgij9PVeiglfib96C5p2kea1mqqHYSGAOiYl1NUiEUTC4MO9gedgvGTLNd2NjIcGLROuqdOb/nb9P8fNp8f1z6Ei1Hkscf8Q5zi7T1FiuzM5gXSVAh26qw+1RZduHRfmzlPxno9+ABgbb3ebaxM2MaDTMu8g9KGwrAtpr4UpGQOEt+0WXhRW7nCdAahX7osag0kt5UL5AVp2Tdrv/hWJIjeDGdbTUiUomPxgIohif4rzaUysGdm93+ceFM2zr2FblbcVnpn+313CYzDUkyJyUp5uA28FbjS8DLF0iWP/k0doSUUYMsfN3WrWYM8aaWYIIFkP13exOKVesJl8wAX0mzU8m6gd077wl70uWYd3N68mRqO7R7aRq2/PR1mu3TO1g2r/TL+lJKfoFjdkiwWVdpDl/QiBqVSM2hg1pYkXx/CM521GHOIlDrimFtlXkCVHdVebB5pzyxx1etIVnFlyg/Ib52mSZTFX8zdpkk+16RuvhpLBJzkf/bjpngJw2w8k2Gmbp1fPIC9hTvJFana2+HYjnCaqS9h75hxxblcnanv7o/fsvS6IWQgxPTZjSAc3JbEJIbO8iyAh+TySCy7QkiqY3NcFbAiSxWsHGVwaIz8A0K6Q9Y74BSAHhNslfsh1UhGTdmu6p3gY+MpJyrc48+H5Xkts4UyDivMHxdDXw94HzHaAppbONAVtc3FCj2v9RmrSVQad/J4y1Qe09sAsVoLW4XLAHtgSJ6scFNiyQTqe51B48JEy0RVGFiQYXMtF/0eyw0AY1VuMhdp3FKZaMXFNQpllypiS1PJVPdrd35kwJfjaHaplw25Gw8TXLuvM1SjlWMnSaYoo8ZE5/xNoZSZjAIHh2308cfwZc0AOdNnaog0KpkMM8QZ88C6i5Dt5pEZwYN2TmVIl0kpLlOWgvjkH3Le84sYUBN0ZU0q5ktFpaJgvY/lwcLbZq2GAx1rFm1yqr3VVKMf3XnNTmNYHX5x36qvc/Irg4foZfMf1eunSdbNge/D3vOgMlgG2JB0OaiXqLObH8CF+46v26zK97kudMx/iBRpd9FQhrJ4ZAYxlqWEzgZqyn93846OTGd/or9SqS70IsdGOW8vLObcDoC7OkeHgn0tl8cE5wWA5DCmNVooRD2ov34/Hs6NQp/0K+lyRAh5/n4+K+qj2O/xK35BgloO3FppY/mNG8p0YWldVRCcaGwfCl5pBVjty3nD8Bne5slot8WtsxJbEC9TCwpwdvfpoK115RhiR9KO7mIvZmmRVRfnYHbcEufJiIVumlvz5+mh3uTmo3BVt1wvOl6n8y46kTmAaGgWIscgqfBgD6IRaBQCt0LBK17BCdAGPjrOn/ioO0N0/N5WSyn0AbWhoiNAvPwSV0AhI5bC1JzUP3q7c6G4t+9DZrvouZ05mQ4zae0AERNIQPBwdfvuiStuEWM4eb2S4jnrhNoiU9jKNy79DqGcS3xP4hTI1o53AiUctwsK8MJM2Rtt6y9xGHypkY9XsvNq1EtmSeVV36iukhaqBRMNgqOiBTIxld5Qv4bmfVAT1gbEcG6tWimzvYR11UYgn1AJc6vz8t86IKdvKasi34DzrQRp38O39J3D/bH3Y/3KTILmoOxCdTmnbym3Mkmz6eXYEItZoSynHyoS26jhwgoyvN3YwhPtX8WVue01LDhkbyEGg2Ak+ZeRb5RXkfL9WR7gwtgkitDhJlEtW7EJYPh9t7A9oDvmAa9nL8+rVl+9GxdcbFYvkptG15M9N59RNK4Dai4INmkSdGu1tJXQSxhtrq3swJESB2egrd9zbzPA/eR1FHSNVppLl50GtPX/zTHxSojxU2yyV5PjHHdGVhizrU7YK/nUcst/nqZVH4zZk79ST60mkYQ8cOWFAc0Rq3chcmbGkSDcdM3wSQkFdIOcyb1CQS1o1PBlDam9xY0WT8iMPoZIR+rc/sxlW5kSHqC9I4HHFomWBku0aKFO/VcR0lA52hTShO0/dPOx4pVcUDskO3N2LsXsh4jr2vk6LDTjqyeaYpr271iHAS4xRRYDm6wzFlTyJ8jGDu5IG3pKyw8gJMARUcCHmkPLXk5lKsP5GYgOdfMDM0f+FcntB2wpe53v5McJtMTVtVvnAUCCS+IWTSUF+ly+NpTy+2RcDdVkT1/fzTw1IdJ0wp/2SJDu/9cGjj/74vWxGrup9ZVuxq4R7z39OznW4AXikOtj2w7QPWIa4aZK6sr4JQJK9lQHrSc8mjSFttb7PXSukywcw/f6lwBQxE33zQXjq2vf/dz4EVkC1bNqPr7vcqqfKBTU9kyVCOjDXB+ujWw1/iy/vUCJMLU7P+Rd0nPul/UzaOJndGGh4KUzcc23toxEJIYSzOSWfONfweBvkTl49v/AwIqWvmSluraNwNluQq6kjUzFAf+58TzNTt2SLw4yr2llORkGbsz1yPoMKXXV1MJEmXiQ4FYHE1lKI/lYzG9rAbuEsesGfhJDc4rBjD8XfAoj9HWbQwBP+9e159NVwOt6mh/jPj2Wh+RLYS/b4+BzQdA8R5KW1Pe/B9NQaPXCAuwT4BhZyI9jho4hYdjbUFIGq7+QRdPJ9tA/wNTitIW1MH5bjLxA9uCEUH8yMqO5YEz6HuFjfnAVLdNZUU+Aj3PVY/QtTA6QGa+pDI710fvnnddgpezmeY05Q8doZtB+dlgflfusqASWGEpuxU2Kg7pbDtlw/9gePSNSt20mwa/nvP5CmoQOUrKZ6pT26HmH5VT7Tqu9uTLlxM+ROoeYFVjEz93vBBTcB5mca8NiE28f4/EK8yZ/vLLVH351YBuYrYnl6JpDcEdvzrJr07R4RrfhkHYLpaThFM/wbVM5UTGHo8bK4MbPnTQSOeBofErNGMZfrDpwQ1s9JnisOFmTVlYmE/us0FBXlMRBiDmBtwn2MHWLlYQfdqKuvbXwe+8K1oJsBYlmQ/hFbryI0zd3esdcjxVXzQzY/f5JtEzw+9DhS0tFM7Vr79ZTxM/8G2aCpfz6GEagHQK6mc1Lg+b8Lal35XGizMOibrt3K+33VAHztgxlJGk7MfPa4vUr9nIbc0Pc6DDLeAOuHycQnfJqUmu8LW/rNlWY76nvhyKpPPu+K7I+Nz2kbM4UwaQQm4/4WrTKg/r5PXSIc9NYq3NqnM6NqcIHR2vqhqZdJzcUMCN3oZ58nwPKVhRTbU0yA0yTcYDYW/tGBzuq90OQR9H5QCL1U3FDBjZQy0BQxDJLL/rSF+aXjSl460GNixozhvd660dG83JFkY/BBJhwTQYeXXbAr9wpbvo0aMGHSXF/6WOYAez/AVoMHeN1V96IArJ+jyolzPcmKsIqbqGTbJGz+8sTZd0Km5172vJfH7VfjnqKNxMmAHrV/mB7nAuPUp08eaWmLjj/zwzXdks8oTwBIHlA6JsJwO2z3wzez8DRAtW5t1oGQF07tbv9zAPzhnL14TwpikaVKOIppTtF2TtiBDtBUafA58odfyEwfWJT2P++SfLlk7/dAe9KYBmVeMXjZTNtioU0dmh99KF5nqj93qvhoKKtOZpLPAjkAiMWz5ud22YI/2uxNFCXVc3UfLNyWaeVLW/yxWuv00C5DdhPTqU25byqvXgEF/Kd36BHwhFpQmT9NQZ4OgD+GOfiC+0zhzFkJbFQAYwXhRnwEnlHhSDteuU6CznTNGLzJb+Zx3lVi0ZzufzjKqtz3a7uALNpPx1LiRMrgPzY3LzZq/lW2F7GEIChzO4GA97bj2BiaKaiQZFvsSEyAnVbbKh3m17NuzqZxDykhtD23DbP4X/UOy4do5BwTClHi5hBuTj0B4GOwXV0ecV5EhT/p/C58aVPVwsWRb8DIQc8STBMG1B5T+dBkrJmbZawHQkVlTDJ8dZstlyFRMR69m76TMBEe5QrK03yYuVmKijP9Jyd1pMdpGc2xAMLhrTxrkcfUaItQftZCDw8U8zxGqe+Vshn7rcNT+y+GT860IXvo/TFmXO3GFBHy0n0ZbP+7BBB1WZQWd6PRaNm81Nxe0lDYrzqixrY2gXnD3a9VVGg37bYzCQq1G8ZkXExqcZiT2Jft0ZIZUTTXzXxMd6rJ7LKpn9z/qSewzu41asFzoRUT2s5h1RFplvNxi6bM1Y688dInLQzvVbKwZY2FIJiFQZ9hJK7CGYb3SkhZoSfr4QWA5I8YpBw2tTTENtahnaQb1oC7Xt0Pl9QTlYPeTtI+WgOgArFzDEN7wMzimwj2dA24/d+/evpwzTHJ+nib2KzlYwX1C2WgpKNYv9R3FMLIaBznRAjE0xs7lPhihxbkI0rg6nYWGuXYPTJN5uqx0JVNOogbZTN8OCvPZZSL5Qfu5BdSHeTtLXR05r8vZwNtD1GypT/zSjQaV0jLlsPeYenjYnFhBXYzwZwmVt4uFDJlsENufE+y6p2VMzDpYCXSXkW96NvuFlqIukLZ4FSb6xYsuPzm2s8VsrXErcqVxaatKMO2pMXn7W8nPuVtaVY69p+bhSYW4fgQI9nn1kNRwP53bPL2o3z6DkldxAn2Gd1Urhn7WSNu2qh48IrCu6pb3ECXs7cN1vr+rnfI3XA9A4mnoGv7FcoKu+MHywMOyPxCCno9KMWsrDjrN0cUEy6RQAyr9MkwDSSYVPBWglqvDG/7B/vG6DFQMfwPIhHNeVfVo8l7HKFBw0n3UHuidLGOv/SEwyS5f8AAOQRNP5UcRMt8Zyauggps2NsaNVevh+OKRmCd7RMaaPEGXhKQPOq8bkJU7cxaOmdizFOHLx0D0UF788cLXQc8D5UV1fMcwT5iPjxX8xXSBtzouIOiFiXIiER1Q7s7ohRoqRQ3Z6iOQq4cNNNdAOpAt0R8BU4j9wNoDI3dxLg/+LjaK3sDst7y71KWiIcPrNoZISsi8GFOSLnTDL0jGERh81N18wGdP1UfBn8F4NddL6zdeEd5TBlnfBzawr+DrjFe+gXuGxqrLO9UvMav9lqJpzt73C5hqQSXRsJ4eJe/GlPvRvpjO1w+kxgqgnox2fi8qqGeb3k/4HnKiL+a3QoNCNeO1qbuVjP1HcKNupiFL4N4/mi+1UfgLT9U7VJkpXHqMGn1/xLABknyCuBeaNCF+pr+knLwHVWiSNj4hystu3KOMqLi5TBU+jFAVWaFfpGNMn7N4hcbFO2/ZIwjkp67Y6ZgortK6m3iFCNYxNJRU76yY2w/efUqODtLDxsniMbKZrXIPKpVA3ciZJJzQcrJl7RwJeBAVj0v9Vfw7CFY2PIhrIUszOpGd39ZbSxMAEJCK+GPaeK1pcMewWbgI9O5D1U0ERK4QJ27SKtMK27mOH9G2xLahT1YcdPXp/rSoXpexH5KSqFXISecG7ZsBpUET66VhR7egHtyQhq23zfKZsjbIdghIbf7RFF9BQPvorftPkaHYPYH4Ona25LtOcERzwWnLk2ddEyxdlyt+572q/ODRXbp3Sx3cjIYWPT1wiR8k0gYq4TDSVicOLJI6GO5gTC4fLDXwGZi5cl2FuHlYbOu86NLJinJatP0Jr+HSjI6YQqIgIPZlDBHjoUrmWxU2+SKfvfsXG6ffVgxHmBMDN6wf/pskKB+S17OWjLWg7QUlpuTufy58DoWFaRiwDaXtducdukmDYEOotWYuiCf0urFV3i0gxeMsiDcH2t1kp8oU76Z/37gnhbEiKBlrnKGMETOdRJJhHK+UUgwZ9JCxGJrzcI0RM2NfxmI3mBvS7m2AoPSPjcBodg4tKXL9gNV8jnbz05zcSu5Ss02LNrMphGctn2cc8Cu5NMkSzZFi37gDXpBXW9TdIYIUDtZePe43e0HrV4fdfPcG4/kNviyTuWKfbqtoHWuBAVTGlHZwo6T+E+B3iGe62mNPNzWHPqgnB53tna9+aJsfSWTqGEb4x81zcUxbJoVJCUTbA+kXkLIVOz8wEV9MeSLpi4zQLScxXwTHEU/c4XY+obyAW2D5sF/Q6/ATWH+RbnaNfM3nAjf86Erw5ajedhilYXyDB0UzpeD/8aOFiorryITDmWdV+J40sPQohL09rpF995JzYLEzLx8IH8fd2zHvUPW2sXfIEm1uL/CZpsw8K+y30+5O+ozMq4w1t51oRH+8RdSnO6oqNk192wTUqglulEV0zUo0/MqCOeymUpmpVyk65OI73gj5oXbLgJz7wt1DhKziSZQOLBbT5mhn2paE5B9R+vwPdYLvr4BG4ncaCzMXRS0AWFcZFMV3079XZq5GtBk+tKFdi0UEqRd33oruvY12TcPdIkMsJCUop6RjH5kTwWfvgrt0ya0qSOFPgaT9/b3tZgSlGP4cWdUHHjH37kvtQY0DHSVot5TcV9SUSjI9rc6//ewinHAfdgW/zJFb8MdxXXn/Cz6ReQ22EjDBMn+M1KDzpdOt9GYwaVZT+tlsCF4NeMf0P6IDsEotHGXRlqqeljy8YkED+LlN4OvKPpsAtqRuU31vt03VIxnnhmupy0ZWZnUtFNWDDOD3+zam0iO+2lw2jn8YppEGLjZ7Epvp6iReERBoZWyiaWSqTw0cVvOs/+NidcbtTHw/Woh3VR/W7I8i+4Z4jj8Csh996tmAtjrLvVm300HYN4kmGmIhn6MjRhSDkRJhR9InGrl7iImzmDvjpNRh6Qv2E+/fXov15GZeyYtj4MIfvRTl6x6umeDbIRwf09Dd032Ba5m2p6/bZBn/Q3Gfr+7j10fZhNJP3tOnY/a65WTiVCkINcoQu7+PSHt/YEPIyA3swpG3BZNXgfHdHVuBbfp5CwKcIu96PNNrbgu5DKBBjRYw2D+QLDbPCgMB77Q9onsYHd84NDH+zISqB/KbR6udq0XvIRZtVLylEuahcjo5NvVpXO+09Gxsg7A5qDzLNwHU1+Ja/iE6NbJhkdrE1sk0KP8yppaExG5GphJy+gonbuMeLVuViJOrW4b+vbkKpsLdkWdSN644qFLDGD1AFmQ8OEp5P3M03tsYqbJyAt9EoYxb3WkHrMOcw3JCi8oT/j/+B6kbKcC1Ff/XAC7gx0rQE5pF8w4Uiy8GoE8bT3ZpqNDysHasYsAsbxZXNHS5t4yLXora67yRcv5KJVq2Dh/q6qWi25UgvQpJ0w7tq6w+2k9d1VOA6PNrTSI/jrgyn73AUYP3nN2TtN8VQ+io4XdRDYO49BcNMqS8MDX+TbrxxHYNq4zcACloApKnQ/tKsLDGgHVZYt07oSqs6m6saxwJwWRS5Hdnk4wvkpwOZPDL2ONc9xPlCA2ig2qC6iKLdVeF8DDqylyt6SZ8+Mh1/TD6OYewHLJopP+SjIBqz3jNneqxmVaZfT6X395RltvI6O1Uy9R7OeD7AfQQb0Umlh0aCxCvcZ11LS+d5XYfnHppCkhjSHqYEWz5DDuB5Drw7Anf2R/mzcyHsvaspVrNTP26flc/hKWgNGnb8ednJHvlbVeqcPrZS5VkF0TPtbGLx8DTayxluz9n3ctK11oHK7DQgZkKyz7n/+GrjHnseS34FNA7p3kUzmRPGyANesbVN1KlE5dqOmnyfQwabxfIHPkD/FgwAXdZMysNVtHdS3VVnl+hl6mi8F8rfinZNnHccyprSsfW5Z2pydi/qCP4yt5wzfbYG5Zzr2kFufAsyY3FR/Goco0rI9+2bDSdyeZ7DYhPsUbDAVKUV4U3GG+iaGVWpeTaTC4rbDsxs+OM4a3M3vpBdoqvKreCpyO/4/8Abkca9tvoZve1ivLKaVMvm8nHQgZOXSwRGABHS3Za+EbflUtThReXLpBBfLrI3SgfLmI5pU5ERVLN+gHfHRh8EdIboDmriUNVnTGvCnOHByb3u570aR1Y0FS2x/yflWB27CGHqk2gjmGIVeeZ+RH2pr4gHOsgQDKZDRhZtH0xgfRKfh1E+SUGDGmpuV38GzJZLJNbfkYTWXygb4+OlHLov20DtfZ4C77z2T2vv17IZaFfyenDjiKlhRIQnAhVj9dZQqeokq34aW1vPbpmvOs2iFhyegE4EXAutyKoCceOmxeFsTmD0qDkAJQ0EHioWtKGjmu2xWmm25p22urHYGrVxX3OvuI/njLkJc31S2Y/RfnusbwfhGBviBLNR8XF3OWKgkBvA9DjqBcEha1Ilj7uZJLfHt3VuhU/Up7q9vsKAOPK98xTveo0eBX29PJbah6tIad3062orUkOHhQhigUUIDKw/r4Vd9uZMsj37TmT6krcq7/TmL0QA4PI3avyfqThFYSZ84mCNk2Bz1y1Jk//OD3X0Msl1hGs4agQJ9MjbyHhgwPDYbNj0adRHVMo6/ITkH8/knOvBLk7VJrVdTt565ONP7a2sdHeIbU1uZYr1F1VH52f3kY1yi9N1HPLrbmDV5aSQqtcjrBk7NfcJ4j4ibndzd/hjnee0uiG3QbFatOYCsFE2pyJirOHUgR60IjOQ76wDvPakJ5BkCWPJwA5WMcSQZFXeDHdTK1Inw9C9hFCm+SnJ6ZDIw+kjwsHzZS9aZRmAnA6hZ2SeRFP/VhKT0loE2iKVUpQy9oBYUoLGMRUlenkbsvAFb/nuyJMUpvViyuDENwslU1kwa+uAeAyNJ/syxi7K7c2GLjur7/HxHXQZX/MD3oofP08A4z7aR9qit0CcxzgImMDPKOM8F4vCdlww1mJWFsMeAeyBYlsDMZRmkAzl6r+U0vxLMSK+xLLcbrtYHuX+1C+5RATwKzVN44IcofEZY2QBC5HQ6xeailywFLdjurUxaZscNyL/kRQq6oxS10Zusi4CvfYH2AiKdjFcEBVCJy6/4xUGcvMxjuNlIzsbbH7ubg5oSN/5dsIBKgqICmSu3eVpbWVzGi83yzmYt39xKdpzlgwUOTYoIQagIHRNldSAJbYle6IoyfNqT3PUGp7+A9qdEShGE5s9RCBDKfEnCI+wZip1u71ul9w92qQjKWeKeCCVA7+gZCHhbHZr9xiRi/utcoXlbkCW0MtTUT3p0Pf3+QTit2u8q+zGgpXh7SwW2af5RPMf7nVdeAK/bCvXLNBgZnhiE4xxtJV8Apy1kh1nA4t8eDC33zQNNKihyBGKAKwe2mhC8vS1LrI5WX0dU2t7/hLGa80TtGms1javq8lOR1mTXs/TvM4ve+S+mUkZ3J7ZwYwlkI/G4gEPx/64b0jcE52kWwg78bFykU7QJThTUwkvwZ0/ewk02anjPzxexCX1W9fbABb5vCfnHSQRJ64SF33COf5+k7aOkq3wcYdv9cIRUVpiNebKIQ7bEALGxj6SMbW5luhC1DlnSEHgXl6j2/2oUJbwPmzbcNdorAcM10+EXnfn0dU0H8e4oLGkVTtjE+xLMPwvkJDRWkPzCCDDn5c89EWM08qDmY2JadT/hJgkD5fyB4ZvwtB/OLZXsYQ1tjELnrZ/cx7kLwYCtCAyeQdZ9IH4RbC4Ltl7YUwW84EEPbKoVRO619X3JsBnWXlCMfxJKrdqe/SFhOqYJTErxGJezaaZCV0cmSO9ti5dvJE6XIeJE1P9ROq7+GzxBYmUG6YcLEw3Oo0RuP3IzkPDx+eMAsgt0h1vYjaS8PVSyh595gxeHdXPwV9FFc5tBJE4TssThyFt44+5T8ZkYVnfI7W3Pbs9gi4OJwhcbC59BgNRQjrd2jfFvDIVsef4WIYMqkVcfvDClx7LIIwfWSqtddyiKsqPeHhoV/CXDTV2k9NXS2qW/LQrgpC3N8yqi12J6tVGXnkUF6Ce1jnX9R293njXoWgYhPuwtmq2FM9Nx4Z3S6jV6+6ZD91F5xQqii+0Xryp4Kw+Cse08tPE5bz+pUqRht/ZfGh0xPMnVXOEG4UWHC+AWR5+6ERPBWrmvGtwNgePoXigpv7jBeJurb+XHlqTV8YSoFppKt97Z5/EFgHAQvQwO+Kd1iwQnFSHmTNhf4TUx4VxUBAibQ1NEi8HSO8X+qcLOy+h8yJHF+8fVDlcXhg3afsMTs4/AJng1NTHEWxEJJGw97XQnK2L/83PyM7+CHyTnmYUUSpBGQ0j9aRnLVFXqA3OwieBIq2/WeyODEFvTk9b7L0wbYV1BZQoGgAzXWE/M9Vf+STxvAiYb8NqDOtWTw/z5NRzGH9cJTNjimneIeXRoqxKzlVLSR2rpEWHZcMx0jsJhlD4WT6imQ9ta27ERGDdxuO7fWE20qquSU7PwjflCsavd90SFy2i9pzRG0NhXoO1LuHiPlB+OdJM4UjZ4zFiLl46pkGDshHkYiv2C1+ATNicMjIFbLWLfzUcdY6IYA99WSC6XVGg7FK+NJtUJ6Uz0lhtOUc3edpEFuulU+/HxaGDxuhJE+DWQRlKvIj/bktsNj5OkY+/7z0mwv/6r2aRdRWFeS3BiuZ3jL5SbjzfuN1Tl0nkSuKoqZga06yDVhKlmQib9Ma+DR2IPHcm+kGLz9kqzoRf6ioTCmpIaani5SEp1fGpKT5OFQ1jsO3CtpLOqyQbLc/G7VkW+2M6So2xjcjmInh3FBpCtls6pxOBthQz7c8ZtpeiVGwGLgnQQXIFLo03H9UB9bHk1Idwz1nBA+MREvSGbUbGO9SHFZJymNB34dTKXUmRktYMb3QR34edK/vz59zfOegrIsONlp4e7zM2B6RT7oKP59QfXnIepkQzLTKM86wbdDaJLInNtVKDBLCQWTjq5XSHD7EcM1rAL9Uia1yyjj26lz2GcLR1dcoh3HQxwNuU5Dx4R3TZZWPq9W5qRDw2mJKno93HKogmIYG466Ajsn6I84Q25LiYIdhZbXd/Sm3REtwGpPGthgi7wKqfc4/FQOV9mPHWHs8C9CVSA0uhIjM/PoOMj1OtkDesCasE5f6330h7/wMjOnRqWeddA8WNGNFS0im8ZEYLUYCC3JN5eWb1MarIUnXMPfUwSG9idDI7gAurJ5pfTp4TJzxCqQQj5eMPqSAhxIjaFaVmHthRjNCF0LziOqv4mBjPxDJ4jWhZR5PZYbae3x341ZqY9qg/nxg5jcU0wi9yoMtK7YByDdRlxoumCpjgZMG0TYomMonRHxeiHHrffVppkDG0W3rSWJlAuupKNWQoa3OCARRPL4651AdS0DztP+fNpJi2DQxN868r1gyWZn2x8pB76zQRVm8lFb/b9XERHVeRByy6a7bAn/CA1ax30BdkgIPYRFThibJOuIl/Nq6yDFYh9aDxAsNMODedcmORhQ6wxlmBwwpseOtdIrvoGzPY0fkYO7vZkLTulMfifg5Bs99xYMR3MGVsFvvFvGBVt83Ch6n3u5ypnXDCdiCNnFgcnBiWeXxvROOL3YSRlZrTuoW0t1cXvTvWTrr+aV5okQEHqB3QWs8DEbJ6lQgmizU8VdoIYjVDjQD67X8yc6f8kUCCmyHxpyiTosXaCYbW9GrUSrEFp0Rl2sH5MyOZEFVN5aIJ1Zc9x2MZMxdMZkpl2lGUlSQaxNZ6CIaV0pZx5PvKePMnJHfcELLHi53YybrhLjtreUzqxp2eAYZstfDXFvZnt0inv9nYrIXSiP8vruTBVjXApuf1UC5tt7fi06YNrW/sdKSJJwv6T8vcUr3RHEEtTizuqIVaiNbBqtTK+pugQOjiwGdh1gXQpLX8oT7R8cBSkF+rcRLkxWrVUfiyjf9O+B58q4p+uVN8Gq6P1K6e373CMlYTRVWjbP4+Q/sZUJTJ5DcuLli724iAhnCcV87EfLoYB91Ft1b3IbCjwVaUIWORmT/5yIZcs1O9ksCm0dVd6WLqXMG6VlO/lVbXgZiXX7WzX+TnaPhm+KOlcSYErlvnrMnpMQsLxFttUdhxy4KTvL+DW/UsjgqRjDLDy/ELzYe/LeeCJ+UrcyTNPxnqny0L89o3IrlcO5L7Erj8W6rDnzGLS0Khbt+X5n0S1h/5LJorJcq56YGhveusDz2kGldfcRqD1hkscwgHpdFb6RAX9iuZodXoBCbLajZ4EumYmF2xlcBmNfzdQl5gsHXvyTfl8mJ6WLikwG4Ds6pbPv/MgQfgRFT0zcqz6B9jdgwPNcIK3bu14Kphd4j0V11K0TrojLbpgxB8vQXsOMybwXiIHr5fEERW4Wrd17/7ol6/QNHQp2KiFgAEuyVM3/L5yHgFgmJUrRVaKLahfd1i6xXBY+JtI4/a5s9dREJJ5XIBihA8TzQZfuM5hwtIPD2cx+xm5nKt2VMBOBcwFGqRo7Vmm6qlWE8+3sST4GjH4ZgBeCYuK+NePNRr5vNo88bGnY/nwcN5rr7KatiO3sa74B3dHzpc/gmqFnZYZ/1NLKu3THt1Zq5kAiEg1BO75qpPQkZbrSsRgJbGqt8du57VyQPTHezw548EfryQOaCL8X08gk2qrZXdcQf+c8uXrkjg2RUe8M2KYXcWypKzz9okhXL91XsLtkzjbWSQxozOb2FAv0g01BF2U7cyaBFCJkxjGXImVVk33x0aNklUywR5h0HJ9yyYvUWqtFy42VAHIvxjE1zJgFULeFsC8/nGJ5VaeUWXctuCvGsMdtCLoZiUdm3sa8AZB4HNEAed8w4CGrl/MOEdTI85hKFnFZeHAGZUs7sRnm/NcS2vwrnBR16GnM9HvINssCxbMzDDqwsfi75m1bO+Qc5NhIqvs6Pf1SyD4wa4zbFEJqymecPyVYKiIjKNbb5LhjwoqPHuoT1JDqBHoijrD+rzs19lfNOQwR0wQHjjoEEMLhDBrDMPeOtENY9RRRoWVbF1iWoN+alwOPGmeBUXNyL0vbRV7DN53b76z2Se0fM5Qe3Ec8YA3ksK+v6+9oBBVeNWJHqTwoWVxRkkWvfcSeRGZHowl3Huyp/YV47cprFfDbWC7GHYtf1MgOveYbj+jRlzgncjlUixnj9gnvrgMYrqKj7wZ/srKZBXM1Ok9oQM8RN/x1RjGBtOSwJE6FepRm7XT8eaFjzFZCIknaiTQ9HfTwRPRq+c7r0xlS5abL1SaPgaPsDM8/vXzhVDQi6JCGVsJSThD+bdwUUKHrHyHP0X0mfxuAZ8dmcTYeXtItOcDV6o7GxeoLV3qKuhltYvQK4O4Y04zk1rjQ0BIOYWUeOQy0geLm2eTqBYDxjBdEq19CiGobYZjC4fbcfS6lCxI6zS+e2GTfu6kFQ5Rg6fsZGC9vfwbWEPf8+SKNpE7AFF/9vJMe9WOCA6AlpQnSAZJVUgU1MtR3ROibrL6S58Oavl13UUTs38WlUsLNhR2qq39Yn4fvwhU6diS1t0x1tastuMILwaFn7laMnlHJ/2p0ErL+iid7Fj/TbnsbxfXKgzXYRjzmD4b5ZzezLCVa9+xVLbeII8ggAjb7bV6jV19G6MUaWDDx+Hlkts5KIYrgzyjigYcPB7CsbpHJwtl4Mf3Wto0ZMjFt+aicdtSacsFKS5NvGAOuWWlnj8WXIVvKGnCSyUKbzxM58rwI3AT9BZB+nEFy88+IwKCkmzUAbSFTgG8grsw5UqygHVEzOnektu/CGU2YcRUVQm3EtJaYCpIaUNuar3fJQiYNd776o0sz05HIlZmlv1MfvWDZCG1VqPWYuon6wpptu+0WM3yFXk863ArcCDdjLQNPt1IGHY2AXdSml61n9jGC9BQrpeggrbPAuNW+VaI6OnLkE5yvU6y/dl+P697ML7piU8wOHD5/2hiJ/YqiwNlJ5hOFGOstytsqpzh98vs5GJ0qX1UUSsgdBdrrjQWVZsrgBnSmvPy6IRQnG7vNep/tKYVOO6HV9eEGgtE5wMlaWQyD7dv6gDnA9wWz3mOJKECB2HIKXth7FM9C0u7b4m+DqufeBnDbOJ1qzDgNrKH2aVoz1JKymsWR7a/Wl3OCzGscExKkZHWU9GYiZ6B3t4YCKOmOZveLzLZfN3TDJB2AfPMYuyQZul7YaMZwaHn6qfdT6PRBqOB/kXUxYdYJ/ZxqU/9hyjjrApdXpMcRsML7Kt4c1htsaJyOCYzPAxJxMacwKr1fZ+k+ItIP2/FE34UFVouLvnx0D1n2TnFQuu7vM/JOiL8kSykW03pHIGZCDIaS1Gp30WOLzRHold60VVcQEyLe4Ox/LggY+V0XWFHI3zfB1X2Q5DWnyj1yftLcsD6p+IVRcadheRRwbLe/NgQOaHhVbQop1p0Ei2du639ZG4TUp5o9OmLVks7/HFupW0vYZfnCzWRgeT8BtnOaNgb5fZJotbnS1FOJQti3c/BtBJ2iWprO8cl/JEzayCP0ey4XGIuBJk9qZJCTxsa/XjhN9/qoWAZzWD2vhK9luTFn8PyN6w7mb1EEDVl8FY7w8wRoC5nOYuaEO7r8cz3gboG3veFw62THtvzxa2PeKLmiXrBDtkq0jznNejr1e1/ixbyrmjRLq9cQXDB3ASXLQ34LOOTriCuaco9tKUgQph8xtF+LSpMXj1uBYCRyQzcanwkECg0fvxoFj2Se1njqexYFZb4FEk86NAAOaHyLJnWcbo5tb9iVGJnLH1m7MdGB9BxTk03SKiejg8kbz5V15TpyBaVA9kWKRsJnNb3seaDVR28XUWSfVvgx7vR8Ur38FRSvtJOnUALwk+I+ARU1qGMCuU7x8tcgCLk1IrO7BoDD6W8AlIUE3Lz4hCC0z6x+cSDzu4I86UM8YgiRjG//7+U+mCiK5I8f8ar/4PBlaZ14szwHdLL6nvKyp6q969aCqTlub2PEh21AAtpeQdZb1/SyFS08ZMgT6PRk9kvzIjERkNq6QmROKwINdo/bO6iePGYFIYNIY0WBIoOxsVogZpKkS6sNvTi9jnlvOdgIUGWt+CmqnJLZ1i0JIbpABB1u+H23cKJ/omO/EhIKMqEoq8bGfnKZbi3gUoBbJdex0PK3fc9lYIok9xfnR6w+Cl7YbjwS6dJ2EzVw/uwGhhtl6Mc76FlrEIorFKwrJGm6DpNlYP/Tyv13pgXnwcfq+46nmT/1RXIL5W/cZK4/1CqE3YJ8ybGQ2GknTdFSE9zWASSch018/lxeOLseHy17WF2ENlj3M2uM0betbHmv/dKfayQCzsMLFbSO8/krovbWEFoB60RvTMimzPS3miWT1kHXTNwnc/LLSem/rEFZKb/hWGaQqPswU5ajibxkJPoB3IcXP4edfELdLkSCL/lYlqBDurws7Z0QxpvBRg7qi28H+tM44vYaSxSC4gHGUGzSZihA1AzbcqBmFS911ukYewWey8YqE4+8Hjwt9xMcIIE8fucWcHqCTBWaspVPBjq/4+nX/sJozHy8itXv6HU0hMIJGVAMryKWOHs7TVpANlfqqXrnvK/wVSL6fZzZsaUs/k33HKrlHIst67M+EOqK2S+P0fa3WsWoqb67CzrR43oVtWdQ6ZohszVWNWxshIbzGXItXJ8ozGy8HOIl/UYC/7qvjnStHJDfrPVdztLjrOXXRgeLOYYOPNiPySahKiOHYbTjWv/MV9XwWzAN8Dhx6WEzM9RQuRnl/zn/1G9OWBuw51kMmWDyObZU3MYSlhcNVHtcudn1D2FM5gZNP6QHFCFSQUbxwl+p8GFb2rsekDb8oL6fgbAAU3fdRKWPp1kJmnbrtGXd5NDx/5ECrjXPlPUUPTOjLZGkvE3gUneeLeYXUkLl10fbAoDhsi9px0LBU5CFJttRCoHTJaDSbWKhkufOodiaA6ppN4WuOzsXKnIBQ9M5+/YpwOOl/wRbn5fOhnj6jK7vbsPiV+lWZUt54HoBITEVAwLuurQKjIYmWtyD1UgD+7kbcQp4CpOwXzqPD5lIqQUBtXV3OtLEnt7dabqI5+5M4094Kw3aVI0NLj+l/li25Doa4l+pawMhTJ9HNG3B/mBetA1fgj33bKbnzEzML5bAEp8fbCX1OSYhucdc2N889aP4WzAnRm3XnJ3CDF2P1AROCEyGNYd3yNRyrDaMvxI8VAAp9O/UrCZ5OQ0LNKFFuDc3TARESeIb5F9X42sEK8fBOaaC5fZ4lrdagHMxJue8kKQFrlFkNKUA78ufAEeTKKnefqMeAdXMcmnWatGEJtptUZ+6GcvkPJcuq8TWkgzqqjrERoqgzBYcWhGKH4xtcNW4E2oHV4jv5mr4HgLIwPqTQYHvKN6jmDO+z/Sf9jeUZfvglbX34xj9WlxmuHsnJ7D7sdZ9K6NIP/9KeojKybZYhvQOYdHJ2Qiix6wYW5NtphZIgvLSIrFWykiUeyk61ZTlkYS1NSZJynAOZGjif2u1HE1MBCe26cprYjIcPruO0tm87ffHRJ+QF9TIFZu7x8I86lx2hSfTeHXvzc7didelgLXm+BnR+EscfVWzjuFBOpvGFS5/XmCrwINKXgQTYliTnh4DHLXRutVwlbEXhT8NgO1lRnm1xSIsHQD3PaLN4W3TeSOyym460TcQfvr9gB+/Hb1L7xB3zlqKCu6MxIHeCs+CeBnYX5gHF4AuWyGFJNXOlVmzFE5bK38YXVDVfrO6SFSZF209436bWAc8kGO+7nIdI+RDS9A3Kb3br+HsO8QEetNw2PMJULX1RNYsv7syE6EKk3QmyCySJ2CTA99IEmNj8H/Ccm/LUe4kT3GhCRyHiDSfIjRbwgOIWn51WxJNZlVSKDjHcPvRf/ZoI3hDTK82IZMw/+xtHpWdgCxocfnL71PqAyd+mBeiQk59B7KwlOiINZjHGmMxFqtULV8jcn12WEwgw0Qmfc67ON5Bl1gb3wwwo913tH4XdcqVt/WMAmW3Y2Ybhlog0oXK6qMGlw9KGmgOcbcDMUGEk1Waha4mcPMBA6OQ/ruOswKFCqMjs5DLFFr3MbNAB+3sOBGLqWU8I8sBXf+oWeq50ElpT+hzHfvNMmFKN36dNBBHJwwPx59C2Eh7yo+vXZ2fD59UtZYFj9SzDKW+R03fXPKcq5qS7GzaJcbtHvbSs+Gsr1ky+RDBjJMi8uCLfhSCiWB8rpWnNrR56gQW3k72mWCoeLFC4l53x+vbEHbbpYPapa8U38j4xnmQ42EBrY6zVukX9p8XKha4TXdBai9MiZExXoMK0WlYLVhEZ4S3fNrkU9fcZPmv5eBQMw+xR8/jm2VMcegqxuv+8EaSa/Wg6Wcj1gH5EeDhg13SDIid5e8b5fdR9IbEcoMfR0DpDOlt6J1UY4F+ZgPgiXiMKWiMNXR8udecC/SBMXx71uSmxWKQCm2YV+ZVrAiMPo+YPOHO+odCNUm1sd0Rvr7e+n6I5RBUVnI4OZVZhFBTYxcJsgHcte34hAGtBy30xvGMN4SyX+3RoJh+InV4b9AF1Yk7K/MdG2FYpzZSpSm7LpAzsQ+b286vLLUeLuJNb3+M03aNwUXvJx11G3WlG6fS/SgLdEcycLGFoI6Og27bNTKSKqDgpDDgQTc5T2RfmIN6Gi8YzR4i4Ik6r8ABCQhRBnjzoqv32tu4eXc6HjfvWg26mclRltI53zEfPmpd8Yrt9ZrcC4dsy+Bmgnr32xDwKG8K3Vv/czHWMDxI/qAQi0ANtqYk2j/nY4M6cbkoo0PUhq45OOwlXd0ZGe1SQdK03nLyJ4rWOgtzKWFzrN3VDzwsDag/UDb/KlAqCflZI0+SXWMQBJPjuxeOyUoaPfYoJu6n3JgpZHbnt6tATD75HWVwtROqw7a8Qf+bcfk7lvEuADq3ntPEukkS5RBXVTP1mKV8hJIg9HhGloEWYqJZ3z2x91RXfoD87+KcsAOlKj56aaTKAjD0YCp6YzdesDoPIFz93uiHuWdKgPAOFZBBkYiTgycNxoSUqDl0J8bxaUB45k9prR6sLRYCH4o+v1IXnF17KFXf5hqfGjokOQ+kFAjyYOVjOGKqg4PqM+nhXVl2+VpAbwzAPg/NMBizqbymE7SkOdJqXDTostE9nPF2I4c6PNk8950Vbt08STlMzwPExnOmVk9V47T7X7GG0IrXlG8jMEuC44G1ah+lIRcXxySMqTm4EKchWbScbsvaAGW9zQEUQJl6qm/20eu9JQQ5LHkaE1qqW+W+YTh1dzKlTQ9sCAQ0o3ujyDMdjZU+eNCmcu2RZJLeMYTNiGJlqxfjh2GZynwzWLMMm3ccm9JMRm4kWZfEnVh2/jHxSN7NPOvJG47MnNoISW0Cj1fZeO0wsnb3D6iha4L5nz3nqTWlbl6+l6INVmFjmZjLZj14xRq+xazxA2qUEgL1KFx6A4To065TgLiGATPZPRliRofGzFFt6g1vmZWQn8YQTf16uRx71sn+n0UE+voK97Ge2LZ3rDpLxNSla0jlOjb2zOtgaXeyg4qZCLtUSdtFiFzWl0jXScD+gGzlBfTAe8GBaxWcRSpCSfWDAqjPckVOjNTVKIFqimiG5/Xbbu54LGY1K66e/rMQQxTO2mM8cO98kYDRxZpcI2g45Qt0lZ9HHurOxmyLWjA36IDt2qYn+IWpxNpMvsKmBttUfz9qIFaJLartYVSwiy8U76CfkKZuSUDhex+zO2f2gsyoQM0pXbXKEF25pvLA//G7uX/ckFJQ6oigwr0A6gb//HmgyiT840FLCslQ8hjf85CCiSo7Q2KAJd4mBxHLW1lGCgXxp5laefIEUXlvQzW0bjYVmkRYw9tVJecF1XIo2wFN+S5/L6hgi0gVDH9GiJNWy+YQpxK7bF7CWVzOQja/GwciXnv70EYmCV5e45BZFuTKITMUjkHl0/SF1jT7J8ZFgM4f6ecrQPVNoOf76dbdQXyevJpgLH/r+NiDVktKp6FOc/RZHTJvrv7JXj6ibo1cYR/44Vxhi5xI8AyZO1l0JTO9j5yByMvdSzjvQ+uAKlB4JKKvoq6/7l9cDcXJlCTJIcWoIqnugq56bjifmah+enUuMCcGdhIY0285Qz6Ap0lC9WUc99Glf2qR9SrK3A0c50EgZMXgdaYmC+c3+DXuMA2vdJ1HhUX9RYDMnTaOBMCBgJjGdfrTqtMdW3gAJLN3PwFLz6NwE96Oo/iGECvGBhaG5MxN086beiGyeeRbhqxycLKfntn0ojXGMkPyMzMkcl1thZfRoZpqHG0OnLxDCy6DIgRJFccM9EkCKc79HTRYVEP0VNrRj8QOyVSLhevDRuEXuLbTkf+FgT09bIPo7OfWbq4gF51X6sB1owI60h70mrCxs2w7f+WKExVWjI1Rm0I8yFyZKDBgFAqo2c9Md40MWWObJMiobeiMjbXgVgr8gqo7rRT9Y5sqGe69mz/533a/Qt3J26pTTsEb4cgVWWEX0qfcg4wDAle8lICJ55oAjxyE+sfwlu8gukJgLJrtYeHUx5UfJ3MtQCuuZXGxgeUdsWlmZAJRvY+qwqog+NsX3PFq67quRuX0NySURbdmapTEZksIC0c+P/j5jr2buJdJGqt1nQI6oxYgImmAKGqossnEkb1KFmxklhNgWtIaX5N+5sqMA5IzONZF+QIRxGbAaQwzr0v+oX6OOabAC/z0jYDmW4H6Q6gFg7QLzO9N7hPet/5QtOhQ1dV7LBtu6vWv0zRFHz1uAQ+t/Iss1Mtzrexf5l8QI8onA6ppHipunfoo24VdtNOxjDBz6cMEKhkf3v5FZZduCizI96RxKa9O/NtcULYN4eAt7hsPWK3szlN1qZCYCD0tH9H261yIm2eEsNT6B2vzpHF1gvdGMX1nFRK2n12DB4+mISUExycwAFaMO2fE74vKspmfRxMohmjpg/MV74GMI4X0O8i9qVYP2Cs7V5bFQhS3aluzg+sIbRhgUEec+PZTUGwzhNDgmGMyBbQOiGpZxlMXslz799G5FgugaS0GDTWuHS7s9DvOPumdrorBzu3tfQQXGLIcei4zZWdngLiP85LBPP1ZjT3pYMydEr/qr62keAIx+4fn2fsllR4KaleHZjrcijkip/KU6mEkE1sqi0fDQph7m2F/7fSCN9/6Sj8is2TsIr8z5uq1D0HVR9MBuo5BZrB23OusdqpBHL5606lCz22BlWEQHxSBJVQBbW6X+Hru5RGTWbwhZSPiAmhZ5++Oo3COKIHFLTGKb09moDtUFYpeOMxZSLbqAJHqgmJim/2ELgGL2PQmXHmj6YQd2LuHh7tT/gB3C3ZowKXI68TJNrk7GOpnykC8Zfl0M4caliy/OpkvzCcuhpfxC6sIydjPGkhRXC1twaC0FE4QrhXrvNFB9wzB7CcCCOsdtzv4oXs9t8O1IapUh8Et8tlNZzwCmYzBNsHraHNhKRrGUsBznQk19/TP0/EhAIJaEA/x2cC2FjIZPG4ko3e7FH9NxUKYt0WgGRjHIxPqVtA91GcA8YonhwysbH2YTCHUvwRIQHx3sZQrqU445ARZWdtj08svBhkenusfGFKJrx1I8Af5fe5oKg0021i1RpXnwNwjb6f56G/Z0xMjU3A/7Go/37GDyrCQNM0WKsw4shL8+lz5h2mrJRS75Yr8pw4T8cvR6jnkax4CGhtCXM63+xEfd1oWOocqGZjmyAO49/S877WNO6x1kSDXRIKRpSYCv1mYD8dnOqV2BtjRqwol88HU5jRf4mZdXbI6CVHPeTDBFrJgY0ft3iICMKaALusXFxLDp0JXHmXEjdbEOxNWGA4P8l22cT4DeL3HiYI2yPcSQlsJMorjUgWmW2leaHfyOpBlwY4d1ZDykBTPu32g5GvBY2PRpgIKab+tbTaSgAqVHnambfi7yP6MsUnQhCdyDWDNF3CAzPfdMDgascmgFv/IBmOWm9Et0sldz9kWY2wPkEkyrMJLBqjlXTyn51k+B45VnDEAuusR/38w6jn0h1jobXZpTRGmbQlzK9XLnwUCM4smrZWPdAE6KTM6xhXnsV0d96Q85bAux07mZ6ivSIqJIS0UjnvrrI/cD25KfvVP/TMx4vtzvITZbMdFah0dSugt2YXsbeSpW/bOGpkrRQk93nFfik9RyqlmTso6qphaCn9mF8DQUkLO533uLgCZky1VufCMEIUahJI0KD1+klr0BsMdlPo+8pxRTW8y8VzNnUHYVQOcE/XhBb+kQhaCd1Eu0UNJf8GUOmvU7OuBJrHXIdPVN8sMHM8S9Rc5U+OjS3POMgtywoYZWjCz1IJq3nuYtgA0hmxFr2UIWagDjZoE8T9/jwS/WUj3s3NFBJdH1fS3ycVLsXeuTWqO4ZZ6iGEGrNhSsn+X6DOHtmPRosm0X4QTcLbBWmnvpiJ3irItIbSxoghgh49LHMW0i9IPwFdwq7fbPLQFM0Dk1KQR+JaeFKXOinQOllUIsni3+o/p5lvxM8s1OGEDIrE1cS9qfkDSwj6+X/Ku+kjDO6FbhdYhf6kZAiDRyyWli/iTUpSJKuodf7AayOHwjbf8MS+CcuMQMXBDfcS2t5ZXLg7AoXCJUVpnnbqO/k+XV+mWEAQIGvWx1UEmRC2MU+SSJXSoR793K5sZZJLssWsERJ810pj0edDrSrqMnZIbTPbA31b6YZBzS4wBbRC/9WFLrnv5QKFeOn630r4IXyhsgyfRZsq8IdiLDsvwtKeZfbSqCxVgB+vwpPPpyPo0zuPIRB4WK2zuBXV0rJm5jJ31B1ZE/ay08OIq9qGcywXlEedsq0PSogccsxqLl6L/5ZeOMDmYAacIW9a/57OrUt+00uzI5dJJmjRFKxt+2RdAN9s4+Xu4GPdiN5czZtj4WFbg189p3V8qPRAXiVHGXVw8L4bNBCsmGVBhJeqQbIsx8P4qHO0Qm3cyQqmARPmjpnRup9sPRkOw1eYOLApwK7LUY3wCOe0Nf6KIIt73oVy6JdZpuTur9Q117i8RiZh8sPGU/0ehSNpTNp74tZM9LMKDZWuMYsm2s3bBC0Q4RVWkMvGa0E8tJHp5x+sJjxAwWLWy8rdhuSRPhTY0BI057NE0MIdrwJXSxcHKHfzwkAdQObPJTtssmrVtTaSNSomUwCe+A6QdNRqr5Gc8JPR6GX9nLBo8F5QvuCeNGJzc3mrsI0SxWDqPg8sSUbLn9fy2Zpz0P0bcdX/FmS/EsmVClklinvWdM5FYANWs91HXBHMLgQMC27Ke1pQ9naNXEbMslmxWubszYx2FDt6BFWom1YVo+HIVzGSbydApgHNo4oiDe7reGcbR8dHphOjljWYS/ghOdtL2PPgTxigGEoslqgU/nt1GFrxXJOL7ch4zTTud92tqvksrxp4+z4mTz7JLoJeuo8KMsfsq6NCEMiipQjE9NKAFR/vAkmEQVKfHzgojgwZp11p461IitWTpJeAqN8puArEeGlpUJP++cpeIFuFxzXz1OrxyZDO2/f7a8g+mkq/gJVMqQZ0/hjy/TXO6SmSbmpUVqZP4h6uV/w7ehtEiKiIe4M03HVPs9esanw283Ugr73OVLvZ3lvlNMjTQPkZvG4joiYAiPcDNWVhuww1W6+XmbCYV0T0L2yE/ICZo++U52DoNGT6F5RfsQYY2oUFDryAxWqfk0iPkoKPwfG/DTR0JDapHWGW4H56YqXrDaiTvuXm6Le1lEpHSdo0oDzAC887PPnmCc3Q3Y5BoYH5HA7KPKiDWAY/uz9nM0E6FvmSvrwhSi54+/v/6J1vNHmBcBlrlbPfVPEW6Q8fbDzUIBXFGCK0wjh9OXwLE2b4FiTKeBUQL8IcOXcfB6bJjLVkDbsW9lWlJxuHyNGiKTClKU9nw1GL93YrMh0RmE3vAJwHCfW+grPK2otG/ScTYs+7kwpwOfd87jnQ6wTh4+qUzPClUrKJM/TymhgbELjq5pnZMrWXmnPmAdhQFz9hpaBVoVf1u9GBTCLJDiAsk+qFhzS4TWSGzYo+uVA8yS2S39naFLaU9G+UU/5tHMehj/9iUtmy75ZMyIZkclAzHZWDAq8IsxkpXgufsGC/1t1t3gJUWHMxLMmCqFXXKOk/POmhxTrD4BpmKZaV9BboPFYQsNb29RNQaySvcj4h2yVW/puYF39Z6MKhr2yMiZhxM4F9MXVnXjjL1RLVYHrVFeRTMW9KMaJQsvEVro3urXglM4GZ8rMfhROphc5Whk2VZfTIP5Z0CH3EdX/DRcawA1QyYnWNUsJBw+0rBlG4CjFCf5260HFw3mTRAXrhS6JyxM9jqTyvS1vd3B+/48O2XS+ReQVot32EiEGH54456wFkHRcoKNITz/0lM6z8qLmOqiWLz1VWvYKBjpIgxP6oBqH3xhv/JtlmY4eIVPYXd7h+0iAsCJ3FUiJWqH32T4ZgE/InJhBjPgRaOfYytd6FeLtvdtk6iqH3iUKr0r96flVzlG3ZwBBQGQ1v0nl2jBiv6jKQVsdnu8CSS18OH9i32JfgATbGFxiBoj4aV5gRtHQlStKtr3L3MtNv5D1Z3gozBHgr4iinmz3ndZezzeVshoM0AiW5D8nKs95I6cN/RJlRiFMJJB0IrUrzZ4kA76+BXf/PqcRK+aNfVb1i0gyBmexn12dYJzvLMQjimf6MpPU+py3JydX4yvxOuPIXE/JWNKS0709dIPb7+GAJdlAbNMZtM6uth2q2b1zGcqsxQCLVlm5RslUyZ+dT7FXsjOd4F6B0m4pZYFsvggi6Wyi6oGzj+W5EfV6CcSfAfABtaH0u6EZJbW38cTABbcf9Q7pZPaukfGuJ4r63Ga6v4ejEDcBhenbwpEYWkCw10T1uroL88aXmlifpz3WsjSJZx6/wMEHPdAWuj2A3q53+ODxTitbywcKm5JBlrEfAHVtPz1tuwPbTxC2jktBjplFxA1+ZqRPkHtodPuSuOQ7F/8WOahQhG183qCGscAqXXxy/d/7ELOAsXMv98GXzBfQv5DXzWDrtcID/hmCcxtdrvle4EuR4teeBFSM36c+kwZgoDtWiDAW5tJ2E4MWxI9L5VrwCD6VrF9HssnH30ZvRbgBpotXyiYOCC5OgO41bvvuZIPo0fSvDPuqHbY2ghVrlgqGm7tohJIoVj6O/U6cLok+GYjCBZn0iKEqj72bAgl/d2l3YEPvnCbIvdp25625vngMspD1f6lW4PuVNqfdu/LkBbs3dcvWayu7KIdFxUyPsXkvPU+eMcdew59GJn5ykM4EzWKR5BqSQM1vHh3BhwL5nXQcRfTcxuVKyWTz/ys7FqVOYYQvryqo4kf4X7KSq3e3J1XQ34nXvZ7GoCV55P7P6uaZGdrGQubslYEIo/W3X0uiemxK3MLBFjWQyqZ7fJ9uUJjjmdhcfwXUs3bvWcSeZXN2t6b0Kay/t20W3HdRulpzkeB0Yu68vJ95JJeGuZUaQ1OPZPlvje+mdrJsymbls3GPLkK8I9L0DKfqlL1BlE0lsG4o/bsRWOD1OmFcNHpnxjwB72RsHyZxLwfDb7YaN62X5pC/FDithKRQW0YaQdG54BA4z5qWyLZ0x+1B9578M35G0yFBrdlWghiG8UADFVki9BV9tvnO3mzbmsKIAJ+hKhaw+D/guZxUjAkJJkM93N36ldX7A2S3OPT22WD1zl9M274W5p+gXZkzpxLHsn5whiQwNJPrppSzKS8lHFgebLCqnMVZ2qco/IsPeoybU32BSVC/RVbnDJk4crmw1Kt/ov6azcQkszPJTQBGAyH5bvVqBFenoafelpEhmwDctHmEUAyffK+kSArkEmeg9nRE39/zRMfVR9akVgN73BlKOt+zV5ZloEPfGjDQsiqdnnW+8qwz2UKmMelx7KHhRls7399Y+B4KGR++bFzd0MlXNJnnbAPG842/kUaa97Ct37Q3kltXCxj8tEA39pdgUNFFE9/xkXOr1U53qU1XY02ihcNZ1KDpAfbZNgDRT4Lqio+QDevMUNFrTifyB51Dau8w+sAO+M0kTTIdkWvumuKu2+fghXe35QoG+fc8FoTOFB4ja4MUk+OEveogQta9icrc/N0DwS3bKGzNVcYzDWmIdPaEByWnEBA3I5D0A3kA63E68o9JNdwH/aZxQ8T3oLqLmcmmyTHsb0h9D5aJcIRWCixIw00i/FR04ecFSYGyibOEo8J6QJts4MZ99uaN/+GuQ4COt+OAigC/xzVEPXZn0xop6RCh/R5OvBEmIl7AXyOjO/VY/uBcqeR9TjulGyFqoxwCveT9vClHxxCAOHWUNCsSW3oHgvBhborXLgiMCCueajS4qDUl/yaO2jfr0ygqVxaqa+wbQ0sliziR7eRoq91q2KYeaCthPml9TtezGCTglzlgwgXChs/l8bpljz7wHti3/WyPqjySNJy8dVJ0+OSnkl3JC1+ru7upVOCD0bC8OtzyljLt62zsehwAUShGmmqHsI2DP7FJkx3kBAsH1zRDcqOXLHmRxXrpSVNDL9orI7QUR+YQiSZISh8jaUssUSwYw2aa765drWgwOJak+sItbrIeNqZsKgqiN7PmE3YF+pgcbin5q7Z4QXNv2It16ap9/7PL7qnLslXvL+k61siYPV5A4yavWQYB6fUtfisaqR02F+OD8rv/9RbTpXjdL4fIwX9mXzd3BcrOam/J9ht4UURldtGFUXfwe4Kc18MYFB0ix11pZXXDO+3Gm8wNafKN+wdvOI3j5fBsiJlWbqBzvOwYXPhi0l5IwpBjpTBLA2V2xNQltJ5f66vfaLLaiPnb/dZ1FRduLvFx4QoIt/OY65gZxuOt0x0Yq0yVvNq8dDal98/kfLD0L+vk/xUjuG9Q9aAjC6Icore6xQbkewmgIbkDwt8mAixycw8BOXcRUEYv1VGAy9yFZrNR44BTrFWAe/BdEqAp43xY4z51DXyIU+2g8Hve92TXwvf71HI7fI5cNaMZ6ed8hJj0UXFMdeJiWmEijf5kRWl6D3tvNCB2ZjHR2YY7VqiBW09tBGnXrnTCJX6T4W5bawu0WM6qCuf+iU7h4/9u2pOM0644bBo1f+2rkLKK8veNKwgTlzlgHb4oXXf4j3UiGkNBUMRni8r2WbEy/n2Etg3a4tpNaQCeS7HTOpl1l7zti5vHv0jLDSEZJIe1YjgjZQ8WcvY9TUB+9wsV5lFvglky5z1lwXAdreBsQnUvyvkfy3InpgWW45KWM3uMPg6ObcZdwm3kRqp/h/YQ2tvbFQofld/wpXPnyhZuLWqXU/sULSpEfI5Sdrf478+0ahxTYg/pQjDDDyN5V5qUJlh+qhfodLByK52JjvfnHZOb1FeRwq9AWd5r3rb1gEozsXTu4fWV3mBE7pHCr9mFIEoKZORuKUSIwTFrAWQB8wkH0jParSxB0DPJSTA9Xxxl1jWyP1OuPrJBPuPm0fWAov+E62qK/e+p+0xHTcx1SRt5BY/ceMpZIlDX2hvxjjli2+/N8yZBu4iByWtOvk1Dc6yuC7jw/Fdxxbs2TdvcWprsVsHgZW2KLcdK3znSXcapURvKOthLLBmpUufvJ49dz1UXR1QVX87axJ/lV2yfoDHrTQF9spMeCjY36cEZb52X7P8QAgRfzSAycKoUjw9OKKedPncYW91nXEIox/nzHwOkw8+Bxz2dlM0NGlz4v0r5oZn+d1SElTh2zaRejU+hDMM/ka5juJb5ok0ptgL14qfBMjGidSM4Sb3wiv4q+QAKanwhnVGoWsZ/xIvckUIzcFT1DWtWKASD1W1aF3cmjneE4Zwe8pfwiq7lAEL+NAJD+KCcf+9fthNgqGTrLkZCZr7Btk24kCzt9OQN7jUw3Gau6cU414HO1sWTkFCHTOQ9vufaPGdlOx7ZaryfdYpOW7Isx11Z9z4XFe7zzhRJiem6YzeogwLNoXtBwU++tgbUZzUT67TSVdSnbtSDEd0kcES6AfFKkn9uZMc3JbyhbQfoCq0k1ay92/yIHP/Q/ZB9vwwr1hSHyyJy2OneLVcVry+hs/Dcp4NxqGK1xOoyYiSJArBU2YZFqJSDT5NiqiloywGaeiAYtr1s33lOJTdCTSphYsDbcKZz3nfrJtRRtKlMFK7FMMOK6x6kvWW9v5wxVFJXM8wU8z0kxIxi+2azVWztKHoMf8v3ti7kbRtNTga4fpUkaGO5c9lQ8A38FI/57pirXDZvGUjR1E5YSU5M3zE5ZG9XVURjuX4ckvRDpdmeC1Kf4oXPw2hQmGohEoD6GoG/i6ioG25lPLEzKmjc2kC6xmZ2cXkEXAfjrYh+WCuSW4WNKEivo7Hz4d/TPBBYhXMiYZ8hId4MPsCBmE5zAXtYoU5wqwIJ0aJR9Y5IZSwjC1AVO3KxWk7oR4rJ5fj4SM8YEt4l77KbhuoNctDLvW1c1bHkTjhQiqM1aGW82J7d+ejB6Qirr0ZW9tnmJtKMxNUoRU5s2FJ7F2aXk/VeSy8OFA1YKAdRxyppEb+nPjnSGQa0HZFOf+ANhoJogDCQM7y/rG7sW7vcAL4cLWZhvyTDQtiYmrSIAil9TruEFefcM7J60d70d3sd2dnZC855LRG2A3iL3S2zoG//TTTZBEnAQV7G1Kx3pxeUWx8AtL+eqz/vrSWeY5U1rmj6PZLcxbxGqDEXvJnbRY50s1lb9bcmz1ifMIzh4nn4q0F5GrSLHXdTBDMIOG2RP1uuqnuzJG6Fn70dhoKRFjciozLYNVbM390rRkllep12zwahDyjhS66vmEFG+zmEZGSn1//HXoDbZAbNDwUZhuTVvZB0TJc5tq8PuXh8K5a1MiohZPpOsWXXRh/+/UGs/kOw6z5h8EPT43jr/DUIWGzfGFxrBVYS6C9fdSzKoWk1wv/plqjtF+4qXs4h0thB2QW87Ps2gN3XCCl3BTXZXoGkZHcB/5+QpkTFqpMchlcbsBqFxrw4I9ucNRyz9keVvjftiEhESH58WTjj8UjZBXdtEGN7wcxxDcIUM2aJN3jW/Kd+eWd1KFyLDIDJX5S1NP+TQQs+hdK+cOnvnWGp3baW8xAXViiXKSz2MJc2JNrDdkIvbxYlra0hkNX3bS58B6DRWcij92kLZUt+hXhQzv+W1VjVUimnmFYXaCVzC4zhuQZ2uCCGzX6pJCOn/U6+MvEQBrt7ciMuXKZKe4W0u+PJBQFVVibKVOiHMMgy+rQPEqTSGcdnYpVadr5+21zL2Y989nMMcnY0ZFAIpiIr8b8H0NMUFzm7bQkiUSm3j/vCbr1Q3b0WzJrY5lzR6C1LP+J8LLw5WUajCUqQGG8lAERfF7WxVt7broKHzAeGGvb5LnFI2U1VZMS8BxHCjQ3EKqmWoyic2snpAiI8yqQqiexy/rVlkg0ASmRPJm3Su5MHu/aWDwP1uyWHPRJJRRYxoPd7HfkTWMkQA+AKJWU6mmqw2XT0pEd+xPphoXqcDmxehojeJSRxq68dsSEngIJZc7XUQW42T0prY9/1i8OBZGXn27bqeIwccyhbrZQjuLqSHMLyVQy1zg2F8uxunD94DPs6d1V862oALn/U03S7FOFZXwbgGSf+i3pMAGoumNS9nzonmnrO7oUXL+qYO94b9MUV6kcr5puR/3rPGxKkgVvSzNBGusqomdltlcUp8KfaqxJkc5bQO1MLAPp18WeaWxA0m7vjMMUTJA0SLR1oHrYSSa8sUqTpdvZsxx83bKmzPMTco5HTKKGNVVSKAD3sgOInGb1NM8WLZxRjivbsdFChNWMTt3DKfrELI9RwRu0oeXX1Fq8NBFXfEu9sFI9gzPbQzkHm3O8xodLEX8MMVdTsVJhCgUljBKh/nciF5M6oOhANMwP+tO4jz+5Ns2VGnZvdigEKD29ps8nPj61hcBsWG3F+iKOQbIYMqiVIlM2NOHGSy7+6elXtTsomXax68a8zZx5n/ubrhXpfSkTviYfVOJp829aEgZ9vMMsSqT7PvcBXdQTpqlVfHkYbqxp4uZY9dG5Zo7QICAnrQwEqJDAgTLQvwfveUv1IuThiS8v6G/HqRa/lmq7OYr5cxAVqL1IbD7bDWAj78Htj1nlINXLKGuhP8aEvMNPl2jQhOugBsZqCOrBtoJjitrLZUDk1dZDjoYRQ7wisAlBONA4Y0V2fBJtqyt+v86Pj/60ktLnM7XQ3ACmfrt2j/GEJmZoN8IefO1avfOeD4aqujxV+i3dTYYd9zu14SQrsISAHhyhHIpyz6GdpWqJbTn6THbQ74GZfIrjO6IZiJ03sJG3TpGcQ1V1zeC3RL6mbi5LtrOzL60X+h/UzxeVOE8Z6ZoQxmGmQzGfx/yrWZUgo9zGa6iaSDqVW5Qm3ipXmKkqxFZiFQrzDTqYbFgro8csxJSnaurbHFgMymI5+5SDcisVWI+6hoSgHS6oaUFOapcDANpFDZ6gHbneUV6SzUwxUrNHMpxxVz5jgNetX2RL2q1r1SoIg3cYLnGw7G9zw81Dz26ewpRVrC1BxPVUMTJLH+cSnwoKwMTT2mqncyYNH8TfyMY8pLfvX0Oaz4Wbxcsug6B1mVhKm8F6R+C+vFs3NwADEmVsQiwAHYN2pjAwbmfJzUg1WFP40O4ZUHO57O0++FRBYJFonkXCoTCr65r4SKpuI0d7XLHJVz6qBs33Xfj1M7z6uxkqdyRtdM7DrRW+IoCOgq4/BHEXtapaDHNNk+pqbDOuFUsMYU+YuFaGaJchC1205GuVshyP08R/5OONTccgsCgcxPIngETwiDmcs5U1LalGjW0D3yH8aQIZ4gpNCIFO2lQp7xToKUO0TU0TmegXT7LW4VWz/Shi0M+z2fbBWx4h1MiVt/bTeyitOAXtCtg0RRw+qVxlW09FvI84lViK3l/EZ6aj8QVbbKcmb1ZIDpOpUZC3X2hL7V4KVU8audqsfRcqcajzpqCPwlGaljq2KS67P7dTg6cRFZanAyqoTyd8YVc42d1zxShrtxExTyq+wFYy7v7d+U4RdOkE6B3NszBkT/ocllvKd56k5z6OMEi8KuoUUjO1ij00P53UyqaHb/qrKKVyrCa1rxRtDlcVyjXfCnyYMR/DJzRF9/FQGLOsnmx6/NNi2rzwnbjwvPBSU50+CTHzXeCmRYr7mZOlx+vE/q1dmk6bDVGUnUx6SGbEfa60vMzMTjveAu5gOsaTT7daM7v3N0IOauZhiUHQAlx8lOfnh/Lua8DS9G+vV4Oke5dXzrtHtaWEMBTX+MkqDtGAkadKlUwbW1Czjqe/9e6zsTnORondqLAb3/pLlSBBxgu+NiWgNKoY4i1kvJtrG1o2ZdAPPwaw8gNQ81Z/MHJa/T8V6vF+eWl2YoymLYNF2r7YBnSRlK/7D4f73WkAoBYG7XabQaasVcBqxrZvHrgPl2UH/lvex28wASWfAUaSdFSBL/MOwRt9iZhxvboGEaIvg/DuXZxBqKJpnZb30ANQOEeG9PVc1t1OpWQ3Gr7Zabryzkj2yhTeHLF4P2PfPMCZ95drLd/MwHpukw/xecuMtOyph8kMRyBpzZAO+g68h8LaeKcjht2uc8EML5tIhrgMvXD5AvKjRgRkaNVP/bVJMnEyWcq57WQwTwjtChNFNNQZZKuPsGsNgy3FQaxyJZRfYxSNrfdQ25iTs5/XLoBxz1qFCX88iZYkR8iZ4usjibP7uk9RY7xXhdC+4Q9JYDQxHOd94gg4k+znSdMaVZS2yoXXdtPDUGu16TXtFb31uEHc0UqJwavA/G8Lwbp5s9jp05VaxXQ5yMmuodUgQZLglJgZvqeRrAW/+VGtXnr9KKBU9pfwfJGQXjHIRGv+HDImSA3phoVwLYuPwUmSB9Z1Ia9d9MJBkqLA+q8UaplpuChm31cFg67Oc5pXYuS2UJFS6ne3pni4IdobRIFYGxBVNFJrf3jfCkZoDHFw2JyZP6XKuor90FMMc3eDZjAMfAg7/6xI1Ji5HJMxc/uJgnLjjl3H/rXs6lbtMjXgVKxO0WEgUgVNfExZ5XkdRPXI5Xhiuztb2sPwycwUWoQ4JdRh6B86xTv7OxkpBt2HJd1D9fwDlj8SVkyiAnlNHMBbbpix08TFjteobQl/Mba9dCkNi9st5KMwqLynfiNAbY0fklaQtZ9fl4xa8jK1yw31+zwf5+rwDxRn29boweyTdTgUC/YLxZs1L+/FTmryDm1aqDgQPy9Y/JVL0SpWs8JPEAAvmL96hXg/YqufHLdAMvdIMY9lGE0xEyOMqPwLHFbCqpdz6ZKUHAuDCF8M1OkTReLKhMAKNK4FaKgFF/AmG2pM6r2rHV6saTunDpJQtOc6c+8rC569AOUPhHhtowaPrxen7tJR+YylpDfzHM4zuny13qNCU0+hagSFKF6sssgI9Rf71Zp3iTNcaIzLDngAwSJuS4FLmD2H8lMZf9yWa0xRUrADWGv7l5ORb5nGeGKQPiQ1hpyrb1wzmk8o+F1BIUMX3zb1sZh1fkeMHY1T8+KY77l1d4ZrDYbVKJ+FXOAVSXOrLHH/DT02r7c6/2KS7/du4mMpzZQiT/hkbqSw2kvLaaCJASOSMNCsmFZLqHaGSNQBk5ggOUCmqNFGWI3B1c5aLCQM3zNsCvGHRPIaeLZ+DOSlSkqndiYcfjIC1hy74mbPUHl16hXcjdxQtMkXd5fkCPqqIbNOTjJmW3a5muyzRM5IlY4FWuiPkmh8JxgI5zD2pT7gDtePG89/N82bxxEjoMGa1HMa6m5kGeNgNwET9cfVs7jBYunNWdCfMHxujr/OLv04BVGifOiZySAOPX3ttec2siyF9P7ivJfjgoR4Mn43GXbsnHZXQl6pGRJYT86Fj0uyRTj0oLFtaadzRnCf73DIT/0on+AT5mRGn+RUaK/l0AgVk06eVNh1ccRCVgjf/c2NyASrcTdPGP8UnMdL+dSfl+zUBhiEJz5fGyEkv8RT5nWw9uqhmcXiNrd8o3fEL3Q+WA6zTpam2/VoGqGL1K4ylCZeBhVmzEK+AHPtX+h2OBseTShid/vdmv1U7qriSRdh8lLly9ER1iO3XMdJmJohWvDHZoP5/eF+xhfxC/sghmJCPIt8NxTwvm/Z8B+X/syjZZlYPiuvjAJqW6CUdtutxQPg6d7doijszuVRRl6co4pIoDvKCHxCiSqOHgrd7BxKGyOR2PlYg9pCW8Iu92MFNA9n/YYdrOlysWhPYezk4mMWavqaSdvbOIEZxon7LW1u2dtE4XOtQwBaTqpSQb2bVxu/JTcri9Etkx+rqr5VrHLOGdEL5D/MI/DLm3rtYl9BP4p2KLyBdrqqhKQVrEBWU1sGkur8fzrk6OWcKsEMoTiE9vLVXEVTeJWD4QRj2wa8O/vSfAcKehYu1tNAwudV2EdWJ7S0SVNeo7Yts9vpZE8LNn6ZcrunzvjjXfAP+Qjqb7FZ+qn+glOWD5w6y06tiUDyrX+to4I/3HgcIbc4qY2IThrlO0cirQ77LM1Puvn9cuqH3IVAdYQUtPjShZfxiqHwTScM0FW27X+RJwtOMmPj+Rxmcm+Zlp29Wqd9ng8J8kdkqJgFsNkLXT/kVUJazVnUXZDQrkN4+9lbnHTH34eJ1uPou8z+zRKVeIhPzuoCZ8apDfq9Ut8NaoYVijB7wUdcQAon+riDh3qZUcxKxT4VQpnIeT61z6h0gsS/NH2x71LDu8zMNJa3yFJDURjh3tD1/dRv1T0hczTAJodQ0qTGIucUJxO1hOfYNbCkOcoPyoie8Rx48s1JFtWFO6x2VnbOW/WcJnVDhph06odhJ7D4Nu1PgH0K/uv8zYq0aoHgfZyOAAUWyLf1B7haNOjDmOdqcXhrTXkiDjI4s1+kRpzaZk8ffMoTU1/R2gQV/YQ34YMpN3794zkFscdwKpJlCkzzjIMVknjDe9GGxNFyDpcPNzriT9+9Eu8T4CbsN/D4aExqDr+DxI8Mcm5fERvJxiPhFEZ32FyFyZLrhxDLh4YbBBXKtGgbjwms7YPEyWcUkrdxdrw3iBJdhryTkpSKsJtGhuucoprsabEFZepTkURVjXwyNFSLGqULdLlZzgDy8cWkdHR5qB3m5uZOW/thpfgnmcYTZjylMNZqjC/npKSbQrSOxRmkr3HdMZl03C0riiNpR8sTndUxPScn97B7sKfULyTX4vgegDttpK88CCiM+THA2Va5vSTUdH9DtZAb6XcQadVf270X4mgEkNht4hPS3WEC/luvccWXPM0ZZyw+mAKItPZ8/MFoKulfJ7UGZScH1LGXYl44iMKuKDdG0i/9CY0XOE4GnwTVI3NWOzZHgNwb7NSjp0xzBxOFqWKTydcwq+/9B+4ET8ZiysJG5UgH8p6VyzrHi2wqo37LN+SarnxRMzzv3HUJxwEXHA41zsCTReRFtRwyu7zE7s/ANW/OVD2kX5GtYKodRpwtEmMyngFrSa/iilLhc7oi8EZLQIHF/mI25Wy0tdvFAThuhroJhJ7mCdao7X+OeYraj41kA48wfj0Z159kBNXfkbHGVizIH/SEU1FPMN8FGg4stYqDDgQugsynq7QZmXaP/PuFx/piRg4k3ZVQpvSMzSmSc0sLAQMlAsoZjmXcd+t0fNdYfcnpOoyFVn4MkgA3QlX6DuXenHTEMG47iKFbGX17k1Zim/6U3n9VzAJCKFfRQviTBPf9GNmaGQtxeoymOM3sDHpKiyvzZz4cBRfTq5Kpr+Qe/KW4WisvcuBPudH6mVgzpUbjBS9NwzyFdMSx0j/CvnQ/usVPDaWwGZAJf8hwxT3ce+o8KJf+K0LkDBhIqmyE6MSn8mUgZsgIsgWhqJXr7hwLcbcZSo1QtBxaRbSdmw+TDs6AR78wcTaNTNlRAJNDh4zCo3W9VizqcImSvMH/rxN7GZT7wW0vUi0gHJAkAtGUZ3vKzevFRwzVxD+R0NPSmzxtW/XE9xX4bAH6ikAMayb2atFCTQtZ23jR2xB8guq/OnH4Dn2s1SUx0C/ij6q0QVALW6y7Huwcul5ooUpiN2PR1koxLbTMvo/byqezy2M5YjpjuOB0xyAhCPGcTSSk8Zf0TO8J6wMBghqia1t3vs22aAPF34hWCUknJc5CoBFg3jnJMp0Vk9nWAKq0lR7hmPlOS+eT+BA+CKZehyZXj/WOdeHolrVR1oKs0sv+b5fs4UN+rT7SgEZO/cYvL6GMLHe8Qu2wLpQ3+QQARmBHRguYQbqoafAagnuel7zVlilQ+fZKY63PjfGBkFn+tLs0X/FXZHzfYXQypUMrOuUGNzeKpULOeXZfp4hT/e+gcduQurmt0TcKNg2fAaG0mJmQZa9NVXL/wsWUkL/AlWkZCID1ko6QzqPLhVG/1qHcCsRaZqHhnaa9t/94aFL5DCp1GT7hawTk570XrjEpBYLBkrisMGDpVgUE6Pto5/X13/oMiggItPuH82UExFmX0+RuHMo91EL2hbfjDqw2dHG5NDMF5g7Wt8sUysgKtUT+an26qWi8FWRSKUMfJL5M8tSDY4FOs7OmjAnPrCxEzlXRdH8KQSiYw0/lNoLwf0HJ43GjCIzCeqbkRJhgCqHzThTTqhpKR4zGagVLoyz93PD05USo2IJ0uJyyt292P3TxaPLDqrvAi0tEuJHt4pseKOwqyVJbrmpVNLySbLD4PtQpNK+uN5RUMpmsTClhT8+hmyMznqVi7c6bq766GPGttw/PB1RNXaj1qpDXNfk1yC8gVKSowW2uIEOhxtV1PtUiW4tlmoDCWWEzDfb3GMkE2EO97J2qkD/Wx5IA7RyDx+06lVqKXdRWFswlAX5hY3xDjSy9RJjMNtNGPzWqsCXgPYVkhGxNwgDyKmdxLyhg5NU3RO6FH8/y9CzqDJJtnfXTTdDrwhwvy9ix47VDBvATCWT+9b9OH1WkQcZ/PH5g91xtKaAOBjJeFlKr69ysQprRnYh4OZREksGMbgN3S0aStSBGFISIiqmdLwwS+pVYefp3pgTLR8ceX6RCD2SEJo6HA+02dpRbSMxBnxIH/bX2lykn1WXvQSGoKYr1IuVn6fkh8ZSbzG4p04TYdjJckHH6n7LsJd7l7rkpkIjme+LTyTCKg3Z41CniJV8SQecxInBTMQzR5bg+C6gkCQq/Y0DdsD55OVNDPrLhDyAH0QjfkuvK77VhwsfxEKtDLlZnWgnTiLF6k4RJriC0KrYfyNf8KHjl1VDvduX4FDx41OuvtR+ovx+iqMLrExp4VO5SEv6hAYllxeLIQ01mX4vn3DNaig1oLR0DOpyOyfa86zurWTJnvVgelJMotQeClJlWuGAvkgecii3pMbcbivO7fhU8A3hR5VwB+hvvTC4SGahMjnHMpynL5MPB++vZBStboRqbGMA68ZZRuP+08pHIaGzlF1b6/aakD68TUCSFnUoHNqxINd4W0Y/4BjGvt4jyQGWIXMePNvG7HnrkfkPpb0ZFKKBAUQCIjRXQ+VgyEb47Uq/GlSnc20FvBHkKHire9wG6nsb1QI7uSuPREFrmjQaWbYRfofaQ8crl+N1OSEVBfTswXUr5oQfNATdzvsYSj7+72fXkH8g7bFdOg1T9R1nQ9+StgCMCPUWtTfMdSJ5xZhIYOC0KU4YHy7SIHx4El9guLmlChtJ1dknOfLEvz80a5kb/SwsgJiE4a6oP9cw9x5gAjVKm7jAJuWMN2wzYqrOIOF4AxI5q/tA1OIACDTqbeyaranKSob0M1/ScLcfBF9GMrDWU+/AklLu8m8MFxTWtZuHUHvCxV0OPTUpvgXr+Ub68/NKfAOeYq+AinYvy5jUn3t2QxrzFV6shw4ZHlzyDdGGbHYcYUumZD17vEC8sKmFucgNjYpKN7gDT8NBpcIqk16j0Y3tgfT3ngwiufGNsLJ0HOkxx8ZOnPEnGWzsRD1iVHerGqE3K8abVp82IK6W/dL5wHe862P7CiLOvEzXyk+65jJkjJ6kM9fr6s58zxM3iY5Ur2Km/RctiRNP3x4FkNTRjhYwCmugYS2APGmM81fKmPEY98Abut+41LQ53UTLbNUQp9lEx47xC86yEkF3ZORfcF1W+iQsholsF/+vDnYofi+IXTbaEk+IsdnGpv5AIbt7r4PMUSO2aNvBnvE3lwZLNFGOiDu4cmvw71pHSkvF6o2v5ttzJs67WgqDl9pq1WRhoPgIKDto+FYf0z9Hnzvsvs/E7cPeBE5+ApyO86nLjo8vq1aEsmK4hhKms3GZh9oK9V1UvtUUJD9ZF7gazj51FXcmcdpqaYT+rf+UlD7VylI2HqTwK2OJsARED6S7PXmyBLX8ofjgnTx1n3TfqPjJ3WVuu3zG2TiOWnh8QXWOKPAYNMtXkKeYeD0hZZsImmnyDUrpwVH+8ManuchJlIwJKko2bfRvZbL4A6ivV9w3rPXn9dPlaswZqv3YViYURdBOSLmHkbyWLZvkU6gh5P7mDsEm1NmElR+4EXOEqC9aSQdS0ixq+i2PGboXJt4u7rSiDislnPV2kNBYCPggSPhWHWlxsbKyiLiHkgB5AaIMLyRrYMTaTuyzpPYfifC5ksL2EwMFHYW+ztn/AUMIMFfbdLwimUa+A+YP8blkWIp0Z+uoiirUQaXtR18/P8uSGdiNc6f18ImoEBtJ2MuNHOsuz05jOGqg/v8q1nvMCf7qGGo888XTE5mH7KlMc2Pg1UIjWnTwEv2DrXH3NKihDrka9y4soItF2C5AKuzsFzK9XH0B1I6KuS+PtoyNDBq4yXAf3fdcnHxC0+eIdaC2FwcTSQq0xp3C5hbkmnCcUcfzag5vaW3RTadRqnMnUGCsB7GxVNewtXQ3s4w6WW4P81oUAspA5MFHGz50N9N5YSnxECiNrsjyN5b1Ic6nsdOwlV/acfQSfT4DrgkoFlFAWbeyrMKxMc/4TKDP/gpH8/+UQAo2GzqnkuVbt/n2668qd75s/ZM3F+kff9XGVom2GAqp1RWp0bcSrZbxAh8karrGWKUzrs8ev62NG6NyDE5HTOru7YaO84h17comNvfyBLVpTV+mde9ilBjO+ZqGdaC5uisvUUh/V9uXJG9B3rpdaQG0RXR71bbzMz1ioIHpgl852DG0K8NOLG2+U0HERtVeo2HvQiEjrxRnK1bNMPlLhgYy070gCoMNSS/0niflAAEHxXbRMCvpyMtPA8gcKrD9mbY5QJSxGO2k4KGoCuWkCwOCzQOLM1bLrIqTPuAsrtpp71pTSylOzOUeIzhvM6W1VR4gHwyWNemMbfw7FBSqVTYIWdruB6E5xpluXK+IJKyU6040PZENJBQdCe66dQhR+M61Ag7k/DNVYDk+hmAE37jc9hsKY2d9rF0W7wH1d0EvN5+G7mL5st92nV4LLY780Ib/FDcL2fLWL5NQx2AGjE3XyEUKqAWXveYD8sUBYAyo6+jdmfrApexii7TS0VtTNJeRX3b63xl8y/vlbh91BHG1TzCZkM3PqrGr0yv4LIt7Uk1kwgXS6FA3dKHaOhMvKQdkfPvVMseZsPWYxrlyG8L5qzCLAZqxP/vnhi3/aAQarEOXASm5p4/XCWVheBJEGgr8cV5F7CoxOgdCGrtlwEWI1FX+Vp+MycuZIY5Mz9T3yItf97/YiaEaQbDIEbxKkYueI0oUL9OeBRM1pkk+lQbapRsUUJFNr3uQE3rKFMNUPRHsR2pU/aghISB3a/vC9fw/8k8ePGo46MwDQy+LAWDDBRTdYxhATjgryysbU6TiKzbAEk9btn/ba8MvJDj47hwqI7C4jUPabL1KsQ557Vv/0Z3YqzTGu7/6x9ODjZ/0VOgBLABJiAZrrQvrFpSiLqq+1y1UUsK5tXFWMJV6yYiHo54f/0bFwKzxAUgAFw0uAW59ZhJLy9INhlXO/ZYeziln+Ua6W7SVfzOzPFmkUpEIyWAyiaYbF6b3DmXtfU7PJVYgCvTa0OfJReHdtWf2WrNx8P21owkpnReaoSH9pbWi3tHzPy1desoH8MiXWvlvDeAV+eu1TCppEA/o19CnnpeF4jyYLqhyevrYoOWP2B23bMsYbhziWniguV6me+7a10tKbwejZRiX2qLwxW+KIabFVuKshKtjdVYrZ2EeR2jZfSW3lgXW1Q8aIvf4DILrvyj87BtSKg5QktDTWEcRR9N8u8IjQTMgXAXhrWgJMX3a3fbT4sjl55ytmimbgss3qY3+iHR2zaCSiuv0ahMN1WcPhHNC/eoyjl2ObIn9w4VxBnaVzw0MPtb24Uq8gCiXJTddsyHt08ec1PzShzKkcTqdhLgR7YOTENPD2Jb4qIit/VwSWsWwvjpFp6Pk5XNciCPuHpHZeA3VfbFlHE9SH/CVhHojdk7l7JzcZtJ9iKCCg+8jZ9/tO0gb6w0O3t5bfbLmWSwCdL0DRgtSXCZVJHyBBnYX5/k+W0VlAoKiOjJVrPXcXEPAO9UMDwOUtQwkhFTTyr27uC7Dn8iCWpXV+9AxNaImCxwSskUsL+8eg0QwSHQJIZivOlvUmigmumqOe2rKcYt0ULzmw4njsbrDiy+sgeCFhrXiWw0Cdg5EP676T89q1qG3EDvMXOEKYmp+XyyqUOyCWV5vcHpq2VKQa73hZzx8cm6bOG7fj/9PPoJv9Joo2AinnVdl2zRRR/LKWGui6P2R42CtUW1wHe16DAfuLaoWNwn8qzg7Hb1DyDrJjCwMfD+5yrOvouiwuH0B+jkFUNLwjx4swjPMFY5B0lIEkdA3Uqy8dsJEb59IHxtxydQF9l215TCEmXvAs/HLSfrb4RHwzN7ldOI5qlOIw5M+TZTZXFkGt57JOxFb9JVfaCd26CeuT/lXoQDdMnW6724g9LF8FfUUWXmqRWTQHIg7uCoA2+YMGlLhZQe33fkO4wTvSGXQQ5u9DSFQcR2VIJGAmPxVJQaQEbgIyw3/auq1gUCMTF/+oMZpHr8UElrlAk5ToIiFMtGzx6iju0JaVWAFTRkVXfDbDAdI2PbpSXUM7ToXrncUt996gO87qoZa9zddfeZTn2nGiOZkLC7MpKkq5NySk6WprQQT+uruUP26Xcg3oMsDt92fOGIx6bJu41k+w0BSLL91PMYKoLFGiH6ufO8yeoAZSiG5TNzg7BEvghKzX/VFmepvHh9nwpZT2mApFH70O8qBiPQmRG2wKXeGzupNK2hNfjHOBp+Y/MxPPrKHZyWjFGmffzrC/EBxG7hvURaH1HI7nHMPV0qdpai6uk0WSArjMMf+KWw0glnRJk7gYHpiHu1+FHk8631BsPkgIN9ivDPUBZstuX3bbdgKwYztZArbjijTpW3qF2sCN0l8XszFr/8ep8bzQAfvRtfkT1E2t0mub/yjM5GROkxEOnCByEMUB9BWC/WklMepBwQT7YJG4VF151zA4GzS4eCbMmpd5juau/rupeNElLxvKk5eC6kaNE53QGMqDjxzZADn16ZTIZuycjzQTJJkPQvtl6Qygsw2gLBGndiPGBMmRA11bA8x4bbdr0Zz/ljAZDYHdIhWwOfENc0pRTkmpMuYTZUQ164zRH765ItVaBloouG7jbV02ob28CgK74bW/Ex+d49aQkGgaDtaTWfpkGNVOojbnK9LCpWYw33J87lbg1D6M9o8s5BgUp7DJeGx0T9KUSYUIg5aW+7WaznsYaCabODDBmV2zhv+vkjZSFTDKaSxzbCIK2MMXOi8UZzZI3h2Po3+CqryIHkjLvjCS2lm80d0LfPSFjlBd7Dwbwi91jfcG7s1/Z6jtK3sA1T0QD0CClJqQKXSaRtpoh/AOPRnAsGnzEN20aU6eG1V6SZFZuq+mojY00KBrAGG0E6HbNAwuyw4xo0BZLbWZaKkINJzaLnzK6SbmP+26IVOl4+MbFd2zzU6g7p3crg8wUdFa7mwJX4MSYzKqkoRhLsXn/+iACfyC9FVi7RAvWKK/Lq2L3tnZgIqLjmihVcC16kwtyvjoNlCt4wyxEAILxysleYEGR8dUA/tJzjVILdDzyMVWSCPxzRJkSUR2iWyXq5mdLkGYGNCcDHN3iNQHOZcylMuhxAsZe4ZBlVuIRgn1mfEq7/hqq8xkbn9yISl9n+d7pRgGU+sw5kLnOm8LvnmtsrHjl3OgPDf0h3Ln3QosyGzAjjsKYNh9u6gKTl2qAfdMSQNOM3TWuFaKs2yf1mjieyHFC/nktCZ+z96cjW9u8lF4sH4//l18s3x7FNKisuClFF6+SuBqtW/m/jwYz0e4rMLqZbBMn8+BN3FLNeT5ewRJRvAa7VI/kchB5TtOoeTQf1jvOgOJ6fQoprIr8grCKiKGgsrFu3WFDa0HJyolEKSpyPw8K2FusffDKcJnvJBBJSmlm+Vh9ts4byTU6Hg/wpLtO+3tqW2UzovxCMDIu1PCPRLxfzhdwh7QAb2unyLTKzOkQyszkq7ODA2lm2O+kIuAnVWLeetH/gVfVgEjv3Cl9Cmrf2LSafGlFoQ5WMaMeVJu7Z8eyETwXGq2Bf873Jrv6NnuSbQMCoTtLYCgIu0UsEco4OXbF6sZzSkpaz74eO80lvkjIF8EGQfqS7plEDaoNfKIf4Yx1TBUqL0NP+m042TeBIl4AgkcZUkRcl+ndfrIt3JyVV30o8jqJoeGSWmEOw4kG6dUwb0Ch2Z/AfvMORsNZVrUW/GFgz+6W78oZa7YXiWQz1byMX3tdKc0eNdghL2O3vGqvvXXHc2p8o/b8jN3Z1WWrBx31x1IekQA9XJNalxNVYs9w5RzKJqj39OryxAtgHf5dscQE+CJ9OVhH4ZkPplFQSGxWJUYnLEENDeIkNIjYxzaYbIJvVDh4NQPsd1T58lbBYPGoXHwu8X2HPI8s71rqp9bUofF5lNCzUm/In7i3jAqme19C8c94VuyJ1TMF+28GpFWDiFwTACF8I8J+tnOkv8oQvhU4RUZau4uMLZyrAJTQIUkBE4kLWnDcw33wweDRySN6glN0Yv0pqPjjvVLdUuXHuUMZB+W7V1LSAcghmfkioVVIexRcr9qkTv+635Pse2Rc5p+YFDZBDY3Tghjvtbvckm7KZ/Z6za8AhsvjKWI9srUJRnBwG6fcuFH2GR3ovXlWXmaEFpMGxZJK7KYEnmDSjeXua4xYpRdVUFWXwopVRjY650FgFyQH1N7iQzHkQZJBkXjjNW1fUSs+wqHYMOdUty8F9FbVTllVlimksJOQNTAVbgQrF13rZzvcsDVt0ZqfDilHK5lidQF8wvRTu0KvjBE1ZDFClFUT9MU/tqtaZG3myNDh9iFQNjzG1aihxewy6l/mDFkVoCRl+Mg6IoVDqNNVZO+FT1l+pf/fNsvjwJeOv1H86IT6DmtaesYlcjIje3NepwEDkTn48nwYWbBAqAHBQoiCKfkSxwWhyZn+JXpo1Ooq6JPqjvkXeeDs2CkfVjPrngrFcTEJTFv31NX27OvdpDEopZN0+hqohQIfJnPys1CI9SDYhf2tRva25jVTzxJ2JKjpHi8HpJ5tf7OuvC2u9aPJoU3AmJoNbrTigVrNdT3yqikCah55jPxPDQTUpxhsJc782l0rLlk+xDxcI2S2Tg1+u+nAdSPnQTQfHOuj6BRajEo8YbFJY3FATPNJIonjRAH5OPdeWzh2KCHXccw/IXemdQ5zL1+/F1hGjhizePqclgQ7bOytYaziZmz87DhUVLgEQhWnYZFh3349273dhPG3kSczYiaFLTEyTD0cCw01v8yppQ0Bi4h1Uxw2LNc1til/b0H9I+0nI8mNJd0aVaIBPbeLXlwu8qycpww3BD6r2rcBK7B7gjR2yth41w2KnWfPFxl+xONDJA3GgXhfzIW9FzT1GrJK9WPJr31ZQI2xziSidMr93HLrDBiWFt0P4xV4xpWJ40tKhbyQMma0CRqLtL+hhaXysYQJRhtXegy9NIRmFCW2/qzar76ItIQ5ShnTaKwEfCTNrzLY5xT8AkYaZMP0bm9kWGtaGwUzjaHelXReOI1NvQ34neqlbY7fU9RnYsB8RMstJn2v7AVxM3Ck7PHuym4Yhh4Af2pJIeee2YH9zQgWhXgM7CqmzP8xJh63Q/sMRlHpnBoaXGraRZqoKCpGH44kkMsbvNn3azwj1y9YRx36Hlm6wAzaMHtYUutVlh5ZESUCLNUwT1jdyJLFAaLt2/FMMTYfB7vA9HoNGwMMhVNTz0fTQNsreaRT7486zhix5OZ7CjP6WSokGy4Op3/0GLBvxS4b1wBGhPk8DuI9tKuoD6IXPMj1RV6uXK7Sul2jYWIiYW7UIbpM4zZwufUEImIKNZJvNgaiUmgXFX7m+E/hqnW286xMGTNCoSJXlAaY5shASh2tMWOq1+9DW/zmRk2JNsvSsm871r0OdUT8SY20BZok+H9W+DSQq4tP/xKxgp6n7UXvyiwTleow0MjsXEkDt3N7sNiqYE0dap7eFAMYDuhQXVAMMYtF6uyW+BkBhHslok7GL+5rzlW1XMczRPJjCnPczWQelTOO067uYuv74zarmtJ4EOY8L+9wJy6WuIRk1zVaTwjPhfJ4bjIovxP6fy1DyR49CgOfz0kO8IrOrU6X+MR71ygShdj+bRDD8oBeHTZG/32MvrLzkL/qRWp3cJ/Fr/XNsBMcevBOEMXswGI6UnLEyK71QBmu6h4xrysAMk2vmVGa589YaGMwE4ZGi7vqZiCQmHCsn5z/tR3FL0alNuTyPtFu7UJxRptHRKnd/mJ9LtwX5QbVkHdWot5Lc+P3ABC6rll/qnA/0P9LBUhjIiIz40gW4bEeCF73s8h0EOtBxLhfpvP8Jqla9Cg3XFGt56RcGdlMbs/QLKGgc/NfRNg0CAXrKhs7YYU3Zg0PjDfZ4QdbQL/RVWcMSYeD36dN+HzPlkK+Z9SZeU5PjjEcZQ9vVJUHRdFhzXOXigOyQajIViFJHKt37Z5NdAjxXmFzfTtkvcHk9cANb1qOvLZhf06rKdyA/sTSSimQlaNORK7ASzhbCjdw1U/Dtb0rJqH9VkdX5dZ9WYZ3nRnarztHId0QMSKQpPZyhW/Gw26CTOg7lbI/tJ4HDQsiyzvfDHku6lfW/yxkc4TQLCEQcBhUdMnmsuzY9ul6zqC1IckCrTnRDQDpsrPbhkZG3FzfNCUcM3dL8HMdY2GgYynJJue1VvV9EdS1J1oE/zSj+fPOvIwi7j4AP4aL8hGBZaH2leaVI7kSdrptKcX7c6f+LFYl9bObve9VToQDpTsortxq0GvUkle4SgWAhR+m4yHIOn8aIgkRvDFzB1rpG6D4tkuPV46+g/a+AHlkL0G9qcE6aSVxl3iZM1bssSeWpiaDRcto6STXvaGoZww7AduMw4zfqQxRdOKULp+9Vm4sXp/ECZtnoVRZe/E0E05//gRRrjxr2SL93fuAELMCbrJUU73w/9zEzWF4p+QBJqua4WMuoZ5x1hZFVjyEQKY8MBkhrUJpl+fZuAdRkIwFbboSssiFh/v3g0WDcLg0o8yi4hyfcOthQv+xeClGUTSSWxGvaZ9h3wIjCgUxHiYK+DN3awJUPlj46skoXzYxlcpXe1f5G64SvkPRnh24kj+zaPOqUdi++zUTM7f4JgdsX84pVXcl7XDQCwWLmEJAgbvSUKCfPgoSuuU69Bq5rLztDgF8ZCRobZuwaQsfHnSJWX0lKJbig4sxSzzA5dtd66H28SGBuj1cI0bh4qPDZY6S74xVwXQGIgum8885Bd29/JFi3tWCgzKJRUd6E4j2kQZYN7k4fbHhIZqGQmF3VOd5GTxLrOPwI40n0zTh61G2M5BNM7RbTn/dl2AbcPRxXqnEKQ3P9pvGsFgp/RCYrY1GzJFf3jXYe+EJhK1Ojiklsv90zInqPb3crcrBkSNazHIpWe+scXitiiigWR1+gX5XNppOFAkYuYbDeClei6LCxdcO99LFa3coeu7ta4FoK0w5z9LSXmHapCBDvbxRseexsipjRg2WlSY1Froh0/OsmGqIrO55Nm/89MyIhBWj9wauAd4mRaqrk6CWoUgCSgFqWnloX0FEaVbBBohC3+jOGIobuJltn4LzGgAx6ZQergBhSyMK1qIrMyaN7WzbnrE8wJQVxi+kl3H4jImbacddhAz8CrqdSpDkuciNaVPjfeuBWcaKOBQCN+zcAJ+oVuDUGPt+iJ3R03z4Pc69fTqfENUu0xAihN+OJ0uIU4OinDJz3ditLv6QdsLIczaS4yHjrqFn5iBCrwz+1vzvzr3ZIgSfiPBYkXA2qR2Mg4v/2uZdPyNjo/hMGxZokOJQhFkZJvtIESc0u6mN9EZ3xv7kJysGZvBbiJDkKq1a3wUvweGG98QpJvx9ZXKsXkGal1rhE/4dCHuTRvLbPMXUi+mB6vzMjQ4atmJK5tMlOA+b1aBRG6OJ2RndGJSJxzswM7AaM6Qmn4Au1wsR8Nb9I/MjggaNCZAURl4zGLqiiqqy9K6GeI6w4vKcN/rwAGvtoRkf4uh5pJY90jyMr5UE/rACM0ixE6heHIYUAl9ca++nuHCM2zm0Uj9SykxfP7nNXlmp4PPIWT7ipKRkekMLJYZy8HL/O58mq3jyh+Cfa8KWIOojjodDhUe7tX9qiXCJ0/wceg1OZzLZiQBM5oarEyaEwWopyCyN5VUrhfe1uswp4WdSCfWf8iBUPf9EkS+jnIWzZvxS6xm2cOTtIXKeJbP8B2odKf4lnzOdcEiWfF+sLWsjLoOJZWcZ9sDo2OChX4m8ol1hrxdpv6WZu8oO6wpLwByEgUY5sROiruZXv/SULAo6lYPOL9gL7MmU/gs4nXvWsQIBcq3C08M7dwsmFsXSqeciHPu8z5LHnv8Q6AYsTJeqjOaHGhYCY5KLTzyWGjQJcS0xG4HHGHCmnLOJbuUj3dkfGYWAVsdXdy1I7RZjb381jqqw+AFmFpJorctuGvl8BZWCYMAsMhqjeRqLvKo0nYYPgaz2JfPjN4oE/Mv8r2lfhVYZLEpqRs5UkBlFBZlRwRTMEsZv4kmxqOIIYGqHzz+jZKgbAWLIjdIPPGTReWs2qx0KwIElDdy2XmvIJPzZCWMTNMQ02PPnjnLEkHQ6zb8RhkH2mRkfSvSDNub2DkTuIW5jPaAQeo1U25+qbo+HvnFJ2pr8gP7yt/hmmUlO5GfLDgWBDU71+e1E1BXrWunA5tCMHXQgtFNK2IxaPXYBhAASQHRAdGfI4coe9TQRVckJYSj5n4LVdP6Hc9+U1CdB8gB3nRkZmeLkKcftBKJ1piIBOOAawrJUg7DlzomswUgLPHKqfvGCOnIvwHCQkpBWZ6V6faa1OWPin7vvfPL/0MaDCse967ynL8cR6p5Ne1Z+NFxHgCs2EsI7474zR5vdMpntq280Cb8WxC8YpzZmvs5xhnvo23EZeSG5OLtzL/eJJHTH0Y44OCibipp+64cGeQp647Kr2Hq2Ou+sr23GJZ2DqWOX/Ih51u5ZoipoB3J/xQauaONAddrEiPaRH/4sT66EhS+56fy0of5Yotf3pCDtwVT/JtDQKyQT5Pa963OYLYoS+0GXsvpCCbeaQybjcDjwvvL+UwGux/8VyEXtp6w7lXRHWjyCk4XDadV2e4IV5LrBufNykrYss0sRa5qhl5axf09TMQmDwb7L0Kb5+xkGrQGsu/917egSCfJztbuI420vG0q8I/YJOzoYY4U4BqGtDNBhQWjfSv207oT7JD6j3kScWBHV/klD7TH/fQWBUxro/7wFRdmPjm39upzqvkAKXfWNPnTpyU6vH6/ez+COolAo2oJbiVCMrl9PMOUr7eiRwPZ7YOvlxTnznJ6uD21YPPw7dxJOHG4jYgcCBe2mWZ+NpsCHy09xvI6E5xgGouwABYMWpAlhwxIiDZDEji9hcOLkErApI84CksNmc9+umdUwcNbqSxhDI0YmA7mzfSwib2uwX44Pw/m9oyUXg0/w3GbnRo0S1B3GZsIDb0s3YdpntCGWFWO0W/MWFLyFuMFxwT2bI1TjpAw+V26fkU51LqQ4rSYnfwn6gBFKHNlM8k5PKTbevJX3ph5e3uXbFrIt620z/JQWXOzSfJ5If3QwZCHWUcN0Z5nS0HokP4yQCjsIQjBCm4O4YuCcacNEgIhCuPT3Y/85PB8TojptcKoSZosxQ/aPSxxaUgUrm6sHZQMhL7hyQdIKh9qRpKkKJbZHHAKe9RmftQCFjNAaVhV0ZxILa5xZ9Qxn2UuZW3chgUmfpayhuuHNF+o11URMtaut9t3C6pxqeScnGb+T+MDuGwkekVtH4xIkDA2NPNkGdddyT20kn2pHWIgNCDMD1j1khO9mZe/aDBN2PmiWC/jqPgkyt/XlG8f2b8rTSHo7HjL8TwxZiYHU5RzTnG5ZIOYvyOCivkPFCaqJ2lCX4amqvZLj/59fZKqfmHPzT1U6IBe2mnsc8HQ4+XrqY3RfmCIbvYSDZ4/0wkPrFMH5deqXFeOq3VDcGXbHfGRfKXubNyY61SeboRGdh1lOCgNsoGGk92a7+yENCthLh1GGF3nzN73J2nyk+ULFIZoZbY/HKji0BFw75lAJv9erDFUVcIJ3MwgG9lC40Z5XrO47HROYSP5KqLkOK1dOItP8NzHzCProJQgcUpBIz6HsCcNL7H0wk9tS7fzTtyjk67bfEboYTwn4Drjsj1csOxg/kiEPs8OrNjLWxpB+Ifq7Olwl/8GmkKmk+HW3n3mJTUeCpXdYQ14TtBwZJL63/kd42s3Quz00toVhKUpCv8aVicGMX4t5gYxO/PwEpC7dKAd4m09ikrnDHEOzfeMhHWNRRw3PfBGl1KASD/wUTuK6McjpjfFS5GfztfK72RPRh0fV8cp4fQKmfcO3xu0VZY93GWnOEP+AmzacO5cl5/oPg/gNj9vc5oLsD/RDkBdQiklCazcLuLmiB5ZZlD5x0GWXY4liwVqxm3hLevQziLWwGfHo2o/Q6gqS65Nn+cGhliGRtn11Y6gb+XMJVdm73OC45WbykZBSA8Y+omgIVphG0ptyIUlJ4YM4TnIZ3J79Gh4ilov1Tx0s3IzwzlFBBKIPTQcaRa5aK32AtJ5aj3pETzycb9VXDIkMF+xnHRIjyjEB1fuO514wEop3l5RLKVHrr3Crt9ApcsiRXd8S8NFVw0aueskA0taT/1qoEtDOF5x/+oYVY/sqqCwdebf/5qit5K1WQvD62Ns13WKFkVWlJSghVun05ZXEpMJKzrhbSCJyxyNzXPTbv4mgIYnagYWH9wkmMyqfgfhJAWbRMCrfE8aTirJSFP7E8T8lGtiQ6aJ+o8XiZRW4N8SbD8HHBCrEYW66plT1NfH07QrE707+z6OlkTfmdyw13b+KS56uDA4XDXGr704BBj7akV07QfHsqgUYvi0Xo17rNRs7NdhMCRoSRSuMqIHKtkhPqf/3GBE3SkfzWGnr3c8yv07snskTeUhtl7SmDj2SYyjVF5/hEkLSOvgTrBfW788oCahHzZYcFZ/DfvRmjKNYDV4u1lar2XpTXK3yv2va2y6O1is+E4XWq96qM4m0uS2kIUtl2+ob1KtZm1CAEghUIFUMUy2zLBENGVLR9JY6U0WbtMWqmkLJ8MSoHbptry+9xN2gcCLQdqofus+QUfMCZuOeENZUel6FBHOC0f4N2iBZqxuhXYeg2xbS30WmFI4PYTDLAWUxkGNQZ92LO2DRiFkUWeamRGJy+5V+dqhAiM7sUVh41qhLZ1MzUQW2cybefUXtKCh2hhy82qmTpqEqk8OX3gnn+kGRMrFHKcEQZbhpnxNTpt5evFSSJ66EsmBehASZdFLDCm4+V6L70ySGwWlBMQ1CFszRvywVFRPcx5LAFYuASo86IiBBBz4VS0oMt7Sy3KjNKH8/wo+a+rPAD+vdMVJSbzpuScw/CaHQgsB3bhobBprcTsHYmf4OlMP6FI0l1wpyQoPUnFlAFanUCbCR74yLXrFmNwRHfoXc3Fe1Y69E2vUSzPS0zjbkOzj/d3MP6Uz5JgNDhOkljMTeYKme+C6J+2NduofFu93YlyWp6XyR9gMcZJATfqbq9EjWE6YMfQ72L5NxeITxJRVpqeRM+CqctabZ1PrlE+cJBWjm2AhBBwzcqqoHHuI+ePETE/1SijcOKARCC+Tiy+CS2XkFGuZKFFZP/gORqjGO30e4+a9ycE1wY+TLtBNYRyYLNPs8d/yNBs4N7fn88x3WR2Xz/+TyIyyUFuXGxJKdPOpuYRFPcMM776mpaeq40KX7QHds9XV74/HA26DRigZN0YFSnUAdfaxLOa8AR0XZqYbEc5gTzdcwljbMboY2uDJGCX1U9Nf1D1AMPUYwB4msAnqpOhrfGHZYlpaMiSOLcjROajrVV/qa9wFDYY45/RNLxxMtVlrcyP9rXpND7bAQ2zDwSV2UIPXKTHfcBoq3fBy6fDkSHlyHo/O/DlYtnCI687VJKT6S6/d7WeMeb2AWDowr1+VEcYar5ydp1NJyXXVZp9rVkKSOMw2ZvhJYo+XKMLvM/NMPHQ4iW9gRMrPYwTvqs1UEZ9kCb8Ig5IIwh7Mw2LoGnZHgoopWfH6AiCjTnnohpua2k94KN5jbq3Ly/XNCLgAY9QgutDgArTOM3dQIx/j9frHXm8yGkBLRjAhtfNim3Mx48wn+DgajzIE7NFiVyLiVvR02Pto/ZRxNgAsdqpKBZxneygG9gFv8HTUhQyeKhRbTXGzoDkjTbyV9Cy/U8RqWFQyCIR0KmtU62soYVTlujegFUe8smGQPNWPTcD2HbZT0/Hp9Ys717MEh4q4DtDo/8HdHFs4H+sGNvtp8s04B3FpRgWj2vOtLdudk/Qx5aTLGBA2FI2d9iSoKLoAnPArxqCBMFcFs1i/WJMsjuj+qoLVfQpbun0HfQf44kKWdfsDoJYrN+SyK4RLebo2RnouRfIAZKuiSZ2pn99HOTqSRc6gI6XhiKTveBSDhzFBkJDi3LeiF8J0ocZrEoS1bad82ddtmVwqhYoSVBqgaGikBkxPr5r9UOKSL9TOzty95Z0EhNiDEtddpj4LFW5Jz/PC0ti90DM4VJlZMHs7SuStleiGqi/Ej0RY2P7pj67PZrudVSRnYfDwJAUwI2m4gwqOlVUk7Em5/3jgsY9gRq9/xwrCW9C4IFCrCojMTTIxXmbO3IR/Kvt0OX95474BhmJa16QmpS5c0J/d5CijWCv0uD6B9+WnL1KiwwdM5zTve5bR8v5XOqr2gIckEwEB4zcrm6eKmZjg1gNWszqfH+p0Ps772WAsbgBRhCiQbebmtb3bmH62cRqpApn3FTz2+3/ea9quShpRkCHCw43HeP7x4JudL1LwXEIWGSRWaZ4ZecgEdQMp7QmZjqEyBxozwasMTmMTsoCdspl+yiWq3TXFaoyuZDkCOLURlDg6jIv/VHmr1e3BHbNHqKpivjZUTtOAZsD/IHvg28un5onFWbPvfRyBRLWyUVNLOUN5LuezpvvScAYrmIPfuYNFkGXT2/VHsZ5SP7yK7O69E+oZ5GaDRHFUYMR1AuyNBZle7PiXwc0s81MIVwHOFLD4quaS/H4QTwPN24VpQbaufBwK5xeqtfH+zxiX2aFdGno7+bHVjfzdHvBbq5eVUl0SIfqF0yn8rXshXBWS4vLf4BgK1VhiOnEn68Tw8DBKU2zAyvUqvJkZDWhznEH7qv4ukOxsvo711gTAem6aFvF2ABdCRXJs4J4EdyH7ZMpbrgZcH+DKQxUrcPDgZMe4aoi5xqQln0TY7RY3rvBoY+8hXqSUJukeB9yIwRcDOAbQlCZGXXIC7/GAjTzv6nURv271frYQckFVWfVX1qBB1JjUNTdPQc1ja7PGXA+41el3Y43TG5llrvfEYB5vbpjjwjSyOaTAXzUc3nhksj3kPdONoAoaMzme4xlMmtmgOptlPSLYbuk/F9Jpv+RD7Z6P2jUrdWqgK9UeIIrkANG2tTGZWz517AEYOV3xTJa6KPt+kC8tn3TMTp2JE3n/LV/Ppaw33mBHApMv1CDeKpGhSoSCtDQKU5ZuTQxI8YH5wQ3nTRGFDdJn1eFQqDJi1tXOczVdr4bg0XdyN6FIwnKpwlWVUCwv4rWmCArryvsKUQmKJDTJZkc8RzQ6K9hgO3Ciainzl714yZJq21IU+pt6F2NAjKOJ/Hz4k/1Br/XsrAosvMBohG08RerMA3T/Gb71tD+KXPHm5mEitfGVzHgcfUkqZZDaCog9YAR28synPjzAsJZ1wb3QRvi5F2XXyLXlicmQckXt+zIuM39UQ7cSnX+mjMUq89C7viuZgw6BMxMQGoKpRZpChNjUTmJrWdhFsuZGflPHRbwYU5AvsBfQzlcFfJjSQ9gxBr2L5+8Uc8UjMROyP7bigcnH+xwCUFAxkz4KHcloHknyAk5/5uIYst+fFBtUkGJ4wB7LyP4X0DvwiBi9gVlroyNwr2iudDgg73NSzLY9dBuMm4lOS4cqqJjVNmUICpg9e/tDah1tLen1PbXQhkpkpyMo92vqNlltKLLtj0cCfUGA8aSr7jwKqWFlEvGqwjQknAvKylVBKv13lewD776midB0ydjAOC6GvEUNtAnUhvf8jHW8APsvna3BQGSjKd7JUE2e2oz6iaQGTNjHctpCw2wIbozqI7Rw0rDVUnWW448Eu1XsDDmquyi8rQuA3gyvhfQzdSDaYlqYEiHTryyHNeBp+DIBkhBsF1bUrc3w4/m0Y3RZDEdpD5wQn4RfNQdQB2Vv35BHu6GvFdXdvQfk4Z6+qpYb8aF9nrfP2dU+2ciqNzqqvTxop7MwuHdzA8+Qo3kbodEGtFybTTwE95LLJTrIuWtPup++OB5LRZFy5WUhn/yu2sDwJQLNLC1IJYyQmBakQD6+mpCiJM+OPsgwndpPLFUcqJIkR4O2TqpBcZNhHpfgaLNPBW8Si1JRextv8Pl5v91bzYTWaxw0xHU22Ao0NVeZ6tQWINzbDSmx4uPRAEETbSmDmy3g4TMUewJttdQ6JVTwGtf22WJRF2f4RtCYo/i4r+poclpRjWeZK6LixDsTTiKPNTAX/ZtyZui7A+v3CCka/P7ZGG7GhaH8bkszFS9jzuFvl1mA49GUM3artez5rcdLXdzpsdgAhj+UzeZQGzWXMsA1ijmQc36ses12eJvU4N7ZkUvvPzIDr0cfQcPw7ewOvcyOB6FmMnDgebpNONqLo79qitt+ZayJNRJGNx+hnf5nMA6Br6nxHCtDldT4IUEJytUjOXHOKXen4GWr5g6d4JAARlKuMISVhNAb0zpc1u5ieQ2RyG0GdkQUup5gf+gbh0TUgQcxegO1rMkQnFv0bHPdxMK/rwyISszdZkZnh4XwDwu9yLEriBj7JFfabZl+VcE+n21wlHAq7eC5zZLUWFwZNoeQjdiDDgZzwjmudkvmkRvV2ITtmh3G6PJ1V9YfEgGGFIeoRfXOZRlzDm6P/HXm1iP3Sk/n3SaKzU/ASxqUFCjPhCd4hCutyDHR78f4WOwt5JPbdqulC056bW8r+cQnn8xccYoDq86367b2K0hhIuVP6duNH+6WRq/yO+wB6S/RRLbYSmpWcjcKZnHRIH++0z9hbCyZOaFh9bQsLWsIWSz1DCJpsJFx0/ZXCUhlh8+ZBP6/RR+Xj3YDoFPNWW0e2MyVcmdywuodgAQbK1LndIIGvj/k6FUvM/GwfX46aFf9W1W1NF/NpbjmO6WXEKreH4SHhD8z1o6bhKDuIX4zCmAZB3PP5vnV2n3WXc8kaBEfkKwelpQYs8T8Vjgi7snIuJvVLI8TqCW8gaDz/WjdqocgXVNKQE5RFBywtwl+C8mngRFOI0s6xgTGa0xoP/m7IQgHRmBtQyRCT8YVGb5QeQHKZUHsZr0Zy8KTyQKMnOS4zBBvcIM3WZkHuezWX+A7dYppFGoElc6T1hUIjq5GWphjJEJfwB+bAI8epgxfJGETIzflgG9lSWITaHzZd9VGvzvmokXaRcJI6iSuJWpkbqQEZ/qedRQtXufKDnKKXAeXdFisvvAEdFv1FFNXCeOBobYQzF9oC2G4tp8Jq70bq8t+gdIe85buMYAqwWQKtcnjdY4jToaeNjo1pgfWUWj2dGtnaSuQQrokKTSXUzlijtewRMTn+aEAKTZuXHx8HWYKPtrtu828FS9BJX7jsfNBZzrfGZowrBqiQsA3oxSeFOZ9ChgnW0GKWIcVPORPJMSck7kQVea5/FJhzkMc8nJpRIwXr84/PdIJrPICwtFfx+LKR2x5egpbfjYn7/ZWHGbW6Ln7pLnzKz9b3kg9LKyv32YGKnLtVB7S+PBQs/npYQDpcPr+q/Bbm0VEokC8a4VR9khTu5e3CJ4S42rcLcN9Lp4WD27PGnlefeHWqGO3X4Y5JHWDMJBQHqNZPTGp1A1S6qtvbavqpeVUvpQOr3O+sQP4mgmxFDoqPuphL8uOC9qmaGwBKX5+vWwhycosChaODqPI7C65fGDgsHq1qGSeKtluhdcijsgaE9yCKL6oIFu3d7NnfbwAdnnsA0Yu5fj0ZZWsb78vfDTbHaX3AhTt2VjFz69UCdWBhIS2mTVJ1CbjxCe419J1D1wG+AqBD/088DZPVIPteoo2Z5OmFnDKZdQzFnW8qtGKY3ofVwwOKb9PnFIYv6SRQ9YYphdNyv/Yd6dBOnjHl6hwlEV8iR2+2rkrAw31JMXY0KpLTIO88MV2Od4lbhnC9U6EffB03WayUvM6sDs61T1Q+Ynjy14JIJDMyH1+B742ubuwi3Rs8h1vFcUdcTh8ekynWTQoc6qzThv/1WDL9KIeG3N0jBJMCqbMagUzrGu3AT6LwVzIu0ZFk3UxFfogeN/F+oXqgElJQiSXc3iM71CLJ2a+mXQHZ7ZmrRNg1ooUxoJB1P1iAyR8/7WRPEHjK9klFd+0+W+wAj4VESOPqXUzwH28LW7uuMiJTk3JDNMtYFvF3CnYEVKEg1UtTzN6mHt4VVfEb75kkGyjMniMkHg/CKTXM1w2a8+kIEE+O0IUEcEwixFeYf3Ro3tN5XlXWTmaKFBh4fOkUcVKbM1F/jsAZN4iH3Kmy8Kr7b5OPQCHXhkB83OvfWIMXk7kaFoHWc95FJBmIGMcayES3ZplhoD1H4hAzPnq+MXOOPPikjLQfg0X/aBr2rWwsR1Uw1ug5mzXGb7hDvT+hLg5HcKnfMZVL1ZjnOYiSI42LlpxtiQ9TfY7YPCkxwseLIxpkZ45/KRLgH0IIO3fhTVB9/RnuFxD6VAi3dd+g10uVyP8uCCxY5tEIwqOZaenlzSM6h6pFPsgHPVTk+/ogUOKFOIreW3DT4ncW93wt/knItnlmAmEUYlqHqo6+HzeSLQqhn4iNkq4y4Lb4OhvnkjKIJK8EBi93nWO6HvweqnP6syJOvEPh6vlUCNYcPe3aQJPA10zvYPDC9rf6KptFzQh7UL/ykVIONiPbo4sNnuX7hxmN8srglvc6u4QP0Hp/GthiZtaXeTGW+K10S51dQjSaxwyhQcarwkKtJiqp88GUjr0qqHvcnS7RJLt1+BajJfJq/8RgUWZ35xhgos7s2pirXbNLzmQAgG5o5JEBYeVc49pR8zumZA+zwBJXPpNuEPQebTiIH7BxXHoXOLMAI2wPxO4mYXjH6DY6ckgrk0aLj6bn5AxkMtAM6+O+f2i2kAzyBnixtgTSmhKUxMWAaNThbHNbCXWsHdtJstnsEUwPwDYwIf7rO3elBOac88/BvBtut90L0//WYFMuAlqhAa3DZONigOMbX9YACkZ7zGsRJlH8Hqx6ICfwIgbGf/ftYgheJuPG5nQp5of61jijZJZPxKsgQxJsL1szVZEjToW9pBqVg5ikPfHv77swCRkjrcKe5v4vOqfvawwxVu8WTzKp++e/3lYbrhby37937v7v1u38vNnVYUWtWHWjzxq/kYTspylaY/jiVraoabWHe+58nqHHpJ2XAgbBJ4kEn0vGXjST7fgO5opTnCKJLN3ZQE1AzuOo+dv4mc/vuSs0JrQ9CeLYM/vRRLnCflYE5c0dwTMmfazDuR4HTp+blLzSoh1Jb/D/8RcpSCqJ2OJ7WEsivnWP6sdqXz+E0T9xGXidb5TZRs8zlSxDkM5lVP6O9UsSr0J49AZe9YlTptARS+OyFIn68Gn1zfbk6KQATxrO7b4U0jmXOrJZ/k1s10tu4bR5vUDEvU8YGIoRE/2sgLa9IEAM2t7u3ScVyzqVvafPPBfGUwBTnX/Zr9nmSq0fqHi9nrDTgPKkQ26ODrPptAdAtpgMcB9AApcnvFQlHOFROIrAIqwFMBx/fOjVk5A8L4BB1Xk5Zw6GfSLkiJIrJRULxCFlhhoAb+GI0X04jrCtnpWWMNMJSXXrxHXivkbb85sZTk/F8BGS3cGNPegND/mV/2J4rohNGbvntpf3QiVVDsLwONecLXc7GgyyE6DxJ5O3xE7dwJcMWeLR59XM5PF7J/UPA/VrZbxWCSFsU4hMxP6HnSrkNttiv/HnCjLqKqSPf2hinJ+DMYnrI6jr6/RUa96g0LtkTYSgSjjyV+1fjWhxv0pQHc2HT99yJ6sCPFB9PGvAs3P9CJ7jHcJohwBCvCNTVt2CRf60PQprQW+km5acQeAnFclGDHXx1szzUeqGqeulpuLPHNIJDRq+D986N0O3AJmGOxDObFBOUs1pilorfBRzSnyJ8wVEymFiaJMJzsVEpqBX6ur5Dpxz/lSti8aj5qCOsu13evlL2vv9kpCXzmXlp4EDNobhkifGR2kTDfQ+lzOtx4JoOq88o0ZRFsp0YpmNLK+j7KYn+Ts0zxA45laPLHxNi8b354Ujx1wj8LcnbsyAJ6COkZ9AC8LusdcAopHPBka8fFvaHafIEBWgLySlug0f/mCd0VPPFIjgkvB3OTXm/K7AUX0vBBCaCetV9yWhEaQMagvC5nHEhvnHbT8s68y96m8VlYIo+Q7HBEm7nP96kD0kvXMR217PcL2R72jydVBrbV0JtEyRjZQTHU1tNrim1GOnssqjAp2sGkXqBvzUwk0LwIHjybcJhXXl9ASSygdtd4m55y8uQ0cVQBT50BOb6cZTKHHM3dqVUHjQJ3eYv2qxBfvBYKvWYlVmRFjxYyb2ndr1A2IUV+VdF0j3JCxM1L0uC+Cek+ylpe7jV+59EP4oNHxoVFqxbrsNmucN2RfLH7UdrFl+VBlUwtNvLQeV7s3K14bbBnJaweWFFJBDlfLYPVEACLoxWoPJSjAtUsu0BiXoIlWpvxTfrHqTKvFbiOCoPT2QZB9PsGTBqi0lTgw3Tz/AiuZVzh6rLhUK2ptrh++iglpW2SDVEddkk3JymFPbyBTk7vnVssC51mWEE94fv1rTB5cUAdYJ866qT/DHDboWyZv8zUnOlvkof+qMl7bFkPkBY7xjmCosAdfPE0OKjdjb3HTqtqa2p/3Eo9XEXyOtMKgMcFCl3dxovFluJixWW+k8DdO6NVtjm0+EK4QlB6PbKaEkwTIFW9xPbBQ1PXj+3IQ3ieqMz5Yf2eImhXyvQhtzm74faN6DyabcoG3TtjsVDKWAO2VSq5i9+vgMKIt3Spbf83VV4X61oIBsmvDztWOVT7dq8qGzmizXBAdunMbA7aXOO/expUSqEJxuCnmK8Qo2zmI7tSMmcaNS0IXiSeBXRKgLt/CjsOqAMAJycOWDXfOmLb6NqtPQ2F6ZxZ5Lzrq0qFR4Vik81aFV7VvWlH99YrvxtjcXQeSa2zstST7BzDjOUykcP+1lt+uvXUhwJ6Nhr40mRW9OWDpIEAdPkAu3lnXOyhrwK60Pe92xEuhhCvf9hiNm1lPo/WGbnHRnqn04DjPUYqEpXaXa7J8wDpH1V2WewyFicWDnqhFtZZzrqCrfVPe2kcQ8Oqqn7VpGfMzxu27RMGm12MNYAFZA0Jn6Lz59BtsWiFu+/p0lGGFuVzh0SWGV3I0JWB4sZahqlIw/7mcRsTX727AtFsRPE5E75WtZ3XBn3ntcegqyl7VuLHxQiTK2rauitfOI08/Z33rwE4iL0OU7qTQkj+5ferEFOYYCdlUQ4T2a4eV7FagxVAq+aUKVyoYwIiJD2If0VSbnsNNzfBHx9lr0iP0WPo0viFhLcuiSKecXxTbTZQp1iF07PaFPgoOWtUc3G9lKB6rzuK1aUGRBKv8H/1HeXawIOJOCZEgRU4MjPstkrehuzfHdm3G7Dkh5PLPrOctHb8ZPLTFDIdDVqbIonc/frSRWsPIJFrDXrOC14ATgEHRqmFRRiKU9mOvQ61B7Wt90zD4IcZQ3Y9Aq3G0ih9Xz19oLH1rDyL0QW8iq3GN/gMcVnj7PTIaFX51kjU68kC0rKAA2DujuQYf21KqQ7L9Db26nFI3KDXgo+WtjgxVUnvq8VMTlISNRUjFr6VyY0OdrFxyoPREqOuhcWl+Xle94qpMORvWiPRlodWFwUMbHJos2a5nnronjro4drPK8IkDdYewBfjQAlKnqgJYFMpq+wG4sVmXo7uzAvisALkKnXT1PIvUg9ueoRj4MVilEY4qfVE55yVG/FWuohlmiQualUspcjTf60x2xt25dZKLtjyPiKUWpjE2TdLxVu3MVV+wagmrliQXiVWxhc8i/vcAv9PS+SqN9jXtPIiLWAiscj6lEETbVTw3Pu6o41tG0IPlD0qi8tODalWNGslvPytBOODHXOLxkfB/obMHWxPKLx1NoeuRMV3NEU07/eOll8FAROTw8wgcm4cJJKJM2ebZv3uXoeCaZBjTQhthAmQ5xf4ps1ZSM3QTbAQnkqoDitVqIKJ9C/yioyyL1xssxAabqxGa+oCcHABjfZJVkDsMFwxCNFF0kJXpRWj+4A2lr8IYMxZDFx4PNU9zUa6xJn/q2CFXwXrriV00yZqjlAG2xAJacGKQDskyUP1uXF+0n+2LjYJ9vmjRh/aAwrp4gBcKkYi6tzghSJIyncSHOjYTLmcFSpyxlz2UnWO6JqljPChStgLTIFUbo+d3brQ/PbN9hLsShcL9tZpw8Fj70/RVRXk7IzNq0+ROAoOLPhowgee3YHDftGwiiPKNvWhOtNtcQINiYLdu6c/mKDQW1Lj1Ur17pw34exi/phnO7Fn7NYuCyHRJI54bEQNBS/yISOy+BbV2JYgp+VY9mTK5sYQxrSsDoPVqO4Sl0dDkj9mvgzGGxSLbawL/KFYEu64WCe8Vukj40WUsgODPNX0vhm62Meu3pMIhD5kviSA9MvoFcYL2I/2yitN0YTeS7UaXHO1kvHnhGnjcx4Q5AeBUa7eVgfMfXP4FkVvDfXbgaYzF7AxiRepGdMhBLydQEAcqD0dDlM7I0T6rPdqcRGsQ7Nv8c8my/2UhLYxWK7wIje7tAB5hZsyNXy7UnXjhMlI9BuH1Q+NIWmu9i4bQt09SMHErxYoWoWYLS4QASwX8t05AtobqzIfukkE46Ml/6APYxeHbsDGOdcz+wnk+N6oCre6kVzdJ0pKDtsu+KeKy5cdCO3vGHHFXX/yM+qVnuYHmiI5h1sih4bwCRXI0/f+WRpAA8a0jizLf+h9Yt+RBwY33HX5oqDF3G/scFoASuoeZRh6oRsHqRucuYSRdTYBc6QeKxixZhfLLGcgQcjD8Z+PKTLmTiqmX0MqL5b0orMJ2s2TGHThQ73zU+KqiqRGkDWmkOfsQFdNU6sfOr6PTvdQY88EfLq6lWIeqnbOIssck03vQWQ7sic7v7lmN5lVE0nMU/ZGyRgy6crdadzPf1i7ep0quY7QsVHZkB9Qrhx4+XKlJ61VxTnUjP/S1YNrjyyqdxQ8OxI525hCMzBiSEjkCoEGAyv3KnRAhCLYaOhEZ6kAp9YDxa04oFnoji6XOeI8+DaQR6plyj1Y8LRgdgbZow7WP/mgLfGPZBVreJEfWZMGcODFDM6mPUu2R3DB213F41KrDpgenOHRk34ML1Ref1lG63jfcD51NE7r6kpJa5MhDWd4HUVDqOVZWHmpIQnJDHLIjnj4usToVIxDQdPeWw9LO832LsG9pKLPhbJK1cF9Eo1C0Am+6+eBqcvJT/Ue2K58EJg9gWXcekZW6D7vFHqWYvQJmytCYe80z2ySQifrDkArkHFubnTDExFWtEVsWbGAIZlcTgVusch3vSHMyXgqBAexJ97oimlh3FHA1DDbyMnc28RrJykWh74rN3rtMtRNLzPay56QMoMXkKXq4DbNYu/HSrcGTMdLkRp6Ob2hV+iDASvLXGwN6RIqne7IuGEqhdl9h+iJE9zEqfPTtgSzBeaa1yDYQdS0ymItRGLS14ewp2qJwtG+sR7h+ShjzDmeDr0sLIM7j5ujUlstMJJ9JTYXdPh9llSf1dOiNNGIbW2pXFTg/awiTmN12HnEMealA69T2q2UB4WG2kitUCV4UXUiFnXR3FnuA6vQyrYUP35uT+67MEtiEkzFpNWyCOnHR51CzSuljfFIpH46Gw/99RUuq6v8wwSEdGhsYwQNEYuXjW/usZo1J1T9B+U0PVcbBXtO3z1o5QWHrJNqFT3qphbcZ+PmGJl196XagQtMW6RoinhewrWXvAIA7T/HuBYw0qc6DjPlReWxavK6KsZKlFp+jcaCm6ywWC4Lul3O00UqVMwhADbovrtg82qeoRDFjD6t5a+xhd54E17SCsCFObgY0CC4bHQQWtvCFSnGkmM8dGlIdtT3DRjYdhphz4CEXsJnsmhdmiO9UOYMZhrUqG470VIKvteYPX44OsjXumIp9m89stfUhRX+Q/S7g11c0nU1Jt5AFuuGvTB821LG60w0LlmAqYyuXMgHYBZJVTrpjMhVU87lZ2wy44LtRDw7jee6bELWL9F3QiNAWjp5fXXPOfrLVy7PTqHUdKHwUP8LVn2emd6UCSw97LEJjYYo2xbSUlXq00Dj/jMrDCE9T0+Yl+fsQ6VIpjX1VoWNi0NdWSo8pXMebSVI3WStlZnOz2tcW9fvlMFLgXureOzEDo8IQeOsgQzrZU9XD8k5SDtNIGtHynGinb4XAC+Im/pbrnrtdr0GmelUNF4+cphPEEdFChu+Fzkob51nGxNH87XB3vzJY07E64nNznQ5KB5Z+WnDiSQ4H+aHhEG4QcbONsZHx8UCTU/91ioD4CZhjs9pSlVXuQ7Y12yTjtlUOWlhJMdg+EGjtCw5ZKZ2s8IZyTRPbUVZDnntjrx6nb5K+z1LwrKfvjg4zyGe21Ii92ysvDIYIegk0tI32CXfU8qP5djUFt8GephqAysXnrYkjfqnuBpupseclJwH7CUbUAHzO1u/jcnRB4TjXuLeP9IbVYVz2itqvxO0cQnGWf0SUGbai1Gy0tOZ2Lp8HMSc7x010iwqpuDO0945N+cWDFdUAizihhAbawUyAvahBS+5wRi1X5IW/cgkq/BJSNI5KMFewcd9drkYczbZWNSbRsX5r2YYHRaRimZURTU0N0UcDav5+ie8lU4gnWPHOn4zAmcxzhMKFiIi+7Mfl8xZpuro9gVLfMR+X+rX6DnUC5+X+3AqxHTPMk56y9BeNpcR0IIw9Dr9POhP1f9PttJtBaqO+OndaWmDig6t+9GuxH2UFgfMH2QYNK1D1E87MHHk0zNqysP1BzE07ir+QW5IQREzr7d+YVkbMK5dErOo0lTz3CKLNjIiNJhDa1PXpAuNiT75upY/BVnE+FAaN3Q9FikhNw/b6mDyFaas6/wN6vBNN6yiYCMaj1Oz8kq6+zaPQQecsU606N9g+HiItnHE7o/B8AnadcjX1Z1P+9vJwG3JX6HugGHPj9YiPvu5yiXGloW3mfCu7Z+9fx8fWmPTrXR/2de/3CWibeYUfrg2C2HaZHdZ3+ufuqqNrGpvPCUuqcTEFhjR66i16hEmpUCNQ2xURv9tm2EJOPRg459PhZxs1rCvbtE2kdxflGj1ANIVm8OgQKoJ+VYtXZfHYiakSIzQK9eOQ5IwQUpGOAT43r45+22NvvGNgDXFSI61bqc4/ep0B5hMnp3M+dISSoBxE+enSfcGDUSGNTuwTVkJ9kXp0WJ7EjFCYqr7fnbQrCFok+hAK33Jh8UPwT7YAt98bbpCxF86ydo9mMchzSgvWSGIuyAIgDw5q37OqVujIubYgifUefI6Ke1415RQA26gfTss9Mbukl7d31p21iTa4Ff9psa5cmGa08xmd0B0f/jA6eM8OKbGvEKZsxyVUg7Q9WjSQYSaSPvW2F39hptTpTk1/QqCEIyNSn8sg9CrOOApwqqgCuJnx+Brn+75AEJPRbdaA79z4ZS4Vs2G7jrkKccwxnSmzP+tkGOvheDJTbpOMh54bJwu0GLI2ewmVWdMNtgBZJDU5g2W4yqvEvGVlVAstMYeMRmVriB/yJUZgi7TSnV40keyaRNbVgEzXRP3QjNJ/CAqKMPneNETFOPvDvCcbaRKfw2Wf5Oqdnl6r4jGl33U3jHFeJ42gZ62aV03Dp3lSNuW/U7kMiiNLYW8iBU4eL29pEw7HVxf6ytekWUfGN5KwiymD/B/k9b9LEOspQPo/3M7gA7pedzDLYxr5gJKazwZ9vfwEa+yai3mSTOiZUjJjZxkEBmrJxV7AdgHLGlBh4v4A8Se1Co+tk2OkiCkqmFYZaqKJvhNP2Y7r9+GwrysgYRdiFbdRrv0L3ShFY3HrvGKflM6UhqX9YTxeF5x7zHaBb8Ej2LVe6R9p6X3UoR5yQYyJWoKf288+CK2cKMZ7yZasU6RII2tqRuXN3CIUIchrq0wyIFfrE6ZHsLvKZUl1dL9m3K0SrGPH7I6Lh3f9niAKqk1ozUKCR9/mWpUMaATv83I354aKs/CtY97n71Zs2vwjUlLm0Khcv6gykkkWXf3Y+GCjD2pDqyDc8tAP0c9iUseavlBJufaywnVvitw8CrmdmmZcNheyLykbUNcMki67eFqiYgK6Kc3QeK1xwZ5b7PpV9Z0aoByMmjSHuV54KdiKSqVcXR5dvXlpWRm3fA+lVwVPQIJUHNihhr0P6t21PUREh3T7RplagiIwfhzhuzIZn9XtOSWCXN8tL4UgxWhVbOkT6m2f/yy2Hq/xw4PkqMpaXHUDMhqn03jE80dqiK58j0tWrLaR13nArIfcmqkwRt0OgFItGNWZm0H16AhKjDYpBfsrfzDA1g9tmqE7Fb5wlkn4WwhIrMvHCIJdXFTaNHKnD+j42j8cZGo7pC7Zo5g9Wg42o13f21FHGPDsEGZZIEC7gNccbwbcwJF6xHdVbfZmn0ZkY0CxTDmspwZy5TdTuxbHTEl2VcLaJ4IVjmJlsrC7s9wEHAMfiBA7rYO/VT2stm4uojldihaub0uhdadFDi/PNxqfTOdKf75kC0TAaMUiRN1+y5Hajc0sXP+O4Db0cVWX4EoGVK1f/7J1oJmX0BKYtf/U7UQp223SaZgt2bOb+tkpr3iVvLGwQzyfZYMB9lzrziRnM2tMaVsNXLvlKRzijvALczLVGLRIrB62c/749nWfvS9AjLL3bd1LPZteSzxD/ynr+5PEYm8kPl0diw16jl5RtKUV34StTSRzirgWB7lva5FNn0da/fOqGxHCe4059q3h0EBXWfKdQgRb7IiNpPyOqFnbDhnZwBB6otYa6GztZT68yMtg5Hz/IE1iWik7e3tLeErfWPP11GHLknpl297werVP+jVT7Zkp44WUDW9pbSTWMBX8wj712FqUQVf1+gDQvqdiwVWGBSSoDXjqbCl/04ZdXz63teCOFAX9n7sfG5UXpXzCzkS3n6OzEJFVPp0BZrZdcOqpeFalM5gV/+a0usjLvlXN4Xnhvz25A599xb0HxaVf3ruM2Nigt0EJ4hxOpFlT9RIxHiREbRWBL0TLCvCTjPmEwL5mAPVyXZvHow0RtEEm0RhW8ZVSIuZaojcbrtf1gRfOUlhpdywTYP7z4MP0EE38WDi5uR9tN2uk3ZY1w3YIVacXbDofMF7k9RWpxdNRU+4HyGbDJUdz+hbiHT0nomPu2XmWSiJGvInDJxe9yI7fdJ70RHi/HqGg91B5ARnQaU3kMtd8qIJvDVF0rtQOvFJM0BZbEOiCUtLdKMHSRITfwc6KG6XcrwL7Voo4NSoRRefGhsTc9PQnr6ZMYRnuvpqnA0cHTky4A+766Tmb7LdlRKs8ATAyGOArtyUSc/1Ij4iAW5ocRvvS0Jd6Q3DW6b0hnG5wHfh7yug/iGv/6Rk22Q0fqobFRZ+m7Xci+wQXoZjOIolJ2zPCftFCl/0pdoPykbTZ3A6pPhRSc2vxtgsA6L+/H1XsvXYQlwqogTmoTmBlHv0l37CjiLwUSc/W4GhTUWLgzXOUsZH9W0fz9iCdj0ERZeVx1boMw3FpMrVRulQDU/9y3H1HvCviyve1O7QoF1Xklta42XA8RkZVaHP+IobsbZGQXMgsptyEZKzbPSvoo0rG+JV0U4CHCTpXVOdXy3/hjXT1wK/p5znHOG/SxamFt82c9RDG829qGtLpl9eRybmBYENi0sqerrcUJG42Bwqc8VLymMb20Ushr6zagtM+qURB7IYx5DlGJFC5deOTAYY6F9VzbbK9gFLl3PcGNYTa6s4TvNAim7vEcq6vAuCjEuoskpo7ggfzt9OqD+j3Y398/g4pGIPb+t7lSpSOZBu3zPKacrCloUWvKtFRsxP5FvDTm99ROAnjSDkkzLCRO4BcT9VfYRCPVIWCvXv/o3aNXY82aXQ78A3zInGqEUldeW4QlcUohDY5s25m+B9xFKhxVlu0J/EY/bBNWZpm1pgxt2QWuPqSBjTfhm2qDc3YDFXizdVTjue0o8/cWiwLHXbvXA3O2N+CPKOS2dqH+QGwxJebWKYgXE4ql+SRgmuNtGRWE5DP1uEiW1Q1BU38MgXKH6moWNl0GWdIiQva+VJ3nXAVW8fPtK9YEJbkEEJ1FSNMPcPHW18YmU9e3CpwlUcNbJtW4GE/gDRPNoSFmiYsZuKaLDztYSO2yhMRXXP54Acqs4ejWenzHozad20cE4EYlbMoWckwz/cWkAH+NmQFP4htUlTMvdRPl2esJXURRikLCP6xmENLVEUd8DtGT4uYLbXZWhoCAAFop4vIj4eTOeqNWN9MM8F9K7s6IPDIzOGE5X6UmBeTcVsFFxjTdd1OEPFL8azdVXXgWz4FJ+FJ57tqTQyBSfx4f0LojePGBcQgn2pSKfO50WI6MTjQhcs/cSgDxEh4nE//+eHG0Zi1lFEMjTX2Fuu9S3pt9H/gOAk0cG3YytnNa3xP+70gOKDmIkL9IOAew2SEFl/EHiX98RcEKV0yI1kDt0klKUeJ6bzI7HoxRcIWXu28ie18X/GwXoQENVPECZMoesbS3jDsBw/Jd6/Sz+BTDsFlh7w8SmYsbVu0NXdMYhv2VmsJQRdbBegXiNSpXDVFVxsUtZuh4iFat9tagjAb++surOmUAfTeXA/IiOxmFfxXPChNRHT1NAsxvkSV14/pW6Kx/GBwEOgqJyoVSX0C58kxwR/1gq7HghJYY0ihxGkC5NPPKEFPFJFclwekrTS6n9RVK8tXc2IGKPtrSYG3HLDJ480tzZc0vuirsfclrJmnI+RanJwVoXX7iZpPwpAPBTXfdBWzjgr2Z+mlfABrtf/+GEtGB5sfAt19Xbkyf62VBcjWZBcTRcLb+9O/AKCeWIrxnrOu74ufm1hYEvyB3o+vP8w38M2KIwqm2U84Lcp+WJ8R9EGlBYz4MKWMPyGgOePB/r0IPB4Xg5OxWLLyHnTrVRVpGS9wHvFGAA+gK9VcZgh9MCkOM2shaiQuL+E0L04x9LkdSxNGwCclb/tVMbbw1XOoTDpyPKeSalNTpWiHA2a1pldUGKdaMwdTR0gUT1kkT9DAbyoRxTFbk+7/KhGrUoWn2Y9MJPuSoC01KDoP7yvnWiah+l9IpsEXZ7hN17v44dpP7WRraoeGePU/7HdJU2019Q1ew/mCSFov6+0ImnMIDIm42cy02GlR/QK8yiKqZnnLmpnaKsz4YzQto1WfYSvEgMKfKw21h59tnqMyy8kjAILcYH5nlkGLA+vyI5VNv8Iprp7Y8x9PnoVeeFhAfGgg35t+BgYxzGtoGcUAAOjSRoKHDU+iIjq++vFWnitZ8AiSc2lfuO5WAX3F7DUeF6xr6cuekwLC5qqojktueFK1Ung8ktl9vMmJwehtkVEPddNGkUsh4UPNzFde4F1iH8hgFs7wWf/lIJd3rHORj0lyvvawWs30H+BRPVFN7EzmJQAIyanxjs1Cdfl3StXde6GuQ98QGQS93WIK/UuWExCFGOxXyOUYZKmQyi9MvfHIkwnsCnFzj6UNEJWZAZqloC9ov4IuZgw83fS7CoHoWMv/ph60f1aVFRdkFQLyzWvW/54y3rJ9G/AcSwrRbB/9pD93UDyHZVBNGQuijoZo5J3uKIZHilwSMGGl/BxnuOf4wS7JhLt42H0i5TSnwSy/2oOgceIIxo3Z7r7n7kIQc/rEthuWNSQfHDhqUjWWDum2AQ07y1g9v/JDUMDIuwfYK6nOVuOsMDB9Ja/87N106hHOU2yUKrNM9g9xxT7+yL1DeLjS96fy0ySQxQ87QOYlY1G90jJp/GcXCsmzWHkMzmqB0DEQYcYVIUZ+m6pLlPcVolmK93CmuS4YM8yQpTSPE50mpgBvG3+B0M3v4W+oYHbUhjdWxu0PXeVDeGX1oYPC9QLMKX1HFiJPAvdL81K5yg++B7My1KwhO/FS+mixlD6M3JBDTTvDqOe3t52zyIbV7rT2y3BAYDGQeCFVAmFKmp80MnyPGcS/j9idjwwIQlsLJCIkWUOCFIceO4ALmXoYz3Zz5CjqG5YWFn2869oOeaWmy+6nAMS0/7n8/lmBjmLkf3pzujfJ3Aimu1uP14bZa2FX7PuX5ZyvF8A0pqHJxLRTbjntQvWCORYJDwMBXw9bf1mR9lOZcKojBvOck1ZSuD9DcZXXA5SxsYhdEZBHjz52pR9FKgCJ6zou5Efb9HQBZFHAXRU2IdQmjdIipC//lmyYJ4gpPN5cJlGJy0iISa6xfJfAsDkEBwfipkxLw1NxwZCVyJ2PdKWhiwWuH4TGEtl4jeWBcBTcW4hvEyROVrlu6zGCRlMP9clzDQBaluwZACeAaDJnZfkELDrooXU+bwD9/Ia2gSPH4+zy4vvIs3ZPaki6IBnazsTO6va7yyUqvUgsKi4OxFEToHZ9/6vJxRD/TFFMncjQB6h/9X+kj3FBoJtZs9/lEJ8OBiLco25ftU9YYQZYHgpw/H7fJ38cibaPRU1zaHcQgWiBgk4DuoV6XA3cgSfljTHRIMagaEIb4pOD1RZS085HKxFz/zSH5RFJxdBIKmXZFi0sWK8XEHibtlVJD4fMNe504r9SAiooZWO32ZSHamuPKn81k6MQTiHBh35JDcntxFGZ2PZY3O4YSoMt3dDRfd5RZux/jFvmqAh0QTwTBf/Tm3lAGdV4/ovghf4KeSexk1Qt/QFxY8twdpIkAtLiIcAHsldTB4dscpbkJiyWg9UbeibFTNUyHMxV7KssYs6aVYivlC01XRI5rv+0mqZ9JYeZhRQ3aiqmyTIwti9mhqmyaGJTues9/DtqQEDo2WFygZQC3vjklTxyIWLmuXkekTb3eceojMafF/GLVVD/db/iWtObAuRwO6UqF2I8BfW0fx2IbWciuee0oajl9PwZo9MifNX26rE5bBSI01kEr62Z23lYtH8VxHqPVqeU2eMHBE11NbhmcmMvAntKEqna+Toc0CeDBd02GeQk16+xT2urMI3JiS9y/ihGhDikzHpxLFAdyAb/7qn2kKC2iKDijjVOiDQT18IymIushsc05SzLdbkzIwKADC22rFmZMfVCKH5zMTNZVoYT+gonyxbOdj5NLUQf3ZDhbF4GtynHER5b2n7DtEesa7I30BcWWFwkd+o1wP9wa+e8He82a8KpuPYIjk3odTIvqWrKh/KTXNlKgr+Ujw3a65KsaFWWh4wq2qPg2wB/JUy6Sz0TAFOoNKyztFJODUrCdDLZxwKaGD+mSpvjkgIGa/fkfa1PUdFgj3wIyXDLYJ7lpRV5+rgqe6mhl1Onu2dI65XrJxIxk/crLGC8LKNfejJBjaTFe27O4qtcB/TtLuDhqc6utxgDjxTsn/1pmOGTKITIaM+yEMyXILvQ1qWW6o2asatcUlrA3ZqZIKPqq9gO7cXP3d49IcjOAJ0WjoszZsKn3bCyUc1AbSeQDT9GLx48UpV3G6dtm3Aw0o5rKhWiFxb3tQ1ZKN3BuKWKdT4WeE2IuhNZkmgeJoe/vUc8yHf7hnozVR/OwKSLoSavg7Xr/LE59NzarFQULh11AvgTBd56cI57IiDCVxusr1LGvz5+xD1DZpICBk1QMuqJvnO/4Z4TeOzUzcsmesBdT9aXlQn5DAtW3WferQMbbnFlUo7MlcuPH87dMjlZfCYbSxohyC6zvzY1eQUIXb8sCfl/U/UdYLpnNe6aKIhrEaQb5M5QJzw3S19vm2cbSR45phhQbP8N+FWdVu7UP0Cl4tvXfSP/1pcIBSoWu+5JGUaDxgpoxekBFV6aLUDXEdN2BqJsGXE6pIH2fcvxBRLsXWlleLrkkQvQj4ct196GlA1xr9BJdbztmcKq9py1AktLVXrCAkWXo/X2XB03pY22+g2fgLUEiSB9YVtWKOH8Ala9ZPut/fWvhTftVPhUbhAjZAglip/Tuj/7lMsoEyjP15cMeZLgUkWU1p5nCYioaq7IwWlb2Sbxa+fT1n5UHxWRv/PdMMA0Zzdoy8Egq4OYD4hhDmmBMbpNs0nrf4288uQjrUs3G4jaUpsby8/lAfunmTsNktT4xFT9XEQNZu4yIGP2evd+J7SNSu5gS4C1tWCkQnVWCxSWArDH8/A9XTsVP808ekCUMj+/rk4UmEu2UUFCPeMW/twsWPMWMrGysjQA+uL5evqOZlNzI6JRNakVR93D9DFWNJZpzTmW1E57dU8DuZ6ZAYVN4wmvXEHXIwNhYDFCkOEm0GqSEy6oz7kdC5805XZeqkXhSLtFDMgm7DG59VCwNRozk+4pfLkZ9o9UZNQ/LM3KzDy1uQ8lDRl3AYCDclY2CaLBfPRBIC3/sKfgzoGSzRCPNzqBCILgL9jNtRBBpt11Z3xav/cdALV7zDuIElps2d9gctIcaK82BjLMmPkiWivSe2if4yFd6Nd0/8h/pPLyyMNCn0RgiPwNWF/M+fT/MEakOWrftphBioRhS0Ca4p3ngGO0CdPFiOtJMh/lUT0IUjxljrphrsFqNz//h9TM5590YsYTmapd5F/WRlu1zwbQPVx8h+kyHjzqyH2udWIxL3RaIsRH5TRkcTzhoNQj4VYoeo2qHb2+SA/Pd8yIK3fTxaNd9pYv1P4b3EJ7z5XqfnJHZ0UsHk/aK3NUrXUBNsqwqPikN9xwGjj6X1+ajf8YfVq8uMX03yY8ULEw/KEglZ2heHQIttR2H3NzrZXoNu2SX6HHOKqZ3UNcfmzcyPqfN+H7ChTspsM7scD+ffIiBIqv/xm2DNPFyNxpVAgkAm1B70khwyXW8xblzBSJ4iA7DOfujKR+zXbZJup5RokpHh5G5yNcFP6W3UXVmxIRDEfoNo/uydVN0e4S2DDcS35tFtLKLRRjnOsOd67hUBOl0ddhhJqUsBfByBaqpHlJog/favRpQhmgyzJuxnRCDnt9lmNmlkA9hIBRxtQHhzrUfINxGhxTzabM+2qHiOHoNxAVNhR7jnBWi1asHOyA4Cf2Qkfskm8dZ8bwyjzpn0qiNEjr1fLy864RiErBarxESeGBz4iR/nisHcVzUkJ9aJOcT8QfHB/S/kknoMPvbXWWchu7V3TsiiC88J4Xts/PHKs3Mn4GYF1+Lyj9NaSlSdk5kAbfbrulzu8EVxjpIS+F3rh6GhzV7VEYeTugxIvUzhpAPkAvA2yaqVFl22Io0GVhwCQJRLed4kOkNpjQMfJ4oQDU0tV4Hlduci7zPuLAUcbcf4PJuFZ+dfz6pW3yLJ8OUjarwmCQGrBn8vrN9uYwmd6J6n1iRkzXnirPNRh+lnCg1XOR9rdZsgGB596zQu7yRTBKsfA6Vyjb2huaz650Ps+UN14Cv6vkWxBZos4wl4JN+1IrX0j3WVKKGIMZ+wdOnU26z/pPaM8bkdswohz6EKjcZy34+LVv9w2V8aTOh0fhxC/us4mYBbhjZATsu4s7Dz8CLQfZW8jOmtTD1gddGr7jNUk3fblrg1gUN3J0E5CgdogkKwougMmusBwH/azKi4g+u2eFJTULUAgThel6rgwRbvPivNEJpcajxJmPWBa02iZfrSsD638dL5PSxguQ3BAi0VT2yMmqCXp49MiijrOueZAMGUkKMos5gJj9vUli1Dr5RaPaOD77KMWeHJiMBfkvVTe7oii28NrXn5kZ91WwOoxFsjv2sLaU0Y/Z9h2/QFHMgPHbzwtYkHPhFSTRkq8uG5UElXAvCGi4PFkOkYEWfcLDQNcI8fDpTgQ8T785KPvp+gTD8NaTRUk7tO6NbUWRg8iRrNk2+WFfRZek2hK3j3URKzXVT6a/pjp4O/zAdoQCNTJqKHzvlLxJ59pJzVepb46CIsjJcvb7y3YbKRfyQhJTWwDTc7WyBL65osNC/8EsCKMh1VCIGNDv3qy2qVs15CxQ2zb9UB6wet3jv5oWdm2scNwhmGSZ39GONGNXV2kF6coKOBSk73zK3YLMYPWgyohWrXOleWYJ5zkD+K1llaoVZUmo9w6mfyZWnk2H6Q48qllkRBRL5VLSB4pPdBlczxVV7tli1501PM/OZ0ayvZA+JXQfNye2YCuCb9Posz31GgZpXBTUSWXAwuca9NfdK3wyVrnp7rm5j3wofYLu0GGDlO7sq0x+ohbYqUwlhjy8YyHord/+DPERvrwNLuCihUBojLyzJc91qP79/31UxWn95GnBzmAqY5kgJUzOo9e6/bTv6xdU/IneSGTKIdSerRS9alMbj5LRR9+b16oxlQ7eiRm7fH3KVJTFeDRqtRMN+Hu4JniolWVyyowDBnUIA8/Rci/D84p2CQS2mXF/nA+zKx79So9B8WlixLnfVx/S0GhrkEmGslu+zJzko7oXyDoXAv8hyRSsPw4yG3Hx5GOijlQqiIMMkqG2Q3CXnKr51ZdtuRCHMcqxoljS8SBUnCzhYkFeUxB7d05bgRakWPLLujKYwUz3QMoIpRCFmxIgsHjXpUvYzGP25dvDt3Hq/yt+F7+rcQxmpyCxLkD1GOGD3PlfBtCSm1PFMyr5Ggm0jIHSmqkyrtbF1DH2pscTwTecn0XioDRb8DoqXC7QNK0E6jiupQ5QcsREDQLp2bQZz4mOnOkoRU4x5QAKME8Cb4S8KdLKwg/OfK/pFdFlr3S/3v8141OoBHAbunD9ZBogRX7J8lEQltoVhKnrWlIaSQBBb6Xxn3cc5ei9xsRtcTXD24XL6XpFi8MBeRcyuy0n3Pszc63PfcukQZzc4ifS7bNkjAVGwgz4yhSlM3dcWrinV6+vnbwcH9nUtTcWaBbCTU+CjKMD9e9KVkGVkuQt2sUNVo0Ow9AbGnBfosy6A3f+QOU9MjZ77M5rB2eu/sG43P/uEyQf0nsygRKAQx6CN806QGi/MGwQXNtQL9SLTAoEEHWHF2BV8LiHhLP06q1Wp68QSbYg6J4gIHbv38G/SfVoe6DNiTYyyy+e6PGeEiVehB73F2KeEUJELdVIdY/q4SF7sDkV2ay1DzvUT7BlwATt0AznRae5tviPwBRHXgiKGKIcD5IdQWsVCfJ6zSCYv9OwS4KekcHvZi5RZLBCce9qD0ouPR6GkJoipktQWd2VzSet67jq7QZcnt2GQ6lS4Sbv25fbz4G0x2zU4uJ2L08uFNQIVVddeSuRNYQWLfbzyRSjWe8y0LDnon4BdQy+BotjWJwQHQZ/hK1aICXzfPymQ71ceIB+kcQ72U0ibj5YjoOV9jXUwbov40zLTrA2DzaFBE6UaBB9DuM0MJdbYFcDfZqBpbEDno8/aCra70srCZaSrj2mqRLn7XA3FA8EvC5m6Mx61Fdej0xrlS6p0B/G+frGFYWdhZY8JqH6VIMM1QfK/AiHTi343euNOeRu+OPUo4KlhHElLks0VvJO7pbsHS/a0n15Wf7P3eXEzi4BfvsYISb8Qv51Uo6nPqhMumxTnE6U6dDbV7qMDesN1t8ycTM45kkAYnQbWIZSb5/AAbLnDWb/IrIW8D+SeKZCTKnnlMhp7rCjt6Mtb4Rh4/ywvba/NuSs2UdFWW48HbKjhRHB7mxCBXhvfHkJlS9UVpxAjZL7eFKLEqCJaWG5yLMAv8xv8FMbH6mWsS90DhRnKWS2qH9Ev0B/giYGgzjJ1bMxG+gjn7zKDaV/kvRqghrBy6X+OUCKhf+Zc6f38azRZuPQSjWCcSWaSU90emlIkvojx6obd4JR2ifBGLPQVKm6kGnIAzFF8bYTYhHuXPOH1srUPqPljjBcK2c+joiQNyIIEOM8Gi7IFZs4DfET9liSGA3fEC52xVH2MVe96VjxhW6ifShl9F+QgzD6N/ky00AsRyUOFo/Jn0qKoF0NWWQEx7LMfglK+yb1+2+lST2Iyc3/axftx8BjTn8V/ypUIY4u+UnrU0dBkFbAb8GOurn70V6R2hG64QLPUzOTtnkmzzP5WGzV/7XCL4/fq7siIDBmKswEJkqOZZ/9VryWQ3CiG6r5Sa61dtoSD8ykPFQEcD1st1WEb84d4ulXne5uN9GzM/tOvCUotRW1MC9a/dxdXUenY4jlEeSBcU/DHtBr1VydS8Ihfus1DrNxMzcvm9HyGN4YyCGSnGqLoBcerDth2Dsvxznm+/ySHFe3RpjM2JofUsMOXd7CrzpbQakCJmKpiLEJiMH+pcCiAqpqFB3nCCmksn1r4QTJrJ0LyCeX0KHYx0zCkGdUVBKvrJiFjlai1qeFH26Y1DoEOFGKwfz8LOQr56R9t+Pw3bbygyYiqSiKFchEtQNugJ6+QipnBdosIiaCLk/m2PjHaAMsVwjsoUaI8muWfLahVnjAnrbZ5y3hnzRgKlPB6gVy1CsJVBe3ovlLY2PnVmdF5lO1I95/P4PZ86z85PozpsD41xAzLswDwj5e5H/Q1TN48KnMmXPevJSnHyG8JMnMYjl5RIjper8m5XCvwW5jLdyvobYfhJXA2xxIyKoKyP8RrBjeXEAUaQ7zER7eTRHiTnEK52/jPOwSf8HAGFvPQxtWAw331EBj/HDzxFfmzDrkLZ4RGvhDRWZlst/GcbMQ7Tr8y0I+KZ3oxiniyKjm33GD0T+xV7HGaJPNE7Hw/P4SfqtYxDxkTbssDNk7IUflYBNdkFEe7LHomh8YuedmYd3yCGHiTdCwNdY6KAP4MNEIpheZGDTAJMENMyDJeyDdWGeviCc/naSFPNOmEPFsoILdRJr44jqVNec26Qnb7d4r9h583phHebSS15OU/ZgoOg4Q98LwHsG+yxYrLEPan8wtRvjxjojFhinvssRWgceeqSnD7HjQp1035H81pvxdbpmrij8fUbadaztNMroN8H/yVmp3+GBpCbQDd2i/uM3qC0yQFr4tJUJQ0hvAitXCvUIYtPs+zWolT7cboft8c3ngXXUnBCI8xg9sGB5GPh25+MakmzTJEPo3r81UyRL6sy8DF14a//cGRKoLP+Ao7ppKWEWXHrCFIwTAiVBJ70hK8/amy8LAR9KHBpnnaTY3wfpLqDAAv5K1MMDOdFJwZrIglFsY1DcSpuUUzTtMHCk+KyD3rZVMMVv7hpkjTeZfiHtcNRThwAhlWIIkMWDSZJCB9QZrsKbeeHTct2RXpNPA3/JUfnBbtKYf7+8E7cj+pwFi89nelxDXdB087Wv8iXfzqoKqVxCum6NUD3o8JDfbUYZokOwR313WuiaQKdRqAw5fkEYD0Zjrfw2FMyhpPsHFgJM2QmmO+agQK5vbgzQ72YlHc9d1uYNnBt/X3UFNb1PvXwNK3Ha2r/HhSijiQR6NwKTErj5/axoHpgPTv2ShFkBcI+F+Lk6IKvHBP3ABj60ITt4YP4RDP5yWi0HywnHsI+Q36i4FTItnXOZcvuH+dVCI0XyvQsilA0bXxobRpS7Pf3gyWGU0S00xeOrFKPCU5vFl0Q5RoGxroYu6nXkUrVPcLQH3vVophtRTZiOmpA+R0K4Us0P80HuSITUiH/lp1VKwaxLGn1hc/B5Ulrfee92a5e3rRblR4HTxNLQgac6e8QJqzy10+C16jQBAyLPwwIDAnGsBi2c0y5eKJgWK245l9MZ9Fnc0WKSRpLdXkEHrw8vy9A/hX0h9wqhwOHYUS3iphgm4sprHM9oL+NsCinHi6HiPUDT+4Pox9S19mn7oezbvEf2KhJNuPXtk8Kq9xX8Aksf6vTMDOnPFC/BTBZGJiGaE6wXtu/L6v2/sAuP6gaesdib6Ue4poHIQoQX21GYPVCGL8R3zqBpicuOSa+xKqKSnYvzTPmygd7r263HYaD5U1LRNNvIWuQliz7uacmZRkqhVwOQGfHO4bC74c45P0MiJJ7DnR91DWhBpJC1jy5nQP/MXw3/Jltdj3a7o6NhwPjYJfMCNMx6kl3ZiqLCUvR3eCWHDZive75qFzj7f56BvhdIX8HzNjqRULiceWEfO2Z5qSlOyAxhpcmf3ibbUl+2jq9Wm6qUhpUW94/qm4DMeo5xbkU/lTsA4UCZXWkLi2xdcC0pUKtyUArjMJihjxz9jvOmPus385aRm7WqPf/kzm8/DXlduQDuP4whU0CKwsVodDywgB/Ft0JnMNkxiSbzpWKd6LgG8nmYStTyCzVjKKvBCZ5e6Pz1bFqs6M6NMf1zqlfZAA5DMmJ4EBYhSSkJRXQ5w71iKdtGjtexkfyvg/3D5hcEfga7WMbM3aGk/xiEYoSjCVTWRx09ie9p53cmR1IqydADLEuiTtk+XAwRZVGIeKGNUM/5QlZJgWVMmeKgHpxOqezOIUGeb7Cb0N1+BjXQpJ7tHdNA6hwPF9x/NYxy+Row4IgXIuKbMKNZZVB7ekIa2w35EQJeGy8ALTA9wgBZy+yLhQqIkXYCcS0jdEc/2tZloZkRSVtdq98d7wExw4GbaBv6NCC3wdPJ6XXnfmLf2p7FZRcBT3muQ9JwUhF6wikNr1AsIWqTGGojGbkLgTAOfTW6eSop7CaPqwsYTtKbZI6cPk/QlGJgq7KKvUknjnvI9w1JpgtV3P2l1XZccDLJI6VO9nZdxk8iGWCVem21X8a00DX5KJtsstYS1t20/Kkulix3zuvEb/6GEmGSrXex6pwr89HbDjiigP59NMkkHFLxhqVabddxX+6MWo8sNunfrbBVbyfF1Z0oS0wldfPE5BteTRDWlCoVevB8CZxqMYHiRjLU/UprSksR4m8c722m41grTfEg7sUxoZoBARaDrPQMPMOBP1wpZNrMXUyDrWgIUI+woXA9wtgaqN7TZGxJt5zutDCBdO4EH5ZBxwZiAIbloahMPPfbYdY4sv3u7QQqz/LyKjewv9eWh1z60h2+uAzvSkxEeg/bDB2yEpZ7EI/tMyNrq6JAdbSn8J7cdut7718+s5rrIUpo5wvGvzkVsAPGi5tWJgYJpDAKhY2p7e0XvqdMsYbJFbqeErdz0UyvvhlcK2iUGXe5BosdFDaQcjT4sTyzNs0YJYVRIdQ/Z0S6j8CKec+O3dZwWIoxc/Yq9crlIr9f3Ivfn746SHirRjcjHB772XBKfo9/fkQhZrRGCsZWouT2TfD1K98eWlxgMC9wcjIz1bGpcgC+7M7AxyKzH7Os0ElmPRQX/p8CD/8ZUkfvECxaupCgXnRTjnevLLHWGnuBjST6PvIJog/PSDrKFOOxaPKQJEyBZlMW8c4aHzQcSwm7SgUZcuLQNNFVqj2RaEA6CEOw5vPdaP3Q1hbMmE4j6W1qmIzmj9mdYeWNs4Cw4J8lWxY9F4wMl+X50oe/YzspcnkjFS34XLv2bgn0Y6VRVro88CUozXcewf+JjfcxbxRIs1DYRzvUWVWox/HyXM8dVO5VnoIyIod4oQ6znbFhfgf8OLGPSqoCP6JcBKVWHwQrFJG5mRjk3VYDRzu8DlGltEgi9/lNkGwqC2MOHa5Qhzfs2CMowtCoe3hdrelO66uxJwcNPOe3DlbB2othdNMmjf2OSGA0MPqw+Y32wBmdVsOzf2/QujJcucQvGWZCWUhXDdaMN8RS2mqBDpthhb3cb4vqt16nOYudrCy4w7OOK2D3W+vHpGLivB5qL+MRud67cd3cRAlyDETqJnoAthToqGoH/81jWfKS2KwCn4Z1gFWHfrAP3MzhjtPrLgG8sl3FBDY5AViquJ0Nhr4fi/xz6HDONoWgLsvZpmJhnAOLt++7EBsNEDNY/9ezTICDTogyj8jeULZVtPsrGWTa0Ff86R6ALxrAn8JvrfNuUDw4NSFnf6K19z3Jt0yEpMwmG0fmAN5KA+ysgDanmo1dCF+q56MvAXnCuWbPwlH3xshVHJnVdczIMtSUokQ0Vn4n4nUHNP+BvlJ9PzA9qoSlsv49tdVt0VWymAsBxTJs6wBb2G4eP/mo2c1hwqPo+3mesyKIwGyj716lya2udbT1vEsbNZIse9fjsu23kBDN98Iw3n2dq0wWtL1gNRZh3DIt0dY2u0qY3yAIehpBXsZUcNM8w+Sto8hgh0Br9WLaCWfqfNYRUSrZm8ypvtgE9+ODLwWQsUO0GTP8/1sCm/H3RBcS10FkznOnC48alukEbnKiR2lVmDwDNK2uOkOjS4XZg+m5WHVpI6vtBg4hpkT5Q7z7Bs6BEdMOKER+YHJq7dkzvzD6ttuQPxgzXn9+0Hia7jMXGUMQpbu5dXQaMgSMgilID3AmdP1w0486iP1q2c/f1Wnn+gYJfWl+VyaUYyKanpOCQ0EQYCfIOpiCn/f3xWs129AXx6q3/mOecaFgkMgNW9kFGEl/aEi8SkIkI82nWpMpX5YXupp0tgBf1Po2CDdgq8c0FQi9R2KYFXhQXjYB4fWPobydALPfDu6q90dNvh/w8aeq/Dtdv3q4udXqdpUy+SolgzNArIn9HYrEDkKaKHur50DreT57Nk1yBqTQE5UwaWLhUbImOVkXOXMvEo6p7JAM8ZnrwyDybNJEvTkZNUluTsfZR4E4pyyfCiiMZOyjem/IVunPLfog29Mm2d1ZleeWfzYfPNTfYp9DJ5vJlDi3L2wfq95GBwmvlmVFB3HXJjYNwB1ORKUVe71blLEczm060ksiEZyDEFXQDJyFrev7BRRIdI07/aLuIJQ6PFrpDvt/j3rxQJUKyf5WmJsjFIw9uEtxtIkWDd9P7Jd86oWYq9/xFh6BJIJbZtnLWTIcq5NOUf40pUYIY3rZW+gSrg0u6Dr3VGzwx3bYDtTGn0au71uH5SfZ22e//NB4MR64hzt2q/pztnXvC+RrstWMxhvSAqgQR8y8dRCwVLfxEhaJUQJE2wtW66RD37ParA+ClkAriXvm+lu8fK4MCrJIDYS2+HY3scR/T1jalIzP+ZDoocc2PFObIS4cIOm0FVDbnO+8TvLp7bri+f4UCHNh6x8XkVYpCIbnkByY+2Cc+3KgFnqpu8Xo3UIXio4OAoqM/ju2j6JuxNMhfYEYAsEF1cMQYPQG2pFkFz07utECa7aBuJu3XpLLZqr/fdG+6qyVuC3GaBepm4Of1GDJEV/75eqSureduVCNIVJdh1uPYWGssWyoN8/kS3Sj3Wdw9H4z46N3KnQkIg8mkL5kRDHeD7JgzUaTPXUYn+V9SYQMANe+YKb6Zb2CbeZ/ljhbvUxI/zP1RTRFgOUEDVxt4FxchLDWP+WRAkPW1nYBBhMYqqKvE7SLKMpO9G6pYA7xNZ7dvU7S+GRlPwt6ReMlmguTV/Sf500L7NG0/Oz2hD+eRD/PUd7PQW9ACUu2Qi1Tjr4SADLLeekjW31iW01dI6ZlAxUD7pb1fF9pgNM0Zv7kS/Pi6oZZZzQ5b71IT0W4Rh0oFTAHi2EeIh7vDl+P9dlYOEFRRF3G7ruBwME1LUjDpOOFVOR+mrziLb8qIPuKDD79ZNJ31hOsWRb8JSqErCQ5tPSlCY+BaCzcS04bHB/vpMFKsfidgM1AbCgLMTvJs8OTBtgmMx00avVmK2nMIt9PdQeMfQFP74klvdlm3mrx8ja+qHobk2PNjWcZ+6TSoVtsOaCGTPehWtMvOOIyLJuY6HRqgPcKUtktQiK8k+6JLDPhqc3qTeRSWGnWUr2J/kStE4nu1yX89OBrh0yJd0eAErPASowgkzAXOEy5+nBK5/AybrxKW7r/O1cwd6fA37mIUq/NYrKZNMMxwQpoVC7T/lh0Cvlw1x07fhjs18aXESnTJMu9FMCCWfpfn5MO1p4bh49uxxRvGMwX6dl0dkObuBKKBaaiye8/5bksv6Dg8u59trNTRxdXs9dnPxKSO9KJi+7Z9PcDM0+xPpe+BjlFLoqnEISJ/tupAly2xL51ozO4uh9yvdaoeT/3z1BYSeaIbyaM/kzH7Akw8ua/omMLlCXvkLYWQg+Ns2LhjPWwUrjauuGPlLk5kG26S8b2LZwEXYpTtgEYGheSX8RRUJgnUJQyGZwJWgNuweZkQZD56BEuAP+PDkOrIFJNEMT4a/Uj1O10BLMbKgYEgCuqoyJjDFovoW5LXmmZ60JAzeM6uLReI9qvpFlslihnIXrTgjvm39ajvToF+1jYL5ZmJPFSPtuDasZnDJAnIbFl2Sul+deEuQQx3Pv/rSRNYQq6M2iEw21dgnGLsLW406yvh15bfIDth4gAZBHFfY0KW67A4z0uc1tllsozDsYImclygRlu8Efq13jRG0UBqLoZH+xqzmi7Y4RgENXRKviIO333/12d5XRUTQ34/orcILzKMs/wWAAnL4NMzKDpnnsE1Wkuo8aAF1hKnDpPTb9mD+Z9xAE4QksVGBj2fK7L9gYOYcuV68/rjJyYor3WhsM6vbCcunEe45MpsdqM09nRp0+UsYAHQV7d4kALGU9sOlwHuWxxPjMNdmHtOJExmrR+Gf9kg9sY2jj/THoECzUyJJyzB7SV5hF9PIEaBfQfzZW7HJOf5elYeiSMaZHUiqcDaBsqh3ZrycDBGONAF7I+nUzb2kWdU1mHclU1XL4fXogc5f/e3L94iBRrJMVunAiXlC8s3929b3z4TxR04XcmYucJBCnDJOpMuhtuZv4pcsfIZ2etTGN0CGznZI1rE0M+YZIR2Gmj2HJTSEQKr7u58RvtsuUaf1g7+rNKPIfD8/AKsrSfPbdmlVieX4kns1DRU0W60mao0W1HyQoNoYbCymBAsNkolI/VDqnoMZZ4lxqOwrSzAarnrmDZm9CphVDt0hJzedJZF2Lns+BQKTK7G8krBLHpcGWL9n+tAfk7ks0vv0zIM1jqb0CKTk2P0hQ4Vzr3taP4vRpD8sk2MiCxwF4V4EHQkHfAtw77ea26agz2TgtxcJsnnSzEtCeP4jQdWMe97ljjUl0tKfX6+85Z4Uoh6nwxzDQeFhaR7f3yG9zTFgqIXg/J3FmQXP3cAiV013QsSgnmePZru1ZJ+vj4jvNM8eZ3bI/uwNB893MDtl/OeCid1ySmF6XkAEaUdpexpbidIjz8SCxphCNR24SEs3P6wQUwCUJSI6GszMRdSpCRFJ9sfKvBEIDhyDiRETTMudNOehF+ETqjvePwojF9gzdzEwElXhOS8yf9KJ8sqD69PTf1pAqz8S9fif4mvRgKgMEy+UULryjJ0J/2l73hRye7vAROYV0c0jkyCNQJNxHRQ+vgegl8SdhoDNRN8KXAv1eKiqEDnOifTXrzJOWo7bw2AVUeKKTlXVbvBk4GD0qFBenDqJ5d7lfDOOx1eR20rlssAmsp6zyAjoMnREvPb30fE4X/heQrypFcAmmwon+0lUzdkoiSTcFn/DgNvk/PH5Kxgk9MT5fewi1vLKuVM6hQ9ioNZOwfrmQJDnYuI97yQPADsdI8vSoc3ngRsoig6yPs2RId/viQT3tkD2ymgmpRi4vifeARFXvEd3BzwnqRymPstzmnjovNKTvLYP2oev5ALiFI5iK3sOMCcu9Qz74q094ZpErkpfxQ58x3wzUQdT3+Qiuf2Xay6swAhMMEOEDh0AeikuVU9BaVQESnRcG6jEKey9xBC5Z8YmMlSMNYvYTk901B/OtmOCTnEVU0RgwtgWwTu1oZTEe3e3ReZDAsP7KpepqpthzvR565mPeT1zHoXas6xGoIOqcTIiPDSWZfdshzVSCzy7GK9c3xdb1rw+KN6pniLxamJaDDg523rTtmW/O7i17Z2rgS6R6x6KelmHk3JNZ/LQlXMceU1evcPi/Fk1NCmhrP/UqnKVqd+J79A0+Do1Ho14nH7blU9U2MbBNbil2MiUHyZPkaTQ/kiGVQ2Se5oxAqtYKU9Y0ZsZyORsB2Xk3RSEJeGZv55OLi+d3UjPd36F11doZ6OokwyO6MdLMr1wzP8HOoW4uu7XkDqMVPnHhciqkz6PSKr0BzqRHGbhisEBFVGY9ya3X2XjI22jP7PCyVYrKZTbkLJnceaMhG05Fo3lk1myRuWM7za4hQ9ltl17eX79KNkms14yleOK3WL6p0Z9YKHi0Lsf5bKDNR+/KezHJ30Hw7IfY6Oe69vpLZ1SUTMD5SXoqCNhtI40igx6lFwO4aBS7HRr7S5tPsjSfqeaFh5dJWBwhV6KfvzJ4brkSH0zdZq3f/96ySv8B3wSXFaOTv9EpnsuCNWOvevtOkrhtNBJVunYvFaJFnw1WnLoYYvizbdIfTa+WW1eiYqB0Lt+3d7ohVIRAQMuc82hKVuiNT7mrqDUoo1Txe2bOo/7B5ZxTA/oGTmtuNYtz9EIM49JLa4LA3OaVy6jj58l5kJ2A0FGHaY+g3PDgesUb86+asFKs9xaVNs6MYP4ni5ZnAMppv1TbepqDjChQG4MdiflS6DMUrsk3HrZF8o1QbTW+PqIlTSzxz2siXg1S0se7ZhdG0Ib3pdiJiWilk88/ma3J5Fhfu7bSYboDMr+8GnUOsoZZKodglr93yVZSX6opfgX/OqbxZbBjx88EEiTHbRC9xN3cOtkiqJuVqVmza0ZowxW7OGJmdsOP2HHonRrWLozewCDQbSX3OLL/fRJEcvYp9y8c2qR739OUZicvRX7xBG1vxfiRQZQWcvBD/wihMtyTYAtUyzvViU6xptRSqTkmrOQap3xcq+AOHGiRdb5trpnJW9d2xDKJ7ot2kW29lij7HykuK/undY67N9EmQLFj5de1qlS4OmvrODfJmsvu4ITnznN/yr7k9D8maqJ7+8CNYHyxfiPbGWDtZRecsjk99o4mep1DLaRcZzediWXyWgKtVfrrxRV0Io6HIT1rhEjJoTbncZ5HCJeCk4qZJSlbZ+h7uM6lxyLEmtQIahjz6LRzaQq8HF1nAPQwHBrEDChLIyORGOF/J9oRZIFVVKoz5ob9Ybpky3wJJUav23eScty1z0AeucDPYvXsyEcDWyxzrtLZVXF7m2Rc1U0wxED/5H2/K+G8g4LwaS62zCDdAQsE+zU12+q5TGnBjryrSDBg/saVbX83RDgbOgn8uVswL7QXgJUdTAWBmSLaDSkQTE3SW4PPQobmkRtGW/4m02u2hdvdJER201CciSXDgS1ey4OwCrhguUJoGIcqenqjKvHyhzXKfdtx4G2agFjYjrUOSzLqHU704/k99kdB4yuukHwOFH4UB+PnuN6EoZ/e7qHw1Kh5tjR9cvKpKbRTesJJWLs0VMD0sh4wnGtOPNjk+DicwK9JB6+TtHXC7sjklupXpz7cEJBpjLzG3Syyr5XSlenghrsmXLggyitdV5ivmjMNzqdGwBjNTxRhoWJ3RUXtD562++ZspXAaRUpqKZvhhyM+AoL0K4T4fI871JrNQlT3dessEUnIUYKwEmwlvCezC1yh6bIqH+spAee1Xv2h36VERLxP8JFPXC3YnV5ucWyFVcHU+5PGPSIM1/iyfl3r/ZwFu2TMlY3lVYVphDdqLDPZ+6amcGIkyzi4YprlOqsv/JhxPzXaMSXImQDAR+jybywM4Eo3t1H9+FtTNwjTzim5KPLVQVOaKPNGF4Dv0R3P6XSNEJYYFRE+kZ6yKR5jQI9/CLDnl8gDv12SWUjuFoEDxcweREkrB9JxCAhhfcmtkC8RadFW1PdXpdrOsIavlxkY3GPhW+EPj9NKX8Um+Os1fc88g/yKsCQreNimq+qiII9q31Upzv7kTXUdc93hwEa5O/1leNz8enMuaQPhIUc5pDQ7HhWS4XuHDBax0k9/peVnFLqaWYFJNp7fMSXC4XmJPDtn11IwnMgn5gx674MDc6GHNddBbr992mDiUBrRG6DO/dS6HDDeGP+sY6ZmZnPO5PzGe408qjPfBenXmUT3yfHsvzKowV5/wkuwyNcmfFccuUEI7i+VvhGTXnS/ZTGdHY1tMjiSat39JXLSE7iQJIHm4qcTn1egc6D/XFqFS34xEvulSouRJy/P0HkRJpmIiq1AtYLik8gJcP6aB0L3GhysEP2XoLqRwKFP8t50wfbLdXaEFcDIw05kPXGrzG6jxpRm4i8cDtd8szumQ4oAvX5AM3WMQnUIEWsyHVdZaAm7GCouCPCL6QHAdEbtseiPqreRZlKKA4aT4TNYro4B880mpFhhgeJburtnG9VS3QUneMx2jIm+T4DAgAjYtstqp4y5eIsNKz2LbEd0R2nxu+5UbF42tc0l7aJfmyai4VkTe3LT5Nsg6h5qKQz0YQyj6Ms+8NxP9KWE85O9zQ7jtZIRDvIOwV5ITseMn9MZvXRWgYTqr/BS6P1GKfDiDqMFBrpdCCw/H31lfwIXyl64FSdZDjzz7gtrMbg0vUt6V7e+7nDg/RBALN99PokRjomRdWqOU3H4+qRyFqT1rQkEGnJyZXVbhomHc3UDuFMly6imTLSA5KqH/n656KwPKJ9u5synseVvr41NcwP7pTwa0kMsBUM6YmBodXUSz324DuSm/gERvnmB47dJ3+fkEhilQ6zg4y+dvKNfuFiuZDXM55MqVEIvSK95OhXVS5Bu9VkcJme1fUjpGWxM5cJ4TJvz2zhLkyBvjVTwQg1DoL7eDqwEZwThClVuZgO8k3PrZ619Yjbqb3dOm4TYx7TKM0pjMO62EC0jFmdYRL3uE5A7cLiwcJxS+FacEB0ksrvKLjlgdxSYwbwT+vK78s+7eOq3pbbqFdFXA/Aocg1fcPS0tk+CH9KRnW5/alrvrdj4qx+9ifHPvjBhecSJVfgsGcH5P+Ki3fVaChWxHLD/YbsMbl95G5u4xU/8k48/r+ntFKhxn1wT0ME/cF+Wuu+V0D1I543r1gIC4gwT5E0oc+kLCjMPKX+aULjyFfICVvpbf6dK5xG/vW1Z/D2S7c5o+/Fxrl9SS1UphplKsyiZZziNfyotmpkY+iAB5KqatIfOfxj7heK+TaUKEcrT6z83ij3YZyZX2HyygDx0t1rwWmofltYG1E+9e9fVLpnpuCVbNzeoYr2UAQJKrbSzqi9tSu4/iaf8s6BEuW5We9IekF/c6vaL/ykErA0Ul9s1hH5CAeFrL+LDxRjD7mpMFR+VlSPelA01SyGo+lcRV9xMiL+UMpCyFwSvI/f6DFhFdP7H1a5tAPkF3oVJgQkhjEGO8V2EMOscj7iI/NSB04yOTNxwiJSvyuqzeUc8WHtmj1/UfbvN/Uwh1vHY09zNwkTmJKJBPIMLTCP6oQX+ax4Aeg7vhcId+jyDN2EQKytx80OZc/abamwFEkQKEc5/pXbHvOwZXKs+k+sWZAPtevuw+XRSr+I0vw82GUTpIn5cnYyKfbzCusFzMyZSyVEl3MgywYNSRAIiVXP7+JcfWLrbxGlbq/+L7P4D9iQL/8TfW2rokNupVM2Tyad7nBGbaK1i/wrGNLPmumS0g6MmRI3ByoZYaIcO5QIAw57JOc1qJnh8MmisfXr8OeAfxRQrATjbiTAtmfvHeaL7YNwTC+i+ZHEOcWTKat+2S+TKzvIUy3muNvO6l0Vj2upslFqcQRZ45TNku4JWWDsxXA8QFS/kx04MAVULkd598N4YFmFMBSiRPISmw+uSjCr6JiWxj8kfBBTZHQYHKtPVXtQ8vOJwrXzicd5WcmfMLa3I9vD8i7StqQt5D1E2DbUVoMWjcTHeGtGLmAyA1HkyqA27SBSRLMv0+Inuh+6KKbWmC44fymFFBOhx3Ea5zatv3YcA/qR4Q44m+SY1DimMh9PVu0C54V8f8kDrywl/5GfyL2FLiJDSGaTeq9raaDjW7kvIb2vYrCThIRYH7Vdze77PhymrhpgT32/9PIKToLCsQpeHTRGj5IHoNlmacC+iNN+ia7DvPrWYmPVClDBnJrH4OKxadYy0cv9uOhToyu53uOCjcN/CYPCRG0XEDQDWADthkkPYSg9UV1d5CT2DgHrulcSwjUtS2Hc0E1pXh78uE8/5uCFUyRKGBHTjXTE6xGv4J3I1VQq2Gj1DXgGWFde9qvy0HA7AYc+nWTNemxOOyGjx0VlzxmkXSo+ShHm6ZePpMMbJPKdSbUsqekPysYqBVPbqBELeinRu4IPb4hWUajkry4+hVOYUkVvJhKq3winXLbpKcBtFcCrQg53PZxaWQlc5Ldy8KkkjidRyMglqwmkHEw5nI5zNXgy5K+CvF/4TNlGqSS0+QPpui0PSn/kbbGj6cmBR+udT4dn7vjmD6DMPRx2jOql6zJOILeO0q3GVmzSAa4zd0N+rmrXZxzHDzgNB7ui0odcT7lJJnVl7GDI1SiL4YidLQRPqFszs5mORp7SLvMdG6eQGneKh+UfzU+5uWmpi06ErlaiTTqzAZqbh/ho+JXBLHrreZRATSAp8c0JAe9oTpcxAO8oHsIjdpCBTnA8lzqLiV7ZIYJYE3kb4FM/sjlgv86NLJ50A8IjeEeOrltdrBJeZb1YNHamRBEyu9f4lsfnGjSS4zcVUxHaLdvA8GW71gUoZSnusvLJhi6xjih7lWYZLfNLPe4vQIHXxxZGos4m0pyGsypaDyGi2BGzUcCnmq1JxziujOVY1ousDJDN3r0tg8ST40mE7Bn5MtEMdRLjZojtwoQKu2qFQxSMm1PCXoTvHBVY0cto3zxPx057ddjSrUTJ1tyn4/ROG4xAnHFcK9UjTHk1R/lzNnnSrh/GHzQfcFvvSyDMknux26oVV97g+rhPrF1CJwh6mj0Vbeq3JAecUIOZzCtesArue15pEkSXbefJBQ5DAX6saLiXkQcell1CfjyBQTRnqjfzAQcJDdaHgz04tlykaFR5CzdzoMoNwl8aaUykUqezp/U+o0lB2u8FX8q8RC5GNpe3IPCIXWG3R/gIQPrf/ekjZJ3xaNKrQ8IMchqxKJ9WOkC/QXV0O7DJ9F8ctKOc2qH0C2JGz4+BDV3gfvDNhpEhd/kibvl2rOZG6wP8fFm9WEoRsqF1Zm7ll5y/ZQMX8YFvKdHwK4765w+h0r7YT3Fl5NjWH9gEuxNHxid9H3XxtFV3yINUpj2yDEPOcmPkuwlX1zK9FqJYJuDJMPF2AwOBWivj33rVAsnx3Esg8Hj6B+NmEncPkxjjwbXqCiXMMnLfFs214Ody++ZYkrFgYs+fZBSyp9XXQLiSDYoIfaP9/RtVjk4lxIpLB2+LQRwIqDW8SBo1ayOtBUz7RXYX86CzPYp1ZOaxhi0iZE+Ch5/Sun+vKAkQInMU+litioUtUdiCiQZoSkvNQHM360DvRJpkP3Dp5CYPmrOCTNqA8nJq69tDQU8bS1tFWCAs5FdJihodXaWY9k8yktc2Cus5cCFrG80SxVBg85NKxWuGMEyE3i859vH/z5SIymPGk2gmxLjunqmwN9I8vkrqCGhjg4vHC3ISU5AO7ed3vQ4cF/DYklr1fDZv68bjnPjLlACufQypnavKqykomy82mZoasv7PogmIVh6y/VMYF0Zs8W66+HYxjX08qaoxPE828iq35YFB+Kw1NBJokFF/RYJNRqn9nSa6M2mNMAdpv1/WIF6LOtQpLE+1SkDpXsdiiKZANIsbOCFI5FTfcjrMQsUIn9o10riVLpej2RQtOJ9jgbz8LZlM21VCNqqNqrhyotB6bM8bHvdXT6j0zb+oPPDglFWNmMHjlWjhoojkCm1CuvHhukL1T6H/gKarFK0GZ8aotHzafazFNWhmwiRbmZOZZuBPJqsYfvcIca8W/G3fhCargyfpBmy8lF4r1uMO4IC98WYrJOdmqCTohXCudMIp/XmgWgvYyCR37C6eKax/EUYjoU171s6Wuo27Q/7BVhr3ql0SRl1Neas8A7afktXohFLjYDhWBnzu3HJ3YhY2n6F39k2gtyvjrjM2urYf8xCPijTS8AcXYa3yaS5h9k5Oh4GpqMM5tc9Fu4e5bgHYoxl4/WD5pUmTr1C3XW4PLD6PcuJjRge8yDzjYffsz40KmK+iKZlLIECrsGLXP62hlUZWg8EhHu6apw1oxfeXxnkK4qG3ZLoOlY8cu0P/aNTpPzAqMCy8wp1qJ+0zdOernHpS6Ows/1CjokIXxOGq9bKRm/3WqfGF3Rh2uApLx7lghBiCHS0Zivy1CTblSdQrB/fRo6LsyKYQ3WEWxUTNUZinKZ/lWB7vmoZgAB9yrln5iskfVm5/IeLoDNM/2P9cciSav3ymwctwCxLi4p2gjp0h72itwC7Nn3jAP8JMxMK/c0Er8rJ40NHzqHF061obzWJPrfMkfcHX7Hw9pqGaP/smVm0m29zR2hrZXwS4K3kUrP9w2IY1amkf2VQbAOiT3N8y4MBK9uPDSsNCdnIYPUOloy3EsEGZ6CAZks4WRVR63ppHJAgFSPs1m2MmDR0djn8v5pL+PjrVUJSlOfVk+TcaIST+ZKFlKds7BmE20sz1Pgs/hVKGNGIADTssNvfqhPOg4xlotnB3z7SH1JuvmYr35FRkrCycD3qJkXzhVi7iogzqrXBnFTqrkxJWthAIRp+PyoiYSjul4bXx1ZH8sdcxB7hmxlUf4Rh+4HVHMgR2OEEhqgmioGfP8KBsBl6gkFFBJp+s8Bcf2FzFXL/eoUbKpaMKZkHZRgFdhVggay9uP6qhdKgjQD9uSUwYNhgzUgU2wNdFiJHZw/2CmR8MC2dIUKNe8P6jHlTWuqA1henCx8Vem+A+8/xEe+nD7AFum2dC01ksvOERUsUrFloddefCjyAAQV7/YWzRf6tPb3taa6/pSi8knu1eoYPqOu1zmkulEnP16TSqF+UXDNwCBQO/jMNIDpaQTSQl5b51zGKB99b1/OwiOhVNRZfjjUad03iMBsuiN4zMGWQOrdd61jTEIBTdNO8yA3UjJb3RcRsmV/on560KBfIfzrEr2MjQK5kaZfnHv3z/ierovqnmYIExq4FDUFDtOOOvKv8/odDtIRQwgMyv3mQ0a5PZfzQBL8rkHLfJ0gHgR3cPfrP+pZkKY58AEYpDPNaVLTsimrX4OJrGf+mocHMO0Sv/RyrkmbS+IVAfkw1wNuolKYKZPCFpliRSSpho7EJ3iyXzm6EVOdvqBecdx+T8FTO7/NRFE1+FWRKoTeH+I8hEF63pX9W/+5dSbbt/MZenOgQQF/xOTuj9QXVHeWnoPqJ1pKYxMTuBbGLcy7ec8BvHjPJwzAzw2fV78T1UJpofEbp/Xi8pAsPunNUyppVHXAiDNxCa2aLY0cXymz2v9brcKLWXWt2qpiWDIVkb8SY6seNGFllFSZUhmRVH/5qy6DbBYzWNpLCj1Xa4uA1IM6cYQQ0UtDZJ4Jzazn/ZhIiZiZaZVeS2+sH+alDHXgIFwkEBsNBZOkFVPtdpWHc75dTl3QO2AVJmLwalSnRADbG7j50Jufyq8SFKdO+JFv0bOUyskabKKHPXaH3v32ilvwYwPDMzwPsRkCgGm9KzFD/5Uh7i9t2WC+orXwlYW5lAPP1jY7JYxkkZaKcmFEOfXFOHVP2okDfIIsf0WNjF4MULSz1LRaetfUvK731wmELg7RgdtTdC1yNIk1l1J0J/3Eyut0hcbs/aCLBPhXqUC4r2awMKePVS4Oq6SVb6aOSKCK5DtVOFpjiM2y1OV8DlnD0ve4PieGPh9PO1WE/YWqwuyoTI09hsNXZ9FD5seMepssucSZq9vAluKUOBUvKKIKLSf2YSdsWhf0DL0yCYerApIuycvSslcs28onRe/bftVDNt3ffxL8K5PZTEUitWI6we2K0L2EMiyKSbylTSRHJu9Dr0bWMfwLi3VzYgdP7IzokX1mlUZj6p3fBTIZGHw0/rT6aUvN1rKlxa0oGDo7Ajv7zy2uq2qyXEhjYq8rYq8PmK/Adl1FLzQAZn9LwuKG4OZNR+12gMAcFb8DU0TOvs3O47INjZJRYSWZeVSrwCv/+jXaX64lQO8vqbHgE6Whdkh1IFLpWbntCf3IHSdRgZF46sRS/cOB7qVqDH5uqZfZPOxvFgxdqQedDBo+pKlyFsTr8TbVC/XvDB8+rxPULsg0a8gzZmPtq4+Eg8fHnkQTWf163s5Y97J1tYriHRQkJ5GqnDSoMsjRG1lkbsYvy1k0bHWgV5ey9H6eTfuIhnMI5XQjDRW0s0nh+Kg1thgl5dijsPjn2iQsl+RWIubLrJ0/CZFTwCo+S3X8fKaRcKKvsb1g3UT9GZJtW5aRfvezctAAeNMaWJT6rT78z1EStEUxFwuux2PgDqaH0F+VNSit20utHcVghfm+eKNUX12rL1OPSqpt5eL0AA4/gaNBWb9NpyuQ7lr8HIzLP9KeZh2pJ2RRqKetqdcPub6+cYs/3xPMHXCc4trDqbX4MRy6bHVjcBNGjtFoncC1lc2NJLYyx3E1Fu4oJgeCfxR9QkHEL7h+uxjW19Frz0/VcLVNsAYgbcFZHFj0FaORUwLxPTi7M+z6pAe4dI81JxlsKN9q0BKZ4hjSeS2CvYvs67A1SBiBlCxUMF8CEJmqvghnLTO66BtWlnartHsnJXPMjOXHuJoKEMVLR457txNukvOF0l2azvVMNS10V6s2eF7PEUgzBxigoskbVNekgPM0P36epArlQ0+VpssgC2/976gLHIaS5PhTSGB1miRalUWW69A+TfVnH0VG477XNWn25AawW4nfw/Vuonsbc3M8I1woZl/YS0oFfTElt97Lm+4IS6AumnKvO5P8UnlNEhRc8d1W/m6uXVYZ0SFViUKwygDdqUca2d+yCAgGN9P0ZufoXOtNNLPAIPWLGLJZZmVuc4DFBzUfPmYViprmTs0chm4MJST4Z+wz6ZMmx4onXqsOL2IRNTzPnQuStdBvI2awzxTgcJsoR69CfaB/rl3dascjdU1hKJZbokePfmBNkYfVMcVbxyvMdd2g4f9Cn545AawauF2yqEfVxOc7R3GKI32PkI8zcCYymV9H0L3+ahCbXVdppfb9y/3o5yShh2hEXHJMy2PxBR2/L8XMgQQgXgAu3YPGuYjkiFb4vX659N6wex/yl6Mrnk8fjFCgtGKUAupeYH9sGa4zTKXrI7roZ5kLxtrcyj0Tp2o5ua2EMFz3gohWE/GVM8y4JJ66AGqdo5CM88cHIilmjk/b4Rz2uCatbSlriIAhS6FfTwKl8c5MNxC+/bklL4b+hwjvHob5Wwv//n5+nex9eveUtAXguD3nATeZ7IyRKb9HYUbSbxQ3I13B9zL+Phy0WCtWENZQuOC10u0wqkiQ/Z0yI96sVKZxt4t7fop42ynZ4StBjv4j3KnZ/hOXMnJzpns4+zBX3G9cEEEFazjdSpmzTRgakfN0S70pQ2C0d53HGuszL4JHpedfq8XWNHg/wMsM0QN44JeLB4Kch5ia4sHjn+LgOsc3VjbzyO/c4fDxM+r1PROlUkXrBy8M78/RD1Jc8L2DmNkBRbBUwwC4SLSsYk53m80qP9iQnm1K1d0Srx5C5gPhc8920Mw1wWxPwvxDzmCfc8GSIqaiDvnAgCM7ULSC3pnzCbNKvmtBwf49V7uaXEBzGmcyp/L+yhWAspMvUi0cBxhxbgXrHwQ1cyJOg/KYr6fNXN9wRIfZm+P8Zg0K7EFaoy0njljYP8lbcnNTzT8tm277aXw8+eZfrw5Dr7KeAQt0Cfj6wOFQs80pWCgd89ZoRSuwnYAAytt8/ZjHr5FaIGVRR72OtBNVORRL0uhjm3PE1SFZpZ7Q3XWWIplJbdMk7jsv+BcdaAfRHyvjnuF+skZ30jQ9+ESq9KxADJxJf2Bkm0e2U444T71c9JJHZBTmAzVbtzPPd8do1Q3Ylx8ds58ygEnophFiEFDZOB5xq+Qz8fcIFs8P9L/bpdL6b+CXT7BxC+nPd6WEThGeD2oL3pMJHPI04bX8NFS+yaNRlAr0l8Y7CNJNuWUWm9G64jzg+5LrA6/wB+pvBRB++cWDLT+3/m0F0131aqe3e5246HY4Cc+RH42wjmydggoJnOTf0mlecL3YoznHFnkgSZCr5iVanZXtKCyIekKP6Nqy7CzRoSdmNC3xEJFX7U5kkTA6yxnVd9dfSvvakjYmcnQI588GCHVrLEKtFbFCrrHQWnjJ9/gEQZJHRxX6tsYXwlXjaTi/W6QD4JcLP37CVGyS0BILQG7AaH3q2iyzgCXdvg5rcLh/JJt4PTWVBvUBiTMdgatiOhBEb7w7ziYQIaI6QGfgRLKeTjsw/C0JYZJBgcJrW4eyOzXRERNAokixUSVbphJPJCzh2yvMk0hn0kLDK/2cro21xt2FkYhgqSqinTeozO6bFoTtOnWscavPtZPWU0gapT7IQp68/BX9/JRT+W1rKJH7m+qLJMMWNgPpY4Mm68gvKnUjmU+od+nP6UfWwQYahJiJi6IoSpk18lrcYFSTcHe8gi8IbESzbMqK6r8nTQomA/HR4TrTLZVo9MmzExceVadE9S1sOmaokl8B05AivB0EzdmJiA5IkuV9LvlCfrlzwbDM1LzZ2qFKgblbyAKjrk4qhi4UMEfrpfjRzoiLCS3bZJtfzXwk+Tgj7WvGUnrjyTSGsHi4c1SsHNCXcvMvbw4XCQKnoyMB2cFY/AktC3laECMWmwxW20YT5UNkU2wfxJhYCbpzdTSQt7l8ss5gVdijDwjJM0VkGqbwfoej6j2eFtsWu+38WGhwi0d5tBKP2+R5fjapDTCugg7JroMYItjWoYXKcSprRaaeG34gbUO9eBN5NMTkX9xUYsS2LTxm1chr824AMwjahW+5I299NsflZ0nF0CYjfylLXrbD5rGtDNif5yeqxnDCczvwObejmnjjej07kx0TwNvQK3oUWgch7n1JSjZHEk2AUM1Wo72XEnsDaYYh7STWnyU6l5YXHDTh7xJLlY1fSBy9VKgng4qJXEUQeHuO09bV+uIQbMkRhrbT67Zsa+r5SMRD0+PEeuFk1TDV6GcQT3b8HvJ25xvTQweJuQ5x8Fpzzt5Ws1TfqgL72VhodWjKi3t8l5W9JHTTh1BOepUv5rjp32hplycw+YECpwr+xVcuKtfjPHxqYypjQHjDlnVVQ/h1yBXMGBtTNXSV++4uGuj/15fgbt8Rl/WVvAtryDu9hA34TqJQEAuaDLcAwCKgODged/aUCs5fn2lHb/MWJViYudjGpTwc7QsZwRfFzS30Xo00jtlfwyrKDuMoMW83neVVgA0FzW1VYS157WLDGWZqAw6NGhEs+6MnI/QdG/+kKb/lDZOUGz0b+zKgn4C9jpAYY2ruDcO3O52HJt+4nsM5jmCfN+1yqmEPvGnx/dzfwDldI58ShhpXE7DUJ2jM1FZGjYX5H+98nUx/Kra62/rZCrllb1/E+Z1e+o7Tlpj+cvqmAIyTo+QqOZRhWFMJlvkijyrcbpwBP/yN2qW3757HQW0sy5nT4THiKS6b/c1MQtUNvUeciwwiBbsBr+luySeVLiHdUU3kg5cBryt6ugdQ1HIJjwOQuNwA0Kw3gVEXVmXJud1kuP+TJVqTg3rKxnhKQcFhpbNc9YB5iN2l9rkpyWTzPVPWK0LbbJXeel9yQnZ/Vrdaxsq7lx9xbmnFfg8WegSQn9tQGsGz1X/oGqsXd5O6aoU7ZKcJ/x9ENGJsEyurTaxa9ZdKKMcJTCtQPI/Ys9bmfuGclSzLEsN5ruEfimqJWoZGSEG6SuIUzuCiuGFct1EETuwkkLe39j8ZKXOspmzebn4Pcc4LhKSep6nmcrFtWD3phDP8B8LcOILiOFCluiNVA1nECvrWBV25D7gd8qf6SGNGoeZCG9xWqqn2BaOVtwWw8YHQvE8WRSeQ8zD0Rj+t6+f9qZP11SXskVFCj1i7P9vdjjvih4DENfqLbQJMZaPlNRrwYZkpCQAV3Bsig26P4p96Db54w4tQocs/fAAlT5QfXbdxcjPA/MgxNsN3FX/MWgC/qJPVnTOEg6D9JBNWRWe12XkKGChxpbAFnP4CQ4ElV5U8+ZomyoRVwAKxbVbiwIcjW3U1eAvJEJqRtCNEJakypToM+QLGzmershUxTMn8qNrP+my+r7k4T/gKK4ZjBCVuK+MOh3gSn3tLTxE8ITA7L56cUL75+qJ0ob9tTFUPuFVCc9dptWwVUt3ytx/K6QsSUbrgPWgbCGRii9sZnbb0mEE4QZRrdekUyHQ6aqqUi16HbVQpntJ/pC7DErFcDDjbQZt/1ncEjX4ShLgIbgNZYEZ/2LQFpebQtpJBP4ETyc0CMMXoq8XQBZCcn7pa/rCjKSNvtWCKHT5xjPLH5O+0R58QtbbOlFbZvbsS3uLLffFr9yrpYPhkiivIVoDeKfcDGUesfwT7lol6Canb2hWh8asP7hBCQV5SYinOc1RCdR4rY7cOlSQs1CunOt+MEiRsZqy6GTdE6DrwSr12zZIesnhnTyIeqFSrk8anUgFMwANmcJ5a3Nr1tGvlZka9X9e4wqN7weWYXMgUbANwaVfAQ6umgFUa5R1K6qV9KfUKQP0LI3x6lx5sFXgmgci0GXOd+rSWjVnEPE+8pS47Nm0GHNGZKWBbVhTmfqbAb3YfVZisnwiKxsHeNkU8zMzX2dPqVyKO8vLqpFK9CzXhkTCNpHNfhPIiVUr1mZy2TBDKfFFsyrfL5tR3zohusE0ELMWPCfQFf7h4wzXKyWc8pygIangCebYlDOXny37Z6OSjucmpF814getGda+jhNhrR4sAi6Norwc9PHijhy7y+tvv+JdjsSMm3xyqm3wBTKylATtJWGkrtykyA2PEWMfowloo4s6MMB9J8Cly87D3PmZZgqayoC0y2ylZRZTFfI94+OD8AYtBAinqrhV4FZyE59hJOK7GB+SoWlGrnzZSn94Aq8SYgALfbytFIe1PGHgfVP1wJl0nltRtEWyU4VJ691EUZ9FFXZ/UZEhl231R/gqtp8ux/dOAQAkyRhBoNa58z8EV7o/u6/VvdVFFAtp5S3IItZ6Yk9nLJmjOSYirlZXwNlBP0cYRYQAWQHi/jhOTprSs2atum429opxTmo0id09REoGrWwa+kmKQHCemZIe5q8O0xXnKRaf0fW8Yefmu9cuYQZNTZI+ITVX9/2Za4Nvzc5bYnht41MnVgD4Ulr1ckx7Vd6l19kuWI/9yCn9+NjmlMOMTh7EDUpRKDxmPQLLhhFQIPS6JChRf0YjGCwmpapK7+qg11lDy8ripEY8i7ti0a3Mf0SjYOPYYp3M1jDMAXVlr053pEQgblRxzhx8BAxcxW16xf7KiipgOOcH4uQdketmdk6GWqf2EKE7+8clY1pPQcN+NoxV3RCuVqaUbiXi3kX8QyHZDS0I2lr/+8nAa0ZevA0Ro4rljrAsbWV/o5hV2NUFTbKUNT7NcbAqfWg9WCZW4q16gbEjVHHNvrdp9RHoVuaZs3iO/FlSFW0wfkE/ODYkqiAM5PS7REJ3ol+50GCpI3aUe2Qmp5KADr0Hdm4qa6ZX3IHwTlVphJa74j0GdSe2RCmhGuzrQe68JACA0SpZNNESNj+nHvfIlbRWtNQ7avKHLshR3QdX2/9d1k2MonO9ZPfQTdrgjZHzjS6hNHPBOalakV2SPlFKQaRMBUdrnFIK/s7nfPs5ZKHcRA4tjacFNzxJoGprxpKym3TKQMVPQU1KAbfFOYsKSmosuBfzmMUZh9E0YAp2Kzxq+dUKhxkivXAXz9vjwRXpOyBWrzot2+rx7NEk+K/Lh4d1b9Fkr6OofyPr6ZVFss/WsCGXnrsa+PpNxF1nt/Vdf5mtgwJTAzyDnsPsgidjhFomHg6e4ppmSH4reWhBFpb9UByNr+CZr2rfJ1VmEDUkthADuVYdT5PLjFSSXMy7AQwBlgpVXpvFHG8Dv4QitjBNq9o1++f9IK7C5edslWtHybuR1J4m0po7ofio2Lfbi7nglt4Z3DAqA8an4hyX5v18YyEpAGKnY0wQDxqmKur2uj4AAf9gFZne2phMlM/UTqGdrXddBp9JZoZYdRuWeuHbcHQH8Vj4rI+3emkec0h20ZGKRo7KnJ6gE5hpvDt02QhfB7VFzetm/R3How4sMsm/cXZ848jDmI2aStyWOUK5at5po9Psn2XK+3HWyFK94um+Wv7KmcofYwxjPn/xArLHzNJw9DTXWwhX7sD+KUNXhhfS3Yw9ZnW9zgZxbqjS/9Sdahamjw5GPrC4jsHO8Imh24s2v3Mx3IRTslyvC/Cg7QOrq2svjAGc6obxB1AXJgkHpGHnYBDyMkAGztsp54ER5hEBpwgJ1TdsGFp4CBXIzBZ4OQ1IQW7JvgYTpX+VPxtCfr2aMaYnavwj2R8XMLrEHrqFgcIBquSPSFKOi4Wgqo4DFSis/qJ2fTLRXaOaGm/ZCbEk8DtRKv2NKSIICy9kjhJ6VPytQK374/9AobFc0B+y89JO+ir9+y28e2zvxS+cAYPIN5u9kvP2ZsjzYhfAi3fuZLGV6m3NsJsQmXOqZ18OcsKPfuSeLcFHb3bWJKEWY+/YImS3iZlJXiQyRwCvU6pu29YHG5zfHsIhlnP+QSvT5fjingxHiLqY9Pbpum76id0bTqJJ0ekzuf3qLJ97abbIAj/vIfhKXe071UbO4rc3XGKrL8YDyjV2hu6vjp0BLCT5PjRdeZu7MNtnCOcSw//diwX9UvImyPiWXBH0WK0iKj7tENHFShqluIO1QoL0hMjahsVZJpIaK48Dccx1LNf8hNIX5luIgNQrDLZLOaQ0gmCoU/83+SLFMaSkXkjS6N85fic8vId8g56JrLsSRFtbgIuNVl68WxyPcoY7ty7Z2zTtG6CKA3AifDrRxNVgdggvpFkrIdgrzVs5xtqTaPihttiDR2z6FU8US6Cfnr0IY9/sm8aWewvhvBDXzaRtGXs9PdwKsm86UXPIikRIR4BVScjJGKFhl1bi9ViWpGMFO3CCcEVTFKvQauWlA/n9lYnNd3cUKdEaEwO0Yrf1zSAPFA28ndZXtvAakuPCMWo1V81ZyubTAOFnaGqbx0sd1FHv0VvRe3P7ds5AdjKm7+NhtW0qozQJjaAoXnBHV5ZjdzBbNpQWXVcID9/PIeqfceUA9Vxr4kZpGbHProok6OErLVIZ5Fxu2bWEyc4ejcbs+MLtvPaL/xwAKNL3Mv6Xk4yA9OPCkIBEBHba1vZLOYIkznX3ELuMzL5nI6si9Yw42PZaoP0NkUbFWrqZmVlEGK/s+dRuLoiRUGs9DwbuKsH0wMOUvKAGMdVwgmYjze4/CakKuSCMtzHiMJfTWOI3TSJb1bbewcCXVrzXkIRe1mmLWc+SIS0jPAcQ4NnOSYmnp9o+QOOUkdBPh0PEsUeAkwCRlPUFZf93glaPdm6XZfA5MwQJxZEKXJLXwqVzeRPEgx+CxI4tlKqS7WHwp8ylUbEwSK9H2OCTw491NDHzqXxudTZJU4oPN7fWJTscPeEnYBTXCJHDhgB8WPPyLlMuLJHVI77JC7X6jTHjBJuWAt7xwGns40tnVM+zA93lMaLdH213kaMRqKGW4zxE6T/9wIw5UKjoRJ6+v70fktIZB0ptRBd705CAWg7dlGlpwtNTFyvzHnDG6wrCCF1hiOMdJUKdjPDm4EG9ga8p+8oT7ZGSjTs3T81kNtVZEHpYs88u20XhvxJWVdxLSBvAxfvpg8XBqGpeeMR+2pt3tJYEb8ZF0d174OEpCrekJFnff2zgewvSN9QfJakkySIrs6nP7RIjrQDd3zl+iAJ54SKBna8FBX7JquDiR3k8ePXlcoeZ0P/Sse0yNhdwi2N6m87nZFmS3pzv4WOCV9n1LGSAbghT0C8hwjvoOvv3GR6Jqr7hg7U18/pcPcvVMssdBszl4RI3v1t8D9sIL5JTkyMZfbH5G+P/Qy9vKBeEcWT86/r+u+HP+mA/YMNepWG7/hm2d0rxAZ4FYbTSfj2wykOrGSfJeSjHrZW7YiZps30GixNu1zhvZTq0Q6C0k/n/+9JPDYVmqcDwYF9k+Uehu7zP+byILBOKCr0HaKxkHANFaBC5MR2spEePuH/CWhqch9JCnyggvs1STAH4wI3HS+L6KtgZniwBVTpmVp1KzMOTcBTQHlVHXSb2wywR0UoYhnRjXsKbNx/ZxLWhM4Gf+/LYjIDv+62oRNZp+uPHv9DOMoVai43HCCyIOrOZp0hBj8TQJcHN7C+2DSQGudjQCgdL8fgV5dZ4gHy3Xgx2eWfEUBNUmgjV7LVirnEd+gq/TeqNIRbdrIJiY4rncMjT9uuO0nz0BVBcQLQND5tzD5B0QvQuQmHM+soIRdBE9Fs06wyYWXbfpsV8WiyufWrpPJeB0Bew6mpBsr+GnxZo8YiOOympCCReDVQ/eRBNGO1CykMqa77ZIQGTlD9hfjjFbxZLhSIoWTPZb/z7xQmJmlQFniH11U0jKh9Pzwu5kxmNpGHhmmNUQR6u4JCFI/npruyFOOhhGTbrjaeGvgMLujsTEUi4hSWSFcIKSvoZ7uwf20lidB9aHOef6mCn0n2brL7RwkptbZe9N7vDr6RJ81BFm8sQCq38lwx7+bU1wfFw9tuNTYtCi3AscG6Bwcx6qH5ExXW1FlmGRsEQ7XNVwMoh9FssZcu/zn83vgzo70mZSle2fQTnZlvSPfPEnh8mzzpFosMg11cmTAQ4hN9Jgsm2uQPV8JWNiaDdENvJZ7UNH791JnLYjgbGRGPy4zFxSl8WO3gmy7VU2dQwGWccZnKYn7xBxJGyMMyFDiu+kCKIqfArDtoZU8gvpWG4ogbjulxutTrfSt7FjJZmLbGYUQG84YQwLFTUt4WcmIuNXa+FMsap4rbreK7JX1cud0XfPQDtNBZSjol1KYb1D+7l2zdoWKRV+hGSFJnxnxmzNFMFgfuxPm7vtmQIWS/mrMv7thJxk5raHH4x/AUxviWt7N67NhnpZIgi/dGMIYhJow+0D0dTX140WB6Y7TQDNwoJSm3Rul/y4X16OPdMaKb98LtoNLjINDG4OvlU2nIxmkP7QbOjdV/M0ON7Rd4YKVCJR2xh9uVIR1vuOtgouzPxXAiO3osTZObERdoSiNE5q7WDosuc9UCaANbhjLAoJttSVAZWuyrdyXaFPKN5ZIYc+s38jhoScekFr23Tqi8hcV/PymM+XVqj6x7FLSAanmoLHjiAqibDaTPCl4NCETY7X3qfc/h68aHcPb/EFn5U9B0OhWl2L0EQfms0WTb2ZY2hn0L85NSxd5m43FaYAaIxbAKi339QuLh9MRrdGgXKZn7dajsfaiv84o3QOUXNGrWudNrIQH1Zxzw3SDzM+INzAk3dXJdk7WSzU4AkCDMKCXZ+2c0fo8gsHPrALKKjyBQdLw9F5s31mGxySqTWk2kLQhBSsAxsSZW6nur7JCjATc3PfzsFvcwUXgjNe7wqEgFeXjpYbu8xiuLRVpt3yf7WDE5+oy19AgMbiH2Urgx/BjvcRDCnGJG6OGx+kVrx21umgoLrGo6Cfmehy39qVUEE543PzRnXt8PdeULvJltR7CCnXrNd6sMrkzEPzT9y0MaJl2YFbDJHYoust8I2Cjr9ESqX+j1T5v3CI3RnT0RK2v5vwDUfCQmVLPRjvIpEdhGCW6daYtrCV29YYk14k8/zr0O3MABNPZddkHYLBn+cDBHh6d6el72qmR5r/GdHXZrwWe0W3XakIgnO0HlKzOQoUfklJich275/k0Lk/S7Fkn0kfuJpgmDKLriJdUv5wFXlG/66hu6EB2g/LzgjsM6ecpz9uTAr52abt5z74yfFMVmv4xK2SmZSYkGp2AGc0tKST+gAM2p27QaIHGhfIXwiIGE6k268Ey+RjRk8/ulmhiXIT9zvR7Xj685wF4OhOprE2v10xLfKRW2Gv5Alfe+Nika0o1L9VjoTfnBM0yaJZcACdbbOygkCj4gpNaJ/+9TGsbCGg+qy5TYyJWzkawg8LTsqOSTVECE4bmq0zMRbfr63dCFkzAX+w9l10mxiMJLK6B6B2LDYBY1R+q+4XRrPceVVnU2qm827we3hiMEhuIUlfk58p4obDorpXxXlNJdxFolYIjI5f33VUwXIszdohQAtDwLTneyULl3CUHK5wzL435sZR/M1xezyHxp8C+pe37FWtfRPOslx4I/EtXuMxLJuhLTAEFOJHgMB7XQLVIkJI/XSzfp/T8LwNXTPSQNWgMF1VWEMhi0xgevWSLDbvU+Gjy2jiVxHYasE1tO0dpLLrgqHH6t1w8RmWJ3KoTi0zJp5VWA5jIXO31J+3rvu4XaIcorQMyb0yAzfrIO2XhTsf7xQQZp7VBWw8woCSZH+k/9nK6ISsS/0h7y6ssehIZ2ZUg0cz98ClKhXHTM05A3xUSZ0geODILmYMaTuuldJCwzAH26xwIwG11nqkFaH3k1Gv2rmerWKzwbf+9mB5f74H7DfMN5MmsFcd8VaRng8XJmlsnjvYMoq5xepn1FxJfZ7OI/iRYmmPnhK5JsbZUqzR504OwPgKFvCQpsDQCmHZzWjqg00hvsBABNIy8JA7YbozIPaIwIKYsTBJWPw0eQLh0o4AjcDmYq3TLfdUA0qsNwRUgtyAGao5rFsoICh12k239mpfyZqKjWvQ0bvYrf81pTpwomWRxWzaBP7KnI5zMZxSnIduWM+nKwRu5Vff9Iowz9Os2NMZyp6ut1ihdv7ObOgU/vy9XMxNZXhv0yUH+g8C25jq8ILQG4HHnD/QHgoWDUpPyIiIlq3DpTBTMe9Xx77FP0V1qLcpqjjodsOHpfVJ0XvGOtR8tRWvj/+t+HU+VQ+tt3IA9Hn7ZUNmXKjBmrYa/wvDyDD4dI+JlhQrgNzNnVWM6/FSS+8IFORX1KSFoLPFDB6sUrr597rmc+NvKGN94HqddAMV/XiF7eseeM0dkuK5KHS1ZcEmvugQu4l/mLDwWAJzY1QoXKXPcdWVOC/xiM4cb3g0MXBBUgGHQCCfUXcBg5pHHkaR9EhLvh7WdExb5ehIl7oG7H+OZHsNNv2/QhGq43p/puJENVMZ/yZnnBJMKSEyVWnIyHUbGwoIfZuI9upZ+y3z5IvNwKAwsuPT65QHHcafO4xu1QF3uqnx8A+HiekAcj4srHUhuoHhD5paUoz68QmxU67NbTHu5hgfSeX2GZB0Sz2k+de4+0quMTZjjgELs34ilHFX9NeQ+XOYrd/wb30nXQY3yek3JzDHEjC9/X2ZkmfByjmjwML1stWcocDKhlmQ9AvL6AE749zaGWjqGjOJaqfObH6QxGXfSLhehV+tUjsVUVVp2xjsVDryp/yVYmwXCoQLaHEnFFPadAEMnMJq7OVJmikvhxa1R2fF3rxfXmNg5a4nMLcZPoT2nhZqxYk1ySDooTDtJ2QspHVAHamlTu/o6czEWLS6uXUVKZzToC0jUxTMh+F9fhV+JNdQDrsgO8BE9okBD0qzLHGgRf+EAcvYdSO85WiMp5v0RhO+1Uh9DbO6uaEPIWtBYPMOr7h3lCD+DYZC+tibBdQIPqtIba59/STpuFn+SXLY+Fnof96sMc1U2peR1NGsmt8iF9Yd2/U3p4XJxMS43lrr8rp4vD7GoBDlEooq2OIdup/pQfkSq/wVSE90xnduTuZVnSm2UYbFpjCVVyxw1e0emBolbJORIX5im4h5S/z2182+awuiYWrKQdvkoa6xzvEcXUSdVGAu9j5xrLsFDSTQhHKogtQeqCyC+vKrNDi6+LWhQ5Nac+nMnidlFsuTZJZueBcGCUumivGL6geRZZ3FjEqPf4uzQfTRjbt9rtTKkJL3SNedb4X338b1i+g+bJ9KroS2IWkvH7cWjzb/hj3kyRUvq4NnWEucTWuU+NOpZ9dHXMjSkA/B2auP0weBQMRrmCNXghFAkMss59dlAcipGunAzaZc687eLIwEimtkFqDLhkZAc8wS/BLrafvJEDax7rtsgVzoo3KJ0zhdTWVOfJ6Rra1AmiI2QNhdFpqHeK+Eik1Jxrr9//CMkxnqu4hNI5IzSY3+saBUwNOURhLGWCg/qCOnsGLjf3OnER2em6esowIRq/wNgH5vCY1dWgZ1AQJl33HzsStxY/6HKg0oVBhqtM4p0px5830us2V7YO82618lRifjaiaT/uZZ/DPlK3u1d9cqcUpF2ST1pjlfU6AHMj8rTK9HNIcpiBReByArVduLxUSBz5ipcgGd+Vs77zH05qcSsXxxDrdxlS4/fFY/PGeCbm8UcnLAeyi4PoKI7PPF0BMG0SowW3XnMtXj+XDXX6WeEkF5nVaYFYFXZoHW8kFydl1Gvwki+VPi/qWB2DTCiHJGZQbgYqa2jkkyfLz4J/XJqoHO/xhaTpiOo9puPkIXeW5JqFfY4DpBYapoOneG6CgG/oJHHYJCOdf+vQJqAWemVxJBtMHXphxDSkFjBJaXnFLV2HlUppm+NIQd+hwi4xCVGfjexXQb7BU6PDiLR+TYXGBfgRs1NgFw4mJcmYM27BbipxVkF5fYoQnTDvK19ftVMg9FhW/gLR3Lezt9T2GM/vWvx0waFFtvK0NWC3qSewKqEZVOP4loQO9Y/P9pUcsFEReYTemKQQ6UKQYdoezRyXtz/W8PGrkdyLkTW/X020wmFX+LCTJSGgPcvZ4fciuemqXqoYyaEPbw6YkbMjgOakeY/E/xb+US/Rdui8ssfecIVBXPg0F6BOMgWJA+2wpJ1Y/LvUp+a5yKt5dCEezXWZUDa9jcr2sLYtGTHb2f2Vba5pNY/Ct0gGwYYwQUO/3E+v7pbxAQuO0oTAEtwaV6bhn2VHCpoQeEUoUXK8rkR4zP2XqDmq2UKRnKfdMRv9BmjCGPbnXIhZopkfbLE8lwx4maWhdT5mNU7DkgbVht2Tq4nw9aw1kfJetWobGWX3JfxjRLf/E6r52xzw6Cv0IFr9ELmVipvbJYpE7ghg9kKPkS+GZhtW/XrPi/4kiS1dlHgRkz/vzm271lNVg3RnRS91snQ9M1ncqcx9PQ2DNMlzyMR27f1yrgaapxO8AXWACqG9sQkixZERZHQ73qfvGvTkr6YNheYTLI8RoLrxbh9veBs1uKdI5pJANsSSgRROLStYpR3JtQSYKGw6+HP+i6PVtC91L4O/m59SNkMRxOThJQf/OKDWz1paMsQt1JvUu9hVDN40xNLSrJHPrNUPl4ACquSsQhLCEItgKs+mbxMj8r2SELYO5fqtKD/okgm6ix23CaBIz0EnQuQ01CFpJ7lKGuPpuNJGkTsgw4035p+DW1IKkaysqkB8TjUd7hCoPW1IoSzdjon5oYrzZbYMteBnGdhqUR7yQZViSMLVMny7E1By0U/KRYClm3kGn+YAuVcJy/icHdtFT/ew7rLFPYWO9k4ViNvlqlPfXyWhELsbrylQGn0e5XDOMHvWMgOJJEtbjuMeuZbgR1maKJQYMG1Yw8uY2RCrtUl9r5YQjr58yBeQOeHMiYa4dmaDhpnrUaFCdCXkQ1kcmXVYdnwQ37qbW5iBHl5Xkhse6NY814hyIBzHVKmnpSjJMPXV4zA9VwN2ZabVmMN09AMEuA3XXzXDMbTq7nWxXQli7yw9/R82dS6zsHR2/n1L4dJtcVkVaQ0jDw7OFJ6H8Ec6p6RotCdYExb7E8eXKOiBggqAcL1yqz8/BidJ25s78RLuOkyNBJ+cuH+fZMPvcgJymbxH3DYiIQAOFqlt+N1BkEAGElHtOKRkuiBr8k6wIz2NPZkGH6jLk9msvUu/QrK4k+lheYcc3FF2fkVLXg9BW85j0pRAf9DF6W885lwL7uF7TIz158qJ9FY00m7Ynl6lg14GZXQd0s4A1hMG7AazWZ+iNmCNcumKC5cLdAj7jARpHt1Otopii7lMrT/Bllx1YsViTIukPWH38Bb0ksEDr5oky53QrljGwvaQGX6Bj2kBuvSt0VZTjctlngLpaK/1o21d9+jFJQkWuUnEZMnjRzewocMJcVpRRHVlxPXcmvu2Mld4eRLkNcvr3Nkit1c532eRW5kZQMa32PzOrAw2rUFpTdJz6lEToRsfo6YjbOnpFyDQPsrVYUtrACk/23YLECGaU6DUOwP4rOfuCT9RyWeo4/jlFheJA0QOHcbdlw8RMJxOGBBg4O1uuHMjktbQhzTAEiL59ZxEyo/cNgryky7DOSkaWZ99CmbnWQQME9nqIEuh9OieXy2cmubxlUEf1rfFYqwt9tccac4Z6Gn+FhM5v9yqJEmMsWAlJUy17QjFiKUUsogbYsLsdEH9s2B6E/We7UzjgBOXxbECktVWxiZc1oGVcbEYJSbpJqjxdozPCPCOflY0zm1y0IjqTGhlbGvKAlmGNuCO84vNOvqohUYn3UgpVLzESPhd4ah8d7wvf2GRwnW9itmI9wwTGW8CbuJ4fnY3PcStyFCQWrd2eHGitGhp8U1LJluAG2GyhSVrnNaPKqsKXzePCiIwwuBx1ssyLF0OPDo0vdsHjvdavh1sMOsVUIiua/ewI1Ck5BVBJWj5BKGvViaf1lHZ9isEXeO3K+jhpyZtkRRveEuTHjJHzzjUjDBRJkWDeOYvZnugte/6FXIZqMf7wo/JLRU1llEIKVsMf6TFDWNHykPrWg73hUy7SxjFYrTw+CBsjv5P8edc8rBK6YkL+qDN33dQSvKuSaaDJO8f6P+tpLDJ+ZdvBSgFsHuB/om+p6XeEivzsI45Tex54ZoVrqH3p5/3IpWKCA6mHFulaQyrEzhseFWqdyAOFYNLI4MMLA8CbHVFjh/4g+35C7c3Gl9oKuyAdFuwzdV5esu6j7w8DlniITQJjx7w9ab+XYofke8UXVBSgLW2wFWPxwMcRVyV5BvMd5H25sq/2JUNQqsAwhZfCg6d4MeJsITWGXjQS4HOb/XGVSXTTrMajjzYC+/5uc6jphfIfzpi8QH5KHJdDZ+QfwJZZeLgo/7AboY/0+5uTcCMgafwybUOpRGZY7se9FE82RA8cahJl+vhAdx6Bt+dKEny6W2zjUzqNN8hsX9pdwzFdCq0Vf/mA6lizw4wfEcbhP8y1cWq7RjEGD1rmFdWxE1XMpfnGPLqGNcyLeCKxNUlppBhgJ9Qe62T5gB0UPDhpCm/5syHrUQyzckbDjxynTQJM0VmyVf5rmECrN5YKN1mJxsiXKrIiuysU8P/ognBFg8lWFdtOhx4ONXL3ENu4AfxBvTYfDnp3c4uQbZQwTHDJeTFtXNwQawc4BNKC14APN0UhmOQh5w+r8saz1pOrC/kp70AdPg/yPg9GCfuxJwYq+ImfUmh7n18y+e/C/R2BOFrns8KC3PTveXY1GHmtAInc/Ubdh+WWc6RFGTAv2Ug9ckz8wrgXeZ/9WuRPXaYVuvoOoIn+nL+CwQhwFoXhYHxWNxMxhpLhJpGUH38se/NecGEDkzIlM+s/oXrWKXWliHoKHacaMLpPXdBa+NCIWoWf75SshDFeC9kGbnHQnFIVbRmU26+5VdGhJ6L9qyIDKZmKeA/3zzRMtxmIU+9+E/wO+kdfsBIt65QZsiin2dg1UZFw7ORDre5OAfX+9r7nWn2J4mfpanuEtGdW48g00CZdQbyRMaVXXST6WWCa+5FbM397wkrR2EtEN9Rzfv/hfKzSpjY0/f5m/ZcaoNtxNruM1nsN3NtOWCBJkIcTFzpLiAfBmQfmUMQ/pcNaQyUO6ifIQ7n1e6d1Q9poXF6Ik5gf3BU3sLwMWXrWNJ78Oyaa5dfirMbaw6gyoiEhTjYGB7iqwm3UAqNqxYFKB8e9OZtHRfPoLwzkQYvcTOmSLw5vVXHKvyMOMRFb9PvQcdzuunJN97fywaYi1EmQKon+hS0JV7VxjEMby2M6u+hCL7c5iWspdhcIvytfy64RaKVnw1oc+qAGv8y8pDfiFi/8r0/WnRghbn3dQ8I3lD6ZcDJ3F2fif40NbRllYAlifwHZO8n5hkhHaL0IXJ09M0b7I/UL/TTXioHLj5JgBJ+kZ+KtJjkNWnMtf1ZZUUTRZAZ/eTliRbDvv0yL5UkiAc54VXxbGLg2NuJmiNestnkXnu1NKMgVRx3ykGAgGNX7rC6FBIw/Iqk9mF7uote89//NUeMyQN2g20rary8t7QJrrRoCQ7wr/oKSjCfNz87kpSXQGCleOOjp0bvBi7y9ykUilR6GR6OBSieiZ67YLymKBHzBHgxXhZ0uYAv/HkCLSlHnlqn2D0/FYFXHc6D12fj3DehTjewNvWjHZZwyoGAZAgBVauAM7OIa1V9F0SlkKBeOGZkgMllU5Zjca9xuxtiYfPQyx6qf9aniow2UpUT9MvZOZEFtHFz40AZRZZOqxlkHd2u7yHyxDdzjN3SqrpHUrzWkTT2kwzA0tHxBpBCPerQ9W8PD6AIzop8MFkIrq2Syuz0QEkWD6vyERulZvwda0LikafrpP1XDDyQfRxuAIkToN1T02s9DYQsAXkRrnE9g1o2SoJdK3TOH+jwSbVyTJSIPNcRRwLO4TO7EckmyMQkajdV6X1qZAdshizNbvwZJqx4OtNMfS1TswlVB7YV8iEFH9pkCg4MNol+CDJ5cGJXm2KPNKLbxWFS3+BgYSCWNdsKssKkd5HpJG0nX9mAmgPHXvJApGojXUClgj3NgCH9+YymNoouOXmTqL6c862sqOYzhH1H4UJmncvx6m5ZZjK6M7dcV2Ql3ERy5trHCt+l4cQTTEpwgmVDw+xs1nJ5txB/adGFa5TrWMmy14od6b3e0SaGr44fWvgrb9b+w+WR12Y7KscqZJh2o5HIIOfIggM85XIzJ2bJN/dQJoH6tWv7VXHjL1a/XTBR/ZHEO1ZS0HJwN+0DlPR3Bxw5/IYAM3jrmFRzpskBL2hjFeLD5WlBnCXX2nDC3NkrH7p1tmaRW4cB+4WB1hao3KyJodONK64HYi8eZzy66XAjMdFUI+mC0E7wwpwZ8tnFyuh2sR4m0XQVyu8XZ1GrUNi8+fU/wvLxQNRWI9kHV+b6jUPD7c+wdbeuYOogZnFPoa+rRDfQ9qkj4PtTApHUFhJeNtQxtzseXq9CsD0kD6kSSGVCA9IrlbXz/j8o/BME260OtoXvpR0SC/4dgHCKLDKsVwhZfXxpsq9d8V9t6u7dB+7CIb8VOKJQTlu1cYJmAKpzlp53R9B3ofufnbMooavSPUNxI/mzU6r3xrGjuxyja0mB3bWQv7jE+SiMdcrH0PQ7PacrxZ5/bbI8uK9VYMFGAUGxVQRuynCPL1FQXJqWfPv+YGMDaHrcU/DUiyMzJlSsgHnBWTNz6S3uQoAWQ77F0xNAlRI+d2Bk5CLDtYIEzg1eWXRuzJVApbcWUyf9l3nnKdEAoQbXijVgKLI/rDbtmLpo1n/rrbCBJ/uUFpIWtQQmhZWogXjIVWpsVgLcIGH+4CYj1LKYON/9GvXTc8CB3Q867aBaUkz9DIFLONrqua72tcVwngtp5CLRL8nTTxWxngo5kG+Gvw70zC/KgRk1sZggDhZyvWNz0I3Z4aJ88A04sE1AKSRxGFHgugkLl+Xz3pZZvdI6+DdsISNN/xtRge/A5Trwp2cYm1VThjvSOFEQhphe/ed3MA3jYlZJW0EX65YY1Ed0sgqlVZpnRIfOa0ImpZQqy2ABCfEayiaVasBubIU39eKA/pkQkLy0th4wVBQBuEV1HMvGNnzz04KkRiqr6yDdqlDucx8CjHeVjZHEhrxf33XSe8vOyeCLGhq4hCtz1aXpjB1dt79iW6D8k6JJft9opOquSozHTfifB8EPXducXmDPXxV3Sd2RnAy25p210GtXLIo0HZ7hi0GiEcMSw60BiCgD8ocXVbLB0/qJ9M0y2ruvWGQF9mqs4JiIt6tJ0fL4pNNFhm+uWrVem3ABZOscfnvlUn/OPmnFBsBTqMPJtYAjwOJSBaExWLAyEiS56CMR5Dc9OROABzbSYVY/Ymbq8ll3gjeNI9cGalsXybqkL+8zvA8jNJeJBpcUhRy7yDUjVMP3x35atsJxirplcQnNPwoo8twWUKSVdtc1w8Jo/wvvnnNtEDWnGtcVvZLuaUyYJPq1YjGxCa5b6EHuE1ujKvxLDqtdsDm+aE93znuJHrbdzX3cGK4GH07r3VYRu5bpCqBQ8/H4gIaKGCYzS81uXOVlo3TtJhjDGorCJI7DdlFWhhHR/KcSWrrE3MtFQxWl9qJPDRTvj+RdwdZJp7+25XYyIrlC8+DxEkiOiF103iORpmG1osX/jvb3ATMDpXlILd5GCgiAevrcKT+8u4vjDMZCEQIuPHu+WwLyy11z/KJgfSVnzCRA1YWslfWaP8laa3IuTAGxLE+bsXGsHfVlyjcJ65cSova/StqZ0N4DEXGQaN+LesXTPxwifYj1lSfarp3O/L5Er8yS0LlL2gQ9vdS8Y7zoD6WVmMhmkEpJGP3wf6oGQQOk47YA3ETY52DIQNCFnhev31mnzSKcRVMjBtFivQ5X3OyfObsQ/qlTPkQP72jzi9cRrJ1bzjE2H1uxaWJ1QeYwIaJooD/Egpq5YAFEjsl7qGVNqxdvcrUsrerdqQCY1ZcgmIxcXy110DtxtSzI0twcIvopKM48Hei4DXKNPiFxwOfe8Rf0+R2lWEWo3YX052JHndAMEpxyvuFlcGLZxbbP41sZFt+Nt6+m9LG7QZLQ2eDsNJCVZ7r/N4wxIEC9C7SZjsK30pn0JFMzWAP2c6BNViB8UJHtfLBjM1eqbDwMosJTCrneExPF+YBZdwDFOlMlpZmnthEE2xOJC2SlfUm3lv8MQNdBJwYmqxkt35sXhVNOUqUpealIKEwmjxa6TfTwyQrJwvuHTGbpBFmIY9UZFYsnhMFNJfP/dzKztpWcPA6//+xr96xQThEMJzDbC08WhhoLGrtZDfE0uny48Ht6ssqAoTHy48hW3MGCFG1M3d/+43qp/dKntOOag1bd5LbPB3RSMZMkwk0gMAkfpOHL/c9S7fzkl6EiNV4edMbF/3+kpwWjhg4EtodowIy8vaYoqsZ5Pg0z10o5d+IeNxWX1jfFCo5fBAqi2T0Zl48uohbe50n23yhB+a9cNfH9+Bb+c4X76+sK6Iu8tPe8GALuLarEwTjt7c8JhcD1Cv7fYlegAsab0VN0kVCwBRRwEJ1ynM/a1uTt6kGsKI7TRiJsoHfHH8dtHerCAdfQXF2YJADd5Gi9S4OugxRTFawqxWBrR40yoEg/e5wZ3MRDKNeg5pWRhIfRoNFwxATmyP7La1dzDlG1Dg0eW+imF4fufKaa1xBLRB6LZwj0YaMXoB2IDe1N8fHHVS3C2PBClHFbC5ig/765zkB81X5v7y8K2fHbFEjLYynNjs/GiO+t/0p5WWDlFR0YkHVxblQuEG3Gu8cZViRdsPro5OdYzujsumxno/Asc91VQwWVOoIFiEB7BDIQoQIK8J8Fdt6h+7QGUC10xWJx+LWU099Q29kTAieOp1KoEKb6oAvgOczmwwYK4iVGZcDMhMVQJ+gUXkzLzqVgzHUrXaAj/G78kuPuSwZHhKCECgEI2AADkFc5hJs9Mh23PFNX57w99C3XLJIHquFsYkAkCGw49wVbjNboO3xIGfZnZo7yP+8mgnIeaybP85SYRWVpUZBxXz/RXwIJjw1iAYzGpUNktVpBLliZg4y5QbYHapQPwbSFg45J/ZbqBYzKwjwqBU+Wu91aJJVgLSzrew00QCAWJH1TETUArUtBUOTEOPg8bYm44O7+iBp5sWZk83WNWhHdT1tk25IFCeJgfvVl/poHS9q+sS/FKRRHZL73gIoypDSQDxlrGprcSoM6twu5xA+/UAWvZccRN9BKrtN16xEtJ6kYvzP9v07V2duP39+sghEFFg1lxLu3qLAAR0b4HvpGCUtgEMF30hxtkkim/XOuTckp5I3ABGEFk+TDlyk132T82O8ARKAg1KJT6fPlcb65lBd0OdRamtWnfy8mD0Aenopk2uqkFSnNNSQy5ngOR/VNwtylWWIeKQjRy9qFIUP6eQfVuM8dFGatiSaA4nf9DhjJGXJw4xaPjVQ3F3Ngnw35ZPE8e6Yq+5zOo8tGWtcqvbACKwo0As63iOFrd3ObvT4bpp27d6Ty1Sjn/1WSZzbJXWpYQq9SfZeIFAKcKIzQotOYK8msbW7mumxs845eWNjILoFg6SI1EFhyZn1oHaPNtsO5NixxhWgBgRmnu18Nb1i3BJM0L0/BSO4SgnSfTIR1t2n1e3Ol9qGEaXspp1OgvXbpoNkzIPrJVJUv5WyKK3z8YnGLIjgksB5/V3VWmq81BRM6BxjBXFj1vyJWmUF0sfVv+F2HqVwzemarJOfCY06eQgYuUQ6ZCX8mEoQ8zNDvVmona6JvoSz4yHCMZKh5UNna08PIbyNEWvnGKgbURVuZY0WE7uFzEdbRfrCsUcYkopTVWEJwmIMIqqHMLUgx3mOdf/jTGlGCynBGMfrK599IBU6yO3iwtShasGh4b0v7FcHJ51+ylHyAClhPv3MpqExMo06sUpEk7i2iUd7aNFhWWkDjCIeHRr31L495LNitVuq2z3OHHEp1vPdwyeqhr9jlIG+OrWaI2ZyPl5JKUDhJgMHumaR4juz2/0cc6DK7AwafI5WKS4iMUOtnUCjk7mnbtLaOZPbMYZRWMDxtYD3ZxXYju8oItvDPfpJFrI9022UqUZhWd8dCG9sekz18kpbnuuIsdepUcs8D7RipKK4azYuaU0oP72OsalLYC2UYeKdn3Lt1nMvxa6dyusIuBzuEZEKhyKehkijbmV1n5xABg8UUpJCWJTnHyhbzJ9bJfdOYIDCo62O259bhxFQVKKwkUosQQN+6Hbtwsopp3fLFMjX/ujpJdqJnvvgN658MQPGk2BSIYyBYB1bCS6KFwqHVIx7s09Zq602EOGCNJgt/x0n/IuifAMV4iqWMx5Zbs5RT4C1mevsEyIGMmPmf8q+imorYYpa9B1zZBh2f9l42KyoijC59ID5LGINE7C8scrb+lIPoYYb1OLjpuePTZSDCA8V34IcTfvcmFcD/hwwBu8z+I0JtkQxcwlwHFE9iMeB+KYTxRyRVRhZRvbKtq42IM4nbrQugQHk18NR7y/OUy0tM0Vlq9YmTRcq2rIzEneV+bjLBh19pqR2+qFvEtbh135mNlmMOaedVKhWExDFhDfwCrLzhWe9ef3QvBuJ5ujl3oTBVgfq98E4SJQa4H2riS3fPiFOGIXQW8A10icdP2hGr0gNkvRs5+sTSQjAsKmTQ1VQ24TerloQ4/rwLSN9v0TqTMmKibJ8ka3vFvck3PQKUXmS9XHAxp9vcrJLOjQUDLxPGxpFkSoLSeuOb4dchofotgSVKAu0iAodRnsnz6a+2lpaSpqDCrs5bZwTAFnQLkOt+JGCDIB4UZUNPq2XZxDz8D5tSXkkHudVUV01TBh14CCdsnDPbQivkTEeRJFwMM/LIC+WmcF65jbvaAeoD20wkYIIQRW2FwI6qP3s1aeEc+8z0JK+gyr7QmTTPHt3LGsTtd3ubDGTl94s/Tq5WxHw2HOHSYUUx4Eo7nzR6DGkgquxmgToCugMwVafeS9co05pcmLUw6DKJv1wlEIS6/qFwOmvK0Jix249/L2Vbk6j7vNPIvaXe7Tsu8Tga96GVOlvgQe6PHiaBORWcnGaW1r5K8/+q1bMzIUjG/B/TWzMQJRLa5QViWdRBPp05NS8MEb5fO5Cx/dbnBpZr31wbMHFK/0O9cSOEaFjppB1kBmDc7kgkgD24CsQLLQnNN1YYe6ACsZmnVZQ2nN2S55aQ0rB1SccSlVopYncH0QvRUqmf1VN1sOHjleOAJ1VfAcwVQN+urOob/F0Jo5Ikp4Umz+zccHGsaTZupIXL8REkQKjVwXDy4LREGWcccEpdIVZRZY1ewIRkyVaxlsIWoFH/56BRjLgmEOiUszTQpK/KE3wtUW8XTGbaJReYzhcj9urhaSDN46CnNQeU15r1kVfNUTSQQHKmf+UgbqL2Ef6H5z2+2uzOATg9B7sKaN23xA1/1TZ8yZp12ctc5HD0rbce7WNdGPm4423wmKmxbAROa5+XUbtreJFQ5ZT/8xaXKji1gV0R8rK4286FQtcgXtDHnpF3HxZi/bzuyr788mFM+XO1Ef0vB+Eubsjwp5bpj5HEDPAKkvxupaZDgx2HxO4V28N4C1cJgtRmIoX2C7l+S49KDKcVbtYBbxcC99+hFIlvWjZG0DTgC1lObhS4lcX2huTP65XLzpVFZtKabke77dsfnKzMofrjSJiyLDCBW6QkxfcxxGPuHNRCObr8ME5+6bTqLjQnqaK0SjPtGbJa9tUFymxWnXK2UzrvuVcGISkI18wMBUUwORut4lirIKI75Y4xmflr3h3RcEBgdrC6KyRauBK1jmDunQ0VotQN4IclkYzNBC/fhOBaTeYd5sRyw6HEYjC7hpIZXyYFjQ5WqxHHIIvw0VIpseMySs4Ls5pxlQDpxV8n9uvX5XiF8L77hQNKk8oJIzySoP6GAcrkD1bRjeTRGbejNMbNUmebF4/fK8u2K3etvBUWKU+I/QKIhtz8vPr05sqYVEd/IBddQJ8JefmxFLxmw+s5oVpO6iBTvI+ls4O+Jm13bjZ5Cf4TF2J27XkWva8xeCnnbACwWT3WEkUFSO157XRJY4RKIgp6xfBWhRxpWH3+nkgCp4fJma7HPhVnxWe5krAl4BTslHMdlSW7arCoib+mbxQgGTfTUd7/Rfbq1Hmg3uP7JpvkDfUNCfR4y+WFAtGZ1C0kq2abI2ieAopbO+ClLZVl9Z8A1plTCjyClJfq/AAAY2Hr7uQtW6ZQGqSXwiEBqlFqlwb9H4V0TMxlB0m0WIQMdMpziu/QhyKTqKuSlAuGnZ+NcymAx8scgfovECH4jgzA6aah4ru3oxmja1z59m8ivzyiCltM3UwaLNPJJbGWy0GJ8W/Yxn4qkcPQ3UfkleZEGaP1u0y4i3MYi1uhs5T4rW/zeCPG540XYUHYwh3oFXvHK6SvXMVoM6yclq5i9Y8OBeAizUsSPA2YcXVCgcL60G04Q+g3qzDMwjhw9myLjfQfEnv94ZOqK2c0bh7BY9wotbhEfwMBxFaDZ8ZsHHMKGSkuMyZ8Q5AbFPoPEBCNHWx76ed8Gy+mo+vrDi2Ya8EbUGVg2jfZNDqnamrVK6u6CNxXyLwoUiSEv2Nxr4jc9ILzu3L30diWfyAUunxyVoHsewC+Opnbz044gj1LBXSuh+DoJGeZzQ7oFnqeCqIN+cI7/aOsCeqQgKNDEA3EGvlSV/MI9N56JmRwWC5yWEcDuNPGryFZpusm1WE72+N0bcv11ixnSJY3TepIigrBOkqJYn2K+9OYJane/BLCgWDsP2WIm+euOQnKGhb7y7eUb94Fn4sCBp3Vm5upNC/ahPRx6m5gRyBCWQFpLiBqx/MLytp5K7eTNEAQ8Ulv1PRUSAPpg5p7FtJIqIDY9IzCh3ajBhNOPlBhrtt7hioEOuH5jXotwlo0L2zRpWC5LMlaaiSiCoCJYhYpMdYgJG4pvxK77xGQ4P3TJZFU0782mVSqU7/ZOfUyGHNPpHoRsJN/3TAcwGlRJZ7O9lkmfCRAmku5RqG/i1Rd7b33Xw2zD2c9hlFFl4PaEjY1pvq037Smqkr4e/ngB49r6wH1tLOb1+mzpbNNaRr535UXBOWYuMRdCK4YSyn4rsDEa93zf7QnZmyjN6NecgEP1MUOcpEFAa1No8AVyKelgJzIS2LoSPtQYAW56VDQwGqtdoFSH1iuPYXDsJ4+y2DJal9GNlvE2qtLS7tv7kcIZlbLr1lnsoUuCY5pQl7woUdE6D2x4hBEDcV3JseOW+2twTmPu+ZtKj0B2E/gbXPSKwhQCpeHWaTu1laEdKfm6UOUDJe10bakkAz+/2ZabbnoLFODuGebs217wcwr6jDJtcs0tb5QUsazVd9waTJcGJ0yjlU0xTgCCAMvd4/7VuwWQAEF7QUZRa2YK1cKBBqQjAEG5frjRKBjGH/Sodtm00iJgSxuyY7vRknunwkFB4ieqQ8pqSypRLuNUiFtkFIsHVOzlemwgrohB1PO0OikDDwc5Vb1/IKxW95DX/zVk+QMIDmI3vpH5fwAqI0VVw8BWmnrWDh8ISvTlpBsl9/Ba2T02WBE8ngKGktM0g+xoQFAZRSFOk+0KgbBGO++FTAcy35HI9Pi9nxP9R6ltHrIHOT1uR8H7orYaeDrozeNRaTDzRviP0SCz+EBBpXr6Wh4PPs/j2LY7yh4i1Chx3W3GLS+21g2vOE4XDmiUezBGYrIFtjCYZb+ScJXXsVLWjx8qxDYOIM3d8PYhhZoO9xzn6thGQ0QUJGznOdCbqZbIWUEio2Mp2Gl6cpL8QVovookO6afSWvJ0KVWwjnNql86x12nnwX6ZjUABZxcMoscChDaAFqd5H6UDCD9rMniXxAciMCeNEYNAz3Syb18LiN2QmVaeeqM09bq0L1qmpquV81WL0j4q3BXQmn24myiTnkH2IpvJNXg7F9MdNc9YqQec6DnJ5I4qhUuz0+/sL0kdST/iCPAfm8CkK/JX4pt9hDA7quNckpQLIqUTuW4atb24JOut20bKKPqhS1lfymdmTEmlt+pDMXc8NL2QkA6NaOI+jmIpk9PT54OYfe4ImbQ4sqAtcoyXR6GMSwAPOHLhp/69d8AuuvK4hu25H7kwvtYN1QUz2Zq4MvM4LxWGJ1UcKAuELJr6bghV8BEny7AQDQeKpC7d81xyPbLSB+k4gqvkIj7nxPBeZ/ltnpgdgzj3Q2PWvSJ+TAP9RCygVVLOtKJo1M1ZRn/q2upqUbZZrSxhAGR2CmtYVA3WS4iOrmD0WUHX2QzkSyqj/vtLtlKzxnTLXQY0ul5wUTrbqNEGgaDVgwohFsmEGjd+IZayj6Fg5qCg5K0ZChxh7otcIcBeJ/SbVxQPrZgV6Y/Mf3aJFAglDwOuFcG2HL/QLnMwMZ+FbaEA+GC3IWeSV1FPfJBKpK9j9id+MG7Frzye8GaoZJNyIJ/x8/0h8gQOUoY5OUQ6YTg2SvP9y4DzNqZJVBP1A0K3jGvXInbC/Wv125d8GNPS4oGAgTf4q95GuAEFHHcqZJLhMrX2bwNW/rOffoSU76PKdSFynrwOVS9ftImvPwBfJz6jJW0BSGgkdtE7/w289HTCRr0g0ThQ+hm6PAoCyMShQ0Ja8Uq+PYC4QsJchCCoJfb6OQUMVJ0Sgm+j8gLH1/NpbIDKAlJcmAYkUELe3EbjHpjWii7/P2lhz2l6b9I1XL6bBYpmAZJcfgvqnUa57l9+keig7f+V92NpnwR6vXvZucpZ03bJ9wZaS4UPuWoQkxGc/Ot6BLgjSp9nNX5ZpBhhPWypwOlTZa0UcUzbsHZKV07kctvTCDRb7xidmlKEGFVYh27qP2CdCAjmySnLx5oOSGcmwKzSlzvb90zPTwAHtMnv8bON+rYG+0Yu9BM1+H8a+90uBpTybpuXvNQ8XZMz5hpecVc/InbG6U39lluhJc1Fh3Lr+yj3izBbODC2h9uAAkgcA8tVe39pZaKjxgCTwj8V2N3de32meT3DZZbxciUp25TWQrXYQhmzdz8bQ45phQZmOvfPXfxhwNIaEVNgm8fQOV7sKAIDtD/kLUODcWSOzA7x2LGTvq2N5Lew9ZEGYVLx+Ds/n6prymjaofk7OP71LQSrYmWb/UvR6yhIvurAi5EslPuQ6k6JVOscTRL77uZBdVssTAClvbSq/0iagR6SK065G301cdDbMM3L+lv97V4mH0Ko67wp37S/1ukz79qqk8R//K7cPIpuNuwkMJCQFK6U7GBuqx9dFsYU1Pc/U/nhXP/U1ef3ELHq+seJKhXJYZHQLgZgN6ZPf9Q1RjknUtjkF+/wc8yo8xkGM0fidp3lEy5EE2dnhCqhh5NmtXYH+JtWGDg3mQnsPTLje0aYRICdQGxiKbcmJgu/njjELopXCUGCb+1RZxw+Adwc3aJGyfWmp6qXhSQ95bvRruRwShP2q7Zz46QPKigPe6Luj5upQYbzemTBDLJ43rQOftyhnXovy8o7sB5cHOyk+pEdwA9vdrcTpCbUvKYu3fZlyowFDTTWDWgIb75//lczz+bM/GNWUVurouRoc2OY1BE6y7tXXUsE4p2PvqZrJwRQ/DuSFUm95EEWNoDYtsa4CgxYtUsMbZngDAOw1mbLgN+bUqLDv/PYrRC5Mbi+jYnJKHkh/QIaOw59SYt/SF42TzniilEitiqWZrTHNLnQoynxiexUbz6/ya1VmXFWDQpUg7gsJT91FTdv/+MAYVSsD0jQwRltbpZ+LfgJtMyeBnh2hpz9mvO3LD1ZwgGE7g1rD2vScNRc/E70taM2YeG5sdPym9jH19KxN8Gb/Hc52ttQhfTfV24SCF/HQY4pPWjxPk8Wl66FnlqoSVQW5Mo9KxJv5Zz0XS/Cq9TL8mC+LQy6U0odGX6kdFYRLjPQK8E49dRlK7W7oHc11aqbSrXzO3QbJHLpUdgxBVyuob/Q5KFS3wOAQZz08Fgl5ieDd9SeZZvydgcXQl82QHalKvKVtFKhXlrNiu6R8zD83DxYVlWRtAypVJCcmwAU1sfK+sm/cQhSB5ev28RtQq535zvqEdiPabXMpMX595/Zv3t7tB7tTA0vwD+Z51z+CkKm0pRpBCX4x9sz7ghXSonXsFQGEt9rnjewZDPt+1men8l5CQi+LgXz35AL1i7nJC3PbUdCCYPHXU7fg36ua+G+qvUOaEr7/S0pxZGc5qSKr0AGsZcybFnXWoN2Ie2q0Czp95NWZ42Vrdj/2Vz5opAlTNj7Jyv06E2Q7Bl/0s5/gdnYF+6lpcCecFrLvyVRsc3F+5eHwn/cSmxU8VRtP8C+8qfTMOStwBC3tVIcsRf8rzNEN9jhGkfHYLBvdfb4LKu3y32JHLyodlkq7Ch0sZJWTp+u0fEAfEn5EV2eiMMg0j7Fie8rL2Taxv5/mhVrxRkLPnWUM6KdJV8eoM8Z2z/sVqYIo0jZzNxpoDXC59x+L9MG/KQeUoYLVxn1wm+0Gf9NQvNxTbCkOheD95eLW+Ghy1q4doXuguNH6R7qjH+UNR1Y/BcgQT8ysLBr4TmQLVtI1YcLAoLD0FgUoSPAcFHxhN1jl0zBVIe0G8EsULHHKzgI3mX7U09R4RsC/IkJNyi0WZppVl7UvPR381m4he4FwHYw5PC0rE14iWauBLDelGHHeUjU69LvbvjAcnra21+o8Lgg3EcYzs4SLxy3pqdkGpUDQUyL2wmE9egj7RAYK6cr46l70Fw1+PJK1cb5Yxru2NEHF63NCkvdSAln+Q4SN+eDkMcvNZWqWrovR0xeh1A+ug74T1wkE/O0NMdPb0eyVvbTYxgC2Dzg8s0lstF6dDYphp/gMag0PyGgQyxiqNLTYw4iKR6gpGnRtBFl9toTjny3iH6EeCZtub+z7PlUiNv6gtgWAcKZKYLdgpvFkA6YO/Y6Jafm87B9kD4F7q4axHWKI6DHCLr88ZramZdlcS0v+pOpRZ+yZR4BH2rdGf0gVlEwm4HTyu8yd4t3z/cvakaxjj7mhpE72FoXOA5zsFfcPCFLozfopOgzQma8IpwsSt2nPPwE6YjtXf+qniHYtbiWdIDayYbIDwYL9zpvMQIYAFRydB3ddeBm/UAxpgOoTc3C0/d/w37q22tIVtmX1r7RfUi5ET0+CTG8CV5Wut3zh9I73an8ltPzTuLp3x47fmnehnjtznWThI7Vq4HMLkLfsDFKtEnqRRSchs1YywK0UMAnvO7NBIGJpj4IDdUMg0g+gipMEOErF9SPMAxYM1HCnQUV5+Lqc9dOElccNx6f23w5idjgtGvlqWLMJdQD4vheT6WOz9OlzMJ2Bq2A4Eo9fx+23YCY2oe/dkM6t5OrO23ODywt/00EemykbGwb3CmaC5uxGT7Ueo4hI/dpT1en+LnOKt7wvwPqwAd+P6B8AbldhSe6KwrDLEk3PRZRnQ8rxnEWsiVBlwJ9ngt9AkSpqQqVc+qWQSCX0AAa6cV7cJcHUkhPtwse3P0YGxhMPV6uw2I6n2IehRNavBQR0oELA1I3wx8l4CWxQa3UEDMDyuG8NwZ8zC5fNiuLt+OhyDpcOe55whyNC9TFgHdoc85KuZs1zJlIBEPOLWbQTdSP0/uWe+KYRP1IbPME7wnkkAqRBFhW//zXNYCSJY4uWFougS0mAklRgQUsX3W7fkl0nc2GVShc7oG8s9bhLonjQQT9oCKXcQQhdlmNbvLzQ/DTBfhAottB+0JOloq/xuGJCalstrD+inQEJrU0fjwNyfJzP7AHnfHVWKhCgGX859d0ni/THc2VarQAvWTw9LUdzA3Jj3yG9aytcLVvtWXqJvH6vp9TERDY96m9WjZ/yBD67pEgL54KPxlG0SYIBhcbpggQ/rsK8SAWl9eJg4sL3R/O5gAbYgiP4/uEh8TtJpCv5EfhvefuH2vJGU88Nwo53vAlOjZW8DdyEJ7BO1MQJlME5xqAJu59WlzftW3ApxTXUe5vIeQftJj2PSCpy0OlslVS6RblW5t1rP4pf4PWfcoDAvInEWsPy0WwUC1Ixhych69ARp9BiTBEhzu3m0Yh4HFCkpHdvSWL+fLhbvEUvBbYMTOgHPd+lWbHLN7ACtOCeyafNIqiiHEKXgqMT0YmQ+e2PXY7sdEDaG4pv7LnHg+udLBvBo0Rr7wdENpVUUUOhgmQ2zWF4lAjdMGfMdc5VC5uFol7miQjmduIhQ5Ja9nvjw4m2EurZPZRyXd870wIkfOTi4b8CPbz1Q5Wde0X58Xv7pUhNSvFSMCsTEaVC1sY/ZDgAHFt+fUZ//zKLd9pskJWThIYCBvNDS6n7fbk9lfwtyMXbJKuzVcMmHWs0mWaRF1w+AYi5EFxH/6/sQZ2caBhu7LXaUACs2Ht0OiIwpgLMs5FoAn4KQgsZLxq69dvDWHRBUVhAh5vQwSTpRaP/R6y+4BPMbw28dLTvTxyYh4TdlkJhjjFoDoHP3fnJFTPtCpzz+MGEy7M1+CrnCmfPd3GNXPcNU7gKVua86CcWjRo/Ta4C14bePofbifRWooWfpQ6M6rEfJ6gXTDjUDKkJ6OKq4mOqQICW8pSs1dHvEjOUW+vgDWvffiaYp1SKlTDJ6i2r4hdTIe1mlhATXreKm9MXa99URkV6V47Obtk/SBmxSIGg1cVHE77FVTAHewArIhoR3FvICvSpY6Xj25aVuQEnX3uIv4S2fKpqJuDS7pgVo8ZG6qD7ju6bL71FvWHsMaSFowgxp1s3Hv4IU2g/Q78PxUmV9evKBCQTLPxMRr+Yv9hEBMTD/sfs59PdBb6sPbUQ5Vq5Wk7jA0o07zf5DmkVdQQ1UcUcffHfrE4VzCW8FolnKcacFnBjDpC7WpcJU5fUCAoPyR8dDc8v+hKTiTIjDRpYVWl0dpfeZ5JEX7nzoI445Fq57gsY8gARQpSZW6uK8fTyGKEhKwXqWKT1KROQPKrDqsIgORkkDLiHpIjN/c1y+Icc6KAzWtR3c6lkc39cH4FjkEUNKBzx/XiV4LyH+g625FlaeyLYf3vQXBWbAJa36TQglAWxdtavrYih026Q7B6G05BN3u9Eo2VUL0kUXLLDrGj89IAegvB1y5JSBMnbkL6m9zMu51fbLqqp9yi9fWCz8ZnPIl/mGf7N1eZfNOplADqzo/FFlN8biGfXJIKF8WASCTXDhqy5s+6umS/AKiXFbvwfSOYhDf3GlI1NhaX8U/Da8FKJ2z4BPA8gIZzxt/RTyZYVKl1+5ExR7uKTGtdRa75mXqkiuGa4GOIx4M1COQ6TbmqI1zADQbJBJM6e0TrgiVpY1zID/ZJJ8NSWsoXfUJx7uqZEZ7OGfGj5yRxE2TEeibvzrLx6TMbmB/w1ZQ8n2C572syPSIf9t7zCke1jjpaJrgR0/YFlBM8JPiJDnXhaAliDCD0OsivpOHKnmcPAIIanEU85N3WhElEw4ApYNSLxGS85PDS7cE6gy12x4d8hnFqQ+7GkFlNQqqECXFqc5fKJqsJiA8UbisS+oI/tGM8Mauqg2Wg67P7Po9EePpnK1vbK+vAuOHtnn7LgiEmKd4dffv/Oyh1JLmiweljx20quj8Dlh+xsEiVSc5Uwj5YEgB+TNEGt5CEtm77wdwzuUU2Gt/8O7VqLsfCWOb70CU7VLqFZ4iSXJt7goA+Q2H5TrxZs0GLziiE0j1vDylOrVK0mZNp8jJWixIJIldIhIfEOYWJfcS2JJQc9fYF9P2GLwCukq/1JZevMIpJVL8kme1k3HoVG3WCUr7kpycvm0rFveyjbpBWhkL1NffEjodUudg9is6LsluKAdhd6u0LRCh1AxdPUHmSLH3Ar0G5a9CjBBi889qomZMVsBrDGoe5jh7nq//veJZREK8NNCySmQX0cKE7ttC59sfA6Hr8wqhStqERYI0czChwwa9hgPemvrmUAxmj9C04X9e0eHplRIjTLh/LvP9SIJtnCRW9hF9+8+yVy6rF9tH1izz5KLYda58HEEbUvd+gsJUDxVqvJb9nwSpVJR62SUP19jIw8JxRyICwmExzv693u6vhhBhATQlB+gGesLXbOScu2J/VHsQBrM3sP9hdEyC3461IJbpodi6EAgISJu3eZgP2cgKzdKTBbfZ8NpZWEaX5J9vbeN9sVFKr/rTO5YstgiAXvWGcGAr+sZA9fIY9Z5hlGLUxYfKKkHEGg8ywdDk9JJP0FUEb/1LnOGgCgDQk0f/vcYtMLmIWdtiJ5ix1f0SooNcORKwQ9ayyQJwavOrwzhB2cR0RhJ0S+5wzS8iDAzZPexWdydY5QRPHU/UnsvYVdJAuiZUl0NHMPFz/e7bKDixiDQ4aD1aDckkkmBb46VcBqwVWykW824zjxWDRpIwk0O2PnA5mWozV1nnglV7DRK7luh/Y4XDvfL2Ft70yiXSJTij4sgwK2reA2lFPdVI2HiUEnHM5UgEZ1C0SlIHRoQx5hACu+ZT1i1yPuJGn8Ccgo2PCzBzMFGdzCQ7d94QdyNazs7b6WEUlzI3B6YWd4g0VlP6Fv96E+abvsx7h5JbybMWpEVpaxY2C0dTLubeHHfZtJ/YlktX4drbJV47vpsUeBI5zIyS8k1n3G8X8umY6GfpnUMB7Vdho716zu+P7nWyzyGYTqD5MRadEQAVk+CS897QXtTjQyhRpAS9cBQ4q186kuPCTKPOlxgRclEClDKAjUUQYxPgKQ+HusCS4qQW43oEQ7y9dVxAmv5EFDdCx3pkcS0Xmd526iYJK8o25yecAT0XcmobqWDWhtBRujsvw/eXClrl3DiVWNiFIuGfvqX4Pg4aTKjeIsuCh/iVluP4kEWrBbjywMesQcyG0kp+zLkKd88PC5ZIhGw6SSMTpOma48UT0lYtmbEnFOBiestF5SVh39onZb/ZgvAjtUOHWMaRmBA2nUZHrPlYndxHzI0rnHrqor+0TMPfvwEeWLeQWQKD0uIB0N2SvlnsGCBX/5+pqmbhM5GHfpBwX7XjF+DtvwxVTvd5IafstFfC62eosrWD0X8vVQKf79Q6D9UJAqUlGFxDKvsdoA86bREXbHllP1cmNbEPn9ec9D1sSiP3aj+RsAMFDWVxyaG6rTrKoP/GxBAPaYaS4i4k3fC7tIQoNeuInGFrDN+sVaue369HsIyB4ry5Uv5aR7y1IhjSHu4brXUykSSc4WLjRN+yjJ7YPXiGnS0FUFQK/URAMbhBge4EY+6EWR7ztinFGzIW9hEaiZWa0cU66rNN7R1skrAqHb5UPYn4bPhgSAZLIZ9SKAn3kjyuVgJCIEjmeKutpGApqwpcAb+223/rK31rawTW9JsckReD4IMxh1u73HIP4XeN2/XWmrVrTttZ025B2L5bnh2+UO1d2W5iMD1sput6x8mwLC5SULmRfnIsZVyYvWWzapAY+8tO4Q63jRfW3/4drMi0bT+PxAO+l67b83FiSWV04B44F5jYt6JIh9fsyXSnGUiX+aLj0teccb+mxM0ERuBSamYdG/V1M/zL2c7sVDus1AIrAa4sdCKBBbVnyJLw1gcjPmzOiHZoHpzXeq6d4fIO8MrYOJAYQR+LNKztIMaj5VZZX6NYTsKyCeT0oelPVPlmVjGXO0/BNFM064UPItgTyTwluauzjmLTN8Vb3NlHXw3hvh3ZW834OT1wq75Lj7sR4/nnSVzWTw9eeA2JmkD1BKNiFhFzvZ4YJHh+NVPtSuQPT/pOGR9AD9Az3Kf2gCXMdrYXkGXrAXSJSJnaD+GUFZdTJhzhgRQdV0yjo9kxNclsoqr5CoQdTKk/Nr8/i2g1k8XZYnQWG7/O2dA7JhSamdO4sUWXjVryaAXvhZ2r0XudXMLHI2UKJ5prCLNdl+Rdoj6Usv/+PjdX0bBRrVFkkFwNvsM1kcKdP0zqs9RNl8gy9xqQ7nN3x7VHAnDJ4iHyl8NDUYElFxCOe+I1c33b+OJ42Xho6L0T/E0X+bBDoQcCZ1Mw8idafodIKLWuc8gRcHdQSFyWj3VbjtL7vtZmhiRReNKLdvug2AwYLxWiv5UyEzBBlalfBh+VarfkZ7edeMqULSS0+Gx+EpLji2yQlNAMODvou4+Wup3mBQ6gEGNCWIk7BEGKuTXkbf0NQ2D700Y5e/5rjwfEZFLoMDQ2nwRMMQw3Uro8Qh9/IodLsLQtfrFKBPLUm+qR/ADP1Chv/dKxwbASX0byoheQHS387bMQ/xuPL8S3bVTnf7huhynXBPeyMMnKi5Y/Y8Om9+iQ1AqXTE19A6MpwtWqwTJfu23DnMYhbjJurwQSGRodWG/HKON2dU+IJP3n7TN9JegzPYqewHr7cqo0/kgNnnigDqNv7LtuiPLQgl90W9rwoI3bLqDDMKqffWoKNFh4371ladU1gSuCuiz3oP61sx4wviB8HcQz0+AGiIWDb1r6hcTpAHNiz/Y9DULvQwzxoxjQxG+d6SqKZakdTrRNW1DUQb6KhxDF3zsBLldASvzeSSNqSy6oj+Op8kmJ3aubW2rNJaAVqIVSLubKKrXYbpaFMtOKuxNrTPeSVyQaWXXcV1c+dYf/GZMku8hGhRbhQZMT8gjyToUXiMoxUmcYfOOblYP0yXo6qJOl61/6aQepU9z1Fav0Wrq1b/R362HdZhlYaQkKp5Zw3TNH/xLcnTab5YuClebn2r/XlZWHO1ZypAW59P3iDzY0eCFeNjTb3xPTwM4KterVBCiFGdLCGPe6tHgMO78TorqxuO9VCbnUUvkjwJ5O367CMG7XkJiDAI5gpXeqRTn8pvaCDuIRzBqEK+MM9oDOSUMnWMPtcLXzYJDbu0ocMhNipc2y2WfxpWrR8Y6Tbr0DB8mRidSalJ/bPFLtXNW09+PV/Oz5uEJkpfHQvbK7K9ciy5GI1u3K3ud9L4P9LpqVQrJEd/KA9JSEi/YQcpDqY4r34D48cirKGR4mxKKX8Nv/Y/QLblw9VZGjhtXn92sGhtqPELRU+u4n9em45EEjNbfrtt8DPQJ03PnWfIr0NsJzNlYn+bQHhNbpoBpgnxmu4cjizoM8uzfxNfyR96yJH9XSWXSczC4HreIndy1+r1rOIKamXVD+7qH7JHYS/sJ512GAlgSukXD93XO0lrA17UoVdMyfBPKiftFPoh+XcNkQsxSEie1uCle8TF47BHqQLma1j/eiUk4oJM+IfrlVIVhfjkbABer8swZ2RU5Psguzoa/i3lbZ+CuDK2yO87FrTgYPKrhZeU4BOqcJyXFvyVTU2PjtA97izF4c2Zfnqepeoy4u8XrExizPscTstY9o66Gefl/r1oUAc5WuJJcrYikIf+4fZARasK+vkOBImOO0URR9ezzTqB54JdeSudz/YaRPduAJKyBpqFUqRxeyO+HidWSsXmxWmGwE8KL9Z+TgjbgblSmcZebOn7O1w7tgONt1G9vCaLMa9EDMyXK1o63OC/DtwYeszsJmQYFhU4KO7Z7MRCB+tMZgou3lFP+MzylFk5EeeQyQ5GOc4jIXvFCeShCIM4KWNZ494EMeJfAPXRuowDG9w5PEb6yLLbmWdAr9yniEjWzyx0TBChcJd1QhlbTr8g0EkA/ZTsMMjTx1heb3Nuc1QSyajirJGhdJnwLe3Y44q/NIxlCocZ3P27Uw/o3bgEpb/SHxB9KHCYEyNfnhvy+mRMQ7dBXg4u7YfbxIXf+xmPXKv6dZ7U9xUZyRvDsJ5Hd3nZmF+LDBgRaGXps/QcLYvjtdKb8tv9OlmUPHXMf0WwQL7uhEhrbTeJ6kRJCch+E7nF3LizCL9/2cWWEhz9GhOOoVUJdog44R3rZGivouQhOwtXbs5OMir+4K00poTVdTp4tW5WDBtaSRPqMtM8+1sfcXr0a2TR0yr1XUFa/gfK12uVPvdOHH7Qr0N1aJayP/INq62UvNGRetyJzbjx17hLzWz2ek8tw+jBVJo252tmIyhk1JJUvWOHCgXEBF8BQc6Wwml9nVx4Hdld1xZ+OoxuNC+e6W68pENej5DqWIbfyd6azys8oN4jFl0d+FFP3N2tdK91OGAMaNPL3kd4i1B8txJDM28wPPUlq/WPl8H87jEKBcov7o59yqeSUhvsE8OIq2cijRw8XFBdkipBwdh09hlrrcL2rX6NlSh1UWC2xkiwC/2jOICiHNgaW/wMV/TbkGe9jKAn8ZcSpNRuZ9DH9Z9gNVo3OXCJCe3dN0TMp6gfShaBlsV2UFss3wbW/dIDD9CrPK7r9DdLOA1QmyJW9M61KyskOUZmL+H+oXX1yfocMEM3nPu4inHVXJs4uNfevVDqJRiwUkLmA1GeEph2c1pBydAOHyy6hI6ECRWo55eNTYDtZeHmRE3x30aXVDMEm+eIaYkNQVE5uXz6rnxvB9i9l4NobWlsd1/X8QxUhQcvu/jbZd/HTXD9C2I+W1jkoJ6/ZrM8hckSbFKLVBX7XWkYbCq3g2dF7jduhkZMX6cQ0nPLO1MGOyftRyauy0Hu2zIlD8N+jqxZy5sCyPC3Yf6/nTCJuC5BbbQplbsXmv9vvOHNW7JWGDVJJpa+ZmjZhv4uM+HUJVISnQ+08HXpJiH64awuAJhjDeTqswGcyBWvO9k3lOhUJbn9VwXm7ak2tU13w7YxYOWhBRmAze0qzEJoa8jUfXPxshnN/qij8yCYhIMYmhtv0Y2311QhOVdVVkoFzuBYzp5Mc0Ac35ICv1uBdnuvEHB/yGNxQ5FyqEeN0LpQH1XyPOAIRnkcwZkUAcv6z5RhHVbp++LmQdAhbaGHQuJpbdm3MoDhzXZwGYDjeLrEknzJDVPRnpsues4QrnHh1dgkFJEL+6ojZwe5wwVR2I4gv9c5rjGg4gqr/Mj0l0uP9VYyTCSjT3cJiYHPYvWeyZFOzUBnJfT4VUR77y5X2KGzRBkgedI6yXtql4MuKYI66IFEH1Eajwsv0efXoYmHwATJw2zK8BJJysmfG2FW3DaPP9GXNXOkq/I+GbUN/jNB6P4izo9ehMV74tgvIjmSX3NCqYS8Cm2w4A4oA12k+9gHt2y6RGPJpcAHwxdtXBpG4RObbiMzvhmWmGH89VbKeeJ5cn2hZaUUseT0x7n/hgRs1PsD/gHimsQxq7oU4cKi7Y1+7JTm9zkRguzYH3IWFNBetmkFGri/UHX7Eb8Wu/+Bl3YupS+seqlqF4RLJFtyMuXHiZsO7wn25cay9znIvLfFQtOstZNMogvap05AkOwa23KZwtKZKvTtuj8d6nvdph1hgO5UhGjs7n3Xnw4YbrkvgCrHORHeztKQQItu/QiJAbAZOqbP98Dv86WZMf0gvwUB6xN8VQKtDqmZiEE47fMrAKM0qLeGWkRgT5NkyAZaPgvw3TZnu7sxNjEXQk4XaqqT1AsY6VG6SjZRAKU9n+3kDskWVQ1U0CJJqA4/G+QUA/g3TCb8H7EATDcZp6scP1I4GoAiWHtXgBv0WkKPSkSlNr20B8mWzeZYrDV6BQJl4rutSYb4Z2TbgMspLm9rxvPG3Ih76xbgT2XoYIjVonWaivmOUzvZqxkX8rX70F5bJFDkm3jQ66NMbcNsftvGwhF5jUsL99M4WOn6pUi1EVrY09I6IP1C0E9MXBrmQ8TXPGbP1VbfrXiA6jce7e4JP6h4twW4eh6dBDvqhmNI3lcSN5hTUzKMjBTaua21oIMxVQu52KC4+k0dGWl/n/J3UrO8aU7gjoP1ssP1BLMnb+++lLUOwUxDR9Y+ZyxA6RmXR6FczDZs6aRC8Xufnmhr07e8M71vTKH+Px40S50gwt1oH46lEZwc0F3bazTgaEh8nPMtzTIKwte/fRNiGrowrho//44/UGnybP/t2zAHSUZwOqHlELv0C86KyYDakcJM+/xvjQBrS4GUFa8Us0YZIml1PbC+4Vg8xz3miuMIlz+bWeSEQ8nZifUK6GpHtZFkuICa7JcIuMrz8T+3DF5IDp9RaPbUnGyELy5WZgT0CY/2NSS8TE4/jqxJX6jOTrItXvYw/sRrfBuxN+2HoZ+80EXMzjKlwa5hO2KHjHS8dEgUhYBqt8wj4jM6oL1WPnHgU2G8NUbelQvlTrMGn8MfFeIARie3MgtdPO3s9u8pJZQVLyS0CXrppKZqPdAZgXSodQpZX8cBM6sse6lETQ6IQ3DzCr98MYvaGUF1JNcywUY90gpKwGiZF2OHslvR/7Q1P+soDU6UN6t9/m0s7OQaIcd77bLsHNrYwcjrC2w8eIVKyZZh0hRKKGeGSkIGsMr4QNAy0T6zcXshc38NbHKNysSLNNsDyUg7b0w1yvfK/QMvXI/tASiSVNXoxo3jznQ/hyV3pFMXuWFqRidiItm7oDhk/e3eLEUaBVXJMaHXUCIegd7DtZgtyJ0JGveh3z+2qTmQmFHZDLF7J0ibOrrjojnnTj3inzreXvqk76Ey1meZu/kOnJ0ZHCeHZJip1oC7p3aWQxw9GX4ze42g6WIQypjFu5iZoAZNoacHe+JciFACJjlZKKXzMMy8/0JOZab/Nphqzkk/TBACW6CyTF1b2ACdJYUiQWDAfcUyYfWdojmBT7S02l8Sph4ewMeSetwLBIpWKWnK349SAxThhXraV6iBvcJy+taPntvCLfSoQOOaiKP5v3Gm0l9K2j8EfM+qQ6ry5eqrQq/2Uu0aGoCrBKKakBtIjp76UHzf5ANX05br+Ui7zLff+ppCjdYCqV/H2oxMJnXqubLB1aeDXega2KSOPgRQ5+60RrZy/UTKjq5xDOAPIQbmntz6bv97WBuu3eGd3flJogaKv4cxi1f5mbXwx+z4Arnexn+QgF/NDB2vkhoH3wdTmH3+RVi9dtkqIwXoVMZJVFFb5Q3vde7ptsdomgW3LabMbB6YYe3pEYK4MDoucyGevrKkejiEXHQj71iU6YNy6k0SvjUL6URY1eHwqGhEtNJ2L5KHPUT+l7z7Jrzbod0n+9psSm5U+KQXUmDqQMFGZOZF3pHNNexdYV7m+r7XhgzM+gsaNtVT/814FfYxGT+19AkWYpm0w1KGQpW3R4A19S5PDFt+5D/BbGZ84+0/HdFxStnTwGj3zmv8gFVg+gVLhDeli/1FfVmPbQuUGaq/G5cMqd+Hs0MCT42ZWCQb0pXl3N2qdzA+pnnpOyWpwmojbfG4fD/KVVIHr8idxyHrC/f4cKsNE2TEr9VRxJ4Wk/veM+wXZHSCObFmxq0A9JNVlD/CPUfNudZHiI3bDpWUxRUcU4fbbSmjG9CPaR1uSCLOutt68mXR/3cXAIGk7FpTcTWM0DVOtbAWHGk9V60Q6PASLthzz+u4S0hPa3r77NLyIwPPZJWYK28FfV+/Kzow5V49qgNrZH/+lFXxX+HsvfcJeRaoeNgbk2o3hA3Qi9WHGHvFLgyYynkGy8VZCBUlNJ9qDeQ5N4UplKK1ELVkFrcZSXNdzc0UURMlH5GZBzemhez2jpu8rjROMxpEnk+IXOyD4TTxx/mQb2eB4/rAo6DXKhpkjsdhrbYJc5Dg2qxlT+GrqcPl1ox9aSr9P3Z92i83DdUGzmXf4cHB2Vf+KKxcy9wGwIoQgy2bSofEHSa0t7B3XX28ovIvhCvh+rZiRB5M8ciAS5N46yrBJbMRiH56PzcIGBQblGC4Hb3bdK7e6ZUqCq0O0UYxeCDlX8G/7j5oZL3QJKCEFAYBkVpyQSmA8g/rfJGyzmGsdJ+lWwNu036CBnuqNCcrPkq5ROd2a5fPOFUSuP6FzmfdXJTkD0lK+F95LNi8ny1XTH0qT76QFKCtx6OCW8O49vQqT1dpTgZsaPgXJ0YzSE4bWvZ6OxSp9emDkIF+LsSpGfaCGbIiyrXqd6eEDD8kqpvL0i/tXYcKawYP2nYT74ZgtVzGZtPyTZVzwgXcviK31oKWoBKq3nEphhECLR8+scQr+kY+K/k2ovcfWpkst6jHfQsq7+b8VLPS5kefxwPZPqHpa+Hm3VFnymWQpduMCbyKSJTi9KC6pnBUft9i0QzK0xen55hw9EJjQv1qz6Qtqmvdbl4nInJeFBXoRAjzZGgfvPT3fXiexNylQUrqvh+HjELRo831fQj0+wXynBzIqtjr1dmIzQr+0OVS3TwdR4Z03+rKYSupjYpwYUgtEYIqEsf9G6bvpNSvANblsUbZUEXtU/UwWwBIELoa456zptq4cdq2QHNsyP6jWOHIMNDt6kUvFI1UmBPCkSGRo4AGDd5kyH7yvzBoqf+Hb5N93Wc5pHVdSmwOh+HFfp25e3OY1x3aU16RrVIEgxd0bLGsVwBF+h41okqVqU3CFS9aevj1QyVmuZDpYVUNccrXFPRRVmj41FMR25a55uyUGZEs+c2GbWUuZbOdyyaCDK+FS0UawanwSglfAKP9OWIRYl2a5PfYM/zSDOg3yhjHkeatZzPG23EUlRelXLodyqI0oDKtUyuAfF83pqA60QHb4sxlkgnp93BtyxWoRqZKc446oggPZb4qKwNivQa11qWXgm4LvPWTM4NXGLbSqPors09bIkcWYt8s+hpOb/MPh57zCwyy2gwJ34DNbbW6c3sYEnwYfRcnMWox2BwwmZutI/E14vSDqkdkTssTPx0LcODXaAynk/GBnShXcSudSLwYXEtPfyA5B2KWMqPcJav9vP48PvW1eW2gGM5KuNleJnI/lGCS12cNjDH1NESUQ+hzIgSRkCe5ztiEcpNGaDNOHvpT8d5iidP++veCs8s0gVTbyLUJvub4ArVC2XTDzOEmq/SSCaXXxzEwfj+eN8KffOZlwehFz3xPZgB0j+2FRQZmZYJdk8WqfSZ7iUmoRv8J86sbcxCoxdxqOwU+ByW/ng4GcPxR7fo65uKWY9bDOSCw63M0AkHkg62njmBJ4PRRlE8TpCFqtAXANYiB6c5RHq58OSUru6fZxKWeAkqMgwGrt8fdN84g4ffmz/mYOH1S+Db4EaS54gkEnYN65MJofBGb1bewfjVHff1qrbrRN58aM1MdIsHct91gdi/eIjmab0XVIGmCNKL8X2knzvgupuherHJeik5Y1G4vbTwYPlVkSST7IEov7o5PLJLY7bwiVDjpiO3zuSojxsejoUBCbWrpWoTpQ6iem7pP8Otr0NrzLkbPb4LBqY0n50BFuLK7QCjQIR9OoiMg42UnbVpVplpusbvHKh2xR9Ky4VYSDsUF4ObClwprXEi5/UfdhGDV4dV/lMMOHkcuga9c0gGBHWhTSuOycJpB5anIL8svsdFLMxYVVOAtY9FqQtFT0TfbtHZC7lVvKDpSNAOYTl7O9AJOsfxF5HdW7Q0gYcO5LKikJqcqu42gn2eEaFVz+l1DBvrWOYWPHK5NK3Qf/SSPylsc8YXqDCeqeh0S0PLG2tuOs1astGUUKfHv0A5o89g0AB66iUXPQLNcmnadwyMILKr3rWj5GU7BoqAtaa+pzRMablLRc52jwD0Sn6kOYrDq6pMwmkS3MqyIwQWHGWbwCJwFRwGUadGM6BeJhUkunATVv3THK60+KQurSaiY+HS5lMaBhXnnaTuK5oT0HRDB3nSb12Vn/MHv818tBMFB4bx44mSkSz5tkcRQpaQl9VditC/Yi2HDX/Z+JBMgO7YciolUcCf2by9Q4Yc2XKvPIZHYKb/10fOjkg/5tPMvXUJXEv/siPWFV9cXHNgkdb6QDygNGTU39Sv6ASYgWnSgigS57+xKqV8L9HiHDYpiJwhS75xTkqN1kyFFIcNo76J+/B/kG5/kj4JgpijPwELS5L3WOIBqc6bx3hZv5I/iLM62WiijI6H9vANznsNOr0nN/EuOc8JsKTqUK3zk10h+olppDk5CXfr9jY2+z6Etri6onIykiY0YvOMG6iKTWeGWF7u936am5ZqdAPMb+W+LE9BJMZCejbZElZ8vwRHYRVSb/tQtq/IlvkHs+HVoyWxVq1n0CZiXvyT07nAOAR04NiUHppvRcMLU4gVDDuN7+iXJVaWucZSwEo8hB0MUa6RI7p4feri+ukympQMtq5JA4m4MQmSnFLNvBbODSNsDWOmLznj9fJY+xowoXpf30JDth7VlN3gxa+riaxgdUfq+Gp74V3rnNVMYLIl4YFVxeNRzL1+9fHHnysR1UsSpuvzVhly24wKE/jRq4vABv9x9XuRtF5T6MYurNmMJOpLepPGAml4LFpo8nYfaXcr0hesSTRCsaMBS+GYUqvpQtbyBPzXcsmMnF27R2t4KjmFLqtpu/0IwvRG2gWkp44Q3WF7pgv5Glvnr2rSeQMQX/IzlEITgF/tRP0I9H1dfWgdi3bZgQAJ4h9+HfLrvHn0JOBIuZutgEDOBVFszR69sncs9YOf3wijiOSNRFcoWDf8gXrRQVKZeXI9LU2EGLmqo+O7rSmG6NkuH4GvK40JQ9Ewr5caKc3WCyAyc2SBAHy7VUyu5nnKsF4G4CKhV0PSyA4FGRabw+ApgpINYeO9z+ts2FViiUwWKP+CnEGWUV7Y1F5/QbG5X37+4lLrlB+Nm3puh2ghwnS5mtyi2EsmgrN2VrY47JLD6E7j82RV+GQR4dnK0IL2xnuMtp2fWigHovD2VrGdpvmwnOuvXx7CgfWVBxGwL2c7POJc7eg6S6z96yMWQZ9Ksdfiius2tuQtph9w6nDqMWN+3S/SVBHJ7MD1S19JslRddcLtc+q4Eg1trjKpog2OYRz+MhAe+vPVyKXruWTKv/39s3AItlhoNDGMPkJv67vR7xziMKO2OnS+33sYXvWq+c1/EQ/l4KSGcTBJEX1WS67xiByOa/VIXX5/qMMmI+gpIdp2vml8lRSzA0XFMR1qVI7MBkotZd5KzFIJlka/bZjMGfsAGC+qVtVlZxcc5jAcXlSWvT1i9NEFaVH9VHvfOx+VF9S7vuEczx1eX4//uWdfOLasAD1qEXIDatITuxKzMOnnlWcV2C/rbA0g/kl3ppOiKD16WUhp9Anh3bJyKyKrRY+OyTC6mSxosn2DNrPMu5Ri+w+slikYWOR4UY2x0WVWWGQaaYH4Xt5YfdHEgo/xl8Np0TT3B27qUvCpTS6GBHx9szDIo5wp9CXu2voIyo0tJBPutGFVFiyVOiaKM1h6rpC2DueMmOJjPaLmvjLtZEHiplAtaC1CNb6t3tplYm6H9+LDgp/sOmDstTrMxaTJcg2h9V/Eqjyw/DNkSlFZvc04G2cD5k1bmfs62gLkCuZDQltOgRP0DFON9BMJRxWEP7HuSy2rva5MREIBq7UlFslAjmRo3D8YbgpuN5atAc7iBSAIho+7zgZXScZqOO2ap7QdGVp7ApHpDJwpq44YjlN8J3wEJJP7ER/dYKbcjHxNoeG4S1x4QUnkAtI9NcyLTeSCnBAdgItSBBNHyK/4TeQed4r2heP8cto82Z9V38njIWzq1wLkLgfZeoZ+zR5+tiNrOhAXYaS4gws03Jk01q4O7Weg7FcvLZAmRkhGBxMXD54JbJ7EjPlm5Vsy411o/ImiznwjkAwjX96HTQ4oPPd5aotv3cryaErmtHb0QykPtwJax7tD4Wc7TScVMgBzBOU7xnsl5uS552SfJ8NwzLp6iM27NHR4OSFEkJ0LCQ50BoW/XplvnGlP2bKHHRp/efAkEQenBKI94tFNeKPYJ2K9yRuFCBKfhsZYGvxpugB9pHKZlUNBfdygF7/7l+3bn9VSf5qKSRfyksBMRe7TS8xkMH0O1gbTximKHCCdUcJXdstM5lgXTmD2FF1N6KOGAni6fHRanJZb1gD1OSkqiU4qo5P2q+UxlsD9oSdER+HQIjEB7M5ETcCNrm2scVJ5FT5sb/jQ05wfW5RVi725OJRR1VxH2CwgX8XA4ddkgKhgYEdLkQCxsltvrIeJf1yXmrWNKXt9jPXGRW6QZ+PfnDdWLmy3/z6gzEvarlyOrWLPoMNvYOqYEg3FKh1jT2jJ4NbIxyf6aFKNiEINg3xCMQvSN8WDvw0WPpBQpWsORCfb8rh34U8Xutwt47DuYq0G5Ycwg+3zlnk+Aktphy78Nw+40z7ukLXqYgl87S6NHZWy6kAkok8uTxwrlq0J3yAanraYeso2vzbJg79b+LNJE/qzb7qe1/PexEjJ2fzSlSuGfgrBv0O6pDbEACn0vNYdP1i1zZqc9/z2eNPjWT/nTVH/i0/y7fAJbaACZgN/9rTRtNhvvaXKymUQxf7EaX2EZ3bIugmW6Qh5vtUvXic1KY9bbZ5K5OTTUE1DaI7odQkEEplzeeCssKUZz1pg7nj8aXfaauVtU5JqQgeBAH08WlEBJOVS6EuQG7k7O0hXP4+VbPTdQpixURg7r5sXRC80j+5uFnuYNtyUa64hbIrrgjxRfL2P9dRXj9+c0azzcKaA0q+9lij8h+3WHI+KKHfvdf2n19zy9YCzzcPSF0F5zljgzb1krbArpj/7kDsNMcfWrT7J6PxF+2uYpo/3EGV3JAUFjV126ktHkGNbWjNyeSTjaz4v7ReABs3Whu6cKJdyKsGGVTC8eEAjqHHroEbRpVIU9uHbl3Ju9WvnOJX+LUqJZxHFWG3/KybCRdWn+AOrwzEYjBCa06aSHLaYvVhrxQEwU461KPB/Y0Ea1C7jsEYMWZPE6IZAjpSPMZpnvnq9tT5n4kI5AXub8HfLaeX1hzw2Cu+1hYiTondDcDPkDjaucUJ7B1eTaxNgynvwF60EdPpVC8Ui/AdfAELysjFxmvRulLTyOAizOGemPB/p/newq1rkSWb9dRViPjOkaXaCFoSVZUuhy9VGtSzswcNjxp0c85x2AWEC1XdlWkMkFafHW3nPB7U1WqjTvxfjzgTL+yuZIg9mKFZOK6y5V2s2a2+xO4/IINZyvAlz23e4gD3BYxQVFuVhEclu1xX9rvKhmpdYlSPXjLS47FuMgRsFo+wsQ5TdMzd+3cZw1fFstav81+VvCxsDUoDVPBWYi57dRwrksm5XMfWiTv7lL8tvjPpuadTK+zY6u3utacAdhqRkUCeTYOi6iO+045Y8dL+02pNtE3XRiULdXMgFVZ9pKWSoGr3o8b6H0HB4UTGZr5HAAp0GVufJ/ty9a9tfy4W7IAp2Blc3OfbwtmbYpqp70y5hVH6lbc00zt9tlmggNIeXc3yIbgve44279z3BOycfUXYnPHB1ay2XnJFwWer7OVbZVi7Z6ZMN+nQpjjLyOMAO7HhUuTy9HmlVARI5deHapB29Ig6JFyxUHMc+U9T0m5Z1YGcIcokC+9jxP3DAtLpb68xf7gPOTJd+pSlFYAN03NEaEGm9Lituyv2BwCMR9BICGkgPhJlMB3ZT/HhQOdd8QMj0kgs3ofiqyMN4ZgsteZU6FRWvKrsYT3kD0xSq8cixynsMGJ3xTwvIe/Z8QJX7MqecqpQBWhE+44Xw09/pP1q6/G3nv5tf0DXA7rnH6Y5jbXDDrXrGY91K07RW0lwL0ujIq6meFZsG0jrrPXCISi+Ff2uvcxnvXG1HZYu+ly/BYK00ZGIcmID6PtuAS79MYI0qcDALQvvJMrRb78j8I/1aq9GVI9+EGOJoze3VNaqXfl+Eat1ZgahQBO/vnzzF/fn17we6MOuy7SS6+1ziZlvU84E/P+w/KONT/TWdmIfC4YNx+nC3YUPBnb5CNWAq5Mqh2cgJ6MlgrGVYIzQ+5LhyTI38/P5qUxIOptYubeeWAM7PQBk6h6fLWduFmU2ECRAG9Q89ynmwSpEgR5DpzDvDHHwPRs9hsbugWMHUBUlNryR0BMQ9i7CBCxkANHR8MheH9z5P0BfviXk+XCV+2R9Z8LAvcTr/7hgcKxlofisGE/Yt4PN+msi3yNF6H0U00OMTgkWR6V+gxKc/up4zenQP+Sd4EoQIeH5wHMUXSmtnZ0SteycCIFQ8iYYgR0F6VicC28cFvZInAITHEmn7YBHJzgi/csmKf2L1RB8+3A+FAvSnrnjtgYtBNvEpDmAJA7tKSfOWvbcznYXHwBwdFuy/BVgGbBB+OjCuTQdH5/Mm49iwvB3H4mCQS5VOKkZhCQGknAiCvbxQ7+iPa8ThzDBQ3ti4CGPuwBiq9hACUJ+G3/lRCidETpPrZL9ghWSyDuBFM5HuoG/UN+0xW+Cc8CWSlBYkKPwPfxmEtV55g4d6yCnuGSL7Mi+UqgW8OLCOxa1UGqfkbh6QqhsNQxbh2bQjROyS4WrM4+XiLbCLar2CBQTKVeW6r+gZW7jF2wqYpaIGSgt7ViLvUByeGDhIjVgcetZqdweJwGZQtXYZ0Nlc2yPkSBHQrUuEme7reO52IxQODVZGWddc/4898USQ0BrwnMKCWK5/AM7aUyURj5G8z+UPT9vvmHktL86xCd9JSP5Y5m+OKToJ2t9g2vqtNeFqzAHfrzh+4f84cURapsmhuG4JbFaUdZQV9uF6bsiRznpP1gA6VqWCLWadskbHrQCfDQwxFNZzMIOq9nkxWn0daNVy659LhWTqyizXtgpsgQCGuMqumPJvYO43Gu7O1JNdYiSv+90nJ0fLncJGw8w83Z4zM/nf9Z39O9JibHGaRjlMmT8vTUdmKI2GS21yVcHza+IsckzCHmFm8hkKvUO+v5mD2d2dnv0UmvPczbBu6X8onx9xJJuiy4dcY4nAHDI58ASGcPnPf6DahfEzhfBmjrsh8il8/b83RkP/dBXbnhB2MudUxn2f4tW+gOmK2S85WaEybqbpcXGR0lHNTt56zGe/3p0FUUpqHQx2LiYwDWaGWshBdaOF8tpoj8fRlmbtWZMKFe86fHNj9wpMNZEIkgX9yncgteMLF80ToVcPC/cLiolSPDnrxrnAwm4GcYUt/eYZXZYZCN7aM/U601KlJgVXhvedXpyoftWos+AiBL8k/MfEI3+/EUf9JUcGnwIN/ztxKNrFTfIx5WjPFP49/zCnoTL+bZ2i5XKcGOSJ+oDVmCCL9gJ4ZUtxIsNDcq9kuXndwezLuAnAI5UGJrsXkw4wfUlaoKHnNRBaTPze9syHNW0fDjB18f3iwLfskdHfNUNdZ5QrfG6ZBm5x7uQ+Kzysr82EZgBsJFuhNrPKVxWba7CM8YMPgYMDcMF/8k/afGTOGIIxCHmBCMxQnjHTQWYp3cgEr4ucuXpa1cfOvaKW881rAFqWFnxNebA7Kx0TigBNWhU9TlV6xXyXQVjzhGXC1DKw2PVlXyI/jB97E9jbrnej6jblCxZF4MMEv3PxdWT8o57DmgdVe640i4R/uBHCmHB45RoyP1MAcRm6XO2zowekJ2nH94PvQ3Jw+TpCaSpjiy9d9KJAF8TwHfe92dJeZDtiGZpdKmSTh7RSuoFANYz4bgJ7+p91iXI9Mnxidj2T1aqvoXFvYR1kFAmfKjLDJlbY8usPC5d/U19D9EFVa+CRVce4LVIKCDcH7RJKW7iOYZesj+hMmyj2y6zr3l94x/r85KYcxkS3DW5idAGTNg8oCocaZsa9eNBMJpT0Ou6rg12IV7RCwRng35YAUZX2Nz4NZV6YgdFjLa2qQtk14X90Dtam5ogtxaYCOrT0fOwrHSq23XSBNS8uEeM77zXNSyHrtJGd+z7mWHhI6KVxYrCpRMHzj8dYZ6Pv78Ob7kmr2DT4MtqGIQQO/3Y3VMnQgpTenAC2xshuFoz2q4shT7JsAqZEARKxam8e9cSIEJnah/sI8bIYlqS3DEyG5xkAWUDZw4aYSfh2KiVNtb1Ny/tjMPdSNQZ8LACC++s7l3YEQGvkUETiOWNBKAU/V1xjQuWW7DR0n0CH8fpRqkZgow3gqCTakbm7ZvqMljbA8D89MFBODhYx8rkWgBCJjkQ2QkD6/PSrnaWC2zyfq03ki03QtuUgyUT6NOCZoHhSvpytdcCoS+rStSI+7ukAFerWb3qODQp1Z/aEFz4wg2XJ/YknfsQpFjrv1LI6WTXex4Bs874ON0KZBZZ8DfwejyCrIAPQbcxIyWdruEAlsACB2RHU2U6Qti+EFbv63hS5NJw0/SOeQJGQeJjnnSC+FB55XxkBrJQL4oMIYgAY3okWsEb7kmtPGT/XkBGEF1+mCrSyj4Ntdl1Uj/+vBbAE98mIjiLv71GkdSxiiWP2924mvXe1ft/QIXdres3wQidbp4ToJAJPUwD0dtd5IcVKS45QmsGx4kyjoiRjyzxDtyq1woO/oExFyDA+3gKkOkL+Y0abtvDqFMeu8lhN4MzxMwuuZo0Yf5aD+ABCzTaWMDTRXY1DfQVhqg08apzWxZ/iZ7kUxRaecdEFut2H9RhwuyJm3urAjBBnB8Yy0ktkabuEkBxujZSjj0R0mK05JJ5g6QU5sG3hhJk86WwXpnfuvsvgEZSdAJWTJ9T2YPWk5rVnz6PjKv2i1aRELlPnTLw3WJt4XR3lNdSoZTDJHF5O2ynpP+sfGqD161pd1EG70V/s2fZiVi5vYDzAoQV75EYEZXsSbd3ZH6mJSTAQgN/TG6rPzXiQmLBObqXCd+fUrqhYyaPPBHw+gagAQ99WxSn5cRoBi/w06iMdu3HJD1OWujZdqJWBtDqxmwzuuldKAU+0wj5DagntybPnvi/4OlGrt/QJrOtlbdDA2jdt54XBNQ38SMVzQ/DHs77rQZhC5A3p7bAOztEfzHRB9e6TPtVoBSMQX4Aj/mrwJ6r0XNNyeqSM9Q07ElDW0+uwLgrT0tgdpNUEJB1Pdzw4BWEthiLiBCPTuJTwH6RTkCkg76LDRKrp5l6Z3pkeR9tLr/Z9HeyUcYbI5uSzTFlh3PD+VdMAgIWdAczdWgWAa1zrItmbvNhE1FNQzzVY+I/FuqMGLCW0Co9xcdSQ0v6ws6dFxtNDInqU0tbyan1jDUsIV2W4Hl3V/u1INVYuU88bLGGXzTBU0pbYK8ETo77icXAcCNFiDMkFKjKm7AS8XkfXiJ+BluTJborrDMOkqeB76opB9DXGfgXjDDGJOuem4xCgoK56OomvPesrp8cFFi6dy0q5NnSx80rmScdtZM9YOJlmg6MgtJOM80dQrEuJxOuMW1J3CvqAWil6YTofcpViEL2cb0bf20z+BMgnJck75gefMesnZ/1wGWLHfPnesfLK6JtVfVJ7PiXcTiz98eetfHy91MldzM2OXLZUe+bixdvYi/tMAdo4eXxeJIFtIJ3GZNainqv/HZppRqE+IyHakR5aMqevAzOqFHDiz6IdRSztKLWfyRBQSgwiZQYOJK/t/K4vU0Tmax1oIc4PGLZAX5rWDiPgYGq1Gj1iHEeQZPHf8s7OzuH0joelCqlBZ23OsDKaqnxxCXwsJZcovr7i4fh1GKHo/5+ddYURz7XNsKsJzSif08QvU1QfqtEnYHBLyO1iJ7P8IB3AzgKUX15/Tus30VNE8siHnVRtKnHKvtTLF0jgjG9fatYa+YaBcwvkvJJI/HEPXdIGViFdF3/m9mKYMDT6yQVQlz4NwqRa1pPLByq8MLo26i6DWcu6aNuMYLPZaLH5V8f9WleAKQVrDXV1T0c/1cYV4PP6jiGDXirkwD6uVuuZHXCHEZM87ayWpcGVjGF1RU+ntOVYPcLsUAx6nw4Cim41WPSSR+xSSsJRjwIua7P2i/SLVF51XUn4h1OQPIthjxAy0H7r51uUed6k6Sb6JqknHbHWaXFdNL2vJlSS3TVIIrEFFwdau3E8tF767U99r8bpfr6eW5QIzDjoh2uPdcFpuycAUbuiou6mVocbM5d/Zhu5l1j9i8O2decAb2q0Bza1XVJu3tLR7K5ezugTOtZUPjYC8jpLW8kXVFZJ6U1V4N2OCsa5dvmDt01WraS6iHmPRPKOWBRIwMlDwuw62NV4mLxhvTC1zMOW+acnpN/0f7a/LXrdtjCOsqwQ8gsKQpfpWc96+29ZgvWs4riZk9pOKbm7dw6w0hkRNHQUdCXP3bmW3G/6lQHqOLCB9x9/n71ns4jxNXZSp+2IM7+n3LtCC6dqAY7qXlFkjAIoz96CeZpwpKlpPFb4ZCEyxGOcqezxq3HzZ3xmzN88/I/wppbxbdrAPlVHoQdWf52o6A+HFCcphtv0FCehL2zkZl5MAPzeRfZd6W78KJb70HABy5OmkGglLloE5pZL4nR4koPGh48DBunSECyvGtFMdkQoLZ40l5heC1KD9Tv7A5OJ7eGdGwkwL7eWvGj5A6vv0Vz3R9wPcoia/x4krgXdTtuVmj5Xm9uVhBTlQnYSKiwvye8+WlZR3COJhz8qLPvU1Hl+Qc+KY1QdelsIw1AqyuykdXTfzb7Z8E3DIXMm8L7idQCiyhcTCVfc3Lkse2PMh1XKlU5Xr/FTPyvjuf8QWvNAzjFyqpkbsBu3ztBOyNAy0KwxAkUNq3K/RhBXOBy4c+N99r4Hxtoox3L00KYkCG2cm8Nx7kh6hTbZgCqBpHfSfNFzYcu52fN8z24gHRsZSd0Ow7hTSOjXncxUsGmhOildPW8OLbwcgp7MAXGTK6q+wHZA+5gXfWnQvln88I6RZQCvPBqVrOU+Q7CHYyllgKt0WPTL8+Ra67641EqqP29bD5Jvp6fwkOlR/pfK+jNXBYRILSOVi3czFWvsH0xSH3uC+FphfX9+dYLCKotne/ySsujLx2e1pDkfjcIWCtoPksCbm03FhNO9mabbgumkHffG+4zu5CWGupcOXXc4RqS/OhtNpKvsuEEU92z0BfAzS7mkbNdmRLfUgOcdYCUB2HI3/n5ava9WQcYOC2ihvwdoFpJGjhaZG/d9AFUh1OFDNfNpnKkAXjr7/3//OQk896etYu7yd8VVC+Q4/g9Ja/szVubTGWuxSE+Z27Lf+73VihO0NyEbcd2MFljEHbXqJf11OpS0VlX9ehDNaTBiNClzvo5dmZd9aAwue7VFCi+1gZ8TQsvwdbSe4uOjoFcdfhn1YeHzh45mzhojJC2XXQpLd0uQxOyD9xLjsXBF6sLZ4gWE7TUZmr7KJOL4irNaB4ZaUc1kREj0ALN8w8W1wXmW40jZapJYWmRKubM64ZqMLpYNRPQiN3AKO+yTbvqQcfHpScw/ZtBKFVTbizgfMOYXi/fNsq4R5nBnz8qdfLS+aiQ+l9B6PIw+qD0cxpa9Lq8txFZYmIdsHMD4sfBe/cAK4pg1NR+qu1fG/ZBeO6aCXEltVe15IUqVzncMBzANSK7VZqWmfPt0kQWORTB/YzTfb2Jgwsua7sWAIEDaB+NUiYcHkCZqpZh/04mabuOOxVuGdqxWMIsmSfMH1gH27K7S7Q97ySatuc1QQqWPAVTwUUwYMuy90LrriEC2mWEQnpuJGacrsiYPLU2KYrtXXwzwfjVssSATtC5bBMM2kRIArEhJu0FCPmzflpOQK4qKof7yJMM4st6fo0n69yR0y6M0xDW83R/0CyWHyLca/ohi5wefhVtfy0Yy+BlDpd4z4rGq3tLAjOelDrmDrLSCDeh/au16UdcdRQeIniQ2oAPTxdHhKLJmMwQgPzP8hjG02P2xl9fkQiQ2IM+8JEmid9+wDHS9A1ZM5RZkfWBUuOu5lf7jVAfJyd69W1hOtW8orI3AzipM+Y3uAhnI/HlwLu5zrfwc1GjnWe4gke1ZZ4GvIa5G6q/kkKkbp8fRmMSDmYRUvBjDSJnR37H92hgpUmg9NjFkQOlgRnREMNWr0QPGF8GWg7vU2UsIWlW/58brTZjefkap4KdAcVsR6tfiMEnvkapJb7+m50fNftVA684b+sDGjIwihIj9XsZijg+/WNjlKvGWFZZH7OK4j6bSAvg8b/D6Fte8t0kT5n6+Sarh8wCqUkM3U4kPKou++kPEum7mbkaxJFsnvCoAwaTx4+X/whwoNIu7w9vo6b+e7iL/LQb9h7rlaGqn7rap4FDYBq/tXmPhbaQsV5enjg+phh2mifIeqnUu6t83Hhn4ym+LzO8l3IMaw+ulFQ+Bn9ReGoB+mcuVUvv6QlCTm4KP12OFpuDS+9rH3c0Ykb0uB25hWH9DfI1zHDPBrlAQgsyvT2h5OHh+EGl/Jo6fgFb5qag2nteMm6hFv4m67XwWNuYaP8geAi/qY7NjAPfgKiFPffTf8iXc9zPsMN+tXm/sjc+j4MS4v2F8cv0YqwEvIX9Hm5sJHuipiO9BEXggrzLp+VqI4LUaA9vwARmtzY82N59nOAuFJjbU8TDvccDMLaWvmMtsmcwUInUz9/dLPoD7dZjhYVEbeql5CrHdVi2p8t74nvsPzsMCac8aPi5gEa+lwHuZDAkAgLWYfc0doIU0BRvxaqhkeHtCHbzJew8eZZMALaqVecz2Ronv5S8Uj8ANrH0h7DOXUNeWD7tAeoqBAEJgYw8gf5eX+eB/Jgfd/SARdQZBPsAT9OCIXuWBDAadDgDHAHApwZbEUAszotUd8JfHLH9m/37onpXK0Vfvf66hDLuBTfxO0QxtqYIKxIn/7vO5MaqGxnBJU3l14yCrcD3noNHXVDCZVo49yj+cVCiPSF65KcghdB2aebFXO09FQE5I5kOMBdTgmHbnWXRvadw47kpu1MU8OuS9c8GReXqeSUQk6MCxKneGwqXjFZbFFhSEU/fjgEYt9vKyr8u+L0KI+2kFoPbsyH4m9u1BEHWwsGyLTXjV/Br/0U9Zqj7ICOGDITNkjTQUJ4VDL3VqYuTrU7MtlNKkjs8p+Wson+x1FevMa4knALEoN+twX0rebZpF99cRQBZWtimTrN+svxHzwT6SF43j/eI3K6q+aPDhyn7IXpMsvsES+gqO+Fvg9TdFfR74LPdBvsOJHKBcMV+UKQ76+jReid+yyreivHqSnjLCntTZPefOJjLp3hCmi0AqKh0z3rgeE9BXFu7/g5sC9WWfgldFrk8wvPdha0bvjwaYewOw+CvgMaD43gi3IvDvlV2JuZfy2l+rC9uKOKee6ZMaTG1gZdSuKR4SvwQyAkaaXn5xsQfGxqOr/YoW1vgToL+0q5aEyLg2Z9W3IYzyjGX/j4ENnxh9NCWHx3JBCkXxhTdO36fpSrNsNdsrAn9UjTsOQ8fLG6VYjHqDXda/pwxpu3iAT3EeisBDzm/ktfdjm3UBciFUDK6lo7lv21fHpXt9/GHPwerxnCq50LckA9x/F6kCHF2HZG3E3K+8fZBWHnN9EzIfd1zriJetyWiz8JtRHc79DWPkBz0BTcp+oPQt5qualDV7MSRGIDLOu71KajndY03+8YOn62X7v5VBpCfbCKeRPU08W57wZsBocU8nFUSPTPnaS25odn4lcCjhzGDbLRAzgnZT5k14nwoKO3feG8q0k9TEHSi/F61jPe54JE72qdU3llQCelfC5FuYL/fmVBrG1jVU+DiLRETmhJrtVT9iPKztLEicchqpYmqnpcCVzDc4/MEJS7FqnrOSfEvIRRtho1NsU+eqgxz8LWByFS4zLaoqZUBmEGBBNlX1JaDzWHCFChaUoubEZSkZGFKj1menUZKPBZuwRBir1omv4AVAcDEbOi8aKM3DmldDa4NX61A+QGKWGbuYcbRgLQOGg+uB/rx4cOGy79Phs04grTXoqtQT18QgQQG5h258EMZibsadtfjNT/oXZ3E3HDj59tVpOQHHcOhiqiej+aTOZ8vbtOPoBti3MhjCQpE1ax6Ni3eyjL7yCCrX+P6IcT2hVZkWCpsF0+1D2ptiX+FsU+gD+XD0iGEiHoyQ9+NL2eGsb8cXFy3fzG2Uu279pAm7YFuZLkReZu+ky3y0r+ck1bm1hK8iikfdxlRUqrerJjOW655pX/MpPjEWZ00ZNGpVpwHIGqDbCRhqh29AKoIFr8i0EUy8xjXK+hj5hrBXA1sBGfppSLTE1PHNr67IB4PESYDpgE/Zp6TENFn3ftpzVRNKrs9So/tmTLtmndgH9pzudrXJ66yWoDuKRTy4/FpORi2qlJY2BaNMUvNn7IWF2CAnawMacvFVFOjm7oF9o6BEdQyyHGrnhg/zxZpZcGRYZk+zY/TYBQdedlGYS38jMDi4xM7CQ6gKYBqtFYLmSh4cX4kqb9NimxH/bONBd6cGp2HI6xIlwgcgamQsKimDvybzwn7pwyScmUzvBnA9WPZ/7LJKIT17aOe4Gitv32cHJf5DT1TF1RpBPzurA4YA3yRlENCDE8FVh+ItbH/rRuiQetIt/t8K27ln6OR9ZDymzP11yHY4dwusI0NmVjn13uUeQXyfkpw66EJoUoHLkSylypAle1P0iRIS8aftsBn1n4w3dMH7ilLhYW9cvLHywPZyRRof3+4mIb2tWC+U9EanDcndNanPOfF/suJOgNvYHNRteTSXIaQbtsvM1+F4920MT8Ixh2nY0SXeUglAEXijdXm+IvEsu8c1qip2Y54YbI5f/MB21ygoG1vvcnRGgtqIzlJpFSqYYHugjAMQvpcEwoSNkIyJLFQPAYUA/YDGoLA49V3r+AcyCXBJF+oEgky3CH/ZZPUVzmi+00d5YfUCAY5w/9ro7ZoWLU5afZyuNOr6QUTHLwwI70r8bCNf8/u/E0g7hOkQEQzjCQOZqNwXP2oP6Bg09iKzY00zmkPD6ShVJM+5dQeG+u+ycVjYBdshVDDXJx3355ODVHdjnzkp4xbGYvymiemZgW7uNxEVQlzks5mSoc2EWkdhOO+VPmNg/VRFD/RFzRCPQmuh6DbIkf65xXO4Zl32TRZwjOAFe0ixhLriDfDYvBplrnFkj63h1Js+3ElyW9fYE6PUvQxmM8zrRk/yax6zAvqyv/d7NvB9nsMlO6KKBHhhVlEwgOU5zWLck5eiFzPN4WPiaHxz4oCXqOaTntqHGCsBofJSnbmseo0YCMEvBHvxnBfBlGfInAQaQMNuVwlungwKLNhLFt75sv5Fk/3MAIW2jKMhKqG84y8fuyQ+gFCn+wFuv0IREl0SEg6VC1Oj8B/Hfg31p1jbC3IlTDzl6jvG4wa09ReCQMaDSgApUhxebv1kJhqumRUTuyJhSiHnwoZyug2YjOsp7u+YHhdaPE7aIh6NyJcbjxx2Uvp7OIyKsh6imOWhL8p9dip0aTkxjkA9E3jwsQv7U6VNsZ2sMiLWwDYyo0EorfSqVNs0HGNSkJpcEB/7ANrl9nw0z+1PgERSUtqzxCXxZMIBw8b/OMNCtTZFgThOHvucTmTfzeVfnE1nxjhq8EZANFsKnKCO8Gy5ZF2PzR1UhwHTXL7eHHGjSB6cNomJnRMcuxvmG5r8/bXMuqQQ88YGtOCZqtIcYJqfsOGDn/SBT1sMTF9xBCfiUFL/2SuViUX4IMIjLtllQUP51U3+D65jWpGblGpRBnNEcS2eyzP+wNofFhwMgjYLVjxqSklM0WavlFzKu7JA/DrYtUpqm4oGAdi967EfSmYCe6iJiv2c/pZc/IBTqJPQQsfPmmP+3muzTED7/WiVOls/U0yXf7/2zQ/p0qU1qAexf4kAHp8xZ4nOwjuvlO9LxGmAEUM1GCiuvOPyGzkTKJDMeTKOUjEvGjEywlePxjiadN6GsMgZ6Ns5hoYPXz6qB95QmFzjm1CAkDRYsu+X5jzf8B7nl/wL5rTuU5Y+ke8sSI20V2gfUqA/OYPwlrQ18FVnv2TDL19N4e/Pe4hi0ZLbanRBHjKHsC5V1ee9KEX8JBwIKca/O3ciQ717K2Jz9Eo+5hAqg8PQsgFgSp7rIoQj3/2HCxK1RcfSeI9/EB/J74Jl/PC7D2ZH5ejRD2d1bfhmDhXxaQcY0WEI5qdizo6MnOXd2lo6GPrsl+TaduPyfcIDuLMlnG+G5Ckz0uUJu0DuMm711HBj88fhcWyiKibxYeJ9xQAKPZLzldExWKFPQdFSQVASKSTWEr+bH5ImiFsJmWwGRAFymioyYYVi+vclNI2dNFLsEIyqQn9RvBhhFapToY7sy65rOhGTlF/Aik/4vAS2G0Cv+b3BRou1QM0J+aaGx4N41Ijpg8CpK5HTxiOz1qwMu2/7Ev0vqz4A6FYvNiISjPfH+Ob0GUXTkmGjB7a7CkxPVPGKrGUZAGx2bhnKr8VBJI2SdLq5+i1BU3gS3zyydK4zmwOSPMxy4f9pAcjEou1qHx2JsE25+By/FwaUmEf/JezCkHlXLMWpYh/sj/w47x8dEm4Qjw5KGPSZDOe76Z5rSsQ1W+dwEu32zwCaB0bEJkw3qw/blG+5MSB1vUMTIyLdR4PSkhuEhBHm9slu8F8K+3u+BY5sydXhPbPzTvyJ4JMnj2YnB/aIFklu4HNthDQweo0P4mLiWRypOveUmWKRB1sVsaKcVs8BXk4KtGEOZbrsVc2nOBGy24DXWYMcBR5OPzNomVW+nvGFhRl26YWfBIEvpJL18zC7/6bOJVlOu1M6n0nY2BJEocmDsY1pF9eGcW5xCkWNSZ9Fsf6t1nTGT6hGm2IM1oPQ2KzfPeHiDtQno9Q/I8IUMtiPo/YGXDYJO4tBhAL9NXR9lNsz8tJHa6RjIbcjTYKh8xm63NFKWsGMCiItITrPm3YYtF+OXeslJPLGjySRfe8wQgkGPf7ssC2GGbDQ17tMIxTv7DjfU/e+lYCH+L2W4eRF9QeGwxIHNYhECQKsRnXI5Vuo0nT2cq8zEh8GdNNLeROBJctApXZrd0dZ3zb/EyqkbkKOcAaMdcB31TR/61BJ471ITiybUnoV0GdjTRvg7hINcAYAj/h7xmr0ayCzQhagXNzVmhxsQKwAzPYC45vgsqxhztQv882s+C31mI8Ip8ikLC/HlpwMziFqvagtt1GJez81oqLvWsI05HMeqHA0zmlkaZ/zCEmBMXQ3CzLrhhlMA1RiGuuOrSY33gRk8InrBAqh5/Eor+Zv1x7QApLK0SRIfJVnCNlM7lEj1sHdOxhqzTzfMZlR1gQty6TDPblNTZqNndUCEf6cRIpZKlB8OsMacMhXHcc7ANFYQ3XrSoCKiofyVl2VRD30GkC5v2gav3kRKcUBjqUUSK2ZNeZuXrrpxQOtw7pNhl6NhKwtqPV6GCnSivAXHWTHjW/+lojBuX9CtvILDvI+JqQN1m3Ckzu5oNTjzg1w4vAzfpq7v/s2T+qzp67aFM1f32zPImFRyzTJI8bLq6TO8N8iwzI+KodnEdMfPNfPsTxjnPeoWaDwMfxEyePXprbiI0zTweuVKlagsZuu8gTuuiP5vRk7VYXDbLk6bp/Q1u34vU3zFAgf3pdmFnxg2P+EVL4bv+Bg5P8AcTG5nqnHjq6BZGxs37ixMXZVOfCK3NwbrAP/rFSKAMXzcG+gR6IKz84pTcM91YvfmDFiMw3DzL/XCFtsA6xRa+mI/FJDLibsdJeloNMK062GTn5qt6792chV8ktwc7gh4gOWFmhYFa4b2qU28FRWeWhkctq15GQoQoAzl19Pe8jOvSI1breTGXH0IK0T5MZwMeyZTohm+MAnG6TD7hrZispnjQWoedDNSuXpS1LVMe1QpPFFMmTQjKwnmBsfAVDiCEiOP5zVFvzn+e5ayE+XqGqfSiouXwhgIOFYQppIe+6jlW6xLrfXM6G40VtyP9gc8VUX0TfRJ2WM0WjcW6W9DxWnXHTELOAtZCL6wKy694mMictnA0Zdl/XiJOL/hjwuM5YDWccXGQlurgRyUWaiPhV9HP5AP1YOdYmsqG9mTSxPhJlqdWYdqRGszDQIJv9nStSIAOKrf5kudAP6gADFESNLfFK0pOPuBUC0tjFLJW9+dKrsdaTRqjhHdhOiDzABM3Eex4QYYBoolUv1JMewXWLd0QHf+Od2Y5lxUJXetiEFQh0Vo6qBSLmalE3bIlxuBnxi2rAIjWNvl6erWqwrGwUHS16sRqa9rR71m+ozXP01HPg/RNzVgQBCyKiGiL9Bd6Fsp0iX4pyTTGpLaI8QV0mwpUrgoWNF1ougK8X1Q/fmmmNipzLt2oAP5vTmmn32sPLktb0fLj4/jMp1yHtUZEhczjGnvMej1gyfZu3KwIYRYUBMuaL+PiCjKkvezpfKVCnP7/+iLslNEaXcR9TcPbmovkGrwMPd7ijBaSyTsxqwUx9auO3dCliA/IbIeffhmScHyCBsxvys7hcsiQdDO/MEY1oUzCx1pvlwMUDIcF4yH+3hv99UScn7qKQzhPfRKDirCVi/7HT2X4E/1w65QS6sSSt+Na1f0+oeV1JBESr9G7d3RBqeA+mnxAx1yvl4vE7oimk1s7qTgBcDrVXNngJJcCxOCN402PVShkY0+Qva2wwZBiT+7qq3kaNRdMf1IrJP40q21B0e+SxilkrDEF8tnM+oOZR96SqeLSGcy2mp9uExd/w04m1mQ58LcPy8rH6jDFJrdmjP/pQXxHtOsum2J8LfC2dgA8UEozfI9aX/Nci0SXFINxnA5n8Vf2qZB5WahpxEz+hXdmiX0JDT11lj04XLfZmhlJS5QWxi6Qn+/61KHqosBaRpSVSBztcojm6PjVP/U85X+/1ao1dUdAEExka2x2JRSO+VbuA24DzkkUIs1p5VHDtLvT+DEUTZYj2hWUA+aVig6qj11N3nsF5dAgF7moe/BKx7tRL8Fm892bKcOWQQVlL3veTgEFU2wV1mXREozTIpcI1ZvLePkBbUkfTWCWFnbLuGxTuvOMZfT92X1mABFD/vugDpiEwG7d/QSZsmrZHxwnvmACoi4JipzaMdiInHh8CuE1vaXQdaU1XMtHhfJZQ6RvK25Q28v18xuxTua5Nk4sw/3sTtNnGpTqYQR9shmHQD3jnrUHkZvPhexiiFa6Xx2YpN+M2K/lJkewE38hIHi55YaRC7nMHOJFDDlIjZpiOgqeQOOaohDIrPM27UPojgBE1OalF+sxTC0dKnU/eszrKWvOyYijdYvXg/4hzvHP80EkSztlFrqo7Ch/pW8IKttrLiHcctrm1NFFLedD4DHxnYjyfaVjingbkVN+v84l78u1L9ibbV5IXzeoGEmU+XV9k+oIXMoFOTdpW6Z4wfKO+5lZ9TAKc9ILuvS2/mEGkPmv0xMlQqazcgVtI9c7kRMvV6YFs7/KHDPUA1BOw95yCY3FA/eQA/zzJpiSlnDzhP0jafHNm1M8fs3HgKYFXM6bnrUXNKxQh6EoVzRu86fyg5iSNZ8XQ3Sm54WD48Lgd6VToiYz6Fiylr5egPRrCCBpT1KxFWeAePrSDar46lPN82Xh+6fWSMCmFtFfA/ym/hmwIzjvn8e0CljNajmuWMYdk6P3TMr0QtyQl2SrQO1nw2FGqQBiJrZGO4HqTxyWnocGal0ITeBSXuATdMNVYrV9elluF5cJvWcL0jrQyEMdw/81juy3mY2SBKZoRHK3BxhuVaWiTxhk9cVfiCGLSaE9h2Oh308lYCdmUvZxz7+Q06QVWnjhYBug5t75aK4ZiaAGbSm8QfkCTGGRsXQv8+VZ7W81Eyr+JZbwTeCe0YqgTA26fLeJnPFfxkRP6Ho+QSG1hymZRsaxwYwU9CRW01is4CVLoNo2317RRoros9xujtW1NMaotrpTbptAZF+Q53RXDVkwaUOYBE73WDF1DfUXfCFux3GZGxohZqfKaSg+d2dSVj0brHWEylWcOULHAVKZEhI3uH7x26yRznXfPFs9QE9UMGRAHpdvtlnkofhrEMcvn2LLIpf2cmtlKB8VZ4NoNOwQObKuEDGewkW/idBWOEuVlx3N13CAocPVRc+gLnTTPHmhQP7ecPyhjEXz4n6QSw5UWiBhb5AkkS5mmGlmfj3rKSjsCu9naqI50EsRI2tLfn++PNosEBPU8vAjRsOBBo8YAYSVyT2d2AJqoyXwatHxm9Utiaz7TtR5a0xOmT0lI8JfhtDBeyNhtGCYt5qVPnX9WjzY3MUj+aUeB/OiVRh9yvb+E3jdi2F4p/dfVlUi1Ctv0P6oYmchza1dq39B06fkWz2s+u7U2m6AcD3fCoGmP22VCf7yIpQN6JFP6T7W6giZN58x82fFmb3/r3oFmRvwyE+RhqF6c4daExKyQGcWgTW/ta4ZoO4vbd/XciGSn4G+TNA6jb3DWZwhtxKBIdT+N4MkM3XT6hl1BaCe6O7V2C72lKMBh2wm6jgoU6s7h3Af2SrVIvVfC1E2d9J86VCVH4xiUVlX56W5F39kcxlqwUYm5p4eWfOJZUFTOsUuDH2S8YBKQU3paihKH2/6yC2goAvDt7TTnn1m0xPLYBRZYNdIgPdjLCtUoVAGjfXjmOzIek2BWzlBLzhn/yfe8Cn44MwTuqZ5X/Ph4NY2P4YkLqRMkBlCmCNz7KW57diBQP8SbL57t0cVFR1fwZt4FsujsZ76iTQo645NUbqo6y+wNNgEEpfXNSJ6/enItVjKeT458mALbRnr7E01WsHpM8/afH64Jl/mWUrz6q/kIvbOQp34wZDebfwqkL0v639KDdeI9J9nUYLV8BvEBxSactrYLaQVdqReXTiM3rsMJ+8wNv1MxTP5imdgoEcW/vcDmN67eR9kl1DfBgkcDKXa39h29qorX/xmo8Jq138RYDldH0iPpdvM6zteCoNVGEVwMs+VicrkxQLebu6FXs7ngDt+rkuccXKZ2O1gaGkHrjvXBWBFkTh9sbzOYIpr2hl0/c1UmKXV01pj88rdpElRVdsMzsM87GM7ifOLmL1VAo00zXkDKMGyjFWFX3qj2qb7j7MwKNo/dPR8u1evqRUjwo9nUVz6KfanI/iuDzTnaEmdqxYkFnUX8MY81Txq4TGBWq4kRCj55+SASP+9pKpXFa8UH/a8m3HsTPM+gC8kAwuc44hU8WPrvvJOuGPZRtpwwRlulSuM4IwU+5xpWsw6H1RwAVGjS4psncTYwOq1wpUTAZFI80mVEkjjbo223XjJDdS8kwXG2QJcO3N8BWE3Ksxbn5H9C7f82tyNX6QBP1dfvqvlM1fVciKnu2Ubx+TWFq/X533JquF/+iP6eGM4wTMKA0+u17lr8z5W2POeIPc8ve4O/TH7zB2AjfHEYoIxhl34DfaruJXFcmpY6tBXWidky1VWcztDQ0zBhpu+eBzHAObJR6kHmyQ4mZV6AU9AOnMst1tuJ4zaZ+ama3g+G7QVAnNoyYf/758masrBPJz8gP1X/IzNXlDlALW3o2CwDaGAeHP0uY+q6XXUbrpivZBf32B+6rY+tTFEE/6k8Eg+DPhqXAZVhoNav3eiFDqP1pgGAl4kV8gadG+TWOJmfMhsE8AGiyfwj+dmxs8nfhcftrMhueSAl3k2JZJthXqu3kE91UERJ0f7yKEhJEVIhP9mx3Pm1qkJLASv/vaXZaZ34yhl4F6Sunxcq8e3CioV+nGuvBd/lcrEC6zrHSpDHayONYKLRZzw2qVoKoR7PwlEPqCCXzK5BWkpkVrmRxtZHIGHyUaifYT/xyR1+KkQ/FzjIRKL4lFi/BbDHtJcmEOx5TToNFrFcd4RZXqUrLGbIW6VqEcSF56HImawnD8fVt4mYNpeNJpJJ+iheoyzlWa6bMQ9K0DNMFwwvh1KlumbeS2Ql+cm07jq7RhHHVPvZRaiEksYROrHrvtUplC588V4qpNs/hr+4LPDmieEzV5zKqeIKJ5zlAWuATprSK1LR9eqYJEGCUD06NAx2CvbfafuMDAsK/s8uS20x8vVMOkCj+6nNdC5F1kSuFlyHqz/nQ6DEZcrvxZDpXNKwOtUJHUeQvDfxvbnprp9wKzxJ9ERg51H/PZQuqMlT3xPXjfp8XytSzbQYZWYZyr6yTFEUM6x8PSlH1dsfI0vdQ5GNLtiiwhUQW9YvJaTt4zewXvJT+dmRPGS/NUTZT2HSISZJXQijv9QlifqQ4jTGC5ptphGEETv6pRwofhcY6J+1/B6N7/VEP+mqMTaBtsSW/KK7d8+tZwmdjaJ4wSrjlKtvenPhg6pWMBtx1A7iByIAnparjn62SSxzAP95EBlyz7IVAAnyJ4mmKh8Sh2wTcRxSDUk3unRZKcD6a8yQDUJrKVyaGnTWRvBaw8+efYNIOlUdhA2BZxDpOgLKnl42lMgJKTVwWwiMUTY9hOFZgz2qRvpKmepxN4IWkVnzUH7h7033jrMfEy1QlS1AyQHn5wi2z5FYGnCO1BauoHnqiYd3W5aUG7qFxyKm29C/Tivj2mQpT5gqjMRE5tpJ4ngUP9j7TibCWoTomssY1sRfwDUr4E7X8XcsEgJ/wiGupujryqBDz0Feq5gkhH52KYewxlaeIaT4qdy8btlVqrwF/XNVqZr5kxH7NvlzMgHDHTivOQhivSNgzOhXJbQixgmtQ8PeoUodfX7E9JmCcHD2BGEpRPzogvCwmQITTC99A9teci5NmApAT71A01EuK7nq8TFY/AhoY07lpD3IL+FZVfCcYuGV2kz5p0T6eX2thRGNsycxV4Vz9eZBp+kYbYI8Ko70qWdcvW64N9OLTZS9voqupkYhcYeXRe9UTHQuc/62NerqGEvleHVDDJuWp+TXvkVtAo9oSBOiOVzezn3IUkPGPkvpQl8vcl0aa9J0D38d0/q5Q/QyuixKZGuA8+R6G/RDQod9YAO9vn1TPrcBPlafOlLNKmw2QczcHo9sCqRBfoF9uXd3f33Ph5ZXw8/yydzEG3fs7hIb0Yoaok2fxh9lnw8gpaqa+tJ0JnFzX85sgayApcHWIyJdk/1zUBRpvdMPFpSbh/R956mh/TiffH/NPv9lUL+FEksU3CDbW6PmaYyKyyHWry6RJgdkS9lHT9a6LXx249G4EFDObOH0oUIAAMBGguIqfLXagO5Brg8mUAHsGATxHNKCGaBTtBy9ys1b3gaypAHXBj1oAWZf1DMMsepfUIRPj6z7VqvjcKWLVY7dnVa6MsPchMDjYPV8Ltv6M54Qh4icv/YkNwguGui2y08biVOoeNDY8ngs4w39GlDuHzcLOU0uB+0EmkGfFl4leFMFHcMEu4Yb/cvEA+FFt/e26eedYrag+BzKBF3GHMd2eH6wBE0KYcg086FfIgoeJmodSk/UDmoPeNEovCbRcH3TgkdbDxlsz/W9ha7G6sIGjJpy266fp3C4+G6GLCanqfhxNBHMnj+sx5ct0cVHmQmkbL8iB2Ac/tW7EA+xMd0oSjvvU/x7iC20nxVStLIPhckPy44wYG2nPI7wU2bZ/Dz//bR7ViU+vGeBuRj0V6CEdis6w4HsTbERCweVTJXKaYv4k86itC7G/8NRandtJxxBj5Rnd1ApALW5KMHweUKlH/YHE9hGgRDcxV77RgBkj1SjFUMDbqVGwXF/9uiAfVkK36KleVMha5D0JA1TndRehrrefQq7R0F9CGpl0PRKcDfCcEcoUZIW2q49Kf05i9qOqNeDfB1db3fJUdGhBI+IWworaxK+QwHPZPehfE/W/VgIDWCsGWpdpQwJPTbndFuf1CG01sbRreOYCEyY7toEKGX8RO3N4oh6ABnW5yhNho/tl44tl8gMce9lh9ecSmS3GAuAWrwmuQQyX5KgOtcbxryeNZzK1yNg1Rg++TLapVue2qdL1PE4E/SZ7SFrjWCOogUyF/ESh+mPOxzde0gERssqMSorC6LtDL9VXrt4cHFdL66HB4UxHv4K2yBbpHRBO1luUTQraWAG6opLzIscw05TN5btx6gXqI7CrbmIgUfxwnlpTBrzfI5Vde+MBNYw/d8wCooXzGzApEm6mMPx1saMqxuHuXOwVb9wIl2bqEL6XChwmgU8ERGy13oVkNNM3MPZLmsKiLNck4V4T18TL+5HalAuM3Zye42TVdaQC0mjAMPPRXutHkBQSlGkp1mLSZWQlICXVTj6qMvdY0s9NyHWjVjGfYKyMB9IWwtb5BbCG+/Hd/2xmogvbpqYF3pZ9WJ1pop31JAizg8k1EyEvZ0whwFKP35rd9Vwe1EiamAcceDSFrzlOn5EupavmaMtEZJsQ0Y2d0IXFcFM0eDiFvWOxdumgGpmIfg0ZdNQ6nQF4L32sOt0xc179XDVC/OFov0Q7kKMoiYaYkMLt5iaFbWnP28vKQ734nByYyD9o1SyE9TbwhIzmtgbgAJkb7iLIJKIv6bAsUfTDt/SKBZdaL+YlEcp1jNhOjWki8SvYKOdKpefXUtHY2EKtj/HptCfEUYflSFruibmmBQlM3jVYKIuln9BDI6x+NLB4jwRC9j7GYJaDdyf+3jd7/8XxAPvI6brWBBG47ESdbWesMwWTSsiYEbBRT3zNI7HL3Zgonc0SnaKcvVWC8kbCVbffk2OESCzNNWGCOX5munBWavq2ms2y8dAI3A28LCKZMVut4T3dJOSyBmLcHcyLaIZpt1NCWR6iRnSyufzsv2CKXAZaaoqCzd0PQeRa+PRIZRDPuIbD14Cj4EznWnU8iF08eYE/lXdpGCXjx3LC81ZULPzjSJN0zA+fQ3RQ2KHx5oqhVjJaolthAYQjK9nhO4F5eYSRt4/66AlxTDc3kty812yA+wAdqn1lTkC2RtE0yh5hyy/836bs4gA724Sph9KlsMgSfqK/wDT9MP8yeSuQEYmEU3hI7+X4gI2sWYPbDA5m7cn+nwy9rjCNm44F5f+vlhxO0VZ7mq7h6hBqR/W5IunaO42dC4M7b2hlj00wY37qhjHsr6c9G3cuGl9hcpPSLnP47PWzICZG22D48yV0C94b/lRT0mxgiteI24OoQFxgmKw4w/yChid8cLSt7lH4Kz1vs6EPkbsZLhYm7iv00hIok7St6v+aL9geohHInA8pBQROJr73EH54JORtewX+5xyOpgwa/kPZwFX8+MDrxsZOVvRzGgfFq3riX4obb+3WCIXWztbPyzGzRmEKOJNnzYWbYIOn3tIwPZGybdGp01g+T+w2ewZcaGUtfAcIITOunIRVaBroFaaABkGlHYZgAvq7vCKlgAUbNz+MpyeSISi7iJyRPbtuSHcQ9EdmLhfTn+Vc0tTFiJNMp427yAFE9vcvWFh/jGOA1/a3HJWqSqvDXI3TWuPlW24UpK6CDVAbdq8xr/oKSF1dpOsTjHziMA4/Wlo8q1qyynV/1Csvzw6Yd+VhteOkf3nH3R0GOjUApwzwgf+jTd563LCrLW3EGFtKyloslGcPDc01BAaruNsaAzNo4eZMhN6ZK0aID1icNOZAORUsrPovJKe85iEJEKxy/a8uKvHHpMU9k2kF3uqFXFamV5VBojoIVKAYL654quZCdAfZ6+/3cbUBvkkkAR43iqrhzxqmNz+blI7Hfi2N1eDpLEu71V5ll+Za5rOVQ985wY6oz4kUut+EZoOwHuu97OaxQZo/6dAJpADCYga24eJyXoL9AbxndBpZPOTkgH16bib0Q6tr2s7hT6v8sdg546eo/v7cCMI+ygsfcl5S2aLX21Tz/wLU0XYewhQExuauEbVMM0uPNhoeFAFc70j+R1DdROaZkK6TwlXP6rnhNhsJnHNNdjl4w+2I3Epcrdm2HqQ9bsziPPgr+CPtq/fb2oQbVxPsqyPzk+KhgPovxdO6nFRLExWpyCTyyzFGMQnObsWBmuWfOuDS1i7OoeSTbXZfCcIJD4W3msg7jqg3QXVX6UqF+4R5PDy2QZzeoW1mZhOlF7sdvOc8lwIXGM/3n2zoh+w8bb1m3E4qudGQL4ny+N4GMqUW8ZzGHVGyaj3D+2EOaDDddzF8odIi7+vtlIGEOIv6UuYYVv6pgwn92eWd7uWRhm3bunpkxQ+5CHEu5787/6DO/1B2JALuIxf3tdKuSYUPmLyHkimK0s1/aBqoNXw0stfy2BsWSpabTt3pR1ZJWTU/kbrW8hqmKtbcv5Eini0rYl1SrRMlVFBWmNLUZcaw85viLnv98bsRm88eAknC3zF1HmDXNbSGV+3jnzBT/hZ1LXi3dXvn770rRMu7ik1bXzAru0bhtzj9Kb8kZA7FJ28DmoFESv/K7syCHofMn1SsU25LLjb1lHP5bhM2Qk1aKPAuEeZSCbXb5u/H4VpHhquZlgjdQJgfPjGU2dmSvNktppaaOZEF40C02zT6f267OcfDW6pPiyAR6kkw326NC+qliPgvJfm/Qq1WpPipziVfNIkoj5DzYuADT8cgnLAPvMoVAI5eLO72GG6zOftwiINXVyn1Zex53Dh1h+YjMorl/nqDOhTUyHkrnIkEUOElxGmBniwt24qEEN+Ac/g4Crf/Zr3O5LbKx8dcqyePHKWLU02ZXI0EcmZCkFnkg80yHBHv28V7LvqG5Kps38anTgCOUyUPk+U9GJAwB28eJT2FGEPVm7hmh/i+SeQIRvHM39UxdE6PA/btR9T1oIHjPRAvRH/kWRb50F2X5aYdK6fB8s4sRzuGgewsbwoqUj5ClPRg8JN65ZaASaJQZzvcZrWbk1yL4swCILeLyBTOsrdOcAfZT/5MuFOb3HRWj9Q5ZCQ12Ry12Z2n/R21ofPORQpT4hJi9hQONpwxigJ9yCx/seBaAAOHW9hPRL4LPyvynUXwAZPbIvKR3QWW/jSjiwYHLgt89HUdYnYeqsoKpVY2ByZqKB0hFOuSIz5sEGpVV5o91WG7T+UmHbNdRwJj/WRP8QSaDJc7rWXkm3n/amWzKwMrUouEH6ZseLYD4eD1C/2AQ5H4K9Fv2FBax0XWCjm82J/ycJantdypBr3hr17+7q+jRrWL8ZI7XjTPbQ9cN3/Iq/mWc0KsCesCn1Vzayz6m08zbVRQ5iOhdmVA+74OOlGqe1zPeRhw38iaM9kZN9iBLD1kplAtW/DqMyxDXd6TUp3skgUu75Vxz/SuLLrTluSyI5Ik0kx3Pu3nkPMvrXQmbTfxpwT0nQzr9k6t9WV8J7xg9UuSxfEDD9NiBP/F4oM6jaNvyBBLV63ItaDY50ziQIIcBk7J43h43wBgfIKdIExRAg7XjZl9iiV59J2KpF9cccnKBwOho/L41vRnJEz248msOoALmnhCLCzP2u8d+3JOptupNk1Pj4DTHXLjqyfC0K8yzruwQXBK4OiQ9zIrLzD6KUhUuzySWNNWO66WhycgVJtHEAHlhcccnWkehAmOaC+Y/rUDkSqIwA9J4GItCwium6p7YYJO7z8aqohhQg86jBUo0+cudeXUWWEF4Ehpbd/8/4CvLNWMidSqz3G+YbpqvLTZEZj42QL/73R4H2pentBmzThpLoeLDtWtm/BDLQKmDPxaaWocsQSEVWjON6B0ZeJCXHrWSblpF+ugL/6EuDIi34WoMMgYC2NCky78oWFC057VYN2hxMAYkMeJCJpt4QXWlr11fNhoWMvAqW+UiQPl2kKysZguG1Po/A+mbyOyzgN9u1umz+0BxbxBYevfewoKF/bzBddVOnIrq6MB+NkQCzsbBdiJ3fkwFtnh1ZRM6VwMwyXQirIou0RgsTLBgle4C75rdH7pN/D6Xx1o7VR0d6XlbZGRQm6pctl1Ug2DRb1bbpmI5+dMGAZ0u4uBKanVgLXFrjQTOF/fJSvTtw5hFT5+kocOei5v0saO+wd4V5Om8ZmuLUAYivfG8gVj/U6xBTxyza9MCJLrPn5pq+a7EkE5/g926zW0+hPOEgIqdoqZAMtCIxSs22DiBFAUlIIR/Xpy+12J6FIdOVnTqDTexYvzGiZiajtrTBo89BjY/a/ban2DxJBZam6WSnCoaHtSLwd6MuIetBWE4xpd9KWqGrDF5/Wa/xa7G7HKE/ppqDs3ibAs9if4DQE10YKOy7DnjLqMHwh9uvXElCIisNCClYw80qxZUXm614nT9ArQWtgjUFi1WkOLnHu836FhCBe50hLgYRgO22qAMF55PUP/v4pevIKwRbyem+1i3WX+UbAOEe+qaffR17TJi2KTIavRFehDaTjB/NnDmfxnXBL8G2LcFiMO52oxak3cnjrwJ+GQJoIUF4C+e5yg/az5NPsFvYBMSRhlBfJPEYd/Mu2xqXCiGvtGF1BsZZPhGbj4DH43wse6zTQVIMDqSY7GvQkXRMrgIuz/lrAKb4bQ3vvjSWP56tIc3UJK+4J1Gzfs1xmF2Cdhk2g19wDS04eKv1ezIgrwq9lrcBVP6qcJv7SDcoX+d8l+H1vZhGL9VunjwhVCEbsK8JJPh2mduKFIofyTPTnAj+7b3neobNgYGmWjGB1w38RQF8A0fMNi2rPBfg5OAngG9qOq9U663yuaKpalrA9EBa53njS3vzUQSo30lopYtjHWVZQZr5iRDFTgjVR/Epiyq7gZ3eG/f99ReHNE8IM4Mq+z7q3NbvUnY2cvs6tl0wkPCfAhpKwSAuZR2rVsURGgPk21D8m9H4+1iGemzDvRDLOzEdn3Dv4/4w8m3n0wGYBsoTJnd4FhRuToB08ZaXIQw47ga/q502u1Ax4yq3ACKAviUGzbcAuwyInJ4C1fHcpVRHP1XwPXrfAhLRvXFak/r/2aiMy8q18cUlZI5BbuHB66hSebKo5vKfwWGxuu/1Bc+yPHX3iNdrmqEUwg2jZQdSq77re8cI7wK/r/zHXWdP5yoUdQRhFIrJJgJlo0nr5b1V2ewrQu6t0CimRXfUBd2ic4cdL0w23RxpKasZbUCjx74+cunKbS7op0P7ATBBq6WohaKYXeb2BmK4yHUi4UHUemOPvJ+b+cONjhtZCZhK3tvRhO8yqrj9Jz2qp5UFhSVSQTJTFgpkxAP25hVP9BGl37O5CaMIHM68DiIQjssjEyJ/Bop3Zw6cnWVQyBaR+y/xx2LA1sLDvhbCdHw4YNU4MzAPpyo/mCQhraqt9gUxPFfqoCVnUvExVyHdzYYdTYbYFE0otdX5qTxMgII1VRYraNetX20hPQQhYtccMxsJ4g3Mx+3DGPpPD5OM5UjqHG+CQwAS9Uy7XZ/AbJrpJ+kGe/OYlvZSM8y8h0/UdWoojVnKd/tnMyziVNOmM3B0xbT2dPgUWmh5Rz8O0qa3jQRVOJ+/9Uuz93tubkKSq3bEDhzWNUeBjLYub0vskOI8N1JesZ9arc6M+FsF2FC92mw94kTAltH2kKTnm0ByNDh55F77A7pgAFQB2hcI/1DYT+nrP2V8EhRF7TwSe24dpXUI+4QNmL8eHmLGvhlVxIyK0gN8VHP4Vsvbq3UhVyzSXemlohD3MbnaJ9MexYn+rWPszDBrW/6Qc5QUjWltGjq0i4pP7xCcGqslslcZGQyAq5F2VeVbry8/SEtIW+H7kcOvYX1umRTtQmdypTKBSs6m2hjw4s4YN88spjtbSE8eS8opY3KPvKQkR1qBPJFtMBG+KhJ6BWuncATI8xeBFloq49kc72zrlhhw3fmD23ocJ5ml63WJt5t7PHhTY71GmnZLR5BUY0+p08HWCkc5cQYckI2AzPkp7RhkQ1MxKcKxkOJf9N42nEJA+FTyMzwnnv8tCmQZKvQA5AYtZbaslquGWe8m8Ve7L/dkTmeYE6MPsYW12MlLm5p0EwfhGS6eL0iB1LIm/Z/DnziI7exFjrN0Lxwo+t0F1ASYmwjN+TBk+JMCObadHOVLZPTieXoArgbdm4rUPH+AhpxFKJNkt8OxlUCR5Pd9ePvzXn0sy8n+vXAqv+K8Io93fviUtFsSY9M7DPahFEsC3ovbSJhkzCD9KK0zkfQU0ueSvpJ174fylsIDGVJ9T7HWOkwRkLzpTSA8Fea9YW+r22HRQU6J6LAwskFw/hOSjLWB5gMeENERUXZiuu/EY0OeStJv8PAKdwXntyTmjyDcF6IUWqZ6ZgkJugBUdyC6VzT+hebIGHNp+5CiO+AOZnj14PmNDstFHHmcU+vrQsP5HGYG+1L5m8gc6zl+DbMpbcXTqhNKlFkbldEP1UzGf7D5WtORl9501iXC16akSHQbhjHeLXkh2O2geTziYh0kD88ws8GTnKOTjGcI5AchZhUYuhUpGJPKQCrWjpheTr4fKWJInr0PamE9YqkOb9LuvFKV7dZtKHhDqjH9FEemyKQs5biX9jGzI23ervXv+qQnLR1rqe9GQ+ceRsJXGikxSW/2adHtrGBaKCMfn5Y36X6VjhZBMZeZ4wrv3EjyUOXJmpqIFXW+kDDWtXo9/D3/Sj3VFqsp+kc9BTeCGWBG06t+zGznrr2SJH3TSLaHAB1Kt2j+Yz4wf747Jm/3pnatK3csdK0Fmg4+ncd2nJyaeujdIDVAqr5Cuf3yv253Wppe8KeHw5wozk/Sv1njF0172ko/h07rdVA1JwHCqdcMPPVQOfL4BdTZhS3W7QIpfdyjJjQB12dTH6NvGVp+Qm/9Qfk+88sRtb8tIVYRyqIASISnKQjIXSF7EPRyHCnlM5nFnzhCsRcANsM914cuB2lgKxR24XCwU+vrNP4HvhCFnG6e74xiOg6kdGy+epL2b3Kbr71vx1ppIJI2zZ2Vepb/IhqHZJgV0KMPEsraYJILhgisokd9jrSf+XOiap0IMnTsxDtRDY9vIgA8KafmQlvvrSPhTagJKGmFRHCWWpySDgcb8SHkY0Y241WYBXfFm0W8J6jqXrA+yfZTZAeKG6U5T6XFMz+da2G+00k5XmEiuv+oDcUsc5boFmYlLZDuia2Vhy4MM6NkCcbwWbye8Ad2ysypXv8KOrwndRqPcq9R4rgBaiFFzbrf1H+Nwr5QUX3hd2JfTAODF8CoRvbrmPjso2RymXqc5LxCzrqERIlwLfrhtG0c/PSQzIXH3aPeCRMHNq5AOIeDpJPWzzaUGIK8GcnVm5SugdCewnb9WpP33qpCJ9jrBs64Cv7V6liV74iB/y3/jcD/Vxq4hNlLfalKUD1T5DYMx9sW1oRz/ddBrWdUOp+uij8wk2TWLmTEtvrBN6OAtDERtJpDgZVtKosLDlfd5DEKKJ0pu9JOPehJ93dfm2dN/inuUCuPxd9tbIGXMJuTAdi237PY2T47CpupSdshxcnViRy1m15WYAKS0BeJBcqlBiULjd86mZcO0OugVa5qp2dDrvNAvk/DaodZiYl7DS4IMhRiEpzbo66aE68JvsmZ9kPcwuYEagSoWHtnWVy+fJKuYCXYBQ+3pvW1lIxxG9HyNgSjZ9vii+Jhxx5q66SfnbBxL6ENqwaOOJc/odwPXc2mbBwv28m4q4Hn7FB8vgGzaavyyJlwSVwA8PfP186ZLZ3n/msWALokmJY7Tl+1n868I3bcr76CN4UDtt5UXmyLyL68ufY5Dt8iPTNhPnv4MqpcvCAZnfPa3En+lNIVUhAFKT2t8gw7Cu6NxXyJfzKnLdPiHlvOn2rq+t089GYwITU1A6TvG6osO0ABNRuU46c5IRmq+LugQgqcMfrofl//mJg4dozIhnu3ROs6vmdyNwaJpDo43JVeShjqvfi5VXLoKXKGZvwKyEFx6QmjsvL5L3YPrz9eJ3BtLQjCUFjhbzkU5f2MRK+vQHJ4TziF0tsVlQ0XyMlLJxsg1B8Cr8LRzRPylcA2DKaOT0qIr0I3waXuuzGSKm7gDr76G/NmoG36tvcerE+R4y6816i2vvDHPHtZlD2bVY7sY+Urg8N7rYhz4XCpZXrFd/qBOi+Z6EMr/hlZCNu/OdxH64Ej1kRIqjcbwBeluqnfgCT8BPZlEZYGTXaPxA8s19u9HYHVHy4EvugDiRLLuB75v7kBSZAKGpFJlaUyF+FuXPBn4sZvmNNtrCVRbhbBnWqHcU6Yd2FeYJvoamvXwWQBb6GPutp14mkaSB99nX4XXn8xyT8w6zzkNuRUBMtJWaqe43Ejq88O6Hcdn9XOfXuFz3ZKFoYb3Gnyf8CDyqQiQRK6cRvanZ9W5xex172Wz5hNr35D/ksj86j6HHLPnBG6eB2/IQhEC1xpBnyJmLO2pRYMn5xAKONBJ/OU/DsMhBWC+lR429cv3YFyWZDO0N4RWIl86UdCc83Ink8BxVkGzH3KSjZVhf+da00xzucKcj4tKGZVHu+2FzN+2DdAIheAzj6mPgEgySykgjjn+QHPpFmdTNpCSTypSrN/wxDmGKo7piZhSFA/1q4wAQVAqBtqHPqdomBcEPUCm5Xd8hxRjlNK2X9hcElc4vCP9Al6g/QIRvbmhr0r6m0J3/bwYScTDgsEIHPgpw+b8Qvt3LrAAD8XK+o6vN4JtdAX1yitxL71LHlfhb7JKGI1n+qYw1Puz2hLv7QvuQqmDY4eANgMFwJB0idDMxwjonW9CNkAIDrn4XHLssoNZ+tg67cH0Ohks8ll6XcjOq9S/KLmG7qwKsoQUIgWESs0zHvgM3IWUzHQ8+D4MGTwJ9tf2B9vq/0SlaKIhlAuQrkZmBobGYJDU9jIwpbBSNtlZcNm70KPVs03Y16CSJS10o5QR8j+8PX3Y81wdU7a66kJVqdn0SGOchl3vzYXmrWAN0Lyzo+MZIIMty4pNcCEC8wFrESXI3059y3ZXSKYoixOzn71ZMQHgLKWzcx4qbcQKR20FcICDkZXcveuZyLmKI6wO0jj+hLWMlSKkjxyLlQPR6dXR0XtWVMrf1Q2vUKtpjr6nNLxQvphooOG1WBHhJpVxQ7N6oAym9dtGF1Mse9DtLRSMwk1GCZ7fNCDuWjISaQiPq1OmUlKyk1p0vR8SnTLPH5oYBkgknCAbj0etyn9XJyOuZ5rEG5/BXrvocy4oRIQqSquU9HmXxK2ZFYxJTRMxwG2/nIIMMV8Lcn3/RiPh1JCxCpwgwpcGace+tOS1GlwyRpiVaYWbrS81/pk3Ii5gSdBSb9e5Q8taW1HxZMmvse9G61JHnoKwGRxYGbFGLza8zCrL7fZ0ElrD5XpOH25KxEavSmXNqz82B7NHNH+03ooDetX05/56tM3tojqNIewJm9DAYFePcBP1tWdYGhJCWSnjVtn5iW7MKWdg+s6LoFIzzJPlInhfuLe3cVxcToV3HPCpC4KtOJrNRE9hG0AElgeMmAMYgFQxO3PH+dvp++AJwRUek1lbuglGxZlCm/cVhlhgIh1UE2ggLaUJt4p453ZzPEsS4OrIa/tfW75Sm/VFDSZTBXMJZSwFZ1orR0JDQtUmDBRny5qXx6J1GjYwIZ2FW9DjmuHl/HHxRPSD8kKqJxLa96qpxjjaoWeFZNGjM80sMPBnWK+19NBvlsFTBMfs2JAM9DZnIkXglSu/uyS5pC7V6P5Mkj0ormAjSZUe7k1Wpxg6FoYg4eHpcLQxWFJ/JYwT0WTQuT5xXdgRrVZQRjWf1kPFo0S5cWQ8MRws7eQXwZ6lsg3WFF8S7Jy0c2Styx3hSOAGxUbljBsefqeUzL9MjHjNjaXw/hrZxAVHObkPusvfE7OFBgUUz7IZonLwpB8oa/CI4PaS4lt+3AW+CQZLDZRPss4W1htwHqIIe3LD8oWWtt5pdjXoaGDYDEn3Cyc5i5XO4zgwcjz0xq/RP27vNSbLAM4kiquDwdVV1XSbDtd9xUyzqKT/1gjwvHue775nTMpNCYc98SmN+qt1fCGXdue4QjQ1zGjx44L65kltHvELzLfA81HCaHhTLL132CK9uPLsNJ7Pz0lni9mxp7FSKlNMASgZnc1eaMekf+/P6n5+/bwv6S6p+CAJIN+NRRanfcqWdokjrsXsq0KXxS+fcFyNQeCgti5GKZ4Het8xxJdpMMhOcXgo4gtGKc5XKEg8zhlKaD5538Jyv3zCe9AxUdU6ap/M3eVDAcxJOxNynZSivQZrJBwPweDYan7Jf3sKjTMxf3TXSGmkxjQN73NMHDW84xcfzgsui7HTfoDTwQJqXgpSi6UgHeYNDCVXtq226a5Cwqhw3stVmMrpasdk0Wpm6FFtgiVRwDj298hYOLK/S8AWtJPr4sns3Toj1TDrtxVrRJVjhbGyvzxFP/UaY2ubMwS0Cq5nv1k5UnvGmGP8iBSjx9AjC1i2fXO1Vga/YEXpRd3XuVxIwo8ZZOY24btED5HU9ujTbw2jCTpO17irmjhQdh5GB/fV0RG0Mu2BtOwCVeT5NK7WNYlmb+IJpm4I3iKkPGv6ZEZPciiMWcd/D6EqgAiU9LI4l6HrmOVwdZoflJ3kneVC1VArxRRf8f3QUsAUC5WyhnkTFOyZRaGJZv3U6m+QShWyQnsvwwKkgyXl9PiJt44wzadxTeGydDpGWrqeOKA8osRxEW3QATegMfh9Ww7FS8fqyLOI6HhRFHUnMpOLjiOSbwnRcM5kWqytQ85MEqWsIKn/2E5IA19+ziQnZJRVwzoumcz0sDyRbQkW1VU+Sy3veNl/GO3Zss3L96M5Bian9qTb3ZzOe9FveUZp5QADnXI7FbzFA/ScL5va2PjRa/VU12TtIicDw7vbHZczGI74/zz8JKCrkR9wU1tXFFOo4CBKxgCfw2RLewoW/2x5DM0XvBs1kzge77mvbmidnkEgrVIGgheEKNtaQOgeFYrNXVaI2yncwt/TXnGDxDr2wQ79vQW4X0y2r4UCE6MZIZEAEdlLZprrR2n+F0CjugjuybucFbFF34Atg3QOv97RXdnNm1eQKxmrMXtGgURoVcYJQZuKN/gemdKL870rkEvLCdBONU3eovyjFR5v7bZUsxtu78/byHAfvwxiuPX00IuOhAi/EsezhCd+VaXKGqsHFswaYi0VCr48333YFgbAn4/q2cr3Yu/tCLPg8KU+FXnm0Qm2baXh7CotRxbx84ogrCmN1oyaEsqDjssX4itAV64V2An1IutGbAZYth/wfJPYMfs+mHvNeJLZMAHqUbG9zEZ/N2/HwC5F+8WIR92ylylwkTk/JOES5R7p/UpiwQ1DJB1dn9iTrG6YCb/HYgDHMgVf1RbOZKQYCICTAJl8gY227AB6Nh7Ca/NPDgM9Aep51hGhoHb9fmBDJjpI4u9C6rSqLkw/cjmlIyRI5X2P7fI6e+VoTGkvNYzkD+Z9GpWbBjfNQSAqORjPPvUrKuR/dY2H08yKfe1Mk41w+BFe38oWggRIailtSg3XTxQ+stdh51uxHYTGn5UATwW24qmubgs8xwKqHEL6c852y6sGv/qtjuydXPO6rC4CZwNT2Daeb4sWuV1ul2xWdmAh++eG7BQ9m6fYlian46I0kp1BvFci8pccfox5MHCOGcvEnYnN+tLlmbWzdVSphxPQNfpuQAOKarWvv6zME4Xa5EcSmenQIQzFQMb+wEtfF252I6ERImgkTxl+Wgi8BtdRMmY94jie/6Dfm7wsBGgINxatu+iyzEcAvnR6XkEVQmKwLpb6ccdw0AbnlqK5GCQDZKz/De37SxphJ++SuVHI7b5y03dt1HXdmyijOisiuGZJ49xeA2MGVePwAUc2wsiRWXnsQvCZ4cjLOnjLBOd0+6VhsfH0mni7tKx/6woGnJIYNSz+AKMZnZh2dkaSdtuFDMjdWpkVBVTJ1Pzh+VqrSbT5uaQ8D536iCYT/gjHS29x+eiaku9oTCVTrhUX+f8MsiUr+QzbJ2Fuh2hPIrw0sjFlP+ACMOiYTZ+oOXTYhEM73oEZq0qwRPmd/gVi8J2Fx/4x+e10NCPDj3E9lJ2suSFxlgEIkf2k5QkBKYEGC9nV/P4uDUze/delW5PLzA1L3mDjs67Gsx7e+b4smzZbkPslo0oanhI5TC4f7/J77FkPOfhw7diScRlKuxM4S9e3nTKTTNGLM4FrACVV7M3bvIVpx3c2XHcXYd9JHkTDUaYD3w2hE/ZXRAlEKKppEuYKrE4kszYbrSryEC4Z/Ohuy7/98f5hjP12R2ttZ3mVKkEhoUqsGZrwvtUK93Q34exqwGHODfFRwAyif1aZK35FNuN5vw/tAEytrBdSE4xN5wXVebjVNi8oyGyZttQGJUiiOe+/QoTm6vuF+HpWS4Qj6v9IU82nQdEQvBlm4C3u/gZ/tyTjHWwDWu7KuKm+LqXZebuFk6tKmPx3Sl6sYUOtbPiG66+V8y1FWWFAQ+sUoUbfqhzOTk1i/xMLG/NcWRIy5XbcA03Qim7xeuu0l4HZIrody8cpWDACPnvIpGYtmSEddrC0SJg28RU3R3/9vJJoXJwRk1Y3nl2+amzx+ZseoH3qf24yO/jhDbQ2etiiTxk1IV5Ep3jKJfGjCgev9T/S0G5SPDdz/gg6l18syWkIZSmynlZA/ImUFr3NDRMyPYJsHZ/AHP7mOt+7fTarFVkvlFLshFVLn39iA7uMlaQX2QHK+DgEuhZU5DMdNGcHPAZt8LvV1wAlP8QYiQd/5Adq+KeI67EVHZvCUBnGKSSX6jxi/R9u9gz6BOT89Ytf21+jy9CNXI6EsvUjwk7pftEXnmqngDHzPib0uJ9XpZmoeZgPRiD/lRWzJZhVR8Ctz0kTAAcNscGlzrZ7/gPcsq7Jcbx2oJRE+Bk4n8S0qkPp9w/rkkheoyBHGBz/nLNY5/gRRaVo/adL9UAr/S4I3u2Jz7uDQy/TcuBAhiBPkFuGgcrEO42tEUJL5i6oYomQ69WXgAXLsmmaPBpb9EbzNKyVbA9QN+O4cYePHcRqrM3eSeIBOWLkmY0ZsITmyfy+w5GY0meAvXDdNtZt0caxruDLTE4zZywTQ88B1nkhUS966Zy1No/rOzAymPRp+jPbinbOH2qyY9pBZWZxEh8McqUlZ1wC5Y/BVijrkjIDjMEH5CRJzI1VDbQ1dOwnwpjJbzPUX9MAwLhZqpyQ6qLn40tVXRuoifWQi1ZvN7g6cBHgk7jpbtqEDA4i1ePh9bBcsHyCFiIZckzi364rhM1QiBorodUEdmBBoaDBzkAeLxCm16wqo07o+d5n9oIXP7X/nQgdCDFpJ81eO6PUDSerVajqTGD78R/SwfTaZ3Q6a7N8wJy9n2C+/IyKLMlG4w08YrHI0coiM3r4gyLtDtRGZJ2tiZIN4mtWiAFxHaifmZb/zQzAxK7af7z/wro5+HYEHPoajgFq/K0XlU2AEEzvE2hTer7Q2z3YHcOBADAj4kTpD0o4GmKxDRpief1KugFOcK38iL5lo12E2ZjrcjzeOg275dbCh+ifavMtbCUfyCyMiFF9fmVa+3Dhtsq43A6HFIvNNW2BC9VbklV9XL4X2XWaa7mb1oyM5cqfH7fEYtdiTUU+8mu0SoVIGbpkeVfK5cBQ2TJbzKb8pNOxZ97rSxvEskfVNZLYLCp1i3NcxWtec5W9X9eLmMyBQqWdUEG4ocTDN00WHNaM/0+Gb1K9Zgt2TfJVs3xFviB2UyQjdmE7c2FB5Qur9jTl1VjrintKqTMkvIDZ8UpUTxEBsOExotcXQXl33VaO4SYst+NAKOb55O6FFlrwCziWd6FVHuOHabSaz9zfVIRWVLkWnqBzD6PUWSh8yvg+FFsSKmNhcVI1AOzAXARPipQBWDoqmIzqc9yTY7cEhKFHCdL25AGjFhOakSx47uUQMhY6ftAh6oX/nDEGGleFQWOsWg+703P1COiQs1re7oVBqts5d4llPwJ1hsk/63CPvGxS3D+avmE4D0s24yOdKF3h0dTkutc9mR/kz4oMdz6jIztdSinK7Wbf6QrhZN4l34XX3f+inKOztxgnOFjuyzynBtQ1QF4qhgqhlaavOvK4ZYHId9klxk5Pr347zMe6ASl7RiXh9JrLxIWU7agqSxfVxRBd0sZNjhexu1vgrlPlOFz3qsNF6ilxaZO8T0+22MC+4YxjgXduRvB3UjvrRIHZDWo+oQF5VRbJMmMXeTkALCHdVWgaeSBT7vn5dREb0ItlC3K5MGI0Q+ChiW5lzcdfFMsSYyoBdLuSIQeKslZwgJEXXkK5wFZxZ5uhNhtOMZLpE8Or/XXw8AZIvSHpmLKXscRVa23wJwvQwyTv+8fyVe1WaW333F1A2tfTIPCuYwFIm79gUfThelMHtEfer1vn9BrZPBkmC3PIaOaCdXmZ7i1eR1QVKkSkVbCh0nxljYd8zmGrcs+fPY5g5tPr2+vea56K1DrDfgWqRM1HzAB3bMKlb2VaIc/Rpr20SWYf757v8M3j0BKlbBW9HnJJrfwC5MDI9cSTJxd14rFUkJWsYnsYzIdGt84MMgPq1ZFohsPCWpRDFp0kjPsViZR1bl/yVmwVKwCl2N1xi6PgB8YcQxBkG96753oHIBu0z6E+5Jyf18A0l/8SuYRbqDKT9UCbTybBVCsEkOZB5J0xfpVgU/JdSh2uVD8dYrR1IBqwDzQS6hxxbM2HvIHvx6kRUVDz420P421MxwIbzkiaIVTtyOBSTOE55CJ1h05xLFxIepqSTbluAJXcZ3jUqSnxmknc6SJY3vVH5t07ZhMvf3thxBuSf5eZONEnHPmn8yKMumsfWMuXy2STUoB2iZ9bKK4D2qYIJNSsFLqZKHMjQ+nxzQhWdKDjh83AHWZLjG1UfYqavdiwoKV64uFE3P/FiouIYnTHo22ap+lBvr1Bfegi633nUX4Tmri71/5hx6So3H39R8awN514+syewp+VlVWCJYHP8h9p7mDiu4WK8qDik250XGp8k08NJP5oldIAwwqogcF2Y/eGhbIkXkBsDeMBfi976FIkOTXsqDZ8QftbkDwnBzVzCI3KuxeqIoro5EXQhS6pgsVwMh9nSFRQBMWJlKSyoyySwUbw2tgNVu6U/3buZKHx1cStGzClVJKa55jwZtvo29d7Lv1ZwKISXEK3H4hTskak4Cjn0Qbo58WNj5lcK0BkOWk/wyQtBCjbzaj5y7sYu6vJZH13vpulJEXkakhgKlyt3Ms8BNu+VXb2Bzs1o55qmeEodrJJ2uCTKlBapRmGh72K77CdK3AQ4BJFliiBEzAlPkcJuahOf4h+5a2zWhjictqDZiKmAkaStayIrrCAW3ry0x5Nc42WkbNuHQB9QjM8HxLLfXvEeIItTMnUvTGPAAb+txcjC2WzF5ZjuW2Tw7gAowZTCY1ib8f7eDRNgEZ3vY2a3EESaCiZOnc9feT7N/+riaiYKza/MrjWfyCS6sBfd5Ypz2k4NxRZKFpvU5zveyEr6k3702OtcZ/5IfV7GJV2dJHy5VigBNpU7y3xOLV4/WwDlbILuIUbjbc8VvQvDjMFNPaeansX8yFZ2YBq1jvGTMT0xHdq3kXGIVmOfxS2QPGjUOiJOS0bNpymZq2b07ome8vGASMEOLs4cCIZT8/wnazpXgHZXSK++EbRVFlQ7+MlIB2DNJprv+n0aKm42uZXKjmlIVqYclJ9cP8mzLdND6xdQ8HLwrOJsw2SCeT9P4a41HxLmy/56hqKPDOOkiKtxmvf7ujBw0eu0IYHI01TDhRQVh/fA2xyd9xsiaNkc/3YBJYBzBUBP7cf2NGuTVjowKiXAPJIsxbat+I6K67jT03U1RkPKw9wWs/BQanoXvePV/0b+uTNZ7+LWKtc2Kam/Eufiflq8spiMWozt9kkCnc9DTTw4s8vPO/flacwLFAy6zBeQhQHqhWInuoHksg0k7eogl8FxRFNGh1Dx0eHtSm6IgIzdz8kyPIeayEYtLPKXb91qCgtilLeu7eoFdyQMZ/D/8iIrZ1HEJM8iA7sOdntbcjtm7KrV4jpc1gtmfSFBHMo3otowVzbvxgqFejrA7RrSrFgQJWqIzlIy5x1MOiUe3CPqreQCZ7b90PXNMA53SPzV2h3Ro3OSQylOKsE60EAvudHmm3aGBDxILiBvZcJdFXGL1cr7p1/0VGzBy0WrxM+F7TC90yY79OTfAJ2cFfPA9hUHEJHAsPxx/Ec1s7n64ElGK7X5U7x8ynayns4YKk8PQZAJ9GVVsTHwaYeSCenSTZS/ce+Ud65KqLc8iokJtI4FZj+ZumihVEJXT0M6TTTOoGHTfSve1ehecstw7vf/kTtcUiBSPp0KvEQFLS66YSYr91e7+VTqmMIZf8iyyGuCinbzy/RHI2h7ArTs0DRd4ozNbIY60O8awpCJlrRVqQ8ZwYib/Y8+vOSa5qTfqMrW2SaXypMlYHw9+WJxGUVE3y/DBgq+8vTf3THr/OnE6IWFvjKo5+B5AzBB9/ai41gFnVGYX/SD2zNavr2X7hJL/bstts+fC5l+gb7mD9MZY1wZjc6X/hO+YHrXf2FkJH6OdXneideXOCKaaLx9+zYDuHvBUe43JJNjPE8mk+G8rlT3P1nKRz/zQLObtBgpHR46yHlUrw6wqcp4b4yLFFiDfxykfrK8m4zClPN8L0HGpvPx6CjI1zs+NNRILjn3p6LM2AXbp/BUwXX6t7K4N/9nc711ra1W+Nzglp+o3MImwuoPx135FerKX/+XLSZl54M8xdbkjw0uECqpqeZxbjzwss3ZkKhV9xZZJDI6ZSgE+nfs2ZCaZDgyij+HCAx6fRYOcHZlqDofm2+3t8bRfSnlsyz74wsVcY318OKqmyA8JHgWo97L49gH24NOcLf+J4DclYAndgo/G5KjKQw3KKSD9wUNWpa+Efv23B/g/IEfmzl7WVUVTwJOniUEOPHfc+sw6hOakHc+j81E4XKlxT8u7okdfb8S9OiB2SRS/Ys9T96tpYv/P8wODyuhVhfo3PCAZjM1IUw/oPY2vnZ1N9peGf9AByEIcocdXE8rcuwTQzQpFX9FP2mHB0YwHvwY8aR8l8jYAbyuKUbWWt53SqsUy/TedRMjHbnhrDLn0Oim36Ms9osPPnPwc3WlUSfXO3HzuHAbLqqsknlJ0DZnovrHTwZqAJPRzU/hdBC4hj4rqsLG0+T2ootpP8dnrehlmUzE3dNd0aohjRT2kmxgEEbF94jWRgn9TkBN776JIZWkhK4SVejFucjQq5yNo4i7HI5aMpHrfmfF/PNyJXDLKvDI2y7oj1MgDkjkaga8ccEZay9ijYCyiNqxYtmRFNKeGGumv2iokIWnVibKRDRmmuXHrLtFJ4M+OX6rIbQE3OaBHabqxjOLug5UDev49OzxhDs7W0ttzwtCeW0sfbR6h2XCx8+q1TB2I/HXZt8hUsoQ24hDXb9DpYsFTM00Edsq7d19ue6AjeQEFLF+DoBDJbBQkD+hHB0nZgDXguDTdKUteIF3Kp17KxXM1n3O0Md61tR8lj9lxvQHegkwYgBskZm2NVR1rgRoDFzJj8ZPQrOj1jJ5llkYm/S0CSxs78UQSLKJCJ+HLRpCxmQekbCEYdyr1a9suPmP1WygUjO5b/ZhoQginobDwRVqnj4Wt1seeNQ9YScm35mhof3mVffmF5RbamwE7dXfaRtM8KkbtkjHso+bfj6MoKpzVx4TxihKNPr/SHw8kkb9MCCBpfcqSXQXImwasLPEy1XIHBWCEUhAXf64Gjs3bM/qpqT2Dg//es9ZN1VHl/PZUDULIa/zPjeTCA1N9oZ35ZLJvI4RnjrvY3vTdkfhcyGpM5CcDUsVgs+iXmLTuU3JZKNgYBfpAfQnZSBfpkEtEkozihAqEVqSJ/fyrDGjxRCaDzbi3MDb1HtCh6svsRyEHw2jfVeluXLEZMuDjdpsmItH/DE9V8MmNLuKic3jVXw7hyeDOLy2VHuwZXfWQfWA5N07SnzHcKzXKDo/eCyQaPoGvwR9119ZVKbdtUPBRsEl8bPdD3+nwuI/TAUNyPJooX2/ZkAFlJXf4sMuVurHQdV5+kcggaCGEWO9BhMJJGf1wBLFDGpbWLCVZ/aLvM1XLpEObBvyBjQkLQCG4qcVbENgd5Dp73zecBrqt7Cqg5n1G2gRhN3g0QLwcHvnWXlmNLU0JiwVYaeDMUt9Fz2CKoLbeJLKrY33B00wKCfDa2jqj4mTM0Yx+YZlyFqxMGKyfndqb5aNeI+kLRrHXi1BoFg/P1qaxpDET8M0z2Ph3Jzcz7P/5nQX51ktk2htruRmkATajqCMSyhGO21C2XFy8GTjbc8aod48PZhYT82jGfD12Hot0dEO7VUQC8wKAhkYQIQOqsId44AsUIjbonHkIYbt4KvMODHnmEdJKi+h6zOCASm9oByp18qMmeNJFMBsDgcCVAr1Xfe0el7T8lrH6HAVQ4VBGv/O49vFpMm+BlLbn6gioj1IB0I+2XkA6hEOqNv4MF+IgfiJlIVr6ncG3yxLQbW4L6OrCBHL9hZatyJBe+ndkUirM/L/mbg3r6IG+eCYi9F/hiki6wETviyrxsy3oaGEcWLjXGvrBkp1K7eY9GQbn5K9rkKeiKqQ6u8tKQPk+/d1GmU3xX5iaRM1FSWcOF/2h9a3DFvB/OhQZNtw4+1bMzzETw8ZK8THmGTNB1N3yI/hD9gR2Sycj3v8Wx8MvvNI0U7iXjCmCodQEnm3MypIlZvTuyGTe4/Cu+WR/VfNbSdqsKkNYS8GEdVtxpTWUXA0zDho6jXb794u63EaL30vs8zIVkV3YsKfe2ijHvSlkhWgbKA3lfj4QrDJ3Um0Xpv7JLCz4nUL6vHhk3JzAisX9yqwLBp29lW/G3FxJODsm5d59W6/N1DWBPV/XobKWdDs8XLZDY/SyWf6/3oxIXQAIjJtf5EguXxC695qIN9XKQFBI++MeF8dLvlT+OxqJIV01351lz2SDzw0Qk3mvBb7pANEcX4EjDJ6B6TuV0rn4jjEP3/WxyIa15yCCBc/6uwKKYCUXw2ir/z+uR8JlSS5powqrVddgzcGn7X1ZoAYAeQptLU7+KO73+QGZJQKB4C+QCJ/m2slK2f7EGWNw1hS2LNGIJeVk+npkjVr5O4MmalS4M5RW+Zo5LL+yuLXjIwjZz4UElsI00rGS2cRkcjyAhll9FVNgIwn6FLcmnPVNfBbCMvZ5EvYFyfKGc/02nCuav3QBJP6F7HaCHdsCfirsNg/Cwuf6PZzMEDvh8LpziVnCqEsSLSv9eVqFUvWqZSYUhd69N4P85J/0g+5/8BiYr+nNDkYaNAjVrV9jyvcKRI6MabqktRiFtdFMNLluSvv2+pLm/XOUj19qZXu5edy5HLb57JCxJNvwDxoyrxlWS9SdujehzeMrUqax2O7XRRALOPYR+Bf8AAPKPXB4jRSqKwlzNsFqbKN6TJPHsY/K3cmt2aDd0Wl1rR9L3118FRL06DiOASGDLubsFiPG/V31zmlGXUk75w2Jb8pyBes3zhMnNRDJDuyOyQv9pKOpYMlzj1vUB2N/RgBffS/+Zin9u9c03TwMnVfvvF5Wmon2fBsIF+E1rjCKKPsYNUwAplaBQrNR29ULptG2DLJiO6NaKI2tFnD8BQ6ZZuERnWtt3dANze5lEe5jhIHG18CM+DdpM1rm+nrGjjsvd69JTyrarBBBnrvszGZsr/KFAPcI8NNlOlZe4Bnf24VWNJ73IBwp5c6T61KLijy6w34z8elH+0NvjaY/gZZhVQHxdJr/K0mVXf+KenYAME3IkWmhMFxxHWerUfm+iHmyI1znky2ww0gUTOUW+mVXtzRzFnQp4RqURwu4FIQqG83CxyeCw52gwbK0FP5ovG0osLJJQDrElRa4+yQnztqTStAcKFgGilRrNRfS+9gIEaiag/TD7Dvh7H9bszsLCtG0e+N/6y/S2n2gwNSmarUPKtqVjy9fpOI1jtt2ELEFahuKQ2+3nC0tNBbz+17Cf1JUHDyT0cp8W1iqDJ9nRnmre+DuYS/AYX8RXiF2g4oIBHQMkXVYUlrzaaghzpsgHWAX8dDW9NHh7sKb6P9kqX+xngjXfo0R8iMqNOTexCbFA3GiK5nlQ+8i3vKqOHenRIJJi2dlQaopanJ0FnDl/ibwcQgiXh9zdRiK1oI2A5MkKXq3W8ccDsoHkGJCErgviIL4QhXQVAJ732/WFkx+H+qKA4802QsegezaN//shYtKLEuEBQ87covPNqRoUEQRo8fB9L6BZltul2D9LCWZjDIiRZ1kHBSUYZ7Zr5rs4Iz8YeDSZ95IgB9sZ62IomyCztk81wSXk+9vXZoO64ZcJCcOxmHdsSbf8WYnyTzym7r26pMgsO+LGq3eztABf8WdBdtTHXJLmLJr5PdzVqG+WIoMepcyXKacXvAt3kg0xQ0VO8lxLj9HW4f0+9x6HJ9AnwNo2qcPPq16HFxztvaDy49u2Vg1zdak5Le9z/gGBEb1AL9NrPO+EejfTCbfkdN6Jdk2XwvXBVvnhDm1CoWRx8/xA5YPam4I4v+aU99U5loLfezbF75JSGJmZ6FnW1ZCt/J66S70jHrKQXwxxrf7pN8wNZiVBJ8rKHSiBasGBVK7+s6CbXl4CSMs3uEMzD+dJyni99PFSobBz+k/P0x/IHNFeXgK7CFWzxVXA3YctMvTuJd4/AmojEo2W0s0n4bF91RZ/krJFiLmFfV5+TbkzJzc3ovpnd++/tAh7iLzJZ1+OCHs6h+FI0WAwgqHcPEuCo9DHkOOOjuoyxue3KitLzw/e+0UUrVK9cPfHqGj3/MeuKyLxYXxXNxcvc2XFCQstvTZv91K8x74d3MdlQVCZNgOiHBs8mimQmOx/vXj5a2IaSWJ5sJp1n41NVAPAjxr+7MjIUBB4LtVn9v1fqSZY2B1XikL/arvOIcZWufm8gGu+fTOFzfpIc5zKL9aX3wDKAvtyPRpAwgvDLDDFygJTJUal/glL9fYbEBkyyLLllMl2EKi1cQxYF66FHKxhlb7lDn96bLSHJ8N/06NZJfH+udf50OKJ0eSd5DrtTYt1vis+9W7yzna07ajEqBPB9DUan3hJQHkJzy3dXMtEcTluHJfcJgtlFjR8z/8wEUG4W66H9tHtTmDvq8DMQcZ5IRPmIobsLov+m6BWl9VxfDS5hEMFLfKw8jq4/+ZYyP0dRNPzkhNZMOk4VT+3tDnq90F/8MFYH/w6OiziBrRk9qCNZ1n4NNaWvUOhbekj7AEjlfaPn1VU4NDepvs9F6DNn+CmhRMjmO2fDFKvnh9p38ofucZMFEOUQv7hjeQE0B2lL+fpqly4WcSY3lpstSfulRKB5V55itpwLuJTsnvet8GscjEHxLQoiIzf3Fnv13osfX2vI1OMRglVClIXjwWohTkOKdSZY+hR6UOhokW4RTFyjXZmRAiyuuKq7Q/Hqz1UL7lLYR9JmlgzTCJT9ZppT7tpnGLvnAxA8ynhr7/CmrPmmki87/nZm1bOLfMxMkcMAmYFwXLuLrqO9gk8y42L6TVpIwe0dVfACPApcwNnaoijFysGyE5ecT/WRG9Hejzfebrr7rCyVgIFNuRCWTPvAopHRrI/q4xfjexg7YaJrsGQNJECrfo304zOE1zZ96eB8L3XvpLpXAvZNJpG3b/J8/Zxq8IYVE1jLFAeICRySnMgQyPLhAO669hCwSMW6S4au7MqU2RQ0Bv3DKSG5VjS0HhVVP7d18/oBDY/Z2XPPGynHTY0i6tjDVdW7Uop8HgxArzN1GpLv4oyFVP6FeLNzYf6DYce6dh9acO5gAAB6qwVK0MJwMBWEuX9aKA3d9oCjQ0k+8ZJ3eZ/R4aGZvAA+Uzk2vhp009g6issO8Riq0eRad+kf5+2NAO+ozII7V8e9nljPG+K0VyF53FuZcVrZ6Y56TQLS5wGoSoB3Jt51QVlcxq3m5eoUrnUaNAMAUomf9SODxbqIlb+izTx03P9qTe5h0KHTfln6p5kke2kfOKbZ93BMXzoZQ5I0W0Mp5P5P9plfQoesv1QKmlhLwzJ73a2BM++ZBjBDfSAoEpXehP4dbMsK2I/j0fqUyJC28fNE2YozmLatehi+VjqYlcJhfgCgSTTIZ6FCSk6guR2d/9SZ9CDjccSiKjWixW4MHaO+pbPHACRprhoYoO8dtCR+PsqullpescKqeZjxDu95rIYOvpySJRDU6WHMWROIc7Zz+pZe4aV9ZNHF1fQnOBlipHuMMT8QPK48r2fIoAdklr+sp1cJFj20ZKBaMTRRDSEdmWsKrMszBMD/yNJAXov/zFYITNtKglEqMAbY8amKZfmNxP2RJorBUHoGldwDPtm4m71nlEwVoDDWRHmy8v4ncwPBfoUCNlB6C5kwCY7Vl0BEIwIw3My7J9wA0CJtZfGUCnU/d9VrGbfsoNi3FaNaUkolPLZFqUR/W2bf2DJYYS4/V1Q7zrPxreMhXeqfU0z/vD3NIPgvLlkf+fZYXu11xVnk36ZEgMoGZfoQpmKDMIbURe4SJZSVkmYF8PRkbtzE90q3Nj0MjceivaBs935s83MQxIBnpYF0tyKfxyrIX87Qhv/ePfOwaaQvfbtj7KoMBYKHMLpZrnKUwHVOVK7oHiC9ghgWuYEmbE9e5GiJ5e7G8KSdTEHKCMxlXAEbFOdPajt2tnySxREwAAVxYjxaMd2EAg8VzXXTKcoMM5Fsp+4PjFrh++eVbAR2jYojEmj8CXudNle4jjA2yZHFanoa3ggeH6vF5OGpaJT4u6F6plgWXWf55ToTuZeX5JgJGLlB/4N8WITfDAGauuc6z1nrCYSQfSSfIPSzYRMwoMsnioERhuqeJz3aaHlHqyxt1JLV5ABB1kZpENolyI8mTjDOfuUlVbAPxpyWek6vduPSJeWozr4pyKcXXr8Z+ivIqIdOAmWvNCw8XVbfBIoj7OWY7SqeDMpoRNfBhSb2Po4GmDagI/MsmyCqTZJX+2f5mKktlP0OoJfj7a/Zo+nWP1I/UTL1i6/3nbDedsb8+Wl5KZJg0uYq0qj+6UHzKtwmZtY5E2BAahxtPnj8XNWQ2Tkslo7nW75MaeXqmSXfNIBrpDKkI/RUa+dtrcBBDggIF49Osiqr6oPuhHXdGLfmm/7BTTVe17j5eQZbKGYPBdoYBRUZD6lvUNndCjqZ5CtyvHHjjo9ci6y3eMEA0P3tXJ04615ZwZ0B0MHKaUz7VOZWKXa1czg9r4O7AGIz1lKb7MOYSy9IVMbSJw7cnr5KSTJPqBeAuMoBfxEryIWY/Jp1FGUxwA2ZT8LleI16jkEMGYMJRqPDgU9MgV/11oWrp+FBdBWPpHey1plkj4C76ICsjhgGmDTHBtaEDLivUqgpDH+n0qkP2A13sNJRTSjZU4MLZOvfN/MVL4BkcQaOZcFk/wfjscK6EnUShgpb9mNwnGTWz7BbIqYP/ovg9AJxXr3U8nPnLqaqA16T2D+1Z/ho7+7GTB47HdHL8XkJ/zzEfsAnEnsiQHcHKaWr9M9Zz0Pvx/LW/e8dwreBGae8LHwQ0ZHagVdDQ7lGnXacouthEhhDQkHUr7Xng0iG3A3Y4qPu9LLNKp2r7GIU+UoH48XB4ezKBChMR/cF1ALELgIYEifAqSlnF4ppSWTwIy+3WyT/VKbxWWTqgxf3K51fvnhbAj4WHRDGURzNKTRQpcOrU3WYAi2z7kpQfjAf87TTqVvOkEIr9HKxJUNBxxG0uMiIn66WtKO808hyMChvnyOxKoFdZTuQCU99xYO038LuZqsPwHusVp+7y/wW6b00T5rjG2sKuOqWW1QTBUTHNUCBliJLQEriXwMgajgCH2Gyoip+8qwbeYz7zJSmIifAfZf4pEqizFdgVU52aBAlJdjLB4S+UMPgInJimNkFC0cYn+OkXakejnECiSalJQxzvTCURwI2BgJGv1gogbXNTscqObY9EnsZYqCGeFdYJlNUbFS52gbjFNSEQsKQVXa/pT9XbT4Hhov/X2Dk97d90T9jffruDAy1+O34oUm+B90TJC/y7UiEi0mS0S4Ka2+7N2PwBJWem79O7xWSRnhTiDS7eUUWhp0JjEteCFJYdBTYowSQ8aNV8hPrxyMYXoHMLKe+JhSG8UoOC/AdW30zIYSsactxwT/35hlxMIv4JahtsNV9baidvMaknZZ3XZFsXijmbb9lkr6q9UlPFzszIO1cTeSZc7XnCCxri+FUAorQD+SlaHGh7DX+O8/goPSfGtFyk2ksYw1wPu9Khjzo4zxVH1cQUy42G92qYw88qO2Ruo8djS8K0iKkTQlivoUga4WkUteDU5GfW1RCH37uwFAeroOIR9Fb2blNutgUejFpW+g6rleXw1x85NUpmwrTOalBvjBDKK5tqmWRgYog8i/6B3AsCtuPW4IhtX9UiJXS1snN4xkB0+rvIuxJSawxf1/bYLmSNfYmzQYVqGhH+LcFrHD2ZfVkJ28cJNpcxPuDGOuNkW71+o4/HwxkOtHwbKRsWbC4JRZTyyxkV39NzUXI6F/aPCozMfYdybJsaTJWvpYtpIchnm0Z3rSWlc8rWwKu3/CYpsrn0lq+rm/zxvj6Afl0sXac4VOrAIoU3s3R5gTcEKthUUc2u5/9s89O79b108M6+6dwyXaQmc6UVe8hX57TDxnPF4wmQpUaQqHxjNh5Uy/vYPrbmyDR84hxgBINPnHNctgsBZCMoboi9H1bOOHjcEahGp+fHP7L1T4SYcMSoHPRe2fdsbqnFueeLhtU5XX7l4Z8bAyRYIW4O5C0P3d0LAfPgoBSB2FB2m0TlIiOje3N4m17S9SQ4ne1719QGwh2BMMwaSG7lARyxUfEC2mtWEJAqjTWXC+NHjuwzrP7Us2ZZanG1wR0n+dekcfeswpRMv5eIS1zvU5x9sl++HvQ07fyepWWWdkd2yrjnkiQNqulzhTWH7GsI3a71kjeGfecrCKkNf6zV7lQtxPYVAbx+DpmiTZI8i9ebnxgDsdudfme4UTUablBNERN6JAecxIdAtlLT2tS1yhgwDtTBrMD/sTyZf4IzzJ2zx3hg4UxZvi97mL3QB3CrENTkc+/bhSpMbEZMU2P8Q/9PW/v6BpeG61EqqDAs4+NaZrdpy+iwBxA8EEr580Sja1aenjSosEV+pJwTz0191CjcTW9lh4hn3Yw8cWrR6NCs8+IKkMdnT8YZj8pQDzd/jomSkAPFYaxPAC4addQC+HHSIi8gbd6To12LMKzxO9rYCEN43zi9Nff2yr8WykMbN80vc0ilG6LwizcNMcAWr63p14jy248m8+4j79lGUX3HnIl/OonacRIqAJ3UzNaWLE+1DpDhUaN9ojJ63mgpbUoh00RyyA/y4sGIlMZjg+EetU6xgQIpJx+4UN4RgCzQH1CV+bcEHPi/oGFtXOcHbRBQYMKw6EJo0dd9m3l2smzEf0nki/OgCiMvOGyu0wD2LZKNn4l7tSMlNTvmHmMbYUIIcEx/ulp8pLaYCSjOxDcfm3DWwFMcICoolQZtdX8RcKnH71QUkH2g7srg0UbxK5fbNnkA5wUFT1iCSsE8VOkwg6IB/mShJvL24I8z8Y9creskeOZKBqLgWL7w0q23cO+KWZJVeOcz6xUDh3WAUhSlj8cXWqVEDO8Ri0kA4q8gpok1O7TET304t/n7vcoYlqyqgzlrnaJBRMuc8cYtobDI7Chq9laOWtHjGDrwhliDC0RlgZSiviFN0wVuwYISnV6LBPXpCOJCP4bi9qSM+g9JFJYAgfsxpt8pbCPs9cNeFXJJC+ixAu1i1YZyYS4hr55s6N/XZR9a8xclqhrnqOTHRTPiQP9wquILp3ess+YR2HJ8cADS964v9ajjhex1IPRhSkIYilRxwPDErd63y3DZfVg1Z9RhbcqEzTupJcyPzgXAtflK8JIhvREqENXtctgZd0b0Jt/mIfLG55dEOb72bWKS1hxKHhGrqrdOwMyLNJosWtrLhN57ZVYUcqimhM3X9YNe/P6F6qQTZlUzAFM7tSf10dJS+ow4oCMmMCJ3HYrs2PYGmoJoqk3iEpoRoGn0AAssbVDK08u2j9G0DJleFLf5LaYs1EvG64sQsf/vJNSiZpfTQVXkMPWlm1GPOdHgUvnquNPRMt1fZ0W812l46pL3fxappAFFyAjMclxlKvR5OJFgu1PuWtdzzJ4pjFLjuf68umj3UZzg6AspUVO+NfY4YCophkFdr6DLwjkxpmwJ3esUgETVTBDqzsI1Nj2slhy+jGmDHXfrzzahpeCZuBhE6QYnA1aTu9JRYzedMWiV6xEh6mbL5T3LfEdmyuybqqMlMJ40kvsIS+xAvSbmeqPKzfWyBVILK698peZPfCTbLsWa2YgkH4hBh5UD7y46r2b4Iziycjo+xudYzl5neIHKCiZxVG8QnZdjrmI+32PxKyAqKJ4p37fSc7tv8liCXBbgN2mTkOn7PQq/cCUy+oxOmCyCYCpjbRwmewmoKQ5peA3ZgZfsZatgTfa1I4ezafvXNOa3FWe5RRjykIzxKtA9c5SfYoGG2JXiFn7fqYPSZp1K37fFZlIiVrxc9qISBa05AoE4xJfwV75bkQ36GnDED6YHjMfA930rNMDxRcoJTqe1c4XTD6ByL70EmNYw7nXTJDoxj+2EKbDl/xg7LxdsF6CxxUezx3bvt+AmEkOm8uxscC+0FppEsOkYGpobmAwFUDfgel2WNpuCjheshaIq8QRYu3fgOv03I3cqwyaA4kF+DCjkQeDrdYYC6HzWMalHyPpgtjQ2lVCkVI0uE0wanmzlBTgM7eQtqxQiiYKXHq4kEROuGYd4V6yycSRpAa24Ysbfpq8HWD7ksn0Pi7ygEJpIG2LH2k9skaNJ8X0uQer78Tan+jAGc5MbwQHTyMDJrgqlaGzY2nkmitk21DqV9jJxwjwUVQ7W3B1PvFqhUayUgqS1XzzrHg0azFUEM0+X0tsEnz1/zlBEH5pAnm2DZhQtRpDsN40Y+AyEKYteQ5H9PU8otZitvnWmEsLFR9iB4Ikh48aS6+yRhAx8u3xQd4kIVSXL/xuibgXMzvfUcLpgEa7QMQsYzq7n23eYgeUkJnzxKF4N2HsaOYWFlrYrfXn4PMwSNnNWl8sYVCaqjlmhk3oIdF0JGdSSgR7nL7b4V1PLA/UFfGhpsOnGvGKpFb4wLhEWZznnD72ogvTxMyxv6MTLNJLj9/2VEgnHMba52DD4wgeJ3ACYCPMqbk0Zd5J5kquaI94K9N14Ml+icxIhsslXZU+qxoOqBkcSjAUN7dOHxjLQKceEqI7j7uJR9sbem7e4fEOfeK4vtzQ8aTrceO/rFGNCHcf3IFWgOnA7mNhUejJThuEL5mdx0iAoQrMouZzADxKeLjVVvG4Hyn+T0l1moyXzSSPiXmBy6wTSscfp1PS2KNVqqH8OeL3qEzMfdqCHu9Z8mcXiJYBoz3PbuguErW0NrC610bksQ7hLHMXvZm0NQTrLmH4QxaqIfAeR8PPB/W36fCc9mf8YKJ/jIQUfxuCHaNzU8Sj3LWpzpXbJzzTljsYor7CPHyrx9kfrqsczXqwMYs66O8dRKnEe0P3cql1LHKfh5ef29gZp28mc0gwncqY1ASUQw0VH79VLY+cyEC+7voghUOciVu2xzPRn0CpZaXR6npheUFzcye9cbsOklPrrdBOj8qwJgMPYoWSdieVkKbmo3UcyHlEnLE0IgINpp48NdKkKltXxzB55F2Ggv+oaw8SnHv+hA9uKBmK7ie2b1ckPjMdTOawvT+L71sDfUQFcKDN839e1opwRMWasnv/Wuoc6AmXu/Sb8BL5rw98eLcuBTehg5qXa92LrKdULhaBmv2jwiWGZAIBgpqoUNF0cs8mNB5wHFLdXNU7PskzY2YDIJRQI6H4UBMbVUlepYLCM7Fs1I+k1+UmVGdZ5G5vP2Fw9Z8DYkURRftuTRm3JLXZrpAQvNr2gbsqlsk6m+aGs0WedAuYNZyQ5HLRw7X3e2VMilQwZ/0J0pTlivTO64hGp3B5dxPOMtT6Gvzbd3Qo/TEvXjiwTk/xbHDqxH3FPd2g+eSWnCpyb2MuqNeTWqJ2tROvVYciUdPIoGG4GpkyhuEJZ2xxe8DQUlFJcOIkJoCu1gkjAFHpJNHTblmKteP2vQ6BN8PDlbljmSY8YUVoiwnb6q0OIG5408FMg0X+XPxOGoHXfCwX2rOreV60Lp2EvusC3tRNvcLKUON/dOYwEYStvGNZMQ1jRsseL7T7Ap0PeSTps7ZbtpTKvaYHX1/wejK9Cp13B4dRHCxR4yYumXpISEthbH2ah1TP5LAdoXihDot902WVttzfjBdD4yAk2sz1obUWXSl1a1/IKyWi9mL4/Bx+wdTvOtahud1LGzaw6DDgjbaKcoXsxftyhObbw9ZqRNc8XV5SLCX/WGvBAsuI021tPZj4cjTEwpx0qbj3pwRxmDx0dPY7UrY8mNCQAqAWwHJRa2/GJmqEqiAS+3fucmf6E/aCvKc8ZdABFN3+dj63dfXHs6Cj2CcH5OCxzlSpFm8qTR/kzNzrEUM56EQwMmNhxzDER265FwLCiaOaiBQcmQ3L4+ui8jZalZ0x3TNJZZNGQHYPLaAceBmkJUuMH3w8viWLy7VgyZzYSz28hCeRc5rfcmD6Z2M0ZqbT7dnGbJ8AROIQz/IxeIyJ24DdUCFXbragHAA2YigbYfxMyBEs64Dm5qKOYof0wEr40jJ8r60twU0zMzNzEUgzs/BPwunIGGbAWTyTBOuJFrdoVeT9r4G31H2Y61SvOj2AI0knI8KLnaXdMGJIfumklF9qDLmiEGdk7V8u0wouHlQZ+CXvzyk0sqGBjLeg1vHl48zqnKpruP5gq5A32tmwAaa9h6bVMfP1euZUg4TJCG6rNbHQB1RoAhPFCLpjI8jty4GqIW1m+DQDezLNPpNo5HhrcZLJbCBHSQvgDmiTJ3StKHFbPTXG+14Sav6CvD0xmf6R3ZeBhj+K/5mQCWpA6rdhqRD8gu9dfV8/plfwlVAKF4tXjAhI9buB11rPKzxfK9OfuJ+9psq5OQ6neruhl322arFOjDdxSNsbXhiNDqtr6ZUws6HpqKfOBUFh9SL1GF21DueXXUOBvsGMy8IEeFZC1H3XHI2s+Te7DYyfEW1eHsxS1gtypvYeEsywu0whKOePf+OCRJtvGIk7RprGxRbyxo2O1DU63sYM5XuoOmiXD9MspHhmkN3hPbNKZ+FJQQFQ+kAhFbQKOJvQunPJUXCiFTcBK2mXVgfzK7TVzjV5oNm549Y3rJZwVdZarUcAvnAdiaJvbLfeoWPtELZN2KEmSPPFKpx7aJe2QemQH4zIRSV0nHNc64RovV0H9w8uOQhBAqEIfKcuf81cnirBfr/Nl2bl77+fn8vkMk83JcMlbuWqqiPWdUJizHuHz+IsAXNSKgKysYAjsUDxeDE1uJSuID5Pkzd3YaqqRJhQcJ5L5p0uiOrGObHNWJZyvpMGkGPKNE1evy0MvSvMbbu5Ap9bYnyC5zZfF34kApmKE2aZxMcz9lokkHun7uX5lcG6x7ToXMG8OMw0ueB+eN3n/iLM9mw4H5ErW05gZpLvZP33FzQeaRvWLmnqYZrX/q/7AxOH8So4amTZTPodw75jk+aWufioCCkORGLjxVfmf0XvchCD5VC+X0n4jmFq2vQmSSwMyYRZfZaiayPbO2e/tz1m+LqtbYd3SDTYCKFQShjbwJln8n8HyR9t3kQEuZzZ00JgwOlwDoFqU5eo8ycI3hElkvFVF91wv80HEHPuvtWlAy47YdwxDcyG4ohsDf1ZjBAiYvf2srFJ3focKzmt3WfvtWg1S3THZ/pjHNuJwwpScjNqXEhSTArVKhw5Q2MiNy6IuMpMhEL9bE5qrw6zNAw97/7aN4nAwj5lqL+9728I0wYOTPoyGKe3g4YVWrtcEeT1gOv63bWkF9rx6jZ6AUkQC80B7MbfZkh3jlsqi4dHcZKVJvdnZyn2Bc2W2sFU4ubUcENEdXUgvM9u5tLG7x1ryZ6ACkyW8/PRmIakq3Gtr0/3OX34xIkuUroVxxhs2jbDRw8Nmdko3tnQjliSLNVGcrbJ4+7CpaDJDDnFMzN2DNYHRXYNpcBbLUEPvmo7LHvRe28gFwJv91tzJnrWjYS+UMi+0MxB/vp84Kqq+L24MCQQymc4DkoOwJ9ZQwT5SQUq8gcs58L+WIrttW0OBaiKoJAOK7aAMDNhZ/N0m5I9aF2OWqIDXfz3OyC4JRdDBUbsP3fTZNy9nmwssOvqqrDX+910/DZVsv0sPV0GhJMgZetIzL0mEPo3ED6FfUA+t4K1jwj/cL10g/+0H5PD0vLAq+2kz9Nl0qNs67TgrLs08svo0GjPUWGi5VdrA4+LRMTJFQPXVRhnbflrwb7Vwiq1mI9Jwryg+hIAQT74Ekr2iM37pexyk++ngyd/N989cAjP7MxJEnJq3XuzXik8GFuxbiVDFJA39d9Fg8JFa0oJm47Nej4DHvvUCPODoBYwvKEbsQCdVPDsHBBmPs7ITooZFf9N+T/Lp0fj7vPcMXmOz5O+0WKNoJdjRC7qbva4CiFqb265/OsaKXFdxmj/RGo1I5ZBPcAKQuqxbdLzkTwk/BrD508MZZyfMJg4G4atHMbLLtxt9byDhbpKEflkEi6Qbhh4ljdOMb/hBlRIO/Gbx+N8xwkQLUGZv8hvKB/iHGhTaOqiFUlS4j2LHWsz9ErICEi73sfZNCSWUsSIiyEu7eDwCH75FyBH3CKsLxFJkwePSwkklvr/RXl45ruAbGEo1n/nuUL6nxRtXjzzHif/VXyHJjRUXa6J9tdTEsycsbouzPt2l/mlkur4e8g9dCoXj8RP+1EyEQ9+gFK6YvK6KiD3ewabBjKKc9uO6FHWlRn5DuCszlkouxU+nZGeFMF+zELiLOeb60r2Lo0ypc8m3sII2vtThK5z1fDF3kNBZrxa5FBz/iBUrwOMvjdYBlm2rFZyTOHf3wfj5ISC2xJn0tbFtQgpEgJd85HLVf2afciT1jrpzDhfEN+lQWBS3JUiKwHJoNaT1lkhJ3jIgF1FDzH+cwywS2W3CegX8o8Kdw8xuA3Dqc29OiUt1sJnIA2hcpEfNA/En4Y53Mnnjrm0KdJ4giYlazbp1EwYQ4HgdF16mabQZz0UiLeJafCqwBNQ35UwXZMaV/siXqtZkHijPJhiS7cjpOmSV58u5GyqmhkKaeDr5B6TjgHsInf69gxPOTmHdZLM9rlqPW1S174dChUUK+45pZ3mrhVsL6nBfb4REDwc/c2oa7nQ9Gl9sANE0iePiitLM2Lv/Q5807l74DapBHL8RSEech/VvdKC8OGjhFX5IYq0shJxxWT+Qk3w5muGQe1bO2Pf3tf2blPJb6ck8LfuxItf2ks78EaUF1YTt++eWaYeb/7R1LkwUqcIB/L31/3dL+2jpuGTTaEFIxZ7V7re9kFKSOcFQ4p+j1Wuqi76UNrSpFqil2eScTKE+ErxKu5UVqoKr1OmMNpRUWa/rT77rTvODzGfUoYQqXqLrx9OxmbV1V0zwTGGWHD8nRICzvmBBO8o1G5wfQbyzc9S4qsYQnTBrZ+nMDLHh3ICrsH+gi6Wvc/awctICgdsc7TxghWi5Ww0mIlNzi+G3zKuW5giDUJgGQEgfC5cVX3vR1pDsJ1Hzi65e1Ns3l61D0RXPbUTRbYUUlgO0OqiI2iI1O6vcfQpFHRRQH/RiTQQT4Pd8kMqxkwAuK36hw4Ib7Ah2XBsC/2ryoepvgKeReK4Vx3s+DNB1yGCCa1AqhXHk6tJDVUyVmAgAP7ubJ2pKpzLxAZk74b5ROnYDhKEuJftvZOuzcc+K00Hl5dD5H4huzNyGuVFHW5vlb19QwHeQ4d9Mal8DX8XCutWeGYJExRHp9hY7Syr0ZWqfeIqWV5NFQIQZyiHUeFMlEaR623VRNUImgbKIZmtJ0f6Ltuf6f/zAb7W8VWhbDdM3quGlXz6FblCZv346kME25XAJ4YyQoXaPES9ux4W9Lz5Yp+PCDAR/UUK72wi53zeiMM/sVEwpLvQnd7nLRN6M48UfeRdg/UYFYIXl8UhL2PWFlVQ8OWGA8KpW+hlAwvOAQUeiWtTRvb++N65DUiyJgm0mlncDhADfdNoBFRIUoJNLMtcvFmgTS6OSHsjcGYU68BMNGWa76AL5BvaN4aCkEr/tDP5pqRuOIGF1ICxocXJLV3JzNO3Y2WFp9B69c70rvcEBzMB2Ag1i+mz70jsmAg6DtCZMlKhwHciuie53oUdagdS7lxoH4axXqNzACw1X0e5ynuDCZQrSf558NWhydUc2JyOMPbSxhxCVShig4HK8/nwfMYgVhrmVcxGD+TZSYckwJHA6vxHbRXr9WPOflZCNXrNJy7IinsAOHeqKDorVPM3MQ8jz9wLfM8VLzKaoPvCtINVf4vqFfoj0Xjsay2ncT828ueq2fxbTDyr5OXk0/4WFA4quPNYjbgq7LItRBL+O/rECW/AI9tlx6Q3hjQQI0I9wuHjs374oVR2gPMjF/xKQ1rZonzMkiBoGl/XJPzJogp9Wq2O9nuNHN3ta8394YLWj5uF2OOUyyen9pi9XZOA7vygCRbIxACbepsYMRjvTN4tri4sfPNmzNpVl0Trn36LEeemuCYxWAK7LzaypA/JbTIhDOuEq8yZaIgDYa2dWgYOvgwuWdvO904/S69wAYifPH2FZB32/FRXRE4tLYmDGH0P4QSyHtiTLSULqwXtySmwelvMoX/qjr1qcnaK/JLgu76Gf+GrF/IA3o3cx+qHNItEZHVv5OaZapsMHxRDtmPBm9svFxaN9kNaAAIGhT1+Khhg57iSGVC6DW/lSN6YhaFp7Cu7Qj4Bsz8Cq0w1fGRtv+z9jo0Y1YWMipynSmt1ckLigVGbQN34lEd6rwbrgylykeo/1X0DhoxhG8UqC/CWIfF7J+Rpw08RnQOa199VY7cfXBCcrEbSHocg2vF39bep+k54MIlzqdusih+ikRYAVQRRtXfVeA9xnpgXQBZ/d0zn4ZDjOB+bA8aomY6Ni8zmSsfQVqCWubhjZMgoiNMbdBtLou26mr4YAdr1+RMY0E4VriHCzP5r2QNA+P18xlr7WnjanrtdpLAQEayJH07uKMmuvE3W4tS4e0C25NsON2xbFsSJINreroU4gO/5WSUO8bHWRg8QuVFx77kvqRxZKfloGhmGxzGQiXxO9R3ye+HjKX6oa4s2isdOsqYmhegY3cSgKPVdAm2KoPCwyTOBZ2BZPXY4gRZjou8Jz1zwD0DL7UCnmYKo4iOZc4KNSkRN3D20D2bFN21I692IPaQeK46+OE8foJgwaFhxWWXs5vgwHXu+Te8H62TZEaffFbZtKQ/o0goYOZ7bEHgSVu6ATiIUhztU2y3F/H5aM0OWrRlopmeQndXGgNN5F46/2Su5kLzobwA2mP1wrwYQb9CAEoItq3o/os2r3H5jESVsoJxFZPQHQC9unZxpiy4gJWulPNoy4TgzO9dLkUkee+rf8Ecqaem+I1/lxl5NqVlta8+FO1jwuZoS0eUG6WJ42JeQsuAOMrniNoAUS5HrNCnxZ0Kl5Sev5wx8dnVpW32DoXqJzOKCbYoqxL+5/O62E31GcD6PLpPB8LW9U/hAWQXSzJ7QCwW4W5G3qTHnbAOydJiij6S/+3yQ7YLl21rd/lU6SPa5hxsYM1V25AykK39Qn4Imc+PoBjYWANoVhCENP3mvcCeXgjuyh3lH++b2JPfL7h15/N/Taf0Yx23bFusYR91Mpim1N8s4giNPmhvT4gIRP4iH8cufDyb1SzmksTNLxoKX6E+KNKMseqKwmUvBkNIuBD5CTHziOxqDk3BUmMQwzOCdtEsAO1cytdcgOYQBooop/lqUkjpaR96CR/i2haEgGkZyoFCZ7h4kzNppY77lJXWWeujyddYrE4vBSZfkBL/A8ynuy/UXDB7sNVrw13bQ5uENfFRkB0m+M79AAkoh1SptxonT7DlOj8w1PhkalDHVTSweUiJsgyy70I95rZWvpWQGqIzld0Q+/u9m3a89GD2H5aW/0oMzaUe9Fd7/8rWWLpewQTj+n0HqvDbyTI2giv2JPm4Lg2QlLS/qoBD2n3HRyPCdie2THgqDg0zzgmI7jxCR0M/m8d6ttpS6ZSO1ZS5cx7dORzMg+RE9ilt8AVyOw8fEgM3ss0ejEXquIB445+vhIQf7NZN0XFngXmLmPkze6fE144CstPuKluqPWhnigLnpH51MgOI65TdzJH4UI9NWPpks/UxtYLRNhUpiLvx4fnr2YUc03Md5TbdNCBX3zIv9gz99GWdwhP1gzEQEN7j82UQ3YjfJ2wRU5FVKUZaHLBtZaQVw031LZxiUqdrsFGaDYfg7FdCU9uCQVBig467wHvWFrXSh0xF3KcOHYoP/3JzxY0l0YNRCKQXqmMPQEEiPIxlIMU5FwR95kLPGlGsJu9Iw3ml1+JavD9ewtD1nP94OAH0qrWgRYnCmiENI6a5MUfQgvdctInYxuyVprxVrlNFO9mJQeX7ZNINMZNmCYn44t/df5PDwrCSgN+Ub60Gc27FZTtuXXvDpeBco5gV3gPkowgRfLVOgAlHWlPklzFjBqnBSLV2T3tGLVHdPy4LIELcDjE/tv5Q3oS475SFL7aRxCj9Bw8xC+boeW/60053jVexXwfvyCmdqL9ZwQjq5kgHu1TOm1eJjYLfeehhkcLewC/nteNTC0gxHkzROuY5rAnMsNlcLmgVbsddmzgxfJNSmpPnoRPz7p8dLCnkPXVhMvIijFok54R5U6Kdgv8liDKM60K0Dditx6B6dgJaKHyghcVuNo/ARGJWvBQ6afXiolWozPfkz8urPvp73LCEA6WMadTLTTi+3nv+wvNQ3kXGMK2ucjgYZQriz/sRVIJpl6e9f2pek6bT8vqu86dbAlC6s1mkyCBWmqfp0z5caMiifU1d0SolercvQWZjeSYHoqZDvAdtkiZRqdeToLjfRQSkvH4R5Q8hGBaTuVAfVzf5lRhVA27vaZX6G0W0TgUFzrnNHRCQiXk40E7fEuEZ1YqllIn8sQmAhXeKC+MtNPoCD+up2H4FCaIzU4gEPlz+uRQFFCJ6jgADxl0C4J/L6QC1J+uub3ydGx/umFNvhWRw0K0ObsNiYERrzP70/sFZYyBV21tH29ei6Pwhyq6VqWWqu84jwpViwEyEX98wkMcLP81K4xz2qMDLokEXbFSTanEf44vuDNyODLa4Ar2uEVv8grOOX6k+/10rW4McfUXVSe+KRR7sw5LIVQ5XZoQytw3NmKnKgWKwi85+YM7qfvzcWBEDsKGUP2JbfBFed25W0VrIeYI7IHS+SglUcSeTw6ZowZCmkHTWKDpKNe0sqE5gzIxNZzsAwdqoWhb1J1GmdEXgqsArLUfi4+HKlpyP369N/l25mAanLz2a8yNULkAFccuICkLGlH9pc+h0HAyKNBB2GMsLItAZj9ipsn+nza99h3VhHyRrH7P95SXRobZpYX94FcZH/bU8k0aooyLYbm9xj5/jP7lkVJMuh7kNQ6EVEU5jwU2jlu5f4y8NTIgvfKq1INU/VF9MNZ1HhS+miLXSSo/FLOCqyMQQk1gGkhapsbguR4LmQgzw17cocM/6Z68Wu+AGnR47gCCuYuKirr3X2ysfCmFAZSwNESp45unuQFbses1+xUOVT1xfGacWhfq5qxR9fMfs4MPHxOCfq+G9lGalD9Oe3ONDVqXtvvNBy92AEutjdcfWkTWvG9v+zfw6MLfFTAff23Le+VGJSW7TaP+mL+IGTjJYmOZ0CjcSK9azt8z1XkbB47hQXlIa3EVveHp3fww1cW7HI8IejZ3qZNGMHF9ngETQn5cey8ImNd6TRtOGP9bO4U9t4RgNBvJ21tGyO9Y1ahh62+CcQM/MLvR59bVRUrd2PP/vxapj6lwJ29p6gdUkoLHZiAJCky/ie5jZ1+m3uIi32NMLsbpyzWL06I336uo9qHrpIsNZ787pi7ujPb6jMzjaY3hKpUX4kU+8RhwK4QKGdxE5SXCWRQjGKpTmjDb2IB1cD17jxlxeeEksv/g+gQuK5L1K9ovz2ddsGA1dRafUEMYFQaH421NvYKJrJP7fl1dHcR+XR3coxz1jq0rFuNstgBY30LzRA+XtlEIk1oFsDcUyiMrOQCXfnz2XEsPq3nSj6t8U5MC/SOwYVBUv6MjPBZa7JK7P0fP23ARWhmJDzJZfE+yTQuSiUDXdXbXC2XzCCVCAhBuqahSZnfTOegmh2Aj4H3PK7Dd/8YcxbvDSBXHZCYa4Iq4UDeCPYwrBXK9DQ/AEQC9D8Ng3SfMqfqmxyRLNGO0dsCZ4YTcLXJbADmAWMJGCHVARzfA/sVBKMsPHH+nNZDWl+A/TXNo1B2P9fzVIGrsTxJbbuJaoliiANIcz/jJ5ut02ggfUhYflKQNuCw7u8Zu9pawTIJa+BzqRrd3a4dEVBvr28DFguG2jGDQmeox533pMHMJib0mQXUPm7EVP6zuyOPw0tZWVSIgdY4bCq+FEuAReK9uA1ezOdBdU59D6SYJvKSnCPba96Cujg0GkiCpURmbmVCoeovqINMYZZ2mjhsIhtYmvC16bHxu1UTvAqFWMOrfwybbfN/9AwLQ7t4Cg/0fYoxU2uOtzdGB6sgIQZskLrlLHd8yXpFZZjZcrcTxSSYKvjROrujVinnkNrseSXACuxMz0PNe1j1Txebyqdi6vL4azH8Rob7frVZfjuiqIMLYssSZM69fdRC9YX9klQpVRC6qTDeYjw09K9hoMrhMBHRAcJW3jAgVgP+dO6liFZbGNXPLfqVsSU65if361aI8484/OhUhqmVi9QdKhGU2dO9DqUmbuIU+zBqFFrNF/9X78+RS252ZQp8t0f+dbrL4IzYvKXQaV8lYk0kiKb0mMDOG47vzmhgcFuuAWgBAE3f0ZSNrarHh7MMf3w4L9ph34XM0ugyeZ0x4qTiRe/Xun/+BZlM1bhjb+EfqmW4NVUc5oYedphyUpPsS7t7C/yYXVb6UZCOGU9sEkgXekuaEYAP4zE6lvyrNk7DEG334z5xT+I5ULXqDKSnOWz6cLmkEJOSdZUiJe2gHIjrtlEgtXKezpQkRrZCCJqrhSPQGKuBqggdlsRc9+8uwo5JIgOImEb8bVqsGmVP+YSaqLxwwqp7pfansce0O1C6M3lvh3HB/h9l1ozYkZWRIH6Et8J9+3WxlpGz1FNetVyNBCiAajVY13OZC8LT+oR0qG5t23FhUsQBbLh8QRBP6WtG/XJylAV6kT6dnGfuk4CSEEmuAiTYjYmZxOkU6KnU+ucO+89nU3nr2ky/0je7WjxX8HxcKf9fephLOvLdG/e7pZCcfwxJNDWpSNLWHj1kynVAzrP3Ti9TrSwrUlZD1hXotVKPZeGjv6dvKoVQbWjfxadUcLux9gHNswyuUcCk6wHkZLvyqozmAvKVcGuQeLt09veV6cGjs9grzD9NuO3xrohvTEMbOCZxP16/zrvyAImDgqc1UzRo3N0qrHWWYP0MbPxR0GrSiaVq8z/FnUZBmiQrTJuucO/EW7QdZLvIy9WROg7Ce3WUObfVqV+ubVIoanm89vdlIJU/uV2KjN07Eqcq089m1zTnXWeH7FtQrm+iXu321jegnhCRrHGQfnwHoRg8wqJxYdRNBXxvXj6LpPUX4BDQpFNLDr0YFdodolbmAhsdzOXps4Xni3sR+phC3TE3GlmslI2K7OQAflCbN36Fze7uEEfvnkJ63qoWiLi9KkuKk5xVrEw2doNEoxIPy1D6muMFFW4XzFFFB0Sk7y1aJF2pmMZ1Cka3OqmEtzug4A9IGjBhiBNvGYQnS4LTfnPC9R2rL8MR52O3+6ZIGIBe90cmxfrMv8PH88sBKtMv6dtOdJ3GIi4fANjMQK+lXh9AUtt3pQzxVtvPYLXth0mFl67I8g8UAn+5+pzjK/3xWBJtou6KtzqxU4+zOUpzVLMyrBa62Pa6seUvSHwuJm7YIpOC59x5dwuAdW5DjvO3iHMYcyYQn1x95Sc21aIJKauQxMUYJ9vx9Y0i2/V2X6iLudKhxUlqbXetMI1R1+wLBnxcIwmf0EDXhNvtniu06ly957hTYDw7klo2yI2ohO3fDpDI+9NpcW8glvj3yoCK8MLfnSMq/uJkC0rs4c5GEaTsGaGC6dqGMCyGoz5ZhL/gpEzyFqBqCiPLpcLIQ7WW0nrISqbAaulqMXr0uFf/UoqNYhN2U5V4WODigbA4Cgnj/XaiROX3xgAjWbz99avei19+L3IJ8LXQbK9knpBVcUVDCU4fzJSo6+J9H3ZOGqthffLodjMvqyDvjUTSsU6mXB4D2CmNOCMsG1qiX1Y8c8elrS3mgSX3dqyGplilVqhoN0Hst0NKuY4bT+gDA10Ucn8u8+WEEwEe2lPQBtZxWYS4ginyIRFhMAwXDkgZafioPsY1Zezox2ZMD/2DbUv8kA8i6o6QIDCBOnqTOu2XMbtUAizfYHlTupc4rL15sBocdeDpLnXcs46asaGuja2rSnw+B5ZpQ5I+OJmsek/u6RqQNv3SEMR75kmARMQPSS0Q+g5ojaVB0UPdijD4aw0vwnCttZ4+zKNhMzrqd/h0SnOqKGOpt2rEulsGWZcygHoz9MXAYg0f6RKirZ6nqrVj3Gd6NsDTVCQcAnxWmXMWvvnh+7NRBvZ3wb3WkPYgDwgRjmOQ6BEZOU+Mz2H69pBEzhWN3gLhPKayHNWsYDgLTFToKlnwyBkBpq496UTe3r8TDroGchIbmYtGx/GHIAQH9oxKeDZXo1SjyBkNIFn/Zmr1SAk7E2eF++66oIT9MT19UmcTBxmgPeuYFPXr2RKUUjHY/oXp/PaIuAsbDrPS1PFGFrxQ4pkZB0fJ9EsSHoqlG0ck4ZM8ncDDM6iwbjx1sw+UXEJsbspdlWXZvvZD9QBJMU+s3Ydpc9g+qToyWWhXYVjXj5U9heMpgnRfI1I6ecIfqIJAqFGk623US/Pl8t416JxOyHDF/IEKTA4UuZDfI7GOpn7Y/RamBWaODtqm+Jyz51jpf+tnavN8t8DA9jtbnTNvCjDcCZL6rZuEuLL2klb3bne5f8IMDJ6UWfjUXD1FgnqG+wh/fbQGaWzV6Skl0ceO4S6gGNp+2HRTb7dXb1W40Aoav5a8RnDQKyH89WPulk5BS7tR/9zs0WAUq3hhLsp2XmcCuEoQ+PqRvWg1VUrXOSwDLLwIZSlzsDAYYvjU1Ga7Y8sy6ryt0suNrzbU19rxq7KItOmfXtKMdW5Z5sLLUqXffeUfozjxUuu7M8GTOtTNn0w5+50diLd9+9jd+WAzH8gRNTYFF0s6NTzr7Q81fnVQGvMxbKdz3Fq8ekA485mC9DfwN0Gb59wfMJAwqZgmfq2zQwQzEqRzphF0Q4t3uHxchED4OeiuoMd2SVVgGnCBJMYvweBhrc8+m2wNp3WgwEshj2RlX0CzJ5nIgiP47xpamnXXoauISykfq4gwbn7DmeY3CDxQoFZ9f/j66Cte7eRnQNr4crJFR68xjVZLGIJsSWRAyrwBR8iA0V2P1Vy44mmp+lqorwwtytWgd9bJIVhWehBFnw6MyzHO+Xj511nhCvldbR23wSRcX+ID81UV/QaivsgLDnXFqBZx0AyMHqefkxIA/RFGWeyBgDb8vbo2buB91247zmiSiR7xYP1o3HeClXbxFC8NONYmQlnZQtQzxjYVOj/ic2JVV/nUT/ctLEOQw5/PSbBEo01SqHV8i4UBiFHagPX8uLAyFddTWL1pmUwFErmc4Nopi01n2TVYOruFL5AaEij3V0jif/L0o/CN5/IP4+BTe9reKWLO8T/BH/xBjMcS1X19MAYaWRggEqa2R3ODd/F3Sb2UOzVQbVUGD6ey3mbdHWuuA1ky/Wrpisw5P6mz4+QdDv/xrg6Ws3iJSSmTTzh/PspXwveLHM/Ucf/uK1c0tqqdqwuNbB6tx1DHzq4Bo1A76FJzMJYlgwDYZqdXgcLMH7fmcoNW1rCQ2+n2dZnRyVX0rMWoFmnu6n5L8LKHUiRIr2cXWhsrl+SPJs7Wwn9uKhXpWBsDmXycNSGPqAdJYMgiE/ogjkuukdCpfpMxQTv+aIN7TGD0lgRjQXvBD9uLugPsfB60vFs49jjySxFsfQfdEL4GKDHgyoFR/DqgnfVBCrJqmemo1e8pAB+jUlWx8Zz7yUnWO7GGBkgYM8BfC3qTikVJghPgXKL9/c+029R+MHBPZ7dZ3Cq85lyV2ZZvXfOX7bUJhSjaAwy8sIBjj1m8p9IWtdjNZDVqKkBepNEEGp60516/J3SFbiGGjJg2zEHmLJUHNtZjtJ+22ETuocFjaTuVbVkFbtElfz/VK/P8ioZu4kNmqDNcbI9C3bGFzXLAvF9EQU2OvjC+DpOTBIdr+VuaN2RkRTIIq8Tcty3yTxMQKd6PFCcU2OE/346EOjPn0wU8VGU826Ui/kpy/dEDmvU5SxwiTaFHyGZjzpBTHtiaUigBPD+JRcFzfJB1p4AGZ1RF6HfGaPpEK+4G9iSoEIJ5yjXFY/0FYeIm/4xNmHNiQ+T26oAwiuKyysP8bydgt9yjq2AHAoka1EbLKsUD8QcXBfRi5M9H86oaUCMhILrNTU5AuX1CL3IN22U7IJOJWIM5WJqtiDtngnCfiA0caUpsCvUwybudxcq15LtSsdsE00Dvyq1Xr+hnQlk7Bv0dy4rHGFfcL1z/h1rDHgnt/TJARfXxdG3KEgNQQ/k7p5HROnazXw3DBJVTSUwlrXLeqd5tHqVe8QTm6L59vwRtWQ+QpHba80Ue2HRddeghFdEMWQ7OmBM11rT5bmrM2yqg3qq0DdZTjFAOhkLt/9p7z17MdNNTvmREz5QrLNEtNUgZDUqxfgz+mp/8mbbgbDoffDcqg7nT0De1lUVe87dstR3C65af597GSStzlAfuYm+UDjBKjdUXgfH/0S+DU32kTftzqbRCWVffEawFx2HF26MxrJWsC93Ksu1JE8QOow7Cfq/jMW6NQhhqlQLHtIItJbols+tDBNhsEZjlq72Jei41yZfIaEhFfbZG9eK+CvhuBmtuMh/vEBXuiVNR4ognz8i8kotQ7m1yXz3dPSjHprgwX2IMsUCKIKwPkTZ36X+QtYxhuX5OQ7iXpuVPsMPx/j9IADFNbh9msI4n4Dc9wUYRDfTECD4aadXqkelDzgDu4/dbqIh6+Cya1/LANB/Cr51DFvZ561uJHUqITQR2EGirzHB+yf0ivy8mEp338YRdooXCjyOcDS4i0JsHSxWc29+jGygl6FyBwzxX/uuaCqvHxCTSmfS9NmNHnuonGfDkRRTyDm1e2Ri7MN/p83s7d4o4O2ppatPNxuKlf2qL/zP5ThE7bJ29XOynN5S9Zi/WqzADcMUoin3mPw3qTSKpU5sMjFpS7TsHaIxJysYr6Mxk5DmkTGlas5BEautOWZvFLoNFgLbFYzdpVzz8LgJcKhbq3lW0my2jvOie7DXaKalAWkLSszQvWMZbUhmJFvINLnDP2X9rNMQlBTi4xtHMjdSYgFQgWY9FuaEe/LjLd0RQtXytxv9Obyh050g+oqwtgLzJXkGYEY3BORfE19lui5PiwrKQIQIIJd68t3uMzDufijjO8CcCjphlCzdnB5UQe+whVCDA55ZIwMrGa7MTB9iOk8JgPtd6MBDspPx67bcMp1gS2VWw6q0WGnlikJbJAY+AaST2p40NRV9Ts1Z7V2L0wyBq4Ao3QZVvktolEwNRbZx5WwDN2i0t77yZWknf6dT8D45EssqF4Qtth8Z9cUROUziGlBnJ0CxkwpJnSXXJ+4wGwHq0DVInr5+7ffEpcRaFgrQuIIVDRTlYT/KL1i+u0w/6IBviJh0WfN5myfUttpPugDKDGzNvFEFPR0nO23WX9Fo/rPJzXKYpiEmGZx/I0ihnUW/I48pJzllFYtyfM02EHSoTcpr839iCYnnlqJUN1MTOv++f/cCZQkjIsO8kmYe/eLs9AIFMfnJyrHNTv604roOaBxoH0Fqc9ydOTY9PNENJS7ylBGlVhl0UsKiyDJdV1ajhjWX7GEbuNgnf+HwLyuXqq1Zd4Q4Ke18wYrSBiwu8iVHZ2YLqIVBxJsSjvRQBlapEDCwSaU94ZFonhlM/7YSoLbQey2WEo4/l+WD3qUYgCziPtBkIiC1nTs0ynXlvlrrHsN/b6/sp2OxPxWb1Ci3qVf7PKy/6dQcC12z+YQGiFzrSG3xElFzZX8tsGB5AN1Q9Y4e7QkE7N6JI3Lfe3kR7QgCAwYNOxmP3n/jwON1GUYlu0ou77pYjlbMhqOXD+BSqG4KTv4h5qZcg+gkYyGG26rNEOQKhVGJbO5AirZrS63UYBaPfeoCBobuRb5KKQIIaigfbIuda5DiiaoBHqAIInd/oANaLGgMHDr/24nYDLGjtJx7tlEmvcu0+vHVfSpgY7DQQw2GZr+LlTEZPyccTyswG5mr+fDAh5A7jMtY+WdYuaFkBusizffzl+aDcY3NUjDHtCH0IfNBjFB9A8Q5dR5V960gU5ieZSlwcputn66Xl9JHSK+RdOLFNcv0oTX7mTyFmsHFwWFS0vctuEi5q8fDVHrAb8gQnYsVkt2YxPwx3+XVLGPwFsU3ucanannt3sUMS0l4XBbmcCAWzv0vFt9l93x36HWld5rrIaGGpTPu0WBU0PjF8OiXT9GsR1+mQtwRfso3gNvAGKFKv8xmb9pg1uJAm9CFgs4c+ZwOLs+Z4jpRBmx8bUP89jms+vG4XDfNQ9+0p2/NJuh1U3JSIC9kqUO0hVkOGI3+CJjVFULjdqg+BTwud7Wzuh1ber8QjnZik9iAwgOmFy2E8iczTgJxh+RzNGTMGiZQgMifYgluUrwOPov9S1gHnVDxfA3urlgBEHR339RLmcNKSB7wuXm8phMA34306s3L3igJNFW46rdaKYRHm76jC/VtD7kD4VTvpoMpOA6t0n5lWDIFaDRArfGJiKdKrVRjhIFhZY/TkeaFxdWCQBxD/2VppFtJ0PQVnLp7Hc88aa4sm1UqmG/3kemyucilSyp+l3OD9IioHd9yacWkEyoweIGYZjRu4AMP1tJ+/RmHlZaEsYtqMS40qnfzTMGIwTIfJ3bHw/Et66dEAjoCeo41q+5JqT4hE9Bjfzy9tq2L3qOmmlC+g5A3Misj4Y2AH2WWEvdiF3llDKh7zpmgVDspzo8FoW3Gynfxi8oEVhUUzRpUlGdgti/5SyZnrrk5Nng86Ek3wZ6z5NNV8JVyf4zx2Oo9VDFfZX/0/epsprNuPF3O9aI8jnUpFpSGrPwv9vBRhlmlkCWLd4Byhsq9gyPubAChKQtqUCH8mY82vBZ17qubrsCU23KpIccJRlVN7jeGbJpCFurJQZzwe6Bp6HIlNYQKSoxd0ACK8/ikKIBw0V7lrRqQa0x3GtU6S6s3u2ONkZ1hkJkP8wEZkRu4K5BpVnT0FUPRNqnq0jy6e2o4Bw9NF0l9lBeBQnOGNqcFbI60vkO1tJMrwsKjczJ2j4vRbaw5WXlg/RKw1P9mowGRWfIzP5Nu2WeQx0fDZx5grdlDMGk/vseSbBbU+jVJBWVofbHyQK3VhCsPJ2NV18JoEYblBoyZ3Jfz279UG0BOutpORu+DqF+ClBplE1PnRqh5zPUGsjrJ+fmCdUY5IlA6Tue9AoocpbuVex1DjYoSa6F+d8V3RXZ9WOD22yDnxcmzLCMXR0C64iCBc1EdMwEGPgMbmJO095FWhRflzOOxeAm324pIKoqRaF7F1RyDx/niU7rAm2By21X7Xvz9yR+kbgSQF5jhFliwYkYhSXgpaOyaEj+cCU9cJOvnnpNRRK6+Q9PofFzC7tdNRn/+m3ul/ohBQOdMhNNRe99XXpQY2WVKwNNB5qdk0Vcvl0bbRM8n9DQ814R2jo0WJlYBBPPwxsSj56wi4UHxM9S+O6lmrn7IDHut4yT8fDwB1f8CKQS1xE4QnZVktQXCgvffQ8UAitibxaUqAPIDUmTP0tZP0XiU3xYtBEla7ussTiXAJVGPaC3StW2zPGc9OA8DknF8F2AK2YpLmwBTB3EbJ5m6zKlouO1FaHIplBkmUKvfhVfA+DU7/801qTrahOhU+CfQTkM7Za3ZW7odW+wzQ107RHiyxLEWnkbvjZhjjrDJ3uci+RjHef0T1QhmOOgPG1piWwbDg0GttSPb01a3gqgoFD0QMSrw/qK5GdUKBIUr3BA7NiVgEkCdrT900Owafax9cw9sCIG7iCHoVxK6seUpCIJNmIMz8MvM71UyF85nhCxSmu2y9OroSPlFoQiklQFt9t8nQiPqeLTQoDGgv7zWJPmY9Mkwq8/Md/BSrfl7vTzTBhyQheKcL9U39CCjr50kkP+5dC9UgUT3lf8gHt5lO1phV2M4eurrXHp8+tv5zDXY0Vk3OZHltp+cgxMmA+dMvHU39Lk55AsEo1ZJan4kIJaqY1YiyDONmvpFdMu8LTcUgy/gymuBqTdNddT6tfeJttSFR73LMCH5Byxup2Wn9KPOxW+kZMSX7q5cVSK7NepVlOZIqLoil08hJ/uDxAM3Fe68hRX4Pxmiouwgqfd+bns2TvC+NWKwfIx1Snuj0IOcHhcodBntUccurQlKGFMDLHrzFkS+Ns/sVNXdYotyInJmLuH+bl1hGDO4R2+pSfI/8jVAMs8Sni7R1Tshtdtrs93e8DhnWDQHYDvU1Q6aduGRWPknwqTJhRdZNRVglJe2VEncjc1/ch5ZkSSi8wpZoJlyGGuCRJtSjCoccPYSelKjKIjGyJ6upZ9HMiEx8fB98mgH0NKA8e/IAtlUTMKAGLLMZF6SZO2iS8hAZ5eOBoPsWf0nr0aJA5tnCShAQVA6CqxmpCbF0ys/q3bHk9rrN86H3y8Z04K+aCIbDoYKJsy0W0Z/8yR4WXbmPo0y5RFnxjGoVdG9wmBf8RPQhvBVdmqm3p5lbUXFSqTFMrloEe7fUri4LJsRaNNdmRxnZueENkVHPCr2DJnr4I1BuYva8eNh9eKN7VBcG6cjL5hH7Us7XUzS15veFUEB+3ql6L2z9G+TGDIxLOCxxPuFOf2X8SkBpIjPD23aypOqh4zA1gH6GL1O4WVOqChQ2dsheCjAyAU7gU2TPEUXwZ7eXT/EMmiPy9ZwZe2PryQieS0g6JSTvz0yIso6is4UhbwQI9ntWyt1fs5WBeuSI7bm2Bw4OdmtAv+WSgHPfuaOIcJBq2wEiMSxv57aJQ7rBprj8FUTBN5gV6QVz0lTa1kf3yBDjyJMYXoXJh+8/6YqDyX6TloMmgxegHdnGupgb7/YBLvha8h+tQWQtiZs/Ezrxwa9+za4hkraeX/HCA9GW1qtS9XZo6JuSACuQpADaP5W5GL3D05spa6TFG0H19TAUfxh08u8DPrBua1O+iify/9AsiXWeRXjoHr7TQFa11rDrc6GbO2x/F9WaEXbhxosZUuFDOWb+d7D/ZVHqaw9Oilf56Mhb/sYBqO3i1pJIcwqyALS1VGNJzjzLxx6hds1F3reo1hNKRHvq2T6fMJeGSLF+9H8pSSMr89R5I3wQ39REmBK90gYOHeyaXCLQdWUxFv9CbqYKAH2iu4T7lBYgHDWQbuQQGXLTw/56+eqwB3vUt659vWBbX1BNzQ+A0KwuwgJMJIU0ts+kI0qz7KVVcS6UCdTO1bMLFyu7/F0K0MjDPifGw9LAGF/QoKV719CHlEUjgLcUh3Wposrl3NBFpnHaE7ft3DqOxlMSGPtYF6QO/Da8Qx4NO2+Q963cr62BWknMg2Hy4IboMrLg7oz3muCnprkvfFvU95XQ6tDTmri+XQJFrgrYcErG3GWDZJcvXgORTVPVK62JsntHsNn1YNN9SKxJqqXbID3mOZ+DyxTh1LepE2dsTvpSSy7+5YkH0hj0TpHJxamoHHUrYWZU887BshAeNXzcZawL0v6H+fAjcehows2j/CGwcIJNc40NhFGd91Mjr6aal4YTRcns/0LNw8n+KUMFdA+MXfVi6piOW2Jc3zmj/5V1SKFzU3w94gs81/4AUKVewPDU7hM2/XHYTHJdDi55xN1zFbGpEXpKkk6np7U5kebW8RYRM0QrY6aZY28Pz+raZNOxc0AeabkJk5tZfAr/Sz+BKEYmitjf0MLz1ACPh4P3ff9pCG/j4lDk/sV3LCBUjfnGCezhJ86ODsyfeaCJwRmzzTFOTxM2cmC3IoyJedi1m+Upce3mzIaSiqT0r+C82Vl+lpFvhh/NKWuzBi9jdFbHb42w2o4B0Pd+n9lhdtjGX/oLeNJQr3jz/KgpYf767sh/zcilLadyoh0qcsmHxvzNqeUTmSYluUu0Dmsh5P73ypHxRlfDq1HkjmdPMDXz7gQ1tweWf/TGivdAk8HBzfmwBL1vwCtVDSr6VCbcA0xwVSi5qVmf2GzTUrq7SMVbMdSTzdLrCCtUnOABjJYkIBQtiNsjOHWl5RTCzYabjaqUPDcpwSI4qplXL3RUiKY0FDUrwkRy+tqyDkIvS9ynd6nydAXi3tDcyB8UD+UPr2PNfgS4avy1nYVmHZPOwu8m0sCigt3Pw9PflBuFO6XfXJ9FfonM2V2YJRTOGtqw+w0DeyTKCmHR4y4RvJ6c/cm6S9Fx6VTz/tccvLYQIbLPvXOMf8tFvZmX64U8tiGzUQK7UING2f7j1VpPw27FsX9cfmp54nRCqQr2pnehfX+as7bKxElE2syf56MQclU7Bxn/S6V1hvQFdRV81e8T9KqZD9pqWYp/ZfXeSJPtYB+TOhgDqaNUPBWAoA6w4OOl0kJ4QaW+MkPt59lsdpkBjtIWPaAm/MB5bQppIuK+rcUEV/X9B7ShFqBpW7gULvTqQvKMyvn4C+fmUSz601WVE0sVEbDzegmrhgDOtcuN7kWIGUWGUqzOFcwysNjSg6ObOLd45dvqvy0TgI6oLk1eWni6CH5arhYekOXuTTpl1nYvAdnQeQi08jVJLDds1VFYTbOiDO06Hvy4zwgPxGWtYBvQ0OO02wppBG+/xReq9n7YpIMjzdTXWWjTlIQTC4AbpDSPV44DkXRlgbtbQLcUKzryXsAg5AgQ6HCwAX6mjQPFzjOEJwOR06zvqN5/vJVyfrfMSCr1mPI8lfKLxkSsT3PNMG4Yk2MqpTrDteYZnLrpGUUzcWUy115i5YWWV6e9atuU9gQu6Iu5KSsZf3yF9h0cel2LWsZf90xSpeIthCupsdzc6EBRsTlHYwacKtX9AzjK8k8GIxBWfqncN382+b/hiIJ20r+nn0RWNNSTulaG5Xv5S8/GEJo6SL1nhJ1p8QS4pEa4W/VLtrV3VF3Ie8YNeo+URNu70AHkI8DJdPzhGgShP50z9U/zkFKzLD9oAmsYlHCnB3lMxCs8fWfYhnnIYhCuevGR7YnB2VKzRnXsN9DusKSAbK6CknogJ3E7vlMyrTVr+kiVuJwBi7juYOEvIdxnd0UgTFZ7xSiDwrGfZ0zbUqiXp003dBleLi/uS9aKKXcPH7jybAlNj0lVO7/BfRfTdqqLO0KZMxI1SNnOV+OqS6ziyJTtONb+Pn3VVgp3bQQDX6Suss/UKtot9uNiauHRbx9hRNncWIVL2LHru41seGlaLuPuhAmy5gGoy4SLvygsynQq9mwO1WKtG1VD87/9z08HK5XS5exUJ1OpgF98e5s+SaB3zxP/Oxx5l9RiBIj+pEu0Azo+w0avuuubATlN79KEtowjEfwEkJqRqoX483Pc2HKD2EgzepGxx3dwFppQdjfP/wI9Wr9vzEUuaqtBGOAkacUJuoUEksGMI8xsQgAew9nOIYsI0vq5JGlWp7M4zXBj2MenSR4TyG6aJNTOP5jz4XDT4QLVeJDH59PEqwOV3K8qls0cDTyKKh2J7pDPHYxCnyZcsJZTVSVn7fsll0gqM8kb5FzqvHFQIuxhDH+j0E/AdFdJ4HoClsLX8hkLfu9xamDZH5fF/Jvq4xmcoVn+9I35lsOdhi69TKez1ICJhUf/Q1T0TT3z+Z8/x89RpSnI9gng0ldusbJVeUgAlj7dQhdY07XZTkOjfL6NRuCdZTi7AIEeh9InXO1qlGjxbmtyCxbCTr6VkVmHMTTXwLdr/LWZR9/9o8zYZ2AqxlzCsPrHHyXRQKCURq25Dxl5khxq/BKjKtHSHFKOh9x1h1hoCuaVPL+gyIb9ioWDZv9yndxl0wK52QEoUlNzRfJLyjaAQAPF4cxE9K+M81/JfWh9AmsA0+hNL5w1wKLW9J7xA9/NPaso7q8eStB0DPmqDTd5yYgRovCa6BZ/KjMrfKNwUg6P3OfR+Jb8PGr7eC6AHw3dzPul3K4ujYNQ71RptNIWEUOQOxz1//etlzLow03JjMkPiLvgH8IFjvfNZrEJKNPQol93SfAX+G0rvS31daUhAk/X1vxY11znMIQ2bzgoXxpl4o87zz00LR9Ty0dkcQlbQcGUcebFOnKuL59lioVOHkXpMvFuKDh1KehAGN9wNp9Y2PfvVMAhO8oOg1OyR29/pIrmaeSMWO4IbU6jfdzyV3ViCfufHC1DQ/dVObCabXj/FdVXXMR6w2FcYMq4rYCzfO0sjI3T864OFuxdT3DyhpF2fQY7kKbPoVIGclNAiNX4Y1v2z3PeDP5cQzbQVglpB60/7TZr07gARbaTEN8vWKbmphD3NV1GbFMCaLzRJ+5ZKa1y/DF+eu/LTZB+6IG9oTwz98q6Rov8MmtkAvFpGviwBjmHfWnSLSCrf2yYLGhHXbFbODuaAGWBzYvALkn645oDFlC25I5+HA41j3QpBYEqiDptZ9GRJCUCOgg0frtR9tktma6iTx5LyIPgL19hC5htdWHY9dpRgKUwRfy6f+OI9R8nCsGksa2UGNkpNdp9obwUFGZTcvTLc1K0wCfO131yQkqSA53PiErEaCGSLk/elLOJrd/O4AeW6f8P/yDxkAEPE9Q54GCm25ZMbhsXl6n5V5NRf1AjHLPmDkbDk1D3Me2PjITEsEfmzfA4GR5Pk4PAFJuN9de71uvYj+x0npLYpmh2Fkn7Y4raTph6HRVm0UI4jnC522PkytvkjCT8giMaylaliY3rO0i9QwNAWoXPBWOXgw6S97jko/JzUFKbS4LKLDjdtkUkDGCaahUshWZjYFdCYbanN02dPpaRiD6bfW5zLaYsVvkYcW+uVzky91rl08O05y5CZuSa3+137coIMEDPNwpgg7d33yNfBI5yFV6enidGPnQenQj4gJVPVR9o1Yz706jqm66AH2fdjqQr+NIGpqc5aS143c4nwrH7ni6Het6DF9M7mzy1rJAgIeEJQwvVfyX++MwHg1hVzyeH981bE/pFtpQrsfWFvWB/q43GYNOaBVm2/4e8otWKpVMjYm9ptip4vIehxMZ8NX+X3whL6HwaPDTz1tozFxwmmrW5Q6XrB/MzvVZpuzhvbrZA4owHX+aIN2y42KtVursCrFwyczLLcYqIPh1kJa0/DNOX0PJeTV+918S0YO0QSMScZTX62l6Tz1LRrrnZpZ+w1cJVQQMrOd8RuUO6xXMqnVlad/VEIreYFsmHbr19aAOzk79RtT3T1unZEBqcpqJKFKkRScQqkgqg3sXZCiaUlCbaSmRDDAtFjKR9LsJ9gqg3iHPoSjIQyiMoYlUSKims3850WKVDnf4Ov/FMRmX7qw0hsOtMb1JIJHEdw8fY9DBBBZK64PjvcPxUU7a6F4L7Sk8x2h0snC7qUk2djFvcKiKiPVuYJQglZ4GF7nMQGunPgjpH7NacYKuNqORfNlgu81846sTs9xLm5Z67LiNzArFNYEf/XQtH+j5Tdech6KDCSb9wg8G1LE83Yt7L6nIT/PMj4KwOQ2cQe2ekBWs6OzRRjDRJgg9M9SPqRkr0gFIBkesITO5u0fzrE2IU//ZGkLrqsgbC4M1B6Vu/SF96iZIUFwBJlghxsENrbNcT1fzu5C19dp9IfBEFRF3DOW9sV7CoAHhxXMA8Eu+sHk7XegnMZ90SPr1UQjjuevMefeYmtQM2h3GqNdmYt0futU1rht0pWW4nXkzNJD7wy5kcMUP/pxd6qKj0/GjYWWr20RmIMh9WorN2jEWy/btRgJPr+LJ7gI1Ljr9NRDV4WSlZjm4TjM4l1hxfbNBvxmb1TTlYDQeKsmLWhvlc+jLjyBaFvJc6N40Ljv1IEuKpBgs8AQlLLBUPKTkgKH4ah44EpxwAZHjdfRUVe4wWY166JUyWQHRIrufATnZvybsvKfftoBtBekA2RM2P3I3re9RuvWjuyYYS6S6uU1Isk2onojSecnTg9VJLLw8gEecrhjxVEFcgklxR4vDxJLjVekXM4Acu/9AzPq8kjQFgW++VSsEVph9iHR038IUvvhL0kcAHYe4ZXy2qAVyZ1xyxzEGutnjB3LMC4DJmy40jl3+7BJybVUmUODIveks9A14GddXzcnUznHdrIyrb3c8Ttce9at2pZ2faM9r8It//AfJLflZLjcUyLgCEoi2RosgwpWJJlORZCTtVu0em/zs4hxNe1+qCfpAT86mYrQ1oPiloi0E6Ri4ygZohoRNKkDZGnqARCveJo3fTi/uf95X+q+g/b8ORbMnf46tkVq7MI/jiigSNqTjKy+h8wEKE8N4x5mc/xjzXhSX81hNhFpdeMAv0Lbrm8idYwtZbDGrT4/Y+MNSOll+IbnrYF9MAEp78JXTyr6DGG3DC4t8xNOi9kSquYc7KixFZ9AFn9M2gXtRHYhQY9zVggKVJww3HqhiyR6WFOpCSrTzcKjFkQxTg/zi3gHiGi+ZZnQPmeWYxqy5QWIOmEpelOkhhxgMQHkcPaxnazhW0HDMT2b22vwgkZF5qiX/rAqyoP3fDaENVWAdCGi8IQIWG0k5+ksIrcmcKjePQTfxWbFgj5PldlWh/mLxOns0tB9iQZ9I6UdMJwFYlm97AA33jM/9MHD2EIGZJB/UL1uQAAbs2In0pMyb3T+P9ijuEgULgEUb/O4UQfNOF/fVjbB3+ebx6Peep+4MZntt1YNAtBABxW24/XgDkA+wCppvtd6XkLoWiYQu12t3cL5CdRXHMBV2FlCJa5DyuBWu6SH2UamiJutretQuUrmD2JlU//OdLF+BWwkrHRjmdIFI3MPkaqPpxaQyJP3HPLJGqMFjA0CWbLSa1cF06TfXkax7SX79Uk7oNMgwWB221dxy5+A1hUrHOkwcL3OX3G5m67mJcZliwbV//nvFP0UpxF6d1NSK/d3Hs0feri+VDZaEjz1194xEa+T554QH/6qY9E6b20WMPy3rsE2X+4zv4MOALbhZs+kB5+ydnnG0dvflKshjgRCWfULs/UnyNNQvaZboQisis47FtPg6HkKDd8LYbUcaVLh2E5iaZ9gP7DzrTo51NRz/LYjQtmejfgQJeVNYsnKRzyW7sWO1svfyh1acqNDImOazUWiD9DJ+0byRt5/HfWZSZVlKovdklKieBPFD/qRfZl3ml5c4hF1gd+4bNM/ncAFd93frtpl38UwkVksMdiOpjxEh4iVGgLrk5BR/cKO8QLR02P84pjPjnDa3YM4jdMfIT1ckhAn7WovV7rhGNzwHbgcYsj3B1e7UumVpv2tefsii0gtWpNWOlJFekJIOd6oq9DCrlgEVGkAgHDRYbMe50wkuGMP4aHJTcV2f/XSqoyResuUl1f4at18iDLIHns5BLj9+xhEVzDeDkQPoBYKzaXY/MERaY880uw0jx6DfFCS9aViv16IbrMeMfHVKmneE3eERHQJBFbyJhamyPvmN/2cxrHdTFS5kzP2WPR/0Zbh7LEJvARq96pG2TOgFuOpivb1kUH11HBUde8nDdy9eKwg0o9tCi8tPDNzQKm8iYQJB4aNEwH9lqAZpHiwObWRISw6o9TQojYavQBhENuRCy46vUzrt7nUHzYK8yVdbiamz1f4Bn4Oro4ujrswIYX7S5CvqPmLtrN/z4UVPtuOUEb6TaaJjDOr47AQsW8xVUEs/eeRsVv534z8I3xuRbsacHJnEAEaMBae3JJLn7qXH/JaJ/EzNUe4lsXJTfgCh8BfH9asZ+WjZT4cu5iHruNUH7KbFnkCnkT9grD9iO0mas74JfxU32hA4VRImJM2whRhVbGB7nB5gfv8AbIDg9h53BzDVe3W8CQwrjNkr69pg/GkfqoyF2IhnUZztirRO/vVZwrslYtinHzzZbWXKuU7ayZNkEsJvD9dGUFLESdB6h8+Lc3iS+RsXvdQ1yt9CioQMcA09wJexgD/gBQ5Z6ybfXeQcpMc201AIhIhsJfn91oFy5awl0KuNfFlL2c0lLfLtv+0tGALR4QtIDkQT9F9AN/vnvSCvuRXK3Oxri84GYRnVJX4xOuk1Aum4HMYUDUNYPoNN9MbeE/8ZMHMlzgjNquBoHn5aTdICKNcAdKq/qPpJ0l+xHuSvrAKzWjMcrjbGFMepmXmk5hYWtxfyb+RCqrKX15ZLxD1GH1mliaVwwCJ+UYWtQBN6SqN3sQdXk7NRDUlW4hPDN/7D0rkGx0zeRfPcCNo8rluksU8rOSoFq7O39k8CqsP7vFvv0nnrLLQxOVgMpfrXpcryPUtWB9pZBQ1QpnNy8IjJpKt08Zjp40Ywnocv7ABm4MG+j/maroBkYmKfaebR07kKL1ULDQKqyb+NxfUsOTf5oVXUukcE+Z7eQK7Ck9mMu4CJWUPPoiaLyj8bxwTSCwzFUwNvD28U5WiLcvxrSjEuuB5NN5U+0UnSicBEEAN1A5V58JS+BSIyL45bDgVL70gYGKXt3Do3DbljfuOYiYSfR/nM5tgbHjG6YI4OI6qhLaDr1ED0NnEZuBtnHwkejorpAyFwUy6UzP94ELGn2Puc5xmQqLGJSm9RQcYkpD9iqn6VF0+S34OgLv6mYKRMcb3l7Nl7YrzemqZCR0ASDemydgSpOmWYb3BRx0LoGGk31C0ZNObMnCV3ZUa7oZ+EwXafcJtjILxKeW+4LKHgrkxXReWeGyZoybDT5fHQvIC4SCtREFqyMDEqasGXCxtMLm+Ny8ojnMJOMqTIxSGO1GKJ/UOPWMdc4CiYAklQAihkH5PWpHZTnsJCxyD/v5+yysgz8rREq0aby3UIqQ1IEdoYJN6ZExcBtLsydIJltVnY/uZOcGNw9grwGFEHHjrLllG4waPSFpeHD4Eb7M6GgPopE5LBDrdz7eqIbFcs9wWsyVcVoX8I5E3zEDFqjNRPsje9ZWGi+H4Ne0c+ncrf8HuR7WWIGXgiz+YReaxoJvCfoZsvj+vYgvAq3sboYsRxza0dlzf8EZk0pt/dIeLvQ+euQKOg1TYFKgzrqKFG0pKHavtY8TgBJ6fNqyCgfAbSPGu0Fg9rz0dKrrthARKk7EycXHzUcy+Usfx1HdtL+riq+S5iDKp5ysgy7V7/Z+2vSJS69hffZ182s9S8kk7Rx/krHYmJzBbe/zUWFawNYndXd9MDAFS/Vf+BZmIz/9Is2XUSV2iBhMr7TIT3jQ70AvWqai6BQM3qPA1F7ebFwS/WdI8h8ut9Ik2xUeoJKvN1iBs+vsKotK6X0TYc2rL0zMlOcWmTmUqy24fRT49W0rDqG0EGhgznKPJNZh+OHGgfnp/bwhJsuhtumw5IPHSpe48J50jELIxu1iKCpsE6d3xMxzli/G5NuV22StU7lYPaPAL/DhxLIOkyaTlWVQDurFFjxSA1tyUkAsUSkrKuFGfLhlAVtChINTk/rTFqkLhO3ZYtjF7ax+M0Vmf0ehFrTEpa9BCsOFg76aUPZorOthcs95mih2wwkxPbdaFoQSmRQzMS10Pzuc6tAMOmrjacuhE48TZtLKdgtov3N9n125W5Q9DYNJ46+H/mlylVVFWGE3eO2GDwwEcEiTQwwcYE84+Zo0w9w/kL+UoKPaq7pwon1XzQQKJve+1utEhdaaYJ9jPUfQbrdr6rWPOJL5poxLJcgRZm8ANY6zzjJeAtt0pHZUok5wbCTZetWSMNihE9qOWtI5IhqrsoJne0NwWL8hxbfFByajhfIZuJl+6ar6LAmCdtR20+nlksf4LPlK09/euEq3oE2co6Vv+p+nHLaj1VODTFFovMf+g/E3nEtCTmsoVlnLNyO6FTlwghaFNj/gaKAjRXPNRtfnzhEDLcnHAqc1a8MhZwGvybH2uZmLEgR8DYYRYje/s0skvxvKrWW9bjkjqmrzGUtVJa7wt7cmfv0wdBjKA8XXeWDtdTXAGcLrRh5BHD0Sem5bBH3Y0wOOwa1Jvsvad+BMVEeEuDU7TCxvyQQsQDCgGvMWHN4X55/EkGcsgbjxUq2SBNGEiQHgtVVJMNbsD0t4Q6vlOWwzRwdD5FMWNoNLOADP5lyIeAowT+NjDD78Na15u1UIXyzUxkwO+CKU1OJg9STTuSp1fxX5/Hd+MrhV16YMTfzJl/l3MLBpKXaVaIS7MdNLu0ECUQa7gHk2XGZbwZnrSdncTEB28KCwROac+P7oqVue8fvj83+PJquoxCY6rpa4qrj6xDKqzzosTTnJj2MaBhOuwcvLthCgY9z/ly1rZCEn0K8RvxJwbVcbhtaKhYV9CWktSmTA/ucHEjt4GP5ft1pCFgyDaDWb8bN21g68czapWoHJpB3ASny+jqyez/rD13HLyxpUq5ICa+ImXk1tl1o4mqUTFd+habfH0M+SAnkuUrRt8kIaEB2F7wRmzO+BdyFIlpOqbi+UF13VOQb3XfwWw9V/w9KGX7S0eJBASl9bQfPB1pfm+djgs6NUdRcmEa2xYCUfp24xJD33q9Zr6IFbT2OJaNI/hZyMV6APDhKM/nw+AxT6hMEnUYyMhwmbib+Ulf6GbWls0nQsMWlxRlqJ/NHkHUFzwxirKOYKe5CrThNUgMSn1Vt8Aq9u6A84o9RhTpnond8kPpZMUtLtdfJbklEaJqe5O2hhx49nZSrMMvTeKWaEh+Cx8stkq4xHdzTO6ympOiVppaYKlBZtb4PMOLon3T68IV0Fur4CDOX/1Cy32BiiEZRl0iVhe3P8D1j3Nm+kiQvuW2tF3CHkfvMHMOjqgr2fbwMPsgjUAkFQwvffxGwiw9/NkT+6EXdTMWxevDN2mc0Xxii86iqmdGIiZ0GG8ievNjP0QdPp+k8iASxvT7411J3NFG8QLzDcxwHd63VUif4Y4wyZSrATwqX5qlv0u4AuK8t029sC6AaP7ztfTrL5NJXTlR+u1VwdvGLznxcTMEOduv8JqeIXhxI/ow6EwvfOodyI56FBcLz1Ssy768TZxJif4VTS5uGVHy/6ILo82S+7OrBw3CmfMvCNryTwuq7nRKmYNqNhQhficzouLYjTiDtZ/XsiuTg35TPbqKyBQiB2j37Iti49bk07xEfiX0hB2LIh8mBuKLccwHx0QauvOkTYbmE5bfF/vLIFsHl0BQdxCrCVD7vjJ7pxSlKkxFtET9UVjAtEpxZeX8CnolJjjAqCeVpQLqFI71cBHfz3NLg+XQQM+4eBfeyEXp2fNBZjkYyjvih7xFt+a9XtObuL4YW2qxg+R24C6VOJcvGMaZT+rfqC7IM6/l/8bpX/9U7NUMwBHmExI3H7hQ68sRDPeV0jxtz9Fp+WXhijmv50ib1+p8f24j+nDYlAuWBznXgLEudv2YFRRobheSMZJzXPie7mUWL4sa8y9IU3SKiY3x/YFf1UQMPe+m7A7gkatubu5YcBw6Pgt9dNQlqlksT0a+yWO1a6ey0PSNOd9qGy1J3UdnzS5vbvmDtsibXeLaruAzcPajvZKiacJrZe4MIERMnMcvKVSdeo32YUTtoPCCIZF0GSoVIhNLyT3XGasABesJdU98DNgwh7ia5lkGQ8igWuhCMmXpQi7pVI0snGblTdvGYzoS5ut4pMxdb6DmllcHzjc5+zPEZOeLPtzqO9PvIeyViiP1FvkzIWbEmHXgYama9E9CZsP4WLQZhugQoVy1jbdYu7mWNXqN4eiV7GqlYcsxDaAeNS6YG/P4DYaq2WXfYS97CniTP9RKac2BUAi3Dpt9uuXm8VwhaB5cTirO2TtKYNNjB8rtZQzzDjHkzaL7DzJtcKHya6l5Uw4E22ZasY8zQskxx2NicRFXoR8Yyt/guxqTkbcL8G1N2QKd0FYKrM2Y4iIv1BOiq5rXruhsygywDATFp9WNwZdd0gAIb04Ltx6crPBancYVk+cdmqCODziWcGdFOk+pRP11OU9D4C9lffj+Pg31bx7oI5a5VwRcOc19EJ4dEFLjeAcuAt7at3DEdTJdjTkUs9VXZGUJIwUynfjhgjR9Wf5ZsZolwFREozAsc3smjT/pMvFqeOyq+DG8v+cCQ/qN3STo+TTLicVLUGPHeV3DhMjLHAwJ5j3p14dXIOzOdZ62qHZ5wGC0IwLZhP8YUurpeUswXwtynzSgek2+zzvlb4MFv8kCJmcnwavjv8gQP82fIu/byLY8pZFajdVgmaexsmgSU+K4CcqMVtAdWn/YNMEg7IMKDP0jFs9NeBMoeQ8SkCqXAOfAhEQRqoPldHpZfNp1WlfQEitmdPM9lNDzkvCYaJ/K0d4IaNXuTm0ghUotAmPX892Knjw48ekeLQImcnksrNbWt28XaWWhjSjC1BGoKyN71vRIV3ErRJd3H1dWbGlqnvjpBrCDpmHorwkCt6SyzEsGLWkB/Xv/VwkcP0XOcn/s+gGcEG/M9lAyaL09lPNuMhPiilwVkn3rj/9Z0u6DsDPM3MRGQhazgBNmY45xa3/3Jlzh9K1nHliYz5Fbp5eMAApI2ybRdDD5jyZh+co6RrQQFtRHvHrBxeQIcZAPzloZ4Na592ISltvg0ZF9FeK1NWa82nyS7eEpEu5lD2g4UqHzK9x0A4jo+FpLWgtupJS5a4QGEAkNGDqlIJRG19z4Pxe/Dvx+RP4ZpTVC/aDWyYG/355RT+VuWizx4wScwJ3XvtZdxLAfdmPDDLSoxTDQ9O7eSJFaKp27m7tzoqqIJMN7ERcm7SSDoDCcDGpmxJJRFOc45d9boVZuv/YrQNFcWi3UbXEf8f/unqyFVQziXSw5I1/rn72Ze8Hp9QXEsLLjdGAISuCQlFytHwDgLDLQhl+zvRahx0EqIJLPZEAogYO4a10n8/Ca9Th0vtUTXY5Ofb2HEnt2phKVMJMoKDm/bEer0PYjq7rc8TQJ7ng3vC6p5CZLKW+dv1U/HwadYyfHMWv3EkEELTfVmKcz2e8QSBgI/Y+v3rdTOlIWjPTeAF4DmvSDJtgUbSmvfFI643KsirT0fQgTJG5Nw8QYtv67Qjxi7iWpXcFjbIVjPWwHxWh3ao3x3e9cTTNp/FmC8ua4Rssxyjfo1mnfWwrQldD4iuaGk+TewzJZWML07BbQOxjyHeW8Dr3IFiaGj0XhwBkYmRG5+aBlRz3gWlcWbm9FtHFidmmfIvJ2i7rx5MeqZAweorxXp7nIT2PwY+sP6hx1t3XZ6kSP9VBZZFsZhD9ZzRP7no14tq3DqBXSNlRUVGWx/KyHSZc0/QsiB/84OpG0dADwTYEV9eceT0yF2GknzTHQ2pTufwjtWdvdfGa6IO02MtYMMBOJhUpeRCu7coDbb5Jtwi6DvtvmOjrYuFtKBzox55yBkR+ZL3TgYmrlICAz0XnbUX8UWDJMepYOqUK0xrDTKBaif9dUzPTr6pzBSjBRNgAo2Ctu7+0j+HdsUwPosBqTmQseRbKbBGMXQ28y3X/T9jBnrQikyedWiEgfGuz9mMgUXl8wqtkJHKJc+C4ZNkQUQV5C7qmAUHVs00Nbn6tb9DZjQEsc6pZ4g7a5PYGxzbZUSAgEJz5HD56OFe41s6sby/zCOzD0wsUOnODuJFEgn5F4izsxZQCrGgqxrMk4yCgZaC2aNya7b9DVbcFESoiVT2hPhdPlUYs1FBf4OdO6u90c0mYJ4BM4gPOtafXkU8fHBw2DmR3oWmUV5qCnPNSrmIAY33jPbfl33DMxOKsodGry3MdH4l4ygHHqtwrVJjyKRBIV+p/exeAFc2QkzjWU2l5gbh5Bc4n4menPD/taCH/Ry7pBOfEsIUVTdyP/KqIYOJBpeWd/ITYOIcE6qqeenBIhGQojQr2GcC0eDwtyCwHkfZ/3fMwOaq59stVLNQ0by4Y6HzDPu4wWt4yPYNgnskJYU5rYu7KOEVe9DFdneIHL229l9Q6lwSUdc1MRKmA1YX4Nb+2xDchlIPkCD3rqu+5QkvhXebbLe4pYpFvGucB4RzsPDRzQF3ozfhK9RkUd0hFQOcwLjfPzOEiYtQBvDpAXlpkry3yPd88i5dZu0Wz2r216N1jnJEFqG98Vfr7Shhba+K3RbEgLIBp5qJ8IRuEfWHekwxmcRWSFC1ruoErmHz8UlE+yPIbFRzg4WjxZL9sYHzSu5bvYM/jTKl87ti8dzTvoqxBi3wk9V9qDOiD2QpMYbq1JW/iLbDk0z8qtyxARBjyG6oTwYVVTz40cTP84UXNYrGyp9qo4ZZ4UXrwYs2XNZY4wpRIfpCkHt8YxnquKvTH0izH70XrQquyuej98o7necu/fEKr2PrSCsmGLE32e62y6Yy60RpRSiHkiA0gK1/Z8f4CNQdYxyu4Asaf5xXOCzi830ihmhuwbtFNlrPfFQTuHa7ojsOAHARy1ktSQeDbBPeWSOrhanOFxslJDn2TDheGxhYjooMkGkqgEb2tzwd8erd3w/PJg16bTIn7iUeTkODKQVgSD9t+xevng7/5577+MMd2BLf7uyv5+s3Y0MIZ521NaqGv1m+uPIR3yrVyZLAZXjhMsavVBy+A1JTF9bx54Sj6TRs1KtJUPjp0kENYT96h6OS7IUVSFYo5fhNnIhV4J3l8dvPSnLdNPaM7fahd1T4AXaRGeabqJrHmcN/Vm2St4NsWNcHYbcZtUSUktOnWH+FOw0d+nBNfSoliUP2cvdvUNy34y+f3y+i1bXABJdMKzjvmLd9DZTjJeoyo1I7WUUJNY41eMcgLT+E1BtwKfYJC/rn44oZTMAq0YBEUbyjaqfp5MWmDwnEGHpUDg3sG6wtVkDiY8JxpbrlM5zjzMYl2YGunmnK79bEIekaokDMOHbRccNJbidOXPhVsWQVZoS9m3cDISM9zYz4TfAgsDllX8oQbGc09j4Cx4Svhfwrg/Jqy2SFmDOTt1s2nbkmxh8hVLm8Lpg9NDLy4ePINqIzs5VI9ubcYP3P5Y2dtP3+3FVVL4/UzuZYQT14EtSWP2umhYJnuFqzA87+GQJlYZSWoDM1pj+xuY3x9mQfiRYa0384DN1x2jwjCFukJvhXsrq43C10L0G9fvuQz9M2TO+Ac8DvwppjCWyErWy63O+nGkgdHQhqnMG0HkunzCs83Sl6Ja2Uwg089aa8H9Df1/MUcQJRw725E4YER18vb2c6DT9CCfhig3sldw6f9exIWRWXxSvB6+h5MI1OghCAhGGY9LsjypjYHJo6IruOpkcU3UH2UhJbCYnaeGoGS0Spp/AwNHcxtettoIwjtul8oUFGJKh/1NJS5PXpLbvguDcz+fJZgg+y5Qr5ESi5fD9HURIHfqWiw4Al5U9ZQAOnT/qOmOHmVPjLNcFNS0eOF2iwGLFyZ5Xzmvl1BLLZhVo5AyLgTqCGT+MpX4nh8/kPxElAOW/LxMN+q2quChKB+W2cdI3Rw44AIi7l2roBtlZFFPuzmhHa8tCFzhAgpzVz7fv4AlnSR/iGR6QpTM2tcMrRsJXDa+Yk+KykdktcLwm6HKxfdDPIKuK60BmWBKG5URxmp+uWiCGa91hEwVcSSP6lgAcwUh416BQZ/MSa3k0Wgm1DposCCS221oYZH6yjhDWeZAoQwQQyjG5Tsiz0wnDhNQ2JWzfs+Y5YkGN3DZgWa6D/lqhgw/N7V3wYpElGACXgARnDhnzGgjxDlqJ3rKouVKXa+BJHLoxLeFBSuBIAVsF6iaJjLlvWpr/rFGyTvoCCCMlbFN+nhj+x4HDbutLBqjh2OaV9JeL+y2L6vDQzNJg9e6bQLtzhhWgbfmfRngfK+5Ya4T1TiOufQhHUz4Jm+eW3AnC99Rudav3F5uDO8PlOrGoT4mwxGMAro/WCmbVGxROOb3zhYu55vVEsANd1qcdNxt/A7+0yuUgJz1cy010wc0LKM9UfOXK/ECBbU4xZlW5Uq4bG7vUv9d/Xmn5DdcqwYE6Lh3Z0LuLsBkN+nFsLp9U6aJZzewDjRFDF1bY7wftOQHQwrxu9L0mpoKiq+XkS0dViCQ+7L1G66WkPqovcSGVvYBY2IgRWSlGU6ceRnbQP4aY0mU8BwdHHYCg9BJ+M0ETSl2bzY5gts83bXw+8tlpB6m5WTNJVFhPux0g3RT+PGM6Q0m/KPHD6I6GsyCU0cUBIvz6Z5YU+MMp8FU0ZXDz1sJ64Y9bmPb7piArftGTYEX6Hbgm/clrQd8aMyzbPVsD2IBx2J/ZBuy+LnbkiXB+vl8u1EjoCveu5L0T12WJH4j8/74oA+WQHmWO40jnRF6l/TCQbBw4zNO4wSKkAuYh118St+Qrj1Gwls5dfHED5tRXgA91utk9/5Joh7wpLsdg1g9IN+FtDg4eTVhgOC8GjYd+XzMaCq4z7Os5EceDNBFFIp4ZxVcbMZTKO54LG99jhTgHTORz7aEQB4IKffobtJS30ppuJhFrd0mJeVyAdLTl4dZeV+eboRC0kEB4nQqWfLDuRDAAxbCNt1peNxWBDWM5RdTJ+gdREqHb7bua7BC7u+n+39oSj1MrBvdLv2TCqmIv6oV0JUZUP4C+lY2C0mzpSzphz7vTy0ZSUmbaT8oDpQ5sWVFDayJ5HcTCQpFxHpSVrvgiQtkczwyDG6pX8m1Bhu3RiZiDLe/WCQpGv6O3ckdJgI/ygTeMpQhI3kgx145H0uGQ9AE6JOqaPBMkVF4mXEztJhCXLsy0gbkcx8nTUiJ3Q+fnxboJ92IdyFIUKyhXK1h/77Bdihh3OOp+gVf2N5aWgUmDWuw8OE6ywCd2QnAeDA/ZwZy/XLcsr68F8kNSKPPR2iL8XA84YwikYhdh/8JOGb+YOZgHxO3ExK2ZaWSYaE1k1XM34t2VHLuDeyCWeZZ46iW/Ai9cVQy1haZmphF/6Ooiq9Y/RCv6B3bfRWyHhuk+kBsJKznE2bux0dN532COh+HR4jrfG4m5JnSvEEm7o2VL0DUVFVy/lQ0N1RgfaWaLJ2idBqfwB868l5aH9Lveju7EXmdr/QJMmZC5LaVMdaagEoDTgYsi3WO7iD2Pz6ZJgTrhIMgViKWfIwHHPF5wTc2yiRCnahZQHQewxcod0I0uKdufZscXSAdfmia604aCjZe9nuIAyexPSvpULeSYwA3Vki4pLe+dIzuSJW2j9gqZpvB3ftm+8phSCKF9pu6e11Zo1y/h4GCxzm6zGb7/+gkWMdxEqgSnaAgtmmtBXkRGf4JgzO83tKwELxpQinfvLPqrCA43eVAChltnRvvJM+47xwJAGVi6Hl4TsZb/dHlV/nRrM2CiDftpr5vY78oD7WPNDU1hUEg6OdWpfNr7eL4hoiRglRL1KIBuUqfhpeD8wrLRR6gAOHS3K5Oc1OeXGJtu3RmowYq6s6NpwG9DmN9w0SjYJoT0m47KWsMHP7Ci4jVIUeFcssIpgRZUts+9OB4ek3Q2+og94G22SSahU87buST7HyP/BLWQLwannaYmXH9SwlCFTHKVTage64nhm8L7PELE6q5Sq+xjTfz06ZWgC7Rx9A6Ib1N9gIPZnglO3VUXFJMXhQMFarYtry8Q+Z0JQ6MFfLd/UC8bYWdGctWsBMlVNKCYFUjSDrCxqM+n0HyssERnXhWADgCTfkr/qzHBgqKgfDAiOFUaaVRjKjBxSGpmPY/pAn7bpUARCNz1FTlc4LAJaBbxfuNMscFOegQKJX7Lem5RVF5s6sCciTGSCZS6o1K5mbGSeb7McUZoHAQ7aUSl+q/EYa9XFL9HqZGohfUB8ip8+38Hvyhpezd0YQtimu1oCRzJCt/MInUarGAsBDKazw63GQez0Z7nEGzYGRpqOuFtW6927hznz5FfuQDPgQLoRSsdbJY6kBHaHIsSuWV/jC4jFIHYe7G8SqYwCJTvrCiiYz0g2m8SG9icOa0btr9gA8o+78yRgf64UOxW8WoYkBAJCNC1NEWkYk8bEXXF76l0stS5+XFDZTo4EHxnJIclpP/HRHQ5oab/FnWDHXmFccuRr1NIEUZB0U6iXy3vW14nAmy9p47sQGCsY8AQP/Q2QXUe8iA8HkEkeoAxpjq1DkPFDOnvGL4U3rLnDlVKiSht98yjDxm8rP67r5BIkcoxHOb6aGyh3pKBQgMXmUdjW+VeDi40WJDoCJftS9mesRHunjq2q6UcTkIz5NwEm1XNwi00j1hDR/k7djmrKX19AT+HI34SPupgflkXFYOhMuJJpuOjTLc86jyI97tTKssovV2Jr52Ji179WLd9Am2XOdfDdzS0AU22vL3mur9dxPDEMnox3Dc0zHDGhidzE+NDqv9Hu/th1p/KVzsALd6dShbkDx5zhxgoWlZ6QYqbaX5x3i8NdKtKyPnoOp5BY275QBVVdLsmGf6Ywnn5NIoAmBaEoOX/D0ntkS1Dp2iM/H7rp1sWdoS/EDgZ4HyjV1IQWFQMyOqPnROQN8pvNNiMCR8QpoxoovryjoOmBZxIZGocLM9OqfqneJLJ7E4pL0V+p+jnwSNsdQYBpz97nhUKGMLjngPIyBS5xUhdWKpkC4dFejJLzIiqQr5ThEsZ7L2QMKjrnZzW967C0an3cc2932HG1wATC7cYSmUGNqeO2Qv4mLfbJZRA6t5rqCfWEUeRGcquDzeP/3o6mxp4TphZIgJ19lW+DCv2NlGZnLDNTu+E6KFvzVSGGf7jNb7N9VtUGIxxhX3J6/vcrw4noYhc6dUlX3AmBQeNr3BpC8+vcAw+LiKndB458lWX9dfSQmtmtO33OFVbM1gHO68a8lxpSsAfRi268dkyJKdJGd7LpXGPbDirLpedk8wYxnMD6h6VXemTd1qIERf8gyVxD8ykZeoG1DoU2uzM0h5zgNM8flGhORwuILxkO8JaZV8gFhfIgt1SOqfC1o/2lUOCO8Uw4sQbtRfCEnZMd7Wlnz3cAZv/HimpxH+4EdQ3mraLifUjnJqYWdFVzOJDR0tL7HPv23s26uvuUaYNI1Hq9BOQWMQPGQWIZ47lotqufLDgunsOJJuGuyxp4CUFDGJl9ugTUGGLCJPgnywpNqpXdWeO34V+S9j+1uGlB1A9u+uTkhyx/qZdlDhHAb+eYjtKXFyOkN5MSjT9vDdwpfaidaNSA41oGAISFPNT79g/4KRAUtMBrtsEal4hO87F5X319/akeoKy0emRuA/EDOW3xhkVAJd2X5GIlomuJgXS39GMipgoOMWHlYqflhnJSsFtbLXIosoxLa+53HEfqJxIj9t1VoVA/4xXDN6n8qaijhJlp6oFTe+OFfjHW5S48vJTX+dRNs8aEb8rLhcpvtoU2B4bAX/aytnbD34XJad6xB8dK6w0MaEt7ABQCMIKE4ge1yVx0zvhXP4w35XB4Px/r+0U1CORFcitSC/Y0Y+7T4vxEVFdl5FDCSn3aH2MdKB8gNwMtW1pGkp15zsWID3KcIGjjoxr/RD8mlJEmr66IIl8oSRqxoduxgDkUfRMJ2ue1zp/HACJUwbIECUTydrv6XnliuCjIy2rdc/p4qUnjXvDsAAyFlW5sl9J93BPpLAuQIx/aI16UYXNNrn8TttgCO+OmHq2s0jsqxm2YFz6TdO0re6ewE1AAdUE1i0Ekf8nPbKQVnS5yq5bkcVRWHCH8l4rh2tZ6pGwzrCg6yZXmU6a4SYuk1zVBpyvFWKqePL9tGKz3ktC7t4/cx7TKM4QTOK2jLfLnJRnXU/u+pX5mkwIW/WqnVuAyMji/hn8Q+7s+CBhHX+eSAsGfHQ2DvSusRkvME8/3bkoEICNznAyabTye6gN1QkwzMCDNu4vEQI/LqUU8qUi3KIO97DT45jbapCKO5lA/7u2alJHez6HHNd+n0RhnFSDl3tTJ4iuhzRTU2v3h4YJ/JHXuuTgLntavUiTq+SnVeq/9YW8EmLIsxtxGWJJNLdue40ZWAN8jExtQ+FgTn4QTiU991DTv9zxRcTTAHK38FVZ5q1VNnrz8N7Mt+Ex1OsbT3ogKpgNdIPQFqRNdQZ/ly7NRQjrrwJp7LJntldBOd+CKy0luiLe95+ZYl0v1byE039wsNZTgY5gvbm4AqatHpcJFHUT2FnBd3L1jit3HQ6Rn+7NQRZlC0zqXsUKG56UiY+VHrnkmoKdGCCHqxZPXNB5OJK6qy6BUK1btkobkoPJy5b/LROKtx7Pj/EO2bgTQtetx5OCqWVdPrHnFC+9h19M3bjv3geOcWL6QXMAg5aHopm49jVx5KPu0hLG9xpUlCROIeX6SttfBdDmXZSj0z1e1yLXBc+r1UGppc2U9/NTAuRsM32kdmkukKRzsKoA1pPfxpFu+YU9F0qXHP4uWQDKDvDiKbvpZvsMEUFOd8AEoX7WqP8p4GrbSbDTJm8mdDnyJN3BtcxAxSACujyNJZnlNi3SzUhtPkmsPNO19qDs5fAol+v8SWYeOdYkwcefm/e4P2etiX2HPIhZygvC5GkSTBDxPxvIERvj6/jAhzu6dVENFAv2MK26SVBgeL74UBq6vQZeVPbskdUJ0+p8cZS8dfPnfCR7luV1MZS9lNG1cygqH2xlj+AH3H3y+cMiF8wbSRIaQm4O0EXFkFjJi3XXYjS6dw3tOvck54zrN1bFW5T8eUuNSdJ4WFe4CCj7ymend3b/lAyQcKfBUG03i5n/dx1Bxc/JTo09M5YdZ2DFDye1rr0OwZBlzEpIkzVIL82SlGyCpJGjSaQIT2vWEorPMqOiZJtqrepz0YSMkPRB/AJnx/LMaOUsfVfK1DcGnoBaKVOvIyjFbjfL8BNNW0B4LrWr4uVwS59Aov2LLUkBxMSzF3tdIPbJF+BGQvm/PFZC20yllFEeiF0seRLoP8cuGoxGx1bLKeUgMjaRIU7xD/iTcpA6pTTvwixAfEJTXd955NbtjysLEl5HKpEVwdxJBypPPftFRNuPcjtewKhIJ1s8aI8CKdQmIc3yDrDivhK3Tw42h0Zq4Nw+dt4vcUEM7u8l2aczkH0m16p3B1n/OcwNvJyO3ld8gVo0RUp9wtzpRuqXXgRHZ+eDFL1876umrtCs74cz5yPdrGHwacrXfVXkmnZ1jLUMjYoNwsXZamPov8u3VNn7lXXWOLLjTpbNljV6fUt4i98ejQhm5YwYhba3f/YIlQ6hWTa6aMZ1Uz9S5vX2dwG2EMlhhlKqXl7rmiPW+ITmohCC3nlTwTfgQK+VuWHvx4N7rCIVEhyXBtApaa+hm5hPgHRJuwe1A0kWCOS3rBtTg9ZboqG7u5qsT4xGeLfKTr776qMLx3c22NCVkcYScpBaWOYMrufsg7RH8lYaUPt1lmgBLNVkzrWTKbgHNYo5IadHtxj7szZUagjsF4gkRKrcM2pRSDZzqwp6rKXoF3mKOuXXC8n6nyed2+U1XY71guYXo7469K7o7Fhnvp37ufWPzm2azDH9SoC/BVbkXCGcix9OrJJxV8U1ZhHKso+SRujWobIcGV2KPiba2FnqXzO6KM0RhmP8WkTW5TYYL6mHDPR6T4iWNSZNzyiWxTDoG2Q0vkDG4tDhDG/vldtUtGr6qxtJhzqL+UAaUOcxPf50NTz4JKEAISA1epdwxnH6AcCIdcKJ/g6jZ5r8SL1CJ9AKRpi9fEMd99HnDaQMLD5A6E/yRBSIWeaUi2zYO8tTDA24D0waVTsKyLC4YISTKF4oBs9BNb+CD05SkU7NFL4QMuMa9inbXCVYyPM8SH9Us0W2WFKLyX+EQoK1+ntt9IuXzRL2ouAmhPsm8JismYaHqzavpBIRI90kqQgCEKLmkj8UbUrNF4/aLriFfv71GADT5A+nUn1H4UupKC3CeW4/sYoj9T/y7qrEt45vl66+pK2zqf+GMF9/ky4mWyurTJ4q8sA7Ls+NR10gtrSmPaVqB5N46n1RMKCB9TTweInOKdo1ki+WaFHTxF/wftNX983+SQVkEF246lWQ9zuXA0rjM3yPLWhnJ4/UW2jAKGTYrShWU6VmxEQWwVdVCEvAQ+62L82w764uzNg5Wf9wscSISM5EYRtzN/Vth3pvaCrpcN5Bl0njZzL5DGM1ws3sSiF9d+hzJOcPy0pdkYi0++n+sGJmrC2POhfrOiTrSzKND8sx0dHeBzhVFyZexN9BiUXyIw6SgoTRGv+C4bZ8K+BK9QIwZ0+2PyUG7VrJBvI3VOlkgKGrZnbT8gjtj4o8w1S684xI8iO5w7F6vrAFXoI0St4GbYceNWZnmsNLB5MZl8y/MTsm7DBeL7JKDbYJAUHbquHrCVf9I4qI1VtRvTJAWUnNnQzsqREOnBCVI/ZdvrQrpt3PXS09YraravCEE66nOxMLbfqGbSd3Pdadmoon7CGILhtZunqzo34keX0xL36U21JZJ93146jI3fzTK3MTKqCZm/rj+E2Ww/GV+Iv/dpuiWydy6JWCW1jjA03vJfai7Z30sA3XGdmxn7GzWkMqBcPkmcnwWwfDWe34Hfx6lOpSuv+4/ZhBZjD+VpYMtPtEnnFh5QFPSNC2Xyjf+JFssDtPCBP+KLY0GR3qla26Oe/JPJvbkE7WDKg2CRV1GiYiF0yeK78VLdHS+rxHb8uSDbPAS8QKYZqwqWJE0KoDawpzvKR0WMzWtEtNeNRkSBLYdvMhpfSekD6LzI4QtDrdfqCjyS1TWihNQICVHChpeIZsGJGrGiG+FSsIEOPYoE6rFKv39C6GCRL6IA68R7ihogZRXHdgpGhNKeyA0dnHUUAQPPKRpHdlNxxe3uureEpnJlv1kphWFwiiAmm465akwJGsCtEvQtBp2NesfwmHLagCyGj+nm7LfLd9WWRYfluZ1c7giB/HSziELESYR+jTYtIhBI2OG8eGSqH3Ab9hev4zqIBPR6Emmjor0z/YzS1kvT+s7DAfVHwCLnwnygY3jh+FZBU/HohYCmgQAT7aZglBeFVRn5rIO3Yol+lA8OGGU5YsCXjzb0v2IYKprZp9pqmn5lL8GCPrtEH2oxhXGZ+BftCPnUO+t5jbKNbw2MBRddH4n/qnKSU33EGfLSQWHWlYydSgIS1ZdiVptGK5Z/Jhc5M7ihm4sXjBKzMUoBTEQfXlLirf79vEbiAs4QpbZuGj6vuBCh2v5Zz6Prkz5nCtQP40kLVMZ3CY1+BgRFHJlAlW3cujmq2FmrsDXT+RmK8rdYyaMorvlyM0IG/DUdwSXsthPYdgoUCMqwnWj8gC3J2Y6mWyxcxIfluZX5nzkSqKJDaVTiaNdfpkg5dFm5z7F35vCpEgbUFPYgfuS00rYKTaOAmTu5JTx3RwWb0ot5MldsnsbQNnKNBJpoRm1WV9haw+s3wi+AmBZDyuOLU3UEJ7zKRY0FKlHF0jnWwPL0+S4e5YLsRq8MyvIvXFhdHBM9E6hjU1pOpnpazOdFo9GJchUBkSnukOO4v2Dxg5IuAOVzGTr/kifyrrhQhmvJyWl+yTmyj5ouscO39xuUcXmc6v9c1NjsfzNMYpOhEmyLT7KmQXYPegPgpR7XTHYEGM7aYbOWXnUgw+OXKO/j+5prsh4Y+jwjTxofNH2M1bxSDscbqmRthn2BEOz2x2WaUi03J4hxWArSWKWQ4WaED6ehaddh9kjfsTxmpxHPp6cyN9YvG4VVHASJeoh3Tjmw/PkF+ITipIKl6GQiFPOvjGKTRVOhM3AuIMNCZ5dfyn6Qmt7yWwB2aOdgSwjYyIbLrIJ3hEpm10YhpJotv2N8UXzclRj7mNhWwU3i7r8373wjrOZGOOdbkkQX+ZSI0POb1G4Ft5sSITTVbe5L6skiTnPJI2rbPxyyTA9KRAas9S9Eh8wfLbUxJQey4Cxz9GoiSDh/BQwB1m1y7UvFPsB3RaxSVCPxj9zj3wPPa+lgi1ojCURZFvas6CjEJQSD0M5LuzRta8X/mF+J4aoM544DSCqITPM880fmk1iz/Lrpr0OYMRVcRqYIcHsLu6miNSIShvW3bTnJ4SQITSG96sqK1Y0hH/ecbYnppbh8WbOlWdEErvhZlYfEEhiBxgtv2doyBidiuRgXw0q6FiCx3y54mSmDqM3oBbC4TnK5Db7f5fTYW+crYTgFERXaID5OufT+CRr2teokn+hjk445n4T13cnSODcpjCDtA8p1nU66CKbCu5SIXUKTGlk9B3O1vdggILMI/KovUrTaaoNKoIWFbvuVk4I+wMiruIBgE5MAfvbqgJ/8nwyFnYxO4JNwB5MBKHWIn9Kc30CIpLfKxNEjL4q4cVoZ7QVqLCNASHyeP7RKIGUWGRuTsR0wksAVy04cRHQWx2tjAiROKw7DhsYT1SmtMGIgRPZqZAI/zSaaO8G11RkCwkVxtbQkPggGU96al3ke4K36c0DgnYTnlxoE0O0A64TnynoX5OyhM2RpAG5ATylD2IbD/FgkOXoTV2GQfQhE6Xtd5yqoB2rCxWJRGx2i7iYsPtsQBB6sKNu/U3Z69FS0cIxYGnTNKwLVmcqN3nt21xuu2vT2j6KHbpeR6TVxxo7YsNuVY2OWpwz9GhqcMjaokAiTGAsTcPOEZoOAQGovSgixj1ebivLYqpANK7B7rrWrc/yd0aPmHBIz6KXzc7e2D8fONTnlxWOws9jhC6BPMKilqTQvJth8qPhkn9g6SS05c1bjs9n5Ozx5fBYrYjdxcyKai6XNcyWx5XQxYsQD0K+ekiM5iOEMd3dVhMbFe2urkmWyeLh8H259+grj6VR2I56/cgqmsVIDMagT8JacVKa3O/MFuFBP+x6+szJkUmxX/RxxmXx8HCMK7v1KGVPOHVmKhs496txGSx4+0C6QFctipHtPK0BIVRjDxqbP9KswLFh+JrDK2kYHR2QUA0Ipcpv0K8VqHFMVYCQ53JG/NxBHtt+azlZqxGNKJ05xzmn36X0Bn/N3RAYZXtMtg876UbWV2cPCFyqfpts6b7RLRdlW4gaoT8ULyi2AdmhQ+znDcdFIHcYI5Pc8cnUQXZYaaV4iU7AcQiZHF2JSmY/xD2jlU032dAAaWMYtIx6z2/d8aoJvd2n14aVv2ZSRh0JhYRyIOJNRY+LsI/bXZzqNbcTbA0xkc3gmnGkxOI95Exua56v9Rh0W6jPbfCB44hMbI6Z+p7JNmlKi4hccOrXLcpYeDUznxm9s/9+C/KqqJohYcqFZRK8P9+7iahl98rBg6VhMLnazxyEHy8TN8b2/XQ4LF0gIrIeY/hS6flknawgU0hMP89PxSXwht9jfSOvorBhVm1Z6ESsdSYNxm6mZRKZdy1Ob52vjVQCOdgtBcTPz5Iqz3yNR1U1CDf7uf1JXQtxjufSmXlPaD3BnZP8CEU1TyCMxdBFyQ+tnwe8WaFDSpHNmMrTONjPdC1+oLxJ+9l3qgA+Ka4dVUIZWHUXKNftEdplBiz9QlmvyOXjKrnGR1p23GPtxHF1KoYeFpsUavbnlnPRBANu1Wd3/FfaPQewRzj0TkmXMHdPl+K2ybTr0eoAnm45dHTWm2GZedfyN0VmqeMHEVgR9xv8DoZYZdW7QcVztNKw7Y3/o9HN++nnWwPFJcZ+RNL20xpZ/x5YQh1HWkvnqvF2gW+WiEWCedmFm4dBJ+Arbq0nWK+dX5JpXrI1DWDbSQLQuM/6RBS6BCJUYpdHP1fL++Lnm8gI4ZjrRwABigFBjQ6n0o+7Ls+dBP7rX4WQ/lEQu1yoBrig0yNvprWT7qtGpESuxHuZWnDcWZgoW6ZnQtmXsB7VxMOLwMAFirpzjQeeQvjZ3swm5/W1p4k9zWXOz1phBPzDgqkWzLmCda09l16iY1pemAEp1an1J8NcsR+CWw7UXQSrzE4gj5RMxle/XE/fwiZUb+WMKh4u767Oqd6bYfxMfEpwGN4Bg+KIyigu/C6Xm7HY+SpxOkAbW1xjVC40juRXcqY82aeprLGaZ5BAv+Dmrwdx0RvJgHhCA/QouKfdX7tTLjArA+ubnpvOLGbpQj1FCrm+2ZcsLkdJaAxGmO2ou+d8DBW3BA4d1ghLTYBUBNjpJQvE+Bzak1ySXsV3Wk44rGPvZJN7u8ah8O6uRmOKJ1k6X+lVpunbXuQeiTxkd3YEcKTO8QHXk9si4fFTETMD84aNKWp6kpiLq9ZCgEC6KghwCJU5vdb8aQ3w/0HQ+4pnquUEy7EUumIHiZr++UmPmK/9IW5OF19DDeK+zqSBrfEeDQWbyHabHx847OUIP+fSrByhuGJj2N3juafRystbXsxHryHDlTLVXbPTlwh3AX+vlxCVv7fzPJ/GOrQdSEhXO+UWsSmH0Ngvxl5plhynO97q8ZyaCqeZtWAzQWE8Enm9Uc9w7XjKb6N30Ch5m9Sdgi4oQM4EQoPFZI51m8nZgHnCfkqMPLEQsKgfKc/rzOP0eMgHmEXu6xoEay7MC7ZObBv3cHi4mxWSO3IRd1Q2G1S/NzK/SYZZ2j1MuTp4Oqi26wOYnh4YFkXLlukAZ96MA9K+mc6t2dbmTL96G8LsoZR6ZNl1eH+x0E0d/g1X9Pw/QHOOFRzLPwSz1Pm+E0gf2JP960N1pq3q3swTCfpnC5jzQUyfZ/Xyayn8koGuifLVKJ2tLPkDCzh/Ivbxqqfs5Bx+WyPAZEQdQkyOCLCpQWXTboO8dbjZ2mp42qT2dml0/2MHRsPMaudR7rFZgIzGfy9U/tH/Zpx199RQzncY3dX+iffaPoa/DNOvKpHK0o9g86KqwQ9rqsK3EI2O4+SyltRCfRa+wtGEZF7Q3dvulds1MbttrDsUp5n/xQ5at9ijYJ4dHPt6MTpydXjVskcKenvSMiphLuuHuiH+kNnrFhOlGFUZzUm73K+CwJ0r91oFXgcaGTL5puTa5NYjDH/ED0T0cwUUsHP1Ag2Fm5wU0lCTTgPMjJ4DD4pbOtkA+r9SWfbSmiOgwgjMxcXsd/7ktj257upS7KeNkmbnpLcPbQX/dptSRrnCZav1hFyg6NvhLXP+/AOotm4/Zmnh4VapQiYZEvhb73qBLL8kLUm+erQVu1YuIx6lln2s1o8ICLVZkIO/L5cI2+W5DCyDrncKdzow+bTE6smNI6rRgMHhdyES9lO6uRiLdhCsk+lOEGUJENh1nnN8icHrPqg3+BDZQSf6EjvFrnKVgPGsObE8VMluemzzeQx7SALMcGmod24WylTGEi7f0uuO+3df5Ue6YhYOqZhlbd8HDrgcsnfwIdT6NxA+4jkdGJkzmAmihDTL03oyCInPUG6GEf2Wq6UaUbUk0hxTny7XbLeoEDsNzXxy/o2Js840Kr99DJ9aRoxLCh8K1S+NwBf3t2JrB7UK1k4fkuYRZhl+c1YF6iGl3vtr5Keo5/R9PzmNuPs039na9jFZATjdIskostoBhvcw8ryH05f1suU3XZhvXKsW1tSGnIfGYINt3tVYDLkMc+6fzsTE92nqV2S/T83AyAfJ5xLL/sQ1LzXkGzC0p9saNFhwdSDMngF4UWp8sHTy9/fjMCdoE4KRGoQ4ywOxxcvNEpfBuLiNpIdIB1FNfXfIvDRaLHhVhMSkFSTSdlJW7RmYjkRFR1wwe++3tUmfsX0wX+jhWVKOOkiOUid18OnMXD9TgP3nd+PzKNcnHb9Xb4kgC2VtNG9GQ/YSzdl9sXQRXHC0xPOpJ+cv04F4Ea72QHxqCWk7gFjCIKmTP6QK31PDaL78gRwz02NXgfW0evpxRMIC0yKxFqq7ofmOh/iGc5NSdiAjfJ/3DfVtrOZ4FthUEHxXSAmoEkQeC0zVjICZ3XfNMIQao9NRHXpl80BSIYDtl38qIelZxEgAVtM3J/Ik/nPauxj1xLfHqovz65lH/D2qOB6cbZdl2NLFqi6/Zaxxm9cKZDHZlrEFbfa6Kp/R0zpJZJIFB4c11WLmHT8aM6tmV2QSYL/iiZxeM1vJHOSBJUtzb4cZBP8TeYEFClSNrJQN39hgV7AuHIp1JtZvAQlTyFPa8j0TgjGKC06NnEjrZm1pE1K8gmrdt5Xz9AUEo0XFgKOwwu9n56T4gC1vuQNV8mfPl5ANwNlCunu8iOdyqp07fwyy07p6cfYvxtJw/L9oVlI7zr91DwSJiCH62HO8WVfDfHLPpfeJ36v3v5azAW2pQ/rs+hg1TYPEFyZPv+jER03sC2yCWlSXU6OZRadTe1B6KtAwQdgXjvRM+9cvL03+9MvYnicBDFwS7Wv4R70mxD9wqI293cxiEd7PQldBV7tlnOtL4J2gO8Ohz9ypN9rUJHTerEEfMSePkO2Dkuy5IgKEsEVhBUlMQ/nt6i39k/Dd82M8qggJHnruvly9CJKz/54xlH0kNfZimZ5dnMAl4IjQHirUj2rSK8MTzlt1VTPtLdxWcPO8z0u5kKqpYTEaaQlntdbTKDA0CNivMM60HuPu2uLcsWigiASHaSzSrLx5yqPhZMDol5XKLV/5Rw8KWnJYVhpmf34ATGq9TyQ9cKU/abyBSp4+QuUP7toWuSxKDRXtu7NqL1S2ixn0fmokcReB2RvlNA8woHBARlEXHOGRt0V+zHeIf6tij3/s6tR/6UZDo9CONr0YIkjauEP1+Qbpo8+u4R+sMTrDjHZz1MYxL7pH3ZL6vCT8iWwoMWE+p7CMxAh988gBJ+etJm2OXSRFkrY6FF7M5zOVi+Mnc1UGXV/9wb36tBaoCTMhYpcR3QgqnBkiHjbHfi8JHfVZ4C4tRL0D14PuKZb2cQRNNw+tAgLmrzw/tjZK1ZnLaeeYy17pg+B+IUUnVghsX2TujWEuBWKDvq21ss5711NsgrdCoQ99rxeUg6gu4mGF5CSiecOKJMeJG/nXQLw3vqZSQg+akeExxg8iAtYMS2UtAT1hQW+kgX08GRrvGR3F713554UEVRhOECrmhJoCr90DWysIyv0XtnjPAqhD996wOExEupBBWiwemL61NEozXzm5YutkFWqSi9aKo0hkolOS+bp5VCeepMITKCbYmnADYd2tm3AilZahvTXSVf0aHETLyA09eWy/0dag7PBGsV6osSWhDhX5PbdUP1HoH0slotB3bZJe71kkqQhzex80CgXZH5SPx4RSvfIeGei9G67ezkZM4DP3mxFU//da1c9rhagOCd2lWzBwzqXYLKHRuIH3hewVGlEH92R9SR07wJbOTamwfW8XBBsHFB/EyjWjBK+nEjMLgl9Gg3DwAwHhhgEVreIsF4Qc1NbD9YJ5kiEO90sMVi8SXoVIfY/DnC/MwWMhI5c6nIyWueOk6vvshxponiGE8H4WkTYIMFpLx1a1IEj0xQZGMEg7iiyP6DjVSNkxErQOSwlAZiAXiX2uDZsfI4lLYAuSWoAVrlOTFUQSgIO6BUVoBpKbanZ1dJV2sEO7SL+fyzWDLfNqhTo7hLHfKpZeL+hlb34E3qUEL35+ly1lYuNC3oh4JwnSyt6q8nNeVn3u7sZH2xYSpfVrmR3a9MDwmeyecHw+gOOQzL0zSHrN5CpNeI2wxnIYWgxRj46s8hDCBzyrJ3tb4Kxy+lHZA1seW3WTC9pz+GqIRNAeWaiRZ6ypdzIiYnLMPLY3dFGNLGDZH3uiQDxduBW5HTepTocuyCNeC595ok8EOi07uKAgsmE7gfOoO/gKE6m4aY+IPQjF1+jrSHBrhst7+cyb/9Xo+EZa0Lgvw6yvBcrX6JMmIawO9XjBdA2dDDlV9lwTutSrodueEBCL1yyW7dobuP39Z/xUE84+OyZgzCsNH+ki7T+r1obfqKFMnhTW/4748MuccTDWuv8ObWuBtn1NWi0jK68lNebtM+6j5cXSxQKOgSsceyCaoN0JDHIlSCUcWjPUoqlHo6jY5RyBpKUjcghQ1a0XCtWRjllDExUSfmuRRBKrA09h+XeLZUvXMHmERrPNE9CtztzqNeU7NzmGwi6waCIXqISp17GoGYlskzR8jdo0FXu/ZtB/hT+Gln1+iNtkRouL7tBnCgJISSoG+rgiIRc2jOTv4kEJqLe0xtuY0qU0OcpmTcxmnwkrqmq/LaPzLGXV1v59StQBIL4ybgNuuLNWJPZ+2+jxhJw9KC94mfzEOtW1PFVxL0wphtI2PFIOkzEKBlqZgH64ESEm08v6IZ3Opq8mBOmyLRB1kLwCmBpEYpPD4JRdGcF+qGnEOPUNCkqdoyWdXLzkLur3C3KLiAZJmT6hhto/UHCK7T3IsA66fHRimd4htqbrflHdArmw2hQDV0emRkTIvyh/ZimLCB8eEEt7rVsmBTJMbHw6dLcW0IaOIXMmLuL/xnxi2s6Z5l54Q1LfO0/rb8FCDn1BEZc6oHXlRWxnCHMC0LfXgYj0xKQLl6DIlPjdhWkKt1KcTbOYmJI1Aa4bcW+NTqSvePMdyJpKP8n8oy1Xpg23DV9ILPve/IBuxEq76UtCY4hvwShY++cwOa4CIwMLWIIausgHYFiSyGhXiGwvcCAhKV4z8tF/JCY0Z4XSNbSwMyuTz2QbYHA3DOuPJj3/2eJuPZnPRM8J52Z/aCCEtadUS2t6s8/l8HvrJCKqkEAj5i1JeassTULWXUYvArX8FF0BM0b99z2YJd6MHLQGk+Rqt9IlgIb1jfzvqwBg7gIMi/jxTKkYacx2+gaF9GAP3WwSiuJ3rOzL1PHAih6AMLosP+5JMd52GUuBoqSDC3b/jYSM/ayJuFeo9f/NlPBRzhxAMFfJEKsZrUDTqaUU9R7Kuj9/vafjgXIzbvhhWDa0gXPVNuSObBsiAhgE7Ec0foD3k5NXa+6TE2Y5rgXxs5dV6PJC372XpHpqRS86UlGRn5ORC4mM/3OtfQtZkoBiFb9zXPYaa3PlxX5aUEgQQV4oBV9cqHyIb5MgRbsEdukQ8QVWdvBRkKwaHs5CuSiIxfyYdU0kiTQs62lMeel2oE8fNLvuSCUAmCv3ykyewlP2jdlMsangrAfJD3AcpMzmtXIw+2zyfIeyrSgVg9SWSI4IXtUzKdE/WuSs0l2V2nX4vKWxJD5XB4P7woHaobUTCn9fjJXw+DQCUUrHe2yBG4w4Eb3IXs3RAjZVNzBHA853BAy+YcOiy066hREZ7FA9iSNetZSbZjIQLZqPascCH8o1xyyf9Ph5TGn42jo/rnpS0R7P9V8NzY6jskQFPEQoNlkXjYmPuAoVDPNmH82X7WtjHIygJVtxqQ9EyYbytFcjGLLNDy7nKs/IgHnNoyAvE93vRxqSQ9PeF9s74kVGjyAVvLT2TAnxxtmr3JXTwQPASs4Rg01twFuFOtI6MhITctnRtQOx9yN8jyEnJBb4p12KHG9+2KzZMxGKvarEtMUMYXPqNy90OHlMLenVuHkfKwRaWwBKk8aY83vnvxb+Enhhvi5npOZ+7oOsrdJeOhgjQcqoudTeda9StbmcdE6FFrSvXp7KSehDjyRarDxtcr41OHTURzlFhbUVZthMrkovFHn2E6HS0Lpi9E8Hp0X5aW8r+XZ0sLLNDM7gd/mtHFRqKziUJWxXgfDEzCPTlzWi7tYy9UgsjhJM6aZ3r5eWxZIJBs5k/rgCmJqIrPc+qeZbec05M4aV2iscR7qV5npwwGYYfqFQuuLQHoWQRFIgTT2EdvIF2XO20fbpaIuHT5Vbk/ylki0BRPbf72CEm0Tap54/0ZzuJ4Ar5cvERPKTa3l2TZzB2zXQ4oqbOYlM7BsqcqZeUmxop816SxZAn8qCco0FCCwMYRPolDhIgd5JmIwZ/OLssU4yYgrz55+me7tVAEO2+8W9823p7sGDy1jUP5xG4Si8M2l197JW08BD+VEgBV/Vtm8jdylDsEHA+XRvHKMJy5c7677AYNWLUC3pOOtLYZNJU932itlp1j3D0OtBAhH3wS3kAPjcpT3nrnMJsMOQgG+J7C22qAW+m1wjAZzRsNLXOyjhmG4Q/c3ZOqMln5ElHkegV+sJQBV+l6r38OSPg8yFjBsMMfl1juW9jGGue0AR15Tlc148QofPJ3uo+2S/BprzLjatvuDEcbwUz3etu3Fh2ECcAyUJ6hvY9vx1/pN5O88ozR0R3RvarVjkpqONMKKi62xhDJs9eMqOAgVEBXoz8FiRzCb2GIj9nnZBA5wXn1lgPMXLL4AIe1JDO9NZckiqFK4LsAYJOdRRvrp/T0IH3W0xI+Kvz1OcsjBizX/dJZiIyKgAAk0K7kTEYcxDdE9HpxY3HtpKWbs5PAIe5VhR4Vg6cQ+/WUlZ7yZn0TmKapl1Va4qNyh9oQFe2EiOfkeDqk9sD+ol+X7/KMYF+RnF1G0ZD5Qg9X7PPizSqKsUMg029ujviOqN36X7nrUbvLRZ7+h0f3HyBeYVCIC6DUnlVo/skNNBF3I6j3elt8CcRSbiYruwTxIkIHxQ/E1yYH4CeiRAoTgoTD7+xCYJf2kS/HUHJ2h0f9HFfth4LrxsiYNYqdnzebF7zuFq0IaMc9x79LLUTJ0zsCLoPQy2nKkXD81A6hicX349OwJvbGBXDT9W3C9h6WApH89HPuEHLpXueB95HNwCVbsZ4r98RtO3dZ6SjWd/oLs31hqgD9q5aoKe31fhxLkPVsdbJ9xykNGUuH+EW420a4iAHGCs8EYL3Aeh18sf6vuiaFxOklZ9sMtPskXiyTMVpNHWLpyE1qTXNLhcAl1Xuo7MMjrDXAV2gV21ErI0dtryaJQw0NLq6Tt9c3frvCmSQg+lsxLEI8ug3OI5A57Z6RadrBvxP9ieR4Ogvd/8isvSgFitc1rna4zXHhVQ1I2dXb8yDrDVnttfDKI/JaS5QQdyV9Ff0/Xk0haJJRVVgWAN308nVeamH0HG9uj4vCp6sqVNCbaA/Cszwt+fXujWb/HnuZ6ZanKEtDx0lnV7roKCkzC8MgOtq4Rn0uhh85Mf/fn1LBmKds6lQ2btVjKKRTwbwnwvpl1aqOIX0B0kFC3OsrZcaQSmQe+TcNzpoNiuDdR9pE8cS+U6XHHbjQZDxiekoivYURVFKT/v3FZaFqQycsle+ywdGS1qn9LD63QZ4TqVXSoWrgoalAXNDUP0rg+cr1WJwvFWcDkeHOL67Hl9ngWgFG3SsFB+WxcL4htMncJy1KEu4ITAdnISEkuaASnkc8eFVYXwJxCDwqRRLOE3dENelvIfGYGvMiMh+a40Bt+kU5Vr06sc34MODJScII0HUm+wa4QP3aT2jTdZ8EJeYwDgrOT1qAyP4F8Ap28QIXVNgrpT3/RosMXt0S4Gx4n2QrulNnZI7NrAKnZY5FMSShqs8I8Xzvzg4Ho/7/z2ZvlmGZNu6/hPszfEZUIThtNUKj7DCmjFNtDUlY+hD16cYHzuaSRbhBq5d8TeIrBA639xFmg9lBFMsbraETxb3EaDCzrj6ErrPEDRxuVBsvKhmAisgLVX8N394rInHaezkgG6ilGPOC48bshQ986czCX5Qd/F7bsard4YmI0agKENzm7y62PSYZxxJ98Y1OeOwru5L3X8mG9oMWI3K5yVfB2ZPaS79U1CB7E2zQV27DrbbL87NfzsnqdOqREqFzIfQQNHJ7nlUO5buh/7s6uvoMXLahs3sKrRaTg85cvdBMYfHz7EjW3UCbKvSZQPYIgWwPt/h3g7gHE/mAiLg+obJRaZsFkjTY3Ow66XuXyFnft/EwDmsZ1Iz9ZD+NFszY2DqxpQYQIVw3QJE0RwSvFeN2FFS1TE2C4BGK0SmHkjPGaC6ASLvRzsB2mNsTeEOorPcx9o61GKlMn58MVKZk5ZZ2DpGtA26Li0jRa3zcc+LunO2ECwWpSCyUoX87PHMstoarVv67Fl5p5eKccxthtfs1reCcIyktczfTvhibEWiq5QLsm1DS5tWAG8CCbR0Xm/La6iEIRMdiJZvr2WARZ84vLs0veK3D542EQWDg2/3Vw7o95HSSbV9yVqvompn7V7L+vIKBBc20UBBLBP6+K1KNsxRxF4fcD1ayQ+uEJjyE5ueVbVgXTw+f4iOL2yEfHkA/vkgFFCWRlEG8xGFeNgYhyNt3c9qZXp8red6OxeQzwxgL2gOk8nPA5HcW9v9NBVR1xbKMIQWLggH0PlCcj1TWk6ouhwo+vZqvOV7sSGLONMwwyeGepTzSdNtgjhGBRO4bilbOa6rQvfTHFn6/0DDV4/nUbX4G6CvSNLCGNM+f/QpKFUNFceIaJ70g5ykQKYwVCbmStanVcKwoMlOhD5mVpTykAl8TtU6m/OD9qaWiVPKiFmQHffnm4LukIly13HG5qVHx88Zp5TiRppg/gHBbACWdbaM2ht6U7KfoV76LHUUXDuU1rf7WMChz2trGEfcVy0jd/KsqrD1KaVQ2gODTAeXz2LvrqchOBarzWqqYdIuwVtF/koH+m81acIAfOytWR2tBDXkzfd6wGJEFx5AWSTKgy7vcmf0U6422hFlgKiz3qan5gBYdp2SfZGiIW7oXyj6KrvhLze6cwVH/xWjYDmcYmYxf73Du55t11oe8ZoOrZ5vRAByrKi5Q4oK+95iQg1WsAAK6acZWKC63pqqrLuBHhZpJ7fLwD5KkbZrbIUlhvirMhey8XYZESoP66EjHHe97nMCmylQGvoR2QWnrn/UkqCLqr/aXcunO+LbHA3dV7XM6d8EQfhQmM/ppq6zuIMRQf/OTyM3xf3AZU6Fw0+VmGtJ6hMSgCXPDyFiLhuovgDh5RBM7XHdIBdUSMCCcHO7aunAC7N+A6VTjYiwhB2PdVLblNDm+HNiO09gIiZY7kRW4pX/Q2eXpmOaW+5sO1MiFN+o+aYyQ76qEz8t6eobDqTy9mefmUhoHA3OQnEqWVtH341OZPo3Hvx4Qoa3d0nvoQNzSxggFX6rWzwIO/0zppKdG4hY1T/5y6rk67zZtg96YkeCv+l/LotKx8nSxYc6jc0T4SF/RrPq2g1F+RulhnEV8l/8sp3MQwinkpeNpviLfJfmIlyQWX+G08Ka+ja7/EpT2ynaz9UGVpjjQJ8+44AvFn2dU7oVHk90a5MfgZ6lydRakPCso98BODBWuw2+xNLcZjIGXBFRbmh5FnhJj8i6w8SpdONhKgeFT295RndvqKZq0fkTS9T/Co0c32vo7WDUOV/nJpDIm3gRgtWkvEqA5mX1aCyIcoJGFnfWcWJrtUG+Bg7sOu9kyeQiLkeZNNEtb0lixHkzkdUjNRqxlKaOVXgCDvRLZM+0IrZaKQZWSbVXbmABVyVIK2qafDvGjMNdnPOYRiEvDwmvP5llQVlAREk6vPIPBPIPOcdkzeFV/8yz0Cii7WQ97rjBtFJO9tFscA+X2MimpYYYM3S/3f6f2tE707QvNLbc5rkG6fjjwqdCGY0UTA7rEq/GC6+l8Xa0YDnuByFw06tLS0QR1QhVd7r8hB5D9rrh1Cd7Wkz/wx308gxmLOnBewqLfH5ibbvAann7NrBXhRqHsvLR2ZdMiEVGKRn34IanZhj5kWpHBWSkRMSICTKWJ+ZY6WoXMPmw7AeBIUZyBG7KGHV/3Lr9ALGvdGYjcjsdU1SOMckI2cH9VaqEyBi46+9HHiG+tIQpBpWsd241m1/ke74+weNmvsLutBtaLfwo8xhfFeqC2JALt8iMq2hyzuxP6rWTuBuKC2ozo2cjQkSdgEF08Knb9gk5nhy4LWiZM1G+kNAxOQcZjc+t6BlXhjN1iozYPaANlWb/k2Iy8ECrkpgi+232prHc/EUY0kaA9M3LIhP+IXJoaxE+NFRdcqz6CwevsZEgb5uZ7Q9lXBAiDsCdA3jiPRuBPWq2jUyoW+fL+z1uUhmXijIbOj48tyPRAi6vL3YMKPhYG2/dJ1knfSOnfDMihXMO4V0hcta1uKAQxeUSH7G8WOM4mE4Y/6pi1Qq/dMUhLnYOQAozU2ZcGkj3B+J6pL2WkUxlEwinKkYWY2t5xB+X0Ns+Q3ppBoTjKEaOsw9aoLUg8CcLv8va4+rJ/7VMRKbUjcPOKHXXkAggwkNObzNz4dvMN/zPFgi4CAFAwPYzwQf/xm9g3CHefZEfdLGeCXMZBXF85KzYRQ7XfMskiciqJyll4Z0U73p0CL10X5JfDVYhzojAcJUmVxAY8Akm8RnGRD2WxQ6wK85k5+keZwS61XdtP2ZRMxK5wP3m5naeN9pVtkfERelds1VZi6+OrTbJRSlsRY+l/4UlbPnGCwDwFOACKsEUxH4qUU8Gu9JOxTJDFG8KEQHxydMLA3x7dbIbtCyGEIAyvD/veStU16AOo7jLdDe0gmeRc0ji2nZ86LY+infhSh1YtiEbbOdRaNixrndXq8mcAAY9t85O9t2dbpsuZ2dRI6LyxzJrHMx2qu9V+VtzI7C3D9tupAORUc/ZY5f1O9qtky+XYsjFZm5dSksn0pWPvpvZsRoKHCPAb4MJdlTukm3YYwYXIXAj6+Mo0JUNFo4G7rXqHK0xoGUTA6a0Rkp4lyRg2398LpcIAuqjnGQdKL2J4Bn21xZIn7f+DOzbZYkefAzRgEhaw1penmJ8nZm3CbHOg8NyzDfManAVdJfQOF+7SjYgZGeSmWzAFGKKyHj2nv4kujlo9tItRm8Np6JueubE87eS2Uc4JfzUAZu3tsWTDPJiw0kNqW1lkvOC/EhZs1rd/JaXzYYeQuqJQtMxRT1PSc9hZxwYfU+94mPpLBZhYU6hoXRg3KX4oqW+nQFXoU5Cf2fvaOsx9Tn9C5SAbEzmi9dBFjfvMc9vnC+D6DqEuPgTQeREvs0i5h1kL3Kb8mBiA0Cyfu6/I155Zj+gflSqGYqUXRZjeqV4xxZ6eYd+c2TKRD6Sam1LLGbZeF8sL7oCMGq1cHFZV2rylcmbJnm/M3YIJWEI21++DXslqQi49kFI3FAGtU0Tfu/xScesv+noUv5zziDniegOUHrkXu/Rh0G32kzlK6G/ij6gfNJ/ZIQYGX4IEpQdTccBI0aUoMQT89UwZi9XmZcL+RPqBUwsUTwxmJI6KWqte3p/zvO3EnpT8IL0n6OxWnUpO4tN8WcY2zydQMddOibjKwqR9D04NF9ngcZYiWGo8btjaGhZV3MRJlZWuRCAG5jghjkkLdAYlHaFJHbX8NrYwL2qOjOJb0j9t5v5QpHtIm/pC9SVH+9J8qKefwLSSPeB246LCo8FjpjH+udXL1RY2r/zRR4uCYZG0frbPJmUqqHN8oqw3Y8onAYdsiixGpxQ4bSDOXRQcruWrXViTMXkoOgKe4MF5Z2vTk4yPaULPQ1l2MEJ+Sf3PZLcspFnqcWeiAMio8LwwimsXv2cpAwWyRLLXse7UywkfIVIdLFgZNnuelIW1eKfPT+6sj6GdxAo0dKnHJg5GscMM1fkFXsuap1XFEGDcmBxOE9bg2gT2M8U9B4KWvGAP5kHMQoA1CwsJXD6ITYVP7f3LjPsnlc6crJ7KSNkdGHplHoo+ETwPABVT//7YjHxlNmjtszT65hQWaA0wdzSoiqsIo4bj4lnYNvLiS27+VlRWUHRwCsfmlYHGYYQvMQPw5qxtoMyfLR2rrIP1gu4v+ZwnaGIzAp2AS8DIOfXvWYUSHzOvfd/gfB3rqo9zsUvSp1Bs3JHTUBmICdcCluL1ExcGvn6AvKuqQB/xGyegGyWOk+khflci6cflY50+Sm+QmSz/btWNRpJsl6GmhqQvigs2LBmnxxSVLkuL7eWq5ifb0HgjWC1sbcej3/1zP6N/NOtR0ItB7RTEiapS5wvIhpHrmGKBUdmpy0dM4XARZD/eqtr2aW2DPCjRZgjykdOK7uRDVgzbQVWTxRYwz4sWnA91lzCoXpliAFfxYNPPXwjPWsDM1NwYKXU2detF4LzdyF7loCImdvdF/98sih3WjBjvFJxH64jsTxKvYu7kb+kWKkSLbOAlyjC1Bpx5sPugA9ls1fr6kaaP5w7HZtLqosRa/Si8elGekT43wFGYcCgY23NCoAYB1uHG2mVLVqvepY5tb2WfkahnbaYeTEeBw8R72XlVripmz5eZ0uNAbRklsx5MnZr9lDgJtq2iVbgVzyz/BCslV9bSxqQYfyEmpIyr1qPNTn9Xz+EZKLNoP86RuNCjCgBkexb7xcKpGG6Tx63tu4qIJdEtAnf4x7WEE46XW3MBXiX8x3S2zPieXSAJhcck4gUJex1voRMIg4ot3PlQPFWJasG7L5P3IZ8I+8WeTPNmj7wix0O6bl5u/4SEiYos7ysRYxcKnlmK/hni4QVfR1Up4wOeyQaxeFBYzOyil3HpO0TgcfEVpZoQ62fgCUdg8o5VeCWilGrn2Us4sS7HIWFtYOmCju8zKlgPnNvUSuuWJggVZ5TLm/Dx7ag41HBELzFDO//XeNzNkHWKg0HyoOu0rAZ+OBy+K0ep5w3OLAUpgl0wVvxRMrulKNSIBJKbgwPfZHApdH3yWr3YF2H6VkINQbd2DRymMXsFiby45FVfd4wBcWSEhDGEyQ/bKHgzJR1fI8A7gyoGt+q6mvMa4Q3Ue564rWcob+GMGq3bJPEyi/r7AJ33REsVEalvtuvs4caV/ptxJEaYhgQIN5z9DQLEcvMdO+PzIUgQrjkpNHSiiajWWZPmpE1rMSPcSqXtoaMjh7TDJMcxGLMs35yx6LQpKe6/nHvEBV1aM1K7VNOTIPPgIF9dpax7x+emIk65/qoPoX5njjwR4vJeU+BdWu7ODnMeuWs4uiSq/I9EPwY1H0AKn6L5Gh4LLLJPdmGLKa3QN69RD5O+KB0MS0KXiDGRBvidyDc1hsf4ZC7qp5oNUBXyqSjy8QZ6DmYIraFphLTfDtCpSnAGHVjT8rkWr+pIwanAPgTSKJXZ8a7OuzyR16YWlI44SznZ15nGz3ZMikPo+XYr5XXwAwTtq8B2w9xYaP2wIwX52VUIwaiyOwBqsIFCwqnMBeMdH6mmcyoHiHCsrJUYS8O8JONidDWTZey6uxEPGJaq13/Tm6TxwvZTHGFsRgMT3Vrlynwhtex89i3yep9mIwXcmB8OpXd2e2MHl/NL+Z5zmbULS8XwPqfkA8Jx8HD5pCMmmzgyQ/Ex2Tm2f9cWLWXLriKxE591WiguGXGk6jmGcHWKOKI5Ie1ltqUiNL2M7GzS/4lF4lD7DIJyeshjQN3UmGh5ZBIZtAppRodRV6GPvWgS4ybCDqDDXgwGPWQ7t2DmQPrgx4VYGAcgX4eDuB8F5g7n7BN3rKTu0ispa1n+6FKHPDkcHrJ+7AqGlMzLruswJ0v8VIgr1ec1mO5tmwSKW8ie6dnnsW6UpJGe37nmOBX8ua/KQjhSMOs3ubL3sULkwov77QjAOIL+lpKGJGg7K9dztAoQuzxUYqp7aavvDpIGnoZHyvX/wnDTHeycc3Bx4b+z63Miy4GR17FG2DFMNPaaEIIc+UIaFXrQ4LpvwSNaT6GtsZCofzjSbSnzMsuXc+GAHuZIRFNsyB0ZESqJhoSGRCQC+zcELY4pjeITwDVDAS7v87E8lupr+08ByA2o2Ic8g3aNi+sXwvbfvvkJo5wH1tdBnecXh8rJc5/QIxwSKVHIyH8CffaRUK/QjWDJ+tPMk2/H8jBuSOne2SJmlQECTCBwkPpoRcvujBEKMavC/Udn7we55HrdZ2Gj3c8JBbQ40UJ0QeBoNnCYLV3kw/1tohRc5W1IpXYT9BgMtn6H2gWxzq/hLQkIciukmjurUsXo0OuFAco3TO3/FxS2FX2oPMU5FR7Xfydvoq/KgRK1RDzs9RqC1eR4hghylV/gXNkt7Klkd7zfAB68SK/Gt63NnCF2TKvfcOptqkGHCaVFN4AsBAPQDInCUA690p86SKsFs13MoNX96+1/R+eIqw48oIWHsIb7M69jy1/wef6J3z2Q3/FS3vGrW1Y+ImlWIZG0QMs6WEiZwjU0/CJTYQDYOzOQVitumgbyxkxfzx5wrI6osAdtjBwDQ9zR7ADNOSo1z/EUgsHvtSDwW1P0HeTHspybSvSHQtwQK6sO/Huvh5c3gHaOQCixV0xyzOZfecX+Yi48yqy44Rd/H0q25Abq58reCXCrm6TOLEbU0mWQKRrZ3St2dx5ALUmDa8MovQ8h2d4sv04UXJ6lEf3QaZVpspYN7W9YJfqmUZonx+EQqxLp/b2CWoKjvv6iFPYpoZu9If+QSw55gHFnQNH1o+o6fDP+iAuzWjARTR5Kx52sBydPGVgJ0yxwpv/4kk3gw248afSZtZ+BsJf0CkgpFqzVVHcrluJY2bfKF+mgWpAUoVBCt6ttJY7S9UvEU7PgAhKxlLNKHBDkBnAs8szunLPeqrNsEtlwWWCK1z442OJfsX3e5qd4/XjbvdLMbHJmXBiO4kESTpcVUb0qpjmvAnO2UMgfSRIdC9GxQDWESufGPXn5Z8/q0j/K0gr+frz2hVDd8o+RDNKMjHdBOJpyRe4/xSLqU9ze5l29nwbNjvMYGfqtjS8DMwoe9+2/kJuPa7inxCJ4el9EUzE24MpL/fm8Dczo7/vGIAWKs9RUkhMHhTo0+ZQQeTkstq0PbRDHnAotsIEuMr0NeCXV7E10MPChLYFM66JJxTE2erfs+Sh9jzIs5xBuIgRoliN8FGWVaKDCuCCVf/oi9lxejnlAdVIu0a/ygjk0lNU61SDJPuh9WhaXMv26AkADv/QKXMOLSf6QPwrgY4m8NA1cLmFPxW3sBPQSfzkEAgQu5V27cMejf66jJfW60FUuikQp05J4B1wtWzli0tq2qiTzshte9Cwh1wqewmrg73MVCgl46lUMD8JYEjS8369qlpVlpJwsGp3Qpj/DpjRov13GHvo/ndEKJlBrBXDXT3/9c/5M5iV5d1njSDgE86i+800uU7XPkv0ovX1KSKQiVf5/K3bhDqvL7qFMxZZUQ3B/s8qG5y2323cJznScbuccri2ysmhkP0edjtDp8D/Ts5bxcWLAQIgcTstem4aIbHGVHwfqCUirFZ2QVxIZwOSYYC+7PRAHHNdBJqfowkDJY007ONzOR7yrqU1Nh+/BgVLi5DtmPpRXOt8njUrWOm85zOcOZCjvi8iSRB73iDCbqlPCo3I7f5yXbJXXCOi0NtIdOQh4hT3t50OaQq0k+vMKAgCcVUH523jYriLUPE2PRxLwXE+YkMako91u5uLlz6W+Y3IQcaHDbgdX2IWV47CfS8+QiKuVPGOiO8zrbCvYgDolH31Nq9uNkXEFJbbT0f5cnHA4KVDEiw16zmPHdw53XYYF/PUb5v2OizHWNxZteS+72gURipAwQ7TCiItS+esF7m+4kExm7UobxyGX9e1fAbwb07mS2txOJRgxYHRLoE/b+Q1mW6qSP6v6/IDOWjqDLzXl918+wmnUjdJ8CRsYdrhRqpyd6yJnprvxB69jNUGZMp+nD6Xf6hhyc0wopoLMVZpf+sv3NBnKqBJpVlKYQC5j6QsAD6zApjqkF7w8xgnjmqJWOqxOPY912UjSZEi4jeVphqh/1QqycGYuU7EU14eseYoldfXhK/Na5XT2EocWH9bcw4g9aAj4UWRfLXQvKxy7ajbvZSfELfU7GNozOWob2+Koi5DRIQehiJhDe5hnsgYpOf1JFWA4WBkuQXoTEYNqEeabiSqPBVSXRrDtAi3SBOmQkfuyLCc3I1Se7qNx2DQ5QSWVxqp6ElFtvwtrLhTSOG5/uq6nkHnSeGpMGY/or/qnD6KUImeUXlDhh1S69RFp6yagkgHoLo/o1fkH1TqyiueEVKwxripAFBbwqHZbPPwZpVZ/X4N8rPqin0lwEH+db1LZnguWbeqvFYclWEce0rIaRGg8J8zrTDpkQxBuuwYy8nBUOs0s6TI+0qa3b9cdPJsIB+rgwDnw+mKqOr1D1j+1MJCrM7dhxR1c5/YFotlkzKYdk00oEPAFzmsBg0lxe/sd6lv46lxD4oiI0cVK+GADFYvYFxfxiBykyDY70wC1PbSbniwjbli709a7x7O1Fz3H/aMHa1PsqfOj/TLPkQ7ZMlG2PrteRbCSsPTh5fWgGdpyVnnyCGFnf2iuz6ccvjwvFVbL9sXFal6AP4YX+3pVygFoFsbHqTrIAzry+RhK9yP+kmEKezK8bNUMxJa4uBFoNlu73xkcHy82LmYfGITIdi0Bbxl2fZra8XGkwAGDyWkruu8gNSH/Rwu6OCoDz1W87zysD8RMTReb6UTncBPsWavvgjElFNC1OAzwg8DNxDLIg9tWGMVDfQD1CHvRxhOXuKbFf5PeyQA2Vl2JL5KjIgNVAnUD+7p98JfsBq2UEnLVx0wl8vcqMFPzVX8uV4Byfyw3/K1i+B3u9ZiW/6JQ/4SVkH1QX/lbzg5cR8Tc4dnL+iVcY/nZUmYE8xsNRhzmVloD7xqYsfqMCqa55HSapQYG5/RyBvVrRaEcN1+FMSTL1nkqLiyTIZZ0yOnsa/9Qy5U1VrCKeUVpLROjrRbaOBd9+hsWo2P537RokuKRzg/9HuIyjQVpP2l4JsLP9EHdfXVsGqSc2IL9b7XQB4811YuCDsoo3AtEWggk0d3lrwLY5EUzbuObc1UsrRJWaely6l+qAWxzAcEMnU7ZjPkbshgZVFanK6GLcgUQwwv0XdSpxWMt8NZbNNWPUBPWm8ozmZThwpwBv2gdPXVcJI1rVk9aVWGYPw06M0ntbD+fBTrXD4LfdXLAU5VTT2Q+nW8rqt65gZOszOyFLZLfSCaiHoM+PtqDAmpc0GcZTCJJrUvpZxk9J9HpPp0kfwV3F7xoTovcaNJZnyaPr0ki9ovmDTnQ+GDLake32cZ+Cxxd9TJTKHcChdt0lS/Jot14X4rzb7KwtOC+mqoQVFnsg/Yg5ATbJqC13uzdjgbhdZf82jMp/NRgBkR45XrVd2EVIvoWwWnGOw0SyS73fmooWiSvM60c5ERHyGEc6NuZ/3p/AsotfOKMaV2pxHMvQxKr7Z9rZy111kyJ1wKPAWQV89958OCCX6WJBzjL7/4aorG2V/5S+UAtW6YPS0qiQ54OzRsPWwSR77XjqsYNvSGfN735ZhZQesy/wxEXTP+GR2TLRlwaWJz9TZopOnYevsjgeWTMncqAvcDDaVhivkX4JJFTNbA96SJx4Q+j1v++e66JUq4Il7ggf/0NjANXooDvqZ+elPhCtM5957Re6gsLmm24bYLUAi1kgxtclBBwn+9ymcZ+VkYKnGnC4v7YPfW1xsM7pVTw9sAQ5P1intDWLpv1uG++eM2413FkCVdFJ8fdyM+ldVUiWHkx33JUdF3WeGwZtjOjfKOBsAL2wIlo3nDPo18HJ3n9ob8toIEXpVbSIHFhzCjuYAuIHg3XFjTJ97i54v02hhxF5FnbyxgQKEwhCsYOfqPIWeGuNVanOWdcEbAfscwmd891XabXgOwOUYwjNV+4YkFlr2BYyAve8FCdL+UYqEP1FfVMauHJfH/FNT3g0B6kILg9ylg0vWqldty3uaKfKu9AHM1ylKqJpIhiLCknzRBL/VAf5wV+uyDiWLvTBM5xbtbRmCYpHuaaaAR0/kax11QJWuxcJ3AUg0d47RyHM/SLSEAEqLnPIKbuuRNfZKuhSnHzN4YSzwuzkqvTGF4k8nj7P8oqq27xz891wJc25mjhOD+BuC/FI39vtxrdlyMPnulTG2WbE9GmQ8FnAy1D5aeBikvd7ZyWkw1mQGgXfw2U+xTQr2R/FJ6BKy3JK/lGQBXTUFZNSuFpVJ/sYVxrLa/Kq4DI5JjydGw7Hxac8r8BI7Gc/CBHW4GbuS33Aw5mM/InGyZ71PjGM2YGz3xdukM0jR0yJUWp7plBRuE+iCC1B7IcHVq3F/PjMH8UGuj0JoVmPgdBz00LN1VA5VaZQkzNG/+hebX5OYoWNUbc1Q5B5GuGU737kISTw0U9WPyfOxeTuPBuxfdc92/ILZYLZP1vlIiV4IosffEcfa9Yz6QVarlzIOPcno+OP/gqibgq8CvwdJGq59qTPRcIgK9AYjIRUwwolo6cKqbD3CiEgcDcliZKD1cvylG80dezOiAS/NDzZc94+BtVYXxaeS5LUE7gWJezuBF1KRrrf6wFKYbX5pxrFUpL8vnTzlnasSmvfx0MOLo4qko/FnHCDF+4aS02X6uHxxr7xuxFTUhmEmpMH9F/pd677Jby0BtanYvphKZ0OW/tp8j1xJQIOzfrXI1e1UIEVWZCrFMF4P8vdx0OMm+10d4VuM3y8hQtNsHcMlJZdjEkxpZhLwp3OkNoVzBie/w4wSx+Wjr+iDaJE/Bq43Lu8wKo5QNzOluLPTEH5r6dUWg70rqOCrZmg8d9P/NsRuhn8wxfch+gksbigL/wijB1t+pCH1OT23TQA11XFXsIWdIWgg3v4ziEmug+7GaL7p83XMlf1WwcwLxLY/MHEj+O9TFxQqWt01p6zJUjkjpQce8rNjv3tD+XzCgXlUVhXsmyC3TLGHOSoS3Uch+IoZTF9riA+dcMYCL9KXJdtFkyBi6uNmdqOrgd26W4kaF4TxRZsnLjXcIhx1SVviv1lyUKkTmoZpnJgw9tHYxCI1opUG0fSvquJArOeOf6DMh3kYzw8JLGyUeKOejitkwTzRoP/LhN7yLyisKTOSk0IiQZK/RZUZbykQPPvAfD8mALANGYIHiNSqbVfRHLP8ucyibxDslWR4+yEJb/Y5YxmmKwNAB2kiu3mIpGTVFTnXkOzQL1mv8Uazz/ZPda/ysgKKNHaX9khHXk1Wie/wj3xJyut4ZElZ77XgevyPqjsmWF6/NjNIiHqNayKwBkL3Ec3MO/B02Ohga20sgGK2/TRsLWJC1IcZCbDGUieAePbQQ/ULfzBUTbz8uUyZUuka02IYgdo0IakzafVn3ng8Fq7BBRqtyibaZMZaqpGtjdrNMYMbYqitdJ9TZT9nUkfGWa/Nc//7VjijmrIy3zTtJRUcgHDtxBzTLkNBw3+mLQ83bfzbGgibEf4vF7fHYuNIrs5nc7aTFr73Aypw7n7ZqkTkiMVYU9c5iKjYCJfSLsPe3B9PmiHRuiRpUR0Eg+JVBe+4FVH7gEffrGZwuqvOjrkZqD9NRGtfD9V1l+sQ7K2sBigK96tsQCO+4KSOlrrb4IIJ2E9Ut1ue3Z5SM3ypRtgiNJ517akLOQAvsjUGnzF2perzK/zYefI+66KPVAajZ82CQpEH+mmi1Os8AS//Gqdm9vzxoyMpdC6F6k2C1UBl9XlFM8ozWCprMunlTxr/xwI88cBZ4oTS+jU0hgPEMUmUVLKL8UesyfynJs0VcPGhek2itCw0ZZoEgd/3ia6qpPOFxOBSyopOthqjoy/36mdrIMyMvc75NZkjhM4YyK2kZsxqYNQUtp4JBXrw0DvaDsJGCoNikKj/o3tqMZ1i/wgBkX6DfyqEY28fGgHT4t2PsrW44+1PKBm0MgXZob6WfXmgLEZL30cPwRCFOOadnK46Ii04Qa/oSBtAEUJVNaWEJlkqHWbrz2FWcp6PZYiGSx7ye1ZJ4UHhPmSY738eG5Qonl9K4Z9Hbe0veKeg8faA+gWMRx2UqgYfghiDPN+gR/WzI8UtJur5Bji9HsdjZRTEiJD+OVFPVIfhZatT9XLQnJBjWLrMjDN4nw3jMMWvATXidg2+JPyrrHGYM6J2IKKguARQeejoLftaqY2PtC/cfwg7x83LxeQHjnau3KrK8H8zRhU4Ant+NJFWih3KQGfqfELDpfB2nfLb67CNQwLrKaZnszHjhl6m/8mwR3vcVMDIBZJ3NwhwiRTUKM738SYGH98Tasjg7Q2aFqv/kaE7lVUbgi/9soaWMHwcIAyHwLyirU5+S+Qz4P0O4Ky77Cd6Ny+cyZx8UEC8uc/43zxM2Wq/1eIf7woUsE0Qzz+rV5qvEzQ/j9L9tlfsi7e6u/uxGBstCLRZEVo/Kym+ZrzF32NdYyci/lL0bEb4RKJfGBdfbx1jkjHR4A6hSPzqSzUVtFoC+5HdBjQB432l5DC61LHPWEd9fpdFvABJ3ANGKPUorI2zM1tmg50aJ4dhm7/QvjgLt88V1XHEAK4wTrR8xtPw3I3wjeVdxfue2bGy4A8srpiRoCab71gsTgW9INu7pPcMnJAVTVYwiLoIjBXvJ9a6mVEPg2hLFS2asI8t34wGmTuOZOCmdQFnggp3uqhJTXK0pzHwasM+Ax1m/kob8ZxYpKKfWmmNJD+uk7ygyUgO5EC83U2GAALJjigPzg8YewDRdRT3iF6AMND0I41E6eHTJ1AB8LPAxvC+iCn1KVi2zzOaA1eMW+HUf0tjmyTeMNeiarqQNk8ajlVOA/gaM42QHB42XXrsTSqDdBhMmMppGSf/VAS/AeLErlL+n7mKSsds027aEOZrtcdUSDFVRmdrEsWrPbIki0+cCRmvfGDY8AmS4JWOsCcA5P69NU3MwEspbZuqyWLdCUkN0hR/h3X1gxnIwU5EStue90+ITEhvdPLuW+58lEHYoVgCwDBbYO9V3Pyac8lYHU0bT5126HEdarVipIKNiOlOAFNzrPn8k0XmRKmsJ5cCFVXd7XRO9h7/ya2C14ptHKIlzNpJhAlNadmg9lcwdrpH1C7bMpI0oiBgfrSXULNkbZIpup2leYUBS14hKifddLcw1KLYqwCQyUJbY9LcNygTcxVaj1lwBMbW4LyuHTNY/06kRu46wXrKn6ABO72ZtsDI0c0++1w7TQaLkdR0iQrDeJxsmxg1uonts+GG+YNZzYjBqgUvlk5RpqByBxB74fIUzoP7/p/PxIgwS26IBXDuSKkscLBZIEgNHeoBwLLbgjzwRMKhbSvnEvg2RUHezp4Saexi2Ob8/WaoMyPf2bIxIgTDshDgA68wO6NsZDc8QD3inNH+xNFKCuxvtDU5RkjExEk5XM5efdcIoRy0o+j1Q4hwnNquznErcc8uuP1o1bOnTCJdfkieNEZrPsU8oNIZUNlLU6Gw+2c3Yje1s6ZKbNTAfLKu4H9cqvnJ4E3dEDO506eoXV+GnzxBGeG3luNGUEUz9bJh7QzIPJ9SP1wxYBdfm9jonpFTrBHeLhcgugZpIU0opAV+kQjir7IIudEmcljlQ8SL7nC+4M5pugjlIJ8YPieminTcMvWdQXqZdlLb4H8651Q9Q8RHyvTxrNOeApsF7C4s8o3xP5ioOsgjiOliir78gHIk47LR+syIVGOmdiJWuNokCRjIBPW3ppg0OkyrQ4OG53RWZrX7k/OrtiMETnR5l9ckutQQ8pcdgu2k0o1Ool74WX/7lNYy/1L83lrbaCEVdhSI+r2lTPUkvPlGfUODRYpbMrrfTOspJ42xClWbYfHu7QbzU6bAhUopFL00sZlFtSFywFjml1WVBBysKk5Fzg34CBJcZo7JNl4aDCpiAAbq7/PrXFL9dSEiMkmDqvzIkRNJ57UoWR6xJap3r71nifM//cvhJPmoWA4xyeZD48vM038p3EmbSCO6aKIWgvaDFbWlZ2dtmPmVvPsgIt/ovdpSWn6Q+mWMBA0NyFt1WlhT8qb/+zRsPdm6o09ExiGtCaQRet/1sxccU9Jfkvan85uOs25tpD2NQIOj8vg9QnC7mfX8nSU9J1seMXNwyyAMI7xezK3VvJtroxZo0tIjNde0yaNBeKlOkdAZZftRtryq+otwreevH8opUmPh+8QSMQEGVDYKuU9yaoHqannbQXAT+IjcRH2zgubTM9RnzJsG2Cm6yqE3L4itzyfqOhrVVspWmgs2zCdU6MWA5hZLcszBSa3DkhWykKfJy68gki80wxWismVNo5ByzQX0KcZRWZBLYlD3qGC4NiDClsYa4GaztVFayolYSgu3bhaZ7UrLXFVQcUhxIgrg9b7+iSNar3dVFFbLYbRRCmz/Aji0rjuS2HdwIlOa8sCXqb5NVN+cbenuh5X1Ph9jZzXPG9V+k/6wWlZ9lGm/Rl8qoG5tiAoYCHNXzAffnEwthRMNxShn5hHiRvTsIn8PKapU+Jyp3npDo6l6AdQacZXKMInrXGahsyEr8Eo5XEexwxpKhRM9QsPDg3Vr4tP4fNJm0bHqo/ME6bKYW/iRbcb2lmLinz5pPxsIKYGOddV4K0r/KOpyto/P5az1d74DKtfRJJ6wvTH0RdYHu8Y1s5unPALXQ4fXGgZ+831/IsuoXEE5z6HaQXcIwpjeWHUfrW87by0rIj3/6BheROvBtGd/E2e8vG84eS3qiMFVjcyW9syX8J/P6P/jLPVt6LhAUbnWGH3VQBNeJt23jz1F9Zi6pG59VOyN2k0NporD4c3qkd07EztlwdymubPvXG+7KnoKYdUjLIeTAA3yIoci+ch3OuMPZ/c8SBuTbLfYITVxyi4C93i+r6xUlvq84/dojquny/3houyFHgP7Rn0dkDEJW7UyqkxLXjU/hC8cdpmFK+w2jXh2f38PZyr0ra6uC/WknG+lN4U8p4aW1PUQ97Yq2ZmoVr5XaYWgojTHFX8SLoGuqqGEPzCDt0a273YW0OBpx9Vtm1F6I1BxYn/pOil1se8tyFfUWqlT0m7WXLgsfMahrfXF8L/ZOvslIJUTBC+3A/JW1cr8VgRUg88QGvBRlP238x5QcL3OXz3eccqqDpOB+9f7riMCdJ34XOqVd6ax6BHQEjgfpMmL4LuU8PosXTZx4vJlCaPG3wmlGOy3PyoNxQJEqAOEA72wmqKHmEd0tYBaTgnARROHgOTqzZBKjKHgqHSxhiyGOA3w/sW1R9hRCAX8fMB3/8T7RhlVqLfWg1VfkAJUoV/HXoTkFvVyFbwru3wZpnJTwSrd1SUuUKpPm8YktCIejiEEIMJalPBVMCK+Xp3bMf8Lm5NSK1RHfli/0M5xev+r28/I5H9Jd3H2ndLEpR6KIg+pAdIdXB41wzsZL/J3o+REfMTWhYJgeA+6ZDnw5A71stR2e4c4axvLXgImhnxKXRbmIsu0iZAXy3PU1clN+7xx3ydDSllvyak2U/AlAo73jXf++Lw+AN+JLZozVUfAOHMS6fghgM1tfZHOK98WKGeOExpbBPBk2UHMp8umIrAjabGOjWFqBYeQqbj1gGP8pWUhiNA4RPrb4wkJH9ol5a7/mVXOyzlUsZCJU76YJ1QPgvy2CHfOKbcID41hQmvbpLThXicpKnxyW/hsxzRRt5BDTRF+u6L3/KgmMrQZlmMIq08+mt7bH5vzNmppHsKKYIrZRb6tOPEB7ZFwfB3WMOYUKmsWdcLdungpEY8kHsMFrrl/8E/F7jYOezzwKUWTzge3cgq0e+m+vQIgRbrZyaWhF+jaQ5BunuCmbRO+ESRu4Mtok79vL8ke60pzMU1ravJEP5hFNQ5hl9SBareXRu15oS3x1kA63Mbv/bOjwZ1Y19MMY9+EvAfD2SV7kvdRAQ7RakNHClUEQP2Er3jz9dc36VKuPAYyn97X2aFtyD+itIHUqiOSktl2Ev/K6x2N08q5yVUrIi4Alvme4XTqhBvfYjx0xxQXH9SJDPOAkI+oZCChxwwFxhqq010dLoBkaWe2g4oQZDSLxfUlPS2TBHYykLzhpJlCeGUcfU/u/hTHyyAxfkZMqEuTe+/BN/Q+d3HrCqLfZwDHMOeRA9hgwmJk0qio2XEVHqxFlza1ybajOm1J0ilmXZ3IAH95oufZkdempcmrwr5cq6ATHdJ4F/sGOiPhSoZa8tPHNyChXkt6BarqSr39ocpCWwP1dsOL3qCfIrVBIoC1p8KB4jxbbJFe0V5e9NKxLypeemg0YC+VCr8XG6/hC+RjXKSJcFSIa/eVJc5xBJOJK333yq/Xt8N4zYZWUP2J+d5H/+yvIYPiFCZK528NcGjEDorgYMG3An7Hymj7yL1pUm6KGSkjhj6IEZEVS+u2QuLldFhq1pHoXWku7VXGMgG/sENdQc22tD7RHO7CoXvu13fhvenjK8pZM+ceD7N0sg0yvZ+SP0mUeJ+V91gNdij0zebzs01seN4oBGcrAL6eekNdUzZteyivtI8nwsW14d7qXHu6OvrfvosEYhN52v/6/3srPITUH+QTHVrfiIu8bpuwVygB69vaBzqBoW9MxNP4kyNjqJQfmazFAMApdgIxYI/C+2HA3w0CJvY8U0GT76GvAaPtTibwQ7H0Js46t0WztGZh14/EWgRA8eQz6rDYzTWljVNy3NVOhN8vFMIKBU0qxCpcdSNmX95/q30AH/97LJKpBDk4dA65r8A/15yhbD+OEGqN0CG9Fo/CUgSFkzMr1TgNMnt8E9i+zeEi8L/4RVywakNA9ItMMOcL/SbtEQ0iRWtDRuGQctLP1JoW/6oVYdAXpe+KT4kS15bfhNi03tr277QCGpxTNAqiVtL4OxGStN8ZJKXI2fkpQ7uxsDYiTk8jpC2iHOaalGMOHjTrZhgs4FmR1n+m0vIsI4suvWry/L0uc1U3LS6H3wagvTpHoNWmTFtgGzHSuLnAAzfExBTD9Pu0YM/4ItaBJLtYliQpHEJEk+n3rRgvDbUbQ9r2tK/sZ0Ukkt9l1O8s5YhWS/ZY4jyv1CZqHqulddz+Rn4dzkMtNHmAgdflHxL9YL8A2cI59St7bnETgBlbZ494SrX6JBhFfmAhsl2aKKQYEi5ZD8C0VdzszQwfVtPP5f1VXKx0oQdCjlQti9Lu5VpaDkkznR0Q+9BHGZiiDADoZFBNQYqDfhfJ7Nt2Vub1Tl0RskSHl80rQj7Cs00ic22Z90eY0pT1lZ6u3RmEVWw1u4T8z8uLojfn26Ja8DpLAui6/DyYvv8bBSFjqzdutbtUUUSrGxNhjDDaerlp0Y7W5ROJhxF97GB/k5W9Iunmya7UXoA2ukjiaQRzCngcRK4hUPttGgbt8YJXjFbSeYrT+GHOsCups8H8KDVNU5/KdHTFGutRN/ED58UxArELpN0SwdgHiG4RGmIGCCq5LG3g71E9LGsZiOLiBFv5/VOAq5QIlyPE90987VSU2B2R7f73ZY1TrRLTVAJwgdusshYvRyws27Q7D4JzEYKkpgKUdJX4l5p5m+T04Pmtq3Wg55r9DbN3LiIPq9yQZO0PA44Z67RetKJY62G8eM1J+jWi2cmN/x9T+uyvXoGuyAWNe5+8RPSXIhq+N89+OSrRCMc+aslwptTLvq/X5LXPPkPsatu/QEGFQmSPCCeNikTwtfyvvqXhgiyamrdBk3090u3DMoX4tu8rlyDPBx1UZTLzyBd1tKgXOKFEK+T/L4kqXAIey7I1ECOIwuQ9r2jbJ6s/JIIQEsW8wLXgACBZwqxnN120WWK7pwUnleTz1MaPRzo1WYG4+f41uVkD9eDbZG/IeAFI8Tzaq/rsv7QuLna8T/bZcxWDxWZUQodJ0YcVp8PhJ7U59aCYqXwwuT/oAbu5HWe4/ZZjjx3V0Z/30mmd4LEYDSLf9be+SetHPr7+87ycPguklPXcrswf2pZyGzzJqTmG4wsKD39i3VM59H/4SCTsVBj9ixs7JmDQ0DC+nGMQfmZTYcKYkGdMBoAqMut7EhZBGuB4XuHHFiK+TxTkdOuiPti4BfIwIoKWCOk4BWyhmzqySMucHFsDzU+HGYyqep0jxz9DRy6FnJm14cYeCOztfkf7tFk7BH1UXqES7vraJQwXKQCdNXPRRFrbIbsEA1OG36rxwvzndmyW+XSbMs2XcNHcDUjNSFV3QEzsZkrDHkQC+x3452matSF3cB8FaymiRDoerPUwfONc7/U3LFuyuZDn5laDgfNu3aGJzWpU6/EF2YEcybCnfTPg4IOp0lj+y3AJXvDfghuaIAM7ZKsgebRFZcdqLB73g2nrqnIblom0OTk0g2gORStfeTZt/aNYlX8UFR8Ys7X4OjFrgwbPpY5TCgstsVTMxCkx1IeJCfvMkI638ZNGs0B8uvN1ly0tI5rlaj4uY7i8n+Y3ws9q6c8GKxkgr0mhpKrv/Fp93Ot5mw5gZdZgcXy3ZxcYNFs7SKv0m4GdLu4Pt4BguCWSCWgIuMvyiV2UvwUx7O30J+AEWJjpJCyE88yVg9Ux6Wd7OdIGQfwDeMjnUodR/5gQF2B0AuFGs2udAB48HDqYcSrH/dvV0zfbU51Cjzb6HRajWDQqlheKygMLzujrnOujYq0lONJzJsWFLNS7pFLAfwL4izBkdycATB3CGrFXmNydXdSlvoTcDno7qTQsahZtOxoQr8bPuQaOayi8TINSmZnMjv9eviiJdPgbdLxB4aqTnR59ILe6vwxc6YtmWPDqjYJQ+eFd/payq45U63QwFhgj47716HsrnifsnFvgw3FmS+BRghK5uBqrJ/y/jdymioblrjZzoqauU/IrCYdsXX28J+n4vfcZnwtjhWF49vB+39Zdx2PxOUQgt5PNG61eYI6mlUtbN78BsetOVut/Cn0TaPIlY2HyFB/DisiEiUpc5zt+8h4FqYVPARAkWVfArBlJtMfg/mBimS70j5B0yKiuZvHHU6kFTke18oVnkEwG0AyfeAakl3fwo3zL1TuOfjObmgIDvBMgL6qdSBBBvllEDWTHXQO60VwOferktBhYvRCClnrfaewDaNOVpsYoJcG3o43EPwVi2CwzFGDS/eqOAWXJmyCIvzGHw0KoH8fGdoiQN+mfFXeqW8srnG5ACe51g3aA+AS4wULIUUuiAEquiUL1mRTWHtUjKw5qKziYMTj4mwriGo9hEurWNsbvoU5bNBMdsXluDKqg/fVaHrHdjpHn+iyp3M++Ox36c4TX+hq2e9uCVMAfxqpP+8+dQOS+8P5SyziTVObhKPti99170k1fbUFG90rjvTppRfIK+J0Pl6ln7Tj5L2v3vWOYBBC6Ah01SIYaj3osUSgYY15eYy8g/a7ijE5xH/cXngHRFVwdZ4/K4DiyQz+JGloeh+gHO4k/UVijqaKJmjw+dQoyUBVLXgvA9VDjj3Mpj5jPlknafxm8WNq3GRh5bz1JzQGAckzvgVoXiQ5u4uBwyWoJEZ4cilZ73zGOKtKi1mVNRN8f15VnH2zAHuy1/OuYmiznVXBMZ06AZu4hX7TA8wwXuVnz583JjPSVbpmawXYV3EJqK67UAu6X6QFgSyCG94E75EGdNDZ3VSOMoR2iS+CptqYAZ0LfthRIU+EofTrKJl78KRoUCYCtLoUR/gevMtCfunzhLRQGOsZEAiZI9q4ylRHVORpAaZ0Op07mST/O+1a24Up9T/Vbm8IVifSKOpYtl6ryDeQEjpX8F4FwGbMloYXnH9e1dir7pDJD8g1R6amGi4t2Xh/HeipdHv1P+j8k6omurdwZXHEIc4IrZBjDMa5W4usGme9LhKe0djBGn6lks4xMGiZn1gS9b1DbCu+RXHkgi0BFwTrez6rq3YAeUS2twoyyxXv5+y/cV7+M7/uMo+vGTvErzeVUIdzgoVjH6pHQ2uGnyqT2WA2JDt6bimoQDoa3C3sNlIpcVeGIEHHKA2pwGokhzKtChpM911E+Js+BR6FvA0Ler6QGrrCKQ6SyslErPIwtYEOKyI7q5DjnpC7SvH8V6iURPQr9AhE+h5T01n0mlwDyrXvgY6HsuJbBChmXJwJDw33Yc9r0V0h7muFkYYucg//S1R5R/OOaGF6xMiglLY+B4KgLRN+Qnr+mhg+ztV6cZUBGuzQPRPuNkk7OLPU8zMae9/f+CF74ASkJKb2D10BO0ivqewWnluUxn0mBCVaoJ4NyZWNKcJ78cHM1fGjEE6ofisg2qQQ40AG2JMGg5gbwuNY8zZ+3FeymmCXS8SPZSPOmaWwh+v5ZolDOJmET9buSxE9ZyKRfOxG+vrCJGZbLw3ybsSu96TB9WQKX5cvbhCH0G0QhpOVJd79gd9kVMIXgX3BpLg0l6UmScqXEv1wlCUm7GBjhN+jK2675C91XfrXZmnjNZrbHZzjBxkrh/uhHxlXUIVGmR98sRHQDSrDvlLLzdSeHr4if3jbkmWEuOBzS7QuuvjET8F3qBxeHDz7NFO+OwPUfmLSngMvq95xIevjp7RRE1pn/TKXf22HQZswEFT2dcxvkhSN0eJ0+iK7dOMfJKQ6wY7KJZc0bH53nLVpUgORfL+Dr1dH2yzskxv7/iYweBuMMTyabXFhhEJgcA6qUKUdGUwEuFrLlUbWuE/nZYYHXRNtu1q97kylpmUyvb7a8SLJ35YwaaSR05N9TMgbi+V5rrmvCCvyRGxAwT7kxWFwFuRmVns10roiD7suJSV8/yl/PQ/8BOQ6eIhO1T5csGQoZvg0yEkpCaPXrQkOYCtn/lpQo2tSWbnHuPM8eQlVR4FQ2D1l47Z8QC4DzhDObKi8Lb1dOOhgRO4pw9jLYxBTt6nOQzqlGo3db2bWOAUHh40eVPUEY1cM1fHMjVl4c8ON2JX9w1tq5wEkrwRlV9fVQJGfc9GMhp6H9RiZF1r9UvPncLDx+VsESt8x0ZD6aY4wu99R1jTjlQN1tOIGen0eMW/Vca4UjaIVO6o0Mos7CqwOl+0rdoeUeBg0Or+5hJ5ExCy0hdK+EXW1PYtQpEWeGccVxPqVFgPzhrubhjB15Yg5ozmF7QZc2h9gDP1BljudnkX+UIjuK7y4DOmwHoStTTY6JmJRntHjo6Q2B4TNDohrVG/xDhtjvm9VXQIgClwDqRTB8i1077qxip9TR0NH2MnddtfFodUS3PRliMMlnYUVo5YdPf3a35y5y0xpBmanRjOJ2zZIGFdKDmofVUiEif44bb1v0wpLkRlOZjL5boJteZ/6b8TYSq5biOzH+yaKGjUVhZWAYKpaREjZtZ+WFB5iV5nvJ9KdxZoRcYNNbhP7Dq4mjJ4cgkFEJ+9JC8X+Z0XZlBGF9Qq2IL2X0/5fjrhX8w6J2aVJbvSE/UVtgtrJUaMgl3lXAUoADZxMy6SsQhE08Pu8T2YYZlOJw25hnAIstQvWHx9ERGwLWehsLv3P/Dz0G28vLXJKMPS4H/zBqqBHaxr4q+eKDuflpTADumgkwewUKr3DbAkYO749uO51I+Y1asyrSEq1GtbtxncN9TBaM5q95Ciy9RgEsf12ynugfxnHQi7VT9CKdrPm/7mKYOckDiSFkOdF739T4OXRybnGoHvPxXscVAH/Trejl6V6X6dr6aUVp+RftX5NXrsnqXipEdiuuZZSy0xsN5GYuxCYQSCrFiLUIVXSGKNzKVcW1TgsZrB1e0ciCbyychri4rBUhHYSeuqDzt3m6Ly4p6wF9rrh3kUj1GKB00yafx/+zfqI2peWKHlEu0T2PTVLGSXDwwHBmnYU/kQg6G+jwvgAF2W6JcGu55Ra2ijrnfQeqtEB2asBEUX4ZzVor7NFmnpmwAzkHAa/xB6uNwbJJ+sGHpnxm94b33zhP8iwck0UsqFqJ7cyeVCOwcmnFCHxWFFigvp87xwWDtwRXrnPmO0U8/oY3oheEN1SD8vsWGO23M/ba4iRHLKQ+A12guvc5yFbd8dUc7Y1AiWGW71bAqY/SxYB3nj610IyRiS9Bg7h6+x1yzGTQvhgMou9R4Qd3wn+42743JsoEVNFtNS5Ndac4BPp0o6hnFBwb3MqUW9cfpi81z4tcv8QGCPcXaQn6moGuCHLA8Uib28x6vxO7m/cUQTd0zxTRwgkD+i8n+9rCQofL9/Jx3bqi2sDLsRiemWt0d+M0Cu9nWfHCe1O0P3dEOZEj3gMSxquCJJjL9qksugLVCbOY+xXivBKt3zOdPgxPvUHy5nFvKsYKwVh3+EmiZ7WkT37QHqbc658GN8Wk0Z7Hzp+EAZCnpQne+6Mr3CLvwGaYBwVs/flvZurFLvPySvDOCjzqyCt6VEZqrq0Bsvx7R7NFnD7yvciVvTcXEaU3HD0wn/tkQXJ1h/2VLT4BSI1gWG6d2uzKrNQgu6rxhCg4Q7Vwd2V6KfiTf+rfJuCWxeKvDExWfKCKtvzzX798wmS7frndfhK13TAzoFi4SpV9RGLV39u9cd3epdOZF4T7+m3350esRKiiaRpjZMJMPH2gOHt1WjKCKXYZJY+JDkBkQ4ON5TAhLGGnUc/8P4Qou26ttCbxb6YDMtLKEqzzo8H0axAAsH3waBxE7pvSojbgmsqvdNp1OlFWvWxN6w6BYoqIfLQNUjITVe/nhTkGrvH6dARWKFjBiwQznbXY4oYdmGHx2rO/sIT81utFIm6qGCORrp+al9rZ2wstiyMSPwJvcbcsDeLHC8zYDoFvyu4gmrL9ZacNLHt24oRl2IaAHiM+k8DEC06FPtiuJm/m73sPIaAXYq/ntea5k7K+TomMNaqG7sVZ622VO5G61+z9ceji7p5j5KDwpjLGbBiOfVhvX/yi6yb0Q+3M6zLvsGNfldPoPwP0HdxLpBQZlL+QvGYquqSkIdqELUH0rwoKO/TaorsJdvlk0HJBeVnoWPMc/4S6CdCme9YxOlmj2Fp9B5sBH/DUV8RS5GYDPTdKXkMJz/MgOin8BRxIeULHSnUTUD+W2eGhfUViv36XegIIu+BuW3KQ8UyzNKiW+cukf9fOGpiaD/RyO88a5vcRdKkOYvKkolV58xFZMhlKU0OyrIDuNxnoc9D9WMGwyE8I9+4j7c6q+NTJ6RFfFmco6RRGTMs+F284vuPdahJ9RSMUkqtbiPshajka3XlBNRj17FvY0xLLH/zR0Eue2YKTkw+j4NIJ8CBAI41oKgi6w0inBEN8C+SQPJf16ZlzILXCTih+RT4rxXlRgL5XO7hGVB6cIkntVoB+NiGy9CGliWepKYYdm+AWL6H+N6PEeYA/jIVwW612sPTNkX+5IE7bFZd0P3tCAl8iAbQ8X/s2qlmBCw4AzWNvbTAr1Kfuz+wAok4hSt+aj0yxJKjSRP0KdZBXzru8nYOBbSsqxQSDxTIZg4Y1h4/2Rnyu4VVhPcvCBYu3vKPa9jnSNdBfj3ZHtrRhlmHnr/XNiPdzZok7CG9bJPwKkoZ4XtK4748M3RwPtWcqugpSU8myQRR9A9HcceJ/9PVohz8MWtce0OMLIGIyrEND2DP5F4eARNQnbe1C3NGqchTimyNWUhAr6hVf1Dc1+tNfXCqqqdPeFpDRy/AhbuMrZKLCoisEL1j4N6qM7PGcq2kMp16R8lnpHKIEfzQ/4LyRH1fFjJsoF5Ie8XENeX1nf1TFn90a03sTRcUud4wyjFSvVyuz/LT7hzOiz/o3L6d1hwCM2Rav8bBTvkuqlrYSfc+E4by3oBvdjk5TdkLF8S9VRfj4epyFiDslG0cUDwusbBFV1yeyTbbnm2ez5Ln7Ja0rgeEbrfZMfBUqT08eJWXOyAzZjoixkxmC0I1tsCUt3rebyXK7ktKOUidEgZ/Vxdsj4eLlv5/Aj1lJX//RHhJqsH57wtonO9TlHItvxnbqnRBE2RyRQUpYtJLvV+JBMRxFqEFdXaE1EWK3n1C/AiPAMKmXajNEg40+QbIelahy1VGFTuLCipPWvrYzdEyWxFT1bFpK0ghPyqGfd9xWrz0xLR4Jw7bVoa25m1bxVzLG/o+gaeKaRwplZYZwXdcdf00tUFQQfiFGHmpvfMMxV9WhEe6ojKn5zRC+FFRK9W6w2K27sXkpq3Y8CB4Qaq2bi96KgsUTbajIqGpKns+WLBkvOSyPgkzytZO0vdQ8KHyzgmiox7petw7U1j+8/5+K0N4Wa32+MEos2pxoe1tEnmvd9xrQoS4Zq6kGuxg7pydHKHE+o3CmfruAyjNazU55osZQw64I21xOYzr2lLMeI1CHxm6YHLKZVZkCc8dViFVlln9iOnkuT4dwiVvci7g3oql8wuyQPrvv++acyPZJUKqX5Q4GyDc7OBY8FulDB5pv0GHiZdz7tdV2TAy5sPs0hwmKNotHBcX431QC0WBlrbDlPuSzrB6BFd4wqHNNHIagJ1UvH75JnnixZ+lACs/CJo4E2ygs+XhkuCYtha+JCGnWfWZWDUHsplKA0q+fzfY+HEDgF5TlDM7TxHKUO4xF1fbyNvsZuCOW9zlSq0wQCEC5vOE9QXpyLKipk6Nlto8AIZutxDy+30J6SaIKvSiK3P7rEnCDZRGBDNNHhJ4RDS7L1lBLD0aCuDf50LmBPrdumNJ0XZT3RbpEFpg2//2TuUjojD/n/3Z3Io6DfS5xG53BxwKuOpI+d25C3U9kehz3g9EC1wOpQX9nry4e5QIOx8MNWbcSz6jKckLTwGUt9u9wM5nRCvByaxQxhhxMwzS8/Y3WD5TQUcPxA5J4c0tYmHg4gSArA3WBFfx//k6BwhShGwBUhANJbmd0ijlbClEbV/4o9WWKknIj1MAyvtzlDf9Bnw8ZWy+299tHnvVc3bX7DIaKWe7AYB1N12Ne07pJKZrgD9h4sWjRhRHTrnvYyTILg1gj7cYh60i7uNGCQvcQDJBopKfGXjailEzwfiK24IxeIPhxBrL7tK41y43ZwORmVx/JXH24cjctliTHNbuRKsDpStkr/82CeCH/i9V4rxBjMHmuzMdZaXPNoessb4asGzUUKYHPm1nRkq5Z9JHjP/Y2Ojq4SVWEf70fNN4q4B4FlFhEvohxOn9t8425HXmFXxtxiztmURdRIPCkyoEPN0kwbZ9oQbcaVwCaf9ZTB47gSdynKKxYAAo9UtpvMzIeup9HesxAm//6GjilW/5QMnmTRXkTbXV8+QvPduuSQTd1Uf1fUFSG4SrRMbn73eitXIf0K7PYdQQYAD/sFbpwrvKaPMEHYYrgu8+NCTxjCmsZ6QccySvRDafpEtt5gyvQmgheiBuuvxDDuH+PXi5d66iOI2qU2rHDH7tRZt4Zc8VZO8vEtmxyopm12a689/FoYnLfU9SdrpR7BfranhM2vGRKVcPzfHqi9lGZJdjmijGUC+0eU+i6TZYWVM2PUwEGaVHM6am+31wPoXqx68P42Q+Eofw6FAa5+TZMHK5P7GMb7iCgSb1RuPRaPrp5bWJghcUCuLLok+9+liwvzZBijMyZc1P3+jwiuH8Uc51vgMgHBZ5khJMI2UOyvMvEVxVIR15OYXP8HyfAMuG76jBuFyG5PW0MFK4nGtbs/XdiV9KRoO7YdoqpXXMB6a3j1GHsvKLi7MCuY+pT97NjTYGLWO50lTQevk1VyOK99NPtNk1iCwGB7qb6+1IcZrZR2fr9FrhDKPeyzeefXARvhcTPqKwHPvBFmmfVnFE9dYTOcj8NrA264S7Hi6gMeF9WTffq8RAeET6biZCo2rQVLaYDJytrUa1Spe/lxfJdUXOd0c1zcE+F+fOSiB7H0NnMSQONf1uh/yFbl9wfTZRsOre+ZGck0YOk4dVZVe3TdZgc3c3+fPP1D3a/9vqS2sgVcqvH/U5K6qFUNkEjOGpXZKqOw95plS3ZIySCy9y0Q1fd4EKHCyWcDlzicbO+TDBoThou6lU1HolEMezW4JQDBzFLEX/hFX//CZO5JHp5kngtcITCkb9BYjMZK1yORcEuqFqrdw9pjPPllkPg2sRvYdQ50bJMXf87ZB9BLQRgyZNsjokVkrYgFgsnSZ17KtCWKxVKGqEMD4l0fwkCqMJAyXAKW1yJ1C3ahHiXvKfbujSN+hSL9fRh9nPGDxwzUiOHvJLsjv5Hw/G2I2rYytrEtdRPIV6LaVTGoOYHMgj00gWdgAfgBGP6QLKLJU2tanDNZWGnw6ffAxfMQBYidtAWTFHO/L/ruOtiO6QAPmKxgtoV+RO1nMbdaJAZhOupexdo+xdCKMOsgkI+MGG9eRnxEncEqGo0BH02Q4byi+YHRJ+gISV5kOfr17EgGJjRD3TOFBre0nD0bdkKazpeXCFZARPw2Xuz6v3CBuV0xymrMS4wkKVtcy64Oc9qL+XhBzMVBATYPQ6HrMvjPhoio9r7X1QPpA+S6Z+3/VdbQRi5ntJJI1O8kSyzUC1rqi2ajzdeWtc8wza3foL9bntDU3PbRH42QQtGNLYaBHgkHr3T5PobqN2QGwrPE+CaPwfp0aIcADNC8qnvZyRWHFkgtDnJ6NiO4nG/TL9AFxbULo3rDFMCFN5/N/NpLodlp4zBg9sHyLz87rodCX2zJnVuRkLpv6FS7WWlgKPle31l615W7d2uL5STsB5tvkqpywgu0+tYac2N/A2R5D8Gfd6aT0xt+GisAyNLt1kXSqh8XhAwyT2ob+/z2bFr5TUDsO4cLV2aaUMQHgOmcpS1cs8oRMjlMkQ+9MfgB8NkAEjgWJ7i42DjOOnSeYUsdaDUqEmL6lfDVbcblQJUPcMWZxqILSGjgpX4+RSMBUzv1CV4tDQGV4xH2hpH9LY90GmRnoPGL66vPRY1JoDhO4BAM/aNKoTbN7jLmhTzcZH/vKMgEUcUeeSK1y/DcSRZAezbobwRD9X7GKmbCxH5AocKIlEl2wN+pzRO0HUFyVccNV0Ce7gvK2xKLA8NaGBmDZjEiix9p3EkBNBTiuUKvP9tBs/xd9eGG8a0ni4qli6ERT2BDc1Sq0/bQ3gGp4dB3ua1BBmCSrQbkJO9kJr4sJbCBXHQiz4X53YKrJz36TO9nuWyfsqBo39QIqxn1uXcQRblRomHvCd+fZKIuI4utAniWLt37GoFgP0I80PShagqRd+ieJsAWkpmm+s7WoUFTb+mlnR2TyzKGnFkuJd0XSZOhaSFxhGO8ToVgu7uU7TlTFCYbMimZKjUCkR0QI+385GnyzGhozeGEc79jrx3ZAI5VSTdfU5wJtrLFCHC0pY0n+lGngzuQq5beaOtGmDMrAOokt+paywN8oQlzYh+NYXpxqbw3lta+JSjedFFPZnVSMhV4frAYhprd0pWpF2+nmqicsHxK9WQm1JDx7ik/H+c6JeEkurWzsKU00EU4oVmXHNBLWwpd6yNaU2zZioGiXzdc6fROVLPgG2hJDwhGtWxI5Tk2+M2mxmp3ICJu85Rg9nTHVqIaED/zmn1b9TbX0rNA8lA+euAXaYbxKRHVT9aj/TU3LCyji8U9r24vYH9RS4WJb0CGoTX5INQgKCOeoGsJwsMnBZgwZCckN93mGDm5n3AoL793IO5yHMl+gnHKuN8cxQLbZiOSXUnnI2YUCtN7bVZ0pRvNqEF3ZtbPkI4tvsVAo3Qs3pBqoQEoFdDNkhwFNk7QS3SmL21PlDN2f3B6ZjThe3SZXyVus9jlQtj2k5tuEyDznjGFHAK0paZ9b9eO+izptfB06oLjKX7L3yt64d79W6HdKdwdrLDHWhFFqmkf5Fk+sSWKyAS7iY9qwfKh8Ka9jMbR5ag6MFYxAgQpBZ4IoViEZTKgBRLXX/IURA61qF/2cwEnWPE0qjwolMB6HFtHM7u8yG2o0O9ZQEOZUbh6qIKGO+OdLXVaY6mvHOkayehpH/BqdcVWE4W9U7+3qwSQ1WsFZXUuhHzj/qZW/ezjouXXe9AScrItF1n/GO8t7+r6ZtKMX72fquSYsIzjHhCKYd8U3mLY5h4O/JdEZg7nA2nBoyBINVLF70Wnp3qI0ZDqPbuXb5Dy5Afx3hrXu6o6AJ0ibz8ht01g8jMhJ4u06jipG/e81dnsoSaz1/O11hEXK3OwYl/SV88ZO3Jk4NyhevXhXeNqZ1wsrYkU0/eubW7mJzHZilGwvr51FK277HOPfqc30b3Gg97OytlUbBYwcTYnhU0S7USog7xGrkBliY1RtM/X9W4Y6Mehj8mUEdvf477xFBjm29OLgdjP4lVrmcssd74JSii1pUmCkblfPDOwqNR7jxZH0+OzyCf23yTEvCkQBAEDI7nulFd0a0Kj8IPB75QV2m0lDqWdKFnFg7FfLma+ZXzgCoI3DIRoq/PHa0jssL14BbjFcJCSRXsIBobsa04/K0xHKJ/rRQ0P21ojl73iJxr+XNyefm6YVbqoaYhxvZxNRuKe2KwSPmTgTh+mMfjv/l7r7fKRFCfVEqFJeA7u/wgZvhYsEsofgi/s+oDt57fp6rvUPeTBc/7W+Kz2ljU6jXcPGRLTkKNHEoOAG6YU2/oxnnG3gpXQDFLgpSzNrSZQJ34MmL68KrM8VmQyQkiAATiF/1R5MYoLPMhBolj0qQLDKFqUbGbNQY6Dp0nFnVn7QuGVEVt52GOKArJXUvZPmYCEu9QbUfx424lq4DkaCfZSSCGQw5WIPBaExD7b7ys5KBspUx3A65jvye7JlzT4WEwgYnSsCTl+SWscY0k7iQJWccMQoLJcdecCmTz1DTNDvOfn4nBozPL9bMXq+ZKWeIK8Ux3FQ5Z3Hm8xgyqAEBujUOOLoFhLEtRIfy9EgKQ0w0NxY/9qgxpx3tSdpMcl91xhgbjNBcLga94Bj9CfCeFCcgIn9/ba4XXtoCSqBKEpnCWj0G2KLZsAtYMdT78Jy04rkOxor3KoRQc2qc2JSRsXU55g2I/yKGlY8Ec6oac1fF0IjqCYkta+otXHJ+nFHIrVx+ROr44XwcpP5Gjwu21zQCRGkgrPig/oX+gqtZqmHGFLNMHLuwIBstEmF35uBfIES2dOsIzOMo183+Bj8RAyXrsuLvgqXY3qQZsYXycU7QFaVDsD28L/jO92rClPjlfSiOg2xxhrqHvjx9kNKb8ljXNgzU33OBMvl8hzuOBkcmcQc1rbpBKMCVeLjin5tzOywN0krpXbn2F6HEZiLOxpOyeI9R73laXO1TzL+JEgLnkOrgzekU83hOoPneHbv98Lb/eOd47GF9E/BoWK2QMcGPgY7FIxRSMWzA33QewBlb72ZMtgBxVd3jVSf91sK6rlXpFXkNaAWjX6UYmN6qlhtJ6I2jPlVMLNG81ggpCegwxorW0xuspquqLS61i81+a2Y7nbaKICHiZI0o/ZHzXgs+k8SgcYhHdZ2pC5/RR1F5EHRnxw5vIG4iJgvUFDoN47WVZpIxAbkF+ajEw3mbmelIa4KcJG1fbIKIPFkgKqvCxyyzMJrSMl3O3mAPgOXoSKkA0k9o6f96hgF17iYomOtRsuETrOmmAsMdL/IcWx3wK+g9zaAoltw0+BXDp8zH1/sEztoJPVyt4O7PEyxpMbtRWVYqlt1KcfZMLXjHXrJ4fh2lDXdM23N3Udoz8rq4w6gICpmxVPa2X2lqU6AJq/2+JeRh0pVnvA84GjswskeF5coJpZutF0rENXE25hOqBkxiJtVfZjS+QnXXpSLSKViLjAokpOtb0k3GYLo/yOl9mO5faXmYHBDhTXB1oYczH0sFb3Kxtc0b6zjCa9DdvK+BQm648DYdBlpIgfRsCM6PMRCLmAujIAic7tlttke0VHRbKjU5RmvHKVAIQeibjIXTHOD70foDTQNxMUA7dGQxSbjQ+XSyPhKJ6R2T41rkmvCO9LQUREVSZBISzTOrBYCJMJuR4BqQRFouCkM9pjcZ/JFlHqEUKhk0pQlX6FOu4CaclMUv7AQGg/vitkFVDFqvUbCEHJPw78rHkbP/5Q32u/EX1iqAU8yuvih6FYFlX0gZqBthwwNIvNiBOdfN2pgfdJ5CnWAAITVhQLWG1JS5VTk1PLcjqLvULtGFprp7OKzgVHG7ygZosayiD6ifr1y9jYAONf8+ctXPKm1Xpbj5GOS+IkFE5ikMAb6QraBNCv5XaPeKLlKqXeV53RTe8vzSJ3+lGyIjEvEJ0WxlFLrnXGL62aODmj2RvFdQDdF/fUUV9gEhKCpBETWLHC9LYUb11JK+OORYFzHkPfvoVJwYYM5ChWIiAxD8iziAJBvKCKSl941AROevKGTqaHPNwYFMpeQ+xTwmhTblNphuoyD+nB9gfIvXLSjKDkiuufX/osjGKFDJymwE6sxsJ/fVqbS/y8xrEGRNDAhO5PTq7XIiKZ5dPphtTHSMBfNH5Q3oczpDjSnH54dVTcwerFZ+ufZ4/smLWGokUM1y57Wj+GwoJ/XT9TnudXxrRttktanimkMnyiPMfmqBXHoGyYGhgMkrVrt6n/SGYebW/QoEmhOHlh9IwmTsGcLFXK9vpYEUq5wwlIOu2xXG6N6RX6KQpQDvdJXJIKvXcOJmP2BR23kHzejnafLm0f5Grt/5UftXWpv5t42pEvOYxXsP8/c7HeKrGQx43GUOWO+OLAjsj32kXjBB1la9unX5jfxRfyFUmWHG/QJ+DftoY9xmNruF+swSHWnTD95PH/I3zOUCD0Mz4AKQd2xE5QyGhPAs52O9S3tI7hicrxKh7KLYHc3wtrDkxHHIu1pOMoOfmGrMnPF5RMPshHh6HAFUBxXvpgNi/GT4eYa5Tex8nN1SfgYJ/FBWeOTjDItgDePfgMNrPMMDJgzHpIgUTpNkTc7XMYGCPthd07xuneP2u+gCrzpKpTHcSlG1SHyASBGBnX8+HRXNVhMX2Szvzv6p4Xhs/TP8Ezyh+wFI3tRMT2W3jP1wahePzl8SAMYK2sIdwHiXcQQrg1tCwlb22v9FGGU+EtBG+tSSXbUQACAxdFhiOnrQxGRzO9alK7wOIQG553yp8BuZI4mL8SmJD6XGYfkCeFpk8/EPBZazrvFCxQpgMuLQ104y6ku4ypGAkLW0lswcBjxv4nYCeaMdgwRooIIS1OYoJuYW2wonbF97Gkc7wrpUJGavlP/hbmNZSEqbNmOFLnGzjy3doc8nKocPI5nxMm9H2wrOuK5AbK+VXOV44y2fBXXeBWKg+SihX4MuAPEA1h61f5+swXUCNIuB4yR+WhzZVaRr4/OkC47lR/4B+/mDt6OweRyWB5Sb92q7VPZUOc9j3qdGi64xf6OpTtPDx/ojXvb6KrR2vovIjwj9PZubzyu9zhd4BTI/40QxLZt0+Zsc9n7CvthsG3FKwo2jZvvS98Y5DInslvyDw+0YM31FBucIEmeTUZkvF6EA/i2Uk2livSG7iz63HhRL3rW9iriYkjy9chHuyPEB7ZWcWyskagwsMv3GTuilB9QVJ2PYmc9ZuVP4NSOMPioDPO6G6hlt5+phDwTHVHFcpu8t0ukQ8OZIR/01o9P9dyGZfCazhYNqbMK3dDfJQAeomuOHuFZMKjNhwpy345dDa9cJm/CuSaiSPSpRa+k19aFy0ajUlaFnk7KTbxV8vkFXfUEZlVdRWY6UKoI/UKFAF8vvvzau7fn5E+xhFNG6nkr0rK35STabtUe8zoF+/BOIQpQM4dsWNL8y7WPJnbTDglI/O38kjnkUjenUzG9cUv6Q7kXeXj/TEiytYqScLVFsxVY6gTyFl7Fgo7xXQ/k1ARCdWmYxHRd6Pbg8uZ6S16WDuHxT7kLKUPwsmetNZb+3eMyyqU187KBBtS9xdbB2EwDBs/TmxWA13vXujvsk9OGsTEqq8sIbjL1qqRJYSvBySn0v7t280N0qSeSqZHOoYGFVYexp952hX6jQIsy4fg8zs7Gu9vX0AmIXSv/9Ud5x1Hrwle50kQRD4/mKyCFuMuPiwQbsVPdvLQuYCR4lE71mhaZNlr67kipPM+K7cxQvKPNDIaO8XLWQkyqqnP241vpm3+rPilabo1J6PtJ/0NJWn63fsOp4Cg0ws0dzpB7mv4s3tLv5nR28EDlFETT2ed60n0Jj8eAgeBw1/ULQUOXI9QcugfcsyyoHs7Z2eiL9V+aLoVaJqlniCNkE63SAPQ0gAWnJ7P0EeVqtKQ/blvQWwfq1Xdi2o22mYC0YmmAFEAj/3hofpGSj0BSTT1LQVq9Y3inrAlFECopDms/phakKao/tOmjKKD6lKxfXNOr+MWPUNm00tUPOo2a4s2QXe01NbJE048gPf++2JlL6MbbAOylCROEWjoI9zMab0L2VjonyUjYG8G6hGt63LAHKcKi/gnjqirkqP786V8dBPWByVJb0K/OyPoGGntWCuhLQGnryJhxlw+M36RV/L3F1eXiyG6+SbTLwhBpvZOEzM229DihKXal/Cy1ViJb6R0A679o1pgvqqnKHj0lp/CvpM1ZAtDhTDsgnbCWOdhL11KClzqE1jlnvFkaLnXL/BatCJd4rQXPx9bN9VsrUXmhcjafKslZxT3U+ZK4zfUUQ/5D04NLSp2+yH9EXYxpYUynjEzWpwrphkSPpEZrVohAfjmFsGu2tbTD35y8PxWl6lMtYcMejIPlDxpoxcT7pnaYuia8mksTFAH8Gdo8BqhDDmMO2vIEXITG7QPYHoQ2fgS3MW9eMqmEPH6lhfswGCo2N+fdF0gJHOZ2/agyI/J7ujMSppqQp/a/npODDCBwZcmMeixFkZ7ZYHYOF8bJBVwV6J6DAzTFve0LdwUYtFb9/WxFA5VVVt1qAnOX0G0VLrXxycwF03mprH6F6wDSunGN6nZQz08PlGGOA3LDM+cX3z/vjEHBU3zFkFBg1Jx5rPdyfquErmy8v4bvAc/gGNt9xYPFYr2fTyF9zKlTWuFrVu1yV2HVyZSp6M9Mmw/UgKOw0mk22Cba1sM+Bl6gVf4rH0qyeBVpaDuSdat5XeiNVnw5GFiNdfECRAkXuolCOzP0r1fP6ejNhO10dnaoxTFlVLoitVZjXTlnBIWV1U8NIsY59Dkp+VpCHR0FvaGD38/1Mz6hp8bsEZVqCKAgo7t7iPc3PcdlBVddsrV/gQrQArfR3U5YeXd95svq2+GgMDgfekTldGDwmwTfW+cn6ASwFg7ODqS/DclTxVTGdqdgZxZiRIF5PvkVSFDmh8QZdG6e3ciB9QKZr+3xxHemapksFAL6W/MHvcd/M3YLoN5vnZNqRPe6icPH8wmUWB4qvPDwmEB/0cA3ka8IvVUIOXq2UVeboyX5Dkpmw/T0DvFOCeKQd7tSjqw/SfkQGpRUmOGUQQhOz+R5n0ngbUlzvJxNNFJLOCXxTm3x7EtLfQL5aAnWqWwldLr/fZCpHHgp2kbHZJ2gAP3QwhLhX8MwY11knWMm9ZTvCPYIaH2Kz9ubbHAxS5W2xS6CDKOc3VXmBvHuV4vR/+IrcdD3Md62so4aJhfyWq1bRQRwqytrCf9GjVq6dYf1N2qeOsqXtChv+c4CR2tRvR4Z1O08wcas0xzJihIbgpZJLcKAUXQABEYG39fqkyO6wrCaeTA9sb4n/bkX6NF8a/8TRZPj5FIrBA+jtcuAY6C3wcVMsri1hg9QUQ3eqUnjk+uOppHEvw5j3pvylgEekJu+DikJC03r9AXPWgo8aWy0IVuGKXMzwwWnQeXdDB+5mH+cdolh5P/TynoTqF1FOv4rssUFDXrJObgfzapJrco+TRSFOPq1gsngGqQvlmOh3KkbF6L3cA5xhjnpV1pX8iXO3oZR8Q/8bOLADiGcLMfS5UV5vBM1MHge4Hq+XozQbVNVqCVAy3Gdp/IRL5aMDbl4TxZNJlPwSxLNEab/dx5DzU0cCfkNgDoVW0py0L2OV8mXoJ2/9Gx5+lQicBw2Z178UuN30PkdoY51fB/Pb+Hu2jR+uE/d6iQzrWWRyB8IpTCnqYts3bwU0AouDIy9gY6l9xvShfHfNKqs6GbrJRZ+OX76/R0dWZ32r5TGoD/j2BJsjnkczH0QmIt8ZP0RFRDJdn2TFuAUBAPm0Y6o0a0mwInqcPgvGWwrOiqdhfMJ2cQMNiDGIKlYLbOUFqXA5HOb4z+RfbWvbAMGbEtdCr8TgVMiTDW11UeYYc1B1K2f9lEMbOsa3oO+FlqzdIUDw7BgMVm0MjCpeJTduM3pgRVoNJLzT9OxYyNgFidfKkhHDIb7p3jqzc8mjXFIcgZpuzFqHkXFhULhvM7lexCBUK9OvuBTIhQuJ84kl8P7jOsmwAkcimBz1j/o2c9tTNbYS+f/WFgTIeBvQ5c9TaZ0djMQL2lbrdFIQdzY5hssBGhA/LMclws8wuW50eqqJZXlh/wg0apRFsHpEv00U65rze/7YnPgYE03nDssCyyAqvacDC3+lki83DdkIjYIXaximREYJ3z/lJ2mqaKhcXwWkIYPIjIv8KWmvh8dHqMAlBVr8Q6YA4mtu6cYq8ILtjOKJOxx4fOkCpdYDV3AsRG0e9c1YySKEQn63hecSI53b6nYkDgdHGBjpZTD7DMGDGKdNAx9mb/pdpBWcrW8dHLiWFOjybqWWFVhZ0AvgqTG9gdp5MpEyZXNwCaFEBbtsaADLRiTfVhSjwZRvgo1SiHmbefeI3klJTVzv9SI03U3JlpdB9FkMyGaKsXmHOBSx89GWTK0rT2iToOqTRAO4h2OH7MexR0to1Un1sk57IVjOQtBndFne8Fud7l4S3cse5xCQmxsgwr59vdEy0tyoKUlQ08a02aTIUr2V9HY5VPrH+6JcxI9J+A9uEfoHNZjSZtF45H8MvgIBAOvsSjRqjQ6p39aeZFHGQH+vV0qQlxs1Bl9PFb8f10aqsqxS0Nw5MjRmrpsKH4iURuA1SdRgby9pvFjofJqGlfar/CRszEMOZsW/nGslRHuFMotvgeiMUwOV4N2S9tu3pIz+C1mk/SSEDna6MBzGJEhGOmWMXaNseyUZtDccduW+jhU9utXwrVVmekEZqqu9kfpVjR5WrPAVvVpXip0mBR56cBG0UwUAqN2Z2UFKlI2xzFMATepQJZuz+eOOmaIiQDdwx/QeHbWgsGybzWikawJgR/etBUJfmnaObhehcbYBPiqzKtlufO7+ILjz61PYfu9a3yL5zI91DuQyuR2nowhU3JfpKTlyxcvNlPnqMTrwmExqGnXlNIAosELj/16OgOu83DMLUx/rHVzzpuji8WyjhvYQ/b/VCQyHuJGcwRMlwPWdiEFkXvzgB2DFqQxIR8qkquTAPBItVz9Lsmyx40M6OVa1XlAMcxl4kUpcOA7gsRYV71jQIEyc7JyTR6tYCKTryBQaZnh0MATOnetF94J73JMtbSnbHGzZhwEuaQQcCtGOLA/2mNUMCfhA1jf2al9lEnwcg766ZpVTXW8FCDt9eC/lxYFhRvU2SvkJJ00UJKktPa2n1UEFAFBzFG+0/ahmePsTHpvbgXpwyC4UgFBn+QOd+/CGZyIEQjHNU6n7ilKQuACjqCciOzkOJoYF2YnNHEsNtF30mbh3U7KnwWKHlfIFM2Yt43Mx3kwxU0Wjb9hfL8L5MEgcvbQXrVFEnp+Lvij8WyT+pQbwNCt+eKQuFbHVknfjBElCyyTZKqMaVRXIPxU06Cj/NEmnBbIy71Z0JkmgN687+AW2Rqy2H/oyFBAj6Qof1MLj2wtKHiw2GEI7C8oFujMgMFidNZgfyjuDuxLD8BlQQ6R/Ywi8cfDxEDQZjioRG0ACp0EbRjrszB7uMRkaIbjuJ9O6QD5lUMVwvkfJBN2VrRhd+k4EGaWPqcqx5e0dcIaU6UbYcGDa5zUl0TlE3OrKbZGOJzxVJpovwcEIgee48ajM+VQQPxFK0XuFFTbxGG6tZ00fSuWWPuH1WIu3/Bri6wM0kPhLIk8dXzshQT5W2gKkXKY15Jn+OdNHqjhKmh+HF2f/b7OQqJpBSPqC/qrdhPlwzS94KGC5xnn/GK8Q4aQ/WW0VJV+m35unevIUB2BrrDTfNorxX8jWBaWEFK+AmRwWjAxN6H7it5px5/Wdhp++tVEUZDqICUHUNjNvYsoNDo7IoiJ6MZH5Yy/JYTy7ykntHam9pY3U7QghtUDKNbTPZ15s9qnYGfQvJ0FTO4URn02OEE6Y6KPYu53V4eJHGl+7ooQlYWJJm10wt/51ZPx+8ly+yS4zIyrTfWhv0XRaGUNSEgpRv70rPZuOG5UACNoZsItZcLs0le+Y8KtgutLuPkfkNU0It895zBF6tWO+1vJ6HGFFkzQOiJVfUAkMZNqkY4eaCvpzR6mV0LT8vS7f4iMvPt9QmTHRxz5lRLJEsI8Mbt+yQXogmD+GXsrECXa2N1r3VlN8WxnxcPdFiYE67QtnlB0gKhWcZe5c2MXb547m/QwHewl2zbTsrIKAbTRF1SVkjCSz0nQ54F4ajEAcpFf1QnCcae2/gDKgQR+m1uhp5SbDwZ/ngarKtCT6mV4oM9jwNtRtkVS4IG4S+GXbPRnoxVDySYzUx/pjdFffl8PduGUTew5HavpQjyh8e4JxFoFgSeR7tIIw4/7UFCBUy5aryRbtxfAapF7gECWBAXVCvBkvrWofGi9G4m13q4T5F1+u6qpaVDwbWP9ZBeCB4nouwGfPNapePVQabFWTCKgmUyhT/wjY7x1wea60d+y6ElqxKFIvf/6gRya2YZxTh6qP5F71vikkmMTazWzUOxQpS0dZMW7WQJ50hqAp+k6BtRHYS+nwJBKWf8VZlzhitiQH++Q+iIQlalkcNjyAqlnxPVLzntRWRDI/NUcGegyuUtb6YSEG/GAd1uINf58hgZPK+7Tw82mqMCTbspCSD9ua4JAyMqjSQk/GwTAy/ZB26xFREb2J3KLwuZKCxOyJ+qsgXit/78xi2mpjoWyasjzJYcJQAa1Ybt8Flb1qrItSNZs4/N5Cfd36x8IoMEF053T7czCoTgi3ztiYSUua5+sWn9Rstox1yzEzgaiHaEnW4DUS8dVo7Nqo1LTdyDudcQhrvoy0JhZWF7tQnxrP6ve3guyP111ubFLXvdW2kcnvGTGfZng9QB+QcsY6MACABY84fKYLOBouxuoHp9pbSAHAw37voMrrF5QQGvUtTLu0b2Zp8gy9khl39yWsKX9X3OTkF03tLjaF1TqaU6z9ybdtT0cdodmHibMSTdaEyQlxYNGevPoqwhUMQ7rmRZwNbYUSi1PZYUkWuVCQYmOsxe+B/z5Ea4JROfVMeiY3Sz9FIgqD3GvH5/k44kgJOoB7xg6urhku7Fa0vLcNa0b8bosPvoSq7jz5V65xqdCPEqKnjCXIB123RP/BEO6gEPbWb/XTe6ujpZj/Sp0zmXAXpUW6IBk0d0oj+71QhYs9fnVoM2Xqf63CkCU1htHo9HaRXZOzHC9jv4gXzyyUFirFhs3qPvRrUF/c8Q9fW5+EmDk2z3EIsS+dI1BDnCsXltPK9+j6htXmDnRt5L/LJSSMS3j8R9XCaVih1Mc+kR47+InwjDLxMrt8I/9VkUTLXTpwWuXemHjQc572FrS23ZBCWlkxGI/OEBlpeVI5VffTwt+4lAtToXaOP2Gd/JGNcK+R/0I+/IxDiRroBOC8noo7WYqIzbfialWZMEQv9iCEzcg5nfMqsvpXjuqz7fBzEIaqjpZmyE0gY2p2JRo5/F6C9JZRwWJs/OvQ3CaZf6bqNxntlbhK4qWTmzw2rXd7voHWR54R8B+NKlIReFnuoZ3Rm8Rob19NMTLy9PyCPBpo4fN+zJSqZW6ofgHSWJratuvTF9NKRjXX2VIQxUM22lpCB1CBP8XXGBZ4qJAmqKlSX4RpstaFGm8YzSRnLff0R2q25nnR8c3xJt7DuCRBWHSEuH48K3RoUlvwuBL9F4ch0L9D7QCTfHhr8/umm9tU4bO9fS0icoabqDyzwmVTB3oW7lAnAFsHiJlcnTerd2CLESG2XsaBW8VKlQr7VbVF87Q6TG4aesw/5yLp1g65yhgfgg+zQPlbI3csMqXJuzZuYm5rnhLbsTqLT82lGHfWI8Wo3on6SaWlKwWgieh34jv9e7iTopO0ZA1qJyWrasPyJJs1WZVKx8oopCbcZpq75St4oc7O9GFeM+2DeQ41I/SK6jV0aP7y9oi50YcxnHm1QvGfLsdm2sXPTFdXdz0fw5hskchFO1pczYf8EzXhdyWM8NYIPBPRynFijNwb1289fmOcoQBYvM/e4A96ezd+ZRamA/dQXpUoHWohfNKmVN7LM8kludDbtIqRDB4r72JhxGg7vyNHbUrSNaT4pxb0LzHZsFjrNeLvKIxUydSJMwvMPqDlNpuIJUUJ8WztWyqoDTxdSyg9avnmrDYS22ezCtoi7NWxKHYh/4eYv++vvGcHB7so45fmtfs8hCNsxNDwESzxjAs24RCn/vL3Yv9JfbE6J+82vHkIZ0DidEkQIAW0JvpNJVg6mzt1CTYQXRUOH/ursdxlHtwFwGuJxBaNf5izD1nh8tozoNOT9uUbmBMwG9JqJbSh0NmihUriwg2PWWkZwXqL1xIz90s0qfx0kl89732YT+pLj3AiqK7pb1p0FImDVOEOQ4G6p7xQmTrorowQy+UBjmZo/ihVOSoPi8rRN1eCc8cFgx7WY2TryHCL48RjK4bT2mWxJyfpj1OISK0aKbKjcPA2ckhEiNZKIAanlH7ZmIpq2XHpPNKepYi+0WAUWorKw5kEHBaUlWjlfInNl8BSS+EdjQ+K8WcygqaNGDzsuISxzLEGhAX8+uRFl2VETD+oT3IhpCaPgfzzKIGbJRyA8T58LTZz0pazeT7JXHLLDNgQqQBCGRTzTFULfg8YIDuc2CxxvJwuL2OlUdQOBEA4pY0QpiNHoSbSADlkpZ10Kf4LdfjuiduX3DWII6rElR/XDIv4981STQgUFT9P/TtjG/0wq9770dTndAMhIFtduLSY4h05qL2qkRDxIAeslbs/uV2NteudB5y2mr00qvcGeNAalETIhxQJhF0uv+izOMhb/xgf8Cp0PQurStWIAXyM6cUEM+L23dtLjbXf/fhArrCG+LpyhSO6LkDBAT/OB/W8SXNgf7kSOCB+3IGRagIv1NSS65SOB8UPkXcu/Mksupur8NwKUQ1sqsFUkik5Y+KSKK0uUHDMlEd+YzBkzxgTYGfLJw1YgYbOfrteuwBtKwLEc6NjnuqBtNyb1QdYZ3vVlc3mwHsrQYFfkiF6w6LateAXMo2jJ0/kk7ql6ws5J3noJBX0xTTTVqAAx2OV3/JbRYhcQJq9bt42mcL1m/1A/MxVZWdkr0juI/IGq0Jw05NPWfWCcEFBkXrSsCxnoedd6heSPgiiXwnt61aAqzoFlOKkmu9fDe2+5Rxo8n7TpWFHg7aeKluILSmiQbmUV9aHlp7Koc5faiHzQinjG5dxagEAfwiljrcoXySplcWC+MzmGGVDd3WqIydB1nkWSTjZLRttcr8zRFyJjuEAzyykE0ddN01/sP5q13cAI4pGEYW6NqCT4CZzbCEBpjTn5lRaxbLV8Vr3kk0Sje266SnVyArf2jRrVU4wlO5EU3L9KcBmsvXB49RsSqJ3F1dzN1wER9f2Dcg/yVi2nVOhHyt6Q2b4e1WBOCFVhY1vTYKSagNflRhZfpeAEY4YcIYWmjm9W43uRrJ7eIIx9a2H5k+afoaHz9hkOR067baVdCRcvg/oWJhyKBZYgVhIf2slpkAeutoIrzhUo1BTXb3qpWADFMx6PShxj3CcOKuLj0BL1WeHRN0shJzKQSzK2geVhZnQJ4KgbQwmBXef4/lJEvxenO0ksZuFyPfiuJPOY7Ah/vC4PZ/3Oep9bWnQwt2zMK+Lu0B7FpmIZmbvD0Wv9Q0KPWhqg4lUVqxV8W4wfJRecNLplu2Rp+AjJrxPwaDbVG9ax8Q99PwEcGOwHRRUidPd3nyP9lBZNM6IS06qULIff6fTvg8T4n0CtakoBa+6neNSmidpT7Ueuu0ysTizUSytM/x31iRjPUqaHI0C6ULDnU07m9d95kLuvctrhN4mL4LeqrADFtZNZ0r/BkGOpa91nt7BuTTjArT8UVDAPIQ314Di9hrT9XHQKVfMx5RIRx7ukBy2+ULqaTZew4XM4RRznlBd+9WHDqNvp1vqtnh0OfeQJGpJSMk/AkZfzioLe4vpsPLzLhnyQ0UQKuiER12eXzvEeDbXToZEWfSKVJsFsYQXdblIgZL1zt/EOlTDeyDVnAz/K720nqUyZDBxn+6jdnPYSR7drkEgY9jNFMHGs0Bd/51IPbcP+AqI6hSkXaLTxtInxO89vbsUURyFmcC2OLDuwDEDawCB5SoPfuYWTEvJBMR0sHgXy660QViupoevfar+U4dIUIaGve+ByWBzq2NSjDw6jTbipUd7HbiphDrC7qcGsxrX9I5eSsGbLDvYPU5I0RuG2JXYoZ21wmggZcE5q2BHSNGiCRBld42QVO6RZ9BHpAMd8eMRGEjpM4FkUJ8gCjc9bXDL0+nfd8j2QSCEbgPjvFljgN3LFfsmF6SX43KSBJDyXDQfynET8UImIxSWwOJ1xR/NAqbuZ21A1FefGs6zodrUeFga/qCLEkNXRB8ufcOcY+YajZoiYxYzgumKCVW8m2mNyJJG0JTg5w5Z4o3CoYb0i3Fl0V2Re25ddcBqO3lK6BxljkYe8Xdb+OhGFpIXnn8ig/0zs2HoIeOWKcamBRE9rW2Zgq5ZEQ8pk9NW5A1vWgTwPnAN7wHULEBLENQOKUl1wg/1JOup5GcEJptIfrbU01MiRbfO44yG2MBD7npuvJf0xCcMdS5M2h6J7Yl1zpzBS+QcOUI4CrL4PE8ue4649/QDcXvo81aAZzvZf2WyopRbko87xtZg6Z2TiaLlMsTPWork8b7k9JqTMVjLzf7VL+NAOanVulY9RpgBFIXWnjc2e61gMdJ24XQdVrvoX22Gahbh++d1ty117MehKNn2h91zgqoMgL/du+bdEgwRj3lgPwHoydG9C1bLNVzx1AhBafCCm7Mb3N3ApozEvvPn5BMl1AEPZ9b9MS37hH/h/7MCKoll7AbZeOpv+zmEnXuapcSPRPFZ20W+OsEFRhJF0+FnGIgQFEWJOySWHrPRyNbu22iWjOkZtgWHr4nvlmRRp2jCLZ4YTCq+xa1iUlKFIfACR++BTcj5NCUXwCDo8AKBoOBj9nGxwoiJL+q3kZI49m6pxebhMcpxUniCtk+gc4SbAuGhD/iWzbhMai5wN8gFlhYWRUvWTk0Qch46FuFN20snA4lCfS2qwSumO2VkPkHFe94PNwfehJBMek3a2TGpoczou4BfpZ3I1ojqx+4zI/IBXf7VAcnpi38+UKWW4JO6u1lFuVVcTaLnzK4BVoSsngmZ/eIzYqcoBYiT2Alsgv46mHyRS3Egr1hlplVOh1LOEtVY3V/kPKsHSU89zAUtyJWxUAxKiSz2sR6pz0il9nOoMznBs9EyoAWnHOngVUlzuVgt70T1d9TKcB0hf1N8YfD29XBg0edmm2Qimue7wVAy+MxBxxY9oa1zKuJvok8cIjR8bGeElInWy2fyVEd1+WGRrZooSOaBpizjBpDK5KPm7RJtPRo+j0lcp2mci9QAQA6ZJOTmFSWf8pDf0262wKqwWEOga72SkodgFAGZDJ5TxBF/TzagGcHBEh47bESUto1ezPT1YOwGCMhO5yCU1OIdJ930h7IaDx+bwgsSDYtIe7dF6h/5+YLHSXLCohdFoPj/HVQz/JuIRhPQnzQfyDA/sw2zv+9o4XzxQXKgMNn4qN0oOjiywAqJ5g4ybXH8mFA5Y2PVU3BAxTeKJ6nmgnODcHQHuiSQmYPbWwkI2yMcWuUJc2UYd1FXGFtRZjRzIjfPmOWDx57xLTZz1KqwMSR4dAPsSb/le8nKhdaWdrdNwXOTP5yfQUfkztQ2vr8mI1a7IAsq4G0E6jdgfYotd0vDvwGuEbexgUyTN34jUOdV5FtvP/U2sgxY42Rh8d/J6y9jhrrg/NVjMcBmNm9kaGsADwkjdWxr1vtJoS3h7fXfB+8KLjwtdjxq5u5X6XhR1csUnpKUS3BOn8L8NcvchDRH0IoikHBfCFbyGg3634k6X4iuJAjPjrSm/MSIsYUiPkCNfyvkVnjnAmieVoQYYQxeYEvyDTBtpTSP0Ab/CU7R5dYmnAB8779rYSxhfGwGsR6jUc6DNpQTn2tyjfBfHVSJwHXnvo2DpOJb4/9DzGjAQLwBdL+8we4LQyIv3RnMimIIegrP3mr10tKhNnfAGZvpYxPa03jRGVsm5f8PZckjD6IbQmfLZjjweFk1589K/o1wF2AGQVrBPFZNQJSS6ZzxioW7blaM1TO1sG/Wib75BBbA83oT81NpgD8PzFnw4cm2QP8+HNR1FfBqrPOmZ7Ot0nWIovmq53Y3qAB1024aN2Td2stgbwXZCbdHwAlfOQgHyO5MgFovthNy5Z9uL9TcnFv1LwWNRiCTuSEcNg8KKfAa6kg+AilAlxfFkVEUoVAF8NQTiVdNPIGuSVxtZsBQMFZo0BiCyl+RbQWayA7F3Sv+GYyPuHB2xNGM6+wbP71/Dwg4nf+V1NgW+9XqrwP1KpajirGxP+7ZBeHhuYKeddZxBDYE5XqzMJmlifkNVJaoD4iiCteEYJCF+2PF+TSg6GCqRjQXSKXexQoQ1NXwMvUxcsbVt5BIJyIhMw3/zkX0nOGSZBfrmP+DlFr5Z6zj0gGxM7yOR+x3hqh2R52kG/jzwGxH9YSWa1lEyyeRYjE1Lq7ug7Yk2+J6xySA4iu3EIj52IuaMh8msy+dsVlnKkE2nMp1NaUXcBMdQ/Sn3bX7sdv07l2dMB6h7Yx/jN8wIMK0rUyHPhkPC0Wv6+ouMnk5P9GA/xD3iHq85lyrwHNDu/gzMpnxcMo1tREnePCUiEfjpNei0atdw3a9GYttwBYl49AdjWpmpDoEpLrKcBDzfDrUPuElCV6iDxEUnn0Wp7+13nrELzZ6W1RNQwwCD+Lm06sBaZFy6T+bDdCQChYPcnzL97uors7mhKYDqztV6grsdDVTylBCNipsekTZgQIUanIqewAYd7MQmKII3h2dkt/w3JV21hDqj49GsiSvaELjd8BGhPrNH3qzVabzQxXIbr0vgCum/yaCmYCKgfv/Kn+u3gjkLzuc5/tzTE4Kc6qH3EubJOvWdf8ymLGdT1srA9lNUC8DkwqswE++IH68kDUjQbpiSXTUCIs+3ASlvAumJWIZZuTOcA9G7xIsI/k+4oitavEKubJ8EE1pxBUcB5Wp5bCs/1XaKt4bf6UGiCtf8QhL7KVOCC/z9L+Wz7XGXZroh61CDJZPc23jhcbq/Aueuj+KSUm5R/PednVPJHLImBkguVJYzZ76g9AiEID3lAq25L3MeYN0Hwl+WPSPY0khj4Zh5zyccpfXAjjYeOsqtsHnhMutc8kPlBCrsfP4W+Afz2AD3+TEhFMjzj/KnIT7EyQksGcCgDYYn9rWkjLM0qFm6/rKLTt90YYs/7YJ+ra3JAnQl0CarrKT0eZGU5RxLg54Sv1yXCkFbzXHsZ8ere6QNujFLsSCuhZPnr4gL0zNpxklRm8KrVjILwzjIVquqsow9RWPNRovwwK+6kX6rxwzejX6LAKYiUQEONIpnUXRSsu2e5oKGt9jDsW3MjSbS1nT1G821GcSMzB/SQLO9PJMupp0NFnPeMMWAUX8xLcD2uipnjEdKvnVqpRYSo7tEgzFUT0AaRw1VPmZwT9HOfPy+QJz6jpr3b9M2AumqylqF+qSd1PEaVF3AYnIqy7u28HoloddEFMyY7DQymfI5Xpa8832xX+BMuTLpmkpskVUq3BIVU4cP1dno7/KejcWJBMkiQzFcmBdZrdlYi7QclXY7QFeQeV9T8yWJjuu0aifTBDzWwn0sclB31F+m1nduVu5ppAzwemxNmgczjMwZpNlvMJJ65A+l4jZ2mWZHN3PQXHAFYOO/wNmPdH2CxC1u39Nwxik7aTkWxsXQzcvUmqwZ3mSErHD7ptTdVcyAsEEeWFzgkE1uf3mrl/jo/zIQIJ2OGvSVRJaoAOAi0YO16wPbyfvansDAbbjQPu7lLYznopH4dUMshEUxYs9xcZRiXGAStwH1wCYEUyYhbo6ZUkhQbUdlMu2MZETvs5AIymkJAfkqmwfkNnfeXwP8eWul8LObUhFNT2Q6XNnuO4SQ1YURZQ7koA1QY3ZwyK4qgcDkXEe3ATXAuGKoS7LttAEMI2zwcTUXM7d5uBMPDS4lQGP8l8BdiJsWH4lnSwCFGUM69rxLUJo/lHuCYSnWK6TIz+Kg3R88RAk9V8yhsThU+gur8R6cZC6JATkKeuUSAN+LhL+JCecxLvIyzsUA7+hRwDL0qhNolj+T9UX2GLv6nF+ITh/pJ2KB8xexHPAaLiI9dOQPAljoL4xSehRp6488LxUoFvTMSgPI14+BixRDVARALoEJFNrCXbK/GuG9Xatta69Q+ceAnXK+8pqHmT97KQUUCUL0yTcblo+U8WocWa8RmHuZywYKzYzED9ui63ipONgB+zCZu1aVzDFR2zi68YrWgbkPpfx9CyXrKVTP3+E+p4DotNCcCMglJLLUJSBwfv0lOjkQ5dVCVR38eK6slG+KEosnUtmW8iRQk1RinwLGRSQS5+XMoHi7bt2K12T2OWbxnqdDGylnr0mglijKZKIayW+9Pf3uaiNqAXtGXk6g8vnrg3pF4XCdjjmsg9qBcJDIIWANY1+1eNwzTnu4OzkWpL7pWJ+u57Qbhi6DdOxVKT1q9+/LOM74eQwvdh55IZwMhJJLBTYw/0a9Rz7jFbmR/lV8ROVQp6upbI3hHjRvhIc1yqpcGq2O5410qQykIpYlOv0K5dc9gPHs5Z4XchdLg8dOg50THcJVcbME3TZSZ9eaW+nZJokSzVvATH/jfByn3RUHfw2HSDfrmm6TNgKfF6CAKMjuZI/bR0pMd4plsFv5S1yd8uJwLDxs6CWHBMEEqHiPKxlJ7XNMZDZUgq5riE6o5gwmeU8CRjmMuqEg/6/vbjWo8STKQ2+XvU+7tLu6DRg3Hbhzd882csxTe/QtGdsXfYA7MWpcWGYP8gqhCyfAyxOGLYEJklZRIG4cKKnSLCadDFeCnpOhhtPq03xWZl08nXmLkzhVGh5OOssgGX1ZJz7x2P7hzKKla4oYqVRCVROBi9ypll+P06C6BqvA1r4XIEsWvSClKTFRs+mKEuWSFEOilzx0297ELEdM0B4ULXxYb/hTQSAWJBsR6rnYkNZvcESrlblk1YHL4m1MbMh66ihDUjOWuzV8jgvppnqGrVJUJ6qlB+WeahCWcxeIYAAsnV2N7JMXAf1LSDLvPbGmSCdKUrHGJuOJvoGbt2f0xC3zksTlRUjNIi5DNddje8rOBPIwfVQ+yP6Cexnug7yxNeCYWTccNjL0W87kf4QGKX7KLGDsopdfAySBcMW3Q+8pSajZ7lq2sSCUPyB25bmG/gEL4FOoDc3UJswrNFlXfnHIe/VKGskfO62YGnBuCgEbh8RGCppjmWIpGfqhf9jyVe6KAPCC+TUYW7rKWO6wNu+WuGbSeYZFaO5M3Py0p0DlwwzUVCarA5758a9D8k1bwRunqmjg0rviIFjhw1uO9O2fFmPckytM5IkOOTmWHrMJXwRZH2wKAphDnW2MxoCr8YY45BWWmJnkp3EZ/NYuoR7xXhlL58K/0uHse2+m5Rl0IHUm2fvhgJFMpgStp1/rcS+v46SQOoM9FBw6CILgqrIcKt9M1h0HnuMAuX8ukjI6R3RqcCmEluZFKY6JyGR4A0bmoImHcA56Q4bCLfAW1XYimDMtXT1cEjwbXx6Mx3rxeEwnMsOZHd9dcXoMgYrXe7Hjsn/oEPKPEhzlyXB8aue/AwUG3n7iKCZcPi6TkMOVsjZbxg/Z+w04AbhDrXJdpGrlWC7WUl6qbhzFoNdczbhiRPX2nu2M16Y1oCr59YGZ7ISSvo0mnaWPeCoHrDUu6XgiHMwSP2v016FrbAfyPKRmtlIrAD+TaUixeiIF4gcmX2A+hGPl0xp0OaSyWo8mSkUh2zKdqUOETknm61kHKT8mytBVpztHsRg+h7XymO4n0K+damWlwu50VTLgVBH5dd/kcUnepQuT/J9i/CVeMaUc49XGicU/HM5C/7HHwvWFu/lNdEJFqBq1E8gk/EutKHyxkBSsmIbZOCV78ckPeS28E71HmOhPJ+mvuLA+dEt/WOFZ3kxokMLQNbsEwZfznE7wC1rrrRtOk8x83NDihNKzrWu0oNW0G1oNS3ebFI8AeUa+7nDhGjldazDdI9nbDJwKbWTeMrQieqUiJgX0wXgXN/56i4Y7cLOG26cQ52y//67Xp7ZJWhfobZXSIv9RyALd6rtetS4GzpG1n8Amy/+qrcneBL4t1QTO6ekQJfngQpkarC13Z4eFP24q2mu05v8XftezMTsl18CRKtObvu1aIeaVB92qI/MrRxz/cVhiglCqSkxj014bx/HYFTf/SdtpfBRIqs/tcNauWKa2SO1hM+eaFozpxfG2k0699JtO5vxlHm6CW7bNAb3cNuzzk+H1oDjNFLqVcWxhFv0C0RRE83EWmGidMV+wIEDsHhr6XJOQ0KeIvlFxPB4rCMyZh/MhplMs4HyGDjxGdhYZ64smAtP1P8iYIDGUWfxo6Wz/MhI579wFF9FxslXC+WvvEv4RCnF93P19kOAHnnyP1KfLCvRI5TM3Fsee/pTD4hwEUMa7mg/kKRqkHK5otieeLwoJ7g/7CriQky5k+n0G3dYlE2fb4ag/GnzLphNJB332MV7Hzz2OIfRcM95C9pbRPjHQkmHl5KRq5yELJYr/mbRijRuk7ZjcheKTP422z9Cfk8Dij2H821QCGrRpSY0kWj64X3/YYMQii2HEbf0dpqKfHSTwppqtdZ8ogHouib6qvvt43ltvL7ALBcNn7lY0NPfh+S4XQtPLZeGwS5dBrlVxg4dYa2SMKcJDA8DLwFoLPT/s5rFEN/RHCwm6bkvXzMBDRnn20U87oPkz+OMJvtKzNSGNB4vHFNQjka9Cro6/x4/oirix7pKlr2OlzuYhdt7hS6oeGmWhF7SuDHKZInb2jqvQPZY2VZfKiTDAmH2efNQ81NnRrzM7MIGqnPhSquKtW9UVie+FlTIt/awf/KueSDeNIt3Y45hsLCqRyon98dxj8wjDp5geP/68plwBY3x9INwTIEpxNeI+vnCHb1ODgMV1mpgicdsbpPB5Ln5L89buRyfy/6MpLr5WOsFzLIvhqpc2yfWY1wfcNR//O34XttTs72QplmHFH6x5c6gOKiw4NauBjSKE/hv+Qidi4zG+bszmuBvQhE1my+GvlqQiagdcoyS50SIq8gJZVPI4BQNWADbJ/xz0lMaL8fcXXClaCs9DlLGSOt+z6A78EGMFFqaBx/ytZ+xL5Pr8wD4ykYYP05U6TVQjzjh+L3jcNJug1rEFXGHyvfKQwbe83uaFpia0NQ2/AdFwRMyBiG4sOpVHYgBB0Qrg47Un9Zc77XISgmEC6rH0R1oWkykrxKF6G3FpwM3IvMBe7zVx7EPzQQrw6ovgR6fHVgrXNvT8IahJuhuPXaFhX6Y+zX4MLElVROl4M1m1TrRzuqPCqPJ0UzcovuAf3QYFd0Cwcd3+wr869jy+xPOXnhRjC4HWVLqqayb/NCvnD4CzoOn1ThlD0fC6IxmdXn7XZBVq2/QFpdN5jqRNZMbhBoqnZRdOTW6KiAFcioJbvLKGBJJKHjLGNtCGzhXu7kiUQcO9EqOE57EQ3YFW/m2IOOdcv7bnkGS3jS+Y3GYOgGs3T3YAKKP3FXhKWYmmXlh2XDNtfLfPbCxmk5o9atAfeH5W/gkpwFvwp6NXgAeaNuINgFuVt8ZeaTYql9+/EhM3gUxsTEq4NXVksICFRCGKhF82zRW5vIp0wWKzCp7HHqkj8i8qnBiIlAb8E1BhB6bMW8/hivP7eaYEDL09+2BT2wvM9z7a7z7/bIYjwr8QQlfYaVW1pe0zD51luHnAIXXfObZdWRlfOiWWYgbHX5rlMgczA8k4MFwwV2QRg310sV4V5PPeJtwBmr8tvQuHmlEZ2apA9kvd1lipILKdafjfqC6ISU6yjkbnRhWZTe/qwzBR+Bxpgpxc0USshfUQM1hfXf703QhKbqP3AXiYcTE6r/Oka7M3IvM+SUsDSzWHh7GzjqPLEdL7IZ4u8BP44K0v479b1BTzj3w3RU6gNDA5ZKgj3AU/h6vKMhLlDcS2ePZxtGheeC3MH3kSk25VOl+bcZVvE+b0cEisc9kYPk1utYlG+xOtzzMk4twySwUd2YxAWzGiEGsdMKxnW+i4RKFsnH05XJezqPOxli5wGWf437WlbupQ0giw3SKYRfjdNLisdtD53v4wOOG1P+70vVbyXHO/wqe7VzYU9QkPlUTvUIwF9QsX3ZMCJjiDVxumF0FVUBmklTgX/miY53OB/2PHhjZcJLDUyrfJaBJm+A2OvU/ab0C+h17O58fvrGJKUVmuiGwUciywLGqJlzxkuccXk7ZD9tuivOs846UcrTNpsYmanJGZ78nnzGtVfQZJ2300SthC852kXap4G57OMIrfmceSa21TP274azQHpMyBD8DoJ/AlnqfInfGrGsR6eRqHijhvKQHNIHgwvTbzpBIWmAv2dR1X5vdEGn3tPO8zYPZh6l1T9XBejQGK1wTwuxCzXnNhjkOXujq4VtB52r6dWbSobLfOQzg0QTEan+ro1iRHomWF/qIdWC4kaVENrBSajo9oOfuzN0BY+JUm1wUAUHoP8ibh/pcxblJb1lLymloEWv5B0vBtGYSn4jDRIElunEo6EbPtNex1m93fgoRQn4rpYsmPJzFT5w8sqYXieYAJ+SJ3sqeM1xg90dYdDNAKxAPqHwcQA+N80k0dVfgQ8id9gj8vbngAZ2zx2Bv3uoXyvnQP3ulHBVrX91WHrfLtGksyS9n+Psflf15No3c/4UWtf2gs0JxKYE9YXnmwhdTUkAK/ecUkwsgIISlgyt5trEIdzYP6x5faO2c1tcc2Z45uBUvNCApyozWeZiAINpAmOHvfIN+Z7sw4vVwbOtNgi2Tv0M/NVSfHqBIb1P382QcgqjRpAWpwwcpwgxtQQuIaNcDsQqI1x2UmDZnRuixEluk08trlsRgOoyUn8DjkpXaiSlE8krf8NovJrdYcalufiDK7rGdwu0wStryCUgJlZ3+KkOnKpa2rKVYnZN5bk425SdRi8Sxzs8gEwo7RCy8loyTMJ5c9zT3/CsHThC8rhXYPUCCNfNrov2RP968hRCgCcNlvogS+eILPv38JYp53rbua3UVRJwht9XWKyU5i2IraLGV78q+c5SVQ3hQq/Pup0KU9Q5DxokzrFJzgzEaUH7VFDvZN/DLCVyPWtO9AZhLSJ4R072+8dAfrIr8ClzImlfHIKhJXuuk4K5XA80I6lUml03JEzw65OD+yKFbWVvKdNCvOzFI9LO+0kRy78TgSJSH4MYoZG6xfFok1gBAcDvz6ufP5+sHPuWbuyrwn7QgwYpkXy5zYUVZSEED6cExyhbwQtcTz8XiFHH3gYcfkK+91fmdQcpXVc0llYzwBAacLVhThIpwmfsN3id3rJRH5GUOa6RVYQ6sDABWNCNwpbsnp8qoJpO26fzVIFJ431p/5ufswtAZxeJC28Tr1XX9Jv5P+iOn6hl8HA65nHc4k1fL3RUmEs18rJhzFrqoMxbam9ht6aTqM5r7lIib5AydpT4eokx666ji7gpXVmgsJs/SQ4fnFxHSGhg1PRudVSFqLTOnYJJkxP3rVfrS+SS3R6WeB3QWavkJg/uQv5GgTTtnrIwPgk9Wuxm3YeFdeHwyEurJmPABgF7n6oS5hCVz14x4rvxoipJweRDLdyrp015RtIBTzlYqRM6xGvKRx6JJehzkbXsL/GDGp7QQj1Cq7UCwtaJ6Jg3YRH2K41iARgTrXpjVGHRqqZINAnE+gnkKWLIZ60eOUQeF81xLC0wXaadgNjeYQOdQSbvmKj+caxgaXqY4yopAb6FS2URVOtE9c9lV/DsMbkgEqVNfgGhuJvdoAxZJBdLC1qbx4nWETnNFK2cWS7BxzTdYoo2RcspzEPJN1YEssRxKEzz9wwEYqamas3j01MPLhrVCiEBTFU9RI+KOG/oP2MUcTH/Ex7AGjb7yt1CX7+MRlD7vJzC6Yh1gLD+NvgxjO1fVBwvCuO0aFBTRMvy9+fMLj1yoGsFo8LKV2NDGWVimm40KzYDthmuNWL7tTzkfjOMBoNPFwe0ZCTVN4wCehR8RNF6Ihil18wEk82i2iy23ItoAT/1KXpeSmAzBypqpsd/QI7jN5zUDLLvG44C/Irde7OyD69D/9NnYW2XF026yQNCg5XRK9h8EBX59uCfRskyoTFXr77qHzT1Er6Bb9U42LmZKeE31xQGzI0uG7eRCa5P4Ts8fjD0qK0yv0mLCWoaBXjq2QwHiAIGJIGsV1E7PVYBeYUYXQ6dw7NJ3lQHUy3k1/TEg1+Df3u0GbeSDo5enz6YnbOodyxhx+lL0nrLfYPZdLUlAjVuLPJ6YjkDavCJtp3j2Ha3I8ztT4SPYa3DzGxYQE9DwLzS67AiG9RefNNU3qCwHGHTm4kz1y5nIX5kM5gvxNhkDpKjnTlRpnGN64Mt6E5Z105M8SRj769E0oUdbH3x4odlktzt4Q2zkdvoXojVSwqdH0oJHBvaiUlul+F6ppp3RsLQqzIPWcyhF7idy4voSML0ju8qPLHwjYrI1apFxzWuHVw7dJ5BttPekWEpl426rTrZlvty1FPdY+wqBRystQa+rrAydyIldQJIc7q0S9TUdA5enHhHn58AHGcLCLoxSYvqu8jfJr1IDj2yUEFf2DUD68H76PH4V8gDoEX/W0WaXHF6A/SkcS6yo2b507yGsmeBYbfnrcxM4wmZMHoT4yBnyl8gcS6GiNT5asDWjb4BY6zvpSmvddXQh/tIrB4Bi7lhU2Ftcz8BhkQl/17Md/syikBLTjMdE0d/riI7KhBCidhO5T/C/kji1TiVu3WspL/hLqylyQTHk/51c7mZG45AQMeiLOwp4tIjU04jUQuzq6WKgR3SUyiiWTk/7Ns8kEONHzFV2Qoe2axNMBdsUgJiRAVWchlpkyh89z81NqQnm4/y+7KXpF3NK1QQ64AGLcFDNk+fQR/3GfEBztuVXkYbHwiisBDGXcn32Uoiq2XIsGqKMH88lRZs4VOwzoSX2ydgFDiP+t3ruFQHguKerY018/omuDT8AXBo+2KiJoTQJdZ7lAkKdGETH1vDPrp3ApuGfeq41vchy6kdJRW/m9ke8Z6xlWZl4VP5jsW9JJkb2msXSBitau5aq5oPsDGf0mfPXzCIZqn0XcVrI30/YePMHovOIHLl5i+OOAdGCB4VaxdQyMd50qnOJTLKhZFxMjUkHI2RaTNA6dmAYItp3pAXwBLkLbfpt64EnEE9YTjRYr59bUrf15cDG6PvOacHFWord5derYugp7A1ldCZf6Kai145A3CKQr+o2x60OJmxro035AjqTfz3VLufqd7Z+p23+8hFoCi7kxWctVh8xKd8/BLgf7v7nkcgWIis7pMl1/RISld/tzF1llsw0J7/bKukz2w26ocD9vhgzZwdZODngLZnkXgDhSfWgfszuEXELUnEwUjJmXdO0QzjRUOTl8gX2hCCU/sbgge099HYfkisnmy8ovF2Ip6iLuxNAoE7mUx2fTWoUYx2vGyVAfk/3dBTC8FKQAvEZX2qsMqTg9RUTWTFJhHZX4UDuLP0m+cMbTfh/5GmbvvoXxxm4w0bwtY+cHtEU+qZ3ooZO0ME4kVrSJ1V2uJGEswZhpyV6Zhi6ecUlxsZuR1cCm6EMSsMb6ymteFq6SpTEnFdUwld1JaunUU3mWVrWCyGnV42Eu80F7PfDIBnB/J/tmNQtYaJ60G6Cj/JPfAWc0Oh1BVmIcS5IaEBZa8Ot3yqoK6bB6NsLTpC/T2rbvExRWWSFVR1NVtrebq1s7W0lq7yT9wCAduuJlqVAM7UYJRxpB5PwUvbzYP1jsoQpn6BvK0WBR2Z+o9s5wAIhW0RcIIyA0K3FHrhNUg9G55QvrfcKC88tK0EIX2KYw2CqJ9TQO1+gXxD7bAgSa5g0rq+FD0XfLmOdP9w4z5+WNjKiBB9ipntjecOgBYy3UpSyrXUsuqmkyyyKxQYCakIa1QbQRgfPM+EP1XzwzRgwwM8hbdN/yFMq1oXU4lQVlrw8WsywyE/pYu7KXYz+2RG3Zz6EynhSyh6e7Ai5S4USC/nSx4Rhug9yKcHS47chN6WjLIa79khhhJFtrZv8/AzRi5EkxEYEmMj+e+AOejoAw7p68mP4ptm8O/KXvj4E/na1U+ymmkVOjhwVNnBI5YPOQLJTtDoyX4ygdgsmUzBYJiB2h2qrjgc4MywEWLohXt6dpysZ0r2FReEnGUAOvrfzzY7A19zu+niZWI2ltpBS2hIgXloEtkur/a2AzsjN1FKaer0vjn9839kz3sszOSl1k/txUI5t4iGqpgfy6S+mMU/INTgq7q+rELX8M/MClhmUDJqzdHGR83xBrfgaeJd5zTDsLFWU1NfnKFQWWGfcIL4Hju6nGwLgw1JAeiNXZVNLyIPMrgKiuR10CXIy9XJZOR3Cph/SZkX1uNbd/+cBP0lv0O0oXV2wEpUPOPmzADF/QYQH0MUaVV3En03fLVfABqTbeR/C6K+zJAeBWsj1h9RRSSk6zpfswaoykFeDpKWSz4ndddPxQjMmU1LL5bzzmEc0oDkjKzPTDGneaVImsCsijkwbf0l+pAWeYj8npYOSxphUYnIxCi7v9kokcq7/qNtxp7bi3HT3yc/Ni0djVp7M3IXC+ATQCvl/73v48JEzWQPWYsabqtp96WwbG/4myT27GHpCVlfKx8AUDzguJ84LbBwlQ1otP8zjWnxmCrt/+4vcv1ux07sWzoH5NzQtSKZpnLR4RQ+GQSLsc9xe4vttmWxu4ALl6Ah8FHZyMpzrE1BJ4NJffI5YLTauXD4ifCPD/StPfeD88oGGxkh5Cu++7HH6KbItIjfN/wlkVJoAhJI8bzPVOKgxvVf3RPGnkhCI6KfGSrQq0LFPGnmwSOSGnDNAq3GRH9oPMJhde/+o3uOPERp/x0zxdSFnRYNF01TQlSd+d1MPglx12d9C7AgDCycy8tGjDfWbYJxcTwMwv+IQ2xphmc+PS6jVCOjvtasAl/PnroOtK/J8LgwSD/BoQAjRfj71YCfmcAIQxQw0k4F3dNdU8+dGIAOYc0SIVvFQxIeypawuLaN6jVCwSa0PMOZxoOYn2ErK4bTDSDkJnoH5x5KHLMqb2y7RRoVvncgLp3vg2qs5rDsmCkTxqgzfw7NdeYkAfVOXLH5jXszFBLNV23nq/Io/hkCCrDo7rIz3gLNF5mFj09lvYMmHPku22+A5jrdR3DOlLcEflY0zNWz+n09ktniUSJvG1wrVFy/bQxCdUha9S/9M3nS4J2o4EysdjeuwO5AWpTgNofXgjg04NELsqX/ixYBlnP3OC3JsOsoRLapgxoVRfDD9A8CuVC1cGgO39X3nwuFZkLdfXOt61AlvlxssYJ8GpiCPGCDquv84E1Y2DgkT5FDWxvBbfnEXOj6wIf7C/oygsTYwzh49H5vtOxHqEBis6L+qWbARgVtoThUQa2uYSmwwAtZ3RRRny0hZctm4wA0oAzlRKql1rtDfCYeJPn7R4Q+rY3AGaan74dZn4qV8Z88+FKQNdYyqVuM8N7BfolbCq4oQrbywcdVr49iS0FbgZPm6o5V9A8A07qdB+5rDbS3J2KnmdxYVNM7auEh/bY1gNotqzcpfkUu5uGhXp/W7coqZEigfr4dEre+ljKBf+LPSctH1Zy3Fx35ahuzecT6G92kgKJBghLA4sumCD9P8LoppMMOecUOpHkTAts5MlgNyPX57RjCAqBi1j5daVcNl/d/JL11y9uK3DEKW3b1EmV94+glcRhPMr0Ih87vSHI6f+NEXp06NUITnCpf6VWPzyDVr/PEELaVgiktavmqoPscDS1ZcTr4+76oWV4mjDNAqXHt3jFisVDHj/BmgvA1MEGcsWCGCdEmkVgN9/krOyl7nd9xdJTJe3V2elNK3FowbT/Zk5fGn8+j+gXyMR2xZAhV/hsSuW4jkhI2D/c9GRSgFuVCPVSPhtSFvvcmBkKC93YqOPQninwrk0LQhHxlf9JYf3oNpSen+D1eafi0q8OHSQMFAjiP1JPcmfQGib1ncPmu1a0aFYER1aW6ZiKhg8YqZKUA2ujJ9jEkJpYTa771CWYHgI5TrH79agnkFYjajFTz1xXDTCZ/Atuinrucr20HHYqzsUfLWcYTUjXA0AmijkwRzdtBJdb6iZ910R2+VdPdoCzMopfWjlSsGzjybi1NzKtc9JhAjKmt2/FupMd+ccgSMAt3pSbw79m9OgWxZ8TLktF2Yi8gfXi660IXH4CSFpABh1ikzVb+JmDhomQhUnC5V34F1LCOz+rW8vogrzN0vrlTKVmaDvPzx6uEyj2CklaBDIbDqPPYXaJq9kg24Oe5wNeHyfq9bI2QZpzx8P0CLOB6nSrSTIrUN+fs+GlI0mAzXMdyoXwxVXDFeApXLwGXZa1+SL2mCV+1nMtedMAf0Z7N/Ur1cf3Vps/TNBMkW/kwMFD9UWX493SStuDFW/gKmwhVawrwQ50h6utjuT+qqe8pE8/xv78Nfv/B55+YaSq5PUpP2RSdOoucgLrVmWPvFeDRJbAedmnkYBTVok/+AQ9eTbYZe6qBrcYGMWYLGIoYj7vh99O8y91GiH7ie1p78jqGZf8SKWbDlNxhG7+n2Mrmfd/Egxuhb/2v/5m0q5TrO0QmujZ7qHGiM8vIVd5MUI4pfNKtafCyYlkwUHu+RtwA/44VLcX6kxHpG5UoOQITjdXZ/lYiHHiM1YMpjrmgQn5DjMBWeTScmddNxwRs68zZXbSYbOxVoluLUAWFjsfz41LdO2310I01K4Jd6r1i/yPP91HLkKAllNR6Aa8TzrlkMD8ztvmbmjmWwj6Hs+iFRRAsTSVxKD9TW51CSQWBnae4UBCoFxebLQvUDjRtW+9Ngn6srkJD9eB4B9cMP0YNtOvek0hPSwEude9I6uS5Ykq2+HaNXSqJC8169/zLpFCAp7icoXJ0+F2gWdrsswM4qvozu5u9PJt2+kvGllc7nMF2m93+l5rYzlIn2lUIIUV4bM2W2nVC6IcBu+s2PaVmuVBynNznSVCRsYUgF64hO9hw1WdxicfpiBiWDA+iR7sVcI8s/inxd4dq6bgzhIsJJbyQAvNAbmmZnVyr+AZB795Pcp1gyE1gmtVR/DXlzcUtH2mFdWsTXAv1WJTkhc9OB2y4DpOPP/OTrQQ0SHtroAGncZIWxJR6jg+iX700PFQl//jk2M0VunzGIlE3gE0VJERhteatGvG4pR5ju8KwvMfeZ/0wZFvzQOgYaJi9gVfULsUU/L9ExUmV6o9Z9f5qD1GgV33dBFV9fhr87ElHVaxk2Ic8A5O+4czZqVz9ocr2OGbEIIrEmamWcEalXnesTfFtBeD596yG+kCJw/zfsbyGpxMotQ9YcR+FxD7fLe8bZqn3AshnMUKOAHd9tkN0XFa4ly7uQQ4BPr6JFysIyC9tR3wF/IUbbEsrNV6LAcaa3yer2tdGPXo6izJBfSax9rs9JKqFwjE1UBz9q0MXHMDCP5oqYMkQYyZH2qsVwOmsYqKP2bEZYN8qmrZCcyNPRJGL8FWhI6jrFBolayS964PGPB+5BnnMO4JIdTw3nRZ5YulWn6rj8Eqzh7KH7jtHwM92w95VztJ4ZTlslcfgBEzJHGL+7MAb1qmD8urwsbfnOwF/pfyHXdoQCgRUU1yn7pRik4GPlsIWmLC73swEQyJSbs/bMQ7lUbeTY84bRYCr8JuJ9kTpTfyYrCnjqDvXZUvWEjydN4mypUXwiIbMut5FcWi6CtH9RPvHWdS1+QN7JRCoAzL2E6naeJBgP2SXECTp35lCyAMchFBkmz9eH0WQLeVNJO+cwujvK1KSTeroJ91aa3OtweGFe3OGF1I3KXNfV1FW8QZnRc+mKXKPxBQ2GvGRjpBbPjNXKXIh8GWs7xffSOsOnw47pmrQW6XyAZX62oW5mBF2V79JYz1V9b8mD57r7ioOkiQYElrkhOmyLCHamDmqNkX4mpXvCQ8G0pXU9wrAKsIPNnlfs7rdNJyhZIV95hZwG5uIMjyLlZJ/GuUmzEDZcFGOmAt5uIzMVBsS25hice/NQAPYPgQTQCzteJWmpO5WDLAJalnPYLfANJj1T3lMIIzsQ1a0e79Zc0vPwJwm2pOTiAiMj16wybVQlg7F4g44W5GV6vuliuTTE5w539d6+HBqd1rR/bXNoD4tFe3m/SQ4i9iIH1rZWnw2ygrZZgdxWTvri2G2bnhFd0FDlBoSqqSt54Q1x7e4NpVePFoaGZQenbhr1RUFrHEk7ZgUH82H5QJc9OalM3+WDV9YtVFhgbU9v7o7KweCLE/k7PbKT4rwpIrQAJDvdJ7ORoSw0DFQyuFMSDEJQrJ7kH/ZmDaA5FgLFyst4s3r8C3P/tcUaVe8OpJpsNdlvt8/INtBxGphlSrr3qIG3lWnni/qyrs+yRRaOZwnoGBzpz+SxVp5WH3tDu3yJVrScsah3PxT7iH6yTRWV3x1lGRFp/cUsBpJtRNl0T2NS2LMA6h74C8z3uo5BlaHfmmBoGR6R7YQvLqBbqqGLZ8WRRB9+K7g8NcpJag9cgMV+NM1fmXtoHH2BuiOPdmDflec2PR4ZdoW32SG5w0SQTAGWRdQ9R+/Vkfa16/c0AxJrQaMM4SS2s7SKgxb+VG9UAYSTGDpYGG1NigUOX4BW7tIA1gHU3IMPiz0GPmD/Je7LeeXfa7RWdzkUVNPq5L1cTTOgJhYVEXAKbJyeUONoYtkEoWc+ajxUFNExeXWK3DAsFtx66VJYItglUJ8dmtRuGrqIS+prNdwtG6e1At8KLvSEXBp6nNIlg7SAPhGhDK/vQ88SnSX1+4c9h2dsrIPiE2KlqsZ+/VIetY7wsDMG5hojfMxVGmdL0mPIM7xUzpeCT/EWDhafj53dxXrtmAYWquSlMFTeVXXkS63QBCSRJ8xXkcUEM1SVsJ355JZQeAoUGoklJOE/97ZctTKbBXG8L35i11LXAwlAExrz25UbJP7yZekznV02AtP7frLdnjZRJz5vFzCQZTDyXN65eG7OzhJGJ/pCmmge2urZUASxry10qsP10rb1UhkKj/fs07pGUKOYcYfSG7NOAWNPo3uYsUBDuxV8QWDk4Conwg9SaXQckKYU6LLinqa0F/YyHixtDqKeqtWJYQAfCWg67nZqy/xWB+JUOknyy+FiST0Yj4bqdt5mAS2EpwAN2AjAvOhnWlSxFmyWK0etrmgN92Uo2NY0Wj70s4G71y52+5UcYD7sMDiaP+RFyWEdhgOmny3I0Gx2/Ir0hLczrl7XB7vsaI2K/9L/NcKp0CZYQdK557nPcYOq6srO2XOGgKb3CAeLPP8U+ghkP3GWr6PR7RDy+ooh6UNO80DA7OjLwHWXSqIXn+KYkrvzORsH0B1vfJusy481oA6mjSLiP+9dlmuCw7SUnErVmhBzfdbIWGAN6ahgEjViQ8SuQAssMPNaoaLPV4XDRvdODYBjwS6P1aCVITIKif+E50noZkLnD7MubPe4IQH3PiTwj6+SXY00rKIfNS68Jy9jrF+0wynGAlgpwsPnV3n0CQI7iJs3jlOu1vFsbSqTVqFKwuW10Zcar/UxOWXEvb8zpB6BhFVkQq2K832wxiKWKVJQ6Z/YhACGuRyqaKgu7AsfczBaVKS+JQr6NifvYNfKxkQkRVs3o9Mx1Cwwh9vRd/fbA1m0lPrQ+6nS2Z2JWc+jBcgN+eHddPvkx043Y0TVEONiqhHAIch78Yu2sG3hpcypUql2UC/pBFvTGgvAbYBL+b4FFQofrS3jZ1Nm5uae31Oqy1rZdiK1Kqots8Ujmyh6YR8VMKRaZMbVT8lwmbImklK6zuUj+DfJ9ZBOfyooeRTn97oeKZ4JUAJeyvAYSD14NSgAXccSxp01OasdrS9XNpyvTAkSfuSrUj+jrmKlsJFZEJNiihk/4wpZDsScy3iv98su3qYvtzPkujfIP3pXGK+DunhcDEVjXSbp7F+WE9ZDZDhgXbZ8fdN0OJZAmFNW+bfuDwVgRMFXNa71Op7OpWMns+I7fzTugWIcK8ag8tdbvpMdUpYJbqsiZWDAsafsqxZsDJbG3ZEzIDSN7cOUuZV2FGk/oWc457nqgamkvFDiCeWn+YQk9B1N8tXm74cvSNXQQwqLpBBbcM7MckBKC5xnKRnhVgBo5t7aYlKJJo+ldUZogaj9ksHaGTTTO3zXeuvyW/WI5+DxLNG6kqcQ7KIz/5fnUQ23ZliAWRLyijwsa2Z6MkYSyjNKRUkYmLJ1T+tdPYZDsTpNSBf+2AXq7SNclM3urVBYvb2lWmdHoSCgFXlZpDBMP68NbJpq8CXG8dgNUWhF58LHDDsNIfQaSXfvXj3u+r8MFc+eNaF6Zm6kXKJKtfcyPw1D/2/YPMU8ZKEoutnR7GgevwZpkYukzsVfzFzM5Mg2OIyiUklneJMH9PnUU66W6ntE4YOj9V6i1Szyz8FcZ5l+/BEX5D1riywdTRh2qck+gEW+KIbwL7v5kd9QZlsF3OvKv3jOk+Xsj3koFV96Gxp6Z9rU9Ag3tiMYRW888ER6hEIYQMGWhPUArzTCyAsBcwIu6ElVf6VroN9TNZDfvvBRM3HdgbqMVGv1Cr3M0ZZWc0hwIo2WZdrYi6KX6ubsbk2UgUIJSlbRynLY2GnhkFULEpoNtjvNFgMqtZeCvlROFJzijQuSyzfdqeOMPTOisGbtX2IYkdvhkGz0AfjwCA0/xL4kMIOyvows/jGK6o8TXjWmaj2Yet+bij6FXn+Nv+axhMpwbfJy2XsjEqXIFEHD0hVE665yPdOtEjSdfYZYtlsCBO0awgkUG17om6biNXMFyIZy0FYcq+jaY1SenVk/iUrWahc1wqYu8d/bD2Si9agAPckp6tL+qMyItygBHzT2CcUft4xWF60k/uRA3aYwYj9cFn13qOlaaGDI8QzZKnLnA1pHdfMXZ79GypWjWUlK/Uu1Nde/d0nQYFCV4wtSaWac9YI0JdqDAFNpLR8ukBJ+BPIlkWWXxUG00JQA37YFWZpI1phEpl021PG3kTCpcKuYRACAIxP1qTXpDrufYv9i5W+zJkrz9LzJ7gnBw/cMXaEp7Hl2siQaauTGCtWp9Sip4tv079+JpXwuFN/bcNOa4s/XLSaBagq2Nh+0ntVUBfDg4r3pIZq/CSJbpE3Mo7MIG5VIlOJ8UFKl0v6+W0yV+6yE5ECtRAHd62mi7kAmAJ0/cx2AXjcds3jeqaJ2hfBcmRSh1H2MccjWLpuYxUXmZqX1DnhGj7cme4JCiRfFF7/E1yssUxAU9Zk7JraKx0RsjS43BC0rI9hg9rCBishXe6WoV4H86dpCOZR8GkBKZAyY/ZOEqqgTNh3ALlXGc9kDBJs+/nzSE8ytN6lTd8TBtNdp9hiTEyO0UHQFt/GHhEi012SeE7799myUWDQ+0Yul9myW7/tHCI4+dS0t8MkCeOErGFvp1gxArX57vCQPAh9kLen34Ry1Z1ZkxdR2hPdzWjsY3ptMlstHAALmkU3yBCDuhCmKkqjMEkXolRPLR0I1OZRhAzBgoOxTHuewcnMMIlM0nbLV+ekk+B5aFGU4qozqYuyOnqegxxaPOQXYelIUEBYpG4M8J2JCSfYpLwlTW4rv+3KA6pprNmFbmsAZ3hO/kwxaokE9uvlFwvIGFHTlGuFzPqMTNx1LUR82cyeVz6LKBbmOzax1+bt07AXdq8r3CYR79vak/6p5sumCKGPZSFxV2z5+94iip1t975ce1w65wHpO/Pmcdf9I9BWNsH3stU4Yj9uiP+ZqYHsYI+5SkZeDQ+I2W92JkptdQU07EMlVPJmTHNkYDYBMPEjIWA3t6Sd3yuY+8S0wMImg+1UIRmzhVuZGc9c6hNe+xoXdEkLhBfdDOxcpKMe8ObJfxf6EvI5C9qq4t8m8H3cwJ8CZV5PYVN4LFo4JEpn7Z9IgO3Cc7W5f2KROi9T21XR5unGYZ33WebtR7vJQFWjsiafN1FUc+cB5Je0Upbvty0RcIm21DzUzb1QpxYc4p2mMpjELi03HWhaIGVpzHVwvdKnMV2Jhxk/V0JnCIx2qxDEaKjoHWE0Gl5Qpc/ZupeNlh7ecWHeFkM6HnHfq2QeIurFzpdP1FUnOy9oik8G3kedHgqmjfzcbr2xAXKnBXG/1ib6GAwi+t0SBCRX0xlZ0FwEYMkTUJ0HUrHggb+PKmOK0UF49K/2PweBFMRWdLKdJGFeUdo70vPHwRcYAs/mNgN6wp2xDf0MX43KuJsVhKdhOufL168C0O9SzIqpbHHCWmQnaYRnVCWiEJ5tpX0RGzZsGVnPeLJJ5gWQVbFu+xg3LZB3Olhq+XKrhY+chhMvghNIQXNfrYysYxOGrac8GmzHaQfjdv3kaB0hSuLEO0wPUsMebmeF2oRzHfr0Yr8Eh1mjvbc9fnRRmeH7tHaT8i3FzkvobrPIWlOleeJ1Xd/DYv2a2UVzYO9bX91cpyUqKCAG9FFAoIgeEjqnXohRIkftY8n59jf4ZkftIG8SBzZFxS6v613ymGciHDXtEpF4nhZSsl5Decwt8NOwaiAliBVp12ICLs5EpkGJIlRqgCM+7WvsA2nvVH6rIlJ6eSKBN45y+LNHwFuOsKdXeaQcS17w3ojqn2uhlBglKlnCjwMqzEUhxGkrOhwO4z291NlWZCzBgfY5f+FjhHfatlc+3gEKV9bPBq6i82GgeOkYbjWkjQ3zBmowDuJeE3iN1RyP+dZj8n9MGXflHwqWViitHBmxBNFb092G2IauSi16HKQZMcNB2Zy8hIZpeNrOP/sdqH72JJcUpN6O46MgAg+89Rft3vFo4d7+rsU5rox9E8oSN7lrZVGtTwzZATeV+Su0XHeoDwMaZeL5i8yu0wS3w8f4Ys04qQSMRjjGETFydoNjHVvL/dSe44JmKVyhSUKHGtc+++L634WzmDydVHhFIJP5XOwiTIVERrmh8+V/j5GrIMja9C1PPy6E47V6yNr0gVboPf/xODNiMEJ5bdFXVE92RHIGXDOD2dNffBhzERrFVezrC2jnFwNuuiNIumQjW07KfzWAGxSViMrfjhF6E1KKlYucHLDSf3sqN3LRhJLbGVu4AIlzBpG0eX2Xy4dMNu+qSqIll3RCK8NvvyEQtcumbZZxQ56u7ApwipQQVG9KMLVYs6DIj3hetTXhYFbFuFatn70YX7ZikqvfW9q1KPU0bxRORr1++/s46mTG+05kfw/B1HP4mjWp1CwMKdbd5cleWBpEzIgBQYAy4+sozxPrLQ8BtoXscE892GiwxFgh4dkTWG1yluGh7pZZ0Tt+iP/GKfhCoiA3WtWVcjKvUXx8i65L3cdWAY0Aps1WTWmMdKk59DFq8ugXpvaVPUoIvCsLlMGTpnRrN+pMB8K/RtliVh1OgVwLKuXUqgyKHttjjeJgYdM8Vxq5a3JmWX2F0/rji0Fw2BmqFPBrrGirCgAdjMTAttgS0rCPDW6NWWdUrqZXdbHUQC1iZiL2LP87Trkr/iy/bnxwZZYkRPM/tT13SfxGmYhd53TSam9vktT2Wb2D7BZ4UZH8tDRmPJzqMAdEbE0bGOy3XIejdWcwGFZRYW0oF0Sis2kUWmJRU6r4ekDc10i1Aw06WGUWYAeGE5FlSDjzKZ2UpOEbERiO+evwbPMnu+1hO6YdkAG4x7qXkkUbqz8ByoCtZLCV0hosyn0keKkw6ThPTWV+dv/2qjq/hChYxvHje8rNyG3/+Fe3UviznVKITmfuIrAcivwdL/nyvAUPCJNtPDpZ1/q0LCj7jJLcKtqfvxtys/dOa7nWN1/V0mC70dJ0FDv9COUlbJafilPSJ9rp1+uSYJYBkUo0rMoK6jqmwHVEoA/rRcEQbUKo8od6unnCei7NEuIryzXOQ6nvCbtrRsHp6JXSjyQVt4Mxp/Z5ftRuSTLNqs8XkLYChby/hkdifFBeBZ4TAOAmQ3L5HL7Rt3+HRp46ZwU6PYgSt2ExqYx8RhV+STsgoQbnI0ILUR/a2INHiPmuuL1pk6a3cN+TZ6mU0dB30ZoyQ0Y4DZJJ+IkHsVWEly24c68P60I7+gz8xmHfDKbAqxuhjhWuCV2Tgy1baCN4HQaJ88Dnt5wHn8Yathzp4rOr2csOFANBJUsKPnVZgyi1gtu5aosK4E2P0zoI1lgIeMgTZApXeLd5vg31Bkvaw0+nUyBoi3pwT/hScf0xv4prMSllWrbr3nMPWfr+vgIyA7YIAVD/1vFzuOrq+ZXJ0ogBNLO7g31d26RmchbEFgGzmhfFKkTZ/bN3/H0ZxmewFZ90az0VtnTkZdO2cge4OQf6I7nrl8IGS8obJGqroCWU5+kRwd1piOuJerElIs79WPGDlRJb7X7GAP04UHpIrBNSfihlUQwQj7l5ZL1MFEDKtTIOTl3TMgHRCccos5AShcWvq4+Rg63opCY2aK89H17VXu0WALalsP4oyi0IoXZ7bgfC0ByVeU5sqXV2LbC5iOA6CBJzPp3sUku9IipasYWDygBhLhCNrc3uycVB74lkY2i+Yw35IWfzdUb6vVd0Bnp7D7dsurvreA5hRzM+wDEgYOdYSsaCE/hlUodNadGayZT5daNOENouHc+s92uOufRxomCCN5++L3QWc/46cc54CMCVH0wMMuq8c4gz92dxgCcyhLCKPSl2CpscRSSlMwuh16+HSYfuDf9SvOL/CCzAfF5pCJ4La2CmWvvlBjrAscfWJF3bG4iIMijDgv2hqndRoybDYwDTBHNxgApQGg061DQlVmOY7TbmZoB/pob8qb1MOc2P661JPBMKCsm0Laog8qdjSxhtg7hHxDiJVvo5L3fU/QkpAW+ylUIQBKEa5euvmA+F5plCcpszhJxABqHYqvcEfXJe13/HWTLiAFMacoNFM4Fr+dvVJZO56808dNk5GHziuqhb5tuJvD6N6m8TJLuAPaQvO4OUHIk6vh32HJy+Qk9hR2+kqK7aP3lyCwlFPGpmv1nMoT81KmzdKLCqIb7YTFs3Icy/QS6sT3bem387l5kO8EbkO2Gc04dKab/r9F4FL2rysgdHZ40kWh0kyhjITlF4gtLZHc20aJTiVBGtmKpTsBiqNVjDWefOhXYOA9gbVGQIzgkteKhVAZMkBzEEYbYpZ0fsfyPQ/59L1EDIWl4NLfIlUBH3wAuROo8HUyRe2cSF6zIvPmAXkKsYSz61awkIVBpFPvo4jkQsU2ziyy17ts+MgXXjz78KPV2h3A32QnnxCPRGDHfak3PXZ32PKpvIiZ3j9Q7Td841DyiIdc2Vz8TWY0hx4NdjqFibcRSG5H6ksBmFLqaAwBm71IG/+f9Aytb9H6BKrc4O5pc+7MOlZmOh8DSWHasBSf9gqgHrt6nrsxD7PpAsddsgoEMXLIgGWgHZuhmV8WuTWr0KLLbj/bBIRXwXiP37G+9WXyL9aTMFEb4+hMpg3jO2ubW8lTkyv9Q76kTJut6w/tIP7B45JGTDPcRLkUOx35xso2OzOURcqLJAQicTD6kDxlWXQlXj2Wwk9R1Nz9CPo8THmUArxx1T0iNaorqVadiEY+oLEON0QA+jn/QraoqpG1weDhC33kGdiOnDb4MNJbRSE+C3VRv+a/vSxTvtJm7tzrU8QhTYJVtzr4+mlJFieAnT2LkKF9pbdOg1UF5PVcagdzVuKmwe0lyzIGtGjHVZTcfVa2tCohPuI0bPRdFKUBs6mNMzNXdGbUGniMIwVawvvSuckdGHiG26qE1mQDC5FBB2piYJearWJmG/kFD1Z2UHATTW3eNrc9+HNo0QGCql7FAa/vvK0Ha2de49/oQP04Wl3u9DtCd15DiHACFyv6IOv2heDJac4Sz3/eZlKgH+IrQpbuslJ8Q+jRV5FhKg/Z+pvCVB6rx/6A+RvIAL2OHjyewP4TMJu35/3WdK5tEBsQ4PngIlDvwD2a4Xf7N+/9wfl9E/ObyE+T4zyQpfchnLyaQvtuO8Msswc2mVvdVg3Np9BFvbjMLGTRn1ARA1d3puvL5QFtQsbrgttYXYars4JFsGaILU26A9g3WERzjETi9d5uyo1Dgz1KmKAMKyXtX50kdZiyypERq2uU1Fcq3MnUAzQCxkfrSdvrHjrTc2MH1cBEW83atA0h+DQzHGr9x5AucMX1y/IWiJGYHBniJ2JHHspEUNchX1moT+C2nEwrU5BKScl/VzQssigOccF1RBpnWo5Asmfjj/S1KUZ2KXYMT3GCSrO6U3w3mcYpkioTc7CSx7lfokb8jpJ34/JZySBHQrLIKVq+Nc6VwRd2i/eh1gL8yHJoEgPGAwOzzMFzezcFA/mmUFgykq0mMCH9p8eRs9xnAU78ex2tTT7z4ErzBei8Fh+mE2chjaBsQF+moFv4TEGn6C4DGhhc1jqdabcliCQbIkI7vOOITNNFgDT8uJJCpCMPVSRv12xnUaCzjIP/iCHddsTk3KormnHqcKmjlQjJ5rPjLzMBjMHEVWsphxUlHoaDX3YXngNDiZvsePj6e8sf2om5/4AdTbRSzdEhp5ReaGOnj8aBHwCmPbr5+0FTrYNrlpIlygNnvJTWT/+E0CSjJfkIIxGa2rN9umHe/nQpxhJYVUPn+GIGcMsZgAC61Q448Nj5POazj5OKtC0+vJlVtZEMsgfsGMiFEBRMldfk5CAE/lgNTFnc6cpUftlTUeB4u62QO6Tgb+mFBjtVprOyJyyKWoXv/g+XJmRuL6IKDJaklr4t1Te2WZJ6BQlSwLDGUbt+uD6V32l51ad9UMd3uK7abo7RrjsXS0bKd2OakL8hzQfvg2ymCW0HjECub/xS/AjHxxRVXSYgHKxsx/ZeefBktpkU89etdsWOO24H+385YNXI85qoPrYbmiXc8eyR85LQBmju8nNiLbRr5CaahFi6SpBUIvQXrljZvL8UmWx3O1XRihDlI4uHyad/YMcaoFX8GGIvuVmyqzI1+pGoO4GqfHsKP5c6Xp5pumUOanPGL8R4d9iWnk8qzdSA2weWfDLkegPvIv2/JLFrnkPCbfBiiygc5Wtw9gENBWrbBQdyj+MdJjUtTZ11Am8gcd3LcOCZ48mBdVr3SBJqzhiM9rRqe27aKj/6MhOyqiPQmyV3Zoid+L1SXMpC7E5E25WadAJ3/3ykM76mYB7g6vAO5XxmdkPYI4Jqns10GybdvTaY3ZZr38JWBEEWI88YJCsPZOg2szzio4HezdAAVfJVejyCNMtNauvkDY2s1rzZMUiaLBBuaglquKvDrOAnyNLYMSJxMeSgDJk+Gi9Hs3AvxHXHas38p7SSMWKfk6dbGBqB6wqUc9LUqkZCVSKUFtejJOVI6qeE0Fu5QbpwxbxO6Glkjo2tuRxhjTi/5mJ07eYlg52AGj10BboR4GwFfy9Bm9Zsy7pw/NMCfGu2jCEUtj49HYWxWK+AfTOVTumQvjDsrHgC+intJSGt8LyJToVcK4bDVVfONKBp/sccpD2iaNF+8K3s/MmMbamNd35ibJsZCIt9tHtnfCH6l8KE4ggj3Vfv2P/oy6ejnM1Idh5ItCaFAA6VzUkMRlHnS2ZlZd38Br4YPoDst8fvQOiRkl4qRMW2EhlkXjlHBjdiqqS973Rv9MqeoRSelXNVsf3Q8USsb28uzE0XqyFGzYaU3huj6kXRkWo6OHC0Ms9+9F0JODeH5wRtDoau8O7V0zPqtRtBK2uUesqV9hVyZpIOzss/pGHt/gbrpHGC1vw1qcJ2CmilN+alkwk/yXJY/LZenl76747tKh3uL4+yVGrbEGPaT8JcFeysWta0W84uFiQJ1m89ei0M7Va0q3ujAxrDvCIxkKOcbWUTWMOhPah1e08O4jDJsl0wDIgs8DM2gyFATQscNVSNErhZT0bcSR+Ns0VV10qSokk4fTUXYEB9iTVk5BXmWFp7DANWBnJzPtw7Z/TgIfBLTpnntGbt1c9tS4fDWvnGd/gahiW7m24a5wQD1VKT7GpABnlPYydgPUiODZmrPLodq+YDBwt/fJNukapBaMGCbQ1wnS00vrUUT3xhzKJ0kbrxATUwQ7PZ0u8Hu3E/NcTEZPU6DG3vr53IyYAVvEFSIQE42vZkLogq5jXm3DNkpbrggsPJ6I91dPq5bKdGK+GNkL0aBePnzNTBWQfUoPc8WQDsCgTOEcQ1MTK1pcT4G/K3o5/gtA869/7t7Ncbg60/eD5HpeRGuIxX58XwF3eLTnf2FAKWjA8shkSkXARNGy2jlTg5htg/9UbfR8kSC4qW/e7+4DBBFI4xykX3eG/EXS/XH+FcA7P8fmcLxFE6Nc3pSmkmSfbBBADvvmUJQh7pQDQ09bAWiqnZ8aGRAq7XEb1nyEoFl0LnANswH8tfFpUR6jC3JK83/l/HF0hMe8G3RJGuQmbIvL6GhdGiFGyirgEyAVdLKwxrRP2Mj67xijEOCXYe+PS+dtYdRBBnUCXn/xl/xk38P9g6nXNnmVFZmSIrbPZA1itabOS616aZHk41O54tSAFwC8wHq/3TXRNBqkV9dMJZruixAGTvSC052mKwZAmh6JxmoYzRB43dbOfLgzdg7UXicMLQRNGCxp9XmyfCtLhH6gehpTKO/Pu1CXWvgWp8C3uFwAu0ds2fXwOVRuNxSN8zhXXZGfxhlM4FGw7ttYwrMyDd9OhdtpzC3KdVkp16vv/WTGL0zpdUFKfttrcQggQfkESpTYbUMu8neR+MO3xXt6pSMnvzXBB4LXlTSsFVh/yuH1ATUApXdZoZKf2yiSr9a5UtAUb4me/LDatnCZl38n80MGxvWiV2nuCBPtnDqgVEeo/TIQThvNJPOWSZ2gEb9M/mTqTxMyph8zPEbw0xxUiP4oAyR+qvXwC+CWJtYXq+1UF1EYsxMX6JDx07fTK3EULUai4/Kic9biBS2UZ0q5RoB9dUTbhbrEVlzqW6W+2ZojDsQGNIP0mGzlKqJcMUXsTHvzvcEzSUSjD7YC7e44XWu+XXtMB72mPI3fPp2S8Ow4gG76GivI+5QkDtE0e+E+TkOHH+v+phkK0tQo/1GbQcJJO2KB5wnLXKSHuwTuLJz5v974dk9WnZPlNmWxGLvshb63md4coH8MN6Id+abWzxbnmOUE2TZV+RbUkrCTzp0+Opr54C/8BiSJdWf6PPohGBLLTRxyQJe1G7UNsmqYRhEMKsbGUAV5dTgrlTf+WEYC2tPLa6QrkWmmB+T9sh1t1pyIxqAJxS8b5B2GhObxJ+FSzoGIGcsBKLulX42q+849o0ivVyzPsh2RP7De8nIwh82itGlwTk0mbAUYraVELq2GEb6h+j9IeOwfZ0XdbaGu7j2q2okbbhpIRmqr/QZBsUrrBhQUKdUeux42DwMmJMeBRC7clA4zV7WNZvUuBTp/ZdmBhNBgnzAzVxeDwHfIIVTNmB27RIgPiMXGqSvtrAUG1uvSa1zjIPoKpSVcRBcOX47cLQkJUV3NDV5Z9/Xv3SCsvNMjTQO99c5kP+sJHhIUNA1SxPEaZ4YwQ45Hj6CFnIwzq/2RZbY8+XAt2q3U3wnFD/0meoTuJJgweMOe/beH4eZAzFAswde//MMc+svNFLQpxZYhJvXxYfABtcuk76kevgrTeoNQ91SthxNLw6I3FpjGpbP+IZlTPlpI30Y64TKARuIHlDj6lvX5qJYYxOnnlxl/i5T2hZ8zac3mjQz5cNVK6w/zxN5ElkUoCs1R+h/+FHOdujaI5mQa590yo/5Ctr+0Lgko0BzG6ZxGXXO2wOBykw+3uDoDpeqpLqlXW/8uu/nmyVGzs+1Rf+hMKbpg9fv3n6VV06ApvFQQx4yfEbD9Uq2JHgqneBRcllE9zEQMSR8XeOYHTYMpfk64pL4A1tQ+txAvJ06W7P3I9sDhQUR8SPzYC+lguQbgEqAMyS6SLq50OLQCJX+3m2+dW8VWfRiY6VpoHXAnvXjn5ubcZwEucdOPVfhmLd2rPu4ya9wDL7xN+dmVg3+R3UyE9JyzScoxUVA0phf2Bj+HJqryLyAqXzbFHDLcxVV3t/7PIlEdLTfqCUKlmNeyXuEu2nmlI/BCxWpVrhw8wCUDPjF6DOwB7Nk3Iib6v22V9V2nEVxah1loHb0tWj4K5GoPBA3ipOvpkbuTUarbgBUO9MG+Eo6e6l7exlly/b43iYD70wgOtrP5Q4Nj6nvLQU4LBufx1sc0RO8AmCXtZByKO3GljMERDL/gesKzZds4I24DtrvE2RLjzDksuuo0Nr0lOHviEivQK5S0rxYm37MTAZhRcBmBHPtEJXfDR9oEeCFuP4/jvV5J+ygGatQkdLS2J6OTbDqG0d3V4+mrlg0my00JPwKPcSBy0fdFWCFGgCr8862mjvtiZD8vz0cwBIZ1EAeTqnkkB7TX+GiYUN9VCA2S8d1cJlFsR/knGGmfzoS/S2oIQCOzqI2Rs4LwNrS3sA21xEU7aXt2s5GbjbNbVQMOoOK6Atc5IQ0A261hvg2FQhTE6CcNriXwsDzI9wDDrlH2/Jz06i3lStJN3nU+ZRheVjbMvUKUMlwI0taIhspjy8CLDgKc/s00j+ggAmtSKpimzs1Xx/TGva51MipfPfuBAnEUFnu7ixpBPAMBRDMblSxWqyfZWNhpBbei11zvMUZ8MtoeuD6vGSjrdF8PcZkTi++90//Mbh21din1TLcKu0P76dl25f8nH2B8g7TrgH+g5Hr9UcZxs0wuiA/DQrvAyG7Mu8hBdSdqk0YugQeM6kTsHn6g1Wof+aGssLnsuR/qO0MkuQNCrJrlitAEwTHj/6bmFHJQAq+/UY5OPc6FYSASQNkFBZsVKKC8P+ThyTvrhX21eodtjuQ0sntC4N5aEp0sCTHEDxSKTSNeQd8FqKuuweFQ8ix/Db6mgXXvKU4ZDi/HNaHicaJSdn9wTIIsBccx7IDkzN1Ck2q7xKaB7Bofcn1xIaGQ67Nu5PEbpMppGQVUpJxnhHB7IpcjNoYmCGwQkmPF8wKt4fnYR17HBRNbl/Jtyaxl28o/mjcJSgOVAvCv/xsllwaishxfmKV//gyREDHa7qSsIkWvvXuZL1NLUcYUDFDotAMIgO9qTCfa93odnLcNal6jx05Tb4lTWTxtBBDxVTV64o1r5HtG3rfw3MlzJ1NKb7uxnh2Paf1XoGL2PXx72d9qMYcnPU9t4OTzB7Xo+v0cFZXmNHYxbNgxH9alZOZgsnzt93thv86CVHGh5JBMyDMFznDTurGLKv9BPltK/UMlhcHLw3xh/0SvN9wft7RTQ3YIru/AjUqlPGFXg5j0li1iCTWKVfiWXLsx1h5S0bKJ8tR20d4FC9CEbTjm6x133NP30K0wDNHWSFSEKv9sfdxyegcF/FJKH11lJ32HuC4EIfwv5SDOmwwNN7XVLIWrdDCru6gJxfTy2HrU/0gnRJaofUZkZDzLIGCzgcnYxPVrpLaoNseODUE8+w6sgep+uOh4KL7FeGGaXS/7tEFBTFMvfCRv4y+RsQMVN6LXgl3IbdU+FPjatfWgGLLgmU9wy+4mDWU/NOP6qmcJrps/IyvYZj5OFFP1FoXcrhi1PoArVv6L0kGJZ2G8pHdRHTQ3OMMh0vDH9QAWCoNm0za7HVexgG+4JVuwnVlEhN7dpGAVce5nKMT9Q9VQ5yexNtzy2nHO8LflMhyywTMP9GfjvIRDvKAWm5p9rirXeOQfHyu7PuZM9KJBOAn11/oVFOGqgdLGs4zWxriEUKaJCZYOrXQ/Q4Glqf1Z9J7ymnE2ah7Yc07vKjK0asr5zsDNb50LNw7VTetbleiPy2lVpkFtTTA65eYi8DC2XdyNCOC2x/yd2iCBjNDSMLkY6+2lz7rxxRfqyjO3DOzpE6QY63l4CdQtLRPUUUQ3fnS38cxLliC0lf4GaCW9W/jW6gw9RyxmsfsVNKzWwqIs2iPriSQVXv5Jui9+ILUvQn15v83pWzRICD2xP6T4vrveCxJjhl1W/sxhXzBxmxg+u/Az0xd5VVzBOOkuwofRhUO/C3rVly1NWZkwSXKYukokCDBdjzUvruY3puDAsBE9H0+gSZImBWRBJ3qvTnmuT32cPpFuzuJs4zRbv/PDLGcBP96w+JueuzRSkGadISODC7zvNldNPHNfVQNAfgmWXAXVXSEIb0YbhITq3TKNni70v3N3AmDLVBTklHEn0qegKME5fd2YhCu8poJhHWWIzSzKgdRKhIZ7Vpj0pEOu83qvF5+wEUHTTFjM7cuauBJ6df9YzVE8LilbsZNZKiiks8eML/CsldwyMEFEfSmyifSJerh1TTeDK50HpNU1KBL8u9A2q94/FtcuHQDcg+BK2ukwhnN0tfKybf2PHiX99imOc3Jp2ynYlIf0DZnhMvyJkX3uT8SVcH1ymAlNbfu8kDkepIoQ3T5aCS5+3a6HXjySVCb1xwG8GvH3+hrgcsfQxWiGDMTCyC3pmtoKW8sqXfRiAhV1lng7bBVOSYw7dj49qHR9GoBh6jA/7xslNhGFKsMlLapbFa6X45Uejhyhfd2+UgKuyhgW7oLg6fv4xWREHAzCl5QpvVAN8lpR1+uZZrzhlSAQgTodNs/8KIOMj5Wm5If4yXRHJdy/JBgiro2flThLdYNWE/NaWim16i3gFkdEGH+cKqNpWkzVJFWvPbFBwy+Mi2KSlYiUpAFxBEuyM8TW7c3DT28ZpbKUoSVCEXb9OGWUWRnfQWrtuieAXqW6CwdVImxML5yMT3dlcd+8eWyEhKr7qF2qNLEKIyQ4ihnLuQ0QO2RkaBacFgMiQPVipBatOORu25LpQBqNDihehE2ml+gFUCPWU2h+MPMemi8vVr1nAAUD5f6nTrTPfEGHrPEoGsNOlVSW4HkmeAucLasX7yzGJatsFdQrt4isAc+kFG9/XMGB7QLI/yofszL3rwFMBV7Nl6yWNqMVU0bXZUatjSwy7U0Xgq9Hzn4k2nBmZDVKwBRzl15UYbMU0AluRac+XZM7FSBGREGJ3ODhbVwsTqoeffzyIAvCD7QHXl3usdSGhhlDHKFM90YIbf8vRzwtsKE4cuU00xa2zkRhibceeuSQkkgC58XjCElq89yBLh109vrzkOyP/6lhkiXS4Kx8FDdLwQlEJpNrDQG/xHVGbnN9xQkjKEuBeMY6TcDTuhKc6eLb4i9uLUABn3dxp5zszU9t1QYpKTVf8hSAJtbZnsV9FxB2Rvb7oelDh+fMw2QTsR0ECtGuUgwgOG7JP2BGM6uFbWQNFDPRiCFG+JahBv0a9MQg4XFqoKoRXXIl10n9Xk5FA4wRH8N9HXMkjLrbdNk6uShoMq+los88rh6htxSaqQXcvzT4YKITuq4VK1Hx3nsdoMNBFkPgB27TmVsLg00sig1t8+AxBagPYEra0iLfLV/ILvWyDymhVxkEkkyVPfvHPhQS/WJNTg78UjJfNWQ4ccOm9eF8CNId4s+ClVtmN/tY5N4fXlxHwqyXzpH06WuLF/7slBsaXPKwXRPLaNYUqHFFxt8ECGaWVsHBUpgPrsfAuoCjvVoPQs2l1hTq3Gbug32R9hvXBvp4oNDjDg34g5JLyR614kAuxNcNLfsibWmRWdoQOxroffBZpW3bbhZpADo4bnw6uivF6w3ChjK5hB8rgJCUjA4UHpsnvQRzhcmONUVRQOt84WuNcMJRd4Br31X7YJ2GfX39z33ZmcMM59PpYXNeUOXBu8QuB1sssJTGCUp48PwVcmv1YgVIahyhYyXsZAN41RvIrKV+Eg1IpmoR3S8FR+AGY2hBE1XmfFpNFZR8ZZTwAab8uvcTSq4V6s33JqIcU4gu5qhRs9JXRlcYRjW38oWV4y68BhA6hTx+vNYRHzQYRr7hendEq/cMNLLTKQBievyvBlw469ND0IN1ulja/CTLfgYo8hmdcgT04hrMT9IjadgStqjLc6yJvQuM6cHNYIEyKlq0u96IHuWtOxN59lNwvUyicSkloomtLkeYn+jweS3AgZRxqFohdKuRQiW1HOqNv6EIVXN02Dmn0fWAxNgPe5CLxzqUYQ4aQuSa7L3qbAch+SwMISQHD6EsU+7LxCbjR11A/FWHZ2WdHpTcfcQh4h5aow03qOLwIL7/dw7KqU4KNByfZ1/Z5/5jTzupaa+zWoHsFHonvKEvD/gKmeZmxOGDhTlpvdGL2hH9P+qLheJRfVIxF8TWQ8yrvwpwvvmIbGqResZG0P9phmSSyQwk4iNq2x3ymTFgquMsN3UK0dzCfhDe4QFZ5yo6dPW8+RTHbW/ffJcRek/BBQswC6cqq+ZtHYlK3lbWDpBAAQvgD9Ep3wvp4eb5zMJPM/zawbcn0vR8kFATIQs/v2l4L6zYIAkXe6m5s/Ptbqh+5JKqKl5ULLRM/FAi32UiYRAFOrGcHBnK8yDxpfHWHQsoFBPOjCjAknjmYLYlW6gmTjAzYJrMJaC6sTCTFvel9RpkljRYWJ9OcjtLnaXeOFNIlvTLRhlAY3HFlEeLpG5Leiyapwhax1gCXqlYfpm1W5aNy+khNbShDrI3AcUqhc+jAvlm0o4HdluLCDhVnKoRkD1hSrmfJBeR+5b7iFR+LbYDa1gKsVDvjM4hL/dcS/B0ml1OHgPRUFDNgqAyxC2otAJIl2Tzi6sjsHpZ0y0/4A+9nRbfBiVlLxcQkBGMQK3pwfcoSy4JHYs1V3MX+bHoIEKjc/HgGnafXtuWSyZFmouEiMt54JkhQf+QtM2L7LE5myaB3z7PsGBHEMlDSENZYt3qkf38hGEmBOqLIXjAtM1c15skGkFBDt6PSK1mNBu1DwPFyVlUmaTWZLwnRu+HN8sU9kwRYw3z/UFRAiMkLE7ycHLgqh/xPEfCeZU6YVB2U1S7v33PfTlil0cQJkHtXa9F5UAzOXiMwFfvvD2CEaBscf08sJfCJfjx0GNO0oL0Xoj4yNmBxshdyZlu9YtPnQGe3bxeIHyQh9jQ/0+XaRx+6m7qyZda94a5yQvGyMRk5uFN/qfqoPG67Vc/HHRmMF7Mcdw7VUu0UDUTRUB8KDW6zc2VV9a6NwGktvHMCduWeldxex/11XLmT7IDBOUFX3ALGv7er6D6qUPM79SfVDaPfrG6C+2ct7QaEj1/hBSjzhX999Q6xI52W9Yw5c0rxaZcXEOJZnp31ZvRm2m9UH8F5gHThNvuSm24o54QKSELbSZjH2Kr0Sa6Dcn7ZzWCAe8rm0Ca5B6ZxOtLBd34JOSQP41yavlLtO2C0ixpbnXVc3qLKBevs0sf597Zuw9ti0SufTIvXlIkHKKnOF+YYi26WATvehiK2AnhfXMQdW1F9KM4CtI54qyznzfOrhiIZBqpBqN2qyelFmKh+0rKy3F3Ww55l1JiTAAxW2kOX9QucZQxRVSWFyq2w/gvHa8Owbbt9YSjMY2R/EG2ikXp+AcPtMoP0B3DbFQO6HXswGQD6sH2EnpTQFW3YchHq9G8JbX6NldKuYBmU1+aDsq1ue4tDcrUIG3M+7vdBsPK400WaRlqU8qeMgqFao4bsyBvrG+h9fBJYuV0y+gXU1VRDjGSlkDtnE9/vH27pJjxzDzqJUy0wAMqMo5+Nkq5qWZN8xUK0J2bkk/dKGBBjdRFFyAorw2/ptrzCTj79nwypG9ccam7x++MMf8sw9D7vNhXf+8ODol++pX4TlZFUDewhRoWnif56OvVKaZF9FNabl/lnR2n3nmAWzXksrn9F8lJrBVJkGUAtirJRv6mATm4NFqtnaA/1piRRwMENep3h3bi+egNVbZcxleNFETqe8EnyOZsfhlMAVqOgzOiprfNgkI89q7p9y9yu6Wna8yUQz+A8mYmzplhtRerUum4iAQFHYtHbeTPAbh4XGatda64rv2Vsk8cC1APXTLO5FIH7XrUcyyrOt21RsTwKZJb3JZyvqjmL8LIxyfnxrZ10QmPlFsLEG9xP+u1rOdcNM/VD1m2Ebd+/6y6V4aMbqJiSKBC+IqUwWGQOg+WSFvJiD9VzGRTqy2V/NU8IQIAlsNpeaf7swxfKyjwFjFsS0ra1yfbj7hP4SLe6jLFgxvqfZhlilpjVJdTNLZwoKhqidy00/x3qtRsev11aVczLaZVH0PN3BB5P3I4eh7NGzjQu/MN5ovUfRIukTSFyw85mtogILpWInnI0ssgZTzZGTDtbpyKvrco4gKpK/ntmBHRSUV3YThkmjUtAcWL4sG1rk158HUYl/dwJ0JpWIYCxnklgHH9k/fQRg66Zl3Q2L8AGOBuGek6DG7+gL6IWiKEIMEgVOcbgp015KWzDquX81UBEDwBMUQkCwiNYizuXmp3R5xBLloii+Px4r4kqvH29cjeqbldEC8ZhOcqhCxJJ/wRgHVy4zsA6geN0LJDzhjRxIfvT8fpLZrUR/j9NQBe8EECsFr3oyPLJu9nB1am9eTCiNKbXKb1dHrDumEwcjNJKTPPHkH5rNIw2L2mp5nC8WMyAbUmr6sjnnJLORITQMGRDA75pGYGGM/IT2kCBW7/v5M1skeUeW8A3u2akBVmTXetw72ZdcOnawowC5FdPuZ3gl8V9Bfp8RiZ62vOVyrmQRB6GKmk8EvvrzSswEkNvuTBsQasXkUPVLwqBLDe3ktLJIwrNKQJTD6MwlbOlf25natBpEiGUmv58c2i0m1kGhPGFH5y4cMuDlc2M3dSdiTZx8vq2WqMPoYVEjpTDjXuP71Ye6Uk+7byCAKSuFJMEvqsDkdF6gBAQ5cOF3c09YHx4U1z7mbYzcKHFer4jqTFeE5ucxPaZ3/MhsBybgAlyFIbyduGdnKvFW3DRA7IO4atC/Aq6wdWLcddsiMAHUlcAlG/40P6vTMghB4eyn8Ii0KtLCygvhUqNeam9MeKN2Ij5/k/4h6yxasMHTcDQwqkgj8tOHZdpL4/FUXh+10HeLChsnZklAkx7wwQ4lY3ALLk/ZzM1YNlBN5m7g3G40+9dt/EDoo1Ghp/aV03XGDjvUtIY8mtzVUNhQfrGq5F/CEUl/014f8jzBKzVylOe1KSOfgC+dwdCeOPx2IRekWLNEodIqfSzdq6kWZRkOdFqQjCqhaOGEuJM/G7BoxuKEsutPgu2Mt0L3cSBukeAmJg7A4izZnQGzJRaBsi0lb3HhBlORspQhIpf4QH5GkikayXzsdJguhfQ1WRwTYRGw+pt0Biaaxz3efP+kC1PozPQ2tAYbheAAoy+lZQ7aIW+dgTnssW1oMsEkDLIjDwontWkJxS/LeQXSjgEZ06MMd1nd0KnHTgHBRhR/yCm5HwuUzZxJtcDWRLTqxpOKnz79L5rmqIxvM4agwGjW2FAxOcB0gZc74Sa0+4W3PrP2yAudWBUWowQbYHANsB/0Z5nKVysWMfjGAXnxb3QiW6utoOPhe4p2H5DS0Cnsaoce15niELX0zWMVKGAu5roE/eKzM9NNTAURx7TKC15DM0Bt47p07DHkwUmoS0gHkUNYxRhQ4FDyf73eGybVlzH3hrHoeHQ+Fwgp6vx+8Dd/gnVHyAC8TUOOUmqFCXUTi7omkD8Roa8F3PVJVLQAQ3p8gPuxjrS8yhDVFBb69KKbIt/0QvCePhuzUiKJgQCJYNP4K121973T22xzkepQWKePgdVe1ffZdMzfmbLdZyIgkRcnBSo2/Pyu+oboerzafzbUt+vnoIVNuuHiRGaDL0diOWvtg5MuSDaMJfxax0q+4hxoKEogsBQvfBBrfFkz8Z9geHjqjmVPz61upgMlOx1H5GbxcNbXpJfihp6sbgrpR/U2KKDqoNyzn08hqieE6NFSQcYijf0PdqR9rzb7KLsjvTHyyhfyrt3y0kwVetPmurCKQO2ehAb0N59qv3Y4raD5hn8zydvVCSA0eWorzfvlPdY2EcQhyXNiEXLMiCXiLHSHU1GixyN5Qeg0NQLgc1YHmFN2qWxd3YRiBkySQ/vQw9PrgRFSvI3FrrQb85J+mLoZ6v/nyrV96KbTLw+ZkKwpcN3aEApjdboUS327G88fSQ5oy3ExNOOEeWNDwj9pAR2tHtJb3mkbUM+qa0B7uEowbPLaaLQ6eg57vM+FMmpDRQKnpOMQBKkR6DANCeBNBGy6rl4grA8WEzhp3od+tj+soPmDdvuDUQySqWs06NqgwvBO21213zO9Nn4mCYBu7ykEFmRidAlOM0yAhwcOtrsJp0En4AhKcFGKKvQdTO6dXggeSK9NnP40EN9TH4xMtRRzB64qrstHsPlIbahjnUTOz+Xsg5cGey1pIgTOZmulUYfyVSZIMMFjsWdb/gwWmqADDQ15PJsiIBPgAIHkSslcElqKZw6R0W43sR6d35kOMqo+t+wIi2L1q6i6Lwq4sDYGNkmmWtGJkceNrRaIaGAuiY/IEpne0awIrqv/VrPKVKiMrYqu/L2Q1MIQboZLQOl5gLT9JmDl7zvjlEZvoP/k21JRrhLHaQRDzyY5VlcgaM48f5iTuHj5cjPQwhqNGEk9nGofKqZZM3oe7Rv2G6n4W2VWiCv1jqAClU0AONj5/FAXv5IQe7FldO5YY3395kJE1eELRvwd/pG0deKNLIEPbiDjHgtv30Y0WL18h6ql4boh3SrbcDnxPfeKuyVx20W72BwaPa9ll7ErgA4BPZ0YM+/QNk4mBzNzVOcWfq+uLGyHKaap12Xy720CU3kFSNrKTuHPYbPkT3XZJrgUvuAudwRIUDcOqYylzK6+F2ILI9Rn4z2X8x1oS9CX46TGrTkIkJI9I20WSpIe3UygAhCsYvRYUc1PTApIp+xmNCp21+nfm4DLUU/ZHcot7eI3I5OB48FnbeSwZf2kSlzoZlCtOQyvDPrPJRgJ+KaHLIIblZa9pbjKo8eiJcxnxfXJAvU4zj7MWdJ3IlBlTbnnmUmLiSa9jwnOcBKNphakqzLWHyQT6ZCazx7vWTNC72LU0MvrB7b4uli6MJseHQocVz1KPQC0L+zmrOgYO8CDz4f1t6XqqgF6yQW0t784OL8uL8OpJbebdcBOHifbJMONDk1LnLiuq0EGlFvQFyGE9jH1oCTWOMAgb9puBiYmw2nfqrw7ZMJmUk68+cvD/2V22qPIXUOGUPvHBMSOd/y34sM8WQRJNR3z650PG8GLKI2I3yhqYI/BjrYvEzg4BP4xSCUOSQ2B4WvliS0BKJGInlMXnmUOEfw9LotX2QpcOvvJnTkJmkhuwkAG7r8uk8i9IHhXxBOAnlPFQ1LjfMaTwBNhYKjp9WVkiYqpHMHgwtfbD8GLvt7y4tqjdScLThDhWPoyvoB1ibwK9XzjpX9PvvUxr/dfF82orvG4684jz1/C1ZyvXqWJAypcZkCndoFHuh3bsgt1UL1v7oexBdsa23kAnohJzBmnXIuB2oN+Bf7fNlOD5Nw0WYPPqb++6AEJwR2MazNzllnUycNWrh8a7SjtKBMDNKtKDKBXfFUPjh1j/n9823puWnf37cLDFG/KzQztmAv+F4nk21iLS6KAN+V62KGp4YYt1UrdTvcU8nmN7LG/1n2yRwuCpbr/jqkE+Idf0wgDyt0S8+xlEkDUc7JKmsD16runliUHfIBlM+aroOwxNmZ0C64h1sutH3qjszzVLAu7SH+J7tNDDUqQfMgPDb/g/ogXuVbTbNpMwiuKEiUYZip7pMatyme8YTOvdEaMymLSTYkwNQSQD5cWTLk8BqahPQMZHLTATXZ3qMRSy1nNFe6V1IsCOj8cEvlyDaNNDurITn3LI/hpnSf3gKaR//gDWV+tAj1VLJZ3czhPjz3q+SM7vJTjqM9j9Qy4idcAZtUwfRlVa126Y6Czbjfv3dIGL/OQjiG3jJkem5y7rIDEVWpUDEBtQJ0aMGnCMjQEwUg2VnsU3/ysrrjwvIAu/3etAVoC4i5x1Rfg0xE/JZ+bMCJ9F3XEOt6mg1a0I+GRqbLvb+AJ8ciLuk9sTKFdr/vg80qeQwcWj/TPie5xqULjVfFOigaNTm02DEjvwZybdBaDx8FS4H/l0vJL6SY71AEOnOR1Rl3pGJ3J+ICq9/ioyBow5fMsRBVZ+1+wwXtOWXGOdEY6qBIgfOmuQFW0Mk+oINp/w45LpC4BqkpxNTdHqXVmQ8se6xa4wPYJDkcjSy3v5dcDZaoZE3qqu24hSMjvnCvlpR+r9TfI4wMjhq2wJj/onx9HzK3lTe2vPX/6OKveOAPWohVraM6sKMh1Kab3+40pAjDemkRbwD5kzannkuuSu520cnhTidG495CXP+6PAsKQGpHn8/+LUjA95KlQjlIx0zpA3DxpAaUXHO6gYxr0qsz5onHDdnh0vvipV7RIMx/21pMqOur6YCaeyAuCscXLwOJ30soVvUWzPI7QqiIMNim9XlwYmFeC4zglIPS4JHNz10nk2c/mrF2cCt29pJ0+QxiD/P/eS3hvMixo+9Pc4xw572zOts1rzYJLYPyPmwfhk2zQtO2PxpnazeRVNlaBH1qMia8IOHvKBBCnUu3C9VW2dlVt6jwWqtWlyFAVsw+sD8q3uQqD42GvaxuY0U9oG0y2EVqFtzDyrsHWCrxHp//eX+7cuMoX2XvSxB1B4BKB5/KkIRpB3jdNgx4L66ht3lfsXrG5EVphFRDEZMES8AbtPXwaZVVAhjiS9jQEMLoN8IhJvWdVykFEOVqyNp2MTiymqh7wwF46THNvbwJnReUpZ7bIaN74XVo02Zkqov2TmOj+WavMRigiJ9WZVy4UbDhHJtDpYfH4n8qnGAn6OrINR7eXgci+R2FKJi0ZyjU/f11RDfZNwyK3CjGYZTxmpdmplsGjrLpAw/TLYz0MpwTxsGXVtb9zqZubnniQoAQfd+prcqmniZ7DsRsJjxsqJwrFvJ34VLLHbcmscC4hF64YN3c0SHo5b2BE4MYRLmNzgqs7HKh+iAN3+e5M02A0SGFMbh7OMhbvMDKYM7AE9zga52XwkvIC0WBp5LOUllQJASfzQMeGUFEZmIlJDEh6ve0uGnx5dXEwPhNr1SMWuZsYbDg8GCBT0O9qq3Cz7TznDcXh9eXCi7SYq3PLId4R55+EtKxWnnmMX5FBSfAhucA4WbsRumvyrkUuoWSnPr6Ced3cb0YSR4SC/+bJRXGDrOVoy7GAYhIqukDZkGzuaqyBQijYQqLYr6TpikVshl+b0s/iP2hOwvBaAcSOEcVssrzhSywBPBSZ9wQMbIhajVjXidkToHdULYflFWqzi/ESGq4+6JzWcbpzF7LsqilhNP6+yMBh6MjgRRt+LbSRXX4zYBr7Zi4BCt8RFujbQw9vAyMExUCsbySHJaVa0DhaXY+W7Wl6rfFEi8fCz2Z1Lz+ZBnckzaW7zSdMHqF1Ugiu2conhorijRlB08oxw/QLY+6wSSj5vcEsafu8qQoCSdVlNlcVU+mXs8yEn2Lyy8P6brxvFAPDsszn5ba7HBK6h8t4/AD4H6qWfVQNgi1jA/RlN4jL0Z77+6cGspSNiOscd6GHCqfY/7Ef5bQoiqbmmTqrOUUlhvY3ihNB+6FgcmFIWmAbDk7zc4Me4Zv6eJKCRp8EqO1VaRgc+AffsdCPRKZe/lSY+xYv5hsuzud7Jc077aLIDDudCZL/GPhQruDpwvoQfnXs40J11SN68AV4Eu2GfJfyID5A9gTBdw+mHURROoqjkUABLMs4vJjurmFvHIGzXzU7adigxNgVcUIOy1ePCC1wjCo320rBQJvJgDJSrRDjnieJo0rE8JtZ5ipCbwe51pYWJxyVAwkETnl4UqSyXXkAPgq+jBEFw6G2EvMZdpsnD9PRWNx+e4XPVHJW0FM08GaCgPhksgWZPkuL0KnX2vRpx05/8Lpsft+5+jT+x+SPDWG3gXkiKMF9cJRQu22OdHkWa09s3Zp5+mDu+blFNAQSqNsS9NRS28qxjWbXAz6Gxtu7QPhdkkDDMsQ7lB83lbJLwzfvAGII0Zo/ojkIPhJLS8tshkUHq8NTPSOjVv0XWEdcZQFQXD9z0tsjWyMxGobmQXLfw34H3CWxtFu1aRZxeS8Zm4RDgFEhCrVK1uxkMm3WJmMLxI64jNhwzsBozYIlzLYD/UaOWdCww0lGBSnK50hKHUZp4nOSMLlnimiEJ8CTu8wJhUFhhQrguRXRj96OP07WXCI+ViL/STVJ7OHMYYI1rHoPEDHo5bcNzmneBhY2pnPesFmwkgDxttY7xU/RbKXTmJlsT3iJ3xI0l3xuJxdQ4ZLiUWI1pj3KsVsI4JoVunbEtRCgHIjzGzUO8xXRYiXTD2S9MlGJ9uX/1+EB2NKUT+tAccjM43cb1f2ULJYykU2AaxQV8wQL6VMHNsI9XHjIkkml4RdYi0KY5U5z8VdT61GPNywyPzyvJRr6zmtamUvKA2c8XPET+7KWQJpLZ39kXIm2SKaq826RhK1yASVF76ueE7SFxfJa2bGAkv2wfeGodwiJfWl51DfMPPYx2h+ztaUYsjo04VOhYAeSHfUm4ryb5982nZ+K7RAbD5VziIMHPbY9L550GA76BYQUjELytW8tnoo15aK4Q7Sdy91E+mhE8UvrTNFHOjLR5aY9l/DsoL9Ig4YrR94j9/N/sJmtLVOlJRxUUARWva/C+EM6eGtWqt5IEtV9GeomNfxVU5kiFzMDUghRbii7KWqZCUX3R4EMrm/Cu3kbCDG3dPTPf16I46EyvhkpLfXLPrLwdpQOp/dIwS5RO5izPWAqukbnhziXu5YTHAhPGPoeVn6rKrMUQBzdRsVCCEymTKL5s8lSdCeZOREJqJXc0ubp4NxU5GKQaTyijtETq4X0d+/+zVCoPiIpkURBpbIZab8LwYoxw1xKiwGOjSOBB5zbYWQXVSK+mNFNvb26sciQfkCJTxQ5Du7dPkQpnqt99XpMctVwSiSVnI5+C2PBJC6PNV3pUM8wO0UOmEvB8nlGKu2RDO8OFGt1a3vycFyJW1QqU9ZZOEbghd4VPGDXZ3QxKLyKV9rpei5jRNUgXDjqAJFvzW4GlIcthGNXNbmzg0ImVjlDZmoZCQvTYnBJGIzYl0mg++JUqP9bRQpOKUDLXOil3DiU8HGl84+VNM8JHxMP0Im/KmUg/IbQnsGtV4Rnr5qx1yG0Cd/kfOCxql3Kqisf7kHJGGd9/t2JaicwwUWeJ5UMbn2nTjOkufINCwBzdXgxGXA6EEspmblrCHb6vebCIdh86S30LQc7P+wAr6fguUKXI7SJqOVVyHPuqwTRJfgtLMHIb+3hFEGHCkydA0Ng7pDhXd54n1FWQNgPMytTDCdqbMFfY0Gu1mjMLRp1FxMn0UIipIGjyifo1GE923xQWDJ8zxdenAzXs2Cc352jIEP5q+HVJqXDDJ9S5sNm2Mn7lSRpRxfkApmINBkLuy8Vl4XapcVvQto5gTUsSXM5X/V2qBbsBdfmBHcQpzWUiXn9NegaJXa2uzSQXU35KPL6zcuI9ZaB5OdtUxK/E6n2aBwqutFIcARf0m9n171g5QYod6cPNa5z6S6wkMYJYUijxNfGr0fCK4nR8Xl0lGYxugAG7Kkw5L9MVei+cKg2/3hGi44RKTTUg+D+39Nx8K6K/0lIhaF3HjvQIvz3lnwwsx6DMEie1cq12VelxaFoDZgVkT9m/EjF7phnE/QcOqJc0MmixvVav2fS3tpVUx8dAfkwwY2fwaqe9bQ160UnfUbC1OGmczbwOQIBv2r1CpUp5o6t+s1+DM7nQy9c2kteGXuqa7/ByulCa1iOYnzTrq6LRUkLMPvpBFfzdBysYbdbcb34ODoxEznV8xzgUpSQMaQhxkPGQuVq1v5+eSUNzgU+ZVJviDk5CA2/up9FLUbI6WTuhwLmkvO9YUzbib21OwJHRGcdt6Dr/h/jiGUSYsJPmUTscJs+eoHevgYQjajq//ITuf7rDbOCer2uPb+e48EMR5Clb4bM017pu/MjdtlvBk3SlcJBAkF6cg71tXFPIQYPeyisgwIoJNCghJhScPwSTQbqXMUb8I+VG0azv00mvTV4Ps4OzSrTPR3fL1orwhfHU68onjIAn4ZsNIpEbn2TThdpw48EdYVV9RzYZvtKBqd0tpih+0885kwTrfsnax2u7U15lWBodl0uAL87DWRfNHUi6ZPtKANwKLZUX2DF4HYXt/juxNtfp05yhKaMBnUrxOAnLKQzXEVlwnZKS3RKHJslcOQUNHGc8RipLQy1rNJEZBxaqypXeUqkuTuk4AJC9Cna86flgRRP0s71TN/bYA7caYxEU6Szv+hdNDsZ5sxD8YzTL/cUX/7fUhjlXIQReBMfxB25q9aRNbLwdqc6N+pxKeu5TL+nLIqOq7ZPSAAaOUb6fhFnPb5nvaAzLcdt39g3jHP51y4pKg0rkr4EsXH53GqZ+uz5M9/JJQVsngc6yvEMnRDJ3WePF+T4h+75v0btsFmoJvzFlszLsv357P8zvTuD6rcO3cN7kGPK9O3PZFh4FXlj3BsMfGErQML4MIu9M8XKuY2U2VSufAdZPqUfn3ehum7MWbDhem6YTflY74iDWbDqkQAXJ0Yhv6At7qLbJzIwE69Y24Vbkxo8QUepc1k5cuMP/oMiQiv3PLocB6R+ljD9suv37kJa6vzpKgi+NXbsmec7HEaa3LvAI3QWDa9/vmSzypH4sg9oWGJ5MoI1SjLakz9Y1H/DtOfsEeq5o6tzqvFA5ERWydWkAs7em9NBlD0K1feGqiQgVZcamwgY0b6B2DdryLdQINbKc3QvKyQlrVpWufRpgh01LMTamL8b5xeaQIRtG/O/Tjzb8jbDKvVGkJGg2Mt5vlicIttE+WAzMdBNCJpwWZ6m7jeh8xsDyC/s/8EO4dsGh0XRjh7uqMWDRlO56OPaoOElg8ujgiW0aatSp3/jXAP6Oprpe8TBXVJ+7OQCHzNBqsV021qOjRNFLGXhcy+++LvueMJeR/oUr3tzBBD2QdU18DLhb4MD+LN84vVAc/sC4UixysaEWMfSzQW7ksv55141QHlYnScZbkqgeVvH0HqaC8D7yGc+3Rjv0VGiQX2BEFA3Ox2kTQhHXWMrxtNUKvT1IBVoBLKEr3DLwUyKF49vS3JT+pRqWExaQIHKe+LNz9LTjmzOWi9FfwnF6hHcSTwnTryABVcHxuONylxt2eCO7eZ8Tk5DGQ+FXWuftjiVKp7x4uBYhCSnDp3PV9jKTM7IKVteSb4WQhhb2F1U6b4Nu64D1gQouWQO2kKoE/2yhOqsUeQSGWk1N3iryAzFzIr8mBMZMSwxydsRz1FEWHXmb1hzZ/GobQ758C3wcy8XhEcuFPTl6xYdpc6mXHkucJJcPrYwZ6A2/mSXrN3Zz6SZIMmXsA3bRJ8EwS4RMSsxnYGv4wBc6BHfQVxAuXkW8F+Yhv+d8opVD9excVCE2LXSDSHz03o3MqWX5/vZO533Icd1vDcfouKRsPjnZxSAGCXGBdPKf2EyWLXcRhWK8cMROkFEJr+MWuPFgG/JWeqc3KtL50g1l7xMgnDgmgErYpwRF99+dck5DTMtyln8ZyUxc5lFgP0dmGxgzfKA1b8gU0xpYhNGLF0KQPgtBzicAxbcBd/fkF2CP9+AoQnAAhZ5ECtX1YxhvrfkE/j9+yCBiVFPN+pnFIPxzwNdQBW+FQP1N+ZmVMezLBD73IeRmSZUD6p6IqKzR/03raeCwBZVc0FPD72tHqC+BEGjwAxcpMtlZktyWPGe/iXuQ4RRc6O0VK+GeTf907PWseugiLGyx4LfIcG+B7Gg+8BcX6AaBWNKWg8/ekZIfg8Za+gKP5KCGKXQcDQ6m/gsWyzA6ZJmFFQlZDsfuv/w4tWWB5qaQXxZYwtXN6SB/64RFZT4iWnOXK4vey7EMjZRHHX49ifNHY+CD631SLzVH66qLezM3BkyE9EyzSBT7FgCn2AlTD8FKUPMR4Ifnl/wpniNIZ5kraZ/dewkFnqOrXcrlI5OWcio/hrCBQqRz8zNqIgy/7iR8MxHDQ3tICPpb6OlgfHMVApj/VwRpwYPglMrcHS7OLIOqtVaDmxh7IeR5okvb5C4Ta1NlQO+d5ZhGkMEGIFeSD9CuUixu7hugopqci7QSxztw5xm9l2pGE3H30FVts27Bz8EHiSKAy4s6aiR22G5bku5qqkl7KGu42IZVLXZyE/4ia8OULtTG+UkREzUvCoVYcgCIV5KpenXY7REHjmtessnDCoVLP7jL61Pi/8ERusLDlO9657zscmH7/jsNtFUSklPpNZYMtBQYXer1b5snBVoPPb512GCrohxRdpjvyMBHNnMhVu0PxrG+EyX59r0VgHG5GP7C12bNkhZOXhWsCXs9LCjow15Gm0tIu194rtCBhrEq9EtoD765jc3G6Z4KqWCkwBWCW9zMuv+vPqzzSn57AmLPpznFGhXZnE8frj5O0xrBljNeztHsKMvkTg2duYcyQbpMySSiXkAyQGJbGuoQBJN79HXtwwjdsVFvIPi4Fd6QZgRBgTjYgf0FGnpiMRXcMNcpjURx/u3hlEgMx7oyMEf2bJ6v0KPv+r+d+4DP2Usrgrxt3Pp2sBBZrFTUh34yC9WPI33OV3/nP+TdtFrMkT8OHDn4v8NXVR1c1nXWRB4F3t/Ub6nqHkzORErIGbF5/LyMDy6gNdossMNZ+XBJ0tyQCZwha+KjQbZmNH/ym0jlG+ciAQAun9ySZwGHrW9Ja/HxM/YorzqRGViQy2qj6pzUt0wkOs1uM6MYCkF/V6PtUl9Mh0gicnLYQVUFUw96xaYMBs1/+vMu6Bqu6F2CCt2AVZVYo+N+RqNjCaJWqCaFvfkxH9nNeCdBA9ZF3V7LErJgXF6Go2eU6d0rpgxxf6lU7qLfi3id2Rj3lKUr9pOF0ucc14h1FzXWzso3P0atSGt79e3hsC3KpuUilI2NFUx5wV40tizPKKu4NaiNtm+NVU//PrlusVE706sJLr3Yhlzl3cc9MOCUmPovFgCuDQeqWMwBQGDDBqAzWIqeFdkFnJdrFFYSDwIbVXaHYqxFvWI1dRs+j6OlIt8EEWC+NGInKoATyTivs2UWEE+UslYfhBEy81d6GHVYQFnXMY2lpe1/X1DxWZFRdX+7w1m0HiJzo1vWQM8TAUQp62tG+zPANHLrsATczy8wRoSHcOaNwrKqfG7oFhlb2ZFy0B2NzR4e3Z7AseCt6NAjK0tlNP3RYQahIoYgV95dlcFnUt/XjXaykkA8Qx0EJAXvhjpPtn2awj5rdO82tmKmatAA5cwTh4QQmM9o82BVKHgpqYSWKY+h/GOx4gPfID95e0vzmY5V+axAv/1XXBgg0KEJqV0Uab+LULo+U5MlMSCa/YITrKyPOapZrvNIdXOgdsWI/iJkvdhhBH/+BSi3KhnSMoN5knP6Wsp5GePQmg7fkfAhCJ1SaMnKOToQf6Mhxox8wDBIGkLCSCUJOJeTtOcPfyFExgMre837HW1zlFn12lA2Q5cDVMVXNyXoZ9Mf0KoJ4dhIqw5nBGAxtI+l3cDsuD3rFSVjGHIItyOsOodlV1J3AFeedCnBbL7fi1lpkgl6n+ucjYxxK82jQDBeVM0bQy7m4at2KJSRrXT+ddKhwPmhVJBl2GDu1IXY9OiL3Qizq3RjoLQL3/PcgAjWqfxljSMf+oytjjW0sk99bPOzXXxiZr+0VB8rTROrU8J3Xz8sE3ZgUJM2FhLFDzb/haPk1pBpbT7xn6pyPNwLzzviYcX98d0axqRqmfjSnODibO6jBh7hhRwfK0PUQnB9qcREJ1TkagVOjfd9BwKVbNax6mGtktJDboZhX0fgoM61rPgFpoUMR6Raf3Fjsv2ZcQg+24wwUzdRHQbpbQXoCqJ+FlrAHGKbOzzqPzHp097O4PHtr+1UGF1ZYq2ANSVjb9lpQXzld2dYj4A2TTjm9d6Kl2DUKHoxWd7L6jpCV3oNHDBSBDlIHc5sIKRDdqx9msQknWnyXtPodWzdtB5WAKoOyQVtIz+PTrhDlJ8en0KBi4HPAs4r49vFXXUlDE9A68NgtoIfZE4U9cskI1SvsDTq/xID8ZiPDHEnrPQIdLTE7OJsD7/PhJzfd013424YQC4kE1BkQ22AWg+5D+UES8eduPk+4GlY4gD9Zmp+3BjxR120fXwFGJrQiUSUZmNLhBb/MWCswgiJfgDnOATkWra2m2dwXGvciD4XGr+nqynYQwlb9FnfeLECRojg/eN4ZEMSM6ETdrnd4k1WFlpHa8SVl0GsbQvvfkl1mIXSSwLS10mBQbiTNxVnPx/0ZNd6SbPgNUfQOs83k3ih3zM9mUhW6ou2r0vEauWF1uyP6tJRk9DLymrzOsOZZ+nRrW757sqPsyxpz4WhnfL7tEF9sQPL5mK8QAy1bC1CjahcA26QnImaXig0JzdTCs7t8ISGoAQH2B+peTA2lmZ7crXvbcgKYihgF7+LRYoRohR2FZsb9V8NSqDh5CIVJ+j6TVUC9DcA6jExqFfHZW8sIfhCvSlE7aCTgoYncOwEFjvUZvD7KpTfUbYwywBEnKQ0Sg76zPK6/B4XvxgDy5+gllBQcv1ZLFomeIC+RCDWxRaL/pv23QFEllap8K5/c43aePIpXRzY1ZNH/1NVLGSj45jhxhPGk+oaXIVXsnIXdHqPf3lu7HOL9JRBJV6HeLfBh1LcywIcMwYFQPmjIlz7wVO6cI1w0smdb52IeDPWN7JMM1oir1IpDLQEtQGMlJZYsW85Ak6CITI1l7SxdQOemzkPFMSElJa78K+GqWq9tPTRP9gzK05Num6iJxliE160T0EKm3ADPxs7qcQDgYAvUp2AK4IZzePlT1xa0mWFDzgnXl4FDUwq1zgGJm+r2ylR+akGTL3djhPYjXZ8pRpWvQk6YoESKs+TNI34X/CdEI0PSY86xM9ronPOINqRAVdVe8Obs7EUcjXI1ZO+i5okDV3hYexj9StVHVPuybCnLj+DkaQpDXRAzDkK8lKpvrZhfYd2cyWQDYGHdsKD7f8pgotA0MplusFmC8CjRqPdYBfnbyeYUqszVmFc8b0bHbolOFmYkAauqGtzlP2Wvfl39MfmSr8M7ogvZEHpEsQRhaNV28fNz8kAsJhFLunlmy6okVafod+YkYpWLTnt2qm+OYCoqs6iW67LK8XlD1xe46Pa+H1bJcIziynQHg0opcvqUFILQ8Wq2uOET//qPWrkqXKuZAffHFkEpHbNxB3KDjNrv5nU0rVzOXybcRSMaQfGXBrIi2r0vNlt09z1c9UyZUEUm4hmwEV4Ktm4gSwUzdjycX5tMeKI/43JUJZdsN1EXs7R8gmfjoXBjL/E6hRUP1WB/q387Wl1P5/veEvWQ8tXHagus61fLO1O97I2DUkfJCFCWMYaeBnzaweccpzMzT8W6ExEVnYeP6Qwfmju+b2NshVVzyYQv0/TTxdVL+Zk29bAo04huaYh3vvfb4HveFMsJFluiyBTH4BX/xaSolYtralpVKyYsCTxwrBDzhrmaDDnPody4nQxfAOQseyXKk/ds3bKeFoJf2rA7wY6OkuTt0LXJi62brDxgaBM0j+INRZ03rjL8G4uIcCxt/X8jsK8B0e7+rkkMljT32RvWje/T5ktE18xgaCoquL+W0l+QC9w4QUoxz6D8DJB4xDJb4P79phuTqEAcqaW2GwAWF30gRKMXnU0F9jlXtrEs8S2A6i4eBYxyaa+Z7O/jhxZv+71gsmFUbtOkE/2c3yuL5VVQX7fZ/u4uulGErGWZnb/b+dwoDY/zBTgaUP8r+CRZsYa8+v2M64YmymzGfB6DlgWOqtP09maUI4yDY4yq80WioQ3qExHQJPB4DPcO55+3VJoqMy+lgWz2GcvcG/SRFDOotp8nRYSa3GJjj/kSsIU7nEBb6e5VscSCgU5862T9GGmybpWlS+/Jo+6A9K5utRqzKm/2C/YCVg8cWeIu9yrb/+bnoq+7aQhSLBdlnFLKdSqHJP/D+Zd5KkghbtoQL4e6C4qx0yZG7cRFhImWRKmpot+NekTw7/c6BMXYyiSgbwMCcJAn6mdxWeGcLKfHUDj5QClNH7mk6rM8nMGVSvgwXb6IsnpkTseH2MVto4KNmxbNECEYIM+vTEFxNKiCJFYfCzQSM00jGlYpbDU909hUgfjyi33vLh7QyqvjlL6SPu/kwfEnHM1Ybd+d9KJGnBwp3NF6igzr/KdFlnx2zMh92rMzlwNmB1vOdwpQOrJmGdZJqzS14og8Daq/qr88ZAjsqEjy4bDBOhCb6D0/BnHbuwZspqXzscRRKosxht/K6hHlYWu8JscTUzj/bKSyCm9yC47GdDlwhMOFu5lOSr6N086B9bTfIJdVihTIP90nZQoApNVnxGx0eWywt24ogRAepTgAsMbMgZvj5CziapG9ZtCbFPwr9RcYO6YiWvXSYEcH2/cqdUl4CQ7QnumceB6r0t9bk9JvsAufjn7OI5tw0/h27ybv9oz52Mc6hJWaauqxo91m6GqvcT/9szjh6tY+5vtaBoZ1gav6JKlo8ex3KKNgAxBlVbqiWFKM+VnFaSdQ8WcI9WQe0n15HsQl13LvdJAOhR4JU0XWRtQDm/GwdDZicWUVFfz3bn31yGBfWPoSTI5EwgsFQVJSU7QcjbbNltl/YSoDYNcrDsRfxOgt893RrlFJKAtZWxhNa/wCwLc2x3TUF+nYITi5G5eQvkqMNmkvAAOQTF6ez03sCaML5vxTkKPKan2NAcO5aJ90yOalFuBMjrgHdu+W0xIHOd1yDTBPWMwkc/389Z1p6IyHjL41lbSzve7+QBNP880gT1YAKMMyeB2F1lF+ivpCZiH0X86z0Xy1QPFjTZ65sq7ANCh+0LPQvtNko1tVFG4ppsKzRYnOyEFMnmI9Sw6u0RpeCifDeCmishQCYtram+66siy+/cxOIxQ6d+tXPqX3LfPd7afP4jaZfpjYGoeFo4F1Lnwaj/GCiYP3Q+NR4kNNqBBt+RzM+0j5PC6+ZB1CWsf2Eb6D248fWN5kdXIxlJVYxpJVMY6u0QuTlHzs96u9uBpmETMqvqZGFg2+ZoeXfvcXlEwVuHpuJ24/4RQ452/AljB8GKQ7LFYkyIKhR3FChqXtfFbkFQ0dI9IT+hLoN9QCZ/d6msZoXz1GHvLu22n2qrc3qX4dbc0eG3EnN4yel3oHVv2nLkjiBTp4IGQEyQqp9iKRMxl0O28v+II3VLgZOsjCRKGWWS/+sNT4bnZBZrjfklGbCgNUZuvwtZtEzK5euNZZPWDaW+0jm80UR5wTeLBvhkQBeRHkD8WIFE8tqaZ/wL3NZd8DFl+RtcuLEut9kquVh6lvkpdA+/V11SC7N64ZeQL9PQdIH03/Vd4aCEjUPsW7MYfB5E8cAFYDtfK3vVjJjVhyu7yaULpCsXx+IIgyY4QPnqvJ3ikkDKVjH1PCBSafud3wRczISzKylVQYfHaUGww9lEsraM4eWbvQvmy5AfyWmyT9InCXTp7WNOZ1OVdF5WaAGXlpNASG0urJcexL9GuLwEfeykseGvxQH/zpObxpRU8IKMJTtfILFZbgljn5lxqMKmikvk1DOZWRqS6rP8krr55+idtBr1pP9G8exYqZnuuDkzLmPK+mi2Fvk4vXHRTNpj8coRrBQImixlRMN6SPNQyjekXekJGQypNJDBl5JXWlPd5YIe6rk7pZpjIocCy9k05ngTnd6R+r78FLGK9WhZ8elxAD0zMZd6yAH2q+SzcXU0f8GAJYeG88fDc4vZZM23OQYJmJWc97w4T0+jFA6KpSh9gQPeevj5O6TM+GNqYbsLtuVQR3R6EA4z33sgUKE2EB4zuteqasZ4zEUjOMhxDDMXkvbtsBtaZnqnWLBWo4G/h1xcXYDZStIAg5Cu/NPWRmBOeLfpiM7yhD/g5ned/IuZZUgnKDbXcWjIcu6Prdsp0qAdXN6gUcgP1XTdg4XxSajSjtiG0YhIHRv6l4XZ8C1dKOkx6GO5huRVmmueHplC1QbU0qXaERpWk2XyXTsijkNniy8Hxf8cf5aYTHaKCBPXLyKrvkKTcggAhAFTdgq7g5Ta+0XDJoLmtG85E2/+NoOha5ThqYDUJ6EZZKuXook7qIeFs9fjXtqyvZxRE9fyZ7TKFlRFAaF9JAXPLv9bUiX3gFQtD2QfdYnPM0jaAvCB7XxATCqIXlsbiBrkpR6s/CuyFS98U8rqKRYYUONPadmqcur6tBleTdxw0n9esu9dOVldCRvgUa7MJbgFWVHuWOjamsXQAx4WqnWjUbQDreCtFvjAx6wqwZR8TDMOVUUWvEuD1d6yDYgDRFJisINgQYFGWkNs85gJBbpUBeDFi27vltyt1b4hpgLAgbYPKi4s9bITfk+0D8P3oiP0gDin83n3t2W7nwj0/Vc2wcjchgV9TOihFc67+M/a4qIlPsgrXCeQOtjsUtdavbasUD/pB0Gee3gUgXITYqWwhsGlAwWfo/GDjwfBWO0hNVIof4RdP+oFVDhDyxU6s84Y1oMaFxWFR1oJk0ssuAHYso4OiJOZwfgGQlW2Ap3TG2zpOveZQD4yH9VKcrneko8oP4AYlruC8z7D5vNTjEsGsT2WC6V1JCGoF7G2sc30fi2MuRjtKY2fwOkBvu9E2UVK6YASoJSYtkl2KsDTOHlSCs009rgKxmO92uplfJJMNh/OPAQB8IxtDh/QSPseUTdwTCCDndYRrL0Dqrqp8XnsN/qpj81lUVUGTwJqmr8ev7BV+8g+e1kaewWNJGnOZTLbvTgUKH3m3s4vMGYn2hfXJjwAZYfobi1FiYzcJEepAd98+I54ZZ//B/5dEOqTt/SExzNIqZ/gwZHQW2B2/oqjM2RI1yQBf+1IE8Jo4u92RZNdtvw8Nykual4YTpp6ztksgarbgvlZyL838Bh4+Q+qg10ZpEZrQgd49TDAZcCX286HOGne0YLx3hfn1+xfnww3ltnsxPdb7TnqN7KMlJXQJMQC+j/uFYIuw1vNPcKxdOGyUBuvYwlmUJAl5lVjRE4Om2iQzIVs/43ooAz9mF+ew/4/AzSJI/yCXORyQUGxfiACrIimTl94KknRNQzUgRXDjs53DvWUvtPEFtnD8U45uQleJETvEqTvPQIAiNDPDQwx3kysubO85iHS0MieoPCcWkZs67AtWpVXvQI98/7Q9u3WUwgPk7KhCS4e6ZNjsMNyb+2a8eN3fisABeA2qw44cTMeiNQLjqMLcAc1ubF37G72VB4qWHVkvdarLwGDFFJk2s18tHHdtxy/K2wcpD9BOGLFLzvk+RA0CiRz7elPSeCG3T/NE/dgcuwEaD6LLWQ1uF/YCPEsB9pQ0qiE4AurcD+GokJegyXq/Zh/2E0v8jGlrrIXdDjFKzhJnr2PnCTtzmtHy//Y+4Fbk3eKBz+WBiX/70j/61dsNOZR9czMjAUE6+NBM96Zznlvr4U/LTn+3NJ6QYC3zzD5Tq1YI4OxC3naSjq0ExE6E8lG35iyI8VY61EtfShZNASi85mrgD3FgsTtDspZCnf2XWtsKWkxfPpy2DgHrVqwq1aArfXUBHE6f5WqUxoQf5WSJJ6au4U5OYpzxPxDqwVS4HwQssgjYm6x3v9siwV1YvnvJE5sl2oXAIWGGYsGuEv5kYVzfenjDYq0KdwAbZdyIcRYMnXO+gQwDv8DVxltac52ioUWfi4xrFYf7xMEGh7sepGXM/uD8xTkkLcAa0ImxDcpwnP+2N2cUSUDyPaYlk2k1BFv4l+Ii23CtM1UkFBsB8p48KOibTl4IgFrw9T3TFLA1wNoFb1CefOkMrHOAuSbP9R2rgYJQRes9Zf/BYldkEv9bAesFoP6uB9JJaJKPdy7t0MEReFKGoMLzDgol9VN7S818ludlEoOJyIOJ06tbGPxxTtiLjOOfeVHmgM0aA07ulm3SfIs/BkaJ2H71qe9PnQ8Z/exdQvPPBErzxKsmEuabJlHAwN6z3Qa/BswBKT767L/6EDm3PINyo1Se94ysRvh3w7z15L/Z9hg0n17RYEAkFrNjUC0GJvmp1S6RKcuZmIq2wwacApPRTnQYPPkOPmXW6K38AAjzDB+L4khLH5mmMN6OywT9UnP1SRoNYMs0XSToV/BbB87oSTSgaZlcuYEVewmb/9lfZcawmSymtqnikUI1h8Ais+hHZiVRPPeXRe+EB7HU88ebvTxT9oplaQuxpRXAf5XYlQroy6q6pgxCwQiNpt0GKBNn9wk4H3TeiCI4djhS4aA+CMh3k2WS6o4m1hnl6U30NouLsidQ/d4UuSEGNIPUqU0pw3HGZ5knP04MbV1iJob5bY82KaQstt+pbWxWsRW6XQjU0aRf7mqmMAo3+57UqY5D6/vX8JNQHvczzIrZstFaJKBNkhm9h42CnoODnRt8787RVUuyKDuADeEuyJ4q/OmkXY02n49EWxFfMoRQIivzSODYTsYiZf8xqACMDsrvfHiVhg5Tc6YSpsmCKRJXLJaAJ2WeHpXHW7y+AlOysPGfDKKI17bIfm67SlyMcMiue84juxvZGCNh2s+0gIktjtGe6YXDmCioJ/1XEmxk+oyhEiNlaSVHsRcveFC3EuaHkvtwoQ9bNzV7+lA+D25hWYr8hhiZpQceY6Ae3lxstXIdxGEThxv5Nu11rz6oiUlSTzltGD4G6+csNCxd6VluHWNrcdXVa5P+UHcGphIYxqWU9ruV8ak1uDRocQG3gDfAX2m1YMi0oI5kwIVW1r0J88d1n5TjMscNADU/d/lCLb0sqQjHUXRN6ArN3r92Ud7VmNHf/l0bQ1WXfRSzTXAsj3CxGPNj++Lq0WN5LASWQp09YDoCUainygcKblgQ56BKKsnL3kLkpc3gPaXYwFQ9WgmfrQGAI0xxNiji41fCvbhxAqnN4PcqF76sFzcSdlubuWIwLvvqsEpP3jaUofqEy+zNO0gMjaE7+5bz1M5h6LKntTKutuE1ZeA7F7DpVV6acd4RvYumf8UfqKvnVBRKxR+dV8gfVaNROZQ70ghL8IAtPefF6YqqGlLQTt4FOoBCeehFOiwEbwU9HyUChhBx2Cq+1tEFEuq6ljzVtAZsilh1uEVMFG43niJL6c/xU2xBOce0zS43AkKAzH4VcBiyDefVx7SFhGooK2MBBRigwdhUbuCJe8ijNpCwcYRUUGwPUD26riTe1SW+1VWy8NWPV05QKXCyxm2yod494MShouz2IJaXx0yI7t0n5Y/r2/nIxy/Ouw+n1JYiuzSkmQ1WbKvlsi5N3Hl/YcB1fozrpPWXI3p/HLnT7s6ckAy3b5H1wxM1nPyHd9IlryIOjMCVouGVnmRIUzkHi9RYh1Z/aAkk9v80IaxfIrDX854qDEFIZWmAxEPomngLRMLnFQd/4iBUfqy8m1I9O6tZJm5sEobWKUeIha7EGBcvvEltW95v7NJ5dPCS1TridEhFflkiN3urjfXZvKfCreEmUZ5hYdGqChTlzk01YR1V2lGs4hkCuIAUQApmmBdPV3Mk2/suU5eq4rRiPA55PQYcOFTov5V4Ov+DUbOHV0NFr6zZzwkdE9GNT2kdyYSDJ20VOQq7LE9T6nKk6hL38T1o0JqcH9KnmEClXg/Rw3DVnQvFO2Y9ihhprM9TICPQvVV52QGGZ0+beol3V2j7Trd62bhHfvD/poziO+b4+op/DfXgyrQOEALqMu2aCCxGkD7D8ZXlLVbIt3/deqFgbGqEW4O6fSx/zen7NHjuQvOp6H0pTemIXgQJmKqy18PrR5zmBQch59OwrXtCBZRWRAMEx0EJwG21Lk7P/q2BUTff/cAm5xmPGEkGQpREylBnpu3T9DT49Qb+yJkM7cbUdbK1B6FhYLcNOWNvi967zdJ7fRSKbRUrJYu4A3T/JEzIgrq85mjk6RBz/j4uoQ+L8sNjuufKR0BQIgzjffG44q48fLfZmCQ3+wCqwwHSYfGQ2f0TIC62TwkyQY03VHpHHVQSk1C4gTZzZBfGKyWd1BKVGUuUiXTMnvqMQHp48+y8dP/ZjGFLaZ0QiXVfxT8qbX0aam2q8zRE9iEh7M5PvrO+QX18mgw8l7gZ0wa1xgjIbzOGdMk7MKemKhu1E1E/27AkUBbGuWNoLwB9V5sNSRfe/lmAZfkfj7qxbGS4oelbuEuFXEA5AtRQBrR12xKNlkk1LRbHdkr0qU9DwEsuhJnfayLF2LoLu3/jb6C2b86+jhj2WTkTTCtQ0wFY7K3BWCHF7JVID5kqzB/gtaJXIEYk8LD9uskxmxRwD8M6BZmQdhrwVtWILF/5KMUZToeH0iKfaxw4YecUCca5WB9WEaKGdbopGKuLqz2rVH/5Ui5r2gTLj9/jrh14cuXTRzQL70Q4ryxw4nXolut81kNS98azlDRikaxvQXKNvgyRTRKQppAWsIUfuHM/b9oWjyxY0Bgs1rllrWIhVviWsu5OeOErBoyK2i/1sfHTSYuSoY79y11C/SX33z0y7aF9tnFMe6p4d0yINXa+eTy/xkYP73OsA0SUdcN8aCm6YMZgWXVNCg6P8aDE+2buCW8WS70Rgqii5ccVHjR+K1BRleZ/WAOj2q+feE7eCQSkT8I8cT+NM3O0DhuQyVszUU5Wm4vanXyjwMRZF3iGj5/eKeqSoBowDDqMwWFDVky1LGDLUSIQ3Ig01yIGBoFF1iUHpMU/WxSTvw6gP/eGk3YHDvZO3W8r8/N7ZC+HNBxLGaWrxhzKoj8TRJXDRPHorFtyooirZCUtwjq3PC2MP6n6XNZjrPzTtXHmA6FxDlJt4yCZZ/DsnL3lQN9VxnJza1+mYg2TI/zn4KrosXntYSwBCC82NJqUeUgQUb+BZsVoMFS4wS5IcIWckQUMf8emRxz85raq/Bkfj7mfqmtr+wsZr0e+RKdLx8Z3Do9GyuYkYhwdkelEOiHrByQyDwpZtfswwy5b58LfT3Onu47TrieDqrwFwjqAKVgaEdjFVriZoAMjxvapxFhNgcarsk4jtB9XQ+to/jiemNJBuZ1G15qXFi8KsDvYXi1qD8pCpJQBL2bvl9LomBJQaktXGQqYmVccXnqCFlghWUYZC5Ka7gGuToX1LPB7VtSSlRSlcUitjnuO3d93NwDARyo+YnUU12PRdLC49Iew9QLrIMeomiehKmuUkqcxexwlWsX6Rh0bcCRbe+zPY54IHfZWX9ZfeBFNovyveVhmd9S8OyCIR2SByanu5x9BC1jgMLyHK90TQ3qUtlIlkV7WzE76aCYsmASHwn2xzdxoqBQrqg3XWRabGwL2Sz/MIqnYfQhzwaRhANipM2Fkz78JiGEw5V4Bde3wdj9229qXo3xX9X3+9nGRCl878gwbB56TBJdadfyvxyxtRAw0hpRQ+UV0jZtR+iXUbes6XrgXcQjIosSIbUttZDBoV/IRJbqVbLTUbRpLQBga30GZSiUvXBeXwhuuK7x66rDSQTklHM850cXwA1JFh7pf6u3AhbdktEn8ioW6Z0NmEp+UJ1lXD5JuVWGOAO2GktIhg9oEaAurorfckm9OxIhXTdxeoRP5TS8B5AUqtsBqggl6uxdggcMpw9BQTqSCiuhoYLo6DuORx6vmy7iGvU8+fQh0TUxvZu/1AMag/0LiGgx3S7kV/BwVNt/3LL4dYnF4/66MIXRYa70RE1bAn3mn9fmfNmKL+C9NqJpPJ5TO7hs2B12hS+lSl4NVCiq37x3SYZ2KitK/G7ysCEPkR4Xe1+glXmzlaZNdy5XP78j3ssT3RBb8Wh7MyG1t5ukCc/Fq51uJveOQtnpBQCALt7RXEUFD5RxKyabQQus3lOWuCKzmvss2t7ku5cNUltHg8MJ+eXDuPlKMKvwbH5Ezlwl7rrdsQNsJpSHmZUBNTjqqtIDwY9+AxA51P2SLeEpc5KEOL9uxD4XxdmkqTn7t6h0wkO1HWcg0LnFzzA5DF1vM+lthaOL1wxwCQqtmFZYFZYNLY55VCIgdHH14XdwE4Fze3cqPAl8ivApPKWaVdsDHka7YOD4qFF1uZOPQrnMM3OLdlMvns9pUt48SgRax3ORsUd0WXydZ25G2WKvai+gshmCXhosD/QQgBzQO5AgPcQOTnWp++yP9gypTSPncbG93xE5Yh47kSZdsDtQxU5PcbvNViBmcUP4Ths9OAAM7D57b8hiQuvUGsZCQ48JclfnH8eiJb7j4WxtPfu2OGyvuhm3bG1FpaXVIUkOg9m3Lpk+rfHzz6SAfrRBjznT44THQrUttWAtiulE8jbKKdB6KsAHnPzlM3+N9k/RAY+C4DLxXx557j+BVIhJ2IzMgbNcoTMGPMT6lboX1/itwzoGD/K0A73ra5sBLrUwIXXT2K3G2B2RepN0kCd/OSNcR7FDcmXuGSfPX1KX3OhxO3LY5YWe35PL8enItxQ4VlZnV3qkMve7XGOJe7tGXP1UiB2lA/RNqYycgrq12KOeJ+6FceefLxkTjJAxX130C4D/rPKYieCELu6YIwhNh7/vdrO8P09FbQXRQoig4QW4s07Ug7Avz9QSsVR6mK1MvQi+B9X/1DbjeYHlZNHj6kLlqAJJV4eSNlwQ+SC/f7paOFFaWmuc1xIlei2ndBdDnTWXVczC8GT0O62kcAAyLhXgPY+0RCUERTL9h/CSlpz+hq5ILz9Ushz3SrgZO7NTwkDYC/aPs2auj39LZ5O0lZs1TUsv1GxmtJJOTdfsh4kVe7t7/6pr4DvQTdwcpb/f+VTno9zBLOLRuN1fAFP9ovtcO3dRdRjE68rpbDLNkGSo4J6Y7nC8qLFpdUXRUnF9sRO7hDXPWEvv6Hts57lpaaS6o4dJQ1gxrdeQMR06pxL1G25Pqvq/HU15JW0w8/zfMQRulC/2IPpyjAn6UbITGb8IiJrxPISpbnEZA4j7B11YgYwsYRyrnq/P6qjf6GYQ9T4rwNbxqc2e0QeE+CUsPy8Ltmv0/VhOH2hzIZ1ez3zQiTAqFwnhUkahqobXLxuTd28P0y71WeatheCVXwQMLGq766wz6YKzIjVezxrX/Bbs0erwZfCYHzpkei/1Fng5oydJUdiUsyFWtt2Dy9AQwyGU6KFZuKd/+xpktsIipV6L9RDmrjPidYCvP7TYkfAh/RmWaCEnTOKjRq6A9Ej7WO9A8sNZnFn6AzE1hgnqyD9etlBNHzblyt1xUYdjou3UlRL/Z5+232Z5mhqQLASBPMmEzwALFEbrTU3Q679BWh8uhI6+PEy5EncQ17oQz12oFh4g0nkqPH2oL79XAnGwdmaE5WR3zxgzpvgWN/3gRnTnf34cIO02Q+U8hPZJVEEqAP99Sb3i+TmjkaHs7JS5hwyh+r1/zbJuWJoqVOshBR7Pie1Lw1aDcEtMW40ofCv8NemVSyzY1dRpIZ1nUFFkw1mHIhJI2HBQ4imb1fyg4qgFjp30BkYWXWN/tXnEBfMTqT9eVuU0M8w0uBk9476t2ghwr/DU2j8zl8wf8ypkWqT198OKl+SE/2k631Yw+kSSjWRu62vq3Kv5bNmtSgfUYMIEF/UmieZ55+jQlivBa1ztUqmL6mMfNDZByU7zZY9hMMxENfL7URvhA65MeauzL3I9EwyZgVrdivbZo0Ny4Z2xnt6jObiV1K7oPP4NDhVYzXgFEmxqVjEoAhtw0RysTuCkYJFBJZd+oIrh7Dl1Cp6YxI5G0KjyaHlUpAUqsJ1L7xCjl52u3StaoANbRWGnH4vIQc6t5lFgInzFbYDicF9kFtbpnPfPKl09cy67G0QisgA4qLslyV6NjYg+pFABJ7GdlQRAewMvlKL3l/L26MLksQmDXCKcunhvJHmOOTL9YkDoQegMBX4tG0B1iYrXoYWRFYn1+b8MumN1aBEraCrw460H0lRnMbM+gkiUzPIVIaw5gGks4Zf+xnEMf+ddquWUyN1Rv4XLtTXgYxSdnQ+WiebSWWAIh+6Df7DhX/olpn3Wra9iYmCavMGTqEgqYUwqBt6xn2m6fSN+eoNZQCQ4DQUOZ/tImA6XcoO8c6BOZnSgKOx5zdSfF8pIra+ZWossfB334vATKfDqHMKf2VVyeDO+qhAZvqXr2FBWfqxIqcC0IEiosdmhjOXJxKoxhIZWYiK+zN9b80c3l2ww1TlkDKu/fhQRsUhrNg5e4u+K7Q01nqKPgmmXgbQZoxkuH+qzlEKkH2V2heY6846brsWyulSHBX6evshmjQ+8uWFjH3oJkqK4terPEiISsEf/VzzgaS/OIJ1Ew54wxFKVV75ZlACJBXhl5aR+NCWktgPmce0CqR2spP14bcSIxWaXtE6AzASr5JsvzxaXtZNrh/q/l8Gt/ncMDIt/1Vwzr1NaPXUp8vQPUsthd1HXmdcs49RzuwB8pVafqg8C0g47LS9hzXgvyxQ6VwMP2YGWX7wXCI+9MuGGxQ9uBzZmNTyANHRaL1ZW6RogdNSuUcscwy5/GzL1f5EalhvKYg85qWT13hTa1LYQWFjaHLCmPEQCn+ALIY86NDlgZ6K/tWs2/diIEiivkfKIqjLZ7a4U1ei3TnWbYAgjWTiKiIlvNfnwr3z8Mk/IzilX9c3QqbCgTLFtpngmKPoike1Upxd0Nsor/hmqFBOnrzhJ25OwagO+Y0pYkB7kZDO1W2wow3oGh5/mbnD7S4h2RnE45MybnlYa/ST4PQZVWVqvqBsOWaE769AginVDAzxWaiZBIzZl9tGI3x2GJGgW1NnPiVwro8P4+cOLk77F7Ktyl3f8PiagKvidwOqHnxrBibKfz/azC/p9k09xlmaocggb8aWYHrDSFSJTOpnZvB+XxXlPOKz6fUaDqljGiPHgA6YlAudd/aStdrmW8Aq4wZYJ7ugTB8zMK6XWOgviE9FMOAV0yJLEymbvy+vCi8xzqIlqqwxM2hH95f2XGsMCv1ZyaQ/tdPTy0tFIGdii8iWSTpJl532xtqL0TYqk4CIiWMBe4EhZXQ/LnWeY8gJLWw1FJs2I55/CdU2EtVP+H/7+M5drjgvFioUONEUEEZmcmMWdSUfnqtqoGZscvGO5/JwXWyoyPdOap8vi6pvR0ri8Dv5zm3kbfCPrNirZVO/Q/hJQosH2j4iwDChw4mRqVEWLhD2qah/1nDJxEHhY6c0okV6vLZDeerPcGO6UEQy2gDV+qgYDo3Tpjufn0E/lxAjhD3YxOot9OvwxZ5rBb9Ds4A2vyxxdMutjHA0enjMXnonw2eeZNiCdsZeaW7IyXxnrg9PeURY5QLFKZtaowqwO5DVRxe12O/yZuIR4IZstJS8dw3pZ27e79Zn+GWN9mzHGCjhHGDHwtK7Xh804jzovPS7iaxPxy7GktXRjuybX0viUqr8+O3UCd7J399CBj9m5wtRmimKBvmIokaftbCtJYnccFN+HIE3fVcG4o4PlUJn+Tkd3w5+wq3hLpcO2l0GYCvLa9N66XbNmVLjt3DKncFQx2Qyhwtno3dMBP92rNN6xQafQLdGaVW9IlIgMbey84oDGW3tWu7UFf77xl15pue985nlr8jXhNBL0UMCsC5275NeUs/bHmgzgVIOSfAPcQ+uppnzw/qVJ7Sv8R47lOvLIvsTqHGfxCxdcONKoWSugL4Z3wOeOP5YzaVaIT0dfUYQ235X7A8OtQzJcYNyEnrFuM312bqf7v8bq88eThkDal9kqJ8cuPSctlwbrTIxQdCt2IMFtV7FuUDmNrdL0i/lIZqUTREGJjN2zkElNnoQP+acMzY4EE9rzyBpORHxR3LHJkzTvVplN/MjCrmqTZdXDOlkrecLWS7ic/I/ZHqXBygK0mF0rd91u0WxWsIXNSZEFCcGqt9VHIUV3n6xvnFQcM/n2iFwXJqYnTR3H5iMQjCTJ0XORcxjs3QYJELxvkcI74htJt5IuyYIjlKqqHpQoZLA39GLBB8yMQGjywylYvLeQpzl9NP2V78Pz3UkZGALRiIkwsIt/37JGvlVyEgssJ3nOk1EREC4SxfP7Nkh7T6q+3LquFwzgYs7LebmBHU4Uox1axnJ5BH6Zt1NrkyFHmGtR8iqGaZS1Cnc7SPMnOzmS6OehK+HUk+1p+TE0FUXsODuFCcku0DkD+3f5AcH/LBShFR0hH6d4X4pNdw3Djj1NHdmD9iW7HZjSwoplYd/6bJgRuk9NU9oaQJPC5Afl7s35mPiqmklXQLxvxZaxmA4Jxq8C0cICeRWLiuMscLX53lZwTMSe2sdV3lnSSWIm31IPncitLt4t+N0KJM3rnbMO10N6kWuUAxeqHVJalJue/e81IXrzra/qs+KevNSomh0Cy1xpO0KDpHl8xNO7I7EOBdskg8cc5Q3bMupK4KMLnMg1j4ywpLr5tqbWvpIpL1hB9QaAXNHPtK2luqE5kG1CIdF/6yPmTGGG62euwXd5PBkj6KDLvNXID8P1k4TxK66IP16kF3hWdZByccr2HjwNazQD5UsOHXwH7X21A8gM1YFzlX0R3e4cdodJOECL6rWpU5afcRZQfI7f4g+PyhGI4zsYG440U6It3yYs0w6MhgvzE99skNKtkpjqlYsZz6F5JDAHkfYJ/RzJof0fDoa+0Ju9o9t8J05ihIbm6sCPS94IBO8z9EGAb0OA4Zz7ON7qH9LDwoCx3NFa/zGgY1+T5OfRnjvV0xrX4rLBOoZkH+Vlz8CDKNQcMGv12zlrcDBALkfCqirY9oAcnRKM/o3yooxu08Fuz7YV2mQRPD/tVhS2MXx7lOFflxuOigDfrYOveBlN2dpbIq0XDjQxLoeUUOxmUmZr52xPM1zcai5PPEZLDSe/Nt/dRo3QvmpZFUBG5/hIWNkc94OxaPMQPwz7pONtexgqdL1ntQoxdra5x8HBicecbWReU/HpDctaTKDSMbJ5FMfXf+NzyddCPd/pWLeIeABpepe5SIHHtiF6ZkMkSn8G6t8TYe3BUq7YYSpsLeHBAkl1ZjquP3KuzmI2AC9Zi+24cfGiuhiBwNWsW6+bD70Fayz69kAlRHlABHATJeyeFFhx5sU2ZkcF5Pit1cv93oU4ok3Uhf6+AVW1/JBZUlETMGZJw2aig9a20urzGFYD6QDlObO/MdRyVo8FmxN5wzrql3Y0PTsjn4vmv2Re/kjoJK8nNLEWDeFcqMptiAimVjnNkBlHpZhyOR48uF3UdrOyWKoHPyGKThMlt6r5/C4AKvCz94tudcZrmFd2IRNuAy/H/+ttgJPvo78S3Mx9x7kQrKSKjmeK2xm/1nhjPDun/YlTdiCQTJVs7iuvVxGZvS2aiqVxD0liDHLKqYGvMG/4a5atrIIGja+auAh3sR/VulFuR79GptQ0rwjdZBffy48gMrU2U1AtzHYLEGf++WoId96bLP3WiAklbF6Seeq8wh+b+mlgxRvCQugb7lm7QKXL2DORNe/T4L3ny1ypVNbkudfP+5uKHvqFPf7J2zbE8nXtvtJuOvkeC+bFL5JttRkZ7UU1pmHDeqArcExD8FBwaEFKDLlwidkh6unDjanQ375pif14t2ozlys11HKKTFRcDxf+Iaes/884zyTcwcGxiGpznaQHXajt2UNzfYj5+jtJdNKUZW3CvobQTcHcroACdXDdxeTujhKg6D4NoabmZM/2SLdivl2IZQVK+ydOK35rhzIzfDaIUXP5pJl5JwyPRHzg+a8Cdc+bfnLLDIBDmAZeC7J5vw/HEgMCLQ1sQ0mnovm+FisrJYNQ9x+87aBulVHClzlM/VSE3+RWgkCvQp5Yqpt27ptT5gz6BB37c6FYP0lafpJqRPpNFYPFmGkPvsmpa+73Xd+ynx5R/7eExOjvKnfl5h+utcqn23cBHGLOh/Yo0WOGSWUh0mdmwEruPpvSh6enymIGgbfKfL/MN8n+qjhMmMDbClzj9tiw6/8lf7T8DLIzyKdYB3WITgC9cG8fK3lOlD0qxYV1wgiHivUHMKiMyZ4+IcFQ9wuSpWvB7FmKhB5IH2dxRgbr3a8qVNXwWh8z8JzhmvDzax1X0VHX9bUfUk/FZVUuU8AkpO5BYVxedmsrW9L9yrsTV+XzmBt/JK9YWoetst1/Gf909m7ujCmVpOJ6PeUFR7LKE3RFwzVPUlc9YxvKNwWXBl+HP+U860bE4RheTcAspWbST/NVwmCehYCCieUbLcfI0l9tzUER7uC00YRU8GIvTxvIKI43VZ7WiXHHCqa2pyY67rkdc3RubZlWEInVQDQ2cqkaLMs/kAN1JkWCsTDtfS522d7SJmJhR0bQr176Eb6DO0i6fNDZHnf6q9+MzcIdkIAonBehCe7GH9a1rg0al++GWtedpOMruPnTsr9JIKDiJ6JKz8WGzAkqP8ETBcF8Inhx0AXxPgjraFzNPx8WFjMTHNgFUARfUEVlV6cvTJWJOoZOS3R0ww2FH7p/ioWLUq+DAz9ZiUgddqpll76tldAxGxd4T4lDjE/a4GIcTMb8PhRAXwTgfr9FKaEOG6MSkR0DXqjI9oiT/hqyFZaRwssAt7arWsXBet9XTu8Vs6CvwxU/Vt/3r44EyDW6I1M6hLPpIqJvHtkNAXKTRggXOFVMjAkRf9R+wC+MWNSNdIr3Xfk3JTvPw4BZKa+5l89jXtwxiU8HmkVfeNtOJBuI9jSaXOQGWRrompdohPiMyJLXuymUxtFV5MGjrcms2HmqzFGXxvK3V2vad3nyuYfcA6ZdDzT07atWnojR314gfMkK7XAGsaS1OuIdjWFqCVa8Xw3rKWo90/WviltEgZL0fGuyLkkI0E8fNdBAnR8dUuQ36yctnEZezW6aXdffoEIm18PVMzMhIGfnRNLI04kCBnBHJeUlh73q6l0eBudOvsmOausSLsiYaBQ8kc+wlLyNlZYOKWmAk1krw6qO40vRF1ddi/yqK1BZa9g2ZWRR10BejyxeguWCdykhumSc3AaZLNQIWtIJEZ4LHID6niXJj/g0JeprWJ+qM9+GJStnUdUFjxxrMW4IKeW4MJW9bxyUjywOTMJv2WzLNlyyFy4bDBR56PD4G7t13S9BUmEh/RPbmLK4+fhJvhpG5zf6rxQbII1ziZ0UOkgqYp+n/yrUirX9eeX3Q+mqTnr2vyGtyk/PsIXNNgFi8a4ym+reF0bGO5ZQioA54tFDtGWFOGX5oKtcKqmExUJS4LOz0QnFrNzqo7V2xB5IaBjDBvtNIq0YUWgRLvf0+rjCjylfGjXCxMQolypDPRdOLppU4TKlkn8e2WHzDUZz5YCHDPJsiw4n4d0x9v02e2oTcJ2PsWjn4SibHD49uGNWR3y/QilChy8Ql0AhSjaU/yd1lp6XI6fUXTWn5Tbar8ebQ8f6m9vAVyC9rm0LlRLIUABMQvmZWAHnuCrxQe4IlciKCrRJ1/BZb0r7J+7nFU0PcaXEC0YClRy4wtoAx5UVF+j/k5w5XRvUwaUGmyR8qnl3W3FuzOp7v9XjSMKmt93/5shmxudkwHUQ+2eY7Fj1CizGk7oBRwaxnT1dmJvIndWB/H0UkfioBBWhwPIsq+5LW+bkRztytQeF0yZ3SKdjOcIkYzLBmrNzXZ+huVaRPGZawduB+wOCbWp4xY2AvaYlMzlgWrVEO4rpdmEwcFI0+OjFUE9QHipCEQsG6uVH+sCzXNSNGkJUP1tkLc1PviVomQq+YS4/Th9H3tS25k2FWUY4T8QeIs26q9YAOS6CkulCaRIEXc+6qh1l3elrk30lJ/NMjuIf2hyjdfuFUbC/IxGOYLYu3MApuRdWLxmhGTQAUDC/SlsTHcm0RbDFQPRzFanWPPM5EthEocZKReZmDf+J+earU5CVdpnoprYtTgiRelpmZ0eXJx4ldGZ6zDfN/m/kC2wLRypIoePrmcfLbPimju15mmfR15bOeRqG5Q0qjeFKtVKFYzC8DkHN03mJaGKJF2mLLgJA0HSJATJ3w/YDNgOeiY2vmnSE48gIOq5iTcOo6wRhDrLZUoMuXYlBW+8fGCBsKJAZUYxUmW49S2B9qYQBrZn3STftviqkwCJOwSJ79UcPNramyg/gGGPiZXgbX51NJsjZizXK3AIrBnd39dg4DiuGyBJ5cecYEuZmIEsZm7/47kh7udtctenHp/0ZzJ0LGW64+V9NyLqU5VZmuAI+O6VzEzfIJUUOSyEgSQH378fPnTEnKiB1wp5VJUgFdfncNHVuZgWNOS5hLsOVY1wYA9qkgJUmjOFL9m11iC44ECj18zEpMilKxIk+MC4oxKll/1UFI1667zTsIC34YlO6s/AvV4HDi0pfuTI/boa2WSOvjGmXz1r1pvRgXfJew/733cWB9VN5YsFVipcwINEJc30QplQB4MpnCP2SRDTcbr5rbML4Nbq75CUE2RV1EVMh3EkTcw/4JGImPqrM4Ipfqjj1q7557yZnuKk404v1Xz1LbSa6zodle60Qo8ioGcHfCdHz+1jCrggz5r8bT2aG7PbBnYal0Ktoa7z6DpyCcvgkamaO74tWBINeQkLj6BqfMYRUaLWC8zWsPvYKTGOwjwqxD/Cp3aVvjf3ktHn5Hs+1meszi/by7/UgjCCMe3L52bsQzwzH9dyEMwhzWfW7zJrVRySIzHdsaKyL7FUAybyCMuLIiKieC3qmg7L879NiUcgwuWPgBVxzxEHEsU5va9zj8oYybT4T6s0JRXlHUvMpPcRBk9ByyHY2sA+V7TremO5YPFTburqy3r9duFDG5oCu5XHojZeipSnAE3jr3X21AmJR0gc/2StkbF0r9FRwkV+8NII7ExShcmjiV+9p3MHk80as0oxpX2sUrWmqcw2mGDBrilP7OYQa3NW2enFeuKmZDPNbDOtJOhZ8onGliH4q6RUFhCErk+I+Uee8NNYfhDqw246onx6U4WIp/oHeBW+UOJO2eNw5KkZlXNDFEX9wQ63OWRG8mJwE/a32to1ysRPp2ojdvGXTstZuOavUrJMmSqCE5mL6yZzVPg910qNUZfOcqZ1+KPirZfFWz0Gkl+rbjdPBgyVGiDmGHMcOHgTQKgFKu38Qz0VsosoiQDJnfgcR0SKTk6AAHtDz2lBLM4cmP+Cn1lsoLQJSjlKCq9MNMGmnUMy6D7ki/bVx34xIYWyYp4jzsGw6Uh9uR/8T+YF61ELwWP42Wz+T6jDOJ6vfiLiPRrCwTnJ2xhJcLSdyWvr1GpXqmSvFbC1idldRLel17epuQ+5QCjrpYJB97I4uUw5dqKjWZIKGaG3b+9pTM23FcfpbH1O7vcRZ29+uqxDKQqorcgBlbpMf8BHCY59srNN/XUO2Pt3Zylgf+6NbIphtsVAG5fPSPPsyntiutpoDJLa7TdNjcyrSq2JFWzZ+gVDs/HV3xeBibNMr+txgrlCksXi+Ym1QTt3HUgMDzXE8NE0XBRNKj2IlWGHY7kEt8iBYWjPqH3zMhw5uu5Szr3EHPiS97YmGldVmhi9M9cx8smlaS/6G1sF/do7VquuJ7fYPbdMZYSOwoPVeOOS3UdKexAR6hfKLGrR2VLm7DoExt1y7A+oVdb3/5ySMCHz1Rou3QArCbcPoVCakM8wvuMj8ugXyidbfWhNwoa47Oz7TDzGzJgLxjl0XSIwWINB85HYbTrQhZKW5EQrBkVgjYjoAL1ZjVx09LXc5kH+7hoGOokqcdkdReJbIdI8dKtIRebDu6aaKMXcZsSZ6XdtVhgihgyquQarr6KQx9Ds75IW0wIWY46icpGmbnnHMTUPeweMcjA70TugIeMfWdsUXosFe8ecBYgE72JWDCpPnEeLLUCWKhU11I83dgWL5O5PLY6E7pbb4kJUYIoCfzcc5LF5XfE/NUnu3oXAe4l6PY2JBs1caRSun7TvOLtYnIAeACClb5Nrm6VdAAQhtkkWwnq7TsPK8Repw7h72UhGdn59u3c9LVhFfysDio3bUe6QAxG0ccE4AbxZx99Fj929OGmaKD/IGcbW9WNrifTCouJz8p4SYDruNXfN5hp52f8hwcU7TMhQjGryEAyENa9NfLamrhs79a8P7CWTVWnKLPkCkcz52AohXuVHEhDgAfSW2LPju15qOtfsYpUygBMHtmBX0kGwAFcpyUOPFu7J+mpdBzX4HLTpYBz8xlpriKh+xqUCJbg11JCDqjogIOyIXXLWT8P1KBEFrvMVfsjZTCkCFEdNxDxoGfK6EnnG21u29yeMrc9yL5uQUN+XyFSqKiS1VAXTIzLxZ66inIcxwjPXJjEfee1h3dAc4WUL2EeN+T5DNI1hXqdI0Sn0RU9MuQRXGhEbw4cmo9518CKOzezWBNUGMgoAeIBsacIn56CX9eI9oS6WB3XE2KUw92mMF+sZDOoEYb3ToCw8h9U/k4pAXHbFh7neJmxJYUdr0WUaR3z9wdbe1K5Upj9vWNX/fmPY2edJHDpZ2qP8vahk5WWxYdrvyCbj7CPc15IqgECZ4zs+QcF7NY4VJOgBdaF3T8lXKq2U+eYF4ld4x7w/TByTT8RL+TfDQINwtOW1eesY0ZUF2igDCF5oc8Vd0dWHAeRcjJsUQtU748UvybHUv7hbHK+l2rg6Zqsw/X8T2eCi9nE5sSeUuMWvc1eyyihmt5w5+xaAuIZHp14EDpFKWFjwc4Td2qHsgLyi78r9HHXKLg/K5svJUATi9dkVstc2i1trQwMXOWnaUPlm+3E+Bo0qU4nHqIV5H9/mHnT3Jx9eARlnpm24K1Xpfe2DpLyQ6TRZo4m7jtcQcgDMjtzXkaOfrw83DR/9Btg5wPprq9Qmp47gWYhxqhf+P05gC9ViwBXUtofAJj0r2yTgJva3+NycE30b6MeKQRrTKtPUpoyP9jAuXcboN9BMBQdfNaAvrDW3WOt/Xgbd2Xdw5jXq47autltzJI9S1F2/Jjuej0SIZZUAOQb+fExUm/phXXc0NOrEcmUj06UjrRtK8N+GptnRMax8rAjVUQulolsxLypy1S17yRmX8tGt2b5xrFuwhiRoNfQ9ug2bEJHfy4tt0+heQIRHWGi3hSnpsQshSHt2dd/jGCveh50zB0XQWGl9Au0aGywzRHrKSeNbeVwbJuzHja/t1tkeOJnGQLnqK2nl5Q2zHYrK2Y3sJcJWmHr5F/0GxETZ0hdYNlRjxT8UdY3VoU0WDhsBq6jGEWwdmOSqS2xuTqHyacaeb7wOs460B4/LQPvPN7Ka9xr0NMkSI/b3sTQY9i/Rz4l1K1hmzVcv72Kak7Dodw5YbvQm1s4QI9pjCsYF5ENLH/GhlCDAJc2zJUcM4mgkJqSrJqaW87xTiUQNbVhY1sGlT3NMNKXkBIR6zYk0KSAsU1wXK/klHEzI9M4nAaoUCIMXztVp5YNBWwN9VMfszoqCvm/A9mymwFMtbXMO3ZJ3XTiWLzcXp5783PSWYcBeBtweHEPn97dQrCKpAdus2+y0ow4IgY+0tCLq1KbMMN+cNv3qEQMpBZLZL2wko2b0GbEX8nq20zGJNMigMxPEHgFU50kHWLYoaJL+GTgvFNVf+AqTQbQ2uEq1Pjn6YC3BiqdyHo2tvsTr0oPTy2qIJhrkonpi8Efev1q3VFvs0i8GDG9XeoL6piqohEudNE49xZEQChTuqrL90Dc5cst1+xxtxm4gdNMFMnC9+bZktLlT4NmNCGkhzggEdo1QniVN7P/dTqtyM2+/7BHudeXqjRiX8RvZPrU9Cqhfhk23/QyLYGi9RfQ/xJ6lXx2NWSBrniGLTbwOU/+oDwv8LYpqIL0sZMa06F9KRdZZ6wUVfAXUa32fSNLnubfrAFFd8eggIhYLP99xfHY2aTYUj1+525h/bT7T/5qYZcVEDxFhsHq73g04j89eF1hH2lECyv4VW/+8FDO6j5lGFzIosXnCmU+UiwUTDUkySd1CuAXvbm0l7UBwrIf0zEHvbLoODVdYsqb5fUYrVTBkO2OKdnpBHfBHoRPfdrK9ehiw3SJe+5pO3K8goAEADY/bTf85Jm+jLl7TrSFbxKD6XDzCrtWsqTYbBl0YnYerG3jD6EnYHGjBlj3pY/vEfL2H7MhPlD3HLs37IjHFfMKbQ5AtyjZqXfOH6rzp9RAao1caYaupdJ2IIH61J9kwZJofQUxGDs/tXmKr898GmbVj8Tt0MkTCfIZgjpwGlcMzWPrWfdgy1uv6AlOm1pMlsf5LWXK+/kl0N4s6qikNUYDaH5P17bmANlp1a1JMy+QkEQUorZx6Cqd+Imb3X4SV3g+HEv5W4S+qq/EsCU1XZnsuAHvb9VGT/GFeKLh7x6Xx0a5uILR894BXQbvJkh5X2oNckJVtD+n5ggbL9MNqujC+3LP9Kv1dXn7u3zJ8DHwmuAGEgjM9+K3M8LKWpUUBK3X7wTKxgC9N68u+Xup4S3cL3UVs1/GuozwSsgYe4OeWCCUvrkKOAyBqeRNszAbeKJrpQYMHf1DwlNglQFihFra2p6FjeT+n/KtKAbARG1bNaY7o0ERQ2TtjxtlX2nAPRSu705hIKgsHPo/JMQ2kbEFkh8E3XpXGhtMDJFBEPemfRsKxI/ONB9yFvFUoHFWyQUQY1cLRTKo3uqoB+aA45Kfuh9/wUrxGf5qPZE3+P8ZqSfAhALvMhKh9SiaBkTZUmqe/uYzV5hZyxxhzKzMEGyOLeStI8rFgyN6BPn3UaVq7zkvWdul20QV03fJ+ObYGyMJzo1BC+DFQ1MJqNO219JdOUGxrqo9t2qPzdO5GHzwAbLFe4YOZnP9gEwc6O+FYVirFX29AAzlRRvSatGz0uSZVkCVpBLZYdOTmI+laeHPxFHhDFkcsDi55o1n3L+JB8Ygo46FzNTvqn0oWec/Nu03aM7QoFplO16LHBy8t6YwsL9JJrEAaWa1RiFv4lV8lDUsjYAARR5Z3eixBki+ac5Y+ZXubOVXQ6pBAUdL5M2RwCHuyUWqlWVrgRyTWZg4PwbgANiOe3XWghu8Vcn2PYpZ1MTDye9KO3ckiTsqW2PnJsByJE1eluIeeJKCm+8rxQozIxBjaWPydgg82KoR93EdAUf7yMzR7/fB6X5SuGZP3/4Du7kUzvnMJMK0EVIaZwSIHjq+pIGmQYP4a7gn7nxP3Xqh7Qn1infRheKEY3ETtjs+23PePMGFj6wXQrDcPuWo8bJCp5bD8LDGqsQGg4X5zBO/WeWi0H2HHRglNWzk7zDdOVRslaLysVZpqybZa4nQbP8DQeldKe0TH0iDKNrpxSU2J1H6O7a56zsnvUolqQ7G93pGLP8rX5e/vx0ijjBTK8TNLtNSYNyCjkYqPbUqEgnjfcgpEm3vH/oBxom4Xh17K2Cpnx/vsWEPMRjIDpFAnDxJbiEAPT2U7WeY2vVzqz3YxQLq0lZibVnOg/vq1vl2Fjsor31PyrW6NBXow7o/FXwIgFDMKAukikxDhRBZwjq7dYvDjfwGKdvCvp6cQBXJzMY5s2nrQ0bxZZXe3FQY+BFm6WwAZHo9u14KQ3XTteGcwevLriv4Lv5BJLgAep9qVxB6JnGqgTgA3uQETg4oPLoKutgn7SKVwExkLaMDLrS501zToy+s2rtA3BsEjZTdMnS2/rz7V7u4hrfgpvBxAc60mKxMeOB1PDWC0Xu3YnBhTM7etHs1IDmnIl7y9mjtVp+XSpqVe4sxPPrwnWqJDrMDNimMBaOUkWveBLdefSiV7t0FimdVUEV/FAjA9J41yF6P9+rOrmC829Ae8SIBJQj3bSN5mE+I9DvkbWl+gHrXlcZGOXYn2iydC1B2Qc7MKRlPNnTl/Y/3L/7tloySihpbeRfkyWfAOPQEXRUSR0RkwtdJrFlKhHS5d1rG3dKHIqz1Oc5+aJjrz3H6ahTrvxTHHs++aM/hGWRiBlEd7WXHkm+o4uhaqIWazuF+klAsjmJrvFiM8PrlQt+z293tsk0GdScWni0BH12NBXQykcEDH+EaUj/rmeS1X6UYOPh2vpHymM0EqTLSAHhjMQSvnY1v+dejl3cIA90+jwJHHX2AwFVGeCQ/IsPZmoaR6nOAyrgab4YhnjyznClU5NEJqPiFmuklboO+40GNLlO25sQpdJvk9wEC8jWHtJvvsrN0xIbd/Vd/d1QVAkSAHcN7o7bg0YXStMD97h0XBoTFAV/YjHvAPPT46fQ0oPbYlLUwH8Cu7HtmFhottI1Z42WI8wZiiUFinTrQ+Opbw6cF8juclvhnLFjSXEaYZjDpBEwwsU2bTWjMN2SdRolfLv7rYWQJkGeM1vUhDSRU9rsLLlbP2sMyvdxW1iiuJ5WOsJBlrd28jndSq83F64zhZWazhicsr/yeGvXo215GWXKrwSrpDuWTWmxDTbZLMubuR9ULZSfnja1xIx6XAafv/O5CSx6Nuu8gZNcjKVnmcpBWrIYG0pJ13myZjNHu3UFD12BNlRo1Q0CfN66t4MDLnkCoVqYDb5MFPxHrXz0aBGvJrXkZDQldvhlq1DKnqGphoPsjCPRKXoy058L1qHn45WQ3dkG36VFCKLZ7ROme+zSsEd1G8nssF/3+YTDw9qnIR3u9ZynMMTd5RGW3Eq3hWI1xIV8vdpjBPk+QH8dqPHrosxJT6ozBGJLOUn8vWTrqEey3LiZ0UjbHJZGaJIVgjNaPaEq8UJ5LsC3RYCqH2tIMkquRRQDdQ6gD7eLRmczrWEw4MZnLT841yNxOwYibSmLyhAmNYnKnS59mdVX/567JA7LVrnT/fd0fO0LqecLpRUsLyLedSbRcJklxMDdF1W6FhVbneuEEfsZDgmyWlbiidDAt5wEG7WbrAZG1+LiDAm5PV4NYS9W8KXFLbFzKBfcBzfU3KgEd04zieYRAE36VuaMga/LSF3xG7UyGQwCH/NY6Rp1JdYqT+mVuAI/Q69jG0aAhKxaHYIAdmtyfSY3ZpFUt1eJ/SwAM4cA1l/0mNwh+LsrEFlWYQ2waJlycEn9kUbkaQAxWIyjaQLFnVNoWMe+8+Ai+uS8bFNFAHgiPpnLYqOTwkPzL/0pOg5QZovVFS9i9XQx6ZlQnXQcduRsWDrkF0twHrP4T0ucmie0EZOdsDYj5Ay+WgDgz/0aIM9tbJDkDPWaj+PeNEQI5CwxOCW2DfFnap024wOrTDDqhSocsPdxVis6IXUnkCQCrgyKJm5Ax9KmOvdGeSCuKWTIs1XWo78XAuXxAADzAOI8O3VPueVv7ZjSV6wrHyQAw5d+BM4uX/RzZ0+tVxQ67ww3P2sqqDDWy6T8bspFrcOml6+E14/QVdxYLdFulZ3tv9dsvjet0RU3mmxqijWEBFiuQhpiwmCHxrfYH/hRTxTyzEKEygiwTfOHdG9hAM2cAWjKX500UCjO374PCtE8ir3x3XDnBO+uS9vB55E4qtVaz1WOek7WsbhGOAVs4yQ4GF+ONMBFJMNONKAxQbT34jXCdBSknLJ6uzk2Cggm8XlHvVWXYSva9PMbrKhsRa/CnYDGs31l0IA4vl/YdQEsp9M4nXDSGfKyTbj7OIfv8BnK8OsxKlTKLpK5MCWgaJrR9xNwCv2bjT5bNzcbzlMwUClpagj/vgFTxYDJSFC/1grDGUuSnDDBXQ1Yh0vJ0ZFN4wOR1oL09JsuQCTZPS58nT6dnhtkxaP1WLBva0Y8UmwqBPZL6As8OqV0nhzvkhhLQIE8qTkAWuGa/d69NnjAGCT01pTgpXIuhrUOFSl8KZewQbpOhdDSKAuk8tpckaEJY2K4rJ794pAtMGJYLsJtMBRrMegQI/MmbWG6eLL3CG0/7+AKFOLxfVSkNSyOFUGPysHG+68FhPH6fLjeS2vTQ07c783SircuH1oL4AF/SndOk8CuKTjKa0ANIXmhsEa1KpBjI1EQZrRBIbvmdhOJF6NaNaaNqo42J5A6xmE7C/aX++7eNljuaB5RMKk0spdqhLKok0IfYuvPGDjtRdYLTdUF75iDJA4QKuFd02IylEyIKxerT7CeDLTo6NlS90Ez6ASHIrQstfhqwNklbbZQu0Z/cAVfrYp6y5wcceQ7lcrqOlQ5sKIV/ZXN4rr/Z99mEKb9H03jGoQL6QrvsrraxsjP8XacMra5xSSXXasdQBBlDI9tSFhqcoqKpsb2GMnonUahBVjG050Zqe0Rhjhr0ujwtUmsE3LdSb/kHYU/ZzUxKqnF6Usfd/62xxR+1xDxN0/WbNK1GoTzU1DPvwesm5Mg7Rtd+S0i8AWKiZ7wDIoa8LrLIO83JKi5STJ1gxslmQ+/oiNrcDA3OiF12+foD039CIIYE58ddkGRGn2hKE/U/hNI9QVsSU4qtha2QT+sfgvNSMBvLE7VOENWKL8RvaqGle3yIUnggBsFRu8t6OLqhq/A5NLcejbZGc9dQlx+MoZEHbm2y/guMMukkYRxqQqSuPxU52Aa40HJthf7B6KO8Ukv368rn2zMPtt6q/UfxNOLL7MQtHhMjRT7/O+sfg8p14Oq4cDH5QfO3vvVK0MOD+1xpKRfmRHPh0TzMqIcA1OEGKEqIAh4NB2LrOW7bjauqnKiI2HUIT06ucTFGgUrQDopP9AzERI4fJkufwxz6NIMLmKyReCj0HXSjzvCF9GWLjUPd08gnrJRDFHlfemkbm6R1T1/ekGuVKX0QLKQfUhsSkQhETOKc+yTck1jWYeSY8l3BNW3wXo2z7co63sqYK2NdFIDkdquoQCk5uhJ5+WHqdOVMzYEFiOxPdQGVVQ41yVVIP++yMGFrI+g1pEMcZbsk5qAgaHm3oBNZuOaIEOZZLFLgIHA2VpKfxHrnKrI2QnS2jEIGRX7DR9jX7sF/Bak7Nu3+y8EZK4VccvEwkvkpSBRe0OU2+iWN0yGFraP/iod2zzvjyExm01VZ4vAIy95V2lu8vvsQMdFQaRBOZY9e8yfKSDsGWTosBqRtZTTshrfTR5vP6Z9CI7+2HhQ2CM45ZaQdtU9ta4O2r3fU8Pmc3UkOs7yZTp3pLz13DXMBx6wOM+lnKm98kx4c0k6drfB2nTc32JvQWfz2ZWIwJaKvTPw7ySsninpEQ4GEh1DJ/R6ANVCSS8iljoDFkkHPzAtB3Va5fK0b3V5vD89G13OFw9PNWmG9EE3/fCPllKb08R8BT9AinHHQx2yEJNrU2jJWDHjgMC2IApnnZXnIHM1B396eTxaJVJzjHj7NBo0tRVsRM9R9p6+X1m29M+HrFNVxzV6Ur3NVHb47sh4kQqemNCvLCJ4TDqw0mxEXC6AIU6NdwXcLStMayeGS+FRnJJRWbaR4hQS80+0LpIOeO3q31DQ3YjDtrEQ84K3SBXV4phPnDF0Z3G3pfx2Q+SfH9bdIuQtYgUa+8GOl63NfYmLh+sa1nrWc3l5hMCv3nvbxoFYU1MjlE27UPn75N8BMiFnayjL61+PAPyzzKWg2viR53ZKnv4wvCBM0IYU1c5beedSgh3z0tJzgeIcJy+PZUozdm3VR755GEp5Dte1yjzABYPlmwRWpUQIJNqHDLpL+LmcUToGrkn0Xx6Fupz+lJMympk6Q46HcmC7kQEzIeipVODD++4SS+UqWM/ruUR6DWSJprH2TaVf3+Iij7mk2YFr9LgHF+St5Xucb6nAUyv3kLIvGI9acQuu9MJbB1SuzclA4EupyfK9z2NUtOct1VfuYIP5igoJ5+RMMHeOBbbH3zQPtdQSOqGbRpS9UIcLTpMp4dw0shJ3O71yUluf5JanSuCWuSYAXvCb+t3hlhV9r2x5UkSi9nxMQHZh7nRaE8PQg4jXh4o7rI8Hq6Wlo5osvNutgBTEq+gueuLGdRWZelJk9TEbNOLxF+jtXOg7sKjIzf/jSlOJNlc6gJT6fYJhCX47h8TMDLymluo+OU/7pTmEg6aHkS/5esg5T0rtLZLGzMteF3ewEnTP3sJ+E7Cc+fMjDi86T/vmVTCOvJLX6Zz+ogUCdQ+DBuJ2pdRBVxBqc3WbcDwQe6lltIoFy1JClqRjaxNAsA51yzSbvPpnrbsTNH/+ncBJLHWOk2uyt3jU49Eh1V5h9X51lDDt+Ev5c6TR0MiQXhx1Yj3Vxhf3IGpHjM4p5kjeZnRfumVrJMYVmbimTAtoRd3kh2jBu2yOyUdabZuFGY0K9YfbxJcqG1GWiIusIJ4ShVKVfucoGdik7B3+bib/BfBVTuBAdb/MXlmWlwobqI2kSqEwJ8gtFt4QkpXMnIHAVfgtNCdUMOIzGa/MyZCJ5uTtmHS/zihJqZI/krROT/SAdzajTG1tGfWOyF6fL6L4yOp0TlNydPwWyjuryPySH/GIbPyPN2ngj913Idcw3vbvAJjqaB3KPaxm/f7rBA0+C8S6xJEOIzjOhckVdpqc9x29jdn6aRbqv/WNjTBck2q2nynE6inEPIrljp3p8IHDMXcnIUn3GVQsBodT/LJGzcYwXGMBRGQKhVChNdYGs2dersymn+a/xP43+3NFO7rUpQLYAMEOcevjhl9BZJ/v0rCCfxTpxzcGnrvsXQED9Ow6iDbxnEF1mRs9Bl7OVAuuBUhxYxmUhpQq6zdzreDeDBqszpVVs2zVRPYVzyftXpdZklMQkcizcupcAP8ivljArcgacX9T0yXoiqUBzpjc6j57H+l7KhTNZzZDSn1jVIj5sO1VsESXuhAeRPo8ZG6udDb/35cHQMSoQz1lc6R43X/1PgG+cJA6AGpQKtDnJURLGaDowY0M4cAzMDR2SbedEr/Xt93XABgnKeB/xWa3p9cjULSc0gWX4Z349hbZgROLJWoVOBXhxMuBnhiZwIju53BbS8T6ckdqurLhgDrJMwE004UxX4doxHt+ePBNlQmLJW8aMdrIRJ40tBQUzydyqkhfDFg5O7B6bZzTjOQjvXbjubnk3ZkBljgmXGKW63B09AKDeneeDor2Rk92vUtLFhKA99TzRjgfMnF+lH4JCusV0D7xOYbMvnyyj/XrtqByJerMmbk1Ml4cMowDg5qWg5FJU3NOncIm2qhX7zOrVxj6rexsuzzRaUDP/DL4T2IZspX/kOmYWuEmwMOAttrx7iPSsepovxzsakdwpE1O/NPe6nomOEhGylD00DvZZUAmBSC6Qr9oQ/G7YrnXMYAT0g7uMlz8j0hflEOkMGtyMh9SZn5KCJ2eaQBVpSuAVgAr+u1rJ5sfQRC0j+LaarV4GmvnyDZvbLJTzGdhxWb0tJaBe/Z9et/yjOD1FyIkammyoHBtCrEbNmLE9d+PegFj2rhq3bL6M9e/HKs0TdKQ4j+RED7Ut1/x2Yv1ICXwxk3vaERlwYD+kzVeEAr00B74RajpfFI8UTBZudNL24xErBxYUmZrQ0D9zWZUMZjAbsCLmih0ib36/2RexgymZhN6Ut64e9mnWf8PvTwzvwL4lRqILZOJa8G0JTc6GzNqmlz/Gb2t+YINQqYMHAuV/3+tU+BGvAa9wg3/LLB79p6ZPbsNNjAVKXkX7Aoc740XdVfR7IXmIl7rLVQ1SlwTZ9JBw/qa60fyCy0z/pGfKJ/sBpsaLnLTartMAOsX+BS90sbR5wJx7ZYgQVq5LI6G3AxAhIo9MXCk916pRVk3mnGgV7+K/RQNk9JFEAiA3+9GlkbqjYCNy2kPQSlrJbCEk/ZlEBV00F11UNc4sdoYO0qd8pnjmcRXHDzn871hgSUtW2HLXJLJE16qn/ZAYVOXbh1ax28DoQQ8oo7dckQpHFe7SoxYgry16ggrvGfysUgTQ6N3enbSW6lVAizlEgdEPLaWbQXMZMzAi6ljxw44r0EvWu2NOeB1ZM4nw59N+KNMmc4Zelac+yMflmNfltPswOWbD0ymyuOGTvqTvHcrW9m2xm0rMIQqWFZY0xHOyI71j33Z3aW4GtMrVPu7PKzXRfTxDxqLazyToH7Ue6hf6ZwVlO0BAMWkNyhg5zI4v2ZfRHLcVHUVkQayp3/HHkTvJ9oYkzgnOmSuFIckObmM8C+kxAc/xglVPYZmbNE6jc0aaqcVYdIXdY4Z97BnimU13qzT8MeBAnnAshd5rYvClbdwGF8AQFaNWwgwgkq31F+M3LfHz5h0osLHVLDFbqHf63OD1NDxGennSb8yz0WTx8yLPboG+0qepAXoajZfdgC1TxsNpgmlktDgIMdv2dW1gI0sQWf2Vr9ZDDi48aqARos5mPjwthhg14y9yTg1wsDArTXgqW6yxmWbkBhAIGUaTurp6HXqHTJt1VDJqMStN1/aFS+qRaz7+nhCLsVsxvdOff1uFOnNpDaDNdlNi2Rb0cuFbnfuwmBt8vMFO1nGdaVzsTwOncXwpNkUNMeNC269628WGASUYf6WFJfc9tuqjiwPna1XiHtOUcj3SZqMxmlwyIL9z+OetTZUatBcRRKIiWItplAUOqOT5SOPYG+1jJJi1wvZI7XOz7ekroiF7smEFk5m8EkSN2WeMN5lW8t63KX9P/n4julhLitfG32CNZMnYmGWkJyhxo1IuOS2DJaBiv1r2fUEAJL27pWF3wP2Znub3/OGziLgfFdt0CYc6hWzFhM9dhzMpV14RXl9RIxFaI0aQuk4kKcODUT0giFjm0mwRgn3S2ui4FTO2bZVVGEFfH4ZXfaLst9iK2WpWxHRxeO2JcMd07wI6jxRB8Xh7nW+gbW7J8PKGOXqi05fIQpjz2cK0Iw5QWZSIyTUemHJMt+CwCTGNx0MRaH4Mu/LBykXKtAsREoFe458spf3VC9SLO519u8DGxq+BICxrgKKL/v8XwryISVB2rCbAkHhikMQ0ZNf2QMwSHDb3gLKBYNThIceCFi0eo4Kinckhh6e5m5SWBel2PirJTFqb/mQlZ8DQECeAkgq35Fsg32cWBRrJ7k25LNiMnm0ucHdP8KJLAq+dE7ezECku64LmGNcSzULfotkg6Sezs3vFYc/qdlUpD9syMNRBL6ROc3Pte/C0xSZUgoVhZqj0anQ+SdtmhKsBEapgqy0XWxO5qVYybAlXqg3vNe+Hhx5Rj7uW6zEdo4biWK0KPZY9UnJX8pLqRAKfSBz/14gwIfBnRNEOqzeh4GQbezhhuWpLBpZHMMi5PaaPKqw4KhzTJL57sc/ZBddMk2Yz3jSVVtRm+8F92TuJUGFJyfAp5K9CI38kE/fNDSmjir2MYGY3acJ3+qAVJq9ZIcK43tB9LTnbgYRl1+A+HRsRoyrE/jHkKtUWTF78CHGbT0mIv6uad6JRadg50f93FrjedvqjiYyAXnx4jEkl6DGdSz9K6hxIPAFYnt3hV2NLfOGweuJ3KI24YMBPgDQuG3mcccA01lHCDc+R7lDBoklTUwtNdsbeFzfswsivQ9KAHfw98/054hh+suVtnAMvh21Yn+KFFJlaU3kXe4W3Dd/yJc4AD8sCW/wDhidIM/IxQqYpvDDOwMq3UdR3Y/eCNmC9mryiqCAsY7I7EDHkpwMnHmP66szcQFpeXFK7K8S90DK/Fk/EtM12R7+kmg2bxhlkS9ldrDjZfk1bbkpdschT/KYwfhNrVOW8/VL8uHTIirNYoXlzzZqh+G8CqmGXN1TlzWU/MHJlYCxv4h4Up5YWYa/fdxQgvbOA34sdyqFPTOnV4hLTpnN2uqlKkEP1Afn4jmCLa1kDTCjUTZHiQMx0S+wPh1QMOiIWJlnjlDdv/NEkmLzPm1hYPuti5uH/63yFHQYwssRr1NCnTSWRi/YXGIopxfXyPOXP/lSPF5JgLFmFcZpqclRuuOKqHTSJjNs+jFh/gNEtJZxQKvQieCpLrIpolHNKW6GeRKbVDmbnIhB8GpuMFt8HgopheFAJAw/SxUPrYnfNdyBn9ApFeI/hUJgGrqvwp4qJY1MXnCYBHLiXigJ/XN8mJjNSVKHjTvkVXvsj473RKfr1Cic5unXwboQr7Ar3Aj7aL1Oyw/YxVOmybHNcVrCt/0zrEPL/6W9o5Z9yL8jUd+vGzgFQOVXDl+6GfF78wOEkaw870A8KC6bXUeYrwSniBA4vV9O/UASihHiQkq0p4m1hpeuresS7VJra2lIkwhdvQSH9Ig+CF1Pa3xca2adkrpTChfpV+8PcEnK++G8fmVoMj7TQsec64PuN+fYAlE21dUu1PWd78b1htQNWPstKxnlOCX0yK0tGCoq4ueNVabsIPetO6RatbYT+UAJcA/U7J9ZHs4/9fX5SF/sYAtf4xTxkxF47tIYSTuply3vbvewEPi9ldUXfvuRsxbBhjr+UgpEJBiSfUfO/g89Qlp1DGr0lJrHunPLjMv/67dJ92seB0Rg+jKb67gtuIPIgpCfJyOcEIe8saM4l/7MFqPu37aOQdyglMK189L4JF1G9g25siGqB1+bVU96HQ+ckXK8X/xryXtyUBTn1dVMlR7r1bCWvQBmdguEDBhVYY8H5lCNAIX/XEZJSoibdN/UMQUEzsa18ILcVA5BmgMCqt505dZoRg4gGZJzxDLnVID/EHlZHvAtknoumfSH8BrlvQlYkiLkW4XWYExQAMzAUsUtrxNZzMZTp21LA1KE9vU2AS9A/+5Deiph/Oj5VFvdJXf1lDU2ylfabFSja1EBOJ6N562lfnJpIwylwmhBrhRlA2x5OhqDaW1dN+uYvCByBbbyi/XFJ1fOYmDZRl19VnPADxB0M5BtPPDLGRbTWZAAlReA714aZU0DQZeNgs6DHQgp5TcUz8ZrG+Cw1jYXwpMFXjy72Ft9w3u2EvMKUBfKBRDVgwXUzJMUjD4OxoZr+3zZ5lcKz3Oc8ClsJHosq27Fr6cio7lBS6djD8z/+fBJb1Y7n6Xax2bXgFot2B4jn9BCPftByEdOEmAlC9+tt+H/6XvJE33Mswfx+n0mzaGke83B1gBwOj7je+a5hSqiWtyZLIjGvJ1sR3SzXrBFB5o9xiR9qA5QddN1ou3c6a+/U7duoM87/KfIFMcVRglvRk63Up8TyUY2q8fEACfwANKyCIEIB2G4hlQLz+woMamj+JSPsFvbjQFHDjeVLPqPS07EZra3OutCimCCamnMp6lIBoO7n2PtSciBRVfR++gnJMnPNaGxJgIcf9xJ5nEbuOiGfER3OvfaHzVNQzwZ2p9C4AAlGYVNLxOYVWMEYmL+c72MX2oFC4wJI6Na5qBxFCOuT/6BwKptU9POrGFuPnKPq0foPW0XvnGhqgO2D3yvCpgbcmC5DoLBMZQvBiF3Va7QcbZXlUBJTFc8OBnJCvVoOLs4d5Ib/dn1Hix/t5ZGEPb9fy1rOhi7GtGMQEGKQJq/k6708lBcp9/A9FkSVAsw9bYXlKarlmFY1mW557Jtgr35O+da1X7B/n6BL8IpW8UzXezLRcNDdQL5UpAx2XhoT6Rk28njty/Z7E7L49Oi8hIkLVLJ0GQwPcshmlg7bWUzQ+Ysik6q0wpv242mRQdIZAzoEcEVYbTIAomAp7s8cE2SEkPt3CYB0OMOTnc7ZOfpdOS7I82593UqVXs2ulyuh27L8u+zKt9DL1gazeJTFCEcMEDzySLLtGaXKqSa8ObsT9BCQQvLkH+GQW9uVK70u/VENoCSuCqLE/bK04SiscdxqnLcJuHVtbRSOhJqBBhCqYSIPzgCnkT7ONhzHmfyvcRX7eOW95PlTRkik76OPP24xx89n9JK2/9DxZiVMPip5g4MIpDK5z44izslClLN5sofG3xmcPPjyfxKwtw3kpDQ+YqVlkdpj87VrXO+d3MV8SuOAsWDDSaHgL/RMH7iNspbdySuZKj6Z4n78r4LrLGPQmyHLns/u0mfQO00GHtEa4WqM/xjwcz2lu7s6U1KDpPg12pZauaAwNN2DakK2YGxxma9wNAlsEGegi51lFpe/PQ4jexuXuu0O5SgW1pQh8+XWw2xRVzpEXr9NN1eyQ+0RFOj4vpEH0hP3IoSycufTyqm3Z6LXuR2yTDl8LeJXwvViSeXAmElw4ROHUmLHqBJZ7ntrH7ka+PzCKyuE3X0ctNgFdmjXGQXX256lry1tvCz4tHyM67vv/c/9dPWxsz5uaTz9HCuZhTc/kqQQLKvyZqy6gjSIb9VwCIoIWPiIZZDWjIXaiarywruDxPUKIQQOhTyta5F31IxKJzOmXCPvVusUgm0eCiAVG13uh/e7mxFNxR8x94GAO11GLay9YKs3jLe9TmDaNA6i8HiNGBDe69YrpDIetZw2blQX9KnLwhzI5IaG/A0idf+8tYeEm8WQev9sk33fOPE4FkEIIeD2MgMTkHrKJhaSuZoq06yisArflw47MJ2PQXex07AdX46VKCd1fFoFiICVjWoUu9IMF7pgeDTyYsYhk74UfCldgvI7y0j/VDln0Bftl+9OF68je+J2mDjuGg8FkOJm5PiVYF50Uzwfv2FjVnt8f8MyAAuA2AGudTWAn/oqHuhWpiMYGeokO/rzZiqrEKbMBGCVh71WKfv0csS/dLuRNHkI2GwxLPciE8xIiFgfOhbYnHhFX6HLTZD1jO8klSe2NyaosTG3Ikgi+ns6UVF27flBqOFfXtQlQCaq35F3biWO8mllsecY3ApU0w2u0bwH3EiMnMzksR99tokrgGR700pQn7EBrQFFUjm6TgxSBO2XB+sQOfGAaj4hdrDH3501YMco6en0QewTeHVZ/S2helodStwwjCXXx5GPCITN4tMm1Y7Z5weCneoMmRERvPZH2ucl8nci5syGoNuB/MoE+i+5m2JjwAym6sQq1EXTFU8PKnGpB9FLLYzsz0rT5NxvVkzblsu1MBesWiyyoBOL/ZXvrNo3+KLegw1Etez413YX6/y/nEkRG/kDbXMhS5mp3tNDL5w+OMUEgHwYnffOR83JVOtU45jE7qcZP0M9F4yGomKaokfS0sFF+N7Tr8cWNDE89cpcA3SIB+WFU4E7nPWq4IOtFBj+o7pXvhhjqupL/jkV1qzxoutiLkBUX6Duayt821BG0PgDEedzH/7AgIkEYQJ6QfRfsXlmsNSYYWTmVFK8agX4X0bJp1y+vMmqfJvZlJf7kd5p+T1jndI63nZ+P4DAV3o0EIjSyVg5PqFugxDQ4NkLpMLLmIeWvhii7h68/PN63sY2B0rXfzE2q7JjOXB3eDbjodpqcm84bgie7qkqOrxjrh5aLj+Wb0RD0RtdDSyMFrAhUPfoX/hI7JDSFajMoHhWFz7Kz4eOAvkyGmBjfdBT4X3iSQAy/Yty89gS2bahQpsgGEXcCG7aPRUvSIbV423aonYEGEq+HHHvdtjxfgrrjvJv1mdFFELTUAG2jwFaXsXlx4CJV1QlLg3qg2SrUTVxfHStPMe8tDkL8aAiQ6aq0BBVzaRMOdksSmcImNEHRtCnYOUtFYmzwHkWRhkUuUvK1m6WnbSpNeW9Bhyx+MWDuFJlbvnvYjazEl+TSMLKiENOzRnNXTUSQK45eAvlc2LD6pczA0mNs/jijpvAsSYjY8NPY6MWLho0rbiaVxjDXrLxkVD5SWk+wE4uuycE10T9sxT2FfssHcvjsdHgsL3GL3cSo7k7w1JTZnXL/AxnPZ1WOkuT0/wlOtI5UpH/9/IwqmYR6lXIUCiN3ber3ehjCQ6EMVs96hucRP+QMXlItL32TzxOl++wa765FsWBL4ZWBWBGPzwXBG//xL1LWKckHdqtyeWQt1443vak0GED1GTTRemmgOS4+1mP7OiuM18cAYYBqXFfL8NiEGF8e13OkHsPt233mJ8DY3AK6HQGk+948d3dVsQCbAwamGNWwAteHNkYz99ABlb/t7bdJgxkXPXxS4UswanEkvAgOszEFbKGrc0Ej1mvZbgSc4AXB1FLRdfDrdtJ1pkwg18xB2jisZS95kJjjP0AXR/vXmJMqzUfJBdCTXQAmVaUJEujnFG4mpoVooPXK3FjeT+kF75rXfD7xDS2YcmlCxeSFX/qs0H2kc6cTpD/AaDqxSMv7T/bXTPsW9AxA+on3/gL0H81vyh1DZDkvFzhe3ZWkse68+HKXjnYPk5J7xlFxQkbNzo0Z4WchRP09YH/F4E1k8y3wRKmqpcXD/VSJoPRQlAw2odc4/JRKTGgLCoWkprIwzADgr93DVC22a8DrV8VrlZ4AClsBYbNHZ3HBxMRBroSDkvG6dPmOP56LTV9CllJywkyXR3Coo4/2W7WI8WsxWImr2j5T2x48KnGDQOKjtN6wUMRQcLp7X+uaUEkdFw7cRWJ6pEePJRB7FRbWMwfyuqqOoKXag0DACjzaYDIRsyKwamtHjUHoZAWWl8xgOOCP81t4hZfvS228Itx/QhoO1QxPAlyHrR3jILnXAp0euyEdI4Pl5/y7BlQH0RtQ2mB+M6mIUWH+zaaPFpb1IUTMHPCG/bHPjY2FLxvEnwwcEjFnUXKWEe9bNXCW/emAtWhgkHcJ0D+aBGOvsBxm5+PSbd2dy4+kASlK6PrwqG46lGMZD9V8GSYbLEfIN8wl87UkTReBn7cIuvDqLCZOHoKe0u0sM6u0olWADbAhwqSFUC6XUMQ7sguno/V4I8BTIU7+V/j1Tjdn62OoR7Fo0RabvP0GgJGpoTrCKh5YwX0TOCIoleYXp47QHaQspi7IbAhvLvAXaopT4xS0+B1nW+nTwV8YfOVr7wykYveGRgifWPDUeulLTzTzgXUBgkpEBS9kW6WefRe5KxXqG3J/jIEsgrrWSuGQZV/mnsvxRESAb7KFJVydNE9XuczTUqSVdQUPwQM6ZglytPGFo6PhAdfU8tafXOHeFu2vNCjuGAQCnMNyB/3IfYOzlThPbpPdsKIOrmJvvgtq237AcbMnEs2qPpU3PgSwWeaxo+xf0EDPlYM0jGrtuphK1GjMSsTUjgaLIwPDTbiNlxTfZisxCD9cCoCv03Z8ci1KEyv8u2Tttme3JafhqiEzFK9aXpYNuZC+YmAnF96IjruW8JD+SHRUrMtaxbXgswMrt5DXYEdseBt3zf9GlQBiofmXVywbmddLEYUBRmB6tt+AIeWvwtC9vlA4o5/JaLV/U2GiKUBm7Uwcqq3vE/fAfHqCVxyLe9R6DvzWpcHXydp5i/qn4tA0TnaDnub2ytngOF5QlwQGoz7Z9+JUZJwngWua1aiFg9I1pPTxS4ZTFJVmNgGWf0fk3UarDGlX/BE3HwKj8V7ctIHoGhFLs7vryEjwv5Ei8seVptEI/+8+4iGigR1oizjkc4IGYwNrvBOG2Kh8yGswSEMcqxofn5vu7KdxUyqnR2qVZkDqFQJCd0P0oDFgmY1ttzBZn1UDrSwYbCFi+LXXKxvXD3za4pUc7BVmI1qKtb75bFd/m4WlRIcxs52USbBeP7O7cHy4WUo0qVfz1XYG1zevpNjXQ61JvDjA8CWRA4lL9EALcM+QlYKnMjGQF5yN149PQK2UobgG/QfAqxTMv8wuq0UIIkmL7QIKFoy3fgj7r1qh/adsg1KG40KF8SGAB6Ut3ola0Ya/ZWvzdm1Mq5kjc5TzzaFf1zxMhv4hXXUIjwQOdJ6Ulh31fM84GUSXkLXxR/TFygZqQQDAY9b+M4QhXcWO7KJgmIDg0B9keQI1MPi290zpifbBVS/F1iL/8Ue3XdvntFPnlDEqx4KkvfbAcxpT6SwQe0ulPiAdWkCadPF8wUXOwFeYKSGNr8+/WSMkKpPeTgM+rQwk+5HQ14xaDd3ryLn7Sw2oe+w3Tw1m76SKOTMQULTrkWtFco8IXUaxMWr+vfv+jNtGSpxswW1GuMuBJ0DdI42CLlZCEgo+1StaQ5bxOj8f3DueC58pu+N9iPRySupZ7SDlLtKgPE5UfG7OsaN/jLf1tXDaWGWPqQ7BT0hasAmzH5FKyq59e1PqtEAzyYttRCM/B74jet53UXxvs2tlSt22Of4/wm4rf6/6VwzRHTrpK1pS2zmbBRVbUWFvo/AZf9MVYzpstPbgFW59luK0jowDnB48EFPlRElNGo/m9xGuaGn5s3P9YNj+v+q54PJdZEeADglZB3X4b5qHCMXyr/ahixdfggMkCSs++da1JNTeG13GzY51VNaXKyBzctM9toYiaM/LxtO1MQiLkPJuvdPgagQqcM8KV58CV1ri/xfuUzbZ9GVNLsdKoG3FAuyc0qEp3ntrgpgvg+XtCjjR70nIElG+qCfrN31A8aoUKhIo9f+yRuJ+Nf5KfQxB18PDSh05pySoKs3KybG6oWmBmt5tfXcsnQVnE+X0cIKLU1zsDpKXUqzuuO3AR2unSjmLzg3Mx4wSj1Ir9Dlve0MEf92gnE8EkuizJoq4Rwcfct9XHYtr/mCGGblKi242hVK3y2tlY/WT97HbhTKcGD/Txfr06NcAPTh2SWkZY3rutKlyErKGUJtyCK738975T4UMCOIt0GcyINkQ9GaEstxuanGZuS14nkmn7bw7qip70aZJRRB5KCk8SJVetBxeNsNAzQGpWjzZT+h+Qz6qK10YMPhE4Xpp1iz7VliGzkLa5xWXuKrc3GNxdWqNgrPVLY1yLjtGstkbtce3fRGyOJun9Xeop8u0mEFH6vZ29h65Lclu2Zo03TOsju3doJt5R5XKefZ3PUUCZsGM+Yom4RqT89XsZispzOEXP6RlDfsMoCs93Fe7pp0FSrOYbwm4Yb9BglzysDJSim8FNS7uEy0McOTDvOGpOiJ1WJrfOwrtZGGgqQ5MQ17xaKHmr/Z0FA1+aeYQx1Gm4MSA9hGtGcefcNFS0R7ZMzdbGN7kfRH7l3TTRSmLaAOMQIoidqvmwitvMM44N2bDdlEA7ooBoyFDVUJ2hzp9DWJm11b8zQmd2Git9/D+tx/mzPG88zkU5dj694QWh1soy/A+46cpK2pUuqU9fii1EzkVljh09LJI9+SSEA/3ruGEUET62nGL3FZ0tJ1xBKgL63q7lTQ/TrR5dISPlP9+4wMvG33pOKgIQUVx6tk/CNezP0aVZqCCKBAhvZTrj+KYOa29UgF70SIt3JC9UCWwgLqhrfL6HWwLFN+ImgHACePwCilCEDOXQ5leNUb8PGLx44C/2i4pOhxZk0ForsgLdErJilJbPnvJ3ry3xnEsbn3TzEyldb70eMcspDuL1kUQbHi1uPfc0zMRkRuZyEuWdX31rGONqmBw96eLozK+zbPv6eBEUxmJgazGNM1wfZu+zNheE3zirJfnu2wJPUB7RQljlFGlK8XD1S0uHXvxqNZcJiqE0i+E5SRNKLrrMN4qZmzeCYmb/1Vh5jz8qxuPUdFVXpCiDJIiy59mCl3TX1BXlE55mW7oiZ4ZNa9BqvtHKrEIXq9uttVb10i9Zy+ncWxrt+DZNFk7fEn1R1XJEYL00SGodLXd/6vxTpZEfUAsfcLVvoYQQBvFw676jaS2J3DhIOo+g9mfAGvBunaZ23ifagaZay8HbD/TPP0gBGk/X/9cXxfcIp4kZcmiIC1fa/1VdxTvSuc1kdAhT2Q8OLJA8e+703xIwz8aGFWb6dUWYM3ADX9v5JRFZ6IgHLGD5BOp/jEwb07DVPxy/V3E+t3mLkcrDn+CmflnUnozsWtTB8jQeMR3EtE8s3CtI/6EHwz0lh12JPHHR6fy8bHMs8qLkfSwpY+HcK9ef0Op28rxT6ggUsgYPdnWG6UZI2oYQJP9L83CKj6QsK1Roqu3Ksk+qa6s75KZw3iP8fSotDfZo3uwac/tH3YBAa5O04cmi1M8XCqQwWUuGOQ1N/6KE/b0YOtPuSyCn5i1AL+eZ6XKeYnGJIoTpqQJUI77b4us30LA1O7OnFCSNarw7euigvtDpywsf3J5kjA8tU6lTRSsGfjw/aaAieDHb1fC6+lW4QPZijXmlR1SbYZsovOTvWuR+ktEDb/wkjokZuLX94noEYE3Qqcxic6vFOcuhdSQoY2jRSHcVt9ZT+/0yD+4PPVcIRXfih0gHFVuhTcuoeGYXz5E923kGZfxW4mvxTlRyTPJIQECCA/P/KtvEhhpvzIKEahJC8jjJQiBYsP+LoiF2/YOFY6PS+xvAXtC+j4osEc+iBKMmXCyHkpIZQ0o4VxHzz2N9+DQ8XsD1871DpcmnUsvhKVDfKpQqZGdkdi7yDIKUByE7e2EBglYjvCRyd2Nz6+WJm9ia7zBRa8c/t1gGkxoqqRCzxdjFpzVAK8YmX4cPtNcHeyMxp/FsxF/TqQCWDHPhraen3dr68Q2tL8FITMu2YtiftkwHzCltxJ0aV7x4Gvq2mAH4fURC939exv6at5V4b0LO/hIJmR/9+tq9BMYYcJpYYoDylpjYZw1FGB4Pu+sowXSMxhN/TQZ4mk7w4mpOtxkiszdEjId25Djj18eeO5otFc7j6GNvf+DpbATgA56VLf8UvNxYz7jJWqpBkcjo0aXZp1uL4w2YgaVoJ8XmTJiELyU1HxEW/ZttOU8XPNmDumHIHApEUiUgd0VDTBEnXlYBwUJ8NN26T/cGAQPLrW4/4yi+u0GZKVDsdv9zyA6SshK362a7Vd31i/rWIzTOky8u1e09hD7o2l0aGKefp+iGUP376ZN87j5hzDQXekOwl36A8/mZfe2MDQUnpQZrLuHnxGUfHjEoOhKdKfXni5PX3m1XIteIfBzpwhbdl6c8GErN1wraGb+cylPeMubAROofiEF3ZTmbNzE3/NqtwlJXf/kG+/HGUnDQ3rLCBujPpJcGWvZikPnSAWaSF7llQ/RVIifly5PuyUqJK2eip2aeJaA3Jt8tMjYIskf3x3GmqsAL56MElg9hNE9kq1HpZkF4zgmjJDaFeSJKy6Qx4v5RE8mwtszhfnzIcl8rREDAFjOedUUXIURUbhg1B5OKgFpaZC8cSy+WPe22ZUxLsrtdjlXjNsfxGXjeFFNkbIc1lPKatF5+YvPDOBPuiJI13kcmYWIRhfX/1jeFLi5qAcVQlpxUfKp+ePK/48N8tHD5/OQXBg+RGhTfR9kMIwy06+FNgOWczeVUQFXz9kVOy0LFF1D0pM07rQXoJbyGX7gEjHoPDfdee1u85AXaXVLaO5RLo+CEb3B35orE6A6tDWgRQqpWTpC+Hb35asIbqI3uR44+nuy+846tpJo3OOSBK7Nsu5CuylbdMrjfZTYmiZeCBxlfpYBokK36UdDriOknHs8ugE1euA3bFYLCs3zOqIIUIbeZd9/M/i0bHH0k9IkymARyL1VM8ynK8QNF5rT4AQHyElXk2Y84PIuz6r9f/ZT7wWjlk6tacm84uHyJoxE4yqWVjrUtyVFpNZCXWCiQh6Iy1SWhVrP6WvidISyUSp1vE6ts/hviIXzu8bEhR9EI9DlcieGDoh4i+CDqGEh0hdLkzHs6MOF5QWtPULEpb+t7+Gx/T/mB5zVziPmvYxj7J10uCk/+OUesRf8Et5pMYp2te/6S/4GQg/KMNpE2XiQzBw+z126cpXjQH0P31246XfHKHfcdjx2TAuWgoyMuT8JeCdB/H7K1wk+M1ghXnlxgNeCyOOrWEbEuzd7j9uHPuaoo5eTJgAwxUoN/2Hs0Jf/Ln08TBZ3s0bGl2EaU8KYXMejFmK6SMcNjmJQPDwZoF3hp1L2U7ZZuI8Z5rhmYdzhE0rLdfOIVKb5BOb8ti56fM/8w+Pd0aV/j9lW9d+HyFna3tuiIVT6uGy3MCmouaddF/doeuqr2arZIyXeU3/1Q1M3AdrQcVXyyNA0D9xOe7nHU4jzn3FovUixRkIWZo8TnbyrHUDNIKKSNpQOJi+UEb5FRijQFFFqJSXD5f9DMnJHZKQNOIjxbDAr5N1dIIwOwHHdI1dADPcRX4CTf+3cKhunMH4QBHv2/fUB3U01wD7cYn4vRfhr4SXLBo/zYIMgRAgw5mQ9QzeqF/irrQURoWLOb65QwTg4Ns4E6c5di6WQp58ktV0ISupKCMxfle/0bSjakiNSC+931G89gwoN/5ykRS5o0NZWNLkbNlWHAMzqsZkdsf/Fk6KPHma1xwfZ7H+dY9YXzFzIW1Dl/xT+iJeQj7uuFKWNcjNsUSHht42g4m84ZMmZzJjFJr3QnWPmnzh758pmBdhrb8Msd4s2bf04Y9Qw1zSogbWZybPk2UVo/mjs7YFWUW/guwzQ3PN2FrkAY3AO8WkZveSw1AMEFhnba4zcnBL3Wo4PRUQEY78rnETQbK5EeVzlUkQEXbIFrGkggN/iq0jeqLY5Eem+xmUEYg7oQH6tqjb2HtZ+Cp4/UHIYkk299rACIyJbFYId4XaORktANChbMDXqQ7GIx9Siywh76ZhdN5miusGfIYXOOAdzKTKAFmd/f/3WE5ay86daTXvq4HGZJV/3L1CNjoo4cvWRLFIBt5LDU8M9f97O9BYwxHnpfiAZEMzIjekewtaR3FPXC1RGKkKkHE73tTu3TQTjodFzLZ2MKNqfx14MPamvvV2DQ1x+NXLQ7ZAPbrswpnrfaKivs4INT8pMdFioQ8ZPK0OgVz/ExH7tDrh04lNxK3PCSu3Nd6xyIAnLmMsj9zGPL69ntyfd8aZbIqBhEb7fPJN753szxM0OoVQiSSxviaOad7DqSU8SMpD7uCUD6KT+2dWZpl0RITrvD0v2gvsjjjuQ7xaCoxuWYOAOFYnSO6mS+0tBtprLxGVmsTqJnxOhsOnO3jxXbEarCDrp9PmoUC90oW9lrhyFtzrEwlVa3kqp9UxdDdNV2hT3IxMVVZSwbCs9zygC8GoelqlEd9eOBLtKkkPUUZ/a1rdR/TknMpiiQTHxoQsHImdTyUo6lOyY3kfJrmIhv0L0wy6Wt+917L7pcWQe8j5+SqNU6ja+lRAcFt9So3UEqK/iTTW9BGaqPcJmEyy743owt0Sb1pimTpfbWK1HiQnXkvRw+iGrlk0sRBuxPOlEomF6dt1RsZv9b9rrsBlabufWRs77afapqJOKMn5Lr6ssq0VyACBY1s4HcuhQw1vh/0tjv6+yF4qPZh9WCQaA5pXDxxgVlgjeprl4uChoZYq6/lYpiNShqJ6B3sXyO4nxpWipEDTVOqbO901QNIo4/00l22FWt69amfqHOD9PE6UxXmOvrgdJVwIabmDYIqJts5vyyTLs06JGo3FSKB5l4Ys8ES+73EURA8caDMaOzS+xKIQDdkDfogyhCqOM4CtJ1ruQu08uoLsnh/rEfP/f4a6YE0kR+2hKpgRCFTTPq+L9n5sXYO0bDLWqgALAlf4gte54TpmUVzyxJkYfy9jW4FFLZ2ahCuEM8rbLaFZY3yl7S8XjpgjoTJvjmE5Ak2hMm87l/PxkifqzmrFX9W/0Q+dyNeiVdPQYX298izL+DytMtzas2tlER7OsZLPjGl4bnLUs6fiaZV0QGbWyExoXzAlPyx7QZxcxiDt9Tn82lU6klFxS1KaCOflUx3ojSlv5EdhuamDpo1BkuLgiFvFsqNlfBtXi7M0MOLrJqkUUMzwW1q4emTjuV2mv3Uo+dQr+UgFII0QBjCZZFRmhP7Bs8JX6YkaVI1euDqfIZ4Wrj/8k+NSibs/lPcaFPhyNFWsgcCf2pTHiN3ACE9C6feOeXM1zn0IYZQ/eFEX7NYvpneXbXzxjOymKvX158vSkTxE6dMWveEQElcoxBe0KV6zlWoYWDIZlf83g+Il8k79Qz/+bFuXJuz05GaTwDIw7ThprD1s5SHJslSJzhtnZcvx3hYzCpR5JbhXU82g8Y1LSByjpS1u8hFP5FiUVJKLPvf3pO2QC3YXu8tob9rzf2/3azkG7VW62MzgZETvq0tdW99frcAkmyZQHrhOZ8CJRE/RcC5oRdDclDT3s022rYT5fz+bezniPaG1HZ5/daJZrPw4DayQjgYtczkhIKIKyJiM+o1HToZL0TFl7zDKogsdCJIO/QlcHOyQo0gU8xtLCteUFO8OxgS/ID3wIqfWerBILA9rS4JJsyeX5rxbyaeUdtOWdA3Zyv8h/5E0QaIuzZBPg87eCzAqSh0WbjMinVWxEzpGmWm5P7d84NETXPkRh2hgy4CDqgzLVHUO1AAZN4pTtnmefS2NbbBQJSDsnXcCFF3h8XRVimGK2kIOVmM4mvF0LdSAPGG+k/APrrWgg5rl0b4OKqKiN6P7T9euFVMHQ9eHUQm3uL6nTFwsNrD6SKMfn3Jo06luphqungG23oJxKTnN3galAcr3pMlg3js3XeCPW3Eqy2n8NI50/uQKMJA7Eyy5UwCm9cGnamDVjRN3LMZduSAsVooDzSMoneAxxhV/09jW0+ir/WyqnSLWX2Nguk3ZctK7WPeRoMj4AKjUVgFGGAs32SVLIlvjjvx1NSe+TdGnuuJ0jHdhcTe/vjFRq14+YZjbmRZGciY+rRT7RZ+TwzPImtGystaYjRCuTPYXEwY63pavye34+vFwAvIhbFXloPTOEzRM56us6RMQHM+snKCFK/O/f2IdQ+iSWp89H9+iP9NsBpIYN9/I1Ezs3OuchrnPeyCgal9Ug3xhP2xOn4Xq0mrNQdmuTW71hsypKb8nx+9H+oV3q3cyyOm5xcOG6W9H7DVy0BrYsTlr2acIM/hgJA73R8IkaaMzSdGCnp6iTREAi2HpcGLIuBiW7H42s7r31/+SlUSMw8XcOqbptPir8KijaJQWjloE1RDKPZYffBlpO2+YcrSxWgDCKU5ksomO/cIS7kprSWvt4/fUXSlPfDjyQEKE/6sBgMew/oh2G4ORdjXZgcSnsQl2IHv4r/ixz5bs82BLCWnBioeiREnHYX0hNXigNAKl5C+BXTBwEQQ2WOFNT41xMis2USF7S/i/cIraORccDpVhTZzPOD9oiiDPW9hRhQwd4hJ8HIvHMLYbP/iW18KczymYJu7cHcDaovjL4WYkq9fRBCWuWOaa+aphnwQH3xtcbCVfgr1sdgGIriRHZdkBJuL6uU3wGODCfsfYzOygOY3grIka0li9JZDZNzLdN7GeUFBhL5fm9iqpGCt9dSistpy2EjyuUdR7F+Z3dbpObSFg1UoB8U81DDneJN4E/iaTkEz7tBjubhlWZD1winrgJ24+wCNUxs5cXwLkRSRx0FV90xzXajaST88Wdwt5rzE1swgPrF3nitLnwUNdrPktz8qtYRIB/S4QwgnMy/HHUnN4+g8ETvWvPPz0akgmEVg3ek/qeVcEAOuANsAt3gpjPYtLs3pc5IQm0CzXHlV5Zg6gLvGq+PpVDuuRlrzwB0M08zSd/16rz9N4wSaamlMkJvRfEPxW2ZXsEr5HTbIG5uCU0dV0oF+oLW3SWQI4rgCra90mlLsV/4rFs8lkP6FcinrWMzgrEXt6mI5r4hmJGrCexfmBLHO7H01cHfE7DziRHuoKHEJZEqWVaJ0VAMy/Q09/R4IutJiIPk773tK/DJzX6F37wW5sWqcaGVq8h3dVj7jKEPeCUxHUGBdtIzSqjHpwyh1bx296FuJFNzSZrZWlyn1U3ZLxtJIZro0jFbJhUQ9LqNWACx28bkKdgw9B2mrbwYs0CibnNIQqRpPK9DFwqoxgG04n5qoNBycpVpTy22YxvyVo7blva0N7iMzgOwvgV02nkymKFI8pVzyqfxe+QL9hSHn65iXRxpiB+i5wlQb3B/Rk3TdxRQ/313zjo1Tx8PYZ1NN3GBDWjAuKI1kyyhw/YOFmNrcFdNygLyf1G8pX7xTsJgq11jiIVt7mcBBwBjbP8Z+HVGNIn9MHZPUUq+DvE8ddXirzu0sYwneN/OQ5bHRvG6vi12IHHeFNL6BFvCjyYg67kY7WZn4UQyJucwjsaJsLrdQ8dPXo0rag0kZu0dlDb8a01wmVZrO0GPrb4eflFH6eeMswfsWD8mGVuKzk7Pb/0XOT4gdvERhAApDsuqLU5rKONpaaOx/x9F5pjFltMS0RAxNK/1fblBH8oWpufoXAbvKgheXnIQ15kz5tiuUgq2eLyW6k6haBm1PFnadobW8xgVxSIr1EYxfGug5hPAEbtA0cn5t5QPgCw+Ek/eFVno0tsTpEBZvxp65Cob1CM8k3HqxdAQh7ozDSp4mWK4PRV4b/9vHfLgkBuUGMGYrZgNihOJ7x9S1jD17rAOmCq9r3uHuDQeS5jiJkJiFIlXUhWLmUaJBI6mAKOr8qXleB4pP3odDzal2Ft7NANfVZt7gnv/zkwMdfVdzU/Lm6l6QtOgq23+JHIRjWXeD8EZj/Qg33ap1TmD74+pvmwEzG2DkuZ3tx3SAj9sDZkEwJOYaiEVir6Mp/ted8KyZbbSG1lqHXne8l2iqjArflMe2QYZjTrEcYNWq6quxsRlH3+YLXawLpkDHc3bJ0G9VDgkho/X20cmg6n62bBF8spKtebTXM7PWZm992j6hwGF334kJlhlFOGglTjdw1eZ8werOtIOoyabi2XxlhNpKFtU8S/J4q136PCRVd4Q23rzELnkf7WiT8LjmQohvz26PC0DwxRXLP6GoQEJ635OUfqYuP/zUe8s1krYhWUiR+F4vE7UBb4hJV4S8RM9tzdSbdY9d6N8gvHE5FXuIC97NwkTHOEMAzIsg55K6GnFdA/TfRjnuqEk+OZTL4/zxF8Tq6nxLVoS1qKceyEt11NTigveQSFFZVk8pI/yR2dwBR4JGD0/1uFyPaQnFM1t+iyduKcb5uP5Z153vV7aJZPXF4/DMbmyfrD7DF2dKTvdzQyatTRZyvTZGEL+xY9Ypa2LoNA7/dsCmC2ET/nScz2x8uwlybwzYPhT6piT83yBoWhhWUv/oTS/Er+Da6iv8+0jW+zUbRcU3BT5bJ1NyXxIF7PD0QJmgPHBg11x0fBsptEmqSdWbyqUyruXZ0umQbO3jxtDq51vBFbtbbxrrJWDNJNlyacWL2zSBQiDjwJSka2nRWtWVar2TJjMQFsptanZQNJD2lQ0S+iR14zyMbM+Et9rw4cvxZ2wh3PUJXt8o8u7V5rF77Cy/m2HsishRC752uyt8rQdn7y3ScwITtgeMoTAvkgxXZk2yYVKEyAHCn/db08kkjsa/2veBG3mP51ovwpFxWLS2G28PhA0OlZTo7H+I8tPOF3XCHI9xv0fSf6aVe3cce8uMn50t2xd4AwFmu35hz70fOo72sIQl09ybvisqUDBMR8iHJlwY4aru2rNc8K2LmlPm9vAUjbh4+qs+/y7ZixUa35S0bqY0snf8lmqg+JLfSUr645qrOyqeHHk+8s9CUsPDElQz0Iu4pCupUTM7ri2ocKg3g08qaDQuzNjtxDfQCGxViyCheRvIgv28eotQdIy6XR/JugMkkzik8ci5MSNtyBybr8f0rHA7u+ny+yBcy9hAGE6wWRs6SB92kkIDChrmemF0sp3IoTiTWhVtmJTm4jKSUZlvc/eaEglEwzM+85MFrMGiZmLCYeNFLFftv+FPndhSDiKRXZddRlFHitDckdlyiqLHLtDMgKYd5/5qN4BT1PxAUvfckF8aCj+jioLhl5FMlRRymPy05zMpTL/wHaJvflh8sj+J+YlkAm8NOKGUHCWjJz4RvIhORW8FepPYCm6o8v0Wv6FA6YdryIHHdc6Nx6cYXbjcwU0fYQV5AvejPzvDK9wawiOdc0Hv1zSrnofrtNtSPTx5gb0ViuITCixVp31nAHW1lS94QauR7nsEnt74gSy1rq5PyJ5WztpRlWefc5EHuT5KDxdhuWj2ez24EASCx9lbWnvi6zq0sFxHgsSN0IURf6nrKFCRGMCD+9qkHK/mc9eQXnkGvKFtsnLe+lkv37f5jiBX0VMCoB0xDNPlHSSqKwWuc/LdWnvfVqmhAIfdADPapz1rw//AR1IcdFoY4Jp2OCYN8YA6vYh/d+XDAPMdS+YUdySu6nNPVm3wF5RklQQLZ49nN3EgEHXl9EQ1qCILWuYL/q1H5iW4V5+jdWrcBX8kX+rxY6PTDMBBLMj6taepvok+bVU+BR2IValEKnFuHaIOgYPcdlr3bVOLVo8hBuF/c4JqL1oI8xY/FJr8NNZfVsrqEnNeZnLdH1BkuvwDarNscVAJEeZ9RFH47Cm5k35AH8qI1mJgjapjqLOtVnzsiTVYZO/w2xDQaXdJ18a4oe1VjOLk++dOOSxHjzYkWEyX1A8WfUU628smdd0uX2fA966Xr1T8NWvsUPQS7vHr+Ap33j6lLPXmEdOyts9Xxh6omEbkp9FnGYXgqJ7//FDRYNWdJa30WHsFrRJMIBFs4CNVl49Jeqx5ZHcBYjs+yrMsxT+KZ0PDghaCeasDTpmi7vq9PwJwVHJTIG3hwqyPXg4g/TxgYA88vvUU0GCljQn+0b67nherc4c3+I+vKJLAcirPSQywYv0IgVLOBSqMpSxy8JDqVvStVny09Yv5G89xhrtf9vn7F7fVhifAq9ccPKRRTUNsW/Uq7fKMRysPrORdW1rnm6KEbwm7YHunYOyxDU6Vz7UOfJ1Lyy8T09TpmA42haFGn19VcQUB3IkMf/6NhdRKXFQst2UtEP/7kOrePbEi9HZMmxfIOiyiOgrXrpSxqeoU6dnEahV4ZN7wPI+v+0SHCSeymvOSTktacmi5CRGzwN4f80QGBpDipTZ/YqTBRpgcxA4CWr8ExjDJ8rC8kO+HYc83zEVW7I/GbOLf7a5iEtHdNib/9YcggLIULQMgSt7b5pNXP7/oTMo9XnWIWuAnXdc3vI/Uxw9KfmyJ+XBq6THPSygLdAnfp1NdP2dPX7EajpSgz6pStOeXqx4+apAw9dpJ1u9QmYonhuE3UnuhgU6fUsOr9xS82Pur/IpoPbnf94N5RKyJ7hMu38Wj8rNP6Lr76EfEzGq16GhXGLEMoWka5c1RWZEbM38m5F6CaVol8NtyLrxPjICGQTBK/MHpWqJRV+1aIpxA4uLJO9DzGDmKWRE5oLAejzC1qEf9/DRbk5eAVx2yHNIZ9l918pQ3YRixEkHi+kFBsHSaxyEAFguAWmm64AESCHKdhZ1GV3o9kFzT1v33E0rlI6YEqgAb+hHzxGEfeu1VMrobjK5w/3w/yTu9FqxVMue5Z3I6yQOvsN+fkHAezkR0rJSLu/vF5bZg3DoCnPyFN8F/LxXQdO/j3ijpQbuU2zEGcOVnHKhZXwiyUX0K4bpBHbYYsmbYBG4tclDotpLI9sUJgGabcL4vsvGMRTEvE00SB7FZwQG2k3QIjDgDTJrDq/a/Tex0ABFo2FChhDHli2gRztZ7dFkfY/v+/D54Z4hM1Bja0nRG1dHRdwnlLIqzxLrLdug5sT9mGOmm/EpajjZFM5bmU3yhjyIZdyGtunRslI5Xnz9CLXhw1XTRKsvHLMpfZgym8NjWD1o1KH9NSHss9khdFhd93P5WONYYt7mFD1SBApY1YTIbTiMJqmqKhAo9xhCiOHqaebY9dfdyMoIu55HcsoKe5AZbSoNn8nIuvWi9dgXHegx6U0wJwwWngA773AqOXoCHoSvcby2nZUjhyeABJs/8Uxp7DIB11b+XoDJhF1sUewCsMmAOPXfPG9D9lD58QUlpHzcGEpXdd7EhtNMYt5X575X4taO95K3+Zu+anSeOf208hBFsl5OEpfyTd+3ZouMwfOENlOIe1kJM2YhPNrFNv261gI8Xv7aNph3choXcYxgsvJQkrMpqfe2nqr5iVgZUzCyRCOX6cznq42piDx2ptrmIvVzZrQ8XDF5DSYuDygTxmYefI8Ce+BJcY59RQgE/Yo2puARUB6AryJTlkZW52FM7XlOu+mT8yzEg4Jv5Ds+zWvD7GD52gLgihUb67iJGffU0EiGx+JMU8kqyZurBq+Gjqd6b5gS0pegmplr/OSWP7QJ002pk+GNKI65Ek8eYAkeryy7tBmoVKYL1Imvc39O4wWlo5ZoKcIwbnvX0AywHHdiA5u7qtr26w9t/fHROfgaQVIC3SWxFfchhr+qnaD3RB/fECR1EKw4JkSau7ekktvTaTX2pheXAFhtvz1Fd2JNBjvP1K3WjiH85AYTAXRmLXdNdFOBUeAWqbK9qsd4tYE1+f9IVyqGwinl5DriOoWi7I2dD5i7OxQ0vMS0Neh4EYofz611gzcKm/vmTC26IkT13kTdBFquDcKxn8GXyXHdQfch5d8CtB4e0XpOeHOb3Fs9067TRobk+ss17iZ+vowqy/R83s9Gi1YJ1XfwYRAA/2YRTNOYHiRQJX/l68vBtjkDPhQAIrnO29BWSf1RIdHZ5YkcoZ7wro6P9ChcwLB9X+HsMEiwGpwfz501X0ieBk3jtg1A/7GSOSkli6tP/Os256dJNa8jY+8lnNCJ41xN0urIGxeOcJ5nQO7PFt0WK7HqgCpSluH7hhegt86RHAqlToXPb0juK69BCQNnOjYJ5polu8Z6dolkmmewAT4QRbVRzfDLwr+5LcN/7noYNRDvPt1W59iw5Bqc7oNTXzmB0o4ytqgtIAHk1fgeJAgx2nKtY3b9ovAZMhGf8DSlC+l/zUdeGo/p7Hb3Opl7LIB4CNzLetSVJz+yOBdoRJJkFFs3L7rpTB4LzxWVEqdacPF7RjPoCpAVaY4arYpPr9w7Rq8oBTZfN8HIUEDtOL8yK+l1ev+FsPmosuAQnB+pS3esX6Z71wdIHHNKumWaXg+71hZJUhb/qWyXMmiyVxR/0yW1NFd88IyqHzrn8axb+Lk4QCx7wxDbPKZGeVn0oBj+Pqj64kMxRwcQIY9bRVqQAP56ImhSlDMyrsn4iFmAAKZlJ2req1uyyROE/NQp5Ayn3O0+kebG2AV6CmQtaKGUsvZaabB3OeBccqI28KzwZx+nD/Fi9euZ6CQwAOyyZ0tK7ZTJYPmtxTRQOZ/WqMnywmctrcZlk+jGAgKQbYgajE370THhrR0t21tZdAIholTYIY+gCCn+phXA4745EDRVk5jhynzRI4dT0jYAAfITXA/aJkfq1+LvkJhi/4cQ14GmE5UtNfKB+MkrxO7cGmMX/XYt5RP1U9DqCydRFhLw+2vylrncY+zsyHsJ4Oc2B2ytM7SpOYt6manh+Gn3YZ1zacqUPiVp7kRWH5m9uYnmJuJOInqwg30s8TL0h9lfwI9j/c18DXe9CuJlwcVCX9q2D3v/e5r1cUEOwmSj+57Q+RIgTrTm2y9d8ilzi5Yy23+icXKeXMY5DJ81eZ1RpP8hAPLw/lKGJ5Sst3co8Gp4agfNvajZ3obO2a6mKHd5PyW1CSzFJ8cM3Qnia4CFxDQ+bJBM8e8K/tzFqlXqPZEqlFZzcvJlQ7nKgHvtK+zE4eBsexi9VxdrG0y2JHwjBPTYM3G9k/Ox6cH47s8zbTgfMA1iV7VqjxibkHLj5nN33dAzV1ELBLYx6bTg8tDPaeQjqM5hOWEp4ovGUoLCKF3NVMfFA+EFIXJjn+VNzzs22ZVtydrzh2C0idDZHIW+kLcG4wStA+Bl8Ceu4/axALkBtvWepU0dmI4vULeLz8z8F0t3CtqlaMMlnqMtlHa8tt122sNDr/uxxYx0QOwD9nfcwpHuAp7O4NMJQwjGY8HeVLqzIvPAKd29Wz38ATzYQeOKUf9Fn7IZInhva9o2rN56MMNGPFTtJN0kmQMvw5rJcXYZPh3Yy7HjaY7NfMTtD8TZn5Z7VVsNk8RaXLkbiWW6lYbDPKo5imXevFJU4youpmbk+rOFU0sSTvreH8Ea9sFZXn5JBrcT1vPp5x8alWGdLv4dO9lANJjVPTvULcj/oySwsNDeQdKvuthlGO3UmNjrbRuAKCNzQ1d+0ve5bJWFg2tCl40tHNUkXgk/hSPYryVqk+U/+qaTVS0G2NthzsHQz7lrg5ssYxIHKKVQYfs7cR3sOhiOdD++CLrqCJtyXApFROOovc5Ld2td51cdNLsxkqQZ38bxamnClLXXFt8KcIdivepObHGPjgTDloClpdQEOOQ3uC9arYyU5u/vvtsxmjpafAq2ZuUCPSWAEAKlcjaNJAyQhbTdyd+GWJcv4wTE2FD7aC0u8G6yvDyxe2odSMqiSwsWAS2I2l55niEXAWtYrsbUMUobgwVfPDTS0IFnAn3CHUQ0e0YELLhGyYGN4CuicxAeKaetdGZxyceUZ+hlwDBgGghCJlxOan/W8qtfT+QXI4RtIxgwHbZgQuhtKoo8g2r1loerkOV7r+uUzfk54cqsXReBHXcZkOBwnYBlXs0HBRMQqpWrE9+PO7+08trjpLtzn1pYcpMFSECEg15+G3vxop8dY9FXfmXphNXphEu1J6Spacb9L4ap196tik8tndBBV5HosPBKsV7rFzRuC88RU4OSJqybPdAecmg7m7LJSoi4ID+pVj0qDuXPnvAfTjHl4rRA1d+qdbckAaucO09k/QhB+lQgkUhDNX+BQluaXZeqkpCcQNpFhXpopsENIWkYf4fAfH0+kAsp+eRQN9TBQPxDCGy8iX9O3ik+EP093LwuoJni4XDfMfs61DM3xXhkfhUTUqOlJYoPK2YD6+ASNXSnyea3g9ZOht/jAXVq0HO/pPgw467ZpR//ItOeksEJmX0MNI7un+TAu0cQg3zgsz93R4kCY+gauifoQdD6aVz3043bJs8GTtB2+t7IxltX9OtjvqUzlGHVtLcjcd2qyK/XXObp0a9AKoW1Psg2bRM1t8u17lMhRnLXF2fFXVmyf2eGBCRZixtCtxNPQvuMxgqLrGJSQ0AktsZkHMcfw+jLO6MfBO9uCXu8LyygP62akcHAy91H0JFzAb0IoyjhnU7QN63NPRs0ylAXop6otd6MfP50jhDTkfawGcrT0xCw0pkFz1zexSJPm9ZkVeAGkgRgquBIMoUESIAEXdDs+k8k+TcY33tSxKDbymwu2fIm4VyeBxg0MrVV65Z4MueSKPpwWCk4LYANw8vqTT7bp/u3aO7GexLshf1Vnujz1kG1WljLdyV0Zi+g/CAxQ1+QXqNAr5UM2VzuYu4+1fRSsrXTdxrbbhLWg3qkHiUj2PEiPDWEilOgLnWSpmhrvMUB8y3HjmH61bxjYUX+XNvAwrxLuYRjaTnPISp+8rrEBzRRETa3CHkuiAni3d7Ueo1t5CIX3XOOc2Bs1kPC4rlA2/deY05ctJdX5GtxKXFM6YTVhNNyyYihEHliyGAqrNqRvx7loGF5UZVDIVt02nJmLMUnmTqemCWhOEv8ZsA0gCrDpLX3n5JvGss8V3OAH+Btjye67fri2gp6wr0EkxUmWDyxaWJ/2EW7Yo6JlW3ZmBz5TO7S1mW/WdGuymE+uEazqrFpQjlXR8/eJ23K9Yq3ZMo5I7cd43H6sqXjrlxYPO9yUj6VQM0eqz2/b+HfmJ/xabKgaFsISAbxue3lW2bStJTSVEU5Id5JnRs+2mwkHcsE4hyTcavnMnl6OCWnXj7GlGTseEzhFLQrL8KwK1vql9sBwQzRSKY6ZDLQdc98tkeUDRGzCP1zEg8ih5UBVtVGxG7bfZlmMoKcQhN5uR/fdcpWRuniQem9O0RMQFGoOHcGe1A3ZK2pukKP3gXcqhC5gNlVZyX1SPjxNSFkLevuTyfPI74DwqW2A5e2/zi7fC3umgaV1Q03VX0IcxxcOzOv5JSA+aN3IhiL+WVXa5I38xKMwBSw4pQQigdMFMhuAP4ugVWcdVCYO7/D3bBRltULuj7e+sKeC8X3kaRinqhUpCIOXcpzCXFBUK3Y6NrcsE/fX9D1hTlT09gN+SSpEHAW088cxikLBGCwHqhJoguyVNxQazSi5dlCrzyl9U2t7kTZEHfwuEwfeZsY/TwFWY8R77Bo/aX2HkW7GMnOvAnHP+/m9iL9lW6pQQjGMcKNGpCuPNiXbYeVHapiufoK8FBFb9BfF5RMGKv8ypXk3S6hLPkE4hLjSkyem3hA/D3H2n9k39OSoyok6gjrV4sKCziHyEvie1pFN0z1bnl6E5J4zy92ghRaW5L335g8xFypvLhwM2i8oTqRTP0FjvnGxKxKst/uN5IhwfpLTMnhpQyFQLoR2/7JDYkkbQxOQVX7nAUW2IN++2jcWmFZI8Zouu+vRzvlOu3OwLdeSLUjvf5XPQb5H4NNHyRs80tLCtoLIBfI7iTm9LaWJ/SkS5hTUYK19bVMWbVPYn3EUTjueISdYA8D4AGn2OVXxKYgvnQpClexjHfZKKFyG2fedMnLHQl9Ivj5EpNH3bIas916FQymqvmc18HlLoya2OYmbT+wXJEQCenoYoUEdpTkkrKCP+BrYZYIzqba4/zAMSzHciV1sI+8TSWSjARLE6K/Lrkbe0Rlg8Kt2SScUJBw78PuQ454Cw/fueP8nTHqd2LYSxHHFB5h7tPJ9QZaxFB2ueBIUPt1duHiDoADu6GX5uSNGtlsYomdiaFmsVSauvyjD4HUJtJykMRAZL4kdEvo92FMt36qpr953whoDrfVOtc2gQGgpB8YP+eiqDYcLFiq6Iad8/G6xHc1x7KUw1t7vzhdHd0b6w8ETZ2e25BiytGJ46Cs6sHZ/Ga/Dc8FUYI04kMV0plcSEgFtVsGCaJDtzTZqP4O8jotScgEGb/Y4q3oMIINOkbpGxjgdD87/iZMVE2OLOztUGFxNvrt+k7r/zNtGlGIP/dUVUVCKTKkFbdwXo+5S+AHiPmHRiOWjjyb9cuBE8n6Id9J8Cjgj50RTWXpHJCZpGoENHbD5U2k4tIpIPsLnGOujQH18oL3T1qzQMyTSRdz3FRSCUrScL9PcbxIyjWEEF+c6V83RSrrkm/Y+tj1FuBueObLO9YQd/M53LPeUiU2MadJTAVcB12exfF1KgDgUGawO0b2kmKZBRqw9MdKOT9G2wnASr2mmVJepUkykltte7phDqTyxe7VbgHU/iSM+DW0AENKzssl9D8NO6uHO+V7DaNj4pnDwR67BWhtOngdz58/8POJdtsRd+knk5AhPjjkWrPGr2D2tB5qZz29kxd76Coi4wtWOpVWFhM2KkWO+2b/LSK6mQTavZjKPZmUbZf5a4MlHpoOWXaSAROSQ1jW6ContKZGgzlcuBC0/J9FXpBBZXHGgNkhAS4JsFttW9CAnWY8AqSz+4f+FXCysSwcKYX2tfo0wVG3y61//ZoEUhVYdFLK4QsEuC808ilZsbvrUaCVdS/ikKmZiSZuB9SsV8TS9t/WWF98y9onVcTYsVI/Q4FCfne0Rc56HdDeSy/lmomJKnbhI5vhbslt0PWoixIMlZpyGNuqZSUcV0nBciZbowgHDdXGpEVgl0+dWe5R8bDmNpaQtNnzJQYF0J/s2i9Anuna7n1ChLNZchazC6JL0yQTiDyoOQaZHeiBgnViLOrr06iFU1YfRZjemMUaQIMQAW4rExdlPATA5uRh+s6jSEv4p6Zpfv1HRwaYWKXK2BFtQwPC/zD3YrrqlcfSORN+wNKK8XBdU3QDqh4epHCSw/9xgyol8CqjJS0UD4Z1mzOs1NMr9MARnqJ1qYaw369i6qHqzuECjx4KZFUG246Me4PApua6MuNj1DdOqQmuKR4NhpjTJH0kACQCtdcmCU96dBHNuh+0qOLOxeWHN0Ev1ReEHqLvMCOhAS9jryL5GoNLW0aBRPvOWVRUek6ts0LkiX8BtLGn/vAdg873oA7+XvBGUsT8gHpC7s3Nqmj6yV3owT2tOYkKSqyJ89N3nC6YgSzx9k7x/bJ4gJ/ry3qY091uh9woUuaej0OeK0jglqGGqEFMMWSRrL7Ib0txe9jSgYLHzGBRWh0ehCxNe1xPBl13XriP6yHsqvRegH4QXlvG/57EITQM/ItbARUQo1FVT2IMuG/CHSncGfj/greuSbpEHFZtv9/hDpI0bgBSvK58s9V9rztNIOb8K6/1sPxGnGdIJc6jBqCSvtt7JFL819Vr3/UTinp3YIeq7Q3g9bo2bdhhEzngxWB783VBPUdKlx9/rJs2z9zMOkfbrN+u1SJeDzf0eMpAzWt9IVZcrhSkuFqMgUz6/kXsALu3mynqPfXxAQo+JzIza0JVbdqPvc2zsYeucYns2lNfn9Aw3EIrkaZjYb7m6TUI0J1Ov6WjjaRIBoNckUSRn43sq2JsYbKEZHpxZwiUYYNCyMPNrL3oZvBO3KzBGOpkNsuSrdPjm/c0OCLmVMi5TCLDb7qvgeO6P+VsUi+ODqiqk/vFSWIlka7x0tpphl5Ve5rU4D8J3HX9F4zPvLjVcHKqY0bt//tnYeIRg2SwzNfrufzYOfvbPzyFxR1XYGWZxFbLDr0+Pa8f7YqesZCWzvhknFyXsT39x4cnjxIulC9zW/FyD2nIAB9aO1LdefO9Ti19rOlS7+vJhIBLYoeXw+tWp+igJjHtETd5S8A2y+1apoZbG++/dKSndXwOOmGzm/mK0Y265OwOFiWz3GygWZ2rlQvzq5pgSCOIrzPbnv032jBN7tQ5kFf8b626t4J6j2TEMO1n4qC6huNj74m1FOU/70GxHycF6dSwaDdZH/m96y1FH3ICrXzCZsRRh4gpq30CwYJ+Q9Yl3C6eveo4hFgGMBA3AmP4DqP6/Hwj2yIZeU2vPPgRUCohecQPp5cdu/TBHdam7g16v4mde9Wm/twMUR99BF5xx3Mo0Qd0x/CddzUXcURzWYBjPIaL8BA4+HckCa1gcd1i6Ne/5nvetAf1oUF/Df9dfP6wghnRC9B5pWZ3IWkqPwbS3TvKmO0clCITt+aqu+emQyxhQ9m15412CGHfn9D9pEI5Sp0h2wynUacnTOGpQzUSd+o4nj6ENaNTeYU1bEQ1fNG2qzN/SvxodJRkwfVZszadP1GK1ICGHAYW4qTwjp+DpDFB2pzYqQCDrJyrQhQfXZqQ4fgc6suMSj4kk6vCwMfxE2fmqq5EgGPowNRRbKqrWt2zFebaAm//awWH/c2UaOnbU6pY7scRd8Qkk3LhNO/lERdKAqYZysZ6SA7Rool/ffMQjVEieLTARmZou4665+MlI9q85nU8SyPm5FkupiClNeOtjavvzB/aBQB/ZSEaD7DiMTWkI6JcDi+QbPaPBIZ+0dDs7FfP4KrWoLzpvx0xToUVTOCtf9M9GvjQs1Xoh80CmWeifNqLC6/JIT1sZgtQFKLKfyGbDrefE1hJNHLqbCL8FE5akmijp8IeT+jJVVfoQrxCMw+QGodxhLzFKDWvhm5fwI3gcCvQcbAyrJW4i4qn/HX5covkCv1qIu/Ec3hGZxSWUrGvhRBUCAeL7JVTBh/EgzlT/yy7guFTcTbYXwy8mVINMyn1pYEgiWl5UpOIiAIiMJTdMCgDtfrvmU8LFNgoOF88eSy3HRsgKmGZP0xzZUuLfdc9Or7E3efs9KjBVFHl+XyfmRuN6qMzfNDlQR9w9lKbbTxoNzjLV3hu4J3Q+aITYLldHmMN2xZL7K+zLG2b5GROxT1Ph/YjHSFDwZ55xRd9yJpRnrgMYmwKVM0d8FKmTjAhOaoV6LQb/YZWnN3HYxs1t+7mFmTtnJayXGc4qbTa2R9J0633Ezv1TUW6rUlFiSuO0Y9fGdJ52MDuUtGgosDWvk+Hrk1X6eU1GVXOEPgI4AGg5plwPHUMUclq7/eTkBaDNpgcLHLjyd5b+G16alk95A3w8gl6gTfKEie4+zejfnEAPA6rDKhC1juReGZOMcfx0liOihOlpIPdKfoB/TQIDOKWsovzdkWSUw+KD30Dms98XSpe8BvcBfGWRW1reSLIbEI90FR0fuT2Wi7OKJpMa+1Sn8QKVCh4wKbM3kOmSZQ9wrbeRdo0svqN4KRXlHxL6Zt6qULO9Smw+tLFnb305Eq3tt5NWn8CE3hLVUFrEXg+dTR561d1frFYA1CLY6tk8fqQLm5bIXyhSVMpVRqd/lcpY8byuO7ByvV/ee5dfuhcnrPgDt983VRCAVu7G3nVV5Sz7yOBrW+s1Vajlw/7DliUp96xarFOgIt9rL7kgQX0wZvQmr1QILH4BANU/5TxYhW51/hRaPjGqM1WSkR70na4PHvzZFCWpgd5wvEfIOVg5e9vqlm9IcpIH3l2QPvmdH8kjFNXZdnPq5ycRoM0jCedqr40j8ZFOamit22DST5IHopxyOurTM4uWZv5OY5nRNqyYbUhzWsrttm4ob0yv1oX8Qaiu075HfPoiqRKit6QTHeutC2lvRXYvcPegYFPrDTgEmN4KyTn83NZjlX21Mu49F6C7GwTj0iLMh7NpNrX0OPCVjFuyGWJLWE5B2zXzU5k8lj60/ycs0keoMQWbi/7l+5RPDBw3KWeHhb6qTdbC5/sYk8RpOnZIgGf9imCTEdD1lD07d++6t+TAqI+/sx32nJfYscH3s5fUlmKMWJ2w4Dwes1kFO1TL7hlJlHj00/kW6/VY3QMmFWoYvgeH9yx4c2Ue1ORNTT9izNa4EoEAV0eqMpr2IsSHw3VGWXqnbteeD07uCLCG/qOV+EgH6kXaEtTlnzifumWGBacAwGt2/MUFamvfGJFwtgGbgY8uSbCIR1syitlNpMDMUi/XrvdITqE5fWXLVxERqX4No+nRUKnkcS9pQFacJPuYIxbrSQvXltg/T96e+2F6FHQM8XJ9jdxiG3JKlEESs0Sgn9BCVWcP5krt+ml8ybqFmGNX16+Gb3A8ya7ulJdKlLIKZSQo+7desfEUQCr9fNzKmh9c/YXfkfKFjFR2kXF3QS2dFiC/LxjioxD/62niQe9Bk8HhRHldhtE7qOlVzDqly9e8TaVcn/qAtxDuFlIT/OsWXBwILVsMHLNem3cMq6LbdAqpZCOcb+mUVS7guwMwthFdT094Bm4xztF+kz0JSkmEjp+HbXqlrQSX25WZivmxJrIGbcvo76SYSZ93rBFw6Qz8t10TVCPHVEkqy4tVlX6fhY5Dp6SnBkBT821u1f+DDyc1qGDszwb6tdbwYUGw4Iw4rDz7AgtaYhgVTl3pQi9N33N5aoGkASQCYbB80u1KZup3Q9FQfoA0/ku/uTo9D7sFS+B6wa+f2a8iX2fHwZ0be3KuiKd0UzHJdjwwXporgQ5q1ZctRz6hscCOegMaEZQOlOjsC/b3G0clbuaV8imB76eIYFIbPveHb87RUN3FXyKIU3kIiNCjrEQkgG9pZhjGVTAvsP8iO90DILwW3O9R4Vgef6Pmf57EjZNOnTNxao8NAsZUdXT5G4IxJcm7nsvPuDdHvcH1+625X9hN3ISuYFzwyGF9EIu5Qx5PVw6VLJKi0SIRArqbsJfwgRZZQ9kTxCvRzIupjh3pLxqdI6wP6SK1VOYKgilGQS/SHdStI276PQsqEccQzm0By8qzDkOBYEDq0nVEs3Is8bMFYOlLuq9nYnGnbQUs+ua4MTVAKI1TIfuwv/qUTDF7Y3QalD0V6XoeJAIWbLfeqvauA8N02KQbM6t9tzn7eMmQVFmpxbaUVrtLTfC+sG87yuZ4e1VudiWpPCgyb4HcuODFwJ2O3yCJhXX4r4J5S/CkNgoFfxz7laq2aedAc/f8uRtzxYnA6GaELnws9dqVjrpu6IXRmcV2K1taxSiuT9SA/PqadsBLCwCgFTPbY39rsRIVbQt2txKqtiUcov66U3bzEc3W7kYCMpzzjRqbG1KrZs0iZDp4yGdv4+aqo/jW/LkuZ1MIM9CaGeaXZH87WTU/7ZYjxDZ0Ceph1hIRVERaqoDQTj+WJV9qIhXhKkqfbZgBw+W+k0KPQibIMmnAejxFUqbPHG44jsb3o8HOx3vQYcFj4uOpzJPm8VaRUEMP32+Pj4B6e2ypm74uepotv3xkCcRWCHQsOMfE3B+4gowFhaA/o486UGawL0Z9wkDMq4B+gXtMvArHPqQGxcwRkMVdMT2x7nzwrXC3mC1zxG/+5TE9RRw4dZH1T0LZi0yCIHiA4gM6fhTF1mC829rFniAlo3yDX85GFqH0XojvxdJW0bxWt2VrraDOWUS3Sg/3nZo1oERdLz8zdCsYJISTLgkYDPO1BRxORmNjSip5G/G3+jhsWKmFkOYNF8wn0G9O0RotmLIU8/wEvsAn/r2IRGKr1ttD1YP6kvttJSJGSzLgK2M/HKWXzuskgLu2SKbiwnysdhcK1kPHxhhGQoo9o19twPmFyf4au5/K5PcmXBYwOssWtr+qTim5rco1elzUGAVjtB2vzhwcT2F9OZHF09WzeBz7B6dGADhmdWUOlFAOx8JoeBR8P7rNeFweIlI3/iLduqd4bkFXl8Qj5MtgbZ3GOCJ3B7jqs7BEUSPnWo0kFbzJLvVapJuAX/BZB5u5ncNfzUvfrcG+ZuQ79ExXo1D3lENkvexBu8E2UXgKu+IatvEDfJh/TqqNfByXGBNbJmDQ8FunKJNvhcjidWZU3HYDJXzmwYBxTB9JvjROj0ckCtiMxxuxe1JzS0fGJR7fbO2ukxIykjio/YwrnL2aHCsU7A54iR0e7HHp8JbvhXtKg0h4n5M3lcL8Kh8RUK8L3b/EXebsinF+S8Q+iyQv/HjRjWB4Mcf0HMZwj5liG4g+aUkfVLtW80asslp9M8dIGFUsJdFeIn+h5cK053kJLIiq6fVz0VaWuSBuNmisLG7pMiFSEFJe3G11IYGGDro1zb/6CZZThmqQBUidszNZ3AFNBfglqZRRK7g6gnjSW34CWJj006TqZfxcwlzpD9cKtjI4cJFYxMEnD3HJecUjzP0GfxzMzrSvhPmhYQcG/J9DBsf2m9h1A/X9zrXlCOpVUvn0xaMqU91/jFERGVLXt1C9uzg49Es1L+HXEHBOftzqulcuOy0bsucwsL/JEr+NzK1l3h8YwJ3pl8F5GJ0r8uE+tqFCwFP49sizGZ15dxS6fYAbhy8n2tcQCPegjyBSfMKVbgxgKQZk+tUwEwNcJ72sxUrXg6FGK0N6qZLmDlwv6PVyKKDjKixJoABAIJDIXDPm6DKsgBvzYEIZABO0fe9b3OuADVK52a2GrAbNoWnRtBmnfoUJn9f2mT72E+zzMna/mwTA3wwzg6s7tot0yePPYI9MhJDkV+GvbCxQVyD1/IuORFq6SppgFBHfyOkGWYIU0U5uhgwDIBTJUOSadG6PjdfDMGm/hgkSdY1Ab115hETtmKkAn3gxvyzvrtHwvomaxKGmZUerb6GZMtSfSAsaM/zIP4dEHOE0tO+tsYEVJ/sMjKyHs0Bs+8JN+YxAuLjrEPD8lexQB1DwsDB/7mz6F4m43jUpbuz41nRe5MTcPj1AH2hzcna5hb26rmTIOfFT8CRyP0ip3iNX7VEnGEc5mL1NTUMlqUtLo/mSyPYOuZgClasHkZFPor+jQo45exQ//WglkxNzPaFLMTu6qoLTUE+XIUnlhKUigtop8HdmdH45KAbY2sAie78tXCBdO6RanOjWkx74JXywYPrYN1ljdiMSu+ZsXL273PskG0x82GAeJQ/3a+QhL2p1AMyBUDccoyJfOwFsuqzRVEKSFThm0i/5omBYeSntkXjSXLoYK+f2pwTXAbUOqCSgPS3yTQds2JQ2pVbnQyCgWDPP+rXgG6ni5B6BoI0f2NdX72Bm7pqaLrE/FP0QRu4FRgmhvbFKkX8+4DoBz6ssI81VA1zvrbt2fb8DXj0tuJ40n8zYZmYITcjj+KzScRV2vrL5e+FP9X4aivkY3syx4QzxkDPR/ok8xkTREBV/Um2aejycOtDRW2rKlCKPH+tcGU95ubfrPkt3m5j654A+9epPir+X/2lybKWv0lSy1LnjDyhdJYsmOrHpx27DaFkVIhzCxmkn6WkglYT0JgyLf68PDVuVAyMzhPOKePZMQT9JyU/saxNNJN88IwStlMzpCOYQl0l3wSQYWc+PtVJSe08hmBQUEkgfQJdeOImABpvGsrat0FUd+KgjWEODbtY0Gm1151qJvXWriGrdWjWXLPBpAeUJqVbj0B7GChi/W8XjjRB72E2tdzQbcscao9SDxORFv8hZ1w5XGbV9VV7Pw0eSK+7LQ6rkPO0idnC4NVXf8LDkUvK6CkkMHF2mCpgWPRw0s8/ulp47RdcYxOTRSfwURfpuXAFkLPJ0Cmq04YN6p8BSIIehDA0lb78fdwHQ3a3STX8ONAQVUU+GJXeB8+N0Bx/C1OFyJurTzjhio6X1C/Fl8gW1oAHnVS6rWhBY/BSajRjzqAoQ4zKrSLtMjY7MJT52gYd3ME5L4nXlgtTLYOoIyaB15syY4K7tUgXJdJeAIQGh68x8iM7m+fDvRiJUW38mxLNNKryeyZHk+YhLPI+LvhpJywPZw0AD3alBYNNuYZBnDdDGaCz3mjU15W3aPNsMrx+oHxhO2qGAfVYBvuONdEoGvWuev3Lag2QhkxJXiOMP/a7Beq4B1c+ZWbTEwtjekHRM9nRjh0F4XeGpzCtD6ztfHK6HMpXBxCJK90LZYujHZNlbJcFbbeLjWR/HMDBg87GYReaO7HhqQgt20yruL+uTWYKt9bu6ZAch6pi2Fgf/e4AdbzVRSXuyfVyVjTWaiZ+Ln6QaqDQN94b9JvdjbaYNw8UDTINQJxmDw9Ic3ihJmllBqQ6+tpCVn4v39PcQbUMS65FQC4tqKe9vDFGwcfLBWNcME4WfinZK8tacFpheeMYkSxONNBnF4pUy3ym6v9KOHPiemEiTnT0MWbt2Ox4OXlB98vK/t7NDtemhYHN09vRXp1Jg4IWBTtb8KYSGc4m8pIYdBrpj9Ho1Qtc2i5y12sgOjhfr7kUNgUbg1BcRHot9qRbmWVs6NoKYrGZg5UxHQ6mjSqP+8WCEphP3JTF6J4/iHBp+tO2VamckZ493jkmjwhDutnKBif/Wmk0aTkvuHNloBCcQzK7khPhMB+gHJL88hK7WSA25+f32pjsGw2rUbHWk6KE4608bpXb2sznVz/pviGtU3s261+8ET19OkarbdWVaClHbZCqd05rPr+P2TQklMWEi7IKBP5GRBXr68gfKlObnJ2rw/yelRbxpdqrWAat9UtcJkXhcjtjgqJW4F+XY6ZywCb+5ordBLK9/AQf4ixltxq9nfy6r6MqIQKdC4HvgW6IJg+xQ+37MnMb6arhfS+Y2P3vKlty62SUWLvspoibcCnU3eDtWiHg9DuLEneSBmMo5TugPZTc7EZyuuSptlDhGFehFldGFRuigNrroAysZQP+rdGsS+iDVrUVKYDAdODUsevnssqyUh3cniY4S22Fewy1qtlZPQGMyveQMjHB6vODOXMBnvipfhL+vykf8SpVMV+bakQJzqPzQqmHXUg1rWt+LTlkV07asdPE7170wkW92107kzqC+s7RRYydB2MyHWTbYHH0MZy0CkKZ6piAtDlQ9KjtSPInT4AbcKznrwaXumh9olvGjGB2lDGkqRtiU9ks/nPoggtFaLwfA6NqMazh3NPaaZa660xcx/thsWeHkrWqYD2YKcjuWm6K+cHXvV+JLxv4zpdKvyyN/hfifiamF8NhwlzRO42XEfhxwWjgldmUIuU+fGdEliWbS9pyfZFdj2Mc1u2i50r0pIsNGK9KxCKTBj75YCr3hyus1J+C3+4GncrYMZIoINX+ZXBvrIrVYY+QPW3HnngAMDGfLyMXkfz8M7z7hFAJcODQhAOhC0kx5gn0YGKjlDTDC+H8RwgYuInYLXNgbQiPx3/QEDHvhod17PUlc8Dxda28jfbB5iH8kYi32BofjzwPX3NPS1z1k0qhqXwWFayCvoUa2x5xEp3Tq5Ym005UeAfCKytWZp5ocmabEDd7jDaLIeS5cBThMBzx0z/XK1EqHRKTEa3IXm7uArC3vg2dJgU8tuYcfow8/rr7H6evGJtAD3CxAlfS3/zdsFGeUXFxqaRc5z2fVzf7wphRdhjIXBw9yQitO5uy2A2kvf5bbweKUYUHyd93Ntg5um3G6R2MJWTC6NrcXZ5ZE3jWuJe1w4w6L44kgGoRywI3Oe//VDDMc7wzs/skrESbyk7VmUeaFBJ2fhg9Ezq5M3JzJL1dtDMq17WOI07oYIGI4iRejxwjhpoMaeb41bnD+UqoHMLKXkc4TnFd5psDc+2rloKkd0QoYTRxs713OreOjwAEmSzhgNYzpiQgI7h9yps3HCdd87LOWwljGYQx69nIisqZ/l4O6VgcG32h7to6xe1EX37WaWMnBZzE1GhUomJ2t2pg8zw95boZnRvjwUxLJpde61jFg7PIMliB/BL/Tzsy5H/NS4CaqsQnrGAAxKXZb+qX0IewWyxcJLXkLmg+JzlllITLnuWbQv2b0zvfqBKrR+F1+aQ6PGV85cvTUVHLJo6ctKPlC3xgIZGIlnV/plJauEEP/zrdH7RhY7I0jzmT8yNcO7ICYoAZbpWvrSKuDJT82jVSFHXo6En2FWIw6VLWdU/V2uf1CTdp1Xx8/RmP9Lk3YgrMFuoSFOsN4BTHIoNdnBxE/S2Ybv7HP6GgPqh5cIAL4PynjnBA1ynTV6yK1I/v5XjrtV36Eps3PQ5iwTJhK8rbUWg81vI8adc/m00Zb5/JiMggrGvy0/Ycp01r2Ae7MSRY52fa20FLUzN7ZmInb4kLj084x8WiHUTsJ4yTvgZO2I6fCBGOldhAs+YIp6ao3rnucEqkDzTlwSU+1C3wrljVjkQPdDAFzWRyizWF9SrcSqDGXQA37NRLGEJjpNp/YIp9qhc+ZU8Cbbv6e+axD+BGOjnfX6YOWmVqoA8i1ptEavWyocuy8kTGzyLrMBZCyAq8ck2shwdodADvTzgGKaOJAWTlwKhqJV3R2PD7hkF6lGdzFBjIEUsQAjNHt1wg1HHB2gaGMIvBm8JEJcpXhKfHlxsrmurlX42J4g4IbXqf+2Emw15r/WrlrSe98+fdBVS0FQIfww6fPH89oJHUm6Q6o8qebDq7/b645q1beaGbSVAH2zyZxQ48le4vj820Er9KX9WGBLfJ0GCuWe0+XHThiW1UiVaK+i8/0CZgTkNO8b3YqpQ/iPLGdRbF/f9r67YADaoj4JNiaRHzAu0x3YfgVTgr3MPp/q4EaF03XYm6tXQr5eDTcLiOYeJupdMd1Px4niUfP0hmU6VxwJuJiW6fgi1HLE8BpYW5ehP6zdKY9yIBh0WZMEH02riZi2Z+fleQpKS0Ja+1jOKX8ihYi+JDGec1UxpP6FUQPt+uTXZB3FCEAolZZOW9uX5rVf1NY9371drK2KWJRVp0FHNd4bobj/iMej2Dy/E3UoleCD+u9bxkK+Kc0MYGe8ialD+7FnLqHizTU+8lvTp01suOFYuWD3iE3Ib22soZseclzBU0rAH8C27nNSdF4lbTTaJ5F/eig31Ujv5H4EyNIATREuYT1rTgMAMGanOsqqgRs2EQ0zSemgoDsb+7JGaBgZCtrOyCdLGZdEpnV0QPIrxiV6vR/YjU8ZiKn9r/PW+A1/T3PKsbpNCz3q+EwH7tgeowiC7J7ibYY4GwY+RJpV5JQgGnIQ0dKLdhcsD9QCG6F6pI1+FL/EawqIrVWGzhxyQW2uyeORXEMNHImy5miYqKzGiYQHeIJ3wEC6dgnbmizRZ3J8C5t0DjAzAqUqZ5MizbjBEdsmWZpt6/FB9YsYSyf7ysZHP8+SnlrogCXmWz79mcXHwq81NEfijKAv8WJ5rBNG8zDr+Ili2u3UgehK1poMcrmB3UqPu88QzXDksvzSeZxELqAUfKBVNyGZLjNyIi7V87c4q5njfSoeFmD1oqnCInAqNcx5oQZ8d2VgNZoSdDkcIVhmxRjTy1oFJxpiMQzC5EcmJ14wdFkdCfZDZ2DopNQUHrQoCDJaPevUm7iLVikQEaR3CQdTEhIstWFzIkbt1dYulMzrcyJ2hWeDFctQBSJIG9ShRN+vmwndpNJiF7eiMflYrm2Xdycnx3cvL0eqJ37FRcY+dumH37EWof/10nfXcmmMvrUPn0W5sCtyhlr3lD7rixD+0rt2NiVqH8138BXgnK+rdB8J2782GTyxZE5yADgi4CD1P4WhrOB19GLL96SwaPWCUjrchZcpoQkTdffRZ8ldGPzZjvc3oP9ZcllMFbHHULAHaG01INqZ+MeXGpReeBOxMiCh8XT8oJ4lmMkoRthWTAT/bOXLJhueXugv/7lG/g1+9+3BYp8LDj/DNooO48PGLpFr3uFcU3LeZYt40NjZVyWmk8symX3x17Rsmm9BKRC0A1hHFTTNEjia/fyzP/AK1Sukq1SZC0/IixDTZduCmkEiuxbhcGFEdUTkgxBC8oZiBuazxL+2h45Dxa1Wh49FIizFZL4sZMJUtNz5ilqb2E76o3bTuBAidyNpjc107gsWP8zKOewVCk86x15VN73Vk8dCyEeaRoZy6fCePMkGSLvDN59WwcMcXStg0bpb1jBrGvAgfSIw+6gZVaG949bmCghgRaF0p8D7Qpu5/ODiYyR/HIha+C28mqA651QaU0LvW8U6XEfOw7bh5vLxDJc2nIT+XQiNm2noHxgC2gR2S5+QiDjGs2jm2q65Dpj6d+S/ckqOKsYwR+6Q63vrx5wVtijTKKuABPruLcG/tFUB+EjJFRY4whnjxC6PQL8I+v3YwvGVCiiPEa68NKzdUHrAytuZyyUcDL+hj9+8uhi6GPlwQ3yiCKxdPwPztIj9RrwnYpIN4me4JgA3hapaGMl0cvQsRmNln/oRGct+v1gjdVhjonOJtOAWEw9AXvCP9k9IFEfJ0QGzkD83EePjNf7yiIO0apdgwfg90LRP8tZhWmzoCF0usjmPYcA7bLqsDfY8kXhahhh5IGARCgeGVlKVHiMxMIivizoFmGvzIb1YDd+YLsLUlgABsAzE7tvL8iFvKEhsVAKN3wuQkdcAhSi9KddmUyIC9Fb3wW1g+VH7uVLvuaroxs56Sms/7UBxQs8OZGV5hXtbgr8hN4Y8JxUxsCb7hFk5pCDz/rqoL8rQFWLGuGsUQkpU+m1MS0T+YNkWxobo1HGcsKs31QGYM7Y+s0tBnGnGv8Ou68TQQFNwLs9cjSnmmmiM+64jfKTCgZbY58zFzetQeslJjnWpW29YMpUovw9ikwjWND4Z94UUeqINFOFXVXyPwwLccYcIDtHZBAir4IG+1atgZr2hZnjPNDMddKFFBDPhOPPCaeK9yVm9BctLuf+afAaHw75UCMGHt1ezLRYxIDps/pjmQnjPlc6tWuN+s/5mHy+OtofOrOuDMMxBL/Q6mB4hAy4q9EwlG2YMi3b8woL+bBBgQufg4IqQoAqtwSld+yyeSb1llfD32H1h73/72hGD/Md0eacMa4ZwS+mZUdtDYfXY0LFQhQ5tfMWxcfpVHCkpy+QPBJqqR9HNKLlPq9z3tWuKiAb45JEYessK2Dw5z8c+tZu4p+C5vRW1/GBNbwDVAf6KPtHPQwsLLI2xSFc/j7+h689iYRNZqN+CJN+0+oEiXvcLDH2X0N2C94FXiyBjmZlg3A3DAudYbNcTLF2dLSLWHXbkofbT6+/TrfO+/uzIGHmBz8NGhAePANoVtQ8zknW0lnOJ7UatzdzpuBTOcwg+wgQO0giwzULOTzY+llOWY+j4DdMKEDBTB4TZ3BLUernBR98zUOyWFiHEFR0Sphtb0WgCF0g1DH/M9hgbi0NXV8yr3lUItQtvgwiKM6nCFOCEJf6+byhahccVRMeG2wTd7AKHQ63/BQuabIevTmVvlDgoGzg//Pf442zMEnSPXHw471iu8e59ALon4hoPNrhgMkD7cM3078l5lb/mYXdEJbTHWIlZIUV0OCPGXh3V/4xFGxr0i3iYG4oUfo/EQDjyfW+v7ohu3n4Td1shk9Cga+eba6iRAtEEsyAtuxT5/fRtFxVk23qs3pkZmF0VDhDVCQb+2uUHcH/bkGZZ/V/0OQYcJb44q98PaGU0VgwlhT0K4tCAOoq2JpEWE1tOaXqVAsbgexaWkGcFSwqdZLAUXLP/x35SiuUEaaCatQ5lAy6MGP/SMFlR1PWkCItDd/IJyJTql9towLCxHzX1rGThL1zqksGJwZ5V+5KLStMBHe/eyKpAyiM01O1sDBJKRMueHBM/UijE0yTSYfcrVYDVbyKoXXxkFqu6bgk+hASo0EX6F8DP6k1J0vyWr61vaYm+wKvyawUh66W3ZJSGLorznGh6t0zIk3dl3ALJFV6+ntriT3lmqTvP0BEIT6MNHx3aa+yTSMaKqj1KhoyQO1UDKnWP8bPpSJW90jpDJCwRI+sXWGBXY9P57eQYsdp1cF6Uunw6RcFD5IES2S15vyBLA1a3juHBFidsErPyetaHP2Jgr1qgaLIq+JP5VysCagiII94r6U3r6dWaOuVJEuv6fJd7doiLsCS0ROTYqYmwHOerwJ3nECwzVyg7O957pOudmFkJDmQUew0R7xN63b2T/A2soPM/rudCbk5ELgodloUCyOOxmrCndUoEZNlo3eglaVuzhGGq8zdWJl20FtondaNl+uRGqexwSn3O0RoI1paOTnApLHdsrSyYEKs0Way3ZG11T5XAtoWZ8W/n3ry08TeTu4LzopG42+1i68jEq/ZxkhgfugMJczFwzzFwdWX1bInB266dCi+thQ4FLOrrNdTT+wtxNSmAt23UPMNtLVavrgBq/9U01YbLf9A65+cY5/vtUXF3mF4uafYOzKG8xhMyj78DENhSDlGam5ohsgDDj8hO+7G4XKQNsoxV+MWdcVYXybPL/VbQ7ojqUrPuts7foaOW/xUmq8B2V1DfSa7Xd/vtj7da5S7ZDUjtdf4cgP2szT1dEK5oCCwSdH3MuJLDkAM3bVu4QX6XyPAq1f7LAn7tAdj2tE+Mo0NMd9ok+gerMeBe3MDINgVqgKyTFVE6T7oNcJTtB0Wxy+rCH+D7tZqD/OQRbA7+brbCFKywURMAPgpzQ3sGZVsdtDzr9FRtNuq1+tnKQn8S4fpvzUkdyTvOrHlpwIqWVn8a7K84gjU1HrTZW50eXcY8PnNVjzhMhQCKgWF/hJgvpqrjKgOvX/SMumFdT2CbjzSTBRdPkdmEQGPLvM/rmEQ4efrC/9+z3xmbDLzYJaIFMcN9iQAQQBlZ04ctEnE3mqxsW4SOVn098eWQLiRB98K8XX8DcANYdJLLEqV1jJptdbuY0gXbjgEIHt0KX4Hfch/pRtMmXnGi6L8WerzhqRGI4jjvpwxDWXvWvydGQXfX2xNlnzZogN0mf662KN4aEcx/QF+YX+jvRtqTbG78zJHscu2nX9LqmG9a5Ogwi/pkIv5ueK9dInSnqf1waeLDX6HW3AWIJFlbEd0fE2sXuGZIk6Ky8RDoZjBKNvNZ6KDxhWZqB3ReRw3mBbCpZDKV4Z0cISGut/r0Yb/biAxfF4bEz5oofX6gJfmKIT87XWACVbYbIa3xVsTrMEbxbCa7YfnkYgTfUg7fCtlonw9DYmLFwzYjVOM5cLi62klqQXWDFXrGupRG7L9lWQNLxOsx1oaQ51h50JXRTbsKQVX+ZIha+/y2L28QY6P87gnItS66gY0T6v/a4WbRTTtoFHeC8JNSwYiBaVj8f2zvX30f1bvFGQsh3uOHsMHKgw5u4Kl0qXaAgVb/m0xuHnZmf/OxqnVtUzXFkr/btfHf92qCYSrsJQREudGzJR1uySimFAfp8co37o9CKftwpvVD4mVjCqoPokj05o7Ty0OuMyjIhYWNhcI6XLgeD6sfCYwKd9aqRJ0gsSHeWu3MsuBjczwpY4tcrU962cJZrGFVhH+g4PgkBNpja7Hx19A0xEwlc87Dgj3xSvFNO1+9bpkiARHv64A3cTMRcm8QMfYW3f5CyLgSrAaza+5LeMKxvCfalfyTfXXbtiN03BfnzHyEtXO1bbAh5Vhu/6jlaRgm9C049AP9+nFRUxN5Gmm8DMgUBwZkHfa2+OxSO/F3djrWUF5n9mpXh+2tBTszbGxbLlAh28TG8u5tsLaA7gRCSyPLMlqYx/5wPrtg7rbSnqOSy0zfgF97aLv6wxAHA7ONnWyqAiEabV+7f27WiMr0Kdd9S8HNBfOnPiHHh5EAU5Xn7ZFSQWLLdUA0B+qqH9sNN60GngZw2N28jr8qxckbeDVNUZ56MOjTgJDrdWX6sFX9zodv+EmRkBs3hUIRL58ORFHEHRDwi7N/Mdx6J3Z+Ri5fgcBPCt9pCYiUSeP7R2QAZaONcDd3AmzQZv5lgSK24p9ngX4YYkby0LmZ6BZZOsoOnA6Tdm9oKSQ0JZpEgNFraaKENCqwxzHYd457I1ChCnBnV4E3QkBTs1cvwN56caUAd0lFBvUytT4E9BWaSR0/TAmxYjg9K+OK9hoKBzEvJ17oVdwBjFoKUHxSMasPN5gBJAhw0nKGYDVGibD4M1zGO0IXW67TuWFWKbim/mmpEjhmkNe3SKyGprgYITfQD1DYmWK9sTzaRjkWGQN8uG2xA3zA14L1Z6NKEVYm7IKjv8sJDbwEu6tfmepgl8mSTch5KrEgcYN1xRHEAlpyt4x9Hkay7DOv2ZqOm8yTs3zRnDk1CPXTwGCzE9De+qKbcSvzYM0Jd9P0XthwGhw5Y/PCnAX7I7mnD6PWAWnuexE7r4a3vzHPbH5QEpINDqrnOXaMEGQo9EYNvRIq8CP9PWknnx5IGW5ZgJ6ILvBjOG+ZmFqvPyB/qrpw4r7RTbJhUxUZdjODypMoks7N99Z5WpChMC/aB/v8iAtgUbeeWHUs3APSIGutpD1yzbyeBTDfmDro7bTQCyhMwrtDk0Cg7N/Zj+qmYlKjrvqLo1oEf+mQzJsywm30gR+iVxPBs3ZPnqcQkbwVa47Mifm7dxWOOSFxrPXOX/DyiD4TkPm10GJiokHsPY+CcdUMphy52Gt6s7qIj37cD67/d+qooz6617x3W1Q789h1yfF9+xDErc8+1JI1hNNPVYblmUapXdJUeuZgBzTTqDsV7FbDUQUBzf1UoHyXPCkgZWbn/hf8GueJQwBUNFxCjIyLBXYGKCW9m8z7azgCUjGCJmhOuCQU9nm7aT8QmJW0SAceBVINMvYgboZ/46Kjk/ZCfecvC0krvA6ZpBHBlYNDFC8FQCjHUg+J12FXWzw6N/S46iYW5UPS1tRs7FyyV0/r/q3FjutkBbM0+ce+vkGZSIEVLXRKLGmcDi0lZoIhrcHKYxXWQYjLKa6IgezNKL1UOSzZe470ss1/90q8hVMxwQpDIylwfnF3mpfv/Seomp4Xjl97E4Ol52Y2aBCeSJI6FHRrDyq4yrFmyo0N76rOeBem8QH94oam4Bx7eBxkkm14l3SZncsQLhEOgTidUINNFIvjFsAKw2DiFWnwH+ZXfdmHANDJSTDgDQDAZtC4BAC9lsS4BpxWc6d1EddkSxG4RSNZ4iUFhou2hIFBLQVFibyhdk6KaQSKYY7ZjsUpNEPsV1qsy34lIrUYok07yFWkVQ6LbidkhdRSdxV6/GmdQLi4bexQLeR1c/tgSFo1koRByNzQCZoFRssR4KgXVXUs+XpkiTnXCBE+nUJqtDWa+NbDd0JmMnHr09TYLh9yvZUS5NqChTmY1YhwxmMUzCtMIZWFTeAZB04Jl2Cho26wbdHxXmgGx9HJaHwnwRXU2R7llcAQr+106IsDReoqCnBHcChoHOaTE/RWtsAQI6aJNZTISOMIPSuOrR4m1CAuJxlRky7QJBRtNCB1dMdEugTTFbpxbdU5Q7hXVWoUFGGYt6TQjE2nJlSOjE89KcIygycl85GB+ZNCuNYluztDPhngjWykqQgRyhzqXqDfj6S+E/9DPgZOke6FOr+50V+VZt3mad/Mo6x7ADYwz6XU4ijLFiTLsfyrz9jWax+o41oaBSlv3/zw78OejOmOikfN2haIAp2zPx7R6c94UI44dYkf6Tvk3ESoqYnGGTT+aJBg6gnZrJ51JCH1o7gVCOOzZOFNNQNZMj6BNiilaJYnNouiab/0HqGOgH4/6maSApbm24zwkKJKFCj526D9wSJO3RK8nZywYVb8pD7SmsEPV32IAKvMWP9mKpkkdKPjDfwe5cvPPOrCxXm5z0XMvTQCD0ZxYXakynOWVm3bcHVHhEFZyOCiHhQvWD10uaIwKenmFXtW0hysYL6uLcI7+fcOjTMiROMCvrGOxFhVOV//lKC9y3NBvkJdpJOUpDMjH+a74CEe0OstWKdFbXEcnWktvmkAm/8qqJEhR3+ehUj/h/s3vvqm4xYbxIZJSTlHfF2qjuWiLQKf+JQbn/vIODlgfWrCGkHWylW7YuVZxCNaL6rb8APXfJJeFP8hsnUVIbw05iZfSAY2kieuR7Z/riMyKccVlE39Hiflwa2emDUVwyan5l0qUWHp9D15h43u3EmWhIpjql8KX4GZcz+CAAn3tXhVE3KxPehSU47oLjUs8Jsl02HfwIn7AnPT4U7o8asJ/Y8BwEY3hsqoS9aTjcntwHs44dipS3D0fo5+UgQuz+vjVPdpG0aeIWdtkcreeiIJvpAf/pTV3TBUkAXj2wH5VApYmqAoRf3aCHevsRMyX+w9yYZlqAKPEkRn/3E7KgcEf2Sr0Bh6lGhjN0Qsc/m1SvqE3fnF2txjnn9hmK97eHiIVcZB6ZuBv/ehkuc2EA/XjQxPHGXSa5AlA5yG1a4vv+qKQw7pWCxMJXpnunHCdc4QxQ6Qeuwcc/4T3G6P3XUPd8ANCakSSpKCLqNEFyJRL6cxx1vYjdumB8TA6SfyyZWVNBK8epFa+fyc+Ri43ET0+3zKoV+V+FyefUly3SvoN42FP0H68Xx83bkhELEi8d6dZqhirV8iQ1RXS47pds2/v15p/d7J8GkjWLYMAqmq3hp9iQ/6Zp9P1t6qv6oU80HVgZncXzn7AJHgbCPfWN0nALQHg1ZGZnTXPA1jrdVpGGNiXehQh1NYppV3FHNyKQIG9Lgfe6mG6U05zJyoYDCFPsc5Poy4LgAgnxUrSWSB8MJAjv0I2MvrNCBf53k4b4vyUpWHv88YyXrY73ZJGl9fY3HG5DhpdPSg+n048zF0BjAVzpek9y1jof9fbJPJqak4qZwOFLdGhSPiTIbqK5uIFRj0636iseAE8FF956G2bRHgzGRz9qComiq9L7Z+tN4vrIdXbK0rjAjfV0YIe2gp/KuwKk/K2XTKyhdVd0TONugg+SdztFTgmQhXG6uHa5HfqYLPPvqop9QnmdlgLxFCOisLdBR17Z3bbCYnkBdphT9cMlHEHeO5gw3FtEZYl/PxcYFCrQMt4KSrDTfqX9h3T7or92D/BNuoPHAqnd2F4AxK9Ox87SOiraed3l0h8zshsVCCeQQWnyXJhS6S98DXGNWpDbp25Pz+SHfwpBTutkK0SBRQSfN4L44BBf/VoHiu+sA6zRJXMiziWDQ8ezuLz/1Nqsm3BDMmoaYMRuriZCPIfMFIKBEvStJf9u0rhJz1LIYf/DpX6LRWChs0LemrLpJGAwg7MaSTne1L0UDnxXm+9BtLkOEcJogFJM+QnCP3vS+7WzH+hQFSGhASDAMz8Hq5WxnrTLc44VIaUGw9MTVk2slBbJ5J0Nmjgi3aO0qYIBd5cQxC9HqMxS957QBX1LehBF13OyeK2mT7sZisfUGdLutq0Bc3cxuLaUzk69mfQtlS1gVaNcmvbToYR5ZAsNzmK87J1IYkUgcpTqcenblcd11MbRyu7bFqvhZB8lKDJF3YJz27CXsdPpmknukyZ3SnQirW3F68r8ZsUJRbghu5QG1AHi72EFywaFlA9VMjlfu7C0JEmd/ZEBkRo+dLn9KMGhR2dzlNxTKEplyBGHDeGnYsgjYw51Thd4wmEWreDHjaTdTnvPsjvrKcdUQfsoilmESDALiqLm6Sfgz4kZS5sjDn8aKjp1EEKOqMXqyBNqsl3l+ElRXkyFDnlM+kx5nBO2RKrUapmYqVULZQ0kpBOFJ+uDrvapItAIV4V+96MItmz+EXx0qb65gQzY3tV6lYn/OAw2n4Y0BwvER7Y/aEQYRkHGpxAbnOJii1l7UTq/y5p5j9hv3oiP2UqYqE7PA91Pa4z49RB/2mMwWxAkyppiC7BfQB6+UsDgWOFHBdbBbixuXFY1WEncRE+RnUifannIYqZLQM+qFBIncql3pge3I5nMJFSuHHYORQ3BYZxn1v28QOzHOeoAXNKtSPd+6WmlIMabtOrD55z7X32A9enoCBZRFZKGir8Sufu5JgfbmmpxHTDDHdQyZtNJ7/vayTL7VSPkYtkKPw4SHVSNw3P8BCvw/5ir7IKDgJlXNNjLMKiT+1UCSZ9lR8qxYgJ+SPzbq4VbLC5Pxt72HhAsvgCV5HXg0oFZbFmOuA2aMv6GCizqmwstzWs2L8nhYXV7Eisg8xhnpAclojb0S4i554dGJ0WPq1g4o4EHULrqvOyehXYtIKPf9WgpzWRD+OHSqMWT9DtF/UgONikBJbOiztiU3aCNwkjOro431Gmbah/iCM1mfjh0jIJYzBPyc0sx1jfA+EF0kwX1q+vgPHsHp1pyVHSHX+Sp3CL01XeJ96jZHbemMalVtsxaETUTiIRH0hn4Qzv/hoFMq4X1oIz3TsVbDN62raKRwnpsGkeIhWyPXEmeFBTNbkW4Aiz6CLmoaptRXZst4ZSS56SMKuIblnZ7bOctYKcNRz92/LWl+A1IQnJbPKTLJ0hKTyCVuN8oRzg+WGfT4DCg65CFerOdpIVDCDTndp7ELveHzwjmAMCkBqrR54k7a3L1mM9EPO5/kBurdc++VuHWsjB1yT0/JuazcyJ66yKKNzC8unKDmo/E8dc6p000Nr2ginynxQPbs6gB1mGR40vt8JFCeaF3beVJSifGHQ5kE6me01AnMePRos5nart4VRvX9zfdIo+MfOVGktuRJvCrM/kkeV5tGXqPFUdGlJtA/IPRvp8cnmrr7tBqqIazxqc77mNyGRCBz/D9/MNDii4wkd9BDkJHhvVZhe2PaHLjhiLyQyesP10JxgebuUNLcNsz43itiEEou/loGlLgUZPGnniX9HwvX5VI+BFMklNGha+PxKPPM9sXC5FoeZqU5TN+UesTLPYOziDOBgRwmcJkQvZMTXrhBTMIcSIkjRCpwwa+0AvyZKinJUI+XykvtBBw6EMGsyibRl+XMfUHodqDua1wZxhZ5eiiLyKXwNuixm3Ie2szANjr8zRcv8kzfdPI+JwNreyQQdetfDGKJC79QbsrDvQBz+Itwe1f9u35o90OTuJnRUOZHnajN1zzwSXfhoWYmzHwz0ObPaZxeG0bpg4KWrF3TtVMYJH7MbD2I6bYu1P6bpSViEROyeAbMF5mKl4Pzw27sPOUXybm4XGJKp228vI6yxYowuvIPNygHRYFzqsQbtDeR6eKf+bI4x4fV8B06xy+isVzFuN4qGz9bAfFUFVN9bGtsAKLzyKAv1yNaW3uvKFP48US8BeVU0k2BMfrGTFzXOa7YbLgD23s86YGrX5PZnXLzKTxiKoGsBfpS9Al3Tis0DLoTHZBOAcX4qq2x1t3yqaEIDWRjmv6nGSddiV1rjwhzu9MTf2IzJoSOhfAdqCz327qi24yAaUKWX1v8jC5hSbyPUl7+Ih8vGyQpo67qiI5Bx/V6h8SIMCmnJxEdJv5CMqm4jTT3HdkTjLMBnBPPabW7HUKgPhX3yOKwkIwYUO1r6rvtH8AXHgf3MV+obexAYgPlYhNreCSRzYM1W+RugdHN063WeV+dvpyPJzxCS1CKbkArUTtKXEOTlUBkQr11oSEt94VikHE1/dAeSJOZ6fTOqiDEJB9pB4KPs7rfmxsHSQOtOA1tW5NGVrAYHOmna9P+0g84vh6zXRXpUy//ks6jD8pQV/tAgMudDtV47HhaJw6jK3Jebgx8rv/yZGZbXrPjKAARIPQKPwrt/qJoCcspay/WEM9EUtjUWBVg4BTVAimx3g+xsQMOOKf/Ays4yv2OPlRIl8UGST7qWWM7myp4LiaWacQ8nJZrmgdRcMkJ7VckafPH7tlUZ0tBxWPkHR3LBQWIFnywTGHhZdytcSc3cC18NSHx+I7E+ggGmpg6OMF57EFh0DEX1/THu4i60nXqfppdQQvg1M6rlizV11MisHm2uSqGqi7Yf0m6OfsjANCD7kpg2NtCgguUdvP6t3shTplMQrLTpk5j9+pVVh4HsaraDvBrRI71/CiI4KUrg7v0toGT6Y6WPsVS784STyda9DtAppCidkgi6PNwy94qmKH9b3KCGDvzPSSB5MAAN0reY9sg9gOZpgdgc8w/SAVG5soA2rc3KaNWlGWKsf6diH4O0k971REYO5i8mvUx6HYnDLqnVUtzsZQnGb4TH6glsufKlOtroh2wUa25DHScECY0XUzoABQmtfG5b16Hb2IOH0pv8AZoXfxKIFKKtfL0NkosfxHc/HhyOyakFypNdcvmRJOdR5gFJlltAhRapHxjJDRqRlj1PrDuhUCbj9XLWaNkya07L0IVNkQzAE0ooH/WQIT8cA3GzmEgv8FwiBAU9AVj0a+qLyqyXZKAeDvMneJLvQ01aiNK9c5bhH/QZ/usnVI5xffkuHT2L4VH0ncSRH6B3oJTZe9KXdVgHHkm31mVDJjMT2HofEffncsZUK/XLukU7YORpTqPvhGMkk+koeGkag9zhz8HMIy6tVi67jeWQOR85wifq9oJRDXHqq7Ock7+HCv383lk1uDRpoz2AWWue1fKN6mT3G7tKMftT7RpjU5yAQ2MixUVCPgqsk4eB0jFcgSd7+CG5pTwFWMn8r/RQm/Vuhku2RFcA3KB4lVvSvp/IbZg9qzxVY2L3fCx0WwmHzbXG1NMkItohKwxkDr5O/6y+zZgY9jmqpl+vWd2safmGMhRw68yqDUzDYdCIosvqAfgMYMUrcrqlx3bhvOb7h3EYcyCtuZmQR4WmZiPWTgTIUpY56sXh9mKrHnRG73lRSsCHU6HpA7mCexCSq709APaU9zxzu0PqvTrCPfljYneKYL46s1byDm1I3yZd8xpcbrWP/iwNEdhbrHRYeT52HcJb3NryrsIt1Cg7rHfcHQphISWaBMfhrHuGr8AKH2ndjfyEzT7FJvgt9YyO4rO5Cx7XXLx/nSVw3QxEuzEsiloph93riovTRBVrsqU9DQupgnMxufBsbqpz3IHCRsg1qf2gb8d0kwbMksAr61mS8aBEnN6TbvcNnAqFXLg5bnco7SNYiffqLBYU4OT5yC1uCEjcH8YdQpCJnYdIJgyTODGVEg3E7I2cYn7VEYob8MutMuxv22n0XdLfrXU+Gu95KDzHT6xnqcfrNDlK1MXVUnH0NhW8PaCS4u6Au6AdIOCyC3HzcwRh32e5mvc2p5RHWX19LX144pGeRKBbF0CTnfcT6ZokZKO0oanKp79IX06dNCYkWL6JIJVMJJR9V5BpYZ272+52q6PvAcUFKiYhfeA60gHsjm31GQr9fAn9l7FRwqg7rYMoxeUI8wmKiN2i/KabWMOH5X4dQLjM3dNErIxHrdqM2+X0waWXX7ra+ii1xFoMSzAsJ4DEFmI0ZIcupZbQCaseefwhSZM5ENch+XNNncbAXbS1wncp2oHXllQ2/EocxZdScoEfW/AHSPhXKoOTVqR+vqr2lqBvVrgh70JyrTTXwZT8svStLrl+dOUbqSiwPWFZFrxvt8+2+FdurgOzkpWPwhUCl8DdY7QuFudXVK637dNC1ba9CmHkSNl5ALm7tMYiAnn3UwQ1/NM8k4L3t/ttUMfnbDkVGssxU3uLHYNR6rI1y20nKOVSbaI0JkxJIrOt0biCS0QRpEvPiy351fkjjpcP3iD0V1cIiErdxMtLe4GNgRDBeuuGI1ZyQHJedcvq7SWjeyn6RaFYD//f1qQeEMsMHKsSSS1tjjfxETf+d/w/hrnkyI2ID/aoOKf0i6NButLlSAPGQO/Lj8oullfK/Ge+T6FKUcV1OXJaGtYMKdhxIqYn3aBmGjWVP3VI534fjL4dmSG2QzF9NfQgOfLvDN2ki9cwVvmy1MAbzMGgdQoPIB3Q2d0Cc4EgMsITVOnJKLs2bMUdhCKy9OpdHVjFDg/Rho3+MEN1v9aM7ex5lpSkbuZrKSAeik1jAhKh1/u6hAnVIS1QFuC3xVG6AAQidKRkT6c3TDM0zJoVPUuLWz9GQRwPb8bZvHxHVOce7NcoeTOdYbhyJM0XQN88xrG3MgLBAIG8axCKkRYxFrm9xiewpULoxHQThvHgZyCaa5Cqw+QPFPkWjZMEeXoU1yBXyf+REov+c5bBd2ZPYVxFiR8y+WrqCeEM+EZeqNcdQ2x/wZFqpr7zWIH2p6C8TnLvQGdxq/Xl8ihqDM+CFK7CjIgw6v9KX7VyFa4idxKOU3vFyhpTpI49Qfo/gGnO9U+1AOs1DTZs75eemxHg61n26eTc7vo6r31PxmeUwpp4SQcUOv9O3GNteeFqYtRScBh+nz88KOBbT3TaOP4dmkPgbgRvxSHSz3bEOyN8s2B82RwrE0WWHchWvYF0YleacYA+ujSWv0VljYYeTzjRfhqK2m/PTAJ2U/SHcbMo5Mm2qZltv0yH1hWjx2uZHrufuwPDlO9tbf+Cjra5oBChCqgdD8fzxJQe5HQFQRKFgxgrMunMqv4hrYLh05Y5IdQ41GrKl6Lsfcbhn9yvyMUj5ynRFyGSzwu51ZwqvV9SGu6LQUp9vZ8LAoXHj1OTBwha5THKvLeagt7V1B+4AqOmTLdGoOOLMIZfAKvS3HAB++OUPDR1CZYBXdHuxdCaLQ0QzjYCzVbUCdmusbO98VCeX5q2X1QwPi5+jRAXEXQLqN3zy0QeuuvpjvNvJ8oY3+mwkZmFesX+szU0L4a9+kyR1RKTGxK6qMrPz2aiPAzYtSbua69TFCtrzL66tHrFR9hrBVl/MI+OS3UndaDSDv+dFv1LuPSd+iAjqg7E6mIo0+CwvRF+L6VNciCDZTM/WB4mbZmBhEp1F5tLi5LqkVjLKGCPAd5V7RDfCPR6HVOh8BKFkftEm4vwCnpvvuINP/NHnJW5061CFLVoiQ9oBENFd40l6bGE3malzC78ohWSUO81G667pGvamf28XSoJHiaZTqBPr5ai6fcrJS0gCYAcahtUfsKQfiMUDoI7tHOquuIKHH2kLw5bIv2VU+5mgb/JfgBgvxjD/rKF1WSAr6w1LzTskxbbQntZOkHjEvOF+L95+wDMHjc1OYkjit5+2zA+Dxw3JeeusvT+yGdlgIwjor8m2wDZydcOtcJGouAbw4zAEJbOePHzGdY0TAbd8swX9VE+yWeknUrAINtIN4JZMv7J8C0seAFakaOv4mGSrz9D+TWLO5D5AO2H72RFm1EyyS0FN2x8WM9sAJqolssBXZdYRL9dQ9zYvVFRYSPaABChSisgwYZ+ETC7BPPd6CjXP+5RHC2CgUHaDDa5ThlI1w7vBA68qX39HCpLk4Vt7y+nUPwl64c+QcAiU99DjD4v2BuHv3/V82XIABZ+caouHsS5Hxsc3JkwhjULAiEfxSb1Z54zK5QEOKQ84GEehCQRkRiMjkc7CdRawMIM9nNXf5uLiEH+o/NgbGmKeZy6GF2iPNRo0Nr9D+GWw+j8m72G6PfmTJ4xebdQ0jELXkLFvJ7ENoSnJniU8Njuq70a7dpnUx7A3acPjV21NVPIvC0DImwQ+roCE4L0jZwknf0qWKcs7xi4qTpDnBSEYif5NCD7BfMpJ0tr7yS4FcA49mxn7qxHZDcxJ/8RahaG68uJDDV6qsul9kl+tq2KPR7BnfvBm7LYdMW5Kc1ly67Rn7yWGXgqPPR0kwRS1v4OV6yJOl+bjJuclpmGZpkP8b7RNkWGUiVYQrGqmBQjAPFMqBKGZM8zKqofJbUP8y0SMqMMzrbiM44wo7/BhDwhvMUDIgnXDMnTN4aW6VMu/4f4oV7/MmgrlLgtfGi9FUy6KlfCMY+C1kW0iwqODY683pvND8tdzlcl4ZvaubrCg24Gjw9wO/nORAW9AwfNsqGrXZbF6G8UZ9rNjTJDjZtJREQV2zPuaIAzX2aXN/OQNUArjnTR3sj/T9ibv8JAC39ckU+NWjqNll2Cp07RmeArwXuT9crym0TdgT/B2gVy5O5TkvLKQjfWax2IxqVPkeCtnMJiwR6GDTQBAqftIKcgqZr+biwC9U8B539bfzxPupfT9p8EuBZYyVTo81uM4zsEHkPA9SX/XuTlePBfF9aYgIMcRo8+KZtOpxxhNOePA3/7FH3Mc9HncxIM3XMn+z357pzMkPd6zL6LcE5k2C72xS798hC/b9Tt6hQn5L2tuhcYZJmwfbZEn4xXBfmSH+EaDe/MPaYADw5a/TtgO07sZAHE4SZG1WEK8VOEU95SYVM4sHhIsWiJ42X9El6udG1CtkbRqfv948TEJpZJ8FMlDUPCJ2bXvHAtgdPLj1vqXEy4ibcIPfvV2pHA2vOd3Ggi1pzJrqbrK33CIa/oKHum5VNnIE6X0fLaMyPidu1iDyIj99ovFa/luh4NPPwFniUIH3NJWTWYGGfY8GHX17UANRHsT8HQxSoWEOd2cCDKhI/L32FT/bzh84eu2PxpZGvKZBqRfm4sPR2YuIpy367dKd5zeQhhKmaHdvPt0KB5e9ybTb/o4LlRPU595QOO0whKc5XLPeC80LgJkefEX493WuhPGfMDja+gn6T4TewFVGCizlyYjBOK2zT77x+RPnuVAgIg9fuZzrAUNH5UWBe0Sc4J9VWsDD0IB7csHL+Rtz/kACoRr27R6DQXwalGj3VWvfDddufQpnrF1Hz1GtZHPcyUaCVTIrwxaoSEGacqk1Mw79vtbX5BD1VrdRum6qKRrA5k8K6D1beyqc8DAg/jr5WQ3KhzWHO+TgfdyK9HnZ2vyT/7/xARUgx+bsEeVBNEnJLQhQ2ifiiJmNzqIs2h00Kl9R78NQ7n3KKvJTtqXIv1FVzt9rDhoSg7WgyR8GOc4fbPp8Ss/c8tiz7ZESjxr8dnEh++devT6Q2yrwEnKrkBQSH2SXmTh7XO8U4gDVdLQH9HdpihNzfNt6iQN7UBC8x9Z8yImSq8nspXxE88NcFZtHH82La4fq4yfLLXRPEXkWPhOtGABMxTKxXvzbojLYGUqxFqJjxmKA0qpAuJSIOhcuBNdsb6wSZ/GXdSH4V9TNY2e65Y2VHKjbSWIHmMOMeqpZ0Ykw3W5bBdMM0Z8WLEwQtfNS9vUcn/4jGWaX/o82wMrOnWCuPcOhzkq7Pgfn8VF2nxE5E7cWZSgDCvXVbw0ReBmuPxJAeHa0QUdiLAYj5Rcbld9bh2/CuyLWZ4SPYyPEa3jPn3HjY4tS1OeN03+3R16TcJNwNPkKH/2h9RPMl6FBDp49bvh/GdFc9moHzy/iuGKtJqO1G6bo7gc0Ic54zDcLkRn5AWp4fAarEq2CuGjkO+fRMlupLz7+h4GXPw6qGzl/Fjygvsr1QytKAJi7BsXJ+/MHyRQtJ0pgc0yKEaKusMinD9Gi4RW29xY64GjXiuVlCz285SCpQ3hG33KWKFNmyy0HEIOJ3e6ZlgdkVS5VvVH2z9qlFbdFa/mCeSDsfgBQbZlO1cgk8XOVm2yP+vbj8cNxeL3dkruhs4rbhJHUoXMqXV4/Qve8duC4UvnPfGpwUhaCoCdaJpXvUckOcCoPLlLR2WZSrasjwLzM/8kYLWGu3GcHVjVJKJBeBxk2amgAJpL61npP1CLbn+rFCcncDUhuMqjCWVcjEcZriEdWSK2K2/aQdUXyUtL3dMnT6ozHV6tWVAft7cASH4le3sFjrYi8JbuRamCiM88NDX40twy8rfB5EPlJZuZ3agLePDJGBpnAVAtI1qKm+gRghcWUmyvGULX6ijTd87WnBemBxaU1io93qPyIACSw8A5jA51F2RUZAx6zEaRF4S+yHZ6K5+gWk+Y8IzV1bnMmML1nnsfLhtgit6msWGrj+KrAE8ujZ7NrHb+T2TaD2S5/1G4OszQVn4BubFQGnLT11F8OO07pKlwMBxlwc7I5ScX2BFjw+The/EGQwiIU5PAsiznJA/tH9IiDke7SV2I/csvWhmcHKZQaRx0m6xYl6UFbBz6L7s46/5CCWAwOITP0DTjZXG1phHCxG0K+YopsFcBwY6P+XDHJvT+a/l1n3dPQKefRkNbDb1ZLdy5poK6WI0l+v+KQHT1pKB9wgRWiJShM0KpbMM/QKFmEMzbYvwlfaUbfZtgh1S8Bs1iCYxuEiWw3sSGIkHrGLt5oKTQrbAfW5I8drFB5k3E3ldiWsLgPBUPZQIOJuEzmg/sLZU6htaZ4oaNOrKdvcviXtIi0/iOS1CY82hMWSOJaE+PRGW9CI3+Ozx4k24jEgfe+qvt9TuXL32Z8/eXCcgahV0X4YauZJpp5OaM+Q8IOEcLO1DkmTwEeCMiwrnootAbUsdI3ixvZZeE/rbUbXffRe5ooODnk0xD3nPr4zt3fCI40GQBqfaBFqriib5Ticrrfs+uBukiVrcjJHP6aPl8UwX+NgQElrnJeYzR5xWIBwGQsc7DvnEvCY40VbxEkvQ9wVmIjOTd1hvOhFWzixac/dXGYkBAvxkwojkv0gssEQL0qcr+AGUH2mEYG/S9kNX2giFuZUM51V6ebLxBd3Y4zjlBz7AhUxxFdO1To6Ltm5V/nHtVKPq4yybMtQ106xymOJZVNPFdFUgtQMJkI9Ww7B9FEIKBwLImY4nxBpjIjCZJY7NtylDJfiXuR5IwQEqAHj/UeV/OQK0oZu54qXZJUh1XTaJsgizcxf0FPEVrx/dhJb5nwRCtEUVDAiyBY2T/zfZwPuvKNo+0uvuobgn/SaLkEwkHIJyUzah02c46PVw1brOnwvQUdoIq9DQSyeHXOTjkZnEiuKd3ny/hoIffz7L8dS7XJ8l8Ng9tJlFydXuIx5gYusTPq/uhGepCuok/he7e5nRqD9WL676PzG57tkMLZkCeXMe/ryc6jTHXw/Qj3OXdpviE9lYVlO4XUayNwdAgHpILUkF8zDE+VtSol5L/46SlpgaDTi1ulQZNG9yrS5St8fqdMWF1Zb1IR4IQyuxATvhOQ3MaQ66SLxjaSMWWKLrjMPHZEmsiInIb4HtGBzugQqLrVqWTM1dPNF1AcEWhnTIpcjFwNr9CbistR4ay8ye3vzjA9chohqaZlDXw7L9DUy1R8GsN/MeIQySXZf01hKVQWRi38MuYzoVIgnHegH/EYlDFqz0NBB8Ex6ReOTKYVSrXkkpCpTFjsLpbQQLUOpmRaU5zTLyLTfiPXQTeEaf0GqEKuD2CsPTuxDy/w1ZI5tNmn4xAAxjIb8evRG5O/uA+9ja1mZ4SGvDW5t9UYdtHIxsxiO/y7dpkqnGqoYQrVwxxIjTuI3F/T/FVghSnqs0yvAxccHUtMhxv3IQmBQOdV5tqWFUBDRdS5aPUuNrkPDFXem4Fnv75dlm4ki5hsf4dGR8OAOst4EAY3Ajq2xVQA+Z/jdMFuWgfaXRjncl/hqgXRHaZRhp2RYAK9+bpDn/xCoHGFrncTnyx9dnLv1uxtWC2NzXd/YcjtoIV7r7jbsSD1/80LzTZoOzNRCqZE7vX5+OunIgvdsUtERdA68dnFMfIaAtJlMi2CCtmjDCrqFKYs3t01GOvIaQtxuyNl9EmUxHis3I+FkErf7ZXKqErhMVGIsueM896p1xymfE9QBgUvU2n/YoqddsI54RXXFRO9V0Knc8PCeo0oY7WL3HH+yRUOTaZavfYrqmAO3/gO+Ss+0xSZZricLyQ5vh3d4HZkiwx88WMACMWMwWPXgem/fE60OtbLR8ZNQnW2f2798QcRD93GC8AY6CnTB/9xQJOGvTCwICEC8PhJ4H/fjofukJKmMJ5EvW9ufrQYgLN+s25BSexPSoMBggZJsQ4jJDUA2hLD4UdvMsT8cSWgnn368cEqhmQnoqVZZYwnfuw+Bf9pnhoH0KfPGJRaQ7W+Q+MH26WNv/2KfCTk25+bzObV000NjUR6d5kwhr2UertLxHW0j95mejb2CXqbCJ1TVK4k8fQYvMJpmGlNW4xiwUVB65czlvXViiWXeJR6saGcLhqmxVvFcGQ3FMibnA0TkmE298Pa24MkYXRoAZhol5TLKdSBCYWq701aqNfJdxMqE9W2PNKvyqEUdoRAgWzdRiqggXsN4fCsru1riKSexZfa3NqBioxncBtOT866b1nEMvEisKykySL0k+PrWK/VMBjID2cOLpndw42l5ASUavkxFxSO8if3FYIgWio08SHe0f5+rz2IThPQA7Yo8gysvRPDFiGIl/HlFkVPBASD0kC88YMjqWOI7zHsMi7TQQbcfwkq9eWsI9vwHV53RgOaKyN+rOh61FunkmlDBEiERLWS3P/nbLXPAI/e++k8v6kgzt/1V9h5ewVdvDVlYi8oOb3W2PBgHLCVAyoq94RXs8RTYbpIJQaRTLV1PWL3E9OY967MUPql2hv8gBAdRCh4tx6Kp68PiQqgLb746pSkbYqnljpwJCNtjCakflA1/HA0V55jLZSKD8H1xya/hE0cWnVeOnYypJ1hVPSHs3AgDOGW7qYJ6BRNIOd8DnYZUP0fqTjR1p+UM2eUfasqgoMTEttqiLH8JRWKxiNaLxB8nKirY6evLaZY9BBF4sBmpCtux5+6MOESgKFBoJxjmrF4fycU9RNDj3JC7rVbThtOeMnlFR5yS7ywTNfGxEuMatTd9+CvvJWBvPuvRPP+pzLyt+fXaabe/YO+9qfFAnLLph4nDvQpQhT59dZje0+FNiHm9es5djk1ZHpXjzo+Zoeb6qShLI8/jKRfJmV/w/xQd2MRdhx6OcBlCTEwDKfoP+OcZTKVG2c68jk/JyR5NZLOaaigDWoiMyrl7Fwi/+aSPAlhz5a1TZG9v55QOU//mX0Qp/rdPNtPvlvdnKjUnHBR0/a/yOlECGx8BZzazSXVgXkn3VzCNouYZ+Q7obyYznmdG8rfozVrZZLPAlL3b8VvGdoDSDs9hdzRTUDjhXT+jarS97Z4dAaq8aNQ2lH5Qd7TbQMzNdWlBWbQ+PZcokfzAxDcj8TpUkR/37V00T4b7x4ho/XOceKtSoRyWXHcGmFOVTEcTSmAWaPA8scYQpM6hCtpG6QZgC3vrRqB1wCx1E9FeS2WCSGNqT6o7nEvTtxRHIZ344r3NIKswnx4m1sRHVH6rTnMhlGMQjI0mKWV6VlBTk9YwGXWPgk6q+lP4ev/IZWoCCcIRaYd7iwnhfqVx1ckMCZ63qY+6a4BNPLTPqtdNoe0uB19aVWX7LH8OoXO1/opmQMEPAYEylha8FwMWz+nBwSqv3ZGQkDDrxZ6jGK0cPqY7sAm9NKe/Abk+uIQql5pNwxldLvytsnf8m9DAdjxrCcOb37Fei3hy11Eyc2aBY2UIHatHXBQAud95k3cVp/c3mNOJ7rdPFO4DLFQNvBaOmyUHyQdx+Gw9Ix8Vw/XfOcHVNOSfdjEl/bFut74ZXHQfTv0EQQXNa8+PWofG0DDLbggb38tRAKS7ulpEYXEptLCF7I3JgFXotUQ8vaUeYSv4e6KOnK5CNI6696wxu7eqplqJo6O5HnBGZYxVyVxcZhkN9LAt7hsDCbI84uuWNle+GmtV2c8OH+O0eAkNwZwrqewXP6jDitqXnXqPideIwAASSQvvPGyBh/+3oMZtI4KTpuTU/DnWOQRt/rANQePFYf6OPYKb7F6VxjuQmopdgC2eQzznp4shNqJB4NHmBPGR+hFAsC6K1Mu+usqOKwnehFgn0XXkuPcnsY4U1Fhb5ZtYFeheWvtph+LRT+22zJDDapzp+fxgnZHzpsaze7hqYKe2FaXEbZ0DDjIKnxFnXajYbpeVHGjXQ0ozOwCtkaooOCHB97iasGr1gjuyWmU7smo4c8NSpotNWoHDB0MmbOvraG9o1EjOGcq4TkmFvbzivD3GD7daW8ydU2So2qRJeAbynd1lGQQKCsTVMw4NzQ3OHHsOQ+ehPxgTjtIr5v0AVHV6owzJHf4IBmyOz2Y1Dw/yqemkWP2wXS8wDZncyvDtkO6vniFzcrR150jZFJ1YqECS0EXf8n1BEeTaZwCF8GCh1+hJou6cjfX2t9EBY+xM8SABQY/JREjxWc+8fvhuNznFqTbKKbRuOKn7xWACq8ActO5dc5exJp7VdPqDY3fy2HQEkLmarAppKtqCOlGwAPauoi2jw2fTN8jBn82t7pc8bzo5okaU8kqZkwGHKNabtTOCxpwBIt9eQeG9RJe7r9HW8ebZMSGNonZn59qpUhh5APXJ2sTbjz1tjKrdXHSLC2UEKUb14pO+Zy1oLEuaPHsQ+lbnyJag6327Ug4MLK0qJmYN9R2hCZ7Bh5NB5bvn96URnzrpTlot3r2dT+uAiqZtjBnQkay3QJm3+Zbwt1KbZJH1gYwhSn1bx94EgzzNzZ61w+w9zx279xFkUjsG9AIY7CpxdTY1iOmp2At6rIHSsz5S9RW+Z15c/0FubxdtxTLafa2eI3Dp3VgF+26nOC7n2iHD1qjDh6yk/avWt6N8kr9u7kBRl4WMZA5GFejEUAuwYChYNfk0dSumbNlhDyjioGybAOMIQjs4aB4YaljRYmRdgfBagreoiCDQvHi+J7V3ug8mgGcK8nqtQp0mF87cBIlrTWcaojmPIiEL3n6s61mG/ZZgk9XejImN5AAaJnBIT79IHYT0PN6UgvloT5CfbDksaYp6B2PxokW5A5Vph+BdGnM0+lcXvBl+Dpr3/7wRx3eWqhf49XOLSHuwaT9Ftx31kr75XYm/eumkuUoens7sIuCoGiJxmJqDUiM+pDvUQ9wcj/Q99lJw2FfPLCwtevhCdMT+5bNYOJ/guI31GOt3EDa+Yzlf9wftKfp87ydUmeMS44enoXEnggXXWg5jGcKmNP2Goi6PHOOlM0bQFGjwujMg0lCfZ+8Ad4Nmrc3Esl+o3pwYEYLEmP6LhiGFicjIbLVizieNWOIk0SI05I4VlQIw70oaZpHXtpuZyulUfYPO0YlolXWD/Gh/637SpZS0oy/xXKdW7c32b/RPW5+yAGmfMRePXWTUGglocBvsMvpkfBR622o49xon/54smJP0/a1rSPwd4MrZaAGhsK7+TRLl7PWA0Xc4yw+ano4fDMypkS6VWcUF4cMGoUwqQc1zYR3eoCIV52TRMTu2kqZNYZV1E3Bx0lN494PoPN4HSBu0NrSiuHdvUh2gWfbyj2jDf08FuxTlX+7LZ9C9ggtdw1e7YfO+mqA1U8GVLvv1/fMzvqe0ezsrd1ZFDML3NUm5kjo3XDTaIacT08gPdiEmQx28fT++vdUfZB0VtrUCwTGEPamjJ+huky3sddUJTboUegdhRZJtwxWznG0rjuYy2IgKnjdCkYIhS8ufl4ibZd+E8zzY0k1PnqGmfzYsfh8mvAheWRP7NQPAi5r7+/hlQNtWL1sMq5R9uN4UsebGJDaC0HyZNtQxvdUKK9pzKAoDeND37tGp5xOtX53dwrHWReYZx4heO1+KoucUzMFGLX9D4x1Nc7bIYeTOFmKYfGkjXpQRr6Dw1/DpeTPIrtuhrY+E3TXf54DYHpNppZxnelVtflgWol4wCQZi1KTQf+ljAFHMqnVaR2d0IMoxRJsIm7+lDZ9NFl8t2BCTJcT5snQnEHjKb1YLiaNqTgFeI6BjgqrxhmSbpdrl+Mj/yMrTiAerY4o1EW57qeiUMuYSPb/Ib8rz8Jcv88W3yxz0MqaRgYuc3Z/J+K8UegXRRMCjKz8fQAy88DrXyQSnanmN5oZN8Q5r2LFH+WutuH5+QWBHHCpNJ+CXVJkTNeW3tdCG5qOS7RTrThsOAIf4oF/2oKS6VZXLS+SvJoP5ZDGtqHFj7o6MWT8nxCEmE0ApysXYZXuyW6+/VhYAfab1KZx1b/PJ3wzlIy9GOM9NuvtN4eRBisOStLLWgDNM4t4Sbnqesjt5mDhCnxRq7Q7dGoKLjRei6rlGEh9eRJVQi7bordOojVunRjc1aN+VA80/ftrR7zKDGANdvV3CDSRCRmXdiIfckc2ujwq/jXSc0p1Jc1OqnFQ8jeDehzzY+CMkaiKlH/CdAG9WLuntrR4RRM0FdYqqP+Negd7JLDwhJBnAf47MEELjGt54hw3ICpTf17732w2gp1q9yFjJX8E2ndri2mZLgnx6FpsGTnfe92917ZgegHOlV0VUvkdyTOv5wsxLMFVDZN6xa1WoySuxqxOaFSQ2gMvwrUoIqDio5C09awJWRvpfjb7F9q9ZiE8phSLl0bDYzwtE4erD66mGnJCkMEcpnqFNcgfpsXCyZKlAkX+u22cMhTlzvP17m7QW44yuFszTFo9/D/qAbDHWyhLOZemWpWISBWz1m2P/v9h7z3nqMs/2RxvYwqTJr680LZCdkTv3pIQouGAIDv4RMXNziAEl2xvcEHcXnTSHMFeW9j3j4BcZyKpBsGBNxy5iuzYGbP3K1+KTXaL3Kxc/LctEarTkJV7IeS7bX1B1Ap5D0jLUn9u89t2X7SO6PUwWkN5LEzoL/4bY+YaaPa5zc3GpkMHcrjbgGOXNumDhkw2c4Ci2646t3x5rmeB7Hj48wgrFk/d1QeuUbt8mCsjAWHnigehJ7/imBbiVWhKp2RIBfC7IeLEoXJv9Nr9QyyPjMYYoXmjV9FpGiJPYqRkfuIsUHMQh1aUi0LfksBkRFIVe9Ca3VRB74QwKnH7aG25q228APbDFncf4RPn2IapEaQdpDVk3JofT2nVckptZ70tJO5zjRxLdb+dbm/WGWnfMKkZrlHysGEdRXgIdsq3zrK6jfqb1jo2rNqE3WHLAu99Bbl9malg/hfc1kOIINjT5V5roIlWcAx3FhGVFFwpYCmYXpsySvMOGgfYGiA867AFblLo8loyUZPK4gve9pgYT+xO9vkYjxv0YZ9EzdFFZCFR6wGyALNQN1bZ/wQ891ajvhzvKaZMj9MlotOVbKuyfV+NdhIsK1G6kuOgha/D3LD+zWU86vkjvgrSm3exlSlRQ1vd1pLaY3VH/O8lFJ60HQqicK2Wmyr0mQ98eD40QGSOY3QloMqNaRhTnIcW4gN0xUyd5IFFt3OGJvNNjJ4AEuZAW2BVaMRAiusT2QFnJoCH5r1cvAHfRqkGGRcC5Yop4FYfYsYO6PI+ZlmwuSwU1z3ZIa1Xf99aI6hzUOm53ml6301FK7udRsIiCgpTWBthZmZCRm2lOdU70l7DrRdw6XIbUuu2vSFASX5BXAgB19eK5Tl/HD2nEHDD2RrAzzm2eO+z3cVm43MC5y5OsNFSD7sNqD1Ybzru0iyuQZFVy7VbU7l/nWidF4ry9PUoI22yU5K4OneNzTvm56G5RI4O2wvIEPuoWYqRh+Ztwr0iSx3hST4mGcdvU6vcHhS8BoXHXnJ7iYJIG/Q5H7mbDzyCTAPSpb/fKXr0KsrbCOQt0yemIiTzKRaYYeRF402/7tjRzQOnQUjSvPCmHfOuRebPI7uZrlXagmvo22Yik7L18SFz+iuTcxXf3dDGr9api5dScKeg6syObB4RluyY18FYby0KutLJdAUfqYciUhtEzR6IPcscmWRM78/49YOL7ExXdzYbyezgsPm/nR0UYW6HTLi9qoR9FawPwIe5byen5GgehdsT/BiOMbbbtRvyCCshxNaBuMkWAynNB6SB+N+8Cme3/HFHOmpKFepQ9WVMjwPmMnRiRINPpgh1fRpKgR5Ke6ZuFEvIxbwBMRsnWlIXUT0McdV1Ig4/GXRTtAJBUKO4xk8cXioEo1MUqvKp0VB9qvbghMUDwhrrs2PxTacNnQYu3w0or31SAM7OOjlS/0tNtokN0PHGXveMJmutHpbvbaatrD5HBxn8E12Ne6TjoLkGZLofEmrkIO1yYY7GaeuzFI7x2gPMnP+QfcXYNXeWmESrYa15qM4kIqL5zfNQe9BfNPsO4CGExkfq9nEsUjQ9k58msQdWEF8gNQ8Rj+jVDExgJQR5qjbm2n3YxkLv5o24ffW8n/Ut7Ra4jGqsqLGeOsI96lsHZgYhnOTsKm1MYtA96bCM/b/1D4/UG7uR9UUFTYyNIBw4LMFAlgOpPJd0i2PMD7XaxKV31avqMFfRY6PLljNG8jBS49FOUmgdVKZ5Pc8Qi4kZXFdzhLd2ThUbaGXb0CRtKGYMky+Ujbc1oYtSUNCEggqWC7J5QjUqWK09pNE8QWD+YBy4SQyKhC0JFh8hG+84fpnEOBXnGSVm7MFgQVsuX7jlAXfdpYzUPNpTEYRO/6Z6RbAcKPRMrUtq6aobjBI++t/l4zANjEIYrrvRyVovtz0DXQ8mxwRdFI9/aVchLvS7XwVQgWKZOoCOjStJcV8tlWqbBHD87ncOs8Fiei0HVn28bLpjdLGs/mEWquVTGTKLEh/aKXrQYMSVyfrKUA0B6Wwh0ETiKabM5ljoVksILRKN4UYdkNqblKRT0zvri0O7+r0QRT8gwPdzKJ9Ju3O6bHg54pbtf0R5d9+F9LAryVRRxlH1IM/43iQfS30657vshtxpUQL5/eopbSfSLG3TfmnY7qJWIsLMlD4er5KO1tJP0jDLfqos5RFAbbCyNheT2SvKVqaRAWWYfcOw+0eq6kbJZrbwGF36c0K3hXzpNS0mwH3lzjkQ/X6YXzynoQjautDdQyWzov3MXQlWtDsDxsn9lVVTvwNkQ/IyJDXyWArr6FxO9VWjzMYVdcEnronC9MRpQxt/v0LQNkgVIWLK6AEe4KsKwpa6yUHSYAYKx2K9csngRSLAvXRNpC0aGSYznv4aGclFzWLwq//RC9bznpNOA3Z9FkUD6yLvsxN32yjvmQL2JxQgtO6PW1k9aFLvunMeKab+pS5jqqx/hW3n6FmP6hIc9MszGuyW+4gAApni1N4dN29mqRjto8EuVbExnsx6oiD97e3phVecqwyAfUcCzGFhN1ssuedT5BKl/sojGfeTAzNpA5YZPybMIt8PjrRtZG0t3PjGw/5fYs/SN5edahAgLXSY80AanAZaYiBpTW/htNQfUc4VjSzv6ekV+ofJZdcw4WaSX74B1NzbTUzlsWzAiR4lvkH1cHgMLsr2Ked6GYHNE7lt64Ot/oC0yejfF0CRmL86OT26T2Vk9GPb/VkwKTP4L1sBhl2nOPbOHNLb42lM/oppUFkPHEWdK5gyjrKyzNJab+GAAewMYb/XENcO8vxSah5pHJj+oMfXZv9e7ygQkFN3Q9sFTLZcZUvujVmiGO2UqVI+4fjQqXdKCn1c7PN69pQ8O5YQDVSLS+g6v8J3bRonqfsdpWhQm31ypLYPfXu1aE5eyQX9P2W1RTrV2BAjV1WuIljASiiCGCMQYJXzcM02DAexrEcFW53L/OuuE9bJBQDvQBM0Hz64GiVvcWPIs8s62c/yUO+saa2dIJG7fVLKIXvMB5TdJuMfdAkc8S1G96wBB/t6M7uZiW8oyrxcGNy2j7x+EPUgiAd3T55V4jS7c1U03jil83wxUdM99rTERTsuGEIE/ywvaYnF0Ovj4dG38EPsY7Z4KsvMsedxXDS1XvLa+9s1ukjTDvO3zocWCZXTpnIbPYWE+Tuxo6+mlGsdL870kVo98GuXzqEU6hiUSmyLl7qBXERsQ0xTFOJa3f/tNMWWmFYW25AsRYT+eBkk1wH8kwRKGLBRp7ZNTR4MZpBboLMI5e6gsUYd3px81iYxVJVS1Gt1G8KadXTqis6MPPyS5mW2DsLXD6KvH1eo64nPe3nTpbDabeRmxoispbXdzMr/SJoeopNB6nOiEuzI3Ia4m10lL17Pb5iZk21zGrV/52ipnCUtmt8tG7iYyx6n/NiPcx9xdYNpEIIsNCiy4W93lM0ody6yxlO/vzYxatzhdB7u9bM2LsssBLuXm8vvcVPAH0DDFxlp7q+oeZJOWl6JI/RIxGo5bGaOiyiW5Qa3Tquqn7sNtVX1O4w8h776HnJs/oRHAjA+7tih8DzgjLPasTmXKSa4WSm1ffKhwfUNnQo/kPzl/IEDWOi1f9YVf/zojaJdrK+yH2ppmPod4mSnSJon1Gge6K5gqEPzKRP4wdQ1aKCD19TeTzJ7F6RTORFrF/rlus01OqBv1Z8ih3oF8kkcofgQuBWedQ7zYR7nP3MNrULmb0fQGJ69tmKxddpgzqYBpm/M30oGrHp7jqlaOmR/69eZZGNOYApxhP7Z0PHKQFIBbkQNtNiw1LBu3jxDf8jaWYGD7jMboxoIJpFT9fW35xuWg+hdx5dZnju2/9+C80ttQ8yYibalGIttTJrqeAYz+pRi0q0R1kbcdwp1bHtIpY8TNfcoI/8CK5YQs0cw5O97gEnduCn+ASHZL/YZ/H4OZeieokoatIEWMD7Fv3HgumRY0eDwXhqeB0BC5wHXkFEqTZn5cYAM1fMEtq6EXdzI2DjA9GTH+oH3JuiwobEx8J7SvYj6C1gtVnUd56Qqu1qtPTiZBK0/UIjXy0eKHZHWMqrrOYtQ71s596jUdyhOYZUmI7o/mdWyKhYmvxyGBcXv+zeov7YMPC5XXI/xYV5hD3ITyCFUmdFGKJawUiQG38Q3Vghl4KW3TDyMRBOViQpc/luNEuOHmS+mBaiTJsB8PDvLseqq0shIBI3ZoFBdWbmIZcvHHDrTi3Q+By29f3LD0Hh1tn0noW10mGGMy2SkXSJ+BXD7RhtaRiLqWnwdKfwOoiXJOxwJAI64v/JyfgYD3UDKvV6c2EiUU5nZ60pU2UAMtOHw3SLFierRwIfjEtaIWfuW2uc9zvfotpPSBe+DUImC12KlElTiqOjvLaxNROZJqifuUGNFfzDaI+nKWM8V+UXuzbJftN4jbpVKtMganPmy6FKEHpQraBE8/Pgw+1wfNFLelgklUcExmUH+wNdO4u/DwlLzcn9Bc2x9IvVYU4vB6+XvCT4P7IcApARrl4KHCusvtgCrOuIN3aUIsBmc8DhiWR2iZozapXWWFUErG3pEsqXfQ9bEBC3k/zHwxZBWolMzL9ALSSItKlyO+dwWRLiHFuiA0l1cRvT4KEyhIsQmYrpxqWL9d1QIHh2L8yZeOhPs+tilKW7YMwzs0WzkaDW8nWOibQgflmhI2lVuw1Iw8SGCdT+nMPt7Qx0ebkaCA74CtBhecHKSFaJt1X3pnPUOrUx+/219p7QURo01PYtC5fUDbEeDkjoHmwMvOo5HK8C/oFOVG79Hsovban822rWPe1rVk4/RchdR2eRoJlE0yVLmLqXDaJot6s6jnm/Ujmj+6q/rcCIkNYVh18BdGpzOOYZNOyxLIOb1eWIbbZIw5aki4I0YxtzRckwdCTi3mg8BGkZ9m3Nd3MkmSyIMhSNque5Nz300HsKix/4+nWlmIJhe+DiM5LQYiXEyjKX1gMUek1/x6DY0uuDK5jlyYDk6b1/QJZ6GN8n/SdxRlZPzUnHwZhYCk2kJs1snvm29I4OLsejau2GMr3l4jDrGpKsWNTRbK/Cs8xEOtgdPRtb0QCI2BBn8NW/fZgDxiiCNwwf1epZKEOnPEZgmoWveDee7Dyhf6dFXVwy09lz7IFhkZrQljsnMMBTb/NOOTgLixUCYGAYPER/QjAkV3KWRAik90gCjgJk1Tao6LQ3TonZYS3BxZYGMQVGEWxTGnCI2wMMfXy46jsyJ8W19BFEnHLxO61fcNghuRYgS0YeEe38tNNpjQpaZcqEByYflBh16H+0F5j5+gRcggyt7/YbuDpTvJ9Qvhw6DQtDz3cTpbEcqq1543v+2sWmMyU83wxjGFjRvWAFbm+ytmYZ3o6QbztkBVO7A2qBgJ6Y3w63IQPMim+XBjR+IlUGY1/5VELcoKfxx/SEPcDb3hv0KRgp55Hze0j+x20eJGU/qkDlYQRROvAot7qD+GVC38rh6NpIbPU0cgoJZ8SYMiXDuUEQemZVouOwgXdlNdl7kvPFUOeMqnKv29bwlzrO29m5XOM8+E4uc1NhrrPCcM/QolDwunWcL4sIk43n2kv1Ila9idsDguXQ88WaTWNqB1F2L45HUeGS/iJ+8qshRjNR3VL3nLU1T3PtsGAFDd+f/qMSnYj/JzIXYn+qHwaoT94lvdm/4J+n2criN407VOi9twugNCseqrDNPmwdAGGrHmFYH2lQXhaTzVqsXy5wiYkFGmiOJlAGI+VjwRiyUoSGeJK+DWXI4Mp4relwD+3uYFeSXAO/y36co4YKSqTBDD/i/h7fn8BNamtSFtyshPNWjlWfyx9tYZong8hMVy+2UlHm6MzPxY55G+j3LDSGu8y9eTwEKKPCQMWUvxy0GaIC8Y8+U+RJxkRXiIF/q6k5y3eee8k45c59O47uAJWl3nLlDMmkhtJe6kZwNSa7+f6hPrV0OxB77q1ruBCL5h+gwQ/VIXVwFpawnufGiNpOQrPEUcPnSz+Oqi4g6ugrEv3kDZm49mA2TuBPTu0c32A/U2bLZPcDVhQvib2omJG7qGToravhMT4sW4FtCvHJomIFHIP8xiEOJEBnlsfmJ8OHSaBcouT/vNRSLD9O8Q4+tSv2Cdb2dE6Wqjoubk/gNB2hB14t7fhhCPSVNqzkOz1x8oUo/Vm4XdU14/sN+GWMPtqmiWhpCHVHkr17PTGBAQLl5wLbFoedMljjRCI7Nldg98cbbvx7IqqUttbZTmBRc5naOzFcO8slglH18KAYBg+msGMcvbn10e3Lzz7AChe81Y1H2/5vh6wkkWMoMphhxEezi7Lu43sskODIzkEv6UfNh1IiNxOvZOlsCArmTeiUP/Hp6aJY2iXGBMqlQEyRxkufsbjzO9mYRbB5gOftvTe5jPp3LJOrNz02/tDpnL2g7KaODHcysCMrelPt2Hm8O4ZbsCMWwiJgitByLUwPDALEWDBMDlREA/HWCjH9TDRqiLXgp1cy57aSD55snCxdKD97UJBt/Xr422jtOjbOZLu4nstSH9r7dfI6pxvh+oSzrBU1OzrUY9K7AYrFi3sUbEqaGY32Pb8PnzYyIRKoB2dCN8JZDluJUxIpJJuysXKyBGNVWwzh9V0d5n7SK46tucd4NTz1VwZrsx0/PSjUlhPBjmsz+94TvXjHMvAtEJJXbHrEfb62wcxp6CciJIAcHq+ElwtdV8XZFXqC31Ko117+TPMbVP5I4NTsH065A0otwH4VULQ4wl11LzpRwXFMhG5srIL+wn6Ty/4A1q4NvmAyPPEE3nWRVS7KYClnnuhDraSc/vrtswGzORwO39R00+rBGRPow/Gn73Cnh5FSYP7ah6B8zuRXpu6DogldbuVAs1gEOVWB8nB2CcmnqtBRfw/WIeexI/F2W/Xt/mpOTA7wKeTF2LMP2mjnohjNAhgVO1zyguk9ogT59+a9SroNUWoL/gyE5cTKsYP/NKV7Dg7YH2uf2GXGJy3o/edYXKk1MBW30Amoyz2Dz8AVAQIxQcBbTg8irI1jT4ewBNTu3TOVnsMV15weJi0PZOym1kZzYuBOxJko/ylaPzcDmrxhM1jIWIGjmhonFMx0kBsTnsv8na+EIKiyMuV2hYoOmWkxJveKXebpuOlzkDEPaj0WvwiDAfNvmxYVxMegiVqdk5L/2mPQ1R7aD2JU0plYc3UeczNxPt47WWzBqxhoRoJ80JLKj+2nM1W4NMicmNRbaTRDMYC/17vgnE+tbTT1wtEHs4E4jdy/0GsXGD9IanhqJYtFv1and+AagwC5BVkbp/z3Er2F8vuSe1zH1BMv6bq7GJOYgo2RxyTP18iqkwe/rqbbK1L9o9sqdgVMIfMuEFb2SLcdcyaMLLjCy0+5yLxDX5EyOGdtGP2UZQ9CK2SWlZWHS4bDC22soDk5c0MXUFU+qmDlYPYsVtgU3YQPjgEC18g896n9wUkC4pxkijzRQi6Va2AUtFaJmYOd1MrXfuExRPVUQnt3gWc5X0zCdK5gZmBWFNf+RqxeojUeBFmUdf9rr0DWi0Zyr4IryyFEL+1HIADXNsfpH3TItBC5KR0aZ4IbFQybpYlbCRkf5EkqHduJilC3i0u+1hLYXVnNcW7olFR1m94f8zd/vRUt6P0DMS3Nj3iuSYidX20KMkc/3SUGbMPJLr/jlE5nj+wZafZkPgurhQWJe+7yTc0kZdTuGkunVP1myLp9MCxb3PxxjM2uuABxb4EC7aCyM6rBNuamaZABqyHA+07JaSNYJq9S2TtPLuF1vbfYl8XFGCCqLj9OglnIyzpPvuIye3QRTW+3G0EBxS6m9E/pwNxZ9ybBPFDmFiTuX4KBgJCCCgM7A1f0ObIoomqkHjaiQ6PVPZZkDKCXsOmdr+NkOYHJm6QZ/hY+8GpOmllhDVA52wi5E8DxJJKIXndYnLtlWIaTgDig/CeELK7eENtT3MZMJOJIr+ye/Ma0c08RwFctvCEHGiWqXlmNHQHvgD43k9Lu7mt1OFOVo3K5ntsKlHBaXjgV4GeV0QeufntOeLjr5fb56bn2eCPjOHpXO9NA3XAieDrXpWJwE4VbXyrBBeAbe0d73e5M/czL1CY8dYL21xyPEpyo07Pd0Rk/sfL4iNgNlmHX4OnKXul9b+590vdf2ls2hnDUv6+V6yQ4Ykz4ZTj5va1SmMd2JI81c3NPhCSqFaP0JYJjblXjpvz8mmmD6ckrvR4y9Rnv8nroshFgwh1D6rdpbCdM0VoEloyDPenPSs+hVfyM9y13yZCnZdVgaug113sUd395ziFBwXCTAwVUwFaxvTq6PM/nRBqKPuGfQWkvN7Pons5mIL3l4JT1XBKZkefk5d8NBYPFj6B5W3zugRqh0oVQhLNZf3xeDcYu2WgwbNGnVrdEqluW4Tmxj4Py93Edu1nQIyLk0XVd4TxsJUv0Rdtv4TU1jFEDDke0S9Vd/9QYOKXF1ho7uJZXsE0WJVQSqTdTvTNiIDK0xHfnjueXmmNTXhG2435KMCrgbL56t2dBqQINUjqwJFcPF85pGY8/cr2BX3J2+jmsb901H3Rg+7ESeK9GpyTpPCTPrv6rAZyJrdZeDNxpdio4XF7LU74YTGqGmijKt4AP0IZp9NMQxP/t7IbrTnHS4PN5CigOTqEsTXxsAoI+c5H1GnIuQ2rxfAihn624Kfeg0AaKYKaqXA7CM3AxkTFx1wizgayjoJSACQ8sL+OIJEkX9V3paH1Cdb81Xpe3MCEm3z7Meh1CKIrCrQh+77JJfuvV/MTfwauspV50WxwbRKr2OBAi73iIb4JYXGamRpM3+h6PuSjKYXx4xAl+HHwBgfn5R3hZUvUmlMf5OAR8CVzPyx7q9Bej7ypeAYJ7x++1v/zAXTqk4NvqRMCAZKlSmroKK7d9jkCdJmQjxYi8qm+lDeQrRd1px9QwZVKaVJVijDBwtbDFgWZlFX73/YgUCqW4QJk/EHRWuGlP8fuRnbiQ6AqDwDS6dCcbP4SQuHAdx6sr43QjK9zndQ6n2g0+5babMEho/gU5dWsTpnaOuzy0R4xxiKghj3jdXlCp9mdcOZ9y9lPw2S83KPvyNaxtmJlYFMmvL8CA7Kq6JHEA1yCpffglF0aRhwgcvoIgUSH179RquX3yIA1HMweIaXK/EX6XuBxhbmjg6c82TbB2op6oYPLQRP2a/MHdb8aDDaEdW8hZ67X591S1LgyGkUGobaj+QFTNOthtqQfgPjqA9D2brJYDkHrxfvUTWFxIo+kk2vxwtK2Vg8dTfwtJmKHYdnS0I+sjA9BCFMtoNvCcki9/tV+SrjkBQzAdeor5v0x0F/3hM7VBeH9pqF5CYsF/zA144WcxcIrTSJeBUt/BoTkJmUpyyoFdAAa+9P4n9kHSi/si8R4wZbMCgPPHwJH7JWkaO2fu4+4LlTC++IT0n2y7sJ138qG9FZT+Vqq6R005pDJbG3nn8BswMJnfhcDJD6w6mCHLjuMiCONettzFopp+2/3HpCA4S+VYBQ2Fv1wohWacQZHhMpZxWEXHfe1+CGbDXZAZ9BWXrQvoKl0JOWtdHwlDqLMpZtwR1lHnAusmg+4gMGiOrWOg6urVpoVehEesVYsfNy1I0rcc8x1xECRD+PWu7YBMKvxraQ53jJNld/rIdcpvHLkzNxB/oX58bP8oB7ffKmfewMNdrwretOJCfw9Kxwcqp2uhPMSNwerb2UQUdl2iY/zsJT1qku9Z9/MQliUw71hWYXgGXyM6EUZsD+L3mpvCm2e6H6Y1W/EvARStyq+wTiLrqfCK6XP6+QKU2gICORnps99Xhpy9wWIZrCVaVJXWLnAgTI5Dt2D2Jn8eZUOiyWgHXNcgrl7pk4VG8psbjDy/954r97icsLt9+Yjm2c6Dl1LIHhDu+2lQRcsHb0TZtaV5KjpN4TU+1t061UsPxtYC3KBinmSp9OTJHyMcUXJ0AW3v4bIixtkmpcYF0j7wnGexiuUf2xPhfqQADcsOP3wtWotCf10uhX/7CTnsw0JrBNgb59imjl/PgYzCLlGlqU1j/0R53Y4IKQJb/Cr6NC7fFQl/TscWvvrIw9f9luQJhkUDaIiw99seBOANZAqjVZIrCvPJc00OXCqaAx8KyAlRNl0s/26LZ1cIH4KJm96sFtLnbaoz2WWWwcfbgjkeYGQMis1htvLhlXXxtEO9HRqFew6aZMlJO7ls7jx/wlQehc+eM7gqO6/98OfrZrLvpg+6Imjlwy1iG8oRi3o3+4+kAT74mbxdLzVO6+icwIEIJ+9mI788jewYRuhZ8kGOB+evNyBSE+Zlb+JIj9JInLOwV8dl/4JNnLwHV5/bN00HHwLRXtw1UzPzB84CoT8TNVgkBlcMkAw0KgF/ABTPz41QxdgyhlgChgoU0nHCYqHCuWfmt5vxNYrY+MhfA20ViCRfDhg5QFfds5xN2c0dqkNfItk15Q3UYRGOr7hQEPQOqkG0jTP8t3udxEuYX4X+JQ1ig9oWiL5j6zR73/CHvvapRmEal7mla84RmpQLorXEoJSFTUaZnMTJqagohyHlh56duZ/RmZbwk+dGIVwpMOdc7gIb64/biuKkVmWEfmwg2HIe0o9ilLp4HBwBmNK4wmvzzq2ijEjQbMQybpj5SdTNv4eTxLbYu/d7/l34gZcCfFIdl1Cdu9aNROdpjBy3ur/OtXcveW9qJ3RATWJmUdLjbELcd0sz1HBDE9M5IQADU05UYtqiBQ+U5n0rGBxRYmsbIpJ6nUjgcfAToS0sX2m/Z+V3byXlZIaB65H9gVTK+t2MuIb4mQrKhBDvTQ7eKVF0RHBOaq4fb2eK7FCxyqRPYObhRXuIehTLUJrgeF7okj0MSoCA6pNqCw02cbfanIPP9f8BO1hM2crBOilr3JRQTN5R+M/3Y+mK+9IOU2PMorhYmmQBAL6ThNTYq/egN7Wf18kIh+GV17whNgdGu+gFBZiLx+aaBC4J4FqtC53Ejplyx0wzJIRMte/tduQpb2i8iOzR2LybsUS39x2xJ42I8jBUV5JcA7E6CrMxZHVS5E1VHheNahK3debWtAoWgZ7bY4qnM3o/YHtoF5u4Km+d3xGhe4y/gMF7+ITq6rYaSRdRFLSQZA/npBEnpdOVAwq/sacM6QLpYgMYF5YBj0/KheNnhXmrBNcrlngaPhbQDRAJQ+Rx1DulVBofwy81U34ZkqebPErZZmwhDPmNXG2G1nRYoLJrn3lyeer9J13ejs3GvBYGUPJU2QvdPOsDM6XVr9MIBaT0eyy3ZU66CWD9VUt7dO7LUYqBQvedLtOEnj7oiuprdTReisvn32pONfI5ZqxQznhGi8uHNKiut1s19Talt+QP+GQWJac8u2z2iE3ng1nrEaQJuYFtsUpbOINTNpAenOvJ34Z6gGVJGFUVg6IZTZ0lna6/ikIFO9loWOpjgkCq68LvtpdNnVpKMlGxZIcwQHluxzCN5TpGyPd+OKShNdhIcEpj0WeWofPTwcNFKmeZSirwwnxQLvPperamHiha5yZY+yqE1NAVSJCbVBZdXaVfPr36txmagJzG/2jCkBFZFzOuVSoy9TQOs44TwGglQ5O4FZ4ic364MQO6M9hMezV7Hqk2xH3BSarpawheyhWLGGy8UiaeJ8sRsd5wAAf1gKWtTVVE06FlZDIp0n1wXk6xS6Q17IiGdzS9WnSJcfnW1an5S0A03mHGaYJwoXV98asf1Sk3iMfeB4objLf6Njeh83XbXkzLMEvRwSNaIUiS4NHTX1FORc9iimdR8LCR7Rj4LYf8LrLsoAsMTO+EbF7BMBMW/WH2Vze2747pzJIQcvVGO240xupriz3eB5d/HD2cE6qwrDPGyFeaDwhN01qVko3sU7y5SkLiq9lfgMXLnS5LyL74FmvrWIH9AIaJ6ckXHhw99oXl0JLNCmVDsMxbx2H3YlpY1VKDsk1bSZWnKyPQ7rQ5XHMcAvZup0dCi+o0H37Se3gmhtgEN0T8sRL8iKoFleDfet3LDxKpNl+w1xl3LTZXfejfjrNt3KGZ5AVoeYcnf5JtJ4ellxKrp4epLtvve6xWDLazvzm+rhSutPvg6KrGKB8ilfm+yQMKNv54OCTw50dKq9AgoFcCFz52QtjlMTFjvPwOj79Qo3kA31hGVf4z4/fqEZABK8kXt35UnakIYWvPILP5h8ovGppnpVPQJFFuEl+Ha2Xaczj0iQLy5vMDI1/q9Pp+OOnWId1DdN3brjqWnnq8mQxLziHZEfNt5mQAfxwEviZnzKulwY8ny1WZoL0m2NkXQYPI6hYIdKebOkLNBbZKm1BUf2tXyR0WcUmvJ5Vf9U8wA9cxipCb/NVUslqShIJ7j1WYhNQQ6vt3tv08jAz/92kPjm843LCNE5tGJre/oErPbPdM14wuWDeW2WvlooR8D4OlTYM9/s/pdjOqDO2iEG0NaQrCsjqtwHmYn3mGq9Cf20BbYIgC6F86pWwk2R2YLYOBs0K2iacyuE+fYs9UwLBhJapJwIIS8YArbK+bxwM5HYXlafblc+aHT+PggvrKGHq29zFYJYNz0lHJUlT6RLktaKii3gNfrEMHPDq05c4w2P+yzcYo7sFJgDSbYdXOo/4U0aOmjdW+pluADPEBsOsrgyJPI9KeD+FgFkXFQBdpkA9JF4ZoSVYKMR1XRoHGGBVlnggY8t3Q2tuIEpENQzgP7l50BQeG0MR7cA4sznPUbh1yBNX0eEMdZxOfyGk6+qBH2kFsB0uLzU3aS6wW1++1u/mi/LLGzRSF1XmzAoAB3oIzPgKUh+SvH+Av3y1gl0Xi6Lq+xp6QjnICUpuZSDVKU8p7FO/7xy9wncAOsdViBDs8UerEkfHsHtE16XgDHItfOyJed+DdHaX2B5m1CbM3arx0DDHonprSwaUs3pUchZSTT44kFouyB4AqBTXz3qp/GqE707EzGAuOCx/SQgSLQuoR8HwgLFL/GJE1qvdmXwd0p1xc923lrdntkXmUvatgawCVEsSTgwV1kbI+qFjD3g1L7zXyNHpMehscIoAtJFoTd4VEPJKqAlHw59q3eenqS2MwbbvuCVV+YCx2r+1nojUtnGWdyg4lntD2MRqZinDlzKX6I1bFT2yx+y3rqJg6rPIKvZYY9bL9x22pegufwd3GmTMSBLghyFEIC7EK9kKrqrOmXcaW6FHX5JDYivSDhm474khDEOckxYgowOhHuRKspa06vtcSd4E2EkWrHVAVtKYx0eBpIPFQ9IIZNHEpwNioY7f4xtgtrJ70MpbluI/E1Jejjqk52oHQhuzX4+Osl4XJtHTksAnmVnYG6EpQNEyZ+tqOCWoqjcPgSQGrmK+55BXz614e+ptfbSk8IBfDX1j7vw7jHx/BrL9YLhe2lvtyVFbMgAf7iF9DwgOyCF9qUImX14virGg2ghzVsUauaw8cEu77xAQZmcVkyzCZCIIh+W9wFVwWqo1dtiHBPQDUvowMBDFrY3msiVIKV9fkuyrtQc05UYKTidECN0OwdW0VI/o9KS4hp1PCF3/kSdkhO4emCFZxw42dOzzlE7hwSiDJDLvDAApxr86iF6bBgYwNmE9JIpD2HmMQKl8EU6iSshlICe1n9VMBKwYHvD54+pVlhgJedGuHF1EWV9R1us2VbrTDfLfsvDBAjo0qBUU2sdVFNETcEoMVaqa9MGhPltZ12jDOI5mvaftAu3x9Y2cT15Co/JQmDS8cNDTivLPfSDobRCQGOGpVr1svJSt/OIlfsb4P1/pSkpIilH3OsQOwgGwv1JpyWR8RNW2WX4qaAcKSpMYgeIkVw24gIMlkWVnjiZrZLL/Xg5+o5OYMOjbvGiGVbvccM3GLb7acZ8i8QmVjYJWRFT5ni979iZOmw54D7xx/KfTYFHZh5LagThZ+6UGqJHYr4OMpAO8SbEKarapVPNRhH+5Y4BigZAi1oPzIhnmivuU/ljJzVgldQYv9/1ZTVK44pwV82pqXFFf5GV9vP1ZWg9InVWMqCmrnDUjcVtfUGaRgDemkIN7lJ/WGzm2MP6kaOjdyGaqPMrYfzI47oHImh2r7VG01DTCSCdQKVgOSW6bm3ol8Q7qkmgKDbHZpwW/LoLOg3IwntITW3daRX3AUDJ19IjGbY9zZS39kqsdiKt0ALamODHg+XozbmA59hithxjmZdLP6fvOXGg+lY02MGAbYxPMQPq8o54D2GAn4Gupdj+PqOkV1MEiM/1oYgBTJxOvUNReIIpyFF7wnca5bArgeyhTsni3iPIRv3llp/3DxHB5sFckxAQ/hlURkGNmHQ080w9AbsSfUUEFpI7EkgAwYlYr9cCQelCCv/jTElbyJm+JkV/4nlG+TbfoIlB887HvluoqGNIU6KW6WrEfo2ehKhvQrjkLERZkV2y2xyef/L0Mytz8e6PRK8y8sE7ALt2dYG8bRqNOy5x8usUSTFKTRDhHUX8WLD1Q3PLebh3jt9KfmMDr+LHLG+e94oIwgHx4oTEQWGxFjoGsndALsUlrYkwZDRLm9RpxCXCN1WSlH1MWVRWlEdN28aC42wggJVU6o66yHGf0j6ofVSd2vRtZLhiL+JrSo1fvS6qlgyK1w0QzsNjs1sRhuKlgnhKJue2ogPcyKypAFMSAtH13D1/FeBJ+OfBZQU9nirPiIWW61SF2azHdABZjCnTfhFb7M83K9H30amENJhUe8H6dwlKS3iwsa212vjTcdDwIJwOiAH0vMqKAuMm9Xo/qY7F+5uTUVsjtOPDCl9jOmmoCrjocZDjiTLRiIX27rOOHg6c7y0NTwkBqz8o8L7lLkZk+duWrRq6rL0uNyqTeiP2obYKVcNNl9pSy8fBijarVK/1Kz47WWSgNaTXt96V7bh9QVs2fo5X0RACbhUJNeMwNv6yIXmdWivLLIA1KBX+sUeyXOMiP/sukhM+eAQRVzUBFMmbSgMxXqalouotT38juMl5v1YMeq4sDsBj+deuNNlwY+fWU2KOhnVYctYLmAGYXkXqCbrin8PTxPe+JA9xbuTX6/9QRXiX8Q/Jru0Hl/T4MgfCSUKiCvXpRsS/ZbLFq6DlFP5k1c655a/xKFFHW4yr+KYxUdmWjjE8VDN7MQQcfA81nZREJSgXMDkKRD2lcs6Cy0xGhQgUPchUgVs8Olz7Zog0sUeK8oOowz0QR6gdooNhcOrNXmJYmI/XvIdN5jd2butSzpa29TZldleN9wImxxu/FPhfRCGL0bt9khSarpB6dFlMOHxdFaiWQbdxCroIxpNlt3ZnapRti6Y8qHciflYuxNZ7m+x/7LlFdKODepQSwIy6FnMGC8Gs2PqlMahsU7g56PgysMtYMAvEgyOxRkvqfQsfuGnXmWSPTYQ45Ad0xhZqha/bAnpZqi7rj+tJau3I+/vEk+3ZloO0bQOH/ViqGHCN5vdxo2sEVvtCYPl+vhKRb4GKPeVwO9mhBAUrk3sHfGfzD3Pqk4k+4f8Ohg73hgZhKk/kc1hES7c+qILtePs5ItCqvVBHhyts5XqbmFPVdOXCoK1VoFg49vF8oYW7baJjYQE5w7T0n5iqqiu6NCsJua9YRM1zRASoycZGKbS4iE3tvTa3lZNrI+Ox+Xyevi6yaa1Yw13PZGrld55aoTpmWxeOw1Js+gSvDymJiqW+zZZCVDR/ncSbvgT8mKtp70ixMqHTLKJZpY4yT3UrRWU+lAl3hWIp5wN+u+V0ETiybTPhBzfsojtn33xHNY8BphjklfUcJss2na5z4sqnaQUCyJ9aMtQMoN2V5jhheYl/JtTYVjS3TTtP2ffpd6eHCU9bTV2Zuw+lVanCuNF99wdhgTsKOLFkhfmT1NUrPjqrdUBGPh5Sz0q76atnC6xDOoT/It6eKjAaQp/FAJyxI3vy4Yo80eh2Ccqr+Xr7hPfzcHxY12bu2DiYVT21+mEx0Pn18T5c89Dia22u7jJ2/fSRHddcZli1ck+3fYSPT5h+njUqA/ebGXTyb0rAAOwLzAqfqcEPwNl3BfyWD2jZ05a2ElxguUqs6cct1EljX1AimgLa0k+mvQOy5q5PQac1N6oWGI6ya8Kh9bNIvAgGX2K31zwNZSkAudrmAmGEK3eWTY2UHSQBZZtkELJCdac16bbLlhGmAajIIs6brswP6oi2LUEe420UTn9b5yHNbIE1vLe9WrEvry0ihpclgHxjG8XxgCjTrGXifokGQoRDL84a5pkUPmaYBbSdY4CbIN8xVdIRG+6IyN9O21FTqNv+zxn+lkx0WNb9mUg2wdTnl44Lbz2vBCn0FK8BySvhLyHEQ1oE9vnKNMp8xZ4LXNoJJrOUW3Z7397DyfgN0cHFUnj4Xva14atFBH5EqOhlT97NIo6HiiMvVD3dqzU5rRBf+JFdJbex/U8JtxMjrFRHm8luA85y21r7xblclNqRZdJDGzUveu8bMD5QggAm5Ob1PoD1hKyGQG40He2eD8Q7KkPpRnhGb2clOlBuWHEE0top1p7m7rurK10E8baQvrQLSmRl/Oo/vEXm1PE/t489rLYSft5LaRxJWHn6G1wj2q2160c24wsbu7Uai0b67l2Vzk4rdLsNbBytSI0D/LYdDDzRnTVIF/wj6iJBZjbvkcaKaetYMijbwgg9SwRDFHFu6lpLRPhpBRwGz8fJ/GSVeZU1FwZ/uVtXoYG1tadGNtwrkTYuh1CI7/N2+4IPEVVnH9IVCL8TmF18ogdwOY5TIcgHYRiimM6E736IUSVbRnbZ2ihhm9KrRtIg9SkSvWbn4C1TxYJ5Bu84RQ/mXe+kUgNgBskr3EJ6Vy5IfqrsRXf37LJm3GNhngK9Ak1346Tb6DMixzNKmypWwpAESZmTQJStCPaYVjK+7B4x/1RKWY0wCwrdqTUJo3ySdOl3xtxKXgI+bp6xmvESyH4d5/OvzrsIo68d7sBjHA8x5K13tcsKB0kbsIJwBdU/8hhKEQEiGvd/qHw7q8nNc6L9kRFDc7wL9qIfUmLii6PPSNCJXdu/+0E6KO7O35N8N/nyXR06OJ7bvcJaNLo2k7HDcEkKKj98eGf1Ex7gTPtZWm9ebQcxtAUTi0mOeg4O33dSXYVAYx7Yi4ucNmhXNPJtwvQvy632bicwfu0zOu4TYg/C44IS6LH9WZ5A7Mll5+pdh8P6z2ZmThtGcLHRzoevyDPwLvBBq4yKuHpFHNzEjEgSZyeKDaRx5D2btk8SOg4TKy50BAGD3aq7CM/kGy2Uce42H62iXFQPxaJygPtYU1TMdVzDbMZe7BL5B4WSspxQIo5cAG7XZNJRM7HMggDmc3Uo+IfWCAk4mRfnkjOgtmm9vjoqiKTaZqMiBsXxA0BXWSDZnuOR94NcgXNaK8yKhbnaZ33BYHo3rAbLHetyhmClja2AGGyrtJ5ki29B4npIWTdeCcfe8OEZ4qqg7p0ONGzbxHmR09F2uzZEo8vX/5NtFUbIs2+hp/qNOhxiVyztxcpcKSO+neHazKYCgLOi/lGKzRdRBRjOC31leDL3F3+0EeW1z5sdv7PfdJG7/H4geQRC3EpNhBrolUmjqOEE1vBmhMZURtkC9mS8aFVANjrknGRVQ4EpL29YViTb+mgeAEADIIIWm97fzd9iE3rSKQ5zNV9jBYn2V+oqIxyKdYSjflXL/d0ByUfAmBBLH4NQRNOIAqUIMKCCWUV7S4eM4msjOjdhaLKNOmRsc6xNA8hYJijXoe3foOBPsw/lYqML6wga1FSG+l/PY0mHIrXzz/rP7z562roItDmX8FHnMpiaP3S9tE4KWnXaRTtvQNWt+xx+uVj/VAnkxXmnTCTgnFwtIqFqUA0AabKJz58phKzniTRL798INZLsk2mQWZ8IYR+7Ga8ZHGLXoqOfS4aXBKfPgHYS7qwSCfg2pxD6xMnxVjiF21xY6G3Fi1cSk/l6L+nUpAVdO9vimPuihUwlwqxKK8SixWpPTgOZDfBrGO2qY43CRA1Fy8Uv+2g7SmF9MkN1CNJgm2E/5UAVTEIew0tF2uLyNqlgvnchC93pn0u1mZsj6BntmrvEEcsviG0k/TUK9USI+x2eQ95dcZITT5mJV0TT3X14H+S2WZuSwDBot5FBDOH871P8CkNotvB+QNuspyV3UCGsZoxVsAOsi8ODu0DC7GjeNjpweAFEurKGH9B+9A8xmgJxFcpYK3UTtp00Ye0rhNMpELvh5kILO0AESiAsbVdqUPjvpNKlHKxzhuVeX+yVvEFJ1S5mAHZJdHWU5JF+6/nG6fVAkIlZ7R3uvu/A5jHC4EBqZgpTQ261wkxrPER6Kz0ytX8bSNE9V/UIrTEoqPweMkGGpUB1LGL2cQCe+j6ycXI0ooPTtJh2xS5Ry5JM3ofQPAicQavTKJ/rVGgHUmLRWl3bgVVHCtoEioDGzF3+dKkxbFsMaO70g3T10l3RNHkpltGdINCbWJZ1MyKp8cz3DpYwScfIzRurmJdk99/HEwTsIil99GlH5qBu0poTsI/ZLw3/P9rn7694qIhvKOV3xeEyrC5z00foDFU5KYge/mpEo6XZw/Fn7nMXU4G+SgOCnVPzWlmf1yFtAy17gK/2vNGGHir9M2MJ4xJV+7f6T9U5c1JMo1KDybzaHXLRd4tWknjGyns6wYuV0NpsrYlW6JaoELsbab+ZzXJU8eXdJ+8GjYxxCWsWTn2LvZplte7MPPOmfJNulJgfBsXkCPs8eTRu8RYu2F432crQNVquGYRN9IE16Gjwyc9xUOdqYzyKGyU+iaF32+cH0fnqJ4gogyFiMArtLjnRuQW34iMdpUKt15WD1bFIe4acpvgrLkr8BmAdvbHS3B6DszRj8LGabvZdB8aQSr5URVNDeAKJWhIeWpvYinjBj/kn/y+XJsLx3OkanIYsUyawmDZdl5Z3cMuoWttER2Ojkgd6c3HnRLmalIcCbh8/9/MdP3y4x0m8kEzpHWDLr9S4tiG92LJvd1qrIfY8IKyITEWenlPSONKXypoZ4VcMQ5y3pVP1HA8Bm7lG0DRrZVv/5b+nzv/LkaZj8nAopCB2earOXRFUASyXq87mFyKPOuWrJryd1JmyRmHRdqX7RtONjaRZuKtGWXm9jKFCTmwSizJFbF0ChZUNIgZ+uIx5UihCGzUheSxwNL81/jjMWSJ7DLZDNvb9BdpazB02Jqyi2URhQYVaEwmBd03ozoW6KIJSwG80IU4tAUnYSvbngOUiAPsdNj+SNdAO2th1n2/i6qDMnU5R8QVRPoH9Dir7UMRdFY/WowhgxdAqxOLPzrojjhSoV+3OpVoelyUtZzZKwlCd7aoVBkp/N/LQWuFHM7YMAnS+G4BHhdTyhzZDpOJXXie1svb2M5UJlEzOd4SJUZmUi6g/NuvMKwXoAXb5zHYNxEU8xSbFwHvkkxQZa0YuFjlW9jGgWlXHJVktEFpPSoJsRJHh7jE/LD0pG0Q7ifRrK5wydMC8RuqZdJ9mqYrLmDcM7/kSi2E8GXIQ8Lm8GYmrBHjLPGRiDFMad29WMVOXpeqgNO4kUVdnAvvOFbm80SVQKk8zG+zS2KHeh0G08KrqmqbFJz/gyNcWGGxotD9UKB7t0w8ppnR9AyNePIrZ+jydBu2lTA9uBl0kVKxe7+rC4k06JeQ6dFxU2cKsF7GBIN5i3SOnRVB91t8OYaska5qnSB/pkeboXtrbkVRstgpZstVKqHeNoQiOwMsiOX9TUlBj+B04Sq8jTKbJ2i/4JC7t2DR3VjgrPgukwSdHz+hiYRx6plRuH79CJX2m9KWZRmYoGg5lKA84l+29SEsteILH4azWjnmJzQNELVA+66O/1yPp6dKupw1yQABGZZohp3HWUfZ9bIySz7xtbTmVgnbscTaySR0QldB2q3FysxEeIe/YEI3i3evv7ZcmtxPrP/e2FYwPcURyRkhErHrSUfp4SbacHW4p30EfKh4ZQXCtAXHs2rXkonIS+sGxpKz3hQq5o+uFxGqH9MeIkqQWyQZ6OszINbvv+JXybwMrV70Xp4afQZ5C81k2gj48dxkgSrVLvLnfNdG4A63vErsyU0E5x+FeVAvfNgUJaxdLC1ST24ePScsub7m7Fa9P6KGP/He3zUx8DWtnC4HCVB9zZrzhwGIzWOMFBaiaPnyQQRp2DxXdC6x8K/xEzUwLJFc9PdzaQQEzmKWVJSrONb9nHbiKN5+3PI6PsmB7ofhKD79ythWBwaha7ZAVZN2N1Q4L7FKeKPV59yD69+c2VM67Md5GI6bZUOyYOQZlph+t3wzAhS6AkdNjJ51w8tM9G59BZO+ax0xM9y0plCz4TFBLEL9ubILS9TY6BDG8bhUNadiWmDz9MhJUMwBHFIRSP/yzOIP0rehF4gBsC/nFgbm/bKCKyY6rjfmPgdfGofRKLkF18+Jl12IKVxsGstnnSGuLyh+zHQcudYuFgJxqBsv8hkawkwov6KglUqw8HA0G0iF8NGTFwGzczpdKp7XZJhjjS/FVNWbxnoxMBzo1r5WuqTsQ9NxWKOcyRNTBhKpwgbY3KQ08khmelusmWVXzoj62ZSm2Jx/h0uAOCDwEeUEJ/uLA0lQKUQMyspybaOA03CpAxR8svC313feEsK0c5VTVBhSWWvdT2dmdmepaZhrUqjJfjovI6q85OT6bHMC1mSU+HPPiLDyhtVIlz6X8NNg8f0sZ44aBJz1A9wSXMtx/zrGzmnEMFq4ZZQmGfvIz9o2NLDeGF1vrnoHkM7sp//jFuWi5rEyi8st84666XlkkpU6pHVsbzhnaWHIuVyLiojhaS7k9psx5L+6wD3nfL0xTq9uGhZJhCum3D4gwt6ERo7kEKVsFht5H+Vo7A33lTNF/Bz4l/7b+LHzObYtueOGWNtmqJo6uFHGhVoq00CkFNH7kyJ0UU7CWwfiEzTrPnK9CvkiqZEAhxgm7yrtX8Z2oBv1oFRogoxuYLQ4P71bKFnNd811/WAxugXt2KvmIwy33u1Gp6toumDW0K/HiPTMXHATkzAiPCGBSLBQ4gLnn7iTP2zY3PYT+7lgsQR9lRYeibkblx5l83jC7aVLglXf+jDdfDfjet2ApeQi6yBS9LRzfde3Z/FDXLcX4yueon2kfmntQW9AaFyfKjaWD5ytKGqSsv37ASrrP20+d6pfd35YeckaD39qaX6Kg0NU7VJ9waj8t6k4B10QrHkFaTi0uVRtdA0NPCT8ZpP+jDx+Nv/2jEC8miv/PGyUm4qW0a6f6Ns9ebXfAhrZwyRHujMtM3W9vWa8kB2edM+UBVdgi7Y3xCde5w6qcnxD5VB35ANB5WocM6js4137+2IyjnkmsCXqzAIE4NxqcGArik2U8tfbzBwq/y2dBRm/yosJ1cGwGyTphrFGHHKfOWy1KL9LTCSyGiCj0CqK1LIFxI96azO2Tf0sKZUX6jsTV4MmXnufyLPSxnawiWyb+iBWpczKfbUBf43LTwwu3FI33LDBvLnVDMsBsnR88CeHw/et2y0xkRu0nH8EikrmVmBpAX6gonw40Vlan9hwAVnBCicj9hMqImC4/kN4lxVn3cnG9ctV9X3OeqEX9zTj4C5nn/fBk5FiH2TMo0QE/FWqzrhmUV+3k21ZLh1eRbxChIDqThukgRXSJIASQJg+LX5/4do6UsRdv2o8l1uJ91EmSFNc6rq0/6TP0V2gX4RzPux8dO5NQP316E0lPLiTwaLof8Hla5b1suWzwwgLAARE5wVY8YH1mZ9SGzx8iHRU9Jm4iuDFJTgZxTbcgkyGf6CI64pWLzDoa/ZnsRp4SHaaz6iwv6YKoLqv9IsdRwR1evrCLvQsPVn8poWPzerUkvtzYQ2ZBMgrMzatXHf6wgkrI0LAulNJIKQxwwXxrZUPc0f6RhdU2NyTJ9c/yrp9aF+Qx2eaYTXe4orudD8rKXOYWL0IzVHBa4Mtwt3cQ/9PnvF+VWg49CxdZHTABWMvOC0dLBOhTKpQlvXPLEx2KPnAie27ieG2v+FdWG3lanv2X0jICoAFexze35qfVQ5niORxgRt+0uzTtbv8cn6mv0uTqvIdLbs9zeruLvRzMlFo75LDTghn+n6Kl392iI0my5kdfXTMrit1zxrUgzf4koiaOF9/b9LQ1YrXRZOFr72SefBgBlZFnPGtgnGJ3RGZEqAbWreZMtVLbpk/B+PXQJcH9C3wkEHBcF+co7w2IahQxR1qH1XNiY/EjFJE57+ObCL8ezx+pvtWplfkioA50tsJcFNi4ksVdX5L+MwJu1CA40V7W7fmeHa+bgxRrym9CV8ApWGSsh+MBTEZOL8Blp36SBXytQtXOj5f/LXHnPEA8wI1MVBfkp1xPdivfX1JSLMScu3vbbaOtXq5VGxKbtF/ooe54wSI62gzJnCq0w4mX9CE1kYxHv/iwFL7zeCCNc6h3SWfqepBL27c0AjsbSdnBErwRcj25BZwb8yUg5X1XpPeRYKP0v8t7TqfoSS6bYF8mHuQCWd9LgOvaWVkz+Xkprw+fI9ooKFme0Dyr4c4Cje642cvE6OplvuzGJ4CJDlkZNqU9zxjvAj1XDX4qgkwZMjiwGN1+ioT5YO/0LYb4eFtxFHzW0QoJJs5zd7S5FOIOpF8Wy/M8W9pIKehDtcS3h4UpOLwuVgfRC+1AdHBc4Q0kst3FhimQXDhK8oJ8VhH6hs69VFvH4STo5WRQqLC/727Fznf1e0POLX25zIkjCubdGr2j0fwlB3bh3Uwjr1Je4CV3yXdwD5VB9EgkX6mXnzn/kKeYPCNTB3DouKCQ4DDOz0h2Yux4Y9t3RbKGqI9Q/xTOZibLvbXZB13//Qe+a697jf6OWgkOwtLwhq5CGr/pjAfyQ1AmgUH97oAF7R+q3tXUGVQAhXRILI9i+7/b8BuzweX6U62EblEheMaVzXYoz05PxoiVublIlGwTUKu9v1ew2VgoCiptkSt3sV0wP7F/dI1EnyfQR7LYx/BZdUg0ZRw7u46oJxcQj+WG66/7hH5jKh/ompRAO9rHLM59DgrEnYpjPz3vxDS8QAmHHJZ85UCHA2cRTAE3wudGnTfknpuFb6/C4Jqh32JwFhOTca2u5TlWr3K1Bh1E0DS0IPQFlqFRDFsQVw7Uyl4PgAv1afzYlQrrZcTsy4NaEh0HUCtzo88KBrdZA26b5RHUAIZeZgKZrIdgR1PxOgd8RuKFIGaUeVoXtWbQMgUxXl+Ce7q+32uxDzXuz9ejKnlXAt8JLtVpRjO3yhVVB1cJPVB76bzLow+jXKzeVU2+gKsBX85zA1gg3iN+7m53EB8G6p0NHkL9gz61591VowtqBADwelNeJHdo53UjFUwN50WimlsS7rmFEaj6CswBG3jp8hFftdIA1ozcGAerwJnjFvRFsyUNcN1L0FCTdfgA5Dfw9yzGoWwYe7mluDplBlJK3tHisuFSFlT2wqwfucu3JUz8unQlrgbsYZT+Z5ePBkHPfexxG5Kgo9RhNkxS4ANZXYLSZsle4As6YZRzsnlTKj9g6nk47/na5qY+tSkcxkhtSXaMKpnLH1IjrTXFUWtG+txmcJ6vlfzTWoNL3ml0wpJks9lF95jyMb0ozprftoeWVrXboCzSN0bwwtMEyP8C/abthtx2fPZngdsik8ZCDz43/UVsz3s4wTCWyNpdeyzbrhSXyjNESE7E3FFJbrC4aj5FjWvjLQ6EV64WVwHx5LbShm/P42Ee1tdJKm1/INV6vR5F9r2wGObOV4rMyHwvTe/fHYWPTsVyz53621oo+IagkzsaCNgwzsoAJd1G7TdVvBev1BeRSveIIs5f9ME6uXSC8vWEV84xSG+U+aPIy38fzuJm/wQcZUprZerWWYcJhG9KeDKsARyxvHeF6iudCw+FalUC69WT/mQEp2XZiLyCVuU1tC4G5ioL+5WqaTLzVx5aORCL0c5AT/6NppyoJ8iU0WCOkdFN/iDh1ZU/TzDK/Oq65CtVedloZuzXiMSq+UnZkgY2RsmbeFaGr1ZluERnw+SQigxX+E/+v9a0+4ZkrgfSUzGjlOePGLqp3Sa+3HuXzFckG8qOyvQlosGgZlcXxgcY789l64d7+iCnzSuI66ZA4Iruq7aDyUeScn1esbYuGtkJSDidm2mXXhzVWCiZnQXdSvbQL9648iMhsg2QSMxiQ9jjpVhTBy2kn/asMAaDPs8x7yfeCQNKOfFVfsvPVH4ulp0VWLimMEEXYbjsikRbgWPcDLxDHn+vGJp0HaXExAo2N2FvTCaUzdh+frLvVdPz2iWe7pXDmdnfks0guZum0mCkVWDFz/5dOdtuUSq+46RxkuthHx0tlAXsP1kKBnrFBjDffpCBDRRmfMCWnSxnYaLMl6d2RU0VJdxAi2V6fpMdW0DGcy7xqcyzO1yf1i47r4mDplo1Q3ofn8LJZd7PX7GNG70lXWLufRQHfsmifjtJntlLMZyJH/I02mihwvq+PZRXir1eTMe9mIJMXMlVqr6MhF2vhMtY0BIHbhCHV6mZobj075A1MQVRoTRdQnsc/SpFOzcXQqWeGi0eOhiwNAc6GQZWgc5BBdCGweh8dhxvNZv8Z6+lDeKRM+H9TX1P+23kq5amiSHxRmIE8/HCDi6yRCad0GaURn6FQzKEWnhFkMKMsR8U6Rd7fce04JvX8Hui0mdnHsgEuQfYr4AC3GUyCiRd6Jp3PT0P9ZNDDk/5MMDcnPEyq3m0PiY5f8LROJT5jL7S+007QGJWd4NkyNhdreAtlSqHxJQyHQt40W3QGq55fN3kX5vndhqjdUKywogXuQNNbUzLyyKjlnK0+uXcETnCTIciIqIHfYc/qEYCtgBovbOghW1JU43P4CUwXq3sJkp+mQEiEpzJyBJxcZWCDnAks2QeL6VkQTlpXNqrlCLux+Nlg6f2oZkg+cH9V3s+ycvEFe7E57ijdanj8uGFdAFPD374mhLGLKkN9450PK9Om6gWyne7CzcnU0R01n4uNIKK1lzvDsDiSzKJPk/+TkyanY17uTWDlHeffxbsryoLMvo/iOlt+MsRv/nHG9/i526HJM/rr517+MV2+ewrKjo8DvqgdE8g1LnrIq6eJGPFjG7MV8/TY8PyfIz0OiQ1oeL6MPOgjZtavxVqcCLfrp9Vx7dbHZUwfqg20nxld9PO9S8GR3A5nyzAZnF7uO+vahChlPoFJI6+2QSoZCesCj8qOYIbNXApvM924aRYMLQxZUwKvlkHPYq+/47BkxYmd5y/LpjxEKOXfJx6Jlv/viH5zhprJvQ8ZbhxzC7g151EN4vX+P4LX1CcETzRz8k95EKAlHMOIZ/n1hoOYCyBco0aUBkAXt2TF1Tm01oacmYCV2OeMergSbC7wNOyvQ/+8eJIKRz5UmFjq96p6iwgJ7Shqcwqzu6o5M/P6/1BtFPdqN4zrFkzbxZOcN1MLFqRrzDmudM/oAI/iH6jV/2gBwsRDYFntexuvTWe6nvqHbUHTNdmKt80Iawk0n5U0nKrd9OSCuBNi821wiyaF+t6dKOnYhvFcwgj3OS4jEsgbPlvdc5LAUJ9CXTnfyQ/cmB83qgox5hqrcVqicAUcBvg+bE+Y4ocYj/hFH2TdbzIVJUd5H20eRvjM/tOSQQkm/F0omI96haZqrEx5ncAe6kpW7hJGmnCz+lw/N7K2+b4ZvxadEGMZtM8v39n+5brDcztImf5sB9pEFMVONn7BQ6W9drhkxmFXVS/2v9LIUaSGL4TVJAN1MZONKThBodwPGSaIhW8VCyRnO8kIHt4FuXoqudEDzxhoigvn2sq9c1iZZ61Tj1uILrYeWpCncPEHQtU2vjsFwzR8iGZSAHpZ0BjqjzoIv29vNEXUbcuSaRTYXTageZ0Is35l1XqOJjOYXRAIqwB9l8bJfHVAa2RZ1eaHYnLJ65/0o+T4ajl5GbcfJ1bnJMDJjuq8Eg23SrqhiEj8hmH9bFG+6p0ys1FcQPItAztiX3Gg0nSfG+C1qgJKVPccGvxLH/386m7MMRMhqNHpxuvEsZVAvQN+66+LVvI9f8EGi21VMCbLZHbx4IbM/5qz77p+8yewMoPbvt6AnKahSdRdfIK20d0sDcUERYkh0pCQUzB8w6Bp8SfuoE77B1kMfZvgyzLTDHYYjSo9iWPpAucAmhNRPNH2icC/5qJde89luYLdap4QHHjdqfS11s1KljpOgZcbjMAUre+jn3HWlJ17+OnzsWV5Dlmr6i4X6Lj66sKqI/1j1gwTLlEadgJLzeKMjX7g+GnV4tiucOLlYCV44QZmAvOfXJ9yY7cpUfJxtujl72s6/xUJY65Fyr5zGO7MIZVq7nm8jypdXsAsnJbxbpLmM2k0v1Zei2OWl9AbxAw89u7aE8hQNzGjvK6utyhmeNGfF/o4fIw50chp20UFKPnOgF+JMjcwZBvV1ku9GtnoVt6N9KotY0LoWMYkuGnTD/6qTaRUZWptvxIGnKTmP4UjjoIJGeC/Tzk9ekduic8S3myKIePReXF5ydi7nBHlqCGcKsI0k6IY5T1qPD6eJaBbWpSYv1UJiz3VajXeYEhngsWmimetjecXmKR85DqRnfBRRBnIQ6qKRpiR6ENi21kEO2Q7Ui5apjT8m4P5O+Wa2N0cCuTE7QWLUO4dbvw+kkVwIBR9n6qkpM0Cf5SR4fe+JshQ/Z1+SsyAnXKSUthI2sEBUWOWTrZUGUp2ykqzqDMXkPPpvGoAK/YJ7l4RsKVSQ5pWfNsc4aOJZn2S+u3pWzSvYbXbPuWe7vdhYCudp5SiZrHz4g5zg3yYURCsdEMEkSwTfVMdzQzHpMHE7Y16LKSEUtv0px0zQ0qm8LWdwY2Od/ibjYYyMQK4SHoBsykgsWk7WI6J8Frw8y1pE2Mw5JQMLrlZX56WrqDA5DxMTPfEkQtpqwNOzMuljRQasybVTmD5W/L27Ry9x6wyUB/nsiNMx3L3Y8+zdbV0N7dRKBsCbhL7mrkiSNDPCvgCrlENIWTqGN8dMTErZidj/0pYMZgVAPSbTbmPJfVZQQnA/Z5H2yZ7gOKgMHTskgufto+rOx1voOd2Mgt806mSoQLFUwC40YqkTZDQ6cVHu9JWp9guyWcbb1FxD2HSfNQE6+RNk5C4rXGOlW9XGeayZ6PxfrKw1MbTCRRQt4KfYhiBNg0oJQJVZ5Y6SLWez6BtHIDPVTsPDtlCoLCm3WFJfiRfXU58GQBuxy21rS20HOd/fh5HwaXe9LA6zBdvO0iIi5VqmsqgZBdyYzNJLJAEWjjgEtGRUWSVLnZgc1TqDAPwstHUNRPAAh8QcCoiiJKRO59cJ6mDD0xGT7wjVhcl74LfNS2UMvTBOIP3GYg5kTbicH2aqFncuY36dI+XlnX4l6c5XqbHx78GJAjKJAflZrVVZ/+KMgzHyQCBGcdRw9r6hFo2QgqSSZtMJR5C5PJ1bEZpHY91XWU+xSYIGsqYgoSB4yZ83/hthQM1UUU1D/Js2LaUj2FxgrJ66BXLYD3nbmN/+8CVhjo8YjPs1rPhdGaC+Qcqg+keseyxNUTWWUSvUxR5+BEr4vQ6bY4/YT+wN/tP0VO5nrtmCz27rXH4QS22AtZrPApAXdCIaATKAuEGfeDHJbnDNvtSWOMUc0kquJ67WqQ1RR/qpG1l+em/jVZALS6TSy7AonsiDjii2iTaOwKDFFuj+hYWTFEWJF81R4Jch71ITmm5EshjWQehqvDfEZGEAUJQk0XO7BMQR5cXaMB3dnrm1ZbRxsqvwnkp9/Q+MFy9p//p9y19dtDhQqhuKyXr6uIfKUHh4WgiPdttzABAszZGXvLRIgMV0g2p4lMrhi47+cWU4/lvB58WCZJUfzm1kpOFgBZkazfeUJHqBWDZahqxZcTXFrAQlH+us1pYu0aprQKVlpA82eY930jIGnJxHlLpUhS/onL9o7pJGGGupedB/M8Dj0ZZARNH09WQc7ddbSYJWYqTNQna4RZQ7urifCbcI7smPBGws/vZDItmq1yx74ApkyjqPYlOweElGFJBvxTeZ1Nf09KfUvww8p+65PG6s0ue9neiCrh0xOqCo9j4GRtceKA3/nYO31kwj1PfbTcAy7veTs9VNYXVuSHv/lR/pmdN3qGj9ZA7mL3hegdK7toZKF89LFxvvHX7GYD0UQWEe/a5Qyrp1JTCDmKSIYLftGGYWzqNWxlxM1+SD3ZJeoTNuwE0RxtwJVws0ZXvGLR/iQ+OfsAjgg+cmwPA7Dzn1Sjt7SGg1HeumHVsrhryHnJ5JajSTMD4AWzxp9Yd4nZSaV6aLUSNTHfTvBL91gqx7HOg8m7lTvGfFHEbeFEJHNUeZHgWjKPBN1I2gsYIcvt/oWzgRQk6+0TOOw72mX2HnErIzTj+Euf19zZLfHcDeja3sgh0QOjqnrVU/p5MQG9cfp5cSy+ljjW8ZIWItWIukC5c/9Bb3UenYDyCkL1me3+acpdmYes3oDKMMN1WyHRKprpiGqYErUnUHDZYbIsf9QNDi8RguQBndHNBYKFWCHzwA5iDE6r/fk4xiSRkxmSouOLyDQhu8wcichhopJBwUmlukSmxtctU97rIgzps6wYVbaq1nFwnP8bWmCg/n9SqRxKVnuXWl5Ctdd2QXPwWOaIvhgGEyM09/Vnl8HqxKBtBjGEOI2C4W6QwgQZ7QXohzjwoOhaTBtZ/WRgd9Zr+n/0V3tdEWt9BP2ikDk/H/yGZ7LfTnphSV+C7yfjI5sijHXY2i2TiAc+MN4Qgot93arNy+pBCuTLblBMEH2o871E9q00OSsv0x0AiYU7brJpKxuHuXYbneNzMJZoEQhWH9E5kR6iqkHf3jkySbgJOm4hEhjVpwdEBScfNMks1OJP+DeKHT7JO0c4jxYypdWCsVEtQpwyLXS3PxY2ijxtXJ9kt3nO4wpLKJfEHFlDYzgUQN0LVyNCZevofe5tEUFYeU5w5G0Vijyts5GgiyvUr1daHsxgsKnQp5puGBhF453Pz9FPb+j544aGzq1OcLRrFKUEsja2ILGrd/szYX6yeK0RUHmDeR7LjHWBry4ziH3IcLXKL+5oKsOhumfW0c0WoE2ynY2d9ZZFIYwE2Azn8RhrhUUr7M1rafVYJhOpiWGzrBA9UCftFXz1bWCQj0/809IHKYSV9Kaq0L7sHhOb3uMLa/q6nJpVvH5I5YMvKAAo2XBBH095zpr9LJKDubIcrZ7kF2ObyD1FrAG7RIxXvRUU2FmwNeSYpJv5Gq6kO6ZTR/Q6Awv8eMVYUCQMnS9gCgZGezc4611tzCwnZ9m9C5o1ZpId+YPO1V818WOVSRtJAqOW/7nI9VrS6tDGbS7ediw/cPrBCT/fzPbQqVYhcFYsw9M9oeLSnqfaFWST3AJSbEaJUXwR/cxBngMmIdqodd6eiPtdXOvHleaftxUm9fkIx6d8iThxHxseGXRVL62Xw59SKMIop04WS6PeENhcXb91yfK04ToQ6s0DGXLfDHMAedX+6VxxL7u8zQDrwipyO+OIdjwRWfMb8A1fM6OVVs9mgxj64YdOheya76nqIflLbpqO5QOitX++kdH9zgGBNAjVK3YpD1ebW+qe1djpim0uVKfu6VNkiFXpoZwWIDtuZ/e6Ux4bf+xMz3nbloNyOgT6w24yWZYyI+gXJ29MrlDiEdRjaNsoOCTMO++jyWj/ykgKNxbNhs/ZiDUugZn5A1GQfk0ipRc9aqThiWHq+4xdROnXSDp2PxGW/Ou9CkheFlMGroURCQolXd1AqrY1ypcCrSmVWMzmV8nKADGDYHFYCGI1CKnJvw5fb6DKf14WmYWwC0PiQzX10/XXhYe9sbH13na+D0+1BnA9tE9aFbibXpCtzV86XIzRa4xpl7h2VZP0fedgJ/rjR2D6Q6JeRixLe+eDaRkLCvMgNfKj7iYkk6VJcIUzRzaJvjYIqWfzEs9QFncEIg6FPIIzbOZHS68MI2kjWok/I+KSGLlRiwjVxJYSA0sdNBsf93/YPJloRPJM285F6n/FTrRkBjLbZxJwEx+Z1gnjZ2eMKuLd/8mk4j2dJhEXyOxOEHyniTNzUa+0SedwwZZNLtSFeRPQXOMtpIX1fO1EV7JTWsZ9LAHEZ7mDzJySlvsJYhFXeqC/j8rg3qO0IUYmbtJdDiBcKeU1OqC8SOxqkKlAwUnaDvTXF/+DLlx1YGZP/ar5r7N003KYhzzDY8p5qRx9GZRHRu3MhCrDssWCyOrs+R/a5jfTmaKCNJpoAwhfyqh6BMBDDrxtfP7Hy4A1xOyia9GmDKnViU80S81fXMke89bV8FOCC4bve8xxirRXvAiB95ujcnKySVNijZef1ssOR/8hOTDU5GwFqeQKJOT867n1RW2+VOBvTRnejKDBzgr3x41Oxet3C1B25U6ARMTtcLXETtKxg2FEssHKXHSAhxpt4xqnZ4gJW9yrWrh12G3BKfbqxq8rmn4bTOgrki/0J1SP8iQcI51e0s3ZWVV8CttYZIJtdxqnWS/CoSuCvglDTPPBcZWpV0L/m3ZmiULUZCwj8AbVtFv06Lu/2+chzg6L0KYddUVho2mNlzFpDxVjraiditeoGY3mVJitqQh5rLgqLMnJ3/zJdx7kvesFsWDXS9Q9O7NFPQsfrZcfiQzBwHRMwk9HNA145jLM5TEcjyR15issWX6psasdmj2K2Gede95GNagv+xNV/mMMojEPXN1h6l7M22dtoYK0dyzIToREWtm5j9dFQCtgPS48SHpzkSWA1LXAk/1J3QxrJLvSApzvoVvI3xbmbPO6Ec92kfrh37iPIoceI4l3qwwiSekZo8pM9BM0LRMe8zaMS3hhHCMlo3bnL/Mr0athULmW9Z6mpr6PTGNXeC8Rf6CSnH/zZ+D0ERgfMChLpIt4jUGYVTgFMxfOn6CegkzRYsrm2AY3eoaZD5oSmVqfco3dVErmnZJvyTOfwx8F4540MX1CeMsOitqcD6A+OHKpgfK2lZywPB+YcG2ghIGnUtOcWSePF7UZURPpimzNXGxjXrAXJY3praE7YqpsmyOvdOqwm9F/Wgl9vzWP1fHx6bvjnWJ3PMlC078h0apu66m84nwbOyfdPGV9vMJq3odRki5uoEklxA6MYYXRLJfRyjovwGzwdv4QJYRVw+xiqnJPyE55DKN8qhSqSu4aogDYen1UyhtrjO2TRwC3X4iWRPrmMvM5PS6D43GSCyCq0fLuvjTSAbRqnT2DwC19O1ZJpoOwyKtkJ2FtA4mYc38AlEaFwWc768fI1ORuD856BU9ufqnXC8tdshoLEr+a5399XsI5NNXyVou3JiVRa3beO75Xv6WCYC2ocSRRmDm+K0sR9PC7pb19szvNVm5Ir++rAH2Eej2FRDA2VCI8NfDTiNvPEC/1RzuDSQ24S5hduvNy/TUG9sblX74YjL9aS9aMLvcQ1SRkRYR9VP+sZ1KlOIR92JMSCxGdPjgfQmAoz7JEicLhCk2feGxkssYQI2gS3hj2Bpo8UQqAIz+395+LyqzF68OVTDXv6x2TT3Bh1JEMFV5CJ9jAv/irhxT52E86D0ZgwyQKo8Pl80wXoHoVOC6Qizz//zIKryDiqZai3Sw4kETAf2IaWOnKM3N8MfPpCIGX3eVNZANg56EJ6wLk0IfP8vR6Stx4A+aj1CVwRY1+RBJXAcS7lq2GN1RGpSyfwgLs2ym1RsjPopnppccvT7EgNkmyoWbdIDIdHg2OXhzYb/f9DVnfBEpZuNgDsPnAloql3cZ9637DG5sT+R9pPhJWBGG2JhyDZm/na6ycLk/l8oQgpCWH3gJeSAmFP9bjN86J89whCJXT8wINCFicQ6mgglRbXgDOgeTjO2b8YSlAU83omSlkKsJI/g/trZzQX6ykJG0FFN6CLeZYQ79QlDLEHz5hBTe/lXUPqGmi06bx78CWJiRalEgIydXgZ9hGDbsSCoIxijeYG1CCS8MCvO/hvtq6RWFZrCI3rP5zDOGn6mjQ/ImNdbwdgHaEBqhedSNVgefcGJYIcvKezPizsGL6elwzSj90kM6YntKXhddDD4A1rmsZ6P30hPG2Lnmosn1/tywUbxi1MFIweFSwX1AS0HQVwegzFXk2Vf/GDS7QETA92+gcxeHzaQvPE2MKXQM/E6afkFadnwgNlE0CyGexURnpd+ys1cTchTOiIdOGTKY+cpryVpBNiux9Yikm1HlKWQv2NrECBejwd/VwmtMeGIIiB0L9H0FpTf5kM5/aeYtr1avBMFIA8FLsXrY818dNMOvUBxC2z5DS5nQ0DLttqnmFsSSHUnQQAXDnHdDVJErjh3zvZfmGSWlnndVqf5tfywc6b4MbCNc7oK7X8yO991+NfH6zn4/Uu8AOt3SyUDPi7NUPvIyuSyJ824Hpft8Q+lZ87LGVx+olg+8e/i18HSAKi6UsfX0RO79OrEU933QIUyhbAfNBQWrz+ADX4Gf7yP9mtvoef38j45IqUwffrxEckyfOZkU9rR+/KSG/NOJiRGK3GMIn6qG6P6TFlzE0z2ATA9p68I9y0YCqQAVvwyT7vCSrDa1094BtoyGcmkmXhWh/lN0yhxGN9iptVa12UdMVNDhl0L4nAWxWhDiN8Vq5/hSzdIWOdy2pHeMGTKTPLFwjqC7GEoV0f/5elQ2gddoUNTIMjnpP4gpopqltbb1/ETbWvItUPKQUYyUK4he9wVLiePhjmijxgxHbvB/DSy+4gV2QH4PdhTThnqSNp5s44HkkeOb/UdF6Z1c23C8OVSw5TIbNZk/0MxRp7r2LPO8uajTTjOE9Jn8XYglPjk46AuloJJXVGoAHsNQ2EOq5hqIi8z3NXaWwt6XDqDpaz+0EpwwtxGKOk4a5pOLzRyPmJwE5+mBMzD0No3NGCW7XXxY6m/BW2PuqkNDh1beIo020eKbcl+Yeb//s19o5gyfveaIKCX9TLMUnFemPHKFocKh05xBIlhhtBeYdzSLm3uV0T4bf9cCmc90v/nOWNqLVAd2QqUQPAixB5QI5VP9Rjr0slzre9rjjJP/BHElmIkXI+wlJCK5kufB32dqLsK0YgjNf1O4bC7LnF+hpdn49BcJ5S/eJ2SOeipu+crbvqOsYmVN05yIg2JsUH4GvEfqbDW7+v5r38abDuoKAMwEVVH5ui9Z1wU5ZjDurk6Sg3NQRN/SkKRnzSSk/+LLJ7vz7Eyv16/S/L1GCrrLZvWErPILhIfUqA7cczSOYHwJv0cvl4XqmHnPWfYnZm4XtIoYSu9FLDmnLyKIxcAi2Hbe0NPOGotWXe/heyIeBzv66KuRx2dTh6+XYGu9DioyvshNCYa6klJgmDh3keJTnG9ujZvdUT3QrgWVRYfUOuIDQ0w6zTeMtbhLkEFJIPRF4+fCN+mcAsN0t1qgpEeUR4mb0c2PXYTdwdmGIqiuXbObp+TPhjdstXzoc7YjSJz8nioEcVzeTmBZFK7eT+Xyam1aUETF/Xxuy0dgo5oQTY6gQgNAZh4OEJE9LEl/RGPNZ8fhlsRPthL8KpfA71H9inDU0ZNJfq6pDLBjIfaErimwEroIjzRMzW/GxfUjpAadkkkI1rysC6CGXQTfxU/3KWDILsTdVULXNQMunPA7pkwyYwGNxibhHAwmc+hBtClgOOrAdd/8qLTOfWKZwQeWOcQgjwdjTmp6VYUishm6zeixsePayUz1lndI3UYq5fAOUpUOQjzthBvW8IdqtY1vaFNRGOD30re1nlf0Avyk2luPgJQFqm1lLVSSgOZcxkr1+Z3HrVwbYnSQ7pg1DuGMZGt6gEygbmh8ZGUzbWzsm1qjDzznnaAu8fhuypUglTslf3Wf1chdkmLXTfNKQryK7rHSQmv34RjOqba7py8MAbFXxqCxIkFe57TXIO1HgkvobHHVlh77NhizkAXj8Hbx8MsHhxu41ZR4ypJWpVsEFZphEMR93FCAuaH0jv7H9D6y4nbBGr3HSGouCg/GCeSi2xlSr0KtitcsbqJM8ZToo+4Y+K39Yj4GSHrT0G3u5qbCGqZB28ysrwbjg4sDUiAcGf1EPEdfSuiDTWpRPdM5JJTe89pUXrCb8RieYC2bju1Yuy6ERGsOQGt1lCWaylcCUAHYQNu7+9YD6LTW22oiEgAuo+AGSeps/asI4N5HvyAlH96otLnlxO6ftY4laZjSaxTKK415DO8Sgc5akiTFc3ZFgNBvmgYYrbid65feOEQfhfbXPPk7siJGOkMeIuWw8m2Xnd3Y2jrWs+WPKeXyuPGjaCNv53e3GjNEYbip97ykVQV8UChh7DLgBtLUB8zpPZNSO/Pj+4UYwpjakECo3/kSzLcEG5d0+3CCiLE3DyEJvaixaUSzvsXo1JwirPwR8iiOt9vluEChMd9ZVSI9XRWkwku38lLrYUt69brHk8+AKJaXt51wwhbY6ePa8g8wlPTaz6TrwKGy799+Yb65C7PGwpFToH3itrgsM+0TSbk7lG+3aAeHLH+HhdQerf/lP8Gf65MheBGV4Vm0RKP14MA3jFgPq0oVduIXMLN/9EpVZqtqvKa+7N9hWwFCULHDFX8PxeyCjZ1sFes8hPo7184QC7LIvJxCdY4pburz//UqZAFaR95dkSfE1cC56DGtw+76Dp4WXeWsYHkZwk24mLlO/KFhp7dvjKqXB0DNuLA/iEj05HEogXJTQwvsRpX46dFo0YEgZoOaBgfSCRNQZLEi04rm/8CNJFCKfza+UJTJD1yVMrPUBUQ40TTmE7i/y3Yr0DEBccuzAnNbEsxdkN0sssJx8M5c2bWx4KPa6fpNcqElpA4yoNeeaynbU3YkqhRVyIyedBr37/ttUDl1JZrFi3dx6xgVcOjpEhEshG2zc2LlvvwfyMfQ0e8moIcyMcwcRkB9U2vzeBeqUM7L+dN3dDZ2hxMvMdLElbxiCTOhhl8NJw1ujmjR8Js8vg22UDdxZ+Rvh9qs/kjsbtQD6ZKeYXE5jbRI+UpeLxRAkpE4nqD0h3GuWtlzrdZ0uqOnyJ1bn0aOAaz44I1dBtlSVBDv38QF/PNKXOa+AeS8FFmtBnn1C4ADEcYbGLmmSVcurKXrXqyfBHJGfBKpL1VyIurzyIun7IRqlY5Q6hJVKDoI1oKA1pzrJAVWGQqqj+MB+tIibvybf9szIyzy2IygIY/55YAE/ORZX6HmDjWT+6fYY6/ct/1kdXJ8aQbISC8vD212PxpsEGZBrv8BYYipt7VeAzJPDBG5tAetsbMeV19hmvabNnDEOMGnQNcJo2XHvyYCoR+bJl5qYse9W9FVCClsp2ru38XmFCkADjkpl8euOTHRKb1Ewmgl+CEb66LDnL3x+2p10QqcNpt9NZ/MiMIhCugBajQg/HB/WRTudoERx4QHEO3spF/HWU5/bxMQayEsjUcclodSi1ElruhTPuCVDMj++bgHvhU/DGAjuXHHCaBPbJhx+09zb3dGHnxsnlld/HXG6oCnRU6bV1CYbmNsox48ZNNLVOVoRyzNRtd94uSsMKILjx2NhUOUpgEGRI/hRIA7dBKxCp9LbJppSo+vOndXwVQIkxu2ZRKTFpxUMKfZ5bYRz0fb18vZ5lHQQtd5ELdTHvavuQ9IB4MST/9zVvZ4Axi/gTNkBS6zJmrQpwH//z1t/Ms4FcLgUkSaKuCLbvJ+j9gPAC9O3w0trJOH0IQTZNFAGH7NVr8uoVtY2Psa7BzteYXPWiVFDnALhwGg2IRGADgLcenvmdCitdwrN+Q4c7/l2M+sOpriGHn/Pn55zjoe7dCa4HqUMlDIPygKwUnSISrhMicz3uaXes80UropoFl+dEKvdGy5dNenMqh0euljCmiL13AJW50hDQf1SyjxiSObfnkDiZW09Ldzzi2tmoUw1TWi7oLa+clYC+lkZWyOG95EGtVntETIVYnnpfGXkj/73icU9U8/KNO44EztlkJ1drmnTG7rkEeFHYPAJqvYCDxbstUSxZdky8ZzU0BtwuBxIhEXRUBYdeobkUxSLsnXZWtTLiAG+mPayuT25l72pjkyQzVVCdJdg9rLmzKJYjVBG8uLlJbmQSPxcLKzjdNNWYM4b8Ja8WFArZJK0Czikc60SG0zKX1u95siB/u8e1K8H53HAzwVkucFgHQ4o1xCaaWRnT+MzrlKixWlgXhtWZ4GeRHsCX/AcqHWoY8+JXIiTfYKKXm9wcrqlN4W+wQBf+XoJss3ahqTGBFu0j+Y0robtMR60dcHqfkW13EnVAN7gYxQPyW+v+/WxuFw4Bzmm0Zz4NxwGuFcldbA2gJ7jttGW4E0IRZT/r5WunX36dr90jmns7lwyyu222dltw/RQn4JBzP/Bl5VygtXeMFTZz52I1y3RjcbzUPB4g7HJAbDEPbIjnwfAoOYvO4sdKEFZ/Py1Vr+dtIdRCsG2NiLc+i6GPLuKl7rupiZGYohkTX9vdW7roeh/HT9PA/xiL2zO6vbR9EKfmEJOtMIcPGn2ct756rF/zvLFA5R2ut+s0hvv2WPFJnCW7cZ8kpp8JxrL5oblnqenhF+wOLeATbA/XVOSJufxu1T5cZw2LtzysLEymiK1akeICuVPIW+psPM3CzdqX8gfh7/RXR4l/NLeZPvbalRG5SZeCisn9wQaO9OOiK0l/ItrG5sZJ0oktWbAIiWg2iZZv2nPEGWabqpUHo71rj+HQ/rEUNPcA+ObKJ/8GJsCJkr5GFABM7SkNPDnDTAkGjV2vX9gp1PAN/7qDTPc4UqIqsPKxYbqJZ/A0DeMhp5dpTLaJ8IODF0hLQ0JKiHEsA8fmdHHI8+3xUsVTpIsdbLU7PC6To4d+tMpeqbRWHLXeWCVC4E30YUwn3otncKKpvgJ9Ihc/y1nQui+nYi7JPo7ac2WkS0jt7Vfp5flDy9bQ8bvE8PvQc8+3wEungMoo4r7+ePUilJZf5V224Bxszz+ZJkAW3mCUwCF+3VS9ZHZOOdZHBHNV6Q7R43Zm7Xx4ubD9k+Q7+M/P/xYEtRVbwGvUvPufSja/DXHs9WQ1EZXoJvoo6f5nOkuXTiWqUOSUD+anWhP31Gu+R3iBpRmTtQM1JwOavO8V0onFNaaaGpE5KrYMOwMe+AWvGW0I4rj1s0TU6fVu9FDgx8aaZ9UkgkvRNgqey3ynJJMy2Zkwa40nVNaRF1GhmiMXu550GL8cyblwaLp7PWhWusk5nmND8QmguukVDq7csu/mvzCDj4lcmdT7aqQ/8fdcRVU5YzoFQqGsElPQOpS+9PggiNjtmVd40XNyv6bfv6ix1oYBN454DhbpHkgMyK6jiiuOw3S4fWsyTTCM1OsccGOMAcGk0rPtCcpht2J/DstKBzS8cwjMKrwJ7xHLJGZkiEMNF7oQbp64BS0PhFIc6CeSPNZPu1IOwP07rNrt2Yg7iXxhzQ3pE7bxvS6R++vEhtbOQTlYe8EtRjI58LyhKsnMXqb3IY7UZ6RmiYJDKsL+rkT/5tJQME/GwziQB75yWNqsu22CLF6L8uZ79cWhznQNtuqHFOMoHNfzSBYd2SG5nYFv1a4bnXLRXl7YPFyIeqlmc64rAe75S2XQhrKQIzwCd/oy/9FJiIxvqY9WV+EvzXrvQesudiWu15OryvbVvSNBCpPfiSwJ5Et6OCkxIK0bzO304GQi2tMUFnMIoGqt9zD+uW7ek7mX3Y74LOL96PBASgAkTA4TdAvIFCcLH3w3GSgjxflstQWlqssWldNVUxtuvBsW+u2lanJa4fywxyqQJ4PheBdsLPjZpsnYvBaSRGYZ7ElGlDKPheOqIf7Vrcf9877fMoFB/oBMz3E2DoPTRlXvUKH/aMqTXHaZ96+6B5YLTFx/NlCXmNwP+KmOIA95gzJ7HLz3D0zOmxd8A9S5QKftmvWELDY9AS7W/+Io0SVKWToC8HYyH0XCK0DESMhjfa9xhmsnJJLSZPReIN9HdmodKHAJ74Dr8sKIXk1qAX8kBZ+uK7WOwkc2i1drTCNpw1M4CfNrbERwIk90QsNJKXc/ul4FGDOSFD8NcBhsw0gebrQtV2FY84abj3vkYCvkKz3XGdwZLjZkA6lUli/UZSWpfnVhrCZi+YVF7okEcmLrYv0na/QjI5gvaRJXz5CQnEbgiJ+TQXhgLXRvrHuHYdRq5W7uhjoTY+F4UMqvz1EoWUDFqbsQhOqBjMspqbHfo4Y2gPhL30sj9Z9DCeLVuKp9n/hRfVGkmhXpXrn90+lxxpM6oNwI0irsOUshDV9iupzIymvgiYLiv+qI1lKHw9Xbqrv9HzYUvMQsixvWlh8GGtc9cagXJpNQKgTCILJZ8642p/Wdgvyq60PCOLIa5nrGCNyO0x5EyuOprq7ooRFGuPQ0lvCC8P5xJs92t6oFKs7T9PArV6Y4bd9WElYok1HTzA1nb2iCkJR9q86VwLMr+RIZ7LGN5CnwkNWpm3BqqVt3IQLD8/nkaRM4bfjer+gjVBzNosO23bpZ9zjAed8PA5k+1gl0uSamxhd4RFwAY4IiXVE7i1mc/8lfvafHrj3WAQigvEEZ8R7zrCyayVyG+8GqfSuHOwzJAKopD5kjDcuq+sdR8H4O+dkj9A+bSheQB2Nq6eBh1y/U2MLY5L+BySEnRGOGyLaw0fy/SDrI59vTLSIWyXCUFvb17h/2Dn4zk8vziq0Tyf645Bk+xdohWE1va46mnypTGefD5hT3P2N6meFt6kr8+5CIFKljdoH9HLcz4Udh+1QXc+PdjPmuCCp1xFDAS0P+RKp9TzpRsskjCf4Vo7zb4nTQMNGoScGnQwGjzTn+2xf63hPtzTOUPYktMO+EuYSys0AGMUia9Oaux5Cmy34IXI/9oZ06IYbnVQBaXgFsATnYZ52AMiNBOLmqVFACFmCsyuJURruFx/Wo+r7sZxVw8c/ElmuSCs5SO+PrNKbMP9+61xdb0ocYHzVHyPLeVifHYoC1exiRJdg518/0oHBQ09WD/8CsgclR4PG+949AQkYf52Zj98RU1SbOGvj0lZEUNQuG7Gk9XJsCqyREV1q8yjsnJ4Q7AJfhZp3QUqXUJDO/Fbd2TKw/sUrkoW+waIrvL6euSLJYp7oji5/DddUlldnVYXMFUibRNMgdq9ZqO9ZgFJAqzdPpiTiI8MqdBzEDljaH+RTclMKt+qRG/7Dh6jsH7lvqz/J28W02fiza2zemld6IUcEAyYMlvqQlz6pRarlJrvNTT4YWEBNnI/CyDJYdGfmnqscg/7x3wQnrLjolqEvj2kZTpcHml1kTiDlucG9YRFxEaQgkQegXrrslZ+dqv9S2tw33Qm40GLE6Lr4go92S8XZ7bYoRX83sD0Mzr9osm5NrUAT8r0MeOsMxopY1QfceaSElkHM1YoRNrW1IXqjOu3lrTca2pYLJKtMQoWhBtxjzIHKO769qSL792H+mde3HMoIHxxxdUwN5HyOZ5nQLREJd5uhmjwbKRAv2btX3ljuCLPXX4tZ0QTA24QtCXUrsgPCrSGT6jo/ehNW6ZYAPjpgAfdvghyQ7/EXt0wKY9QG7Egab7QKcdLfO8xSmPg7zn8IsFjL8A5vSdZtHACR/fPZ0+/M/ak12N31VQ/vpFoZxjqjaAsaItenTZIy6hWsi9Sz63jNUWojie/+BJGVBL+DceXnSsb/1yOWtD8SWB8B3bXIwsOVH28yq8LOtRKE9kL/xEPOV+olW3J7Pf6sg0SepKcswb9pFl0B2/ZwlAra4cGkb3w5mTZ/bR450xvCXBcnbQnEZSlZSFFoo5u55InX4INWj2AUHW7JhJX1VuwlGIj7n65RdJRVN6dzeBDD/8EqfUu7K5ibkAl+J4zdbHX5LjpJ1pmCaJYjgEDFpJ8BZrFtwiI9MiPDqYDoa7vC5JzAjjLxHrdkuW9XUGQuScuuyKzxE9I8A5IBXZw0WE3RfcERb4agkb2XNQI7Xn/nkC4vpaAMjBwRXlpjHEhnsDrg/4Xetd+jI8thoQqaEk1ykG5O9Cg/DTBj1piTAjs8Kia6y3JhOuZTMvHIH02OPhsOiMperPQzTm/CX2DNmg6Kh/SlH4juKA0GU5wfb1Y86kECf3ApSeVkweuv6pb+U5eJ8+epam48H0j9gEz/H9YO9gX1PZWnt/kj4Xq58cQox/6tPFcHc6GrPpDV2g9CgfYrdY+FzKLb6aVWgWqmVgJDqzMoqTvEL9hbrxIuEi0y9W4L1UUpXKRCypostHKnnLcpbdodvkpuETbGBhqTBLMO3AZnFX/4BYzWy28P8EVXqz7fJfIvaVbrj3NVozwLyWpRqhIdPm7AOsdTyflSHbf766CEyya1/+7uyEIEOtoUGsgs004iaSBB25U4aBnbnr0CruWY7huCs58zjLLDVTsLTsNt/b2F5AdBZUfWUJaqx99q4/CEg4tqNl/PW2YuWA/MrI/VawqE997+iV5OcQasjwe2wRJgoildSl9ae8SsekYY+5F2gBPe4wqEQ9jqHSr2BKnKKa4t2oFislY2iTqF7RFrniulcne2nkokEf5AVVy/91njFf/OhcXYl2QjEVpB0tNd3JxfmPzUlxQr9hSwHkn9MHyeMAbtT/VsHufTY0/LczIdPCxXqLJXBPWjR6WBEdez5qR6rLPpJuBWPYjOAZfGqh8xXuS0KGrCh4zqWNNu6zNhWE/cc4VBbfceLyxp8z+3JT+dwW1sEGCkrfQjHuUyY5XQZCx78U/j69XmokhXXnrDL2hWluoX9cBGay54ZQ/MlVkL+oMwy1TyEoYf7sX/3RonmZ4xrMQLCPKYJuOhEAd7422a4hrV1Xt47mMxqkXjp0RcdB2TPWFLnno7gtoFGKui0zBqLmu55k5mv2d+gxlABatu7dZKhtqVswQMtLh4vshTD9NWv3ZduBqvYpPlWmJ2zgX2sRxhHSrsCyKIqHTG2VcukizasA4Gmh2v4VIK0w8spUheK0TpVBx672gfrmGRyABRQQUOsqq22SW3DwgF6tXT/icjZIsFUN+Tcl92UsFKYyVChV8tjPELLvL730f38OUC363e0KYqkrbEYxwYL5OUSqxuDODqFkh+XNnufHTJmp2sz30PNEVpY3S/AjoZDmDw7HcxdyKZKbods0eOqyd8SeFEMfGPV79QtHfz/djHSl5oY67cwLWG/eDrp9umKw9WAKMI57xZxBjiA5m3zJiIRiG9woqBQ4N2FtLSE6Unirp7ocia943Sx8nHlQ+zyXF5lU2rk859NmuipkYw6OFh61gszeyVu8yZtDSSywGrLQ9qPpaJOM5/b2gis/TbnKEbRdvw4d+cc7FeAGp6CpP+kxuoqlAZfC7xowP6CZHb0HAnBNXTk/dKCK14Sumeal+Ze+tqsNtFzAhjcf2DIuo5dCjq5QKvwaV+k3jAesT7tIcFaD9lA/6K+XASt4KY/wBbP+kkZBk6FLGxn7LOwiu/7yYASf9HzXCmhYtIdxD//A/vEQpEpKEi05pvZXUJBPYtBptYFfzpnY+6kVF5auExMxvet7aIFmXdkv9hXphIldj2V/O/PtayyJ2zd0aWDuv1yKtU+63YRjvo4bERHlc712sXXN9BKyfxlKXahtmBYY+OrrD9IkA6GKTQy2Nqiqr2s5QxhHaUIzIIS0emx18YOj13Bz5Xdi3QWafsTKEQFqEEJruNxzZ7k2unZm2XmjaOZZcnzuwe9Y1to2q8lbI7oA1uW5sRvZwqY4+rAYPUanCIBiTDTKN1KqKd6lJCNZVImfJuUpGvkJTB5RGpMFqEOGf4FG8RulgYuY/nWTQLA0crSYKxTD8dWXm2pqG3ypTMj8wu8B6SE9HVPB+6BIo0dUvTafP4lZDlpj+PN6vCjHIKi2nUjZxe2qmdUBnz4vjO4+viQ/+0klz6JJWUw9YlnGNrMN/0a9chn55/bNnVsPkTSOjuSYdzVeIQNlrsE8BB8aAWf+hhgVbVPSuGxBfClW8ydKLSiGQkR706hwbgPB7Zgy0Sj1ARNUASM+QbP11JNY8NlzzJSFmlSEsYn1WBQES/yTy+0F76jIoNEO44QVWMJiHDhciYRyMIcaZW4jl89MOBYHRT+lTr185MOeBC1eMJ8s2axsu0IdXeQrEkS8bYnmDvO4B+uIFP3wxHo0BJxcy4m0qxye3akHW4MF0n/o7truWt4jPcYHR4HZLEK2c4BYgdVHDqAUBtAQzZAge/UVazBEQuq6MvNRUXZLCNuYFvyHhUKXGR3wagtw0GSsBJLKZ8G3VGkwSLwXN+ifwGee9lWl17rpiA41ncEb7CJft3HIUGhuqKgZtopG5RR0gkorhlUhX/FDAlT0r7Xc0jNOjU0RWHX1FZv1qg7PxSAeZbTlFE+4y4HwYmEzSi9cvqR/hWh7fRqlJCYcL0IeZJW3kaLumgLgMb2KnxxxEqxJ7+44LEW8jZcb4TYela5mcdn3pSffuAwaUm8LX7xhy1mwBHLWoODY3Z1GkPo2/CxTRRVQ4h+BlKLKjyLAxFKPPjJVyCMb2XIz0MHVM6rGU/BeItgeW2CmxKJSPm2Au44GDx6ilEL/RWg8a87Hb0rAhWWNsfNduPh0xi/T0BXZl/5E4qrfnnAr9878bqbiuQSkgrwHlecZYMo+DxqiSBq0Y5JRyxD9c67Mc8sxbrIVUFUbTW6v9ZCPOlEMKlCCtbMJHQ0hFxBVrkrjIKIxzBSBDdiY8yL34vDclqw7tOzx801vxNY3gclvo+xxH6/LQlHsbMiquDfB9r71z7sGLXYQLsHAxmyHnMorGBOTejoVuxvattP80cPPjOKMJPu9y+3hZY0Nq7mqd6guClu5V3SywPAHy8AbCU2Cb8cGQ6kfkV+y92ec9OodoKdoAzKqCHE6aHjd+aHgwTrRsfqCJmaxwVYT+zRLwP1K38f79j+pFaKiW5AIT8iVbL1d5RMDBhN24wlGU3AwPhfWQ4/VlbJNKBlxautglszk3RZNgE5ShwSQ2ZCCVrfvbYiKYRpRj2WPrg4ZQujUEi6kGHvlP0m2nQEdMVIyfNE9RHXbFJgc9Rx6AEtx9//JbvKoOABjUNe9e75gRcTskcTPTZQntvijJPCy2Vw1wJGyn9HwvwX/xawlXTcroul1kio8+alCD/+wfR9mYnwFY0sZXEcu0LTD17hVBMyRq4mAZGmiQp10OfFqF/fXSjnsaBpKHainckw+cBn37S4bUnv9gNBRzdrlyd35K/9xyixw6DAf/VVDnOZfAzCqALRNTijA5VjeX3OTvrXedlBQ7t2Iasskw2CISVOI98t5dQZSb65rVY+aW5EtB6d8phQH8tBZF/V3O++dU2NR5BcHdvgbQkDy1QRXkd0FRTAjRBf44PY4Lnn74slkx2DnjwyXKwOVmxvC+pIRGVT3RgzQmbFSUa5z1D/jsA0YVgfNGuab62tmk1b21aR02rSCOzrG0HkAEMsHdT1PXN+VTh3sm7dGS0ZPCFrY6EQMhhpE7BtnKZUesHwutsJbXQsVNSs2QOvCPrnpbW0/WVn0b00u69TxOTHSYMrJCVO4y4xR9AvGlSJJAmE/rVkZikoO++Cful+hfUV6vnBnvbUDpEq6CVzYZeCsq9vkl/4JyEsf/V6TcMVuLAlkj5FoBOEM6BGVSrt5xAmF361tZcU+79SaiRKdSoaYeq4VhwDlh+9Lq3FMiGmC1FmtySf+Q+rP5z9tNV1dsJbO5c8////pn3EHu4XVWsjPFRaylIFMLMzXqbY5HYxw7ktN4oZMSjKtF/QMsXk47ZpM0+z0W+kbrsORo9o7eDF8dyB2M7KkvCZkGwixjSIjNkYnFcs/7cU0Ao2FCLh1ovlCXgwUD3KcOWkDICRntWj+YoTBiIpy/zbarYixtSiEVPrN2rPiSK68U0vtawvfbgdPF5NzStlDLV66YnbtSB2Y2rgaSuFh4nXNEIQa7t4qr9XlodyHMaJSZW8vGETsgp7rf/QdBSppfvQ3JCGgdfJLXsgDDegzHJJFM1QuRfxSX2/zmeCAg/cUkwzVB00vgcUxTOpQQsQK6R8fxJ0USFui7TIlI4txGxDc+IfziqttYcgvCZiWqPVTeLm76cPGrCbsp2tKoLUr+gFWxri6FTaCRJOSqqGW2Fpipa2y7rkwGmnF/lScJeEWAyRMr7r5CAbYXp/1G4ReBpFqLkFqt87L8b8HXtGqilbgDi8YVnGjN5b4QM7Fp3Nqa+H6PztKdsURT8kOXNjWc+jHwbvz6gclH89+EGMXSflTthFZATKTKhehTtyfwLbSHMpdr8bEz0LobXKdLNWZZqcKzd7hbvZWL8UwZxJHHZ92mlDxYHiF+6adlWYctExGrmyC0QXZJc3YkoLPq1NKziKv7kS/dcs3rs71UZnSTYouSNpIdj9RZQHYGIW7o7PI3pY+s6QT07j2Zt0J0CCs028x3i/O1SIUY6ILZ0MXg01yo+1jJCgA7rj8aHu2A+h9bSEt9J9Z+pHJuMmM1JXRVwMIlLJM57FE/Z5tVpdQOfdFIl0BuMBmgZeF4utkLvF2M0DiaWQtkFk1hblYTvPXCf3Mk5WwiPwmk8nK216mTdKPFtgLu/7m13QFehcglV3UUTlUW0Ww3RHBqSJqqmtn+2858grZP1lCYewW+MzA0CkqTDHW1TriB8aMjzMwN8MwEkITXdBiUtUw0h30djNinWpBaVEEedopelxdwQrLwx64kBWUUP9sjIXfHFVV9m8Af1qr5J/drwr/ZN5/2gZOJWKPFps1kOBSJUzrmbqj8Wna3uYRAPZjgv7Vh9XOFrYpZvFKhJZDZVou7ccjRUqKDFNiFKd4zzpUN+clHCCW0N1+xpQhl1J3tJxq3DxHgXE8wNYtuTIIBV9szVmViSaWwMlglKAqAhNtX8eSxGJKHXFEZPSGigExc4qf3EpRkbl9FkjEdjGUGFJzKkDA7hEEBX4fLXAQ4yDrYk221Z8QFu9KWwgOVoOyz9So+q9TS788qqS/UYZm7P3BKrzFAcFVZ7KQgauVJs/hpj1XNTZa3iBoUC7TdR7m7xI/s76x6/ESqwnWLiA6vdVdruKe0S+ygVLANwZXFRr49QNg2QCIL6SCfc9WUdq3B7xLpz2oSxvmE6MmJ/xmWpVc6VBrn3lgADs8cLyxWDfGtIlqwflNh1LgmJuiKAAtzfI6FeNdN5B/oFCpp3SUPky/ki3eWdBQC2mlsvVa+c6RxYhMlzdv6MoVTJWFASWeKzTg2kg0eZloHgYXXIdnFLSOGfyFoQpPdqIGhrOdK6H41qlo66hwVjafs+L2t0eR2t7ZHYteQ3BScRwAg2w/C4IOkl0Xxm02bBqiF9QxfqWHMHUk1+hxyvfoVZO4YQcwU1H3BgNP9EYN239350O7UTZdpiJxXki1v4oxHRjwKxa/cbTyRdTz3c8vgI78hIHxyVsEWERYHup0IlolWOK5pRmPJAEpaQz7yQQRJnXVF6ZJAWp7jhmQ4c74DLal6+0NNQaygBz/UQlO8UZBEjl0+MmEy/o5VdequfzCr0mBPAg6IR9MsA8gEdtX//qs90VS5Gem3XQtSeGxrFAzKIwjRdd/ni+BZHrQQgAY7bn49nLGMYjlHInNPy8g7UHkOMLDPx0PCJvCL6gMnAYZvJC0k7DQlV3v9CgFyB6pxFXGjTVRj7exwbkGAL8QjtcDbXvXQF6y8Np0zteHwwb3vp3614IiHoNGJduR9yHOa2qr8kOsHaawqkxmsJdXvNvdaTmQkNI9lURzpgtsC8UQWY5YxbHlmtYoys5RcRVpUY5ZoRQVrZQG1b1Im4KxjMQpJ/H/D0fwH7X94DRYoTlyHDgzCcHGOojscHowH8LY3qUYOBF1d9PhDUHhwR/zgIGgCYwx1+cabHP54mGNGSMlYLYIokkbC2tAy+imx0c63KciWmp0K7wZLdkhdS3LGaXF+nRNKkJld60zeGzD28Mb+vPCAEjVFzG4PDuC0PVrb5z+nvWuz9xxWu983YFLEXZHa0I4cs5S+nXs0EaS3zd9RxHQovoXkVuuKa5YLIVX+xLp4HAc1Vh2FQB0MgofOlhKuh0qPgXWjxvKcXGj3m5uZz1r740hKPzJI35Hg+YF0oClPrcbFIAQc3Y1yBfWnVlxeRIk5xKrAR2V3v02ehcRFRkio8xwJ1SW4pXyT98rpzLpGSwmWYrqGWsMV6F4ey9U+PsgTSkR8XH0XOC0rkeAZsPtxLeGiPk/yfKpcQuEJR1YEhWnJXjVAq2am0iSL7ch/y074HKfTi8DFC/LUpOahSskRbO1Y3aNuof1jbCfBhjkDallFJSJWVbkeGG7f3hU5c4vYW2ZBeQc9gFZqheNf53AvRFLuKyojBslH5+YAAXFZg2gxVBStjHBKnYhjoJrV9R7jKU+yuyv7FfhJYNI+kEpr3toiGu2maC0pZHEaQVy+TcZlZuRiOdddBrxfJb9ZlQCBDPlmaVeq8CGToZFrkgmNeAsEEU7cMqrREaxpi4wU/KN612jmpQWzV1OqZzAVNg6FcuXeWNTqPPV9plKNmNSIxajFe8CGfF3hGZEWtKN9+/OW5BFEpBo51OfT6bu2sB3uKdMR7U+Ad7UU8q0AgenhICSoUao3/pT+LN0uCfPgKvInhVSt81Clec4tAgYQfceqnd16o3PFk/eAWdbEEzcOH95fKDRzmkoOxrlHDJ9CjjpRFwN60ItYNUfOPAtF7tUH5LC5cPvRI3inEThA28ombXkVdkKOtPP7rZrSKeYwE2Fb94ndNci9GpnaPJR5J0SKa4DCwDCBSl3FSGI78DshuCgCKneE3DEn13lQiJ4dCJeM8+2Tr6Gb205dsTtskQk4NJOTQcEavq5HjIlbqU9VJOqhhCQM2uLW4f81sFvXh17zv3Cs7Lu5cU0Mfx9MlufUyTdiIdI/0prxf80fTIdMxMhZKiJTDVyixyAhq1EQJ7PjMczOn1kvM/3WmO1nMQWARFw16x2FYgftlaupwzdBj/3zkMMwW3Ks9YChPRkINOd+kN3n3M1HRos8barmJA14y1uj8soO2M6kAQVEO3Gc+3nJiI7zFxMdk1G8YKkcB3yxfvFwTr8RO8LVn27yhqpxkYnlzoMCYGKnjAl2Zjf3K/8vpAsAGs8/ijB7ZkEhiWXhjwbq1BG7Q7BIY0c2aErXXrUe4MrQxFywrk9dJWcBkHyZ8T7EqbKYSdHM+k1WNGoDtYAi7DAdWLnjVPxiRjur0Xa3OtlgMSBR0/jX4K6XK5ie/eGmirs5ClfbQR1STZ2l3j/lFazZmnbJ5MVefKiULnnFFLqGn5EM/9oyY+Zx5BM1K1hi2rYcRZgWjJR6iYVumEK/U/dZzksnCqemQHwU0qdt03h3g89PPU7roCWNtagpKMtCUa8ptD1sILx5MtM/2Z6cEmjHRvaLQJIHSegbq4KrCkhtfuTnk1kZGtbW4sVeOSpLRQJWZMx5eJdjn3ntRMN+UITG49dTnS4pE5iP93i4pJarRJsq5ZTKzoBjLWhPP7Jk2b1BdDG8xJzv7Of7yoPA0GfLgk0K+KjGh1hw0RjX8ctZeTJ6hj3G9b+eIZn6ebDvDSDilcZ9Me2CKH5QBFzMHI3dRFHOHr94+wBA1tDQmz/A43RahFTzMwBGQGA6aTi2atBxKuLvxk9N1CygNl2aF/SMC+nZF1gm6sKDvrFfw9JfVD34QjSLGXI0mC9LPgSqTd1JWmI5jH3oRY9XWAKRdZMypLtlpw2YTnFlg9DQWvYbJMTu73auO6sE0t/s8sSbAE+aWrksNWmyrI9lnGi9iJGaykZ1IYTI2MMxecg5x8e/56kfqgSPi7ufhNxsvYyHez8TKKw2R5RRdPxceNzCRvQLYMejQAenOSh7sEcKFkICNgm9Vq6Yn25IpSB8b5Cvm+Fy6pV3TaYxwZ5Js5DXmeW7okczjPevI4DWVlHXHd9MfTIkKTuA9qZ5OYzPqcC6hWinH7FyglC23ohzLQfkYW9O8UZfY3Wqzrelfmw06pq8UJ6uiE2ib96+6R/F5UPR/xveHzMLtGaGuI/OSL7Mw8QMkFw4xCfRYT0Zx1EPWCwT7j3NgL/fQEhSxgjXDv6pVIwwosBO+VO5JjnTNjBUTjqLAGmczj0WovV1+yWPYrDF4jW1KpHJO6HpFsU/Gdln824aQd612qZR78XBli/Vb9I5dGGxEzcXpjr0X0LGotkW7yPVTT/JerpYG56KvWl/OLNXuhQe/GMdw2HNkzUXSUDiqBYNUqeUkgIyKLU1S1Pp/2NN+i+YwAglcZ18e4KMXSTUNZwd+ArIogYV8iKOu0kzrHHhdhXZV8A6piXt2KGtCnh/EqELOlBkCk5oMbMZsCuNU1gH17i65AJl/o0ZFbfcQotxHweiy+y79t6xXRAGqQFKHN2M65nRvNmHeRZ11TsNqaymeCjnFl+QFATS/YdpxxHDUfLA0+mBGipxkKOxPfbrw2LKZ9TfV2agKNRZn5+MmGAfwj8Na4oLuovOoNVqMHX2n8VfQoQbRk3Hyap+Voj/at49bavxJ9DOL4YwMwxjsQuWOEpq0vATSyeiodJha2jiwx0HaRmUby9gwzHLXLt2LAjfDfPLpxZe8/AvdAugQFxau+v4IzGhdZN6gvE1lywvi/+AAogT6sLpVcV/E+kS2EqzkUNHxEEUvk3TIwNBN4XALaY2GsvfsMbSllzJSOWEfRiPnfJ9Jj7vrJENkxXlGnd3V8iLlRDv32fksWZVcvNpMMpNHrLnJSEt/6Cz5Tknkb7fGm8rtovNMq+AmWHX8Wy6bjpSvbyM/UUFs+C2i/Cc3pW+112qxnmnnxTijBa4wgCqGRKxVPbvvvLvL7hd8hlOAZmw1ZHQ9loZ+uZi8MaL8c8qTwj+AqJj73oNNHkgq6N3qYNQVMKJF6s4lJzJ+ERZrxJMhzOkyPxV1SYy1pxzFbq0R3lQL6ESldc0tJSZOEz/WJUizvH+BoNXQ2hUgJ8LvdCkqc+KagrXlykDBBD86uQdY76Ih2rV9G6d5mK+Av7k2UAiK/E3rP5Z0goEjYt9049dE7E3e2xq5tjDIatzb2gbBOSdVI5ycU2H2vv01u9aT/sAb55kbSqZN0eLjholh5NxxXb25m0KxIYnr0wZZA7VF00bErc4324bNiP9/gE3S3NxJnobJKvxxGWaPKKuCqYsZROhWoFRQC946S7TdfygnsEsNcfhU3/2XKdleXji/R11OsmxlwyYioKMAKTfBkq01V9ojXfVOCtFRFn/5/v167AupQp7K17n3fosmLkvRlyR6m5MHY4qUVcKVM3rDyR8fgO9xzBqgqyY5v2hOEqIDNCiNpQTphON+hxOxgenH/IEMeplAk6+QGkS040VtbwKaewCkIurCdIl8wpjuhR5YcfJ1OjFKcgoLj16UjC/n+p4J6Sfaq8v+6Bxscse6XJ+VWpz503IIS5oePfz3mCjOnXrJesntvqQ2NYY2zX9buvXp40nc24oG4GP366STf0B1/ZiC1V1h6sT43McDx9clOp31XI3bQ1yxRP+yed/9hEnF0AdfV3PWbZ5TAIOWl7qFt4BwkGX+bjBcNUXouWHdiNAHWegJHT0sJMEhfbNuNhcX08lFNYtQC6BZQFJoaJC7i6+gnzgEs3wHrV0A6THvBe2SOQaS+MQ/p9GM8K803rUMlobtgzaF13be9bXoOunG/OW6sfd8w6U9uRW6twBR5JFhKBlcbanPAmjXnfS3cFK6C4iTypsaDaMfhWrsCk0yELUdP0jAR02Gbaw1SkDYU2gbEuvvd61CETS5f9Ozo5Yjb5N9vGewJYLBA8hbTHjhDluVYw+SoRN1v93dHjtS/km4eA9ZIXpimDy8yndJOEmgURj128irQ4M+MZV0eIiKuQE1lz07Kx5pUguAaatbG9sSyFndoTM6Dv31b3w6T8fU6FrcNFprqq3GgkA/cBeFOZqFCYVT41U5AnF0eqYs2b+pX9heQGJD9CcmMSWrWXcTBHeiMYPDZGNztVZljvJrOpZWcysJ8NQVrg01NqRyA6XzDBmGYol8cyweyEo3a1yehgAW2K2n7Aol81k22+NlC9YlMm0p7WfUlqt5XxDx35m1exsoSWpLwIEigl0O26sxor+lkmvhPoVqXQCA7vx6dObeDQL3ij+Up1tqZe8/l7IQF9l+qr9YXKZrShOco2lZwj1xcY3h5S4K7IzqO+exJLrJ/uPW/A4GaneX023iBn9kjJDZmEWk2g6uAnaIJEnKf4tDVgeScpsRgic5VSf28wYd9TnEREk0WKkUvu/93x/JrCJ0fTHy8W7zK4xrTgrP/l+1duWJ7Ph8UK1LA7yfZJTNsIhlaf+3wJVtp7HW1IJbNAp945bnT+0f/iKOvYjrcqpagu5g+k3IbAEAhnBasSOYnHJN1N36OBRRKKusrHV20wXLwow2DzDsHCFabFTdzg/OoBNDvAvM4YWDtScZ+0zXkh6xtT5xSkYBsxoYz4zlZkB342xOrQ3uCx/bdCqX/RnABVdDAWY0xwpYJGW79W5R8hR//ETkZHfokpsbXYGffXgoKhgSpiGzbDK9d55/+lbRHz6J/XPqn4+Gq1TpJ1uHZnGe0NHOpxNU3lTvOvqaN+UD+MJxzX8le7vNdl4oQ1TFI/A7HpXiGWyraacAJu6+YuD+iTV0butk+4gh/vmloJ+sQdgydxUn4h7w/Q2976R4c5TeCa30cS5ircc91rzcfks8NMPaobbyR6RfYmRCTnySBrtVcCABcwvooYpWt7zKh1EvZXvqUqCooyCapZEgKO4WxTnw5aADLxT0UfRZuYyNeXCP/ePFOQdzx0giXPkrtvHrX51Cx90+NDC1egkb+UuRFGheLZrolzEUQ9wbnnFOKtrL+N0854q/L8BekKd8ka3ydAjQMX428qTMrL3CwD371sjVyIGF0+J0geXs5t+UMWeCKm4JmHhAUX9XqfVAjuhGdNh6Q5vi6PdjwUY1h4x0fNoVRgekp4Pq+tExNiGy+0+Kcpobqh/YwNuSnWF+gQdxqP8SYLIGvr4mq9VbI74gzuNdDdRjVzQP7iY+PbcnoIWM8hKrq+9NXparINvD4lEY2jkb4NLxb7ACMYenCnMLu2ow8XiitFoFJlwp5Kx5ttyoz/ZWOROEkyoOZFkYTUTkCU/8H1Sio1GttI1LCvIbTZw0Sekd2TNZmbvfXd522RsMraTcEtx76wUHmDA4FsIXtBVqyRb4n+savBr1uzN+Q035BL8rk1SeOVDabW0qVWsCLGZ+wlZU2daFjTAh4YeUZMV7+PkCF7eiPW63gIZUIC8Dut+tpzlYDiaPWnqO25JVnQIRDOloYpysnZbOpvvA0pFJo6/4gp9owHOhjNoxk1weZnbuN6z9zhwY+ckVHNfhq4q49UJN8muHQfKlB1+aovwhp/1GxWQTSiXYgtBFzvQto+FAtfEbS2xgm2m6drCkLm6mHeMv7wIRTBtOVLJl2PSy7zVXw4xHf9XKs7rv1oJZ+NluaSX+uRA2ZGkNmey6m+4UWoZajugrdBxtvcq9NJUM4e4EVf7ttF9tKqFFRGZ2Emmaz9b3DPZ8ENo8fDLmd7kGH9CBsGNYBey10bL9XoktTTWjdF2hzBwlFcwfGb7FcW3YasQI4KC1ooBYC0HlgLOWRa4B5/DA5UoEu8LLe7jHGHo6bK+DJkyM2hOwkj9sVOoKzzpzKOd/QZH1tA+OBv7sSp0MnBtlmySwZv8AihDNpuBUbSrfpvLK3xrV79u6g0s1gmwhfsIMw6yxmPrApsMtM3m9+UjKfF0mAL9ICp0thzJOhadMXa3mysfGm+3rEowqtk11X5D9rKVtWqnFLFqGmYt3UfG0okSvtyQ+KQV7Bkqgo3qVVRH1t/d0AY4F7kkbDZkl+WoBKfv3WCeaUUKZLP48b0r1hIZkqJRpjT2qgxadwlXY8XceqGoVQTv+uukVUCPBldhFL3IMc2u6XRxjRV2AmKLb9D2Ymh5+0U0wvv+Z+FYD85AzumhHk9JzDHWGOqWWUVPiCOFvkJVfFJgIEsEMRQCs6Z3+mQVsN1WfNBRVSZ2hh82s5Nu2dyIopKRxp0Tq8UjP4jX3pB82mYTpoxcwmMFi1cUkO/Q6x7W6sx+sIf0HDw36oVxIUoRXr5U+y3F5ctgu5eCQB0Z1TIrCakmcpSJnoVPIHTRyFoZQ9j5bP4eirHhbff+GzKcPZR5T0ZGs9poXhrLsldSR1NQSYNPkvptMYbfWmFW38RGTOJSqTVv9lAvKXPqgj0QPCuc+nWJ7UG4th7CulOj7cSthqfvr2lYZ3AzT+X1D/bMy04yHIQlDpvVsBN2Zn1eeWIozdBIUf6Ctu1IEKjJUZe1oDjOcaJfawOvGFs4B/8DnJIO9b7I5w4cgqfXU+e3SF9OR1IrJkN02K+dmpML8BnQ6NaLoBUaWFiNYadmmbdTXnLwhYcgwRFbzRCxQzjbEB7Gl+vakEz7n093Fogl0GFt9QUkzXQxn4qDGLzgcHc6XzgZIUeVYXt7lyNOqQnkVSHOHe06rePqEgJhsIBygHqv8z0VRzErH9ug9MHroWacKkIMWGxJ3StKmWR0XXJoxexdFl4J6eN7dTIvsZHe7j2M3noZTZ04RAqCndM/y8tDKvqAyXUlT9yCTKyoKbvAKgwpAe0kCDQVpNeQOOuVD6D94kq0xIgOYIW3MEtezSjpryXcK/8QYplMPaM48DWvyn4yILVT6LcrCwC/uEvwCsvssBOkFaeNS0ct2kKgfKVXDOzsc5hmWhdHxp0udJTS5IDoEHqzR3mygIi12NT+lni9d0DW0Pt8pp3KjgaXKppxXylxJIdlbXQfyS3AgvijnQFMZ56a+E7oCzbha6rtq5jBK4m8kOpTGOKGeW/qt0xmf2gouJV1bHfLe4yX7dE4LA7DJxjbNFt0Yj99aH2EqoBTUJCQZ9BOH84OGrPfl6C2wQuZ/Zw//kB92hL9J0NEZUuXZ/HmXnrKy6r+B2JrK/FbU3J4mVtcgJ/7ds7b5npEiXUuxVU0iVb2j6gPcQgNm61VT2QTFZtu4VjKc052wGGRbkIVUm0R/UDfH4cni+8G0DM/rn5GV3WE5hya3BI4JVe8VTfSaGn7JUP3rdiuA9tb3ku1RJO6CacS4Euq7m/McFLwxQmP1AI8cUWH5FHt2qj8p0QCmQ4u13ebwXNz3MrTC2EN8AKJSVFZLPXiwmnOFBniYMXm3iy4sOc5MEt6dV6HorF+Dr1Jw3+n07wdbru7TfpHluJZ47A6PZBAIJT6gJe4TYmQk4MsnuYu4nkLzCIUt27Mgl1oTG1LE4gOJzB98h8oGRBCi+92md6ms0KCrUVz0FikQ5o32SsUup38n1AQfNLRMjYOrPaJ8ShL6mm/mpm2/SCcvi/9AY98C+UMBhVD5cglNyh1tGpvXmp+RemSst/FPdX4rGVDP4/3/uVTH47dfi89RqIwMEldL0E0c9MRb1Qyzl149ex+xkxvzirCFeAA02rn7VwLX0Jq+ZdieMCUvzoG2GqeXxvOL3bqVU2BYcD6nAKYXXueW+DiVP9q8C3w7DNI9Jkx7QqZOUUDZJPWgnqANJLyOakxZEqaNvmpruvHEBK6Ql0nOOw+zRVDGdy7XqdbOifZdZgLAfPJ+xpbn1P9gwmfIhKwtSW6NG9IUdQogNPa3kZrKVKepq6o9GYxUAUihONuE2zs8JKMe5tUmn3JlO9QVvGKRhs+XZyi/w3ejChAdQ/Y+KiyG7diqQexoKHcrdnqoM9CmhoKXxCkevU5TgDYOEjwY9jNIP77XEL1njh1Fr4kdcR/ZOt1fGSgZcTYz9670+ALsd3pNz9zgqP2+/tONF39saSy3vaFv5Vs+HAChi+e8Hx8cTIuInG/l/SjoeFJdDoYKO6T5iJhM3DZ3YKUIYsXnfsOzGib3gxjyYmetsbwecdRiU4u4E9xeTyRXFq10EDw7eU6fkB1OJggh304/KOEGCAghv+iHb7CkgOoxRLE0iTtLYlh1ClY1ZYDxnDaLXojVRwihJbTuuKraP2zXiGEOmRysVzUClAdAva50oBztseo4IZNnB+8KL0phN9D8CC5Zo2TEP1aTFsyY80nYKD044qSzAQtNk+paNZdqLBNa2nw4GqM736ELkLGDsgyPmZSkIl3x7y+MpPHvQW5DB0WSvae9URX9beZriReV0/lTx53P6wXat5tCgXh4xiXJR/omcT3ptxmKtTMG+A6kLD41YoGXeZ7ZuqcKSK/IzEc/tyMD19J5Rmba6L2LemBS7h+rArd1XScbX0O/kP/4cHGekwA39YOybW1C+VxtDWa+EJh+iTWN+Wq3DLmGKPrGKupQWKuKaOkqFH/i972legdjAXxxOx+NquB0M3OJbEFlYZvXocFhEDNHnh5/wqZgsNSvPqGfRgUVJ+wHqPohNWpbzdLGR2aZdluiOmx2CVnzsU7d1r952usfLxZb4/tjc/NTbbBEJ9dSZ2rekdHzjkx8wGh129CVAXQ8UY0rhRb7B6tXqTiYlLcj0W56JVFX5djE/834kIqR1oyqfvu5cyniit/UonjZZ2uvwDOrFxYdwIy4CSlGTHsM6QC6nMn3TZD0J9FcEhY5ZSFhjwks09I1ZflC9a4wX5n7ci8geTZKHKs3qTe2gVQuQxlQNqEQc6MLHmLbo6wsyyHiAntj50cyAoKgmp7IcgNNJQgAG+MiSmgVJ2PEjj9wS3awdYqlzcdi7YaU5f6kzE8PEQUDGB6xxqQ2zkFdhzzAm4tzFC1RkhXp9Ns/rPUzDnSUAWZhAtwjYiX2w1gAb/9xuXP34k66lSwk9ie5fE0g9avGvBRKchACzOjhK1fPUA+0Sot3UI9jV9MuMdNqy7MhWb+CWgBxeXZ87VepuaZ4zzWeXYIMRti0ZvvyQWt5kt4ybPG6uxzBaNeLWv8ED4ehVjDO06MJ1nx+ZeCeAW5CBu4mjTlYPgs+uvCr/PF4F/w+4Lx8lA/DTrIEmfHHUoT6aVW661J1CAg3aFBBKex7wGPIZTTXVY2yETMYqEpiDYYxKZ6YUXnMtwgtn1BFD+VmhtMXaWFdZEckGDIYOGtbVwlWUMQSx3s/Y9gBviRvc9KMT32O8vCKVIrbpXq6prsYomKesMHt4VRW5ojOI9bVEBAlUVcicnXx/AzHrBByvV7LxT0cQjRNVjeRHusySHRH7KC8hAMtTxFoLyuibmcyIksh762kZUQ8o0fCwkJtd0O/kDA/fKKUp2uv7GaddL8kscq/DYkdkGQD5l1jv7kRb22I+lwKekFZk3b7jhxigtGyPMlL+TEgfPFqPNlkiuppHQzz2yEPEtP3yCHYZ+I0U4FHSFHsYUX8zorAlHYz1eAwlPxlgWUO/OB7tMHiHK9poH8qU1XKxkpd3i1T/2L5uy8+4Lomwk1vAcOIoVTI7gyKXdEdwhvL74x8+cGelhHjqy2FX8GTJomd/4DK4Sek2HiqAR4q3FlWZmgUA20MIGArQ0kN8+cWPsQs1g9M8zyXTJQKyYptgVaHuB57imvg4OJZlt92GbY//G7o+j1+is629tYtmwrx64FotZQmkAINDwDrmIbz2mP/UEowrRMuEjvDEFh6qyVCosbSi6Hj73jDzXJrXTrLoAf7Pf0X/kW3sixbLwaG+/ZrqyVnTPCyBBlNAbm8g/v8Uhr46NJMc14hvUrjAb/qR9BAQAYNZSZ7hLPgxtDaDmjUyJ3WwbwU/TK0z5X9TKxlusCRg2HoZ67MIAyVOfW+1XcYcgyO21VMJf38tEC+e3rQ+BOar8AQVKS6ZFobKluVJwxIPK2YCZtBLm5pPN7hT5FUop6sjz76o3FPolydmh85vOzNATxl0VftmS8QFdUNL7Iqs4wU9rLcB3Jj7f6HTVARzhPZqaQSKNlzd7xxIQhw6HTuKe/7x/HlcIiNKD7uvdrWQP3OgzVP/KgLvF+MP/iPPBWsG1JFZ1CRVMbtlT5TrfAW1HheAmIGIbmqo7U0RMTKsbr92Umyp9IWdpPRUEXo5A7QU6IwlZPmA97EwxjW6gCd066iqvWG7Hs6G0ZlWTUApAlCA1+3/Ym4BVGXd2A+NJTwCYsSeYwfmqSh8W6lcvdzWDONVtL3ErZ6Q2Xyrg2gkHf9dEyZbOcdDH94O/rSzxcMbhIQkU06QjLmYeXVIcpgXSmOfSrhoxF+hbEuDz858O68vU0e3QjbzbE2TBTDm9qhriV2usQ9N+cBnpMBn4HytVjQq7O7lCect9IRK9NDN5sdc/jakdvQtNKPiBn4AJoOMiNxI1dbnFOWdfOoHMp5zkM423/TkDFfXD9aa/5wuvBZvHJainmpra4IYLcRj/H3SNhdcZWR50RFqdwlgYmjaNNBp9Bom7WShZx6k7a9IpcKFKpcfLDSK8tV1JzF2t6ohE5Jvfb8w0jIFNU/FRpSIpz40hBAlLdQv6WuEQCcpJdBTzQukzrkIOVnVQdgqEmQehbP6dehdDNctQ8qDNassp1hiWe42ebUya+3WjkCQa1r4twRDaJCer0Rc+Btjey2zBNvGtR4/l5rMfHeUcxjyXT0Pfbe7NiPzB2MRSUa2u1ygqHrf4Q6eP/60vyGXXBqH34WYkHyeKpdi8hQG3mkXVI1uQ/KcyHSBLLoh+599cYIyhweq2pRc7lYXcugXt5g2UwcOHIJFrfG5qlr6mK0brCbyvuzfkEwSE5TzH4Vs3lKC34TuTkV3SixKuNHMz/vfoCue0EgOI5PJ4vLtL5CewNiEPEi6EWEOxNGIbdwoqpff7C6E3RwJfUl5xO3FuUPZAt+zVo1k14gmo93DIDUy6RIrCMDKnz1ETeGFa+P29G4igty/cZJETh3EOAPrcmKFOCBGfCrBwiq1wB6/yDetMR6Cew6UlvyHDnFkXulSn7JlLCGZe/miQ0A9tZt/Hm3u/9ut9h1ko422+FCj9tuEc8FoOD+BC9bKuxMePo+FHMsWCcntYwyN9M610Osb2aGOlhKFa/SO5C4anXRiDOfQ00lI5MobXpH0x69XsQMKng5K65tfaZsx/5d2pcFOPKQMbW+40+kHjmF2mUxUgntApe3d7fODxvhEQeKp03CFu9E59OgIds4YIkM5BUNjxk4ijDjnIPaLyHuayWMeGOtjH0tpGHMP8Al/ZlCQGVEatjT9uJIVarzXM3q8TOEfbE9L6QiBtGbINMN9fd+D1/n52tP2FBb4oSTas37Qcvf2SbR1QzDwiUZBFdba+3Og0F/DaWUfCyNL//6Gk0Vrtf+lSNh6CQsCQzQLebIAZFyp6AWpldyPI9dlgbVZHRt/a/gE5mp5NwIwrn4frX4tDsg44zTknYeWGk+7IvIDK6YCsomXBQWrlj8HLP4Yt261l4T3Esme5QPp+CW4P3iQAzoMI5mnFc0tMXnM9VEsqqBBgazifiOkbgtPRceNO6Jmffs55au9BMAzmxFkJPA97f3FR1GZyZHhSK3vQYV1MNVR4N9Lz3ERijpdivof7LcL4kwp6b6x3uw9bFxNhehQ/HEiK37eJEX9duxtkOQfXjmIdI3ofQq5uWm+6TAbJep4Tv9poniySGIBL1ksuDu7S/vpnQ4SeErywstn09avWLtuuuhy9cYGDGFKHbxM8yPLaMIGIwiUeC6CeX5NEJvYdztQAzuo0aQ7ggH8PjE/VZBS3SCM+Pc2D78ykIxY8L3w7uSgQOetNwTh02j0Jf74YkurMPqYf56afMJwtKO7rx8FLPkE2D1fKNN5a32p9v/3xzzVddgKXVx2g8iY7UOcdOmpUhPP8habbCVMpzRuc5KmvX1Njo6bd6Lp5OYyVT6NVxiU+2uteTCaQemtAQWrGg8PfpC4JbsnaCu7FvT+kGuAUZAabuwDyAlCXJB3V9STWx8XZs20V8AzJOCS3x/ZWUrRc5e2Cjz0NVxBh0fGv9esei39FVHsJPOHcuoHcjitVEvM15hDYT0B7EpU718f6RRRd3uuRuRwBTui8BICAYArJP7ArndMr/JU47ouGJ7+fnXXK1/oHeWAiiVYtpirJE+1AGPaF5oRbHgM8JvStatk0CCzvIoqvI7HpjTPIrewn/jksCd3GYIs+17dTiUBZK4Pf2I0xPSP7rqcLRD5GWblj5YaCa1PhhjmM86azWJ7pI0W01XJj7YCCbRkn8VZTVbh7w03Oi7gNiWIPr5PGX6HuKM49ioa4MFMzQ2tjLirFoiprNHSGYJxe3Av212loBmHbQjNjn0qvceBpaCB1kaBdWf3O7Lujx0aWU7khiBaryD/bnN31HkE9x5lFEq+W3AtRpO2qdrUEGi+9AzOoPDY7SjLI3lV/pefeEoBhGAjER8bFN/Jd2qucqCdHz2BfznoLPjdstbtpKzeJF/S23v/v7K754CU0y5zIgknH25PhQzIpIVy66htgZKPsAvBIt89egHAoJi/CZcWMtX4cVWCYjj3X3sA8nloCdvCE59ydDMH1kyW/mnlIc7OPD3iyli5Q4Rw7WV7nibrIxDDKZEt+Z9LgJBC86ZrGSKBmy0x3pzl6RZLwK1orEuk+v6fX33Jvk4NeI8oeE3d1bhi4MuC2onfNa8w+OPxYvrWBku+ODtnOfNxNg2fXnbf/YFIM9CtfawzN+jEH1S35/ogP+Cb8pXl+9NZynlP/0+c97Xga0R2owTqqKAMCD93ZKHQbAKbXZzZYeOrtki72m89X2QxZEjWRTOyPetvHONkQr6CYTKQuqN7+Rb2aYP872o/w/OLv+lB7jbWF5P43k+q7Z7QF2pPUT0LevQ39lSx6x4F6RSl9B5wTjPeT7qfQal60SAC9yFsl6p1D3HOojX/eD/OzArd++3fsBhBaft+sbkQij3pkEmeXoQ2VBLWIgX1i/nFwmRRbM3Hu/NWw+phDo36qMjFxBM4KHRipGGxdsJdpzwd+gKUDCFUWqh9u5/QncSyr66PlEmTn5lZHvt/3TmERrC2CYqj7Xhn7VppKtcAHdct43WJWCVMn6oqikPOyox9hgDTcer9jvFDdUz4JuqC75EoFR+hXWiCH/o/90zc3MAcuq+CGPGc/f/ns5AgcB4Se40AWiwS7uH+Nj9SF01PdTg+W/VhGW+esjSPrRYK1q0KCyhpL4Z0ME9UhBFxRCNBSpLzP96dYckvtCZzHr8zzO5wUXMBM1jcFeSs0wfqhBDI06aBtypJxJe/77w1nbFj5EKGjBaYV3zeAI59PWw+gicJDPzDDMhloI/7Cqy6WHq6EGjtJepbVwTqPbG6NcDcQ6yp1DNJUbkhKC28P9KBwDgXYrHsNSWVjiFmChsDab0WlrGMFZKwYQx++FiYuSMuoCEEA1HCL/CmL82V55uytDh9VC3OSnr2XnE+Q8NBlQuXJ+FpQWIu7y70qVyrMW2/YmxMbX5WoDD27mPkMpAksvvbjjk2FKrMU14AHQWvcVck5XZZIQCCugAU2Ud/WaiON0KgJUz1fqv58w1BkuN6xTCq+t0O4f6BKYsr2H09d2ug97fAWsKrP7+DUl2cT5PVeAmExfIHS31MIiPlcx0va/KLi/FIXDrO+N6WuMMGWMP+7L48j2A5ucG3MlhXEIk6oQ8Wz5GgiEywWXVXx8BiUxbpp6TvZA/5c6bdaeFRq9XkLJ70uqKaQstBDhos9jP1VnHNr4tKEiLoJjn0nNpNxA1n4cRrKiiOn0vbhVzxLEwc/McnkpFAID0MgjBqM+oSEzid4W4ZhnzHiHYIdI2RQX3imADDWiCh0FeT187MSS/rV59fFH96yTP90yQ2N6IiqCBULCfBZITmMVlDb+NDlJWc78nzNcDREzSHzvW8fv41Owuhr0+dbHhK1eiujLrWHRmKQgUfEcWK+Gdp6woCJFrg/WdMKGkvVl5BKvbNnZh/aKWbv45s73d6Vt959OEZANuV002GJUexb3XmdTuutUPQWoziRByR9/TbGBZC0zoNHMd5QIf0ec1lkhAIoks6sfczqDScvONJ8SfGhKIJ36qAoWD6gs9qCRK/OPHseqtiAET1f69A6IeJGfQOUuB8uns5n5mOG15jL21yp1R6TOxzx+BsmW7UCFtOwoAdafGjrAVP3KRwYFBmD2X68A6KHwsBggtgrrqBiwLzHNIM/19qY7i9FkloKMH8ZzfbjZbMPD/AKghnjCy9GGVFswNuWZHU4wJJz30+Go1Q9S1mnP6sdmw/95Z9pWd3TBFgBa5Mk5GX8u1Dq8PcGB/ZScj1VPfdYFjdI2hLCPD0fvrQEegCfwD57AJtMv2IG5cGcLr4iy+CURUJ7QDnPQEpMlo0kOgzH/FEJFsAOLUpRmbNU4cAlK+oCZDuDGbNRD7bdw06MAdIfprvx6kVJbYykdcQidIMsaJMXyzEdiO3oCI2AUSJ4CGMvH3HwpBR/oX/fErr5Fh02c996v+CraIQLdbIbRtZEaeC6rJyEHdcDF0C94RxcuaeROlTNWyB4utptyy9rWINXCtz5HemBePwFRaYixNR8osMZesERFQrN0lQXBcWsrOjhw9MbhpexfESFr4lI5aHCmEqkZ+ndgchfvbR7qV+O67oJWAGNNCjdwb/0CIkvIGGiHWvzu9CJDw/taTz6hgb7CH8sUmYVK2hZpXcYEs4Ny4Mv4kEUZR1ZAqrniRQTbKNJ70f0GRiiWKiHdJGbS0t1R2OnHv7Vy2vISAGIIT9bucKOE3h8qGBnxBbcBv0gctneiNGW5uq9pmh1Vuhc5P8fQ3htM6FzSZ9qJNCZew+qtM1DKP/QioycKViizAxeJHQBNsqGNGv5OsYe8jfJ/m4Q/bajN2wJRoloIjd2p6EBSuqiZyO0cWmVRzG1+Ee04EA2gGnM638mX5hVsAsFiITqr5/lojHOfVvdK2zqAHM0lQ9oVT/SQatD6o+TgPOthJLuJTDHaONXG08nnLmycPuyZHRGrGngV5mWOlyUSM/1ECiMuqXO70IgUl/7kbEulah04K7BCpYelrZQXThSfUo7jg/v0+9kafL99ZJwtomocH7/3ODQsZjc0yD+88DgWvRzya8IzKZi4iMmFOf3a5hcY1dyoKDBoPi8tKYGBe/Q3ZVkd3TNoWh6nf84t3c79u3paOmZl68oF441vJiLhdPMjV1ig70bmjS7IdJNd0KQTmS3bTrJOYZgB3gaMDledCuQC/cPV4lK/r24EXFAixi5xu06R1Bq3Z0Xl8Z2CmECso49v1ZzPjldQSeUUmFD2EdxYQDPAn2SND9yeKdF2omOLaWG60tGtaKdcKHMcLhCxwYevs3bl657VXogeJ83437zVWvOZ3kWfvJtdYYV1zJQe9LQ3R7SUogA2om41tdxjysCmtVc8QIPaoqjgCljQ6z76aT5da439zmEQtDlipWY/GD4JMZJPAbYyornIdcoISTguABJ7MpwFleLcO4pYLsT8JDHc16IXfZy2Vw9v86DTdDES+R7EO/Vgalt7m3/2zoKEecNsRV9iOeVgGYXnu45MR1EQL4fo2D2AsxK08wSAM66Tzx9Ue2/CYV3LIv2t0PCMDdb+GMo+wInFTjwIQ60er+83uhIrcemApXHbcAU3g/wKDRUi5RTG4YEHgdO0RkmKaFvtiWV4yeu0UJGrz62+JJRZja3AEp124f00rsiV+v3EXeQCYkdP++kQx2Nuo5hQZL3aJI7gfjcTOS5qPaL7CljBsnH35hTYdy1qf9PL5cOiA7HtDd0h1SvlqEzt93B+R/7HVsSS/QpWw//aaUQYc8LLEy1+RG9UpB6z1VNEIIkFVm/P953tgKSsQTWMMJDOkbOwF9lqP+TBx37WmWtNja5aletdzbvLZt0K7ncpdxNZYf9QPVDrLVI4SDfOYQHGaleI6+D0NQuxr3ohVibLaYi3hF0+t+hwYr7u/HGQp3yT5xmR7mcYlVJdAenkpq7drmUyVPWOTtCTTkt/CTdfMPvk1vpr8b4fXHl7xZp7IFY9xn4o6i/GBKUhegK/d7gasVq+ia8GMN3bugBv7C2AFEPPZo4dlS5QFzMxZRUHoMFPU15FEomObpkbp+8P651vf6P8IHl0zL4aWRwOvl+Z/7TGYRkfbw4C7fbepO/2Q8461HoODI2lXomxjKPJ7PvHjyeU0vIBz8WVd8Wh3vSbYrRAfjSXYEhfNOAcCxdh880/DppiCF+ptDJL0B86gOua1WRYF8NcdNxkfBVRoe4hyGFtQgk1TDEBxHNytm7NmdlExXoTok+iEL2WBUK1mfM1EybL6N/qGSO//w0Ja8q3dGeUrIb2kecHcRcG0ckadLOYZI2LUilx9/+t6oHcvetjB5j4wKqtFgarTjFISEs4dFuVTmxHIDlvGrAjaZhCNQIIpYjU8W/8UsSeEcG1vYoG0DC2FlQ+WE6qZR4XpqiN0/3kXE+Cc88zeLKWmFpeh5BnSaSLs/z/ja7YdUJV8/7hJiSmYNt9rR+qKj2vbRKjPtwrFl1/Tr7c+3XTEsJn3n2ljxJ8pb761LpwhOgUDr55rrKKiqQApRvhxNdVaOg3hKWs1eFIV9z0DVCpMO9TDGtZpdo9aDroraIXnlb0nK3+xCqTGHRzjEL8Mo+cQa4zSeu/4d40l5illiHztO0SW+tp4OKWVmWni2Xm5ObdwfAf3a9Uo/LIPW/2qHsNa71mhJAY/qAijCdZWYY040n9thDGpzy3OMEeCRuW2T/81XMqD6hjzz4LG+djz7tKusOphWtCxEoeinEPPLLrgaEHBmcybbZzR3zDkznUPf+q+fORNeEm11d2fHp06Of+qJXqb4Sd0kmUFZBqgbq/2cE2PEfu2vGGMsy4Mfo56oRa/DxXs7u9MyFujVCX7EFK2kgQwXL5lVf1QM1NqlQSHNvTTUlHqyVxBsNBE5FljG+O5DWRhyFe2hwzL/60paKXPoNbzYoSNeEjOBU8Wiolr1wRbv8M3w6m7q6WtmVDjCtk03VzJlYsYtR8qkzOlb6SKBW8mqbND+MPhiKMbb/3g7J+xP6xs1YvV9PHJPhPte5Ktv6nw7k9JZIEBgovWdFH5tDpfNAFdA6Du1LWrty78s2pJYIOcYQ2vzfMSdL6ixid1z85WY51TWj2fLML7XXISHIsjA+O4vNw3IlD7rBD93oI8ZuOT5oKrkbhpfZQBR78HFtLzC1lpw95bVj13KJQeEAgEEwqayfGEBo+op5vVnf2MuUezlr2poSKseXVrpSVBknB6nB3Xzk/QBusz+AmwSLtHliPUlrNzFcvIRXjVjczdVo28oH97OHZVUT4xdh4IK7RqY4Q9FD4uWK1Dttfd0oiFEYbfawpZ6P1Wa0L0hU5PCr8CRV80b0Pn7IcoNy6LUDPJHA87CNf5cbgeUSVvLPaZZCPPJ36nnbF9hlXD/Es/hApWK84KR9nh+ZJjSBMcVMCME9kgLNcEEEW7pAH0qbyoZb7TogKlIJh84GfEhgzLntz5AoNDglF4wu0EycfDIq92MkgWNUIoR2UhDMiPTKMC9c3Z/wTFZQrMoterJWK2k40GORhG7iriLFm1CrDcL2mLjkBDHoA6vom4zVu9f51HXDKPDw9w6aqWe/bwUxf8Vc1vWNkQZ5T+Q/uOmRtXFuTl91Z0foGCbFalu94WTYBfpOjbqJ/YuIPD3YQ7l6JrVSk2350+i3N2+SbyCwpoWP65io6fi+CrkU1IG0NM0soo1t10JeC8O+DJRVtX6t2ikgoQ/6WR7wcnIt1bGFqbmHdeB9h9klpoKZqxzVrwSorW5dcuxiOEdJU5DMhmMQokbqJDsTdqo9leL+s8LZtjE/2XEa5H2MxZ/ZKNLyBTTKodvkFy6whmdgSYEsgEb46woWjR6M3lChP0g0knFF0aCC9m1AqCZsPWqKOz9JlLncDUUJ9tNPonClAHtkIASD0AGaUXXkR7BB0PH17UnROhdLMmIdtJka67skCSTO5cbN8Fn8DBDV8g4Cp1HsZjbqLd/7rKJcnzynChOgGeEkayhqJ1yED1hen8byQ8JXABhjwlTwCWmi5TAX+xW3mNz2jMdXmyXtYBODfv8vddYaVtY4clEhzMn9IP8iml3gOYta1S0L584oHFHej+JSm9w6OH0+Qy68DNd+RxBRfrmpvJaHpQAHExbm6q1Qx3aiFS8D23kybrJ1kJ3YoHcYUZzNjSTG/t/i+qDshBsvpmusAa/MWRusK/ZfuQI62RJzXbQ/NG0jJeXTizpqEe2ZAA7xrIEdpM1wAY+q6NvJwQ5HA0RnIGw63nOa2WD+YETEDD7S6lFSt0X8G4/pUCN9xMn7F3n/vXnAZQTXu7ttMQBcIqHv4PmR6xETuQZij6cl9kEMgCzI3Ij6u+JAL9T5V1wrgH4rp/7uX1y2m7bKyF6UKLNCXG/k+KzccUWbwThJyqpXk722m1fsbsh055G+uc0TEV7PuMjcJ50yeBbGlLVCdihooLlxvZ3JoP349FwDJR8QPmVQ7f7W2x0MsU7zJJ/Lq+8x8yhIlbvzCeRj2SeEl608W3E/UPRhlB/umLsRPzcYzmrcldX3++YmgTakrWYRvVGgqAlXsLPrUU9KATHlaKfjUgjy9ci0KhBL7VqrJwhKl1bxQxwcOKCBF1/5wsk8po9O6/3WPsd4V/kbkGGu16uRCQztB5nu+mxatLbCPGWcDFx1XyX19MMrKKkdTOK3DRZGmZOHjovoWlZUNFjc7N3zu/ONIf1WjgsQxjYYlRAZ8lWj5raU7E4E9/XF63agx+pGS7ZUKT6snyDzlZIbok155R5wAy4G/NdBL76ZFriUo2zEOe9mNW4BCg1tP7JBiMVqSaakuiq0aI4QJKYa2OMXZVhJxkH3G4Fs7Q9dkU3biVhpGVBssiHdTjCeJmqNRCwTJmtcSICTiIjZB3NgUP3L8A/oLGv8m5hXeO3aD/mWwj3FdpL2d00J7rpam5497EkqPorEYYUr4Vzeuf9VVRYxuJLHzOOU/hlUBfNEP+G5UfO/vSzjAP+LUAIcNUcRbxW8GMhU7gjtYA6bRZbx8Jf/8cT53omHeZaTXuDgXkHgPShZKbEFIPofduaVgi1c3IYW7q/Ixp9g7sjF1dcHhfR/jyFRtcfKjPaONiVplw7b50GyDOOY4X86xy388Bhgg7d90mxd9ML8opXLqXYBXQhURdDdbqBdWXwxpf6+qZHFbQ+KMas9oNESQQjFj8w58eTRUPbpZ3jeIV8rVIHW+Qh6KOPnskC4wZj5T+7+GVYv2AiMdker8VhFY51SGg9kDhCJrzBseHELgq23XwxJ7/GYuWgs1rXR8TifJ0sHXy1Is6N8eHbfVuVMzrtTBaF8VmHcg48bum0ZePVydwKLFhG0kNwxW1Zt+rOHSK+ji4aKF99quoQmKoZwJ58NE1FPcrc69Pfcyvc8yw/gnF4qRa/GSm2lQvgXcRIwEamF/qUcH+n6HhVH26kUTsVGIUYduO9LIQ+ejK5PnPtE9IHPyc431Fx+rAlOXxC4BvKSxWKVbSYq2gVeV6JHIEvhfG3z16D3DNBlAYV5eD6Skt4k+b/JCVdf/TB6keE7WgjfsMyKn3+tqbsZj95D7gA2B1Zxst3xENfKBgdEQ+VIVzROHLXgsrj1N5TIVnvu2tSCxeDQYCI8J0ffCbpJUonPF9/WjeZtJYQPxxVg3eObFkms23/2jb3r4bzmqxJJbGGYN2a6QAqATfO6de43BDQHxUzEekRooPOWvIRRUA+BftEztvXZeRr9SFaD9IoheOguVNlq90Oa5T9TL2x90zHCwRTJ+Jdl3OxklzKFZCKlGT/OH8lVS068AyshExWu07CiNNHn68JctLKkvuueHeKVEICYJ5OUt9/ucd1B1Fcl3W3QQcJxx8STSB0E8SWieiv8RInaUWXgQ49rirMDatcFxXpbISGQlovdOoSo8G55BOS8pebnIwqsAFnQstsdQRM3OR6kRLJ8z1LiWKC42E5CLQ3lgrPkSuvgRCaMHnh2b0n42Xq3lxmioRoJDiH7cUsLftbg+2+4U7U2lZe4yZGTl+jzmt6eZV1S7X6vaArtysDs9sJOU8/3hHlDNEt3MGKkgyJalgt8e0f/O0B7xGU9ntosrx3NngPwOEtCpjJC039ouMnwGr9BHWplB7Kls4Ty08Jz3SxuCc1efGeVSYRJSHbhUhx4p1x66z1ssa1lrCJzLs1MC4VybmQZY9bD/soiB62ls7Gw5PD3HWhMXnIhJg+LX+GsGiqdbdYZen/XQ91iz0y4GfsI/chK45lr4kIg/Pf/vEMDPIv9//hv2K4I7Wuvk0vngRYU8Xj/qh0E1tXHZ5YcFwtmlRTlp7aqWcoS2waHDYyAmoQFvf+YBUrYd36Bdp/z5W+eqwpm3j+g+uWjsSvYF9/nnsANmbaJRzecpDkrn/zN8WCLNXTK9Ia3LULb3OoAcfBcNbiyMAQ7cRew0QOTckV//93NDolrjpvb4qEyY5oWuTVafHDGxRdRjWLcW9hwRu8yVz44KE+mAhm4aZQnENVXe96z8lWbXyQ2KVHh5vsKyuBI6Zme0bxQH5OamM1lxRU5HzfTJoMJrHGilU98UP8gx7YXF+k2VX+QGNCqy/0aLfAGxdMXp5KULn8/ERdFWvDek5WrGd2+4+trtJTmYYeIw8CTlD2eBkoWFz0gbRF+sydkFpQwdGhXV8ccyW4oIbPeVfFTBHa4T8Nmeoh7D/rQrtmF/shQBin8XA4hWLAoBqFpKgV/5BR36m7oQpnx42TM+3mvo0ujUfewjoYeA0D6VIXwjZ0+RHL2dDItYknZg9v+97hNUAC6Vu8P7zT4MWc4yf3NsMDFgjnfHkE4yuCwbYli29jOr+pMyQ6iHqhkV8ulCJn1jtSLJW52a3Dg/QPJznXtS3EpAPRzHn5suOuGDuSZOU1/GE0PBe2b1Cma1210dsS3lYySaPqVRP8bpmgV8dAQhAK3oMb5PeMQfQFSg3bBassqL/VXRevG9GaXBzQaBfpFUit7rPVe3PisWQBJR3nLiFjDmXw6i39tlX8uzDTZx/huAUNWipcLJ2WgaEw3MLFU9pEzFWViKrZSqG7TOUr7czE4YG8UMinzBb0Hd7eDc1YlwQP0pn72N58T9LpE4IU/oe4w5e/u+phWNg8Z/+RHQiZtcjz/l1Sj8j5j+Cmbo+O/YWAljyt9FeyN+HURcvYeR+Z72pDSJKSIMyFeyfPQk6wbYhzDcEA3lLw4JXpYz8e0Q+DvmViLie0SJlCbLLqHI/BWiGKBuF3OhP/1c0q8Y1xPIwgkCwJr9ai4UpKS49CSQ6oporvDVgZHJSCWmm0c8Tzyk3i9oVMoJGj4DsccyufcUHGonKDUp7Iy6lYrUjlPji9iQkQ4LMyn2wEd6er7SNca+F+HnsrT4LVgP7JlJWXsPXMvGKkmxqQaaHsYcxojYcPCNPZK7dKtHs3gLH1pkaY4kkfia/luIlDCGZzTCvHwNGRDTnXli11zF0r7EVYaE19FsWmYYutD/Qa59t66uRs03NBTKA0wKB7S6QVRu1bsrCTXG/2MQ6/cMp7ffbgGbaZjmsja68qtYUsvRBtSF7MvrZnEvE7vZ94s1iqDdphlPWslhWCj/ameObMOWXJwWdiB+3u1aMNB2ciOOaw02t/ALuwjvEWsrCpLX4ouj/5cEpPrcfQ3SujZRzh77Ga+HWWbQQupZvsFmD5QzAkSyorVt7vFCi8iiwsPY0noxsMRc3VIPjzfK6NBRnEv4MVoWDkuEJEITjbB3begtFccu9PJnv35Od/pPQ+fSZ3jVyy6fBQPTp1+OiJJqy+0GKySKKTHG6iNByfuiNcOQQJ13WwfxxgrDeYEMgD1OoQfex55nisZS3UHR1nm00iXfKKfOQurs2xFpTEEgno6uxNu1g7Eh/SKbAcYBF+6MBpBai0bOY0Rt6XSkHGkeFkYMCei64Hiao6ryItUycTLrTRIexrOBl4gpYh37iNOQk37WA5REiO8W0zwA4owB8tMqCQFHbxmcCvarHI6ktkDxDoUmnHq48UoGDTUXYwbJeD4iFKkRToPLYAkzhRATt0wdx9GsSFebQOHEOr4sNlO0JoT9QaSNlrGLUTpbz3Y8SCzgRyzzUsC7QD6xA6Q0dK6OabQm5oy5u2Q1zHeTr3bUPX0ifPJo+iNKPRJMZ3rVighmRG0oHhBCtaeDBfKB3+8tibystzXWmy8FBIgGmYx3mvpItzHuc4ArAHGRqIooCI25f1mjAn22xMU58gHobQlu7hy+UKWClkdNj1pAFT/ty0Tz0DaqCkmF3tuUSV8Tc9qN1AMc9SkZv4FEkOK0C9Wf8qQslLj6BPDvr3RrIjCoTDuWUpiDHgJo+kbdwsYBpBaYD+BgX/rcFvHhyVxyV042Je2EyMhSkrxMUBnHvxzq+7LYaeCKxvL0YZUfsYeZVUhtZBp59eJ26g8O0eNgQpuCEDdO2Esq8nIA4L+np8b7wyd81x+UV2OxC/L83V7ZjlJxIa5THITnMx2x/nIB+aR+3+dqJ6JMQbTp9TnZSe5OkwuqM2CvJCp1VPdieJIxOQgl+zXPYQwPuo9/oNo8v3xK15jCVwDcC/fVU39HPaSUaXuigyGdIvUtziXmOmn3YM/fjYq/kNZ5ztrUvdNcyErjNmD22KAWMcN1beYYId/EsYpGNmakqOg5YlWM6Rm3AbIWb/gFqoH1NhVatqH2VYTDPwpILuH8Iqf+08ioNUiXZ28wffIUU4QHKnjgQXRuyA/PCmJhDUZ6yqSOQNDUoreCFCpJ+UewZW5/A/ouX/QwfkXGdvVwtaqiusNyH/JBsipj/hUgAmMBrEG2lgBblAd2bN0zDqM1aEedhfA24wjl8NcV7/Sv5Xna0lMsfvsKvl9ySDXZtQhluxnJcI6nbi3I3wMX3zvbu8x8lNbURmOLbPFJ1zq6bFdabG7evsx75qN3NHnz2yx9OXsW1QnH2KKvod80i3oniLwabOQRitnccAFRPezESNWu0YBmmGTZtaLpnPA63ATFnFPdzEcxfuqe+khS3FIgjFQNUUT4ipGczVwiuTkCVzw+aTiQxKnrSh17UxXkb60fK+uHVONPdLpAiaSmVIfRqlRRMMsxPKJqT0I3iBIiQ5TTNazt/uiTxGGRsuql3GSihO4rmMpsqoHv4SMKVYR3TXPb4mftNA4HilHNAfri/lNyOJJG0ciMvIoTAWoT5eSmjeMiLCLfM7oU5XqnsN11HOIZCCh+Jp9j7lx4Usxi9btpZIevoQ1KchM++dIqZ7mE9MvdAw28fL+oggph5btakeZFHfHiwjBbA4kKIiDF6Pd9PR2sJAM09aInz0JYxnrGBs/kgo6PdDL5UkjqrJQcg6cVHXbrxb7YWfVpUwveExVvxOUphFpCbtPMw4t9WjjmSQoSUUDctpwyOjF9DuAYNOCWQMcrPgr7yo6aRI330Yfy3RsEbVg+lVKDclnLTH3K8HsiY3hHXSCcyDwEZ5KE5sDC6NlSPM6iW7oP/xq2ZhSc7KlA5WrjTGJfloVmiLglncLUqla4TmPOh0HQr+M4SEYk9PqkxtamgBm+BDt+UYwra0ruEhwb6hJJI51B1g/9osWTL2GOZXynfJ2Di0drLbjigid5iO8+PHivSUZairp3BieuF3au5Ki3KKk80Hbtusmt68sRxcq8aQ1ugURJ8pA8IZiTlWKvoT5DvYBXFMHgrEkjzxTD8k1/Rdvw2Kq+9sLrJbr26THfM24o7yg748gcSrensJ/H+5nQqLvGZIU9XaN3eQfwX1oy7MucOZRNARjLx2GtKwW18296pg75D2XJqVSnmwwmnAWEwBfzckCpKjapwVElBgPTTrw0yOGnM/s/1GJLeZ/Yk7Pw17D6J3om4ZKytaRFH9LpCgRtW1jbVKUT+Qgg+f8IG2HTsuaLRYOYT3bcAwt2OoXn/A8NgGOMh49hpYaHpy+J6tH7kstELx9GALx6GweW2lz4LNokwZ52UdxUC+r4z+p90yXN95VnmyovuMB3KJJgsfNgwg2iavqMNRbmEIrygduQ4CLx79lA5ktmgFaAVsVAByRU3xep6ouR12p5hniMIsyEb8C66CLiqWbifUZzfLm7ipOoRdAEi9T5MkO8pMkC42eJ890JjnsftrQm4U6nYkRrsCyuGxOJjf/PS0kkvTKPdlZOH2Ab8ZycKcs21pmZyhF4q4fK5aA+ZNlcSIL2R/I4cgxlJNodCAlOD9Ndxq10JPzja3D8fR0/6HbxzeOZL1PCc7xCU1u76lx2MXv3nqGLDuxPs5wu67uVQ/jp+uSS9bDDhQ+OVNlFE25Kc8n6utQb7rEh1zcrJorIGxp2FXcqmsNVPxMHS6QcLpws+9UBGQYFMlTxvNoxxf+yuW9VhHJSO3D/LYdtpNx6S8rwLXBvjtJVElWjGCZmURT4DgD3w92t42rxBCKRAG+Bq4nerMOvbUOAgxnemM659tc0shfx9FTrpcjbZq+R/iVXloBUk1SuItOTfeIDrczZcYOvE+qqVEsJIu139m7hmFj0Ou58XaDCD9UQSQTh+RHpamxBbzBg5W8WcHOc7Q/eyPhoqs1py+ct4hVJ2LAHpZqJxdnvrb9uX38E6ppU8qepQGCZyrpe9PGuVcQS6CnEmGHndBFkfqEP2ng+OBnn/+MSAxQtGfTGmYh1TZqc/H8jaEiGznPqVwYsNSyq1ojUCBzPpEKq2u9LG6OSXWOkJ3q2XbOJdhF+czGWzRrXFSeB1fqrHut7BSlZA8yeHGtetw2d9dOwFnGsvPLUuIUTAXgE21tMUZJqeYnvRxfcb+QKfrldLhVecgU4dOV3XYevK8tBL3/BZCctog27CIJmew9nKdJ10XukaGjSUZD3yygn+h86IKwsZStsbiFCzziGD0Q+F5RhfW0Vrso1LyouSFTkMPwE7aAk18lJWlHOU7KYgtbScCJ0uZLFuc4uqCuAPpwntvQ1Dsvb1sDMXuiTO+Ac+1ksMri2oUBVRUL9YBpMeYyo6POcOmQkXASv90i2XgVZUwvTk6rEsgZPC/5wdnGjqRfgKcm/6r9GCQoF/LyoGASqeBbcoViABHASPBFARMwK+moefn3szz5/T44D/YEkbm+0m4YqsBvIzzwP36sjqel7k4IxXQhMlWd3ThnSmBEm0o/qVAsMnj82lm/hJKsCwGM4LVD/e2nrmJHSytB50zwAVw+3G2il57GEzjmAbvYZL/NW69fCn7kpACAteEQ0Ex2UwHKLAYqUdIwQUkmiX5uxw/6I71CGlm0x4otDuC3nukifVMKufruW/Xi/bv6hKY7Iia5/l7C9EUGXLuyN2d1BzO4svFhA+Kn4qYCsDh35giHOKK1Vn/OF0NSC25E7uQZpG+5vsdBeYLgemML/uLOX7GqdRWEJ7x0HvpZhdC4/c/JUZZYbe60jtMvKuP+rk9mmqW5B4JigZbPw01AzhaVrVS418LdKAmuHeT9BFrulyiC7tQqrrSVI1iKxfaGRxdT00YO+Ptv9pQOsG7kM6XLlyiS/6bZiKl/0ZdXpPjsOJ17kgPYE1j44XUHIvKDSmhVod4ijALssZj/pJCK/skeDs+8O/RiciPrle+xdlAEMmZh2gGV2KPgOoaCFdtpsA/qCQBhKAGkRJ4sqqMO/fUTVH0+9F4QDAqcT92kfbH0PSHAcX/DWub4mJzTQ345V8sFtFWLtcRLM5OpI4+samqWxXAKK1WROIeDrBTpO7QtgY0oJXdjrFy2E6fSAdlSWmvHpekoNzlwEOplb5MBFIvXrhy6p4uxCDCf2uCxKusZPDCTgn8zt8wBqWXL22oMEUmXn7Zshe80ZmDr/1NAJfbCfB2cPcFY7er5Yf/kY+mMxt31Fv7A8ITp0TrWshH2dTRyFxXYIw3ZNkZiayCElg5K6LL3gLNdKozgLkBWbHUadagSKtIgsbH42gLB45HZS5ftHz+NJJnMkEclSHYVoLIu3orHZdpMZqqrmt3izB+8qXMj3MPmUKVU81oLFE+E72Py2zebfQ6yZqiLZagKxisdCg4A94QMxpItiX0gf8alvCKRJ7lvYTYoZfQCZWKPwl/LeAsKOWHGiuTRyh+6ff9lh0Cp5F/2roMGwkxqkuHVy3XxYGW2/YtLtvQfm8Notcc8bfU2z8kfCzVmnvxcoRpQ5OW1TJJydix464VYCJbls+o4wdX5zrKN/9HrApQo9hxA7fg9M4ydk/NauccVGef1CmWcjFiEScEwIO3gqHCCYh39oKy5VbG9cF7kOJ5LwXUESX3AGJwoJR/Q8qSujJlWOZ/Y7rGvzggTMD4ZymD76gH7+d7i3RMab6t6tQ1FBf0adeAh1Qum6Nv4C9YiNiG//7+oPcfNijxTL1J0xCQ8Ir4Tk+V568QAod+Ma68gcZx4n3gz2ObpUlpbEQQ8zCVvrM+w5wlGSFsn/9FQPAtFgiEOAfIwqhyrh9P7l7LLiyOS+FE//V9sxnlR6z5jsjjy/vM+ki4ubEK+8MSsVYQi9mn47Dw991PtL1d/RqT363i8ITXTiJlpwg8pZ1OdXnH4dPmpQilA7gXfZOD+pcMntWYQdyr+9icN8P+L17+VMboP131cjRhtaJ906vCywVPdENC5Kwqw2f7Z3Vz5CaLRRAT/8qX5bqlfC5KApG05+cdh4rxjCAjr4cg1rEY39aIGMiq2e7VbcIqQQiB+gnkNm+pavoqCaLbJsJLpViwdHlMUv0HpCrQ7k/Lyb9QxzszfgbAf7f5gg6yXUmQ6KD1Pk+6VZoLa7zh+zfPH8Lbf+FGwDH9bpoXnYdFcNWhrYEAzD/foJEr/4oDKYplti8yxkP4luNqFqaBOZ96PZDxhCCIljHyq+uq8B3AqTyifVH9MAoVVe1IV6JR9uROwphhqHSJY/67MRr33Q4+vPMNhvo6Yzhi0uhcm9fxn+v8xrs7D8i5LzNqwafquWD2AStBAF8tlLEXe2DoxrIHNY5cL+mvs3l9magG1mIvbTJkzYNATFnLwHS/cl2X30eIkMB1wmJsXOUjD9mv0OuMt8bYoMOblWNrGYSfJ6jyuuYppOopRz8HHZcPnrWRv8hr1lt+OoSoFSh2dclVnzjmWJS7pXmyuN3AcRshkY+GNMXEyxsN/6mrbOh9Ao6zwGSGkHJA0BSprlTlzZ71VKRUuiYgeZKYHbveRQgRQ/GRqeZE//qbZovkqXP9xa5YF0LpWZMQLtfBNdrNE5XfTdIhMaQfpxqDPhxLLRd1GcSxLSwMyAW/wuERGi/KLhn6qY6e1wh54aUa5i14BzYH/JefocPXzCxW1NX33y1cyW3lCTKKkbk59hUhJG8oWM5qtsHIiXu3O4gVURBBJ5d9nEJt7bkN1G2ENqRgW21pN+DBGiTalMhTxxC+LTw1IS3UbPbPA4j9AxNs/MrV2MdrtPR/ignadeB16MVnnqXSZMAKDlzkDqaPky7Ol+Q3bZNeOwrJ0Fg4N+mNCLcf+tbqQ1oxRvnmCRwUI6IN4MaacbcSSo8yh2eV5qTli4C7eZtOV8/vnAAaSvcl42b8cUEzN3WGBBXJKvc73DgnWKF9crU0Erza35QI8fWDcb+SfiBBk/K0/X+L7HvjNV+TKBvA2JIZe36WdyxkbHeOP6A/MbsfzWNTicKV3NkijRRdqRKD2KzUx5IiHoh2Azqz3ge7m+s8m/9EwuFrRUoksIkrGj8ju3zFLj3gNbop8s98xsbn278LetNVUhiwSC2x1NqTjV1semqONLv1iqlwJ69xEZ8ksXsYTDJWPJTponQx+q8OlvQxkYTerG31gE6tGRBQiWr+G/VnZRxBBDQYojrybFR+1UHYD+CmFXzuu9tcD8HDNkB48KjYJ9iB256ctq+YnTYEKP5xR/i71W8Ir1DL6GVM9rTLjsDlgnPp70MUxtP8p5Gu1dxryKQ+fOO9aTa2gFMcrJo2V+IKotbyRbjYfsZZdCIRcAjJHlzbG4GOFKXQHGYCF8RR/0818KRMoPAcwnZIxzkN6dtJdyTUECHwG8LMr9eDmVzuGCxwuPf/wO2Qhuh5s8eawgS9eXrE0VlQfcfWzOMnDGlBMpeKCceUh9X8vp6+WsM7xfthO07dqMHuxK0zlAghNkzzekMQKcUs2aUbQ+ZUm39P21WpGOyJlO9SY2HPnrQy4Z/kJJm4uzsH5P1pVNq8kq1h0Ai7woVrOiOHFqRegrM1oYRgu6/Vot19XHVxWaXQapZ5n5a8XW8/8ea4/zBsjrjkqoXjzUryFrKJouBn39SQhZcOjqW6I2LDo0urUy78KwM08bEFVYXDn7rbVkpjgoc+aM0riX816HBufy3QHPznxwmISZ+ShynhIswVqK+ADgjqN80impp7kcj2snPN2g1rnP+WUhDVifpbWcS0N8x8cDBfUpeoA7WeycKOS3L87OQq2QS5B6+256mTNps1U8JuSAXD20aSqpD5l86W3PgN7MDvzaDdzVsertDmEJ+lCowIXNdV/36vOeIhD3+f2GHiVbRV+SW4FXjmNejDKdZKY9PKn5uOtjPBV9CELGF+Dn0X2kxUfQhrbG+v3gMvRWesLAR8u4BOmelYTlvJb0M4d3f94omDhrH4Vlash4Ysh30pUtIGkknYEgAgSBvMzZZVrFkEKQdftcotOn5LiHms4NplGiwijhKtpIsrBG80ZsYRRO/eO8Zp0B+daMVlCbexqYMAh0kSZWowymNJhsj3yMUD10w1Ks5cq1plnQqmJkCqdThGeLYO+3rS2nof1Dnb6lWGPeo5sXmH7hvnZQaWM2t19IeHJhHlCpV0SvG0TxPAmtnQRmV/MArBCOdDMgjzsLYi0Jy8/Xv/5s34RaHX4sEOG1NFWGk4eowGuuu+7Pd2muWqPXh+pz00UKFwdGDqbvgLqvMgdQU42fl4gCHMwRtQkpUG/6fRgrXe9jRdYwciUoc5xPDDmfzxDkXMn5Sqkaiyzmv5blejNb40uPqkrShT2mr/Pnqo/3Ffx6UYv1ZKx8pmgPlZcsu/5bp6wgZKJZ5ocyDdFFZJbUW/Y380M5xFfd9RJQsaTerRLAIOvI+uk6JZWZs/nHIR8gl4LVQiw+NhmDgFKcOAfqBPopesW90CU85IqJmAEEov/K0cDwijcn2Agh0CqBZOcoCRIIx1v6QOQ1w/zJa7PWMn1iQtUtLz0uQ3ndhhEx/idMMS9baK7JW3JIpnYI7IMAwjK5FT+yW2L1XIu3zw4QkS/uqkox/5wZvoqBK1PLHaQG2Tq4mMxve7+wrvaeMGYk7As7CDlQX3W88hmDZtaeDYAlT52JjrXOm4B4K6/7nVhhnvO1I/xxDmMcvhYITAVPlHq6IEqyfQK8SN28dJ+fIpIKA8dLObVRCiTCFW4/nfK41KTwl9s+PQGeMpPfUNYMZp6wLoBE3wIxomCUpghhgsi12rKY+v4PbQWjynnhGp+knK7s25k/vvf98tKpdRSOk2DeaD7CH6l3KSxtrwZz0bFNuWRbeCjoxWUXWAUA8O7Slm8FFJX/y3v99Gz6ij/itkHzdzIwIU3ihOKieV8mcQulhMVFkb9Mair5o5oaEwexdoWjCT/Zob220BEibd/R8X77qdIbF8h66ipvqxi+88prJwOcn8dWsVaHCXJqox628WweIb86VTGW4NLjWeMvDwLYEDysT6o7HSCzkxD5nvipEMvaQQe0NWXUgA0ldkbMA2rqlnwwEJX4Zwps+od/QPtDPgRNPoOzw5t0hR4OP8/a+OP045XlTI50DYc8f9UwEswTWjVcQoBoASG7jgPDcw+ajIo/eXeMnz9GPmrUGScNVBNWBaLBIwPYeL4jAWgKdwR+3JYGJS0HU+g+oAVvuwR7ZlGizh4Ldg03RNcQ6a06y1z6TY/AganieN8UdcIFbXEyGfunKLIPfAalyaE2ZIS1tuxI5D40Jnjenhz66WP3qO3GvSfXJaxvq++/7VY1OlmM9X5XGxgsQOW0v2z7Uz5xE2hV2o3RTBxdgMn4OTwLaroJAbDnZ4gg+Uh5KQSt3wecJwEAzhRthGBodlHOLlPAEngGW5BCyh+RB7W+EijqlY5oXDkuafTW6tRxZpSlAoF3A/57gr2hkbZHb2ACuuufR+4F2az4hd+3S5IkmPLJVRNBGVYYaZI2P1z3B4VACmX+oAtBtCzzk1XVbktweG2JryIYqfFX77vFkbluJNZJmGCHrJJLyrBPIEnubDO9O3zqv1scMeNc4DUjebKUuv6Da9T6Dhyr3oAXS+Ja+zyZNVEkoOLu/Yv9xt/hRhw9wZ94R9sgs+DazEdxGtI28TZwyGgQqckG/C5tgm0eDtGkVljh/nhprMwo2b/iuTOczW2pSLy8BnDmwovb00ZDUySSq5GU/dWpsAmPvAMPjO9G+e41NL4hJwTk/UKzxxwVomcshdFV+ChYvuImyG9X3L2rBB1e05m/x8nRwOVZsRrdhw3inae5JTokbndt+9/cYm5H0eVm5926fwvx2iofq3RDCu/VCzIy2Zww47A7lVrZeZg4e/veWPBvioo6psUSfPTH2fcGi3pg/qw++aooNa2wnOBrV76rPwn+igtUMhc0sR4vxJnAu5zqP9oIrSOtfoe2JJsh4zld7k6FpoyNuBQWpPpIodfFBsPeQaKJ9Y7AiGFUPNj+MasoAiKprmT8PqPJxDZ6S8nxUQ+skIYM10QYPiqUnZj+/UUQrWc6yCXH+axVqVObdi8j3f+G/ey20uoUblcQCX58myrgeDp+yqZgIRldipe/7nbyHHkBEMY7rSa98DU+0v/Jena+o9MvDTToBtbegEWJvMx8WlaJm7aCMGkgQingicbhE8ug/gDbo8RWnzQlIFXKQEvFJy7pWGAVa+HmbIm/cFzg2zFE40nOMF0Y37UXztFRc/gIyLdXvGAo2mQ57xMfKq+k1RbhzdARd5yGZ74ZusBPW3JyLwUkIjozG68snD9O5gGCYokhKXFkDQOCU59gG26nHyYFcRqNlYRaDbpw+WGMmluucPu2Od28rmbQS3PA5SyBuEfZsTKqBDGvym9XaiUJbBsyYbvr65DWNcN4mlWMI90Bv9kFINpxX/z7Xw8T2StXD9g2aIAmDeoR2JM661QzxPDXvDmQHBA/dblzl/KdatppU7ijSC/PkMZPgVXId94qFJEabv+PycjUrwxZtI7zR9zQI/8wxnw4aeduvH8uw9FyXp94MRh6AQ7vbQlDXDGJ2o4ZMHWszVzP/Xxd9Jw0wph05umcsNRQENYmG7W361dxjB5IC4E3CXxndWzIaVmUS6oBRY4e20EFk9m5abXec3uIXaIsyhdjwwR4IW7qax9Sz5V3G5ijla8FbZfjf1Wane+jmvG3bc48Z1Af/etLOF6BAH39nD2E1yW2EICnaajiL1fKDQuE4JIXz/YwhxKQw/T1dmnP0PtjnEXSXdkKQcvxGasJ8nScY6hGgIgznHMvIVNCbJ0h/0rPk8zFN496WF/eFM56dX1JNAKFGDrY+jpDC+wn154LgBobG+QzEGpIHjySbgv22iogrQUBM9E0U6kdId9fvJnm7wukjmyTOHrv+FEjW8feKuXxuGXHyr9RNysDsqRbMjFNJVFw3kldJNqPh78mqQRkRd6nU1li6MKGhfvfMJAUc1+Kz0OjEeVRTHcWHxGc2PQpupYxQXD3ODgPiO4RKWf6AhFMwZ9Iror7xMk4niEg+o6aNGhiLEfEKot66Tl7MS3THAhqU+1Nn4C5hERcVKnNdB3bENZy5XI2MZC2OBtfunKtKt+UpvRYzcwpjlGp3AQbAWt0UKxUwwrgGu40HvmgHGfAPjglPHuE3/ZWLcXfbOmyxPAN/MCB7CKJe0PJwodD2rne0qR4QJR1KK7V4S5Wk6cjlVED+FE7U0wrfeCgFcXG7la0MBgGzrCLj/fHc9MvrVb+kLrhNgw3TiuN6UiXxPBQ7uIgthIyav6wBKzW+hXgnTuYLEolZt70DMsoTX5mqI930UZj0KecB5LaLfg/U3lVdF/XRaR3tBsUFl/vMtLZgGPMHo8W4oXs2rv1ihv7f7XWbVRoo9mGlCrRR+zSZIerheLI8fdOnjQ16I+u5TNmYn4DuQbQkSloi+IhHpZsbNNbWYj50ff2ldfQRdkoUudqhOK4meM+goMVFL9G2ISh0VCpDUCASBQMb36vZyeK4dPj/5XLzVuNheNlguYS/lTw1PgyUNAuCaA+55lncPdESFzAWW54tO3lgm78yqay9IS7uj6baCFkH7wDFXa6jbRKLTg7VJnywqhcDv9uT9iZyuFafCO+b2bTeyIp1LAy0+CuAoexTrUSVtEsOe6bufC9ln0qpojT+gsyuR6y7fVN6rMmTs1wwTGCe0RskrYHC1zekKzbli4XTDGBncW1MTKoZicZlFUdiYl4aiXxSorXHUngwovOfUc/UUnpEQRgbXve1B4DeehQv4+sinHK4PXfU1Mr99KYU8NuVd5UBu1oXqDxSP9lASqb2d3pzgLUsACt0zGtEnJCTqxyXT5VhPY50k2lMxnVx8lB6w3LFOPccZWdbJchiWW8vBW0kPxWMSp8SlVV+tp0OnrXQnHljUIisLDowXIrdrQDzDLF3DsBl2wd7b/jVwjn0oyd0dAE/CgOTlWNdUU6e2dnZKUAyFF4hyD5zOOsFAQSpUVignVXUdmcN5bv4T0wHrb6rGMQeMWOdQkP594F0vdOVfw3cdoATgz0NccRSKaPsWagnjErgpkuDYyRVLLJSvPqVmKihWzG4pMYHR++Eog6XYYrrdiWw0SQJzr1HABCz6e9vG6zvpwTrJzpidFxJ8W9EFfKrdiErMScHLmj4r78fZ3VO5eWFc6c4j1l6XNn9jubaPhjabL1EzqoG3j138p86ir1olROZWDb+rzhiCBMc7hRknOSEsjgqtJ6GwXxJg16rrkwu94HDtyPjAO/fv9SzF2apDZKptiUIyo0Jo1mDkTT3hCG2G/7sKlmAajLzc51urRdU3Qc948IZo/9s2+ntdSh0MlF7SAmQ0Xdc7L5M9DCjOdW1CP3qEdDcWIe3JhyiggW9+Z5+BIiQjJfQuOnQdfc+Pt2k07ID9f+zaeLIM88qsIEtVzJHMpZ/kLFFRUPcXDNvuzP5ICc/kI2ZwgveWiPf1sI0mrdNFHI4ZCxCiTxy+zAKwQAN4TIY056o9E9MQE2h6LWhJCyTFMmYLqbmcJpdipNOBvHBaB3rRHEgfPz4pm1MTCGfifMmIArX+iV6lqDIDH8msQqJ8B3i1SxfugpH6FyYh7kBGG6pIClhlYHNjsiwbwaLf8Z4iiyh6WyOQmn6H5T2+RBjBsCeKEHnAbK04u70JhkXJ+4Pm5pC7TsaDtGDyzFSWtlwJDHe/wf080fc88XsrbCHoDX+gAGZB0D1iywWjMh4mlzn2QVZrrMvXNeZmpyA9vvdW4//mIxvbOEy+51sGTDF6OJ7Ay2PcyFbkgcH33hvIhtm8CH+DWlmOVGnH9ghA9ad7uqTAr6QG9ATGRb2QRETcIKHvHccgFhAbFc0c7IxviQBwh4jpjzCiioNGrllKRazGSRPbry1ca3vGgaFB4alK+ukWOaBtLcvFINfwFxOemIbBN0wZEG+jxsHowM+cylO5USh9GcD0kJrQvnhuS9PbJbP5skHe2Fvd5NlBwI0Rf81UyVHAnILfr36GsHtBS/QUrxk9LGn1UJGyYRXiwnkuZXHT6VlhBlK2QCs+8ma6axYq/ThOA4cjtAPwSmAwcu2kyzDanBGmnb5vX4c/QG3bBlmuqfeyLmJANms/6U5h9eKL3WMnZUjm/muVi3l8zQwxqDriWhtyDmHicPwmAVczvXddmjeMFZdCj7Dxzt7N6CG8OX3oTA+2DiqeeQ7K7u8AommNgQjAbs3Ni/7Fr7qrZ7rJrWdiGchwf7OuIcDiYUeMgTdgDBhgzQVuUYfwqu9j3UVqYSWvtNx+rLHc1Bjh4oCsRcL8IbjpIpE8zL1P6f/q1UNdXmBpkILRNoVuyaqSYmkiVrp8GCdtLJPidSuDP6gesYtKfApE9+Fs35cAT5RHw1kw/9Izz56zj117jf7e6Tgp5ryEOYQdxGCVE+ncCrIQnzuTp9yTUEosRGca4/fYcxpT2cuza2YbJiZJosQnymTvjOhyX3oE2x60fdRSHIPyR5cpDVUbvPjCDMMzVMwiX7LG3fngp9q6AJUD3CHRTuDunglM5Yd4/n3jCe0iBraNzehV9rR5RtmP4ikDBweEekkbbG7aF7C2FRbHKZXdWiHCw+PWVwBOLfiIsCX/UfhzUM4glbA7vXxz+0KQy8tU19s8eMWToCnMkCqKajgBBgzHHeabDcs0EaD8fCCBh53hpMtg5t0A5C4Eq6E7c4VBLPE6uuEusT6aey9yDDh0mWVLrx4YUWdt6TucDVdJLAFUbJN7ltC/KES16GDmYoVT8Qw4R+tjxRAXG/TN2Fu/OhDkQrj/wC/yAL4fW5QTJq7i+MMmE1pAbC/WpjVxKkx93mnZkRipm/1XymiIpWz+fo8qR7c52Ac/BaZu80zpa34640CxTbFghqjIfqV/W5Fe1pQAGsLgwkvkSWAjADSM86nWOO+9bqt4o/v/EfPoVpXu24kelmcWf95fnjwTyGdH1KX8TOX+Nq5hp6P9Ufz5YMUp4EKPYLNCZSkWMMPnJfgtJr0aTfSjaCCiiL64z+KGf8TcXArgu3Ib9FqibOKbrCmr0cqmT89RTK+0jDjNely8a7KXPK0Sej5n7QAjusR2rV6bHkWqrKxFcmsCHlp9xnj8GAXYv1hR0mhUKqggaPi7MU4zPbxzBQqBLcR7E/agP8ulmEN0zwyEc5FjJ+DaCLZl4sVJshzYuFqXkshyTgKp1MyKXFw4Noqo8P4paKInDWEpllcCsIEWsMbW+xmVixHEqInpWhjtoKt5341GxEDoqmTgvixpyrHHopaW0sLmi2iHzfKg65NunVfEroED0H764BdTVGqblDtGWmdWnvDgM6pfDI8Fspz4Fn8ccpPHN+qPotADcX5jdEuc553n/kmiZl1WzZ+0QM2v8chr5WROYbPVEzkbRIKlm7AOSsSzKVi8biGeOYfD1wHvV3z5LiodaiTqhc7jn+5PH/tCf0A+VS8EwfYMEtos2unsdWcL0x+Mn+4Sn1nhmRIDbFNHeAxfKQWo1EuHoR9qUFaAZDUVs6ZfPh0+mZ1FqJDMuzvcKL6/IFw0Ehmu8XciI4bYYNutxb7th4B/rZjTuHBzrnh0Gx4n/wcdBobtXzq8blSRyfFnDxhGrDGHoeOkSkpbNIjyBwPDBl2CLCiyYI7jeyKVeyk16IHEJJ0ig0Z71Oo3kImvlprgC9g46hR/OIzqH4cOx5ZJDcUC8irdP0PIiQdVi5wsxCDEJB4g+cCVQA9ZVTC0FaIp33O0+tuTVACLlpyJ7vE8EXh0iDyRsqEo7nyVitQLLe78zsWAxm0YvPS5xrBeIlVYbenPo2KUw5E60bnIg/0S9U8GwtYrpfGHriiRy/v9mR/VgRRlHBlUVDUv6FOzu/Un/bc4wNcWvWtWnrb6Ug5usduXvOOY6GJypndKXacratXeh2UgdPHSHCPeEii2VN0Q5HhYtupjfmn9ITMiEkYFlyK3bQPIc4BU52TNxb22OqbLtM1QCfM33IG4VZ6cfa0YiC1fBjtWvfuGtYm84t/0dKk81mUxtoBgAaJm5USYOZ///FY8T8L86bAHcYL4lb5ZRdz3K01IVYqRn/mIHYk9BW5g2auRalM5qFbKoxb9UPIn406V2wVu5RF6MmuuFCnNTdRNZs/8XJtxtZrO5veJsz341ysIK/3rEl3N89rK22EorDE1xj4JqL6YFbGdM7V20i+bUHyPoZaygUdk07vYWScTlt7fl3n2qacKR0/MqdjkcRkokUdiLE4M3ZQ+aCnbXsH7vSTeRhufT+AMIBoucGiPbRqVvLHbiK+kJt5sCnnMN7xD6BVjmU5HGLlvKzQdM2BNEqg1taJ370AeKGYLqKzxMJyx1Mrqkx98hQgxcVKYUomYziGKfK1wEylwF5KgX9SZlWClf40qW3NQOwW8KZThyWVdPJwuNO1dqsaiKvY7LTV6N3wYmQOWJAeh8pjLGu4GYckvHzRdiuikpBB41TnpmZB9cIJCRoKl1dNwZb1RAcSCKjFg6RD0KAw6mvXZVddXoZW2Kji0JHKO0OfNPsofm4oEf4R366roxOUZyMvcNjBTHxWA8oR/3tAaGCsLORxf25jA7DY4nIMnHT3Xpr+ky63S6O5Che+WJUXGVSpAUgDdzmhOCRJppeQeiI+vFyImup5cyProGR2nFYeyrT5pSfXGNNo30BhUYGAaUX2HqlilZ0cm/ImnZX7vgDj0RiyBrNBEHAelybb6gHEJDW+vzCxPHCKkzM6o+16dCSNofXKwSSUtTeZDH4eLmYUjjwnt7vlM9uiaQox5Xlv78VOj4HelBCoAadE7JHuCUoLP4gueymlHadZ0Z8lHr0df0krOgwNIxARAjH5YurM9igZhygM13eOW7netfUliqay1L9u9cESBCpXCsjlBHP15t+t1lc6plng9eabG/o6zoVp11Qv5+LwaWaUks7SN8wmmkpDjgp9HgCq9VTVTZxvj1yPpqw9l11u0/Tk504mo8RBn1FpW8Wynp9MXmzrxQlZC3+JCKoHO5X32kjqz6KanjMo681S2cazwkPOhsi/gXGV88UW5qNMEKR2SqYsRAosicaYgm+h2dhM9xiE9R/+CenO8pu4V4St/o5bZUPE+1bJJehacsVwiobYJfrQn75c8DhBK+c4OiHsxOwh0Yp/quhOM62qb45UpN8QWGsoiy4VbhC5Iap6jIyIv41pJ/wmjp5vZNag4ch9DlkePFp/4pOtalSzyflTRy+oVfPPcAI7pg0YPrWA+/GBlHrAAgW0KVlUfGUYbxA7qbGq7f3qCtiXBqqiKeK+nWIDJcDdVcQKe6D01d0VhDTvtyDtn6Q832AKKsibwHpmRH/Gzyl32m93JUrz1msGK068yTlrMzal758IXg3Pro7GcWR/IVgUt8neHCe/aUunqDaEckWXE78Uj4VdTUzpNJv12WWRQ7ATIh1v+ww1hdyZ1e+JOo+B8kga6Mln4OVcb1npF1DsSG42+6ol4P3edwh9PJHltrFKzDXXF593gxivHzv/sD2IGHILlpeYXnrzdtPLWty4fn4UkP+R3jM30oyFOwSQBcXcbQWz3hL3az0QchFbWzeoewpcLeTqxy4DLrcl9HS+vq3EdaPoKTiMiu3vSosHPeNL7l5b0rzPYC24auPHrfMVX5ZCqzEzps3WMqaX/Ds5gKTvyjR8CFtLX90fqPYka3H+H4mEBu17q0LrrHsVymMsjv6WloO79hwQJbXtDvV+ENIrVC7G5PUchuS/iCC/0nlJdXs75+NOKFoyQ5qD1bvuttXWpUq6odJvf7PQA9X2/u6CKkJPnN5wsVtSbR6Pc93ePeC6CSmhP9kZEpehvqXlmxsozeN6ElFG9AZcyx1z7N4DMRJJhk2DTm8HmBkDmEn5+1efkc5nWnOvsPjHc8g6u1Q4joNzY8XlxJp+1ugntyANEEaBKD3Iy4Lk6af//W0yH+ClIiUHo8hEh7YYvUw3Wn2lPNSZCKJv84L2O0Z0CP4O0iKDgRdMB7vm2xi3BgfjMTvK3DSRfGHCdwTEvV+Ud24ikt13jU1A+FLYlhFZGIjko05IlMosaIu4rkedDhbhCaSWGB5NZdBqnQTWgYjl1hfWWzEAfb882Vbf/K4ieQSSTG3W9zVZqHQY8xEaneQF/zYlwS0WejE6r0KQNJsHjROm/5xLqibiBu7ym9k02/g+X897HDisWGjZzoJfYT8QgvDhd9DN8Y/j9c3LO6heZ8hwB9sGMfE0eePyMRLNhRLj0BEmOyhCIkmllMbt9hz8Jvqo/C1rL3zIPj9+6/ochsmLjbQXq5plt3QP8Y5z63Flz9dnpzyyKM+LSfiK91lSwRfSk8ah+UdY/taYEY+jcja+AAuMd446wxptsXYrklGGKsICbncsmoH/Yswe3ZkN/VU0z/G09QvKIpvSqH8XLrBugpsfW2+YyyOYmiumW/PRMj6HYEYRn9BQzK2/MBk3d0UL8XWlpskvGyBPPCqFnbv+jSP38MyGkDlhrsnZUFimeH2n/IBejeYTkRCPjLYMu/AglJmwxRBn/XrO9u43N3aqE28n8OFNKaWOV5J5ozCiRoG/N7Hj5LdRhFPeOeOiL3KH5iTDbLho9rBezG/9YSXx4lejpYCYgUD9Egt2Za7m8pS4N/FYUUJrqv70qKPP6Td21N5IgAzh0kx8nTC3gr5VG5/1uKtnn4kRdgKerIkMsH6kkgib3iWQ2m5JWvmdm13HduViO86vbi3aooCOskdTZWfRrd570jFyGNEXMqr/KSmLkSTwz7uTIR53Xsz7YD3GjdylBs2FJfgZCg5zB5nIi5DRfMJS6BcBRD6kKjF3loJALfR7NVpt7TJ6up81iqLJBCCNCepyYmFdbEQEQV3AiDlsWjRUiVZlZ6rjZ1qTMgIuk9DA9Ka9Jusq2h0qEepk2viDjRus1lVVmoAyI0TMMkpkI24V9cFoThXoeIEbnhAvMJOboq96GS5sXbAGhqAo+z/qvomEuZXqs61TkDnpEP4hvvMYCL/j7H1GflQVuB9pR0wMxSodyr/rIZ8gXbEiK4OG+Dg6yhe0q9h/gZR/+ULEp0UKPB9hV2zPVWlIG0jw77XcN3VQ2J2djAAmZ/eZ8iym8Lud/PR/9Re4kWZ6V6Kmv+0MM9gS2PZKzJcAHOHdZYB5bnKFl/MiforBaQ8qz/3gwPgEWS/i6dBbEF8WnbEiz8igbGjFsn6MQGdQnsh2ma2autKgKw1Ws3wbrXw6oC4TgsKq+jDcW4+6cVMJktGzDqBnBX8U48D8unpfhq1spZgjUSz6UZRM1mR9dmsa8JftW/Su+DXYbbdfFo24zFsiH86E5hbozGPN0vaOlUj9O9zZeMqheCaaPKXLWLQXJp8QIGbr/R2M8ipFqm9nNSa8ERQi1P4AWoTmVTqs3fA9hQIrJODjPozaWdmjfPQEijGZ8REJoYhDljWLzvj1hYMsFfDhdcbiZbXNAa+laB29qD5Bq4oEBFDi5L+jm6WSG6/D64iBdEOkfayYTbvz3P/UTUju4Wls0WlgQbL1sPgIkKEUhD1pT5ucj3RIXAmSZEhjxScxtW+4BNXw/NYZkGRCM0/BmWqmm0lvmUwY9cMvzeU2Itov9wYT/S2IGW+ziYaAzX1SMx+EpX9rUGye2CcWrZHvW3FJ8kDRC2R4/jPy9w1FzcJfEl/wYtWACFF5W9N4LNCTQ+Ux8OjgtEnopHqcVjkWFiAv/5vZIhSTbop9s28tSi7R8+IjYB9ZbYtqAB0cc8Ee0IPEcWluuGOKbLQSt619w/23bOZKgPoca/tsUIb4EiiOUB1JVfvNpiS1QwGmO8VtuWLQIg57EW7Rc/25fv6zKk+4HuP+vIMYXnLXxrf2PSzZRVHbwqnrsd1SNZuGm0R1y92jg3Locr7DioKAMsXIfEDu3tI0LqbzEgEp+RFhaNX6xU7FOZ3+I2S/6gYdSBUMNHA/5VELmyOXOLq4p9KisFSfCVXAeOOEkJ1Gq/RatJ/lAH0PbI97gLAQAs21yY0ibXw6aRq2h98utxCOJ+w/8xZPnOOkzeA9pKl/bicBETSbrR36LAevFzycH6nUd6Csoashswq8bJpoYNDTeO4nGeOvuWi7MyaVYH1o2OllBbNLgtpGkWQVdPhXZwRWQOImnEmLXFb/9xzTM80bIB3agnqXl1JQd7DnPKOHlhapvnkqTY+MTU0XYskDDSgNfz/9XC8ICAYHiCElFCY5nYhgmNXYU82rD/dpLypLx68D0eFgfgsaP8ZkyKYOa9zJCXwFWDN6N5qwKFhBRW8rhkSgZYIZZOlUvz9Dj+ROQOGd+TQkpEPl8v41an1KdDbYxnCkFc8m+Rfqgy4wao/uLZHrgO9vrMJdNQOBajltiHZMGZ3xxoDM7i3SWIEgVdzhaVDj8pKN62rzsOITbeS/DneiOaWu+0lWIWf4DplUxM0f24T+N0QUOE/q+xkkuOtN6990UNOKDfWc6FIjKagohSCoOW7L+zGru4ErP7PjhdCGWAWf8/J/uc4MohMfjLhulclInrxXEyHc+x7fFQHoKvQXVY86eNtlDQRz2ao0xaWN4ksxZLHF3D75IR4YZwS0jncwewG452P4m3ADawOBjMcDGwr0OOAqYA8boLomZStbGCTQXOpiE1xDJwwIiK2/O+4DJThBVXYxWH0/THHEuMx+1/vkBpK9QvrT98BTIICZL5Mng1U/FMPXj9TiQ9LoWYz4LcrLX6mcSEmu/PfXqpWz6kjLh8fUWJYvdhDselMk1wjzZmdp6pM4zkLdwScXHRAzqzJGYTtWeZL1iTnoXPtApvI+KMccBmOGnIn5PCo0i7dV0Yi1R8KHh+fOVP6/vhF0/rRs/W6S97UDeCaWzVoYfmGNjfvmhoLpSg+SPf3E4UBhAynGrj3RUUZU/4ftDEXfq+OyqswBb+t6dOmyTysocgwPPVmBIPwcKwKYvSGApFoW152yZ2QxtC2dRkh124ip/rA0fVTSgfVUOanKFshN+nFzqnNGBJ3ib8SSo3diSJgBBfQQ0JoNSYrEhI9pTGKfsjTv8K3C4ahphSLYLMDIJy51BIKbZ8NRXKzDcEx5YMPWWv1RlF3vRdNzFR4c0Gwv/ciylkg+5hruiOcTpwtQShKOrKHD6wVvxTU57L4/qJg+r3ceyUFJ9Fyu6AA+8DsFsv7mABVTdQlQYS277GDVQDpGJfx8UnSNGCBZB5WIou8YMM3zkHopPm6TLQg3680jIlE9knkde1/rLejzv0zMLXmWx4oBZ7cWVeJ1beAI4ppTsJrZFgBjPZMP+Yr4A+PdU6iAtdyYNbT1Aef9JXqIZ8NsjCbUgxrLctO8/qOT+/33LxbwsEewGOOSiXyu9nkrKRsgEDBSy8/fUS+omatcCIdF6HP//wY5Oi9jpYsmjG+dSAeTKnfOBlPiFPr7L0p7atjtLQ68KLgnFd6AoqsR5ijOA3ST/Ms+hJZKrgMHRigG5eGNWuEp9gShj10U2PKwKdwlDWk9TlNmWDcL7wYiltiZe15rkboMG7xcTLerq5jG1YvHnZraahAwpG7g7t6bwefMoD814SjhiWW1bQVyfEiQhm9rOtq2AY7mphJagRc62ex1eKAIbWEcaPg5meAyy5SAlpi/KDyRibkh01SiNcxJVrRI+wbvymXg1+eimLCAeHwTGg6ywBc91PvTcIvzAY8XvQHvbGVBAvr4QbphGm5C7bEy+0yRfpaMIoeDL2ahzniH3E6w6S3aEVaRB1ztyof/En5IyjXJiOtCgPL/i9UgbiZTlgZVau3MnQLJ6DEj6rETFgLzd26csivfsF6AWteIYhj/ixMuCeu/b+r0cScCKeiEBC8pqG5snaxKYWq3bUsMgZ1VXevhQSGtO8wqpDhSf9Bu87F9pg2OGqhDnhlCrWAoaGjfwAD4xaZDfhnRZiCcaM5EjIIEHRDTRTjMLcAqsP+kbAb7K8Jvr9xS08e27PW1CFkzzLl+f9FAWxR8UYc8WuNKR1hWt2udDfp+p3fGC79sSndji6iXyZgMQo2QUObz0y5WTQs+X6QsneyuPA7Hqx9cL4vz/iJEvDqqe7QT8zQ1dUyGEk3Vj4m4cl+zAI2sgAFfKNvh3IRCCbOnuAMHinXc3z6mXW6WUXron2VRYlj0I+KzMhVFnYFsHHRDZIsCfvtZZydd9/Fvn3lU1dWdPpRL0lHINGcwGze84zoY/j1c8CXAvTO0R0r/vrNG6G+JrM3H2iuiYIJZbdCgA5jsDdTYvt0evvTG8MuAEAuh3is33G6jPbLruCMyDxWOJTRKVdXRY9bz9BUtPvjh+SjRVpBcAVtjp1kZQgXG0GJ8emtYK7Ls/5vfqbxklIuhSyki60dPnZxkUyVvWAQ9YlatpRlLRZBlgoTHmTViv1vUJWQiUJ3Ho+ULhT5LtoqdzK6l1sQbvcd5czIK8xdkCeME2f7T2Jzj/STnbiK8l0y17IGlcAYOLaO9/BQI77mEzwp3XRG/1mIzvBWs5usXpdpf+C+3fEWtF4LMydJxCd3nIxEs0CqyFhsqNOoRCPnxgdtujY45fER619Q0ODXSHfr5V8onqfuwmLBcjzF6hQskQxrkzvf+gy8J3vN/WD/R8q1FMI9n4rk7YGelsPUHstbEeenLHIHtQ7SmtNs+xxdiz05jLuRhN/kfD1bPVBXRDTsgHzVPAJrW8Hxm1LbZdfA/tcoZlTmh0bgewHstDPcCVGXYvOQMcHpxPirDtcbQFQDQhZ0asZmJAib/xfxdSIOMbboLarXEF0HRodWcSTFqkoNPB7RQ6GtnTE4lEDKUz2VSM8CQcZIASFNA16fazdAvXeqp4cwBD8P2Bk8ACvGM0ZeQOVqrKg+ZI9bjHm8r3NLFVO+oEyq2RERiS67mQJFl0441vReRxP5CSQ6P3B8HjosdFn06HSjj3Jwn23SgIvBJJovHixW5IAZKmuH0mFdaaCB5ROAwDbgyIbunQNl36HAE/2Ai/27QgnNxWJ0+oGe5kyTazVjp08+FEWnZGtsRIf83iLPykHPbXbdBozmEEsPVhphqeNMQUtjNt9PIWUqvWIyPtYHDX8/zifNgA7deU6WaBD8RToX0od8uszkoq4A1ene6TQw7HXGcs4guDfoV6MNaDmAVTf6x0+sutSPrT3wuVpxTWZfF+f4GnjOb2SIzJmiZWjXVhQHnaYKgHNOL6QyzfvwBQorkBoXcE7BDCKB2DOlm0G0b5qNjU54ogWtykpK9gStvi0Iuny8zojnduUyrkcWcPgVL+hU470TpjgApbGggwFcAUsDUFPPYXYb52RN0gxeYrhNuozo3soyYCfhVrO13GQD9J6UklBY8H8xaGLSuc6cPhJrC4t7aD4tESGz+MC7d99rtQ9Fm34RnDLjAGq9ML6D2i/vj1cARaiB9ddyzBvfgdA2IqOIiRp9yiQzKVVAfGiOnLU9GTiWTxVUp7C0XgEDHKG6M35UVLR4JCncthNovc4Da+d2J9unArAIvccRr03J4zl9dIheWuA8pWgwAVizxqx1yFyGIAWylZziLvoMLFnvx61ZPrQfSxpMGDXWQJ4yt/doYXeZRFEGixwyLnZzkgxTLBl7jsnoSFvhys0sCIvsda0UE5RzTAc/2yfgdlD4q3KK0OFfAXaBxHCXeOJOXBJJ2T7wciJmyoWiVE/pYYpcCUWjfVMzoCgfwMlrtAM7DlD8EvuOyiew52T74Lcw0beIdIUM+IMy09jpqkRsk3DOiTB3BRTK9UqUXRJlWeV9Czmq4UPI1SMDYl3+05TxDVH2mjYbxTVfX+HgkUB/yu7J7NoUMQIaERtb/w1Jge1CIw6FXg0bw66hMYkuLptBKrKDlCYMQqNFGF3H+IwwCOowsPkQpgHxssbgJmKMXjqX3YNRY8XLCfbmOqbglo+5ZP1Uo0Um/O+FW3WAIA7MFQH366GfhoIi+AXuVc7I5MuODYZWLkoh5LI5DNhkEGof6u2snEq6Pod0hPyw3VUd5IhNRQ/reqHEDd9j20oZPbol4fwi8+imwF2VHVDJJrrHv4I02c+bZRvqqsdbu/56L4XF/hKKrgY8VfSFpmGchdk5ICwB3SfABiH3fnYvV+AZdvI1uXWydhUeXtWNGwhb20gXaj7KY+nVDExaEdaTYeheF/QhmqMGD882iE/p1tB8OSanF2V8WTJ9YcwsfFQxy8QsoV9Xc7RU8/ZXhOgNwojBrgKnr/LZqvtPNzljEYmxUePs+AO8AVbzYg/Z64g/4kEhwI5DWehF8r900yC5cTWqhsXXfgHWjZsc5f5NtBzuLgkqgpcmaeMTF95uQybnOV79ak3PKyDsQFEn/jaQwu4OdvYHReLeJ8jlyQKK6oEmyoZVr4VI+zATq7KLa2Mgt3H2RX5/KzSOE37+VQGuc4utKPT6WGzcobf0FpmBURusWKKMyNQzJ8s00OtPkAoHTujDs07a4S5ih8nVg8AjkpZXqsE27Wm/ja9lkfULUeAT2oy9N+q5CHeh5YxPcZLJQ0ZNVEN6sE0Q14G1ZGXNDLsqIMK86uv7Ca/6dO4r+xKR6UuAFNEnsKTIX+A66xfnAa5t4kuMWhp3TXzcJyxA8x5muZx//E8Vmcvnssvb8P6SoEceBpLQMNAu/pbTGQIk18ykyNDxWgnlgr7GFz/dss6pW15K0s1tuZsnQ2uvqR4WbH/fZOP1xh+gPsxqhpYrj3CpXo7jIwIF8aFnxIR1LxjurI0vWMLG+uOlju2C+IR/5/8LIwdCDIt4ZTfnxl63pJ0MarDwFEiDXI5xyf3fafD1ziCo98ihzwI6Aj5cnuj/krM25FDFd9R/Sab/mkbRjHFo+5yJkWG4NOFBvQDMBscquZECeutdDvwf8LBBa5cYRgo4KFlSDkGm9ppk3/tVKlhcJPhJtl6+NwhXh+ySzUX5XaoKcEfHgr0xLhIzW2BYZkCRCPEuQqY+Xz9p7evKMawUg5zHZ9ga9qN+uIyWxXHdTytq/PpY/jAxTpczS7qEqSEn6qZEn3Jp8KPaNRw2INL12sH6CWV4lH2ARXkL5rW2TRICMLWBI8kcBtKdAJrONeKlUjSZ7y7TIt1qe+vNUeQPE48i8WGfioh6pwiCPIWnEesYDvRxJFv8ppGatXvac2GuUmDxoY8JwDwePl07DtAj97p5IVaDKbwOpCjljKORfFYHZV29BKkGx3rbGO+NCV/d0clrSXBQ7msB3cYuQKfT3vxVNp1Vgvka2G5gvZ0L9UTemSI3ywbF5xHCtkOEZcWQpbkXhTO2DRIGYmE3ry+dnv6bfggvBrxRQtyiWC1AdjlqRIte58qhSdnisBNaNtnGK7KLdTUVJjH1vK+nuIWwhnSuYL7KOz1I3/K2HjsdL/8VWYNYayn30gOHrTMoSddWferzd4n+EPUPjvhgxygW5Xo3yJT+Ajt0dvwT71VS7/DxyK0IkHGDHZ5P1aAMuD1dpfLxn/tlGLreiBcfB2bqiOtRhZCSS4IHjUiQztV5Pb0gFe/fd8p6txgvtulGeK22+cdbCmytixLo7ehf/WMKK0oQZIOF31rDzrmLCZI27/TOMs+OeVf17L76/1HDRIh+zZ9qwX8UbVzKA+GQX2bWwoW+o+13y5+42QijPlZts29ozbhcEDcW8G3+FzLATw9JUbHWrW36zfNnMtpl/EJAoCPXGB0C8dAFLSci3zBWmWJG3tS8okhwiebHZ4so/0rX1tvbgn4FdIBQeoaSaFajcS6XIqrfsVpSrbioKR2KWT6yiOGHkVDO7HQ8+NKimPF+o7pEhCW0TxNYqb8v9gGdH5+HMKOQEUvLGTfXgWhr/ELK3oJxnQjESeKsBFrKI9CAadbGWhtYDc2fTnjZIEt3Ots0CEfymqaR2U2aHkkopmX5cQ95cSf+c3zl8l0pqzVo721HJs9pSkfuBqFtpULdGoGsaQtfTJ90C76ovS6lZjVDWk1EtdjQp8FQTf/bjFoR0+0LyA79ie8ZGsKD4/KeHXx7IFOFWY2967tjiuhVkrbHdkVE4Gtsbe1MrUmujygs/GjXF9oWddCP9qSjF7D2B5klvvXGuYmpeSvZnGsaGKSAb95Xdj9XP9ufnH9J4U4b3WO6J1lb07UHggIZ4J+RBv/MfqbZRbSUbpDVOs+8kn8I8PCQ3b/7ahS3WwUuSeyyEr+CbmGfQLPEYReIuhAwDFigRxtCtNS/1XmHWTsPx6VN7OI7ZFfWYz2XQHY4LZMm32UQMIVtXp/s5y190pp4VeZmonbFcC6bspkCMjcBWcl5DRjLw/Otdh+oHt62dMWjN5ppOaAR3/AKex2R+LiKyYWuWDov7Tf4QrcXD6X3XSoJA4JTTGIG4ODm5uGbnGPh4/pqwtWjXE4RpGq9aLNAw4JZ8sUnxpOp2PnnpnrefYh04Da9o+X81WfdqccS+avLHSu50xKt4QMEM0V8oVcJic0r+lU50r8slaNJdUqI9p8KCr6E+9c81ylx3Fx7AEYYoAN3dvMzM1wWy6ITmUMXUOyD95kRAVnZ0Nrf03jZ9rZD9yPFDKgkgjpGJTEKlgV9w+UDX5DEM670392ofHSjJHtWjel7W7VBRgbnDP3/Yx8UPZmrsmqeTbldfDtpyzCPspMgURI/adKvplyvAQDulVbx5IJT3ygNwvwf3fsmXcjCVkUur0zfvbHKTrfvRU+Hme+Kgd/P/3BGslfTgqrgbsSCuOs2w+PUF3NzK25wj8mkX5zDMdZHN484v6nV1PcI5opQcoY9fw+nsfTToPSbSJWpaRyWaWMheZF2P+ZoLGmltnw6UlSqI02q0MbmefoLp5Rsiep4fLm8oCKEAA6+oV7a//qQi2IezrbF6fHUEXWpoJtK75+Yi2XIS6MjLc7KfedR5V9/8498zg0MIP+39DNHp24fGe4wfwg8VrvOkYhKxqfrgW6LZelPMM6xptdWVBP21AXCCbXQQ/iB1SAzsx6hRbOKy2XoOu+kkQojBoWipgUQKSNnaVQsYll8KWwoVB+ecGbMCapWHxFURnajp8cSdjSdjUC6cU7PlnJpctcHUGbaSKylbcY01sYRK+ua8xsDmBBwas0rTfCb94NUhGQt5+RO4OkGDOp+mco3xSBfaz5pvg1G7nHX5nrFCM6CSiJJ1gJ1G8UVBOiXCv+m4n7VDtJty2k6jMIX1qzP7csmWm8wI81sdU+r8BNOEIvi1A34Ho/2C5Rdnzbv2iTQcnvBi5PJYiofJY/XMogYrijb70hNLyc5KsATWae8KWsMAQ5An961R5IDg5Iajl0gYT/ss1S3U/0juOyA6ogsKJw4eGt/Nf2lXxSHP7GK96aH64tfQRhZYfJ6c5/Uet71K/cYWgBtT/Tou4Vu/E0w8d9lPmbsa3Oosg2Iiii+EC8jzvMC9lpVCc4krinOOsSzSxqgSw1xuz+9G4rWV8Nv8eTJ4zEyswNeKGahJI8akvmkOGJj5GwSzcZ3NW38oXvDDeiC4P7Q0Q8eHhOhhQWhBhRW3PFKYEFUfg4a7Bhc/niEwZ5XYKD3NmLFskh6SMLDC06oJCFVCHgdvfs20Ts/Dt8LXzm9S+T/bDd/5eiKdcT0/bYl6kqaqO/rc48zfJAp494oIWFmIXhkw2xHQEI44d3TdNFMaTTJWORaMhqZS6G/5cxYhu2clyvonTQyTJ6ZBAt7+NUCEERKHR9yNTBkYIdvzgTpC0APLUrpW8GM08HauyV6SWi/B0J7x224Z0iPgNt564ym98mQoEku4GF06gxeANXhvu0mt/8lZIT/VQCVl1tRy/US6rbp++6ZZHnTwNKeIA4jV8Ew9pflNPp9VU30KJn82AbLRIkKzOtEx5Zjw4mSl8FS0ag+fOM3riRa7B6RIvkZTe0Sf64olwxA8pIFr/UHOi9iczgq6CJktlQOe+ZK6t5xHNEx3BnLyH38SXOOZ/7X6qZqKXG8XHQt3ccc3UTs4KuZo85O7BnoX6n4cenaIsESb1+HZYsocIt4MBxBZY431g+y8vCySwVcyr+WkqbjaXGe9Od48WfYjR2dhaVtdBUYWrl2dnPjvtPW1iM2FooKpaQhzhM3+bMKunTl1/BBg+r8Gq7QDkZER2/ic/mDH1WKA/gVK6GfF1ecmy5OTt5xGLAehuCJ2ZT6XNY6Fz83Vtv230limTGiNLH462MKj6hxFz7cCL8jgh1+/IIL04hMouz0e+0601KGnAIHArFoIqj421aJYAxgn+Q+vnOVeUyi6n6ny1KGj/ON8r5SK9F0+lpyaGKFPeejTxkrLHtIpkyAVhCzsh4IR0bBK1QF+udqTKuTVfnqkIpGg19PZNCcmjkzIwFaC6qrTqS6lgga0saDz2/+BMGozt3VmIX9vwRirHrHHRh4gYW91rPIK6LKU4P5UFdhfFrswA+pdZ+Cal2ILFK1N5FbvDWIGOV0oJEJRZyBX2llq8ekGCpNOctPxGNqxwBrMiCF19EJR8NW+vHAMHbJp7wIEWRrpqMChMeOh5nf6VlHTKXB1gufFpP7t3ENmsCEd6z+nk33HMi1DPemKazXPOrKFefzvOWmZHMpbDioZDrRqMRN22HZulswJqogvo70Rm3t7b2jBUHz6szFJV9+JnSeMSvyy3xGGQBUbrXW+lAQIjKWiFdjWm9kaMUI4shP+GhsZSzVXu2DIGJkrqn3RkFXN8Gdby9gAcc6mMHAEITrwLQJuteKWDBENi82JxPYUQdeVcdOu9hNzLeMog7+CnHaZx8IZ9ctWLUhF1lyV4POJLjFEm0dYYAcKXuYZUqKcuSkpfS0QvyBdnzIfxjntkDt5BI5wTMP7NKO4tw3txaPSL0GM0vmrLFeDO7sqkvZjcl/gsxOWiIBqj7/A55iytBBkmWlysiL5EYYINKtgVpA2mWirTPNw9RK/wWjEOT1B2mS7Gar6re6zMnMZYQvWLcIlvB3phcdi+rQ3UFBlQBk8usdH5K3vQ3TiSxDJhVdpPL4tIYeOXvhS+/4ksYMb2FTxOd+sYR2vcs7L+lDd+J/cujcom8T6G0f1LyuNMWOkUSuqbQeO47pzlETPXrVEycdDE5ilOyfZIrO6tary8ptMn5fYPFhU5UFPWgypJPhwZSTb/e75Y8HcWZuby77S6Be9LfROI/TvTBabXtj8cfQaf7SgoUvrdxmJluSn2z07+5xS5rU+iB/PgMhGgTfVDXAaGHqvPSv9CeYnvKYUgDsbXM0o397gUvv3hSbc/7fps/2KifHCrcrNtWxdZ0soL4cDIW0v8wBcezqrKtT1Llpd5jLGG8+96FRRIh6qLp+LKtyBq9qDeRivggF0rQaRueQq0rRYAt5q2OEPiNaGEJZgSgylYgdgPqNbbbrkZZOelAdBwgpiTYFzPwipg22WWRxnFxMJw4mgMSfqcx/E2AoVoKuRFldsBTr9XDil7iqtf9WGg10hTFUEHXqWWNDx/mLV23TPtUPQg1l1N0iYI0ONAhATrRuQuyOSL4FzE6D0PDjWWfTF3fOwI2gvOZJVnstRJoE/b6AkdaSrMLE4OD20miEi5TyT2AffYc8mGo2J8fVzmYFMoFs2mfnm5TN1OadYsHgL+XJaNNuwbH+gKF+9rG2Zq3+4YeogOuNwy91Mi4kQU1lTsROv7dDLUe8weOO9eSAuZH6pwND42JmSQzsBhlAVEzgHOu66XO1IdulhNCEdWHkQxYHS0ixnPZLYlV3O8ubno37DOpZdBL/64hkHUudytyEewI1mVmFRuoh0aESX4/H7vWr2Uzus6P5F2vZ/7JnodioFxyrAbF/oM0qo+3ktuVBEhdvLiwquXGX55ZTzCUc5CX/Bwl36/2WMziXomqql0STeaTFUa5YMuRnG4oAlckZ3rqmA51PEfF+Dar5/dH1RE1RFTzFIQjMRkUxdYRSeyIEmefysiqs9+BCXcXch9PGj/0k1XVodorxCTX/uhuPxcTXnebLj0tBQ/cmIh7wfxF+ZfJMRAZEWePh0w1YB2pJRsFaYoDl7hHAeu60m3r4bOPUz6caKEgvBgbwyL/p0FsCK2cM9R2RO2RqGKdlehn+RUk6WZ87KUp/rop6fguvGeCYidAFOddKcnetRvJZsP9bB9MggjL3ZRq8o1vxDZiQpVSIeofwsb+bEZI4O8rH5+trISM+10KVbnAFi22NfwfmFrak7EFuhUxR7fmDnNqB2aphu0GglOvxLHCx/9+1fiN/VZ3El/J4mYNf7N0Wt43KtXWFEkmgOt2pV2LwZiYE0Q9AB4gvAc7Civy+rzGrW+OpRq8WB2jGjXwXCcvFKF9twXYyYgtCkp0vDGLsJnkZsuRDvbwf/e2EyJeapQjSY+zL/SNVNzdWJPaO5HtVz8qEixXFY+XdQOlQNRCGAeHYPhCHvW3mBhDZy4Rcmc/04dFr128QfW7qssYVg/Tr3miOccWaHXtGIWBPisPU7bmMfgLszdHu2/xKrmaVmi8+pzJF2SvWB/7Fyeme4UcEfDs+ibxd4dtWVmtMOY1bW0rdw74fb2Mqa2pR+re7J8X+4rrpJkBR0/QIhAW6dm3RA2g6OJs0g9zuzTrzUELQu4Np/LwZBc7Aq4gGgQnMXXXzk3ygvXrEfh18zTAfJ+KypicaVSpKJ/YXZvCrA+uXcI2vz0KarBP6893/PiVCSpuX1xBlbZTw8wbLTX3tUq3Tit9f6fl0dy8209boldA4otkeGxQqVPKtgncYL4ojQfItLaS2KnpLntRuRmDsjLfpAQjjCdIrzxR/hypO410KLiLGcKf5AotfLGh5HPm2xOvG/QgroOVdD7CadcwyyixMX4ehIc7/+1Bposczj0xE3S4BiKMV/Nqdl/1DDF3x5lshCO3fe/yLapFBBNV9Z6YiU7nK1Yal+TGzkr+W+/ogwo7tyO9IlRexYCh4DEk6UHhMJRj5dcKWS+uVsESpoR/L+UTSURLTj7+9x3Nww/TlCS30X0gBQ2cXWHPjzKouJLfL04n5DaJ4fjh/+avrNKIfmNm1scDWQVjVsnosYMsJgwoePtgwINBAencr5ERMhpIbs+V7A7ATAClOPODm2uT2zCo1FuQdS8ld0xHS+ABLvvIoFieCnP2e+lCmzzMN1Ut0RZFfQD2kEE3RG3+Uk0x5wPH3zU0oGRWbEhQaUMeQR2P+bIhzVvq45soYWhLeLlyaM91X/oXdD1DfxgX9cd4L6Wr/0qKdzoHy9vJTxbsrWAoJOnuxysWLWazv9z50dKb0mcsZxKPvrG9RDCoc4MCdYmHU0CXLQVDAO6U04RFm0TI6+T3sq0zB+uEUZj+chNnbDLtiex2bv6SdhIFNfbuNww/jk/bfC7iAmA2P57bbDwrpDM9OcP9Jkd538y8rGSmtGfYZFUz3aoeLhDfvgXd28LTtkl4+0HwYs1uKy3Wqcn9ohONZOtJBiI8id6+0jAgajJrrore539JvwqxJW7T/AULKtWGZsGy7dQG0hETmdoJEU+GIN/6nG8Bj1DG/ukHDT4gKY3VNH5nXvbZTAlDzVboSin+S6+YqsHuXbKjplfW9ZVXzS37EtLsu/p25yvvSvpBCbElwXBptsjhEdRNoALjW3+rm9X/XNng4s/SWnACBRRFYoHs2mHMSOMYE7pRBl+CRgpYaMkOb2LrylJVZQEZSjxmvR6B2gu8twX4E0DVM+Ly4HzOeMBjMoWXrhLgfiG6ga8OdYoDU1KEezMnrGI/cNTtXAJvVh4y/Jvny5LZcIlYcxNtc4UaR9V1iLM8utg51YGA0GqTbJ6PCTJegEDcQCRqVU+PJLATxT3VPReEoBKGcQpoxl5dYSBSR3REWkZS8aMxK33inzuqm04mnAOuWEMD6hWSVfR4TsxXx+0LIO7MpAWkzteb/UJ0Qd/O3A1HXEbSez/m5hYZPzQA407vB9LRBao/JLvs1Ret3uXz7E9Ps1B1SconVz39IpGZNBaF5GHMiVgCGbpdRinzyzY4UdmB3aSMCxnKcmXFxkOj0pFeNYEiaR6b4InFFj32EiCDSR3GPMoHdAtVvCmrGs4MnAdV1mqC/FFwXvC7uQjI+D1IasK2XNvSeSaagakt9oca9CaNow/nxKNRNCaqkxG38RpIKJKGb14EVomuXrcIyVgyfIbtfqkK2ejHqIkr/2b99uCLDra9H7oS53uiVCxkfPatDDcxrKtYo/5GUy+DXTVLS2Bc/cY1970q6Fny4UW+RpDUdJh2MQn5uT5K0Bfcuv+WSptbRLId8Jv3qGii4Zq1xtODER1G0bw+qBdjC4vMi0NpSTDErPhx2RDZWqXncfLV1+We4rXSWnO+/9p843IEDBRv+XL4qXsw54e6he+2R5qOTnWy+zyyM713/7d8rCGllpHAsSiFxfuFmAByvtHN/jfFi8nmLhWTBucjpjKQ5w5gE5LLclP/5aQoP0vLJNnXu+AYMk1ykjDoKVcgylm41U2OwcPJYA2byXbejYNym58+4T0hGsb17zOKp4rtYhnfFzRZw0iaps59XCzerFcWVWAyjgZkBVXCsjmSE1506j3eVHmbMQulI57o/giAP2ChnsG9gQlAS1oQ+czes4b6DO1E3A3joDXBrtKrN44vF1NvAeC3OrTsfr627IoW0EWLpdyzNnAd0za4gs9TzTEckxIDyVckJ9nyvyXPyLqfSm2Ym7ynFoDXvR/It4MAtZcGfhWEtXMKfNzafWHZoQCRQA/lBxTQnGhiyTS61RlUKsqHbQCdMc7Vsr7Z/6WWQJK5W4EbNOaOXfH8aRWfgYYmcFO4wLomtf6IgYEanGL8d92Yv3wvz7yaWTsh1zYrkuUjbttw/22xd4TsX9DHBci6IJ/BPngfXnkGoF0wF2sy+qqwzPeN64kCJ+SLuXywEGnj3yDX7FeJRJ7hib50cTmVWrmIJjBtdMg9oDNVD6OH74sxs7m4MOfBCcm7lNOSn7OsW0GegKeuinGBOIwRJJMqbCnybcWRfpA3SBwX1W3ktwEXnwnQmFnyb0cyC6Iqz2P65YeuPhT4hz5GQE5T/guCm8XFKKUytGoxdGXguAGsXOu/LU4ykGfrlItNDABC2sQuNyBObEZ94DllXFIKcVFkyKy3LWUsiwD1UQBSIzgj9mw6JTsx8NSaaW/nZb+fzhoTbsLwgUzV6O2hcwd+k4BkMvSVZrNZ4dbmCkYXybxTw15nFz4YvslPQWG2fLFsDcWgjWbD0l/gRIOXvyhYUWCDqfkidiTy29m0MhRNy0MQRRi+RClRg2jC+NKiOqKmruCaukgXCiD68nYZL8hub0hsjXN/01bdAK56nBKU5NChCArnvJLL26/D/RN21dXbJCWgxcUjIsOY+QgC7t78oewpG6t7rEZnAWipuldoLtXzPGqQuNcLmCU9+fR4Ts9ncPa/HTjPaSxSOKvAf2GumVDUer4tlhjLXqGJVwJbvuqKbrnBZGvT4d0d4bANDPjRtJE0ErPTXhyNv3UEvoCKBjFUWR0UJ2z3010qdQuOVJIInbCnQFKA+qQ0mr9jpoGYfmzcnoQ8W0W/Ohe/sCfKW6bxQChwky74ucEVdArnEr5U3QYv3PBfBywvRE+NSQxLAwkgr3EIsW+LPz05ayOQIdABRclznX5ypASA6u11qF7D6SQuKxKHLNZtVzgoGzKCCbc8z1849NzcSMs/bEwDeHmtN6QFZ2Qr9qrRdBJquzldZVur0fZOKLxOllEFWg2pXGjZFO+nOFq2vvYKmMKSIL2qC+dVV5vCLYlzT0CAu8JViV4+0l9WGRTmLRVxJ65aSdXHPr8ir0LJzgfGtwMYNkggCc2Ve0Xk0aAaeAnuuA3zgG0cZvaASxJ9NJb3ADCb1ks2AxGuq9gr4BFtrcG2wefnB1DMPWoOYMrkLuiyNs21FWxXkNQMGVlf1PcCMq3UrnK2ZsWYCGTvKjmcSupFUUNaNAbmkFE0Ud+SNpOeJ1NiJ8/rg2c1riGjFLVv8koQCfucVkSKgTATitHKhmO/C4RAnRZ+2U0PZOPUnWJKLteekqUo+oXXBTZHjDq4OuZzrH4rj1XQebJQLsI5HCrsNKjoRIxvokGUym44D+SYLEuPmWa1wc39DRoUV+6elv0sfPpYQy6+Bo51BY/VEZ9ZeZbgizAouT3zGUXjz+5R+GbO0p0nCn2AFEzuwO0Gd1dAUqZfYHP5D0lAuxdsu0SK3ziQCD7u2G6C032xOWPDTzvpm+8lb/WCPTODBwBeGHnNZBhpPSY+BK2Tqlgu6We4OKdjXXs+XTrso+Yi2FJxZqm3JHnwODLG7SU3BKa7n6n6Oepj3Z3Oki86kS0pL8X0xw1aPhbn+Vpv0tvAjP/Nyl1Aoq7TxsEMH9yfSR/IzWShDNo1nCpFvOV2y4iyPu0sbWXu0fZzl2oF6Z46JThZ+2UVOKxaUfY9J3wnsJkazGIiw8xaZaoriZ9BrUI5yx/xBgEBP8UBunI0ENOTQ9/b1ezFzPGfI8/jLPyivJQjPY2xy1dpXqS0Adn9BWqU6VoGGjgMYysJpqesvQwls4hYWIDlCbEdhyrcF+FhENmWs0yeO1vd4ozcfix/JXyEouu77mNFhe1i+GEBYxTdNSkw73J9EJyi+rWwMyEfx+pFqtgopVxkd0CLPLW/i6jGmaQoh4+VfeIXHJ9EYxN6GU0AYHXQER9p4AH5err2xdr03fci+z1M0CbRYjhoCVHd43jroCJgh3MyAaiwOWbQLCG7Jw8y7xp1Wd/CW+/8Q64c3E6233MqXoVunkiuYaULFPW93ApUgjfIk6xizro6BG7Ul2d+RHSumZtlOJrItsSf+CSk5LzB1OkxU1bDKt6mlFduWaqtznC9hJPb7nfJ/QW0Q/6+3qRyI26Ut8rVQJuTfyLd2nY5b21Vqd3tfc5DTT2ixOmHMdQ4UWvdWbzNhuos7WdK0R2XHJe3Pgp4WfOoxxJy5vutAOdsqFOVfqcNiTzl+tLS8RCnE67PyXmBs0ILjRpqQEYe3OC+nhTcy/9zNM3dYaBSaBVpRRUwNB29uHhnKkHCJgGknxenCN6e3X7pZS3OkpA3v18A+zp/HmvXJV8CeaVjNsEgWfPbGAumATlGlkpf8G/7Ci/zLPveu8KVyq6ndxDRA2mxvdi6QowuEcmruG9qG0zKrpxFIkvE5ajJE62FiyiLyYiPsuDkpcP5zDIMCWZYVins2LGQAtyIJ3+m3a5U63UF+fkEOP2lZR5G/O804E++kJ1rKD0ge+vb/vzjbwZGU3hBALR3jkzDX4n7gm7vB1egjEpgg4tIq2pEaaIS2A5Yxs+86nJP45KvOVjw8p6JIsu4KzSSdGxmq8oZCdjt1QMyyxYzNYoy7bnwiKviuYCx20qMX+qcPAVJ9RLFKTaztP20sLqHhJJ5gp2h67iB3S7V6sZzx9bPCrRH7KjmAIiwPDwyoSyE/aertDRhm9BZA9+coLgXcNG1/jz3tF2sGNoMZ6IIoWwlGLQ2twhZdgHiDK+9xsTVaj+ZJ1PpyxXj70YA34dLA+PwNhjuClpqucJ0xPKnjLIlYfQ4PFbwnz7YscsH9p8TPFYuVKnx19IrVxvG6+2oBMaLY7w/8a7TB2PQJuwfi7a4YPCMN7LAf/pLIqoNS7LqYcxIY78mVD2p9J6gMbYfpzMjO+Dd8utpIw+NMfszf1hD+s5X14eZX6of3WhFscbJpQCOWtQRp/G93DntorVseo8FUJeg+ZxqsYtJGqOg5wqgWmpfGDuWSnsbY8PF90yowcE4Q4+2jQn8hSbGXUX1vNb6m3+4ytqX+OtDU/a0rCA7oI7yoiQtVydTR78V472BJyuF1knI2zt7GJE+XQCxG/4UTj2TSyJUPCCQiTf7SIUAVbwGNjFE9E94BOmjQgLfLImifKKSTUZp51oUr1sNqpOP1b0p5zhG1rK9Rtp44ExVWCl0XH8ND+g9beAsQD2pgCMRiETWfqRCNG2QI31fccdXfMXcSgtGJrJxdOiffRCGuONnYgEHpSv0JHSGNb4PCpSsK27HpygXGSXMGKm5N5VGzKtdWN3dACwanoP2a/cR9IEbTb6XeGfRjihhnKFISMoYDs4IaojOQcwqso//ovuCZCvyz/rQO+cCTDfjamoYc41oX2XD5TE2JCAW8M/y4KJ3Cjqvhx7SMAX1SS3p/jG6oUbiefhPV80rmcgdr867baSyhYfeEotUlF8ggTknBHqNDbJ+6LEWC1qSKi5rhknNhvAzx0FbxHJYjSjqryAdTjH2OYm23qA2nqJxvxvrdvDtZ7v3tCbMgTvrVK85cutCC8M+Nck1MDfo/e7Y6m6lr07W7cWOVHKTs32RKjjmL8pRDCaPtH//AGV/3WF3hhdjn+Mj0RHMNoFK2SH3nwQArtZsssyj+ivRXEnfxOLLq27OUu3gWmf8rNI5n9LW+Vj/mYUXR7MNx6NMvjyh7ghGQdU6zPIuI+NadozrAZygxowEU0rt3INi+y1QDM0DYkaKkOMQAYWeWtQfylrnAscBgHzclLK75GOSvL9Buo+uwJAW/ZlxGLoXQlpmKPerczV9dyP3wttI9HEUvt0SfsMHjMpSfWsX0GoXyuY1UGTqrj46I3Lz7hl6KYwQA/8KRJzZnO6j6PewfXL5WLIM/NOZIRdX6u8YiJhnov9GlbR5HI6Xm/2t9csXrnBb5q17llFXQ+JsSZRNLxry/3tJZFderQPNevJzghqtASvB9sKqo7/fo0cQ6CzO43Y314GbjYsaGMdJJ3BauE9rTxc9CwwKl14PvDeqBxihGJpSbMmsKiri9IN8dbpAahgRtERSR+qrEV2KttfiCGgnitwgsK1xxd6Rsr2p0udI7aHPbPQIszTPOCCaZQHQIiviPk8VZaWOilyWwIrgFXNwmryJYk5mwb7zjSz6SdBa0xvLdK8/bJ1BpRUJpjHV4h3MX7qBGOr0KyMdmK66icjtZp/mY8m90x7bAdGqLeEL6Ie9Z0wZTJKb57Nh8+ikU9wLhygukrb1J8QCHNJSUKDM3nPOUU1cgflzVNMauVClLZqm02pUQvnrLE3sKLNun/zCVwz1mFTdfmeGJlJi0RTfeVGmFM1eXHhtEX1ATFkesc5VPcAeLqXzQ2mJTSOu/h8dBbMduWpoj8wes95vv/j8yyQj69gB77WIqrsJMaALNr6Zpi8YjUp2Rn3F5dx9HnuXC8P7NhzwI/Dtj1VGJ8o5uO/aykKJSX/034h9CmHIm66ms2Zxz56g8rSe3VngwILfVHxs6bjQ9r6KoJWCHKA5MaXyO6ziQcCiaWWbna+x4DmCGUaLdXUZ6/3c/HuT4Z40a0IVKrQFOiXufV0OHwvEJCUKwOA/N0/AsNVuuXDNgcGSvvpusYTEOtmAn4iHT+Ec/pPQM+n7OkGqqRFXo51RjCzaVaFNIER6WKcYi+Wd4Ll1U2A4ibGthE2jN6s6QHY/a4RIRjogFIuX8nvBWEF1KSr1rMtKiKkqyTvuuEw0nuhsZpWV2K2ewNAcs2MCwxpDAB5hQtYewqjLIYu/KzKNLy3MPskIewVaiKCeyhf+6KciTe4+x6z30PndFZewUWa6ldqHQy8gEZamwL9MdR6wNcmbeCr6Vd0tEg2hj586a7XXvTiIA+WtEFAYlR7QBOBK7btu3PCk+yrzV/bpL3X9+7H7qt7xNf/GQT0tXjRlH9rHFW0DXLpn54eQG607n1v/OybFRusXtPhwsuS+rz71aRC5LVlY2+NEfeJeLeDz+IOzD6MLMeNjK94RjvVKrcvG8lWHk2ctl3iQNxBuoeWlLKTCfyZvdF1MhWm7/If3WlX6/mq3MLYg2Yc6fvjvgWX0/aDSAcMRsiuPcnYyqStm2aTW2k/4nsOd3dRZ/Dyp2LdG6oLgfwqUETK2vgUrnNuPYTAmiMHACTdQ9i9xPekI1gWOMSwE7Xqx+rhKorEqt3SRm+fcAY2cPkkl3BY2iD1S+u9uMZLFZ7EgACiM2PD16bc+9s0bXAt3QemTk4XzBawOMIWI7fVbdQ4OMjQ6/AWdNrngRU+NV+k7ew8U0AeJYtyAzICq3BKeRJmzjhGvgC9vRqwAhlCG6bJVIjTjQpFkwfXM80E2GBL684HLnziQVHvQxQ5krR3hXqHQ7NAtHhbRsvdA0H46zXCjFiC5HhwZSEvceQZBMqdc/u2aL/90H3ebWDJk9R6p9cYXFRkSd1aHmM8AwdXDc3F8PbyCrbgvhnd6qeYcXJTAJi6690q31/tMMzrrfL4aGkLrgQHm/OEst13FUwcfZOcdF12TL7XIXLtrzLnJqdpTrsFuEwU8OHXuGB24OoUGiNKD+DW29HFDOoZSk126jHPAaLWtuWg5amWSnBGhU32Cg9EYMtJN+NszJgSNSQbcLrDPPsKSeQRr291ub0RsDMBH8TO5DFCa2y1e/7gcoKx46nV3DtSCepdlnDEtaD9DOIb3hOnRHQOPiAo7TUiu3uisHDMxgMXCCqb5i5ZWWX/E9nCzA/41OiQzHFP0vieMHEHYnOeOf2r+nFdF5C5uJJJWDVG15z3QcSN/mBd1WCtwqmoHR1H6yXJB7+HMq1sUL/57PHGO0JzSWP69zDlr0ETk9sTmatxpyBxufrYEdtFDy/jwXqAYCQ0eD6Z1d/J8z/8clU11o/HYWrqTDeMZa2cAMu0ScpNaXo/o9mHRhci88K4gWZLoFyunLMKJK8uTZxE1bAebdCaFlX1b5HTchv+RGPFImS1op5azIj0UvBWs4pIlcz5j2U+4WBZHrVFO0felO87/7NxAPfFQar/V1WaQtrj+hN+nOKIbig4VGso0IlfaX48ueuq8nzpT+ttizpFsOFDvP3rZFYOZWB0NisTRBmGL2hTP9yivbpGuxCCBuTe5nXQlMAw1Bfo79MGZOvWNU+aWpuVvNVNjdk/QpOQ7Gi9iyYsF3RgCtEcI/9wmxWVD/RUmXT3q89JXwWk1ow703aHZkDNY+J5fdrBAdjJYL3H5KuoPsU2IiBNSFl5UZtJKx0zND/daSKDCwfDTr1tyQ4/suWsXcQiy0y5XKXW1PtQe8P1PWNTS+FAUBJXoy/vc+es5tuFMnqPacwFVrasYRdAlcsB+B8k3pldR+UVl7iBvZhTBzFczQsYwlSfXbctQzEjhXj4b7bSdOUoR18BIUoICPQf7lkuNzhShe6QJe8kmeareL1fsrfJjfDlHiLvvrbd1irf5uu+klDAm/YhhC/Ft4JNoNUdftYVJb2NUhT0s09uhzakAO3yQ3xW7SGg5fwKZ3Nv+EtX6Cdy14Lkf7z3v7F1k24nbjzUU5D3NHhYDlTzMq++uGR8vDyFPs2ePVKjIFMC1lZHKTY8w0IfVRfV9mbOU3wEyTmwyn7fiYZq+HJPXYwVnxZKEc0MchpGEcYm5Lh2fVZZkBsKqxFxsSuVHBxi2tCNnaUNZ5C6wBhdnzJMkuae6+0q90xrbJOSxfCTuWQPFw0aKgI4nHMwoY07ZKETvjHMftAT4VS9r6wrfoUuqNebaw0GS6ljELTgRGMzkO+KBPSsT9qL2uOglpZylHaVJ9f+pmR9ZonHSP8ziAoZ+wBU7heJcozIbJ59k3nsmnDdmQgCjyGbwxEz3kbADfmLmUz13VxKVo4gI4r/3QPb/uUMSgHvnCSSb9RztI8Anfu5MnEkj+IPE9dn8X09vnO9SEIu5ywoE+KZe2vWhXjiUVJN55BWimzjV8l2f1CqjtS7oZrFmFBpXBOQAVbaZX6XnXrUIc8nI9l5MpoFYrySiN7TrBDpiK1x0UQNLlIOAA5jQaZc6hcf/p5gDUy0OOpYPxdGxdz4NcRjM79/ghxpeQtDbDB4nL+4TCJnTchBQ5nIzf5KUkzJeHp7/u18HNoTNs8yHAwS0LrOJPWzULlRlQuvzq8IJgTmen+fCKD+fqhi6NFdtGmMvE6Tbs9vdX6VTgl0BiDwKmbmwu3aNYmsqgfJpJVlkeE/I5OZqGpODbV/ioD03T1JzbLw4o6S4HW8bC0IqXjsL4x5mXL9N8U0ys2WzhCPa9tx0gTRVHfHpV7sijHo2HZyAdcRyZo7QJSNw0GeTC9NH8s0EynVLrZdr9vWsI6KdP5zlEEbkO4uz3Nv1uE+5Xqrwr9pxgLmOqsB5Ts907wqvsjq08qRwVym0ZXREE9W52h7BL6OsOqhFRyTdx2U1idpKiCyeuZhp5Hq0vF8dp9bWe1YdkXKT3Do9uCPy7Dn1zoZHs2V9Dhql/P7DNSatNxS7JJ+fq1lX3x+DUYAQVphjt18gWHv0e8VM/nzjq8oeIERmsv0ecl7baXorI4+BfDleWthh64rRoNWswn7gD0rOFnQdDE5KTnsCWmJPcVhzyHRAWRjoM57RbLHGMbQROyis+ST/sMtFadiHjlt7is2dkkYeYlIXLMj3uE/Jxbt6GKgDqc59lul8AhIi0sBjn/hQTrDzHQJPkKYsQ3xTdxQMp4f83SuYitvyJx1nCWD1RZClQ6Hhkt7F8InFAgsUBk/NKW1X3bil/3T3z8FBhRQdUi1poszIH/sQca7/ph0Gg5FTA7TWwzoeWjjl8oZ9hIYOZmJBoZTeYFttTWacILip6H3tLoXHtM9O2QatwAeH+ybMLL6m5pe0p3yhyn80ot8wZEg5Uzg5EEJGMBsWh11CCyWE8JgY7Bc8mi4HSIn9isek/tcFYEWY9bThsk0lCfDPtfkgWKA0F3opdKVrI0FTKKNIitZJ8WDALcqWzjIAxxkWECyGRmJs93wSqRjshnlIZZ260FKGb6R17GuQSAPE3IHQA1TTe+7gjg6XsL1YF6ZZes5QBhnSOybyZAfnbwoA8BncUEKWIDgfNFjUbUBsh1dsaJK5gVbVG4tXzgg9G0nPIdV/2cun64pDq5k5QtigJLcIA9o/aVDeEBWQCoN2NLIOklMU+lgtLWuiT99TXZu+zC3CErnP7QyqGXi9GX3nmjnab8RF6mPDLf4hAwsiExfKTHfRVZ5a+rXJxOnzBVd/LarRpHNYePjBKML023qjU7d56Bh0+szt9yG6+GfMsTjQr3kR8JFQOaRphe2zI9KxRLuGbCzH00rXjqTYLpjNsntsyP0DfGuYbGdYuY35MnhFF+TrsY/83KbNNZTp8wBsPcOnC0XrBtegNOWMxGOdD30wnHmf1PDSx7ItzETLGo31K1EEl0qumRmvefuHCZInkNwqCqm0pH+bwaV59zLLiGD8l1U1xZyx0rwKsN2Zsgi6qU9RMU7BSLePtdhpWend21E/IiWvzRxZsAyt1HioLauxtCFm3g0gyinGHUk1AgpI6VVzaRNjrpMobZUF+cQ+JNT8cpPXjcJYigJbOVI44rj80SaDn4bC4aDOfOIQ2420V+LRMOOcEbhK/KNrHp3LnwjMmmeIMmOmrhfCj/DrkoUfvcjgQnH9pOrh4VxW+r/8Ypwc8B+BtsT2W5NZVw0yiI+Zfny8Ez80fPv90SPe+VKWUBjWlhi0tVSntXxNHzMuT6qiKD3VrTDJ9eMBkn1yuJJ32wPnpVZEtWb7bx/ssQF0jo8gzEzD6U4kXyKRbzF1rYIPgkeJFf7FL+AmwF2id0Ta6NNejqIhO7kEEjA+MyHwG4KvKndwo1VVnfNIRI5+UGruiJkZYj8vONFMrTw8CpLzNrSt/0cEuQsc1wbEM32TaDaCk16QNUqhBTYBAJqwe9e+xHJUkaeG8mG3LmCabjf1Ny/bF0hxEzWCeyY6MqjT98QUerT6e22stiOW5+P+QEqpwUsg+slIc9YuJNMw7NFUeOPxeLbv9kpic8lR6z9jycISQ4Qsd8Wj/cU0NalzuE4l70ZzcBaN+/CWOPKRTryHOoMTf9B3EdLlOeviKvWfLW5WAudXYH0BjXVAMgDrL6mz8cIyVszif5koot/u2xIwbT3R8GGTiT5FjR5wCXpmPC/JleJYz2MBA/BfhShz4BCo2Sr/KdtpxSJ1nBkEdG3BejzgRfqUqu4b1YPeeJAGCDaVlhoKBjFlDSxU4NJy9HOx7mYL+g5th06K5FJD2TLRgpgQX14/CVeL0Vz5g527W6coM9B744EiYegl242iE6dCHTEorxdZbApX9n/lQfKcmTtZzpbZhbQrXo1wARLprziVeAY+/Ms8eH/991fMzM1qbK1VtVJIcGdZz/R0rpJk2Jec7QRcJ9ax+hvu1l3PKgTmBgkTVFVVhc5/ynuYqHS75NIX2Jxj9GNP58sbV4+gEVjc2mKcmZiZTgPWTAYrHLEeiBzy6p8ACclA8BQIMVpYq+c1FIJJw0ST8k+aEF3YClvftT/u6BX2c4eZi2ltvWykS4WsR7EweBZaDsY/2YiE6L/2dNiZceeJCwd0c+YsiChAJ3pnhimE0afMV/hdaDc32tw6fiXjh3iELGT5Y2oHlzrjKT+uNC9zHGJKBQ3JyAhT6sAYtM2VAzoq5bd3c9BEOiQlvlZJfy32dWtc1rgWGYw8EiZJ81SuyyZjz860E+i7cOpVWuBfkSlVoDOEYBbwlWhWtOE2JhpbTUSltbhHlUKsZIgJQJX3TeJHMFqQPpLTL/8m7t6HkfawrgWH6Cdxc9Uy+vBPsYlLzbIikOgGiSvqe7fXVGm55jFFDMTDH0bhsjKeDJU51oYTxIDU2pvu3Vl9RyyPXkePsPCalw+MCivMj3kgFo8SwTp2eFLZyi2e0Mog3V5RzJ92bP35xBadi1Mf8tWyneJC77lRxbKEosb5hpKhjlA0J6Tjj7S47cUn19jMds6dxkD1lSggeROXssDqd0V33hZP4veVYRa7hqez5YUeY3qUGix02lNfoD2wS8No6m1OKAnUbcBqA7ZtnkozaTaD43ml69vMZdPyVj+vFswlDS6HJ6A4KoIuEkbMMX042Ch2gIYXBfsH93n4RS8qmNSm+XwJOnEeoTUq+ek3elKUuH0M4xTlWkVgelV+Imnv1B9jqJAJ36wPHiCz0bLgXvIg9x1qtSj2fWG09R2uWfe+l0Gi0N57E1x83OlC8MEsKd7K0vPiFzESLguWG+3RNv2tj959QQ9qSR4RrDyP6YTYrrThGFUuP2Xmod4MViaYQuwAzT9J5rL4tHkZ56MCDP5blb0V3612fzWNB8xtOKed7Cnq/jzAgwBmg4Y+w4E0EX9T4TxgU5tbGe6N5wP5gm1HMd7d1MRo0DUW22ZRHgPPFFHVa7g+xBu193SSNFSSFlS1KCoWfkNnMdnhJ2sSK7ceP4kfPQp120emWgj6tz7wKidKHbxhnUR6a8Ot1/aOWgRoxssYETM+r4CRnasQ6G3Rb/Y8IILKIeL0bmOaRw6OQMd2kcddPiP8QIlTQcflwjOM1AV+tFPsLooJRJuI++Zk/q7TsMN4HPBvZ3qUWBFh8hjis+6v1wLwNI/2RVnLa9bjRxMa0lblqxe7ra4q9EioDDmxSNBQKvzt2zi6z2EAdnRkGbt+wQAPZrfMb4ss2Yqs3RXGUXkw1vd0LcBawl+Q6prGXc1YIl4GnuX2Uk1W2RrsnlenNzxk83fPXOxqdoWNt34ZH3nhSFIx9xpyERGDVGHd0BZhhZU4pXiX4EqZA+BzDgMdfyA7ZfMybX9G2cvGh8/ggbTkW844aogLL+rM4+I79n1lt9SrOJPNtgtaCjkI1bz/qkBFusdFYUCyvCMwI6qqqpP9bPk/DIdcDtc33XUAzwPccFXt0TD0XAS6PQ8fhyeNhY1xYFVkVVXa3UojFKfkEStXq4/suZbps1mcrxTjiSZup3qDKejfbmtzuEkvFhPRFwznbwN1nL7aR/rLIjBgwYFqM4OvMK915Vtph8O1hiMEmiQJqU7zYbjkHGkapC6WlyN53IC+pKisSHKywH1xemF219nXN3TYWyMJfObkgV3phX98NTssgakjHEIE1IUcpe7qxCARLOcccXHTchGcCA7CddWGfE2iFeV/lZr8QCFBsPoznSgK80/1nPuF4UcGgQnNU4kk1G4WVqkW/S95mNNBcyiPKVtirTXNg0bZ9/EnG7b5C5rZpZyXDBtTulBUhLVNSuYnGHDC7dQg1u0pHmb/0qAPWUItYhMoHGHXHk52bjka6bd3WBVaFe3QvSonKt0/YpANMWMrXhNFrGlcIekZVBb2nEvig74obHh3DgOmu0pEDp/v5xK27BISXgTzlL6AKWxIf0t0Z64cX/yB3q6ai0Vj4xEis9iBSG18cxK8sYB0B6zK2Z9AXfkVYfqxUqVpyESk8CyjBaK9XIWJCwkYipWR7wMU/OhnyZewyZJZX3S26kCP205Mfwa53VtVBGaXKTe/beRkyni0y5bvpZCnOQiHvHtWbFaHabFzmQ35gHKBZZkwPvykomLn3IYffRQgKsN3gV6n1mCmUJnO3zrqgrf2FqcyzmmW1JrLbqgf8+GXrNMzYERwP4TxxxOB93jK75ep9mNBHfqcmhKueOyE0k4zqkkLnvqLdLE9Rkoyz1MdE76Y3fVCChFAwO1lTrDfbu9TaGv0BSAjLYTrHDnnArFsOMRW6LMyCc1eSAn9CSdM30kFh8G2+ZYb9IQgcMHg5O7sWWESYAUf5CD33aTkOGaRAsLHjz3PiYXaZuBCf3I5FUFF8upKJvN9LlFIOOk0BAHewZcbHO3I/BiM9HPPYrhKlNb3A/+SdLYYsLl0gzhGcK8g0r/iaY6kYJF75rNDVr3V930TuwXRNIH+84LXDWUIypStUISuUZ0nk3tyfzoaJjlhGhuDW5hR1CsaXS0P/AN1nICqd5nM0lZNB7gN9m8gjymaznxiyLAkJ8KdkUE3cpep6rNlVdDxVwQdss6q6alzUZzFRUp2s0aGojTGsrP/m3l5T1N9ur31IzM7bBzLEvWeMl22YxBT/sCINOYG+AjIcjZCQUPl7hbvUGIto0NO946sm6URk3ip9vRbJRBTgDHBzHpV/EwnQgJvjC8sYdroUz9GVg7M+PsdO5nwQ5z4WBZe64VqBSQ3jLZRAwAbj6NV8vEGVfp1CseSxWP2aUqbeaNBi2C50TAMKjazp1DH9CRv58oiQnpszq/pS+R2tRWfrQDbedqUQSspE/OrtDNuGd30M2j9p96HlmtkOV0IUNzzDmz/SvLrKbORGY9AC7uyW1IHQHY0HdsS/B6YyenQLn4DLLgUVnacudYX6V35rzlYJFSogvK2ryqCNbwkUUMN3whQqEK6FT/BcNl8sjQEOBoWgeK4INRWwxp7r4mfxfwsV4OfGU9PRiO5/slU3DW2FR2dnq2ummnSs6QrsUXCUeRWFFnj8Hhyu31dyfUkSvfqNCShrHKvtZ0p0kprjQp6oiK2S13BD7kL5BPjI4ZIcX4Uc0QYMkTOHHed3t4tuAh1OxvRCkIdcR9H5n6tj5Nxtu6vXGxE1qBgqi7FX6oYNx7HZ24hSVR4Zx2DO86fcFj/gFQ7YHhI5mc0rP9Gts8MS8DZklmd6t49L7yHvkIaPbKO5CwzlgoZBn/r6MRbUMKDmi91nBIH/OvxhnlUJOMuOuiYnPRDYsvnryBWardasSyZ9mAgKJ4FKQNYeNeo8rFt9gG905wxq83EbVatGEbBoGDJNKhqSX42YYc3dDyMvOR29Zlsx+RCCO7QrfVoqu4nin2ELj5e4Yy24kH0fkOs/gN1nwSamBd/JEAaCLCp8zSzKhQasvCsOhyjTBd1VYDm9ekz7BIiPf+UCRYTBQb/Ukm31A2ONd3sf/l+hQHvnsJhFpaZC+HH6PHKCkN6UTE03yBSg46naMvyxFiOuqVuDaEV5UcRIZJYqSYOVepuItZbS6s3Z9dGdTt3lpAwr8j1Q1pzp7drCrh+pLmvqKs8NVzkM1h2jTBsEtY0z/Ywn1Bq+gN8fMWORz/3fuXnNLXxkKxnEHgf466MRVqLKPSeRd9y5UcEqkvFhHe0Q7uw0JebUAA7F3sWTgUsMtUtB8XWB3Gy/b90nypmsenEPPQx9ZjDCYPg1UqitmAl5I+MoshVbFkcu84/BaBLvII4tn+YNGUmwR/uiuLxCq++OieSXgE0/Z/udAhpC2Cwbo3tgtYPhaJKlK9dB/43qynnUD0zsuql4GyZhA9vPhLn/1zXBGskI612IbkZcsCJqkt4wFhNWHplZRqvgJB3/kBoQLb+iRhIzGHY0BPuQKLHblylwXHfL7qeosI26Wj7hB8y74z9UitwmFsodFk0NzBqBg4Ip0FfegsharJbs5d/4ar6iO5dPjTE00oEIubcZx31y4OCTvp9XQY0S4eM57bHH/Ohqr9Ihod6qnygjiIE+JcfgPsW/UcmJFZe//EzwJhWEmxqZvcxroNdKjobvbatvo9VwYyd2Bq17Tr5x+LF6KCWX//tdP4HgekPABO1Bqv8Ga2YqZllRCdDr3H0gKBzJnO46eMZEhm2a9Ng7DsodfUzlroMA8ZlMKo2qsBq20bmu8wwQlXejGGO2uLNgP7/NR+BrfZ7GBZm3mZ6Z0IxTKme4ylueUJUf2UBI6P4hPKqBxY9DoXgjDIPOs3LdhSB6UTZBjElb4MJpKiR0P/VTfmQZFrs3Yv4rF0aedWt7zUMdZ6/vFBAWfUD0dqOkv2qBQcTMipynnOgtG03WYl4q7RuSZux9BLMNWqYHRoHW0Oar7rRPWJJtVZOeTEIxnrlLKDr2ttdAcr4YWPjv2Aw1MCfIdAoVVCTFMyajX3sGunPKKi0BBEW5Z6f8dGQgAbElcKKma4oguytnhfL92Sij1RazOm53IFQ7uOtks58eix2wpo0G8eigNj7iBnwZ0SuoeTN2kgXcTueMwNCMyJIA4RS1nlFjIxOPFvJMnnXIYgdOnrbh3K0YYBwrHWCK61D7IvLeADgl8H5iFrRfbY27ZjxtCCYEsTILR6yWsuIcVfntsfgubFpQ4T60Hehomsa3ABwXmUCcgcaJ5CPRIuyD9AN33I4JSIs+cuc4lIR0+K45Qp2E+BNzn2XeVksKuZe/2FRfN8mBjRid75Cl1O567g4HzPv5VNvxKk8WCRQSEb+KV1YL1Lo6zATABVLPWehDNxka0ESq4N3feoxLgP6hlcwRadGuVRh6dRccLypHclFlYraThZaXql/6lqb6FdbpLViRRH3iuAlmOgzXMuZkxuMBk9YcwXeTNaPjcOa2adIHb5mQfc1CUOJQOpLojRFpQG54g5oLBJgnjpeohKHtjQ6+5wSkyqqEjHOOARErVTwJzHu3XV8lH9qHglUQsWted4qiO2s2rS1tmRmMtQZ4RyT7UEau27pfcx/L1TWAfvQL13JczgxF+XcU+vPt/luX620RSEu5Q5v0UCHZ3x/4Mc59M2tAgXZ+A3o7Af6GUyVz9SHw8QsT+TxWrGuUp6VnC7ZXK5vy6fOLM3c/ColzexjWoP6JXbIF09uyRKONt7niPJk0fMPbZA2RoSkaIoAK1WNBZnng7MsiaHTS0MmlS3kLNq3IfBwN4Eqs9hxC+sHOLr27qMjnzd0+PYHB6iL3mmiFe3cb9nGchF04L37WUK7adiMnd3EGOzRoCoNziIezmDJmHSfzVMhsyfMInpelwm7ef0KpceMD6771Mnann7itj0mhCtw+ND2gtgM/HrE8zXw0sJZjp1GQ/cX0zqY3mDW0X/YSkmDIXQV/HevRsPawcaqXS3GVbX+bMJ4LYCw4beWyWadYYUlVwSnzMQAjFJmiVbw+7DAKnjq9enH6eOi6UAtVjZr5qyCXRdAU1KDRHbggf8TXa+fYsSvvFiuaJevuX9UrRyKO/T8DceSow5jBOkrQv0Ljzq0r7GXaJBdYjup6S4qE5dOzCkG/5qbu6kOZx9QPEUbbLeZO+8KuKOBCNDYQCwCORh5JAhrTgrrVEbRLzv9w+traRK+/L54ATpTwvh0PldRZIzCI0dAE6Q13ZwWu8CE6oqioCdqpnjPcivU5hXhsbIiJwYWvyBx6ayoEmbcVUBFYFeao4A8UcAjI0Rmx0e5ru3DW8iOJd5450AH7pMnDHF2wV/uSkKX31TR31AWiaAgfqGP+0KK7YT0bXfUqNIbpe3FSuBqhsF8205nu1Pvs3mJk7kHgNz5ZnAbJ6TcyRjmIwQy9IyVu1/SDbcmCBZ+jvh/bPI+HjvpwM9IUDpOxBPEKVia523zL6uEpVwqckiIngUvxi1YW87oaxoegqLEaVgP4mn4IYfSq+5ubLhNx4ZByyEd+S3aUC8k57Q5YQpTL+/+LyOoUqgF9EQuptDA3f1JOq4tYCxiTdcde8lTifw4oBD8picyLyD1BW51tZb/ZWQVz7btoS+aa1zF4sqwOJAbhc/MfHos6ofNI+4u9ju3AatKSgx64faY2L1dXHTWd/Mce+ON5ATXQYSwZvH7UapFUzW8ch5kH+4+RJWrN/Rn62Z+O1pCiwfCTEvPjgsE6DF+AvuPt/MLUJHlodh/Olpaxk089KfPsRDVFurqPsQ285ktY66fvXzu4TTwzrPQ6QhKjkOcYpa8wIbVCRgCvktKPJRpCADI76BTRs9STdn/fuMyaFXFNxtc41MwTCAwJ2NlxSxI4HrANv24wa0V9ssCACQkgc3SnvNrjzU7G3cP1/zujy7Bf752Ij0TLaOcxxBzA5NnCo2ILepEF20FlyTJlNhSFIpY76CyrNmGOgxp4rTxx8Ju7/swPwOuK5n/ERah/W2UwtZa0BoyUHbOw80mb+ok0sizTn7M3N6s8dLQ+EGZIUH3EQBgZgr9NxJ75AVvqfGh8r9X2uYFdsNlsJuM/HsRuqob3dkgLkYaYPH6oay8V8XfYU1jaFutDAFNIF0EqtEeisn+N7KoUTeZafe95r6duKnNSn4vbjy7saaDQykCGe7SgIEltNiTedJZiMamU3sMMc5Ak46+zgCyQ/AWtayf2PGJi48IVvXnEjcmr4p9qwLnxqJHGZfs53kthqqH4U6xOUtPIWq9ZnPfBjkow49MF4SrHHbLX/TMFhqZQL1pK12hUKUql/l6GQr1sypufsYRV4fX2NIdY216qcpCz9YI771VrlPsorBxTnhnxveisyF4A60no5YU+esalgdhhzS6FLIMD0oEAVk+XcQE4vBYHiFV2Qma7aV6wilw7ujmlS59lXtgMlhbsDMyZyH5woKCXGX9pcHJFGxJQIVMb7vQwtmQqo2pX6RkHdt405+r2eyNNt3fAA9SFYJdAINSSP7ZxUIwayQRGA6es3l1QmLBzXSYXt9m7LDouJJ3E61Khlv8aEW0gRSSf0BKnxSlEjSif1qMkH1dOLPESa2oJbbJLAo1QH6/nL7Q2lIT22AfvnmY6bxHbZa3gbjsmXkfjMpyywo89aBtd/kMygkxTvCQ0IglWOZruzNbiKydVzYmZYU7BFJS1jrfg6ktU1mNPFd6CfnmNoDiDF6Tm6S6FEjX3hEU/vxc36OOIuSM6D52XdGiuJcvHrA7JUjy98WcRhcHfsq/e+U6ExwITuEfbzsf+b7Sv6tsUtp0v9ld5CZO/7xotdb7LcPR/fd+jJWZmJTJYTShlNjdPMWNayiYHtHctbW6zHLtaITGpfOMavnjMVypEvFtx6D8mUsMvG23gpZ3EPHghr8YLZVRw5v7Bv9lcTJo4COd97RMm1x3JSBkqwexMNRQwPsowj/Rb6iwpt2RpVr2kVhszHLE9TL3rzyBDEk75KhcNIvccodXUv3OgwxDdgwY+KrRr4QqRbva4BMWkEBmliBnVTvSxgIDmGIWe0HSwBL2j+b4Wj6pAxYGqv7ouIISXJLU5TdLKbNE9KhH/7yv9GANce8P6HH5D1L2v/SVowjwvU42N4LGVlAg/aXnDhkP2ZGwsBlcLU6s8qwoEQY1UTMkr0tR9fWdfWjMQe2s03gTql47fmYVNnSsNLQ9O3j4qkMW1v5fKgan/MiDK+AN6X6Yw6+VZ3+qnQ1LCAF+I4sa22NYOBQdcDZBC2V2LrefMp3aB0MD3uZi9HaNIqgiaJZseA+wnlnkcin1Wb3zgytzLG1qwvvvzWztxZ4IfBIts4vlV4Oz5ymKFKJcN4nofHkbcnMh5gGNGwVwt433i6KJ9KAUiTCa9zJjvSonCKnpuDAMJzQIGHIpZ4Q9KM1vTxG/UAB+gengECj440iAJBsORZsTnUmz4KHirI7sPqzRvpaoboUvKcypmZ5S15iY7BoKptIgqIRIo6EW51xVCy3cOkbPZds91efZ1eOQpTBk6wfVOP4vkNil+1oytETeX9KOd3w3sbp56ClIGlBKcr3kTeXee5whaJnYJdo8vErHRZc++H0CwyFPs+ysmgPlBQ2XtZmTy/hSs2V7iPE0NN/RCDl6rYUozMwPhm6Bzn6CAoBrfts0b47PWjVhuVQyftT5q8dFHi5ZzIfk19vwyi/7Y8yk4p6po5RzvX2Y8dRU9jFqJZZ8d5a9E6O0jWTx6RgYZPMXcN2LDrvayFf7gAJ0dOq81CsVqVUn+5LzTWELsLGYg0OSP6UTcB6o6ha+zk0XBCvU6MxcT/NjgC92PrX9KibY2p82tRyldgmiSR5aOeAZBWKrl0bQ5cJt8aeUMVryvWjWTBBBY4oCWvKl4+OHbEuPEkb5EHDayjjfmqZw0jcxfgzOUhNtI/7uQ0u7pMN0aV2Lc7EIputg8AWLFYEkM5pSnTp+X6Z20ivVmVr1xd0bb0ovRcFI7L7wBKNilOgUqTA8qS0m2zv30u+IHpzbCl1T9MfGI5gWigC+K5ujqWya9XZ3dN0ODK5mLs2yliVYAzd33/bh6WDexJ6k4oRpJlJuSXS7IIC70oi/9z58rGG4KUWFLFgrIp+pWdlaj2ZyqkgwwGjUbX3u1PjWmkidDD3v/cWImp0ASSOBc7Zo90PGAxKSNNfQ8ROx0r5EHOFSTFKSRqePHdhyUxIYDPJPgM0PMVmqpo3ZiWLu8wtDmLdjceWTeCE+LnDvvrMgLJhgqQ3uEUxozh+HMYiYJvC5r+7DtC/93EpzZ34yMJPFo++hHnpXtNA9IJ5+d6THY/lw3ah3rWawDDNB3FBOWkwTJeyM0tZ2O77ArYPKKZpMWdZ9HDO6D11nC3W9GVpPU+f5dHOLrkuCfjz2f2au8nlgZa0GqlFWJJyOmIoQOsua7E3fN5zmYkBof+AxfG4WeP7mrddDuetdIOT5gxgxXfyU2A2zMFQ5bUy6wcZcHFvyyg9I3xiFqM83FakgDsVk2zkFterGwEpQEq+h83koaQT10egr31uOooeRMpfUfoy2PziWs7S/c1jiO+jFPv/hAf0XAbiWr237jEm/DPP+h82DmbU8ohmTnay+Sm8FgCVIaRebwozvc5br+j5jDQlFv5lPKtaOf/xxm+sZ7lntUdVCGfTfkUXnQGAK6fHKExtrrbroDd+dGE0m5E7DyQ12fYQPsE9DsQNLe1VgZ0RCz0diWa7e5Z8CD/ociAjOPTMt1Up5rPW+WPiu6yzh/KDV3+xM1EE7CYGoLQCbzPLaFoXsKcTZGuXm4hmj1jfO/Sh2IpwwAnXQ22BuXruOMGF/Yn+wL7x+BQrieQR7wbvRonQZ+E8ytrNWTEON1VTM592lkQFeZ1aF7ebsJZf5VL8eD/K57X5+OfOPA7orCGSMmlpKqhiDKbqpH8w9NvHasbYOUVRyo3txfF0w7Of6fJ7ytpX1MdHFDF26xzpzYjV6nO4eOFoI6plQikUkOffYxZqbUQNQEy6MNk/L26dZGl9iJdthcW3/lcZs0YkhXdJ8M3hDzg7Tyo50J56HCnJL+NgnOM6JvYfXtuWA06kG4dkVKIxsxuPUlaYhw/8UsIBWZB8xsnwZyeZEomWc/ln9xfye2CD8GLNnOEdLguAg24WJ3NkOifLy42+CzwSdhb0NpL1yGNMkmNll8uO/hb19YiQ2S40Iw8w3LsUm4QMdkefl5e/quEHkCGfqfcllZYFccsvLUY3BVeKe74+pAtcREbm8uSX7/RGRuOOVhkDRSamE2DP9OiNSiqdFLvgHMxhdKGgsMdRFEw9hmgrErG8c4GMD5P96iDAi/MXrgqrMqneRCyQYIRK9HpY/BXFlVZA8BkWdxdz58+y7pdWoDK90338aipwMN72+1gRY/med51dWW2HH1BaAAuEoSBzco1wkJ9fwKmuukO7E5VpWQvftuqSyfkOIJ+JFGonS5L+f8kCyIkZKZ1LFVVB3KVv6vXgbInmS0gH0pzwXi7jsXR1CRaL1NFLble72bK5Irku0G6diQcgUgjO6OOWWOUFth07NVMJPKOS9QACqmjwYxna1U/F056chBAy0CpAX07XTgKkPT9RtJFNF3H3iTVAnsklne8E+VJn+T87T/rmBTHc+nVarjhlVWNE5n5NaSpZKXvUpORtpzyje+z0xnLsP+VHsEicRD0ksNZpWdfA46Ilv7bcJYVj+9X/RcChRZD2dTRXqZYURxhDAwb9/yZesdIF24UvhLFZuNjnaXZoRGs0P+ZbfMGb34PC0SbPGfNX1dztEMcVpMJdtb/U7/NAHbI9fHeJI1E+d8cxdgGiwEovMIgOAzhuPShpKvFTt/9LYP19hd6vUtwrL4ornU9qt1NhgZ6DuNogsdhCxOVIQ9dSvlfamLQ9TytUC0dvZmKnWoyVY0cQ/tGdOAErBpM6fNUrEv/3j25WlEGxqZNZHwYczR8CVgJiNUzR+psJUlk/ihl7GcrNwCkx9g8I0eDWALfAryO/PRc1R0fCelCABJVp3XS5bwPMhxWn5qLasfN9cOYC50syLyL9V6LdcBQZSpUejE51cIrPKLvtxZ6mq+mcsa0finBACSBHohFxvhvOqcECOmXZOsLMAThDnRiaAPLJJuqSh2zh15LUD3vRA3DR51sW4SXrL/ojxF8+1yKHXEMsylYmobfX9ioq7hq4EbhT0wo++R5X5GlikEmGVi8TCAiLOJh42Va67xt2TIZCUuKvxzi1rI/W7cKfKI7KNfC8pP9QMqw5oYrZ4l1KMewe3BcKo/OLfP+FhcGyGO1J8keuq3Kw9G9q0vr8Fr8c4LKAVCh3oMEHeGnvoKTEPWgJbkgLjXjyIbBoqmUJ7neTR/hNhXcxfkK7URj0i0PPZoLf6yymXPV4E5XNbl2fuDUDXRcB9XoM7N/uYk1190PRFhqQsxYNRZruyXWXdLd5XKMWdT+glp9HcPqyKqG5hBnNjqTR/XuTUMiPRImFabK7vmcZkBDdN4YTjF7PvttZ2kNrsJ6b/3uFEx4F28xmwNb6CxOrlzHzhOhuINBXXMG8dwa+CMlWG2oe2cKcQEnhIATPeFtYO630Mt/fXLbD2t9sVZiiL2mkpsJ+cpdC+Did6oAml2XTO3ag49U/2Ik44+79eqKelZJ43wAEl2e9soPKGpuCl3xX44XOAcG+bDbdcLl2pw/7/q4P3K637jB4bEru6xmWL2XPjXaNNJM2hGfEByrtEFPg8y4LyCssTeXKEQKCm+a2OZVgJgoSRtdwwIYDeV/mNfjg3Vy4ECk8/e53mQik1pEgWMh4tXdzdQ9hGW1Zdjq7HIiF9vztOlIekHPZ6CmKR2zoyFCi44Phyt+eWJX1lXwjprQSzBMe6ZNDtBshApe2TWZ3U9e4h4Hk1OAe5YvS4zGRXbXG4xLbl2onTHy+5rXLaIfXnTzf/5Kv4v0B40L7rvEFEq/iYeTf+Ux3gSDBRmAcE4kqJbas2iYimuui2JNvfJxzTee8smWIQ2HcLOZ22s4dDgtWcAyHBcbeXPpa7/3BRsLgom4cnKWaDPlhPnV0QQy8JHfizNQsAk1K/AtdZaTDM2qgsHwyV5ZDf8AW5QIeEeHIYYv9BmGDIdJVUgb5s7vGL6r015IihOGdN1S4yHcLloS5IkpehZQIclbkV6cEYgW+tY0yRssNstT5dfkxAl+rHnLDZxus1hdqwOFuSJMYhlFFuM1pP8Huj0sQ/ChqOxJuu1+oTZGMAsyzSjR88M5WGg1lmwxC+HsOlu5GAsMJlx/QFSeh7K4Do/JfWouEXGVQUXjpGQrJshG6WjJa70eWpvuAjRxA9jfY+R3D2h9i7JDnrfjHViO2TfMRgzvzLSnRNRSeor8yKmqiSB/N+t9/+0HhT2/lwlDIagNSx2Z4YfM+i6WwV8YLeR2YRh/D5gYM4mOR0azQe99Kva2VUHLNvdsIFDA9exZuVf6fELmDm5iw3bVysPn6HqVqJk4l/U5HP4FDM1GBlXwVDbe2aXGF7cw8MF1XO81BXAWWY0tJF3bxO3a8QiUYcj7PjXFzvaA1uzAcVLHnmLOm3MGaSSrCbkGEHMRmD2YbsbflouqYmLbbygnmrzPLBE8KIDHNWzL6otVBqHVrzSXfc8SRACnvnYzHlgYw3up4j6u0p8w5HbVcFjikI5+p9eN9NbpOSMG1AvK84vWtbpvqOTPjNV5yACYHv5xR/JOnvFwZOrBZNWp3qXGfGfoqrcFsgidKRtd30zcc39QudBvj27l7Sulc+ggxjdW3+bIy5M9Ak1T+CZDY30GM/PKZ2HcaGZGnNtyIsM80Rk6WO0Y3yAuaQck5zbeuFfmBzNJBu2ypKVeMIyDyzjBBUr/WcQ1xTOfDt+Hv8CyQtEKdIH1bNaEwoCcngx9E5Jnd4WWpTfbvmfyIqysz8AtOb1SVtaqo7/EObTbyYl4s58a5d/sNBGpGLHzGbuOEq/Y1NLtGXdlJmw5vZR+7y/lSGzjasQeaS+YIymqqm26cm6f8DXpB01E9qnE5plWRiU7bJsFRqqSPmOKmT53ZhREblxHq8b+1aAqL/GgqGEY+y8djSQHrwr9RMOIbIbbVwUaV6Qu/85Sj5A3buMtKbwKPCEB4MSarkH9aHaPvd8GBRfqTPhBQp6jh9x/5o2T9yp94bTsf5Tj0R1YMQvm13obxjXdAj6Heeg0RjRaO4ejpYm/VpP3cJFX0Lhxr4Fpa7R+IpT3m4k+i6zcZMvTaQDQvlkbnqbIyRXmXW4KrmO3lqrm7C2g4sQDdu+tVoaVenzPIHevPrpfKHyy1ZxlQOqFwOwvIV/k1BiblYcrIBj8+8NGriiz8Id4YGfhKvme2XPOaecDK2+Z484mztl8PRs83r74tJ6kpUn2sdXQBSz/yalSptS9hs4EjoSXpfVXUYt7d7+Hahq2vWa271jzI35ZPPrZX1UMLA0Xro8PLklpjP1OIKXDMI7shzU9EJZ2lJrvjk4JK5/3E8NVi67kqmooBAuyoTzADSzT9QbjBHKOQtVuCMHHz/WYQE3IcPKovC6vpX5Mt8qNpkZKxJG4hQL87OAz5ZEIYeZXNIXaU5hVEwc9oPuaq/2QFArl3arT+sPQKcEpofSPqXXY+/E+ZzcqKUwrqoujdSkPkFLZpfYNBeNq9hWG3OPZASE6U9DGBw1sZY7JsGjjlnwL6HVjm+U2qebKkRzzXYcF3KHV3XZoaHr//ic07IDFApDC/vMBA3ssVyN1y5inlh/ULre70TV+CUw7cdWdHzRDSbJ4gPC57QYC3M5ZTHWGGosfoFK3atmJxEmZta3cgScSTnxUA/aw8O+StLEowUKSLPwPam+0fQz0Kp/+yd1Pj+40XZvEznWqadQ6zx7N8/0Z85npOigvh613bzcg60U+htsRIU+77d8FVttpUFMLxdtQiaf0mlZuheOoFHMuOM5Eppjg/jNxtgU75U5gCtIJM6tOy3rHOZPkTszAnNywe7DJrqyKfP5RYCRRw/jJzTs5QO6obudj2eA+JosspnsM5ljI0p2BXbiCZEqd822DiiCzE6brbT/y224CZuDyFvcziFn/34tB6oPYGTTjzQcGYMNaYooTuJ6AzUX9ffLbxVL2xTUNoUj5HUz+F95aE6vXQmFT4gwPG8HZNwiOHuehbrqOe1BLtoLyLaoQ49ebjB6qU2A7YDacRr5iYk7iV9q03Nhvd3W0oKXhTjZH/MjRqpZvkFbkQ6+X5n6yrqyexdHcW6IPCHbNIsT87KcRktIFBg6HWbzwmeoE71czhQwGptx0HLaY6KmpAT4xuA8i04O/YQUAfqlzDOcrM3CyXJHSo7/Gi1lrDvBMJy3Ozck650s2zndfYjhaWwIuWpsQyzwBILMynEcKqWnfCGChV23aAS4PlhkXRMbO62UKuuSxxnFZ95quogIA6FiqUdG5rpqDZKo13XSJCw0JJ0wC+FUm73Rjfpa79jte2c90fGyOSdPpPvJ1XRQBi0LGzccYXJffnjX+4l4epudGDWpj9KFg0mws77ouUkQ2P866vMRFvqMj+VVCP2FGgm7toLU9uLggsmIvs2Nmm8Vk0DmwSGDg7/UumOx5B0gGGF4+eCJIY4+aG+DzM4jg5hM++I3t9wbXLBsPxG2VA+4apAFqWYx5FOlos0+YpTVoVtsNlb378IOwKpXzFkw4mvalOXAd+D3B5zxRWGkb03bitTwtDNIHU5jlOgFZsKQOjKMLs/b417kRn03J4LGLFrUL6vYqYjdU+D0+BOHbSvxvGvSrzs1fh2pLo+wyHgfBt/BFqkt2C3LBdQWN/DgPBCB14lyst2fMkUxrjHx64AsNvJaAY07qOjfE4U1MndWQMcs/uv+iMiSM5JRX/hYUq+YJ3LarqpAXgCDcPO++I2n5lYSe4X7BJ2z66/XBy7XcZtzAXfmhXwKSZazhE6FZa0qua6ydGFZzMd6rjoXrv8n+kynKdTNI2AHZEFfcDxZ3/KcopgALM1aeI/vxvPwJpFqaVHsZVI3OsQaY7Wg/XY4BrqjUbszw9QnMXi44vmnxlrNI9DmuackqfyUFXRX6XiN6DCJNsmkGtKZojN4+hKjTaAiRuxgnAmVScpMs97DyJOsRdQT7NYzX1Qz0zIF1etzhmIyCGKHjJXPg3AzhE7JbU49FNXn9P1U8bCZCXEXq1B+XOoTA0McvFJiRtq+QeldvN732S2QW+nvi5x+sUaESvh3wEAyEvUVdimdmyE/PVtPUCHFxQToItlJHIwNRj7YtU1pBc5tEdWX4mbUz7WIADKcxVtQHsgyt15ZftNFMkb4kt2R9NeCfmGNHYqDrK9Uf0qiOvsiG2FbsMgQx3nfxSjRqecClyj9UDgxWiLtSGjjmznZQVczcgR7TL2fkmJJJRT8bnNyZuJDjWfswsFMwRv9LoxEuzhz6TA2xi0vhB36NqUtWA1l3KxTsTCqc5QfnNj/y/crwIVF3iDxMcEmAdr4omqSS5j8GFlDX1LmpSKM4bMRo5wbjTTeZ7ZUrHYkqjPdai4cVoDSJzAUNrH9CnajtG168eXNB0Aip9N6YAJmtK3y7BYNkR4q5lmoYn1xMWhOkf0R5GOlQj21j1i6HzelLaWZAmXWCDVIVO0ou7iRrh2zMCWGG1ePnCPAgJuCUVZNBXOnSAnjq151AsF9SHlUFg5BRF3nzG76u2BoKmwmtnO9QS+DqrwIwt4BhH95kzSckDcnEVK4RGq9CCZjam3T4RbIK7w0+ExbWeLuxBhcb0gpCuwDTECsqsEQjsNQIBA3g1QrW3uJdG0uvMgADo0HTcD6Kp/p6IxcP94xy9B00AoPAvsjad7w0+YMS4GZG7QkfQKbywThVAevRGlfdm8bOxvFe0KFT6AHX+oqRFAbFugPQ1jGN9plOJ55/55QSpWHKPdgJYVem/NWctLgFuomtjMlmf7g3Dp+csQ2GTWVrEmOzLCHc4ELfL5WCuuwkO/b5/qdTAQcDcortRyPjDba9O44iuYHgtaLlP0BuDA1w8rjh+C3Ynxtk+N2SN5epydy0GEWJy0K4kfvRZumPAZAlTw6IO67vK7rP+wVItckOgELhRV6WEB4EbIeUnNoMWvwxhKgUZYYc6yiDE1pcPBnnCp2yGiLYCCPEXGmWYy+SU+sCn5G9XRD12tkaKSJbIISKcj/AdKKBD+7pP6K2MBbFEvRjOAI+MOY/wNWy3KClbsfxhOgEd5PfkL53wgf4DaNfxjy4SWx5EYM9tSu8fRCezAEhZDlJCI/O5wywA93ZeQ7PgX7bAamj6J+j5M4ud+o8oBFEa10MqaskrbtHw27rHZt/b8rFx/TYCXbzLwjKKyWVtn3kZWvLdmCSKBAey7PJffd5ni5Eubg2Q8PPjHkOEtvdvlM/wsBPZVtUUXLbVt/GpV/DU3rUE1x+8kRgEt7r1AOBvHgpPhz4X+brV4GHVwxnvW/CokDxi4BXrhJahxjCOL10pbdt8k4N8tBgnVRqz3z2zcqD4dh2oT9vAwtEJ0GiFqLr/pD/PMwG5KFxxFtNKGja6Q6xaQdr2S+bdeCpT5obUiuMi6diQUnlI8MNbFBCB+6uK9C1lyqrryKpMt2eXVSlck2elTq+ppuNVJLTIquyLag0AI3RZls2iuhMbXAVS27SyE9GwLjoKyeXJeQ9JM8rknpypWIKv41QzkqvzUpVxrpNS7O/kL7dDkxlQlmXC8fXqWVMtOxcth7GOuq8aqF121mWr6ks+9MMEI0SfX1XteLwHT1vGFqcMLEQEM7yFtppm85oyo5nn+tMlYVDHMtp6PwqgGMyaMcZYIWJiJoFma3AoJej/y9W6ycJdITmh9VZ0SoX7luYKHXxS1iQxudzw9nUOVVkigJwMdNgONG0cbEOYNzRtg3f63IMvByesiNHBpPeoJ+zv1z96zX3UrGaO+jSYRd1HmBQj6z/iZ6CKzP1E2UgOgVD9I3kdhM05tDZAJ0cuI+1hN5Zda6cN62ng0gG+z/IqoANOVYQHoN6MMQ+vZL7QJHe5KpE+7aIKEgseDeXG4aJwiMVl5d8OjTvTksiFuFySkGwITtgCbbyn3Wu+XWaZwRnvyR8UFgwEtV9Liy2gjZztOgCq0pAOUO1dIRK5SXo4l3YpoRwea3rplyc0CSo+MZeKIAfyXJVHQoXAYK3ER4/VTwaFFq953IFhs2yFQEgwH6EI03Vf7ypj1LIAhVKsNFG0FQ3EMmOVTuR7LC1tXn9oSZvDq4aeB4iIj966XzHN0EGHWcz56f2wG5go41sqUjlhnO2IxIZCG6BY/vj1Ev3eWyWCQy8OWfZkDxbB0eWH5GohgAXMJcXrrFb8FFiHxmaseqfFzaBAsxusR/nIE8Vb1cG5r4emTXnuC1Xebs4adW5Kw0EMsOR4c0jiVCGs4bRGKvW3ZHcW6qdOtZI6PDYWx11j0eVRBit/4VWpvmn18EVmt+VIo6JB4m7gbNrvA8T7MiF358dx02NzcOrb+P4U7ZXNKhJtjnvSdKgmsfhHt2A6MIJZgs4DUAxtnrWxFxZlczPn4TzOVmGpOpaK6LdnjG5abljC5YIG2EA3IJiFFsfwmiegIfCqmBB4w4yWfXxqHNy+pV79szgX8Tll9XMgR72iCRwKRUmv7R58hkXivcbaFTEMH46WRp4E/DtmhlZq/Wp9cBMh7mSkas7EoJJD29OKnzsOGI/C6RRj+XNuKvE2G+YLmg93bgVoQeuvNMU2NbZhEHZ+gWS+4Alax4W4fQgILJgpfTqHK078SiINmdBUk8Gz5iJWEKWpY7AxK3b/9xd6AfEENzfNUJCMLDHFx6ORT2nSvKSNHz8qI2iKcynP4H1i6lFs8pumIUM5B/xdeomcHeNizRzoQ9TuRTh17WZ+8qqRTWPZKpz0ERQ2w0w+OQAiUSLrqc15xLQGkfC+2EJLypQG6+Gv/cZswBGbQL3bU43v/NUhJp7EpWEPD1BpxPkqBGOs5VJSswyo+aSJYpUplYvRB02MV6W0hjiBP2NFudgg742nThUBIadhW10bnnAb/9khUdfvPhlVN8JBH+aOLsTYG1VGZWJVgY3EMYx5lGTlMKtNGJ5r69qjXEnM6mHYTtOyVTot84yx27g5z0zCmT1vbi1Me3U29X3ZsNxJZxkRAN2c8F/5BvjYfL9BH8ukMCbCJuyYcL681H7j1y5fOX6lrg4uRkky0o5iJ7nTHnjNwd/bW6R9CRpLp82U9YYpxl4pv0J+6Am8TkLZ+Mm/4wrQBMM0echkq410po2NkX2XKDdCjQF0KzmId/42CJqquZ1eH+upmichiqiLeMeqhqGoaBkp3VSmP4X1N/pZ25qv37zVqjHJEitZOlzImcp0o4G1QzVMoJgk4q+JeSWK4UQEuS6OeS7O39ebBU3WIajYLDt1blMdhW5QAO02XjPzGV/TtOoPypf88AyQcFtunly6rIVe//yLw2zYdwuoIA5vGvOumJGS37s2eOkGeIjxkbkkw1HM7StOcxZPUsdQyoL+OLv9/xtquGmKqQXVUjxMT7Jrqrl2Q34eS7lr47wLcDg/xp2V15RAT9QPgxRbhMGWC1UgT650Zcr9XIVnGHx9IaLlAIR4IWYrrnrs4nJOXjS7W+ip33eMmDj9eIqDe+LuV3hAwkAtu9It4WD/50rdxSOssUtFkjjowG+4WSKgQMA5dwVygcu4xsrI7G4zOnjSRQykbt6E+/TcJcyIXtyAP0HfoCBA5s3xL9RkSYcEQt/fRUsif9fuf1E8/4pVt76btLyZB2bPsy5z8Bnz60Z07thUw39J2R2cUB5R/JpNik/EJw4Z+Yy4VEqL2m+iCpPpK4ekmBixSWaMJOyYtjEDyNiZtvM7Q2KYhbHwdB6TK/bPLhlQ76pZT2jTJtqRdyVDksvJTppH0PkzP02nvsM/DUhg1NYvWp3ws2D9VuwaF01LQePEv5Niv1eAUgmcpZ76JHr8ckJJ36CThAkKX62CxQEoWT8cRnaKPjAk6gwQkBKbHQ+Mmls/x472e/LY+R4+3pTyF7hv4N2162mv3tMCyCrSWRzzVhHSKfts/v+9f+Y+CXw0EF25vP+kdKFEWm23BqQnZYigemV3kptCesR+nR8qRezckU351pY9+IxKemRr+zA1vhzom74Zc/2rOxfwx3z5RWUZRXI+nYvf1Y+0XeshMlExzqZZvuWLnmy/a1yhzasw1dsX/pM2D1UfYnckLISUnoT1C2XJXTdAaqBg0t/hr8syHJSeu2jFaw2/kLhpC/9CQpD0wEenQGoSPmDZ3B5CCtlekjetrVNcncLd044cNwlp0wzCuXXIlEwasnL/vzb1ReCy25vJGQUFTdPqAEiSW9I1xmUlBOapDA/7kdYCX2o1p6sI4MVcDV0BAkw5dV0EY+5K3DqPG9KOcC6Aoai8UwhHWWEZ2zd9Hm2jim+iBYZwhXNr1YJsVJzIw/zSgWrom1hgEPwTuheQD+qLfHpyRp0aP6DoD1cUy4APxLozjpUcaXUFPrWt7x67oI76t5uELKVOJC2vKfAdLXai8Da+ENiDHt6/SHDF5GfLWpydZlwSOhK8J0PD6mby4HOa49yk2nG/DLWkX6cYfV34qZ2xVH3U/IqKfcMR+C7wz4mqh7nGzP8EnEKtZcG7gKI8h0CXRHwvik9AMg7QLfppdSbdeV02OH4qiWCYohzWLQf0tw/2nPRDncfdQHORt60HmoEF8gajkPx8H7yZn3kgnYywhXC6vnQf6083eB2/jhwNn2xDsTiCe6cNos2JLCZQYG8Wm2h/4NXA737M2S2Skt4+bDVQCq5Fd2fs6PfLs0tuElfTymc7Oe2+2G07lqJjVQloBQvJbcy3P6fxJARVb28oUAU91xwCcUIJ7VBvO0OVaWWvShFZIIm+GltEtCehuS+7QoCouxdjtHRLM/joY+pBOHGNyasv2oAGyUqrRusL5aJ61e414hGgzLXPRbxRH+m416Zpc+h8i0Wxqv5aQuuB8b4My/dTL/FlUu8u8T1SYVEHSEazg3oIjxy6jBhUiypY4/8FK+tybmpRXkJayJnlc12IGq/reSc6rJ6XzJ13j9rSimu9tYgOrjLE7s/qwSzuSXY5609+WiVQQzkAFH6VviQaHihVhrW2kb6159pej5iegDj9YOw8fO/vBKhftPOJnCYANK8/7Dcuhg7/KaEytd09hFKkjpNTuVVCjQk07tjmQJksAlm87Q2g81jWhD4m+LV8JACpZjq4s8VqRfQjsHBBbGzy3UhpktS4/Awh70rxbLrgW9i9fBiiNq0AOZYfwQqdKjo/sBSlyV9DZWB4yK31a3FrXF4ml00vKxU0PLMi1xqdAH7SgPFFK9TS3BmSYT8lEqDREqIU5ASug9QEE2/NQNjYEZCLc+mqOVIWNRtrS5aj4x1g0KwXtfxTV/7wHAiLr/Cq14vl79l/z2yjKgR99V4yJrSsCsKNYBny8HQK9EwCz2g+t6o5skwSNFB9RfVTcZbRyDdCO8Fz4oNugbKu8zcp+pWMPgWmAFesuFWos8VrjwcP0YVrYp9ShS9/7Oijp5GBEQo9xsTu/JHb9bElPohY39h+s//MqfK2VM0oS/GfSilbueNuu1GixIy+GmZBt3L7izIW0iD7W4Epf/kE/+Y+vXmSN0za2orPw7udyCHdeAu0iLeOxHaBCE3Zz0oNMbHhLxL1XfmAeONptDFk831cHoB7nMtIUb00LeMTYOmkooT7ruv4/Vl7o0thWxYNzUgYDcOwIzUiFR1/dCbqw5ACAHOXU1LABEBj4NAbUsKVl+SUhhNRyQOGR/AK3mlP8YSnIZ1iS5yX01GPW8noURrZFelbtguEmKQAOglWnyZ3YDQrecI5JIeZkDfwI5aXtzMOUkq9vml8o4XcPyglkd7lQewGc2GBd2dLSpdGaHU45okFGENCYtKnOCOG48NwsHV9vVcO4kZe9uYXeuYWMveBzktqQOUYtsPtRi77rEAx6ATsPwuJ9kug1NGOWGN0tc57kp834jtfzQp3BVpJLk9upKtVxjInKTnwKyEU7n7S4pRytTQhMOgClMeKyxdS8PXAIpO3P0n5M68ntfydO4Q4U4eGRXUjVAEKcGu/saFCpmoxqqcnuKVNv20cc2gM2yKWcoFoN5ImTwaLVnGDdbwGGJMuztE5r4Auai9S0AOAMofktmGyKt7LzH8tmI9+sbuG3EOcBmjHdNKX0N2iOr0tRNES7nj4vrmZpsZdPXnW2ZJbvQ775WzMXqXgZ+KLyzW5A9qjRj5Vt5KqLjO+cuCpqiHLTQcKQ0+rVyiKrrNE1ugICwyPKNLPYtXM1r4P7RjoSLE5LBjgZd6RXslD2SUupTHnnXoR4t1bbYuxYm9zpeTiccYIfV1IXQFZDBrekXkpi+Ls1L17dPPVOGqGKb5CnN6l4BeP6oy3yl5wZqh1XQvuW0Wl+hMLSqfPOa+b7hBGko3RPZAcxXu48jPnu6mnd6G7s5hFQi/k/GL5WYHvApQX48I02iLDXKiUTSTHW01hkhaAe/2fbnMRgbqdJOAmPw5z2MtZgWvEa1Lz1lcMqStMJV8whlXTBydaqbstasct/PN7EWM46tU8Ys4KRxl6hSc3gWV7GJcqPrlvTjWhHTj+BrSn7qnSPck6t6f9OFc05qSWOn9k5m64vUHKRuk7nMPbADHFN+XjA3/0+I4FrJWAEzfctHTWUJz/obYFopYsF2m+ntr1XKThKGQ3in6chOxg5+vbcQ62tbDiZ/KPMut4tYFmVV8GEM8t1gzy/JQQXdruaIYDubsHLyKhhJTyg8LuB3WsACLd/R0CkssZkVN6bAAUoz0G6zYm4Pdfg0SCHINEXei1otcxeQZQuFu+Ok2WixQlsJuNOSu3tIu+V2HH5Ft95/ZoVwqHm5aryk7mH6ImDD5a0mAImRNqEEd1WBeO6izUiYX6V7rKugDhH83QMbpVhWyM5QyZsY4Vo6G1VbjR892qXF3E3ANQ+V0M+oSuviTrshWreGnJuW46kxPz0FY8obm0xwjYVoe9KECPua/sXGzMwoOGEGe6Rt2VdRR2FVpRO2Y/322/BFdzst9oHxCzuza384hKo9hEnt7WF3LYivKbAd2JKtVeZdUraWEzwqYlNDK8rpN26b3TkthKyzomiOU5VWOc7sW9+NpDOwkyRk0e1Cs4rBDwBxXY+jbnjWegry3objidqAkDINJqRw1h/iog0SorapnOJdNwCotB9neRzsahgUKuJuAjuBO42VjqKBRtr9hOODpXQ25nb6GrELCV3YeOxX191NA3VcSP3q1a1vNI4Ae4lL4XS4Hfr656ixcMj67YGRj9ksXmwABhBpYm75Ap3U9TAfoLjL1XMshZW+J/yIQ4vnTcVllFHD02kGGrnidS6ItehjSSzDotTCQHSGP+6UF3TE+i8avQTtSk9T+uHzF1z1iQ3XtGRSq0VnTcp4CxOF/HoUGb8qdZKYlilNIJgfOD5JerbDWkmvvZuAtClIEdk7p1qBPTOtDfsCbUr9Iwx83fwPKHQpWfOHaUyRquAnVRb7+HftwXEcS57ONUTeR8uVJLX+j259gzOUfUayYRy5g6JqVksBftHUhcO8KNNtQwcT4d3ToARKaLu/sFgAy/9rxwSYiQTxgmpk07sqj6mb+xKaDF4CKco7fYqysJGFtgjxAa8Dg1I/khL+0L21kWa33+CgdSr6xXhzqfkKIZoKnc7PTiW4yR3KqJ6iz5MFX6+ZbGaVGvyr7TPBr2Ri4U4oQaPD6d4dJMA/SaU8uJPJvEXdJ2MYom4ihMRw5bVnwGyPlAxpG8DxDtjyh1gHTfHlXTj1vjC3/6oRfOJPv+8/bgf9caLl4AFJgQrnnDVfeGEwH+RAsbeSF9w7Qq76GI2W1ziM0FA5lA/lavm4bq/BYzXyKvALPzUQQHNlBHS4u69FT5/0fYzLfXDRp+tLKuMuu2vXjpv+3OYvbmebYqtvdmLjzirhLhHqcqucp0g1JDqQGyALvnXyIAAMFGNLy5lDkf5wp8YA0ponqsH4T9Ey0HuZlOk+ZzskefwENwS0k87amL9UJu1P65PhPE9rOfuDX8xh9H/RHNJ6YyhrjAtdoM4PZviJbltsK9hWdMHqU7TRr6XgeF5ORQnqhh4CO0gD/VqaKG1IVRV0IyC4x2riD2vHpvkyoZBVQxkQMkPfE8ggm9HUIrinGRSXqYRv+50BLxsap1pct7c6MMCxTFtlF7XB9wdG6Meb81mh26+49TvixRp6/VIlOJ6RGp2HiRfi52lqxtcl7xJ8Iq+M8QY2wyTBTNQlD9byrgeWcOIZkLfjMdrI7oTBZByb/qhSafKRpb3GUJ3NOfoPgj9ZF2UuHGX70HoEEjZWCr8ZVKwJyDlX4kACkibyetPjEQsK0ocaiLlI0sv5Wh3Otbb8hJ32+9B6y6pv/mB8JSmWvzCVhRQOqpL7BJfwM0c0EDO00BtxKIAMKK6k5tOPqj6jJ14d5dKAeOZxEO1CZoCzkZZvlkwsYyp0MfJQeNb9wjjabpmRIbEXb0ZVjSGkEGDxEsgc53IYydJe4OParNdWLSiD+7hBkjhoRv1kPgzTYZQVKsYzr+zCHtgXsiVgylMa/eywdyh4i3OHfCiMScMlfG/4wkENRFl7uCFWyRA+CYfwiNtPD1R7zo8ryJAOPE/dlR6mIFukxLAKUT7ahZRQ8xzMcdaqIlumqYAykDi5HfyqzkioOfiaejDOvv2spEw3id+y/eDhTy88TZ38hRCT/HqEJjXrX1gkRkZ0+8Pa77fZuh/j7sf+JdwmBKTPUQaqP+TU6b7MwC6sSWf7gP3Fh22cDPsZHNdRwEMOJBgJi+npPwuehZWiSOaRQTc2ZgvUiOrzUQYg3EStD5SGaXQ3Sk31JfmE6Lnmbqg+fdIqaPhhWxMXtvPuuEYuEXFVAt2Gt857aMpKIabN8Tg0T/6MYS4Mfa73lodKhK46nbZKC+zepgn2OYOUq8wSj8m5QcvBalFsgNLXbX8tBIOh7/hxgV3f2MhMBfvsdw5Yj+kU31LmLjHdp2ribBiTGOu3P3qJbTVbiL2wxI2YgDlYhFhQ1o6O6nfcdgx65z1WhhzEI1whWBsq3Mwpvec2ACR4L32CH3qPUh6GlCkfN4IoBXOKcn0ptF4lYoMcEKtG1jecqS3rLdPK4cpCa9UPsslxl3YYzb87AVc6Hh3amaeQWt1Jve3PH1JyqVfq0MAhYs0+g5Pm5S5SgSWDg0w4Oeq4p8igiIxDQL6RXl8XWh6AUnzEvTtQJAL+X/FIAYc4ZnwSU1QZ7QyFN27SeXx903oUK4H1qjoUU+fAE4QbqlmSseMdSioSs0wVePDR3CEkWBvqYxlElehZxxQ9Nz+rTm6WlaoxtKUhLeiaUjDXkrk4xI9q2fR6woRbjqK1a3Wmxqg2funV81vl+5GHsmR3UBUZ6wiUfsADZAwer/DOc0eM/KChjn+BbVd/uWr9nZEeaijx4wIr6LhX1gpUsmxdl3tNAzv0uKxVzGt7t6Vk9PtTEW+ZrBuHaDsRI5vu5QwhNMPZYYuJi4PbMXJslDUfaKExmEieDT2Ba4mL9x90xi1S40zqAFw4BG+mgqsLCpH1GFExC/GlGDlxjH2+DkDzc1dMzFo3dWDqKiPZch2r8UsoACLN43WG8svUB+9iBSq859huZWnDKNbs8UV0Ees6/9/sLDija7Q1aI+1fZXG3tkUWU3TeGJCLcT8BwsezyhGq0oqqPHgRydd03WCnqdwU4DZwh52J3UBNYdDKNy/4bgVKtbTZQ2ZeJydBu3n5Ib128BvvW1t0zfP6yE/0b+lL2hfpWvi47omq0wN3nPzJbJSUI69jKTDGbHC+BsM4og5ZvZ04Kz71W6rhpuyxodCkgFY6sFulhtJvdeudBOtWJAlJomI+i271HlgdzkOounMa+UKvn4xiGmwbpmMwUsUNTUM5IrOvpULD1bY/D/qR+9siImNxSy+1Af4j/HxdzyDwbn426pnpSSVoS9W2T2gsdvXeoFdFx+jmRhp7TLwcvf2KJGDemoT2dMbB7qnO+2+0mbimgUlrSlufA8DDdBZGVis+3OZPY/fsLOaJFlAMWjPm1bcu7xNMgaIP1Mp4FQAEUj9dtr2gyW9L/c27VXkhDAYSeFnmL1RmgQ9aMh+pYwm3YOETsKaA756X1oGtWt00btRtAlV9flXh03cOPtrmhZct/wlHqyt73ggof2K/J/LOiWiKXUPzNujEda2sl4XvWK/a29TIh2m7qg9T9ZVsFOkUDCEUfMaPnRWKp3sollHQIQMX7wBcgS23esm1LFRK6CQbuljV4sUEN/noF4d97XO7ER0oPEAzi0tazrZAuXHVhuZM4r5doFK7pHT3O31WBQfFEiDHU0hy5JtXPI4Dx3PijPPd0ZmacIgmdiClHnpMV6zwl4JUHM5w3OgEKBxYe5loLlClOqu86uSpW7XDTD4gMU7+oRLH6m4T39W+P4z5+UsPggsbf9dEyU/g6r9wJ6Aw1KqrEqK/cax6TCxyMLb4Bwe8CdvS/doxFVvZt8cTzLnIgQWZ9oAn5tARO1UEv3Dy83SSOkpWzv+1jmwh6m5aRA1RStYc4pgrSQY+Yyc6HYN9Nl2D7p2NZxqKyUlxzxRWXJ7ZvwWefYFkrLpVFVG/sky277eL+TMv2e3El0tlyHRji2BsDu7ma4yd5xRhF4cfCcgd764Onb/uXEQ4NsIfkhoVvhWqnp18Va9lDUW9/MaK0aX5zDE3MrAeAZLnZ0E0ZxKKkInZU8pbMd8l4aCExb6IVb5jNnlYl6Spy0xP91f+o3AE3KSR2uhRkugiU9UfpohXf3MCB67ejsccPJjeqoxrVNfK/VE3sfISEdt708Hq4D9/81DCEya5gzFc11SIN2PgPfNV6WI8FHTRWsg9kPNPnbDp2CJ9U0fngPYX02DYR/PZmLrrzgtBlZohp9gK7a+HnASdufMUHtpphXXj9vcPjiv4ZveWF+nHJKzjscQ6tv6aX19PjRDEjQyiG3QX2JpHPXjWl++U+3NuvPPxIOGoIPb0yq8SKLlA6vbOBOL5J3Uoz02fgykH6tA3RfQhQP6eAxfcFEKU2vb84eYhK2G8AsXXmaGdKehQc02atuIb4L6zVf6y6g7CUjUQ0B7GJT0K9QWhLjL3VARmjXgsm/BySS/0nb2FoM8C3jRz/ouCOyT6sGBdIdIs8BNSIyHCQfSFC5iu4x87GJxFxxZM2v7yuTLjNLk4b/qytuuuhzlQjHitA2wiXeQKNS31wT+VvLCBYPu83a+LIQP9NP5l/Kyv8AVAH6Bnw8MYXwA5JOuY+dA4nO+RskRLknQUNYfnYhXaFPxathbH6AIgL+LMH/4Nb7qJt6fQCDobFF29y27L3vAoyH60d1vi+QAkuS780x1wZhe+9tclU8WnNZ5Onp+KOzU1gzpQ62pWidh9ncThzrVjwparg+Xm3WoFioCZnpG88uSGBfHvOOalNNMODkSRQsZhp0e4Et1ITTrgehCdRdiaj58Oiz8/o7oeH6f3oM0ZnTvvvuDE63+gShmxT6Jjxd+uuVHC3RnSWr6fsc3s6z+Rg18ORl4R2L0pxAUnTptM5nyl8egLBbu/NbnJrfXJgS7rVbmZRTag270tSAfmjq6gx4Rgz25k8Mx1fNTA6a62s2nasq/6kH/y9WLXTBe95qhd/yhWhJK3oDqfpIjwMqB7FsMiRRS1FbPVg/MHtcWq5a42XWilaIcj3TI1dLCrq0nRjj67FrlQ4u8eUkuy81d8rea72Q67ZLCtrZaC8UThrWJSt+d659tim6lAKbps3AUncs11RGcgEA8QkwLlxVj7Pcj4gBTcpzMNHrUaYx+8bDKtuCtpbxadU1GVeu/FvrM6fwqyozqW2q7BKtAuQ1q0mJZG1+1xs0wDjln1AjShGPGluZx4fjg00bGVwDMyabMvPK8G27RT37j6WJsaXSnb88zWR23OckpoKUpQLGqZ/LTCBvQaqJmYpHITRoW3/YN5TfvXiBlcFIjqE37uJz3dy215fvtxbtUxUwlmopbkXwHY32V6af+AYdZvnHF496WrF5mqtqWmsX9Hlk0K0WuLJzr3h/sA21/oVYYfeIRctPA46vI1U5ZMiHxMHkdB3jNgMkuHwLcIg+Y1oaSjrjzfO3JKGJ26p+L7Ag6rG5G7ylGOf744r/CG2RW8l+EfB+bLEB1XaSpV3m/UGab9ges5SAPnaJ565xT7sxCueUqAdCi9m37EL2gPPfqY76jWLMj/1FKKb8kJykA8tyfDqHoLJ9WpiPnINfXEXzsxuF4/B9/OKNvl9sPG1mn46KoC+zgoqhQLaSbsifp7GfEkhAhTCkH2lhDgBeCFafu0TvlEg6LbMthlL1l8gdnVGT3vsrXIDIYOIaJaXOGMFEwGUIL54aXNXWiepJX73rk1IMh3V/3UnXU9LKWRKP2rnnwFyaSZhOq3prcv3aRd7tpac8NlPg6La0SLfP07Z48XtVzXYsBqjGnEuViTEJ83OVDEsFXZBQ57tN/xxIZ08OEZ5n8j5hNkaAZwSy4jMpXxs8tfTYAXDaq+XN+O2CSvDZV128wX2at4Yg+0bhqdHNOwYtfMBPe/V1GSfZyIOlANjqovLANZfCQ2LRU5mW872SHVB5bFXH14at+E19wmXADgNElL0dgmLO8bb12rxVoT3f6j/vIf+DL6BSs43xXt66TNzwrBzbDJRguGIRlH2h4j28zIiyTnQkhI2wch2/eBK3g7LP0Mu4zkLIFsYrDKSGrpAba/TeAbErbA8YrKgI1NH7Dq2UylggqO7hRFsJmCfpZygOGupIxRTHzFSboBR3Nca9wPb/JR2dCCPV6CWRV7mx2T2q/aVL3wUaVzngiBsD1fwfAr07KtVH4gK2MD99Xwm1/mk92ct9n+3hVJHkh2hzLjthMfgMI7I41UBSn8u2upY7Msccp0a75y+0Vus3yfcS2dIeOaxkkCIp03ghf+91BIOAvzBov+IK+Gqa/3af9xzFdjIvuu0kVvuxx+Nz2JIrMOCAlVO3lkb/YTMwviHA3s1bqpblCZTC7Vw0NBWFKoBLRXRYpJLdlP36Q8K9MQLMPgahxye6IYA/wmewi2+RDGy0cFw52xmEQoayICHkSYqZp82qY1t7JtWuw7jx+BM6v3xLrGDjjCs5vDGw54PyqmYgqAV9wOtfhHRMIy+4UsiUzUo41eukw09XgPTFq6PAMHORYEJT3LQroNuY1SF6Bqs0jnsZ4xFj0qK6vOebZjkW7SINMGbF+ovIKLjQwwXEJa9IElbUTgYOQGSzgPWzr15VZ0c5H/01ERF3cS1EyB+izKiQNDMZhNDbffgv9FtdAH7uO3B0HWi8yJwknJBvqKp5/yrYsC4UAJ9Lzfeqv1D4uRLtbfRa66mxsUrdBPgMsD2g3R2sAzIgBueDx8V+uYDbKGgKgo+8YsG9bj/VLvMYNJnxRPbYk2yMltTvZOidSwhDHl1XHPKvnzUnUeCHb5M5zaeZgtfHdTIbWHDo3k8TdRD82LHoVfuOj2FXZ93JxAUsIElPWtjC9gPVxX6Zvn0gr7Cvz0KoQb+/iMhYCtHUZtR5V7evg/lbWUKkd1DE3Xk+R+8p8SwdxcPa5cM1FwR9jwQSRPlTStrdy+JyuzccMOaGrGY9c/low61EU7s76REaaTGYDJrfL26b9sDUhax4XClBoakIqd10xQI1I93cZ4UE50PHblPrUjYpFsYtV3HQ7v6E/896SStNLExH0F5JdO0Vzaqtg0ZJXFlq5cm/NC1pAu1nWBT9zof4O4Ogz3d9YVl2qj66WZaaUFxcf4eWKKxvz42fkJU++bZA+05/IQemnUMeJ/R1KGXxu+B7ki7MilgiTJLy7xlDh/TwIQpcp5K/3kCNEx2gxVVrS4IodF/963bNGZx5RNKGDFJhJMqTbW5fMqwUJvkKG+o694aGPufVIjJ1Eb8+mJurGQGmTNAEiijbAa99I4GEUIVduOBrhwIYDQV06F3vaLWfnR+Tiv7swqJT3ayynuPwWbWsIArk3jGYdXoc1hwfyrj2xTR7fsxPmIEvzKbIyf5A38NAefUZ4+EYl+igtY1CoUPIV1RXDZqpw7+GsYgAozzttkjLVRLXFigrbSwiVicYdeymViOnyzaNtubHYP9GkIuElH1nseOqDMTBuUH0AzacozX95s5CSRzEs8cwFYIaAei5AL/cVMQbfzhfhTeJFJW3UpLjonrJJ1lj7WQT11po0C1DDIdZ5/WlH+YvZRho76fGdo/JoZ/Y/qMiJb232Kkob3pB6koaEXH9OpQVQQYGq1jxsUj/oyduUHo58jN0hobzbMpjYMG8ZRJXIsBopXGJmRkBfR5nZk+gYlxR8Av0WkkmM5gQZlhnilyhRKKt46CUGXxfUIVYZLpFfweMXRTDMvciE3aWmCPh5kbWwALsQ+8Y4eaBoGdh9uwCg+mZb+gS6OD8pu4eEoyVyNWtSR5wWVkfFWU32jRoDAQemtsi8Q9L7pFn7l+icL9Tgm4r5HDEAVM8ia2g+yq5EUzqG1EIO9w0MWlpEl4sEr/8R/FVNZvjWJR5q9XMm2S2cGbN8oEM6n1bOeKeuJI58eSYLt7QF46GPrV6cutaJMRHsAwE3UO3PZHdKUzP982omY8uwPcFUBbRis3IMbmTErQFEQXZWWUHGjh1+MyPSSuu8V+Y/WRImnfaf8nzGv3WszFoyT9okbjxNjExuKZUWyxn9SIvf2ODNPV4DP0nC6VyVeq3i49y34LrUJKTTOZ6STCZ4f/UDfAH1EMtVGQGeuaBKU6pFcChvPDnzAEMAidbnc4lPd2PvcxLNSL5UmdTJLpOV4tP4cMv8Wi+XFOFQlEAOwgDJRn5E6xU6YmlBRBok9pWcETu6eIRUAETwZNEc6WMi9hrsnSFDNp0NFYOk2RgpxIEiiz8BxiS2MBWtcn5gF+wEow5QJXB/Q46G4+g32GIfrASiZu59EaeSL+Pge5Bf2WM41dNAUaRbqureAzJjIzAQtlwfshXePfoUfWMP8FG7ahBTt3v7K4Hsw6oGT8Jr0HiLlECcQQjm4XBWDWj7JwyNhTFye1MYFFVBsqTzE7VHo8WiKbC+UX/7A79zabv4uCGYRpdYKmDTVaKFfDDH9E4izgpH4OIw2DBk4wEm5tvW0C7mzOmCpFbcO1WWYwACip8ampgA+fHT5qfSUMsZVMpG6gz02VLCW2B5i6r/kWf3eXIft2IieHK5qA9Vce/Tjj0UgO9+sOKTSHC8rKH5FyptEGLDS0hjj/1YFShP9sw5ugqyajTJDL7uFwK+A/kB9oiI9ImlQ6tYKSbdJVlE415G6ELsOLj0qlevpKZs14wMg1xRVj9uMEMQ/4u7w0WOhx9Td0FK0kU4f+N/ggOtiFo1FHhuHbKu26gyUBTKXxssYxDWes/BNbNIZm8RsyqQa5Z0ttPbr6akfJAOOFpeSyuCtpNoBEFJLwkw/KBEgkU66kgCz/x4btkuMBS+IMqMzpzpEPRr4xDSPzM5g7znl6fi6Sv/ewgGSPeG9WEnfxdNFMnwcgn1om1daHA0+SmXV8hIULG82E6nhUVydpsAMJpctjleqZ0IuH43IqHetHOsVLid2yKRFsooOItrLKShQkOwHlyz2bM+di0/rrYoZZvugMH/ONqHi/zQHjmsfEJxIdziAn7C78XsdgFoNFVEVI+1+PHwrA2zVCwluVaFRgf8zARqFH+Zh9ExIsaHnOf/NCTq1UxKGe354SyhX8hFdiFericJPFiFvjxYVpVWmDxqeTTRHtxbIWmLFApMAI2IsLhVDePAu+x+0lykVvdzQFaeUMZHkqQyCxpWKt8luD0AyHYWw6abBU9Shiwj9ybAIH+Oi2/Bi/vlspbNmDyMW+fEtEkFFMbaDfdxjLDdmgFPqMnRRcH7xpv15mDdkrNKsctu8hD14n19nzv0opxd6jnYP6mWhrfG3CSil13S53OfAr3rQuk0CeBULozgZkdpE9iVrEd3ADuo+aTcAomeS2k0rk9ammlW3cbWJPIzi55ZcWer/etzIJ7U3vB54gSUCRPnCM80TXy5GEBgzvmxQr87IdPI6N/kro/OfpLVA43YoK7s1PjS2RqAZKCEx1cQBNtcfpm5DnKC1D402vJ1b2Z6w/YjOQvKCY6mGCxCF6OVfqtsqb2s126yTVOzXXi/jJ4lJyJtTs90V4tXk71sb8L1uB35guyXlnXYYycjBcbtdDBsZde32j6ACFu2icymDyUBdrTfDLQUOrOqBpzmA7t3vb2KLni/h+SYx8dR5TmaSPAF8PWoRJ8Uci697o38fDXPot0+0ZzWU2n1Nc8JyUBDldHUYduZEH128Uco+sN3vdOEI46ksl/Yp8xf9rwTCZln7ombzxP8AaA7pXavCZVCWFyxEbo2fXeqwb3H2Z788qk/bbqSc7DyMSfUDNPYJZ5sLlHJL8+1kKqSGz9L8EWBlPDRDEO1g4QL2JIvpAOtkoQID6vK0j1wYsRwscCKbNi7dDOWKAQ/Rwf3tg66EL8fV7LG+9veOFWF/1VTeLpeHcpCAeLoq6FArIKWkbvh9XAZHglDqnCeZPo4KLovDSgsVMIgXH2m6687qPI4k00Fwkb1P+vFOt+hokJm9qeNor7D0v5SnbZeLb77BQ6GrT50ym9egf6wJoBtu4lpoXV0/uMHnyi8didK70kAOfKpFVTNUvhJrw/yrncFYx/BeqQnG5vqqaviSh/TZVhuiz5T2xFRC16qVTjbNnkFFNdev3R1RIZvrMr2oCjnTAIV28w6OwktPmKjuaiFqO9X0cOUe4c6MEayx+5DlQxaMsBim7nAKlEU5Xzs5b4ESOYICWCe3EMoo3/uLhr3SskvpwLfmpahZUSW3Ippz4XMsPTYFdEWBFjyqr1AUPVw0gb4X/6JCqRKBWmCTu6IM6cfo1A/yc0P2lAgapV7HQhpkkFRHI6N9m3tqA1LbouxqN4ZewYQz+aKi2rSq0HJFdrQcmn0FHvSjxgugWES7I7oeZ0zvKT9f+ST+mqUbHDoCGC64XsYntK1J1rjbN9pGbp42YFhnvG6+VPY4S5Yi7UC1WzCtjvZHo0WyVJM+zFf9eV4Mq5Yvpk2+Ez3T4E4+44skl8MipAXgGdE7Ld+rquEtJDbG2SApIeJfxGR454DFDWkGxv7iIdmVx4f78Lm2p1/1tzRHNvrXpoQmsPsZSbDr+wN/YyFLip0NHLaSYiXcm5bydLN0RHILU/BhAZ9SyuoF9K9AQhh4nTplHQSTXd1H5lVS5JlJWo6H4p3wkENiTPHUnz0FlR8tSHSBKUC9ITcu2Mvwx/mReXkLkZ84Ki3lYjLLfp0VwAiTpRKG+syQnbArqt2AI0gaIU6bmli0iQARD5TabDPySLcDJee9ju4Rs++vhoHzijy2BsqFT7dWy4g7JgqjhOexcbg6+MhBJy1PPgu9+Ikmp+IH/z5LzDnQZ43TFt+uIuH1emE6LacMHEo/C1xMCRoVkamEMGO4tD5n/h0NUhJIQvrOjZN3ZXQDFtCziaoBSbdG5YSrxzxGvDIk8rUYoKip6rERCLQhuzB7YnjJba5YFSCxdu9Nmk9POiTIeypePbPoLilASX+pm7XW/D73z65VBsEgi/XyOheknBaO+oi1r0112QFwPeN4BHiuTWdoXtlmS65KpaWzqI59m3z5Z1eDC3ArDTZhyZkhqEHHpu6JO+6GHl5/K5+1QWMKTgOaKpl9IkjdHw5MPdmHRKtOYPjfmOSGKKdplTFF7etSB0v3jsd6j2+Z84/S233ADhfWv4u7tmDUfjPWqBi/nvnnCRxQcogQkXMc7AF05Qw4XysiHtKLIa06ap/uB9NHeqYDEC94GvBFWu3JvoBzTBw2/8SBdbxumWh8GhrnBmtK12M+CYrD+x2fpNZyJaGz+jh0rgjpffl4jHf1xdGBSL0SUA6bbpo0jptZylSpqjapFKL0NbGr3ma77dFoRi8htVXtDGjsn86MmIGjkRmpBUyGvymC4EqSfBX9NfkgCH2biKvDuk3IikCUlMtN5alO4WADDl+xse0SW0Rj0f9y4kpj/K2gMiPgs7ff+MGWDEHCialG4eU6Fw6pfw+yzTXUqgeE0SJ1/5banZTcBVZr7nxdYcPTAwzu0dkk12zTxUpQ0Z1Jwl/QWXsD/PfXxWeBgzzwgl9uOsHrIW63+1fzMwCfrlurEMD32kqRkx3KcUY31cBkS6nMzpxbef7fFJnkixx6gzPM62xUUUp7PAVrzPR/F/AFTlhh24tsi/wKD6kG3IXLRzYMWfbA6+2I5MxHzORhfzdFDnxpbNXNan0M9CIDqVJFL26qsEqmA/z8YgNnNN3vJhAeiB1NJwzloWD/bfnQO2zKdP7D0xGwheVHFWl7SMqnN+fvIahBg88F8p579z5ur+gRC3RuR363WCIvZ+gf6YAxbs9KVqhJX1hYC7LOhfqVPgEm9qg/izgTfssLsLcu4RIwmqX2wW41m3QFRLwo9zEDDVsuXh6OJpiGs+RLqnXMbRXlL6ANgnp768gO9J5UvVK0SJVkw8WH7R1baQFRP6g+bYxSMg7MTr6UBxVQIUkJG1WTAHN34aYuWQNQDq/aGbYbPGC2jDcni4a+FlZ/fr8w2u0hwGLDzKKV0gku024YuKw/H8POAw0N551nILvV+USFqjP+PEz6peoGWgFTmoSLR8oV0+4TNr2m4/0PVnHIAfQCMbXdjir46iTg1YORUK+bM10/Lrr7F98LFCVER8Qgrs54GeXkhXMEiNU8dkMD3PUwn/7+aAGSsQF7OR5r2+kytAY5SnppPCuyxdC6G5BcR2x1010h2vMAYAn9qjGfTb0qNP5T1yWt5QiABpO6+5b2qVWFNVS42ugKbcjkPjHIyFEEO4tw0hFqjrOezQSuuWw7iA+DtVdo9Hye+BHeVQDbD2BsMvcb4Rn1Mm+YwvnMusrVvsLsvv/ITaxa/0o14Hg873CEz+p7sc616T8GfALrL1iIaygHk8LPUf38ZcITeOfwctlpNRGNW0pP9esE4O81j+eX3LbeV+FqxnoQVe9q3BANPgA9Lyy8jDVevwjT5immpnz+G5b577BSNAyRSmN9SF2vCxrfCOZVwJLPwPfab2sNiQMz/ovIRdLkYJ0Gg630ZtURBhqvmGrErLgNu+Q2UzcQhEMQVCmBhAoS+5vDcPstwoGJidyU5FCJeSgAgK9JXZutjeg9eYREND5Jfaer7gNTKsHTwvLN6ccd1SBmffuOsEZ2Q+ZCQJqAtJhm/ieVpqtsTsPFFEe3IgNC5lBkwFkFN8wbccFfVf9aPf/3ITBxHU1tLHYjlESa9aN/7OGQ88QJYhAZbaVzyDF3rTsMzJSJfgdteP/1dJ1YYySzTkcqzzP6YE7rTE/H9b4g57kToCxnVla/AQRuR/IG0KOC3P+Tj3KxIy2KtDUtByu/FTsJncbGi8gCTkH6pcZjJG1+MylZS9tPyjRj6QPqEUGRTk5+RJ4rFFSEbSlfHqq8VD0nNQF2nGoM0FEnMJ7IPAWnD3y2vw7Ce2/2tI+yHuUrr9MDherfbJoiVQR12MaODFO0iqBA3bhjFRoa2tK27hAXma1OZDxG4eSetG+RQv1QRyJ9HmUbDhzsdgDNUJYbeajkaKcNWZQC7HvhDFulXJLdnV//UaD5HklQW9rFGtKIASJVR+8Fz++FDmH3j+C1bJaO8DH2wKVCjcJ+BtDG980BzYoHtkG2vxNzF+TywT6p/lZkuHSYpCpEOuj9LKkc4itSp525wVr2vZSoiaz4PGN7JqnpRuQbYNT3kmqGvxBnK6yxnlBeZWQJNnwrgAO4wM5P5aga8Jqr5yJbEIJk5ZUMTWNIb9NtJpxG6gWyUNOrVx6uD3F04dJRp3w6nt9bYPUuYZ9ykk3JluCY6V3ZBi5jWZgHlNEuifl82nXfpUtbtUqaHX5Jn1BZqcGln8B/MLaQQAXFVdmJuD8+jI70Yu5UUnoYS4zsw7q5kXSGLqSoRMznFktYz6ZT2azOGE/WP1cojNzNl4tA5ew+JsX0QUPXkebUrXgV4LCY/hs4Kcz9+kHngQbhdVBVuSGLQ0usOFnOuahjrZ0S/bMohLFB7rrz2trCuhSC0RNRLWttblVqCNanfsRkOyE94rbRPNLEuZkMai/wDQpvgRO8voEnOUwxjEVKwtnSOx/btjlv7v1Cgd+HT0Bi0OJnnNUEtES1myNJVlPc4Ef6e+nA9ei2XQ3/GON+s+Dm1WmGerCM7GkVLkpQo6HDHPiQCfbXGwApCoV0Vlvog5U6Md8KOCscG2/P9gWC+/E2yW3VN86iWTYUAnkzJWmpjZ8IioqB1ZmCkfPIiRwO+RG1n/r2YOceijkGHUj4Z+XAGXmrP3poR7zS306xumIU11OJtFuG8UhuLTP9gFaHY86IZ+VFxt3OvXAJQkODOxaLD0mT9OsN59HcTd+m7t0LydhIdB1zF59LtHlGJv+q5c9qbQ8W1fvU7fyqxZT4UchGxwqc3Ja8xtIEYJDLyoTRBCD4q/LKKfRBjln3pkyVeZxWcuRzp0rZbWUU/bQkQn8mFbOuaz0RQ9GOhnewJwITG2DM40VIxaQZzrQIZW2thdOhRVzrG1rOjNEwgstVWgRt6ZJSsilzdRYdZrf5hywKNp/il8Uqew6yo4F6+0UwYpMcAukH5nrjz8PcJM208qGiKsll4uvPVItpHAxLhytgTULRxiUs9OOoJGiNPjzjKjyJsYoIfRab+d2LMbXmwfaYILkIj54qCAA5wkHzOXKdFukOjg0wcd36Z6O4svJ3sS3irgCa2eP3bxOaaGPQSVzRGgPHcgI8oGoLf6Do1TYHDK6fe2f3sQ8npPRl+pRJyv28YlTvZT82AVCquXdHq//oDS0mMZAYz3acn6sIODtxnQs36kIc4vWSF35a+Svj/P5vB3LYaQIjH5dduhgVP/lwgFv7d1ZTnQ2/2a35KxykIInlGwWKtjpQKf35hbNY/rteHmmQKM+Oynjz9DTehsXfKUt1aduOHasd6mXQBGHYRHRCCtBm5b5jf/Tu8YNN4XmoMmodtF6fty01MAP2jz8AxkP0xD/O9+BTQ3FvOfL3VpmZRPaqQ8PuK2lZGQI2J1b22or4Pc3W9Yr7kdO+5C3oa+dZDWHE2ekkDyuCLnLRHKs82s41CT/lecf9kimBbZR4l1GkyT0J+EQZ/4iB4cmy4OcQgPhrB2E2f5M4HiAlXLi6LP//70jwFaGjfOb0dWM5pvEsheUNQjjQrmJXfUagRAUeDHkoS4xbheOCHFPGvye+bvTrSjwF1yHRGh1tQSZzgHMJ+GiLbQ8GRTSWXSO9xHNaRG8m2dxTuApYLios05byKeMHEV6lbk5JWboLi4235BOhd7LOl5eGPuYTX+S1eq6eTUkYySmw9b5XqJnW6fqaLdzxRnyezmoyfnrC4Sr356nuIACQrfSkFz4bHryRy6DnYBQskOdlpO/4Vy0EUWjy85LAGodzpOs+87+ZCUt+p1P58ugzHCVjZow+OtoHp/4Tg1lv5qjvUZIjjbd3OoRoBy6ONJ6BAp5S5+/+Ahb63z+LmQPbZFfC0j6gQSPa+53b0z8Ozf8Hw0Nft5BQ06r84/CQSscVvuTu/lWSmfi4YGx2ZxII+MM0KwxJ0e0mOqgTpkHaq+cELwzEmmVGC8ZgECXK2VfdW8qzmuCCkHZyO9kLwMRfGuVUxQI/c/0hXJ+Ckej47Zw2bXlQy0KtWOcrjOzTH7VF/pPw3MJm4f9wmLqbZ+Z0Uo31jP6TLyns/ysOE/B1MHOI/BJcP/omKeYE+AfuNpDHEtEXD8JlVzKgMXAd1+Y93YiMovOAYS1P1KQzYTjnW19SL+JvsYkZgHswcP9q0cFLdJi13yyr59LFE+CMV+zEy+EJW8s8ODz8Pl8R60f/K7IKRp5Ir2zFrOVBDuQTFDKFAeNTLmHhbqV61dyOgZkqPOZxusm9K2YcE+otCVWYRCLaEUxshFVr4ssH/Vaf8iCsKiJ0ZSFzNHWxPEnN+spPlh69sYBgnKx8jx0H0cw6vRR+m/ge6ONg7NeLxgSaypmx+qXpBm4wc3yeQgLolRW+zWt06Bb4rp+qFNYbGWp8fteMIYG6IjtLZAmJAj1JrmYpzMnZkCBke/YVcyOcoWUHMYM/sEoCizQoaR3dUHaQvzVHANYCoeexgUrBx3WI5pgV/IlPeQ1buG8HC7jpOI8GhapxMAfV53Z7p2lRXzSepLQywtlqoah4A0IS1WJTm1N/Jp94gyX/XOFkXslq+q8WSeP03sz2IjKsi7rDhPJgPZ9haJvw1nNghd0wP+j3vD8RiTsiBrkyj592zZwB9Opsxenc1RortWJdYJYE1m/Qqv68H68AMBK0kU2Pe/b8K4BHo0Aq5xCj6BC9Gq0YFgDOtMzaj8QqKFXKaxY/hz+cUrWefIrd1QdvTWkbJXLPZWzOCSpbdRO/J3OFfmfOrg0jmmbeUW1Fm42p/OvKHMFPisiXp+wg3MtwoWgjQmfM/nqh21DGzTqthaqASFEsca5KumXqQdw1/DdgQUUHtilBRX6mWIt/wXpIN/xLZ+LKZmgHaJgUKBDJuOAQJbba4fgA12+DqycwMJPoALI/0buk3fitQvONNXSHKqVAjMzWBs4a31AucFMFdjJoWKo5HpMJQgZU9bjmWysLzPnAn07UrAyJJFqOvcF3fHLfuya3Gf4owecPheKi0dZzwJe5SQEGHD8p/FYA0Zi/0EaDzEKCXa6IkOkK4doG5IHUAIE4YVclmUfZVbiaFBbE5Gvk1zOeds4HghipdeqGPdbnRYTCb1NB5NUkGwnssxKe96RxGGGNJ3kRaZRWEf2dJ8pgbMQQ3mmN+ne9lqVi6qKi28NRz0lj0kAZ0/tmVYy390QtZQghjJWpNCytN4KlYCUrNRnyhuzCIkMHDVYlavHT7PFq1NoJ9NWgXJpSjLMD6CFLyUArX2itvf2CoayRBWNyZjVa8SuyWK7TbLvz/8weCalUvnhEfbDqcWBdwqfRRQUhXss4QVwdGBDr8WrbdshZvHE5KRCRtus+EiRhbRHbFvpWvOC0fwSELx6BI1E8kR4IQct84GCuO4wdEwl9C1Yp+4NmsXYAXXhAAdbgywv6ITBTY++5cDJQI4WsZ8LBSjEp5nflWAz2SKlx3S3la0U1eiq73pOoYBZ6ob5j17ukMmQyKmGKciwzJ8tHOEPswEHXgtoIFrLPP3jg7+WJ/FulqePawjvPtxn5sTQ9Feon4cVzYsRMmq+GwUxZ0KTswKz5bY8mZaCPtvKbP6M5X3LKSimN7rfEhUtQY/w8W77CvECGwyifH5et13g6R+jvWAfeww0BF3roi3sTsg2RnsQAdr6RUGlm9VdkHbRMFyJl8tDkrtJIkUo7j9KN87EUpXRPLyxpQ8cQGF7nVuBg+b2Lxwv9dSHHLux20cGdezDDLjauzZwmW7jbfkrplAtKrc5MJ3cfv4heQVJJ661SpQ2lHftsNsfee3SiPxRMP9BO1mu6JLsQSSBzPwRJJ3Gf/Ul+refw8KwFtUtELaLB5AA4mJ9B5IihEcKQGVc8eJl67aj/Xsq3msAU0rduJFsAH7B5cBwtRZj8r3Q4Ly0ksfaGeZXhwvtg8zVzLSIvolqZTdE/aJSA4QN9AOUwoD+b4fnaydYGFjm6UlzqGkd+hzTvjq2yjQsKArgdNl0uhgVkKu+ZFK1hWSuUZqy0rZpRgbMzwcxi95O8p+QaBCP4NHQFPOpETh3eFWgxqMQGekFKjL49cthwL93NH17oFPtSbZ5UFQmkRpyEDSSLBL3/PxkXa29cdXZjon/TEa/jxCo4baKx+t1NAhyLW151Tdm/+//w90yKbW4NFqlaTrzQWe9Wz/i23wuE0ChF5LkgPUymVBH5fMR+FNosC9aRoQ0nOY6Ku9ixnLbzaCxwze6iB2NlU6DZCzES1D8oyWWDO3LCZRL35ueb2ffVa7ahtNecU9qBsrZ3nsCCfJ2KKJRG1KYJbsIdROdGvwiiR+a+J8keLSQVpkZEHrdAKPSVcTjYJ+NMF5WhrQbiAONnxF+xkWG0gAH6Ectxz1QirYlVX5ZongdaAJ0z6w7Un33tn//TS3/SL5lycxXiwl1bT/G+UYLrUKTpZDeMVtC1YQNQVxt+heEdviwIXlQFNpwyNNxhgxfhB6hTvKvmq51Lk/RuzaFhufvlPbCe5SfOQf4niluLHUZtRW+jj/c3/aUae5wxsAhVxdDqeeRfuWGraLiaXrQuQMBwBilpOdyOvQu1VWfAsKlfvFjOCARZ3iMh4hm5NZ34FfMsI1fTgm8HdMIlg+agYGZ8TdB6rMJ9cdPpa+jGEXOT/mntrFclnSMXnfMK6ZZD/UZE/gjiJ8lup0Eb6qltjIMGQlFFzrEk4P4WxPWVUEoqbprqJE0f6AAcd9yw1GtYtHaBW69G672sT+c4ko/NO/Aj158IKVTfXEsT7InvPDnaBVInhYmk7s5eNkxX9vLs/s52stTHFLSeJo4rOpPtc9iz9s8yc5uGATvoEXBI2VrVAG9ImDpNhvGny3z5/mbnacKFkqQNRFSvk099lsj78RUjNKdxxeNtO6qUYvDhnUxZd1e3yoCWJACj4tMyZBJYztJNolluJPO0Phnj8MsXoMoOKQAAu21dkmAMLZrVbxYLEPDWKS1SXCm5G8hvZjyqunWN7ar6C0HS4Js6OXnHkPVyguQHaGEhOQKPQA01mY4M9J0kEwQcDK7EVM0l7K1t1yDCFKUvWZ+MF44rdprdqVSm8+hbRMSSmp2JDSQUnxEnTmEWGtyEj2yV1J7G+dIvSnv8P2BOfcXHmrv4xDCbP4XTiaiJI2eRYHbW5CvhDp80EHYfSu2CWaNcUYuzTw+yUaXFDsFYSfwKWpbM0Bm1wfIdkY/t9tJkQe6DcSDYVpToL5uz6yXSdMt2tqFyTtbsJ3tjgSA4+EkM7OPE74zkvZDrpWCQYSGq0YwOt+WfML+qVDQMUJU41eWaScjBpxp222UcnVNc6XrLKgzvL919csVSmPLTu6BLtPZhPpX6FaKAG0H2Whkh+sCS+AqBvkSulMfYwwLkTkGuIngvcjZzxRaoe8D1g35xgEUsliqdf7OEAGiE7WhBWO5NNUdfUUfe/CTKeNlzoQ54XpZS4+jMVsjzx+XOlj4Yk+cF7JvRv1D90VJ869k8a+smth2ikN4MmBhlOHKFCWlJgtDDRl9dBdevCemukXhu6R3dWn/vVD4jZx7lHX+GX4EfL7rOO+t6ZkgXUa1zUo1p4ELb68GCN2wxaAGj6LJFRw172arxiSuO5YIqxMpC2tIdY0iRD7Bpajx+CBw8RkNsDzSZwwI6V7zOGFYbf+5PMqYeT8xKqf/OJRvLBOSuxkmW9HrIIBlL8L4+itSQmCKwcv02++ISXyYp+gQIq+vLEJ7Ye0KG7k4IlF+Cs3sU3wIgXF+3mVTGt6BfssxZBDdcj9kZmov10hsD4b5osUEHkb6cL4MuEQrXz0MVOKT61QdagqtOU2L/LSl/k6RUwhmTxpKj8OQgke7N3v3mpAY3cbzokGcwmxTYpGeHaUTGqFLL99AbCy1VeDigjDEQ+Ckh75l48IVNoASXCILIAydib+3nO4XapoZ71amUWGuwftPNb7qQAVoKSKx7RwwP8YbpRqYonWmr0jpjDxIuzMUouvfbddfTBPI0+R6yfWOU+P+4T65R90TRn2CyfjFtKjYqESRjSXJBpdQQbDElr9XYcv7L7kyWQqXuIUOnMTUJcqB6T2WpWHoYAqkPnWo2ALnw1yoNf/KdfJFVhW8rlkw1ZzfHIOJ5E69vEJpUUHUall5uKBfr2fAybV90UQY4/a/3lXLDs3NT0E5C/y/sEbNheU9xRaIZOqjFVXir9x4hykNBE2rMlcbf2LMubFC98vI/7KOfBZ3d6jy7nEQSxsDPLw/CPOXOZ9gVc+k8nbFOcEQoWeJb0R2yh7aeZGZt4ZnynSvOqnxVvS2HEXY5vHynBER5i8fjRCw2UzEBGwi4vXh6uT3C1KcxlBzSvGueGkxKqxOKCmp2MOfRbsUQnO4daeBxppJY4dQq1njH+gLr6ih5UGZxr7glrv5DGb+lsd36BhGBHH1Qu89B9DTX0KnMX1C1rSqys9MlBVlZDQ/NC+/gm/X3Qavs7WsnvrIkjy9041Mly+dsMVkUOqsi0BEiDSeASvBFGtQDWl3hGJt3I6hbsUW6O0r6y2qjbx0P25PWBVkEO6lMRAOU2EMSZWtjvfvdcJFxHNK+CYYkeC7fWUQBGHT7qfK/qgDLY2+u5haBrDX7wtlNH5Kz96PpCpJ5TRkfQew8TAOjDnGz7dSYtuJAuoyfusAdwGLmFzRa6UMIv3lo3yiDm+wXa0vTvDR8CFPmuIL4vw5hqTAc9tRZW1rsdkmsj99QKs/5DWcSpBVJipBGp0qV+iFrzeaqATwBdyR0eig9n1FlAnsIXIQdUcD0OKyNvVcAl+9kguSODa2gGNKf6prWVGt6fA6IGfpLenkhsM5zAS9ogHc4Lw+9QaULgQDwOCyBdOXeqQz+M/E1VchOYwTrriC2Pjwaz4BxF+DFyXc/XIMxO1nzYb4DHdJzQCBOyEJTVYKoYwtArKJo8m+LIrry5j/W4H6bqFemienXQxf7Wflr9Vsj6SdGtbn3wfd+8+NMcY3//mUMUDU7t54q5Q2oEXDbBnKOnecRkHsZDNXnyy8mSS78Tz1Df1W4vsN/Pm3LWchudYCxWk1L9gGSUDNpIxScO1CGei5eYmRvJahaOBHl/sMvfx9MyLbHIV60kjau9nc6oK3aLs4LzV3lz2A++bkcxvMJc8VHZ0SgbDHG5lZQaSCa+gtZFy5UTbkTYLCY/O3+Gura4hiUlgkCVDgYUOvoGQf2SItyczzBnhz6/5LmCjIM4ddHqJuvFOWecp1Dh+Q5dtWWA5DYOz79oRqOoWIfDDzxCOqrw5rnEM7kn1Vka0ZTW7xlsyulQ1JT7exlMszRFWMK+jSDoQv+N5Whs/oOmUdfng1p8aZIzc1cK0MPU8g3/d0fScPF326eE3PxL++lFFCjK5TmoGAtdxnbc7qxuXwJ45B2uv7PO90oqeEd9MLq9e10dBNOKa3/h6A2xHD/2OaX0ESZ73zH7r8C2gBvd+W2AQ/ZlPUtAY9srqusky4DwI2M8EqW5wNZteN2kLGDt+DwCj9JDsUxSndwWlB1QDlb/P8hYwd4Ldo7FKAwLLonZo06NckU8J06HD8kjxrYkL8JynjM5r4opzuI7pUZnUox+dOgxiJPNtCSf4NDNjeJysx68pfg70XTVBIxeBA9H6cbDOKOHz+b2T7jyPYxCWwb+9DBcsGMXH1MIpxJ7xxVbbwPZI0TWW6Lepz3aNv00uI2GPgb1fNyBLYsFgD+jOczzoaB7Ky2xGrVLPTlmiCzDEtyTkXGr7DAz19auCAHaWZK+EIFu59A+bm58okow9VjDd6SFhLP8xROm0atHFHSPe8RBWiA554uqNjZXfrgh0GQgQIToPi+X7j+LWgAFOj6OovFPSLQ2k9CU825rjKjycWH9h4vCxocmI0ogkAv4c1LiGiq3ouC+w3Nf7Ap73XkiRbwkd2wODl5AvH3PXSEWJ0fKm7P/OlLDksPIYosyjqmLL7hCazE6l7mFWoJfwt55NGquV2V/7sLgoxMRk7Ov2YpmL47gp1XXiFwdMlDiXiG2UKgHkNc1u38/dcdqB2c0t2Pmp9AKFsG+uClQz6vcqhbR1YsQOzobG/K88tvJ2BdQWam6i3ysqDPI4U7XP94H/wI4bqkbJ6WqCJX02dpR1uvixHDCslC3RJHGmA55JkYRW7d2KFJDti7tiFK6JThT6zr5s2j81ivHINlL0LZu+nmWgnUHlMwZIQjA2+70bw2WyNt/I/vc3bCVBaaGfSH8zI56C1SvqgWCaT/lT0ePZzj5BFAa2vhC5/am5XVo6aBT/I7Jv8sf5CYODJ3v9MX/bH7IcNSGqzKDY+0NqsK1vbmdoeqFBJ7xlILpzG9ElLTefVwVxFMI4YVS1lq+Y5RBpeCEng8U3BqGnkYpOMnkPWxGoRvMbOtnPA2MZCphD1SWfdKsZS0qcf2AdIbbrx/uV8bfCnccoBXQ9Y2o0OffUgNX0c/XkQfVB5UZC7uAg4rTFzO+vrjwz87KG1HrPNlmEeUXrPxOiEwBVoDzmn8GO1drCQJBmRC7Dz5h5tu+KlVl/9NiH72o89CaDVMEHhlP7sFq/8R0+awWypazfhpO69lb5Jo0FBILThLdBfMi2K9j9fNj0ZH0aJcWWQHGZOW51OhlNoZRfdsUM8zaCwspQBMhLfy8bYvWvQreIuqpaMZASXc+xy06oJi8GV6RhhweQbAdsgNCKiBUNsyDKC8IWGwI+tCcxOy+yEKLkSB/sVGPrzbaEkUhsMkUsqMi80yFrGdBn9WIMzXOphon2RAHAh8/P5sdfol0698afq3WALPAKy9VtcuQvy9ZLgaNf2xN3BCxiA2a1aE9tHdGjN9HbkS2gwvdYsGoqv9wyENGIPIcoxxVqNkaNSM3YVIm64Y3EFHmX+4jqF+MTAVANSdWIF1Gg934/Ri8vqvZrF67scgZYSMM+DAZgsgTU7S+sp6vEEpUZs38jw6p7qnwTAOMavgoHpc2akZ+l8XPZ6DALBlzr8ZDnb0ZME+IjWbla+La4u8XphUw3qnwI7/Yfc1ML1vT0v2F6reT+laRgJgf3t+cPTZpwl0RFs1mcn+kH1AR02XfHzk9xKtgxcM9WBAlyxyOT9oeNvbHXK7SuthpnX4Hqugdj1R966cwTBc6tlxA7DBd0b/iKrAqwNaj023/cTSCK91zaekJxhJBQjbmDEeF6kcWILBQ5keK7diTFdkyPmI+OUt3Sy9ZaiqdWG8TpkKlauFTdYzPT/d8IF60tD9pf4S2SGMZA+U8IDkMnZytIq0hYiyf8tUAgebkRuy5mCWodfc+cN0ZF/Z/XHTZHlSqrHaph16Y/QGJuNYaU/mrUaEgoKAwuNQcuS4+1B4gh4Lg63LMobcjevc8x3FMRaqJ5b6id34Wh3H7uNLs2mrcs51Se/f++pNWT1rry7HPR25aMjJqs2hHwJWbuRbAhg/TspNPYbf6hGpYwFsZ4tBbyL56dgnuNEVsep97cmi9B25EUTzi08VN/yYaeM94xDIvF6GuR/uYmwEM0ImnQq64Ihn5zyqZmYUua4UEimQP8eWli8W4r2T537nxz/hri/hOGkaKihPOKyQpN3JBX6LLtjdEdKW+cIfQxg6BElWBzum6D62lCO5tAH95jh1uBK0djxNIEzsRC1y5bmtW7CLeTH6T9I5JC3xGugH6x+IuAptloleZ5IUcQwI4mf/mr+kNv+hG3puwxGWAoUa7KmKy2m++ooB/4Ms9aWAeIAIQMRI/aDw1uU4hlojFIR2FoF2JRsgFCuBtx/Efmohdwni2ny9wt5NH9pqXxDEizMJahqLWzcX1Dtj4awn+VO+5xpxf2nqlZxOa3wIzcsgw9thyAQcUjH2m8LvQ/nZ07+iLd5ZkaC3IXV5pajE97fXqZGQJBAzBVSp922DgnlHNwIV7tEgIzchzgsqG4mha2IwuIETLnGYSiOLAOqnAhIcC9RXOHnpbnC5IOAgCud9Mo6GQOmBFYqiK2Jxad3i3T+xD8SmJODoqvruti1Iok+KVD7niScsiZK3pndLkjGW/apteUPfy2AIsW471ZVL/WtvpUF2pBjfgfyaA9CMV7gbRV6DztB6vscon370+41LrD2Myin/ThIET7jlCLjkSnZlLocBIjOKe6UJXEWl5rsRxON09O+zDhXVuNnu+S9aCp7UAuOBb2B7Dbz8w2T7x4j3WfcPttDaf615iZ3+uQJWvhk3v3bMGnxSXP+H5yXWN2JqTVyuVAhCv3+ctyBjVOIeb+hArW30xn5AuhLDJQ79LwjSSBAZZzrd2bCK5/zAmp0pN6lslb9QNEMObWftxoJAmkFytMn6Ile6Ge6Lu1jmlELbsRgbj8NB31P1Yjacg4MO9RZKT2GWDaselW5vA8SuYlVE9tkS7KTMaSC+YZiS+1I3JO7yAJaLsuaFY3g5GugLGAcD8ZxZn3Fk6iDaQi6ZdtexYD92rb10iFjhhQOuKc+/5imXJaSWdqEUhDgh7nvBuTdenCJ8C8WeFn/5I1VhdqRZdI88up9b0rm45mXTQ2pBHNxdW1uCWzT7H1DLPDNKMRZuW9/7Pbo89vGfUMtjMhLs6jO/j4GRO+NiUFTJh8qZ8yk9thEmTvzujgpYMHLgDaLdxaI/VFzuuh8xT49Xbfrlo/rNCnu/kZYoDPjuXt3z/znTwTxAxPlnKQgJMmRyZhdHgycXRhtp9qaUS4Ov84hoIoRDNN9t7wRf7rENHEJcI19ImChHdInUMym0conXDEMOtfu1m5YCTN1LnZY8x2Mf+vFoB69gJcVJ8AsoLhndSyBk/vh/Z+3Z0uMSdFIPsFCyJwtOdIMivC/kllR8jMxka/OxSOg9PrBKl03gWAqJWclcOpy76wEN8HPuyz/l4YdWlYk9sY5ewzXTfsm7r458hsPQcfHo8JWut2AJE02zepfMEW+7ZSXZT8ggJClpkSTjG7KTqmjR+y2yMdMzT9ufxAJZ8+Qm6BroTB8GINXr/OV/vj3aY71520z1Gsb1eQyFGUmNvrXCJEUfWu9xVVuEeWBhR9+pZc2luPe4llBvNcO+yHMmtFdhRS+aSFIEF8bCvNR/OP72zPCrnsP48FOnfo90q2eORc4h3tAmzMW7EYjaR/PPgiTo7Q/Udc+NZsQH55ZhFFnP6jiBczuRLa/cFBquSOpleEE/rgxikStKzgFb+R8X3PyU02ijIG0xoqv7zV4QXUPS5zMW2wCVFNE7C8uR78ruhsZt3CyDWgw7sbRKKx8p/xalGvcd9blL9tn2Z/AzeqwCCJ5FSG9Z/a1gAbqN/Rb2A1GI+StrNNpsbhoT3zVi3cQMZePtHyXUX0G8JwNbnbGMPJ1c6cIZHh5GzdHs8KVawSOMiND+i5IGw084BlJQFTP3ZppNuJ0/+3KIv5dpEt3PZPWRaSGXUhVbmgE1VENwDtfyNKYTG6nbFHBRE+bzTHTRx4mAiml92sAYaIa/4aenuu3IYtqOTKMv5y7A7jjpAe8vfSM6lEHJW9sMdYW6MDVTiU4ju63poeXneO8bHb9f4cV9W3iVVZeF7mLproRJrYt9QrJ+bHfQdruGunBAUAtLiJlvhB7L1Gjysp5y/ZNn6e1Yvp/R+MKB8sZUDcumMI/Z2lGnR7aE1w7yVH1oRL18k8yN2M3BKhsJo6kxaHOFWdUrcnY3mSEhhr2G4bz1y0gdv5gLWUpubDhFfG8zlZvhND+wQLqkjZKf//mzagIgBR49owbb62dAvrpWzIBS3+2BeR0OIweDPZ3Yx2DGbMZJifvEUR3euGOUE0KAM0OC7HUix3mAQUj0jhdRCbLGAtw6fbxRrgdo5SA1qDbeJn/lK9VH7FyCcItT//4t3GEDfhgEs1iNLkEHNdzoRq8tEu7jNS6HqxtPJvBoTOuQE0c9hrNwyQ9GOawu0SmU3hlGEtZDOURd1O1lN8Ea1+G/74ePlam2AIUfeSTby0jUj9wF+x7FvZYEtfI7P5tT+ZhLz5WSAGZAvHLxpV5TBv7oeyIFyEeHs1HkqHchkL2CKuTLqKS9hiwpDJC8gmR4oc7pcsJYEj3pQL+8IYqRl49NJ3JYISFs90ukb62nuV2TdZzM2jZlgufpZT+P+Pj69g69QNBDCDWLV6Ju6DAaeeqIoEZN60Q+CugAi7BvdAQC9togXDrtra03NGwRyaJ+nmmtQbItbhAXDK47FPrM3/8GWF77c+or2JittqL+yqBcnjJnbZG7hx9ecTqnvpy8Wh0aV1RKTb6rsnsPJAAUY6dMiQrfz6+2ltyVrpMXefafOt9WSLLyNhb+6zoazfs4BFky6qwQsBzvdeVvHoUpc+kqObVWq3mHRlAK3qZ/S0S7YjXvLmH72rncIIloF+0JVyWGIzs5Kg7d7FZKLJSb0YaiSqmwfoURAfXcgUZRBQ00ZfwgmgtnLvR/6HJ8O1UD/d+/ZqN6PWnWzeMUxxVY+V9UyYqeYnVfr9yQwK4y4FbcB4QV4vXoXZumH2MrPE6b4VhJF/N+jhpZUNs+reazkS0SufN46b2J2lCKttnREfBDZN0aPQgN7qduSFvLy4X6SWI3vk2t/ajPFPBABoEXK1rEdjRhpY9zQzMjZQc1YDoGJTvZVN2VWlQ1Dvnv31fU43eEunpd6EQhhYh2wL+fCdcu7VOL73tqz/Me9gdFrEnQXTb9rlk5aR701CTBucUOrD7Sn21wO12FoFe3qI2nT7BqJ78GZHt0syQURu3+ZpYQ4/LRvba3oq+MG1n2ZTS42cUjdcpif1hJegokm0q0U9tHk+WFQBNYR93IXhmEayiTBM2kXvFrUydPmhTBkhcf1KxYy5/HPmAHRoTZgq9pmCLKM+6Qp9Jn7GCsZsL+SZABzccMgKpozrn87rve/SboluFsop6zsaCnUfIh/ARbgmR25H8DYR80/FxY2VO0fcni3wiBx5KcdxJ7S4V49N+Ozz+jC576Wv4kT7OGivQ3PNjVhKfVJrK4opZKbNzhUYmFgwFhA6Ib603sgXbOKESLGQPHsu/ljpq1uVIfB6O75ztTD/4QfzJREPA5FzdswuHcfi3NFfEi8KanCFio2dYTedsALCThAGFD1YsEij7Bn5ht9KcRBbmdJ+iDgtYBs+83i9sheHUGynu5wVBScampEIacQWnYUwkHpWFn59EDbfmGztpdAEYfeisLvvpONHef0BpmTFzaTSAlaEhvgvO69EGyzOAwAB7JxZqk1f309qzgs/jQZmJkpS1rr6Fa/DdnYpvflS14v5ZAGHXa9Beh4N26w3tAaxKilA75U0N/FpvCZrllh4O0Ry7xJFAwBHblhqI4Iqq3n9+Hnqe5Dw8s+0kvCEccr4cweGyoZ0Slf7U+FvwdbU/i9LhKj2N9y+/z8bbeKxpH7w8bjNvX7WeBqp6B5gGQ8Wa/39Ziem07RH0xEnzZaTwVioYeHJPAdQdlmTAT8zKj/jTTXDhGew4S6zAP4/XICP6IiG6X6Pb1fj2FbbOG2n3fVkGS/TNLRNgx66Xob6BB/NHmLFudhUdueevCj4uyLeIadacO2260JBiFCuk8JutQ984kgsVpazvV5WJFq5owp2ARPM/WheVg5RwiFmwr9v/rSuoJuQMxNHcQKOcWAVVjidqJeII5Wmq/yppZAyF/0RnCuN+0P3f4IHnjKR8gp5HY7jHDX35oJssrLHmjdEYanxou2vsUwurzuB6bx+Pn7//PEI1ZRXkxKROPW8/PhbbX3t7TLxu8yuJ+WTFMVxSf95JL8VoEiPAlE84pkUiuKKzmLZIHDevQrjWM7Qk9oiwGtBYxu0kqD1me88WLXNKbu9hq85S9RxIfKI8z3QyRZRVtHrTT7eicPMXvPjaNk69Sw/d0lPOdcu7hW14kmqBOjrZ4MrhkltEe69ukUGEx/5Brna7KOnWOaSmSwWq2V6Y8AaQ9A/m37O6YkoV2Je6QipCI+Myxx6ZIv4LlwBuKfWssBpTSzxtaZCIWhK3z0xKMGJAs0SXo1m0+Lrj5Id/Pq8T+yWw+OPDlwWTrww4nmp9iVbv7cZSNJkqOOXDwU72uV6dmBNaUlVIh412A9PPrgOiggzJe3AkAod4xXCpogw2vfEipZzKKX3IWDYP8HXNTe+D5wPiJiXJH9iYIczunp3LiryXfyBgneI76HedbQbSAm5dSy21Tm/p8jWgXxK92ImT2wtxBau06rHmC1+zpr/GKN/YCnD2UlwMXgIhT8IKJpGkMcJ3/eIrdSJT4TW5Ncp1BP9G9ojH+cAR0tTsoRKKLM0w3BEWwhucTFEmxZtEZOPRgnB0f+J18OWBsPgLvRbWgBJ1uRTuNtFrVt6/IJffaAFSAb7klN5Kmm3lXg1yDOVMaWS1AGx/JfkYt81V+0q0CH24L/Ad+FUlVmS6GMNuQPAd+7Q6gR+cZTDiiBA/spPUlNwq9Uy9hB1P8p0viQtjJwou2fbuNd6fli7L1NEnnQOe5JuO3MU81dwniciy/X/Da/NOy0rI+vbRPO/bkATjtvEWDl0zQbtBflT4gbLhgeyg9Piu7VuAzDtwNVVEQ+NgmQ4RL2cyfQXaaP5HTtxInv05nfC5vpl2spGUwJcVxyYZ/PZmFdwnWJSuG6vLlvuDT1zI8VQAZOLVul3d8LN6RqdRBHb/H0ALOgRmfrBkeQjPCFaBXbtrFJMUwldDIBYS14aiaiVMJeBimuk7X/dbYwtjZ6rStKuZTpjAEITWjYWJk4EyRCRh+aARFBMf3+xPrNhS3Y21ErMOjzGc6HhGTyso21WMiG32VzZB2TqSXlTzWAC4W0drBlHtYN/zeUBMEDeHnN+in/NEywmKcUH/5BilVDSZRqpXtVS/42x+xAMO0S+f/yyS5pmtcYGNqdqZFYKpIRI6sdrSjzV65clPhwrDQsoYUJAlnsnmLxNmKpWii6RiySRhEf4w5F4CaP/wW4TY8OwcZsjeGYo8RQP8Ty07WWWtKjwEVTFfUHtsATNkieR/yKXfWU+qtqLi3Dbf3zm+1Y5pMyvoGSV0ICFiP/6MP2Tnsixv/SbDHw6SS4WbGzrZbSMdu3GRMwYX8Bvw0tY5cozvGR7oEKbHkll1nMaIUvXfO2bUI1Bi51+PikemaEUyQqWp63d1mZ8InIGXqYe8tT8i1uErwKOuW4HI34IBCIXuZuUAnMLPZU7DaUw38oLtGyhnE8OSMzA4XpuhZtj+07WHqjbyKp+nvEK1Xnt1NSW4n0MsdslzpQ0RY/Wf40CNIZSxZCpWQdhDefdyisAYx7rmsK2BYGl0nkOoNdCbjLNOVqbODpq1/4PD3PPDcEGSamRHcFoeJePLhgRq58zv4eKdsk7/KoQuNVDyPx4JxRnpd40/7inLXcN5nDaZbOcFxiDZyPc0vyrrqy5vJYcHQSp+W6RlOQ9KkuNTdGKFWMZu2hkd/nOXBFHSsMAckFPFci54e34PY3a2canwb/H4E+MBB73vDN6vOijyqj0FeXDTNR8FXayrN+02eqjhtOLKtfpfyLek22DGv6r22l7KUatokiVihpwYZawMm+RKbliyve57DiMSieIWDEBu2v2Cu4R3AUcyNStj/9WocS05ExHvDcg7s6IdPJYVE3aD0MRFNi+QCDCLfEKyO+LI+HI0BIOtarq1Euqwh9pi9Jvdeya9te0IduyTLNfe3N0w5LcCKZZiYsOLHBQz+grL1hyoKyI2HDAt9UTgf4+5PuwruQg65q8VZnzD8CWtu228X0JV4cEJ7mosDOC4V19f0E85JtOhGuiWUv8WMsOa5xNTNwhNvahEZ76wmnvQBsWA0PcIouBTLQBJSh3NENfgxiRNJn2N6kaA2vY+fpnXZ5FAJsv6zf/RxzXXNqhFmMP42p7IhGnjtQTyh4GlVUtDsTPUWgT9m7HzGXAaE3VlW1sp24YAdtqJibWJBBvDcNRNdXNM8jvR/AOaCrIpBGh5IR2gP3ws2m1kVQgsMZF33em0mWrS8lZd8y2uvXGbf6xoafa/hkF6r2G2K1KYdaC34U/S2OK0b7N5oImwVqKzlanzMC0auma1GUkZ1W1So7o/QZiwi7LkndRQOHRAaOtjV4mvstplsr95hujqXaqf7tmvDmD7x+2ziwELFlxiaWsU7lL7b+SlNAdeu0RsM5SZq1AidO7uxWvykcEYLq+gShmwOa/m4NpfnkTnbfRkfjYG7yOnmfUZ3LXUPzUNXQjFpzofA7ar+d35+tBe+U6VbY6lYJPeSw5td7yq1wczXsslJ5mOeHaSmYmA1l0oQPPj0SI+Dnq3apaB9OiC3gwO5CmTJBk6QlkrtiZIz8NtCxGn08DlapysSFt2VXpFLsU8mCactj4UCSpVbZ2xIyWwm/0K00KMKGDuSyrkIyjJy2q+Z/bm7CrUApglw+NOWt8QCloez75WlqOdMycCJqvOBAqXHtoxmdrwfxnsoqj6H1oDTW1vduK62u8sAcO28tk5Mqe0k+8yte3NQsRJQp0x9Fti6sjVrvabNddrpRRpZW4tF/yrtuW0Uye32aGRtf7AhUrmKykF7mvJoC9Ur3oOBKpAV0Q8VhE906HT7Yb42vJvV33/nGJb2lz8t5OQpbcLto++MnOHhmu21BqSzP6udKRqx6v7R7FQO45zjSTkaZN4lS2zjFCszgoFWI9yVZzeJnDGOJLmj65gvQeN7oZNibaT6cvpHaZ/EGEtf4gjoBTratZJ8dkmdqw2Sts63yvpEy78WydW9ifMSW7VNht4MVHT2doKeKZOAesQHfe0MCkqHFr2f38vGmCIJ2d1PN2txVFJuEXecQeQJ6nFd5CqKt7Qk7eXDvcORc2O0LToI2HeZQfRU5L9r0bfYQ5hHngRw7Un9lfzGH9CmQ/wsm5WSJAOMS6ThMepArM++kfUgT4PjS78naWlo1YKn2X0X8SiKhu3G3mx4LQQHrR7y/TH0nasUAI0VJHXiVcVnTDpPQoJ90r+Ehtj2yirMsl2soQa7BoAaRLw0AN4GZoTr7WnvF/Y4YWvBP0RbTmjIFlaqutEYEgIv1HSaun2y5d91RLYk1XIrbU8WPDZa681xBgSmCf8GYNujCCgSNUVnSFAB5zEYcVKSsqr/sc1+AVvCoA3U1MhRZoJl30ArpXSBFpC5vabIx/9Vvapa2QssoBtXthiQ3y/Uguae5zwYDObZhg6ui6N9vaQUW3KDXqCVm2p0QP6ZfR/kKzo1kOeUyNuRMaODXlFePbjnJH75PeL8bFAGUiBYceaG8BTiA2cUDbvR+u0gGnzzgs+xRsHQHEG4HGna3s8ILVGZeQ6UGBgRh2vonNKg/k8BMBIV1850cN8MqITyQ0t19u1gFevFA3jJmJXjUWP9nnLWbsb3u7ByDfJxJ0l6XhU2OgXs3Oj3qtA6uK43KiHHuMPSBpfZgpWpNDmYdMxuGl24Oy1Yk1bNBXwGwXpBGL1/7oKxyAabVrYeNAMOMtTteUiCDAF7k1pWJzY8fomwg1lxlklfPqtWCAth6u7vsZl7Lm9aOh/CFd16O1JGnff5gupppDZXgs+SDdjR7dE1110KxX5dixfTKBvaBfe7MD8yEGjHVu+Ui5RvHOJd4WTLtkXm7G4di1yVEhrFguIl0cNHKOQjycRICCWRYZ4aPD+CKWuj6K4dZ8+cwyHeFh3bodGqAqxfFK3ziKSYz5P1aWVv+3HeTIgqEvfZW43THwpQ4Mnisn4NzbTYMZL0jjQTr4nhatWmgvCDME/kOECjJpar257eyS5M2zytW+pMKUualLplvEzRlm0kIoLLoPytp9NvumO95USICW3fU4ydGpHp3WX+hfNSKxjYMoS9doGeqJifr9TmP0vmcvbqw7979sdethC1R2s5PqO1h+Qot3p/VBtD/KBCiL12R3Ia8wxly3tztiUbzsiQikLR80vWRw0ql8/wpp/9+eMbaPSTyJk8CsD9HYovoi34HPrsXDnU5Fxq3eylQlHch2rQNnNS18ztN0WSt4LRChv+FcEKNYveBGrXWQYuPJPWuC7/4JcIY6IWf9toQOmg5+D2ejgYjL1auU80poo+V27dHlJ+s9SEDd0IoesKcyxYoXHiEuGdUvjjan/ZcMhl4iok6sDZqta0aXdNMDG58i1Nb0e4rMuc+cwSQTxzb58TyGhzioEFjp3bGo+qAXDEPnf05zoneF7Wnay6KBj9qANx/YjJzOJtyxoxUjr6lPhGsPdwm82wmhwaGQQ2vTHPzpQL7xocZFMW4JmDkCrrO2K36NmCmeJjzbz/RddzoYMDDBx+gAqL+9kB6wpivAe/xAEoN3VT16ZGSTktnATu131DXGctdyAJd09Io9caFfy3iSDaRvL12/5ZDi1YoXeELGZED+Wle9TBsz86LnsuPmvJAvXuw2poNh69cghkVr5qtebmyUxgJ7f4aFpobo/OMjDIgGkHljfR951h68X4NqVkkqWyDpbRtPUBwHVSTVs84mz500bDwcEwYEeUaArxZwYiwe3zsizUDCluacqMN/VRdxIn+tjzC3NkvmySFHjuowXk2XQpq5lzc4zi1dsa+g7PoFRtCqXCkuclIsdTiYFh/YK6AiALJHEyzXrWGvMTk4oAk7h+/GDxI6/V/O7xYfXqgM72LEVfgcMIfuGZ3pFwov0vSJVF4klJ5IvHqZg6HzSsiOpT0YlappcIa2DLnMsaHyr7urH9c6msOsbBJd/iP69x4pI1RxCP0Q2/fHvi41PCEqReeCCDd/tDHOt+bmV6OZcSwuoU8PHc/tZgO9md6KW/PCW/RmUwWLUWY1l0P2Aq57BYG4pgd74KEb8i+yCFb4/iVvSxhjDYadTVWbCkBPmPspauQ02JANyFSaHH0345dNRSz7fZaRg7ErToZ7SBC2QiOJTPS0Un2wPZjAQkvnNaqco7+MkS+IxwOVpaurayHm7xfu38u0GuDd6T36FwDTJe1zX3HBdSJoM+rAY5RcHcG6uYhj+afbV8yVYfAwvbilCtLFgHeWNs2IN9LqrII6UmUNaYZ4RNyTcO8i5dMJcuwOX9sFTWw2PbTtZxEAr9yhf4AE/amTEUJNFldJrXwzfqwbildlItoxmP//QCPB3RgH/Fcp4XU/irRDuteg5e/PQl2yMbaQsPd8T+flEI78uUtloirzfHupVkE2tMdEF+a40waWTmr5DnIzsfytwSHQQ06UJgWrWBmFd5fLacAwI9+aBKAAanHDE0OXTa4DnmK3+C93uPjh5C0CinnVPqtldLzE5zM5cQUnBBRk3qVnFESbyVob7vndU+03MxauVm1nYAmvbxg+eot3NIx0/qABp50GHZTvP736jUpxtrD2LH+m46ERSKxrJJkSedvygsn0n0hwSSELw1n8YHmowUqLspXZ20Uz3uUeALxhAgopkTx8559W5gApWaN+1uMarnN6TRWHdIH1hQdlYmywTKkN7ch0R7sq90sCLNH+wtjJUmIlWEHK1NYtgxglmizsLE2jzjwysfl2EL4ILZOGh7iZA1ZOg0GeEAhfoWzGMO5yQIeG1tkKBJC4Lzzv2nUPcXfadpd5hwcCsSVv4HEl7diiq/3SaXBZyLGKU62tMJ5hSUOQKOqlBnGe+OT0+p0WMCyl52fanVukWF3eHB3jPJgBaIkzUOYazWAmNmqsxllGSuLk+A28Lwn89TKXBybmBEebiJtTykipLm/Ld+Q0HESXpYrBTkaEZ6RYl7gBwGPp69+5k++J/LwJDD7pEu3d8icN1Zvix3yeFIHGHROre7/zic3uFvWBksooHQVpujMiQk68IZMxB+IkHyYgbQchEZTSz2P8wGfx2l7iLSeN5/hN1SV+Fj2/QAxH27xMr+BUSv552GgmX6QPnsxGjwUumnwZv721EaNnS0NWftYvYEzY43xJ6xnY9yskghMU3IVrb3DSGppeNrsYjGcogFliTnrJGlXqiYB8tlTsQdwdP8G0WuUONH4TFuB4N8O6gh3wD2pAcCzYIPV6kkWc4XeoOOq5qvP24QNUr0aXBcJ1+K9alnKokqQCR9e+iR1AZDyIxpYLN5ac7kf1c3AIPKMcvUqXu32KBlGY/8V6CG7HVzcZy/NKrwux5wItJBCPuks4obEM+E9mELdC5kys2OVB9D6xNBypqXtaeHODPfWy3UFhNp54YCtVQnrE6rSvekPGBz00PLdWlcKEp/8W5lVcfONQc8AduJI/21gCUXj0LE3ZKxkl9dMwW003g9XGKHoU7CN1fgosRGA3f6Qujggj5nsR1HNvo753whqxWoBQOdBbhntKBUE5XUKT75bWU6t1TPPPCg5+NOcUE3zqARcnvUJ4o02dt3UZHeG1h0rbmZ/anWlHpi8iaLCVl6dF+RtcNGOJFM0xlNz1JvUDpU7mruLmZv/kgGZAGPBmDgEZROMWfYdYHxCxgbHxA/OwLKt0KPyl0rgoKNjf0Dyv6p936RD8WG0Q64AEr0Lz92LMTGQmD/RAkIxFcOG3K/2QF+XS89c2ryxl/xWxbXZLC5T0hjovZZ8VbUGxLikjIQuld6GBSXepquos5fjMnMcjqxjhM+pci+4aYjsi5eVU0iXCFLkoFzpHEi4zfNPjxNcySUwMqWjBePfxiR+r5GCIglybBLDcat4RML+849+K2RUqJ+zM1rTyVINAO4d3ExYac9SBdJfcV65qi4WTqdOMu35F4vYY66+rbK5bEcvyG/w5OvQwTfdlsXW9jMq+l/MptlJvY/jKJ7jQLVEX7n48XhoqBXj6v8dnIAmosXAW2ODLVVZLhXUE9DMmlfy05ezORjIdO2JZ2M5B5unvZ2I0blHaiF0yqYO/o40PsNNZTt/Rs1Z6F13KDvxKA8UekzMstkCOmdn6HMLufONM2nukxZlGEB8l5J/5ehDu9jh+HIGbYa26zIOQ2iOyi3ozPLrhaH9+Wbh28c3nNY+Zrxc+gWKPANlVCOT4SJBXMKdnSKqC0dgLg5y5WC2y5PK1FQbAxVVCNLOl30aaIHuEbS1rgYUPUnjK1M1lX9x4ZGSOzWsmWV62D3iBLnPOcc7V+gtFcdLUfHKWmU4N3haLZIU+MCScQuy8GH1rxzTDWh2DzGekFILTaHs+NW/0AMnT61zQsMbaMcGA8YsWX328frPx2HrqiE3jIHfDrT5W282OkOeO3+IqGmpibbrJCIRK4rlxUfOP9kEPSlpgQJ2DXRCLoqnz3HOmt7EKpPyWFhDvum2HERU8+88KiVOJ+TRt2n9LkfbTwhXShBTGyjeoBd/uJgCm8IDFD6cMuivrocFFePCCeIY8BTHeFDJRmQGRhExiG9XzKQBSSr91Wxj0+i1AaVrYgTj2hjkHhGEBZw4h4DxtR35KJaaLnrL5vwzhRCPOS3vJ/6di61snO/ypLBmXQe1Xf1+AsliRltmYvvS0Ny5YbVaA81CQz4DX3z+Qt1mAExfU6eB5eosoljWQQFapDYdCwv7MplO4/4dmvOh3sdLsYf9yb3I6ybjXNzPUPqubfKucKTtV7kiFmFqD0SeZo116pKZ5uRYjWjcWFmlJp5hLDoWWo1bozZIbFRfPHLjanlLOXH7SKj4clC0YkhM8YnkZ2w9/imwSdyW+GEFjYRkBjUxcQgdRRLFM+nwZe2BW7EKZOIREC+NxDl5k3q29msCJ2hxvwW6GU6oY1q0tbk67q+i9bg3b29WK3yok4eX3l5D3wNtYpxpiBqxH+fVU0kDliWExAOPoalA3Rv0skjDyHZk6JL8FqUGdyfj+F4CMM8/8OJAt9BUEKaEhtXlchvNsbaT7uBCsmHV1/3qYILeeup8ji+Yc84x+9+pZgvWACeATWL01lMLn08GRU6K/vy+9PYnvdoGiCBCYEo113Q9dy088PC8ioieh2jnzbXI0nsSAalbKygWODfvM0Q/g8AK9nnEhJ1dp3OH9eKQTIeDTlutD3oBX9m1HN2/03S3DGahr4XuPJWRBuIuk8R5pVhKcHGqu0AVoDQlEyzJjlN3m9MD2KDgJscHaabCkaKuI+R2kEPEeEe3lG52VheGU8MxTx6/uFhMriSxF5WtVZeZ+1GOyFi2MkHYqSDmHo/A6XgiI9qtLjmWb55PZ1vDvfflg1FY6C82zP5MmAX6WsqrdvUrzrYIoMmL29UDMDEWbSJk4E9yt8F42WAXwLlXyd36AvagZS3jEMLVuB7m3WcrqajFcWiGw81voQrrh814coK5XhnSseow20+yE3hmZKy1v71ng47Fup5S/sELSGaTvsyUSTFC50Wy05t1j8pz/dmwKK/zAaB/kaHaZugFkdicF13XLrGjTmrYhGtvJBGew90YvCOswcYCLyUwKvEKNLWvnWzeTPLYNTVieIk5LLKnT8KRBXCCVV3rs4HZkjT3oReWwo12WMsTFcfE2ZsB5/NegYzK3S4wyFdo/xYq6/6FQDHFbyg0R0yddOHU/54EChtsZsb/HIuw6w6/7r3cUZquunpTASFzuUlDwVpg8mJNC8homQVsPLIxC+wQTy+ZvLo/z5jkwrKen9itE8iybmxbsuwU9gAceBXXnuw/LVBwCgJoQ39cYENTNdUyqS/tvaUqpYlGICsk6gv6NIcykvIvffmMRZd5pN25j7NZPQ3VHB/5H7JPq8IJbQIqPG5n1NaL8IbSZpdE87l9oBhDSWMhI5h446Bhp4mDWTqwxYV2xgA3E2un8JYzyKPcLg+lmRCjhd7Sz25YOVUuaXlHImbea12vvWjuV6uoxtXE11La5r9CjRZusX3rxrcECmzikKMvgV85jM8udrkzvGj7yf27qcpeDSSgNFyPZhKZoOh2DxDEWDbD7yZXVH9tx/9Z6JMtVwiigbntmOAykfP8ehqJzk4kOsZn9aF+OOU+fciv711dRw+N5BRWBV2g888BeoLorSDqywmwVv3t+0Vzj7+qJzNwtfojA6FK7uUcxOwnV+DWYsWfPRiX6Vk7GUP/L03AvpG5MTBVsg0QuYUbgxfA3AhJMpTOtZcAQ/p4gVInqec/o4mPjyu2MLFJNROl5snpu+18Pgu0oWj6nvxjb9dn8fACpGFapKjfLxiFfHwf9eaoUXdOjXejQfeKVu5UffFVakkVVEOWHR0V08dKv+u7kK2XZ6moKOKmu8E/7v/a1Q6rgN+GddHjYakhbf710TJeK7/ZZcvtVCRoK/3vZ/07K1PrUFM72LByczY9A+MTA1zijpX0MbRbhqxyHD0wwCQ4N6YVm0WLntdthIdu0uV6M26gSpUHfI0cCo8TdUohiy/NHZ3gZLxS8Fqr+ClNm5wEj8oDzLii8fMl2+1FOLAJDpPRMszIRV5oRoKUK3DoaX/WnAKzqFfmnGjCBplKLQVwoSqxS3UjYX3DlaqEWBUNyPz2+vvJX/wxPrqQYo/xckuO3JVTGO9cb2SRAdtbXL5uQAvKrZ1eC1wFa0tX2vb2Pc75qRmK5vPXTu6lWORD/VZNc3lXJqrIynGg4vwovoX3Vgyf2dznOdxJhU/9aBjDUhRB9TpRFrylEwUOna3K7duSvEH+AXpjnhkjIHOUBIb5OOl3gaLmWkCC4CH3ZMhS20fYcm+9BWJthS0QKYvI/3ap4f5eHemcYJ+GVuaBRusPf5JUUeWyUqI+N3WKY1QoP+duQ0RqZMdHkNr1/Q/VI81N56Mw/qLWT9AAgnotpOCTOZ3gXVa6PaJwtoTKLEZ0PXOlamd2Kc/hS/HbRtmr4seCC+jqzI8fprl3WMFaHmL3te8rwYpVyFDJ9jw+sORvKLPWEP/x5T0UsRKSh6cOgZ7RDOn+w5l0aA+eP2wvvKtHD4xEiaP5EQ3wbpDPVp8lWxAaihAOwCqzeeP2jLjLm61Qcy0RjpyGeUF+XwpT/PZ8+sPdsItkL0JS+53L1c6wV4KZau2bTdVS6k7EdWw+UW9r30lgL2YImvdcO5ssgMBmrFVJmHpP0aSZS69nAmV9fVENeN4bfrUyJsVRDoW635ndY1coTiMqOqALVwYqdDt5yPUR66FyZ31sDBPQy1eBx/XS0wJOVCfHaMn1YrBAm7Vuq8beabX3iJUXVWsJnsA3anlJRxQiidCvDcDEeDGWAxx0/z88jBkzvuBSi0Tt8deTStZSFC8BxgnneHzHLPdGEyup8ltp38x9gGiOyQy65v7AWgHIEWBsoLkKaIf+gyVOX0L0iEjIc1idZJJ/0Jg/h6+UbUtlbjcJ51BOa97hEN3wvXpVba/CDANs836qjngYmU/SBN24psQ15tbo6iEr4e+Fn93idq7tremxqAaVytlDXB+OCXuJI9N0Hqdf4x3RF+p8lCRRVX9WDErAfYQf/gFftT++qpugP/WVZMSyNyrsLpSYm2AbdZBQV6fDB6nxRU2X1mv9Yr5Z3jd9uRgpXe+EHdqLlTIYMl1Ty0qE1zl+8QZsd4ZGk8DuCkKMz22Lqdi78+J4cuAgtPiYW2+PwW05awdicKn3jEx/rUVmQlOmFQkGZ9hh15MtYDdJUUZfobNSp/hLWCgM1mXr3IQKsAZMGS2SBfJszPpqR/LGvE+T2V09eMdB5gBfymlvtPQClTMngyC/0sHw3EQnhOYTd4szuc0hDZv0MGSKR8uwvymsWJ6Qv16UrJGHf7scCduEoz8DePCCzJfXGYoTb9lxm7QMgNu1TgU7sVi4ISudhnUVhpEfb60lWboU4GRK0VIO8EcCz4YKJugcBUUw2nvat2tQUjSorilNaEQX9OLggUNYB8LatBhec7uS9IAHK8NVcuqXM2INoSodDbu6GiyjTjRFXk9Ny/UfWc6OZXA/v4e078H19k3IuCwg5vzUPMK3+j0fAgdCiZrsIPRBvVF8clMfNY5/I6kGcNJ6qmYu9gyEzpqR629J0YqhPm+0FBRLqpHeuLfafZzftoVozphFk+WZFiMm72rKgcAECFxi2sfbZTQCtoN853Tn5f3nQnycse0GQa2fPrL6+b+tEqSGqYcCtEd/evC3ivC8wDLsEbbT136hQQKV5gBF4KVsGZvA9rTTcDC9x5V74SlP7TlGThU9oidcQ8Liq4utqTs/ShosZQZzbJEp6b38KG8n6FOAzTQURv7R4t0iNSmL32gHn3193c/6AAghBuXAmYxf4HLRpbocPRutxyK82n0WeXr4RZlc6IUKI9SIhm5moERtsRj53RVqA5gFwPKkwC9UPvs5ceQtqolAtlMp0i9/5T5mkhXaZr71CKlieXaNpGqCma9EnSnLCB98GAqKLgyLPoKggWeafE4e1BI9qC6fshes7WsrX5/v9Te7t3wE8DoGvfY07WQ7dMK6dFKX7NXPyg1y8GGjDWvbnidZr46c8V4gdzJ6+Yyd1aCy5I54msF+VbADgYPXhSZVB4ITnSW+UnSWqswyQqfg0bu4GSK7XaPf9p3TcEJBqehVkUpddoxpUgbobiDeStPE0PiDA1qhBF8E/pqnjeKZQiUn2R5EesrazP0SazxHLtiOjCm7pabHUBvGpc7QxQisUM46ijhTJDOd2TS9FHItKBNBq0qFCpsJNowTVv/GVq7f7bFHWIWJ4hc0YDqoNf3iVfHUpKIsHL+7S3B1kTSMwdgXduZpCyaVY2ZY00dMpGR/HYtAdWW7sWN9G5xJpF0FuR+00pn3qaNUGjgre7OaRgyU0OqkdXQjEoWW/rjtiui7G5pgGJzQ9X2mzMf5hjzTIEsENwQgqA9GOwIn9M4nWHILLRIhogbCm8wzFDBFX4Jj/l+VgmKsH0fAu1Zd0zwC4/1cDjkXCjNxBaTW76QthYxpC2PAwdtlsO2pcdyk03OEtZ+1WcP+ZCQ4qBhJwn1o1TxVZ22mHoLA9VVH9Os5ljJIIarUV5rCrRZKypfnH9suG1J6Sv5I1tXRLUvnLvnE+Nz9UfpiTIWPHwB+IFE6Nco3do5+X8u2swvd8QD9hOVUDk3xDgXtUsjxXW6p42RiWSq5aGt2hj3n54WfpgFaDVEEaQjeyuk+RZP6ux7Ryz/epDZAiQJJeTsxmCyWDfbkmrDvU8WfydWj+P9uLdTjAlRzsLxp9J8pkmO21ASQ88LiRbb5vphbZi5S4VT7I1R6z2wsGtYqjbylClGdIQ1k/pLn1xL4VDc7j0JAAZUYBFF3FwItcIBgm7GvAl22JI/Rq5XRZI4biCnMnG10Xe5c685PHB4Z+bzo+jTasnPwFK+XKCCEY+aIZzilbR59DuM1/TOkRYLTcitxvDspR8KzVbkqtrfZyyQnm/ZbmWHNRVFYNELymAPy4pXx4ihdDb38DIUEHSd+t3vRijDH7NCHaUJ+64FilLB70dnKW2zjyu0H2wnqeVEAf5eNzkjVbhH2AeXLP8sTh+8tv/uZRp6H6CG2oOv2RkXMJG2ab+B7C/qJFkwXQ/9W/7d+zpXpXzAI8dluDTF/EX7AKwwzdm1s74gfcxhKO0CxqJ4glHgJuDjxpprmxrSLd/6mHCNMzbP/B3nRBHEFwr17r/h3vsB40L2LKj56dbKpMVZrHUnFTohD15xx0smZYEiTnAw1jtQ+eQUALGLVkK+9eTRlZZXW09zkWAmKqnAkkIDvY95vSyiVNFOrPwjctvXXp8z2P9VRcY9WhdVE/5O2A7HkywvXl++elns93pGQIV4BW5ORCwQ515AAqU8CQPDZAqp8Wd3kuaTFmCZv5+0KELBjtA7CG6clIdLTtFjyPtNrG3REe/3sNXdFk53PjfEdkg2SE5qRCFmd1IK/JR8JAG8cahQ7yjaFifQdTep2Kt8CuZTYWl90496QShLtwq4hRS4/70emF2M0Es/xwNedgTdZdjOq2SshPdoZEFqzbzKYHUekaNTQPPkzKxFZTnX4qhSHBnZRSSaWsCZIRe5ftlov+OK/cRAJV/HatNfGCTEzkrZ59KRC0HG6jbpOabyeQ8IPeuORvTpIy+W1NO74Tv+FHl7Hn6pxBWaroiBvUwy+pL9GHMFFLy1TJ4vg6n4AGYfB5zR3R/nsAF7ihEmpZuhJHMnbHQ+oRMEzcEdidu/pOaaN6XLOJM8042g/0pQffZuFBmJ/BzHFtBor9nF8IDrrWQRn8zjUsY5WjIAHyoNTwBHWXp9XcTcdkjiU+etzTlFDLX0b3WnU+VpzyOJRsoh2K3BOMCmkLs+SeqDGgwPSC/8KWPI9DvU7PDdkky/v6tZJeRux0qk/BADr7jkqRT+vsHjk7kIy6bLaOjMxPh3qCptwtetZah60NG5IlURV8lBxyXZyhIuKYEeETOCDQvUPa1AW8/2fJq/zKitxu1zUvFCqaJSODUMLB6Bqp5Z4w067r7pclBml5OYgYZi4h4jDLo1O+UAiEFjIwZIqatwwvLv+yxHS3mW4ThaJLWVCLtUIbfCtaBU6lcLWh/1FlNZuGOyJ/sqP4JtpHDKmaB+Hb/qMHh2YxsFvY/BbDzAZSVe/CxYoCkx34CI9rqU5I76Cnw5NSHVQ3y5VxepThq7qD+6qdQYmFxZEfw+32kdZeedK63PJe9+Kn5RtxSf3pc52MmFyUKGK51mG1goGkh7QdbIPM28eFHnWWuBLtPnk9okr+aAi7tj+QkNNnyCwrDUlJxR1rwdQpNvHa2R2hDAmir60MYEyCty+IHAYcr3Kuh+5rZnbLnYIcRW+cmGSBUgwRZjCVjvUVko6rqb1YvLEoGZmDDmsyJFvooAvv1nPfvcCaGmnSM7NPQmLDiBMRIGDLDJ+eQMsH6vn8g0PIP8niPtTjoCZuSDZVIh9b6QDGHT2Vf0ezAX8sTXk0OnkR9V7eYzG9alyF9srKLMXfLYm2hYjjF8Y2muW17VAG5ieGA0AJhBYIZO6U+2EX6e1wQBNPZSrDZB/V6ldTK8JoYkpIVGt90GrN7X3drE19/Ysmfj+KvTFCqkkk6McI8jXW+7RuIBCOC1vskYJNoLh8xtgsb0Nj+qTrLu+IbtrcIPIT2hhCeFDt5WnW0Py+O88I+ZAjZ5Mq8HRqd8GIMq92IOgx+qtlcegoa1jDtlnXboZnFl5uVr3Ol+g6lJNk9ollKzemokpzItw1YLnkTNjHIn3a73sI9wPz8T9HDUZ5kiAeAYERhgJAdK6xb90l/if4XJ/8aDkf+CkxCRBWMooDkTIkWRsHKovNkCbr9dMa4jyohm00vufc29+QNcqXOOvfe9RG/xEMj+HR0n0WCo21BMAVIjLTsMKXg750sXp1GO3F0UvH91tLD/HvMWYSw19SQt4esGyZGwc78RfWjUHWSUZ25iGhlElfkup4HOYjXmX0g51HGZxWj/Jv1IrwSN2GZQkIEE0Wn+B4BB9U4eSbkbt5B4cI5C8EkNbJ60+Xv7+U26FJEG9lZOvLrKfFZiR0zKe4AJUXSYhm8G527Usplt28wdXaLIknaygnPXABZS9ntJkwRHairQm+4Xf+UI9LZXFXveTcvtmrVtCT5VuexbrM41Vfs7dCyg5lvIRVRUP8P28LcoYZQ0VXDoIvKiByR9youcxqD8BoF1rInzSism1WK/+JFo6TxMJ41b4LkWqnLOtyQMpaeJPVCLd9JmHf5N29czfUOSgG9D7Yxo9gD++G2aMXfBauMStFSqytWbR5e4m5pl+I8dJHkTAYV2Zo74+xXex/5pPQ9KKe6w0N6Vf0uTLdUiFR3xsR1dCavNS0wO5afiTUp1oX23LWls1pCh0MCMlfKp4mZ1NGMNgWtWLL6KnJNgxR/lGzghT5D4zH6mrOHDXLBIbdpOuH285sxvCNFJOZHK8rw4/JafRLPyVzmj9vAm5+smFr15LGHkgeGXciOtUaMxENi8EBrm3p1I81pB1qtmSkRMd3WWpfU+DLHzxsZqZgfM1ZGLwda0NJvDAnzLsbKnkkyZWsBS3Hr22ja0vKGmp+UNbKcpJI48AeFOqdbbQHBhx2tqiZXurQLQWtSOcF2+fAh0aCXJOqR8yZJI5/bXBnmglHos/j88aSfXht2Lmz7U+OUQ4nAjOs1XOCsVSwSUAocaGu071UehCajxQC281wKEV5PEbPeG+GWULUmt9Ns37WXVAVRmykiSRzC7j0GogLBEKvmw3yurrk1/+i/90cP/FNRbEieBJmsh/n5zDOnUQG5SEAD0mqhy3/zzn9HasPSSMbMob4BM9XRoQiuHaEtJgTjuv407Yva89oSJUjMdUitpgDeWhJm3xdbXQeRSnNG7AMJBNT7QCQzhBkThSEFUED820G7pagKXrhlqFecK5aOy1wxWpV7rjU/StmxdZL2Wab83yTvh3SdM4f+K9gIhkVxtbev2fWmjsFe7f7BfJS6qXHqLDEx0JLRGrTw6P8wtPGDPILetECwMLwUiXbvmkBpMbYP9S4IhFkAiVTp2NsH6EDkA2HP2I+/MnBN5y+Nb7+LnA056T0ocN6A9AcKab7VAh83pAkwwpVVa9uaIGcVOyLlLYqFarwkrGMRwnpoS7dYF70HPtwKggskfxD0xsHw0yCP27bhyZk8H3+QvtLfLyadVZrTbk7v2yLSTWSHqi19pw981ELHDGeBnw34f3i2cMrbNEmlNX0WGOm83+z0VLChF0JQ3gHcvAx1OXM7aB4PlAV7GofQmuqVwU9QOIJVUtKBAzJREG8386007PqXokm/Wicu+/UcormeV3PgshoDxLgJxgVSupq7IE/h0PfSGqup77rvctOPe/ZiBpmHs6rIjxtuDXJ6S+ipg42k2sqlprFx/CFrEjWk6o+/Tss24W40Sf3LiKeEDILvnXVidiE9w2AgHA3WF3FVv3XbAt5KwRa9P+Y4PAJh9qtdccr5P7Qd+ystJCiYDdCqh+Ab1lsyHP7ixn8HLgRwdGqnHmJyQ22ky/OdUqVeZMSl8BJixT/xyESMxjzuIzqVyFCcaq9Zk8GwXrPmDbVEDcBqk1fQp5lRBvZtvvp7wIOmU5yH3FAFsfcXBGnOxuVwyMn1b0pg6kZUxOp/1JzFcFACgImcZnF9RZc56MIgdnHkUOR6ULZ4Lc5MK3mrpmpv9zlgWDvfzZAfQAhlsmq+CG71a7VPFzBrQtgMOMBk5hymtKSzPzmsR1kQ33j86RNK3JsGkeuBS3gsaxDQeA9ILKRaGMAoGp39wE+k23OKfdK4oJRWWxxBkyDCTV1gQY4TrhYfc5Samsm+Zi92nyBcMEo6ZD6a48LEHoTyOj7d5uNM1Lq1ZB0FZuNAku64fIF/pSZrV8adUdlLRaoigArKOetifig4mhBPSvAnBmoU7gjIbCzU6/c3Gntsu0w5/kyTFoJxde/goG26m8P+iCtmmZVa3/ymFITsvEYVsgD11mPZVIiil0ll7qrnVI+WZ0ulBgw/T9hEU90/y0AwcEQcNiiEmA5b6JGBColQ+vngmRPV5w/rnCyis5sCxNIRyF8oXQEMgOb9gtJL56S108HmsZc7EPWvXvk5qayxy4Qyll7gD76QWU/1cIAPbvgBLanKCPmjrwgO+aUa52javL9zeWYIQ1J1r02hJqCpesJc6sPCT/6TH8jJVdyvSpuEjbh1Heh9FA7p/RJ2F2t6/Uq7Scgq71KD16iZ6JPO+VPxSQJtfyDOxVmcQ1tuF7pQ9rIBxy9xsIeZXatgrirvabrHpWp0Ea5bsgtA7s+BoFiV2l4eZXCa5Yx8klAVIDRkVde7yfUuu2BPe5H14TQTxL/XuDxLwbkOsNApq1ifT9SGsfycsooR243kUJobyXKdlvwbA8hzl7PIca6K8aNGV1yzHmtexs4u9ydDeIYgS5L/VQeXwuhE9Lhb/znbR4zGhU0M0QIHUVdiE8GA3WS8IS8ZpAhaXyb1oBEvk1eOx8YvSsv4Zxacfd5ch8aeOfRssHFr9fZH3By0Dozl9wjwzLLNb+YIIv3ETgRihjcQOATZeT9dfEmQNEGwAEiDWWzjy9FFF38SPv5Uh9rdamPaNXRYwBUg7t1+zpWErXnsY5pK//quOO2gTNekcEGTqakh79E1o3aIJ4a8kNi2hlLg4fydcfB8Bh6aLMRRbTWtpAj6hu1bcyrrsgvIDA5Tyz4E02dBcydUwecQ8MQwWmHdpw4gYHJm8UkMW8keSl7qZzuFjPhRPrjuhX43ClIBYHEJ2mXjUZ2sCgghkVF3F0aocNuX9JN1t5BiFqPIWWpcvjmCXV/6lY4tTZjptWpwrM9GnLF2d02AV59nCV99iFKZW9agugj6zfOs+FL0T4rweuq+zfpMIX+r3zXuqnakU7nMBlFK9+/9Q329r+D4SimQZUgMKpiOfcinnKwSJh9Lh4+dosOBlxvy/TBsytbGNmiSXLJkM3xNv7a6pXg0qUlxuudxSXiI6udHj0PKg8NL2Rl4wHAdiW0SS1D1bysqUgePmJMF+Tyv6vnSKfsc/bsclrV1JyJTTWUJ+4PaLbKXHceQqnb4wWa29kTzOn7AYxxPwLExkrg3QSAPDvhX3xK+5gphF76oEm/9m7U+ncvvs2Qg7Uq5roGZCIs4u+b8DhJnHXdqq+7fbb+aw8MyISOOUPcqh8zHJdI2SVAig2TweEoSilr+3SY9MXl5AlygFlV8EXvh9lipBTiPTrKYWgiKk6+lEgf78QxT2lSm4H8twBBPQ1eeKrz3Y65WxelaZEEDliVjcUy4wfnFLD2EB7o4Oya+Lzbt9oQBVRpUwP3adO3m812X+PlbLjVGw+/mBy88GhSlpx6lrs1VGM1GXr3TQikw59xSpJdQHBSP9CWbNtjcVTrB3KLMZskaOZcqF1CfQZIEH/wvyZygWWkSL0eiGWLWKhOw5fARwpSYsHKe66TMNB4fBLvp6MITzS20WNx+Os+UCrzysM7XDK66HRPKi/TgNrpce59VeqzOWy39VAPvyNuoxHgIWBNYz/zz7ivEPwSKNouwIrI3L6IQ/x4t4avQUPnWfjlm2HuvL4mfCVs7qKohIL1sJ1FuUVKdIy1Y0qaQRi2NbcLga8Y8fjuBsv1SQBdFQ7fMRzJNQTCzwMsSDNcIluDKEBooOKOmBdK1XWM0PHEy3xSXK64QFplKuFkwbu18qpdyDGxHJhgfV1k6RhwQLJxr8L255iGL42JtyGX9cc+3tga0e+kq2sQ5UiwMc0mwn2oQoFjhkg0pgqvgCsen7bTAW8sw7W1mwC6dzqTearzUXYEwjg39YSAq8DzxU4BNZV7ewOcqcLmv6n1NxFll6sJ5+MopQT6aUMyAL/pXaQ9gxN3vL61NrqUKoqSzRxQ70p9FEvki6dPlX2nGn2DXP4dnA/uOOKttchasBfANFJtBRnxbpeBaDuFx1SuGEBz+o3e+x+4iNHH1xeYimzURU2roGEKJX767BcsivFsEk4B+l8xwBM263ZDVcxswIvqD/pH3J5HhAv8uIOjl/JbS2+zeaXfT/B0M8GSzuQWekngdZDPyOdANkM6y+JN/jrpTnKf0XUxsspyP8nAucP+ynsMcELI7ChOIzEFcJ3Bl6g9tqFrNKioO+vj+wk1I9EMqPzgBZLCg63isVIyfJYFn0U9iPUq+hU2SZvYNBtkGZtaARj0waXsOCCatsxTxgGK6HI1Zdd5wgi7RgeJ62K/nVDeg4E0kLKbhv5O+8KmNbko5ga8PiZTxtJyIOEN9MFIQY8qNb5MdOkAdlKnrYgt2lgUN8U7zj9emNCJpDJyQMsehjVMB949MPKzB2pn8MViGr6CCTWmIjw/bV7qPKE98sR53x+EK4aT6FoGVNZ8e10SVH01ehOno/w1gfQunZEdlNrcjg8mhDjrUeNgvKotAhySMeOny2/kAdR7VQppWZ9tAc0E7UyT26+nzO6oViWQm9YnF5mJCNqAW2X9PuulpImPWHgvapqq1+FAxQzCHgnBS4dXEs0IvF3gSvFjkl+1cnaZscctq5tGW9Ok795kxsRM1vBvbI4HrbXD3at0BIBF/DNwcCdkq+fw1NWSkqItJ9jBhwBIJ5tJO+B2P2H7EouFkNqtz0KSi1hnB9bwwk2jXJwrB7jj8ONut/3UoMscHqziDS5ZglZjz9BZT9OeLiZTMe5d9UVDayz8DNfhM0k4DnQ0idCD6QVNI+ArPFEQFuZhXOwOv5QONH79C85j7UbIvnv/Z1w3HBvz4bVEBzgrPGAoSglhp6QaoAW2zOo5xJUUzS8WnMRw59wjxcXpMEx4lqltRYYOvDA7PS5w/hlwkGSQiFBT5Bu79ocjQr9NZFAWbdZxznpFMRofjyY2jLOP39/93PGT3VCC0OfQEkclhzdL95OhigBzsq1xURHvC8ivbF3roFqupwLsd1iW2iknn3GaHXYv4knb96DVe4zFBcpKjWqcHo3BsWnblYmpGwTYNhVfXqF7SmxlJ22k1csoRnAdPULRrsldMehfr2NK+11QQfmSvqZ5NyVjhFOlPvvy2S4BAtT9oT56X7xcja79HGBnO9rH/mQTqNwb8udeW0xb9deQLOekERHSvUP3i2mRqiwurS6f/kJIMYj3oenz4YHsszQaQxAxlBpevrMMUO9O73gXwd294HbrdEGjhW30vXbSzf/wmLzJYX4ZY/2DydlRkmeRLL9bdR/iH89u7Ic0OoH+L8nDrFrNA3kCis7Q9CR6Y34lD9aEnwgNuaitEArlV5D4Ml0IpmN3laxp9Y/Pr6SSVHA5Kp0EKaoxeq120uU/9Ba/yZfl8qWScNEkcHEhg/hjjOP6o72Xx4R36IsOVMlTIz05qacWYclHeolK9luhyDG1pNslK84KV/lPFXn5+fkJb2fWrIhMxGZwpLwkJaZvcvYGx4WoFccbIXEIZZWLXCmKNK/ZSZNJAh5Pp6URigV1pHWlK3oiLG0plyqsr+GA7qn4vLQmOb+D6MhtqQd/mvaE75V+5wJKi6pBud2OQQIhjhoEZkWboi6Hz8BvJGTWVtSu/p1kErlEeTdMi7tiVl8x5O+7ZIE+xnDocB4V+a2AuS5V3G6b41TbXi6fdiZsFbKX9hjcWSAluvkvH2lTCDUFKYSq4tahhn+n4iYArlKvIa54gh7sII+fxx5w4qBiisaRjFn5wvGIYMcFh6kf6IgUoPD3ls4VvE+3LPBeW11acrS9gCVTdmSWIUooSnYLm/h9i94Pq7RjL7bAMvG17x97s1nkwoqb4njvJyhQ2v72lwd0AHYLM55szTgAtwXGPqXSvrFvZfsYXgw9XaD6xkN+mqgQL1katK4wvxRK2FxTmT6zUzyuXaJg73ACmFPCVGHI++OxtARz3enwxIufyn6siqQ2N/h+5/jXr17OIiqPWr4FAoGlSzwJKAsKt9jE9N3gAV6MhNvr4sbarkVNNpr8xkXTq3WvJ5l8RXdj6Efkp8kNJWWgESV/4RDgX5lkzN9qCXEtxRrKmctN7S8aXFF5WfHqPWZCPrB6MLTmvXaqwA9v0Msxo6+mVXur5zLuWcAo7VktVQf3FJA4/YriDVE9GYz59nYyI4HkosOaCP3jkBdvr9hHDbHLr+xwWOb8MJYeBJj+QsNohnO8m6SUBkeucIrXODZTIywulv8iiVrIzmVahm3xJtgrvsVr483PMdzU8gYiGQMTIT/UWyaweRePeYje+Y+wsO29TAAF9YksdFnr7QSlMNr3QNcmeNpfeaBR3sB8YrV2T+Smxv8BVnB/w+yKgDD9rHsHqOXJnMP9z5ceMoUVuYfw9AHpAE5HrNzr4M9WzzqIdCqbX9JV4VcF5d2SfEVjWVStMgzh+8+d0DgVgWNOwUfsl1Q4xPW2Dkb+oumT/jebL0ewxBcfpWaflqsUDuGkyDDl2UhCunpIQEWtQ+7z651Sh1lPHypUAGFc/eskF0IjqvW8+gFecgNzhzhB4a0QFfj6wGAU/OBjKbrUTdfoYW/ohhv1mggfAnXKD+IYEBTGc3R3R2HVJ8IR/rG6cl2VaNxvTkdrEiXQ5XxeIWX79x4sTC75eugS3UW7I6NaznDRHMiHAlAp2nZlZ2cCwyuvA064p0njW31tlKpydUiD4dPbnB82u9EnVwDX5a42TMgzidbC+BPF+n7IFUbEJozEHL9Y/RgtwklHyB4hDple1l92gYZnugqz8xetRDp7D06uKg4woWRRpNuQ9QLPUKu1KW5wYJeheftOlqyHKG9ZhzPqfDHxDFfCfI5hKYBO/Aw7WnQbpas29pwfK/TauJ5f4Bu1F1rCyzCktUH/SEHimuplefznNaSATTUQx9nlzpeeVLZalkjFsioFqM0CwItr9x17e926UHbvnlOdBoSvkK6AVfhEXLc1F2JXY9HK8zkFgEUmB86qEZU1+t3zN2/HPMsyvcrtzz0Cf0Pl7cVKe9l0tILf83B25F8Mq/Z7bFrx3jWuRKKiNZpI2LT2rpta3FpDWyioJOwoXWkeXGREugWHUGrqIdly1n6PHqoWpahypZX6qQTtcTgr6hjInNvGGYXrKDLu24K/l75rJZtS2R1eP9GsYAynZGPahe0trcFbfhixN/Bcsnk+FKwZ/Hdiu2oRwsBIf2T3SITWWKfm1HKIbPwc2npmNI4r420FKOI0Erxfb6EhzSFtEl1kkHapstwt7rRjvdFPGK88xw0NsSbZ7PgbEA3wQrEMpkAiiXoJW1xO4OFlQZheJqRqnH829X1nT+uIG5Mn3gyjw4V8IssJu0eAQ6sYgAGsZcon4PAnOHODjoyb73gP2MPQlHqPT04YZEsAsGyVJfYQ80inLzzFFlg7q9nj7f/dEjkpKpzTz9PGJ1iQxXrygomG8CUHziJ3E1ns0fhrPIK1cK89uuLmEUqfSnaS7YI/SePdOTPP3yOK7EpwlONu8EtsoxUnII69vAXXilT1zsBEtEgytEErRh++fZMhUviB0k/xjrp26ufypu+tG/UwxlR+WZs9Xqa3jpjrC4KgCUdzjWnODhtTxI/q8K8EY2fI5OzKFnbMULE6OoJDNo/TAAiy4pKrDo/jz9Lg0Ms5LICH32b4KLYHo2NtIu2nOcrR03H3mVnoNnzHgxeKnFX2hzezKFiJ7uubRNonib3y2NByenE9F+bpRAB+pdxvVGNtKbHfTFfmvbamsj9DeBktbuFXDltTO4CY6O2lhSQUpsuHqAfrrZBzWUXEgLdwyid17dxOErYVfiUyYbOI8sR2RbSYQMu5FrxapAVZw0T/5ICPaHlzussxuzQo3Spr3BCmkKcNW2tJd4NHKv6GSYZim+X8gOcOcCxg+XDXlEdweQj32CWAmV08l8WPaTrcrP9tbDBsSE9iVaKmChwU2YGN8YyHK6FXmAZCrx47jtpn2KpEf1aA008jaXmwx/SNRwdJimSlnQ4NbB862ss2/9geaxmKKBVW/InRdBLLDBCS74I/juw2CNcyW2tJr5Hmf7IBKhIFg3WxiXTV1AKP9l24sq+RLaQS2u0ZY+O7+uA6tjF5mKgZ20PApxQwD6ehhscEU+khYqaCnRg/ESUB2YPiYCI7Ks/V5sOZ36LGzsGaAxTR9WyYCaSXBjYK7CaJSrTTlaYKX5Uz/PYJibkp63IGXXbFw7f+iu6wqHEq1Cr/RgYoHeeL9STXCpVARd5CLH2bGzf+jpnj/ClDtWoyU9Bn2OhSsX4Len7coqatgswMHIa5JC0D2e6jIeHuBDeIEBpciPx9q2Puj32NgZHrZyBSMhNOCpPDF/4q80aQTvgRGKgaVOdvUIXgk7Wm3+CLz5iXwOpxPAqi5feaLJRlrotNbrBd+JgINyFNHK9U9xdrANrakqunnQLPn8z1D4oqqbeEqOmujq0o9QVHCt1UIrC1DY70VvJUChG58IW9Yz8sSL3CgQ9EvdXjEyqUNf7HG/8+skp4vuVFguScOcWDTjJeJs8kEEFfZNgzwHhzEHxcc7FLcxQW6dTsogTMn2dR7wzm9gX5bT7TMyQIomGkZNxvq0vAI84MyBS4r7SfBMJplGfyV67bamhZtV5DHHUHnQGH9yN2oyo37/VHtRu83LeAvX54hpyiJj33H4S5UX0rebOvbFtPa0wdwFZKG28bAvwmR0DxIct58jIh9VlRs3Jy3Xyo/gU7RHvCtlE0AkH1uUmgqXt17oje4ARHl8EtQKlLmdPMqYDIVmRJ6xpIXeHYXzPkl74RP0GCtPuL6amSuMxQnqcTWtBOW2NEhjBJbGg1R7GHVgRwu5xFkpvO/+oONsHRJdo7w1EvSpqAXSU81iKX4kiQV02bD9ioRRmkr9Hv34pnZ6uhLQ+VESa/Hj8h74nIhHx7zgQmJS9eFqx26/6wT6hynYurywUUDgSBuNUhPsopftmVTt+bA8m1D+G+Gg3GvC0tWe47sG7dmObIlLpidEg8Dj8HQSm4kPWmUD/mHzdPwcel+iaSbFnTkn6xaKRSxFcYXosge5O9ZNPMfNAfrbj/UcOt9eCGWRuSW5EHleDrWqgp5mvEAI6vLJwV+QjULyTkwUg0pcXUqfrKj5PYMeEme7/7CbGUSmZD+ad3swh9WHadfQpbejdDuozT+QPKQXgNJjGLQti0zmZridLRCNgtFyZS7TXo2zkWwiNa4p10Ca5WwmscDGMpoVIyWG9/jaFT9NUOjic+9LhB8WehOQV85lmS8VbbmaPPeK1F2eGBl8bfkzz8QzChlnQTflf1Qwj7McD+1wky0vEdN5hJwwZBFr5W4igd0yiFErSt00X76zkuaAfeFKOvHQ1F6cBjKGoIq9QPuurJ9HdUw6gmduh2tTZlVPDzxRS+BrwwIan/OCjC/IO8rMcoEdR/54SqhSHvSkMPdhtWQ8TqDpWk4ei84fYMbKo5+1LcB3+D4Pu7l/6+NIa97817w0rEDxjAHnfpB+oWPI4w5KOwUfxFS86IZfsT4hLtPycjhaCjaIn+zVud7192RgqoCAeaQZbGAS0q827k8YlybS6Nz7w03DWD+BS7TybAxRn4iUFyQ6HPzTJ8FwxFMUc0dns0rlNE9ZSAmf6/NgrI5GJX6NckHKTc+s+u6pbqyKOSDW1SXAVOERaDML/5ZtZJc+iiQj/g2FRSuuzgomcgaagtCJICxDamcKi6/G4MeRiSbLeKeklaK8cUiXnwSeVnzs+xb44jOYQaTG0yruK3pOkwJY+uHtRl2SY+ILmkznsmh3+Mv0afxbsU6dNGewL6KWEeoBkSMEappk+6QWsxSFuoswAXUcPYrJ7FyRd6k9zCb4tjvEWudXj3nCeCIgF0TIauN3jYTGnRp4gIXr4s04c9sMacdMGBM00hPXrhYSp3aeJBAxGr5l27HJhMXe1+40er125RuKThNOEo9OevY1RR/u+Mo9J67inGQTD/IJLdJaca87/ODpSLJgi2H1oaOfm8jUVl5kAc5RhXyxY9UXFr+omJILqMIYX6gDE9svjVBvnLoynHKUxfb0dD1Me4/KUeGff2Yf2rWaFhbRIvPfWsDpBh9GNpsfJdnYi5CLpKmorxt/kBejxGhuvOCqO8sJH7Imh+szNTKlTrNXRweJoV3S8XtS8kYSTt+G3gQIFQ4CT7FmCsNfQHMg0/TwxfiV+fcawpCRuEgRU1forHFbGQ0inZoa1AiimAoy3GklnItFLHgDKdvAnRdxd9uxZQCwS2XajN1dkLw8W3V3u9CYAd3+HnjgAIYjy+3j7N2dw9JN7YkjSuSN+C0bBf8pMXW0co42lA8hGkJttykVBy7COdf3QXmOLDEHIu94dq9SBQ8R7dNZQB5rGW5JWVqnr3VpBpQCJhtVHWrRAjn/GQFaTl1LCAFMMW3RrtVHfWOEohPmdEAjiVDRlVxl77RkT3NIBZggGRh5RXSSmADzIxCXhlLKiVljPg0rszeO335sT7O/5gWDl8kN4+LE47Z3NpoScIfI7pTIgYDjhOpZZzQN/03oICXrEhDh7Cbk6nxODXLzkVx1Fdfap9+VgxH2h1sTzPwNp/GSdWCbFC+GMySbb1rD2XTOWnh5nEJ0c6U8grDaOdwwE9uyZBYp1mFk1LUrUMCn+Bc7KzLe6Kl8QGaYe6bXdQtuofOpasEDgMvHWeOHiPqlfu/QgtO3T00tx3NxFCmMUxoqOOffG+SDAw1QQM8NiQ7nNNbq1zm6CPgKP1bMZe6avwx8gN3UV7TiUnQmEG4lZ5skqFjLGqKdDvA+kNaJqqx/kDfHl/WReH6S4XdFPRkQIv4vwmy/ER0ZquEQbJa9fPS/Js+P7bkvRHCjsJOR5h0reLrDOlYRl5te60oFb8Cb/fDMXX1isNYFVF7MlZGsipuyjgglrGRUq4Ybp3Ar3pf7x/XFRdqc/4/uGItITaKKjFsccUqRMm7oxwoYXJZWCySxsknAZ6V29YTgZDfaFzMaY0q0NGStz6XJNSD9hH5PpTJFeIe/hRYN9XcpVFHlGqhHWOabFspqapdgApXX3NRC5mpZWlO8PTS+LDXu9ZvHO75O8MxJEfB6EPy3ykxTyFjdJe8DUrvXN2ui0iD8ie2BxzZqsOy1PAnubgOT4iL5dxr3J0+CCQw8eHQM1LpCVMuyWgjJFTggSqPkDN8hVK11N9I4B8xZbxDE5JsGIZptupW2iI1QDc3T6DBITA22F0SzLtcTIgaYLgygY19pQClxQgtdAO4zcft6GuOcIBSaggTORmrM54qGu7MYd4kVoT0LXSto8xFkSmlI4qcn9cQmahNtxEhGTzWVlyBZKHBxjnuMMD/wp9mKt/4OR7I4cLukkCuo73CZdzwJMDYeatpmaf0/AwjTPCydITmndUsM69ScB+J8JZzGyQrdI5XDCWJ0P91GG19qs/F5WRKSHpa6ziBIgNsntXiLzhr2i47UwSe4dZiVOH22OVmIcI+IgKZEDIcDAwyWeRtfp5VgLU+AwUznaIKwlC5Q8MOzMdTOzYuMV3b8HPPn9drSpIpwtGY9JXeeSNCIZJd695aWAIcHovHXCNuOaqr0hHs6jOW29Q4FCuDpkeusbPhVZQB/Yyh9zxNCKsdHHKP3Kch35swbpskl64EEdTOl5EKG9Th04QmtSlyLLCSaJYXN3qPltEjcYs8yIrwfQ3bf0RjAXJ07AYeqd9IBpktXkkHQevknHQqnADtxV1VQJYVAZZVcPgXJqFxXjNvCXE9Eqx/9T0envOw0wPpFXv5sKCcSZtl0whAg6Ip7+kHfPiiBB0usbkV0IO5TOCo0J/D80cnftSniL9koQ90Z/eVq/YcN8RVDB1dcdrnEF30GsAPZkNliSCSJguYW0XEuZMgPQZOL5qkbuf9CdVcBvVMtwqB4GlNg60bbegWtm4cZdNepOnOjPm14FFBQznYMtF8K9oqoEB0hvvt2BZSRi/Hssh26Jq+Okcy6f6+NnZHFERdGgWpmoyz8pm1gwE29L2pE0Ud8xg4Wn18np73/soEl+Ap/++qqypdSxnQvAdZaZ6X/TgLifEin56nVxnlBgSB/uZBJAyvVpCMJJiHOTFUXZTIgpQvgF5pw0dAWqz0KTirD0WfzsRleLTuIgheKW3V/I3QORHClcVbiyDqVpvx5nfsSx0nc+aIBQGqVhJ80OGyi82hkVrUPVF70PD1C4wktYjtAzvNnOWwTHQE6IDA8CuyqkxJSEYHY4zrNeHcQmlcjKLbb3r+ZAAwOjCQ82/UDOQ7qqAHiEs4l9EvsbhTZJGV1f2m0Ef8nx0VtD0+yG9IXoAjiQa8Jkn6I7qhn4A7yh0/dT8zH6cKnRM4RKpiDyIJccxW40u4drWvv5Pwmg719cB5VOrK7QCIvwI7aHmxIE22sGEqLSAsl1wyjE2wE34L/Xsvkai3z8zCYyoIE+sVzeQkOLhJSmT6GDoFxgLgZHra4jHGK0oQK8t2gv3QCw/QPCTx8KlQ+1jgH/CKQZO9NfgrQfRTeCivPPIC6otENEmg7AqaXY/1QjBBCLE6dkuY+R0zCKTW6/d/uIgLe71KAYwv09FxFcRqhqhdtJFRpAlRmvNEfcgOCUGWBBzjD7hJgZwLjI6FBReQhZRsEp7dZN+6Hrtql1tWv2pPdbg1buLw82+Qv3NaFrmBkd02h08mRpvT3eZfB7EUVTxZVFaw7p7Ht7dPeFMRpMt4syA2JiBSwWZxLADS2lPwnjwva1xUgd7/p/1dxcocwYAndUwSwaXh+zw2KZaNKY5Vl0CzOc1Zsyr/RosfFtGo4Cn167p125dRfasu+QdJxdbsqdUOLhP11ntzYDy8vVVVLzFoaNjkU26Q+YvD/HrEjxgNhFkbPgRrCftORcFYk2K0UecbQBlBLK/nIEkMSQ714SwbxGRbKv9ypQEs0OjrmFXVBYNGXeaYbCJTFKV+VudnpVPyP9VSvq1XhZ0JTx9qLKMJMENREYEa/6OpdWy4uHXI4aFjcsGBOmdGLlRCF9ljmA5eQ85eK63eg5OIr35UnBtvGAYY4oRdvUZhOf5ZWlyT9b/Ms2JtW+ePmwut1bmNjVI3iA0uBz/e2kemwphwIqL2fEnUV9KX2tsXS00OWBAMhmVcHhjDDqvh20APE6KE4gAknUZ5Jc4D8R6OJ9LeacCirk35G0XMhCAaDL/VOf9PVdqzb1L6VlF78WfWsgfQv+/SXQBxvQ1hMtMWK3mJRJCDmgk/CScRFwMq3iSPkrkEwFgpzE/SesFj4RBSlm7Zt3Dp+6AvxLxJIUon7xO5Kfe0ST32Zui8UfhLHi+RMhEQaRN0DDxD9DJcxy9JrNDrJPRfe8U3nkwcSgWQ70qyR5pokOxDcwFJTNwcQ2SlukaGtGH23n8XheQbJTP4mrwLNbmhrbeqbpNfx3rsGT85IrTRtKdhNXl2Uo3rMHsKx2X+grlBxZhzVcYsUtgb6GvpX4rVveVLzw5kh964e28RrCEXdhA2bAJiGNNySMIIrV/iGkSRsM1D0oyYOralCJWuxUp7Fl6uVl3wUqPPYLK7YWOhs/+Hj5NgZPIdlz0h4x7nv1p0mI2iLoccecabO+3dFbO77oHN5aHFuM0GUgDsgSO7YBkoA2KXGWRzb6zgkGS/y1N0TQepPREsEUSqVW7Uu08BM1Zb4QIg2d8UcrQWEjaGBAXN9QpbgKq+9xv/TNDHnw/PCfqB7XPdiQEjzsyHIMDRCnd/dOW47MsSLn5MQb0FSIhnNscd8s4WK7WoYeVlocfYklkIkeHq6D7RBeX6ZXvqJ5IdlxFa5BCNq/iUmwZDak7VA6Mg2HcQsGj+zMNlk3eivKxUboNtgyQoF50Yf17opcVCmUIdBP9yNzgasJerEKWLP2yM9E//OqfQtLZsr2KdO/bIm/Bk5NawmhkWXizo/JlhHfWk2LaPB+uADHBb1N1alQjPihxG60UR34yTazumNrrdPurScqW8ckAhW3Z1ngodUacu+3bNx6JCZ5uuBCziWt/R4kpl4UcP+rcO2Jyj/HO08apHRjjFUhnfh5QuySP6j26U6ciSj5OBuqWCA03MVH3OhAW1WtpUIxOQRb83WIb5qF4Ft4WfTgzNCTEk/SAR1YU2rqpXBF6S1xMcxFh6i7qqQO+dPQOd7QtqSMa0ZGKS7tKRljHVj8iEFpbrq6bnoKrOCahI/9lfzD8KniIo2IyGutucG/yPatDOmPRhSwTPpqyCQYf8wVObHH3YLHeedSZtovsIQCOZkIcdn0akcVI89BPdKn/jNb2hZdGkWNvlz53ay65YRHpu9QWTqi5dI1OuGDybEJ8bqRJbSMvgn7/nQLaL/mw532sFsU4IOtZG5+urMYdJTtZVzPIcOHnT57AnPWucUwTaXOjjFwnpMc1unopvp1SGCPMtW1qAvZPwjFvskhTkKhZzy+nzCI/9LTfiD3aijGT9OE8ISafTb5ZUY6MUX9Z5io5QuViYCXY49iMowHgxc9aSwm7gDNLEVZ5p8tqBjLnV96K2wwVMqPBnT7X/lRXCOTgY4jf+I6/qJ+jtAOQ5Nk4A+nijF9ggHcUB4MFFHZItwVmLvUJ0eS+IP+FQppU9CyOYVQrAUxsppTkQIbdIZBLueA199FAQaUSD5pj0TfeKrQ1pPX6iVHlNHMci9yOIl4C1wuBLPxREBFzdQzBAc46ZWsPJ9Z4+LOiP0FEW9Zjjp3ykSFPoGguGdsF5EgyzyXKQtVlR5Ti6jQpDQUfsOJPpTZrlZIU9rtTLOZKHYxFG4UKiN1j54sHUEFQQlksF59NgM8X4lkMgRd4V5cAvBZD7UgZLvy5uf8KoHD2e0qbEdxtwijDlfe8+coUGpPYSZxc6iQyXNYz2mbszQERVRsul+oaMnNiM/lSpKT3FdW0NBZbO4oUERIOBoEMkA25yFs7EGYpg8AlcRENCch8XuL4R1ErCkS3ehfzd2QWCSSxUVCPArdiDqtN7kEL/L7U4eya+gQVFfOq8o+9awNc5PBEsTddLfodbuPF6WnCqU2nP1HLCEWsqqabZMXvPjjRhqEwRYAUsqpwg+KKgQ4OkLOJBsCNouYnKCMMlRLEiP7PuAkO4RUX2hkfmyMJRdogWYGWBFQGnZaWwo/R0LA2Zm0gXJw7b50zzqy/wK0Z6DrKeoWJLLWfXXpI7Q+7mPHFQdKXpYBIQ8h9PymHKyDzc16bQG4n/DSVCa70G9Hlt8EXrPwUGtn2OH8mnEJUntOD5M7twdiinumC6WDHRfLxERehpYkyMm7cx8EwbwHNWjKuDa5SVSt+6aa4qXyegNMnij2wyAaC86Dtt7d757r1mJEkptenqEK2AJjGWQ5AO5bRq30vE6wEKc+jnV0888+FIt3kE2S+qvSgR8pSzrsqCBwR51Ke3/eLDGyQ4XZy3Ueo9AdD/A99ct3W97TwksHJrPRbOKpnoaYdi8mbggz0Whxwlrp/fGorJCx66qtVnDwll8f4ReGICYvOWfmPWEgNbZLpy3/qaMA+EIoau21NPFy4309+vPO5tWhb3KUw2m5pxCPB++61ZmYS1PabMax4GrRCabPzqEQ5kGTg/MBIJDqw9mcDvZgg6PEeLujxO3D6SqVBednMezNMeTKuQxnRrArdjpb64lTUKIq3yXY9FIDpuKr4UnDhcUCQeHXIMpqh3JSoNHasM3i6/fbhTrJkOZ/D2OuM/IbRY7vkn/bwynxLCrS6s35/dfKTHSj5zUF4OHFMOJjNuPAZKQm77rg0b2lf3+ByWg7Gu9NP8LV0bZREatEoQcA5z+iCMIxdmaXrsemA9cnN15U0bm5iis8cgT3/B3qZ6dhM6INpNfNkQgEuv+XtaT4vrphs+7tOTaRnkh5oHGKWRIKM1XgsNj0GkcLkV6CEQgKGjyRuXp4HW1b8XM5GlJJFeHHNdey8gSJdAZvDAbU6uPx2B/f+5aHzPDL1skStxr/ull6UeYMk8zwxGegVVVa4Kq8J1BjkDlu9KnK1wf0/chpym/faepbVl7UfbvK3404FFzhBUKqgF3jJMXAQzaS4f7akhLo3OQco4xBLV7twSSf7CYfU/nTgRK9dGcRE3j8XdFq3Wivwy+KiYgFBeNG6QUwtwPHQNn/DmcAo8t0YdD22OMnIDDI5DMfot/aJUi5DJ/bq6A7XYd8Hla+MByp0SiN5km6vHZGObIJNkAwJympYlwY22zsJhiAXyGDpdwVExNo7DljUZ6BVCe5RG7vTyAMlDeIce9pMHCHRWM1TdjB8anHqMHje2K/fhUofWT7ho4/lW4320HkdTghUVcht2iQTr/k/EoQcmtgb591yBZlG1/FnWlNp1hgvC2UxoEgTrqCwVvKPNSiP88emM3JOKkQBcHMW40nYtSSU9+2qYWMkgal2R4vSwUbOVaKECu6HGqQX067lgd/7m42vnl3heAK54a7bVfIVD4AY2Y8NhPNysnvceL7PZ6I6pQOPxnvgkgxeIbDu4VHNdutTdvxCCWGK0v089LmurLoCDzSzOy2hft4dlAVHd83R+vEPPQlt99ftqb1RSxwE0lMokQt/EPJfytcGTnK8SS3R7r6NqldL8Hsi6/BTrnUNPZSurcaEYkJgKUkvthvHnM1lbP7rsWJxXOCh8PIJT1Cn/Deu6qrozLU0MS66nZ3p8lWPIO77XrXN8VHLSh5OeQVjDj+bkNS7ZF0p2eJViAcUyIIm7nFxGstP0EXU1uVk8pHGAGwMwgI4G/RUT6WDtaAd8qXJKs40TqhfX7zuAM2N3anyIrWbg2KdfjG7K5v9gUEJaiJnUfxg+RwKzuT9tTb+6SFThRDILev4wFuw/jFQP00ffHMua2y9F+dWllxeOP0O4OcwWr3VosiEZrahPlglVLwlqmlAv8dZIwPjM12LaoKvxjLsSkbli/2xWvxm6U16kkIU8asxIfv5EXVvfFeTPov/PZqsYC9vFAI8xN8ZgxLWNz6l5euWyrGQ1TAbAphcmzeytX3l0Gau/uO8tcmbkrGORa1VoESEANoMbHT7NbJdl4XFgzv2jBEp2qgfzux2CDfOJH/msDuXf0LNphGyEb9b12eCJhtITz8mgwQsJtwxs9ZqIIrLzDYlbTn47LrXF1qq+UytwzFqAJaAqBpnaiTDy2y9OG+ldbb+GPydO1DWMomrbZmm7oM0i8JTZgiqLbe5Kxpa3BU0drelxXD0y0NWZZAa7E6RYn8TnQ7ln4ncjqUqJaHo2niYXPxhoDzzZkK83vsl0vPndK6nu2z8uKhMflL60Nu3F1kJVhkpQmzWWjwRJuMQzpsNAiZjDx0C9XV/MoDvyVkdEpcg/dRZm7bJyXFom1OsK/3NA9y/teothanrVaKwj+7QK2ywZhh5MJ3a/tdcjtSrHaUG130/+Z6OcoUTIU5D7adpSzq4Bk215sVu0ZC8z8+DP5ArtFOKFLFTOw5viz/eZLpY0tYRUqmPFfVCyY+SsPLzfcXiT65CveRiVFZhU7N+pyl7GKKffuz60EOgLp953QvW3f0fQKYJrrcmDWnSsM4s5k4M7aRGaHwxGDihus6/q2RbJQJZweSeeyN/EAe+poTEUZWztphAoUVLiJTaIBn+naRL4BnY6PpsmJaOsHVxDmLLZfFBYDhUdcx9XFBQ77SQ6ChcMJbvUt0cz1vV9eHX7wLHrscEO9oWkz5IKNbQNvw/Yj+3z9CrD31PXx8pDGuiDilqDFEL0SJVTPZtDAvneehrIbrbG6ZR57wctYj6oxfB5TjL03mbTWcjcoThcS9xfdp3Cm1EwQrSuKSDZ/XsaRyG3ITSfzT8Xp9YP75UcBi3k+5yLtisutNczqWkEoGSu3yGotaZs9Q9cKrFB3gW1gR2+BTNCOeUpVgemesCVZfileYbFnGAR0nayOBWAmttFjogGmpxhiC0OBSivKrq74H5R8DDSmTaH+cmbREzQyYM4Cs+q877+SV6u+5vf3Zaf3fj80IaT4es10COnMlzzCAzTBPxAVhxvi7bD4RdST4awwqV4pegTKRzmHFbDKkDD14N5tB5eQkJgT4RZdFdkBaGD1XmCQeH8sE7Xbp4kktbKGRR6ecRPuRQAW/1QFN9aMhoLcJ/2fki+c+0R3AWUyaP3LA8dFH/w3G80s81aTN0Pm6lvmpttcSN6Jzbg8PYQTDEYfrfmWTsNwg00UNWszAn/7EOLnJXScvkTp+Ihq2hzsOqgBcXDRaO6C696dT3AWxEdC3raL7N7XODe+lMVno1Rm9J1V8JWkp4j+bCp/dLOtoL2OF7jA0C4hzR33pnXKTu3eAx6E86AyvX7M/eob5rbRamlHZ096Wb46zH4lKgLj6sXf2hxw6XVwboLE5F2zMgZZSiaxTrSMyRzWpHn42us15s4QFtj2KfzUb7tlE8xCEWjb4pZWIPXrXFmvdn54XRWAIbO/+dS5Srf53r9PoK9KEdmggeMD7wIWwSqWpJQkGF0zw1zQUcMg3jupqkJYTiCAJUCGpVz/fFBZuKwhgME9YhtwOYKlDzzWwP3+eYh6ol75hR8grTSdRN03R4Wow8Fl01Lga7bqdcCR13MH4CBjAMVAwbR8Ld37XAFO/CGrXXJ2798Bo+/Z+NKhmwMSAXTEAAmdxPYtQkpCziCkX/Owun5Yv0vI71OI2uSaM2X7rZ4CZKkzXB4WKN1AtbdEbK/27mQVIn4929KZuruec+r2ADdZe5M+UvkEOCa8Fd48DkhNmFN9dmlhnVRi55I4a0RYjG5b2J2bRXEUiTHOyIBfBZrAfdLCdmyES1h5uDaW+Q62IwhNH+B97BBCcWCHkJF5V3K087F3tTukdPPgPzBA11V18pDAmyGR5oF3+OOFa8It/uqvdzx/Uhh5PElWw0BXCdTJd38NM4CEKE0uyelsMEoAOJCbqHgyZyLwtzUf5vFfGegulPULzrky7tl/25fl1gTQCtnybd11XXgIPvcQlznyG1TLmKa3mKK5P5dDsFEa0FHhWiBvAgHB574nisC8y+M8sxKS7cll9b9Cc+NdsbX7w90dRlcqzseoZFiDZHwfLqAoJA+khhixfZGknUOVWxVoGGlWu/klmyonVkxQHV6f+2R1kaeuNIKTcCP4I1QvtyAqgu3RAVNT4L7sxAFDoEOQ0vFvZMSG+CH3qC9M+38JPxs/jCiR84gEuNic5wpGcJ9iUA8e4jC6tZnLAUC66VxTVCXWkP4WZTW6FB8OW2NksYExMF9+qyzQTF9wM89Y6UqjYh6/UM2h9SSvqJKHiSW/vPdu1dNYhVpZjf8eQ12GMRPvy+PEA0zKR6RrI9eyALZ2NsnTc/Pr7r6xoxjbAFHHe9SfrCYzrMU1bhzF2LNNqN70C0sFO1qMTzf6T6Nq7INFr+ET4q3aazDSxh+szYRCxcVxRWQkzr1b6r2ecqL7YNop56NGRmEw5p7de/2Jj5P+WhttJYXbi/uJu4XqQkz2zv3+W7E7i1Hw3UXzgmKISQJyJdzTx1MBbiqzE5ppp13bdIJ7o5t3QLShhOJkOKZyLb8xRtC1qPQaJiY2yvIfrlp91rZbjgO8s6NUNlENDhiBdj5wOtsENOQcpAp856hBbBQb5eE2ziQRKjqd/nmBgStTx1M/cI/e+KDUuKlyNaue/YBQJPJ6VBGOgS7HGGJmeY8Z7FQgs2jaBg3/2WY/96PBEHCZsw1hWOqkx01DkNQu6uZzPELjT+BjUvqQPv9juvn7tG4S35yds8uqkjUO0DHL5rqMzEmHA+5u2xlccOeE/nK9oL106fvOpr8cKJsAZkior1tiCAMufnB1xo9+EmPw3zXCAo45J2TkGKPiLWv2095orssBWKcVKl6cdgpl23e/DFMM14gjiG+8/MV4jYBntBwhn3fae0Q7SAuooX+YLoBI6kfFWkKdMPpnO9iAQ/zfcrmBHMbU7phE7gbGQOvJw1Apu+k81HVjD8835whNR6VlqtPdja5RCVHnBnIV/lNKoptxEOtZs1jPV7cvT+Wk4VluswtzY4onRC+SFzc5AHYMvbxccpvEpffG5LEQwDw4EvnQMo6ppcEKRRGVdj4s75PvNXmLctd8U6c4i39ubK4EjM0ZI8vNT7rnEONstn9llmtLJl9Qy5AoLEKeFXkp2+U+fyEdoDJW8IWO9T209CVIn1T/KBvUebwFh2HgWLJrWBFbgtGqtqwBjX+G8MbR4ztbLdQoSZvD7FMUPEj7iJhSc8+TCVnIHuiFwC5xqBT9X7RG0d9yvwf97mnyC3iMfDvLMxlHvEef08EZ5Ut0iPdC3S29pKbwtsNHjf59deYepM2bVBALo+/dekmPGzJfB1fPLyiARlD+IXU0ml6hDH/nsxTyitYKCnwz0msuBAzlWl3R9j6WbrjDcJdxWoI7G+9ETUF8a3sOVh5YDaHpbpWvNiqWWFUOO1bxBoU+f28bmneLTQb7b2WteR8VDjzWRhbeksU0+y0s6PBl3xADkNiFJJ1fDRVdVny+DRgwOqD9W9UsSgdUClCUrsD7O1D/xmS9q6iE/KFZpv0zYbs4GoQyOGBSbZjt3TvGHvYY/MeijXpXiPTzJ6rVgI2OoUeDbum2ZMhusW4JkWxkQ/o842JnZTbKS6+x5/Eo+2tIMuNvbd0wTGRW/eOQBsCR2ZxmH8cIVPZ1k992EAZA7xYQMEyoOzn92DqvMiHu9I7OKaQXFzkzGsdwXLXr8GHDnpFUCg6OpZCrNZx7TZBg7omR5UP7hX32B6sCRq2fizSVyX8RerzRgVoKCSLBYYMmXwH0QDWfE/C8mR5RT5sWTheBj5odXttaTcXYk/JAC3B58v3xQd5b0y0fSdDLVTTe5nixlWhFxRm3cH76qe1fZSnsyw9OMWNL7v6UYgOJEjV4TJmAoi/24mVUW77osxpFW9tWTyWbwgKkkwDd/PcLZzLZW6RD4rHPK7vM4b7lPo7vg9oPVGtMlDNK+weCZATwUHXhjohOohFAIhWaMjEmvmjpWr+QIEhKPAuZGcUJpw1nJmXiRSh3DwPpJRAS7EniL0PBPGbPvEyrTiUM3eyaW80l+CL0nMnNUt8ZnfJj9PiNL9S59cg3V3lq/8X5CwzGVhjLDn0HF32bcu9gMMQyEoxC1+9h4SB1IVzxw/Hjm/V4dtbcPtsCSNzuZUl7VQnWJ44YhoEsa++hUHPSZ1YOlJegrJEKFTlxiBgQcUVK9iobFHRGYqbbi8ZYDfXLlKEnOZQyt5kBdnRfxXGj63Rr2HdSTzM8+2nabrSFMEAv30k/nYoye3K7leu7zjNGSSsuYmJo2T5GWPOKQEKB9ICVt+vXKyI8KS5wOPUr+uqOyPU2vujFvY6ixzh5F9dhslk1UWjIcycd687kIdt1fv4A7Zly3UYkLKU8GLfNXPnEzcxX1m+PXiDfUqlTkedsWxtBdRa/vVjz9hURimUxwIFsu2Bt0JF3ryqPReyuB/jWOX6S0Dpkzt51uXZYjNSfZBY3Jp+caEfKkok7Hb3gAevV1fkQFkeItjyOF5USoVwfbeGFFQ5z1e+bVf2BBbrZ8TlQWqDMtNMfYuqfBBJ/Y7SCXreVZPABVyRam49X8ZohGu5Z4L8Kk2YsHR7Pd1UxZCwSuuSsq9x1maHhbpul37E+ri0lx+sX2f/07VETcIPL1wJGrGhRRiYtmBWw4JtcyK5K2r1K7EC74WFQSS0o4wcgQQJUxSdxXbV/kj4Lf6z13E15AhuBfJ6Uw+ywyXTcr1ycXbti8gmU17dQhP8/fYZegkB5NFzkHbM/dJDfFjBrsGYX2jf6COdnUt/72A0VfhgljqM6zVTdUb1VTeVaqEIYZUocC1vSjwuzFNaFsPRudfC7OUAQGK1rzVUZ9YAYTMvIhTXFICENPmck0BEJH+LA2qQ6u5JBAZH0Lwxp4UufFMTSOrph94Bm5hfEXMe6RNhKrWVpxje4YW7Of4+sIEXnLDbbaEj+YNI8AV+1wNdH0FY+KSOc+AYrz/Tf5mfs09T/Bgoj7P+xqfoNNVid2UZHKqUAU1Y3eFK36L4ka/a7wBAquHuCvaSRZ5GUA99GvfoN12MgCuYQ4zkRuXFLW76BC3suQstwLw+BLFKUE3c6FsSf5+ABWeXgs2unT1r3YLgHbLEKNLJVrcs64n/D23OObSZRnVWrgLY/wOIOIkcJfekD2PIHNR8/X6OdCLNu3jcuATeEs/Y+4HnsZGRIf4pD1oGJRxg9f/2BejBlnEoNQj24wR/VZ/XlCtsrb9avd2vyzZfDRsewvX3K6Q4UQsVNrTLkYdoNPxZyNxX0w09CuKYtHgbN2R8sh8ZORxtuiGfEuHaLTWvxF2I9FJ1qf/QVnKAIp2g91kVqjqhEVPmfQoh/QtEc6dbXBYxQNLQ3rxiQrsZ5w8CEZO47STmimwQo0D04VTZmUYVidVnzxeVNCalMSiRhRnWOi7y7MBL0xjsTa7awk4ihrvhxXsanmm2heR+AEBTsWmKuFMwScT3WXFq57+25kD2BrB3S9D6NJN8mEu+gHbOsFebaqO0ZCocHWAzgWX91x9ls3FeOYwyJCK7UxXtQ35Qw6OGMYwmujDFwwlGzpI4csMOs60YfRhPjyp8Y4L+NFMgYd/cvzf/uLyj5rcx6TuIVwrB13lc24J2z2s4J30n0dKdlnJj0sNeODfxapBl/amW0hpzuDdPGGzGN1dsR+SIqzX5kLbNFnBe9YpyOz6hThpJ7U1Dr2P0aEAvL+Rj1VTIMQBDvsKHllD61CKWMCIj/m1MdmUVd+f95qTVWzdLS+j6N6IK83t5fooF+r4BUHScQ430NULlw4Rv7ntva7CMVN9HecWi+xbt6lazLkWJswtdAjEQWxXOXorgbQUdFv6zEln5k+WyLm+F1tF7x4D+zxHe5sFmI1iPRDtuAsETMhJdQVcxZp5ZqjxXkGaDuYQYbNHbq0gV9bvzD+/QIm2oczc7uxF0Twg0eWSf4KCmg0zbv/oDIKsNCmkcy7QBP1OM8RIv8x6mrafWfDGeDflR/mzaxh0LX+9Ah7evrsX+OOlvkk1ejjYxe+LCsJn8se8OL/RAjAjOAyLKucEI0mf8F4qO6tz0+GE2pDTBtXePSjPRSaBInVOK2Tu70Kd19SrkRz2gU/KiVelqFi96A8ei9mjtK/GMOndrq2T/u3oF4LweZOvhADLPEeY7D8uI7Lmtp1UMYBSCmVGUQN6pVwqE42ZFpetQzh9RLLT6s/OjY1JTzm1c3Fv0wUBOILX2o2tqL7GMmrtzDYhKFsRslKIiJJFcqWqv7Q/Hr80hcKNwUPcXGvhtvo/GYzDWlH2SoI5nOC/uJxwMc+kXg8umWdJu3DkedpZ8xLrrN2PCdFyYMlwn1gII9C1GTCevsUogScDu4laZZG3fUuRZaIv5I1oLPmDQbYUwattS8BSijDPzrfg742pdyMZKJQE3JPjFcpkGf2zbQ3eOi0AzV5Jh0/VXhZatOyL4UeanL2mvnQ19jcR3HL624qE0OjPq9aUw4SOWG1mDaEpW+uEg+elZ7b4AuB1xq1exwnBpNgtFcVGrOdsPuJQKcY944aSnA4UkZC4nRNI+pRiFwxGyZ+lr+lokLwM9/MvQVgiaasV2tCTy28+fQpxZTVk/WX2olNLN2P8rvbZPnpgtvhGjxa0q8uWYAbQZrw5b7TQB64Kiq/wsrVfQpMLq65kfVf60Pg/jzXmX/DMY7cqCDM9xsJGAUARpsep8mUaWDWQ8g0LStAqOZLDLzqFy3CF42hX46Mkm1psJPo7dbkONhVt2AlwSAGTJWWwogZG0iB43WSW+hKMu7Xxn1C4pc/q8R8+0J9pDoA8u0f0cvho0lxsTlDsy4yWTUyi8RtHDPtGJ5mVvA+blit2zOpAiAdxfiy6Dr6Y/cblrXFu0G2de5XSrBt0xAooGLqdEcEtYL4F1NJIT5UCa7Quz75fLQyex4RKX5N/4jd6a70+RHd6l5zMw4+9k8X9Bcg0zVqbKrfnzbZ40v3/1/voDQAlNgzMY7EKeCxzQMwBSQBXcMgeOwn7rToRFA58OnviBBg7jQIm3dt3OZlNZu38PdLekj+xt/6B3umTt+a+T+g7lDDAh0sv9K6O8MGHHlQXU8iqlkqBOr23juVcAoauUct8eSwlebTZIfao7iUNQgZctNP2T5eyecSKGQGDCJkhORh7jfP/sGNtZZMgs7XZ0ESIVZVy1T1AbuCXlatvihZkeMlotyCAy8pFf6FWlYqk+pUmxM9IGG0rBAcMknyCEbwxkIRxlG566/vhCqIPhTAeM0WF4PoQW/c/64rW4ngvW/TDQ/OFpIn2E+Y63W+43D8bL4LFd+V/HHo2yMdodbWWP+CUI3364kw92HnbeHb6vVvjRcbpZogIjUF3Dv17ksd+BXn/B9+ImaV9B+btBq6SyBu9VOYy4FVfuBmuBJDpZoxnZtwFbogLhwVX1D+snwPaDis2HwXnhVFmGN91Ik/1e24FGwbvRhJBOnlWIyrpd3HmDi2G9c4u5sznRAmP2XBiM5T9q+JFwcDLjm7YRDNFskAl2xI13RUiwkA6rUO0YJkZqlhGSOh+SuUe2/C3vQac71W1N2Byq3F7g79HEocDPq+xJKqpxz/ME5OwiEfb7G0JoK1dTCSbYFj1/MTS2NtT/cZrnX4ouiib7E/cgeUPGyF5kj+ruOSAPfifClp2j0bnLXrYK4irLTD5rKGCRFQthOJnzSus289zJdVxvOzckQfvKl+HyaZUim9udoEqMSA0QYw31xd+rrnMCImGOXtXcedqrzo0yVZ8K2Y0T4S3c9UB8Xm8roQd8g0YuiyjpXien+zEg4b7sdiws64BiSxZ1JXwSve5hI00CidI3/GixfowIcfZM0g41YoiHiPyJ0QXyQ5fims0ZNtI1G9zDa/KICqxbx5i4GFp05WHw7xPuOoK0nkrEKn2KVFJDmjF8ZM0fm+WRZzddaXGgvNq99p0l8x9sz17GnvCk3aJBLI12RMHhp29e1g4SsMemi16hxWgU4spxbK8cTmMplk1GoXn+GK76FOTRFONAaNnyQRwVVt/Q1H5d7IXLxRJjTz0NvlanBcMolmss0HTakrHhhuUk/n/YyeXIA3gFWmYreovBmCjjzFm7g98GIae7mHrNULYCq4CYxe+01wONz1ML4rh/VoC5WE9LN1rdYYdTw4O5amnrQXIgqd5YphoSZC/6r1pXeH+y0fT3a6RZUMo9/EFDLOA5YJ7KaZpSxBH8xgCaRJg8d3pTiJl27YUvuI1sE0LibB5zuZZwgFJuiMPsY8hgE/xZ9aiySkWQUMsQL0TMctqck0t5VvzxGB5uFL+psIh9idy5qfpmF2r1vsknxsJLC2KBJsmBCyR0JHS8eTjH7GShWGvjx0hoNZydFXNa5F+xuRHk6ucSTXYmNcLLhw0/R42Gfqx9OeFgwpSMoYu2LEsTQnbQawZ7su/xOzCJJtsWbi2J4m/asdOqfavp1X3Qpl9Eg4kJQ96EL3VjXQplWbPaZD5RtAFeqyYP0i8MSJXpHOx78Cf+xCUWFF+bpFwEOKeP5jWyKemaG227wic6Qje69hAnWKQd4QSgRAU+ugqLCz4anZspqf21uq52+Qezl53YvwGvXhXjkxUBfI4jWFVKN/bzQcF38juxlFk4HmQXRBxL2EH8pQEfuuRmT/nplE0ONGUgxisugoWUW+WyqqAER7JGK3GS8+zFZkXbyEwO938Mz2uPT1ykXXXDfCz5s9Gxwyr5riMz1y+rXyCFp4EUd4UybR57tMFF4bI37NfPBeBozcT5uc5jwTjGQIpglS2QrRSs4vZU+YHFOLi9oSQo+zow3QQFt1dru1iYSRBXBLNuvhJH3YTKXfZbuG6tWWkUr5vfsRvTq4QvrZneorsUjNQas9vpBf/nuJpP1LnjXVyndYAl0h1e5ZQ8HKCbvUD48WyXv+YGIM0AkebP4hPVS7A7Oi7HU6uQkhM8Yk1pdT6b+3/WY4mpM3jzZEk71zvSz7coAnF+hzRdLLaLLwCsF83LAR/1NkSKozCXVvNr3ojJsbQ9ESkV1bV31TvAehy4QajuVzoM4EQDkRaiIxdnu/n/ANhiPJW6M1pB/7WMOAixeJsLycsgCi9SwPZv7klEtl7sEy9Z+1SQamI4I5UdJMxO8HJwd46jZqGEK5TehaGxGopiIfsGZ8qjPKl0x8EcBqvVMQnfUvVuFEv/1Io2T9mTkTKnDlnJ5uNP8VBzhWHYKiCOQJwVKj3Xs9+tI4sp9m76/ZqVx5kTeeX9fwtCcsStyciQwlj9EifgPJhUER8C1lKL2ra1LUgGUHZZAJkszeEznDfPOnYIvw5HRabUO+KNMDWNC/W+eBua4Ol9QWqqk35vQL1yVoz/tQ2Izig6lBx9Q49U77Euxcu2y2kGsMjNfckg9oE5OWs1fvnmjoGJTx8P0UVD9pj8bqg9O3KH6vLNmUR2gdvOzKkes0C6hx9q8ylbe/KsdkeL3YRC+OSbCywSawtRJ4CF2KuybPaqciE2qV2Bux/rSXSUt10l0VUoxEcytEpCtuzuukLgLsct0lXweLMJR33KReZZajXHMOAoYTvm49SOWwjjlf9nK2A69EYwLxZD+PP3a9Eh7iHj3TYDkC1nmYmJVY8q0iBkHzbxckv45VfLK8IYSkhMLdJUksAQv8GVejwM2ePjWbSuO1vHsFwP6fCHDHL/DqBpuznW55XOZ+gulPO6xpH4zWF2gIa3PmLMs6I0QWwSCgcFW+Qq/KBCKcsy0/WmlhQp5Q3PXjIDhB5hr0H3VHpOk5Txnp2VsSqzV+g77id20NwMgYDMcFXpWjP1vju+44zmGRJV9jxCKHlpMiTo/EWNlx5w1nWFeK+5ExMdPWLmX8EzBZVzUcOHTLoYAOueSqAfSnXgIOKNv/GO470awNfST+qlb7NtlDPsD4U/L+BOSRc5GaO15PHTJ7ljBGJr02mnDfFwc8GpB7Y7rVRjkqcrvemhMr8W1q2LF/7MQCeoI1PK1ikl0/Z2+5/u+71m+OarxPbkn80yXgldKbVOnF0y7w3fayoyVTAI2Yv3GbTolkIktwg/YZrpOUeb4sSFAcj6rWvLstZhbesI0VHQDxcQjWOoG/3ZGGgKeUO+v/RbFpKWZHkDQpMUh19UisVCXDaDKZuE0CzRVHonJ6F0HnCc34nIpV/TJRdrPhgCzDL03089EQ2D0rbE1i3WHJIUt74rx3DK2yFiI/8wFQuQ5PSxwL7ePlysXlBjt9CfvYuhfrQam+uqr+X4W4b270gwRNQkUvUY/oHYd0/DWzLBsvCXU9d4SlNge1UUBWMDSeG5WAkr4lwbc8VruNxG0Ro0l/xMbOGutxXR48tgL51KyULKBOcP6OVqKVrC6cje5c39tbjRSYTdn4arMENMzL88VzOeBizo6Mg76jEdfZVWAKCXa3af/LVMTPI9BostBXr3bhu3s/NwmBZd/6FZVqOz6Tkjhf7Cw26Oaud0w0vsjGkn8ogKAgn16vpXrhdWG4DOjRyOVHUyaKyctMdfAI+W1T/MW7pOnrsOB3GLQn5YfX0GRmA9xm1ILqUCMlYF6W2OoDZ0XfaJhqDnjqNXLrP4ADQORblmCBjr4NN0nfT6gAOu3BA/GT4pfIRFHheVL1Qp+NHQghHFgVq4ld0y+MfI1yN8WqpkPm8a+J+mi/RFf2jCaPLkIwb4QRc6nh61Ar5AR+31byLxDsDbC+BCfX5/IhiHfflYvr1MsHI80fGjvF0sXJNVtyqOc4Y6iGOfzvtTMiABrgQyep561SKpSrXNhxykw6f7uSCKfPJxngvN5o+OSwGC0X8D/90f+vi/OXHChXho1s/slQXZqfI5P6K2wIY39+caKECza7TgkpjRCLQNePsxjU28tkcqbEt6JcOs92R2F0fdm5hqvbr4rgQ+51xYlcrslKEuW7r5av4JKM0jpSj8wyojz20VPDtrMP5clFQUUF0yBew1n7g6eijX88TpK5Tes8vnLmhroZjRQ+AScNNGMAfxqYS2iIJNiSpMN411eLpvLseNSz2fydgeVXWwDnWKoAxpNfvj0HNnPhOysKw/NEn5oqthUmM6kGVxoDnFbQLEYYA6fdsczhaSjo/QJPolhoasOZMpb+r7K0OidcnidSj2RF8g1S8SQPRMXZjduY+/mshfUDl4dKc54NrCSzeuKOnShW7AFFBcjz8vuWutwNd0bbTP9WiieWuVDfdfZy5kY473sWjBS4mL6bxHkU7udKgBQVYqngbrP8Fyr3Z83xQbPe3tf2SnzD1Sh0BddlG5HHKjWFQWzRNquLi3q4DLZANEi9cN2ZMdEHJKlXajsI6tlB8C2Ca7kYlT56xmtrWppq2QiJZ3JFbRMOGqWvIa5CxBoOFsGMJBu16cBAOb1nlDLwrz9r80dZwDl/cZyReWiFPGIAMePMFePuk6V+1fXNhb72ne4dnCW1uCy+MkojNj7d24voMemBz1yd/aVLf7/wJ7KVmN8igi6rD2GAla0oGPETNcxlkeHg5IGcXxMM5NCo6FQiPkq7zbhGLnT/R/QWkqJfmGQM3AQ+eLxpnsu5GsBUFkGWk85PL4dt72O9D+yogUYOOCWY9Jjk2zMuOs3u4xJrYzaGKPbbZxyqHgwdgHPcH0xGFF4QC7W6ZzqFBnY+zdOgupPfqhVkWX18VSnUIfBJg1yf7wu2tX6jsXEenmHDdCdDxnB6qkD0WVYZb5qkqFLyQQHVkH9AesHOnt7Me4sMPdB8iD2vDqIiSpTaYm0m/NzEL6NYvEij07jRZHNBpnk8BEbnuGNJnZcOo34bGQg9cHTP7HJJpDvpcN1EYXE681FP63Vfzkrbx1q1TVrYU7NmXnWkP1QCAiY3Nl3pIKaWkn+qPO4wQLszfLW9VGaIKDHcyw0IbPhu2L/dqrzNrwyCR98eTTU3f3L7nf4RDgvvGY22x22Be6mejTr6/EQ+7KN7axx9jw95PsMaQ9ZoysuY3FFUjEx2lEcsPxwbxpk5WNa/sGyhycNmh+cMoXMyOANRbhC9lfBNE7v1ANFxHLAfqukafgrwrlGNpN6DYjsUBmOTEe90Pd7ezYlrNdF+pZIGfp37/qvBel+3ESnbS5aZ1umAPchZhkOgNqIkB7dF4/o2ZnZCiqFygOq//cBL1BhfcKJQ+2v4YZs4IXr4i0A8cHRCog6EltsDWojyNSLz3E42a/R7TGftPC7meAU+JBLQIevsg6S645JiCxW3V6tBUVomqvue2wQFyiY6YBL2QOUr4zQvuRtrLI4n5/FP6EAFi7DN1iv3OkQTEtc7PaVbEOQQH5amENYNspkTqr8usFAw3XjqP55DvatKdjE8liLz4EMoJHUcoPnhY2Z+lHa9UlN9D1CaMDvD0q3hAZzx/6rNc6fY670CA4Puimav4OohwfOxhS/mDAUqrfpOYL3rLTWmfLDNs6F/x7cC7VgKChW8RDhSHbHuCS+/YnCo0VPs4lPFdV4+Op6Ull3RIl+2BGJkoK7ZJQOuVBU92zeAPP5MwV1phF1G7la55eP2cSop40YuBZHKGFJTUWjgUY2Y23JXQRvoIwKFjss+QmV+5Y3EoVNw9GEzEUbaeVqwweiwXNiqxbQMVz/jNzfYqxxbCxnTPLUPG6CGekAk1zlQ9yVd0DBg3Wc+cBNmetRUh+lAdXiK4M+c+YwQ+GgvqLVuu0w6SpztvulljA6rZ32/vs1IVtFPqDJ+oae6I3TLH2J1JRgPBwoSj/nN9Bfk7zSw33tUuxO5ZOw8p98+JY2BqoToCE6skc2N+r04ngh0X4OJASMAMbc/Y7aaotWT0BX30+aGMJqv+f4S6JotCI2GNSJ9Bm6xid56RhfVdpwNnxKTloGDz+pF4JarkxYsg9VsWAg4xYm7pEwduxGNgdE8arFoh+wz8hwe/qq13UIpnuMG6siXOkLEa2YDxLQhgJ69RhUdCHXBUM+MinCZbnrOrN9azZRFlbG8sEJbdb8DmNXUOVAYM2YaWPbdxeQ3RDnNYLYe9Goj3y3nI1wglq3pY388VHURCR1d3sT2xgaHVO73Dj3oXOgXesanGC0UPl6lVGpkW0tVC+W+BvLbOkKPV3FtockWMPHgmfo/a04EEZEnGD1zWCydVwIkM5aVI4q1om1Ao+dem5/twLiya7l5VUlrGfeHoTkseI6XxfvsPJzB1YhJ5ddKXlbPyRGwcjDOjWtZNw+Vub4mkSmcvS2Ds0hy7mbIA0IO6Yhp4OOSOymYozxrQqKx6Sbo7SyWwf45Bp/OaBFLRaPpv2HgipTaHef785RLzB8kUFLUCRsBVQnYAWg/31lYw5n9RMVdLxIrLuRfZTjsErpEMTzDf95HcCyZtBtrjw7oe7EH1Gx63UkliL0m/o0tylkYw3QPmoaCZjX/wgl16W8H9GH5GNaDpHU2G0dyD51eeLatSPuGcAmt1P3BsxpdcIH2zWbFaEQl/et+6psGmJzW4Vmo8IaIzkyq2ij7deJ5//lQp9OpXmUHGT+SYbnX9De4XJVct3RWiWyb/Za6tOxr4d5PDKUyAK0RKBh8zbc6Oezu7G+PaWu80SSD9fSPsIVXhSqoxcyhISPHofcpSiQdHH8/qsaJurmwwi0bl07Y2BESEVSfHDBWElSBe0hnv/ZVx1cJsztMWuMEcH3rC+6Gu8qsb88jhJcHlrOATIHdzt0dbW2m0G8mrgYozaAr4/xY/5idbGi96VhHZGfPq8eDtTNl2Ev2yjyCT0rMTHuYcUqeyR8Doxbd4yiNc+7DKm3jjvaWMp7cSfZw4vthm4o6Uvf5XCdH/xKwYGXIByGkbTyya6BROKx5t9aI/SG4CkUsULY3ORnynpnazgf9EIjMQ3SFhrUwkFmWigvdMNzV3RyX1nMVBkDlahUzwiiWTrG19nw/Z7FQZckaBbY5LkGBnRumH0CEOJDWZe7lufMxJwi849y20ltxEzG/lOc0tR/YrseHnw98s/sDaz50bVhnRpfRDhOVw4h+0BCTkQ+KaYufka2zXNT+EMIU7nI/oYZutTE7wEU9jBLU0/y1Umylwf0pg0+FRaKIev0LWV2YD0rgxea+n9CZTvCBCZakDJOvWHGhBAIJI8kikNeWj0U/zrWjriqDKDPxj62xKWFFy1/R/9WR4/i2yfmEZC7Z7x9wM66YeVcvR4oVC2q38VAtA3Ogd3fNbUireErdXjLblzdp9epuclsP4kx3kSeZsclIBOjszTLHMq8fTEUCGf9nXoIzEz59Mylz7V2S16AeXTz0wfC6HifZbe7ngIF9EwKWhQw2749COl4VshKo8HfsBVelbWxYg3s2PTVUfuMG+Btm9uJsEmlVgQymxzcVfnN6pvzbqG2A6xSGU2YqYbpkkaoLkF7SSbZWCKio+rN7smbv/RRNIrgJf+WfFsIUacGS/f+EIhIfTVH00JkhqZ/0YHdW6EjI9g/Rx9UbzdkqBEAzCB3ibO1FoDZBTKSr00uauuFW4xC6FqRjsQgE1fhDkwJtqIFprweYvm2G0lUifGN1XkojUcfxaMuU4gzKUfBbNP3V2tlvLK6C1KXp7q/xYlW3QQ+G4IHg16vG71NjknLnG5omKg4H362bLAq4DXEL+KFLQ2SKL+jT62JT2uwxD5bOu66owTECAmwjlv4G2C5ojVgINNniPCemLf72KkbDXjcmMoiNf5v8d9MNyYn4JpI0eoNyD2dKHM/AxFwAJTFLyNxxZPcDpIScdVADotgvblNnOJnX5mxooxy/0/J1nZjrpwITjTtbUr8fv7Hk+k3yALaFvrKc2EY4uRXdxQjz0Nd9Kb5v5TBJ4isF8/BmysXzhh0PnPHKWRFQ8KQTImuAvdMsBf4BYuHMhyBZqDeiAAavFdN76DVP7AJIcfF2C9b7alw33j9rmk/oSErHIbvbCfg8OOOPGR97PVwu3cIuEY+NRoUtVQS9FQ5cNYdQFJVGUoekQX8vpN4adRdaBOuTEN6ayatl4YhiA67H5CIh/uQfpQmn6bMh27pLtLN5pB6sgVSMOw7ldoJdbs62RalLYjygPIpfLM4F3o+z50TSkJaxRKTpIzyv8bRU/M9SNr6uM2lVO2F7QEOiEctxzQl0VRqHzJcuTU0aKHq4N0u2dA2NGOW//Mxx/+NbfH+Z0cV6cLABpyuiVMZshMUZaP3Jd12utSGexNayy1dK91RfYceFL5Q4OE/key1nToP8D1zlHivZsMv6huN83s69GS4cfDbBdh5B1dZM2bKDvnO0OyiA5iB7huSufc/yYYvDrE/gfu6123MpLspMktfN8K/ElR1UTskKMycSLxf9RvgoeJQ2jAAEhnmFVOyKh78V5yJ9OSP7KlxyZN3PuugymT0uXih0PP2/oKUbVGvDAv2X72qso69H8SOej6V2fnDHEvcM30xb07lRdcAF09KujTWI+uDNfexwqsN8AT+cgDLygyRSpRxfHooU81+YZtFacbbt5kqV6v+YA9bZQZy8lpl6vnB4W2YMr0ST7C5IMwcLOtbRsgIXwHHv5OznzL4INHijLUwVywDzeyCisnUyptAnQ+rXpCNk0gjWiBhIoAWJT1nTkfdBwdJxkv3RE6AVdQTPqMOCzwrsigzCW2b/TxcWipu1DK1jPHdm+DLcQZ4iYmegWz60sb5sZ/iuIBHSPt20xLg4PROqracMYH0AMvMcBgP+JHtj3FSNOlYZlvQU3OyIWxSe5jedtEknsgL0yibJy02dg0yZ3H3IZ3xQmPjPcSAUkICjA0NMMYBMGtOl0d0LKHz8dg/V9Akgw3kI359ygMY2Vu+dzJWs1kCUOdVQdaOd3d/+gXMQI2aaU7yEOIau9JesmuPs7EI+rorj1iJaLC8UPafZmi+4gZ6qurMU3RVYHY+D/h//hrr1SClCT4rOxd/yARpFlqNLfhSWPg57A4qJJyfjOvI4/jEosgKB8ZBfS3ipzI3kJKV6DwQg5KNA70/dwBwCkp3e8pGAgToLk6Yms6xR1+1sDFPTnC0qEgnKT4CFl2BdHVX5FcX5lIUFjM+sYcxTT5sfXFm0bT0MHq5XfqrmrSKuvxchB79FvVTBjT12fVb8tkJVAZrDtDcm0PWjEzM/Pi08zCyzNehrrKV8Wxs3hpQUwA3q8z72BTQYmv+r/GIbPgHTIbTkpeRUdKnWyMVMarO7OV71IKJeGbkADZ3tXbWF4YIajoEtjguD36EWzXfEbrOgcCnIt9hcnlMczqo3a7WGgdPb5FiGKloDi3mTq+KxB1e/wyd9wczJ+f2foApRU1Wr0bjtx/4W+TvujnqZgyxiLKbPpEGolPsoHbgGDteWneDaEELy8cBPo3Ljp9x/iPnBeL4alf76jeHTLGRAjszIr9TvXFqHM+mPFk5+lrEZrQT3J0yKy6AgJk1xFKM175GJoW6GqZa7vk20QvL2vTbWo4UX0BCK3NrG2gbbs4Fg1hk3b91c26Sk3v8zRVamUCCE3opIvJ77pqz5boA9nZyc8bPeLmZHLv6Pibe0eGTE7Zo2//bVR4B+c8IkuVsDLmHVMxM4LvLTeKVFzK3M/vpOBUZ/G3gQNoff0thFFrE+69VcIGSICjf0Rm+TysNALFSyaKpYjS8IRga2BBmPkJjLp8Oypxm9my169A5AOtTvnOcvFYqVLKuinC0LoVxrCSEOE/497sScXYg7EpB8+s2RJN2B0xmQ7eNXeXURtV7DFpPIrhuYGQrCf5IQJa3pUgRqPeRrkh8v7lBrrwQfkUl8LJZ2PV3ZyTbaXQzssg4UBTTCROsQmKWMDcOO9pK7h/ADqg21YMwsjzNqob7Wg0AWvyqxdYlHoecP1a941DS2JJMUoM/SLZ9PKvjnfwJ2aoxiR9VUQvvKiSXPdEmUTmVxonT8b2/S17DJP/OnOphNzIhZyRCjwlmY6y66P6CDyjM+25DRgZnjHaceyS7K0YySg2E+O7cbQWf60m386h+FNyexbm1YbHT+rHvBNL+wJHwzFBepcwtitBaqYtocCMSebAqUTSxmnDx3nA9gYqbnKabQBf0S07mO/Gur19Sr4yg5B0zMolmbfQqSbAYoZ7ZLN+56U1eg5mDxCmUsczhbXT48ZGZTWokVEYY2rv+QsHWxnEI53mYieyz7Y4oe6zG7dJUK1TGMmlFm8kgXQPsWQkymcD/YEwrUD/TB6fNSOhQ0r6Lo34b+1nELxPbCTlWDeFCpUQ9M0dfbgbMUpFptLgYjwtASZlh5vUVftCCXbePWEVgb8uEA7Y+0drjDGOZuaVqYgIu/PLwOavJ2/97sTni4H2zImzEbAMZxzolEtN+6EukrPIuyQGpFvshnhHXJUeLgQLMnolIYcMMFFlzQJ5Pn74oSewQMOjuVT9VLi7IPAaG1P/H/u5LA6id5u2M8qjN23FMUwhMFOhIo+GV+Ox6gq7ILGDw1V8LDMkGIQjj6BHKvevMilEZ+HOOao2k7OMBcqoaX/dVYbw0fVj0xAAO9gZjWLtnlUD7p5Eaf7wjv3Y9tCSOeS314RsC1yKq6g2RYzIPAog4jRlVzH3bt/ZiGqRLDH0yoQn8gQBmsbbnDai9kL2aDi7lumRBM2T3FT2JVqi+i4czyTfN+5TVbn7gIiQ+2y+IWTpxHkei+FQRKD9bzhFnmzbg4p+euAeeq8Myrr+V++K7bwAMvW+2f9UNu3+UaIjcHNeu5Atn+J0RWGVWhIOe6VKmfOqdtET7R2QEgPSRt/Re5KhtgZ42b3DbiVZzlrKg0iXOhb4eTbxJEgjdzMa+flpjo3neTXikfA6fg88AoQAF4qntMPGLKFGDkWSeNcP16R66Gv3QqiOcxPgSSdJkgsIzz8OXzuR5zBbj6BNDSULWGgqwSAAwxpqHijFtUNUJV0IWKDfbdQUjwdenbTUQ12BzxvYatPdppeIvJna49syG4AvXWEsZIv1/ymKCZFSXixUyPE4Zf6tcFQemVjNlShgRo1GJg61zGijIzRkyZDt4zV/EYlVgs3GmlQpiLgvXqbvbGOEC8du/BLtKHhESR5Qwc+oCRPIfwTSUucrJ+eK+mWyiVZA2nX4gHHkKgnH1NkLizSafrZGf3iveGbxJdNNFyfeqXAfJxdbASbBsw1+zjvto08Wb9TWPZiYooiQQGS9ylWQn4/cWG5hwZfNALPz0HTLk432d4qXIj0K3r6WCBj8+XMlNVIxYT8ws9Z+GGjrXD3MkpdvTntVRydFf7kXLOav9hpTGbCjTqz1QIhzwjlIr3tI3e3dG4iqkjMWp/tpYCOoxwArDAiDjxHg8enPMmEzYDPh6CBHJnuB0+caEezbyD0brXi1+T1eA0rsA20LJkvDvESrm/OloqqqeZwmzbSlvtfVwgSHF23b/NhQh4Wdm2vLW+T9OXNexEmRyC0eQ4d2izS8Phx2mhjxTtbQCk+Kq2Jqt4zO6G8bF1WcvsEhBc6KS7tnswHkbnIoejwpNEfkZQQHZE7tEf4/x+HH8nOMk+2C3tyX88aU7G7SrdMspknBTEGKm2PDEUGP966xy2Ddj79o9/+EAcWIUvX7j+LzrH+CzkndxSfh/tH0t39i2vK3I2K0Tcc7OeInZ6CTLQMUY6TbayCduxPrvP6akibVWrn7Epj1a4f4q/2VrVsj0H1zTQPdlrL3w5vF+JbxBjgq0wIVkuuYnm1Yr5GeKUrbvV1hjaWxCTzdBIBHpaWGyAnFAOUriNm00rOSW6jy+dFY8DEHgLXQAOIdg86NT/MJEvDQ6WKdJtL95JHnE49/f2hE5gPwDTR77iY6miwGuzkfjgmMY3AJAGdXIyO14X0HEpo8XsBCJgLtCe6iY7tOfHt0sgGwjUr5BkQBdGZybXI4LKWcShUD/v3rwLzy6PRNTRfYPpRf8+MD1gB6Z2TvDPQpuDnAcA4nIbVNro1O4idKhRQ17cZ4ye3umcSCDkIhx/IorSPfbUC/PB1O3nfe6F55VtmHR2lZN8gLPgNLDhpsFc77lmnjUAeh/f3qXbBresGtNqSv7DQpXE1ni9AY3GQJWGziq9MFx2U2ayyE5jrVkez262aCCrHor+Xmm7tb2mSkejoWFo0Xqd3cTh8o2BPA0NoGjs0cjfWXXbL4OY28AsFi8FnkMH1xc2uSoB5y8fPzOXjakdSae28soKvqW5lJ9GsNgX8kbNHIQi6x8VeyD2K5AYlzz5zJ+KiIePmTUOeO8XcLomtgONEARzaPic8hL2an+fibAIJLObWfyNHxn5oRe+qDNz5eBbeZoKoJkyNRCaMT0x39lUF8PtLVtbUCn2Lt91tnuyIVIWEQdMRL6eQA99dqPgdBcGasNY8ZtwX6AUNpPhas0f44myJMcW0aFdOvK7EKwPhRq2hprsJSgE1vFp9oC+80xzJP6MFzye6sNOqT7ujzOQooUfbCsXFqGFXmR9Ye+T9XftfMkTUe7JqSeDy5dIlvif4Jgd254fQnHeKANyKmj/WUi9+DR/lHqo078csN+D6ipUw/onVjxf9w5bNjBJaR780sbNpE6xz2PTozxksdFBVRtu3JYTcq3hS2BfJPwl9+DDKNpom3McTcTGf8h3j+fHHsNOYU2Mog1KqfHX1BmnMl8YAiV5Ql7DTpHYLzd4XzjvOC4ypEl26po8z+w3D5+gjXWIoDpBVC2vySTQ8keCrx7XEwOuwIapidu0HVKGYtmmACkL6IlRt0VzRSTQd124TyVSnmOpQ0wxEQ3P3k7J/9NvMB/DQAy+29/Xi0aQU4Y8VTtJqwV95mHJgSatBDuTdAhnam3xSo4OyCe++flD1AWgUCPYpeCJ5K4YlldMh3hbw4kUN0l1+BA/tKDPdHPUDEJcsgBHBAur9YeF7HGDyeKqIOq2e3IqNUzpRmvBGDWq113QoszT58mfH5LK78PnQ8MJ9vgQbVRqsu+b/4Lk7GpMLZtJo/CEpTLK/SBYA17BPmZjXR6fyLn4eeApY1P0pEJjp4Rf14hD4qrJTJPAIaoleCB9sERCN/tqKZG/RrIPh5W+t+rs+n/nzD7Zo7T6r5UKXy71TIWNSZb4RwCBpUvQ8ImTme/Q+h0GXmqVVTzCfkUix9i/GGv4Lq3H+CXycXk1LuJkvD1w2JAWvUSGLCCdcy37+fsmErZRI+O5N/wYCxmgAEcSuVyHX6Bq0zRv/5O5ShRPSyObtqpQ9quwcIJc9kmliVVC6NjaO/A/By14fl4fMay1N4bHoW/Ic4Hw80bSdj6/9FtAghesXQIyvQl4piaboefQF8nWfVY+GPemLJ7WA/hIiilthbtR27BObWTOcJt/YAojyGpEAaD5hXVVUguEXu8OPWaXgLpzAIJGXgjoPkXvcES8MrSZ9ZcHF2XK1Wtewpg6v8cFwTtbUATGHf9f/NDXenvZxFDqAQ+0ADsOweUDi2FJ/tlofwRVRsI2iwyPml/8tvd9AZ5H2+xa7wV6a0NFzT5wTlUAMUAl5AQiTlQT+Vu5MO0HjHfr0zuY/V/Dp5YqjuDiST0+hlFgkqlX5TbhFHxmwPGAAaFHtIo6K6btobVg9rD9AX+WlHSqgzhgK+cpz/yNS+zELLYM4EaBJDQwXLaqQjViz1Iilldbgk5HIcxnICXfzqXNe/AQCXhxdUkEoZoTGtdPbRKWmZucs3rhbzfZqNoTO5UJEjOlBeCPBoQBv8nQ4mNW9HEGb2j6k8GAogmVMyb87E9JstFMbpmcLUmzOxiQvTJTiJ8FGHffKm6AXvgUvzaoOrzH368J7YKu+39oWtWarqxOsapTdIZiFOEoHcw59LkunUfTnQlwMdIyUF9N0EZvMdaQCn49a41Jq2u5zI2xwe/UAclyEARh9DfMgR/cu4nFbHmdUuC0iI6vd27y4ecTRquHoyr7yFYEyCC9kkniub1TRIuCZFJHnJGb+kCc324hA3h+okvibMPlSDTEvzhtGV/qhlDcfe0MXtnVi61lWK2Q8SnAxAoiAWEMF226qgY/8cTjErFfFUNCXWiNaxCs/U80oJh7HDsuAO4n9CUuGSDzqHJhHniMj9QtvF9NJPhggNQcc0awHJ18RuSoYKD47SqJ/gj0F2w6np63GvKJffNq1ypE77PesFPVZ+TofeZKce3vkwCzMTtC9boD/hcg9tpiOEumRGwyXpeZtQpO+qF0O/gLqpygBLkLfxzVZ2hdngYu7254A5zLd69VSz1teSWNWx+5U2+T/Bi9ESFFrxJXAe97DxnMyP6yQO09ZNnuJlBGj6uxRQtz4fJaWfjepkn63xvvqYcqyflN2CDpJSznc+ZqT2J6oAo7F+XgJKhtunm4+muEXYv4OVqG4feVFeKJvO9szh/lob9rDorUawJSbcylXlpNkcPURyAcV73SDa6MzSrGrCF0AGQDD0IoFRY1oGCagYZiMkiQqxTLYOPHXiXUS6eDQ9NnVNLwRw9wG0eh7f1KU69DdQSB9ENuB6Aqz78oMc3HW+pWyw00Ts5VpoUAh+lgGjeKhNKJWT5kXKdWVW0tpiqcuvMgzNhAxlYHjiLmT6egax20YB2pJXBz12wSD31WF0yVxpDm52kMV6yovOSZjFSQOG3Z9O43pbfkOauppVaPakwqXk4wSjG5h3u4n4RUR/bCae5cmrxZPG3QCyFC8S1wXIiUVuAahbdj+mh3NdIIHXLKtRi5YKTuXzxQc7QWJ3koWg8A1c/Q+KNvwJBMTUG6sB/lz2agcKceZ56QokYuK9lE1Zyj1mQOXl3Ag5oms/j9aQw2siKSC9dMxTqfDbuVTi5qIIs5izikmftHaAjcEX7T+gKgo6fIPxblbxLdIFMh99ke4lY1B8SjedIn22cNTKHU/BL4PrVtbzkl5uJ4B1Xgbfylu7i9dnLJ/HHR8s54EGsUnRpzXVL6NQJE0PHI93RIFeqGr2j1ucETE243ajC6pDv5Jyc9GuWvuusYxJ0Yflc4oZrLJnKOPZu6TytWWtWlIxVSqWuDQUUGAlr4633Cc12pEBVpUx8h1tOMYQ+i0mXYxS9gz4EqJUOBmn4q+DPEaV671xi9P4RqGpabMH7VRA+QpssZ3VacSoYMLouxIPDMu5QcagFEYhGlOoVPe1s4ovGAELkgQ8cDqkgLdU56wXuEMJF30T2xuEJQ7uu5VqF30r7/cEwNEQHAhaYvsQeaND+3rtvAHfHA0l59N9d4IYEjjb6BmRUgHDVY10qxVykMD5q/UlfM8cOg7gLCUmhhz9O1V0nkNgWXpQ4A1guKnGpxyIKi5bmqN58exJrMrE4edwYW/af/DbcCxWnoVGsM27no5SYmjQ53uehEfAg2Qvuhtnt76cP9QTcg1U5+QV6Q9kD+SE8YC4v5Rc/ObcyaeyVpfyXhO9UEe0dzj5Zh9XMYNDnvISZd7DDWSCnBLpe53avpE5W3YpSsFRsHpOE1CQfIxYzkZIawbBEgvil8286DwXQv7f6LNQdjlHffoHsQyJA1FhRyEg1wpqsLF8pHqJjT8z4OnO0k1eZqLncHAf+qDzM3z6nawZJgTreNolS8NFK1JTh40xEATXshTzGOC7cOhxdPfr0GL2vbefwN4GN5g8udxKd2WTcv3KhySI4i0f93t7xAHNJShLuG1r7ChfRYquElEZ+riUNYenu0KxsNCZY+uB8XVTDzhGKI6gus8MOgGt3gvrm65syeeByEwmXF4Dxvhb5hzG7YKvtdlIOyZM6HIad+3Lb/oJkUBCLMhzh9tKhgl1VGPTCA2YSxOZIXeipNuzd0gWnve8DwwSE4f95HhhMrxtpL80kCE78whKJFgXZoRWvETQ0Ak383aB3tL8ZAe7/jdtM4UoC/iaa37NZbCXS9h5lC1YhErDa48EILQhLmZSsuS4qMpybrqWA6HcCLzZtd0dlQyNaI+E1uULer3pPabJkwIksA3dJySxlGcxqddM2ld2fnZN2cf8UMYR/3vlv02aKQauLF9b7mjIudxYyqbqEFyWSZFiTSweCLRoIjQbVqEh52BwMJUi0W/g1P3VVTAyk4+dBru8vmfP2brrOTuBaiq1CI9bqnHaPVUpUGDINK4Jkf/VVP0sNuipNhCgu+KR6ENt7t8S2vRVtuwgegEP9H9bM8HpJgXC8bc1PhzUlNiDBez3pBCaYHxY0FeWp2RAoK+fZwyOwNW64fdoOYvgK2wuMv+irOI3OOb7Y+WEDgqcoxjHexv93odO6oTHba18hKeIRshiEjSpBfhjpO9pdjsWgA5pLI3vXBeG6GL9LA/sCsk5KB15IC5zMvK21+U30AvlPlQVtJwRctQ4Iidnm90kJsDjheqdhDLQ6yCb9j/bmwFWmHj81Tfbz0fqPdsNVfBDnCN1s5Juaq7dVQQku7hdk0GAAS1SLlyW7YVBYh5n/lu6fAlTsuT3UiuEqXbIi4GSor4447/ghz0QICS0EnexAiKljSpm6Xqo8FkAS81gw4SuBU784nQkx6CKg+vwsFIkQfy1SCUcp+bSp3323QCXQuzN4vqFBdKPtAYdKXxw5wzpXcEhpD0IOFMrGHpGczJ4p2VxEgInIwfotIXqxH//Pr/hlNW7y2v864ljWJHooaf17RXPwSmD+A1kq+OxAnEkvjHLGbWmub+OVRNE0YDl39U1D5tiWNVdki6oJWPXhUNdXi8ZamHrDw1LBv4zUPjt+eRtzDUGxXrFzx6uTmhd+8ZrEcyaD3SibHKGH6sggEH/NlwkUjvE45CvdbskstCtmPvCau7f1VU6sVCv1dmzICY/tgt3l0ZJOsNz3yCBIzTbqM8WWSqYkGXPTHqNCm73Ia3xKhN4wJLUzqZFeTPYOqDsw8a5dIdPvzqq0Jrfbge47ZbbleUqmpW69JVM/l+iVrwJ00Fj2RYv5DHzJXm9QNVeBZjkw5DaTsMHZjeQ2vgmgexEi2byXPeKxW0u/AGEK201sckQ7FfAh0TJUb5Sg+BYEFyzoTazxt6S8lkzoVuxSAU1vVC8ppUwEBCBblyEOTvOJOyeczZ1lvE5hPDvjyIV+uMgacvLEkPPu330K4Ht4u7XMYU4gc7rSGlUEPz04rzN7070qNPTV+hd0FjcRVvHP/CSrvSSjr1lmHNBGpx+FPJOJwSOy5FnhyhcwJL2v61F6bFGsnHKKwmjZlGlnhcIHVTkLnW+69qrl8DaOndvmDxykb1+F38hI0HW0W7asdrD3X92qEYL3y09+rquI6ViKnhwm2+Inoe6GZBNvHUg+Xy05ynzHnIaObpSbCjZA+7Fpmf1S95A3B/c550T0LD1u6RGiH++vyD3gJ1lz3GM5JFezr8NpbpYaUWytiL6054PNB8IvXCNPHDYyYd4/k6dXUYpWmZnzpPFuQMHKsxnX7WIjIdStVFEXDYPnaM8PtI86n+RRfdlECBrVwOYTrRIsSrSqtsVe4iT6Pqvr9mN1JjASSOLRdmQQQetSKBoVLWuqSz2lbSLhyBRz8i90EGgeRCkfE2fpHtgoCXs71lurgyh2LYYfiUPdM0Ql5naUcz6OzuB9wWibzoe9PgyRRt8HJt+MjjTQJa7pwExS7ZNLlmjC4T1P6EV2PddDmZUzRRAlOOkTB+kXe93ltZqmL9gXASM9fBd9WVCIGnbnEkRoXtMvHKGziuWV7eyHLhI81eHWQ3a5cZj3Q0RffAc3t7NaTQnF5/NhXxxv7CQyfZeBHy9Z4J6+jWnvJ2Y+DsitD3GbsyAEZNMGW1i6XZr8AgM+R3XRFwT+7lIaFhN8N+VxYoqVXTUiIE0dH//u6nqV+f25ojaC5lsxniunHHRLlWW88fa9deFsq/Z1U4DhqgqOmgd/T8SZXsyt7RV4N/QGfU+vvSEdIWJgORY1lsFT1/Bvo7Job30Ch1kJ+zeY+BWMRHJjtyQBiCDA7NfxhoeWKIuQ2BYpA4Y55BlrZhogM9alw/Ze7WPLaHewSmJspiV0ZSGwKFfavMFdOi0ehVj5phCZGRueqBGfOLH+30MW6tvCzvcKvkjrHqx/CcttdwuzKZiHMYpZzQc2/FaWtkwPZEP2YFAHlsA1cB6oRrxKzIhFM2ueaZj99fA7A8SXzNC7hbeCANicPkS9hehRAp/Nho9S3oKYPE56OJantaNa15X3BB3WuXVw7WLpwn7MjMeJdcIi2Y1EHGLfxuYeatYWFLFPTU0dFBdB6BmMRxWlhvenPpWfY3zkcI8+t4dhHfcRTlbEywl+0+NL6Zw8ZOKEUjavjnlRpEpwKz3NcXeyHf5HGKEi/6/zLFNdTMp89066AKW3qYydjUYLe4RAaYlKM1WFmVWMipa33978yxD65br35CGrU0gHt8Fsx4GSkI/1V9JSff5cIiROYOhd025wzflP4AOyKUYf4MpFRdHYkpovhx3GKIO4IO3cCa8V9BO31iYZ/bKqCDz9fcodvZzgbjhWlJ6tE27hoZ7N0zJLQQqLNJro61HfH1KqXJvvhBDwhqAdrE96YOPVFH/TMCsOddZsh28fwecmpyWEPTMX1ymbGYu5SWv3cPeP9rxCTeshOKvtrpJhfpkZc/i138Vc0llILn/+J83V988SL+LQh4Bxmqyueir4vNA9XLx1UzOFNaiHdkFO2gN7n5AMiJlzJG/VY9VW1mVsr3hyoZt+46xnnw+d9np4nx0wdqguBY/Pb9aRdYhFs2KOrQALcsS4SE0j7EzBv1Qszbau4WmmtwazUp/VcPQsFMk1KyhcFsrU5yoqruDI6EOrJETJxAJs98ob3NAwxWqugESR660cNdGk99ZQpjuGOsl2/Oh0KiuijoOjJ+G6SpLZdPMpYzWbBi92T/EbPJAt9YFA7E4reX771owKeNi3qB/NuVO+NjpSEkz3jTy/k6rn1M8QKtatO4Mn8n2yiKX8FEL6GoDa6Vi1dM2gEUNpw6MfbIheNFJkR1oPdeJDVVhgsmpL0DUgKvAGMOYlcafOFgelsdVmJ0h+H62zDwgpXj+aqZGxfDwbKJZW89LYyV5fhZITBYWCvkrhu5qWDzqJEEAWCB7LXn7E367XPuLimYfwts/T0i3qb457WxcZAkwN0nahpEVgnmPauux8O41wzKE8PZVTFDe/xdwB3LaaEO696SSDo2QLhJw/qNQ5qPg/gWC5ebp/ai4CblZ96XzPxblvXyvZ4Y5fNPf4k4xGjv+GkwRMPUT0jtVQ52ENdeXypyQjnV1Or3fewIdW2xJfvWZJSfM92NZlTl86j94daLejLjrCH4c6byI/A9n0el2MxVTkG6iKb4S4L9eZOth9kafvH9TPXRKzjAOvQANZYjqvY4MkhJIjZd7CkhaZXDmZTUzRd3LJVjbjfX5z6r+D+XtnwL+00p97DvKXVm87FDO4Xd9W4+p2+qs3YBc24E5+yEsAU+1AY1xPkl9oOq1jTTbJLH0ZZGAW19Q1bQ27hTXc4WWCqVvkYNP5/7Yyq7fUO1m5Hi08Myqi0DsS6+ZU3YSLy06W+xbMTQGpoccWvb5luOEZ1ikur9sedoQA+fjvJqy36Z6CqjGF1kPR+p19UbzWCXUMjxtE6Mj/bUTEcSTRyNJFOf3eJStUDfufODhT+glERMHnlTKHb5e/bt09qft9IEwd/9aZMpkn+CffbdghYa0ctudABswdQb8VCC0RY86z3iUrrCxDWbXmCe1eJZQLcaO+nRYHTqXe1MSGSfUqfiV5LyRt1z/Qrxkf5ucOyBGsAj03porC0B/u4nW/SvEmzgfr9F/+DYjxaSt6wER55m+EnbnjOTY0eg5dMAbqjxx9FqZ1nWdlZVV7RSGovmQ/zXcQqnRGHjEKv1ab3x8lgsNWqmhaofIEoK43whcon/90kVG0QKH6OvJNoQhYdxL0okog/xJznfYD9MZzbgccROIsX52Rb3XGrikLz+2/zhPMmbnnp4TDmuYbv5XOU5pDLF0d3xPLfCn48YXkWBsBj0vO+Bk4Qrm91vkK4LlgbzYwhCIYr13n42xuAHNx+AfoFxbEpFBJMWV7MqCYgrWCi/NVdoTZ/vR1gUIfhVIBq17SMqenBWos5s13UsGVP01ZHilENIwdf5OZTXQktuz33mKc6cfMtDtjWu5PSNH0GwX2uSEn6Fmtz3wrru71jDXKj75+q30rKApBnpP6zBGv5QdCqDMj6gWyEcH6YvZTuhTGJVur6c8StZeD99YkpJobMp87/IJFl22+7kUPmM3fNIyHArDnTOWLyWXgv5/kPb1E3tSKgjMDq3F7HvWjY+HALzqHBOXr/FJBAWW+MqUlVfgxortZTswO1BRn5i/Hc6RH4qs4GFmckLI7+iHyLYh4nsC7BCuHf2dH8Wzu0PwC/TerlCA8Nz//9CDn/vtDx2kStREXkRIZ/vPJDwxQep1JBldirqebZYVhARzBFwqdPlXjWafw1JDVHhpu1N+82A5qVtEyFAgTa6wZFy3uQI8oLDWyDKP+0OyIwyL8fQz4u6m9n9goDrKEEGgebfv55ie6ENXTyQY3MQL3WGFDjz98L/2MMXtQ3M2Dzfr/qEjeV31TCddahhxxXXdR/6vxia1USj5+zFH3DO8a78HyUeu5i/yaIDBRBq+7hxVvrRh1GvkJy2ayCbfhRn96O4xM+zfHf3vWgZg8NAxDsuUrjZB8GVhegrJ5MUvEj+l9mobUKcQWwacxFyuWSlL7VY4uFrxe/dfOMHL5OVwL/KPRwZMshus+lzLbRmLobZQphVpaUaTFANSu87O9LYPXECOtLFPUKvWVLtCjJdSVJeM5f2eMQW8y0LQrohACLjlY4pXZCE8iRkoVqn0Z9233xQEWg+l4Dc33DFuP+d7s3yfW0PxpRhIej3N/tRv81bpzdyUaB3gWZrUPqBG0KOrsHug8tLbyEZcLUvj/XzMc2Pv6j87edI2550s87VZY5tgG54J4uXRh25iZ3CDlqJWOYolQ9rMZceQ5a44Vuoi03VbeTNPDJK3xerNmpMnb2iB2mmmyExvxN5bnk5pU71QuOTGsu2mt1hMcWOpO+xpIrBmYo4nud+RSC7++2AVDD+bb2ZjuqePvTnxS+SQrUHituS8zqHaKJ8x8c4AByV9cNHeuq0AwJNBdLZ6iiwEXgHX8ltzzS3YTvDEcsf6GjSeojs2yRNJUb0z1OXsG+/2uGANWcvb7M7ehYp6NI7kKXDSWVFa9Ve7LmZT8sKCx7AGTczpRgT0QNRRk0RXY5Rc2ihfHvC9zqCTewaYqLh7uTY+chNW4TgfFEuESSPK1LmR7hB3sI13H9bGD+5ZNE2MyZuu427UHyJyCpRdKesvffKvt1W4XygL66motO4iBkI96W5tZilTGmDXzQqdHP0p5IKKhtFt0IfeBEb8OHpqnMXk4bIkS9d76ZHfM82Fc7SQENPuNN1ZCXtb1OeAKaDbuA3mM3+ymYaoEEGnfSL15nFbKZAL+5x4gYzqMKxVotNXeIKfxw1TLWK5ebdX7nfVITKAELSoDnAz2Vm5RhvVtK7fbNodlTjSIKd7uqOB5SeTPB/XSPllWVgWnzTNwvhis31MDcf0UZ0T3ibEn0uWJBLxpb2nOJ/xeLrl1qliAWC3xgXL4mYarFhNgKhm+JIOf2q84SA9snLZ3LR4tNHpO7MNX3GX49PQLxqIj1f8m3ncH459AYq+47rMIO5nMAzXwEK+AwKgD+cmYPre6GwwyhZV5KklaEQv8ubTN/0AWWzasZmZldMT3Bz2pSxBTv1ccv4HRYgbsu1bmlS+tV4cKzNsfdhYGmVr5CI4B6uTOkJtkhvueolgmM0Gk1UeVA2A4/i3EwZZvAZGgRSDp9s2wGU/7XLewZMyY7scZkMCdxhRhShJchC8WXlllU/pB1c3RPwK1kwb63s+VoM+LCplMuHWSFFTbc/H8jFrLkLQCKqq7K1OaNChJLEUq+JRrtiVDCpP7EXlydTQassMViLi9qDOBPO8EML7Ck5FU8UODJIaM6yE1iZwlAGVDAN+SMxA0i17zvgNlRtgIb7Yq+w+/jLS9ZohVyF+EeYEwi9gTMkH0yKCYLJSzacpZB1BIWeJFoZ3ttFakb9X3wAZ/OnSbGL+rHeNRv1rWnVXUoyjRmF37lLr/AmdiTC4ekke5Fbe0lY9xL5B3BSPXdku8qUPRNwz5BJ1mBnTPU1f9lPwDFi5sJZWRvf3ND+zRaeI38bBjdq9V75iId5vVkqO4vyJPQzQlK/P9/S5bj538zeYVLCA+T+Il7ycd7tty/Dn0PaOr1xpdoYpLHVDrz8cyEdiLEaY4xafPc1uZlIjrK/jmm11tS9FYr+etmM9tp1DR7nSEN8VXlNVYXsIPX+nTgrlXO/nQnqn/dsoEr9jiE4yr+VimYl2BurIX4m8zJrdbKqa5+sGSjsEF/cpAGiJMgLoq5RvUBWZ1qCyZ9spJ4YtpmnDyRk9uBcrCvfplSAko3t8fFD2kU9j+e+wQOXHFEYKt4QRwh8KFOVOxX4sUMkS7FcdLzz9JoQn4r1B265NuMgwdhMUuU4xsWcKbSBj+S+gxdEC2JsSLlQn+b9QdYykYYI5Ao9rGWd3gBOOeWjtE0NyWghncYmzAkd2nKmB7u2UyR6O89ZkJ77IyqlygcQK/4Z0FzMDYq7hZ1LCpHRhFjVtsmEyW9EMRQcESQD26eGNJdF/eQN6V6QnNBCvlHK/dEbAH2n9zPeqtNTKZbpajux06svDrHdjXet2LLhw9ZhkUUs7S7XJlHBtitooYSfjeTfnsvp61oTuMEHu6qgBllrfQUpRgFxXeWE07NFW1ED1vOWmzZSzuD8tHFVy1GAv5s1yOdjsemMmw60TmZhZQZZGTN2HUbK4wtdJMW++1lqL+DQwl+8BJkGSsNGMxti6q58PT2qn5G9NZ/hOJ70l2M5yqrtVMUIvl9y2oxPk2x9Z1U7xefMePYN2lgyzP+FAG3qXqiYIl9oo9TP7VofRiKflZV7y2ej12qOaWqy8GXoSGo0f5ygq9IL1JOvik0g/7pYZMM/7RhND+OFOUAFd+i9Z6Du694G0p98GbMAafMMvdiQfQpPNnsDXs4zQmGNCpL5ICir29J25K52DY4PcqDRW6usNkdlBr+MF0N/YlTZpmI1f0lv5gzqCibPnmEO+vygfjd1v9M1J1CItEKieeYtIlsbVKkIww+gTPeVvWOzq2HZcm0Hpm5X9n84CSL8kszuFFUOxrQFAJK0j8oDrsEMJcBxr48/5NJVZcaVNqy29yyeylBRUmBS1zWfL5Znpl5n+UClh+CWOnPWdbAWSC917hGL4jBJljRiF6rHt6nIs8SRRnvEglThBTA7zkSR+gRr+UH1OKMw+2wHqYQCfAWR8/Y2HQOiBZxzPxg2MmophhYXDLVsF8kn9wlrjNPVo15rFXNT+s5FcTC0IQcbvoqhnYhyBRFM6tQ0FaPibmoOw9IAbejlXXtC0dlLtg6FtsxIO4Dh0YTt88vcTxoS0yx0EsWg1VQQOP5GQv4IxkBmdk8G1atRYSpNstZj2DDJTiM4KedRK+LhwT+4JP6j9in08W61jD0yQRK7TGHTGtK3Sc8KOhZhzYPZNAS/W8mh6vWnsBb67qA/oY5EYUJSe0bJSnXzEfhySKy+VTwkuYLBkTTUpU4FAihMPbB36N09wmk2vEPTJ6bPkq/hNn4ppkDPVj3TtABJFu+bO71vXHL54bsC20wSM7lE7sqv83B1VmqSMYnSzd3w6zdD/lSq/21AB9QpqoVtytvzbYNM52wuaq2qaaSPfgxsUSzUfiFiJdApL8qqFFAuCRUZeQGGpRoszrgl2NZNCAUhRKAHgn924j+kh6StDUC7P5N4xqzeWWuzY4HOtwIPDJiloHrZCmPLuj4+yedjPzcBTR39JrpGb3oz8d1trOzRYWwZ6GnEk4xsQPuSiBnopW240quYqoRABCWkGjnF3xxzQqtreNh0X5T7AKInkhYmMDrkAoSKx9YEn6Kcyq61lgKRS/g71yXFCRwMAgrUa9JICT0Mm+4bvWeOogwop9VRKNzlekbaYtVwuLe0LkHlQEIPpCiiPoCCjCNSCKtErvdW+gYxXS+KgUvBtHue0s7fQ9pTFD53W+LjL6U2Tb5HpC/3D6uMNm0cUdg4Mn0JI4KN3WH0VW3clXofhMY+eCCcV1U9korieaBh5+gixszI6Wg3fYVOiYdx1QsgPBCrHccwFbddCwzNKNIsmSY7VOGe9eAQy/5vnc9dc6BUViIxW4QVber+iOhgsUMArX6MN94iQtHwGlIqzQCLH7XwBrmd8cGR+hx8gbmisIS889+f4t+wo4p4o3qTHEiEuhAdzDN7Kx9QIAY6bXhsh66vxJCWLz9z08FVxxDpNNJCIyDt+x4kMiSUzNE473Zz6mJyvppJFXt0psnr5z2dOl8QcEcSyZpc/G4XK/yyrypyvY9cVOjD3Lhmnz5CiWEumvp8y/cwUydO7gWf74MAydJlqTG17MGJJt/CFB0KoLAcfds12CbFa9PCR3/UtdVCSMNdzeagw9ohlJjsa32WOLhsSUmsDZZfQ1ip1RcwdnIwR6V1jusokftgqpuYNhcJL2ZJ0+tn8Yq0D5XLxCzQfvM9oKrjfEG3UWi+/Z6ujtc1nETd2iHpqCZ05FTEgV3h3NCHMKh5gs13IY6eEE2BfPSEB3/nG3EQcQhWFGag7LQPRYYVeoGBwuiWAsZfAjVYjyWd6Cy0TM2iXb5JOlzwJyvSzC80Roh84KOzjqgXxot34z32JfGDa5WS1VL7mG/SU32M4KPhmbo3shiIb80IxUWojMPAX966S8FEwwti99mYpwdoV37inOJGL3o8ilM8uuok12Blj/lGQgoO+RZM2sBlq/FBrPkm66ZHwZDqu+oluQxi/rb5BkvXyfUD70ryCmoszTyItX+yCGjzt5RviBJn8lM99IxJcoUgCpI2j3AmOMIdotKUFGmp3nDV6MqE03306miUBmKsEM/iFWCbewhkgtJ1k9ktJJR2iFxK9n442+0FSVD5YLaF9zFXregLRbsQxWLjYkBOGKoU4K5xDfN5qmSWZDMKhm6Eg3029cFbUHZngPv+usOxvn4Btqiazwcev2D+dLS9At1YDP3+8lm60iJ028IIJVGUz+6GbnnSv1DEivh1KA+fE1OP92VtAraUuCVKkmXNYdAQv8YT1Maju2sJEqcsbufakZwxCQnI0Aq8lWj3NAU93N6RyMcZpgAKBy6Vqn3usI5/Si3o5e+Zv0bePPmnAO4pWPk9W1gYdWTJjaHKGL+T2a0hXS3sD1nA2BQlbobYRaQ5fSwuzdJwyorPQJa9MlRB77j57QScZ0qtG/WY2ZqJLSoQ1L3Io7dvT8xN6XoWe2lwRC0wy2Du7gRNuhx7zERIRU2w1KsQWTeck8V2AM/YO3j2M1ll/tEmHmhT+V0/oAxuA0JQ38ijT2CpOtujnz2cXOrBG9PPAOyEUw+SepBx0Pz92jp+CZqAgosrsgewaF4n2Sl5p6GHfWZaUa5bEqmIE9gwZ94FS5uWnKpenFioMyt9Zl+LAb5Vz6CHhlo7/JJ0q5vfqnSCxrzz8EjmBRNwoylxuxszIxyyI0FczaCoqcZfDivIH8c0yZSkes3Mta5VQs0LA2At/GQdJcTfPBSK8oj0GSzFpSg9srkW1h+qFWKDCjzq7CElCW+TJliDqHWWVnL4hh/keTnuAGjviW5BiY+XMD08VIBmVpEbgqabhO6LCJ+7dAWnEtGLLMUWHb38Azo1IloPz9YlgWzu5nBmkMJv+mb+399AIB12p6D6DxFCcj/z23W64FGXirFJAHNqqpN3K5dTfAjQdEmdTWIKOJco8nQymP0b9NpbuneW+7CywxiLP5rysWrRXGBvT2G2uea4M+EBBuSv6110HGbxfaCrf0m6x6ZBn1HY1Qzh5yJXWFYmJBCkuUsp24/KMu2MCWQenxrYCfEFH4Kh67bLy0QuDX+qLKUeEfyxhQfRPkI9mrzFCBqxoXZFKXXhGdzjchV78WEhHzXqEu+fNNB+U8rX9cpOVH7PQkRpr1wMfmXuhWe8FouM0wp9HCSByd+I4nE7U/71mdhb5D0kodqD4OuatMGHtV1Wfv021RynA8BbHX/6MNLHFmBIspTKwGhOOc+asgZXQkbspOouzHP7zs7INesXeiTgNlYNgWygyqZeSFD4s6/dpjoAYwZKFPoUFvYnzS+Ii/OVr1Zd4StmOhuc0pxV0BIw16EIWa0DSIYPW3z//dzW3ZENuOa2LDudmjuI/2M6GLuWI5HwLrD+gNCJKmiSjyHq5S7VD+YW3kxGJFN3enaEQGigaKEhRnJsRCDg9KgU1zDItUlkEiAUlO1s/iK7uLopZwho+b+2/TnNYSzY+sYlRckHdy4+ZVJMWNhLUK+6G4dFyT8jpbq3+h8CsOzXnbth5tfjhSvuTjzSbuWqXBOzO2IKAGj0JbGmZY1u+aPJfIzAKMeeaAZx6//jb/5uXN/7Wu5BK+MTDzSAB1EcB2luoeiMYOc+reniJ0BUGcp+7W01SIOPOP5aFqcwdJXObWaBaakp3fRd6jJIo290fWXZuGpAn35Hl2xZKXA47qRpXE9D62rvsAseHP3R4Vuh36Bzuh5iOlZtEKty+GmUALIOHBGyfNtbUOjulz17PdLOfFOC0U7ONF7b4UqjotWSMBrwqyBwQPpiehOxEZ/2lq0eREibHN89RZ23T9mFdhl1+z1/Msh92RcLi4dTE2bY2N/7yU4aVSt7a8ZTIZxSfMtfILC38LGSXM1bo1XtgwhU85f5106nAd+VAeviGjtuiZbDbvuZae3bW1EQBXFRWULiCwDe1eO56Rg3uBKzH+Lmhe6j6bbu6Q1ojRm7fVOjX8r2UVrIfMlGMZT9ZkXs5i9T4xDTXz9yb999TXW8Eo0kCzS1EM1juHbpqv4bJugfPd7CO4CCKgTbvIo8tVnbrySqpjuFtHxNvK/3fDE6Cc3Zi7GdVfxHdgIPVq2hdULwiEesxt4S8qeVdwG3Gvxbz9/cutjHDtzjh0j9xhtuLIdTBemvMNnqR5MpSisrAi2b08aeTS6aso+i9ZdCowBJmAsQdmkS1mmsGoxazG5138voOEoAdp341bxoeJHCld7sgRyRWfT4vt11z4jO0Bi4bqARkXzYJcHopxJQWFCJqRzQHa4TiF//Yjdfg9yKk6Py7E6jS8LmFsfXMB4tkKMq7jX0wVK2GSWt9QUe1YzILnhs3rdJ+BXuZ7tV2YIDjtHf0WFrJoNJdwXl/Yvk9hLSE5i5ZLfI+m4Xiw1qjs3TBQKqlNaZFHw2PALDIrYB9pIqZSz+pdNjQiKBxmC2n+0whm1PTCKRQPaz/ove1Fo41OZIp2UVX1NSDhuZwtNNJKOxp0WxYMpFZgfIlND9FZuwiH134rjjdz/R1v6xQaz3wMH3bmQ7NcMpQBz2f7DAX+HLo2/CHWd2WypPdihZAVbzPJOLszy2jRvxSBxnHzLUihV9XRc0ggnxIbvif7T9YUkEM8amtnbhLcBvEwRSsu8SPNDU9IxyWVT1m3iCLDATwOilLvsPB2r9zzGTVq4YUg18SlLrtsbs9lgGLDLZX5cEoJtngaaZfsvu7JveX00LSdf5SrFPBoyhjGqSkGaou6Uc/zRx/Yw0pCJqvv3sL/nvzCizG8Te/9pmT5wy5QCudJNDCrlyksj5JjfyJdbmjB2TZf5S70OISbDxf2YARjqr2UYW0sPbtrA/eCusPn7z/bTrsi8VElP3G7Qw2RqaumhIWu7k/N7zFvO99uXGydzdqaKrTUOdlR+MFQPKteJ+Ci/vxsJw5m6TywuC9v1nfsfq+d22HJcAOjn98WSCLI1sXEfktu+L2Csu+g43FYPVP5PkCPHXOVntVQBIIwng4ZzZ+OMAaQgHt7VOt/KH+9PZsqXxA+UEaSrBBfsgH8/s2OdDrmxAsETno+gCTEBfXqnOEOl9TwhoTwtdapaJFk0Hp52E4RaZliMKuw2HLfvoJIkauF28LegfoKtIrggfBbd0NMWMJjTkDGI0SuFeBRG2sEWz9hKKmyAgSnOw+dGoZoTi0AxMAShshseoUexHBpk+LPbOo5O0W6YbQwPl46jsKon9oJV8BoUaku6toQcMPYuzbDlLnAaV72gdEIpzD+/WKbTNSOd0l0nOht0oCR4R/rWQ66lTA0Uk+oWhj8Y9NoqVsFgPgEbnyN0rBTiiDQ5mBfIvsTZayOAu+UDkc9dzo5i/PKB0tsFctPYaAsEsfLoDkDz0PT53TTTbB8ufrd6zfvy2I2FzgtptsxmmbSuCEURvxy7cz7FKOkP8JSjq4D9bajh/undkBkVSFC6N66BjZxPbxK/Lp3N+GUf7IXKtWk721MVIdem9ZsLgxCicr8cIaNbP9UHHTmtQo0YXHrR8VGK4VNkTWdi8DC6vJKrEtR/DqF34Q0C7G40iBI3QHQyieHiHE9hVGhlu8iRGML8z+0HnUE8NKScup1Wck0x+/o9tiW4UkVg/XPSDfcyHoJs7bLvribqBTtaLNgQrsGOcb59pPJptzSl4yvKGRSP8+p6hhkRkwM4gzldZDvgqWwWjsfqXwQrYSYaev5h4gJODyCTPjHfrOfZqrKXL2Po15k5ClnPx8xU7WYlXJ/Ei8OEq/UHnuf2xz6Wkrucbm2sXV6uhGVKvVxYjU68KFuE9Jhdyzxoh1oAlcIgsjmhZe5fUVJpgIbABavRCVz0ePaWjr+jdTKAMqmsjEptSvlzKKtAjTVFfMsYe+kf5PPGnUa1G0aIHX7n7jR642mZmp6YtTPuTK8yk/GENYq4doQ3hU66C1xS15+iVaKwyWnmL0fxKV3kEMxIFBP9RZL8eHPXHmqNLQIfUF6PyB1RbTrEFSqr5xBHuRp3Dcw8hpB7R3u2YptLQ6IHz84seaa4T0WZm5udcj83Se12DkAFPH+5jfHImAGuIF4yVwqmlGhoXIyYl3K/cRkZhejRFgduztwKnU3EKteLy5Yj/aXKLtuvIkQ2Yd8MjTPYYUp4/pMuVei6WUx/n5LxBj70HNmPx/6cdAUL2f0tR/p7oeQNMlwjRX4UDlmcWppP9Ms3PSu+B/NSQuKU+hW0FUaBWH4sRGerNhMVwSGZ+qSq/CynGZVmMFghOsqL+4K1gM8BA7vNJsw+LhDp2b5VcJutr6CreYLfHKDvTV89wK3QH3jgo75NdQemWoDqDgU9Ces7NuGa1qSAQ6PJLdMuact6B/5HJltQHywh9Kd62uA7ZsEcVeOrBU+mY3nyK+5CsbBC4f1L4WKKTZ3kgPtasTZsmYfmGcnI6V0j3dFklw0/+zYhcZ7apGng0G2cMpQir3CumZ83bo9dBNxaGXHgZX4HzWwRpnmCtB98Y13XdQZxU9JC00q6yQKBHqAiQyqsGzB8N2RLbzyZrsnVhOnlG6dj1aBGgZ1a9PEpuQVFgliKbOZmxcHC9XQzEyF26MDmNj+ATZruBd5VYTn66EPUSMumfULG3PZ1R3rw54dDguDKP7Z6PhOZgCL13Ylqjt2Bhkk+J4S0L/J9eqzp0v/C7RmMDIrCoDla4wuEcAtNYT/jFmybDN2Tyr9AIgT4uORjR1Awe6nhllFqqQnwqZrG9gvEqQFB7/lBHX0tFtw/wSQmeNFqUgOA3P4rt7SgEdNBaBGYpXkVHef9hQy2bH87Ffqg+X1WP36W7w0NEXqhe8uwLkGNE8U/rghvnh71FBs5Ueo6DtnBc1TMOn3rdDp+qeBNev+/E9MPDAD77nPw5hTl3M1ShKDQCMQJ/DwD/4dsFR39iJpqKJXO3Xzo4YI2wV0NTjj+tWKRuiwBn4zsEF75FOyabeUsdnSMWRxEGa+JUMtxoX2AKIEyhwOiyCg0IBTbLQSOj7WcrWNqSeoNrWyh9IgjPW6RsvwfQsaL6tWbK35FGtRCz24fTy6sY/GnP7GxmxtpCF+jN6a1smBrOI8QIA+rshAMP9AdItWqye5YQHEjH7d7NMN80ipHvWF6g0wW8syY3EgoVL9+yPh8uBc5uHn2h1gWqvk7srGZnR0O32XapaU01u2QoBBV1kgfkZmfqLtmnL8hX+bzbvrKDWqRHLJZ/dKiv7/qF6BhKmQR2Y2pU6dLxyjC64NxPgiFYHSRWhJwVyXWCeSpNpCbtYISJiIQlogvnxdodsm2CGKlbw1+HZquy75jEWtkGkCnLKC5V6FNTaBR8haygyMRVIHjw7vnhVN5QtsgOkflUQQVBWwl7kfbsc226wBnPxs2tRkX7kUAcCThXdHrVMfFcINY9VH3jfhKakApOS/iZ1E5H/CFLlh6unIO1Z5Ymku6vDFHiD8cUN2e6rjSHHExgODff/KmzklH8TEVZ5JXp9PggZItM8nMWmi9kMI1CzxhqttdSauodGFzqDn0aCkgX6yCz5ZNnmzV1zekcIXsIfRFRDIvg7rGkjOgZ6ywcbJ9XHfNNIn0+tGAF7juhwV2L2bqGdYiYakwLPpidjufFSmwAyufvxlqxzWFHLvfNxQ7OWsh2CnhhaSoo7/u+5yHDdW7bMdJyu3rayHLUtkOHYJ3108iivcuH3RhFQjkXOpVrxf4Le4mOg4PCBIXd2DOye4SMqNHWjYHdKiRgA/yk8EKGq2swfNrDYewwYAKFFhO2TAiGAT7k5n5JxxS3zaVZvD05N3MrsEbWrwIbwn7z6dL0FcB9+qzmHVWjBVg6z5QxBGaSLN0ylE5DMnm/iBMgkhHW7cyxGtVeXfA8wx76RNL9OayxFnS4bt5elCn4pTO1tMbPj2HJw5z8MpJvYLpV/Obu/RhYPXKndIEwZnYJeKPmhAncPTLq6m1ZXBkfuknFvtlSxSuIRR6OC3nz0DIuHbSlnq9Qs2y39ohaRXsthNWSlRlZQqBkqNiFnpdTOXPJI4ppR/7ZGNb8a9VnKquPTShON9b9GBW9joUb0HeIddBRKMPFdDrvJ1Kmtkz2jMRPN5G6g5Pgtm0HVjVrcd7wc1JJ76gqeDC5ahgBGW6nGegwnuBY9eryrBWEwXcYF+iYehgUHDtznOv7nhFO87CwWqSpYqnNu2ZWhdtWDtxOixTYK4LhYA1Y4SfiRrO0GUGPMlwnGB3xtvo/h5rWeWC7HSbFUfV7GXTtNQmst/xrGfVEdDRKUZmMGbMv7wBzDTSrEolImbufvmfQUIekFzZPiLNd6uG8j+K1Rm5+ENAvrV6c4yiCX7HTWVd6Hr8MJmfBfWhMuYw715456uUWIXz6ku2weX45dET+vtgISm5aJSX6ZEWht87MySmBN6vuh+kI1jz5N/ZstTHH9jI/3zW89EUHhKWhWTm2NLdMgPUIwZncE6d9rLeeyl6VX1tmZY+QsShS2kMTZQgsKXfIAKXFVi2ZJmHhZisPazS3STG2lnmOmn6SkbKcVt4/XlhQOGVPF5DeJ2P9fFNKp9kmWVlCKpnk0Qbq3BofeH5MD2in6C4X7CcMG6nN4mKIoAi4qwLfSkIFeD7Q6eLHEhm4FdfGP7TRNQlhvso0T5nbZABicWwEhoZaiZhHdse0FDFMifMwLVKkDMey+O45LHIFv9V8zO031xMVzfMyQRLeKvPFCoVvJN6zRk+2F92WtWjKqPsrZl5y7LkbBOcwCuSI6dF8AVgIT5Wswt3KaVBBok/7TMrvkmQe7NdBjKHTa49JfweBf6EfvhpKEkvvSONAtZD5LsJoNOtRNPcsMRvf5a7JKGTQjeZ6hhQhCJ31FlSAxOmflIfP/zwQXjbiun0lxCMoikXFh5KCSSDCxc25cQh9Tb5JeLA8IP462RD5xwmaU6tVLeCzU73devIxZ+1/D8UtXtQUbif3Jbl3VYYud5dwkWn3LtLdM922OMzTpoVe8I3s2smoQalgY0QDeyuXRrQa7b2k3w3L2u3tC5YOCvpzW/umdlmVk5Y3xQoJ/mXUsCXN9/3GdemtpxKm2PI8k4ooZixp6nCZCDDU067Y+ynw0KmXmPlhc6Pauoo5uRHp10RWm4WzsYLBAgUjzuW+wdIYrzGjQFCPGl/BZexLtHDaGk6bTCwVIkOb1opB7eAOdOilBhRzi06cOCT9e106nUvNCte7SGtug3SGDDalevP5UOGaXdCgYRj5NEToxoup95k0bT0uwojPHMzIIJiEgzBo5jNT3e0J2U+nW2Z2FX3+TxoBKTVmtmeidNRxu9D1XL1Ig0xcinxyZnWQuJL8/m6I1nOoybyhUiLZMyowXQ2jGrFlw4zi8/y4Tmu2UL46Iv3t5Iug1vQEb7AaFTIUbvpn6SnvSV1dtgiyGJ8FK8iDzhQ5x5uLy9UNVT9L8HPi0hD4bWFsaH4HNnUxXIk97gIQDtns0KZmnK9g9cfAhGUKJ9I2XPco/DXK13+JkYuPAOtTDlCCqjg876H8dyJAzR//HY4vURJCyAv74tz7OruUAp0lcmzGCE/7xBd7nhB8pGrxSCfqKcGHpZLDw25EtWRGdtAHFvQSaMoMzqAbwUUjuDDpM4/5Vvag3UoTgA0nevWhfjmLmsuko8yP1lYEx88etAA5kR5y+AszVHIAFaoFHtZF1R0Tx9LsQe1DLaRPem9NsyFM6y5L7Nkz7VFxDHowXoNuJ9HoVXpmloU71kUDAbmFIHQ4vbX+8ZFrNIxnx9jP9W64FBhUATzS67Kw5EghnB0aYC3TNmdjC/ELxoBsYncsnFP7sV4N1A+uheLD/s4CYWshcgu+Pi9PNFffcI9zPghK59pZBqYiqhLWN1c2dDDak6oGLA2qtlp3oeVLKVj6uvDje6YCDFx3EMaNquUui8Et8WaSuUL+0Y6g21veXo2z2ZsD0Wy2ecPfQOH7X5TViLYSO43fTELqBkXxbpfIP4J9P3yD3PqVJNv36x90giQuS0Mi9sgGSIZ5V2VE4ecwnDDD7yYtV2M2qSKYNlI5n/LlThBe1ewUva8u3ItXkbB0fFXybg+SsaVC9RCsQO9Y4zZG7RiGpHrvqENVFpzMdqYLeLqyydvyaBvFytM+SzBB7rTpNcZoa3SkDjqYsVUzrChT8BMZ1K2RgqG7kLhUZDtWCP5ZJWNiDAgRB/8BLxXqU3ltTaRvs1z8nj8fhYqUo/770SbV39uOTIHqJH/nCw5yeCO57YWdz3FzyFdEIEAC7ywIYe8j30jS/FqhhZg0fUx7UbaYZk6MJRtfvQC7aAa0XpbzPX0XVCk7tReSJEm0AY+bN6MwTq0wMMWmprwZdqLPQhPAL/FgqYKnYx4GlEplQBlqK+2Zr9vwz8qdW9hCRYpksCoLY3OEX1iYVVdPYqOyvmISTcqsYbAKZ+KCZ5WssGOM9pruMn3CRn8K8JOYxQV4b6rpqIqMwA+iqkQJlZ4QM+Lvyw/uU8G96TT57Zo4O6TjHnof+CWLKdeRKQA244gQxQyfN/2siyKQKv6X2nxzMgSf1Zj22x5Z2Dp2Pl3Eh5JZtsJ1UKgV11NNw58ZDQnPB14nCGKR0X6IppaGcQYwDBFGOKO6QvXQBPuyajjZSaU7lGt8UUAv9xTryDbSa5XI0gg5iz4bOs1V4UNWKP5xWjP1fHrXbPuMPdRT1IxJw0A2LsDKqW5CyUjSeff2C1mD/O7w0Tlkfjnk1SGQL0YggiBu+fUxsp52mE4HfZ6YrfZ3gyYQbpf45cD4serzGzdFC3EAUZlaL1MmEfnA1O1EAM7ka4+5XSCm1uyfJtJOpc/r18w804u7y/vygUa5kISo1+2vmVfpDCI6lCLN/jV1bFXV47d8czkqadeBDMwbwC2Okx1aw8shEgfTGawxbhgaIjd/bChHhnPU8aKGlpw4Ru626OWvaTrzaO0W23RfGZqWefg7OAJ4acIhRNx68MOTEnY47q8uau6CHkj+2TJWtGxUeWGV16rah3z8WgQ3eayQ3sURJVWP6JBMpd3/TWaLms7O/Br6MsISThB7UmvWA/TP1q1xUJXI41EMqkelM6w1GpG7UhgGEDsbndEKRHeH9pdtcwNJQPCNoZHKyxKT4kfyyXjxBUY+nfC7TRjaZywinXMhSL1lpmPWMXSXg4FdoWSZv27JgXEAQ6l9YLvrvrGrzWardcYx5TuBCAm4LUjoEZrOOsbYxJa9R73CHm9gG3SFuFdE58c99JMTz06BaJ2WfyG5lIiDsH8RWQt3KoQv82sH4u1y5KdaDtn4D41vVK7oDPwUjcFCWa5RhszTJpDZZpizus4HYAp1eTVdXxQHg2JjBZkeUGTf0vvqVPo+KBsEEbeHfCeQk8XjYDMKbcK6UgEtvKkrvfe0LW+oeHMrQMJgLoK237LfFsPhJH9sKvlrXxKaTjBrjXrg3zzjiHjCF4e5GbqqAYkWTPLWg7MeslKSATCDQVfeu/fr3ws9mVe0yaDH+hrwXC64qKrzh+c6kW0Dog98Ga8UBIm19Jsw2fKO9pkX6P99c5KGyQy/79gfmhcSDsvjVIrq/uSdKHVdHmwn+kuTbt8yoYbwN/PIwsDib61Z9hpHPofkoPAd6KHnT9Ab3nzymPc6rXOv0bNvy4iPduwQziXr/hxcy0M77j0ujnEbbos+gv9pc5dYEkaCKoNpV3g/ErpMgjUZkurfUDAepmUFGxjmzurjcUmoeohpu6FdEUaafzbw+rvJoE+F9dDW874vz9YRdCCtAmSEyfs2vjCj5wvgrSYV1WOaBmyPRM0w9xOSXEjGnmNfp28mh9iyZQfauOl5HphvsL96SOS12fxlaqPr0mDALr0aIzcuTIEo30n/VhA4uQkTsz+hHKZlpT3QAPHllR0wr3kwxYfZdDnKygUTYvuuabVoZ9Xv4XBJAsP4lIJYVkuQnBKb+hvTdkyp/4iiRRgt1RglvWriZNgU2ycnXJ0Ebu8uXrWywIJ+OI59qofq0CK1n1FOmolM3N4f2A5huyy/araVJuWYgTqAhbOyEVVulUeZFVHvp2+LfQ+1pX084OpoU+YaG3FiuF3X9jcCxWY7DJH8tOTf6c/4yRtUiX6mfG0caHzf6vJnmEXvPDq86jesOx2HRXSFT2pRSsDQ7DWZjvgtX5ezUboGUzE3UjX5mQzAuu+btponN2BS6JriPQd0agRC6vJFS6SQ21Zf+zY4/WiZf7DWmTQSXMe29uPAENJyA5N8jZ52gVT0ITq89MaT6BbQWtZytqJOlV60AQZerP41wWbEqTYPk1dRzOv5i9hMyO0fbeK1Z3Trk87FlNitaxS+bxFyJbku1Ht9DNesO85K5Fj0T8xNvyB/Sm3JibS9Nygr+3CMpgYRCyAauBI8pgj6LIDp4l5YwMyAShaYhNUQs6XtfjdOrjOsxcKb9laxClu5uSt2Yv3SoxsxhBPyR3MUFxq9D3x9nSC+rsJYH9naKoTtsrw3c+M6eB2to1lt2bzwt7pO9TS8VnayNnzgKRdAo44EZLF4WIM5sF4yQBzYiE0TqgVzRpovNCXsj0Ni5aGqfxfqwuGFJ70yrrRSSBi8YQ5Wgu2F4Ppek70ADtBmDaR/D8eaUTiO3nl8xvlIBpdxQW2PKuqjZaYj+pEtfJLrJkaCt1G9rgixwKZ8F2zLDEYlMUbqzUvJA3EbpAEw8Ti54hkxRTr9PjJh6HXfitE1zYVWr0siISxH8KOiDiL0LeXbfHA+OXf1rOGXaIAAlwUOaoyOxbH/9SH2HIz0X4rhyg39GFcR3CMVz4zR4XK0+88XBbcXM+CFIq4P96KukriMxY9fb06gxjehWFHcxYYV2cL27XXWZPJ6yiU3yb17miLWtkVXetgvfqvFmw0qf7+91AQRFeUIW+GwML/ylAEt/D71pIG4zu2WB+mcPtJbaW9i2bHWKOe2Az4ZG7QcueoGwP+ReTPASZl2s5bKtuBJ5s5ra6VQ1B010MRvZeaCTco8mLbX1rEvjJER013eALgRzd0DkddynEgNcjLDpAaCdzRQHImQyWIqklnMA8DXgN5sB+Ey4jYhPXPtkpgYPuPccE55NotzQcyccDE21XCIv4ca5EIuIJxFmC+8cJzrr9WrD6Osk/knzdf4+LQeW/RWAb5GTvLQVZRzad8wyINECSHr3uJPwM4IxzZ27N9SXjUStfO31TWC1Caed/K8M6VqyNSX3njz5KHijllBmJRNJEZcc73iu5pw5b45ScwzkhLz0AByiB9WiVAlYaQqZu37vF22ASdLHYzexWa7bXbaLZcrN6pIIsOfp18VwNWyc6A4Bi3c3Lp9Y3k1SC3+jTfoMU5y4jSgx8Q3drfqmK5W9mfdPqucH1YjL5HkCBTXzJtYJ0Wugq9BG2Sn/0VekLQiu7pHluMQwVDJvCOkWe2aq3lwxIwkUEwU4pKFWG4w9HO2/tHs6S6xXaMT6mr4X9bt2AB/2g2/qWwkzZj2IYMm63r7GAqYYhJftd5X6cbsnqs/nZra4KjuK0H5+fPhqoCncYmjdzI/KeBqFTAzgSBn1P481UikO6diFO02XytIGUqvBxju2zXcqHl5HtQHyn/8uvKA5HEN2qtbBTb7LTGPjyRuuZDzZtGe7kWM1flPUZ/q/6dmxobtOd3vZ0tRcsaNHVpDoVna+v7RPfq6/6XC6dDUt87Lwpp7Dz28h15oJHo1EgHDmNjN/kAiq6NzSrSci73gKApsGVFpK/h9bhupElKc0w+niR7odO+fHOPmVt20H6JVzsujo0EY4KMTxl8nywfARnhzGNIoJ3Pd/zZkQadUpPhDe/TjhJZizMN1NfC4FWsTUVOV5P6rfnrBeoXntDxskJW3/mXCPrNxTCrnuu8WDbfwJRrjqBA4WElt8tYQh1Ay8N4TWAfGvT6pvw/8BttydeXXssGgIH70hAgrisGoNYqa7VTUuwJu1GSdE3OUqKZlbhbUQWS1PGbSRlCtCkwcFeH4cKcFWvH7GKrCwCZ4Wax20oq8SWqF6i3wc0LCiKWDb+w5Zr/nQMWyCS8XaXiSY8YdejC/Uja6jFGuaTSXr29OzldPnYR8p8/skCFrihJf0pp3FxFAB0P8NUExehpkxzql7WgmBiS9s+4ywdnSU5MCPV03HRykIbezHmrnsxyEbybueJJYe5Q1gTe6G0At8bzdfyDTY2MGoF0RQVzI9OnvGX2lsWD+oOskQ3iCqwdw3USz/GRsf6RWYKzrjwtk7wWOBixcUf1AHknMHiJIAEPmpQFTTbz2QF/8FIQkEv7G5pJdw12HxG+NnNPBv2zzhXJIhQpBVTrIs3BRi2up8ttYqT5nwpZ+3B6jOHjmpqyWxBl+VDD2iiWe+FogE4fs26eOlmfNOga8t9LsWAmlzFl/8peEH1EQLWd2tIHD4smYFUfeVfSOrdBpau6VrosExMLQDBuWIUnrW9ByS+dICnszFDHr3O5VlQPJUba+FwJwHlrrfvmY5frg6DBhVG0pUzjLRwadPwPLG02Zc9J9Jjqr1u6TvYMh/7InvLYNSdRRNppG2FFa9YqcViFsRsXmnYHUtApMHSJYt2ZdSuXZIJb98aNWpRw0+mfw6DukedfPXo5jMojl5XR6cVDa/8F3/ekYnmZkPMnh9GKvQj0KscwK1zUmlsh/kDDfbx0bS0pvK14x5DVS2Tf23wGmD765ZYUZsse00qLxroxsLBiqyGOohcRuMxPG5Fl4CuMESFoxXA770itWnQZbAs6jxA6jhApjqyzR72EAa8p9/HJL3KZCSCBdMr8Go1OsXKQDzdxe7OgFB7s6jCOl4U799v2dFc0nC1llXAFixT7HIDzlgZ+qae0wCUU4b6KjiT2jSlM8Leth2lrwCSmNAAG92Rek22ja2F0ipd4tB+oqhXPmXAEkSQ0I72rPmozoEXNjdKYhcz9xtHU9zUUT3lrPJtEaokjJmQw5A2655SIgyaOds/j2Yw1EicWQuCyot2Z4/R8/1vykNyrfKeacbEtkKsHRa2ZXnJYewwiiuqhdA/5AS9a1TG4B4wwOeACT/7aOrfgZ21z7CUbIeXkQo6+M3h3YU2Td5cZ6TUgwT5+YmrGHAVqfPdioxWrQ3/ud/r7PeJ3OGJOU5zSjb/sJGorsE+74+41k0d2g05qf6iiJt5OQYFgkxPSIZpnidQhA/NVPZ3EM7Pv1MeiNkec4QPX4d/fClJr8ts6B8Cozv1UKnJjEK3dA704hfS5Lg56NCyq7OFSPXo9QYRmqzH7dy1X9IFI7zHUHX3jBDySRPDo8ARl4+Jqi8cVHKHuFGM4ZcW+1Vi9mQGU/guMpi5z4bO4/V3kGs1BeYjHzAIWQ33rCcg/QiO0Zy1VVkDxLVx7WKzBsz53Bnr7rUI7zi6sd79zpmA30JNFonw4mAHPK2VvPq95BBVr7hHLYmTVuQnVr+vcy/6YHjtbL8zpN5SanNfudHYkYZZn+HuUkxiRtDEF7WbnAEqp0ww3/MJIzrvjjp0mJCv1SyzC11xpkFhygOd8ghjfrSRQr6Qu4S6UJLyFgiuW5dVWTCQS0U25x2zgsqBRXPlzf6NzsdBY4r+9FkhbBaki3aAeKGvD/jtBiJbCPDca9x73939BEch68Oy0TVy4Ou07gxx8AlwZXt344R4erSJys3P5qrgSH619sP15yC9xWGo1iQMTKS6vrJRZv2yXWzDajMD1gVI7yqYleuAkZ4AZxfYi4hgMIR8SUoJdyoCfkTyHUQEh8Eb7QRlGThjewHFmqUprb5lM2gH0zZGNY8OWfV+5c9rlX9MR32eC9EDy0dLBVZrM8CjftjjOkTDgr+w5ZUHeBy1GG1r4MZ8bOWKNjOTdwJOCMo4LtcQz6UsQcRV/A72zykD562SKKaJhKkzqab1ct6bak7fvV+kcwmB/396sKm8m0FKVU/uKryEe57bBFhk4tzxMNk1N8p8BrF2KGJ0FXrU2XiPjUyoT/wf/ViXHAdKce8jk+jnKT9cdl4yDUWecMDNfkBSZvLHuq6aB2N483FuPlOTWBjVP2cnpn9+8FtOt/icpL59j/xJnBhxJFg2fo28rYo1PFslrOmxIO/1JCcPMJjOjxryJXr4gwxX2BX6URm8mrxhX92s0vzGCwWa9+e+3pgIS6x1WuBaymRNxxvJBR7IB3lmNDqOVVqTVSel7w9AQ1u/1CjH2DYqeq/mwq3KxKU0CS+r8HZXfiZfrwkEEkGL/hpfmnOGHrjhwfX6eVY8BHWJHSgT0EB27wpLBetruhWTACht6j58Kb+uu5jzAbQMaPxiQlrHQ9bW2pfDa9qOgGn2X008QgR3YPqx8E6atSRFwElq/Zc7aLe6XtCzD+y53K6AT7/DGH8PwJdIW7BTYozbJppZ1LQT5yBZhB+Do8VGqqDANOo7igNjsmK1Ad91VDGZXgpaBEBsbs4rNqnO/R+5kZd83ZMudsk/fn8ibXip6ghePZi/41x2yfMnAxlqwUS0PwBnc5LJcwl7eQIsP03o2MXpBzR4KCpLG0EVDvuLu8DIHeOTUzUogLsxNeUzGeKoFvpXek7CN9EXsUz0JPo0lCFb3OCFCvty2b9PehWiR5dBtWBBxm7ZE1WIJsesC85uAJveH56nbX6XzYcg0kozvv5saAKcOdaBXnJvCrvwgg6KMTEVReVXaTtI1wKHOcLccRUhWipOpiILn8kN6l7T3a4Sr4sc7kAVFKYeqpzHSxguuydwARdAKuDZaKAJsMGQYdMzlWtiQLmkO7QwV9hWMXMr56A39veDDJd2WMK6Hoz01megPYRuyUJ12DE+gVR/mzHK1fCgZc/fnIs9zgyuggad6ezLeCkXeaSsv2bX3l9es3zdt6BqzTRPVZBJGSHFFdkpPh8buguv4M3y7kISaDD0RMY+oyAl6xmDTg1ts4+VKZ6DgMg63qFBEhKC+T7o8LUb4U6KqKx/Pe4tu9KDcoAhHstX727zI7+rOcMpLkA2zgHP1jTWJZTLeopN7El+wHqR7PmA11oEQ2Lq25y9MJ3J7tv5fbhViahaTaozBwpLo75Fb6c+tKZOp54SF5lr8uniMbaiEp1saPjk+D/FdH5w4EF+altBj7cUK0Cf01DK6xnXoBMAhq5whoRqIuVOnS4BmhurUxGhT9TRkGmB0+Do5yOrkweTk3GjVkeo73nECaXd8Wo/H+qDrPo7oR9HaJ0wE3akwTySNvEOl0xbI0k9w3DiSbwYSjGWTDkQxI6iWKfUw2cexNygRylpHrJkum/0N9H2w8NQksVu0cUQ/XUfLa7uGpiIG03HDyu8+zrQ+Bp0If5RTjSGtSCUY5EiGHlTM7Ta+T5xJpR23mEpRK/qn4KpXS7oaKbDAio2woDSMaAu03US1Vi3KmTgQjcRFB97krVi9V++qkPQcSFfWdNer+B8ezi9sZJ/+OcsGSQczjwfeRl1ngvNiJyb85i2JhwKCaowBYokeWR7G57uV+0c9XxGGpbzHAt9UFUHcqI3nt7SS4w/8zIzkvETU1Xkfbk6nYP11aBbZGEmwLa/1JEioOR2vPoKlLdWGsLRg12vSLKZ1jfKnBmS/HG491MUduNMT3ILJJK3g7SUOvjk1NCyMeu68A2JOI4GTk69Py5d58LTgx8O7qaDLuKgAsTyqSdkaahGjeRC89jslVbRSN/WDtJ3Sb1YLa/FC7xLjmz06xmtNnTcD4+pvZJwP6RTN2c1oEXL/Z/Mnxh7k4+VknfHlWyeRSdZp1XC2YxTQs5JsoWIJw2ucsaNMtxDIV2I5zv06UH5sdFDywXWfSDlzqMtAbIH9TilYWvcBBgJRfWbYyLwzUTLjtLCuN2nUSFNk6/swpB5Z7+UssDCabDhXihG3Ezgl+fn+YgLt4EB1WElDvhPAQUIiGDFwBbKbEfAmyE8Y24bMFhK1Ld5lXv/QUZGvkp4RCkHjQUFWpkDUtwwp2UjzaUBxnmXxv6gXPo5TvkxmnmizFISHoiffU3sOVY/77rYAH4V9f728dW/56pfjlVW0HN+Rj7FvCQO/6tTW7Spk1+w48/rhPZGB0vldAJNZ1fpK2u2KDoXmsTdmvizh2UY606lgtTFoca5Qwwr9aAEk2bt/Ckio7L18SiyA5CmqGh5Dvu76UZ1ATgRCZm7r2Q1TEu9qi5kJGZFP1G3fqbPx+GbsKtHLaQZwqrjFKmqnzPd+Z1y6/2RpfNUY06LusFHY5wET7OUUK4USE8WeYbnUhNDRgOkLLxrkgKPV5uBcHHFDOMEGmiTFj3Y1a2++DZHWd7Vh/1qJlZIjSeAmulztmJJlKthHL1D5+5u/yr1tkk7x1iykhhKkGG1j0wx/jZ4vmoQZkv3sd+a+zqLXKp5q1ohVxL28EbXbK2Cos3jSq3mwRuCJdeCsCopzgZynG+5rWRMxwdz2mkBUrq48b/PLTDXo5P+vWd/0DLkRHl6iPtA32meip1XvLWX+LgKcjZ42+p2Wns8EnME3ycMq3nTcXMWgVrz5LJZctdyX3Uv7xv3JNhlkzy6SsJZY7y7Jtn3lOfOT3Bt1Y5JZxaPUTVvBPYFWLVURcm6U9fLCMmJeIklHqFV4yw5bh7fMpUskxP/nLT01o6ZxpDNEhTeXx1R8akX2NPhyWXP0LgX7v0kTpX5yLHiaFOCKnGG6b4a7xXRKxy7FUiOtxC8fsaZrawtm2oNvyo1/mXov6FechmqYLEXya7jY/Meh0G/AauzUcQf2VLwpZ/hoy8j/sEtgsn9VeqoVx4Gks9iiAaDqn0PGwvfD9dtSi69eR9Elr9rAg+5w3v+lGouz1KHqw1y5mTkmyD63CCa6/sQb5uVdiv3/eQ12EVqpjcQSmzs1/0YvMJDMvWP0tET+7JMCB4/CVHsQg1eR4eJfPbnMkdds95gIIXorgmaFSiZbADqZjcZ+1FjZw2a6iSA6/Gwtd1lNH49IsacfgWzlnNc6GP+5PPbxmKr73BTMG0N1bGkp9S+ctLRniclk95OjTTGPcz3NqH5PrBOMsOMHmn4mn39c1WoDtl/jIz8Nf/O4qzGgHiSyBsOyE8BcR7BrsK32/niwQE2GPguiX1xiBsyoDB17ptp04R2VhKSGwk/ezvKTbmWdfI1h9Ltb/eLyMAc6sv0Kxmf74L8cWxGZ/QW16uCtB8eEKHEgp6N2r4ERGVckApHHA/FONMDBGZklT7FqjfC/sL9pSDM8vPQPWwcpUaiIqsrVM84xvRWBqN0wzvQZexFV1keoUwxIw4YNJneWvYDyd7W4VOhLeCJCL2IfKbutPlnUMuwnnAhcDWg8Ks8O1PjY1o9FYlNsManAnMn8zITdkYEASpAVd2XZDWd27M8WpbTUSUSgCujmtOTP9nH5EH4d9dVpUR+0mJ9vNBuFRcBh2EJIT4Mpud0WGeENHFcnPiCRnGYVLIEawZq33ui+tSHQ3UKFBa+t2N7uWkQKYi7aq9o5nB3sV/xhPdrJzr40UxTx57thCrPcvN7NmZs7dd0wBizQ2TkoR8EufxWPYxFxIdfAmfB5yI+mMLIshEVdH7kPXLVJqas1rrmbj7Q+UywRB+Jby5b8oTF3NcLgDE0v7Rd2f/RlsFwAOYNR1s+i/uRrFizg9O5NfKR72d6lmhdBVBYS5o5uVfPeLb6m4WwCyxlXb34WdwFDz33Sstl7LL79g7te4uq9re0tj8qu+6U9ZNnpLcrskEQYBWlYNslvLJnjEgN5uNpnpZAru4Y3U5zHwY6E8ZHrfS1euxcCM7Tz1+lioaM+w9vuxMmn04Frjj4dnsAJF8oovOmUniVuzHv8dWTCldmYUSX9rUoLHqzR2MIPIyuMKm8kNFrYAFl5S8nWGG8qw3Q9haeUIz/IQilTWwl2fGFK4rcWNBJTqdJSAWViAMTp5hzgUym/oKEGEUCtxzmZRNHq2BKHOaiDF05Sf2YtpLsojiWl/OnIgOqWwNMTSKggs2Py09ns1Y1vEQpR0rfo/sRsY3stv16/br7y2hI8GM15BV+tT4QDnkWNWPClIO0FifQihPRWLwYF31Mf1Q48rJApspDJv01yVz96rIrFq18GSKzP95v99Tq7Nm37nZhyGEX8bj0f4fA8CVl2uPkm959kPFanxWACHLY3vwh8WIx9HM89ZNx9OwqPOt58Na1VcjNLT6OFuO1GS7Xd8N7VFIidU7DXQiNdrd7F219g+ohp5oQjkQF0CpqYnAmZJN6x8Wc9LQs8yDA//sH8LxYbgrnawcP4YZfkqqxSKLubI6qpJDvsF0B9oGTD8wHM+cX6mwlsBi8ou5M5araguOMwH+N8aLKQCVLP4mWrozhOtLBAO8FO2zTBDmslNrULap2Vsx1JsZQ3gdhv0mi/wEd1tT3ufsnHDPNQLE9vjSu8kkuTNWttVTGZp6wfAbshJDtbO3QbukOxn/lViB+5NV10OwhBJgCYwP5UQ+n6+YByC4TIAWHhP1M9ilTCIJgRVjmZ3hVU2l3xFLS7bTZExqoQeZsa9P8Z3ratGWJfBZ2VRP7dkyEF4juZAlLwSrvcYvBvrFujIyckXNjykdiV+CTMi+84Kjxl9u8Ld9pxJ7RUilrhZTxG/Exfwcr5tTtUKnk2lAsWxjsxcA2TbDNc9cvs85oY7IdLUZpyvf7O58ODroFMDhwCPO4wAC+x/J7fDCI5XoeREautBX9AGYpNG+TFG29gM/+QT4BiRMLmtSXW+xnU6gX+jAaa2qZ8DIhoIu/k/8xeKEqzu8a+Yez3pGcxIa9ZtsusdEvmNTw5XgLsOEA+UOQWgVGTyVqOv2P5I/7+SDgjw5pCXWyKEWwc9W8Qn0zPY8D0ZmxngA6P52g4n/EmOPU/mdPls8Sz00aJS7g8301SLKdsRuu7bZKMR4Fwcz9eBa7W5X+zyliNIguW7r5CijiU7ZJRbn+PHtSzv9m2Llkp/w3E2jD2sAOqAuAxgXSquFOMOQPs0n/vg+jvUMEIcn2/o7VBU2Ovcv80p5dIYUzez3RSSJg5Ur9yKHTVEGdxjw1fq+0J5mpwvi5SybKsSkMG8cFxY6T07h+hwHYCKPkkp5xH2e8GfJvSnQjxRZLFxXCs5MezJlbzAaCplkWNEp1UcoX9lrhasGTUfRVcfOXrjTQzuP9rUEEqj1Jxi+yg5JZrpEY2xqkb4C0RLNFKu5bM8sxOYU5hhbpjTaBtWj6bpCRo0kEfzwfXzTgQlrxF7rJc+1Fhm7wVcqjTdwsWZobX9Cdo5rXfs2NcoeRYNlwxjSBfI8HbIdn1HzK66S9yinHpBjS6mGhw0reiYgOHqTfK9OyGcXhxq7rhqBWn0pVdF81CfQV9XF3GxMeURVhz9/YRlA+A9z/oILHxIlwQZz5VMs5rNs52uJfdgjYTju0E+XIiMIKfE+k+SnyNVhZ69Ip7r4RE8X89jbhzmBa0xvnTg8CIAyA0hgU6Yi8FO7jWCFRAw+OhHBmyBHRsSPdNBC3fMhE/eFvOh4Z/kJGdR2ktCfPublnH7wxeyLAdvRufpN29BHkf0jXwdd5wDBza9yN93IY679v8Eu7P0opJ67Stbto72GS/344BFB3zsEaapiDGnW2gd+aYiT0Os2Wpfghr+UVzRqvUHu2ZUNDL7Ds1IURbQ6BnznqtzJUu67VUL+GzHnPV+OPCWGGSZ1dfLyK77msxzqZO8/Gkp7XHlFoWFzNhxpNyh+0MX8CIk3uDZZPmqIoLXB1gRlEGp8mshpX8kUFsoBnhH5qvGF7iXZrFbib6tOAfr1eEq2fa7zG7Zk85z+VbHm+JWopAJguRM5z/TbOdylIC7fnJ9hN7MUwfa7lyOA3XDrU7S1qMsXDh6kXLpUnsU+SD9XAVy3V3lnWfm0eViFBkCSZVjtUeeRRDzvDzoLiiPTxrT43AfzLcEqZvTnmMstS2P0OFcJMXPgqXzEQ/IE3IItbQuz1pT8Au1kIAhRYIsAurjj5iO/DjPvnRU0uhTZhwl0blIeq464Uc+0/omPHTPm3Xm9blZP5//7+XUvLLTyXADTp9SKRpN1KOtK+2OAUAwScIzQ6oG9Isbm7AZ3TJp2IuQ+dJgs1FOCMuyxWhKJ22kegq+/4oEHVJE86w1Kh+AVe5Xy1AQaY2nhYxzAvRa/qBiTDMUjnoEBOFHYe8mSbjIHbFuCGRKa2/xqKIBKNEgaAl45REUHPbRH7CvrdYBrBc1m/e391LRBJ1jHj82XXPk+rwVyLwpjx76sDRX7Thd7G6KrAQhkYYWgnq+tIyhYBZr5HBaVouwQosYDGGskzXcavewhHciq0UIvTPcQKhIanV1PnjwAJdaxRFBtzW3xpq4qR7bHpPoX5TgUPFnorP954+0n7eoMGKN8pU36oAIoaZZuCj6Vb2pE/btdIV75iWd4Ge2coVQk+0fw64xJsi0CZBblRlqPcnN4jds4/OvX66kqZ5sqoOA5zlNiKh4FC6YCTls3bPnHWyn/nD5ah0x47LkmnkaZdhu4Uqjoj+ZoH3uvDQ9mpRgRlcscmPa5GWF8yL/iHmyQJI7Cd5cvLZaGTPcSCEYTGp32Nz0TE+qF83wyuqfMKYK5UH3pz5XaOeoDTCEktc6fA2FqODiCFORB+bHl1CzeyXGyqtMr6jvOpPQDP1ZjY1FqHFMI5w31JFMNAjK0cdm9Dhtqc5qjtWBvGrSE+ZRKyicvOriSiNuB2DDowsTNhyiK5KlvMkAIcazIBIFLE2wYpsc5MWkfNSODgCOWjMHdvyMHNA9TZrfSp8b7MBGBu5ZSC8fJ5HfmReh4xvI9ehnWPdmtrfmqqOtqFI9MeBaOXPnq2X/E6X13guE6ylXVPs1xpPfnzK51KupEFqxRpHrexrqlzcaCM/giWSwWLLh2mfwBfNyQTMHU8Md8PZLb06MF4JM5dVUC7lWmjYmWJ403Afr7kuer33d/sfVwXcdXpQ0JVKkk9vCE2ogRrFXinN06Uq+Xc5VBO59xfx6lf5ap+O2l2SqyMisWTnRt5SwTIXn54z8v7j1AqERK9Y++jlNJ0VvDAhfthx/Fbw7/BdYu/sO2Vt2KQbKfmSyRUDTCGva/ddf3RZO3W/kglejyRlUhD98YZnGXBMK+UC7MVIIoyKI09uRTJf6owQYbJL03yGjhE+Opry9lq4oACC1uCl4Pk/dKwKAtlFyBixZR372/05Nv425fDQUylklIX8cbXXvLFOQQ+wPL3rAstFDBWSlcM6mzPtLszdCTTPwftEwbOLfI17+rzQrNTULSqCEqCbBebd8szsCVeI0w9bm0XVvO/wbgFE0DqecZdCNeH3m1DCScZdAipbgymo5BnStaZRQ4R1UAwOG7kcGpHtCuzVnKuc0seaouMtWI4jMoODprhxyx8IrwTPTeP3FL3XSR6s2TxyEvOo7aVX7bRZRz7t8JoU78bF8dSXsxAFGBajwvbZYIAvOeRFDgbFuF5/AqoajeGsB4oZ87RokJRECvALBdKTQQ5k0TBeRMKHph13jGHGK8RPKh3E/VpybEjkjozrZ4GwrDAopmFtMW7rfYVOQarJ18dvCJ0ukOBvm5cc/XuHR5wl+9f2WeiPbYuv+8IMiOKeh/Z0JoF64/60Uypd+p4pr0IOZ6KBkq3Gpe2RLhucgHgOKIVDWGJJVROy1YnjAiqOxIX38ojOoAUjeNPxoxuuLUqh1M25y4jp+eyvfNLS1g0ZV8/f5cAYqApxoyhwONJ0qXRjMHh9EyfiUldPCSxbrPgaK7jTkm6iuL/OR1hA3HVRNiXnI6qq4SID48CPtdD96YK8jZCDpgC2jZgATxT/qCxUH9QayymYBZCvnHgcb66EI4G8GvR/Q4zRrMj9KS/L6yB/Djf2Usb0MNU3BoQ7OEBsSenyeNdcLCv0XvgtwQhKQMSPtRwVc8MlCMbKeBcr8m0fVYKB8YJ9H3NAnY1tyEy3t+Hn5Rqij7+6cSF4pvIaKtPYhHuwUAIY06m6IcahFyl4V3oFW+ksgI+Hn5ex+USx4YMbJTGwWzxbQzNfMwQJKLbSzbsU6ICbU8vsRzrH8DV3JeVPd9/fxkYPajgEnu8tVHFVxIAKB0taJqXQ2fmCs5UYOYF/4AJeSKtK057GDJkJqXkTF0dOGsh0yb5bwGeoketEWnyh89iEqvT1rkGhEtPrLx9nwfLhBlKHjYojDrh6Gnc5hWgG8Pj4Igv9CVQxuRvOfU16KUl4y7ppbNGl402+Nh8jNB1YV7NBzWTEwM4970bHik159WmGIptxNrMFQ9ByXMk8TZwB0Eft0X14VlKIjWCGW6/jt6JqUEEx2BSeN+jJqm4JVWp07CxKTCrjAmwbzmItXKOqQeHUdSFtVl/LBbDcvxfdfp08w7EUJDtBqFX7+UsNYITaOOgFW6aXM9R3Xgwu6ajoSjigZCgCtKpTfoFmNPE0zr6HkBIzMpmU0zLSI+nOzNVQQFj5jzEgArmDLbwhtiPkaMRi3LyChOqWKQ+Xl2uRzVEu4A5zGV6qjUe+efC2Qj3530xw+JB6qHOIVtNJbD/+NeCAaPuqG1tLvBmqunBILrYZ5uMxS5VDS9ZCY5oxL3oWh2aV/uLHurmawWdAprRxT2H+MxJD7Pl/L0UvFebN6BiQ1DoGGmUd9VwYzNks39wuL77g21MDFIq0Yz3VT3SXNunZv+YnwkmppTBcI085bqd58O1XhIWHaS9lirK5ngQAOh8Udtp18m76z2dEAHJedFNisJE5jgXqtQOBnoVQCoz7CHsr+dM5RKsLhjXliwQDSk4jAbh1wSPC34527w5TmqJP4vT1Ii3kqN2Klf9W+mEq82MDC+4gmOaV0AHbncFN3ehqLEBhxWNdq7OpTgs6nMXYAGr/cDNjPcjIV5h6dlZHo8trNR3xbQdAK01sIdCDoTwAt98GlQWeP7sPuZJBEsnx9IzHRE6QrHIyGx1yY8fTyeJAvs/e+d0VP31jnGgHzlq/fC1V9Eyak8hUPOXOrEr9vRBCN4PTqCy2dIH3owJq9MBqj8LgD27Ms5Vblxa3TifNZpXrdwQyOgsulEcgH32UeF6qIUDnNmFBgJBNqPKjGGuPTO3XEcoh6QPFuy5SaokoMSP/G4Dnu7+uSmNYKwkm+BZLmSVopKnmysdeN1Pu3aJeVFdHqSl2+9AeFk8dHXHVGu65QfhJwezbn6L9ghv3QqFUFe2XbxQAj+LAEi+aoyVxsQ5qL4p/njQjSmJfqBxOlSrMqQaViW3ySuT5EN18SayQkYsPQ9g00FJ09S1zJ6ChdTZ9qLeYoIYWHKAsAFmAS5Ppe8fBd2h5yK8dSmhrCqPE2yG87E1tfrn8fU4Q8OyGQCaFbNl0bPMGMxCas8InpNmjNtSgaF4mgijGXmLD/LmTa64IzB/EOuLKCYdarT77dgJ/AIxFyUzyHTmfAiXozQaWapD0odGxd1fDcbOxZh07/p50RFvL4befQzVCkQdRFOIGk5DJouQ4T32KRNWCayegKtDRA3HZAZcvy7Yj6XEAmN58sna4zoArrhRoMM4lQgNcEr4KhzfBB1XuDDZN988IhsmIBwLxHyEqu21EZfOxwOPa78nJ2foHG3ra8Hk0LPDZZIzFMkXzepzaRMtcBNeZK8NXFro3afB0gypN0mG6G2dD3RFecqwFGJhMmxIcjsFq7VaIEvCTlfrOI1E0qyRNWYxtACPzwl68IidXxXjNU7R3t4ZpnP0Eix5AAUJy/EHvGS/nR+LmS40dP0Dzy8Itv1/MhgO2apKnb5QeGhuPMn8P0k7eiTAKO4wJHQJukoXGYuvnOj/+Ml2mjX6+N3G7M3bdcLxI/O8mNthfAMYx2HQUpEFMMjjZa6G6JxlNxj84Gh/wAkFSn9PcuAwTHbZIVv4aEnP3c0N4gTgFkhzdqGLSg6iRusZITOpQyo4e0/SbpyefvZLpgviu4rk1bgxcElIdqXi9EgG5kEK/aVs3swe5QkggrnpbC79Wcxlq0Q039kZ+eH/Xov7afVcJxUU+B9irJ4pMStxby81E3HTqvjOp/WzKdfrjTin611qfaaKIZKNtTudZWTEuj07FOKTMOT0Rv5QWFvanJUoMJ8bWNR+eLPzYiYqGCbgCEougdTFyKFcuLUOJcJfKVIeM93Fdj7eafGaGXvDcTEHLcSlUHXxr/7pF8ySYDqDma+cZ0LnXeIiXl9PvLar3yJi62Us2PFwtvdByHl55guDwcE4hv/T5cMshOfFmHkoFgHImKiupZDUbpL6bWEpq75T6Viwi3CuaMmYMvw9W0Z6UN9kSE78MKODDZ8q8E3114JpP3PJhFf09zt1r3+X0NtW4iKaIv4juFDFogHPe9Lm1KpaaYZxwiu/PliQCl5xQlOpnOIdQcpB3ATbAEgTeGNDU+3F3jmtcpdqhmCAslcQShbHthE2I2A+BX3DbUL/c7t0s3F+Y4MOiTuOhx6kFKoBQQ2nvTQ7+HWvoE2izcBC+ydEad7yvC9qELRgq2LnlhGR/F0dgl3Qwx52kzm+R5uWPTni6b/0hViS+8FSPrxl7e9YqqyqWGqTW0dQnQPPpsvZpkJPujoj/JBtKEF5zIusm+X/wEoPO/9F30TssPgLWjur1AKA3STVI9y7zOTkk3kOcWfeHKUGLVjwpYrjFDi9XEM+RHJ341m/17lKZt9NL9aIv4CMdCe0XJSLCpPnzZZSB4aUl/qsm0L6Ixke6Qm36lJA8hwKbgR3ty65TnBnGyfIObCtS94WjPIY4KcesTWsaXRP95C13OUMAvzENpBxOLwGn94rIn5H81xNpmuP8Qj32kDYJOFYWaLJAZRwmD4bYfJA5hsA0JmlPx7ETcCKzPl7bbouoEeq4ysvajwW9fKVj8XPOMDzw9sihg9hvOrLlsBl4NUSPMDREmVJrdTwEq7JSmzw8IeG052anoYE8+PMrIYqWz7tVhZoE68MQ98KfV3Df1ofObDTKZDzDDM/b3+SXQDaKbGySiEZblEVIEe/vChiyxe2pB4Nv8LYbgUlzAs80JFPnUB7ymuk6JOOtlkDArWx+4Qvrm3XgyryAkEXr1HXoAtUSkOGO1I5+BQvcT+u/Y08xl1Cz/650JejHJM5AqIr7cauHoJiWJJLHmxQaL8upUV/R3uIsCie9Ulk99veTlhCMV0WMyiXdvu+paFehm7Ua0BkXmXSdnzZWMVDrLfKkAK/c9zxX+jRnsUJE2o2fSLszWPl+OIOmBSo2JtGLhM16aulWsH/pNYeNckGgwudprbZumAiC9AxXHTys9xU4DLVhLp5+l4uo7QOsYtWkeZGd63nJLM7UrNm1pRoDzSbfqhs9DZzLue52om3VTBViUOC7UiX18TrFEpEMnXFQO9osZ9fci9itlx+Ar8j69HMmX82h1OIvGZsikxeNIWcpmpbC1uhUdlwqHrSFjKvGA/GrWY7wNclMTV96tE2YRp9SHeeobD77ZKDWjwlGikrfXWb3xY/P4VYEiI2xrfLrcZNd7cjMrAObVLDaPSaaE+HchEfChwfhgo/DAvrK2l5EjMIOSVRJeF2Oj+oL9zn0fps7Q8w1ZTafBeIFlD7ST/doSJrYEehjK8cUGqPdHetPaELNfEtp/ZhxFFyynqBN5vzz1OuXkhGx9cxeTPqxF2sHbz/1Q1vwyf6AFUVaUa8mbOAfaxtnGDXqt+6akMP4X3a3MbJKU8hNAx/j36egIzGzI3BUb/MAvsq5g4dQWincmUCj1K+GTPIToqDG41EgXKSjQxEsQ4yMT+LHUAPCo+ttI219f4SxVy/ysfbQEf/oG4kCVm5OI1M8v1oeDQTp/5uSFN4s37SqAwOR51aLxifM7xXEaN9jurR3SZ5iWTMYMdDp2gNxnRCrzVtpxHHWX+w8xiJLaErpWGY824c7eWmRp16jd/BpHvt4RUQbP/T0W8+2aRovUfZ9K3+d+0UWc3CcS2BDUw4kTUqHVr3xGJbJdtSWfdR6MxYaRnZfLBdH6bwzZuh9cwP/xFjly6f4tbO8pkdakXeW0gW2ByswdMm09TZ24GbgunVHiE5VyERJU3RMQBp4yDKOjNYF5M4zEdTcx9YrP81REjYyh6VFapjo+dTRgdymAQ6jqpfkLaWhoXaLSJIiTPdAtAiAdr70feFAaykdX9ujrY6hH91tqAMYRGS5FlwhXyJIk1CI2LsAvXUm9hsHNTip2rv7IY465sXB59Xg49M+O/HXDPirSr576dGO1PmuiOj2zbH1Szv8ikjWZNmGjy/FJnVnODrd8qEactLyvW4BzT0tCc7vDWEdvG80fuT+pe3jl5MK8MlIVMbV0LytPtiHrygfcQ3H0sLVpKhg4IxlgbPxdOkTa8FLUF/nGmMgGz4RrbHkuNovf3VB+kRPoLBBd252Jx4jfdShB3+TUSBYhP34XEcrfMdSD5kNaecfeTvQ+qMSiyZTlfGJWhsguAwM3rr47lVXOt3cTs/375bihMkWT922bAqVLvUqm4hZoKmKnx5pDM2zxFy8wDheELeVXRPA95S/S9MwFY7upXvlVxNOSGNgYmKj6R7PvyINN/tL4EJlw0G9sJAMdBQ7fglY6V2I5b3ANreoceo0zjtZAcdQ/jhyE+lQ4asEok0v9Bni+votdpzZpxBNTgf5c56/qBfW3JbKYSh94Oyzo9MZwAT2SAVxjD3H5g/RR83I0prjsEfT0Pt18vA/eIU/rClubEX/DUNsjDkbcB0lU61RQhfHRhgsnLFXwHII7z6m40Re9RuRZaknurFpn8/At4Uq6VT4wD7bpAAG9QYuCxzCs0H0HNNIRSE4nHDPe4BKhY9AzvEgaayLzWKSvnujmdaNdOt/x5XW7guDrdWjZg2p7/vMCwqmvpODBiXF5XO/fv0lpEe6rCxZqBstFu3k+j0cn23mUYIbWgubLnsxdFS3mnhISIzv+1tW42w/ElCFI9zV6EbL6Dqs2ONEy3UuaPlQm0K5NujIPyz/XccYEXkqDMoxbcQGetHJe646J+nGSTCQZRkjQMXFTNDZOl1PYvEzyh3Tujz3KC85AY1xdjcH8TWyZjqR/SbbwRaQ5bWPK2BGB/bBIvbjNTwt4E202Fq7kKtgPmsdHfUwOKU8heVDZAu+aTtuHqxJ5S+A+Z+qD1/nGkCwJjvM5NEoKjkAFLwvJaZ6z+zep2BTBWT0G5tnhGPc9ozDsC8bLfXjTbeFZr95O/fnpQq+ptJKYWYKtnFxtg3dhDxCA0ICEpQ5sJGuLR3EzIf08NSz3LIzI8oUOgJYSSlODY+dav1/QeXhR7kh4cGfHrF4gZPaogOXmCDtwaH3r+JtzMzFgCUqZ96poKYtW14FqFtb2CCOGdhJTDG8VXHWBmDWib1KAkRC35ucM3g/8UY7N9c46aZXXB/Vu+6oxlmGoW+I5lEcDyMm47z9IA/UL1jMAM0fmHtpRUEZ4m0XbyArKg3dRjmmwSiVrHT1aPzTsJ3n3/Uzdd4ap8Jonkd4IPVw9sGWGmi7ylNAi5020y6at2R3/A3dsmmvOJUiaslfEygGrwk8gb3AH5X4slfXyaTykSZSBAB/7aJwWSroN/6SrYAfIEEyo/j+eAcoZkxjTdOZQvm2oVLWKNZPyGD2irPbuQOLx3MZ1owtbzBMrsC73KcpWvujAv+LC+6bFAVethEwLrhQdO8ahrLLYhEfww0vplbjZJghILfNrGoB74d0ShwFGK0MPO9+ETYox0g/L7A0p3p5NPXIaU9D7El7xwdZiJRTFyYqsyBiT3MaCKvYJ7YQ90l8FdBPXtf9vyWoiigAlP3243U5PQv/ILKFbDpL9YJ4KpW0fyKdkKKdikrkfYLmyfa4egJXot3hKjkkTXw7klO0XAu9q4tntRa5Gzj/XBzYTYP459DlsrwCqigeaGNwPf2f7QzrKHz7HwuPRoYMgnsaL8D8x0/Ym0SSfw08uCskNw6VhTiaxHoM+J8b/NR6m9whT4IXUGpynG8rRhs0gG4/ZZnuZCPhYDW/nRn9QoIXzeRgxXPZd/1rlgyAuB6MHJnQ2nN61NvPyc2shfVuUQ+RJ3A9EC2kW6ss5Mzvp0SFb5kHgXjuRxiyNiiDo/a0SWH5O0aU5QipHLsrcukrU2w0qIRnLgDZxwgrIoAQsuxhseQl82EtVPruSMt8goi12ieKZuOfxsX6qvHUuVE34pqX2OzyaUyWEdr9as9pdFYPV8hXgIeUI6XjIDqPxSpkW3tQp0HCS6FiaGBazeMf/CagmCrU18JZg5sdbJIqJy9W5qLIxDW2LC/9tH9KHuLfB/GN5vlV+YufePjeaqhplP3UFliZRyLSyEY0TgktN7rN5lSniMgPCTYR5097llYsG/Ly6Tr2eYLoCvKohxRJZozWvC11dO8xQT6LL/zOE6Yx84UdE9JoCheucdNTdKHh8qg4k+QBENXFcXSw7aSgvn+XGNKIhL6rYRRbNmNKr68GfBFmRcdtJj7MujIAmsDR3hFX07ZeHG/HBW+d0CRY/N0r6Y5v6v1DQzJMx9I5UYeNPaRzpc4G933lcsGGCFt1ZIKz8EkwMZoNyXaN0sYiCkyEH6YrQcdpuPH7+7rr4hCvDNW+ItXbdQh/fX+wZtlZXrt48s6GlE/TiA9B3Bi9G5NXCocvNe3GghF9Yi+nl37L4KReCjL6jbGUGT+UfONMohzzClDasrKGWfX5kjAojuTpyjEZVLevFlYpnZgvsgioVlBM1vKIZ+aAPvk3Cs/MgEeA8CzAf9SUweYyDC4EX2xc+brSQCzRk5/fWAE+urEsqOJRDzdVk6a13QLDMCvdrz7CiTuHI3ccJBIzFGHZNq5PA/t5eNCFtqy+lejTuFs1vByI0QjP8lSf/KeaCjWNpSA/kePEIMIcPGDfdn9LrhP5c/YUjcbTPlzoBoLp0yrvVuydiNXuwU8bI3JQeHU6UwC/NFfY+46JVCUYOluNrxay52/Fsu2C9aW4Urgc9m0Rti4STP2UyO+gdM1gdDtUQUmptyMF8chmtx+Ey2A2eLhGGnT0JxFSv6yQDtprn1n9Lyd6CMoY32+dqgEiVOKWnkDZuk0SHSCikbkBIrLs/PTYZsqIiyarumSdwvxwblKfHB1jhw8NheNByaJBpxUKdEKFV95PE5cdzcST9iZJ5ny6Q0c6KMvpD8EA5czS15BEgIOEi5pLaW6VrbAAG22+E2m85hnIfRpskUXzgJUpwBOsw2Rp4puv0fWucjzGXueynXOxfKBAKiO8om3eAi7IbbGa+HSJi+jEDxiopoKb+PRQB3oLXVdyoOLlU6a5n8GNk2rR/AaO9AP6/agtelxmAs5LGcQNFvCpKJU8Yvn4G12OxFdvoECBCboOenkSE+stT7eVraaXxed8EzjMeHhXqaIwu2vJXyYhKXG6kEBDtMJtkFjPV5BxYCv5r14DuLtePl5+8zkeWuCS1rvg3oxKOMi4ofOFKyyO87mrisao0YHYZHP9XWJYBEUoeIfA9WEL37VLv1DP4nS1eH8JS+DTFSbEJ1RHvRJxeYYOsdHaKYyeMDUrJZD7/YIdXy18uc/o4zfM6iuYNA3Lmn5DXNNUMi8bOhh1TdHHDI3LW1ivSzeeCLCDk9yljjklBsaN5xk+AnD70sCNGgjgq+R2/DqST5UhWhB9hcH54qX3Ara9k/BUWx7sdQWbE85JFGGVpZHYzEoH8ZwlH0genOZiRtMCtl/XbTPnXnlDGKnfzSOuJ/25KRo7NIGe3MteIgONlUjySACb05dgsQ4fgUN3xwSo9dnEn2GqOGhHJY07q2FUhudvAFqz/yRXdWjlZjYhG6EukNsD5V46QowK6mm+7TNRYdUFtGWBPYQwJvOvmAaTITBPRgoO1VT3lgzqiBHXdG3K7DHB+rGpDIHoNUwboz8/gEv5tzuVIqN3nJZkdgWIZ8FzwdsGustI1NW6VvCe1x3IYZ9UZjD2qoySSDNuZvO01vd8OME4QD3jwkdkDFA4eQYOgqYTU8DqPf0eOMmvPGdTVt5eB1jhG8qfBge0dgGAjK3SdfZyvO4Pw2Pb3dKRNt/y+jW/q5TLrWtA8zpBd+Sw5Cl7CHXC9HTv26wxpM0fUKumu3MUqMQ5Ze3AO2+VEJLK3he4T0dhLUqD1tbbhGY9oOzOmDZcxglukFMVxRSoxYvMbfipaeK/o35hCm7mbz1pewkQq9s7ho7Qsy6dsvYGdLLQiwPwAPIAiPP8Z/Xw2EXLnpi/D7NoHCsNkG1nV38Di1kMO0qPiRrgjXa5iHdGcDk6wqzeGHGjlMCNEsToRHV+IPLuhvLuNywVEEebFPm4Jhm/o4qv5KN6MPMLIzwHBl9UrecCH3xTPcy6h/M9zgt9nGFk9WTJ0BlFPgorBP/WvKf2pk9cS/kXPsfAWqbPD5Dah/DCOpuoILntTcVqdAiMZ9/eFaFQy0SG1HUue2yR7bdOC6QJAWeezFb5eE5ucAvXp9j+g2X0ICszLIHUdEiI96bCpxfI6UEs4NdiayZqlrMiKJ/2S5Y846Qais3IWLEn3UWkEc6do02nn6ETEeBELDZElaPlgJ0v/ACfMMLd/p0EUPL6JaPJDD76CO6hNh658jkWWRr5nNgcobwiS3ESJfMJtOwCVgN53EYotxLwJsBIGkn4zb7jikKdY7epocn6HeulRtStMygRMk/eY6czNPmQurpaQq8Rf49JQEWUIvjTKBckiojrBA7wS8gAAV+a1dKaZYQGvFZi28l/SVEvGGG/4yrfoH1ULtpeMe4GbhNCL+PeGv6BNHLTc1w8lDzl2vS0GbmCVxOswWMxyR7AQCOtjxwYGh+GyrZlKhlEPq1iJysUtkH6AbVqxJstx3iL6cWlO+MS4xtyw914Gq0pVHyzTnrL0RGyoq4jjV28TF5aLzLD6u/tdRWxSFcSv3GoYcVXlaOYHIb5VrbawthndzR0MhCgzlsJPGy6+L+ZC5Kzu+ipi6KBrAb14MpOxoLOxRzWK7SIcloxBh/xbprJx2QBiMuVsvr8Vu6nurQgazGrnf55UjBWEUg0EB524puVzvahSDUxFk3Kiq8V9IfuSDQHw/gCSbTl0J9sQb0Bu0peBCgEVcVSp9MKpXVTmfibd2wBMv+AWxkH9NKkMsIKx95P6+qupDrtSCyvvej/3vaS2ITfbLb6e4eEZrbyyFRJ+wB7Z+BUTdBpprJyCPl/iuF1M7RfZKyuy5GNbUGr88Zb+YQ3iAJ8rY7g5MVRI+AkVlgjWfAZ9Nu3WJD8p6yJngXTGPXZwYejytoLM8I5JcGbIcTXWLfoNtIBxv62pstiEaa+mCnwloNoqek7CyYjbRlYJejUbBjPAtsNzkb94RCGQdrXvgYbpddtIX0Ym2OkneLid3smgYCH0DPR4+MEog373DYSQpen3QHky/wWdbKF+/SuFAkkFdlxOLu6iCbvNjof3KJBUH5XizZ8B8jANl5THAdNcryXk81el2oPGpU28jSpO4feUg+k4HBGTkQxogG69YIpFjLdCsXfXJTM3c+TxslETlxuldxVp/Tbjdl1LzZa/KvBfvVLCeWJOgMW7oRQET+9sPfTyErbf5YJHvo9ry4a3/tTtoDVBz30EkWJLJTVCn1NuEDbBY92MOX6irb7+iojdi/FGXAqcHU997vb3MD+JUVc0daQ9G+DQUfVk+rx5FyJZOSs5LGvlo+cVzFBgreDENWUjksR+saSN37kmWCmrwyVvh/+d6MJ+jkLkGXdAOaHH7WI2RPelwTyj+4yHZDM52LVE9T1LxNBb5PW2hJQgj/s6rdAFuriW8E5GcmqLOZpa9zzqpvjyrgGmz0Im3pibtgVRs9Pot5+lCH9Sl+0vioJo/qA0KAB401LmmRJbcyHVgQEtE7u2kD8MJxcwn5mYSISy5Z86Q8zFYUuZW3ZENyqp69N74qqIEVXcEHVEpMCdzFd8AAg1ML5GI8GTiRMwsVdUyWaAj8D+ThUxUvECZyPYVsMLTxdZZnCqKWZ76DujI/3oXtpWRAlnPFwlj9/vrnr1LLF4rB6jd4GMPewow1WOmsJWgaBUEn7k5rcMee90YG9jVQbjB2FkAuj7MpnwvnBQ56SWM3q7IW6K3sQwVz5JVC+XpwzKD+6QHCDFgo3jGToX0UOzec+A4oKiCyEuTvxKTS6KZw7+KNvLYcEowYSxH3Dn9QujPMYRkm9RuJbO4+aYW6EkdP4S39awvwNprKHG1Jn206n+zIdUfP+tIGDkCcwj7rgX1rJSaRqeTyIqBhCLAEDcJlTFKil1k8E0STLEW1ii0BIlcCiuTqm8zzQlorz1dnUTaGDc4vAEzCRHqcQ1mG//XeaSvLDAQG8HBkVX7gPSBjRZ2Gd9TrfOMQOcATo0ZPY8UiZl+EFikVO52plkB8WFNTM5dKuCHVdh6l6s9BjgXav6WFg7nLgbiAckFg5YuAhWfirZrSg6cOtStGxFnLskonji08UqVdsAUBIOnzwjkQWxs0HJ+wnEdM7z743NqXSSWqn4Nlv3gDRJgbvE/XDsv3mU5BDyXcZPMJ/NxHN7zZ9HjcjsNY3hMDFPAI9JWkSv3btg50xKXWndOmkrymTl47+ZmUDdyYIKbU5gaNgQb8Zp2Pg9tLMd0aVokEdJf31j8gR3+hl2H8f+X9ulSmE+B8dvzxtkXLZG63aY+KdiaBovvhbORtgt3iW2ltbMuWB9dUr2NJddeZxJhBe1PI4nEV+lP3OmuhHsh5/+6rfPCsXFKA7TzNTbeHY9keR8NZhzgNSDNrOcX4OVeI0AtRDKkBh37hyJ+RjAEjjrCsuO2rkRNZUkI4VQqspswZEoHEfrzSNPJSY5esj59bh2igSm3MDFkegfgf7X+rxSZetRmH69gDD4OmIJBy1i37Yt0WxDiYW5RIpxwcrPs7jyJj+jKfqoaT06Tvud8+ll7T/Brq2Zc6nNMSt5Fxk9U2cmf9PlotKJYU4rB5VE2QBrTUpBxz8E1Nz6CjhOtkUWDhqrsM/YowYEww4ZwuXJugcXH/VKfMBGDAeQpX92GEMm9nAFclVhJy077Gd69AWOs5Yl0zg24L4hon0nMj5sJ5PacRA31Pwuo5KFILeJ3aMyZ0kmb3pDz8vWETG+PU/8DG+CUy4Gw7JZk3L6ftg4iZe6IMF/gw5vrOC63YrUf6e3nEy0VFzw7A0Kuaxa96d7UwerP1RGPLnmxZyv3jZGBWm10BcA7D7+hq26Au4BkndZHftvslL7XZzgoygj9UKSWZrbRjMFPTunOuvyJUv0FLvDn8t8fnrpUWFDqbe+RKmfZutT2MawHjRmJ/Mw0zlFmlHMmvJFeDZDvNHnZ9UxQDpT3sqtYB6ND1WT8BkKsOFm+sRapaoljWpu3Gp9MhVM8sdHFJlBjIPrqbTxQtJetnTwP1bWK135Bfh23iXmZrLnPEqe8fyJzMBVNy0Z9/AtOUJCH98rywAMf326oeYjnsxAxwDk4CCLr/eo6JOR7sKhduIVjiKnSiNHFBVXyArBbcNBZScRSJTlbVlRWo0VRtiJS7Tai1KpPKeqmLpXgcuP7hMssbBiRE8efhkSdceHQhDqQ3EO8JU/Sxa08zjJ+kTxPlL9XQ+FyWKt/GCxe4E8vON46ucELeJI9IjNsPFWFcBcAyIQSLeWaaFa9+b+a9WoAz8m3Wa43CdxKh4gyueWrHs80879UzdbLT0Hk3rHWDqIlRUzadxJ7ESW0naFQgcUqVZuy/yIFetKxHViiZANpkN8IjXQ1Al7XsLLYrp4yA6seqHOQBjqcBuULBxpYX4nY/RgDMTpD1/cGFIOllFz0lL5vvuOzv262xQGj8nkv8hfGUNy70nRWsJcYQcjNSy/MElZ+213bQ3/Qu8MufjIR7VLeVt49ybX5LKeWWYp1GUotuvSsP5ywGVnYJA3hJW6BcMoqOA1jAcHmOr2cOpqeaiKjoMA9nPd6MVsDmt6PBAl3ZzdLBn6icbm8EaD2Hfa1OvHoaSIe3PWucyi1yxchxqW7V3TTyQGt0ELovCjk1BOjFlEHzZd33CkYkFTkvczIoQc/Mrnw6aY/1lmukc8SDaadwxDKZECS+gQT0m5Qe8X8vatYJBGylnMFpeL7DzvFR3fXuKmG959HVS1OBjvh1RVmSECQMjqXNlS4aj70uT61ZujJVogIUFXBX2BqDnr70YtmbKCo4l1KdSsbS78ic1iCJmXZI+nt3EcFMXRDKZcLXsMx8lm5pOr7TYCPqO28lc1rVEhSaHIQZ80K2kalnq26MHqueCXH+Dzj7CiooTfJc3JZlYoZPomuWm9Q178pHapdrtKEg7839fX7eIXXiXdSQ/U2VLPvoyHBX93gF73kx1oeAE2Q4epZNTzkeYNbNr98m5MtWH2Krnt8IuD5CdfbOyyy1u96jMtVWf0B3OTNRJOETjlvnytLGAwmHNLraSZEv2XXP3MREy6yq0DQ6hsGTI5rnCZgq28C7kXfjPeGjbKH1Ds8UAGJzWmlZAkvIxhf+8rgh/rnrANG6Xd8wDEHRjdNPvKhRGbE+OSwOey3lavsKZaDS8w+3kradrjO7ojfFchjpXXkwxNN4FgLdj7v+H/N+RYv7zQ2Zx6UOAzgPdCGgHQEEMAXnfYqAaduqBLrHOl5KHw9xx5TJ4fmEMgyHfHVwoOwWAMGtco5Mi66gFaEjE9dYxCjHEL8ocjjd8QQstK+a54o3w7Poq7cRHhe00Fk3pSHNLEYJuF1Ufm3Eu0fnspczW0ynIwhEb3QFM2WhYEGmPslew2YHAcwyULLtNHYqAVXkfm/UGEGPOwUEki3MS+nKFBHcASW6NHbL6Upl48q65rZNBEhIe++6Jlq+p6uj+sX1FU2L6lRpctHef5MaCbmquvl9A7lrfIuVGYDov1nmT6VuHj1yONxJxjQA4Mdp+OaSBOirDtYzPcIy2TpgrfY0gSj6LFGO6f5mUZYp3gbFD/n3AhuMx84DP01VGOAKGyRuxGs2vdR1gRo0S79hDJnAcBQxTHvAXyclVVf6gYP7X6A40UzmRdNfh15sqwmJgz+o9KmSVchA+VFqSci/CQYn8M5sR7SuR4MPn/KnEJUnNbhrnCg0dxU9zRbkOYF/i5jNzRQPGEhFG75b+iskAcNQV9dS31aDOcHoItthutaTubZfkSXLLppp69CFtmrge/5MWkB3tzGCFqKZjOQx+4ouCr18jvRWaE/bftpw4nueVYWyLPtA8r/CfYMV1gFiPdv+f0gEghlQ3SznRyOM+MBgsVFUwzu6cpmqI+tTv/3OhuR72PPqjlz76Q+wa1LUI/Zo4o2+Oh9F35pKB8kUrDegVbM9Z+DB05HC8nho+iNljz+TdhYo+2pozE8n0fEahoZ6UhVnN9GWbetFnCEAuyMlsRWqpkUI/b5E3sBIUB5LLRsOlF/6ng7/+joJoZUWLcmgsxAa4XiQ0kqot3JOV4bBvKdr0LVSP2ZiffOemwD7+UWhuU8pHjBfRVKuhk8Hh6zl7oPZYVcZgPOUsiBmPXnSQQQnUDeZXQ7DtECtEHC2xSe5WJQf735sBo5rEzwP8IKDgwpDZK/SrVt3Qp+rA0OiAWZNRdoQE4K1fbGEA3oxsMBal8YYiVA4L6uLEhsfI8AzoeF/tF8JeAWNzbt2zpqh9AexsGj/P4wJ2DJCegvVNg7wWYtBbKzmBdja0gNF/D5lr72RTy6pBCxcRa9SRaCE29w5+TEAw73wBDQ9JlRhCGbGfrinXUckEFU6LdejcZpo2W5OyrkoWxcgRwFLxtb4OgpoO2z8FK20UAp3AvX4tUqXISKlFbV6X8tOWaDsMqeTd/BntnNVc1iFomHpiVtTn79FsZ1bO9d/3QKGOG+jQDDbQeAOdRYzDj248YPX9BwVwrgf1aV4ljTJN653BvSuUBqXmxHOZUxQdpNSxmjOUbnmTLbwqr84EtZRYOkl1QMhg4e3L4tLcHIfuHa5Hq1tBMkjcnpxBpCw0JR+5yYvfQxjspiUe764uHKrKIdU90LszsUVW6g2+qX+WDakDs8LRbgsFPP2khYQsFtX+hcssQ/t9d+/Y8UId4D/JpT1FMi5NbhXSf/PeLB/xQP5m86xkeqFJ9n7Q/kf2HH0U2dwvVKAAseZ24gRjmvk2Mlv8qmyuPL1aQA8VxTE6jPCmyjmPfriZRSQ1FuNObe+mdKjF+rrfUnWq5z6g3MSCQtHVLdkNe5Z3hMG9Rnip9UaFjjBYqCMKJOuH1zpFKd7VydiC5yAXJqIfZjXnf3WQ6tqOVDaJrHLvGl0L3dRaX9srP4meUY8tdwiLzySA5PvssMUdntFOZkgLPak9jlB3aSzgBjmnbV5nFoEgNbUH2kMASX6FXMbF57PITEYB4NxRFMeQ7aU9DgLs8GFthidosrQam1NUQ7/vFw2k+d9EalN1Nb64s2mRRlCQri5UKMA6ASCuAENTpWbuCgaz9kCW9lTxdomWnS920+jL2EeRIXyilC0tQlXiUyPugtZrS49dS1oj8QkvFwcukW1A88ULLVKsH6gpizY7c+1Lavt4WsZzymvwnYYiGWg1Bx5T4Y57cLAASQ33Dtyt8L7XI1p4TojwLqzbc+vT1pNZXVmXwR8AfnW96GIVdpy9okrGzt3xz2NbV8qyoZFDrV1vudumq5im0GN3vQEuVqVtyDcu/xG9kx236JL7pzMIJKQmF7YDc0/d6OlEQYqF+C4231djVMVhgfqN17B2snVY/Ys3ozXaXGpTNjm9Hsl4k39s71VTvcJVvwtP8MXupajBSCwEzAqRiNuaMwKn5YG9p5aKk+Vn3tgAjZn5zEbiMp4XyVjuzz81hf7lB4W0whxG/s8ofFDQ26vsdpo2gQ61Yfq2NpeoPX1NihfEvbhu1NKMXIp76tAexHwRSCRMGODqEo0IZ5KOO6DtydJ1nzSnvqXK9c4z5wswzRqaoVutY6CytyBynBhH7QrjMH+TMguDozYfqJdONAB1UCYxLIZhXlE5CxmYO1o8NWRV3eKObhtJQtWOj9cyXaiMNzw/pEfzsoKenRZwdx95H29bE4lrQWytWeaBw+tJQw1qGHT9MSS2thINDEz+IQq7NjD6sg+/QyS6baHwwxwFoNW5R7oRC2QK9UA/JaMG60+5PzaPHFOhwiO8wXjPJPpHrWnFHcIvdqiC1lf1C1VIU8+aAwHSwgT99SGe6k0DJCubppofrlyBdS4tEkAs5yWPClEig2+4+QNBWMKo+AVFLSBPT930OAkCMqrLUZx2yDTzin12v4P9qZbuk52Eu/rsJ66Y64jMC3ES5gcueurHJflez0ytNxcw25Zu4b3ROp2dcGA0DlrAcU9WfqafwXFkpBD5G3Bm6j5D4I1zTF7PdahgR3ehJk/iWikWCMbREaMwMa+2u5P6t4RadFv34feOw90foEglvezZd8II/at8PCclqVHhzRuKigYdLgwqCd/LhIe8mNj8tqeF/zUw4iSlmJ9NyfVPDq1oqGsiMY7XMJBVwErmBZl/zeIFtoSTwee/4ZfOG8BGQ7tZw076BnS+BX3bW8LM0EiyIYbMuUoAePzt/ksJmN71RrvEAFkowIuLknAhqsHarHtyeiM3S4tYGabiQ/SIEH/19Ncz2NiOqRRztkGqeUbhG9Yc0N7sg6LJhqxq46jyrMK8MMUPad8+gfZQb2QA/e+6ir89s//iVuRJcBZxsWL1icfGj2ai/9RZ887FD2l+JtNE1ZChvcSvLZPmfrPm3/2fDXLuBSfFN1h6BLwE4Ft+0rAvRGxnSLpWAwiobPS8CWGm+YRQ/5HfRBjw14kuMGN+AqA916dcj7PQniWx/myyjcKqlMXHx6I3sUYnnlD4ox/9yLcYA6tVADr2GaziIFkOCizMS9pMcwC2dGpDj10T08he+AiGYv1Y/ejs5CAfjFzgEqC0BvyhL1puFdxyojClu1CtTFHqBlNHQsk075OV9vhVa0m/8XQoOyPihRC3kv+i38iEBC4EGq6gNqJZes9Jh024jq8c4ZnJ8lxPOBs5BE03CYyYHYOKaS5BbXnwYtpIijxYcZ5RG1668eSAvp9NC96GhfiNI/WzyI7e/lnniXiiqviq/M2qpK7kdFBRpIa7Sv0+wYi/fVPiPYfiClW127j/eF43uYgM8J+1ZRJMYwBahH9SyixzRbuyqr2PXLPty6s9x2Gclbut96hBikt6QMaVQ3yQxUqyS5E7M0Kdn/u54T11EHrUZaGPAZDpdkHNMftiM/vhcK8SPtIh2B3RDtUyftpiGck8vCa+4yuqW289Q7UtpSt1u2dTo3YkaDQKxg7wj/fudlJkkINGvMAYzHJp8fJfg7WuDJTv8fXkjEcdhtTJR6BIk5EYd5PO4HivKfwHIVWiVcY2399Yi8cI97hLoH4piQrz7ake+ezbkulOtMQOZyJNZ36W3gMUo8FlU4cRSChwgq5ZDnsVYSTk6R0J7KLH9Zz9BO9glWehAb+J6TBuPi8U9Nje5sc/Nss5gT9rDerSrkCAv764rT8H9ot2kFurJjSrsxGH4EqAET0yDwbkGNGkWBwqZrRlUB3+ZTvVoLyHUYj4bSZCB34eTDPjv18f8tpSocxvWcfySLHMukPquxvJTxzjWlVrFHwTvstfQcf2R0QaF5WzoYpd4s0aKOC8RDCuOxIyd7G5Oz36MmiI5KLlrM0iam6Y46CXK+7FT/i/sRX1ienbXbTYvluThqv8/Q181e7uAyU/xKletvfXlo1iVo/fyRuS+FqqZ5oagYP4QowJi4Bib0A8rSNpbLbObqWM5huOnKI4Sy7ivByDdihbUZV0r+sISkfklf9bq5CMdzjBQuMERWqkEaSlt6JdZld+l/ZXvAbQZiIyR4J3TeVY6IajyXhCSaHL26tb5MeQlTtW+OSxIGwjxCzBC/tjTVC/PIwhWpdzuXkVIVYESu7jX6vMnbtf/O/zB2C/h6wXgYVpxN3lBanv/BMF/LG6U/uu26lJKPd+cG1aZDorqUB3uiUgetxgYn+j56HhPL0NkeLVeopS6QgXtp1Sw/JJAywe+2mHDDD2o/+iRJrXgitrb779rOiNgDfKRvct3iHXP3NfHW015OXVs2du0uBKAq2eaDv68+iZNRX4TpTE1oV1ICoIsIhUG8TOjkrWou2T63+eObydX6I8ibcyXlnRY0O2vqDWFCPlbB7/c8gG8WE3NjxcB1o6RITGKuYViYiblEAP7WwTXPgQrav4uU8uvWRyeNwuZE20+m1yVo/s2br53g2P3sUNMsJgSjmMkQsbKKZi5i4TpUxP5aigm8tuz1QrTR8HKj7jbcy9XQP9faSQLoE2juw2MKjoVw9aPfC35eEjhKQWKVwAdpI9d5pgxhR3z1BYQXNF57nuXNzu7bl1LyACd9oDAlSkASAacHDmaI97f9y/4sTDrutJBHaplWpXTgjdvm7n/55cFgWclenoFG7dMHCMcJoexCYMObDkf6ATfUrbtkoKRWvVHvTb3ld6NNAt4aCQv0Lrg38hM6PR14spB3p2mtIj9/Dnu8nrwKkPIxn0fpDq6oC1nKivlm9YWsi9H7lgzt1hLPj7ZTeJxyDdJ1z8QcvP26lDaBvQOOnQlG5aQ3rAPaQMoezqcSrPav8u/8R4hr5F8cQzkFsrCXc3sVJP5KCflIuNpUlZYCkzEEoaE7IvSUOSYgnxS8eHzdVP0UrA37RzwCjiSWm3N3LIj9eGy9ipDlVvfcdaOJ2Gy9vNtoN4D2FUcuPAz7zArXp/XwcNbJVp3Wnr/z9UXg9T53jZFFhdj1x89zLC0d33zcB3Sdmox6PC8zXpHW54yo/AgdCeHixR7OxPdz1HI+OQsjmSoi8jSPi7XxPgclgObVtq03ylLJPXKPLhwfq20axRt9zrj2CG2z99fDrTNXo8Or9p6neQ/p0ris5eQbcDAjk+rxG1wMZC1U2xvm3q4Kp6QvnNeUWxH9E6P+vLXsQ7UfckXnj6J5WA0mic83BgpeI+ODoxw2Hy9iZV43qgBQHBzmp0uje+ky8A5nKuHIkTmwYEoPDM3HfTYDBhC9b7ujMuI+Vv3b0OkVCyBbCTsUl5wRlkXAx6QnOW9XbyPa+szvau0vjunxqdhfI3wabzB/wb/Aoma6p3CGoUbsXlDspm2UIrgTiaT61L3o+6MwVDGKXMqMcGFZwwkkDUSAzaA57TW9R4a6Ish0UvdR6smR1qRmhQIlGxf9BSZfU2HRTKHRprmZewCXiZQ9YpaakSxJB69Z7JFAw0JXQefcOZJqGlpCJCjqlgXoq48fLCzv6t48ehFcgWtBNyrIftHVXcxYgmx/j7ffJhmNf0c2MQOJ7mP6iJZDSz+674GIpymmREbLyYNy/EkgIIBhbHXrvVp0RKTYW4BjD3FcsrIJhykRPt/1703QCugbyqmok4r/lCYDHiTG0Z0f74FT4UtK15qpY0ZwZQEQe6vMYHflR5vMyXTguxJFmFBzDzWEloDSVvEJHQPMXBjC4nz9jFzTnm2E7sgDjCgTLWhFrGeXuYrc2XuQO2A6vAGv/YUJkugzUxrLK2/PNIRHGe/cEHx78cfBszHtOWkFX8cbYaRF7ukA+VHdBR4xnuMnUtu35wxRkH3iLJ0oSBccDe47UnKBqRcDUeTBqeom7IOL1z0H2cMMIBSKOI8D5zh7LPImCGaL7uVCfde7N40y/MgaZWAfh+e6KhpMWKW889utGVym1pmEL0QezIdk9TH1yZhtd6XLM4FHRS+BXAUz90MteF599ifExQ1YQZmzkVxUupsD1Uox3WrUAtNDCAnhAvqRZEG3OuPHUch4yu7aNHD3bYauM4z6QAl3ey9gUzkjSXOsNXTtzZD9Z1Rw/RJL5RrI/NwSIlwTN1kzoIFb7X2s09lgkfZtgw6UW50zjMHkdeN9PG8MCC7Qf/RC/Ee4jxVzrzySJiFdinAPg/6lZuLZRca9gpvNeL4p0eV+Rnb3aTPDvE1pqu2ZwO9woTn4wr+2A3Jc4BzI1fmhea+a9y8udiUcHOpmMnUIIquFtxk3kra/W4Jm9njamLGQEKUNOYUul8f9lR1+LWxkdTLM0xCmAbcKS4LeNMy265i19WHuf2ShWofKFNY7PHFpkfoXOBM4ARVQUJH6S07kp5A+EsUF0HBysLO+bueas5tNPKZjzj4vlpZvBDO7pGVIdLEWNeZxNxwVa5YDqZY8C1p41iwFrqoYzlruLqJk6AwnonfQXmWkDkOsUkuNetNtPqixWGfhi5OhgjJIkdYcyzb/PZ6/evLSEKkUW2Af+83btpwCh6it/CvHl3o033Nr/MzaQ3lMuXvHlGtPmX5qX/HxwTlt8oZpbHl4rRtbut0H0QSgAfAUeB2+RlnpFznyDK0XEMLTIyrgwz28WyQbSyHvDDbY9zxt1dhHpUjoUe7dNFSHCtk9kf6ymUL6Ozvr8PPy7Y0npb2ZGnUMQu2MBpwJAwLqumL2c+zfoG+3+ObX4MVOmpmGkwmn+8m7PjRSvx5xZa9Qq4upRLkrOYF5U+jxNeSJRnaoA6hkcBxh3R2Id0vEUS5GEE9GO5yoP8iMenbUMqwOgQZ/py6iYem4zZLCWKq7xpIxwKDSc0VfQy+p9MzkL1izbsZnC9OQTaCcLNSoaNGqAj7x4YOsnxHmiOr6Ks6cLfsI7eIuv5smaJR/o9/cVsb46rFQO8mif6hW0V9BKONEwAJSZN9Anumyz1ianG6nehX7ugRx4Gx5tpGM+b6d0xFuysC1PRE4WgP8sc68bCvIAnm8vSA9451ztDa8jBYRbeHTf8p+kyQ+mqsjnYPkEkKT0pPlZ2wDYQlLE62KdxrijPCFB8nwEwoQ+NrvAZlVupKyWUyAV11Yy0cLHcbN19ctlXUxbZ9GFCU9LK1KpRUVnuaWcf5QOWI6WEoUjw4wiqQje/g2hd4aOcK43nZTb+GHLDRHjApwfjvz376glk1zaL+Xv5PwfENpJE3aLodKZDN4NiLt/L86XzQrF88UhQo0iA9tkpLwzYZo3eSWNn1mkSeq/SpvVRTO7mIPwHRqb3U/lq5iKRd5mAFvcG9UEqGoLj39o29x2qzUJdB0fFhN1Y+TtNg1oEYJ83XicOkx3rOgyigyuO1UEoT5sg9BIg9Qw0Dtir0BJVy+c7lrBwrbWEMt6q1QWKuryhm9w/vyJBITwGn5VOUv9zLsJfjgks22tGzMJBkDarRnE70r0yPNtwUI9gN7ohSbwKJIh6y54qcKk3vRU0tyOnSABlW/prlZJDuxii7HuE+Lf3DPoDdAARMynkE53eZwY9Qr37tI+PHgouKyw3/Ysvm2ZVC8NC7yH5n1eUKnWqaK+MwaQNwWOW/MMBsi6r6UHApUQg2bdZ7++kyw9aB+42tdTcAZAR84bWVtobXmOSOea12sj85PYiqMTLryyvA9pQ239rPD4ojRnLzs/T0nt4VGziPc1XQ1V5zNSvTcx7gaSF+6GK8XmsItYb2L6iVVj5srd+8KDD4rSFt6OpuKDykU6LBd9BpQHqFz9+JOnzjStQWdr74oB6CjVEhdzO9hePYU+crtB02PuCQKuci7VeehOEBbzjyL2iOS5Sm89s4fuJxi0HO8VVLbxqhCysow2Wn8s5nWt4Hs4e3cWlAd4LthL9YjR5oPHSIoID7gvDRi+9RhN+DAtpo0FCsLIvfIcPx6aZxQpFtxzQoEUsPySQCYmpacWviD8ebpyEiFKJxCXhw4fUJJCdRTtMmp3gCqHaqMA8XWJJjTHjNBuYgAZWCFNIaVhXQ7Lsn0OKuf6tymUuFsFjxzCJluqhsMmmeGAfaW9Ys3E/nNKw86+kBA7NIYgfX0f+zeBATsBn0ZEOd9Ihj+6stOC7Pb/cdPHz/N4P/qA85Y9RRwaedmzwpsctRE4rG0JLLStYz3ilmuHvMHbcQYBefbZMEWIg79zoYGPZmJRmtVim62ExivS+wfBXgsbdWyRhCWWvbj9telsLNAU+NRC2reZcffmqsA3DOEoFMjzVW1H2izriYx8Ie70TLNvd51l9bNAY+phf3a8QhSfCa/NqUw4yg/k7IMsjXCnh2/4YFQ25/MRaEW1G/pHH78btbRX0wg109/hO6Do0hyGo9h3j8fu7McBJSWf0Fp+NLQxXzOvrHvSHVUap2oqbianPNkaTI56zEnvxwsqmnkUA2dwm4xLkB3rvnBloanjm3OfhGdA6scIeIWpNjVsnUIUWGJDvu1j178xLt+9tySdqidBHCmcO6J30CgDayZqsESIIIV0DCuXE7TYwUzk0h6hl9+cVjGhSX1B/jX/RDhwar5fbrw7F4XtGEM+Af5FzoZDkoNwWYNrQdjzrxwe6ZhdpGQaN5JbIoeeRLXludVH/SJgD6T83p4gE8HPYHWirCSNJF7naddb2Djf+sxJAs4Gqm7zSszTCgQQhUQ1LuS4SBsE5Mg8JMwcaH/1D6l6vntyZfEU1oY8YPdHC5+OrAPSYzUmHYqUWn7WRQMNkWylap098YKoiOVE0w+MWRQNdwcHHgP+RiILBfShMKZxlg+HFjxACerw/RZYIwNsbqM/rqJl4jiw1YY9Iw8ZLs6eCuh5eRI9Pt9Ngx8DcKT/ZQ9eEdPXkk38kmEpjrAlPowqk2DkZgQsaiu0e8DXbF6Wobh9h/IEhL2vaEwQ6IVLXlmoHYd6cwZNhQBrRBkKi4yZ0QU3Eis23TFtSaSz5r1BaFN5lXBwiNdT1HV5W0K26v4yGrBGNFRdk84rZqtmvch0ZBJAr0h3b9fDfOZ9OZXMR7R7sU1N21wICjOI22El5yjXwJon88DTjC/9Evqnh1RhQ3dzTBvRJ22+IVtTi9+rqTU+aEZa3sFKnHX3++Q0nPWtcFsIFJaa5PPZiPhicY/rWytwOO+3iiYUzaOixVefzJY/fTKh+07uvoUpse5rk1jfSbGTEQUW7YxGQsBXqXbiMoPHdt7Jza4vnCDFJR0XW3Xiq/rXgruII9P9poOflP9m08yWL8Zu5AF4RuvcGt8ju5ONdChxS/zvyaL6zWJ8d36SAPr1zIHE1MU3yLV9IiFHNi3sPPBEKcKogUz2zv5UQT6lvN01cr3B0JH8ZEX1Z7DjhpXMA8CYPPrL4YcZgdPTPqE6iAPZecPf4slaDihAKwFILcsvYT07pqmqSBWRjRkYrBZWYXJjrqWf69HoEUyHOvrjZs1K/rOjmehddS9ZAbblcREgRdQtePw9RI63H1aFu2AZnfjb7Q34YGk46cGImxKoYg006yFN+9EYc1lqdgZmxWG7/uIZh/3C9zcy7Gc0fbUrImD5f5IwMDkM4ATKRJW5tzNVLcjznhbpxKJ0MK/XV6eW19JpxpBFczYVnx7tbBkJN4XK+Qqi9v+HgcTMtkPpWoY6zP40IUBE4NIL7Zm6haJsB/k/o01XHMN8JWj9s26NJWCXhW71mvJr9lOzpmvbplA95h5THdNLX5xKRpfu/8dlXbza5w6Peno81AA2esqGgHfmAgs7fftLcEMl0YwNXg5p6xg9iFtne6Br/6DSeCefS3GPQFn7EzLMLLV22Cjb9l1/huewiCoSKTpDNQJ5dLWB4GRcD6NC21bJzjdhj3AvFskDw5ttrqm1ieRMfU5tftFqUwyprX5sLeVD2ggfB78stvgor36OW7G1uI1uMCDaTjWTv7awRwdpQscFoXkm3SlK+/blbRw8C7dlHxVNJWIYn2uuj+pihQi+khT1b0CIn/SJL4k4LRiAj22PEoePJE2nvNYqqi2uGQDOpSPKDbOVpWeIbBwwaaNjDExzIUwqDomwcYGHFGzYZQE9tZ9BbJDN0vR+/ndUf8U7mRoZDCEs9nF4D2s8ncewg0C1mjSvZpuQRPlstHHnhuYXjbovswmjr2XiWoj2p/fLILKsHrka33CvhxeilbQGOgvZcRnRS6f8PzjASRAlrQduNgfut1JOMKPFZp0wNdry+x8hHi5J4HHhRecqRU98CccPBQlSGaumBVBHTmiFhHpAd5zo/i0G2XV3eowOjZcnqtRzbHj6AgDG7x0ho/5FkVIUj/2H4i8/buC9cmIfkEgDREs399L2t1TDjHyWofdftHFATOuXAxKRypGfdlneG8K6I2ZzTxTdVhZUbwL/ZmNxO6Tzk5W4r7iZN13RuPT1kgn9Uw1TAr+fef9mnu1I0gLBB6c/yvQMLVcw8RoECO+hj9z+U9iiDNvQeNlFpDEIp1T2kB6PSIfu0KdbR+1+yaiOp1mH3RzSYchWfiBPf+36hyt10cF3fl+IbuoxuVScsEVwNCZ4ZzaVkTKihCZlgmrCfNv+da1HejFvwAB6pnHB9LpBbhcT5yxyHhh1VdpLvz72JQL8JdCNFix2NOed6VfDILbf+Qymc8vUDQAewLv2R6TUavwi3mYs3BC5NG8BBwdAj/45Exa+fFockfsjVtsUVQRZsKuF2frKpfL3CXHNud9RTGfpzFPoTydBJ96dAZb1lOQ5lgRmWQW603g7dYsH7uMIYbA8c8xrivGptZReIW1ozO7rNOKLcpi3ZG3yL0Leid8TEU5vlyfwDOUR8jK865NNvDgre9C9QtBoAIc8sniVMy0e36jici3q34hJE9oxbfFEkwtbqBJuRVtkjrSGFS74agm6+rgEcV9kQUP6ELs8bFYMgwQJoD0YyO6nqw2xQPorji/mZVR/7mcIkYrPbR28z5IvoOTc43zoDIp3pJ2LGSgyYVqDJFQOrtKIoiqkZpeaaY5jqfCGaZuiAP3P9FxR5vDHf7Rwp52kws24OACro2idrSFygwGutUIt1XxrnfUYlY5R3k3AxC4idWHvjsiVg/GYJvAzgFfH4sOyGf41LMs+FRf0ktBqGBorpQBo7Cxac87b/0CP8e94DAT+M+6Tg7JSQgQeWTiZ2Rmqb7iFkUpoeCoQOVhUX4bKYU7YvtiNi3FGIMl4udq/bRq/Hz4k8R+NzXmUXy4nR8juQHnpBUPzh5xbl29wg+3IrOCspXvn2wy4QErt6KIDr0q/zJCoIW/RLh4VBgyoaA54tRZpcpwYHm4UHteqFBYsGJafCuAo25cFDFWLKMWLJ6SecmywpUNExNgN03qvzKJqQGMfDPtt/4rJOh6VAvQcPJFnkax2rJT2PeBgwoGYmBNgJUT1tsIEM2DDaJxH8Z47iHp/u7qYRh13+3LFRET5wsxu57Dod8TRW/SM1yRXJzizdySJj6+pfmAKgV895WbtKzGllLVc03EGkM6ILGVo+2xZgfHzY9soE9uGtSR9GhDMgr1aqay8XHRRHX69jcBhTzXJiPU4Ak7XwbgiX3hFYb6QFMVfr0R0vX46fovL0buSGVRT5/iLoZP2oLjRoN1yASpNOpM1WqmFage+C834LguVy0Rho702DuI8N5f0JbUuUO9BQKIqumdMnEN083QtNorhs+yHk7UzzKxfgV0FswvT5X6N1AWPXTcHQZOHiO04CHUEhT0jX6RngbVqjsZ962wE/2LYOKyBM1X3Ds/V3Oa0dbL9Gn33Gc9pKM1xwMCZuffTxxp9ecESDn51plG21S0Z0exncnoQJxtWOx45XR4FKvoib84dUdLMH6ra6SllK3ryPOTlOrESQCYVJ2+KarhO9WpDX71aDOECjPjheCnhybug/gyqyRcTjw7p4hRjP9k9IK93o3JfZsBWEKuF644MLj1c/Cm7DMW/nYk1+gu5IdhEhtLJtGmFWz5ZLeJX1WSQkehwFTMOeZkF2eT7/AGokhngCPt0Nm3PaWLojOm8HKdzkLrAscvBJb9xXecWi4XmZogD7qYvwQjHJJcOrigB87rJq1ZZ1gUGAyatKgOKLyY+Ek8aWzTshDRFsQfpbbEBuREppl1AzpgZKCWccJJnnW8GfE+ijTvKkEH4v5PX5HAPR88YtG4LmUzELU3fZJyaIjt1HcHkHx59u3GawI+KihxmSPU+A277yMKlipqGMiGA1Nnt8XbuPLphCrHf+h5pkxwqX5cKMMssC9UwmLO4aN/FUjmmPXtxZZPcr66JHE6VzAEfdlxWYFVtROPrIp/hDq8kUbtdWL6bo9m61wqmr9w/6AHu56lz0B8XbfaDRNzn4ksaxiy9xTQL5y5HH+OoWe7QfcsqwL/htInsZPZOKPmXZErZaxI8O1E9QlnY0cjk+hwuJ0LCI4jTYNqYLMV9AAUUsAW65qCELG5arPr7SXCON2ON35nhHPnOssuRyLnlMgHwszr2v1tsKYX7QdaXLkDYjPzQDVfokB7b4rvFxEg5uwW2UkayWbWOFcSRcEV3qgiBbN9saap7sKl29K7/hbg7KmoO/R6Cb7UhdgtybhstYtN1FNFfkTCcyKUIFrqbMj6GoLKsS92ILArfFdCqBwy9K2ozo810EfBhl1nAdf/okqL3MriFfUep9u6NQ97Z1bH9ypt2qETbsJnNWBkv3W0WRo1/bG+2hjzCA6Tz85i7JAU4HcgiZDAPyJ3gYKzacZt6SRuw+RNCMx73zr6f0oVhD5Z/TBPUtPqq2v0VQ7w2sYqZe3GnpMCBbvRdx3cnPnE78RUxP2DkXQvAyTkew5JAjIdPiUu4jtbZrRNA9s+qn8iSGbvrfsUD2ptzTHTDX8A+imvUojwCK4us/7O0UI+Lhqd2Ep43k8kQ099lg148K5RRGf8XQ4rTDlwz+RLooTzz4rdEI3S+3LZJXzSlX0toSMvXoVy3OeIOJi+/vJjKiID5cIeCElgjFqk7QPAT6eaBwaR0UpM9sZMne3gTxRraoafk5JI2E6R3sGA3KMWacw3CgQ3ULN5KmaLZAt/JgJQgEPIHJYegV4cIDqsh7gwr5mCB8cxqOTuGS3uVu7GUjPpLfKn6X3R4a0pPnKWorEFJ+tMEkBmPpeIC05eXgPcd0NTyeYdh+lzvaBXnqhYiUftUbQqBVHKYZGGs6p2Bxh8c4HGbQZIU4wfsc3/8Sp9J+tz16FwYuDsqqy2+oOVZJBJeUQs6fbkZwoA/zsV+P7jVIfiZdZfh0pFo/3MgWWSgSrL7LLcOD2UTrQ86KeHCNVZa8n/NPq+8xNwgbmhKLobZN+fmAlJxGAHU8Is5cqHI20/QkksILhrNmN1iWPSoa0bd/qDFrHnTFJfaQOJyrWzPVxTZf5ee/WBBmj26Uzl2M/YBrURiV1GkbM+7BrhIq5u2QqhsvfuDRN+ExpxHCaUfYv9gHGCj0+DJGxWvfXqtbB+w86Q0r1RHQgNCuGDkxDCg+f9GaCoWunoNobNtTh1MKxWDig5JiUQjuEemw7yPuAymQZEZxK1kT6k7U9xeMW7SKY8whlIkcKxJlANtTvHsrn5MYHIl3oIreYu2oOcRS2Kq72rUDUZNWqNxsLqzpMGjd5A3LDRyjcqTFE0XmgVpflkmvlfg5RGs0kemCCFKZjeum7hxwP60kFhnCymWFZA2pcj+GpJR2fRmFj2T3ZpHaSzcQ7w9Uq3goLmYRKl5dkR5Stxdj9fOmx9Dq+cwU6f5PJHT8DY+I/pl5ILNagrkRUltwJDp/7+Wyj/IRepa4QLj7T4iVFDuyvwSuuYzjbP8UA+pMiSBSvrVukDq5+aqmYvJHicfzzchdCTuVYwYmq99fHFLB7oA5xe5GKnSWp/k+/0OHYiN3PjuQXlsWgBpR6mXYmsiFodmx/b3Hb6V8CvzHvtat6sxKmwY2ljcMXwIEMckUuy8LzKt5jvUTD2lsziBvaXLrxO/e2zK1N5LoOCvEPrvY1M+1SSdSFDieB33HvZ1i/tBijCywRgjzrpHiTV08cfkrFBuGCcO3j2S9h5ReclKs8gOA85xgchZhJCF3TI+4qPAQDxV0I5oex/PJJWgRwtzy+PzvBIh245LntZiVHeK7uxVmU1vTtzvapTMsg4VcZhI31VFGXXNRMSf0s1bh9d35azp+/qL6jN0wjcGQ7bR2x+mMVlPX7rbKW+6sHDH4w7WMgb/8a/0SclQMOxpDCk8oBFE3eRGT0zAI7yWIINpz8Le7J1fdvRHzkUAr6BTuO0Do/HTy8zgwincpRuIT+2xQnalHKmCugmyRMLP0+/PuwknkCiLOND6kHYGVex+EzMi7XpK7c/uzjKpOnGSclcLojATl0Eh6nGKHJ8+ofpBRxJIIQi1m5GaZ3h8VlyX/Zacb0jzB6WmzWHVo2a7dq1bEoVu+GQ6qjxTYXcs8UrigDKahrRnE6vLksTfinPYR+Dv+/T1LDxWOrQCij1rjWs6U2ztUUH+8K4vDvUscYbfuSjcfPiRW9P46GaA0Mxx3iTVHet08zb9h6LHtKVpwglyCKSwiWpfiAI+VMKtjCRGfPNUVC/UdaqOqgQMJzDrJfLhUL+eGeP5Ri1QvpN+9JF2ErScpycWQgkqRFdHfAJ4suq/Ovw2B/asXhqmWFOCjltxe+AZ0sB6SF/1A7PsakMIwmCoX7Nk0KJ+rbYlKi9Vg3rFq3hxZ4YgvhErhs1YvFnreonDzOGNdaJVP4VAaRwRh4XQ1/IPpBE6gOMKZhMO3hxJl5OF8Mp6SpT4zZcRMwofjY2AMUTXmTWfltgRiG+Ed6+wDb8LfmQYs/DdnGJpovUoaX+dSA65l5LDl5WeLT5K8xyl47kzw85BHTLnOvoBpsTxnqrqvJoaPAtDR9gX4fkPm4PTbsSexnTeJQNnioMfKvtKUL+XRsnMBdqq2wH6oE82rJMQBMK/LmesUHwMiiwVMiMboUu9DS3DGhTxZwYKWZkF+y8Jga7fdELhG7PLm1yUNQ+NKigcacZUeTeTVsmOdz6GnCA2MONAWmPLCFfV4RRCZLVGxEYD+TuaD3AvBtz3eheESxg3bN8ekRKz7EKaTAk+2JEgu/wwUuaGFUE9yOdr38QPe4Ngpau1AxblZg+sNXxUO8vFyF2mugU44b6TJ9Ob0bcDPRZcfOw4L3nx2DYhgTIu5o94AwY3WfN6DIQjvM0KWblySFgGOc6WxKwitEFzd1eI41XHCfxKUUaE9XgxsQO65VZUnKqCvLQkhxfdFQOqlsGMRFIhIt5UUspUIEt8kBhUFlC97RgytGFiOjodeuMCwy6N7vd+NDyEvcNEC+cwhT5pOnQ/y+KCyaDIKp3PDq9bcedJi/EbX4fgN5LZgqboNUY2VW0wFD1mR747RyoW0g/jCk5UAltAXYSzzYnDB83kni5RSeZKghDV8IhNOqFcRmIWJwA6IIiRh45CrLpCfKFa4qIpB5FpEONlhfHvKHxfrLr0KXqku6urePSWVKNDUdE+kk5EhJzMF2I+rJetFQk0JHj2mFcEi9XXygOI13j0GOkWpdEvS5zo+MkJbQ9CilWYTaOjaNX8WlPu7ncXsqQ5kokYy3tTWp8y2M+2lwYzju/5JK5CaoE80lht/fByMQPXNmWjTn+K31aCl4y5srGiQdu1mNzDPx8uPYZX/mgBzPSocpnpt2QpeuvFPYxzLPvjlyrxK85XxWrGQHfCj6mTCHTOmT+IPqn7sd8ImRIiwTFX/C3IAO8DkJ3RKcPqsGXTyV97Txbm7+NcV33IbRh6sYkkPeSjoOXR8GKlx92btG9ZidAdWOFrOYwGehQeAs+kWKWhTfSAZwCUJWtLTbCKm/61RZx/lJnwnzf60VEurMKF2ehW0/N+F3yrHUerVUx3jqXvLB+DiuLaWe0icC0kZwoVUS24hzMxqYdUXIMTg6LW1mpy3Y42MBXdAMtVICr7Ku/LX8SOfoARMaesedHrieUpIny0zQ6BUOEcOGqDNy+tzi5LXS5l2rtVb4XEQByBW/Am4+/gXy8x9xuw22xzNWER6qRKwDSbuzSjoVdqwBj1VaZ3AccYqIzCpAB/JmvhvDnYAj0fh3MCjTDrAhaA0VzKwpdiRN7B5nw7aPor9l1IEEB5dY2aHef3A4u71QWIt7io+xfbiSc0Fa4vBiEQenXZhZ0PL808BFyNt6AOz7EurYMYI4OcbXtCqNp/+IsoE3My5++LXQ8YbjlDC08RhscYKFIKY37q3ApjSucUnyxrMDnd74nWhPcHbPsGuRNDKKQiZTuGt4GANj34LkQ1qnTwUr6SG9+ulP2YNSsJSVdtXNLu9rGaH3pZO4NFd7+QoyaQkmw50TLUGUkNHSPbpydomXY2jegLzPHrymy6QkvZGD8o0mo6vECt1ycehpdobm6mYvVpZVyyY8IBUB+me7Nc6gXzvyAVVBmEIiS+8VfIIPKvd4qzlUTtQ4Lz7bK3NwVoPxzgdm3eAMAf539MopozkEzcI5Atgx1VV16zRBipYUvXSHPa879u2RYGjMUtro1OiTCUwVeCQ6QY3mzo4JwZpwBjvHMZ8aoHqIaEUjzIUwPeUndrKCqh6gXLMM7Pjs6CU9HSq1ipOp9JWWAPnnRjdhlsRDIBfVPMS/nzIvXt4AzUNqcf3MTDkYFYA3hJS42D+TtSuU/0nLXZGvMOo3XFOxMeG+X5jbt3rm3RBFgrAZS/mxH4smHAmw+PccFmmNePEojBMhphGcZ82VhlF2x3FhPL0l6VilozHH9Iy2/Ku5VFYnBe8mhQmUqKRC0jmKteR8WyqUjaRXJL0WG36lwUpxIAuiqhIpuBiqUxuvLRKox+dzQzx/SoJOeHomti27d+tEhhoIs+IGNgji1OknQ/hG7hqt3JeGsMa4kMduVvlYK+FUQCaMingFSbyN5qK/Qd9FG2xQs9vobt3lsghYezA+iT+fv2lnnvIjDGOCq1gYo83mxQ8Bg6iwmG03yfLol++4rt3HUbe/k4zw02cVL2o6kF7+0nSA7TYPxdtLRbCxoDylLJnElEnGPAUq+/y2j35orrGhACACCZZxwg9Hu3ryDVaLN0+etiW67KHH/Dgdgf9QCtcuLA0TwhocJebQ4UTXCnRcHajJxa2E13NbWIBEUf2/XncvH9aBId05NZcmxYMmUpQA9sHzxvPYrD5SVYVgcUgC2kSZ2tZhCRu5aRu1ZGqJRQO9helNpCZA8PvtCmSVcVBhHbHlv0Xy58He1Z2BXrlmXbfvMl4Fp7FV9B9LHD2vrMB9w6k0SvjjM7/xule0ognC1VtJrNNB33IosN5LVEcnNJrvm+gqkhRHJWopMmlacLC2naDy4PI4/D4XcFSgczkXE3dqztanZ3Hg3LkNpA0FgcoTYHzHczZG2DA/xO35KW1ynfGMOuLd0BTLcMnVMmEZqyGCAI7PV1oLEc+f6LUq7wF4VPQ+2PnKA75quoi32NQuRBuuKrIs/1UlP0hafU4MfBroW54+q4WAJjOm6Bj2yPFl8XlvmK3dOKAPCOlq5VpIVeKuPP+BVh8SsLo7jIiaOjLRY4871oHCpUjAd+fVUDujQUn3hZ0nj1U54JDCYcpjTWrIKFnnbqBZAe71kWlV7xBEEY4knasUjnrEk8vh7+gYzysyc6Ze5nqrSqnJTautdUrnhM0nAktXzG3rpFmw823wJL9/qqYqh3Zw3aOnhuABujGqu44XGRJpDRYJr6olgppPNYsO0Mw/xtUGid1DvVhE5kUCZyNjhJpN6Sd1RP8SwVzIs7ZuEpnIFXsi9ZxemIt5UcwPwmfXEyhFebHaABYvvC8gfnxfX/GKXF1/RTWCnPB/lRP5lrOgsmdhsfwUi0w6XbNnG88MKWzFCxcZ0y8o6Qin9gMtSmQkZiB6P2IPj7anMdIdbVkIAAyg5FEBxETMerrCwg9EHa9U/YGOyblUqPfLYt1iVNfK5uC8qc2OAZcwG3Oa9gH8QpDZDBSh2U8uSRghpokSurhIF4+Ox4x/FEiWFnDVagsV3fLTRdC4S2Y4BPW66vT3ZnXD1gC3DQ7ac28G49xxczNc7lfRu3DLnvATkWMbqpxN1wpkIkr6pYwctiXEWpM9XYC1fik9bglrag2Swv2q42zfADpOq+UznqYsEUT5qTTUWNdaoCwPARkq8Cma3I8pmPqg4ebGOADnH7TMXNRuJsAPqhNVDYBqlAx+bEgTKBsQAvftbr+R257+kB+TkSHp1POfHPN1+RGJkYyq398Anhh4rhj5LupdEcdce1NwL6yusa15PIwI60ll9mpvpsXtuFqQhY+9h6sTonUEQU8rXClVZvLB8I/JbjVltLTMt+dC1OR9vnOKfp0EyFtLi5Rpou86JIjQgJh6jd/b4xR7mNKhQaicyvuPEiTGQbLaqwyCSDWdl3eRvCfPrEaRoVvUo4FDtv0i2MxTih7gw3/QpbesmtDdK44p+hSHdIufm0IQ/8+xLLs800UeXpjJfLxRikqtG/zac0rrcco8AHDQ/QQTVEv2F6LCc+VtdWiTFPG0K63i0nA2cbSAhzbwFJSqwEaPtThAGfb0HbHgig5QrqLi6qmOSyxDfjDLHIQo0Neayqa1rOs5LSIUBPzBVL36keqWxTJESDzTy5Vp0XRlr/dWhaqrJ6rDIvCm7JHxIjc6b13chfdTkwjDRjzwowUYO8Y9C87hUOqDFwATJvl8hj6grabMqtMnqC/crGFkqtsIJJceoSu6T1CzHLiDiv1ckQRjtZhpXyz6jfiba9t+RGe0ZnUmrKMqHUxCTlvSqD8UBTqlWZrbYkhZGiTGX4tb0LUJUkOctVJlq+HXosWkDEHMjBzhGwarVVSOqOolf9X785xbSdIJ/thYwdbGRZSNI6rJ/53UxW4u7b80wC9OGEhdDZzIN9zqF9u0MaX+f/LHU5mGHez6W43gZCSmm1SHunexVIDaMqQq44MJRUg3Y8wDJEvxIvWWrYPCw5UCVi61+kiqyOE9m625Lkr4B2Ttlfgxh7HrML3HYjH5TPFDopKQgb2SFskxZX7rO9i9V3L4gDMpH1aO3+39p2AA6xct1w+WxTQI9CVntJdSa7u/GUiWGtNEbYmtl/hBy5GCysWZmLudQBpYIQoTmQawxGI+R1fljMyjJ58WkmQkOwoVDAj4zw+e7ZObLOWSCFv9VhpA43XRGVaebzbBz53eoOIHih6gK4sF1z48EkLdhc9mdb8EuvVV0LaB7xnbhrpI9jtgh+q32Vo1ApV8+EWu7P0OoOXP6HRbvs77mYevjfG77Xvuel7EWHZ6aEwVx0Z0K7PXC/Z8NG99wX18IWAbwUlaVCXtnDLvaIqzU0wvj2f77N9aCG4FWat4Cw/iil/dzvUVvYx9/02cf0eqz94dm0oIcP3lzibek2o4kddl/2v6UGlgwIn0x+l0qh7RA8dgMUmrzPsz8fRPZ1qYQJ6O9v5KBtSCkUOdNEV6ZkqDkInWkQleTqjTMCcMurNZL6wV3VRtRkqV1MSbkiGa3b5l1ty5c+QWO/s2PCAOjYQaJbuDbdldG9vXDjeIWuI25HkNZXcW3V49+XxeoPWf5nIfSapvapaUZCh3WNrIijcFnWTBIpRI0NdeQOU3LIE92AUp71ubTnaaCiQQAL1B4Xud2WT7gUDbzqxN2wipshbKhmFydked+ONogavyFkvTinXDnwMmeo/jmxIXr1dWqh2oSskbQDSk8H8lkv8ixk9zhCmu0jWjfSqfRsFr+uJ/RkMMAS4NVYLrdkN+ZmMhLVXxiH/xSPiundMF5NfMx38hDGUEc4T+iMJuTuNM8reNiEtm3MWATExgA+2OymBhXgET6KCZHwRyNEKhYcSn9Gp2gSwPeRHEzLHcSiXjkuyTeYzBPe0dK4Uqti0LcuxwDqfkT5QlSz3Q68T7chRMZPcV1KxbcKz1C2wu06Wbu4Ga+JFtxIWpm2Qo0r9PsqL/+heVgUis7AzwUy1C8d/6QhQdH5d9gHkHhFtlGBNFUigtXzCsVY1nEKRjDBcdyLs7UVcV/sj5+PWyOXkCTp5VG1KSJHwF4H7gLT0CTcjCiHUGbSEJ0U8kYI1utitibEAQSIL3BiknUrFNluQuG1AqrRlIhdk8dwBWoUZnQoGSbMApca7gfc9XsLyXiYtAT/XRNmjCtlx8ZP6wlO31nHrCrPJXuKrS99rm7V+U5dKAxKzs6P3fme9MLdJmswJZXLx/T70iCin891LDOEvI2ohsIj4UHKzeuIyXytTVxIvQGbuMVLaFquZkkCZ3QQBQKOrQPneg+HHsWfQuWZh88n7COueRF8mO0For4CIi1/yhS2u0ZH2T1IvTt/274jM3PaIeKSc5keKsyqxFDH8pkO5pdTsk8BY1LojCSM0UP5DeWSyCwz5h9KBrVc9uf6IQfGo55b5ND15suWZxxQUpGS9rCxdIo+5O3CxdLxCCVoP+pM6uIxswsCnb3tnxF5llFogBZyF4mtbtFd3+XmCUo0MJw7cWkL4JlKqB+VCopXxE+REvYf5PP4GaD/XMmX36fChcxbIUMN148K5RcdQlDnTaQKFxzomLb/3USkWr5zHfPwY0eaDDaAMrOh4lx/fLu+2Olg+wK0idsOxGjUVS+yjegKI337nDT3Rj7ZOnmB4ExV9ma5UGTVjA/P2dnyU8h+/oaGQMnkgDFktco4T4sL4Ta5XGMs8iEbm7QCqUu7b73GA5MxUc6noZg36pppjtNtbHlhBXuzRRptIABB04z+CsWXnYXPRQFLxxmz904za34uhDJCMjbPupv9K9ZQi6VCL/JiwFnGlqBVb5yBtTp3rLG9cyQqV92ZboZ8B0vI1LM86M6mJPzx5YTbirye0qJMWyersVKhMBqtRzEKMyifa1ODwn8P+b0eqTX4S7yHyqkzlH+DIMfHDnWtGiEMzTwRqrQm8HLsopiJ4V+TVNunyv4rIe2AHTXXsJDZsBXMfX4kI9aixAhXLirI+FdpuUh9iqlNnlxWdTJYl8C4AjFAu62yNip0H4ZId9SwEM4u1jp/xblyMqneB852TPPMsLCCJ4WGdgTPVtWVoiirOnHO7/SO/tcZm9wiD3xLHmB3fUTKEuIUYK9t7yh61BguHK+I7oweXn9CU/hNLQc6yKbqoq0MDTc80HC/DMY2AcOAwAmX65WipUlEpKbXs5oQCPdX9GH5FilwQRUgluSgTJeCQ6NRu7cgyyvA3lfeXGdBSmylDTsOLiHwq8cFfOu/G+gErHZ+QMxeBWlb6NAZ/sNiEncO41pGEU7CXT8AQ7zMDbCyA0DafK/VRIcMM7ktnmtvjAiSy/xhDd1tpJeTun/tt/VW0p3NQjuEOeI5l7PrkOD35OSXrOAxvY+cp02Jd8fxqjBBTr9QKrWAD1CabEpNvheyVzZ5a3ckmmIyX41IS01s1WexogaK0lSkHiASH+XSDE+JA8NRuWj96MeTV+th323MKvmHj6WGJPUPPVU5X8arPaZtjmFdRxSIpnyH17hakoSg7UFpZ6Q48NVIYHQo/IwQVh57Zf3erKcXqfEh0sYxeyBHA1MHdgW7EWmlA1FJas6fK2ckZq9AM1KBJRjw5K5kueAvEpg5kPwnc4x1FkFHB/SMgg8gOMZhi+u0vA0FJLFAhF1vbF5l4UF9MPU/WTYg+I/BEFG4wZvuUYFdi9Vey5u2oBW3yFKfoXrlTufi4k/eEpgx5z+PCLAb6wcWhPQu+yzReq88d8q9X3D7d/lAJK3TALnDd+7We48CwSPiSlW9CpovaNLp3XWxzEQCXXLAUc/tKDp5yZATslA5RU5WIl+u7GhOU2XjrgoDZg2PUR/zed+YAX5XPOTfuCY9wbQgOUHm4e+KW70UyTYvQmuGpmqTLdkc4IYPCWWmp2CTcs/H6J22FYuB+RhLe7QrTQanITdlfmfQG2425Sr+PIbtxhuSpoU/xlWtZuLGaEdyZc2/7frfIYeaa94wfay/Mba+aDSBd0ctXvkaKL2PjadMurpoU5B+nTjcriEZ+B+HiaG3ojGGlfhHeE/qeOc4L9R53b2iHzAwWL/RQRyWEOMb/LmlTOwjIp9Dby4Oxu399eH9Dr3v/qFU2NfJf/kojQ3xIwKN9qVq90x60xxlb1VUZpirmJ/Fl2puVqbJPG8ftK4IgeykOLAP5BNc3IuoznJieWCe93pZmvpP4+AZ/JZGKqK2DBQTxihtX7c+rKSGWtflfrTyn3rMhlqfAIWdoxZ0GE6p+lD1i6G63iWWuZjwG3rbfJElb40grEs7MifU8S23zBnOvQTg3zrOlKAdOf4ntCoFT3dFAqR4A8yCEIgxza0OxY1YoKCckdv/ViCe+oKMOEa+8wyQ1EdPk6LThq6i0Ys335AdGZpACfDIsKtfFewe5lSnfw7axSo/mJ63XnlIhmu3XgkhJe5TXpKFklnLPofFFi9kB81vd2oNSuYC07ls9O7njmopBf3ExrnGgCWxc7V8xeuz8Lyf60ElBTz6+41QN46P54FTWXvfOIvj4zOYL9utHe8fIXgDwqn9ofT0S9GAGaOvtXyD6y9mmF35/fkMBzmQYrTAM4CR94/v6tfkPFc4Q4pkSSP0645r7MUjRv6k79xoVHkK0GPXxlqLGFSdBMWwH6KbbEF5EMGDiug54LAvoXQ2altcx+gi75Efk2c4uz11/ISerSRl7MzXQSIWT6hrV1Bq53FKG+oMxe8CxN+4zcqFbrBHD8ZoSF160H9ulU5BgUw4S6uSfnEOWzOed4OKx5ak4Lrhmg1dxoKlkFWFGo8xk+B/XEa9CWKc8JWtc28Bg+21PciqNmEhApPZkIlCONMiLbSs2Eqo5HqaHw9evP0JDXSFT7zJNw6sRrBm42UvRom6F8oqJ+AVlMybAKrxPon6UoIA7kWyCEiP9D5UGMFq+UNsdFhu2uTkjC3NZ9UWDNkvImz2OZE2s4n3vQFswW4i24cgr7d3WOJCPmPfPXzIg3CNBFeKvk/OSuMZRvGBgcFaTAwRTAkbw/rCBGriNknXs1y1iSAZB5WTLzg7Xd0AuaHvGhrbkt+oK7+Zr3W843YMp6j5YEtgchvTyjs7yrOrXMJVQXFbt2hRDlo2O9vlKlAGWmLKA+Q23OQeqcvk0HGSxRH0ssvKZxCtPl4Efst6j6yJZ55Le6fzrL6E1q0752XKKNg6zXMEvTxcq4d7XfV5/nXc0UXCCP+zUHlf7nw2Kcwvb0gnipgBA9eudbpRewQCh/BCfayF/XNHroRaWlfsZhIYZ9HkNsSLbNG0++C6ySIpS0yPX8opbq4KNZkl1jFlYa2fCswwbqaGEyoXBXAHhkW4iNrqrsne7qFap4fWhhUu/+nxMBgeP4Ur649IKpldPbzLrbX+IVCtERDONOx8fDD2LYdd4tGq/OspM5/SHvls9mHRS75/yg9NAVzeLM3tVA21yrd1LrAKDJYQvWluQ0IXCqkLc0l+jB2BnUQt8lVgxFUtRparnwal8ajWX1QGAInFJLG6IVkLn5aYRDDtA5YBtGeZunB7BqBePDIvA51xyL3bqHAf/oLEyLwFWf4ilmiGmJpC3WV0EmRnbB6akUgUuhHln8jWwzm4FhigEDslIr29+gwkpx3LjfrKIzXkxh/Uwz7bT5jMWyxAffqJQCx3FpnclmZNvgU2sJab4yUWOo3JgAFJzrwTbWz5PeZ9043/g6C3skxTh6Vv4DNPKQ34Gv2HXPcoe5J4U0hsKFknu/PqNT2c9blhkTpOTVSwJKZt3XS9J2qINHo1s4oLMxiAvbWbf2kF/dqu2Vc3L4mXMniqEdcJUQoO67oE5dfBl3Sb0OLPnD2Hw1O9d4rXIVc9tcbAIfGTUuFfF5OQEpu85PH2DG3txB/WIsstyBA6A5/Bpg/rIWKCvNv1NLf0R5MHhaAUQ9GktAt2xvBmEAQ/CpXbOHziJ0dtboiZvb5j+lZWZ+kYRMROYJs5JFxN9hHxvI99jJiRhPtjOy7uLKE2DX+0NiKNcdmhCJ7DVHWwXkei7XJywmdUv2dq9jgCBOB6/VYpw+GonWpyMg0ptGcD+tuK67Nty66XN4PnJpSlyclKJdySi4nHauuhpFPOEN/QoP/+VV1SzW7zUtOy4Bbppnw5c4SeJDQB5v/6Oyn/ciw9lwx5reJDuMRZQoR2DispsZlxiWTF/MWb9D61IatgPBTWTdzTEceTEyw54NryvURr1A8O82XSTgGwceAePMx5ap3XYcxlIIcgrBG676FdPvjXsxMAFlNZe6GzHwTGAJgGTtcXLIVjL8MBKZ9rh6W1/BT7QsOgeddyDIiVmfmWAmHQOlhJVFyyXt3P6DaPzZ47hdC8jhGMYZGosrF+YA5Nui1/FIjC08vsuZopFxbz499EYIx6zCtLaXKR12BqVWKOenHtUymfWpbfARZsvwC5oGK42r5145d/Xb01kOCwP6JKXwz+DBr+jKs5hNKDbJl3++q+lxR5DZX4lOW6F3BYtLLeIbtakFpp7DjyPi/QKHOkOLVBnux7gF6vHofZZYy/F33sVmOvpOzCQ1rDUWKD8vwkiMjQL3IJoXY2+R+ss3Hi4riKKdiuOyHkxaVGHNwvV6G1JKnF/DRFAINGV7MmhGSwqsGxdvo+TGcKSMjxtI8vqtQEG0VyaY1QYZmGroKrzJzdBAT5G6E+XxJr/E9zAQGb5NAc0nqH9yZwgUI8DynIodRnYk8NVvLmHHhIR4iKxdnfaUGP253drLHMOt5bwy9ykAF+zRg4YqwnuWB6A4RZ1j13RvmUPTG5U/zYJ+mL2mXFg4pbadDQ5B0eN2EKNY5LRK2XHruwry9KYH9LBGVbPs+AKncN6dCm2t8rRmfleS+y103G1Y5IJ3pH4a+bOgBN9zk8aHLlp8owsFCSSh+IcbmkLBoaEJ1hp4/PnKHK6QrIjvfDC80NliSa0ATPHUI7A+RtS5bspmzA4mHxwQ/0ibbhRJXUDrRAYZJs97VpBObn/hZSe1iCbuRgTuj7/s4NMr7rtPNIerzLlPZEY2ZWlGYC+SSukN2nKjPjqOUlSwnuZOVDqGmvuBWnIzo24WSdFbvyK0Oh86K+DSo89zwA+wA+ZdaTWuHdzz63DkqGerULFlx7b9gTYvAA8le2x5bV1MEEYw2t9DkQ+27oUHjJtN6n54RUpVgQ1WIU7bD1C64qIIG0P8HRBAa9ObgtwkW2vgA6suQWoc1KUYzALtMRYivzPtriM1+6xpIJlEEMEO9p5lJpU84YiwyPvmEI+rBwyvwzrgq4aJ5RX0IaKkFfT3b3NPxqwbinr0i+l621SRruPNwq9W1NzTfCfFt4iEPILnoPrUPO7s7xjhFBgZl+B3ppDNurovRgZrL1SKAl/RW1r6D/U7hGHiECmCzRpRPywmtvCzmighJqtnH/j+eIFn+UZNDTn7ZBT8MJdsEV6VLbZO5kaBBOl03mApK3swCv2lN9ZiX26sn5ogtM1clIorhaaQIpavsPm76bFkVZ5XHywpyQ2F5Ge0Ulhe4UFRcBGcS8pUQGEezYPSjEunxpEls7uWiy4ZTTeV/HYda51yzkR8xZQQuAQAlu7ABYnsLMyUT0KnCCupDerZyjwXe3P+VTKlgu+yaNSvZ42VEfrc98uLP0auG4Uz01wyKR36GqUOieKOo9ko+s5QmA3VfxuxiCjDSu92ukLVH60UcNHjX8Kw3zGPW2W++74yVGkAFI0GjOP8APgutT1r0evIZiOi/T6jjgBhFMeRbu+s9kLX2iTjV5OH5XwZBurGx4vTFEXKTtn0Gl1LFBq5geAS8skXKXqtLvfiBq5ZOOW9h+q3iic5OuNqIuJHHJ6kgR9savmEXYBAnjPVs4w50eDBI9kls1UZIc8Oi1NRj5V21hVvhgpvV9LrgOdCFKcOtXSmaWQng23szzXZ2nrX0xWFmTSrkdP0CqT+nYOvVtPpV+oyrNOTRQ0rEEG1N38dYzHOhcTab5OvKeqCDxGVK03kueBE6oI2MqbLy0C3wbYznPuDVSjQkacF7K0e12vh42fWwrfJ8zhhBMy4IqNDDx1ADkyMO4puX9FbEm89+7rIQUHWjkiuBxqdAXhm0ekOiQNqXLzrEeSNzeWqHKQs/GNJ56H0Z2+fsgQlgj0FcIgCu0HnJax4d1Usovi8dMqloJPP5ai7tmJtrN/BFUt22xdIsxPnJxgl6zPr6zXjlehEbVfhc7Jbavxktc67poHdyNa0RhwpNbJvYF5YnXxHWksAdUi72D4mD1y2iXf45ZN1VzIBR8YssivvFbYhujnyBuUQI6s8f6+hRDomL5i6YBjfdxoxYHTyfvBvlgDFBMSvZAcFRHVyDz0sBq1NyeawlbYBwfuPmlC80DSY/0Q0mY3piPPjZO4Amo7Xx03mS0XBaWhcBU5VA6i5AQYAfQLN3r5Z+EA3UXmgIAn15IBrce652kKTIN/3AsCFn7PXIRv6pMcLT2+WGAb3Ef0WA8zTm6EZ+6wO2jkwpxlLT/hOqBO0Fh3j7NtaBs+rIH6qT5cRff/qDeFVjjO9dERGsZx4P4qZayO1XY4vch+zy2N2TTu0ijfxBXN3N5zze0n8bVBD9pn4WPxtS0hDkn0WiuBzkfPHxdPfz7PIlqQ7W9RcApl+gidyS59c2b6Ccs1znZNc9tZHvNnFqjsET3vSnjBwtJNhxJJSurdXnBusA3Nfx7bJ9DH+ZsXoU34FHhrrguwu3u+E0vOZaYmuBT82xqmoHu0uOBNEAmSJBzqCTWndkcxC4bh8WgIaz6U2uCk70Wz8kKTCPFXnEq3mUQ/mxJPuS+9k0+FqRJWVPmw9kv1DuI5HQhzKIYqPuvEWxGXMGNf7I4EV8EccYbDJZKv0/xLjkiVOCHnRfncoccO3CU0C8j/my8PLFvx06nRYkrPcyf0IMMTeObQIGw+/9H3ETvsobT2ubDbEnN2wwZPL1ugpThtlbHsAgCb8BLYxtf6j3SRFiUlqumiu3W0hpAYEji/rVwxDGFbBLpGIvU79w0eB6kjskkZ00MqZYCi56K6oESnnYAlYKXJ2hSn9oZRvHi4z2RHKXhQL5P/+LM8MVZEHO9iGW1a4Rius6ux9slHETJ+lbDsCaUzOiIqYQPp/VosH+swni7DXGrmIAVPD1RAYbPVoZaSzl8qtsQPXsnX2taQJLwdlc+oA0VsN//vkcgS28mjba5l7X4j2oXhRJMmPRQRvnjYdSCgkrNLJVfsc8VpHJ+jKl/ZWo+Wm8g6nM5Xr6I3pGfXyQQg8Mx5Jnfwqp7HpN+/fs+Er3mWGkdiCaQDbDgUJzRlTletDvrT3un3EuH/xsrKuhN04t+uX77a7N8dZGMCiZWHLbpXEJJv93jqD/54sNuPjhdGGwFUJP807EDpqi/OlK3LWUqI/Xjd+nmb2W/jE11uqPALCUSUO7RKzV16Nic13GSTQG/qosB0gfs++tapiSJrrEP8DJPxDxmFmdZjn7FZn+wUVmkmH62k/Fp5s1LnvmErlCohLOQI5GJLbzsVFY3lFsdvO4EJlXMyj2VWWxaxK4fdMP8Ch6EtthOZB4E+CFfj8RVggpvAkqteIZTUw/Pjrrzgkh9/Ff4Nng9mPho/HZRoDjOUB2utHPMIGiEvV/wWcDvqYWG0v8Y466qzxQ9LZ72WfI3jPLodO6vgQic7GSVjAfNx61XhsSJkox66cjQ/9TUtodrXw04CBtNzfMcCVEOxUs1xNx9jXZRAPOVk4acqWabVBNHuctSPBeEEGs/SqIm+KBaHcUSxTZ+D9qkjd7tc/dMbiZiPmxa3o5FgIC8WhQTcvx5B20xV9nvmMFSp6+rAiOD2ZMvZEXFnB7wahTNrE1HjTz01/p7srfleubb2pgDk/KXIuk+ijD8cYw0WzP2hGCzTT4Nfpy+lAvoJ5cCBtKz9HaTZzfGJO9APk/qFK2iUa5c4OHttgJQM8OvH7lDFOxOgPhoCeilB2wosirTBbb6eNxxXANjWdkPTDiNaCkO2q0QxABNYIIRZMgoNO58wnqYcd+ck7eSxSoyknuXMNcODvu5gezL5gtNoPVhIGadVxjQ1Bb46Pan6YywaqPG0T3GLOUD3iqcID5qnFOOMMAdJkwloaXzhfgTqFkntTcvtUMRKxBVqPjaV1t0x3iMd024iHkqzTY3MJ7Xl4aVd0CmF36YVX5i6yQeZIi0diLtCYSfhvYHLn/5bT9opVH4zMJP+ntib1+SS7Qn2jiiCw33rXIsHotKudtie8gv7rg+bZSL/LKWDRvID20NI3P+B42fKD+ITnI1Zwo6BobnWC0Nu3Q8FSXNsn9XvqQ+TUZjy80HDLd0zzoEnhoRb75NNwaqBlFaz111EsIzXfV/17iyTqGd7n4lfQBzlaZr9jnqilDdtdzuX3JGTVO6C/HpWbearQ2djr4NL8KhYL/ZMydUS8ihLxk3wmlZOWxNBseXnahwMfMa1ktaKpjn/YTCFghDP05ApR7nofvcJtflFGXMNHJpqBLCG9XQsJaxPlnwE3/7al0tUSU3FOKDU9Q4+qOZ1uFhgnqieUKDR/fF8Mh4k0moJ8MvWCExiVnf5iyYr6QTGtvWK4+BQUE5fxABMUjGG51LHTeJ7xCK78rs1Byaqx9+qizZJXLXEEV17F2lymCaNiLNm3LU1uPCteuoSWt4uyZ+Ua8ap/l4H2hG0guE/9mVFJbFEprRUXu86JMnzmYawwNovwaxoiMyRmMb/PHR66X4ybjasLHmuS8k7cz66MDcmIg+aC5rMkBQEVSGHycJYeWAZsi0sERaEa8GeiTw/JESqwj/ZlTR8GN6tAr16lQ2tGuw7Ng6kt/zbVI1XHz6aq8DupKaE6CQ1gJoemVuBc25LSX29KfCBYbjltuWOeBUD5ZO7T2B65hwriPwQFS4abcdFxw8+sPX1GAHmWddUUnodee0gF476hBVsFYyccXBIi7jKP37C4VyqUMpSb50FSP0s94v9ii8lT4gRX2IEpsVUMyNx7D0TInlZM/1TDdxqbzyIh1hafX9GaFUT+e+9EBEaJ9+lAfUu6MpQ/x0XL/JjC4nJfpMoTmsJwuYk6GWwrByJjtqbr5c8QnKTsj5iK3p4H2/uMlrzEQMlclUvOfy9HN0Q4CunZDaa6RJS1LCGAUScGokc12a3tQjGKiZaFVrsL9wEJbzPRcBq+mH5FFj1jPRncffF8JL1xjjnSkMMS9nBCPwd6HQCPZySfuwcCYEwBAjSf/5kUd8eU+YOmeaACc6jvsaoMiIvndquoJzZ7oi4XjXIEAVsNNNnpWnVYTRJEtmq8Gl8le1vnvKrnO/CDUirxoQm3NkZ9PQpgET/2MYL6gGNC1BvufRD52KqvqH0xundYFdztoS+OBUr/1gVXYPg+Q8iG1ZHXQFETA+roPJypRlGBO7pcYLCoYcBnmrVQXHU6MunxMC57MLr2kkzyB+ErmeXUgZ5jBdcyuj5cB0kEhjLHn4hYeQE/Qjkh+Q2/xbXq6bgx19fThTxQdPJt6uhhTkSdUInvt5nhFhl+Y4wOdOYOzgRZ0ZjSdEfNL2X81/eI8DpTFlUYSEQuv/Zv6/gkvmXOOTfoUHycAVXmQSwNWL2mtjjuV96ZBmDMPtSjWG0UzMT08uCn70cOo/Nz4+We7xNR8jOcTTGuyC0PQkyEEmOF+ic0RMMAttauA0zT6fvvp8Pk3zoomRY/h/37rxhma4a6OzhyndVEt/AfemJ4/drMH1o5SgeXuX8cqf/RW6XyLF5sdB5pktAhux1HGN0y91JPQl+LVFFakGw+tKq35bnF+elsaKIcE2u4GkmQ+AZc4G/OJAhpDaxnEezrnW/Bd3SWUjQyNnnpDyeNr14ddrGDc/s+DM1cQtdJk3eF7Wq/kqPsoscrNhKTExeWykD9BQIB7IuUbV4fLrS/GznrVvafYaEIGRPV/KsLybDlCe/9eX90tkTPPUqEVo1RgdzqLFZl2K7Bu+PdxbtK48Ts4qckoN8YapuSJ6AP5nN0IBbA0HrlWm6767ktLtemPt0Rg/V02iQoJnAwYLky1JU2tFPVj/7ip1R7ANS0V1BcB+Wf5HT+/pTv/5CnC4LxDvWxT1KMUDWRCTJOnIzHy05Tee/kv3C0sye3QjQWqCHSwawiSoib1h3OjFAjiEu19L6YCmP9QiAWuIwk4Tc8FpAwoC+IeCyBSEA2SGZA0h/ddung6pDwJ2fcjMr0QdW6hpcu+jSdHSa6FpggMfhobGDxmtVFpoaoVFgUtV+ix6kvwLo2glKDy+aQcorp7T2/6xV30cLastwhpZv8+/6Zw9UfJ/H2MUWGqCMJMjO70Ww/KWiEBA8txw/GuoyuFSw7L53Epr4jIhnAYuTV9nrwDa7EtnMU+y+sG5MhNZx+GGU6oKsDXC09J+j1iRF0losm8X7Ctz3gMq+hk0B9C1JPJT8f1yu5Mc+WqCH8T3LGzloiyXCymseF+t2FfRVPLvi4eH1y9hoYxHguMVBZ4sgtGwigQvtTkmWsl73C3LDPAdoLODEoflUskEEqIO/xM6wpNa5BzSnMJEDwwPVPBnH5Z5BGmLvSZ+jt81pKc4zX8xOvw41AOMf63MJLphGKZjhZV1Yhok+yEcHCF++KDXiD8TwWnASs8WeLSf7+NfJkxMDz7/iD+NTbMwdDMMGQJjmFsPF22NydqqLOANrmbtXSWpUsJejFv73/WPKGgoFrRtnuGGe69uimH6RvttKrfuLZvdrj62Hz2NHEnPG1NFncoAcLJUtOz6V+7RGH90JuFYkdL+hCBDIrP7C40DnSYfPRYbvET7PYnbRLE9O2qX5OYLHuRH2nFr1TmYEpB5XkwWTXXA/wZkXtAJzsSb9d76nCFTv+JESBo/2K+vg2cEP089iDwR0/wqnl4dVlNlhm8lK/Q9dpebj4aOxzOtSszLaFnBVUSe+Og+cJ8mhYKblek7UZmcUpeIVAQArJVGjEDgNACd1CJ6srpo0Ur+l9IVDXOEip+HM976GIee2E78DD4FXTGSZccyon7zjLEaUia8b38zIl13l2g0xhdVR4zySKCxGszltoswk6VM4u5vz+y6uOLWwQmR2k+4/pfO4bcF7sE3e+lDPF8ZQXcds383e6eGX9qSkATOqZL++G5wD7IPFvNVkozE1ZgG3bjn07BLjh2TSFIfN1wBpmPAFBqjnVJs3z1fjMngZXBgkHavJifBmUT1/feQSGs8omgCBSpnPgkkRyhD34oZgGTaohZrK60ItfV3iEtgh8dHtHHmh5SIs3ChwotoIDusi6k6/TO8ehhGgvBsXQQBu7Wk7VSwGZX+PMzqLA6cKlH02H4+DJqjUcGw18Xn0tEEzgmuoqQxlRGjF0BHpWbSlsSVqmEOy00a+93IVhcpgz+BjduPAGQx892BVrcZX5K06cUBsIJpznZ9l2V0coVExzyKESJYQSz2kXi6JNuzkE29e+Py08ALKcWAhCVWrQ5Kl9JM8E7XFOpUPPUyMIZMsx7vMnJWt7r859V4b5h2NOiQnnooX8zWcctQ+21VQuLohAf0ZZ0So+ceEJnrQ306hx6f4Ebp7mYIAOKUXYNLty3P/TNBba3PTjWTcqFzprMd5A3TF4i0THtMvwGwtzhfqbKnAU2rblA2/Y5vrpwUuyJWcs7cEEnxw0NoY+PZthnQTNoadJ1CtN3ZJgeXuUWA9E/ZDOIQAyYGTA59olH2EzBCYey4AF4pVbBYotLdBaPMbN2XxDf50VIxpAwV1eEloqElW0sFsdvnhfh/lCXKVANd3k8X//yUdGxVO4Zm7g4xca0R2oPRsgHCSAr7DVbKrTPQReS/r0/7lNqLYejdzNbbSETRIsJu5QGCwgnUDJfuFaX1DmQc4ZlwUnjtd6EEI4t2EsGwXtmM8dfxvcv0zHIgT+X0NEMl6/kXzSuPSNKeqJ8qcRBssdC7qc+IolCbsezoiYu5Ia1telZuvaTcEeifQ63ZBwivnTuVXuYcsn1l6tFwN4wx2HCqaaGikpTP9ZltcCCSUqxpM7ZeWISEX3yBCeHiq4NAfeZiIaz6prk3PhH2ffu/VtciLqXpi6fR7aFO4Qwh+vOxUrYUPTvbU5rODlWdOBrfqbUXBITjwS6yLi5uJyzi7ajsssLnKSvn62+MrZVRtiYsHubUvYa8qp2+lM5MIh3oyNclDJAT9jvZiFdAlD7hQZM2Iw0yUxnjyUID9YM9pStjlFb25vwNF6JecAKfdZHiElRXrcNizhLB7+4kGIVeu9kf6PizT9QE3Bx43jXxEnhZuqiXqpN1Hgek2tPNBwKb6psU8nRdy9uv2HhwYFYPquHUVKtDI5muuSeariFS/P1/in7drjRH8YN0AYVtve3mCewK0t4kvuDxcuH5mcSsuL3+exM6zixA3ZkfqF+6LH89jy1xnDpJ5OGTZcwVgzjekAkGZJbtY630UFNo6E1ZqCl7oniTO/H46eo8+g8OVu+ZdlK2wDOXJiOUm6uEKvdrH681lZSDBIYJgK2B/txHlnKz5Q5TXYsiCZe1PtLk2absbX3p5CfSzXfcvT6q0xfr2UW9pTfnIAIF6ql+mPbaCr7bOtf4sLw3fFoSnCVApjR8H6RnuINOPYPUn9oGzY2FugVRJvNmBUZ0/PoKD9YhG0sehk92aCbi8Yo/HFya99I/IFyQqtemA2JmiR9pPd4JwqF8uZZ80eZufWaa4dY3L90gdiuAtvAX8fnDmL+wlo1Nf8ImzwO+SJnhvAY4DpdUslRgqmK6grtgTJdcaKNdPzPhxlV3nda8dXkP4MiW8dY+3KZfv0H3EoSiK7EaFJKMmW4HPs9IepmQcdqhwhuE+dLxaGRYQEqrBIQTxLJ2oiXbWrf/9bMdaTEXw2A/XLT7/xwe3/bKJgCWz5NDLCiryhva59rvYDISptJk5+oxm8RXhCLFngsXcGdKa2L89v0B7snqp4+hzJwbZvXUo4xEyn7Z81mNPKahqkhQIMiq5NmbzmsgDXnTvolM0+9Q6CtA/piQwoOmdsMMfoW1sG8sBF1uzKZogYYnIn+TCNgLzjz2mThemqDNIUxuQNwm5S+ULOdAclSoNrUXja22XlaE4mi0Bda0ayT45NAZhlAp4U2ZLNbRTpblP95W9uvMu+6XBTiAKxg3O2I3ljDKDLy/y2nt/q7MsN9OXGm8v/UNTdTXkJJU68Qi8t3z5RIe51etue8gUVwDwmKPWZXDnKscXbhHVT577BtFjJqINdZo51BMpcmS7lANlmsAmrfdmmWWjBqPn6BQDGpm/2qgqAEwQHvVvsvN4JSHFPdNbu5wucmpmkESZL/xaBT8y+ZOBj1P8hukuV/qOisHr3jZQ66oJ8XVp8yLEjPjONsD8aN36z2uaVEJntRKiLV5KOfAeSEmGhvoADDyBKHrk9ROhYnETGuZ76h5GFQv2D3g1o/aaveTazhcwPj0kwx2GPybv2icyuoLoYw9r0Oij9NDuJ6RGIbF4K1cjJ8Tl3lvXrH/iLdjw+dC/VSY4hprNaIUAT5ctZBDzuGof0JZHxWVabh3mSOy53juf8GUcTe9xTKlbx9OlqjrkNVsFubRZ7WRgQ6YWmpON+EhGPW+B2ESrgwIckxbr9eCJSYt/ANBDwdqQLaGL6aHAO+4BtXcJuC6WtSf9Kh3ywlWaYrwY4NhIRVFKQgzbIYu8e1qla66bV919FY12LJfyDtd7V+EK7pD4VyTW3tgrOaifJhM+KkvLuVi4R3eWzIClxBig27mSSBfMfvAn5w+tzkYKV7sfOdD1E0R6HwD4cirDx5ZF//qaR/ya5wyeVfVEfCkjVrc6Fhc8IHdD5psxl6Lk8w9Gp61HqjwhtyfF6+ZmsIIaekUrXvwKfPUOK0L6KpZR66EHJ6RzalylM33y9p+n0jyD+gyhKec5inIU8vkFKePjPKwRJ5+KiO9lzya+n+bTe+Adhd594ShAgsKFUZ2dhBluW/ID/hbIkm2E9xqfQhNjrYr3MQ/6dUtfhWVSbR5A2cyUpKdReSNvakS9a+asgFwxnYIkDpB4xpg+9b0S6WZ5mcI8R6+64Q3NMh9Mq4yr7ni8sZb68xkyKt49gM6CtIkcuQKFW23rSpHxIskm+oWWoIbC1kxOBNaW83Bl5DBUBWKRCO0GDQwxImLomxY4mtSTYo8IIyMdofBcyid1nkRTwyoahTXcXRzZj3EGu6aPGu/4WPyG5dSpN+Jw17udoLe1nyWo7STpjSJ9Fwh7E4gZwWpazCNy+4FV9jSmHxKIqbJNCwIYUIdS7gE3em4+QibVVEhrisP0+1PkfzJtmL7forT5/mjSFSS6jHrswiBoLIRw7Oo073pE+PDAZjwMp4GVEXWCT3q1kHmp9Aejp0BinmiaAzBKTP/uofjRv7qF0xgbT20eFU2wuVhUyPC4Sbx3NsWIELK+B6xTYsB0QTWDCn70Yn9HZDnAOsR33vO7IXJ1MaX+1gkl4MITPVX8RfBqUbKrAnEYsSFAFeDittx1gbLVXvcCxWUjtw4aDm4BWkpAQnE2TXkqrRZCfo84xZraUcvSxNAwaimR5qmT+2uCSE/OQ9dlk/naWNkck49WdWrPcGm0Ulp3hOnY8Kbb4T2sPpabGCCjlUV7nN1h7raCJXac2xQC4PGI8GYCxAwpdyYhxH0aAirKfMHu/J57xFzzTF6pOPklVVG4D4hYuyW08lXQQ0073nUwxGBLmDJsvpEGmCaE9RdUEs1w4zQ3ZgHSARGpvhOUvPUZGaTfKORCIzF48laqO2AXdZiWkbvIXLIS4Nl9P+QbZM27jW+5WxLIGl/fLa68HlyRQj2/U5X0kGB+j2B8Bt43RK0W/x+iu1krlFdtTgPjwEzXkGuUBaxSYRWOgNmTuLrGKeob1NQvioy2R2y9MeJPsZeCat6twm53av8itTZUSLd+mLjHhXcIQR+K502WA/K38faKM1vIHZt8E1fHIsaE27H2uxTWAENSShsiSzkaDCYaYNQs8JKNXlFLW7u11lruy+yT+0igjqGh18JB1/OZfIBx6uJIdYvy2FpBp5LJslpANXwTe2mx9mAHyXlMFKvRM+Ng1RLsKIP30v1NPI6IbXsbJ6xVdFyfkIDpN0GnZ9viqcjJiiAKD8bjjq917fYRHMzjfM30ROEfZAk2KLYKKm1cQ14cqFqRFRotMiTYZdj18BHZ1YO+LIAYSc9JKyXuqrnFaR+aglhSy+iVYI4sF1XMhV9Eg/NSYK2f+XnoTvOdNIkVVx9Q7IXb8c0eMXSiOtwrD1FLRDm9+82jI9TyhOVwrsMRqiopH6pW+GUwLMgQhzfBPwmTMX3UTbhDKEEXZf8+YAmiHga3eTAIIQ+xxvjHOmkj1kUIOn3N1ERe38C8Yh4QD8NbtWlTYAicwjc2K7q/hgghR7A4CU+D7JFt66XMWabCXkp+jrIwrRmMP2Ux7EbXbOmbNh33sLCNAfoToFkwQqLZxxEpyE3r3/YDEwBcYDEng0YFC6VW0dojoRmZIUkk7auD8nzvrXpzzlA/gmRm54qcNjb28HNNfc+PxURz2i0ksU9hxZjlbSsMR+pRzoZjucD1nzkJw8gPNgK2AiTdvZgP4LQoVm8RhFVTm+067vlpyYnDNINdTG9VVFVSQ3wa1n6KprTb0IKSgy6O0Yj0ri2JsU2KD1mJ5qo3qDQslRZuP4r7z0HFw56gjASRsFH0irs7hkDmCb1Uq5mKJHFQCfkGvN3jw4Sa9imvovPaooTc9NA668/T09pabHTpsRDDgSMVho9K557BiLwtrC8GyCNPl+Y6MJR6Cr2IdPqhEgp3B10eJ/Qfaua+Xgtu0gyjGYVSGdXiJ0HMzY+5wY3KtgdDYAduklDtuhOUrv7E8vf0ULgWl5kqa1Tb/ORlvg+jhlOPBp98cqjD8nXED2vhoYQ8sFOQXG+5m/qVE4wlvDxyHOcTOOzdeN/KUmlq11kqx53/e+QpptqfrrzL3whBaLAfD6rXN2QF8wlMG6dcWN7njUU2z5kzjGNLSiiXz5v0Gm64y4BZhL5x0Ah7JgUFJkhRNKFHfIbD1ROqVqcynq49M7zCghQ84ebpAzdkSIVZIldNn6nO3LcAkVbYb6M9YfDOwqU5g23QzyU0bfRTODbkznu3eOdhIfXg+1IqlKx+Y9+7W7O+av07S+oAkrRp77Jizn7iZtsIiaGzK7j1lXcYTPQvEjv28Vu/TZlEHHpNYI6NA1ymqzzpvsxPugiYDUCIJYEzTA1kySfOjzqGx49RsMhq8y0zELycXtM/ntLxP7AQj5obEw+lyyyve+9rR3KM/zs/gCZZ3sA/LtQZu0Xo54QRTaHOSXvRoX4xTjp/3xl1IxPGkvskGsmJhUJEKfjV3+akCW3iRejV/zWQz+7p/Gx9VV6j0jrwA1HazRi3BBU/muNcKQXm5VHY5osq7+0sDmFDez8ASBf5twDFqb+7fnyGJwWkyEs+hlpRYrYWqVPwI/HB7eXtpufFPbtIb/5nHY9s2rSKUD69NbMCV8ggslaZ2NyeNRsN6giV0dff6kiTxPdawMA3yYLU+Z2euuFySrEDTL7CeeHqVTZ9qlzFbG62pMXgN215ZL9w1ftwDEyMtKCUP/u+nSWYFzYkRx2PHZUAB4JV7E5JxY1OkTgTo326lmuExjFXeNA5fHrZjbn3ghsJFcRMQ3sOIeaK80uk8JSpF222CcC5x/TRaivJB7YjpjneTgINAY1DJDw2o6ldlWV2F8eR4xs3fe/cpgtQ7XxnsyObL8bdwu5nWcRk7QlP/EcLKVuv5L/dFehwrtVTgHkffBnPzSCVjcnNhh+GWQHN5m13LrRdUnVnd4Dg3Qzc9qNAEgB3uNH0+UAByW8VQPvPC0gpwtofzx4U8ok/r+UarLFAsMBPh+Tk58Y1rJ9pauVl9K1bNfrazaPuv9MIEjlNrXME4eAbZoBg7b6UXZEbivwQbJQKd55bj2jXP2/Pgze9WpQiLoRJEhmjD2RGyhCc9nrFW/rnKueqAkJ0+HwIC+U+va7F/0UCPjFZIIqhZfsOXtsV8mQ+xcmiryzJwgc4UhInn5O6yMTE9aWmSc8kTl2c99Yhh4PiICPlsxlq3UXnpFVSmr6RuMKWU4q7kylA4B4lNb3tl9xzskxQ3fg7Sof6yLWN/1Mr3fH6r68Bg++qCB4jnL+npw07IRuB1lt2DHM8eobUFYHy+xFfCuQQd+9FexERAu290uBENsI7mY8oM559xKL/fZY84sZAfMqX4fwjPMmGvkXyDR0T8KIPQ+vZL8Zz619/4oWQJB2aa7usC8Pin63DRNAXNM/FiKZFqrcptTaIdmsWyvTOGmI0W3QewPRvwK4B85N/np3nzkuJzuym1/ztIoJrW4K5c02YrgS7+N39IdqT2oE20C1/BXvk9PGWALNc0lGeJdPs2hQCohWkd35SUwqVVgPRPmuGMUDJS/O4rDtPDaE1XDIlsvpa5egm9crsG4JMSndsyfnEaIe3t/mMfBtNB1xom6Yiflaky1XaFyehmRXKyPK0gh7lSCmwFBJ8B9Sv5x8/QicXGJ9kYLy1BptNmMOWPgt/8nBOzoValfQNERJ43poMonX1Hf1SC/ODV/dJMOm16HwJhaXYMg8yJ+PiQ3nFaeR8kA7gYKzWRTlgOmsa4zGglxQh9TadTc8NcFlyBLdbiO+/hS57lFqrZsh3f+hh3Owh5s+am21PA5vevJS/JxNvgA16ox6fVF9jPIjamG90F4wiCaekRU7ZBHGFoLW5LL8UkHdva1rO43joGZkBeSAotjXljXhmo/ndQEJdftKOCYL8EK7NbxcpFKrZJ5GkaNa9CEKiHM3WOnuyPRX4DW9TyhH1TcJroMNrZOxDdWv+Ae2CN8otcbeazyxRrRU0PKf7unSqZ7xlrLaL8uMtpaYfGG8PHmQ73Mm6cIevm+HGl35jU65F/baDxsKK1WnO8FBvaX+ncAcD+g36JAAot/T4DE4IdbECzBbTg6Hx3A98CPbcyWXy44/qIhrg6uR9EGnpZqGJuChx6L+csO6Xc0I2TQQZHSZFLYfFU/UlUdgcWbuizg7lgRpbZtEd5C83Zb4a/lL7zF0CxMXEeueV6CukWKkcnBpl9iXucKoQCY7Pj38cVyZHS85U4YRrvgOAo4LhR1tryk3fXnDzwk2DEas9Tr287Yvm+ryh6rYhrkIAYafvfzI+o0PDqSDkUQSXf2zHV73vuQRrzEvY56Cwg0IQ+PnaplWQMYWDfBC1KE2Is9ObzsiQ5OSeLb610t6WN9uAZtrOyXvvrnPwibjGTzn0lyGkGGvCwIaKx3nCUdP1nKZzubZ7kExWa220zL7s6owcWg/VzcvDONP5IkNsQkIN1m3j8VuEhmYpgurg1ltC3QqwpiTDohho7Q9gfSB/4/l0ebKny1GALhgftsgwR0UVBxVsQlf44HIa+HRjIX/LYjjoBzqOY+BI2PZC5Z0MGqgBg1emKbYKJrBn2ZpqRvt7Pv9Kw6FhgTii3QseBuru6As8i61js0qLx1h7CdsJus2oHTpycH8ddrFwmcnU87NbYREEqbnnwlYlRMrnGfzRQ7QIUGpfZ1uX2T3TYF3SKQvifUm6EoFu2cOXjSFTcz88O7d6mLGO9L/FJFZyBrdJ0geI2n3nQ3KKYGJUIuXp8Y150Sjq4SoPlY2MSze5iCZIxGH93l+3RSWno4dHvP4UnCVHEHGTdEV/IUK1bsV4+tQUv4a7ULod3YQZfj60O/L5ov+cF5NjeyWZ8bi/ft6g1Ljk17FkMbTD+f8dZaNmVyadojSQgTGlKz7azV/2H2bMTI3i12qUU3Y25TQkUyAczL4XoVX3bNpQQnuyYW4S8aA5aHkVnWa0tyf6bjNKFwD6bHZCWHPZAs7uJsA525sKdyWujPAXKG0olAiEO7xBtp3L20dWwekrxfTPc4tSe6rsjniC6sh/uMjdvOhlg4PBrAhYtLjd7wRPAOzEO4k5fWlUlGjdCIRDbdN9zc6y/7+4YPDBELDqBVCyX00PjPTXpJbPymzITf2kFapdZDeyYLJx/eoYpm7YF4pqVkzVtTYuuOxJ7kLturNtNI5ZPhjo3814oxarCR1LLDSVfwOTllKNcsEVv2fixLDla7P9UiA/hTa+GGB6PVGb04aJRXHqlC8eibY7q7E+gY7K1M6yl0PvOFpV3uNqCwoFrfOFESL+XwSeI/QWLUBGPBejasZcWI7Jkvtq9R/Cc/sQHUUIpOL6I1+bd6BDPcwg/4Asaa+7DJqC8z1sSn15Tf701GjuQL90riDLD7UuEG9bhoBqiDmWYIMC45r5RzjIXUZGgiWsECVsNL4DmCX9Cmmrt42y0XjDjYzXugBMLfkkpjCAfsD1SvMO1Za95PCp46YH+NJteiaWtIUqnDEKxi8FRBDJr9+wySwmW1g+qkfKGjqU4gpH6pqJbCTSYlxV0eDKoly3jMyUzi83t27WdByxTT2X13RPzyasEOkdpjHXmgUwQsYzzzNxiHpsOP7FbpcZj6FY1E8ZO+LhEKRCCLAooqK1GbwfpCy+CRXSaXMVA3e6gSIlzqbqAa+fY3XGW1RV/a6jtAi1oCVF4mv3rpnRZYDFczQsC3LHXoODS/iaabx/6UekOqVUL25pYN/LY2ZdeGwFKKmQB85ROQJT4til9XAS/tLL/QpnC2uNz7nqSLe7cVBSnhBUBDyGXI/rWq4FqcSpmq05+fSImSXeUGckO4zmWh5xZLKpdOWkGjIogr+KceRBCjbQwiOLxA7xXzPgsI+CFYRjuyhgolQYDmdeXTCWcbIizvTQe69mBgN7g8Tbw3pN6e7GtLUXD1uR0AZkpTEVxgRh1IxueZegtzzMtjcctsj2FntTWdHRpng53HlMVECB2hZzDd5H1jHt57NLrW+h9qf/hC5q7bP36F125nT1yAhYX9EuInCoPMhGFKQ3Qn5ufhbCgy/LixDKuHe8uR62NwsCqGGeoYRDT6p57miAx1UyxYar6bhmiHySjW62otR1iOQj2DbdZLIy3suPT3XQ0F5SoPNRx71Biol+T7SskHPzboX4nfw5MSY62io9pLknVY8y898z5bUE+NhOnc08MwITVY+vBH26sFM29DcHM5bFvnpKk3yQtIJs8tSLFeqFY9SNTmR3RP1bloI+dkuV35FCZZfB86rQ+XO3ojGD7lbxvBg1HernzqoM8jintHi51TLGmV1Kpd6f5XoossACpYkXxB99QtzJAqjdzlmuTbJakZqSHRdLPnZf8RsuuQZmXbYc65WT38pEQKmpXDqvCHUSySorRykUkt4P986Q6EEv+G7ibTeyQA3IBHGsgWzD7RWoPUtl1M86XhQ9PtKabdVXDRKsloF+ombHvNJetwxUAc6hHDjPT7v430NM4SiSnQllC5RhqRtr/Js50Fvyso7OKy3dUNfbtpoyZK2Cd5h++ztjOAB4xjX/acxZ+FcDWxRtekjr/+WNwbBhbo5ygBeXl176hkbaN6EdclnrpZbZKQ9/QG8oZ6csujcXLapbG6c9bP7mFR4K9O5iQc1pbkBRE7m8t2Se0/gc/QKuyQdAH7f2d0pNDC+8wq5X7crak7zgWkslhMOkllHZZ0k6rSqzuhtRwE2KHDKFeMpE5utzQLFSqkL7Htm+4uKbmAkJ55a60QWMEkr7ZLIrUouk4RVpfFMrTkDU2V4UmvjsjYo60ggeGqW587MkAXzWC+Wf3fxo/YM6RI9c0ooRXsLp7/RMDghTuULNsBR3aXf1ixVg3ztbIm3uWSVc+gODZ7HaoiRTzBbgLLpmWirZ3iP/vqcDJAaJqHazO5gxlE6qwMHVoaBTy0ShLWYbTRPUgT97mPkUvePpoH1Tnl/lXdloG5QJrkOZlbncHr+GFovXwpZ+rnOezMh5L39kJl0Z0IBzUdndegdqa7WYbTzj/lmbHhH4qMz4JGsQEKi0g2XJgLdd8OJAoS9llAgF3JxBkDd2/PsiHta1dFmIfDzcO0I/DDZSPgyq0Rgo5eRxVa+8X+tlFUh988e9PnJxy4ANTlMIUh4ssQSZkj8khf1PNjma6wo89bNDvQW9doxPZ/9xiwhVCigs99uQufB1HSWuuhHBaFhQAFPKwQSFMKJo4TSWnYK6M+7MvWYJsA7Hgs2TyiFu5r7CDXs3kRrIGhxgWMdn4nyjBdwxtamDIaRk3vn1WvGuG8kwXKTkd/7CxpA1z0IJuvGZRLnCqG55lfd4V0rD66D7E3kV96aVMD50cMyTHh02nx2EVsArHFGg9SEw84k/Pl2ETTQsHUdCy1/n8JyfuanKbUO6xWWYWqTHDcc0NF9wE76YTth6VREAL5EEBwF/+ggVp8vAv6+UCxB4Zeyu22wTwcgoShrWqNATo8Su4ANP2fCpHr+TKnJnbnKpEFWDdCYMi7WMO2ibtWhG9knFtamL53PCFfKfJJp+QW4RpHaa5yKHuh6bsbFtOFkU378yWsJZJl545C0X7ZMQ0KrKgxqj2DbZqv4zJNs0tpgeamxXXknpZyqbgdWnVlfbOSHMC34KTB2mA66nS5Yt96SNLpULwMbjKTxVaTeFOBs6uOEVZOln6bNPN7jE8DrgM1ujNf+CuZBm4goMVLQ7q6OC2v/EWHBHOpg6niLopduu4Pzy+ZqaK7PzURPNVA2+19fxti+n00Xt9yCeSVuC0bSXCZLViaJb63XBXpkiCsCpLgE0CSvATbFKCT2Xg/TpT2DY9SbfZT2htuLRrnnGccU8TAikozPLn2K0pMz2xl/spCK6FxHANV1uCqFUGH9L/yiKwVDfpA/yEcHEb+Fdz55tDdfLxQuiFUdJJVa+/DQtGawunSszaoKQkgnypoF/UO8X78unEm1tZGR4Upj4SBjMcMMOXpCWLB4VOfBAPi5U3Cnu9DtC4Sh9ubwkYrcl6t2PdnFAe0lhw3AO9Cf4JALffgwqIxrq0m7GFBh66zrPN8MRlG708+T9vJKiigSDwPLQ9BuLEVz3AT9WFWaZaqxI3s/ZHwRQWhFoGJVTQlwkE+U7B9E/XSL5wM0m0qZ9VKTwmAenbk7OezMOdv9dVy7odiezghZMzolucYK6jguI5kXS9bk5zKag9JRkhqWxQazXAWp9EKYlgl1LTeUuj32hUrJWYsgseSkD/hHL3TUrJ+TDsMqPcgLlHM63YWnIlBxDi0RqU+KBLsOcKHZYqXaFMpM6n67csQ0PFITv0kg0FBBgKLJM3IU5tgN3pGfoifnIlnatMqrLAIakABJ2ps/nj3l7ECykCku0KWhGtJf4/rEcESitcPLS4Q0QguG4PjQ3G56gH2oZm8tAk5s8cf4Fdtq2n1USCEupS5q57wzrHjzvyDct3I5QpFFPpK1hQ0QfU9XQLFGI0rperwGtu1US2SPSlyelBjXydL1ANFJ7+cIXmM8fZe2+lu3IdyMXQuZNgMgR1Fs9P8Ip+KzUq5JD54/3nRobkb2ESXoQaRxpCRZlfJycSn91oijAfVPU3rk3vMm85HxF35lPda+QOULWLWdnsPkhJ9e4Mqxyin8GVwr6/Em/2MhqHet6RQw6LnbD97X+Wj/oMsDWDYNOQLsDHMRGjvvx1ZCCpsRB/gxbrPneayqZIwhQsucD4emXrXxjXUyK2bA+MMzeWj7kk6mNIOJoeyjN1c1IzFNYXIsxIglYX4zjzRlvqYrdFAr6PY1OuWf7NzJmJ3qyUrh+UphNYiRuGgVKnd9BJqJbZzrlWZo2IgR65VHh7YXO0qhAc6jk9PQLe6K5qmUX4jOToK6iVWBYOTT45KZj9KQtRQqtxt5q7OxWZ8fuDjDmWZAz5iCjwS+PO91YKurkdL59VkA/PmgDqgBezFNoB/IT++l7JC/iaJ5DoxAKWQu6T07j3mZwiUywkXNj8F3+JuqU+bdSrOJL+lZmUB4Lrp5w4KVCnFqXcjAnYMNr4cb63pCJrSUC0cOgoprplpSQpVXuhRkfoG0kzIoOyoMMdytinepfYgBbyarmwJzQjtpsLkA43rvqKTHIzm8g5/ueHlCCkfvC+RWUgm2+AjPoL6ZOKe7VJNIz632pDPMLyLS5cOIR/E5nPXvFXkL4FxPlY+2Er7oR4n5X2UWJqEQmQlg2kqRYR1eA/bu+MzBe3jfxmLbWWzbEE7lYlehDWEggaomaaTwxrkpWaIIbM4hxWAK9AiDylz0MAbGlAUyqhBa7w0xSOabAgXn38KpMqjqKse1IlACBUMu8FAyVhuhOO7kpKFeJyk1AgJBW/0ebhTBfxaDsj4vuqSDg2BRs0mL3sVuKgfUnGODzRij2NLjVqkfh1bLD1G5Qkj43InwmfMdsM33AMdEW/XUJUu12KTa3tw4y8MPpqu2TcIPS3P4Kn3aZOamzcppUE10vUgSWxlA7wBg1F28gJRcoU00RrXc/ax3uzTfHFovT476IUhAjT0zq0C0CiYr4pcemmemSWJvgPdv2PElx0JxJze3Uyo7+1qY2U3iaCAfJtg84wf5TXRN/EYUbpfwv11Yc+BQlJyJpE4nl9Z62NcwRZtmkueNb9J4CjAiSwOfjDDSlTPpxsrF8JkRIjwMsbRqeVtNhWNt/C1M8BxJC3oeY/fvzYjs9EDaoGnKiR0M/eLVn1pyvbzriHnMs7D+EaT94Zfqjj+E4nDOqjeDQVJ2/GIsyxeOKvMRwNCBnnM6mb6g/Vw8btIlhZN/72drjnMyre5zKB9Bnbjqvp6lkj+buqyN/NDQcfn9HCbea8x/gnGjcEYil/LyaGfHKh3E7b7plwq1MYuQNZ3GqnpgYHmO2bDgPOz3f99er4MN4mGiXNEVLTw8fSejOf2dcwXe/l+DHDsiFp4zK9SjVg5hpZHraCKjRZl3dlUAleu+JBdLleOhDjbdabKzP9EGYHWLXSkmIWTEaNlppOrw179dLUrR+xADhsEkM10k3C7GrlsguFx5uVRfPpLBRGvKUgfTk82AW+RsE+ibLkjJHUvEq7Y5cFRPWa4Mbo3LWyEB8FOkC+WodDYq1TCrDOQvo+EAKJBuM9glAsLhAJh1yfjNM30vlecPCqAIwLXs6teyV3tybT48X1X1GUIkOuAHfSBqlGSkfxQWA3FmS3d3m00W+5T6OIFelsarJsBBo+XA17VQC7ffwnipq706lzo9WNb+BcNvXxCf/Zt6fufh32AmhUS/Yu9u3VP+iRNeB0T6WR3fnBDX+tevUJz7ZAO8OiGmkQfu/vJ/lDTS0ulPfgj5GlOEbVMTDwGI2SzDiQYUPFwGOLQc7Pm2C6MboCwRWXzP/eYtDcceZh1kiTAAXzvv5IHGf2AFj16WgBlww1pHmvE+U2BG2Yp/yHvaNX6e3jQ5vJVPMKxSq47+e49XeVcwsoGwlnLQNzQobowAHC1Wiv8poC6s4xgReSyjZB+I1Mwqn0ILq6pLqazrhwOIMz0MC6KDRmCp7fLie3QeichSyXXlep90X1UATFm4xMg+kAcTyDffskpcMhYC1rlhkfUsKJkxvR0IZqgxD0BdU1EeDJ/iIvfli/0emEeham25rgVkOz+gIhVtyFMlRbxBE7cF2f5g64hAtr5y4kiAeXSBuBe41P3GcHv5a7LNbJAx+bjjVes9KVJ5krGleqGjFEuO3+G0tUmIcwZfc6CMbkFLnoseHz/aImhatbWxKx3HceyDlillQSwAeMg8MkZql8hknR1iA5QrYECa0mPVRjcAlzt28GR0IUW6q9B41OTm1FwUKeWgrDHSozWpa8NXiPa+SkHp9iQuJwvWAq1MuT+wla9PSJDfa1LPTCTvszR+YKOBj2TbHJEoF8R0YQUtsMXOdD9ytHcFlW6tHfTN43JueJyEAAfCsIEI26DcSQ6YTgzYKHMaheaQR77H63xjJraGK/BoduGZ8qsXT4zGDR5m7o/EwtmmwSoU5QvamfS7AkN+EcgrE+jYN5dz05arOklcvAYDqutQzymShD/Kn958+uvpzXfH10okrvY3wnuEjZwZcJ3cU7mFIfZsi9gWTQsIEROVziPGAzSiRyTI6IqhfxkB2uSJExgaoGbwtWPcPUj20ZH2XoTe5Vq/GuKjdO4+KQDGQzVTPS45uvs78Mypyh4mLQ0z1OwjkcZZ8BpCLyHP3iqDHdDGFc69y+o4T8NeWjsSfjr13O6BaZW/BQWV+cmkc4iRjUVRfsVGwSoVRe8mc5+IlKbyQROEaWflczNB09o+3AV47Lm8F4JIJXpXBrYnn03gfbxb9lUwBNVXo2Ct8vDxvPbKYbjIYl9Yjx6JCSMT4YgI6P6jF+L1GS+BSjLNDVpYa4usA+yMyo5yl9oAqI91pe1XDRqwIlpSg/wpnKYA25Yml5ND5IN1WhcG06ZNLigsz4ASMfoy7mbj0xaCEQ5kqdnRxxsPM3Cp1eOenh++ooSzq+b6JxZ++R9ZAiaHwmbUihxNh5zQ+ov8l4l+4yCifwhyc6BUKbF49ULbxAYs3J/wPhkcm8BYrVrQZ8tV1QtRD7iNtG+Daf8WKDQm9RhGhzTNEX9zwP9+HOBjOtFawkJnFnhY8JGBJ7MFZA/aFzWQayVcCZRayfoI77DN5kZabbpfO0NuL0b7uKcWfpGA5EBZDS9HvR+aZdCsUIr7hm5bNorpIGjp0mo92bw5MtERqYcJaMinH9ePcVTc+ugK96belZfHPlg1dKenq/RrLWZNfUso2vkfczKAbokQElcp/Pi51MuC1wDEo3YBUgciX4WeSPy05ppiOGq80dMawPWnBVrIfRwFV0UazBuIgYl8oZYI5g6AKx7qKSWOnBvSiAW2EgzOFSRnLD1fWoZTgaf/af3cyMKVFYVVmac4sg8LYL1jLz5wIsQheZOPRdRLgTTAS8kxT/Ll4YzYJyuw6cVfJ48UFuNsw2NWCq6FSpGM3fu58buMkmE/ES9bcs6h+DoBc2Yp+d77/cOp2n20pLhCZbxF4S1PR6BG4x1wgOdVaElvFV3CWGwElcmcSb4iR1EIee4fLc7N19lXu7EIv1YVdBYXaLwRdnotz02ferxWkPw+dljngo0u1YIq46+bbJrJl0H15WXfAa6sXKqZvduV7uvEtQaJm+bBciKgGCPZOVFUGfZJBQzTPm1zaHVXvU6V+X954v1arEjtDw+312sqiPQcBk65AUT8S8uZeLD7vv69d3zjgcLU9oYrp6T1CzxOhOzRkRQMimumj/n3IJUpEA+lL/8GUL6M/jP759F+RT7foFdzM5QSNTlUkwtYxgOHA0XCs0umYM0uEZYAkcy+BgEjUsNnlmhT5Q5SEbboYw83gOdMhdVePhI/7uZdq6fC1lKj01aEhRIiiGIXBwfxbWRfINeY3m+s2NRV7ZM5vXVRhRinCNfPL6iUa27ZdNak68UB9IgTeLwS25j78V9BjpBGm+FWIhM/Ad6r5Rc7SJhviDI4NOnEN6mR9fdXSejkitGsosPaD+DqEJWmDbPluMoZBSHqIxiBoiOtEJCKi3MDwdFaXwSDGdA8QXKkIDBZNDp1HeIqTd4xP5eosk4vXBNdjf96e6Wacsg1K+guGHXYk/89uuC97IY5WVFBl0KytAaXmpZAQInKn+rHG7OxYvnntWFpjGk5MXIlj1f4lPQxAR54wagqgxTbGg24OvQ8GKohdXCazLDAF9Pcy/QZt782e3r9+omG7iKXwqdCXOE66LxTQlUNvzVa9WxXhwMDfry9woiYsXUsGB5+TVAKambbS84Nns3niUG3mWRbAFsNq5PHp1A3UUEsKTdz4iWipbxTSjKpD5CQDgiKAElUNNy8/jiGT8qLytCnvzmdyrQeFvWnQpxkk8ikuF3fERcHkd/LmiOQwTq6Qhl5bWiEjKkQu63jXoV37sT0cblSX+VWAhU86GsKT2RnclnRke3egRsSSzhopv4n7N4mb2wEVaVgLzyka1VbWIKbSLYsqM/tvlH+eVdoNbiXG0pvwJQ1hQ76ZetjSaIMCxvv5dIHLVeG95u7/4uC8+t7cMguixBci+m7mZwSvHAj0xncgyWXEc094yiNU0ZgKXUtXxfDD5qQi+/WmPHLP2TTNWYwzrfGCQECOhO5nENqEBkm3uNpoNFeRABE3WbjQZPawVuKczjXqcVFsforjsNsRVAN3REPBy/GyuZPq2DjIPdRvmg0di15nD5FG868ODue+b/j4RfvpSUfYgYbaNTm1xGPqXW2iS4L7P/MCbTJMIcavgWxmQ1Xj6ct0ArH+rOTKrFGiKOd3R7Ui+xklXytmGnh5CL9aI9tcyh8qRUFrH0z5wA2gczvN2clFqVdt8VHRNT5L4EDnyrmUBX8ow08yqkXp7AtjWVM74RI4zsRz3JNnGkeSptIV2AHhVfKzbOum7SVVaZ3BmUciFwt9jq4x4ajYRG+HKJrTl1yDlQPEhcknZFi8GknD0WTUVHu63a/H9ZrcBJtkGNASq3EYHt1yp5Rb8MPw799kgE5QGkWY1eJBX53UBTPPB6wuN9/qgKgERWlhoCtxcC8lGQsPgv6zT4XjeICA8gMuWBibhPpF8K+1cy9wUe1pUjPjTswePDWYyGNwxtJe0O/Z6moT+jE/4BTVsKXfNLWZzP9ydwEzw67WOS9yAHO4v1FdfOYWt2cxmC7Wi7Y63puv0AZU2gXsX+LTAvF+pAfOZF3lQOc8/zT37c6p/NtQGTsZX+nvlZjXUL6TeZOcNibiQVMuzpah9LrA/9ed2PgMPjHEreQpKOyrR3/cfXw5mNqN5zeU8Qj+WXKOMZVSeqo219BGupGbbV/LclUg/UVHoSRer+IiihlHj/0RUWw6lseqtgvINXOsUv8ie4gNBBonzbW4GB963xDsU4WgrXXYrt5D1pUqCsx4dvLHIWrg68jJHzl51Rpyw7Vhh5jpwuqG/rR1lXAIueh855uJh8rn2OID1EjrJLEe+S8FFxP7KtLLoDksEU31ZlaTxothGM+aSFas/tU/0tbKjoS7HGeCEnUfEXTPAOvyH8zwGnWKez12GS4Etwk7fKfaVFTtYRxr4TlHUXL9aLek/BrNJPDmslQg4galRtreHtBxK8v414MAB56aGbPpOBDrHAmnse3X9otClczuvn526oR4D/OrEIzMlxqLZWXPFb2+qgu0Dbt6HXfDgBxj5jvwkxEnlCk9bxZkngFP51ED4lZCB2ufqtPW3qTkocQrDMwNTjTxaU7nN3/cIY0FJrsO4o7mWiG9keziYh0pekshyWAgfVmymp734EtH274QkX5I7fiAT6oqWueH8BZ7Ss+7m3xpeu+UEaat4nkBR4yNPHX/LZQkNxlq9hpW97hc0YhrA5pa/BRvDmuHo72RNThzOs5IWCA6rEl/eRsxoXKJ2S7gREzKXx6kpFiwMudvpp87u1WvV5J0745+00uUw82i7xswwazySmqxHLCfEGQ5b0jE6x2VexoxSUFNEmZyZn0HGg2KvvtQNItiwBh8cP0QK1Hm6Nk0jnhDOCknlge0xIN+Hn7nr6gYa0udkl639Ky7Azzxd0FntzUr9+MwG50fiCD33RoiEl6OokZzVTu4Lv4MYeJyXgnTB86B5vVh+27fEB+aZt6VPy9Ei/Pes8U3VwRsdWIcI66ugEMSfbuNI67XkxzdaxMUhDoICW3wH2KNvyC/YJPPIbcTqMOihM1BWGf9k7aP6dDcpja26d5ZvtXeQo3yCCdFw2dO4K5toOpX0Vhr+m49yGm77xbpCBgb+J5K/AUsKJPWQeeE7l6WYj7alYx7PmV5OZfrly5JpYcgnv7OCBdm4qj9bQ3AePn5svFS+/MTzALd33sMOPm31Ql0JLibP5XpBMlrJaJSTysWwiKgaQSFycqu0sx5Zigf3s4CV5fxMGlPLYGB3g4j9mgprXhrlppiEFuWogb24RaeY8jIOpVYN+O2b4HDgXkoc9D6yHIYDJBii7PTjRdh6i/ICastJM6vx7wwyae2OhcZ5RN7VnM+UNwuVzcju0MxEf5jTeU5vchyGhvxG9EuA388AEEQjA+uiPrn5sQEXpaVFSuYxvuxJHC00212aJPE2HBN+reoi8txqI1uPS4LxrMQyMcsrpU5MXnZPf9PZwBn2OBsoN5JlzfPUwm5SuROen0Q5K+Ywx9j4nLvbQFENcmy5vsf7ibH69jmhAgY9lEBh0lBimjtbqg/6CVDmrdiqQQFnnQt09FYZ62g5K7ww0n9fbTx09ADAXpNfHs7t9Qi8pWa11qvtojaxMi7OI7C3U6RxIsUlYbD8pE3+r9t5WX/Cvs8uYBQkNeCEu1k3KrYsRFM9ojBLOSRHIKDJtg0bWnDznxTof7oqT8ZNNtfHWOiK3CUmQxe2tDHbOHh3yQyWgB6rnFJE5zBIwfUhDalJjPlcXNA1kaHkEinNjgdqAbz23bBTmKuwamZuzqKde0cPkFm/JvOy5tlVMXMsXmf6XFEk9xVPzExllHdYpArBNrJV4nQqK4OX4n1EKAfuZcstY86WwApskb7BiYuKErH8VNB4EjulHJXNHiakQM+C/nu2mqOZgB8yoWzwt2AOIF/Br4gJ+5p5KsfRuMcBbYymg2X1zZjUcqy7rn9b4Hxxz1UrNTFHBCKO/KUovDqEmxEIN4nZA+D7aJIuMaZ7hAjf3fFTeIBkhpfBMT6FVdiXFXxl7ht5VhvZVw/ktL9uZxPK57alQ1tP7MpKl0kxSP0EqctQHlTKm+YFdNe0AWHtgMhoOrgU54+wpmNGIKUCd0B8x2uV52sQL6yeX+C//nvAIDaLmAbxKM9HujiPp1m4mSEaN8pg7EV0vbaRl0QgcUO+u+f6EABdLKMnnsUbZoGDY9/nW1nsFs9MJYYLhd5N65ow6zvJQhkjXWhnYrXzZXhCG5V4f0o08crY1LWatGunITwqe9EguT2aeofM2k8oLUOoHjpa9XjcZ5grHpDg8jcjR5ingmifvU4eTq/edRcOKRcoF6945PyWq+FgpiZsmdw5Xl+sABpNNfx9KsmIqiRf9C4sSGl6EHd2dZfBqAETTn7iaEaxyM/XNyWG2RbRWDyEJwHJNyflV92Sb7BM0IcadQDX+O1YvtEcOK44S7489oBMBkVvLc5uIqmPqJaiT0sNXclrjWfKseBoRC11+cP0lcgxwvRhDuIWiaB+MjCiAGkj1SDU63oteZseYyCk1sjnbebDrIvqe1xeyrv8pSOqOTrvryvdLazV0E28MhEukAyeX4dKSaWkSr5wVT2FPJSHykUY9pjgx1wJmhadS+XpH94Z8yu/k58dfheNivhlTAcxB+Cff/LGvHEY3/mfXxKf1cy0c8m21fqQIkqO1/FJ0eLoxXfLcDxI8MDpQ+Eq7Zlaak1ET0fCI8LOMUxMk/Hw3wtKbAEJrWzCsp8UNt7bXlnNR9dJaZbqhrPTicF9QuxcHC4zo62dsh5BjK5PVr4wKAitq6/qsGpgJVQ28ThMiMWWnKJQBI0/wKVwvbtEPsroeeX4uBqE42OpjlYeoMOcCdITxknw2y4GWstz/MARxjur6x+IznjjhRXnIi5NvqoDGUBpWPVIrot4P/yTOEeyBPC2+T64oUhH9ZwTueAir1vEi/Y9YgM7MU0sVw7c7P6G9KR94PQnbNe35493qtdoJ04VEGs41blwTHu2x2ZHckGo2BNUR8GLfCQdHoNHd02RdO4+HugaaTvsYwTTI7DbrSBX7gRaEdcAPfOZ+Pf2wvoZJz42PzEJgRNiT5YX7cze9dUGlDzlnIL6xdvByLfZzomihAcx1w1GfDTP+ZGkkLQqgpWgYU1CLheLAWy7s1v6nxMru++d11wIlqF2ZBdJEaaXXlkZZkDIcDo5aBHE5k6hYXM73e8JCcr26lSsKA9Uotvz/lwCRG6h2Gv0qM8xC5z/ihI3illhmvSn/UjjZ4i9qm1t0wHI9LBKIOLk7OKr5blyen0PS1PwzuMfA1Ganoof+iRciR1SU/bJWdfa/wTz+rGwbfAZJ0FSUGFAgvAZDv4sVAQJLG3gYd2CLWcaFOaZpAYkzUXQe74t2j473sD/ss3Sy488GlBs8gi7TMYw3GkYkb/tomVirrRaCsmFmRm2tW9vvkTJIkJps0tVlPjXAnpg1p/4My+gTUtaIQP+b6h4ollesPOTfnghwrjwbPIUfmL/8pW0fYAE7mEbxTT9tLT/r0v1rU6WqY75SEOj0oJh9eWjbwnHGcED5TyLpwgb7gmIAP2btSYuhm1+uYuf1KkTNIdj6GeoMCHmY+RMwD4kk1BjSZpUBvTxSyxWQ9NXE780GnIAE34owqL/2inMbX3+iqCZru8g6//ks06Y9Rvz8DV18ksfiyvK6xGDnC0fHaPbGUMNESHLMX0X5y8zdapP8Ou8vuV+dquHthmMN3q2mszkGA0ufg/Lo++dpx7iL+GWXcGr4QkwcCNuo2DdhOx9at3IUTmhnZ/FbtG/anqiU8FpuLNbJKcg2I18MMgVwZbjogGJmsDDeMwXZsHdEPI7X86mpKvK/Yhrg/eAUOPWbZrhzx43wB/qD6cgtVJzsGcko5UkLcv6Jthd23zZChbY1eArdnCKTONlVHO0Vn52uvgDPguLb8HdkGJdT0sPJlr+jHHlscv8SNCcvUnTfeyb0IKKogpiJeO7FTkLzuIPuNZXvkzGN3/UylvHQgBqxf7+B2eDM1B9dUDHtURSLUIKRXFglMCIsKGdHlLYy0HTbEwKEpfgztAazAsZzACNB0lz1sahlhhLPoRVcQpUk/m7FwdPtC1m9SwsTretpDwHprQgFfuoeWGKBvFZte1YV3kWcqR2r31JlzN1brj7Wx6U7GAC2ydgAidLma+HfyMpd17bIvsb9+CsFOM7PH7NTVv3WYhdmvSJMTdBKqZngLNwFA2k8hO82xoLBnCngV1D9AAN4qBwjCEKveVhEN4j3qZrAo7HRqjjPbJQleP3mwi/MK1/xIAUuUWKat/KQWk5eHJpM/KIh5AyOkL64nUl+bEkO8B7LOBelkPZahBhzfzgfsXTDpTynhJ1kCcsMndhiFI9tAvh0HSgibFS+wn5C9t5j0w39Jz6QRQ+rew3gne1Vt4FMoW7/FnUJksphUHnSnGR44gUEB8ej1QC59fmYBpffpw43B7Wjkn6xOhMAllsZmLKzN298ESa9vlqwijIVE8hQq/hrWaigQfUyPdFN/aY9vWm89FGdzgbQCS26D/oD7B7+UcQ1DmEuIeY8tS+cMNhMCKyo23DegvinRX9hKjp0SCWlytqZ/vDnHILolUvf1Tk5W2U19wxQY4g+yrY8fe/S+8qnP0py11Gnkxfl3c3sdAxLt/YVd58eJDfM8utEI+kb89uTqr5w0xoXw6XoyV0nPHYgMMWVObCNNjr+CX1I4WHQwusvmJ4LX1XPcjcgtQDqqnGL81fzMJtTqmp/oHYmIoJlWXorOf/CvL7tu6f2QnTTAInaZ7KcNB8kyufeuoXPOgHkNy/SylLjLCHX2GQpk8dz8fsJ0fjwByZ0OKK4Y12ei1rs0X5HQK0q9K2LTfrUDOzKPY/oDloHbuayNs6wOLD6QwCvgnKcLOJ2vdS29mffBhar4hKZ5VSljt7HZUibVgbmt+q/HRV1YmXEyv8N0nhct6wjQRZwj+vPBHeZTbhoPdy56TZxKBRuEAS0tmK8DTvSoqYkffNJzc9mKmfXECKMAszC8w+SCPNmrLilHNku864xyUlC86pUKkz4NGuASY5DJtjTStWu7vUjkIiMK7Oc8yTUQ+KgiGhDgAR4yLJ4pPaR2kC8y7DW7Cg7x9kocghWOje3j8M7U7A9ClW3SXGqaBiBY9ztjPFKX2xjhdHOEVBi1hNIoW8Ts4qpoxSRJ5lLA/FcVgABgmBsH+rkBGxx8szWntp1LCFXXPKxjWEW2NXOTwC31BgYG6gC6f+LIUAeBCzOfPocl3MFKd6YX4P6LKq4y9pjT4mguzXAqYvnghFoNCNvjdpt64DlFxaBoa3xkY3PUdI6awMjECgWD5Ggi4chlFUg7VVVMtYwS7HDNZNReGKRCx8TOeaceQdrzmzB2xSEjI7aORjzJ3YrTbSqnBBTV5sdqYE3xThZ/784TGIUeuu1KMd71ne1qb/CBY70ccdIPy47KWHU69y5hxbdmyN/VvhC84Vrd5QtwPSCeM3QsQgRXYknPIT7sszPCK6UMSOarZRdObyfA7uMgH8xpukRH6PVak2rMigJj1rWInsZrbBC3OC/QVkZrzr73OYyBIgTxHMCBgQ4EiWuU0MG5zEmqjRrqPIFQQGWVKCcCzR11nrT0i+FMUNAoaB9lf5PV6VFc1/50L67HlmLtXksyYejZdQj2NG40ON8J7HDikPTScshpLRl5A6++gZmkIqhmUeg76QNDjyM39Hf2WwGFiLtGvtqBk+ibn2OGogxMN+LnxkIlcnHqGZ/eKaRYoyIm7h+HHwg24h91iRfpn84cT0L8vOCzMqeg4rxBqIXugsiijaJqIkmh0V9ZtaRqN2x24fQqJcV8P9LTrIp/EC6OSop5oHxxYrE0xGr5SvjIRsqbjPX4EAHL9B1JNabjQ7pWTPdH2VZN/fQ0pH3r1EnFXsrVJ83H27fi/XZ8XWvwvdRa6hO1PcKPyKpjBI4uatwutNHyYvDVFfrWmNczjEo8dxulcA2dYWo9c8iKdopbo5QZPJdmdKHVA0EAOnXR8E8llDlYrcFNwAxqOI7vtL50QZXOf3M/MPGOOpmzrqeLNk+yamMh4nmH0wvGOMwIWYTN2YIxTyOAgWj28OhJuDp/LBSyxkzh09a7fyMsX4yFGyli0TWR+o0m7xeFOM2QbJj+6w0HHH9eT2hn2573Lnwvk0i7DyXVDWGoPwDbZlRllTGBO+d62IAzN5+cMPULOfwbiQoD+rVTMoT1ef9SRYzUxyBI5aNNILyW3gNuzlMjeajVJLT+fn7+XQdjPykxNFHiLDg2LeEHiEYk59ArI6pKEasf3zrGCXiiAdjebzAw9HQ5eABPC3cTYcusx+wg09hmXsM2jnNHkW54+tCzacmhdxUQg7nUeOAKNpsXsvsF2uM9OjjdyhIClFt5cTG1+1leTJcUagsdaR0neAdWEsrw7I74kUWQrPs21+xVEypZO4164KplfCRl+8w+kZYY8XfWagZR2ZEcLtmXiPTp9hUNKXWZyE12eJIjynm+CeZ1U24mzVFmOl1dKEeLCsozoOUhWLuVknhvyE3W3LLKlLIByA2yXmpSd+chWUg4kum/peHDb5AnJGtXOyxtxkUmcU7SiotlqpTkepR6PRGCcZ06qlgqWk8PsdQFNBdvU81CET98pSaSf51afnQypykiENVFE9jhNuKPrKrUO6AtGlQ3YntcD2Nqan4SNi/jhMK5zSG33Vx7RRGwN5f3wP+Fl8UE/qhVBOUI4JWYTvqvI2VTilyChv46VsUs0r/P/xi4N6itNUDlq3mcGgKiUNcLVwnbSxpPa3vOZLXBSBmjcCxgWL49Xd2ACpqbsvynYM7bhkhFcJJsUE4KGsu4gYzuQa/asy3lYRSoi11LGD5WpQZu6KR81RTihgGtaMBFIMxyv5+wLof9MtaHeP86foHnxjnuLXDg4BZe+D9Tv04J14CtdAXKc3JiFF7A5/Wqp9v7wtFhFWbyjyJL4VXxIV8C4S7rzIVjmI9nJLY8zYygadilXd78EChfOmt6/n9Dy+U8Ty0CeRPCWIlj98tVTwMRM6ArvbFsNvn97yxj0z6AWw6734zMca9BN48TjMaJ7g7/1lb96qdh8ef5YqoDZuHlIeO6SQVHdKdpFAHz90JORGmOoTw3GYI2TmeetyrGh2WOZ7RuUYzXi0tukQGuLoc6DhhvajlUQRZOrTOb0E4TCCl2NhAbJFs6sjZCw7u1lEzYYxJzA9alylaziPNZkgYv3vkDxsQB5ct3kg7myMpDFkbBiMPLcYbcCWbSy0OgOjR3hQ6PK5rP6UEoze/TT6P9ChnXXvnYLshP6r1uqUAkdLeoDQgDPAqq4yYtZ77GNWfQGVvogwYxDWUqy6voVk94kGORKmXt8YYn+QCB9RILsgsKdcmiYfP9QYSjU1WCDe1OyV2mXYf4Qkbivarc3Gzm22dOv/xVP5ajTifwZ03aO3Z6+loVmi02LmptDU+YbqXyUaq/4IW+6EQDami20pYM0aUMOMMmcKmjWOdKtcfHYF8yLdScM2EMJxRnuPn3KofVruoEpV5oEUaKoUdY15tI48EWMVG5WaxvAtVqMurlYlNfxl0eErpAHnSJhZHsnY3daacmLDd3zL9DUy0Mhb/l1ydXUfMbPUqMKjSWLh+2ZbqAxrKTBhfOetF4ADaN+nrp7Mxhl6zchpWPi1HeTdBjvBM37SS7E5wUH4F+EdWP0iet+rpMKDNR+d6OjxTx86zKuNzVtafQ8xwj/Lew8hqDkrQQABoSe69hfceSdjebrIWzmod6apBj+lKw37Z/dkVO5JI8BtzY35Y4dHqjBTWIiUkUhfdsBjvaMitJ5JBYYKyPNohynRomvkyxWMp8zy0uJFXNkqMIBwYLnMBolPvvFMh/aUA3OdeyT6D/AdutbSruugj8OazIA7inEQCtU9m1eerLmz5u3pEUTeN49NcBXI3PxqaVxJ/5oUNNf1Amxdd0m3UoNr+NrAolagGT29CmZJOGVOwWDdZ0zTmVXA4ZmM/tfYa0XhhoxJOn90M+ob3h6FFipFODrKvbh+MEFxXg2QvIv7pZ5TrX63VAqYPKkAAVPhBXeSCFEsUw9Q60ltQcwXdwioKXsZpEiNb/jflEiH+tenB1q5R6hMTZtm6jQ655yMtthMnsaltRFB8rRUu9QAdpyw7H0P4vRq3nUoW7vf/Ija69MQGpw24gOTnalwVUaZFvvBPk3zg0wDiY9O0XjLKyif8lvbKoT0MAapkys4/kPMhqyafagPbHzB63exIU9WiexTjJW2nr/CRelc3UrggkLnkg9Hsym6YR6fprMI3P8Ew4lZLezIE8+KkcniuccjDoWh4Z7JdlWxczMnNZGMDCQ2AQymEl3nWoNAqMYjQDJ8pdbnDUmPq/Rw0xKKzKyh/xa1K5BJ/xm4Lwr1b1LS8hQmtdswUexVOlPgXBbXBVIFy+fMw3HmhqnXk24Z+VSvvEMzWLaJZhu30Nu8oezEgshTPbxVZByKlJA35sFSj3UQEPLm1y0imE4WxcsT8N6xWRDH6PAYIG+YtopOiVbOFrcGNMDN5pRKNXKE3heqcLzJQ82xsZORGOIQUWx+q4ElV81U52cynWiQr6Ldb00M485J00cK2pBPrn1b3U5MP9qHA7CQieZCgG/7EhWbG8NryhsqdUtvmMjkG7ipJELyfIgnPrZxgnqlxyQuQjzDZ/l2u9eBTtvTni9TW+jrmpiqp4lGIZx2oBJ63hmN+lfnXcmoeI1+bys0o5wPN4+K8QPymXTiS7izeK95F4gbyuJJrUOKNBp06uWPO5CLqUv6Y+UOtGvPPUfroITaGIaYES/NIAgMl7IMIxtmgOAK0jnhLjwS37BkHIzeAsEQE22nqLHhF/AZOSloiplYkaIf9kVS/cTB9mmJXr92iDzNrwxfXTmb4fVtlHsHfaR1PHIKhVU7WPwnAWqwfWlgMxVSM9eXY0AWT1qyhVhZ5hcPF0MukyFwV2rxQYU09Fr0iMpj4XsvRacutHv9fndhuG542MXjRs+QVVJR49uekZhR0FAb0KPBRwX23QyZ0A6LZTH3x8U28ekqhUHLMJ4MQ89y4+c0CTU5DwhHJXfRF+wc9X14UCBzRM8z2KSJDVJHehSdUVnJsusCnutNoYWYwCBBIpDqBuvZparQz6PZuT8Nw3OmXXo/4rugnc+jPPdNUIWzujpe4WhtrZuzDSeS+Iggy/4AaY6NwKewXmsRSqOPup0Vc0CHxb9Nxb8wJPgQDkLwOX3Y/tEKYi7QW/iq2ASP1hitYFOUkuRivxcoT4yr7rhDO5zJTG+u9NetoTUvXSICNm0f2oBQeiadIl1PKbvl5yTiL0yGsrAHPz/Cv3PrbONhVASRsHWCMKunFJeVOITC1JIj4gY4V5iB3KILCREhcX4EYW5cZR7gu8DzfweXYH51hAiX6nmL3m0g5by3L7yeOkxaCr75Pum7N42c5uj4Bcd6w/snSxcuYOKH789yxZFvm9bzFSTa2Id8a+yDz40WvAwpRZMoA3hlBo7izMoUq0JkGyCadmPzIk/f4lAHzRLQ7RIxa+gnGRKzWFzCmu5nxylT3G9rV40YzrhbScNvuh9r97S4v78KcE/pj50N1uF88g7i5vKm3OUutrfSpTcpFkmHTebPsXzq0JCKj+8tF9gcttK4yQd4++CGRXpgU4PqqFL3JnMHedJu1QSFyOHeP+L1CZvxrtT5TzU4wwoxA3NE/nfZy9Gmls0c4wzcZaw0FPpVy4+9xegfYW4YC1Q4RFqZY7YSWDU8VawNYMEKtmjd2VNn0m8nhKMzo0JCnsh95jwUBjS9hSMBYm3umjNCu85iMsByZa7aFF4h2bLcjNU8eybAbLgx4xhqazBGrTt7Oqa3PYeFZaEZvxS/kgpJAz9jxNDim/yA6mJe7MJweOg0+nkAs1EslU9Tng6puKHjjiMFk7wvKbJ4l736R7v1zKj+bzyV+Go6P736lvhqnxcsXaCnPhOZ9pvld1d83qpA5AHkZHScex5KJkRoqXnTY89FiFrL/81/kpPSff1zCL0TlRmymOEVZIFDfvnXk91P2axuGgzCpAFVpR25zbXcmPDj4uhyBcgfhzgRG90sITxjIpz+MLZTMg4xrnpewVKArTjfPTa7YA5Ibr+ZY9wGoi9RKIkZTN00IKaRKjlHV5yaN5NUd8IwUYowimn8Ghu7IzezKyu/eZm1O63WWb6V5c7woyiRLc3dKXtD1pe0sC/oeCH8WmG33oPYCS5am+jyTB5fzySjaDKEhkKkAwyBTonLyTS5Pg9nAVOIeGzeasyIT79tz5gwOBf0Y8TEpVVv5OIcbm3emH+AMVYOuXCZjt5XGwAyMpUlvCJl4ZlCjIm4rjF3dNpW3pHQeA/cZZVR9IYWSIGcPPEhjQJYW8oqrhaqGyYj60nxBB7PNLZMDPqH7y5yNxrgULTITziUqZHfNV4LwLQseTDLl0ILGk+rSXN+TUCY6LZxSQGXTpTvPVOtRIbVtOdaBODvrSM8hAvU0wS0uZMgWZaoMLN+LCRaDmLXuk4k4SLzrWUUjFuxQJ0LY7YumkIt2xNMEiOm7i0mdAjqhH/qjVYCflOHRwopr2c+bEPu+tbA7kJE3M5OINaekapnx2yYRdL4WSYlV71/df1b1RA29VZvQ3CrK61gsAdkJ9+daK6xRdF/RQafV8+mvkZpD+Cayqd/mqPZLmQHp2BR5R5wpwDkdHuoSu+liPGeD6wCbYPVHk7Yhy74Z2hPAHtX3d/YKKtH2PcVywjda/C66+WKMJ2wLbEY96ms0Gy3YCk0dWM5y3fFMb97myXiEaSc/uwxw/6U1muQskP1LfTCYVPR/7KTu08ar1NtSmJ3u3RvVmFpqELxzFzJv3LCbKeuwTN/ZX2kRctxCVu+dMU6J5pcmo12XDiynJnYCdP3W970yagLeyR8++p/q0vIPQ6uokoRagAa6syBy8jp3hPXhEFIh87qJN+XKLrwPdEW7PogNzv/ag16Jk5qSLrxAnlFriL36iPD1PTYCr6P85pl0kVR1ILMec2WK3FfDO1TBZ9MWx9MvFjlP2gzkHH0C92M6BtjWIgtKgNzQkgoSqd+5hKbqOp0OcDyBy7OHhNjyfdxfsGBBW+4Wx+Pbl+FS67sxaZZbLg3/RziHwFvPhqv7/aiiE=
\ No newline at end of file diff --git a/acts/tests/google/power/tel/lab/temp/Anritsu_SIM_Bo_ca.wnssp b/acts/tests/google/power/tel/lab/temp/Anritsu_SIM_Bo_ca.wnssp new file mode 100644 index 0000000000..1cdac0ffdb --- /dev/null +++ b/acts/tests/google/power/tel/lab/temp/Anritsu_SIM_Bo_ca.wnssp @@ -0,0 +1 @@ +fO6p4ZnmlusNdwDTxCoF5Lv2d+AD3iaQJtEFqV1nMCwtZuwc+Fl2+Re9li5IIIzXX+pr7sHZS4VbQ1Lr2pdzym1oSpgDX+hNupKPYeHeSm7XD3SWHrrItblSSov2CYB+CIufTDn4S2/qVYgBsjQBszZ6CWNqCZc0xl3RePS6Lib6i4xAXaCkX3msLVIC4V5+BJl6MifxHr3NTUxFW8m+nsgnqed5cU7+yFLGF9iCTtVi0vvmTB6HEfyYPLaOXEsxiFOIkUejjpRcSd74bsOyIXSnoks5AOJ+3NVinB4L+mG0d6nrJCMOQK0cYSGW8p7dA6PWf1MrTkbLTD5+Z0MZ0bw8y7EYLMQKZq3e+X7tPx3jblfzOmkUi7s4TSme+77C3fCmNac5U7mFvOoFsqgWFamf31hPwUPBv1z7AYCQsdnF6poJzJzbOaED1rFCFcvcLocbxgfiRMGv5zcgyMEfbKSk6UlmMJeaIJJZPtma0gyr79V6AkMscwcIgO3G40WtXHmpPagWYrAq+T40+0kfZFWJhyhxdK2OSkVb5WIq/M2O62YpQC0qcWc3zf9zyZgr9kKbGWCAu8NLRowFz+d3ohvP+RbfEqxNMBZQ66ghuU30VV6dyp98WmVMgWMaGFzGRF7L8vygSTrInz7KdL6CAZbPYcIUhMJJyiAFflOu4x4omyqDRh6qwP6PeFCxhBeEUz4eqvX2CyZoZw25trXpKt2PBDW/qqcjtgp/jCSp3uPmejP6lFgIJ23UqmU37BMlm4tGkpcLCuH5lZLp+1e5Fh8wWnZXR6QOltq6NO+1/uVCfxL8SdGZ39fd0FzR+EKVvJquECn4ljH8kFb65zfJCHhHyKmfEfKq01MbNcoftvYqQf4e92KA0CLmVOxSDYLCx/zK+ol79lpH7UBGA53+6kkDzqUe12OWuMsmLG84MxpTEFeakXIMNVTkNsYsVjdAC3vWNsLCSzZj5dBORqSGand1jZyUY3oJJC+B1PCYzZXM+NyG2U04rgaNa6ss0SdlmT+VwGH7xjbs2dgv710U3xQOoggSxJWpNgBDXPskUWLGF2IK10xvEX/Lwga6SVrnR2Df8y+y+CQ5igtgAiK4Brv6LsFmdkjHVEvFmvnNvDs1TDDSA7c0yXiqpdVzRsNsymtRhNquhj9YF8WMsJ9ECADh5qzG3NYMf95URIUvWbI7xG+KiIlylgn2/6WFaobf71+fW9jNRuUIS6SVf/trQAWN2IL+lkExih1+IaWTxUbMQponGIdjaVdSekND+W5+TPODRp5Rq8Djyokq+Ulf3M3ZEiVhLYR3V20yYAbRI+jpZNVBG2JT3LhX6rBSc+Pqsl5Z6+t35tinF4klclyVkFbmf/gbHDe4Ha4860Dseaz7bPUVAbFUpjI/mv5vkXSjD0bquXPQklUoupgGuJcJP+NNePR/A89zv51JA58cQOSODJTuKoRqZfuSYQU9ywPVfU/07nbaoGQh7wYadpGaCRvOjXnwVQaJSGazg9LuzpPpk5TvDBk2a+ZKle6EmHe/5XuOvsL0VJVMJejtbaF7/DBokppBXpRUPyhtP05sdP9GoT2kr5BXV2COQrZEkCYRYspYAraifRPvvGdsJt5/o95NJ9wpg1QwlnT8/CH+2L+uEGPcoLTzgvPglxStUyXl7oX/eGvkh8BCyFGbpT3saT4mpx3q6GhAZXZM0pCWoE4Q9fHzC2nqCreko6Ba71kouq5L3DEhG5x0dirkp0WNA1TqzppmPP+W3I24t4pocalLGBi1AriNj8I/+4Aa/o2hthvimCRG7x6Nl4vmzt8zNa+qrfz0nD3TzfdhknBLLr8sNxjDfnsGeI3ukV8x8RschKnEirPS//LtSjV1JbWSmuq1noEYhZ/jAYJONsZdGUqgvsHSpa+3TpTj80LvXJZehAVZznR7kqlXjWbw1tRMxUeUhzLrdeBn2plGA6e748JXgPyqqvLwgL8HXaneVnfWu7IA9QQTGt4+QjjcVoV5SWzyzp2P7pWjMhvcylywG+hkZhNHrb2PLQdoBfJ13nphtsTEsht5z0u/exJbmX8aExNZIea3Baqsd7NkQPiFdpHkdc1H1Oxr4j6sbB2L+TVeZ940ZvyKGYFeZ5O8+g4GR7KXmj6vGW89wEdxsdyEOTRcADLhZ3J3wCIFa4EGr5a7vG6DJCEDo6oLP4fapQ3tp9fSQ+PPy3ktj0W3DxYh7Jm34yansES/FT1X0mubpI96atv5EI1TWPXsg0g5XmCMnkLjYxV3XC4f/NgzaEZKOnqtG1b659pmFFO8r3qBASt+mIESCB0/gRxIPEB/QT+UyOVkii/la3VZYHy5QeqOyZFPbZ+uSjARiRf3CsCmh9wxhy7Vg4tIWEqHheaheQv9JOIx/UPmcG5WhzEjqL8/ZfvAOuHV8FaacvR1O9g3O3ZkUhCUBOtq1/42yBYErz+IPrlkC9cXsbTMQW2tvUeq6mmdmDAD0lqfpXye0jw+rdH3DhF7tSO4IRt0t/jlMTVPwUlSRNxiGAyJA86MOw+z4stNNzdJJJUAlJjLZrkOFn+kjEiSFrShlHV/b8mJnN3eW0ATYmI7Rj8UCFnVcgiNiKsTsORqCA5sPiPkKDCe8kawTN0ufeUrk8iLmqSv6yxu9bzA4FSUXq6gD+clpUIcvuxDmhvzpSIYywnqEKmv0L4caJmIhoubFCK8JZTrSQhkl+yUUaDBMzA06WBECm5g4cl5jDoxLCTVR0wh75v7GZbpLhk7BzToyMj+RuZulTnMlM8U09qGH9KTVDxjKyyR/DsTXpbo9IdfgT5tlFFBJnAhrgfQH1hovsHkeY9fr0l72Pbs1/N3/gxiUPrFO2G7PU0Pj3spne+eCUySZ/jrCVoWjebNWN8z0amDagKGjmXwqMUs/rBMzt3zOD/veMfn4/AA1n6pV1Yle8OUxwHc9dTzkHTIXCccNBxjjfBsgMfp0WoWGGOVw1cr5XlDz9pn2fbgjPSH2ySuvBMPfZF7saKEq/vZ95GD2J6szYpNNtsgZ2jhh/5V7sULsNMcLe3GhA8SV/oBSsS9HLHvxZxbpxqrvllAEq2dHRG1jf8ph7i5PSdvzZVQapruxagV3mSL0JQ48WyFCXAHwhdruxrY0JFhSmhd+NSSj3bIZ34CydshjlefKZUswfCNy5CzWjnp2xankQ5hg5hO6clKOk8UEWX1d0GIgGwSDcayRx9nfgSwgjgwTo3c3a05nCpBuPuY3HciN1CA4JU5CLuUmPKFEvWAKh8XBi2VPUYQtQ9YWpc5FRseb5/e34RL/+4tQZrkmCCz1gr6Zzq9aEQiarYfR458o2MweIWXeKV9Hpb7P22WI9UpVEZkLiu7l4A2l2aeg7EJABj+iLfV2h1mla+mFbgMhZ3NPVD3cc8/xganFVN2uD+9yFGNySCdEz4Z1jkmy1ikTvBtChbSHh/EcUmuHJ2Ti0NW7J/tQVAmvG9jrLoayB3NGH9WiBjcAk7z0QWvn+nscRxES9IrsirdRm+9ifa3mZW3hBxKqq5PC0CoiYGrQ9SsdaIUOywh+W2J2NVaOPOEiapdOGRuDyHvxUOmIc6yJDEhT0iqt/FqPwnc9N8BX9IT5AVHgocPy3bdo2AgYheHMz/dnCPhzEl1JaoDL6kXeMAueFx1QlBZzfErMf0oBNrWuW6D+VobvpfqWLO6Y8Ha+npZdldRXojysuSWjHjeKlbOweLjIcSm6aCbC9vrgHIK2CQafwB6gmmpX5MSx9D91nkWeo5wGwUIK+DIUb9z5cCI7wFjVLxzmZD5ZNsJo2jEk4EAeG9gqcRLW3pUMj/M7WVDSSny8lE40HoswgEWfc+FB3Gma2WlptSxESHrQyO50dzJlfXgn4G3SrNjRohzA3ZmLyumoTb3Tw9NjGuKvFNlEBJta0wvAous2s7XqqSrSIfkh00X408lmTf/FDM6GXioNMDUvlxfsfN1lRN1u9v7T/0XYJrS876OYe88CxTn+MpuG8uQzXKzmDoHeXj/Ug7v0IcSMbAeoB7aWkqL/BTzmV5PSLAjNrJodBC4Kopa7yRjlHTP52oXCzMczHh+jz9z1Bci3oiktcWdllrb9QdP8aG+1mxyaaxbDBL0CtXaHTUGo5EOVzuhEvgzhu9OPgxMytIoQwiEkcif2PKPrBX1aakbW/wKmgEZUviPtFLR9rVJ7+fILPk40VIN8hE3hpsA04ZBgctoPIKuCWBCHyYNjjY6wbGkuusVObltJd+nhlDfeQuRMAyveEr+4HS9KLVJRlZ0sVF+3FMKGfS1byXB8l+yNsN+YHLSDa5UUeJMsPuuCgNl+eiJSkwYJeDKrp75ChS+LNrtqOUFJHXMs8nV9fUh4BQ15ld1Ux6Qv7/KYX0wwUEbeHAlMW6cX9zBnVAgR/JJ9RdPxIXJrHkW5zs5Lg72oY3jrTjqz4uOTM5LtVhUuJvaLWj6KsQopI+WqOLcUZuXZnmncM/FSZnbuz8SRPZWSuotmZbRk/SZdaGVp8GW5m9+VgHpFX+od3gP+JeXLSEqOxhB89jQauuO6RumfADPfmpUJDKelhaUdUfGXqvmJXWKZDsfGVU8DlKFJPdnq3ZIp02FDRVTHfB9R+ep9nMaxxgtLlIyAN/m1K6+Bh3JwGoUSu30AoxIwnCKWSDEE8jKdlbnB9VaR7ZjeNcU2VwQr2ol/UvaaIezWAAf71q7Lv5mXM3fp8uNbct0V3SJCuVOVjHVYA8zQNXTaGoTxQMQCaPZL+3Wh8qpHGRVS2z5MX0z73mD61xu2Y91KiMzGsgTfrLhVqu7lD64yNBkqFUsrtv8hny2bYMdCa5vUtbDMjnI9bu0mWmp45Wo9yCwg6gXpRrtAB8dsua82iPydJGXNTmCBiqIx5U2ea3yTjPYYiVDLSNk9wvkR1ACbe+DaYfFrcH6YeXSYzyHvFYJuVln4eZouCFzvhdOIC+HFh7QsuW/FQHDwqg9dJI7FqJUqEKje47FgSO2HdBBTzfdspIpmuKQHVwDyWIrO3anO/VwaWoSTUssOPGXuzVxt9JhIEAhA5V2/Nz5c1YzgMIz/VC45fHGmpFgCYZQrLNeYCKcenon3A+y3B1DRM8GETQ5WN7EVxx53McEdcxPLxWQ/Cgo6FVEuXdGuZtgj/6ZY0E0+AbCBMNwlqkYAKLQARNkljZ8BfhsyyZqwgmFRguJSCtY82OXJihaBRJtYzF8w+jWD8finGibxwSs7eFoK86X+Q25YLPyv2G093/dMpsBUfZgOrV5wHiHSfzBg5WRCHM0ah/8vTfDWJvL8TPqKK42n53pSAb1bSaCjOnBCe52jj8dC9S/Gejm0qwMmTGska6otjMj0iRGgrVjMPYR0xPBtNLWAWN8I6oHchMav9C1t5+fg11AHOBwnDRQ7AGNGUWVuvSz+pUlXPaKXdmQ84x1aTrpbso3jtuv54UhtUy8jT14lYo9mcLByMq88EVXoWcVCu9j2d0m5V7qb1P7f3AlHeEEiL9IY+T5ZzBKd7uniD0AESxFlPSheQk8Czrzu4cC3moxjatcUnDS9NjVe9rr5AW2Rta0/VvlSFiFv7x5sFQNLGDhAAXJsoOMBbdSU5+1gAGQ8g3SSw3WQzbjSixIGV8HASR0aMedGGAWcGJZSDy47mLDuBjhBvXuZ4iWuzlJZxa+tQijN84MxcQQ5XPRJ8viM1HAH1jH1nk8Zkz+PE3Ln39EpC4+A9ePkglv2F8x2arYt5dlqIAaTHWBGceK5Kctuc6MUYR+j0OTGN9o+42oHhTtUxlSsfm3pU8Yl19rhr0G31kSZsNW8KpNTPpHgqPe8ZksTW+kjhg35mpYnv+Aq9PBOfCEz0RkCTHPnmG6P1Z8bpGRAyaSnod5I/QbKQhkAgtybLDB6JIzZYNfHjRnuj8cWHszjpmSok5OKl5thIr9Ak1Xnd0nUnHfkoTWj0Sg43eDNKmrCcdUPnGlTz6kvGPn70zMvP44xeHLmtFgYYqzIZaKks+/W1mx+j4dZT1Rp+wGRlsRHdo3v4XmCT+WNbM0o6xppDsYtiPefZQ4arJwB79Wy/HykeIlsMwuQFPJrtZ1hF2X/qZSeUTthN5TrVaoPkILrx1d9GtlMRFbmUyYets0fIfb7e17hPv9eU+1uzncKIIDcb8PoKuC4JY0ObDJIEPC/3PdWL8HfWeak5XCvwvyMaxZ0b7BieOO0bklE4mrrbeffEejh5E2yXTkQWEyQ0qlFU527c+SjzbSlnuKySinbOxnazgxgnsIKSXSkrTWjS44+4rrJEm1UWExUrtmFZPWQozeE3JfNmKwNBrPJRjrBY4Un0wocX9JR0T0nOGv0s9Znz8eQS+I/TQ7rEZigmwb5ulrz+XldHSK/u8GS6d63Er/4tSuZv+APWqpV5ICJ9VuZT0dF9oaGPnl9LAUVCwPje2YUxaMt6yJX50Hjd5RDKrJGxfhftgDCZgbEwS+Gw0uyjYI9685EEWH3m/yFvUjb4XW6x98Mc5btufPYjsNOekE+0qJVdfxUGcBF8oPfmX2dwa72DyNgOWhM+94m6q0h04zeQGsGFiAWqc1tbCK563DbaPJoqjLWI7FRosQCot6xDdRLXFli1xesCX7n8ZpglXg5BjdHPB/g8WFTzi5lH1XozxvgicrXK1SUt8cUcsRYXQZHErmVFVWVmuP5abtKRKhE5eyKy1Ul63gPHORMsPzxcgE38sJnSJVv1yfz7yIwGXQKazBe/V2rJt+VA0wIYytxfHpTlQbe560pXk4JOXrbSVUNQRQTDm+4I4oC5yghEi5rMM+ms0LfuSj5LJPYsxZEsSsP+ElnhSPylfAdwkq21uQXF80h3prenXmEeQeWqsSDF/sGpghRAMnvC1bhZf8YYj9gLtlwT2R2Y7CF44al0lSAEjgHfJfp+OleZzeCNtQlwul+bpAU1jzTPnQDkKf0Taa8OCuochQHhYfqM8y9CfHF8mQPC/ZFG5wzF+f1oAx01bdzI60PLyzd+suh2ZcldQewlbxK9LHZDbpJp0orIoEGLoVm9wbsJNN0mSq8kkWTf5qtpF3zDRlXVyDjiV5S1KGNhSB5iM2XU+l+pNY8Ldp3Z14LeGRYGWLIi/XKVHhGLZxDAXXoy1u3WA3A34ea+bSex5HwSol7SiyusZZlHB/H6o26ubfEbcH3eX/WkROTZKTFL1xZeBWipbXp7yoizpIGniYtlMXsL042V5faJtuJlY6/hFm3+DlhSZ+wg+yv6/8Sob55+UezGYAkeHHgzB8CCBtqy95pP0WqOuiGlFGz04B1YCtVyAGDE1I/qzQviCyWoe6KoSiXP5R6Fxm8OXc9V3CRrMhV4KY52V4CIqy0wcSao5TrpOOyFhpemsw/Jx7uVvzFnOCY0Xvsgvr0ZtIRKjy2bUnBSeInOoqMBd2HaO2+hV+46mgdKzuI/+jcljXFEvPur72S9T3GdKDSiv6xyzgic4oKb/nIYSPopg6fbsj3rpAXDnKLEzZPgV727pOuSqKw7tOsNeS/ghXJpJ4SzNp72QZKjCFYOGSxMN96FVdU2nEyVtp+3twEhd3ftY4QNuMxQYdlqXmEceqv+dvQnscizgIxkwy0fDK98O1jeRZC4ctIzsKpVUwLt3J8w/BasvuFISzgf/Wm0swgmMubKcR/Jh0Xt5/HVz4HIAqm5PD5DGIhQ76Y/KwZ+33ItsTBCsYgwR65ixk+F6G0s/OYxbpmpGOIoTC+9erdC2MycHUBVqnZ1p01XJ9Q20Bc2kgq3NenCt8X/byGaLCWHkY3EjZzuo1S51XaZAltJ2jjOO6Fz0h9ZrE+qQFl2tbcSL6e2MsE6Ja4/ODtUCkoo4tTh+P+6s3Sgc14YNPX9A/KiHLLsZWuzAXS+Y5q6AlNqbK8EEABg8F97Xg63GDHYzZOF4XRWGxik4IcUrOwv/sjaxXrFv7ico5HEBTOWZDg5JQC9p6LhNRcoF4ymtJjlIa1kNQCAAhCxZo+1OY3uWylwJySe051K7PfGOw+mLlOLQGHq5dMANsSC/zNHxYrEksO2PauduYiXObMKTEtjaa0UOFnCPOyHAmDNCJc7CzLlx+D5Mr8dlwbPioNoiGuooh++e/NVc5LVLT7ejXi5eKPWKvO6r7GlqV4kegeg2n556Z0bTgCCPez+Mqb7dRliPwmWoCUdQUFeW1fHCdEewklQZ5mR8wnmIXcWcSxH+JbAungmexbNwPSfvYcy0dn2dSAgQPdWTuQL5DCA3VCbHUgFn0AUDDosoa8ckqhdrlsC8Q4fYKCMhBgwMMHNLPy/onDk1z+QODDM3j8v2WcKa2uRI+F2vHG1NNuf0wKDPTMHjA89pZ5/aTlMKTMMMgEcUzbVBN5K0aHsd68EWXUxCnW7BrHlvDt3M3TFVXUP5MP9B6x3i/L/tVcnsABAZ5UjWatdb0oQYu5YsgVE2lr5f7K+VZAoyWBb91tQGRFZK62Qo/1Q8s+robLDF+0uqvL6Xs0Kb24c732NW/IMBUnlsXaMobGTjUAvkFY3l8zjO4bEOumjfwF0dghpu/KoPP0cPlUGIbnJM6nv3Q9H3rx3okiKtCUl2aCymme9OQdBlmtEjTEW+WLk8L+V9UnvYydQ/HSrtItANMJd3sbLtrF5LkKFQnRDvYZX0aSTvlf2W+Z3ndghatMvj4WStI7WJP0tFv0YiR35w7zlBIilouAokNz9Bpxc8jcBXSiFszv+NrByaQvExtgJKgr4lUZ1E6L/7SIZjakRKqL9TfZxvtUOHRI4LsuQF7qtr0VOjbq3k4/g5JnaxStfgKbd8cSrydx1zdzAkCMky6iglqQJyGnvDzM2o/lKG9zxeSZxVxtcG7RHJc6/d1WHpULdSxbiw1D3F6FKJ/rdALMxI/1mhgyWDbNX4JkUY/EdSq5SEMZwYdMrmI0YbW504zM1sEO3P/rtjRj43sq3zOrZZ5eDu+SnhGALU2CcGM5AXNyndAtWSAX41bRokbuSZbWxs6QRNBIlzjhVOPtVDvnwJu4im0l1M2VpUDhPMJDZv5m0QeXGLTw0dMGcmcvZAAxSSMXEwoxzYp9KmRH8jAUStMB9efsDHsetJZTTR7RQD8Pfq2U1976iIF23RwjudgfUu0NDWGd5/Kpt27SDJCAmdzz3Plw/BOz5Ng3CdR9MFFW9fC9Iz781mLXyHyVh2ESCCuFw+vfClELhUq+x/lnCLCj5sh/eltpoTPhEbQPEpAu9VdbttgTfZuK5LKmrbERgULbd3OVJmQuhz+gwtwsElvUvE/nGT5IUFcwmWJ4wRfDyAkmSHLCAXf2s4e3KnfK8tJKWGDY5K1rJCfv9xUXPOA6iRjzD6iPf17S5MxAg+flhx1uSCLrss7cmu3Ebxs64mpyeGcBa605kyUdi9074Vm+sABPrtGIhJicX3SLtpvDDrE3Ari89tkaD+e3tCQLEwY3rQbOx58tfEcPy8wo4CpwMOEElgs4FiyYVB87Fw1KkQZtD0bhqIrPz+HD0uNHsEeBFKz3MN6S1P7KYM+2JzXpIM9GvnYTeqxxhRNoiPjwzEHUygyqsYVteoFxSEsMkjjZEVaEKCV5ZsN2Cvpze4APw9CwW0WZZ/ThMs1qqG5po+76bf/cO6ZmQ9wcxa+VUwCgPOC6sJfWtLdWyJb7I8EcbjbCUYVNWlJ5RClxAH3NRCbd9Ng9b1Trul/pJXK3YaTpuewW7NKBEKhKkcfX/7l30pdDNOgnpbXAYcQAFrNWHsxN+GgZ81A3O102WQG7Fa9FKleJnpT04MQGWU2UDrehKzK+J5bvlowyypiMCy/lEm2Mvc8k92yTB8iWirsHhDIDZJEqYKxFdp6VisA5bSSqOx8xGHMz5gadhvft6e95hR9oJF2TZFX+9qZbq8eBSbDrIkGj0uvbM6X5fBT2ABCRfEQrhqkf0yiUcdOLgLO4zpWVnxM7VFmTvxRZTgvSv6aAqeJdzn8K4m7uDcu4Gdg42dQDehPbknF/0f7ScE21M1EmRUi8xBM4ToU8WLizhZuUmoapDcR3I2GJgn3pcJ5HowEcE6CFht4oBPp/AUDsRHrpvY3USTPOmYtv/1F3wtFiw7G7vBZoBdvSlWEhzXrqEpC7TDvK2dKPu4rw/QPY2CwFqUeN3BBvUBYMc4mIa1tArixLbKLue+MukvoP3S5gauYX/U2NwCAiaJXUjYdFlSk3Ia25XtBSbZHavII9meCwH2nxlrUsRD6ofk6ikFBfO3Dbyi0cauYil9jvZK1d56XfooFinCgixhM1mP/Gii81qI8KpuAhdCzxVXI89drtA5qnS/aSkbg4qA1rM6F8AgNRIFZGb3EsadLdvxd6DOKneIlQUKvay2AV9pAMeLfdq3AofOplXAvU47W5+AFHqzMX1lyq9HqEer3XV1fEgKjJTPk/cQCF4r3RSZ/YH46+6c3pybv0LXEpXIQ0f+ZJL75XjEsFcmngyAs+XE8BMMs7E8Q95PEG/lp6cOWNdA/JPCsFsi5ieY287mZ43IaA4RqJq7WasMgIKRW8Is3S6cp009kzrTJMaYmM2OSvVeJsrF/7BwSEISZenF5MKGwoB7gmAzv87xjR6DH7pIbt4OgpJf3CZCYuOSCsYpE5rTVkA/qiY4/JH57s4J1t7f2AhfR6zqRbQonv9ibxND70b2au37/b9D0sCh7OaxkVvzH07khK378lekm16uNjXMQ/rVC1+Y+5qWrw8jHL9k1uHP9A2GD8Zo/lzb7woi/ol6uM+KSZKl2FVcE6GYdOau84u2y2pvEUVoqRJ2IR3EGKnKMu73a956bbEifJRlUo+3GZqVjkrwtzwaSgmA80X6aV5SNkzLu6fpg5m28NdftDMP5IVsKqq8zkj9ytR6OZT3Ejkwj9qxYVfr0vfzR9a+ju35oYYBetUS45y442BaL57kEG4BzuNOHmfAjPhtXNawCrltQ2bhgqLuFdVXLu9ImKKh+9iEF+3UKXg5etdr0q7bcrjz9AqUF5Ucgg+/dL3NgdO0IgchFSVaj/0CPhbiiiO77Pi87h2i76sCssxktjF0tb2GL4wC1AleUmg9XVvyw/ojquZvkXK9TzSqt3+I1tlILGR1LQS9TDaOj8fO0dawe4U6lGd4Kbd/W8z4O5gX43ktWDz6kEdxo5dzeWm+xaa9A+Btub2v2j4xnMyuz4yUZ8atTmIR6j+76SRJpUTUmQGNVvKK9jvC9rEXwwgOi+mwTR8S79HmUUHw40zUwrxEgddRUWKeq/W+h5grFXUf/E2U4GLbcSb/wGHqnRZaQfhX0bE6tCg6uvBdCz09m6Y30f56vRShMmy/oOU4hB5LiSQaSFNCgHmOMXgaxvuHDYqtUYxFQFuvGvw0yTNDYkPy4hTyYQ0uTqgstreqqWz094vN24dfCYub8vNHFaQki+fTXDmvlnJdkH4mbrzU3K+N59PvLCdweImtXYZrToRfqgBQgiPlxdiEh0DxlX6raDzJOMqnoy2ZVBKmLpUKM+DIMp8TqiXuWDwleGRaKzt/FrUve8+Y6eebPHsccG9kaT3ZyC11Ywipuetdp5aIaetz/yY8yqY0GhL63f4XAK32ckaGv7Xv0NXJA824vfKYYojJHZNMA1p0uPNcQ0roS7qPLDPSq5atwmbEtzpwbM1pVC1vrNIIRt/mHiB/nUdq4yOy5acEJ4ToSiQ6O5zCXq19TK+rYaCRP0s9re+jVF03zTSxVg0ISRxEw7+JqanIoK54EkD90AFZbAtYPmQ6HpyfyNB7xXhNJ9aH8tUMJdt9aceL3RgwTFj2L4u/4Ej/uYm+7FzYQhEHQdF002Rqq1UpD00hwjqCPkSv4Xa3ZoBoqJGCEcF8U+WsqneKeNrTS1Kh9Awu1P79u1uinCAG4+n9hObwAsv5s27Sx1wPvrAj+9H2S+weaItzL9WQz/lMBBJHHOBOISGSecRybCtgS0NQthiKkml4ek6HYLHejLaVeBwBd9FEdM8c20Fri49eEb7VB+dJSWnPRYLa/eG2l3jpa8Rt7n4t+GSrhUq7aa7dJZeBKW3jYxEg0NQMw1q1VBq3/lXra67upj4WaCS0GpszEm7P/ROyY4Yr2UCLT0T8VNhWTFbf4lQYhkIaYC+N5yS50svYp4LXu+GMWHr8Qs3wiELIZfJz52RJ/hTra0wM7Bwt2pZBv5KLUo/2MfKQUS/iTtI75DX2OhszIp13+QW0vi0q/TbR0reBM2t1BAhq9CanaUiZezDPWMTnf3SMDf98kLkVaKoXsxW85/BzoWDipT0zPP3ghD/D2CAJOA/4MfibGCuxlqNlAz8+qk/nXtXd3/0A1cZn6j+d7rxUbQXHp1NqzQ9411wIh71+meVjYXLDpPtRCVVOv6woDa9zFiz7aud39zRk+RLs1NMsJfL0Hnzkn1CEkLxcfqddD1AqVCTYVxGgZAwUwHTj9pWKuILvPC3glaPuUPwHg9kIiMyhSztVFgxr7Tjw1KF3zgwESBqCdcW1SKv5wnkuw8JfVRTxQFXHLqhBxwjN18lFTNBTF9s1hVRmFxNoTcQBjggctb69XUZsBqYVgRAKvLNCKdRYYVNb5nMA7/zjnT5UYP9/KVDaClcbHynJGVTzX+HGBjqZhQxslVLKHYkUQz4QC7W1jH7zwSiEP8N8stnhFDGc1GqwRVPGYLi/EhUmUS2ClfJeYUav7Slm4GydYo0FMflHa+sq3xn0ZGPUG7nBhpLUUSc8D+/MwFJP+yQjNbtINPN7ADq9IbOqnyW3ajWXzA6acWasAJ6lWI7RY3dVtwe5/fe8KIDFEWK0uW5VVMGyN4tFIdI7e6oROUu1+i7mq0gM7Aeqh6Vy9aT5olebGLYrvdu7qapC44jcq56JPi4LmRkzhGlDpod472DsgyaODKN4ltnAXkjwg+5OLFGb/BddFstvh0o+G0HXV4k7pYddXdugKnYPbNMoxprSnRIvmulVT+nhvkcdP+e7uqJo2ttQSNosWljWPXpqVr/Twm5Swz7pPw6bMKNCg81zgnVwwPAgfaySsHzSkGLVcxwtNAWphpAjbVN8lBkSiQdkRxMXU9qvEdWA5EFUp8UuOgO4BQeVqBBZVSfT8MBnK3cIGWaLbR5n+Haur1hZvqk3IQzUcluD9cJ+sjHt98R0d6M7usybcZjE5IpYKkTuZ/zOqYHBQzbhFW0dE3WcdP2x1BSyd/JHFiuenIC24WHBlVOJmbFgZugWUsGl42zwBRRYdc5jJ0xzEhBn+b+4bkQ3Qlyo1ad2XPMU/UqPJcLROjTRl6G2yFo8CM3RZwcJ96UWmRDJRAC6GKFNXMDabBegsOla/ZkyQvV7Ss94QIYJ36AeJByqx7w/Ei1MZLHnAOrOKnM0UWwLzVX9ZrzvyimW2Iv808nepEPthoUQS4VAnWKy9oliYvABVg4aUJEDbh24OenN2pEPgDizrRzjh2puyk+BgCj8VroXS5ewUvV73X/l3HXp6VSTMOJUwA3S1rDfYqnpEZ0esx5wkMpv5i/ShyRHQA63Wj2pbl1ibiMRsO1X4/oNf4ECTy2yhK8+cErVjkA+4VWN5nsPGcx809R0JET6pl2GonLezvcwF+Jdkoj2u5U8rHWGVicVtR6qN5FLYaHlUxXr5wi4l+2wbCl94MYXPBnnnT2NI3/D9Ow+0R/tDjDr9IZ2Em5MPMt5rqNr6nT6yx1mZD8aSqDhX1YMClBYdp4DKiM7z4/mO5A5nTk0ksT/P3it7X8tCFBSs+MqdS6defwdGVFOe4YREC2h8CnriUPWSzcTzp5a/iGKX7sKu22e6zjakSxF7m8Ukds13XdJnOg8wqOm3q0H63VT8VJR/PzT42pHys/0S6S90bUj5+Y37UWySySM7yI/r4ioj131baJhRfWHG6+ZaBq79yGV+P7vPtHhXiNB8gAtcmnvk5Ddy2buDBATE96ZbwuiPNJYnaZ4B0apXANZo4ReiHN21g4kpx1UFZTkiju2wbrllLX9nNUt4chUvfzlAvIkdUyc+STRIS/WRKnc2nzwQjWbfclSoSnYpyo40Z0lcQR7yC/jlhxXZJdTafFtl0qOnxYNCffDo+5r6BNBbconQ+wdsjXPd153HCc85soeifMSXbsbrQR6EYKeXzp65GXmSHdvI3AuDL1ipy3QYUxy7cswm069O+1+a8Y2qlrw77SWWXSqzh39nuyqsGLA4lUnskWp0Rc3Go6xHSFHOte3W1pltINg59gHTggZKOebztWOdxnNl+qbICA7HO7a7mRH1NxwpuWBUhSclP7/C+Gc7jjPih10Lb9f44oYBN7+on1cRnNnCjcflxtDoIsoaK0l93cykwTBp7PYlSAdBXKdXfRQSmf7+gobYCJ3K5Bn5lwPM13zjgEYwAorXhRbsTARZCWuAzW2cAQcx6IWW2YoKE1XvzziyYAAoHz7C4/IAWbUxr8gZGPdOZ9sme8BteIxjff54SKm6otHDU2fFpx6BjOiccu/onuJ71v+LoaYNQ9k+OYWAW2NV7GTE/T2UUjK7h7+EMbNvKV435IwJ/VlOcg9Q2NyJSbqW0EHRm73B09WrYruGYoPM0Pw/fmgiRz8+3SIqHkFWiecb9Z/5jR1rpuSHFrru+mWdE5s70Gx6L428Cx+qCoV/ctMRTPJgsP+iz/8/KWLRPFCVkmmXPX1oVf2PwvzMecQBr4IvhKK+uttussD6OsvsBw/kHJGSrGv8fTJ2DeUndrmJ/urf4zfx+G2mtyXj3dWbndeltzVNdaUrobvDQADZvJdPsiPupo9/skY/3bSWoaLi49KAAzbtZaOTzIONklKfIjvoBC9PY6HF0xbf0DR6SOKnEpbqB6O9mwkEQj5/ARwwhQz6npwmCcyQvTmA5FSF3MRZ1QUU3v89RWaBUB1koqPUTk+M/+sYCJGItGhqLu9H0ku/ptwi5NwGfLCK3mtzQYvf1oGGS9NO07KIAjOdius3LDMVaUFm+ZS7RGWsWPB1XQnjRH7XLb7cr3RpoyR8XTHrlBiJHTV6M/33W6rtLehtDQ3xsKVVurmElqWOPj7isugefelNS4gzBaHVDkFQgQjCG28zFTrP0PpaR4Z013LDUljKufjQLl8In4DnTQO0/FEmKCdIou1/s79iyFFYLy5y43IhVvVsf4OzPzQxa50P+xZOOxVhlK023W0lVD7/LmHrVdnCUpAt/ofYxtzh3/tBaLdfjsbCwWqYX6KzOEEoTGvEbW7SL13Fym29hGtSLG9VwgGjGsTE1lVc9f14NnSpvM3hGhbPDyClFVhsuNjqpvKvthU8KBTzVfpusPqkGVzOZ1r+02b8irjPBOApB8BnGx//XrwbjYmEf1wF+1w6iX26yOXEgxEgjROsw6hRltKw5BKnFJck6j6uoFHxo9vPXvDcNlkt5rB/AtAq9HMm3c2FTiiG10QPwUHBExghhLWyHwSqhGGLP36wRyEXSgETPUU63ZMnQgotq3Kn3QAo5m1UatYro76p6Ubj+WK3pVPl0dVwtNr4tYlHzOTqC8Er1aFwrKEF7z5t0WQH83+Ow2EQZx4YsVZqrM61AgGiyMpW6Nqa46MdpWD9dTKdhGEv5XMTkO0ZQ3gRHJCBI+xGRFBZd1QYvLe4zIAx6Qt0UtSzsMfT2YSXmGaEapgwrAvF9QuCQ+bDWcf0r95ZVZh91V9hSjXV0Ks3rJF183//dmJqzu1TbriQbDwrO7vnbbaS/cFdkHp4tpF39v3n4BIlGgwysr4wnYS4PrEPNX+ddSTerYpaCcjtLw8VsNhwkZysnNSCgdFwENn7FdJbm6dUZbSPiNzUKhbDgXykeu8OK3bx5rcnuvGiU6sKIysqzLgSxuUCmdCGeE6Ls6uAu+No0hg3beMrfBN6eDlErNq7uaI7uwhf7CU4MkRRCRXvwWHbrFU2/E0MfL99QWHZWZe/Kdu4KTA40E9KQkKDO0JioavoEH3flvG2oWYZ4vaNNfr85q09FtXSOwp6/rfnNq8USvxdb0WP4Tk4IQ7Wt5m9qLmJqYX+GHsy2LBSskl2ITPaBgjKbCMe3Nj6jTwAiZxwt9HNMxVkb+a5w553td1cn255f9DU0VHKHLXrW6gnaQw5wey2fZOnh7BCC39ACHueHNY2HTREq9qEp0507jJa0w8ena8VH1Jzm438mNkOGR2xuvZFKGUFau57fdxxJxGlbLMRCYqS6xtWqawQQFdEbpx1XXTtyVTRzxjzkW4t4BVx7bKkV8bKAFh+8Rcp8RLOcg6USABaijDDRvcHRkueRsRWbhqS5uW6oHfLv9hDW1EInIQVDei6B5DLEnGjrXxw+Wys6nlUNoej3aW3nxBpWyQz2xE5e7sORVmvNb1yEGeRO0LIXPbGAdL5C1X1pJXKrBtTfLHhiLznwtfBVocDa4uW3q5a/zXXH4DjnLbpZUL1lz2rujWW5u0qOVDBiAedCnbW4+i6w0/yktssjmMyTleK3DHRLwnvKNrNLY7vj0uZaZILOGmZXmEursadcc7B9cZvq90ELVe4FGh+VSNktJY7C/oRIVHB0z7p02g6WT3C7OdVxvzLA3Sv95d9PNnSbmQptNu5Ju+TU1KIO0Jxo0LmLkl4SC/OcLdHyZqV1ljrdVdUtGfAW/QupPddSGwOwAR+so+/9mSh25+K5WpSbUH6i1PI2S3/GLqdFQMZNYBAjnjkCRZ+3ytZXiloQP7LWlSvol84DbfuQyNZQhZtqhuxlCPCVs6rPZ1KPI7KHvbnoPeOtd5uHQLyUnR+jW90e/r5VAZZWZwuw8az0Eq9RHtyH3+ZWeTvRXMVh9r6et/XaojYse+AaZqGWAx1XHD+Laj3xfUxH3rGVQXYrZeR2N0x0mf7RdBdWyGuGywhmANYyQ4wlws6PuEglFQXpdqSQC/Z9r5n5ipbFlUh6f+PBmHX1CQ8olBKuTJkcfyAA8xURkh49Cx1RJUy5OOriSooMu3++8bFaxDE/EN+28/iL4lkKbmTuNMQ4m52g1EWOintxjKEaGTNZuHQnu2CI+Ohwn0d+AR66CNbmnn7ZpVQRukR5ZgweBv9jl1yftZPi5tzA0iZ6p4QvX+q0MI3yt16OL+JGZ/GfglF+Om24oSrusc99SBXOQRMQTgYsv0yt3BRalADre7EglSr6jxz7dmzRfmh6qsY8n9F5wmVUj3fA/oq9O3Xv6O7MyU/7DO8+egZXYPORmsn+FfdKFehDom/1PeZqVk0Cx4D5Rq/KB0RZCJYgUlUEVybJoApD8oVmj3NKkcXHB9j51Qyu0aj+pJcmC+58Y3FB39U8pamE0HV45nz8jqUUoa+zBPvCfd+/Jk09xOKM8mcFmD/Cl+ledCR2b764duqd27sEoB0GKzkaJWWP4tCQEr0s2Z4hgBWX8GeyfkSYyqAv7ax5QmDS8E4fFW8WsxDiONusWe5gvb2f84yvmKwJIe55JoT1qElUVdOLp8NKAEKkWxqtXNjnDevQsp788KpHDcWrMIV+QsrkOb10CbhuMsjgWysvNWAwtWgfxuj6NRa9fTCtSHs10ym6g6TbEOPu86TkfuVnytGdZQg4/Lj1WR7GLNK+EUtE1mDHJqpxU+dRbuF6tINYtSyGZQoFhtAeSsjjbesvlzgfI8XuFQZMwXwjdT84lmBwSoIE3w+1HiNYMI5bOYI/VFMI5h4dZ5Rc5oO28WkFRmWAc6x1r80QSAfUGbdCYVsgx06s1LlgTaAVIkQxsVNzGMjx/EbUv6+YhF2esy5OCSi9PIBDWnEjJc8X4LccEPOacPDuQGzqmVEUKDcAO7jEPPj7QfcmyWq2KAMuhALZiWOU6bwyED7nZR4WpDZk4fAWYrv4JREyA4Rgy6/TQ+dfmQL4k8MGWvsomNwavo7HrLdmqR4M0hzOCaXdncVqiHHtDCNNkTrPbF5kCQsvOcrNR2X9haLotSX43rzOwKyFCgfue5QIeHn0vFN/3iUh3897xHEy1970Dsim1CKX8aDWJ05nPmLuH2DlxBYuHlMx3MPI595jmMNz2bdRz66zIBj9O3tQf0RQufNZ/7FHl5UOUUOT5t/kHL2LEauf6KF1B2kirHktsW+9/c7V7ZMnIl3h/cHoK4Yl30NTgAJtWv8R+3XQD8WSt011RgCpx1w/4+2QtO9rtS+X3/Qs0hyn/AALfS92B3rTQ9FbnMDqMYPTCWaDYCuVPz9mfhAmT2R/54LOYTpxZOpW2mu6y5MedApBGSe40sLZ6023KaCuKjAMmoUHWWOSe/sW6npA2GW7GBmImvMS3STkqisjtOsh0pi9t9jJGpICNMX/PSjiU3D5yzDXgSVZ1b1zaT+MVGMitFXD+Jq/lyH/hZuZRBL6EjozM7XZwrdmmV2hC8vUyJu8qMMGjHmLL5jFMUYecxoS2iPH8mRCjJOSTQ8VwLewyXWz8W8C+hep804HhVUBRFMEo1KT7zovPhpNv5OTUqDWM7A3xeyVnt5zbx+bQL7t/6nXeQ+fhyWc5uWi+frHa82lAvUUHBRgCaO0M+UWxn/9w48a5YMS66eawrLOqFj3lR0teyF1KInhGhqwK1QYnQlN9PtQO1wudQMjDvrlpjP0WOcVmb4cY3i7sycr2n6wS05SBqgl32bzwn7PFiXMeHyCB+R47DgUB/ASn9itTDHbKV7klnpzhoMN2QnyULOlXMyk3Io5dp4M0JddSFQObHxFGFbXivN/OVf1QH94eILUoalTrXD3OqjknarVtACbDA7ouJcQwkUS+QID3/Pn4yty8DpwY9+o6VUPHIpzsw+VpRk9eSOXsEFWztB3gSdUSSUWNlSupJCrgHr/Diuk/h6mCKr9s7zmvSS44ty4+i+2Clla07WhRK/V9s/HnT3zd97l5NGpJF8L/3tiinFHnArUYD8x9hrVefZogqm/KAsivlnyaYiRLEqAzWeoTSwwo7IMjM/2PdswtdeXCPntb+EGVFULGpZWpUQe53WooUGuHfDs/2Y+SFqaVTWLuqx9+JBWE1FNdCINJD9a5NKRf1lP+k2+cxFs18mcgOzaG3QzYO77/HcQsZhtJ/YK2W0jHUo4EB9gT5SW91OO94KtzvdZ1UI7vsX5BREJili5jnES0sUeFCEIp/kdT/oalC4OC3pZPGEVm3bDnil5xaRmwRdsott85RiQWmyW7874Ey399sx6Qlvt+TTK7XhY8gNHlRJAyttZTR9N9lpAO591kILedYkvWkYGhvESPdeLVaQ2yggLVSrnsX/anZNCpBAjM9WE5LgmzMCX6H+ZExF6/X8l96vILqWM5tT2ictIINn1ATn00CcPoMp5FNZBoGgbB4fFgCtQUvS1KmczrrnlqHSPHIIokqgPs8zjEvaBq5Q6Nwjs1cTNsdmiloaqktGRhlxjCbS8VZCYju3QZTRvREb/eo2v36lD/efJnPa+Cxn0OELvXw/EO55d9SMUyvIkwK1bM6iuZwlYbBCsKORvMqvGln+CcaHk/KLkeQnMRDhHOdFOte76A2Glfe0LAPVEgo361kZydpSz9QQd6jQ13GtZCk8B7EcazcpMRSZbdkiXKJhSAJM0dCobw7o9z949gXgA1L8oXQU4rM7QVy5W6xkaysmDPE/L6yPutZkWNPYZsdMybcqU3TApPhgvIdeIzpp3FJliNxxx5IaQAATtplavpvybeQ9dT+7ks9E3TeCrQs1hnIwQPzH+pEZs4jX7rzAskJgOTbcYKwh7C+5/tkgPX3B1Eu0xnJObIo6Cu5huWl+eF6ZmTM2rusx+EOT/Tcw54rn70h2wScf5hXDrEJa+FEhQp+Sda6CUWhfmDhJxzqtyIWmR510Y6ScmODDc/b+ib77VI035xReuVF1OReYmZ+ybs6Z5tz3uCDpEestl3LdaePdvdyfQkmlOU7WVvyMBipKfL8z9U6Phnv0AJYa64KDILKGAquZXYXEwkVEC2o2ZrRivMTYaSEKpo3ifhpmoXmYatN9rM/s8kJPvBYspv3+S3QJdx6jf7YFJSnc3+CHzvfH6Sh9pOKYjsMEuh7j6AYUJZHgAb+FXBMFbnFZKOlRwBFFv/7sQ24UmBDpco5fAi/6NlSWUVTCLxzNCflKtZ5aZ4TG1DysJx8baA7AdXgrd6fXfy2rM0vB7UFfTpS2PV94prf3QLbcoLms8v8GTAlRSjMs1ahXBW/doPrwWQhqLOtn41HnTbBkipwBj7Xqej5O8gcxVxU40gavPfeNOX7CDX5/f05Y/NhLguYH4CogPWaizcssjtJOKTCQPJBAY7oQteBWXqgpGhXj2WGCuUsID63A9pxHjEbOpIKSSst5/BbN2eOnpc/7jaHXrDJLmCK3MjgQm4Yq7h8j+RhmztKOTiZ4KGLzAqkA85v3ilaC3Y5Ob4YKTVAG2Qc7U/MdliK0i5nEXYRC+jVhfLIGJ0BopsqoSkVmzIjYD9swT89cEDe/uS25lUkPZXyKxbG3hbXn83v/E8y7/aOKUA3+5RmbeitLWpZcX1xqVM9jOPfu34ITpmL5YvD6Bzvb7Z3LSvZtwzGycgNWXa73z5HKe0KGofVlhUGuKhq8AnJRKLx26AGIOCyanJN0K7wzB0/CRTxjOBL9Gto/RDk6+3LoiYYdrkVHXv02lJNiKqcGlWhTaCJZN/GUZoTFfiXKPsMFbcIGGGN9N52PpRI1iAvJxEpVtBDL1oXMT5CB4bVk44ro9sEj41FCup5owu9DPbKMWtPrSAjeLIHjy7zhpgw20dSrs3PqKPcY6yQEfqn8vgqlmS6i4uz37TAhMxHIwyXH7gnGb/sfFZZJm+ASRbro7GaFhgGZW7Z7iPUgxOdF2WCTmNEJ9orge6lkbgBmeLh0+sd7vwcJ1wgQ4cEynZt1f8NF043pakiT2xkSPew/4w+iAoQYd6m6Zo+W0CXli0b9EnEhOfd21rikaSTAEMe+5VLmxa9pMRzB1jl+QDupwGhGlkbmQnk9NPZ7DkfA2tPtXyjAuO0Uxec/V8NZiBpMcoKQ8dac0/ra4v4p2H4n/dc62aqtpH5fCHoM+6Wg4ywJWU19SuRFgM8na3QotqX3nWgcp2J2vZq0b1KynX0rQOOizCaqwPnZbCBri5RT5zPJrGmfK6380AB7gDS69dM9nSWOtSafDtHuX3WG1p0vcQQQ1EkaANVSVIMAMDcu0Ujv8WLC6d9IOVrHN5RNFxFT7MvkYeGlQAzRkmB4LV8cJPOIYYqkiIXnQY0rd8CcQ6HJKAFPOIkI/xuNnmwPdHOIadlYlqDGVPRfqKsuNzISYVg4JbJMxRZbvMp6TnDRBbOaG0y1Rre0MFllaI11ZHLWFLFUyVYEioUCb+FlhOQIrBerg64/PKKm2ITF272S2Z67NBxTOIjf2EMvcu8CgvVxwFxTTjrnQTyw8ji28rJnjsTb3+xCQuS+cWXQEFlWybP7f6nD3kAr1KHA0hUQfs2Kr1x0IyzI8Q4lKQvsRwPoJVuWK5NRH1THSm1jkGhsmR0QIOmfdNwvG+B6VSOBOyaixIvj6S1ApnZ/ZrJA6dLEevx/oIOotjODwNQG2yBd2HUkjQjBY2Idw2fLz7M0tZM44QCEVXZTn2dqMA0VwPZtiwZbPPcAXewkHA7IkR5sDGkoq82rRYff6k21ELl/AHHei5CUQcRgeh5vAprybnIs+2KZK8df12iDkmzH1IHrHeo+6a5f/eLNcCZZKoHcg1W7GX0wJOKNoaWXMcz8m5Z7oWLxsmJWckNu0KpjjexAk1yO1mCyin5H4xYpdTxsmEqoesFpfeFPMQ8Z6cFl3DYKkJZIBIt//GkGIvI3SgxO04JAJ47v4JpLcm3gCBqhlmAt0JKx0lGEgpUYaoXLrAdKp7ynwWrLEy0RFLfwNMf4hsnsWnI4Ko707vWxwwJrPHh5PTCwOF7orPvDRTRHkpY+fiSPpSr3pxWkGN+PnCmOkUOdXzL8m878O2mx+1b4Lg67pdjhaFK07NlBMPTfzO5Lgm2geRZfm3a1EU1Ct+64hY9hnWRwUh2QAnwwooOBdCYb3ExufucSwaGN22gU822ETDwfcgqB7dUwdTYLBO0xx4mBTpGVttJvtyfI/4zTjlsQOUWscFQ5gwsM1nmVSRnB2gEKWoPmNfXs/+OIDoQq/GIMtj5cI+0dDpNrxnu0+je9DWWWZsvClzGfDQlKg9Clvkrn/+j/FdafMpKDhWJqfzci9GkiqEApwLARP4+ejdh2Gz5FfU8XrlZYL/aUDM8SOeTFwBZ2bcoJfY9J3D63PmWKHYMKFg+p4Jcm6wBawf3ve8CfqX+A2n6S/V71MS17BXK5jO69C22yDBa8AZo5GBjmViXlE7WIUXeVK3WXlwPrvqlSSgNn6LCGWyzTdyqIO1g8xObRFlbgoHRGOdWUrKBMz7cFJiruvHB13iELfYsy/Ifyf9GUfn4ouoG+W5pVOmEmTr+0bHYidQO5+nSmrrwJTMRkuC5Sz3UHvOJd5SMAUF7VghIZhiorJKjG5+7wWEbHF4KTpxVA1/L7PfOAhRE2nUy/zj7tmeV3E6Z8Xju8CXQ45hI+s9xPWjsuKSEsyDlK6HlcFLMR7tXHJM+Kh4EZTR+K/FUeA65Bg5G2nvqnpTwATaCAwG++Z0KsvSYliNcHYy6S/hWgHtsA/gZfCd4sDNaUCcU/7ez2LYhNOrBcoNyf1In77yy7yTebaUE2WnkGjHHBvLn4En7lWywH0M/ZiaRyJsbPQ2hSakRe7k2VYQT8gUW5HPSzwACiNFIo84PCemZ/5IcDUSmzyi5dDzCtmjjMaCZSE8ASAsE/VhBIic1x67PvQOGB++3+0Uu8ZA3m63BxfI5k+PHEx9Dm+ZB0OT2CrxEuI2Mz0Rj9MAX09JXEnUHqHc0Y2z19koz5/pG7ze+/jPF/8VivpKplxAEEZHM4oIdfHdOcZsK87EBJH15f1HNMp7HaP9gOJpBUYYyDh0VWOlHPnyPfetlmVocKS16rwlfvmGyLz1fyKEh3rSQhi24ncjHAb0eeB/rvJGDmtBrFvydwPVJjhUDWO1PHdFYaOKIvqqhNrCogYzKIbolttn8Vm/acUSk/5OeqKk1F2/vo/YKFEnHuA8jSyfPpHZQtEdGBCoU2GewSYqyRODmFuvLlBfM9m6jvk509n7Z8/r0wvh0lhUigXYKhcpL+5tHT7CLOmws+pN1nKnHA/zY5hKDCXZ9I6ZZCib6igv/aq8tmyJ/RTtpJdr89Hsa0xvZhk062FoWMZzy3b34+U/j2sVS50oYWeYFomPaSMUGVKuHSgJunymnKqB3F2kvKUJOFhNGi0myh48LkB1fgr9vNjPcYE7oZonOnsynMgq7xxHs7i0F+DRtpcGiN8pF4P4VUvIVbDJGdahORifCG6z/VfN8/1EfjskeUEFKrbZU8i38t/bVfMgfAssdXULtfrtXPH0SJ+1B9hlyEmP2iPLmEzPmr8/Hy43UMfyEVAMcOqOq+Y1Aq0I3z2JRHljUEcvJBTZ76A0z7JoNyBXhzg1ZLkpnlwXrlJAcdEGQZPO+zZMy9Xjw0pXS6IKC4vT++aRXmWqg9PJBOEt1Lzzz20P63fb6rq4kXdYRfQ4X++JQPBUjtV9xrUE7BlMFyoky23fjfUOEzJPwQKJ23Pj7ysL+afqJQ1qWg1y19ndn2anDLNpkgYH/vLdUMeUv9A5g/+NNVhYuksJxWWUilFH1fe68bs7fEbRjFLY/HmWIZTXWfX+cIYb8ltXm5duugvJtctGe+RDj3a/qTECzBwlL1Oi0+QXgab0jvt+IDnfyVS9SAILgDgTuR2C19IvLnSwf2cwnqep+i6p6GlhUmubsKsgy813+snOExEnJpP92NmNOtIhELt4kxM+0lw214WS3haRWWWeHhHTC7GI2wQbZicQwj5S8L4eodH6Lk/gs9VWToJ9WdCVp/o5NLA/1/zn8DOUzd+zhu+PoipFGX3+p+BKYLvcPc4BzZizPtL5+I+pcMyOTM/EIxm5kinHDZ5kI67WkKmYUgMZeD6nGlghBGy7lG+bi8s5UI+RLayrSs/2sfS1v+aaKkfM4bmsyfMKr/13PeVBJCkqw3GWRB97WnDuRRvOZe+/+DK8+MwE/SoOt9cl/Kkq4xyoVIwoiU4qJLUmPEg7xB0lNrzFpjsxuZdl85N9B4JVUN4sF9llBWxjCL3Mwf7d4+WiP1udB4l2RR/lit6wLDbV35OKYtnlKmsLZyEecbK47cKrCiSxyxhERDeeploLZqlJ0jr0x1cJhsqw+iH+ffYsJOlhpARR4+3veFGqoyUjXArkMDiwgcLG8/9VxSfEMV2Smt3KHL7Om0hoAdZx+0tO6QsMFe+A1+8QFNbchgUY3xzr7exXzvXlKD9UmZUP4sGKxuJDTFKGpWxC0DBCVlTRlgSpRJcbQQsIwF8Ke5qCcp0ZxZ1Hm/tCucztXd6P/sggkGXyW1AAwRg3nrO0Y6hAtTcThXMva3t+L9t38MQ2WDGwg8k9AO9nJ/QihzDb0SrtNCQhUd7aCYnrgGTgKK3zzVy/mKuKTlhgiWHnCLZ7lJC8C8kgztXkDZyo6iX7sOm8hi7qhYT1vO84uA4FXVQTK/xrkWQGNUjkT7ULpqj7Dp++vYvq/tLQoE5SYioFQ7cgV1L1UeEJ185losvAChnVW6CYFKoj10Fvb2vZqMC5F6w2uWfrsnRTpqRffo/nBng1Tj/UYw4ifwTZ0Zm1nQWzVlhL2zCkly71pi7n78WaWqaj9J/XIVz7vDq6l/t4pbcusJCxUdndDmbMMB52yI+ecyG+L+YHQxym8eGGbhs5kq1PAQg7sQ6KAXizbcf7IS8LiYN4Rprc0Xl9NzF3cisi36DAydQe7F2RiJU++NQV6C81cckmiefk9fl53/EP38ADneL/kTszsl8YAiOw4a+VeMzedrlFy/eDVf+XFqtTebfF8Ip4HdXsE9vbo7+rKueQrIrVajdPKS2NsTLbiGWCRA16dwp5wj7t/MBYIvVJfHmIw0GrFWxTGOk3pP6qFO47WMCC7XGduHYB+cPLlosoCusZbE6DhZ2hhw9M6JCbQvqjBt0QVfjL0iBgDgJjvHjI2WbsDn8/MTFOE9hYz+/Be5CkiPwuuJMWjYLmHmtkTqxcEuJrRarDLLBvemx9EZy3Juj0NN3NVzKU9SX1wCNMqspKoahtnLn2yY+GTnnk4PY7xADxk+PeZ6wzfSJRcKVeovgiTkUwwFQeD+9UWlLRssXm8NX3asOtDHhxnfU8gKN4Sm/MZVwP+YZZ9wRa6wJRfvMstY7aMeWIaUtxfcDGCtn40nurtcLufWlyVZw0a3KIGtVTqbwxS75XAicYydsT0qLgXpqi2UJyzfelzUB52pH6Kxtr4UPwLkqtANq46ZB5yeXQrZ5UFlFROtDwm61T+5ugZUYeLp3/6aoFAGGP0mnnoBpBT1Q81oRUVXG7vpVqCs03EBMlDd3dI35oXWDGxZqnSl9h4dj8g1nLTCgpOVo+UEfqbuo//UPn/w6I3ahVSWosFI2Fmro6YY8UUpsPScWadi9G2cAZUyKiVLI1lRJNQbsm2K8L7cgTXw5rWaybU/j6GqvIPjmiKFwdNXgpAMUq9MpbdyUZVZxKv+DNA4uNtWueDhVNMDEgafP4Vo7EpEBTXLBb9gUPfbpjVs6PjWLTnieI7kI3hbU2p+dumCAp2cvzIz7sX0QzySz0ki7/3uPGkMRnaicJIng4mCwT6gSEJ7HynJErBGUUUQO4f1VfwjG8GuQikmG5UfgunTcf4najkY2dL60P87VzsMR27tljFGEUc62t9QYJ+Bx76fPG0PouFMkGQkD2GJCfRlWX87zIavCpWqqFbXybX1Veo28QE2PZ0TLH8UfKzFL9Tl61epJNYU43+AaWSpNyAXc2RxblrW8JzEcpy+xxxnLpmc67Su0L8LQqheiuUOxN8KkqNWBVjUWsWtNKTlMSnQziijXvPMKwafsF5V8pivAvzGPQvf/PDOcN1pMuYqb6b0IMt4Vk36UD0HOMdYexPDqScM0da3E3oEacvTH2IKt8kKHzHebkpTeCFRPvnCIptvm5Weq+g1Gd3CYGbKxEgRx3w6tgVV/SzbsVZUj98dLlj7aN3QxxWQO86QpkthpoxIlPU5vhtCKz3oRXHDEuWR61TTJ6WQ2SwB2Hxg4xINpyW7ris0cciDa33ScaCYcz6kIeGrN0sLFJeAJMO4WDVuTM5bvqqJRPh8Dgzzt6YeHRjK1KF6z9X5RZcaIztKgqRCQGfSaywNLf3axSD8OiMmNuDkxkitxSwvKoMjN5bvJD/+91WIM1BPsi5cw8zQkY71SDfhYIZnCICIXrToMR4ySxmFySnHqoOsexNZF8hx9+0MCzPAcwPrxtb6xFCewVdXAO4sfJr7UW7nJZnUuh9z4R+Tn60yPtzJB/mZ0UWVzNXf6s9RGl5x5kUHt5YpRJaPqeaJGmyX4imDzTtnxxUX6ClLyYsxMn2HRbnod8+NwCIGohdakXoctz7KmPgP6Ef7kEaT/kr5UbhZGE4bjV2YIgjp/ZL4oOh2KjH5fe01n8u5CImwSYxW/QcuQLkwsQzS9NGLLDZI13iQdkRB9kHC5IAge+q7sxz+k5uFXQmxW5iIaav/mfjYpOYYBCeFVf8/zgR7mJhwgEkco5dhg0tYvgt/JbpTh1BAzSubNS97PIbcfs7uaFw4PI5eBE+aEDg/0SEhHychAw/Uhh5mhTFZY3ir5UJw532p1Xf7/6BCGKq1h15DhVKaMQYkq4e8vnD+o8hfFrWJYtQyPHgqlu8LSB3fFGp7vb9vIHygDsgp2hF+R+b54PSg5Ff6p9pLFpgj3UTHdeBlJfYIHbFwnvZQPDZtz3zKB3mcdotNdmK+lRpQhqAfV5EKVOvnBtyMrZl6MYi1FgNR2kDnQ5cpUCnVcz01CbwR0RKx3HrpquW9YfFPk1/eKmZ28LKIIo3xzeTbJduxhWoXLw+IdigOCf3ZLKOduIdzXJYy97hzrbedJc+xmFbChTZs2t+ht1/Wb5ROxOLg3ONcq5XddLvI0DzgfOwCm3nEbIrG+V6AJLtNKN1Lz864suHxFnzvrGb/NuGP0FVTt+qgmLcghnNjXnJL5QJii9218vhEkN/+zEA6WFLG7FYBAHeP3y//ptOkX3aEy6FyUrl36pXN9uFy0GXLBAvP14CY89O44uPZgUVVbTPnVbMGiV6f9eV/PbwljFiNXSaNPjF4UErY8PvGWi/KXxhxJxSkW+YkxaCLqNlI5cnHeopj5iwpxAO6cCRcY7xvCSpKcz15XIkD7PAVdoussHTxoTCwQUIDS0jjkSAcMBgPZkk/Br6t2LuopExFSnjdWKRlpeK/8mTDPYhDSdyAKKRdcfiuj4i2P0ChqAFfskdYFnUx4M2tYtJv6ob7r2VRnYeJnUNjXsNTx1hGjKEiAGOvT/xZ6sy/lVAHA1heEzAxotAKGERPUwMCowaRlfFqo6b1cg43NibCMWkU1/KHidd62YJTiJTwRkSoKBe/YWlp1PWLqENvUT5pNIWvpAGEUZo0aBrs8iW9pdpIcUnBFUcWV6w1LMSOLNqlyv+/xoumkxzjWS+2CgYSnIHI/mxpdMUpbe7o7uPeyXMJW+vv/0acYgQTBTkdm0tKvlPKJJ8C/8H7DeppnCVrMByVQxTlJbUws9ucPA4rGH7P7E08JrmTKkTZ0mCpqEfOn5QN+NXkLuCtF6BQL4lR9I94EderlB19DZCaNVokfAUDIoeKaalHL15vioY7ZVb2lGidbRnP16sXamUKTYLKbGtVQACxzpmrwsO4Rok0XqgH6zyMP732sMoq6o64akSaV4t7upuf3MuT8kQUnI9SbTD8NfBxULKk8mz7vGvm96+MFANaGCTTiEqvuQluS/5pDzSyLo+ao3O3xd3pZ9/3vLwB7blBpCs2Z0PpWImE1Jx+kMceA0KzSY/W3G0BLGDUgtOhPoq7JFFDMkyqDJU43yLtzWwUR2GqNdP8ZOJhqSYfZZ4EmjuA4wJxl5pHECZd5ew3GZoZgWJYdg3qtM/AA5r9fqhct9z+7tg/FP5pv4vmLz3DvPOrlBo194GIxNOpiDTNWLPStk650It/l3aAkS5mt+NnjQ1tBuOf8oZq7VOKo7yUbbhLWHylHxOAtQpSK8WFHZ9kFOvhzXXj0rMHsQ55wVBuZtmdqZgiGkdPxWF3gEfXgM+f2PrJJNn8eeW4zA1UP3wSaWmeRHNxR0llTUMJ5LIseMI5wndxFDX5gqTjOB1ruUoo5Wsp4yDhssIDQdqdMNMJuIXkcj3HnQ66ZDrR1WTKhpwtnxwPtnF2xqPDbKEp08Bb1R/YB3sVEjqVredNUsyRK8HDSI2sJOZjFvSUZVFsrc5ePJ1jjdU7qzbWCWnBHkszha9prGAA1r49ybPyFh7SyLE+m8dU+coDOqXFztn22NGESMR23m938WgoHvorvDwfDMm6SgtFOU3/icbfhg10+miFyTUfYzeUbF17JnttusPgVMcp42dSnMhlLw2TzxVKkt8CQTLi0ZkbMEDzPtpzkS5LLdfT7vCL3dem8GuPs6XI1viDbPAANk9R8UFLtbYUDBBhijUCL+v02/AgwVYHCKyzug2bjsgJjYZxklEwGYHKxO+NBF1YuOpHgg5FvY1XEefGaafMe2BvoCeaOWmNaqRJ9c/WNf/aIzxXnBtAkemh2kOMyucXG8eoy6PNUDtHpO2PS3gR8TDQiVZoWrf9+Kcpu1q0fpzWPEGd8LlUBx0u56bWxvGsN/emMAUGkdPo8vsIC/TGLRtTu5rZygY0orqvVMbGbLuoyUq5UOWrRmJWiluR6Q+Txpptjy2Chhc9e1Tpcc3dCxyv22ZJBQhijWX0KowTUOqM5ts9I8CVM9b/iiIJM6xj0SN9+/Ai3mF8F3h+dukoBxhTgDP0s+BNbfvb47OK2UGIX2NX2JG1DyJBbhTPqS/CObl1LuwYvXVOQwbUhGVgBUSSZTQZ8LVP5N3eLOfnGywVllOtLKm+kiLO2vFGSEF9/AFwJ+pBYtEn9T3f1fkqQu7lK7c12eGjqVhbfZZKAyS5ni3FSDDBFkE9KCZjV6EwD3tctAfBPmaeR3j6ybvKsgSKaLK0sZ0cxN7cnZk0AoGFkjM4RR5nJbS0frc52pmkj/FS/TBn5Le+F3pA8MVi18ZSpoLeQJlRHCtdM63U10mACZ+6CSLTEMkGxwbqe3bI1JJXBjI+7CkxSA3qtSxzitvph4x5KbTjREhgZxH5K4e4sfYrrUmVztj6Oox/Moo+F6aoLHDZXTrofKaWla/ywUMn/O88bqF9caDkzTV5g/TIf3hMGhaL3wy8eviKms9SLMgHX8SO/SPlo+6xML/PrELphHw+/GC39uJOW9VAwsICFUPCU4HU9jpn2n6ZfnDR08TdLQ31h824wPgz0/TZT0Cg22AllEmgkXogc9/ccskff9jmMfcWRpEpU08ERUUnfJGKlT/CVVAuKQk6bz47s9DfvqPGwBZDHiWaoWLXGknP3jQUUud0QFnYZwdXsjf8YAbEmva3Eu8rTgEaLe04h9bj98FnzdsbwymnCqxCDtpofKOXZIAv5zTFwjYI67Ql6MYX0DbwdsUGSJ3sd6YXlDgLPr6dmvQX8kIrDyxmDJ+85iSQ4uWSsY5sM+mfR1MuAjqrAUC61FOxct44SVQVQT4ZnkkCssr3fjPOwfRAgfI8qnvDlzzBFX2HoslfsqgEa7L9aB2/hMdZ6gv/Y9ipEtXCNAzFe1bAO/hGQ5q9LTOFoFuOFik5b3/8A8b70VsXMREHIVkTKMtPDnjPwwWeRTXHffa4Hip52iNn2mKuk/BoFNnx8cgyhLF7K0827i5cXBpW78c8QuySHUV5eJ3njv314PI3Dk/OfPeYJ1EHfdonaceGvnfz+CGVmdvzQl/obMpG+bR94wyrJeCv2gEc2BZdnduU9FlPqUSOHZG8kBRkOakAd3V++p+YjZk5Iw5lRFQEu/vlZtsg315NyjtTfcOKepC3xG+FjpfauHBKa1oLLFieQuOpporQVyP+BnxU2LFbHCk3nqMVAVoXT8bX3zeZVbM0tMRCW7dtw7NMNtvzFPoQQrQRt1uXVN65qqLlF2LYW2fPe1xqAtHBQXbbECePbdOC1QwkgoIJVx7wSvxwnMWd2Z9Xbxt9sVuYT0IHeww7xXRQNY8m1nzz4OKe82gHYStkve283HKZ/jo+GSOz7kr4LzoAnF3NAwpaHVdaEt0LIT2E+5PQonehQS/C261GUcjsWWwNb97Kv6p0GZOR0q8EeGiyd3ZzUUbt1erPdS2pDwMGa7JatPBkwVLaf5113IWgBhll7UQEnt8gpwQrcjykHfWZzDKrlrL0Lf/j4P2a5GoGP7wAiN9iwQ5DTU2tQ+l9GDQTEBlbSuWm1zmFk+gCXWVwIsNGJtCyOVFmYNJ/i0/ymnkn32PK1wVVPeSsHdmiZPuzRZpYCkp0Khc6kd5eqrdkFa9RQlVkxviRWb6MynCvd6dxVfW/jq7VWdrhvPY1J32OAnrXeHsZZTHgclHOfnI05bA/5yEPXou11AYk12abqQR86FpA2ZhhFjCVQ89fn6SrwvGk+Osk0GDnaQrZ4bgZ/A81YbIqEXS8Ur2wKbXqboreJwGOV3j4Llf6BN8NJFatcAAaGtq56uqLBrIXyChMp/vHKZrjexwifDLw6+6BVh2IhwdZwpptw3d2g0EePfVslnji/PrIy6A/EZ7Ps++1APFokHfxLwIY6PqauMPje2iO0FhGg9ZVOv9ZDfe09bEZ8l7dUz8NKVeupiRxvYvevfA+VxNyOtGVXWBjVueRNSdMW188+zxTl3T6WpNt0yfNeem9q6CHC4TV1PhtxS3D/LH6hovWAcdLon6bPYUQy4IkWXguCB0OG5236eiFPJmmJv9la7OaUyVq6PkLDFyIAlDAOQSe868+vvvaPDWo6TtbhcK8Fv4+r8+NOaypu7xaG5OwvSRb7pTvspovW9WDPJkR7307n2RWQILs2FtVJukNCm44cUAqQ8uhtYYcNtAlMEbucaHotxIpx31q7P1/GHx0d4SnCPH0Vc2wLRR8GdqLNg61uVRe/SaF/tY0NO3Um3FqP8M5GmDFd715chUXCBuX5tLBDEZbCSr6PoKskDvQUS7ofB0drQ6XgwdLRdol6mXyz9+UJsUaV8qxx3JKGm0yxyqSGSJ/nQ5cegWRijxz9eRTkixZj1lX4p54KpAY36kkQN9Gji3EjF/7l8MLSKq34CBEijNJQU/YkKutXKlaJUFA3S6T5Xuykedjp4oxG5NiQQpST/jIZ4y/2QMUBnfQFb2XhG9uPWlJQ9lQ5Ck6E56mM1U42ygcOwnSDJvwHlWw/2a9rhfyyVZxdgsrcgOvt3d6fnJBg11PQzrUolM7a6JvGTgCzRyImm+8dEwngA/pUNwu0UJfAOUg1q+SdRuG97smqbn4xbnNmx5xccb7qBD1etHjb3ojRWvsM7kdC9KGiQTHGxUxD/n0NKAm1omy6TpIqp7GzitqUYjXhTG8TavzMUu+/oSSTZ+UM3Bv3MkiGlRELH2pnmYPB+0/+zDGjl9mk69A0QuO5MRszT2GldXZbCNTukRhM+egRvRYpV6earHw60gZZvLsXwN8uI1WY4Pf+JvmOjFx8t+C8IX0PWiRD4CWDx0OTHqjUPPmWw7dK2H9tTyTCXCEOlL3lC+3rJG2ycu6e4uUqg+cdM9V+9Yd1XhEa+7mxk/6gs7HdCdMDO3GNwjahsyEEUCXhoUETmiEU6JjQyA9cBVviM1eGl9pAj7M43EmBrLNEx/6jqNvAO1WzI+4aFhHjMStswYpxNi9zFcuxIP7SiLM8MRoNbtSVuemLifT0ndbKEzgFJw9CuIv6alLFBqeBGTMXY/to57kYPJIbARaDILAooRxecfrwWvgV9ab7KGhhMwiF5McY51WMkg3p11HLwaQsSpGAQH+RoPSyjBJl7E1iFlpH6EQvFHv4VPq32t58rWrMVAEX3HOcnwbMbADqazQjPbshG0t6MpfEKynXJvrgxucsMvEvAI5Hxg0Oa/nHccqtH4rkT8h7+Ommqxdpx+fSzwg/ZGY5pSS2pb8aLtDfD0kh2K7bGot9DOXFdldcVD0aVBKa3EXBnLNi3DN60aRT/XuODnOFgjEM8Xh6a3Vjh+UaYvhJhwGQHcaiE0X6Jc4uD7HLQh4HBDGCVG6ZYEjG7d53nSJYl4USFavwonIHEaIP9hPrcR3Z/hSrsPkEg5k/+CWIt5NaWOkLfHi/lRTOX/Lw+dIblfbfsoOS6Hc/32WovCSKhuy+9ee18kx5+i00QdU8sg5WsTScUEzjB17km2UmlHl5PFlMWy5/Pf+N5LWJr4JZJqKJP9/33OupJFlkjrg4V5Dxoa2yCRPFdwDtiH/WYb4HIh2IwKXAuWMfdfee8WOeHG95dQwU8K+MZnYLDfNiswLjjwFDgIpOsEpXgCRzUMKx2RrXkfp7tEQKxOTLJhdOF6P32T8sKYyZ+N22ulA0EdppA2dKkYMCjOptf2tmRVD/XDM/dCmGmcTBG8MRZEY4LE8PNAyIDHjFZsFmjrHhbzsMzLQ8mj9JmGd+JzwjjRvDekrlW99TTx9m6Oww+MUiD363OT3kE2B+3teDqh6j0gWqvlqIFIE9sCNlb+0P9gwCMSHESaIMkuLtgsZoriW+9c4pq32u2Cs02KAIcRr8aM+6pO3d1ikcr/31G4TXvJiJbK07nTMtzKehtf8F2uhwwOuAIM6mJjiT9CLX3vgD1KpONTCE4BVdLZHEwhd2L1dOij7c0oAEjbehWXYq5847qQRaAeDUS67V2CidrdixRwaU5c/p38nNc6F6xEuJCZPHOgjc8iYqcip9HJEtU93F8k4AHVK9Svm7Ex8AE73eDse/Ei7yKqxW6jhXKPhWFNNy2mlbueKWReEbTLwt4Wt5jF1mda6I36DIdd+3TEWYO/gbRjKTHARZmdVPnPXQ2WG2gfJXjHdsdBmi4fckIluPsF455I+OpUZwLA5VH1l5GJsr4J6KLPNegUEh20ur8bWbDEzJCsq53foXHwJ51vcTLIZueqKaaRvDZewLSO22ydDW6L2bt2A5QP3zHFLQZozZ6plkuqCXIFjqV9wCVwAOZpX0PRYklEJjsm6zQa9P9m8OIOuVXDyHJGTUcrMgWr9VrO+njWk1H41ZEK0xVq8sxk2yvZJMDC5mON6DXSLrdDVJ9dclCUiOTkVIgYciVGhUfW0UfOBhXwVQrWiIVzepPsq/t42PQ6/ktk3aOnEC062wR88XPvnXSiIECNebgN3mf0WReQXfybVT3E8cHYo7YBmVQB3aavbuvwWy7i3Y3+RU1ZKCFhsnR3+5hjiye7Tem0HTwGzMo+4bUWrngKdBn9Ybz6lp5XwcMP5IYBzakNXZkh6ZivMoZmqvc1hiinpfi+jS5RumjmbXK9Cp0NhBNL08AOBpZ8Zgz2FRvmmuLJg3NYOkixvAbc6arLOUpSjw6gQbr8Rm0mNLc6cDPCLVrSjG/2xegwwpI2AGVUHD4EyUazXr1pirTQihmcZiphzlhXQj7YcYfDjLYy+cV4g1quFCYB5Dt8umeF+7AaAHVYFS8LVKbZs8y/idpl4xMrXnR9q3T1gU/Zll2fJbErPPrnHSNTjfQUvLdcALnPOUc4J0tafN7uWNZH2VAsNfoL6KICERcaLWC/HjfXRTGM9CjeLUCfwuMmqeWag3kKD90LnA2/Ki7UuN/mjBVVGHddPCI146Vnyyysw8rnKssYhWYg+Fel8LQ3EnDyJrRGzBtRex5iG3o82uSYG+Xmfv5I8LKA1W5TnI9UHr3teZwFdGyKWdX+SEunv/pnq28tdlwLmh6OdDK2iYh3FBvuPW2RUfH4lw61y0FSzPLOs+S/0gXEgwTfpK4JTMmd8M/2p3sbi1dXdn3pP0MRQCN0a9C7zzzqBGjDok9NFPS0uoi+FZIxb3pZJ7GXWjWiZwMzX0QFB2iX6kL7T51zK/2fWQa8PzZLbMmlZxYPpEFF9ZSV2DsYGxjVTy6gNsAH99as/N3sdBBGDvcZ6R7jSmkT/5RhlST6FCuUGVGU5bSfblNp0ToAceHBCYZ/WtgbXmX6leM8mZDrUcgVWq4Ng1VYzA42OdfFy3ZDJWwEdrU3xpI9pAPDIOMKTTS49BxNWwLKUVu0EMLpkf3HPhGAz5mu32Xnx7Pxx9lfCodJ+ABBGfGmeHZwyXw9zILBgCp4ZpGAN9o6HM3lt1dXEuaRPKh/B98eNcZE9+rI52hlLTpUCVyYEuvVKsfFjg5Udv2ecvD4jSYpwjWdKnTnGVOuL+RDmszBArogCyz4wnXCnhMbpymzH9EvqttV1mDTrahy8XeeGRfYbYvO5Ebn91ZUP+9+VVFwvrdM8mmzM4sFOQQH6m/sNn/PGXt/st+niTrLJeaXLZ4Evpwf3KKUHAJg0361eo/ceYC8TXYYcQVwprcin+U8pq8QrDV3ZIfW4onEAXbKpvS1hEboF6zl8Fu27QMupJifOFNjZfnXJqnxw1phwQHiH0yl7t1iVNpUkUEUmcoMjRvQ5StFelFfGBKcNyYw5Vn+HSeZ3oJ+K6i+d25z2AKsNFAyaLEXKrdZqenS5HVKWzGMBDqfzbKGaOB6prmrjBt4oSOlDSTwIIDucYpcIHkRh8OLM42BSWK6NkpJmMJkhuDHQbP2MdRDXVbw11aO/nHN2VDDaoQY5WLhMYbTbj6irkmb4TjO2akprDzI0koXeZwv9GyOgLYnedlMX+4hWbfLPD/vmAT+a3tCev+sEaJwZkAdz7yScwRF/o3mo+eUZu6WSpsKkJMvklnJKTZF1/+jhtq3LP+xkSCX78eUxqDolpSS0H1hmsRjuAz2mPFY+Mn8jwjjy/eCZZ8kpM6b2LBiJnj2wVKSC1F9NsKJl5euDR853aMj4y8w0fMTIA9AQq5BxpcmQxSJP6VRGcZtzmpmWASNA4lvQWTgp9k0l53ZYHoNRhcwUB4vEWHFIub/Gwjyx/ua0iYL+o9MEkNyTqoV7UapbZmBaV+k/x/xpj15HXjiA8aZ8ieJ7XU+lzNTWKvMviuUSPm2Wtr/gUX+LILxLkwgNnAWnrQODUJ6zqqfofrLtaIv/MksaqSE88kxtlEfyNm4jm7K0xfOmZmnW2jeZ1DMkQmec2bflSSW739Sqcam22ac3mInyy9K/P1JRWDjxLqhqvNXdPa8A/GaZSF7qtbJR7M2TldiRJmGH5239EEXOj7jjO+a4Zb6EQSABWz7EDJLZu9B9O8jOqdJlu6+Mfxmj8xHJ+gUiBszEI08gTn7wZaJJmnpLC9Y9q8J3YsqellpHyhqB70po84n3AoTU82bN73LHxNHAnsRgdQ3zgCXUELw207VJJwD7ezybh6nXdqlijfZ9nYernIZHOiyTU22BC0PGyEyrGW+i4Cb54w6+4aFpdgQ56+JQ86R7pUhHAsBoxd99yEKsIKuHdEX/CFS/OBD6QUxsaW4VWSKMCaujwb6pYmapKkghsuA5lHIlS7LXWyZIyB85Picy+KiCdefjZPvcRyzXempc6RGvB0xQM9j65/KRacnQOGWTZdQ4F3Hzthl3HTb9PbQGD+1VE6bFHWQ2MDoL/s6LIy+3LS/pppSWwBR49+s8CMO1hcKvywWuNVEIECrdDB/x59HPyQ4FEj7MHjYiaOhGJIJpuXrS09cFlSJh7fiQpBAkCwOHf4/QHaEm59Fi/WU/HmbXa7sLW5+HTO3mnecs0zCgsx/vn9xaO2qmXIfIrSjzOi/cJS2A8kwTkBsuUnln8kbCoZG90B4iJXu/wQNL+i7duHv4tPW0lGoUntmzWvKEIkYpGYUHEVARYVi/GDSBLJUA0uzBfj3Uq8FWSTS8OLYuv0hsLqeV15L3quWfeGgjlZ8lRQm7ETr9TEUOWdvSn7A0/Qb3TqWqZFc5SmXj9yUope80TjDb4M4IDzpc8+T7LmXOQPI2Hx5M9+A/ZBG9NAzB9TExSHsjAt/tiCpES4zc1u2ULDoFvR5d9SUUdtf/f22mgLy+uIzZr3eBb1fKJ1cey2Rq1MU+v1gyRHdoXP3yAtQQP8l7o3dqh8kha73CO+gKw+KDaOBUglLIIqkXacpcudRbSRs2LExvulr62eLKWkeG2RVHvWBnk7J4wvAFqD8fVDJYjk7ZPEqCxZ6imygfoR+tQ6ZBnerJDfOa/6cuS8Erac+D0prL5ERfNeTt5kskNZFGxZT6Wv2s8XjRFEcSDhD3twH5MHzwycYus8316DgLRD9euGW5AJup32G35Ony+lZmqrJBml1rkJKiXAw0VevvzZO2iQUuJxX4brqJhxtnn5xJmP+I38lLkIokKjw9ICIKrqD9UHzZrdtOwmsDDtRwwmFfblj0kRh2CSTGA9UJCrpFDOgDyB9Ght3g4Hzv3QYu6syNX/eM43MlwdUy6UoWFgf4ZeQgSIIz8ZdpclbKjPkeunt7ZpMuAjgCd13ivb1lYZoY588aojQ3LQaPuXKR2tm9/sTH4Fz7ZEXLIxZuq5Iw2ACiNo9JD1XjZCWU7JjsneEvjsVaQi6RzdQ8Wo/qeI+u0LYlTtpuGFD3EKfYnh3Msc9Vtiq+MeDRB1hlIOFOJREnpgvReSJ0vEYkESCdAj1vtkJl/nhL/LBQG8Amypi4Pq3WXVgrdEGk3PvYy2x/n1rLCh/M+IN9xqxl0vatcn6fqZa7f0zdlkcVhe3iVvXRNBqpMLYfZlfzarWhrTausW8HCerMuR6casL124v/QHNANGkRZtpELoA3MJNyup4iMcrWoYaBF/hzl4MH3ChvTZPrjsrrX0PeWFNYyz7kg+pnvG5bkdaMG+alzdCxfIjWCPCx+tbXnO+RTdouYWKcHsVBNHQU2yKjA0YShNefoPfkoqvoKORRcCKlgXBbp3ejoBc8rHHYzS/zvVT6z7r8PQ3T7GPeKZdUTkPLg+RY0UPykjKMdpI0lmEgaPo6eX707wHvRElRcTdi+p1sJ5wmZGsHIXTDr3WOvbidX3IyPXJx3Liv+1+Q6vZpK9sadMXLt2Z5HvlhQfnWD8G80M3O6CZzWIjqJHt9sdRzNGG9pu2Lm2d5ti+Jg8P/P8U7u4zZBXhWInhnH+6zlaAUjNOMqClC9IO/cBnMATcddnPKO8XfsqolELs9MiZS16TFGh3v8sryLMOl2nZgLsayiIJ1SxCanb+wgUWqokGpTcR/A5By7xFY8EXOcCi2YzZDOenDVwPUUErw0neruiuWZUNgSSpPhtq/HBPRiwzx1bulURAq+89QnSIZr0/o1OE/nCNyZNujkHN13+4Ej+uz8uVftjIKGY3ukbeCVEwy34zvqM0H3XVOUH7C6x/fU8aTai5M4dQLGJdqEgNKsoIL+aRfmg+1G99ECvbwDhhmQeM3OYfku8uLd0N8Q00C6sGTCAB2gYBb9/SLC5VsIvd/gy9dBwduQEcUfYTrqDRblWI8qjpLd+jvAGM3rKxE5w1VIDUYvUlkM26prNwlIJuVRbnHWYHwAYmYsZieyMLh7ArkCwXMbLrkigogGsgZh7KnJ0NyEtEg7zqKG7t6+lYyyklNfM9FAlu3aZjWH5bK5qQWTwe/oWUMP6wp4ZQrGAvP7LUNsQlK2S2Ga9toVPnALanrYQsPz4wfNzJlPkX1lBYkr2qGvKWvQDxkwlFLR31s5+P0jw698Zt+sF7yeCjLSHxllp9wncOrWE2miq67s445YjQhJK27qRu2UjoBocsxOX1+8a9sMJbSZoLVT1POShgdXXDsLPRxL2yHH47QImg3t7oAh2tqSvOXX4TLo3HdfRFlY1uR6nQH3T70buUPrPZ1jo3xxxwlz2HtlgF2T+fgtH/BwHYnaJ2g382l06Z2zOrdCo8AR0Iiq/xc25DOeZZ1EJ6MQHR12WTvNq35Jgom1GZTuD67SSDOhM4kCflUhBky5b6uXJUrfsj4SIsBsF9Hn9PCwDz/vF5bD83PwnUh11Yj11oulQ9WxbNM1Mcv2KoSU8u2O11u/u7jiSecr6MlO6CZpeb0lXUw8HjorU7ls1TsPOjPTUYngI31Kn9odzNlMaW87nD3f0HHnTnZrVacX8Ks00rCJ7whE/woBggxlYTR5B1yjwsabxmlCY2k0BUvOmnchoYXSIg7T3mMAKSRnE/YCQ39kL/S29r5odmSjoaPNNYb5QjrajopzQ9sWl6b6VlU9d4/raAzt+nbKcEWme+TrB7ykm8TW7G/OKYLBajld1R8e77Bdczx10XoZ1IrzfgVSR7ilz0EmCRJd0qX26m19a26VGCylYp8sJwpm2rdrrP/zTmT6ALABsC9QcWO72r7uTRw8laOsxi/PgtOM38ryCn7ymlk8HG+nUEb4qGZBDA9b+zqpyZbOwiv9yUJ1f29kGJSy1fEbvVBCd87/dTtxucVKCBqa81itO+1OJgevbUMZOz8z9eA4lxATG+ZRHJaT0SOaXQuJhWWhf+bhp2NOe45dr6kZJoom55NighyL+7BkzF9uup1j7fdn8vZuABJS/kLSRaIhVcYrlys7fx0+wjAitAXF0rHDKlCFsw9YHf9E3kw2q6BvYNUIkMD3SeMQGEjIe0yh4k3RDleAKg43TFY0H+KoxiNFLG9ILEPe7Sp6XkxAlZiBBtycKGBb1k4QerujLjYeJl5TWxOX1Cu9i64WAGXdlcUZmJVrjqLqAlNgjLEyo5M35zoRsHqa3oAfAOTj4DemUA0q1bum0XJXdl9SO9euV/jmcgNsc4i7h2pfEK05bjnwnTRq6RsseF1h0WpuA3qcPcAq7rIp8rUKK2Xtmx6+kvVPh3udVzQVzL9itmwGFQo7lYC+rtI2jq9FP8Q4i/9rGTzX7F2ocIInBKyhtEye9VsnwiDhrtbDLloqsSdlBs9sZf78A5TF/prbO+3lCufhS5yBY6f090OKJxa//hbOnuAqHBA0BztsgS+FYf6dF2sSbpf1tXjiQETc5cSE7c4b7kiNfP6Fedvm+E5PM2kXszNKa0NU2PMWBytLkbFzysKpWvhqzT/pdIzDUuBfy3BLUJx7UmZsBjWGyOMfcO47HuX9meiq9PSvg8h9b2nkA4kv9DHKWI0BNEW4BNLbzFgxAFrWEfQBTgC4pk1zvuaMCVbdKT4/2qMcw9XFFp6BbzDxzfg/gGLd8KeMYSQMMU7NFu0cBgvEjzg5Zv67ndm2s2gRcSMJuPQo14JYGycpWyjGfAkbbTBwmqqPC4O2QMaALofT4w2E1mkvrpe1Vqa98MILT5NzwssBXnnH6B6mKrIVISlp1afvtcSKfzpQiP4XfdOX9v/zKRAvTX/j3/k9bZeKPP7nGSbmnQfv3/SibYhLlDp+gPT4dakFDWY0JeZVAxRHyNXocpRi78tD3yCSVkz+PBRgZIO5Te1wbWVHaKJ68iepUwkwwQMw+Ob/Pm9oN6BOaWoPPBH0DzQ3WDUbQAptuaRa8mgQtGkEm/Ta3R7B0i3tJxkF1FGnjIYy2X31+Qt/UhitE5QGbuWpU6a0GczrHr0R2F/BeSm+54QzRA3TuHpM2qINI7gl03uoaQyVYQfWMFc2mBmdtY9sQkGJlXb6YkX3hhLsfCs7no0/3G79/fB0MROSqRkp+/s29vYZsTWjbbnSzdxiv+/yHAMAFlLzPlNMlS0dQF/lr+wacDAZUbPJAiS220kOgkviS0Mgjo6to2UvHtsZDzzWyQAm2QWiwxmdyRhhDsjaarM3k5/sg+l6Lp/Avlj2P0dZcdHIAtLdJqpN2jJVVX9JNV5ZXzDHFuctTgXom1Rr6tvy7EAFIzBnokEvsvEXhHkXCodGqMLniWoiTpoZnKlR0TKJvpFsxVF26EyIDZQnsjziFj63oAQ4QGyC5rBxC/MrUOBL7ulHJCXmddC5Sq4wnHcl8zxhbuANFqBHKU3zvl94pYu2A+gLFYXvv8MppoA4wxPlBdWrYzbpZXBvsiXG+Qp3T6c6LHwdF9g36eqWcC7Mxusl6QDEXV74FzIVvSvwBbhNvz0tAKxAg0OO8/7+pDrprvAKbuazN5CQdhSJDUStbtq0rDBYuha2Ks1batTxCF3j3n6byw+mVBAE326ujUe/76WWGYYrYoYzJI7O7ZexcLjmKmDuu19VwntGICiQkIGGzFn88ynGF3lC5LpNBL69kjIYp4h1Z/hyYqFOeA1jSfWpZ5Bx2CPp3NcuKKwEZ4MzU6yYAdKByyZwLpUmm9XgD7ifgj5AWm7ajER+tPDHHTRpRGG+eXB8u+yGuEBy91szsuK10OJLJKivhhDNta8V22ZTbiPl1LMepPA+m7wmkifsbeYFV3aQpTGxVCsyugfp/qf046NqmORADIJEscPt6Jf6hE6GnStUqNmntj8UN0wf+ftNfpXv2R1Io1lS7PDVOPdrLYwMsKxnXT1A98qjz1eKCO3CW4qatO0VRMx2UJ6J0ZciS5GwTTcFv1/rbpWJPSkkOmC0rI1aFlOtxbj6P7alJa519EPl0C4+pwKhB4402xGYcDGEV5yaD8pzr0KDBHTAohkNA99m+ejHzymAPJijQjaNX4abPrKVjOGJ2TcKb+kIM/7QICfvz3RBhZdpfZ8bLi148cGZ5BQ1x6rsBzcgoXCFVvdXURhw+88eeAwVJku+JyliTI+Tj42q6pvrkj7WLzG9EerAT+qM11iG9AvRk1szPtn8j9r4NvTNuGX2OcOwEpE8TwDKJ3HpFwrfKD1yU8AO7tYnEEqfPwdd8lcafo7zrNqrGw8/3eNmSyidQDpG8g8g9BEbji7DSjMWUu3FwHboXKlCEXulelrke8L2FJ6rO59VC4TqVhYPivi2D26ViVk821X5HZFiFoEMGoDtqz44Br1USictnHDLrBiZ84kmgDhZKhX1cXvXQBJBql/OXIiOozORMPE0Co4sINBEVJHcLGOBIckZNYECGOY94qynX4/1IV5jjUZI5byaFyq47AfUuf6IjIuQoaH4HcmC4uSkuB3cvjmasv+5CqvjOIp5QzWlqdvUKpBhNSmUQ84mMQPtt6mUbFoLAkJ0pMvGAkr7WmYBKA/X+7mp4c3D6JShLOlNmEx6Ox/DN4HWshjwyy6GUmIv8mtTAWPWUjtkKvu8CEvCx7gxz/NHuYtc8MVIaOI5Xvq9NFGj4xhrOKFBW3cdfH+uoTUqJvun5V1qlqBhjAy2MGoFskNVNwtdqL1MSciOT9NNoVwamTZ+SEkHfcWmcG98st/HEsVHwNRyEvGHx/XT3fEqbY6cShMJq+Pl6PYlBWhv2Ced5+6X7SxrTCk64C6EWr8tluZrwLacb3jK6IS0tFL7QVUBywACtDNxwMqdSFSfH/3uBf2sFFfpRAQX74xIxsWdJIdNVn8RhJiMWNwi8XlLK3RgZnbLQg0ozWtkW+Fm0pfsXeGUKwt3UgH605LRHB6sC6cB8fyFna+X6gPTeV1NWYkxLKBEr2y/ES51WoJi45nJXmX+HpvCW4j49kBaw1CoIOY6b9GwwH/MNDldP3qtTgyJQI+BB7eEfVkTPwXifqU50IM9ozy1/QfFXUWe3MqAX6TBDawaaBtO5T9sngOn9gPKLfuXY9N9km86ILaT2eV6cPCLovXNsmHSXLBegxE81pVxEbNjNjYQZg1Dyvgq/sFmsgQ8CPKHfi7vJOjHloXE+Pgfud0MRMT4wPl59q0APlhW84Qbycq9FN0bgJLtZ6PiZ0bItWyxY9dRmXWH2wvIEH3HylHn8gBkn2AFUcc3/5uz8wYWY2nKKLTz9EGI5FlZd8KvDd2ZB+21seSlHarJ3kvGGwGhPdvFl3+KHPPqvgLtBRbi7dlKDAq04zZGd086gAq7spLv4/LptEF2V9mOPS2SfeH9z5/HHu3hGO+3KwHXauNc5H8C7h0ABN90V7xSCXXovDn30tEXTZf9TNfLX0BcNs33i7K45e69+e4KQbzGnedOyk1tBhHCpeat7CYrQDlI6Fm3qvk5CAzCwCz5ymw08X/64qWMAI+daPm5wY/ya1OtBDCQfGKPsEIHYFiXngkvpW0u06u7AFQr/YCS8ymBdMaln3zb7R1lY4szMGOEvAfh/RiouHG6MAd/5RG0XebWIcnHu5AcmkL1QhKXgO31152yN4OydcjbGAqTEcZXNwjMylELQZ5vNg4pOlZZk3aP9gLsd/OZnft7CMo7I8XVjUeSdih3x/OqMbciSfT2Fr3YrY9waz89c+IUIRIGqMpzNljzxTvBuOqZ7Nb3EPZH3icNvSwftjY9ZaYnT0w7WA4MDl7awbElw1nFATAteK4Nh7V18QDkPcgPl69IQ3Gl1IlJuTUWgEelz07lcfYU8rf9SjCk61kZ947UTgyH0hthjzNnj+WwI0VnCyxOS8SNonl1sSY3jDb0DiUh9AS9fL3VS0Bnay5Od/TFjAk+7tue4i98XNsuxZdDb2ZFlfWcVAym59oV4zzdXn10yTvVBSxKg7H83qEfPzXfSaawBCI0rhc+Ik3yhiJz48t8pmOcCRgXMpTJG0hoNds8roNgJpZJbuWmFriuqFl/d32vNVrIc9zJfmQhCL0TYASyLG/MOj4VyrBqD3l1LpF8jMbnib6DcLxe7a3zfUlPXdVBbnR056hyx6KZIbbr0mI48lIREro6Q9c8ORfMrKOx0z53QbZbZavKKmkL7B6/7oA9IZdmWMofFQE6KCcxp3y7Jwqq/0iCiNAzCbcA4d39cY1yzLXRrO+fO3ifq4VItm1MwHIF5MRmpd8Fv4kUG4a1NEOgWi3Z7/WQ9GFGto3H+XCSc/dw6eAKkDB6UYEG6VY62FYnZFKxjjFCLzvc8jFzuQv/ZYLanNAB0xuXtDV9OFFyUcJLtMJDpcRe+vXBc23voeIklo6fpEDcebSqDljDgcuxWDk+Pp7mgZXof7sMP8ZQbLkvC31zbz2XRVt0jr1t6lnU3AGxuVhAdvVl1ZkTTGlLJaRPl1a0Bzgr2CGITZpHf1oMDMzZNF0AxXflblCz/Q1tK6PAxbVYhz4CQw6gORUeJAYYoQzfIelRNuT4dD2T2aP/Y1z9VNXN/ybR7xgZT5eC3Hg/318vTi9NaInxS2Dym332wfiu8ghA9iTE4BwM+qgUJgzBfSwM7p2jArkadVfURhNHLsrnPaWWuLIUw81uYro4+X/KQQPryXxexafZpw3A4gCZKXXotp6Y/oN+VDY/YD5ZDQDHFJQkUmHSQJhqo8BT+Wo2PcUxzemZeXbehL8hO5U5AzENSsj6Iw8fohuwFTh+QKdU7qoTGdelArJ2IYlTlUeRGNTLhP8Vk5kJxltzjeDkKvUGMo1ve53K3dZYo+QEikU/ouymsMlTXZApjg0tm1qVVU7R/HOwirsFFpsUdgn5seVo2oJpBoVo2YTv90I/5mfbXtfcnHBmyXdh5Kk4qCHRT7Umz/dqPohp12NczYKinRN5XJfXREaLELnixXWpsm0qEcKeAig4J1L4VC9a0IyCviKpm91IOnc7e748xDmszwOmWdL4RqyAABVanYidHnorihQBU5GddLbvaMdQAw3syKWPENxmz0CHEcWz9RA6yKndRfYU3faoStLF3UZ98vEzBsH5AggYrZuD1jLvNBU3zc3qWe5Oh8SdO7e8v5IS36tJ+tk67ljz6cpUQU2x0iSs+tVmMQbNbukOCmusZ3xFdM2viP8Ko8KYDkMYVADTi8V+1/kdjaulpt+mpqUxG8Yl5qvZO00kVvlhjaJ8hVnSennWjHrq3UpPhf2iaUeBU3hw1UaFe7zm5SfCbjp4oY5sDduc31QP103gk+aBIXuigVYgPugbc/dtBV+GqA80WBRUAD49GGYZ8yhTqykQ7WDbrWjCHbHQrdIDZ2GpXpHJvdWXitka9f758hvotDrB3hbDlnwUone/27ULI1WNbLalA4gIhkdoXWzRgJl94pXq+Wjoqv+LeMOld3JMjw7PNh6FzxyzRnr+Zh8/w/oPbhRe3izfICBbKLqTizCkCI8MsPHd9GlJGzK5phhFdLxie57m+gOcFI85E0jauRMskiscK3qsM1FbJNDbVJqKUvjOitBCs5ZVJECNWbbw+zFOo8j1FxinIzuH4yTMoTFGhg/puGevzLkERzacz3d+koDcKVn9cM/q7M8o4+QUT3eOMDqOx0M9rGkB40Ms9uDL2qqwNMwLDSJEdnwQgDMLcwT+wH0D/azMylbXF59xBEBi28DUxd6zQKjOZB8b2uCpMlWAGJrMRUe1VO8hDOj2WMyKHcE+rR9gxNrzbztQ7QqqoVgmIfGA21HzU87EmgdCnM9Wl5jCOCZsc+Sr/XlPaJyl/y2tXVsFmipiTqFq/7xNrXrnUqq2FUZ6+TN8TkBJSwv89dN2g21sL6QTD2xQlxUYyMVJr4/fXUroc0tR3URBUJj1D7cnJe2Uv+piWBu0JReG0anbwpfNRwEvHs+JzoCqYcI9xc6sjLaNZYyIFt3GdFTbuu8mvgZ4iPB9SsiKoaHvT7F/FhBwegcbE1ogqT5v13espLRt309rmhCkx+BD/4c7Y+J9WZsJdHrwW/39OCAHIkGYXpe6e5RmL1NXM2hyGzmm9y1QSsOAUWbyREZUO/4Bt/uBbgvVVokffOznhrMicwyu6Fc2kPNC+KaGGEDxLMnLM3HM3WYnT9/IN8WszWI28f2xBCODU/XDWXonoirA8bG45pUxeCjK31jh+Skx59u4NND33tVHPBnNNeLgTwFA7yhOcO+AeCdvApX+D9xhtb1CVbGiTlT/5hKMIm9LwhPOM1NGjUoGV/B3xWXXzvOiuFshWG+fmocqJrUtA3TcnywIqRnr54OKDgfS5O/asfLEa6E9GCt0yshqR+C9L9NshTViffbIhav6Sa74bIPP7JQ7CRvvcVwt4Ggv0gicOH9SpPKvGuTmen8jMf21EUfciio2oAn42BI7vkQgDPTGISAWkhU7vLU3lBig+Jnf6p2u8kxCj/8qxIzxERsFNcel/BVd5NApOqp6eqx4vX/cFatj3dak6fJBEnIK0ZEfj2z9wGzgnZbG2bJJpIfLaazaY0nSRGFT9vTRafYWSk0zcppPdWr5zGGzyJx+S1aUgfqSHV+KUpYjNWv0zWxhtqW+J/ELq/Pe7wjhFeS3eOBD2wAU7NOf4dUXfQ/LjKhyN20zg4hg0MRD1hRfkG7Pl4lo1Uwksw+8U8kYfvtHIW5Yb4UndqAVpRIz2Eem+Zn1OFeX3H4r+6wVwO6lEWhFTw0hJeH+XC97cY4uAGKoQ0/adhpUYzbAgXTaD0KOll0iCx0wg51hocCVDAtpr9JgDvFlULjKHtxE6Hy7ct8jXuihDunnlcfUfeIhkHt7GWSYZVEDWYkhWNzgyUGClTPOlrmCoeFEpto4XcGyqG5u4moCjzTgEpScOu+vbI+zSlgngrnUFuqhU5FK8A1qLp6QocXoujMknU2JpC3NvGjzbuEs6HR2jApq49gLvHfHbpkas/k57dlP8R499KW0+QZnsSXZWBkmDgQl855TIld6Vc01CMNWoWO2DYIGbf4FIbYB413RqRd8+Dy1+zeDbr1Q4dfkn3lxWqV49jjtwqaw9nJbHuONUHDPfiAKHxLkOYF3oXjryho8ZMRYjLSMX81v3wx8DvikoU6+d3ZaZsSqY/IViMXobtX06Gi2by79NI1BTay/fx18tZe5DdQgG/G86R+AEwUIiUro64193z1Lxess2x6RvkKFwcvlt8EhNgnsoEjPVYa7zXq6u2USrsdPB+GUwp6RQvY8moNMSxLwYnVSdaYYjEERYj3MwBuiTawCM1Kf2eERcNiRxmMk9lopilc7JHmXU1xl6KJCeRa/BlaPAdgaJut2ch20raT9fcyccUxZVH+We9ycAcOT2/l8aqJs4XngHNlcg1kdj6Wv2DnCs/b6h82HHe/TZgAAh7xIlnoSEpwLN8krtqVaZ9+tgAl2DEetNwC2vz99DyQ9G3obgRe+XN91RdWhG1elwG1qy40zrihXFNoZ4UAWWRB0+cnyZnrcXjYTX9OSnxjoLNqCG2dXlnXTvkJC7I08Z9KPNTtz3dDVKAzZJ7AB8n2uMs/ufRj3Jf2suKLCbhIAPPYGX1h4qpkgDsenLWIxhNaqEmF5idmCwLKOuzWdhiWN45UNPhFKi3OdEuaxBZabvj4FzJf4s4XCSZfhNloAlvQa2MPVoeJDM7bPfZgNLPiplKhsG09aPnDfaEWmJ27O5VG6PZh1uDrxdSOfVI3Sd4/yBTPhxT+X/Z6rPHtSc7R/ENOByHrchFiutMd2s/GSqp7cVlxe5l6HNRsaOBzaiYzFYVBna4Y6tHCLCeCyVjPOF8IkFHl0ZB49WQtGd7KYlNXx21W6uD7OidnHcLIjTSoDZLYfwpA1+0GHl3TffkeXWPo5Hpz8DwawYYN7zTs+UykXE9nwBbazpUsP/ovFJItodKD/eOF6Q2+rpWJtH7OPncFyv5j5mU//+hYYtvNctypDYe4ChI7xcCUEW10776uhKOeATqKC4YpjZNxho/87BxloEy25CPCYMd9/0XkS/MwwAOKb511yUdNaXY/xiTR42WmKS7crtWDK3bM6fMBIHwJIMz2KxURKvv33jyEgD9LrzmQP84RK9vOeiAHBwYtM1BQYRb+AqdlOq4QxTYkCxIRcvHCUO1VBvKJj6COBBC3ghXR2AfzkT1LwptjSat2zbRoBpI5lo9uKplRtoMWu6Z7YkATOvoKJKtc8Dg75x8dJ0g4OTcmAd7Gc2tGqPIlOOr9IJkp4rmBHk0FLl+emyZ8bh2VvM4t4j0RZYIPJMv5h9s2J5PIcEUVy3PswefnDZs9+a1edg+nF08nmJJ/frI7TODewOZ5F0QmJamHz6YNKdqamLM11K3V9A2PxQ9BME3ddPwcMEA95sIkxj8Wmu5PpS7LdjMl/bCk02xFj3316qigDeqHJWV9dI8HsLmPtg1fDBK09189Vb8smVfc2dpgVFn8qiGM+YKd66gxZ2kZD1HkQbMo5zYPkF2MtNsJeXi3a1DwfLLcho38hvcwRo0CNO0LfKqy+JSyJOTYfKYVrFzoEa1DDwL6B8bBcAy6frnOMe+zIEbBa7DOVpvFScPFjO3LSSezdUnaKyVlIwGGtWRPDfNh52vxo4GRJqDKDDi0b4jQGIwaR3ij8ztlQ6WvVJJhAK0sTR3wa4tZfic9k1HMfCeAfFDzP2tVBpaNs8naKjRFrPad/a2dCUr4Ep6o+eD7PjK/E1IkKfPufvE0MVo6ZR+nublLT+CPjnpF0uEs2Mm8QSuI79LUrc6Vnso5gESkZTeOhJ5CpcGzAnZO5s9/EozYtFfDSWA2JPSqysVMyEmYgjALK6slAjxriiAbGtHzDr7XaCpFyPxynYSE2KTkvra1qR3MD8I+P3gbfCW9SNe7PhDQMnn4ebbnXj3dy7hmlQ5BKXk01Ik+lHyIr3B4KkGOgU/8d4wBC/Xqln/stXixdilg47TqKEH4dM9rWqfE9GUz/o2t+j6fw3jW/mfud+UxJGRYSo5etjsUml1LnPgywE26fEW0n7RWU5GNns2+HSHxy3v/2Nc+IJigVD0WySqjjt1RMEhI0qD+eoLwxVS5tsr12tNnNr25rEUhX45jgEqI210AZjfyiOT0Osvsmlbd5eoBJNW9PRRpdnjPFTvzRtA4naCnga3lf0DMjepS5So8tWDG0peYQ5PBJLznDMwo4xr+KQRlGjOcFmwouUa4LamVNxLi1/O2QjR9OJAj8G845Gv5p87z8OzrKFd1//Ptdo5lhOvwObDn1NeqkRhuq0A4XvrhXoy2x8s0LRS3llAmKLJRO9NdKtePhlA+FXheh7v76Xwo9Q1ORJ1z1Tkf7hJ4rowjKzpZuK2J68R7hvnANoRNDXd10E96H3itdiPH/xSL7DyYu5Mxrv1kS8NNwR7ZgICaXjEG4JOUrQ+6HshBpe1up/7WjDvHmSXRbg/bRqmHlSfyhwKkH72F+9h0cBMKyEOCWn7i+63tjRmD+hJfrY38JqCjujfRvZlI4tMebieKFcFt0/4GqbUpwkLye/MLV5InSmRBwsMK8bxK5MwS9r1nRnbQu00SXJQ0NlwjV7ONUwmzoUDtuB1H9lTM+aXLK18qt7+oH93V1ECDH5beXAPBrGvK726Kuai2RsHbcJF9DhaTXqXNOCUt8rKWx0kjrpiiZcp/Sg4X2Pqnr8iYB1/yOdDPw7ClgtL51Lp3rvZSh9OeGA0JYqtrIECffs9k91CkHP2mnz7AevSQKwawVB+7KQRwayNiA8HTdMXAAulIvUc5HrlV1e7Inag9wa+0hdx3MThI+1iq/s2wfL3EChfZO4Z/0M01Q+p0Mo9y/mp1RLzYQPETu31wHq4rRMoycYwsq0QpJE5tGJYz6+AJxV43H7R82fh3BwDOQfX6ojTKl/MilwCvjGEMHPjgac+ZWsB/mF1uCxQPeXD8Ez7/sBKRlhaMQcV5ac2a7KRmwyYJVGIWSp1OTBVByqnA0FTtz0CoNX+coeArsjz8pncXS13wQpu0kFTDspysgUYasjfJy6yi1Sh56hPgDAW8niehFCnP979er6+h1gGBKMSQ1ixHDKYuFaVT/1bC95cuc+hMzvwsq/zmkigsiyzSUD2yK87wFEhQ1H8ueBoDAgjvZsh6FE+N08L8E++rvqbEkxOyN7bW3GmQhcyEcKCDxM1GzN9tW+72WiBxLUWe9SzpqC3p91vpJOFiCXhUO6QRRIcRhwjPQezgDCLFx5jg2BMbIYmcXrWZPrLDTzWtIrkcevsz54d5YoECtGi7hmX5/o9rt3HYx2eM+/g2Ld1TVzg9h+oQHR4Z1pZmlZLABTA2SoZzpUgT0G/g7PH3LVxyoGk4u428NkJEUeqH4Cgw66jKFC4QSvIlzquWjpZATWfAhNjxbC1puDv5GQuMNtpU52+flT7WmIO/LDg2QanMlYRx1dTLTRlWJX+bR7EmLmLIlHS98UPakc749J9NKBS7MIDCur7iyBZi17FsNpZ+JcH9aVd93sFtsTsj41Bf8vYhBX554q/HUSC3yX1ugK/9C7eqxIdAncnVV8JWVsbsCQ9PRBKep9iMt1dnS5+8YxklCbNMgwS61rUCH4SvhduF+CzIkdb+cTYT3DqFGjbX7LcjOWPrj91sp2JXHvvaLL3TL1LdpDiYZ/BxmJFUetM2+PtQkT+zrynyYdymAt3DL+cevcFVGRn6lUsT0HlHWeQZUI78xoAECFb+C2BHsP9wB1JN2Fy4Cc66Lw4Dr6xnpwqWOoYn76V3ILXsoIkSvtc4qvRqNTs9MMJ27mHjJzMJ1QC/RD8+Qp9omRdePVTU0dF+zSFOiAmc3jKasRJTfpdPshChOWbF4yvzTceTIYxG8xjj0P3xS6Im5E5guwF/dMq3BKU0Pqr9QMpIvfwletHZSQHJ0JF57NaU2UAiOSSx3Ma7/TrIRCkNBk8uo+RJET8nKOnfglC8yBnqhSKapxaj+fD0i4Qu6pCcVBI5OHzOG5tbaejlI61p+uXjeP402iSaYxa00FmEBRx0YQ/6KXYX5HDOdnRQG1xrfR4MiAG+1f4HHzVOjYBNjhoYGjau49ILLBujgMy+qQWYnzu4XAQDTnyinzed9L5vjewlIOOPtmwJdm5R6A1EOymN+i08K5ft45Y1s/b3TqOKfUp2VIRjbjVW9omh5qoqpwF99PkHh4AwHDRlddZoQlrfHfI6/wOhTgfmkMDuO3SUVSp3u8jf5tLaTY0FsrTevsOBh+QskT3+VR784pCgIOq+rnfVgIQ1RHtguPnAUvsYvuXS/f4rx1PiDBInuM5GNRMzz8SO5Wrru10+JPETb+tFRqmqM/TfU1ZIh3K2bVmlorWWLlywYRm9ZAshOZmM6gh/EpvoLiGTTfPi7vA6GkuhEtIbTuftFO4legjBY8ZuWaT3xznhoftizKcYhyGotdxNOcvb8ljI5aLiipZPod13mwGLSay0ys494oLoP6tUzc6ikQfY1u2aXuYdGYf1tYD0mqLov6idJO/oz4QPUNpm7m3HPDpCo1ymM0dt+8N9g1Vg+rBSfeujipAF89vKGZzfJZjG0Kw3fNv6J1LXs4vO9hUJYwqLbm2qYKDUTXYv1uzJK+1t7+5+/jFdQxTmNzTAspPA9w0E497/rbJd1S/pS2OwVv43qAeWhzPLUWrOBVRXg7YCnUNIBeqyurPw4uikaaAB8l+JOmfNAkq2stXKW0YfMHuBJdhyf0yHLipAjGOqP4i0aVbRKdx+bjiE0AWzjf3e4rrc+gsROxdayDoV3j4Ja/5Zn/n5H6XN26cCKAV3YdoJMBnFt9NGEH1pXriL0JNaKB9EbohZMxxScPVJjQSN51tiJIwUilfuCGVKQDF2MeIrk9XIMZYxqcxA1zxpZA5jfi6x5S7BEFvBR/mkX7BjelPcZ08Kwwc5E/RM+/vzTe/LRp21qMA0FesFh8P7/CQHBoSDH5k89c/qxSe0aBxXdV4cFIAGr9J85gDD2qE3R5zO4BKofRnRfervQU3Ku/xYZaRjUOSGR8yGTD8BAkHov0o3ZB2NSMGJmiLKtaMnwTXNJUj26Zx6J03dSFAYdvfsROGF3sPw1dXIVscr6RZ9QuXnI8UkeyZP3dUz0EhKRJaxCWB+ZrjcNdFUC81RpRq68z+WkZRUYOZk69SWLuB3vvM/zeqAiwGrn/UF4haS7h52ss2mLHJxml4OiJj++iFk6HbapkxWBEn10EgdKu33Pp8sUlWf3rRc3jIgxbMEk+WQgIhRu0lV/3oh4OPiNuK2A4TXy0w42zmnc+X5qlQdVVRDAsBrKthlXUnDg8KtGJ/ILnV8t8QkumrL2TQkbbqSHesgJTb+piqWP0gmNJ10yiAiKpxbo1RRI1qBP9tw+h7xvz5IFEAnnXkRuXspr4meRBoYJAR6NL3SijCWdi+MT0CEyQNXw2RjQIs1PoLOYNEnlFWVtGFNjH+W1cZ+oQVCqg69vmCnm608IEV33u6Rz3CmG9S3EoVVyoCp2ST+VKEn6YRjpGXMXyrE8W3+25HNsGl0iQ7pvT5nFijXskHKJO0DzYYuHfY/BSPvLpZyVIB+6tHDdMKqgT1Fepr13jPwrNlwzQSkzCsbKIo/3NvTsRFYMJzxJfUFSOgMIzQX5srLqjlRVtMUJF1pkfU7Dwr0xg8viv6i2iwdETO+qDy7YchnVLH+f8veDW7BeE3ocpWLwlcB93bt6xV4CphN+Fyg1awNVBEn+AqygV51RWUnRoMyo3QmvvaIQzgxLUZutzi06oDzAGJHcLlO6wXIijtioMgoPICYT+DlIsT384psv2ITQGdJZtAtUZ0dpHsfAQDPk6SZw5oC1rT+gCIPGCD/ley7UDAcU6ACZyv7F8IPLlIp1OyOuLdKXRODQeufzQw9yLwZCii8ky25EN9qnWrBZL/oFdKIQnsop4OGwbTTxA61LOJhJ/HXiZrCn9YwkNmBW/yuU4XaqSinByRtKFy9KtQ8jstoRT5y3A7OCZ7+xO2Y65Dz9xu0mbOxr7ObQgdO0xhdWlRcc+hFc4+TriAYxge82P/3uB36Jgg6PNbt9Jb35fDdIGaJsRt2k8uxUvzHuECthfZ9JsuAqMMkKst9Sni30Mtz+ylcTHgpHhhsmrVubbuFM3ofFd/zmXg2C8VFhKbPkGPPofSdaxbcxHKT6QQbAF93Qt9aXhG/L7dN4OpIxI1RdQ966X6Zrxwh2deVHnph/NwCOHRrxVBvJi45xzujPY5C2XHSWh3b6BKRyj2XlEITDOWyUMIso5uVPdwUMvJPhBLDL8BcYYxNFYkRSZH2rfl6PY8Bg0/Wg4NfxtF0X2yU/pAPFd1nuJgI9PZZOpb5bpg16KTtV4ThZHGQ7+k/hG3IXzWgfhIs/dImenanAk5TVyKwtLU0RWcVswCz7dAVwRYyZEw2dx+BtFoxaqWw1TxeH821BWV3Osqo8RAuLXb4q8KTkvqLgL0A6EH6xsbcFCi2bRO/EPcWUMolv6d5p3bQkE5wYpE+rh6vNZ1jl84dwZ7j/omn45b2SBgipg/d9JFGmdt3sxqfEXzuopyqWdefY4HzRDUoVo4iID/CtfGwbRqcokgnpHQei7a7YY+S7iOaaSqDkeKYACYme2LiSWN1gjG5PI+xcw2l3tzRGD+cF6B/aivElKtRrwhViCrZ6Oq+E/AIILU9jEAmYyU7L2iicMzpjmzHQTiIzkbsgGMvRYXsZ265W5MCoFr/+3bzX/XO6gAxqR4KhUpEUuKho+pKgusCTkppexsQ1t07NwRXWaBbpYuGzqpi21cEeDcM8EFBPqcSK9D4QFefY7bmt0o2RBC5HQ8ywdbvgioE5fzsBuzbLSNrn59lU43gh/tYNwR4zwbIsmwo/qgEBj6ZHf6txp5K/gM+pKCW/Q0jKmHSxT/HsLbHVtDESkq/jizFICz8228QXlxiIc/mXEQ1wBGKoo838gJ+Z+C0i8CMZsN2lXlDnC637NKlx5Pitb/9i2CzgshTNkDKoDl5zyD/5ZTdy2uZU/LwiT37C3vxxiyioFqSxKCh1eqT1wklo5ZEK+uR95uxOKHaP7lCcqbLKQWB8r3DL91YUt4qCxxfOfLnp2OMPEwaDfOTIzB8QRkV1LHPjdsmDbIJyIel/XJRfZCK2Fd1e0+Z7VUBxRpvpEeup/lVvkBDJGCwGZ3oAAN/es7T4MnmpdybwUD9d0rnqK2jnFnG6QpLWHZpUt+14CXLZg0dFILNfbVD6Hj5n5VBmMF/9sGNgtogORUlcqxVgr4oLkSOb0yst1DQG0LCr5Mn2k8rqBdEz4A29S6wG50n9LhVi7GsdykIq2Cd+8ennEG+dsvvSkz+Ou+HbjAEuqYELaJjBz8M8yZ7taLu3cjINQdrgoKrCdYq8w4kI+CfOVAuHKtxGRv23EH6PmzNpqPuVGjewlYM4KX3lec2rQXMKPtNPGnBiqgq/lr0gZuA9kJ7d0gMXxSsS1+Xy8R63WDXvqkk0VCegb1QyI+ml5UncKNNXZqyJOCwazeES7qFw4yeNk2mCjsHIUIOjOFH0+L2HWwZ6nVtho6miKvJFTUzfwsizsrcanjdXw8GSXAWg8svamsWUpJorjqYfroR+2J6VjjLNegRb2c8lNfQr9cdrOrsRbf7EqzBMfBDXjAdmR/VKD4SgQh3LCqdxK2IK9XgpVvHg5WVQE38VFs7rkwllY6bZ9a/3vCj/QW3xWwA+ByJGoB6jGdqbo6T8nHauQIG6UbqR8Gx+See+sYPbphsqZx8WtwtckwkdodQOqDWT+yjv8CFXA5bb+FoXrH6UP223sAU9NqmRiawD31zSvPNGxcUSsxkI2gqr8Dx8A0KfmCe8VUGTt8osCCJX5uag6Q09azI1NlBd6qyc7pdaDVJkIBp3cHgAzQxuAsqKVjMYlG5S5hPqBWS5CppWfF/XaEpC/i8jVzNEnn4VH/hydMwxbciaVlY59pl1Kya0VTZ4YhB+Q/s33GulWSFcVqcAkg05FdAOLKb+vn00RdeKmKme+CScJLM6qTtSp3Pw8MNZmm44IciL1Aq9wouq+FJBK6MnY0qyVrADsTh/ww2pw0nrhWCOdbnINSEoty1M1UwdpAh45Af+OF5vTqiHSyoPlfMOKb9YyopRIYR2/ka/54u7mhKl4SWXp6MAXDT4D79uMY4fRcUmVXX/2rNgvnse2YIbanldyirYb5juPq/tEl1hbTfsZ6sgXtH1kQZdTyOaozXRYg+MnwetOFTLCHZvfYXLpMtPBMU8HsL6DoOe37pmFTJneEhZtJmZoDceW1iCIANEbIGTHVWon2lovIcRFMxwztrSl+EXYaB+u0USCgvq+CyolRg8zUO4Y7V+frGG2aRJizrMOfS02+o9L++BBWQimc0pUzeHq9elhxTMIEpnOOMmuveVwCo73wKaDmBvR5FXSHkYpJ6MBWTN4k49D6fn/rwKBptygA1EFiVMZKl6DwTH+3vMwYnVNAQUM8Nnag9vbspzZ4qGfOystMrWJzX4Aui8ln/gau+37U84qIPYGZBDU+scnxurIr2GRxDVCtyhOFRb17W6GDXozcig6N2YEvcYrP+QRvCtEeqMJKYDLe2Qt9E0DpdzozuP/eZBp2CdAYk7dmx+5dqIf1Db1m8j3AmFF836y0zpVM87JFegjAuwviOwntwzgNWn7IXVXs1N/JFhKMjiEat+1o2B4lwL8Hk9K6fj3dYsu0eobRjBkbCAlbFw/XsYAgx4mwC9HMEHJk5/YlzjumklOk2gR6Hw112VbZEQVFPb02DG+V4Ihy6MUI6kaedmlif8Lr+rZVPJiamFTYJHdP+NTXREfiykaUNlWX8YlCvO1rxtQCRVytHzmizFld8tM6LHRBmJ6qOBQIzXY2hvxdNfawsYMEszFwnyYREEn0X4OWCl7rPdZjULSfW6oqssDLOqAT5ScLBV/wzxkNllpePA8BC7BS2BAkKqp8dfUa4SMUbhHF6iVmOdnrOSSzMd/73NaNfMv70NDIvqOxT8CSvIgMV22C/egVdebvEmGExk8v0mXyNu54G95ENsC3LvJXpUTA29vbzjMReQ74WuR80zquuRIeGJjT61Wdk4TC8bqhNPb3tg7OkHaM9dR2AaERkxycvm5jwGb4poIe+oMjNOPkNTNa9LZH9IpFR13tWN8wTILmr0n4y38r+yJe0nwZQ73eiNCwyLm5HJUUCVuJXHlnueGSsliToSGCKwYCBozLR15wJPZNyVfUNN7CPjd7xsSa3MY3otTDSuMq+PU4m7raIfVVbqR6KoBCa6w+80Wz9EuB6p8aBUNLd9GtMZRMW72XpZuV8S3H9Riup95jxAtwr4au4YpobOry2HOgvJnuyNfX8fLdw4Fg+4bU9dEiVVl86JzOMnEXDwsMq5l7E1GTlEdgI69UODxxTU/zTsRt7JqIHPtVXWJ/xwc/2JLEnSthCzs4xHhzoizQUhpffPHlW43NK21BjNBmhYgySqIegi6a3nzOLlrg5yBY4AKy5nob4/gT+JxWAOmafbwDqeRo8qDgKmsVPScMoIuwNpdKw7a85e+V8/GpH6xMKjHij11Btf313wcMPAj30PANpGY9U579eZnByrt8R2TXidJenOrV4yalJBeQ9y22ZDhsYVt/vyogo8RKcysnw9PoGf+1d6OJeGotDk/idRsJhanzUC0+jgqjPPIj+zikUX/g2+Gfm7JcqpvyoPFg7bp2LAevZclnLM7MCptsy7LvmhqntfvFvqcX6DbxxEljhzFOdTEY2BfEr8GDiVWQETiaO9djqGKT4dvbRJcY+JOz8wGaXGaJj8elK5hQSp1uYJEWCepdhTMPF9yrxbzGWaHDjqMK67OvB/RDwzDFVoidrDbSsKcodAqTlun7ujpcLmsN/5Ssm6aua9u1btp47G8N9rk4sC02yjKxuwAvcByM5SmMQ0CGSbPZYyPNFYmnlum7n+bKiJkr8B4bYWydaFbL/gHsavmoqW+t6N/9aT7v5b5vNGGtA+ybi0NTU+a36YpDt5JegDawZwvORauccwhhn0gnDKmS6+d7/1m2d0pUdQzTbyTJxjiw2CPqDjnp1LTTcUZTAq2l00OKUQJkK6UFv/eiVCfOEnLyqawBYqWQjZK3MNMQsbj8y/CUm8GfLkErIz3cErYNsVD5Z3cnc+EUEoWpucnEsb6OqrKtU99oB3en6I+xPC71Qn5AoZZNQtuV0WrLIwIm6gTK7UI+557xHFjLHyPc8Da/PLrlrLxkWPqZmZgGZ+KLi/08lDFiGhqNdw3i3ZNTN4pzlkCH+Wm5oOtkQ3tIS+eCY4tUpY7rbx4nxoRl/5M+Kbz+HTnJy5kEMFkcRabrGcDuuhs5MaGMMahTnNDgFvTBBxZSknqmB2IChjlUEdf0xFw/H8964fASV/T3j8O+GKrzHui27QXfLnAB52gVSe6GX3/h9VdgmmzLA3+Qr+dZPCeZVyw0B0z41dL6Nino1P0VmedGI1vJX8kSsN4n1Mt2Ktmd/Qo0XQV/ocjcJrzvUkWBikIREoYaUXVdz2T+GGVtAvZwNM1tMvFSHxxhw4aFBEnm3ZOQD24aIrhyuhYxXP0xXA4lGWwmx8OK36LSX4IWeNIYndwoOfH7Uxuuwkz0kXYy4Al+WFmhmEHzxKVMp76qdHBbpgJuXQ2QukNhrhEZGXwzSFwINRHfgW81OObyQEHFbbwlzyNubUuBjPsLXxnBYupoi0lnL2Se0aRjBIQreXb4IgB7fMjxtdJTV1nDWunfCJ++8MNdTzTL9gmv11JDEpsbnc8bQScP4RUHo9KVnrtFpUMelPYUyp3vPMG2vjOahBjHUoQKZMtVgFJfR0y6NDiX1dp6xkaQx+JtDbx4hf0xkkKhdwyKaCeyPNk05/Szrqs22gVUKTVbXRvGSm/m/aUQxgpsk3Hq81RkvX2RK3oyoggPazRnzibGH88B28CgSYfBFaIuNprvCMhVINyINXMteAnosE+UXkRKqNspbSX16GYL9XiXUmxDFJTLdzZuvLnExFHMxA9F6a/JukMKHbhPibnwaGphquDbtXQmm1eAm34dDYU7UL92JyC0udH757mh/NTIujnwpQ7Hc+1FVwT9Hc5jltK2UoceIbWjj4hOty/BxBWFcApD51UkHBCy9VZqJ96TWogj+QsKGCoOQpLb5sHRC1SYXw1ESTnRxx9zQ9rlsToiMqr9+zYgUu9InEi631TcYZcM2ZsnIbTJ3mg0FkmRVajRYDXE+0UNVNd4j6G5CjzmF9u/jVFj4n1P5S+PIv6FZRfvkw0OOC5P9ogMoz+hIq2dDmhBnNFhCdfQsLEDWV0+ILOGcXIMZ11DFR8AbF6lxlLBo8wmrCeSsYAIAj2fiF2JGyFj5F323jqDnJKdktRzyNrJfpa4QMf9dIxyMOL/NzW07xI/LlKppxeFOJZFPS+Ms8XM+zE6rnr1vVe9T0XjISIH6uKJ6Tf7Kul3Seii/NwqrkdwVbo+xczfqoOOHNYPdXrrE86ItVOt+J6xFFv1cDq8ExIPeA0mUHDG2H0OHjNT5pWCLZvUwU40g7q6Din1BCAANTFr3WF4NrIa6dSw6+sW4C2M5f3eZUTJPlZZcCxgXPy0+k8aPKZQ5e5nr1XgJOseHs+QfSeOPGCY/5XYUeqeSqQGieoylCw6K1PWKVkRGAX5yNwrQxBkT+7WTDTmmiNqUC8nn6KCQrYS1mCbipkXu09AdQB15+bFDrNpajkH24knayK2pCOb68wEyZUp19E0XBM0nOTorY0iyOh27AIXhrnlkDso7XwVqToXS+Q0YOSsz4cWKffNpOS5JjjAwxsM4JruPWgJpPJ7UBlCDFdnB5sA+HILGjmP/lA5jJr7TqeMbsmpbj/esOmWacGa/KNT/ocVh0q0gakj0Iyh5mkUcL5+VuRHVmH2zFcJCv/bvFz3DYAWISs3SPB4IGVlRa8qjxGgBf1m5TNueZoYJ+bxaeETYfNmJ8EezuDi710rtqf4bqhnlBxpxiNFaTdmGJ99weaS6ns6fdfKYClvgqdmd8SGom/ZlYOVKXmvEZDUbmqPEYTY32me7m7jGKaqi+0GujrYFp1S4SdGPPvjlIQ+ce21VR8la8DsFz+7hyw8m7nVKFfQTJSqGL5FF5mPQXVokoGZlTbo4a65yiQQrtkqPIohSJBULcb0n5v6/8DhMdVWDaM5cyxHJFqcTNrKlNAxJOSItZ+Iif+ljxbKmS3kPU2Gss2ihMFkMPFe6IQTM6Cu9bKckNItAy3155dyRasKT60ZNtmiMaEHdbX7YM9VLePoYnPl0J9P6J+G8I1E0SSHNEcyl/8nJrHtn7Dj64JMXCfoRlIWvOn6jAZdHAKWt168MD+h6TUbDYxHByqkvU9UArv10zi98/gKcYhAuCwYG8J6boHAd3qMPscdY/HJC0yImNlDIuV4iguyyfF9g2D4+FXC657JAzp41ZdHzK25FZECn7RTGX5rfJfl3kH8EBD2NJeRmNVtgZEVQF6LMk4LyL+O5Zddh7llYYl/yXZFapBAynCO5622z5/zXfQ797R71+Jr7Ep8FEAGPeLNJheAeqaeVh+rFsCG4OCwnUX9000L8ObFMaCEFP/k57HAzXgQYu+6AYkbRypBu/hBII8B0pD5FRNTYAJh1nKVrYDgY19bGorrXwhG6E1xY63yEhnHBuVr6ZO7Bo2NtvjRXWw1772I72RHHZ30rszuEqUXmbXw7QCL7A/QQ3BdOvjpkTka23oLMCuGd43TxOUn3uU9MVbbGVL7IJsAWG92DhXvlHwMTaOMm7x7OQmomwBKRV80KQ5llFDf6KtPRCOH0+lPk4QEn+AOPMS6peUBgatfU1EDF7YhrYll+xWrBUpFA40PmrGwrtbj1E64WYvDXcxI+eUUgFrfFIkF+gXOP2Dl9hCwj6zbUOf/CoUhfmvxnH+izMbAoTHvPBn9IG0TTjhuY5oRrqVwr32lbly81p8WCShKOD4wnqgEoI2cOgALb0+ZrKE4jMw8eY+x+DGYCzZGg2k5QHQNmUzK7WYnbYvgme5wugw8tblXQMbbbbWfxxU/wskn4LFS/0mfOaG+mhnHjiygxbq32Tm93RkU+Xh+6MBNFjOiyNPPTkvgao+Zd4L46jI0hAL4juHMseND3GjnAquFRmGScbdwdff/1i3jNIU7ZHMyt9an4XeasyLzpWJrWbkQd0mMMhEM/Sh80LSgRdl6HLgBnZq0XXWol34NDWNzTunE5CglkMR949BpI/yKYo+q8FduTkvlZ/y36I4f3JPd4NO8OtQ3t8RCBDjzSzPrIUP2AFmeOOaJc/oHWXbtCsbHPbvwWuAE+5HT6n5WwwdxszdG481GaREVj5FOXD+g1naw8Q6I07UlM5/xC5WX8YBy+ICEJtY2pTy+N0BMtBfOz6J6pcBKUYVlEQ6QL8HcXlaHsNcqUlU/57K5UToikrjWPZOxcfshOJS69cIF+FXFXWaPPD7M3luf8E7XeVK1x3sKSlRs3NqRZbZajRdyp5+3mkXzF17cCVkqrQziHB1N0vhsTrdekhW7X1ddnsHLp2/YNUi3AdcmBOk1Bo7URs6uHtWjpcsLrk5w/oZp7q8XfierpKWQTtyz7SJIm+nQMlA5Pvgszf4SC+2HL9GhmdkdyYrIc8ikBeIN3bE0Qto0TxXhG89hth+sYqjFlJ+cPVkIoIXp6uaSgLHhxtQiUAhCREw1NZ7ZGuvvIHotXOIoqHi2sXJmoZ1lZ6EtpEb5FUOfaifbSZXR/CYBhji+fSSQ8FmRi8DwOBuSF1YHpsWdeh5h4zTvAzHIu8ftInHjotTVAJ2ZrCPEK0wxQJxu/sQ0H7cxNaGtlz7uz6aoUEAvL329SYiY3ez5y9/J7ihXQBOADVAp0Wep+9LQ1L1gpbLHWMmZkcQPhWSjFfGmjyn+04rwBE60ZmRl50iJ/t2bFMjrF6VaduEg+IYDnJLbPhOazzv7I86JE9Y5JGXRVhf1FfmgUr43oPnfggvDcHCHd3RuVHg3jTSyMxmgS9g2iWNdZ1vhWYGUpkWoCF+o/wpyP92kxqi5TzLeTQMw8hp7VmB+8DQu/rF0iKbp671WPNTz2k/ABRn0MlCrXnrXid+/9kDXg/CfB9tz9+kolGWvgI3RRJEG/jb8SFq/6dvWk7fiB9RFpBB8PvU3nZ7tAwpnxwUwdkKMiE1a1zaiQM6VNcTnz0SndOjCrMnU8GYzTMPe9Yo6wMFTP9Ap0z+QIqgXbIzYitNEsOtHN/7IUtuOeatZMddFKjx0Aka3keOZVtNXr9R5pHA9jVhWhK6lV6891kL5P5E0ELM2DbdEPmYP/aim5Z4menY4ofN64XC6ep/9s39sTf9LpQwktuswOzJiItueOK92ojWVELkDsP5+NQr6KVkqHNtwarvE3rDsA9RTuB+4NYc9Lh3fJQWEt7RI6eU+ptc8gLx4cEzG5FlogmaPgnCwLda7m9STw7R5oFrE8eIZs+K1OgzAfl+HvcfnNdrivpAMaoQULgfM5+5XI7Z5et++bLQfDBz37Ei/Zd/j99ezCbQeTGuBqNNRqS7htH9Noi4hKYL5nrslyNC1oNLRPKNFcQtPqiJJap56dy2N05Ztmd1j2EPM29hNNKpYZ86zYe2vI+4DilWtVaXJ9jnpB5/s/gtoTjLuOxOZ5i1uDjnWF2mKiK9kMDyxYN6LA66zYIz58odH9/a8DtS9ykcPZr8Gfj4YPASp5NFRTK2u8NwJOOhrwlQv4LpXv1eMhjmsgZTAOmSbbyr+ERpafcJZaKQRyMPd2zelQxkd35+0WpVU19twTRTj2osFJyrPem8uPTnaLCM1AqmNcWBJ13c3nlV458vDTrw4zISX72hH3AkEo9sag0QUd6ho9c8quaBSIw2eau5oPxI977//C/NehuT61ELxHT8z0PpI8zDAA+V8bIQ/qW+KqRr1Gnw70ZF2KcnMSgrsbMXbHDnLmiKhCc/TH20KE9lw6Ffl5uQa5o6rHShOcLmObeoAxhORaBESOBRFYj6RGSpsoY05XVN/0qdOAN8b0P9veBWe1upymZeO47UyWDcTZK8AgImJEGvvu1PMhTWXYFQMKQlOi3nxiaAQ4scHZEf2KNKpgXRhqjeXvWdMtE5WQu407P/2fFCVXZZVFQCxmOEpuGE4GHmqCPW4PKRJ7u40x83G8fZWn+iHVGt9kOhOXIbAGkDhiZFKUG1Arn9dMDhsx5OwiCx9m2+QtEefMUCoDi/wQbQ+ScwaotPu5zjD4gox+h+yCuCwHlYDsX8hfhrZDGNDib26sdjompfwOLHpwm4WB0cYuf1YVOBNYIaMoW55ovlRKdakP6nVdz7W5/yOrpZ5FWAOZ+fQZP2z2LmUaG1v6s/gTOqZiOnymYQZUhwKvVutXu8kOseGRI8MkHvqAl3Kp8idwygW4k6uOmrT1C6mi2JfTG1Ry3/e1u6qThk//Zkpm+qdqxoMyFXlhlm6y3P9+0kv53UfXrrErX6A1Earko/q5Hx24y3s2EqvnkvTXngO0QVIt/hBd46D7dArghHbL0vRI6lrjqmZ897IsWfeTSlHlfd/zdjJ9YFkimQSJUlsj8SLrxbmF5n46wUb3f06thP81DEDVRRsMCSi5ypzdc7yjeA+n0qBsF6B/l8QB9JNq6suwvmg5NpvvHo8HyGpF17p+XPUHIwcEX/rbRK3VarIgj4UHuwcOPtVN5+meY0njXWw9JRtPH8g6MnO52IqLn4HtogYYIMG+HEIUU+TzlWNuZA9sP/j4O06OKLXTYYD8UGKWXLi0GdzgPqHEud8s+s5+IFXnP8kh2ifVYXYlFmNcUEZ04soyoJ6fIeTPwsr7ld4gWoRjCdaoDp0NJt1n50iL/b7nh4ReC/1HWfa8eF77jphQKYAFnsMg/HpUuHBeH7SNsdLy/gkkMptUPMM3sDdw/IYPnKSgSTLC/yj0nqtj6XGAPoVVkkSDFwUN7ASD7fuFWsD1R57S+yYDzX7DhXawd/tcN5HodtINF9r1OhxLBHifvN9u2iX3fh1GtzeCcRu4KU13PyRJSaFIvM68ArfGXRdH7XAx4wSWfvz4fgdBRGdbFIv/FBLAGl+G6x9rGyrpUIcVFvtqLI6Hz/vHHeHaSYiVM+ecBdH6NUEYVIwlABZYunDXPLO+2fnyiH5ywlLPpULSTAg5el8h2KvwJYkPpmm+Tzz3gOmvPBfnJxYiison9J+oD29Lce+spFtAhW9KeAs4YfDZbsGO5d/AsHTYxJ+eZK96vSuPw7RGtEpoAY08N6UojDLaGrziQuM5Om8ppz0Nm2G+dyl1t3shcKE+C66GJj4oO7JBLf35bXRdJ7j1BeFHaK+YxwS0LDW5BubjaDi7nin/5qO0WoW5j0G/kLFX/eA1Vtql6tsh3OANvJxPpdrKz7v1QZs3EkaO5dVxzbTE0djHuPnwICXzJvlcXfG92s/1MKe2lASS11+w2l5ndIp2hxBC4fmPweK2JntsrIymoDBgt276hLog7UAmbHjF0r/8xa7wfbUgcZ2ok+7qXezHa6fQS41W9LTVF1UdZlEoLJnQWgUk4jYkpPTFkieXRl+lxDJZHohrWTiQyO5YDRi+XEXqWDXzlIHxzXVpIKj2ig4KwdfJPNRxu12OStOS0B/38oZSfQbdR5Y/WxDCTqSEiqpp9ZARKJElCKSh27bxSS7MGw0p1vvx7tRIXS2TGKLaF9aK4EUxH+Jzd5TCkuKwj5OpGyZVr32WIoZ/7fQgfjrA1lE5RSF5iJjSZWbrMj7VmLt2JxlQFFWex6Mnd9SYRlfS4xQsn/Jt3mgnohEtuGyUEnKDGaXqQ9oYRcUIKvKYxEbOPTuuDYOvT7ngm7NN04ZM+MLNdG80al7GW2/f4rJJSRb0YAdHwgb5MypwuJcg9WwgtDutNoaVa4JqVY4cjOjtHpQvOXE3eazqp/4evU2bi1Hrltf4eVBOk6MWSmcnCtnaibTiymdY+FRHEjAFSa8bDHQx20xYNZ3LpmkQPOUpX0BtylTTAolVdY4aXF38LN6mZUp8NikNE8adTVUicJuUpUmOZ3Je1kIXT/EzNAqcwVaATrw6bC5oBjbsU50Dpmzyk8RvUNpKEqVzZxSomR1sBRhOrXJ1KAknbNuT5MOjf2oSrV9Y6Q0Lxuzd/bYg7i6es5yxqLPvZn1PyWGIGYit8U6fdAWGJqaX59OHyPgD8eVSzjegFBItCm5shDQbPwvuvKD5ERR/vpDdB+AWAEfAlgTGyp5gkhnl+BV+ol4Ugm097rRYg0Rl7azeiS4CN1eNdeB76ooeLMtJTX084JydvnLo9FSTJYc81Cuc9N3wVV2NYp39dRY3RvCexbsfZlq9NBpUJ2FwK8DZ3STz4+Ro7NFN+tlXUrhDkczVDGmzSt/BYXzhXcUGbv3WxRNkS7tFLTQipzqE5hOP//DWN3Y8YnOwXojQfcUQbCERY4FXRfxZJyeQ38Fa0WaD08VP4JskqjEmtpYif5h75zOELwSXefzgjDlS2SNmZBtyxUKRPLRHV1bGPjDK+6YCzvG5ytBHr5dmxOqlhqqPniEy5gwVOEqdwhFRWXN+P8Wc8xKpmX+c2qdqFywTUylaAb3y56BrKRB9BinczsBf74vFJVW9Z42ZkzPQ3NRgvtoXcBaTpsfOKqwBqVYZ0upAme/7QSHsSxZckIGrYdRkcDEt25O4RfshN7MewuoRIhG+kvE0bQy/DsnGzB0lqQF/Whztt4OnCipe7ZCbFtW0ws5//+6ez3dgEUunq88ja7X7Y2R79dwymXpgiNhK4gw+e72YhsZRqgxvJ1FTWCx8O64TrD4Xur3qgcGuuchS9rQNdUX5LFIy9Qgsf/UCfo5XFmqd6Kx7iClEqrPe74rAxOa+WKcdh1zmM9VrKOV664Ky4BuXMPpnFhyJnKQFi8hH9uIShczXdjJcuV0yiLGFvgyVok9ub8bAUs0TbLp2et59zDBE9/DmsXnalw7tfsCS8Ma3qupsLLwEZ0D9emhMzkUFCoAwoOLAG5SRagSmD19v5cFmBcnVgzsmdC8CYxb+373jXAd95watL0n0DKwxxPrMNbA2FK0LZ0iPPXYhc1i9IdA0oe2j1kLSVCIU+/4dgyzXFlzE+2pgBqtnLugZMGl7ExAyF81rnSPxjEpM57EdkCX+x7ba8mmkvnjMJ+ee8+dIovF8FvW1yuLU2VHwq4uz/wojK3cB6HeOm8Q87/zeqOK6HRuqc36xhHZjaF1zFKPlEJIGPJxoDDnmkZQrsYriIbbvTnLW5szybGW2kyRcqfqyp9fsSPtMRczd9vCe5pYP7eYb58xKeRAF2BNc7Q3iHGHPybs5RMqZjL550pL3nNijuUDV6AYCRe5y83/Dkb2+z3+jGeNeVT+12H6/Yi3NtqdvtAGLSwrFD/sW7NB1IgkYeR95prZgTuWwtqqg9ynU0BFfy/NerudNOi0Y9/HfFm9TF1zJcepP6HZOTV9P29JbFsgSUdpo/sVRZl83LcW3ytpKlvjeqI7pxDAA1WRH+FYn2uj3weTHMnKzXVWLbbUEj/EPfMTdlcFDwe1mFFuVBl15205MGOuZbchRsDaJ9NA2wPj7AJXPnnXA+XwMIILUCoai2UVA2mNTEfffsRTIV6PWmhdMvU0suDMftvGw6Y2vzelFkvLhy+ZydwaQDkVQZTZ68OqqHnfR+aitGWhqGv4hfcppoLaEskvAkahX7B4Udvg6JBnJ9/t8lFEORtAnspAGtH0QVPeX6HakoY5uwRIv20T+cjmxWfWMQRimSB2Hkk00o13V6I13gKEfwTJAVzF0pNaoXvYCB+Q1PNFxXjRD7lY6qU+i04+wyqsFvriBD+XqQxvxLF2y1fVWZ5gqcMwGsZprkAlUAMDvkbLsndyz7n29dVez4JvIZFWCtMbGAEG7WYgaIkzKCg2flnf+jTo/lfEESyUC229d9+iUjVLzvWUcGA/c/rwiQ5P5XllI1O8jpT19LwCjlQBZpfTpNTYbS6LDjm1YujlPadotJhT3vuYLYb77sU3dugYgplfePFq5D/dgwUGk1EGvS5Ds/LInQudSyrWU4iTYguhNFjaWRK47K4aTuQnHmaeh4DaJP2fWBD0IfmClWY+ykoa0LjI/zpd2+oNPAmdpO2S267VyocZUXiq+VeGrwB/sk1RfzpawrAXQY1URYItq/tlIDKn4ATI0yRJt9ENd41Z/elX1+TjujxGI0X4d6CeAsF9KrfXpGbd9H3n+Aa9a1i4TpAT30vK2hitSBPmizX0gNdoEbgM4CgJ5YSyHWeMMZ+Obp6XNPok05n+Pr54DI97d/8tPDd21vsdUFjSW9Mi8diD5YtApoQV7q3t7Fa+y/P9j3nSRcdUR0AqgL9pZagBBUwsf8WQdMoNvGipzCDjSIhrs96I9JgaKvRwD5xDn6LltbuNGfsMoToBOr28m7XpyfiU8wz1a0DReM14IKXsNJYtxo3ikiQ/OOOVKeRyjJsQphTwS8frEQUSk+66rFHY8VDo3JM4q4wYs3xOupxZ/9TKcafZHNRKz0shwSlncV7TDmwIPSO2/ddp9098/TbGMqHCPTC1haIVgltqHacOfHaYWAXkY93Yu55nTdr+trfpOJKnqMpYJwKDlI9AJ//HcfPQFX2ssfl4kdGWlzdPlrEbYQgU41AwwYcc5MxRFKfvCu/KnUJllFx4NAQle3Zl8uFx3pUrlIk2gvt6CIii9ReG+c6P/+zyjylByIv2w1GwxPtJUumGD16nMCvLpE/ClPOM86jz1wB7RCDA7peGuJQMWDLuNjQ57ceOrs2NgGIsbk2jphPqCepiR8k8NEIeH6sm5VMdVBcp2E6qk/Dr89O4sKizj/mwtm+Hb69Zkb3FkhNg/fyap6d0Onl0BnwCJ7IGFtfQAhhtlktaYdnS5gd9alm5kSW+6dFdEaqH6wz7qw8FefSaG/G6bQrQCstAi8J4H/hLYl4EVdkpVdf2yi59Z6AaEtosT+zR3IlowZZkft804fE3gq0Cxg9+7x9mv0evzwzj25NJefWoUBLNbJyCL/rXCXOaBneAdAF0oXW1to8erbiaVHCOHCl6/0C5n6DQ2odQWB34XwHDgN5SjvqnAZHBiH4GXpeN4CccYAsp4YHt4o30NxkZVr2GDU+QK+NwT3EJwLJPSWu6OpS1rI+hOLT1dRh1wqe58YXNEYAdkxDaC00NPn4noLYUZf3XTpB+RPZ208E0AwAUMUvSvyMMWYcE64z3ZYIxwttrNvYRX74zkFvUO6up1KVzeICYeRuCHdfG6kN+KOiP3fn+eK9oCUL8w7lWvsK5DnsxEVi528/ljklLpTkcsdC3PNm8GfjtCn9CHy+mDx+hY9b+KINRCtO8alAyyRI4UmyzpqlPF2I9OEfBptR/u72/5sPBiX1ADsJ3GGicXmdaqZQBcc0Cck+zbfPrjsXEnzH15SLWWaWTfI/sFB32nUW9jzW12hKhn7wlXYyXfvNp/qJXe12RGkibrNbo7HqBgOjZt3gXvvNdKIakb/qXBOZd8bBQXJTZnit7Sf1DOfntG83Dy9SApctkRqd+FQf61M2mHR3YY9Uabh0egNfE7C1BmsvNrbIibF9iv9wlA1IlW4NDf+LeT4j8ic+Bd4tLRyOWe+DgnL3NK/p8v5PAttytjKcsmtzD5WcRCXOupFGgj3mtGGBSeIVpNE/Fz4sW8xFdiVRupAVsbnXK0qdJ9EXK6Rp/8lXOCFAwa4+GwELJCXljIKDwsooHu6vx+kkAlZ3WpZsGl3/2lI4P+9bCPeigBKqXuLc1apIikwd5W0pQXnFdkRUtk+FJWU2gRuDgcx6zgyZLawTwGH74HxSJGT9kqmrhoXnbadocbUi4QcYoIbpKaF2VGpKEZcZEQjror8vFdJKSE9/BQAukgjnYnbnFdn8B7kW3mfhoc6wRLZQA9UFsIG1NvkGRh++OW2QnAb1H3I0jArc9Zqhm2g0wnSY4wIi5bOtnD4XtfZ2sRhDKaPbC/8Fh+cu6j9Q8D5evisgkvLwpUSUdtQQpcp58WzntqGsHAtBwtzDkXmciD/c7V8iwX4uFXFsyE5o/FE6VeXUcRZsNx1gCmx+0mEN7bihvlcfH5seIJ5rukW1uZX4J0ljaJCyjAdYTdY6LCe/SwJT9ZpnLP0RdX1FN0VRPcLPkRkouZc7HAbcLQMGmBTytDobXQ7ntQzFo4UltIN+HDJxNoo/8Lu2vUMR+WbtFYZS7U8/GnbDgpULJa9QZJ7cUA9WDiWOk00aob3s+8D8NXz7u4gD4v7/GWL9oiXNv1bZzlAUC8zT7mP1P3vxMYRMF+knvcBuGwXVwea07PZNPzRW1L4wOkRPilzquA+4AXI8z2gzIuYlcV54Ag+Uazk6X0LMJ6ZpPMQr9o9Kb+7FjXlHcXN46bAq+6iSBYbLsL1CST2RrYC3VsWLrmEILiNtdKzuKzXstfUEuQThO6THQBkQXlWQ7NlfkH1nMNoVuNgYMqx+mSHMzqrtUcOjDjwRGphgQSoJL461ky1qE/YVOC3tivmWWJnE9BB76oxPfeIEXON+Tzk8S3GM/M0+ayGiEz8CuoeahPIYz41HvnwbYZhai9yY1axZlJ3tW6CAPfbHyDBZb57UjJddZ+srV3Kzi88GRNYsVatSEYrCmT82Vk2Ekaja4EP43A78QIUGPVZGctA+o7xw7yh2rWsHTpkTRrFqyR75a8YEpeQ21JviHsDLO3Eb20H7AGwaRblzOzaUWzxtIxoN7s/sU7X9n1OYYi8Xem6bN6WYSelSL1phQjNSAWq7faO3cAhbhiAm80gZ9Bm3tsmdGYPQWc4jEBYzC1igxN64fc2fEyhmUINFlkifTc4oRUGXoImR+lRqfo8/Ih8FwEQSPBf5roO5ThXoy9igDddFoav8M55D7K2FY2AKmiIohJwPMF7NIheHK2mMxX8WEnVAsqcvYfiJLY4sgI8bn6AQuvjQSaEr0XFr61Ztbp7T9mZvzX/JGlbtIgqPS9g1uFx8dNz2SkVKLJjXaIOvb77nGxMIlSyXsPwfYzINg6neDOd7wG7nzwTHEchnXJ7oThlUEg5z1g4eJsuWTglFHV4CiBoPJo6clfeYJXVS6OYXhrbLMu4x2rRhelf/igCqKe4GjVbtXaIpp2Prr70zOOpRI5yBjWVcIbXPmI9DyRuM1UVCYeSclOaKC8Ctx7yxB33eBzFdwPv8qWD+1sQVLO6gwImQIJupkJj827UmgYOY5Hg2kLQCT7oqRbBtklji/cn8KtnNJNiLWVdS/rYTvE+51XMbgokTa8WdYXwceLzQj/vrWO805x/e8b4Gxd/H7hAfmg+8ue9JRiSRLpV5/9LZbFQ4x3oVYgUP+U56GwHGTCL5CbOfUdr8Vv52Xl447bVxXHUXcXz96RzSmPbyu1/zgk+CB2o3TpF3w0y7zxHE6j4yw9s314m8rVJhl2TPfqAIh3eKk2nOqsfYBuAf6s8VQszguy4JulbleHt/6wyg8PTan9mWeLsUE3NcwPdNkDvE6PUyzC9zjTn3XXms1JCm0ZgwtmxCgMITe9u7ltLxQxb85WykrX4Mu6aC+1j9YacSgnGaStn4YjTTveaTQEidWFxtVD9ExonDEZqC406Ydei4rF8PV++91TSH6kA8iHxt30i95w+LDcKoQSSENx0HOytigqsgUXQ6TdiL1XBnlBIz6wSLtzvH4CQ4Mq8NQkp30ZD0U0pENBy7iYXEcudUkhDN8pcQs2XeRb0gnSPwxH2a+u/XqBL1cu2G7+ZsE/hVougLHmNBLgc9gXwA6PkjkHgh5DG0IAtZaNvsHiegN62VXsqEUZ7QqlSnN5ct9CCXcjdRvMbl2LdYW7h7u42iIRoR0rnl2vsPr+01N4tWjxxfGQ4HrbQGfpIOW3nJrRminIjYgAgoiMbzLvulU0I58YynLM9Al6rEQJx5STy3aPBkn6u/eKCqy9DiIztFx8KZLnA3IvVgRwL0w58ALbAY/sOG+KywWnhIs/GQ7MOMYdfPNGH1ccIpjsuDuJtCo5ZJBy7Utk9aJ+K65FPlLgkCICIy0ujase8fLP9Mk03v7ZxeoK5uMWhj5m7UvKPT2sdhXCsz4bIVZcH8D/UHIZqDR0Ho6+s7rMUFMxlYQ9/nnbkosExkBS16v68nq/2bGcwxpgo5AJvecbFZytXjD40E9qOHq+0aZBggOgpzeOd0eplhSyA0BsL09nYEN+snOzBSAR+Kb08iEGUKyyp6v1PVyDCzNdS0SWuHEMPCe/usvWnwdPltBelgc72Xw1PnQ2VI7jVE5Z35DPE2xYGSwFE5maFxi7orzy9gSg3JWRiF/EtliFlY+q5AcL2YEqi7bb0p4rZOl95jo7JEp/pYsri4KMV7JWtgoHjub5CR3yOtbFw2M6iMWqFEBGVuo5t0InW0ck2ajn3RwlRC9H7eq6oef6+dnvUcpJaLavqOIcHDs8JCtbgtFlajfn8BjjAb+7mgSfDgWiaIEtZSU8oE/1W2l5TVrrPmdeWrs9Yt+N2ypU7+W/qLaW0bSPt3f1LaPCy4vaNLHNJ2Ai9yis/geq+nPg5pulCiA96ZuQNvy7uQVdx9iG5Van9cIG7HFi0V5SozYKqJ5m/RfdnqXtiqrINmU7Yjp7qWurT536TrE1bE1KDM+XFr/rbWartFVapWrL0MC9xVM1ur1T/Yl4edcRdVHtlCIOoNVvF5QoK/88/UGLKJhZYuORu3+Bzrx8dECH9lUBryqMr/ZGOIoHiSbnIOkj2N13aGgWL2xOnbss/k2mzxEh49hOQHslYaz2jfqIxPUHty/6Ot+BD46BKsZ/KUrk8+gy85oM/dK+sqdnPzlgg3weeYtdTLK6k7r6z9NvGu58pWnLAvtXSCq5NpQWAnUdLJ4QsrJYYLvdSBl3MJJtg4DiPGbz2B0G5UOkg5aCXLDc8NWFJgl6GS6q6LcIXRO/CmRL9uP6kgbS0C8D06YIVeD5XgFLqC1DsrNcDNPgEUr73dPJVVDcxqQqYBkALBxqgFXy65QLZpGXusqY7rZk3P6OWuOqJPbTlpsosyB/RCq9mh3VqLfQP5b1KK0/v2fp/couOgsS/G4Z4UF+iozfmDB4IClYgv4LVaSJ0GYpZGHm3uUGgnZUERlp4cLKAtdyGxb7410Do1UoZYxyBmZbvRJPw4Oi4Ne/tZ9lkNKiM8gsHmLizl395J6vwwnkslUj17WFP+vmTBxM9+MyuRQApTuPmhAqCC4gSYaZQJfnWYpCo5CCuVf8/ORG6qXU9Jbp0xSds5L6xaIT68bJ+N/Fz5IpXyyGSI3lPYodPnUGza6h4A6SlLaplZzEgczSgv3TdZycUbeSlzv+AM8tyVU/WIBE7qBhMxgXZ49eh/l3Wok7I5KlcLhEUDYeYQQKZs+DwOgi9TQ9STRDC8hpBtI/4S3KI1155Ze63KqAV/wbYclYM7FQiV949fTbuLFU9LFLZJ4YDo+K+syEWEBj6ZxwuhsiPhpdEkEBqwNMjItuFseLStCPFL6veh2oAkMle0b61jMMbpCPUAfL39mRJqEYUn39lJLFa17ALFK1B/36q4KHoaMstmTPevdDjUkVBdAJ9KAnyBzMsQyH/X0Z+JKCRpMa5v+soijkNgc0rtIePH5denvgsd/9oiO7tec650uBz1VlP7Dx6EKR20ORihMtVhM9hcuD0UYmJwDbEOoSEDvkqRQVduh1xejmXL9YHzmhSgrPKlz+3YSo5kmFUcUCajGR9I1uHUSdytEdm2nx2NzPGY9B0l3kS4562SaFLUIFgvT63F5ttqZBO7S06QNmXtJLlPmYE2gWhp1bEMuMwvCCIcnugtaTViy/g9bOcvoU+jFG6cYtYYh/3YITqh5bhtErXIoHs/sanSY3MHNSq3IGuXX0wooBZNBiQGqaoBpyYGD4cya6SuFmnXwXPVqU8nXcWmdNVWIozcZF3wTh9MO1yL90A48tCiEoABISfrnf4PeHtOyIQ9densol4bz7wDfZyJcXtQOhUiFgIa2ov5lsWQOk9r+77qj6q0DQ/xeloHDkMqp0TIRLBx9TnhIQyQACHnC2XI4Nf7Vjb7Tz0GKlk62+U66Pp8nRbacIisLL52Yn9Xc02mx3e0KpnKlEmdD5zuYMsDl+A2dRD9f+MD0TwiqA6gZy26w75aJm0g2MzMxhp7Ftr/nJcHeaQcSun4oy2Hl23M9QXhRhl0Gfydk0izo0EXLaplQLjHQ419VZC7SUChIkzPt/alCt3i3Qjwxj7mnCdCzAPelOdvIEjVUdm1rsKedZZDCL7dptvNPwpzufkYZK9EblqQdkCgd01KrpznGJi/wBJr3AU4fD/gLhuDv+e3d/SNs6lWX4tC+D5L0r42d9pqy4MjqzNnXSmH0BoFEQBBtz38VVsbz866zR/sb3bxSofDCV6YC2pDuT1EDskqaXDZzGQrC3mH1BpJ4B3b0wb6wLYfbQP5d/LBObBhrdBgjKOXMmdewfBCrxlAA7FsXClx0SZPtJcxYI2j85XhcZPVhhnFlxax3OhdO8/awcyxtW3bJqfGm4y5Wh9NlQW4pCcdBu2IhQee1LnloMcUthjV7k8PilmJQbNfvMFL9Q3OFG72famczKElCUD/qD5a/Z82dDqbhO4OYG6STKUo01WsWl9ZQtGzhd7sejeMe/h0eHwywjCWLyIxsAOq3BbAxhX7KoFwDyh38pG/2r9X27L9jA7l4ayTQ0NTQiW5Ip1YgKwnsB3ON8frKP0DQjV1jd/aUxpS+4BRx4/cVDu1Quc0/v/ad+aPdHkq5fKICqCiF9QtRrqI2hv7sGsNLb5wqYANj33MhfWCpd80I/7oaB1+BEXJnhOzpB9FPPqLh+3Gy35HURm/dxz0ejzc+h00eZTxgV0dP+Cfu0Qi7rc7PlBzeuw2M93JO/amwvtnzkvDd9EHibHTQVu+vB5wn8EgHOYYSqH1LGPKju48ZtS98h0iJBeu/w9nABe750AuLvsSVJVq9xFoaj/86Wb0VhIrmac2Bdq9rSgThK9+l2UxHKr+oG6+wgayDLRRyaz8W3u5Ydfo0HMSWE7rH4MvFA2IMFl4TQGjM8gnzUg+X5jHx48XuJkwccGL/5qv0b+I1/XNeC2SuV/6ngcErbwCLPA1X3wEH38EIY9p5NAulN+UlK4hBpOH+46AEKB5GEkl7vV7KG8NQ4JUJjDtkXyttPCzUS5ijE4nLFhkIzFKi0gDNevu57sV6BrNniwQ8I8uDUI3fyNtPjdSJA1VRXpNVOJ65vAe8duqm1hdJsvXbfU41PNZPyGpZ2v7yxaKJtQUCUXmAnfUHRmwGwIKf7Ka2nR13ytWnRZpywbm7vCy1chkbgF/0SsAEG6nCag6KRfc1ewLno5IVznks2xlEaEy27S2NSI+bFKX0veF/cn/aetoa37GKCXY7EZT5MJnDzh6AVMBjnrCLT6yiewSpEmWldn8LOG0K07jWkaLDfQhQ5TgREEX7wnQjO8hmtm8LAERUkPYJRUQri1tlw01tJnOjXtIbXRvmN6AQYsJ/71uia+/6/0Un0gZj3rx0MKFDSH7jvE6NobVHV1FTbsiKtdmsnPrdawrAZwVVhV2PfSUxwVyQT0oqyuxmLi08B4DrMnvkU2+70ZAJH8OnasCwXTamV5AYqBztMspjfHil9LlJgFS2ZKGFEnsLhZIFEuZuDhbFzi+Fu6M9snlTdQtnN/9l6n/p7WpFxleOKyFaGGn8KXp5nCtYM3nrIssGPwytHMBvvTs/tA1Ph3mmHH1azl63Q2OpJVaEgg4e2PgFtuOg1k6hJSXioQuyPmTDh9DF0F3CNj8otciyyUbHXyieeLXrAj/IuqByNh0yfqQ7hDOza+pvo0ntiBV67v/bkC106lyS9MPMeQDEEyx9ABI+PrY0ltC6XUQMpVeEQ1QKX1Uom0yq38HK2xvEI0GNUJDqoVgY0ULt/OLnac+IBYdUlc+AxOK8C9yfrTUKxTb7Qzn8dL2ZBZZk+LSXjNM4AEmPvkmkAnO78xtukSJlpsa2Y/e2L9IsHNeKbCbtSXZ13Wu8WgGCDau73Xkpny/L1+cpZ0qpRF92ZlUqu4Cp8XrlxF97T7gewmBrexYLs25Q27UV+7/ffnO1QXTPIj9mmVdcQHfrM80c9zqXLnhyrE1Tqz9RJiHNVjAbRkgVToKYJDoomkcmV0T+ku4JuFpzC967FtT69pOEeYm6tTN8hGaRNf7/ntADoisoSCwMrM2OD2m0PYfVAeswdpgJjorDFWnytme5k0bPxVyLbS1CmD5z9pW7Qa1nWGicGRhS4xN+sEKK/qsaBxrUeqyjN/lzXyaiVXcpRDkGK875SQjpb3zu/U858SzpRtXZSAp+PsEgs6U8arS7usDuHmQPewPEom7jOxAKXUZnPfbDUPS9aJQsomr5CNm4bURrNwNY1nvKYqHWgfa2Y7fefNrwCN10b+BKjfsvPM3qcl5CzcallFXufHbVSwRlwr7Zj3JKOUs7Xiji6VPnqRPLpiIFKrhcvsJ3Wse5kKsXzwFJbucocaBMgewTds35fPdhSwANi6XRPY5cCJtULViq6THWB2Kt+0AYVbpbVLU5gspcpCaXwm0ioQ1Fo1luOic8uax/3681aXA7YY71ph34EYLdh5U06kxGn/34R/UMjQZCQGQTtY88QdzaZ/4n2c6vxmVpzO/nnCsim/m6ziJMPMX8HoOfuE01YtCNGOrg+xai3y4c55F/JR9WHDe5GxDUvUWs5/HO9N92kHK7YD1KGXM99vn5nJvz98nX9O67Bhre1RDbrHe3WaHmxnm9qJsHDWAKaD9qwr8R86Mn87pTgO5u34ky8Z45pWgIZEHPxJEtdWympKzLgCZNS768MnjRU3zAA+ucAh+rYj6egdh+ZxlN4a7JbXCwWp3+Nc9n/cuzl2ZnBYxDt5NLKdq824BmblCCQEzEEGQwbDbHXUmmdPjdAHz9Nz9Gh1eEbdxNk1lGZNuFQSZxyCAtmxCdq2/gxYqrIUYTRGhu0df/Kvwg+H4hBDX7j9LddF8Nz95NsmZvj4pMdKORD2SFcnqZFiR+Gv+h13C5Qhzhs3GCxq+qkeBIKAayWbt6upkYCWR+rzbNbmZmOdOYeTIDthSTOaJ6+x9qXLCZ0eGZrRI5Bd4/WKdm0q6BTAxUHTrdQU9hgEA48JRmcZm//ZK9Mq2wuzj7MI4MGhPV/t/TJI+1W1seYRHO+zCGyOYc3Unf4MLNqE/haaE8CE9u2OX4KwvGqkIP19rTQyL82dl1Pr7K7zBrIx41oDrq8eGO1hAF2pLGjhakZ3iqlmaRvT3GsUltKGyw+sMGH/UhdI1wn2pSvNOLXhZsn3FxXBL9eoclJo8ME1DGXh80d41ahzzGahdPT62KpjGZZcaNiA/5C32/beIPBs2Uko6mek+x7MGsoT0C7jSiSz7QKyt0lIA4R3FZ0eBgPBcip3UjcodIQ9xHdI5by+vMrUcv7VhdC575Krj8PeEpJ/2XimlErZTIb1Oe7fk5Q4/1NP+JDxw2O18qnh27NrcIHMynglUH9oYG5WwUil07bz3yGaMTlZqgR24CjgIg2Bh8CPHUl/X6Xtf8fOsx8Ijd/dc6VPkt5U+cpt7HsZU0/WU8esLhBF8m7SjuNYdCojMnA5oEqo7mnqCxo55uCCp0c6UOt0WlovFRzH9lRdoyxirOLSKKH7cWjULXwb5R/Rl77xos6sixIkwTc9dQKiwnCTH6HLnpfMBZBpYitgAvWaWG/vzesDyncUp/wWDI1bAyYG1V0OQe0iVl5ozXkFrgIPmQvSEXUBD6IeVHrhxeGRilD1EtiuVNH13UPq7rZqnKzbdjNJfxvzyPQ2NGn+EjQj9XO+V9HqP1VvV9fQi4HdA5TEdNJfkcvYiAgtRjfGTw1Yc42P2ZpHr3mIPTpla40Rz4Gxn0NAxGhyxuuECILT7UOwpWTUUI0/xJEf7CsuQcQVlQ5JuNfJ5FBcqY2+sCNHPoMhyt3lYwB6YGC+4iNRAJGyreyZ6RAktxVvmRgmM45a1ieoBxEhXtP+kUCFywcsJ7rUjgDC+kVR9vVw5PowbmSN7Q0j1Hoy73wFuBPagqu1SeypbmHDCkG14czH3tK/HyddUOM62kL74cDkmffGzNrUC8z/3iZGXiGhDO7/aIi2W318yL5fnalO/TtqhpqJIzdAJxgvzdwcPYUnR0QUXtD84kQbOOFXpv97AYij1HpV9rvPA6OZiOorYAmIKtgOSyLMbpnADQxq97LpbKjf1ANnzjBBVfSQjs1pTB+VnL5mTtZEpkLD1o3stkkYD3CtkjMnztlHZ/XSVxuwhqwEgVKgPBO5g5/YAf4hlrLAa/XzenBFGJTz4dx4u42AP5MB1EtGpjqdAD2ZC+8UA2zhIzKCXFNt4ztHLjAXJ4N9a50zwEnBRLzyR0y3mgsgP6BnGK/4XYmkHUVgwCl4tZ3e4dDAwiQLPTQQe1t87TiWMPUCfEwrGAU+p+wDt/3YmtrF4avckxhMFs6eE6g+jt3jzrF1z0vQv0yAa3s5fKNxgpBFPf4IrkYq08KlEfhNVV/2Mot8hLEMvaNyra6VfsggOyvPvzazmAjtbbAoR9k2V3Kk0mrvaVJI/4UoWZ+1vrhs4U9Lt0G1FWpiJlVanbnNglh9vRDNAZpZInt2KfKJzdL3Otr/XLJX7bZF9W/DRApWvaYDXHuxSDP6zMa4+QXxxM98wTmmVqIfD+BQGSYG/wA2ekLOp9vsVbMXsVuxS6PboCdqhYh0SX9WUjoD4GAbShURQpA38rwcouGSmhkUJH5pNUKWaGruw8r+sglilpcAFnMmzNExJI3d4sDI7Us0GtxivUCR1n/evSQSm/stuv+3Q4yL7ipkSX6bCYhu7KK6/LQAwQ2gt7eUmSYoIc2+E58T0DlwF8fLrCia0wO/+yIyhxAKN8GrY2vEb0bT0OT9qaF8BG3XzsXUDnHnooQ6a4jxwNeXOlRbvs+lw8Qk+SQKRFc3Ez9UKErAcPf7MYoOSGaVdax5BXzqkyEsBwFpuneM1r/9q18T7gG5EodYTO2ahKMXulij2tnQAjphDPNnciQDXD3YQkTZpumzNxy3yrUNDkxlNaJpCUiHwf9dlHD9Cz13+1FgvZVnYCN2RqDf817EJHf6BNVa8baNQ9tOx+YKselrT1FYU6Q6rdkRiAfmyOT3v1xNfhuimwj4/5SOeH6b+RjAWuyy+wd7Fvn74H35cNDmiMOILBC8nG+zd6xuILYntCfcAt88QuKakqzjp3odvTx/yuaZ+m8BkkTNtdNTh/x+e7tZntDLOcjontn+ycw4oOXTEIGBryppaBITq7XQ8p5iS8VOpPt+U4QxJiqDRsWNiQyLRTs6LaYvpAn8O41ogS/LLbRlBXKWRrr8S0TAjmzdA6KoeDHQZ/ccjJpRq11SAWxj8nmzJV8T/zeU9OF0V9MSq+frvlMJ+xnE0EZ6QnOSDWyl4QQ2EX/owxl8FBLJrJ9C3cC4ypwGRsbABWCrlJV6BsSMYgNmaQ6RZpNVrAx0rwSIbjzKmiED5cYtnyCR1WSXqk3q7ATh7FXEnxkxjDvxm/bbTLczDq9basObUI17z0iiKU2qH9pl1nBAZ0Cj3LNDibnkf97Dtk0ld3Z4lytRaDqWWpwJlp+je/PpY5XEnzkaImO+H7uK+yAbF58yc8zqXj0p+Kd+gfyttOVx6wQ/G+PzxCMkTrgm41wC2mJLJS/2H7p87NuDuXKs0nxs4dqt0Mkr/NxP411tEpV7UoJtAZAXnUOuraDIQrOfR1Jqd6IEwtKxkb9cNRcbwcVRUdmCG8WKNJRhg/c/VRDHimD0N61J6LlEYB+vJOnTuu1yRyUT94aEeQ3HhBQKesO6MHux7StV5gjBp8z79V0YHlB6THlqfY48ucb8mLrQr7fj0Z2PDfdX5T6kYWxhvZdc+J7ULdnKiSdQC0AemkO2vpxiD8fhl9rHXYGcoF2Hic2Z58tY2lzQnLVJhFaOQ3OZ9X06Gll95NYvC3HGXt+gWRDgO0zGWyzHUQv7kWLRt6hPZZd7nNIF7P5m5hSnsAfXBSbkm6xIOchyH6xssUn0JpXAFl17T7NIOwS7o/xqL/q0qMfZcLl6zgzFxCB+BHtxPkV0LNP0hNq7d4m8V64NJELt/mj+Ebsq4s4W/VxUbBg1LRjj9eODaTuRYBxTQifLqI/YphLK3g0LStP39U8okTRiITY4ab9N3Q4bfqbvKQi1uEd+q+pQn+OQnvmuCgd9LWZAdYaT9X+Nk9z2PrIwpXg0qFzW5rrAmQG4AKX7jHkH3p9RkSJrBhSIEoF4tgVeN/1XPLZBDsDc8RH/PXdUoX4jr7NBSzXJtUkISSJsNutjzmMMMBSJe0WDh4lnBo2vqj2tUWg9iMhxQ1rDdFRLoB3iPiJzo5kcw64Uq5k33hX3o0yyo3WA8X+KXRFh69EDtTIECwYA67Nz3BR/0Sqw9/o2Oh5Wp0xVaKFyx4wYM0YjsV59MZWGcDPqGJITZtMAaUNGHG9P8Nlj3gH26FwrlN4grjZN/BNG4Rim6yszUjJowzWW3gYOoGx0/Dh0ks4+jUt8VgMGBU2ozsl76fq8TGbjultQwYmvnIgmu8vxuWOoyr+C03FyvaCUPwIW3KffViumvpIlASgXu8CgPjZuz/GXJblxxZIm3z5Igq1DXtQoHMCz/8P6sXxqI0MC4sy1J2xWyNQR//syr94azqeTPKoXhJNgXObTdKhZ9YUmxA2C1iuklUQ0Ib6+zU3WbyRqNr5gqizV0mcZyOcgfqryN1+OSl5JHUEfDSyp5siHSqMmiur4M76RhYW0gvtu8EZpvC/IOh33GiUQzY11fC0uNHYPjqmVpLhWIJbY17SAXLjzAsLzxLVbWz/mPRY0rC1VIzg5X9JmAyvPpkDBtasFVfWgQlDiZ5hZGB1C37nrNeEw6r/kpzE3tafs8F8CQtkEoPMAXp37Enq2QUfNQ7fhCxZjqVpTVW6M5JO9QFruXpeBNsCpDQyaxzuG4eQRkmK3M7Ynjs76c0oxPhwW/Xe2PPx+rtnrLirpxexgb8WLozxmkf6rjKugjJR9zsry6jOv0vTTIKNrpMQVAKKrZXzW1ZC9dZ4j2DhetnA/U7mw2x+wHT59JHOAXr3a+vXE504MsdPZPUK3DfL+/OensSPqMXpLniexaXD/M9jI4MfbTLHsBxHUjPNqHw8iAHcFqITGvVemGuMXVD65fXXqTamE3tIG2j88XKl9inGllDr4A0GXiQA6B67ZoTi7hoUKCtWcwZITEETH8wqvcNtJZ790IkPdk1wcraadEW/HGSN5CKsnjJAET9QFLxA5VInPrd+sXJrzyfl1GhgfBVii5fEoR6Rx4RZg9L33lz4zbWjJPdANVJkfU8Q+Je11oGD77m2gvqyatoamjxqjhQuQyZkx4hrlAgFP1WsnprW45wvid536J2VvFwGHPtpbAhHfAwQuWCAkmMIGp3YpkaZCMITGI3c6BxnWi2dnKRXMPx8JIDDxwVqcuPjWMqQEuZqQVog5FBKO4hw/41KuZ8GEZuOYVqMaEsAfkfCvOVUUuHRGVv1qacoX/KiGFOkoLdwaHrD3hjQ4VhlFwunILrLPg/cNbOWGJDUhzWRqEyWOsCY/Ajl9BiIzWCiDh4wlNalUAwjpmdEdQg2rWuAHeTacFcZA7GUbD7PQGyFXoKmUZ2RCkcQMdqK8hscZlTO4Te7VjJ7dBsVnQCT8AH3UbRe+wDZa6B7ueN3o2SKJZKGYzJSFoPBPxOJtwuOjM7F72QT3SL9ojEqPL0KHQvnvEtrtPhDvIqx1hvqeBtrw+SnKpbgJWjcG5iqV6M7S5aDIErDQiA7SjZ+9tz8KlWd1JFQA9/v5ZOUg/sTkXDi+XSDwT5blL4TPWceHmJu27DT0EDpkS7UmwKo6bOYqaVwPXQvNAvDDy9TYe1m2nQSpnJTab6PcqlbNIcEe9qVPzg6WlI8jIbccYE07ypovxGYGq3SRBG27ephTVR11Cr8Cekvm3DT4iUzflvbyLoDGR/itgpwfZ1Fs8seeAaUFy8phCDaJOcOD8Jaqtk5/EPbpy1oIu10XA6uhAxFb2AsIasoodL1FM6rCEgxhmHrh+WF48Z6ezNjosmMYeGo1AG0dzkGDpSYdy2uM+R7ET+IAd1TKdrui6hSrgXvQ0rUicmXXdjk81N4dRUX+E5mw2MuvH7cHZH9olQ2iOWKIwa01bPtrdfrq554H9uPsyKd908CTKeraeKdnkei6nmoOjebJCN5nCui3K4PK9a9utQRRl28juEjjShdRGIodZ78IW23MG0vyf80NguAIjimKn3fAmeFDyA+4HYzYJ/y+/U+PDdrUDjZZwuYpf5Swbwf3Ss3K+vmWBYozIv4GqfUY/mlRVOIKU1d9J3UTqQCc62hO3fisiJMGFUBSha3ou36J1LlROjoawZmsHIvsM2sTWh9UI5wMKVyNTqz16kUWwtIlva8i/JC994zVDi4G83vJpCYbsVgsKNow3f6PvdnZp7V/oZf84ymHyEM1Kp0aw+btiVL5umi+FdhDk7OlHHCtdoFhu23pgg0DgNYx4nvl2AC3t+tfeqDMsLTSnoyWyggskydUSlsMEtoKLIwosNmzVcD7gbOfb0xauieykRItSGYbDGxJ1WjqhuoSwbWXhIc7KoWpuPFaCpeP1uuLvGJrfLxVRKDFiQ6QTpXpEGaeFTuK0bBNXGE3Tl3E+5I26LK6BEqqHSAqvPuK+G6G1J5Bnx3B7SJCl/J+eQMySjgjxlaHgbsm5UgBP4C8FvUKLtgcDQaXB/3rcp9sz/q1LsjdmZZl3QTSyBmAHk8+7nbh/iwTA5rmVjnsQsH24IVowSeUmXbuiZvFnK4InPUvKmu9ZOh+fUhPlKhqODB74JE8kiLeY0FvT5LUdtQHCX+Nkt6ObKBt9S+bURLbrsBr4XgwHizGYL2oOgCIpigX1kr3nsYl6pogRT7sQC38UePhsZHp6K4NwrNwq9wiDD+sM9fvDiUFnagGenRiHMhCkYBYecgqXk5eyyEshcLl6ITdxagYK9YcJoQAm+VzmteK9Z3sIXeJoYikClzjt8BmIB6JuxhIJWOtPBBfc1BowLjG3dmsnaLg+zTGBRSVUtyykJXg248gv7Px4HRmiNWbEmXENHWBMKsj8CKuMM4dT5/cToPMm6ugzHpwpPhKYGY3dZ33i4gQBB2Y0vIBQmB5sMJyWRZPzZk3uebdmO4EC7SCq2lfNq+zGdesf4EW1OcPoQ73t8ayjMPVlW1Jm69DZcXQXdM/d13NXscK7Zr/YQn25kdit8Awa3LuuwrvDI4iiyWkbldsUsgwEhrAbj+0Gcp685xCzU9k0GyZvjy2q6Fj13DTZy+/KS/ilcH8KiyUUgBOaf9wMDpQNYzYjrttMjn+65p8Dny5V7vKBruBv7WyR8c1Gr0buB3L5nuJmsySrP4BB1Tc/OsOjAUBGeH/3y3ueYgtdL7E3UXCn/9PLAk39GRAwNK8/Qga/N35Fr/mGCl+nXUObKv2e1y2qt5nF/vkGv0Yb92QjLVXnvy44XBCtz++gceanqThHMqlszt+c6XGY2R0vlWRLVmAQWLyQvz1vgN1btNr6bt/EHYBmnHlIsi9TDH6nnnS5rk0pAdWl9pwysdvLo5CXnP966OqDnrUYDU2rfGAqdw80RSqUIEyUREbx7zGCdv/RKLWMN6CVjfYCrvHm5L5lJxcga/2RHkUERteKLfftPaFAnCgNiD/8CgGOeitA4qTKky8W6QKjzyVtd4aBPnxK+NAQeHwKK9DjlNc1PXy/kP8kAtBp6VqMM1gWaW8OLf/MavBXTppESa3gEUJj7cVXP6jre2rqtX6NRuYgeumYlcnJA894f2KRWZBzHdKiqKrTZOdEKq3mgURc6cEhCogRSvqWyhQeqJNexlCnfgPgkeidkHiy+/AfBYFVZ2pYj/JMlU++zO2hPOMnx+pKt1OfG6fLjNWoMQ+C+15b4mSQnQab8Cn/U8YUtTAPD1rvJA8D71Ed6FcuH8PDfShQQiebFGPnDPGh3ewOfFRoj14am/6eIDrYLMrCum1HlYJDMjECWShOEnXV7qtvMFL/EEgpj7x2BSFb8tSlxd5Gfr5W5D46CQ7hOtt0p7htC/RNl39LG52keSl7ffrKACSSw0H81PZzWjxttW0OoHWV5sABkqI2m8OIb2dj0iTyoVtQwFB8X6truN/dDAByhwEo7z57FASDW21yOsHW7lVaxuGCzO2JgDw9l9yeGYOe7aTvf7i0maUJkMuGCwjLcpbO4iEmEwTDWHgVH/qJ57JasU0rsBWoWHlUL4A/VqmhyDFJkAwleQB2mt6DFCYZji8oYrs3EDysEGH1g9Z9ZJm67kgVsttFUO8SaDe4BlSuZtVNMsjfQwWVfBuBG9lY8mn10HIGM/KR3Eo8gOoJDXXnEAtzXu4oMvtLKBDnn+aqYzhXKp7FctBpNc/+vJJmbIGgQD3hhptNPw3Wbp3LvwqtJIxGKiFebJHye9hvgri+yk3bpDjo5s7D9h3pI74kDJc2tj8LwKTLjK4c8pPFhRt/mfAhgE9hlIHtV4DJo5hT9ZvUHUJqFyHX+QuhgXbkhwf51eYOfjz8bj/C1XsMB8u0OPtBFDM0xI5TtfOB8GO75ohGLNCW41As0NnKChS9Veq4VpcSsYe5XGT2p+d8j1vj5Dx6RYYkzVXejIX2rps/G1ub7stLRxOlrK4ef4Xb8hWkgqjz8tzzjY8vF9I/fBGGGHMV/3JA+KwrMs3tNeithk/diUX2EIOi2a/Gg1XPVZOj2DMPL7z3vEl+uF2HfHrtwrVxIAmpuYzpNFTvQlrJPWlxEOhK871/gYNbT+TEVc+KmTXQEVCKdq2d/G7pEHhdAyXkYWnXrbrvJdc5IMbMLUnh8jrm1E08YQjUmm9I235Cu1pJt2ZTZTGj7YlPUexN2aYQn8DIsnHpAD21vT47yksTX2cI2TOiQ+vDFQRO3CeACCSW0BpGalX7qYlJxZDLPcC2xWHE/lNwd8jWlMjJakDgCjSIiOdNpctzkMNx6oS8BoPRgoMkET7+g0ksI+t6Mu2TXGyXAjyNQyX/q067ZMa0NmAgjuxFnWpI/mfCloA3MmRkqbHLyvBgNkMOiz7JjIaF2hObl663js88YGCjmSWY/Q3tyQuWQJRVld6V+FUTIaeeF5eDvSuCjyWxkLrf74uyYFOpnZxbiEk8ktiwL4p5LStpFBk1r0Zcw/QCoVn5axiach//I05OmMI3744HGwehqzC8ODkfmoR69tyanqKC2jF2bl6hIBb4UXCO2DxagvuMse6nTtsF8WvrEsst2+74zKFYjH7PWVjzY5jrZIBm8J6R9k25yqIS9PdOJyRjEan74dRpN9bE19sENQlXn+OPkrvgtDeiSQrc9Ue/A4GJ046i17JB26UktILPFiBoiiVvo/M7u55P3h7u8CI5sdpjpS9h5HBBp+7OFdKYOE52qZ0dmRSPjlvuhQEYdv0bYSQppPhh5tM9tT3dwQUa+sJnzZxj3QTfTFpwRXl09+mHjwUVnaIoYOSEhZbY7I3wVOwjGQUd25hX7gYOppTqUqSGmWAXRjmSoZgDOJ+H7c2bjfdV5vc8fmjSsqfN5i3tXM7cUDu24LTMuKduYhk9tA7hFSS+zzMp3z+IL7Y6d4RQPbvVrCJw/m1WfePYr+YFsVDPnGj7WFIPiJ/MG7jXsItbU7Vg06lliXIKfPiW69imezUUdUYY2YKamXDLeB7NPwada4lVHEOUqLZDp2H4uzj8TNgqjkMgVIa28+95LeJO7TaLBa+WP4jvG4gH4iuRLRRr7EmISf5/w20b4DHVoU6bV4Y5NxeQhW95nj6MH52PjwOO6Bh1zJaea6U3pfMegO/ltpScSjfQJM4GgwdQ023228oK4EB2uCJ0dGziNhvpp3EIZmZNI2qmCtjCn+9eNbzbegInDICvKfBM74q0goAIzvm2U3vTE1okf9NP8jOHsKwyzumH3CP5ccVOI6UCr5R42yIFSFqwiijK0jTPsRq08iO0po6kH1xB7RcP9Y3JT76sbV1GYm86Yclelxlo5NhxOYtYja9jbmb2jFK/OUuv9DuDZiUKzxgByC0VRO08Lf/QsXKyKO9BKFFu5FNYg2vbpyFnkvdTLc3ml44rjORJgda0DK+NImbztokRYeUbUPKz98hX02ScGUNI+wBZ5oP37fCP/UIvJVXs0O/KzG7urkhM1uuRt8xdnE0isTqTz5J3Mmc0XsX92fmcPTXUKcrY+R5pPZOv8culcIRWCrmUxO0rIUa3jd+k3Z0QOFgegdDcZ0B2HfAK7to3JboBOuxGyI/2Dwl0wdRwS85FYRruNZAwYdBqgn7ibCWQH8U81kEJo4jY5sL3TI0UjPOKBj7qmg5s2nagWqWD0rXZBRAXGu+qdFajvrABk0K6gVyyoGGjRmUo5sQER+G3vSV8D2VkOtYgNDCyWn10Sepj/+KLJwFN+k7W41XmFfUJlQt3c+K9Q7QnCTHTMqHnkG8oZifhdKKHSSS4y7DyH7KrXxIOHfcv05tcwnZBimAqjTHEwebBSiNLganX/Khly5+5GEp5EP1sLWXp6MKL1mhdyFZCTl3WKJrKIVnHboK4dkSuDx19AK1Vpr888tPkw95M3i33JyJJdH3gDEECz449E2aWRovwHQFeZ7GmWSOGTN/UB3ZgrUftnjJ2MQOq/Y5EKRZ1mZ2OoE6ApaDz1NzaKw3/ES2cmJtV0DeSz6h/Ik2j8BtExw+/gRfk1rXo8W1dcX3beKahIlae7pjpFpCHny5/jqesVF0lh3n+OiPth6umL9w43ON5zK2R6UTAViIYkoqVKeF83vgjtvy9y3CGxtHXyV22DC+J24/u6HX2Q+rGERJQ2f7GUR2LiAEA2IaBehHFS3mVTNGaQGqlCRVThGoOqTOS6r5Vk4LL5VZO4vSb4Pkg8jitHScOTtAywbi0RbcXb2V9Nn4vBPcPxJqkdSIUaQUk+NGVaplucrcpoOAQ+xu0sT93/+IXjRy9rExnfoJ+FFJshZYXIwDNHexPtnKak/K4c0u7QwcJEtLW8M4QsaZguiXQ4oEQkAX7z1P0OJjYhAHA1fDD9l9qFV/ips2ZFnx13+t9/bSqRpcWDPQ4dN26FseJ83WX5FYxV1mSZ/ybC1eQ2EdbBmzpUFljfyfcDmBgqi9ada/0WJ1k474cLtP1bsUejEVLaTYa2/S9Na4Lg8yzuy4U3Ya0ps2S6T18n0h03cXqxy6IdMmuRDXIIQ+PG4BWXf3oAnttBmjNflczNjEef/6ROt+A2Tk4BrJszLD60ed/PChHW7Ez//PtLPtsUo+uQn8aaMwboMtcRyYxs7842Mg9kK8lggjP7yuuV2QIFd73ObDR365u2VMNqrQVggno5PyYANoqiWESkkhwm3cx9nmviVUkSFw2Riacj1lTwi5gGhSMaU8iF2S6xfdwxG7dVbzxaEo2Zxt/BKzHEKQk9C+oeR4cNWT4234peK4NIiNUv0zcVcwK2c0MY3RMd4+s0rUqp60Wlbr3g3ua1JQGH9eovo5VeUgjBFHTw+/T9qf+8UBF4avZHCq7p+TEsjx6br7az81M3iQ6by9HCv8ALyuVDyhGMblwWo1Xcy9sjeHIXinnvi6pOpXUJ7J/d1fepCmLd39wgoDztrcZTWD/umzIqyUjbnpjmnNxw0Y7ZvtO9Mk22SOiUsHrjQ8CRzHDTrckxnVnu/a7RVh8xmjkyK0a55/qiM0QgEnbFYhspk81F6HKBMz6iuolY2W3sUhVBHAwnlvNegKSE1bLFtwqmeTiunbn2tQr+LgD9mexb2c/Tm/BV5mGv3VVBNrElZIKnVIvxv3sRyGGAVqMk8Zy3y4XfgAZ26Vu/mxce8TQ47dY3JRxCoXu7/cMenvbVtGbSlpbDVcPbFG/KaEI5UMiv89mp34VbjpzKch1LE6F/IiX9YICtUgRy6Tkc6gp/9geh5wAPFbTK9JjoWhsyGHCav8yqEB5wtPqvxhAZdL8HLDnKn3EeY+p4M8Vl8fSejf3eGlbnYrZdYhOnClUtCBcJNAKLkG+mwwkoaKBVZXYvE2AMQlTRhrO9LT2msPeKAsPDdNMqA26fCp7/n9c6iWvjHqZjQpFPEKk7Ehzs8uIBmvKjPuAh2gBuxD1xPgaR/aznLu8Xls/Dg3BNSGKrNhYVaD4IMhvDnmHQfh0Ku0ICsz5MQM9O2Ag3KQlfMSDqOEaCHoqg5hSjugSQxqR+R1ZsV5X30iBTMoOQqbplOvfS5LRUR4iOd26xK3Gd8zZFAO4BDONeOE1iGypiCs4Jp1KGWpbjT5WcViE9Lt8GykJmZGZCJAkIsFPIiGWs7jwkF/NmYG8Vf3bzbQZlRektdPNZlQYT1KbJwwGAv6IZDlOdE9U3iVqegRtwAi5T+SDQIzhDshhJTQu6CBjfNEg9zEHM+cBZs6QMRTKMbWKPA94IBW7qruwAz6SO7+saK/d/9PpjfycF463Xsym5XXIvETajjDEy/XB+YduKXvG07fwuvBgfAKurMgr5Twlm1bct3Vijlv+VgbX+7K6sIfiNvpN/9sUQtJ4shBRB8/vMvcA6ekxQf+jqRhH0upzMp3n8i4uJaRypo2QutMoQSKfm3e5ETldwQTwaM1+oAUCTyoTzMxzBclymX6WENWVy1iloM4wdSvfQwaHk6CGDnP8KgjbwvIsDV8+agMabmV0fm1dsPDZJK/B0K9z+mtcyqQSJwwvl2vxJ5VfH3cdtI5+H0HZvOnoJyoZIVvpXLCl8kDju2hw5Z6Qx9BjTdMaqLEsH9WIxjd5jbFUmpTymA3AjBQ5n1sdeMDOKYpu37ot1q5pv6BBaLiNyOV92q2nUusKTzZp69jZ9+9OGLtPAZ+M37vAQuYkVZkdVfCnMU/XEL7gpxCfYZRv4WxVTcO/QGUVFkQMhdfSY+HtfRNFBZX8id0wIxZ+l8ALEjprb8u3a6og6hBItCiAi+3A8IoOlUJUC+W1WpttBQfcWBnaudkWhxtRs0CoBX2B03bN3pR0+SGZ5bwpQcTD+u6581Vl2VXZV/JBUnH5+gBY1whnUOsqBXdH/1gqTY5Ubpk+f8t0toITgtS0FW/kQXV9W7rHkKZ2NqffCbifq8Lcraim40e8wT/qmWereaA5PwCv+4STwCgyYdjFe2gQnEwK0UcUwUR3j8XkcLpHTgFDA6UWoO4vUkWMbORdWhABByjP3JmP6Ml2SXTIJG3gPap8XS0F8PjNio4mZO57hgQLW294RXEHek2ooArQaYyQtUFk/D2XP+hrpQNyiXWvNucd6h2PQUB4Ds4ya6S2aFFiQ7hk7CO0q+cAp131HIde6rnRcA8I6dOCLYYQYTW1HYRpupPfXvdeIVamRZ3mRxIV9FZ7wFEGzjQYM04V2pDwFXi6IXaekmxGZtBGXyPmzs9ijfKs2ehjjus0L82Ye4bt4ViYGdZA0HTDxDIM5OuBir68qXE0SFXEUKguzYrdGRjjihdIEJFSQZ8PVcThC2vYrLpgbO2mdPkXTCUhwTvFIWJizcu5JgshR6c5hbB6WehcW7RmgFoRoC7NJ4WG0EiB2whAYwhZHlwNVK7xqBIQYLrPFWfU+RZZWQXhRUDuRDfciebdTclUy7xjkdw/NZqdO1LB/d1HFnCr2syvfL0R/GqNS0AWysFuWY/tNY/PCv7zHrSe+lwQoN99nsGw8w3P9JNq1mSaN1/UTvf9qw4jaOlph1zNcK0NUsMpdaJlaCjtYzhCXBfqEkBoozmAHVtK/zK6Hc+RomzW5COuDZ1srLZpJALUr4oyJjppBkESmgCrAQWRYzTqOM6XXo/XxvPn7JxOU6HhXlZiKuWOwBLyysSewbs5MazRlCr5rfTL8VO/ksvmASMXayZsTekraCnp6lipFrAkuJcm4PNepHKfSQggQUS0pIlFKLVd2KrlLXExZLFtSHw8M6NXoaJjtVUmUf6Lwsn865Wt/quShDFNoQHZxKWOPkK6MQhJUDb6fbUWC/rYP9gXlagFE4iBWX/AJ6n7NBROw3VJiMp899xpxGcbc9In7qvtMDmjJgG5Ma5CP46L0o7E1ZTwjeVtVH2q3QemCpaAWDbx3ahuRO/khTN5ScWEEALxIr+JU8ybzGXyPmTajALpCRnZofJcpkZER6SMK0TMfq5bjAHjyVZhUpV8warUeZB9DelU45RstCreWq/RAQzbzphLanSeQvn5B+OFOfWRSu+i//n6ktiDVWHuYFmyEnIkY0MwQiSf1L7K07E5i6+GGtX345j0efLzuIcLqmyf0ALyzf/FIPW+UHI+HhYe3ZIrzYajLjJGvtG2RdEtaHyx+62l2R3vapuniCv9mttUKkxSp7MQtGmrh9hmwgQ1mPmImevVICOdGnJmRdRI+zMZURVcVgqWpCH38/hAjdptZmjijeFOOKhW7uIhSogTb9C363Fh2vhfNukMuVdEE8Wm4buYPuYGGF7IKcGRr/kOVoDVRyUZ7r7Vx7blQfV1xmnRdmBGZyPFADUWfXyz6gzehxajjleS6IyYCdiUAffEpY4nAE67AzQuOkWrijickw88Y1z0D2cmX41vw8+9DgUK0imkD5zW050dEBTb+entUuAab3r/O0sXVx2mhJzWsg47/G0PgANtcuuuBEGHyErEuqBnWsVxow+MOied7e++Tf4Mh01N9YdUllFdi1PEpizVTRDQRRkZzLnJibRX5WxXNTFGr90bVINHfSHsGd3aDw9gsGqRvNkDc+oXRm0d4OvYQAMP19XaRenjOdADn5e46b/YVAaDLy/rLmp95LQEs5iKnLH1B/4TnXDzdW3VcrDZQONzLMnnNPpItVF7lXH7T7ZUO1oS6JmWXWE7JKlo0MhC/4FPAlUxGT4r1B2UIn82jIYKZXP/iHII4BhxlCmkNIBVs0Lv3Y5TrBjugclf1Nz87Db5Jba77jLRQXaKZMgE2V8dCOIpoOxlroQH1yad+KkPULFDQGDGftJyBwajtacYjCeHJWcFqoGD+Fc3mx2/Sf1TQlDNryXOqL7r5M5gU/iy4I6++fYz81rDb9b7Zxif4gJjk/Q6+jxr8hvVhCvzYqjJ12kzO9d3T7hRXPwIaELozfJRACxVgUmY5uf9ArNdn6fNcyzXt/b1g8sF3JWa8KlUVOT+LnNdPOfOxZhECSwqoHzQjSTNZP/hNq1eC7kO9cv9e4GorE/TkdR/JFStm6rabTjbyC3yiTU82vBxgLzg2+BDzkD42pwQhluU96GxXjKxdAfth6uyPdtkEu8djWXCS7vCaVmoPf/x+BGa0gj9EFr1f/0u3GRNkYBF1e0tr5pQ80a+Qih2M6RftG81qiO7oZJMWXnspll8UQuT300F3zizOfDz+cHsLuRt2GyU/h6KSuG6cQ9JjERluM62Vj5VkOict4zSU/8G3JKd2QzOJH2FHed8E/3PuzUj3BdAKaagxGCRHTrdaswt/VUdIyhovEKV2X9//D4J1vlTj9HDNY01EMfTdz8LU92T1e6zEvT+Bh8QU05wNMwcDVQ20GAW6OZ+5lDRIXlwT76Wul+ra9bTJSNAKsACMK4jziyzaBsofDu2jbQr1P8CsOvsB6TnUCvmXqRLIqcfLqG+W0m5h0uuH+j0csJn598uPlSBWnwMe8+FoGgUrzMLi8T7wc52zpw3zrzsmu9lo+cLK6lBCPeZFeS5jeXZYKpTOBfGzEZp1tXfD0621TUKXxoWLJHjmlr/BZYz1H4V4phDjzxk04o4fLbElseZx4I/ATZSPWyte8bZRmt6ow1pomnCEMiHR1wg0/eZbQRZqKiVr0/mzkKEI+U0Iwzbe2u+218AnU/bOmdovKhq3wGjDs9MFoW9Mt0qhru5oWJF2/An89rTeUEThP2XSHng7X0NqRupR4qsD1Isv5mvUVlaIbb1zqIh1Q6RTbjRU4tua2D/g1w80wguiuoyJFukFaeQujOgmoCC9hbp9fRjfaV29jU8aV25As9575/v3R71iBjHYiChb6G/7vg+wxaNrlg+ba6zZ+y2p4COXm3haVg5ayhkvbBSS2awZdxibm3o3i17Wtx1sZMz8ZulWJaesGy455/NejfPH79s7rM5Q6nTUSNKeaOqPP1dYBQ4kbsVIz18oTLyY/y5L3IZ6BWNX+oSIQWehzD1xbogcjnd5g2F9xbzfCqPL5YiOOAkvtnujDix7MgCLdoirk/oRJMWihbxJhirE8uBRMfVRyxv62zZYZqimVvB/6u9hGkeAkzqRh1gDyNwsnl4kqmr3ftaKxZvpyIvpHdTzT/F2F/e4BM7zTUQ2JEsyThMT+FyVmpt1C4F2CmiqxNES5j7qYXhBPh2DhPa92UYvzcg4Gn9Le3JeoRy1l5kkPEYCYE29wXfbI3YkgbiQr+CQgksfhZ7aOIFvfzH/f0R8n71seMvBVJxF4mIFZqU7ywbtkFduUMrQpYFiuh+uezfi6K2nKvIX0Dkf/WEEEwQ5evzpGXkraZp3R38pzpcS5TwXa43rK4wtYjNxrUaKLyuotx9LYT5r5V7XGO7FYBYq4lkPSlPXAbAQZRYsJfG9JQL/5ALxHx/Ci/oqxa0062RYeLNiSQMa88aNBcAF/4BCLRfKUrrN19G7LxPzPwwnB0lHkCqT+TVDUrSFBc+CWUonXNteM6fWoZHnyzqfbFfz+D6zWLVC2um2r3h/6P1Qv9ObIIOMumHjs3J9PsNQyuF7BQ8Mbi07DHJztqoQIdW3idZY0eEJPjWhhkCoWE/Lnw+iih1Qt9C44VbwKvMw8hLoXSVXWwQhle8vvYd/m95bEcXGsggWnvTruFHF52b+mxk/mVpciTYdIQNkTxnDrYsSP/0V+6aVR/dNFZuN+ZWlGZWBmYA40lvNvL3IhSMWZ2gX8Ino9Iv5gvc0A7NBJZhdR4mH7hDa8IUxVelHVcwVEwTn7IabcnNrpZlRuPp+E1ke2RtYLztFxI6pxmU9AVOsPFeKzH5G94aEQHvAvlzp0jZbSDcRkeov9V4sNWBgQpO+sBexEtomI5hduFTDfhbnKUh0VkjW8TJVeSAi6+3Wq4IAwYGy9/aTmxeHQcCN3jXHo9J8nsJJrUQGVCVzi3Y/8JF/K/k7JXFcTXjq26iVxZAAOHofA5tA+IihuZLCeIVCbAx3Lwe7sD2O2XX3BS8me/rgCmeREc3lPIF1jBS95Yukr8vPSnQHxf+G6Pf4ZCzW8UiRtRMn++ng2I4DMhQfIQH2Kki0Sdfd9q9Gksh5Hh22szw1k6htoZtjTQl8DpxAiY9JlkPYh51KpemdJ0nKKxre0N2s+nLyDEl4VX+TzKdEdpECGPyVz9M5WGFb1ezriVU04LgXL6vPOqgAHjV+VVHUqvBFXyvXxstBWSkw6xq9WHV7cj3+a7lKsHJmKkSZ3jHhbLcUMVHvdgxZtQQ6WpagCb/ggZISWLiro9R9DVBdvHbPE3mTATDAYcJgL29fzdMcEbYe0+UCpdIVH0Aja/PNkVfBC4//JfYHar5pUGsLWBzyhptFy36rScbGazYjEqJElTRHU5oBgIhyRHpjRg3AgoTO+M1ML94iTm9JIkgdlI52WfETo3hxxv9atYtPjVDZib37wZVC/ozmhhFt4Fyriutc9AmXzruS7s/NEy/qZnyO31VhU6ve7j2gX6x+w1LK/mXDHqaDDSMu8UBCdccD7olfmxVgD9IxmLB8de1A1uFrnEAA26M295mxDb3Gt0alyaSyR6QUdpPTx2BKRM1QNfeW+ww8fZgfj2UnzcLDkYiVjt+/tv6InAFhXYr3AADKXqFrUPj8VsvKUV6FML82YsrhhsUSXTCuokvxzpIiWlBfPgnVbKkV/ebewuPr5C+1F+9+E8TgEFziw+Riwsa4VsCf+A/vuOO8pLgTO6cW/Ha4LxMGNWdtsOJr5zhvwb8RBrvvZmIG7gzPGeDgdBDFq+LJdUKu8c/6mlItC+DKR6iW0+L18CljrGr0o7LR+JpCpdM9dky+S18IvAo7d39ztuv4EeLOP8vyJSKLqG2V7QaGA2ZvL/mVMIZKypWLaoKj5XeKFHM4zabZrASwNsQQUIVM8I2cpF8Ac+C7DuGh+KoY8I2y0Oc9BUcUmlTlnnKxULhzGGwvKla6Vt1GESkiN9/Fbm9qOn8adQlL1+przdUHDNWwrF50VoODtYqWI6JVV9ZcH3w893UUeUHIYy8k5s+ZalOs/JPqvPIzUlzu6n6ybtHPzC6sSN9p9gKCofOKpJmFA8s17ih/eLq4tZeli3MVqLzd2Zll7K7qOXLfaruFrs3VFNUKCV4+NB32j+IbbvEGqQyr0zYVNh7oXRAAfMSxga8JyawXERkHiDaaUyxvlGzNxZt/ajKp9GXsGbrEYGBH0oahUl2Dr1aM0sts/avsGUqqX+tWSNab51OtawoK4T2PSz2MsXt11WIuwDw3ELWtHdOxGXgVBzbzO1qWGZr9lpzvPg8iLOv3xR1YF8m0pxxGAx+n9R4Ww7wzTPLK95zHuzqbU3tht2Z4tl9YdlZ924TrW+gLRHbcVj048fYzB+LY+spaEvPl0uF0dhKNCZb5hJqDf+lWc2LDLx2Z1FtoLIRTrygqSmk2AzfK7KfsQCRIaNMS/+rr6Kz6qr7NlgeWS1EMOcBotvqoiVo5GknBCLS4JPNMxNItmPiEV+TcmvriYDPU+U3qAF+B88idNTRW+2NAeENuPfzonxdsiWswIK+lEbn3iH6k7TAeFib2F1AyYs3+kiVOwjtR9u1J0dnNvcmknhyzHT+wL02w+iXLLy0Sq8a0iI6GRRmYJpmorOkaCt+HA8k+i7plb1Vot/eq2sJXqryCruDTe2ySSYEH1jvxV+PN6qA4XvLr5IqOZDonccekR0WeFnTD4qGCTcZ0AKa6J8y27vRFjvHBPstKwweSVG4mXgFtHkhFS/s6wO2SvI/Dy0LRki1lywSFk/4Tmn/sqQv7jg4IGUg7tmVr6zZtCjxiSzQ3Rd2tGUAqiDvSFX7S2UhFPhl5uJ28KnjM1yjlogiI/K3BXGQvsQsSNAzADCASZE04l9hvZ3L70jNFVGBlq/aQLDKvsr2NLaNPW+ir8xSe8hvv3p2ExhSo+gZHCEeBjGhff4OkEQvHnyU4Aksv8oUftAikQln9YUu8wxCcAsDDp0ZFdQtFyPQcVtW7auttConvfOU/MXfbH+K2bi59gwKPjeMJeG1gq9rJRVNUQQ2peG4miG9fopCvUK4AvbrgLEuFwq0r8QbYfWOeKvuhU7x8OYuuTf4n28H2DRjRDpYkv953IACNh4SM3CLrwpS/gtuUFr8q4pvHm2rT79Lu2ifhX3uBozQ2K3CoJKFPylz6PVJYw6fmlNltJwB0cUiMpTcxlQ1lqWTm6NjTTwn6FbpGoYwA811cLykxXxIM+2iofkMMxVfNDf0QGqLLrJgAm1O3Md5UorKzwwZ+b2HTzBN5sNih+uRvB8X/QGQPx818GUVrklGoNyyZXgO5LShrPAyMvXIoUa1CnN5RFLtfCAHqZeVMzJYWCAD8PzMKGsp7ExK4VOaWFdjmBrE416N4IuPOoodeFSg7uNw0x/5M+NTqjfkB1wCYP+xcMeXtrF3lR8SfADDiqSowDRoprHRUJuxJ89W+KQiilgnIT4fsSWeUOO3NXFY/O6rkio6ZOBtNtHWLPSupFGHjm95dR4GoS9Ug173jJy0AxgYIf9+rD4wbDU57v+W+7NjfU+NrRKJIYfczi1HNm+nzKa4cfS/YGlDFO1betkZGRSxqqv8KAui+a19nDLZh5GjnFjlEfQ24ddfSGLJtL8UUD0UdyIDmKLM50eCsLhw8mu81U4pkOVQ6NZzJBFbiJXuL1016XEfQEB0xyqgbM1klgXbxiPRgmcPmwRnKeogl1ktc1bmqA4tJbFck0SeD03meAVstlkMxmzMzbXGl/SEbqk+9+PfGFWMWSENp6/qMUarRXb/TOKX+14AT3yuiTQPLmbYGdWi3BfJ4U3JFCMLOKeyfsi0VVruECwgsptN47XpbpWz0FJXXJkNnub5ywdhXU4mKkQ5BNShpTJNXp8jCw2nZcImaRD1WnGPYQlKTL+rLer3QQ/R9LgCw9GRm2y9kYuL7JlRhurtSw06ESFKxJYP95z2i/VydhhKrVB5lUvkr96aL1lZLOB96tCgvj8WVL3TJ4fx99ptH2KoCvGjejGP308zewKvEx+qnWkKvduKFVRh/DNRnAYBQrBgRvmPCQUjYbyj+obQonw4ycRYKUVf6KZ6tfa633Hu908Z2+6azl7fupCXIAuNRDYA7t9bzfxf7x95wSdW2UVzIbRzaVztSkNI/S4Quibnu7NDAk28tCD+rJyprrOrbyV2pu08JBz05okCDQ775066+lAoyqIbyEr+15ycdW+CZSAQ4MQmta4VyLcmZPuegDX+mscSMfDGYLjMX0squ5Ji42lvRr3yOdsa2y2dGqW6WXZbfConbnoxN5aDDukxMqBintwjCDG92pVNxZ8jZY64N75aVFCiyTgNHnjwSWk99oRn+SW6tgzyuCUTRmVi6ob4KLRnrSmchKK0tnDt6qB/wO0PjVEfWG9sB8BUDbC2P5boktDJ6ZgSgHjDxg1ojHc5h0IhPpc3RksHUSxlr7FcO9XIawM+LF50HEvxcgz/NjVqXaS5Va5L4em6Zv2PaSJDmVsEpoY3USQgoIl9oeMCqAXtWxhjGp34tIbzd81OIVmT2pOfe1uD+hGjE929L/5PzflSD7/FtEtwg2+ijZnoRq6mdgm8cWyUzgka69ByxzvpYD0q71mnOtQ29jRAjSb0skMCZMWd3FyE8BA1Rr4ykRi2ndwpKRANzam57f7QCLBDFGBT+5KUH9tKY+eMtMfX7X/z05M9roOBHBr9ehDziApgoxyU/a0/9z0r19qkdvyTIdPnn/2erlYPw+SqdeHDJ5XUsnGrAha+uk1fpoxBG8RUnjMwfWPgm8nlqBz/4G60iL/k10J8Aa/L+nE9uKs7QU1reZA288uUQLWTGjRA8S0/gBF2JQhYHDvZczCzrhlUTqS2kVd0uMn/B6lswqcutGzn7XiX4BNAGnWtWFuhbAuZ1RXh8+ocmNfy8mmiTv4E0WpsndcrMQCn2RwpcmwE5K8XBqk/Gi2+8dt6IP+CttEmhWYKR+s1bO98cU6SOjC/2G7YmKdTPYhEAw+PCqEf01G/nclIhSK91qljH2iphv7k0wKYKbtdqnZFCM6bpo8EqyExdEcLo2lZrRlw58wZK3IhY7s1amqal8SXXgfxWYGQUFKD5xjMjagfueGjAXwYxPBMozjdQoSdJeSUxEw0pZo57QJAwLoGdaRYhndmj3qXJu+Z1X9OlyosNPCmDGGUVVFfm6yi0I8CWTDiVkXr02VCG8qW6Ds2UhrAFRgPJbXQOuMYBOKF3GSC1T+xgU1kWKu6GJBLwCwjPkZUzH3T3Agy4M9JYRTDprZhN9foCruNJ8rJ4C3WcgVMOP9tucjXgWmELMRQRicuES+H1AVFzX42mn1O4FcsZf5JDL1X3EN6bNDB090FmLSRHuVwY9A7ITxe0tt8PNdtI24xgYeA2KwKcbPKmaQWq3+8VJetIXfzSCFhH88D+Bs03vpo6xaOXSqwXBWj6NQsb6T3bPSGVsLHEfwFUFnDBKBhYGwXLE2KFz3waR2ACw2JADkLKsohJry2W4deSAfeQqscgbSeziUiZ/iTOWQex0IDGFLSnBPYHbLUbdSLIPBAF2G6uOkjJbU8fQJiB8sPbW+R7s2Gif2euu0JVW/LB4R5kglRDnQo4kSumvP1pIuzpG26hdqyKdN29bW9/1XLRV0Hvvx8SkxLaoSiYumZgKzExRJrl8LHxzJniFyHywWX8U7anMeSMEZup06HdZTtpxiUslM3gg5Mr8ujZ7eOXvMSHm3wqO8Tqd7iHwxoUM7FDpJQUkCR1syugfeKQb3//fzN7kF30yN5uyyRPKPLJprhQ5wx6PDkjM8Sdug6jK28tnEE9684Z5PhjBC4QT6M7v8qITxxiGCqSNYgsjKDWIlGlo0I7t7jX3vRpbMnaNta7L50oEuqGtEIWr6L3LIPDZtZ2TzuU7olgt+gM3/uMm9/O270TwXiMXiESCGVCK5lqOB16ct0eR2rZf6DWV3MPMLncsS98KCNpYkSUzyvN4GMNoCQMR11sVeRz916oSXcBV6oweRRcJGqUqxDjTJgVNUim9VAUtn1tZuSCw46YX8UiN46tagrE6m2qyuvE+5aNHXqlUnUgSHykosYwO4iHggQUrkV0TwNPAA6E32/C4ktnTY8oAVydpZY+87f/MI28BSVQQIKFZ4pLWrYyJYzt65A23PbMiVBfJe7qqsX7H61e2H5RXRha8KaRimyPFTr6nfbTugDe6OrZwx0JbxtKNJkpMPShEN8RtOBR/4QdD6QKsoRjNEYu3enFZmOWrM1yLKlAgaruALhFOa/gm+9htnplzkjSvBk2zAtCH2cpOnPyajXQ0enX3XLUy6gBt5QVrGCceDqnaQM8Y/bDNIeQsEHIarnntabq7bxky3P8rd5dHJxlr+t72LmHMAighNyeR4w3og8MxOKootr4U5c+SNwASXgfrG1KLUfPOgp6X1I8cdKxkfUHPf2EVSi3JyFG1wN2B3u4My0o12oi8E3ssNlzH3iVKAONl9KNZIufoTn1Je9kyq5hJjXhEwL/zJ9C6SXff5cdLjr3pHCWgpi0Jffv6AplYhPWdTqJEMymuacT3msOH2bM4RXLPWbEqwLHsPRK37j+HpnX8dg+qMn5IKsZCSBrnlLC2AeRwAS9A8gG8QjGoIWLX+I05auea/+iHLM6A50GNG2jBG6/FwRKw/9OY1KlQGlMQ/B4doMJKiB7Orj0WHmu9C4vryzQNX8X6UDaAt9Swjf7r/hBdf1yTUuH/XJvJoaTOxgF7BtnJwFI2pviXItmqNltmPzUWkWUOGK7U0hl8lkXdojinGy6cf6Dpg4NQyJXTRDAQYtQ6MxIcZpomPvxpedjQWb9NsV4tdDhhmqwzebMeuDQGRghFEY6RXgIOpItXlk8DPq75qQTMhDF5o7C+W9jKyfpp2EC6S/Laz31KjXyslRT0OaxGoa1rE4QPDvWzqh1jEGU7oWFquqK5Wwr0cf7zqcJItYOqxHGfZB+SSF/KuIKrgAJJ+DCPH54iu69VvzIF/7jy91vA913nZ9fmkvYbdXB+bpzc4Oj7moe8iQ0kxcpO4nYki6i6Ye5+2HtHjfsJyH1cmvXqyZ2tKOW6Ili7nFSilAZDbHU9TV4t678nBHcnK2IuA3ebDsHbxnUwFG///TqBjsezM9mxGDIoxnmf3CaryPM0Fx0Ur5o698CcAR4tYCbfCb4HjlIK/TRd0/Nalm4c1KFA3i9RpyTBE//5XiJ9b3wQeZ3SCEffwYyRAZzJIUH0kBEEg4lheqjpNz9yCOfB0HnEjqmhERVZ6gAyRKMO4JtXKdEoTMux21F9dlrdkITymkosycg7/BqSueyWbqoNgtqDlV26EPRKeIhpZjW2wcQKQaxVEBAehQgvc2zPbihKfWoS2sxRv/loRqYeprjUULxnNHtiw2Lh3rwr2/5DzIvuyWLt5N7x06JBDrOEkJz1hIV0qYWN+yaUdd1dxC0Vy7IahBCg3oGf/532M7a/+w4kMMvOpAhIT9lMwaFRAXrXE8rWdwLmzulUq8V4KWdhZKWWoXJOcXMEvs5g5QBO0g46LIK6BBgGOLpcJFw2akcuKgeT0dM9xap6mWlZq6IwQoeYnuUlGirKV+YAbVjEYEbUPIvYbLqGHLPrTF72Ywe3QAp6z5xXLkCUpUceVo+GUAauHjCbYase54Ic+u28q0uckhs4PRypkZ/ZLke1UUYTaF9jEcg1iHHeFjLBoBFSuRq4MRMfhJMbPnx2oTBv1RiilGghVhcOYU6N3Wp5vrP9eeEhJVcE1sLRABsl7tZiETHoaEbWMTWZJQHseMSGD6pdVhJwBpUCFmADgLaSCMKsEV/hU1WC2rYXeu5Tm93QboZS508UCGbMjaX2pCDUyDhusa0owHgRipoZoBsVRDNc1/LjxgUVZRWKB9Jyh4MYKIuWmcKkTfizmdVnuphAmxfngvlzquI2Gnet30Kqz4UCia1iV1iGjto1Z7u5lx+H74xrszhywl4NjJO6BO27fXkYVXhd82dqOLy6ajJtgpc//eFlho5Q2vCOi5kWN8mTRjrqHe/iO3e6u/doFyzBnr11C/oDTsOye6N9qTfHLnp1a1ED6sQ2GXfADltU9ncvpq45fVqKr+cYabTQ0fIIpKPxXgiv5LhvOu3F68oYD0cpujs/UxyRoM4eNJHmni5Bqx2gES+b1Q/Ww8S/qkps3TbPZaCSO+Iu4S74qHWkUmNmp1W9Ui1rw+WfoGb3ANr/kOUtFikpahfTj8DyyjRB1tnmj0I34W9n7OpE6FuZIhD530HkpVwUt3jPN96Rh+9KC17QkY6R4lduQNyiTeXXFRvKmkbZJXnRF1QtE1g/r1VNRtm4CmSakktsm7WA0MSZnxOzUyllH2+Sm8lZmxXhIxscgUxBkinImMCrVPQuc3oxkzlYjlUnamGCHG6MzfL5E0Y72Yj/nl3AND/QuctxuYUpqsGfSISshQ2D59SIit3CXtaVBuzFC9Yam4ZwEZOWFa6Q0UYQwEodbAL7NHvD8gE7w7/yw7xt29bAvQS7Buul81dIjk58vE6QkKEnVPMhxcMMw8hCEjWcu7ZRabs5n2zOPrLKeObtEucB9LUwSosvyedFgpX7o8iFdBEA+L76yupTgHOtgjOpVhC+EfpBsiDrAerVKxowiKAYpPW5L1pXWXqmHobQl2znXcNx2vDJ4g12kWQNO0TraKXY00T2N085n5hEnzVNMaFIphjau/vNRYN6eDAJpZXuuK2Um8qo/nim4EuGPdvcMxD0S0HE02CYB7KVyDmKnGeoQwaREo2p2ReI8gxDn28WjEWDbqQ9IZOv8D7tWkTZ6YHm5l8sg+2vO9/OE3k5zvj/nLU08YGanWiTbmQzQA7Urjn3K33Wa1Sdh+yTEPL4A5lG50oidLIDcsVueLQVaegHKO01OTnzRUqyUDXbIAVPng8brN4Bl2YQ6DjIFGGJIAbszommQNcvIYXG1XlSxKRIuUZ8Iqwd1f2PfcbfhNqgeQNTV0xBY534c1IuQJVZsDBwCPi9ElgEAEtx3p/NlWlK7lzjiRI+952wLlCP2UphP/cb1cWyHTaJGJkmggwGi3BusFVwhVL9aGUM1/hSianIHW0MQQY7YSzlL6hl6j/qfcDTPwVeEFmI53POHdFo2Q5f7dvvZmDhwCfxu8rknQyTTosHzYPNGCT2IS5RdMcorIAFKB9L33vzLgDcRylei7mLee8A7afXWeae5spmOUxL1Lm/1KYmxvUvEPjSkTrkLzUSEXOHiNT6GJK8iD547ThfctHkCXiO/qEDJGSD1QKnxcJ+hNCWU+eAQ9z3laS8wOKIx6A929ROdRThwlvo9IQZ/LWD7/8u/aPnsGNIviEuKMOmZxGh9HfKgTi5n/JBR14x49lWDxR3BcXhRta2UXsYL60Gqx85v6HuoYATsJvGW+VkTYRE+V3mEFxADe8EX/RGkvHrtZRiqb83eFgTO/pM0rug7ctL+6ftB1ZYxp/QgU2UQurdg82d1O7ApCC/fHFm2dx+zez+g3rCKb31suMdnYqcjLr+HqmYCNyiXO5kXYpCSnR5aHtDbExgQBslI5FIR91xw1SfwfyvUoDlR19o5SvySp+3XxK9a2UDZf5PhYg+lVifXvbLH5dRyvCHQZudS0UmXbVHo8EA8qhWUR5l4iPSBmG+Ch0zo7gaz7s3l2VUsRw7Utexq9obh3lNb5ZWQ2CHIJC69gB/dChh6Xhv7rNc+MrS01br2uDEIbIdwFpy0ikWk58GvHNFazGARlLljnpXT8PrfNCnO0AHgu+GPy7XhbDvhK0BPaKnAGiUTlYMIkClTuZl3pg+tjhCRIqbFup9DFo+rBdQSxK3XqL33zD0Vm3/YnZuQB2fGgmpcvntU1OIIJjC9UO5+X5zBu/4X18TAnD0wt4nLgS5nuvVwf/Ow1AR35gLN31nIqAcVWjhPFTzWuVruz4lBYbnE8rLy2NGsWDsTzY8Jz9xpuqHSBTLYWLuf0fGYb+x/JINJkVwa+wIzeATPxAXmjxZQxSfI1bW3Wx0GSL16VXiMgE/UKOubElFyuZwwYIg9sJakhZGdyJ80V8c2pLSvTBzEomgEJ/EFA4iCmBX0CVUASHyBUrr0Jbu0TjyBqz07HYWzb22IJvAh0ljtqinRh+3uoi/YeZlwwstTdeYFwPlwCL2k5njghymJacNvJIxO1oeGPnpce7az27gVn34KhmYZBY+GW0IEa/8Db14pNkPcLCCvYmlC5M00xBPsInUCfqu1APh5QM9Dc1dr7XKVBpWBjFRt/88IZdV6TXdKKnbW26bKuLEgMllfwnv0XuQtDOq+6tTvrzu/faveDrfqqEHzOU7qVdfJq7qGUz61Gj5R+Bwx5DNy/zh9d1JzTU/+BgHPWkGIUOWwlcUYjxHEMOcZB7aBM5MIyPc5qN9VMz4Nz0Y+v4z/a9klenkkzYx2dvH8k8pNypSa1ZwrtMYRhLcVBHhYduGopKKdWCyv6tOGvrkanBQFR6sqmoMthPgYPfKEfKYcshTDITedfvvh+vyty4HRyoi3gD/DYz7cgvIkgvDaOhJ29KuREcfKoUdHbC8RMmZvpk96MlmK4RI7RATqQZ/ZUe68Lw8kDJqna5ynw4h2OVF2HV9T+Z7OT5+FAmejEPILYO/JFS0eP091ycIYclfMRz16ihZ2cVJvIsC2OViatsNzo2QAfeP1CsQSxUvgUU3zf9uQd694x6HkV2j9YrusQ3a/PY4OvcmpE9M/txSKGjDImASnPu1/HWd4+JqCWyPigJJ7WooOL+XCYWhgMUmeZZlpZZSvOaRQgvH6rJKMMDyYT4PyjUpGfQkqfNJPuiY0GcJGjYaEfGyI8pG/RW5RgTeQOWfpmspGZ4kNbmZSFSGvvi4ffWVqBuXVlJ4DsBbZo7UP80XbE/vQMFR/kZuVWwrPHpDdtLLHQ0bNo2Cm8bCNhBVeooEzaPWlK91Lx5vDNZcfsrHZMXT3q9+jS3/vp8RXksAPmCRAbCCEDHlzoQCzcxLCRJwqNEcNbzKNekPRbpX6H5f8aPV3/VJawSthyMkYIrTk6JqtAvW3ZcZvGEITZdCDdBpn3E0Os0Av2p1ZBjKzIijwtFSy36HHZsy9vgoN9+nLQccaySnp4SxumcANsrhpMv+88zyKT8H11AOVFyYEKzI4AeLdB2ZNEKRqp8WUhkpE3qTwjRlZgyqHDj6+ls9yfOGuHodc8QZ+5ej8Oz6DKSDGxkl+pWUEuwKV3+gTyHjEiMhPWBFuFhjTQsfFpR41Xq7TJ1wP96tHroIk8w6n5n5Hq2gWTvHF0vebWtIJqQ6qdkupZbuePPSr/kHFuCnnIkjW3r2Q5gyJT+BsSc1ybx133TZE6WrLLCzcU1MRnHDrgfLS5dokmjFp1iKwXf5XyboCPgP7U5Bo5+x++N8K3uMwxej7RGOo+lXftmmW5k4WqHLpzz+Z9ypx8lEF6YyCJE/YawPFrHf1pbmHEl+4jUJWtxmIBJbbqKtaLVEmjsG/e5eJoPLDQumSv774wk35y78JFgZVp/emoFI7Jmc+4J3ZZ3QB1jcJNj3my5OytT+6Hp4sFulsk6iLucuocrxokPsTsaKIP3ybKrXDarTS3v6yPdkHknUt9RrmdDxh1Z0H8g2ni1C4Mfpy7pqaAKZZxd12idmaM23pkpGPGVy7ChtJVu6fpvbBjW4K0HgJWJyk+ZG80k03BMIEtWAz3R8VWtkkyJNIIf1Rv3P9FGyVE1gAS9YwZZvdhhGTByatcSXEUGFM1tKyQIai8c5imGZJoUVxyQ5n4nOwVX3/uxO7Ox4gv6qmIzVbmK3PyFYAUBUTDFG0HCbUMMevBlEgbTsRFz2v8I4w1WDOAgTbZzBMuGoK6wuFa4JjoBn+417i1wFRo6CNv1vJ2x3YLqxZ7CpyOZjHd/AYl9GzPsis6gn+G6GEx15VoATp1/UbJWjo0/igtpw3P1Mg6qqE12X14CV70wy371CBkYyBVSDIUFrqMc/B1QlDt3IgBYGRY2GiJlomuoK2lQz9obBfRpZ4l7nD1hwivul45hmtFhRU3Oe9oZYAswGma1WwaxtezYq0V7W0hoVNBh92cT7oVG23u9R0tKTh0r3Wh1dXqAenTfH7oxrrzsFzLgg2osSOcEGF9vfbdHxj84DO3uJ7kWUYDFhj06O5dwG5Yz1VuQ0wa2Sun8bvuurJ97Hx17cG8BLpIifa1mEZh7XnqLeLqoneBQVyKK8fFWBhsiyQHZNvdU3tvOqB3xe7xm8gBYTYpCCXIGbDIFIO/BsPRav3lUPwBMbY5sgLoGYA50Od3gM4B/AjDEL8W/lwM+6nLrq+k6eWYWeZhrb70YV8lvA7JUp3s47SXu4G7O3e8oATqSWscmsm7XL2f0EQzkz4fFImYy9auaJVA5JiIZOi/dH2lWGUKx9gwLnxLNBJxqXS8SA2czPiNQN+t2nQyGcFbPUKhKQajuyE5sYZehVl8/Tfh/5W+Sf0+QrNfyilyrTnAeSxHNG9AYK72uFdNknYEO7F86xZrRSCqCub4kgf1DqqHSjN2sZjvcp9LXTD/ameLHXAdPIi5rxaJAK3dgzPkW62NwHJCzBokyaCUV9Fdyu7zNcWYeT3opThHR1SlPZQr1LyPSfW8VSTme2FxUQkZaEKBdjbeHUuA2NaFHrHaFS/IRUX2+XXBVNOQEDikGMwppNfi3NjH8wnoRFLHdjEzKUvBx/duo87FVswbVuekJo/Mr/aPn/5JUNWBFhn8wHyo/hW83kPQ7Gj9wy23ZDepzJoxDu0tJEgRMaRFy5vpxak0V3FjHJGenRS4XNonAflJEo9aM0uxczvs5vbBz4fseR0X8mnRWj6mxD8vQDyN6Ar+Q/c8Ei75edBsHe9u9Vg2gu0lWsn8ZyegblcS3lok+TUzmYYyx2S1YSgDnDBJMNdJtM/X19VFBwAsEK8vD8IUZJIYDzH4sQYDO/lQ4+5AZHqPpviOsh43+GVIk22LXmE5s7fJ4e9Nss7af89Pj4Lx0UtUfG/kdK5K5na83AKngFpc+WGVX+l5IhHHVcJfXJxgiuTcPki6YFDNeB5oYo0Mhst9dNSZzS8vFqQgNr/1Q0JMgVbUlohaVy8Jdq+h+r6nCkH5Z3pNKzKsPbVw3D1+H6mqG91+jQN4D+bS7nLB2+Vh9m8QvXhWDAwksikgJqXQWyywazDtitdvueadDW4B8WuXtpCM2tKlKwvgCBeBpPXrmm0iKnMf76R77hzADHhkwp/9lYgEoitRyfqm1lYf1yhDT6pEIOfFwL9LxDHpkE2faUF0N2HZiCRbIazFLFc1GGwylgQIqTqwCjpCPWPm6LJRAItHWcTX1UbYkbxnz9tjz5NahcU2yAF4fjXv8CTziSgE7vFQAydYPaqI4Hep4fv/7SYrH5Soytcf5FY/sEaLvrGwM8MfI8il85vq4GGNe18GTCOo+76VGSHxzVf1I4YHzl9nIiyAFgIg3aXBuKjOwXXasRDvIIxlqMudQuHKvQDJLOe0fY49xCDsbH15SgXTGRbh9lvcG0ZuVCMYpHr7D3i0WS1n0csMFzyrxtCuSyIQVnxpnKQhQ/e6ExBg2rSJBPyaiy6H9tyttWZ+sPVfV7LBlKveVoeOEn8JVNQiVtIRcNueP6jkEowgF8NFoCDgLVj0zeAd0UAcrdwbfRlG0GvGZzPjnyW1gRmurokJIkS90peogugDYo6ojw/+GJRfOXnT5cfuASVAJ16tIRbwA02zlAoP/COD7UNn/ZHPf6DYiF4soFhiQb/sy8e20aKhGT5b4lnoq+H5f0b5CAlYjIcgEzo1ME2LvCEJ8BGvr64Sn43kxksS8pN4sq7NRzIbT8Zwpr/YVSY89Y8Z4csh0g/g+3YSBU0qTClztOjhuLmIa+5DW8yvAqDz/Woe2Zp0qL7TuTYk+o/bS1hWmyr1/i/TrCVlkuAm7gGxW6apK9aXq0vb2ARhzt2MWt3ksODuBKfX6tlbT2ST7TjVoA6Nghdos2qBg+QAzmGh3Zcjc8wL0Izx2MEAbp0TQGJ4tfTme8b1z/D9vsd8i69+8mA5x4VoTg1hxT3YuKZGoNUrSh9+P1PBZ0KKp1hxvDqEi2RUXD6cS4Ccy07BUXpw1reM2HXwLLTWMGd05Qv8YjwqAVc8BVYGsu98z2XUlUqpLBwow4+ryT62GJ5xm61Ptahj8yfOf+mlblXrDA4qdMQS+P1VUBE7YQa8DEFxOz11/dgQVDWfmqxg6ShEBkkz3tPqrkWXP0XubmGmzu8CR4/hKKfy7yvygh3pJdf5PrZE5fvcQLL0TDGp9EU63J1TaC/vkAY7eWcn9slDIfXpFaVa9gw4WubDxWeLsnjxt446pgj0nVcwkTHZ1f7dGqHFleR99BuEcaHptNNpMEq5XRVSP/NPf38QGl1SqlgCWh1mZpR/XP2zDRCt0cJX5O0B6ZzaNNRzmQrkJ7fVrC/Y8LjSpGppSRq69Up8m+qqR+S3afxKjmM9DMSf15KSrkiOt5MXFf99lvToIROq1mkoRXuAwcmRYQ57h+7JcZkJGXLpLl4UjodX1swL5UlL48wicG3GKaDnixn5gcuH/cijZZJZeIc+xipTeY2mUmA9pGswyweH6NpQ4J9H3Gx1+iLgh78rNgm9O30ST/pqeF/sbuHwzMFczdQdEIDLWTTw823QGz7i6USxJ5wV/PhAqmJT6dy8NBQsMAGNeACSdl0/2NLpS46pFE0i8oGDdAHl/cDXH1np2ZUar97G0R5V2b7my2A9nphRVW+EYGfgges+s59oqwMPjc4uelS6aGlGr7yG54vZwYDEKKELa4E4F6ur+BThEZ1nC1D5N3P26oivUCmnfesxoF2xDBWFCyqLtrwWfseZvMF23/1MMsQvQNK97H+XKICqHuy+LSo/C/qF6SwyKjGa3rmFaV4jCn/JiBGykYj9CY1uwJhrurffra9YTKDVEf5mYqLBAPEIW1ECHK1ADcF4jzfddHJaCXa2HaxgyciAQYLdmsRDo8HR5ef6vrAZ+W+NWC62sWaj61DQnl/1hhHIMA0onEU8bnXNzPug65t0J5SjRsRZ0bVQ7p2jQTDVfyQ0oUAkdyVLcPlPXeAUw82V5DlxojaUFxa2EFdnrOY88O3fHP7bDl9jG7j40ydZ28YhTHe4EK20xn2smHdd452uQqydeX2xvjCx8ocEhGKS+HraiaBP0xZY5PdEWhIRgGPHB/5Il3BwnAFWvPOLH6R8ZCngoxU/zA8iJO15Gv9h9rrW9s4IrhP/30iHG4DdIQrGi50wjEsFzcU1ZWvr1EJ2IfgASwjiQHvCQGIqYEo78MGzin1cUPlzf6USpGaRY/1Sfzko4YqAEuRGbJSO8g/MZMmYChYiGyj3jRWlGH4reTCIYKZwLNPyBwbJiBftrRgRy7aAQpNUlDFKAzjmQolRut35AzI0yDOH0nKgDwFazdRsNogsNoW4/kpBAEi3J7ElfkZcYragiPlxe4HEvN76vlK5FD6tHeTn86ikSAmMk+LrOxejECVCl5LF00Lg2HBdJ4yD3SEN2lJSpUK6P2ma56oMo5A6TJnidCRKcFRmJRX1cKe1fb574JXXyQygqnjyiRrYberBVC2mFY8pQBcn60gvYBTeeJ/t1rjE9872fZyuqqDqZ/q77TKY9Gxi2GeK5mv2GuAOxi8wYYHFk9fifmD/9t+RcFrA0QlIOX82Xstq15utAXkNS4ZccXCE2Yfyh1ouZAolCuYmutT2OrapBHzXJOxAn/LK74eCnCYTGsQaWvl6+2VLAnxho/jaj86KeZAu3WM0HS3CN0GcoOIQ+Q+oHNd0EIi/RUm4su9cjsqu96MyX+ID560kkLPIDCxrzkdKXEB2CO6YNrWFRTlYS+b+ZFz0IfkpCWRpaogSlPMY8x54URNXsQ8/B7BRFo/WfclqIFvcbNFGxVK5mzxogjhve/Gb81saZcbkFowSVve8v1LgXb7ffwUyNVgh6r90a+sl1SeXlqWgapgNCl0MpZgbaGqdHr24AKqK2m91ODtINmfppiuZ1D9WzR35vfmSTH+O1q7ohdeEq3zkTlOnBIWIdgPFBcCyvuGgBOBqwhYFskGNnfXNOy1N8M3ezC5WmCHZ1rYT4t2RA04+ieDqBOfOsEqjSQT2HemuJtDdmUgkEU6+fsNFr5qsixV6VjyvZYtw5JZ6q293IbAt6NyCIQHnL+urou6YyzhLmFaliFg7Nw4qHLI07zXZcSgEfIOnyV3exPWoUblQYPKbeStNIqrLpDP3nr9c2Tt/2HLDrm9hrmJG/PJX4FOT8MVmiYEEOUCiapMUjM3qVwwSL5RVGZnUMYqJGTlw8EIV0CKc6s4tdPRgckU0WHqPZ1TXUPNl6gH/5p7BQNzWEvrs0gcEfRXNk25K9U685duZ3X6SfAk+/3cvq5vafLW/F0e0zqbPLq43n5dO5AeUrsYXaF9eFTLMm/xpxd2OPQLnX50JmIDwrZSzsmhLgfWrUWEwljk4XYtpnkQeNQlwoR3QbKXV61h5mNq9BHTDkItRjLNgthCM4ATPgcpvo+auqeNoqNkxPwoseOivY+zTuqaJbCRdqCr/VpgiaFST7ShwAxrBoL9DaK6qALSqkBuBoJixuBUgpgA99PMyEQDoDwsOlevKDD9bwFDst+Renn3uk0I4jAdkXQHUnlfa8QAs0iFABz3m1E1X1sV5JJDS8mfXSL7BWoguXLEWFkOZnu63Aa3pyd7FN2wYLvtCGLNxx4nzy0a++oLoigMvEIHe6SpPOsKpuVEHsjYdvRUQsKD2oFETcLtqWKk3EVE7yxHUSQlKDVYnTE/SIHeDBUvJvIY9F10u9mv31nvw1UpE6FYuML6ceGaAVO/u8u044RfC/KTJ5jMlqEfKjsyoCKHLb5E0DXgENpnhc2vU05kkzrxT157opdzp6OAcCv0Ekm3Vj9pxeUMV3Rbit9Ot5mN+NFcHOsfGHzO2B2oQY4e3gbiIeQ8oFYFEoSYqmsO1aieyPLniYZGFz1xCGITi3sYKeUjhH1VYrQyGl7DdbqoKB8KbZCrzt97vL3+glowxR25sukCdjqWuWm2/ReUSX0RA9pj2R9dH+9+dZEhlSv2ODDBezIqKSTOl6VsNTvw3g6dFcnDo13d9ACWQC3N2MF0+SfgZRBVzT3wJtF88ggHt8JM0U/P6IDeF1Ye3zagBHFu1fREvBLAT/GVq6e6e+yZIWgL/WpPd5CyhpX4DBSnKysw0aoi0Ot4RauLOgJJDcvGnwQw6Io4Zra0qjlpknb/uvkvSzvK+FeEuT03A96+rEBQtzGpB8cWgITnkwGdpBvbV/HTy+ORA45czDM2RhJyhR3oqBJrL6bM62HQam/vImG2v1n0njQ5QBU/3qk61ni9T8fi2HoO6fVKNhV4815vZJuKc8YIyDLpyPRhcnr26brnJ+jahbBzUUquJyGWnZEC9BaILn34I2JwDVWGAy9SK6eoZQV6Jb42DsBdIKo8+6jEU/EpJm2JgbSJLoVxJxDzE7eR7BL8DSyt+DEe3et/lPSp3SvVxqCGyQi2kR9QIflebse81v3ld1kH5NbJGdAdWCCEWWZ3/x9V8zTQ9R0HDnkElYai7uD9+LmyQRTwAX6nDRe+NaXjIi5py0YbJTyKvvMSITYieRntFhuDblge5arDtPenQ2+yG7EzuNdH0Dief0zpkSJSZsacOqR7OPwayxEXVxyxzMiT4//waDwQv9kpfo+V+vX3hph9hCkn4TqKWPKzjmjlIjvGUF1/hqDlll9sEJS3sABxq69+sp9LAqsaX6FhYy2dlnEjgHIcFsex7WhJoyQ4ijvOL4TgcSWETWsWVRW6cF4O1P/GcNaLeRmx6eM8yD1d/eJt/dtJa728cE0FqqXKEx14uvGoyZUDean503j2N+e2akejVBrOKl0vzrIJmtWhU3JsewP+yBolaBlj+GngTdkWgmL74NgfofK5BPdchnix7gp5a9xnUPkQMBTYTJfYU6IvEsd+MFdXp+pJPT0SrhRLQfI1tz+24bRAsbJ06ryGXVn8icU5Pan40yhWxrbSBQYaEN+i2pAVQSQth5zTiRyQgcEjRk5u8U9o4m610TK4i+Q7F6jF1WPqkYh6Fn1gMGhuv0tKo3cm5W4U4mAC4cD9mnY+aV26HFJOsqMUOFCRAbvS/DWE1cbmv0Q6gUiSCNVyxlL+lPPpGf8mn2V8kFnjvw7rTiHz980tkkEnWpWAbQOKx5vuJYk5Tr8Dt1tPBPFQcrVFgw8Wg50fsb7SA9w8P8R38yCTb039vEpgg/iilgbkUdtpj4/mMXQfTsfhQMjS0Sv1Cwz3jSq3ij6audIyCtiFAB26DIl1GxXsGvyQ3uxV39Ljfc27uvNpWSdb3kp6X+ePHBoZi8KrwVfnz+EKuxPQ3XkK2AgQzyzfO8JWuJxuBfJqy+U6KENEQ3tx4r84mMWlBzj3X3HreXPMZkOFe24NrWL0ZSxKe4CDty47hB0TzzC8jP5K/P6Bwy2t4px1ZLWPI3LHMyQnsJGUXrEIpGi/9MtkdSU+bKbPYN8cJdtuUZFgi2To86aHrbHNQOQ0aWQhU+aT4q5/IgKe7pmIkB/2CWVu+WVMYCe8zZ2Hpve3dk12DaL4xboCfO4NPfXNLgSFvSfjX4/XZz7/LOzky8kKfm31xjeOnid0zjJ6WFRs8ABWTqVH08Els7R/HkTyjt2YThwwujxojW04Iwqw0Sqw42N04OMPANoVjr10Dm27AlxcMZ7e+03J19KXUfldOLJw0gXBQ2FFESYhx2Xok4W4ZQ8fWRZgBOdFars9jKps8cHJMNOn1BsflyiYUnEBDqssV1DB9hSc6+3cC0guwfU5HVlm05t/NkUSAnYDGfjay2QEbLgFDTeenFGuAe2QjGR2JTqas13NfI0VtaBtZTXt3WOOxTREK0w/8a8E9s0trN0qgvVlFPFfXMjqWi+7gshezGTqUuEiB+Pf3Hs+W1BtksALJgNqpuyn7RomNNLR92owEO8LpD6RkIjIXjgXHgfKh5jjcxPSTzljXWjynFPvnm+31kIvQPCisdzI+BJ2CUeOgfy+TI7Cvyoq7nS4h+ojhXXVA6VqJs9p/aELyeOk2X9X3qoF72srD3LJDhVDFOTRi79Mj4fmv0jTUX/G3tyM14M9AUcdMRMshfUGn/Grj1gl2pBknxDvBOteJAhZqnAyPQGjfo1Dka+eNWnlgYN0JtnFd3yBwFQ4KIuWL6JpKUe17VBDILtZMQR5Mdb2jji62WnY923kCtlwWSCe6SUNEjWnM4DqEcUHn7nMbRkfBazXTJZ6lPlCcnEDAjL5/6Q7KX9XaUlnCkEu/CGG86r2EsnXqWTSVj2kk+AUYqvDa9OPbZnzTzjnrb0BWoXNqvJ8ZnEyVudvU0i8m8Yp9hcBUiw/f6d3g4fYn8ZMNqeiV0/wSZw5YClkQjhIv/6arBYmyzodIESX4T1fL1hc8E2MMBJSIP8R8yLOSZ2MppKPhuXt6/XFbzJ2vbRSuAsM2aS0gBkoSnOUooNXDLgmGuyBUOBusfIo9MwwCZV7S8GrSQtHyFvTZlR3RdEUW1OeFPD/Bdc5ZD6t/gCEwXE3Yo2FXBDXq3eQlw9ExCE7mPG2ARgeB6/rxia4q4JjhXnoU8F9mnpaMxDnYikscciEly4rM4VZtuiEaZvKK0QnI4UzDe4lHAt4eqJr9fC8aL+QkLkO7TYy7w1CX0qFg5iPvBcsucAwIxbOW5H9GR/pYd3CwnODPD5abbSsZfeE/rpt/ab8iPrPAwsxzz5DuWUDT0GMJxGg/QX48jOIm+aEMQYdcX8rk6f6L3cP8p4TCPZILvE7RBQM6B/WoONdYjF1uf4DiCyJLcTEIUujp96f25/j0WBiezHH6rDGkztBWl1oAjSTzTHsUR6tDEH393X4RhXxYvCO2mOYARGr40m6i1EubGJlD391rJrZZgyb8++xD89hohautvPmS5Sf4LDjsO3aqEvDYcmtdsZVhKk9pasNBA/NsmRGkN3PTw1rl6bWx4RFHQzAZx07JvdZJrgV7OMRXsAZ5elh/TBHCWxZzn/sP/YF5dZtsULC1Kp6x3IQLV0bZEJSFZQHpWA0XjEgERop9Itag2dK4SjjvJkpURL3NnytxSsC+h5eLpbUaIAtUBt+mV3ewEa7/5iTTi+idu7f69kr8hciPaEXmtFOF15cXczgCsf6IJ1JMx0sz9ZMXnx1eBxJHHx2JUXN0tocUL+F1WlJnKpoKRtUpMCIa2TJjG3BK1xXak8zaf0ZYXyAaUnIW/8oKskQslDeHqe34MntaAUqzA4O623V7n0B0NkrLRcfHvIvVdoklHeSirNph6w2y1h9BjgcE8xymsvmsGKFhI78UZMdoSPJEsxNgHBJpP8Wvsj9nGHNXGemQ9zj64Q06SADO0FH4CrF5AYRM1cKF2zDVTMD1XFdWH3cB2HNdyxNJ9prm1REWm0NZ09SkFeVv1HxM3aiKoIR74qocCyVW+E9XkPYG0myQ+CuG8DH5KxXDi04vDAsl5/Fx7Q9JWUtS7RfoJjNccUz+BvTRPlmy6vl0MACHKzgROZ3iVjE0eN29RjBkW5AFK9g+I51ymQD4OJJDrRMl1Al+68fBkpjXPUJVFb31sl3FQw4h3ZZTEdiJ2ctENCKEVkG/tPHdXxJcJJK0xlIW/kpQztWZxZeHIfp7o7bresaGW6PX/M6fW0gzd9+0fdw0GzVlz42d5LJbeQTH3OrFzpYj66scox1C536mo5NXMqHlbf5b/8ub3TtPW53rVyxlXup33IpsTrXZHI6AiZJojQ6nmXYoi1yi/DWQfJdyFR6ezr9GflhGMCRVNzSShj8AkCkANIdghJTT3xk1RdwqMOqClzr73OTl1P9eIL+HzcDsOZyHTBnJGyT77LbUdYG9bPI66/1tz5CIb8SGjgL1VslSDkuRxUYoY2Kt97+OfMUBZ1ncgb9S8GgebG+H94znWaoX2oQEBUmcK7PJLhNTiqXRv0ykaY6YTZfoSrFMSZx8xW1RayE+gaJSLnqPAieQYeElGdbcVH9kBkY12GiOtqMejZgjeJvkrkV+ttJTaRES/cnQwzWZ5XfNe2J+GbvPRNBoDoS27xBvAcyv2h05Aeyo+5MzK931Yn3YPZt8UyKX98ikuA1YpyoaUCkxVqLzEDvlJ8qrmlFIBHBgEIUiY62bd+0kASQWlalrmQHdBs+CwMHUz4N+LH8hnzAo0v/s7/4v9gHT7YmDRySPbYHbw10hL4QOd+EwtTKk12qPTYQo+eUgAN5Ka9Dhtl9ngtpPKpSn+iM/iT+HaVFajVYFSiP4J+0qHaTZYFnSad/sPhUxeqtEQhRLCFhaVD/Ebe4khLxjB0mS/GsXh9uJ1kSwu4CpxOChDRsh5o3WFYD4ZY6Ug0m1+QKToAvvUNriJRfeWHVnevn2LMpT813U9TCR6cOm0qDs/2yl55IcibLnzZU+Vp4B69A1o6dT3+yADgr7/wDMUDAYmX3uGDBHk0S9A6TVHx/NSwH4KTOGzGT6dH9OmvYXieE6H8MUmfwrg6NTwmQAitYEm9tE7bApjNoek7WvlqwqRt15Lb4WnSOsueOuUHybzxgU8ISIHZaQeojbEj87dra94a89V3L8UZoZNu5z3XOAGmMB9RrrqrgBqy79EaV+Gn8yQJYk8qA/wwebWCihh8kgZNdniRVZNsZ3RAw87s65XNyzzjQRcxjt5sxn2EFOoN/A3Fs6LKRlTkCzGetXq19uHjXToWUcZ7FG+XAKnS0WG0/14XnFlol+xnOi4jwf6fYaMoAa3GKkz1S5amaUZuz/Q9VP+KHgruNJuf0QQ3B0Tzk4VfeV749oQHY4Dexg8K4oQBb1hFqhmhQu7EHjHZbJ/sxPyonAXYBG0/9xmlqXyWw9o0ifOEtxQ19Wt+Q6K6+yCrFaEg5hsHkaac4vNVHjPkc9A0UJXLOTRtzyw/gQU9QlnAGndntjftXfz+yEJqDJxn2d4or9fPeL9KSZIDVdyaa7hrpDTAc1oI0kKZ5l+/TDL/7URrhhM3ZmAhyuh+SSgO5Hb9iFbcibQWMeqAimx4ILstL9p0FCvCkCBYG1yjV9HYVd4FYqXn3zvJCWGLuNu4uricK0TqjZgZQvfbsFqJ9IW3qhTsirfKz3wuhIti/LUTVlPLEfXfOBs7iTn9dRHwn+2fMuhJ99ull9dyezbsdV0Hmd9lH2H0Ljg1Rjxohzt2aacKEiPPuOri/oM+shGuC0v+tjpI15mNRGYRv/cl2IB4llr1dFv5SIiQHIzXZ4CZj8CgNfwourAPD+mgXuyTau3wn4taral7VIH3W+o4U4UgsGktOwt36saOJ+oTfRJo1k3k8Or+ow84Z/z/RJF9ELdBSIYbFMw7+tflxWNrPuP4t2JxzU3LVRDGx4TSeKC17QtrghhbXfcGIUlpt5X0ZW8s8peROMPznB3gb1jEk+9DplZWYc/ZesllkzK8N0lsd6XM5J1/TCnAcGyMNR0JmaHq4Z4nIqGPkW4op0H8d8VRe0+gl2QhejkdyNVwh8Fq2l5lIfSyuTt5l4dNTvhL+BSTjpPI13alexZQ2dEhdKnWBIj/14sY6+Nmni4Z0Y9Pa3TdH6Z+UmO9MSGnr0e+ifu85w1xxIXLZdDpMtssnnf9NFAmzRVBRCBT+qfsSVxELVRTPjWxP96V3bOnnh+1VLr8B/G+eV/X9fttdGlBhzEKCKnIWYFMvhWxSwbqXurq2aKlXw+lyzMpq0KJRu2nyRNPCXQHdVrwHRCfRgtoAoNZ5a4/H/Utl0Sw3gyFvmfqaoeIE/Fw9Jpk6dH2h5AUs1UyU06Rk+61QQRLZDsL2Fvb/nAnhNNEkfYcaREabXwuLbkU3xsSZkFqIcj/QaEvruBBnz7SPzPTBAb/X++7fBjao9z6LH8FVpyyRcS6ZlYD6TbntxfIPdLrfT0QNVLCyJW5ijUqiIoNytiF3EFPwIpNv21MpCDdF9YeAiT9CM/hN4ot/xIQEyPGMuFwwhm9x/M9gQjY69czlooYxrwCltAvQBCew5nOUvnkM/jRB+YLbecIwJUVA1rrFEa+/zwAZp2fwwcvXTb7A4P8d5BBw77RFIwaXuD4+AihUD0X4VB02USxmRgaRCr1BS3fV/YDZH32RjY3Fa70Zi6S68C0omKuZuFlyP8D5MU2dYfd+OZyUVKz4thHwCTvJAko2t2iFPy6Iejj9ekDNCgZUQEXvS/KceM69Q0fKukd4Wb+p9CAmtg/CKmQKHaWEDz/YcvLqPbD9QXc1RMPvsiGs0ZUUvUnonmBl5alz2e7lzaAXZWA91Irb2DiqYa5sQqk4dKkI2Y8aWIpTzbnTcfy6KZU3oRQtYtQGhNBpo2YicQ2BoQQ5kEb3Gk4eD5eO8qaADWAzuxSJrb57ni2LLwVjdWNifmmovwRc5kLHe0R4pbUJobi5kSoTpQYj3IFwIXn88p3RNJTNVD2LQSl0whZjNTHUFdSkYshgI31+cWUbUb/YjV0emzDOTLM3qbxPMCRfm5J51W2Q0FC5zEcoD7npcgeZhX+U3BNvJFeQ//v4dEhU7xPe4ThpQQqL+JTawy3lKd6o5xrmzWigggw5L/zSslPzfAsopFT2XA0LhXLIfVU8b4h9N1Cs1mF3IqYPvZ5NmWkjoMiyWBfpdNOtZO0HDBaylA1/NHWrrJ/4RWm+Fo3xa8QYTW+0jCLr0ewvFlUbN3mlMxFuT1okzUnxfgzzCisGZgpbVYEWuJ6ZVU1Au/xBLTRfdt/X+xtVCn3v7JapLyXSEGt7xRmrPdTMjXAy+5/A8RFEH8k/VntflE2FKnvaMhjskSheE/Rm5Yc09V7DpshIP1tzzTp6N5VVf9Knp2f1BOTQ+eUXDBxfB7zl1YtCVQNM01BkrCYX0bGp7xBkKqyr6ec+fApBGSuy2C9Nz8QTSd7ATqXFXyLEAcD8vgw+k8k2rrWS4nuZTm/eIQo4aXjCtnyTJzowfPGRCVqckNxHZ0VEBJ5xKybgwc8oXIWiCFwojgRGAR5ZyJ6xvoxK5r6DDNGQgdKx5iTlsS+0ze3txbYl2wj6safchz4DnqMrRPyhYKDHwrjv6dfIbVZfsUajq1rXJJU75Sxs1VMJNkH+UUlJcCC90YnwxO9oJDEhP6JOBCDraTFOntcH5M5LdfW1jmRyDp1niAfHbBp1DpMYK/T5iPu4i/pvOQb5iBz7fjox1oanEdYjoJpwEsmcLSjGZ4lAOR8Qj8DGuKz+yg2n6kBaR2soVvD6BF0kfmXwStCyH5JFkhMlekNTQEXgV0T6T3YUUNGJD0rw3as+S5I1Auw/kvK+0/h6MitoD+pCJjGxvG2oQJL8MeZ2KiO1QITcYMLbGwL5vZHyimTWZfJ2Ka6qp6q4CC6d5a0DeTwn9VsKwg3n034MA1aGvlCFhPzivDDfzuGOxjQUXu/tpPq5sAC/e+oaTo6aIuQt81tpf4AaNMHE2ZapwZ4pIzbJdOvuSZRN8MnZY+J9xtq0FPcBl9yuJHnt7THJCU+PIsCOSuBawMilTuOVyiXFgyfrrAXfSgI6/dSGb98GJVs/75ePjoQBNggK2QG4+6S71Oas0UBVJS5Qm1H4VkUhHVf1XGOkDHK6838u7hrQi9r4CFhDd+J4YEqmbGk9m+G1SmZVzij5ZE3+KzFopurDUkVSXkNJFOx/8tGirLiTq96OY33A41MjWP/FfVbL5V4iTkyDYW0qYDV5NC/aIwIUPcvSzmzoLXGIOr5fiHIJD9kThe78IMkSHXkxVk833piWwtCiMKY8wpaO7WPT3tVRI02Sz9Auxy1HZG/Q1KA8qAQVteoBg3v/Kh/7Dcm0Qi19yhJM1GAK6+hdSQEYfNhr6Gcn+77AOMZxab33gSYRDOw3DumFsvhCmOSHlIkR4849WGpRt35wDReRBUS6M3gxKnlmDWmeZ1XCjzjE0EPQZwiM85daFWoitFCmXMwxSBU3w8CV31QtlGvo8sxSAAgfbb59NQmULgDBNKBlv0V4Alm1PqINt1wPRileUbqbIQ4DZ4dJunYhtwx0qEq5yDZVRY2/e0VqdanO5TEmbua/X6M9+zLSWMzgtx/4mTToTWqtqRv2HliB8Th/Motv9uhJIEJkDdpH8pwAh3A6oJeJFILNhLJojSTk2NO/Yw9SpuXV6GikzHfaBDp0+kxf0R1qYHdiZVIHjhUVrNuK2yyuEDO/KNQaSJ3+twqjoZhoCYHMJgh7xjj6rtdsk36HJXyHUt+VOwktQF2s3Vs9+R3rOHE/f0umm91D+8VOIl5L5LfP6rbAA8x4Qe6CX2fGlaRMc0KdjMYyLUElisELQwaV26qpZEfm1OLBvpNVSTYtVA2daQ54HlybQXwFoXSIBmDtq6JGE3U72+OgVOcUSgSk9aj+TEy9r4NL4tKLGassQQSCU1PjXRtfUsjXRRONpAjx0v6K4XnFGCH/PcQtFKAkcfN7F4Wl1/TcV3XPXDuEMFOKfZFoQxco5zIQq3Mt47MU0fHdCV2M0rG6oKePob2LbUCFGNL0xHKJJHjAdHZP0eiJYSaIyyukOYSYI5NE4KwK1EKiOdCGcMQxULwa0BwDWYwKkIFX6nu65nU8SFotgJfwDLrF4wk7TBAP2Pq+y0h5xHEiDIM47GQA2LF9CKRnIFLtYpLSKdagzR4yZhMV9seJVY/2l1qTS23ZgdXSuUXxN4MYoxYwhfSuG64HZX4WAsWPLbo07VYxOhmAppNSMVjAqyolycET3p5LC7nlL3iWRI+cPRQyQCyvhvIqbNlrwR0uMeVUji9HjvAb6838Oxn2LQESwrCFdOGiccAkNUz0tBJvFRDBBjt2OpV0QWZ5XxXiU4GAQA60x1eQuWF4XM7CYxqs919fjT/c5glmTUJNci6H2SGLX7zJ0xocDvqUGLWLhs94RUYa6xtrCoI4R0nQ4GoeNPqZPtqcj0+O7x/3Qs5oltxuwAwdj8HeivGt/Hk/Y8xw/zIoSPziWOA+FqoZT+dGjYLfOU09NJHQLz1N/gefkfkhm2j0Gv+ls3HLbndAgFmp/D2njqZidOEh0w/hZNw330KxTkGy+l7a591vny6UclMpGYNCmZoDI3VFh+AkZsawvZuKb42ABry/slozIvANVr3vb4z2ar5FVhi18YzVcx9Rf/UiBj6Pkz60VhfauE8Sku5pz+64zyNtGbRnv1xIUdFzIrJ9p8cNOdrrQcZfd4igevJzVsBBKB/YcOUFsYocP6NHgFy0xv+x8YOehaNgCdPpr6GqHR0cySsLR999kJPjVfSFxOW6h+9/9TxSuZlsY5E4USvlhhowEHuaq9NgYZo/ajpcOL9CsemLFBzB0RuvS4uSdzh/wUCJrgCI8a2++6+0cPX89Svh7OQUGbG5xidBYfFXcTTi7fgpbIqawc8bCi9wPJl7PGedjKc1jGctkvOEj2n6uPle6UPJ9Z+c/noQ+J3Qd3ix3weaTGver497cbKggsGP23iAF7HQqa56blxnRwsX38Qp1Ml81bC8ffVo15kwRMtl4xPYZSVu+pZx/g2kaUYHGm19R6cfCBCs470/vf125JJwwVl+TES4ChJ2ux5TTfs0+zqwaEZOHIgjqn1bSs+bOYTHZ9TUxTQO+UN8TaG/4ODqJNf00GhWStxbWwSBL6egwCnqG2tGYTViDfU28qceNSsHIlW9rHLwRGTQFm0oTygmXVGZ7f6jZt7Cu7OCAhk6yKfEWG1Cxv8letmtn3WDiXU9CVwe4EfAcjNlvGd+ObzLHtEqAGSdEarDoVci4BJSXQi6eFfsspZyvAldRYeCThIjamhJ57IGt13QOx2ro2loQx+6aan155hz2rF8Gde/O7K1dMClOb+lzwH0Ptr/sxG8lFyM65mgkJjSnuYV9QfRpKbbNncUTqAF8y6Yk6OlSOA7KYKgx65quxEfteh3kXcIuqjN8hIwE/jg/H0OIRuANhKndhUc9+GMxqEHS9zLKDMvkjCGyhTvHWDIeKv5CtnOgj23epiUeewfnVETsWtydITIozxEqmtLaiDOAb81ZxdvWy1gp3ZyaWu1lnWe+Nsc21MQiC3x0G0LGaGPyhwyDyZv5xWBvpdyIcDYeHpjbtW3kCdKHxrYXNRi2zdf3pI6cHamGa+/CXVgRXGYdFq3zmpTlvjc4Y1E+mauFr4wo2zBhxDTpsGW2XNg+EyK0enukC8FSgwYssZjWOg9+pPNuaNoWeXtUPuq0zvqXLUeC9WM3CZadczZ97CPsE+JmJf64UuAWJth9TfFxb3Xvm0BR1xGHDaZzEGVCJ7oFaKCf1R5Kf9jJgjOHxnaBtfaTaIX7g+tw2oHHd2fc+IF6DaAt3nHv++0n8FgKkK8KMsdAtYg7BD2tPG56fcg2yawbh2paJhGmGiI3KqfEie9n8e9oPQd8AZKCxCSdsRVwr0Q8kXBfMvu/IAD6rFiKsRh5dVRD9pcC4CHIacFfxsL+8mnWXSZoMhq/JX/juB9Jp7UbHHt6Z3Dp9uIUN73tGtzqHpGF5iR/gpLtnGx/C1UnTkNox5D0UJM9lbXojPecdPCWkQG+PXL+KSgc/v2nKbYpA3ltx19J40XHc/xTgA7u/Fnlnaqyq7rsMFFW3v5jZYLJ9gD1NY5OxdJjQaH4ijNcsXK8s5bwHta+KgvsYD3tyohFaC8K6ZZH0zy5mUYAKnyjHDLSnK8oeR0lMcRWXaTmmlkemU7HLs85BXe9J7JYsvpe/zSMWLR7TBSnVBKtqlXxCrMvHOVOPwP/mZI0Hh3XDaNS0XYfvlW8nsHZI3+cZr5o4cOGnCRvRYbV7xiSijflGx2QMqj+Jqhy/Gwnss7/NqRqxWBDmYmrAsEQr6pYFHBF80DmZDV/BsEv3VWW+8lJ+rarHo3ubS/jxI67067faAqOPJATWoRAEb1BNIij0HpPwWYSlgMMbqB00yDrCNSQRXzTJcSI91D1RstswHbsrkMqI34wHvv03AoJshZx7tz7/xJGOWsdUDcMnjoVknqWZGB0WH97fWGzxlVOkeC3ad4acoddkoTGXMdVxqVPl8gACV2KY/QRLkAkl7SdLgGKkSmyuAoAahoL1pjVq9ZdmlVYvAtSLywb4PAqILnmKwabZ84D4HQNiamqGK677b0TINwuuIcn1qy8nKDgSgTnmTD4yAu4Yag8QauNo6JSM5Wg8J1Cq5vwep0xVabMSkznDJcgOuJehkpSmzyiQi80fEIFpsUo0skK6gq+Hyovh8pZCpt+RiSI96TP3aMZzWYARlKHG+yFt+rSbWT/n9x465PCJpbK0LiJGyZ/nSVGYM2cMZ6FiwZccZ7+uIwzp0YuIpvfXkhwMFutl2ulLfchEB+ejIxeJ3Gg+9NUzBtazyYGnTulgNRICS+aFsJzjF4HC5eh9tt6xV9c6ACn+6CR/7I4+0Iu0uUbiPWrJp9AzzrY+piWG97fxr69mYHAASoqcrrloteXcokvCcn8+bq/wXCnuPJiCo/7cZs6J2VhDL3s58DNnrmjQ9tKuV/Ln+EnI1vWN67GTHMUeaCoyvuSPQWjfka4K8kyjDXpDXXe39HiE6DXG8/iec525KTXFOXi21rEFQOp+fmr/bx5TSc02ZyC0P8Sdg0gjitRsthj9I/wREvi6gUs+H8uYTuXOEybmrSofaqGWflD+zwy3/Go82qWeUqQM2Nu001Jcvwmr+1A3TLHnTRXTDlu9cm0qVh5Fl+dWciIJIDpjDw6bUXTVq2szmt4aTIiVDLfmGqry7FiqWEHiTmFptrqbUG3Dr6+LAFCm00n7sGVqYx+gSiMfdXra3DgH2IOr/nvCcnmFa+/eriNplRCNDWqMDZaDLd5LEDxARW4WEkUR5b/weKpcygtVpLreLOPDnq4pKZMDt9nWjq2KLykZ1/cDTJLFyqysoCXEDmRsPWVdvfH6XzdMhoooElK7L2NSsfnQU0n+I6A2xzvQ1cmCcvmqZ64qurJjQP/tIiND/DlfePp23fcYqpcfQ1DKEsvpI5hsVltLL1BUM4F3b2z0/Tfr/qQ+e5+35YXBJ9Gy1R4vVWDgmbm8NLEKOx792mBQQQ8LQe7MKA0MzYtbK0L2eC52IppoCOJ0domwSayyjMCg2Ud1EVbaXsKrglvgICOy2yQf0YPDB3gnldkzM7ILaSjfbRAEK3FhhBvoS8x9LnWXXsGUV+PqsdYN/gpjTmLOQb2Qe3bBngzHmr6TTEPfIHkVlW4kWwDrO+TfHEvzsibnDGKuwTws3jXvFetRxHo24eM12v7g76KPM2Q1zsmW0WiV5FvxkoZJJiT8K8lPeYU4ATxha7fPuDLJIiejrWpsRQrgvlmdMDwQcN5DSJl8aFmEfgeIHt6seyQxJf56ALnWDI4UsT6CuwHZvxFWeJKFliXZ+X58OcQv+8ajsLb4wGf0+Uj5R2c3hkJwpL7VW2Bek8S2AKl/XfltJmMlkkQo0TJ5gfkGEM9nwNXRDjoNvYd3jZW255XkWOtrbTfhldZz6AfsOBsur3H+bPOHAwUv32q5DsIgI6kwiFqe2QztbOKdrxGa8Fv1X9+J9Lihs5K5Zk1oV5KAOPuLGcm6qneFur1U78meHckj5/MDbZ2dL8U7luKsRTmbTcOKkC/1qrsQqM3JBjyTkvgs2jCVaoSvJvnGXvu6O0JAGH0XvvYdHEXfjvK8J7qFKgF07y2D2gHy2G4X8UykqdVI8cwS5F0ksbpjMtXy0qko4m9jBcpq4LoZHsDLYdPZfnAJhoJ9wSOSjbiqgNpBIzv5fmZLqulcdF6G3Z1MV6aXxWIgKonKzSb36QgqvJQVpooULGP6Mjqm7S2RFzpRqQgP5ex0z0Gnpq0P8iaEs2nKLLT2393m4P0hkeTwPernA1XqSneUGUZXndv2JPxLjEhWcbAbqyGU+Cu+wLVHySU0kG2YLJrcf4qChiUlntGKYFvBJ+48l4Mbgnz5LRJL68B7lM15zzBvUSCQq+W14ngk1lJPB77V0D/2xtTIZzlkr3xzAc/FAWisTXAx3qP0FyaDhwEriooJsi9pLS26xXYNJ49PpoJsVepcnYQjypqK3CZKf6MNqdQqYGdJ23vEyMBRk74SYJQ/lb6fBnT5W7l0JRDmWGc5ANpnQPCwVsWR66bc6+0T9qEbUuRkAlKOwQR1aruGCY6bovLftdneKIvZ4knyLI+h2sC9r4/ul9lMZ9cmV435jpBI7vkIe+hga8xDcP+MeTD7lKoxBNkzvJNPf9NWWRMAFAJuSywucI6rApBzq08yPaYd7pPmqD9mHkuIKSzW9Cez6O7Inpl2fUOMqVV0aEAVdVsFBgHqXX0tLh9C6WEuK7c2HiBNBfBm72mMosDhD3ppQfFia9SMiltXmGZrCB25DlszJ6Dlza7THCU8wPaRq1UjaCf+JnQtKbAF7QKRWUqcpFVcxRvK+eF5TbT+oJRimf8aEvBYU2oSZ7598oqM0M/exoyztJDDo27507tq+f9qWSmYP8duaFitbJJ0oNYO4gqlFagkT4FS6KkYzcd71dR9pMHmKtPPdgcZjjTm5ybMbLUK2FOExGNx+bOn6rit8nP8T7FVyd/PvnVxZY7rujWsoukCzGeLqyRTF4UMOKjkZkaxfUSQyh4E8tcNIAkfsrrxCnT0TQJ0EDOfRPygGLWNfnO3qE0boT+ZTO0CLVoBlHEoltBwc9mfuKkwvbKrJBxhNGtzv875wdpK13aYBeBBWMLoMJKHbzgJczv5YTrG3dKzTrrxkIoz4TuoXW6VmQbTUZy0kKKVIoTZrRKX7Uowjz2dwfGr4TJIMpnotFzgZsRNTsxrbvcM+oYDBcLjG1Gont5nmGCpOcvkBW47JKL72LfLVWECFx/LedVzgjXcNjQYbqtSTflkGlxO6I5ma3djRj/stCs3AZVOs+H/GwkglRz0Iq96xEf2dwptIl7nV423rJ+6BHlk6fOQkJe5cU5ssgm9IpSqSZbpoW5SJPi9fgI+tYQgbCDBWl2mJLKm7Yaw/xjNLwQxum/98xPGAbKtnQY6RuNinE3fC73iEatfUrk/9LDaeX+Z386p3nDeM19/duylmAIvl8GtP4izh1dKj7ZmI/H4WSb17GOOLmjirmsFoQgw/TN0H7vSJhXChk3M1q7aZhEM2n/ONcSj6qYIAfZA+seYsRo1cQj9r940NxxLTmAYzAdl1uL9ptc6D9ZwrqYhIZ0c6MYCUyNMTffMCaIm2vV8TBGkl4tfmjbRuilqN2cA0ANf0KoscNrvkO4zYebJKq1LLvrUwi/Ta2CE4AdPHyJFCibkKj0BZyWwMybFCbjRioDAsNOaVMqKnTgOdqe4aWzPt/z2EpJ9Kj1djpt0scYbRmcGchEuB8/pg6gPSfthRa5ZQ3T1yYNtS0Gg6mmlWJm/B2K3VwDZBciCJM6IXAPLIENWFE+8SKMEu29Knvsq3KUnGjmz9BCp7ycpztIoWYeCjeLeT8T21oZNgNL4LxMeoz9QVX2wUJ03oCxXuj6v50IqEh6Mbg6Ipxk+umI8cK5Wen+MnzlzkZsGAPoy7qtebCu2+/S/xPhHcpfy9+IVRJeGuZSiqzJBSDvcjPSBSPyl/KUaLZea4MMD1MeP2h2KtxD4osns+iiEh4izarRYasq2kFOsFOX9i/2pZNerPsLm1AmdUJJxdkBlKGOLDoatd+9CpY6sF10zRa9blnFib6K8UofzjNMzIuBA+4TDNjTTTnlal5wwxUW804Z0K5xP6Yoqw+dm/GKeZ6Ycc/0qIFw4SgtzqkS5jFp24DD+nxOYYti9xz6lFZiDKB5LDChx7QlLl6MgUCEWq1adaIiXzKfRoAgMBfyCW4dxGm4LLoRDtSzkw1KC/BtjH7n/IjaB5bMQ5GbfgELYliK2e8ilRbeTYJmCkj2pjeaYRp3CJuPk0ynOxTYQ/n+MkH9J2hX3SLQ40hpss9ZV8SRqdoVvKPSB1T1mdXfm0aA4Sjm8n9P+prFZ1M3XEgJg1bVI2oceTd8sVkNOr2HlLBxaCybLJ3TcrAr712RmY+AcfJXD0hoq+67hEjwOcY5O46bffO496zBG5tlH6m8T3A/l104T4hgn7Z5wYEAVWo/NVDayGgZozJkgRMJZLUUxZ5w2wYt5vqOAFhsPf1ZEkmPIlBfZrzoIMgF6tGJM9CGu/cCgkTYKHTK5iyyJ2LZws4g13NT+YALbm6fb0AsHeRVqaa5bmmGvO6qL4xAaBeF8KDNQl8M3wcH8tY18cVrPZiS1Zc61azWBnJq020kZepKNlMTqcUgoEw/OnjYHv68b7gczKV5UvyPloQI98NH1byXrCwK65jTd2c/wk/zQRSKX/a+wllpCTUpg4se1n/IKdrEmbrUampFxQPM8yY8fqlOt4VxMUoLcRelAvNO7qsiLq2tR+ZP3avEkxAQkPonELTeKCZBNeAPYyohZANA7ptfTxJAgEux/b3ZEfnwrCghnTloidUcmOG8tLLalxJGbFoNSBtI1ICeo80BfWg1m3fyYCSpY+e1VOpoU3Xbdi98nNJ7sCAmefEH/8BHjSr1WhZwLMaD/XDu94RI+DUv0fnTztaDNh5TSWtuDOKTKMhUIdXruLkpXR5c4mtAdLmF/QXiGHuz3yMzSInIVVWVzA3O+5tw83oh4W2RmCVoTv0JyIb5wPylNGq0hudQc+fRcl3SsMpvtJp6ml6gRKaQgsPX8AdBzVvJIrDvCVfyO53L5jxpH8u0ncWlZzrWYN61YI9qY30Esba94DkfJPjnuTptjKZiFDrXKpIfcBuOgT1SFBOPdmf/MjyNOMOpyZCp524wcM8Pi1NYafP50OcLe80WIj0SkRUgHLFG6SK+wyiq4nR5WARRpvViiK5P6we0BFuzLuy0FitFxaUkVgzEome8sYsc+Ci16brmwCSnbZ3w7ZYxcovxZ9CHR2R3ap0mdYNWm/jHuQnwS03Uz5yDOH+6bMzSXl0p/4BJ8ZFtRPjYuaP66MNYtvRXEN+bUNJ2Bz0cgjWSZAw2iQF39OXhA4/gq+4gyqvk5LWJB//jfftekjG/oLEfojBKQcHSTWjcwNOhLf/L2Ecyhh7JpAQJK9KIk9GeIz1sO4zJsC1CW/9VyQn9tJLDQ0HzVh9qP3JZfd8mKntXQGpr9GidgUVimd8gTl2tMdw5NMmrmPlySP092mJvTGiFHUoc5RLYPWSDM4roAaDQ5JSrSLyjK1nmKFUBv0HdQh5JhoQ5tq4wI6UmhZTMTcOZfApnoZENVNv+M5j1+TcHm3zpQOc8js/GQlUGx0y4uAYzDH8A4MPxMHVXikbIB6ZZoV+Zhi1jBLgbjqV7zbbW9RTkxL7VIcEyQ/pzC1+D/m5HeVzO1f7r+J+MowC0/gZtxwAYHEy3yBfWWWNZdmBlrYaEIQtMggCU7c/YGjQyAjNaTGZ6eP3HC54/xd5Og9Ojhp/JmnRRsoFMqZzARPWAiD3ccV+7Vv25wwYEDMJpr3xvRKLxPdd+dKSOw78RTlyKLUdGn5nHGpT5UkDgiy4MBlLDzgVy/AQzZmuUhNL94NNhLug5JI2tZG+REL55rdxadprYovlqLzulIdn3tNmLEC24l9yZce6KZA6K6rNPw4njU3A8ATF/gc6eRnVzNA/2yrnk1LFDnhAp6XnhMxWSLBAZe+eviycV+nSeEeATNm3tCesRP4EZSFGBZ7pVws+z3lviMJQErTDxfMQCZx3Oa6ROe09jQGnAC4tXtaKTUjlVzeLyFE4m23IGtX4jbOUkqOC1fCG0b3ruufuiqxOqF+NHl+kddgoBfp8pXSz7W0dcTbKQKiohZhzWSBY+dO+hclA0JrlCBYcGXHH28UZGLrU0/39SRIGzVNfMNOsIkyAPj0LVqhih84ggfLXJfN6dIbB0jaeeXRJqQYnFWJVHT7JTyUq4xvfpW2yAWrYkRYHPU08R6stzApgbhsW9DwAK8WtuOCsKidcvkMy1LbM8rNeFeMzOFt5Bu8WknUtwS7MPb/NzfJfwIZEu/K3pJNdkxIKNefq9DVrnH7RyWeLDoHVDMG4opKuKWW/AFF3nYhVi6TOaZt8h+S/rsPiatGueEZ3P1Z2XuwiQ8HX7Ebuxn52FgcCxmaF6HNPdr38VCC34r5Ht+getbHB6lzDDNlGITuyHaAfmu+AdMB9RF+fhoyseETzgtto/Thw0uRgDge4WRzCbnfIX0rUR0C9A4hx9aqhiKG9qilHzCvYT993I2Y+wpmO/FaLfE12V6bt9hoE/HBcrrmHVCZcLSy8CcZwHNKOUSO7Bp6mkqS6UWF3YGVXRGLmTCIhTLACZxNymK7t5zz8uXFtVH23ojlqaeLOAkFfXr580LEu4PXYe4UBUP4VegEQ0ltRS55uojrz4o9YFvAoLdUbjZoeBI8zd7duX8KerraTDc8FzNOZ04Ptx87yQcFpquPyTpd/V9lHlGfBwKlbReGfOVd9+zbUIcab0lWAdSxBBXHbSQzbiXDWgba3EeP8v4Atxu7xEftrpF56PDjjBfLfsPus72SIYxhHrrc6rLgydyvq0VRShNpHvvRcJ0eQpQ5kqu/jPVHyeA92q6zfTJwHRWLYN3Lt9QgywUd7BEzNMOz+NU7bjAw+eDYLz5LNM+bIq98PtqcSm+tHGLVzCajVLdj3qKVfsRwdBmjlhlKKMfkeOI4jUXWiEEWvG8S0unHa+Os0V2PSE9AHk/z/8f+qoIukIXnfFsmpCOl96lBAozj7VQN7H1ektWq4OsPSiQQSnO0x1DgtEKVL0vA9/yubRKLmI1w/WLf1hmEejaxWZ3RGtSHnHj1TUPCJHSq21xKvdC/R9I9H/1o9aiLBTleWcfnAcnPntVi6N3vxw/SJHhDmkAN/SBz3trpj+4C3HsLxn79h6Sj4roGDZzgcoPphfL3YlwmIA3OFVURJ6ZVS16lijuN7iR3SbddWknzGk6lN1hqD0yYiE09TuQm7TOqUXVMnyRkmNKPQtyuy6wjlcNaIAXZZMuGpbu9T84bdq5C+yqyL6nXmeul+v+drA1zu2oAPLaV57VECjC3yT5/PUbK/gGCGwxOMPJIR9PI95UaqDcOld+bC4JDy64QRXG2ysQ7DSUDvZtU+2f7cfehhRtZa9W47dpB9pTEKd4oLyr0j+RagskYW6/SU8ivUmYqcwO0OL3CT7fiL/569QKHus1dJHpFmuH2yfC1G+m9PrUTExk9ilVH6AAgkTdlPO0trVOKwXDguZQXovF44WnQntWcenVCT4yQXoSDje4nBbJ6INKIz4NtK2VwkGVLvQyunrOvDRXQF8OrWGA9+hEJT50xELZg7te9WODwEqV3u9DfqSV0XUk/jt/hpiyZY4loRMQnZN0r4CvU7BQa7r6fMe9jUTP441j83SeGswWovv2CXZl34nfZyrsOUHdkUazYDLr89SIYdL9b0eDs5CI5tdkWrDAlGUJi0VeeNkfXr7QMyFxIdWM6JL2dYA34Jc6JG2/lMA/n2eovh1KhFAIMGFGrOe2Ms6q4fqhAtYpuKzgn3WdywsmzcM5dLQ3NyjHzZG+CIR2TDww5/DBWjFIiaTCRgsl5LIZoCN9O0kcklk3W0ZSmREJCxZd5RYb6BFiK5YwmGb+5Oo560oK1C7fzDDw65y8CqEzZRAWvk9U3CVYNrLAGb1xFFnkvuGJ57NlLUrYuYgpB7sWwiid91HAUpPo+89ligLrzvkNrcrnjUhtZ0CN1fQu76c8alUOFJMuQdY4vbDhny1voY0DsujwicHjj9aYw3n0In+kxRtu7K3I2LFPO0mZuWyZqupbwWWRzQ7tz1Va9Xw415pLo00YtcUgK3s6q5Ub+Hi/3aCkamYncx0avVrRM9aEg6FjNc8jHZ7fDK/CVGFXIdNulSJrYVvnddNvK9StTZe8WV/bZOUUBT++mL45gUMZcF3hJigd5jInjbnQZAJNo5fWyvIe3KpKdReVC6/5zl5KDVAD9LiK378mA1EvNB3+yiDSHRHM5V9Ucbx2s/88cWEWd4nV3dEtOgXYFuZRtQypbfAgUq9bdqjiR31xkhTL21+8wyf1sIzvMoq275hqOfgyPucSF9FfU9J0XfRPNuwKKDtJQSynIXIEOybKog9uazxHV/gejZAxyNbvgRBlCk/dcScSPZ7BSz9owmTKRErHGOQnioYBLVNxt/WX0X6CtgFE8X6hpM0x8va7L8hlTV1JDIzhaGh+V7DrIhq6Qen+PALxaG4GGebaXBmvxbdZBgB31kM3XIL/Y2FdCBNZKEy3D690H/sSJQNcrolMogexFRQCErFOjU2v8WieooMUQA+2n5uraaoHlTa93iJnZ/IAKMnCDkzz9HhPISdNzBc76d6zmk90Ac0ynpCL9osguTTGHLcuy0rHgpHBjYZ0QkK3KmNSRJNpac9px2cH8GNSZxJxDqRBdRl7usB3vXwI52VQGuzTNenVLN2+5bQ7QljPvYTa3VLr0RCYLCB3czepAt8/+60D2QAZWeLVZ1oNjGbRkKJRjyxRLZUlW26SZxx/2Mp86n/mFvlryQdp6aSn1bKre5vHnVkx/5BN990S2OkF9LEVLBS6qHLyX6AgtmE21ccPPSI9clPTko1XwpJHppuYCI83bgrhvh5mqQDWjugU2cB5TJoEIqrC/fsICJPAS9ONuSJRzMFlxFtKcNCDDSbAIGRe5EdbXslcPWrtVtlvS3Eg67IKr7pWUf5+vz3QLathAZZAUoDHnKff9Y75Bd3WKE0jtFMzduzf2RZ6Mf+lNVcG6AmHuygioCYKiY1kn4Fs1XM9xfhHAoLK0DVfAl7gcdNU4L2P9y32kOYf82aRQHKd+BP06yC3MpfwekvguMk7iqdfoAoyn0TRqIJHzZBk5T1od1FjPSj7VE2P97h0tEZfH4M4MVwq+BKU1kpQz/jI1Fbdi4q+nng+X6Xu8kcE8s8fxI/wwZRJjIiBOTMrC5J9LKl4lAcIhbBy3jIPk3c76UyZ9y5s5XhqrZA+CM0gtcfCy2SWarKHEjQqLb/wkJTwfcJnR0dgZVAdCkhI1UydyD2MYbyDj5dO4M9V+fma3BvTR9ANb77q4NBC9wF5U/IQxJFDFKc7nBQCVu6QYLegb/2NOgXdZlENsVxRWzTON6SzAdGPSQBJ4SCV5PCvz7gAcsOpLxCMN4SgETjbpjitlpCf19vWeumhZJtIVqAQfLI1nngHH2zSbQWFUn3wGI6uJQk/DWWnK1w19Kgqn30sGZkLgzg54apLXQYalHM4fEJkvtRJ19iUpDeUbgEm4Legnqi9c7yVcWMo9Tzf9YFPH5N5YurqB9qnb+RFCw7ZE8KijdRqd0cL8g+yHHzIY0VqhylZsEoBBxnkuiNJqjLDxtzeFgtAOIPNGSOb/PUayr0baTePuhWtzePh2XaYReYCFXbbVApfp7VEFPNJsJfWZ803AqGsbqSAToHYmHluCqkn/K93xOHLTOzAkwDDd2uJN3U5A+Jwhx0rnru1jbgaPsvoBk96Vez2IsMc2BToPMcIPNNaatPQw/sgtRuIf9cAR1t6mtYp3tYqv5UO/xjazJSX9S3B8sbCTAmz2McGcd2xlh6+8ZcaJtQHcI6ntcOo/R/J9N0WjaXMTCtnCAekHpGaU5MuJfc7RtuaAcxMBk/2yck63wTz4rGEJpnGuZFV3vMEIjsTv54mfb32oc5CHAUEejOH/gnE0LUHz3eqXAQ0+7qKsHkNueP9yCupslBWBP1msJ6o3hgfwO8R+YLbTWq3BbFcw4ZQys5Vf05llbFFP2qk7xw/XzEs2tMU0DThxYZUrIkZSHu2GUHjYor5/76S5qusuzNQL1vtKbpNW1wdZyDTJ9rAkPzsrnbKChVjiaPYFORLzJ7CpLKi5ZDP1gQKX/R7kCmWQQsMhZD+vK8ufMqE7bUjZyKCM9gYIV69WVBsX/7lNkP0MaM4cgqM/vPa4VG+l0Wwi1MaQzkLFOAIKp4zSoVZI4tQauwd7LXzU+wJDpCagoKMrowyqnw+ZLDnfHUB4q7Iv2pDpE4YsaBQW+78839maX2JhowPyf43KXLncnMdpwnB9IVVBajxZW6Q1VKGl2bKeXSmQPGju2LkfRg8krgWQv/eimtFds0mbXkdQE8RzXtwbievvEGUzaqc7KDcO1Bas/+jQRuRnGkNPDu9iGejqd61ZcbUsWJbgEtW8NEsmvfofRg2pKjSg3dGQErVTZAFDZrIlhYk/riDzQF7dQK468QW5RhGLUWN189hke2GE3MXqn+zBJnl9mLXxaa8+ptiGcQbX2Wkv45KWUYjXX6SP1xCufxqfXjmK9MPZX8bFznn17sXp/wHfef2fg3ERH2LLjSv3/5/CgJ2C2zt16u6VnlEIW6cPR9jHVvN9u9krfM6jIU1GXwLElxydN5bF5xOohGmVC10Bnxmk+cXno9uRh9kdNbusnCYjMPsnbBobkbUBi+o+lo3uQB+odm9DvkkInd91nwg8NvCdCY3jq59gov9nYqHNyxd1ND8XehBKjLivb7WVMEwfPzECVhtUurNqCMaBYGKhdtrUqc0TSrCVY3NyhXh5xXkYMR7sPjTYez/BDBuqq3hzw6vb2G8n6f3oqkn0GC8a5UEyGLIxinMg9qTiwK0DUvYdUM42KvnNe3Q72G6x4beSmckJf8BTNWNwKH5eWtReJMEV3iztlb9HyAJBBENhq6b1ajhQBb1a/kK7xcodJSMrSxhB90j5U3mrgc0Rex25nutKcNWrkSGH1Q/BqKVDg0yqFUrcr7s0aOXC/5zBjgy5o4xfV8zdrCsRIckkoWPLBOId/wmb7qOU+PuL5HXulUUv+RatqiiZPz2CBH04xWs0vc3HUcVBEq2Okv3rRI1zRxjGYslOBytdbASpFIrGzKPxUb0l9fpp+zzLV+i4Mv7joHDVDAyFFY1IsSNl7QPR5hKwXc0FAmbQP7Scp/61/nuVawR/GZZ2hc/Bkx8FrSxT5svW8HwKv05X8IesvrSGitWSkk/avb54gfPnKEFcFwOm63vPYxNQ5Ypd2n61QWmFq28LJFGRyOKZvYTZcSJ49iC313seLh+FI8NAfAweI7Aa/2EQzC+lIZJdjWOiGGLN/NzzA3GE74qQRJDVS7kMObZebOSD9jtVsbErLuJzVcFpCJDUKyPWsIa+w5hrccD1oyC79//5TIWSkpza/0cSeorbjYsN96i1qJc1e3NhGp5UxmWGxb5QGQTHKoTJlu2lnxIWrUHuDWlUourtqqlSUseBpN+5ZzRxrQ8hu9k8/rFyYXvIASZ1Sww6mcdCI801h9+NqD6DXrkzVQW64jh2W/UhPY/4CgqkPu55BmFxSxAcUnUknLi2C7OAoqLFCLQPl9Ez/SoGqqlU5jq8zoA5QWtN8OqI+fJARHGSFytCQWT4Peb4L6EIDMuNqlLIO11kVO2rsBLPwmyIujCKXRvW1U8CmS/5/kELh9IMbRdeSYkjPfbIfJdvPWtVJKc1EKXqoFsnUCh2rG9V/FIInamGuNrNdVXNHQiGj+MnF88r9jmJc6gn1PKNaxGPqyIIPHU1vwhxgMbaMduC5ycPguz4lfU6T7GOQEqTFVTgmrFZG3/DUMsT6QQ5l0Avidc2KoKIpC6SCr9MbEbCt391hfy6bxicoD4iR6hj/OuK8qEj9GJmXfQNo50wJsZosCE6SDkDibavmzhcK4PRqdPYv/cDdUSyEy8j1xC34qm5M6tYzuPlXOw2O0qkc4VyaQbJVeOIvP1zVCm63/A6D/f+QYUZANNRTm0xmB37q0M5grSSsvaEO37nDU2fFQ2kFtTl/X8j/HwqMbAnUcyWR9h7vGj1gA3VZ+qGxrZA/CNimsPXEwK+v4S3arFW+0o29dajczivpVr6h9dZLQKI0fLt7Ts7se//mZG8B7FB7VTq90veWj4oypXvIqGHujNnz/U6lCLjG+cBF0nMvc/WcKJbCQvcwEezDOq1Hf/YHT61yDD4J3PkYwrcAHWw15nlYUKIZQRP1RcmcpaT0hnUrzYMkoA0/P93XvNEZpb4zDSPb2L+iuTDbZ9tE+Fqw5rWjh2HhGucjZ0F3b7Q3KY28iywlCXvEJDt8AbwUKIn00ZKI1ysHe3xay7QMGU+bI8T+SEBLPbEAbuO1mXv+OBfUZ7DRFGWR1uqbZSRh0t6joi8HwZ/MKRxx5kYcQOSwQ9CjPVz+i7dRqrErdryqmyPUX1UDAPUAHf+xo063AS1F6Elh2CiULU3lmXYyCeytGZYZzqN6uZ70gPgXPgbYMl23lLM/aYnj0xbA/yAilAvkMMgIS85s2YrZ6lSHP0bGWIkVnxPiauPtRl5J2tx4CrT3+yYJKVeYk2v5JPyoNeN379PzZByjeeC1+IcUHsmg3oZvAqPEIVqMQ2DarPw5s157Yk/968nY+ai6a80b4wf3y+cKfVf8lMO+SOfACTtnLygMotgReH1Xz94GZSqQfK8r42YFxG3Me1yolq7H6VRAz+xaBkdu3GGIdx67p7eJWOgaQXMN3HK6KIGMcjJnCsUhVkGo+zTItK7zkvV9oqpCw+JPPHoS+d3v8NgyYYBWgVt6ps1Fmn8XUoSrXYmYpRB/gR10xMA4cS62xU8GhGH3s3/CXNogIiOYQ/sIfWDlDPSFVozYXfLVPh9BZkPghREpv067vC2KR6phkB+xqkPbWjz3JbXgZI/bvSLGlh/JmmynVeJiMRucf47s/RqhnTYqwsgYtVC2UpDeeVvK8yrlR4yt5IXSGg7mKZuzd0ZcTEQ64Xup0fNi5DFBzeDXThcs1ytcJ5f0Nsf+WCME+/oD1t1+qiuVyjzGlC9i+yQCJ2xpDf/v6ZK7qy/2a9vjbcpU8y3Eh2P3XOyVdPlcb7aXDmJSBX2sDF5xAIRAG2TYdAZliyRL/UZZTFpd0ehzfVL7LqVA5KFV/xFOx9ep63c9/cXa5weJq06sbwKkJ+tFI0pJkdlVTqt3rZsGtge1ZZ35e2SBRGC6Re0x3Medo3IOdLUmrCNuDUTQrz75/zLEikB11XFBU4tXH7Uijr2XAgf4FtW/kze1cCBdfGoLc74vkyKqFnhWXlQXBoE6xXmTOBqnJMDJAQ/Dyq9O8MoSy+vD4f+szN3JZDvF4/e+2UzYfaCk24Ep7a6c27jLm2iFfQKuteLFMtez0vS6azN3qoLh660pjWHb0N8V2ScMJdvRRoPJhy56fksFEPhOltq3mMd176bPDe7j0BRaK3gsfMlWieL5Gz4aCI25MNtR0YrlblvdeGERjkA8Wfp9eSwIdt9/cTN0BSjOosYaNrxlh00eS5BPzAM9c0uSWVmqx5dtNfIyKN8aryH6AwRuWztsXv3PwLjHV7bbdhsmHfL8W61e48oHxxmQH3W8qjPXaE+bh2xQLM3eQozlysoLhOvxEEhssMcF58AxxYTaV9OrCTGi+/P0J0MTy7IP2/tPwKf0CVN/k8JSQuitkkKDnxf/Y4cWWhYBkuZStzEXPAbqrIFUIcOONByx3DPQf65UWfLheDVfFH4XrKh+tSzVFvTfs3k8IJwSKt1QQC2EU/IqgPWM1BwvLRHwRQfZF9mgBunlvm8hUFcpampK/8mzG1ouZfHtEEuaH/F86z7V4co94FX7itSg7vhc21LVnzUTCP8Ohtp7wkUi0HXxdM9XL86NEFst2m2rV9BIcdaq/L8bMSbxAk/b8x7CRstfCCfBvrY0nMhpzs5rZ0LSGzna2CkqFo7bTE9nA2jv0NHGp5uXR2Aql90w3fkX3/ObNKr+UVD2+GoYovpTQ9FRR/7g1oEOLxfVRw9N/QppYlgogHaqG3zcr2wJX1rL9DF33tKWQ2CcjAygLrHWWVqfTIm1gzlsoztWS1DPYsxuAKyevIIIEsKS2iWYPzVzE+ld9nm07v3KVt+eGy9kNGeJ33GAxADc5w3PGjb8BFPQYnKi8j6XH5Vh3CuuXYHE1ia4++wnnuEV6yOgN7eI0DBvjFjoumpZG8ILDnj9+0W3r05bUi0BJrg6xIcV473QAGokhI8O2+m7D4/s8YGSOrJ9yw+HbaMQJSXTVqloMUOG5OiwSdDgTZQtCGL1pzUTBa7DE6YGLWF1bkOgYkRxndY93d4wFrdsPxCMpMqep7cBENLZcS5i82NSYk4kzhM7+ivRZNMTsrDe/wh+1+Fi7kl9HtI7Ni7H8PxGVkjx8QIPAlfc9cuCse0LyMR5XDYcQbj3m1V28VAL2L7uN4k8flNRfxkSvdDOU53t9JFCz3pfFatdh8i1UA70m6N1b3Ks2YNWKkY/rEHGQc2jwejeK3fVp7vs+Lx4j+et7/BBIW1TGDnQ5nRzbIy8GsoQ2tWQ5s625mL2qkwXdfgnhPomBFVl0u6YHb3IZAhKX+bsnUqrvXP8knm4B9S9ylTX5cTyx4MxNXPBX+dv6vmT5otJAVr4fiZtUo0Rj6CEuting8UCx0kV3km13aKTOwRmY58vMrjJHP9u25GE7By1PtsbvTakNBQSNBBVqfLxDICDglrMnAaSAMbcUvHw0BaB7r+oKY5tcGjt8+PM18a8LRA9slozcP0txfJPjlfxNYUnkt4EOSeBvVEoWDbdfpO7Q7Bp23XUXA11iWNJcj1bre7cJHJzmRRYSPYm7NWYvAnR2qfDX450MvJFdPFseHxFxIn6ZzTE8tY2p4zWSvt4n0B1ImeEzhbMo1ysraYNUvBKV/pQTYZFG1jNwv2OxX1MPEmA24jDa6y9qvKCK9LQ2TnUfMxR7QmtlAXyPkEXrDGUVnY3JBM6vQgu3CjXh9vjpf6g+1xbVJeqHgEX3j6GljSmEQ6iv18BW6gwpwI8QPJxoaUb87kfnhh0Hb4cqWSNwRPm2+Ppxdyz7owcp5RtmVTC1u5sPVSWZVI4BjHzbn0q82mUDARHIZBVbdcl7wgGMqS/Jq+7tNFk14rhXC3WnlOd2Yx5axaMDh8zwfkOQ0KcEUBBWI4e9CCSXyY1v1W+fSnrx1NWajfOi+NOCCs086/Kde94jTIkTstaeGFKM8VwECZL8UI7vIqayzWvo99kVocrn7auA+nnKATSyXax+83dvpPrPzHyZKmeo7E5fcLhNbf+vtuK2OpRX9IX5ANrjlrT6vZ3xsNVyDdldmhuLukARzXK3Y1MEletIWJcycfhXHhFxjLDNYUdxRW/4craIosZfr8NdVnryFW5vZGRr/aNBUFX8Dr7mIU5p7EaCAmhO9nuitbleceRi6zGIhjlxhCGCVmxW4c5Iu+FqjGyEgcN7eUXaIU2BqIqEJmQsmWYPmqATuWL7oTyTSLYPLtfZz9wB+llsbKsdkdtogrmum5LT1/LmB8k8aARuyrp6IWp3y7M0HCfj+hgaWNiJYF33v0I8kX/2IxqVraE16W2UeTkj3GEo84JINUw6RA1XLtoXnU77angSYhqRw9pHqxJPBwdYQYylQHUR1RnpxVrJzgL1KGEG7TkG7RO2nAr2mQF20XFe3VxWNX6o61im1DzWGwBqWyLdZ0U4zHDgf1XqpLfynJB+zlJUCJNcXS3JHeMQvwtn1fZYHy6g9Dri9oTj9z1I1gJpr/HVJ4S/+HYjpee6gFIxzxFKlq1jCPMRKHCZixkcNfMD2QMDtxnZ6CrWa0hpNmK8knJp+U8ISuPV3TcMg9vb8Ft6za/+YsOLwsofuBNq1w8m3cbhS+o/TcTIQ20h0kiMgt+NZjAlcfVmdS7QFACaEkBQ8M168XNkYA4cY0nm9scTCzaK14ORM1NcQOGMWxk57w+uGQCqhLRue+Ra0MXez68HpUFEsoxHwP1JlZGhmpaGAQ58yFZiViV2qx/8+duoqJzC9nNXTYhwooFU881dTh5U/3Vx3KPjnH2MstpAx9DXOtLkZxU4R36TtBGVlIv6l4kkv+rENc8nWf7MoMnY+eEgvsGTVGEWtCtPh7EjvAzGwq/aXpzmbakKK7cFVpONMCx2ccTaft52+6y6xJlLGvcv1oDCNQDN7ncorJIbv1P6a1/2fjfXvEn5x+fKNOhTM5R+I2v5UNk5XZEY71u6b9a/9ZwFt7tn9GX/gD8+xZSHrHm0YqAL8Yt7tkEjz5i7vb+WZZU5YMjuMdSwQtSOT/fQLWUAN1gk3t2NqzwtW3Gn1xQYh6i3KXHCkUaaMqFnSvffb1mxQdUvzQBzKyE1Sus9GExhtSEo0s8BwejyVF1o/ojUVijX13CT2LHK/4SSnSvVzZDzCEjWWxxi1Kzr/H0hmFAXc4ibbxwvvPb/goE7mVH5N93/vEFNDom7qc0M/xtXsz3lMvs+sMO2AhaOwS4FrqVzss7NrXtJNW5/27JvdHGn2qOL3eZ1CqtL8zdEvqrjlQWJi37J80mlrZ+Be8Z3XRzpXJ32gX6H+yOmlBEJdTg63UXw+hed1XqDz03HEp91o7fyy5+ehsUuLAeaaZrzQAxcKz8uuzXfuisS/X1tdMwsEeVFKIBoM4eNUSvoZSU6k+Gsm8ue/hEQrGrOTN3ATqh7i5roX1dn4XYcOja48OhGPkcBRJq0+vpUzUnirksagF3JyY/6VmobaQRql4g049OMP+2t6t0CqKUgT537rtr2APJyW+Ry/w680rpfacVNtORhY+Mf8AgNhKBPe+PvhWkaQY2b6XPpILluNPDtxUEuPbV6jY+tKXoHSihqP6nawzQ1L5pi5IPVKmWE5cm9/Uo8tFPuQ3jUO2biVe0uAAyGHOqBZo3wx1YgIUgcfOelq9xenk5SjRK8Z7SySXYm4Jp61PQ2k/j3R20sgAkF+p3Y4hczKaZDtTDw+9rZ3YghW/ogORt4ZolbE+v66QbDAhyICyvdwZR6CSVIVJfIGtgGCaMdcTbtA2mIomZuw15YrmJkdq9iWwNpi045u71x8lkV7xxsAd+sTr1KhappXHUHzI6/jObZHZKDwFn2wfLb9o45r54PqazeGM6lK1MzAkSrvUm+wcoE6W13H9EvjOTx2DzlXtXQuUOqypkE9viReeBhbCBFmLSpjgX8PJs7EbgIH6/CqNZCzIBzJpZqZQ+FWVZPdNQb/gTotBD67jfDsxjl0SjI2cVxCNuTY7kuq2OEM4pPyVZ9uTyaO3NydjGUEgfe732kIBb+TBkMGYxSKvWvZucfy+1L3BtqFUfNS3yXiqH3RboXb4sApNZ7KosTalHyzahM1eIKpJyqT9wB5q1fHSC92R7owJk1e8vyVaSPgJazzbrb+023Nn+HYblCZpUo7id4yO/518KFsCJPzCjWIFW4BErg3KcL/7OXdp/1Nh9RrgqRiUQxYWJekJlXEOR3XKIwhtBRQ/3N6xXRmr7ldn+7cWoA0dg5S8IvwzoFWGeBFIq9OEWvLT6kkqyigiuwjR5Ge9qCpuSx2e+vo0xcyq3H63J7PtiI4eDC2Mf/CFfAmhQRf/VXxqKwGCG0Ez6MfoDaRxBGk+ALuQ85bjWS4kwMoSDVeL320qGJBco7zjm2jYeXH1vEV/z+TI2V+s9/p1/5TTg36PK8n6BxyFL6IV0Rirw3+GN0YSmp5GYu5+yaNOCPnF880TcHrVBn6WmoCv3aW3+aW4YUDsCDShCXRKSzkBxqrk2nayCS075TjomPErapPtSfCVogvZZc3jvENQOjaGtkl8J0EWy+b4UFkbkCYpNoYTdIXAXX05Ce3BvYiPf630hrqkg5nAk17PICjgd27g5gSVCXOYORGoeO0YzpYrfzuqsexdf7/K8Lmjbm/rGEPaGUhXt0ypP7ugE3GsThFnUP86iiCto1HBVwnkuAiuNjacElair5/MZxto7VyRaZ3e6Xoo4BQxtfNaNn3Tcdg/irxlFhaH34H7Oqp619aqvk5O/6V8nNuovKES0HrmMelpyQmsf3pZ1GS04JSqowGVmFZPenVyNH/yV1+zpG2oH3yvE4ceoNsvJzH8RvR/9C1hyEB7OtQHax3NUfLa8mue+jXAx4w6eGNiTlQUiOL9CAowkNvjEekFVMF6ZQucORHJoyd0PT3fRSJcowPbYtt2b2ukTD43kvecNip7BpfLDdPAYztQVtgm305helVAcTeDu9yy6eL2iNEcp3DqtFMi3I3Y1QUld2LOFXUQt+j28fJLcNjqOB2oIG8ZcGjiRtxxeCkJO/aUgQ3r7ouWl+DqjFxskPa9B2NK8kGWii+G+B3V3g/VySKQXhfFc6iDRS/2kVhCk6GSU8Awqt3LQc2Vrr2ahyQeSRuKMLcRLMKIpNXCsy1B++d3XQw/lhbsIRM2kVHLmVdqCdRGJRL73HTaZCXjhnBGYevTDJJXS2+IFcw/eZT433yLME8/pBtUzJ6yv7cJKZz6G8JCQMBgZJr5Oivw7hFIBXzDLiCN5Zc2bBlQFR1mF8HYkE5V/nYON8FrVtHr4w0T5Mavs9H+3vlTpBoyG5SQCwERofbIAQ8S8FTJFrZPNJWQaGWj78InTq817NcU54HHM/nZsSAekiFF0/uUvunh8dPT1gZZsZGx+Hmnj4xsPL33xUWfuJALhKzm5DPq0RPtmBwtY1/hD4s++igt0AsLYUy1ppO3NR9WDoR6o6L96ReMtbWs+DxOMokSCGi30fMBix1j2iByFd2pxiRx8xCiLb5Q7NklrKcLYInCBUYugcoy5udc8wSu5AjhWIZhfGz8/cXapZdhC/c2rGriaVVb/SF3AEMrvBWLuaL4ZEBcyWM5aewIMrlvvctZRy4CXs9pwU229rNtyQ8fPZ19RRZI4tOYPOlbEcRZMutvvjJsx2U/sSEdeQ8wkoIixAdasYyrOLozw3zpdRn8zMnf7iQNsYxJdrZnCD8sRjsqJ00FUUFwdx+myXWgxcW3IZW2VUwgrq5u2pRjNjcx+YTAAGwVAgwaLjdmjHyvlEWZ/NC/nWfy2XVH/vEQJH4y3YZ3Xlp7IG/UPF6nK4tzh2aW91wSB1XXnN9Tv6JPxp1VuQhoMf39637Uu6Gx2aFduLn3Hj6LKRXs5doHNbycnGYDxrXILkZYxLbgQllEzkPfUWL49pYeRYOvF7RExbgxUkq1fL1jtvAidquiMgnUG4ChlXZIIU1tsPozLtC6TyL5DCMml1Mc7Yl25So7mucClfdEUIWLCINXnGHvrSLWgcfrLInZtfqlRswqcq4tZUAoRNlJDnurZ9VS8Q5BtBm7WAfVYvGGVQs7cJUAgTl1D70N173VLlMg/7dtaBg5a2XAzwcF5vHAuiwwIuWNthCsPM0Z+AaS1Qe9iZtJpEW/OD5m308ajIh8qQXHVWm91gZDgibvt5r0JDDaVxB988c/+4Pk8wKo8PdVL8cTLym6SqUQx6fQx+tEtieVeAIZCfjf8CGWkWxjfiseS2AUXYRp3DNNCcGGDv2HAck7v52TQqZiZAG9kLjNQLy6gAqmfX5v2zxJBqBFZO23tF+4S2MpOypwcOp2yBzdv0g0gVN/SXA7Zq8QUnnmaPa80JaYHOSuijs83NZZ58wQQB6L2BkKCTSdHitgtrQ9UMN9nMWNMPRbc4JIFziea7exIbu0Q4+3xAici7K3Ml+JY1eM9/ZbPYdwyKjk3iJ42zJNlV+WmkZhxFN+bG0hYciLeVhbaDMU1MH0Y8GmkRxt7NhjtLRbnhdSq+j26VD3LyPDvNoVtt+sGKUaN1F2I7X2P+hgDE52aTbg43V6d0YecP++QhaLl8zYSE/1UPdm5O2SQ/zWRQBI96hn3/Xfdv7iu+ada33zP54dLp9LFJRUfsfUKe/md85/mqvQem2kpTwMUAQGwCF+5O0VeooahkyKVwOTf8i2Zg2cnjMoCpDimR8l14zwvO4DqD4SxVNh4RSCdzQ9Nyk74ZGazDNnbRC6+48vsiSydQaMC967Wc2gh9kr419bOI7bM+YbOnOYjQ7VSISrt4w83gcuhzJ2kX3mZbxeuEbRpns2mllO8XXNTnUbtDBTjSEnDOU+bNZL36w+FK82oZ9Bn8EHt5PYKEjFKurfiSOHEH8ko2vA7MzT6vFCZcOY1xMKOJMltZ2wvzNalX2ktQLafSPSeOiLsGLwcyFUCL6aO/bCVJgyaJ7Osuuom/pBGN2uCri9kso9ggbj6mewP1UAi+jPUVLwg9yvBfkPht0wkS78LQEHCAAfTizFwqoVOWTcWIl9i/8JZbWUTp9wqadLEEl+Y3XbjIe4RRAbwPnae+uVFYMaGJ4xKz2AQSuOdOoj1byKG4CMznDfoMYY0Hz2zdRWK6rKOEReJDnTO4HGGXYS9dM7SkJOkOTkd/yKMrN7Mr1zG5a6EFRGW0YUXAW3SXmqAtfq+fvYOKRIVhRztgvRFLjf0aAAeqZuUIGEQYyBKam8VJZVzokdABZT7oAs8KeHfLIkMCzFYmnQHZti22Q1QQMs8O5gY1FtMVjSLHYgMo3eUAC8QkcxKZCtYp5d3FrLr4Qs6trM1o8Of3o1m3GCbwVlwWWeEE75QtnasUU7IUkroJrkk6X17bF/7OdYDg5vcK7M7Q+MmbuBwbtMQO+kPoofKHDyMrnQ1cFaYLAZwnTeOUKW7i28Qi0Y6uOymRqollcqgh/+pSz7dfGcjolqORr5eZUK4cLKGuaFE4rEKNr6PAdvxPW2cW24ESf/2YqsD3IgNtR79rtoEUFZqKUYe5MFFE3npjxgG067cNTZwcOcQ/dqu8SzUs3uUyblwF+99HnqXzg8x40tPU0I5BhOFzxqa5NzgkgcQk5XyGPBnfSy2//tk83jZlwktAdZK7P6Nzf/9yVC1BTj9O62uoqBy5MnaX/4J+aDnEM+kSwVkuW5mISWrwXAjo7SAdbdnOLzTfR4uqexu9yLjMuZfiRn7yrPGV838hBqzAE6dlCyXuI5ikTyCGdC+wT8qCoqJV2C+19gV0NUjqYyTwewsbCxP03n79G5Gxg6qPhjfCkYKYO5KiuyZb26kGVi2yOHgvvXgJfDjqIfmNILOEYsJBvnABK6N941DQOKydDY6AYKEqxjExg/AMR2ZqnhLaUKIVwQ4WXHZBwYgVlA4JkQS15NJEl6qzu1DBam7sJ5ZZiSOzTPg7jCViuNXIYJ610np5QcjbYds6QGqWKRBPokChDJxKyZsxIDL/9NjIYxpuC2TjranqStgB8ERpBaexoRs1QiPEeTqM3HzsP9fidopnOuLiViNqfj/bpUm8ekyjTSwGYVINWjytZcDuthSx5H8yc2gdC2vlcyzeWjBx4uoV/RTzkvLM8AvUBh8Uk4tABgy/HZJenuHpuX1z1imXhcTLIR7TRjLd9O2BKWp4PJxKwNGeYAfC5echNR1M/ydCkgugdFeAqG6R5IUvqP8v12grT6d/LqnIi/b/JD5YyB0WJsQYwHNLaCewErF3pH7j9jYTR18T4120cGP3pNfXf/wnHZ8hSm8PrZjzNtXnLomr3gYtiXUcrSsa7/t3rYKLVvgBxZ3DowtNxqljdF/syvdKTrmi3RQ8nEf72tC1ieaZ5z6CrEj85MIdjdxPfKaR9Ifb273STszRk/GPq4CRmyBZdrkCCAqsZ9lw3Oy3C00j7sUP3oJX/hipZXCpy0gJTXKpJSHR85DmaC1cJ9OVs6ea1kMeBgatO/Jpf6K9jZ6cfi35Ma9PazrcjlWA4XyTvhGN0cTxbH9KSp+KfrrmnIztqFZSKErZ2LHtqJsFeJwq4q+PUIhTpn9BtCCJFk51tjei2PkSoOg46bGuJlTTSXDzpji0Aq5pA1MdkujoI02w/7aAi7Vx2xuO2+gXd6KLmWRtsS/TEkK21ApGhvj1U7ty8vprnqLabsW+wXgacCzVwDODsFhvMgqqRaacYvyyxvz4bySiqtPDA0avfMA2cw00ogk7hYvYMRyy6SmJY327FFGvpnnMlClwvgNH2gmP4tk4rocq4+3XUVRDXR21gZry6VDnWB6pb6QJzeolcansMCs03woMUeayaKFkoBcGRrKXrAyZYvNT7bFAoJZSt2YtNHBlSbqX/OC+6ddcZYTIFP7kELj0x+gViDKvvTLFAMwAM/Xhkb7NZU1lKfVUjJWo+gCYgjYaGBvanyKCU2aQApifNaK02+4oytZ8uUhv6gizVT9qDTqcyl20if7tOUGOhyU7QgWefDC2/vUjQZDFAUSmshQYLQ2A2TFVx8TkbxalUbAYRi9c/vvmDmzd30KmxrwP3byVw1GJnw4VkaAGvukiBHv3aC/xqC2AX1EFzVN2bT3QlUw/nz7+1q4h6wjdoo+dpKKRC6hzfaBY+WCtWO0wx0HLMAltuwETgjYoVFBVx1eb4XGdeTdQL5ncDKah+ajic3R/Ie5aC+J4qACcNmk4hVjapifJ37kDzvP791+UIV6sMuBIKkea1XO+k6zH2bCZSHjHZxzGXsz4953Vkb2K3xej2n3u2yW9m8Och+zCUReDYz3PCY6ja/V805ttrH3J7cNNvc5s/L16y2kKt6z/atPBkWGTHl5keRWNodfwDMErAG4XzP2mg0GiFWpHPwXEbxxoJ3SoTl+TMcZeUBws01g9h/ZxbzcpVZlOOjxa3DUbU7jz/JakIutEAh/CVnTPFYpk1zAPmWcG7caWlr1SPN5koi/vwB5L9D+R8Yf056kmgvk8VNpd01lc7PfJXHxp2ggK9NyWDU3KBYCQ+MAXBOQ1dm8orC9wgIE+ixTZ6VhziqkWcS+YowU0DEQHxBsI1CQdV3YWffADzCKDUdvTUb0cPqyvvMyz/XCBCE3G4Pi5SbizbgmpJqMOhovtLaNqVm4gbk+2O6scT5croSm6hndBkt5C0ZxXQrnLTYJLP08zlrT/5LgLF3rDBKLvP7I0qJ9LqIr3jYcZRyId56ZO+eIzZ3V+bGF3hM5bMlk7nhv1C+CsLvmi5EOlQwwi5nKzhym0BAjtKhvK6RDXeywKw4olVmoPsOHsCl2+N5vJH4A5a2j8OZatTP/v2ZdmPIMqu50qAdabQLDhlF3RKUJBQQl10Wnef/4LfxdeUilu0/qYevazXbbbcYng7By+spEVzh+NvFFbZF6dKqmAp3592uaxx2Rs7eo1vs82hKW1vh0PqolTx6bry4s4BBj9rN0Tr30o6lV8UdAs1JBDqr/4/Mg7z4IIzOarQM4eKvAt3aB9GYG4V1SvUpvXkkBOj2we4nom1SzfM6AbFyRpQrHokxm15X/vzpKoMB+yxJ1QWsGX1+MT6aCO91//FUvznVKGoQu/gag+zkaFaECnZyETA0O/5x+sOsEqkkP+xMrzToxltM+p+UUy7uuXcbHOQd9jmrf3C73beQNX8TFTe6DxdmJDe9vmXAmlFfrxU/CYrRIHimevUFYpGKSrOqhSuss5eM65tGdzIUQWMKHB+idtDq1VX0VumOKSWPoldekFh0gX+yZNBAsVIi+6oP0h54NOnaAp0A6aSXiy1h+pSjooJ3spFM4UiPPnBcLAM2BeKBbIMOc9Xp7xyNz9FT3hqlv/vkOjmN4aLegwk9rvxgeVF46DVrOUdhoefGr4A0v0iUxLMbte17KOGtXZyrKNRrkdAiBeUQecA4O7lFABK+UnWlKUGrOZFjAf2zx1V9thJuZpFifaSRDyOo3gVd5z2R+XtJ8SrktwhTj6rQ7A6QMW5Q/aCC6YwOjPXMI/sfcndDeiTcaGdmH6rNEEygQKeumhiZhUAsSn26q7UhBna1mV5at5d10V0fSygXqIxWLd+OvUrELl7zeXvmto2LEGXZxJefz1xVjq6vqu/BjlWtmijjTA/cZaEQAfojgZ9p0YZzksnFq8JeiWqpGBo+bn9hwjJIs4/Q2jxenteeBjrVli2lUtUbmJ53d2iIV+FhAvqsdS9e6HXgtg0I8D5zrjEP/guxxTxwZLVJ/GUVv5KYyMsP5PAkkggz4VMFb1dbRxC97isKMeTqsELDtFvHHSrwht+hVFoMbv86tajgwGM43A+zRir71jcy7j02gKOcbcJL98HXXgewBGXxt83knvKke6tomXJ0KE0krlbCu7wMcG9Fxxed2/L609LHzSOswCNVlCx4NDqjep/adA+SwsZurHb3T88T5TWvM250OYkr3vg15fggXFpG5QJTlC+aHRXSMrg2jnTQbOd/aV26ybhk+O7zTpdmiA4g8wv/1kE3zaZ5Bio26rLRV2I79TvvbGk8tgTLtI30cluVOpesyXCinyhz1RrB9KcGdUekAePgV6QeiIfB0OcaF0YGbUvdY1+a5N5ZcOfZucLLUQmNsK1WbneFFWj6Q6FcLSPJXRYzhU8ppo/KrGXtK5+VnK+fy4OoxKNow68qkeKMuaHmOwoNhYRJwW8TlM0VUcuJQUM317CGX3VAxW6lSPkYHMYgv2OGhMIQcujR9qXb6GXQQaAs1sWJvssanB3xwyC8IjLWFVr/ofMBd67pX60rt17B6nkp8qsb0uHO/gVfGSIciKHfb1BQ8EUDYtSO0J0H1DUFTZrJS8Kcz4d3EwNFaf+NNMouj8e/2iT/oA4V+bimZQZOdYqKslHx1DrI5BzsJg+o2El9q/CVOlQpRySaKDAJy+MX4VFh0fvyFuHK1mzFiF1gfo5CDKpY+k9peByalS8nb1i/xUUA/AhQXXJT4wg4W3WjT2SXDbB0qf6i00FHCqqOaaW+Ja9DnbA2PZNvHhOn/TjzKLEeZsi2ks9pMoUgyBt2vA8aO+BIJFc1oqD4ogGU+QRe6rydRplAKEpOCrA3C8/CPdLvvO7gdLLx8Fo8iQ7XgDmLrHMaK/k9BprK7/70NeCF9gIt7n5axLqdht9EYAXxld7D+GA97OQO+Iqvjh/AhLJr0m9fT8EnLAcr/25mCGu6XmvE/XKj4ps9Z1tQQ8tr2Sa9l2a06vWJUTMPkLyiuFrTN795RFqji/NttztK8OIorfwrhUFd5qaVAL4RPZFUJHsBb2Kf5DZOwiqVjNK+iC/LCw/O/szXU6DK8Bg1KhNRVC6FZ+vp92hW8nqXzVbv72j5pz5bJjd2HOfvF/83c0F8yfqEYzBrJbTntTFk6o0bTzHy/npWYDrepMCll9UP3LehI6EcK62nMaMwJ+ppXXuq1/DJhiHPhzfYAJJpJNLtaI9nAhz/ahZecI1akwUl5ug5bNXT1upDoESSfwOKppR3lTp0cL2es05i7Pmu5V+zxmmhea3RR1zFoKrc4AX5E7hy/7ZFbtJbkUbfrJDvrsVfNUMo65fYD+Ke9TACGJDj2LAPxKxL8j/AkYsANYKQIbOOP6lJnZ84YNcFgiOnPDiF7X4h1oI+IkEqdEbH+MUKhWQOp9kmJYSwXXgxhW/XnoEgqcw4m673UWcXM+NFEpZDh/vj1cFxjpcFA0wHy7Narr73ZqSYIyljiS8L4JAdR2qVPexf7auGqGKAkCnk//tJL/wioPP5L7RBvIWLDbiEP+DMza0P/PuT5I+aZ7yJuf3NDqPD0T5oO52iOHWm/EwRXAXyw98PKQOhyQ6pnG9PkeJWO5HPqZ25y4Nhxmm5/G8vCI7expf+rjpYcqdASqgNiasfBJYSIjLjZUteApTHihDWzdVVdocMRCWrxrp9/yaCKUemi5nlLtzs8CJYG2/FZjoum4ZKnhqNSVDwU2hLrDNX4b1RMpxmmkjpswalHDQNFTD7rP6RGPZ2H0z190/rAQ92t629SFXmFQG5mM6283EXAK2wFm8fV2QI2z4FNYYOS7I2Fp9wW7cHqQu84mPHsC9iw6NfGduF6TUjV0KfVVaHWLNZ8QiF26efyLofnRW1yuFF34n4DB0U6Xrju99OED8xbqXMpl2IiJVWr1r6qR0ww1fO+NEeQGfbZfIsdMQPJDFKSqUZ3bDM7gIXkMpSQVMCgXouadIce3YW//Wq+tqT6GW8hSJbg2HIEo+o85s/B/DPK3fQikxTw6DEoI44dIhMnQ2hw1MWbMiCcs5mzxjhizziI7ysyTF6hV0rcmkSD83ALn5n8KNSCFvm6lMOcN2gKiOBGGe5LrcTKDN5NWNX2QTOmBUS2nkLYM32HaJR9W+wWRxUq5VGSHJXJNwAp6VyAs/6MbeQ/d55BBAelFbp6Wo8xabar6JcTbj1x5Pe3EF9dl29aQELu8VujGgfzA4PLseXc35ZzCGF0ro5M9jmi99nztJZJijcOmt+VIGoyYhPD5OY0ufOEqVkLsFiZjs4sVh3Nk546GBAdnUm8TPHo+wQ8BF/HgWfQUac2Y+faVDnqh/J390n8fRYsmukTQXrXS4HtK1Srtg68GHWnlRKepRzxxEGrFA/T/oqCTrSp4yqw9zUFcwjY0P54IHtfFh4SQpaGJtxFc20K+BGPhYOcS44WxnHaJs0C/G0331O62HB5MrCp2RdlfBfvh635cC/1QN3wpRi/nOQqdpzGNCqD/FCzF6qkWnAK8H3yCvOvGiVtcsB5sKZUwG2uxc46Js8cFEnO9XqrCRrXDgt8dyshd40dQN5U1rM2QoYv27c2cINyqzz9pOccUIijJ3y8Y4vIhHgDGoVr+e0VblB5NSBh24WpiZve7PzzkrgHveqN94kMoQ+GS6kO4WHcaqNWyXyT1BfLoDR/J0Cut9ardBb7dSoblDZigd1LWb6z9BImza51HP4K9VvQ/sJLIiFIiO3Qe6yVK85Q3DH424qt5dA2VSaj/wExDPnnU9r9zj4VNqBV59wjiu4IViW6+iHsnrL9vE0tmDIAW+4At7n5nJ5wzqS9KHSKGI3f5pQ9HcfnsV0FaHj5nq+8sJH1XRW0hGNkxSLkAkL/7deO+oR2/x/egRGZ+e3uA9g2jpHuUnk66/J08fmWiiyWHIG6Pll70bOy3gNK8uqRBSHe36sGSDTxrS5x+7MnCL28PuT8tuPBhwOZQ3LeA0Q4guRVfSa4Nll0GYs5s5dDuua/yXtCzV/OlUL+zfqVHut+yIYtf8HYxJ+5F6IQ9P1jZlSFUXDtCCzFrax3njbnVLqF7vR7ekfTKfmmv24z1xMNyF/E2xU9+HGevlby+XaOd7YvRauAu8Iue3Fz6HzyxTwLj1ekr3+gIkCpbwt655eRCJO4kWxfIJkI9BT6uDgLfKPKfDL8PcTsN+tHKV/t5sYdKMp1dn+awKR3YjSQTM6gGaWfL5Sn2Y/qMiBG8moddIp0V99Td5NXV5wZSG+jsfSJPDGH48Ts4cqQSAzHI10rsXaQAxVfEAIPmAP9E9eGTXkF4/msrdbWi10k2JzuCjEEBYHLCqYIKRQhINuBgvSEjtCzaVwZ9FOTdDe1SlDZQhrCePPRwUR1p2NOWuUH6BVSM1J+7vcWc6Cluo0NNk12yveG6PNLNX+tnjtsPwBK2FBvMMOeXYVikyYF3woRcdTDQ042uTjlfXIiIkNycQq+OUh2U8eBeM/p5PqNTPuyX3alJNNJg6IZ7mNNsfVZdU/2wmW/Tku7VqeI0bhZ2gbh5cfiVGhsmjj+6GuIW9GicfqFiP96YXBE2XiJTgQcaNjsb/cOpnCRdgXyTU5Pl8CU/XFcuWjWfet1Tve7jIB8d11WoINmyHkuZdbUYu3c0Jhy3ax2oVQ/QivZ/rEx0RGtlL5j3JHjVBh3xR4HKtHzkcg7kakChtv317cyzl3ZDeUUQGL/ICEThOCbDRl2RAqZzI0IVsz/oaD+GLu9FeA1WFqwsIuWZlfAJ0fsBwDnpmzKJDT+9vzoAWKfKxAC2U/jtILXMJmtuE4/ctPBrUy2WbCliuJZMFySf4o1PGPC7VtuqHaRpFhexG9eyCed1cdaKgsbidMD5WxkkWclwYh+C1uwpY+bxdPr1L4G9ujQyf/j1415W/uL+KKVNypSwfFMTm2i6qDTI/Y4WlG1ll0SQAPv+CuMjZ4/RLaY1BHWP5b6Cj7g/UsjxBbSe9FMJ2G1hCVqnNozkNsKOLmDKHJNmEACLdAA55/TWdWH8+nnTgBTny2uZMFEDiqdbrOZviPHTWcWlkG+8j6+OMgC9gQCwrLhWpLIwA1mKfVc2b0lYq2+yzG8fNftaHIIz3PXFbxP4JbhEiGsZK6+i4j0n+IPAvr/6MUM14x/5FHn406KiIT6Qv3cebGIxD3Wy0gSgKH9Ya9ca+A/A6OV/S+4Ubk3SJ1xlENIAiWcNtwpgXJGFzMhuqFB99N7JX41ZoCwvTF8tyiS7/z6IQbHThR+JYyhD8tJaLHr/XlQcoUXQA7cvXm71ed1BQ4tNrJxvGJoC0vfEx8Vq74ClGB3B/YgGfHUoK65YxqKx5snJGc3WYgp4X7yQSpjgYFdAYc445wtjBLD5IcOxmpTAK4UOtZnf9ketyfXIp61NJtvVNSIZlKqn8v8sy1iDd7Oqj1h7ZvEF82nvmM/moQxO5vxeNTts2X7cMK7DKyhuNoSfy+6c+qevfvBZ7swYrsDES3IIxLZdJs48CL5kbUgBJhLXKoNQeUtOMVjaDhhCgkgUgP5FOXhoyc6xqPiw1V26WTKNCfsDXXUI6FWHp56FhzNjdHMRxvDs+fkNHZGkxov31BhRwTkdCFrr/6tKAczPfWbFAXBnH3VoilJDTmYIeEXFBVBkI3XOnRsoxebhIrWWeM8r9y78tJskzq9eBA4mnn1JoulMuBtfQ9t8LvIakCioNgosWZWeYhGuhQE/bxEiFlWIUmdjpO9JoappgreZdCffBof/gYNbfukHVSznNp733dOyRLxyje3y85kXa5Wgzy7Ia5IgKW9FeNEcWr8Ll3ZDyh9jqlVfAyUZW7K8t+nmhUazJ9jpnWIa1kwrJTC38DXIidut4u/ePpbQA0LV5QmR0EzvzNX8JiSSJp3CV27jDROsTMj5xc5burMRvXaqfO9jTrbDL8wMnBSa4Ij4d0I7D9bLscTsSWzBJT45WGCbig6ipesAVDsoxe746seMDxyOh5HB2aQ0xxYZIpeIAP+uPD+MC1RCRsAMjJky5LNNTK30zH0EI06Tu6rXyIPxXu4zE4QDdNGBt2Y/AblOPBni8sryDuWYLf9P4Gui5jaa2X/lBPg83fACwQNtUvHcFaAPgBBHjCG4lPP5rel+WCR2w+XkjJhCBRLQa6cPRYgnV60f/xXgx+bXfKT+eCWuNfMD0SKP4l3yciRxegNtqQjjwbPY+RmHXkxvfM4Z+q2Y7k7P4hoG+vQnFwaB49vXReVQCimtvIV24fC0RlDYPG0+oxuT/o5oSQUjpUC3veoBSv2n0j7/J3n7kLjbfIdPhZkTsZEdxzcxv+/u2gO0t2eGqYdHxvxm9fFLWI77k24LMGj081lWm3QRGXyT2DLiYgIZ1lNFxPYq9H6SDXKebNKYAQQy7e/DGY1swLQYJxdasQ6mw2dTxcXe6FLE9WHSyNJlf0VzuZAc6WLV0n7JVd+Iu2Rx0AB483UeYcqf/qxHtR26gOhM7+hAlmL6rfjPc/s0BuvPicJBf3ovUCwUT7fe4hw2A9fXdBzkzkgf57fa3n90uRGoWZqmzTj2OHSaQGrpBZp7N5Oi7DeKH66aoBM9NT0rbTjcweZV2QMGiBRKhQyGVfxIQdmZLLIhEeyMr445kpJRJE2Hlh8v1JcAprlhpaMVAjCsZDpyiJiMW/EZxK4TpOtn/BLdyEt5Pm8diJoI4vVXtVb3bTQLfIljF/QQGaOiMM4iVuctmSP9ZBVoEreoqtnPS6UY2km5++KrsPCWNShyRiEdI9TjoDKMnl7F70OxtAgNYuu6a1LJrJ7bq8Ih9IWvkP9TLhnf1AAD52l2nCFmEdv0Zm+Pv2Ur41myXYpenJ74NPxQwVI/LcntA3WF0t/kHcyXWIOcX29yxrzLuw8+V90rRbEs1tId8s3+s+db1E2UYhJnrXwD1s4wFAePFyBkBrazzpJSl3Ng6ChpnNeuif1GD5pR9fEdJTeQ0BPnGm1gcEx7pKeAxNIZHNIgW2BZZNlZLj2lp0Ti4gOuw0FEpzIaNWu9G2l+DZyDo99JXxAEdMcnUaY53368WrcBkgc30yRVZDj7EgHWMsdwyxCdKfBGKswSGElM2PdXaIhcieaNi/6Ct3R2hOAyU6Xl53qU8A6R7tjk/2K8BrueVZSZOmedrYm+tXoAJxneTRwnxDUCTTw8JidxPlNZCZ4/AhB0Cx1/sLgek4RPPh9COEY+cLNfAYo6V2o63SPj6IMo1dtNGM2W4LC5tErpnzni77CH9Oik593H/wAWu3EmJKTbpZ/1ODtqgy22VTR3fQvLZKkfN0B2N/OuKiAFRWmgAr3YTEoVvZG0rfkcOKnVzK0Ndv2YmIL7tCu59nAGNIPLEoReq7Vi+NB0b7bESKD8/H1IwIbvQKHUMbjvFcgQHabIbMGTf4VmiVdDlfXtW7RPOezwi4+WZwPsOrGAdaUiSk3sAdtYNDlxIosNPakgNtWg0Wk8EFIepk7/KPJDY9UHO61zQj4AYI+gvzjgh0jkEGixqnhY1mmBdbzCHL37wfS/kywGaf9qpr5q812vFoha/I3JCinP6JdVQGTixbF8zeAb5Xtdt0Zdv4rq0H8X/tzPKEFN1TbJaouMQC0RKSjDv9nzfIlwoFzOpE9M12nAKYOmegj4YxaHT1kKxeHBh3HinUNVdAzvELGPfWCsQdo47/m+CNtwGktJjvj/n2jdgQ7y39QLBNjky6IFWwQXFqhioQrI+hH4I0o9I5wfQn6KM4R1T0SFsUDrEyUHN1Z1LuBio5p/s3HO27rJA3451Vd6AayaFu/kMotKjZ8fl2tyrA+NtYn0lV/U02Tf482yRdlOs2tRTV8FlmWZFBtNayqfr4AaqIf9G7xRWiLHgNjWvRHghig4nPPkYCJHEzBDEx8MRP8+45715j0q1swX9hPwlN9y2ouCkI+rz0Qd9FLN+Okw5/TeSK1Cf0BISTrJo6i2NCVTCN7U9SYMnNSpgSAh9LQ/s6TV4z2lsqYR+f5yXMSvX/6K/Oy9znQqehHxz3PI2jNPnoeM22wwBDIPsCneipDvypSbffw4ANuleDV0CceybGThlN5A0wQVLIXXVbJr8J/ar7lZalSfO/lVjSwA2R3REmwnRV2zUjOcDHeyhOCviYdClrGOpA8j+XhF+LB6zAuGYvd0Bp+kw0RrwqWYfTQVwqkh6MSWWRqY/Tf9czhaZ6M4IMPTRieeDSgP8figx7lW7W9CXD6TLYG6AFv6O+2xd14WOE0SIwuxlmkCFlZ7nTkwj+ZJZ/inywBeye8TgLoBUYiDL/9za666LJxqU/ogOLDNOmFPPFvVCRBSPYZkeBeN1ex+eIaUWwQayk/hykm53v6mIoGVzTzPCdcmrDsU9AdoYn6bBfM5hcuK4qSFUT9InU6+zgOGwicEcwK01zMPVmktFeXd1G5tsY/115K5ZvPjs5fmGWXGWNYGmah4PsSjuoal2w7rAWf+jwtMfmLHFNLWT1lhzONCISQ7JRKbVlbE5iANTr2acwidv60TPckViJIB48P0ZPe+uErr0n2zbj9AnOHcdsrY6Js+gqOfrSTbWV2QgpQsmR2gL2qBWZBlOKKMyMDRdXShDf2MY0IiBnd7EMLypHgOvTy4hllopXKBEz/YQp0J0BPWbybUPqRDmj6i8zzupq0mc54ePZQQNHjApG05fSHjMEv8y2Dhj69l6tABR+HFUe+OBREGUrvnLt3pbxA+PzmfE6hA1pxz+GlJR68L62k4IHLEVIbQ2O0jrSG/rndCOsDqTq2lvlbHdA2yFsDuo6WawfeaRREIeeYMYrmeSUYLpByTtu6tDGkrbEXqO1iLphcg5ZfFxcv/DjIVzj7CrVqYky7F/fyYovrF0oKBII7+qPUF3+u55P7NGHHxmGt39zuCGzPJZbDuB5/YCJIeaIqFM+SVw1KrePamYehs/fcnAfSaozeBL6NYl4e79KnazefNveC593Kc8WL13gEALeTW3BNzqDcnRVoZgrhEivsGZCZdXFS3l7CUK5XAwRqC6606UDUMV53BVUeosK11tmBWifA8Sj0sQpK2F8hBxCIyn0wyPYFnYmhsJSuU6O2tRQZHcgpyiT/TWvfGxEH//UcCJZ2MBE6wA3DgtS82mdNo9z6eCBneMioiDTN9QBRKXhA3oWNEzv5RGWrvkFEoUt9WTilZVDiaIJScVUsZ9rUR0PAt5UVqDTSQCkm0Ooj3UF8hrLrPc7tVWiBXU2JNX8E71A6PUtEQKhveoPlnaCKIbrmN12MqDxBnqUZMrOhBzHlbeSuB7wiF/iNjS82z+US58yDyTgpnkfU6I+ntg5Ky9V533k1N6Is9H9NZiz3OerGAceG8QbRQU6zcnHoPHpDhd7oDtd8p6iVqKzwkutc67LWSx+VD4ETYslh0itM4FFubN9i+LwTCnU1GSNKPIUP4hOiUWzLbLQ6BrKWRbIGFOSWtOWqpVB4hPrz+YqhZGnvtGXygkbsaVen+yYdEEoF23szKK6eg9PJEVZ9D/ez5MoKSGDXM2pxTyDvIsqoF0ovMgDeECGCCpXMQd6wMgzvgWC1rlM/Aa7b8l2GCCWMtIC67cQwfnwZvzWINpdajLKjhvU4UdFgwOBd0k2cSTUjQ+veo7Ohu0RPqIVDXMxBWyPj5d/rY1lzv/EPPQCW2L5C4dzAKUo0XOxcm/6/MkmB/GXG7t9H7Bzy9ELwXqYc4GZ4Tdj6howqKRoV+pcdoLjgkkDcTgQddr4fXyB3ZgQyKwxISKYVVrJgodeoptLywRBWCwBDCMC6kPpTv9fTXlRSTbsXLKIXDQ4++pkxl8lVZ8FtGX3NfdijSIXV9TwKmanRIIkhLW8al7aZCrGoe4+WkNDhBYKtTTbBoA2Z+6XZF+OQP4x3b2fz06sPVFQGeDgO7MK/HyIN6oA7e3OOIm6sM23f1Gm3MNn5ZwpzXapovi8yz7cZV/joWrMOI4dt4A/e6DkQQPlEZ7XVE/ZPPEjf+hLxYr3xl5xNmzQWKjBBKdn9mZwm21t0Gesmv9GpSXX3KDuthawfLYSSoObhH80ZuC5/hJgXuAemH6jS3mLKuMhl0P9K26cSQckB7PyTjaXi/yR77q2PGkeovLZhEA0NQGyQrdbZb0OybxTXTyRN7wjwuWWzqq6DfZcELqQtfV4i8P+wfrOcILobOexD5IMFOj5rbiQ3XGiDYLtoJRQQup5V9iaDAs/BosyBoVa88xxBm6pKHmXclE4mWwZ5sXqtXuAj2yso+KmDv8LAyk0k14PWMIM9iwh7hz2VvKPbS0EVVigAWYDcEtp7JRoWU+KC8tOxajASbRNLSOWdZr05kh+MCgTzluqkXL+1zWj8wIg1EFcHdq+VI5ComGKS0XrVaYgHrDkjRNoHFxb7YxmWTh9UJm6+XxnLWfbpZTPtb+HnE1fgGdzcdl0ymh/EpluFhP9pgZYs/w/V5w84l+Jay2FbzmpiIGtEuqDzZWCbfuMUo5JVuKIokETi2TgSiAwdu4MoNbGxgiSclbUKLecv98E8QnxLdUye5Gp9BI2L3Rd8KIaOWpoZFSAoHzR8WTmY7HqFyL4V4C6VMCjAK/UpCfYjG1OixpBNSJ/lixmSFmJ5L6auo8lPXfODQMzSVEy4zoW5BrKCWdAmadYof142/x48yh6V/GUowDqOEoQYw2yIT6XLDG+SUOyi2LEYn3NCWPqma3pImDhB8A3JKrvN1yQFpyuSJzgfP+bf9lCfVuOmxV2mvoe4cmaFn49UiD/DCfrz0rJBwlx38TBJ8qK1PbEpRBldNvKLvjv1nYl3BT2QgO7OpfhzkJlbFgUGyTyKWWc0yPIKzYgGTTlQqk6rN6v9vFC5oeU+YIunxGykWuNhPg32NT5Sjz0XX3VkB3w27Zb7AD3AEPlK3Z1D1fzijHPuafUo/6Wdafdl7zIt0KHHtBsYmKYZmYo4g6Ki5I47GP4r9GGcQ6Q03K7NqW0adf0mA3wiW5cM/JDxW0Lf0K505EVMWCNulVg5EZbNB/1RVrglEIZ4v/Yf8osjnt+SI9hb7uIpN+Ly9IdGBWcAJC8aiZI9TP5bqJdzP+hkeKjH1aX85MiojXBHxUjKkeugBNORAW4c/G2Wfmb1ai/u2E4Wg31xMXAl/7tMZm4Yh2+knWDgvUvHqT8yMTUjI9zQU3RoARG6AHrTBuLTUFUkZriYx3KDKqPA2nQIE4Kox+0BToAVlp7LC8CRailIIqliuq18a6w4cl5VtOdJ4Ql2rHLX7Qg8wRQuwevMEM9QSLNet3/o6FqY6lDeHLQNv8hDQPSgV2dPLY/BQlomF8v1CPrBvYrzoO7xajp4DMkSX5B7XojaePNOGAFf/kdvMCG0d39Ac1aJ74xuVpUTyuEWRlEytMu9MPd7f7dx1nDTs3TdSyMFQ9+tl+dCbsSv8p/dJTON/zs6zCJAi4QF93jtVmwj0ejzo5Xb2Cudm6ku25+uN+SEHPFwM4X6VQzCm3LzDOmqNXNSjVQfAcaQmfrW+OyQ/pfrlQm1zN8FHPZIRmYrbPNVoZ3OMUWO/prUZeLardFRMPC5xUauWI7zk6+myH/VzrNUhWAyp4nZp9tV5PKonRcs25xGltLcTWUWanrSn7g/2kJfl0KAikvD3DNFvwGGD15rI5QTodVHql1XETMdy/wS84kmk1+a7PxtTVEEMcsZWlKm1e8hp8IQzp8KGVb36szTA9UG1VOi6of6kL0VyTXvoe49C2/t2nVRbH5ING5HWz5iFMatFqo46NHsL48EheRjRwt4vITgTrpBgDrRZ5IrzyioGmbqLDqN5L5AI9HZBBcaJdaC3t8lymVwH3/ZtSzwuAR3MmV45NdxX1x+Bj2p/kCiF0aBwab/KQyAr6KquGFcSW9S5LLpxmxS0m3K3us7phvXH75+q4qcUEN0bBQwjuqZ23MwZ/rSUxPv9/TixUhecvt54aYNVblOD//xILQcbBGe7s8L6Pv72qY51zAhTRCrhHDyiE90yBRYwj6NAJx6KLh4XlZcTD0YNTz/0tx+7C0gk8m4T7SrqAr8j6LLgUvuQzeejtyCRXT7hwXJDCC4vwtKV7aq8leOF/mvDV8fA1U7L4lAnFj7CpB8Sf1FrgEvFUYONfh2FhXI4B9831C9P15wcFL6THJNFmFFthfb4Y2zLjNI77nXBxDIXJYdJ44HZ1HH59frFazc52zdAS6ZCI2CbIddLU/EjUvNODcmTrz7YmORWNAZFStYlLt2+Qj74/yAVJ0QhDYu8lh2OW6MZWz2UwtOv100zQ/RJNI5HHa58b3uwLHIN1JiZxXtFTU4Sg7utwpMLNFREsRu2EQR6uGq/AGplGJF1uH44ytPEGqjwdzS6JbmohI4P4UZ8PjJQlB9vTFbuph/Zyd3vEIWhDPKum51R/YFssCVZG8gDhMsErtWtsAhLk2XRRZFKpEmgaR3GDQYxeXzKhlhxiMGRBuoV+YXEJkT2ANd6PIsdqK1A+goYJTnkRjJ7ZGLy7a/7tlwCuPrOy+ZDbbRY0YK780p35wZszJVfrioiCjhD43pwdwJAkLNnT2F/coVbu55ga3pCQ4QGtzHYqngeyLuKe3ZwqT8+WWKjwoFFtSoJPSgES6XxLxWNOW6mZrYG8+iXgX0GSeBI89psOyEplw//9oBz5DpDoA+3JU2e/Bckc4+4l8FnpAqA4DFahzsKqiK/lOUZcKwlpEutHR2lf2S6maPXse4jsN8sCBdxzttc3px5VODw121YVGNJ6o4lCBufnmI1pmAzZHZgK0ORVMGg4QX8LNlV+g6muVE+N501SfrbLzPXNUEMTBkUHUmpC+R+kC0EFeDUdRxZR/sH6Ef8OdFgSopbpLD4lrOi20Nky+TYX/IVFUh2M3O7JZ9BFCmIQjULbxNIQtE5tAorx93uDw2VNMXZcEeFZWJYgf4B0GEDuNI7wHAn/Y53ArHRL4IIK2vA1TwLXtEFN8csF/kVRPXAIU85OnNGoRBxifndBu6oCpjF3BfzpMnFeAZdIJQSM+7aGIe6g4T1IKv7TKiagmz7c1jtyglRRKPzk/7paGhJIXRPdoEW1G+qM+MhLRG1jYPTsz0RMYhumoyyokds3oKBd/PDt/PFcWpkJ38bmh1q72QWxwCSxQcbLy/ZnjiH+YcyT7hnzfLG/UypeHtqHOZUW3bm1ohb78ixxroKYsHiO2yycqZnV8y2IwvSEtKgF+lovHxtttRDT7GwlWQy8Wqy55wYnV87TPSqwrh/ojhRhWvtuGKmmk3HL5ZotqoZQtRq1wBa3/0fDESXZ72EHG9BdNQF0okOIk05zId/vIn2iOVjNrBfCMR1oXywAFw2ORBOV/E/Hcnb/IyKWlU7yuVu3Naqe2viIjhO/PpBlIdmMz6IQzA2UOPTNjyZnIibg7BzcOL5eSHHdavDSYX5f5jx0JlR/nB1agOnAqvC2+f06SBXF2Yh92BDToy8bVmbjrnU86NnLJdjXhsFsbczM+27RuRFwpYh2VbOU6TMUplxrMv7Gj4g4o7ZQSbxMj6AL7vIFtkTuonC2Y7dnNwn4VzY2IoJx6gUbpLyc172DgE9qB+o6cFeyQ9e/prVXylFG4++IxTBuJg7SUNlNH2v+4S9IDemdcxYjyhjSX7ZKU+iRcd0pCPyQlD8lRmsfXBtvReSdlel09z3q8otQ8rPyF2vOTjNDxA4zrEPq5diPWIpE00PtjJEnmOA5oDIr0c0BvnJH/MocAM8fTowG8l6+8pYI0AcyN6rtjTOq4dZB+Cn7U7JMdgFeJXsI5pqHVqq4kX29BWNzSBGMcVwW9qEePlssFcGE5tVNnFOILSq1ZKAWmHg9Uuilj2ajoltdt/fBNJ0Zx44ys6EnHA43/ens/7ceqpyj1AImrTnsgzgbndIp/AMBCPPzReo3LpxcHSV2MJYiA2LSOQeNaGtZ6v8eJpah0PP84st29K8RxT/S/ca2GdTxCSreUyoWmXWRICK2s2KijWZ4KVypYrvOLK90AwyD6DG0B1jkayTCCHmhrzMMWkdGxT2/qGkQDH4xIS/xPBEtvebe9J/iAnhwyP3UlCTU2Cs7/Hpx8BfBWP2yszWGoTgTF8OorYYk4uXgbPOvK1MyIQJxeajqVKNXPUtdMSaUK7x22ew/V/M8vS1m9sCrhjJ4VuZNv3doRtHsCXmcLgEX+Rx4c9J4GFwbaH2C8Gbcw/RUN4Z09yZgovb9N6k9XVX3QFWD8wuMC0WeoL7VTZhC5FRRj+et8+gsyuPq11IeRcz8R20fo+sNZpD6wImOd4iN+dyTEOqQuanKAAGJxLPt27COLxfiXQiTZnLEEeV8LNUe8UM/gvCg1H515st/0JrHI/+yj7WnXXLrJwYh53RwKGQOHQVSvu/k9kwJCtZQIO+ghfceXXCqJvyfC2vVMDJk50Uu0sUzFPdD9gbZvgM/PozdxoktrB8hF3qgIHjpUFnga1hBeY7yM/cZypA4aZ82P7KZu09C6Vh2uNGXb3ZaE+ojpqfK6MvsgOcgi4vuAkdqn7lTDtik36/G8HvYSkgok9XYF3H6jPFc63oHDRMlPitUs29oFOwmMClxwk4xX0I5GBgcjXU0B/VaJzI+xD66QP8ZjU/saGEin6faMWo1UhOFy8WKB4NNC474J25OYtmjYMjGtUnALjbqHOxuPZLCEccFGASnMFALA8Xlcja/VqK7jChUIZ806A8m+M8Taf2XLSo9i6noRyWNympNxxlIhQuo3cKII3KLtazLVM8uOpMejSP/u6UU+9QSAylvwGWfY42NkqHUnKLEPd59pQLi7qAb7wrPfCsqWrTiD4iQpyWVkIZzX7y+RweT1GJ/Nq7azbZwmdmX399dma5jRopapvPdaG/qGgTAzIDkjA9+6tbUghYsUxx0qC8brbxB7DjVPuWZxWb0PZ5QdoVGdWKkj9keMaqRqkbK2QfI8mhZMlL52Wx1xM8hufaQagNLkP5sZ5FeTATkOFUGobTi7ZfiD+40vYMFououYbpQBap7Lxo38Yg8BswycvFjRjxx5TjDmtzPo8vRLP9ztS1kmbF8NKqXUyw5DEp12HEfGM08mQ4EEcdMffshiwxvhhJTlDggpeSCV5JNASr0HHCc1W0fdF9EzZZcMBe7nAoOOTEDZGUzXFqvPEzmlGjOGipCZdoBA0g0kraQckw7GYbUlr8niHuH7UWPbdUsN0TIHN5wo9Zf+t1GqelkdvrqBHn2/I2FA9pq40rx+UbA6OVO2A2PZI00lkVzCwG+Y24opawLFG++2iZtO2U+7Xa3MTctXLq63mWeleu7Nbb+bwvCNv6ju+Bm0qBdqIuK9l5E4vmSCrr55aQpUslzu2XezhhqsrvJ6mvHUKu/uSK7QA+QIe6P0oZCfy6XW0HUe7nt4pBMHY1VX4wqm3ntDmi4wn9g9Mt5NBrWHAHrR5QwAbpxsO8Qm2w0C4zhvyvqY8KJWvrOqkKpnNuTfdKWpT4F9ejkQM9vYdAYN9Ek3yWReBy0CVp0rygnq7wpq4wVYZtwieQ+40xS+RKOzxb7jx7rTuvKwlqMPY+CzBV6w+Lll9RNAn2MGuxauANWn7PGFpfQ3HTTtv1LuKEHZO7aD941g/qYa6G2JIEMV2kBa4CLnTz8G3j6u/slxM5T5nO1OVj7VZx8WVcWHqldCCiENpmR2gos5OO1CYfCKIpWf9tkY/sgN/Oi9AdeRMjXYb5Jc7vWZdP7Ci76MV2Fi8R8veFDcRFdo0BEbQ7G6r5boLesp4svYX129w/Zw8MLnISKfv3KUpieQ+qzeJ96c5/U/v9ai5t0APASdFVuseZY47kQablLkt1QGZzLRhTS6cKf+pJ2KOWaQgxdaoG2LmLqIdaC3dTTWN3IjlgVj4D2CIEXHcviy1FYQXDmBC6px5YjeDHfpo9D5kSdwH/Rf9fa7E4zCeq7s9USAqbgvEBxuzWm4sAu0wD5C9wanWxDx9TZKjd/C2SbaQt2sn+S12HDvWeGZDG1zt3XwCdzgZxBaLiQSwUQRHFt+rE3kneLyYpQ4OUURqCNyWqoBfw8hUjiUscCrks7bHPHGye4fEOCQFdogIeKhHzUdqkXiW0oAsSdESPIa4x446rZmY7QncnhgwRiyGLPIO7Zi9aHp19TNqHqT5+lNT6zqm2IxZLeBp73JZ4qDktC5gOQnT+qS3PpfaP9alTVrn3Y7kpXIBQyYRp+SuXDxhpf2x/Kzppmuokud6Xh89p1OfqUcW/TWxnj7w3V6vLrPJcJuGcP5AWC8RYt62rreudiK7LooihfaMenEQbZ0fZDGiaemV8QI7Bsjkd8seAs9A5mktPARTQ/NSssJFDD9unvKFsqDeF8rYo4ZWAyoKdsyjfdVXT5GJSbyTHf57QFGUbW1FwqDTtfl7ySA7NEVPAbIIV7DqpTdMHfisBY9rP+ceec1BnzClrMOhZRAgD+oLyaScGEqj2sckKkoaY36/IyzWIyNtiBpS846pvXZ5M7SaTfHBB1SvZTTq5hRPt9wodBLMkoG5T4cIR2TS+gFCwOZuANU6xMJ08o/ATLZWYq6a0qOqALuQpdHF+2JYyN8Pj9WAbVUuzJM6EkWDJyStG7uBCvMQ0HfI6ODEmz6tbiXmxrrlwF1rVlS/W0URCMDpMsViJmkVo2mfCd9n4orH+LiaapeL0qwUj314ReUGBBO6gvS9obP1D0yrS+EXNnIjGDRBfYqLRD1sGp5vHrRe4vPkh9G6ZoYqWPr6SEwzfcMYgLCqInnKCoWgGXaoQrWDFkf5Bqi/7ACJcF/Jz1GKCjCKdAuT2tU4VJ0WzbNodi3q4Dbu5bIpD4M9bjKXpeD6Raembv3D7l48XoMN21qFggSUA7bjkzVvTZDbCe1pcffUdej2+NE1FLQyas8BlCn2VHGsASC3WzkOMRU2SYG58A4LZPSKQjjzkTaH/Lox2mCsqcYMhGsk124XVDdLclztrcgpPkskSklK8KKCDBvmb5ORZuFIg7jTd3b0z9NqIzmuVgfHmVPKRRBqj8ojdqGP6/tnJgjGSTJ8Sm0ryvKaUYpkBtv2ByLqbrNMfdsyVMmvjwq5ptwhoCO6J/sAqSl0zAIOY1Wc1b8HFwMbis1HwZtWBbOVV2X6QRJtwd5wuzNIusIJleVl7mHA+kkIZck8QnJQ4cywSUrcS5raKdrO+b53cx3ZizpQWIAQT4Oc3UMCimK6sZaMMjB1SVToWzDzRVoHKKoJwTBpEC83CfK1h5670fwE5/286/rbVdRvRK5V9TwFhFzgROT6AgKRKNIPGzhrwtS39qAB856yxF1v296DFYzxeiC30jtWqPN59N5gAmkfyPCd70sLq6Ioh0KX07zvEx3jKH79+VRsilzur4zMluzbsPRLSBI/5xRUX3mkLprIXgoejrkRgAC3Hqyg1wWTZ68/lkFGUG0UC1jxX7FkiVq29OEuqy8+vWwR/zAYo/BUqbUDwjks1j5fJ3ggIaQDR4rZjP0VG2Oe5UWlZvaB7RL0DLt4bYUql+LE7qbqXErbQGd2DhKHmjFUZjrEAtxvu5YAl/DK/+UVD/jagv2+WQmkkfi7fa4J0avHkkJaYNmNpS6VJzEPIm8dcpbdPKmFtubJwQ8qzamiKHMCXtQisujxNC8ARUgNthcJi8KbR+DCJHeXgm/e3DTmfKOJBCVSdb5P7Jt3H61x8Che4b0b3yUOn9LXMW1SPLLwcyQAdlg8JeqX9iPY6Zx7dN4xSZhLe8yqSd8XKkG7HM++feOIvT/jMgUN3GVnPMoP1CknYL2SzmEjwNyC8dQJRNVJ9FFFKzpnGPX6ogEIHoY0GUwI3ULRAlxstroHuGb8vJTxEgllTfE62N6LhN1JRwEj5/sLDs/ZIQSmtND77RGU1g5XUkopfmf9NtEEJOCJE3VfEdAsjuQ1s7O6Q+F6Dh1uxEY/uxICjZaJbhUH8iS0hgovg+v+wMoFY4FXbf+emelkm+4yg2b86/t4n8fRqVXRdtynpeUDpOuymp8i5yAs+cCet7fSxFb5YdfmGcqaRu5NF9FNQ9QibB4U4o8ZzCnOpGCCbCG+rI1duEYbeXjIYg9fwHP2/w+iXu8L2Wsb+Igogd1+ClGJ2E4hhYJmxMMmGVdd132NKmW7x6Q7vK5YuFgdHnIR2ijfqB/8IQZT7rzDL4p5UtmGVhA2wxZgUaSexNN4+jnwDJPEwziIgzTsd7qxOippmoT+6yJVtYsrodcs6J4djkcsfMqziXjf3FcvdXIASXnlTNWImSma735rIyYuaq3TOFEgWeEAYMbecXWIVkFszwiSVWPkZxfKcOkKHh4oVqRUm8v+GMssGdXOnAoZbM3MMpXmiXJlNm2NlAPUgpOKbJmE3zV8WPVSLchApR0Dbw+5FxcZsdJ3WMVkQwNf5fRqCXaxtk+Y8x9+Kyz5KEvqQleLUdz+UXQuKAm6HM7avgRB/QtmcVcbYPV7oKS1E7e80B3SEFFjM+TzB6I3XAkt3edHpAg9rW+Pd3nDwlYCj876UQiDoVlYMIUuKWwmuD+dupkP4V1ZrhOvn8LM1zf72n0YYCZ7jr45+V5bmE7DOqVPiwBYG1r7l5s3FLccprdO9yxrwXmt1l1PjhgChZd+GV8Pah4Mr4jecrsScadoS78MG1N7sSnLLl6m84HJL2GRFVi5jdDnVZUgu2+/TUfvyd+t1/u11su0vYCn5T83794Cn2/JcSKk79IKwGLDr0+WFOxA0vwhUkvmg4a27Pc2hXXklOpulAfVLfXmHWZDE35dS93S6edAfGEeuwVPD9V/TuQIg0eJsSejSHJF7s3G4TZl5zfwTHXK4pNQMaeMZzNMPwGVsw7IJyELv+dzoGJcoHEublA2sLESO+jIN5XCv46qjyfBLxi1hPrOUXoHfIsyR5ojKp7pQbov0mkACTdmPj/w10N4IduUJICUo6Pb2C6v5R5R/ZiUGDOGwtcsWhfLms0GSuoIcVDWYvBDksbmqgPQgba0j858K2yko+Ne5/x/vgvNig5wa/QSez39DDQNRa3apZUbHsToK4jhAyJvjgqnl5dfj7iQqHWLNZiYduqSejSXxcPeF1YUAN9yiJPkzbHcvd+/wX3d66ltuOxj8K4QRPV2Px8tpv2yoxeQG35DvybwacimjzAkouF31bsOcQJGTLy/Sd3I3e9huRinaLaYsi2xo5HKOCpPgYYlQLJ+tP7bf75dVFdsg6MCuqQ3q+cT+YqlXlZJMFBcwKiCqSpdq2kOWrzuz9ftp1S3Rbsj6T+i/LWcPX25yaBd/pHI4guY4vmW6pjIfExcsI5OgO7jDTJ2+TQhuGPx3mb6udiC5u039Edlhy4QmaPkCBVNg7mb32Hv8Dzyk5KY42E82meCEaiTnjXY0bRNtpeYxQ4OGlnNWgsPhnoiZMECXoAD5QPfJyKUkouIwndrhWWsuw5b+GZ5hKqaCSwr+mYo7/ohH+c0RnwCqgrFp0JrzUpGCrCD+BHj+A13364Da8aDn+L2RN3Wy2ChP/dqSS6S4S1wNmb58CUIdrUTceCP3mWuRRkaT9f5/niOWATRnj2jmlDDbhINVbufushDD2d9vX7HzoaurWhMpOLD3Kx/4KC2lI8V2SHtJM+NU0wWn5ubRoWfbX+CnzI4jlUST/PEQrk9NzCpVPbXm+TYIk5aTQ5cy85WugvXXtFr3rbbP3X2Nf0SnElpSCpzdq3f1rtxWUW+WHmQrXDxyPihYgirOwZYDs9blJBF0Ztwv9EhVv4mnXpuZrPvxTmLd6t3I8ujDOyTAqgJuzrFvLBLHu9Vzr6RAVrtYY2ZExWpzaSmIuGwCerATKX7YaAaJBMfC2dfSXRaieIOPFs4mCvnnbvcF57SER9YNNnEvQvl6seMk39/YVpk/3dTLsp9iPJNuXWW6jS8rTxLY+Pi+Qp0bQHUBpy66v+E7kU45W4RIA9rDmxMCOvrEZ0484fjvi6dXLR2uAEwHC0AYtwSNoyiNHuESH7ouYPQREIO9q4idqDHO5GYdaR3zWsc1jpOFWWJFbdTSytCCoFofrJjsDkCE/YaKzvCbt4ny3ztpnzZa17tGX2aEly4yAH+enwxjc6+5yIew5Y11osBRXo8SnaZEpzyt4wgzYKozT+s6Lna7MoOF912ee+zc1HnffE2NAIn+mwEvpDyjQjvRpNyqP3AH3N5Vt9wWjBBGOQ2UVOEIotWnxezT7DVyJQJRt2Q6dLkLujqIGylOPfrmJdfTmLM45TGHOU5cKF30SZYuIZ++ZXmv9WsmiBvoIe/EyFjY8SLz2Gm1k194zaSx/z6eQ7ihSTez4f28lzxAho8BotXDpjXVyPJVKyJne4DhGgFgLms7S7Oi0GhsCpjFPWHgMyyQli+Yf0bBwkOPYmxixqJu4oci0+jSSYk7JpBQDSFfx5k6lpGJsbxt3d8BcSHM780CAFz/8NVzWEIcaEAuFljSt0kZ7CMjxgJcjxhMnfxfPr+b2WqxfEm1gZv7985RSpYquf9CUxcPnjF73WuPENf8N8M6ezpuuqw0/IcRP6JY5XTdOjVvE6lWGIvaxlrg6JZhMsJILX4TwZwhlHe/ZaB7SGUXFHYXBsvz0z8V9VDMI8hkrJGlqqaCHNb8DX6X4OaBg48wDMKXbkHBAclcmSpL1Dj7nhHmZGFuV3dm5Kl/rSh1R2f/XoV8+X1Raabw+bW/N1Nqkh8IwjEU8+3TWK19AMEDvoZnIiRaWS5oGXczgDfK9IF26ExwyQUFM1PHNWVwsH7ihSNeAxIN2tzxSZgO6+ZGU7+LHOMcvP59NortIVGGntJQmSKK6wULzbtlWVj324OdICQYUY2fVRh7RSx9cbwhi4i92g82yoFHSAiW43MESEf0quli3uzKqm0KTMGMCVpQFoUkRAafrGJfDEFW3AyyhtJKuaE7w76D3QgOIaWyXCbHqmIxM7ud0uLrlAvuZ/tTdNeJXCY+lCeH5yr+nAb5r7Vhb8n30jW+gOZLh8jb4GyTgyfa3treWRpeH5i8jf/Oil/8nf03eOtaBcKcHYbDJQqy8Wn+ORO96AcdnviZg8svwekhsZg3lcD9VWm/HOIcyLID8tdtA42pA3Ss6SScgsn928TDhkn7+Bf7TVJobMi7enJ0S4nWXXlivKMTbx1OJvJm+5KoMygQVKib5F7rW+yPiL5BC66MaBrGgFNDe+kNCB5z+GIO+KCynjs6VutlDOuBYIdgM4iCA9WUZ5GdDuRytO392K9XZOrM0uf8jl8dOQx28Hd+ZUkveDsAarY04R3F9HXSuP/XIn3FxuSj6eJUvtXPCTqZhZM5gEH+bURrLNVQ+/K555wUvMetA5u1JXL8o3+ThdwY4BCIl+H6+9umRhO+sHEVYScGX+KISbWDtwmA6v2XszJm4yKR6+E7O4ia9ZjGAQvbUsct89MmtxNxc9wet5xfeq0x53OwVRcOtKWjU7A/idI3UuJ7SKn5N3XJgdynaQB2eb8NHBZy0MUJTyBa+7gqYxEikisOREfzz1oZzbxXw9x7TLBOMsRfIQvvh1+jTTO8UDduew29D9QC7aPoTN6uiSDwtarM/n4BSVs+M5MSesc+2yS0WdnqFNPGmPwpZhY9tnxg1epKo4HNM+llZEET8fS6At0WByMVj/ElhAlldNmZSDPGCXgedb5njfJNmCeg0Drp8tNEcScCmRvufcBVsQJXKJR1qy8eKbeQa3iJMSU2UDM3zsvp8f2O72B2KJF/xgmif5LpCYn4LVhHDie4dGTu7OsDQlok2SmpzZdEkg4AiGm/XL+U5h9XIzs7OpkdiH8EELx7vzhvakdcjR2x10/lFRanySai/At4iWI73XjmrZma2xrBX3pOfciyuP1vNYThA8XMMCOzLoHo4gdI1bsj9U2Z2p9BVCnQjAmaOcYCnqDQ4TdaB1BSWROtfy7LjqeY5WNFOZKtodModCzeANnWf1tWkIPx8YZIk/I6c+a9HQq5mtbKo4vKwZ7dw7mOUsiV3NPNjtucAAfjdA/IVch0b2lAcIYBLejXSF7lMEBeWMSnaQxeFRnNiKUtIgOgDX26yt30Yqt93NK5M5T7e8X1cWjaEWrIvUsyvH/uiklq4Dn2YA/42t73Q2FbzAY8b7JG+4Evzo6zXuxqTVtC+hWqw5aw+cXm6QjaAHi7X2W56sT57ly+Fnr1+vmgTsBT3Hgi5AWG5cr0WD7X1y+Z/JkoBZ1EkpmD5Q+llRXz47yEzwe4fqWj8ELOoOiU7zRDdeBXwunn87N/KQVR4CXX42ADxVgSmbD4FRJr+w5d3qFEDZ2F3LF7Twx0qagFqHBqQAdi0hEB1bpR4GZ2q4IbgX4DQsYg1Gv9fRfo5kxJTQD/w3zNxXGobOYCz7i+7OOM4M3E4RewoLbNtmYzyrzZnGv0HFWemOYNwwUp8rOMCKUvk3z86Dw/rVMo2/s6+biiBlojlc3mjnjdigWyIFmdBPYmcCtvMgtTW3M81+cS6jPtKqW3QgVB7zFVRIqM6JUGxYF+rbfuvROGrFrLy2cL8O6FXOw7RbOEAhMnDWsg3ETBklmfmPf5Z70eXpJCH60Jfs7GbtHYu136dWldPM8SBcQE2pLYotKWpnQjbZZ7y38VJ9RfB67Re9T/ymWWhVcZOoC2VzxDmP1VkiunwBXtn3JGRYa+TcFBkbQW/i43hI3qAUspfiOlh8/wc50Wny62nsoISVY+5jowhgHxrD+HkcxEyhgPVBD+gBDFDw+I62vVsMEZRsrdRDQiYQ6mqnc+b5h9nRmgIQ4Bm37Zi5GDwoOFVpDWJmIPxfdadkekFVRFZ2PgCt0BABDTDpexFfTfLYXFdJBag7hyBipIpByhMwCJ9hljley8AybykTwFgd1zEDVTKweka2Tz2IDyzkmUt05A6BoRf4sQL9KztTo4p0uy40+7+9uGqOD5obSmoLpie6EliYcSeJVBbsCKiPmKel2tMbzjxZvQuKiLRoQpXa6Mh0GJKISh3/ygJaA1KWc9vj6ejIHp0e41CW4mZ1z25xqsNoqOIWFuXTZBwJ8IgKw6sp21M0Pz3mg3Ku1paED82LngpgFYUZmxmoK2lQMOqd5THsX7+SVqxrbqk7QhXSbJ+60R324OYUuCNC2f3KCUf2mj6qB9pXMcQoapAfcfFaVplglsGaOUGQTUi5uhex2SBMMayGOq7y51Fc5epbDEHygQyg3Zy+6W2kMHYenB9+LoRihC47Rcd4ePIkosa6bFzb6y09gTvyhnztTIS+AiFdntgTWIZD7R9cbCTTkk4de9zaOqChjoIczGCe/wRX223LJzkz9FdrZwIDsVkTObEz82A9u2cMECGG2vN2PS4bavpjbabvQZ6iX7kXrJk1UNcLb0NlXj+Ovm/lct8ACjh4h9ToCCpNpCp1Wp8G1tAQFQ68QObFuGyCGvNKnJ8EmSI5XEQiS4RcHcau3QadHLRUTPR9UvBozazJ9EppZYZlK0K30+MiBCYQ2QaFq0X7w+jLdSOfG8TmCYkgUfuhu7Kqu0vHlNqEqTrTTGcmXZloKgjecAIYPvUti+ZAYOMEmeSCpmHftUi5Hu4jOuBQ5Yprk/IuIcO2T4LCfi+/WRN3m9nWzFYDqDMSgWmOcvefUrG9NsFqMVzL+qEnZtOKDT7fGrJL3eIRp662P1kqmkrAnaxm+ulJdWWJr371EHoObS9vGGORA2lkfvaI/uGthpPRXrgIOVzJG3RdIfEnenyeabnSO2FfdPWrfMIbtMmQzUXrL9hPHSQ2buOzaWQB7jPt65AvovgQ5tNqfG9VPhEl9y2ZMWKZKe+xIbVGWKXnyIYuUFpTVvNn+oT+1SGa5dmYQzEQnzwH/Lnhh+9j22ntYA5w1KqfAAyk1v3q/x/3+aQzTrE59ICiXH1FIxWwpSMId845w9VlxCkETSJg7yCGU000TCCzDGWaqsegd+dBl7bvKSVbqhBcEaIGc7CE4j+Nn3oynR+WukEvmdKOK/PZK6aPUK8PzyuAEbkAdJ1+V/jEDKz2VAhV8c7mWs7T/jC3P0LM7m/5ls0u+aliFYL2K8LD3apdCATBPhHprrl+UJUSmYYmqoJO2HT6N4pWSlo9xPE/z3q81Sh6mKs6+eDlsXsbrwHirAYeJc2QeQZo/DBAy3PU7Bic57G1OLAhgxFeZaUvADOYqL5D7OpSy2aD5JA9zs/UWU+n2Mz+lg/5kO5y6JR9qJ8lHmH6pOy7eAQSgQq5uXNK3sUGw8N1wRiMwzuBiDXrj0B/UgvnBCzys+btThDGgfVDL/akSqf5IHPdRVOQafFILdAt5/gI2x4j7uR1660hn1vaN1LmRqI2Qk9NtxuYLNs6Uf0V+RTzeu8Z/5cl12p8KCsO9pgP8JwVXeeBKbhbz5QgZBsI2kwG0e+OqZatf9H7g4FR2qhXs/jx9AsgBEk29lwgdzacJxlQnB1eJGHvgnIOhaVX3FfGr/KBzhaNlrpPPDBBhk+XrBRwhLXPRAkEc9sMZ8YNrXsQBjB3VLcMb/zgPP2x/tL14szBgUPQ6ekOVLQnDJY+CBUuTpW0EUoiRC6mh7bRZDkFJWj3Jhff5BvLKs5+iPjlEtZVQduerNa7X7I1ykfxr+faQ8dfGHPlCtIsjCAKTS8kox/nUoLAS3YatsOTsGTOoGxdcT62FGprLs6S5SSXiwwLLoAIMUKaaYtSj2Oo7dyDLgDP2B6dCETfgZUmKZ0wDzg+Y2lPsBTH8yYhZE7NzNQebpa9x75J0wFTgrhAo2ckEgEUR5PdnnwWVjIcL9jF1du/hLteNonAQQHBlwM0mtBEf8sEeuH5Vbh40WHF1YsidZTd6xgMkqFmIiObAJRT8czBylmGkRuSI5QMzgNSrdqxTjScDxEl3cUtAoYHYiJJn+HPYCQl4EtKCwGZsJ6IWiBoDSSgPEBqg9bA8ukrpfGz+iQwcFLUMxI8i5WEWiRfBwSNnFpHxxdm/CdYBbwVxbjRDMPmjK05nF4kanp9LnryEAA3KJ7JEVTqBY5tzJY+h5vrlXpqKE4q5NOi4u298cYw2gs/cSJFejPnXXTH8CCixktmbEorYRlcb9Fk6/fyej2uPJpkmpjSxCW29ljGjcrQT5ehYXyhXcbqKIx5OdPt3IehSQGK5XDv4kBoDYfJkul26HJtSQSuwh9QwETa9kXSx4zXf2zHHGU33v0LyUgnt/UQhTNx2B2ndHXbMml6JKseGhDN6nxeXm9u76udbFZocFPIX+6Hafmazbj+s8KtBMvpDg+eO92idEVGt/7f9ZfJ7PeocrBadgcAT6JlG92GQOoQkYooILvhc8OPAMIBBoG6mruBmJQHNeKv5eXYUS3IrUeOciACNqZp8HQQGBezXUPTpFYAfMcAfReH6+OBXzq6cShWVHqq2YaVC8HvClEewYmBimhVhg8JJFu0Q52Casqd+E9lRvzjmp9SGdVlHVmJkxhu80s8eqi1JguXaza7cD5hUnytM4HbbQWxY0fawjwMPKDa1Kiyhx+usnHzrwwDtxXL90YOuAJStrw2ZGN1b8lxUX6RC+9er+2EWGzw2NpqCs/TYyvAmFYuMvCrnZnNGiQYy8XFr6EiUeYoZ/8YTsYvoI5tfpXhJxAvL5qcJGgkMbJBWITMaJ5iq7JliQE18xGQHdqke70CE6EdVzXg3b/5b0mILa2cNpqw2TUwD4X+/4DXM0gog+Z+BlFQNxw6RMux9NLQkMYFJaCOJT+jsW/oDwzbZZ0vjaOE4WPo+OX6Ps9Vpv5ja0u9JDi8LeFGndA7l0ENxn4XxdvGj94sxYtUNEf/xrrY1FD3DH/a//bDM2NmPNFRuohoXFsnt5cQkB63pvQoLWVyGSI+7VKknzpKh5c+HlDMHITlKoaf33QsEJSaiD76+uL5iGgvCfqxO+0SvOqPncqGTfF4JAQ0MCP8GUeKCa7qqpVF34OGYOhnNiknmDC4R+82z8ubZPLc668OMcBEvv8riRZounHhvqCOK2EN7wzLCL34f/1Qgw0N3xNpDwm36ypg+GdfMIUBx3rE4LSLAr8TaxC6uKMnH2Pq01ogA6dTszsOgbHL5dnizORLC9JCDkrQhrUwT0b3u66WqHeG1ORHKFX8itO9KCEI+oZuGzD2OqJHxm6NXVhi+BURKI5IClx6ZJ4Lfe7USIYiuvy5WGm9zSQufQc1JzN2txH+k0fDr2w4VtjKhDkCXwLVVG0o3ZgxiGRQG1JZ8AAsk+eGKQUkhTBZLm3Ezs984fV7XgGhxWZFbVfsJzI9DfMPBuHKQRcF9pNWebDEUx3RoRGr6aYs7F4i5gyvw0OK7HRvoB8ID3ZJMwIq8xNGNakfw8eTJgz/KnF4E56fIST6sn55dryWM8t1gjrimGLX/+y18X03jBfPqsK8zcba1kLJ7yFhBJhSPdNjZIOT5iTJkXx4l1wev2f3E2Q9laAx0AGVaJ70FoxOp3A0pPruwgLNWnkh5OGAHg08Ijgq9kXNuT8gLTwMpcoBe9FDi20/w7qrV/7P/JKz2rdzhQPrycTdVBtHILQFN/MG6BS3024TC8sbtFZsCoMwEFDg9PzXkqdix1uvFXtRLULpMF0P7Xud1f66/J/R70qyffYVQYk8DK+HiNfJmCbP97QmFDWw0zIEaHbgQ3jLw4OD8eTn0dHG4bG1kUzqstgoDcLW4x+C8zHqZSDb10WAnij3+/r6YLL1UhXE/7Wfq1ZH7M4sIr04ltYpkRd/THqmBzehLjvydScF+ncCMTbrPo8suiDewcIQ1+9wCIJeltrr2A4BGWhQNrYC77oshDpP68sA8XoIRGlmm4x0TPz2cHW0mkURc2fVRwtMz8CtMsadL4UiVB86VdhQHgZ5awGEeD/KF/S9oiMb3OWd7n+Qg0XyTk1wkAEwFc0GSGZsi1vySmirESy3wClJ/s8WysspMJF0RAr5CD4VQRas5+d27EQ+Hf/yVs4tw+6NoD9qx+t6TTqXxzBmVwlCqhXNlEG5VL27kxOj0KSlkjE7TmObCBUQrqolLz2gjaYm0sg0MO75tJprwW2+wRpb3m5geGmQrDiZxPORGr0tLu0AhkSESvOUI2zE0wnQmjvaOw0cOCdrLoGJDeXUzcZWeIWfv84iqFe85buCS7ePfnu3PIF5Lc6jNVKMfVLVlQZUG5Ibfm9Brdt5KAKzOAXSL1CHKlGJE97QzBz9yq5cxqvF9E3rCn71VNlzI1O7rpoCUabNXObv5ZWu4W1wMg9kRx24yg1D3iFTNQvOhN68XhDczHzh9evQrS6JpM5/nGA96IxxbXbim6xy3zVX6JepPtwy9d/5fT8DxFF+eY7sO+ru7Xe9u1HNksb3vyHdLA0gXpHrfEKJKibsFA283PI7Wbh9fXgULNWlGvhqBiNqhAmNO/8FqN4XuvrQ5DR/Ey+q4Sy9Z8H8PRWB+JvkkG0WEs3drOD/wNBIPFXMSAH/I3aD+BYBbl0WRO9TSsww6RCYu2n81RTbWEncbGeZb5QRLhnzWjVYt0WpAUt71DlZoxIQb74MEzrG628F5SqtoRY2Y80tK5IC15LfyYoubhU0HpQ1m6VSb77GTow5zTC5CI/KXcgPWncva0469BquanaXY+c/Z7xlRH76MsQhQkipoZ7JwvzTEP6cggyxVjkScVVmuUmIRE/Mh1wDrYAZC+5qY5D+LASG9YRSpmsqsCYFj99ks9A97bPuBxihmmU+5/VaiYYXKZYwx1xwXwda3c6qye8Txz2Z37PsuiulZurySPArZjP1rkAbvnWGNsnq7D2Vv51nsjkjVvK+G5bxuU6H+Kp1TKM11oMmu/Yx4PDEokcL14+pBpYDC+ujsq6YGAfVof18hW5mP+D8tEujg6WU0eMiOd0SC3yXHWGHosnGgChqvTQxHhB+58hq4ZXoYoI8ANCx1SxPDh94FtcbuwyUCdYXcjo699OekRoEj6rGN6b6bmZoXClwSR5hy5bWFfYrH57zZtLB4HQTIAdJC41KiR7V1/MDcmVexVUfr2homsKW1jfvQWHMyHakkIUUiMIHdmWk1hPGWeD51UNtVqgKS9KzHhzKpbaOn2+Kf6XlGMw3ks5U7+P9SgC2dR0/sxDh/5VQqvZkx/+dNDq4TuMH3o7dnx+JDfW3Gyhzwn5P0grHnBdPoSWA5h4uTYG+pKF0dqpkM6jPCfhF5VA7uUIOwQ1aPdTgKPzgNIdpNdmkabsh+JfJIXysz4a/743+JgtRQPG9yJJZ6Lg+RuZCsJ0dn1BdDhouotaaJ8GVU4BeSm9XTPkI4r728g+jnQVLWvaHDYi64k/UO+72NBeQxnpGQ/VptsXRLbDfpM3dqxgqvreqL0ccqTAM8mBgN76OZJ0SzEF/WocgWDPSKv4nyO14CDuk4zzT+WnlEOy9cnG++81fivd1ddGED4TYBG04J3oQzIiQeWRRD16JTxMalM1S1zwOBq7hb3BVfAchllP4QZulCpEEQSvfYjtmc+zFZay4w9L11jmKecg2nd8+gl/cScJyXBdHVouiXDkFJ65yVXArpay3j0nz/qAv1dOMdqehe1r13Hxol+sgABS0blzs88tgQRs2f7gfQn4Te8EQmDLlMrNshyeNAlhgS963b0BeXQPaaZWgblP+JetTe8h3TeqPP+6uft7joHu1Chw7pJ7a3Z04TA9romZ5V5WVn4jgO70ZwFf1bGWYK1n9+k84F6gSP3oao31S52nPkkF/8yQbc+u6FYMt3bsdzrsGhngU0ktHqAkoofb7Ym6UtSEK7WJ++2iWIsoW+JAfM/m5X9Ga+BQZvtshO5DsYL9X4RbXcx1S2eB4iDh8kkV0mwiODoIieNnvqvsqxnhQ3bDSArpUq7eXm5FqZBztsSXETwgsl6XlgiNQpN2B4VDVNdD9Ioyor8YJWthaChjXH8UqLYZ85q9oKJMXgGNrZMGN4CNOzggytZb+vDFIXU8h9dQxxO2fOdDm3ee5pRAlgT6Ylui8XFW6HEi8UHkKyxtP9BjLLCuJ+R4Hjjxo/RzOGZ3DzHz4HP7Dh9zuWMePV9wXRDy5F6pbEvhSiX2+PjCDbTeEoSA1dO4xxep0sDHwvoyMBhpDFZ/vNAmIkySWp3TLy9ZGZ8oGRkbVZhdVW1Vvc/MHclkhs4rt27RfOypNgPCOXZpM9ORcRT/brSKjhJowfX0YbWEukuX5cyBbG3+H0VSQwsFIBU2Xrl+yGjtdqOzu8SX9WASLJUgoPZd9EP1IOCSUXoCzg6CNaljzDhHyQVC9kZTBxFTOTErXqD/xIDQeclQTK8gNPwEfxNsZ7xrowVnmjL58jFSK55n8NaYGfBDNKVDIv9gc7IJNL/m3yKMrxkNREEorTHewzTBZSxoV+n480x/CsY9VzQBW/YVEjk5kZ2Vo9vESdM84YoWgaZmDAO7b5sGxkDo0Q69H/rFumI2ChKsHR+EupydNFoynV9yVPDkX+nSqmNtlBk0MA1zFTix2HRrnY2a7iIEOQLMsALdcJWuc9XyYzOQwNldPz9W7eLf/YQ34tsnxW0OAeRw2KgHBBXuXK8fo+1uTeKebdhx4qYFoFNdOohT3FwPuIFRpnjq+KwxH4CPoqAR99G/z5d9ghs9yG6Gv2wWApFg3VVJe4ThuGYaS+2SRyDyIpweIBOZ9vro5nsSQHQ2HKOTx74bN9xehmo4PGdzGiWp53ZI/UstC/VNi0nAvO7Wl03lt1My1iPFyIf7QAfO1CKRpEcP1ag9R6LjtneHIunJ90AmekLk1dSY6CTimLFh2qPPAHbZABZNLHDJJPF9DZLy8c4PAgVMcnx+Y4/WiezL8v0m3mJYXYPqo7CnCJgicyYSN+NutGUGsIC9VAO9gnUxDRDu1mI1zYHjICz9isF7ltAtRyoHZLi0vZx354gKrwqaVt3sWZdGOOERqkXVEb2opH1PBJt1SB2RerPo/QKMFOiXOMXGWrPqN3y/vuBg7D9Plzmg4tAu+jnWJtP0D9j8LkV2opFeGmpahmxo4GTFy+d/XQ377P87KorJcr2kJBErUa6ioRXHz2Uo+4Z7KHbFH/pqvroUoqwqVbcUOrBbOPJ75KSSSOaRme3uy0S2L4n9O0sQqP86+AopT1lPu/aMM1DVanVrkdlns1c6IxEGhz8Vun4uWQ+Yg5o/1B165VlhOF1IuqBZe57LYXx5k+rhJuJu4Dx4ZjCXxIiNkn4mDYqPG7ckzElWOKSmnEez7s/wnLlyG36jzAZv408aTVZiUz9gWj4z63klsxfgsnGU79c+fN9JaSAsvta4bq5MMYTIuAFBy5rHaF1jbPHhXsgoiExLqMWXDDnbLTsh6jrwXeImYkt7iOn7WxoSFddTIaYtMnA1aqhEQLiCTUIrqUinnlOSco9oQ3/YEcgQWkltCoqe+jI64VoUIlnRyocPbJLKj4fljV8PlJ8IAoBpFClV+FToCwdm02xjjp8yFJDiR0QfxyWV0jY15cNTLeTr2BHjJw3JgC1B0Hn2DyhHShI9gkpg9y2pHhn5QAkQmRJcp1++sv/OKO8I1Fq/j9N1f/Ox7WgJE6kGiZYljwGDzNU3sHMANwxTjKvEaGQOTmZL93gzRvvPgJGm9R69whkFit+7iFgH4udsu5/nGNshS+wWAiFa4jrpkuqND6gD7JhfNGfqZBL3hsdEyo/PQ/iCE0J0qcnldgWXxYJ7c4fee0WrRpBtuJcnQWOIyTA2gxJG79pNY39m1vpx1SD2iKoJieqItoBXBLzYrMeIKlvQB4eXeCWx9eDVWXVwUmM2OISf6vZBstl+4ukGxvqFRusluY+WdleoVufqvN6C2cye8H1/JUaF4VpkAaSsLISMCuwsIWCnlPgqT6K4cqR7FVprhCXIGYUjjZPk3shO47dy8Ul71U1IlyZgfE7L2abaVIOhDctlfHKTzEvlyDQE0+ln83MaGDxyzYRYledXDZmUAQsuIQwXr/BCfsFEnzFmoxu6zRvJFoS4XqlmH29aA1Q/pYLqT7xPDruhqjk3zd/7mkpirb8f6/6eT5lGneIxUZ8qWWmr7Ck0nMQ5/1W6gW01vdYQfYeuA70uAIEjl6Lg31iUlftCNeqdxQKLNO3eWnavir9DMIXXDILSO3X4RjCzQTGvFzZDacGNbsJXYzDJbEeijHSOWBIRxmwFWGVaPVSjmlwkmQml7/tngCJbJ6jGiyevpmyuLsgmBF9XsgYTNzFmpAOgmfIdW0AqDDkMUrGiLU1NMaiRGHJ/5vijb75Aq5zhbLeTHzdVYymODvLrmdp5vcukUzVqWT5N4vBkGIHqalZ7wG2KWi6TlV7f8t17Ev67VcXxv1xVSkp1duaCRZZc7MEgSKqQyYXnBWkhL1OyLI4RBsU1f/+Z8XQ9FZNI0ztS2PbwNPs/e34pHoKn3iOtIaNR2NNkMFVBnG2xdTkHgbQxilrayPG5SMwwN7uqyGTgMbez7caoq6rhBQFWg152ocf8QKVNBxgU4stBeZPsUYU9Uf+++CY0UZgeZdsfheEgocm5ZkG5cZ9WxxAun/ZnTTtnUzl0LRIDJtc3T4V8s/7/DvpH0kZv1rPP4v7orlxObD+9Am6Nj0rXOnWGWQmybB9nBi6Ai0yTB3gUZoIrLZn3acWJfr+NDvWzFuhvvHkJgrmQr/xf+6KwmJ89u9mSndgb204cv6kNUup14b7D5t6lcxf5ov7lUK4gEG5+p4V6/8g7KZQVL9Xo2DzXw1jlQ003NZ4nPUEyZQSZSFv3P0owi9nFVGx0f1Gd22OqpnOEAiGgrGLbHCPSUNTFR+c/0kacYpD1KXmS8opGg6jY9e+nIo8pwCLCntq12QSQ4PPhprvoeoZg0xaAaLVdtPpzKwdnCrm4CbJLmuoO9lvXw43jrqd2Vj7FAnYYpi0NusMlRdQvTgB/XcRTSe6tpGox0ybMCEjQ+oGhY2fwO9SS/nmOaetEnoaDelAdEzr+BRjoVhKLemqNtCNijPwWKqttIF/fbzhxuY6HVqwo5iQ6JR6zw96H07s9AtFegkjQiNG5WovU9QzVKEuk6BcBTfRYuP72h960k+7iIvscCYkpVH1t/aHLnJZZNKGb9id4PEuQa40j0JteGFWSYpMe0LgCJGVCiMPKSemYOzdfHgbppM8HqjKIba/3y2tUbxquaHZypCZ/OgDjspNqSNk0HMSKA7Y3fOFy4qlcedRjixVq+J/5WGue8oBvT+5odyJ7nok/lsamh6hFVdboBdHu6bTjTeU6DRHLW0RazniB2dfQqP/RvDMVI0gug8okchqpWlFApiOknPPli7X8kQFKsErRwcx9NVn5BClT7ZBqqyQFq3JBSEQb/Kns9CX2ODvBnBfT9rVh2kdK/MGDbhmzfsFrQdq1+NnPDdSmwsH5tjU59acgq41vQlEP2NZPc8T+yPdsEX1VnRC9ZYA4swvZDnfNzMsXoz164fzZ/pmz9MLdSmEAxyVyVolXqMtPVaSlrOE74+Kd7fKec6e99LM2SBLbEuNms830N4Wcx3E5mIzR7oTkpYS5WoORdFGYn8dePJ5FLCw4peZBJzewbOSNe5URPbZsKF8atnvEGoa4kumLkwS/Z6ZemDWA05h3FB99g8N05YwMzRkNu+Bi8GlNZ9VOEjEgxjo9ijPKaw0j17mag5oXXVYIZNajHEHQXSLdZ/w09gsAv68on/CX84PGb5oLOs+s6qzIYn1hN4BNcgXyKKRPnzuPuiS0yTutRfjC8aod/gM4Ko+sZnFPRdn9QaiQey9ffzaL7gnIOd0AmAxBDNrvTZzhTFnv8nHZ2GpSp/6CeWyUPhOAxP6PKQ4Tuw/nnMFdRuGpgkFiEwGhPHsGfLIPV9W0fS1b6SQ4DxyDaUeGIo/FqEvh0maEVkgzfEZMJHCKcX6EQQy3xlSHQ+RGlQsBtmvkOw5oP/HZurAqjL9C01ImmjoLIVRMwbG729BkGU6f6u6+ZKrZOZhkkxABAcJONyUTpWxpbSdb1TRIisFM6xlILHuYmPWyk3jTrx6XoUWua4dfJAX198gs15BGgkBu6VDJfLEkQXA8OurtTvLq2Ex6pr4YCrX5/jcfIBOhve0mCEwh1rAPjhoOCoB5BeCARq9Hi6hkObYE0XncB//MKuvQN+PcdZphjs4in6Ik+PwzZrYUptN5PNbMIFsaU+ThSqbcZmOqf0qaA25z1bLXoHvDXpseWhMWuVowfwPs1i4gIh8NopoCADRHoaM1MEVMONhd0UG60Se3VjxRfj5XhHTT6Af1OxVhMUi48XDcJ6+Wk3ApYuMQjSy7mzLyn15sUuNSz+fuD+Jk1R3DCNLvJ+0lrwaTa7IOsicLJ02SXhrPy6jPfVnPqeZZWTLsTXEpZlMg6EC9ZW5el2G88S5Cp+RNka1LV7RsS4T6y+iR27q0Kv9QT6zQOukM7GhkYHS88go3mOxej6e4Qh8ZNSn+EBSji0wUMgIsZN1RQmMsjT58OGBe/IlZsZP6Cf9OgvV1RSJeTer22HRZU6czuVQwZEpCHzmFtNIs6s9yWmL/EaIAUFi4TFuvTjt/gA/49oJE0z17nTnHNfQGF+wPLAoGIABv0wr9lY6lGf7QGnafayJ4UR3ycU5P7f3Z3uVN4OriJNKLMMAIgvquhJzk+l+s+5liSmjUJ2yNRZSIIhmxpRxpiRSG9/MgKO+0SHTUq724jVkQlKXtg/dSq2pZRGPTiqFudup9qCvLUg8LdJHWJv9QFeM+wggS4UsUyZSwgj3Kan+vcCijgozLPp2E6BCAziUfBvMDj/vldz73otydaw7f93BEmvvOY3Yjb5rICXR2Swzf5kdOB6EpM3oyq0o2HI7dl1cjl1DHM/2998AAMEHdwLIPRXiKqk3GikNVuWnrr3Vm0UDDvrmI3tBj7mULfG9KWDwyYY3KBhBbzKtBeldKv3XBvPgD2N//46pYZcI11mvu+2/NU70pOqp1VbgOze1xj54xzKHpjzWtf3dakM8OVTkwPMyQN3yFLRqvyW6RPuLten6UbaaoMc+tveN8OA2UpSGM6JxZjGQXJsvP8+pxmtOcfcrGK3yRTc5m5uyUv+rtUJP48RJQtS/d/VJL8z4pAtWINIItyLzFLXF/U4iR4Novjz1OJo35CyRIWWZbvUsEv7zhM4kHi2+pQgr8c78dV6eoQHezUorodIuAwfsg6N52aLKkLeNjv0864UjRrEZDqsd0o011I1xKloH0tSzFDu2sNvP0Rehl+rH/eLnPDzc6qseJnlqiueD3uC47+5izybUM6WDVKdHfRMcrGTOTbofw/9/p8A40H5LPUKXneDbh6zJb1HTPudHDTiY92+lHdcEdd5X47qjh0yXk0yDta4DVfqtQT0oFI4QJDo/9F1Laa6ieFQyjJ/8t7E/c1jEin6QAmcRTwVJeiUquZO/HOzm3jafHc70OvopRtKCQiVqc2AXDZIm0Yir6Z0SZYfBg36CwxiaFzvFNvW6/5IhgLKz5GqroRnajtCxmFFAbuj0Y37mLOJVUzK9R5zyrrDNPxjrlr0Yr27k97WxN9DsgLNk4bZJjQh5e9iRcC4Uljt1ybxT2o7HdUsET4weC2JcUx+vCJAXmePO6QHddyet4/XwUxt9pjuplpVYuR9G/uR76h1n8MWCjYj+b0YLxzoIcpWct47nAnpLeV/EMa+8JuvTkk0c8Z9KhrywEeTAewOBRqoTRssuvXusIFQcbgpar2FryPInglwPpbey2K3kE/5JJhfINi+aEPIeS3t/2C5uNQ/BdB3R6VppKBZ/H39gLsxVafP4mHaHj8nHb/anarn4R+FzKQ51g64KLkh1PKmvYEDmFBdyIwglCkKMmG5eDHJ3LSc/u6eTg/D0Kgz+CiZvr3wjAmtW5TWzChh4XsZiGvU6uv6JdUkOL4vSK/Ipn2hB3qMy6AvODT9YJt6tebJ090xz4GETltyJ17EyLsZ8yk7T0Zl1bWjsM/IQqNnEEwb1daCvJQJAhTqRTLDQ05nxKh1eLyV04iYrh11SCiTPrQ7FlQyUyd7fEXmSj5wkDtQXl1kPhFn8729CB4hxbKGrbuWa8qX6pu/sEsfHAYj1GaDIXJy+edHJ7BFb0F1jgjDkUTNkHwv9OBLCZOAe1vyfB1lfdsDKyhR44dQtIbCKbMODympPhje5gbu8fBGdkD30mn9KpKABg74jEQ1R2lQXQw7FiMarOZH3FhjkBsSPBpJs83QU3SYpxkggbAqAQ5LJaU7v4nQUB0sWJlwHK5a/iEMUMOKOGnk0oUxpotEjBLqvIJNBATrFYOAERXsz82/QTdIuNDnwAbtmoXJocfjoDX24Yw3aEOgBGXTRmal0DsrLiLulaSRI8EupCm9ejCQsso+xUCXURycIujU9HU6FHqY/TWXJQNMID7iySYoAWSDCh50yiYTf1xF0+B9P/50nTSCEmL/4uduaIgkO/GFKaO7Zp1ID6p65GfZ9hUz8qUOR1mgyowD3fjXkLum6QTv+QPGVMT8FF9PWgfHs1NH4+tt/lLKKQnJSgvXiJZTQBf3K0ab5wgVIHcFxGkebv5z9+MEP+QSg+Ba6KENPYWjWRBmtcXHk6WxFBh6mz9/l5TH+ONbSKap7hBLFqT/SSU0fYv+gh/zjzl41MKU8tZJplPT3IgYywdmsTrxQBqlv+Ie4X5dnJU4d59hs2mm96I1YXnkXZe+6UxZHy7fnQgF3FeDFybW6raE320HzbsxMyuGGTWCNBustWt1p7gEHDTyIhWBap/1j1UElcbhwmnhUxepX/iCC3zmvbjjhjYYI7EHMhPWLT9RBaO+qugrQmJ1JU0NxSkb3UZBYhHP9x+VgS6v/Lg/WUXwMJVIvnx6EU2cPyWp4rLBK6vr5WHbBu1erFWZQ5K4UJYAgWb5yFOspOMzjn9L6If5/IsoSXtflMwOGrpErRi4kjNt16yhBAKHcxlknxta2CaEMXOLX50dU4RilhRIU/KfRNA3wZKKK2DqCvlr69trTWIHXgLR8UHyBe5IZj6oHtuG5jEX9VmiyPGKt6a87gdpwEvbB9uEKUhufCqs213wKldrbRckbjhCUM8Yzd8N5eXuc1hr3K6G9gedi484KtoBZ8qQZLSy8Al8CvZvYUQ8j6vxgSciB+3KinUXPkOZg29AuxecUetkVobcOU6/VLg0Fc17BB6kAqOk9Aos+Hrf4+21GdqaGceTSY4mUhaMSUoy+N9jtf7auAl68rHVNd0/olulATSpY8dCS7GAUX7YpEC3Cr2toTBrIOcpJzgdrPGFGi76DM80xfcJT/5u472jEZWP+JVbCkqYf4HdqPvT06AjsMXHH2pu+9iHWxg/wFJynAcr4ra247IA3rXx71wd1JOU9tnv8nKTFEdoNjJT7svSFJamz/Dm1zRhwwG3UDSvan0j7nnamhVWQghYyG4QOUChDY/YvNjHLLk+BKSRo3Jb9Vc+tpuiZgWj+/PwcVAN2/9LovCQ/gmH3m3f8jPtElEnC151dbSHAzIV/5D/7PDBwuyv5uzBRazUmw+Z/9dNHNRF0mwvr/frlK9MeHR5cXgFU1IU+YupXBFyblvrl4gNKaDDYdH9aD48RLug3Kx8oa7oMkQlzn+2yd+ywW2Jg8pSOmoHjqBjVgT9IHTdB28jWKwJ1BwcwWg+rSnpeGQ2bNVA82tWL/SniraQIDIn2iI685Nms9VuqP7jkr+KZN1cgh41W05Ov8goptlSvzwghIfI7o6mHqyehrHCzWI50MUotyUVJNHgS41yBNo1rUEyySjyxMXrUdlEr0Zi8NH6Asw+FqMsPcac9/+kqIqgdrelfLetleZYir4Kfny+Gtw5LTe8NPMMFOrIvcQJJ/VZlhHebGF8mSpvwMf+paaY5bSSzj93sV0BIgeTWGX4FFflYa5Vr61C26XvoU9qqpWoo0P4Qpd7umFF+q26sGgNyBLz891WwjPfKd3XlM8GjaI6xxW/HgEsUVHz7HIokEzWjn0AJZfwoLcXf4VqiQM3T0PQpJP6ZiQZLtsLlRBzLPLqGSmnQBNnf2s1igysgPRDsm26L42cL4MORq+w1QQBaTzzv6pR3eD7Ca6K3C/VXsW+KUsaZ1PCW97dfZkyaUt/ufZ4Z218BPMjz1yYMLtYS4ow5yeJE+Cxj6wkEOPKLsdwznoBxKzQdpwEh+v95NIJe9eHAYPhk19ZYNOs32TKs5CvpX6qShSYZ/XPWYFxgzAKASgWis9W3SYmkf8E7otml/Y6ZBYBXysJvnG1MS/eCulg/T60EE49GnQnQavB2PWehuxl04BozSKEZLJy4X+INgc5nBLj9J/0ilgnFes2inz9snjRLWW6Tie9cCoqo1wVC+ui7PhKd9jP1xdlDoC7oBnQWoM8f6y2OkQRBrs6jWEl2PxuF6heXAi+TQFP5+W0++P9CuULZ9HpTvExAG+oOcl2Hq4632y1iQtG6QDv/af0xKhp0B6yzKUR1fb9gCXAsYGEOqhJZpfgipvDRmYdSu2Fub1icgh/p8/tz8aU3ORGkKVI0IJo04TY76yxdpQ8u/VLNo7hm5PEaSTx+oWOK+gXWox2rhF1/UUFfVFdxfHjxLuWk4kYfSoA5k7TatURiNURvjK7cLuNsVgiNlwfZy8NWnbVmUxyoKqVzJTuunkmN1Lvq3/VlBWhzwipGiAb9wzAL/RG///fNxPelmO/VxVuA5bS+LJp2g9bI7TUwW4MStj++i4HUTDWGBNZZZui5ApqUxUfpFnLWVy0rNbF3AuGhI6CcmRxMFz4vuzFGmMjo7NLspAnMoT/oWXZjrWwBGs1Y1LnNTsMcsMcGydpDrewpkirpiK63XjACka1RCQEUeVahS9vjrkGDUGmDufQKX+MwZ21+N0jQemhRktXsh9QF4yApYEB09avuJ5ZWDH238OmXKNmalI2V1TbnjPAD/n9lQEn+vHhZ/vDLKKCS+k20K/NW/K/vMNP5bZHo39fq1ENYqMEF+fAKBk/sg1nL7u9oVknOQwfRk9iWUwvBDCmIFqTm6HZSlzSOotKkPjx72p+J/aYZ1gRS3NqYMGys/krCIYnwLWEI/ZlZ3WDLXD8xn/PV/27dCtFL4P54SWZ26iO3vmzLDAMnaOEh3Q73NYD9/T9NMrIkhKmay6oQC1Zt65XA1AoyKjNgwIyPpNlkNyZJQHL4biNhS/4QWuU2ZGmdW7XcMKi69aUiFMWiVVNxl4UnW+DcKZhzVIQT/YXdemn7P8SZg4gNwGFRwsLCMeGVIHv+EymmGnJSMhQ5wF1Pzfz3eXQkqCHZDbnNUg+cvz+JRvYvtARS8IrmOqz5DP0T6tn6TA6y1bhxCsW5NaiyM4YSUZakYKG5V/CkwoucOJyfP1lq5Q/jsuCGz7KtWdqs4Swc/P3lifJ1e4feruW4vsUvUCYUjT+dKc8F3R0ijoN6KOq1w6DXogq8PpjrE88RhGYI3KEoHL0t4ZYvG1i17RVtvlQ4PSUFAiStWJpXqWQzD379Uz8r3d4SMP5CVhXfpWvM4R2aMTkoYtuc0MVc+fJ5rYY0q2R8vVgwDpzAU9iUiFsR1OlLhtTfzlcvHrUiaI9dDF/Ah5Pbufj8NoxywI8Ja1x9JedbpDEVpjrLgh6mSsdxJTkGFnkuIPsdU5gi/IS9QW0RzpPk5cd4CrHim2zHBPq0Zmo5ba1Z0BE8TG6DCdWIPog9xiyGRUS23mRxndGWZKKmpIojAkAKS+XxgvplUCITqiL3D0SBsI7AYOL9tXaWpFmLkMAYCOWPTynMPCpNyLebRkN7pprRM3araxJHCAiFMvEJOnc1cHYO8KnSSt1LTngkE1mnVUt4BxhVvk6vTEzc5pw+oSBaHH75Xv+n9oz3AkPXg82M2jTkaQ/lIkgn40vg+mLoPkUAWYSIjCzfxzvXkeBm+m5blFtPYqOBzP8AOrbTUeCl0lJSBzeGhTDwUWmbt+mHpWdiTRxGXgMOT3kl5sQITgM7NJMmBkFURkfvTr5+FJceW+AnE/pDEyVBwAMY2jBvDyIP13G7gpO6vqH9lO5xwKs5V6PKwzKWN52+QGQk1VL6bUmcbPfZDmihrLEzbKBiApEkodUPkKigmvJNSU3jv30fpHWUdWVLwLs7kEzyknf0v4VqME6AesUbnpXZO56y2WI34J8j2+vjBvDgNUq7AamYBbWyTh113m9BsxESnF7DFn55pDr2hzRCe00lBUTK7dOElj99rC6UXox291Nh30nuc8dFj1FlBKaaAEselE+OYD4cRgbpdvGPv52EPypDkPKS3vyc8PystGj+xZF+r+RrhFA8M6PJNSyw1OI0RY4VmXcEKMFoygrJR6qqbvYHziWwMHFf5ek0n7XLPd7PhGFkRkPgaWJJ96INDdX6wiDcZkk+ZslhIFzxdRFK+N/DHJCr5TllSSIoY/88eD43H3gGYv/7rP1krQaxZ3tQY7B3GGgZ4g5IeT56EsYegS4sWEtkAtujqsje2kfHkpLJWTZ8O7XYEaW4WGDmVc+TwESR/KujBrVVsLWbIsjsxoE9MELMe9l1HIfe/MsdAHWbodmBhch+nALK1ucAD1Ktm+QnG2VWqHsEnQzHV+inFs6S7AsFcR0sdB9EOtqn2KLbCesIR4rMzN5WfCIVvPI1nQ89h+87g3lRdmFYt9WUzFpe9ROTE+ZhSKOEOYwvy5UMtE65rzqHSmEGp69Ed1v+oAJYANiI5BL+NcOgP4MCItBWou3eqjjKeAbQmRikB4Em+bNVVjycim/YftI3s9aRB0S66PZUHdu+kmEnxlbr8JGRY5wAdktS+Ma3R8V0rHn0SJt9gzkllEeE8VRylGmuiHmNR9AYRheSAG5RBbMrebVNY/d8vglnY7Q5wbApYHjLt5JtIIIKONMno3/R6i9ssatqazvHeeZv4TdaH8lnHgZ9/GBRZUqYhIQLdZokP1J1xnVc+y3aNY8IgGpr7wUhialVt9oIRSZsrWnt99X8EdEt2Gq5GACtuR75WAy5+sSzmiY1OSm82OkmC8Wd6StrtsMhBig1sEgI5grVjhB7VwnNMa6q0PT7ktnjzGHbEVhnwzVrDyrGuCF80sD9BjO2V54hVR0i9pJAtWZi2znqsTBa2LQwJoWqxNNB4uk8qkLlVMkQpaDGAQL1XLKTItIf5ZyCjmfsdrGHwDFhvsgJSYqS78xpTgTbMQ8LODEL6iyencjJelVdxdndKATNAPgbuRO5QgPxV6mAYFe3DKWngiGszpxQhB/qlWADieXhKK2EffusrXWFvQAqLYigg75GOVEUDwYNWPgPrwe3HqQq+Q2cvaktF3jI80/O7qG/dbK8KKZNwsCanKegD/rGMj5imlcLnPXFgc6kwiqIY0t6u4YWR5Z6K2cs4+9j1r1TGhjLSk+qz2tSBexwNpb+agNACT90mbdG0vPMPp0csSsSwjpYwobwC0G7tz+iLkuBHqGSkuJfU6lAO4VL5GvjQsDgzZ7L0VyKItK6kNHQZwBEGQcYBuSXx5ai1cES8nl9GvjWvUjLn5KUGr90zxMcaqx3kwcnBu1X9/4UX+wOqQhSbVdj0ECLX2ImLMx5Go1pvU3C3Tc+dRWt0Aj2026/FPIiyy4XtW/Krtc0mQLKxxzlcav2JOa3AfD+0fwuc+e7WOYUDqi7u59DSadGM2BRtKSmM3vh823RRQMj4BV92vrYi77ufuKMZ0EDME1kARK3D4Gc9mcT8j0hp/rfLUdUGqarv0Nbw9UzvL1o5G6nyBy/SZg23PKpFxEc7KUCFu5hR2crLtVXC/oIiTkXg6cFHPsUuVoibWt1DN1YNU1yWqCL4IReWu1YfXvFzLx9aKn1zuqHxU64DkHyRRprSfn1jskhS/cdZ14ERuTxRELVzhRfhJ+w/Z4Xqvi5/ag4M+7PpJuwcmDT1pmYxiUsAuYmuC/iPeMHhXOTrQWIilet1HgjguZa3gT3GrQM+aX3OxsYqd4jm0++bYNOhgq/P/WViOa5gne/hyejg/R75QSMGXZhN6ZqDSW6r6vBxVrqVzNzKkKdwyQQuyyWiSPQtGKyPqnNld5DLhNObuRYJIBP5KqQPcvc4uEKVbl7b+MSd0ahKVIz1Qvl9qUKJmebeVLMiM47vg0iH+Js9Kd8W3Yp8vz3zlVSPF0hpY1TKry4TKOau7aXfqdSQjI+D9SEHEf+MVL1bYAYqyGCcQi9//UQVX1jFPn4jxpJTU/cF8QPHIS8JkfnJChbEMLR17HEWKfxbGn22HZy72juObQh9OxnHJiqaRE05FT8XBpZiucDt69dyVekd0Z8psEPdJR2F7QiN1k/BQoU+85mKl2X5yJ6ISFfe45dxXBs82U4UAO5aK8JOFLPArZ49iy0habi51FgM3w5HKphTVN7eqbEfN67HjCGJO/kVRru9qwXwziU2bu1eASPVUW3bAe6dfQd7bVCYGrfH83P5nqycdc80ZUwZ//Jf+u/r8hgim4pw/gLtxXy3bohe4L4CidolQ762RMtTmUMCrE/kHOEaJV6I4JE/Ux37Sv4FKz9OaGG/BOWC+T2Tt82RxtAeuv4/MoglxZ35aEGywaTWsLMrjsNO9QqaQ2drBEj4Kn6xga4l8zLP3zk8sIr4xwWY6lYGYrXn3tf6aKL5mJesolF7LstB2jYo41tE6AthqfqgAGc2ZMS6srdpmKSMzMU48xvo+w3jwdwsJl+dTlJXFirX0RPGjv99DfUQzIlkFhLNBoIfKT5ffdNCuF3qnnBHaW/kZmd0OVxpd4Pk+swKpryWhbgXKBlxgEPqU+mApORNmTE0gCu9W4AuT5Kllg6tKLbx9Q2Ha9de206qmXHy58JrOobfehCUqnFR61yPK57Ul2KbjLk1fCZqR8TbIB0kqayoE9Q77eyrSXLz9AJjpp9otoaUUKg23vf7zegZdn+flAWB900f9fqabdfyjTNFCnoDvZfAsReFKQja3/EDHefp8DwO1s25mMRVx9d/IXYf1ISNsqLmI1ScQg2EtErrqA4lUISmEK5Kmr85T45wK09gvCjdOvmyvr+w13ZJ2fNTgSsmuLnksQxNP3NOBO6sdxPPi5LeaHdc5o54+k3s8RP9WrQkPed3KN0l3I62zS//Xq648j39Nw9+D0LLEyjSOEajZ84TqbR27dyVrhGFMA3LCrfc/8ueXMEDYPVlQD4OzP5o7IzoFZQhWcxlYusyz3KGF54YQB1wo473E1D8IyfBUSF1PcAbF9cJkY1PFM7lNDiFORoqeoGGol5gwIIHrVvSFNB/SnvJtyrNir4hPgfo3obuqz8a3xGD+4ENbiYDIp43z707yihQ0++z5EYBquUik8t3/ePnritXgQz+7xamQf7cZu/XTCWqUqZEdIqa5FVaBgcc5T3f2OErOjDZLaY1jyBP76N+TGFqnqRlPHDeYyknjepx3ecKMt0kUF19a8DiA2NLpy4RgEKQ1u7AMZrrrY+uZnGsVmV8j7Om8H4Ajmy1ms4/7E+s33hW/ITmushllez/0KeU8a99bjXykLfRAgtKYvMiqy2AwTvAQHSB7vU8fZ3FA9o+cKzfnuMvTbeDueMbmuDUvCalp/CrbWmu5Zl92DGEZqOMonMJL6UdVtq/2rTv+Cxz3t8ggJeg3Sksg0/5BbRobKMIc4rN7wks7VNWIRjwRUD7L4d1bTfu2xe3W0k1vACASoQBnm0OocmJZ4PzP8biHlGLFCKsxEDSLmc6SS/GhLBJqOoj9uTIMKv6TbITDawlFoRftbM0t0s3wFv0eukXskMXQjsxcUS8bHpRwkw18/zg61igxfk3XWpEHlXAusERA43ejDSTIv9tSQ06GtPbFZ2iGHUcNY3KFfC7elrWE1ImaphW/FbU1Wtfo+/OnXm1+OQBxY4y7gwCnKg8AUSoldn3eOroTPwTiE+RZOPIHF3MuFSMCrxuO5B9SsX370/dAy+SRr6luHCKnFR6n6BXwrD999MBQhHOmlwAd+lrt+r0fVQAkmv7Hc/N/iEPq7uLOyoHcTW1iVQr5Ieg4IV6n2FArEDEX5zplThHxJZnEP0AZ1NtOav9hmvD2aTvHcXmc26VcWkBydg0wHFyB6yIgBsfDE44hd9FVZRA1Jr9Y5loPywgTwxNalw/bJWF1Q/FtaVojB1Q6Y7kjtHKpGJHajS6XmNt+ru/rMLDmWD9sMENYuPtXocJDOmulssyADyXQGq5+sE0Mq0euFvcb2tG49UCPUXRM0VQMtyNdrk+3455mjDJef6XT57g6tOAg5XeYCUzlgoZO12A3WdbUvTWR9UJG1dYDDLhSTUQ6fLNhgBD4L4UTtWTPJp6drhP1Qavdx9MlgaU34cW+DRARJV+E0YH6qbTlHRavUdx97iwYSqX1QZNN+m2xQfNyq9QbvZzKuevH84uy1xEk8qV/SE/EicTFfTWZAldMAysSsprryH9pz20PO/QpenfUN8qpyIUakMBSEMOi3M0/9DZEew9nvmacUbFFzx/DhmNA3BKb/h6OdSKFyECVP8ebnwZwENnvjWhyH9uN/YeRyfWCzD2NOTMDqHYJd25trdrqMe6paWGStVt8f8dDTmz4nVrOn1YVRHLCcwD2csORng0OtYclXAfbz+Rg2fA5W7wfba0DqwQQWgUM/FXraC4HJ0+bWeB/kb5aHdEJMYjb9m0A1dIpA/baT/ctrM4hw9Qg5lOFUvUamd/9KJ6OxxkaGvNd++c4lWB8IyiVGxcV4wV/ORLFeG/LnAcCMvBtjhnI7y9fQxKILOnFDsflLreMxLi0se+5Smn/F0qzcYOjEvbdnrRinQNOJm3hEjdsh9y9XFdt/xZXZ8VTjjA1wozAUec3Bpz+lT8k4Iwi5JkqdrmBo3vFB6k7xboHnbrBdlds8ror2FcrbLIa5u9WP5oUDM08JKrkrYeB2OSrg7RS+zK56x6lhQz2s2V+goQbrkg4Fg9WBW/GEj3NEMmeK8GhLntSOGyGdw9OM9nMlyOpRp8N5gsrie4uYgcFEACoC7yAET3/mnDMPNiycE4RbS3Jgi/j6V69mC17tOaVnDwkViHlp+QXfIYYmHPyN3kOIxvKhkIU08TkYpHNcQvKX63yYKcVz9d6H7HsXrmNJea91rN5jduB0vuKGjwndlxqJM7Nh+IqTn1tHDQ8IOuSfojX+aIvcQm6C6wvV+oDhGgQO9vJGXFlhb1z81CS0hMwLTXkL1gAN9aRvtwZZi6jxI7c2vZA0N4QICn/JjUftGY+t/Lw4qLIwr3UtHuaW/VEnDXOrPY6PuQBr9CO436S1OJrZxEUTQJOcXlV+PI4GeFzkp42o+zM0AJQDD5tNAntH9UQQCAcwSwcRs2c+PPnirXIXFjSbor7yAWKjEYpafVTIANaBReshEnBxjpL8/GvZnIp2Ka5D+gSXPK1KJMg7ahDt0I8s62q5aOIuDstkPew6gv5zPB9sh6SWIUIDVFUi6ChCt1zUC8d4WJWviv+RMnUPh+rEvxJWdw5P6i1NlQsTNLhlDkTxWzRPnmH15ITcYjj2thC9NUGbghTjTZsXweCP6InpgAGw+tcbcfkvCkfGGfdeLU0B8V/3CVNRhTRbRUGb37EibQpxwG8JvETNmXTpma3KpZtw61T/dWeXD+wOaxwwTagXSRml074HAaT3H7DmbJ4NS9+httqEF+Qv1djUQDDC9QF/sLOYLmD8yk/27L5Iy2siE1E3gOd5JAmTk4edIqEvPSvxYzHMRVeUg7yTFJOPV4jSqKQGNzODIzKBKghdUKQhdaOqUw4//x2Ei/djflwJdArfs0uEWB4DT/doy//dkuicXKTS21S2H6IZ+Bc8wPlVMBQKNBbwgY9THcMkypusymTLF58s5kryB1FGYRo2Pd6VqrOOXCeO+aeUydKPdIS6k2k4NmrXQGm7cjY+muuKwfDSv7TsYBeKD7st84WSZ8bc4SnszQUgZiSjyuoFzSj/Pfnm6aK+zT0kGhLOCZeZ+zugekXIhrXeY16JnUoiM+S2rv6PVgMNZmSZS+IqcEIcYyFcZvSzW99EU1IvxV+DNN82WL1WS9M037n+QGEYuljxYLmfb8tCeHv9tacnNOHpltTazlBdI5yfHdi8kkSQDefCBX5DKe53L1bRGwiDWcsScvnvPmWgN6ToUFTN0IyrzLVML8eqrDp0TA0cg3kS80yDCTLZQbHOTnl1Hhahgu2VU8IbzmJfinjsD9WQXl3a5Dfax4BUpPemZT+FFtBDrPBemWk+0R4tymigOnZjMU7F5jfd75UYvhj80+dTKgvLCJuB0rNpNIlIHMsdraRXWJt0Sen9PMa0l+cB6g/GAdorTpfW1jrbLtLaKNyNzpV73vCz72q2HRYiVYRKOJ4sZDJlFCAGGlRNkJIhh/qAjp1BFD4tiWMierxvFow/ieVCezy0Jlpc8u4439wYYpUaZp2c5wT/0708Ete6gZfUg6gJxxjZu3K1ZgSbXbRwwuv5mNg7V/jF/iyNHE4sRl0bb348Ye56N4FbmaSA705N5IxiI12n9dYPwXtndjrAQhC1RvD0f1VkLr7HrYUbbo4gAC6NGSHv+Ye1Jh7eY0hkj2YAvytwUvLL3Sc5OqZr8TrkLaZXk5eKNhB5A1Zaa0cPLw5MdAIr1k6TIpYpA/m2aDUBevIVbRZftDOR+nzyAL4cnepINl8j4idb5JAyMUtn5IMw4zX1hmzudq971e5mr8KWzYxMgOUMaDUAWyDdlQMc1yCF1W1rN203maWmjCG8iSyO9mOsYi1jgnrWbhh5tKnbygEZRRBMTP8tgxFXMRsJ+zwBgCn1R03Hczx0XK6HOsKr8d2RbdO+yk2cRFFnZGa+TM7grSDrzEY48FU+U2tCRawfP46HpuHscp2B6NE04OYniixQKFQ/vjQP7Ez0ZViTEXejBgdwLezP0ypBrRaouQ5kSAkTSKpXc4cbBHJIj5Y3oRPnAbffVDyz3R4n9s6uRGvoLtnC9TRta2YN00c0boBQAEwTguxio5CnCSqK8KHgOgHEHDniJKRznZWb1EJs67lgTvTuJtNPDIIgs22ViQrrJjLLc98/1rpuRUIjZUQXKdlMgI2XoVfSoF5UGomQfExfCx3NTh7vuvhFujo6KpIrsLJfQpWztDYhdTniq+ZouEPGNFi6CmrSzkqqlyaSwhYFZR8VpaQ03fKoSF/kYHuFTmrz2QcKAOR8b0iD98CFqhjUnQAbHWP9b2uTL+9hS0DCb6M04qswFGiT6kspA6YouzocN2T5CnsF/GoRoOlLKDdv9NoHrDzWq1/h7pV6I9eeZdifDipsF4EKHUpktLXdri6v26ajHp9XmjfKDafeK2X+FFHC1ksKpeb3lMXdLiBDHh0QHCIEClwKqyIsoJSLDGJhkHpd3sEcPjMY7KXuXrv7W2a77kzo6vv+cGWPcVMEQP1iqYWsfRoVyh8xHWQQqis8U9Owj0PHgLDYStoxRSRcZaZdX/xqfYfKLE4rQY3F5wCByfF+tOURNCCJdwp4dwcMXGrjPSMrBWvShRHvCG1WS1DboH3uBJvvm0klosBLGNCGHnVkkpWyXbY2dnnPcsQh4srv4w0iSLYkX6I8NS6m9OWkzLzwlJGUt1w7JLyASP9uWRdYKFPL7yV1YoT6Ci4qFo/9GtcMNN4dZVgPOl9LWye9doZx1LjUQoRGHDl/bKkUumrRlk92/tTf/OA40FkZkK5Ox+Prr8VMM+uJ1BCSu7wVT8JSH4+OcaGaa2DKZRXViOlB4EOHPeDx7GZlhktjsZ/3e0m9WMZ3RvZhccc/8tcoc79NT95hnfFc5IRU9zR6VeDHYH4JZgvyn1EW5FaMRKPXoypHiC/zlDlZnhMcNJy6a8GqW+rCgH/M633fGUqW1rP7oaxKgsgKwKeY1DL46JVvUphaVMAXvhso7+0q+DQ+5OR5+sbgXwCEvNC7iak/Ryzz59wYKj3Si+RAdCSiFJdDulFtbpVxXg4S/2KtebkF0srx18488hUPSczGWGtDGxAwPKJJAKJafQar8zQEhBzaZTQ+I6400OXqGitUFLmZ0EdrLwXbrUnkpuqruxs8dY4U/OksxpHAIu7Pk/yUnQPwL+1sP9jlnMkTfPweOjhrZgq5fMmN00+nnDpdDZFzYLMiWbAeSfvt9P8zKtTesF0Qpo9epJCZEH7YI4YJIZHYy+ZrxIthT7FxYRD9XR1Ezo6kB+aJqlq9T3kPIbND0raA8aHZaODVrxlbdu6Av5aIkfrV83h8wr36ZaEz3ivA93Iyoq3l+XxgNeZTPRcbeB3ef8ChBH5S1MYpGAEYIFw5UpsP/G/k9T9Yz7P0EE5ZIIADKirncGxsYfgnjpsNOJGJBQkyVZN36Y9omlAhAB/x0ZJJRc1yo9QbnWTkyeeGMb+WdCKCoA7ZcDk8Xe0Z+WxZkLCoKPHIQRpJ3tyJspwgc3g5hvonmrC/zYgkEcLCXAMX+ISTMOHq4JSbFquicN8ct3CAtDpeu2KBL9UIVaSThYUANVR3GdIcFoy9j54g0qg2fIVO1z6/NIeUDJp3OkAUm1B6e2GFJNImBpd/Ub/Ir1u5uL2JPvjbYjYgR+Ve0/oKjH9kTdOqUZ0HuURqwgg+aFbrt6QueRn6oCsU7yCfjfHkf8/wEwbj4XUbHQQO/Yo9sJ8Sx99abSU52E+rMnOpDf00p1TJJDqhKFMl1a7mP6cAtGUhchiuGQgVnkZ2WBnwtBEbR/dW/TwFrDLfGZ1oyShowhOzmOv7t/Dt/HWpUz3pyQ7+FwXQEJZyAiZtdOYDacXYNGxlbi09teHX4jM5uMNcyEkpShE19S66Q6homxloACtnmuIulYi/kAlTzEFzh/ZK9n4g5A1PnqmmkXPWVHZX7sWQXLpg2Uq/oOYNM3VWR/WFJDYEWHfKPNMyGacfLHwIQ+utm77UFtkVNr75odDsySd1JniHSd+UZ/rWorBjnUucEcakcfYz5mx65jxGeLsTozK7HQxLosG1lKcriIXxV4TJWKlZ0eGCbZ9KpD6iHjV3niMukUmFGJbmrhvpTqWTZqDTvlm50HSE6H+OKOwZEY+5RoSs4+IGv73CsJwFb0yCM0lbC+Z1qNt3tgtdMxJYDDbKtowlsyxiNj68PxtkcsxHSPGAZFrX0C10G4G7lxSoP+jVCzZHSENiskD1nuBl0K4CkIsvqj/A7ZDnIbJhBLls6/0EXn0TXq4I8IXJKxU4xmvM+bNKRHBWIyE/gIT3NGr1707VoR1/y5UxR1XcL6SspAI1yV4Yl6yAYgdy3A17W+oXMp4CQ0/ADr88wuE+Uy/zG4Rt9uI06/yvYL+3zxHk0QryCpgjD2tVQVTOX5TGaCU4OB+5Vl293XYLmlA9l+O2ifOkcs04TlTK0XCrQjJEVPPd9P8uGvy45Xn+/aCJTwrfWRu3NXqRlD/Ckof1WxlDNA3zmGJcDrsLPkLcp6Uy8jhtVrg6vQvZD6ZxLPT0f5Uzeglo+7zsjviGtCoB1OEAaKacmnzigOS2Ul8CiHRhiIG95hR4X7KoRf7BZN9z7fjg3GWSD0VT+75/+Pf6Vp2wMKDnWVJmVss4+pgebT/v4x96Lb09rjK1CIkk71E0oztmnpz1JVMkXXTspIcpfP/ox9frua1fESo4DAEqEb6G13lwb9IT55IwitrPKRzNyKnkizNJ+OJxSRmDhzTDZoielxpfH45pyNUgkSG2eqDY87/J04cb2vgEFH4DfZexmanvyd5ptXG+bg4Xgy3ja5VtpmKaowmWYKOP9e5OcJ8hDj1vcwkmHWs3Udazm05Z2kO6oPv30psouQ3bwJPQO7FeKuUYkooK3rBqjScDoTvMEBVnoKv9zYeEyrmSGoQKr+CsKXvt8CIzircZ22BZA+OKMh8+biFfXRoZtJb/f4J0z9jS3tprk427vpoTwTQmG36le8uff55w0DLCnD5N89dPyf7Yc8JvZxzxyNtLc/GzYj32gGHqeBOEYVuBY01txOTQqHhREEMZt++0XP2676lBeweTGAZSdlidD1hrAqpytMAOKR60ZdzJElUXhrZXTcJqhAl16iWXgVmaBjaPpdwvQ/a+yFWflRoqXyPmZdU8a5KH/kkxBhilw+82N/o/cEohGb6loQeEPf+LWd9aUaM7zFr8pyhZxLzXgrbUaet8jb/BkeVWN2YmK5fBJA1/GEOuXIW+WaUSOMyaml4m9L8E1HSjwI3ITlzfCY5wWOHWQhDYhHkJeQID6UBWKQsgm+YMFt1bVNOy4j6GKEM/B2nb/RCErXjqEggM7pf80bd15QK5CwkNEG+jgB6ls3d3yedXru6mDO9aEUC12gcfAvSs/rsEVlurQh9gIoXS3z7XraJZbiYVpH0bzWwPfXdjvJnQ7jlrMglcT0hqww2f0S/8OzINcZsYoa40TQ8SKOPgX4VF66YIkcA9f9CB5OltA1j0fcQamftm1b9wfL20/2WVxmNSC4Lgz0O4RfZa7sm0sjPxIiJVm9vT7eiqH6lUiUcJsSsIgW+rh94oBl3GWqlxIQMTepltSiYRYL+q4lyWKtR+b+DIrI9o3GtisUkkXupLMPlaPhxhyXZoRZLuHiHLzVGYEqcicyhPMinZgTXNhBIyzszG92jPVslNLkF/abv5qi6yEQmQGhfW7iVtmeTaOYPxz6G3BoBfgIJ5SdUgbL7BNJbb5Rt/0LxOciQuGl8QunyG2WnVuaclb+/qjUmPU7t7Jd0QGR3xuWAp/uFzpjdQdpLd1YELVJMBbES5v6Mngwhpbo0vrlx5QK9q2aiGuJWLBwUOkY0HK4MBQo7wki86IX2eia6Agm/2JLG1SGCQ4cbiprfsjwWHitcxAWSpdn8Egz5r4nufDeuGQK0VHNup0Vn3bovB6aMwjbcMdto7jiJFhjDPKzyFB/ivHuC3lo3hV8FLNrwju9AVse1yn9ebhy9tXVIcBhv9o1hwvdVJsFrsbFBhBR68y3rwUgkxPBkKXD2EuAiOwqnrENRPpJNXWNsjVgIhsJUYT+m4CfQ3ZIjjBVq2Wq5maCl2mjJrP4b4+zLDLpohjcKGP0uy5+nwFBko0J5nRN4vYxTGCIeTMS8UTBKzVNtqMopwnmoZV2pR0lBp2BNwSVX7xoSGfOCS6nzMc4oUmOzhCQBh66Re8XL+6FvPkBBIizkfmNvmlONMz9e67aNWVY7uec2sy4EM0u9ztKdLNmYINOj9vPFp8+zWvyIOQogsO9Bnc4Tq7FaAhoF2OASNk9EMdOpHjy6J4Gek1Pm1XbK4D+0KqRmTioSsa64QlONLQD3pTQT433gbWej00y6Ug1jYYVPs3qku3TtDH/YtxJXCqLR3oCSdxxkGByJOuCErDcVQMgyRb1P2QXZk2+uqVp+CG2jlDoG7xdNmwbdH8idFb0rUAh75sbrYpXTABygnMHKQaiJmKjg6SHDs5Y8ivfP3hlch/sL8ykIFP73XFcOYWzsgEulZcKWK5VzZd9OfpZuI5JX2WH03CqvfVQgl/mfw6VOqsOfkkIXxnxD0iBJ7dZnusA5PkcxAdstKS+FZuI1mij7zVXfh4izxYdcon4Ue2mi89jv6EphLLPhDDmlABCF40qYeAl9Yekl45tWCCEHGT4XoWRcbMNeOWa9iGpZFbLlA7/LtmT7YSNu9Uxhv/qVcWQl6EGhpAI1Afy/qW3UQh5Gi7fmSFTEqYnebTaPmSgZ7+RUJBLB6EFNIGMlyYAh/erXo4xfk7Wk03rcc+hYqZEW63EyHfPbv9GT4t7hs5wQqVIxumMRDhnTcSUaJGsnIkDgjI6/Pfrv5HIlQOSjRDk7qhn+XhLv9NoafXs8E+WjJ9lWStZbPcQOIm7yW/q/xHOl/AjUJ5qs+Y+VSgaPAbWH1POoOtRwMFbuuUmjM3wXLpBW1lkdYwRYZ5woJ3GCs4Z6uosJ1FlSa4VqaMkDPjqK+IswnxTlBH1OFiYtJtWSSfB2PO/ltxTcJXdjCrnjT24389fJ1j1phUUr8GYmqJUZtTG54v5Vja2EO4ECJR8nRnjKp5WPIts1/5PcTKTrxIk69ndc0Tb6Re1fNPlrdOknx1aXTpMT1jaZse1jAepCzPbkO2IyLndTVNACm4LPoBE3pPT6JRpiBXurW1DG5NrZowujGEcMRduX3n1W8KutkmWp+cp5YJ+gbQM7gZIahaS4CFQwyAZMY2B7+hoJE7SwpqIZA93VqBi6tP5oyIF+TqT0uO6JLKc4W1dlOZaM7MI7IAO5JdByNf8vc2cmZ5J43VMgFiOL+ge5MncmS8V0jAcLsEC9r3KQML7AKedlyq0edkrUVy5NHyio8No47TJyGLcJ0zCA1kFsoD5PY/kkVnnGgJf+1FA4lY7CZfgLjO5Z0wLQYhjja9VCzbHv96mn3f4fPA5GrhRV+V3qIT619ha8lWWBmPHu6U4GB/tWl6H9aOgpGwRaLJWzVTTdGirVcpDaqiWvjIYg3Kay4PicUeCWeqMy0ahOehu6wBm8HQF5ZhTOoKSu+R1bK+5sk1pa4dLpvvK8TfGog0YAJGGzt78z6tYy68d+QxJy/dh6aMcCDf6UBmEUx7HoVimKDiPjei8LwGBDG56tdg7QLDuIvCase1RMn9jPvKCNlEaBg0mcqi8OAfSbuSOtVHLBOSL5G4tBktagSHChjE1Qk8YOSUc0tVOTqqaHGkBIPvUnffIhFDERH7+wAZtL+kxO212gGu0dFsMGBC15lPP0/5z1EyYaKlmctTSb7kGKl4TFkK3GnBXpsoPbEIWLiNjt9A28/nzArhzdwbVbAgQAmWPSslPg5oMJDyf+m0tuSVCzxNH3+DJLCSY5L4fAm+/+Gnoqd3dwRw66OEjRuPN8AXeAuuJjm/jEChDnkEl7b2HGLeUvvGTc4NUvlKB3hxhpqkfIAM3oXYUM82+14wO4qWtBXhcG0/H+xTnumdmMgXm04wxT0SfaAnkrX/4hPc0rXBFnH7RP5CJuRb7rJxmXj7B3aDhrSuIbY7B13Cs+d4Pyv5Vhv4+ETnZBz7yFN+z2dGtw4TyzzakjIGtA2Qa4BSLGci0s9vtQtwvQq5ZoVAXDvsw9bVwjTyFkIwKDEAYpjei/bYFe8MbF2W+Jwm6Ycq3geCpkfNqXkY+5HdyPEj19dvBT/EXNyzUAzjABK9qmUdwWftt5VtWR4MJk5vKr39cuVR2XDk7pLMDgSo01ZfgDlbdyK/PU+wcBSsQ/BpgINC4olo+nAT08kWbv3ZOIcMy13eMTEY9xcAbnhwZ+J2wKchXqG5Tc+SVehfqdsukfEzrt697uVrrPVP70e/O9HSIuLP/LMjydLUG7JiNhKmYL7P6YJmpVzWVLtx01bowU4hkE6hEX+9xhBzol4mfgk3f5UICj8KF3TdNdnv4YhEGdTGW71fLkx2szeEmHfyaPfFm1hVygAxN5N7OHU09dVgcxYFQVicsGULT8Gk27TnTMWBDLtPCQKRbd2ilvLhMS4wblrpFRiXKVa7QquqyPgg781wVu26TqSxDli7aeE8MwTVHXl5H6ozAgK7J2S1DJW2LZAA6cpF36cO1JyNr+NlWhyl4WtUFza+lzdK+o2STfA3CgizulVvtbMiGypGRXeTbu5stJa+Oo0jOd/74j3mbvq2IjmNF6WTRnocY7XJ5Ac4vKuXsoaS/UHU8QkJ7gcD9IE0H7VEjEwxHFhSQANuYiBUnzwp1ZOmiZ2t78/FQjPKGspAAoZxjckw7LcGkK3KTxjtOHpSi/BQUIiOnJkSi2bD0VKSqUngRuczT+Xcqc/KnrX/cpkeHEqHyw/PqZGcK+G2cIOQg3ON2gvjRj0rrxH6hq3CHWT9MFnd0zM+NYNTaYe9wbxu5h/u0Y5DaZNY5HqVK//Uhk1ClMWXOa+KqC0w9lcnNPlvaN20XCCB4Q6fEbGwgyAf4BST0Ruwcviv9akjQwXIkUSAOk00gbANFhQ2x6uOAIJeQyAYxQOIAHkEVUTWOW2wWWZgGGIVnoSHY6HnZI9DHmyu8cTIAX+eqBCK6oT26D/fdnL/S3b63zRn/AF21y762lIfrT+6OcpGMkopS6om2ceyHjUt9DdRF/afydCbZpISiCu9ivhXWE7oE4rzrPFeUuJuux79SBTWHbtFsXqJN2CPc1aQIvuxhKqmRM33Jic9L9JFPp9LOPEfWXAJRwjqsMqvyi2DLHH/XwBz78vz4vTZWt7bjKqCf6SFwBEMhQLQmswC5Wc7PQGlkyYV+Z4qGWRs6qTEMTWLOR8cZqA+uT9OYllXU6oetT0EBwmlaPhqyQ0n2gC43ooXo6HVkVt0vpgi8P2gpN7MDsIPhAVlXw4QKxClJpkJErYZiS+b9ofHTXe3yXvJT+awDcHatahqHODbP6x2NenTeDm35vVpVkeucrw1Nbw6BC2Lhv4udAsX0iglg1Oq+Boycex1keYpOITPfwB6jSrqp6QxCVuiyTVANNES7RhO+EuEmjwyjoh8+lPKPQIYV8ESq/EU1rraglKukazleM+3RSjD06neIwAbQhTyW+PhthbbFK0rda/gMwM3+Z8zt3d/qw4gQJX65tE9tSr9aRLdglM9FTPdVWDLlmwKEBSUvnXNCZv3EpuXnOdCyaNse2630hazGfC1oc6Z4EDXYCnzxvxcgVwHEvi+r52lpuvz8z0W3qqshUZXI+NiZteVZEbzBUIQQKSZK+pKU50cT9IaAKd2NW3GN5wofU7bQ/9aNMFL501ZVG5xqCLYncbAcpK+4qcv5kTzI3iW0ZzJcv6qZTX0XzSWIdhgtUrDAx9F567xf85+SCz5Iplv4fwFvShtgXN66Ytqxp/ndPlG7/fVmoquWoD1GZA7JF3EB/HpJVxZplNjaXWns8vYESeUCjl1x30k9dmPcylJnj+5TSSuiqgrQ71Jsx4DlKZOcfNgj5U96ZnSCHJE/92SwglVyItuTjP3AawdBndrmlMgLS2RShGCIQBrlMlCMtBntKz2d8lcr5skjItPpFdZaEO8Ut02mGEgXd7ZFsz0ZU41St0ckluX51OQ4Nhjh3sqnGWsLz1HiFVbSc3GegpX22pIa6VGtFvEHHE2ntH5K2OEu/8bK4vEP/DXXRCeVA0D/ACbbLy6dTuUcgX2T/w+PnVjnJhlCEe4lCr1utQ5g74aowfg12u2rnSC3s/reT3WabIENWZrkTha8IIpvhJsOKt31tEjhRpvPZYvFfL5Gh2UKVJDTzcJnpo9xGZSjls7lzVYyKSHeHM+YJOpI1vbqA5rOEHAqgPxk5/FxRfGrBS2GzoZIlRpmQlE/7H/eyphi99ddQ8k98FexpeCSvew7FFq9XONIRxhuxC++6twKotZ1S4n1zo/PMQHqgoqfZI1Fo4EFZwOflbtVbHb4R9c8mvEnqvA/i8cGkAm98defkLXgAqNnjNNpue7k8gSzYdAjXMZOZXx/YxWoskL0u1Q0jtWxTt4M6OGi3iVGNw6WlqzjdQTiD+d0X3wr7+We3a3e0pHczFwVpmetMcIucyztKyHpnGBWo9XXzE5V5AOxa0l6H7oZehhmsisnX8jFEeBsO07w11qJlkhBxgk49EE9Zh1s3Hmxu/Ziy3dhEER/9lxHtNz7+JAGOJt/aS72bkwhG2WdMHE6ZXnHhC1nfIN4zHxG58iX+0rovcMjV6t/f5nVvv+gdMJi1qzD0qwx6vlIqLex2xJFNyc3cflewDrcnYg/TJHQsMYhHU5KLkzrXv16tGCT59MPXI2kKd5wGP0PzY4DMp0H/hLb9/mpqUf+YNsfBwgdXT3LP4hVizrdfEmjzcG5YgvWUq3RuOOtSigcOcKSRWacZrhKPujHmJDdZ12wzYhDD+JEbFFVnuS7GMqYrJ86J4d4S1qqkRsFdpe7WLyO5W3UofQXY3uWJaoxzp4QvXO68e4tIrmZxw3s14J867H+5d8c+JvtGVW3NLCOMrT9/+tlZVErSY+JhaIuJZDNxi/8IFFCrY+nnIxCT8zsfHm9M9ZkKBC0QAMQ5U8N9uXpFKTaXeqEvtQKk/wDVM0djMPqZYSbNhTNY0DjnInwk9lsUxM1mdQXlHbBvGB0QUcwN3u8LAJvPkUtPEUGrM5mcBC3dfspnFplwXBf/WzivDP9OBb8mcyGWRJYMrWmlyXfWP2xpFB/BFlwbWNzaDWg/Jdw+NegakT5bCwwg1WVr/aBC8c+tpuN2+I0Z4vfZ5d6PkATDKIRXDCEhk1WFN6HUA4XTMYzbfIDvyJsw1ob5DGAkxuV+88aG7kdNxmL/VQVD9jErkBg+omCttQ33L+pomoiLvTGl7aVHQKBVVVXHYSuOdU5/PLy7IfXAgz80d9f9/h2GhH3KfOvXKfLtDVZSPOC2Xi5NDY7TC+Hy7v19Vexn7vvWmVqa/OR0f3sK2QsxNnvpRy2wnw1RDByQKnhfGzfvZuSRZOaLTxjuOjNBRp/Ii5W733KpKOk5PdhMLZO788/vTPJMYOXyhAc/y/gOr6w7oBBFx2WH9hjuh6jguXygHl68C2bU4TOz1vuDh7FdBW8dJ/mvN/V19m/8m10kj73TW28RHsMzy3jyNdQPp5IViu7jI3bkRfTtJ0AGvfDgJsLgEkWbdhJcbgN8rWS85bVHpvjgZM7FWRWmdbNjllU8WDZFTjfqNyLh6Ysy0SVdUIHWOnDRm7dF0iQfCo1VIvckDh8bhAwSDLEq6XhOayrEbRGfOL0u6D1N1o2oQCg2S360Mt4xDPJ9UF5RbHZQHaKrkmgvQCH0lYfjGrwUqtLzXFEuqYTLKpQwAJ+IAimHHOUaXHaXV6EpVvhq3l+0eU0PPJJ/jLftIepzf2zfRy38MeLIABjryVvSOvGNRe99skVnVhOVPzECn8O56Nsd01TGIxA0qdA3OJAqu6jrxC62S9H2BUnQAzSB90ovifK0Ajqx0TUmDXoucVdiVuCZa3nx0OpVwm7r1NXdUhszppA6ouwjikBRX/b294nPKjIUfv49bb/ueP6YAztme5We6qChQccSGmXPkesTwdhfe5LxOlEj0ewJU/STbTstEQ2rhlYLyKjeYWAO35YbjaedCoNri8G12nY50X4tRmSpYTic8LmyQUoNqQgbCveZ/185t/oayECjaKa8uaMGzDGMBfiWAR1Z/NGGGeZNs13OrsfyfIDqG+nYVS+SNKxZ4oeqmgHt2nMwEVFVsZZYF1zuuTVBmsq9ogoBtGbmekyqHmKKvJqX4M9m9KcKvPMZoyQWPJgruBXfIMWwLMjNWgXCCvKBi3mZQ97VhFFejNSOYJoxRpxzfjZGIDMfD4Y6+nAo2iYePV5qMKREEaRADOEO1bYSqBTvdp9UAQY5R38NnRM/Rj8SJ/FhsoGfq8ZGOpdxUd7OY7eJsePvKslaI/UyfJ2YnIQNVeLp2gN088OulsFQkoGXNq6dQW+qxiVWH0j/My1jUdfl/eiTWUyrfN8wO0Yjhr0kJ5XF5YCv+okhk7q8LfqdqvPVZbai9UqxSHH3KvNtQ0CJLC9GoFaKftqX2BhWzDApBphXXn6gEzukflpChAIofUI3LMD9tBg60Nt8U6DJDJjxihl3eP/FHxUxc0XM8D5XW5jT0ZRqfRcJHnJwGb/yNB+yME0AFeceH9GCamoEgMXvhroJxXZIHoVH/+jzhxc9TynGL1boRyZeRmalO+T20Jfd0BwBgP1XhITEuPcVBGf/LvGIiorgWYGShUb+tOaW5w5AKcE/2Rbsz+/2B6hS1RvSw9Tc8/AYeJOSEsa2uUbsH+62H3SeW3Nu4P+b5niwIs3+/jwxq/v1v2TT8yKS9IoeQoqM+4OLuyeKMoJBSV4SnyMs8r6S+rBHuPbduOfl1RxNZNI4GkPw3xnZCcInqo3pXfkszPcf2TOi9zKUIyhrsTl54lI/oHHQPzLfvRyHQ2uKMYXzCZKBvL3H5//ZsNVjgbjCdPIuQcW+yjLPAxXx8buMBoS7Z9DuvxekgXM+GaI5blDjH62uMsHT65WFYvgKqNS2QxCnUue0Wm87OAM3HL984S2U0/p3gonqxF7egF87SOcf5TnCu16UYsYTY3q+EpOrEN9CwmIVb+6TXPj05f436Xod+tdF9YJRqqIpKbfKbBwPAqVyNvIR7kyOCQVJXEDnB4vIXBSaXTjGk5+7h22VkkU7/S2k+xcq+ez+eekJknCbcY96noCZzJm9zxhxNjQ/vo/S5xLwnag4fvNf19gOlCzzbZ9y64aky5okG4rVO37Od6DZqsVgjWnEZc8ECop9XtMqkEXqMQJ92UNNnmbd71IiWiPqzTnYNfZXgSoROlO6tMbeteww08xdH8lKAoqDCif4NUgK60SDya4tP+SLPUf4bX7GGffg2/V8h6U7TXiKIo8F5WnIegjUvA6XTx1XIsES24utHOu33luwDCkCGXn/CGOnyDQWBTjwHEDk56b7MLe2XIy3bI7KsNNVV9/ZpluRT6QHc2OKFPceCrjavQeGToWaXED1cemQYi2eNQB/yZlt87yKQ1H23Sv8yAG0U1Ik+uaMbeeuRP9jKubtIdz5JG8kkP1LZfKC9wvWPqnpbPSS+ATCLYzB4sYq8RY0ncmxvKWed9ak2q27tCCnlJ4JRLVlV9kPFMnpfbynu92a/LoJZG9GOya7p5ey1QxL4cBrFqYFGn/MafltmCzG35Wh5YfiM2wLm8hIRw4lvulhbGouQPaMiKetsmVQ+kHPPc7V3kXyrutoAM66z7eWCjrahOnmvE6MM1qqeoipzISEfx8XSJlesYIy/gWufdypawaL2Ealenq89bojHROr0FK++G4mznswMsOQAUpUEMmD84/DLlP4dgFtHKwLTZu6j7yLGtgiJ8ZpJhIVCfn89RfysF/ucBMmV/nF8OFOUbWF7epY9o16NEp5bD62Iy3iV9opVlWE9lNQTu0upyebWbYskQN7zkQsW0tpwZ9SkIk23Sc/1Y3qKoe3+OV7EpPXt8nzPrs7RTSrW0+oBtsOlr7R8AsLa2BrH10fEqhVlIdp8FEysuZHDqIvVCancwn7PgN+bBYLa3s80QMB3EXGipPnT2+0aCrO128ysuXOpSgMCTCppOypls2SFyWbEM6UNPGDxa/xbH2i4BVhA6dn0zRK/dHBS79XcuI5WzixCBmpEQxTBJkO6CPD6C4JMJ/qJjnkuMyiELiCGsaM3pxTxJMaFeFkoJoOzIap76J7ZnZIEkndNPU5NrOpzxbXCbbvG3f99GUZFIWEQDwHeyZz7exfBr064zvhDAp6SgqWf1qTYpZJzys6C8Nk1/hBDP3iafDtwmpv/hRx09cRFfZ8JVq06dOPj8ubnUbni0YY4E5945Cr1XFy8L2sr6oHIhNpyHT/1LReIBjL76AUMn7kTXzQP2qugpRzDrVgrZkCVIdpeth4m0DLnCsOSEhxdGTcGwV3dxOJX1IWm3zaIhAiAXivbA0Q5J3WFB/asupuqSiLWVuJxyZ3Rwp0yaroWospOEdr2F7kr2PZ/5kA1Y3dXOg1PnG18XMjPZtEtttDqAsCrPWNLoaFmbeBdIh19WLeO/XCqcdj8GOr4s4upHvG3BmfcOoNTh5ffr9o8ES+2dB2YGXaizY50jinrCg4jyGv8eBbzesTLF75e5Q+h5t6iKl55tk1T/UKDDjxo5fKV2oiU5wjvafn0DUp7JE6EieI/2I1xlJTxMub8cgWyQPnez1cf4nalNlLomPcpBfzvmFQosYMKpAjzswRV7QnW5iWZQnQrBBMAGhwXXPpK52dJm6su3VP7I/dyEQCXta66jw45SDbM/y0V8QyD+GwwPdWqKY2i0ISLGRcwSMn8PjWzq2GKGWrH4g1Dvtel6lx3e/uebGuaoDXMwMo8X9av3SWHX3CWgPK6WzqWBml4wKJL7hAd13FTUWpu345tFzWJoC55tq7sSIyDHUp/KUwgIbKvL6BsyBkMZon750Tn5djHh/c0O0+DwwQ6fmLJtveO9EXj7yF8z99x9+SOb7E/MXhfRzozfN2SbhvLL/AMuBFZVMH7ySdHcakUFLQ/0r0oUJ1NEgftgdqzCvnfy800jsNbzUrSDPpJARNIb4KrwWJ7IMS6F4tPLmK64vHy9WueCYXkTShRe2OdGxPo4PPig8EaR69qsXRYF2hN3AUwZTz3zbtHwmTb4t8jtLjV3MBrMkYiVhuC5pkiDYeZKMSg89voi0P2YRdL8HKmcDhCrUbvBI6Ux8sFS95s/eJ4Fw05xoZYCTeMjShSWcBc+p6t/FFeEGmcuMQNihakt5gDqcrP9Gl6uQJq0Shq7xPxc6gKNSfpqrvwciBG8j5dkbpsA0JtiqRbwTlePnGsQlyR8UC3x7orf8CQI5pj8IIaGkE4/ZvaMY1s401p1Ciw2gwAtUyqN9hbX7JHBI150+Dry/lzcnOkxvaKBk+LIoVIMerOznh0qc75SHgXgjhXE2D49BNJztD557sqIAS/F4WiHANa7E+BKcNIrfkllQHHXexAe8ixuzrHhVcAzOwtBkld/J4WzyqvkoR2qWZWeICALloROHKxDaZwe4q8zI2uRKPSlLXjc6z6ePMoOkaTMa1QxH6K9wxUt76oFiM/cxvwuRn2hAbIIGotwFriPpMPY8vIj2SHP8nfr8vjqXywiUhrZHs76YapzbQviGYx/PJusgwcV0pqxt6LSCUUTDGA3VCPQtrZ7VOo9284tDO9d9ICHYkGF9kqZV0ZPlYmXTw5PEKrnNdefeinZLwgifCYMI5Ts8RtOE0W2MCU0NlFT9/WGkSObTOS3bBkQsF/uafGTlN0hWy/4mRbPulnwvrDdINxNRsxH4tXsouzeOdflGZ1MkMhCE/+LDbROileMg2PhOgO8bp0YyakDufF6AqjnHjl0NJ49R/ecN6eLBBGRGxdzngPeHDRsq8CiLbGfZIhqGBwiY6rDM5MxDoLlnXewhmxRCInF2WItGNtxYfdNLdiLyFrCDvOKLfxBv39GclzckKjHFJvH4eIGgBfapcRY+TwBIo2WePtlo9WOGwCr4AivYoVF9skld5vWuChYKPin/ssY0tn5tPb/Ob+cCbENnM2f5SEASTHdCEHDdSZ9Pck5AHpYVS6ZaDWX1abutXyQcADlbonDwURtebrjUOz2xPJDDPKo/XDmdBOu5YmO3q0HALW9id0beBjrOdvMGp21PpF3G3M5yrikmdCJ8Xzq5kj0Ceqh72wR+Bh3hqA7rHDpDfUqpVdgOHQitNXN4tLa6bP3KQOIYsqOfGuclqZJTZlbyf4257u8vqDYaVvKL+BXV1vRdWYpdDArtc55eFqOWpwgHRypU9l8YZX54X/CJLTEq/F8FzbOf00brQNm2fp7exymI8NtJKMVFWqjRlIE2Ce/LzZxueqT1STWwLdsCpxTpU2r8t34HOqWOKwLRFBTctKhxf4rgswKzpkZzUbBc1lIteMA8JK7WxrbLzblQ3htygJXRnIFjn4QVuXp6L+0A/RfFRqIJWsPlvfX9K9MkRj8qvhUKu/I5ykZeLb/rADaijN1JJxoZaEqEvtMvWPXDu5q/8CAoAiKdzco23Q/V9Se5UzBaYVukcelgSMjnqxzwqkSiNZdDlxVO9U5GqTDVRT1DfeRhIjPf69gP6NZ0rQ5Q4CwPrgLiSVTy+OIc3CPrQSYy2MDK4YbygjX3ih/8N++WH4aqZyRjfuVz/RgLMTpeybxptCgv3AC0t+o+BtuulYdA1bZmzqG2JKL/Ap5kgTo7YEnR4Yw8BsAjH3tM/fbjzRgKg7PrYMY64wv0x8w+6ggV6CN2e+iH21vy/wjgDV0vc3rEUiT4LeiklyvUp57R3jMOerirZE4a3qog2dtJXmrTLqWUz6uZgpTKi6UED3qYVpb/7ew4kpO4BUU61ODhULfVc2RRnxQF+Gc1hT0PkgX+epBVqw9EhpEhh/SiXh/KBEUzngNN2JUzeVMeT/f0cMSBchN7u52QeoxRNSQdfH9FD8vu+7F7JW/G1xCiAhimHjbQvwLMeJ67jDZd+2PmFtzC0ePgdOMY3SnUZtNz+24evPNQvLUPHEfnQo608gkK6dnhmwtEPhcBGqOY3V4uF2j4HkpbrbJ+afpQ1xzxUqwrAXucTPDvHj2KiiWaF+R0HtW8hWqIL01/LaZ4osUQPt0dCxZXVxIKnnwes50USUebtjWJ24AkNEE8jw2Hs1x2t/XPZjEhc5/uRnlyFskN9T4ZbfFRAOj5hLl+W0JuA3Ca5aVuG7LWW36JRUcXRA96tdl35v9LJNkaDvi3pKiWNGZxJ4Z0/8N7AI/5G7Pe6iVhQNdXlZfN0Nn6vbmloToadWul2XeVTZ6NcpRjWdfqA594PdL7CR0p/zzcyxIFj1aBOKvdtXnioBPgbh/NuUiO3B1J1RTbzE7lm1LCg7rQwBLo+k8cMu6iA098gOm3A38FKVX4lQvQ3rYqYSOF7JlKokVUfIqOXGIZcaRud6pnBuBCntM5ucHLUsjWnxjFwlTdlTeJ2i1hIcyZ4Pe4qSt9xoH0yF8/fpAUTAZmjshe57FLdYaHXH8RlPJLTURN92GRRhqRzy6jqPHFKXQgo3P+M/A7cl2nXcQ7XEv0P+CJsLOYKGjbrWI09zntv9+WNO3KecB6ZQpH0eDUNR6XJWR0H+xlq51aLJ1lP+C17K4IRWeKqOtOi/7mnpELXJJkN2kDyTxGyi61SBatVdh3XV4ApF51UoXi/e1xYwiSBdhBfPMbXXVuvf7p2pZQOPteleFJcUI428AKy7Lz7oCJVAqCzxOc2P3cm7gRxKQwMjBjNr4lMDu6f1YDIrju4c3S9e9cKsgtaEQ3XcS6reylUHr+b1xCxsT5pRBJYSrbMWwj1Fg4jA8RtDz75CkEPeUE8JQaF1HKaBCAkrdrnChTtVhDeajXpp9LoHFQwggKM8KwYMSUtg7P4TP/ff7xG6h4d5JGPUiZ8pFnx5DpD8sKa4Moz0zIbp02H5OJY25EHyEUoqGJ2Z3ZrO8zPEY9WsNo+RULcH/NN+GprG+PUufU5vktyQsxIP7b2xh79Wz+v9KGat2Y1QSMp9uS2aLlbHokquoPidcUHZuRxzZySsjviZgPBZRs1zGtEReLtgkblDf75jNgwv7diKPwUaYO8rOqIN6Hpb/B4ymumtkSHHv/jT9s8gxLA8tyGxdjbeNQp6TdHy4dpzcqKp6/TZ3pS/UwcTqAYV6/cxJiiYtoipgxBAjD2lzqlykJtJr9zGvyYdCEPporWakygRN92TGd8NyXIk6pq2Uvj/PdTjO/MdmLRIfYD0aF2KdvedE9ff7DLCV6da/08dpySuDtI6P/SBApMUzJ6dZr9hq9xIWS00nfH+qMqUbvwELVu75xhujSsRSg9FS1u4QiqcpnQgSPmB/dScWQ5DoHqCoCmluMqjmm1EZZ/J/GAEdNqvCKrENFPiM6PQTaQJAAP01GwsLibqAXgan2t/rJoePL6HaYF7njevL2zj1A6RstumrI/2JgmXcL8mswZBqX9A9SN7StB8dw5xvuNx4sxa1p4HLx9edEsYpDVGAxPLFwm94BUavhCRw+YO575O9rcmmFbQvZ9eOtw1mPItI4pnhMcyywxtb6W7fEX6edwXl4Jj2rE8i5R862PFquox0DrTWIZ/DshQs/aUDX9y+Jta3jc3Dd95+6YMVEISXV1N3N7yCZeEJvbTM9GYbh9uvngQ5zi1btvLPo7J7ASFHj2X2k7DnlgUgCwB8uQgcaIRRjNkUh+PTsXU5x2ZXbGWcRojOv6pVLZchnwwWoUwEbw8OALeEMywYgnKGlk4T1V2r7RyQfIqK6TNjKXVPuPTmJljvrTZjId4SPb5m/hUp92Mvbo0WmSHYoGLYBUq6c8OKP50FZb2GMcbnxnUat1DHuWxURsVNbkn342gFzXaFxWndfLymQ259LtMfVXg+UUTMKELahytC+ZX7SUb/m7GllHnuGot5Qel0CbrSZO9rrbLpqLAXMsn+1JQBXC5JxamebGfjEKFEwNB7gRBRwzfolfh4ifHv8uJQ6Nx4P+l29hGDBAi9zBbQpAuOA1T7yBilRFaDt4uhviH/bn6Dl9kgK0S9vN+W5Ih9Uia7ie1ZsoAZpk3uP6rCMbHTD2uoHDKfxRuElkfzGyMu4H89kgFB8RRW6Cq2O5gsVwKfoKL0o3NR4+At0IlJfgLdUBtuawyIMg6HrIOQPG3zFL669+W7XUM2dSxqXaASXFvtyDjKTfypS0XMcTnt0y7jrIMlMwKRhs2BReAecBvU4EkkItVvI4hFTNAzVr97fyQcyMH7rOEiUJ/DWVtn33kcm8zy4cgZtCOXXvHyGYh3ydhyTrGfa3uLFjxes7YaZbS7TfMHxKvEPmir4FThvjb2bpHqHc3gTevwBhi/S5vN3k3tTpe8iiLItwjFFDbxbHqbZ1Iq14nM3TLBO5HJhLnqdzAyzivXpJ82L8c98AMaEJxuMR5siJpB1XfEdq+17LcHxQAeu2kp1G8KlJvhhgnxI3y5Rl6EmeOiYaGbqwjOJ9xGoq2sjuLZpXW1N1Pd6iNkRWO+CzyyWCSS0fBxSSKgIQpSNkUl59AI//AaNawAFCjtEROMvuyLJ8N7fS6zo86EDCo4EuO/SQDiY7kXSsOKWf3x1vFBfT/fky6VClskoDh1fEkgPQC1h8fwn5CWhQYpDjGzVlM7C5MZgJpbO+nEqmhSM6Pw+bt21/Yc24KbLbeabKztxl+5BeQK7q/EQDBiyfA5vpGzO8Q+RcIlbfkhul+EEfTa4ZMYJ8bQkApPCd1FbIZB3UoFUAKJkWOwepILvAqbmSqUWzaWZaKIUB30wz7W3tk6mWg9xx7zLYYRCzTPCmNILq8upEQDav+CVqe7Ts4KTB58x9S4So4fmaU8N/wJik0fVMjHcQ+9puCfIoHAsKpBJ3ymib5lKBj+hJ3Oi3L9rj5ko+GpNOuQNUv3dIpXnmGdDEnfGEgO0Xd3Qh9BA3zXGKMWAjHqStp+6wI6IiBAm/ZxW9hqvj8EjwDtEv7bltRfguKNVJ6cX6R9T5sSO99qcGN0jfbPYeD1MrF+i8+6nH1/6gXdkRAKDXpEFfaE6/HDEAo/1HokYAE2k3ia3XBgcc8RcOYAb9HMVg7EQiVWf8oED35R/o0rcD6rwSnqZQ86Ztf/KkhT9qEbjjUPcSFYFVdv6jpxERU8owuoF40yaStNS0KOgNMhzCMvkZLvNiXzfbERKq6cKmtaAQF9cP7yX3kQ90u3JrFosYqd16f4i5UHrRXsILOL/MMYIJwEGLuPd922uqFicH3uQtszLQeKllQn2qYd0Rz8auMTgli1BW9tIv6b8tVRy/+kuV/hW01HVUil4Eg6lWb4wMvG+EtntgjEHcMy8WNPS2pEyTPw2fBcr9F5NaP6ACQ+mr2kfsYfVQebbW/8uJff90xdLGjIceSaMtqcfk3NobwGxr+h/xSAYx/FUK7DOafL0hpttzs06sf/YAet/DSIukKB8fPaRk1GSULijn+5CRbxt+hBN8f0A5B5LTPfpcCNcOsTM8g84qkHZ73Kku0DNt9sp8g3Xls8wZnP296VKBNmCGWq6/AJtID9ZuX/Y0Mxnpawgzl3dklSAtnVNr+jNm0a9J0ddpH5ScNHCxT06qQbdCRBCCa6K0UCAVDwEVMjhRK9SX3jEa+CD1ocvRuUqtjfVQ8hiXRc6BBYqjXvvwQpikZNwNOaRaF4ybCaDSzsK+P8rg9ymiu8kTjAx07GbEcG2P1aBSG3G3AWcmLEnUPXu42XuYAF6ujw3dBXuLomNJWbQ7N5DTeyTmVcfFlHcDk1dhU5V9l08qPHsk+r8mvbv6njHIn85BQdN0PBD6gNgkZ63WV1T2b5r9OiTAZ9bpH+/V0UdqMIb9dyAi83nPkui4UX60+kOGbGdH/SI9xF+9XwuzPmcC9N1En/DLFVHrXIJc9ollHVn0w1OtN9VfqaT26knwcfE1zpOCWG3IRaMSVlN2YtFWKEG5T8nIJ4n1QTApFVrXTlfE8XKO18VjzQsClSPYIbqWmm0lHsIJGG17dCbu7xjZiJTcCo12kFFzQ4XYJGLw4qhx/OPrWZfygsVtP+LoqeDA1xHzoLWMtP7Vgpe+wbAhICoCn/zLIxFrdX3/3R5NTS7HN5oJYyuJCHjYpojitE1z7xmFbJGfQ7SXiaEStaeh9XQpDyVMh4IKMq244icusp4IS8nuFd6sA5SQvDbNTB0oJr8cwjCzk5+T+JHMmznbbGAoqR7uZ+NUwlE0Pl/FG11JLUL15P/eLgTzpvaIESirOGpbjC+RA/RBEMYw3KhP5uPuhJtEime3k1LkHnC8ffNkx6FybpxoTnX+3tjCTsMtzWWwFv5B137TYwkVOEiorcsWwSYEbQm4a0I4JGyzRouSSawihbrYnhS9pUZ8P+cny9S/cwXfyNVNfyZ+CSK9n6zg56+fuHcgeIdw4rKYyn5kPCtDU7wkUTiJ9uD8Jg95web2wHnBOeYgenOYYYcPDcGiOMqyRnTg3e8TXIkiookCLrfp6piKzbylMyfA/lD9pvIgMISUOXbJqWglxg7gqPwGIs39Yp1qvw6NEQDSOeH3xSI+/UhBPWKXf1SNWY4LYcJkOB7omEt/0oeGlMjZZQOTY41wwkciUvu1crCkOa8QwbazQMJ7REDdl1VZcPZFz/ew2lVgTtaBb4xSxaMWpz9L7jqbfUzHyXv91W7YEvxdJDvyZkEKd5Q4mTN1kbc9m41nY0ODhdtkmUloWdImC++jjx0jfql7lUzQAmwEwaZ+4Aoae1YDiQPuvuQaKcCy+MV4lfEl59HnyC2yG+wBYB5ljc5W4IclSR2rdbpFWXk7oWSJTIhFmiVeXpIjd1/qzLXcPDk09ty2DYSVoT00YoTmKqVtFA8jysjc+XRuZwxcUf5ks/O6fpkc17y8+LOTawocaVAjoLzaUgUUcLSMnZ0oIosaJhj7R5l4v18t/zFF9lNCXb+hd3LMzZe5E+3pX6dVYjNYAS5BroLpN5ZXmHSeWjhSMH/ytMFGL9Qk7Tz0m43B1FGCr18wP/yZ65pl0IOYDrXQ3ByUyVeCnvX5YPb9z4INC+ib7GA1CBk1PLS3SMU0GoJ+hOB1ckysZDz5WBBZy0lzOXF7gjMZbJjAkT7dorL8IHfHoqCq5Gxltmbxwg9IEbK20lwYLlVmR1s6ULv83g39wbART1M4EpeH1XGhz/xCY/gI3fB7UpjT0UM3YJGavUlwcinXJze4tx+XwyNERWBnn1uXGtgTWIICfVvAzw3pALx0h+mtsVLVv6tlhRzsKkL9uR2Nxwvcv4mHoekg1LZxEY+wE8HZLOSX/VI3qTrkkfv47eIJ75/30g+OdEz+J7wu/n0wJvTLjkEvv6o0vM36hqqBSXJVUemWRTElNpNe3Sv8W5HNvLusx+TI4sJutwLaWqzt3ke4lmDffIlmTpmO1BKW4ysdzKzSTq4JI3g1tiqzX3P6ZwzvznfDiPtrN9BF2sVAFDBHV+d33W44NIHopO9vpKAutJZwvT2QemXayYPyUmR4By291M7A6aLEEo+J6J/Vo+Xy8s5KBlQK+tPyPnVhM+1LF6d18qiMZ48ZwG8TAD/QYN+MpvllwylX56A1kNdjgorTqF9j9LpiQZiHh51ace2UEsW+W3KWau8YfxqPIoD2sPgspoCxPnBgNWjM3VNtZmQNtE+Kxht3FC+0v/dUPERpXEnUbBWYLUJ9pANVCUaRfNfOYA8t1S+S3srKlarsowOc8XIRbajh9jp+XyAMeBZGN1SYufQX3B36jjT9ra03g96b61JN/H49eLfyITH1k0whve15pA+OTgEhLDWiju7jyXlGtMdPSJUr8RUBUlTWkN7nL/CmB/yLd2OliwwoykUpB22pCaVM+Pw7YG8rDeO2R8t3RulPUqs3ACjKTxI8MU1Z8FN3aJhN2b5bm9bdYl/ZLgLq6cuypE9auHtp16VweXGT5vUPvyT5XJHnUUc+sGxZ6jVx+KZn1LirF7W/6JcTYgkzVL2vNhi01ro/eumlrBWSxiOX7rtFBP8+dq4815fJVvDAphIWfH6J1qgiLlPp0Q7ZQuaxGeHVdYyHLCD8jHIT5RNdPCWh0YDhJvzGIxhfTDqjzb04NJgBDQGnF8R4xSk8Nd0ZCdQPbWjv1cfT1hqhqqU+zWuhvHyOxP/DJG8uYh3BQFs6OfQPWtdu3Gm1WCCSmzGcuZW4zOW2cpEaEtNd56h9CzQHeRPt0UH19yPm3SuSVH9mV7B6QKsoCW+goN90Kfpnxbap8edEp0+W6mm4O7xeontSFGMrbFaoHReBIjDQf/IWTVvFPWOkBSBBA1Cx2gojqMEBTkZzQZNAqimXzu+yEqKiEfzHlXXnBoZOfUVXuThoEdxlUzg/6oWldj+hdUXesWxvF/FXQ07TOBqnnQxHQTXdjT4lsnVImD0/3s92diy9gfd7TnRICiJ/Zsy4dOa1Lqa6yoOszVf4MeLYkQsOHSFCDfBHcdth5ctaZwAeO6ZylHZ1q6bcJ9Ls5dM6oYFWE7Fk1h0ECZ1b9xoVI78q7gVZQmdcW55IWdRZ6t8iT0vlVF67tlsP3Etkj6ULzIK0/csFv8Vlyx4LEtwYHd5XOPB5IL668bwv/5jlzxVB6IqttoDa1dM2XEoH94PBNbjn4f4oEuGOmfwmOrpvWtfSoZXtfhcdT7/m2wR4VIsrwmmfUwEq9WyVyd/hYFQIDU6+b24nw3i0ntlrwME6o0Anr4iPttO7KEvukK0qXu6IG+wd6bF+TaHRVwemnU0G+K20tE2thGaJmNN3VpO9UKUWfTpAEbdVi8PKTb6hT+ls+kXHg+9Jt90diR/BveXW+/dXJGE4pkh+aZwByQqDkvDI0mUdOnyERgoenRPI7G2iyuFFX/R9ZK6RmCHECFJ5MLw9vu0t/vmjWSZBxH15HbpEWBg0puh93zR9/v6B/Mqfz0iGid9aGRNXhUSuAqlXsJmDliPUdIjCgIMc3yUYzEluThPkCvTjVfo7IA8seuo1K+9v+hzvU9A5Ym5IEPoAEWzSbf7u74Enmpex49+P7RORPwQEKxNyknfM1gMvkoceMHRrCTLiWiWf2UFQoRhfwv/fcg0iqCPCxqkcGcRWrTpVFnsBGdhSPqt6+lTymGP29UZnX6YsdqTtupIGKrxd2zj9UgBBdpeK3Xt9+z5Qvh7d/v4Bes/fVOeVUumuHHbTE9XI98ZuGiLdlyYe04SvKgePok5255SwD0bIRc3qBj2YzBnNzhKSWLU5Dqa7xIxoN9rBnpLOu3+QSxxVg5KYNCyfxeFn/q+s0ZffdQWwBzh6wMZnzTiIe49XOQEK0KTuxLINcMSZNdkqYs/lpTGolMJYoWwyzBTXFOnDXwkBMO2avdciGn28Nsdz3s5tAoTLC+i4GdeDkKn49Y/iISqYoGtlFml2WB7Zm4QCsIY7+dj8YP6uowr6gGNp4nVSATedTNCpzWdPogwSMl+HmE5f+u6dMWX7DcZUWLOCTooJyuauruGy0xoOf8HXTPpCXPCldXVqvPwSzui6snUMksqVp/EtaZUMmO6IngCy2cdTypF5bPF1qMrqf6J5PHfTBP/OzgOWrGG1T6qE7UlMiUfX+pCHZK6cJHdsIRJrQ6dC+bVxoH14KC3ezQ/CuquUdRBPqQ19xVtosPpI4EiZ6s5D1IOi+Q9XTUctKPDBGCTQ3ITYHERNFV+Cjiv2fenGn8Dr5p6PPYmtk4eGJgt6r5+YXzRusbSKYsf1o7rcWH5Iqp49EdMA0ck9Y76LZ0ZnckZzKGP770mvXkIcVu25+yGQQ9oI6fufYsEJ74WIKhbop0NmlpcImo99l984sdvVA5KLuvSU46O7FNUVItrAtEJc9CA9vyi36VBOI6WBQEM1ONjQgOxohrfsdnoTZcmtBARr2kU+vdUJWgJJuDUMsSS13Ks3mCc37U/DpK+7fjrvcDjREgb0Nx3aATuzpYMbZOij6emIUoWwivXqnLj1P7ldSGClwkViRWjjTsGT2yaxym+kU0S+jq1uolZi6hyHd1F+nM5M5GuOIM2b6RCcfdbClEOtGGc7b1MUEJd7T+UB6gm6vmF3grNvhZU8wZPAoSPUhrKv2fiau/kWFN++i6y8V/KR9z6xBU10yo15NtCCRhAjQCiEFP6TrIpGu/BUvJDXEhuUHR8X8txg6JEXjE8xppjP2fvfvvaYEDwQebLX0MfWD214XtwM4iCGh73nDpW7d0Hb8kNWJns0K9/5FJJVaSBJsY4UkIg1K960zJm8wxGhH2oTLm8FRzXNNjlY4r4i+Cmshkcx8jBcZhtBBmbZRAERLtkcN5eCmcNwdzMwlhw0CIBOfILY5MKE15FiFaPyAHVIToPYrE1cdxa5VGzeEjC1bLv6BLrFCBJIuPba4CnrXvlpuDOBPbflU9Li7eSfZqlYBJZs8uNgiLhPCELD26Cu+uYVhUoq5wmhBeSqdiRFnEsphkY0vtXb95AC9SN6xkVFxk/daaPmdTf6Uxd2e08+8urCP9Xv6N0rchRT9B8eE3ZGrVkP11reLcXeRRFYa6zwOarn0hhzdRTADxpsffYlGFUGYmEVqsJRR954+nhzdyRCIvcQFKD8hAPdsScNEEix6/q58t5dgKeKMCYy6ZCyOiEiAy0cqO807Cn02b9/FgV8O1RM9fDti/DchLMMOuZFAF33t6JlynXPu1ch/cOUGLwip0CujYwZMMsKbkVbPPGTHXr2q3Ig4J3ef3J5mJB/vQWIvOa/MD83gKFjdQEk906v6qdTfuBjw5jCqPDpMqs6Y9DQsIUSh/oOBdeR93fAa5BT8/Fpzhfim5FFR2mNbrw/o6jFVRDcCGVbmzMoyByTnCxGVn8mBys2dyyfG0x2fkJUh0+FE1iYnWcV7xRMMoavBoMY+mrAZhtL/b++8SmUpdDRcc5umh41NSvKertILpXZn63wbPlcCInJCaxQ9RRbkbBT2mDP5vlDUUwrMEb615ytG+0B5Dn2F3x8LDRRo/yc/Xy77UVQYMB+/ueF7z55OYMndNcherJBv0B2Tvfqab57FInOHPdztODyk75xcMX1CsN3GcAW4NZhY5Tb5dfQE77tfRMMwDLWRw3DNu6SWHgPrLGLpy0HWTdBfC5zil3zL7KmWIG5AtMPzMN55Mj61Ap+xpMSDSJSlo5KQ9DFbTZug6VfkJDXVj9bG9iejzMo41WQZjHk/Fmucf4HKhudi2pv4pUOw1oKJU/286i2yu1pyP/0/P6Q12I7H3KtwY7MByyM/C6SIQfq3PP1MoOq4rH0OpVVAdp43hqGebAQx0drmaJXfIqRJme1eByNq9/lc2CoqsR/lncRvCpSF6YyI+y1C+xaN/zr+yUo9nXqPo5KYeJYt196BAw+L8HJtjiUdmPl70mp7gBpAaAFdsWcRrkypBDpVAhjFhO/SLLZARgpTMkUIIoeXWd0cIzVWvFg9lSmx5fqvDAHgqciwS8j76HgwaDwIQ5IS9V5+JuKToeqW8xFA3wAZMfQhTXVRpDuvvV01xjax/QIABOWinxxrXbrrUTMa4EjCGvO6S1NdzfWfUZayWMiivmZFh3CsW5BLAYvSgaVF2yEfoequw57hqMTVOClNfg/q4ot3UyL1BNTCc9OFTkHp/BmycgDW25/QodhdAno4AXB3trmiV4DgM7ZKJhbeXlR0MkNJ7QbBYIyBjwQgD23RBBVTmc2sNfrfgqv0KNHDdS7VF5kiXJO/MXDcsLflOZp8XW2i+qCNQVLAJ8WYpJGZeDxqR2gcAzg78aoFaU+D5asDHgctWETB+5tS34F+kejXQmYNoIPEg/TthFGhS2IT57TKO3S2Ny7e+skppx/BqHAO6eX3REbSNqzZJKmiSS8PawLz6u2cGI8jwrnlQkRrtNMcKdYUQ8aRuHEAIn6tA70MoQlqrZtwuY1iWhaxxm7n6e1+jjZ4MGPUTA8B2dxW7rUW6NwQ8ZEtq+m5dQScELGoQHql0Fy+rs9I8k6wiZrqo6MLOtPQqv30HUzF2pvqFo1WVfbzvJ2E4JsJ0vOgF84e91BNDpGWTUM+KeXF3yGnNKXe3kNN5hV/b5yAiuho0s6oVof4MWByX4N5VW7R4v/lYvGeEswMwNWHzLq0OxRVHsWAoia/RGtWOIH8C4wy9ga3f+rkcK1z74bqBWL4UJTJfNb8g+XRGsCfc24BGgP9Gbp4t2v6lk1vmiuC6LFnTuYnJkm8JMTfw+dJq0ru2Iz/s7zEHul6Unm18iU+4V/D20UuGvKREi9etuW1+167VDGEXEhlrqHjR2kb34RSh79aEqS50Gys6pButHwDQkT7hR99P6XGukEgBBI4Ud/GrChd5rAofT0e7kTGW7ACJGHT2m1Dgvw4Yof6VTC5UeXNWR0yJ9hxL2BwLdYybGujBi2nomlDDe6mEPnjacLDhYdfR3+baKDOBPwIv05/FpfZG+oLRBxQS/0rDi96Hk0qDWTCNKMllcz71iGa7nE5HiKLOJ8hzyNIkaO2JtcOKXNYu4dGwZwxK1hP3s/ygC5c2+CCPo7UUBys6ZjKJIgoZQQFJ1qFWXLDeBaxNGJHU0o7RqEGuETmx0CNZAa6qUkRsIhUqlI75jOLt40NjX+fo7UapF9iiSJJVnyZn9kDlyG915R3EdamRdinkkgiQHhDkxs/Kk8RKKoqQJ6Bwp0vLiCzeo9jlbY7bePofwcuDtSQmxq3SZR862H9qWLu5qSVwV4uAvlJJVGk3WF7N/+x48XOg73+y/2sV4mMstw+idZbOgHvfLiuetJOvWW541mTXolniNN3P3B4fepC/3yuzsNRf270ln1aayVEMYr0leZQ6IhL35VQ/2tMn9DJ1tkxMk/3nqHBgdHPjQ0Tin77JJMqgXum+Rw6tdr0zh++1Wy+JnI2QXmATXyF+WsZJuEvx6P1Q87V5Xafvwunz1PFnPcAc8CXTpF1UDU7NUzcSGxiDEP1/rxDwfuc81D9p0cUEwHZkj3OIfFEjDNKwzHVGlLB7W/NuSrbzUA+KzM0SReCvGc4jvqjS7Zxo6aAjbRXCIrkql/j/rAWpDnrRMGCX1ZvrcE05RDbMTadzGJWtS0kvlJfjKudmLoLmBC8tQhIr/+71UOw5H0wxDO9ZJP8eZ0tNGxTjCprcTDQUmadRM/XsEv35Xez47Wrj0SzoPvmhRZpmyzFTPlcluWmih3vUipwM894TrMemQ8Bc76O6CASCQvsrhtTfewtcGEj0q48IRBP+ZnZJodFPqBidVFs5JRb4UJDnL/9djXRNGgLUbXRtykDsGAquku6qaE3XFmQTfgez1vN+BZOKPHnvpwVzeLLKjF/+atCQhIoVeJJn+Xu104+aHirg8Jgqo2/ZFZRfVv6kdkh54bdimjvc3klRwts/zhxJ3OZQ8GEMKR8exBxaLapwdM7WlyLgh7Knsols08jqeJre3UwRwFpSJ8zoZl3B2DQjYygG6Mc/JZRlEtifCHuilLpt+6BbXbdd6Stcw7bmZsn95t+u7fa46+Xc/GHJenn5BvkZIH5l/yTl100521q8w4M8KlYaqLofNC8t+eJ5Sr6Ri1alJ+4dJT2fWpXSOdxHA9y+n5u21m7jN8OV9/48POT8RxG81MrGompxvbQHuDcpIYPXYGQoiHwlFySijsbnIRhvwPKQDu/oN0seCl30ch/JxglS5Ff/wCrKb7IDfvODJav/eAJXXIN2z5Buw2X5kgkGyn39TvolM/USxhj2rtLBbQIiZPohnrvUWEYL+OdQe4omLjXPAmCKALACmw9sX7V1OcwIvRjaoDdhYDpmmEvmgtK5sr7ROlsEW//vLRiLt5Tz2fwtqUJwEEXWiEykO4SD1Hm1IGTJmAh+VbwMcHo7M4OPBGYCuiE3DU1PFE0816j1hHyP0iDyXq6kxCMtowAFxXt8UUgUir7232jwN3Y12EoiV72T5VuYs0OqCQJkJDbJ228rz/dncnAQoyavS0Jmia/UDylkSnQ/T2r86QrFkLZ4D6yoN7clJ/RWTuBt8ShRN56Sn/Q8xxekM/gg/+WMHysY9y+p6TgOZa3Mhko074/eDmhiGG7AlBYfIoJ6upeEkDMPsmLx4MFtHXmjIJqHPdbx3Zn7IvJUUbjWrPe/JIBOLrq4Nzc4yDGB34Yqm1cHDpZL5+RxJqnY0SptVKSVNVOkvZR+RY135uZdF0kFMu56Ubep8q0OOcqHQn5ycERq2AiTt8R6EXtsOzG+LeS6JxTe2/ZktQvKoOOnyEGJDvKsriyXtzEdnZZScz/2sIZmpiK08YI1+zAg1WmWAsQBpO7jUPA+gL1yxEGADAhaREakSp4Xr878kmlTKOtP5M5+5PvY/ApBAaX7aTkPkR/hyhjHZrBCsf40belGwVzjZ00sDzgFHqXttaTCuwLw3oR7QCD0fNVUAdbo8/uLzVDL7ZzKbLQzzw6EDtNh+TcmSHOhTVllrVLLi8cA41CGby/btjIL2bi06r9T19QSTSV0QTipRoYyJLAZAK8QJt/EddQ9mTqXihJobmaqqfS4b7bPG/8THz5yX8zgWce6seicz4jROOzPd55le874zPaqjiPCqzINVsXaifD+s1flXMbXtrP2zjc1LkbArSGE4lYkrbqP/VKSI42rEN4cWTk7y1SMtDoKPPGNBM+33rmHCT9BAayBqH9zhOK8pQt7ODA4KQifg0NKnKykgRX8WDQ5azC6s1M/up5MCuFLsb1lxbOwBkfeEWEeedNknGQA5rvIMu9P/WsXQRXEcxY8fKzFMoCD3qODixGKCnr1fUaiFbUdmf2uiSlJF0JUVvc52lJosZAjazj0K4UvfcZDkI1Gug1CIkSqViWfyNK4VNoaMneoxO6C8wj5KO0oAHzguSOrpoeLKmP4w4J3PgZ+DRQBarrtZ6Xm2tMjjUu86seNGy+W6Lj7h1lQn2DU0PAiLHoVAX0uLtLWqNpE6+Sj7tZDX8MV9vvMiCdYWICDl62XVOOOingoz8y5OueFR/fOx+qfRGRtRPBR05oDr0b6GyRjm7R0eyJ/2J+7kaK9bOe+KEYhI9GWa8DPPrLhv2E+1lagjfmhPnMcZ0FQTzt/JJJN+ytp7W/GWrnbYsypqIpVKngpnkrtf/00yJV4k/qM94Gfx7SxpaI1giUqx7R0gEpcq+x80KO1yuIX6OXFYXe9SzbaEGh9DQt5nBg4n3QmiCsczTmY1EwAzq9ymkPjW1VqhTglfs3e4aYW1OiO81GJAyKSfF+AXZQiQLW5/Eus1V0IyKli2Mv9XNQY2ARwrPhghgwNG1Yq+UxvsIOkMpFCMwuTlwmmg10/xqq426WdazgbZEeHve/3MUMoO5Qw9Q3AwJNS086R7SP06a3wotNoDX63oJ1eNjhhHD9Gk9paxl9QcUcH+pwRZ8XNBROzgpXWkt0hYl+F2FgKYjdiBpui+Erfb2VhGW29OBJ6eke5hAc8KKsWkoKCv2vmcD1hB3hdzRSwjDqhAYv6wKQMnF3s6ocwSutgOPZjpoG6t4oSQCyAm0D3UynVOD+aQhtObQGjOYs2vmnS76Np6mH5ciVeODugAjD/Ostso+FOdebbzwWd2fWWoMM5AZ6S31wfrlvZD0cZu5O4n1QMa3NQm4r2twMp32GMITCqHLo3bv5K4rvk9N7Hl/Q5xVoN1Ce65iJU9cgnvPNlHs/tDUhrgRJBp//Fmn+Hn+bQqEayfa1YDfIU6Q4AYoTr3r7u7iUr5am8cRzfAx5wuIPUC+KjlXILBWheTMOA1BN6wAOT1hGRMFAB3cuBJ7Bh8mbmB51+7PRzz5BN8Pm0GnUjD15wo5DgCQQoHBHyNCfHnWogLaVDqJ9DKK4XzGVS9+U1tjlGJIFVKnR/qURTvpBuhmdtoVUZjhggZp8F72brib+krIzpWWV5ouoQrKDEABx+uH9GFloWT/xS+ob9s3yu/XhJmn8cxrYEwYWZWkQ6XBt2AbepRjBYMoF+RR/FYTx+ykIBKmJXy6D/1UXC9eqOok8Ru4Fzb9BBAJVqMSfBQtZPGugS0GryMj5vRHJFjDP72CtwJf9CpogJss0rzvrZkCxT+kWpN3pADuiARtl+ro+tecsZmCfALkr6/cSR4+UTmplu5cqD1yETrRcG+nFwmZfy9zEyC/NYxpzMEffSfMQCFpfe/7Ozhgo/KkTacbZBph4tmJACPQaioy/hMXl/rzfMr9WFEry3gBUHSnHaomLy0z7N9Ugk+BwBd8UBlum6YS/UBFpSAFQ1PmIoTOGNPF4RtTa5H40zsbX7PvfyBV0fdd44wTHTm81rq0vjwRuUm8115RZgOH/gZ+uTrAh8wFiuEVZQfptzqCTPIazB8WavGeZg1aRdAGmWXj+X/YzcDyPwEv9UxXipwUBicyZdYMOhxbXf+rsg8Ef+3wVFTc4Z2Uc0ZJ+ADd1LDYz+D6XCOJP5rPofBsAYMHns9pArkshLq8bkS8rGMUwFNZov8Dp21TsbIELHSFPI2/A5in5qfHS3s5hojezSCA7r+GTiFncEQrJd1PGHp45VD+sFKRS3RomvNxbsyGenB8rwFSEq/QuQBT3zy3pCH7CYvSyyNpIQxY6+b8zzEWE6gl4BTyXGmBHSIjtH9Ve2G4H6htHZe2Wct0Dc/Ma+qjWmmEgrUXn4l3LIwGXY8wKZcIzQGeGlniqbwSDjYTYYbwu5ii1WOlxmVI3UhHR+9cwlEKW9pTmmEgNBZv+X2d26329zYkAu8ZfSjOBIfgawQR6etwWilDQb1zpJ5A4/dppz6o3RfWuD4/kHM/6/vRNiC6RzQxTq0cqx4JEP82weaHdMzSY9Ko6fADD3/DO/UxPl/QUcSq/7ML09DBUtVfAbogWnpHSgUWhK2bWpBCojADVUzqfLIMaSEozWHXvx023bo97sB4YyemP20XHeAfh3Z/0HlwMnoLlwBqrmjixFG62Y7pDlE2+ATNvfDiUkPh/9qorSliRy3I/A8Bwe4MD4YKovUaKNw5efg2AXPzLsLAdNFNvf2y0P7nbe88t4Cu3DTSrzNSzqxQkM0haQgaZRhAMwKKfQrnafz9SyrLVawRFhxmIvLl4dYxjpous/0/VZL7xOV7Qch3EStHFDPVmlBheT6Rj+Q+hMnfzDGUlzhQLxkq8y1GnPA4GzdsAKI1LbAqMOqP0RbEFkm/8SRCgcxLf8lGRmohGgWUEvTQzSZb6YPaBPHzXKJRdu0cr3ZkoEIgwiyckeGeHur8tbJ/QOYQ1SsnpHGd2IWuqniDkByJSoAvrO0bAx1btcel0xPXcrSCLlDsLRWdVEHPluBTXmzSfbgcjmy/zSlF1pcBnzceyBkZ/PGMqLsNmX8Z4zi4tEVD38DGAwg9kVlpe5vcJQuXyG6YMPt3TLXqx+pBV7/oZfl6d1GXxuBwl2el1VSEyz7nHM5zHJLgZ46R/sd6E61PQAxh+SNfu4tFAirP1X6yExyeYF8TDnka47RDmSHJbnlgaS92RQdBq+eP6oEQRHegw2M6LXVIhEsE0DmzzYUSugxYbEuoJeY05AFFAuGjkbwNiPRMsug+ws387edOTWXzT1hfwYkaZlkPlVwWzTKlinvI/T5wxwZPflrlCzKjJ13Jsm37zQoMbdejXVoN1mTb5+bGTK6X2Z8NA5cp8yxjBxdF9xY3p3eLBPX/Um6QTYlujDJ+0wsvWiqNlSejNNWDYLie3jNYcDw4oDU2pLTIEnx1MTTehcVLGthJ89gMwtAOinoYm8wu//8HV9d7EJ8KOuTEUTtosE67Z0DGNFnGrtiIltWpX6rWpuoIG8vnB9Bs4IKmKDvLpY8QOlyxpDTHWktN2hFOaINVVZyw4ZQpduCgEoiFtfVsQGjdcwDutJr9LfsfPL+HxARo+l4E2P287w03bT2EaLzs5JebFJqbyTlI/hVX9NbSYBoM6Mb/QSuRR227a+nKzLlwF+KgPI/2OIH20ioL0G1gpefp0RSrhsnRvS6PK539eC6CvrrU4VdTc33uChLS6yTnhPr1WL4IBwdWljS89wm3242sGkXbnciOJee0MpqjG7cnVzwg+XDIXJhpJbkFaibrzpLKYj8ieXBMwEWNjdkMp/aUZNhKPEV/ghZNFw2Y4vxWLf+rDyyA/OSaFQ4+2d6oOC4PUBa8n+gjU022RsLNDGQvJCLBmwifE8mJY98NMbT3leTCYK6kPIqEBH+LLbl9KBPY69G20PbtIJ7mPMeZmyCGOfPr43ixSXn5WSwxsZLD0OsznMMFLY2nZ2iqHXPEXnnqPZ2YSJielYPKUXKZRmveOoKfhnHSwktg/+dIXVr9jpxo5oAhoE3dUB6QxpTT/uDa8HaFzQFvbykHFU2Aa2CJRpJwnfSD/ToKfgVqGWk0/0t06VyHyrw+2was+lAkd8bRkOSnSivCzwEXuQ255ofwuQ3tjv2nrz1PnHWo9WbVuQlmQvEuwYUOKlZrnFTRoSRKom2ZVGx/na3mjMTMcMHh0c2qCQu6QbCmSoxH98xHR0v5Ege61uR4BLApE6swOJlJ8/0Ur67XBIw1CXjuMTdrHiJt9pr7RVENDbpXgbHs63Y8+CxUu8dDJBj4SwmImMP8ippOh8pw+bQ1lvOu0bSVspA67qYQjcWi7Tc8TXFbyGhoaWsVzYiuV9zv7PqLwzmgWb8jvkAr0if8ygqJDXgp4G9FR8Y71D2tJnXMFFDHTz8Sb1s7iUmxHE6xkfXCzqSzsVz4wktiKbvsOQFTWIs1l6DgZ+N85tfVQxoJiqG+rJbiRU4467MwWsgmIT3btP6c/vXxaxSFacP9GXcPgG3P5pfL4Hx2+D9ki88SbNvpqKfBuc0yxLkTluVsUEod4G0fSwkgZey1DWeD6Y6nSRWmvOIPdneXzyZ6s/MrMeXAvyHR9Ip/T8xxP4Y0y9tYxMNd7pIADKzQG3SpEkDbN/A0iK5Kj+tWkjpTZ5azLz0j71xnuxtspnp8hIyuEoJp1DsLNBWlcyHHEph3maWKTtdgOXCvSptxXQhmfTgMFrQyM349GNKTdVfCba415VpoJ1Sbd6igGmv+c5q7LdYfN98nFgy7T2EnIR91LOEY2Zwt9icD9/DvGaJAtqYjkFe+WJuJVgOufOc0YmmINdTR9V2iarDQ1ChodLsLOoItfpZGp1vOfM1iSpk72SBH6ulWsDMl1mIY2QNjCH5R+wcCTCrFZ8uNp6KuL6jePMAx+rm7MX3iiJFDzMijO37m7QpfjkN/GoIaaik2BBZemNHklMKrhLB9Pp7IiQii+fJKKMmWvPYvlRLWls+Wn0dK9m10/LV0f4MxlccPcVBJ3Er9QCRZpPXJZuE21PMuKRjCESPZ+g3q69dbnP+0vONNVEQapISyrGHlEngfqiHMsNjtyy+SW9g8vIRr/7h3JfLvXMs+I8MilWWhc6A1nOk+q2FoOawWliHWfGICCCVNsRX6QrNua/2ubhAQqy5Piw5AMPcoXVYfuzDB1V9PxQWYZFiAEfNfRNsRkBK92PseGedph3xlamGvZUkH9Y2VIrj0+5mmj2KhPKU7QFBGrhQRJBjrnmoxMJLvYAE5L2s1vKQw3nA3XsFVy+jmtcPW+A6r0Z64152/3nzglM7JnL13aNp3xfshFQQ9wnhnEzazjfym4ETJP+TUKGvAnNno4vp+3eEcfBDtG4xhIs7EuXJHnZwjCg71GAUuPqzK1Z7MiO0cSiNJmN6MNprYWq99FOrkzv1RTkV+AG/fcmkN6OLGI7U3ve5mgLantgGFvqLCGtkkx794gQGFUdoWUYs5m3xrMHvy1oDw/UZg+jKLBpNIBETCFe1TwHbDD2v3Al+sir7COIdzeFf7gXVMGk9ZoNEKu10IB3uAr1vk3H5godpks9HNEY8pbAFDkqf+cz2/RoT0XC/lVpbbnwFdKKbvaOKaJBb4kBWRWKcl9IX15Q/faV97LWk8leAn2xj+STFmdyfJEpE9fDRjXDQgYDkhBBzWbKfJqfADPzcNeaKlZOQNJIvKMBRVKFQp9IImuKDmZMWaehwfDe5WVvukiNLqsmRR1cy5LabMB31nwGGCKezZktpAkg7QS2PcBBOIohAXgZP0q7jeXeTMeGHI0CBmEqSq/zQ9hpYEc0hmyY8Y/bHmQWH2N9s1M/oxekgnHzgTNCPDCKS1d3mUXQQTS87PyoTP77q9W5BdBCafmHU486TJBzUKrR9GtYBnlEz4qWi5Pn+IP55KkhPwTfA7mt7C6x1GS96pzOJQ7TSAoipWQNIC/r4FScLOfSJz8ueBQgNKt/s6fYS986n00s280e8ER1qlug7nITOWqp20Iae6rqIFUiVhvRlTYW6P9O/+fP8pBl58CstTkztM7I51H5PZ19zFd0SxmLKSQokNQBMfWz0RfeVwrn/PME1F8q/PXe0Vs12wNQfrC5FlV/sttble/RCQYMcfeRYqJDjsxNeJ6MO3PRnPxhnBpcXD87WGq2u/LMrBsrkxExxK/r4+okJMi2QXx5m18M8i/qk/zf8eFYIYvzMT3E/Pd9/PR2d/MhIhU2+xtOglB7IFMQtewZDFQFSm87eQFVD/tZ0enLdgiTW7UCQW0bGfV9UUvBAuC+qYeKHfnVz0frEZP9t/OhABDzf8OhP/MtVNSDXYQEzdkRYVicsxeepbT4Hwu+2XoaJelEojMQ5kc1aaFWnYUVAcpW7ykQcAfjZmKiO7jhafwCzL5nvmSTZJ4t755SSI1nQkgGXeHd3pDJmr1Zk7mb/fB7ow1vV3Shu7clvBJN0iasIDcAP686N0R8YIRPJWhIzpTt8ovcHpoWuEnCkKgKUygbT3iQu54L6z8wb5zcPKFztWx2BNmmwxv4yANAACVJjSm4CbsFyGSItJ4p5KFqirksfRNZbdiVo+cmETyTzld95RaDh/Fd22bWELkH7UaCse/uz1mSm8/4mt3JyovVXU56t2P48irsgqFexmuaASS1y/rBz7ci6/YO8luAKPhQrKLxq7yG8cP8G9QFYBR2xkHax6KTEGkD4BQ4sBcoDvuxnGFtzaaOcYJrbLmRi5Rwbmksjnk7xWEpPz3BR8HVFe4IQu9UkmBstYP5X4V5rsJYz5ZbwLK0INpNqGYFkD5maJFzGv8RKZM4Asei3bO+QKbryEeBKael3/eMAZZ6K3mZH9hWUYVDZB/1knyLLk8P/GXzzE5/gVhYAJSxOAC7D9YFXRKBBAUU5HtXpi3/leVoDrpIdxO0JRHA3XYRGKGcnJ+HwurSx69I7ey0jSg8C6s0VZVeTkMvRUkzVHVNwPPJpdF3azaN2VDiwl+0Nvl9QJhn0QVVzKOVpwxAbVoUVyXW6OG5WTatlWmsTT+o6Uypqi8H8A4qEsoh5wEDA9w71RHS3RIVg/dWW7uVcZ6IIksUl4WLKkiWS1IJ95plvVXe/jtB/9iUcTqRPOyhdIQ/jmJ3Jfkseeh9jUAeWyvp5UkL0tJyWiUHTq4QQasHqiTlS8L/m/Ztk7wa71jlnfJ2OQ6V9Z64EQ8IzgoQ5kdDTDod4qCAaeoXUTeR/X9KgFIDF8mIhtD3HmgamPv1C269rpxS4xo2ImW7L9bSmQoVULx3YTZMgZYkc0WgOvN51H5jQf4et4jwTxX2Jqw47+BplbnRT//GSr5mRSoxpQZYCAZIpKFO0j1z/PONVqQLXNSXBZqFPD/UcvoFsCSkSd9lIwmsPcA4CIQMY0r57hCljGRVBhDkRj6648THPMNGaSaLLK5JopxDwStnMSTiLN7uAtzNnxZz2VYNzkpdf/c37IOJIUAvZuAlgk3TlmVjHnjsnfEU/q7LmoUd769jdt+X7wFlKxCsdZK9Zzpd7gPnVJl7Iy9y02SLQKU687Pl6XNjFoxgHF7CjrdWu3LZTav07Dxi5gaE5RQmaEl1pzKv85XfOG0Zi8zeK8Cd7/6H0dqdP+FgUScZpwMpwcfYjveST3PQZeJfBeQnYT0SJ1162IOms3dAsGHqVOICKDeNyTfmRunFIZbEJLrBWYlcbiAkxSxHcqd+jjnQUGwG3sOyURjtRwEjG1Kxl4UGtDTxInHU1aaF2BVt1fWcYx5DsIxjZ8FZ14do6hQe9KfOG/dnWoTH/ikU1o72sQFhIdxAJ8CCrSsLuqMgOhDarud6REOs/jl0QNSn8T6Mwoe0YLoCtTToz7eWfsh6nJstR/iLv+wigK6Bg3bMxu77PmrG8y2iYI1z/rGVTUR3YjO+i1A4m6pHBnR4vGjCr4OxNsnuex3SSIWGQY3+Gt+aPYhb41hoI0L6+MZ/inYqrP7AGDtvidMX1VqQ79i7EoesF4MB885Of37zoL2qTxYhayvy0GUtlfaFoPEKw8GxDpVGCyo5k0zR1ggKN5pG/V74D32y27wonzhiTHJM67PRbBbYD8V8JBX4Ej4ehB+NmMnbexi/NtJQ9AQMzvwC33FduU4dZJqYr62v0cp3tKUAtq8n5qwBrIbLBK6tj1ixEj2IxyfzjvH5BQdNfLDw7PIgG4spu8y7HVIfJtPzKcCLEfvKPYD1Tka9YvqLEe/KCkKRYsJNJ86w6GzzQ7ZOUL79pP7hglh3JzQZr41I63WD8hoyrtLm7CGGV59vNnytqoWOqZCTsBpEC+XEtPSLibzmmgZrQqnVrrOI/Yhur/5Ui4EDayBfygvcPvIaaJdGAiOomWfksobT9zuMvb88vDvVPWzeM97kU82UY26AOncbiHD7POxNuLi9CP9OqS2dn5G7NvipJCqPmmDa/hIXTkZSAAHtRdseh1P0pV7UIiB9CCauKWa2Bm3OpBOQrd0JhAEtChzoPp/gfYWnjnhur5H6stQjFzhCreDDzk3LECKfpXfWrlPjhAIXQdtJgEXm6B4lmMKUCngKpSHFW9MVNAjV3joA5pdKL1rKAWkZW6hka9e4LemWGW4ze/jffzukDZ/srMi7M/FkawQqvzCv7rHC8CwpuwgeeGMmpL4mKM4rpQt9CcKsqcwMFSDA4vN+YB9bQG5G0T3Qk4peTfO3d3zVgh94B5MljnS+/rb6j/ViOLxG9k/k24PRGfETiASRIYiQjoQWJZq4nk/bgq7bG6voYgh3p67GaBSp9yXdhChF0U+Ast3i5zIo89mX35YiE1pPeSy7Jt/5yb5+N8xmzf4sS0Ek6dDSQ19vrKjV7fVSLPdTvMJy6WYLhzMztuUYfNFhulvazapPeHuNe0BxTURIaB/8Tl99Er9UsgTrUT6r3Ahg3yYlQa073JiDYBABGT3mZppDXHyUWz8Jgv7vh+Ix6iKvCt8sCGzKddAxuqSIDfiNSk+rTixCSUXrPiF0YJJMn09pr229XGJf4hAE67P427F3HMujm2Juu8oBw5ZDUttU3smSLt5x9yGBHPZdwAyY24+2sVI6HylWITyL9zQcpxx1pytRRwnBXBNMsSMBD365fcIUNCqddAFbYetyjF7TCpqWyDYhXXdNpVRJCRycFV+6MjU3vcyO1ytGqrTg8y2nT6hmI19hfQKqGfTaiFYmBKc+70gn8H/E+Y3f+km9unYLAv8sUjeBQ8Bw85kQUXRWkJedu+Jyc6tHVzkJnWe+eWQDQW2qTEHga5dV5HMAIqC6vrb6c108sQX/ltk6BWF52tMTmgjls+cornOgviOel2TCRqRrZk65IqRIppIuFgXJo5zADosfOI2UZtF8Ecejde2qTUpbqP1f/YnZd58aireMm3YSwUNqGVw1IZRm0PbKRZQIqig1vBTVf3SANFKk2ImqC6WB1A0H7F09iFDSiMFbjvNcx9WF7dAjpHFzyV4SDTlvPuwmgW6pMnATFMbxqYBnoI8zJUw+VEgg4gp63bc3ok3u2vW9ViEctEPAkeHfgt2TJMwpMN7PHMIK0DefMZA8zXtRZLBbu8+WIhGdPM0V2bWouBihNqcLOF5ElTy+x0XiluSzzCYgLXrwIU34KrFU4mVoxFGfeOzJevsykxS+GyGfhHB3DE4WBJVVNeLQPNtnhJ2uRxzMYmI8zI2v3Ap2gBYf56f5SulX7igizKpBE2SodH7F9z8o6Rx8aNt77QD6c0Qp0iDJw6/29CHNWFg8CPt0AP2/OVN0vp7yGlmxSlzOYFevC1kIzUSqRNAObMmSCOK8TJP38WmYylWWojvfVlo1tViKARNfm1IB9gZhgcO1NsgygIKLDudGUZ7QyJsFMdqQuEhY73QS5Gs+458eO5IVUpiTkrHHYL2TKzsZCf5hCqSuULHDnf90lCb/SkoOnhtT5APnBI5UgnDqORA8ucmFoxF4kOVNxhvMJ3cqpFMf9dj0Lhd7w2sbqWqloFyBGtbGl2v1Nnwf/Vi/ElTofIWOL2iXpRKTUTlPOEkLCIoET3v/Hjynqw2kYdD82EV81jvGf44nkVaSRG9hZ0NWRC1NAZLi25zhvFBfi8eWYm7/sb6hKlgMakznS3l03hVwFJNLliYbzz1jOWx0DBZ+05qLDtl6tux+TxTvjFCmAr38uSk0JxUSutkxjKqWHYqN9qIPZ0pqhO4Is3PTGGkgEdVdgQ2d7ikBW60hwc6Oph2HwGq8xAqbZ/pJHBsTbSc3tNgCpc4Two0X0uS6o7Ai1w7xxzrPvHqpFRM6IXNjZlK9DXPr1qyW+vSykdWwpplMzSIniKxZjW2eXTytQuCgrX8/bfBsy8OaRLZ0gE+Ei+zv3EPFlC90ElhWBzETX3MiFfh/hNcR3b7Z+PgoDKpgwf3oD89vOcAvf0fh127Aq1e+PVFaGWUlLVcKW2bDuet6kHiUtYQYwYJBPrGsoR7SV7OTzwjNyCXxXVdV2+WtSJ2jsKojQ9qpoHQaq+vlQcpGFMpZld4fR1qI69hNxKDQElUZiesvzsZ1dVhcuiPjlaCvgfSa4LmJBhY1YDmPHLdJkppyQoi+M50roQnwj+hiWsydtJqFIlzzE9QOFz1Px4t9Wc+TFlgx5Sh+IFDCaFlBxLGHSqEZzbTaHcnV9y3EicFazXYr8srImnwHzgan2AsbggWTnbnNnaQMIDm2L2flea5zAECEeFZId7V1khGm6sRUzcOIFhC/Y2JHw3b5Ajua7qE7mZ9LSnxKrfPK57ni4Q95PfINEoPrsm19kQnRe8Icv0Kx8GUEaS3WZrU1d+YmxdcbUPY9hSRt8th2zbRk1wZf5pILABT7L7l7lZIIVwfyhzIQFaQFb5HDZ3UbVFTOT9bROLF12JBPCmeepCcA1kdig9DRoHYOTi/GjrtOIbIPBsGozjl9i75kSns1wKFT3rsJAw9OW8W6ss0MUJEn9GgjDvzQZs0m2EIkuEb4cvKh2jIHwpMIukSL5zt8v3SEqUYMdYpwoi+O5PEejwRILaVHTiI7oa1QsLKUZ1VMtB7ZsGxvAo4VldzLFS7ps21xhNSSkdyibL4rW2zz4DAPuCDvos+SAQXDcQyLTQhmpufQbQRNQ+8xpl7D94Tuh64FRTcpkZCdjygduYN/0T9lpIyJB3ti5KSkiLFX7kKlZG0LHfegKG7KNN+cxNRb5aUtiGP3/1ajD+iVeYphIJe7ApzKa2rPlzvidYrcV8+aKrdt8vTh8NoBtL2EsXQRZ08SIGVcCOd1ffCRpsTInVCRudR+OhoPhexnCpyBv1LkEcWlnG2I2QsZ/q4lrhIRkYrvEBBXatcZyU5dYli3hf7sdkU9SYxA9ZmyxYq11bcIYrP7XdSil0RXgV9VzIarlok9YGB+OUiKw/XFVH3z8few8byfUFza/C8k8jGy2MNjyYMo6iabTwEqrgSk3jwsLRAlOM2jMAIZ0BLBpSjoEbAXX2Kh9Of7715Ek4VsYzt1JMM9/EawhJjnq3fRYZj9FETwqLDI1fOXUHSPfhb7Rz1WQFODR608KscB8quiDChryoxmBjuuEprFmVNY+keItcup9dCNLjl+Aniky/Mq04KymqxeWysPWW/xZL3ZbyihKKPZBZY/mdDP4pmpN21Qd/zvG3BkStdHZFI9cnDPx4ve09P5SCVbpJa3LcQ2JiE+GMlE5X51L3nPSXnIN6+RRPB0UW6IHWmCzbQF3tiGmkiLS257+R802U010u4Xte6cSNAT6c0YCKzJ4uEAFrSzuG2wVkoGWigOQvwjSZD/zg/oPLGEQ9IOmvsx9N2GJb885UMAWf8QlHMYuesIiv/MVRJ0Qyf564SNYO5G+vhUO9+ZXp/EjKv7mUw7DV8gCVqzZrjr0RpCAssEqi7BtbeCO6tKmvrXtZgAZrbwrNUmAS3vSyJf0RpRZ8r5w4QNuxMfSEmN6nYRT0sZOjlGPxesbEi/wg06QLFCPUYYJseeMx5uRNDcXeANTCXgCSoYsyD7GQy3dys2b1TvpIWElBTieGaWj+lcwN4L57hyPqqkE8Nk/21q7BpW7KhXdmpVLDjlmC6ju23UcE/DLkMCQwsR7xq8FNimD6E4DeE9hiElOSeXLDK+LyKu4YrLfizxeEqkvocC9y6vHujkKmVk1nUrkx9EUjfcDz+RNc3TTtL1Rb47QJrgtb25lsLALTxordjwTN5kkI7udSwyEMJBWpezbRI558e/AHBDwo2hxfqW6sCCJVUDdLQJlDHzw5h0rh2pLPcpx9QiL5O0Scalaat2s+uVOkA5uWGlhYft4/pm+nj7W18Dvl1p6zipBvGSK3bIeJzTfv2ru2epIY5gEdcJuT66Wt3ssXHe1DbXk4//LgyyXyQHZ3FNI1VFF83Dvygbq2soXarqY138oVAOA8BI5FYWMtVsgRGVtyc/7AtTsTg9zJHSvtEA339zDXLuNn2v/slcJhIBNkKFkay+A7PJl+XhU9x1pYZId2LOp1S9fZReJBfXpu2xHcOj8AE+lT/3kfRHz3CXUnFAZ/JWiWs4L78jsmLYekfKQqbRmmztqhWOWbr4vjCKes1btaZOtf3oM5qyAVDzqPORIVs7cy3cFCaUsNYcJURkh9v3NWO3+ZYGratVIJO8bH0dFnpv+590bxPLmqYRD1EJDjhnuOZwPVwUZ1Le7b3ZwbJSebO3x7AdP5xwxTXPcsrTA7rO2enxa4iHiW75I+zhIX25aShAn/rG2XrjU35zzXg2DVTpzo1Wl6hmq4Y51wHjLqqdZvazD/QX8r73+moMxfe0rydLgZDcR0ci1PMA4hrNR2R4EOYWEo/on47UiJvYvHqUxEvYfNvzPFFNcpxddMhGmjQUmw7NeMcsh14U8j4Wm6uaxVxfB77OUWFgqfkFAWWFVfhbL6xExt53bBXSoau7KPyPhY7hOu/9fCGd4FB4Aw7iwgVzdI9itWPtZp4/v64pIVCMaBsunMRLK6d/Wv2GEqIWEUJ+PupVd6glHNhdRPNplRzGG/kSajcmj/WcqzbBWnQCE0qNQcXwzy6RwdsOnNssRS0QaMjDrtu+ouVmRNij32URqbtDjYg/bGW7XD4LmC7VQ+Rv19REsW2jUfmPWc9XcA2nbcVCqGtp7XCePTCAn/GFGbi0YNfBG1CKVzoSIKkPDOax4b1wCbERNrOJIEufjzBQEw+M/iEQ7aeQWwizeGNu4hoJh2tbLyHdwLsWs3HiTde+JyYm4jp/3MsnOnGQernLF8WaInuGTrtyoVERuRgCU8ycYewDYMUPf4zAciSVRdfaZ7h2uVaZ+yjrHuYP0mnYwAr0SIqkMjKbLUtAHmiCZm3gVivelkkkMBWwEK+JrkuutQr4Q2rUzkosSPoZcBKtEubZLL1yUodC+rl1t2E1pgItRDnZTNR/MDZpoj+y22hV/X7Bucfbw5DFFWac5yTrf0DPXzqs3D+icr5ZqWtAPNjicwfiRcu7BmKjRCjmQTXrX11IYCrQI7CjwRPS4Ycj7qKBfCMqqULcG8QH54LgSnhwgjDWfxf/Ty/CEKDjHy/AG0lvx+0Iof1TmNIjGjNDV5y9YRLOk+a/X3f2APJEygWHpkK2er9C6Nl7jU8HoOubYMYKSJDjZSEx7kBO8FDxaRsJRRvuutfzNP/erOjVGfRMnrtRy2Oegib/lzMuWJKfDBMX/XNMo+Ao+BeQ+oSBxCqq74+bRYAb90TD+WTNr3qDil5k4BWIbAPSdkwps3LYtHoDhV43jXhr2sIoJvm5KYpzxb2JGu8vBwDgeKfj7tc/sOYbZRqz3KHCCe2+Uf8N0x5fGIwNwBsgwMvsdStgRXXAYlbbUkMSh53JhDw/M2UOicplIWY9s/Gep4x5x4uHEonyXbMDNuLJ+I2o3V9PCUBPiws2gacUv84I8vbDu+AIXgS3vwoP/8/cxzws9nyFX5LIgjFtEce65XgJZNuY5ge4jJvQZjinLRaOHr9rW4twb/tLhhRXKnQOPwj39cLDkgnmQGUr6JynLzdt2BFcpiUFN4Ami5uvni0eohgbBBRGT2RLgm+RqLq6HfF0yejtabSdnOHwsd+s9rBNG52hqxZA+g7YOJ2HJky5rxoXtuAsuXi7RlHb5+U+FizF7t6DcTdddq1eKAz6dZ0/Ok8BuWwV4qRDIYaoSxIAc4AWG28VgOW+10sHe/dCbwRc+aJAoJ8poMrLWqVERmVX3pybb/InflHZqqaIImw39XEInNk9uTtO1/xVX14Bwo8ndAvggfMHoJK84kAEiKy1YUIKkGqywLBm4lJvR9oQnZj+fx64bab0gXHpZG/ZFr6a3uK/1N9ZbXUbDFRifVElt5Pn8rqxz/mytI3Z+phZVi6EwaQRmQGTWQPp4CNhhySVXQ0yyBgUT0yX930Y68JxOWCoEFjHmj43RlFrtRRUEE5ZR61IKyrWeBY8v7PoCurIytN2mSQ03tTL+MAXpEQdypJNp4aOQCrzM8ZReiRNIJW17WNff5LK0P8j22S+NaOSv7ALDReFMCyhU5cFgIfOWkZsb/jU1wztwB2c04cp/BiRvv0IEN8FDhnL+0c5Aok8ohxMQ542LUDbcBs/+uq2jO7vaPlRS6WirZRrEHlAVNqEkD7HDn0OjjxomMvd1tuGX3fFGKokoAZgWGl7ih9qdZZWnmPf9zjBchUW+cZva+MagyBbZeFOurhCNmjoAYnG7DMYRZkMDHcK4JIoppqUQoBB2VY4bUhBcSKMpYJQJ9uV0x0NpQPYCq9dWuJCBhOgkgfFEAPWDbHvth2YahoKR3VicdlhrY7iMHKWSaxQHjGoA7DA6tXHcMWM2eyOOy4BCs+W4C9+seTz9HLLL9xM2muOQBi6XcqbjuCFQiB5Zk3AZhQbc7kD4MhMTjnAEwedI0PDRw+H8UJJPd63DuBkFEV2sw+SPKpZOId9UgtkgDC7mj9L8vZSG2Jlbyo4QaGB14ZxVtMZk8rL+Fc3qK0X0QgWZNijkOadMxdvWYsuOVcVk+0HvpSSHk+Fkerkv5aJELjLYCx6VyGz/Cc/WNBnbmyi2lLbK5sv8tkRjPef/5fPl3VcsxtrIFCGOnmqmBmj6Ms/C+LmdaHruFDRK2fiiRCarokDfPgfWRn9KA3KMZTGWzT/YN/JgltEvGp7hos7F85oHaRnaorPjNxXD1jgAvOqBLwba21NpoJHVtGtNF5L1AEVrlIDbJPf+1Jri1EeNnnD81NIK/1xrzg24lAIlvM4xBLdXlbZAA5wDyQ9pD4NOiVgFD0EhARyXkyfdHqJ9mUrFy5/8PwxNsqvncREaczO+K5fWvKCqxjO5wDYcBI5u0U/lOgOyTidzDjPM7GgMKoquYSncPAiLc/3J7tVkEt5jTNInI8JsQ6fOVk9tvo2ja7idYzU3VpTkL0Vq8b16MckH/UNSIEvUlpQXX+yijV3dpIuH/Q/3pGIczRcGR7+fVnMT8zEOZTSaaA0DDlBo4Id/XPF1TwtcwXA4DoxbO3YEXQjIoy07q942sl40QFDnLhr5GiujOJmKc+5S90fkA6UAf/HZ91XzqwTx5KtjUiTfJaQRFEj+I5QF0cP5V8EJYfy7EL06/4QJMjbVjb5r6wlMI/ctpjNCK12WeC0Fi0aqdGnaUTLL8DBSPpwe+z/ClS37Yod9a3VXkutwX5zP0iEuzU8f7wENSHRYHgpfyrXO2X2XP6xUaoAPwPMS/p6zh7FnogRHYr3Li4fg+PNBRcOcCBjUREO7xRthhK5eoBmxBR7NRjAHyjRwUVVNjyzW7U8SwO9sg/84/HNRPzw8VAtnAPNTsIyaZ6jP3RePa8owYKYT9bupmTmH0xeK/eWcpXZYEMSVvt4AGyQjAhOa6QmLIQUa2gcA4d2yvqDtK1DHGxg6+aVrDmgWG8sVPZHs+88JPuD8ZcQqjL7HmqxnNBY4Zt37FDjWRu+O9ZHM8gise3kc9ghrVYxcXbgQ5SPpop+wkxCZDyXT8ftoCHK6WIo4nKDiBYVq+9ZDIGjq0FL+2x/soTje5S08S0AAt0qNmFrSgIk7FmH2pW+oBQsJc+K/FB34Ly4lHr+wJTDP0Hi5ShJ4703fqDr3HzGbG4jescNqreY+pfhlWPYZSS1nnrJcUrreaBtHJ9Fhd/c1b+oZnHgflzpA9XSGSZCN1HxKa4Qu+3sCwSDDOgZNGJnpdsS35Ekt0SR/ZzSdPstLKNLQbZvdW767AOlXJBVlpsWhLwBFsT1jNzNgVJzH57JEwhieaPVmo5ylPqyzwTyBS/g8mgXRR5rDoR2Fs5KFnpezV21BByG+o6WVD+F27805eiK+hhwErEb6qEIeJpsbao13/TD+lfCA6eUi9k4RuVV2RBEDGwrw+z+PTxJ6IijTjxoPvxFMrhtO9hiEInX2Ev/ieb+HGdK1psMQXkgLpPL+XKhMp8hAvritnPQiSfkUnGKoMUYr01icOCQqvsPKJZFCDhm79ZlXPPyI62Aherz6Zq0lvoCIOyPPaGUJ4BjxhySGkzjQmEW84JYX1UxKOBDDOietEPfiARyKKUxB6lsM29bKb3YtLBQ+BcmG2TMXdej+monN6jH9pDcotR1PBnMDrBBlDGXKEUIs0x99PmMcPSuHzzEdz/6Qlmy52Pt3eIrOG5zVHGb1CwUNYUlKvwlSAp6lhvcIFhWx+N2uDpAw4fDfy9hnECJ89LcAQDl0KrCHloeoeymjHXzVnYumCEMCpWPNYKs1QotAt5/L86cuOeem7nhXK9u6ncUCX5TprsP8kVk6cwoiB3GbCJGbJbrysIVpYVpPhuOhdt9/7YV0qvem9uSMQCcV1d98c1cjDmViw5f2fGS7/CWVSADZrGHDzjkokrxvRrlTZbDnNN92CFt6fUtklV3Y2//Cixq8MdT2CARZERJLHslX9Qmlt+4wqMfWNIafy/sO2ufvX33H+vcez244CfEI1zaI+BEqj07AhoWEni3iMvfkwo+S8rGjFEW3y4jmpE0cY0yKp3o4trKS1CqNlkj/FD0p4d+gpj9JmMvycNFqU0N7WxO/2XMCyIfWMfCtywAaKrfHuzuRDI1VtgRCXWy/TXTdYy8UtY53HeHWRdFaxLGksiFL0H7FyA9K9Ur+zDG6jZxexfsl51avcfCERc/P9v6R5dFPEYB17Klyuis4XVHde/Jb6Eqr8NY+jzMTdZgbA8MpU5GMnpR+AvV4pFfPpII51bIKTUH+BkrM1Lg3b6/bJLRSRHtKF6aMy4zznzArQqkqLD43IHH/9E32JVoh51J8Q+KYNaqKognwOw+0uhI53CZH4DWgyZgK4qf0VDOeX8+MOcT54vta2TjztBpSxg3VwqqSQ3RAoQCNObiL9xa+xyrrGzdiS1iHvGbymFV9tIaxTNTfUqh/76NPZ00nLaB8OePd26Ndr6IJcr5Rb/DXQDfc6usXfyTYFHvEZ6hAs+Ynfa4SH0hZtjtOdw4Z60dyolDJYFMmyEUFRnSzrjUbw79c3KOU4Kpxhd1fdBt0Afgzl+XUn3O/VJ3ndgCXlA2pbSEcuKvHuT4IaOsbrEOsv3kBIDjoP6P9gTghpsy26Ti2SlBdOo0Jxkfddabgqhv8jHxeaNFEHLgMJzhk0T98Lel0PSbOfqYaPixgJSmZnI323iRkxv56aw1UCq/OjYLI2vEGkHM0jpYQdla4JywPJ4kVQpXHQlaIRg593l6MuapQ1a7ez8r5yIinlzk9TglaOUPCX1Tr579V0Z7BUrLKukdnm3TeqWcl7yVmnQyYS27jo/mLWifAkXDl48lgZ1KST4vLa8CPEhtGDiOp2xXoQKVKjtcO/wkgl0XLqsQSznPZ5ni/MW9AUuhkQar+jmMmKBAndiY3XK5NlGMGBQQGS1BchJd+eTcWSEjM0cWyZF5D5dIbRTXRDZ+pvr1beHUe1tc2/VlQfvvGG+gadU6c1F1yEgpP06+VOYCltIwR1tntKuBXeUzTAwgS/4qhjef0wSekXEd90ZL3HWhxWUlbFVFUxh+Pekh+8kGSF37vL+bYb4SKGolIGTSCyb4q+42gCAl8hY55hGfZNzX/MEfmcoohRrx0ZnBIGn6m8Wcdj+VvDBtTsP2Grs7W+togBPleBNmoj/qFY1p1I5H7vf0go+9OLAOmb8ajIkC0c9WNBB25Kv/5Xsy2BWSx3pwAvzlnQ9M/3IiDqn+SseUX/66YuXfObuwR+1YhZBge1pwOV64uygcQaWenN5a8yh/8azS/dgfVOBH1v2DsmKV4AKcIRdCkQ5DpOlN4VW4ktOwJL7CwsGKaRAYIy7+Pr2Bngg8PNHZS0D5DpHAzzZi2Zy97tz7frR1dN6fJ/+AhJOSTjmBneFWD0Clkam0PX43/U8dFnyP2ATqsAne9zZfSFBHttY5gre2tLqnvmW6hACbDTd50h+vipPZ5yHwwS3lavv67ePf6dYXhH0w3W/lxD78IErhKVkvRW1bsOcEpdf7wMSHwPDUbYQAPOiU7T2naE8rZQHIt5IjGBLr+QFRL9+f69qpDir60FBoN4sVFS5cO7J71LKXyT01QgpG5AMPSY6SnRWuE9JZra+BSJ36h3tzjyKilObVus9Z/pPjCzAvLGoVVaUO7wfiwL4LumO9GFj5533Ie0x4zLHzSMBoGwyAGANfKOqFgIQipBcc7gB+1x3rhUwgEEF6rH2PHWLJKCUXg7FjYCcaHJdZux/BbJGj4fzpFpn2nIa8BcT9pgyA01/f0aMDUOJ6GtSyKEr+xz8fz/t8GCtA9938RgGdlsDmQ8WjLjWMLQQhjTwlmsuimggrpfXKm1zjXPUd7p31LXpVznxOcQJE6jTF13+BKpKDGr/EQXD4cyIgiBglhWzMs0VrTdZxej/kKte+kqyHW7pBwmJ3U0dOiOU8RIEb2HD/tLkJHgHhIgXofFWeTqD9xnyCWc2jyx0vD8R5YVspOqnjLDdBmLSQtMrLOeQ7ghnt9Waxk70I5Fu9Z/v6rOW2OzUL5pDD0nWTP3V+Sy8vjgN7wFNg/LH9hgkAXsCT7wDuRiFTPYybDZf7V2W2p/3HFTCuVfJ5gSQx2aeocsBOwJh3EDa4LxtJYKxvxRn6y0vS53dxixNtRIEmGP6w5OgEOm43gcNZIrvdjmtwoXAO8/WkVumFJVX+T8WWpp1P8upsjQuZnnlGhFF8O1NQeA9Q+AHZmDTckmQa7sAvDmHfcp7jv51Wr6l/w8iY4U0yRjRFpJur0DkBcp6hpRHsGcNpO9cNQcNua8iH6yePg2LbbiSmIuwVuD4EvdQmWT2fg+lYleJ9ngVbBZ6S8k+NHUXDm6tYUc40+8SAEKxoLPCNFxhtHaN6KXahaXbEHfKbVJpqgyoU61mBYVtxayYu0mWI776smMcF2YZFhQwoe01ZFn4exR4ixzWDqihO5HRFiBx6cSprJRk6H6fkDvYkQMWFSOJUCobm81rFdTFAmpBNqe+yNgol6z1Pf5X7wD5Uv7Pud5RAV0WlbVLR5rzSd6GCvrt5MIQoaCxCKQ5F/jA6eP8Bea3A/fkl/A28ZeTVL913Yf3TG9KgPXpEGNrh/mQiwOdxkuXTG8y3LJp2AdME6H/sIqvwk/HoBvzuFV3tmYxPEt85O5H2GXx3xexUCosIkvzu3VE0oJU8VdPSjZl9AecueblYhv/I38cqAPfhPaygX/sBwbaaPkLs5KXYkz7lRca6lfaKPaZlEkkH26kL7I66jKvrxaagszy4nXExg+oDU8zz8+VlWUspHtSsmO1B/0QxC/bluFtdyBNintTBT1OR7g3bjh3v2BKROIkqREB46cZYhhG7ZMqV/nYmyNja/i65yGMe4vR0aYyP+tkLSxLHpQs14IqLDIhKqMiAvSbNu9no4iA8o3VuySs6lVUG3GO47BvnfYlacSbILtU3DTMdUnnHYganYrfStkwZu4KG5IlPFHKXrmR0e9ZBgnvsLo6BIB3ZRtxlVcvn6vS9vK7i8P+3gtIwTB0csdGuTZ9gsrH9jZPyqx3hAu6bjxJJ2DIKQXFNR3oW4/XPvJnfSq1aEsi2cIqkoOeOM4fgeWzCn/XYg5txP0bnJvVaE3vNKqzIV8frqqbM8lNADCTO/ICZY423M0ZJMi2qiUk6zLIPJoXCmoZCagVLl+Cr+0Tl8BB2QfYcBXeQLTm6mXu8+Iw5Y4Ggbscn99ICPEOFLdYox8GJQy0fpfRSdoUasnBWwGvvf1C+MS44SZi+JamHOc05SFhVzdKaT8XeeGBLrkyiBVF2ghycJZY0ge3tBhHV4QT+COSltJD+OIvSV2LgJjLnwOHseZ2QBkfYcVpqe2XHzh3ssGqEEWLc2L875FKwE2AqfxRxrrCpHkqGGQJSUghxlVHWL8PWHx87gHxged4JhiCFfoLhN5APEeWfB/OORmiEz6rzs7rxp+zh/YWrRvWLzWOhkUQhMfyO+zKusvE/tYB2QFPHpkU7Ii+HF2fbRZjPMn0KdRB3LtaxFWO8AATzpCY2hb/7NlA0/TarQXT1yv7ri01+BFnyw+8HlUZRj/OnIsQQHRwGOohUgDjKvJcXJEKUmM8qPOD5QmPIjnzqm3adIKhwF4UUXxYPhpvIscuHZwTUIBZ37OSa2oC+oRaxVt2RYWaLXx19vh0RfLTSTrsC4MduWIrDs4okGv/qXt5cB4VeLmbxjaafsaWItWeZCIZraUBK8M6RSkoQ9WOCAPmhLO1E6M908oOSQg/+oMMRyVmx6B2foLR6ktMcZgJHN5rFNd6AnuvhqOMxQpWbskC16G+tSORIfl8DBsuWiXtkzEFMnLlIauTNJLLWpz3hpMxaj/E/aCHWzJR3ayYk6EgMY3uxnCTZsRZuLg++gU4cqA57n9QCFl/t4JM8u9YlMbGVz+bLQoPfTQzbQWtHcXALe0aS9GR2Y1o023amMTkX6J/iexG8lJTytLnKaAiK2ptOSvVa80tgzEntum/76Gq3cfHAkTsdUAojeLuy8t0rkwd9Y914220M7DbqgFOXGuyV3ZhKNG473zwiuAM8Cax4cRFUaP9Ow5AyLkwvdegk5+RaqcQnk/GKnDfbmve0DDDCQWsZhqzQcNMdtOueTkBxMvM8ydfXR4frNXT+iJZJSY0IRL+tI8a7ZAEXtWvvIGvTQuZuI7unuKekwdKlc+II6HA33HxH6ruh6jY41bBEYllA4seYKRCMroH+83zD/vJDVuEKqGjEYsIyJwZHjs+TCGz2ocywSse6hrHt9xu/Yfzaquc6/EynaQGgEPHkfqFAocjDT39op+7RRCS1X7/lqFrHxrZXjaieKDEqe/PCiSY7XaNseEN7MgHD9FUNN6dWC2jS83+xl45ExbCQdI3QhrLx4qHYnqtWkP19OJX853LPOka9RNpFvNF0LDoP/vD9mUAemRnhHiuRVUFk57UsfIn9T+qmjPiWzc6spb6W8zUTuU4AEONJmsk0vyY4hYxFIuqCvw9bLtDqTS47oSqAmqig40MXx23PvSXAbWrOVhed9EF1EAlRIr6kmzCzWXEFbRvUdcwJmJI/IOT1W4cW+TRsyvheyT3M74018bnCj+dkv2jRKQFmkQhGxnAgE30qm9WJNJW0hrAUI0sqa31WgeOcKSXYToX9b34kM44yM6PEehpCc3HMqH2AQ9fSHwqQolkNR5ZjZRnLv9C7lpOyy+/NfQrX/S8EIxMuJ0c207Gs1xv48JtHe3PX2ekrCuR24MmJABhnCF4h5TrDCxRphobJdUmMpFB3Msj54ebx4lfgSPHD52AMXPBy9uusgv7W+W3dQfb9MOPphEpg0jltWuJlCDekN3FiOXxBIxJMNG+1e7oFWZmoOSYM5CiPvf5TLOjV8KW4AWP98Cxe2zb2C+I5borly97C0vn/UO16ypl84xlQcEjnZ1CvyfmiaQSlIqdT3UhgGFw546L1OJyxALA0xwyZYn1z98nTRSjhKywELk9Sa8hUJQ82RqHjIHmC6S/jNbPv+JLlxECgobl0ta7IUvcwvEmlUhEtTlvQHDzIi2T607G5tlNsJ/08/RZiWm+DJrDt+mboOOA95XKWrb5mzKVz5A2ky3W+fuIsYkoQxp1PYT5iarAZ/LZELF6jsj7Jno/+MmeHQ1jWzmHOiWOmcfkD7hFaSG4WCUWq4LQpqaBf0XwF7gKfcKeoRYLatdXNJ77vG2jxZl8oA/NX4Ba3sld6MkTxqD0G1uoZzpZFrynirgLVpi0X88AAQYYADuwoA/b3BDntJjq05KG7bbyhIm9grhiqE6gmPfcNf8r3jko8wWvS/F2evbz7pob3ekMWPKmCR6izg8ZTasV8rf18Le2T22WCpcrO/HaI3O+O4FCwmD04qLVEEEBz1S+ZkYlnkhpAw//xvneyhj2l8W1JZ3vqdFG9qbYJDxRm1MYp+CQIw9upoeaHcwaZZEywVqVbxtsMMjNuzdoCv0KGGetFtx66cm4ukw8C9lYgrF4lt3tooavtL8FQopAncUsKoD9YHUD4LiNCWhvYwAGVXIpmTrKxSVAsAXG/Sui6vtNj/S7vzaenghGWQ2l3MZar4ZXfWuEAO+CjZBRaXToGKvZ8qNTq3RO0BS5MOlk8lA/+wA/jfzygz86IDDNVYPkRNc1ocOp+w3LlEAXIoC6BKjVUF6GIV53CSRkXs8xAbw26vU1ETQGU1i4tXd4U4dAIIxYUcOvJMO+qxmhVk9XdlcPT5DJOnAZYV0UxmtpD/YgK+NDWwghXav0KJVMRUuUJG2hYdRER5ihupg8eX5iqL/kCWgMZX5uhY00dHIxyVYaqcKEQMSCQJY7wNfBFaTjAFKqzf8pHO3b9dCFyHat72WfS2pbKoVWbU/E+9Roxy+kgXbKsEr/0Sy3TfBnyaJ90WQQsKDQ5sp5cNxHsA/C1u1sYEaM2mSx0v0lPeoz1VlDNMrro2vz6X15E6sg+VRLN77VnTfBHJb3jPSI6+ctEHx+D/MNcCDON1otAEvoWYSGGwFDHhjFJ68KhcubvWoE/nBW6EvcFVqBJQS0jEbm7N2JuljofGucN/4/n+1P7DSD0/gMWyblUKHt4P6SAYs7jxQfMiJFUlTcinDKtx1ujWl2jfSKaC/BylFlxKeZbHsvaDuM99sTUUqC4ck4kEwNgKiQ/E1IJqrnFNMD9F10pg5AyD8x00zYiJHSPflkk1D52GmLln43sQvjf5iG6wULj6nN8I3fxRnf7cJh95/g3SfH/PYZGXtrDWiWFRCOW9D1r659ZaQQYncle0/4dVgwjkZVBiDdTy/YLhq826/vDeDSLOM0TovvPiQCjRRd7kEzolHy37EkIfcxiNUk4jDs81G2EKtF4Af+5vRDOVSjJvDClOLs4oCFZ76B35Q2HFNpfgxQneqzmrf6MIDxkrumz+amUgY7fkXeHr0YQxhMnL65rWLneIj/H2AVNdm32u5H3xpAhAhAHwgZ5RSV1+/TQTZZBYF4eq9w413mwmyJtyNbDqKMqnSw1q1rgaIZtZG9uKxuUu4AukYT2uX+tsmzyyFbWtzNiV1HWVeJBRBq9Lc7JpEBJTnh42iplmNht+hGQ189z0b5jfrpZJ3uBY1gQ8s6MqaA8GrmF0X75m/KKnflcPXzWdaUea5408CS1uPmp4FNuRRvEQKbC7xkL783Ub8uA0DkdaG3dgCrS8pFCI2NDqpeH5rpcOgyG+dzBEEGy+HwF3jpuRTV9WVd9G5jaCxhfPrnKNOklI8Xu+SrO5hjBSvTw9Q5H+n9wU+VbMDSTXe/up+8HxQXsGPOyO6N6CoO9P8CmaYI5/eD64vRRZdu0aqMQO8udcAozSfViTsHIqp5BP+QZHu2376ZtmmUzLLxG+dbFcbmCuaSo5fYZ4JPfhRry4xbqy9WXwd0QWCgHx4XK3G/4KsLwRQqyQw3gmdfTq4BP6zyx58GTHOKHuGA+p16Ud/f5zee3x4zFb6pld8EutRXRQjA6hSsGbbOrYd/47MAChmpKlRi8GUt60NlflHCKGFecWVEIRtTG9sWocz2Nihlk0awB8hQikN9sjmwhiFWj3RitpSCqnc77bq80OJwifhJ3E1Zxmd5V8FVSOtxH2i7+LKoTalmanJc99kPpxVBv34dbH630KKgM4TSSOfAgEOKdzyxn3+8/hxT6icLY8/3mhmbUK0VVtVP/+MJPKKTmo1Z9y99mtqBJf4QdOxhksvD/dpkAEiz9fIu8YibZiqE8mhrwtBeADvVLFOxAyfxOoa4TDTaC/qB7+2AQmFvMqID1dqGE9LDL6HOPx40Dg9XUdbRpE5HBpflzu3soOU5xyTvyYwdK8gZF226aclTsy8TmO5F5MojeOan4QbBGRUJObEt7arW5Mxs/YxkWnhp5Xa8DnmZIUq9EnLcZoTRu9b0Uf/7XBX8yVT3rqUTF3Ltv1/OY9iL4YiVnlUbUmL4yW3k4zM7LoPEgtvxa7GDDNRnqxRzbXgO9Q2CKPUDJbFk9UMGnR92Awx3zOanBsKmKwinW7P/oaFKsRtIqv04r3iXFnUuicfhn9NlnWlJChc74s6ePLnah4NFjkvkgwJKR3kJmZ6l2uAyjrlzc93z8BQfbsDli/5nw6w2O+AvkmLicsj74iqIZMaAwElbU2Uv4lJ6y3Z64uHXLheDS0BTzof/W47XtTqdEZ2Biug4cHaMfC8ki+CFWM+YoiJWmUAXezg5tn6Zf16n+cMxFKzMrO6EvuGflYZrK9+/lThW+DPQ0UYPwtxnILYdnImcY489weqsNoLXlsxQNIO18/00fui/GIkMzGsVXzr8npI7f+JYCp0Tu52zQVFiOfdfd1tNhTsX8DmK5VHBN7qCqnCwh+FdsjhLAe0ze80X9FvNiTQY9tsd3DR6g8s3zDLIZhw4mCu+VKsoDc/rh7uy1lUsiRCsInY41u0FkqL3cTbA/QAPBOkvJkpon8J6odaDSDfH+IRdeFU+WYSky7ZZViKomAX3X4BIMlfQx3Fgq5qXALYFjTBxKgePUSntvTWdwC/BqEHSnxxHjtp8oFhiqt/yS3S43NLub4g8M+OqdyLKLfPhuoxyQPLeFHqX5bwGUTtu1/0CfuF6CZ19AF6W50v0JBJRW1z75E/5tR2Xri18JxrfiHfqWZN8x726WXmdAI88xGTD8zc4FHvJ4AP03D0e2Zo2Nut/A7XdwEOnonV1WJTsnV+hPIKIK1G8D6+N/XjXONKHaHK9Bw84bNnQPGhz9MkYK7tnppOx0WKSJwrg5+b7deLvh2Tf3y95g41HzXqgzGe6pInCKljy9y+gcYlYawMp+Ne+A97/Be++xrwD+ZAs/twMHu0E5/R3QKnO7vwVYjybKI72he3Xkb7ZxQU+eQhJyS9qwnd+/QdtmRAaJrs4EyLVumGoCf1dngGCoU79OfdAUd9AK63wEqxSTH3Fperp2qJLvu2mlJ2HGlcdmG6Xhx4LLA1z27dSNbMdyjku/IbU7/6288cmK1U22keuGaZAGUNtukQf2jYF6ACvRkFxHr3qzvY2RtXEDix2Q+hic/AnolU+ynDy3MY/cQYjHyB+lAq6+vHYRtuucPJ6Xm6x9r5rG5vm67WrY/5YeukezBpdlDS5E57Qk9SISY/GyhRv7NiQNVx2quygVoB+1hBXFS/gUmIrLE9K9i9IVZrIDxc39yS17OYhKTsQbQTRcopEMGXj2KPUr+TG60kNdgtsyI9/BdGWjUWciLIkZz/MTerY0aytwm4BF+yk+VcNKUZB2t0K6EE5/tkgQkKIdZhbm98v1rj49T1Iqw++Aw6PrFwv5EnXZ3yG9iR19bv4T2uueFjIfMsp1pVchRtEQKohFkiUIoVl2FtKqeDxp0edpgPrC3Y38UX+eySa3hvVQChO4DB0OGjViFqw/Sujk5bbf3V0lCEem1P1NyTHxgVjiBgu8OO/IaeqxHumFomnhKQDrlT8X3J9GsVwROCMmwsji4+iq2vSa6h4rnxEnzzAkvpmmvPVlTmhOEjMd9t/GqUaB4QUn7ACXWR88BFO5Mh5Y4L8djdudPYZEW31l+w8UMvSpS528vB4oBXCSMzaCv2Z1U6KpNixdYinHUPx+LHRsd/o+Jwe1geYgZhS1RxbI99SSOxFBBziUVDcIuFkbxEMkBlRjxr1kiZBq5Wk+RvW97Cq/OpHiBOZyne7XAcyuHlRB2rjUp0QA58415skwjqcop/BB/NusTcVQalE8XFd1H69OzNEPvE08s225TAsCFL700tWhmHR2tZ3HS+j1fG6mmmRcxcMm7ToLMcuZUy5iFGbC8Sx6g/z3vBHbcb0MWDZ3FluTCcnZ84h5KS569cyg/1x/Dsq7jmxhzcf41Z8ow2DxxumepCSLfB711KtnH8iDYLuaz6IhuShoMAeVjSICwcJiwu9xA6QrQuOqF8xFqX1U9YFwrBC6Gt51hf73D2Cs4QP2PzNTvMnnCdnRyMYgj2YHaaksseQPC9wCX43n5tk4fuJvZSh3P2Wr6yGGXIwVogpRcik6qrElQQVLUoybSGD9JuoxJQal4SvndcCG3MMe2ZEqxxOjGUARBhffvkjI7BkRMqEJUHxFdfR8QvqOblEBnUlyWkeXYHNQbI33aiqooHmkHX2HU7rfpQ4CrP02haQ58IbtA+E3sZFcWq2vUlZqEQvxOO7Tq7d/ON6jWgOCKJbSLar6ZxLCj8HnxQz4FQSzVCvuOVTOKB27mUowsEyGhLypquUkuQI/MmPGOKpgHhg6smnLX8Jl9L0P9sMbc7ThI2vC7fYm3jnpc6euQS453mnM6Yywp+5iXH45WidZa0nDDGEEAPjWP7T8HNvnxyJMHc4QbCL0hvSjRkrwx0xJYJJ5iX5//Bl1VytRtIexmFdsmKYy1bwNBuHiWBKFJcIP9NR4dOoLAqkp8YqSNdI9wQ+gWx8Udg4fyBYNP06RNYAlenUBUo2ZL0VFEqBE032TxGA33jA7gDCptbCXXAMBG0pHwI2c+3fEUvp+2x1HpAJVqoaNwhDG0rXp2H6URR4iHkW/BJdZioCFFALl4WF0E/bQMkbCLmLGQ+3kt/jHI6/7no2Wp9xAKQNz7WFvA+k8J6/Cue576NppsYhGeTQpYLLKuwah0HCmelKcQ8XtCJ0Hx2WBZqZbHPQ6YavAtK6qUDcxWZHoqOOYjG8UjBc0zc+F3F24iM22GyzZXRNR6UiDIsrGYX59+WDhnNsUIwSFL228Ji9cdWfZCw+940Nf/5+PEBBf/AWtyxXnEaoiTjJN7fyVa8EYeMq9bz+ZSDiVpLSUETHJVgJOrhwJbxu/h+jWtBg78ALaPsYwdyr+ddJzxmfBVwgd+jSU05dqPl9GXdbtY0bCu1GxJujg3Xt/vuT+ErKccwpeXLQJRrwQ2lx+H//RyF5n2C+sbS/n6ax5oYue9qzOf7wl387fxC6/m1dUrOorj4Gugqk9Qsqv1rhkBPoG7lRAWy28IX/mXwJmBkMJCAK09t4gngOXaWQBSJHvEH7reHyyLA61+33mcWsWSVymeh6w+vxWrx6M4IEGwl3cItdZqGLWDc2ROVE+inKFFh9JwaYHcSWyiLEGiEtjlKQwCvtPWbYSWM/QNeIGWTadSlLDPCwNMDzl0cnSTOsJADlZnmf05qUY5Zne90u5DhY5UdJ7FcDswA0nsIdYxlO0p5hXGwqwn0EvC2/rgFttwgq1tADzWrd4H/s61p6Gz0o4mWsyuu1fu+atgL0D3PX9Wuhw8vBToCgLm6BP3Amkw5+c92i63PQTm4HG53Z2JCUs6+SJZVtYnn9kHcCU/OPJTMpINBc8Qhva/PWNpijbh30wKD+3VVwgLbJaXs0wJdr4aevgXScddkJQiErzr4ddeME2S+b8D15Z1ZkeEidpLSiothBtwRdwJBxbL9VcciAodXYhKiI9FdizZ1KilkguMMOu2NUe18Hf4bdgguwwfN29ikz193gX3dYBN/zry0CCevbIwtqiWjh2kRly7r6mA8xsHMAFpcvp0UVLQHx1guq6ZpzjxRC0+8RDuxADPEI9m0j7+5lf3Qx7MJQWsibWy3kIVuZPsbONgJcxZpvYF8uQJvAqa3UvNKjs/gGzTlKGd6KlQ5+N5/x3afRhZ226YPqfxTgQvMa2h6TESgUKZTv1JiBQn8C79MOYhnbMnE38/Mc1WZ0OoRXZVr+QtHPT5kVJVr4WPKAIAukVOt74/C4O0OSpUuV9pu3I5XwJDz2s7HevgwhTlx5RaFOU7LDDyR8eE3oP0s9cN4y+kHFM7PyLxvSw/m3y5aNmRS4Fk+h5b+SQjunxjF/JvfML6vHj/afssT17pw3Kgm/hfGEAVSKA8C1G7uXYf3LHqdC8VKfQHlOm50xb1MgTiE/hUTdHP2F5tVVNcOv3gZMji1y09KvEWbDFDPqkEqWaM4AWnZDLhA0EKc6Ce73n0XJDVRRgSqKorr/Ew/GaNiJEGCHCIJLyj6+rpTXRNkqcY7X46NYuaBmGpDtsmnFxHnnZeveCCKWQHFS1v5Ij56geKSxJttTi76B9ZopnAbFlN4/YgJ48Lvj5iZlNSnZ6pAi15jy4JAJq7DwT6YVTe7PbjiOoLamDdGoJetlvbPe4cV/q7+Wnw9rNkUUYtHZn5bRMRj5qNOfg3fYBNIX7XwkyrXR1c98TjyVBWSwsc+VKCQbLQT5eZUl+GZtwdrFFyb73Paioqr8EFtJveNOG13WBYoBf0NiDtCViALktR8YXwSYKSZ8Dzxvced0tkQQ4KjO778WbBCCNleqaFzt75nX5TPX2E8ip4qT5hrf4Q7NnH7eyKUFAss0qpTvcvoyzJclp5jfcdoPqJB334PFpXcUwvjjr7p1KJ1RaztO/dcQu1CFPnq3BrpKA8OrEsRVttgsKuF42hXv79fFCNIcoD9SeeK2czEqGuGbvEHWz/DH7N4bxcGFbvZzESrNCBLovvNgQuc41mO9CvKkSKiQSy1q5WDiu9QhErVwh7YYZ/KuGZVJBidMW5MntG5/w3GavYxcpeDxFB2gvfwD7hte9Q8MOhdYuNuF3QjXcuHARpUer12YmumUzx4gd2n6OYgLz4B8ce5/gHXH8TDBlAhDxT/r5r/Gk1Z3ZCdzc6rx6w7Px9+DZnQ50KQqpxXUp7qlG72woTydmNZcw61Tk3yjLOa4dYNw4frOWw6cwTRysMmcbvxIYIfxEb3zjr9S5FnAu+kHwGDb4Lx7x5ec35BFehjGK3GkZMx+xN5dFU0WBJ1f98RLtaaBSC3y9snprp0cLFDODqlWSpncdrD5EjbMaXhDoizYRWcAc2Xl/w+Mb4IMzLydefyZoHVWlVvwkuhtILNOWBtQua4+v6f2WvYfi/DPEqUv7SYv8GavBctyk8oRfSavdAGHp3BOnUAryXsM1FP4ZXymtiR4Z29Zm+Ii3xYCMmgxsA8Xve9lwk1X0tWNQYmdpAW2FaWPHeolLHqBVZ0z9tfPA7WKsgRXej31Jr/3Iy2stt1m/lafX3MBLWwp/mn0l3nxxLbK6i7MfnkhSQ6EBgIKxY6KuBhYDVEvxkGJ6/kc0eJgtlB02TJzKdXNSezYTp/h1fCfmJG5sfl4O07A34t/03fb1cdWkjBC5mkxT1LweMQeWTcD6LO2+3JrZriR+I7O53AlZyNxp0DS5G0Lfa0/cWn6++ZzJ0U9nuitTGb07JfcAMv08PbYVeTQBIM51D2uAD5bV4hanyFvdw0MbimBGwEU00RX83O/dZVuZ+Qov4N70sBJTlejGAwazGFeryAE4eAcPnsLK0S99WcIXZBJKsmkkyVpenNZ+Wmf7pTQe5MnQLqvlmo10yAZy7WlLfGld9XvdipgTAzTo3sJmT1QtE9FIMZ+Xd5u3PoNp10ERTvTUmneKvhzaL4FYatX2+2Chbgr8ghIJE3rZ3c0v9OMLQIgKATT5iimXAL2DKEDk7ZYv0fOX+6KW3yWyyRsp5zy9IfjGNkNWnOjNzY8X+Axigq6Rj3mnZ9IeB9TWk0lNG8QQlp4lm3l/7eOV1YTZuZM5LEDWPNC6Z/KVFkWg+rQfzUejcipUjcXDnS+aXlCpBs85Lw2qxf1x4k8keZyF8DSU+0LeP8+B1o8AxgtXkr98vnieKaQQeJ9YeqMraHmix50VCsKCGr3fX5GCpA/2cczHOXkZ1Az1K8WrFrOW/qCh0yOk2NJlStpjSHYCBH6CYv+9hJh4MR9Bc4nDHczJEGHpDP2MKoA3mVtkl50cKwVXNSf3MXX3pz3hvSfyKkAaYRNVg1W0kR6ueaSDfUSQvwkfdfWv1lr+stQCn9Ng2bUKNOfj2W2VdMntN8IkM0gHPdJtBvacHiX+T1Pb8D1vq58uEiheUV/wclTBmoCdlVlHmjJ+nbX05vi1leia6+DRY5V9GlTCw9+6G8fJ75/UP+WPH0g5fHrP36BuWYNblBbYkgux7t28JvkCnfInmmJqEr7bIz/g+8W+7l0QAh7huR/GDQvJz6cIQxVIugLMjcPuqUbaVRUPyrRSDX/jn3YaxmhMjU+j25EGkGD8Qir3ZqxympcRa3/DhwZWY42Wr3DpdIrvRCQTz3mZ0dhKULVqa8U0pwLkVAVmrdb45TMnCW9cgiuFlqVujKZT9qBkV+3TqYeYqZTyg4pRDYgDV61H02EOFepAzYzCZGkp8oJHFRWAczRQjrhUKJb84WYOLB9vx+hRn5A0yzgEqj6kZ77HwMBKj6DrBBoPwB8HqUVuVjJ1ElUm4w1ackFgRHkGsyxAp40d3ffgeTxM5bpJls409j1Xa2v5Q6keVhEvWhqdCqNV1MP3UvT1Zvuh5S466kfLV/wPqQmpLjllLTRhgoX3IRJHMbUL67+jyeIoAk8MNWzDnvyMEIN9UhSuSRmn+HPKcAnhyUx69MTm7lnmYoHS5x33cvk4ZjXAvez8xudCiPlNzdm3kFkYRkPJzvFCEcuX5T5XCbZcXlZhiyc0cNtL6nVjvGnt+PoPOw/H3D1kjZcQh9ibGsPx/zTNbNYyWLG6VbdeYU+Mfegfzd4uJ9lcVRmSy1DZQxlTGL07tzSJp2GATHmL53k0Iewan7Yv1PqB5cj9yXI2chRa4XbsatvOrYAseX0u22+r0PGe8n1riuOh51utACABpKzpbdRhSeezQtKuUG/yor/Nf59Iy2iz7IcXqCLkvjGMMKW0XIdfG1uTVLSOHmNry98E45a1aUV+TkexPpAYJQUU954AT1l/hIUAdbyLRPK+1axSLHyTecohWd66o/QC1FinYhIPyM3SFc1a4tOE8U06Ovw9V0yC5m8quQlyQAbdi7r3MiK5NMMplz6EIGfyZYvoQjksQDrsnQSPeGFHsQIFieypwA3/aC4kd9GfWRSO6X/2YTKvEgGsqVf8GdwkFj+yFR5vUArjhn0tfk12yWIKgJKO3urY4t9dXAGGhQaNn84CpcAmkZ1nG4Oe0UimltBI+CaB8nUxlJozQ8Yw10PfFuiKswFE5zrSG3PGfJL2ld+NG44FuI9bros144Pa+/MYnC99F8rOzDbQx+/fmQH/Sw7Y0FtCrjWyrjb7G6CaEQP9CtaEhWi+rE4ETDTmX5yD9nCpfUlMI+c5gG6+Bb8u77+Y0ErFX5jny1jn1aaac9jqOjBbc0+Ay5HO1WPijf69OTmOa3jcuquKq6VjxayUFYZxxDZDQXMc0sZtQzJs3tGNbPBnLkJC+Iam9xDKjsqi7aEH8FAc6YbiRFm2umD+FmTGmbBW/kGeQpsVYvdnseU40qenfsp8RwThkwlNjxYB+Sgb3OOvDXDc8bTRT9a+Wc2k+JKLVi/ydRTUPL9vh1CDXSPPLG1qRcYOYt9Fq6Bqse7xCmFLahZ4Ax3GtAm3cH1LkLk4z1H6JWBDFO0aRDSunYoeH9BOXo4tKYzxbzmT98Q448aq+e106lAYtdlItYn2JDtRBAbDZ4r3hJCWqxFgzTyHpnRp7zfTaj315CCNX65Sgx7ir2W/vAVgvK0FDf8AKk5Pc7ujrAKhMPRemCelZGqu0mdeBTPh2x2x08ChS/xgCP0Py1u4xHVrIyslf2g5+Hq4CkUCgYs+CqR0gPm5MOCXK3o0P9RR5uHY1J+h3m5ANewseRRKcrmRcEdtcSgcn1SiK3GaWScVs7YYojXXfmhOdXqDv9lZJPHyt6ty6WF8zGiZVfSTxdBc/uukwSC6aezJq67Ifdk3ynV9eBMh4fU6jAIEB4Rb51aNNbCNxfBC89HUmgULGZt3ap6V326hOEWO1d89T8+pBv27qE91yfeKc/U5b74Zf6TBX+SnoGpFUl3LeImmASYu279dRxPfBjkLvc2PRc8iw5agKT8Qp+YYamOpCbYsUjhekfGr2S4DI0ot4LqYBDBcUi22s5E6fNcMAUMpckTGPDAvE6s+PJAFQS0GLG61Eznpho4rFNYkrODyEf1CaTUPnYppncUG+TY4D166Nw+zhK5d26Aa/CVjoVwCkpUD+L8puyMdN5fEZRl1MJolU8tJDTI+2XA5YaN9vfbxP4iplFnYxSK4D9D9XkmZjHDFQX9y1uDc4Ngv+K4nFmzvoIdFZVp/28dY5VYgTjmo+6ZioP66usM/qkOca5MddQw4K7A6l5D90GcJU6LcYSC73Wcu6g+vQ8viQMV+o7gSpDqVQDXTGyMbty//BI+vmquvvtWUYrwOhfR0IsxrQQWVLmRegyv739G4t5IEziobTydX6CFJC2+K6OURZzRt67CNgKEryFcfjYjPGfGAEPH1Mssij7vySdppb6tgL/zVvzvGc4HIaX+XhIUaUTplyZb72t3ywETjxaglkpIxLwEQMyKpLNDy1+oUPUQ+A3fO/gCzZx4pY1XUY8SoU/r/ayHwfhkZGs/1/UiZTVBKcQI3t4Kk7Ii5rZdb1NrLvnTksMjkzGcMdLz3YW9k+gZeL6I6IaIiwSFeGPS/8A5g8dQRCCap5tfHaGh34MoDzAAnolLMRWv9ymhR/KMXvyBxTWnv8XBduL3DlFsYDfHTPA+ftVU25VM29muV70KjTP0PLzcCrv9NbRpyz4HkL1NEyvTmHzRqnPxov4zNqTMBxp9qkfqILuvTIDN3SjfxBAiepKL2ED5xcvzfRohomfZnwReZ0kn9sSAUkSeGVV1LrRySnHNI1IiT2YNeKPxDO2W3g6MOOwXqKK3ndoc+bVMT1ndFFwkmcHp0R8rk5nxomvVmIQ+K4wwxy2QpvRQKRzFBZFzBpGWDFlGaxZU4EYiseMVrSXc4zydgVVzCS+ZHjnrtDqvmpiJFIUoLoEq9kKA/RMvZGEGz1uUzogQvIvPzwg93vcoDRmmsABvLPPessRCTvV4dJEmndI5gFZ7VgYDcbG2EDD22RT8l+5d5peEaTwTATsZTrYg5mfjgXPojrfN4XcneSCCfnVjIRnXtHag0568Co+N59lHl/qdIB9Q4oAMG8Tn8hnNWrkLFIffIFt3Ex8Z5AGF3Le6aSXu9ooe5JkNaBvj5Z5cCfqQgpeqB/Wb/qXMaF2e9Bbbq6ycbqh2RHRtBiLouXvC79QW2YfLg8e1yor+E+hEuIm8Aq/IKtRQAwNB1kFuzsqCzy7GvP43Lu4uaXANmFzhnk5fOJgWRdvSbPxxsqMqNac81b47styonabKr5n52ULk39BSgwz6DK/4spPGgrPdDTqu5X1KkA23SGyVNp+7HVi/l0IOJLsnLuVeB1zyceuc8GpygzPbqVM5zJzCjZRVYPbGVv/givmvut27gd9mMaun8mItER28KO11xbb5iXgP7LfXPheDOg5+SPMITGPdXS5TnQHTHsUpLKzcsSZLXNvpKQsqOtMu6l+cJqUS933g8YnKgR5ooT+e1MhIDqzkjisEXsB1HNXTTCP0B6QHdwJ0Q4lhBZvBhkvGrkMBgRq6LWhAhIs5KsqdgQghq9uOWEfeBSsGC/wiG7x154li2wfUM4GovgKv4t3IIHTExHc/pPkATXX9ZwS8HGX+bhK861ML3ZEy4uXi6fP2UzUXVu68oQle+PsnGnB12I4fkfqwG1zHu3kNxSPY5gfcaAMg0hFt8+tyULMnQ8HjRE6XCMNPhrrTCFLdJIEiajyYFYU6PEXUw3/38NbnfiJySvpyqF1cbSEUQj5PvbFE6TSx4wSeSej4Weoc2XW88tx9Sge3RCv2Smtq7+J+rm8mjxZxtB40ojfC0MOf10FqrMTy9zI+w9pGs3yalqPN1jqrf+F6h1iZkqHQZqC0S1v5CxVux6GH6CRtApsuEJdbcYPhDPy6uhlCfVbNNSWMvUVDNdFA6W+2kkW89gHivMTXx13x31xMu4QS7K5FptKr9pT75s7Qx40Q8y0fD/SPbXchbntgaOHyYkCc9+c41ujt2j9DkbQUasuflsqJx7PjNcMNjTDTR5au8omtqpdYx9IVjpa9LmOzDitwrMk1UJMVwmLc4cY16FuBTB73urY71B711ywUZBTRiM1ykTH4OpOyWHBHWXTEPTCqKA2IwDC4NMCfqIsN6i8DOj/TZH5wofdgVNorelt0XaT3zTdNi9qwzTSGpJrDLK81Jb+RcaTysXKUTEyYDNv2l6WlO1WtUdUYDDirkPMoxLoyL5+WYkm13kB4Lzea0/Ih1lBVIVsRFov4wbDvYHNkESP2nrFGC5uKQ4oHx8yIit32y+RwC8LJnDOqS0UTcUjCdS8rMtzYbHAE/9b9TFp+UDee68aU181ypQh1V4l8d9bp0Zsu5faVE4tdCBwfJquQvsSyG9L6h32A4hvGERcYUJsmggoNPiMVQQslBPsCnCAkLjFLc6zE/jk3jVrCFC2xffAmttdNIF7GPQ9B4d5dNbYcILSil5MwLWVdqrT0pbER+nrivxB4S8YDUiyrHfzD05C23ilUcuQ3vb6A/yGNKjW+8jNohADUvdR3IsCRmQm//dL0kXoAHH4HJHWwhIJTWErLM8/DmpnGtMkmrj5w9093O8yyA6p4KWYbm+UVfqVnRNaMo86PNq/p9tdx8pAXK6sVp0JbO3sKhza1S9AHQdY8q+7obyCKlV/IhORwP8Eu9+UlmHNaQO8Tk7ZkztYqQtVEru323Om0It0Z6WoQDj7GLzpusaclvgxlu4MYT9IOylZSYhu+Ul+WTaGnZN5C66/riTqD0SQ5KbHkp1Jvmq+zv4nARDZJBtOkZxoUe2uZduibL4M9ulivuYoVunPl3TYl2xRexG7FL4u4Tr+5OoVyvb7ZRwShOnUv32dxDKGxpoQRy8ZJpE5psu5xZqcPIkHZEBsgs3CzJ8+0pNtAMeB5+ANsYq84kjSbARqfdsTE6SrElWq8BH42AB4rtxqfEN2/sCaI3ZkJ9YUMFixJozvbzHy4zBSlLAjXBUzC82rSkfxnkiZvRZJtilm/c4fWtbc0ohlHFhs914d17E1QXoD7Ydrjc//EwDZimjn4w9gL6iBh6XrgC8xgtNwl9FfC+d75wlfAot3RTz7E7vEKI9mr1nIFdsuWDRY6T+S38j3S9dP/I7Ax9kYrszHDyD3mIIMdi28iT1gAeBXY0DKbzyiBJf6l3lMj0XKkXP0UIXfMbwp0gEY3nsSmb8ypTYN2VUiutD/Z+QHK4JvUBeotmjmQZ5r5Lz/2DQY6bacbXrF0xAll9pyI18uAkKiEUslWUzyqHuZdbuHXh6aazLWQWfWCd6Jj/qlPlk1lXP6JnuU08IIvJZBwRr2Y99PR85BHKlUQl2sAY3wmWQxlNk56nx9WLasvURGKsHwd6cN43agJQe4S4YyuW5slcsmcI6vsAYxBPLtuTbEeU5IJ+q9osvdNT1oOqi+cCabgenwMJyTFAOM/pdqfjyT+D7bqhtFkVOGz49PNuUqhEZkkziR7FtH1l1OovZCEvij1t1wf+9H7wJyMf7RwXPDpeDtWFvCcywqNW6y0U+F5JpT9YOoJWcPSpb75JwYmeb1Q5W05x4pj84hWyPuqr4QqOf7zPXDSN19fjE9E+V7FRlK8GeccGrWsCzn00HLaSIqVC0L2ZoFIeJ8G+ZoGi+DInc9/pyXBb9D7rXjGZg9WQxrLiPyWnOS6vLyxoGEGcFlLHlrvuC5sWOOLTEJylW+ngBDP6Qn0mFgZLwhapGRuqdcjvlD2aASZBuSU6UkihO417n/KhCBMrtJ+UlJBe+sisPK8qO/2qwtww6v3H1l77ezFZDVEbqtY4XglqUGF6n3fL+k1on3PTLefkNAB5ZMOUG/nW3APMnbL5WOJDC102c9/iEbcOTS5hSwhVycrJGXDOucVlSTX6lLLJdjQx62tZj9hgWlu/rZbkmmPxDC/xUxyZQBF7uAT90RIXlxZvku28HWofhTSiWWQ6jCGmSVS2O2pPt9xRSOH3Wa7H5l7Rlu+XlWq5IQNHTg8YC2+opC0tJ7SO80n1kPY3aX4EUxm/9OSSvodTb+lVpRxt8kpiOGvyGlCdy5KLJmeB6bzKu0/dVh0K2OFwfsVWTmCmSQTmyHpiTC3+or7ymwq4WDMVUDQSI7FMTd2zc6sGErTk3Sa8fkkvYM+fq0g7hmzEVBPLFLABQiRQRvWSfxw6aYE9XhXdD286/S5X5udlpVTD/I20zSFV8Jddcl1uXmxSsF3oMLdY+xp+LZzsQURA4tCkYWH/FPhibjhiIlS1EZVVP5Kyc7Bb66eev60IbkfwUaCHyMjmGwS7OdzGyy9saNUkENt0fxqZGKBt/uHFHRq8qJSnigFdjR11IsDVTR1vD502ZJ+LWDpzUVmhwpWATdaaBoPpeD/lK/pjd7r6XxVDHmGLhjmlrA6EL07oMHvusOx36uyjTFsGFQmuJxalLeeL+pSfUX8HKJqskgCO6oKI49IDZJgDOgYAao+qYJGwQxitiSGAHK36PKl8cpO0JGRK5Jq7pNri6QUqeoixEvw3T3QaNwcdbbHs4ey8a6IpI78UnnoldIwy66LwMxswa5LrG5Vldyg9QPzVggamvQyGd2nxlUTKTHN1odi3kwBflm+t1wajU47RJTq1dn8jjk0O+bppnnRDl/S40WGCJ4ebwy1MxGlaTQsvw7i8IFvrDzNTiWDah+8YxSSY5O3yGf5lRxT04IWYsqsHETxrPOKgAmdz/uF9FQ2Vi6r3Rx6/LMEZ6WimStDuRUOFf2oEHW5XfVuJKaYZdnWUIsxqO/hbEFYbNo6vco5mdS0qLYKlbtB4/7R/LTgqiTrPSgjSQ6mpfDiMJKJI/LpEjwCcYxY5fcoJpL7Pb/nA16QRAJUt3dkyf89Bj8SXZs0vgFAHdgND1BS1dvpFe+f3hpQl7P3mSCC2pbzTOhDo0CyqsClFkym/XsIs12gJKhPrevySwCfesGpuPjJOzUCkfoA7jrS9we9tJESKxCreGdjGsP3u7rLnaoA774MwJK0+JahK19CVsUYEUOGyZReqiMz7XKByOVFIX5a20zAOOHvoONgCBmQxO2gF4oOQzHWnvtxCk68lEyS0smuyUr3JdrfGP5M4N5nLBWdtE2FpE6tnV4BoUZrMiS9Fh8kYfcxQq1wN/VKTeRV7LyJQP65L8IyKcNv4XpM06KhsmcShTFtv7ESmUMe23wI7f7tUwchsVpsigO/vxnYdJ01Ci88n61RvrH2jXeZoXWDkxaTN0XLYjevYl/JHqCJUbj6bJc7nKlqP1kwkpdK/Mai/7sFdd8YQsW5fmHP3GDA3BN1XrJBP9WEee0GEALqx9ar9U587RJBuZX0PYgCO4piagwMR5qeRKuEVzzTOVokf1cX+xQwYCchFPtmDNhjeQYqdxh/B1yHQxuuvwAJ3E1ogyLJM7z9osbEM3nmpNGRrjhtS9euL8tckwZEt04HHqCkPWN0DyVXxryZwb1IC+bFY4f6/t3puO5UaZGGJTkVrlzAp1ltt2o5EhndAbkMQ0cZB/w/JWh28ZRP1UXJstIB5NgGFcIff8lJlHnkcp0CQcCPObLidwQXdh23SZj8T+VGO76Qx9YO8OVpma+M4yag6EiUcDMlCbvr0Aw+jGO7ixlDgzyNRXYnMOp73G34jE0HCHIcQThSsBG6abuGBRlAkFPiIo3GgfrM6Q5evtfpDCBt5yTv7a09YzL5eyZWq2IvrTPSTx3XFmqtPfDZw1NhLjDLslUmWSoM5lfvoLExz9LqV6HQUgksIH++953lIXNA5+pTz1i3r5G3ZOzHgdfzZe3UNBUCSjAQf3k4EJZ6qtdTeerfb0x5bxuOnRs0J8P3SSaMrasOM9vQs0F01iFp4fUz4AuSDgyBnrnFHr3KvGLLx9hrc3kvEvrmwAXdCDovZrC12Oofd0iV8I3bBl8rgjyKuSdwTRDaXklMsNtMKQ30sbqt/WBlW9octrIyYr4edbXqDO1ZxGojDOzcV1o3ZblakQoNSpFhKEi+bPoNsIhZj0odXcqJVdxtRJ/uGtwGWkDDyD8btotvXp5VBDq7h1ILtE7oyVUMjPJ0C8tpETg7qDmbJ+EMf8sJH0Yr0WjGglrGLumgW99B+uEU28Z2rCIS1kaDgTssvQwEH4AJAbNt1SPnp5lpXIcFnpkKQ1Qz/bFhZX+mc0Km7VXf45hI331iTpkvKf4QXXZS3lgGXOMLW5LrohglciPhnw4qHE7wjG3UJemPbzG8NwggPTl2Hp1kT7WgWOlitoNM+vWF3KfjbeZDz+k4V3zJoJ7gpps7hv9Sl1YDwO1Pc1zvsaCLcMwxqI47V2GYOgjc1Vm5rQvzYSJaD4CS65bNjtL/F7xeYC421HeSdGwcs+BmyjpC1GN1DKW9weaWE302VyC+Yk0a0GWUsM+IjcoJUj1HLxiYml7c3wnBRYK2tDAiRSLoz3DZr5J1Cn7Sg+DJJeVH3xylD1sWIFlfqQWqcIU5IHCb+CnHb/K7Y/br/XCYIFYCkO8jwDKjgggbD/TPzDfBVhk0hLl2zZmbpnkuGGKmKLqeU+4oKxfazpzF8M9v7c22Apx1XRQdxavNcqee4/2JRjASyT8OFM8BJ9kGhztSL7PQgCEnRA3Zqv6dhwlGnsLjuU3QfyQYZgRjkTEOBK8DEepHwv/NDekDoV2NJSaxM3zSJAY1SOmfVU8zTQFNYfmydF+mX0B4jITzJzoXw9Kn0X1tgGvk5jmGhST3h2D2yC5PaBwfl9kt9T014/NDJqiVGKuxQhW7eIN8WDo9wfY1DnzFHs+kNNmnXg1i6v2aBoaSAA21kI/3jVQ9wYzilucelP/14xGZL9l0HNPODnNdYpzfdQNVL3Ln2NXdiYceEShDpeNKj14p8UDrV335J2rhrLx5Gdwf8XGrbYAZa7hEyrjDVsh6mc5Rrn0IsCGEAhRMEDwoSWG24U5/zvmaiSxtTfeLkNIN+/o9FU7LsycMV/secanBKhl+X/Oq/xrsyF4H5ek0IyrmPOZ74eNHo6nf+nKmpub5rllYquNgDgwfk7uv22Y08fD//ZodgJYaKngInQbkYNIM0z5xZOzGh/+iAVhzd3iFdq7kOxeEwp52O1qFRrF+ymoPkbB2mTm9TtzxHBAPFyvW9kTQTVN9zbthktg3BVwFEzfp5UQqLo8cPntzNgx2CM4uMO+Lv+GM+p5N6YZOFH762SIT4b276scqkhXuMwoCaCHTX81+Mhd5PA/aiLYxz1/jc0yflbiAnUzOZ1efnyuvAD24vX+VBd6Es912gLdyqwlBvyBQDW1GSqxiPIW++pkIdoh6d3WMbpbm8A70GWpnSJ7UlWhpSHoWfcRweU/hpDu+cO5kP8RH3K8OpkOx17LLcS/JxC/EQVx8EyRU/XWW90ssvDu9aAydBeguhPHpvZGvMa7aFsL3dYFu/kP5ZhVzZmoVoeGteQpFnyn6qC+90B2NjpXGJg9RYQ+p9DJNaewq6It+V5SdHA6XuXwz6F+c/KU37pVB+9PtWWgIcxpaZoBmQ5q4ZaHm2IU7BaMUl0S4haTYE3yP0TbogFzMDywDWOl7da75a2wov+lhUJa35LrmQEuRqSYZ+PAx2TusUeC+g5g/wZ8y4GIu4LkKHbYulkHJbnJRVYMFOBwQpkoNVKznRhIQwF3MAmw4umCPCnuN+DlgORe5/2amWv9ouxzFTPIR5XHXw00AD/3hvc7T1ZIemN9sEw2lltNnyMbOweDqQD+2cDRwOEUZZ0lXBix3WEpN0auFDF04/uqeFQviU9Ml0yqWUjodfzZhDyK1GG42ribgDlraJxU1QabXWqI68jXw6+ybzAo2wo4oHi8PoiRdsEtGei3zSdoWWcMXZMgjounMwA26v0t4uyYDBAQD2x34dobEVKo2cABGalWFW8qqiLXYdg6qj5Q5Wd9AtnajiULkdS+f8aw3op0gjbY+2Q8HY1pBaqOrCY+mMMWdX/C0sR0NaNkSc8M5Aa1m9tENCzI90uETCIFOLSeSDKKf52OU0xjJ/e/UcbI7rOzSnH8bROnJ7FZ2MODEMTN5uLsgu8TjmjjkgCO1Dd4tmvx09x9uSwpQcFbM86W3W+DsxMFv4WDTgQARbnIfG6gBsQGQvRimTc/105VisfcqdWjh9oiDzFZzpYH+5Q3pg1Np7oy2tkDo5zin1Poq6OAKEdpA+fsoWpkD1d6QdDRz9w//vxeUg53t4rNcOucI23qDTRHTeH+OJ1sQs/hAfcMBpsXJJUGkRcXnlaM5DvxqDLl1Af7uiDyA040WkPPpYetUtmBkQ3vxu/+0ucYjkuSTxfclpX0rdhx99Vlyl1pIfDqAedep48q66BYLwHdEpCaUxRczFDuwueAc7pcJnM/g30Uv/sDXF7f/GjNUjQNkpcjLmfrAdAakngZhTtuqmibco+0T/Wo/z6uI916EhERD09VzVNbN9GMXbNAjk5TcgVzQfTMX1BC5ZJPr1YQRTuDu8Sp55eV7Qs/J3VzzUMz7QyrhBuhKAO5NfD2zYABOVdllrs3pL1tHdc58nVzrqli0dETCFpjvlwz7xnm0GzraOKnyvWO5+A3WlO3Hp+glY9Cicr5ApH6GeQKID/3zgamJ0nVwHhMtNKnhQka992MMUEJ+xMLfJlP9TMLktRhpsWGEzkH/2RGpi9GrErRNa0pUmO6LawTOKtJNoQTuuF+SkGTcJhhGybVvfkY3vdJZvx4K6xvFoGCAXHzOiqVkTC35cOLBm1FNzQBh7Z5REjmEPziiImINtzWb64xBJUPRi0hkJmAkGRNZp5yYBHKINor/KDmOo+G4G8aUhOXEop4PWUomVvq/h52blPWrGQBarMoZrCy71JOS7otL7yuTQ0gJ21cBwGapBtAgFiVYGcUl3rjiNabbRpOBWK6ben6NYkKiYLBgyaRRz5XzulE6DIJ+a71BoD6QieqBGlvdpMW8brKsevLwi8AV1uZ4aGJxq5pqiXF0ikdINDsgInqBS29qETD5K9Bn/QFE5/tnzrRO0UeE8ap6JzdyD8wt9fJeYOjlysu+rV5may9AHHRD8JtAh5kab5zmekSdj9zkXOWAP2GBnVi72Wup/C9LYGGS8o0OWmWfzF36mJMHhfNWBe14UzeQNhLu5MRRObTNX/ZrznVB9qS8gVPG0Z/C29FL0DWrsjSBbRd8yDUp+E9N4yikiLxj6a+KOC3a3nZXyOh4Uj7hGO3D/t+XX8cwljfMF5uZ2XAebqadh3ny7zECRKEonFEagqGho48ee8dR/goyI2+cnkO3BM4XtQ75uCFCOxapKWRx3YAzOYngfh/11YqT30o02zCerYo8oTPt+cTwfHGqX+MKJ/aIColHkzBv2UneaUjrR5bjE41GMf+GVmFX3iuhhiRqA7qeg3hpXjB0omOw2DMNHivO1YWwkfiBqdcBnDDLxBAEBedNAE6tcE5nlGGqN6q9iblUtLfs5Vg2kQuX9VzdmYrGN/q4t7GzOqkdVGtbjcHKyLZUe2II44zWj3HX2Xn1FttAs4lUN7ZaMRi3B5ogNmmJtJlIttv82egbTsEqFF8TVadZW+AkihCG8sL7KcOalPwRnVVR0CyYupvDWn57w6SyM5ApDbsOAXS4+/6uKO+ViJg5/MqKff6tOGJxa+2rzMvoH4x1NMiir9fStb6rvIuYi7oBO/knay9B/m5MFmYSx6CQwVlMX6G/IwgM3tWS4/6zUkAP9mJ8G8cV+12Za42yo5iWF0Jy4KwRrx2FY+yZ2NTWZ90h6QerdKaGrgKjgsZyOhTUGWX/aU6pinYfYO3F/djET1O9qeR1M/HrYqcOIFI+KuP6CKf77lfn0iXeaxC4tVaz/n5J4yESdiGKgHb8wSteh2r34Hkz7n8BDgidTZMkutzK8fQ0WisxXsRTggo83miy8LwR+b5nKKc7w3b6IIu0V7qDgIpCyCgj/fzSnMx81T6erNWzQZnY3kOSzlhzeH5O0fd8ayda5MGviMnsD88v+ZMGtVByeJ1WLbP16at339BDlsubRPLYniHJo8VAubPafmJBUyq2+ydkofvwQNkNr5f2wxtDUNwKH7TZN4exN4/gJSF6tygKB+7UWdu9qBG/PA+fPz30tpkcKOJv7DJ66zu6sG3jVsNG3kFnRoQ6MsC4JGUIAcAq2oncOmioe8JVnnvFPtxuh8BTAzpBNdabbIptYE8ZWyWDTdVRi4RhkaV1IBMJWoDEkK/OYEdAmw3N9JrE/f/NZOYf/kCMEqI5vmEaHWG4DYvDTk4sleg18x7DgppDO+LlxSqrNZa+WKX7Vdc8ZEFX01iaWgVJ+TYsogj8IQr0pYzS40OSuElOMtl5d3EaFGLMzY5NeCdZ5yXJb/m13T00+bMQgdgHn55+YDyV7yQzdgxUSderD+oKdHouKxHzrGmTxg2+WiIeAyI8b3sbpb0M+1z2h8atUrJlJCExCBifHFReJsNAxqOf6Sc86Hv8hCcPCTzso4C6l8oup2Q0g/etF8+JnggpXMElnrEXFM/z8UtDixoEcf8amjpA4ICmnuWLSTAvI5SZp06pAj8WXQQrp8TLVzLE7GQ1U9Fvy29OAiI4jZ7cmFumzEPo4ehvDBQdjxMfVhHHB9VCE4uiCfXq7ZzfqjL8GLa/R6EFPWuYMlrG5QFuWqtR2+LCbBtnVKxhJi0Q4f1Jc+PQXCN6jGIrsZf0WCSGdt9RpXY8wO2bqDTxE0pkqMsQq45Oznebf8QJHA8HZ+IcUbAg6VVnHAQCziJZvupCph1kRpGKeKiotYF+vz/IEQ9br3T2/WauXtA6AHER3O8Nr4CFUIzokQ4vkyMyFzMIk6xeZGxTiaKnFklWapBDov0/Ivn/J1+9IGIC68xuCSm3I9jaI4noF0eJtVKGJP/KAsy+LMKyLb5dDR7fbImgj9W9qhMWcGZSEhI7tNIS99lv2MwX6XGL+hnpoX2L3jz9AyvWtFDSuaqdB6oLvhm0HekSouBps5HDu7Um7jN2pWISDtyZcXxRYnw3GPE3Gx+6j45moHlmOIkxyA+CQiGQJvEaGHTbpmLjjUCbez0cReduMjbXwu5+jdc2ed9V2xl0IfnekrOwiflChHL5/pGT+B1Vwgo0C0QK//81T88phbWzSLwfbmUyAeScIN86HDJtITmYTikH3Hhg7yqbtyw9NeFfpX+Defjw5NxQWXEiGVzDW5bf7hIGIxy/I0vsKb8snkRT4CFaAD6oah27G5h+tIQrwiwSNlvSgWmJXcePbEOOvrIxqwameSlsprx1ZEPHPO53zXgmpryRM2anwGcQJusNCoKTfGlDnHEYnggl0nMvdZuFOBoC6qSq6Wo/p1wFHo8tcYtIF6jcTaPo/A3xMzmduEAB/8P8uTvEb7i6u/NWhV6vbrPYzPATTePJvqd6WtGnYJvpoF8B+q5MRulwGwmpdvFbPCtxFEf8nOAOabQXSQxnuSsnnepOHb8Dq5YV7joq/HUJr3NW58TCkwHWLxiK8VzCXyIQzzC+1hoBiCM0vTS8/TH3pw1GQ8dI7NTXR7MZdC33zEHwMjCbnQ+PTY3cNJyrjb2VlLey/TUDILciLFVTRXdnhd/BtagYXkqT7cRa8+MCIJXzLE7oZeqWbhMd40QXnIpcyZAyziWTO9eXINWw6cetnxJTc25JuSI21jdtsg+ZyO2fAqyK3LAt9v/zhXbIUtFa1PjAjN80bb5O0aqWUnmzunIhphggFDVa3HbnDx7pgL7olqbOFMbGGXeU5tpvEJN2n5fseIRZ8l8umSCq+i7IJpDquSUrsiAVWZJWr8c6VIkaC90X0+7EYajuPw3+9Td3fP1xE37ZKyQe8VwqxaXzeXbcyK7O5vBqWdOuBaA222ix6xfVk1i3ineSPxxmJ5JERxO4tbkTK3qhsGkdx11P2FphXbHuj9HrjA6f2XV0MibSAJzyWBjdIoVtx/EFEMVNUuzrjkVNjkOxlY3utDgjVdzKTXOzFrtJQoBbQSjaMMTWsNHXn+5RT0kJViNRCnUHqYOaSE7dDD4BwQOMImy4a7FVwv/KMtVqrN8WYG5rlIlLeyumCZvK8O2qxD0YlX0TkkQ80+WzNtt2yODk/FpW4FInIR6R9Az/rTAl7WxFUIm6Y9ONChUaSUnvZtZSNMoG8Ax+MR1+QlG/lFZ3FFUln4SaPT56crxhalcOF8/WfijYfKJsSw+x4VLLRDJrTARX87f7ap3Eh61SyGGFUQGNC8nHXvX6A7Q+eg9MQtv8DZNi26mxKZhxjfIkCZu78blu2ST+OfgKNpgrs8Pkpfqucd4jDhHu0DrnXYddHVc2WbZfPsmIqUCqK4nKAo4Rrf3Qgu6X2LRrVBJDVY2Qcp9Ni5JZb+iiA/TA58cMZ42Gk5w9bBJrEWezVFBbAf+wLNQKeKOKNQQQm/gVdfxgHOxoQ9x4U/3PG+raYu6NAXl4qygqIXmlur2Zkl+Gpzy1/Sc3nAesu/DXqq2xzxwVVYT0AcMBbRVRZsMt9kbZlAUV8dCtOknnM37fzl8dF1u68RqkZBR5gyQJQRYM0sSxIQnCP4K9P22o4vOPGqOwPPS8Hgn3CVv7PbgdivWeiFGeeV+LMM8PILCaTEymTPZ2uMZXsQUGWVBS1REXdukg1RpA0mnxQkB9o1JGFI7X0dsRjyKXQZFPEBdGfCwc3bPMiPnhctEoevT03uMeOlRBNeD/dQ8Dg8M4FofNtw5Qo9MFWTtEuG8jcL+2k0RWvq7ULl7RX5tiZZiGhSDZRo8hqu5QiOsfXWll2wUIN3Nyx5jn6rjjbpB3tEuLlgZry+oT9/Kw8hYa6Jze9ye0knNdujpe2PZbNtOBVeL34GJvGDlWklo42ZdQ9sUyy2wUv4+RJjcnyablNNXQJNFGPtRPkFFRxw2hQk/pj/1dEBQMbfaV8ozhtNaN1XcUISeDTaW9iTb/c9nhp+m8yUyd5WKWJtEBDDj2ffLoy1eO3hLRquDoH458lX/kQPPcpIHCki9Hp6HE7i/MZwN0ZGKuE1mdm194tsDihrf13WyZyPsvs3GlR4QgSnkSDuNcFoFSxsnND8ij6uY7UInAYpE7EZhZKI/mVdfQ+jNkCLrS/i0SeALgBhtEWSr/qDbA29To6iuG+JiQ+9vGvIpnb4xGX2Zx03cA+5Il2zh6ac3Lh/PrFTLoJvtZhAI6oO2w2yHR+/2rA7MrBvzOcRUCeKDWf/T9LQya4wJaH+L1pnIFjQeMI83CFtnWZqPH75CYpE/BFzk2bNKFhLVMZ3sTJmAn8hE6KVUyTbhajtzejzMUNEYAsH9IujhxQn9Z7uVpH6BIPG8cM3UiAO778/D7ziOIhdVQgCm9WjoieUBa8AFGriRKXJL5CeXmhjvPw0xBxa4oSdliqvoJ+UqI1PtRkFxIN/rLnwnyE6Uisb1bT7H0d//XiatBKb12Hu/5CIZkfhdW/8lFjopierr6Yx3+U/BIMQ3xKffU76L4LO+Zd13vLqsbFybsHQmY1eo7MOlPCVO5MQcKppyPRcIqBmIVicAaX8ya6v94EgNzSEGW534pbI/azU0vezQJtJw19cMY6hxTUn4icqdnmTYoq7xlQBDgGsb2pzGBMmz0AVHT3mISGZi8aojqbkuTAS2mLLV/GU3ch88yT+GklchDEi0WcthBqZogEEmqZ5rPO7pOiRrfd88Fo5W/SOdHhA9hKlZLvIephwCD4KoYiaqb0dPB0GOWWRQgi7ZGtSFpZhiKLkpZXSw2927bgKswMRiG0qzbxleRF+DwbNNOZEMWXLN9xiI4hiEBhqA1pImgp1xqlYNwmmsKImnAbvM7tGnSBGim2hXgRufFPWQuQHUkizdMbf6TrZXM5vxJC20IMIAr+EW0dVMu8okRvBgdP2YkgLpUKvcBGMl/thiaRjGdGVpcyWVStM1cAXIzKGbjK5QuciPxTBrd6akjNw3X8U4z0jCEaR4/pTrUGYEIaYyUTz1pDPC2JSsrEEKp8PoK+QCci8ZcCImn8ahWRus9JaSuHrNUGEWkIHuJppDfcd2Bgj+mMF94Lu/PxbukvxWtGDLarY8MmIOm22RYywLq5CraW6tngOIlF4el3tcWHP92FGGou5YYg9uLCt4e44vgSPd4uwzwmv52pXgrSenZ91S2vRc8e4rjFiHmjPenkBqHV8ZaY9h051NNEygmje/9zsZoEyMmPlS1s5tGkQjoOL2LbXYjSo0JYxLt9W+oPtfshkdpYoouvdRNJrd3OsUoEa0K8GHDW44DZgY94ARu+/g1A2rlQU4A9giPj1Zv3qJKbngBPjp9NAma7/7ijuh50fORhgYcomi5WVqkyJ0nEUvQsuLDBMUH7JSt0ucwSAdpLh0RhR3LxClcrTjLaMM9rPUBq4Qm0snze55rEZvn3Z/ii4YwY3U5nYmWPxy8NaRc+e2IZiRlUgYrNCZn4xSCfL7YpTJQbcna/yKl58DhIct2e/j3xC6pUQKOyzSiUh71PufmpcH/L3nvb47Tie5Vd+1oWymDCMpXWKvAh905/NNe+nC8OPnvRTkzjtxUOZFpxulG1JF6duKUp34CZAoeS7SO2HBVNeOPHUqGmZRs+Zn4NLP1YEq1IiTjMKONM+kWYKM+A/mwAMcPOGntluPzlhAlK+Nb8wNip+ymOUtNrcUZ71oeieGdG8hoR3wzFoYXO88xHO41lbVAB3pVAVDZUgSFq1wLNiJi7igkgTShRodpoRTPk4V5gP/3m2YUnWGeHR7NYUHDI6kUAQTAoVWZpCxIwI6wVOSKpo64yarZjleLQH3fB5BKIroVLRxsMq/x5dz8KJCMWykvSOvMRf4eNOGYM6bkpVl1ovJN5sBDiM66TtXwyv85IHYrocSAcpE/DFzY+xpkWUP4DFA1PbPlFFdaZr6u+hItJs6jhZ57qbMBjZyWbmYeG3RCAX8Up+t/r1FXHs2t5vStkiMIV2CMTfY05VOQLrztOtNK1Jt4miQ1klSZc8fZwjouT3DuWonyrIhwP8P0Kzh8M1dPq1kEsbDDK2Ks3NAJswZMVIzeBdNBUSbZcEwCQTw+4rCkT08bLJKGH5oFGIZUdllQXSeXGpXlWzz4epiCplpoPZ4EgRj+82NW9ZWuoiDBbrEadPXFAr+OVHoB7oHGVgJhmTuw0ejjpWsmqBjEtVwKQxEU6u2mIS2QIy523IOF5vCCz5hQ1XfE9vTghIZLFZLMFAeMMjJZW8pj3NV8ye9IoWvxHJc6E1UpI+2eM8eaLbNQl+byQe4GqH/mz9eoeOAi0P9yXAdkqWKrh3b5rbblbpgtSTtexL/hCXsNVtffNMtr9Arx2pILaeiy7qhnAbIxH/O7eu1csGdaBf2Vlh0V/OmXuGuv6ANnqAgVRpd1OmB56/8BvSCT85bZpWs66Ba5BOiAw2idD+CYvFXNze6XllXla49B1QNkPnS5S6lHCL0ukUPHBa0LcheHiEwr/xRTDcUoCy/aJy1rDkD/ldzLowpn82mw+EpScanEkiSEZqEXluoriRDM+iiZEcwSuVIeJsFZxkSnv/WMVH4g4DfeMIy288qgRv34OFUuTuYoLjx0KBPuVz/Mib2sBwRvrGiibuCKocqrikcT4z7S8c9gI8rKCsO7bF/netYSQeNd2Knfrr3DnevFqJw3rtLI51ZZeZgHfhRO/ZNVQ872FkMzoNIUuLp7wrMshJR7mAgqF18khKJBCLFkuzC3VsqIHC/c1FUODoeIG0XO73ispBsx8kVDtdBjSolJ+4rtiY+1TvnLOYasCdiLuYwfavN/ND0+5zaqtAl9bIZT2Rjmu/k7S2BvEIFhFMesHh8Wdev18Wb/0zCi58GZRhMayBdoyDcJAst29Hx//eNn9ex246HLUUHBvFn+Yhe6b7CJBdxl3lTRitcgV51dmqv/Sn+OXABdnKmyTvhknKQACmxAS0gZNCkKd0mfdrBl0PwwSOj/zhTV7rirPswUSqZGHXEWZ5rPwAOXU8OSqaxNA7KDHz2HuSouuPLroy7ewGoeV7/bebdsAb3GAhI6ZdM60Z52rhroeO5yY1UYHEMQlTFaKdxtyRHK/c7FKChbKHXmPX2XCYg5X2q8JlT5q3tgT4PCI1ZXtVDP3APn4b/aAkKbE1hq5Yyd4mLuanCoZm+1kUWvmAtN7ULpR4lb3aC/+DvQMyk8Iav6RPn0ZWjXAV7GpSMkfVqTvyt6peEaj6YmDhpBxBb3lWb7fW9NKhTqUOlHUpYoy/yULHk+4KvXgMEKlgl+AO24Ix1HifMZTABn9d1aWacri3SoEnQreTQA1pPZ4IHJ8pNKoxuDIZALqRXaliBd8hVTeUtuF2wfa7McsY8DZCIb3AvXA4DE4Bz4JAFz7symFQAn0wGAeQNf5RCOQZmAG/MAnlUtEiykMzlejW8+j9MB9mu61oDM7VnImlMVMChxkzw0TECg+HQWXDVRSEKtEcG89hsaHSrs8wAyKMwXSD/ZAmsmOkplHpjAnVv630fUb3AVi4LTtCKW+PH1euIfFd4NzGBwOkE7BB1HpPJ0JthseORpH/7IaF6LzcGzxXs5SMztYcjIeT5SXTbwoGdB88Kw0PWh/N731+C4UIAMDEMLDTHep8DsLee7Xv6f7vmiu2kK6J8byT19U3stY51ZdnLVUCnU4UKD0GkWNXCIdK9hEdee9SFp5K8PDASatUYVUssusG9bT3BDLEL7w19lq8F4bxnWtuT+9vQ2NjIhesxbOhpaLcIJ3dIUPl8S6K3APWSU2rVy+RrkziQc6QGRNPZC8ox+vXPnSMa1kC4giA/P6fEfvY3gdACqW4OHTcXGDqk8/vzxhR11uJ/kneaUVDubvxG3feaD0Xyo0olxC0AJqVX4RuyWcX0skFunXGS187H+WhRJl6HI9oBppP/jgibClRDq16B6ajGCNjIkxUd9b8CAfrxs3az6soFYau6zXJaVv6StGeTc+wWx1EVU8vMeBmoZSpO1J2tmQWeHyvytl051gcYPwF+g9cEo5YQkT5BBOuakQnvCMkXEyRBdZqL4ia61WEpKMwjad68LfOF5UQVJhXiRD+7IWwOHGMHHagdWaWJ69pJcTR/HSzaz0hotCgXYX7o0HPJ6Voxz3ZZc2iDHqliWFDJryEdclSAFZkfxYn92p7xuLAqbVJkuCzSVsXL/X1eVr3SeFQY80k7gffQoQeNFYlaSbTZ4bwcCAjXZL4Z7nLLhFAuKgurGKSIaHedHSq4mVH6brDYJrwc9K2xiIuRaBG9IY9ciakV+nBthdTTI6hS6MKQya6ikstJuG1U9hJRYPeRotpiRPHQUZy78ubG2L17QHSwjUQ0IyJ9Hyq7Nj5tAD0je3kMV2jAJn2YQ/M9jUn+B3PvTVQvrbowSrYyDhD+7qGGHPOgqQfsePc/t/2H7T8le+LJhJUDwa/z3VMJ4IDGRQ6B5OjwB9bAjaWKbTpmlG9tnQITmi5YlLAEBFm5t0m6NymIOMy/UMAHbFG6Un2DwFqkCckYjZvmKWp6CFXI4WZsB3qoc2XKgnNaYvO2ns55HRoCRXIDzaY+1TPfK2Yk6EyZpT2yTczZbch7aS359lN1bt4hne8I4fUHXQEJBHTfH32GniJziCrGXtm6CDLZt+/hQBCtCmjGdcAfdH/OZ+z14HM51Qe/uJbh5X1gBh0L+siEDk9WZ7+rjIqlIcUCod2Da1NtwKgqdjBlctTHX1KJk/Pipl9WyvKgeYviWXGy6JPNezFEQAyXL7wMu8VJm6c/6xdR10F47isPXhnLZFtRJc7dOm8p1DirljcsZuBI6JjuWxOwZKv9eb9SLs1koc+UzypyZ7VG11hP0+zkFetbJd219mZnkSg3sT4En0WTU2fhVN/eO96ToOgAamEhdQ3ZvL3QMJp3bCwyEzDZLbWEQXRFCroXxoXBRNP0ENUPsVFUXBaAgrWJXejnH7NBRYsjokkJlmfxBNrfa1ZiphvuaWWWGnLmVGHvgj5jhlNMcimltMhfkeDHUixGIZaQ7zFSTOPd4dnbxR1PTsrEvZKByJcDlX2k3Yq/mPJuIlSxycUEekmH5eVLFi5nwwhUFYoF2GwRXOY1ufTLkR3EZdMhUnZxjI7y7FWGsKp/unonkhLBREN4jIDYRRcsOrlyjPNHv1lWV2PLbdOVIUNFDuJT+WZq6ro0NzAAizsbGspsQhdwGaxuzYcpt1PRpTBOokmfNijbz85DS54+XEwzZJoM/L478/isAFEO2wFru6CW0oJ/7EUlZ/CMEemdsf4bcATnQc5hQ5LSPzmnijfKSTB7aS8Kwaj8knQlY2wbpSYeTGihkDR4JCkCdp0yKnXCuu3qJU6Eqa8p5E+v2ip2twPKbayBcn5BGUh7xbFfPs4mcZK4EtAmoeJKdBm/gRAjyHs6NM4mspNVedkR0vFbtC0kXnwHFXjUEkEvniSLdmAfgDv/lt/3Mhac/7aocKORd67Tz1BBtErkb8tvjGut2ZllyoW5tTUg1oqdBVjGNGtCbsL0yaGojxGlCVrtKIGWAIXwjJv2oaeOU+aNnOW6gvF3K1E+h/k5A63ZaFn1rt6BXK+tus/rtFmbkMhznE/jT2PmlykuqmSlgiskzAcD4kdP+2568XltirD4PGt1TFv9VrVtrHFC+kH8pwmg3xOqSrIEZrDSOAV7ynAy8k6HznwQ0AW37Qcjr5ek7ephH3MuX+UpYwStAEY6sDRsznmOCwKEPTKDcugtl/TjjwyTFuuQGbu4qRsXCF9BTndl9XceP5/M/8kkkIUt8/dhDTyuAqUF3jFDMicHJ+Piv7Mp0nLym6shSH8nryiFhgmjQwx1F3SjSDcRnfpuwninD0k+NgnrVzxIQ6TbZhSFcTouKk134ulZvj9BFvIRqnLKVL1zsXoW4Ntde9d/hxflFn4ANp+MiGWHHhkQbzmKtnZHHYuuxKr8lzAaufMX897eeW9eUMiEr1yF9UGUHfLxw3Jx/rhTK4fMlRlSowQW7c0dWuybIp+EyKLg5k8HSt1Fbv5KLN323cucEg9dKcDK/CRuS78cAYNqoti3u4brobWY4igB+R73PIiq8rmXzSL1vOksrYPhgTmGvNOUN2Gp10rRywLfyiWZvL38lgP/75uGAaPPX6Pwl9/ak7980NxqVB0pXTHmKA2JQtP8v6HDTN6FzrtsYiHNKBO00WkUnL71zZqcqUhPdm7il30BkzN0NuTX5J6KPRCFonpG3OaVc+81VmUyEtpwAgUniv2y0crRfN2MR1RIMBTLLxhCtj3+hJmH9Ud6sBS6rLN2PyX+U4AvG4mCIpdaG3q8f6Ggos7djvHPQ1R/mX9ktUpNWhN0Gf2OiMa6vADr+Dpm8ajCzoNwjf9/ffIYlSt4nlZxwC6TKzFtCuK1p5cY3PPtNfpgDIpr92A2Ldfd+8MQM3EXstFXp5bK7Od/OmDx6QRIu8etsX0dQkq3cU+dnvFg5gnxZHm7QpWOzqkgvuexNKISqZTa57S3+NKU4rCIhPr1YdPgDxxOPqGnCHYvWwst1mbrQGHMaJRBYxII2k5PlXlcffzZvNh3BsoKDwz1w4Hm7bW14m29xKV0/ahy6DzZcHCAGvb7wv/JCnf+Hckf1nEFONPZLbXOfvin2VWYSLjfiT7w6hGXRMagIygWjeAUAnkQfQcv8i4tIUJLugy8qzEpYpuQTEFz8TUDEn3zMuH4PZXpjJj7U2eIqZdK2+SXtrGTdfJ5c4GirXqbjWivlUiMd41uVwTBFxkKJ4XJ5oCfsjL6+GML/Fra9RDmlgVwF+U+9r9i2T5/vKy6tv9bJR97rtRZGhTmmXGiFhNhu7phJaVzK73HzNewfr+RDX1i3Axz+blHze+AT6k+L8298Ld4CsK+mGq0DK5U84A6YcE652rKL1xRWUQ8KXYyVH1+nV42UxvoBgyYAn/dNPY8+QE0VdARJr0q4DYtvb6C06P13R8fgckyZy6rrcavX2X8JE+1pK1QGCl1fjsWFeBVJFNJ9ifXxuSCcdGCajbOoYvLbyeuLaddzmLbWg+2CN82YrzPP/pNdPBu2koaflwP2zWXMRW1OGVNAQiMwTV6Si00Dtxyc9jEhJXic7BeuvF2zCxa9pw0b2+8NZ1NREXsum1DjT1faQXaoDzGlqGaWi3XgOmfYBahvldAwKs3Keypww1VEbbeYejxM5H41+3m8wcBOlwJGVf0lcsSRcw2fzB5K0pNQXzSv7qZ2xkPzlURNiQNqAM+OuedFqbaagfHjxBu+K/4hbN7j6QJ4X68IQerAz4n1pj3LxDPs6x/IjVeoReskdMW+7iq9jzY71GfRO1ImphAOohfbZgfvYe+6L9dnLFaheUIVDdbnpxIOQSpJDjK2NTSULBuFjqrIlEW2Knqbgch61z/+47cJ6qfja2lh2XXBs8uvbxHWuKGtXhv9mi33UwRjf9Zobtf47anT92ejuPsq4E3YNdDAR9Xh+N5x8mn8MQdulm950E6Y38oT6yO7OGbpgI+nhcpLOeZyizMfhzeS3HcB7xy7vwdARvgUEZponmINDE/HNH3I9sXqNn0k8Utm28lRZZGG802w6e9pdRZX0yWD1DcDC4aqaoyhZNPIMhBVltIzVwK8eJSVs+1rV9/fhv3urMAmrGv0yhp+bBT6AZCcwgbWZfg5VNcp+gK0xrI20kLQ4kXNtq9W0Cq2EPeZITS0/az3lUeEu78Qp9BDebYznNVPJZqU0TjWTPMAbL2y+P7B7MgY3cMs2hDO8whT30U23IWO2mQDz5XwZkAVfO0Ah4kG/LJObmlFjCIdmV/0ipi/eHwamjK29FnhE+o9CrlaTC03b5bocCqnjuelKqWH4cfB/nL0VZDIhxe7ymCdrrBIU4pSCvNRdqldiqVJacwvYeUe6ENL3k0qEorRuFfQhTT+EA4AjMcZR0rMppqCqoPrzsEzL1v06zxPzYLwG/F12i34wYlMI3vBrwrs7LetfmGUdE3Q8GQRelClilFRpgAkwCnf+ql2wbROY9E1lVTozvSymE57XW7Og+AKC40fMIMpQvIoKaS1yr0p/iPFdaxswe3dVtDyj9M85Jox/OIa2+/YT7CGvv7fV8ERpO1vi6YUJG/kh/T1gvqI6+gZK64WITVusqqbfiDtmnt5E3PYuyNhBhisXWzWQOIlQKJO9VnfWhF8b/7B+VXuQ++GwuvDADnZWCo7nt0HumhBv8zpbueLGJz5RIXtRqkYuUAdB8yaffuM3pwSxsM896T0gMAbjAoeHgYbgX4XW65l84eCZ/336bgc2ILtHikmUlEmRALU5KovjG0kNI3W/eoimzNN53nXACQ7/VS7ptyf2ylpJCr/hv15MsLSsbSmqRzEMXoZFsfimaSxP3wpIW57+3tCkUg2tKJKP+KWbtEU+mVOjG5bWoEq2FUX/e/B6vJEmaxPBgmsqaJcorvEbPpn5/Pq5WVAxBIlpwvXZAj0wl+f78u4djCjOTUdhP+uzKloIsbf+mg9SiE5aFtODR6ccS2tUbF6B417XZAZ+hLndFiwTKaQSeIYl/Ni0BOEcxqI2oQ73lenC8/yw2EpaSCQrqNN3lIUZn4CPMO0q7bV0dowT9mzvtAg0y6lRuTG1NRBXbqlAr/kKH6qm8XC+5Gp13TE+OdJCIKv4f0Z7HUtxfry23YF97SVc689gCktikIDq+l64xyDqxyfSw8gPo/56Ts83NDyR+IUpyJdiitvN/wbO9T5l83l18hKXerIVSA5TnnCPYy3t7KGflV0EofbeMh2K/st/dy/Dr3A+pkGPCEYCFgltgKSAzxwD6wLPvJ8hRXhE6Gx9/PAo0bVxVMLPHNF9pBM/G6sD5lwpHTa3B69e+wOFTDV1Y2N3724m6Z8M1xcZpFU1JjhIhACIRqJH8/ZohUYNLNmYN+v3sQMfHJO+sXZ50iZka8DdlqUSzUuLSughg9mFf7RKB3PN1gwKWy1RWjMXOQBNAw38PLZhqTl6dDZFN5VzhT5ynEgaApOq+5kbjDQseayYKynZPyNtzVGDImXgzFVxFSAaKO/GVb1E4ihWvFkMURXlL8kT2WabArrjxgJqwO9gBKlPibAZNr1zlvGbnoSC/Ccd4sxnMRwN1J3UWFdTbZuEyoKVntcWpUJlFiKgL/27Y0okOgh3D6UkDhgTAESRfykvCCTodTRY7/NlsMpdAvuOoaGVTgZNGhIWvshPVpwt6K/2ogPSXlBfiWbpAaATzVsxE99yoO5+J+ONzugX0T6b8pzlnLc1Rn4mDgkNd19SH3lSShcV95OsBPZ8YVi1JuAywyMhmEFeX9sEnHyKNYnPl98DPugAfZPxqCYcqL3jTbC762f8tfBRaq/zTBUaGYwbLdDN6skM4u4SLsJ6pOScVyWtU2PTHsZAApJZnYCkKKGIdZAL4qpTC72quAn4NxqixZF7MlPVTA767lsjri+zeXDgg40rRIpBQYt1d9dYVrMHOP4TMB1gp0SW4u9uRFPAp4j3KJvl21xKMUHQA5FcjjEQo7P1nTIlPJCEh6Vhjk7JMUcXrPUIiLD6CXoDfMhye1xi6EFxNFCQw+2NrXW3gpj0u0Wg88pl5mPGwV5oIE/snfZVw7n9dlUCtVx3H4ytPK7LjYG1FLQlFMY9f/HLMNMZ9tnFprKRxvgYexwE38DrH5gZS8A1Ax7VdjGB1D3iFjz1tSX/nh9tsNWBjFfsj26pHeY3THGk7N+HlCANeWCygm8GtniElX2kJ1c+1ujqEaSQC0qnY5D06oI3WEfHGV2dpZ5mR5/j4SR8tLOTM+Kjvy5tny6dLK/HVFnh2enEtC62/qjSOZg6M6m4HMw2UIrDm1RN15ol4sN+STrks3BVsSSA+5srwWs5zw+caCAISmGsUpVZpwVO50PederniMox//QOOEdVT4sZzTS9S4/luWIeG3IiV6WO8aicDIjtz1rP3BUJdwY/xoMC1K8f8o2MxM+GA53/NHpBPUc8ExP5hwxOOD/3ZrZN/nesGsFpgc+/B9K3TK/WZT5BMl1L4c9k132q47fxgUX2kiw3dnSRhsNY/7MNM59JGwartVeCEL9Ef38NBFL5i3xtU4/sLKVx3oZEM3sM8UplFEfO4YRWiyRTvMhon/7hypwvksCGFXwYOXzt3XvVsWJcv3vma5tWQBd72cC/YxwdD4l33J+uuFymnP10tKtXdoQdRxj4UYroK3xYEFL6Cz9jzhV+aborq0GeFygtAqfBRZeMcxSMEm5cYXDRnyBXhfgXq/3fwCEBLMdp9oaChwoeh9615FSzx/DdGCPqa23oUqYL3Qx34Mt2ta2RwyIEFaYBrcg+29N/1oB1FPwfa1TYONCTXiyZ60pvy3HzcFUDMxfWpXODH9d0bbjD9QzOOwQ8Tu6HWYdYISEZUY08/MSwJyR33Vz75rHIjhvKL7ox7RYBlwXzEiqy2T9zsoockoPb/vRCtAPxJMWeIsvcDBKU3QsSedaOkj8s1yRHAPxVjkZ55YVF/hM2ZSjz2tFMwIChBkRGAyVhYSiyVYuIP1+a/MQt2Q9G9f0BR2ZVnJYR3GSVc1T3BDYeAwF9TaTUkuqrGYEC3hYQknVjwEXNNJG4pfshrUHLmgv/06CMGRuEhtcJJtdqXmknIK8v3a4bKo7HXlS+cguODEePB+ujAtw0IBWPeT8s9dt3JCz1f0NwuMqyeldJz84YPnWPAKfV7exCzsy+MvBs3uSv8ut1AcnvjHzhpoEgLzqvJ53hH4Qc8kvMZE1xEpnKbblrMzJaGgR+KuKbMHCu/Ix/jAZpsqpTjjHnL+kQor+tq/fXqjfzv66tNfWYpO6iAQb4jqZ1ioypVh5Hq1CVqxoNQN+08n/FxCQr/70WB0L1u+tIRJl9ORdVkOkjxN0XaEwgn/jqsADSUuJDeZSxzu/EIbOTEv1wcd7F1l/TaKlovzzQMxymYnqVqZ4Q6rx7M/3bNNwA026MN3JTgXfhfqrAnjTtz7L+lkeGthBOByxtu+KBoFq8Lz7BiFMQKNLYoApOZ1JcuOMeDuf93qhTZXhQcHjB4zrB8xKwnxJ9IwcDtjPTJv4qV6iB67dNvY+izTt/u8iRiboYQhARI5Y1cutaRdmhazuJ9ubhkV+BkuiqW9nP+UpyTP7oSFp+W33DcrRKcxlF8pZBMfcVa+hhpN0G+XvYQYfv7sLtlDdyJN8R7LcYsKpIAWnrGJDfOPPUZjg81OCe1o/TeH3F+NStOtELgP94RGYrENq2L4N4SR57z3miSr4AqM/6YVM/mANMmsJLciDyjIiUenTGIvlQJXQsgC6I94CcJnll1TLItSVa22VZ6PTWYYZvFjKsJk6dCbQ5Z4snxUaFCFWSipAdkJH0eB72HeAfQPD9HwnncgylcvfzGOjQTZ+QGmOceLZF06k65r08bl98pomJagFqeTbVOUiPnO+ufoYWceeAdnnXShcNc1BCOtvmvjkJGhd0u9A3z4FH49D6z1crghhiIwZmJmrCyJ9+yrax/I4Ycl1cXVLnrgUyhD0HeDo2K6p2N64pfAjCAu/3+Q/X70kC0PJo3L3fkTMkc1DYVQIDcHIY6h+8OrpgN+ql9r8qpcG79+xPxQn7J8TyfvMj1zVpeuDk/Rt0mUV5ryMXlXOTzQ7kmqVFPPh7SErc2OSNXBWH7YeE4fSnjvfPQdJ03JZWmxDI6cuD//lUj9N6icbsTan1m8gZ86emJOA3mSbq55Z2uNftJhyRBIAQgPEi/1anzkhcdC01MXJSAy7yDI1YVHflU3yuRdGRLBlLRRuhjGXwcZw78hQOsbG1lL30e9bSjLG3Uj+wpn/ifi4sm2slSNSmrk0TPMA7/LQh7bnaQzLrUAKYiKV2HgKy4MmMKURFyPCx1pVv4mCKB3pXaTQ5cTHbO9fRB8QlnDefdVR175R/8gnnx9iXLNMF5sFlREjyPyWPBlSbdvJv8VhkhGOuVfjXAs2kSAB09M3LWdF/APu2VkXGz7l1qrFvvdYnBytxIRfL3fqr9fclRjaH0/oZQsinekYi1GEeBj3mIpKxYQ8rSelz60/eqFfCUUydQkeoUhWqFKD2tJVWBkqxImzLfCZFZHS2flXzCa2FJTxwJtg31QOm+jN4TLBU5Mod/36VkYl5Qfr/duTdhL+hvK9QVMnNXARSphh3gY4Cds9yZd09K9c5I0M8LZvzZww0wHrIbu+aw3ZWotVCerVxwzLZ7dfNIp4pt4ZCFx6CnpflH/pX/usbgQlMApXFTjSmynTgLUYLI4kFLV6ygB2W1rsfPHuV7xf684drr/tQn2VfftkYjGLhs8Izpdv8ZWkwDlMaG9WlrC4qCG6DjkwEWAcaBD7JvedxB2q1tOAwa4UTJW1/Cc/EK08gzB8OVM+IVMRDf/DV7BKqXIeBz3YjKjdwpP6puKMaKjzPZjMcN57G/jLm0/5dnqZbd3KVtZxgAz6zNAYriS7DRV/DRRevjRkJh9WdqBaAkY5AMu0ige3GA2Z+FvkJW+RT/cqxdMBfZ0L8eEJpA6MbET33SJb2BMrH7z95UTKYFZ99jknhdUgz9rnCbp0o+zWPTAzHkRVzafaEPzZmEkeluBBKYkvXQjX657iFzjV2FiqXpi6wMSZ/z0QLtnBWCItTqSwdLe2VWeVt6IIy0yKu3IuohAxm2xxj9xkgGOeoQpRH9qPrnWtJtS/m4XHbgfSPmGor5N/qF4BkUchGplC4Ph4k/mLLCD08E84Myfu1tTm9YDAS7Q1yW0G/48d3WwnfZotOgNnNwGbYKqR9mUiiAlF5TOwkYGAzsNSrduDFo9ZUUnxbMgaS7L+VjQHQ0ndYRXWVBXgSqb8gnIV/BhVom5VecJX6goy23QrN/ooDjRixzt4gTUBFb3mgeHSh+0XDhaI79m9p6yzWQVWkZ2qb02ucTiAME/gvNwVCElmyUCgeAHWt+U4OmCu7sKqC2gSDTvu9PiDVUri6YTDHWIgycJW+jVDOp+GBFdUdRRKApv8glDu0486+sQOa9yWn80KxzHzNRb2eM6eEyWC5H2z1cQQ7ho8i62vqX2P3/0Y3z/UMezdN6wfDzxCMFJf2TH4QV+ghVMCaI4GMu97gK5T2bTz0JbOsUjpaEPwnVo+szOIOj9PCNFmr367kBYgR25rWpuUx/PUTqVqR8U9vkUrk7UwawtaYIL0S2L+JDr7HF4sl0emx5a8gd5R+2PEyW9E51dRDVwc42wT8ve6xs9H+ke3AXfXLMcfqAKd5XVK6yC5z6VSEX0q3Eeo3749UoTURhWQQx0WglQv+Z6g4/DoXmpJDRXQnFLjfX30SSfQEldmP9BaOLUrAvJgnvcIrhNBZkVuJpGjm7pvGl8d2RhaLgfdBsnr3Ey36vVuhxzyC6BtEZ5/M6XD7sKD2UPlGnf59k6a4UUK0GWNe7OxFHQGGllcBhPYui2LlMnGNQP0+4Dmx6nyZiJO+dUHrjurZ75Sl5Y34hIkHM5s0vP6TB3O6koZYbg/RBAz8w7KNPIdw8LUsnTK99O+zl5rTwWHhdVz8lNAWlr6jCXX2DF+krv+bxJv0s2aIDW4x7a5a0bPKPtxvv34KRy+GYz90SX6fEjYPVjMrEclYvtQOxCUwaj31rxpVx3fiflxB03EnHCHxUZmFmlA8q7A+1LpFgesdxkem9VvZm3U0lz30bY8gY26bigD19OKdtujtvnaMBniwRD27gxBlhybNYPHgYj3S4AomsjhNhGYOmYvY6/1JNNynfqcMW0i6FC5uXavoxrTrAG2VHz0BlMnjJcGojZhipW1j5aTy0IykqUEJ5YxAB+m6+rhcJI40qbjnlMf8k1+APaOgmZ1GOYELsAoIaFzOQ77PQXmUEffm2fsrVIhFgC2mimRlvvBzbtJe+Ts6sYyNdh1OroRX/YcE2TZGQhpCCfSA16tXDSIEW2TSddhKNZnCr9SkeYmgUYIvD/k9Pg0WIwXJZ6MmG+X2fqdG+A0VyF0EdjUsF1s2IOE9rHVxzdS8HXOSyiW3YX50R7GGHCmIIXX/d1F+cCz1oGGAACIy0tP8twrBPK0wLN1yng2uX0vhWPyTjiQwde0J4QlwtnzNu1UqAaM2wzaheLVqWwVYRXX8cn5BUAWfnFppXIpfrppwl6UrWzv+ZE6AV5THlchgDFt+v5YlernKO3dz1Do0pL4ZE5O7U2enm/gXoGEFUqqazhKIh5iObFzT0tRoDIQ/RzZltRC3vTo1c7boLYwD9UGq85JjO1h1qvGwSNpKoiX2k8BDrea5x4uJf8jxF6IHiaezHu27xCQzkRI/uspq85X2vqRyk4GV1hsa+EoTp5wK0RwtJyY1Sn87buCX86NxIjitBvNlbLzZh8r2h4XCTEq3q9QFktJwdbJ6kYTMS+GPubm8VZDAKrJpxaLGAC5Tu2tEe8PjW/UxhML3lrqr/y8m4Vg5olIS5hWS6jW6v9x9VOADaODtoSPKwSSLLO75bo8GRCqhUmi0pA0HvTJ534qBumFIhJGGfgA6ebW3eP+fJc+SHzCyfoVm+KWrN2OjI4awobma9o8IAE+Y1GGtBnzq4bM8Y0MO33GdKJ4MDQ+i/ePvN6IdGO/BLzaXGq2AekkML5JCyZaWDECVQxv88aEuXo5rQsPBgRMtee5i31QcDLhs0AguIRGFgX9iYo/DBXLdTKqkeZTKOW2OOIZfp2zTDxNLrBizQw8a/mPNoxXe9WdzYnokrfMW0djatnpQySTGm1NXet7OFH4JdMiW6jyl5KJlXxM1hUn7eFc9+cWIri5fHV2cCJjjXLAmgW+FNwW6ecc5LaQAYXckR5c601tvegNe6USj3ycWcqhYcmVxEXEHUMxa2AclC7YqjuL5jzgcC8DVZ/xgyi6kMM6BjObC9Ncb0K0gPcqYihqyEqrdZioVadOG/ji/gzt3BLf9hMnRhMj4oIHpkyBorJu+XPNuJWnSdiKfnkqLGvGGqUGG+Y+DEpxv2GkC8DQZnxwYshA1/ZBqeKtix7q59D2OdPh6aFvVfwSJyN5Os0ZTe2CcjPbj0/bUQ5sf+XXTYIsxT4JDqoU+AoWXwsGfdvB7DbrN8SR7BMF5wM++RRcWRR/kXK36FWaeerafU7pT4hccFJuHQfsswTCRLfCaQeA73NEJqkSzVIfMEurWKmyKL2i9FLQ9/L39JG6XtDuj0RT7jRUq1oyA3d3o+SEOLWIEtjwxZcf2uAGUG8OuppVeNtzVk50KlnXTXG6FBrr3VO9hvw929F2CiwFwtQAveuHo5iX7BvbjyZpbPkbQGCN48HX1B3b0oOGoX4fvHoZWfZcNUenmJlKCZRX9h4uzem7QjV8DFzbvZyCjUJ3w5xWEMOguwOM74OYiuuhG6G3vsbjkgn4uxpdbsfXp0muO6pi92HB9hsRGU8VEAEI6ULBgm8ncJLFJM8Kz/2dZhgLXPmYQOqP58Dnm6tJnbxwQXR17UEJKgo0L8oWokWPN3wtOZ8eSl5Xf7iSwHws0o65A/+Bn0Le4HnYWtfVubpbBqAlmnhNTxgfmT9SRw8A6llfYrxzS7wvFlFEiDfRvtY6lcRf0S7hCthon+KjoUclOIrqTxtvhLzSagVZqcoeMngGxImlQrY7oEXeBGTKhkl0pctfnnp3UbsrPYIkFa/CJkf62ei2rgISiMWucJrBFQF3ZqbZYSlXOjPxrK29dGH116p4CB0WSQUdi56H5egHw9akh10bIpI/pjcUJe6Or3Wf5SivGJhYZ7DKBwVJXP24EU7/tTF7M+AqbcxkGGMDqLpFs4gh0o0SjvYQPKz9LZ46QPqRZJkefnZGwjCn+yHxy+QXj5KlCOHfTJD51zhXnCsBnjRJ13NvNKLJr222KSPEAifn9DX2PdvICvvRWPaYXG8x9WmJ9komWu5j4HFacFpYA4m704QE/WlCs7qTMy17UYaqJdvdscIznwZpwDEgxhCuTUy62spgS5mWsRsOyD7YCy8kdbovhX0uQrh3XNdlxZ/uhA9QiElFOF6qjhP0liZ5uxYKUz3XWNV8+De37g7TSrv0Hb6QyHHObeOAE45WY6XhCxn4u416aRorOi01+w9wQJmJgNXSTUc4nZwZqEcHo+3kMMwyy5B/Lv0VsqA5QhoLASwWSnHz3V6JIisprAjj9zn3ZkIQ1P7aQdIc0ICn3DKIuUZKE/+0ZjEVgE+N3K2eLdL9hodaU/NFi6JiV9Hf8z8jFlUqC6WZkR0uwNJAxrH6ppjZmm+eLGNUlYMrcj8vKpIbBAzkT9WGsiBaP1DQOFBtY62sinG5o+OvWFMoeWmynsZlb6zQSWKOLBwG1CelIQca3sBZPLtW4Om7HyEiYnFX5F3r/NoKHpXvjM11KABirV3PsVFxXjt39XJVhtGJT2IkATORDNVP5zH3zEfQY3BXnXzugpj6x2FKmqEcITBiBseunAmN8tXVEIpiDUQQTGoUGvn1mZO/BJmnwalAfORvS1wuYzyoidsNKyyDbiFPUvQircTc57Dya/2hHNPpt26+p4bYPbFwgzCoELsDR4zmwEh81/EE6O+/JbnjyRFD5+mpyuQ8VJ7s2jbWyNO0Oo918cMd9cYzgK390sfpPPxzoVDY/ao6AdRG21Z4qeZRlcnuMKFXiJHGEjQ4Bj1pDKTJp9Le5J6JZ6XiB1GjTYe9tt4SSx0Py1k+kFbBtCWoPNbF2fgtZFo77z50f+eecQb1LC8Py8cBZVXRZyhNLk9buxJ8dijPaiUdfyR41EWHot2VewV/FMINkBC4e+HDsR9eKU0+7z5xOmxuhCbxOqmYwV521EPEfvPgC+LfqsIcqAAhexxfZxN3G1JEH3AZ5TxzQimBfF3eF3qsICKHQdOnZFaV2eVzq97zajP6HOkU3K9BBoQj1AkEe887IF9m8Tn7wrhlX8WL23jfDISt3Mkfh+c6EkT9mj7UGl/vu7SUTPu1slSjvvoKZ/FniA391khviI+8qocsbhIT5s++JX9cIXUYrYgXwEGi5jVbQwMNFMFGDnqGmUYMu3ycu8PgOP4cJ65c+4626Wj6Zd70BRtD9+U4CtiBnZUL+ILcV7sOejYpsg1DMi7R0Q9BKCQaR1gOeBG4xTz3nBenjNfEwWIRW/59EgviHcY32t8tgP/wI9Li0987bwE0zdpTx/oMX1PUclqSDfhKiW3sGQxLEHREcxjPxL1jB+ocQBMaO/tA3b0VNpT86thDZdSfYi0EvMQ5f/rvdUrDFzRkc8qeFAAqUJ//MsYHh9KmuOHowl31iBnSQeoGH+zcOzGklBailgCqMDZQz1MAX5ZBMTjnGv34yLlpuyEx3prkAxFb+rLu28cJKe7MMjBF0p7Gt1XdFpoS/VfjPi/LhOZQrKXR8jVSazOBK9YZFtI4WtGAFDvsO2ERWIoEvMW/4N40bPzwWksTYOWpklJOUtZ0HiwDjwcNy8fHtHC7RdzeyKwBCo2/+XBlg21emDjJJ7eiEMJgi+1KTGelgicyxxzHhILHvks2/10S/xDIVJvfMajuevwFIfJ0m1LBTHeoHas0KmorFyYvUADUr5F9EZeXjVyVVZQ0KbxMVzmqpUSm6YIWm4+FCNwL52ino1KAoi8u7MTpCp5grAbQrBPo9wozVLQU47Fn/XiDXhqoH5lSXa/0ga6q8U52GsZ/D1RjmAWmYkYuBx5YJ0AnqT7CjhJstUGvTMPaQR1Wm76U6paVsLxYoeRzv86RdQylUwoDe33RjFb2NZ86HU9tIVtZzZTWWKP57r2Eo3Nexf+SKg0xjHT/CayxSGkhRKIKHxUf7gu5GzdRnHkTvc3TUgeS7F+SRYkdnXBrjIjLUDCJsD0zxYuHR3zr3TRWGXKi33dKy6SrZm2rNin4WIn7Qq7urmjNgW9DEfMWV1GYL+H65hxvqSc3xERQ04Kyf0EssMUnbTG6hrmzpHa/MY49OVye+5frFY4soymPiEGq7z8ONH+/imHzpO5uHqwGpzG0THmnzPcbiU025RAZ+oHrVCXCUXEBFwS6HRKG3d9Yp/W2lqD0b5k+3szMzyv5YYOWvfXQbNQZEIwS1g5X90Yh8O7OKol2YzmpAKdCThgn05EfjEZ+zOuUe7IFx4ESjU6ZOtk8/rnaB5d1meAd2p5nIoNkGTvN4qFXSYwdiggiNnHmszAWnjiwNs2oZDzEzqwoUDsY4riD1wbAJ/3qO5d8/F/F4HJt/LSjWy+NFAC8b1Xn5HvMxBwz/YIRzkPcAiHoqaunWomic9flyhS7tVqwCJQUjfG1zi8lBKQiVWOfnXLJUqysDSqoHynVvSuqqIVvxdm/NDXh6/U7jASTLxE7Of4XGd3h9DOYHTvChrRU9d+PWA2LEtXC2V/FShvCuVSuIy5QeHT/3slRLxUZW3+68r+NfLOFrb2u3ZZEYhyO0mgyucoB7bPMoE+8y1EJDNFcDFariksgQocYerg1IdR6ZdFskciRDCJ3VdIxqEhaQ5YnzOJfIyhuYuzgYiiULxlulcuW4SDFgw32dOpMgOCP0lgruMgp7XIXf85FbvIK1Xs3b+0AqRM+kTxr6/VWREoA1/AgYC4gcdgXNkiVBkwvgUEWiFrxAjRZ5cYwVu9/uIp2HKr+sSy1SCivRCBSE8LhQ4z8p6LCMJQ+wf8FrGaQNqax7BO+siS7hojZZ9tbxXFey3366tK42OHmjDv0n5DdPKrCpMmuW5AKHAIYrSWHVnEhNaq4GNGe5TbXs91ERpc1K/F+7fkQFQEGjr7Qv+mPv1HtZp4VhfD3VblGSjIlvzkbgAKDSSYD5uYuEzKzcO0NoI5bjsjBkArf9jZIsmmHRuLysVXAlnl0/xvUCeBXFf1cmxz/zepGxs1KIJVz5AWlULkVlT0fmXHZmPuPhJr7aoTxD9GLW/+cgIo9liJNG5ZhJgEVAyuzIgWThliaa4xWlUk3bCrFWUJ70eW52PSFAQgZJTHM+wTb0snJAAzJV9ZOy8lJhMD5C5oJv2jxwT1BydvUySLgG7a89ln7dKUx6MH+Xx7eWz+eXJhJJcVqYpmvFGjrwGdCUkHtC+eGcGKEWLcRupN3dtFPxrM1G/Ey3sNd2sr77NnsWJQGp94nlSRNpZt27PgjFeJROfQ7vhXc8Jo4RIUAigx8gh8IMh2XQgVRUF1/SabueJvjELLJdf4JnoPeNQAoPmd1JMBUHrvH9fb6UvazYqw5GRHAtiJ6c0uLnvyjuEdrLoPlwwTUySUpApv8HUoh40BpusTjf1kqkpFCODEWXUId7b/i2hi4bB7wC8RwZoGipn1v/fSrFu6K816ml1DC6ZtEtXHd9UV5WPtLwukXN4BQ+yASdi3YW37mMe6O/974XFxDjgcYFB6YRIe4eYxv57/ZraV6kspesC9hZdbfWknZXl/ZPTEgpwV6OcbD3IdffWnt02HzWd55faM7VwmSMeNVW82CejAeKUx85ZrLGlasMZ9idEeriaqsqQKxHXWu/E2bqCIxOiuwVTYgB93CQ+w2mwYzJe1ImCu0ueLiuhDxHdoqqdnhHTomtCCetUZ9erIyJRBi5PqOz0SrPpsx5UJYNIb3KLpsxXXEmi9NzQrLLj7NnkJY41zGOwH8VMdYTjDeWz0F87XloVODSnsPiVXO8Ms32HH4hdahKTdd3cnq36zdBG5v6WbigEw9vwvQ1mNKelzUp4mScH7C1zCi2cXSIMfk1DM/PJk8biy7AQFErOUD2cxEb3WLhS9T4vvtLUnacJCGSBFpZTUqwMY9ekTivVOH0gNDPu5OtvqMyhzhpn4d7qEI2gjOGMlSpoh8yLmLAZTjYgSIVGWG6dgqUXckDEMTKJHC9kmvHdNpTdmCsqZQTnDQrG1eo/+VRXTsGI7f/WoCHq5cIE1ukB8OFcW7jmQc0HWamT/uUeiavO++3vxZT1wKpedKkGXa6Dip5Qckjg5cB7ZhIHb+8YRWG/8CwPW9+MtfQYAnbiDQy94OKLfSU0bVv3bxRQIB4z/ObWhevXjGddbGZxU18E+715vniBw2Us699qdtqdaI72xtiuUntn9dgX4dxFQHG0CQG2kW6lYrVDoQ/doEnpUTvMFq7/X8meylxMu01kvzRRpcy5cDEhuYK61PRU3Ey3nNBpzlhW95cGfxHQJRGXlJuf7r0EoExcB7yLIIA9u954wQ/MqRO6m88Ou57B4a6XNc6yOmTw70n+7i46G/+JXgHpIpwvmic9K3DruJFsp3fF/M9oMt3j20AP4F8jZT5sLZEVRs9Tn/Y30JPS52f1l0/7j66Tq7R9HsCYEDDYy72ZyCNzRT/sLigh5lz1ikteAS47ZfAjg6GChz4eF+IftyI/414njzoa9frL9zeZjLXhTkSVmRwgUknjhAdRlPQ73pQecGOcIzvlZEVOi2N6oy54BRMaennDnOB8voMvWp6910crvtdIyL5L1RGbWOR32MqeSTNOmQt7Ue0JYLlnBKBWyQVI2logVwEq/c3CbE/5CZIM3tlbzkAdUpf/OmLaIPknMumvBf/J4aHIPQn7PcEpC9MRhN8Q0rj/aG2IwHBoEZDsAJjn4HtuXomDCRwh8ZZHJhmp91MlcLNGUW5bzv7xpkNiC6/3kYUESqQtZDwMXwNJA1dhXeEHq+SZjZ4jZZ+VUEsR61rsgmA4DDQHitF0mOno8thlOhWwBX4rGNPFzoQRNTLj4U1XrmfIvm1T80nuO3t1Zh0uqzcQgRPmfiI5LGWgWbTj5XpX9aLCga4jv4yrGqamjy9eFMttVFSeerrt+NZlbJLarjLlMU12QCU5MRFw10cdpOTEgEoJTrp/mkX6/uJzDw7ehsHvBCdZFykXMNqgzIfMVvJCXyzVdfZdb98A3ywkP15PpGHx6oGScUit4cbA8nixhd/Gu6qhBmQi10xzjQ9g03Wfm2vuzpvDOAqX3R7+C9RgTlwJkJ1GAavwL/ql4cBTe8goer1otlMQH4R6A0AN9GP3hsOfdBeBGE+COzzLg+C0X/055FjTnc4fT4DST1BEd3N+osx1AZbyv2uwJGts24bgkkToCtzk8JWoUM36InPKHAm51T/B96OfFdyE823i5gKZ5krJ27AhxxwGaifs5b+jpC6A/8qB/gxvs1ytT+hb/8oWehmxnyVLBOsjEnxr7oZDoIh/a8bUe0u2043fMV1EgHGBxe2xVBW/VjsJqgkepLoQlJJipIYC10qv2Qfwj1btMu8IcZeF7xP36/BHfb1E9oKrryVVh8R5T6MQPiLW536OoXVJCAn8UsSUEKd3tdn/VnI0ttVjYd/6jBmYiEamvuRVRBuRY2rI526ruKX4uHzQ/RyhAoEWbMo1bgo+VHS8xDH+OYRr0gD/inVduqtW6bI8F6phCeFVjL+AVqgLAMVeDdrHBk9bPU6gTEClhWikuSdPHOCSXBfiFY+TrmtoGOx8YkcePwhLAfp4GG1uiF9ejjY/5Tl/nou24/bcQ5DzEdlXAW1Briyb6Vfk+r/xk3aLqykSt9JMuz/Mr2x4hOozKEzPV023tP10JrfbsBaozw8aHD3iBDYtIrs30l+UJ13CL8DYsBps17nswL7MbrZQVX5yjVCeKQs7sYq/SVDLfAcuXYz8GmFxKKu5OH/Z/KJZMQ8psxm9SmvQitA66aINdMWIoTj0kIL1NFCAfPd+5vIvxgmxdF5gSJyTubjbOy75xzkQWpHQP295eIfHDCYWfjvV0HJpArSM85bLNav6ZQ/VPnv6CUxpjHKO64ecdh1kL5DqK2e1M7dTgXGUEc/HH3ZTQizvV40dmi9L7LFeVUdbuBzZfNxD6jHFAXIe3X+2oorwIKG0p8qYSW4vC6Lp+MLqdsCjRA/m8mtGi9n4SNx/kIj3w0h6PGytpdqU2WUXZzP3nCCV2uLPWoLA2wsS9xCH2ipNLpVW9cbOleiCEXQVwDQ26TxSoZoZ5RL4kOZt9wafaZx4kGWhVscG183Olr/Qp9ER7JqLE33CS/hib9eZfot4I4Iv3RFRnH7k7FbPJNUfHfeNON3afRIj5H3N6+VhLYdbVDcU8cDsa0XZ5Oc2y/ZYkI3PZQtLdy8YG5fyXoVzBCEvjGCnxByo3KpeQbZTywQRs2Km0tBUUsgbxUFTxGKn8d7ZcJvd59GkR5TcafSHp+c7oO9BLEpD5WqsR0qjxlF86wO+D5NaHtDr/y1TThhnqg9ZM33OaaPhWlWdGqNI4LTx+ktgtuBEMmVK8fxH5jSCU5pMrY2QkG5wBevcdPwQsvkaFpESQyOktDkJ1nRj7P8b+Y4XldoPGi2lprkLJmw5dvl26EK8NSQ+7r1WqGSWidKuqAR2N8CA3R5FS2XZYu+lS1yIKGuHF4diOY//ULAVjhLqW6Su5rNNPn2HXvYWcCc4eKG1+oW0W1yOk2ox+k3SahFSYuKXmIa2rlZ9rtdXZy0KUSKSaVDYBcN4jZt1l8n1x6DoHbGjYo55bMrQle4Sd28W/EPdy9GwgWUxW8r4fS/N0HsmsZ8ForFnyyAdvY3rrE2/hdLBRrQL0C2nLKF15aM8on/Q2HAE0IGPEJb97i7/FSrZg9rT7x4IPKJ+70oHq8HvFmj4fbL0cmBwh4nuuCzB0qKBcyUdVgaBytn8pqC/EFfcbmQUf441gUujwi2K38MPVwaowBK0uVt+YQoF7/IhyHNH3TJm2bhICtTD/W/S5J2VB6SFOSJt9u4xV3Pep8tKROdxqLASmvUPpi9XhP+coPnuA6BGKESI0JZfiKCqSb/pccWGAFpGbHpe7UvuGETP7kPc0iuw0b4HtxkHJzTpR2bWQpQNpXoD+ucryi4KspP1RghbQ6xXRt2aRORcn19dmbAICzbOSqiVVWPSSHQyY5FDr5XHa4QwQl9IyIEiVtGQ14/5uZ2xb73/3A3dJ7E54mwjcCWcwDQyppUcz60Tf2csbZDThIZPjCkor9eUed2BWtcEHAjldlicwMpK4U+RY3NUJIpMAJ26OKBeYDEuiryoRBD85jiuxVj//a5YnkVpKBBeBGdWeovvzzBP9Nn5RWm6IT/f7gLgspV2wGyb4Spv9053+8xMhdgBOCBMzAQxX+QKGwpwhMYmZUOclGYwFRxywos/Brtl2y1+s+9QAeUUg/xXUY7BBGakCtASaa8+4fpvkzvv547+hcpLK6OtOBG9D0oIHIfH9m0jy7rcszerJAm4AiCfNIQj0LDPl3yDcpPLqcmnPyIoHOi1nX/IDOC+aygRkmfcbxZ6skaBnjjDkugPm6Bfk88xkD5BEb8geQ4lOr3C9CGJsNkDCYqHHMXpLYjmsx6buL7j0uLjGc6MTsbfz52KTjDL4SIRCce9zr/AsdMRHFKv9U9pANLNtR1+AlEH50zYgNX3+QQKSnpJuOrY35oaC1TaT80I64rPXsy+k3OIHb1Pfi+vuUm7NMpz2MoOtWH7Bb8+ZC5I2zwMARl6pBPLLk7UMdCPkcFFa1KLI/wDSakmduwFT8sqInRWmW2CMvVB8UoiaJgzjy6MankETVNDaDuUBDqhQl5Wm2PJRGgJT+GGJek9OKQZlqFM6kM3IuZRDaI+czHP4L7p6H6mhSm1nG9E//oJPS/LE9oyzdAKeG5nkd++EV3ZDx+M6rV8CrSjR/VXRcvIN6ScfI8l3SAkX6ltL/CJ5hMqYuU1hHmS2UzLmr4TsAQDq+tiXaB7DJ6Ue3QkSqIkqBKcWaPLFj0rQsVEVNyX6di3XBFcIm3mEJTo/pxYqck3dWAY/stQ9PjdvuUigzPXxFBFJ9DUiIDJO2Ub5B29XSgvToqRqOMzN12OyXtb6PLKC/JNyfse6SB+/8pSIVkP0KZs/Zul4gBOAo/GBHzIXWREzffJUqNlQwNiR5aN5CgZcGRTREuf4lB9gsiofknJR2GuOl/qWo8jqTUTELw607MiQ7z85T+b335hXHDwhFeEyjPxkagDJ8WnpsDYf86EkGr987LtksuzSEYgIeAlwl3H2g0YT60YZUoLNrsfHTn1oqxnW9LBVwcvShRYJsJBmZB8mIZ8ZjObaGIQfUvz/OVXpZ2O9K8RM97sH8Q9/Dk/aY+nhveseWw8/Z14fd+72K4nm2wjiiWV88ICaag4cuahTBJ6xeh+IuCmVxDnUwm+I0vQ5xmxxLmPRFNObAYi1CjivH1R3GVi7qEF4S6Z0bWfjqZ5mCX+MVDFC9vSCREIPOMqLohaybCC7fC0M2mUnIHTzS+SF/e1KZo18caFF4YB0WoGj/7R7P4LrXBw7UY36vaWsolkLSwI5BaVRn1MfXbk0jBfQBgQLai1Xu7QMTc73JhdZW1ML9kf1Ku7DsQGz2ocWXpUf6sZrOcbhYUdEAw57bRGXp2rZqQ6GOM6D1L1uh/foG33vSol2Layvj817x1jV0/otNUFbvLtfQNBIlM4W44wgn3gk4FRILTBqN8RUgxy4k8gxB49IBNleie7Pr9R9aF6DiUaZwbLy/tJCr2s8rYkCDMNMX+/Qy7D9ZxLgsm25OHqe3Y2DZUnBXiZDAtMA0ZW54D7MtqeJfWRrKLg8s9es5W0dERG/uh3ajQfwWwH8hE68BrDAN10pOvyDxkxcrVRhXe+bWkV104rudmsTiPlxevDYOTZFyiSH7YTQQgTsB12pHJ6zajXCAOLVxu8zMGNjkFtxzzU+Aw66x8I7cY+VsSXFXHdVzo9nF+0ZYh2EUJI0zzdocwJYMB3THwBKZIr3cHtwnV/AGGGpa8pPlMrVHaWP84HYae/8K8Wf8+jLVwwjdlhoWIX08jEvGQs1WdDQPGgoObH4XA5iTlIp62DhQ/DugW+8n8+DYPU41Hlu3hCs+3K05q+qAdjRGwzu3+zQ4xSPzmGWRzuMqZcXl+N0Bezx7/gLsq3okKAX4DkSXbsXJ3Rs+ZCsbpB72jKo+BZqA2ruj0e8eRJnBtNWTe52R5Q+IvLspjQQQJKZ7LqLjLVUE+r2auY+dhW0PbRvRVGYmEoE1PERjaXKRwTm9UrJIRp067B94UtR+CnqPRbCEG5CvrZiPbB84ib88hSSXQka9PVNEhDc74ExnBh+c5nJ8Ulx7S7sD/hb2o2mMfBIJzMP+oRZR3npvGauLmqoNF/x9lhx59zy05MyWmQyVQBwKsF3WGvbVEkfhC1j67pGZBfDNpQaTeRn9O6ogwc24t9KZcWlD95kbPrR5Iup4cVLm9BUTT5Ein703rsSTQSyqqLUNQcm6GYm6BjGcKhyGylB2REZrAmfjRjSeVi2oiG5NSgxJPD+D5/4IKcifLHSljEKPdA1xnxzNhtO6mto1JK2AxiKlRKLx3hqeMAba9fAihXiBi9OHEay2xxyBiccO5eiPbGkunYvbUrKR2w1vqOX7HFFIA1ZywfkrQ1VgguS8ULGkcOrg6xVJ1N/kpw27wOODGilcENZdKF/6SpvLB9r9B27uogXwvcg9jsPoSx1yVrjforzmMstDSBXPzh/Ks79ux2RSRpXbmO6tgTK+rlQon0zmnCZp3fKYs4zp3Sx0unrm9ZqdrCmfq+4spWdOvqjhY7An8mrw18sdkfnqklSuqtjS01bHC6smmBWb3kjE6vbBPmMXJvDNongMBXYX3vSuo25pQxvc84o59DmTz6TjoK2Q7umkJKD94pz/QFwcaqULr9GmP0FevXZk45xm+Jku3TK0qdF2UleJY2L/UYo0Wji+JtCU4uxpYeoRO0+pVJVL432KBkykWlC86z1tZ49hKgHlxHIHl09kHA6bKAGeo1+GVOSI/9vLWVn+CswGNHoFG0Saxa9wTImUz6z+by1Jde5HwQMrykP200h9thxwkMLc7eerS3OQZwNEM/QP2nPQejPP8I4r1UcrScFPUgh7FKi/To1Jq09/HMPWMr2X5MzErb9ptLCUVXVli1PJ2OEXDDYB9vDFVT97pwJgS5UT11tUCr29fLIOHYLJ+vAnmHfNc25ZAfnDtH+yX7cqM0lPcUvnXHujaocYSi4AJbATia2H4r2UkCTcqXodcq4mvo2jtxasvAYoe4mzyIIXWBA7+tjl+FZUjgqjWOhdSVlukPcd2C7e7KPAa2deNA49YwPzEA5TUlhJLMisB9K+b44OkLrsTB7cNFkSfAKzAinz6KZTjbfJc1StMaKX1Xp2YacVo7eJt6KNZgWuV09Os3ZK1ueL/ncGxbNVhPgyi2oxekGT0F/QmIkgUxj4DKdEcZRUJksBECcCkfDUyQexXJXc098jH8ydDTZ1QqemcRirVs+rKOglPcWVGNlOcBCfSZ5Ego40J6PIN8qqDYzdJDhAgibW9a3ocYY/S9Dx7J5YgGCFOeKJNTYDOJ+YQIbBqGMojlXSh6z6XUCRNpt62pvZJL9OVEeAqgc2DNcf5f2793nJkWl0oWJAEBdz8DzxgIU4xcuWhpySh+uT/WuvHH7QtbNcHRBhUhKrtErhxdOt/QqKCOPwKby43FyOUexjRePEO0xicNb88C9CBNzMXF/3G8QuxXFMyf4Dny5YWjQKQoaqewaqPiAf0jRElPsWQaHfcAi3TRmBa/Y+C887Z1arSNXbiWVutuyQJf7RE7qgfTOyYr7W8AXWP+GLdjgcRTjQfhhVHqNgNt6aQvVM1Ly8O6oeOtnlXDjUTZgx8Q1ND7tck70eg/xYkUpI0Xp27MDteRqr5yJqrvPEsmh2T7f/xOfEXOo57jp+7KgHSoNunawb8dangv4bA9GQk99viZiOdVRnuTgNPgdg7BXKNo5jnkisWl08Da8APRt0z4P/yKlQFwajPHDlusW82/p2XBgHS9nQEE2yuu9O5shjDEIhS2WNyDRvx6sWOHC8899+Kzdq9QvsPnY4k/TVEKWd1YIbS4yMXewxAu4CyZNw4YYAd1oSzwEHXDvumwz4YpektRgyjsHXaYxHSM5rSOD2FZ/PiA2YIA13vPszKkQ8Gv0kRp+9ycvtltbnr+Ppsf8yix4t0kNgNEPGJOSxtf3Dj8d3Fadve1LHQRfYWH6W5q/TbLddJ9g19wxChfjL5Ay1eqbXEASwcNTvjCU+731/QFogw0dXX41XXwiQjIx1fHvoJ3nzD0Ov0I30TZsjUtlagW+Eq+xusQZWcQpE+GJicnNyvkEhqbL+nPLp4QhyeVINWY5rYIW2Q/bJTSsCnXqWUzRVzct1FTrXlsFREOCU53NUfMuKz+oalmbksplw/bliqvcFrahapkbNIkV+T4p/s03r7DIuJTzPHp+eV8mFJvdmuuIyeAQA1gwO4RT8GT3eCBeftgDW63Fqm8Baxh2+y8JxOUMxsPVZbfABYofjiEkXM4b0Ma4qPkGEAxvN5uh9oxIz+M9Vy5A3QHBSE7kn5R1l41G/p4HjttJtcdwlG651i+QYKJL9zTP83gAhYeRXXVgrHtinjNVDmWnK1GsuM9wrcqJ8zAkRTTe8AiNLbxq4W03wrgo9OMyv6xQ+53j956pceLGfb1Z3k5fQLImWv1C8hzZ1aDEqe7QcvlKHC7PyVarSHvuQzSbo0x7vm0nId0ETW87UXSKOy26vjyO6+zh+WD3PKE8ac/qrHP03FymCQ4+/f7sjRgYKxml7rqGSfihjQ5Me2n6uNfesW6XrzJL8WMMJbjJrvzxecoqEmf6bTJ5bY3FAUa/uTzwb2zos4hhEn5nLItDoU4Fai4Wf1Bk9vrK0P+Gy29WcKSSR8ygRGZVJ7JVkZQ4TtPlHwzI3b5O0+AszrzHdBlM61XEtVcdIGtzN13U+YbDQQEqhdeZSRLzMV2ekksiW4CNAFpm9fLJC0T8p/hu1C4yun7DTuiZNHEOxiIf1Tz5eySd8vK3alBImqdcKY8yMLAjg6EJOZJ1NXa1BBZ7vKdpuKi1TvmGrDydX94Dfxq+BLkvgw2YeXVRId0+N52bJcHHF8txAFAKPzXO/djbhDcO4//8mzOcZyZYJ8JF9aS1RiQUu5r63dfQnHUG2CMbc6tO8DtCz5ZOaF3bRJCK65sJgEt+BWxmpMjWHZ1T8AiFy3AIygkCDuPXz0H+Qfe2s5bL8STiUPYF5GRatkurDRmy40mV8mj/VC05qT+h+JqBsPp6lx/XKNPoxU0Kg4e2KuEtje4ZHhprxacujsYykU8h78i7BTpG/Sr7ZrnUuDaFg4l8f2gA49ElvjAml4B2XJxxPiygB0HU2FVgotUAi+p+5MEXTXrxyyxD+qmViT/hwNvvwBT9k24HCC9lzKWlqtjfpHTDipoh56O6blv2qlhNKak2f+wTQvzrECALR3uPInSWONAlQMqrk7dnhUlWssqBpbyrGMv00XmSoBM732jOq73dSjQyYtF1MaLOXzN+nGb2OYIs2QVCam9b+Ks/BAJkXAdhjutMQWV2W9kXioRPBuOGMdaT/Hpx5J+5CcmBrLDvY2IeCPSv2NHG3L7lVEeq2milMH55EFJwmJMY0earKwf/3SnwxA0t9S1xkbvEDlyH4+qPhjwM3jva2ScgU7uDMYWaLAQyQy9jJjZH193Iz7WqyjvmMjZEBOmcmzFCbYK4OyfhFgV9CnoriuQLYOHIE+Bmkz+VzXckT5h0xzarbl4SPgl+4HcF+Urt+GB8QK6G+643I/uDaQG4Ja4REQGd4N71DLhYa3LAgZHQ3YUkrBX7eGVqzkBLK9s0o/J3hVYCquOvxl6dIP/3MB4986khsugZZZLzDDM016ApjdIw4hA1pPZ3CL0LuEemRYamCpR8wLi4V/eMX3nZ/2VurMXcWWVoCZGqvz/6kJ/J00YZHo8QPhln+hCB9U2mA1SEP+rkmKU5R/lGW0T4J80QxFUKEKgwmKPssXgs3fP1K7YJiDjK6WX6Fen0T0tSDsgwB/t6OucFI2YCQP/xnNfk/DrHCv949QBFozAhOC8uxczmDdb3HFqkY+eEukTngyv+Bi5uRdeoM95qpGFNymdGKevAix3X09bqa5uqy1QZzyMPtn4SMbtY0iJgkRaPHLlXsTAr+YqlSkPB/MZJTU71YwWo93BqzufEBQiyAIb+83vPh43kQGd7LhilIW+CGzvDTEwjIknbTrx3aFPOD0jGldCqQItp6EANQg5l77qdQixFJ/sINpqVLEQxNcpM71UwgurCg4BXyI4/H8eXIT2NJNkmdouru3bWsdAGWKQ1Y7s9rPn/2ygXn8u8WGUZ7Y77EfRHZO23vVhUU+GbIHBbtiOSM2tooWvillV4o7qVJLZ3ibA60fGdVLSC2+kY0GGrGc0N8GpyRbnzduWzATOCmNsQPhfbYQFid6TrOBCQLElouC9+2p4HydPdholC2gHKYnhBb+qvMNn0uvniW6zkSAnI4qw8PKtQm38+T7v5g6jdW6Bx0qywzGDf9Vi3MdBGRsnR+knAvekKPDASax+Fh31F+FtJZHObkZTLRn6CIJJko+cRE+x3sobwQWEVezH60oLrf8KItJiWIixfkluQ2Ww0UmsP+sYB0XirdsRkFPeGA+KXam75K17c683IZE0J2/1vMHL8iUv7wVuz7zlNS9RHTnX8JUbajQJXe+BCU6+luDnAQgXIrCtyiuzJXLQFWqUC1vdhmX6rMZrSOMip/8YAycSYaPXha+6feWrICXYP0h2mi0Xln8nUJOFz+jiqrulcozODCC59J3HFr7/RimMnLgRJEeVw8fNbCtfM9eu1NAXZhxRHrXVCGd+a7Mx/Oc2SsVXviucHzIwRuJHB9OPtNqUEgtkYecCbXu6zeTqMp5Shf/kVzkS/VWLyrJwWSfAvj06hbzkcz6OezBOrdXLo8obKXlHYoqufiQJsw6Ma1R+w/JO3XNit5uetWueYyoNcETmCphVjSHWOTpZ1GV1pmugpennS+kpafgErWCJOeuP9F6hrd1Pg2r40ZbVyt+Gjaly4Lqdg/9KUc7sSfmEULWf/c4CFDmguHMupMctw1o6rHdEnJ16PNS1Ic10lHs7BBsfR3cSqo+6ngUwsYGJmu3pfMeMPZ1pTjmv7TivXP8G8r65tTJ2FjFYozJG0/6P7rOfbkHBj+dqyP2Hq60fyzm+/CDDdzq1DOEmP+fOUWxpVr/WDq8bFodxVYSrc7ewRnEeEv+zkPhjBHzyVzE9wJsSnRPRWn9XlxMOFgHZ7ojEf0evuEIMypndChIOTbd8QJ8w+S58fnGwZEm0k0w5JxYy4Mdj8U9EO2jCGwtnqeQ135FSIzrJLS3B6y+62qtLi9ak+aYieHyIeUSqetwSG2WYhD9pQ0/n0xs25m/A13d2XBRlFekC+AyyFxvaCm+RcMhk1nD5Hs5+8hfnsQDvLk4OARbs8UN19smplbJvRpe53rN1z3t6d0eiYYvvvHz6L99NqhoVqe0DOiI6Qd7z0U69TdzzH+PgZe9+Bbx2Ix4GFStcejOkLPFmpB6aAxanfPy6Fub9CVFEoDU+fAg3fLM1l3hDHde1DqWgPcdL5FCPAmC2Mptg9aZNWWytgqkoOuljD/H5NdmqM1N5ztdCqx5cvQzMxFjVGohXOsA9N0qVFGvRTPNqU/ihOhbdB5Io7aatwVuC68qiT3Rw4AcXZLQLo+S43Hrdu98C4f2zOPhgXHTKfsh6Jf2/DAwV0YQr6+iNQUbot8kqhETgY5zzotyiV1WmQcJ93ieN3bYw0HPE7FjA2b1dpg927YkqbwREo6qMJiIMrk23Kq8LLnKlvHVDAaWowf9A1hnRlr7DPYjFGoq7EdWlXBKjDhBiLACZiPJXSLehWHhXc/xMO47qXAXliuiz0uRv4dmTJjKIyoeva7xcJmxXyGGJiYZmk0OpKJMbwbfA/16aXvNcMUZIkA8OzbnH4bGefNKsqoogRLXWMD/FzBMyAxU/lAbDBFtXnpnXZ4ZVrLKv65WuaMNxrR6JMqN9C31rP3FHnI9EwknhHfm+VbPYRPtb6RmVGcwha1R2gQHy6BKnHOBSgjkAk6srPykWRnzDe1ZiXQvMMgP+1stvn3nKrQuulaFAYwhwdaja76NxQRS+fh1DyHPVFnArViLg/6GeKmYhzLTl4GFw58M65ZablwK/i+aQK5i6Ppub8TmSSTeSsateDZhxmKAIOdU71K8u4Z2OmM/38N49oOpVhRfQyUlli811bkEWHSCdvEf814I4d1qVq0wHNtkRFzFitoOVJU1VG0TCJ125dbIM2Z7ySEI5XCXAJ1Y7jwjYHCPn6LU+9jaeP+DJjS9hGl4/Y7ho6ftYQ97MqBne0Fav8T2lseQzbR0L49UmduZdeRcmc4/bx8RwdtvMEzbP5t4W0fCsyCwX2/IPgXrQ4IW5X64nFbSetrIGDYFuxtMXduSa9ZSZIt6r+iFAeQY8Cfq8a6jXTGWKrggjqvwFs37B6tn+b6di1Unb1NpGC38lnIDIn+5t8Uem3vD/r49oXhlCcreGYdOYfSt5drzf88Mc7+dBg+UGabLQzimrkMW7SaCFVb3HQPWhxoVgoW224G6/pzx3YBTdK7JXbz753QGd6eIhyClLg8GDfxBBqTjd64ZyO/eNxl3umuV4ZqhwHNjHsNw2uOrQnbVCh99K8ixQ9nnE8A2N+TIKu2di4/8ILbbP7GkOVLmlMtFT0xcSwQYwait+JA0kJOklvuUcgKT7HmK7Xhr5aZ+iohnFOzIdo+5J4ar8GeVnS0GAw+g7VAzCDaXvjXkjSw4q/07cqRrtQkBna935/WHkxzvCbYVKdQuDxHtpQ0LXn9MehBYyWgEBfkSSQokpCdI5CnsWHXRenKe+ts4rpi7/pIvWiITu4Me0U+ugCIXHfsVVBR0InlFbFW+jVE6AGcN/2kIh7oejX5jDYwQ+dc5FwBeUSfPzpA5yhQJjsjy3C7wRykEl/QXr+HWnZ+nbwAsPH0H4gtXDahNaMKuTUIBxelGBeMHfa7m6faoflgAU2RCsDBpHEJQaG0Ug/CSlaBmI8drA6B6LumjZENTW+crtqwbNrktE3ZjcC0ZUbiBkGuV1NvDXoZRcT+XVQWjB3AMXxwC+XZooSB/zXcTP5xgpjOlxxlAXxKoLhdgNeNLYMpGHpyxm3QuQ6p5f040bPoUJhRkmHYSoQJSpI/eWPIPcUNdTnSu/97jhXZqLAtOXAMVt5yEoGDadvYvoQIV4Mkf7OS8ekaLZodHASYx+11Yqx02g0ONExeB9EiooaEzu77R2BQfNsiS8SbXOJ9hpqvipczoiLxzTS1obquny5tDMNW2+ySOHyKAJpppLmC0Jq3ceCfhfsHTEpimBpQYwb72e8514mVE7ytfwn6N7NSTFsgS5RdNELLQNKsqGQFA49LTnJaGDRd5WOXD0lm77nhm0fCC9/xgJ/NYk4HdwEASSwAITgIs0srPNqeUfvTr9CB53xlBxwjew+pITdJLqK2Idk07ItxY65u+dbRZssAX7B797OJry9NtXHqsWUx7akDOPQbL+QT3vns+8jShbHqGwkpHhuEnrPHtVba1Tyv2PhCLHX+dTY/9iBLgXhz0TwE1+uuK+xtLHQu7xmhUhFq9Eh2G0WOEEXFH5Bp5QEgA5Zx3c2AQzD/ujG+yS6dxtLolShMFM2vnpuqjrM8MeP7Co2L9zFnWQr8kBLG4KGFhiCTZOjL0TDC/bcL5UVlZdt/ugfDQcvUfK5bDfUuJsqz4eOXm8CEyTf3vhE79XzPhkfdEtOiAdzrfsRZUr+jRaHFqz02I1AvVRWca4n7nIGuMGdI+TPJQUtLwm7md7NzzgMKf56V8cUBf3DU1x0N6rkHnuQzAC8MbNsGOanM0CIOkQG/DD38lkWMPhLRBtIst3sw36Bv++m8h2dgE6VxvP64W9Ejgx4hJAlzt5AACyQC3ud7RRez6T+sIIsqNupQ4L0ZOvXdmb2PeUs/EO7jGrZvhJ3AiMkHUoi1LJxPYyCfGnYWP6xbr5MLTr7pcDSyQSF1eanRJ7bcCIAP3ZMBeRxz3Iz2PQYeemBWA6b3VZtERQQQARWEtF/nL1sMEieNEWqy2Lts5k+2Qv7eTdPo+yRAI4R852RDWibJkoH+TqZk8NQs7oeHtAcYiXwj4HL+YcO6K7TujcS57PpBfI8TzfW3HlXhDwkL6TS9QVOeCpjQC3FZ7r5l9BDlS/VXuUpscUU5YGK8q78jxS+/p3dPKOMNthIMBctCWJ378Ag7fVG9pavbcNhTux0xqIRDs5TO+mJMaEf7vG6nc1LKJprETUz+5qf/TShz1MlqpkFSuEywrnoUMoBq9DDIQ1dhYU6SvVhYLq36HT3rm3kEwDQhoRjOnvW5ihIMN2e57LSRQJGq7tnZ52RiItwsqprAVVpId8yi/8wN/c3Aec+eJ3amRlIhNgzHAb1XgaYxrpXwD2yd9Rwbk/mdYVHuuZOsrn7yseSDbSYC7T48zxOBfNYjehJZA6XWBqUZd5FSvA2InwXc57D9ZQKQMpHqXMi4mEh7lEjT/9QGaYDPNKSgYCK2lK7PihQouELXZL+WLUovXopmcsbpB/03qrM99HaL5YJPnxvOJmTTdesCkFG8VUenM89+/qEkYa0FgKRc7CQcFoOf1Tnm6aH1frXXjryfslefdvKvSwCd72BrwZvXtDpprgSWJ/R4bxXf1hRj4qDOT1ENKniUavRTXd1BIBN9h9fwfcrbvmPtrJKkwxGZp8WkSmT1gvjrgHJwUyTFYpvypIYESUxCnuTrdxlfzNImFjbD7+LzKU/Lx0VNsvyqQv9IOv4oVOYJEBX5xqExBDxWkOp2iyzKdxnFsaT0yCi0Jdn7pixj4Ka9JDhCmwLwOHtSn5dLq4GNqsZyAuhn+fx0Cu3lmuY9GGGcL26u3xNYgzloSZZ6B8qsfGpxhtUsK7UFos14afcho5Dv5muOkytA2TYtqVagq/+NkQ4Z5F3ion4FEjuJM5zXTJb9tY8qg73EehchczDwQkFQVOnXG3KgnzPJNRY6RCRbjqhCeqavIr4TuLfkK44x8hn0vZBqZlE7ue7wQr0A9z66azuYHRNRkMCyEy7oYWUBhBwkrZEHEd+APV0bM1255oMlR6QIyAPzqwSUyFhmwFgxCv0NlcS1iokbG1Lsccwot6wq41XdaBu+zzi7G0muuEvcylrAC08rTRi9gzh+mvBTHT+YQehrtJjdVBLo1VU9zdg+p3FpMlSD11idvMh3Pge5PsrH3VC39F4CE+2/KhUiXnQU+r/q0TrPGrJIlz9egcJEdiQ3UNrMD/mZCigNP9+pBk5uC+oz3mZiDJIhFVx7qLrhqbojRKAn2VOBWTw/zMOM3UnJhx398TolO/3qDYDUps77YJ/XCE26Vlvg6zbNJecnrACALirdZ0/3pTS2gy1UA1PaQYlNu9efQ5pYGjQA2qXvsNYSCNmAQYjAtOv0M1xV+uJF9zzaF+ujcloDV+Cs3wjib9dUHRo52c5W/mGggiPKgLwuYMwMZpuvRnV/BI7WuPh2YC6pdPUyoRDF8C0kV1kW+hDhG89kK6M0MHivDtN3dBZYyvVpySJPZdoRLkNQK5aRMpDz8lyi04lzjbkmWKrUKXmAvFtfBwCthpkI5M8Apz42MLiNa69PxHwYa0M/dqkPe3VSLOGqn0ijzDPbDdjZT3d/wW3VJTxImINWrJ8akR8JkACP0ObMrLo0X0Br1b3Okg9EcTjBHViWq8oxHnYWYLSCC6GhTzFZVCVzCBAhWWDw/fr3RQjVbsyykbfKmquj5cOiU1d/AHR9yKUwnD1ZG1jyq/yPkAuAmroUI5Au7Ipvg20O3hd9R2gOG0uBrMEC4WKv5pIbEJyqlzpHltbUFLWOmdDD1KwEfs+Z/T8Z0MWDEVA7BTmFmTudYvqNaBi6dOfqyImxaB1LO18QTrHhm96jMcG/cxdXnm2NH30nwzLYnKLc65fPrtAxUgt73ZnlExB+B0PfcucxeTTi9zqVxiDVd/P9tjMKJ3tqoeXsTkilXsR8F9rOk+mKm6WdBZo0Or5jyEm1SqmkoB2dIp6CTvtbaaveXx8Zj8bQfe4OzmEZ0IHByZDbAQGzRi4jvGXHNiMcoeI2sR5I0K9h9paMrDNHNegK8gNZ5nI/nZgbURiFQdrB5nLK+4uZ7FV9Tby5Jb50iVZug13exnYuw4etPhbubPaVSQq0lhcozbN4rxw26YD5yTaTVRIoQeOr9s3b2buq6MV8YwqMzn3UJ0GdKLXTOAENJLgoQOF8kD+DFrILzDja1DRTSFQi/LZIl+SqYCzYrRcx8+u5KUwACX234HUEiGWVKaG/bwj491XTvRRWuhM8DML+iR7CSW4kBdB7XXUgQoLgmE7JQ/Z5LNDTSoBLSldbUz1IKCJB7/35RXdao8olTV/PsslwvwEc1moWL3su/fX9YMR165NY9Hg+vSyGh+cE1nr8ltyK2dPI14g8BONouagziy1vL5gQvuSWESAIse1Fmm2gO/p0W2zC/CKD14tqa+oTF/8Ella0ZuQNm6sxQbTKqauW8KrB8zIpE7pH2Vj2wPmTos9ZTob3hrZF8xkM4PpRjN1e0ex2M+bl4jADpnIJodgZUB+WkrfY2LbVM2AluW8Y5KuMj9IaiiRsyWnCzuDHUoRhnV20ysVmore4Zt7OePh8CjU18ufjL0ikCHLSPnlZFnGoFdpwrh2kJuXExgKyQaiNfplJEGhOuKKg1XhSlQJ+A+r3xc2vG0Jd76Cf5n/CLM2zkTQXINHu2IFXxOKpfA4/FEjbhAT30trFU2V48iN0AAFZj9JSew/afcaAuAYvegQyQG/Np0f5By9gfGycQtr/lcVNkgYruiSD1v/SDAaanKiV6uP9SfmfdyPFlzpppcVrgJUgVxH87N6NhOV0F9zpO604QECPeZrc+dlUEGiGk/GLfcyNXkoFWrJurNjqrpcZbk7ECwC8hZAIC3SWv2w6yjKMAvA/rK3anOqLmY0egWvxwF5N/M/muuvN447HFRgWld7fKSkhAtTfG98IzXWwUTzcFB2vgaa9M7dxHGqIzU/cyhXOrueQmYdHJJZipoSj9J5e2l1FBWJ8OVQlyqJmNcZosnVOTdWvyf2bgnY3SxjbLWRu4EHCmSagUPlNFuxNZUuzz19hBPqCyWyybprvtX6vP0UAdsFxb208qwLsrMgq27gan0Vz2OV3FVJnnIZRT68IpLvOao0PrnvJGsz+2TavAKpFwCDZCy8HIF5WLZmvCEIHqIGpE1T5XJeNCD7CYAmwgp5RK98AvqnFWffHqA2orQrIfFseqm9ZgK3ligIvX7rndmcAqt86luI0wnBJc/mnB1QCp5/1KZv/MZjLaCL63ujSbbnI57AQTnMgdX61br8rzGV0Q+SAr5pH10yBByu0X2V1rezZpxMz9sXFxEU6TMMRFxGNUWxUcqQEiRIHWIZDSxzBNsFJ7Y6IQ+QS9b6Qlj5UAUcTc+VunqprpG2p9aZuVQRM4h1oi0X2IfauPGD5zzmFbZk1Tyf/JHu/rMPK+N76EmNL02rgQwKwlR9AfPTb+wkVgGZITxLH2Yad0bWPwOeTaKAIaxU8eHOn1EmaCRKZtE/DZGmUpFkiPufC8dd8L7s3I3w/4xvXNZ3ix8JI8Ys7AY1IQWfD4YG4qDObCy8VIilnpiSJtmqZdEq+/pcrnS4Z6YYswn3cYTWHEWkApIFdrgC1LxtqAPMmI0Snc0TAIqBe8xhEVC7DxgDHexQOAHYDezXqX7x+hnT1ogfPogDmNiXFrL3fQ8IOC+qA5Tjl/Uoh/U0kGhgwmRSmhpkkOMAo9GvAAVetg2ZLwq0N/0Ij8/ObMIKjxIZ0jV5CDB++Tr4CgUlalThLENaUA2+uaAdrPjlA83xHICrujSLoMf5JyO2M2gyb1maX1l87w8LEWrLGkQIyCbXDh28Xf0sLroTgLs15RMipU6lvcPsqdz/pH4po6Jdo0bRaC9+NSAZOuhKb41bT6DY5Er3u/Z75SYxdMngMoZOLgmwnq3VuJ1kIJMTWMQ65iZOnmqgBtpeAAmAaTD7pK/AHvWyXzW5ttyQsoQYCTBEM0GeRTtK+opNpe+lozlZ/e2zi4sPMRWwIGsIsKMm9xHskubbKDvM/3FvIPURkF9s7JCUHtefFVG6WBKemnrrj5jWgiI4UfaTmIgqf2LfbSc0b7jofy28NzLrSzAPK44MjeqZeqccOxzbpzTT5CfSkotjeXXs8nnBGREGPg6t72qSTo6N/1lBqmtDf2Jys4B+0m7vFSXq+g6urDeUrDGgHHlNMfAGNs5Y4pPIlwoKe1zm/12YKdcF8eLGoeD3Pt0F+lfMhr0OM2JK08Q2B7Ccmuz3p1od2Thwfa8rTt4B350AyjpYGyuBdMES0Z4GLAKyS9yGWXy6aO8EO6R3TUhn2VoceCYvjy94XG4Q+H9HN88plITDu+0o9UnWPyNIbOE4eEXAjrMpIFjQefOS7sq1EgwJ8MsRkAVMw8CPkUixtdtwOd/sxHF7OS0tZ0Rcasib23K42re6UbhSTIq5XP5n13taDfA48h1bWBXPgdpRBywgjNUfvVdGEk/08SFDJngVyqg7pHH5IEarqDjwy8lSEAYp0C7YlxyZNHKjwWwuuWXvFc+xez0sMHt1/qKouy38jqWmZ3UisDdpVoL5CTbftj1odMEEHXC80Xvh1i2XCwYUYEZW+xEjQJ67pF3x+QJ14IwLKPt0uxDkjOWFhiZRJsD346VXYT60lhfDixNOEUAc+QXzEKW/U9wBaZBuUT1LsgfRh4fiMFDZp82Dn/G5IUzWEkAC1xIDYAfUpQYm0OTlNb9A0y9cKiNNsyIFmYzFntzzRTZ0anYwZuJpjMGv9ubFlwhOVFghYos3lLmL+hgJVH6wb1ig6hQujfvydeYc+WAk9WvK+Lf5/6R/2wnOMrKMrGmLDWUAcXZjqTnOU1jYonXNJXa4mLEwTNth0f3M2z6E5tCDf3h0NpopMd7itFiFHDc6VJd/IU1LMy8eKsN18JwsEgACbSP0XpRpcnKAjSnUQ8Xf9+jJRj2XC7/nGWg13DCxSiW6VWBlyz/T+Z0T5wHj0eyZp0S1hw7uqAIKzaVccX6zj18ANpWbQDajVeF92CmM/BK+1O1HzvyN8/Lnd0LeVP7cB5mNoRK++nU6nYV6L3bnnpvO0nGyBh9FKSRuQKaeJ60HskdQV/MPcXFXcW38gKMIWHOUQIlFbMtXhnV0MPEnikruFIdLycGZk4wmJVfYgxVlsdUFaKuavjxSfg8In5UhVeFyZFnrISQimbnArbJEOwPpcp6ZXC07Yzg6rnoDwnc1/n9EbHka7l/k5MwklCASqfH0O64kEhIl9xAtCMlBl5+hFFAPSsks6W+Uu/bxvhBcGwSalJe55bwgPIeGRGBt6VQK+xCjUQ7Okjwbf/fEhclz8h0pVuI7S2gGCWZJkZxek6mH483DbDB4wK6/m8sRLRYT9xIrrYD1Fzccob+1ra3+D/blyml0tTydSRFCQPczDm/Al2IHBe/pHHtoneoJvD5rlqVlWISqAr1aj9MubFxVhHUEm+RJY6w6ZhwUtL0gtYni4AoOQGolkXGo+gLDPGjTuZE19Kkhrl3RwRemFDPz7OjRX1Mj5+lxulYmEafWVgPPSA8V4xaKpM4sgJHRxgSfdVFdFLVd7H6pwLzoZA+CwSoz0u+ZABcOdcdNt9eaAzYMlRitm75DQQG0/PKYrNzL1/BQTPKsVvGYMd/mhU/QbbudgSyt1ixoabVLuucWZ0sibOo0WdmcRPSgS/CvX0HSmwAHltXBXkwHEubp4ri5k/m9dtYUSSXElrqDxDx9+jvRPT8AQVOhyNqC3XGgvpjcLId8AnMozVKtIFEoUXHfu79svDwcGUnLPzHIqZD0baOMFpjvQd7gxwoJgyHTg0idm5B+9U5OUGvQe3j+bIyjhGR+kv8qf15O/1VQsGQdF0AHb+gyEWO34kW4muK1kJFvyKwzG//xL1e9GCptmwz7HveAufSDFA8PITIraaupiWqOYO4rERiUS0KDClfnSXAI3WG7LuF6We4PqIhI/HieAUCgoavA8p0fGMwXwXjJSRxybImErak0etdgUt7+0oetqRIas02FVtIP3suIX2t9TdoA1iBb6yaVie1lyLtBgc9s3xR+8k1HZ03VglU2EwD56S9pmsJs55VobMx3PWjjPHK4mp9cp1sBVw6wqbfgXgWlOfkRNfJ1dJt4lsJS0yRaQ3ExQxY1ZIJLIU7XDWFc4qkajLFEBqOcwlY07/yKZXtOg4ntHpWy6LLID/56q6cvz/B/dXl2gW/EW6ge4imx1+/DJ4MS/VjKWuY8hUN/sgvzi5cGKnQztmDcgGi0FC5CMAtQAyDAbwKYJxMzOCU3qzzpnOYga5YTHyWmqaU83UFKBXEG7hysOxRitGKBFj2BEdGJw/qk25rD+YojnRP/xoiLSTA3fu7DUYM/uy4bjkfHwcvH3fHhxEAfoIkDNG1RxOt4ShUexMb+BWCpdo6laRGEAPEUjP1wcmv8YALEgE4EKhkFs3xtyI5mtXgm2/Fqfctcrj1jZeBBJPaTa3hxZvaCG51xsyTYXVXssrAOmwUf/3epDpoC4TrJDpaJtTMRcIZbG8weBNc6TAZxla31kjwakbirNPIQPFwb2vhVdL4TaX3Ptrr/MSSEFQygqEiybDd7TMjfyB0iNe3G8id+Pz1OTq2ngrEw41qAKvA6gIN8q44H72iivXfEQuD6igZ+i/xlPu6V+Ba3oALqukMk0ehaOgNYA+wELyjeFj73mzMAhgH3w+8hywUALZ4CyaTdA+uDOQ4E930y3VhgRRuWb029de6Za/0rB6hlQgwYe81wXoynlMKJwy5O2QtE+1tpsZjFSIE0TXq8ntWmzfBaAggBEFdbIZbgGZ7kpDLtWFdLud7jZ++v7ruP/DhsfaLzHHGyugvd/OOWIdX8dELyJYJASFExQ8BZUxVY2/DFjMhaeZCleJ/l2thGTDlR8x4PVZ4Cp6ScxE62ct84jvaApBLV0Pu6Zxtw1IWXQRlpjl9wOIk50QrcCwvDL9CFJXkKVltllU6yautYPHCzAv5kjvetS9Lbx9KdPMBo0UxNb5edDKZmgvCsHwNPI+QqvOZpbwAfXq6G690G97+GvQzXOD6VkImJJ6hicKeZdbqgDNc+Gpax5En/i+Hs1heAa8e/Rdp9NxZ6ZfgL0kxG2G7gFRyYp0H7qrrBjcPZPAeFxsUfWj6/ik7wYnlEEKAvvMolZiWtgTr/rvvuMOLZJtDsGgAiUA0MT0sAjV8YEpnau5wH8/L2nmpfF/wEEswZKt7aRutHJIcbUHxxtKZO6khQSe+ezuOYUM2bdnWloVzPW4P9krkhe4HF9JdPcVJPaYC4QWPX65gcUaYhcjgGMYDWIq4Ka53Lp3tCSdmmGSh9bPg1VwJVDepnfvm96vJoESHR6/Wa9HsJqbO5SydAOVmUzW6Auno9Nl5JSdSCzqQmqHORrlWpDl4Q1jrgLsE+KjUFqB03znj0CPqQHYbRwQrILDvf2EXWT65jxHhEiCXzeA192rFnX4hJYmaeUpxcZl1bxi15UvOTjIbMPzoETP8O4o/MbXC4n8g/F8s+7Idc9yiHERtL9Qj+/tfgYuD0t3UqlR/iw4kDlgDnQC/PQTEOlIUjx4g7L+13GTdTThULsWC8j+ITnjYTSol0RH7891jf8LGHZbLzuhPQihnFYpgYXnTpctXEvg4dy5+iEp2SPxpLckUtNw7JJrcXH1+EIUyDla14qSzEpXgtkjfWq+IxnCyk3D5c3gbfuDVTJk88kx48JEiyMfbJBW7T3fETAGB7FjCfN4ReBx/9DYL8ICg2cjDjsfJ8PFj9cLm7piig3yd0VqSgaNclDRY0IQKp24lJgp2N+tMIrTv0gjz1sUyNOmsO/eciVlwn/JPVuVqOItUje0qatR7VcXg+oKFGoEY1kzxKTnYzbe4CfWq2P8ahCD9WaMMLUIpvnXocCYb4jWP1Co7l63rTzJ++Kim01JRTZsQrfO1/AR88bNn4Q5VGh8x9Y0x9YRrakChSI2enys8Fj0N6QD8/zzHjD6qIHBG4t83GTMBQy6B1IvKTY1WeCr3DiBA9NPZz0PfhptMjgLPSgf0cNH7jh5A3YC5cLChdCuguvfbZFdb9DNxGOj1fQkOei7mHO9q0aaOFEr1FTVBwi6teaUkuKL3E/Kc6aJ6QaTc/WqHGILX92xMzGHS+UIQJDuNOiMKgclHZKDFmHDZzFxMPHqxixCaRThq5QrYBPACYgXOenTXrdQ8wnodWnuJXm0ziF/P3rmVCFfPaVJzSf2atNSTwV41CYf6XkMjly6xrnR8g/Y7WplMyRvzARAfbkRwGnpKtaTsAZEmtHxjqNG4v06pmZrvRjtIVJPTMsQsCPDzqjDkwGB58oat4Fx+yRJBRHJDkC0MmWnfaPa0xtNFc4Av30dt+qxwKUT0FCmpkYrFiMOcDt/CFufKAR5e8xZg52MtooocQRD6vHguu+hDWntJuU7kQID4YANSAf4lGew6t+Z7mzfhnbKnYFXLtmtTPE7IYwtOWJdWRGbwsQpT6rrYHIpS8utfzJfjQSvAribmM0V4Itx9LmaQGTHNG8LELGeUDTiasmY7PKlX8ZeNu/2AG5kNkOROI0dYXUnLabEASNpgKoGOOVl2q1IJjaCjTK9oIyFeUY1PRsmVPYpV6l7AybNYW7x8w0ov+MDPqA4i2d51l6M7J+bjhwFezcv8QyI9aNJXS7mimVY9BVGUa8h92jCPIB96rgrJgGFJbbFDoVEAphZqf0w8L8fgK6pnXjZfGfJy8XJrCC1Uy7b6mIMWVuI6z1K91A2ySzTQsuM1B0+7vn/pFteRiWdTDOe8fFYFrl/R7Ubx2dRO7DLuVhLR9ajU0cKYA48sD+Y6ZwEMnMTKWi5BY0EP7LzKB9Cm6FRnePBeXOqJEpRJmGar08hHxeSQ6ER0erDrwiDFprlMAtyhi75wFa8rfUWXUwbaP+ZwG1gqw4R6+3liXW2S6KlZKZprKWUE3Dd0j7a4D80oo3jZ5aVWsM8rInAz7Ps/bnWENTXeuJpXAOpaVA/ISUerd/Hix0TNcYqIuQt5o+kwhheJ9rri456i3zqboNrl1MVggcRi2ScEXCsGKpfFJyG5gRXaqwLtGO5c0Jh9rglFD2Tfl8HdZOACcNyScItukZjSo7yiD2g7IGkY9pg9LAzBV6yzdF6ITTuEZuEeAJpEDgSHi6wTmVdDNwCBlb7FKZCLAKo/wc5Cp23+B6gwZplLpeeLLsT5UMtFwvXt0ppBMyziwOeX7Np37WPrcblQUU3JvzMl/8wEaS8SV0I5Zof8DM9xv9QM1Gj/h0TPLf6ukWxOXU+C78U+naFco2ShAdX8kpiizEfgAiziFdpSoOXu1lewEkgprvaEEbOL07BGXXUme2G1eX+9PgKxtrxmALfs1RLzKTyXDzbpzAXxa9XUL6Hzmhsj2/Mr75sFtp0EynqJ0mqoDifqQcpLLhj8Pn5i8vnlz6ZroPXMLcxGbtLk5s+VKL7bDwgxUSvSmMqqnMCVsZatPo0MQ4LBs/kcZG0EdhsZfZHNPhCnH/n/VcKJP48jkkdDkwpqPvsgO9nfTNgEgFVxsTfP/d6S2OLqauuKMyQjDg8X5RT5wNnKiNHCRQF1TQDpqvAY6AH6zF2V+TXR7Mst/URWwFTfbJ9N69x0sqEp5zntYHFrpZq/Ww9LmLP97VrfDdOLkHdg8pvliql684XDLT93518Usu1ZCCk+93Zl7n6YT/RZg2EYPM1/ZFjL8YGahSz5yJ+7Oc/PNQM+7dbj+sC/KFa5nefl6dDZlpVlsfG0XxSo05yaBdVpif8JXYYIMPZGof6SHr8aQZlSMdZge5qx1PTzbnGZ8umPJvxbRNx9D3KzD4SV5qpxeurdK1aSTnL9+asQ1tz1Ung6i40VaVdFyRlJHd5JoHc6ePkBlOjIav1M/zXnWahgb7z+/ymnwIAkx3e0263tehdfjw42hcQb8XIKEYfLr3elbJmbzt+gvvX34gy+lmfJWeyPNCz7lqBM1id3bn2hOzczJ2RB0lHhnwhaJ4y+hDysu8XkOxuUfAEnLti72WomgUYbIko+wOZMzlaYFooUXQEw1zN+SkHzpT2TsgAJWbxvnmUqa+Q/JejE8ZOji8JT+9yilaMMEOAFR+3jAHuIhPlca/Uu1DxZlQzjbQSE4qIYG9hLbL/ZkNDatoRKXnV55fUMWYRNSe57N6MewI7feN1lXL+RXQCJ9EUwqjEpuvRInKMIvWNUK5slPWDZSD/lMWIl0QqPvMZz+0HCxN77a4DTn/mMT/cJE9phxQifjQgPFk/a+v9pz8nJAT7VsC2cLDmVjcfrlRhwlp+/cJXoMIwK/tFAH77aGr34SKl0n3k/oV9vht5VGGX22swEUcMyREkjbQDJoO+yX3V2vBxrrvrRcDlBoe1aP1uv5GbyBvxJO1YmUx0kZOmkbaazjBH2amR49h48yz7d4JVNHTyPK0S0F+N6U1iU5WBN/nnASIWKWaqiQmWXvQsDEy1chXz5VjfTqoAA9+kLQ5HoldrfDihyQ/3eJwDH6U/dOOMZFw6kVyGe/yblSa2V9YMdDCn8NmKaVX2UBgHEEfOh80tnisdNjGWvn+RsrZ5NN2GSkaLkJYmKrv3V3DEHC8SGMzx3Fscw0DuSurzajzExxjq7xs6fJ4fTkyGnfba6U+XaqJWF0Q3zHy/VtWi0MdoF4Po48zcYk16eJwfSZIimE4fMyvoRvhCfsYuKgEw66Rr2934eDlRmBfUN6brdbsUGPrXIR486hrHYOkpqk7u/XZalIKpAsXrGdHJfMqaVGaHw3obg/rJx/xYw3KXLj7AwbTr9Y6YGGUotp1uyFXTqJDlWoNzzk7u8xyq/v+Nct3MGE+CArMTFtGsYlhGr1nvaDW/3nVyqZhJWk/RM31xteMHxg4UwAB3suPTWUY1CMo8rzT2CHyEuUYeLYFc3gRXdnWU6Fxl+KsXobd3C9sOsWbywYlEP1YmvTQAwu7O577woyLiuqXpyG8UQXrPSudo7bXX8YpE1smi3AXLpWgdDEIBeLlnlXBRoBB0+eDamQaf0ONrPXedvDYmBGNFqqGtbeEzEfjI/4yXVQx9GaCTYD+dcS6xqp7x8TIIR+2HG4f2GC7xyA97nq0w63h+5ZyKSIBYmGynuyNuNsVkbj4mk7kdCnNBKkkmCTM131n+JY0yjHYQiChOy9Efe4DgLpKPq+1wZJ8rOxTHBrvZ7ZDWzAx3XFi0eHKwEP5J0kIZCxNmmMH22uDEicqrqSuqzijZm+3ExngJ3CUCUkBrFvKuVtxOs3w/Qfa4CStisCJLNHvdz0i7VEcF3Omn+8u0zZrrCtkOkjEaVsDDQ0DzHsJ4uWG9A1PHPfqZg18Nkss9AlsHKwMJM43VUrl3KNR3xifMSqvlOEbThu36itYIYHRiJ5EfZOSZJQ7iUMrihL9tny3QeZ/0eP4lC+cAWPZEIL+HFls7aBnGrQnpbZQhZeyD5taSjJlLaQU5G5XWvK1+MYIWuJVNQOfx6riOw9EmgDemGW23qGvldF0VzF1QyEsGJg+MOTrtdH57sZOz9SzGtrMCDoHAqnOX55JMp6piDtfMdIHGW4exiCxsPgSoX5pPv8eJzMnVUh/nVJ25NJrO/89pH8wojAo0Ihs+0wjoEI6IT8SgetLG0zvWctG1jVjiogLnUXhbNjYoaJYg5NZMEIo5u4FaLRMcWtp05a7bqrMZUyejeIVtjB2WChV/KyJpiirKAcd/vyRcPPSYFo+gxwsc31tJr/DqUYbnwVIp+b+wwpqciBX3ZMxPtXkPRNAi5amtklL54Hm8WQ/Q8ZVVM+XrD08sw0/6gQnBpwbUIZ5SqBWrDEqmnwrFEw8PBZ7shartMP6XN/Ui1IrA8KZk00MRUbkRTkBB66zCL1B7LgW5iuH3zpn5L3aAHzzzCga1Edywh8hIPtOW2jjxnuMhYR1PRggu3/Jkp6PpXFs0iV2tH0FposBv4/IGewQt7Q8wl1C+9Rrmj0w9/NLQ/m7XWB2j8HcbUTVLIC36JFsgWYvLuS6BlVmtyry3eGnp7sf17j66wtSEDH6+vxQzon3d43j4QAhFzNYQsje/0C9K1VBoblmstAlNz8tWs5oICVpeNWBM0WwoWue5r2L2p22axdo/aQgIs0ym3wJvC8lxrURTDEya647PFy2VX8ELoYIXUgMaSoocyoUioSd2f1vRN1hnUdXGplOnXpTJUhHEVSDOhbMdq5aaQ5JqIhisS8vWiZF9hUnDfN7s1TcxIOrEF6Wez4a165fN3iMxG6gsMPX5yLTMuiSRQQBdEOxMbb5MApg8ZNc+4u/HDQV83azJhinJWAtU7biOv9gH1Tr9CoJHxrTYD/GEugh8SwuyP7dCiENcjhLms/zfEGup1QatYK2W0E/6knAEwYhAJNN4L71TbIGtNpcCvIJnG7jdWJCfv137C8XPROlP3Is9NT/XV4KkEf/QyZP0ul7D1bmCHRjwXfZvYap8d3f+I8+dSBsM9HONyR3TI4eGIRTS9mZtkpuxMHHhC4NwSOqh19lLERGTWFiVKVh6E7LWnyBekDMz/bUmrBTfzD4O5zpFr4Mqg4EDwAYSYczJLKrv0rjSFE3R1ROYsUfbTuJynu870CuGde5LDsRmyXPGJHF6U4cVa0W3LesETDvFpzZBR8Brk4VoiTSiQ0jZNb6hU/Q3h8Vj12iom7K346RHtNab9DcVrH1/buEgzk2lnYOcru8W1tSCZEZhmeY5HNgxxgGDsnx4f1jKO09tYyjh8KjBOXL2bQ0DrOOZcScZmWsr5gOWDTWEgeEmDAwwjYGTbAzOW85w98go56U5jCxe2rqA/sSCkJ3XUQi3cn5TpyzBuNDp61Bn7TTHyaLBZ6GNxpoIGFpd3pPxbv3Gp8B7496m1caxnOUbif5VE/d16OnNfWJ7edhjZb0Y24I9gvWudosUgFEzgFIY2Kh4C/sNIDp58IxjGc8NKHOzhUzD0P0yNF1Sym4drqP8OxpGrHraWT2wp0sGkE6kDxetMZkQVHkbOri6OhdIZrHwQZy+4bEEAPCw/nxvZz/+orMUWT+uejSYyROsRmgU3AzH7N83Lc4tgvO0wuQZQ+npprSQv/Ma4qPU7bECOQfUbe99AtVfHlW1qnSa6EEJe7Np+jumx2U5FMrRs6Sv90jXeHOQUXTIBp1yReA92R4W/i7FjG/5ozWj+pzxsONjnNlTBtbcUHcmA0Mu6XfDQ1ec4wjLZgXXLq6laagWj1GG/7KwrrNnmf10swz1kLEZaDdOg7EIU+AQpW6VzO7eRKjWCQVHIFhkDMTnpLFSiSrLQ9vNQ0Gexk+gEAiZvoLaFbDoEbbObTSMbnZ3FIDxdyvSJoHsPe1om1vK7afqt3qJ+tedaovgKA4EC3e16slqREXH98JDI7SliyEcOOUQLm3sKGjb3pdn40ycnKiSbu6E7pf6Urts1isd6GacT2x4FjWt/o6llf3TBz7p/wrWGQihzhcKolTvBHQbXNSaIgI/waQ3Tnmx4ZSNft0H54SQdNRKvDd6HQqm3WNJwXPwiDhhweGLINCSTBcaMebwiW/mZTOn7KaQr5xNv0jTzfB7AiDsB+z164bzk8dBs+tlJL8+kbKG5eBT+4omjSbpEoBzXgfbGWo/GEMNCAiU7xSoSHgOVV/4V8MwqrvQ7Cp7n7O5aHrR4Kep8/7UD5ynB9vcwBd4sx7qqlgDwwLcJXsJ09j0OgkLX2zSV7kIANZge98wF2LS8KTioPaOSGtXa9yb54LmLoLEIk4m7aMiNN6Du3ImfLNyAEA9YQTG3VqeRMrdsVPzUMxyRo8Grg1Nb/rhLDWTk5f6qWKs1K8T2y4A349tT6Ddf55zVhUv1RRzRYzqDr5kp9/PaoGiZ3qds+Q5EXBlVNay8WThIfPAHlQnCHQ9tdFWuvwzAZ/IDQgX0i/7vh1WMtapkp2eXTPw1nQ5byUtSI4hkS8bnfFmqPFDtkpAdtgxHPwSmXVr/XC30/CH5yzxI0ZtGTpnkV6M+Qh45mop1ExDq9LsXRht0gWeBvwjiDJ+hAZAXxDhqv7Q6I2hYWz0qqT2VFv/95pO5SrrRk3vKphk1YcJedOqvWPMn/Nyu+tJM2t1qBimx30cNSe6LWyl/dP2f2dEt41sCpU08OxrLH8E2xsPcG6o0ycgTgieobKWtMaBK/l/Db51y2LI16/0Up40rMw2DCSijkZF+69jBJHqLVEnIjIzuInRDqd6xVaxTRHENCw+JUYJzGgjxCeOmAj2hHH7IMAyFchpddFQoq9QSP2VRMNdMvQRhgesp3rvBp48UlHDJGIe8/9Ml79qQwfJtmWBWJt+vIM07PntHYDQsuB2cs2JCJFDFaKGP6eUAJgsphvCCVreiMeVxS6fdaTwlr86izRFo/A2hGUrBWk/tB7hYNUJEWkQLWhBhQ6za+cXUIrdi4YLcenpDGLQdr7L1+Z5ZtVchwmNCL1MpM9QRrIOLE8wN6ufzK3h2wSKBD7z5sEuEFarTe1YLjkIl2JmZdvP+83TvqZxA5yU/QRZZl0d268jxK/6eS/HmNevYDixBBlj9tgNygi/4blHRGatCDmv3JLpwZCuzwXiQ6+mzDYp+RAcSZ8aHLLgk20gZUA9Vi4ecYIg8101CK7289LObxegF00E+uB3sjIT3ETmQrU4hPtZTPV5b1yaif/ZKAU9sjAslxB10Dy6SCEh2yBM97X0XvBPmpgi8Fuu7aRJGmV8rlP+3KXZUsd2urvujwV3a2GS6By4SiiPeHfa600IL+xjdsKxf/XJSN1dLN/eh5xXPyzljXIuRk58xJeokK6jsmmz0W4bXDS6Ri3RcnVMujOOTZGv6zz6c/l2rTl0WVw4AyXKz0Sa8739MA7f7RfPrj1V+677H4wdYJybxLlann2bll0Ljw4Rj7RBtJh0pQh8CWrx5svcMnUcj0uT7kYwzcISvdAyeG88LttiVNCUZunFWvxSj0A455+Q5CjPghe159XQRn0rh1smM+JVw+ni0o69vfP2gCKUXm2WVxTVPlHwKSOkZaFRap0nxhCohRuakT0ElhmAlMsIAci51scVPaNKeyEgmxrF7t5geou+GV6Gt178MC4DaDvT7gweKYjaosoHGXD2Cy2xeSAKhSQzzcyHzRCUk7IuoWfrgKP7ArA61uPcAYVc4WmmOSg3vxKLt1tqyLu/9RJ6XgGMuZL02uOWyBQr9u/fMbPkz/dGykKndMGfkgGHyQrwdXoe8iK7G7E4KFj73HsRQpQL58sA+cTrkf6qSGD+Dygu3PxHOl1Lt3jaXC9254HpnGPTG+MBeLuF0ev4iqVBCd3tEq+67kwJBT15JANFiiRrcN67AZYKBeaOMd39DumVfQEBq2OFp3L5tQ/TMp1VCtil5Xko6oWvr+z98pY+rdgR040o9pRy9HK/oU3EGv4GSJCnEV9kleylj+pnZFV+mtqJDl1LlWFZEBDj4khQFaDsCY40xubUml/Ts49cWa5Fg8aWmuooZPb1XROeSdzemYbjehETbprCfUUr+7LL/9+CD+IEM8wpz0F1KVdfRQszqvnMRJbiHO3BRmHEM3jU+36YVEoLTsRGyDda+iK6TKYYv8iu+XyABIONSnNIjXcBFmJgCYmN7XMUuk+MV2f2mbM4JaI5tavzgZCzdJrEu0npftUClULNCnLLYWAIgmYDob6TR3VbUPR+evWvTR0dFB3AE7ymmZg+EY5a00mN0NkUjG7oFViYvwGapB4jvcKpb9eqar4br6EDIlqenHS0X2zEkuNGmXrMFMUKusKOgF4msTDoBNnqz6nAf1CRUql53YW/WYgE89zLI1lZq5rc7FcLNARGKJF8dpPyUmfiPgrrNiSVLrHSkhAFeKFJXl1FCLjJ1PBIqowBhHeJdg2/hAW4n7tI6u4kayWHX5nWLIAx97i/zmElCU5ehwFg8h+FqXA0QZ1sp4F9+Hn8ENi91Qh0hEiHYaoLaRKXQMAQAKZ5EBjiL84XrgiTa+btDVOY/LSkDZx/kznS4NqJCvVtZXleGQlF1cg+cB3mMpGy3Uq77EvfNXINJwvWseC1pp2TCSC4LHIIW8LLJFnCrj127hjJAUaage2y+SifmJ65c5s5vNUamKvXBYjLruziYOSahoAr5OCCfOEQNHgKx5UWLzyOWQtvZZLhN8BQ1JIFVoTqGx8xFYroiRXshM6/f+5DysLF/Bpm585rWahzgbHkX4h8qQKUqKTF7OA8LLpvNrSI5kC1z4VeiCCvwl4Xu6hQ9vFG+MXtDK0Ex+qsvU9bi4BaTPE+wCK5uK0qYbrTT/cfL+QJDzsoOQKS+bw42lJo/i5PJJYlN76TzGfvz+5+275ECBI81d7Kq67wPTtO4vm69P58B2TynM18FS+Wi0w59AiSZg6sRjhQtn3fIS0usIKBmNO82RmKvsUMu7EwApAIafkss5NDbGbdk7yqKwof9TbJM7oXpR0spSqLDqtonorNUBPeHlg2NXe65PWEnanSLICBGuKUmK1SMaF7KnffimDQHHBs2st1tugzyGUC5yRDAwU1EqhzEJtmf2j1I96L76068HJcOj0LcfRr+s94+nq0oCHjYi/6d6No8+YNNkf+sw+FBzvN+m91iCQn0tyCRolCtZv510Tu8xn/6Z7HWSwK5lV4vOxrlYGEiHCC5+VRh8ysEPwVIvomwGzzNu2yvMDfUI6QhASd4M0o0nA4MVovEaE8V01V9mU4jenOzQdVK4Q6uCHZ/rsva/h3iHBlOkGzXgVWRgevWUjFSrwgC1MD7yxF4iM8Jce6yx33gjrbobMjVbIp5oqB4p04V/gPuI0TiQRVz5JMfnfdIVC1S0EPWAevEHRxvbKC3/FB31hzvHcnQ9yReNKyt7F8ziJImdZr6BpbKkpbEHIC+vdIK53GYs1A7s5ZN0M3cFg7HLrC7FC7JBErjWq+KV6NWWVbI9kJi91b/54K72Fxey/pIfC5y9qR6W7PdlD+EX41hpjYFwushWVpa9DD8WC91Ck/HIBSm2YP/BiflwCWPhYaVpz2XEKoLtBh+sd7WLE3TuZ7BoVHS5wtAFWOc29OqBKxkFy2RLNhmjpOV0o4YfVpu+uuODKyrOy+7fWQcYqguz3lfmv+sVtkH+3w1hQFnQnVXSse1K/FLrp+SAqi/4w4QMnvzSh7rxQL4XXYSx77IneGaQIlwP8ylLDb9ja/r6eRmP6ZMjW4fzukx2/VCyUoFIcnoiOj32Z8ghAlTNGUuHCfpqsxav999tBCyaWk3hWoFL38B3noGd+2DO1PiLMthPk1bUK8vyeLITu++UEi8RilsE5F61cDvTRhXOaKpPnoUda34oOMViRB69CE4qGvmBcE3dIur3IDlaTYfErgHILbYx3LSBSt7pbRyKog0bECuUdrZ8+jLD5AVwpHMgeQJKgLpbSJnvTovTBITbE2bepkbDqHhimYpY0HgyLnk5E6Y0MxLADdxfJaGxsNMKX7d4NTnRUbLDGaAvQOLefivWhN1LGg6fb935Zd+gyFAsvRUzrELQbINXR6KpUjUa/1tehWbFBsY+Db+tZ2ZEpTTMFdJ8tUNTPSgcxa2n8V9Hh6cG079rQ7oVb/wEGjA9xIzoda5KL8g4N1BNRFt2kQC/AgSfjWxw6smC71dgCMmNiNG7biWsGZXSGnqW17l/HDg2dMfhmJIDUu8Ks4tXpxH0pB34nS7JALZCyeTzLz08OYv3MSs63P/ab76LbZiJZucu6d3zYZjmq9VaHlTFKlYxTeb0xoDDrn+klWA62VRv8ZLm8gsyPTqflUT8CTjK/bdHQtIr6MS2i586Pv7j1GdmYGYTl1rLRy1eDqSOiVC7fA8xpqODWYTctw1Ac0UmCCSKeLXRs+gDCSpJSRhUGTz8Iy7P/MOMHWrrABZwp9if9rAnOiie/qFjVeYC4anrI7HPkQtF4bpVqt21Sz4m7CdkM2xUdXCKM2plt0wOTKDzzRpakEYeNa6fme0ZXBeN/9HyYjXruP41TE9NpECa3p+nF2aSL8+Hg7skHaWeovHn9+wCOM3GYx3CWjfe3yVpuxrBObEnStEEWIkcSGUh6L1bPpxbwWp1F4wAtbU0QRhhRMxUgnFvaQzQkRpg20CTcWNmA3xZUaL2QRXbg0aINmiVDyrEpM6/j8luXvIir+LGenAdqus+d3P7zMBNGOFiEN/qGz5UGmohL36DUDfmY6ZVJ91pI0XF4GIyVsVbttYrM1bAmyCilOQYr0QY71VLWPZ+Z3sZvV7fUYSP0dKIRJS+9YHEkq0pOSLy/uZmtW24zuM36sJhtWkCyBITTC7i/Q9a+EjL0Ug3kruM7P0e1teU/6F11JU9ARvrV/mkc+9pR61tjR+KrkX31oMH+PW3pWtPr0/aAzrJU+/lu3TmuVLgtNJKnlDE8PyYAZ1SbTTRoWSXLvYBL5usiF3mOIwpiJcqeTrmSxmzf7qAUSUqUQh/l/7mXJAeZq98dvpyFmiFItxbvcDb+7nPcLRC4wTcBtUjMvFeTcn0H2rhn4hsUFbYWRzeAUyckuSbec4MDm9lgAqPKYi2C4ht+6rqn51j++ekeIThIUKBNo4w117EFJrZucUJXnZb/Du7jwxwvf6hMWvleDyDA2n3AwnYwcWq0L8HG/RXIzfm+750eKq1Wlzpe5E/J7juYS6ELHLFsYKGVOfI+XXEgJzwx6eGqq/DQ4MBXACWk+0yrAj5Msy21Qptm+eGN8Nky4IXmOWTt/bTTjnbXQtxQS0zo+FP+24gVXrkkkIqvlcevrx2znI0AkC2lEjIWBW80pwG93h21sk1bMOC11dhhveuy9hMY2tuEXW6Dn6qAPqh/UMbLLJyKk82cDFdIRHRH0WEzRzyP2jn2bwtrOymVpLhnohlz4BTyn7OvI5U7F9NBGTDT/hvaFK4WCHabJMlIj31F/lWZhC23U9lCWwqlhjHz9/WL3ohtJ5g3zoPozFrQaPKhEI2D+4W0EXjpYfQ3X6MGTtKu2EvTWRlEOm8f/XQ1He0+Z5dXffBQPsDe+fn9K5dMyh54z3M0gNbbCh5HhF5oM60zvwzikrWky9Awc5EhsnUlOFFXeNvp+SGOEXngpKWbk8FLhIi4citotmNn3XsT4VH7sF2ABMJ2jwpnHKsE7ZqMOtblQdq7Zb12hCqctDPimj5B//kJSBCtbXZoU02uoX+bAMG3F5N+u1LB5xDvev1MDEFw04cPs63Lui4YSQ66b2zqIzzVcXyTXEVbP/uTnRUO4ugFZecvVGnETbWcERHSD+BhcSUYBlM00WcLTHdJ+j7CjCNJx2Wu9flj/jh9KxJ0raXsMXVJF0moJ1CjnP0dkSXEHVoqb9hyd+Hq0ADBhMO6adENWajQQoNQHGG+uOzEErUl2xFe42zvPj77v60NkRfFCMSAHesOp9Kzink5SRgONx/63P8/VeK25D+ec4CzUzGRzsdFfCXr0S5cNdxO+wdKhyrj9DtKlKF0UGZeDWN1fnCOqRjHqh9FnDLm06ea5xTZVDLftwDZKBisoy/91MG9H+2z9G6ExRHp4p5VOlbr1yGR+pcJ1w9FJbwHd1HYubPXuVS+voHrWvKLjldn5SRCL8X9bXyax06xCF85eGWe6v8PFatxRjcwgGaJuyf9FDWHSFrol4miW5CZy0yA0NmjXjisPhMQCGqQCDqncAqkU4Y3/sjzKCjAgHKeLHkk0TZY9Tv5DDPGH8IN694LDng2OVvTwacxfMF37Cr7xngMN0zs9Lmuvtu5/WnM5Rswu/oFms0XDXdEBydVwxMc0dMSQ12Guk7vA/NjDi/AVfhFzFzWJ2MM2PU74sKGYxcioVyhkgK0B37p8cNlmQMiCYSGDeq+V460WoZ2Vb7dz9UYRAEvLyLPQtQfNyP4kez0T6N9n2V7CbV17n2ZzAQRdn6l4C5cnFBWjg775JVD2/IIRRceg63Y2BCQ4qpZimzg5PGR2lA/J5Pz0n1LRi2R0k/yIW1bgTTcOGMtjA3U74yXuTsS5/DISGjPABl/hTOT+Z5osgU+7O5+wKBNRgdhcipV6JLFMcVXFDtkFKp1QBxQX824exwNsJZi9XoCAJjUokBEeTuvRTrk0xSyyZxTacL0QlYmXFc7MbnbxJbBoX936XTVDaBtyfsDQc2vHyCF1Eq6KGDdARTl2KGigIc+P0MsHeKkyiDhYsEQkScVGRA3PFH7NUfQpB6ihiutSSrENvwFffD5sX/3k0eX4nfuNfjyB+TtDxMuhlVHdK/8baa823HttX7ZD9rZ5bux44Eq60CvjLQFVcbqe4BGXp08DBGVdudamyvJN/4/stzQrZoP5aX2ybglXwJ7lCYgZpTltMfFyqzrHUz5ifUoVsjKnglRWr/45ZdbheeFkgyYcTIH0IBz3a4yWcCXuzcrVgPPVxCpgQ+vlMRccdzOLy3ZtwdbfvGTbE1Ie1U//jqfLGO7DqTH+xLxfVlZ9ziuALwzEQGmKDtoWN53TpA4g6aV+fXEhRurfKwHsEU/aCdXfhigm7E1otJuM/N/jW7088LycxMrJo2cm80TFnKv+makJReymF6hIHOe5dek+45r6IzPg8/coxDUfJ5E2Rr98Z/tpMvxvEgNMXTb5ph+40KO0N5M99R9JVssHxVFDVGg6dHCbr56cRMM7eJ/ChK8tch7s9fGhDjrhOMzZWZlmE+hOVCjluyYH74SkVSNiNAnr9EbChHT9SjExMOzXGq9gZ+sUvN43STQV422nTqign1VYBarzRsR9OVePU3pzG4DtnWk6JXtT0zM16Qu85DknbukWnt45ny9Rs+bxfMrT2lLyhaMKCsZz8dkUYEilhTAETPWQa+ii2PYBXBnZZ7LKYhRXFGjo3bpMItkNfsD2WN+i5/6KN0dpWPDQHTazuGUWFBCi7UIIPwlxWCGSpTLWiyBwbzh+6DKk/VARxRYzXXJgdmT2+/7x0bx6ISNYMaWykhBtf/0yo4eqW+lx7BeGpef3cgujuvnxCC178AjS1RLp2ufTFfCTyrYNaF5IGqhC2B/T7gvIHvGZaecihY0R5NHydFq4mpcycwktXPXTgpPJcLxfZh8y11VsMHX3iypHSVP+4vVw39+bdO/LZyFjqD6Yo/9pRwAcTGenD6dwQaM9PnDrY4wNeCWaH4UxB6YazYXyYlwk/HlrIBMkxWRbY/dpMFagIhd3fVnxdVodtVp1NsgFCd2sWMQa1bxnLA+aK0msHN00HdlUtlllq7stb5ZLaA1N7IaSE3Bw2juLjIFiWrfjiPTe/rtUu+SiXatH/bTRfaxr6XvyH/wt5NuCEYTaC9MEHJA5U2VTEF8dwm8HcV2J+wM9BL7RO7pE2KrS9hr6MpLQJ4KTj8aLgcpXaOdvrZ6fpl908RL+riE2X6/0rlCZRK2HkyIqfoJMiXYHrNc1GQ5v69rcEmwCOs+1agZ1lQ0gCS/AYu2va2S9tnPDP1C7ce626Kuy54Cw/1I0G4xeUBvVbVGer8bsIfSjxMiSRTGl3w5TflGVh3woJDdo/vfrOc3uYwgAEJw4E/on7yPUF+gDGM7WbqW/scdZsdqB9gbEEmgbaiu7POosaSl/MWpN+XLsL3zwSfexYZlNa3BxXZjJAgTkdOnAHJhN3++xooaDc9wiv7XfLyTR/guyROCNDW1WkShf+YF6dZmA+iFyjcId1s6YA8r16KhVQCs75GNLIioSaxEsc/RyYPJeiOlaQhe8/e0KiocdbWOPNiDzIdlF24uEKz+8xN+H2tnysnKSXR8+vVmFnig21FmLdAzcTXGDGLaiCfnIpionlmSrj0km26NAM8ArQpBGX2HEZwoRWWksRNAaU0lPS6pauJSHt7OydJJyVo6TKSnEeqkriEPMmYz9mM73MvVVeadY3u4TtDxyEXt63TZptrRG5vX9RHTo0Jkaa4TTaFwjZ9Edl6PmZRmd0x6meVC3B+uJyIKtzArvqkzmJhsErCRez7OqeUCnY0adkJ/RrADW0w3tkacmaQmqICHoBiUCSk5CZ+Fov948PGlyh76S/qyWOy+GYEQrqK13IXx19eTzz7obenfubzfj/2++61b/tukPdRHg0Anq8n6TmefYdcAj90hDlRa1uqM0hRTLNw4ZlydOfeS3mH6ZadFeNioByYQuzMZymNGGbcGw5Hk3Aro/5xN2VztuDM8hKzxPZNIPz5ECae/+xQnjdFYcmVm92D6J0BWWVjjJORM88iNcULZkETrxciihxQNDF53udEFIWZ7kANWkEXMz+nYbH+3JgIHXx+1KU0bvIgSBd1UtwhadM9Sc/PipeQyh1WsQpVT1auo044TuIXPaQxDbcYIFT6ZQoJI+RKD7YRQuqPlADl6TE3K2OrLJPxtiVe2G9RhdSTqHPEcDIzUUtkNBih5ONRGXxQ/eAr5hjeNBS078y+zcuu5eEz3khh4kX/ua5XjxW2mFqZsChewEDEzfbV8efyePLa9XUiXZD9hzYq60cxEUJk6v24JD/2TwOq13/HoYot4D5t3EH6LOPWKFMcBuJnJGoPIESisNbyqSGQx2nFBSV37v6RaWo1Pvf+AK0/N3To7IZw+5rEtGtwv4NgToKhTe4a93qky31DKkiiyAC9G87MxaYsOMdPRrzsmd6mc6+gxsaGwi/uyLtkBo3lZTi01YQGQcAV28DAcLwqbxDmALliCtaJoZNT8/701WFTMrM3Vas/AW8KQN++K7+dLuLNfOFXxR+0vxBRgzAg+e97hleDTIOyC3AHggjltX7DvKqbiuDQhhWUP9dOq/vDda+G39FBmixDb0MF1EVbsFaQfVSFpxQlNjqKN6UIEbNtl5amif5NpRTnStaCWMEP/iwNp6iR8iXTlfs2Cn8Yv/nbbPsmJP8FegxP1km6+D+60wTpI8eLbkxVKgovDdGKIGug4W1LKkGI+J9+bB5PFxAqKHkoJCb3aRnJKQq6JVl+Yd+YrS+HrGqiXXuoBKceccEgvSi7WXAq1WR6OfsMPF1+2dKKVq+oLfsayv7gtzhsdj1Tf39d5scc6xW2/HeekC24XHcYc9IaFfWYWJHaYVaZ1GU/eUb7D4pJVTbiEQ3a5tZVrrpI2+0xPo1yNCnBc+P0Iklj7/xcxVt2pF6TG9jE2XUr4X/r3qmdhiKce59p7rq5kDZ28OfkyItp73oe9uYwEp9iDiRrY6UwOTeyNxZ4phr66tN9fT7mB2tcZ24HXr45hzAwpLZL+y+zGlj//MC/knj7otkaHvCII+zyaQA3MtDWMlTWH4jX5LYm31x8eMp5QIH4yWY+mPShEqqRsuCvFxKPXj5a6hnmE5PXp840sElNaV813W3Mhc1c+FIZZ+zxBeb2BqHmoJLSrRrYcfES1KWrolNIj9bWDmCqVIgG9jwyGb+Y+u7uUMj8lQLbzZ2TtacjazDWOGxT50vdrU3xw2o8Ru9GWLEEFzQz3/3PqE1TfMO+9dWNKVPL9LAz+scoe6SHEx5LKc6l/o0L6Xz954TaMpIZiqbmzHV+U/sbT+QbA4xhAORH0Y/mw8WhmGIAyokSdKdkAbK0fzgu47rViU+6pdnrNv4NaOx7hMeZqYrETs+IOuPfzIb9/qDL6jLRX9jOzZfJnEGoE7Jr7G0ZnrD+bO4pBHZPcs+lVB1RWWdk2N3hV/pZKYzSazOGsAtklDhoV9frhfcLN9KJbK7puFmrt5eUztnolwfM9+svXKz79ZYvWZBS+DjXff0CYFXIrac5ylKUw/xU8CahRe3Vvo1nuZdWeWotvVWiibRlzSvHBEUgkeue0APnzW8C8tym6fnX7+AxNr37zdMGnLxNtXUCaVRbh2q6v32z9+xFpawvcjFhEf3lnPLTMseHxatSNElqMVdNjHx70oJ352gIq/bBGBOX91TeGWz1UF0sxXcKM+etmUG3sF551eSyHqG303d7TlP6dZlLZTKpOHQqpdv9i4eyMj51TPBK9jAFH85lI6pf/6EBz6cXQfPhVJOB6OV4an+lH9qQe5iRaDr4GYtBGIysSwHxoWBZsN4pK3Xuw97jtOI5oset7HLxy5JLwJoUBZdSWJi2hiRwbg4kTqX+6n2IELkRWFwaFBK2vw/bRh2GthuzdgBXGOb/YtUL+fOtpuZp4HGP2itosPVO19UFsQ8w3+I/YLPIbQ8+PkV1kCgda1aEetidMXaeBSrgBpVGkLfsn2PvBLqvkOpj7BWkv47guJcVqShkfjMYIfPVL/RftYQs+PhDJqqzhJ8Da4xHkBBJfQULNUYIORi7W4X3D1ZDUSMXa/aXfysNZtWQmEDiuIsuQ/p0dU7ZyNZr47sphlcOnkvtSs1mhc4dUvFbsrD7a6WzAG2lvB5D9D4MflwYvxmk5JB5gUGD50dNPWU7GhnSoMirT0+Z8+JuX0jiOfdqGBpNJBaij5dPk16RUiE7UI189iH2d3mYkxYxr80QqnVj5YyZYfNmp5Ytvdf759t3KubPjEaiAHTfQkaZnt7Mp8PkW2oaLWSO9fu6EuT2JAOAxhHkFgNpct8zMd6r6LlN3J8r3i+8N8drtxHWDrPXr4MNBu/aIsNv944F3HnNY7Rnk1p4aMAEnc6AiWhTkdhTD6ipRbhtstj9+aEl1C9C0aeu3bxkloFMdpNMNpudRJESaBFkqcvHdmiHAChPzXaLTbGiITV2ps6+erO+kbj1YN06ep2K/5/ca1y/SStg1VlAwR/9B2wYgCoJ3ZSHPnnLLXJLkAe9T+4sJtP7S74+AEbcsdX991a1ND0eO/f9G7elL86UvSi9JGRMC9rox+RqTOPuc30DutrizpXIXFxrO9PHdJy525GDvSvTpuKq0plf9+VFaK9gEB8wGK8gU9f8QO2pUrqkq9DwbH9vpVy9YZzbv9wvPzeLbMYCAda+pVJsqxV3ogCu8vUYenmf8Jt3zljlLsNpkw16BMXTIZN8bhlA4/jI48A8MMihLHnXZg2bl8HHjIdmTilN3AjFELe3qVXObabfr19TfEcR4ZgdFploySwgW5nr42iA6Nh+ErgSLthUfFsN+NvMZGqzVl+vS2xyoH37iHbNKsX8mm4h2/3B2jvMjgy1jZGwF5ilorIydJGe5C7W21l5/lzRgNCpqbS5pkMuYgaNGIv9UU7wlNEyaXYh0m9kCCP6JY8lGoLK8roD0D1UntzIKI5v2MLj8f3fnIQJ6LWjZXZ/MWOKDDJOU/RgPNuD+WVVUDxyS827nb6xG3ONj5YpKfTaNvxzX6Wm++Gkq2UcHuCo51iHv4gxKKPKrh44reIQt2SzIp7gtZhKDdY9oMD8dpQ1BFrCgKwdn0KG/YGdq7ILd52lm8LUKrydmHn8nNuBQ3S8tv7BK3NwwcefuvzXTMsiMqF2wNYBT96c7TIO9BeQq5ahKS3yegomMAqrHlIMYj15NO1xR6m6FWdjco3K0YzYJLZvkASqfBARCxIHkYQDciFksBe3fwCubPnPU+aaFmH1NqMSyQUuq3sHGG0ZsvRh13YVLpTg7nPFrHfkshNQfu8jQVfoaUHPfyDUTnFdb2mJ2oB1MqKIWLTpueGSHBBxRGavifdP0VuvyrxYUzCE3f9SIJBvzzj2Kpx17zPdV1wcrfbj97EpRJRUOlz+zMtgecEJFv2PbIj3dQaaI8tKdd5bavK5IVMow2lChR9n67thr2hOurdT0ebV/j3lTn3M92ZO6UjeVtrWUiZ+6ijPw/kY3GnsMtJLupBRRBZjUnX0dUTszy6RkVopmOW/B7kJQcZnP3mtJNXhR6mCEWdC1NUIfiS9oWyJqM64AVNe79//VK1nuDU8+FweqJLmV5oDvGfptK07xn+K8j7NMcJreyLLqYMh0qA2UfIROuL8DwlfjjAfBsSahpdfGMwX7ap4niTXU1yY2C73/fU1qNrGn7lKNMVdmK/GL+K6SUIkLJLaMftYIC+u9ZIougVf+s6F5pW92jHTtCKzhIUf11BafYxKMAAqXK71McXMWxMpPJu2BJrVvRVPpm9GS4oYGkX51/lYaQSWv7KQZ+9l4WKQTymwOHOl1KtWf6p1Gcx53wPkcyRuKyW/QKSGXz3mIGE7OZoJRY0aQpXdlP9c+iwjfN9ETQ5cvOzVdID4Q4Cy7sPUqZ2s7+JKzeMEC12aBnYNfxd3F3lXBWZakawM8COvqoLj98Usiwa1RlT4kGG+fOYuONVJwsXCZpnR8LbXTA2y6umhcLPEqf0pAy/oAoV4Q2vJz0cO+puhhi9ibghQqHKSJL99SnH1igSexRS4lzlbrmRGhrJwQjSV2ESk6iWigs5WDbvqkqhSV1i0H9xD563nx3X1eQlmrMO4NpoqYFM2LlDAckfYCXlrnvSOQJdwhCMCVpgV4FoLJBatY6Kz+vlhQB3dLZPhD3CK+tNcE8HNIofvUx9p2vqGdYdV4FmSrUYOhu3qE+884URa780/O9wUNA3HDUrknUtx1dDortUv4/hxpkKljACgyHg3mcXbsd53Ve9r/Ami97W8z6875/IoLOvza8G9NTEaWuGCX14uMU0AmUB1DPFwu0FtILZ2+R20B1exaK1kD+WyO2rsbGpq7VsHgf/fOJqyL48g+sFHDZzLWx8g26NbflzjFW3tYwQziQeH0EXAOOzq7RWFVtdWdo+T+WHT+DcgXU4FLChRbEOwxSIDy/+NDK8E+6698rcpmB4u2yh9mV/+BGbEsBZqiB3L3qjGyu7X9wBfKWRYt+vLixt1liwLRY2WVffrTCYAAn1LtieuSB0uGB59gFi+jwQHPIvOwuIa2/eN3z5lLueIKVaDr9sH9x72YwiQqSz3NBN7saqT97trn14gGViX1LitqULmDYLWHUTuQpsIrJSD84q3rq+XIfUSJUDg15NpzdwFlkoAA9/+JP9kvkTdajfgVlpgokKgbt+Pe5h4s/8xQ/1EXM8yPTmKoWd0fqA9by9Y5aaIs4B5N1hQNBt4s32aQCslFybUSq0jh/iLCFIhH6mB4T5k3oZ0Om5G3LMCi+2agkrw1Rqz5UI2kYWTL6OGZ1pFVUXU2mr1TF8lm73MoNDIiqR3BGD1nyv7UzgR6IZi+up9Hf1XhNkx2nZ0I8+xN3sL+lOkYb0frx8FTcdbnhLWyPIrSpzXrUA4ioJXCyvL6T2xyYloPofCSIh8s4toxsonntZnfsTnk1/IGAWn1dbL36/Y7zD6qL15r3Zc/EPDVYd+8Fp6UYeXAWsn/x8VRCupQV7vH4uOmKbP7rw4Hcgjd5l+wi4v1abcI0fjsvhCbDPxe5FqtR8FbyY/4w/a04jUf9E5stYUuKXJqIde8zCXJ246GDgLQJ8KB6YgQzo8DzwAX6vzWH0xLGlyL6pRGP1mGIyS6gQlznkayZCEVe2WYIOzZQQe4qj/P2aFtLBAlS9S0jXDyyJzcRznhHFnFGbXuSQXoF59LgcnLxN1pQg3RJrEn4eaLmRWjGcGxl/mqxIxPQZwRiIl0qnhyhCmvIbEjbir2P70kQaJU1JqfffXSfCVIDaBPmlijD69jnAXl7ijwVsk5iQfEm7XClJgN7DHP6k6fKS+msSwC8zRSkDp365OIMJ0W3P3rbyQPMe11RHLbD0iSmofxxVcIyWKuEyVs0Y3956nbnAs0luAyQueFBtR1toBXkuV+jDfoQoU9X4Nr0Kgh6bSlSBZVHXUaIqtPvLuOIoPL1CYPExcbWvnESTZQVBET+4VKILLNxFIctOBVyey4LEyGCvCM/zLflyNBOfZXtUwdLnxqvettZwND0u1F+u7h1KstxZe9YYpr5a4JzUJOjikpbeSH556BFzFYlW9gfHkNmRJ8EHXA+U/AxSP0xvar3bQXC52z0Qu0/Eo20BxfUre1dBScqdjw6hO+BAS4hehxYOVhdsEkHeN34CqWBhyvEIZksRT2M0BqKLP3QwRsGL5E878ja52Kc6T4QuwsXeJE2TJdQaJzWU1UkK9tvtx3OCYD173Zk1DlSjhST0UWziwnscA1ZKgZ68k5xVi7P55viNK+LS/t9MHc33JJTEjYLjuT1a+Q0OK1zu/bTI5pAOsgMkOC0Y6aJc+G22IqYLapYgbYtvnwzmrmAoFi3xB4ylnxA+4jqlj499MWGY9f8kvdO5Y9vyPg7PNZRCkNFF9tZoawoUC0bA3SHoCEzbV6GLTkDFEPIB+e+msNfw+/efTtuUwu7CzqeI54dC5SU3U7qqy1U5K/WcmHyZc6HV/6pp5LM36zBP4GIFAw+ysZfxFqIIreVzDuAi4ZmosiauQFpU/Niu+YWb/px949ogUOmZx7CTrRH0Nk7q14AWoNpGYRu7ZzucpvYkvdIGtzEwsbouEWls1SHAd3kKzHmCB6LIlqblLS5JAyCQswVlWn2jSFqjwCU5ivSGV8T6FnPyLPKGRUxAkOzYFSkSOsoWzmkV0jY68IL2U2BKQPxpFkT2iAsqgwICw4pEk8RJLE1x2/m+L/S+JRg/o4buDGQclWoz+IUu7md1bveO0OfjH4OUfmtEiXFrBH1kU3mo64WuHHPQ5FgBei/7kugVU4izKIKYpMRW33kOLg9R+y3cpuOkr7FgLlTEvN9oENUslWqWSMhm628+xASbV7ZH3SjMzNHYv51s4M20oQDKGXiAL4Sc8zdsmmEdE1XGoP3M8OfoOsesliLEsmE+TGmLoJ8sEIb0jQ6pcZvgodbnv09OUwlIfpvr9hspGN9orHYUa+TCGb+I+4E4sHqM7MglJcnQI2iSE6nLweJEYNmK9lPsmUhC9yH1LpmC8E+//yG+4dsSnod2/JqYljPjpD1rlfhYPdZ7gndckX53815HanTdl2Hh2Ba+Ymvr1JPeaip/hCbEYX+wdzJq4nbJ5uTqAyXDUv5cx5JzM8taUPN8NQw62kWI0HXWs0efekV7oA8t0KcjabgJYa6ME/W78L9mmdKtCq6n6GEIRd2+LSQqRF+ME/kVdjckmDyM+UTam8psnetcIuhF4wfM7sX7xkBvfgfwiCrO5UBYh4ttVYOuJ/F8a3Przjdvz4dbCgo6yvly+uD4mMM80PmCRlKhpJelasIA0TBmo4Tv7kVEaz5qO/7kmFl6LCfnze8zO2t35xIb8UEPhtYh1A6G+esH5N1FLsdkCeo5H0ZPBKwicvqrmiuT3RY//Z+exB86LVp/RpBCdrbEqO/3ejY7luyIR/nQPmlxkVuDXzcGUD/AOsH/fhVrp3zXWJwBiB0wOg5y+qK/J+A7D+mcmdGwSpq8TK+VZmnNS5aepWCLznvJPa6Pzm8Gg5630Rrg4uUYuLvHKvn4BwSYHDDC0jjKvrR++AAArS8ATjfg0I04p6XE/58mnyBS7t/DsEYElRAYLQ4PntztxfjyP7hiScxuxghSwu7D7NAVXAaQAYjE4SjXzlOYqhphy0S/gCcP+gaNHxJI70sS02L2DYNgHxq+QqVuCEXOQHHMH1ePhbmOMYweOvORQYOLIGLG/TgnzvP9yVfZ2aKnTays5EfpewAihGMZ/HS5RVicl35+BwrPYt54SlZDVMLpkMf0xB9n8k7LzuX998TYDRzVao5mJHUNNDxQ5BIVx8H2fPSdnfDPxEDqCOHNLfRMDQgb2hR7+ISLJN/p7IWPJzzYrBzhaD9GUS1VbPLPYXqqT1H+Gj+/CjSAHjdNqolF3orjmLxf+v+EgCGb0WH/gMbsydnZIG5nJA8AZRVra7aoHEon7eZnq+5SX4rxUZHLs+8c+xkabMKThh0D4Z6NQs6TkWk0C4lGUqAk0ZLb+gxeQfHH1glj8e6R44/Q7yBoHhrjW8WiYbSmqUjajTjW/k8Q/b+J4VYwNHcvaLBjh0DMKty9ClX6f4zxgYzocBoumpDpoQMFhls54SN9ajXPzRSoubWd3ZDNeZKFdehWdZUBmxNXYCLzfUU2MVMFnnaoP8PvQrCvK+Ua32F8Xw6SYfWcl2jWzY2U7G3RRjS077XqSTPw7V1UzCVYIW0WJTM68LS8rfRP3e2Xe6ektHM/RyrO8fHjqBUbYTCPVkGKoIIus/wULDujQSiQu/YdDTEFpUF74SqibD7MsL22use6gJrykZCFR5eBbhmeT+A/6GULa5lEkLAVeUzqUHsXDRxZ68PyRX1XgrnkQmpEIKtIGRskR/vBDJbA+u8ecn12giArqgAr/PXF3CD17yyzmcy05RW1jA+IhDGHquLhtF4dYLFdvcy5molckhQtbbkHCuS13c6qdp22R1diEObWXbCGoBNHhDunGZE85pI7rj6+U3ZO5jwFrTBcqel804iIOhGwmkZbDYNCUn7d3an3H6Z5S43CynlA/swz2k2DeBjs8LqWq3Xc4BknPmFRgG6P5ZReFvDw4a9FQtTV/ZqrjsbWancW5gmFZR8n6aBC5BhW12bbRy8171g03aY3bsJFVFyE4S2afHojuZjav5HYqwaqLApwYRoNZQroH26fWOj0hspfLTwM9adTxr94fqiXgqKa+mYxL597t/UPBukZUupF1HMs0Wh3H4xVx5KNpn14p81Qye5JIP9AnVjyGfK09JfIMunTcWdNUTd3s0X20heoDIy3sA07SkKdaZY/yVtCl6lcm0xxsfWOnK9PoPq03YK7iqEmmu/eETy3wkZdcq1or74bSMqBNQQ/9YlAht0hguvItf8KqQT9yDW3MXJPYqdCIJbaL0BUT9cQkDtNNaZftptTn6B+QV/2QyKglGT0EvcnEXyN8X69Jw/s0enIfFGOBVaRVOAidi1EI4mrANt8zbPhxF6G+X9WgNoaqudcmF71vWuolHauKIZ1fWAyv1EtN3jEwnAjSg8Sza2CbGBPLuBwnr0JH6tYpxjsWyPgPKuIgbDMtVC5MsTDAAIfAFs+6Na2IEvhIOPLyWXxQiPk8CgIwv+LlDe5mORSdD2RAlWLgSeRKWZdGF3OzrBIONpOvVnMxgjKNcFgFrKyaEc7lmgDQnutE1KGRjorSBOVgNU1SYZsVLeeEEJzzWYVBF3Uqi65lI5zhTbkyTb6ee2RNvyFlyKEdiVNVz9zQucJIw86wl+pH2PZfz1cHelFT9usJ6/KuDctMMRga6lZFAi73KEsP7XwKUT8WJUJqexS8vZOv7I9AtK8eFaGy1j5p/iujo2OGoPYD2GY+9DQtoDp/fX99pSkoBe0omVEmzNpri+ZKbhB0tgqDacxhf+ZtaEE/JkPAdBd2tLJUN46/O/ty18eJe8ZicEU7hXzl6L1S1eqfGOC99KkvIzKxSShe9JmdWQYp5/uq/W+PjJTTMV3WINyRqow7393wsIO6Y8H2QqcK3+rSvVYJrCUF83YFiIPHDooiuFkY+QbedSeDF96C2fiVLRhm/BwPSGgkTwADVQSD/6oejArx5gx18wVKTvgCF5wt+moeeDeeUzs1OmaEvw+IwEy+MyaBUlYEbWmzeGWmwhbhlHrs1RRWeln5EUFhogmidiQjVeP/YkvF9hRq/H2txKMxNk6yFPqekbjOZy6FkAWtx3QZ9HBgSUg8tZHEtkLwVbv3A4maPhK+6bSjax115ktQmXbPz2H5TEcMc7cF6IANQmOidQAXX+GxF1g6CGH5jhpEvnWsW6A7Lrqf6pbozcdHd7+waKYLrcacPz5mrEy/C/LXdu4Q5Twn06lD078acIu6Fg31FuCaPpN9QmY+mGKq+cSdAnX/rJ5kkyEPA42S35k4+IzJM0xZwLSqawkwKn8cQAnRQXzRnc0OL3dI2Uy2UrBjReW0daQtbpKX8HJstzR9iW3uyAyfY2GAZg4BPypPNnym5TB8/sfei9RsW5NCb8wFfx1/1MhJrj5xAhv0SO43wnaW8gLn3BwruPRNwpC02RbwsWH2lbMQFI69UN6NspY+FdjZ8Sz7QoWeD8GToVRzm08KePRq2I7AafWGHW6/jTwCOOeMjytsEBXAWF3J8juzx399gU350bb+nza/qHU+/te2kWd4gJ5a+rL4O2pxtV6Ak7eT7bXaQLqKJQevTSSqXm5XxaDdSo/vxdVokXc/dm3qiec/2KCfJdcxwGsfstP7GtlzoBpBI8XfsOovLINmcR+UsWdypQvRQ7TzdNuCXh+nmi7UWXMjTh1wzx0rOMT6LtMgp9kiyDGRQgHlDrlVh9S5hXU9C2U8lqHavDRUg6dZpZfCGIJ9rMASgd0dVAwu//mxoYPaV8MHKfvVDBl2D74LOFVGrSVDe8+8nVjlgPfpi4YXjCRjaZs0vmFgnenE2v5fGjD7Sjk4TvoosEAHJLTNaX43pA2nyQYgKG5JjePSpxIq2vnWi/Y9GHHMs0vHD17rf70NTKQXtsaUn4jj6BRL2KERE7EVrRB2eSf5Misji+Xn4x3eJDZDxP+nh3HrSCYstkbl+RdAoZyPgefGMJQfrjBB5+TeeuCiZfATJKYR3K6vZ1OAEZPyxpVoOUKldz6ozg4NVLQunQlNtxUsY15MPxrj5O3QuVWbbKF8zkUGVO5od36IrHZUadHSLgpYvATHCjX2mheqPgC2kbFfNa9ekvbKokr10cd3yvOLrnLMOjQ/sBpEqoR32b72i1XpX6d9ZMOE/DbtlNr0GKVTXQTLGbhd1mOKC+N0qOhnzAPfsAxEnOnxynCZaB4k8rHlGUL73oKbfiBfLrO4A8oMNXScIZmjJ9Ter/dYVDfEGQGXtn/+r5RobW3tS+Qj5iy3wQ/WJi6Q0vMa0vu6TmsXGAAkj+0fM0xe6wDHuM2K0GxbG18fA8OtuDcmDl7w3hvXZZm8iDACEQAzmWfgQ4piG0w+mIrnyBoKHYkoyMxXoOnLwQv2PR4rFY3JPWmgFe+9JwOfvDmaDZ6itt2VEVRjuUksD/pDdao2/YYD9WtoqThYYNzXeWpvxCE+Z/NXFjy44Oz+bGx7hCrDbq7ZWPDtEvzuf03hhljPXw7efDzLN1qXQRo0wX9aa779rM+AencNeGVXudyTWUnc3awaCXU3IJSBEhPrRkzQgRfXOZLdXMvD2WNYX69AwDcIuxOZsZ8JQopyi/oYDdkIOrUsz+DOewez5IIEsUFrokUV4dDVFgsvAsFYK6UgrM7onyEZzkc7STu2Yvp+cG64UILYZg9TIeHf0JCUbGKZt6F2YyaP0+wf8Xu0XJe6GvHAPYBjin1ljJu5HKL4PAqyeqxCN8xes0aTS10irVMqN5vHVuZwbIO3VLKgqLgl8fGtJEbQNLdjGi64x7dvkuy5ebP7bMHCk7171+93m7ST2squg1CY87qf62HeqevuQ1LedeNciPM1Q5iOYe22aJARXbQXC6jN8q2MIZ5vU2K9iNnlLscP2F+6G3Y1MN6HaVEDxRVcN9TxpSQiqQ3Ed/ECMeM2XJgDYr+Q2B7bR4IF9ytcUFbEv3406zFTFBJ0rhsjwJ270+JsLSeNntWJr9wIlNyVk+JnvOogDHXoGZn8inXpd0N1wqYP/9uyYs7zAWd5gV0ZvnlNf58vBjnmxKP4no+6HcysqcdFuN0+bW4HcmgVfhNE/Yp3ChvE780ouEEvkvBxfWAP/iDyQqW3AX5+/voTD+KWafCzSTqjb/2mhCHGazNTpfkixaRx0xs/LeeYNpNe1Mvm8r2Bjszx/98MTattWeSDGIo9ffryZIqoEAkISH7bPXrZjnl9RJZM5xu+wQwVE5G9Re2vnheZCuY9lncUFAtXLbbZ/o2DNjafZBEeOBmUJxb0pldvAoXdKRJz8Netrx6QtmCzZyFTw9Op6a/xHewoeE/FsP7oUd0pGF2IBOL2Tuhl8e7aihRAPVWMZ9j8EpNUqvBP3/vzq8SkQg9eC5ywjF6cxc8lEm8sJMcnuzUIHl/mjyVuWmUe4gZFBdqhEu/MBisb5FnpPhOY6yw+Z95bMgStPAR6aafWE7Yu3tAPMtPR2/bMTGpcvvDsLJR3OvYC9Y/9SCODy8JpQF7If6qYJy1F3awX/eAo7LHK3cD03OY9bY7mqLVEB40Y0QDxrtPsnILjUg0pv7uVFBMZBUMIHYaEn++ifm0b/Tsp0gFpky/lfsjCPzWWitwwhq4HSa3Zjug5aLjG2APvVOx85nUcspr3CDkDGs0jTST7QuWSIrBzoVW0Bn7c2En57NK7S9GqusWow3d6I/9+as8cgxN19YkUPTiIkmrcz0AwGmsbyxpFCxb1c3vVUDOcgyz1APNEIU0jSoJ4gUyOi9ktrcTpRrME6uwtrPJjJT31jV94WB/C8CuLfCknGEzMeWb06+qylrejgVTI9+szXGGsxiWEIgHuwU8xYU2VmjCxe+oDG0JZZ9Xsu1/0Mq7x2RKH3WOQGINFlcj/ITYIhyt7svrqhof4WWbrbY7Abi8THSuO4D249wF+BSPwLqOUJWz9iGGtff+8AIk20P1k9tyzXu+n3JRTmYsUpGKFLxrg6cHA00FmRyk0Trm9eMf19XV9XAWVUnjGmsgrnShPwTgql7rjAoQh5nPgnCJCccuo1he/o3/o/Qq58oMa2EA7wJVi388lPCr1I19ohJyYP4J+pHM0xKlAaZCmeok63DI0OGxuZEeu/+Q2wp2c5tTHFSnOor9osDETeUuAWUqe6Iu/+Qw8dsB8CDo+qhp9HTPRPuIN0ehrg4qQn8Qpb9d6Y7iPHUeHcp9H4E9IvO+9nc+pH28A74jCutureJpvkDIW3gAhXEYWMDBqrda+cpuYgVcy5EfqtpGMLIH+5tosbuU61T6gAkO8NObherbp4uLG05ZZaGhsEG7eUkCJQV3+rKd6oS1TPqfJp1rp7QnckkWWqMf5/vuuHM1z4i931f9np6FuWtcurleVqIB/tvon1CveM289rHAF00Ap36I0FgIizAGEno//HKqq2P58Jl65tZ+pA3KKAn3JcxZrpvtfqWMQxnRJl9+t2nEtsyoeamyVUEpwZsueSOlWAYKchSseMlnEvgepuR0jODfsx/sNIP/BiTUJ4gyIIE2Xe7uJ2kEl35Fz0LY8Gm+Em0aBVsT3dlGdRFVVCxz6P4mL2x+gKDgE4ntNP03xcS4bbl4KbfZDHkClZhpQgK769VPHEj/8xIJZUw722gHoIFNNC8hgGXU9Q+udH8fW5lhJyRNsOBnYIJTvdPsJUoxUnXOInxFD7gWzYKH9ui5uf1RR9mjH4UohKSQo90Sr9C5OLzdSwoscERXx3honMnqt3yks/L32Jh/PeidtSky5+wFEROzdKLDQIU4midT+pzZsbdXcXsNkgZBRtBBKirZ3nlt0nGwOsY69A0Bo0xkBeW3BaUuItqQo9o3Z7gYsXQCVc0ptvjlzuXUon4khpzegUpFN5liEkoAgUT++Vy0GsR3AUOMmvDsPzkURl7V7T1PyCnpDmHJuiDZPypfG4ef+/thH4CjJ9c2ysBwVO13wdfbabmkWCbFoJK4ub9u6k5Zm/pcy1pF9pcnhkJ7OizS2sujL2PfELvZpTe6e+AejBM20Uc9ySzPmegaIGqDMiUeZuIFDMFhzz7G6oBW0WoNlE8184gZJWUEWh7MVqDSg6iL66HKl4I+ZG5TqIh2l+mlT39wc/jl94P8cdZZJTYxX/9/etUdcDTLHN7Cra+WshnZhZOAbIUTu/apKQPt3b+iAcyIuYsBswj1Q5r8BfUt6t1mPvNhDpUoJeEMgIJ9p0PoBFvxv2uanhDfW205NnJaK5jfhhbpztGqe/66jOcnHELIjgpbG+c//irRCHMQuZSWp+Mc6tzXkcP7upSip+u9MPGpDNtaqR//yN1IWj0Xjnwy4K7B9Bv9fdv5HJFM9sQyqbJpelRf4Ch1g5YrhAc9t6r9kwNz/7LW+oL7QfkFXIUW91/QarVCsbPjlfIBlegYdNElbDuuR08vlFrshRMChgNTYEDL4tKss6TGvZnghA1oauO3zYi2eaIquE/qn/1dXAxx5bME5P3b3MNsFkcSjFyQIFOuAh3eaOEvUrTpKEX56n4+6+MXz+21aWkyDUvC/wP7FiZNkGQRVFHYOp+v9/3Vp7nHWj/F3bNPf7b0zm4YCiGZy7OEeS/jmMJoiyeO2XKlo35WaSgPGly0b4R/PyApN0A1s/4b3OAYov/5M52l857Wt1coQn3gQIxIh3baFHJNrk8rvvGgLV+oRVqMYehNgGXFp9yqRvKUX/Np+nBoQqlEfn99BDUIK+N3L5ZxQyoyla0x2AdIAQ994k1GntLt2IS+E7PQpIj+3LtBnvcmpKDoWiyhpUyY4cIJ88tCWvQIr067nJbj/1qBcytPhTee5HFGalRwN00/EBw8D0AhhqjtqhOsk+m1qfPQXg4ITGp5kWu0VGy5DuVZmgkdSR46f6smS/MAPTbrxAxQm+ZmEIUxyIUt9X1p1wkH87w2ljeErKPrMVfoczAn+8ohvaWzO6zaOZ4gUe9u0Ic3XByfoSocOXE7a3zt0Pk+MGiRPWG8nW9XJ/8rFm17G8AzEq719ywEF06tDJSqHd85Fx9mZnazQwueT/DdY4N3OG/OCvWQT+mrWqQDSPT2FcIi79pZuTh2phjuUteeMQTs/lSfDs4rGahMRoFH+AiFaXRDzTn7T/aRXB9TfrvnvaO6FNTFeQG3lLcUSY/Vl69LSL2uTAzW1H0hzb2w6p1cpBvMUd2uRrabsBJ2khWyVBYDQJCm2l0ou25/Yn4YOtyzDzhg0sL47faTC3Ovamfp4jmHF+8mQ1mzXeHn3bfSLovqee6astbOzWhF5JvPJEuJWnFCJ8qJxEJvX+huqCEC25sMINqWA5+sQmfa9X73aNPbbhKjFznwrp2wXjli/Mo4FfL/B9kFBkdbPSAYtWGdzMCXnKbuzyJuz7BV4H8HdHTMyP66+0EHb3SahFLwNXRp4YirhPDiIcqJ+ptjAQZlPgy1b/s5yho1vgDGFeVRPSyf7rWsmNsWgfrRPT35n/Ic5YLTMZNVoFmOLDFy1aP+vCmOqmQHyka2xtDSUMvTjmv3CKstAXpFuDqoqA4IWhqcp23wpG8sjERn207ZQoBiMCRxs42QMdEoac2cS5AkffRToPoGokH+/QTRV64DvhNG9qjd0xO4LIayvAHZSkfIklYgwmbszZ9hM/TX2IJxhHRObdFAa4dxQw3t3mT9zjX6eouWb2Cgp26cVQ+0VqWySvf8P16mxC6/4CzQ3JR549ZVCEU23WwHf3LFl2WxScVNcpgt3vyEkuhCDBA6laIAIZsN53tNIlTT14Qlxkia73n/6vRogHOs5mP5+LjjowzyaNFdUpwpwIBpgiUhbElEMzFB//7I/51+vLCmu7BfQ7wTvb58uq/c+q/q3LZ0LsaJFtE3go1CqZLcCP3X1DC0eLnVzDSpbYfSnftGKNEgtBadSQoHUupGQq5b38hiSCGP8skdohhkneuOAgE/rTr0FKCdthk1ErahVdJioxmNscePzWk3U3haGV9k0uh/I8hnmaudlhEKM1JZXHppCvkoypAGJmI5xBsIUdurEa076C9PzznisuzgA0qu6sZ3scSj0W6kcxnA10tOvcr4eaZxGHt7gfL68d2/7/vdazPEevmz9cGRJ3c1OFlcpa5PqrrkjA6navev1P1mZ09PNBZa1/0qgSf5WXM7SPZHuR6a5bkAyoP5L/oMWaBkGfqvpARRNti0v1Aaztd4GVehGYHvJYUkFWPb8wt6ApUP9BAJLxciK7GvBgH64z7tQKxY1CZpG2Wc+zx3IEQybXd91zDJCSCf12QfUNefR2GwEbE8c7lS4jDgrOfJl4sv1KYXq1vB7KQZaUZAB5CqSL7mikFVaseKoZvHI3j7h6fyiyAdJ0SSafAqaZ31T/xgx3Kfw2jvS4Ra/5gxin63DKNzl4cePlCCJGpkwWFdR8n2hyJThMmZ1TID7IYXScwXINABgjCg4L/feOuGzy9TgGGi5oO1s/E/wvDOULGxBfwoY0MRyLGNTbnO0DTCtc5jlknFTzg/CLaoa0OKYTxY5wbgCM5aTM/8SJfMi1qcs9o8DPSainWW/ml6uELrAvsk9sbTb3rAor+aghHNAjbuelcu2GKLCUdrdQN5yYkvkopGDnt7NFPg4CNyFmjAfJBUvvGfOy7meoH39lN4vID6MA+Mrh6ohRsTcvXJxQU+uCaYw6eooPH1hrs+d+YVQV/21pyiVkbib3I5Dnuwsd+m/Godb9V8ouBXM2FrYbcVOtszr2lE0abK698silWoNLZT0KMup9T4P+Uzxe4m7W+JX+fyfctdW0nIS1pYTLEEegLwGY2nNRt/z8hKHcNerayXC+mfE99u2bisD4MXnj/kygkZUohKwfKYJA5Kub6rvmsptewc7EI4H4VvpG3R8wKBxRv9nMweqjb05B7LjUMP+dRA7KK/Qh0kLRBZ8H8kiRKVPZJuxhjoeCMWBKAg7aDAeOU2f/vM3qdS3LehC+jCLK/E3dJqyqVbXLb5VvEwfV8TYLaKvsDFqPsGHPI1rXBmcydAKn7Jnje5rtp6eEo9EMnXyoEj7GKRWTWzhZRAXHnHlaHsyRRuhFHG6c/Bcy7hzT4F9u/Ha+LsUoyoXqbIN0MNwXfUQ0M804iv1U+zd+zBWoGE7J0Lakm0RE2oeq5509yFHqf05i8SA3aBn9+w25HQ6bf1Ca1iY7Fm2orWYZMn4u8smi5t3stSHha+ZXvPUUqRSTPWS9qcqMVPLVJAggafTK5BMahPt0RXKFSC4LDR+fSCYFwg98p7AljnjeXrOhoYuchKkv4OgN5nca90HwnzaFY7cVu+opPSMsBYs8p9exYV/44lW5Q4C9B4g+TCP84WkWemYxFmgUyY49/ViC/6TLlh7e1rmVmKkITTao9iyBg8MvpodTzQqIv4gFTRh505JeJIhmhXbTEjBLwV0+v1B5wI34SAAe+zMjHu3A6O+2s6Ed+fULuj9MQyswMkxWM+7kS90jzE/TOzk0T5Amgn3i344K0Ly17nV75i+D4sZGaF8fvTCZiE0i8U8L2UpwYf3yD6UQmLdJbfj/JWqHMbKkEAB5pvf8iycpVPYhhO2mO9ALUpkqexqu7polqEqFFEAf4pbnAtKKw6/POyZDUsDNMKrUpC6ifhGivQ5mlIrFRcaCcP+S4ILYCaaNrY7o7Yf3pBKorleu1dpyg656yr8oxhJZszw0elftURFz8gs/S58RTrFWolfed2FxZaPgG6dun06Kz9vAg3f00K/O8odExrliCfBfm/R8gfghUroePh/0NFMaahAQVQgYzwrf4OV/YS+wJNHWaKhUHd/3FWxl+XvHWL+7qNlR250dTOFxWRfpzyoa3JLQ2RNRSrGbWhJ77wl0HXDGhscbWiPxPDdREOrDx3+/coeSCdEeuZ/DG5q3BrshHdankXWFLhrsq55krkTYKe+FomDHtSq7TruboS0zin39wmJf3iAPiIHY45bWZddz1T97GMH/T+3Cfh+7ENWiocsMhbmGTAl0XxJvhcEqrT9LH07Dbj2QzNV3XiysiVhjOkxlZxoM9RC9QFFplfLpwYT+RmRKFP/N7fkc0MVSXxWdXq/e1lUmRxq3Uv8tk+3d1ZIKiRMhKUcKQ373A+irU+7QVJtCUkAq7xA9LnfhN2/SzmUDnVss+fEnSTSHzHqui85gxPL9RyZD5i/E0NS3sAUJYR0Dze6nEYtvAeY5n9kCPQ2al95boXYFOFzq39FwAjSHWE8XsHKE78YmSY8cRSqEaQsoF6zYJyPJB1SEAOaRu5p3JV2KBdLLYu8uCGlgqsupcLq0pAMqrEEbR2aNKTiGTWyoyMdrXHfNkI0vWWulPLOn6ZsTX4AJ0Af/4S7jO2vO2fSFL+S1YbiH4ZmSmq/5oSeqzblpQAvcktzxKpC0ZwlqtroZG+mS7invWEjrOOqfd5E3RUkUE2riyu0eUyoQP6X1GqFxl+kfmdUMyeNaSXskntZw9xQPlUBZcMctNvr9OfPUhpHqEgwNiN5Tz55kKXz0ZeABeAJYqtMzc4jWH/GrzhMmNqPYRpnlIZ7DPFvYMGXQeJc89N/33PjoIfzyCReQE7nRxHucP++2rsufQa/A9Ej5Xpkiu6VG0Qud+B5FUfV1zZKZDBGGImRQbEHs3u3RIUqvtkjllN2NWE+vea0cMYasGD5DJDLx3J+LGsZ2kc3txuu1PwyhKpTRVVHsNNOio1PUydQA4+Mr10xXEYUaCntSWLnxC/AsEdgrtkvidGnoAX4QpDnVPRC+gf7+bukLBZ8W5rjPb9R8pWn+QUYI2LQ8pMqOnUadvfHzgoaV5LCNSiES2QtNOg3BphpQAgbBKSaWe8iXIKGnLIGgf48+A+I8irSb1HsVFdPOs67N3OnRa/02wqYTg783TQMs3B7l+Fh+o+QvzF8hhgwKjzooC16zTHIo+ug0lHQrVpaOLLsrzlKVZLYzJyPTV5EFVk+Kp1Htrf1e6eC5eg7XiC8eT2uZoaqR2mwa1V3YHAcXalS2tm6kgObNT/uSmg0ECDuNBqYkkuQ3ECcK8LZ3tzoBBPQJm3xoqVN6viOWnacMPMyqww56jZXai7KwNIwopM1Anc4FjgNrfUReBIYMhy2ewFH/+XYoWD8DCcOyXvLHCUVSiqN+8NdueV7DjjBI0DqlBXDHX3sWUi/DDTsMTgnWsag+yl5XnKOFQi4TfKcJUtwQmFOswSlzJPy6iAHJ+xf/Q1lr9zMXGoRlXFKXi4N53TT9vsCL4hD1s7W2AMVtGqpLpuEzYk8pClSIyQLuL4IhoyrgKEUEOYZoD4qvXPKH+kiyDLyNjqg723HUVu7novaqoypvatE4owtmUViCslSbslkiv0/Ddfq/9VWzc0VcNal2rvvmiRx5dwBrMpt1Dsbin3Bu5Jam3YgSA0LzMgc0Xi8XHmgIeYucbJ0EsIw6NbY9SkNYSkU3r8KaWD6YV6uTPfwaPpd37Izdr1z4SEGO78RQTbp7R0zn6DGIDtsb3F/bLfeloNW/LWND+6k22qq7/X7wDwmR/jIPfHwOO8Fjvxxp97upFPaOWt69INcZemEK7WiDwN1EWBvGv2eUJyQDfrFcyem9QVEtz9HdvtQkZlVRUNzSDr+rN3tQ9hA1uslggFdW3MqznP+ZXoU4Rz5sYz/BZw+0CX7jyx1fyqMC2rsrjLVuC8Bsk2I4vOEhbnS3v67/QVIouf7mnZ1aj8+ZphPh1ha422q6grItpAmSSqccsqlyzIy0Vd1rYTvvgek+FeTRn2RsVNGGaOXekC5CbRIAcMvo7+XIAl2oMnvJ0WXLNGxGGzEKlkrp5FjK+ZlOmmuEFkjWtn/kSH75Gon7j/0WApnPwcTUYQL8MCGE8IasGm+4Tgio+ZlNcQaJMEVI/LotaFJwoCw13L2JWcZ+OCbPYttmKgcbas8wBvy3E7Bx4f0TOCMAS6xU+MIadqJAx6qht0efuoE+3uoYo7fCLX2jRnC20LesX3E0SJk8hTE+G6HPWkDwgqYHcBvZNZygV4is5gbhKTPGk9BkvB4nJ6li27S8Rkwn6n9OpXgeaTXMPsWS41b0pdcCSGyf0MOukco0e0VX9mb1fQuAj+jurtpJ6wPYm3Mh3fblracAE37gn9sC3wysYkmJ5hReDO4nlnW8cVa75RLgDen5XXQ4cWAp9OzndJaZPZG+t5QcdmK+P+HJc6j4BPiC9eRmmyZwCg5bv+tY1WdENj3I13Kf0dF2k53XvJuSHy3vm8Ew8OWNqSVxSmhSk2YnmYSOjoh6hkRBnjmeVH8mJzhsNP9kXXPokZrcbny8twnMusSPzysKzE5zuaOJAm3C9ARJpKvSh6jqnZ0D+H0EXioKcivDitdTsGZN865JCk5YKpnzYn11KAztUk/P11gRPK0Z2iGqYhRaMAAawvHsC4/TsuOUaCKg1FL9Ff0Mzif/3jM1qFVyB97IiqN6C5UEOo6tlNay1hyfOoN29/CAjSs9FXUCKeBjqRGBJrogVpZI/+Gd8LFkQ1G+Ct48GFvGcSolcMY1RYr8IDHklzWcwSwkRtD3lVvLGvfBQIq9lvkq3dLKjFsm1y/mVKrwZVrUeN4kLUfrJDO7qWFWg09DniXxO4Esg/2SjHlidb75YIgwEfHNNAKnhz2bjJwtymILPU330sda1o2+CXNlW1LqScxT1zPXZF7l7vwAhyQu0lPutzeqO/FmTJBZ6kr3GArPn0yjO/G8d6HKVdIUxgPEEbb2kpAyXrm/QWrbEBbLHp6+foFhrfGZUuHKq2frrzz9OHotJo8h67sm6S11GBtzTMxC+kUS7lYbDJTAsTJCdjZtLwFec82/TEKojNQgZ3PV5xtGZckOpb9wsh973yGJl31/El5xXhEzcfljTpKu00aS+ddl6wuG57LgAQWuLHh89llenSe+6A5BJx0vijJ/58g7cxHc6JShwilbwZd/tixBOLIH3ovHfplB6ONm4efekdPo5jKEZFHYFUQ0FmhFnz9gA1SqY1tfLZdMXHuzuu6L41NKZObZgsx5LNxOc/njsMkGnyJiftN1NifpqtILgfBgIx9fwIM4w1ESwsAiU+IkwbB6H32UUD78w+z+TetK3C1DX6K7/jqVpSug9cXqfVQ21RFRxoBsjIE/DlDN7SeK5Jk1qpVao4l6TD3ifTUW5/2upzz0hMgdAHUTJyfARK5l22dDYUELBHW4JJg5GF6h6Znn9lfrOYc7uZ4lBR0o6Z/EWwGrNy5aRjQdDmCZN81jMFXpWtSUcVnyCZxIlu80NZqTCUpaRik6W/cn07klsxmz2ckTJEz2b/Uguo0COE8ixjpqZAtmG7NAZ9qhFCGxWbHNnnwIP5yp5fLbog32d7PQ+UFvrHhKx3TUiYKCMGVSacSlwe2jJT8ZRrlGZD6Tr+/QfUfhTtqIOE55w9y2mnHuv+CSa+sKzxDwz3tec67Zzb0vwcYkgtubbCLGsbBdwpHMSUrtBSLxN7Dk3BaZAgsQ/GeA7VXcQw82phM1W5mYBgSL0FAnFIeUobyyhQrvglJWIuihq9OPYLgtR7j3vdL8yCqx4TBJ748yJBOzqOCdx9Xg6hGVy55lZBaXU1sWM5gRfKSqRAln2iThqhE9F5hGmwrboA5zYW50G43aItFEa06rUgvZA7C+AZuSgoimBvcRcVVt5tJIL07mB+ep2ryK7r4a4flWjNcSPmJZHegok/EIcy7qK/xn+uITaGbq5/hHYnl7Kt98mF5ToI3B02FzAsU8jiQA2Zco9wSZBJQfuaavM6ceLDUc7uCJ9IZ/HGW60DKK+hnarAlJ/UxRBTLQZMZl3Enrhhku64UbukgvrgM9De+7FuFQmnNaLTXx8N9rH4qGkWGhWhDj4QfDhol/y9pCLwX17NvQwMdaYWurJCNSNV2AJoaaIzhhScM5qLD8xxZn5QgSduhNfbY+eL8C0s22bROdzNTqFrPn04yBUpUegMCSgW9sDCujBPUt1UIzoUVA5YpW+qurqjl4BvhSmt7EgAe0ka0Y+tsq24znKHP+hlTtGql3OTuDlWo/pLTRdkyICNxcVBuIwvVGBUdG0xw8Lgxz1UINg3x4aVr+UlukeSVNOShRLK39fpLD3gUvyvnehX23bIr2xH4qJThT6ZYUfdbcAPg6vWqC94uY+9s/jdU3UHzEWVdSwkw21fNGOnoXlCXHswCQpcBDoOc72qq9WoKGcj4QBHuJvXNM1fUC3mkoXewAMVXa3iuyPw0Phs2e0Ht5ac/AnIQVVOE8V756gWfy9ENBhHvA6OMDfT1OAowfRFfgaOc4l584WdfvMB89/iY3vXldkeqzOuJgx0jQkNXSOayQSf+FQDYviT4XcH9gRyR1IOd16POTuoqioQBROBqap6WruTr7WQdDKIhhwcvB+0pHqk2tTxs7gPZg2gEFnwXYIROn20jE32l098W5REp2H11dMRG3H9XsqWGZ8ZRaUhpefAmJBY6nd1A5RYihaTT0FSDIUbNVY7amIuD+f/VuNn8MKykrBoaL6iapUSPAsOHSPSE4jB4HpRj7PhlRPWotqU+00KCWgyIIskXMjDfYk3/isADH6QXGtP6M6bh0AipRqJ/1EF8bw6PIgzx3Ja5PRBi7845cJZORKI4+fV/Uf1wnVZPcjaQ77B6kTPYc6RLpGzVOHy/qZJx6UN0ku1io69vE3R9ReCEgYnVkmUwASDCo29hyCyXoqQC/n5AJjgFLlYmZD1cRH35TdcSMzQBQIljC3eVONQgR8pnNBJr2uWDDTwd3z7KbZJxkjUjHwwjQGAestBEjY5cH4UrzC+s7/Tag4MEJV8fSdfSpf+W5bTAy8LJ+iNh20IrJvBLr0kfD8/WHNlggGxzx1H/O/ZPRADrpTAzzPCL7aDZysK8ot4QsFTgtCCQaIWhyz2W5v42UFKT/At1vB2rzcmXxFh1b/9WJp/3BNpEEJ8rYOa4YpWBlDxWX7uwjbdwiDkFsuFgPjJ1wcZKob5mqr4Xhw+JXpz/F6Ekahexdq/zuVUItwrl2ZJTl7EVAXT3oja1A+Ki45E3fYawPTbnQDomYmhe7ftUqc0157cX8fkxVNepKevCrJf3vdNbicacmv5WxENwbSHTSajHxVrsxTih/hTDSqTrkitvsuHCmRDHbOI+FOGLUMXUC1ZUG7vvDvYF0s5CdqgN+ynK0zqHUEwGzfjcOyW9tKj7VVUzbACqovpIyYr6rdBDjjr8VfzQo+hOPvZ6EM06wzBlk78QLP3KeGspAFdg1Mv8cP6rka6ewGk5FCPkKxcpb1O1zjYAYEzCeF5rA+hpUErXb4tq7GKCJLywOiUy42Jkf1nPUokmDql+syETETw78koRp+9Ig/OZPrmwbh8PFXp0vzm7yQ4U8tQ67chAO+folO3R8d3goibax/+dDQI8DIVNJuaj0r0fpC5TJCfnVjE30jWpGEr9A6SwkyRbgv6JPXL/Vmb5oDhxp4r/Y0ozKwH3I4Vz5ffP9uRT/ql3pLuR3QvHi1ojFA1DAJkt54VUhy2h+tg9vJqIftK60+ZhbHeN6M9F6qzJwOZYCxMTUV4UtOMTfTSWDmaVq4QM5qD7gEl7p3zmdEhty1nXE0C3rU/IzP82eknixBnHuSDXOeryRz7jnPzz1rIv0yDhoieoXRBl1IbZ8m8r7HsXRWGKw0uLITodMOzIo+MPesU/nupeENiZ4HAnvbCxoP/WluXR4I+tNY+9/RJ0uBFm8jAG4B8g3o5Rqq7nx+TaEc4MY9nmvFa10ZFYVWmGi5AFU5Us8jBBQsx0LAMSn2cRVOYtEzmROj92IosCHqmXFBJm0El19eHcPxs6Qdv3A+xsx6XAxAnRpJuUSx1vbDxN1/bqaxfilL9LEyWriHhmlAfOQLxk0yg2OdKMAVoqXgZ06s1zQSTY9t9rr/1dW10rq53f9IVlyZL3z5h7c5NQnWOvNQmVgaqgfUpixmbuSv06nhzqkJkqTvzMVEbhfCjAQu5xeyY8+Yn8KAoD7AOfEmvPGbuFEUxfXPOYgm1VWi+p/NYOq1rWLCDXRHLxuMDUVSd9RE1rXR12GQa5ufpXbnpz556t9OvirntDoQ34ASlK4zob7F8AHJOL0/dM0HEjxutzVwrJIEvIYr3p15oJweBq/T/PVJ9A8d3rIEDcf7YSJTDasrPGFkTJzR0D6wg7/5JbdioeAeky0Y8VWUKuoe/VUn8S7jKtS8xNWnLYlV0SDvQs0pyQ0v2gANBAOneEBlhUIglSTGZj5OMP23Y1zI2laL3DEvf4m/LbBfD7ga/6GSl4mPZiJRBSDEhrExhzoBp0SYNfPh8HbzhlBRCyWfidbj95HwFLLylyLDKR5GbDSFw4JEMgelpYz10WOTFBwrwjNUVIYmOYsVaKvijGWDfry6sxcDgEfA41JU+odZ55M58DCVuPfEhi+hRGgN+auZBhE4ebNPWAhF8oZ28JFP/Vcyv1wkHsfupUoH3CBoMIlZ0wJluMUdYN6wfQXsQF8nr9PUyoeeJZ5VnA4FDX01wi+cNWnDFdqF2WbJvKHtf0llaEFbsNY/N67x7THP+Ty2ZHpP/BLe27P0g8+Q0OX+bKZoleL7iVqszrPCZ/6HQtLus31HVhyZecnnMcsmI9pn/VBmiux5wBd4kqvypOI5rHOEiqc7cOzuwnK7GGKe9thPEqR03bYHSEV5kBpSECb3uqgWSSY+X9M1LJUoeznqe+ZYFdXyzXOmzJgocqs53hn4tZh+PEeMy1DrHaDPj3OFGqd0USNy5mA4lR3BbsN1w7APueOhFRpofwXeoo/pbOMg1h48vDcX4kA9aGT8GMcQ6njBoKN2oJ2frLSDkQF0JXCo0PPHe1Hjk2n8OwVt7Uohkvfgbl0XPG1wZlA8zwt2bldBmUA0JtirmBFBVzo144CxKFaGJZOgEdEgmmwrcNHN2i88BrFgsJMhkConcXxUZCmR5WXueoW/08qwnw0P0j4DBNQbtMbmf801OUrGMAMZ95T4tsTlGgU8/zuiuFJOjN3y1GzCkftnc0MOBvgoS9BCayLUzZM37Xxg3ftFGN51dOQDh1w9+lNXa1uLXQGgSO0vz9NKD+rYhifXhrccnfPBUEPWBuE8gA9lKTPeBr/opRLWRbnEf2j2KC8PhXQ3wljg4K6pQhMPHxvCHS7R+YFhRNr2CriP0GH5IOsdo8XdiXU6/PbclC+1Xzia1TlFQYWqPzPpalkY4Y7uj90J2WOgr0CY+dkJhTXSbUwGSgt1x1nweUyqIhgclTPMmtYy5aq2+hfNHdXJDimS4ypfRLN3ap5auVTDCoA+N25kVrBmwwrDlVBinjPoD0pE/1v0qlCBvoaRTdbP2gMAbVmRKI3USNpAwiLOw1WF04pFl1LtuiGk6ahFVgC5ywmfSLVtzwxtbZXQtvJlU6Fe1hOwmAz+f7V0wbTkRzEWKI9zKrU43NCypHltW17q+Xi5Ajknj4UBL2IJpcdY7lEU6U90CDo7grH02A/H9Jv+HDE7l/VBkRdGX0EsnT6Dtf+54LfVxhdLYbDdZ77kkmdMYa+DHDgD10igc1fsW2I5ivVpJutsqBfKd+uhY/B4ByQihDvMx6qqjDAr9zBU4kCc0PVtNddDUFlUFtGgE2QbwleNRakYNp9+mofEjVK9b6HldAuNrEkCRalePCbzIsBKvuiIzm5V7VjXV5dXRA7TTD3DdC7TRQH4xMOxXMIvOcrd9fS/vsl8OzQO66Eqf3jMoUHawxa9vVmdeZEl9SNnYsUBF93hQt6QMmcoaePB+bEAOo9gihAtzBcvxXhw1xAhq9OyM63/mRLPTD09GGpUVVrGcmRifhHgKSDswRgkzFk3cu+cvUXUBwWzQ2d2L3aQrH47z1ozJLixBEtGGL9Gr8NgULMAQCkrdXQK8CN2MoCj9+sRJ5c5s1AqmohZE4yzpOfW5I8SP3erRyCtuNbtvGRZxiCb9+GsFl9rrjpipWjCMwKLoRlImdW3GL6I8UcXMhnavNdHlQD+vl2H+tSuTax2QWujKldMvJQBt2Op5gHr7JvjRnyQPOL8HutgZdLuwqNEYmLNcDEaH1FnXM7LdVXjPMFKmiYmY7UmLyiF4sqBm7rVweTNXn0itPULBuVtvwIljEdL6chv0gvQ62rxQupYFpuXPXicDp50WXNzksjB7+XVsvl8Qz3TNJvljyadIaDq7oF9Swv5P/sGP37rbyjAy2w+J1a7EEdKBvj24BICLBPuv4Eji0mX3fFgwHnUmNESrDKWTR/CdnvmZLcRiyOa5zsR/Ab+oTg9Zj3GvVhOvHdxvDEQ++HjEYzeEuCBUc37Qlw6/48NNWZl2Wkr/DUgHk8y+zDapPlmS7K5a+Jww6JBo3GV1cPfnxkwtYzfiMGPNYz1C5jkvVHd8U6J/fbfwnCoYeTrf+KQb4AweDcJRJ0ZlsTpQ1yYbg2vtabvPdrq8nS0OFazWrsp/jGO6KNgRU+poqVfGd1DINA4qP6RWPu6t762VqWAkUE8H3B/YHXfH56B/0WHydHJCbPV9SiQoYAzWlmK9EqCvU049EXLA0barh2rJHtYeM94hDYOupMlGasM8Xt/wjJSXxlWDvKAWlzm7dcv818HMaMeD5ZG+ODNShpD1HhBK91xYF+9XQ5ixh7lA/RYFQ4o7D+F+cjLUtjuvK4e0Gx7IMfoPGvXQLeVSZOCw9vG15nMbUr0z9xMRrOQiZqBJFY1Pui6I/OEmnCwH5Udwujdxh7itT0kKV5ejJ4o2zok5T4pUX7GS5Xs9mqu3VGLmrw+rYA1q4ciHxJQEqZ0pxhgsVaiFY24oSgrT2T60icvHZWsnz/hbUbOMBW1xYMabhzGgk8Qm01nEPFqll7WFXTC3iZvI2Mfm3DN5Ls1kulzpYClqxCBC6guJ2YmvovrBW3r7LPJpcKE1AjzqEy9HkJnnnpE7zDNZb0IfZlFglL006TQ7ImuNOHxhaMjbrdIWuG/q1flGKX3RnO21zZl7w08IrauyWBojS144OlT+GAeDhOwUncOOrR6q3aZhdb1XWXqtJzw/W7YHqY3u/3dRnKoc0J6q5vU0sKEokiARI4qNf/7EPxGpbmCZU+KBeBWMXA4Jy43CJt+V7aN1eq8rhC+go5AcD/m4vcX4l+Z+Cgn3eHFp5z+3ZxOnm1TdD2OQ4h4/m5WATFLejPa4cLnmBihGUSInm27i8x65Rt530g3MTumqbDqTknAP3RZLFqSvtWovlC0qPOiHFh3vbnZAQ+evPI55X8VwmOMKVke0GNwQSiREdrPhhMxrgZPFwUGzMF+mNQIHinpVeeZEECeUigQppMyeh+VmO/WGJxALXr5kzhojpyQV7vqVvB9Y69FzFrcBDYiLHY2OxBrNcFhX6LG/T4Fm8elIi5f9Snn3LgppP7cR+huY8M30NNZmrT8fIEhU+RuuRMQ3iAicvSJF8U3N9BZeYJ/EHzv3bcROTLcu+86ClZADLsI7kkW9a8HNUi6q/ARscyuY2ypFiyZZsFz3VGFACi8PDQ2oWXY1a/fTwLug7hDBojaa8UNXEwo00L8PdMPdMo2VxD+Xo0N+ZX2WBOzLez0hyrCVhfKPFkxGRtMzM91FF1vWG9fx4bX1MDMsa3IR/LwUoxgyhv7MJhxPfX4nyIqPCtDC851plQFQYt+WKZGtfdEL52eoO2g9QslgcEmjPpRu6MgePlKhZ93WPFCoVP3A4FKBG1UkhNlu9VjjYPTrdGPLAaiHodsvCoB0j8Q+8ynJrhCdHS4M1T5yqXPjw6h1CJKQtZiswPioKPd60rDt6V3PW4mYj4qgdmXzUBiDgi4Y+MgwWhDIzmkvK5yMj7AewpXRWtPAADKwKhJi0MAgcG3AvnA5kjUCCP1iRHsPVUVUrNAV7CaW3/Dh/5TaHpLqsrl+WghrMRw3eR5OMYFoRIElf0HAmxD3LYcwSeKo+jeaghyk1yjlR13LL5RDaxySpaP5YbYM5qy9o0f4wJlUSxyEEXKFNaePOesvw3BuG5vMTDBEcQtBNFfTVvSFOcQIU+hCrgXYEzXAlOVfBO4U/hFgfXbA7GHRMf8mcSyQobLZGC3Jw1kRvUGq9OgvE1wCuPA/S/UHIdmPtAY0oYAIDk4aHmblMFMDKF38NjZ4ijqD1esXQQtAbI7sP4XvsePo7elz/PVBFHbLQpKrEiCUihLMunI5WUsqozGVEKxMLIpQlxWf2SVZvygnKCD02qRXYVfMcI9iiC7NwRlUf9Izvf4Mq4rMScMUDHAib01icpMEauV8S6zr73MZ91tZR37Cdjxlcm9powgRGXG74l1EKVirZGoL2/bUUm+aG6K2YUTOonDBzub9fSQtfk+Jb63bKR5rqQqEp9VF8dp9u4BLKknSyRuFwIvpLE9BSQMEsZygi8zGMzZKz8Pe9a+jeI8SbtGlQxunGHFyf/4LlEgqGlIDajva3aIw1ydNrtye02w2ICLMcjqLSZ8AEnS5sZJGS7orQIIGZ0PIKDy6+BgQS6mCpu7ldzF6dvCMdkfSfjZwK97Cjrz4v3NKEMuOQs2mIxWuvACmu0TXxYxVKGY7Y7W+ohXZYP+oNyCuTBrTVY8xMavb08PHRfhFm6dop3Lv2KoY7PqA8qUJ/LbtdJRNEXRMu+iDrMy8EartB/aT396C612KhDl6M/5uAT14FZ3qq1l0HG2MMMFn2ziGVBCpVvj37M4S69X6QYO0MrmEqpmm4PxC7gc2lLrBMa4Yu+hH0O8LRzprEZpKDA0Zq1wqgVEvAO/5PakVRY0ZuIMKZxXzplZIGm1qf7JDZuI+VKSSsfBj7DpfnvmgyeWiCs92k4N3hfWAW4pj4whg+U2GQ3bfJihaWx3G5ahYIZot2iIbcAabwYwKlxIw04sP5cIbn7bD0BLfIf7ZzrBPB/tSWOrGKxg7nquLw8ActTDw7+dMEb+lBDNz58vU5VyneiIsJAVpbNVBJFC6iyaSRppEQkGOrlRepJpjirNFWfTYGd4FC6INMjtImLZa7S20/XCpKENPpqDt7lOxAK1ELN0qA0D89KcfFKaTO6m7avVIBuRtCx0uV0kMtCxRsc2BWZcW0trdNCXIinhqVpW4HKT4iGFYLEqsou9BtdZNG3kIf3VOOGlB7qdBWrkdcuZ+I1kkKoBkUxa9dawOh1f/1JfzGEP1bniT803A9ICovaSM48aSDX9T2QvG3cThrLwxrdXgSxeyc3bJbGyVPS1AjzHTeOLk4pQJyhd8bQOD36R6fjn8VWnDNTxWzHTO1L95mEKQi0Qd/k/vnONU22ry3GfZu6Tyu+iiJygOAeSA7qj9HsuY4uVrcb9CAtbNcUjBTbbOb1RijmlJ4sso50f9Q+mllmNPkulTlJ2ZxWvn0xnX5ZvpUW0cgiOTN/NHh6KHN0wAiYFJP5QnNZvuCmyfs5WH3NAimbn+zj1//6C9zAjqkwbKa5yEeueZJrLWtoCiaGtNlHaXcKbhTX+zs646OoYC2fvDSdLLSvXYdvfuZ9RjmCC43X5qYVVvt/xTePLui8pdq9WzSimkFGmyiJq4hunjWbOIdivg3G07ZqGN6hjdu6bLW9SvE7+ND2VuLhfDFdqCAEeA7XiNCGEyFH/agh6BKVmpVsTdYE85agGJe7kkArkB86ys95yWC6yFXfPZkYzRAws0wz8sQk4WDEzK0/rIb3Lv2KFspEEeeecPM+LhxCvHsoZ4YZIbPETO2rnjdFYIBwC/qCpUYs90Sh2HIHcrQ9AxM574gQSMlM36oobxdFll4AznA1t4IhK+kIyOKa8gf8zAlXmgST5HDnn7TpgAYXJIUHRPyglSlMaxVl91FyK3MK93UTrJxv7clai5/BpcXdsCM91tarUFm2dbqX+ZODmnNEeqkls4cEO8m5TQzeH/zdw+/L9ZZVcvlBQ06DBh0762UiKXjzl+C1r8DOItQfpPUtZLwfT9a2awiMZ82+2hxGYJcmitmyajjuiaOEf92bhEmnXx/KQ+KbRUMpA/bYY4kBrOMWEs4oYFzGkI1KH0rdKr4IEFZ9ZTh57weka5cYYF4qIbvpaDwbucsmjHk/aF/+vpca9F52Ds0CCGIxvM715Jb6zfzNkeBa1Aa30hWIu2RMdOoyllIqwDtAOoCpOy0x3xaorWhXUn4lJEvasRe6xxUHpGGcjwzCMYO5DceLapo901+reRnnCnz4hQ+u+bt8TcRenAmmo9YyDJNyX23HSZdnx6Yivgh9raYbnkIi6phgx0oSdX9IoRGS77g+/SFd+6CXv9OSH5ceII7PDVOUnKvxVywk44cU2/ZDC1us2a1f/q/Nkh5vntaq8bLk2fNi6PvFaFYCy94cqinrzONCWoVq5wZOCKq4NQqOuZpJNivdUGg5HoNT2YBhZn7dJt/ogx5vnFv/Ew6Na2BU5/l7W3y1hFiAJa0axaO+bOpA1TIVwQiYxtTJhlEvp04cjwQeMQVnOqmIYsO26GOrqCKoB95sB+XJSACfRkgg7HrD2GvhAzZOtXy6fVNlnQWZHGtXqv1lvSHXk6DwIicWBPdL78FsvI/vhWm5IXClbqo6NuGeFrVFGPRU7q9Ev9XB43SsBraM8jRqYY3/aLsRLBefmynZvT2R0WlW6To+rK34+7Xw/PJ8z5G+6rZqKmriUxwrW3sgHP5+DQsGMVQ+dLfQKD0f3m+6N/YUtUVblTrmjrvzjhlvu4DdtrysUq7cBGMOVaCUB21z9nA0IPbdok7ztuUST4dJ58KFHon7Jj9IGlvC4V6CmmyCr9cY/nNimrrkWGn4WY/e+pRWe3OsYfgrr/XxUNXdSVLIvSN/AUdZfdUhnOVcWxq1VMZx/vx3nIXvWkxaxIcRJ8Ttxhw2DvqHDNzQf0ioyEzXpQkZY9Dmmg/ZDePUAwFOralSmAX1V3Lb7Jqzh/KZ9FrmRRnh25c1kSE7pwK4zVlBP+8/Oin3DryZSFtvlR6AhlmS8X6MzilMWe0ggO6X3pmdd9CF3DHXmOr90TCKwmXZIOIgcoTJtHG9IGjNk3De3dk2R4TLOu++vm1VT4063DkJh3feUM0CH1WR2w9pwPyBggSHtiwSsJUo7sG1yvfPhkxPgjkDAhnNvkk3rilTTmWZkiIZb1FLGrt6qqFtJX08pCy7sJiIblyJUUa6wiCkudEqzygKRCMZSdzICdi8YzqTARcxWkn9zOFL6uTud0DDtmicPQ9SyyKtKB/JzV3SHUOIfe9WVx50ZfL/TRJpRwDkUn6X4WRgE4yew5jkUCOteVUoeA8ywZpRDGzsOs5woJPVEEz2jVGYeisbw9KRdsiJlX52xVuidXgpf++DjHQ8XYmhu5sHOhHZCHhnGeEPYM6aOA1mOiBGaKCSq7Sg/Cjcp/PFO1ecQYN4wLdbkHvVei+uND2JiG7kf4D5fUoDuJdmiBZdzpCQrBYzHPYOH6SB7UYWgsD5BvgwSUT2OejOgwinlT3ERYJWgy/QBpHMedg69pcSExC7Y690xk4rSE7Rthi4TUeUI7h1LwQAM+FkcNjEUUAfq2dD0muv2BvF5lhX2u+6QwGVKfi8XhwXPyxXDYrq24m8yrj2CVk7x9BwItRjTn1VxCmD98Wt/kNIyjMn1VgbNWtJTdUTErq0patBjeWcLVJVb2lpboQYL6oRS/kluU1wXBhO+hzooksMrNWlDsKSbuTAKXr/hMTQge34QMWF+QnSmaMXBr2pH6uu9P6BNv9JuSEpCaVtigwi38ky6kKfEVAEFnUGCE2WHgis7XZedBhEWQzn0tmcgztAh9WykgQRDziImVQQgdb7OTORWiPkxNBKprnX6eu60GpVMh0YMcZN+PoL4MZAUlqIxxiiQTUxdYthqNzVfCj+LVuScjtE6cl3a3lPWMaOf8rFwoe95iL/fdPEA7ICUZOUN8rfLfvsQiY/fYTi7mrqtHh3dErGwOMZA4Kd/0ZO6j4JyQbavIse2fKDI1smh8JG2j4XvTGKYtgDiDTm3DvaLfGNRQ0zzFHmZenpiVT3HKuwWcfz9llzODLKqBXE8ERi71cyXH9350LqfL4oha1ldjTmoAYPlozLsRGSBo/Fn9pr1Dw6N7v4C9v4SUQfFYb72F2hk278uztGGtDw5ZRwtmjz1HnkeGgFk1Ib0xq7jX6lP54PbL07HjuluQ8uFjHfndK8Q3ifQagPxUR0UwbAHpMMCDJlFAGPLJnKsexzPVOSYmhPWD18yFE0CNevtxZpessxgVAI+j39lcZHYf6hhaErmChHgtHg/OsLYeQ9ks/ePy/8RSR2jURFClyAu8rodeMMImXKqvhonR8Znu/PcGWgaP7zYpR3FzgUxE8G0pd/s2L6bpSJ2OIOoIGabJzzLpocI/MLTD1eTU0YNkIAH0L9D1/YfGP+yPCRRpyT/VK8ZTlI1/3VUh2UAzU/vtwHD1lnZcsp6G3dzetS3BTkZGo5SytDxkgGBdaIxixNuXrxMldoocBOnpZFH6SUqVVaK4oYw3dS/hMFI7Ni6ANpnw9LlhRI6ohJljeCzYsIfWnf8Y0rnK0D4E7Knv0LotFD8ByoehfkwDkN605RaZI2/e0VNiVrW5r0d5+98DGKGzbiDd/kN1Mm1zv/pL5OwsX0rNzwk1Axhh86ulrEWcWtI3yTDthmlhrR+4WImH71Uow4TGwTIA9IiHcftbschIykePWF4QuycF7vB+NI/UdIao6zyQuantJdwp7gESpAhac62YS/yxfSuXrI8vv0r+7x6fMFPDICMQKYXpL3vdNiHtAff2MYWjXBGR5IomhsnENChA6hjJMsCZkEDOp8rMA3H+Ck4ivoumsIsKCLRjmLzx1PkoiyyfkvBntiGhiSPjPNeZ/5LUYkeQU+Mx4imWakFk9//V/BS9RJEmAFiNwY0SJM32ECPEqDkZqRuRgllI94eDRwUS8oaZgaSmI8ldz6AHVtpqSwjPCBZsfdjj9Yr3+b4w4qVljb7tdc/WNeO7zNXAYSzGYfGXr80GBBefcoGhX80P29Lm9+fB/Vbp0o2GdFc4MgCWjWYU+K51cYz1vcgRgubX3YQD2Lcn7VRheDfDld0ndTMhIWnQR1KRzZNo+iQB887UOKdREBoy+WpWE5R0+JTGz47k6MM56oEv8Gc2nxCBug/ozC08Dasc8md2dy6H+3KrR4EC5HBEYiYeKLHrhg2QjdtBFPJx2UMVpIhWPSTwx9Naz3MCqDeV4SkKozTkr/Xwa1NqY03VT/1NrbuHCiJ/HsyHSJMt+sEOw9qKgwu0AUx+BhSY/ttFqWiFu9PeklXeZVwDFpkwzRl+eiDkWtCBUxjnoX0pgkgizX1vTDTKcUJa/4t5bAwvYKiY+84EFZK6mwjT+tLaxfKTf+qlVtHwNbV1fe8uYbX6fCHSN/e2+GMFT33WonSaSWu+b6kL9bD7GwC7R/8wipEuJCcPPkW0oCKqEV7mFQru7KJHMYNQwAGwPX0Wqkbx7uP6bmAMavmFkCrg1GE25LJlgtiEXIbtTH9seKoL7IuTYIzrTmGKm13YXdeC5EmL4qcaMywICvQYC6XWD6DWKIJVr4KX0WYp94IY2PfG3qID5Z0O+nbuwP7yODwCRWJ5fYWyQMufVVRiDtpMsIobtd6JvpJogQrFmcCpCszjPZWv+DofIaKxQtlW1MAdEMUJ6xtqLgu95mGgfs7dldT7ILCUvXLtM70Be0sWT2Rx3ZdmzUnCIz9goe9GLRLv83meWBUjxsj49DJyig08plbj+ILip6A/VLzf2IzU5hx27Cb9aUV1CwvHgD3bgcWKAQUfyBL0yPD9vBR+wzE9bSg7EFTi57HWqgp0/ZFIgYX15BVk3wNS1N3rWqMfoos+VSxfhLr0HcbQb5LKqBMZQcthCWtxxfhHb23+EULt6LAYd7rDp5OJsG0FeSu+Wrt3jxhXHhjhqBjsV/HrgXhiLT+5gY+4NhOnrPSK7IqD7AfrMuDwu0jyABSGtvsY7oReOzLenLg9SuMSEO5SZjtQfwfe+57t3Jp6JN8+xXijl6vFioTWM9YwQE+rF8d3hWjjTsvSZ1RiRoCyXm+1InrvQd5fFg6VaZBhpZfbIUJUrovr+HrpD4UbNHn6h5Lz/CvIRpseoddjiyDtezfVgMMvNXs7CKvm6zTvjqee0JWj1YjNJtDkZm7uAvzswLJ6Wop7kn91JkTuF/nmY+wqJDTW72+bve9JaST1AQNtLDi6JYMknD5zQmK/UMCpohURdAd2DTLFlHK6NP9Y7vERlYA2hNfF4cEKHdHZ37iMybthH51adSgYAa+f6qbf6p3JtiBNhu8Ro/jQOig/MShj+JFkmvMH3EhRL1hC01K7iQ1TQkO04Mk7RTzrF7bX671RUezScKCieBi7DjKe2tY4jMKRN2frgVRfsRhALLzpffVUOlPOzN6af5JmpB95YZQI4McnJSJSyj+Iy3hlBGgBK3eNwuSKy1p9DGIckagB6u5KU7bO+9HWGj52N0UV978V9Z+ZI/iCxAkhzwy4vI/kYmh5uY3qq55Acp9+DxOLkWrI9TWpTIRtrPqOLLIA8FzWNqsiVeUHH1VZwmCh9PH/5R9RsPuTDzn765Pm0SMPQc77Qn6YrRfkOLKFmbxl1VPokbn4rBlrJPm1YqLH9JqfgETDdGEt4hk1nA6vshbQjOwYDWka2uaQq/aOQBPAfDWNwoag1+TsYd1ooqPB7Ez6/tuMUhSMpS/0Bre7G2dOyVqsd252u4iWi6KSqE82LlZ6TaHRbsOHox2YOrrHnazgHXV1ThALPphIqkQ0txF0kGFLuLjJJksYrmgzcqRjxLq5ikTEGrSIF8zIQcEN1YRNXXg+/Fjb/rDjk7Nox2oR68erQCNihrtARmZlVY1sk8JapREgGY98TL4TFuUq5M88+7ymZKmSXdafA/QBjVbAkF4oFJ0vMMNMQX0ujlkKxBD96yCuJ0UvPjzuYvaA0IxGcWWhsiP60M/5P5Rbtfz5PPM3SkxfvDnl7fjJ5VY8N/p6Ib0dr9BJWPTpaCDGmvIVPLrPq0Xy0ZRcEPcTe7DGXc83Ij/BBM5nWz05yOpc8iHv6vQ4UhQ1US0BB5ZTYjwhvu3ZZ/vvQY19+4cpzkp8a3pNdhRjG9YFgGAsO4pY2W/hNDL01JJlpt9ozERnRy9vYl0iE7Ar6D2yC5iX/6vJwryjTYhYnjY7jJyylDJsw6Woz2rIGNzfFP4udm5iNc6r9Ka4bKee/BPp95Dv+4NEzfZE/rVK7FwD7dFmbB0VgJdUMv7QVrzBf463dhrtu6e5NbC9TxP7GToUeE38jZj+dDdrAyjatSQ+ueInTqYnlUlr31vTQi8QJTsXmDsi4dwThmaZIU5+N5Rme7gBSz43FDEXiMb/hudip5VV7d2EJ0PzoJDudfxmA50q9iEkOdg8bYNjNbLtIXpW1+i0h2cDDABGD7jgWOx+rfvPgJIX9LmWZR+Y4K/btz597IRe5x6d/V7sttaJmx02YkTlw6byqZ7EtlajVvCWBJfiQ4X6xGaoa3/1qwtfM90J7Ofb0EHTRi03fYLYKIIPYIR60eVwr0eHGGY77vq9ao/1B9fZ9mm0QcXuAHkJt1qThO3a/4meN61UWDy7LLEJ5WblS5x4XTHzn+fvj+qcAjuVmOMRi748+3d6/UBpjCptHbq38qfSmMTA8Hlrwarpn9/okzGx1Iip+hznlKeKectB4UZ7YhAjweZcK1Dy9I/QMtMwss5XyH9M0Yqhf2XHCto6mEqWiJoMCmNReBoWfgrBhRagMMZRuoI2dnOypYTe9/+MpHbxJun0bCmV9FSINkLSOoi0XJYih/QR1Kl8FCMmgQIq0duW3m+53Tmt4pXr8NXjVX7xiqCD7DQ8j6sb/6dhudhomMbyOkn0m6ETEXddbwR/ztq2JUgVfnvbgw9NGSGsj7fQ62nXRxl3nMHQERo6HdfymwQxSCBLB3O/Rd9v9BcbDV6Mvcjv418mSKet5WBK2px2Cs1VDaBW2jsClAwGn+S4kkZpbiGZumyEKp7a+CMMrAGwkdlC9M70DFNUbByJ/jfVcEcfz+SYaop+ln16ofEH1DclSGGUrGTEE/j1cX4jp0FakV30+xSuqgScGFoucdEQDxZWSTOSUaX1ExsTO+2NR5+rfmNBLUo0cF3p8ry+eux80iykKwoTnZ/Bvs/EPpLxq/+qtQ0suhvphEUAjOCMIYhV4yAXsAmJjYfDgKw3KPq2tzL6GXw4e9hfhuK5xXm2Qn/Ktm2rVahK6rLOCB1wbzsTYcdKJBL5LuIr9Y9x5GC7BVAfSXVEoGR0nCDr/4SmdA0XXxr8Ej04HIV8FFO4Bm9KwPzdoj6vVB6OJou10K/X5YLmYfnsrbCPyJDN6Z+ZhfhBFHVehR+slZiRwQNUVEvNjS7k28fZzlAF2iGrvbWwGa0moSMdqB+iBJttE1h3IUFaajUNb/mZQbbFgfYlGbmXJne4mGWieg8/BixjnRuyzz20ElivG05qBhgAb53cy19n+DR7s2oIIVGgqzKNg+NjXFKMagCXPL5Oyfdcl9VCPMoK40odALZV2bea4yDnBloSqaFBv4+tqsP9HLohi6vaSUP05rh0tlRQAUWYMJDXdYUNHNCXxrE8MPs8IAz7zMYbImVxfSEtWVZgILWpbgvp9l00ebSndzyZl74LvcMqOET3gv7TNlvzEUERTmnUAu5MoSwhQikvauXir/lZ5jB6mfCo5LZ7XC8NzIYWDsReXxzyLacCEpHUMvi+HRK55domr65VAc47EW3EsZ02XGbF4Xu55xb+iGtnIosQVKqnnjVkj4yVAQmrUAnmzbTZX+QCjnRiWsXbLzl3tC5ud7yrsKbZ+aMDuy2kuvvCmLRvZyglXR1Aj2oWvPj9NKjN6RzgWDvdDZg/T808pmxIdmJ08hAPT6L8RzJ7vuohgtipOkXzSaww6KBa2vi2lnwyDU7VL+32WQZxz8Jv9Uiz3NpdPWujg1Hvo+wtg/Se40xIakcsXBW3gj5aNtZIrdVMOHNoZw5vQ3+dvlJretjxt+xkzmfbPPK4RJMN+Q/bS5rG0CTV+NN59qU7vG0zwujMj0b6fZkpdpMdxd5bYI4FY9hn8cZfZtxw6hL3Vri2+Sgzouh606Vg7wbyAzZfJcT4cF1CBEAqlnklheV7TP9HIIenSMSvklkkTR4ysmN0dQYBlTAaRGeBfKE2H41s1jvb1G+fGwNgdhbxbnVV4rlZ0TURlHBEnAPgoNBWpjWdhzY7wyujO8jLzeSRUINX/Sg/TFkp8HhDJHCoOpzjM7PCqQzya6VbtU/Nxyi47RxcyaBF9DQmhKGgkEm7JNR1J4FdJ9uN5TaMr1mPJXJQrEObNOUMKzxe1uf53780/bWYWrEZIAxnLlZ3XPWnqxyM/lUY4niZi/n0jEQN5ipAKevk6woilAnquZahKsnOeTZh6jo/0adMZsCA5HrLdU7Ep9nwx8OBlLy+XPJx8QrJdVy82TvEzEpfEYlT7ErUmJnwlkpfVkotU93lIz8aoimjCggmCPBO0MznwrYnZLCOqg0FOqg0w73lzGjc36ToIB7AqBKhwgDrTp9iQin0gZG63TVfUlp4DaCFMxjXyNyVyoMAykLSgODwfypXW4Acxl9++J4uJZHMoOuzDISGBsQjcqfvw3cRme7HTSr6HRM9v0nnfEbHe7c7vRTQ6OSZOAd2lSA3t/1R4CZH1363Plnd3eN5Wkrb6WkogqCZtXpXRfhzKI8R6jHS/qLYgOXHaXlAuwbaPBo8iv8WHDYwD6fRQfH+ZZaZbwdYxTHVDGDcLBJv+420nXXo/qd89o+7uchsTyC7dKomlQ4RGSsmNw3s4zxda/eE/NpCkR+EkYCGmU2hEs8EFo8HBsuUQkE/R2z2ducuqlWoXwz6xNOqsZEEP03rZslxZnlu302JYAGDSlJ7uAfw/SzCWYm/rai5H/jlJw3lWEL11qAlOviqy8DAI/WS08DLIzBaLReQNs4dOpVqRgsl6qFNIsCq++NQHKE8Q6gFq/Q7/vvrFnI/BTJRDUcch4zcYV5NIo7tSoojOL3YbSlekmfWL+4jSIGehZ9dg6yfFmejAu2pe/j69iiDDpr/NyOrkt9tDMdZ4dRTi+Hr7Z/vwj1fj8H4IqJ0YN1MloVLudqxKw3vT/Gyr0MTJufAxgx9LAp+3zlkVRRKH+nu7Yx8Ar6e4sT5vAo/LaSvpgdF0IVPUinsopYrB3K49BSPWRLAxBU0WHmMre33jJ1fsh3SW9QPwmIfXIuh09+ByCfGBxKZFHKbIMVTJYqFaSFP0MhmGFCIwiSn4wo37INWH0A5DGpkY6kM/ogDUoe69PaPXSV80I8IDzT+pXS7NuvNvstS2Gj4Fa5161lyorLtfdjyWGEYWR3PdkrcEZpv/YNSFZSynxZFHxKljsjWmaOVqcYQ7iphiHFDwynicmXlIzhfNYYypmHxJ5gSV2V/yuoW7Ff8RcYNlwFb16ouJTZlPH5HxdUr2735kQ8h8wGFcREgBK8BRHl7WlwWuIGBGghH9IrdIzeF3pHIQCqpJC0pg34BIGOyp7HmCczU4dS2sXdDUOTa0hiOLse+s14AM/wsOQ/FdA9lSAUqiGhwxjbZuCVjcVlqZH81TNI4THFsgu8UroAeFl21LuP4wSZhga+C+BzicXLnaPlHxpLd07xLQG6ZCCjtWHkVOGAupM6jTkoPsyGh3z51j6ru9DURSA3vDMPNRD5pkMhrSoqxajU3/6giBMQJefunuVAVqG9r5cgAOhSad/MaptrtbP2qWxcMjsj7jF4753vN7pMT0xgWKE+y3GRrfqt8Q1WKIfaxIXxDLpFOXHq7AT22UXmxBa2MoWsZNilI/8zqB79fNKyPUUb3vgdEd857VoYxT3o6cH/E+Tvv8H1gpB7hGt1OH17Mr7FMq9AKtmG5ZnGGss6DRsGCmTqI9qe93uPlJ70iw19lEHOODgZ42eI2HrzF4VVGmiuiRqH5AF6jBBodOaFGpg5HKGaIU/Kz4AGkTPNKYKIWZM8fILjMLAkyMHEQxsrYGt+NuPZdXt6lKxzKU9LxACJ/bBIuNnBr6Hmf9y9zvEyhaFB0bwyhKnnd8Bl1SCGENjS3uAdGuNfwIRXimx1Ru57vlzb1RmQ++VHtITsVibdMsdFLjEmcBoDn4x3E5b4w34c6z8yzgFd2RP/p7VrVWdUe+u2jiPDJKlovHn9oiOtocDfKKLVpW0MVrCrQy2tkTSH5DETWBO+JBp2zsyJV/1p/EF4lyiVUtfK5CD2NSFBw6FmBL7ZBHQIYYePN3MJUUISdc5topZq9HPUTD0JNdbuAZn0SfhQUGaoIj0JGAKi8yucxCc5SYhEMWrIwCNdPrgAox3/lw+BQszCzFD3Qkk1WSub/RNXo2A9lZQwqfX1gYWuestz8N3eVsTsApMcvnBb+wTx5EaJUuuxzywjyU3SXbEJMZ71efT6XguGrWW3bY4dGHayXSc+boG1iHSufXebQIar2UNJR5hqT3oOXrs0B7ixCNOoRtQwwjSXhVBuzc4ao8xkIrShqkHoF0fNVe9vxdmn8oRItkJc1Ql/ucIQO4A1QjY6S1m6tZiSwCRTTtT0gx6T+q9krMEy3s1l8mdNbOB7rNxcpD7Df133qMiETH3+vkc9l+wu8XzVjCkOUykZEKOUul8dkIiw5IvVC6V9CpYnl4VKMRuIAHVtkeNwYbEvrIyZrX1v62DM7uzXYDdBotjdL2HxJJH6O2ix8TutpgJGWzwuOq/iZYhp9Zqkz+L8ll+pifvxQl2dG7iIvpmTCqgu+RPE4Ymx2jbx9PKkYjm6h0f8pHUI3fGUeacukfKZ6s0jOQ92znoMc1BjbvTB/PYd6IiukwgFRVkeZSBtnzxgngKiw5BoOrAWhhV8GBYl/Ho0PjHF2DYvpUt3RNDi8iug08rKTeuQVmhTq6WClVb7VDPFy1sn0NrrnoZ+zKvOF+/+O2HjIgLjgKqT9gYaU/FgbAdDLyFjAUQ54Jk9OqWI21NAcHFi1+1a4cgVxTha8Y39l+eaS2BvBUn7hTT3S3KgHEkKTojMcEpZ8mP4PzJQEJabbc1T9TVTf18ic+QoyvsCAw2kWaurz9MxjmaeZslgXkjXoCop8LP0m2ma2xRSnXVdOR3GJGttSRs9Fk2LM9XB6KKCsxAo82rkHnD62g/4TO+PlGauOmAsmeUn86zuiSh6jqBxC7uKlfXQKU7Xx28o9kaIgAXXvLfhdjt2avvSksnGW8GnvumGkV/WUKTQwglE0wHIIqBiNg8w3DC6aeZ07lKHSj6XE6m8peFsT2FXRe1XsK7PKGRHsA+Dcy1+gnrfum9vjQZheZCsXcqNlhqwHT2DunjyPAB8lz+pIfnv19Q2z3IqCMJ+C/Ex/11XEG2NaGrmYho+KxLscG5vI6lWpU+yvTgFzu8OlqERo3rG5iai574Cwp7L6nDntQkAtyZDlJo2zO3tt0o5wq/RGjxCOsxhSwxS77lgcg2gOYQBPzNTwhKtArgeIbzB/o6MO7Y5HbQi6OIs2tTbJt5u0UQjYBuJEl2bnngICZZ0d8G/wS2bikHjHLDyijbdrCJH8dNIZG0SO6pubU0e/kBfuDUrjygh6O6KoeG5RkHW89AePowmXtWObfYbDAqus5qm1goiLRU/lbsMocmVbqwxV0N+jAKVUhByq1GtDLYe44+GjuQMvg5FNTYOEUQqas7Ut7xUvLVGzkKic5KfSH+HVhO64b8mftzKIZPUdby9nOhpWpojQyr/xUxxD467ryUaeAumINh8AtTIPhiFQr6bM2dOrzrMtkyZg6HpaRC7q8rsaNpRLUnT68QOcyX1H9VuYqeGM6NHeAIEx0dmrNVpyNeJ8oBReSnqnybie+IfnQiQtr2u5adrj7w/Ak2p+ijdJKSXV4mpDqua2x5cYTCQW+LqNnQXUgemCkZPBR3dttRjqV5IG8LHhROeygOCRt/0WZrRkMJmKsmkUvRPmU7f5BnahVLGzBOB/B7UgwovrCBLeEdnGlc4wmgRtxATqBnmQ6lmOVZ5I5Ykk8gCxIqgGMVcNYAAGoT+DmbkeO1FdxydNuVGDIz+zlmEv9BpQH242fLaASW7r4kD+wFDE/lKsqiDyVuK0sr/72sAoYr7y2KhX66jTnC99UcMxKPQQa7vYNmaqG2byo+D62hxJnq6Wa0pn2oPHeHrj+JxKulZWhMWXCfV5WNi3XPNZ/jQUk0D7iVYneump+U0nApYDqE6dVMPd3Cwh5fJ7CesOhUFpYfIkxeGYeZ1V3mJmVef+TaJMDYek4Jd9QRSR4zSv88Y1q/3Hor/eWPcT+kyWB0qiYfJ+Zk+V35o2L/1DsEnLxa8gSRZp+RWWYhgsEQRJR1BBn6sVPuYZSvH9CUBsFHpZm3RDYXeZRObwOmy0YTxPQSw2C+ts3JdES4fTJOAwjVEGUnWON99AJAWysIpcC3JJ28KwdRZ+J9+VEsAbFpHdbjUbqpMp0AxZ9CS7XkGbvRGiHo4tjNOsRxdffLj+ND4ypFxWiViJ4FRmKxeYLPUjCuCOgSEe+GeG1x3dpEg9NxzR3xeg5c6q6N0o2q/cnw/aKSjAjxLG8Q0V7iwf8lafuIohtGOcR+FishZC6ulU+GdBaSBdY2XFfhIbenylKJZWgAP4BQjZ7MRp0GAThV1r1t9o7XnbEmItxApj4mUtOyRghGNe1nbVyfolZxCzrFqgy/dhxPjSwe9Qes4l30rciKk87OpqExot2CSmWJWm0vS9d3C46ibaNZbTcY2VxUo8GaE8r/1STVS/Bl5IzBrjHNnZufZny5GLC/hL28ZMGXIACRTeH8INR1KMsHbbxBY6Hlkq6dh5Gt3iGfiTy12IDSaSvpuVYOGwXKiWAYw/shb/syHexe+jtTNz2ypSdNrbUHbEPGj66qTJz5FVhRdTMD57qVV+NchOpgraYRjTsYknsYaiePcJ02SpU5DVQe+na9EDCR5rTUHPSs3Im5yQcMu43n1P30mfMAQsuAq1NLFIJv+ykcdiU+kBIqR0231P+N5rR8eePlxp0TPqcCwU5IqsANL/Dn2SiHac3RtCBhRHG2jjv6pHmAPfBJ72hIeNFeElLggiclPX9yKLUFay5bx677RpIU8z7TbDAeMWiUnGe1k5aPd9fu1TmtTLkjdZThcuckLdz0jytzrvPKoqOFlR4vj0/9egp98wj+Oq8rk33L3fLWTHDlu7FEdxrV6Hs23Xyc+2R9zQfl6rqLlOAk1uLm5/Vq1/pOtpRkhyrnKtcd0zTxWnCU/O9Q3jU5LctTExmohHAN9YmntYHQxkVfGEtnWpP4/SHZEXE9vz8t0hqZjGncTKErvlH/92rB48FjWqJDeOrk2mdnXN0kcgcdkdq0wMMiK9pdrOLB7MGU2CmQi39vS/orSiwgs30BIk25LPNf8vMGNLqdYad5ogx/KHhbZ636FJPfQjA/8Gp3b5m2WEtA9xTtpFIl817iQfu47v1SzQePRs0eDsnSqzaFk7djizrYe+QvGRkEP9GJSyK2WAIRMiEPC6pWe3zmQvloCaYzyHOGMWPseTRx8q2pGhmvEKXX341FRwl81bNse839UoPmTrga8yaCb+Uw9znT6CEcs7E/JmhugRvByjv6kgc/9dlTcrptQ/JhBNHGYFvXvag18NGNoKThK4915mofwXxjdCgmf70VNewv9alGX54VSXsnfnSGmYZA8cORnC7AcdVOtbCsIPJGyJZcKqHywQzXiN4nU+MBRrQ3UPNMLf3BwnT/WQDkZmHQ+X+GBHR+9oQEaFlVOBNssFL6KS5juthtaZprAd2WlTX7HrI5E2Wsu1Jma95zd8399nvWmN3M6o496E3Bl0RAI5DzsOIp+NmIc2nlxQnWOFTrU3YrgZ1gufLgahOL+g14aNjLHbt2vE0ee7Fo23IFSNhmQVgd05jOEZFcyU08AkmqpyV3LDlfgwZZlJ+tkngjBpBCtxVKq8d649WaroXeLL0iDD0PoVhsSbBi8igGvBF1AH3IGIm3LJ5K89kDDiZLKP9wEsuEN6b3uASobYLwUASQSboPyki8dHb2yEdDiaplShrYs4vaEMT3NWgdEGh1jhogoa25d80poDpU17iI1V/XISlmzbFEi9wvrwtM8cOUKKAEBGJiD5OnTtXPF7iOyY/pGixQ8kSMxR1WeMRWnFE4Y8pIF4EYHw/KzPsSGeN0HbQ5PnJ3z4ttsLiyQDL/XH5s5sjNyhhDS131QdtYUNLDSX5Vk72c7XwsqPhoO+agjy93A5hyV1B1RW5hq/hWWPqgCvotxpJJtU3nKF9sgjAFsBQMNBzcCfKZ34yISOC3EHGc5s1kbk/ByN/RkWTj2eGDZtxccbF/mXxGXmj+z09kayr1LND5SaQROfsvcgbBWlpx7chRLmh1TggrX1w9u4lW+r9iJN3SdHSQPLfe+Wk+wSWP6Db778byMy6CsaupK5QdXB5eZdeckLe4ooiX7kI+1dqFcZE5izQpFSAv52TRYGVkM1RS6BxGec7VkXhLvNMS320FkaO8k52UrQ0Vu/+zuK/eHXgdbve2LdUfZeZQduDVoF2G5zDr5ZYnDirTOGkqLlC5w4Q+WDAzxJbAzyilR4bD8v8IQ8QSynuPNEdEtNfhVGpYPoeH5AlqMmeT8a+A7ry+xaH8+CB+0ZrE7ifxM7LMo8937witc5M4iMLjuK8Sr+1ev7qdH5H3G139cQ8yUprB602hCpKj0NneMn//UpzvkN4Nmp3Z22pLKXeegkMMPGEe73OIGmEbVlMMgpxypOVtznWMvX6CdqMoSLHpiRObupyW1TDNo9uslJ6D15LKG+wEFElL27yuClo/2yHjKAtNZ9folX7RBQmE2IiLSQjDYxRxEbw5D0+iVPbJKwleFfx9ocT1GPa0lzmz/rFslUinUQsQqvsm3/kH4cqQTmHfNGtSnSJmA0HP8vW2PY3YJ849BI5bPt6AT/LeZ4EFyZzdk3c69ED3RHI6g3fAM/0KbeZ27NQXGspFhTVz2L78/hC5bd0S6F9P8GqbHhWekShXc1iWUhDJ9D9QEXpaTcs3h+/IaQZQsWF/9OvUElE6z7RTUBadZPJHcHuU/6n5kS5iSuzyUdZ/rUtvg95oHegzv1fnlNG9mW442E19XfsFNlt2K/D4x3RlqdQL5hgGT5sxqdmMiFczGkpDqmyBUp5EN8IirgLfgZC9FH1IrN1qHJs27Ewv3f0/ZbPLb19cSKHIgobUtxer99lcrdosC6yOcWOgzRfoNkkuoYGyBBhSTVra8fD8ln7TTsh926yGu8hqHB4na/LmZvl5wJ9yu6X3tC/RZr32lTE1Ww1lQZBQsQ+aHPRcZ0ebWvT5xESoUBUTqbEP2AfPE84iWmYEnmObCMRvK2Gj5ZhDVZkKRGqT2L5nN6Iv+awtxuk20MEANZVGOqKlZuF4RxoulHCo6miUDRYzp4NdZPlNHEuIYnnLczzcGnO+1r99ID5yBoaAcPCfFNCZV7CiBiM/jcope2iPJrq/ExbPaQH7lZZj9QEkl80paoO40+IOygJa4UcclgYX9YQyfkkXSUzzEMNgFf4tp99n1NwTHkZi3JuGv4cogm7tuDjgDN0wKIJdxVDGnBeT+hXED0kca24np+fS9q+UY6kLbWaTwNxIixHGf9nDP2Hf14TQpXXGLOZPVxNlxwe3f4Ae7a1yzeoNziyfL/vMRwvw3vjCJSgEt2Y35vvbeNYqqBhn27newn2a/hnWvN/2UuyveCwBvSRfz7/fhh+flubD5u6anKg1IdfjGwRLgO+DHmwhocsbOw9baY9iML+Oj+SYfQI77NJO+1MTYLANgvPc/D4x1RbOMNaTGcRG0Kxgf06DbV8iXlzVEgskPQOtx2HOqBOIBF+DHSS9rfn8BQ5G/jcozUGHZDZKnhKQwwkcCSCr46iA4QSLonDRxB9aMBSghu/A2NuPNu/xIadzw4vy7vpEuOYS3M6JBF9kBRZ+k5qLMn6Fb7FKGc/WFaPAGxIN3ZoWu1k40hAUIKfZ7BwVSVJKmafYnuAOEp7n5q9ks/7lfFHVgMYg/6QTdhTEySHl7+Aoxo6Exs3FrcgASO7VtWIws7sdAaUGxJZsLprgvjnztfXkIGo8QeQWagBaz3ZMoSVU4UKQXLWfLFMdrsRPrInEMjM5XXG2YODQZHl63XsSdjjdUXz9++D+5qU3ClwbI2DN+aIc2JRnDD5JPm1bb7ePXUyGvPzWLfy2yzyldXlG3MdYY8XfFmfvSfOrpYzk+S/chXUIOhCkNUfzO1jpv0Iqj7YhaSTnMx075WhX4BL95QM54pO0jSJjwwzUc8Dp7Gz7gY+Ru3QHON06KmNPL9qGJhRvfmZXmXh7DwEi2Hw/ODg5uQXdk5PFLdqQ+nA58KydjkL+B9uGYslRCkzFxoTD216bxHRL44DQ1PfykHzdK0YQmFQaZ5+uH4z2p7rLF8eXrDFL2wE+E+fgck3I6/mS6J0OufJgX8skvFk1mqWxRJ5GOlYAF1YhI/mSqwg5RgtFEqxfdCDpRcUH7jNMoZ/CLcpmpjaG33RoAwTd6UHMV6E4nMWIFyQlG/KmvIk5s6JwpVxFffnKMvhbRdziN5uUF22j2V56I0dgdLq1bppfBr4GXjwyj+Sf9BH4dnSapZgOUUdvUYtCRdKhI+4CvmzSqncz42ubbz+ZGJhpBB0+Cj4RS7rHQXkHxITmH8CgH+9bJB0mI/HHmC1iQV61yS17fmJ+YmeYUZ1l036WEmLWL8hb/S0vP0PVqOTtf9rtnK7b8JWRlJAw6nSbdKKw346LV30I6D1doIn1MkYsJF8rS+qJIJD4W+GgmFsbprx9d62sT+XRWlaWwknQdQqUXoLhUmcv48HTceA8hq/q724XyHsUg/i2e6v8K2hw8Ri71zjtGYiHbBI9UIhlitzVs7topNYwwaFP6dyLlTPxFxoBuQDHyk//P87jyNL6hHUh7yZyaeQ/8tqEBogpB+l4TncCpql5UUHn3mIDbqkUO+BbZrfNh5x0JiDe6pLdM+494g4Ddoi+AV9WpgarbV0L8aK/r7UOuL6eqdXnHt8szOygNb4XfqM0xfTnb7dCxPFLM1cwk8rdUc9PIUioMKBIsiqhHQJE6e7HDIXFJkbjcmvT67j0y1dCa7R5MiM78vdBpNtDLiVCd7IC7eXY0BWaa5Ymns3FEyKdE8nKm/ZMLAYxdM1CWj/nTTDMS3v/r2eWJpL55M387L5fvNn1BvRz7t/kNZD2g/PJM95wotKr/V7Yqo/lMUBpVgZvlqR42XIINYafo3cXBEDL4cbDx2NpkTyxWiLZ21/8oU21Qsrc5IbseA1Z6dqpnVJTog8cQ6N9Mrk+DhmjHljK3Gsh7pubhGzQGqsxDnGwK+vtAmKJWzGPdxPm3ezz1TyGwrCyVCZy8BxLgakG8+X414cyrQk+Su5galDt+XCFm7F7YEwCj90uWf4F/nc2v7I32pqZ6B0i84wUJb1geT0P4VFkc25+GQvfQZZ34DA8DpkAg/bVWWq7wxZIzAaig42QlBeb6j5Vyav+VvqcS0YXjvj9I+XXsDKFsjKNB64B1z+0c8HJCIADJoZxC56+yt/mAVzUDDdwv5vJjpbASHOj3odLn5z2g2wrKhDZzhvIseboOcJ05lorwi0gGyAoigQXmIo2JIRGH6kI+TiikYA8p7Su+C284vbR5VDfFS9Gi51SMzMXigj8GNc5T2UQFo5QHtmn0p0iWZoZpVZLDP1patN1sJERAGFHr4ZONjJlAqbHU0z7dNebUY3sFb7U0eLA0SGz/peJ7CA5T815fDgh5A5Nc5pUzLhT8/xUlc+U40MfDa43qfYe9YEsOYFCfptrU7Le9Bbk4ccQCP6lB4nzBRIlkzB7/P3ajUcdaH6FQhHD49Ax4YfNrvf5UJcSj08EK5LNMFga+yKEY2EmpulvK3UMGWD2ajn+zRYFvx6HCu3qx6E6AEDPKhDl/QMdAQ4Lzg42EOS+O9uLpA3ePosV58b6buXeJ8fruFFSdvef2VF587PdW+9EleFI9Yj9o1SBn+MBRV2LCBGk6/bXpBCSQ6LUIZj5HoGgb9YJdkcGc/tTlgKpS1+AucSMG8LY+nDMjWR4NhmJuZyfAekJgPFod9IYa1eeHH3V6tDqgQW5giveMK+ulS2mICa5+XUyVrormkHgQNkkS1Nt16mbeWYA1pFrzbTHJYnaLe+Nfvp8fazg+7ceiqQv6pIRpAC1IA3n/aj1ksR3EVuLE9iScwkXvHvMsbdZJWlNpP112Yy264OxVAXTIMuCe3UMhVnZJP+acNdfLWwcMJ5JT0LF1fjUJa+4qKJTUSIOLwL6OWkk05CQlhDemudNa0lJ38emKvvNGZvuyXZmPsHQd1bACNYeU6kxm20uODPyG0mlbAeK8wbS2D10fYcZkYAwdqJMGzGck6j/PwKUZEMunV7Qfm1CXHN7FMRWjl7FXyXlBwqCy9kboDSNBurQCw1ETkyXNSwu3NwVgLY4Wc/glEtZSLejurboF0rKUisZmewh1Tc85HJd8si6Wbcq7hsex7r8KzzzZ0hzAljQI0bw8DHN9EkmIDRYTsNakq7V+0soPwV3+y7B66CIlzjcXYEkVxnj3srrVBvhreUZIwGfTkNlKBnK4lJBUKga5P8b1oN153zf6O1I1z8VlMz9jwhgspHPa38aliozQHzCdQ17siVqC69Eeqy4NWBGJtMF3G6lDndkGOWFKOLj2nbiFaxT6c6cMCaM8YTlMgcXRwWaTFBTrK4bqiEb5UDODomcuH5uI8yEejxSZY3CgFOR1BtqJRRI7XOFZD7w+osQSwLlFm6cvyBFBhG7IYhxYKw0ojFZZS7Fcj5jQxvq9r+0ujEPd/fI052z3CaEldBPKYRbT+5PPbOJ9rypUbuWgXbg/a4QOcs+U85lq8JxOxaI1ezmsOf27Zy5ijsfpOo1YSZ4HkwLNmqT0XLs6SgVLgbLYZ0eD/wNS/0s2saVs6SR4/YPwT9iD99OH9nzqN84hFFj8pC9+t6V5AC7ANJNxrEY4E9ZXoQigJudd0zmp1PCAYOTrd6FlsrURPpH71pFrdeXy9+FJTFp7y28fvCuL1DpBWmEtkN5JaSkESj20KH3qLhRWdGTPu87tOrWUCUj7Ukz5RLmUaSqG003woIttlgIz4hRabh1pOa2s8Nr9UEQfdblCEmkUXkoemL6dVdnqc/EeUSSywSWzpxdT4/2ohhNfxt57QcvlxgafGTZvlM6oF9nwtTTJxkRF5a+M+twOG/er9ewRiMZu/NZFwkkyBKo6wmvKPBu59TLLGaBWzsLKZkkimcemBj2kEZIwsgLfHaDguwYSe1dTVjOF9hA7eNeb5GBMxNH9d2Mc09qGnYFpcRjN7cMZ+I3RhlgrctqNnOuTSp/0JreNNoWtKgcHYNuuKDdomwz96cVYTBNe8NWBaR/YFv/3nVH8tmuyoTEivDraaUlq0+yEUWKnVB5p8AVgcL3rQRKpt89hs2lmos/D5123NGOOyXoAvTHj9bU9EhGtJslzCDQNd//fIoCYNGfh07BFFBFjMIq1hlQefE3vo7noa127oNRSsxuL7IIS/WQXxZIYMtwtActUqR+CN+v0MdzW28R7Q81Xg80BqSyR7F3EBfx6swxEPw7ketrr7SINso1L8V1GqX4nCNTpIJTRZpz82em2HVauHYeX4fGHLSC/8VHMh8JIUWSyem7ijgmQbcOydzVBe5eI7R5W4UPDZILKUjXFJxGWrFy396szR73O+zmrAbYlYtO0u9r+CZSUSI6FXiuyvZ1pBStjBBP2RRXkzjL8vyOXKW7SzwWLckzqKzBg9tUtOPYitqgQEAnRk9cGduH2r6HhIZsem4M8r11AZRByGDfZIUY6bFQsiZp2YyRaNNowymuOkxsH3a0HsgN1tQHCSJU8EGAkJ/4ajxNwewBEkwje4juSCAfumrWy8iuYANY1eYb6YFs7rjGfhQ68QBeZnnMZTgGU1m4j3l4mVdFbm0FJ6ZV5hoz+34t7ievLqRsY7yuOPa5CbzjEboi/2vXOCEumpwx+PaYS30RaT2XG1JkvEwRAl8LUo3Y2Q9BWOe7274mJJhzo/QZFYXqOGfXfqF8W4jn8tkGC4oQStJvyMLPXOCPovM68SlUadIu5Etdh2xq6s0JuFIz236Ss1dTDtJEaMdnasRjuW3k/bVUe6aGIb1l4ILkBEkZhz3DRVF/1YHCFVjCilLX0vq3/Vat3SduA3cbz40uTPDVrtJAWLLgTB8hxmvxncFfaK7tThGMYkNIGhyjrLFMneRrO6LD2gbbnwyoH0ItC1SW+xAgptpL4JaSA9Zc8jzwBF39vJzYFXcaWDLHQkO4dAPxRd9cBleT+tNJj/mpvrhRMdV9mrR0MGS4GYxdbW0HwruXaNdhVST4pNkGHPfBSPxAt5am+OLkSv0wlwAXTG9EXOrusY3u1CzOvcyoC7BU52QNABgvDkdTwVNNMI1ZJegJ5NB1Gvvzcf/3xeuoQfgsrJ2hZ6vU7SNg5x5J4DaCAXeL4C3VeOunafF7GxPtWvfsB0f2vKkbZkB8e4ApcLlTavrsD5N3i7mcO8MoRJegvQl6hwf4Hmoe+36Wc3cn2KGdCK83E0/OCxDmElsn1S4mTXUYPKhjXjGGcNvltyprlwhSi7A/r3m8hbXAuIPefdoMAPdX7xs7BPvBPWlhno7GhREyh4PwlJx0l4FwX3FVt6EcTWLwLu3QyVDbEJUnSRuCNmvBPdV8mNiHNaqDlE3YLTqaqGUP6FKcW7QkAvBDJ4eE08zjsqgYQEG4m8N9D3NUXk4TZ4wxGUZwlUM0smwyIurNpz2epj5zMyLhyc4HG9l8Tl+kkZR2RLktQPaUeXuE4C+C0iV/uaYdzFs5UEYntSjh1OjnyE1oab0YBZ6dzwB2wyC8OCQyD521EzlxOIkZufUCCgCj0mUVxOAFVIPSfuyEeNQ61clTlaT275dLRUkwN/azXReFe8FuF7O4e9Dc3Mp1PEbmSCqjnY6m9zrWROGs2twk4QWCFhezVvtnbdXZUuPlegIrphwreVED86XsUGrHr1iEvXmXXDw/pc2BeO2tvK/LUxgpVv3FLvwrtzHQMsPXBYqx+R8wAstos72BLQOYfAO+ODklOxp0WXgp8He7K4JILW33U44vA509VsLq+f8TvejPBsZhlsJ+VLa90l48Y/9p+1ozVW8AEoFG6jFwS5DM5n2eoN0BQ8E7s8t8TTsijpC7Bn1nYRrDhJ6f/BU8qpNdqi+oQl+ezGNYEC+41OjdnRzf8vcvoGM1EfhDRHNkn02qg16JCJs71nE3espC6cQRNkugoR4VvawszO1zPYsz7S4qge8migBBUgxxbM2lyMXwtWUh+L2JH+3YWk3XWKPs2s+rTI1VWx8bF11AQ2IzN/1PremRg/JPPjbGtCwKypeIqWVWS/GYYEsAk72DTV5fMshf72ktvovBUeJsCoskUSEgVRz0ijzaQiUlXxrLwR4i9xQZHCtfr0YjDHEBpB6VVcgP+QcEAjCP2Vwu2pGIGJ45Q0LKa6S6WXKrL2Kr2rRKWnc770rVpdfXNiioz37MJ4I0cd3wcqy4RoTP2cOv0WEgGXkwsIj2wFZOm33b5Be9QRrknhGSPL6CebRtXiVK1pW5IcYcRjalbF2QNJ6+01/qRO2NHtygpVRZcMnLc8VQYUABup/K4F3XeleZGhOcyWE7Hv2WVvJxRdQ698uvGRhNWUYQrZoHrykUv5vxNUtd2LtxFHoHpmTC9LfH1fDnEbkykxjiCoPGLjaN+cUM3WwC2groNaBq/3ViMRlFF//pLpzwtJsHu+4xMjhr2/3qY7UDuGanBgtT/MUDb3JGlAFmvpwxZGpcvtF8zrVwgc9JwL7oSnsxDHcYlnXl7W6ICP9Brr1E8JmwsKw/4+3Zgjqs2ohD5Etvc1sj7lVTD2Dkxq4atdGDctiwbJQejVLfCLRnxwjq59qbsHn9MI72BJkKrrUFV+ZbkkE8slT9bitOPBlJ3T7dTwc3b+8atZjMJChuXf8Je2/ewZQBLRHdhSrjWy3MZH0ZbQlsxZxNSuaRU0v2xfxkmzSZHfTC3lhFMLbiENTxX21DZxDZr52JENpPHUdLIIY/8U+HIwoBPuaTDY6BfqUiWkcpifnrsDrInHHsU7eYDN3GU4GO5wAtROVpYMph/uNzn89AcBcVIwpmzTNmrrjxCgZ24bGHIQ4xoGkaNQQrrD0ma8Qz/z+BTKBSVXuXRStAeGOfMx3oRmNRP1KBjaw/hfP1bL6YHs0yiy6qDqhpawws2pf1AnoP7qvLoho4a5vBW34Svd4sNNIIU4zRDT6yOsUd6Ux7pdm0MBBfT9+rx1JemE0pn/5Q56jFiZkTkyrs+9j4KDixSg8BjJdoIOwTq67MyTM/Q5qxRh+PAQFTRhmISkYVseYLAcKXhRNA3XS0uxEhWGH2GBFEpsTf8G/7FSgCEe9Qib78Ncs7D1uFc6KotB7PhAzdkPNdg/tIo12pDDov5QzJsP3PRnp68u6tMQwiT6wMAeWujlO1esBzygmoo4rs97eBTWWoouyNJOYI/pxESTkmNZDw3cg1RkK1QuB5ns6yWVu30ofiVR+qVYrGB+0cKhuqlnvlpbVxWsQ+P+M96q8BWw+uWZ58raMlJLl6LgBu7yGqHGiVx3mY1a5RJP4fOfG1+K3hgQeNjVMO9vwNEF3yq086HcolAU3NFzBLeTsV5LKLYbxgUbuLf/c0eRIM7brT5qgiaonH7RWaDhUYxELmxDcBc9A49Y/gIdQKgsPoNzwqzoqy7gTM+Vj/tBOC1ZFxQ14w1oKH0cJA4lZLY4AhFezx3BHwbJjP7Iwlf/kuGCUM+IetYNWVGCOvMQXuWXD4NBhH8+trkZ9hgBSHPP9QLUqGNTA5+c/8FP623NJxD2JjM6GeT2Sl/tRV9vZ6E4MxLuP5NQUlNdiPFhdYVxjzuO834PkOQnsUS92pADCjs59MVWj1TdkE+i/rfvTPJqOOVeumOBX9oEpS7IFIo25J0kUPZ9YHFR0NY/db17bnbS8eq637SwGwLf7s5FDXLRJTWd3fHa9rptQg1jz6Ag1GwjKLwLREP8T6+9SeCbtkzonGksw3ni6q7CmlZZqik2hZJlrV8aUUzd35NhTlVkioQdwynT19Gmt8+RCvvd9SZoFjyyA7r1A5SU1K6HdtrByXYlhP9ci6kNCH1uru1O+vT7dGaH8qNfCqPKEyEatTXWItS0xQC3qxDIYocnVPZ1WNa32XisFmJ4qXGXPpFXOeUbML52uf06O/VhLySYxe4g16TtZmhbMRQMd7u2Ykew8YmCztZZsS34zB+iWzbUAat3prFLQzKzRfwm6fEeLDH7BoROsOYAPKEzUM10dMR5tZBPj66d//tIXOPky3gkel9uA3Oe6buRtCi+TKVrBEsHxymyKqB3J/Hx8TW05/3LMLFSlLkaCwTbUclzdFQbSgwyU5Lx139+u26E9XYphAWB8b0qemTKEBP8cCtDBJ65cP+ZZNji4Bt8Y8ebnYdWU8SbeTh+4PGGkoX1JlfGbgofFvywxWlDTgraHY8vvxSU4o1WNWvuL29Slx0kVbGUHlHaF/MspDecppMDh+76101ZDDCZhtpU6JewKuYhCbBu4CrbkTiexJDCjq7ivi/C5Jt12+0Mi+XPs3F8X0NPYEjYayf7CaELEB3aKLbDnhvpmQdcgjj7jQeyrCNm+ppfM1N8r1Xudi8EMm7wgWBHmVHd/NGUp/6od+d+nbvwlpV7QrJbxiYdYE3AIRMpESyvSHSZUqO3T9ktnSCJ3WfciAIlopiIjYDwQoB8T3kHcAc+FozK9pCXLcKFkI92Y7pSWdPMMrNkEpujIXzWSRNbYF6H/5zgqPc9y1LqB0p+0REYVGZhnr9WldHLSx8B2LTTLRGe7I1I79BsYq2tHRTwdz/qLsEb6GDRur5l9tnDdnuV3WNdLa8Rbwp/A2ESMRTMkk/mS2MJurW1FfD/swzcQBqdBa7LUhOsec/AChVfj6DX5qIEF3HDY6z0bmgCIIw05sZ6gPeTr3mFYi+f6aGWF5ghHwMm+yNVbByGcbo1cdAeS8P6Ub827OKKfw7OxjgSdxRRPDohTmx2tOn6BYUR657mZ9PVoWZ+zdjOF3gAqtdzQ8Uqj+myRG+Xjld17FYFD+MLJ/uUzsFqBdC4KrxZioJvHWmIxHCQ0FHh/545v5Ba3AvEdjXryiXdzMQJ/6WCIu1LrnVIWHMiUs/pTz0Xa8r2MOiVRAmHpZSSszRWPYmfdoAnlQy2GhInLPMriBfWAC1Jo4LqfxY4zXdYhvs1heZJw4LrJ4yo72dKg8dzQW6Z9SxQ5+qMGgCgIYDHrG/laAqQJV9g+bXHFRbYQ4NXfhtoiFqbq7GDsCHH2F2uceznW/xG8xOY0NZT/E5heNhIYT+KvfsUIZl2itXL+wlI1ir0jaKgsX5QFA+C2G/gRX4dQRHDcEabAqUvTFydwYmcHLzXbdZ4GUfhP+O4DKg8uAC8S9kw8uY2R2MB09FrD9qrgBU7sWvoDnR+a5EInMm52t/xUyxmrto1Moc7Xr9tGlU2QFCGsEoUo9EPdoK72bAiNcacF2wscmfjdU7VVpOOTD+0KTqgRao297YVL2xtov6N0+kaLh+pIA7+w2HnVBcPN9+gNcfxa7egqayeB1idR9yt+G6PYrY/PzPcx3x0NvHquLifcm8KkX8Wx3Kvq4hhkYI6Dbp0JTekY0uQWzJ4D/wa9LC6OLW2M7xYhkNHpDDmR27m9CPcTTPKHvwMijydQz1JAwaCQwNGGYA6qwVZz4LdMnCtTN+jIeIETaTTbLQEmjkJjXKXoElr1cO63hy6R+JeSVi5/cO2g/Vm7zWMSwHGfVdQqmiND1pZaIdM8nqHOcqQc7fEHtvzAJ+fFLWW9GeroccDk45f+j3cs9vVYcUu9gN3+ZzRF+eoOCCMBXbWOZTySq1hTr+zLTAUpdTW00Ilx/Kt1q1BzSHYsx9LkBZJ/Ydzj9/xuSAerV+Np/POv57fWtS4R8E7vvOnLLtTkEsic1YBHM+Z3ThrsN2qMYEiww5TlJ4RDHAxF9VCBZrlKI44HeWZIMBZoSH2YZ/IAFHxje2iOq4D8OXQgkaxSUxofpPy52mz+V2SPcQQYU6OZLb5BSG0X5LGXHX2NMTEoCGe4qWY+T0PqAt+bLaxiyFVjBAybieQzRAgsJ7YKYyI8r503mEt2Y0mK7cUrtwwDa8pFvbxTZX/zmI/yrIQE86WuFYbWE+6ltlKHn2S/DFPFv1aN6nBMD4ZDy0KlCWa5/BgsKBheD4rC+bxtsg4SwG1k0HRvybBP+X+G9cCD/c0ALd5pwqWnmovvzqwdBgBFkOk1vGVvnfsZqzfLmldsJ8IRDwLyn7Xii/6viF3u1/v9TDP8FZGs0N5KJ1W/nc5kkO2j7Sl2MzxU8biEgR708+yP3i8AT13e0ZxoNeny3OAUJxvYxl9Le0/Afd1MOrWhy55JbvRfXYhHh3ACCdCXtJlE3V1NaxUN9Q++uWVU0ZcfRFTWCg+H/O3clFgfR+ksBIXVG96Y0ryDyReTguZAoRp3O0ol+6Rq7894fp7pYDoVMXLEzrDhn8GN9Gt9kwX7+E4rzLakeWjmop+3XUtQw8e0qM90SB5SjHfU+3cCaQl1eE0PnSZpTvDvpQ0HdMCO0IukI5aajnxCodoJiKa8fRUuGgj9/RsG8YBmPNewi5oauS7tW7oeN11dBjj8VJ/x9Wn1qBR7tj0udz8Z2zYXZZMd94H4L+IW5nK7io6x5Bpc955w1WtgT3/zxiut72LYcgsia0ZhLwKIYXY3hebR5iV91VdMcRcN+Qb5QqSHpzcMo4Sc+ahw00FEII1X/HdDsVBq+HVOHBmlEtCJ2fAwqLQaqKIY2pKeSVR3aZiuYKesbJGDj5f3VtdIYdq5F3YMwpEuteyCBi+l2NtNSfN0j8cdt7FOwCRJeikEEeA7nQl0HgSEygHewAqH7WD7xRNRhvgELKIOJ2HctXZIi2CG7u8A4P+FzV+y8OShi+8YUsf7kbHBfp8PG6GX2olQPM4Xdr2kUphdvb/0KRD7ZqAkn5tSpiy7QUzXT1vn97+28a4rUdiWn/7eB58wZs7FSxUh8a2vu51Qa0CIrjBhO0X38dA8pK106Xfm/7gPSoDyEOom92H/pXbHT7rL6hjlV1Bmjob8qwjvYAPiGKdew45gGQdFPhxsyUktK7rw38AmwsTueLgW5pUG2LFyOk4DWPEgoWMi9FV6nTZwWHyja5GoWr2YitBLMYWIQFvacbZ+/8WEjXfGI6fIp7azEOru1r48ek3fnCwmvJvR1rjxJd3b6pYoLEWt5E6VP2A5ymW6bQVB0yeve8RtcYS8T3dGQFu1D7Z3O20Vc4xplMN4FlPNOj8iMW+l5O4rSVuLlSwBTPzQXn3NE4B3uCo1UlqOwjozH9tOc00z7g09EQgL1bJBXi4wXvSRpQeVj4nO0owkqpk3NiWRNXFgQQb3pc800Qx/GS6WjPbs4R4djlTcGL6SxvNJyNENDZ2jbvsF/ExpIsUGKM57TRLioKIsCs5YEWqZLBkzblzIZduIeG6HT/cj6rIQQaa/6fZFIu+g3Y+IZbjeftx891zu3hQevzokw1+0yEFLiyzPmzYLVlNBGdBTKKNeTQxs4UiYhAhZ6O1rzIPbLVnxmNb+dSTJ5tsrFZx6GYRRkEij18Xu2zx/bw8yu2Xv/FcBtZGjNn/v8jDJQz2TGF2QMie0mNTk2KU2TIUny4JdZrDiFLXN0xkrf1uQWR9RRDi+ecVTQhjMgU69/buxFbrf9Qi3xfWRXR8lRvXcF7F/J5k8QIZFStHBPSCF+yTeUUIbJLFMargLPeJtwCakf5iC0HToj9vEltHtsyt3B4RhYMR59QjB3C2IRosD4Z93DZbsHWW0hnTA8zKKrRlobui6vDD/HwY0OhH3PVa5sJjMfmaGDK49j2dYYDsUmS2WiL3BnEwiETaMRbWlpA4TUfsTAQXf36iuCJPxF24rXwDAoo5jVatXsxOsmFBbaqUqByUTBOAw1S7QsDJYGiQQ+TchKajXbeiwgQOD8Uyp0CB23pqzPXGZCPywQZTnTOMmMIvcUJB64Qts9sXvPf6+foV2bmdMNbQOlkCKYWQBp6VHG0q+MeCK6zb07LqqbfjLplLmUZ0pt0729/c8wJXT3FMF73Yenxx4fbVPCcNSAudOz6hVhpUSus2U1OT0DE3O+jNiF8OHdxGDjPZE85+3J5nxuPoOdlF+aphzm5l5kNNu/uunG6D4yA6FCGICIcsz/gR66cnmbUhLqB8mZ1vwGlUPKn3zn4em/0iW9WiC5IfrpjZpbyC3inw8sD2fk/cLH8R+EQGfIBl0cq+gHdKoF0zb2EbjhUyrLA7wZmQDYYMpZTAXcOVTlJ23cLChW763gh+N3wJ0Ji6wxHKuYjuhVX/TmXFbMDNCZHvsWM1VdqxU+mbhEcJu5YQK1gi23BBGZ8FGPf7uZcyInQ13iXEZzgrNWrxSYWLwCYlt54amoCEmLMVvE4890rkHu8lLGFtmKpBYOhw6eZhAn6sjOOd/znKRqr4KPyet9yI/1lg2kHapNGaVOkkz2+hOl/HYOa/Wiv+C1XPnYoYy/wBgAr3wiXBBjO63jN9+Qb877zR+r8WCRMQctaE9Hq9+t+mPlsaxIxXOrLKwNfPyVe1hAM10SrZCOp/HwPlAW6fAI0I7y7k0+QPVyvupoORhEZhZrfqgtvGHAqD0ZeWNLbWKfBlaD/lgRIkWYom7WTzPMxT8tVStxZwYqBBNIrFsbVrmJxak/OViUD+Ser6wvhwC/TGgzoLJgK5BakevKLNDvaR1+4Xtux1exSBNBRPN3zA7tAIxNOm+vfZk5FOZ6SMjPXK6ziQpKOrOAw53n+pA+B4f/Fh4DRJRyWnAq7191Kik/tZrcnerLZq5FsvsY0NXzABq/Pmcsove75E/rUVBpac0H+TIGpzkyTKxzz4ndirb1eBQsBpVZBA9SAwLLtGKcQDwgWqngcJU+AEeveDaMnQmIHcS4Bgn8AdqdwEcZicgU4ZPHbJaySADCGD4iWekgyuEkFq38JV9Bh8Q2Z/AozZJKsxH8Iw29Xlr/TLRy3zURQMY55QYgKamCdXDDB2xtmJGEQgkh6zKIPei1JU1wLzv/a4gKpxCjCvCG07gSFkvuuofYNFwBNbTRJHdINXsnHe96LAfB97sph7SkXmwT0gOdSlHz9cxI7MVkGHIQhs6td7dtrGKDm+I7+6Te/Kfpg3JRtUodZTuREDnrcOoevqXByExqnCFfXRzmtGXKCDH3awcKcTZSof0LgsI297g3yVHnCD5EbdPeU2L0UXLUr6KBh1DAOShEaXB+7ft6rqnKWBllDdGQbfVJENAZ6CXGpGNnw0OczwcC+A6bUg66nYRknTZ+auQ5fQZ5GzQouUNhlQ4pJpAbhBs4tNm9asaz0hScWbN3xDAesgSb6TqsvSXvARD6uwrDx+zNAHilTYUZNx6IMoW7qV+D0WziO1Pb9vrqX8Y2173exzPDc50Brf0ED8NNtlDhqu+VHaZJrdvur19F5fAkgsa0LjrUVZzL/v3oJlrzdVc6bYAoWKxVDXESOnG4V2Xw3U+kiU/1mpQIXDeAWo4UN6BPIEoSOXffwyGRs2IQHAPBqrRMMF5N8UlitGhN3cM5gYnRJ6RMnhBROHz5DRKnH6URAwYG5Kdu5KOFhEVMF5w6wIM1HgYFEYwn0hce8j6IurvcqDc459T/Z5pyDq12PYZqrqmbyLIlU6F68UqL3J9oD03jSbRoo15Tx1zoOCkjWKO/SPblD1fbYHGLhSJBEy5HIg2JcMK5QIsZB4h5WNf/bgUyyemTeg3GA7zGNyBsujQ5zPd7vk/TvMs291T4QwOmLGD7eGvRFgUQ0Eb8X5aA9PgG9a7H2BnkyFLFQtXdaIegqBxRfZq17ypWrK/uDVwMwl0BfzS9DTcqGagoNsspZf00ISYvvA7FmVSoaMHjrzQTbiHxQ6th06Vxkwps2cPMY+nF6EyIWPE8NxjF2A62oRzHCfnkvQx0nCrzklpblIuNd9jaADUa9o4dFNKEYy35Ikm/0oMya7NuPH8TGoB47ADVsMQ9F7gl7mODuSMgen8PHnqdAfJnE27oIrHM5+nVNhrA76x25puZqcztqqHBXFmtWjSNNesXOeP6S3yCZC4xL4Td3oa5sam8EUUuNWL5+TYRAN5fs3sosvPJtSTBqeIYcgVm4AJnBYJ73FH8PCzRPh1n1z39gC2xT97AUv1C8qOG+VOK3Jyd2QrNQoNFeTG0jsFsxgcMJ8estXAazlHLs8gaYKl1tZ1y4RA52/xSJRHoxk+NvBI+wheVuTepFY7B8GyHhrHCjglNGWcYral4yJG4QNJtbBQWLkatF2BM5RjO/qxaOnex2bzF4xm+opvVa9nA8b5T8j5CvTp5Fu8jUbAvdRSczKgeueBCcwN2edFGjvb4dvZeTIuB3C9nLNbTDiMiE9rudb32SKcsPJPLfs5tWmSHPt/flTrGejYIJafjgwvPMrPWsBlP1cq5HdTYI7ximtYKpiCpjJALYmAENZ9OVjPanThUCK/OYG3fhA6ZvyRQqUWLvZgqE3r8mhE6Vy52prq9w/eDvXsE4m4gOihzu/ONLzFqe0nbpGZBpch7VoSipV2ZX7gLcoruHoFXGtkDTexPnPQV+wVMNd+LaScRtcxTqf7ldvWbANSVz7v17WO5tFCV3AA8k8QEm9TGzPQv/JL0BGgka827KBKMcP1YFk9uLxDg6LYrenrjWm6xkqQNj9yRrr8sXzmyMwkduvfo5WzIC4Km6ND3vJrnWPJDQUIpbugCVyI4ZgoNehOdBgYNV17jyCeSSESzOz2hZuglc5rxJxtD5+rAL699v6o90Wu+MtKKJo+cBEO8IyLFFe7a0JHu+t1ECwp2VlqIQw2tOfIEkopW9bJl3KvhJktMeRU8HrMM872TrbmcWZWB2sBc4QeKi6NkVspZX1GEpqUdvu8T3wAkqTY7J0uenKrAVBLAL/8yerBcoWkBKAtcfIsRpdoXqFnbbcY+a64rLuk554+svOoAc+42RIT5rLRpFBsZOJMqlEfndBa3WGfy2uNlPiZFNxLqu8B1mWj4SSi0vTGvbSHIXKua4GzOcWvP2ult7HEo9UbgI2+HCmQIeQi0H5VcPM4vVIwsYrEwcKSUTKAOg6onuZwXWrqWUcNGCCrGyp05T/JZYaYNukDmXcuvxW9wJ6EzLaOLfiP/IKu/e6VVlgJ6NFeyRLe0e71gFOJAEtY6u3mRSfpZIqBbQYxafaSsEX+fMdnfTo+a5DPfp2UIe5qeBV2q7UsS+/vwUEeT/a5TrfEWhNUEIxsa9nqP9dWzT44R/bB8l4bVvyv5+jztytzB3O1YQIAVmDswbO7yCtz+kg4DoCFPurfdTzKGkiR0LgPDsb4hbDMd8ISiOSeKZeQ/rKIC1JPokDuSlaU10J+uNDqNRefVI1xe6DowW/sNaRLi0A3Ea0NbDlAQMLtsFget8Bgv8zC3NdkYthPkavOLyrQxiNRBqJqeFtMU0o9Lc5n3a12SC5PtXgqHwccdpieareAi4BXZdUX5lJJ84fSCrWkKHYVfUXU9718vBgtqPCxb9dI7aOMVFeNPMqGZ+cmFvwTb6I7J4AjDgdJQv1v4AySwH0aXIQjxDj9OzBG6wDnGEzDQBqNX2CfyoaKcvTOI0nToGeSOEn14Dj5KU5VXYrWxZ2+9nNC8bjc6rLzN2huPWIBheksLbUciWDoo1wwxoR/I3KvrE4huegXAt8AXalH3GrSsSOYFexdIQWb/iceJ4Gxv9D5IRgs471M18E9N4wj6pM1ImnXvpsQPx1owLrB7Ak5a5lKQTa4w72rsM5tngjvF390ZwB4AN/YFZXMfvlsC2Q/WGioVXb+sm8OhJ2QcK4Ar7T/OWc38Jp2yqrih/ZmP7jOxq6bcp152oHA7cb5JgebPznFSAV1tWDGpvi+WJi9ViHhij+SXxagGa5bezOmFh5TXCWxTSt3JBqNN86k9Oo8RIovXlt6KnONaE693J8/8jxyuHc8nGbuK0o4PIRKYhnHwZoXZZz2VBVcyBPMd6oVXoU6ptlTCpEnZa2FAO03+PVtjV1qYnFTV71lJMupjYLJ0i689FL5XKX2GthYh+vZLky5Lab2zQpkmaajFVpy3VQmWQ1r99j5KBl0EEU7CH1VQvYkU5NSZmjkl2ZBm0lgBgWA+iDmDOgzWxCnfsGwJKXEDU2U0w4RUv0Gffsk2FP7Ccz9PsBRcgsNWeYu7qp9ifSTB0RzdpLn6PC456TFF/a7ryUApokLWOYmZMAiZiuPfQkBatOfjel9pVsgBvgN9bPwmRsMdZPviMFo6AgF2x5H8MJZsbvjv8a5k7TcWpb7hpL85ypNgL8ZIgC9IMBimYkppOL+7hPWczwPrpyEUvD+g7joY/A5U0/ThXvK9Q8siN1g4AOL/6enoF3DtSqAL7PTkIM/6AXrAujPHvVHx/hQYeNJgmmmTqUEu7tjg8VrWx/Immuqvd1sywqDLUnRZCXrKyLImJ9FXK4l7BKHtgFqWh4oM9sAeAP0dF1MkKFFpRrb/DEj1B7QNSrVSVzcDeomTQcmMh/q4ZQeU/oZBEMOfiQ+rXqv32GWoDCy1Cz5ZAcGdTLP1c4cwKJV8BwBFgLBBOADxuluVQoq6jajMEZAk3g64q04NM0GoFh/MuPp0eb52Zj04XtxkhtvHWByVHLScq2NokUvI3SDi/iqHcojX5rfrXCrP2tyj/OzZWZe0bwHMkkflnnf5cKrJF0BviOo/g949Gd/INyKrYudeD2ZLIVnYF0KxH/EHDsAdJhGj35HkdLd+33/7qhgVd82RbxOGY/HxGS+OUsiudMz0Tbe3opKK5ypN2k/SwLcqQI7S3rTJYdnOPuPEJIBWFeRmxiSmHweeExzaMBOdqm/4O/pFYhS5bIBfxC7ZGDwlulCrmFrz32LRrXUXqHu8a/newJftBqbydQPTqaae4+YKGYd4jYubTMVbTFs46tDdNmnKph25rKffYslc/OKWOoUPKtV5OnkIKStGR20naB4yXUr9pYs27cw/08yJGxr3ASiG0Ft0JS+rjHsG0UUvZYfRvxTLaZb6iL4/ZKwhXJZKtb49RvnOC6z7Sz7rf3ff11avTSMaOn5k6WSBAkmers4ixLZAvV8Sh5RTwP4xf10w0vILCGQhqvmhkIZ4WaSr4Y2IILiIq4uLSUP0oYEaVvgMsY4Oa2iZMId2zxIR6mePwiNjm2WZU0ZlsXejOCWSajdmDeuBv3YnvGm/rKM7WtcpHbdmw37AcGGD31A5bBT69mk9hPEPHVy5e4JZNFjcB62Hyv5Yc35loD1lKKKUWXW2gNPGeO08QvxhrRiONVehT4k7YvjDXoAFSoHy1l/8+WEGSjKNrDJZK9uwMU2UM9Z3yRUYzkGOvz9wbYVLjW5dy9g/RTT1xUAzd7QsOoIecKryyarFRuc4Bqp8eTEhf72Ja6NVKOQcL2vf7T40QZ8iIBDPP+rwWwsnXll0IbwqiuIDshRw2go1el7V1wdIaNy2+YE7LRTczdVkyaj3Giu+LLihG3sV6RWg7qfb9Iu9NUSYHmRIGcbOQEMxyMwd1oT7zWSK7u4qRIfZ3JkcOH7SQDdMvz/qCD5UUrnPXMNIbdpV5odfjWPCxHBJW7oJEyJSVFuo5/OwMu0s7DV/rt5rmjLgpW+UtpVF2tQE4M/8ip6cJZMTUV1U3OFQGq6bYRFEPB382DZ8ofkw60k4YxvKCPJdJFqlASFDMwsePQVDF27UaonjpdrjzFlgTBtmnp8wQLM1jgmc/S1uos0iALd1ec8LsK+GwA/Q+lefR3mfktLuXgNnVLct8Q5reM6wnfwiwl94kVwG5blSVA3qQhu2AAmFhudetditUnRLKvxB4hSkdIbiyslYmKM0dG68E67IHZJAyAYTgl2APxK+w1PI0dP0HRrEl0vzauH6nT8X2x4H0hP/10KizAfJ/maduyTTDf7jpNBUDt4a/ugSfUcQXjg/gqIAjgrhbKXKH3YgsrFAcXNVY/rfBTaTZHZfhrewjaN07gbAQ2fJGy1JSQy8flCY9Qv8pmJvTIpoScjSgy4yRqfg9cJQIACIV1p9gJWBTO05ZI0iJdD5+iY1ePwP7vjmhyVC9KYQz1Nfz1yOlLSqqw1k4fePVxL/+igNYVr+DtE1RtszVgcUpsfwH7Yvb4fmVBo5haF/rdMVWZLItexkZAQewmhIn10G1yP/LiX6Yk0Nex51JslIA2m2949R/xuxYYvO3AAgIlwo2N11s+rfnXudZxhetHZdpHhRiXMWMo8vx2Wvc2fM7jvWCXhLR6/Kha1YKsxJUYhiPWkdr8arEwDTzXx0cUSEsFR/oRFchPL7WhO9u9mNzu4LDp8naPZGX4B2n1waXLQjK02tIUrwDnzidniUdzc/hkHrxj0vg6nyGclmAvXQ2hl8OC7BBNe/uAA8DJvGUzl8Z87RTT7hx66QseGXx+RJMh0ilGo6G7Bqnb3BEI7BtSr2mbjnZeKJW/9utsLDKEYQ/MUhu0EyxlXSn3Waqzckq9Nbt4BUwqyXdMrvuW/B/bd1tfI14sNot/bJDn/R2OBAUCoQr4Pt5jfJyEOxbrCeAbu5ydquwYcLz2n7omMLAYXciL5FFtnyz0DrHJRnsI5TlgwqYcC1rQxcDrgVBne4MAS2382ZaGIoOI1nLUtEXgnD5I0VtQdfje6HOH/8rKG6wNreijGfxYzva0R6ZtR/dApntnVWRhOiIutJShtGKPc5gRXFpWjKsgaTMimaPJXUtw1embSWZDdVZEqayRlt44znZmid0lH5F2F0CfQPjaR9wiYHKRrkDeB6W6Hqs+GdEktpAc45+Oh/p7+jAff655rALcJyzvXe98zrZhDAtl+xPmLbVVCch2VTPqoZ5ea6V59bXG0BAld5TpPN8jI5xFnDXn10jEray/NX3nrAup2QOaXE08RAvwx+rODT4SyWoXrrRjLQowT6R7MfW7V2y7oEFVtWxGdGOfbeNFmyocokSbSHZquogQT/3Z2WnO5VZ7VopSEs3xnhlz1jqUFrBPSfZOpJb0796lZzUKCgtYsKknZIm+TszWpWwBEAjPkl0Ib4NLiL2K6bGXQdPMax0wdgj9vMOS+5hbJeqLXTStlRimOqQ2kzwsZceSdozb78TB5L1zzwrY1XnDaFpCi6LkAf/l5ebADkD6sQQ3oxQpwk9wq3vcSTUABcZg0OZ9IE57kYsUbV9sZxWhLyYSHicdT1TQP3GjP3PGK+4KxRck56wWV4RWj+Mo2R81LA0hWWMRBc71psW+ZZ1Hwvmg0U5rzsMcu8I8ynG9DE3fD/7+Gr1pPsADUcIurG8A2xJwn2UU+H2odNpUyXF7y0lYbK5U7KhOwW5advmH/tyqOBR8T5Lq8fKVTYwZWEJEl++yCzN5UYs4I5jTzOOrdg6FLqCrybmSrIHWphu0WBlq9AW1E1+J2RG7PylxofN1tnGNsbDj6YuBZ3/d67ptaNDTWxy3iJt1dW96B8DYUNqNiYxEl8jUZVler8kr3jGN3HKCnzCuQ/vbV2rMEGws5srlvV+cyGBdbq7Mfd6L/vs7OnM365EXVQGdKp6MbVr6t2RvNH394LD+vwPMOvDk3+OE4dikY5G0D6GpQ1OG00S8j+iQH7vZeMRGiwGRHtXIQq7PjP7txJSt0rz6QLqwDwjMUHeu25rkkRQaDGv/XaWAsfTpyCmF5jqr/fkE6iqLsgqvSiezjuZCn0TLrwOjeYKN3NnuoLP9IevhrEa6yQIkZ79YTcNGu88OTltiIAqCbElL4CPxSI3dO8tZ7N+gihX3v+unQGG1Dwb1qtO5TNEszxBWK55WOTQYGA9YwI2zKzz2qhExOxqDf79N+S0O9kGxsBg3eSixJwbP8NE7//leoQ3xU4yePBgUyPSW3q/Kgdkd8j5BR+Ff66JNvEmX4mo+oSBls7er5rCBxlnnsxSP6jSQFKlt/PjcMPgsCSgW1gfgrGg8zpzkrw0Weatm4Q6xRslaBU7pMdIDINZPjDBpqBEze4w+sVfDAwhIcVjtfKc/7lvVGVXdVxfF6pHiEBIimGVczh1+8B0RV3tDU17S1u0a/hbH8TyWE9dBKjuQKTIuSi/OQpZP4FAjBx4gHKyONx0L/axT2DYTZTRgrfsdwMuFJu/gUR7WwbVBu+TxI4Y87x9lSjOcNNov+RSBu3FtvYqUL1a5+lr6n7aAw7RCoU+lUJppL36AmAAj6gV4NNOI5XFEjRbYNUd7M5Wh83xSf1oW/Tr7xTqNP5ijzpDERXQlyQrzsoyqtQ7wyaMgOQ9oAhCQveuj4lnjIiUVhfUosKR5yyR4S37nmMNKY+aw5Sq1Vi+xCfm4uefTEooUvtkuK4RymidlIxd2tuhv6FFmRvUxIywLO92st7YpXg8MZwo/b7IOrqHUo2jGw4OHyGPS9l3Ct03Fru3HsX7kCo+qk31BmmOML1B8rwE6hA7YbmDqxB1dYBfc6Z1GhZVJ0csOdCm/9Z1emPl0J42SofZP9uPObTTzPM3jB7arxFbbaWFBXsbgUFUhq9lS8vV83pW26QKRMKzAI+My0vX048vc/QZZwwttrflvB26Am/2W2vX8s0IsM6YjK49MS3fOD9ZfJLg7bmbfZf8DUeWjtWdB4JAb9kUD2qqlkICeQ+7iiDmqd4IfnaaZQ+fxKmQ+t7LBZvtHqwFRWRDkMLLRdSjugk9NWyGMz7g/V5FJoScy26siQNHNkyUeR0n5pSu07yNg3V8e/+lymmeJVsdMzqG8tnqk2K/wjPJ5TJlGVJIurlAeYi+9F7YZF1vgo08elETtNkZVZSc5iEb575muXFoZBYqCMLaMekTiz9TFFZkSIu076VZ/Gj/hreEbOuL5Nw8M9fRX7Pp3J24rl5dZb/wnpIJ1sJeRtptT4bvASNqxKfZJiGx4Dz/uoaSc53/NA0anBQgfH/BCZYoans+84GZ9p11VFQqtXnQ2xIaHyFHcGmTS1WpPX3UGSHfWkfkDXMw9qOC1nSh/8iFravA1z13UlciCfRR9SZJccLED/kXq1GDjUVEnxQHa9mSYblx4Q4aPYakm20SR2mbBQjFdt9F4kQejEfwtOUQMbb3fzUyg10IsQSqBjk316oRdV1vq9z0MiFXEZ7ksu91Gx7zEvIuWUmN78GhrXj+SWUpveo0yL1hKuucGIRuwlsdOCLQkiqpRphTFvkRboTXDfanNCgCg+bQxHgTB9fUxkJ8rYudAhe9LhwhBkhNTlubt42Rnzp/mw7VZHWvc9yg/TRKvg6u55HoNztrTfQo/QUfuhAB8HsE2RfLQs8feRV6+yspej1ATip3rw7s6ndcKvev8qW7CgmMAuv1n9FtuKN4R+z0H1gKFJnMcnCrugteG8VGIwqOWOAzVcNOY/NnNdO+N0yhVbS444f4qGKGyrxUTwZQfOVxHzFbDWxTbVt8BtsuT/1837qdM/WMckbNv9l6zWEq9ZlH9UDf72yaQuPN1P4mqe8W9LcQZiMk+eLDRi24VMZfjMtNW4EOVNJ/1vs0BgG4K3LhWl03ly961cRmkosxDF/xi7pWpw4qbrs6fR5SZ2EA1NjwTDhTDeyKhlYfnbM0Tbblmf9sYY6r++mPPpxHTH4UEnq2xwd1OJNDn60aLZ0CXcblfKcrZfgR/BUctg2bL/WocL4FfaVEFITQmHlHVTFYS7wIUKLzD6poP6dATbTG3hrOaGEPDL2/mEBMY0CyfauYxsSkYkLpcLy0Q4/JxLnRszrpYPvCUitTMMLHEVGwWtX1s0S1d6tvlAfmttGcWIQzXKjMoPu6POJgcqQyaTPOFn/4JB5xbK1bNQczQpSNNwmBRt+++/NZV3ZgBcOTfm4gxOACxlddZD6Nz1IOJmYNMY01G8Sfa9nfPuIO23U94nrZOWVUifRDF13kVgrRYf6w9h8EID/9xNoY7D8cBIhtiw9mDUsJlwdgf9582IekVXY/TnO50x1je4iW3fHMBqGpRjXxbhTr7O7wfPVmWGBpNxV24mqFodQg0TxrEVd1MHrp279xxGBk4WtjNgwjsuWMJMH0ndlXop3o0gkphULuq3jQyuLZj6EH9UWu/sjsaA2iP5tAhLt89aEDf6nsTmo40sjkAXEc0JZD4hvsp3bE5IvxULxNhNVwrF86SGzwvNftl5x3RVHdnE2ZED9hQ9Hc6pNBUIV9xSVeVcTsTm+uQqtACrH6rWm9fWet1KQlxEhQMu8qrNAaU48go4PxbhhDFinKw0rYRSHYgf/71E1q+pk81mcnARQLOGM1O68ictrlK5Y2EdR+LhR/nPLW6A6aShuxHGMYeiMC1irK3P7uo0FiAkB8Tmluyo5/8jTV0nHIXP2hKhqjKeK+6qn2k5hopyhTBxHVDmM23LJUxu1j79Rs4FjtbXVBzx84GuwLpsRDkG0jK54C4S+WcbzTUpq5OF0B4vc4YtJ1EErFO3eYFAvU0MHnpFFK07omZfh09KROuDt40Ny2/V8CtUzt2/aO6xGePh+Fw/TgERpRE5UbGz4l+OYe9HD8FNw/TTRYTvW303qRLaIzbtPjP9/7nOQe6hhm63miVXeBwhCcGwcgjy1Qx8GGRe7l+mGwSt+oDTKP0+5mIZvcQIlCQ9Do6NZGmi+nwJ8v9t2z+JaJyiKUxjQVS/IxdKR2oXAz6i8cvsXlcMWhFzZaTAf0wVcfKCvwgC/top2+sWsQp6uMhzGJ3NW5iy4kHiiqxydjiAAV1mRO3GbNXkFCKvlDCbhDfW841vhoK2hB2zpw/swZmJK64i/5hCWZVchZIUqfMG5vMjMN3twbE3nbZ2wFUMWM1DxzCtEFyOnfjYc8+Ic/1v/bA0Umvie+OJgQOycw4gjPwNtz2jqSN5ucOflzAebDyb8T2NCAz4K4SOu8PMsHYkdCut6nfDk5ux1e7xrejhi7/5+uGNPixekb71WLvkCnVCi+/WJojy73TQ0UHv5ZMKrMNh9B9r6MXVRgKww7TihgWy/rPJ7V2sukFxvc5mh7ku30Z7Yq1TMgv40uVi/cgsCB/8l14i+0mmHvx/RJx+iZRP0hwOVLmGVpQpJRSwbz++VRse5TiGZnwQdvKEDkpYzI1ms/rIoTpIptptUgvD1TY2UQHyxlYmOTCiM7Z3Ab5XGEsjPKfahYcUtqfDH7zIs2uHZ3GOU2kMp3usUmKPTNG6+S8ckV1BTf+B4wgDgC1mtLy1fqrtU+Y1iu4V6RDXh6PXev2abViNSDS41QBoZzb0cq6Wk1C+xgUvLffnPL+U3kQGGPcgisriORJ8nwoa69ozYwn4yo/uFLhWU0ViatvOEC+fiMdS4ai29XezK8mx9E/v3i0qAoT7dc3IK7bxO7O0mpMMkw6xYUgwC9DogNcDmBN+WNDaP2CznxbtuYTeo5uDumBn927NqCKqdoqW2j7wPrk7wn3uPa4TV3pBop55ORdCzERL054kZX33RruHEetlIPSdrkiDDBwt6gGLcgYbx13HyqETsxr/tG5aTkbOJWykozzSHFTUrUg/cToqPpS3kYW8HpkZXicJwYD4lpmmZo4gviyvtmuqtTSc5lIrAmgtu2JtmmKdsZl+UXpECYQsulLDJ4rgJtH8FuAGcTBatF4AqudHMO7ePxfNpBB/1XnOXIsFIUEZq7Z7layJB4GoCLVdY/YJl87ofsam2f2iQjHDrUjS+YUhIihGoM3s6rdcTGzxtAspDhDxOIBdS1tOVp+WPIUx3ec+HTAS71v48Gw4PmF05lBELWnPgO+hqTwa7rMdAQVoJXXSlFWIxeCH5XtGbuwqEs2uESTuu4E7Pk9MXnbxZo1E89DsGF9f+/u9x9I7Zj4IT4itYumq/NzH9Po4abO39F1qbS5ctQHBscCskf7tnS81qD2Fcg7rACJy4rQCB9Nf+EuiMnYG68nZpt4TfgwnG1NSL2KFqKcGAzkdA9Pxu0IaY72/ZVdOSqxqkQd196mvxq0N6rXXQXqFt9n57apdgRbHdICgrkpnJpcivBh76qxzFpUJ6IKa610V5KrY41Wah+VYQdr+KZU7Knx5OmcBA02lUEfTlxNdDKdZu9AIBMQuasqsGXpttilhA4+5hXJoevr2VS26UEuYCYXVF+jL+oHMuDj9ZwhBMZCYQphT/dAQZc3kgu7t0yMBLXeQ4WxtiIBoK4duQJctnTrTKrMAfBSQi2n2AFWBeEqTQBNcttUfiPXEj5apmaHmn0cRG9+xFyTO3suXxs+KkBD0D63OlwqHLGiYlx+KSS7iDeUWzffa6k3EwYWTxe0n8xJLanq7Fx8/xlD0xHvYVEv9Lp84mVUEVFe0mk50Z331jZMBp8Gbf7KzitfbYcSou0ZB5ROY9nHYQWshpECBvVtQ6JemZIjTL6Zwb2tIOQXJkLqlxy/KTKzbHLM3FvDKF+sr+dw5OTu1VAWEvCwUZhe/xruqwEGxGO7A7yj4dszpMaL2gY/8vNNrC/1QtWrRq9hjlj/cegtMWY4050RCSfAx9HQBVHJjw4nSqB0eTHH0JZ7hzcCmMa15+Xdiozlxk8EpAejSM93oWnP0lC1KmutaQkK9wHi7xwbHFTEg49IOTW3ELEimXS6Upkfn8rEWURg4vR+TYfL2SHIBVV97/r7bo2gcjJdyTiloRZiXIxi+2ZnXoa9B/c83Cv/3gDWNp+iDUbtO6NiOWgwz/Onf98nIW8M7o3VFjHNTvD1Xz/eRKwq3Fzarex/rx6StExCF3bLphIM5hqgbIZVQd7tgegnFAve8uUU8TLGllaWinN7EeP7WM/jr7LeoaBC2YeBF3YD1lHMG2LZxcTu8bI9jXAGSXejhOHjbLWb7Nh3/6pBpIoFU5s8HtHPC66vVpdkm22tP9o+avEgkQ/AOfBg7aKK7un5isR/10PrN/BtSpcVQD1UvyfZZMzsJXh9ueYfc5rUlWO2enEeE/GGTXU8a4AVyNIFz2fQNjHpjZXqrd0KYwy6/dP/QKb4phoAZFpz5gNidZYonSSq+qb2piXvP40Kz5o8xTwlCjmvo2tudr+TT7FHAxoVPuI39jyqduZmCsHf1zZ+ha+iSab47enDhAmubZiy9I7zagBOwqdnePfILAwm6b8Kzwr3Ij/slWUpqCsW69B32iOl5el9U05MPwwKFsLAcbiH0GYkgdFC3/J/FEJ9Xi/M9XCqheAbbO52mpZUvjM7wQ7jKQpyPs3i25FLWWmqCDs7Y/6/Ob1t8JzlQU+Xd+CL6xFo/TQ9X2+1HxAxYBLn9lmxXqc53HW87yT6IsHu4rLZzs9bMckgHagbSwbASUvoqUybRxHgNCNzEaKSHXnTEfgfyRgs+MTqEIK0y6ZLCHJ844zKFmajoDsWWvj2I60tx8D4gtA44iIA7Oybq/cJ856UBP8DFGGFzH1fJ9upfXGOJfOqKLU/Vttu9hzvfiEHg8oDkTsJqTvb+xaYwNz2aRr5cKuU68nbZMVvRwSAC/q4o82CCS45YLbUr/h8t8Xvk26SYvObPCVDPoA59iHzQuku5anGi9hW9qEgS0wAj9W1uwXCI2JnrxDZ8jeu2WB/b1DrBY1I94WX10UpIHA+PcUeIRw5cckr9kHGtakEuGtsD5AmDPLzQjY5UCSGb0w1uG4y5hTqNlBjaOn+sV0/mE4RuD7c6kQ9VsIfzxvFJGvGp2HmvGb15QRtL0YGtnxzvda8UeDdm1uC4kV/iaTiMDCtmQ2y0TMGsR7336K8T4kOOZBoeTEvxCTmFplHwZAE/JJiqs1QawPG+X44cANhWa6sSJYPF+U0IGa0I19d8VIeuvaRKW9pcCgJqPIJiuY/DRDEw3LinSba7mxaoFw6y8OVQBrnqGOXe6nvDOjDqXnPMrr4L6HaF280qlFTexxBWOPPbPHp/a635rC4CwCL+njEJDlDubZgyQCcZAOzWorT+B27ebF3QJ9tmBSOo9myyPV/l0GE54htReYF+stMOaIgPCqDSLz8YS4YnO63xZu0Mx3mmSbtBDVg6y0lzIRsgbq/NXFzvEzYomIVkHxqlr17XaniO/XXf1LDkuYV5bzCjXwJXbDsknZBeo7KYaElBd3f9zGcV8YoRsT1jpd9SUvF8J2QX9O05e3ux8sZeC2NZI7pzClH8rCiOTtM8tYH6KRWdybwKp4BdL/WkJzm3Ddxxjo1MazYhRawgQm2XE5f9XXy1PL1mfTuQhFCkOkz+rJgU0ju28qkE0ogQ4GErTmZ4LFGBYfpvzhBOP6xR+6/MwhTl/ZNLKxWTbeJBvQlsOsU0cCsp8M0A9NHvK8X9T9ul9VrDQ+GsHKyiT55xmfZuqch7k2yBXaqwXI/4ywg/hCowB8FOyybt0lw1ZP3elTuv9aboayeu8giacQ773Uz0f84rmidctStGC9eT65UfGwGewJXxNl35LagyTsxQZYHwKVRC1QsYV0DmWVnA6C5JDmRxdmb99YSKaOe50p4/3Entlcr0pFxPtxzvhIDKpfRxegMzC3hQin9gZWkf/YyjRr3Ip196GJZHKD+/sydJf9FD4H/VS13VgGKFZbjyiuDYLpijWEydhzGpU62sYEtWJ2/UOvfuuvhOt8a/Z/44pZP9+KN3QjXdSpwFhI5r1JZx2MafVDpOdZY+4WP6PhoUlC0KGpAMrizwv0CawLjNA3lyRHthDl25Su+1uKuczsUL+7/wNPczVgQRd3XYF0ptKuqcF6PbU76mabl9W3BURoD9m26coLxA3lXX/MgbwZWKWffsQO38hqWfDePB+YFIzaGJjtcAt1n99u5L3+mVrQJ3txq0XrjTpx0S19iLXlGVJAhkeWZGWMTG5nnAeocPeIy8goTKQeG9uRrbAXmY7wPXnLIG+DNbo6JddQKASAHGrQLvDU60IQ0XHBgYEyHGjSuqyVlCUUcO2dJaskRW7L0AlhKkkqL2qND0Uz5QmJGOgJ+0ceSD7VXTIr+ppRW6Xe5A0OEyx0VmUdz8O9VUS5RmAjXSRcyQ6ESvYpLtnBAqpIw0ZZ+Su/C3s0e6poaQkXmHHU4mIIHcVf3ZHSK1AAZ4TYVs1Bt2K5kpvgebLGyyr8VFJMxBP8KDncow3tkVOSvGH/RpglfCtC5TVV9l/AKckvKqH96iJfPeS7px0eVRnOvo7JRyVnrovW79GxhHGa6zEvhIbNIJykjJzWjdPkwQTkJihZ97KUw7cLvJVRxyBaBVJ/xdYtfz/ouHAbC4rEu+tO6icZbKUp7HqVGqgrjKfFbG8Vnb927uTQSQH67CP8kKcvuOHcL5ZwlZ2lrmLxWwguHPy4tS0kpxX5JoYg04KBvzAPIXbaZJ4QMxdWTxNZZLWOGxeEYyN7rK5qx8DFd9EsJmuLBxu50VEG87oEVgq7IQrUmAbSYv0rlfWlCp6btHJyX6wnU8DC7wHAUGulS0+dt2/bsCJct1bUWL2VkgpX7/T5QknWmz/fxuVVxZmJB3TNeT2/yH4O4T4U7LYXfhC7rITRhbNoZ+oHDZfV+8mPm4ml6pBmrIADRot6Uf5gc93HzB1QTAIFtghxdWok+/+illF7c5qGqaX7tgmshIWxlesBwA5sk1yJ7Y3ZF0hJ+pr/Cg32n/ogdo46acWnnqbFfaag2OYfgI3ADHeRl/mkiD0yerWRgu9SOoC8YJZPziI3D8jTwYjBYz2qj5OmPEJPwlbYtoiFtTQP8Zuk+0I36TaaE4tBdiBFw3FSUM6vaH/9fWOg+9v0r8+f5Wld06N+TWree2FOaBlG2obQSDUhfZ4pOpvx4/0j4ve38SAP1MLYPuar49/0TEK0JvfxqvLKtuTAAhKgUBKrfWR+KqvogQP6lOdblesPYkO17lS7y+yHh6LDkiNwmEUjxvfLQzLXfofu2jCU31JuPYTX8Kw0qdRR0DNuZvQezRLtVXmMPSzmWmkHuDgsENHZCjAk9rZlzreJ/3UZAhqVDuLpU72CGd3cgBE0R+8xADigqmhvItHKRLsF5E7YAtIrUzWLnxH2kqpRcMAKDuxdtHUHHUXCdF9cIQpETEMKPbK2YHRRI6T3Z/MxG8wuGIlrM673jJE9OQ7HwUUnNOejfmJR18YDvQF675lvYUVYoPN5WRSrCo497+O2+UE1tSAS5PJioCqq4f5Lru7OqV/WRjTaLYwhT0dPideQnu7+pYxh5DlLO4vDpaq58oMeVkSnuDA5XCTt3xMR3zsRE1e3FbMrvlEYQ1P+LapBeQxtCzGIReOm+jRAAVX4TXpbJbkiA690Gu8xctxUikAJkhwUefPi7TzaWRdNYjOd0OuRyA7p/zAGxM+IVjCWJE94gw0DIN7pajycyAsggn2D0KOeQOpdIz1MO+NcRCVDqr48tiP4X+5mWeDJmceXqx2C4RI+R3Daox+d8MDH3XqLhypZ8OUandQRCxddD6a/Xr8BdYtTtA+uPQqeEPgBp7i+CoJfrbSMgWow/EAnnKkGYQF0iURVqFncNDSu3H7796btCeFpl9tLIIq5Ac/JaD2NUP/Kzb/uhwXqqhLbSQXerjz2KnsrMSlkh5vHPzfXippFqGJe01wnp+yf4NmxT6ZnVUT+W+2ikb8LqRhVvJGfZHWcxmh+/4Fo8LGTz0Fjmk/WhaqW6HAojOS6WQ9UNlWNAKdOG3wsYjij8fVb/PVEFqSuC5cq00OHSFW9nfj9Fs50IOUxxCBVMGU2wNtibPJp55+77pNyZfdmETUtnC+rTwVpu+t51CJKz26XDtxA0ZVzbLEH3+GWJBXEzgZN+Tb5hAGBubG8sEheV0RK9FQCKI63pXkecOQ61xC4FQcXfaZK705wT1vhrkjdAjXHxsAuozCpNAdDhz3jP5g6uttSosmIgJdUqfEUBBujSOjAgL0NRT+r+a9oOIkPontq3/+bpsTwuGAI5c2j+PQqpc7kd5iN2HMv9hbtJUdQ4M4uJ0AwWVobmyf/qQvPSQje/x+CjFQEJ3Y8tYU7SOaCH+QqAipCiaM6GfKnuvYrPq2Mfr8eOYo+cVqp94VeJTlyMgDqY5Y7/+RQPtYFYk5zZCtsxcDnFQlNnKIbcKAFcKjJ21w4/rfSnBVndhK9f7NF04Rpnr9WmYT+xXJvUiEGG3H/4lMvUDKYHKFHrDCMo5q85xlffF0t9Lwt+W+IN8botscrpr9IXjPyw3LdusanUMnY+AjjFX2OcgP8wsH7sIXTOMYx4OyHAg95aCNQUCXwRHJlXfdDo8YLEao7XA0+tukTlzZtrwDHeuxGhoTDIeIaHpoVO7OTsEWcvvOBoY7IfaBtRIu/duoiGc9GX6+UsIzlojFid4AWoVqdM9jgc/qJBhqT/FFAsErv1lPtnePqA7yHB68bXlmFNi+zmIl/9O8lDdH+uDNipR8HlMmMyxGJn046nE/n6/t3Uq9J2z8VR26oSX1uR0SJ3oddu46+ns0KNrJo/c2jxZVxMIzIkdScelGbkhOaeY8R0QLLP709hWYw6RYBBed2Xu98z2o1z3OuyruScSc8VbxwYAFHukrlbCya6X1d6gOnvhusNjiCd1lW1nH2e3S6XNq+cjw61d7vGZfeWMPwwZ0Ruq6e43Q0K+5r88m/BMZg96sw7ohm4CndyZVd+leIMx658OMMZw1Vja8Hp4aRKZy32BhYRHNzUna09khjB86zPux2SVNgqIH6wZA+ckRg+Vrmb7UCKCuCoSe1LNz0X9vFVuqPQKeRg2Qg4OQUbCl35VrMHxChvyiapsy8ZLNyByvynkAs6okNg+SYkn5Y6HlctZNkvr2crMs9RwM7901NeG6wS1y4SPPKeDXoAuabPrEgs9PwGLF1DOFrtCbqwEWRaMsJzkF8yiV9UbrwPuNcnNNXLBpnIcGhBZHZ85Xv/fR9Z3fZH3t/ADq3JiHLkdXHJakfTTZXRK8YtJpKvufXy8jhlsK1etLOQsboanNMm9xDOVRLiIIZoNHilmrXBkAr8PjBqEutCHC2MbibZKCRghTyu3RlKww2sL2QosgeuR44a4dQse1Hj5pzhDp3VNEoS4JShfxFoktd3ggMBMozgH0Ek0nsRBE28gA1KsWo2sdkO84UxJIlHASHCi0ia3m7KVsr83rK91LudNC0h6OB+yzwXdfaVGTk9JWWAzFP+EESmrUk0Na75UklmKrqsK6JCyAxFaelU31JsxWiIAY0Enl6n6qLvhlhMdQHZV4quZpGditB9R+3nia9l55yGxFoabJ7gt+897TwIGh1yuu2HxHJvFC6CpvNwjI/lR4isxpmH66v6nhDnYQtykZfZL0xX/xwYxeLVVTuwrUKvNDlXmkXgr+3UnwhO9XDXBavRCveBXqZIL8kLyh1HrJXswuQhT4ii1mYr+T0eVGF9tGv4OssqYdtZbKZU0jCVB+iBQP+XmknsACp/leW514uKWawt/tdacJm0QLNjfwAOTyjlTrqu1BZ2lfbLDl8hVgkvZ63LlVTM+HLKQwGx/11NDv/nV4MimFqLHHaRlN5adxPmZGn+2bd7WbLSsbpxjSWqsQm2+vFmwgxRST/ViCZDmFpPNsecEHXT+x8wN8ESSA+2FWE3J3JlqDtdoH4TOQz3wxfu8y1pGJtUNXbW5+wYs2ZQu9Qq5JN+4/NMFuhfE58Grc/mWGlTq+DUxYpBz0VZIR5P6DqO+7tAIaupdrc4HkeJiJyCm/SkaTwU75iT2HoPZZJGtFQJzsusnvxW4oZbqvma429az44H78hbTww3v/HCEUpgstjSYJHZQN5/6rmAPnN7kNXHZaqjrru4H5W7c2Y3A7z2il2Cj4oIVPDPDLLtxAakEA1mTOkvOJmXmL34OLveYTQlNSJuvzt2x34e4XcZYlghrUp+h18p2i7LOOPuATGnZVjg32GJNmSH3USH/eIIRPW59m3GamBKccQVr88oGy3DX3JdA8M8FA717KEfTe5BuRRgYoDw4db8n0Y7YnvZs5SzLas883H/Hha53nN62VXG3/NHqDmewlZUPI6EgbYe0lAnAzw9KPKv/E/vPWLnOqYFApcryz9uK9dkHP4QEWOQrL+l1gygIny1zJJqGY/8XKe1bDzR7RZ8SyThaiKjQhprnYHp0Musv1ImPdv8OUXGsTULyIfgqb928KMQvc0VuLwVEsFYZyZ0fGdhEiYToj0oCWYtm5EsMsxQcF642/8+WffLS1W6XI4PLs3ca6uDUYwxz8wRpvejfoIV5gx5LdAKRLg1zxViJjmx6HvGkDUnqDfEuMaRYDOzuyoOVoCpxtpb1uKQN69CgA69Jdhg3/0M2FJp+IzJgc1j1sSef2Qp8HZldvzmVPNZR4zpFMyf8fRS44kgPN8/PTP5VinqMDcT+Hw9QSA+C2EySNGY/Xyuxw4n2A4gsWYpOshR8lOAfwWTvsD2pRiSHcUAJ5/xkDiSUW6KBvGsbD1fdzffmK7uBEojyO1kA/4gIXPTHCcfZLihvlu0+1/zgdbqugx1kCVVcBVlf+gB/gVJQBHQUDwe+zaKuThD9EruKc6Wu4b9wJ+Ml2q28wjlUTQa9GKxZjmLvAsLq9T8EKJbAmJzAR7VHB23GUDZt5tgwpC+qljuEQTk/dOPMKGdi/YWs4G2BrJICH+gmap+hEehEA0ZG05u0MgDlGHCS1KyNx7xbQhbZHiyyShTnCiceo3cYQSxpoVAc0QY/OhXHCa4ZdrJX3irox/5UDWJ9JsQxvFQxk94vWQFAx+eCe4mlRc8ggxxBW5FsgHyEwSPdnVM7OOHwKdxUoLvs4YylGL7+U/T7c6kzUFGdWqeIYAXuhO5tbUFELcI0Y30ofEvJpMKUznnwkl65r/wPRpfAL0WdctjwbqIJ0Bdw5BeV0V1CiS9GVRDZ39f2vklbtrz0cpqTG4999Peb4ZbpFGiidnYrBn6pfTL6xHRobbO1k9yW7f2Avcm3Y1RMj2dklYJgTfouWkmSCyr+tMEEiChvX/IymWsG1jXwU1fOrj2ewLXgEsSO2Mt0FHmCZDAQ/XZW6OYg9SzRMvKriXszlOais07eZubWqTXjxiGGJW2WoEUKaHyFRZj7MZuUwpYE9gn+j4CZIOMWMtbP7aYYwiVkMv6KYuKzqU2jgvnOijjQBhp32pBQ+dL7Or7SZaAjOyOuK6k1+bBLejICzAjhcb9HIwBhEezoOvopuLhIrSgfaSRQuNcQkcMg6apyocCIGJvB3kChCiF3jUDMBf6iWekGhQTzQ08rbMRCqae/CIscB99yBZqk27+vzNsi+4Bjsy7+GMMJpx45/Vf/hDafy90gCv3Zfeq/rtZjKs1mqZBIjI0R8ObsPSrkyzKBxKeRbgf1u6bv32CX74hoJ7WBtcTe8vjRT56+6zYphzYxVq0LZ43e0oM0FGs2QgnCbaArupCBg+Z5CTXeWupSdYB4va1d2WJWQ8vQq2kmjYJLSOrYCmcfY4wtphbBXJ+SK5kWAxNvoXP4Yhe/15DryGyebFgO2N9GiLJP6hQJ7/H5R9mtevtowhYRWqpT96Z8yd9otu/OE8xBHHe968Q8qZ6T4j5tr2YI56LMqeGJczVtWhUUonbt+60OHxJW84tCpNqIz6il7wwnL/jpc8taQUoTXR48HLjiI9gfPHTpwRG1XVhWdOWIMoHu7lwphZU/gZi1YIYCtqQ3/EOsGd2ydv1rvu9gE9vDWjWoBLgS7obn5l2l2atOtUl+5qmgg0m37sXPIWKXxEy5ohnpO0Y2/qghOUf1X5gKjyOhDOfl5A5ZrYA+M7F6gshShZ+eDCLr5FNM0WXt1CsYjM+ZvV/+HKEmxkeqc8RmylZJkCOrHl7lO6bx2Qc364lQ8pHb7W+NsKYNCWBAASBAiqoyDnm2O5oVhBcm4oLekG6Le+UMTic8bVOBVD+MD6RLLMWgrmI8F3pEYg+oDIKrWKeoGSri9sXGCSqP/dSZbqooHHGQxkdoC7gM4/pm06dgfkTOy5yLldyo2sS/nyA9zdJcdfHL1oLFkjRxg1BIkm7HvMdPyS0rEd0HeWOUx3w3h0onyn5eAlQGz5lpWewOCAQlrWO/eWpDag7pCiWPm5Wu+gx7LlTnT54rE/U16DbNsskmD/IzIuJx5t6VQgQ+RnxhS8hes+28qcRAH61SzW1lB6SXmcTI98/59KcQzCz5tv2m+XH14azkjMWoa14UeY4PJtyu1GfDNUno2njaDAUrf7rJQXiQZN41Eg3DbESo0uoZC05RP1hOO0AbpcstgOT2/I8kpHjPRrn+zIUJbmv7e8Obq3sZHyua6eyorfFeCOiCEGacnsYCGbGWrSG7cLJpRN81LpOGQIz5rpauUGp/cs4xs6Zt5G9OAP5UkopHvLjMGrhyYoYCvySQHX/kcgrybgfRRM4TdumxI1BA7pfdzPzCqmCGhFhj9l3fc86bFboTKn01nfucDog0Uk7wYR/UnLGHODffZqeIJ7PnNH8H991wW9Vtm5+6kkTtUhzISE1JWZdGLveu7vsunaYAA05P7z6wxqaDS7y0kU8NA8jUxjSx12x63+yVFo93qEAb/LfovKRi4h8birs6WJETxb84v36fNjfjZ6NouYE9WPbvh5Y7cM2QB1thSk9ScyekRQPiKlnxYHhWWT3zdzYJmVri8n2TpTY5jde4oaWipqXCvTH8i3DAoKqYJmJgXm3kgqLwxK98ogifOSguL/+isKoiUE0ULfTTS7wDWEu4JUIsUbqClTssGrCk38t1NdxJL1Gt5w5zb06A6kFRrLqEw2zkLzFA+GTcxW/3fh4aqFiwvyBXtS75GAYcujFUPfCwJ89Lz0XrYWvYXHms7MRLl4O0oAGTdY5lQfIUlAWc1tF/4PeU9ybVJ9Ej730iUNuI5rRb0rLyjLSlX7kWYYPI1UGog04z1ws7CX/firPUG6zvbrqriFMRfep/nD/+Rn7KNmHt23ABwh/ZeJoV8HDKw+UpztxZyerCDRExVtxz3y3+qSogS/DqLnMzQ6NwsV0Qit2ofuwr5QVglRTtPWILuKSIdcMNwe5KzLuSQCfEgOW1obWd171ZB2aC+PZw2P8NMXL+Whs1+pmhHe9xkrJyCSdDYJ5hJc3oN+UxaEwGu+FFLxiTa1Gtfg4VsNO0+uNsieqJInpEgLK3Ij5RL+TWQkc5JbmlAC76VwAHIWYUfNhWnh68AizgNZxAugXF/yI+GcBVXNpAcp5X4PbGge44fBd8dyadsTGv2F3rjhcPgBYK+VYoOhI+Q4GkA1nmBYLnHBhvZ0PvALvqMIAG2cabPamJAWEUmGf5uybtBsarpR75jsahnAQX9QE7LXPoyqlKbUK/m26qOK/ftZQjsjo3kUNA6LOhi+3x6T6EXH9+dWzpeGCuWLntqN8eI5T+47pT3C4ixIfAXp0aevTRvxt5rXldLYcelp8TiNjuIbPvs70y4lfIT1/aZpK65dzO+QeVT03jGmwjh66Ir81oGFr6pdgx5sfLKnu7VdgcODHL8739YCQdaYwL51xEFls2ldjkCs3ahLatpED/1rV2fbetm15fTNdL/GuxyX/xtSiQGlQwvf6ufcOe1pDIwx9VpA5h6xOFVQhw9lBkaHq+m/ySvB/IpbNtXq8pAM3suPZ2wghe5FfXNV6N5NlMLMPPbE3FccWUrdsYZ5+5k2NClhghHh+qyrJUpUNYj85jgIw0nRhPxBxkcLtTPX4Jeq8TsuX0ScwUFWKSFzk5waIosbKchYQ5mvJREnkhFLmYfgKEYiQ67fYkqNx9bQmFKKstcItF1Z+wqWrftRAgY6/8yLtUbYIvD2wIcZida5W/jQuaEadv/ANjyRH1KBDA17TCz1s1PmIBIkRsB77YU0XuKq3mfgGFVOAdlpFMfbyXW06F1WSfmCgvPwPhGKnMx+1mWMMuf7bJworJHgFNVjzl+sc/JUcjYV2sxk4N/tZKulp2FPzcEW4AoBLvZlg2dwDaO9uLb8goZqraXuiyEl38XHZy/5goakdw28DKp27f4EEkQvhWYc25IUWPnl+WJz32+27YVw73URsAvLmvcoYYTY419uEUlGBmGpzAw0QGnlWZ3l6o6N9B1y5O1yTlcSMIiAsWp9EBum6PQkQxhtIAN4d60yZAM/WXCOXymV9B/r8gns7ZFPSfSTZEWjOdXZSgAeh/FUjxFnHjNMyqgJZ57hMo29A7ACod5eLYRsiLIFP1C2va4fvmbJHS3QbVeXJFk/ywTj3/Y1a6bji9fzT9Gtm4R3xEO5Ei6/TelY0vVrK25gu7P664IYKx4s82RtRmm7mdMr43C0VJSa49aj7wToGdTlWWh6ZMs82wbthRNhgsdz4hb39jNhgEYbbhtjkRWHcH9WQ5KvuHYJVVoBsdjQoe6mpNYYfE4JXOg+rmbHglvKXmlvEunE5bp6JLqgnNv4JUNx0o1lAAHxWUjgc2afzaMb3547Ypl0CMZH5WBTPlcbBnoG0vMjbK/xQtPJFK/ysAv3rP9mEKsvd5q2NBPnHY1dBOLHbhPhUDdzkvkjuiJT0RWC8/D0W2VdGgjxsS8nyOoudF33r79gCWHOK+rCD531gTHL7gwmNo7zHP3elqpbUqymSEgsTI8smEw5LL5SM9xFhimSNOE5U9nHZ4qZSgd+iFVWb4c1/tTfWKnenlq/jwpwBkV6KA6k5Qj+wtLO2vDjcbwcKQzqyzKTKt4qqQJ2tQe3zI1vQvlluN/j8jGz8IyRrDn9Hp5YCMAeMzQzwuWY0uXnxipsAFjUbNB+hZCITjD0HsU7su4pZxIAGSC3OBI4LozOS9zuXZUyF0OcEBm9QVDHrTQ2f0SSolman9127zJZLb79qGyDceMy7y97JKfLwpGvboNFc+c/LDbrJkIFqts2gdewG4ZGwtX9woZK535X3VXJtZEkJfGc3mJaJUtgBlqpTcjyCrvUegwrqwFcUWWKmYQmFMUcJ/+mYHWa7VGupCQzwgX9168hIqVHy/GussgGMWhDPsin29GIRBtWyOCrJulcIZOmzGGYcOmvMi/3w3G9Hsm0mN9CjtzTTnMHVfu6NAdLntzV2UfbkX6yh7vtoRIGDMnyUYlOgfz2JGGJYw+JgdhhEC2vXHG6U+eNsi/Wi1sbJccIM+OuJmTxFcD5r5HzKiMAYFbo7tXYKSytbIyJ5MB2Ch0g8SaE/VVMeWY5KB6svVzomIxNpGaSEW/KvpHzG8HlUnl1FinEOTYDUtUx5WI2qQLOuD3AVoKh2OCACqoL73A0tinATOrc9oTAjyarK1TVmCcHgZHHp3IyUBhixL0YViC9/tP8/H5n+Z9GDqOFHYoQtl4EXgTeZvRbylW0McTLrN1zvJcNMUI+rPn+t47UnrUkSoXyd2yPHXgouTvlq+MbGpzGB0zAk3WEBKusy9RsYdtsJBt2mm7c0yPB++AUDZV+koDsszGZSG5/yXoEoWnmpX52sCjHWBJB57pdhcbToIQdtx/t6VuH58xLGVSfc2RLNu9HWjYuD24v5wQMexPzNQjK2ewrxG9vFQBUeHXEmIQdtBcfqGANsLJPzyM0n0mqYSQc5b1AKSLXo5ft7lP7LvJlzgjw+Q8JkAHgqGBpCjznExIzczixl4BALGKks2h7MaU22IUzs0GmSWGuugnKt91T1bwMCUk4iMaFr7Yj9epEFkoxcVsfTpr6yqQ3I8sJe8QyWYlXa6GiLYEv5IyY5WHCprzh3GBmvclfCZzGq5raw4UZvoREXza7L1J85qmQGPWDyuZykZ+eHdQf4UEMbveAAlv4d/Ar3ts50m9YnpDPk+FSJRsOWCGJ+sqJqxeRJuq+gXdLVJOGl8lsEjDf++CQ6cXJAC3sMKZkfJwqnVsf2KglnNtJrRYUqcuGm4M6tuMYndoOFMRVv10W5SXLQ3rhLx3MAQ/2xpCRgPGkhgO/7+kpzolKzVP63Kbp8wolxVJ4AzO/KExNIimCfqlyByTWL6N3i54Ps/H4CNxEv1Cp9Ak6zkuMX4qqEmGTDPbRlylPGnifrI8ZGbK7ctb6KarIDGaOwHainf7jvO2NIUKnuhNWTNj7NqHVknOYHPvs1b1XZK9mFBo2L+jrZqmq39Hidjpemcgl0IyLyAfDHNob20MqB0aUYZs20S2eSC73QMxGNZVxG+IZ37t+JioT8VEVch4xnehO9HUBrN+4UO5cQ2otW81BlOXdDDyRLaV9hvVrZd9BLPDEmocxkNtJlQegGa+DNbZ4fNPMTIVfTWZ/Wxr9tsUl9sjrxSByk8FGDiWpRkbajEMQw4crnDb0c2vT73IxEmPC7aUYIJyhpTP/SAe9yGa1Lz8UMo0OJcVqsFp/xjbD7djRqCKnH2gckId+q9svMD0VO/vxDIF49OSkUTUrNMGozmXVNTQYQekknXKPPqdNF4HR2WpG8jlOCNSWAHmIfWV1cG5C78lWMzCQ9tkOrJa33Sj0QSRl9oviwVq+eJMWv3krOyKI6gothn7Z8Tovp0HPI2BPv+hFPFgTq0PDE3P2duApsF4h7pSuaYBss1TSNZBYyUIWUUpjzmVXeBmzkjOEcfsqT2EBNPT5XuY8DIBgH9uQ2sVsSC78q/VJPn+KPvy2BN6EU/W3+yvZ3dERKplAajSFf0kpn+twXmrpwaqgtctkZWhnzO7Yd4tBjsSsG4spxgXLbEmAaqAKh63KQI4rdDwFuDDWoxheKnrk74cpY6lEZMPXP7QAPjPkjqH9o6huMGfaXjP6PlaNQyR/gn0tCNF3zTwhDIpHuMh6kpDW7hxl3rNXoTqaFpRdZvPEzTLAjiHo4uJxwAVz54QzB93si9tlKUnJU599ECTo+TmYdNZYsYNqbJyrkG5oYP8U2W6oONVecul6k7oM0LTjEjQnHv3hJD6jjr3wSSPjHC4X4EJMmCEwhls4yzFdY22sMGM6vip4fwTGe+O1lqWX73ePMb6USq4ajbnR4N6NpofFp6Lnv/oM3FBb4PxJI+QKX6n0amSCSYisQOtoaFBcbZ9GSt7/TTXxLZmRznoHmHJ74Bb5RxwjXTh0Or0gZK3YOPG0iRkoFt53KEKypVyO/OgXHccF4GMRsqVWoysodr19g1daQJkKvQE+iKEVgD6KDW8+DO+7KD5yu5sgL7Za/rf6tQhx/hBObahhtTt4ltj1NT9aqbExdgFGQdlBY3Oe4vxt5GYeVxG2wKukDBjbTWTNS+FXc4maU1XKODyyfcouDh8I9k/MbAnT5Na3uXXA7bc/0hbjoQ37A9GnMW60u17gXv3gD1RbSHDw77SJOgoglYdwU3BqDXdzhvz3PiNVsGIVGfwQG2ijPZ9LQnpQtXfdPMAetf2KbOXPLq/PTQTjm/+WJjPmBJI+E9tRR69Dq6PGNIyTogXFXShP2ORsX7jvygLhBmgzkYYjoDmpZll/nMVhNmcCP1etqq7fOOohWKBrOdW0s/Gqvc+ICxTG0cI+vxktqDagGk79rymzyFvHj7Quu3fqisLPALp0VROkvfJDqEwlDEPp532M9J5BRW4i7Cp44yhzSmR938Ibd4y7hR+VgHhKj37BhzqKwzWrIY5X0QPgzVcsVc8QQvA75dCRaPZOhRp6nl0rB99ka+9yNFqVcJbhUSWPwra804uB9nJCES5BdqLvtLiuSxi+g725e7BWPMwZqaXk+V4Pa7QCoqV6IeswR5nFric/waLkt6+9N+Ue/ngU2/ABuZxFHlHf+4XaOo2MKV1anazkAwU4qnk+/UlMo0X6AeO4iYTdIIHEA36T4Trclc7NpGzWGndKcxAvo9gMZI7ItXHCkEkylJ3ZXAQ7c2e1V5620WL1enZMyBe7drYohEOq8aFxkUXifNCeJ5FNC9SxDStx4O6FzZKk2O5j6/QAdhnb5j0ZRJRz65Zn8VgG9Zf0d7zdTeokSkxS9k7NsGYXKbHs7rMx3d3urGzdA0zkvhJzlKrJEjLC/3loDsJstE9R3Sk1kLvMsVIxt1okrgO06W/LlPraB3oqE4VHbgajGUdXJyg/lscfiSnYRTXoq4cBowHkA7HkEjuxXI95LkvOpkH7ocamPlZCg2p61IRRLsCSeBpjhSBDIkDCPIUitgpNq7sYK7ZQ7b6qhSJjfQB0ZupX6u15UvJSgIsYkspwwAyr4uM2bSHAtkZ3po2xn39hWiJY1LvvgFjkCv5BcQWiiRd0066e2SGU63J8xkArpi9OtOQeRtcAnAIIPA7FY88oO3431OUbtEgOprxY36PzLXhI78U1+7HP0toxz9g7yI9IFHZchLUPIkc3ViaNWBsZgfNJ737QT1dfNhkznORTAumpmkFJxuYGJQ75fADPRPm7184CdMBa0elDprylAm1fxv2k2wo4WOYuml4r70RPwGxmZmHSUHKhpvY57wV5BaXi1nBWyqbk6PC7Ny7CWGAo2DSHmWeuAuQkFoYE2GHPaEvNdkuqI3j+te+An7St5t1yNmjFR2l/wtWCNxnh6Q0Tp/Rilv6kUAAetQvtUhHlFoquZCjfP4Kpf/uCHe6U4XPuxc0G2xqrL+9iCcduMrwHAU1bIrY2WwsQW9e8pdr6Qq2Y9gsZAvDqxDiepqmGu0NI041am4ePdUIyQogujWYIk0+UxnVGXLYhSP6s1HYQdDdUQfcIIGnznqg/nPiw4XwZvIWAOzkbipRRMaaNB6y1kRlm5/rc6R3JvhdyQL/0tDue47CG5rh9n3Kgh1b3H9ogicxzp09sTnXK3kuaYYOfGX//++GkdC43myeMQD4dJrrY5Tf5A4nlfLpQk/4nQ3fmhtzVTeG1QSxahzBAKxwe2GPhtz0k9WjkvIWLnfpds3gKkjeyR0+JW203SB5RGGYzB0R8KzrD8gkKlRs9wM3CHfb6uSvAalt/MIqAu3lpKnryfa4EMPeKZzTptGEW6fu9UlhWj44gbKX7VsEAdxL1zCNl7ZRYf/dJK9Udim9djLP9FW6tUrF3vkOaTUN+yk4686NDb0zTDDcHc2F3QpEXWiurW5byqcoQ5TSgAQ2SxkFx19J3cGqFdpSvVs7uVar0Tg45CvAHNbPEvrtl/9z1dEUBjrQ9umBFXzaTWEmqXX7mZVhYO7cReJqlL1hpJYyL6iCKS4woTbVUH/uegFeMaogI0ML5X01KfLi5WZkFnS2lBv1gREGiLqWy1ge0Rj3elHee0JJLMS5ndm0Ydt0Fh0c0FCAWpgamHMpP+Qp4VylTqkWbRHSL6vGjpok5o0+liNkq+HYDmfDhyODe+GaNsVylwM/tKWEVjC4RzITlyuMGkLljxdFGlbk4iTkMdS+Z9YUGyxO2naybmKe/pse3Db1WfMfP2+s6hhDm4e3XHp4A2cjWMY3nHoL1+uC0AW7bDv14t/Nt8xW+TTEOLf+3JiNFAoUi6zoRkoRHXPw4Oo7byBYvu4ezwn9+pG6fTCiSf2igRBBwVVCJlH3vgXoP+bbkgy8yTku2MurRpGMhrQIHesY5lfx4PJ9Le9gIZTpMt6ZmN6pe3Vt0To2AZzh8Q4z/KA5022GCSfBD+JVGp0r5vvkgDoP0+NmG877F5/HK16VlAmupbCSdFJCEp+SPWdFeVeUxTf0zOsdRPazI6ASxT5QhqvZEHUU5A5tFQ0GdLPrVAldhgZI/t4dnxZ5HdJl9OwwDg6qlaT99IJvFV4JMRGuxCXVrHfYLwaGZFbSHp9r9vyZP0tSAo3CXMjHW2u3+SA3c/j3scmd9JOJP41rTzEeHEPHiurA2FAGTHiuoYhs/GKnMtTJN0HOAkgwFloCWwJgy21NALzkPHnVD3jBBZ3q81AwIBapUV/3wLr7NjhKYOonQ5GsIwPZFiYFm3f2CsZPmaK2Z8Zo2txcsRr9iC2RQBbS5R0hZm65QITRt3EUs8v2Gc6uI71VZ1XeGAz7bMqrPI8fjcges5zJWk07FiiCtCF7allp4wtiHgSbo697I5pRgW7CevbUxV5lg+k6Jf0MexiW4gGSoTKqvELt1XybbcN4r/T2aAus/+975yaaRhD+gvkLrVKqgmbivwCIPvsrhJihJnMdRveu0KhITDFiGmnPZNzWrNq1dyyreAOCaFbHMH+pgKMzCpXbLA/e/K2daeN7h3tbjyxZil7pYiWJrEKt6ztSHCQAnBJ7zP85wC3gBjeKYMbGJOQXkqfpg5Y0BLBom5Coa3PMhcCrKtCfy9t8830z0owkJ4R1yZSKCHSUPsE2AravhG0rOAyl63L1J3m/pgMF06FbakCIEClD7wfunxbMW6Kvc3uu1xuxYCbYuVzsQfGylU15PLmPMrWvEyp//+YBwMCOZjInY2UKMxZrmPV+DcvPOctxacUgAiVXBQfC3TQx4N1v2D1J3DNIhZND0kw6k0pAnhBLrLUpn6HQD0vG7A9vtm7BdArJgfXWX3xnEUfj5iBiJ3ugpoa2Quasb5QMD5EmTYXcOBWEQ9CzO1ULSsvE+u+HpOB6ychkkqd3qhknWfkpc3MxcrEn9haQaAmudVKZZIJZgJXwSjZAS60qKMcLbotoB3ecIZeGvHZOBub6HDWd0Txl3qMCWxobB1v1H7qi/5HmUp6H8bnrKzjPaNZo/V8mEanemjr2rRAGwmoBlTv6/Q2hWAAwmIxBweX7dSjqe3bM8X4nPUIMd4byvXYlT45GZ6MefOxiVB5dQ5s8noaHekMcRkhmcuLhJd4634phLAkAjpx5fZT5l0yW9q8DMN+FYjD4o6hppbGacTcmtNYBNgIe6gwIqX8a2laHjFQ79jR7RvDO42WsjwsrbomCwfxzKZVBYLyNaFoc8sYGkFlzvQcVeZ5kreIzhuZSdAG08R27bhxIfhX5M9VUyd/YXvPEcPc66S07h9H29duD3eNIevs0Res5GejxEh3MC0uO9QVQsaA3Fgug8n8xkudL6g3YjqB8AG0TfyFwoAgqk8Cb9B9IJq0SYjOJaYb5cf76Z1ojW6y64mVEgRtUlvh51DVFqhlQGGn5pVwPJiAybReb8lvs65vDIvWvwJ61EBTz/MYNTrB0HVduHd+E4yPaLV/KAlgE75GyE47SUzvYCiigi8LooNeTVX/SYIgBlw/75ZLq6x8JtY8Jb+jv8SKzwLSRSwAnqLiBSUO/FnzwxdSyV0aOO22UtnLEgtqmdmjD3BuWMlxp8qmJwH911Iu2KfYqguPPKzSKFTPhKcXPu2TR7Aq5RzP51X8OTT9iytavru/9gZfaigoBIm/bOLWJuCDhmtPmjqU37jjkUDsRiSiLXCu99blk/77v/t0pptBdKQH/Sx6OVueNsGNV7Z1qXfZCHPjhQjK9afby6OrE/S88koQGuaFy2EmZKxJ9oNsQPrxJnX/7mQpiENrhLcqXsXecMyB+/wwacEMwm8IYmC4rKBpJtWUCFaM2VMp94MwjXctVL8CVBSnFSdo+5Un3qHqwI9JBAMmVNHL5i1IKnwouVT8fnM457pXpc3oOEVbSAsFHEtb39/5qtKvJ/bd46OvIAXjqW8nD9QtHxOiqpUXVMuf9y8WEPesmAnyVw1l44F5a+GgRCNYN8nniMTlD9ST/J37dStk3TJs5I2RZ827+9+uXDd0mP659bssnvlPNsv2whHdYrDbPVU1IWczAFVNB/1PgbLj/djZKlcjxEVJK8if6/v7XHBXADiaWsMIMf9We6T02ShquQyZlzHDVy6fGzSSdyK3+C86szcelPKNt3mgMpGXYXbP1JqNwWDKXBReeNsQvMQQafKM+MGSL5C05hNbli902GuHW4uGd2VcrKHFZfUHbAvheB7xY5YS8eFTMfwFlgz58B0DiU7T793M0lDmRJK9Kd6o6RaCCV+plaDf7mE9NJ5AiXkrTaeGCvJ3VPylH8L8deVtOgfrJgT1zcKSkwtRKAvvFboXcJir3CZ5NEplcVZDPpxxxVbAFPSIkx0wyhX5pGPGiD2lF5Tt8vaFM7qe8Ofy0e+VL7OwY7CgS8zBlqS26PVVL3bNZQXgvIGiDuVUD9kho4BKouXACH6C40hLFiF9/701He2baKvvE5f/6Mu/ovNTlokH4z49tXAjsEzZf2XQLfdLuiypXzvuwL8hrcOzZZIlFJH/kAsiVefNUFqWnyHQxf0HNLjWCRyUByLpUE5pX0P58AlO2mSfcBEdNwiEbb0Qf2TP97oCRYgQZyVXxD0QhEsmDsyFdDRKt7ctdX4wh7RU8wPxtysU4/VoUVPtLlLyHpMAYbj05uJwEMJ+P+fZxUj8IZO7JYbpZzTHx+s6O/Gn/Qnk5HLUec8ANdBQ6GCkdzws5vKQGkY0rmKNPtP9yu/PXPbhyfYrKIYFZWVnbtet7lgJVrCShyGtSiGFgfeP9FNtB/cAJLA/0WTBh+fLWY7R4OhQYJRy71drLswqYqGCyG96Kr4rn+Rk7Zh38lx6NdYFK0C/ArGHwh9EhTInnEhmoSnfNkxErKoT0Tj+9Z49w3vzWGJITC7qYGwCqdTIlkUYV+QHDaE5FfHn2o6B1viyN8uyYUKLTwpISO0saFGE/SXh+tzPfvBXPD5lwmEf3bhEDJ0EHHpcjFOfcr8s4Dx7fipSEQ7BPCGFaD+D+p2OrHRHLclHZoEWkfaQbskXU5jYAzIvNuOra9T0qOEjBWkv5DMdYSfSNgQn+iZWi4xmdjAZz7QvYUz0R8qqvlor5IyLdwtoQQZIjg380OXXf5XH4SYLoDq3N1yPaRxTBrIID0RZ8zShD79K5yza2LeRB03B9VVmRln1SK4wz4GSqGSpWPCKceq6VFRVfEa/AK3lZdAFcWB8nv6kA8yvygIkB14F/ztuuZpGYWQ2jNQi2G/xWE/SzM6zJ7PMvxHKSgy7Q5U0VeHsL7zOIpKZeOm7ikeMvB+RXTmyb/iYdMpEx3yNaN7RyMbOkjbswbGKnMXPX+xTgXPeMe4vJ4lo17e+fU46HgYk7dd2hrUOzeZdS77i4GTIsE2mls7l7BSJ6NPzMuzTQo5DM+d4WbsNrtx/Q4IwTirwT780rxB+ZVyiI8CQNJ6juOInefmFDCGQhj/+GPpxd8iRyK2vlYLORKJoLcspSdFAVRrZxNRjS/jF1wF9dn/wxk4GNDkBko/0RPH8ds0C8VEYnZkEm3PRi7jcAchKmn4Ca+QGlKD7wI91Hzx0tHJIdtOyU0gcxettp5udPURQMvjgc6ihgh+OUesRJn41QlL3Nf/uznhZ5Qpt2wFNOIpPRWZfPpLFcDIaYTnOuXXhONE69hQ5B4C8reS/PUT/SXmYItnGgatjdGprlsezsEC2G6GxqmRlmDL8vTCncmJj2xMIO5RrU/Wr1SjSSaa+bstYMVCZXUet6K/4yRVlpmUUpa4MUuPT0KjSX+R3iuYqyRs6gjROTm2suGQBPqKaoR+E1z0NrS48G/kzKelDWIc1bU6QqzEOjXp07kvoHsOGVtWNggC71ilmqxfXqDqVlGOmyAYbvfY8CKzqBMpPEYA5fLSFq5G6cDlgA18iG+Oy0W5XZOd/1OvcYhnwqvFNsXQiz5a4fmFibv55emxr00cxIKtCrTeKUkxflNzpeOJ7ZbmCcyaZCE2KPByWeMjN06Lz+4RT/vJAyoHTjN/8XUhU7TZa+lhkHpKhb928+1ufn+l7KTp+KWQRYfGOG+bjVRd1aWPjsimLTbnDI4FgG9MKSuyiCKRFWAyYeJY2rLNNPJ74AVPZ64dlZBZHnf9x09ivn4YJO4cFPBEfftfzuYhc8pPz1U2mnQBfckbSuwmOb5bcu/lke/ItdOaTfuJ9E6OkoFru2V8Q8vPw3BvD2uM5MpEkpwGfLEriWH42R/OESZEdkvyVSojHOO+/xoxQaNl6/uNtdrWM8nGuhr+FGt1ihXnKHXH8YJCPsGI0s/NSxKLJ1vhrm3Tq6oLHSUULJ9iWR7JeDFPPg04ekBFqgW7AidwYl7cEarQmYyhFi3L2dj/DmQM75jxAknAPClQu5DAzVxAOTRXoQTEtIn8GOUd3+mrysOwlULreo7qWTnPz2h8Pn8hX+zMdQ0KXYEXvmLomRlU87h63Fdi0cT3+TfMOs0KfUA8IWNDdInhOEQFy4kmpq+41Gq+9C5p4FQdbmRn49KRRZvHfgRob1R9ad9NSIo2dsU4nmDLkOuk97PdzsPMVHKPckNTIuz5/+phYIgXytht+YbfsTC/cw9K6m47+ascpro7ducnyUQSBnSKHBf/SbQjS0EKEikxxJKgSyZnBlOxxFWY1eFVyp70SfsVhoRP7cmHa+NOO2OWjsk3Nuo9swvJBqFJO0UPxB5Ln7fNktVFxE++5AUuYAnYIob2SePagJPZopjzhkvN1lXawYOQjerOM9qvlYTzpS5ojU2OWfRFEgwI0+TS6aXzWiJAtJHynEuZSiU+ztAcSLBbQTCdTD6ZFeXs47L1tBpSr+UQ9z06tKIPzHsIEo3qo+iZ7IXXtvC/LmshlKPvlT7gGnlQdwtgs6ycPzajeZFcokYgSMmyXlvNgrQeBgDLsINBIP48W5Febd5rfStT8zMBPFIy3vl7d3xpxSILsWHy1XGkyGCgAJLAWdM1ZrdUOJp+HeE+1PDTBeogWwkgepiVwzzKfbdNJ8xzCz3kYH9p2d7wba24Ai4kjWpcTbzQZplDfvutqcqEEfChMIOrVoFErs6woY5H47pXG/vL8HnazamvjsouiqkPANTZU+CCC6FOHALSNRQ6FDY0D/H0CLzEH3wt+VGBXRIvZUKxK6shVIZ4G+Ik1y6oMZSHvfJ6T5zHhde4TU1Eief5Yijy6r6+2Eqpb5qfYFFQ+8eWsOm2xtFr8Iqj/2LK5Iulg3jDfKB0IOjSRedgIfHm3HONPWeJhVBV8v/Xp5mbWyR8dQ5ccDAtBs9ElHaZ3GBpj0rBAtYkTMhTtuzUNDLOsFxr49wszfVkdXAcV0CV7gt29F+KelXeYd4rUpzvIsJr1NmVILvUMTThCLLjLcdAVfRQGA1PDSWfatL8qrRQM1KwSyFETA0tVPc/tOEhMhsw+Q0OqbcYJ/3BM0s068FM+Z2IjJK+jGMXD8mQKlspq3OkIs0PqxdNeirz969yL5vfEhOj9le2Rwex4Grfn7cu3ZFNCdyOAsPl4NvogkIxFmX7UtfvzWufok6owO+BLPe+wcFEyQmF5296RpeGykZKLnVfXeJFwUF3Rtzzf9+RdFjrfrEPX2J/ky9vr/lQ0q4gYGim/lhOybw5t92RXJD0hU0srkSZpIozj9K77KiZlR0mEYxWwpL4XC94PqzhAgXvbRSEcZdwdEB1xzY5M88T4NqpQ3XqYoIzoYYjUlC2h4NQ+nuoVOY1yFLrmDyGpafDHGxPwy1JEd/f5m8nzXgE8GvpDz+38cj+1GTalEdFyPzb09tFS8GfzlVjmZQO1hbt6jf1OXA2nrASJsZmh/l1TnkxFTPSAlhF5CfHH8U3niyq7BCcki8XMLwS3S8jP5j/H4SIja3yMPbEGtKoxwuYUusdPubt9mgcRACH0APsvPo/Bu8Lg4cujeNu8OA8MpUDwwOwxpqpBprzk5oRl0OhGgHOvoz44Dv1ejrkh+tR+IM1woZiziju+XUYoCFO8gLF8BYWgq34+JL2zZ8QbRAh7F9/L9gVxX7MSNujwps9t5StgVOqf4DDQhsW5EzVaVyVRjm4TgTMxb0GaynoB3OZMxj8EYoxFKf/KF7jiRZj+ateE6wMLWkbBbPlY8KN1wVaM2pGKIJtVIdJQCdzUw3cTrQYtMOLJlNTYABVYVIiQ+kzO3VZwgVpBPsWrkemZXcNm4bxP85bEIbGq2s/ZtzEraFxk9T2qQIvrSTUAPAa7e/pnpundnjZuWFuLWtrdFb9qbtW0IzaIZUY8udZ9Mt5O9Zz+Q3HrSrj+qka36CDT92cBsF1XdoPCuHDfpmrk0Lar668hP8CREO3IA9dj9X/g2FuwGk/hEH0dOpSpXhiEx2Ut2y9w+V9CYxOAV5AK5caUZYoLOZRLCcWYlujOQgw85nlqeed5cVPyTUNBVwD+NmC/N9aagmr82s2J9LyPJn5rtheVoUdNOsl3A9FXV7Wv7Zk3sphMEXfXROW4BEZLrLzBeChBPJ6h41KgyfmMNHkWL5PJ11YM3KYPkmD0ue0oa1SVkdFwF1dyWPms8i8i1bkq/yTcCSOmTVoQRitji3NdPRabxQLlk25smXkCyrc5c1PX5MnWXZy6U1x8ddXXg7tzGR2crDNUakP2iZiZc3mOuWgKbmUimT/oTGt3nS0xWq8iApN526e+vzYUjN5EkKHDSfxQMYPcOfjKm76fyMXl6owGWAxt2/nuh6seFZ6n1hNlzEn69ICPYbPWqkyCwQaTd9blggMg3kGkDLAQ72MSwOU/2odcHI2b5wIGiz9LYl5l1mBSfFTBAMHc2wwWAirERMiimPaBrYSzejHcyK/pT4vd/1P5v7YvUKOy5eYJkwibDBeOuZNSeTO9eXYNhA9yGA9wZY46kfNY0pH3xJTbbxIGzeJJ/LzEtziXtWFmHVjCao82Bm5Vlcp+JSyZV/NhZvnXdDk91o807PdgfRdNgS6kaE8rNDSFvc/6hGal/PMZLI9Mhp6nqC/n2JzxQKhnjuwZSSlUfHG6z+zbVU3PUgFJZlN8VRFUj8SSIcNcgnIDZFLHSwfU/L+hcAhCtmz3q7z8re3Ah1fDR8AWF0ZYOuZrt0akcKb74WTU0FNNjRwqTlQM4SwbmmhOziMZmjQs1wxVXdT0otgGcNZg2fzZCIwUI77TRRvsHlrHzrSSpoU4csCQTJtVKuoJ6cERlLUeETnz+f+b1lBo3aNJriCIGHWN7gyMSQeJMbXJOaopYCoJwJIlkRXUhQIYYnh9xOZEcLfGm1/S5Kk/PWVzqQg0zygrjFxdV3D7xN5OuMw6h6Z2G6N2yIfu9J+9D+yhhroT/RkITmjQXpqvuEX3vodQ+muKwoJBXXoN/ZSPUjKWoIcoM27YpZsK4/EWlh+p6N3JZ0gARlIbFySsKbFRTmlz/y7frhT4f5Tm5bQRa0AzQYRe+l4VDk2rJZX1b9tRoNIQBfMDym6dwniwtLb7vIUuYq5BJtTPd0mFr8bV40roOjg7+MqWRF/XWvNvEsSdtrmUd3eLDxA6wk4TzRy1znWAUjBO4Xro8465fG0gAqz+8+m0SK37ilWNL6mmpC5eDv9GFYgtRVHVvZNZSRZeDNko7ggV0224qw6p8ij68fnLTN70poE1fc8iPtrQENt94884YJ9xTJe3PXRUBJd/E0zkSP9vk9eIvBddgu62hA0Es/xYRdVpGkwVb30MH24LKld8CiCYndWOz1ILdlsBa49wZ87zPOLWZlp8ZUaIFDU2NkjMFClZA2iokPYj32WGjJEC1JHzxS9Lu27Ln+r8eMLXsPG4chHvPuQpdprhfYR3gi2x0NIfRcqizfD2ff8IEWW32E2gbNXrxFQl3hYfj0fNexw0C4Qj0AapcjdD1cmYVX+D+6n2mkKl7XNVY5kLF/rddI7WJHPI+hc8UnXWNj2LEQe9Xhiu45inokxXR8mMVQtxyqdq+5B2skVRBgH3t4vFJibht6DrIRo+/bLLLTPtjHziXTa9T2QMyEC9Asudfkb14hBcrETyfb8HAtT9f02vgLcheNinLTZxlJ/dCjOAsShNI3CY4qddw+p2ePc6iBhXc2GV/IFJxI4ZCmHD46Cs+ycZlV5eMv6GvcLwNAqz4xbdSOSFpUaIYtOXrLvdVkZ/Ec4BJv9p5+jHl6RjVUGWhIZrTUJoMNj65zIQUoLkdszP5pKbJOw+a3FpFfQrnANFmo7X86D9GuZZw/EU3/9YRnNbJRhuWc/UaZjLNcuky+oORzVtM+gBm0kqDxYdY1FuY4DqTjeLxJa2Qz3jBLFG0gUaIm+f/QPkxwivqj4ZyQl4nCmN4Xl2Mo5XnY558kijMnrO5ldsO+vgvD8xxMmf4a+744yyit+dX+lyP3wgPk3fT6SdSfqR7mGPaUbIJXDZ0rMi0U1hSvObuYaRux7Og2b4ay/UnoE2do8++V5i5NDAg8/fI8FZAUxy6/PTLYJORNabhhEWy2dE1+A1X3+HPeatYxGf+g16mM8GgxMBjF5H/vdW/XVz8VnbXYgUrGucYWEc1PJfBNEbMoC1wBwgpWFFLSjFFDCwLq6k+B21JgtRqr+yKP+f7mSso6weQPtdx48Gg6N2Wie2H6VxKwqLHZoIs84tU2t0kRQW1LPZYmdHQtT3WmO1ls39+iGE5WPd+YMh+uRJy3R1YHpOJ6QruoZfxcU8U5DESquXtue6vGHN3g952wqmoS2shcxOdA13PReDng7SA8bFmT+SphZE6bN1Nguz41rTzetTYo26ZzzOS5SyGHei+fXLmWKsEbhSIIloIp8PrUILLB1C8xWZcT3grElPYq5SeLkxBXZt6L6yafdvS64YOuq+sEkJQ3w/B79Eu+yfDM1zMCWYDCO2NIx1gMA9FfV09tamVcLuMnjwCAUtIFYLzcgUn5hSZV+z0MGPifOqejUzyCNj25i2D27z8aoUkV5v+Rl2Y3tDi2OykI08U31M8AVwQoVu+DeiWoErAIpnbjHNfVEhiJcnknZjhfgd0SrL98tAQOFmWFkiqW+BIdUpJ1+GjVbMcyDwpg9FcL0a5qJLRiCOIAdBkpJWnLY81drYtDvmmt40/5qjZK5dLTeaVGnHP7aLxP2+ZAyX2oGIjiDSdx3mtqB7ndeDpkZ2CphgTtheAI9QvKQZGCJ3ky/KkFh2i+YPx17PnEqvvRwBcGpoZDBgen8nxSjzC0JkP4XlaUS845YzKantkpIPkkvcHohMU6q1WOXRYSjA1c2Sj6AIaihW4s8ofmVGDM0wamVYysItgYEcRVx27mU2XwkpVivYY0YBRXgQRbiDi6bzCNbXgn1A3fZ+4qNlKXnic6TrgAf3tHvDR73Zj+FBR9uIbxqYcBdFQnX/EN4M6zQLUe9JVUDZ4GOw731v56kZ/jTxJROER+zvB2gwzNCo5vZvbvV5MVonzckqq23U0E0qQBFedX3nced9ibILkQnTtku/yShEypRIQvjixiaDl7JAUTtkajm2KRcROhk7PFebhAKekPWi2Y/RBiMM5AgtUaJZhWqZf2nPMtB6Tw4TRcxy5paRSPB58EjWIePYLo+3ZgKW8TT8/IX9TxDPdZivfNN2QaKzJ/akCdSUNIP9jEmDwPjhEfVWKKFBMRHbmoo3hHZWEFKJLGz338Ex4Mh3j/Ml+VfljBUfYbZhWedVS2Uq9tzR6xul2YT5kKA4Qpl4CyFpmAFiOgBmq5p1VRLl+avOvuEMEoyxAW/616xuJx+UkBiz3iaeIIqZMq4ezbZ1H0PDC6SM/nmq6xqACN7ehiDtQmvfRVfwuCBa7o5sO8GTSFhT0uH4BWqssDpBik6QwlN1vo6YlIUvWr/Q9uwFCQ7dNfv9Nmt1cwPn6hOir5CI1z5vrjeaaHDnAAClE+GOcMpqzGUMOEteBcz/KmNmqQ7J64abnIc2g6xazXQCEx+ojgTigSHRAJ9fF1W7MQHyxrNVLzPlqwH08Pm+FdrHJwEUJBPT6VeBOomO/PfYVuL7fGu+Ymr3v4mShb9ASsHfa/nZuNNEpYGS1IHpgIiCeliW2wXVSW/+r151w6X4qar3Lt9v8tOfL515V17I8P8CAcH1Vc3f8qjq2vGR3YGp4LAmUhcGTIGVdH90D6Ip6J56GzKRM7FXPEQPqkrPw2QfH0GVNBfgXTSPtYElU/3sHmX6sSwkqXqDISctKZ0vEXxcnjOHXuA8VvDdxtOGRDJkYipz9JSxR157jqzWAe+hOWuDNqidodcUjXAex4/knytm1Oph2auP5UtgvfNCCn4fo4il8MKa84R8QLiee7iR58gVH7LtcdKeqgRkgcEqUb5Clene6ugYqRPqJla/XaZ1208b+4I56yRGqmmdZkDgpnItJ+Z3jR/IYrX32tL06RnSj1ohrzYxamUqCKNkQJQXgWMTWouPcbWta/7aaJo9D5GqCbEBy+hBJZxthyeTrncV9yzGFn8hxNp/b1CoOu01B+3+nzYlBoy6t2RvoTPTAc030XBwY51WZ5iEWmPOlSRUev5lbHv0//rRUt6R0731GyeS6wsH59fiN5kJG6aSljEbFBsrhxPU3BGzDbqzdNGoyDRfMoVxzPUpKSp/KVAZSZFyyNwTaA9VAEj0C3Oc+Q0g6+2SJayF8xwV1omiOw1w/Qp3w+eXFIPyUSdWRTQCJDVS2OMdUPhVoFPA06jS5hGhGW3n01CFjYOMEJzBEBHnGCctYv6Ispo4+EdsxB9BfjtalGQxp1JH1K4TK/WEytIcW0+DgFpM1Mcm7SVGgK7NVSvOG8u8vjTlENAvbpYdZaXDnqU64HwOUa2Ty085rLthD/2y71oUE1/J/PVc5BUWeKIDCNq/vo38ZsAFZKv2B87qVuJzsm33NF0fTKtBsIrpUuskGYdqmCXEg92s0u4w5Gh5FBfCZzgqYoMh6HIbAi5Np48s2C98bLCtmiYNVyz4VY9Nehrtshy17XnBjPe513qjCyySFN+nyAXAF5pxv26Q87WdW69siCsRseaYRQVb+NkESFFfzl3oQrf3WaxhZUQEiHeFdYP0OpblUcuSL/U9rugAhenfoURsBifSBioX3PPyT6UO+F6AjqIiFSCE8Byg2sgw4uOqZX6Hjn0LVTgr/1L7jpUCGZ+JHUt9yaU6daP4X/BtHmVBm0Dxq9yuuAR9n3vO547r87RbNPjLxTxwFZtXxEF+x1jGNkY+Ztkk6TuDWlJwuJgYyV79FC12gT+q4UBZwN5sGHJHOj4OoevpF059B+lxjiu9NBuQHBuNoQ8s/nLJa68ofZaVWkP1Qrhs3wOCrL1+XYGZ1BS9WpxJHJq2hlsAgMS0aJ0w0qClalGEN6+Xrw0ApszCWjxuRQ5q/HfYoV1AH+djufDT9PRQ7c1sLEJ3Mea/tc4CoatQ8/ntD7aXmtUcpDxJ5rcpPQ9GryYjaAlwzLFyft6F9+diChL3CNkA9So8LLnb2gnpqzuagsTtsimTLCITX7JsrSsgW523SKXHZgsTL+XHsolR8v3UzpHsoI3hnkWhbn22t3qNNi+qBb+LX2J5dzQs4nxRaF7N5qPRkVF4AU0+SqJYlLps+dhebGPIlZA8CTwYsnne1MLaSbZW+EOEYHFiwkfwOyMnegAE5ruw+tIscv4C21wFTTgIC1WQKlrZ08NxnsCT2C03k5zHBeeIt8FDkQtVm7ukDdU/D/V27waxxqdXamp6dD4AX4WzvUOX5JJogXn/Tbsm5oF61nhspKakz1iDSTU9jDR/fwEDEaon87JZPfSTPg2sFDnqER5DeR5m/yBZKI9d9OBL3NZRwsFcpnaWjMvOYCIN3a3Pq7okYvT8t1BYMgWUKLoaGaN/9BMpwqpWvn3S53JyTSHnegFlarPYcCppyo6UDNAuMfEk0j0tf1CyTTuOcwIV7d8tyRCU8IVBRhZC7AOHlXesar5TZo2eQUuI2q1s2n2iNuKTn+aNt9+48pFlg56frpwgo2+b0JCcAcC2rC/yrwBiuRV/raKGJ/ALGwYdFGqb3Q/Adg/apzlzXFdShP2SF47HKZVo4qo+F8A8n4U2ynFURLb7VGAeeoM4gTM7Aw4JM/yAx486a9JscNn6UH+Nwt8wVsqATK66X9+sWpXjVgpPUPQjtxRLcZ2bsru75oBryHOR23pMeh6D0uaWGlTIExDk27n3cOrdFTh4y+HZq64w8584HypRFdmvB/W+4UeYFOViAc3OBMPvkLml4pW3CMpFGXy2zX6JjqQBK/ke3hYL99yr/gVtGUFDUsFNysDfUhff02tnAmJOEMwobSIxUA15BULWX3FruBtdgBcGRUyFCmDbFPxzDhEIZVdsi4VHP7kJrCGxeQCjP9SGCvZWYuOU7fM15vIW1EMm1xq6FTJ04pTh5B3ZD7qB4qSJm4W+aSDZL2kH/E87NSrrC2BUO+7JIw0BUvwEz8iMBRExShwPhhL/Ha4ftqhj52+MizgV20O+I5IIwepaQGvbmvjzigsBJiyfRU/d0HE9jw7FGMd4uXq4jvlBJwUzmIevnIuZxJRjmN+QOEeQ4zm6yRtFf9GRuhfd/qWE6rT21jo4GScpgSjwVAivw0bLcv+BuL/dbwPZulvd5UByiJ8yc6WQLU/Cq4tF7gTzwf7F3zPR83va0DAUAWUg0iNQuBLqZdCTHEvM+4wSrmM2KYylTV2sFVWirD3tWEfj5xjDCKgr86prcET9TL0PbOJ+Z4H9x1aazaeGhUYUDkASBz3QeqAs4T/Y003ECNK3C62866nfQc+NI8YjLwmfbODV9DH5UNTZuZrJWArc4B6gzCBt0Dtt6M2JRDmoMu44f0uNEndYAUdfkM+9nfJrj14bzrO40GMzmVlhladRrPrdufu6w6p5UvEL0SOxGWmW5YjGfuCXC5BbJT/ZIRtiiQuRJgf45Z/CgN1zdFjlsZ2Tts2w+zABXX1hNLJXYfSt8bOBbW2HRHRapLwfOC5z808CbdDJNay4CL4CnEKFJQ+37jel9mQ890YvaIb2Ued71R3FxeZ7CnL2QaCmxsfZV1RQwfH9ljUclcqoZnhZqPG6N+EJvdY5SFNME5b1C6YQucMf0GIN2/p4BsOoGeeHsPT6kA22OBM661Pl6vbn3jqvns39eaL17T4OhKh3/DBexsF3652ciA6jECTPNeliexQExMItMc18/We+Q0SDfShd7Fzr6ZWKb7akYy7ppSkz4S+Qy8PeNtK3b2vSV/74gpQn92/06wd0XZIKWb6jY1iPW5SgmiVzoc6NggKPjt6xcsXY/ofvymBNZdoUQq1fugems2T1VxmDKmeI+4xKOgsYNZeglVfzwtTOvi5ENa2bkpYf1ngTog4CQEXyhgGSTyPLTlss1IuRlWtGF8mAlAg53HcP83U+wCsDXc5y7rCvtJ7J+R+KEGCHBTt2xJDwCw1chw0k7ptQfFPY5Z1lN5YknDUR1bLlCGVCwo9IB4Z9qndZZ+ICN1iETOcGxlVstXGjMax83rHlIgP1JgHHiV+l8a6uyI7FKlmevCIcvKc8KVmeuTO0Hg+tY7Lm4EcfK7hq3ZeXmQ+33pegRF4BA32Xw3G06t+bPvSF3e3Tdc9goHDj0Q2IOvDwO1JhMIxlAjvyWa8G1u44xKFYzZfajJRzd4Jc3o2kdhL46JPJl6v1Vja3C+348DbWhzwzbgfG3aXBPKEawIewsYfNxakBW9QgKpB+C/QdhjOmB+rLY+Tp7goHCbK0lbb9+lgauiibymam7hmLZ5/6ZoWizn+evWBBRb6i9npMhS+ss1PSL+jh1GZoOsqqF7DuIXg2/wSzU+EMXEsLJcoDxvwZvtV5TvRllqMXTIZQVWz5XTKApFZ45QUO8LgfR2m6jj48gQ8Ng2LR4i2Emlu3OLBlhBuyowwLQb0V+8AYvP/eUYSh0nCo9SkRNaalM+DI/waMmz1tXrvAl0vZlx46+g17LI20BGkxMbuZ97xdie4r+vrS9EDPpt5mHkpaquzo3eCTkxEFnUTOywjZsx4DpIvoF88RiUQVBzZSie/s/C60mv+/LbG4J47xlgFoxCFDDSaGHqVa76J0Vq6poi8NaE8Nzj81VYhne3n6tT+vEgD2uqR2xy3nNt5GP8F005E6KqM+vnNFYt+XXB5Y9vUS9wqvYRxfZrBKD+aBVkBw4rDZWaEdy+Pm+JUBHkARNQqfjXHylKk7dYXYiGIicsPQLxhf6Z/ST79LEdwiObkCxqxf0NerVpJb55mbxZiBQSxMb6giK8TVaofAUIu4cW8AFU/10pPtFTICQD1zVvLkQLBGxM5ZJm73DU7LobUFBg0hkOy15sYpc6cY1CYOreD2qx3ygwv7Qj4kGF+gxMIqMtCZHqOH9wC2zHvDauLO7Pqo5pBJSmRqPuWV28TbOOA4Y1Thyd0cD8a+XiPmT96GPuXr587O1eitJ9SXwY+7aF0gPRcHdGhD8BPYUk54UCYAVeApGbPPL/5WaKxlBFW6SRBcAgtAjGr8lVIcDxHpjCRgDvSOuR2N70NJU5JGH06cjcD9/2W5V+02B1LuXW6xcUiqRwpYRgWqfg7xVhUgwvk2VXL9akvSli6Euq2qRmUEohLbjK7RnoKqjYSOiOLTKPBQM0U2gSXnl+21iFDOfw7oD1Qj1ou8rv5J/nRTSCWas8Gq2XiFMJ1QMW1AQJlt5v68eV0LZqO4hGnRHXUoKR9jXafGWBWiF4ztUTpSoIL047Vgm51prznJa+4V0n7SGMCDQKXFvUU10XWDMDXGyskZz+BaA4lhaRN48uM5ud0SGoELb+M/oKT25Uk0IK9Tr5A81o04W4b0xKYjDZkKt8DJMygkDWFoXjXhQySXkRHbOWNsWTJuxFEc76kSlVdKfXQ776tDtaokc5yPpb/kMDU8s30qhhr1KpQAsS+QPgTkf/HqTp5WC4Q+ekPXXqFo4MvDy5cBEPLhb/Cg3pHDYEFXAV1l/uawW5CDrVGQ/3Lcg9mqkWMAHxU6OLw45EVD8aTL8UXnb4qrt9aKVwweILKqudDQ66oE7V2nJphos6WE4KHkB0v8zpJ/gA3fPifVS1GBbsO76jPby3/4xFdvgZ3gc1VpIRsAcw2a1XgZzp7TIjKLz8Jk2mLCTdlsINHHh/FWsm3YIbR3Osxg6Jt/UQGbhACWV3/dEvDF+g8JhUt1hoRupGayLP7oIPdoJfTj+ZXkr/virXKj5GnexjFHrFVQOichWbi4QPT98Z6t3+pmK4fhQ0BN/AiRHHkXjqbzFB19irQ3/pcIam+HuvTuCpuku2LOVB1QG4w65qA/NkFE86nViOkinUc18YdU3pGCG7HWnJj6NZM6Lq7frsBxT6v6kJjvLFo67JlUr+deeykxAt8rA+ck7LAT2hDyo1ElRJPZ5Oyp3+h9AkMQxZ2zSd8CzaR42DeaNmkT6tjaoM+PyR2us2Gt/o8jVja58J7Xo8/5cCIeEAf6sieuSUYqGq7J/uJI2tccXMQLZ4rbR1FBjOyTLiFTmR7MTjdJAQiej/CuRt2ZHF7lmTRv3AwFE9EAOm3z1V38jl1FkGpXK37g/W4BGs9BsgaxUM/wT48PGFvjXRIuI5UDv8ArnWh2hkk5Tk2togm7Cb51nICvJKHOvBnTAVMW3rAY0rEKPemFUVDRxaR0X4+3grxXcX7pTWoYqYzjJ0SPhbWsXHUXrcEcmuSqddDxMi+LU2Bvv4l+aM6JpqMwjPv1ANH9D9ePTKqNSnX8cg2+GkhhIc4iAqChNgmChvsaMgZuyXnAwcD6LFE0C2f7lrdA/p72zrTzXhBrdOairZgZAdSZh5atwoMhRI7kAvGIMqkXMBHOLanPjp6wcGd8W2zirec0gf4+DHRwdBNSp27oKxPf+mPd6PgZlcGuADFDobLJ/alx95fkDEOCuHI9cANbeEokYGLMKueS4oZNvq7BX4HBu+x+seObP/7AbDH90OeyJOChZX2HX1ICH43QiDd9GCNymdsmvR6lvltQTys+L8nfvlCuK/hIqanW1EByGnvEoq5tMjXjpdG2sj+L8oEAVZ0qpb7cU8nk5GwdE8juBp1gs2We5zNDYFjdGT9lj9ElibGCjVJoduroakjHvjlCT+Z4C3bmI7VQk1KFvSlQ7s3e78DvfiVbt7WC3+csmrphVyG1eB0tBZ2q01SfAahUaENZxDO5QCGNuatgQTk/BraT4Q0t5irUImVY+Be/qwKr6IpmvROmfgvKiw1Wom3I3o8T+4F5dUnzwEcUPzoIU4cbKBL/PZojM1qaz1TQG+PTUwdmC3HFSrkd0cCRCMzOY73pgEKd0Qp0UCRALXDBXfRneeh6NxBfrDU+rosR8TYiR2NtGbVJJ5Wfrbz/nI8qexezOqioNzx91alaAFpF23+UZ6WHAMY7GmsFUYiiT30yojXQ46XOi6BuQ/dSzLE02n5VCJ5neDlz1Jjrjkd4kJYTCFZMMEBZdSYvHyktLEaVNRCeJvkICxWGBmivowfannXHlIUm8XYM0nwk8Qnba1z01fsQVXL5iMMSQBbB53fJ2/0PODALuIvF5gOuWHlS4X1rVH3qoVrkYWRIaKWQQFiPTPhphr+T3SdZMqZyTM0OaygGOvJ4tBw2TWx0ipwYFwEi1c4eu22cE402qkJa+yLiG93+Q62mfJeqhQypynUbERS8/QoKxrT4S6zCUaF65qmu0tXR1owwlMl4hLcTjJ93hkMmjyZK5VMtTnSe4q4FNUAWd3LP0m1Luj74E5OVLUrUWgCj4ZYFAyrvCPllDXDiHeOU3DQPoISXR8gpvVlg8lWFfXkCDy49xd1OnlLXc6EE1Ft95H4aHg2qCO0hD3S4xvR27dMoe44wp20X/Hsn4/CJ0YUQET+L+KICpg0Zre/V8B5q2rSqw9Yp/l6BMz9sDYyk6uz8D0o7+fLYocF1MOcQdqtPKiyW/SIAzOwxJmyd8ru0AcU81F86yOiAOBTA5X7uY3nnBeY7JFxQwO9AZYMZCI8Z9dKjxTWs+TFuHTQzCmkt40Yw1NjqWlKAP15GXvpgQdUeFenJStTlqy/bHeW6PUCly8r2WBfUD05vLeSJaC17DTxCQM92ZQD7khEvxSvaeAlWVTpPB7V/Mr/DcjDdgwkz8rzPW9U5YeELIdr4CrxPjT6ZsJc79aH4q5MXnrMDE6VSyi5jJ/L8PlAU4OV0EIPVS5tbCgGDDO2zqgnqo6EcKsZDzTwS9g/XlupBM9P+FrtOincqZJbFOc68EV80EMwVhKi4cH4lQi99Gdbhh0xANJgnDk0b+iTqizsEIrS7A8rGByjXnKrGZ+3AsI6AM9yoxR5EEAOPqVdjqDM8COxsjo8LQUCt4dGPS8XNbt9NPvy27a8QBfS/M73ugXRrdqvwjw1IZGK8kTwATCoSRMyeRX2kTcwDlQE619x2q+cfaCTdJE6WTsTvZeotBjtetBpguJuKK2fpFU7bJT9JqOod9yzmmTDz3fPBakyOZAgacNsUFb7GhRaN4t1gQaAo9h3z9B52lDOstIG25KAHiahv4kSytGkhmtHsVGnjBvIvpXuQ7sLvu4yB3M321/6tNNhYDm1r7IgnwXMHCMr1ryA7fffNPUh54fOuPjmTSvjB020lszk4CYAfXQJY/f6iboa0I6tMrKp4ooiuV71e4FjhDLTTgZNhrmNUDC9a+RqP6tfHZ3l0ZCltYZji1137SQTF8UG98AzKMKTbFK/o7WhvSrKIY1jY6wq0Iv0gMbggdaYWp2AtIXuoTby0ui8GbRDzUFyFLAcZ6fXLYmoUy8TJ1TF46A8BxxODOD/qwPuvyR5WzU0szAvz0qLWHi3NuAsu2XVkS/URlbT1hCHa+rfXRGtdz2p8tl5iHpqgMpJjnFu2uq8hR4PwSFd4YqJ4q7D9sriYbWyuFs5lBYcWYuckQgkJZorhvU0VBTHN5d/b6kmUzicmD+Q7gwiKB1sQCnoV+djFWlk9B63iqrmvsUYkLaC2pc+cH2iIc6XkJ5WARnddKpCk8zItav+XyPvP6TPobsZGSZvUxsNmoH3N9oqm/eqbF8UEkt7CmK1Kub/Mxk3k8nwOr+J3t6fx3oC9pfyQmFI+fsjICiAlFTCP7XDDCVsZzpW4OqwdtsH1+3f4PU7YRJx43p8QjQvMFFdDGn/MJgaDi4cvn7zQmVWWY7osmuMFhVEGaibcTjDbh0iOdVKK5gQxbFPgaG2hymDS3Qgv7T2DSHfDb1YSUuKJSgM4DJ4O5yEtzh+x/3nrMsuV6zVXwhfZxwi9wL/q+7aNcHNl2FDFy6uo6f/4NbFe6OVkCcgcvFmfJ5ieEOEKNqhSBPNfD74+l1jrfw6r9B3g65cQ0ndICSuCM4qHGiYrtz9OL+9jNloToX77MuMuiJVtL/VokW3C9Kd2uGSGw28p331FYy3QJK8vFesFC0w0zMtIEkYhiWoFYyp3mQC/MZMIq1W/E83njJmuGKnRZpN/sEpILVV79PLMqSBTK3SD4AZzL4KZv7zp0s9YiZsIrqULgyjaC7mmc7w238BSKPKFKhJDtWDmRGnppap1V41b4PW16V3G5rh0/7BvCoV1gPFDjeufJZVrtaI/XWJejl36pSzT8xLfBEz5KLsIEc43HOl2eKzzbMQr+fY2kSdj5Wnh5m9UHgO5ezjMXIb234Nd1GShM1vmNGJEXlsYJM2CENLJ1hs6g4W49Y2WScz+RB6RSKjGskBVu5is97PUizf1EdWRt1AvZ9ciAVnwPZ6o09m9oF2YXbUrN8r4tbT9u+jGUWFnDF9P2TEfBVwGkMpkp1NLWG5P+EXrkmxL3uAfYbY1eYQU6FA3ZSsxBOynZbsk2gd0PoUh9O9HEmWMxMvSpT6/aLJO3v9m5BpOzfpgld0DttjkT+gYI2lY+w/1RXC+UWjxu7Y3Zgfh3eo10V9E5Yh9XzLMIHfpTkzDVhAIM20akpdInZGX3P37gsBA5ySYnkVUi7kIs07GEy/yeLYIcSrpBJSvKCkKnap2UhItgTskTxTiViMqAU7uSlnrx4Oq22TDGMZi7r3Exb+jmKPJPx+Bo8IJDX8QkdZNha3Cl/NbZYidmFtZ1DhtlXEm9uRJ9qVH1Ox+BquXQ7MrzPaFBMJ0S1mVpbC0ERtQQ3qL7Q+VAcsMEZ6Oh8qZvVBUX1+VCVmxkHZwPXD7v7u7/OzGxFwsz3RcStEWUUOS8XZeg4f/4aJ6hJiq6edvd8upUljtJJgE4uaPTC1nzftl+MCxx1rLL9Z8zN5GawXm7df9cv0rm63pjUH8xiUoWMFyAz6mnmvYnm5kJ9dcP0Un4JlOzrsMoW81vwkZzKVMP77sbcackqa/S+cDgi2MZFA7Iq7OFkjdBrusz9uDTJXQFjVw3MAYNsN/h0YjBGC3AM3nxLZElL5dxMUNIyBv/8fYuZyzNI08sNVrBA0fDKlx5HmHXrOlwOlQ/warBz7YF4bcnNejEWcFXxGLQrd9sd+eMRxwNar2BnOrwhqR192HDkCDS/afZpKJTtZgUT66gp1BiWlSs216/tuPledIiL14V8pNqIYXfeo15zS6jYGiI5c4WvBG74MAFjsTbkMt0C/wUXGh1nmBysSPTzShdUs3qChLDYQPLJlCvQbb+FiB+LW5fg8A1gmgNfpWAY0z8TO4bB+TLdy9L5DScTuIEiFxyusLjudYUisEGNuckb1YZ7mjZT73yNXB9ZCJixBnU+/lUYnf5VVStAv0KfSbAHkswD1GlmqBRLyOaAhS0hoELAplCm7GnMsvyau8YOsyHt8xoKKsrmyHtq4NylBeg0pMMDs1/9Mc5tZOgeH7lMdTvQqO2YNPIWKGtp9Yn5G5WzSOEubN63Cc8ow/OAUJDazJ4FofRHCm/tTw4Ihgol4RL44nHYuKhhlhqtWpsYciWCFf5WPpDWsCmvlfbOJZu2IbTHrGBRDPBch3ZgJQM2QneOjkMHTZJqLYpT8FJI/4UciOgLrN2E5AysCeYc+zkrOxU9HV19TZ+6vN26+X1u++pXcVuGEmnbIIetgASSoBKwsWTC07ByzQZobZnQkpc+ziEfk6QY+2HK6oXV5FfybsCDVNK/qQs/CHTkNMLbW8IMskICqMQUg4cePDjuOIdPjnPMDHEHd2RXCP6XAjIyd7VKClL1X7b/WtdKlZyCu62DczpRrNc6SDfj11vYo6wQ/KgzmtAkFG5BUjeFysVP034Xm5VgHm0NdqUGBpGOavrj74z+4GBqUhHdLCf6PnV38Bxbgh2UPH2r+ZfHk+oPDLe9e6+/cRhuphHp9xlig4WzaAwEdx501A2lb/+BXhJJ3zr8LucDJdYqzJA2IUh/YTnwbDbPebUtY1Rm47SqODK3DFLnMNFAxPq+/cs+XjLEDO1IMsk1KnQx5SnQWf6F/SNeMb6BoIy6LgV5U4CQ1qQ1v0axPXs6jH/3FoJieCDOm0jsWzjOD1qy5E8vkHZztXc1erWLQu++WJ43IaaPQO03RrtSs1Rx92PT8Nl+FznMBe1lh6NYC8DRvgSfT22fMwH8r4G+9jUzz0inaorrracyVEaILS/NdimwzjUDNF0aC0Obs9g8cdDq4WG4DpZbJTgECrowrY4fSg2nloKZ6D3LRZdwMuaT6wUZqFhdKgtqxLkrceHIDTSw9/0nOW6TpcO5AhutunmU7Vsyzcyiutu7Nmq09NYhdvctuUt2GutVcCpL4ik+8eGxeKkY2NCEUYWE3hYoznZDf0kLXQ5mZoDcvpvjb4O0Ye85q+n4Wy1w3XjIj7qHE7CTIfFvtTdfwY1O58zxWzBqRlv5DAB8IXXT00iaqqKyEr4yMdyAZpYYYKnhElpskq41J39eVABLXSlTPCstUqrDnBOKEQxzEPTO/yenbR+s7G+CRtKEsYrm/2hwedtztthCYuVFABRjYgcwWSVa+RCzghjXHnepVb6H0CExEfHw4EeEOAmI/1qUzaHmZsje6iFgouyteUtH5YZFjCw+kVKR7BOYESfJJplye1B9APWj+YAn5ReuVvkEp0IgFSijFZ93WkbVU3BYomLrWeGi+h9774J2SeJAOt+HCrg78xl9JF/tNYv8wiOSz3MtBEa1lTynPci3Z35crXVINOXwvSxIhBd0/e7R1kSmk4WU0rl89Fqvmj/hX10Til07gXl9OCUfzsYkMOxR0ow8a72+jMFB7ZB46WllmT/Td8Rr11U/gBkcQA5anYdjjfE3GRvVsODGioqtjsJxC7DDipkBUMOKbXcoUxCeOcAv/kqoYNTZblZUm50q2t56k3C+Ku2eNf4iww9vFAoTlB5FLFwU1QgLzYAv6kZrSfKElqQ4/zqqG+LwSznnp5M6NNEAu+edAxo+COGu7AaHTPFvjwAPkktzHqQvT7/ghqT9RyfsyqiQP9K9sOmz44gGc5eyYYhmr+3l77CkZV1HPMufsipwSx+qgf0rz8O07PZ7wkAeLDQRhl4gTC1zXSnYN0X+0sqRWoNdq58IyJdTD68/cE420mmIj+dIBrmKRSFNGxParNvAGVQ5N1/BEi0fkaRgjY557syDA1LJV5JmvOj1cepNrVVmVvsKW00vPDWrd0JI1hv/bgPpPj9XtXS8grX+AnOnDf7i58p/IuQX9mZCzEZAXLfDzu3SMPflz1+UUlW5XykBH4D9H84DN2caXea5MbuCyLm2lCRGxRpiaAKqIvT5No0y7WNF6r6UfJEm4dsIObxYOtSpNwDGB0Ib9fF01MtIcJjXNuBmCdSUzt/yc3LCFqZ3QE6r/KxfN1jTGY19GNLKdTbNO6QNlr1XQpPZZHyKATDeLqIVL8hXpUosmIZAiL3U5ZXpAkY/fvVykROZ0/31R8i0aBccVsP/s6gVhcH79IDFIxbRxbsIISkV2L9gZ+uDQeGOACzQfLtNGaaKC02vinNQySZSPPCJ6WCvGycQ8y3vtYi2LuR6s8gT0VB7H95DuPppS21S0It0bmfejVl9m0OGbA0QPJ5SygftBInO33Pl2g+F80KoLee8OtE/0+owZAf6hpX3YZCZ5fF+LWrHlKTewErdYigO5JY4NaePA73mj2HFOAILLbQkIYBxfeUicrM2uFsPyJFkwSIQrv4tsH8GfdG3ZfDwzeGSw+ZNS/O5dxakLm4jgTQUTFUBZZr9oYi+2sBsaf4mvYanw7foLm8C+buhglSNE9xrMBy4xEtHrKoFd8qSfExUxr84yUn/YDZZHu2AYsJRsZlOhgQjHoXhcOzPfFSe1cN2ujo78LCxD5/m4WAuJcGXopFOEG1I1JEA+3+yjVikpJM9yCmk6/BOYRaTCKtHrbi3+rNymcjop9UHm+HvUSScnNfVCSE7ei5a+o3yJFfNhrMbwI4wL/eTblLSwhXgMII/AffBmoHA0PXRoLa7afm14AITo0t4XlYHYZkO5lwGxPWl2nix8m+RvvFXX2Fli1KqG7t9xlfHb/1a44Ou96i+8ETR3N3/ZFbshNnQozeoe//FSyrKVSm16S64d+/SBMVx5bjEqu+xd1y3jYg7YBFwFLuzKXM0KRESIMe59nMHb4xGm3U91JMfMj85PWSVrE03tg6MrlJBJ76OyeXKG2BKHVQIDpykqf4WAnQP6HyvMHEAmHmsz4KzC9ebn3PanrQ64B96Rjzfp8IZybXH/JSKXhK826KC5rfbrwqED6t/dVE0D1vCtNvBY7Ja9hX3t+or/9o5Q6eiwbDIkoroBf+mIVEtWL6H0lgW+a7Bxzd1a3gYB6yNQs8BQ7SMHM2IrY5WfzLt5RUgBPtEwjPkQe0SWsnoMyg+4IJ9BEkdpg9kq9H/ohFT/Fwxu3wzgvuQHz/OKYRUfQuyy4nq2naJ3NNDkhl75EsKMf+o8XXsUthty9Euku1oiji4vQ0eskgB9wKC1D2HZlfg1cbYdY9dqAPmH8vgQuVmu+4oOkCtKdt3Lq+B0Ad9tyWgy1e6oWud7YqakAe9rPXoFJ0A/e/6jhXyyDNVdKClRl/35m2R/m9X0OYqfxCeyLym7fOK0kCqWhPc/1z2ppjP0PMPmL39PzItQ1cQMal39x9GsWGzTaru+RVwfyaSGeBTR1nf0MfaDh/vBb4aqOrwtE8I6B7jJpI8y7/PdmvRlk7GRFv3wWzUmP5yApDbNn0j+0lhYyAbQhgCghEpAVZLouXWrMxhrPCffsAMsRlo4UNeCv1fB4vbms3G0DwXvdge/iZ1rQCvgcHBcEvjAtmdSiNAHDJYW6Oy+JZ5nO9uSyWeBH1MqkEzy7uyTR5n5NqovphGIlxKJVbsQ4qgmrQN2BYFsjvlrwJy3W6fJafvPQX8xLWFWDNV/byRcqWPi9ein1K1yY34EWFAHOM8b14LiFCQH/T64FEbdwXtuOmtG1FAogPQGMZtL8NdtB4w+4SrAkkcqCAT0nmP3KNDFOkP/ZUTqnB1VNMQCsWAH1cqnt0WunewWn/b9JHazk5OMGMPJdhDVE0ZfFyz6O6nElSy9S+MHhDx08h35ihrOTwAd+s36cSV4mJdm3olxyKtp/TkDVwlCYax49kW4di5M269Ox1Q44tkoSZinO4eho03Vy12n77aHK60aoXNBKSFHJssid8HFVMGFPV5sLJBXuNnnH0TNOC0TrNB3tzJpCyQzwoEfiXtfqVX9WHIAK2rSIeagzn7di2mDNFswdsp48rZ4571h0+zuWp44JvYJ1+raufkX8WNxtc8TzdXvEGIVuan8X8o7W6ZVc74SIERfzXMofykbRZku8d7NcoFiR2lRrRdH8bPg7A8vmlIpf99+zgh1yzFgxSNFuONVSP6+Gpcnu5fDQQoeBAnkn3bDlHiWbL3+vfQzBwwqTJ+lCicrkiAkw7jOOU5SHVKTpUAiBfUjDWfEj/jVf7ERiJJCLIEo7D0tbtLbj1HDu23QQmjG9atBRyINePR2Dd3El5ltXNgxn4FEt3Agy+ymgjRi9KNTO7eqMhf1sL4tOsmhSdKSsWY+ib3WZ5S9q2yvtDz0ueEl3HbVDeI6tRDoAIP9nLLA7Ga+eR5KVVA7sYnE27SJhlTIvpne8PQduebOt2WEVEI0mWDqtMKuQXms269kZiQI4O2foEGPGTd5qfB4uhpfU108iI1IP6I9aAvpVtGhrjKeXbpx4VXkSPUtQ6ibLG+J6nkaJ9f5hduqJ5Qi+Sy40YiX1sRRaSvQ+vQA+Rey0c95UlBadID6Gll/p3TEZA+hBpaViQNG9QNaMW8wUSXnTi0f0HjjFYD7JtpMrbcumYMhj8BRKuHEsnKEdgOs6sR9lkpTcbVgqUHkzJo1zOdnnpVpUpvOqc9Mo4NG9+sBAoamwNfN0dszANC6yZK8maHJadm00/v9o0hNUHUhMG1QQjoKQXZ+CKmOH3GLo91+PFY3pDhK9CsOcDVdcitU1dDhS8p+K30xPwmjaTEUnN/Hdb6tUKAjuRnSD92dkvoiFGuf9SK9vqbnj8iOqGaLM8v9NlI5eTKiBnVCuDtjjpQd78Y9Bgb92uZLZr8Dk40f24eSzfTkhYVymeGqYq22Utg5pugoc3qRrU953OwGMhrGS4Kruu7i5/rjqjq3L45cVVBSt/CaHygaajWpZZYEr4XrNcYXbhDuaDDYvzcZRbPR1KabiCQbOgi2JQkmolTmtopcTGBnhHFQ34qoa1wgYi2iXS4ru+OWO/sPRKcdt9WRYBcF0DYRBWVd3ju37MjG9sPabNw4cCCThVbIHINA5h08H+dLTckGfluBq1vvU4/rday27PcOM8aVAMILLvaVZbHtMqNqaFomtneCGEPNZfNOG1fgZhu+ZmTM+H2aRD5UeDb9492tJPYJrNBp+APerq0qsdqpFmN6b+ezKXu1vpPQH8+SB6NSY28h0xpxxIRsjPbtDwM3qkII1CDasAvP9e3zZLCoLRY5jalOV12IiGOJiNKu39aMhHe7/tRfVTyAlYfVqeM3UFaoMaDgcP0I5q6Xk3c1AEuZb+lVvV3RXoc9gX8rvcgD0cMESBlF6q0oortH9dlJ2x3be4YRCuTKxL7FkGg5qYiWOIVy5ohoMtZbBTlmby3YGLyoSgavHRn+KVKKy0vDPfeLk5j5pGxAQazi9DfSxmqSOCpZc55dEvJmxj7/87Gznf2xL6EmTGjupRca1iEoiVxAU99YXXrvXOuCx1SjPA6qvWc7hVvIop+/kj0u0tXMTsGC/JWiZD6fIemwQ8pTfYc9spLI6S9UDfmrHwO1Pm1EtCAY2jXODNSHYK9gYvwLENl/W7CByS3hPQkWisyv6BaIiTJyD7D466VL02zAZmbNROFBDFYiZLPl8h4N6LJ5fqHnSDqKxYI5nkNokBVekbTBvAoMZVTm/YigAJsLWru3Rjb7ccCDuP6DzeLnGJyvoTMIc1ut+xSBvLEXPJPZOZoMrFg+Uvslg4eVDpj4x0D5BPlFAQatYp7RKqT+cOMBkkgt6ZYtikdENV1jQKjnUCvisleQlH0YcxOD1m+Wj4XjAjLygvqTMcBoq9gn7bMGj1F3HelX12yYIgdwOYREBO5gG1SWysKh3hEuTmCbh4LoHaPRweLslhGgXBCny3TUqAj7nOylemO2bUId13E5jXUGkOznOkKb/+8Zxl7eE35NG7Hax9Ch5pdSasGofoeaSslKwYZhfpwzaIILq7dGM+O1SLd0czpj3+mgI7XvZ1ZX59aGtGcTYtIAd/mmOw/nNv2QT3jgEZhlfcvJaCCeLStw8FbYEDXpI0ItjZmX73TBCd+fTXWK1DrXfd06hpwB/m3zyZIMO5UhLi7sicFOAYyGeM/oTKWOh9DpNNyIAO/MvDYG8WOC2sBHBobhXZQTrDEQJSo9hIk+iB1zKNmdsxyIDudQFxyNDKxYElO8l/mAqBUsk+Yp+q5OdjuIwR685Hk1AqqpgXqYuNuY9Aw9uDMZkmQfdE/2s84XoKgSr7eazHR2xC7ZtjrJTnpKVHnGNWqlf9WqG8TRE112wkDOaatkUy6OxDR6jZaWH1UDfURNGWBsRCBIT05EAwdbduPOdmq24WwLkEDSm5nqubZt1P89uTbm9g9urcfva/8+7eRJJ/ptgjgidDwpmbbvauQvjLs2Z5HynY8raGzTrqXM+762Rv4aYR9/EvcwrUDV8bzSkJClpeV3tiUQz6etvwHW1P6D4yky2H2oQrtrIKkT5k4Rv2tGGmto3IaGUQRgddC0jbd5rZdctyHL0lLgKabbxpCOgaMj/hc7UUveS8w/atfC4xgL3FBIMm1hUSrmxHRcsmjBBY9Aj/Ao7CBKWlXNPMbSdeqPzGbJZn0kILx6+5K3994wdeGcQXMK9RMm0i9tZqwWLiAzJ0G1EK91C8/uFx79RL+VqKh8VazOo6mTXA1brKEToZX6OM7UTJv2BcLizbQ6HPPBKOMydSLkn8hXw4qxn7QUdKvpMtqeQ9YuU+clWnGpGlqG7VcOZ/q446K3oJ1DO02g+ROiZYhuRHUe0MCmZ2TnVZPK2ryzQ4Qxdirxz0gwCWg13z3miB6KjbAOFV3vroxus69Rcg22LzgRknHdIhZWCFoRPCepXsnUCPMP31rhoeOKoh3bC0610p4O5sp5VnMD5pBmNZs/+Lwk8wpJR0d/QPKtmxcGyOG+zOLC/8PxhNUo+knP7p1MSZY5wcEGTpmup8e+m4jsYGwhdiACLhXlIlYAYEKusUeuOMBk+Pl6W3OcEG4cMRhKoIfhj1ctXtx4MGdeBHisgog1Bj4FrnxdpOzaBulF6A7ct6IhhPw30trm7HHfnIZeuZst8jAilrV6GOVlkwDBMQ5mlvdF0T6vd8y7MJqC/m40/tJMOA4F/awwL+2RUMCYo9dEhaUjOu71sTBB2CyE6ags7EcN5OBbwtgrhZu6Uxw/vsmQLxpCQnqYqGLb2pcdoZdzMm0WunZ4lLcgiYo5V75TJOVt1lIgfilZBFwZVJwaiQ8tLPaeEw9QvZ73NSLt0fYqUdUaSfomGCEP0a0iA3/E0ii4Vnnrl4Uyp9XTO+2/wIl9CEKQyvv2eyFZMe5a7asZ6IFwF86yTzqOvEVl5CfqFrSg483YUvKeVKzNMYmKRSRogl7Tm05rxGX8iXkq82MGcRMF8mc8Gc+rEUlMgSTHvdm8GTaVKcmyoOmpgOzIGgSL14iU2IGngtrxqrteAkbm7RnzETEyhz4bCgpCVYVoobxC4U7uPX7pja/xiIs5figCqzKBgHJKCDLoKj0cs3VtZQbKLmGvsn+q61IFz/n/QNOOvdqacqamC7YNLmcaKfy+qCqTxlZpenZHHBn4UF+IWusO4vJuCAbXjEaj3nV9yPIkmMXynfEp3H95MLC8Blz8QmV0PPb6HHxYW94vYwvUnGJPRWncGVQQBVqr7M6rMRhx71hS0euEVN//FGzfmApBkPPV82rvvif2Xsd80HPubrZZmNXtMC7bKZJa/OJCziYZYwuiCEVa8eXhEDkgBVCNzASRQxBdVnjD7ILos+YRIQdNz+H7F4SRV+FWlXHeQz3ipUzkSY/SOWWN6mwVe5CXsCM2hKegwkdMrx8eCqSktcjFA6p6MCqBjd8tw7la0bPumBcjgstgetM7svqaNMUxNqy0T+WlihFTLKoiasBkjJZeSFZCeVOpLZC0VMCSjdDT8KbO8ZLwEOQOvsS21h86XHs7b9wKEcRSTcMjuZjl/XOeY9uOBd0iRUP29F1ZUGBzNs111uw+G3+6V8mNrHBFAyrqeanH6uk+qLRaV0V6FLQKqOQ/fXnWfa0G/caGuhr5f51k6KVvYtmbFHz9pKlMXsmJb5SWIC9nCnM5CfYoqidHq7NyWvS2AYXBS/8OuLVIDhc64O/yaeZ/DRdn2Q9Te5KSHsYV+akRysOeUk81P8IIQacVuNTO9j3+l3bfqJoKALeVMOo/2+Y4ZrlYYxzUZ23PDGSSr9h2s2uvWzcoju4Bg49DKVUK6RhjRcO/l/+wVhby3Hx8jcMbKCC0bijWb4By6pQ4OpKXq3oyrq+DIG47fK1z97BC8ORuOLQPq/tI6j0r/sYYg/K+IHZdCnQL8t75VNd0lenYziIegVQGlDwkZP2MqX0QRCcTUJPdbUHWvtRUNnbYd+omTCnM/3/W0PBBSQ73ZKH5dnvsC1HENFdOgF1EW4OUVqbEp2hIauCO0QSm2any/ah5qiVMjFrteS16hpb1zxkNVLJsfMA09kcFiVxEDrEcpzLfVvEklCBQN/9EYOLWVkW+qdNYucvS4zyzWAoKtjnLRAX8GUgx3FGsSDv7CBqJ/h+Fh/7x2I6VYGKM2zq0BcH+TANCX+96umeS1kUYwSNROVNY1JNnqOyysur0TlJn7fVOf4jR4FtQi80HH4GccxR4HdD6x7Xsu6HPbKJTVnviF1B8Dr1DOM3AnyuOXiiuZfrufQvbfFACoo5PlaDLjpnpX2h2Wq9igJ5dyDX39fXKFjPlYAD0gLfUK630mF/OgeKTHOtAFblhxyTllmiNrh8DxQALn3KEPugH+0yvIK28dVbmejX/Txq3j1Bn9U9PSOe5y+yKHjhmRKiLOe1Usq3RgnGa1d6i2r2rzPccFCCL7HcAt5nETTbztHra4SK3m1Hxat2C/SkBQZsf8ukAo77ykQ42iy8Rlzw90FC+sevClQDU7dqycKcmcSGvQM8NnTcF3lKRGlr4PTKCL81rMVNIlEK8+0Shwnny5L2KnkMT9Vad827TIPUbb85yBb5u8PfGzeuH4BAvcHpJ5BesXLZLV5BGJ+3ZgVVsXX9FHTMC2EZ2KRbV2FzA0n8/8wjapYMMYn19LkoR2qNGww4RUwxAWSmVlI3GyHQuoXuAkOgTd3CnO2fCBDtWDNngx9SnVeOxlbOt5x6X+87vNsfjlY6eIqXGL4axf/VRd44G/M8hBcUb//rv9YvtvyyNu1Egw4eW6QWQKtU44wF5EBnmPSWG6wU9cUkoZprN9uSuR7JmZKXhA0nYx2vvN49DaYQYNH3JuZHDNa3TJ/AO2MUmk8blnf8G5A+KB49ltTxwlG6osqKdZlNc2OPZ/kBQ2a7Dl2rk0RG6W8a9gFSi0zjglAtvypRS7sTQT7odAotgkDgejzu/IrFqIktL+K9yUl3EAtwOVx9k4Uq0Dt1inQHqRXQVpANL/0UMUkRnG74NN5VxVUEI0O4OjVZVUW6m83AjDf9dxS6p8k+I2Pso7dWAcF5OogGNRftU/SN1WvHfYPvYX/ibGPnHM1BhEyQ1vXaLPF2T1A1UX6PrjeV3MdzqmBZ8+niyn9WSMx3iDHeD2QcSQrDE5jWGbRcIYJYJCr+6zmpL0LStNtzNLsrejyBa/ZefTAAsVirnXbavy5PSbV4i86VYrtalaLMTngW89dUf1nPBECzE4vIbvkw7UE9BFN+40sB78nLRcV3mH20ZgYEx8Uq0+BwXlSxP87qRbzxp2wbBmGpNlRV/+1FYYcSYsI9e6fRdyFMLSUM4Ei0EnXEHvOzQvOzV0iPtiaHErDaHYJY7H8Sn5WhoIap0yGt6n9fvDwFVDmg+ABcxyOlOVG7fas7MBGzr6Os9R6Scc79F+1AZSrdYMB+ZTiaRo+QljlGfIBM7lWS+nFLjxjdAajHk4PX3cr9jIsDmKTCIbYMgDtkufxVCaPCBRizBIjSLHvD66mkblwsSnTStBPBnqKViZO5k+H20V5PU8O2NGE30gJAgAEQ/UW42OAczUWfer7HUflYN9xbCgK62gCiz6OfHdZjYklTtfisi38swfcpWA9L7Z60gXyTueE+6lDjxWa0OLDX8C6h0LUKNCDazm2JJ9mVztwszye5mqTf8JMLrzSpJ1GZZQ19jwXUq7NFbQHDcTGxjLGLol6vsS5XwgES/sBMZqmM1na4IEiMzWAG3nt5VGEccfaXflQNU6hP3X8+xpTTEtpcJolteanXIMUDA6L4R84S0pnEInGL8N6d3HvtL4h/aMj04aBr5hOxUOZJOE38rKeh+L09aG6XpLcu7qapX47w7vKixQt67xd6Md9UyC8wCJsPPvegTyPeVYl/y0ol8HOr8X48VDK1a2mnIydenQhYY3NHwgNCl3qhzM18TCAz5CvzTDw+6WOago3VE37S8/JvIeSvUhvq+HehjyHtMQiHY5448rb/FkVtdT9VxzZt0tjwhp6ob7icJgdc5v7lvqBDfIP8GfkxRoUtXJQWDXX1Idimw1leHm+qxt+6pn1Vp5ufeJT2MuWWwOkWLPE/Z+5ddNPuEbtUqrQxaCUvw2V2XkjcgNK5OqK+Edthk/y/3NEx1itQPJIH07b1EdW/TUO9tSAL2qPxR6/WT/4jujxh+pgKqTIRAOLmUwAJPkp2J6DRbup9YFwQBNR6giBeeos2lz04uIuyjSfI2xMkTruPvpcRxoGWKCaHKoFl1VsedpCi+oI0iSjA+dCzjW/jHX2GaCww1o057/2RdBsNbnKDYRUakrBvcyt+Nf61KyeFPkm2EkkoQXnFC3UfNtLy5S4mIWhu97cy8MdHiPbDEkm1KxKu0Uux3dd573VhzS94rIXMhAtJRBOd9uFDAdhfCs7MVbjKZ2RC45uKtwvigNqwL10l2Ijm9OdGiFWmVclRTeYUxdYVGVZpespi4W5XlNv+BM3j3Ml6wcAMBK6On63BzTZUQx9wc2fhBKzJwJ5OJ5milX+eHKV4qGa7KIRI56NXQdz3ao/eYerSoB5V3+uwCz3l82yV8qZffKbkEhD1iZNuxGK0JzIiaowMo06eTnCPC/lBNv2YxZydFokifZgOtghd9usTDU/Rai44CbC35KXyyj3KBjlAkB/tFPJA1SkK/G6nQaVKFsTrOvIaod0i7wLuHtNfsOKkGQVk/NuBEuY89tFTFVZVY6tRswQ92u3PVbTlI3HNHDqUj10VzuUt+RGMduY6DmMyuPVz6xN7ejVSCFcB+MVZ9wRxXOpLth7i/eL4REQSa8cX/PtKJeBzQ8ECwYLUKvk4qL7hQx9QgM4L9n5jkY0UvgmIWa3WVuoiABMHdeTK0xe9BMfaSRjpMpvrB8G6U4jF9bXcr6fE/3dd5S+/c0y3SBHxme2ynqzh/kFB8VuZQDhRXGqTA10W+Ws/K6OX8QgR8GjzMJnDgCW/VpoEem7hA//kYFtelXW6KI3EP1hXs5lm9I9w1rELVF/4T4ale9gZMMdXiM4Z1me5l2NLhkObpBndNyclhPjd9t4YyYQ0m4Iu1ObuwLWtSs2MCcBWcZvp5EGz/1wAGQ5WbmmlwUxlu1+mv9aYU7jn80kwIe0c8JEC6q3SvJyUUv6idLeR7/JQVcqE8lqHf+I2X/+8z75JntRKd6IpByw8XyofeyT+WgIwaSZBfNONJJxFTd60EXSqwgoRyXEzW4uLblQahTx/Y6IxrDGyA6wJO8UtwOYYbA8jdiYMs8iPEe9+Bf5HXEDAxB9vGC9AlrYsfG6VDWeOdDpOr72oidJx7XvquBOEuUHAo0hRae0Ghblcn2HHumUiHPj09W6kGezMpLa0a6y8VhhdbrpPzu2qLTELxfKUPp0aBNDy3vAOJcW7rhK67vEFqsotFoDJnMmrUb1UBGdCPvNMXoXMvvLU35NhVWwhBoN1BfEQQy21hffKJxr+RL/8mBemcLX9eIwjREK2/3FTTKKs/3BzWL9RLGp7n4qREnfucAyhv+s/AIL8s6PJCrnEAi45KKzfZ4gXQttIcIXLSim1LRs1MN5jFaCySu0Xs2w8OFGZrcZlkSm5txUJFML5tARPS4bZ/ZFxwNaIK2hilRXm6ASp06FZ5AlUXTgyzpVFXopjsRV5yKiJrEwulFa8Z1VJE0qwEBwNF1hv3zucXZTr9CNQGuxPmN8j+bu6pV3X+5NUg73xzCz8hkoni2wgoBqkJnF3WZaDUAkfKaGLUYumoK50WMPgSTTMLrALkjD3WwcfxkkMBsI+flehMh5C88b9G7seQ7Jl0OD75rFoqroFaB6zL+ujxKoCbyYD6ceRMUzydOcDcHTg9cX/OQyVSr6QQeaiAiWE3wCpJmACUjJ6t22M4YO+cWTs5Pv0PWkT1LN3hNex91wvKPHLoh0vC8IyGxUo/9Cjp+zXSqAcL/+yPlm0wdRCcYuaTwU5z7nKPDLHqj6WxjtNAdNSPThhXGgO9e74Ir8SAG35JiatHPYhOuiZJWfAowFB8FxIn3bpSKqQgMApPcJ0crVRuEuwVfhMCG1FHe8n3stkeSjrlUhjVme2icfsVwTgUv01ZCVOD/QncdGfArLpQyutfn1K7nS1uIgApEgc9VzbE3W2mn8fi5MjkgjDiV5zkuP5o3OudPx00q06dubBMVCGRW+vEWv8AtgYI8lqiIbtx2YMCNKFACmEmf4ZPuQicUMjH9E9cG/mrSV7qcmv8LPCGB4EqwCgwDPMXCQTqNOls4b6aqs02NIpxJHsZyWsLPc2cLdg2Qr5BQ2seg7nMvDw2QCiPgNg/SggRipyWYnByVo9jqfVIb8GKbQp7ZJzVDYmyeD6IC+a0CnKJ4Eh/MHzFqXy1JdlKh6qi98EafrYNMXbxn2Vflk0I5riiWAofz7yMAiK9eQKk0M5JNvkuxG6pQXH9o0ukzisiyVHqHiO29w4spTDrLJZKS2S4BjtwZbDw/DrIPeENKHCSFMPI4kR3JXxwLS0ZVZCfrfLsH/f3QyMov79O7KWb8SrxBtzoHp6eoXQ4ptmO/5dBiWtMMqKnxh8A5+hAfKPLqJC5D3YFLbjQMPbpORoTJsirLb9sLJUvI2PP/TFDQ7tlY96fqM8WYXtrj2K/8JdAw+WrP6YZs8If451FICVFMgWTc8fpF2gyXuBW6HN5EWarcyaOMZo5fBu5ydQ88Qb4nIXkQXvBajeUQVCVA15NIaeJzbiHEIXF0RQbE0AETQSszEngE0kMXk/wgbB4CYW+B/mUitZJpZpvvkzfH5D2lfGsNllhx4bYiALgu1avRHxGRJcOLqaD2Tv5MZkaTQwscjnoRbNlXhU3hrFF4dYiIOuUV06fYY6jbB8uZy0RPcye5W6qVs0iHHDh361GjprIZWKepZ/VZSBRs+50g+T2U9TMmXLMyJLHkm/jY60fxrJQzvOU9TCcoKIuZUXIbaIlHkUSgzrwf7Hbfx88pf5C8H1IHvD/PdP9bCR7DiLkWhUCEdOkYtOsCAs9O8j+tl/6w7uOWcid2X706KuBmNz4CrDOXPS9ZYxrEaIPYY6uXutpN42p/mBsDht6LyKmG+hKjFz8nBM8P6/AKzFLnhHyP62gm+7kl4Fuhyo5PrAde8TD2zQJzjws9YFZYHXYa1rETJjKzmkilPNYIBzkpW5dmArzW163+OwptkhJaBDec/V50dxcgbPggM8pscgg+53PDRR6SB8LMYlSj4OgG8Jsi68X+8BGYKnVPZ+W3WvgXTmAFxKZq0Fnpm16SOCtzk4sjoCLjudr3inf+/c5BiHuoAguco7GIyJz6BEm3f4nfnnxQL9u3Vg/S/Iz7Qk568NaAE9ZXgVnm2In62uJZQTmi1M4MjLRBwoNWOfDSlCeYsXanYx8S7oCe63XmG0YgcaFf5cM/HTldBCtMaw4AOPSngxuXE8xgbHg0qdmyw4w2sDjkkfwzmFmXAi5j5E6s052ooj8XW/lV1ZVG722S9icDzLK+pdBcUScTJrPCSAHFCUPulSCu4OjyCCVsWYkzpNPhLa85g9U6YHvxP5FYWKksLr9aplpcU8g1Dyj5IyIi4wUBwtuFlXkU8CM7sVDHxd6lrdqrjqQq+lKsfIkVbX5SRufo26C+hSa0PjZ2vYqQivqY9X8EMmo4RjqAqLSzwLotefcrSPpgpwjTqcg7cLNnZGzmQWTp8YZorWf7ZWJD41kHWJERTnnZikzQK4NoXj6dsLYLWVJnPYHaZ8veZqtnWgz+jvwuKTPU+5P5MudjWW32IICIvw8qfTrxa8wxRviefR/7Vu8aihYXMq/rNhQg+vr01uC5jyHOpyrWAzQ/iUmoqfX/JSu1hWquj11bQg75jukwn2MewgnGvHUY/TUFpsbcWJfVrqQQHtvT9JbR7uQzzcWvkZlEHYthXAs5uB62MQb32oaAWFu4r3wq9g19/J71EvYh1wIqvgoB7O3JIFqPEwLP7oqDFG+b0DkXP7D+o1D7C9+MXNgXrsQQNgxfEKY7iVcsrNS6Y9UJiMdTCW/rL4vARrXuaQ3FCDGauaSv0n3Lb1Tv/oLBdIqinkZFDUSQ5bpMydYXz0b+4DOiivxGn1P+VFUfzz6990TSBye0Oz9b9zxZf0I1dBTn2Bk7/Px3pzP6/IiEYh6X91h6mmQsVPOvMNwrE5p8Bx945viGAWd42Lg4PUbNJgbfMrx3QA3iJ7f5/+cb86lZNiRd5RHMBZkAhLDaeS0B/oP877RYdQ4M9093S/DjvUkZ+DRxOPTVTsrawf0zMGyQo7/sGURYa5GWwPYOvl4oO7Muh4K8nfXKT8HxCAasYADKXuWZeqpLoBnjTrYEe4nsJCHhvG/eXfy85S3CZCyx5vrI9rlYMXqtZ58nGAXO5VpKVxS5c/oY3CgFlf/9tmlrcEJZ/APzY1HJ3HPc7/tOoM2bhVcr+YMrebmJ/sW5P4gJwctSB6JGOFvnbTcVSTof5gR0rTb57VaElJRHYqDKWhoTPQfw+CkFLcrkpPFFMUhk/iq65FpelRDFu5cxsxlfw4r7KpS0O7s6m9YZPCw72mH3TsHfw1Lb/6cYpKwVtDUT0AHc52ee4IjqP1/WEWbFivhmpZDbCkJEK6PCsF79jfogbEHntCXSATHbEPmbl7wF8TnAwvUqk1/bNUP4q+WBh47wSpC5SVGsT08UHfJuYtFJ/PqBKUVSqOuvFt4NMOMhFeoM1eU5HkyjSWaQGKAO5MudAPBYAZfjDpSdETjXVZsw8XKZyHdMkMhPdeAwTfVo8ThNl9dL/95nS7d6C2QQaQxZHeZHAgWeu4ps52a0ZEHT13x1/XcWsrOiN5+1UhzxMrtoYRiDY2PvYt0CIsourB9+hOXFvw35IT/V4SRqmqjHyZFujsyjscbbKB9bAK/ATlvu1IcvfOj+IFlfBmeX17k0fwEyjGXaFFLnct+dKEKOsYaCjR/rnkNKq/KLYXrWpnebYlKWzfBWOgA9EK+ZyTkUfE/wSMiSZ+JUxlc03N2czlDeVSt8uCScPV3g+z4IL0j3guJQOti0BTRZriBf1ryeTAIHNDgF9vK9sK2J/sKq2TOst4D1IrhXMByphWQ34r6PpzHJu+KXfWrtenInoi2B1xnNKw8X8nbF2d3cpAFO+zUmzLcYOgKD/dttWitIhHHxZgo6DLgEjPVW1UBozIUHL7+Hf6zZsfugd2igDGEPLiqFWbNfUjFk/FYwpOSfMKlKEbFsRXosAT8ucA/OLeMqRwmnxtczUINLmloaktcblfNUWzPkL8/7Ojw/4lWDN4AmVjhtPSDSbfdJ2Jc9RJ6OgEipBgtezLNBeJd0/qvccjeHN9x6eCd40LQ7FRRJ5WipRHfxb1vrtzhsaJiALV1AgFk55Juxjo0i9B2o0ez3H9ZT1sm3ZwOnhstI9Si3kYiTSTl26NqNucKlNKUbfSTQQbB9NubJ4vtxeCcAAB1VDgUy77Z07hoP9pYGjjA/f6GdT2ObyEw/5yQFRnmj+c/jgDmIG7MStQ+I2DyBpi4etpOPOvaNA7LCHaz7yEUvKiZzyEtSarogMhwPQ/QrXuQJjuGXI3MUV8zU2x5lt/sLqfCBDBRZuSuH3967pn7ZPMTlvOyGjUiGpYzYOqNB/1W7lp5vnWQl7ID2ly1ARDlB+xAUnXwzqg8LBFYEVsNO9jUAeWzRO2kMAoVy8+l8PCck4492Me7wm4WPKczDAyBKvWqTREMtGEGAzezLKeOG+okaUkax4W+c1CPmC/+ZXtJKV62QwkVEPj64/cftj8mDsft0+f7EVON3C1zcAp06zvS8lj/2TCsHUlOStzXmVeMzPrVUatTpUNJ23JwZTnPp6jSVW45TxwmEZTXkaA4NbpgqvwehyM98ApUgkgdsMZq1LkUrrzaCRdP+zmsbukTtaTgKuq0PpApL3Y08NtIM54RUeoVKw0bEgAuG49jsEUogXPMGE45LWTST0+D8Fy/wtRJ63g6c3E9F1N8X9LJjh6DIfoHkZrYAUr0aSjiS0O7Uq67jMSBt54k4YH0MtOoN5qFCnB35JbX6iVYEVr00FAFh1GDWePt1Rlb7YpgiLKK4UTGcsPTr8U9uIILpMAkdIXnuxy5w4RYGLt7p0l12r8dwHywqxtWmMr73JRqkmy8sKX+BJpIfT3V1gU0Q/llDZHyTNtBNqlB2UqIorMxwZxphiB7RRNoeeRqrYfLV9zqzWlvvim0QFQZqorhz1wAL+6RkNFN8EIlHFsthtvq/RIw3+Y/hMGGM8FQGb/DjLGJ4cDW5ocq2WsygzPfYEHbtJj2mOSgeo7A53rfXb3ii8jlW7f8UoCdeHuspIN676v/FJljOqnqNDPQIPe9i20QwICJRy7Z3T4BU1DuelI41mfFVvkfj8jgXue0xibV5FDnEMCDaObaoKjb2VwhA6Wtt47xTld3WkY/WLy/+HgE82l60I3U5akLrcmCOXLpF79StqMqb33nYwmHJ96/4sFXyEScFgyE+1uJzYCmyVkrpDd6M7Qs5Wbd25ui/DD3kPlR0QFKvldy905fJzZSjy3xV9cdg7LlGbTWYrYQOkLa1RGLFpa12T/pTK2Owx4YOJsXlo7e9iA+KkW5O6MhVhlp2HptMcnW2TNk363XVXNhmgXMAF+xaSJ2+WyDHODcMEKft3sx82gYqTdymb9/MjFvxTQNO88NZ9PT2bQCLk6Jh8cNOg/5L9RyB4/NUklWp8D/jT5D81gluJLe2jVAYKT8p9YCHwl7apHISkK3POrJjoU7Lzuhtkebm9kKpAQDDh6hRkLJS/66FjQ4XsOWfhM/5pP/H/xk0IHggD8Lo717fphvI2jKJxTIDPtVP/LtSNdbXkJH/7o1gdmC2TllDhj17fI/efDNFQbn4WNGtsCPkC5EsOSb+6WbJbaopyOjaAUAFkIhMuttitKpU4GshWt5pBlZ+AWBjRDiFKei6PC/i8GHH50M1FXbp+VoXV2dt9p6zxdHUF+bMERBmSf6zcbrbjaIGPeTHaXKtf3EwQL/I9nnYeqeTRA6oZ43mf2QdtPhJC7lANtkRDs2rj/WgZL+y2BIfg/3rzs1eFH9+LTQu1+QzGuRwOFIxMgngBaUgSLRAIs+W2a1RQaUG+9/t2nYuMNJ/VVoNhdlmQl0vhk4UIgTrg/sKY2lj8f03olo0WNjkvUg5ZkjJifYbU7rmubblKpAeW6apLeJQ2aqg05b3SrkuTK16Z/p+rtafnjveCN8Lb8R5y0o5uHP2q+3zz8pjb1CraOrPcLDRKEORLUjNh6YdjAAvBdrKIRIdZTND8Q8gwkuGVdMMHAG5PFOG/mh+UaEuwMAqazO307hH/ilEs7RduAr4pMuaW8aMFSIEqB00GoxRR9BlgJs6CUslP7tL3YQtG9Y0n+6RoR7oiJ0ZgGCCL4TmHFLQXL/IYldGxbWy3ysCIoMmsKv77hq2nuOIcdS2tEFJ5N14vsiqQ4ChYEgNpPUbh0DYqcERk3ZoFr0ofgk/rM7LNqCZYPyjygqUaFGrk3tHTw3TGeYr3NeunxzHKzq70DaSRcFeKlKyHvIfh8rNUf2UHZPV5xntBWpDj1iieZKmcZf4Xm2s+qvAqv+rKQajbLQoGjbB6iNXIRQbmXG9kq2wIrIE2Em/GO04joxQUK2CMASgYlThKdl8rjRRN7DrePkXJMY6DQKWnHwLJ2ns9rMdjxe7Z30zfm8YHL++uVibxrsnwpddpbC0jGB3ZEVbPmm85Q/tEdcnFNZg7Z0v17fd7p0TUBd7DhwI57QMoEVxfD5tut80SkMo5Mdejn7cA3mRgCQdQ5QU10YIeMyFImHNaq/cPkfE3oJeFVI2RrICgVaU7Bov+Gtlg7C0WC6gpoHBqJs7A/xUoYCUdk3wHXrhMoNWi37BfMzX+ybCzDY4t0QXTabeh2e4A4wGoaVTB0eC3oCSOFETES41MAdXngJslUPDSuXv3Z+qihhEJnH/WQrI1OAp5m57RJv2kZviZze9niY5SCpKVGGYAy6Vn4VJb+TaD42CW0LMffhnhbsjzTLQzulm9DjwT/+Ojr5ttAgo6UJNlOO5sB9AOh5bL/7XQ/5BCMJOtyLJNtw0IJqpG3ejYdN2gBHamjUwHb4d+suI7f4BfxMG7ez3NBBVIrzBWOsqAvSMYvYh1osFNcI/VeQPCWHq0mpoC/P2mkAyE4uQA90YyIl5SR1mWH7zhrZ4aSnZ86Q5NWWcGaqSYobXX4wemvkrz5n+gajO56y8QieS5+W0ZpLTAeotYFfiQGBQVpOA4FNZeMMmXiR7WkMaFLmxAWp3Hzylkw9HTwRU/1NoG+KSNJpcuSnodHLvO2GZIqBAccXlSOXi6TkHRd1fbrRuy1DYwZ9U1a8c+kHlcRDSJbkszpYkn5b7fSzrCyeeupnzMVZ74rfdpk9y3Yl9UBEWUrRCF9OIZT1ZHoo5/I9vzhpyWaIMBZe1msR4mNds42gx+n1uVGnU73T5/mZ6fgsxmBuioZKp6z0Eh6CuZXmTS5zzbWdWPdYhjV/arwrTL7cu6WVg950DJ0AgKzmecByC0z9t091kW0qQ4vAXKP7eERqNFSX58WaId3nn0sadIJ5vkWddxWYsmwDGPdu+WyaFEDHOC4YSkteWjOPkBbqUJn1BCxiZ3bGLct2TOWJY7oovFovhvGo81l+NHPShnNs2lroiAQdUb66bsN02JmAvOJ4lSJZF+VADnMYp84zrpZ70SYMj8INsYuxF5hQKdVIiwrgWkRVM2G+owkydjY1ZOjeiOQfKODieYon+aPhWP1lYI7nIIoCGIrrpwpiXHcvyWoydxzscEuA41Ov7KbfwKbLXiOn2ZMGbHzkbKLqdM+szbF5oA1LfI96qLhOnhYv1xmghnSr0AfA7eaHjWFUhqdKknhYfxzXWrE9NRC87Zo+Ss1940iza6W6eu3/mefCcLxhsBveyc/od6sfNzaA/YcyERwJB+W232X3kqUk5sxmIWqZAKmM0JYFdgPIko5hWxz+mz7NPB4zC7vf5cIdOLJUPy7dAEDibCUifRFZIcPEINZ2G2B3X+tcmO5kBnPfO4gBVy+qXVN+3MWT2bzYKHZwlRexyLw8DK0BEzqlVV2RgqrMXnM9ZspiJLhooGMfROBdtNRU3/HkdeXoODgnFNu41dWSKBWY/LgG8+yd4fIfBaeNdI/zIKpgTc7/KBcc15smvH5jTKZaT1y/sXLg0brkPxuWofpyaF1Ap0EwLLLTT+4mVKoAZr9VvC4xjecwy/S7hTGGJh0ao04iTXZ4bxnks3TSEgYLtRJGBUQmATERPD7/9XTPe4N3OKJuQO0m1W48RafeMKVyf+eB/dsfdViPBHw4bDQevDrI9/p4f75EtQjdELo97htdt22jxGt8uWdKJUmkou5wOzgeHc1pFkQDgvqLL3EYXmKTRm7gBM8hcSi9327oaizpxbl81OvPRsH6n5vuEjC3uhhitt0vuH0RertAeL5KLBWiaozpF90H+pZux/XwulPDj09uU7HiOqAKSq9dVnO3NYFPqFyHPxQ7Vrs02VFS9Jm2Z5icyrtJHeM54ZG6HrUtLaH4B800Jwt8H2JWM4ttIPVadebUk0kSiftt9gXzeJuBnAcTsJp1r3mJ4/MXc+xbpnwfLRXQIckVvdMRLTZWyDj2ZOGuePGA97+pmrIWMG8T7m9tGYiB7rPOAa5K0fiDElS6fWgmaXINfPbPLlUNQF7yF0MxTW8iMNKLbT5KpP+grrjKQXp7ifnO1IKIAvBpVffnvFkGKj66J9q1nZUfOw+sW74usfNsAdiUpaVppeqvxHXVZmdtY4d9CpYSp1+5YyftDI00HV8ZQq5AyboNNtPWvGOcBB+haoYTtNxtHI3EP6XxVMf8zx1+hWYoDtdj6xZdoNsJMUJC8j0qy0/dVUmNipEOKlINoNsJKR4i3e8dnIzYc0ajfjO0/13JbmtC4nhqSODiRSpJni7ahutnmS+KLmGcGyGUn4g9DBV+vhmkMW/V6tiLSJTxEzqDMKDGFw9+XMPmzId53H95gdggbEINe3ZdK4fTI4yeu3V28/nFU2dCe/9YooV+LvHUpDrq+MyMytnnIz8WUCuXSpE24uSCkiP5R2NtDZgUT30ntGZyKcn6DzXAXYnbcSbni4aeSIIjRFSPEFa4f5Aj2Jx77ZyC7ipXw0rAni9hywtCZWfxf6sBg8KO85AkMjtEg9CqHRbNcRjvCuFLAEFJh7rGja7TEbB1jq/eP9Q1LqGaH6o2Bh10cIz1P7ExNhhlzygr6ActzkN7qvRQsuo3NoOFkrwnmqzW3JgwR7F4yYEmzw2NmgFLfnNMBIluIgoRvWiXApZtD44jaUuM/mz33Zz0xvSYxV5UZSIh0gBKNPH+Ln1U1h/El71SGurEIXGW2tIzhbMBmSQDGr81zxRQ4+KGlv9KnDwCAs6Z3zoIjE3KE1tSdd+xSKmbX2afbFgzBuStcKLtoCzHvyX1OD3hGxv34MTQEJPq/GnHG6/LoLAg6CbSKZBJV4ygIjMbluGc9i2GQT3oWmrimii28nCQ3AE4j8ZFufKKUTHdkoqZoetCr7f+nDvV9ktnhtW9GxJTvsinFBV1i0d2uXISz/OLchf8HOyU6YOL+imeogiZXZGM2Gnp1P4S0+RttzQarpVhfCQSKfvqQZgTZoXvgHGwukuTgl2rsFU/+4pVzHa7d//IUq47lKhwpwUA5vB7beJdWKipJRU8whwmlXrOdeln8H5RvJZyFSgpsfR/EkJ0yOxWk748oWMY7NF+/9qHj9E9C3MQ7cOzzMnnIORiaWMxUFT1hJlosi0ZtqyVYpS8aalPy9ZSltMne2GSBWjrYYsFzROMdP4NGu/gW4OTQGmCvs9TkoGfxDuu2EBgdwG6er9Us1G6HzEUKofEcs5Ehi56MIj5c5FFexDfQdpd18rndi/EhJ/Fg951Y0Gk6yguIT32c/l/7TR6Hle3HPFzZ3RFDhpKolld6vELuqCLtQKpt0o7DC3IzHZju+96jKCY4wVaFhMcjjWuFZsFVkpgGnmAYxOpTKxxqlCVl+bP1xQXL5zucxqwFJVDfODSSZUIAQtXhR+5yFrf6oMn1pHBw3XiZS0WPm/sQwRNcs/mPjGbkYY+6DITdZfEGUGQMhBnd6OQihgxsuk0v3745qfuq//jRXzvJ4Nt9qJFPC8GlELPR8VftVcPGphJIgZkbE2EXXMtvCQ1iSNWb4nqkdqVqOqD2HEVpy3tK3EAw7KLWYXOTssEI5ba30MnfVthZCR6ysPRzdAEcggtoptI8FzFoyw7VGahhnDb9SzpIjsTNh48GolCb4swBX3PyNqJeQNpzEhmyNFL+hAdWuZUJEG+rx6H1qauJt+pgtewIFOCBoSh2L0PImplvduqfdTue9WNmcG4d+vO7MCOJ/sjNvh0bcXybcQ2rwglrxYSAxcl/IRWjrD/QTJFU7as+Yntqv4bUja9gPK6S4UQmG31ec+N3k9rrdZSI0mv55R+mWnf4E6J9FU8mA7hax+1rrZ9CbmUaDZdGNfl95nQNHHsZkf8Rxj/CVC2KX7tDTWMABApzHnyNa/RE+3K3qbbu4xitdoSx4V7zkw7LNGw6zXpOkMAK6SyJAYEYfJZ5HLS3PNjt+OTpT8vFyh/L6Q03XjVbDWOerXgN65lRAnK3PzbjDuWYkLkLWKHgHzRzNCAhv3HRg3aLJ48xxn25lBuob/sH/+6T0FlZE7bxOufxetMDXNchlsbUsbocUAHPCkJwUk0KkbecHyMzLGP7qdysUVnfKoZZJkDtukyPgDuRmjcDNjnlxEqx+r7Nl3ev9Sxuepw7b9Aan8lEC9RqVfO4s51BdtQQ+IHVdqnc5ZYw4atHMOGGh94nTWj/PGeB9qqDbhCiqv2O97PqRJYvTBLPb00OnBdTJ1tsnRTP8xI+EIfxXux+StCe9CojfxsNDc6B8DnwsuoYSPPPaX6IBQ1dfSsVmZ2pXFhIx2t3TM+tr8+JjoCbRpjjEbq4OLPX9m5E+3mDwFPSrz98KNa52WH267ufXDkhSMVmGNt7mJY3hbqmtNq8Pxb4rFd7+bAtpNL7LbxFyI5cp70KUlXTlFaXBOTdARem+MwroERY62PmUm874L3qtY/B4YaFLxASrqaSsJHFaL5ig53aEO1SDb5MeYAa25P1GVZqli+JppE7vqFY0i6uqGxN90I0rJKyGZX1VLLLq/WPy3OT6Y3lc6ISyh0L0z44KBR9IExJJ4PVi34FVKoiBxlFQG76OsAbS5LOr14MMrjxJD8e6KJzBEf6bbuDn7IlsNdzgkrLhbHbekrF8f9o+mMMdhRca2m6spPh/46usA+4HH80Cuf1/kA446ttXfQERfUXzKTkf2rD2Lh9DIA18Hz80ykwfc3CXK16NtQWA8nfq/pQvsmkhxCQCuovEpNYzCOIEnD91Vrts4kFfhGG9sfarHjpr5hQjJ2DJcAuGSjqgIzlX/ornciXN+TyTvDWbyr6MsvUNrK710MBfQ1Mf35W0EkT6BUFApYFz6zAqdREhsw8FFJjqPTvuutpxD+fuRdqB8QWin8+6Q41oQ2jHikOdiXdbgmbsRgBBg2EZEa3HgAaeOWplQR1LbwZDfOpXmS401o8CtkD4Ta/laq5NR0wdxhHJCZCg7pDyDpxhhIeJ6yOseeQRb84q9pedGV8TxC5m2E/CCLrD3K8lvSjkRmeHfnU9b7ngZlGRetvpfPKWctfPwyPMADFDgQrJ2CN0I1W4bhbFJ2e9UJJn088/zNgB5WN9tBRkxlh/YCSVeHPz2+AxsXRypiaj4yEF9IEdAkpZ5g4i8EUYUXCcOfXItuzwdkCdg3vgw57ePQ6BCeFyaKs2UWYl4BUz+D44Qrl506TwHGV3IW+dHFx9wDQGM0C0qeG9UVu+GwjnDxHlsH+7K/rD+7VN74AYGvToyyj3OAwTPmM10Dnx9shV8PM5MA7chT/+SSwxw+prEWpSOtKwXOMIL816wdtht6IvsxD5jOkURnSsEFWtshW/+G9afwFRDgsMlQSMi41uDDz89cxWTpsMvM7UIGLwF/c0dCQ855+aYpBNcbxplcDlB8HszOSo5os2yKI5CstD4AU4rI6FIUCflzZ0Z3ivyYNFnZblkIHypMrxWl2PPmW8OmsXjwl0LLXYOU6RvQSA5WlNdbVi2x2iIoztpCjHnJqYRv/Hbitkg2afvgK9VLzZoBkRRt9FznXdft6Z5XbAVDY/UB8ITKYoC6GRHNRAV2PiIw5SL0qk5wPlj3anKtNXgZ1MwaiRwT0Q/1v+5v4i6WnxPIa/0KayJCLDtmBmSDQJDl6KX4SYVE9ax/JWMZrQOpAmcCSG7l0KRTBK4BcIGStXfk+zmzL2eHHVkNWOBlZfW+SH3SPG4rhUvMig84EreZweDJ7oj1we5U2OeBREs7KMbdGXph2IJ1NYppvVfISj1NF7wG1sbvu9WmyQzORpFkiPRjY4WE0KgSKhGRDDZSDROxdDNrgcPovbat+e1Zb6QKQuZjngvMc/hLzf0pD4jrQoXM3Tt23z+VHDYNc3Ky7ziUSUaNJ8oXcd9UByg36AOXWjm4sERYBSqytXQWxii5icHrprQa6Tecm+w1tJQZgglzWc0KZSWqyKQHOtFhs2zE1+Jj3QpvZZ9oLBfnRD+FnrYEl7wz5ENPKOyH4H1qPup6NUXGSdXjKqmnTw3X/YQS0ezFoVBfjp9OT8DAu10Y+a/QazeApo6bkAyZ8jZgzdyKfL0FMJmlUV09YDhEB0SWLdaUI1UOR6Ag1kRHNai0HSzaWtQyPcGZshNZA6BTYJNn+hMCrCqP9tfJGuoLLVuXTAaPN2Ywy2v+Ixv+A5KK+HmfKJuxMGIdpXUVaCO4oG8Hfos48Ru08S+UN5k1QpIYSEwQwO+ixk/2XincZcuJQM5Uh+HsMapzHW5kfFemiZ5DF/oAVIpcU6Qj+Ssxgv26lYhBykWuV/iyCMplpgibSqyTJYHSw0lNqIUD4iZ4qf8OlECjt8kXqevNibJVzi6KwCXm8mng3YORqxq58iw7ahGoYwgw3N9nmEepwXsImZZljeG3K+PngD8vUz8dlyWTvrUINo4jjigVittr994bO2BiqeykeIwkgJ0245HRGVe3pRO1Q50Kq4s7QXt16QeNVENKS93IegDvEvzD4y713X36qFJB4/MXtk8aM/vOj5Wr/+9Kvib3wbxkKO4p3diD7LnzHJeJa7UU0BkYFdlAXgdYPBxLDp//HZ5h6c/f0apt3kNLKpI2y483uoY4XaMUByUkQECL4SU5HJLa3U7NZmPMflc1qJNbJWoJOQ/3KE51PkGXG2RI/J8rjVfbjXMNn5OBfySwbarzhmU2j1WDTXfedwJyovJobE/cotv21GbjCxmnO8tamn8BzdNesW2cXABaSlmZwuKfcCUxnBX4dUP8N6CSQOd2vRlJdTafwgLL5DI36heodj+61dJt3ZA0lBHL0l0gmFis+dcX3I0nEW8erlWzFmuo1sw2hIz2fnek3mGxVipVnWUotHlTIiGf3EvK2w4hCQnHP0cbIeaRqpTgie5svow8xgXuzFL04eRfN9Vm5vstVgLCRz830RrANmsEyZJaotOKVOcapfIQNlM9rgWMiUT+fg9JWgUE3DCEgu1sAugoSSlccKAW/4aV7OC28vzdvMDQ6WJw1ClCeMA6AWEScrSeRc4I8cQJpGyol0cqeevjS1PumiV6ZCcXGBZkkPII3eNmrxCrjIiQIbiczZUKtJtVeNkSV/b98YAIWLeD1e+5CRWXJYqf4kHLSZnLGw7LuT+yR7YxjgjpWUB0mSAsOqvaZ6lEpAYpJBZFLaTq6MtmUqAeRSuFv8wtvITMH/YUUbrtMPXiCm9PeD7P4H4//9EL8d2EmY+GhCkE0XcRe4mGD9Ce5aeWXDPKg6cHUVatqwdAJcnOVam2ugslmW/r7Mm8M0P0HahkBBQUtgIuzetcRhC9vsDpNwj6iCBFBQeIhgAn87oEqkR9XL4wGhAghj5AXyBDp4iOu0eU+pvhJEE8kJpMGrR0rzpBAM0DbaUE64CFpQC6mxSUxl057Wew4/3W0egH+y8fk/zpHgNk1QFGxv44NinyiNb0VE/n+CaI4yGjLxVNveXbK7ivy96OjJY28QObvTkDqt27LJsn8qYNttCY0KJFyyzzwXd/QJxEsU9HLFtE8nSOt9UXLMriLgOuL8j/UvH9+KAG9RsoSK3TNInfmQsZ9FI1bRhDiMmBIwiXYexi8hJJpf5ITUVdQ+eLyT2rb67p3ZMPkeBmUc6uwTj5HqBbr69Cx0Il2fkh7ptqW4ASBPE0M6aex9r3ThOsYfLzcHleVr9Doxbs0xl5jWUvD4urQNo+Zciy3i7PkxNR1Qyv/8LYuLMIuDEIcgKIcV2m8ALPDas+JQ4bTMKK4ccPvc8oJvnlM+wHM+E7oUz9oHJBIZpDspfZ0lfgih/2zbuLmDJ1HNGLSztpFX5R+k/swrq8Zr+5tJxn727Dk0vQOEniSq4VPMJue5XPbifZatsQKVJYNfqcufXWJEDy5ejGdqqxkyntTwU46IRPukRIIiar5eo1zgnPHwwqG4XI1FUCb5gLJoUvOO7KjuIRqpB8DgCWgMcVlESHw9IzD5bvM7fX33mI/SBKQkwzPQvUogyi+yG0WMwIAKT0sYpLRfKVDB9NLS0iPEoAfH3y5TYCog83UyVeahTWQ6GMk1m6gFB4DAH1QleXJdCRgRDJW8ah0qhi3+RsT/0SJjTPfKvzaofykPDiHt3bvTthC1fWDVZGh0EW3oNAtxUlK3ghMRbRYmdhIrGuMARj1+vjgzeKzvk/rvViEy5Yc1VJwamZVivAiiLH95Ng/taehG7JXlxGUXLsfMLl6P8o8dqEIGmQ+IuQmAabeUMxXxvyepfFrKZY4iUtiSp8sfHFLX0MOvgwSvthQYCT8k3uPN+thmmJlb2F7JRZdJgHOn6ZzLxV/eGd98rDQ5xKFIHnypSaHlNEVQduj5xlBdVIywCXrMZo9atQwpkJY3B3rlJC//OIpDEp4xo2y2sX8i1m+kpcExJe6l2bkin5hxQx47jpxKr21jLXEvO//kkgDZCS4XTNQ7cqYCGu6ldoL+QGXtTyEilZV2+rEnPZglrTZkBXTtQUvgMwlfzyfX9x2IOqXzFJVbPnUeiuXbBCPzJZAgHKVlqrOMzHcLfW6FsldapluGbmZ5bqJ25BpCigIGUoI2uIR6R8irOorM4f7SDD/if5iyuEVb3cMBnlLJOl/mf0Nmi1sir37BkLin0kY/ErFXZGozBOmZ17gD2cbMmAiAT5qClMGSh/zHsBmjUQzqJF773598yK3PO0a9neVvMtjzKnULOpwuvs/nR52kLAWO4xR3EDqb5BipcBkXGIlREECgMOKh6JGt6JB5Q3/lboAY0pvlnCaqQb5hRtBLzydl3uVU+QYhE1bMghRUqFKle71qYEk6eMyDKreOnhtfPuTERsx6ofMoTqSjwUEL2Gl0WJQ/J7Ska4n3E7a1TAcCeZHojjGo4ATuqwI+5zB6gmQFzr5lmqUNwjYMDonZytF9+I7C1itmxJ55ET8ArJFK+i0m2xehIQtbo7B/wuHkF3jxGMIACxAnZXi3xPtU+8SYP8H3FlYVIbe/FMGqM8zF2Ctfp6jNEQuOp02HpITthLiN5PUKW+8WBl5wabRU1ZZpi01Dp6RDMhgrOH1WweaNasCymTUTwKAwnExz8XhtVh7m6Sfw1RiN6NhUkMxg5OIn8DuMTg0Xt3RBPlGZa+3cyu1+kEdSX3aKV6W3/TAFINuPlglNqrrFt20v694TZ4Ruxg4pD3iYciLI+toMHn4Vkyer8FOCXCUsjr90Z7jt6N05taScFWuYrNpikHQlue1fIcuizncySgaOtGcgZNHK0JoxLFDEjUGFCFVA8xvfQBGK9+uUyeQ5nwebA1zMR3CGNF42LFTxQEafbPIx3l2kbSzW7SQTDaWsRFLlGlWyEqMMlY1YKkFmJle2Qoe5Lz1LhsGsyuy04F3OgWn3lw2pyGZ4OiIg3SV0HpvAzjfSG2CK4VDpBm4iJCK3gDvn2Gv8hCPowCAwb6Gg9jgZ8d4NhPI63da1ZBoVS6xBNkfUVOixQcsja3VTa9LNVWOcQTyToBf1xCHzqhCETDPJ4LMBK8SeUdsI26IIlL0+W+ec73GaRQfqAmlL+DHzfop1WJPY5qnTK8A0eaSHxLPiUbumXGhyJb75cJ5EPgs38ByBcARdJqDo7SOW+T7TtZvDuGDKKB9+s76yo7NeYqaMes4KcnHFBn1ZcfDzwfiSC77Do/HUX/zBbcUKQobSwz+Po+RdynAzYSq0FgyRq6o4rnzKHWfjF1ABvV5D2/szhM+ed9qsVzXdl42F+cK4xlZ7F2OU+rd3jrTiolCJsh+Qtbih2oJoajToVP82zXZ4++0gKPX1O4skMvXtfSi4bPw9jZGQ6uDhgXLDkLdIv/yzBHYIFRw2p/SOs+9HpPxvx+3PkhyeGj9F9+VAjFCt16cTVNF/5bbkw/T40VwR5+fYUGz2gm9QjPh1eeEWD8vYWHhgsBl9FdgXRvhXc9KrXXAeG2F5fck2WykuS3ClVjRtxy54lI9jzuNGswO71Aftg6hyuAN77xEyi5sP6dltxkXmNjvpSRPmlWy1zFT9U/bacY08Lde7qST/vUvHbuaS96zblTWlARftzaHSoHjxxw4QB2+pyyPSrzicbFMJNZbcKaJum0sG+SqsRKKDB3ZY30cQgRcpL4okHMPkHZ5lAI0khmZJy3fs4TKJuw9ZQ9saNIFS4RA44BkvlqVa6M1LshlYdw4GU5x4et7/L679h5C8R0KgRxrdH7q3yzc5GqOSM7943vKkALmzaNs6qh5tIvLkesw9X+NZXaZkLbiW4o3zgSsr8mnkFQFpNu6IuJitc3Yfm1UaZIuXTnOgLgDzipQOQIUhvx/hfArA7+hXslnAVQHM+PNgTvQDYV2xoma/yaA8t9GRMQzNqvQVhMl74kp2pOsCb+V4pb8l/O/9nWO77GK845kzSYEfRizs1jUCTNYTPuNMQ/a+kk/RSbj6BsIFmcQa8w7A+4X5Op5dyTVsSxVhK3URq3Taf8Lo4GIaCXXqiHfVQb4V4mrg8LBGBxDBwlzCKSAeQL+azMOyn5xpS9Hmj0dtnT/Pbmo4lTelCNbcUCrFHr4HkxFLgV364xBYFoE2sswxdp/rpePiwlhujQmnoxLeH8in4saozXlZntyAovaB9dYucQfxX+rjprqf6sxxul4Hao76ajnkLIcqcWfnK/FGzRvJ6bsF0APyTG4uEro43KeknzrJZv+Bfapi0r5DBsL4WVdPDk3gz6Eb/ELvAzOH7NzmO83h9RC/X6KHTHqxVoXHxXwHzDgZG4Cq5f2FulDpSuXLP+mM6xCeK8AWkzuFB9Uv31hJptqdkrCd43FIywFS4quqTp834mCLDBZIb+wFz+KaKOnpwwF5wRcAwRYJ4M435DVNbo4eajwHLzJoueX2/LXIthqfGYtohGHe6wxBCyt5FykpJ3B/ahVSuRHxeX30wVR/P+eQO92mBEMVgM9R4+pbAzKJZP3/CfJ+h2TMskq3FfqZK6maG0O9cb/cboSD90VRfqJ3HhpX8d1DfOphiejjcafB8mDztJ6L14tI2yLh7xdTkNWWXAqB8GGrXuIAhPuU3wYIFlDJaVUYQ8nhVI584kCP1f+zJ6MtmU4qwjKzff2uzELVs4ni3h+KwstzS2AM/QKfPcunHs66nBPjsL2k7x6e0TGeL5qTb3sk6QGanpAKIwcGiPByATgpBI0tCzRPkYCrT+IgPzORTFRjc1BOTm6ViLuHeMFwO5H23ncYbrbhERy+4emngbPCwdoSZ2Jizeg6RYbCGZ5s0HwEYNZi3skZ1TVfroUd2ykRBWkEZkQuOn54yfokgngDQJhaEIMyKbzrfNjKcKpnVrV6aodT+afdmb5iwjQ9T21owvkTFHOE6o6qi5ClSk0EwzBdZ66GGx67AvPMvzAejck6fcetjdcZa9cjjEDNNHce/GG0viitgU2uJbBeHJtnbLd8OKGwZa0dNx0DVR5MVim/EiDmmuNARm5VyP9FE9q6NQC1FDnzfO3ll5pZXh8XxQrVunocOHcdxZHn/3lj0E14IYAMsy9wfCBDb1hf+ieCiGnTsVZrRmgAdMbeMSbj3u3gpHbxPINTSk3Qk5LhIho3IrE4TpQQuK518Boq8MBBGmDPraFdYp4xj23XjexQBOLMwVayfoCAx+nmx/r+evBGC+okz7rHkXhlPeRqLxHg8/86lr+T3cqpQ94IwQNWx01HoXGUjML6i8ZXiRCHD1doRiQsZwH+uLNaefh6piAllTohYNlN9fRyaFDmLhJRvSs8Sss7MdqifL74fdRExdvfi9wEaF1Urq4/WVW51VDEmNlUnbYobkoELJH0J1ZizWYq1ZggU88rokpww4j8cb6GN5JExouQFGL6YSkcoHgYKSsgiA5DglOdtYbB/rCsK5BSiXC6vUA32wev9lYvcYhn71vXfIy0b8XtRtu6k3mLjQxjvoltD27EhUf05FOekEIaV2CVdEWsQoP8tbqw5PDJ9u56g4eTy7ltbqiTRD4KSy/5itfUA2VrKuhg58v+RApx4iDtp9jt8NV2LulvN3f/+ONLFsPHlZU+6EZegVx8pnI3J/EfWeJBru9nVOCyhIZulxnuCFJiu1b9Honkft6M6HezAf2kf3Qx7J8xwu6wNLiWWNnNQYqL1ur3w04iVPc8WsuKIssQQPpcc1hNfwyAN9neySq1KhFBs4V/MaizrrnSIqB8bWiFyVM4VJHzr579gnxfFSHr1wEiJaigXz+3e/UAAWrX34xenMTq6PJN+tf7MBjDtV/ibShKB6Kv40HFfMG88eK4OEvTy4wDRSj77l5zNpQByYVnY71Xhas/nghFErAfNE6Vmwg+504ogP0SnjSrhf7kugv+wG285sibT1MZRyhqG36zgaJ0M5PUNcVP53gGz+1qu2EP2+PqPlXdiZU4OEpe/g4ioi4zHpC+L9+k4IaKxwMsJVGO7qqZQ1b6j0h7fTRGpMnrX0yJbUCPnFgd7h6S/2wFqyq4AbkFxdPscgWU1jFvaVDunAUWNWqsfs5F54BSD52uWEKdJdu2RAULIMn1+8Unk5JFBdcwYYYBMxge5WRI469FTXPpPRywd4Ch7HjN0y76RXIEjD3uRebVB7WpnVSzWRKeUNvzB7clzoCcTWCk7/h2sVU4W8qlrgbO9cCD5AZzLrHhEB67jX2ZPVeoiLCFX7/KhwiQVEjy3+dH6RMZSTz5AVfz/XzaDj0KX+DBo5/WXrtCYVwfhBtfGIsVTz/UfX4NlZxeClYZndVD9MTgd6rXbhiVk82cLx0Kag9eSddXFKVBSgQmLFQqXi84lYE9Rjai6om7cR6xmhaLeQNfEtApAMMKLIfjUzwowhAFVzNOd2JZIe6fuYtD32Epd936vc+6IZdV0hofpG/n8ajNJEfS7dSL+sUdsX9D9vVyfJhH7l9mDpVUKY76kq3h/OfeWjkLnwZYWyQ0w9Ph3mTWGWi9M1bREYm9M090ygx1rNRCMkgUqZf1BwdbhH/mKNnJgAgWmp8GOHxMUUp6FTJCZVyGQkKktAGOvKn7U/xrj7i1SAHAtFxolkJjUSrthanIeU03xetCGctpS6BXeFgl0NU4S7uJrmuSQPKLecjQ9BpUegjlH4zGxG2Ot3J7/TzjfJZJcGxTJu8w0EitR9xumF8YgF4PDmIZZe+z6exK/cgvFUqhOaYBaltXvaZVUgwzvagMjVOmSU/+I55GLN1hEBi1/PGMEIC8pBqfTXN9ul1lVm1PB8nB48RHzAZQCBl0PNJLO3NoiJ1EC26EUA7z5/dsqGI4Vcbcv5zBx5G50+iHIMAe+oXbojwV28jD6p4mlyBJDoxSqgKQDFclY6+XLt126GkMY0v/vKSCEUCzbXP6bS8Op3SRP2OrQctC4nrPndxfya7/l95Cs+/hygbCUF6iUH1gk4QpsPx2RWnaI8qcGgtN+agg1ZtSIGLNY1J+lT2AvO90eh1pUgkwbOzenXxcPtghXEy3cju8JOM7fBbmWf97+HVhT5jmQzN3W4O2mUDyPJqvXTzo3/REQskeAxsVI/dUaSvXnglO1AvQONlXuX3yHallm2tK56XaUpcBsVhFUIlVkXOZI5bTken8UEkFCDujNb5ndcgZJrzjynNsxYNvp2Wh5rjaFnHK3NkT5Vu9wfEkZ3Gra6ShhK5xa2jZ9ybYLA96snGNZY9LrFEy1aNx4Akl0ymmWk2jZ3tajG+jYj2iYUcNX3fNdLn1Ae/KoJjRwTe1qO7VA/YTik2A4JpV3ptILm20ghhhLi3kPB8i4/n0RL8zHG6XxOUvvgShwb/uy4q+Ekm8cvvVMVi0M/JDffVUiHK0a69m0HyTqZTzIE6JMG3OX04iw4Uh1xEBxg9EwS85uzaAYp+R1JbTM2DHACFA5TA4Xuvx+bbMi5bIleDg+tjLHFv2VZiXHGiSJQspMkfP1rIcn55Z0LXI+5hmwSXkmOBtTHieggZYvsPPcEEIMGpBXEtjJuB6OIhT/5Oewxtttzs6IAbQbmvaVwGXOREN2avjurdbPFV5prApboQpmhcBSbOekPcfLk/dNYHz1PO0iqCvz0NhdH9PjrxRJzO/cHtuLDIUY0eoqnrD6dr3s12YwYLSgFuIpA+j4fsibYpkmnG59b9nfZg7SFYVgB70ru6n9SLfYOjhKkziiRyJcG4lpKuLT9SgfTpPfoF1XsslqRW6ROjUTx43ndhlrXvmPIsCLBUgb6Zb4BGkTVYYCjKWpO4oO6tBDLQNBPZtlURZzeDhmn6HP67HE+CAiaToQGjmPhsnQoZiUQbIxMDsIuUFNHyScysKilMTqNwnqoWRWFFVWYB0fzPM5iLPWYCtY+PpWF7Y+3dF5LzHFI9yKOiS/mey4JgsfkYy7gF9gLnpgjblNzJfAnyV+TrCfWnwgypAEQcWD5KQezRQlS+AkeK7LLjYFG/nhI9h4U7AGHmvLcDc9T8rqoSwis8CGsQbj4KJkJIvXFMY1D5mx/h2gwc7kQmoWM5ntMA0T3D0XnGLUs+TSZI1BEZkgj1uuaMZgpBRenYqGD9QJj4o5rvRdhniUy6JbdOgZjkpkWUzuJ7Uq3WRr0YM0jDaqU5OfkLTmIiEDluVKlHT3VEWt92A6tCu+kIS+OcgfrgvLl+zqMNQLVTrfe544ryKulb97MoRnUTAi8BK1TQZPg0iu/xaNAaA6kY2yblenE5GcCa37I91B9fcnlusB+MEFJhMWg87usCQ6/OH0taRyYOePSpaIcXHznLpMi3AOldDWBPZOde4tl5TZGdWR5TOQ387xjtwIuzANjcqs5m23rO6O6py7NZcDWmon6HKTn2oCyugURa7UBjIL3CfAbgn5D5g2vj75xFmHNfUnu013NRzL/yuHKIL09zqgIzVpvLRSSR6qeHpfpr9ytRfd3oRW8f/hjWWXADeOAfiORl4GWX6Dd/9KXnwdEbeCVaHAIBixbNZQRLHiLm8+vaj2LIqJf45lwXaRraBYA6p+evels26uQZiobtefSZXsdxYgwee7/kn5RVneS5TkTftiSkPCUh73je12utysP0zDWZnnL5VzMIo9Di/FczKHOB6W3aG5raJtqTcKMVmkSjEB28eheso/+M3IQJkXuUkgbaLE3Fv3YB3XsNvv8TfXIHE2c6WNFuc7SK+/yt9+UV55wgLiovVCBUahJ8COysnPD1+vhoe2hrWSAoDc6+Xuo/nP5aORolvEV5OtRkouqhTyByA4QIHcIcj19JQq5cJ1kbrsFxIYCy2q9MTfKQWXKAKLbJgpzwD2H8i2B3bzS93C1S0zcsK/vW2SLtC9c3PSfh96OYyNvU2qmTiUgxOgffcOCGtCSDbylH6gI2+uhLui/ZgRdiBAn81/MZ3nnhPuNBKxGAquZ5dD/rHRWXcrewx7gLiZxFyAmSLHlIn8EmLh3Dom4xtpIZVXcC8cSPaTAMKa/UtWQ6ICcaCrFPZqDhxa98+bJLul0yuws3CQqmmDG4UiepZ2m/lgDyQnpWyTScV+n9ehcZ20sgxr3f7o6HnYziIwRtVohO2/AZw6gfMDvEIoG7fEfZwmvyT1YFWXCw+B4983H6txnHOS4B/SsynkKgw1qF/tIXLmm8bh4qv4FzLbtag2FOs2dKUtgF3lNkdP80tOZSBYrGrovA3Ng0QnlOkIag6VaxKPt93qwTNTVZVx0J0wyFJPXdVxRm3qwCgxZJ94flLBUIWgdWlN8AODaJ/BF8FCf6MRqe+KdTySbDZB7529zo1oS5b/AR3SI4ro7DpIuu53hQMNcqblHmW8Wji7rTtDJfoJZojlxJLiQLuAB8+FF/2swefMWlu1ebJsM5KhVstjXWm5x1zq9OSIOjSfDuStj/Pku9rxiq6vKPyGji9hrwD5DyZkBMQsLLSxXTz978xgaziSxya3za5lnlVXn9UlgHHkc5exO2SPfxW/qiw8RrzZcZwPa5Ya+lTQIVkEacH/fW4aGiJYiTs5XnWgBtOekZe3yH9E0EIdzbFgZoYX4Zh6fgx58/A/hQEgrG0a2DpsOVLjkYbGQ2gzRue563gh5hjRrZSxkdd3rDeMicttuIjIKTmDnJ3ZOVc4SpGv+9ak777EDZzCbZsGqRT7bTjceMQHCV7WGbg5OhCXtiTdhROuPgP9FptoJWw2azxvmPMTRwzG1FN97/sbnPRsOzNS4z8rlyR7tSMFeHvvtxhnOkw0m63Rgf6Bku1LmFa/iI//5QKJwLKpJfOU2+WJu6v1zxEBOtAl2fMpVLicIerTR2NfrcQzr6RYbH8PtD5parqCCJDv05otGRKIEskJkHXdNjJVvHhMvVArt72gNefjY+DoxCqtqpSLj8m6LMFbY3HS7aFzIXWgXc6Bt3zgeqe9sSzgIRlDr+9OLqxRPSL/EaE8vfr8/1A7w1wfEXAgNmYzTyXRGdwk9D4iPpep0g4bAaDIctwj8KgOzrAEaVmu+sev5mV3DorsTBMCOdpJ+RaLzLzXETCTfbwL5HianfGiSKr/yDJRPoRxoGvA33gw2kzqJxw4dmXs3PhZFuREQ69VIeiAl+eyhJOD/oJYPOliqHqmLIi/7IQHZvGvH1a8UysJ0iD/VW4uJwhGVOl6hTSBfNxSYi02uvgaSm0xgrjF40ss6EcCNGDpE4soY8RQ+Mmpndw3hrvl962GQsbumPkW17QKUC2nb+x1eLAaEKwIfQ72/l7v9onp1pbzeXlOlWfeWgThVRgkNOueXMCmYhIvojZ59NUaU7Q7tLQiLJSlkMNQfvQpudnk8xRnRQ9jz3Q8np8Twyinaq0pJCc6JLf0w6tNLNhF9rFt/6uF7zCufNSkdd/YMNEr8MdY2tX7FCCAiPPGK1XcW1Zu7OwhYTxw1RjF2pU9yiJHQaCTUCnmDob26Q5cMK1Yq49F5+JZpoyxFenoMcRFS/FdYi2zVFZwa8lDgc2W395bvfPAVWGpjskmx47+rD+hMGCJYhXeRoK1pAQBOPhpdSPFHhVFMhVimDDYEUbCQrqDtmFQC11K8yyjl9BryBJENKbvnSJNGQ4SJO/f6omKU5z7MIMxWFMNUIncMIZap5jdqoMjCmOMz43PnDJZnxxUZcYlIfxW7SHWWzRNFuzgVD8/g/6xA2Jhznbt/KUGg4eH6iFyq82HzvDeoQqPOzRPKxj8H+QK1R3XEmDYxXdcQ59uRLRLbiSvwHlWfYRQD/56WSRulV8B2ukgVeo0Be/IOCx5oe1DB8XNa8DrrGj2TuMJ5p9CNir59C//jdyklIF+rSt7MgyglwaSJ1KcK1PruLrlbwzSGoif+xWEUMh+SMTMCOMtG7AFTDcmBW1W6P0kD/0/V1VQoh90JcoA/nJBjnYqLlV4KdCbPn48Z2JsAahy20D2JrHr/IffBi5qvk/bkqF9nHj/OhMZS2/h9SFbWaYCNXHecMtY4C6m5kaN+N62R3n3Hjp2a+vhJgmgDTj6gAhsGyeQ0XKejvELy0LzvhOIKksOyIbtOkv2bO14YzJPVgQJQUqg5roeEHqShRSonyTjQBrclyZ8xsT5w3a05P1+zMNnb4z5TuUEINLWMnwnKSoKQ6dZKCcGE/YmuC4xo4imRCziLx9SOYfc2yR9lHX5Wr+CvI73KYjK43erxbgy88zwR3w0nkRd2XzUIdRwRIADJVs97m18/f/l1EuCB3OEUda87Dle2WhLqiBveknAdm6wKrQBHYje3F7fMMu4rmVF5yI1BWImifceDk2waJPYlZ1uIpfg7+KgiMzl2d8gemLPW/XW+G5dDft2Y6ZxmqRe15E5RaNyTCs4esI7qk1gxW+P5o5+wX28zgNF6f+ZAoSIRht9ek5FsKkqXcDFxykR06SaDzA9z49k6PE4RCWTX72Jb35OF2P8uU+OB7HKc3mpA4HrhvSrBlkKqv79eGRynwANTAtkJvd4JgmhiRvF1L5y4G1Z4tSU4tFF/P5ouGv+18DVSAneKWHrcL8JSClfzHnHQTntO1WukQ/lcuLL7gZhrbQm77cHKHOpX39sUPM/044MgYsJIcl5fPjT2lhW/t0xvsUeMQOVqBzalBhY1r3/Qb2CEz9Zx2/ng+6Iu23bdPGa7m8El55jMtSOCnkgKDv0Jt1SSEiwITE5h4UwoK2ZMemctbFta4IhCIYI8RovI/iDl991E/4hqOK01Gi2HWptOzs1k+AlGHhmZWIn7w4q++VZdws3Iv/2X4nj+9/V922Q9Sb4xo+Bt1KYklrEFnA3FDfb8fKEhiBzE334ksl9GC91fzmK5efqI6QUd52rkKvFrfFqlhC0LQepOHDHpdfmhimy/2WxWX08OKeE6RP0z9xsEKWaaghH7ujbkIoWoBLGO3up6SysXS8fxKGojIRTbS4ShA9H00XtIff3Z0js2OQhHBn/9/fVIKZvit4frymrxzXc6q008Nb7vJXetg+QK23L24bU7TTQRPD+KivvT4gLWsKSBOhtxsmoFF90y9ZDKbxW5WLnJzu15fK7RQiFjXz1X4VNymgXQwEwbqHaKHFoKIowoGtH94CIF4DIVrj1VRjRwGqNvk6CJGvx57qd4TZBVAxvt1ZEEvYcOz7XTgs/DTdJenvCtztKNDFY/6DaBOQaw/3h58EVc3I1ENGwVpDwla31yQYyL1fjGtLq0LJcpAIJN9Yx0JAUGfBSzF+mknbp2KnjXqnfuI4vH6IxsSHpN+NfRFFpV2n6A2uJd2I18odOWwthicwcJtnMYLAHf3afMDos7nZBrY78ndnGffD2rMe+FeYRS3Ks4wvUFafuwcplWOCHchrwnR9GsMOt7FQSHyBlYbxa7kwq3BOciV40bTnYoUcqSOlJaBOMSaP/KJzlTdTO4gwfaPLKwE/WyQ6YKnONwZ8mHm0ZdWEY5sQu2iz0dUJgkkhw2BxoVFC3lIWdpB0Ad2at24nj0nXUAqbBvVPZBFOtiIPdOe2YjDLvFqXo6sYClLql7lrWgJeEiodqxhisLZasT7AwqT3rbMW6bx0dDGwLvCzOReYNYlOp1e9fHsu3zvg5yAKz6gIBUch1ayPhjspHjDDfCunPQU+8qk5ZOux5fAThmifBlV5izRGwVFfr1cSz/Ny8GxLgZdULrHX0UF8qxPDc+4dk8v0TWviS/UULLKEWKdp78WbgpfiPP4hs/+D4NX2yfh2pqTfAcxLwJ8eXE1fwjAXW8u+B7lulzJjbjiOwDFzDSbLZJaw8tXgi6l0CZOXO4iCLBd/1Xz/a07N7LbievOUkHK9Zh2/5iBjAxRAaL5O0H840cy7CPlQj1Otp1OZpJCvTx/NuiGUuAwDtby8ys3AglWKduiBn+5GAUKjioq1JXsZwlbtyFCEnK0bXJRGj0oQCsLd85MalgF6EnKdTUuE1b1sABgZzX191chKtEOX81xXJWwdU3fBjSu9yVIBBmPY6hdYu+5AHghbrY4TnV+IDT63qPzyLclj1YgycRjAL8YvUlB51qJRr+ouzXNYpykliYF1mGoa6KM6UN78jvt9Q3ca47YOedf/l40CKka6Jb7X1ocsmacKtMn3T9fT7+CPJdJkplZhZqmrA36cqwyQDdSRwhtg7GsuPIT1u2kBAe9jJMRoTAo2jYF/TWy/kE2TXVPWBPNFgaoPmGkiyeKUuaK+MJt3N8F0kyMpng44WD4KoTKnfPc7AHF2+yFqiiSXEtRmYbhRphdl/Trv/6FTPrLVLJkDrgk3y6Fu7BoqCpcPJqwL9yFea+rxmd162OWYiChslKL/fTPmbFKzLnCk8lo5JhiFpi3zXi5+7X7ZcUI9xMDaXesy5ykB7V6ugoVf7BZBVrmgwXkI+8AqXkYhtIJ8oDcRSzeszOs5p2EWzGecG6MXjR/7DU0LyrEJ8UY7lHPtmcjUioWKL/8UKUUlK1DYQlB7Tl6tCdibGWghI9hdCrMzhNFB4pXu6Go59tqu/bLrA7y3GYIRJ7bbLFlqGs0F7CRQMjfxT+V9/Lsma5z95G8zVdQRrk2ts5vAfzYW2IW6RhirS31j0XEL+X58hLuaFruV1q27Rt9Bwv+9djTmWzVLQI7ae8u6WQA2nOu0jBQhBpO5rDSAJWeNAAPDIkEFAngO2kGJyVe/nAe7k6S2SFEcXtEuyoYQaJiqh5ol67YTZrxZWT8dau2lTf3VEtoJb8zAXUrGSsDTxfqHIVMPb6zwdpPrVjAHAWMNx5/nFRJdlNuSof3eixChpK+0tvnUC0xJL+A80EFcrNIECtWZa7z2r6z1jgE/iazygMdyBy99cgdXKSWghP0J9BGGnSHNpbcG16Rw51do7dwyasHLCvk8s0Ph3SS7QAjlhavIJrwfMJpMVQASzOJH2kxskaWhGo1zc1atXuQvFtrMzD5RNrnfNUCWRfx6xxiK2GUmkGuZfInzDOU5vMBPWZ+rF9gQNhpiZ8l/wG8tZDNb8nbkiPelEBno5vXJ5nU7/hBG5VMz0bOnjjP/n3OCgTquza+CSPo3qgZNQa+zb12rDEyHUFDilCCxvOR7gFQCt4qHSMB6Uu7XgCk4NYR3ahkgQrbOeA1zMXgHKXFu6zNJliAK11LVDhqEvtJfmHEwh7DluZ3nVnpiUrtgaVxFjbDPsGdB8YPqLcFnUUnYqYuCvq2huENGgPeya2QM45SsExzx54W48cNY1xL9FNhJy1HZYKzsGjC30oSJFEGB+7zT5x/d0/Ie2nEBcXA8PSVrT0qd0SJEetG1WIf8S44MY9DqNWxkgdGwRFljBolWenyIv5zroVCb5TogyI8aflF4Pl4Y99ZOJj9MhpE6y+QAnaFfYgpsWlk1n5VU1FvwulorXujIMz/tR66XQ8R7Zh3Ls5vhI0xto8SqgEnRpy/xCzwJoFscExMI7YYmN9//7SvI9b4zGAgifY57h8R115iq9ionauayuJQZ/BVb8H65WWONZDFAEb1IVwPx/b2F0ynglIZ13WYLppYjdqX9+I8evn5EJ60azOhgB/iJwJ/4N6ZGfe0hzu8N35ip6Q8Np3PXanByzkvukN90gSK9z28UG8/e3MoAr2Sn2P/5gwH8tsePGHwHIFIv+dg2lLJsKQbYBWJJ92CZclQYT3IAqXnvmB6k0vSLuAUQQXd6xCvJZk2RD3sbABU5DPJH+0crFBANKmc9cV7hwyhdb+UJfby5KRDLinFMNySZi2ichHEIuOKrUcmKSS6ZeI8hopsWKTW+Kc/OqjJLbRj/hOKkm/Wrr4ObVnGZSUPQCwGV1nDLgg7bozGnSXfw19L0CmxyadWcYTsumF0Ir3NjvvlnAHK+XVbk817PUxs9HJbtLPKpnexy9LC1QExvw9outiWvhxWXEGD9c63FDJ36/dm0qg73AmQGlJwBPkrTcHxNvacn8zIwbUcmNlTF49ggTyAemqiCcrtAja2tEZ16G2JvPPHjvcA7jSrtxDI00mxYdnNJJ23Km7whR7F6Ff0HOWXOaoIQLtayoCixFA+GgNksd6hKPSDg4DK8lPpFeU8E6hEl1GbU79RyIPEBHhgRwYso9tNLRoiZ6TtlQm+T9vMy7wgHGS8B8SNQqT7JZjSwQ2qDuT2RYUckQeN6rtxMXYi+vWdGJi4Cv9f9+F+JCHo9db4Li1CHXEok3LogO2/iGFtNO45FT/g9NYf/ZvvpI8WzpT/ibpJ4sGSKW0aARGMNHSg7AxZX4ydHN6aAO4u9LJivTsRyt3EqDfJOSsxX67bJVfbpkGaDN7S55LFBW/rO9Lev9/MM9SAdGPyQUezFkfK97U8eUxbM7KsI9kCpcN5PUclrSFfO2D+L3kHowyDwOy25XQxUHU0aeOyM7czmm47xOgIKxZFeCG63ZtiaDFCdzpfH3oHfSrYEVp9fuaqRatRP2fRTG6uu71DlFlrc/q03iu1FSmMz0ZnEQoeafumjbmFEUSJCAc26AbXTDf2nZ0Ecj9irVcpVpcwFKfUUjp+qMKiLVRIYplHJEuarEZFDyUbLpeYXbyFkiNhIavV6ppKK+F4P5CQk7ujnP7NIyGDzJWZDXLdAftt1qOwZ9csuv4fm4Qp4amZXf4Hy6Qro0Wjja5DphAZ7GDtv844eyf2//fmBAaOG7Phhjg3hxxCx9FGvDK77VIKi50/YtYUobEunVPrYLzvLX6zaH4wirOAdH/JWcrVzdp4kXJhBhlCUoYu19m2/ojv5MSo2CsnwkHVdIIezQfz+Ojxj8az+m8MJG2ccR42o3rLDVjl53ukJhu4MPFqJ4k4Qtkgm7EVsF8qbISlyhEgcI6FBVKvdQzrOGXxqfY7ZaEgCyZCLLCDH8cAcHVP8SFCRQ7sAwjrKKvnwYSV8nLahl3YJjvN17NlZ69WyaYwlUf/Gxoyr1pTRirhqcRZBzLJLJvyTE82OmJx0P0400oWd6SQV9NKFDhqspIrOsmBfhZ8wF7RogRc763C2VPMnU17+uPIbYsyoZKBUHN3gsuMozWf60UORGmCmjNF6wEvCJD+IHUJOSolVlch7najllkyYBMKWpwU+qn8NaXsv6ylUPsgxpMmICQNl7x3mxmUTcQE3+xSTyZDm2XNWjBnY+E/z64x7e69DzgpU0GQOpb0pq26/j/6IAjs9iPYN/gK5G1aslWRsddQEoKqX76+PDkbgN4XjVNM3xBH/zsaXpgSvlMNPvwlfFOB5hbwy5qGsFAUbU+1lMZsK7L7MNIH4rf1jCsWPS59ccBjARit3aGol/8OoxaFpV/2nDRzsQcxhIDgenl6kEUM/ziXLYJ6Kdv7JThXohrZfgn3azQ7ZNcaA4N1aPiC3ohThf2hIH7Tm7Ke7oHRofom9NwPbwzS2h/SyqlyAvNcMkWATBZb9V8d54P/Dx4ZKhpRMEiguNwiQBsMt71HagDQzIydFhJg62Z7yDTRK0f/t14Xg7LKb2uCq6hD63OuwIxeRdu5ztXFbdieGmFebhVOMnoBwAIVa02YRA9O3MmCMBzweSp9WCidfRPG148bUprssnC+7W45xLS5EgH3Cy+5I3czvTtZuxO9KCDtzOB3Q2nfwmBbixiGsb1RJiP+74RhBZFMHVMTp2SaeqMP0Sa9YJgJafLXbm1LcC/I3EyHvDExkVoSghb97h5hSCCUdBNXsYqVW315rHWEIc1/gcFiA+ZfIbBNzEZD4vloMS6lWyxirWBmN9t4PKxyrCvm3pHv9azkzp+2KWVLv6zK/JHjjAcYYJ7mxtM6wJghNCrTRQvWTxSFVNwdWXQnTy5+1DiX7iCZdXuvo65C4w5ougUUezNG+vNvB00zBM9EusQl+nKHBtDaep+BHukZygrsRNbkSAfrW1SDESGY7EkKu4Hjy3B0/nUR+K/OjiH8OdsxkIGLTRg/DTUeAu1P0Wjp7h4wv4R827KSEXc/T8CFTnU7fTE7vDexDaD5JhpZlEWdLTxAhu3/OIUGTT1JaUdImPvWhgGOE/gPUYWliV1ViBhju78AA0/wSwvejw6cLyZRCUgbU956V0mQZK7gaSRi2aYaNoY7S3+7rpv/Maj4OJhxXkL8i1/BXEiDbeieKGC7uVkPv0VLxUQpvCmaQ7CXSnf5lqYRbZYTp+vVsZA6UXoCVeu3qWue8W0RG4K8R0bhZgAzerIoxWsmRhkY6MzKgnMZEaDolGkeiQakPUjcEhOOByhatPN9js4Z93yIfeslDzN+TREi18ZC6mEa0cI7Oc5YuX4oHRni/J9b2F5Cx44HPIjrYi2+R8wFOXc57zpuSstkYF+lgQjrQm/tMjWQpi2RpgzAfo8adcXSH2q6DiZt7lPZ7DUDrqsccp3NrN+syRhQKJTYqww6uRfZGYarsMhDnlumI/RKY5mveq35CoqLCMbtG+GQyPUsoed8NDGA97kwoD0MgSr8ZwykxKNj1wrUloRcFKxkVipmNiOu5ZZtbcd/vEqOGktegGoVLWpyr7moSPW3mItWqb1jXpJMpsYzA8r8oyFwty7ME/OrcUvo0qB1wGA3dUz2xVwdBCrVwMeSBaEL0BU3giO5BUlpCizU/kFe/N3tjKS4d6IOb3wN5qKwYUqa5KMJ4YekPVULctTxnVOlbZ3rfh917UtscG6eOUi9XI378NKx6r0oi4V9dBMSYW8PFYv2K+0+4MrreqXtbRA7c3J75HppeBJKgJmh889c38R9qXF+XyHLlF2XTOekluWIToyTZetTcquRQkjxjlGzsET9Rh3XhbJ/wdGoOol6uHEOmRFbaVphMSsIxFW2jKD11AB5W3DNp7RfGIyTBAXVIa7uJ0VlfJRqu4yPw2uDMDBfvqLWF/y+S8Mh/++M6XTf0ZsX/Epb3HS3XsqdAZ80y4W57Sr1BrAo2mVsyy0MvHIBHRcYYpRYjJ/Hz/tZ+GudaUTjQSlD5PbOez7c517rTMwAr9NY+vX4oDsbogmAyGDMd9oSkH/3QEkhVFV6uIf1WK5wr1zQWACWa8lsiAwDiN6DVB3hbEapDOF4OttHwi5xzkzmwnuEdqop6HOo2JIWYSrzYYmWRyZ/uhBQ88N0Gv9/BX/XgD9M2KVeNrSoQBhKMNmr37XuPBbs4eywRK7Kg6mbG0XD/tM+QSg8KC2lP5OcgmdGIJPULdBE4G/hMDR+8kU/C3ooCQvz3zOYRB7HieJaXRxC+D/9YW2/9h/sqyAMdYJwovLi11ZTVkl2uSUxP8XDSRaj6w8w9fNryirP7cPZSb93nz6X8nrJK7+VwYmE3xY+5HstQ6ktXf6dVaXMuJsvgDFpOZsXxD9IYmbaY6Smyw31F6Ds0m33fOh7CQ8YfHkEuE8a1S54BRdP+1hbvr+Dvzdn96OkSCOIOaTT/2ndSVJMH0NIwBqOIXJnJtUJvAJy9wLz50/IMBODcN80jH60KVUyx9Sf4IxEmJROzbwm0/WbQxTJTW+aaPLmPz4fWCRRBlnRyrRVYpfwTAUVpfQCWGJNnBaygucK2u7BQdj59g46XVXDiKN+0VCID+ED9jPrucS6PvvtSkvOmfnmGXA5HLAHGLpcrK2S5c/14ec9uxo7nxPJHK+s76TQN/SBtpeKIx56+wapq5v+Mtdbdja2r75OEkl49b9oLPLTKeKUc0BfRR/oUevTTYp+N9Js0FsF8L4cN0GIIYihL3XoNRHjlgbtSgJ3z4B6OBUCnHYQV53CGwM5oJO0Ua6gmHlgvzT2u2/e4J5Df0jgPQSyYqv3PRA2Z9QdCW6FNZukh3fmI8ZNTVXSddc35ZcU8QmJ4aK9/bCjmemxeLKUGaEQgmdRstSTO5hoqegiyiDzb1X+/vSTI8EovyrmX3n0SYFsyvebi3IJQhQNMbDg+yWLlMBJLPe7jgUdN8iN3VUtTrgmKvo5mgWy0PaBQy2OiHEpnl4tqbW28FM1drVCrjbhlgcKvJv/24JdSP1/ndFQ/8++KkmONN4MQIIlqKa0wSyJK0wghqAUSNq0xmxXfSGqJ8fVoNt3TZlgDnOCR7zgSfzLZljOtW9HPUOx5DdTDc4v1ltZpHoG/Uflm4aicMAgW+KVI1Tha9enmk6jPAlgLucckctJab8yT4/hczlBYLJUvtRI79eI/nO1VseHB/OHQ1V0H12cYTBLWKxmQzdPOX03ZmlSlLon36XFs1iGoINIx45AaYmuQFO3VMQOidXN7MsD8rbFLig7DTnJc9NxUnIfY5XlmKtnx7zdv9pmxRZeTNsnYiyvznba8W+NviWwBssokE+eRXhKTtO+lYk8r/DBMzUXKseTD31zZpGY0cKMbqQLkhmqysb4t8AIJ56Tgk7pc0SuZeftnMoJXmhPiBjr/jagnMbYPgliydfjI+aAtD1cJn50ugLl5rhUCi3x+9kA5tGtHNi7T0FtuKeMyXG1xeKJi0ygUATNkzqnyGrE3MnchfrZEH7G6ls6gnPU2kjT9WTqhjucU850B3bp5SS45QLXs1CBuNHJoag+SpBnC+TonUtRVFOy2Eb56FzrCrAdJgXxw5ITigXNlCQBoGaCywO9QhbMlB/dcDAypGSUBOzIqzj6n1WBHL0tq1LzIyFJwn0DAQX7AbFoui88igZKIXDf4kJVC7fO5MQ6z992HkX0gCCarttr3f6k3u43p++Twb94oFrSezbCMUCWYdH+v7dzNv5n2EdWwVYvDB7b0iujaIzoBMGyTPMNEihrcwjsoCQ3LqbCkUArjqiJ/Lk5GxnOL1olkkAD1AV7rD/oTvxOHuj2WrXEzT1ZCvmV9ZvQ4cpvLlvi3VAywyU/bJz/0/ekeherZoVhyvvwz9D2C38wWfgVRnWlTvzlkbFUVP6458HVvExDdX8c1aY9/AgC/X3qZmZsYFDCsUSxPCLAjN+UPabkTZy92S88ekDoI7zof2IFZdrbXHdvN6Qm3Jvhzon7H3WlTvlY87Zn2yyF20bkTbtsRDLWtIibIT6FKlmzIyppaDpPMgJgjQ/GUFqVwZfXwUT8Mi27/T4VsIDSI/N6zUxJ5Cgn5gtITALWntukkTNOQ4aCT0bmFq9RpylrpHQYCAIwU/9YgALyoyfv1yhHrp7IpsAZwzPso+MWLi9LvLr2neIIXN/rZnNZZuEzyiNJkmUuxp7fNXXYRK33tiU8JRX3HS4bfWUVJG9sJ5uA1sPEWM/vKoEZ2L3r21YyxdqT863Fd1wWcedJ2JrLL3Epn5O7zQhb8f9N3T66ixjEHXsHAjGSmpSC+ZJ9YT4QOIrMkTVzIz9HiIQ/YvjJCcsTwJccicTtAW7tVVzNlC6B84aJUWtHImUGwcQO8EY/ki7Y2xSBCW0Hdp3+8xqUmk1VyDXqPzpTgmvEryVA1Z8l/PLL17pg2UXqukEpRi0mgWS1ZuamRPEEvQd+jICq3pWb5Ia80CXz7zEKiPzP99OlU+F1kzlh6DlH2Ot8j6lSNRZE8bJkobXP75o89PZgyk7SSBfU4KYjwXbHatY5oaehzNCZ8D/2t7V1vDE+AyIaM2XxEj1/6dvYSuaYRG3He2mBFZfhiCw6MN1hcxCEMoCQ/QXSwnBx5baBG5FXrSnzyOpmuLiZsnVDbYRd+ye0lYMHWOO/Qv5hZsEuZar30daETyhvITtW/v8/ZFLtkfq9T/fDT2jrRtn6hiujSIVDoIYQvJhZ1yOVMINlDGofla8OfyQAVGy3h9DOv8z7AVGd4PG2FS0cjkI1ddT1ncsy0kQ+/4cja0VgQOhdUdtXUl9iOnmK0eRB6tYNDNd8bmOW16KblgsPD7N6PE55b/VVtbO6BOWrSL5qHxrFTq2IOKRK+Xk7yvzSKWzJwd2nxT5uVf2+5AzYtQiQhziZGXBX6ZKPYsKjTNVknoxwQubIYW+q8a4i84Z66AGMTBsYsPj5E0g/OHIrjiS22SvmtX3zarxtXNfklabn1LZtrV/KYYY01AZcW4wcKVBWCgeLQP9emTeBglOTXIbZRzLRCYrTGijsm0cPpxOUJ90kSaPHKg8hLneOx1TcVppLU0kzVRUFWRzZT7vw12N4m/IK6JwT0mHfzfCyxxl8iDbDBjT8mHwZEI2zAMm/H+biYDTygzOcONUcQXrgLbMEO7XIflGleQsaTXFe9+x66cwOxa2iObc0MIo6OoVZF0GwTKkzPjCHqNaChtt6B2VAXoACKuGlVUR8KDEpz2jEgUT1lPrMuWOzXs06lAHxGKT3sCo/Hh1ntFHyKftdvKwAP77PVKXulSUoNf8fdDXq2+WVQbmhXwck65SjvyXlH898a/B9V4NXRLfaNmDRkUcvIV9mWgA1BjqL/shyfTj2OhL3iq6T09qWh8xL8SQCCb1S0UI0xaC/hy+qmQGSZUrBubRHGtxRtqUqPuvy5QQ72UMJc77/aIPRk2yS9WQCfoenDHkMW7JzhbQSApYicMQkDySMeKY5nRRORS/0TjNf9Q1m7vxdiwDYrf46bSD82pVzjWo2MJLdsm3vjgHvmJL7j8kSBOsvyhCzeX2wnYi3G+x4T6aVzzArO/7O73DTxQGa+nBt3S1DQZwhDt32lIFDTlvKDet2k0t1k8FP/HbRzYKj7filxD4KJx8p6R8mVorjNpXs59lNXfbreqckbQNKVax5Stvb4lX/QVQvBsZGKqhmQLMX+BDNQ6pGcrcsORxhPMNvGC5UCY4xKFeYSJrWyFAQHDLBhMiZdMyeGHrmr/sFAMxCEun2cltRNM3YxeAidR+/NXvy/cD8FnQp3mA0xQaEIsEv+Gizn4nNJg6mlINV9ZEvyyLQoXyknVfanZhCylXTX60wfx0+PibK8b8IWUdzg6Eyw6lKVoDlyefNgJHZ4Z7sU3/9WiILLHQQJr0Hso+8DDsfGnUPGfzvdkA/MebKwA6gKaYBBdLCFnEW3mG89Gxa4KCe68qxTKeAWbzU9UVxY8PWO8e97+KArQMapz2zW6ydQvarMeY/0aUQJvNCTl1F7ydAJTzRWcAUjGwcNqs+TfC7oHwaF2CU2pDh1H4Oi278ASFORuhV//KKhg3rhrleNvR2MUU9aKi6tMteKG8TgJQVZaDyBw33NRE5RAjEmmkGh5bi9Fb7e3nxPKX6+Ybi9mtlHHKUzScl7NoER2PvpPo6KVmbHGI2MdN94xQV3OlbXBDSCZ0asGigNhQKov/Oj8kgwFkmRx+T2WNeXLkmBi6aBTGoTcrpNdDuTnPZzTzwcIGFiVVBYNqbSsWSIdJVF9D/fOhm7UZH9Uc0pIJM1wNhp4L+7AVbAcC+RTm2t4Trv//As4s5fHahKMI7OeuEVm9KA4Fcn8QCyxPnVRISfTS0CMeOSZ2a+oHv3wnTvC9TahV9uzFctXfxTzEuMgmpv+CMbWKuxy8xzibF7EiTQSfWWrF185arcYf+4WiBAJlfk8KqHHVyzU3slz3drN8uMMKi0PrxkjrybVbMQL6L2+PIOeJrIef6YbO8MuSyvLmskBDqeaLve9bAZYjqqt+dvwctVRC6EnPaK156rQJizxn8bPt7vs2vSw52phIdw2M03kYexOQDZIpyn83WAjOdXBLAsLfDjUp/kbX5Wewb/Tqfp0niM7UpRk4GY8LjE7PgMnJ+wTkdid1ju8ocHAkrWfNkSTYNDOZvo5jmyJrReZi9x/UeekfKh0M2nG51hllLj059KWgbFkfPlpgSbcwI0X1HgY4yjaOPSNGqpnvaBzfvXvpV1MvCVA+R+MDr+wDr9l4UFoVNrDUOAilAAj7brgFkuWhOLK0OKR0/OND6bHM341RmxjADY48LlRnE4S0XWWVg0Zq/h2qgZdAw3++YeCCSJ7R3ynbKVZC3KsUPoJnQq+sM5V3t7g7cqPlVgNkpDqsqj8ionFpaW83r5aR+e5yYuNo2SpmOeZYAUgJgHLCPDfLYHinOMzvP6YkDbNjh+aMbMSbZJyZgz33nDPXZ8J8LEE3MbsRceDd1DkixFaBuYrUJVha34U95/nUFX3HRuXNSIUqJEm0e6oT9JmSDo8RJbcEkB0hUHkPEXlNFRTc97OA9gWJxQDsJCkdYWk4S5Q7gGhKvRlIO5d5aaOvhExmF6gYoOHcwqVYd6+BkOg0cuMXzFqCt6MXH2YPAfFPFi8Ljvl/XLlyFtoWhX9rQtg/64CtNbRplF10p16wPPYqS8cBd6WZlZX6mWT1JfNHqfUKEe4xaOARYEVhhAH6CpQiA0qQ3d03bw/PC3vgOvRPaLU5p6Rhmm9gOthLfj7cVW6jlArZw0C0ixdDp0QM0dwQTmrCUC28rtCFJ0WoSlkkKdnvKSKSPYjYg/1Urol83MNR6z/kwNJQnXxKKNv/MMsy8WyxmV9P0xd8n3JnhnDc9y/9kx98ouhM0dTmNeK51SA2CmKy6Z2tSBy+tQaLJwR51JJCeQmD+ABgCbHQCrYcW871ZS+ZtptCal1khlCRutPHq6Ts742arcWQHs6SeM0gdk0qQb49oBDcZpNvzeYL8FdZ1mGoWUcfQmD80HI6trwyNsaOLdjEEujXRQnnVydpGVfJVp5q6sLGnFJhowoUF16SrZF9z37RVI52sTYIDxSkGhrK9UUx4x5xN0papNY7nOXLD+5Fmeq4RstNZN4UaH7kb/KJA9/TQX0aqvpea+4owns8H1ERfeA75a9a/gDG9QfF4zFZFUQTpza5rlI206wOF5fmsB5Q7yeazyiRAzU+hdm7wwOTeDR96SxKRAysljPvN4BSroFk0+JseZeR9u9UkFpuEuiZBxmBwpZ7fhno/abTYQhqbh0B++Up5vVvxNmfpky0vbRn8Ia/gyZT3pyOYPZxiNjglFAAF0pRX9WiIUuoSwQNC8vr8xmjLqxveFpXTnyVUmXB49rt57GOpHCZO+r38GRQZKjYqwfV3FlmOKRU8vAHX4i8PVPUE1cHrLF0vsBbu+8hFkzX4A19BKnPN/tRhn2C1V+zRpmYiSL8WgSaPkbsyyBquUOp8p3yDpbp0n57MKoal3NczJbkIuv/YeGS3WnUA4Dg3HqFOC5RSKYhibjYGUgcgdxGrO02hGSpGE8W6dqag1txAiBJiVFck/53kUTx+c7cN5+3njzvfil0w+URyicEVARo6s9E4hyZPGgIqIjIT7gfOKAXUCufhQ6ZxRiwyzsBkGG0uj1bXSNFQ3TK9NRDiq3fmZHSncX0mb0RwMR8HS5svaHhvSFRaykL/ia9r6e0nbzMZwYOb1UMUuQqL20YJxUNwE1BPPkNRpgzCgyDPTOkrjTvG/rwA0qWF/Yvg5VauPCWwfnUI5NGwQSIIejYsyiznmlVrAAoVgA2AvbYqBHwkXcb81Wfg8X4eKyRgvpOqvT0cKOpAsdXjmgd5t2o8e+vZPMEkTfEvGpA/CUA941YZj7959lIt7MTTXUG1jzitrB6tp+jllgMqjyuKe6YGFV5HPStUe4n7qkBiGnqP3089/Rl34kHtyO5eleaeFuE/fQ79otDC/q6Azu+aoikUazDYuqZoXW+wL2PZGbigJXPiHBM6baTSaXcX6t7ENo/DKKJnEEjeeGu7dLV6qWofFtB7UvHx+XcROpD/2VOLkk6bXpEmZlb77grHbYFTpz21uOmnqiBITc0GUW9oDW7UKCdixVmivsrnzxyOm5q76Oi+LvOf5GYlYYVG7dmSqCC4nNjmYMpRB3PWMHhxWRzIoyFrzIIcDXLJDjjylQJ/qDoO78WJbIrd6j1NYDhRicCRSG2Ap5dfltiVRBpY2hILXz4Vf9XZvXCVHCVpqMWYToQQmvoco5q1U/Lo6ktFXylvwVyWerrX7k6Mnn7KJ3yFR73GlE4o2mkvkFn/22EMWqiztRHhlBYFoyFkMQU4N0pAkI57qsw4PipEHNUbiUBIcLyEntlqIqR4WOcQV2O5eFAFbz/sTNQnWhvYz1skA0vBB8aIiDQ5KVZDVgGKR1h6WhOvBi15Uvlj0iqeC8DjUsEDP0m/URDabUg8TfLG/Ej9j8BfrYJHXtqCY8GIMtZEOfAgqdWa08ETrsE5Tobs2v2wfmttk6V6VfGDeKW830rOei2lxDvm+Lq0gTOLm6vtA+EdZuwaOcDs/BbK5YP92Y2MX6aLug70BUms5UoiE8S/fbuJrDkcSmrHk7lVX+pQQcw/HzOSKwZfv1igCMme+fH2fDXtxBQOanLr9DcPK9FBT5oPyca1/KeK0w6i0D5nV99zZpCqIc8TUqVCH4d/H9M4+EotY/bCm9zQgWHVbkYswsmkPuLjmds+W1o7RxOiXrpfQU6TqgWOVidy4Vlq3MEFuUtRu8v49Na1dcAsn2GA7lSEiAyHz/QOqyx/Y9/fsxUly/cEmy43CQWQoXndGYDefOi2yI6OCawT0xOje03TLsRXvK0P4AI0blUxVciSTuXtxcHTgcM/bulrO6wnusceuXRrQBftmD0marasXPFAxC1JbRgHm6ngDVSXCMc8fNZidvC3i5/kdXkDE+1nCwpoMCZNwiSeX4bq4JTaBjuMges9HCVTp30Rd5huHPMGrzVNcOJ39pD7+VqCVziUdNYzDMZxGx3p3fSWqaKFqpJ461RRfcJOZQRHskVqJbptllmHdyTCzE4z6aaSy986G4B0VfpG1vTkODdKq4uOrqCWKUAT1iMoG0GG/+bMF+Ci9gPusb0zT4XkHxsIeiCbxPfiu6FhTuZOJHHFgNwdpg/BBWPZli61v9oUiDkzM9dzKyjg6AYX518C7GGnbDYuOxL9PdgD3+yfwB8CCJH8AEn32cEhJ1Cz9UbXWbeOLdkduxkj1MrohaSZN9TxIIe3/N4rnHh6spsnO9DHSik/BcJH3025AUHmGqo3p8qUuq+bL0JZVCcAj2wTuZ5Szd066bM9q2e1JD8punSGuziOJwNVNwFZxzpLHx0ymyml51ee5qVhuDoVi3ZWarskqcPOA71HuW4ph/ARAbJ5X7QUdOHMM8XMlCL4afLFjU6LWjzFCkTkKguiXab5MPABUJBpW4jwPmCKvh+VEGtQ2df/y7wu51N4Uu6GgNVraJjYN+EXZFC+RI2UzbdqmyKdPgrZGDdlhuGCo6HUn3jhshZs18e51PExRuHiEc+JbL0uh62r5BypX7ZunbZk7WstBMtjm6DA3d/L8TXZONAxyGNhAnKeuzc72mQbR/UZ1SxkqbrSGR6GQ+YfWBE2KzwInLtt5af/bvnpk2dOQ1JVfEBcae2I3bJTLz3EGvMzRn8mre74L7CSYzgpksvu3u7AHTe1SOmD3fq3wRx4NhveVEJ6l7F7vDMpVuPwccy/pU/6d1xo1kS1rH/ePTkJFzpP/FnU4kZf5fRJx2+MV7x5vQTstlZX3pUTa1Jz8HLoPPc2jmCKeZDnCta+hWLWJ5oBid7Si2DhKjMGuvZ7bTteZlx7HrEQw23pGJVeWd5TlgjNYflForlJJdDgwbDXmX1FYu7m3YvW44+iYmMVQeSx0wEoR02kFL7E7cOyPybzpYm2+1gEA7H4jvDuPLQzJuh8GZiPwhPeCQaSS8BDARVkxXZ4WRotnb4+Pjdk9tdJlPkUJECzeEyCEIhZP7fpQPlVS6GRU7rYKRUdkXFEmsPmCfDhbjEbPjuEZqSHiTsrTbFEHMaeHCrk331JpbOG+IcVWbLpkfUh+ditrmvNwL3Q+AhsgqDNeCnvYbg+vVKwn5e2ycnKO8kYvR8SE75bB0LhfI2NV4wOle9U8lN6RBvYDU2tZ1LcFpyitr65hYBwHSXMhK4GT8sS5qBSb5JnONqNJfQ5DiJE8utixG2z7P795lBU3wt2vhxCgcfPoDl+VB+iEGckWDnViHqlcNpZrVHCMfvzZu9yO74U8ve5ctfQg0+wM05zkGiYXx23wg5vh5H49mlJDkeOyYKPgXAm2lWVFdZzE0atKl2pPDyRogDHiSGAm2aJ/uSIk91Tr1j0rpJjJa5+Yyp+ZWTuGEJ9DKsI+NdTCqGMVVAURCU5sRTOD8+1cQZCxv5Zat8LCDeropOUxU+NafbcF14YrpxtA3NCkFXTDdkYxy6lbfZERl0LZdcpHdsKiVAY3iFPiWu3Sx8nvzkoMJb0xEpIezNuoG1AzY/HCnUY5mBOYs968C735ylUKnOjvXkmTgNNu7w4iK4mnS1Cze/oejy44LWHAtXJZsff3e85Hejeih5PDR+M9z9OGcsplUpDDSrxzF99CnslDkzG6sRPNUi0t+c1LnFMByxbt19AQMWjbFy2c+Bg9Hn9eGBAK87LURWyIu3lyjrN6mILi4d5IO989bUwBRM5Py9peCUIcheRUg4ZhxAZGFOB4ZM5f9VgiGrNecIuDpJ/zrAahLF2E39fBPwB1a9+iqWGJb9F7dxd+74psDkgk4fOmFl/i1GkUxnctP1VRrzaPm0/RcN5jsTQe9uF9TbPgmOSY9yNPARLAr/lubAcWZwbggb+F0dQ4YXedBTOBBK7ZqqbLhggswn2LNfnQQNZBjZZfoP/KId8Ao3bkZNL6gTSO/FdQ5Az9Z9mqEPdgUMn9SD2xnVhbbb4fuOGogKCZ6LAlgo5DmO/CBtmEpTr1NXEh6r0m1ghUiMx8sOdYsA5MIzpK/eevMHzOOsl0fA5YoEHdtghtrwO/2oAsbIfcb6m2jmFDl5TYpZUwIbAa5wcWwTu3SDgiVRPphg7TW2Ipod3xHTdLwqX53m+6pwHOgxnETh5eO66hXeHu9XXlPJCRgDyM2LgpdqwPhkmduLYuRWa4VaCcwL07P/M5a14rhHLQvJ2JOQticItq7i3ZQIEiWYLP5X6x+a2lA3k/p59S8uvRRzEU6YBccrqS/0hxsXNTrX1yTT/N1owDzU80nPCE3DkyTph4TkG8Klb9SH53g9mwltcrgi618CpTg/UiUzdM51bfZG3eXh9JaY04diW4TeC/P4pHDnldJxNZT6oWg84BDymSew/Y4KHFn0le2QiW3a8QywX/1pIXibVfBN/1jh+ti1V4NOE2acHNHPhyn8kQF34X8DU8gGCD7f/juVd3iasaBtu/6RKTHqJGYwpDIaiTCvw/vi6OCoNXiaga+tlA/9QPPF5XhDysnUkBeur54kwafSrMpeCXbKTA61pgdB2KUDA3k0jV2lL2XS7M26P//wV9RyJ4WpUndHnV9GC2szeXeJ4CeG5PXuIp53D5K46U7JPJKQCJB7zbjaclsOBTCZg7CtIX0z4ZF25uT0RtixR7OYFEKQCXfGjkfTaXKOy1O6OM+FRrskV4ruh94IYlP/0pL0rcOu2Bw5hO0ZLo0SkR2M7tiW2H79LAPBEDzVOj16FMn5DaIDYKOD93Txo1vZFO5fNb5Kf42Xu4GkVZjEkYMMh8r/SfiR/8ylwnvifAF5XXUafxp3b2tJpij+6luu+vXtceO7fzQu1QxJ/psuX++oyF1ibUNy7wB5aY7vwYH9Ul0ZERnmMl72KpR1C59ldlOYzVrGXSMu+ayyGFSzCsAsZgDf+m29K0AWXxwmoko+Sejh1Rqir5L927WINxj3bNnLW9EKfHBg+0rCdpxZ4p/HSGXFRBgO7HZa24CVCLOD2S5eMK+Ghu6qRCcTN8fHbFMs7SPOLVRvG/W3/1rdsm18H43oRJln64gzCJULySWC6u791k1oWJOQxVHvV76jFTTKziFZLNmqM9OnMLTd3cLnL+1jiluiM4EEext2KCEfLVNEpo1KzLEaShacd3DUv0iOaZoxAwbjLbn9E3ywgr9AGEqFSJiz5jh0D45v9OG7D5nrogAI6b5Vbp2x1mZ8CMGqJSdR2hWj9nlJ0AHTbrnqeIDHLY6PaVDT+AGl/MIqzvHkDlGSIXWZiZ+0aE/dfHpGc+KsG3e68fNNOBnicI/iZxvvxRhNaK5Ddq9r7Ot9QZOxkB7edd9Sy5UW/Hk7qHWPwXDIP0CGC2U+Nvq3O3332ej9aFCg//gUaxC+0dNjO3uKIVjsmLLo4s3vCCIAT2Ys6juxjRxAsxeA0WDYioqa35RYEUJa1vw+fpDDwyDt24AQKCm0jQw/njWGGFXHHYXAM2n2vbpkaNn3YNxAxWuRTBwdnKYRFk6P2co2Wx/0I8lyMQh2ZEqQRwHYkyTHulu0I4H3L9T8LLJ19txRyC3ObHx+gnaFd56Ov5EeKRD/6zRCekX4X058+9AkfZToO2df4XGqybk5h2b/lE/1KfJssEQCOb0+pQBq76reLY170kJDNZ4NiAwSZ6sudD2Xgk6G7mktdFQ9V68bdEpVqV1cAomPhhy4rej1ilvFx9SOWQwEJPkpN9nX45boo9dolVZL26PG+BxBvJMf00ikY+pVkCmXvJ6NGyOnUX6F9eUjidb25qA+lu9D4VXvcAjUPH5vBIAW062gAFNM08J1ZVBxhd0Nis700zuFvImMH6UFTn9rxgcmOOlr5ZFrQjVIxOAx39kPHtosa/IwsgtrIs7GFJsaKxd3RfSdD8kdo43FBePL77GnASIUDhwfdmp4gaPZlSWEuSWYhf/+gWbzcTU4XOkJPAc2Mr0vKUR3gPf7E44Uubvps2FJ3HKUGBQMCqzTVRqwKNi0l9kjqHahgCAS3M0Ci9uR6eT7o+xI84ShA2QTgrePeV4+GYXqRpTF51c4yn6D9Q2BVKB0jdpOvfTn6gBgTXNBVc2jNs63TlneMxQ8IX4LSHqdrs85AxbN0d1DVjXIDkWYtdidxcERsRVO7CbmbsjbFRXaYUAI2kmBTQ84I/raLkcjP7SwknNZbr0lk8NFARtT14rho1k2ziF2P15mVIEHuolGdk06HUQOwrIi7LR9i6upeEoCsCpt7R8UpDXAtg+1GflWXn4erfHFkWylMeWL2HGcSm5QOh56xIM9Y/45cSckgFbAmp6l2+4aVtytTcFR1gIYa1nDCU7A7SKNOWz8dilFz2xQeZNYjTEzBmBuOIZflh1WQqOKn4gGg+zGQohhoc0g4O53hOkTC2mLhJPHCtqFiBzJXpJ51u1Nt4ttkMmO6mO+1nXA38uKbYqVD8YlqotwsATeesAOE7dTVYMIQpAU2Ik3TEh8hG72RZA4RZkpddaejgaNczxQ/FkLgzFCEMQREj7rpPXjR2qOAxeStN0PtZpxqpi4bnAkl0ioqQE3QPzOG1RIZd2sSkxUzZMmWF+C43alS1N93+OmD5urqAHxG5DFj+u79OuQlT7S/Baxy6rGGiB+x5G/rh2r3I+N0DnoDbGGHsCVvAiKZYUEg8CSh1fSPqnPQ3RhoYfHTlH0DWz8n3CTXX9R3b6jmc/svWIQazDjZEYVQWyfIo4WnqyWhgjZPOrZJIBFR6Jn12WRpzHvx7IXRjOwrj1AS5alpsy4XD6qkrTqz9JFohdmNwlJFuqP/BzQAkI7DjRPJidMAHmkZrl9T99Z1RtND+RJvkfXxHtaMT1dkBwzIfGQtUoinTylNJSbfBPTUfsSkiV4HGpl4Xrd+fcO+sseclTBv2ZNdqNB6Q78+3ZISgmhVQtTXrxX7rQCZIP0souq7PRDsDGhDXz3cklvb9KpTT0FC9v6nv95BwUfOvd9NsvvxaYtJPdzdvP2lVP/Iww3Wp4C+QYVi6fEiYbG33+RevhCqniDynrI+9E0yBhlIiEKnfmGAhTQEq8GhqW87XafjUGsxbXITaO9WjSJ5JiF4Cv6kDDYpI+3nq5IbkrOH+G/rmpfrXaAPJNBLCIn9XZ4WBk16mIOCdsgbMMDq/4WED3g4Cy0rRDg0y6e4tXWNVgXon+crSGINM+Z/MAONx6534LmbqKIHMl4xK7QhiaUo+riv0ycP8MQNP9Pat+ijnn/zIGYZSj7xA67C+HCNAqxNEmKWyxN5wJN+U9B7fw6+B/VV1dhhNuHJGuGJHHC2M6dEUubp10cLLHUviSAJRESvwGcYUG5WZtd1vHfLp4aID28B/6fiAeNWAeR/65bGrmee7mPLqRSwbWUsLk0kKMNT4iyXVKDtkZMbBgNvDEuxjl8H3U3pArQyxmyqdGfzVGyQzZmiRylHz2Aot3XFjPC6ujFXLGz1zze0t6yDrI6lUdnrPNo1Q1P3blK77DjlfCUOZtvQ51N/uiSV+Mx8v5eYGBt6uutzCJVfAYZ2RmzCxZwlEPKg+Mc7y2O5zTjvfkrJZ5bGORgTMp7Rpc2eszmOd+Q21glJqRcMkH3W2FGsl8H8VE57xIjUoqjEPLwtN6XT8VsKOVAV1zvpn7/dNepLJKWZijfqvlJrjv2zM93vkzU4q+Us1Is8Px/6NXXz4xs4i1dxdEHJGDe2AGY1yUtwNkS+kMaVFgYNAmXzlDeqEus3bOUFa+5esfebl6mua7uJj1PualYxoSlqQCrJXVzgfnJejuLw8Cdw7w4dzOKiVMTZvhOJfUw2iiGB53q1BlSkPyYxUo6gJZKpXtdz5h2p9TW0/rkPmxFdgCrMa8WIhQLv/PujGf+xry0W/KWSq683usHtZLgtV28xTAu/wwgz3GyrVnOnVSuyw1578RSMeH2OBdMqsH3P/Sqb3BAOoZawVwa0sPXIElxC9sVz9ujCRYjRW5rd1Be/yL/xXXA2pfoXMjRew8UadbtF/UF0fIZier539r4A30lfjzaNAO78f0yDPEHylHxxLWXtsDvlSugXDl1YF7dCFwSjn78Ho9bYP4Yx75NA72gioT84DGc9L/1CN4mBq2ayW545wmx0GMiCo5ukJjegSRDydWQBm1DuwnKjd45xkBEjjbfBUl/84JFK4+2aMVw0BWATVVYijfsRA5wNqsxtbhmXpDiBKnsrWwsAQLmtOvsIzJYmWXzyjsos8tBLsneix7lNAzjeRQKwBczVlOtakiq5OIZwTda+mMP5XVOLrYpT0tjO14e1lqmB/N0uWhy1tsVwwN+7OpBldhgnX3HR+YHmerww+WPdKw6Fy3nTfeTfgx5V+1S3N09kvR7FI8w5U6PHiwN1beHD5pPQf4X0m50PsKwh1f4F830QrZEtjbwnBYSEQ95eyT6MFD3341lfohLPtFcWmO1XrVGyjYDPmdz4LKb89jfYE+fclh/jrss6XMMpmnFjb3dZvVQAPqV4nLfDZM/2+b83JgzkJpiPp470RwuMenAbLSsYYx1lSsvBjoh5U5r6hFAC0pO56h4t9QfECUjIec6Li3BeYCW7whlUWWMK9RaDgiJZN8+MawpZClsL3dB2wKTdnArM1Xm05E82ziwqpPMOrBV/NADeWaTFDbF/IJ9ivJl+WWiZ4ctf/y59P4a9dG1pmq6s0QQDhAM7xf7ARwNW2DjlgCpVj/QW6xnVFl7p06WneC3KC0rnI+28apowqyvetR42yVX4FUmxABaIdTRPCeFfbBn+dMzHaZ/l/TRWbFD4ywcJkqP1EonUH4ZK/5GqvWtPsNGdPCyfcVNVQ5/Bu5PSzvwKp4A24R9lgLxkrQX8lev6eiy5hYzepBFVR3OgS7Lm7z78i6htBgus3nzOPCe+HpQPfXygu1r1ALDXq5A2Wy3nnW6KXXeMKZREK+gUxGuSF8zces1M1DYP2JzXc96uEgg8bfW8bVm+l/z2U8nvL90x1TeEHNl6Vu/eXwn2x6l0IbQ4Naal+0Zcs6w9qRYckMO18Ced5+WsYnkaayMa5AGMPfMGPwyhN4gSN7qWEMsT/AmGPlUh4OBS7ilDcO3b4iRV4+YTvVlTi98ofZ4C/8BT0VozXFE50w+YlU7CKtNp0TLa9y7jLeGrSLYTLxsKYzEzh8LoWjxKcfxS0rRjIUbauW4sPqSS5vpWLJ0LZdts+3s4ibDyXMETsDt2syrKvpKC1VC3V0SRSXY8ay8LiygMTpbhAcOkAaRodLlO7M6bqQJVoIVlz5S2RA73oWjrl4MFb4+9cQyxx+XeSNmuMQfjS/FlcWAfONyG8jn7cW8av3JTwv8prjtQyBcxCdgoaYUG2ED+aCeYdvtL06Uoba4ctptHKDolInlteMYbHqL189OzujRP+gXMJkuqpF+BWyX39kFouKgqpKyb8zh/UfkmN04A4I520ZwCel5YBvwjeKxf/2xghxt7adG0rxstVgvr3uhM9K3ctn9vkyuhLZBEsanbV00fplqC8tM6l/X82ld9fElN/d5xuFGb31XrWfsQV3BsQidWiIFv019663mdBO+SZm6YbWGhY0oAd965KJ17WSf/yxwzc1TkLVIT9fHRC87ns9GJg4J2kxfbrdUvVg+9Vbo0GLPK6PlNemXw4CJFaLb3R+APyPIVUqyDdlwVT8oxF06oumPt81QpplenYw1mGVXRN4SaC2aNwn1v/q0e1XkIvlL0LGgi2HKgBlSNfpHYIyoLMjeok4bK6oHlQpb03+eR2IQFhWSS/nnVEsjWBPI3zIaxodwGkx+/HkJoNWAyz/q8SDBX9XXTAAauCGHGclWY9yuutr6j7HhGofBKfVpuZZXE0p4PBT9DvV1NtoI/Rws20wpQINXDsl3murjippH1mOPmx7ZTAi9i+DVWk61l0Jr0m892QmHZOAzibwDJGEVJaUEAtIBoB7M/K7EkqIdPdzL6Q9RjR1Q+z0EL0iySzE+PZHL9EUbtC8DuXw4X4hWqYZs442kQE0R6mqeYqQZFuIWbVOKFZ4if+OU4CWiyKFbrfIrILsNet3OSp+o2zVxN+WIKaE2A07r4Ox9acMS25ykOkT0Q1FDoBPB2L17JNzNRgiCF44CVOYLojJNILAEa2YZnjsYesCYv0VRvJl5zUmdKFMCGdPFxjmO4I7IRvYQNT9Kbgyms2Sc5LJCDMjdOCbaP/QF73D8qPYISdyKHKoiAs58GUBict3YppoLHPZ0LTj9GHx0OWemW+SpeiDLUa2eMulDBydJJ4arNsAOThQacruerVWcH3TII2hbDjPtKIIcnVCn/LIuEcxrawR2mrzEEcN2sqF/LPzmrgea0sonVl2kX04EtI7AmB01Z9cnEFCM4Buuscw/I+LOhtE0Ij0kpM3QCEG5ZXo601+W6W8zat+MOCl35kiS1J8REh4pEc2C16xYGCEG//2V7uKg6uhjql2dl3GSg61bTB/fQ0hZpcWBrMA+KKhtWuZ10ocHYj+eM7mxLziHfn3m55uJlTHnZPfdgsi8ojlN7uJ5/pV/21D0A17PgNY32i0HlfX3YIA3Leh+JpvJbtGAF0BNy4ezFciMs3OtQY2CPjZ/wy+amcbon1OAJtDmknyJBcYgSRbQf/2Vkqvdaa2RBxlRmr2lCvAxpI9qGnPvgRMlfDi3WDbqlmNBtrkoThTxkU1nVDiPCPG5lCdHORfuQB12nhW8kh/unjWBJxisOlYPQBeheh2xan9KXNuXDho/lLDqA5A+xXUzeBsCQ2xJqEd4mwpJXh/7iRGO2RT6YqpxSQuDExtjlRRp8ObKfpyv/CQjAF9UQkd+KyEjXuCbLe2IQ37sUpwxPwW7bRbX6siUgvhJ1E1NHJx2Pg/sf0vSsBKbHgQO0acMBYOF+E3ZaN+UBFlN0NBu2kCU48hdYcFk3dpcTOyGp4+jf9oXTwaq8ma8Nbrk56N+d8saUprajymLANLll4VXZze4laenwqUjquRLci0uhj5Uw2TQUW3eWB3VfVLI2oD2k3w/Q1cBMKKju+AtvOccuRABL/k844Q+9q69iuyIHYdBqhfXIcviZSFbmfNAyxioU62xHPpCiYQKLgg2izcRU3WTSwPMig92p3z68ZIIKl+VMfrlsAvZ66+GTPxfHFlve9pNdS0GAlkVt0l8wK5JHKBPQM/bR7pEY3gkUBMM1lo6vrC8jGq1SvXDuAdzkmpRhoGmFWv9uX0y63oO51jXEbvM+RwbkhTlXA+AovskhKsue2VGF3wGhDMBzryKkpuvIkKChC98qfdlnqL1+iBE0dfG6Hpm2s7Sh1a2pYP5VyuiIDnxVGIgArkwJN2DpLsdnHzlA4aIlt0OhHerVyCvuoh1iBVzKbMlG7dCM0TQvX1mRQij1VtU0/TMvDE6FhYvyvLuhjFgcfndO+4LlgNcw+fN1FMNrfjMx77uG4km1pSg/xIm2YO9QkOPPZt0tLPgzDtMoABOLABXurk5hz09eNMjLa7Lq5M9cqV78m5Rg5ghpCW6KjtHBikuqPqSa49DumWR/JjqQrLXvJEYUDCO+witNn3iXE8rbY0w/9DjOzJo56s0nyhwqdGXkEO/R/RkDY97vGxuiJ/draWhzxpbVRUoEqqi6fIQmGTcQsZIWICcqReyyR2DcFPquOHmyVrDhr5tHPu2rb0Pxa2cRIBqc1y3TAod9UnuCKbSU175rvyx/Kf/xR+NgV1QWOXCXeCYih1ON+0jqSjt/mzDjJ6uukwCJl7zKlkzkYZehh5big+IzLgLJw1SJhCV5Ic6Egr5qzdi5gbQbP30fFEE3P2yPs91S12/Sb134Q1fLiEDNC5UsubvrpWudLTsKWjJn5unsnZHWBUwkKHcpCkNgQrDAmbU+dO1dPBAMv2FtO58DLlCtX2lVZAgWXxR8WTiawp+eCXJywedd438UcfBvHR+a892EXy+TS1F3dzLiMTq9lt6unm75K4pVC9b3MI7rTkCfxuCNKtSt2o6c96OFHUHdyTqgYrvdONoQt5eunMPzMkxWunF/xMF+Aib6liI8mEUChuHKMT+ghq1sKEDB/JoW0iIr91oxCckw1a20cqvARrAKQYYnVyYr7YRmI8rHy408dqKzyNxa82FzhrmzMSZAeUAf6N9Wo0ARI/WvilVi1qAn+tsrWoK+hMagL6KDOXAaMxyDJk9r7aNZ2RwhFHdsi/6+jVnFGCcCQPZ+GPVOiqfUeP5BgLlGo3fILQQcCIQJT7HYLMClWSMy/yGkeyI75fZ7qtXd4RaAsQpAjy9CD/BCZrR25Z9xelFFyOLjb9pGcI69y9AbtKYi/vncjj4RgT94Y6zfTbxhl30ONcdoerToWMeDkzEddHtUayjyWFfKcFEwuIrDeZAQrd5FZfYpKtWFihswbH02hvuvP1advBntyYYQ2dgmCY06ZRcT3I7nyXOr+6VL26W2rbFHWq0e6azf9pkAa4F+Pjznipc6encUljXcku+Zm6MX/I6DAPcF5RiLwrTEUYEhrTyOxscZ0s0/ym2NeIx63S016O/qu3rUrDbAgaICz4pt0svhBfuxaEBQRF3irTh+ByKyCq1M+MKqBqxV/OMlxXjOohMLAq6MTW8jGKKFoAuqOVCi02Q17y4ghluNTA34CTGugiJRUoGhQDPyX+WcyrWmCNtIhVH01DhbrWtUU1hTLBWM2+GPxq7wnToxVma+G8vUJmF+06Lic8fP5m9PVCQmw81RU1bNkkZ9xvhUgA9r/W6hOs8P7yFnNYKN0Jr4ffKgM+fK3PLMuLoxNVo0zoeScNr53plpdvX4QncntkV5e8s4/xrTFSz0gDw45tL5rA7Qrh2pQZ8KsDMXVxuUtDfvLENo3vcI1bHDrtdqTwCNHFp5HVqSSGyep45lBvxfZiXAdOZ3XDnHnBotRyRbUBWgxIxRm8VmNem1I0q7YPA7PilwW4QWTPR6rTtXOvFQPfxttwLgIa53Tz0RNxytpZ0ZErjOARGPC3F3fJhgAAvBOUAGocURBrdCvEThReaeO/V5+6aog63oKGx5qXIFYCuEUDLIPTEdV8aGUcI28fZSQX4CWpk1EsmAjqaLEVKXLP1mUmjlOshICzuDEDL51fTvJ2tAxS0qG/cO694aOOUqNA8nWGRVMoR1Y58c4/cd5zKaZxO1MnfMFM4jmtaCGnHPpTUKrqiVPaSC9My+hXvEWyEfz7HNT8U9qgmZc0lBLNDon3CKcMrTdn8yDZyVJOE3oq4D/GtKoQwQCSq+hcVNg8iRTKX3SeeqENDPK3zyNvK/LEYzDg8Rno0K5EvWI/GA1OK31McMKxmXIqumu0WjKbF0ASFcW/MveXEI9/JbEA7k6SqZV2ZA3o9oIHTPJV2sKA0Kjl1Koz9GzDGA4uqKJoY00qvm5yIDmbSeGXY/YuGUvCV80iL80JoIuQFvmY+pquhafg7+4uDfb6jusNxmOAbvMICN8qTIFoTVcxpE1zcMoUpoFmD17fD/upDUFib8BMG5F8dBLGUX7XkhxLw4CHdc98LZ0EJ/i2iXvF4iUOMvcyFPG+TeuVG4oTbsmWFrqkJGzbHElzklfW9ConGhMmEzrcUJNGaFe8zYGlebOZEuXas4FQwNcoqMyieeSeOg7BWwLnF+W/fHcqeUA/KcCKIIsPKaZNtQHRo4HN2h0+CeVYgjpKxejjVLsKdTCr459DcjvgjV7prGEDB8wSMsxufwSAGI0UNE+AxtdWtqdOgbjSCeXEtewbtCSHz/JAAqoG8rxGkU8BU18uiurS7tCF1HJOjhhN0jm9tP2kzefxepH/lygIR+U/NpuTHUt+TFgD+ex8WZja29ebn7pufUIMaR1VQmzXwSItfVlv5nUEd82kFIGP2/InnK2WGjxQ65oRR2omUy3oOtS9cCQXCP7Exu6LmeUA3J5jxNoYjob7Oq+1Qp54WUUgtYu1bVxs8U3zESMmo7CLNRwnOk+4kJGbEqHLJ0BlbZrufNmu7v2uPH+vFLXbr68vhkVE+q0Y7UMKeaXmjM2z/sIqKWRDQ5mv0UU5n+3HmgxKT7xKKlvRWFIDWgy2+4/IjHd7IZ+rYUYdic9B2CD7uRGFIPoeP/1wVoCsChdfn7SI6aQWAuqM/OsRVIn2iO9XYzJAXyNxWWs07m4rsnOX9jpXNKUFmk2chaOST/2gU8dNvehPDQHlWHTDfe4wE4DNmh59AhCajGtU+88pPTP8mVWOcVytscAh2qtYYyyz1iTcGMVY2jIIRcRjjcvN5uc9t7TDmAexS8GCW6onMsmnYLVGJ9yW+1W7H7giXR7fFDSGafLujb/skB2oNvn09sDxSTfWIIr7AiYimkL66ZEpfGuNmZAYYohLboFiKq2azrmiKeu2Xq0p8ZFwLyPm4plcTPKV+jnYjFlb6zidz5ya6OSlMV977c8O7mJb+DNKgxrDgDBGpTCqEEFqda4bDi4fRp8S7B5ZgtpqJbwjVG1l8yqcevAFO6NmohHJNqi5+RnWCqrqf05vgbRc9DGvtATL/e74KGwZkrUd56vzLvTpquZrmp0lVF0THoKFqw0fNCEi8mfxfxRhQCKJL4BzzAjMN67tPEFRstluZc93o2kT+ps/uhFLxqATv/rYxFwpwa3wgpL6oUGAf7I+03kwumY24CVIuS1nqtopoWtL9FnStROotH1doNJgxET//lY6nCJADELU7nQw0Jlt8FcoPwJA1r3yUAsqfbaG++6OFHSU5gWvX/XGpZ5+nv9Hq6cRq/AFIYlAbrCYGJ0418l/cWeujQS6pbodtrxcYktZs4U2MagoEtwsa94CgONFylS09N6yFXhWhuTH19QbxrdLvTC6F2Su30NSjr7ZwD2KHhg6r7tuaY9/fsVhJlhXsvQSaVlR7h6/FjtmSdZfc97wvLpvrv6wurWY1vvMYAbIFlSk2IzotdyfcYrOYMQvODWtYgEiJn9EM38jvkHex39anycSVfQjQvpIo6rEw1UyE2oeG2+dG3OckuivSOvwDCk0UBTQpFFOfv94iH6K621GUZ+aGyJ5WBLlzCy4lmQj2jV+D4lk+skbCe4Mh14Q0vlGkfGyaFAYMqnW5xIZEdKL9TceeaBRKL0hyTRomCneG514WYu5ZpGHM3RhjpBaaym0c6IxguXPYlXjjmjWirfsIYz0Zd+ApdtbHartO79BTI+IC+UXVVZPC29/dDPCQtsYNmL/ZQHs4dsRUjA1Py1O6AafXK+n7ddW4uUvSzN6IuzkXaUFszwXVPnv8V/IGjku0as1Uw18gp4DYF5ZWQWM34ayaMDqnhFQ5DtU46oSJZ+VNaHb79EcVMPz554FVCVtn7OQkTmq7AhwvTp9esfomg5FpXitVj8lcmvNIry9XeaqreI39LVJVv7MrH6t7AXG8LPCfn+b96BBvMaaRp1+HvNV0u4f/30H0VPVAxf+fE77xE3klq5mwtN8+VxFy/tUz8hmXH7IpenFsx5zNLQQVi/sT8Qe1F72k1kINOkmOVr3/FPJEjiRSO1jvRUqxAcMcaatJr4zXQWg0+8fAenvIMBdrH0fXXpJaXAC/h2OZQ+ITpJdkq4CkKCUy1WPl+lt4toVNmfv3dxGrvBbIa+cvsIvcNNdSMl7ZhmbYL9xR2UEnM9VSwMIcQHSnLkmHbSxLODSUPwFY8GAHZgqZGqHcxl6/ADbkEuSCdyk3lUkdw5CqVV8bXvPpTAQnFI6yROLClziBIRKB7LrIGQTz0DuqCEktouztarEwJ5MOCx30Lff4FW6IkkgR3TgcTnqfB8HVyPHUEAJH9T554cvlOaiu4UTnEdEr3UUqAe8klpm3WU51m4ZvjcvKoFH3AnviO/fjS33A0iTXankbVDFkUXMXLZcW0yihB5AdDpwLj61SqZkSAqY6mfab8XtuzOFLd44r1OQ4v5PkafD3lle3iJYbcNy6ilpikUhZeRJZiQ4XZVaZFeYeddMvkTpY3b0s3Y3axN9dTXSPfSUSOt4Fb49CJ/q6I73Ni21gfjWCXWO9wW9LaDV3gQ2TGcRNlx6potZ4DAl3QR2qv5YVOJXZ5A3+DnQqrAo9WG9gUp4ZyBybDDiVWTepWigXBFdMwD1QN/uvvf8ixvMFWJ4NlHWduBgcW17WjP4FJsReDPatYgdaYJY+nPyef5bZ72bO+t8griKqIYBCNdhwuGYLIpkZG2jUqj/4PmRsGoA/DCe5VlV5YVdCFuOJzYjwIAcxBhsN6o1uvnuvPSsoVvRNgjjM/iGa+FNbwxD3GlKUBXCIZbNV0TlUQcLRshrOIzCo+Q4jP7BtggOz3crabW3llMoFNZR+AyP1c0Lu60ZVm6xdnmCsd4k2FA26NHNuDY0EmNqJWXIlafTpj+aY+k8nq4Yr40uvGP85AZjwCVBQWl42eDABESKGVuLsEbjfiDEFsxsb4MuyCZxmAt+3Q/2jbqStDWFGj5KJvv/3aKHhVKzmM8YwSgtH74Ml6ZUqeS+iMTPLzFd0PTO3sH+2FD6AnXZxD33pFCKaQReFR0WNmtmfJF+u52XIqSVgCkJxiLomyuiW98qhKKp8cqnLvp6rHIVgksW7r61teQW0pVddI8n3+bt1yt9RzUzpejtKqVMDv4iGM6GzEXKZ2Z3MllKuWbbGR06LuXPx2gtvEknuH++5+GiXpheBdcByH15ZJ7QCEGjzIcuhYQz5zY8qc+kYvyxNNDJl4eE+Vl/d2pl7Z44H3vIEe9azDvNpjzoWziUEUiy0E9QCsV7OAXAgz+fn6B6RUcQup+fxTdtKy67IoN+tzCm6HOtZPCgecnK2ti6s2LRa4BIQBznQPIhr7OUL+j5jhQ04iO0cWqfBx9zkbi+vX1C5Y2OpiI9vv+elFPi8VMBtySYXpF+Z2u6EWrhwjbz2gPQib7OtT3u1mbw7THwPlKsluLxygx8ctOAvmTQe5TqltL07H3npVh1j65LZFTe+HJEIXm4IKj1zssP2SsC1pZFqSnV9jWcMcW0KylIrx0O+aYQU1KO2qbvWY06SLK3zTQeoZtuMjqQGf/jaVQ5HatAs41egZ1DZVUJNWrbN+/rKVPcqEWy73DJObNXQ5t6crHh8lSKk3GpkmMPcXZ1nrt3rX8b5/bt5isjIv84SXrqlPuHaITjrPM47dpkHfvkfGNWQM4RjABev2g7cbFrFnlF7+OKP+92UUqh68GfqmzoCsjuQ1I6YuTUF1dRSzG2+HVt6ylRYmaLwq1rH6o2YcbKRdSwQmud1TE8zdxEVl2QoBPKMpVTSu8wnxobaCaHaxQPEU1PYLu+IimajKAdR59gkg0c+4Y1PJKhLI5qq+GvdAbAniIuOpHFYQmR+VhLQnaA2V3eJNvO/U3xY8jtKJl07aEZvmuuzX3eGSG5bw+ac/7XbpYvpRGIQlo60pS15XVw8Exj1hz6Boi6HjD2SoEObeeKqbxsnwKryurKJEgB6l8l3T76in4645bjj6ux0PndL1CxL3hh0qvCI8pl5tG2euJWoIxwx7xxN7itjLZXvDUOTTlyrVusYj8QkmK4drgH5/IACXhTrJqyu0Y3n/rE0MsvZXk1ZU4mP3IiBboHd4jBwOPHDRBhPFWk6MqYJEioW0z6eOQXRRc7hqE+pJxJWFkM4tNDb/7o69paYt1L0NjHGlGEBgDOU62NPzE12z4U0XQ3Z+y0EHjXqSzj1XIjgncw/XnwB96MCZZONfYE+aVZC0/9PXUpPQmzRI30s9ZKQdEPIzhTwEoAuFXRbOAxh/NavgWXpAw/w15PPhIH6e8RUNRmGP/25z8BqI8S73NuqA5ANTBX/a9MGkWTVaDt97P+JC1jtEwQc1xSG87TIQMhNxQ1fjG6a5eLnmZo6spQLoZLe5aGWU20ex7f4ekcL+LbANXnBJ43lxMypmKmEgp6g5yYnHsgqE6qvfbXHB+/P7RzOABnJtAoQ8X7GoeJjYArYAPdAZl/gX/cAqB941ETiKkSBybTm/qJyzbCik8qoFSH2ttZV8SZs11FDgDvffxxSW6HFRWTQBtkKUlAtLKoeg2L9gVEdO7d7PxXAotjg52T6QrBLx/X8sgYPjmLoNi5yHSnPQOPGETin7BZmLW74URySM6S8bvry7ZKOYF6vv9gNeloYDpwCbIz23v8P4SdyFYM8vUT9trrTLMV6FWJ/ZZJfuRjZm+BsWzu9JnOWzFFbres+XYXOJp2/C+S9jdWtqJnyfb8qkued5s0vDFga17H9DNGV4TEUA/f2sI4ZIcsgS3XVQlRlE/LPuoCNhcF35XNx/Wf3wr0+Mdj7zrN0gF1bwriMBwPBIb9dbko3FwcVB+6g+JSZq0a8KrKN9KSYHfJw5d1yxOxf8gmgaSol45hwd2so8Xrzihbjj1LUYGICQXX/qZQ7c8vbbAIuv8CnRAKxwdjpxeRNUEc4lQad3uy9csTxvit56hr8yEGuctFzNoGr3MunMEhlWocPpe18pO3FfwqJAMUdWwAL7bs3vDGOgxMRzgKj7tP5shq+7Qz3CPvBh4o4W1QlEBHzdFFN5PXkB11wHEFFs3nwcSrCnZxN0Zg85aERQsdziUE0msW0mpQ/6JbnVRmMrYQGNV/TbJLdG30VSgNhnvbEEymqcX9ZyNiuTUw6+PaXZuW5oZkLWG6e6bybJhvrgcNxpmLspf4cZHZlJcaK1gNtaD84GNJ/WApTT6eCwcVTM/Si87latBy6C6jCcyRzEN1mTji6+77vf080RVufsKbZoHFSH7lsv5OAgjg/7h28aXnRwIbdygUM7AVT7IB6BPKd6h9KgDweFKZ8spcHkhcsWXg4WwxdwwOaV42prUO39o74xIIY7YR7FO7xBqj/0LqXsENJi5ijX8DZdYbHb97tkMcA+eMJg5/pHuH2SkVIsahuq6J6Ctp74Aid2FORiCo08D4wEGVX1tZaQh5fdnXuZiHUNEkFzFlWAr5tVc+xBI4cWmcxulMttmIAWjCibyBQdrUJrZlln7034sXWBVYbJ6XSYZ01OmAnpPYrz/UpXxaavl3p8ExkYB98TKfbQ4J3AjhhY0ErvtLPwpPp2eRctI0m6S0gtK66+zDEDwqinyGdJcHrAAwGgNzRPgHuibjbRFUW0A6wg66CR8i/orUWaRHnvOoM9yi4NGKHw4zSB7MkcwllteZXwiF+398OVC1ry+RBE6YOuIVLxAA14KJtmwvF0R+xTfF61WIndN6biFdkdx7n/ImeG7H9AavXfNtEW/cFAV53ZhIr05solaR8I7TqMSDh+E8fNFLWbWw//6BLU5XKP0HARgj8FRbAaYdn3dvCdqIikFfJ5IecGE9mEigKEulN2FzsSS5zb0wmhv1wroK3BZD/ngfOYEMRrbLZOg4idqirovJdnO4UEl6E/o3Vvawp60WMe2XhM3Jgp1awvtdMtKB31jt6Gs7cNFB+ZLoCohc1BZhNldavjjKNYll81iB74WApGrYGYUOyCKrKtNJkYnCQk+7Nbk5i/PcAvfg166wfg+Tt7egASF4+f/ZV/RgG9kx86GK3dJP/J17uDTOrLL7teXzyC/LahDD/UcMv3pFMC2QH/4u5j9bLwHngF5AaZNzLk3AnrIEZpNsdmxeAHtsfCoJfB3ATnYoKaFKnN13wfpmM82C4cD/dPc8CmRSKkgkNzIdl02MJmjbVGLBE2GN0cv+hcfqnJt4tgddRTwIRRxIVoVfVGy2TkH2zwOYFXc79YRo9LPM6AptgFU8xu6NIIJey1+6koJtKba9NFWPPkyBfnji0Ilk0h1BzrbwtRL12vhUj5a0ABc+uSY8s91AFGtTGXOp3aMPZTGzZn1SkCoHT74GsITqUPyzTdJsTyLb1d4zUQsTGk4b8CdEDngfm02S6O0VPHmDuJsHAVmQ83E//IvmljXvrMB5RI9GIbZEzmTP6xF6qXeB+v6QB28XJio6RgezL9JabZI5uG5b7l+dpXks3MHrh6TUxvgf8wZ9bvND1jdvDjbZu4Hsk5f66CA/zv0InPci1A7OjM4BCzMHESxxeHkfEz82aRjj5p9bx6FbRj+P/cogPil9twg/o45qP+LkpVaApY1vtT/7LnU31/2f2vZ9ZK7v3jhMLxOMcyNCWIP6FXM9ma38rXShErELGIPQPrIDNZHH5BqcHmNrouxf6vIuPjC2cuWlKikk4yqTwHA774k0auq+Z26JpOVXMDhD2QVSjEDp1X279LESbhiJNiQAH+LpY1mjs8uhaVcxDTdq6587caqnYPMkuJ8hum8+DA46vFUBhfhZ2PbD9F3m1nHrjAzAPlPktVxaaEOuzr1xRUjo0tBUrhFzrANucEVmXR7hd7nuzTqLmiobZBPDzkgBxnRofSDsFqy36xfmL5jQL4Oy6kav+R9q2N/5mc11BLFaDwMd7EnTaupxNJ9GA28oU9SZ+f/mLXbDCLqRTK7o35xADGWfaen8OS6OUEZbGDBKaDRoRDsy85nE29h9H3kWwXKDc9v2QPdKWiq3kilYiCKIFolZlgd31JUSKMPPyj+Ol4uu6anw/xcFprke1yRmrW1S7tuZFmOINvZ4zcv8Gr4FZfNsE/NY9nTb9o8V72kXg75X5vS4G4cLc2Bpxnmk/oRetezSwtmSB9oJS6CAoJIW61N//x9ycnSoIWCLZoHHWdZkQLASreforPbUZphSU/8fKAk5pwwYMLDLnJ0qocRG4Ia7hJyjaFsYF3ZoHIqfmGAOQ+S4lGTxPUMjc0lCveTNatzRwrO+V/hBIbPS8L/lQC9+9poHRbT9JD3jl3iSSEM0b1jggyl9wpyxR7Kiceie1l/5lRgTOU/I/fBeSIbsdOwwuVr1gWasQvVn2qwrtHAklnOq32GZ+nbBWMP/5V0ZCQc+qckaofosiUObQFRXawm8RBja72ianfOKartjowS4JjY2z0f4oHg9bxK10ShNsvN3TAtTMVY+SNoHuQYVg5KXl9LTJOT595qkvEDxejOAHRZgXW+irXcmmqUQCnmuX6A4zQAmJlj/JFurSp+wn6ba6kOZZiX1FVDNuDR2TcZa3drDUMs4kfZK6n+XDjeF8l1GwDAiDMg/9AoWCUqDq+kUuGk/d2dBjAD2cP45kWOD8+nv9yBmfbOuf5GUEcY7qA1s64CUEAO0ugvYd1L5EX/rv7DrL3YFa9REzo5ccBS2uwUgvsSb9qLDRc3Hj1nqolXGnRJbNjLJH4ouUrvxWm0U3zslJt29wZWBUINSFoTj5OUtSkVqw8NYSDm4zTyqukTQkymznSaMkW4q32AsGRGhTlGvfSe4YzbETjhws2fGevG9RxCR2TJNAt7Eg5MDk3//XmF88eZ+ywDBNN1G99aJ07degIuQsGOWnBu2LGqIH/tPjg7o+He4qXS2nPd2c2294ELVVgKaSJWOaVX1zCpYoXCj8DUcJW+gjMnCKfdrTToRiXX/xjJO6yKdKY50qvawQTSzbahH/nHogYbSaM0YWSKPFEKtyhQSVg5o2xf2Pvy+h9B4WQrOPUFNiR8O9Ziuq7RMCtyaTPmyxwPGzblyEdbnwb+89Lc/k/KzTtVlohexxVYPeVmFL7cJQVm7Ner6UK+YEvA2S0a/QjLKSHFhd1uyDpYql0vfiVTod59V+LlkMKIf+dnfzwBlq7i7XGWg6xEpSq2t0NuiPFZj4Ue1DbljIz+Anay3faUbS7+Q46jt+bl/QzmcYm4zNKnv0SYM6whQxjlZEyP0jxMYDQdjjRKw8iakc6yJN6gLuE6ttbv7kHs0Rj2icvV0gatFPmbsaNrW0qf32gsQKBAEzEnFof1x0KSEB6HV2iCa0VoZUTsroAz9IYZsIZc+rMr6PyS2SROo0utUN8qX8yicFYH7qQ7Hr4zFD5pmsiCqNjdWR8MAp2ozsO+tEUlpKZ/SAXFh/GisrEfj1LqpNB9p9V3jw4bda/cBUq3ViP/quXHpRINBrA538Jc9JVZ1uev2wlTAHmu4dSo3CTHBf9AygkQcuWMnFfaxtg0wiaMgGQID37b0PWGZyx0I83weQ2LIFN5esOSGtkj1o+jLid2k5XvCKANX6Bl4wVI2J6oQk+Y8UqxLm30gjNN2TV4YWFaF6T07cU61YorOIJ105uwJr443+R9vRD2vx+O1zQ9/FiqWakrqp57cfgwAyXlqq45bJQzUOiRgMqNaCmfPjVG/qc4OMPTo/pshrNhAnNUvWA7z/Olfxe3cusbaIbvBXENMSoOskBmxYETlMIwCTVK5o1SlGj1TQHweskdTuZvhefJGk5rkP01uxJZwDbOg8p0oY+uoAIETjOP5ElQA/IdFBtn9qxW/IEXoC8MxCWsyiwbA4P2kQzmiPhx8tQqXAklVhE9VFrlR7RynFLX263cnxaF0FgprY49gm/naFa1BxGhUOdhbFpRi+GIN+Gs64WEabfgOTxkHk9XmQll5RQfjjw+t7Ter8VqTnvyu5nB4FXsQAEPJm+gWFn8J5ETzpsY4+xuC0xN+pcTY8owWuv3K4ebI+kBbHshtf0pSS/EcIOwDDsrV4OHpC98gSBikudESlTuijZVKD5B4n4nUUrteIwxSj3u0cVdMYUMU3lBs/uJwUYZDj8w5y3FWKAYd2hW2RS69z4YMz84ppP5zT4rm2oSgIoFtT3EM2NDSOI+kO80GYF0mr2w29hG087rxiTd7ZrCnvU/HiMDU5yl07WCt0CZI0QBITl7JETCXw9wNOPCgJfWtPr978oJg5F3epYHwWaakkKAurNeQVCFk9TeCBmGAqxrZku5YgGofYjDCwn2Gb+Gw7KidvQTiCLXuJgG6GB1bARNTXF6lKuOoYR8PtMRMhZVAeD7zqCAkIL/qYfHGt2osdZcKRphoD58FidtOKevkKqL7EXmm0sEyWPyOiQn2kOBDkmkCoVcL0tKxK7uCkZ3mWI3jRoA9nEYMpbPcWqOke6Jz2kDCjhO823OQ4g9pjoLu2IGnNwr8vSFf+xt6dJr/Nk7jrkyyKzVzztr6HfoAZbGgV0qRQjYX3u/XDxT2vggPk2A4/cSyEq2wsUkfv0NjrhPkDWWu/TVZAqqgl+04JqQ6pu3y174dMzNrAl3rOJhyVDAS1mRaSW72bdCnQOv3jZ0jiNpJU0qTyMWPR0VSniEzg2j79KEBdLjsAwj147NvPn5Mm6U1ywIydKjEMyKrkFKdstrqRaXLHiiI5/ljhvuk0yEIRxbhLtAOnXg8Jn0eRDi/Tbw1jUNbJ3Zfd26BuMwHopgFrljKZAxCA5elZ2qir/9O5B4XwfsgdOArYjJY8bMBJ4JM8kDLGNYwaudCuubcsBApTTbJK4jvTkggxYdic1hp4RiXpY6d6AAKNA9LFXBTVwv3d9iv+MXiSNHW12X2DlD9LM1bvJacDW9MAC8T4L9Zcnzzjto4xZv+TPDHkgCtHd3KSxCsY6cX2LpSNqKQk/pIH+tB9FicrDht8LN5ZiLpZE9Tef6RTS+5lMh9QPDzjQ/UAm4t+JzVMU7/D1MY5H92gb6CgO49Mh48ywXMtmhxNoV5BPRPGGJ3KPuL8WWSTmsibnXfbBODi+MucgHcAqSSojeXyTFpGpWMG4FscuFVXzq4eEsLjKFYM7U0cYYBURtFzjD+uunMLUkhTUSWxgDveQti6sVOH7NTtSQNNa7eRrNeB4xDtJ3EpWK+fS0VxPHm8tyAUHNZLXZrDtt9iqDKHDPV5pwScC/BhlXN4wj49QLfcHgYOj39RlFX5p3fikwPfmyoEtGFgSYSkskyh/qUXAjDpIZE/TZtPVtE/cWHbaHNgzhA3b/7J1GYrsgEfJXzeuoszhnuiWI9KlhyaNwz5Z/R74dRYXts7Q8KlsBsDQr25j/ZQstcO3MLnAJvFbQyPA4bmb0058B4r41J6KeatUYzNbGgJPjBV7woPqPRm5B6onHXE0r7N0fIYmTb39QKGfzUM3TTW/cwfTvg4fXO/SYnIKr1Vr3S1F4FTj12fJAF7787EOQO7olx/EdHD9x6fwp4k/eM1EfeHHp1ywtX9yXWaAgRqLw3lnTxpsfL9v5Z9vDOlkloXYQLh+x7Xqoz1C8U7ncDenQfvF79G5x96KqYSdX8pmnh97zOoxRa8o1nvonM/1DZ/SsWmsOvlRQL3miHFl4RgMr8Qy0wSF8REbntaYdbZhMHOjOsGbpA01R2qwfgjzkIgRs1zISW5dO3CZGlwGOgVvADHnsDpXqWGJ9nXVWvL/5E/9WBZEbSMWs0YWPc3Rq5u6gAe0pcvDRPmONomCsJ0/AwybjGd1IKjh+ah2PIDOgj99q5zzgzQdc4I3AVVmyrNBQ2XH44SK2mLo9fS0fC7bDJgCITX6zXxXn3te9mozWRGj2chgMMVhsu2UChUIse/alT3kqmTUYMytCFQS6j5DPZxl8z/NXVxia+5C/u9to30V1dTbwdrE09yhKoezCdRZORtqr6fW6od7oogGiw4i21MqbZvXSxweaYbfSZ/1BcmxaqCOdyRq+i6EB3n7bbYArFb0QHucoMneDcgRgP+0JPf+fIoYME4iaAntcdMcMPxyukNvKFeQD+hxwVYBbbqN/AIa/8nuoTYPkivgOQVR8v3sU0tR0FWdCT7tcGQbJ++nKOJPXRH+u19FRLc1WaOPgxEpJnSL/fIwM9xm9nSL9Y/cGgQXEHiucwxC95Tiyp/2RL6qjVnLoi4b5q8VkDpY9BOIVtAS8pCy6M3fa0udPBtvRn6b2r2KLG4Pys8zzmMtjhQQ58zwkvDY30UJ58k8b2lApMgBVSRc/vfyBE22PHIiEd8WZcoymdWovNqgnv5H+dDOhramK3z3DzzU9mm1GiHXzqmdoc7YxIAFctV13bY9eweZWzC1N+ZUV7O1R1uiMhyju4BFFjfECcIJMvKzid+4e/m1zb08i0PsIwIKO02itOJ7R/O1TnIQz0P41UiS40K5LcCJpEHaS+6ZKRE2akzDnWtscaz9RhITKVNZ8RTcc+6ntHmFlKZFsx7WR7hDS9L4Gud2B6xzS1BVxoiInMCJjUBr+Fzfx3EJVJiaSCLoy0DCMjtg6eDf8CiJrVh0D08dlIufu3/jtxRxx+une2jS33pJQ/BJGAPBm6Ge0Qjeu4ySay283KFJnrW7PYt1xv9j734Hz/KB3b/u/x7vdlR71CWQ4Dl67ovdfdAsZ4hXbmLk4PayKwTJolDOJ2BaGeU3aWs4a6btxf7sLtWV7A+HX5F/eVRj1CbMnpRDwFZL5rC6qWvI9Fq9+mKn7l+uaWKu/oo0W/9ZbMrd6GDMJWwF9M4SOeaZiW9KvyQo7LkfZOu/Su3jtCo6g1760h/wIiKtir/Wiotg+9bCghqqtTvc7GCwHfmwGHUUdGvEhj771db4MmK2jeIbhcE7m8BhQm4V39ZWbvDuCJgcjKmP/CfkHSIYRe0BPNYsyjKA4YJ9bFirzd40j2pPVlZKj66gBROZhAkYG9Cy4em5anlT7Efya6yokyugoV4dqIo5ZdTg/bp6PUQWmHGIA5WLDzlWsGSz+crhF14+HkasQdS7D/QG6oUF/qnhKYZLxMnS5ZT//sHz9mIOmJKQuvE56OgBfESDBRC0RGaQKA4v8ypyzmlgfk89kLNWKzFXIFgZ9jfqs2UPR7nbyx1m8ztESMhj7YrYpeG7xm05FyUtDn1La4cih55OPwGKnq7GsADpTxC6qzXf9Ikbvsl9p9lSId/9YGwraLJqVRGDSeAMILxjid9HfCaWKNi+304lpTnRzSVrimmGcMEK5nNDA8NDoPqtDGhkfumRTbu0qigJkTjWbNzgEbbI6JdJQcANG0msGDHD45sVXy5EXxo2YRD/n7N7u3sodYTxACSNwWegRJQ8XoLicP8zYsBQvS4Nn6FClC/pj2NsHYv01UD4ZKz881nr2s4dyKQHUskm8U1Oo0sSibFDx67VTDPBANpdcQpWj4olvLCVGaUsLvRF8y1TLGLi3UDxUF0SWtteMvYeVWo+XyTgKqrkZ8tz3HliXqFtik/rsX/Hep19kEwJeqyXXPk2l+HTsJ9QmT04YWLHZk9VvqOkzULJ7en3RUdxi1/M4ZDosiXcWHNTUUMYc2c4BFTW5VsrLWshVHsZn+KRQ0B9uHKPNLTmyocJMleS1miFaV3jJ83qboEUTwBcE+w8zocsET9CMKp1mUTjkL2FzZEcenF/qS7kZpcaaZQRBn/I1AMpiujy3PCb8sLUEX3t/zl5ZgyPJGKMkW7y2a1Vl44ZTV2S7RWndLZctReYfUH7DgcoEh295aJWZZzh8inIhbOWlpVMyhQKJ5PKXoK1sVd/lMdwSKmBFuRPTHbvsh23eSESaKdCYUUR6hQAd0VHQ7IspXXmHRQmNHEidzZiAUodlt/0n2u+YY56xAS0i+qfHmJ5ej9rB1cWpBH5bhxtcRTfcm8WQkwnMBDNyX4a1d/OaOkAvCwxFSoJjMSD1wKmjDLeJpTGBuVYFbgUyr1m8JiTrLqOnGeX/K6YUl0vFbAb8qapx3cVCIWEa5g5GZ9X7aMtTRI9AP2hmSxfoTP4IPM9bYqOv1l3o2NqDd8OB6D0NkEzFdJE6arLYXVjcAw1KmZihu/jVqbhQpVnUPynXDnmS5UYyHmym8Y1Zj9NqokwW+0lxHjXwYTX4Hri2c/ohDVm5SoNwAndKnZlLerWdpt2ZskAg4ltqGM7EcXJL4IgFWxw7QgXc70Jb16QOYuSxe2Kq03fkHezbFR6TMS03AgWu/FaHoyrxSDkkKD7QqBzM/IX6qVCcouI+l+2rMKrLU2/Kg4rBFetpqV4XoUB0bO97LM90Rn1Fl9L1G88nkX6ffZVYqkdQ8MbJmHPE9gwbzHGYt12b7s+fBI76jwP0yIYG1yDVMtR4l0rN7bzXNXQghVk1HZ57cL2DIr2Nyw0K43LvhsN4lXevsQcuaBPK+jYe5by4VwhULitmDftdHIH0j5uCyKhD0KFqlGRZSC3beW6J68YDR+/d7cea8PAn2vtO+6lZQ3kKYfdX3ie03giZkRHYn2HCoFcW1TtZYk27seShJFZJjfjc1HcSEqWeF1IGv4TPJxFcwh1Sc0vUyB7+FTvIqkLn6JiJqjBD6ocTY4N6GGOkiRTHfYbxVhRuFJ+eUugLoinWfVD8z6gijBKJ32rlfK3RzeeWh+BJ9GwpbjZsDSjNuv8rPDMk8pt4J5V9suPSwof0lbV5nCsl8CVlEWAlv5vZMZ7t4ZuBRYZTgghmyk90RnDq5J8iINR0JazyrxiVhz07B9WXW9jo7A0D0Nnscr+JUI/EjTryLTvtk+Kfob73sae68FDWHM7SLf3T4nOkklwihJeveC1g9wc7FfXukGBnvrWcPkvTl0creWTcpp3RneLXnX27+BCH09gicWzGw/5Bcg2tyrEQsKVxgQyr/sf0Prc8GaM737hD8PJ0DVWK3sIMz18/WddLOCFLV8/VihHRl/w/a2TY7D/Ih/2CPclE0eviAPE5rYVmMBTKybijvyNAc0sUk5zo4jz3fhmdSnF564ccq32BH0iu9GquXfLcBfQeomdJPQikCaMgMug40hGXJTFZ//v3elOAmkL5sz5fg2vmlYX6kzgtx6LtYj9x5/zTkAZzzEwCoFW5Vl4Ca0fAHXk44fQS5GwJWNZftEyNTJC/WYqrPyUqA6xwgFLmt33EnA5u7mV+RwmaOswjm+9gR1n+bJJg51f7RkA/bG+gqcBlz5XzQRWDBazRGaXc3CKCTDB+YN9zrBYE8/Ew+rqym2q5AXHvbEU9mRlNfExi1EgTQKKa2T+c9huL1DTGLhP+6ZAnU+UZC0KETXQVNHlrUryodinzsxA7WQ0es/kdZokNYOYTeBMN67eJf4M3rVAPvr/iyzof8yrL80IPXgnK3gbeCkaoJPoIAgWLSToOcjv4bXfc4BeF7y47ZhRSxE3cs0fRh3SU57VAEyKBUomswUE9MghWUP9s57WWuwC9YJUTDipnIJeGTwbNm8vfqb/lm47D8nb/kSYQEoVFzCSaghsl5Bg8Iw5ViSWkW7Ve7D0vrSpw4o247gnrzaIwlSiCgR5I6mZ2BgziN+PAXR+DMPq2Zy6nAF5aVB+a0BnCa+zM4fBFsUeEOuKaksmicOdcfPAusDxsDXARAQwdDvtQB7+rCJeuyG8fSll+BfNGnuPNhuwllY8BuC06Z9CphzQnpOAfiGb0Uj+zXQ5BXGXQtAsVUc5AxmYz4+aRgDX7MFvthkS1M7z+YUVJeLttuWAXUYVZ7tdgAlE8cxVDZwjpjKHbGcSQw/tGUn7V1eQ+q58ZS6vd//lizBSsc2C827ykg7oUItvVBEAS59dDpHBwqqiSWLQcBMdTFXhTHTuk1q8zh+QJWP/XAVBXAua1Ev75ZN9n56aiLdxR/cCbde5kutU3RddnrCNo6QPD0NbuiGO5DunfTaDEJT4+vP9kLQWBvTj6GpjxnPdqDvzUJ5RIjQ3WGD4vWubpJ+TuESsY4KqVZUG4pxBvsGenerlrnCZQRirC96gaZIU6X7HYd6BjVj/GWw1m94lbFJpad6M20c0mbVY1dEpmQe2JTz06UYXDP6AY7K2esYayiZM8E5mA2hI/qlYHb5yo9jj7gqW6oaQoc3F2c8Z/FqDzlIElMb0fvDf2/znEE1xvnUVEr14q4wYoUfEOwOfMeAuKvdUM3tLCmfIqjjXPWQYcnZKk8MN0Bh8Fl13fRM3uWamB9VMYN7bRy1q7z2yiVEACwWEgX6hs4LC8ueoe06ilQUd7RACD3Trjp45HXdBsWtGyx0mZrv8vJLNlirlP9FLcbu3Lx1oSbbmrrnZ/IH+PmJdM/d3XdQO6i8RlN8yhUvBv1P4dkhUe/iisoE1hFMiaeQPhZVetn7jFQWBHZ46Dw9yvd8WzRbHxfVGU1fNdXANhGfA1837bMhwN9m+UVkB49BrYZR3B3shXSjghHbrFv1+PvgKnlNrbOx6JXuIPuzeTXHhqT3bDRMGa6ofihkwWI71tmF+g3t3nu+4fbcQ36pGOy+eQvPqkAusxXyXMfNcKrMwKfFs4V6r3ZLttfrjPJ+D1fKBBnjTc6QnSPJlLRs7Z7hnT92whWOa8EtftpCLkCNZX86Byhc2NrMUGN57XsQG1ZSbgxJLyE9PM+DTa20LK/aewngyXXuuoVzD1viT9eilciK2tGpwC5BBRaNgQfSHfG7oekhCa0gvtaQSzt0aSpYmDox2iFXTsHuTR703FeCaKNqJkbJSzWYH0nswlXiHAQH9eSGPr6DBA7EhRAcE3ZBF2ZMDG8B+Rdja5BY7UmxJPDsVIHiD1+RZSZ2NUtWiiXvo/mQID8oO4PZMN6eGq/QsWQ9p4YvsXz8e9W0LbY4Kd3+CxxFvQqy9WDUO1DxNcTjBMFI07iei2pqB+73HzsE3AK5h4nvb2pDFd3Z3BO0uZNzR6MyuWo8XOKuAgZQXx9ZgAfmfAVKMWlzfCYJuoM9JiKetstvKuYVunx1PqA/vGp4TBho8N1nZLQ2WUJZEAPGPVsipllDOeUTtrT2DLCy1CU6Pe6KmF1JOuAKm9CWti194DDXsgV0F3zY0xviggh8y+B9mzudoi/bQ4iVCIVqreo1w1y73DS+hMWoQ2O8d5dt078iVV2N0eBAi7WIsAFyapzZFXPd6qGGC+GktwuRZW8gI5NBNcBOyFJtpmORvCvxAGmIirPS09FXPsgMCT0fVV5oTvvtBoICiV0bw95UiAHct2tmN89WlUt1KQn4j5ZlWsW6x/+A/RiAVcrVtxtmcmdpWn3nejFy50UBZei/RSqI8vNG0nFolZ6Y5CzWFmcJTxQqIjyrD6G/cXYCQq78DZnunuwUSWmRB0N5AlJdJQgh6bGZ7p6zu1wkEubPNAoLk26G9bN6b67Kp8ncQNJ6mhIeNMpJMUcEEUlNu397oHhuapGLurBkeiZnALf3N2Yw+epQ+QWzJce7IHOHNCzP15Zw1dx3ImFEx5YRXNXzJHmGsXvy/GICdf8Tuu1phwQOHbwYQr/ZHVfuy78vfneHIt5rxfZhaA9iOpcD8UiX5SMr4rjFvYZvfjtvcm7Gz4/dFbIv8Z0RtsL8Q+yNw7YBJ10/ibQ1+lW4uEzuEO1nqefnz/5U9jMbD7TWDd30uayDjP7FOLaNeISLz/AjTvzi1Q+ORwkWXxHH6c6lLXBA0bewWApyWl9gyMCIbQ+xvmGRkf9wxN7hm95m4LgLr4ItDuQ1m9csIgz9rUi2Wkk1WkFDip3XauZp59i4uEvK+TGeFl5MCH2me59HpY/IzHexEWjh2geBBAH+f42tfNc9jHrIh3MFO74lEON2Qk7WpmmksfMyB9AarLHg12zLqw+hY1vB/OWfYK0AsbzLsvDGzEVuYVE3OAtyoWaAyPYbV9RM1wbHhn8Dm6muXILvE53sCNwQHlxvsxYgVVczT73Iv3kc0CKNEcaMqwJJ7xMcOW2/YOICYuBTvMFZueYoBg4QM7Og3yhdQXazgp3A0klFdN6Y42A8o475MOpRYWELDS9Llko/QSwv0YBKH8VUBMH/Go82++NTa9bnRA5W+2WrgO9SaCFPKsvFsGBmA8eCMs4z1NWg1ZBwgonTlE1t14KVkmsGnlUIp4bg4QX16G1hBDsIUDHa5KfuRVXiH3mGhMlfEkKj+xhsoz4ZSnYfWnripBdiHKLON7vHDRwGJXt7bPXy9lhvpDyLUKLVMOKaFz0uisz0dDpTKKQsH3X6/Qp4l4boOoVrTQcq6JIAFLnhKwuz52gLTNIoGSz4D0AhQ+RrFUiifabP0TpavNiN03woftnk140y7jr0pXIwaVt0xZuwvQcSO3U8ysiyDt74waCmP7ogd13LGjAukXIfIBF1AtSyM0gjSaYVpJ7sB0KMuD6olLHxPewmJgImKkSfbBS09JoWl+rJjGaEmjkIx1Q4dJCWnW8jGHTTvlKWyn4kM4wyfhEfGkzvRLr+RouEUqu8mKd4Kmy9+j+MrZoanoGV9sedJOJumyobOg02J1bu4ifrB9UU0zIC3qIgyYF3QMOnfFvUy6Z3A7U0ObhRV4olJRk7kij1ZlcRHsHFFd1iVcUtCAXzu4LLx8ogTm9cZMXcwNBBtv3M6+y6MOZ4jcYk1Oqv6XTVxfeMYSlxBy7W+9fH7BPTPokgplEb2bIvq6fP9DPyAZLp/Y7P4+Qz1ofeiPYmzmGkxdf5sI+BKp8+hC4uT8i4Dto1noh6Cakdgoa0MOzU9thDarZprMO8QFrW44x9aFjXBbIua4eem5m/6fGQsDMHIi/OfwIwKz3k5/SgjPhPPrYOdjIkgPj2BannFs47KIQYGqq2Qc3srxn723qsFVrWlFVGrPwi3uRpqtOn0J/JMmpe8SApzto/kIrCQEq8pXkB7RUlQAXnKSpqKxNSxv1xbCFqwuQU2s82X47cVRLCS7zeQE0SFgopX7CdhFaFvrlksVSUWoyNqpGNemaBXBbrhsARReLmaR2swWEkRPdkUVNOc0l3GfTWZh3n1BXcchb6rICf3/Bq29dzD/n99TrOKK5XqTHY8QUCiYaE9j2GCndRz6UPNdz2m7/dAOkyqOw8Pd7MSh9TNrUxprIrFK2P08i0ehSyZpRi3proBxL8tIccXPhj8eDZdqp2TJJFbsjZ7duRJLQKdPnRzO/hU0z6lJ9D9M7nrLquZMB+YG8oD0t4SgAstT+GzaFJPybWZnGbL532Xtl0ltDM3YepfyVF3fhtfX+hMT5oeIG0xV8znd7vdUV9dD65i0uXpT/cCZG0E/FCiGW3UwhkeV5VoVgkAx5aV2a5/VqjY/RUR1tfHHH5Ectx1WxcJ3DHJ69fr0D5jV2KnPvc3XKuUe1Gy4ku1ch1E5D5/d1WY0THqa4CgdKIWhn2Q1HO4bsP4HlFiCr1/rrstiaUhNXZDOhEmVEEflXYB3bMSrwP2ll9MNJ7/yl1/AoqIQrb6LAQmNo0QrrrBzaxv/Z38DEx+GBcoBaRI7kahO02VROpSSFQcpYt7TWdbOJ2soRhbIpn1WlGuFkDvnlnrxUCvrXkPWKNgLykbCm4M6a7XXkUrVUN7PxKcY8sKhZiUpAnEofFIG9gpysF5GNrdZ5eKZkw8Jn4Z+ETOOXXIuyTi14+XMsOSx29NJBiiJDFk4kIYweW47jJCEWdetWGmdY3XswHEkuJWNZxi0eH1cGISzWsMgrcyWJta1Y0zkAtO4YOnDPEcvGHGk5xhhNRR2SFVGH3kIu85mu2/1ivwW9KJxV5eXhVRZ3iwMSztloo0QfW4suj6BsdS7l0snBUViEhUv3LceUZFfk5yQ1wIEO2ptICGacvNNbv9TBHNzTYUgbov45lzE4F9FVPI/xG4Se4ztiPbgLwp2QlowySxgQoEXp8iva/oXoLSL2UhVdbaC6KNm76jbKnhj1gbMlyaHlm5mN2LYrX+qdFh/Rq8kNVyv2fiAG2DIQxzU14e59bhP7nFuGFDiWViqz+K6HqYHsuB+zmRMmWcAdxfL+wJhMjHVhZ6f7/2vYnplShYRlF2+RwA5K7ue+/9F359v0xzONqHkW4xW2A36ZqTYglNTDzhOGCcSJBZoFOQS81/+Iu7Q8vJIGsfQHuFyghpwwP4nCiqqdc6hTtQ6EvspYESSGsjDAcKtKn3VW7YLWDaTJgWOwrSS6hXqoRNc7IJpbyAWkxSmGDZarVaGKBV/n2ZHMTGnWmeNvOSVpsKzYXfEMBYx4FZ17hxpH+FHs0XJGEm4ZNKfQZ3nx6RcFehsiH4Qci7tcfFpUCg8QWrgEA0/7++RAI6hgYpZPaXSOMp1D42f2zn4YuYYwdmVnfT+huuzTwqMgiqix8CSaPcriO4k0FLvawD6TSO0chr1FAo+xBfhVdeLxfznusdVEMFcNNtJbp7x3p4h7cAVUMTLk/eBzUOq4OtRLdtzqQkL8S+AggUhim0VqaO6DYU25pxGViJOKQOp/rWxmWhhEqs/HfkJguL+jk+qL2mHJgSkha2TOKgtkmpr+BPaHxkPeKgD0xqaFpPrTapyI59Xbo8PwezhCW2DjkBvnFuue7eWBkh5X39JcAzngdk+s90DVasuLugzHviykzxmygVugkZmyIdaynLOPA3/EgVcREgi0K2ytr9k1z/bFmK9QjIMsoiY7vlT0hhhGFDGgjBePVxGjCkzVl+R6s2REP5bUwW6RHPEVDNu9yX1zh3JTOAaYPQMFwkKTbBe/QtieAZu1xLDVFHaqtgNvOL9thSMb9tq12ib6jpxylYp2XocU+cUmUsCm/f3sAOGEjhxQmZ2LRQ6YfnbjRBzK14t3lSOUhVlt3uGUplAyEeb2GN3ye7ko1r2CMrFaSE/UQiVs4+QPA3mbwOL/kN7RME66dMwks+eXqIWq03LNPdlEIq6020vgq/UxJQ99D0udAMCZH4V/n8czGDs/oNVjDVF1SIScZBZcUHX3WWNOzZraK3d71YJWlsrf1PoU+LVFUV3HNA514TUe4BmW9kJVm+CKH+vL+ySvlhL4PUbw/5TY6qTIGgcJQoS6S4QmFrx6ULUF+Vtf9U2ZeyxyVdnMJq1cHG0oo+eGwoYsBUzzaePTXYmRIe2GAv/vwomL1WvCFlVj7MF5Pjq4ubTRjt9t8T150+96xNDwtgNWgbFte+LImq8vn1vwqtLATxYjwR/g65YCE2IM/7zQQsyCkyfw/fMH7mAmkbK5VPmI1F8HJOFOnnMlc/VTy16Sd067jyf9kwMsyVkT0Wm+wt4N/0pJBIL5jtCTwsRqH5MCOPiHRDdryIl77eNPwOzPzdbZUUtvDUuW2oWlmkziytfrjvOU/LShuZm+hpz/I2mb24BpfgoJ/rCZ02YX6QSoOZlgsdG9moLDIW3poExqWl4ZeXmuIjZ0iubtpDCV0qugjZ3DGVJyEjcOyu9GW2HUy8Zn+HCJxaIwXsf7NQrohEj+LEJ4XvnmaEmbuaBnSM5GHzR6q5eTs2BvYDdvFJzNnXhwD7t2JdJ6QS5GfDhR+W4v/yOVlQabj+VBqr0AkxTkWPPg55tIHJFnOQYFyaoEoUDbk9cQEHjpBjjeY4LwTlUxe1FipgxdOrvntfTI38ovL1EBgG80ZJ+4utZCytvmgkbJ+uyda/hcOjXtCIucYLJyofDIbZYM8Ka8ZrtoI2Feg1TVkUOqlhRjQ/6fBwQXE1DIMI7+lYDpgsO17zP3JbiTHxixvywoDs8RqQtFvTHq5cDyFVHOr3nztuJoFr44YeyESAbJgtH3ms/XL0JKUQ7wgGpqQCRxUaAca3JEDb5HJXIOKqW6u/u9TruL3lDttOhGu/SZLnmrwtKXwsWQf0hIGWkudtgWiGFPCXvdxVPOWz14g2P8wrDQEiiKM8eii0R91vg58eTVat2rz2kDZK3j7qiI3dQkCCfjelH2Bo70fo+CgcFFH0abQBUhXLStfUAUJEe4Gg3hN1WdGrN8Cv9pehKxu8pqkrdsnqROZQyzhUSbR62ksDgY6LXvauXWSLQPOc4QT+IsGrp2vxgBdLPL68P0c7G+XVIXVdv0Vyslu7iO4nJ0CYCiZlFhQlcvvM/DQgWOEJl3fhL6n/Lfca9/96wQOxezxuxHX9pitXHIgP7ihRjI7PEfjtWRsKd4Uq9LRPU0K3JbL7R/9ZOf/vzzzl5ROlCKcjJJ/h+lV28xI4Pl77zKqRFmcTI6vDBVQPR6iB7Z+fF762hHhQGFRppX52WxhCl5uYmw85xh+e398PuZVE70TrJsMvg6L1BDkYJW9wuciLvHUZ77YDr3EzJmpxsa04/lKK/YGRBflfuDq6/nYpVDYZSK9krNkJqJIyMr0YmkmDVrqtDuqYH2dw4fG7MnlvkduiAnTtPh2iTO4JblZHzKSUgXFE2WIN+rUA8G8R1Nlmt1Dp4r7mMWVofoPXmQ+xig0QNYpjg6u0f9yGs6CBflkgQmKRAuUkS0ziWEOkUAKahSVIs8o5z8hECwIq9mlfVzxAKydYb0p3OAnDhbELLh6ZoAKGu5DV7s3IvfaOvGS12hwh/Vh+ZAVonTf4HXEtNZGxL5xvqOXOqm+cGhDa/1L6piQKuddYjOYM4c+Q4J3vIGVgytjQg68P/ksKhsTci0qJLXyvzbatHCALAHmZwapuZ/paVd9wDC/TMkdDDht4+by86P5SMmcG+tFgGu/NA7YF/0d+x565auPi4IwhrIS1oDg7GfMg/v6H9ABawJ0DNivZDp0jztVA9RhA9EouOX60wTsf1F3d8sNNGxIYqA50FCYoJsOHH0ghWOIWT+Lswm5Y4j1zIi6CsGG9KrQnxxY4b5fSBfhRDwHap8tiqwBJ2WOOvgrASOvKPbokHQtWGKJM/S27y+xMbKaNbfMfhouPn9tGBgip80g12MVCzqfw7/3PMNIUGpcPGVvkVzF3ioZ+gobSH6jrDj3ZSNYsd/kCBBD4LTCWdEHkGhVJ61ZUCKCP6D4uIGzBcYYg7s5qDuA/ftoRRmsJisdBJ1BFmnbwve4qVd5ZX2maWkGANwylyTDDqUdfpihI9qwH9/XxXgZVvCEk473KLCsRTk66KCiy3K/QCPHgEjrH2Wm53op98/CJjEENB3kJQxjiI0Q4RovTxSTZ3PFT8YJmgE4+vhzulaP+bMANoPe80uwdygViPGatHq/1vAiK7GKx3IY0BOrKrBBBJSfEdAD16Zo+i3NJDSSCVnJo8IIYUPOehOqcUnclXwnUbdavwk8vin46d8VZjVMJKttqiNrwR2vF92+CleOtVkGzLYBMT5CNbCyHy/kRfcScazmr7r0nH5ZgTpE1jB9E9WHNztJDVdBQETD73ds7Be1g0qi+dW1BEHXfF6c6tXpHOpBuc3QTsApgVRbgAQvVP2CO5dQSbSp0qMFQgDJgO6g1W2vX+Ilil2N6pF8fakU/+l9IXq32K66mx5i11Kj6yPmvj+ylmpyH9aRAjmJHjI0CLt0hYxJO8ymwW26H5zp882wvDmABKBc8oC9U1CadFHnGMpysxpqZua/4OamZPIOTfhhCwCGDPUaBq28Ctg8GGmwMSrMAT0ebTUraPdtQfVwPa7f2z6/q8cDVmXKGtD6uzCWRVKwSlScbB6USzUs1/jPxctocPf6iKYbQ9UrizDA1FqCAx8bMC+wbL/QamHFxIVC3yaFdgjvkb0D/NeBjW4o6/HefXJnPsNSuV+5NSRoCe09tkOKChtzMJu2eehE0gdcvDPrE2wSr/SuVoQVA9IMjOnqooKOCCQgPZ8li7mpcRYLOm15ZELM2VvTgld96eQBtS0uzsGtFefBJrjEcso+SLGBhT1RjDa/BAIuF0TZTVgoEe3WfoIwBjGk+Q92u9fV4kztIgf9mZfeQXTrUFX3HchbgFajI6EvV+4Dlh1nyhKlywWo8uS1xLrjFyEfXtREPHFtKYcI4SGtzJnHxr/1bqPOdXpohguW1HCJhhRpJTEi39bfOUg2NLj8vrO2zGwYwVjUuDIW8oLmt9RNvWUky6s6glRCg3tnoLRPGEYphGj94jPS4p4MgwY9lO96tUkTmBaTHHEUPByZIGjiGtkRvcPiv9exOGwI6Yb+OYzuKsgdS6vwqD1CRwbdQJpMeRuIMEpSPO8fhK5SYhUl5C2z9TXAu/O2gD3iYx0ZdWKMD/pq0B4vpIWkX7D148QV/sYTfGBxOmIfOtg65o5AvemeD8FpIjx1nY4LkhUjkdIt78XgXiZFxzF1cGlsZBs2MU8oTvyV8t/fyNFkg0RR/p2wOHBahLuFfKSXmPJOY8HB0yN649JvTfsAYNtBueix+hSowK01VzDxN3AUFU5MdK2zJ/ZcjJ0wCwcCHeOqlCQY/RZWwp46yO9ALDG7z2xpNlSsGQevgsBR5m0nnCSwUB0XM0vs0gG0YiSbOgYQur/05DXkhJQWlzBa5wgb3b3lmB/ZW9b16Had3brJ0U8q756KcoVpLx1ldB8arZOyojGg3qWOmo764+bZP0EvKlyutWi+YuyBEXOgxZQQitZsDvf2LmaYLRe3VZIF1kzr00foLySc1Nb5OUFe4IHWrNBpbOdRrj7vB+9valujK8tO67OUSRLJ2GxSczq9nu+KcTnX+hfx1Ifx3QN/I4degfXxwvdS7gvu/hNim3r7VtBCxxQOxWz1bz6jy52JIFkuzhxtYOcfV4oZ3R85t4tetgZM5IoID+1AQ96A47BqPrlpXPHreLRM1PJNagNtGFR/LKj41gurUD8wvTduH5nuYanhQWKd/TgJ6/aJqeOSg+euHgWeejdP7PK4MlYqYOy4ARJmDbklGCMvsvE6JArMO74BL8ePhltJmO3IdnVF1PgIcQuiRT4xXdWIV7ljSVnsQc4g1ABmSfQrEnIxbWjZoOwwRRyXMf5mxXpDMiUkyyLhG+QMK0bQwSZ2pqmdV9bzDJuKe0+Wfr/tnest9ARg6pjnl4VYqSb8qMy/BJmos2BS4MlIlzxveqKbPsdYc8ygloL9o6B4PNKChjglBY7aJSNPB6TAu010AD0pfQ4JJiLFXpMnkjD8Qpvt6qcT3xJcyqs9Y3S0azMsmBSFSx5K4yyPTbVD0krCvtRNdNiio3P5fsqTK9QiI3DKJQR9HpGVZ8aLldJlktew2oQ0++e5LgIC6MIdEoepY7q+WF7BWc/GY8N1VRSe+vkUQ6rV72+uoXUSqBJgdbznEb6VzogbcV3NgjKKje6j2jUocGiqIsYgYXYqh1RyZ0aYpMl6v4mbmWU4F3RoNLgzYbs3Ztxu8WYyK7IOCmisZWTo6/QSLK1bzu0nNyALLHRtBJujInETbM7GGImgxsMLzx2GtUxmGnaRimGwH0U41BNYdSNtIWcHdjSKZ/RLLpT65MiZQie9K/VKMNkTVqKTONvTKnuXwh1uuwYNAOtzF71W+DeboORDBTY/aVLXFQUCxc/Ndp9UriVqgu+gdAJOk1/jgxFuLhXPPSgAaVYE2fReINzE2940nlGpCDYCyzRdvRAz6y9bSGHl5D1GTfw8mm1iALDHt2HM2gDPvYgpd9zTZIqjhKXXw0rxVIURfZKsSW1ADwpoCKqNwza2cVaEkGv74HHTH7pJsb7fGnFDA8mHrBD2VilFSf7NtI1BOmTunMWqmO0UW+v/jS1eiZh2W4wM3gtfAZlcOAS75J8s5d9+6zTIVS+xf5e2KKyFfhdUj1A5r4vD5c8yatO7UXD7wJ81Dfe/MO18vEjwHtIwLIVzrgIFBc2bwXJt1fIcgOamL6QwCGOBqanSzKo5GFS4kRh6/AYX2RSWrMjJG4MwKINsRBGLPCPrbCdzGcNkUwTyWd1/1ZvrUmHDxKRG8Q/BW5KAeeDkG5Z7hqYTvwbxdxwKnbI20FGsBWMvaBRW1zMlgAL0QR6MG9VzyWOZPAYHSLzZiguZY3lRnjSy7XUb84uJl9WMrInCtRgZem87UUAL5O17K1dfB0wPbdH3jXVtrtXp4B9WS0l1ilnv71kUo5VwklXqDEqJqBL92mtnCbA/KLYRK8VkxDY+pMMhOju7dCVXGD9+TjP607f5v3zTPJzgTSWGGSJSEaoPAKbePFSbVoWLvBg4b7Lyi/+dLc+ASTeXsvwvew2u+TyMsn5bP+fZxzgcKMNz8PobVeZaCykWQ94ZYI/x++bGrDQneVJrXTENlpITS19XBr2PRAqZivOY0EMOH1bMcI7M0bMI9pRqCSVFO1vDdBusUs2t/CGTKPR26dy6q2hY1/ukkHY9F3vRh0U6V3TbQwG0mz5U60Ve7xtGUN2bUlxlwLzUh3+zDMlzEUrCuEVSafrfnqjd0z/HQv064/OSAnwshwGzGb4pUItEIF4zkJLZYerifDWWLH2OOJWt3YUxYqrkgI39OcdVsoGWcSt5DK2Qiq1cRmgk3RfXDIQW0239R3sbain9suqpYYVNqctEeNoJLy+V8hxX0C9X2LXyZlVIpSXb08zdQFXaXtaPQ26NCyTw8bTqyg6zaHsCp0yztAt5PmbbfGmN++J92qnCNnlyPVizOVZVS4MKZcb258WM4dv3WXSmvWQ3dcubDzpt61h04IlW+f1fiYK9ot4n/eEeZOvV24x1N0l15720dW9zGftWDUa1Mzwet8k+QVtO4ukGJ7eg5u3PtM/NPs0XnLZ6QfGBUjp+MDy4/VGMS7bWW4jYBHpiJ9arD/IVeASoMDgDBgrFIFS8xGr1H+vnrtQ2Y1IecHn90CguCS9yvlM+ApnoixREg+oa9GcMNAP999E0heagV54oSBQJnbz/RrX2omkowgG3jrsyfbf+iuM0x3L/0PdN9mB4uHfK7CteQjr90wVnbID2D15XHM/NSrCO/Qgyhjut9Lbwn5Rp7T0A4P4dr9TArJ3oBsdJOSzPLsu1fFBFqJ8BZGiDgiC+9JltLQUGTh89bdLf0LgkEHtzKJspfargWGrd6hBqqhLcikb+yQQOYu/frRwoOMpAjACczhPX0jTUM5L3xSa4o9AN7ExTkwyXeCpY8XmypW9xqvUofO6Ay/7M0iPCRLgY03yE2an0+NhS7g3O3Ez5OekxfHOQZwt/8byzB+KvQCtSLAnJ3nHIzL0SaUpYShmCxjFy9KJQO3wBzC534osDxrQPeO3aCU9/fDdcuKv12hobXu0hS4o9NFbcdGw6djfs8TgYd9BL+uLp/MvoCe/s5sAFsSFRGmgMDur1uz7nDwARW0USfucvu8bGRtkCBLxEIoJEkAa8ZXH/UPkjxdRDxb8D31+qPlEEf/h8I71Eijc4p3jk8ciK4Npy1VgnnLC3Olc3DShkL7Y1ASW3uOa9qnUGSU+joHLhWrUkzGnj0+YieJbc6nSxq2mylLWa4Cg5Kt8X5Qmmp5WNPW7p8/ttjryect8LQcJpUjD2jONkjwMdAoUEisynxkbsD/Man/d9S+yzdJ6kjvNGKlp3JWcNHsp7IsKsZi8I39rgrQi7T2AftFz9zLL0oaNf4kaNi7BbaFCtPOVoVsFnPuMUW991C6B+d4e2fvYCGMW7QZqt8VuPN4muAwU05Y2tqCXkfghPV2gn4wn/hw6G10x3J+rZbUATBmlj4cAXglsXxnKT4bLtezk3LNqMSH3ttuiQU15gkQCKLbn4homfXClBCvub6fY6px8e/TFX41SJ2zJYH+rbwHMFwzYxZvNzZAb6dM3S/W4zCv8oHunI5FalLf64ButFS18R23UzY/Xh5uZiAwbbWIfGU3DCRETfn6QoD1k6q5BgK29+pnVZJFP/ncidCKC6bfxeSMUxD/6evmT4eyWqPVK9ogjtkwYRGQkJB6TSSG/PAX+DDr89uAXO2WaEren1awJ8/orfM5onicXqyHZjWpq7NBTT+Z+ViGi9vV/AFvnaLE7303/YBZkJwuB7U0FaCE0LC9aTHQ5OXzCyotQwwlB6f0pOsD6APYO5xzXk09r8WsRCbIEptKjYDvZoPjzrYnudiQfgxGJTlFvV8OvIMvUiOdbGxHSN4/PJvxxafQ39CLjPXNmZymibVp4Ytp7dXlBgcpVo+zt0qL+BKLVExr9boVQO9tbPikaCyMve6uWNHfmDFL9bvfx3gobUDQ5m7n7nqPu+LZqxmbvtsbbuhlh1nVt3OEo07ucwRF50YPrRoP0j5DptqsJuAX0u1Gs2ugP1Jq0FvGZ8XZ/Pqpd01JHdi/JCIGwKbhPSuVE/7eDBFYAy9ACIUsFoovV3+bFt4CQJx91p51YA4oWSYK2LGdaBHlTZe+29FEZa+XGSQ71R/LHwLn9iZZSo02iZKNKxOtb7LB2STUwWgE2Y1tLnlJ8nqszglcJ7U/2iv5tjMTXwmqLeNJf2lI/r2D15rMFuLCTR0fEVr7Cbxm6z7Fb29b8AS93wS35eoPxaLl/U8WerYJ3EjA17/e2xKLvGGUfkKZIqQKR41WLiZv79bHv0gE0MOayGo8MVyb1cw7d+33OEIzkS4ZYI/MH1iNIa53LlDiJCLDzpubMfhOYe4Mc8G5c2Qm86yR3+48UidczMwLp1P291lEItKOoOwr7c73uDIOPDKYmoTkUkRQgmFh5APOyvZfvkx9Guf8+dczE7bHA8NhJWrzxwPJaqE3G/mdvXdfpnEY12a2Xmx5QeKawrd7jbIRT1sMn3A97Imy73fq0EaNDuX0J9Xt5Za+YrqaO87r3Xt/++8wW8V3650g/HTzBe4ulYJlNarQjHcBzJz5jSxVX3faU3giUWpW+H+cJUESJAUiIIl7cBSEXXsL79qfKyD/GBRM1lcVUWrDQGRW7HOb0GHZ9Rzu9KFnvEOH9J1RC5XSPQvt/m1JcS3w6LCfbpHDoE8FA9BwjLzIAdZEXp5zSgk6r0wESWIYuXYgFdMvvorZeMA5g9Nhr8T17VC4YOUKpKJvJH4xVQ653KQ61Pk/Gx0yOG69/DqbE+buqc1rUBSwIHstpEhBbOYx9lWHzvxSKf0kbjEgLkTSoXSp2BWVqaxKaHFU8q5/712Uft/a37o6dr+iPKSz/BMsU95IBxtzpp+hxQ3fd6OiQfkhQ40OSbq+VVkT0kzYy60nwUrbFY1Y+R4KW+yzvcG26lV+US2W/YHksldQbWnqsl+qkKErV0TT/jiaJW2Nn3hKZDMz+LC08n/istDZSiNTk2+gHmfVvH9kMycz4663qVuA0oRVg91zrdJL6d5HwrlHE7mWSeIazjIAmAeHPgS9tGSczdrC9nxrYBp1GM4U2lSvNflwwrbosDnleu4+NsuS5klron/o51dO7myLAH8XOivFq6zFt+IKGugWUTu+gjb2uRh9X53kTLxIonV5Sgudk+hEK6YBHqUxpaWElCm1267IAiOsRCRMpOyPTHPxklAJ+1zLHJhX/EnyZUUJ/4isZbmB6/3ohmsZfYFIozO87O+Sk+53jH9x40STlJm32lFpIsezR6E3e0NN8igfts7Hed+w4jiqHQFoOPRFNntEC4EM9Y+eJKyo8tUwFRAhpZJx8mSxM/mg+NRjoiJj6pRgsUbOZlJkjwjwHMow46/SfsoKScoF4cx+PXe1f7t3zfhVIw/3wT7c84hdq6g2lrSdtK0OhmgcjUZ6S5cHZlWeeVABeqXZgIgacAqUt+1XNewK2qBprYp2tnuRXv3acN5C59wB7oO+Y7CGAcp8hvfY/88nWeOYqBbGFcsRjPJx8/aa+ANZV/S6FsY3vxEjCb8ESEI6GnUjOb86XxOeGgIMj8A1B+ZeVhhSjkS125Rb1OgFI7uacn8Mfmj386+0AJqar3djZBH1alTplEuEaFaX52tzrOOwGeQQN00eIlB+RDAAIPAX3jHvOMq6/2w9xV2dvts1/1ZDumVCY03h4bm7nVwHgaUf3/cQLeRbFOuZpZAGND1lQ0XwvixQC6cyv/D0AyA9YZQNVRNWrqUv7usmUSuN1a811f1oS6MKOjeycTk37BuwuO6liU58pQ0ddAEzqcKOdQ90g6I7Nov2dgZeVNd3mHsfsOcxkG9qTbeMWYoyrxvr4HPFXpIB2/odbKvY7yfeKsNO/txMKEivfEicFctZBhx89N6du9WmEyMje2l+QGe1weGr2uw8q+zUFYP75jVwVB12UEW8a0xvuxc5RiSdZfaDOS1ng6HIMv1lzmXZIcAtTormh8c71RK5vmti43aS8Bv8MHOcILlMQlXQkjL9skdMwMthCnzJgBi+KxHWXAyhxw5yklsE7JIYeGJWZsJxG+1v1cAt9kRr0kgsJe+hL5jVKnqp9fzKpG3PYB25ke5QBYrXtuJbNvNKmGutgkK8VQGCe1u3xwLanPGaQxI2o4ZY7yW32mb0aFhrdsdZLFN33YGFPD79yHOWC5E4+WJYExi1lxZpDVzp6QQOL2D4Qr6xpAdqA4s6DmT4fAHA1Ajjt6KFGPb1+XxkPVW5l2vpU93joZ6gtoP68C6VQVRyk60ZnMaNKTWlVGZ8eo3n5HQFJygSqT3l92w4SPCUlkWM5aEKxj9TNygkyLX/S4JIPrxsU5Z8GpWCTHJn/+PYCeET/v15EecasUkarlREutiw93xgXgk6iBDpToXZAQ9YiRCzEDLal2resC6RqScReR+7tvrDe5LuXy6I0plLt8LggHUs5ayEj4LXTTv8Lz+uu3WyeY8i0p8wmVOoQwe5w/CunCjcvKVuOKl76itRIMzqFj/0X6AlEV31I6TcwHwbvuIU+rgVnkC+5DAf0sVm+lwyFjsjx9R2spZNDGLgN21aXWxLiDFT+GyLTyRG1S7jh3qUHa/5zFJ4sQQKKlqp2knlae/J9i77T5HUXZ/FWSGeGoySWZCZcM4h+np5dPeKWiaKuLPG1m8/VW0Jq11l8N7zj/2QMlk6Kxl8RRmBccmv0iS2U/Wjt68eftiZT4Ay5FWoLMl9Tdxnv7Hul4VwhPvr49/G2O/jJOaTxceqCR6q6fW4uFt+ba1YpqSx6+BomDC7RJfCuVMi5AR7ZuiqGZ8Mpfj/6yRiBGrczKj70r+O8by7lrJ4TqvknhgVHQN3VVreV1q/0DaCSZ2LWtAsylZjzGevdjKuSDeAHUvatkoLljn6PAot8KuMfyQTs9Zt777K9Oq+1teqfeVEl3L7SsC9AmCVL4XuZbJzBvERtX2awz3oPoMUjR7p1aJBGP4NLgu+q2eBuNrfpNLHzCe7xg90EEa7YeAva17zuAv9y1y7RRiWfqqxLCwdHdAEdFjNSn1zhNY1PGb5SGS/VgZ8BhvjVdyhKu9omhLHokx13gRbvj7Jx3WpF82zcUR/UzkusjWshgar4coiVAB8nilz9KK4jEmQInom59KH1n+OFWfMViptFKrsMMIMa13yFMkotJTOqcgv5Ndy4VQBh5ZV/EHO1cMq6L8L/pk9zfmyNGQ3hLp3N9zl0BOxSjWGIwMG5O0svpO4U2ErjE0V03zxIYS9uOB0I4ZsHnj2G5+Z5RiJaclyO6VNBrtPuNODmkAG8mCLUxZKwNs3X5mEXNXTJk0VExsd/6AVPsURaq4GdngnWjRgCyJN4OzAB+GW/ZoP39ZSwN6sy54366Q1mZgQLpMPGVmk3bqGOdj71H6NzHnEZMXFUnjSZCiIgrvY8baARULo0RfO6Okf0cqq836nFEfk4y72Kd8htGO2owkJD6JP3NAVqQ46lUZaqecYe1Q6RyCpsJBb8RAEhuhbhU4qs6UC1Pk365VE2A7WAu1e39ech3u2iQ0KNnLZXPxN1MUr8VrthZjenqKOGmkGOaPyusX37ojD4+vqw5KQahYa6mM1snWbtLkh2FAbEIvXmY3eeZA98w3CArBsCWTs7l9G+5+XtwGQqB+K3tySK16BO29Fwm/GtJ3N4GoPlzHBYtyFJrMs1ETQ2nmlIksz86yfRdBpYZ4Odn2PaTKZcmLDM+kXw3IVkFEsJAZfq+F/DMVfPQfsOX4m/fia+MwYS7zgZ48GJ+ZWfUrmP6PGOVlM4+H4ysjWvnQPN0yGDB8/l9c0IWn4e2YGY33FwMI0Z9ANzMZWLNlgHsysMPcA3K/3WMSmo7uJ5oVDO0eJ6PU+QCo4suHeg/cxGtqpvZ2zYJMzICK+2RvKpYJ0R2cosgPbvktHHBLsXEvPxadBEh/irIXgIzWgserMf5/FDQ4qtQn2lw6pVe6ACu/PLnh/d5XvrqFNLob9rknnrsuQ0mBJhtIUjxm8OsYdPfTUAfKTXHw1xlZGO4uzoCKdGEqBZ/8GwK85QY/foJUTulWjG9lK8MkF+VUl9A6pDOnaPdH3rptCmlJ3R5Av/HPhbNPgH97ppJ+587VO02iqPh3bZZG4f1Qj+gpEczk6lVkHJHZVqw85tNF+YqUYQp2QTzYtb7WOdkqNOZzTVVyQKgAXUdaS+BqLxXa7HQ4upw0zyQxd61AI4UOAhCV6ORCfsc8IxDvcvaH771BhE8tk26E59pu+1Aby4KIC+IfSRiW4+Xz9waNn0BbBBcViEW4Oh2d0uGh4v6BILo3pkwQIgFIybr5cRNzksczFLNi6/VHJXKSEN6o2DG9Vzl6lP4o+7OhBtFDER8J9l9gChf6JcljQsk5blPGx/fOSuPRQVSpKfW5m+9bmTkYjhEAd8gwun8o9U0QNuHWHBkphNWZNU1+U9FAWQiRFGpyJ24XMqwlmZQyE37v8o1SLpmj+/HkEhJttpHtVV9k0qL2PEjNyZRk6rQpNS8lnGeciH0+WQK04KvCEjowHGVoEN9xHgJaIR3udgNtdZJV7CX3RzGULbfCYVfIMfz9AtpVvYkX7NvaCQp1F4m5+iU6izVAIadU26XxXEBeZfnuNs0xNZXKzlprjhkq46P5p2upk2bI62Vy0K7qk4LY/I4gP4m5FtfkqSlQESTJg64vdybiCp9CRsGVdVgRCwghtVcBkHyNIh2U07OCixwj8y8bZD8YCiSo6LIEv4f3c8UmB/kZu4e8UZNcWXhUszbHpY9vbPba/zouxGW0Ih5R89PUmTKWHOdVVHi1B4xSFL5BJ7omaeWqYisvXfhG+BKsFQDg5LFKMdlAwuoaYCFO/UwCAdAu8Ws5/Q03XDreXvBnSHiBowIr1ZcfRc9+LFPGVLRAtVtdIfrj0iI/tZparhcnhzJBgJigIeFt/VJmrwWJD8Z90AnaLgjb10szYVsECtLZzdAjNR/ZDHcsY+mmte3VZKyafD8KdUWXaJ2tb/qovJNi6gqosLkaeQJQHZdpaNnUPXgVPQk5yMDy2QcXelaojKy3SQynue8OpfCnJjp10fkoaeVIKKyEbhTpbRqEMFmkXAdMYag4Oz9zkvoZZw9kBwc/k2fF6+W/xBOgU930EFPX8D+/H+yGa/2sR0HU6wrAfs087xCtDoBERQrXbRIMCrlFHtuX4uDh3dv2gDylPFEbvHWn2XyMXBl6MS5LioF3Dy62jKtWXO5Fel1LyO5yRmQEpDuv/fZTbNYvt5+4cUjGMf1EOM/c1QL0LfbiluT/nDvT3PO8tCRN9z7QRXd0yqT5+qhht2noujOL+i3W5J4MzYY6l7Y1mvCPUBMEeRZEMk+m/mCGF//Y5Dm8fkKGlH04+z3x+VSmmaWFWJARSLiBCP0hn1HPawgRL8zCxZnofoA3gUkesGfK8Wy01/Ut+2hUZHvmGAujzPJan4+x+m3PHgvTjfTzMXrf/IpKRxMQyrVN1FP3S32S8xKa07yH1BWM/YjeZTJ/EnhoVy48EEUiLzap/SiRAuabm/K22OamfExEy622WAvQMsNiUuVY4NTIPCFvprwqSpzekGoCtUACO16507G5CpsC0ADT9Uv5IGCa39xhZ5cWXsrZiKQAQrAJ9nOP3yGFFZ9n0Wvro5G9M3dFIIVgTFvEjPky4kTIGH+emZqA42zs2XxUa2GYTnkLhhuUAutd6b4eLn5Hdua6OINJdCTbg5qtNg3SVgpf0ytbjGupOpZQxx8KN/kVBIC+cd/zCZepg8y5Sq3R1G4LZp/blD+BmvuCdYbRGrlbQyzP7AEMVGVZ2eEs4gF283VtcRRzkhfqBCTpZSRHOOSn6SOvo09wXf64mqcmF+qlu+fzllyL7XVwU8ajp2vHXVsSAbvEbwdQzKY0F0mSMhPD5d1WvafVVch6aiBX9Lpyo/WuQhDC3Re6VrsXS4WL97AtC1qEg4mjPh2EyTgKjCfXkFbMMs5lTk0dEx49GxbUt32NIZmdRavFMsNV6IHjl00ZzJPZoeJGazFcNbfIKipeEVrsdOiGSU/V09u4L2u57ESkRH+vSvYuFjjK5SianelI+k01hvJA2Sg9H/vDKXnRAutkwOGXQvaBOtt2tPHp1OwGaqJRrkfZecpSAqPMSKxlagLZB8KVAB7PIsU6Quf8KT+wcXOGKTGmmQfTc1ShlSs59iBZvGxoIKRjAonm9KfqUMWAVJxTs2hzcQNM9vY3Ejmmy06OS8iI6RnO0/L0liEp5XjtVUInHi0EiKWpRJ0u/1W2nRcranL3vYlrzylEx6rYztw7EWKxZkR1A+sZMMrlek4mk+3o6jh34MUmM/j3iT4e9NFIFHXDATy1F/qDGS7NQG7/j1H+UtzqfOcGCPIlzbb6QMqARh3856rwQ1ITpj+hKInSggFo91vtbj0e2Uiu1h8K9SyygtYk96QCalgt2SuWZP3vTNH8j0VBlOpFNlA8Lhj8JiYweXn6PMO/7WWqCh7stfo92AUYbsNBqJqUsFDyKPApfhqD916CGMjXb4VWzeBTg7L96GmlT+Gzk66Wk4y3FQhrtp/OKtJBgqS8j73RsO0fdz3/sT3Yrbr7sNnOU7fuPzWfIz3cIiX2BaVW7UGgtDbNEvMRQSpXIGUqF3phEcjK4Ua7yRttOQP/f361j3aLmtVclJ3magEqGITMxPAdfspau5q3Psdw6/Vz2Es6mXQFZy+CRC8MOx6WmlVkg91IyR6sacdl8YFgYq3IXqeEDXbfaE7BPn9m2jeWB+ZlveuF8H9bZRLlu45UAeO1dks+Xr7iRLmhTA0TjFkyIILNjjXY0GF5jO/YzujX/jf28WNvB9yh0Wiom95vm0YQtDGh7qA8mNP0LGHPnTmXJi0Ca4nIt1aLuePteNt3KTKAJCD9wxa3j3bTPZiLhvxHo6DCu1I849dt7rU4SiB1mF/WUrOJsZ87p7JKoz/JqKo9xQlkwsXzt1E2XxqDGl+5HPzoY6W6MjSTUEILiWnyxgpBBLNAGkxjVQo/jnoF+/psUSf4IEY/mi75bc0hJcyjT86fKQseDyOcdRM9zLD5umNbwN2tsC4Hp8Vz9r4cXJkmXwQCS+INKLDlGImPC50rtkH+Bcua60AuoX7Bahgo5NYpE7oCJPQpGLeDiSZ9Be5XnYWJmn4VTq6fErTGf+IsygboK0+uH57xqqh1IxdaXwCwB7VJSZeMgey8KOkOnqt0xEKIS8EuKJyYaYU3mhm33MuNRo0GYQMLANMRG7EImqYGHNx6XrQbBkyK82hQsohhlFyGcCnEKo1wBTAsqNK39a9LHZiPK7xGeM8UcikqnMkW+ekd4xC7rmxYPe/N+q/7zT/ewLOFcXb74lm7GX8tVFC1duHY3jUCHQ5x1Q1prQXGWq6sVD9gd+77+4qBlO1fWfwyaeLJEjvz3SXzksocct79vfJe9jVf1WTbj7jl3n7oLotWCgylx75GqgehTxmVyoqPyOJEPe7VglMGn67vHnTOkJIgKsQa/2TyCqTxiPo+PUOyGWaENjQJsA3cBBGgFvirEahthJ5V/r9T4zxkp25eIRpnRvoHl9xvjNl2JS7MBWU/yPTgv8jDUdLRJ+qDkgBGXDcEN9RKqmZCX4lDmdlk8pqCUXIgOLvIDkIPgXVqCGoyFIo3cb93jfQRh6ypqyQOUHKGR2aOSGAmcGoDPr3Vykh4kpydlxxogKLNILW9S0UuCx6NzQRDzVpUphblsLkGI89zBU/upCZJ4c8H6rO3xghUxu6OwnFFvNC/6IjVUHF3IlJc/cqYKu5MJOJpbtKnxaytyszva7KXP0Fkp4NDxobq3e5cst1RNN86Dr1z3Rbl77NxiAPPggP/N9xFEnf9a/6P9ySFfBY1wGJQHZT7Q6BRDTJsB6259apYgsEYg4jsSB+Nvo6eFHNI4ZO4HTfg+ddAptKHGDa2AhPDO5nE8V45e8nKvQdsXW9mgzzun+SPN7EQ8w7dmomyxx9RpYXE5f4FuK4tRTwZFbuRFZo+kc8hzsEMaaYfTokE+DGhmhaV7ryELwwKRnKBPpD30xGpKxrwhDYioPXSLWR+k1CEhEXbTLZqG90PSCt2HatWVEQhMiEK+p4MIVB9h8hctZryXix4izrCBOP+V6Mr/OT4JDMIwojl2Q+RsyI23Jlu6Y86ffK94DpNmF+qTF6OEzNMo5V7wYNJpUJp3M44h6XrQ3VDDZmMm7XVc7wcc9MmsqWJ50LwoLdsHvfUjb1GKNDpiz2ReZVbQfN69LxkqB+68a1BXAacdWGmeI5V5DrR6J/QjMqsH/gJ31nwQnh6cPRmd+Je0rgksOIfDNnH8eDPuOLUxdBefNwcoag7IcNU8lXXnKCcfaMwy63nz4+Mw7dzLGAyvNuteZHeFuedUi9+CTTqk/NB6pfLF/7Y4MgfWLyXlTsaTExEk+c6X64XAbqi64L74fZJl7fUpy4ojKcZXnYu6ngxmHAToQ6bpQ9IRZ5IA4Rkg0pumEXqys5U3wCw5wF1IYdiK8dMHtHJ4iSAEyB+ON25PMCDKQJvaBor1V2QzeCLUdDniQiE5vLzX0WrRBiyuDKqQZICjM/zOZ7ZDBFNE8vS6w4YbFOrQxFbtyAWM5mIVGcshzCWy28rWTbI3Wd/gZzFRD6M+AJXDwqQZHKuM5YNfY4LhT4H08jaHUMamBD2xXUjepaDvL5NtawAuz1McS3dQYpJBt1W9cEoRLRxq5g6KmLYfA0UQ6Hm3hCGq/T1/yU4IAL9FEhfztNQmghtoHBMr1iio+ZgC1ynPGyfjv0qW3lh3WfLr0FX3fyVK6fNK3vNIUjwrb8Z4liVOkfqdzpKovGGQDxk7NGWNmsFnRNfUiSfPXkoZj9YTcgODG3y70QnL6DClK4JS9/qQ4aDoPKN7la8MqjnWEHf/D4VJPrHhEWHT6Ho3dFxcJ01LR3hpr+oUSL4XkgfSX1BXqsbblC1Rr+O5y5mSXmV3aycOFReWsng1fmLwYhMXWBCggY8SgJMWglTFVYv3Fkuppfursf0dM/v6XDnwjOUlH2ssEwpTprluZYodxyqXTnZkB6bFdKv0uqTXfmH0tEJhvnAmrS7cUQF8WsbcOftuQRbQNvtQv2nXlWgtMQyG6csibVpqBSSl0J1RiFVJJVol8YeXo6U/kVdJK2b+2cnNUF6rI7A1AVbihT7f00X7aSiGi01xsll0KXv0IDkScclLsOBiWlvshaYZEsjosxeFmm8CmT1p7OUsgtlwf1M6fFd4ynkJWGdm3aBucITwDXQisRmA119kKpm+nOpsImhe0kUunUO60yaszLSO2/ICWw3l4ls/TLiKy21ZxReZJwGymV94MHqzSyQ3VVwNf4lXGhPLGJpD7wid0rUrY0rHe39IAcZkh+wHU92gQdvTcl4gbSEKYe2soImb7lYcAG1yih3eHqXTh2Dd+B7+FwBuzIcW09Gfl4O6E/NIIHL/eU1diUwhrttD7VLBkG5fb4TUDdWPyJ60pncANNzNadZvA4jPqLGLD54NRNObac/oIqmnnHt3KNOX8TOzayO3E1Oj9+GV9yyj5A4jWujXZSJcLE2ojCUcDRYnySSUXbvlRtUTPQmVCeNiFx/XSldxPW0tO/B9y3lPW3hMb68VoVKLKTPQmWitJyVmX46DdSR1loNWN1q8WD7ID+MNtYsizhe7L2qeCIJIZnX/Na499IxuvLoMjkBfYmjp5e3n2wQWlERDuWToBhj/9O9E9sdy6o3B0cKdMDobvArmyN82N5N7XOwuBrgjDkYtEGbhoXooh+AoMX/IlR4kxxAARWpnhC5hzb1Hx4DxjSkJ6khz9UqrWkJhWSQCZxbuKQ9xLvsO7Q4bSGOzK5+7cQW9mVAMCl48SDvaPBCndwJ5y/1Z7QlmKy0gS6d5j4mciw55bQ2uqrrnBIWn9psGyENlEEzF5UclyJH5sSows+UKCwbmFIPy1TAgMxM0z5kfEyW+s5Lh/2rkgTbrECdd9G4esqCIkYWeddcwt+i7lqMCWdCNwwNFKBhfbDyUJ7xFt5OHaOt9Y4DS5vzz2xV8vkZZCSt826xwBMSeAiIrPXIhA0+WtqX7/Fo4EC93GuzvM+kFSund95dzbY/tgCdLBmBTTCISF7HjysQRaDIVVLmV7jZRV/qSM9vT6KiimRpo1A2/yDtLe7IEuNur9gcezu59vAba3mMKJuWrU10n41IT7iIAhO0Nlkg3SvREC3RcirmDKqcQ1YpZtiPQvFQaUTrkafkLPzsufVDeDVIKiIzNybc5u94iHzUfuJjZ+p+k1ur6RnoKF+N3AVzeMP5qO53PeY/Qe2Ty+juRKbPr7S/Nf2UdzMdPJ8hKICs/vlylsjtwTz/V9aOZR9atNSLw7+PGC638GfVdeeJ37IBROOJ7SWTILVIc3/VTfxSZnA6PeCrWJiTSBktUyh+X0yP0Z9TW2QBEfKdTDebTcsS7icuZIFhleLkbOiCASzzpihnfDUuFqLl0MNpLGZF+c5JjPRf16EbRdSNY24Y7raBAPnTpYavoAOqWVUDot/s0m1q/wWF6Mu723lQl3Cjxp3u0BrBqFCjQT+9fMgmx0XzmtXchpbd50pfbbmPexfZm6p/NxIwK/Y+4/zDrpgWehjUK9QVtZXgeMJd4MOcyvzZMf2f9Ir7GY60JPNdDdbtoPWgMScMk7LFfxmYZr9p9QhaLlyTSptcLPEqyBJ7hoAwPjDdL4Bcfm/D8iUtLOr/a5bV8aLqGVMj6e7HHPWXAjRs1afiYziMf7CQj7wgax81O6j6tyT89XKVmFkzpnHkcWRfifTXSWbaN7cDynoWgF6v3n1dj9u8yDPhBdvjsyEWZbRQuDwndWmTrp7talAouAKaF0uS2WRYjJERob31TgIMr4qiWZtILI1XlKuttt2jm/mg+EXjv47+rZHNNkJ1ZL2fa0l3fBN9cwQcwyD5cr3O7xutp2e0geB9/b29loeeneDUMcNV2nGYuxFYQ3VYasVdW9EsC/mlTDaGHUnPx6WlSG5gIs3aLQp61n64vrlBzbVkBxvA3qLxJeczewxLcZRIEERDOeQDWzFg2f2RJqrwIK4/eksTPvI3iHTD1uf0jwT0Mv5ocMBfgA0ANBg1Muu62sPAeUj65u8z4CFb1bM2JyEgf9Vivhtc9eqvMEcLnNDEhuBzg6c0TTzUvXk5fnLcgvdI6bLeXGZqa5ELKMnoCDekFJKcDpzzW5HZGURmihh2ddXjr6+KPDDtU1F7p0YCJSV8L8PQI9gHWOlAogqnP1i4nnlgJiQ8Tu/dnkPLireUcTx48iaYGdZoY5uhTphfqiYUpnvOYyBmKGeSmcDg4NamscV7gUPlEKFyiTuFqrjDrg3eeiJCxj5c93VEfAWhW+A34rzq5Cop1zUSTy2HJF94x0AdbVee+QvZaJ7wnQ00sGZGMtBuOaA4tBCzjd97wt4OnEKjUrdRgU0Nyg2ig9NeutywTIQtPpNTJXVXuBNzPrkFnuuUZYpnI8LMtl0I65cjW7JYD96EWT9CSXwCtkyVofdh3JOOAOPS1eMfP2BGW/W9Uh3IBt6KnL3jLwQIg5BAqcGxAbec2dEZuZqyutzkAWCJdMtopMuvNsvX0/xaF4ez+vLsBBKhn6j7j9XMDvFEbUBw96tWWYNo9+tSFbGy6sf7/2/jboHlj0qh5MnkZUYkP4PADXtM4BB631yIsT/CXRovX7Xz+eIgo4u+lBEs8RqHnzCfz5kYam+svs1grxFzLaOA8ABo0mlVfjFWAr3rbRhQHO0JDVTE2zeX+UXR1vX9kwuhPCsqLExJU44OyJu55ra+MT6d+6POxsbi13vcBkdrrpxBnNPvz6PMLbODd8ZqHrrp9yQ0nAGIfBZpquhiFYy7h6RSKKtw9EOMte7paj1VaJKzG+Vzxun76QAKNKrrD7V359Dj91f874uS539SVDxSRGVLOKxopj1o5TGzeHFV9OssrH6IWI67usIiOO1hOR/FCJXLV1u8oNWZ8IK5nWAciyHM1WK3bjUMhmQzKbH0Czi4FusyPDjFkBkl33QwDdIbtVWd8/ptlZIucghfSAoLNYDOqgGlcXuq6GRYXiEZWZXzXPPfb4E2PV7duwIERWAM6pcv7DVic8JYNhPthS8Hz8mmgV2DQs9gkjkfaGsDrIU0Bv0eYtW/B1r1Xpth16khBjLhBCa/ODnNsnjsfRaetZ5fHgCBE3FLQk5TtcyGRDcdZd49uVuCGxkgx/PFbbMae72QJy/01y4jbQb9WTSczjqe6d7oU4LKc+ADa3FrezLYaX7+bSjgRvaLskDlyqPJTG5sPUQFb5irKRmfIDGA57QEL3JkmhHH+/Lv8KTOHFGWhblrgCz+j5N9K04R9vzZZsNdcfx6WGuY6kHVH+qVR7kcosCOnovBwKK/t0UnPrdaORKQT4BfiThDxN+ogIPIWmMt5RotkdF4+PnkJ03AUcUFiRsCuLIJdCiMmrYCJnxpKBz3edsCG1yD3Tgly99lMMd5ok+3JHn9sHBvn0RgUSgDPs5WKRGE9+hyGP+azesd3egg4kANXHtwuHhGMc6EcYrs4JPuBkf0YzIgbO6BFCApelbdIxixYay/TjhR0ONha+6pyPmIoKewAXjoujvGk+UFj6PxQSWAJTDiiF0hiS7+IdGkFNfa5SMKyGRKukWQRoh920X0PjSrMFDYZnSZ2SCRCx/KWxNaqcGsLE62JsCWlrCnqVoQNFP5k5usVVzygvzS2NB2STCB9QDU3njmcN/wXXQez/jEKVlU3OohNqElBhfQOQDjb7/0OYA4gM/E6Nq9evLATCx5bsxtLlln4Yd2cFRVMz2keFOcxg5lddnZnldujeeIvau1iFocNtT1U9mX+84hFSuKnHvLgotT1G2/GSsda50/qrzsjDV0+Ac9L/1sT3bzfkS/kI/JaTLh33TRHOwLsOfaE6P4+l4cLKqHie35+lMC96aVJ3/hGaUavuTXmgkQ5FP5oZgu58RCA9Q79LqVV2urORpKn3mWBGJzuJyCAdeVWey7gmcGOa9rsHYKVRbodfAMnJ0d5KW8GwMO15HQPKWZvzttIgX3Pw2bLh8RmT3++L+mH6aJJ2C1WVqoGFLfC9KviBp7iP7aAgzxo79IhYOehRIkojgvJqCtjVlsyn5mNYZNMdoHC/AKRZGMUsL2TTr3GmJsQofTnBX2H8+/DFhBaymxptPWT+6S99S1LogsSGTUwtQLoj9eowxgwLbkB30lLfYYb0qYQV1ybcGTHMpZvdM29wvv4OMDoZ9Uw1r4+9br2aJYWN3fsDnKwhGpwqxghV9xci9oRWgE4jZkoXdK/FX4IUS1f2zqcVBQNBu0A4xrY05X6hBKvStidzmt3MilBW+96UuWJKR1TGVoZEeGj68df/NybAZMh+7578d+UGJEKQFYzw12QUnu84uiL2xe0UqVGkHrTGgzos95RhpfdRXliNeyfgSZhvEBNCsYjBEVDM6JTsj7gy4++th7LavV3pXQaKHLhAB2s+3dtGo6rruBZnSD13VljdsaNY1FnxlxXqSERyzoq1xOMFM7HSHpoMn1XgNsx0y/d/eVGgVqkWUgxWOVkri7hGSHYEFFisdjZklAmyfbVfv0vPy3lku5yZhO+jpUYA3Kmg/PYkyL7Lle/zbJHc7K2qAvIDv2OyHdS7b/grP7ks8+f5/i3brmR9gx2I5YKk8zCL+v8ouIOXxCJ0xRCHj11GRsOCdGgc+RH52VBxndudDlxMI+XApljxU0DX3w499i9bwnWyg/ZfKZb5g9+TzkIHtrCzvIMZX6VzzBauRaQeJy7FJGqSTaG2TWzoD7LoH7U9+t/yk7SoMpdbGWbvT5ThFOVo9575RuWDD2L3DYq8ujW/oJDS0VBt1V75blyi0fVDvpO3nZkQgPU80nRXHvoIjRZgFe+VOcQ3nx3pDl9HyUmk+8qk3ASZVvpOR6gc4RI7+mVhKPwDTCIbSc0/ZKdW40atruqq3MjAkvN+0PgbGFxaVR4vtAn8J60jWe+hwGTQserdlOWH7IX5OtpHgIU0wvw27FIpx/HnBA6tAR75m42IMDgkMg5lAftAF+ln7nv3XKEtuhd2XVk3XfKWBl1SDlLGgughqbp0rGh60SoD0RQn+dMR0MO/GQOL7Uegsjee2j6bEXR/+6KE3NETLD5Ltrm1dMGvr7buocWPzfc0wHdxWgZCmQV4AmEZup2lKXS8HeS3g3LWEYUCZGJnL4wEgmPTgJs9h90NOJRhnH4Nyv3w+iXQLiEmj8k3mcTyQCWCzHA73NhPW92RE15kpJkD3exC+QjMacnVHIuVrmS1KeQGgN5U1stR9CLKdxqtdZDoHQuqTY32LQdlk6m7955jnxXVShsLGx+G5UCutObe1//bGRXga+E3A/nAkOdltSXWXAD3feiV7OkoSR0VPFzh9EzHzrAhceS6gXNZCm5N6WbQHVgrmjyqklJg5AtwtiF/3Ulp9xQTsh6QNoM4R0fAw/62fpcMfLIeXacibkQb7Qe1cmyWZDECtyvEWl6SWsH2rbR5Ud4VUSImM+/X/8S+WL/jQ/wwofY7vE5+y0w3yH2C65NelTWMRjItp5TmCI77Zw5KkfPLmjfUaoSxRnrgZm3GJloN+KhzTPvwvcTF80VrlmoMdYbffYpskXS6KspwPC6I39RK3g0Blg6yLgSbRie7A5Qdar0SYnFh1FfxHLqWYtsdb2u+OTYZHML7bIIRrPWaMNPPgr4jsu4Ti5TLPVddmDclf1E5zhmrki27HVHXaQ+PsLD8hIUbx8KZNItEdUJNwxRU8qPU0ZCbtstyK1bmBkdSu+ILtXvMXkD6KVDsRh28AIIxh3fzMmCqQvjKaxqQZBxtdIc9uXbJJCgASKUR3M32h6WcB1g5SoIONwM+Ud0DXLuRdzH7DGOgQKLY9wQnqgwJ7+UXTN/a18odeESQT/RaRjsxex9AQmcMNSsMLwT7HYoP9xkV6WvBueINch2lG7zL3UAMpTlIFv2F0u2wMxOaHXO/FETjduRZ13fW1Mhaezi1IVCnXVQoCuIAIWkk7A6wxtX5sEHJbyUHbWjWOftm0ZCfncmmbkplP3BmL7JhIznuWJs7Hlw6usHsdfxz3MX5Wy+4gMG8i/5gCga1dPXql6XZ1Xfqn9jJLTs9H3YxixBabZTguQ87aOqg4ixzQ0a+WLyPvMQ/KfVhP1TRP+nDcw/pujGerVa7HS1C7Z8aHB8ou1afUwmVjajY4C808Btsbs+wKFWwvL+KZrcEx195I2LiUvEb+uRHHtII8t1nryryQohrbIxXDzMtdQie+Ofxy4jr/DGUtJkn43kTdhJspTA0o9t3+bctyEQpImLQdEf7UgNo1uL2E/QgoBfxyfpaXxD/vTetbJ8yl55oWSOCivpxWtFBPc+dSpyW0bdw0U1MEU4vg0oU1odLHGV7sUllc7vY9QKWTScrm4WYcDdX8WPY1zOS57fVUKMcmVVc+HUFd/Tt9Qm1S7TR9HWXkUhhZNp8oxTVkoTek8qOePN0z3jdBRnYXZOBmE2VKRmqWqq+dqfsCr8XpNmxYOriWTku1TG1xvo3dDR4NsWlZltBz8ZpyLvNJeLkOLkjMpaASuh+qN6rLmwHBofTqfNlXXDswQWBQPqVFLFZKjYhdeDZO1yzO/847e5yss3ZGCJA+1/77zl3rFzHKViU8pczSXo1XDYMOxbCy4jmFCXeZAHHb88DlSizlYCGmg4owyCpMf5ris7y+XjNnHJEuX3I8q4oNL1iHDVK90XOnUj+jF4PNC75BLMmZFuq3q0hAfFJ77o7YX9k30fx080ZIjX9J4zKHQzGORBqJZiRfLXvWsHVwBv6DwfZD72Al2l/fLwaiWsxswBcorM7VHq+iX//Fsc68cbe8lDlctThpR1JLg1ILl5xoS9sWi1+7yBO65kAcqCmD48rJeW8dy/SsJkwE849OSWsape//RrqmJ6xLdMc2uONaIBF/1kBCaBkyxzQA9+yVK/ftKSDWONzFZWa4KxSjwtJP5sCtswA92fVrv+Cn2gNTlWVF5XhKTC2NF1m+gfTb/DtJPOoU1wwQSwfMnDG6uY/vZNPgvOnQK+PCfOWTiVb33wbpv8wMA2sNm4ePNQc7Ht3E15XAN28eMPAgfU3mX2Alvqtg7NMmU1FiFg76F9EGupNgidLKywOoybxTDKXAm5izEm7G4Tp8vbFkyrg2EXhpU4v9+lQWGXL1AUEuHmMKdf7DOgwjjD7zwbEYKBoU79O9s93ixH9t1+CUXeZUVP+T6Nnxir/RApNBNIfT+997aB8aC3WzOJJZfu4O/DkkLMMm4ObHYO9AfMAOH/OAIrL7DmV0aRWoFyWn2UIg4N7ZFlekfct5C93c5NjBjiw+vbNctSnR24q2tXkm5zECJZ/5W9+r3NA96ypt16N+ncQo4ExxrWtqtgW7FxC2GHd6LzhXLWJcMkjz+XqFP+JC0ojbSkK5LYM74yMG839ieUUZnTbyXb6WnIEO3bfe1rF0umb2chyuWRs3vCTEZsYM1+Vlg9aBHbPCtYNMdFdZQMVehJPwr+2uuNicCnGleqi98aJ2QEpTXuYkSQ77581Pw+1qQaMfcKMOleHDCjTf/fv3B22cmRCA4IuNrDKdQYVYY6/G5bHC+be1VXRprKKO8EMcX25g7APYvFTg4V8K5IvX5QpRSe1cAxvG5GIfmsaJHRHNANWgDeZAxso3VZRQTuiPyHy6LiY134EUHklN3wsvEY8Oc3wGN+9VxWufiylOpqJZwj+Tcb00EXIa8Rmnq+umFSyEUAvLc+jUCqoDvExyzVd+z2Zo8lck328q2wT5Xx5QZ11MC2HLsERQIDng+pu0tajzJrZkEf3KZDF5dcZ6oA5DWndmGvXav3VSKuJBztC2CjnAo+QXdYbD4OzMBwG6mTcRUIpFT6uxgy0KRbVlFaDCklPAwjar0Desgkx4c0zYAB+sd3IX8a8p7EmPQqIdLYyY4hHQyeGOKgbzhxgmHZ12Iq9KZnv/InVyruP2JQ39L7qDgH2ptDqNZGB1aXmag/RC3M54MoUHYwnyVudZDXXcCZG73wBCWMoo8jC28RiLguMy3P9SpOeMBWEiGkypF4+m72BaE5frR/NDaOm8AZGBrW2i0RcPZpSDMmd8slbJP86g8H9pmBEO3KnDD+O3NSEE17Cz5xOZ5ZNuiqENpi+XnIS7fTEpPTmcDot50aEIckT02l88jkM/A6IyW8picfOGrFoxxz2RgV2Mduq0WNpHWklQraCQE+QhC+1KSK+JYRP6XPQ8ParkD1aCbQL06Z1OSlmRbz/UfTPEyJ/tVQwqa0Sj/s8cLUJY4F0VOBV6B2TJgn2u6QY+u18w7WQVtWupUUobPABZ+y5R9qZIpWUf/Zm0wtDCe9gKUqwMNTl3EC4n5eFCjdIf6Qz3pdwwnt0mxACzyui//6SZ6v3YikERXpfnNYEArHlfSb9gDOggxgc5GDuwBQWV2pF0OoeNN/gidi6bS8K2ueV//UqGttTuN3K7bBLrFuEKL+MIhCLGhqV8IPMryd2F4gZ820f7/Qqfy5DQfJYqE1Ogets96hdySVo1jP4pRN+USmoGuzcfqIOPpbAifFbRGKFMbZuTJXa1b3aTc081gVf4/sOgaVaYeZI7P8ff38cOZhEjp54aM2O6yQfeokhoMZ9/R3OLOzLbH49RVjm2MMU5MHKYNUJiHeWCDe1TLUm+g8LWQn9OyK1M+uGPRFi16ygjCXglWzidSCy7pirvuKiqgFdcGHzj8LO4+A+CC0Gac27DKKZEEC6L85a5ex7BSXpuYIqtvBMsssIa+mc04K7AOGLxcKMn1XNWvPId/aeSRrux2VX3QztSMWywSIOeOBW5D43oHpkATulxqoFgvL0bn7WZnXyH322Hd8jtHkRXwRt2nS2DlDKbaSKg/37a39weJYcXMfOVOjDQ6xFSpaI+Uw9qL9rzHBNuaddgAeMUsFmZTnwNdu8t5SpeFUHJjhKFdG+pUgGAmvHeqWqgn9zhkxV5FovW4jPxVXW8WUSmwMxjLS/ylW8VxsNalxyUP4UQA4M8QhUOYoPWyPdydFe5db+tGfGFcpgx82QooBz7iGQbNj1C1NuC+tJecIWfkOmgm4BweTyLcgPWTjSj2+5KFSNkCK0JQ92SiQy89NorbwrP6qdf069r8/XNrbC7Fwr15LvfpkHYm1nLmYm9e63uZm/UNbJEMIGszqLjG8BGy4Fgit96FBc8KfuKYjK00lpH60UYBkh46IgO1v47iCkS9PAYh/v01Rjg8gVSOjKw6pg/i6rw9n3EWaOUeIzYCsO5YYeA7/Caux6/UddyE1FdrSzYEl78LhC4FR01DOZVed6RMSnk+o5d1MhBS1L8+ngV3B3kKBnsqE9lccFw2EcxOUg+c2YANkn3KV6J4Wh5q7OaXleBcoYmtlRDBZ2Ex/I75Mr9rv3FIuKzgmtxmxVoRWonc2B2OarUlVxrtOzmdeNaUQCFzB4q+B52pdFAlY7cxF3rqfeB6HpTKzjXxyliWtS0MQ/AkrezP69QVqqBtKRnxq3gmNAC/aK56nPQ4CJZC6zX1oWpPMba6MfC5ND4L30X3oVDz31Mp5OzBM1aDWdl871L2IvWc68Sv3l2mvUFJV6n02584ZeFNrHayXFs9FeXFuG0fBRk6nJ9/TxgLRL0FKA3yJj+QSvZ8eW6+FodP8fZTCNU+auyuHlYQlMTXAn56p40s36HEF+/dPn6mGa2jN4XX9LbBAzqeLGVPvoXgry73utBH1bAvNGn9+eFrx6EIma1KBwaLlujDObJQ+4gpq2kj6D+2jDTq7BZe66rf6kHo0UJr1iaPy9xqpL/Rk118ViiaXgLMu2prvxihmGva6B8csdO8gM0kqvvIgUqvgtSuyyGk4/TGeB59qJXNyEtTRaAdLcxX9oyVqRE8qElVoC6gWkc3hZTnReCqtk7PJheUJ12ycpCJ+ZhvXGQG+ggVfVpVDGNQJYJMHy3UaGqkP0abtlvxm+uHF1jptGVlYnoHYz4QTbDd854QHzI9HROY/HL1PZWAlISddyd04x6fOvv6wyBBlkuDPWqjy2+fKvsykmKOvEW8WWYBA8hpxeSsEhFlHtYOPtAzy0LZ09schStAaAUQLPyrZRIn3w9nJZLH1dbxutu6mfDmNI1+o2QTcUJdlC8yl2m/x0lG8aPyFYQQeSddSw8cTkhZtyW9bx5n1MXngnf1ZghtF0vFDGTCqGC9F50l76PL4Rvx6nFGutnPO7+XYw/yEJ8dwHzcwdYALMrI2wHzJc4k/IZ82o18bjdOPpNceAmoO7QG79RKZl1qdFEt3JOu7qyb1wMWJJvDKWg9lNkwzFFXT733sKwthPvuNn9pK/lonWitxukUJACUjXCOKCgt2J8l/Js9/KGEmyHyaqUr90eKh5cGk8pwYj2vHGlBHsmT1uu1GA+Qdu5cTPlih5xoe7OPJZw9R+cWV40XpW0Mrz7noflfNlQv/9YXzFQBwfTt3IPRM2m0n6LIbUxjkPYl2UG0AIDbnw9zddrgNP7LM/vlOdd1DEFXvfteZ+M7xZ30r7M4fk/+mgb6jcJArNqsJQpzbXkFn4o/e5/ugxP8WWiqe9acEzZeQWq3VuH9iHbJGCJOl8M86rTEj53RNswI/jkbR/Y4RxMUzGKtP1mgVlA5eT2wQWfY2vuF88BHrhKbLfmUnM+1Zv0ywAcdPwxkjKyQ8nlEopDWOwIgVUQhbdIV66CzcB9GxPPZWH9sUs77ImcNZt4V6Oz/QLKj0W/APyJsYipI9QzzPLMyulvgEhJUrwsQ2cDlo2bq6TegGw9j26C9BKih+enGrO139ivirFgAGjHFDdin4ZaahWRe/JWvdZ2ov3ve92tJKesVJmZM8p/NxOps027rptpUUpGsBpeTOyLyt7G5oi0A5i+KtOSolIUodLOAx5S+EB0wAs/JDCqvxpYIg4fT/O3dUzdvgq7SNqWKpzbUSI2EHdgr6gq/xV2iOSZtbIpxOifafFq35A2Ua/jUyqQ48YuYMuLWf8emt4wvn/qI+0ljLYfysswSQVmNiErCwFpIJuyEjdeS5YgGDxWBK2j68OuYGKKfvOR82KL4RC9kuLdnGxYp4/UxSoNkjhKZ2n21hHZfODLDdFlXox2tiYtspafIlkFH3pJBSRaQNQyduyqaOukP278A1SNyI297PHFn3dT+zSAEuI6aqPF+Lc9qRKM1z4u0v4ynAahl77jYOcSh26VWWXfZkQkKHJTG7KL1+CPP70oVkwM8PIsXdUU88U/XGYUsjsHfh+Dd3Ri5uH3JgyJJsCZdZaMmDPhPFip4iYCIwcKfq68NTw2l2n4mFcEhO8/pP/QlAb78bmXKEbYMxoTk/LAlO51pqXKt3Vp2EYc37NzfDm9y/7svks+0qfZmFL83jwUnE6PE2aIKtjzUcA3lhqO3p2NIZRhr2zNq7x8ofEc0wsJlJobg0ozKG/4IzP5v5+YYAXrJNzaV3NugJlOG6vi68f8A9lPaGZ84WKgtHZpKJznLplAebtesjAF7ndRQqn0VtoaZZ4Qsy5UDgpDA67czSdELqMXovxB7AcDgJ2SGQ9EjGF2FSE+oS3HLkeZTkGLxV2fJzHsWd5e1Giju5hAeiGiMEGfipeIfw5XnAzpzC9NsjQ4bjxMjtJpqPYoVQ0RsUmjtiNxEWUtsc4b7ug3VroyRd/uumQk9i6HJXHTHxtZpk4/67DwEjOuQ3DL7rPlIuRlb6wDZ6bwxXJMaB4IwmAUwC/qd4hSuV+BekTWhNweW4A7u9ZrqVdhcoMjqtcN458gVFKjmy0Z6SAxeAdZ5HsMRoe0BZ/QNRFZoI8ni4MzPNxkZEfSoQ9A3ltgYZ4ZHM867Ax6ZAweqyP0YxBzhJ+hQfTwgVQkjeV8UP7V10OWUPj16xeAZ/zemYksMrzNbrx3pbGMiNJe0cYtljXsXHL9o1qsjsQhR+mInndquVaYZ2EMmA0/daRG0h9sge5oI38eOIuRdyMMDB47tcwdjFJqkmbfAVs1lGlQ19ZQwNvifyE/SL5NDfjDWoCuwXQjsBUPeyrAtBoraOgqzDTRqzMBCYG3wicwNe1fXDgkpYq4iQQmRSIIW2eEXbP9AoOiQpzSRNXf9oASa1amtv7PS/iBQtpckIZFDkTvKkGafqMclf9lt72bTDTcAniCtsMkI6o7e94TorLyFpHPfYrQuRx1FxqA5EkWAgOLi9EvMtrmJKKBBaKJaAlDzByNE2c2ab8saGkqkqzplfj5eYgq9ffWvY0smww+tRPiMU4SqpOkfnpDdsGBakYGmqa3eVrTX9dMBJIKy0Wqt2MMz61n67URBLY1JolBAO6xsrv3SklisryCb5MHESp60hVSMIybzROS+4OvadGoCqrsQAhpWaZlXnwxXcV0j2FX8flXozTpgK+XYfQNfGNi7pqzAUwtjzo2mHJ4qqjYW/5tRWIN4npSEBCGYHtNzU2KtXyFLww/yGVOl0+jWRprsiz3J2eZbIcs+UpAhYCNasHJNDKSxhlMqmN+TAkKcExB5Xun5Anif7sitw5OkU+fYbwdVA9d4PfgKSwboCo1lcfS7ZHF8rE0bQsDYc4ORnQci6XJUAGhk34VZFj3FH3W9ugmmk13i0HDcATpjtTBcMiKfOudvgpycOr6EeJ6Im5fDLZHjuaKdrdGt3GCMwcULe0tct9Ovs/bxl46A7rlceq/qzSIogBkN4fC2aK+kHmV+NwyAUcXxoMHlOSYc2SEf1vm4k9Cmt4XZrQQIoV58ZtZ7cS1ApmhtmR73PyTd71AYw7TKYqrqsBW3hH+Jt1Ho0iIpJEynPpH6Z0+UtCWQtoeLVTNlQ1m73jssn/DrOwB/D1HUf4nfcJphRTlIxUsWwAm6mZvAVffyb3mR6YjHd2hxvdB9YXSqnEna/z1J4bihvI48AYomKtzxoBBg6b1Jnkv0yuqz4FQkwrhwCP3OtaNFiUJYid/ESoMWbIm+nqfEQUP1KjjatCMTHd6S4Gz4OUAteOYvDn6Kmds330L7VbX6yds9B9mSOdoKYLMJKhHHw6jdfn14JGKHZ/Tsqd2JQKn3p4qwQf9e4FR0Z0VKf0tDbO8IDa8mskp5jnSPhHiBb3y4Bvckr5/BJ7ZAkWLZmgq2h1n2J6K9d29EUGZTcYTkAq/UNcFyCRvAmeQpG6s+xjBnq4xMuUMFMWIyT/QfjbjHfgx8WLnW3I/+CMp03ul3PyEuabdewlsh9yn9S5f3s+z8S76yuIn+6Ksof5LI8vuPdRhtdphEogq5xZguSt/B87a36uCtAXoi2srDLitlJ/CX07TOKhDI49jYVtoOuvdE8h/OnuJjjWlmYYdtzdwouf2/wZ0d+esSTqy1BPY+8E2qQ0/8LCNqCwSo3EwyFuUTENg7W6i6etvdsp4XfYxoYjdVPKzjNL1B85eukQaEI2VmYQFyuL+TlGijnP27SAv0C8xdLqCL63ZV00v5Sz8Qpgm7WQy/QFN2thoncd7LCjRN6645fF/cx9xpW37v68VYhU0pP42N3LBeOvHr+aFDSnLCr/Lriyi9sZ7f7zRgIpMn5hL9uxBp9gZWqLyRNTy+a8DOIz8PQWmlphRxWednj8EREZJdspINrcARIxgr8Ssy68hQZOt3eoIA34N6mgO+P1xSvbYsdLSBnWKPZV0OHijHNY2244dvMksLiQzBO4a5TJcWvfR+BROTa3DEe918BAXsEDt813PaiR5xfhqYLG6KY3aeWx13D6fjXqSN1xgO0GkW1qIerpfiWn75uqlTDkwgK/ohpMLzlMnJLs1FcG/SoUis0Zk/VWDM+8QZr/a4IwueX+60mFVdQyAqUQvEnsPqmlVhyZrxlVksBg3/60aapLrhIRuK5pc9WShg3r1hAu2TRD63vH99pC9WD/Do4wgGW1vL9ItHSu7nbykZYw3RYwKrFvLJ0UR0K1NuyuhFiEbOKGxuUbzoIpEQSl3ClHcXplCN5D7GXl0qTWKv6x9vZbfs0q/iSe/C1UpQ34clF9OCOF4BGMPineEfvlG3gjEm8HRkcqHl6cE1f1gKbdoDktEQCIr0O9tMYEs9zZR/XlW6Pmd35WuQ2hZF4FGCZ5guORhlNIYt3iEdmvnRw6G9QcF3dEI41nLR9uthLbm+JMQ6hYW0DdTzc0pddbglskY9LdBUH5JuCOsDnuMvjXfxStJdzIcReR40IZPuLJSd2dIoXtWDrBQ7CfghgoOQ5MAODdhLWpy6U6a7iLnQfEsgEMUuLlN7JdcZ6iXen3UbiTPiEpWDhjeE7WgbcxuaZkTI3TMd0s6aPJUc+0i+qV4gyaDW95dzjrvMd0xGE6vgxMds1N2hs+PkjU9a9vWUexafjDsH8ovAHDh2SyWSgPr9DoPVuQb6XRUtkDXjrMMrnhJADb2WucnPzbh/ADgCql1veHACgO5KPBkt9kpbbgOklGFOy56rlBV2qzJAxKg7+pSDJgYRS++M0fgGXx5Tu7jPhkOBxROGmx+0EeQSzytanPnRPwBTaXX76l4UhQklFcan6XdGdbQAyyJB9yRF0o2HXq9fZbn/JtFV32Wr1Uhljr7dY7cx8cTD/DEccL0XOAdIRPXYtGd2Nb+simNIQfj5/novEjT2bodPCJeiGHz5+1oaSF9EFt+k9UleqzzrSdcRfUf2kETdJ719TcpLE7ytJg+7W1hP1v3m2r+orbqhDD5nkQ3qR13koD7QWt6XPRq4gLkh+m048d1nntEst9ph4SBXf6m/a1OGE1fSLoRGptKS1804QYVbIrkf3fLie2fVdJYWDoh/H6n8com8E3sWL4Z8jhizigDJBVf4oMoyao9uJm/5pxPnT7iMzPFqpGQy0j0rGNr+OPbuKyUlTpAy+wcOa2sFdrhvBY7dPeAUUevuN9oVeJcfeJPx0wTbkP9eyVZqg4jhCNPG2vXPt8qTFVQIDiYINrJnp++X5sDuwNryePIgck9tOHP6G1EZWyoVQUc0ku7js6LBLtlw2u/QbZ011RDJVoNiSCoy71S9/K/eSJXNk0Pha9ajoKsMc/AkwL7rE/w8UtR14Dy/RqtDro2lePUxNrLv/eLqKKmlSOS5oSV5o/iW3rfSxJO0n4jZvQ+sdFBaYNUS4I/PEaw1svBl6++NIQ9e3CuR0VokGAWpkJJcYbcOXGU4RdeJwfc8vrZsiRRTnfl9no49cQZhk2Ky6I9rU0HrJaOJUb74uobe+fker+Td6SwXm9AC+sMvf8u+DI5NDucfDID5MCh3bqsaVqQV9jW9C3FKJKWwc3XBt9sy5fXbldiAfzGK38OGISB4anwT0/yja9I4zyDJQEMCYA9fNibLiaIZzkUDAPfsAK9rYLswBBl091MvskqwcxS7b/b1pvzDrQreEBzwP2EE4mN9WcOJmVW90LOtq5ELxzuSUpi1Y2UwWpnvXEm7+YVFwvL9n38P+Hor2Dnzp3UzKCNvrpfdwYroaCcZYuEiQ7iHCWOT58g5KYnnunJXKKE64DeCWZlVHfQLN6NkViKLiw5Yd8SyVePqnO8Repj+pb68QhMpR5zHyCfKLacE5wt9lIsbO9At2hQTkMFsF6mORdLkV1AGn6/SHOLgCxwcBlBBQ3cTPzN+fEVp3rc+jI3ivcjyq5CV/VFLMD/qZk6HAduA9yi41uDF0xhZGPvSAoHqALl7+mrQMsgfZWL5PqS6+xFMHDsIQfv29bwR5BnYsvwK2PskYippbJ1JiZzSAXGU8v1qzIBPYLm64rQzw1FCtcsqlIV+RRXERgcFZOibQhOOUaMgDsjf9X4ZNcUaX2SD/2dh+fuuTg7ZMvnqwrxkwKrnIuqIPz0VL3FnjS/YDR8v30NYriAsbqPPhUWGZcaBc6IHMlllMIYyWCmR0CVYqHn/8m5FWTxwuZg1XDFqvDsHv5SoeZG/UjpuMRAto5KC+eZ8VHFHjz/FIHwmquj09/xLeih3ms2je3CxogbMDiDY/EjT2Lstmurd52cPCjFgRGg174ajzLxODowEbZoWZzDtug/1vZmyNaeO2d2tLIJ8A2rBAgGq6omOBA8zrJmOz81Wwc7dA4CXoO6FS6SfBPD33FQJQlc1aFIBrZYgaxCyCEPUYQS2CKr0LE9L/UZe6wgbh+IojY/IPdvfiF1Pau9kXZPp+igDqSYXib4xyUXSOCVfGElHm59WxzDt9WXIwy3qZMnjcqVzVyxhIjz0OC4aZ1H6Aj6QI9GO4fh+GE/Bo7HgUkwpWHPppNowcsICzeLBFiz9jEOU5xLGqAQXMTeqQVrkhEurGNnyrR9u2FdpnHyFgulsbZ4lQonj9zGPjK+v0WIRkbk7RkvOgJwMSPdh7wZ7IfjpPh9i/hK5RdjgFRwvvxVDpeCOv39VWDPs5UuU0lFTeHtU/jTWiIOQ4MKq5Md4QRPxP7miBLdnVyGl+lLKf6H1NyQT4AvrYhSRyEU247gsDQvAO/XCqYgyy5e/bF2botk4CAeSVXWtS5tASMT6pW9YeDjYynmefSHF/cLTFUwN11O2diWrPQAOg34twts6ahH5lfyrPj7qTNMlRO6gXQjrSX+QcoW/5Bjjg6pluep1/V5ImuONtKQEzcguSmSwXFCzijGpX1g7qFcKvIb0qxn+9cou3sQTjvHGlZKWjdaRugQ7oeVDn60usjb2+AwcCqnLQRDGUvyl7Q/F9ygT+RBwFirzILIHcwEOXYoVkLT3qK7lDepd4hoZ3g+Z3i5dTI7ViZtAULhYKN1zknJm1B16EG7JdgJJjjn39bWMz7SLiv+WKUmW8PfTPkgMi2bapUK/FAGNdZzQNhjMlGgRG5RkqMfx0k8KNcORPpQPIdlaXymg4pObpU99RoGziYZ3lzJrmiSyqcaLbNWBqLNFTOkKtf14Vlj7Al2f+gQw9muRzJ0urIK4SVQbOrs5QtVDl9zy2wdrMnu1J7v7ha7iRqHPBnjpUqxX6kM8BQf3V23U5lZw0pu/wnQmelBN2HPmHhBTZXlnHz4ndspuzR1q4xBs01vzvCkzGV3QF+8zMA06LiAKooLQaGrYvux4kIpUfA6sQ4E8/Dk/SOLml38MWkpMNpqapOFPQTJZsyTQ2hBYHU3z2XksOBbA5OSeQwP7rvs3E/e9/n8F8D7wDmvNoIyK+Fygl0Ty7MADXh78sN6D9/iiPY44jVwtNBL2ZC/JNxHa2lfJW8u+GpOccJV1QGX6lW0gabYJKkherFHmZykKtzsD8kpAcne9Y6aKCyxHKv5azRMCHT73UEI1pKID2orofflgilxTkfOQHelUqsfGCNCZLwBjdOWG9e09Y1eHLYlzga4mM/TflYTHrJM564M+o3jUJQJbhbnr51r+pex3O5GvAirdo9DXrRkp5K2WzYUX0tr/Z9Ev4EVl3qhRwnHd5ls5iiNzUXZiZErlCRBUA2CqbtQQOD/92cJ0ArNxnBStOsDXqCgIFrPJTpawnCAC2CSkUtFofNIDPEFsSHgY1QqViiiFeqaQ7QXaLPWV48SBf3EkDFT8i9bu/rI1Sfk66QJimcpf0O0v4RiXOqUy+tZoeGxO4gpPpHG1IkZtBm0JVrDYZRvd7NgpaCHfcYYDLLGsZznu1XSc+c3Uw5EVQKONEd03tKup5VRsnNZd9Vr0RABOTG5otbYWpcvvDc9bL0eTqniuJ4tcJQiY18JChQ5VaCvETQCZsiXThPak7s5XkgR6sVXiMjmgs9K68wD7V7wQiDR3WSkx27U2P4NER9TZ/EWO1vCnKkQp2bL19+Fp6Wag7+kKjkba2pfyOKAEKiew9Y3DlTnOWuXHQm38WfvDghmaHIvgsq+34pjYpZwm8kw/ZBbq1QXkbUR279TvvGkjygVt5CyRqcy1odtVKQKD8IRSJ1AnM2k9Cydw7wpJFVYXAdoOKJ/JL1pMq+xuDWozznkFWIgyD8UR80fAXxU4XiLtQUEPTEVLqwE+1JxD3RS2OCmJJ0GpaflcBD2sH3iF5yQEMs90ILAplbaIV+I4QRAf+5DJtnruGoOaq4Etz7uG8HWdBlOIxXSBTeEOdKup9QPWAz3Hwu/f0kw5wJbxsTlBK7BmxGailSDz0gRxP6eE1hHOCAU2KB1BlDtcXahijFb8DF5yuAG4YxjgRtfV7WLxcXwwbOWlkUiLxWTlTBzUoiIyZTqH5M2gsxJveroWoPu3awcjAfxVK9ZyF+6nG2vcXeCzk8FZYK0QLms1V8OBUAc/O/j8Yj/kSr3kJzu6WImN4XEV+5Z8fWblA56t0/xbblqnKAsJBMYnRoHhtbxbJoxOXVmNPSAl7R6jO+0dHwKfZsVoWKxby+9JD5olsxMDqjln3ssywi4+GCX0vahwbFwoFvihl8cToaTtRHCFyQESGJsYrzhSHntD6DSObr4u7zY2ZCmx+QhyTIRU3m4OFEbWsFj4hSSDTOMB9R0opIfLs9qlNH2Q0DG58LGJmI0ddjYSj07irT3L0JK+zSnWLpTQscjzwiaJSRchFAvLnp6idzfC9utNNAGQkpoqffjA0GcDzog/DomWoVKk7Yp4lUaLT09Wc5Uul2G5lizWxzbHJ8d4QeDlz46e6wj0fdz/2ksFGuxM7b6gcLv6ms46pfeQ4eRWNZmAXf5040C2itgM0XMd91SPelqeBgFaSX6KwS1O1jmU2Sv56pNBVns7IYuacLAQa9dx+RSAyMVTapPqfwcfM0xogYkYXzq3QW4viry0UPddNH3CGGCOGFWgdfF5s58Ps8MohsjiGI2f3qF0fawCxadfARFe6I/uip+RWh2rDpzz1yrrKXj08qEzi1TzyMKV4WbgmJooIxkQFTYCzmvxUWha+LCet1CzEm9Ttksa2snuQWc24BGyR+LfDh+KmpgDx1np329pqy+lParZ/OEqMIwznZAbefL2geAWKf6wr1nmZhgwV4jBe449PH84eJwBLnS6ERgwlZfWqiYSFXGbYFNwNerJAJog1b/Xkg3maIC/dPG1ocJbTKtDWTOQ9kUUfat/Nr9Fv4mFm9xxIauIEwFXrv1q3h8voMO2mTu8UgxUL23h65MN38E9/dJSSipa/b4qxRTXJ3aAProI8Y3Z6taxj5MrJj8IOudTwdOnJ/u1NU2OciRhJlf7gK7Vr/Dm0La7A0PqSGOlNc5ZZHCXEMdXlOnHs9/0IQp5DM4k8Q4ZazYOf/dfOT1qDtnltx+wdMJ8ui2EvNsE37dXM0bA/+VDuN1mBDpBTZc2erFCMY593lww0XTi/7ip9PIMM8LAlKN0fcOmbAAObhArGddDL7gEhMNnLvs5mqXF9olLjlS/7a5ZcdhNGUXzMGXoG0iHuqgmqlDBG2Gerf4CVvv+c4l0nGTX8XWy7VQX/P711b/doUAF9jtVev53FHS1b+KghU2WQtoCf/9AyWSyLBTI7mS5DlxMmPbyEocQ8FiLq+9ln5B45Yt9Sy6dLwrHmLpNEZ4HMlbd8gTIME+PvgKEwL4sT/+Hj8T9BjyxuaPHbR0KA/l3PPFD6YLkelo/hnTuOkqwIf82xDFSgnFC4Ns2M2j+WCRx6Hv5/z4HKcsI6pUgl1ZbgZFWMgQ+mI8lS6weV12BZesamW+Zz9hGbV4B+8xH7OAnnGeM5ud6rMgrOiKh4QWR1X4MmvR4yT+bUsWauB2LzOgwvwX0oDrXPA6CXsMOh5KrPkmChb6FRYsrMtrPaIUWPC9IL6UZoF2DNwXAiwxcgAFhOW+cdbFHAaiKaex3SX6Y0ivTG8aevArjyUV2f1YGtV4rcFgM+ZKANyO5N6wfq3JQ52WFhPvr5I8PIAqWj/AcARSHOvv591C7XEeccOFC6y0jOR4v/En1vFiSTq0/5V8xVNEl6oWS+ElHAUMNtxtQ7tIh5r0mOGFwJ7s2yVAebbemLqQxZkSabSPavMSBl0x/jg9y6lUyr/gmsNT9fJX6W/YSM74DMjbkMnQy7PQE9LfqaF0cnnRZARVmhjtrtSfuCIxiGeJ8E9IzQAl/V8vdjumSW51Kj1XzpBftv+zRJYMoAqud652YpXSwRIbreRnIYGX7/Whx9JOiGRWOV/RgmwjFFfb6xYFhl4NTmxCRyFV319UjppzfCYPRHK7l8DG7hU2RgeBiLQGHUhb30wcT0DtKNECwSUjIKvXc9iNldfqFOVY40EmLQMdZqdRrNWF0uOgC5Uvawj1JCoWxttv+ZG+Isy4ld/Bo4p6FcxhJbFuPMbL6kROj7Fl1vln1PQwb0TCpo9v/vvzsyjkNzBYFuLDeoW7C10otlvcxsje/9nQPdqBJ/d7vfHz2o+yC3iAP45FGEuv5p6bxZ9HHbpRcTNBOYKEApqe8Unuu8JUaxSo8Zub0EXwtTongpsbh/RDhwkp9bXNuRkT/DX61Zwkeu9s0Dcla4+BCAcrt0bczCnMd/SlCtaFVpqJ7GwpBSbStpz9Qtq2jxygyWnHs8pRGqvMscmzpyX8tHgi5pIgEbST+8/IxscTI1eMFHmzJqd2Ax0qyUPIAcQWQEcsi396eYDECUQvdNx7MJNbEO3d+bQxwe281Z/Xx8cUj2W1CpvIo9Hx9IEMAqnZJvNImuTwg9FgCiEyCnRoQ/wSM2KMebEcxOPO2UrBPhenOKpeBSYIH1bFOf5PfbrWhR1RLzM7DHHYJNWSf87gXAYzSz0XOuVpmP1HNzX3+Xj8/Ps29F8rO9jLjDPwRgMNWIQCGY52UIYS+W7an9jQvtFLgXGCnKY5kTbn/BZk+YLvdcrv9c2DknO5Z1O9DoOJx/FNGYcydmOuPvmHkANFiOiJSFrE3ZAvgDhQ3DdhFN9swu9U6nVcD60BXE7A4F39YfQi+RUrYR3yAuOwQgv2BPVVZccf7pq26UIBjb1AuxCWa+vqn1LNZow5+JzhGJS+FdO8iUiIRFBThBo2+3dpl6kJcnp/VxIGMF/bmBP3gWPjWjINKtNgYd0K2F5R3K4f1DZIDpCVSxQJwW3emaByLsS5nSgZd0vL1h6i5Wc2Jy+U7GCkfHQQuN9Ds9/3so91SmCFkSnzXXRnHOHVGqCw632F8KZDHMW9mv2Ax4RETTR2VPKZ7JTsng/LVaRE2Ii+8Ej0/YDH7KtnE99+/MBerYQd3keqEO4a7bvKTihZx2l+4dk/+80aYKLjSa87UlRcKU3Egoq7rbebEZaY4BkFJ2WHe6FD3n/sPyTQgHTCkCN7XMgksKgjUPjF6r9gN9zbFsvIpqVLbc4E3Nz7x6XnGhUhmn+TzAuZOz/ZZdSf4rksnrbHpxjEj4YnG54u1vOgSgPUVXKvfMf4f6c6eNUXE49IefK+AjQs9b4ysCwebEMDnUIExRUFOIHVZ6DzdCo19ZDNLp6Kzlozr/JI0bRLJVRyx561voD2gJ89AqGiCOXrpDygiU8j493ssRybZuFuEP47Y1WMjK1Hu5JOc5mqmBy+qAQ69AOtMtnhFIWdYd0evs9nRwVyj6KIhj6gy5gYK/Z+oYVuwbnycO5bAhCzr1T8h9g06r1qQ3O6+IHQFDKvG2+tg+38cxShpKHdmmjiUiqi3fFfBLb5iJ5dLKMpKB93LcUeHCTKEHf55WhafEeLwb/VmK/i+thqC/LNOVo5m0TLR7dhLlN6vjlNXmp0j/U/k6XHLgPjRc1OoEqddvtXEDA0Onr9EYFauLbivLguBlPWZS5UX+U4HAxco0KWqEcVP+8qHc0uFEOPYQCMHERql4qAgaim/WvuXBdzUErwOAASiRItp4cCtd8V7ZR+wEjWQIXt3nPyytG5ECN2LwmAkPcgkOq9uhwX0GXIiQJN5K771MkDqnxRy2Hi9tLaBemnB9yn/yRlmTyAsrUDxA7dMqKtCiMgUwqZK1fOvz8b3TsMm/xNlunt3MpOcBm4qTU+GO8HogXRAuDJgaHuuk334mCtg0BwTHBDu4ywqC2gdC/DUwR7vGC3JxPFzUctVn4hCjmUF49hzK6VKo1Z+/ttiJdN7QEEi903xAcFg4lWuMhsUle+fL9z1k5HSt5vtRldPvbSKXcfCehDmSSaCS3LfakFiYeDR4+uRVi5lJPAgJOAIujxqGFdELebX3SUcm0L5qcgMXtKpWRDCvpSptaL7+IEk8ueeeW5OTkDxXI0wwzYGEZEhBJOnK6auzOpWO5NDwNexmXH2qkCClc5bxcIq8q7Mvx15MjW+2hkCeWfYimW4bH2jUW9DgoGIT+HwPOQVEhwm8TU6i0Z/7QotG+srSjNmdhMqDyKluGSD1/L5VBoFXXYefOW6iQQM8Ac6wNBWybe7xaYWfEVslS9ms8buoAHA2pRBETMak64xZ7RjUVoMpIxJZCoJMal5kaoWRSCl2Z1QDvbJ5VEwZiEwDp+X8c8cwqOvVMSGW6qZtG9iA3e6KlOstXFrOdfpYuSLAbcdTCSQWBzHn0YUs4Zgw0H7KEJnF10rx2IeNwFo66f5x0yTrBU9/6ZbqIyrOD88EmAwaY6PM238Jr8FPxaPPwQb8bEz3dIhGR2nzM5swxy0CjE2Wcu7AQOrAjAYKjBwE+7K32eqSjBsHFY7iupchLTT1nqyAmHKTkCyurXWIXKXUgbFojdWzvF6FoBhnGp4o46G/lLOqXDJlDyHUWCt7yOaNYBVPCa1D87OyfK+jOBgAj794geqkREfCGrNc8TLnIs9cmbVOCT0FpG0F/982bAki+w3QDWgLSe1i5jV7SgZEGzcQMbZaI6o/+UKCnDEqWNX3kVg1757OCC1NPfhm+tQJMnjLkLayaXH6smujVbr0jy4uhjaeQ1JU+RPavAF463bSKZ1hinDQnJWC5ImFEDTTkuAIxG+cJ5by6Nnpjvlx8iQ3RQbDhVJO8yUixJUw//pktOpsso+3LaylE9Ipzaw3chL6PcF1jOejqqHdBL+arTPP85MUlEb2LVhafzpwO2sus7yH00V0BlinrxGCPeCLH0cAbahhxr2LUhdG3pVLd4LX9ibyXEJtDiC1UO5FmRAW5aEo0PMGW2n0P8T/j2Qn8evWvbHODsyknmVPIRkstgdQSBSeXL1fQe4mR3PAcAwjaBBXtMBA3f5b0iKpaI4WKliARontzjmpxNV4Lcq3MMd1R8Xxs3Twz/d/cbHmT1zVKXoQKIcztWrV21e/hFypxKHofg2bSZFk/ELcwB+Dqr1dBbmtVab3bl9LkvwWufKtInVGCdifC0D4+AtqdeD0+tNyQejybmEPCPvxBAXZcAQzkY3O078/gUEHWe33lr1hYcwoYIIZHRegHOWUlF6lS8P15u5b8J68atF10jqOwjbYoXcHb/gwbzbA0qwiK54mCY+3zVcXP939OlWkHrbtGJIU7CMoQndbq0cJSRMouM9dAePoMrAgjF5shcy5rQUZA+PLpHgSjqweBYomd8YX/sIkjYyLORIMyfGQFhk562HF04VdyAJ10eQYnQV9R312a8aZq3JrTwiVw+ht2gbWEJOhSMpWG4AFfTHMhPqMzxOCqdyHHZVaWEeRoXxAvjPk1Psa+MHA2N2tIxWu0zatEyuRBnqHRAKZ6gmtqJPG6bgqLMCCHcPZe9cSQDGIfHjrScqehgPCUjA2MZ7IOKGpdB51CL8cSftzk4XbEi5xvvr+j0ZOczDefjrDoQgCQiVcttFDGsdBMjKZNe3q00LT9VWwXOru6I3jrtXZFRJX0pyBd8o4nE+RBK0jvwPh0A8BEpnvLjmR8un/cm9KCghkRQ+dIetAnYEiFMwF/47kaoU1TOR+WINl1ABrbRtZKeHxRywxkBZXDyfa9Uir3ymWi/IMTv0uEUu7903SUFnLVN7d1LWRZ6v0HWXae/HTtBxpSt75h1MqbPNFCW60JkUgSxqrIwBC/4v/ybBf+RxZrKw0fb8CQHSbnbohEkdworGw6ipnZMEO4e9ryvfHHlObUF86YKMnKdXdMBZmuEny44KJ8RnSG+lzQh6qOZFRNfbtoyfIKWVf+fRlUT5lIrJjcM28ahP3I5BBd2chrXV1oV6kCVlIWFiF7TQTV5S+1NBcqfe/Ep2tftOyt1bTmok4Uiiob67LqZ09cKyt7Uw2n8pQ1MsZIqHYCog5z6kDUc17vSSldzeeDjffxHXHR0Pu5ciAvdgjtYaXDjNA3tGDnwM8RQxbFjetbgKhYoEC7I+lT1RY7t39d9KZbE6TmzAlKUrArfQEd35P8AnJrUwoxDNM1vCX73TYSTKZmFIPErhVgOajvVDoSgSunUxvFTmYC4DYAfJXOB2HBb3RSBpKWfsoeoYQBZWjcJSEKR56PTed/jam7ZMNZl/Mo1baZpyP/c2t9hD2heMURqgCwhipWsJtvca7Bkn35P3Op8rFXOFk4hpbjFWzyn0tg6ptE59SKBHseWn/4RItYTrPMefnNDwIbHwJnh8Ckj0X7qu0XCFkwrvYkGnZ2DBzjZxaH6jLrmq44KrFNQWleE3gjtvFVOA3qEpd6/OWnGrBK30WpQlJTLiYj0Xf2ujvu5DW5cCr538Nf/9evbPGtASqeL7ECCv61HLIEb1UKK1ulkWIUf/0gk0AIctv0Fs84l65zNglA5tmOdNXoE3RFaDNec1LnJqYRb+sxthcBgrWmSrDZ/uDWdQ0MZ3I3V50Swv5NwsKGXvDs2e0RlkNuKyQEdfmD/3ZOYq370d4EovBWv2yan/mvL5Jav6c0YIt+f6d3Jedh2CjUJgSB6+N/Au3lXnnvcdbEDhoFSRiTm95e2iXfwcn0Upu+1OM5EHeMIQGLnkWrlXTinsQKPKbA/HEUd5hz3JAXyZN4LnGoymn53syxb6HBgdCbMQfCsGnziVxBMq4Cm7ul/QbqG4B+XLnNXwy+nNgAJUi0mu89CP++AqgNJGoJyqb5U9W/dS3shmM27xvH2ihDdcKgrK3f97yFzLkoZTt8hyJ8/DZXFXz0Zx0Hiz35CgZYxnj4F4zlf1irrTRVC2DEIXuEVuR5wiszYyZPefKGNtLu9gHdQjGFEdCH5hjhyZeSqEq6YE+s6lgCuEaAlwTlbNCDin3ZiU9XmIHQJ6EZpNVNYdY8+/s/Ip5eJKYrlCfTPCr4tQkKBKO3YntgY1lKRs+ijhbC3s0J9+tU6MIe7xGWe8waJBW3h2mt3CGjGvSYGLd9So/y9OMw/S7jYx0Lp9hMNpRhrhwI0s6qdrsWqzg7mrfkf1Xp8NimcmX0WKMgPy2XX+caXboHtXR+nyF31SqFSju+M06TaUuyVpAJeBr3t9v7odOXEmbzpLc5WMzQZWP+/b7zeZ6TUa9ZaQYFDXBCl5aNn00imudTWJX2SumNhBFXbvsxaK6j9AuoLLDnyHDy6C7lq37nlT5lCG393iY/HgUHaXU/yKMef59NuQBiev7X+w3fmo21IGONz7gXXeMMx5cGRnAgryfQjvl6RU6euUPrF7xUOnuty8tEV7uReNckbQlNfZHU7bi5xNVJZ2eGmw/LbzqYCnTI5W8gRHfmJn87C+/PVopDA1ShxVVWFv5RTXRQfwOE1Nxl02wmRhkfPZkV1nbUz96gf2phNPXKsTn8+GOHjiIvtM5v0aT5xk0B+0OM9lRvP8BPoz/ljbCSDjXsfbs/N3NYn0/apeZ1vy2SuBYmHeYt7kZbqIF3GsuqpxftNRzKEG6XQXAk+aeVO4DRkDNQ+7PZXr0p6DMK+0yFKun+Wj0yjipsqqwL0p/dcvsI6Lk9MDioA7pD1HCI1GXJe6etB1F7Tkf18iHte+JEjjLpo1JVHgpi8cNcB1zaE2r++HdwBvQeAb+LvrcLxSndYQWwzfPGYOBcDxRdI1JWdxnTo3t/qGUP8Jb7RaIbhk/WMyBytIjlY8c5QqSIZQBIx3whKNGcl4+FW+awS6T3s+85E06XMyBkJbcROz69Q5GlNcREPIBGvLusiTctAOrAH+jy6aIrgJuD0tKgzkyq0EnJ/xcCLj6SMAsln/O8nqYE5nQVeOAnIXTfjOeFDo0ut+7Miz6FhSQ8irg3RinHAUoZxA5YTERfdVYa3l9y3kq5ywv2M2F0y4vIXaUX5NTX3pg6hi/6JZCa1KSXwlN1as9qo7yDuztG0WV4vGGlO0l5u7s98NkIGYPiol6erhrtEq14i5KhEckNZ3VocDto6Pv9uKDWi2PABuZOXVh5F1wDx9f/qR+38xwYF63CI+I/S9zuqzA3RsdX/dQzifh3c2qJp9rliUIY2kVN50PlWJhDmhtwjUQvF36qnKpIy5G6cK/KSGjweu8gaMgIrfXrGXCizpTlxlxcypnnR0rD1n1hOF4t0/v+zU14Ie3snU66EAXyN0jrSdaY9p0trt4vcjcIxgatMZZLjH1i1kdJdapJGJgWmtvgZDm/ki+X2W9X378J67YWdun5vLDaFbBh8QMbLIGdJ+5ErcGmYbbqgwszFIiSBypPOHi1d8M/+xPRFMok9R2Zidt5WI8+svF4ektxfsWQtdRwrH+Try3nnpKntNwXWp1E651X1rDbhpoMjOCmAl1hiG3StzqfsHUhpRwtA+go9lIqMYbozYKvIN/Y+34ys7Q3KUa6QxnG6FILRqnYrjKaxq+9xioWdA8NOWNmGWfAAF+Dx58f5H5EIT930/xlO2QJRxRgk83tC9rkzYso6+GQmr+eolBz/8dtI109YNYX9SLhphCXwMXTCduFGuitvskusHpuJqaPveN2bI57Gux4pj7v059aqy0ZKs+xXRJxoYHvp+Rxu7e8gGusBwuDyHmGBIle7PAxZb//r0/fRKkpmumGuTN68W+7fqqlGWOd68fJpFdzthRQwlM41SzRVz6obOzxPCQZ3XNeO0R0w+/+AkBaXnxW9TMS/C4pEDLL/+sKzhSaYskZhRvV4MqGhIMrWEWJfwwUDf/PfN0z9AYneunVE8Y7Y4epvPxmYmDgu5GuQ+5UK5SpqZyli5UIl7oHfE1ywIMHS74e3sbn5dSzLcKc3xL8wWOkr5fuokqYiJUwtPMXCb3i49skgmikcwBQ5CJrpIvRoyAuKIJvfFJVjfMNamDwPaPm38NIuNgISvjC47n3oy/JWI0HD9kgHHHVFSmq520AtEZq4jGAArqNUTMESHYyts2ozX+2sb5qhqT4iKpVx7UFxip9NfV+y9z0mwUJ0UUoRQDaTaNVAWag6UFckg46zP5RlWKGlpDmNFVTkFUGPqLxM/zCAU7rZTB9bGGu2qScla6ms5WMLY6MT55erC98c7sgE0+XveKm6rG2SWSUmBk5JYNUxPWYbfmpS3FqqVlqO26jNRmGfpCXW92LWAuqW5PaHX9n5t/AqmeNDa2R2dKg++n/kkp+T+vynjjfNYdy3K1/t9A2bt88EJdlMdMW3uAwNWI5Iois412KC41WkjGtUI+YW00EhYk+JYXm+f+yqG0ctXx/bGwbUWu8aye83cB3/ev8iaykgPEV0gA/w2bpQJvd1YadEcabVjceWpDclLpHTxLfRrQL5s5/mWUycepPH7Jj7ePhlGUpwnhu+CkrgXrmGszR6DqDjPxnXcHil9kU1XLLc0b2AYbWXONSEiuVy6iUq5D2dejgJ7v4b03OLC0grHVigzYCgs57GofI0Ofk06GuxkPOQeoQv2/Hik5hAWGA1E2nrvQik4kiGBDY9GjJ93m7pF6EymmzOyr/lBFeCyOtoYE/ITq2zd9fgfLBzkj0MR8tvEGJcdOTHeqAt54DplFCpI0UjG3b7GlueLnozel8PRX4IbraB5Al+tmd5zLrPEXrDhpblcqSf6cq8GJ3fQU2kRVpk98qtLRc2+An1iS6X+UiEirXShHs+7CKhXkjMQLpI2I4PHJcA3/1pn+/h2JzndqZeXiGSSm1/4/TcUTFsn/y2sd8k7WS8sEqwFA9TfmO7Bo7eBWgAQswFJ+aCBGkbLaW3VVe8E9CFAPaqqWLuuAzQQZlCFruWbDOgCT6FwEWNaVCi3OQpyLaFyJ+GzcdkN36+M0dtWJYQsFOseLHBNTFgAvYaZ0lO+DtSEz1jwxA2CSYI4Kh/lqvyGj2+X8zE8XaG5gYgGXCtKvJY8WZT7cM6peMG9xGfx++pViIpuaC7/IJSoN1KZHIMG5sMaZP1s3wuDsVskrCxieNa7Nyhy3eMukN2RcOjmyM9CyuDkrx1tAlbv2U/kVIaFi2xru49+a4PhJH1AO0aw8T+wR5/IpScIk+TWP0Qvh0IykWfHnLknubMpNF/vgsdkWva4+HKGTxBkGMu0AqPEfeUmbNBznVha7VYsYCrN6974U81oJklh0zbgRfdiNdvzZ48fV2S9OtFiaInewO1gseNgyCdLNi3N/3mXMS9ky9yxbVZnAtM6jQRF/DRhAul0o5qqQdDReRTxjUA7ZG14Xk6V+BTp1tJVjYjdOURjASh7ZiE/Mxp53U/YXgYUm76Z3Ug3b6fHcpd5EepySWGBlT46BM2URROdFNQESVRJxU/UHlFL5/jnb9rmUvOU32hqS5XGgWfbQYTf8YgVJuuMnP7hmcY6HuqFi0tXm9n6SdNCddh2hr7jW/zgyGKdQC8wxnNFdELHPgATGzpsEw211ouuhhQNvikFG2HQnUcNCZXCL7a+HkAn0HOeglbsgt1aJbBEpUnMpgkeCpRBKZodm/83pDSTXBAfE+HYxmmF6VYLZ/Dxie8Vl4ko3zyfIuIg5JKLZkbFNSp4XLwMwlRKxoFUrh2RtOnzyBc/aChmEucvgaGVvRUpD0EifRPKxZDQbrxpuly1vsaWhIZb2xUhRfeR00K/bxN4ebuWd5+KwTZ/SHrYuAJQNK+gCcXv1PBPXDGIMdUJpzzai5NKBRfaOw5tF0Y9T9dBHmv/9XY07+6AWS0dAucGTF+7LJd5j6Z4jFta2PBCr+6mAI97B+3VXlHuNldXLuPIsz4xb+y2DIG/tAKIOTxQudlAM5fZJq/5aceDrid+7S5keFF+IAB3nqU5yyofObl7TIrG/TeB3XIIuXBF4TIsxiUNn5IypFWHuF9WNDN6jgotf6ml4HNVzy0260cZ/7creG1dYpfF1mD+CyCs+ZpLhLobdjUdrqsPqabZSCOns0yYdLxddNh8Z78aysAWMCBOsfD2490/439yCEI7qjePMKusLgbeorc+M1VshCFwwDp+gV+LL4HMgiLTALm8XeYR7NWH5MpfDt998PZ+x1LSwcGqjpQw+CqUU1ePAFt0LH7IDlgVVK/5ueIcr5PJs4giD2AjueCsbSUiNHmWmfRkSiuYe9DuRRF3ux8AUfZNbSajxEUhvbkRsmhEmIzfxIeoiB92Ra0J112F9DP0ykDlIs/4NtqKGyzE4Ci53lpnf248I6Z9Zy0cnDcKoJXcqwY/EL7z2ked7xMKLt81PP/uzNe/SQ0ZfYCIfReiuiVL9Jz1rsWgLsxLGyt3lcEj8FzCeTgp7tbAwQsAixGs247CbuVdcZFAtl7KPWUhJ6Fwrz5AR4uLNR+T0m2CTf4Ng3wDbNzmlRbcB06GfcRp7RQ2/h8ZH/fVYIHLklJEvUZxZZDvub+hr/4arKGmPZDby0nyl8KdvgZPD9QGjorAaYdeh+sY8OkUbcX8ymyVVnujVnqr/2g/a5VLnMTqRbhKNMc0pagXR2r1g6E7gnuchhNP/wLDSkaWyEIBSFYEhaosCe2zInu4bG/JsXy+2Ze1KzNvFtYoSQMKhpSPUqx+eXqhCoBK4REjLBx9vdii1B22/8nM1dlQxwklagzRLcBobFEzpUNjmsKCYGnSBxXSiwf2vhUhNEWvzy68XeHoyu37/qo3FRLb7443zpL1H8tc5lB+WMZN6Y3dvZc2wNBrb/A8zEvIgjY2WSXaQrht7kwl8ArsjPSv9pfBnPhFmlZrdzNB/vIFHkoLLwQ5GTHV7u1zhNedViIG2WYe3I8ssQbwa+Tl/JIj92s1f0PfChkahUvbLskVyOGBg28nkIFBLAiuk0G7MwZRB1tMd0J3HhMheqnja1VwOyR3oLAqzfwYQAM4HA/4aEpeHDFRhhJzCSfbPu/YT0F3hRIypxm/24TQZpuD8bF48SZqn9DNyiUxpFPqUduBhSMz9/JXfgPJMfMfzDi8F32zHU3KPur1WCTTQ8GFpQ88xghr2FwGrRwoQcnxL7V2wRrySdp5qb7rmfRXluKsi+qym8RzmrJAcvpvyuYRxSb1ZigXl2n6lU/tSPJPOjDd28bG5QoGu0VsYGwt2+0M/eKHgYmTovhz5MkdktYgElg7yAg9ntA9cLoJDfI7aKmpS2EnP1AxoXZSymH0XF0KRuC5zWRtQY+I4t9bHr86ndqg6TTgtgoNDo3+QFZzXwImNfoXERtET2Sj4EXKJzpLROQB+4O3RFwPf06e16+3iSGx8JFH/DGKMdh5Jn6vfcMhdFn6uANWHfzSibhu9BSgpXCPOYvAV9bv0Kfbf1RfpoGsdawWN09C/IyZvHIoXlNYRxqW9xkgQaVV/75DRwDqn6TVHpC74/Dj459Yq3EYVY7s4cpS7d74wfAfNYgY2TqLyap+/j1Cn6M+SnVOoOGmlabtgwUtJdOBZp/pHBZP5kPziGUHVTm64WGyf3ZmV7tyEQk2ErNP82e4bnYlWywHJ1Waoc7/YMdRQl4vKb0wdJPjcGbz2bSTlLiXcu9luCnHzYZfpl5iSEnd14puwHrs0Ohfip7K3TGvmkchnNAMVMUktJuEyBLuk5GjyLNn31rwJuxYC8qGyWDvJAnbBlZj/voETHIm3XdmutIf6X+kH8cF/6Nfl4rJLRnYWTo3eVnqE7+G9e/717CWFBBmthyXeYm9nzbymP6TdFaeKv53xPMehiAhTNygPY74u6wsp+UkfZIsb01+BuNi3SnAVymyQoKW8fPujnaVQk01ovF8oDZk2B/qpM9Ne+YPrfupm3Dt6Dl0NBPW1P2uXqK8j53WsbssI7gLbtiBAndOK19WCMU+Wq0Ow+T1kzXKxzLm3jVmFS0jGTlcZd6zz7QBBvzkur5rFTvyR4uTk6cH55LFYv8eOJhXa0cosm01WnEdx2jvGeB5NAutdNJ3ftcrzZXdPwlHezqRdQGryi1ietF0+V6hRyKVVRyqntO+CZXd47NBzVmYdjXVNuqABp82O+YcQE5nzAxwOZXGaYcneHu3a4pv2j1We5aVPNxgEshKmTDjD2JoQLAQ8GFJlZPazotFqlAjBd0+yUNACQ4KJxVPJ1SjICjuvWygkXYzgZ87jh4VSW6ubzF6hhj4EhIDgaAMV1hPeJfVXMton8rnduOxZYb6+XGyVGCELPnvznniZr55qypdxTl82gAMS9UA6YY1oQiyjdfRJvbe8QpL4ryAix+P3jh+eWHVrPBU1UYvNf5jg/kuxXB8QlUPIVQXNEqX7MFZvyTSGSPyf8eOtVKNRmmEVsjjbzCpF6K93KP3+FbVmIbGCSRgjAy6iYwwuIdeYbyRUQa5CM5Cy7y0SlsHwSxbJ5c7Ij1KZLtIBXjdU3+9T4NWsyw63wXos5dVd3MyBoiHXHGcljd9BJvoq7Ck8o47j9dFyEZtf1A+AViXE9UBy/gFFCHY4p7A2mknfh+K2CgRcZc2yykdWYEv9lvlBohNWW6BcELR7mFA545svLiDzZs399el5l8QDACHTZm9Mw7PU+VcbI5m5gMHjSBoX/pvFn006D9SUjggRpRzDtfjbrtg9l6hFWpjz4wuVMjJpxJgVmNG8c+vdsdt9lpVh+FJrMYk43rYJtrjVk4h0f1+Gkoqj5H6GpNJ3Yzoyqt29Wxf+6ovwGe22VQHJOzbXkyZwJLP9LcypBREyLSolytgKiFbKrHCl1VhG/T3nK9FwpO4zTExDYkGM2N0wNUkQUiUZw3pG6mTdQ0URQqbEbUPv4MSl/slE6N3eRoU2nHjeCsD+YaTXZCDR2eyWdixEBh9ASGlZiyxigIMcIDKx9EV21W40y5TDmDbsIIBBzCLuL387zhcpo4ie0zniucNZsA2kVDIVTh3OSSbadkChY2hsQqWegVTkWl+Q8Q6nAi9qlKiDo4YTXY/Anid1+Z3kAPwKMrfAuKagu3D2ax16aUETZfN+KAq+W3d/2WHHuvhUrRyrft4M5J96UuPzIsu1M2myaACeBMGjvuyjxozDm9oeBSx5Hh92WslqPuecOy6UlincxFcW1Zs8MGBS7kFWZDWqwenTQ1ZOdDmbfLDv2xpxF+ZtD8aSHsuKNyfcVDTtLpz/6F6czspBEV18KB+3/NoiFy5lRIyND0OL2HvTnO9U4+jCcGmR2+8/ylfImHebdZ5/+d6A8kAJjXEZCkJQ0fD5ihN+M1FM9BZLsOexgTKGol+zf8g4+9+He2fRWyjLDxk/eNzk9AH+ppVoX5bPkd8AbzbtmMDlgXT1uNGScYK1M5mIqfU+fLe1olYbZYK0imcd45eQI3wIj1Xln8mih6lzYrm+v0JwRqJdCsaZP2bemjxB4NEUcRv12mWyKpVlLRtLpqshYX7oa3jxIKMJrPfZco3XRHXoEU9CuWnHx17HqwXfpE3VbqKfg5PuftJh857BgcmvwK/Lh5mvoosmJ79RMA0nFiYmb024DX8cho6KWzyH7NLBnbYDMqrWt3d6eMnp7n7m6vCA2dBpAAdNLRkXlbRn7TzAYYI4lFKmMjseGP/4iogZ9g+rUCKcGSsCMJA5rt9ZAb2v5CsFuvi+AzPYzy9bFDr2QXJXLBjor7HQRfli6fmvCcsaFIo4n92SROi2gCs0n5OnVu/3yKeMZftEPWs4QVW9PhXxeFAcak6EUZ/gkZsmPgS1L9RocOBI0UaGB51Jk7pkE7rIcquWt5bOlSsUZjJABFShL1oPanTrBRqZXYUYjibAATEQCs6h0GF6Hj2vl+gBAGeCfv75GIziTB+XZSbHnR9l6Rfhaf+BOHkGPm5k4NSwogTqfYKwcbd1MOPRZc6F0PeUeBdxowDIG6Xj+ESOfxFfBVV54BO+CmaDqVs1ioh8hZpsADiKF6HonsC0n6RNtR9tTKTRjXBxtv4zXw6tBVz98s0QWtMmdHEVdVE+dnKaJvEXQp/VfK/f3AD/UiwmhmjZO3jqIl3tCD067IkDK9JagAeN9WSNxUNSIifinRE1pIoyjZFhTtjbsEL+ko/fgaCFLND2O8dsVgQ8JLbm4JWmAlmC5xMxyBgpfVuVJjUuJAjU3uOW2+XqbhNhKIqr/QfRXxFl2bzoNTn3P7gTDFkoNwL3fZGAppfPIDObwVl+gykIoquFhJZbC/B8ryIbq5qgF/dv1Xm0we3D41/nChe78NkbhviANCKDDBSd8i9VAhogL8K6XwOhg6le5NxLr26DdOFxytkXn7p3OvfrSTeowOhJbFIeIhoKfl7I9Yl11nTC1IXqozXuLO8M3wDq6tU/bhvETnWVfVD6fUvEtBXK7wYwYxI910/hZuDnQG0t7I5MC0XEED+zPe2xT70+qav4TbbRTSTlbSeUkpDaONrQhndYFILhb0AimZGKmBdN1KhVhcFJDFaBUMCMLdx+JUFdLd0NhvRF2d19nJpvQmrZCoNIyiO4F1ROI0i8Cgn0OU7Bs/PY26V7kW+9amNJLadGGray3lxbw8FY0pafXbjG355NY854WI0C4nYw9cP18XsRwt4o79gTOCZRACmqci4IVfscL5AZNU784YGgXPEagJEBpqY0lSY8gIJuG6Nw1olhQMwmGneq+UrQhJSZKdW53hqCMwC7oFEcSQencho5kVzCS8WhJPcVKGO5r79X4lydfqMyfG6/XuXwms3+F54JKZ4TYEIFd6LR+UcJ9w6MTUSVoYwTLRijX7ANH299pMOB3t1gSndx9qyyI6EwnYCReqdjt81MsdiXx+C8on0fiRguDwMoLFs550g6MDd9lrBpIaTG9H91xYaAEf4KDTrgobKHmDqWNAF3jPeWn9bmjaQjtZHY3Hj+k1wHkxuWxDdmfibqPy+J5weVya5FCMXx3LcNNJM+VA5WmzS+VENDcKFjPoAIAgODLAwbD0zWey8nwowVScTm/vWQs5Ow3obWawHnCP8XQQghZ56UadMZpVkChr919GzjMur8JGMzVvjWmPhvdEXR9FiTwB6pfZVTJPZkvXLdElut87yskeYd46TYRBzIizh0xO1thqQmlvUrBGZQ+ZnQhG/d0YR9wv221nrGvmMYwraxGewG1Kisiu2+gpfOmRY1AaKIfo6SvYJRSXqOWe1csURWnTqIcWdkL+QivSLUVE6qQicKdYPda8RSljB4TsygiaM96f3PPoFivC0kD6XlLVlVqqk6BcXJxDOP+wrr2u8reeL8L//3+fdYkswk/Z4WG3ksacEX+PijgroJkEsine3mWkmWntLCZpk60KAcrKY+R6tlCTxiTv48LwKCMcs+yGdiPt9FwCOVT7+7ouvCsCUKX7Y1wx4VSPi0hje+1oPE0vsixIoWB7LFEKRdNQ7AtoVGG1hnikmClTWkDFCPOl/0LM/3LrswIffw7xLyebarzYDqxW2cCi+MnyhRRfJAPnK7UNqADIOCbJ5UwwGtpHRGDQ8/jARRQS+kPb8SC+c0wCIYIEdU2htswaHMG7IxWQRsgFLXMHO3tLT7hn4wsA0HfEbjdpvvlG2dnYnRQr5YPGmppdDCRg6VwdssR9kLD6irftAIvdJzvgIcsdoxgel9fk9jtUH+F8+umGSJz2dcTjAe36p1v62Uy8Z4Bz+ubPG0MCbFIq7/oyn2CG99qdPKjLuY8UFUOqYrISHEo27e3CovgLG0QnT/EFaG9EPFwi3FI/RjcKJeWaFEAtifcvnlJoJiUzZ5Joc1+y5wp8aal4YD2vUIWIkEb4xSW+OXBOxhDdCJOLLe+MwS4awN5MxKW9WoujxQ9onGm7n8XT8oj+mDQC0O5ecxQwNte4sYtsNIjDObQolZ0jGA5IXd1OdZFz0THrqjNrXzZJ+HuGz3l3ZQM6P1oJmrWjKu3k1olHahr4Pg9R7UtuIteUqFPPJ5KSY9E4iJm79fPi4vgf0Fpzrxxmzdtf/IxCsQaQkW9VBqbnUJ+hV+EONA+F0PT48uh9DWg3CHZG8IXmMxTfFh766yzdYYnNUNzrEY9pqsdxmF3pmVcPhEnGTZnqVs/HDAhFVUQBx7ySFdAf34I8htYcYz3ygyDasXxy1kwPwzDsTv3tC41qkqaGb+0sfLgEXSGAzbQxOHvPnotOHmrnKsJifTdoFhuxGLg/PqcryyTJyG4IsTmGxV8nAJ2c5pvC4IM/vNCQwdC71CFldvzexZe+rCTKGhnf3LwMvH4HU4/m4+7CUe55NYHLR7v6nhQqgz2I1Q6sVynnanhsq7RM5xpz+CAHbZll0XvfpamoKjt9cheUx5rOoyIqmCQBpmBs3Harxe3no9WgY9piDg2/RvFYjqCxPW9MeQPg7UYtnyMBv2vdakP1biX4TteLf0YgBuX4JhMRI454rc9rCLg2vfUjD+Auy/7iIh9NrxuDgSsrB5i2/C8SJvZ26QLoU87WLwrcW0YuvFoy9lc2WoFF3U6uWH5z0CJdbSaYsIih+kD/BXUF6MYTI6OJUoyYmg5kkgESv9l+wdjjEyholHovgYpBuQ8O92ybu/qpoVNuRGoKlk1Jd0E/7v4aUUClwcfENXLesM/JkhYxJAqgMJ/WWdLbxBycbdQ5LRTRW1QOSxA23iiu2fZrZEpp0DVEva+DjA+tTONNRD+qvOpHM1VTzBCPcc6un35eoDXliH5hcFkrga0lerID2Me+ZI5R8gQJpNOQz6UsIiE2L6tI+G0etbkTf9gAGGLOJ5644dhto3uEvrA4JZGjDwCRAcI80uQnaBG/mCn4+dNV0bWovBRQxDGryG5zyAmxoMETGV5/OLmfXSIYzRSkAS2bNDFxdPcs5hvQ+ojPlMrcLjZG5DKWePm4PlvCcgWvICPyLOIo3ZkgTqUZM+Apd3w2QAyBapquQe93Ej0gg0+DzsMYrMwzsrwBh6PTP6iH1s0njp/fWN5KxVGnJAbjhp8HnsV5Ea1SxBxwMJ+xfti8pAKgxK9+m6somfqumqXvXeymLnpYQA6j8z5EhXCTYzqjNlgk1w+M2k1XWZFYVXEl55qdckzFefY0qAeqeogQtQ1zn0xa4jG4wAUaBQvueoyWdVY4pQBNOPdHYieo9oAHWRcHY4+zpWA6z+yprkITdhZLjDG7rAwoUnKmfAeLhyTvLWQ7daLhtfacuqvhSkSdDrUYeNNhmp8jL8h6BXSWQUvJoF3YxB6YgTFLnrn+aZc3/uiRcH/26C/LkE4h8i8kIk946qAtFeor+ZZjj3/AjQ/o5vfGla4BL9c/VEunufgLe3JClm/7nmcIKbAaNx0nH6XKXfXxtjiT+ygTKazdilljWfGTjChoxUCUOPE6xEOyksJRqE6VJXpr69nC2PjUNuZdqy/sSkU2ISPZq5sCe1hNQt94CbkKHhZCfiZyn/DDbWruVod+2y0Mz3PCRRiLGxH7nXde4T+dOgILGT8fWz4ex9VfVH6s11FDmKMnykdUZ55bllo3Kxw7ndB6dsRUd8ws9FcEuDAMtU6/68Czrdh4WQRE7UTcLi0UuYs7pMJCSVVR/EN4jg0/0li7y80VHS5f6R/KixM0SsampYrOebzMhjtcmUPiWJ0pyGNRb5Ah1oYmPteHat+SxH5OMYFUf4hGnZ8lSzKLUbzlUCOiA1hkt83R5pWPmNw0MyYwWuHuF18UslB4qY4QuMSsnyU8bT6C2RtvVrwKEk4CpxXekrMi7ZgJGi1A6FHm8m5ccbFTqF4c25+MT6wTPks/UMd3m5UZgRYYJtP/1y9+08aA7Zjj2U3mrgox+VkQ3UjA+9TS1qPotHNvTXixpMAvbnDy9nGjjc13QnKlkR+N1fgndfzsa2MqsQHICCHwkeC/cck9Z9KCLXsjz7wnWBVP30OdZV1zptkrBvahxVeI/rCXvOmrvuI+7gkXtXeVhHHEYLgkpn+weVmmKZ2AnDShhn7e+vGtMNaxCTwTG1mBVhSrDVYoRgF4f9gUnBk61LL8f41h4I+RQdPmk1qxiXjaJrcWJ5WhshGedakdZnfRR10wRjiIrMO6untvriOjzADjihtF4f70B/S0zCFVQpv0RoSyEfTh79UR0qIlLjyl2Cm6DJJKBu1KddWlQbmjPhB318pAtwbaXmsdmzn/VzYXr7suFL0/bOFHgu5qfglNHwjBhEdRT6NbmNJEOM6kCVop+pfrHAa23CSwBjuYVzjYoN1rpmRiVBfJatrh63gkiyfSrFohxzlO75N/aoUNLFp22/O/XhqZ6LeMRMUo+PPUzyWB3pQJA51/gFe647mErjHwI9hbAg1y66FIFVoaHbbytQ8Urhj4J73Zd66r5YcoVJ4AxUW78tG3s1Gd6aEpSQzZ2ZeL6/E1pB9vut73EsbgA5Whq7y9Wst8+IXdyY+NKZ4aWIxRdI5jro+zKV55aVoj4q8yAzWucjEDPLTopVwtDEyjw4cXUFaBJuRx1oe8uIfpe4slF0VeH8zG4eVq8h1ruILnQmU2yw7cse39G4dGRY4fP7h7bVOrcljXD8fO2mYDxflCInCAduY0n43PhEjM5B8mZJNlb6r2Caz7nzRdMpTYWHNVQFdKBl1E6GXcRXZOwpkBOB5ATcuxtVgeoTAT/SOngg5a1UoS46o62NMCwOICQB4wxENhj6mVtgjHtkMaznzxEPySJLSJ4M/lsW9CK/HJfFwulZBAs7R2MGJH9wzge2qp4XqCEwl3TPFHb2OYnN1bBxchm3eKvcMhdtHLTai6PE+gt3vYZGhj/gPlYYTxIP3PawMop68bJI++GMFNOOfKy+DrtcZ0IoDssOMxSEv2PbIv10/UWIUU5oF2xvsCXjP8enya19y4ewnTs0L6hr7hviJjPAOGfS9YJFUBhVDyON2Ff5fECsq3NkFmOxSzbMVT1KtBQaOvlFi9cNfTrk90yXgckDqC95BsNB3RZmB8B2UInnwe8pz8nHq2rgE+MWOhAO6o8Va2lildyHsuKBwkEpm7+adeyTzCmA8pPUD5YezXvpagCoWeYD9XBME5O0KFqjgL1z/W6+bLyzP7i4zqK5gcU8p7GKHD7nXUFtK2tHkQk9OtiZES+ttLPv25OND/MF3iCuvKNEgkpf6PDfqZAOYmPrVflj1WzCLnehdvZe1fVXkbpUBS3/rEtzeHhw0DWCgS04f+sVdTneMSqwMhOzO+B4gLPdnJFXEB5yo6bgJBfuHsm9cSRWanBopPjtCfY+GvAbNVlQwMoKfxWfDEo+yzc7oVq8DntyZNsLRxq88dmK40LgjMRIkhVAGTLHDOTT1U35C31utioGLz+UCJ9VVRazQ9D+S2n8jtjbl3dc2oEsK+s24tZjmT4+/ck0FzC+uTdm3pWajDMkxfyBhnfBOjmCI9E+yWpnoHLAyBlWWCuj1UdYm8pM9mjZIEJiizUleSVjSZS+/PllkAt/WUGJV4dqiS4VMasKsd7iz7S/H4CFt717yuYqHxDsgaci4oKZwpUq1PgEZsxouhrMOjh9KSnZzPJr55DxPKs2BMIOXdL7n7UpGUVoaPflidfxqN9ISm3P8dRfUw66CoiPIPvCyepFReZ4efsoOH67ioouCWnMV/JukzehFgqddUwVDPVW/5yKOCm6XzjFq5w91vn4tt0z+bVRJZMYI4fco6bgausiJ7XZrFKFO/uw4755xIWFe42OrxScjnhAaaiU0C45YIAogsdhjMTkFettcrOGtNPB8Q3/MkZ1m8iHiNyvfJdCvBfPAwBRyUYN9aqbpoQm4gQogdXd0BEsdXbcsPBGr579m+dEAjXyHTcBrue3hW6bfq+Vruarjid3afDb8lLC0EfF9QcSdYvTnkSRq3P/V0kJGUXx31rJ/GzqG80fgg73tzVDEE9OAHy+GFVqUg0vXenB5dJ09mLju1EGcJgXrfAoXSidZkNAMaDELdZKgWos5hYPjL8W6AV0nPQzP751A435cBr6YEWliHU3FWyUQtTVN5pO2v64QtiuWfunrgUmEQQrBHS25ggEwl2Q072/rQnQ8gceZanyd6MWyIt0aukRJ9GXjd6V4Hev+Zsf2AdDCoh2hn2N4YnVxXGpCEUSJBCCC72ocqSuwmV/MS8LfpFUeDhEE3+oXm29W8K9W2GzZ6U6qekw3DAyXEJ4rkbVFldYEs5oaribq2exTx/MjOZ/MvzpFFpmHU97JzdLACZo5rqtEOvUpiWMeXBH1m1tWoZZEa1R0bXMhiZtwyxNRvk/REKaE+7hdTBeB4VQTNq99yL9cFpH9XYRllgEaZz25JR7fl1Lsevcx3FWJlObwlVhrlB7sKvDXQzBmJkggop6mCeBgsPURwsNktj8K3cx/2LBhSnbWJRZuN5Mm2OF/pUEBpbdCws6Gt6qvPQW31eczj8GIroyqHgWB/Vr9t+FcP+eQzDNw7KqxKNaYyh7jMlVGj3sDOOB0tooD5dVI1mwAt1mVyaPhuu6ooaKZu8c82XkV0ufY8hdAaZjZKd9F2kaNcRgNYYN/hKCHdMMVg6rD6jYFl/IuAKugtv4QszCkZQsUN4lVFYjFBmSqZX7Dm/TY/urKJpCbTd0/svrhRH1NtayTERn9qUwqsBt4A87da2l3TvRuSz26cWMqix+wCIhxTY+ArRIdxe+G1V1194xPwPRMmdK8UcqDod5pv/88KFbYmHs3/iLUG6xJjHFB4iTCqO49TLiJ8QgFe7Cj9tLV73Eytn4OiiXw/35vIH8VLNX/MNL8pEzGe3tUvN1ZBDSZwtoUeqAQSm9Q95OHII46zPcfEAybtfT4nlnz89d/hDDEOI1SJ73ZOjU6/cKyL9Dc6jd0UQ290eiWEUHKm8hkSxKu8t99NTj9nR7jqI5HYA3p+4xx+SVYqhH0ssLcsoVtD3QU9EZx+MylK9DP6ItyE4rAorOPClt95wlLK35CVwJUsCZbJLWFLfhJmsuO6MAtvWxLn/DsHsnqXD3nHC09H5BVk3+P+DMimN7XeQpE+97PgjK9PilHEHL4sjYPqrp9tWNwyP6rtAamntgumNsCtSAznrd5H5qpTsRbjb2nU9gGRB21R9XYeIfs2WBRPmfYTiwEK6+BIPgoq++epeHaF+ZmDTvuKoTVPvJPBDx6+Fl5YbxsZTfWnswq31vtUwC0RRHP6ugercSNjftYGSTLrF+OawEa8I2KLXrJzYrkBYJElmmA7U26Wrt9hgQ73ZsEDKZYTRp+Zp+ZlZmGY63fFluzTQKz00Yt8GXK4VCJtj6uzRqUbVtkNXi18cxBAJApkBYN/zc2NxcQ2vPEHyAw6sXfClY/vk3USAf3kDWw0AcPKTZqy8h4IL9UTm1VKpWE8vS2hUQphIbeTQadeslWIM+hoDHmIDsV11Lx9m5otRv8HEla1RshEF4N7WrihWVMYF17y6BVWK1f7Op+hBDThMkn+tx1Tvf3eXR++xjPphBKJUyfs4s1terPvF7Q0Zx3VIMzaORWQWVtUCFJhYo70KT2LTfaaxVN5rn7i2IJfqaVp96i7CwR6PHj+4PpPWVeqx9FSFJqKjbMhmnUGu7LOuTDh0tVg9ICuRtWhT2MyvygViys2N8b33ArLsUlgy1wUf0tJNdpcxF4ggBg73D2WV0R249yZK8XxUAaQLPoIoXzXJ+zhViLRXCMQsB6FKKwF5JOwV0eI1ZkgfeMCizzPn95hM8/lIhngTpqnjXWD6qcRdC0nH8CD9ORGokblc4eRGfDra83lP6qty5uUxz1L/YlEWsADtLBfdnnEO+e2qmVu1yIwpQKVabFukM6hg5VRv3UT0iDZjm+pPcDah+VNGrV8UIHvjMoX+lxJhw5iRgeJZ2Ssqzm//e0W54EdqWm9P+2cJKYob3t3N3HKCW1YmE59xRifYJX4s2G8dzEBGAKcrfJlSPkXmnxSJKLXfsLxV/76ctMAKm11ajEHmjqs3BtPNBDslTAYT7dYIE9j/lazYErSDG++xpUKdamodxNgSUD1ijm5FWC3HLCqzsdulDsCaJdyxUCwAu6wheLwfhDByySYpqmoOUv9CxqKoclb+2Sqw5KB/q3gIFuIK9bOVsxiBZyamoNdfXP+4ivKfc7wewnhsr77ZSEESNN+72RqbJ31X6zzjf2Qf95XcU1SNicpmK+iRjNleX3gA923YB9wWo5uXoDG/YKANpTyGjLFN5RNTtu+TOpLhbwDOyB9zrtSQT+zjxkYXwUuPSp+mngpbXTYF1FQUjBWRQvGBmRCSv4EUr2WdRaabp1J4N7jTAPvBWNAdnZT3YC/fcV5Js5lfs3ByQJoKTLZUi8A0sv/HX7A0wcCtaAa4s9RHqlvKMdjp/ZDcKChc5mC1JyMLfizSdHFYnZ3Xjtat5FNXXYIiy+SuiKCz+HW+eBLtb03mJGWT8IMMCcRX85Yx+kNQq9ZoBus3L4WwZpSPHNPWHltUZ+97fZ2K7HIj+prx3C1mDbiTZx2+OYw0diWRCfRrFTGtfw9SbkgIsf1TojZOawTRkXCH4MgE1SpQUdTj2RSy4IOcUG8lOB8eTJPtp92kpzBIjw6EA3pMXKBHbnTcDTSO3CQr/Q2lQ7B5q1aLw91903A+50bo1AVUmXK8S9XAh/wOMgfOL+Vcfu2ddt9d16UOIJjLgtzZuqbbjRCp+XmMHJqsUMpzlnoRZwFmAD7lw/uJoLBZ4Et6DD6Yf5D05eKRSQxX8e9TOunZKzNMWYitmDURigJeOxqjdpjkoH9Ym9P1ZP1QbmQjm4ehZNEy5rEK7yCZaJpgjNL+hTDygDMkwhE8CLgA8ym37yDTo+E1GXA669aJMvkKe6FrenLUbPLvK0yhTHHXwNSCtN65G2wWlLelg9S9OA/IsUHSNB6BJFJeK8Iv/QX8Lm5TEYxuTJbIYgNUMzxfZeS35/mTrwDl7g8XH974HuTfZuXY94dGz1U7VCZUW6+ZP69FDMk+FnIv4Msvc5IYxcekOQzC+Y9in+ByMKu1Hafi5v9bhOU4fdk9UMQWUmzgkdohJqlod8RCjzFFwBYCEyuq2rNAg6D40UktfKk2tt/k11Qdkasgzrw+pXi9+fdlan4vs9/jnFtUr+ZfKVaHKrz9FCK2UzZ67LhqELFuUAvgv3qbyR7hvAhodxQcwSoDgPV3zm7CvFzLlxG0v/obMg2xB4NroPXinAJlsAj0HMQJlocoTvOIQcYGpsQKp7vLBl43jI5oNx9mvcUbkvvzBdX4MeXOXdwtDa3tWlOtiPEZJgqlkeE2ROAhMwTZZ90GsKDdn/rxKC+TpfKylNTT2xb21Wboh1ERL28qVpaqecEgNVIMEh9zW5O2p8O3+OUwrOK3XUlRELJY6o65zbbYYZogtdbcuruKYzxea2eelBtTnCxsz9pMz8Ng/2iN/igojJyt5JZ5UJ842S+ULNohLAza4FqA6ZLtSxrvaZqvX8E1t4R9l7RxFOfvzITJQvbxHrDFQ541RrADi1mj8xcZXUt3FftTwUusJc3u+5ExA9MVaZqkIudZcn39b37to9rI9wTObseyixmPpNTNbz+fOZO/fsi/e1q0rQxW3wbCBNu1kOodq/yAqPZ0bhBuW7gfycUlkfqfoD3B0rzJ60jiHvAbFWwJzJcMe1o9opwXuvbu6oUR4x6OwpwKHSxR+jpW9rZf1Fe3nOXkH6NpC1dNyMh4xXBdtFbmkmJeKh2KjqkitXAviUmgIF1VGn51DluUuLPgHXBIAs0bAL3PwQQD0dSziQ0K85JxTkjGyPdQpnwlhkrS6LB5iftcaOUrlfB8d2bhpWBRegsscpzEPIc5YMYZuTKvNZDm/fBdU9Bj41EhMl/a2e2fEp2H42Ej51cCMYVIE+Z/CNqPndZqgd2tCiGS5tbwvEf+kfAc9qCjIDLtanp/qmOBWMU3d10FyFkm4bGKbkBb1nrbOt0joljT4AnMiyEJmVyINMEwtmmKcnkY+PAQW844ybfXaV5mbzpbfwtxYGP887MKHqXB5gnr8pM8PkPgLwzYqD8KThOof5ngzqnyyb5Hsh+S0g2hTvrHFLWSTfuQEFix014XV5PxSyZ1SocfHSrCEJqisBdbXDL9vrqJdWfv8uqXZn5kQUzomud0IB3GUhhHEzqd8/Zgk9szVY33ee0tZxZ6UXiJDjwVv5X2ZMiL3LRZ0N+7hy5In1r9UpESog9zkWlOICQ1N6NihWA/7S3Y2c4JQ9+s/sow4VFKgUDkqamioSp1mJEisjOmj0VTijegHpZkJxY6fge+CkVIdww+eWTWgNvM5vq8yj2LC7YOuxf+RbD4ecCr/tj+sPv1C3zwrw6TwovK+L6J2dJ5l0knjb3HEXJsNxQ9a6I0uIa1jg926FgHjv8bGQ1jIw3nqBLAWd2gi07upsYoFWKNbsd7fA9w3WNo1HOY4wWtpV+p0oWNkU9fl88ZvU5LUcGHc/6Uz+hu8PlsMPbFyFYdoCrQrT/orWHNDQxjhlxYmmodwmEQIV+mpek5TDH1H/PtVNKWlbrpB8VbOgFRBTj38vdpDLu+DFreQ/fALQm0DQUxldyO0QyXcOAYEuxWCEIFdA6EaeCmIKPgEs6eYWn0fXW3dlNl3WCWjKyZufAHJpu6BIVic5/z7rcm9cRJu0jD/OgfjAZ2890MjJxsQN7mOe3BCpXTjcegqOWX6LrfyeAxI6j2jB0j4974R1QSJdqaJfr9rGmfJEJLKlZwx96n6pH1hlLJWFnLQOUnUYqH+u4sIhG1cLbosOCylG1SuFOZpAJzmBPLLLuaXVY/BxFKzG5CN2bivG5dbgqy3/P1zyLHf5+GR0zgxgOAc3KSW9I7b79JgakK05Ih2HiJvohur1vt92/E7LvmjvqgaW02rVD4ABnxGXiraIy7/tWxZkqoIilBaRlZ1knehFljbF7TzolmBPxe/cSk3IZFUv9lNYPW5/VULLCBc9uAgA5+5rWFYpx6blL0A2qAue6KJ8gKxJjUtSGFJphWLgaMcYboerEH+qWUW9Vj+F73VPc8m+i6/xeMgj93ziiZ4cX67JFiMS0R6uKI6aQK00Ad/nWPshUU71yqDNg9/KGctx6wpAEl2odx9Z8VKu0pTvM8WzGK7JsV45Nee1KMzJyEfJHIOkGoISSBXcnZpoR34ZE+IF5/XTfCU/Umo50ughmLJJ7my72Phf+mC2BTwr/IbCCjd7dT2bvbHOGISkS8mOFmK5paOcFWfJNJ13tvbnGh5CsnP2lsyd3BSXSWXUDhtSI3GVQojgvOKLuwm2QeYt4F6FcZaWQlIE0QkvcV9gbltwgNPVkCM7OHiE9E2GhlP0rx1ieSs/Dj847uxyEpnLDOulAegjEVavzpdbOr51NLVyhK0P7IwAfAA4EhmJ8xx40QgK8Z4ElQh7GeR7C2YrfYmgYAY0lS5yeit8GEf0DFlwfLYY/vwfqWi0r7MUOEPJHL/5Jiiae2D5+AAjCoECeN5W9yaQCIu19Mbi41MdBgVf+W10bQWWZfBax1pZSDc6PBK8RqclR8T/pgdnQ7gtVLy+oZ7yB7sFJszaxTd+IMbENwH5OlH0MFK+MafD8z8qyyeqmRkFfKOyuO7mVRu0bH8dHq+EJmkaW7rtZL5SLAUdHm5m0GfAt9Ozy+dBijzzs2bTn9LyeYeEgnJhMmyhAeXpizpqUoL7IJSgvDQ9yeL3LRY2KdaMIzgcO8NKzklPqSUsFuhZdGPvEtJEAhoMam8yeKHnK9bOc8cn7m3vVIgDLkSIJruCovxTaWVa7o9ZSvMJSIeCPh8i+pp01pvX35nOk9hbptjlAbrkriqet2I6qhAxmQ+zhE3BKYWH3sgl+tFOEFAs6bf8SfSdpwpwJUJl5DCO97XRec68MhwjdEt5oRIzku2d1K9uCHG70V5DLQN+gaV5mBCOtQH5YzwmrJbG7Uvl4gs919VGrOQj9tby88yXErR7hspm9l8/QAAktgSGk7i+RsAMzA9mnn5Mo6Hy27H9/q9jT6/Ea6yVC0OzSOSASQi7S6qDSVpW/E6nRLR4GcplfdVGNufMPjWdP/f7PKUwJ/DHgwaYOsn9wSwRzEx38+OJNtMSvh0Dl70apeYXlLa7FjFL8/a5nIhSS9fNJP0JgAc4ZzB/g5jg3YzbT9sdRpi6LLPYjqumc6TLtqpdeIysbO0oGcIlfNuVYXNQFueocCZHOVeWzDI6KQVjxWQXLHKw+dOk4S1SMUE9/h0zaIWSFwPuxJehtEbTPl7uX08ypynAd0nPuarloedBXoUw4RaX/f+IN+jiQBD5cTVFySnP6osrLGdZ4CXdDwbn+GQDa3x8Xgywcqu0WPg1IqzWlP1EuW9mfOe1hPgwDPsL2Do90psqRj7H6TOZy+JQZgm3u7EZFrfhmAOWmGlkCEfuGzMVu1O7ggLUlZfv6ASqJS/e9y9SDzH+Yzkvhz4ViAeIBIHskD+4hhEHybWXqnkA1CNYyMBmurIOElSpXtbr3xTpFb05lyIOn7ViOuDXImSSzfo1uYOqJWjX841A+uMnK8kQRugMzZPrkbxU7lbOhC3y1W4zs19Dd6Mfhr3htklc0Oj6xbhJyyf+YsUXU1u7yX5CEkXcHPZ0HkOig97SL1DUmdfJ//V5YK8n/pi9w/Lb1xIDKHtCO5fovD7IcgUg4wdcEMPgJbwleJ4BjRcv/utCnSabLnCBu4vq/8/SAAHdAEeQIpNdMgXUZb3Svy6bhfK2pHDZ4iTy78jd9OY6DU6OmH1O2h52bNl8NJJj4SHMOfuuvrOVDIkvvzMWvFIcTbYovBzCdSLV2Y87Vv3rRDgIvsLblVRQvvahCOWH/JonVk111tjTTtEI1TJEU1shOvw2pEW/biuAbz7fGj29P8eRVHky1Ptjq+KGseLHJU2UCSJVYszYK6n7YGsWJcSMpcshZMHGm+lPXltoEBjv3efdw+DDB9cS7rD3WKmin2W8I1cVm18OTNm+kvmUpC+GGCuTgkO6YuSE4mRerLZr4FnRPPbcQGDMUYRQnKLBJzn7NtFSBI8M7UB3IQp2Kxuv9Jtw6y4JxiXFWKAZfoDpL+reu7OuOQQm8shH0Cc+oR8+ncJrdi6Y0NbDilR97XS0yPGNo3CCb3VGXy7MaNOiYnAwXL5rsbftC6NvNvrDgkXwnFc68Y0saRslZWpvmyNW1YJ8KSK+HBadm5BB40F1Wa/FGP20aPKvtwjo/gMo7pqpnwl4QHm/aoX4qosnJIUu8DRivccoDi8z7TQkwE9Nk5UT6UDdEWwaxrentYEWnpDaQZaCzucsdXLrQYzmOuhT/fJOxMKIDuQbal8glSsP4SLRVtnYUOfErDQVrFx+pHfl5RZWgxHx9am/igRiknQsby1A4IoklOB+DvaDlqIOJ/E/7Catvhs31vZhBJsJSL95L2bo/1D0weC59LEgE43xzX2Kh4lemT8cLDlpMgPC1yybxX7EV+RkxzADEMTs7tfRnn4SxjnmVM2Ev7Wnkka/ddXYfFp3CYpk/qOyfJzrhrSoPz9AXu9OsyjkKgz5Ph0iD/TnDE5j4KbW7s1loYjLmwl+LV9ZpEGvcBN0N946LxhP1J35PQaOvBRnulBHXISZDK4I1jDO3Ck2II7CFVpnoq614UW5j+ew99hyxi/rukn0kCHaM2/r4ClqkVBIRuJmKvaCBfNuWPWmQHWV0emG2ZFHODWaTlApjuqg5e/YLSpi83q6tvNAJRh6lJJUAz22Qz2ebCjNzf5f2zhRYngPqFcEB0NPgsEZPglydGpaE5yWJzWfo0cOpRFYzovQayjhJEgAO2hRBe5pC7lwzXqzIccJVclm35/69mixHsNp1ZLz8Z5PDtK/X6l+ZnC+9Tiz4uBZu496s2fo4lstFqi7jqdNfnNe1evSwBaBgvx/qsPdVglsZ6ZXjLrkdtPzi6C8w5geQLAlTAnzZ+/bjjsT06nUZB/6zHgWgkJ/y3JfWL69tEN5R/zYYgMVo3Dwo1GPcGudP+X1SN/Rn2gDYkkUM90Vx1xBXnbDPJ8ZbyXTl1IAJ6d/XR3H2cm4HrcjDjcszG+iv1JlNdGvZnSkHgjlegqomvckty4OT4m98FvNMAHQplA6of21cV1nLNR0XBBIb5JF7CYoAdiMHPPV1gvpUzEq1guihiyFGazmhUfxP0Rk2Q8BT/q4ERTSYojL/1pETYbxy63usb9Uq6KJ+INyCS/NVgSkPqiwc6v9bHlUnJpHnXECmBue993bDfqvVBJTzwQOQEaznhTSkgaxibp1klzo4nCA/Toype4JTyvrVmkSmlTliBHI7qqSyxfHSHzOyR4b5VDdaSd0nixM/RYRJUUlICYZjPiGb19zhnEgqO5cZEkQQhyTzEshAq68ScoBt6enhHI93Y7W8Fyy8gjaN//Ed5VSLGb6FMxpCCbhdkUyLkXvDPYpXoIQgJ1eUmTRgjAKTO+9I7JjKkOB7sP/ewae5BJcgeoXQ2j44orTyGSZ2vvVF79+KU8O35Pd3qoxukKqQ0BxQZvQlTOGB4CnETbtKzI4dptVrLRXYL0tFPbPSdFkRm/Iwsgk/TJnyLqaJV5kuKLSQzzJq29+zQuv3suKQXijJdj0Q5j/3mshQkoIIT72hTt+A1a9tUt8KGnbs9qqL/fJ/6zzCb7wvACelwBEkKJ2QC2BZkbI1XaO+erRbI5HWAm32ldMkY2+0vacCVlAygT06/IX3VCRa6t1O9c3vHxqVDsv985F4tDMsT7mQ6uMESWgNyzbc1G5c5BOkKFBrhqxC8maeU6O21oBpG/6M5HWcWDUEDpxhT/IMwRLvHMJR5wq0akOJmp8b7y2CnOvUJfT3HvjYBcklOwjvRdsZNVyKhg4S61qnWIiC5P5gf2DlrA0GA3A7G9KHLEenoAGHiGTTN/UCad1k7CKlq4UGcxl6ylMa4kYCSIlyyk4/bad7gDvEhE87WTqoFjlY8MY9CApXCfhAoS6qkdVc6k2xffxVoSkotbWj9JSFhMGSrB0pykfgLM8ulOSlUWoD0hdghpanbYjEMV5FsKBJsXKQWa7BHtj05XYpwCHzdnwgi/sSWBp6CmXoKyhmCDxs+UkPpSxtSJNTOju4VEwNKLJdaN+0KEwQr/q2ZS9XzzoeVZqmbqU1cala7q0ZchHAAo6uYFNyTTdFvoXz0HVIlLlcOz2w22F8D51SVQ6LpTkUMYguohOrYVZ2n96CGxpyCsOdLGP9zXzAe3Vadka6G3O7k+y60heDrfcwmZd/IH/iVDyRz6gMXddcxmbOHVn88NgF0UdD2y5Twx5q6kxH+e8kRwLIVymn6BgnePN5GXn3ZvaJMHcGXSYj2tKFYbkT1YU3iHp1L63m59ml1Y4NaAuNX96Vdn3xfAY3yLbXUA6fWeB2p6Y1wnfz2wA+DaJtBnbnghAPn31QAyIO0K1aoahOLXGTXCpj3ZafjB7m0J9twtZpnRKXkobwRK/Ulh1B1A0nDGf5GfHvuyyQqLPREuMvNmPuFgEF8czKnCu8/MB9fNncpWH6vE0rwODG2ZrWjrz391/mlHnW09gKmEpy+TZgmwnL2pdzpPcdcDxeQR7JgsWN6PkdatWi2UDRLwnk+75hCFBgGkxCAzWlvHj2pGDbOC/G6Vq8O8shHFJWwjt4mPsTp+7zjJRHpF3hquEcSfOPsw8qzlqWxWHdGftEvIETFnED7Jj/PI0xGfpJSZQi76mygmtq66eAHKff7JXv9J5s4v0gRpCu8t4fZ0fWoEWrZQT5uegpKI3jgnAk4zLfm/fu6ipgpBcGwTeApss17QoZXlXt8ar/v72DPW5IfMa20Z3e3xGqbYBjlSg1XMp3Onq8MmRykPxM7Zb4eLtgRK/tMU6dMGc1/a42+NFFxKALpofhwZ2iWkWkMqJ2l94n34jGDDJ/NfEmJ6pQ8yUO/Gb3jpjThL1QoWqeZ1b6N8B3MrLLJMHPrhwCwvCN2G9R1gRYN/PqyRzq84/eAgBCtnIT1qlGk2PXx8NyE2gIIzDZJkHB8XIBE2zqL2Ux8MUJNeyRKSASAJiSf1IJ6pYD3lClOGi2GDaBTL5Zji+3YL8d/w5c8NStZ0bEI6TnKVEWCJro6uKLqIU4M5uhW6FCcfeRu19HA5GSlzwWFSlpo7vvdMQ5Ln1e9r85+9dl8Vnudsq3wFSmCWEWWjAaeIkXw2RK11XYO2gvA0zvaNqIHMu72ofp/aIJ+h3/z1QPFi81ddumZPxT39wuntTTDHo2JzKWwtD+o+VdBC9vfv0oLLGGwMK3kfP+vS4fbqSR/mtRV/vbGfRGfZE7OaFTdmMYXOaL5m+WLXbOud+xU5mfB2T3j9LBCF7opdbk8KUfxcQXuSh+LFgfx/EceETR0IoB7Y8YRQZLO3x9hEo07PnwFSBHpZ7HFbSfkX1h8sYI12bMOSV0G33lYQpKSRJytI9z932qpVfWcH0+QCAEpju32MrqJtWu1II9eD75TpCuGDH3efo1ywjc6qk6M0XOsQme5badDnkIEFcOk9DI8pdCJEBZ7HDmvPI09nwZa+n3JO1M8Mx3usXyiYqqlV5V80Q3YEq+ZvVfouG/Rm/7mNmLFilOb/hcgRc/ioL0jpcKtFgMAEBSRcKdPWwcbwlp5ThazeZIN8WObi3JPs5v7kJs4Hi5+ctUTKlE+Zr0UK1ZaXPESSt/nm6rHAF1Z/STcJOE+nxToxHNSw6af1BR+pUPXhYNIcCD5eUiaRrWTpaxkW8zsF3VjUEdPCtES3FM+KsoLHru7BnFa3M3TcH6C3kYP+/a5WUqBweGNJuTqC4azsmUPrQiOmhH0s0oHr5JV5Nygrmjq4Qyi9Cq4wwuWsXaVwwIiQH6EinT1QjosxXQzdZEaYqwRLJ8DOqGWffZgWaizA8HnXEXwxyc6gBWuQzNF/z+3GTivDif79ih6MP+R9TcVXSeyDk1a58U9XXJNPF59Ny4IaKxOoyruWUweyQaq/21gE3E5I4WICAz2WjqVu39hupLZi70h88jDiJQL2tylSw2rxRVcVPCke2pBBoIssPmk3R98qFRneYNOFUoDsJuWemw+7YvHuxPuTpgQbYO56VO3/si0skwxbswEaORMbNtkHBcORnutg3bDohUErz+dFMXDowgVDPoxm3j2/2g95hZu37We6EaQDb8T5wYvZvf6r8WAPY4l48sIWaIzTYX05ybZw9Q5hbB9wuoudjMWtzL2uIAjoYZVQC1EAuNGlumMo+xklfA/wKaTuk4vKVMDkKtXnT12Rokrqrmx+a0AIRD7lt6wFDFxPJcezDrLPyoFJ8glVCd0YpJKCe+K/HZSYCTh3w8+xEBDT/huuK6OHEW3TmkAWS8SpYfH0zqs/qd8tBj4ea8UN5SybM5cHGCdM0WaDHc38VeiBOXHEe/6JcTVBf2Ny3ppMSHaKROqAmmC/4o7RHU4QgwkIxLdLZiomaL5Ss/QETGa49U2Qqv6jOoHQlfmapUf+VxdvK8A9BB+UVFly5uw1c48RyOWVIQflK4y1yeU1btx+cm8JuexjZIbREZ8vQVguq5yXjyb927tUgHoZEwnsGGimABXy0zAkAs8HnL682djpO1GjqJAolgVoxIvevxqMNkNGyQiGuKgjXXtbBIBzCLr5HiSAKhq/KxZxyaCV36ZOn3llsonLCMfXmMFKP/0BTml0n1j1+s7xq1YHyMTAwWF/Wps9zAmW6piegMd3J7lmhCeUA0KsH9icNYzeK3FW5wGKd+KmaCiaq+5/lNLA/PYcAy9JGx+bhjdmj++III8b1i10N3smlRjibDtwvsnQ2k927Za/D7cgxkQvPQqieGs847YB05TxI1+55NnzWMf8su8qlYVIXhimWfeirGY5pwoJtlweQ6H/wZvTai7/08dQquKMfWxOFvzl2HnDLGVPoCI7mRXwrTSbOIaqCQFOEDSGu5wJ74W3EW3kXEscdyguNQNe+A0uAoQMlSrF4bdMwaNlb/US0DERDlHvahhytcPRYJ4gjQRwsoQTW4LXFkBqCGOE4OQ5gy8VomobpRMnqIzNesujn8a8Q73n6rHxMRfa/CMgEioU2VYoa6Um1dhW7y8KYSOINdyej95QfBQx/qtsg6vEkh9EIlzRdpfm0DVtGSiZ9fPA9fZHoc0ke8/ZD2DO3eqAY80oRDaD7cJiEgksznQHK/0xiTwZwMQXfBSbhUXcxIkY22TUKZPm7glWyOYnoJbW9v7LmoeOyE72UKQK9gzFXI0a8E2WQU/w9UXL+eZk4jGbB9dqRnNS6QjBQ9r9o79GvU8V/1pbWfmqHbaABhUgDxfcHnecmdCRNH1XBsAdSq42EUn5k53cOUd1mix68zECToCSx3FwvRvT67gxpsVpkInfMYAxYfVfSHMZVeKsc/CyBhgvnEOr5Zp/DkzrNsfLVR4iiYC1OAmkMLETAomBngcl7F3OShPTrbZXZMh22drl+cZi0l6XS6QfsaLCaXN4bvVKLDt0eL8LMk6NnLiaCX9icQQsnoUPvFmQDIJDPfDv+7G8oWeVNZCPWCDHjICupRFG9CSOIQ+/AsR3T6qhZaJYKKhLvfAm/Wn4jQJcqGAD7BalY39ornA+yb65iQ9M41o0VzeLxUxglOPQl4b034bf1sdpEI/f8UCqq/Nle2w4U6sr/L9eXYcMpB2RmWkK4g4fPVMixekEb/B+tJH6SUPo1Tn86L4dqqUzIjnGm6ggYYaX4ztUkVmTNU2uyUxF/PUiJ67QY9hR/Y0FeOtn7XdTmpVtF1PlK0n0L5aU1RigilZQ4sRaHdMQG6Q+zWmuwA0JdHsJQ+NqJivNhg5E71lS1IQd4CNSA1VPEP9VsgcHFmP+MKUxiNsVBhMcYdn1OY4hvMH7d59OJVNy3YrGYpcZpELjRoxHzEaUFGh+bVzxHdLZpldCM0vPiIU1mBaYMv5OAkyQeN004zXUbG6SjYBUc3IHve0vReGkDSUCa2+CsnM4k1b/FgpzVrw53RzWym0kiv6x7QmHxUlhDnPWvND9zFxmvuIrwU68V19KCe7MGtrMyh904P9dKomzWyFbl+47rQiEu1EG7L2Xfzsd+C2zi6V/9Awfv3K1zd1QP3GSoHfiUTbc0OXlE/kTh9MJsTn+Ia5KieaSQPiiBhhmnnuFQiCwgqETZ/+3+PG0ISOOmu2Wv7Oa3hkkbTAg6c/K/RrrRtZGDoyxXlFFQ2O7GVAxn9gJuYv8zYQyzOpl/ZcFXs3+y/quTJahZWvYofNrWR2HrvWcxmdoREBirRkPKM3G5WR83Hgb60nXS+/1usppMcN0g8kngRQDdxCAVGNlEHV/GBpQCmMo437Q5aBZHJMox3WGu2Z2S6llclOFwiUuYtt69OgKX3KwcraUb8mpWa/vo67WFzymiUmahFdOTG7mm3ayt/yeSH20DUwFPEiCaxoYkdftdqUb7xF6gCHig6UGq+kLYx7w7b6yeG8ZWJRvR7Yr8UxWzz65zsvCt/d8z+CpatHFtyr3z3NgXsHSm3Ic5BDMvxiu8RXrP4kpeO5icpod/c8SZjLtWqYb8VmR81y0a1kegRYBSagzrSjbv+bPOJSuh73nkarNaA2g7zLsjo6VhKzBsCaBkb4xT98hssAVgmOGQYuvfs1fkCXTbLM5ozTFfzh+ETYexblAkrjp37kNCUv0FxLzS31J421EZWotML7ungSPCYaYJRwSRpafjnYNMmlz9erbOwffPCrvTU0Wb67/PpGUSkCtUr6QHS9mHGGdIhvpuqb9qUJyziznhNzhHH/YKH2UmWcad4QoRgP749LLrHnAS8UNwNVvEtza8xUe3iXeo75Wjm3othIBCUFgp62QHEXEjDBjMRKTNymsDiUKHQ0Ku4+vQez+HP4XWvRI0mSuY+dKuL8ZiWbPJjdZ6ZgTSRfAyIYIsIzpP26fjc5PlStTL4KRVJD26r8n8LY71LjK1UPhU01jocVvEMCSnba2d5c8x/BA9dcuwNnm9xKwLgPlPOxH133k86TmQKFAMwqT0FKTbmI2TsbZIWebhei0xxXjf4DKLW7as01J0l8dpgOWHaNezoC2mDghM5mvfii/hg0I1MHlUrHy2G3gqaPFvlYq8b8tx8O8pff1O/HOwKoZiLTi6dBjDBXGVy0WULDaWY7Tss/rt1aIpKbHEPoX5JziqJj57WfDI+W8djpI24JtO/RO9Yq3LCEE3cHOFdwk855k4zKp3xxnLBZoG2zrOcdR1EUhhaX91+TQcD2k9SNDbF43u8G0SuYKA2E6Ie/ipHZqLP4qLra7v78CFI8yfu+eDtq2EnkMrQ9+F3lfhNkpM60XHWWiZ6ebybZdeA/47waI+QKUhmmYF0Vs0LVU+jCipnVkxG6OWuYmQZiplxFho7eVzkwbZRbswo8oT7+ZOpyFfmbQ7vi4rZMCU6294os/6GMLwwuhrZ9cmLYXj+t9LNyL2bMtT7sv5ZcH7jEYbt7oAC2jkQ/WMf/pN0r+ysCy9lZhqp48F7JI5iZGfQaiHDxdzbRVT5visRFNk/W0bHqFPXGFumgFNkT0Kyo21fSqqzjKr4/rHr9sv0P26128F6UMlM4fg2MkLBizelJJH20RxvchHZ3MBc/6U4KYCOH5JnPO01ZIJKT6HCseqsVqZr0VlWFvzbrsav+0RuoRtK+CBuxX1NNIKT0Xo7O1a+s1yYumJPOilazVrTMJr37oT+is7HzaRqDmupdNS5pRibifaeN3bOZ08FOogMrZfsjTGVjEv5rlgjBLole1gdaI2AREgdFzgwNovJheAlYTDUB5tHAYgPCWWS/uKPnV5q69v2dYtR0dCZBS674J/Mg+dZHSeY1ZWdEM6MZrLxvVlzp58laab4Cnznlf0/Wy4/g/fHRFA5/gwBdqeyOEZMVFMcuDCEqXcPdjHW68viWhU6Dj/cwOtUV//kiEzAxH1zj8fyu0Z5E/fghscAxjLGKvoudYzJTMFthRoaTf/WBT2cCzwv/2Umj/UUFwXVPjhGQRcbYYudY9kmepKwvmkaGoFamu5cIt90THZwskC0twCcNco2NDyE74pnwB+PMf67TxXuTxil96w1bVmqS4xXlSq0eRAJ8tPtHOC/iXhx+cf8IKv9zLbFFPwKVTnYVlATKkEUEhcQoNXTv5tQboaS1QPEzVBLyVTHskTZNIlkkBVGPafNEs/ThnxMqa0Sm8VQ5+ST3lT5hDkMvNb49mmvKrAdCghUVA9GnUV8A3OMMetrH9PYEvdsFRvhmlgo0k8zazL+DTUF2F9P7wSDwcpDXPK9G2L9mM6MFI1wNQP9prssaEN/7EHOxceA0ZJ9c18VBTpiKs81eFr9klqijpcWwNJt8ZFVefrb7s94rCXjna6Anaxj3jEBphzVr6pUmSEQpWNzk0Pw6bZdkfSJKHZtirH9GchJBUcvxaIxhMdHOiAjp0swqp412sYxI5k4qVOArcapWhDR0WP4mC39c+wQT5rc2e0fAz6s6bDchbyXJTNh8JzVOOHGwZ84eHMKVJAYz5SlbALgV5568arPRaN1L3PZrJjL5GQli0soorLR2BtTeus1iSNGiG5bTlT+je9XIFlRO7GTk2eH2EkgwyUivmYmuaIcKPqGfL1f2TCV5C/v26TAyUdpoCqwCvNyRHGZQ0yGaBrTcK2d5akFJriuSmBeCaMz62uIAdMtauPv+9CCOnIY191sLB8dzvToeVYKgt7IBVzZ7RcJzzcR2n92wSCIzLKp+o3x64TIxf16ArXjk+lF3pVZAAExATVsp93Uvbvh7soCwlGpHEB72WGbuXeZhsefD/tcljtp1W1NyoPeM8zG4DJKsKQ9/WWJoEXmaY/lFB2rnQaLHdv9SyFdeqxk1Iy6vKPkdwxhSrcZYi0JT7tDeL1MIqzWziwZussZlEXOw+zu32Fg2GENIhpg5PyGugUUsM9ImUBi+kJYKp/WPfMUstay2kAQvntiDMAJa2OKQMs7guLKfd6n9p1gAH99AtUopl84EI7O1DklUcfkPfKaNoR5hXRhx45LczQhN5nA4PFeD9GgOqBGfOXf0flrFCmdSjNJQIDSU53dTsbwaagztX11WwgxYVeT8BN/ZqmKjJHNkcxDQXP/NTu6wI3piM7uHgLo6tqN0ysZmfmtqF1TDgOn+Yx1w4oja5vlEnatwVjttpzhAhIbVbfAxZKqF2kpxLVSQxrlAudaQt+zinfVtQ/7afryQdAUllGTgLxBBuxXQe3pGKYM1xeaog1cbdvMXPlRL8FIQlIK+MaWbDmrlxZ9CTGpxhwjUQzcQMy7XARB960brNdIpwoGlVQdR/nyLxTxx96gQgJAm/rSq78W2E6fyEEiAp48Lqx84b0jEqHDo+lcyb7geyoVEWe8MOBIIzlre7X5mGP8tVKelZByGwKkbaLNP/zhwQpHjtkchoUXc7goyGjx1/Jn16F/1ntePlhVpcAXKgTpuCkPtfDH3bEgbd7qrVRlD4cg2SYB42q8UJRyQ6J6ADPAoXT+prXSwTk0z2sPhG70T5UiPRI7c3r7Y/lLHGf8FyFwCiEsxH0mehlLx3d/DysquozoOqjIkfGWHcxgATWecJXVWrDnFrtNg1rGeXDcOEgBDE6WTw/Mojq/IHIPSbixL8v+f8Ft9OwvfZ8Zrpb5fZZPj6oyOUn2OQJpag74pnpWXwZ1TcNfrDzkCLoQsswNZgqB/hwM4QvK1jr03FyPqnyznc0sLB11j+jdweEGze7vMgANLGy4+5c6p+rQIYlNjJVfO9Z9+5fF0i/dMtYpC3fbWEdSzxPssRupMz63+0igsGa+H6In/mgkVcAxvsicy8BO5Ggxc0hWF/NsrVZ8V6Rv5FPSkxMELwDA8o7JqeR85rqWZtR5Fj66Va137leDUBR37oqlCAM7AiaAoE4TNFyvNDRurSXfhejnBqqW0RQYlEDUdO0+N+DPedQ2qdsLpJym9GVPw5XMHE9GKSTbKTveR9zWMTKXYw7XUndWiN8AIJOAPfwvf+Sh9rDV7fJWNKc2yGC1Qkr/8K+aHjJ62mo2CbhwHJrmPAie7jVUcU+6Jm7GPHJzmh+CfX4koVr8LxfEMteDTwCFvh3dcEJs20MgmTmqHzCocZkzE8Us17JDBpJCvtjhwH9OCsmjj3jhbwa2PJ2iITkN4oHTG/WVWbRtU4Dy7XLTx3e1e5Vm455suriGqG0bPrQ52jPBSKC7MXaMBwBqyd1zL+HMD7SIGJOya5QUKwWbUZKVLrkh3RDUbDHIbPkIzRZzMwkK0a7Rp7hX544xgoMuGXnwPv73XW1hpmKgP7KE/iRsZFXNwANZyGsrVbninJKLlW60ES/TdFtwT9zO9r1/zSLYyBzqH2K09aEcBHL+8E6ImZgs9DC8mtRWCuL95iP1H2vLtV9CUXTuvWE+fUtefO4XnWYzwFpVzTqPRPWEG0OOwZEm3SiwSzshpxCj8wGwRu3HQdqoPe+FQ3XpVr4eW2yT+CQ1pIzvTmz7Sy+mXFc95fsiC78cAo29C+AZMxFNpGw9joz9FfRlu2yTxtcHQV8ISoLWlRYeoTgUwqzOoMF/Sw2etXXb0E/IhTPFJyeXmKogYWgntBcUpSlQYi/Iu9Gez1riu2dPg9O+XRkJ+8ijJ8ox/l3AphyCPoT0CMeNPZMDtAj/qjPWbHhP6TeYBB85mKpi/2VQnwfe6yDAzi9bZfz9fvyv6Gg8O33+/Tvl6rMCAo7QKPI8gzm1Ju9r87MicKCA6QgBT7o8XZSNEDduNxFU//FcZH2D4bmW0Aug7/Zu0XLZSm2TtpUCHFaNt6JFU+alQbQ6i8zuN8t40+YHSTnNnqnjivrC055nFIy6BjMXAwiyFLSoXMFg9OaNZrwIJe9tSwSQktMZu8sHkWgloVgX7hlSPWvfBDThThdrw9kfrFoDiFVoelOHjmd4TxpC/DNE7VnopV/M7kwVA5Q55hDdxZXjDpBrfmlW02+MWdLnfmXqX+XQgTWdOIaUJ8Qn5MRf3EsALDo3IeNyy30B76Ee8uQQUW4ok4SUY570tpceJwZJIKM5zgX2gwmip/e7qgvnbyC1YHN+rvQZFRpmKut5Kvlwn2QvHN3LYHjrD4TFxhv0SxjaRlav1CJh/kjit20YLC/HBAMUAwtzfnPk15cliGHE//5bQlSyu2333UNtfaGgPCz5IZgJoGEuhVgai1oCsMVmLfoDbMR9tL8oN1hXR1AwxZ+2BajKoJ00PYalw8lYgoN4beLa80E3XjhPYUtfx6X2IpHYGPef9bVSa8RIwgh3OVKywhHDhCjuUvLAVrrO+5oTUDLnWoyJSK6Ia/aKNt9i43pasXtoZg4Xzy6gkfrj6eWBkOdLIm4bojutQktY1/rC8eYOJ50usLuJsO6N2nZSkKY+qDO7h4Y9yskesaf1NfxAL/8RE57K+J2NXvl7c9uPe8rUuqQ/kIAZPTjZCycO21PvbZic9YPrA+0Mrpw4jVntjQFp1M8QwPF/0mjrP7rXnGdPO6eiOrCGQHLhOLAcRGJTYXNJVdUoMiU/i1cA2QcRAF5RG+PNgaTSK3DGNsL1rXYANg6JgGhLDnlEqYeTFAwNcP5lhhQXFMX9kvkrJbmtIOXTHumM5xbVH6u1LsxVDXtCuRzHlSTg43QWHQQtf3CeJrye8Wbb2L7I9+VANDRb7gPjSMjXE+F5VhJLnfxRkf1PDDmFR2tMuTcNFw4UnmNVt2Gswm30hGNbhnuCdW/XYumgAUlOPGz1yb3F11t+CSpBr144jc/KtQzv4SEc5EeQ1ZnrV5IQne70cPwyaJq3KQ1vOduVyPrlrubFct5Ozj6GCnDkqxQrReNglfHDYOdmximLx+ZsuyEtx5XdKW//h0+ZSkuRcBX2n3rwXT5L+6T+Q5+wLPCDZRgK3QONIxlqEfqzjQbHAa+8QoTg+pZUJdX/1L7XdUnYDQo5LX+LoEIPeKa8Im1MjE/hFQx5YwLqsQ2j3up69kuZia0v1eunhUK18Pm5dwRprNMAxLAEkNx8+sZLyku2Bz4aT8ka2NrI1clduwsawIH0CGd545da0zJN7hqXMaB+NAABxk7aMpCw/Ge7FnJbt3Xzwg8p/e7arCI3wOKhvG0/u1/TrmDp+tRWhaxm28LMPihn2bDz1eS8yc0MPTAjKotKwu28zJuk+C1RBb6FibYeFNU2jA+lN8GujdAKpmVJ75QTR9P73jNvh0RTI87yjho+ZNUBjzh12FLQYI39jrQ2/ggWJRBUsVB5S2jSIsWoYF0Ion1sStawom4ruBGVQMuX3Qx+ahy2S1XNzID7TdoW0iZr3dShO3fsQ5m18QLZNqz50kYraFWElvsOalNFuKBissF8DSmqul71mxT2RcmLVS4wtEFuIaxN1Z6onP+wF/+7UCFnuz4ZMKVdJcnHVZO+HOn2L5r03GniAat7ggQcjcVwcD/JV5UZvnd/hhK7ZUQe8y3GPa/fsDHww7FDnzpXt+6qs1P2/jW4DIkr38iofIhxp1/cjjKGL7zeDeHH6dCU+On4v4kLV4Ec6FMteMlDuqSJSUA4BQgZmJSP4IHE4xSSIQmZeGvDwfQ92EsLXTnP0u8ii/I74z/noS1uD2TJjT5ve/ubsiFYnWGIlkgOdLK8/Pj1DpHLlMC0XRvBAS4VkPaCxCXhjkYLvme8/YSotTQxA8sFmA4S4v0BOXD+G0hQA3KLIdREZ2jLYjio19gfQM73rgzx4jeSOdUC5/kJ6Hd9ABGHGo4FajFqXbc+sM3OSrzVgGbhtzIcgvv3+IMbJZN9Xl2Vza5G/q3Il3XXrVE9ra94dlhXPc2JU9j7XlEXaGT4ta1fYj76OcWy2aW2I7JTM2/q+IZxzfNfbYMImZ70zHku/slqIyoIesK1tH67YDoDSlaDz9ju7+x8tbBDBUbYJrcaHHGLWek3b5DhMJEimy5Bm9fwFdpJOxYnZdsq+kEiAxiSMk2Xr7bAUUvImKpZtQiZz0Xy68IQwQD8Ox9Uc32hwbX/KpHLs2PjflG7NZv8az2ILB4Tu8mhxxeJjj2OiFicjH+5vYTYRhVerNN8DEOX7no2xRbVdQx6vyIptXMXl4nLbhgOKoY7p5lZ5R5TdBoZDlSlwrUNIzUWKES9qRywTxcnfdFx4+eF9uvNZ/kmTnEpnue4Ta5h5y110lrlk1e5mtjuMTWJ1M0/gJIlI5zAi6vFeUx6KMHBK+fuMlEoypDGlnADSV5w2scgHyExihCkzjdFygTPgy+uH6Ycuu5PLEC9zF084Bd5A+mpgP25JfpThXPPKqwJ7plbTz8Hf/ONsZ+AufpGkofcjCeHY0AByx24T/SIbi5IH5S5FjUOLtbdHMDPKR68ZRPCZFNUNckSQ3qsbaUHoR9vma6i68GnL5Q7MeyozXaDfgUaAhGPIVU9ypjM061+ZssxcvOWFlmQTriIo56Slj3ZOYYUK3WK5b3Tr929hZxrqG8MqpnWP8Xv7bV9wOgzZyxPsLAnJAGgRbmFnNh5mnWSzfnc3ECmLYbG2M6oEC8xKwQ5xh7U9e0EWGcFNFRXVRvb+AYY2MvmkyKs7KchAwHXIWzy/8EyBUlL8rMjtiIh7OP2Msy7PIVcSJ2/EV7rlU61hhfQSPAhfv+/5dvtMluQgFRc0QZJj3fFaUrUHfA0a9KmpQfmJPp18gHe8k58BlYRD5kFod69aepFMcyXj8kZ0j7FUkYdyfq/JLndZOK/cttI0riFoO/1vLRQhJJxO8/Z6ThIZJpYr6kjPIdbYgiXfjIkGysuZ/KEjbSsAmYiq9cCaKjkpzsiLAdHXC43we9f2fcnJw8iVN+6GVnZsMsZLAR63fhQ7OkYvCkj60zdTXYvYriiLOYr0OgUUKhse8J9Y14BdRiIdabgvrXNseYg2SBpsyy1gdzp+Qxerg7LB668UZChHLKIXEwDTMebFZOQQSmZGSazB0gcKKT+vGM1vtfLBE03FNEoKpjDrqndWCCYmz9QreKkwtq+/lyUojmk/+o3i58Ek+3JTo6fbJguJUKhsGE0JnQqjeO2s+naAST776yy58FxAkWIU8+MT9HpBjumPxBu97YEx5eAspSfctRKIhQuZ6NG+gJkMbfa13Ya/yYZIHW131XpiXKurL4cupwCBFs0ovM5ULu7Y2dkxqWoWIHE80gKN/z3bHI8SJYClhh8AX1oMxdLuSOad9XrYih0wK5HjZdCN3yD4YrcYbQZ2gi1ncDamelXnKV476p/JaUCSQ0542Yjiq+SbblK28kTnPt4+DBzDhTWR48HInoAVuIUhyhGgodmDzKSfEScbF9Nc3E+eArAC/Tg03iyvfXYOMdhNM17wJRkavIM5xZW9169SpUCwaXVphiXXXmoUvS20M/btnX64hBOzeQ8g1uAJHO/aw3EmCn2ovUmGDa24KX3/zqsCke8qIh0FOO/uSqz7fPmD145ISQlnKNohL1KhHaADfTwmPn9fUPGXt/cxd5R5wiyMQVqmZwt0fipZA5TpXaRlBEAXV8WHXFjMwFnHTaK0j/IuUIzWFWO3KKAeVjr5VVIT3+9af+HanjvTE8EW5xAxJQFfuvgQRpqVf5EeEKz75rT4KspFLYfhzMTQOUxRRtChFqh/cu78sfFevFWM93SFn/khbkWoJZYtXIC/CAonLR0IfiAz9yl/u6ZDtT+NgF0Wpm/QDIHVRy9NBcQanWygUx5MDQIr2tvSXndF9yjUduKKNHg9ICYuy+M6f4pGL0lopr9qBc1IqI50xF7yjXClsImeU5Gpsk+fpni6MVMhnQZ/fURwgqkt8dnbi4u8fTUwMW3X5aPeFC2WNQgKddb+auHw4gC2yC6fraYHcc03UL2Qsh/iGMVoLvHte4DPCFIMOiMfcNyPcYqki4PncWeS5pgFNBGqw0lwaDwxo1g0BFUMp6rV1rxDtQ+RY7URW4AManSjJdW9nY2CqX3IekK2K5IyiQm+Xo7YYflskx8vY6xjytGLcCTvV4R3/5ZKLURvbVMtNcMNzqA2xWDnC8v5V9nnarADy51FuvZepthSu5q+2JO7HLPaBl+X2Oq/WPA2FczKC7c3AB78w9Vx8UStw7/4jlo17rA/gCufTT3fCSL4fIOuQo3CPgPGDv2R4eR9i+oG8aJ3k3G5x0ps4uhIFcmgPwtJ51eqKuOjEk4a4dOfKhlbMkXDLF+H0JvfndENLV4bUVGUscMQ22mSe5L8mMp/9Noed+ek1TRXkewMRzVBycLGPm9A55Y9tZDFtHYWpkBoO3fEU12YQKSuZrKTwfwkQR20CEDMim3YYJvTiaBG5JNwdo4/YHxw845KBRmGsH/60oFEsiGt4KHlSz6SLZMMXNlELXXwrThGduWgYqEBIp3A1hZElXqpEltTWaTwqoJtvUyWAwRViRVIxqrgpjz/aOUr+O1WuS7wPGDv5BAOhOL7yWtKrTtkbxExuxjNCABrMaTF+HRdInAoBYk6Tn6vperKsZ3LJoK0CcPWq88BRDfjqDmHEZXGOfHjbKqUb+WOfzSke42AT730kmRW4lYUv/yRfBeeryghvFHc2ZgsQDAAudpQJ3xad5JD+3dfxmolHbUWxIwjbk1lne7Tci7eRSCAa3Y6Ql/yJMLzy2/lT2gaBAXhLTozpcVwvCohtlQPjw826DjZ05FT6RaEmAsMB6LgpDkVI7grB+vDpEEU8pHU3T9rgZ0YfaFVzBpAbD9EfUjeCTeOLyAKW7J4ffoMudIUCVepVS38sbN3Qci7e9hpKnzvLVe1jhRp0Crl3NuDY2O53IfYFqcLpsV17vOsbB9gZnFBJwRKjKFjlaByEdT1E9OqgPNcpnxA+kvc1k8yB7TBepLzOlosU5VpZujI26ROhtMSP2TL8hLi7iv/BO4sdtLlfaxxyhrSZJ6pphw7TbYE79CesBESBs6kn98CP8bqD+BBDWGBWRO5gfTLORTnRwHoYTrCwhE3kKb/wlJ87FTtolal8Fz/uPQi/yL6GMQ78d3OHGMMgrCOUCCR9LR30S5Y+m7KJ1JE3lCJd+fYv3mKP8dVCxNyC/AfitYxoaPBZHxJ342eGhUuR6C7ixEw1LC3V+C1ucUwTUf49Y1rJkbWVXVipU3l3uO8d8yehnA/rZ8B9HKMTk6I6+RtH7lctg9M+y4PTU2GqJ/qvOQPmNkP5e1EgJ8aM0YxJZN3dhMwgCbUdtJvmOJxxrrY0AIzuBLg5B09HypWJ7M3CUWNL79X8MSlsJLsH1Bqjs1TO9fSzMQSPdltA9J6ZouF5ecK1n0goF9QXF3UWzyWZnLbJOMw0FIWih3cx1YzH3nBrFJu49h9wsZnnEikajzklitOm0YTdviPDFPSS8RhKaMxbOnkvOGQawtXtdY10fztOZQ7aIDGkRNAqaXMLWx2Ud/BYZ7Gbsju9Tk+MSiJ6RIqnFD7Pn+uuXtylreaQZ4OH0oOowujNOUvOpTXVslH1bTYMt8PkRxCjlaVRtW5B1Q2/RpKXFZaSYxxO8fRh1jX0zTY69R2hE/8Zjr+b2zMCMk/FBJ1uB3B32D9/NsB9aREL0ZrzZih3NegFIpvulqLVfQi6oYh221WWgUDacuzgPYsAd5a8sLWjmHkJfIVs8VdLn3aOIzvcvmNyCTyRkHRg5WCVK1AN5rFUFgpU04zTMXTVJ6SjA+LmaMJtqquu8t0j0CZhWn4ppHY0EgOCnH9DS2lnd6WBxkouV1FXNEv8+H+lwLKgvYVvx9t4t9uQ5OgPshW3luNebkgG8K4nIM1N9o2uQABCpFs1AK68ZzjzMrQlrNuI6h5F9CefadHthcCiFZDwj5zplcUk+RPqQitoy1spXrlDOYIjg8Klbn4444ijWzkwGi4BFW6YtXDsQEg9PwWdoyOi6L48B7zersyKmE0MC3LN7iNktaaR/Do5e/oCX+EXMTB5QhC4P2ftroxqb0OSImYWOIKnSZ255wlgSjjV5+o1OniJd1LGdDDS2ptvNHqIDLoTy1m6ZtIFP9qUPf9YL5S9VeZu9i84YioQB4zx+q/OZqPXefLrevRF5OrcnXfXt9NbfCB4eDzuwU2kyfGic7tAUvha+eJzWl/UvXZgtxwt+adHfYoLzZlz2QnAv3PLGOcWb4zZP95dNn7PGcMKVTK30gX9pjHjufVHnfde1XiJwT0bRnVPuFm26Emy0BthV4m9Jhk1rVsfMdDEM74c+c/lB4p8B8bmAST7A+C66TI1Jj1JtfGOZdp5gjNP2ELsImhCAnIPCFsKqsJ4HbMHa5saYTduSb0x/rgTWFkRkw+clyZmpJEm2WxJXtLqH4HpPMEdQtIZotDmr48mkiacL5+qKJuZlSf7rNiSsp32VbclAP2ZCuP3U6IKDqA6lilXgrq/8S92LS5bipro17aAzxL2STrgAlMItajQpXcQE1kdJYHGqetFADfj+E36bh8RV2pDHNI+VmqXzGoBfHBHIRKZ6LVQkWBkrVgi/H/Xd0A4AdYbDRKi4Uju9RaxbVu9/ZrsIDgvEtfsawl7q8ma+TnSLPNKLNzOKIazRFVNjntD01bA3GNf8LeFHq+BV3+EF/Vt2nnp81FUBK8mLMLhsc5+0pQAeuFUy4WmCSoa8FCsa/DX2MOjX7LLvgtPAcdYWM7S2hrEVB9XbuD6xAM2YCU6sehi9ojOieH+p2Z4yVEAhrgtiMJAqO7daKR6cKlmkC4FmNLpwI+hmlHNAOBydWtGAaANZB41z+PIRet7cD/F3zyZDWdaFxIBWYmfRGNZpU82mhGLmQ769Uwp5+K5uLl+dtVm3FLJ8rlzI3xbMoHt5Wcb2JEgH1pSF7iK91pXx71mv90kvRhJB6odpzTOEo71xsaRbCx75XxVEn/1/PObAA/Ik65lRqjlQzImiOFAlwE9NBbc+vwZFwi4PTHV8hTd5HZjqWAoG3OUij+Jf0GcI9ogsSUTla6xBblyfWFgQBkVKjJzm+SqYYOIxFrgQRaePqofQanrHqyDjHWmvnooPvQlZl4Gw42e2PeYvwXKybYOW6lh/daKGeqwbWhe11hzTPhRLlDtwwCEJSc2Qh3GtzjuYywydx0CkGE13ZkSX/Zmpl7k83QVOX97d08GNHJITJYroNkZZRBabkm0JDCxZcUnWcjkd0VnYVjEHbGcbSMydLtOIMrG2nQ5xX6rSKlslb1P1QWJgZ/lUpxl6fAESLfZ2KjTVQJ1KAjrMUOsNpM/LsWhCriJbjbiqerres5zUOSbnWp2sc1yuxdZlrPMc04idXHWmdFdC3ziGWzho5o/i5GjsMmUez253xu5Lb+IHFZgrK1D4z7f7cEDqj31IMsOKgASsTht5FmEy9XFiU3WFZ6CF0zMz4RNFxRTB+7QVjIaT47wEBeBFT6Fi4q7ujATgF+H2gE28NYrk9QdNY7oMrtxzRlfAHUEcjcjArN6bppUKDFnGzo0hz1E+RrfmK65BJ7I1CDCRBvHnrVeWPXEfChDh3I9t2dPm7UXoS6p7eQhMsI8rWfqUGaYVsdaFl6XSiqOJqd/iC69/1Bbh7pIDK2FLXCJ+eM7PMHDhQgEHe5nMzwO82jtwMG2Ztwuk8Zb2SXcoV+QTz/KvHotUMRCWSKRHp+AVYllLjMoKbnzDWnyTqGPPHICjObP64KEF+89TQs2tcIRmQlDh0K+ngtzi9ysnEOQWmhFnBe2FkZoU0IkaQodUGE2588Irq9e10s+E1gkj+L2RNdl584vdgRsw1+nKovK8onYMFVFue8CsOqDnlxtq150dBg3CdfVnwsIM/i9USHaP3N/ntx1iL2QvPwIKTNTqTbz1xRfd87T5weblG+FRYONQV3pnCsLMbQH8lak+hjNuo1K6edjB2FhbmeDP/VrP6/YF2cjBbpe87vMs0EVx8CMDqHDiAWRzftu7DK1sG1I8iVUuQkj3OVto6MrHv0TDKE+dEC2YUjBO59GpSzsm77qMgOg+zOrMa2YcqenFS+MYIazpp6TEWmhh7ksAHhrBlNG2iO6xudBg2265DTzXNBqKeKA8llUuoCh+OhLaDtut1CDo5mnCiokX2PYw9k9qRqPAnOC+DQdRRJ6NsXVOKuN8teNt9E7PHlmliWqR0A9/U3THGOpM5Ez8BgVpEznZ3NEvSysBr8ujG/ZILNhrezNCnTK4wmazIqnT+NCwG5JSe9tdQkCJjQXuC1lswOME2w3OZUZFXnHZM9HRDn767gvVbuLx4IdNAgjiddeVlsJsNLLs8HwENODvIphDA0SW6Sm/0TEGOUQrGNxdyhKAkWbzZaobsh7ii8c319KJHrjIt/c6WR3AYaBdbvgsxyHJni+nw9WbxY4IyJ148WQP/1M66Gv4Fr0l0YtuZgPnJvuMLZ7eAbLVou9Pc+k+zBGMqM18PF+Y6tY4TyWP0eKDCihUEfC8tE4Sam4vGx66d0OW4KzGSmDSP9TpPLLZGErNb7t9WdiDmQV9bDlypteHkGFQ+KQEJx9M3amDEe+YXCcHiv0KWI0GqxzTVQCHnaYQpMOAHr+K9pRWUP5Xbg3J5denZOTSxfzjeIl9WaWo+hJSg79A64DN0bPoPT+Blw7AmgkzsILbU2vcvKcHz24HUHmu7bVWxPxArCoJpik11PfoS8DFn/UxJAaq+CFwnP5eeQDP5uyezylj8n5i5oLf9fQ2eYIQp1tvXQKoyBXxd2W9hcNni3u59vl5wfvVezbvvQ+Cqwmvv+DDgpXMApv2n74tKj31xwaRHEKjdZWv8WyS+CAK1wyUMnV4Vpk+F3a3hqXimTFmvY81wVSBLiZ577ulaxefuakb5gL3jZNUevH0LuU6tqrdLQXGl0pTt6icCEAYC7qTW19nIku6KRlcgg4zvnFrss6T9PCtwaSqJB3GjnJSh957CB+6fghXQsytJc8Ky0g/oSWMZEtWzd7f2EbkJtBiBVuEJdmkOhCGIXOZeju6cuzi6XHJIMnl3yhjvh3KJUoERCSNmtcA/vytaUFsPnh/jIMB32iloJWtUyEQgghjpVSMUvatMn+bDrJW/JL8NOabc/aA9LCQiHPc8ne/HcifPLzh9liN7NcW/483c4OgjibIajIu8V8X4qRFja92LR/nO6Lda4ylUoPw414dRcYyyb+2lZ14drRv7US79z5lk6pdxLxnGy/HhSGAny5GEA1lNWVwBhM3Wqhf9gvoi5YPRcVxhYAM8kvupjG8hc68Nklkudiw+SYseGJWhWy8WtNmfi4tMmWE0HMihVTfuCCRUuteFGWHAsYtwn77bm+Ju0UV3ICLg8r7JOV4qNekI7eI3ZDgwRyhghergN0vXzXG1f5rk87fJMLdQSwPE2tJt9Hsf0PinUX8L2dc8Fz2DBCnm3V+EjBaF+FcC3X43RvHgpgVHw4iAhK1ZNusHrx+5T8o6xrlGBJIo724XZrGka6lAKcQ8Bg6jhoxaJ4bL3dYskOxRXuN/MYv068zOGxuNCza+e1nIR4SC3dTMzCLml97Yh2WLFRKlhK4tr8GmpAUiHlCWcAGeh3GHXGFeJgMoKBvwgStjy8rp4lrit3m2Um0j6qluTuPc2wC57ljqOSEcGXkq4PLJyr4ypeXFuHdpleL6rr36KS5Ti3eRJ67f0I4sEwZbx1Q6F3zhhdPZP4pm3ckrdK9mK21tzX/e0bWfvQNVZLhVAq6FEbdd11i46LjfrWAJL9ku9eH8Ux0eG3DCxqRRtFFEz1q3Fwl2YFmb3rf5Wp7qBpHUG/eKIHkVZ1M3Ej9rHZSBGZhH4nP+dwykrw33jqSOd4ABzmMu7YHotMxxruB9BAZAPCGbOHH/Q895uABNDg35o8X96UP4COjonBZs3Ndei9MIV7SIWh2Wv3F0XZlALD5U323qr2qdr8WAPjIEQmwt+1bVVaU6W0uQ44IC50jDL16v0YWUy0wDldxIqLCNlVK9jB6M5U/O2URrgul3iYwL6501pKX5Yq2FYCARpNkH0OdSi+h5Fl+3UXDvZYz+MIxSjxKbzUezpSoOrqsI5wq1r+Ft3DdC02ZP7KY9QAB+4oI5R0H7ayYICdwDqMtuxqxHazMYD/l1hHpt2OP+ArRmek3xFGkkVDc+FKvTXZZtJ+bdW8FAhhhlB+CFZN25AAG0ahJZXbPO1FwJx2hBi5wjqHpXMvIACcAO8OZd9EqN8k9DM9ytiwgLsJYn7/cyahpjH2+GCnHYYIgesVwiEcYIrV1Y10LzgPTpKmDtvTWDcGVmyc8MdV777R4bVOr785A8z7cMg7+qmfHh0/gMRSv+u6joEdwq1qQraxI+3EoyUyrRJhEkisx5MXKuuWys9S8ROUU4Zr3mAcWwTys50G2zX5gWb3WxCXWTu0ZOVpG31F/1i7x/bhohF0m+WqLqUZpzu3m+Sopb99jFgA7tRlRavDkRCzgeT4qeV73fkjZCN7X8GxOrK8f3QWlN6BKVjWbpB0p8WiBMFJlxbFcr280bD+14mL42/bTX4Xdm1SmHjEYxvw8uNW0pAtkv9DIXM8iqO4mxipg5bT+sv0aE436yGrVZQdr3WiA4gqh8jBYA9ewcJS+i7ndX8AfEwJwHf6M4PpmkMy3YX5HfdZtzKort0/BU662dzVvJOmX1A8DVZaGSl4ng+jDzR8b6jj5gpC2Ast5RY2d5j6Ii8okiAcbFJbtcXSWMfBhsG4GAdVwwSfzXQ7GdRuIX7WzTEX4CsmPzf7WqDvT34AqSTU7QDZ6/i3J6c/xzFcyp2arepd/gfSRu18oJHelraqJkn8lyWpkhHkFrnHr+m4/2kyc4i313vYcZsaMyWSNt4aNC7zXrHqjtlhhanyo79x0UBVklaosyrhHbhtqIT6Y/D0Md//fVf0IjrYsKNVCJ83gXegDSOR+exQuBPm9ZGdY6UOsoTAbTo9QCzSgDVuXGvERn3xQKBHDvFXfxFTWoAsqeDlm5r20OHZBZejKXvbloHDAApRKt5AuLLHXKU4WbhrojnvvCwLEpe9tg64q50/29rxcTIM/a+TtIQO0FJvFTEcHzyZ5jSRp1hkhIP25ZBZC5cKBkjAAVvPk0Wqjc9sY3Kptk/QyWRSPCiNwRwrFovY8oRBRqWArDYZ1J7hbz2/BWlzk1t+LG3RHK9t/RWTQyVhdKVRTPTiUumwzRKaD4nXjZtBUHr2pHtDFP4uaJwMPjU9q8KlSVQmEOi+/lNvFUl/pXj1tZe1/lC92aDNhw0nDql7IqkxjN8BYDRvEpcclp8F3rJrmh4lCc9Evle9B448kO738qbwl6y4ficSxORg+NR1L8aDRk/y40uhZl7Sfp6WcmyQpm4aOUO572sX4Tf2Cnts4iMlWxJIxLLCJvZdhbgBq3AlSKt4a/NBO36at5qukenH+gCP2bslRfNn3XHYiHKKejzLHMiHrtT8DYVoxnikEd/amopdyIwRv3lcDznMUGPMSU+C5mUSi8Sd454HVSJeUWwWaltJfDhcve9ocRPWLsuqb+Jabu/xIQRQSq0eHaOhQeuWAxWTI2v3Hhy1xOTGH0iPeSSZdSkQ3+MZ4zpa99sluvZUTibdRSz7NswTzZDJPVMAvL5zblACrM7Vch7sRQB0BZpSmdOrb8osgku5HVsS1vbZYIx8hqWfz6R0k3zv2BdC13Zx624EgFCzoc+6y2KSVCittKSX3SsKylzZezOQbEuUcSgyXy89RDsGPXUCDZjY+lRWS2d7yZN/Xnp55UGFBTZA1fnCHTjJj9TwiupykI7NEUEbZ36Hpo3e+Fz6lyR4xZ3AX6g6f7uspDcOOJrOyocRWd0xLHcYj0+d7o7Y8UdOEfuR/V7yxvjd8U8wibEEo+sHrOUJOAxBoZCvcMwLKb0ykefM9N1B6Xit0dqszDvVTXWszL9l3MFxMNC5qx51FpKHeBhcTB4IMfZHeDJNreo6OQhKgrUbF7wzchCZXdZJQ33YimeLRfJdbdtzMC/BrRRxQsusoZFDCnVGGDzPZ9JxoKT1vqgkCG6YswNjs5LKuphnusXe+NWsVfqd0afyUf89wmTVORXthy0tEJMNIPdLdOA9B4LIFMnSPUGze/sYAlazDhZmugnqUvUj23yGZ/T6gzXp0DAO7vkKmJOLNQqhPlxwmmpgwsuBXJgZvtdfPIg2aRtbbijtQfrw0c2ULZmiYYUQ2TB+z0sbD2ob/0EW9tdPduWLFiFiCijg8y+sg7BYerJYOwdPbIcVuIzbRGtNWK3kymjn4UMvNXriBXK6gc+ueMcI6xCpu54EPK03GgchhV5kzbd+F5S2Ddmzl4Z1RLmsW2O/M7mys4XEGc+JhrWbXjxOfe/6DcvWJj02qLe+0p6GWcKMvpKBziQ4/6Qj37xAsesMtHrnauL8aG8J+mWZvPb2yuk1rretpT5xUyMFyGKG7AI8J9RdpTM8PMRTITG5UitOXez9WEpyCURHRRfX/Q1ys/haHhwWhy+uGDaFXeWW7z7kJvKWqFw+pvSK9XHUoHUknWiYYLbSxupV2IPlRSfPHGpFSHF/IR68B/4aJ6dyjBS9Ad84RNm0QshLpUwrBptJQwtQ+SoGvouYoCzxHPm8GaTmXaMRy1jDhjD1upEW7Bifhvj1F0YUnB+ErvxWq7KsHb5mXAfMiI4ez5aYUQRkcbM2Th080Ki1N2fWbT9W5MeofzxBV1P031T/ZJAmNOfdsMHqINJuVmulXXzAGmU6vhvG/dw6eJiX3KTws4k0NiI5RxVpYrRWHYK7OeCtV+Xe64R9GU0T7cdEffKiPVSCgr5sznChs2iQVHB8wc8gOsYhPJYOwQpt7th9RZmaswLi6mIxupXlF9r29zAFEX7gkvt71PocQy+VLDy4pRYKNO/NEpU/gKDw7ki8hsziRbJZ0KfNgtfiFx3LZG+oneGUI7alkcdx77WO4ucsPdfE5cVQgY2LHCj2/ZyaXvWBxSAJKyQAFkOI4mJ8tuVyMCCX/LJWx962Se41yyXXfjBztTsIBhQSRL0BPNNnM7Mzk9Hq5S2uv4NEAVDI8P3TT9rpkiznzts0ElVJilN6D6awVs/fuLVEi8FLw0iewij+3DQaZ0cWCmGBLf1yq/eMU7dOW/NonUfFqM8v2xZguoipHC236vXVKcZZLWFyGuRk9OTFdToftmDnayOkVqw/2iETjQvNtjs93Zk9xkAbfIRPeL5f9/9bmlBNdFAmlZkemSw3txjsHtkOsNCzLIYn0jpynv/TpDq/xLtEciAe0lKsv1MUcO0wd48gPdF05UA5Kh34m33xxCOOq/TLvPaDqsutXuJ2p3A1iJlr982EoNfczt+uYwAgdSqquAP/Yt91+blqyuei3elwwhvxCXenKREnVMLXdCIvCTLwjZPvU1vNGMYKqdVDDLM2BFdaY9Q5uRe98n0KhfDn4BSzAMH82SuKKGLclBJcSUvBzPlL2xKoINqUWAryrmsAxcPkYgbAhqyzftJ8lE5El8pXGsa+UQ+kziWxJAjci6UrqQGPB529qbwNaYhwirziZFnseyjNuFV2VfTYYK4SYEDap6UbHM81v9FhCT3pyNKue6fh/ORvlUNRtR4NRA2JlC0yDpLm7yAYqlZRp1yFH0qnQZvidKMBXW1dly3/k8G4RYGHheui0skPH1SozloYVwu2J26AhiVi3U8SO4HW9+3o0RuP8L4k9V/Zx3eoiHqMEAoC56H9Q0AQk7bfvhLlxjPqxgA69pVxHYIY9ql+nRZcGnut/VQzoIjhkTVkrYJ6bfUuorqHSDHY+S3qq/1MZD8cQdIWWy1y1Awwg5iDnIm3yZSAnDA92ES7YFncNGu0mKTqJRo7IhiW0AfPHTaXs6O2Za9Ha1WAwUhThPTqmLu+PC54ccMJ8fLUP7D6kP/owprdOr7Aaf0k2AbAtyl9PCmdDjSybPEuaHymbz2/2PUFPOjACclVRet4/uCVFq8zQwhvnSNryXOX8OY/GBGAuNBcUlZe554jWR6PawXbHI7RZTLwYYFNWDbbaszu32pmWAv7Kz5Vq94XAbSsiSosOJIQO7IW9w35FMEV1Hk0YT3ZcmuLkCeFK8JJhDM2zRQjxRWqFZ0IGRZTUYrIFt2/9ahUnZAapYYxMBq8joP+OF0uWHSQ6cVUTnrxdZh6Lseudf2sy+K44yK7NtYn3g8x+VmH9nrqN/L7ErUjRbaGc3X/lqs1zFrrIBJplZw12C0d4VRom3YspbdzHxtA6yuAPFcLEe6NXv+rVDBMzPDzoeszinu/wMSfyhgys04bJQp6sy3MPUx9MOO3cxOf0YWwvoKGPOA1RQMDy/j0fBvWiB+OS7DX3N68ThHuwnGX6caCSi3iRl0tl4WBus9+eMnOSVdl1xVBpr7/cMoKVVIRS0NcII2UrEb1hj+yrnkKwPPoyAtIRCukZhCJB99Kf9rNrnD29BJATtdMVqypAeZe2/8/pnrgVsG0Lae5CgY6bTo9crR82SUcGwcNN3LY3g+VwHE2iCI/s4GjYtDO4BS+ErL+F+sy/R28dYwoSOK5SZVysp/kujGj5gHcpRoVJgT5laeP0XaRrf9hj2k+SD/9WnuyrBpu77YRl5ytfPDt6dyYLMDIfc7vO4F3Y2wTZ0+oqsM9H7KqiI5jWzGvg3OqIk6gMqtkir1XiYSknuD3a6gcMzMCt3iP2InHaugA6culgXBRJg3O6Koeha6GgFBZK+gEu3JRX7N2bWuncpbglXSOOBYtGBJ6UCyKc8JqlJW0qMtSSzTCk19VaxRJYVXOLtgS37kfRbIOc2DSMtqu8tuUDTfZn54GKm2Oslp4gYMzhXI0LH7bOj/W8tR7VjneqFwyiLQ5KJotPWtkcvR9wDlClIreaZ2xma5GCOcvn5p9DTek9uqFePXfECiOZc5G/uqNhj4EorooqvZYaZJF7AjvS9nnxTN4HgL7A6t2oa0+q/h+5V5Giqrpv1Py4LUBzIboCn5qigNx+iKs8Dzj6YQ6qeyWG6lxOBGrN3ge89oIrtgU/SURLjM4AUMSDnEPLVeWv25LGZkb01KAX1A+vzsmG9dHkGHl9GwzNe944slsoiF7st+GFGpU8QlKwKC+l4DRZM3gYhzWEeMuN0a/JCqZyr16En/9kLqMsnJVDQUfvMSm1srqrR7IbQRLSiCFvUKTRKuWE3cwihweFpB0lMvy75tE/5jI0SKcS1C9fmnmdv12S1wbdw0tIN0O9Xme3eWSYoCG2Cf7CfU7pu+mhyRp/7FTrA6+2fRmusUNV1ECIH/d4zAKuUQyjeYXdudcLeEoKwIVUm77pLIx8m5QkyIh+Ob7DSWOX/uu8GTQuHYECtQQLdccahZe4KBUTz41ltsi1036YqHf/d6QFM48zSTUYiV3iNCKyjiwn9QCa+zWNqz0nImjvmfYG3h6Ar47Y05I8d5PIVSgA/66FCA4aT8zRqBkizIbZNuQzfgLOTQZ3Sx3tpdoBx7M4u0R2TxbcC6DDw5uKRC01HHRroX943SpvYORs5IsStJAy897gasOyUxdHgj59zOwyvDt/Ubqn+LKJH86q7792N3yXg7N385w5In0XEyzJ/4DsPs4+KJdY842KamHDYfEOt2D+vhpYALYIQf+JQ2Op8P0xIt81TBlAbZZcgh3Mim8Da4DHr2PULVdMXZ4TXRN14YRG222E45mVR5mmihCMNi5JGqeiY/0nh6i2aATg61uMCuVIJQYbEBzATzz+WHoF4qcSZa0RAQvwq5T7HWyDyg3cOWUCIDpKQOtnYsfzEaDV/a6wcPr9oZHQoKFzKTvw+pJDMArqVZeeYWSlOopi3lky8lWx8hZxVYlzAIvbGDzuQiJ+LqWhETmncr2QkJo5X98LQ9nB6opaMBYqQBiMM2LZyNmKEYxI2q9/RwQRe3xpwe/RAy1C6JxJUDV4zfhTyboukMGMcFs6uUoDTnqQjYSqgxfe5k9p/v8F1NijhhWSfvUer+Fsl9V4zSvw3O2tVG5htWD/wMMLZzw4H/ewu5noHVPZToux98ZoDnvc/tHEx9iz8jjXzj8lbLtJrN3jr6TxFcokE+Ib8LCKCM9ZrdYnOIDsHf1LdD+XCmDcFkObh7reiERGHzGPX9C85uenqBvrFjBd8Sc3muLLNKEyvdpXxmTdDP+8NpHq+UQa/B/2Cn1fnjILZEKCIKHZCqsn2wIZJMQBhAzwyZIHoofXHcc/r4R6pzmosXkHN+p0IC86MCUk+m4TULM9vDppozfh2auRlwExj2TQc51ziG7penjhLRO/yTqMVK7K9yOBBfYd3J18mg3Vrrw21vw3o93EinmWY8YgFNg2qCuiPywm7vDDhLs/w9Ph1ngDqMUEgRMuqma7JM8zl70M8KYeApmhdDbZ6H8ja77YZ6vqPPOg+V0TdbCjWZrRoeNJcvv5hKLCfl4Rddrq7wxZnt/1y2XIM3NJM/xyRhQ2HwtUvq7ATcXHs4e9YmyO5iH7lt4ghryyw6xYiWX1WtaOF1HkE48SSnyXQzL6uD8vbY13aly5StX1AxvWYtceNr7NP//QclJS77vOxvxxI8qS1zv40FecVw1LMatLMHF9XUTaL+kfCLuJZOIilo/GPxZdZkWw049n0F3eDQQBe/auw1Qnu9Ese8uKz4y6OfijF/0wOT1T+4bR+rO2mVaZ8VVVGcX1AJ9Hy5eGcdmIai0Igkxboxw20YNe1B1QzEaMl7vqseiY8nm/lDfz9mPraej5qRaDXgUjo+P/ZZ/pE5yZ7KbuRPZXOVGxMJp4tZ9b8/muIjfeM40dh/YfAfBZkupab3kp0dOijgdNoZ+aPtzEfY0AHr4Ge5bPkCyDAdysU8wfdCfmbQUdBdQzg294LnKG5fHJ4bHgbo8NqU7AJZDiVMhXTrraEhjjd8P+Et/bW4+Eb39QGSV41YLoKaxpijfhXWYW2jJs7+SLbhF83m9FP0LoXoqb4KN/c+oR36eBE6P7t5h362oIgTvboh76l4SWoxIlJdaszdk44P4qU32PJFAx682qmESqI4eb2aQRdqcWBiM0wgp1Z5B40wHPkjr+i24rb8tde74yw4hS4zs7N0sWjA/q3i0PMqF+Wnf8721eR22al7vbuxPd8PZ5zrsZK6Ni9l8AYXG0K26zDqmKc5GpF7r50SUpWGQp+6hiSG23VFgLoj3jhfVpbLWh1cSb+u/ayW7GSGk+sHnbF1ZkvN5eLaPlroYzU3Q1cpJZKAlgUZzx7WtGVS8vvwgblBSVewzp07uaOqOLAtJ/zxJVtCJJ4sI6RpFsCDi2CdAm8f/rVsqs2DRon3TI3y+lLfd5P1uWfin+9ZZ5MALleZxMpnQ+LV69XG1Q6tvhGhliFsZMCWFdSiC3dc5S8k/Mk4ZdnwTheaE0my4VNxEAODEbX9eMZnrLcq3x2pU7CIHA29O3FfzcQXKKUwQBBZ6o5HoKR19PaW37vEgwzu5kKefElzxfay08goITnUomFRLTsHUsZRT6O6wSRXyj+ka7WXmOxnejuTbqLpWoVHs1nehsA2IfWEu+nKQXzJ4Q1fF5Abr6MnOG+oZxzri/oVIrax1co1Aq0nI7Ka/oHyC07ON+Jgm3ZLW0zhk9+06QmDsaumAPc7cQxQ8oEQaBIn7c/HYxl0JNY19ymVmei0i0NcXKcSlTIdeVlD32kYFmxNLSM2ZbrfE7zRje5o0aK3wMjL6rANNumxSznWvPU6doTGxwrscd6vicycRF7pPP6mY789KkhEIUBkh6tVCLEEAzKDRAjYKAj3BOLTfu+tXhVJLBNWxO40kum5bTMIr5H6kXghxCgh509PEvmw5DQjWIcCRmW4z/ouz8muAC1XpGOqjES+C5h0L30JRTj0kGL3gcWY/F6SOWNACNzvk6KwHnkDNnay06ZkUZVS6fS9nJUMMX9etk5No5QupInOxgr1lEMjL28XKDj0nEma17SibpHxcMHQJWZi98wnkACnidkQrpo1SDSCsv7PJC3xH5IQeeJghltD7Y9j8GJuFNSki1l1JpsJN33VE1ZTgAG4jpkP8JRDItzu1xp0lcdQ78pgdY9I/iy3UXp1lNdczmuGNnY7iUYMDX7D8jyCwkCRpVmM1gpY0cvboCvkvekE/XtXVrrQi7JVlJUBT/iFceD0gm4HhSYueu58HiLQMbILFMu0qx72BHInC7Usa+lTnlrZ835sBdi2uLE/QsH3fUKpMd8eiMCkQ8DxYwDCULYPWk7Ms4UyuhnUFIM/JPEW0JVdIFB8a2hZImIBvAcvYXqlysBVtNnS0NF2yJ5NPKuUWcss2mEIecF0rgoPG+COPIaWG1Ufc6ppGtKbX3l84xBrhjA8/4Jm8hv9S60cabA8vFEbxFEVtyW8wh6tIDyp3u//gpKOXvwPvtKvvka0WFyx8dL43DJ88hvGm/hyMeykSeoNiznqhftY+pZOe/0zjGDjtC78hGCk3RtoW+KgG4D4PfZ24YxvNebUD+xCq77i0dkdSt1IDuECuvaTX0ibwqYFOkAwi1Q5jvMPBUIpZt3lpJpDr+Mt63kX3dIU2wCY35n6T9uCHgf3OngVqDIwP0anC/YudhzJp2XPzOIthYpxmNSxoM3RbWAgYGWjnsA952oDzHrEBKuWNxr7nOxJD++WJp7G+C85MQ3+wQbyZ70v0X/CLJ9rpNKweg18opgsudq5pew7AgjvzBEpijWZCq0+pBAn5+3YK0H+RQ+7NORtbr8YOi5avvg4Cqs3VK+6ctHFtaIO4FuNz1wd7I7XqRrGh9Xd6VLDZDYVK9a0MFwe4hWdRlSt6v5/mDf0L0T01zCwotEswZ9BkE5J7Rb0RqzNfxbUZTOV2P3tQMHN6wKHntmfVl9csG642NUIu1J4chjUZnbph1Nx2BSn2kU3Rqj9Cjp5cbMEj14fznun/o0DPbH03TudLyekXV9vWX7/V7cWQmF+jyehIdVOtO0o/MaGvu//CwqhkcLhwZYUzeeUqy0Z81RNDpEomIgTeBh/5BPuq85yN/FUsDhxd0zPIEAF8wTav1QaN3imvlx4wUbSUG0qKio0aYeiDkdmjI2fOJhAf+cPW8Mnb837G2Uz7DV7YEXtpGSbD8ZkGUPlh29sc35iA2173l6FDwCfWYrwYoUpgAYPZZEkwWgrV5n2XkeBozL40vw437p3y4YF0Yg7DOOrKTEc4AF5ygnTQa6Hl2Atr8NdbsPD6Pfj4O7ldAx54Gf0KmeNZozFLqdQaYj/QI4plMil45UWxPm/xR6/UtlQX5TwQyU6Sy7gHa5aGCg82NF9gGVlQUXLJFZZrOO0xFs3HL4DKeZEXyjF+kYsvVZLNnS4t2ZtDlJpdjEBySMYjgt2egEwmRAqLwmElDd4n6h9QAF6S7VpPgezE88SxLEj/sxfdwL1K0fJkAppltQ06QQucBXqRG+uK5aiUCfyiY63t1CNUT11ThXEnkMtGe3ypEClkztCSvThrCfJ9G6u+uXcNb5YK9CAT2Fk6ffKjBqexsPHLyvztCZMpjoxOzFHtLw//XrvBGKkHb52koqvzOeSWRAC3SQ49TKU2cROlJH7tTBlkeS5XfhjXcGDZIe2ELxQeWZ2SzuGgj3t+W6u0tNH9t8anH5B8binwGGrY85it+tMJTWOzpvU095A2epTpW5ZaCHL+34irhXFAK9P5tRtfTrw5R5+l5yp5+K8CVfYQtf2omkNW5x6CrBwKlfSimtKyV3qB/BqHXP9e61ECo35280dNuAojeH5ff+peqy+hoz2Id1BqEso8Yo+Ocyef0KcDffkc0Nt5h1W0qm2YFJm/v8dKLAaNUjYltYhAo2nHlpTumSm8iTWN9euxROJnLxyrvuFlAxACldx30KviNchTzqiXV7Ka4/TMKqDIIKK2xZe2hgKUOal1/m3fdSInt/dsTPOwC0QDlMF6kCu6+9vfQeZz+OinReq4d1r94hnJdPeBn0RcZez7lEzNMvLnu7spWGKvtQIRkIcSWcnYDlslKS2TQN7rCxzrHs6z4hG5qFv0E9t6v17Idow6Bb/aoQsj2fpA3i+kpnWG6+g2wPT51cdqRj4OWVoyj7tHN3njBRe41I7/AHXiaHF+eQZVP8qUfF8n+mqkduIRKqXlHOGG0FFdpG9vNRuzfMlKjAk3+Ii15E6Ze08E2/voEyc7i3zR7JnxrIaMC0GiPlXOVPygzyoUCX8xAVIHmw8QBg+9oHF09tDouSD7DTccsYzgcePZKVabKvwA2VSs7e6Uxl/5TbFfCUrscT/ka7z/aHBY8s8FKCvMX5BU/iAP1eSGVBZTzTa5P1+7yhdenUYR84i856fzo4s+gqnNmQ1mIXpvTBAQA0jAqay8TSkXh1AVeNeOCOKM9z/Wmk9PZC57HbHvAJsXhsFEQvam97rq24+v5+AM9il9CMPXu1IfFCNpmpXUdZUX/1E6fmgdKSLwaWvi165gDoOp6HSDb2SJbq8JI5aBREgGGfyx0DtvMrBJiMVBiNm/niu4/pagXTFRrhRAK4YkKTlznmFoOUBxm0wLNiY9EHZFN2/nQr7TQPwUkCyS5QS30NKs1xqZWAuAHlAPDN1mpBR5inH9z2gnGBcZev4xTcRZXZhyvEGMFcD39axVx9c75eppwhgiE8Iep8YvHKKv57TFOclKOBdaNcpMoa/PV95fxFvh3cH4M3okRJGJaU4njN6VB+OBb/zPjdwGvQjG5sxvbbxfHyy7yzl6huALFULWf7HSrwFVWMhkDffAAuXuHWGpy8h59XTg/nYBWD9IuWYMYBweN5vmwbB+w5SIZ7olGGKoyh0uG0tjEYzKEfQLZVBVP6bot20ZLZ+lfu6ozAYrnzhfHzfHk9RJbrpptK9Jtrd1kf6UJy7FSUPLTaH+sUpz9yUsGDbqnFphp6VNYlJr/+UmfqqxQu+GLeH32+58aG3kVX0PmKYU//jGd2hkW6r3kUfaDGeIKzIT9pBThAaoj4+iNlxJ1lrHN8L3vcbpo9YNrk8g/1RFid8zKWbMMivzBUqZhi2/oD4oXbJk++zfucaKlUg+bmhsZHAwwZEMETT6DmZwgddM4MMiOjkcM4VpsF8U9+hQuXytifERhQHP2E4Ows4VZfWL5RzGLwT+x3l1e3exmS7ZeS+azsJX6zpW4kIq5joHSed+IzDhhhHGuxJJT8xDh2uAOJ6jTqGwLQKPQLs5BaQliSGD84dFapw3v9Ljh9V7ODjRsE7ROaqpHttl2quaGPMQmt3KAaahJWd4g25xCF8AklrN8ThglmwDMQjnepwhB9BBxv0C/TMlcUpptCLTOeblfBvOCxm2I90lOhzxCpEoALO48uATSRLxKJbnj/zyNGhHIl2tYUc+1H7hOoPx4b6Ftq/WUHrdfLSTqE5IkuzWsBA6UnsWmDYRMql7nODh6bq1yMZ+rchv0ROjfuR+hPpOV9WvWAAIQnratLdParK5xgyUwMlOEYJelVQSePNfpzNb8kpCGHuvMyiwxcdNiTJE/AJZ7RP2ZINGrnI87KLjLJTq9JiOhzUQFRHzwLn2ssbui9Fx7czN0/izlFW1fCSE/snZiynCO3wCO5PHcVlFr+IKD7AdTcNOweiFKjBJYjtHNE9Qztkr/MbQPGlHsW+5/+nyzDyU4TMsyGYQ6+STmMes1SIu9fbr/G1d5JSucgM+1OKfiPlLY05YYNFQj59Sbh4DaFwBqQq3Rfqn4TzjlmytevpiZU2Hkt80GFHSB+xeb/PLkcaAxu0CgBrhMLd5OEvoI3Hd40fF8izw9x+GP+31wx2M++H+Tq02FQQNdTHmMsqJyqYDomg9v0G8MtF0ZvyFNJEtPk8G8g8xXXUjysxzl4l8465nYiOPav9jJ/9srcxbwHklWNVvH7Qh1GDAAYMEq9BlRgBOo3YXd7RNBf4elujiiLLBrk7TzpOap1I5qvEkR5P2EYRSI0c7+ija32TyK8EanroVk6VZajQ/qMj9ZZzBz5MpC+xvu7yy3sgcftgkgIUV9FnCYNO4W0fJ2EEgbZ6bC+saJb2dXYwfRikhvzfBiYXIYKtfRTYWm+EdZF72DpTmhyaxnI78kgIlKckF6v4G1PG4YG97S3eUDaX8CxRsbwiUWEFZg/FZIf6Zvu86oa6gTDAWc3hpencnbQAo3dlwoZqw4LVyJJISQYcH/WdjS/U0xPcKCj2lCz8mkbWY4xM0ZbP1yFHvJEPRxZu6dBU6+8ay2XpRHu20y/mT82Hao+Yr9pZkz2tWXM5x6mDxxrPu3BpYrfVzMNZ3GKtw+vFssmBLY4Xv0tkkqBNwG7Gg3VtJU6aKXLqtwEhEErFQjcrW8NeWNxNT41PPESj/OrCx0TiZP6J8Tg69AOYuqdTfTP1vbTQPTveFraExhoGgRu4BtyNgE6ac+8kReROAWtRVHUADhyPUsTNqvGBxf3x3XWmLQ8nhlPu0lgwTAh+oxENLZkwAu6ADIK1Ye232aJ6sMdmPP6Xq8N+jBmZXMVTUIrVv/E0rEGxWXC7XfMsVRcyLGWagZ2gcJFD5u1Wk9IXkwURksYORShanWF8Q8bqpL0jli03QfOFWFXQnp/8komO1aVvvXpUtnc9H+pUQOfeDBAXogHKjTHIQl1NeLv2tdA8iF9lts+0SBlApOoE8kHHGs7U7FoxJyuDqEC9wIF3a6aigbcFzzddyMdjTHTjvV0M823cRqoaB7jSTAaMhXdC5VNMfBs8IYdwiwR+a4nv1Wmd1cwvjMtyAN6/ndLBndB5spju0yVuAxPepR0tYDVl5PDl+lvZg/hYGdRjbOL2I+eiQv+fcnmoQjVE1MKJCOQ57xuuWiA5odja5GyrfJWnBQMfSFIJk93nQkFaMHV9tJ4R3Pf0GMWMUm8G5mX2nRIzauNHmNK7ugCHsd69MSOlJbH8CQxxtXgcKmY68yOyABB2jc9Jsrr3ec6cLlBWsdPDqTrvigKHbSE7z/TKNIPcavMscrnIwlMYW5Cs9sXEBn6UvybYh9JXTGcdamXMIzpiYtWLJ+KfolbG3UFrzjCOJ4UmRH5OG+Oft111Jc8OSRQXc3LiDy4VrhgVtZG+JfXCh4dUnQQbJQpvnaOoRkljbeBFgN7kLZ0IZvtQ2hnWeiPsBvr4uz9F9J6v6KrZO4mYSOhEcgOAY21oK6Ms/JXsDUm9iJT2CW7q0zPePg4zXd1C7932n08M35bd4SG8RXgZ+Un0RiDVoHjCcmIWj2a+8L4CV/CsvePVBE12GJZoQzKzjOA+PUyO6D7u1VhfCco+rYnsCGcVgZaG88kxRBbdSDntNOpJT4nbmK8+cVC4KTtZW6qNDKzK4l6jJDZ8+oXy5l/DSzZaK+3MPgT1oOCPy+xlg9P5BAHLjiK9em0fpEL9+vpoLkOBsNBXYgEGZIM/HtcU0Y82sv7RFngR0aFIiy8KZaQCzX4lviR8nGSqGHLguXvoR+pgET3vO1aD+zitf1v455Df/0kZNCPeiT7DBoU/g4itGVDzg5KvD8WONh8v9uIkgbiLGPlj3xtoxTdP+tI5r/9pDDAGz5VREVZ8NFzQectkek0am0zWLpbzRWuci/58cv6qyVPdtmEceonpvLKpH9+tIC//vVY4q9ghLViZ03KKvTLKnCeMm4z+vIdws2r30bAAPaEAuFgfmd88FSS7nR39exnzdGzxXCdWg8AABy7p5Lp+B8+++wMpaj6IHa9r9G6Tl5qtJNQ4l+34RY7iHBCA3Oa5iPYw8hEZwBENEjse8JbY/R2QcTRpE9CvRooypN6z+odaMl989lSvjaQGi6HfAwjsgdSpDZwE7dl6aGks+8e+Bb6YI8geWWo+ip75wqcTM9CTO+Eb8G7IHLMBlgpBCGezeA8whCfeeiDKFrEt3opWN7Lzr4c+eSo43p2gsOF7fIqN2CobcjZCOMoR7kws6d3M1g7zkr7JMh+yP3cwXeHhmkqhNR/15BHh88vy7AjiAjwpcdHzTmrWz5+hjNRTav2iCHPce+VxmlRXnNbEhyvkT1eBQFX5PNXbKBULKdZTaSvbpVVV0fzeaGXyQ1n4n92xjs3qANZfJxDa2l5mkYTLUnLbCgUQE2GKPASXFKiQlnUoJR06fCrnxRS1RLesQf1rDA0cDaBKkpZknvpzFXmtjBslEprs3Vgc6sn9/TJeCsIriXOLSnXa/EUcuYL2KGCW4gK5PvHlOgiICiK7/CASs8NimoTGTRp7bkLQbnAwXSqhOeZtkFvlHHOhAuhDatDn5hokPBqJZGI1i/Y10LICCMOG/ykKLJO8A3B0Jd6Y2LdHhMvFuBWMsTZrSJ7m1mcWITpzRpuP+YGCemoDUZdAOHz5XcSPuIWco98HdLN6KXl+gsm6c7x6IuMfSZQkb/8rPx8mnu6r3TFHQu4/StrxUWJbG+cLMLc281J1HDpiRUGPrO24nNf7+L16bYHjL/k++vmQzKCYoQf1kbuAH3VDPV8EuiI5mpzQPSVtdaHxF+POQBNdocpapNARWJRNPVQBK+lsZfnWcfRc/r9i+E3C64L3fZOyRZRmidpCOneJk7EUaPVc49MsRDAQc+uwMZQbUaO3TABfTIup8Vl9hyRhcMtrhRgBJzXmiZnE3Jby5lpSIWG3oinu0fq8mdUgwmlxOMgKC3kcQrUv6E2+probOXG+g0G070xeGxnSo7+7JgTXSGkJNDxtM8oqWCuQmO92Uo4L9v94aS88ZQIRvvpRxplPGCk6aLtAnbigAZa/7hV87qKYdFctV4mSAgxnW4kJ0OqNecPiGyVBDXjBBZdHv6uUap3A+Tbe2PsRXLUn0pZcIthqlxaUMK/+BeMkX4cUpeikYQpyT9uyWPz5jyYaqkxxaDXBcIyp1UqK6fnGZaMOlMb1QOOEXz4VJLwtpp1mB3hYlFt9qFbtgWJkSFHaU3FdqGbWeda1zt2KaZe8QAtaaV8cCAhdwoyTAdGpfLtBvlr8qySV6npjf4FNe05JLeZSG++HDS/k4uA8PMGmqowIKKoMveUpw2Kw7myLxLz8+lo6c7rfO+9SRo5jhqdVOw/JG5E7dZBJ8TFo14sckOhof84X9eeC2EJWB+ATiDf9ofHtSoCIsFmlMLsevwojWhC/RP0TFC1hdK+OXOlDe0oNZbeqTr+k2WLtwE8Fs6qdoq22jOnNb4yX3gcN2xeOCQr+sbfpSIbz8H0WfDr/15rUHKwHw5HdYipc6cxleVx7GdhCWoy20D6vc5EK4LtBoh46UDqSMwtUSlE9IRtwE++eTSK4kVsuU06pRBqziHPKJIctq4ZimPdbDvGaAd/gTXHdFep1eRNINxVaQx360WMnigm3Qao3L1aPpnzxS8pkbrTUSKdF/eXn5wdrjo/Lz7irrbzOTWIcCS2aSa+iHM3ocxvKSR5x+Uc6DAuwbDBcKpcti2TWdaYAdkvK/h5wHRYxymvaKf8znu2wDoGRlDlDJjluAPw7wV5BkY3KRlUbfR2W2+LB452YIdbAMOHU23ExYR/jrsK5CVEbNwc2EesOX6EIDJOXKdK/fzUGiLY5KlnScA2E2X/B2iPDFLQMA02SwcUihkX+g8k72k7uuAebr8dUgmlm1rstO5eYJMEAeqzwP3U/SUyDnVqTXXZ51Kacxab/dEjfwhT9wX1OXfupN+w6di2840WB2wAIhGEpcLSvYa4RiBV574szUB/4QzudKGMbijLTAQvfDcUrRQrPSVvqiFOszHPy7RrTwXoW7Rwc075k6RPvrQlCaWFHRv9MZuzeM5Ml2GiuhZL87RAz6v1O04xpuckr0cem/xOs422G7lrO8TbmN7OKTRLjmXW3XwswamqbGRTUbYOv/zb5xX/KnE2IL61VyGAYpzXnfpJdUs9rDFe8VkXOsw7sY6fQaGfz1jJXLxrgn91Wp9U4YvK1wNmmJ0If8flYzGnZ44cK6ewgqb5Yoo2y8X3vsjxjkOlIzu9L99oTNEOr87Vq8xdS/O17t/aX1QKl8xTYf5KvfrTGoP3Mak1/3uG+3MwkdPeFD7pPP4CVjIKP+mqtt99a7MfnKmBzz7YKz+6vdGExiuJy7EAlVE527chZdaf9SRAhmpXbwaIORBEozRI+RNONejCRQhDulFG+eh21Xxx3uqfLor2jU/BUVwDYEj4Qrr8xSSQqscIG7PaiXAS2+83q/Zf2eKluQBKLoWXexfYPPAfzGmRcOdKvbsvRijaoDMgGaOncXHw8RnM9sndT3PJXgf/RDXV2Pj/lUs/zGsbPy34R/oYWQ/VmS1A4xJJeoB2hZh1uva7Afihx6LjDORUPGRhN5/GqSTc5gfNsBhLj4yY/0G4ypbYPM55qS9rnfgeFVoASLXkAmuNjWrjSRipQMvz0ogNYy84K4NG2wxP88zYIx00Sx+TCYQM74djZVRUEOWQLK21ueq5DIyfmnYO+AVOvMMzU3BN0IBnQTQatndRK27QCTbd8fyvYd3OgcQPls2Zt9sxuJGlcgTilQoQ7A8Zvr5Cc5zUcMIFCtlEHZhl71Kg4QJeftIqO93UaGg6DTbAbAG3wlBl9DE+ypuFzXzoIVRO03/4XaPdutDQ47OuzTOCwkOrLDE8DEZnE0yS+j0+eJPbDIxHFirdNNYYjBP01NoVvvzzDJdRqcyHsUKaFTXVz3iiIk8/wMOfvdbNjAhhfNwBbbE4ShQYKZDiO8KX4nZZZcOQx9f5jBUvkI/6SdbqrwhLax96qT3whCoUZPicI1m5FGY7kvck+M7oGetux2hzGn5pSRxdx4qlJKx1IcmRcBE/sjXzdfsAyAL8bdzdod27290xMiC1EpMjHFERWfciQBMTdKRNp37OQpBamHfALIKYbjzbj8R3jznLLxAfKsTn7FQM7E90FK/xzKDudpKsFCWx05oyiQF0sls/3imNc/ALMYFrA9iY8Ix42Sf8sf3HH44bCIV0guhEoDPseLEVseYQygF3L8nVSeEPxka8/pCaTq2ciTFD4W8iJCDL5k3QWcG9JSNUcSG4oxXZSLikU+8K34ZS6YGBSEBKQ54+G3d7E2dY/OHyxjxSMER8saevHRo0TZoKrKRRLyjjwRKJlPZoqPxyYsQInv2hyn2qjMC0xvf1Z9Jx+cFralWId9EX02LzUVh1cx/MPL1rukCBsBs4ld8EKvp8aOvIztE4Xo2/zeCX68EEU/iusAefIn1W83jJ9lIBYcwUH831Sg0v3PACIZ1YEe0tGdh2bi+ugiOUiC2OejemJ1VKtz8W+K6AAm0YV7bwzqYm/64KUA7YD54dgHVYmc0XxjVpoY8clAMwsq4lOHBC22ekC1EyRfd8ZBndbnLKNN8L05jyj9R8WB/V9QG383QjLfV9E0FUaMb2EGewp/4pA9mo0HD1baLl6BW/fApiucPqL72/D1lyHfg4OXhoEw9muRO61ag3bLImaA/T9457iFqdytJYl925LwXERySr2FXc0/V5y/4+/3j5IY7aKVE8eMTm1umu5ILJX43WMbYWWbOFHR9LKGzDoKxGsi1rm3f91Ul/tVd18GxC/dbYUj6n3rsa7a7LhDi/bPGzNAYH6vWkdrKcMxPoqIHqkWLtWHZA8m05W4s/nNlNgAhvG7mfs6ZL0Z1j/bS+R2Xyf+jQAmgWVd0f/Mtu/Y/OK6FwEDNuAz/T/+Gg2kI4K8WAyTIE3/dm0YwMQ3Zv26Ps/yYmwrQkSGmKcE/WDyrjnm1IYb1/WWmZ+jiaN3XpB1lmiB5Mk03PZsTQHc6QZR2QelxKKAO1y8bd7r2VtIQoa0jTAMhP718NIs8V/Zu59N2tlCR8l9Tr6mW7ior1inO4nyzeyi1l2YdlyygwcQxoT55SyVEPX40npXZZpZ6u7+QMQrmGbPj1ykt1dlaxGu5QBWeQvoO6nyQVEXnqmMceRTBF0xYC3jDIkpcmRL5yC3gFKcJ5w/2e2ImJEK4HK8RxdqWS43p7rfPmBoM30ettaBN2/I3PhGs7ltXkE7tCnydNZNqZD23DFZqEUorc5W7NHDJvhh+gNn7sflVFslkn5dXglS8TIG+egz63kAn0j/n6ruY6HxbpBP4wwTyOQzbjapAv20bA/ouQR5xi0tsiWX4pOMb7uTgwZ9kq85IKAM10pLhnT4PRbibY3jXVbEKeADf+6Z2MHioD+X0IGLGWEllkFTp0vaZZ92jSZLFyRj7RxvHGEqwuEpzsLjOv4H1bB2M05rlCau6LaQJnXTx6/QbYwxLQOcPWSccL71cS9mPGVoTJ3R2HKv/kCk3L7A6DZ2OKJ0J81shWcEbwvprBThvObhtBWtzCzAn6Q6kNDjxZxcdrLMbuNO2NvgQfy9EcUSAmeMZNfIHHNtiMuoyNa3F5mzDDEXAF7xOIRGH7HNC3v8EL/ljDpolRTl3Mw2pCgHY8CGPRGRz5d5viD+jVUjlm5CDGOZWNuN8VXz60LJ8VJOEZVrs7qa4RDi7IAdpEhdKYaQNSDLhU2fudg0RurH+7shkqlGCPBUuAdTVrSC90WDqcU3U+Iwbx3/WTC6G7AvDzLuYA/hI+HQXVCjGwwyCwjer1EevQ2zVTtY9JyTbvTCWQZf7tr9DlPr1HsNRY5M7KxCPbPeO9fLivtJTziPAqGEpWjWthM0aoCSSAJWi8zFftO0xi9DneevFcqPLaZPjiecEDyMbXFl9ZzE9YMvksitA15Go/OyP7QaSMIiudWM7ZyomC3z4X3judtVcu0zmm/nG0IqleOKZy4gCpawpd0w/puzanSBVvk4VlPXrvUo05+rqmDpWVHD8jXpTnOYzdU58C5o8Mef284mtn+V8LjPf01gHSUPItj0Q7x6jj9BR+AfzO3ene0/575TFrGnmliNDshcrRm1jRdv6X7M6fzf9VKPhfPElEA2+sq6086/BmXeYDZQqshMnBIUWLfVt0MmZ8RDSZiwJskVwq+9/zdKSeMpzYR+kKZj0cvHz1uFgzrUix3/PItpT2HHsCGv9aYwIiZCxXRnA7FJEcOV7kxNfwWqK8luMlyR4AV4gX7EgTpoMUNVsCKb+Zylq3SkBE5NMeApqeESu9xcfVLXAg0Icer8aCWtAxP6PjUXXQdXWRktDkZ2c8GLt7eVECIL3V8X6Ev05PHvhem9nkzWIgrGYTCQOOgsdvGpIfj0bapuivam6Tsm7U1m++KHiPOyOmjZBFNuufG116xAUiiEjc428gMeknQ1s0HcBCJQcm4WhZ2OXhJidowNLU7o8pXYYDkDJeDpdZTT+yaBr/wgpSlkPvKTwymFpMYXkGCwxTeHkJISrL0JClhZq/b6/JhvNu94Kl03YodEHyH3XOCQjm9QQq5Eu8Knhsma+iMGePORKqmz+CfeDOESoN0NQ6ap4GGW855ILjJahj8gDo8jK2Zr+2usm80mxlIrTzFDuE1lwXEjrqa56JM4mTBY9G+Jmmg+DwYsuZcvbY6CmJwwSN0dZpOzKj4kcc5uuV+ejFSAL6EjGt1+g3azxcorfgd7eanZUBsIOid6wnE89jUOEpNabNQPxXnUVzPz90PQ/gfccWC8ISXJBr0IWn+fF9jTLvwyZ2Hou+dXxGsotYQ32fOR7pexlV9In19BM0lunemEDN4pDplZwQJeW1RLBUABBG4PP8lCUVpjU9WyyqU3A0ZFF0omNkLyiAI/NGCn6HtWWf93N7pw/ejciODVPEGPyqL6d+lV2nLfiV42gCcl0AaVn5Uq+N00R+xeKGMtjt6XKZdnOhrNFOYdvWx0ZqbfPy7xPGxqY9pA3Oiz+18ad9ejc+IM3tJEZTRKa9WVoEYZxox8igSlf9vwq8034y3uuA315m3ad3lj6oVo3guDdW79Opqb/DyOdi8Gi4Sl8vWH3tI4GPPlavCY9NZtC2ce6zDTk/HGkXkF4M7uKOZP5T4DyHJ378prWZ8beCGZLcCKI7bOyzq12pQX1+CDkGulKzvv5k1Nb+Pdp/mr7PZwZlVrzbdGwG2SUVHn0dQuF1nqtocWDMKO9jTwpMynEzORd5CFfnOBv1jFagjPtVft9nrRCKdS+sfF1SvdKAr8aMafpV/MUaxLgI2Qn2/mx9aaFutRr9UUYg51I/xHMHkvO7d8Cj+6ZymlOH7i5wO54e0YAXNYgb+eEo8OBftoB80fw9yw0himIt8UFF7rAQQBHDn6rdRcLkRukrDkC9wcS7VvYs9+KNpunmAx5Bri7UiDZNXdPTQ/9Q9y0gD6X5j4maQpgowmXAhHstQqPT6GjnDHRGl3TRth222ON7nnki4HpcVXZstmDNnIzI2uECOef3Cuci8RLjTMcIbdOYTsthF9tYYZaYWwQF0hdKRYMDhRAoekT9bPikJTV6NskxiIKatt2ODhVtNrvkvJ5pmFFK+4tMigFbpStdgrfs+U/Q5JPKh1feUjLtKTpo6qsarILsH5ubQNRJ9We8w9aWl2h9fsPn7aagB8JnNEGWn7ya6Ns282IyOk7vH2fns1TYZzAPNv7cXwlfEBMDEG6lbA0Ahh7qeULaoF56yowupKXAeHIbEo6WVkOw6fKGmev2sws7snJM0Jg9tTg3aq4OJw45in+nv5bTV2ZHIaQ3h3M/r/pD6UMqWf8yjtY4Kj3WNTzHo4UOAts/XAdp7315PurlaT91ZLOtG953kvA68Sai0lPbzQOcHdwfqADJS0IDIbh4I6r1uJSctUL5fgXrjaXYB4AsN+hcypKqnD6hJTriIjnAVdyFbF5LenhCxvhXhY1PrDDIkQjX3VjdeFqgaGi2aabrLKCZQm+L+a0pibVzPGti2J9I2HwZ3h9DaZowrX3gZWQes01/Lg+jxbcRI//dFG8li5xrjdxqgGVa9EmpsqA004cCliZL/iR90zMOLgVdJRSGEErRvlC4+lbtU6W4QhIZs3W0xV67Jyp0mDT3MXdHmDprsiO0gzbJJIrqeN2MYlitujPIZ+psGC648IgHuFjKUMMEkU7kkjXMES3OJNlt2ttMyH3N7IuntoIf1ZGk7ikMCB/MMmvAKvMcZ30ZQQsjrMSADxH/7eXvoYhqsy8O13iaJndP0nmdu1zFo5hQv5kebQvtn95kJkX5Pi34PNf792aeILAtvVp0kWG9PIyWdOZzOztqGz78SrRGdNncLu5zfIhvhaJPbY2wKO4Wxf3R6uJcusL8B4tnXxvEmrfWj2gs2iFhzY274r1GTZ9rbt6US+LCSOOzs3oaPj4rORvM3UHndovdrDkBnt9vZfm8ZGno/onvzKhLHDPDgws2drBRx2TPczUPySME6wvilUv04klgfb7MGfti6m4t9N8WnLaojzxY++8Ca3SNXwT5tFS/SCS6AboafQlZAO/ondbCXaSVxWVvoq2KtNQ8ifOnvm47XrZMeGcaCnA7Z648ps1PD2b5kPbiUHeWz2dflxd/+K7jGQIt6Z1wfGFXIrKHoo5AzJggLJcAU/L7u7W2fRaSQqJTNxog8YaJbT7U4pE8r4AuA/mDw5NJN+RA75K9V7kesi9vTl9KIadiNNb9leBdSqD05GdnDiUhYCwe87ZfNhZ21rccvTcH7339YsQkPvJg0d0fAZXJi35v5rQPStGoW7qGFXtTW76CCM21Uo4zxJ2cxt+IatROg66hqAX4+vYsOpHPDhB0NcIIYHgAUZ2kB0T6DPQCZG2YpkfmRdzMWJ8Y3tQYso+zZojvBNKP3XDALjqslQIIuH7xnUMJxexZJGXJARiYkOSIKWytpc5B7Vn4PH6FfevReXpFesqd09x2shuJOtr8fAuEIJDHsTncHidliDu8VGtcBfH1eS+24u++2o8Q+yQv1c1G3+/j9X+5Zh1XfkSR68K7xtCk9WFXqLrWOH4ktwlEtXdhH/rG5k4ujJYHdMDltii/Cs3qiMvwFgOBZRTUJI8Pyl2mMUiZVlYNttflOuGGm0OBXqa444q9uHrxlvt64PDWltPtcR/aDgQOU5n3MLBh+bxUUKEn8PZ6syrv5vdejl5Jp9Qip4jT+DpvrxPe4egm4PyjGxZNwFb4IYFCZ8QQ7+y3tUHplqKBrbSFli7Z+B2y5D4Uk1kC9q2EWu/pKM32BYTfMBDYuvLm9ff1vnRKkKwOEhcXFb5EdIdQZBDokOfLjsed/pZLODVkqCxMOYkqjqNw6zYD7+VMvEqLM0ZEID8fsp+tQHJgTlg3bNGCMuWlH8tvrFeH/vW3pZDEDaTGPAYErAOfzYfT/hm8fXwFLk0RytGzJ53+n7T5iJ6c+wboAVAcDxKw3BOn9q03ZYSCkWfuceNBO4tsJZOA3e4ZMzLDMdR/1GHaLpxDPuz3mHaNmTz8b7sH78hxkYmgAZhNUnIX+bV06yasSnJYBuEnaa89eYqdv/8Uhy205NskUbXgiV/hoHEjdAJv1BPPTEteu8FZSui/BgADjiOnY/9jMiD3z+Dh1YaEVvlmEfq5dmkUTaD/Kobdb4TMw+ktnr+QWjympFcKeWBlO1fD3WELmm4/cN4RlABTNfs5qW2NrWfBOIlblGBXhVU73O+5VwRHUalvMTB5AgvJeI82lb2puTRKF9AeOaVDwhyb6oGZNw0Jip3pBV8uCHvW/0O19CDEzMPnJklhCYUAnLLiUORkG9+8NKobzKw9qz55ZBqXP8mZYMutV+yUiOCV3L3LGB1wBWmCU5DpG2tWGNZygoEvq9SAINS6g+SVxI+Ac9P7+2mmuxMHx7TM7kz5PM7Bs4bj+ot0FLCerQyywX1z4PC+yeDF7viOumxd+f13j2+7v73blELuXNTjWLqM/yRcX7/JmH6qxqE0GZTWhOBmrkYIFXFNC8O2AeO577skvAOvMIwf9sKx6sDfyrVc0F9DySV73IxadvzRylQULe1+eA7qeP1vQvl8Euh+685nGXkfx4hQAFVL9AMUrY7Z6plsqTQuepiKZzG0uUJNOQWAlCySiRc1mYIzs9r7REhhbEJI2Fy2pq7yvxI9tePXr6JdgUleZ8DqkBPwO5ilFtBau/TWhV4z+AfC+Ko1l/aY1XXZ+Bxw6JAnUwsxaAcw4HgOnsOlvwyhFfII8mpCY/Oi1HYEKr8GrZmvEr3s+FTIrJAh2KUEtaWt9IC60Cwbpi0zWJssTFCrmJcKf0X/r0p9tyhq0UXWgidkVvgXmDuhrbWJxWTm3lTA0bsN4ghjjeMH0mMY6aAzY0zvebXqZA9i098svlBilpzRoF0GHESpwSZU5nWYu+LlAGRwFfOtjyAuFCeGTVo0VFoe8Ejk9doBff0+kzZX5PaOtXmy088RSX3Ysva7CgexhcYhxudrYmiyP/tc8SMNG1UPHnK93hdgyUVn1shhSAq66cCdhrejzBVMRGQwg9sayfG56CeG75ecusX+UxGNXo/FOIpJpKbpSAsDLP/BoWoWsNJbI0SWKHme2gTeHyFIMal7/srfo1V1JIB3fqQAxhwHAfD8OYLUhrrnn1UFg33fD7vZaxzvfRfSM/Pey4klHnJmTEt+kKa7wjMuUIOxndL+KQ+tWjLE0mSp3+46b4/6lC3jsjNIBlDg3zYVORbCMrSyEBkeKdwHo27xGUSOpk84AarrE5NfCVWPashmru4+g39A27F3m5f3HhbpoVWDjN9czcGo3I/QEuFgOGbJ0LY1fXeSgq6SXYiesVBqVJaB04wDwqxeDR/zMaxrsfRlJU+CdXDAbHJ7MTiBvl3VAgMM+CmEj5CWNaYWciTLbT81Qri9eR0MveSmUPXyKWRFUIw9SZAVeGP/8NqdXdVzLTUYOELU/tp0019OC34QdZgKox6/5pRo5zwkLZpvCeRkjQJD+ae/r0iJ9mq5opXZJi56zx5Lm0o5ycBt775n7eAM2X0OMVji2xPI4/BAlHb2yOQ9Tm8FMOpmNK+/nev5vEf3Rk4EzdeusiXlVsWNX4UEGewnkqsFGzOI641fmWTKV/jRNW+OhCIMTm6JHkxSmQzRzqpjCejoh7eQ9/P7v9LOVgTl2RTrfzcJcuwrIUI5IaBODm6nKh2NlNP4Q+10sPzajoo/QdFMNRE3OWj/2Z71jQiJttBJWnWYdaUM8HoBlfxmEUBMQL/7C5AnABRi2Huj5X7PBJ4oCQQKcTq5OVJB2euMtyxI9OQ/+VbFlRXFc6haZJgPCPRR+G9IynXSYAaxtDy/Spsq73lUOLGba/ppttfVHzFiWrJrMTQ6WZt1RO+yscmH/4wivDzFTtl+T0LhgkmZ+VHmCWLeCIBsfmfAneSCQCDWyMxdwAvv+mhjgBMf/F60MxTVB4HIkN6ILvtd8ByRCZcIY97C9VtfVr+wHJZ0/zF1fLGz7tu1u6Rt2z3PuF7I2OUYC6y9BAIpUPfY65S3xHO+h6CZscvDPYvK5D+TOZUNvR94StWWcCHf7UflDv/qAfwNnF6+SMpvZBb0MgZ83iQmpBQU8dt2VV6FSgHBMyqQEEhO+9vLPgO4lBwlVp20/woZ1JwYTDLp+ehPFEnl7Sn8KseGHMoZ6sPOd3CbP+Ypg8juEXTG/BosQ5xKZ2d2LdXwdCHtn291+n2GfDlbEI2MjThGZCGFmKUqKkZWKv12yL8GlndeWTA33Imiy7tzJbfBksnnfqGmgJeGl/UBf0W3aXKSI3IDvKxIAYI3GP4DJhWDq3pemetQbxwvQnCrv3R0M98bCosawMmN4xks0SrRG2n4eJ67/hnvN8O5hRsxMXIw3wc/LF8fHd8etp3BGrFqsM7zMSs6QEzw3VG53x7T0hHKNN9DY/7c+kE/zcwnmLfyu/pt8h8hN/UZVWR6hPz2I/QlxBJbUKy2Y1y/teD3gwIVpJn4CKj2g6n/vN9+66Hs4DIldu9nLhgp0W9dZ5Fujbjjn0OjRMVXu2EhduiDHRWW04CNlNMYp6Wp9VG+ICHw/LS1Ekd8akmfMiI52p8nNDKy8AMyzfYxZOWNPlBpYwxyRVWuvrEs8z/l7mox06j3lMovhMEllaixgK5FsR/y6qpOE1KdzrriK1rxMfyXUFo1PlWeh1pGXSs2eBhVMoEDt7e2fmEjRlQtXpMsvY2vwBHEb2dhhuFTFfWXffMRpBv7wtDhtJKFU8uKPnEjqsyZXsRMLpVWXdJW303hstLFU7OymIVqwJdgR5JhdTePiaUHlSzZESR1VrAjBmji90TlTDbBPahm0N+E3YD4ZZ8DUSQFc0XK+KLJxvQRWGSLJe/7fuQU1H6a4I7ivVPRm9GpKLCEDi+x4sMucjEyIzZPwWRnl4DqQqHYTzfcVqz9SKvmRwkdVRLnPa3D5hWIWajO49apoBwW6ry2vh3UOSDmsw99rURGMG/3OsA4XeEC3aOG8aKun2aZjPDc5KJ0xz9a7KtS8NndjyrRtqMmVdYvrveBzsvTk4FSHyNXn/2ZPRY30m0A+BMjSu+O6c9BCCcsA5dxQyymsGnOkzuGeIuuKRp7jWfxSe1yy9VhaxY+2SOsV/eH0LhgJUtAP+Zp1YS1N/Vgr+PaAGzIm0JokCXm8/BgokqmeZnRdWcLHYQzop5xPz6apcAuYzNXLo3tC7YMcWpjsisZBtMlSdHHP8pFORC22MqwKPyKhOBv0RHRQbwps8RhsP44G9xwJC10fdcDM5yU1miTcQ+SAKZWaOpujs+/Pa0SMkkZFzZ79g5vItI6DYGL2pbtXP/2T14qsBtwyezQdYRI0tgM+WaMoD9wmUJUWo29lQloepPRYgwZ2d1yvNQNjRd4BxAxQOK2y2eAvp9Ow8bM5c4kwGYCZ2x/7bjr7pu8tV0sKyxnrefm1clS11lrt5VdYrIQP+4/F0dNjBv0Ft8PypTuQzEyCW42LCuLrK+M+7fSpg+Bu1EfVSkpSri0sKNB62HUIkEB0Yaz2nCtYXL0twppQiSkYo/YVQZx03CyuAERK+4asnVRs09wkkAMKQVav+PbSHvfyKBWjdJNM7Ld4d7ZUyKs5X7dSURZ710hq5Tn3/TwFYe+fMEdXpWRujy6Imgj82k180AwPR7mRpaJuYag5hOTeQhfesXXBZvdRccfIzwR+08YrvyLdzaLA+PzU9TzT0+avtugxXsUN4cg99KqdNKLfu5gEQDEapWL43sD5GBMUfLeGkUfOpNRyiXB22zpV8ZwMin4q7ggDwH8XIEbU6ByLhDC9X7oGW2UGnXw01ywcngFaFuAOwuPDlaTHqgbjUak/RWDFTFqqJqTwlqhy3Mzb1kfATumvRL7E1kyKpx03CTUJbf8mAxum6YpJ3PtQSy/g7PC0waf4gpzV1uZqeZHxS7QETdpmdKPfHjBVXS6sFeKytz1TfXlz+0IZhXUUbhUsdnopOAFbfmpOxVsNA5C7PtqNyN5wow0+IMdbwv3ogq0s3ftiPVSfSOSrm8FCmWGWZRGM/OCT5EZ6zEDR68ZMn9yP7LE81soenQN8SxF4b5gQHKXkN9PoJq6TCKA9DmspaF6is8wVeZHLOyMOBzIN0WWYzy1NsdywEH5buu/CClJP8AyifgNNGfKiCi6x5NNF4H5wH5M1zv1rwJP7VqOmzKFv1rWyEFf1WdYJ7Nud0J5e1b+4LbobMMLRD+eDjLSrQx3Zh55xvKOxPAa789QasUcgnrzoIshm3H+Mrh4wKoBMXqiw/K8uQah/7mdgIejj/fMJtNMKb5BwGmgtFelT98tjxHz5IB/jVXNngZfFxG0MalA3yiM11DxEU8nCYCcExj/cq361jOteGTsAUutZo6TXT3YLqL7lpC26T+KzKKB4OK+3KuAr6KJd72zPSwVQ31X+KBK9OLJbtbx4dIuS4h/1KuArP0eiyz9HJ4Eg5qwdz7RfbxIOUJ2M7/7Kebmgxs75fLV4y4Y+u9a+CiGmvVcyZC6JmKAQAAMmPR0RRcEwwpSkWuArZnfFq8gcLiJoYXu4ltkbGGlLYaPzpU4poEJFMe5lsaFnV+FF5IY35+F42EkMG49Mp+kX5Ws/llyuekzUQJeZG6eeZ8zD6Q8VgoL4duvrgRStyXOvn1EEaFOPSGa62ltaMKmByZPzA8dmKgdtfbgBYcIxXe2azZV+byQpT0hTKU0aM5flM54HdeddOCE3SSJss4WGbIyOcxdwpvZAZxbo8bX2vvSFWHTN2KTda1TqJgtn6+anmSs7Eg6Rd7hm2Cw2RhTtOsX9V3NunTxHPgYKEcnotjzqu1TndI8ErAdjRhJC6rBxCZBsFFczzkENJGMZCQtzO1t5wiCyh1Yt8SPtyHy64D+zO+L+63WBAygXPHVpeJEhlS6i8TVj0zCewhMcI7NTb/849bJgx8oM+yoo8TIQUd6D766mihI6wzbNlIqEcp8fwncN520B7WeueTvbT9xexZ7NjLZ8s0mo0GMVlMtpHrH18AY1V0ICsHVawJDmSdo8pi538y2P9h/Izb4fznybNvcyuPQY0+jEfhv4O9+NYbtTqDwQ7R7ac8ZS7+S1XF5TdJFRpPF7ARU/wPZJ3tYUUa1kotCJLOHtSMAXXOneVdjcTlyEWEAuB2nxOjju8kCVywnHl0Y1g2MKaIRPIt/IxlmAR5TFz/kbRzW8bzZTOaQO5cyO95SYHj+O2mja7mDX0ILhaF6Nmm9sNiDpJbCmPMSt1KMCWFWLj9AGF2FM1ptCPLtLJE+9G4SRp1ZL3QtxQPkLQxTCWrXP5Dq2hYBE9rVOaRsXUqBuNnh/E82nwtqd4EyNjPfFlK7xAQGTsiyweO3gYykvJNLGLRrvbwtaiUFQMBZQ9L0iHa+XCn4Hv0lKJt6mh1hoi3UUHcyFHq2Si3mJeHQoiCKmJEqqHbwSLMP+zKwfrr7MI2JWbZDsnbz78caM1y5XYgMrF62uhmyQmd2vDWZFH6tPMXgtnu+E2dWmaPR5NlgRegCA6hWKlu02S6kz5v1FAGJuoAxamIW+y5Fhf/clYVTeoipYmdumMTp+DouaJfj19elZDC6rpw/d8F0XcsR9jmxB0X+3QjhqUSTb3hVmVP1A5kZN41PriUbtwTdDAhduLyLdBniRRxue7Y87Ccy3M6tw549rhEn9hF6WUz+tIkdoMRfG7snzuNn1zT0Mt3wpUfTCDDKSN9+BuAGyalllxggaqfvwWjlA+py+aLPrlm2evLtpvok2bJPp8cCx/bSWwvaz/resySELzTQzpR+gxgpyU1gOezXlac5RMzmjHt0uQ8hSfYIVlk0UQkRq+eKqYA2GOUwk2RGCCj/jlc27/KHFub/8JRRR5hr6lf46BDfoLjZlmFzQb5H8tAXxVa6GmWN8gFO6bAfqv6SeZCkuePRXlyu0yu4n32M0KXQOiWqDuu2mLPDislA/KpVzquy8D55rUpAizZE/Ayv7DwdOoA5IQTIAMCUQfL7sdR6RbWH8JA3wv3Q6waVihI6YirRLAJTuXz7j15VQ6V6kD7yL5i0Ks1JTyrYCbPFGnHnrsHwrtVu4QTo9P7OXmZljVytKoE8lRi6veJ7ne657QyyL/1LueCChwDwYXQCd4VAmgOcdqp1JJK/BQxjHzZu31rPspPjfhJBcHStFGRekttkHuEjvuaoPJ7It5m/nWox68URzpcI9YJLqBvN0Um6gxFu69DmKcFhUL3IdVg6wdDAVeVeIco44W9LcOTOo12cxJXtQIIYPwMm2Vh2lCQD4idI9LDCLjHWJ+dMSJ1AgYfllP9pyaeR4oclEFDa/TM8wAV1dwvEffDKh2rdw+lzAWp3R4uUQy4IOIpAw9iLuFn8zzz75wwEXj6S/UNGrIXiIQ+G7z4a+MU8TgY+sQuBWuAaJllgS6o9u+rIp75PqsgzQ8D1Xpuho39pxF1KyQboawR7o9fm/A6udsB2SyF4BCKG9gV6OhsHUC1mJ8Wv9QSYsAzm1KOTFvn82svTqKMVhCqkbP9KSHFPnGGsPYMCCcM1vXYW0/Cdsa9yHSoPpyObOkB+48U10SEP7zqzpcDKsm8MfZJJCByIrYcEROiUNYOmJ9dXljwR2d2wpTGv6DuLtVvuv6GpnKPre9lAYq/E7u5wHKMZO5QC+rXh04GiJgbIL08aU8CizTWFFR9Ao7mfsfcuJlgc1VvhWOztVaqvnu69Nnsl3/WPRKOSW49iUvZw40ARc1ZTx7MdyAFjzpuTkM2SSHz0015CojfWxycSS/7eTY+wqEl4o+BJ2uxjLfQcIXKLDzrRK6JykF5yBmanbKuvuoKj34tDOGduVKnFe1RBH6JB09iBand1UCf/skb6lB3j7nw135XGaSmy+5elMuOWdca2lELGcAZyhrKKL5cJXt3Ivj1gBLAXNQC2qQU3O0h9vC+8UyIZ1uw/2tVuvXYXENfDS3J+BAJzSzL209zwzPphlkCIqioEuaUhaUqRZ93B4/dk8EyC5LfAZHkepGGChzx0shqMhA1GclMVpSrVa5TpVY7OBkig4TnPk6IaqM6g+FeJmW/K5WkVfOR8w8E2Eyw3ojg1g8tcP3HWhjZ4OtwzvjAkn3ChbdnePOy72lwEvYlS83jtbq1jtibuzWIOCoY2MGX6wCZifGxghZ5R3miXOMCtRW8Vkwo4L7WN4j+UgZL5FwHuL9S6g0p6fzaF57rbzQYRppA/+SoemCDJLoN98EYXjkCfR8Vznc5W+NJrqUo4C8iNJprldwDrMgGfvqye1jABc1kVO38xpp2wNkMl/SmotK89Y0TVRuoNA7BAm67JZjcP/NaG/7AqqZ9D92ea9j6iN1ftF7u5M48agNwhfjILlfjXZUlz1zzxdZPqrTss+c1Qx0a0VBr61hcFFaalPPFmscZb/szyLerOMi/oLDGjm3X+lIrRlHGZdUyjbtyxHrUrUHal8dNXlUrqYukXyYHXNxhTlQ7iIjv9Fmu+idFreJWBQgevhkgIVDyRGBXwy/j1fAW+TayuwQyR77wrz2BgtjtkvjRDOkpRVx5YGkDXM6+YyLKEnfGWNR4Xs+PTp54oZo1xH8DrV4LNjl8oqf+41c810hEp3h4HxT52ROikV7z6PSdRkVhi0TFLlUI4eLctQFnfh+pCkm1vEqQ+3XryO65loy6jM0iPWA4bSx3FJWJPMAoWkw+H+AahCUQgsB/CHo7ziFFCBZVdfYdF18BoWUebM+6Q79UpPBM0PzYC40hChrwHriy5exOoqosFgzHHZKv3JVxNxP+ikXvnOcnOJeb7Mm6m1XSe625fEzQvBs/ySMw01t7AqlGpdlhXDwJTv+kzkvltGJCLHsdg60Gl/SqbMMZeQuQI8zaN8aFSI0PPHSpP0mlalHbuyVnNx54b4zG8EoVBM4puo430C+iviIpflOh+s4Q4RyAXKMHnflN8IRMyxRKMEW13cO4Fx6++NfQn9mK4dwkWbCC8zcwBlidmRisjRbNACr+BLNFbeixZPEDkaJv8qZApktrnSx9S3+pzJm8v9/40opznxTnSSM6QjzdXmMBdgnwxw/jj03u3ER343JbqnzK2+7leTCJtpQOugLgwC+18myPYrvr8848zs7Zsq3PB9bZuf+2UHLCYPs1XsGNyPsXjczlt44j+TgrPigyO9WAYiPtBLhbflNKcKh+hPGCZxUoynNvLXcdwHMusSB0J4bU3SHUyuNUlfVAR7snWqWSX6xrzsiLvzNZbJdT9zkD9PTZ6IE33pZzK+VCU4hS0Kx5WQ2IRtVXgDMyJgOOlZ96ficI68IQFNt1Wtasgcv3zSup5Xt1PD5BIYzcyB4B89Ggor7edxUgFhteyimxWphXgB1PI0voNCBcQ6Guc4PTz4lwuSGi3ihKi6bUxkrJ02uDLo3QOU6hixMTMqVkj5Rt4EQfjY9J4L2QZg++A4pI2ekGPoevEe4lVGTjNcngUYuJA/Ndzlo4DRdPrMswa1womxLlc1rLJVtqopjizKkEY+5FFXIVcDEIjVd+EY7Mdre5LzY5EcGaMwBuKVYXMTlCQ6HYWLEcVe5jnSJXF6b2Ac4Xlk1nklquxclIp33Icc+PpRqBvNL2xEHfiNHgA89San2Cr2Vaalq3EW44C59bmFmwWZ+SURlVORZrVHMpp6Lx34dUevSWD0i/kUKNWd5NoEFQaJ2k/C4Sbpl/UqC7thPvoU4WuDsLdnIhGsmzw5zuTDNN1+mAcnz1gQswv4nEh874dDfLLehmbXGp5/MxDHXMNfv2xJjGWVKn8Qx9l2b70ajonpYf5BBOUQfr88LVnUniRnN6/vDsmAvCkXj6S3yKJiZ4MpT2YX+B7cqC7a913C0t2hTSo/DyP7jsnTuN/XqY+FLh4W3DqIiNZCa14R4e++F+fiWN6W3zX25sH7AUOjf2KPQprpsQe3pG4i3G7WRhv8Ui+C6BvQ7c6wsRl1b6yI+/SGyBSDXcdAJ0Ie85T7IgX10LFpLvKaJoGsHd/ktdD4o+ozWMit/O2pJ1hRKSS7Rg4PRx8DDKfAAiGzP+hpZG+ok0GIlxC+hqZPc2nxXqZDKgFiBIFjshsC3yk/9BfuRGwEC4mEjTW9BISTlNNQDvLQXkMYI01SsPIhF9yZ1XsB0WihyHL3t+LwYaH9koscCY91ljuat2odrsZvw9e91XsoxdLFxQE6sJO2Jy/aZaPOgBl1oogPVvMS72Wp617sKDMgzwFw8w0G5Cgnjb8QVQpdQSAbrOEKeMPE2g8qiN7Hr6UkYjx/OjDdNdfftehYxVHHQyx6WrkBes5V+QkEsR8k2EgE2F7tJWlxvP1Sbly723IBDMXO9Ev0LxpVCcPtswCC1PxBCtwMNMhc7slMCVrBcVISvxehWjft+xDehGrdW2bheHXLe8VpUdf+hsqJY+u7rGmdZbv3tv5papSoAso/kWzCnX1kZ8mEAk4tBVfWZseQnZwswIFhOK+SgMKq5Yj2sdrTaU/n2yggu4qFGlww2HyrYD9tViAKMcw5LPiLae6/4cZV2L6kDyGEEXmCZmWXJIDPI+enR7Ih0JGplNMjMpNG8c9YyCJVhvIhYh6JNHabkmi6N0L620aZkKW34me8f/4DdBPTUh0MJuHfzb5pHdhneC7ZFADZ04H95p+VprNupQ/QrrFBjyZgbD8/FKriwEVl7gx/fSq0afCvg519K39j5hYbeMOzsBqFdfoZs8Addn1xtyvamEtUIwu9AQ9FC90ULBjS5hjd6Qn1JVa4AWCe0M8+sqyKRNo8dLOatL+ZXJX/+5xrzke5QL3tl736oGAlhJbfMA8u1ZLFBqncpD60Lt94fEkvTawVu5HkXzsJcUVkIUl7MSLcqRveUoTrrfTQaeXjo8FbGdjKeT2Q+JiiHJG0b2uYPk4KOLphiNHQLt2Y2jhB52TIsPn8dOPbz8TCZ9rQW7Z9EysX4Soi4SJPWpTqEpro8H5osy77KgzAVsgu1jGoWaIrdlJA8nPxWz7jPA1KJjVBjOSd2AvSRvcwG84BAJlB9UvYOGyI6WloR+ig6XVYwvrfDLM2POs6e9axmPrmJa3AfChpb5Z341fRk3wYPC3GZrmfiOtcvNTv8S0o7ehpWC2/+/i1xcy1fVU6XV2Yk9pZEducJFwBMpojgrKSS+/N3wKxiRKHljn68L0jLFVpfhHyLofiMmK0CyAOn0YhjyQcP2P0nnxJ0AJEFQeDL+K1xU+Jq4V2zi0hsQ/JJ6c3/fjg3nU9uuWJqkdCWWvve8/476rlim151h3iTRcl6TV8Dj4IcxrkCbYaJML3wu+/lTRlewaNd3hsGTmcTUCFa3vcoQZzSVVXAZ8TELs4kxq+mvj5ndj8jczm7qHWAC/wqJFhabuEkGm2Xw26j/E8kcZ2GdGGELiOWy7xj6XfW+6iS2LYpl/3JDtytcY9Myo+F2LjUjFDng+gP5cK9ZUznvHjTQIEUGB/H6N1L5g+DILqw2/JeSclbN5RXWM0uJtvykGF6+gh7PWoYfbkCh6OErcv1YpZNtq4EHtgXMVNYjNzWzQhxk/N4bqY4Evnm4lM5XoZGxgyX8ZlOKgjThoVHKIVSDELm+6CwgYa1EHWAykVOv6s7X9AroxgQMNcyKWY+bUpdR2Tscp2+ae8MpqjxfxEa5n653pQyxT/n4e7jnbuC/4IK8v40nJDsYWKp8cdosuu275NNl1xnBX4iSN+O/UcFyXn894JdKREUhBCGxYucDmwjx8VAvuznxsK6sysEEhgSIAIQUavg1CKt4tc9QmGyMrwG6zsGXw7hGVi9J+VWnFdGIVmt96ZDJDrKn4kN3iNJ5mcAu2ylMJ7jjSVbw+M8LDheWgG8zPIh3Lbi5zKVQCAq0xV6M7XwtQDMO1z7oTEWIZrcNf6/Z1YX8xB4YB3jbf2aXskVWuSRnPa4QCwABils5rtvTgrCfMa7+dRmvzI42sym9TCMpLZxJYjDvVzbKKgShl5pE6l9zF9J93k6nQy+LRUYuRXMJIalH/8HyQo31d9QzHs8nA5o3zbENCKLMRptFRIrOWUTj+dkzUKLvmKukatMaFQkHYRjRAuDIRYClzfzOoAEFbMUbFMWvX7qSppzKtTEFvYi1xwarEx7h2riN6nve3dlHU852eXdm3D+EtD3uQkkqfKghFbnV9dklmUpSvREQWI2SpcMUFVvvyXWhxOM6Qizdhl09cjXsFPkoue+OZG8akCQ5DfQrnEvzKZReaXOaz4P0lqI+i7mUjd+jtojLmJwh7GRXiJewUmzSVVw36Ye+mMcHkRooqeoT0hiJ7dIgGghB5Z7R4iViLE86G32OCFER4BWb//sKzwa2JAMutj1SOX5gK01XizukmG1X1gWk+/MHrRe7SLvnM7AEuIe155VBsRy3PU/3wRfM0kB8Wj+o5CiAEZJb/4CwqYDaJ/KAIyAb/Sfrh+yiy74dVIpFO9NYGX7Hj0mw4180RXfQdFql+EG8cp9dfkx954R8+5XfR8Uhmb8WO/uReD4vSKCOg8PyXncVVoX9s4UBBeZsR8KDjwpmL9zYMCfmqEzjfaMnKlWEp5yRQeoLxp9yQgMfk9ovRI8z0Tf/8SVb7hhFJWXZqlMw2sCNhdUbW0IRoJ9Q4Ncc/J8g/inXLgiZ7rF20MFFh/KdvS714DPoOB8BIE4QHZmqB5ko+SyuilNaZ8GcZlQjThKgKN8HFoDCTiFVGJcKcmgQFnnZ7ArLu8VTK2l9225hNA/aGHak/aceGqglK5dLQDk2exmFDHV1DhfIcvhlw8BO29h8WIjdmAxOBOBqHSbFc06n0Pz6kGsKIp+MY3BTKzMvtmQrIe/fBwL7kIluR/SH7OegLC/e2dqQ6MGrZyQwTJFWE6BwXpFRSOgRDSr3wdxO74N2AhqT+09WQ5p9hLh/MxGu2j+u3mJRFPwwYRzy36yXnters9mii4aUXh/MufS7l50dwivVNKuvs2wcP0C1oM9UP44rRJDDaQzmzq1yzQwrLuKcOm+1nQzqRyFtt1o+52GF/FIoy8K7P/PkvpG2/eBxTlA4qf9wpvqEIFhE6FeVikVw6n/TBUNMHhWfTDzoxH7qIl3PjLez5cGX2iAVSiHMSkwzMf/t8p3J8Sy9UzkhwViHYFS+gzwp5+ejUcZPuVUNCzraRkDOE/aA8Lk2+tv+BXuzg9t1/TA3t4LvHI8EpuyvhWjang0Fv+7ljHBymFZXUiYjC17GpBugwCKk6nigHoQqHAAfPX9vJdxkzBKKo743SszU153BPFicSFKg1UToO0kLwDKoPZJUBXs1BSMETuttSWM63Vt+uOr8aRB9oKj7xSJt3N1fMy0ix/IE2m8p5njJ23YhBpuKRbq3rBv/kDKJdrx3ZLFud7+XrPNqOI6z3A8crAyhIH3v2eqXltHu1rtzYug+ipvM4+Nhh56IX7mZDqnkycS3H7tofJEf3yXJvJQJ5cyD4OGiFIoO0kM0AtxwLLGB1X6mmi4EK8a0Y99483z4VBG+nJyw1JTNseUM9LBv8IP7JB6ZyBzaJs6x60To79lY97MLgYP/EDALEussl13BqJL164tkAounD+kRDl/ojMO3dJqq0lMeRNUNOpMwx5oOXGJHAuy5TWP8fuOVDCV1YoC1wGRRvhMpSRpYgpeZ95mWWjFEFunugwfqYIRYzrcFpmEbgbwaEhylRK08ggVEhSrK0KNyC1rF1AJH51LRVjYlxGhj/H/jddhty1BFojZZ8XSklVzjF7tLTQ3IN+6cUkBwLedhppBBJ0NWwDhCH452Um6KxC2Th0v8IzJSMh/X1PNyE+wziCoJFFMcD82gKJ5hMVF9bAhPLSsGeIPkrqkPRr7m2ATBCIItdjIqb0XRry7o+DK6PPyEAl8FIv+KGaPTq5uOf85MoTKKkcPnMn58gg3WSgDhdebEKr99pBKnesPmt4JNO7GbS9garAwkOhEe7/bAR2g7wjOKD9Aj9r0pkR6ZCe5QO9/TxlVk3ZKwhtzCW00xsTPY8U88DP6eOJDZ6V/k+WZj5u3JV+087CAFWo6kBcSz8vOVVwOQQGsToJ71/voyN1iJGZp+DMM63AouUw9rZLOdrn0lUxgkXFxfCBCz49ZP16WOWnng0R3HUVBJY3ooHUDeem1/UGnYmdzfVkVm6exaQeAS+aNplcFKiUL+WfdwGj/QjdFaREw/FxwJ+Ftomve4JBkqPAppW/EGZRwN3Q4f2A46nmmiNB7i/eU4r9lk1ghCDBVZe3qsHi18dK9x/1TExz80NJbsyKLSCUI8DR999ozgyGUbYW0EUy7d2OqCLBlnIBH1g6wolaf2TNk0u0XkSg0BtgZhAUP094oaquHBuHuE0rsUOkm3m8yU5EGg3GiEbDxRmZJ7aqm3IFCPnBeE42kd2T+QuFAFYy6ThZWYcq5vORJfQN+XmCjHsue00Y03kWeh17S7JWyQ3zKgDEjDPGEyxZ828AOWZCEDQMfzY2l46qUTL8ND8fORjvPUw/0kALrDjKh+4oCsjUYogX93VusL4lEsnEZqiZJBLpF26NhUG7wwZlkaXYX8A9/HRj8208SAx72UdRjtvMrJkM6DPRF2uNLgYgcQKpaFkWxCDXALqYxDd2KeLpbqC1xEoRFb1Z3sYZDt7gnhDmYgMkC/NipLpb/Hlx+7y2jHIL5XR4DdqRdS4PH85lELcBc2bnq4KKwhvEVKHbtZoTM4znq+7EcdV2vTcaPco3tsWrSX16X8ftc38pGtkncTJQk9CeiOVDhmAQHemjldhiU3bxC2SQzWsy5FRISaFFvtwdTsWzNqB1nFsZsklJmy9Q7VT4JnjNH4jCofT3ncZ9T4Q0K4arUQ8FMRKxyrL9kqQ796miZViPp1r68KVCS+C+Lent8oBH0pkqjle8tIPQfc4OZlQdHVU3fTXP7Wy4D3nxghAM59r0ybzlKOdYzkSlNWMk6SqmkqLbr4GXR4IoliYNicOYexGe1NlgTlOpWVk5SGvfFaiPhWVIlmL/WcAiySgtG1SNjAuEp/k7VZrU/w21wi5LkEOAFLYuCa+1Odvo5ZDcEZXWmzqmSWeKKbnn0oUooZJSp4iDVUs4GjphyuahwYdkQnKsu3CQ3ocZvVrsPpt9wbZMfByL3IsigVVVGmPx53f/MebKLvHq17/IL2Ned8M73xxDw+W4aOgMiY09oNlPiCVMTt18liVO2bghiEgNheh/SVKu3j0MqGInqICGKedBcda0LDxFDCX2DmeZg1Avs0ntITCPeejlK9qfouRV9Qr53LyAxl4Fmp0yLpBHgzz4OPFn49OgN227NxJjgr7+QmB4QMChpWGP0ky6tdZpKC63SuWPJ7ffKCovICbtydjLsyAFCXl4gmHQWyG0LjHxRWAc13SEld/v0uHbyo+ZYGczDQJAjHM9WvkvAypMm8iXx55+z8ca1QPXFqddxSoo1AaNY1RRXkQlQu3SgLN2mSUnFF7jS8qctk1tKDACljgnkVDTj2RzPqrQCMT1jVVq9PRFSlyKEFnAdTzpDeYUhBK05lP+kq4Kj81OOiFmOajQwOpXY4i7gtQOjc0m8NpHfuaOaIhnMATtLsp6NpzKYyrJg+tK+ZxLRq0iR+03f9OkJzqPph1jI9QzsEHoblEb813VCBGriDZqDgHiCVT/YWG9nB78DpAy6wjDgh9d6sYIqZZ/0JJ9L7IUElfKdMHB+NOOgssqD4knaY1HKkfua1efMCERnMbO8nfp1rlWi2ZF8uun2oVDU3Nu8E4UroA5Byp2PJV/oL4ZgOtlQWJ+GBYMsF8TTC2NjaOHGAiNBCmwL0/lb+QAwYZ76zccdR5YcTyhJXmUsge2KjQWQzQyfbeiTYu7aZN7DxsemRhTHDPtkZwHVyl3jtOeWeIr1Bcf8HMyquH0FsR7MlBDFjYeYLZ8MQd8vf//bHqTESdVxfue+2IPc+zPQ0otM2oCruIG2qT8ibnN1w2/9o3rHUrn0IQcDm+GlZa9tm41IB4PBet6n0lguAvzVyBQ3D57hTaKcRrFTCH9lUUOabLPT3mecA/68G3fJ0BilfyoKc1ALjOdh6ODHocPZtENIbcwM02GmCMIrNOHi5rjbiMs6CrWD1UMwgwcm6VXFHEjMGVEFwkWfbeScPm90zDAG+V8dF7AD0VVVblOP5gPQ+PrI9Kjzg4khSnTsQhPvyjPxP4SiHm7jGIPLcAG54JSME/fXAuujgyIU+UdFkIr5ZDiZJsYMR0g5Z+QgvUT/FGbacQBi+nis8eCaAHD+c6Pijd9apavJy0fmaiJ2TFSzmy5Wu60hXNuqi+nSnH1FPzqtYPF2eREg2c8744CYbnJOdWbuX6jex7HdyhtDeuaiQlDfoFRvU78RlIJQvW+OiSpGkxgrEeyZzk+RKbf4XQscczgQfopUr9m9f/5BxAlirQhQsTO11tnRF1d3vbxzu4uSymXDfbS3N83M5S0ur4glPcAUO+Oo5WQCLbtNRVRDCsn3d6MTuggp3es56zLu9fHNXoe5l1Vcfe3QpiGzNh7U5qwgOjbpybTBs5boqLGdI2TNb5rgSLCxukYYL+mWES9Nc5YsbKsnX8xt9RZeeAgB6ijaH8RuyGtfq/A//hAI8b5X5AgBKfthaVDEUzb1ETNMtDsJ3LSPCtcut2je1gBJLXIpnQUEmnxnxo4A3+sr2gNBX44MWXllkq7bx+G6n6SZHqNaiFwTwfr6K205lnv3TLYy1yxz1P2r38+qS4MnM6EAH4OGb2zNo48z602rK9DfrQ4VcDuDbKY1JH4j6YBBC+OASf9JwhPlSoyHeokaNS/hmXHUd3psgLkC990OQ3e3Fj+DdkoWZk5xyuO3JQ/F/9oX73UdAefy6HzY4PCCNA/iVYVlWK8LARx1UO9kKtfwhz0wrVmIFBa+e8C4s6861wxW7PQ1LOKc/yrsPTtS4ws2qQHHc1zpoFDXyh5SAWg28VxD8nvyIx5rVcNx41XIy8dQvKFmw/eCJEV+tCzmpX5k7BntOxSB9LGW29pGgk28y93Ez+Xmrl0IJ4b1afVRCbcZdXDLUyT+fbDgeUU71raeArb/ErQmPzJobiS4nM/E8DWHuWNe7suZSh9e6X3C5OWOT6RNMB/Bv9vwO9ZQfqFBSVaR27K0O7jPPaTHdE+X68wzzpvf+IVXsWg4P/+GVwLGMxzUGlYqulSSNj8rKlX8y49uVrQZmFYsL3Z+sxvWgUy/ZjCVkHtqMNSq7vIb4BXN0HWryVBBvHJtHF+RC2UV0Wf+1YLK7YYojOQzuF6bzNER8J7UUqocwNY6gz9wFl4BtUR2TSECRtdsUFkHbB8iVpJ34tIzCw5zkBK/6mgk40kMPNkGB+BCNcfNiNumVarLS7NzH7l91wZqN4Ja3qIi9+gnGHnUp/5asbSMjAGg/PZeVGODwNbOt6g5Azu+WBhYHCG55ovHmYL6ByWZXnUiHz1Q36Frbyb+3vh17gbiZNrVvv6WlESsfNYK2uxb3XzWl4s26VUQmvo4s2j9mlBDstcUrhYgPFHiPbvtHs88VSgM67PSeZmKHgRNKIOrJ/gFbz8ohK5i17WEefPz1auVyA/fiHIbRVDO1CfNmdmYkZoYXM23NZSn/sKGo4BWY8PEBsSqLFY7zlchUs0lxetSrHx3oY67OHKiNKJ4u7PL9HKi3O81jP/aA/AYjuHTIxn9j06Y9ooxXFHWeHixXm6rieJLp9SQLf3w6yObm4OXhoCGtMTBosrpE2I/04A7yK5cXIdQpOynblTbdEGWNicFHwm+N8QufyObS5DXXdAYBolNIUTyhuDhCejr9WBidXa3gf0CbPTtITsYqACee0SHeNWfcwgxTEEJRoQ//SpcW0g8+MaVdTBgaqOVSyj0wyOl+ndeoHVt3ak7O1i8+KvZbGI27SlKwMNHJZirRH98JZOK4eySYHE+yQkrT/yMpO2NsjEQfuGVwJpnivSEukDOfqeRZjTAJUYhuLEr98hkpALMA46cOzMKZmVE0cPHMCWH0/KhxCI93gMoncaJOf/hU870aRKrMEwiXygk44h3zak22D3fp97lXWUE3dytwtBJ0uXBIS55BAz1ntyJab8/dVUMgOd2iHt/blf9IhVUpdrqfEkrxvjPXdwmcY6AbSmSb1wWp4xKULNROwNvvhp6UHyEE6e8084xohziXqOEwHkB4pnCUpGHJQoSP6fusZWKf0IIqAdGgjAjUmELwqPSpW8GPJZYBie1quXbDz+BFGZTLR181ciD197uF/GGarkTknHrlschDMWwPbyu1oMT/miNSczzNT/ZhzjBlF2WTz771MnnUZs8WbIckql3nxbbsWn7rof/7EZ7JHAY9wziK6r4Ck7dEaYQYcfiFoX1JT5c+Fhy3SBMqnBLrEQGgdhS2zdLC04RPGCtPwW4RVDDy8ObDvLuKuumsUcZCFrua057Is2Qoc55WIWM9VNm6/tWQ2jUkyvYjFy/8o/V0LmGk4/lQ5ADKsFfUjtayqCig5h5zkWFZ3TFPPomkYYNrlzkYqoRnvrgNmz3sCkm2RLfwrn/I4I5uIJZQ8cAr7RBHSN3zulSwWb2NVMq4+0WUPV/56mCyZslckgvqwEeIXG1OxSfz2sZT9olDQYL3knP8PxEMhfPndVnkluLAv1dVSmnvROtNU+4/fgLj9v0g76paKCzwFEeAEqXkdsQ26sAcABSTWuhJLg+3/3py5liitdG6nMHvvhZ+vAM92rsfNMh8tOmQGxSTBnkckF5LyCJhfO3h7E+dqnY22AGGm+kJJnm+yLtuJqYcF8WiZmyCPSlhgLp7edbr6D36WBeKvW8Pda0o3oB9cML3ay/icLA5k1TDzygmAPPqp8rxfjEH6hzdGJ/X4FolXnFlO3xTx3hstdRFtDcEfFoLOP24IKwqVcKFWqQ0W6RTWK1liyeNtECcl4L6CNwdQSE0nIMrFHq0huvBRBOJGRDCzsgMVdujKxCyxmLQZBDLM6RmjG51WGemQAmsSopaexVj3oXx2ZtXIMi3U9lOQ7QWjBrw8pTLoJuV8tzoHFdDhLkytCGQWRVc3H+rBSMoGE/iIIbvGpmklPiqfk2Yy5QAS6tRsBcyxM+5eSP7zBzx37AhcZAbvR0LI9GlwTlplNb8Vet48JXhsiI7+8uOnQbWNetBti+dOsm3KnUiThK+kwh67tBWTLMWndeb4LPqqWXRa96brZ8zecH+JjwjqTHGo+hwks3yoak0i/h+PqMI/OxL/9bx5RnoVW+tlTadH0QWjB1b3lbsh+SPlGIhEEu83/hQJrPNepUiL5+kxD9YrLuWcP/9i2WV6VkL7yASWsxub64/JkbABVIEhdyx/L+UdSSqd7TLpjKEDh+DhZObrV/yuTUkiaWoAbFmJO30DPnJ0MtToUmXyaLcKufR8gve/DjtamXeN9X25W00VeXg9kSkKtEZY9/tK5kQOWGsAlJ1382se5ZZQACsZ9jNbO5JUPWToohGpJb/4e5DRA0400E91R/7eNE/5kS+I2oRfWeRnVUTFXSJPA+ok2CbOTtmAweKF/y4A3rYl0zDFskeP5zLHm+hPnn+5PmQ2z4YyrJTqpZR42SXs/hy3n1xu8eCN/srxwnuxk2nvQFwHt3hQlaAxac+NPlqw4sO2Q4wqfKeS3YDSYttAjwDE+JYtnt7GcuH2LdEHvKROi62sM5WAdrweDWVldvtZViBir2kRWb17bBMXoYiqUsEKFt48FzhNhYpbsob/9ZJhhZQrEbkvzYzAbe7lNOOfslathVHWSQQ+KXH7SlGsu6CyxZUkf4AHxmOxq+2TZXB1ThJHJg7NmKb371sFljKNsPWc2eDEACEVEPShezbcrsAoDw+UF8jMgDE/mI1vAFETDxNllPMoC7qWHuJlxeyIucOK5g3isls7GvUM4NHaVZ6UZ5W9hzGwuALC2NqVPrmVa6nzX7kZWAK/LdxNLW4V34g0tqe7u9aiymb7qIIMiZAhdbKYBZMWOgR6HYSWRaKpHy7c8GA1BYXk84wzZdtRLBOFXEv9KFchR1/RE2kWuj9f8jPgBNd9xMyx0/I1haccsXDvMavyQhGMrNIhSSIDWawm9sVULmt7CpxnadYb3AC4VXkh2maReUc/QjMa/h7d7lJ0j4ZlWWMPL4INXn2SKPnj112X0kr12pUSLf4b+L2hdasR6Cct3NRHwjgW5mp7RXDMMHQIMSYn1YbdfBT+kkBs96+ispQN2ozfNgdMUvq9fbMc+J6dlrz+/0czlllGpQcE8Jq299KyxKUHD1OvMZrY1GyCE03ru9gFgHwTmGJZtMe0NCE68yAngdcz8xrqU/OBRjYuuMy9B5JIK+MhFxjA4knS2J6y/5ZbtvbOSuIxxuBgLrCGDs1iAbKotb/XNeKUIuhzhsy4DbhJgk+qC4/2jLx6TE3O5DaFHkJa81E9hiyeeRacOT2HHT3kRnO5Mj7s9p8KlPalDRr3CUSLDjHwtp1hBgH/FXlgFokbNWPhGjjLkxqB7NmqEsgoA468M3rZs5xyZGqUnMi/9+Lmxjp2j9LXVO1JUH/HC5ejOfD6xinxVvN2YeEeW5XbndeBSq6BWKR9wqUU/JY3ZJScAc4BxC16WOSs2AeylmNSLG71AJ+SHvqPAycfAAASqUaF5qigkQ0upoPetXBwH+nU3Af/cA++mPgPoDCD/7bW8FiASGRaNPYuUDHexaRZ2s+O75IIoETnut9GUApOy9+ap9s2iWZUO57jR5FFwPBdi3QHFMxDmifdzoJavayE7d7pdsI3JMRO7vt4ZiMK+0B7QPwmp/gq9ZgN34h+oFOBk2MoyTdN13kMfbBNZIAEvE9odmB/K+lIhPvMKoZyL36NbMEPOmNlI52QpZR/ZPC7U9KmexO1H8OdA8ITossFEHy+gHumr/iN3U5uSVfrxeXUzxK+SL7n0hYhBhCxT9VI122GA2dXzpPYekL7l3jNqHc0IKxtETRDdRmTk85hs/ThypLjb1nljMYpnCA+BoG7OFAuUXosiDX5pJMRuU/kms9eEQaevJB+4X4XjR+Mdjpnv5gNrAwJNealPWfDsCRgbVNl3J3/GnnZWRD8/AXozxfYD1PVki21ZkggXbDAtSA0+PDTCw3zXzYSauosQvYcBZ6CuJxjh0BrJ1A7W4VSFcJ3saC2sszBb12gR7K2qlin97PkMqbGXw7vUJGnjELpoZ9DfHW3zo1K4GUNYP72nqYhZ4pe2RT1+ieWF4MQzPGDlbq1czB6/AnN0aZIHeo00ROAHuVHu8oRvrnPdYft8reNzkaRExtK+4F0gCP0EwH5Hu7LuK+qH6PYS/jJP8GXoTWDzNbiBseivhinYP/WhNIQu/Zkm2lCMbCK6hz2WYakxVNZljaRk8A6MixL3ewWRQaIqUJRXm657KkjtrPNr3HTk4kbhQ19Czl4p46ceblXRrJjI2SACr/V26+CZEPGzKv09yvrLu0X08/T0CMQb+K4p4MCEwnFYLCd14d+ynXPVIzCleyz/kKhaCiNEUkfHKTCaLpBoLE6HG8O1i1mo3IFil8LP+86xPdFKyuE7kGO573YQrVmT8ro9g3e3J8BUrIGI2fsNeBh/w/86LprOP9oAzwoOIRP7GzS51S0bCXIhBBeaqpsoRDVFjekMEiMYpGlE+cMXwqreWyEHuRr8+2b5MDruDwvqrLEqsFNmlhcc0MRckB6jaqFUJsUAnq/c/2gU1l5zg9VKZrZQGP96liagnTfEJodV4ftRaGpnoHHBRPVb2HIcUz3qV466fCYldrjqhbLfb/dUFQAOT6hTwgO/ZHpyf007/cftxQAbQzLgUjECtG0JaHh2yXGGmDdYZT/bQW0f0nbN4Mcj0NRcQilFXtaAgNrPvNU4VdKrbCx10um74b/6iFrhW3kAaANsDAe3m4KVmYr8Ej/3wkK91dpH5ZGdWsnpZe5DLUuxlM4uVcHYrGPmBVc2/LqNqTVppFR+psIHKNkAiZEPl4LbS/5FZiCQ3mmtKwW0iIm1UnlYG+SfgSGY/soeotpN2nM41b4TYNo459MgnbVobmbzCEeA3W/zGZMlVMcavcgnKvVb7Y/Ymb9wKJb54RUFLcxEHtmTdsvg9UAFUxTb+CVvpLLFATK3wwPlSSkp52hYhhH21WXl/5VK9nTc+Dty2SiIRbBFedc0YZgNZ80aDb6aRQS3ZVX4ttmt77NMiY0BTV8gXNQnXmbQQi+YvorucbITtHvZUkI9RxBKl9Jk0zIM7fIuwQPrlyeWvaCbMIDkNjNrE8ZMHxVkwFxCpXTmU1fnKGCxoXzptUaXUwwCwG90santIxAq3i4idR8mV5aWXVjSIH1tjA65QCeoYXLtJnvdskFz6ZYqIH80LYYYkZtP1ICxbTSzIizeKu64dVc6jwdBMtwLwpDAE9mN+jBZ/Spi6hjq82kITaNKDeLypfZDb9qgNAGg6PLQyv4FYPRb1KTSCTv6+CE1mJ8OAzn7/N8NB4uelyhfQGzQJWJSatsUA+I6Qx0Tj5J0rCoHeRY3jTqoeiDWjvTKK9EvcAHsk39ijDx8E8IPB9HOOdoQep6wrLtEXS+5ZOcqwZq/rCXV5vHXhOmsxtbKfvxlyj9T+WeunGY4oAVNATjn+jpcNO3CBq4o59cpEGK1FbTFgeRUagDLwwGUuxINFS9OygEO5tnchnuMER/n7p9xywKE0gcdZI8E/L2Odgq/NkfNZW4CTYi8xFEy7jy8Po0iWCUcyy5D8NY9aqea6roPEuupifUGIhwaWSMfBqpUFx0rMuGi35qhOZ8f+MmgK5fN+B7bYd66Y3SeSOZ7t8YTwi4P7xaUIWXN3LKvIReK28maHKuSH6Ll/kU8+UNYrtkhJ6pNTxQ4wH/t6dZowBzuPr8PyJOwxTiRac9pUXLQloTCFbcAKD0tkNm1NA0MBTY+IA33gwKjRueniQoJmuuCZjRH0VGJRHtY8csV2kzStWRT68YLdJWVe89qMeSEztL86d3LvE7tHoGUOEFxZo7/VqpsZvQN7GYGwV6oZpv/jiUfE3XHGCnMDJdBAmrriUvZoiC/ZYmmp0681jUfSz3r3tJV0cZjtdXZQSGURQUr1HdW7Z4PhOglC8MPernv32J+kVd5zaaAH0NI3mu3PkZv+0WuYwrh39bx/KH/5ledxFmbdjdAS5cQQkAoszifRJ97n3yq7owyW4NWjegnBT6BkJsd1j6Msz4fWV0o7F5pRri6aUf48NHeSPnLgbdVOkYFrGvuPuMGDJHsJXlSEionu5C18C/5DgSgWyWa4d+CrI7QxEkakbepmm0Aahp5lARhyHfA8uPTx5GgQjbXBD2Bw5J9KEa9/9bQaGhxu3DbXC62+jLlaCu4g+cabx79yU8h+4Yd3rDgDWeVFB0Ibq3U0vwtuslgvz/McZApUesUTsjMUVBrP0mg7aRi2J8G56Fan1VydxbALfhayv5U961eHanveu7P61INVel+wokxKP5VArMEq6rYjSjol5Gvy9J2AfbVQjtmm4SXoiTOJE/LCqpEz1hL8fYHElWyfbbXAUG22hvzXZYR0X4KlHj/0PLUid7w7Ak14y6qNzFy6EL7UPaLqFb/u00bJZMfrSOxl7pFn85/WPhpKfdnjJw71wZrWsKB2+OhvgeTL0QI5zGDSzByQbhsp3FWQBrtie3Z+8Mwu/SURlxdLF9L9rJYqDD5kDvsfnCTcv1/JJS5ukLQmLO/PRe3q/kJ2fgBVAyBVYhz7mE71DH6OzpaxHeX6bkhcWQkSyx6MalyPE8dYr7BJyjV26SfLVmDMPfEhAFPuzFs/+0I0F+rFHOzA1+Wf3Rs7/tpbUG7yUWgagQrDeb9CLdqaDImskG20kv4mGw5Eo6CQhI3bTcHHkBe3LgSDJYDPAIXOY85PV3NIW8vZYTTCESG2KMDB+I/PcyaaGT0CzPSgZzH9z4LddJemQQYZ2fGqQW456VnQ1zQJn9yMCRNbv+6yIfocd3xlx7HCB+/bj4MAMZ0jVrwCfZw5D677keC/hb4jdSd74UiL15mhYuk64Jd8jjP7wkPNYka9Qwoms4zAP0yXpNvdN4++BrL79Ka7v294MO2RTMAmfvYbxkwdwzMqxcZFyeXDlln34sWrNDdsL2IV8KDSPTmM4hKvH5njskqOw50SV/Te/ZftdZCZIqs041WQYT+YW/3gL/K7dngZgsz6wduXdl3FsHE/Bmf+Ug0C9ZkJkZeVwWnlGNomOw2NriChbLTDR8SuMq+hueneLx1uvlcFvspvU0X2vFMf6+rbzloAII2RoyHxx1UPOVZyCL8dh0ikyyFJovACt2CcXc26+9xdktSAgVud6r2SJJ40I610/oW8t+u9ak3Jk0FKnE0Ic9Txq9A7wHdKGxGRskdsCTfroXIKHkYnvSF+8mYB7obrnAryNzdbXg7QzETjNAuCworQ7wKUt6Yjbq2UL6ioIhff1nu4UUZkQW5rB7T4Q82ZFPHyKVKHKlvzb6funPqfMrvpTib9tgaLMHTxTxW5gugpFqfXTI3NhvTP9DN+t8EDovVIvR8avyt84a7hkiISBIGg/z8PwyC4oBR4ElMjFyDrzl9U+KfxI9dLHK3W/djnANV4UXZ6PPMYjwqmhLUSAETXGa/DlocQkrhVW8Sfo1wwqFXu02dIVl+Xen6sIHQkKel7YfM5UCJBT1JHQYKjry27JMJH9mN7DVzhyRCQOSM7x7bNuFZFQmv4yl2cayG4G/xP6Bet45uGU2soyfHLZIY3fAMFo/hf909UzqyR0kYDIWIkPW1Im524zqsI0V+mp+busPSZzn32H4PFN1tV6InVmJW4CWoql9104vc4NfERKzWAYe1FRO4Cl6+9uMUd9LSH0fFyiF7eWmV+BkyA6w4gEUbuRVI9pRkqSyq9QTCVQguOFRqoDf612XY1QwJpKCqkpfR/mUNhsx6v37hsZzhuowM9IB2Eguorkv1a0OWMuZS35xa+9lnNViy6tLMpjAVOKCyS3eeTq2Rwd3IOySc0TwraV+a/e1DUy1sx/1hER+/ZswCQkUdvdg69+O911IxDGNhvvG19ZSpfbZ0uElQOdwITgH+Tdr66IVLovMXQxmtnRj7mJzU4RuHrRMzPg7GNOmGot75zjwhEPnDE/AyeG5v5xWqO7hQPHhX24sFkblc3UguFVBl0AELGs2Mz0/CYyM6cinNp4QTwsH/ImLO6wcqDCS9xe11Eg7hd/ckvLuPVO8GL9TP+hBtwTakM2uCu2JHIVGHJ2vpb5ekn8gJDGJKKVvl9+6eMLOmjylYK0uhRv4rJt0FADVs4JkePcldXrP8NA9mi2uq+cooPCKUTCMbEdRjZxP+5KRHtCS0qoPIqe/JfGSgUeX+9ycmmKtoANN3c2OwFcvyMJPdr0Tt3A4cN7B+HbSVvsjWxVOdqgVLcsGlLD4DkpTIxCVJ5jiPEs4FHOco7g+06/0q5oRKoBzUxePqRVjM7de1Aub+yp+u867G4tGPUiWSg0mYM1XS8BaqUMg00s1EjU/JUh/NaQBW6UdfHptEWKumxiPymZZBgK4YavKZkCgkWlk/5K6kZkRJquLcZrVzbSQlf/+3VwqotS4A0zUJbFnXs5m5duhYmu3v0l9ndLw5DM0esqfnxoji5w9lG8WeIlUjld4/iUkiWuFBtp5piY7qUrAf2S26yPdAAlUOJdTo+QFVA18ks7y8yKT+B0aQZ17Aovt6dk7iGnK7XgacW3ejUDSyEv/u5qmjp7cKyNVElTCQ95nKwtzjm1RrWkomHBe17As+Zmf/tAVEz4YSKPyF6keKZVQJticq9XQP1pF9TfED0d0DJEi2FPBXbl4Z3JKvYdGDlicKyHh75wyBiNe9bqAuANzy4BErKGM0UMcS5yBr8pyj1MhaAswDIiw+Ui3kta1kqIL0k+Zlsogwn03Vs2AXCHCkFgaV435jFgmJlGnalvnmkOI1D0V/Dz9IvORbwBQtRgwuAUWK4yNiLPbV24g+pFb3hmmGEFnU8s8lWy2r2ojfC9aYtOOB4xv7/qry+xxde229b/2hADcfVpIpPTDQRCp6CMUN70a5oFXGzm6ecdWC+vuxshdPxp/y8Q8JPvx2+XDpJb5Rg3zFJUcLKXEzQ9XN6IGtM4GwlRpvaQEYQtnIOC+A1bQI+nmFKAu6Hjvi/fidNRcQP+J+nxEOrUiHWhbh1BpPEQAF+PmbNziNKWdRCO7XRYjmb0FJXz4KQeOv3QrJ0cCZHbOPQjwfgeVQD/AI/R234+t6BnzD5fxq7Zgfinhng5QhE1BJKN25uNmkTI9f5hWjBnx5NavcKDz3gALbURlGbzcZ3sCzXCKCL1Kml+sFdciG8t6DasYlKFw/ox+ZA9hegRfK75gV1X7UgGeQCDTp1zafT+t7v9hkiVVEHXaLZ/1EqtbDfNdkBpORaNSE8TsCtzsLC53baZsRJi3FxY64DSfA973f3h8kY4ay/yfoAHCx+25PmUb+Pb4mj5vOBen1hUIBSVXwHjmSSFsyq1DSUG69FGv8L2K/lozd5Pn3HhVmo78vACcT2ipFfQhNNxzP3WcdJj/TDJg3V1A9i8idek/qQUaeqGhWnF91gcVTIZTcUf8jmemZz4frKg797d96GNENt8hCGbTgKldH5rxm5E9M49rdyVxtJtWkh3v1D5iUk5yh2O5/hSMA2D/vf+KxuxHBML5XTNJHCll2in7xiM5Ml3YOOjpKcPRsLzg03EhJJzaYLeCD3CXUvo9rwtd5PVuHOtHbRgaRueBKPLu+c9sukf5Hqv6WP30ZjMchIoUDKTzaHgknRlle9IdcNqsdWnUFNnXH7dLIL37hyhZMrRnxxbnGEVp0UiKbE6NZm4fqqUFw6WOazaZkjsZaE8AYWJwkn25HPC6sM6AQyW7ShV+E3VUDrxElClA9+ejOpLTC0kqZ+HZHywY5DxAUN1uXYEkh5fqQvrXv8I2QUbKbMSlVabNCuBE5GpCjwEXnl8ucJ8Zh63B+RQoFrsyi8hy6cS+DvZu9UPWs9IE7fubZVukbN8idE7nmUHoyU7Vryqq7ArO8TFXw8UdoYqKSZd/2svFszRzU5lNFPBCBPTFU8n+9/S13pf5s0gj+LCzLLMvLrAIMcazSGgzO296Vgt8Afk9epJZG++fI/2HpaBS385/pyXITVj2/RrZZW+KcmFMQpvVRNNYQBHqQ2TCYp9UE5VPtBVrjnZMGCiPaBE6irqDceWwoXWzdfDOvRMNwLOfHwBvkVYC+cILaZ0KJ6JSYwqIlpKHo/0epPGwsKHpuwd633MFKf3UaxcjMKKZiAZmYurpa9S10Gxmv7kSU7m90Oim04Nf+7G3uyhfT0SqNrOiDDqtxFo6HtMrA5pqNN5afGZUhcjSXaVx4nGeLLiOPP6ac4oeInSRkt/nDXo5pfY5FbxDZ68twUIse6q901PL0tO+epQ9xJxdRw96Gu63EfugNgy1cSkKL98313bXSFOEJisqPRwMZFv5a6dx4YvyKILzt5qsES6c4+LoaOlwq0WpEpRWZPh5b+1vnS1FeZnhEUXRzRBUyxIdOfk0bNbVFA0EenbHD5QOGf7RA0UFSguRZ1O0azHtxYeXZFW4mk+EXaLatS0bPvNHbjlur9kQoAJGxm+L0NkIIx7pTkcMrrz/ys0vUEQyARo+odaoyFhXJFTPENX5Zyp1f6MDBLyF8bnCY0/qSTcPbnz9mtCApQfwTNRvEDmXfLY36TsQHzKhYIAXur6EGIGkAdrzoKSwulZBKiBT+7vamGaA9j8afbPLcMxJx16RkNX9rgH0y225fupHLNkB/U7pwAkxgIOfvSp2cxVeoPGqLDFcLxJxNDm4SmgTUGm88BN2hET3Lw8joHETSyf49zQbtCpa2Myubyn8lZN3geTCXw95XTudDZeOzXKCq8L/zLYNlykWdMUm6vbD3196nZBz+Nhl6CNt10w2AXWs8i/JOZgB2gabwim3ZhTvHVhk1hDi+asPfg3TrUbQHcu1IbGvc/rcJYNKesoUFWsgFxm59Sw3QBR5VNfXmpEsSpxsJxKcgQSazpV530F/O8o05bvSXvNpdVBWCDKpcTiwJ4yakV7Tfxkb6+Kct9OEW+Y1I4/OKSqaveMTT1y1HLs/KtKmN/CcClYGSDEHaCBSdEdUUK1U0XW7lKrdrDqwUlfvqyNrVGZ1BDouwG/wsL5RSRbnqvDedm+VBTNyqik9PmddP4B7iYdBV5ZdY2764o1N+kJRLiJ8LtqcUnxsuTvmG/peOY6MT3zTQAnFErhYSidwt+UCUdU8qeYLFqjZWTaxPLlPh4E4HWxSvn534hWOBb1zgH5oKKEhdVou6rutlfVdm/GyrrhrGdDH++wA/a2+IkGL83pc/2K3Q8zUEslVSd3GHC9QNnUyQWZ6zvq6QhK5AQWMVwJ2b77pE9fRFtm6fJ4tqyGgBxjftSDL9WALm1k0W65rHyxIsKEwR+YQpCbdDyZRIcYnpd+fJbiCIfwmsB3Px1s/bJzAorPAXp6GdiffdanlS65jzqgIBYox148eAyHOdLDuwEj33cgFxrlJocN6hj/0zuAXEvMJSk5UzIcyLrHTdhqU5PtBOJOeVCIkkmlfpfgE9wWBaWSOIKft6zT9idr/HrJHwFB9hHXZF8FlOVmAoKGHlbzK88dJLZnA9BS0Rq/sQZrSxPhtwz+qsz+unXI/2rJ2tMnQWfwtIhIywA+XBVVO0+V449xLjiCuzLrqCoLP+4irFpg6rFp9osJYm/hCIynyO0POp0r/wr4JN2hBGuQK/zQLoWH2SNSxJELIoSgsofeK0E07neui2cMqYXokuVi4qwRNn6y/phlw3Pcd0H0EPvKaeO91do5/iusbBDlauQYhmcehRJ9dIYdoLxI7OIdRmRaui+ZFJpIpNK2lS7ronq+IiYpfLWvvaWysuKSFVDMsEOYFKO1Rj1esGS1WpQa/dx2fUZADaalu5mCVlVA6DQ9MDy6olvRn5iC/jucY009fLEMeAINU6oBXS6IwcE0rIhU2VpZz5fEVwacpUeqv8I8fq9bLK+fP/Q3gaqKxL25j+O4GWVt7Q+jWlr0N6ZnBYdE834PLnGBGpcAjzpNtYM473K0ftQm4XhUEQTM0hIq7iBFnVo5ArWLrrFjEReLRNB+4jG1R+Mrw21wQyhLWeEPL1svJQ+6LFbVhJ9EVnAgQWdCh4Cuyl8gx7BPmwGbblsLY1yqjGPSauBZI5c4rlphU0u5Sr/DZ7dzKRnL03TzZCC118lp0HAMr/4pqaDRgEXpvsrCk5UkIPEEsHsfIPxF5+OIfK7VpM75kfRHaO6rxhv8YmeDzX3AvfaKghBgvIG+K8nOhnKj2gFk55Bobyb+Q/BiCf1RdwcLyqoAIZKTB5ITV+JUxXBSeuILyOzbGT7dWrJdk6jJ1ISfKI7R/sp0Y4epZPRDT+e3LCioRXYIlQM0g+QMyb9vaWugB4HnxhduXUAFfG1ACwLS0Cgrzb/QVOmUANBr7MujFHEFt4zznEBXZ+wtp5CSqyTmioUshWQVgClf2lFMuoAyoFzsuAx43CxDnhoz9k26UA6JLzDYLiR+NFGHr2ubpCOvgOzpxHAGCNfxHWNvius3JxRUUUawMTxVelrGU7FwkV1Ux2XGm2Qrw3H6E4Qad4b4OjGjdFj3sb7ziQv1ChwFlfapvmcDgGou3jrwEpaCRVtTnL54oQa3V+L0StlG+NEE9669ouAjsbtmuedUOH3CNRqUn5SCjOkhL7/7+QI29gP9OFOX/TiNygg12dD2Mx4RjokuReXdPHOkTn/1y+liOihlq40eJLtTCg15+FMTK2P1pxY1j0CrL+TQt+kXdFpOTAEqgieIGSvvwazUkWyVXwPfXCocAzyJ3QZXmrUb6Ue8dqJnMqAlYw6DAr113BKTOkjthlbZ7IapEIVoy0OzTmPqjxuWt1p1NkBhFbIw781p5sJdNfIhAiIOD0Yw6g9i29qDOqnYmhZsZonNGfryd6YHNf5bOB2Vu9EJ9bwMlDvtkjne5rbqEP0r6Ag5smaTmi2jN4YXJN0Uq2OCdEvwdIBIt+rkDjSuRvPF6aJeUH1IdLOjJBBD9pgBMUWkxmGyjI/54A5WfI82d0kJxozEeFoUYVpUDYgU/Gxt5s6NFWtrxxdqj3sl49aPQ/6PZVQtFeaDZjjvpXhAD2hs2qVMiZituRReZ03o/+uxHkyW5287o57n+Ey+ZqCBI0wGl/o5MAYWxjnzqSkZPsKXYt5SE7iVnVSZLiYchis08BIAq/GqvmW7ltvtsIR6/NyJ4ryMPaQ9SC1E7HL2uuh4rVZLUgUpYskpHPUFrRzRLThgYSny5qx+eFbFZGBhO66xXCUCYjP+t/b56gYpSa6Ge2kKwZ35rWNspi9iB37vFC8fXCWLsNbM2DT/Kch9I2LbVNCD0Vb3jkA1JOEUlhCmEtvszQJgb2pej+HMHyFrF6q3QymPTjTCQ9fknhw1ZpnxJ4RwBz+yWZ9ckt0ZBgZmtBVBWmqPmzOylOtqQDLW6Fe4jNnVQbHC+EBcMw5Vaq0G4RvznWH/wPQaO1p8VE/zj9OFmkHcAZFBppKp4MwRSc3Sh0BMkFoiZpjzXaZbOjNNUqq2fl39cXjuVwMStNhB309NVaBO/Nv47bMn24a+nrVFb3zSxtr+Fp/22F44HH8VlXY99HvtFBQpBRVSZAhTSRN23l8uQpFk6dNDjhYSG4oZ7I4xsYsOxmuevpp/tf9yliuIG6yxnYNS7kyF3l+nC9YE+Yy2YPIWKqbcrYmqYfZIDeo0C1fGEvZr2Gv2OcVY4SURnV1yTXyEDzLljUc9HiuhwusDnlHueTsf+fq+UEijrw6yL2h/9+PRmyYjkqxWujWBIxebrD3NST9X1eOUr7AxaviUewf3FPy5hRdB6KLyXYt/dqcjI5Fa7cjp5//e4AK8yAZ75F29n9I5E/Ei5JLxsKwfuH4fIRW0/nU8YURPNS1LlL8W5P1/2uXb3ngU4pSxaAmZf3mBsjcDIWGOxVeQbsVk7IX7OgIF7gRaiBKWzObY/VbOPZOaomhR/k2aklyMME4WnpwPlla+lTR7tebOy98gLafytaFK9Jw0bytey55zEF5lvl+5eYJTyer4lwCNU92mAnGfloEMWzDURkWOeFT9nEpTFEaYybxOvBU6XxNRDKBqnRGBVTbCi9Hw5i6TX7XhCIEiFUnm2xycsCFipYcEv1i1Yuzoj0YzNjo52VIxVoDOy6TlLuOygx4PrXvO7yv/pTCco8vm7KD2UwlG7ZGKunhbsB+iaZ5ZHmN6MgVlTX+K1Ffa8wLe/S1pxaOl6tGaSnFOTqiepD2kPou2g7fNs6O2GXCLGcDlT5NvGXfh0YmCcnrhH3OA9gwYKwriUroZGz+pNMUL+3xOOUVzKcECEFMLb2b9bLyJFyIgOKcwE2KQR/MlvQKZPdcROkuYOGtC+IMYH86gwwCS5yDgwWcIhDdYFoByLGnMs8Pzj5qjkaXooYC3cvb44/xhTjPlvoOiFigucshscUar6P2o12mxYxW0phAZU6FHKIK084arlzz1bvFKeuTYw/2vGCdNs6S20RhIozPvnvOPY0U9yEjQ7RcESD7WD2Of8O9wVYoRCkzmbf05hXt1OIFSXVfQHyWY9uWmFNqXjRppesxXci6fCbjnC0EiZHAPnOpt4nqCZQ5dDbpq9Qt0HPsPCwG17EPOgQNLPm+R+WqSmvp35OClydr6Q+gvrXA2aDalxk05nBEKtOEbmMToWc4cmUQDz1+NKcA/l+FXPC3QkSeHhNpe6OCPGX9t11QKikDwBqC6bMClE62fQf5ll053Sgv/dZuHPS1AbxWE/MB4dJi0mF5V9LmK03xlbytDRBug3QHBCDYVi/SexvDxFl9qjt7/LVpUJhrDBwpKM0NapsbEQn8rDg4oiKZqQPfJgntN05NgmwQ7STX3dUTHQkxbZ6w+kZ7uekk4jeZhlYm+jp4NzXEmeHObvNtypYSak6qbsCY0jL8ZQoh4bKtzo0ZNa5lM7UpO1sMHJ4gNbH6daOC+ib5ic9mLJSN7dYrZczZCGUjFYrZCLfP9z90wTuOvD7GwF1dg8ZlnmGCR7OVH1y2GvX5VuGbg1EFmq628kErEOXuP7nqlthbIYNcUAmNmIC8kEV3HOyZs91zWzky4GgCbNqUMnDX9r1f+kVkUVCI6o0liwmOg3I7IYzkkCGIVDIsI9oqY/ND+Jl80rExgTSGOJbB960XdkbyGlr0PPrOyF7xGmoqYopumiElDhSBuSaGxY+s9O/pkPMelnus44whP+QYGHcq4FgNam4hPPZt5HZz5mX6HDF0B+l0gykhOpBhJyJWoWguq3SIC4wQ+1uxeGf1xPQy7tTeaOaFs8tqNT5NYEF5I7lhM1Bbques/2/+J3oxzN09rUvyMquTrCTWhBjhNTdcr5Wdfgd4xAQoQHHett/h8dChw0GUiOt+c0UDhYawF0rLYqwbR1XEk7rkfw07O7kiy60Sdhyo0xtIC83vEyMhGd00RKbJV9HIV42gjNs17dzYcEwmgxFH8wUOatEn9AO0K3P1L98rwA1lg/QFiR7yAhek+z7i0ZpxBTtgguMYxoPaA2vbw69H2/GfgXb9TTwldYCOCN38Cxze7rmbZuaPaM3lTi0NlFONygaP2Zqz1O1GsSzzsoNQSnCEGjvKcWMhlxJZUHYyUd0Nqa7tcu6aM6BdBy0H6JccIsoeBE1t81w1r/2BtJGLmz3F6RktcRn9P5q8YqEglwq3ZkItg3CyI/8ekcyy6rDyA4/3G/LSqxpAg2/Dfm347ErNUgOWVFFeb0UpeRt7uU06Wez0k9ro3zq0dHhPMObQbQAFNaQeqBgrePkjhHGedppjCYX11L808CAoNh5wn+3660PfHgEG69Fx0GICLRc0XyNPinX5MmewyfevZ103NU2NYm7MjfFw42Ikesvw96ua22LBTUUJlbn0hvstvya8n4/8vwb4O06jxGJfvulbOWvpDQYTYddGvFF90oGOUptNTCp609Ua3fVHs89QY9KcsvzfCAJPVjGNmjYeEh3+jWdClmuK8yA/9/dXlUxSYjSsvcyEl5NUszoltObwS1ZSPUldwjhYXMlswXDSLKLLlJrZkLaHoF0bRoV5yRiIFNYZlNVHm0XGkz69MRO1WyWLnDTiYLUJ3T5ZWlosdmqh9ssj49eQp2HBbSEoUerTKVwypKVNEsYG/T0ranrYJ96c0qaXYF1OEZGLt8Tk+NTIXlzwR5ZVfYR9qjnNx7REkxegbHpPMSCY/BmB+l2k1thEljIzV8H7F1ZjskSDWMz0L07S+OyHYRD0eMynmHDSQRo5+4nZgqSdWO3lLcT9QuFc09jB7vQpKTWNGeFe4MrRcKG8BZVEgEonLU2QooiJm5TlZXR0CKIaMG57L0bd9gxlKN1VAQqHnDCyHYanTmfWfuW1cLi6HvsFTPJYdQU0Upu2aECIW2Jmu8B8Z9bsFYxdAh84GHS9+8kFPifkJGdyjG2VhjHDuyvRr628lEMLPC4cXHZ9yfKWnhAqRQ6a1nzMCG9g++RzfqbAN946d8i6V9E6hL6f+KlGTF7Bzcw9muf8yqTJQVnYbZE9xiY4dhVyoyK3e4KyiQPQdJ4eXryzh3nsxPAvSO9pEgBzr615ZWFSTRLkl7SmfHXhPSfhuKBZcTvbYVMZJ66895hGDDIKGHcvISCzr59IE/kUjiGMGsxSnRWlzfTbh1UL9peljVapnwVHOKz9SGVUG2cr/7XTIGGcyKIIfsFNnE0z/LrDRyom7Mpx0tJUUPoyQC59GBX6OM5CmBG8LnnO+8/b6EMrqt/66knuV9DAcPcE7qd8kCKjtCJ/ITMsgUyvaUZXagFIZgI/bjwiUH2mB7boPDSspBqagmJ2zmafZfCVdlxxWDNwxHd/sUoSz86DB/Qm6yQ8Njwag0vrHY1NuvYZOF7x2727uCwxfUrPTcryb4bRUNCrGfTqCRylTo9VqU2AbT6QiF6+dvqKaUnEeTTNnv7c+lDlkAZ8xNmu9FywrcclrHlxwwrqXy2/CR5YoS4bvs8XbtlQJ1kn4LTxx6vCzPp+rW0J/iZZkWoyEuAq/KCO/CmNYxZAIkdERIXowEUzaXc9m26xPSi+jeE4Th0XMnVBHPBVgyJQwkK79hfqW4YIiSxCwqZcKuclx3Xh8WdI411xYIZG05OJmPrUp2gSkjUynFywJoimvDNtbqdAajuemz7HcsrSoZF/RkUdjnewR9UEF3pU8EXe7JZoBNz3/MekcdL8rNhtjjCDSo+u0mY5YZg1Lh10ARkR+ZVhmIuY6aGZ7yy+5IB3++1EpQ90SetKoIsaWKNhnmVJDeV1BQIrVgi0jGZCbOV9uHdPurdil3AAxRz5PvIUfT8dfbAUFZWGkn2fQ2kKYmr79MEPI+yHgBbRY5zTq1PayWEq6tYlwv2MgnbWjb184/LlGxm1Kqd6aOROktmlItAEOkNiUu+I/q/PEGZokVVgH5hRIsaJqWlvEF5bSCa1ToiPFePEhfsNQEMlmFZROkEtz0jP2JtiysNT3my56fRdeJBo71Kv28wOPDme4d0aliDPN/1aNkBPCtWU3RiT0vBmDv7vbNcM3GsWHmN6H7/bVBimlnl+VEZN3EdvOCNPMoDLZ/yw/VSe9VmHhRHhkQVqdaaE53T1GikYktQcmGWnhWbHbAlxUI0QL6b6IM3EFmAXuBQD4ETu/5licoJEXklAcMnLR+Bp3DQcoXAeYbbdgw3gbGDetvk5F8YUK38p60oDRHjPNOy2tKj35NlbZdEAc3rlqNseyUY6dV2bVhUFt7GQ/5281lpMiC6PSqaEUNzvFiIPanlnTsYd04B83Tl6aqkHA4BC2yCKypvyl3eVkkmOgKNOXHDrrwnzjOP2KblYrbBURerk+/OGnQA8l9meaU2ZgMnVLqewfHIr3MKYsGi763NEltGyDtWrTjXde2Ey3MdXf4z2o7BO2fleUkXcm71kbyVqS7RJJEQHEO2lPO2cAuEtGfp25RKTk2Kl40r+lLuBJlN2zSw8sM96p5Od4tAfeMXfbv+Xc2gR1YsLi09ZNo9fBUXUx9wNgehN8ZcdoDyu0z9JJgtiesxw9ILHvKXEszRgfzZMMj8v2C0wEgOOxl7Tz4+lWm/6Z6TTbr350RMf5aJ8rBDOMv0rlzrOHBZZiK3unqdBtarFBC6h+1iIklWuhTaHi5SjZQNqYViaJZfAjYdcOBw7gdP4AmUXRYMrz3bg641fARbhTIisPVXuqcIqf5mV5OsByO6ddtEX3DEUWTRkuV1PmIozJHlz9L0HE0lCJ/qqr/AyBUmW3S3IWfsF2BacTMnFczu0PFDzubzrXALzEoHe9cah3sbFkJw8Cj0QWtyOjccvmAHpfMoHAbHlAG77YBjRcl467+DM6QJ5GLrNGEavWgp/NZjMTyqcfu8RpfSkzjgj5pSoy56tUwBps2CclBkqPSxn0h63SYJBCEurE5Sw7IarBGgKaPNFgwY4vgVNtOCIPQWnX77gWz/AYt3FOEgjGNrT8Ruz9hhPgOUgJt//MjJJThrwOhxjfhznCug/WpJqGkzio/dq2QfpsVNdyhNJwvejg5cvh5LfbCA6oy5uV2t7cw8WIQcp8fnlqtQfCVJ9zpQF43jzhCSRzCcMqJr27vLKe8NvvRHkMFeHym1TvAETExSyKqeVMji4e2zMpUOjWJ+d1j/h2VvoyAm0gPJtfEbB/nzloZRIsQ277tqLfb46CCXhOy6ZX+hnZqA88fxJLiMFp20e0klwm2+HIBch4b2fC/RL8TlJarcaBnpbwBiteCvvn9OO0bWigNrAY/TTS5X+FdiDXHpkNsr+ltstkEsvecrmDTQs7YsySB2QASSruFsoKo+bMUOfxMi7PhTnT3v9+BDrHF2j/zNjX32mTNVK8sTfkpWFDFxVbiIKCOfm7sti8uO/pG1MMYXwys47E00dB1mwTQ4Tk0ph4+poG1r433fzAGUwA+lh2GMvsxGALnZYimT4qLnSGHlxClWBW9/IZUW5PzHnZA+KWviWJMhEFMhJxduWfvxHrMNb7xsRNVVJTxRb+uovvRBAUvr6syOSp5+EOOD7ybS2oH9XvENSWhlRYQW8CQs6PqfDK4nVerPstU+DrhnOKrz1u7htSWUpsZKLikXSFKa0az1bkKqB6uFH3sL5NruXgAXrL0iVcOX0RnySyzgr1PGtwUPi94GKGIZbIRaicAjmuLul36K1kgPE72O7a9YKk/QEmhauXR+UvXLBk1acUDmAQgM8yxbON8NeHXz9Prpijq6Te/dLD8SeKL/R92+B7UlM7ssitw9hhVNitkeeeG1VQWoX7hSNb2mzYmMbK7JxqjNBqKCBgb9SPZTciLH4GZV2d2HLHu7FXvB7JrwzAx+Gl7KzyeFoyN7PnzLRuWQIQXS2MoAMpVG44L3zlW4cSKOEuJlFiY/GBcu4MKjKt3w1mrqckdKvBTmb+/LVB102I1vMS/c6jYYrYXEXHTVCfx2R+tU/Dv9CGBUTyA6vzNItLvlmHxsHZhSl2KORoGI9Rw7Wm7J2O0ZjhBpB8GDCrJWGGCTEOX9yAbck+l+bKJC0NmEtiUkv6aY0aHqIf5UqEO4bQX421nmU7gt7rxgs9En4hX+W5Hge6fuWa6wihHcehsAnc/dgaqPJ1YT3XYUtJAzmS0y6kUahbgjmCqJR8bciph4nMQM2ndKC5H/UDTNgLBIxTJe2DME8DoXdByU6k+KbOCm/UWOM6/wzE2TIbGdwPru99GI2IymZyK9ge+hR//Sd+8DxLjLuApu7WClTEUHqVd/ioN6kd6ArkdWOrlFxuw1RoY89xemt9s5HZRPNdDXDrI3Ww8jNxeoOlRE210Vi1eUFkVdBoQUvJATM/vKqQIaQtSYOgSb/RXRdATGgFSC5Wb7Ca/CNrLTfQoGXFCrC7v+TbYmZO8uTPKmDM/SFHvCyUgTMD/COxpk6K7ow9IN6LzAPIloERidvyJR29syQLmKOp1vNujew4kE9rhB+/iE/l2EM/dlUWFRy6r4f+dJV/FnD79E8I/TBT2yAt5sSc4ZDZV2594Kss0i/xM0PqQvhZS0oxzxcSI/mkzvgPKlsqsIQ1CXdywS+brA0nkjRqAZJQp5cgmgZUanFc4L8MyZ5m4g6V5XxjPo1vMQvIJszhcx/vFKoSyj4dtOwTczafW8XZOP4JIGkru4AIPcDnjy7w+ZLY9qe/bBMt2b+kUeI8RNMq7gAkjHlyMAnLcQADy/5LTs3joEK/hzmGYnEoSn/ToFRCcohP07Wmf/Xo4FSih99mphUbK3yCduUzUwgn4378sqLhzTTJT0gT0leepM2AOHtDE6/l1Q9HmmAyPXNLttBPIw8h5+xaKNUXyx/+vATgQXR2eKh5TtOjPApDwARmK+kmehQWhmNJoHF+XU+swP+MQQizL6aDOmig9pqnDzeKCjwbbutQbBSU6sjofZjjad8caHnGv0PZoxk64SYxVOaSQGS/xxamcq7WdQw/XDNRNKyDxnnCKnVnvmFuQMj9vYAM4GfFeOqO53TXThtq5kfbfFCiPCoAbZttXw6ZBFXARbscghVXG2t0EnUBosTcCXYadoBDVZjiQWRqKSSZrEBENLd1+agWcRxMREg9siSxoXJRdCB6y4HKDp2AGTH7kBzaD8SMsfGv9jiPNQ+p+KojkFX3T+DaESuzQMhhAkn7EicYpe5ZIDDv6orV235CcA/lkvLBcsUADrok9vh7sPS7Wmh2JYg4k1Cuc9s2duJZUXdpl22lT0j3g/i9+uf4+n4nvyVsK8+uBwWEqWpBClkRGHpF1o2EMQoO545Z1mg0VbyC4GJEtDcQufolYyTStQUBz8OBXDKNMToxqquQJ9ExpMzMcI8f6yJB/wCDj03zuO645kfjpDfYUDXVbA4W/k1C3ky4/cKoI4v6+rXZxtmyIPO/lHklUzVR0I0t+kikR6W2aHy1JED3EdciGo588gYosFw3gcSPRBSYIGgOfP8gEVqgLtGni1Kj4yHbeaHCLMVYvJj815wj+MJSF6tg/fpmU7tOAa45kPIuGKnPriAQ/QihRBPMa8WiOd2uiaEn5I7srpgSgRtcXsiKyBxomIc8HLTnRuF9aTybnBxYTba7b0KM3qTgXwv0KNRRHztFv3jh7eTHA4d+3/5SawpSyA2kr5UtuiAS45aLPiZGkmX7KP+/ZTpwHF/ZjQ+svLPnHBHO4yxpjD5tfSBKoO2v/Tx6CPO97n1kYz5sqdDUUU1iw4ML+IDwyZu2yhpB0VXFeEO4hPn7Odh8eXcPIdeDDrUvsiyZ9mZXobGKc3VKxYq58IThThjMQQweQoXNIFii6/Li2FdQ8yvRB7+TI0q1Yyv5CD6mj4McfDyu3L5xrx+V0Ptaf7VVFytIYdKRt1M9OfikdNpUythada8XnNokDObfozbBYyjSHCkMVS1f38DpRWgmdnsujMl7pJfKpkdNs/PH2v19i4NhvR/7L+LNDcO7WPf7e/ozoO8TC01mPhHC6C+SoWZuUU4iMrEYLX+C5Xi1+HN+JIwU9IIQD3P18Z9iSAvSjGWmkmF5bz3euQ01TUFQfkliy2W2KN5WeR30zXNy/dJyF8DQG7OcAtgtK8loZsvPPf/KKbE4jFiRnF6n6zotafRfKpJEYNVuZ3HHuuKK+OKJD+DZmibSu34bchDRGo/qlvAalMpiSAK+idQwyD9Q2A4mmiPPopR4AD0MPKkHfZhMnZCg1kBPUwAt4t385LRcMRFn/YOXAdSZkDsPKNRAaq7Lz4rc4+pWzbXOWMTLrWCe1O1lR8jyieiSZfiH+yh/YCg8R8oH/ZOkMhiAXQq+788eKZj2Q9bIBXULpoT0DxxcaFHBVgMpdS6FCcJ9gHdC4DeBC8LBXbSMpeV/WukXZUUPAK7CEXlSeLxIDQx6EDZCyHdPByZC90WHC6J9Bf6dlZfgHXsTkuZe+HtXLAWYJRP6TdeluA5U8MRK4cfYXn3oZT+wB0Jqh4adrtRvrc1ffDKpEd0Yjj0RQa3FSPSd8CoOsPuOZW3u7OBtcd3YAVca9sT/XOXyy0ssq39AjaOXK5NXMTkaBcbN3QA9vgqkpyVN1Szem+ZXhr1oRMDY3P/69dkycGFw/CUPoUfNE0zdzZ1DPM/kKDM9JpaSk1KPBETBZSS7i//5vE457bvBWnVq3MIDJO1wYRQrVikT9gu5dMnKVwmQ3V19OX/GfzzOr7SSHaL5AiWE2rAFkRMOzpv8BWKMHZJMDgKWgP0P5T4DetaJOA/Q1YTrwqMYHC4wAVpxsdg0q/sVQMdyu+lE712v/RjS841k91C2PoT39K6wUHKY6WAzdqkPgwDSLa8+5ChphbehMvW4x/yFtwxp9DyNjFP5K7tuvGZREc2mRM4er+jTCWZCYcxsepw/CkPO6IFp8E6ZnVF0p1Jjg8vXK3M3nQSYFZKTT9SJR8Xs1+CmVW2FK4XIcHyBG8Ocqy3vNyzHbhk3QtPbsqRlMhMErpH+NjIzNSlBI5S8CSdGqIG+FeggDxXyyeI8mUdRa92vK6zBqVLN9bVm9wFHrfv6Xlr3Jvlonx1ZTNS4Pq3aU++hE8OZwRAVzzJRBODnlZIk/hecNgypxePYIMRjks77ICalzV3/d/4L8kvsUfWnr4+/Tdde/vDZUsIewWSj5Ro1Csht3cAYkJ5ngNS784IJZF9Dlb3VIq/hGm1dtD4N+2pOcZbPwSOTLV4LCzhRa/hsra2sWTgQRs8n96T30+5mXU4uUoVhfQ4it/Cfxrw7lytzJWDHRC/iI8aGHtT2h9cQpcpaDxL1NSGppctiWkRfZYQkSFzGR4+5bONttLcqJ74Vfett1mrggvP0lLWv8n7XHaEyapYykcz/QYHkr7pA8gckb82N6eJC1OMGGKVvga0WuFVeBcrKeTS3EgAmXk19wW5q7OOWvjAp4he5WoijOWv76EAISany5uScQVTJNaKhItzrn/pBcZV/2AKu9sxATQfqc/lAC0+6xdgKn6qZJK3qtIr1MQyysM1Aq/NfyBrwLoyUa2b8FXP9i4XLq9fent7MuJunrwOYfwjTeC6X2zsLhJLnHBpylQgQ25Y1WcNhig5sbpIIk03jgQi0V5/81wwR5txQv59Sm0k3JAKn90GEHpVwu7475Rh9gO2YH/x5w9V8M0bhx5cy1CP/HB2fRsQEP140y9iIllXMi4DvwFe+wQrdvYQze/BTIId0FVHvuNpFBJYzSM+CcJ8+DOGSzalL0FmfBgC5GS0fenvsQ1a1fqJirvNy3jI+FLYd4D2TfsNuh49BkvCNd58XzKRsFWl+hFddgiKdmM4yw1fiq0Zvs79k/q9eOamIRQIbrqVM0A4WUrABxsD4oXqTedIHLUSaEK/CH0m+3f+A6BBLoRNNQcoItmifs1bERyaPQf2E+J06fxB1SEQzDzAmS1IUDt9ICGsjjnwmRpf+WOQn8sg5lrlufdr3SEhvQoAaJzOn4RGpMKJ4ijjHcXCyEBtDE/hBY+dutqqiJaF8GiOfMC9Y1vNSvht85hC2KpAtsd1P4BJ7x2sLINedq8j10iJKH1juSAt0iyYNogCn/6gLncpaG1jfCyF4sNWIwATmMOdHXuti2XM3mTGFlrCePOokvAmJqg0rjkPXlUiwcJQIZIrFZKNxqFQcTwjrzPJavJyYWuMtj32BdG/cg+g+J1sMPJI9Y1TUv603JAjyMWW82/ui/pMagXhvKGpVxowrnBQa80RjQorOnevssiJPMoDTcZbzmgspKSk9jH9MN5ikkxaZJNIzdfgsrwM4P9AqldiMm11OeoD+sM2wuDxaSdkEzI0RcGAOpFNesh9mJjz+l4f3am+KnJZoQg/R9sd3/GQhr2k7xff+9LX671BBw+lkx+EeYtpGpuOtqqn2BYgw+of3N/P78j185b6QFR/93b89E1zTp179hz+LikqMHvCccE1SssI5w7a4mDsxlTwt7ryyqESN7vceXXsPnepxJ1SusotSAjjYlgN2/qyEzfN/VElByykSFXuWlPVoNm2wmlFVIkGD7S58Y2cg+eSZFwft5OdO+6CJ7K1pmg/RXtE3sHMG3QoCiCnAq7ZJX3l74NFadr0jF/9AEjR/dayCFXB2pFtAh9o+FA6xPlLbGKL7SQ4A2+mmhgDIYHI9ciGpbqVjG76teI9fi//y3OLGOSK+oBY0Yn+aOdbtbO8E6Bk+cZJI7EW3fAmRLsGa2sVHKhbP1qv+9MnMfpxmnoxm0jJfBiad/02mydLQYBHswxuPr04J0MgzAOcJNiCZQwuclAGsGz/+aff8UXExgcOyWDIX6vFyGoSGPz7BoyBz5IZu35FeOOBbqT/5fO0UaYBscmEQ6du8u6sXoFwa40I2T0ZYdloTVuNMvsFlSomhdraYjqS7MMsA9PsBItMKlqf9gm8a97vJLAN+yzp28LVlP4o4773R3JkMAd1DDsLNt5IK18XX9Qm36BuUGF9tcJNmYoxNCp+DjDYYmoMhz030cZWRH0lF8XijoZRCUmMO8TV4L0Gn4fu9c9MUWfGbERvqlpaNRYnHiq/PKp+aBpRtlvzE8ysF7HaEg+08OnTNQaWryVe/6vyUrAgt5Xj95KguAe5TvB4nJyNgu5B10dCZJyIhiUUA01g97WTVrOt9lEBwlI/8x3wSKhyEpmOf2bJ62TFt4ID5/9PCPQzB2ak+JLj0TBrhPSfo3aZawCyyZHvk08cqsmhhMdrvDtjFr0mJLp2ozmeJdR+nj7TY0i8Ki2aliz2P6gj7r4augbM9FoPsfaE6lFcpCHEMIdfU4JZToYnb1FDujkweH+vcZz5IfXWuPAFSHaRW9XEoj2PAyOr62IoyxxiKgDWcGpCNarzSn+oJouqlfbDt3/6lX/5Y7KRRuXcJqNiFVl/UAR/RTImMHPWwiH+GkQArCt7BLfMkBwZhfhAtn86JMf2FgWn9WKB1O6HFSsiEFw4aB5n/hD5lE0T+zeWHJE850RF1Pr4s7xuLCZU2fI5EmHK0UaChLhU0fBncSwPN3lwciR+S5IT/9gy+1wIFJLhPdxiYlfy8COvNNng/98AuMCfTixfBZW9c16Kqvv4a99SWwyr/fcjuElGCs8ZtJJYSzeD/+nK8GumH1YtZZHfglFbRCV8eC2S+EQQCjiyGgK9ZCLLf5ztBx+nb42Wn00T9wsi0hXjdz/9WfM35/bl6W4HeRZ94LlTQhk49k9fbdLRLNT3LIqL5iQjFDh/9vj5ArZeIPERtsUhQ91MrR2Lqtt0xtp0MCMpXd7Ygl0TeJcEcGS2Hxzbj+ZIkO15kswp5t/adY/lOQx2lP9M16dBSENEiMC68+u6cQv760v7C5jdDHnqhhEVG1O+jy8XF5FaLArX3POOihmC9RLzt3b89BeJ+6AMwzmn+6zWch1dWYsYLc3j53lD2SIf58RCBvRqcAq/bRIrFfX5ammZGXDD94OYreTRf59YNwo9YIDrzPk0xWVlac4zfC9DNoT1v/305xfwe91GICLYgUJs2kEqqbdkWR998VGy4+Ym3iqeGTFJh1rkXVmMYs71HqWKdRMq4voJz7EyNOtDBLUnMwx8dziNo1jJHzdKAd2VwQbgKJBKoTtLJPyb85O7xLoB1Kh0cpVltBi34vk02O9/w8I95tfpm0KJLNYHmte5QSmOlh6ygl9CLRJwYrZlr3IbB+mA8Tyu8s3ncmwPYXKgK4Yku+bsSiEgOL7P6SMMWCJ5peJ4tGnn3T19xJuunfoRPCjThbDkoVZ7DGnogZW8fgLvyGir1FJZIEKpIf45ce7aS9Ty7+80cFV9Jv/ZlFb+MrSqRTog282auyjRwht/BUpGJDq/C6s3adei1mTvMsZUnvJ7sbKyD8282VQwUv5pariYJ4c19zdbaA6/CBtbBY8rNZFFj44bt5oEMMRbcFjG7bhX6ceQxp2YyMjfWQOyepmAZnEk4UB504UBs4TxSK6UQv5VfokEPozUp4RUS5S/BlFZim1Pd/UH7x7dVwGtBSKpNSJm0wsRSBo6MsHw1VOaLRyB2FY+xop1+/YFauVJh4fLNVppLNzVE+ZCIMMDoRyn9FtaiRm5SxLoVDob+hhvS9r8dYwPwYHjAHbRUkVowfIMl6e1vD18RoYhEY9bj/LOuIYGOoi6ikvzxyzNRh3PpTaYc0rTgA2EFcjopl1NzR/1lm4VA6Itprckx5dzd2dg/udBHLX+8rapPmdv073lwdbfcf0asMpe8iZUIgUcuaiSqf1EKhpJ7HtaAYcbxx1B98bRFu/PguHnpjQwE74MjZ30i6rLby9151kRV3lE7LDDGrTDPoRmi0GK2lMqRAwQJvH0/Fn3I+Ce7aRe11FLKMccAQQKwN9wMUC8SLgGMeCRagNAgEdFONT5x6CEGrrG86hpsFBPFrV5uTAmoJO5vTZnsiCS1KRKax6Skkd+0NzUYb9LWbh81WcxEyMn44hRkW/tOwPc5hufnyyQz4Wwy5IGNm6OcK8/GL45pIblWP84k4Nma93nhSjcmRUxOElvIlMsdk/78xDYvV6HAr6PUeferZRHfUuePNkuv/sSzfXZQ2ISQ1MUzQWLBtAgCy/RVRiWrsxg2aTmUaFnbzKtAfa4zxnNlr/LhMw1cG4RD7QpQqqbaRvg2/1lZAkiKcaOpShI4zC+Yc0v5YEQ5WzYFMciEJndBielGKQlzs+KfpxoXD7JsJfYN9E9XvEP2Ui00TMXQ6Pzi3LUcrahQ0LJFRwEDK7IaNjvJ4nUtlI0Jqu45xw/zX8mesrKTiFDjkpuxu1HUdcrR/Jby+ac1E7uEgvn52grr0DfpV6muQcylEwyw57f6i5i2ZOmkvqeRkFknK1yAa4x1AnmhgqciIdlkDYyrfcqgUQ7Xixru3FZFfLehMoy6O3mPHrq8+Ih9La3DH6pb/Hi2oY6029r1Zqf0S6yRzx3sp7cgEe/3RF9vT0CkMLJWlEYM5w4X443dunKU2Gn7p72CdyY2tHD4eXFyG9ewU3cJy/nAznQ/65la46Vhcyt1Q9cT8O+BOTlohSggmIXIQvZ0hmQg5JQvMiW3FRfSHK8UlefJud//ReQfQWWN4hDq5SrN5kVx0gycOcEiAJbtBvcXJKkzjN6cwtjNc6LSzM0x9lHGTsL9H5eAP0z1DzfQc9DiGwKU2956I0uWQoVrEzL2IqPHz5wBelsSSm67amazXexefVKktwDBqFkVq5SpqO7pFUZCDPaLyqU5b5zoCnaNc9k0VzzDCTOveEVL3fiAFQLF14KbIAuwhYEoN4ZSoyvln2dTJZuT1qDrkZsEiie47gNJhYmn7OANi/NrFlEvcC2r/H4oOZsFnGq7sX00mxDFU5tD+M9LXlF7uqO36HFhIRNGIIo6nGJsKUWmTkkUGKzGi2gHDDkzISVeXepll0oEIGvNGQDHVqmppDnOe8CHWK06s+NpvowVGhYB4FErrbs2rVfIKlRkEl2zwMrjX7ZJF2H14KXft6wUxfrhoQDAFPIaX8RgFlURX0pZrjEeje2fNmR3xeWtFz5uweoT4lVEQghRDKLD+RwDc52yOqN8eWUAj9dNbeuAGAXxTwCwOPNlUaIYE/P96Oe/GJUbaWj3yWqr9fe4xJUfAKSkpjbKbGxF6n+IzCjjr0kUkDv9fiH3f1s4tiR/1OhOuU+sn6tuqwg1M1ip5db54ir73Tu2UGU/iTWNU/1PQWeLkkDEWnNfdyQMZnprR5xNFRVRqEFmWSc5C4R9KlE9dJKQ8MLUb5uvYQINXVCpjnsnojz60ts7+iURgmVBYomXyYTYE/0qB7PjfQBUidlxNd3V+3/MW2Gc2+itOPMg7q4WOZ6LWTs0JklIHPiO9EJ9I3upS9w5SX0mMXvs5sXCl8VGpUPNyDkmiMfhlwwRfzAlhNYW2rJmcFyTyEwtjfQdb1fx73TraA5pjHnZ2UOKu9IvlCe49nLngUz4BmBi4oLXkp+oiO2y2e/BWm2Uov+lYBzYytG+rAvhN0kFm1AW0zBrqcKShENm5/p45iIZd94aYmLkptcgUtRx63/OUXxLMI43rETdxQXle88WYU5C0NIV4FbSCwIGt8lcbcSQR0y29TJzqRgPZhWhqxFmL1q2UvCCOhNk0prCVAB9TGPLJHh3cs/X/zVWk3mIyOy1vHeK7yxEyH+mvB0Go9wjyNbbT/i4Dgj5lvqrYsPp4TTH/ST8e+0GxeCBzaK7vdbN1S+i0uIrSv50Ag5ZTvfyZrIJB/SSrRW8nfJnINxRhTABa0u0QfOKptI1AF8lv65v4zZsMvB6TuOp7UqTvdNEoV/IDdycGk5qxGdYKaq5vEaV9vLpFUh90GH6bAyNlPcSL87Y5yeYO++WXQ68lD4jFMShOO2V+6VBc1JxlyWQbKdOWxEefWbBu8aDgqjT4TXfHwkFHMSM74a24xSNPpf6S8gS7y/3WRbYfx9Ppwr8dJ/AlJgF1Bva9ty2vHvt2kcq2ckDGCdgDlepvXldT0jMgTEnilBNXrNOMdGb7oOO2KZ/xmwwm6q2gMqmvjNJfF634CVn9P2v1BnaFs6CSLf0jA5TVuDPVAGWOiZD0Qo/RE6ZNAZVLZDAyUyZZgFom9EYBV3uU0BjrIeEnJsjVrVEvIN+wmjxvqUaptkqgqfDz+fHIhkuBrbJ2RZqLC0xJ1WaXH5pTDTAIXMJ077FsZA8EnLKAAnbXJ+X/uUpAFATtNBsBrtjgZUyTsLYQH4f1dSZKRsaEXviftha2/QlCETp/BhXE1f2EcgOT06cYk2aqIIvFzvtk0UaTqoaWj2Lo0XTaln/7rgR5AuoDdkOfaHVQ/q4WfToCsid/ZYh58X2xu61GfFxKEdo9XxMIQKir9i+lbCiG8iriioch6S62aBxrO6Do1vD6HuaR7tPSR5Bpq0Vctl6zxE0VwDBNMEyuPC6wApa3f6G3KY3zP/lJpXTHVZsZWu8J9sg0EO4yAvFRIdu3BemYI8H3V1wC8oVWZzIbuI1i2uzvS0EUi2rp/Q68OnLzCgzN1jkyzayN5NuAyn6US+yOt/Pzgegt7/rSlzZEWv4PEykpp6wTdMyHNOJbUFgqiGx4gE3VYi/KcWtnK/6R4EkIO+wQkC48H0iSlXgnthXRlmvFzBmocFGdQ5OY2GLzJvYSW2yKFogRiZZbBL+uzSAZofjL0nvn00RHSTHWycXcj/XAg9NHjA4HLHXGJHMRrtlDH13yp26URwYTGO1OL8QUTWl01qUme/ZTiDY7tydOIv8xk9h97FdMNqZdJPS2OKOdrlW8TAoz6U+7Q7UqWsAWxAArpSfBrkwnzME3km7iOPmm+4VInCaUday5pb0pOSNiDvqZNhMOQthp+JQRvSWnQNQWK4FU/49W1fumlnT67Mvtvfa9zHb1LiKPatK95Zku5Mzx45bDt9JtHJF9aAionFoDrMV4f7MyE7T8+/5XF33WBWCzK4c5peSYkr2NSZpLh6ufuFllcX7OpzdRcdxUKnCTCzrwyeB5ZqXUCtZc0t2507AIivFg5Fye/v8eqXtzJ0lXkxcSDnGfHJOyVTPTvjHnBeq5DZM0hlSPuZM8e0kWN7RsUqJoPisACpHqDXIiPE9qu0/H5WNomKYyprbN2VuT769uc/vT5TGw2fRn7RKv7U+tV1pwuTjfSC+dPUarAHXa+OwxaU5Zwown3hIBX1Znps43/zdKRHtCOEN99qzUp38nCWZQYJRH27boDGgvkBFBqLyq2yGSZZHjj43iSZsp+s+vpOql6yOPAxmvOU5B4GaLayKJApZ0sj+UPyXpGhxK8kblPxqobECEOd8xhRTynu31ShC1ONxJdDY54AORXwC7FEYVeLIoiu9ddH0iABRAwoo13BlpHAa84T7Dmen7xVIqwuq9CSznHlooZ0gbw3ANvYdtqVT/Zb8DGKzanMSGHoJfrHwqPExO7yJXKyQkWSTxxfoQLq+ea8LO+wcEFjAfEEqi0BD/W8hYRqCBYXeQW0sx2x5zXTy3m+xDIPoWpa90F7JCsNzRdEZvXdhTOalaTNKBuZa6t3ngIn/uJ9lEG16ovbZaDEYysRjtY4znl2WFlB5anrIPfUW8qISJsIRbTJEuijM89srcW+KeCRmiID2keQaVNV6u7O7+2SYNIY258gSjtoQrneTv5kGNJXSgZQusF7fY1CCNOCVu3tOFb/ePyFwW2k86j/YUVkXtIlVh837RE05ANCCx6sNNcWelASCFrpmbExUzWA9bAfZjUjJYNQprno9Zvr21npw0yrB3P+JmTvODXPVQ6G4J/bFoXgcuCkow8agWrIoSbSwSWqyJ89D0JCGlx54yoTZOO8BrMpruszjDsv1aSD8+aqnqOhHPxyAU+8qwccszYFufFtFSUThyAsAYRQRUkx6CnO9ZQW39I0UnpCFfyLDgDMt5invxwqHpyWGx95hqKMyF5xCrsp9AxBVig66hnw24nLlzh26pf4t9+nrmNh/jOZGELoekx2RFYigLRf4zWppZdrHjI2GCZBjxjLdJ0B5OTkse3njzU0Y3eFBSnBfjiAouXnNA3MQzipydymJwV++++5hRv5yc9VuAW6A8eNwm8hDgJafkLmBDx/wcIZFK+AbjYzJOHbAySE+Vhsl/Ln8KW4Qdg3PA78HO9zCuGrktt7xNu13hKWckNDokD7dntczhIR2IF6Wo67GFfu3HqQI6lg77tsG3CqGiqIHYEAYMruSKxTSHaI0WVtf44DWBvyYFXDEBTP6yJ0jwM0hFNEt4u3Xp9Spaw64utIlfLgFChskSVCc6OdR+fcWArVKCSQQm+NZ0oUAMYnvcxdixBSowUn+ub8E48UxW+PuD7WqBwJBhXKc6PF9QxsFCFarOeJNNBRweFynxtEOxITCwj1/PoQxKCDZxWDiKEMetYOEhawidRhtDoCSeWIgu7IAuTfWoms0Fjyua58/nSjaIcwW7woY1sDK2xIWJygZPivhcpuROSFdk66SlzxKozTEmRSGercPZDyhniI3Z3G4kkKKhWM2BcXo2cfi9eIZ6Iud6rVR7kw5vAJ+V9lFHYOAwvA/HTaCKbmhSiHAHumx9PvaN2bB5U7dU3/3LofoKS+nAEi74XP17THvIcL5CsKpVz7+HfzSCqXt23WP1hInWYnReLfl645hjx9srCj/vdVW5fhIvtkHCuU1KgDG66uJWopVWqmWds/VxpFm9ORLn9LQt1K6opgpNLbhlszu2UvBvhKmEdqFrpQSrfC8+CgApbG2mW9+VgH+mT3DzkHooYOE0vUKJIas/F1mW0tKycr6RettUeC8+5DU5rt8VTwxhYoraQGXx5q54UVvHnI0fXmTbmYOZvhiE77gnxCR7jGlSenyBgEkxoGfd2RqE1gOugw7cbP1+EgwmVPQhRRiTeqnhn/xUgFYceZY7BUbKMXr6cA7UhOM8cK59F0wWdkqjVOAjg0gA+AaW/TnKKqOZ14TNdpOVyuOPX9vuBXj19V3uv4JTzDVj+3XUL6DUpbIZaw8v9V+FjfIIXNBQ1V5geBl+CFHI3oYLM4h7CykiFNmPgRLo2x5OiIcO/GA2ttCCZRL492FXno64GyxFR2WmbHN1LbPBHHqYQ7i9nW0TBgsecrFubOd+qwIyCU07s9yB619aXJYT7ySOLxbGGTvp8uT1mlhRaeP82e/F0BtwX2INSP1AqYE2eQq5UQzA6MxCOnOFSlgULbkBYVK54OhkNTmH0CymcamAK4WHPxJ+piZhq5AfhsYMXLziaCpwjmeOkJOAlvEDH7iNboMnagvaTNWzEOUl3U0uM2rWRPiO5nBUChwjFdM77OvWbxxj/Gu9mYjHBLwrwMB7yCZhoxYwBeJ4mUv6Kfdw4AKiLD+SQg3XwwFh0zaWYN7vMhqhnA4Z73uckbA9kU9RixcYFwa/jILI3s1EssG4x0py+bS9eJ2iLgD3ISH47NggWqHr2YGyj4QtC09WeY8QqeUmKEl+CoVWv4BpfQZ4emYPz7F3NutabnL2njwANsn9LSOZ0yq7jJodSC+Lv0P6BScmFgCRAfwwVs/ry64u94gDIBwybB4Qn3WjVjE9f84pGRSWWO+Nlf6C88v5LLxGlwoblwOFysb9kPp8ZdC655ee7MhTNWgejDo0qC2wMqm5hWwedvqLBc8HS46K5L1mubosMUkpqMbnz6Lwt2XVWAHFk7C1zOPCDfEFFFDGyQdPB+u1y9qMsSoIBg600dadV5n6ehIJQnt6UInTgYSOp2WgANOfjXXqHimO35HFfL5O4waB29koXp0r1/A3ZZU8WvfNMZrKJx0h7OnPNaJ9RxpOLeUG/dc66AGbqMqZYk8FTd1r5kDo4B4Ubv/irrSh/g/BpqfYTGPLvdvWxQ71Ue5OxaF6Icpe7ofkcg7FVsOcIYVx8in2ElS8xyrSE1FjrAjETTT+ADldNUdewToRIAxml8ucXvSFnD3Bm7hxupe+DOqkfuMFzKrprkolBGMAzFx/mF4EqBMd98o4Dz/OCGZIGRjPEwZOM8dyZu2i0WMX+9V4UkEeXD52wBvErD07WHAZRkUJ0xolZ66qV+IlWrVxuX/4q0pq0UMtCawcy6ZIqehf0EuqDGc7fKWFEjPhz0bVYpx7GAkE3cp0316eqzeKMYFNCNsv4opylRhsiCEiAPC4+3e6+My6XcfRGt+AG9qPkFI6Pa4A5ch4V527WyDAf58by1o+YJIkGgjGuzCC3n6D6z73aLlfIU+OOX7FzrweeN2rycda+6CbKqHE3vuYJS1vsdkmGOnXT/dw0dBrqS19VAJrPtbhDbKHiEALyjGCuCuGTJUmw2fh1QSRK+RGD3fPJixK41PfuOUGfdq7H+qfKyPWcWT7Pnv/eRg15H9thtXB9Qy4IvPbNvoExNoiQyx715C//2ycapYOgrkGsx5IG6tsfQy+OPoTsttpZ/zMLtbSL9UePyQWEQE12FYvCs9Ednd18/bnz71TAW9R1Jv0t+MVoPFSow3LVt/Ngpe6aiyzTpmDxtxg+FvUfDcEppmWZOj/vJwJ4mSitG9/FyXWO7KkdO9uly22iT2eBwY7WBmazcOFMJAgZMhKSx1jjwJjQsEkFWSMArCondwqJdI5AtG+R6md8B584NhxaiHikvzO0/bxBYe+fUCcxDhvWGj9ND/8HpUecUbg02XaUD8i6zTUKitt1ai3/nQcmmNYZVkmhLXNeJlG27DBqBq1ezPSatw4mwfMr7oz1BPnxclouTAxbYIvw899yVO4u/dxFBpTGSTnDgi4Rx4HsnZh1DkDK3nbY+bkdu9Xz87tstGsH/yDT+lUFoZ6h5xjgmWkAklsFs99qYn4CECTl7MxUFjYU8m54wmZhgEN0mLHbWjGBE30NkEm0rLEES8rnBv+bO1Dn15Cl3dNzIx37J1kiLLXmu9Vvnt1F0KRUSs1v9z4FL/W69mXBMMO4tzCbAYd3fY2IdcC6aDp5O79YwCBfrOqrgSVXLldlENMj2CrF5We6jSO+Mm4rvIIwx5LgvtrMezA1cClDlAnJ6Q54lVASRPUufXVgIJ213DWj7IeBvGMhN4ZHXhYy88IT1V0hMQ4H+6fAgf/ZtCoDodNN8H4QijKt56Aq1fBrG8IwNBv0VJtf960i0oJ11lTvP7YIYB9VPciwmjIT3LRVHb0hOwxYeKOauSXTovfebSJXJS1/iegTp0Q1tFdpCDfrDQ4Sdmrf8w5XPmjfrgabKA3alytfK/gryuRJiU4+Zi9I0j62jF7CW/Iu2lEkqKgT0fjWkEpr3dDBT8flqTE3uXiW5Z416/T0AaWRG07bpTHa21IEQqhMAK1A71G3er8e3W7RtYiDuc3zBldHowmUuEiTE+1tcIWxyE7EK2rY22IqCDnMfsQwg7jMEY+2t3zHCTZCysmfQ4KO9jK9lec/kJ05+Owh42TrX55ATtxakHtX/fTTw0MZFljvH6rfTN14vHjz2UXpezynK+eQSnWnHpWJIeJ8oUxrWrSGz7yTMcYcJ+yzyrpecOKDOjs6s09dAPAncdlpkxE0s7+woHGEOuedeDfEQCHTAFQ6pMUo7umtvuFCgMI6OGAzgrqJSHKvSz8Km2Fc6ra88tspnzbwfbmuj+HXo95UJBYjB5cAW0vbNjqksGLq8Q/IMEZ+KLRyUozSAY48G09DLp1DU56tlB4KtH7OIr8hE0I10zyOp5MV0YV9cpjwTjHTZyLQ3bs/mqSS3472M9q+vuKQ/VNrhhke0DmUCp4Km1UumBtnXRRwEuvzAJK08SZW9HqVQcKf0uaWgpz2qLNubVe7DDFNXsVI5KeJmLSbp4jG7aX52BFdk79Q2lDWQUT8nhJYkg71bdd7Zj/BmVor9mgH2U/BMh0+J29LOfpIg7kTgGSWiCrV5MAr/7StRN0pW1pMqqxOMqdHtz/EcIOzF6DuNaAeOiBOR68WrVeoRjx40ik2vjYM8w6PrvoeHpj6rmcI6mFnTJemyryoMmU98H3Om5qRXmqulVkwDdNZnnu/tFUqZ4EiQ3kPP6O85a+2V+iR+f6thwJX9tzgM4l6geDp8kG9caPPS6UJnVsyHZMrN7on6fbvFI+o+NDfa0EfDfI0zgbLQR21uOZkdJuQOgkIGqb17ud5XUnM0h9kEY674OSLVfmJ9L23OcsLxejjH9G1vnAQcC3hHM2rC6zz4w+lWvGwbMrocywORGI5dgkawU+/Y1f++Oo3QBnfsxk0ca3phK/vFmbT4V9DuZUavg0F0bENZ2Qt+p3/5RocCoZQKtezGTZfzCVq/5rcCyzRUxNnUEREhEhgZsE968Wegn99zx89/NCSm7/2JwHKPd9LVc+5cduVGhedkbgWxyCrdv8DnBBW3HRw9knpSX/EJKe9N7Sc7TCoS55S1Y+r1Bt0stEbkOaiEmYiX1NHrfY6NoSkOstipOBHEvbniJQDtObtfM7ksmIRbGPpZZ8JiVQo7RMAtoqfop/su/+YMIY2gtQBGLxDDmIFeUg5ghrwmTjWB7QJjUCQoThTypmhupENTpZ8dWk7k5HSGxufZwA0cxBsJRJehPL6HFpkk/Dm+iRwQ+66GeTxe6QPTx64zdQL/ZvifWPFJ046815MXGM6M8XbuHYyrHM1lw7hu3FqaDH78XowpSba5s1DZAzOnsIo8oy6E8TigY4ZgtI4YVYi5RtB/eM0vnwstEkjJrh98XmXt/QQiLXutAezmF2PWrzu9VSVNon6ZyQNaYLyOe9JdUxs/kU3zvH+9zxJyoYmsGFEJ4RKq4PqNzY2kwaTj8hNSSJuKLjQQXy7sJuIZZA0gRBhnaPEhbMGf5wckQLRWa9uJPYWA50VKnwKmTKVk7iHgs5PywXOBMJW5K/YhnZf/tUaQcut/btnx4X/djqGTVOSKMdoKqliS6Vdn48YDnmWN1RRTSrHYR+g0pqeuWsuDYdnaCPJg7t2EIyir3i+ctw1CGd32WRxiAyOVnm+rptFjh3s4+CgbZ0+Lplo05Yw5VKl+OYay/K/sYbYbArWhdWNbM5atc1YK/Ak/CQRFh09Mc++BTz1Ra4m+iJ8bkSojuSrAsvunRtVu8whXfuxeQdmePItsvE4/McFYIkkigY3OUfNUsUeKy6WajMl8qlNtIB3oEBDWdmc3+0IRdKFIxAiK2wL1uupiGXvdcm5MOziKiuXj/re0OGBhoGMKnUtwa9F6Oo+jMxruyQ2tmH5y2q0GykPaFQ/w926sY+9JrxjRW6EzvimtxJAtirKA7UTJmHz6kXGG03DoixrR3CVBK+BcThsCm3la8DcAUnKyqo5dU8fxbDniZrMxibu+KpAFIJJcvNnh2+MF6yo70ZF+mHkW2vS2Xsh2mwfSjCHkKy/uj/u6cHd1mzvfqCMNYULc9wakeopULQPFarIUyQBYTqSsrbX4SQo8upAwsrjaTV4zR+7rCPYaz0GE+QoI/rKvGGxppKaOvFhubyrrudVYPiAPRhUZJ9gTkVdX0jHBQL+JfkRCVdO8M+/1TSnShDMYU2YT3S9AePMv/psbGCXvpbgsHRk5Ej926Vkn7MDRQLmRQI8dg6tzM12Zsi9ku8irlPtWbLZbFBRglQZxPoks8pecQ28+Du6bhGHsAK6E/I8nKC3Dv8RO+YJFsFufUcUfGZngeQwgLdxZg240AVzHS/2GM78zQxrQclUuEX5Rh8T15CwsTxMKME1o9z8rGiT3kg+ipqZplo/CCoCUpmYIMuiJWVFZ0WUy2oQVS81RvLrra3kMz8hv8ZM71MulycRoEjhHCx0l5t0UiIlO0ocRegXFOmFpYY3SIJZTAoO16hug4s2xSklhJr59FMVEWyXzWce5TxqagQkOSC1+Wpujxd9an74wCQ+az5eojxgM9jS1cYKddanTqka8TnrQ/HjUa9GggNewoTMuPAUchw0SBHGAp4qGf6/pSxsnDLGw62VCAt7tEFAf4HNKIM0/AP+7aJqZGs2uXh5nAMT5VONl599DnPLcBiKP4LMLiJL7yxSPzrctAEz4nwBd/Wou1JWp8pA4ytNewtmzYzI5XXFzsBO0X5otarKnIo940yGbz/MzQn+w2nY85sDDqq8A3ppkvwHO17CnjYJOjr51ctlRMBAw/qqTE/1hTyd/ESgZ8gmXTctjJWH1P9JQ46I0IyC7xHWVPjrEW//mg1pIM5W4FTu5UBw+/VvsbZaX5Z6vlpqrDJGVVcQaZuYygZKosLuU7GINPs26JV8VHfQAEUEaak0iAcl/Fy2+EIGMcORaVajirNWMhj2ieWUKNhnfKVkuQYV+/9BfMq4Hi/FcNZKp9UwTnSqSQm7di7CJtr7gUTS56d/skAzE070TmTE1qusCZv9d4Mi+WU7I7qBN84FZTykWhMVp/zxwXQjnAQV3+lTbgvrVEhpPol9n6mJlFYnyn8sqdSq1++94726UkrfwtS7nWoT1yK3dxjp97N4z4d8Zwj/E/WNy2MPePhiQu/lGqRh8z6uo59i4ppw3G4EUrNeDEfQhrOmAG3pmcKJ4vN4X2SvxGEfu+Jijb03UL4ufUVngFp211YuTGYX6rtD9VTvKCyDJ8xCdNmMVqGVZjdhXYoEQYn/20qkfrpB7ZV5JB94Lpk70VYdXgdegU1QD7Yu2FYUb0l7u9FFlBEel+qQuS1a7/sj0ZQhnHdlzfXJGNaKMWvwSNYYi4HO5gL8i8fdZ65vw6jDqRZouy+PI9z9q8/VSbZr6nqV9K8onSOHxXCaRWKt/Awlvs+b/PcudQKQL4JhVQ0KHU0f/HnXMaNrZBiIADmWus7aeUxCTnbtCzoj9EnwqvKqc0lfvLZr7NdzZ5YwIFEUOxO4HwYnJOLQFKJO1HW7xpCLxbjH6MWPLnkYmL3lX0SiI4MTalRTOj/7r5r+NbNMM40fctMgz+iMNKs4DH6HeH19n7jIfRP1UASPU3CJbRY6Y++n5ILqyudieX7aEFcEb1FQ2icd1JNk1PkO4tfQl/LljRqaHP6vnH1hAtvyPbYPd9f7d2BM7zclH/SKE9I72n3r7NXibkFe7qfvN/Ut6ZO84p5I+508H/hTbjBwj4kfaDMTfB0L28Oc7R+4CfRm6ECJPcimfMJA8HWhYjtB5ryknOrYgHsh0WApv04jtIrG2TKGu3dMAYLzsUq6Q9mFVMnm3YQ3gFB3LhtySi21UpVV9xwnGAATxxUcjTEa/u3kGplTEuoB9svYhvp7+gFT+E1LBwyjPjJaTnNfCb9E9W56C8vLjx4KOwx2DyKvJEqU0EpdCl+d93+TLJ6uj2sSNro9EJJvE6o+zVKh+EvdMUknIGnYTVSYH+35XajarkkSRy2M2pir2lwCJaj7nwQGwEXbqX0sJVo3NGpApDtucSj2Yv8+YoRcbErQ1fbhp4Cd0PW3UdePXE/+6IN7YjBJpXf+SaLrxZm7rG908PDmJP2vpq4UJUFVfCCbpXKGhGc1JAUd9EldbaNeMvmiTm6Q+rXBly3HCKM6UZ6igocQHEf+074gWHgJHHD6KvG9yAgBELm75M/JKPMkUpGIyEj5m2KRPzfpWJcHIwli8jZXO0vJ1y/wu5maXGgTpnl2S5CjhECM5O55caKNvpAJkOviQi3u8kqHalt5ie6zErXYTFJJGrA4b+KyT6hUMv7UbCuukdIJ64gIFh6P0qp+oUnaXmei3X5iFhTNyWKBgMi0mAEu89kk5NcGN59XWZbyP0uwAXOkLPOHwNsDDwzr1wl4uN5CqCqTsN+ouqyRqktYNtBFNyBaEgjx3RLigjPoJVnl8Mx39M50dSgSBTHLsCdcG1/PcUihIt07WV5XITm/S2Cstx1G9XxFJQRvR4ExwM3ioB6Tpct/27EYtVZaDPhT6+GsgFEG2qUGOgQrDfJ3b5uVOzmjZatvSfbiKVDtSNcLAmsEeo/vfCzQKCmRvpiVv7/QaypYYB6/cbuG6a4SKbR2NFQegn98gkeYZX38vOhg8AUvSN1fso9z4dWD7djl7FrkOFsMPFI1F7kNqn6WmLgEDHctuQs2SsOP4IS/Q66bX7+40fdpAlY0LKvWZRaeLWDVAIxP8/jd1ABBIIEqg2i2eFLOV7If/JHnYWYoJ1NYqNsLT3uGyRWWoc70ujVaW8ZYO2IpTMR0xAsRhEn1VAtGuXl1n7MsxYQiWQruzFdCZ0FgAXBkWp2FA3HSMX+Dn60iSc1qu2spjISCsoj/Pb6OarF4G6mS6u5zQWpbVsB5O+l8HOLpgJMGhvZt7cRLcOTM8s3S+Y3sAue6Eg3v1uD9xrx58LIm4ni43/7ThfcjmOae5H9tM2K56DgE4zUDL7HyUN/hsvQ02nJUgXMPoyvpcVznjwBMtSmo7Eyh1ubaRtRsiTlJvV7CGyK0alieF+EZP9XQuoevvQssJ0ASwknZHehlE7pPRvLh1VixAMBJs5az08tIsvYAWcEzefaolEXTsu082RDUCgZzDNRNZmXtzSvVc/y5hRBaP0aBPpnqc4dvuYXccGKyVmmb7khl5YOiUv+1OgpLi2PcMWdxGmZaXi+66yLiyvFja0WQ+/eHFWUABkzoEm6SApalewDI3sIVijMaEK8ohlwSE+bOqXjH8Qq6YoCRpdTn5S09wNaNNCWCO5yvzd5TBxSbESUvmQhpqhtmPZAPUCwrQV6ZdJ/b4t2I1k/sLvPCbKzmKyAaXj68GqhPWQlxwIONsHTpg71e3kKtEoPQIYEN45GFKr+03bIO0HqZbHVPviOZMAQH3zJDPxvze4OZKqKEGIV0nb20PeTpPFXztHToSf9v6AukMomeYTAcc6pl1I6IBgvDfBfn6b7nUGSLnFhWkW18gM6PBdlXFcI3a58Ad+ODLFSMepeuEwTem7tprC+e4TT6lwi0Yj5EIbJkm+VZTnUE9NkZWEuie6izeltZF5NRGZXpr8GID2d/5LfRZ201mMMtbsm1tN6w4hnhvjDS1yrVspAEKTWV3mPaJrcs+9Y6s1aevJv2zCW6yKjFtsZP3EuW2TN2L3IV9NtmDAF8gtHp/Qn8YsqF7Oew4SUH2ftSr1Y10TXXh6Du7NFQ+jPfhhtKxDJgM7HudB5QclA78OpMrr+bN9i/YpoJ3yJqtxpr4CbvRMA1PcqHey3UwkhJ7tXk9FJRkW4XvbFdOKKmo0gbhe+EbqKNrLdbJIrdHxBfDNMxYQf0bh7g58cGKHW3w8ByXa6F80SduCjXAWkjMcXF1wh+W/BZc9P5/a9ld6WLVbUIlcABwPu5XFpGwg7C+ZYSjIaFUpMhs6bpAtsZeXLAQbiC75qBj+SYxd50nM02DZW+LYoyoa8QApAzb7uRKnvM2s5HB28truHTw2xRdzb4yg+YLQcqT+fPIoDYZ1XgS6uX8zTKZlYOB/OVuNcHGSUAmG5p4FBp7sBzeFrXI3kW8Yx57y1W+wQU7R3gIbF19LhIz2iXX49luwhUOx43TpDhzfD9vO4PC6ZTyGDLXzB/yB302S6Nq/iXU9C2UeZgFXO5YzVNfz++Dh2BaR9Cact5LnMPEVOD6y3ALDxlmg3EWdHmtTQiQr0Fx+9RMPAyCT+ncfq8u+q7NN3PPpDqKXxxk0NaWvwBtxQIl+h8wXL55WViKzgAYdGaYbtD6pp5sJCZ8izOrujNE3gIbj0jGjC+Caf9AH+sY1bmdYMmwAzGnMWKexTRB6YZeoqpUG47S5QXiq4J+MlzztUO1pT0oMD45fX96nXaQtKimFMGeDjQ3MTuhvST5RH0D4gEmVXqVojdapxZ8qJOswSxurqi+x3B6UTxaTQ1K9nDYCIbPerNaHtht7cDkDQTbQHvtYGREALTDYgdWRkNIjKeYl9QklULW1jtMan9MDgao584hwyJpeNzZaSMtMUAmQLASECP22v2UTnkUwxyIIeZ9oWeztidrWE6FrBiaDfeEjxMs3gpDjPN+MVGHaPUQoMjsk5vcDn0rh2yZi8cvcgmSRsfFwBcsVFVHcjnB8DCrOWeItF9VnPasJa0b7GoRpPABknNctSqasAlHOf6iAhrXiz/W3p0kvs0yLs/RuLtUk6figXEu0OoPyMxnBStBfT3ymixtygHZEqBA7/se4PgDnTbsMlu6j5SgMmvoPL368Y/E01Y+6fELtSzDEnPrdFq/q7J9Y1p1WzuYFS9QzT9PcUEQHBAWEOOblB+C0PoKpaUnGtnToOdRtzZ39dgXDyw6TV2WUqzNyuqTtPYu+ilPbg7e9WdJygvh7yWnmCvAa0KEpdMuPaDV9A8f0PgsrWoQWrawb7uETh6R2rtMZGXZbLyoOf4BcjaA7gL9v5vREqaQX3+RrATKrqYhL941oGv8NxP654YFNYWXbPTIhe72AQKhhGB7uHw+PewXWgdlW5Wp5WOFihD3w/Kpy6MRkn04Q23ZxFPoF3RZQBzcvB5CExL6YknxW7aN/5P7rJ3NQWH0LVcIMIvkUWLqhSW1hG4CdenLE6AjmCFS1DMk9RcPa3YROC7Q/lA6SLff44O3i6+06V0cl39Vmb/YOuWcTUFrL3NRh40sCOB6UvAc+ICwKvCN6XiJ0tKu4IJXa84fIlYQwvvPG2qy4cfKmQ/7payydlMzvuoslFOu0aJM2X45rSu2VQK9JTFa3UcS+us9A5gNRaFAcHrFZbUHl09lnNJdTLzfnxYgUya7qEJ2zZhwSw6L5eZCmNwymTflsAVuQdsJlZ61IFHARXSZG51sgpwYgMJO5VzM1tAP7hk3y4gdhtqE4DYTs6Wpo4yJ9pdEbU3Y1ojy0bNRz5c25WTjKZdFCy3G2BAG8/fQv/FG79yy2SRcsKTtz4Lw1BCH3F5vs9bP8FX2RZPDlODvhLOlb0oqF2EwjfvKL+835RDdZ18BPPdiCes+t5FRW3pAJ88qMYIMbbzoPoih63u5ubdZztYUR68Mnw++Y8sNbgQOrV7lJ88BBjZyy3/i6RJVJKg7YPUnGNnm6s4J59ZY8RAifdT7FZNkE7Eeec2RlXjsys17qTdlfSQaMOLTxRfeBnnDvYbbxGUVjz/r3qsn64Rh5dtaSDZ5dRZ+soNYz59RlWWKBzkLKv3lk4Ebl9ZhJfhwIQ+Vl/c/ljzKNr7xSP1kY8xFAOslft90v6ZcmpcMraiFDD1XR0HLIO35LdglRmJiOCb2WNeXTWGiszQNiT5839cjc28oI6JOpcmf4hmJ+ZA8JhwTZNwAaQZZuYeXAxzg2NYSCgY8zo2icrOrlfD0rkDxp7s6YWqpkRVuqZAXFqjgjcwU1CBmwP/HJyY7Vax9C5Lr0iSstoqDKIeHQBCHXkw/E6GX8WaPaB7z5zf4gn2LDQEDU4e7S6rEDtK4WNLjv62MWFvnlP2xeGU61dmUMzCPJHJktzR5m9M/ZYv5Fk88us8cPKJ+1lNRpG1pSDhrkuW+ZmWr8PL3FEIE4WDq7WbhBIlMmcr1QoMd6NuMJNMz8XJ3GnczZ1GCqnEsO9vf4AUruNRIkXrwM9mqH7y7C84Swr5pFN5zJ3+AjTKHmoI0w/xpxZ0aSnbek3m37lwZH04FrYcRTvWSF0AXkMgaM0OAqUPETQ5Wf0YKW33VDoa/TwcPM9Eo/hHcu8TgRFHc1kpceVuCQArzz0JJKE6Q1CbRCuNLla8/gWWpnOXMmwHyFb1K9QkHkZQ1CYLJW9YNa4EGmlAxeNvffRDM1ERespZotFJuTu+6wL4bFl4aCCpn9MYcW3bDPSGedve/anBnxSe2CUMG8KWMXmlxTjU9dr0S/GPsSgQqxNoaYivKJm+xjWQI616GLhoptPzxG0OyyHmXDmhumgKW8TopE9V3Feq4QenvtxxMPzZMIjXR3mjLxVruTQgUjMxkc2cCJ7eaaFMxjbvEUxSkymniubsRchlXi7/X8W4nfjTE+jL7uLyhvHhJVqSLK70VQRwJeRGRTyvC/DGJCQDelf0Gvu6HCMryMoDVGvplV1mjmHDPzI2qeW9JnYcA2gc8KeF+SggUBpfxMofGDlLZYLpLHvW8JjUIZqBLN6pFdBiif/PdtF0AI28osjgm2RFyrZas60CXoqEeLdriWDJUJxQPORcLtQaAR0DrQTedm1MKwSfYyKjnGBbqheG82Uip5iSpEqvSp7zU8fkkmKiYrVZ3l8EqF/QeOEY4t93PE509TShF9lmNjc3YdXZu7eBuGZAoilGmgQSkzxx1NNSHZZaGDfiM6apTyZCmYMUxfdm0Chkz5/9wD56XRmPoMDaVfTs9n1Jp5WquO1PLMQm/cFkRHL+G9EnaDmdmNhkU15WFpxUUOniTb6HX5m/67EFFubUabL4dILZNCOoWuyrXw8Ns7omZYmfhUQrdVgs4NXeINWogrVZeNw9ha3fi1RXNeZy4oCJ/k8MQ0kx4FSPMT3rBWWz3uW4s+cJYngyGXatfLmkm9Yo3/PZyQ1yo/BjhJzHS/AUq26opLUDUvvxMvW6OdaMU9sr3VepYL0UsNaDuZ7KLFHvC0xo1Qwiy3rMXJG62szMiwWv2YjGQFm6t4wJAUMp60gGDRlA5VzhIji01C/xHyr0j3LSp5uIDU1FrDJmjsIEkEjXGzw0/Rv/IT3WtHwlZj81hBuPmg0EYypXqhvTuQQVjWM3b6ZafJl+FcICIl1Vp56dhkY03v6X//Je35Cu0JPVhohEW64yys59kkk8yH3lrXEN1273l6CrNnEZdna19B2gNRrZvH+OEx+3I0vZQuyyouni3Lry6YXoidyZMOmlzplOD+Aqy42BNCQJMmzB9owXRjetn4H8lnszASmII6FuTo5Ysi4cnuDIG3j8Fu4+YdYcrL6gWWfwCo4Lg0nIiVOaKJhsCK9xi9PO3cJjpmUt1iZ041pN6GASlffv5kSWHmaNGywU+CPnBxLH3J95v6qjlDItvqY/y451HK+ypqTg6IX1+j+RqskAM3nBHqcLKUenN15LVYkPa9y/kfTHv3dC/ukjX+rEue9zV+3M/jf1llxwW1haSA/xrZ872yMCu4TnBXbhQIU7SthpMsdVKPr0z5EcvB3yw/7DAj0G3jRP6atpBFD3MOHjc81t7uZy1cdHWb2PMVTa6vceSnaXDj1HeLFJtCJ8wW8Wjwgj+pghDAwgE7OL7YFAzuz1HqoL+MCXbfrk7AkuzJ//W4v2CdcLGATAbHStEreS9fIfjuK1MoTbsbB7aIgVKzOU33gKzFeAYjearikRiHou/pA4dChkyfBGIKVwLU+XUnxKnH3WyOS28tVmlWtO+iA9PuTUB95KfODvKvRo2B+V5dGb+K+VeNMAWxgfIkqAiIlv67kdfbrUT3b+CXCUZ1Xy6PLY6Ng61fYk8pxKMoNw2YET5cS8Mcq4JJdwpcGpvcV9t1tfzHriecsQM7PZXuhTk3kLSxaoTuOCAo/IeqKfnqiiiWZHY8GjBb67kWvQJsBrpGREOu8mcE0tPxUUBLMcP7k/MQl36cFxI1/DN+/OzpMxLNRPYYHT5zXibr+WjDnJTAHEUr5zOb19Nqi79wOU1bKAV0mNmJr0dhK9i+7eobf7ZJDxUjHR6VSyvZHUn6SIvx7oVuBQXnamubDfhg0UcikHiMMLK76X02oA/Mqa56WtMShw2Sg8bSno27nPZAulEigIgSbsOeID/6fiGT0omegqxpmdXuF69XLn95naH3hnJsMJmGtqaPCQxjzv8REMp1Ao3Z+XkcUQxG/NGVM9CFmkFC+CY6vUPIi8k+FgibJ6zut+tDK/DFW5b970qD9NYqmlROFaovMTI9iKvdnrlpg8TOfv0MCkVH2hN6elxOEF7oD/wcVSF0HkH9IbAsozIp75EdyiWgk3oyz5eYhXM/c5AdNdG9WFX5PZHp9+aGNCBHU9VyxXWexZEP9uu715/3xaDF60e3b1bZKB6yCPWa8F8a0iuQsN1pOQKzvX6x/ANvYiVMFcpIIbX+ll8IDrYw7mz8zPtsV0I5M2iWYbxekXO8axATEKCRPqFx+a2pBqYNO6fqwMxu6dyQV1ctXdPtjTJGnpZgt11L2qUbM8Jvqhgg1wlAzT7ZBHejKtScv+0/PJ4pqDTvx7tt1Mz8glHoaMtkCbJNb+xhIvI8PgL089NLBw4bSweuh1yHIFQJ8mFnCqesZqW+3xSwCE4NLI70oAOdoUIgd6HansRwtQZw+C5Q78N8OfnsbzrC6UPUKctfcEp/lWohqPjxbChZRsa1XopNjnGnQdlcUKnCUlu0mJKazC/ifj/UEI/tszzXSLPKnvGkBYKh3Y5LFjNVfpf+ERuV30/5XEcbzwOJpWiiJQhUkhn9v880cw/lYzqQkMnnYpKhuHmkdcUzU8XbRg1GgIQ2MvthbcSyfBYyGKkH3WUi4i4yb74qXLuoFwkj/+lK+6DEybu9p7sGTpH/KxmcgxzAlyOBn6jrHF5LW9WjhfXkzGWT+7PXIXkJWC7fGdOnY+yLCK8NjXJPYANod6oichhjbm4ectxXshUZc9kMY6DpaEumnBDbXWUTih8qd4n+Tqm6PaaVGxeoR+mgjMPnWkJFZFzlf6c67spkUS8LJOYwQgtqx1WBySYRqZ5BE1UL9bS4AekFWbPZ75CXXwbYiiDil4z/El/8PSX0eBHYy8GXlkmUCEeDdE+KbgWLSaTgfcz36siB+Q52kwlGGCgbr8lHNw/HtSbldciEvum0klVgjIHIQCbvbdFOUaodTnXTPWxG6UVhfrpgYExyEoOjsykAH+5XOYwc8S/5MTWarVkDbqgPNx2N1LxNw/mOtQJQKgSsTJmWT/Z/1O+fcWKoNBZMrphD2B8Ta1r/P3n19jQT5XRwdyG73WyiV7vyKzFX+V0A81U7PSVqe+7v4o82tvkQzuc5IgoUINMzHQcjgEH32uVMsBmuOww9qkx0iMK22Ee/ZRzoYA4WcuHtge7ul6ThWTZkoUJi48Hn2/16onR1S9rLrSs2pocZnrcIzMcTbC1dQiTQz/o4M5RB+5p1SdCs9v63mpMn8l9+vUjPZyzQYaBBFB7KSOi0kv++pGOShCNE9jgtVx16rPMCrG/TcNntQpjQsTfTfbs3bH33RZ1AXYVxZ5543x1kDDhkNlrmwr6lOLfTYxQrkIk5NTHOtq91NfY0ddQAK4+ROkPVwTn1kDoBvu6N8+Es4mTyPxNXsNtVE8yZpV6CSMXwVixYhdAxmFyhjWFzMmTlO5pInCY/pp6amkcC5ToCaROG8nyQapVGav8NdaCFfadpWJwNzM7KB0Vn6UaL0Hvy9dVKpIUbkEuRHyBcW9IqvGloXKoeRjrEky9OJjPQEOcMj6PSBI/gbVhuKQWG15fIJrPIuD7QN+ZVRTnhFxdT/5Z1iWTsmqvoslm7aHmDba5pS6qAHhLHozBxMhdrxv+Q0njivShQKSaGkR8LinPRSjGVhQyD0M5DMPLjWtRLcLbs9XC0zPJ+FUxdyURlBK3MyHVsThz0sQalBlYyepYB4qbpRd2yPMiLOb0v1jX1buzMq89qhQ//fGAXmKpzwP5M0wK7sG/zL0iqLIdxSJIppOlYMJsKtU/PrXteZ67GNjyBCSsBZeBG7Ue5rEGiYf0u6OWPRs/307rf/jcwQ/GL8lY6YOLWMbUfu+6/esjhG4d285/eDEg5vudtI6tIGsQFmk7Tvyxeo+fJ+wje+fG6wbgMBsp5ykoRlEnscbH/jVhj687uXAebFCL5/WaPdsnlOq1aLu4C0yYAh5c2IwxMNivzi/WAtS/cbql0wCaiXQS/4uuZKUX/o4RlRjflzzPgIJs4uvwpsAx5sJUUa5d5YAESN/AqwQKN8lh9NBc/lGMR9wcIkE8SzNUMSt/p+3EJij7/nKUq46OMllSK+YbGK5hUmy3BZwmE0KRec715/E5wkEvE/g7Xvb4fxwBnR61zGvCrLSXvB+YHnPirDkUbPWZ+7W4fs1paOxers4Gkwy5mZD6BYFaKmfF/mcOqk4/aoiXGRjwhySeY4ZeJgddbU6np8dpbh3BLk5j7ONBWFKts0A2Z4IChRmv2KZM/Cd1JYAYUoIqBGn41WZuWVoUslTJ78uuQsPRLq6f/MSDIRL8TpG6xmwhUlHPGCxUlvqmrkLohyxJlT7Xyk1DHOuj1IOyNww5qzHhDwNz2ksy4pvbOQcH0YKjwXwFwv8TJOMTQ9tbRhjlFu2v0HeVoLgeUdhpqCDWoJOPyvDGxJwBSE+zOIrIi7R/Z4+AsanKej3jLYhpoXeOhUbBimP28elSqON6kNtYAHmnNOIvU+iA0Us23jpXk16eltBMbFlSgXQJU19nQb/Wc9LctOMft27zIfn9HhWN86BeFDHaU3jctJszxGuoS9XwI8GMqeUW7WV82La8F7iw74qaASRDRoV+JeATA9ef6UQEyjoga77+RWFAEcvkjEaI4Lc/3SKXkv7m1uA4al+2uYqr6x6CdVd5hH0sL37UhSusbUg0wgiyN15bYC5sVjPctU7BjrXrWMz91FP0eOxm9GhU8FcC9JIDSb25CmgqaU+ZxhiKD4iOD5i+EohrpZfMRLRNeuY5lT2i00GqzLHgZI4ILx/og+PMHNn0qcn2EgCl0HBb+HqRl3joValh4mly2rGY+DG6v8A5vv41lunIkfusZtzh+iB0WOYJ0GuBrF84el4+/5rtp5mhCsr1iffCb/PaJxlF1mvx+avDNY/aXJ+ecDkZQBRFP7kW6N2Ajf6QX4ZoVKa6PkXxvaXjXmwr995a8eIx9Xi/Ueiu4TMN2QKifoVZGML+wLck7xL2AUQ+aFknOhEYKO3SxHGmAeo7mLhY2QmeK17ylIy7wQ3LrgISI8JwUrpm2/ukv3jEfW1p7nRmzA8XOeNzkLeiIp2bFs4d+fGzLEyGm2rYNRrrgxH6f30v8iPZ+fU0bqoBZGHsWHcIrgB0T+hOcArVictW/e6vQkaETK71+VNsvO26ng5CTWgjbaGOfj2cf0zmdYpW5gvE3I7ugT25nm8MIt7JfopMPEr1wKUX2D//KkHrid0oDGBzitr+imfLbl05QPki+s0cKsBrilsBUrq+QwoEnT0Tj/fKpGPS1eG5kvdMe9aYyWVXWOh8W22ER2Y2c21VeyT22s2Y8lYciLqe4wbeuluAxoCi0/AbcOByJ2yV1bviFlZGCFvuHWsEyifxbqTYPifX6CbjBiOnCGZUzLb+m+IJG7ug1ad8atES/iy+IvjFKL4XNjv/2vQbE50cPAg0W1nU2uSHfzb9H2g4drPVnSvGJcUfgAOtESV9nSZCUvOSHIWvrqBuqs8E/ZxBkFDBJIfsA/I5rmoXWbmd4N62IUC7q9/5F+eZ77lF1+sd5+OozKYgmOMhy15lHB/44OQwnQbpeuxn84AGgM10liyHaqHapD3um4K9oCa9rQfCwJmLJwnTo00E/yt2FyM1kcIg3PtxJAY0phqNAuI9fLmDkSYd91m1aGKGBaH+LvZBJUrZS992/OSz6n1wXPqsdQi8YlQsp972iP/WIia+XuXNzLBHYn5mJLIy+jTgJ276CRLZO/C+5NMa19tF/Yh5NUc7khRl5t9p6Z3PGi6tzR4ZS+d6nb298UyYjWp4J6c65yqSZ4mSuwibioSh1Y0MTCwKSSb7fU4OBr6/fMDYoIoHo+s0l6olfQ2PSjEaEL4uIgePLXx6ll+Tv3flUZqmAS3fjCxJAXhFAZpMEJiblM/L+N5N3wWZ9nbqWqQ0CaqCnPQPEbSgr+JhN2aD+X9psxoMnPNoTE+5PZ0QnkcvqIPJh40QsLkJCgNOSTiUfqmgImvKUwC8UREwzBPOATaJv6C7yvXXdakX6rcbTdjuNtA8CHt7K5Z+o61cu1nj8xyJ8+PKLr5qUjc7roMo6V+BH9VrLgEzGnwKvj5VyJe8cC4izcaPNXDbhLiZhl9NqsHuGzxzPDJAfnTEx+CoXZK0HVZd4hzY9o1PuT4f2Qw7zriUkjRuUECWAae6/idFSrAMnKICDNHYMrH+e6HtGLB7rB8N6v8r2XXlssrYYNuBGEBnxm0R2pQbz/uY9CQunxlR4/EQhffpciuXLweKeQGEEiq7T3ALgJjKo9Z+MyHGRvYDGdL/NJvtZJwE6bj8pj/M+diGXIRePH8aI7Dg0zjSO9MF6bxn6d4bjYDp2GM+WsTORNTR0NT6GYGZpg7OFBg8PUWbVchjEhHsKvj0o69YYbPLfRoAMqSG4WOWDW9CYojAWlLKu3N056lsGnNpGTPCyEW5INzM3H3ONLhkEiiEi1Au1PmKYoA5qzNnxy/5QcB8wuFaTHY+hBB1fw2PApyPfOh+e6ItABZm4m2/oqfjXhVKk2f0sjBNE/PFoq4SFXfDojZLG5iiDA4c8t+7g48AHznkSEV+mgilwSZbCH8+temFk0fdlnt1lmoiAHij4L+YfNtr/TsDypt2uPMxRTANSCEBoybBayxeOsTb8OiIWOqDDDYp7YwAl2Z2zKSmS/cHS8InPrE0YV6uvF++nd3od3KTmbkpZ1iMLvkRIUBgLMdvQkPaSoB8bBTUaegyduReq02lKsh+gFvf0mWHQA+FTrLp+PTyVLQBixPiual4m0mUVd2zTfQ1RmRybB0TcIlzETAmBlNawRCxMb5uxkCWUH5TRsKE+uiEPfIqa1Tq0EnEhLzBwBCawFr7WYLSfyqgOyKD3QRHPJdoZfwfC8AkBFbYdk4Hxm93cjB6KDYfjhzk68oPjI0A2zeLfg8KrmotdAudw24EBIyhxfCVkA2wZjTf9Rbv/+IDQHSsOimm1BHQi34hT8g6gJclHu65A8ICNcxa0cfiYDzmvMRAULZ8LFZY6o35IWS5xPGGDmvL8zwcxW05Z4peIgiVMHBcfuGvvWS2uzwO8enXC/LMWPOl0JgxBdgrEsexYSjCGbJ0k5Egv360xidg583NyZP7qX/EVJjHtRlq7l6GuWy3vAg2t/ai8OHUvUgzqpsM80vmYz/OVOvyXZF3KNI8CoOtHMEYBpU4Q/0TQq1Gb45Ew0SSxZ+vrX+JMGqjtc3LEErb4avJ35Fy0LVferTh5ZdoKLFtszrftT5bAT/OBdpiVjxq29vT/UiY54m2ntaqh2bKvh046CaupPhm0mkkL9TT6sqmRTshAKAUUn2x+Wp363Be+PZDZgq0SSnCkQ/ZWnZ+5Q/yYp4yaiVmxSZlHgMDl5NANFp22l7FwDQq3NcdP9nCLaIWH476LJAGYIj/Ex8elR8q80G/mtUSDFOsckEXNLKHq2Lfmmjut3ZMd5KoQYBox1Vnizdehgn1/dBRVNtngATjMxhXCWOdABVKHbG5vF2BQ2W2Vk9uUn/p2veJXLszSaapTF7ijzHbAIQhMkb4mPQWMN0PXtFmJwsxvtZjM2MPGcQLvk5kNZ6To7q6YBRo4ITEsCaGTSzpjwAYCcZlstLibspatKC7Nfdn40XCxNLFM+ARqL7g1WLmIkioFIZsYTQ97MONuAmIdNQ5V753lc6AZpPe0ICYHQ1mw1fqYU3lBpQP8cv9zYULIm3J7YWGwuNpoJdQJa54Y2SBspM7gVAgmIELPMDnUhDKxtg03rBDzEu+dww3+eFZz8mF2oypUY3++qN78qKk9zfitNxHhTkuoqCkr0T2krHWQU39XlDKpArbIPPpViXdMKqGIYrhChojnDQ8OtGywvZGk4dszuvdXZCr6/J0Ve/bLw/ZzSXYTot6URJAgkOJ71vP5Q/3sJ1Yr2bJ4Vv70ARzHCAG1BO+GnlqUihCjW3s8Y+8/LQqGQiOa+8RTesXeCNO5Zi3oZPjcEMLY+aHQuzwVV6uvwrD1xQWle0uFeDLSplqWIhUfdGaaBoYUF/qzm31KcmuDwCbhNlVaCMJ1VA4Oir/SVJ17HxsO5TKfJKUZ2ndE4RmMWfcvJxhb2VYpWv8yWT5EIOzn0adKT8FzpHWu32RKsjYUw5xeBRTmg0NpKvjLAH9H2sllcZ3Guomacycdabx3KUmEe5Vk5kWnO2xCy1AAql44cLixV5rH7iwGvO91aok0OOzMfclhLZCVBiLNe73osN9pd9EHoq1ftZECpj6TbIAzsbnDToPYdUP6KOZKuS5ieWU9RMgyyQX38XdSMgqX+LPCzrmNZsw0T1rujYsc+mEdyDmSZqsANCqJldl4wF45gkxShriOsxWoBmrx5R+9yi1uiN394NQFSkyQdRCOAkgPOrHsLzrgmOnyhcw5nn/KSnV80LCyZcCGpcJOHIxGNDAYKBQMFTp8UyEI4k9+VHsSyC+Rcf+cL8PIbaXuqQvokqzm+Bt26R91G3PCxrGomheQ9xdfXFGSr/j/rVggPDTfzBg9TzX5DR/bIGfStUUgJd73oBxAiY+mP6TnMixdROPVB/GWc43hno5wb0ak/5FcQWYaTi5pKOsP7ZGM1mNUmtqUQH5aJf9I3fmiPOQ56Dse7fne5Iirc/b+YRrDrDTD15JbAU5/49bgO+MWdsf44LQZyRGCUapcJW9OedMnm2AAqRO/pWx/acRKPh7xujFk1LFOllKreJSgPWPX8wJ5LyCd/8XFKyjvZ0oZbSG0uM6rJDwWpOXddoHJW4jYrfEpX1djjo6oNjL+LrstsGipgPLRwSVFP9ybsiSG9upQNcjYMNW9xFu6u/rcYrzzjMIdykuEyllFD4yRu8oVfAzV1C3xK7Qgo6HSPd27sb8bPGit0NbFT3b5xD+e3eJxl+U9rxK9XVJ0cDl2RPb2vPtKEl7sI0X7P9Opw2pyGycNrAW2djmq6PCch9JbxsSxwzKWwu2c2HubPrbGOFr9o/5qPBpPcj8qUKeMO9JU6rXujtPYuNT32Uo+XWImco+zM9FZFYcUaHYy0n7RBiyXQW/PV2Tn01NkQRoaQIc6QW9Zn0R/0DM5LQAXxfAbZjWJVvCBiFT65oDB8ziAX3JNi2GtBrvPKZNsbWFI2raarhZkj5CBujeulrzx6MH0RCcUXQy7GwQqeOt7onvj62NsrL9IAeo0a53LhfCusWKTCFYP5vJrahfMsMgaJuztOKzAWXceHL2gvoLH7MbmQz6cvvBoIdmxzlQOOdNdTX+jjKZxg4peDZXTyw30kit19bp38djtc4NKzOqquQMVgGsdmt5yZmARSMPYRN8mauoUX48Owtb9hmV+ytJ4uf/zT7e+dDXLpUp99YSlWEnrEqrj8+UPKsUpQlRRvppkOQJ7zjmFmb23HNjXzK+WMlG7Ou1hKLImvGVlXOaB6a0YWcSxyZbJqTeqOBQ90tqIfUdW4E3r7U2EWs4B3CFkeQLrYX9LLmljDUXtZuiZ0TAqLQC5YE5w1jlrQNSkFqmbJhoqXVD1AgGhVFw6FEmAKUZRheEbIMhmE7u97cKFfgf1g2GqdToLPUDSdyAUVhlRocy+cEO29bOUKfzBANgdyDhuB0Dfxf0de/C6+vgZAHyOrOMqfWx4oJLyZkJ5PdbBcE7FuqVS2lguv4iXCRQ0gnwlfl8oYJwt5qTirHd2X8H0GZ+zaDlZ5+Xqk3h+OuTGdRwCD/5v6F0hlIfoDcySWGV825sVh6e7oYsW0M/d2fqjS+rquwl5Ooaed2HC+TTQjgKgXet4qN3F51W3038XYpVkVckvlM+54YljfjWwLr7GVXjWjEyjc/T6Maz2/Y4grMCsNqSvr08kpaY0KTR2BeOzkaSEH3ib7j92LUGd/ecYezM349s/Uc73hypsDmFJmgz9kswSCPCJGxsppCAT+4AhR4HSIrNSuzk5jkn7diILYt3k24XjULkBTTNP5lj7W3KgsDIrwjgz9YcTL6Q17Ya+yOAQ79kbOpXUv3bRhAS7m7eVft3EWa7XHjvydnARRJIsqGWSCiJHAiY1XirUeh7ko5JsFVOPAgdDq1N7/jwQtZRNcM74FzDFJ6M1gLIWbUiDhoDndTpTygc7IZn/nKWvIN+zYmBdLNCohcb59ic67a5zrpZWR59IOtlfTVp6BLtNzMGrq+s1fPtq9o9jUgRDcO6ImByhdmtP3IJmmoWqvT8Io5nLKf7KJ3fFp17mST7S/XgIAgWx8tbeyF9MStH0VS8cmUWam6yVo0PQhhjIO1xGo4Wz97GuyX/M6ZH39aq2OmyeI2XRo6UlfpAukimTt6ip5IBpHRxWulyrqX8mZfSh4ta3SjQMPHu0NeKvBDmfLav8x+bwakWAiMF1VLf/1P/UFrtMavnqf7U53D/wxScTPya9y/nHjQif6QNnLqwpP0fc9BQncwg7W+D/yyw3AHCVqtyjYOcH+2/JwJc5sR60KLQsPIWfU5n3bexHYd4UATKP3QMiqqCtboXEE35iLuQFwbJixDq8NVytlGVFphz08Xs84D5kuQ5Qj+EqSp1NjpHuuoUrtHGIvCsfzbHnX1C0UTcOF4w0O6J9wLwJB8016wg5O8ejjRHb0fqtDXO0Nuto6dp5L850KJUCHwpGbdS7SCOmgsMfRr++iMdNE60wvWDjqQPnAmirBbtWev4bIlxGzqHiXQ36U6mkDjz4crRF5mPB2S52f1OM1ypEzGXjZYycOu6dYpFJvlReXWyzc8Nu5ntEBKmxViToe+PDSrLxyLv6tOxLqlkmbQRyUmMQ4yKznHZwmDm22NnJ7jDVCqu+RHmLMu/ijw6Vi/NyihKw3Y5JnVwtHV12xq5pTJVg2hw1khnRgJgvjTTVdbOpBeAd6iDX4TJ6rUgiiDUoKm8UNP+hUtK4LcCPmJWWQ/fqnHWAA+eYeCtiOo/FPKCWY375XUCyZCghxnVoFrTCn50KLrIgBifndZaF2yCTaQvfzNJ77j8zNaVEcNa2qn2rZhtiOJ6Vm5YXYAQAjf4PB/9u58RkUhePWECdEAcrbnu2ZNaufU//w6CaIw0/jvF/GDBrQLA2WLIpRVBasy5C3MQQ78Mxk0ueIf2zZJQy0z98YfbPzC+9ERP67qe94U7Gv7RdAJCeBK8C6b+7cNyg/zAbEl2TAnjrGpnKj6lR4ZShU6M1mqm2FXm7jAlw/o3kWfNzQg1p4jppk0Zzolosp1ahtU/yvd4EcIf/HUPfbpRrcRyQoQA/3uIlq3J2u0foEfxBQ+boEBuypKexCgB8Qsa70w1s8HRsw2ZS/eqglkmTFG/jwgZeBq726QTkocA4sSZSfg+JOAheT0QASzPGLBKMFoMCayhEZJRSLuNobyQbcAuzoCXBcm+WuSfeHX0bK0ww/p9gLCW5zRZDw1YwKJ4wGkLh2ZO7JCEsMURNnCLAwTvROcYbEwqnCbyHRbqLP4KtLL4wLWd74FmrQs3FnQsEq99dP5uqfQz7ED/IPSJdzKFkLVKoy0agksRioUVaCPuEMFRrdWD6Vz6wVFijQFUVS1Wi5w2qzDSldyzvqVFmRZJmeU/DNi9arDJv2ky0lQX8CNZr1BWFvSXNA5qAXLrRZLt2HV9Moi2aboZbaV54pj82+w+CXYo/4Pdpo4JBBbs5/fKZXs0F50S2POumCWiHARfYIT6e01atoQV659SPaNsL5BtZNDIjaJhTYIth3Er4XJ42MZLwpjtCW62cjJwA6LiX6G4O6mlGx1ZZSoBNKK7fJZCQvho+4715WmT7aOAwHYZa8ZceRMeCbhlZsQVkjTDPFUwZousiGHBnflGlceZ/6ToSVAFncqHd88cuMHM9onLSQ+br0QV9Lf+ilI9KVg434V8xDZvk3Jt4l59s0apvc97YH8gUJZ/ZwtxdCeJNw+5d4FHoj1q2QOfpStRUhMuv5rbQE4UbziVnCLwdxjJo5SGmYsweLtSTASx2+8wRf/3EWSKO5/LiZ8nuOR9XlzWTButeBd1nUhXS+IFK7yMHY/S6eecfS8jW9jxC+5FJGxQxY8lGTcdtde5GPKesKuh4DexhBpf3Q2X5aUcixfHZvDr9F37W828RqI3Ps8CPdpwceL7IZjtdvnPqQNuscjk4tzpdK957qTvhzfGFUEGy65J5Rd0C6Y/KxgCZOHkiyJT7wDt9oM+S+kA8mPxmufJrukDLA4jELzh0xGYldQlDlL/NPCM/Bvkr1RKTssu+d9MqY3Q/zH3jAULhz5FQaGhwkG8Srp4he7dmVxpgj/0WCdczP/wc5J/ZWVqtk5bY9NReyNGb3BRTY4QV2Nb1YgFjpejH+Du4UtFjPyAA/hIwXP440p3xoGZCnVG2PFJu5DGAAk0Oil4CrBSu9YV3RcpelW5CZbB4ECweKxvKs5y9Mh+/2ej6oHQDM4b/WeTJJiDGOOV3MBG8Am9mxwx8NJVc4M1yQwfO2XeyQrIc1s37NH+/KgUiHzI8G5l1KX6CZH/mdRnbTwl4Oklf37LlNjnwZ9OyTCP8HYI756vNy9laxX7Iw7b7gBrwkIudrMV959a74jPJ5oJecs4zWPTdLOpL8iOOSieQQRUYT0d/6/QuIPoo8P30W0P+Nxq9sEfcKSRXzLkRW65Sd8rH3tm5Ne49HMdEo/3oV/ICkomHRrquzoaTyx4JMrLMQmvItVrDvYC1Viz01BdLCY0ti6dMZIYJDkdGL9yWAw5QYOe1eJCjgnICeJM6PBnprJit/do54QdJZhUP0PwRBrBuCq2j33GACy9Agb+HH4B/bs4yu3Q005lizHB/TOzWYQl0jsXPrPLeXzoPrWTfU/jKQ/2eEKOwpJOQX/FaAQSOE1+uEDibWEF0mB7ezv3SGHD1YE0O3325AqtZ7j9Y0mtlm5T+tljilYFUueHr+wRhkxI9gefKd+GtP8DZbzisOcDlZ42W03dzDAImj9Q5rI3342Kh9RULrOAwCZWuG7dYaEzlLXO7jeenllULkWugQ9OylDTc576cDpPoMZB26Uxyjkt+q2pU71Q8w2DmcIDlIf71P8ie5H2652NrwhmCRqb4mm+3Y2P4Ms2NlP5ftGTiPS8vsPal5Jee9SNc3PLpal8Q7MWM1Do9l74miDTIan8xssG9nVHMBseBGAQ/rBn05WMNdWXA4e4zwZ1DrAHNdPgPlkKwk7MjH8z/cEPAdeQ/34HZcd7i3fcXTOmYcW3CSZJrNVGpaYMVuW3pD1Wfiw/pcevRFhoznERMBMxCnWEkrgRqs3+EM+/R4FxJXpJNuH7bqp756vc2NVCDWvxNBJNRIrlxo2trwIkzOXohJtOZCKVsKVRUV4Ff8Ae6lqDI30ylDPF4Czd9KM7PpDE5/8MnEdhitPasF8Utj09Twl8D8/mH9hmwPoXhF6+r6K4PGkVDW2J0Pyf2nWf6sAjL3jd1R566HSiGE4MHQurbM7cygJA7mtssy8XXC0Bx/ppe52Fgqr37lD31TZ8jPzAsZNmTRSzkZdfeAj2m0YoXDRmdc0g/k3JMceQV+ZBFccbukPT3Gvkbxecjq59btwzhLnpBZlbTkhe6jKTDf0yesXktV8hyweXSjcERGDz7mErUQ+JQWm7u5Jg8gR24VjItivui+SIsnnLDPjB8ip4TojDRpUN+zfhe+Ub54h/2gBlZFcbnjNur/Ygl1hgXgEaKLlHJksjlDkE9U5UzVKIQwECpTN4ntJ1Jyn/rYOoHS6Pg5DAraCVglT/5xrkdGKcrWaD8DV7VWe2WYmrGXtI7OnTIJw2ii7b2i7kdjVLPYefDKJf9hhrDtJSej481Ig1zgpazLvzIuGlZ7w2aM9M005nnnYcKOjBc8NMQ0to/rgb0NJNofWQKgEAl6iTUDnJ7pKbJOuv20EpPWMg46jd1pdRPbq/PZv2NNYwQxVfJmnCLvYtwZZRfN6k9DpfzjPsqCHXde71hP8qyd0xNyoNQbifUlSEv1cLdSV/Sji3EL++YbhW5397aADozBDY1HomclEcDGOLzTK5GBNn8Z0cJAKCXV9BzwfvMjDnWC3JPy0DRQgPua5M9eL8KcAXaAso7xtJjQLxVY1KhQv2PF9V3oj9LtiZvgaDJApGvBQwqObfTZj/KCjpN28NRk6mqvzm2V/cFlHaIDbOTKrK2UK8Evt6dXhPd/L8NhAMjS5kYCQ4XK22gTB4lbJFRWZNxnoZNk6A8DqgpPLFgivYC6if+t292VZRAmw3W29a21SqbBxT+fswc6CgCmtrxza0lGimMgMbhwqgMiuPhSsnMt9O1sXJ22PZlqgfqLlEcORIhEkrSm9M17Xscxmu/kezbAD1nGkkXFik/+J04T/fWByG0tv/CSOC3x1r+vzbdFuJDGRcJDzeKx6vOYijpwPB6y5bvGw0hccqZ4fnJ1uKCYHx875UBuonnoz7dw3s73P89XdnWMl0P+g6moq2NistSjougJx5GHg7/kweSKQ8dyvjCtWepEpHRI+3WdlLvKZdqAvftkjtvtPa+ZAR0Kfmzi8l7bOefCiLiLc5cxgAyF8pewV/nREkuNSLP2RTghQxP+8FCwdFbhM+1nO1QLO65aQ0ubOJTtk7RaIHT+ND/kgzunxncMVzQx/svpntGCuapaAwUhOUA8FWUZCFfWuz7gaMWuP6T8BeFiH3W83f0EN0RFq3IggYNR13/xuuKlfrII0Mcm5GExTWNwqjfgShhFlI2SsmY3fP/Rc9ab4hOTrtzEmg8OVITjckJPE6fx59qEepanAs67hQTzIa0IKr3wbli0Vy+1GvVSc0S6V8/NKX1rVg7GLQ+WlCMrUf6Yz9I8JB3BOAgjCgmExWy1MRI1fbBu1byHpNlow/7XV1aMP/1psLnggzRhb4KxhVlfgIsBa7U2UlKoFRSlbuhEIeYqY8I6yowq4zxbFXlG2NGrZo+C+pRI1kuEVJ6RlXy5R59NcYam2AUe8s7Eatz0hg8pdGO01Sbsw6IvJENbVK9R6cRtVSjuqwl/nwRAhZcpejiV4CU4Rm4KTLQ2R5w1hcOWqftVfyi9SJ/kBHsmbkhdUzg3qSSPmrvquVLgGeEdS1mt1sjARtBCKVQxzsdYOliRQ2Wn5wZ/Fg8AQWe3MxafPoQnAx6zM4r8+zvU31d+jCTne5b5l5L5Y7+SqfPPb5qrMC5jYX20m44W5nyd4rlzpiP/8Q8eDdibgjPIbJPyFTx52Z2NGzid4qPJTigR1pZctsrzaFzcVCCmZxLHq80Sri1P7nPsvqYQez++5z/qc0J7fbPSYU9c4i6MkuZDzZAP5uIgR8IA2TO1EF6nMreDVzSK3uFyu4/we95xhe38me1j3+OVmW3sMN7M25UY+n+K+7azY6zoZzitn+p+waiQ0esmaxHG2fvDPBAafLgohgMuL4fCsrtw1n3jKDNZoKH5dUJhtKCysWYVr+6CkQHUwlK27JTJ6ESYV9K4DJEHVRFvElD+8LDbaKJli7UZqDa1qgKdyA3zHTqnshvQ39m8ep9DQ2Cn+X+r64niqI2b4G4HRQ8F8iGOYhjsosS37v9BqNQmiUonG4YIz5Ak0uUdZSguWkADXoGju78vfEl5qP7EPdK7n1Mwpzdo3yV868CYV6tvUyziEVSWjrviYclbhhmAGuCnfAh6SA39qHvNGpeej13zJKn2EreJDMdZwUTF9CMfH5AM78vhDZF1A290wYh4Tl+MR0Ija2uHdrbzg3tg4BBATvQif7XozgipGzV++fqX72Pyq1zFBpyBprvqVhcKRqXyUeAqMDha3apGjZvRP58TAdm50VCtd6QwHgQstVZOv2xpIKb9YsljN+2rWV9XPGllDdI6vOGJSIxmAPQj2TIlskOQe5RjNT69Zcx9wJgrM2TSD74DCgVkfUkRloSsI2i9uOs+GNgotOj9RaLQfsAqh0bHHCqWBFiTXoGyyOtqUMVUt3I50Q/jcHbyD4onaXprAnwjsx++rQKIYzulJ00pDhXLTNv8eYV7zsuXafZFgcduTJlADQzx2glNlDJmU6K3eXun5yYAkWkk1pRnocrwNwBAyhkthWXzZ1hhKEfvynya9tutZBym/Q2TCOLJ6QYl04GbSlGEbsxewLrItItqREvj7o9QLFAPwPS/k/WU0oxVYjkpRMFC//FflTLMpTW+ckHV2xjtOLlFCFaHCa/Brc5m+ciFjhneGBwHtp0339/3tjzGUWICFBz9emOgIgOTnVLOcntxupIypqit3BrEfxcc9PPKZykrFKE3+IOuhRZ1k06Ae3iyeD4qksb9sxCS3Ny/pdTRB59WYxcC8h39Bja7CGYj8GnTHRNrEJ6uVjtI7WK56AwFwpgLjZT9pXdeXRuLJtUThN+UZSxvIzGkbpbAjUtWoDqhWApU/DFmqAN0K1P+/TCW9FQTOkNmK7C+VH8JYi7F+IaSCS6T8AY+ZSpqnMJNOJpAVZxdA2tprv5pyScjF+pXKP6l9lu5uwQyhga4p7ZgDU9pOySnrVdUzVRZnG4/jJu5NepicWB2CgcUhjiEgZRoxvZaVkfWt2PxJnndkb/qKMBy2/2ZZPTMT+swJTAuj8n+PQ/Sjo2mxuR56GbC/LJcdEdTwF76jS6zvCvqenG18jNH9gxn9bo6uW25Vn8bfddVARJXYVObLKYuDev6NVHNHABFbG/mZJQikP7KxTyZdxgBjEc6bQb3bkkbhn0wO4UQZ/26UmbJIchZA/RfMp4cFPkovbGXUpUq51P+L8Q8Y82sp3gHGsAcoOk2yz4WYA7RNh95ZjBS4L6ntuUZpx92SJi3jfgOa4V72gOS5YrGSfBYB0g3oR1dNlVIao/eoFdjjJcsXQZ2BMlxbm9y9VcvApnYqYrrb/JIc7gS3kNpvJFes8Qphl7vwBiu4j5IkwIpYY0YGYa1nndmGOefZ8exasWC5h+5z6GpawG+ODnlKQn61irKdJegUB8g7MyULhu7NCLwkvqJ1/g3getVvcpzvFaDnyYA6rD0RAQtLYfRhjv/bqYb6AOLTPWRnPtdJsBvdVMVaAz6o/lWJWCMKVQB/WNgvT59hF9y7+/aSYZaBX+yrQi5I6gj8cKYJ4F1Lx3QxYQ6KFxCZnwoSnKPNYLUh65QJRXqfLK83Ffh2EBx3mI+t/rbrzmYSRthpDcH0/pVHIvJ/hDiaUo6Fk9up6xNAM33NTIquNpjAAMvl8/e8La/tEx3ZutIUKYSnlzMu/VqeVxFZn7lZzCydiz34JGkMVlCc19tGC+vaS3KsxJhekpj9KTeTPnpnu+FVlGWK6DC6FTeFMp8RqaubZ2ocYj5kg42KRNLI64KNMZVz6/APm2O7fDszO0reNX280swkP8L0JDmwj2KmrhIWJ4wN6n117SFZAYrSE70rB2inV2LXeTx83ICpQ2o0na7xwrc/eWaGhT98bAfyQRaZbwoFShfJ6SRVXfS3aehzZLFd32nUnBqczpao9FdSExcDnkrZ67FDBOPd8TIBcZWild++ptOIDje2D+0GjVCcpEcL0UDezseOlJ/xfwWJ/Fu9sWuT2vKcoq5+2Eg3UbbQ6xAoj1mD8/QhmEUzCaYP546R+PZXwPfdrBldbsXNawUQPkyzJ42Ca27vEuhZK/Sxt5XL0mN4ZhSAbFCXW6i7en9uY4TVxUxccoPY9o9Q3dMW4sLaDwtayxmovfWLLPe8i4ceakuaz4Oo56KWwSwu++Uz46AP9h1KBwmtJbuxz7XR0eV94/ixQaK0dG8f4wWziDeDrVL749dJT2jRWtYCi2kASvJjL4uF2WlE3EgAboYTiP26msylUIKx1feof/ILxWz3g1pQYGyfU0xptIo3f7XTo7TIY9diWAeh8M9lPDKsmF63cput5UZGyhoPvV0f65pYXi8MrmfSR5b7vGOPCSbMNqbkd/BBuCPcz1/MMSHaFfLrMHmxKfYeBED/3Gc13VOActNJbEzTbbxFz2H88aiL6m0TFD7M6IZtUXsADWMIOKAOhCS5X42pUmZUORUpJfk0Pak7TfO6XvuJYcvnpe2plLGtKK9Z3sPgLG/g0Shv3pQrykUJT5h9YBjr8/L08wJOaiu0juexy00TWshZNQAncQWH54TUzsafBMEprqbxlUpHFy0gI7XlAxLXASAda2Meqb0zYJASCU0NkPVMeAAurG+RIIENqczjG3w+sZR3oE2A7i9pWB9a/cN0CgIK1dKPiUpwYwqyYGDJ/z26sorzX3xhb5iH7VM2r3Nj2bHBzsH2SkQFC65kFbRG0F7Sw7++89KU/B51F4/5sXv1u5H9k0Yl54LexyALbqLdU7zPzQFkQsyu2xaGC+yr0TpXUvX7NexTz0cDpuvoCn6iExm91uLfTUvMlisWIfkePYJAim1NIyJL9ENJdyxQuzckPY0nz2fpG/WN/V6viVRP6grnxbamYOG7tRor61NRtyDSWl7DZGNz4hX0EynCYlU7LczBpVIvtZ8zN6Sic1TxE0KzFGuE9R9F2kwsccEo9HQsXBCXq1pv9crlB4rWbNrqkyhgeNR1Kc9edNUDa78imLUfxSuo0MgDoE4jozzLCSvfL9MpuZArHsN/gRNdiJ8clF5z+7Mxy/89Rg57jRzo3PuCWOWMKdQB4cKXNIZqs2kDhJZb5c0kGElvkpE/cTBb+PGUrg5rAfFcXz2U0JBFJQyAK+lwjj3Uap3BC+nnkOMI4/1m6NkpaFpRPZYJpPvl/6Mdr69qPK2yTERwNrXutqPtxdm+Qy1PMsw1ikZreA7A7Qi95/83AYdJ+8Usz8o9GZey7jn2G0V0viKVqSY0E8boTmmym37ZrHqzlCDa8FLl+wlEzlwn7dQuYMvMg3Ne8Ec55tEiFQ9DrkUYCkkE8N8iVrXzzVFYaDOGJcGBBINGuMUqqpwITgihbauam4yGUGEueDoMDlvXB2392CgJ/dulkgYXSQKcx8eaPYU9DTxcdllMHQqhiMKtfsGH6tAYG3OTNQFgJHpAqXZSFQLD3bRCyYCr3eb7Gf21EOKQkqUEwfyVPUCINnfp6jQ9EvVyJmQ74xh3oFjMh33DHKLYJx2Rd4xSQjASc/bL1Em4NtjeV8/+Ba6pJtDx6/WSRe/pijwBc39/buieTKqZoqgk1R6vCw+myNEO0AgTaFgb6j95yBUlais5XGNSPRYoW4YuuDoMIvPh7TEIsk9v4e1HrTeusAMWOtk6KoxxZ1Ur45AXffOFzTbjnXfu8o8f2qiMquoTBmjYm1c/uIYRFYNHySRlqhwrNf4BO0kKaeoLnpN5Flkh0WXo8m/7UoJ7A1TnkxTCb32luiPeheiqGoLc9IIXbl/ms5cVVZCFRbIq16Q1/TWfc0zHD9D5fiUIzC/ZGyWNlsF4guVXC6TmPfkuZx9uCY8KXxRuZcvXk4bTdIsjO7OMpGo5FPi11mLIEqeGt0BCowgkZJxG8oTEK73nhCxRLT4wQvEhRRsdq1PMACQGGiOUSGyTfO0/2Np7S/9Dw46yabJmZSoPEut69InMTa9MnK3W0KQPM2HKxth9Edy8FCsxxuI22BC2nF6ZKxK1hsrRkQHFOz8w5lDf2iYSAJG6JjlAVMuYPKsYzHBiuEQoQvXoY91If3U0EPvuT8j4tPke34vr6t3scXdNmrIM+9uuObK1+PHlAL1ahzROv1bva1zdmN/S3LivfaQkLpHz91dUGUwN63ZMfm7MJWSN2zsI4I3xpxiwVSwpn7Wt0vCgHaxKYLx5pdMfX6W/QUp17c0SH2GeFg/jYF4wTjyAXsnb9y+7DM9rd6I08P7z1uowAMdWduKJlhlOefDhD5x8/7QnQ0g7HSJLbOVJROhJoIMVgfXKiz6rAdYp/djgMvIEyZRlWGlLeE0tOlqXQea9dC0e0weYRuOgwAUjxz6WF7RG+Ennz9FK/TvC5ihY5hHfGIQ8I5BgY7kuPacoPZFtxY7AhetiQab6J4HQnrhl+vAJjlo9RWitINiVmBwhOPW00Sy9TWtiTTR0ZG4UMrbinX4Oy0m6eYOLsfiPpGfJrzgCvmJeIvWVi+YSYq56suzpOBYgY7XAYhsSzMxEzaO1SuCNPtV5Jq5F4LSooucABIU7nK5bKzUlQ4xxgXkIQaMgIn4dbEFMPWVGQsSkhCQGTIFHgebpkM2RE/nTrURvXZhSpHrp4qbeSYH0D5pqugrwdAUZbyC/4c9KKtye/otew8460NWHN2FBKicTqsnvtc1ZwroJiaW7DVnIPagEepir2sUVgxZ2Qjh+fzifDU8UrY2TDmiD7i3bPDj6lBPWVvLBNTs2cuXz5ycCATOStOpvYWM/NVsTWae34hU4PEUcLAnH993Tsn0aQ9e9DCjvozGtd5BojsgPoKlhTwHIKaEcN8mD06jt1uceAkrLs58d3wRsnNEA6FBEwZk97aAjihGiDsUBDWQL8QXs/43epxIYznaDr5yqPXrtQYabpk0FThTwktHc0b5mn774vKGqHBlQzVcvyFPNGFrjsYs9dKHuSnNPEyaxqcnBfv5KmXr9OlcwZmoUQlaidYeRjzWsJx7Xyu4TCrG5rdJwLB9uAhIE+y3Uo2IlzRhKI4k1nSWatolZ2TpZXPkKqZyWc2zAfiopTjuHV7tsheF58HJmhNb+e87GqCWugIHoqAsL82dZUdW7y+Nz8kdm/p29R2pJhbemeaNYDKjH5aWLi7oq+K5U0bps4upwL3i2F+h+5C4AwRGfUlZOQofnbpBd7yvcpeD1+iZBhGOVhGgaUKkE1aKsSuk/7SQB/ONwDDZhYjh/8J8N/cgwiU6l5/JbV0HQlKk/QuY3/vUMstSlkpdu+50D+hRHDwNLSSVzn+5IASUymyizY8iHVR/WIz6bmfNCAGCUhTeoYfcwuUozzkbd5Gmo7SxZu0AEsqqLKfeXwQHIbU1sWLK7jPTdTBEfJ5nQh3XySRzR6pXQ88tiOIc+WkPBbXxnHajqa+wPgpiid1/BPDraUJDiQ8yanrRPDe+H6r0QTaSpw2fv5NulhwJqZ0yp0BbHoOuy8koI05LLQmt0hxrE9ehO0IIGPazn4Aru0op/mvAuAvDQUOdIchiAN+mupn8Yd/OCsLVYzfk5WFyeXu16+qHmgwiVDVWW/yjmlCkuHdywJHvKeSi4PS4pAQPinCm+2nSFKPh8mYpqO3ialdxwRxAXY4hclT2du2siPAs74yLAfOPLuVmaH6VeLsBs86Xqz07LTw1CrdEjqKUApkAI0zwlx9JDNYkORo1c3eqp1TZnKyboF7U/sWUbwsxCfE32r/Hz5ZG9dlw/LVqaSg/ZPD0jMlaOn5nGGGDieSWkMDQfnkZ5ZgATtTUqg2bCQYVJtHQQ6XV/0owVQTcqxZplyp4km/3wQJdE4MHr2FDJgT9uMF1mC8Nf2Ye2/yXlLE2aJ5/gthmmb2jHCaYZO50ycRCGvp/QUhiMnQi9dLcVLgfNl5LC/zCADwqUiI+CYBvKMyXXIMSvq8YQohVZfhhd2qci87G0lS+T23QizJN0jywe89+kTeILPR+LKfB1kOAwVmrMvl9R6RX2gJJ68PJTeJI0Bnzxdd0eLlR0PJvOd7z6O9yE7wT5gbQvgx8pFJ5S0+tm9mLwbi/WmL41bM5O0ozps+u51OvPf12IO7Zhfgs49NF29dRgavgRjWIx/wAbPc93jRVptkpjSDwKYxkSwPO4tjztI3MsBeP5ZkUnwcE+vPLKpHMzWLLlgMDlC6JlnxUtzidkbVkdEAdjDhUYwPRU0TiZS8hRgKgn+iiG3dlYexWUvb4lR3nGJneNgIG1w6SyL15fMpVeTPsPuTGVdA5xhcgFLLNsrTzWSa9ZyrT92A35j0oG11Jqjnkl3+JqOa8dUYnsBuz4Yj0733nETsatyG9MiLcUibmojPIKzkuBAxOco1uKr0QsR3chmHfc+3r9WXsSDpzsImWiLLNfYzMAEMWDQ+rgpNUeVJTuChiTdD+QEaDWMG5Y5XC01jtlP72oKw7yOqfu82h91aOyU7c/zjw4rqwTAredZTGjSVhn+g+ce7fPrzSNvLZ9hIlS30YrVUltGavU2aQeAoV0Kp5MJdg5GJ69zY5tJI0GcI7A9rqKGgi4V48sUKwjogo7ra1nzRvr7iDT5a+qPj8U66UYXcDYPlHV2dBrMJSXFCDnTcO7RNIcgUMKwFexe9WEpuoWahXdKIPYuSY1zzUqdoX0HeGEcCKjwc9qIJtjW+GDTgT7NAObzAxdK7QG3HfyYLLWAJK6Ua8ZwFYHgWv2yMGCaNWdb5CKw4sSyenvPi2L4PuGQNgTJbsTE+7Mxwt6nMO8iMoIWlroyJYa0JAWg+CFPx2Yg6EP+ukg2VBv9WXj31gnIIzY169i2ZqVaN7A+i0OTIewqnu7FX5VWk2AmOFZ8eItkkZT348Lh1RDolEaJ5lP6VVu4LDJ5M4hTUjBJyeE5wtnkog9EHBNqlPNZUJDCI9OrJlY1+LIPBpkcYF4Vhqms/Q51qwdmKmdyXwF5UJlv1Is5yQWidQqSPpA4SUw8l1Kt1d9mIsDnpKBUXUAQyLipccYYb2vc0QWrLKlX1J2ERdH4ej4n4a1LTkSYutvfWxM24/NSolTka8o/1LFGvS6UWKfblLZE6Vc7FeRGH3OpHHDccF2qU7zTIAljgR6elMSl5O2tKUhk5KNTWq181Pi5+nPkyGYDE8RnEUKg/dm9X3LdTXWrIbMKlWFJWbkcsvOPDuxYrEE12/gl5wk/PW4B4vSmH/VqLqEKTn7ZXbIlviecmks7GlIxo2KtObTclVLSxCCa4CgbQ1V7nrLDkyD3McwqmwuJB+RpSBiNrSuULzNNsHGkIiadgyc0L/y3iF0z6qmuNvoug/UsWtfi/Ir0RsrjMsyvmWvPC74rT/riHdSUKxjkvZzp9JlaEteQnaAKHnNwvvQ9QM84e3hYW+57qMjhnzY7ULzRypoeeSWJ4tlzMe3j+LK6mQgIaWMETka2gVXpHH5bt0Q8M4B50hMAYnHatmPZhA6Bqv6ocHvlh8fhG0sYusRQ/kYEByTDf9DSApQl53exmOG/s+sgjTpIshEMeM+g9FyhGWmvZfnsayIy3YgafAOBVREsPPUWbrrXjmT3lW/BGxraC0tPF1VJ0XGw5W/RblM1/Igo4RL5k/mvymtfi07EPi23WKnBrdHHVnKt3715YOAs8DsFH2hJjPULYsp0H5V7TS/Z6xC3JoeRS6SiGWRjaD61rdC8Taxg/bwv8b1qOOuGprrmcw44D5s4KXYcaLF3j1zb2ZgzjFZtncunRzWle6BhvjgzRAYNtt9/RHFBgYbhU2f1pxj8d2eAS3U3w5udMtYmjfC/7EB9Cy9HV+vuZ99hyEm2oSv+1yMI9G0F7Jp9i9GubuxR+ZnPnqRldCtroHvzgn3sdNISgKn/sZvVL8jj3k+1ri7IO2yXryzwhHDmvBfNecDlqm8RbKvGRL1HeS3CpUzoqcHP8Ve8XhKpbYLRT1rBRuLJoULakbsaUeb+yzS7hjLp5SzTbn6TTZolmwjCZYgxnKmgh24oRrLDukvdIxXZ9LEADLbRC1iYkOxxH+PU7RjLtrXoSTQkyNTuoqwqnEAZ5YgLmZfpvrTT06Ii0AxQixK6pvka9/E1+S+DQ8eRRHuU71i9LaNVKPUtCBdCCp1tv3U8K1kQlGrPe9ahRTN5uP1NUJy1E6zybg/rR5QCpZRGYIAwLAPJM4gD/lYAvtKPWL0ARuVB+TUiiNsmVE39maM6PvYwopkxrGh3M+0WXVOYFQV2+pxRnUJMPD50TBCicLCpCDO7+pLhkavmQp1h2NwncCX/3BrIvCEh1qYEXVQRIg8HyLQyODMtZetj26mY5U1PK8X6O/CKqi8h72AcCrrz53q0anlzSKnaIx0LahSFAXecjcIUGRJnr7JRkVPjQs6CYRTQKffiE088HDCaPtYEp60agFc02zHlFb4jtdSg+WNFQuvF4YXc2NxP6YZUY3kmBnD4TOTV1HsYscAOI/14aVou/Kitt6kZHFCasPjuB9oDE8riSQnF3jBJO3XB1zoW8d2GHv3QoDlTHbAtxdTOUCmmePYYnqc2xjE6T/6qyWuiJi5yfu4UTpEkuxr/I2d81kHBFAi9HmXZqp3Yf7ogV4T6X5mHgrcM1ThmkYfJOc1689rmIxeSkW/r8gYHkQp7Dc4VjDEMEV7/bUIMtD4EkWXrq3mQHLej9uU39oA95yWgm4pcjqWBz8kqfchKH5LPcFgIEJk5e/WP1taIM3hJRfotJs/I64DKKgN9CDmpjJlsrdr1kAI7lqGPuT4zpP5SSuQKjG8nSFu1LJURaaY9LmlPsvBY2+otf7fBT4Ja++1tnLKVWHLPJwVZXJAiSrr7QoOUKHtlf/26oUq9WDVC6Pfk7vSstuq1n2qweJ16PI2dNbxz5bgriMR9ClD0/Q0zUjG/+jIk25dCj+dRhBwnl6Cxl4zwDwIIXRgicHax0Z9E/sPtnGzB9JhvRdu+FZvasxT4OoNgxsQKE6OSBJZCzr5LRWYp3r0gJk6Qlr2RHYGa5AsWlDMPgRO7aKrOVIM10CpNFzF7JPxxUA7D1LQgksTDPchem35GHIaKCcfDGDl6tQSOASLlm5O2O8+DKT0aTe43ATHB0OpOdLceC1Ve7HNs+KzEP3Am5v/UYpEW9d1E5Wnzh5hs0YR7b9iSwKbAoqD/dp4vDaRWEVpaKQ5J+34ZAC3hyjZS5REb8/CvA3IaqL3NiTnIHGDPSan860BNZItMdWViOUFTUMmOCiLYBkHvA9gH9bT9xvtOouJzxMdWFqQAhou0iD88iFWgqECtysGPKAHmUQ1XdwlkiaoDW9CsqGklhgOc6uREK0BFL5CCrp/gsCVUcMmBv9mqnNYE27r6wzhqyQFlPTL7J3g6NpEBb2mMDE2PHq/hdKg+DX20c07Px0y9z0213O7VBOD+VcuGTycsYK5oi0GeInnSA0NCg7sGP/pOyPEyPtKW2g04jkrKC0ul/e2C6gE4g3NSngQ+cbOWUnZzEWiKNPYlZXxJiI2N3+cTDcgKUK2Xj0hYIlSqDCZM0z6JwmBtv/WubODEo+8dcVm24RAFJb6PhjyN2mkqYc/pncAxIQYBtNHNuDLXJlO5hxGKAzWDpT+0JZjHxXaSQVTisBvmGgDz5fZmqtgNVIKSrAfu/g0u5lh7gAfGPND+9RYe/uFpyjkd+iZDLK+RWpJCr+BCO35Tk551DmIlOfXjFQxx/fuI2LiGaOzpoU21zPEYuqpOSZW2xg69iC5r2SiM9ScgQ/ys2K6V/L8WJC9TLL4NxrMRR4lLBpDiiCJPTzlKCasG2KZwBKg7fcOkosqrJnXNHt4/vEbSZV0uIupMneqMCgRRWHCkIe1yH3ywB9Re+SRJJ2OE1/bf34Q1S8nmaotdTq1jIl72pabM+rHffABrEhB1fkWep9CSS2seDsk8NptfF5qzu2gkf9WhmCS0TTVYAEydqwP0N3SBuE+AIANzquk6w5T1grgGWsSn/dz4rRpfUFa2svEK0eyyQF/qQqAEPFNQPoAjd28HIBAjVlag06DrcNoDA/+FVuOR4JuigxPPyMR6UukEClZ4hyPxy/NdeZF0BtFGeKOFIVPG3SRGu8STw7gD0z4xkEGFuvT2Xif+ajZgvRjAn+a7a2B4DSriTAvAyjwfw6BTr1OgUTT45UKq0NVFr3lGmQcLlSqXly+3Kl0rg70UbS/xhIpUffZg1HPGfjvcUDqbPPM+tLZdwldFVE5aqOIVZUJ+Lt6Ws4Z1fq2xE73gVgrbVFZeuDRZGOi56sqgAGoOyG1nvdw2cam7y2drrykxCknd3DhfM0YFnAFtphlIA7CGo5Fh6qD368AsNkDoiXmZ51F2aJPt2KfUnVTfvuwFIcOEBUwGI6HI4l4Bfu3hWVrVvBXqVedqpIx6PYYOwnuSbeRGpna4FpIo1ZR+xSFaOdvVSAfkQ4MaE9ISmDibD/GbbDPRreeMHdhTPgina3f5sbhvTrwamneOh51Hni5drh85Q6OpPFwDl9JBljFfDG3ZFR/hiXsT/LWYTJg/sU2+I5typ9mmMh6h5y7HXpcX7vijmEZYLR+Z7JwQIP14+zysYPvRev5gheXdI8ae5Vz1e1NB1y9MdzK/oNOARNIC1ERoYKOgwUHBxPXbrLTPRrcM0rKUecRJud2q9iei434VCYdo0i3AkAiOINCdimX/N+Az+J4lQxOgC50ARKbExa2+QmyDdOzQyHyNxyRh+K/3z9z+0MDR8iILo1I/VwkbGZTVu+Jm6uf1QcfaPY5Lp9REkcoPDyxyqV7J8KrZzJzOh4wfBSMdW9scYpWO7cnJO9AHiWCZcYf6PIngove3VEJ79zR6+3kUgLvh3xJ49K3sklBX9CQjL0zBR6NreHNQfbXUnzv0bXCLa6V1IfO3+B85IjbJ9wl9BveTLFu99aF2170Ub4Nc1vi/BYpAZjltRkvLzjrackJ8hKMYgpvf09XRNYCOtPfqypXZpi5whj6JiQTbGABCJTbYvnjIpSYiJSBs5hdKfqik64E+34tEQUiOQmc4N7eB1quf6CnNrZcGV+v5PmT45eodpTgOru5fhlrCtwg53KOTmLOw7eIVC4cith6gQ9qaorUzxTS3U38V8IWEBq2IzQZeTzFBg2wil/OM1ys8nia784kzFbbDQ0niX0uoDRb9/gcLS2kh4cmEbvqndws82MDXk0vY4HK+NJFeWaOcxDX2eYLRdY16uwhjFkLYv06PfFNg7S2O5m2lyaz06wUSN5rlSWo+z/KFQrQ5jOJUt+xfhCDyFyUByr7jMIptAInCS3ZFFWuU7yJODxZpMcpZNWw0Fn48W+WiqZ65mMCDl27nvc8AqHP2/hdkKXPTY4bideraB8RSsfY4dIznAjYn+I6CEreBmo8iV1wZDAX0G52FrmO+vD7L3+d55nOoliziOW2fYdE4qh2MWyauhD42bP4pQGgRldkL8xVz7kXRIsJelR/S7Ir6Z+t1+pyf9QAa3D7VWKrz1HAQ21578pMHnGtfprkt4eEgVVWlpNr/pAOnq0v/udGPsPnNSGL2eosy3eACS7xOVwdPMYvkxrIcWDtdOguIdh/vaZRbqBFQoYtt+m+QocO8fVU63UKe7YtzocP5VRjTyOzQC2DY93Y6AUb+WKuQ5z9G2SsvbN1t3PT3ca+UCMhmxiayr4DLEILzRLxJP6booh0MHfiworBpHWTf7KmPw4NxvWP09Z4jSBmVNA8az5lkY/Z9SHXNaPD5qPhSvf187RZhW2ctuX8JDR4qJ6sHq6P6DA9JC5BtYmeBPDrl0e5inwQinTCxH8x7/vDjcOz24xCMi4ag7p3Epsm2JpwqslcUrcg6SoOr70vrmOxuzwk1jW0vss4r9PpTm08gLBTfCK6k5BE4KEGwqnQbWfBylA2a8uJFs5i5RY2yFskIl7gbS7+VvM/HFnpz3DgRD5Xs233/3q+h40QQnQmz/3BvhWCGM7Wc8Dx8DrTZt1mJYmr20Lm/OqpcV/QaSYVQ4sWCIzgthspI4JD1zYSSZQyPOWtlAhKsGU6p6fbL6F1MDzMp/vf2KwFv6MjpvPAHlam3Lcmrg21d6W632D9qDFh6nZEbBxuq3mGj5otmeZtGQgDZMpOc2C1MrNwMw2feOIIL62EZ/TDbjGhD7zdsGIkj+wGgzyUh1NQht3SvHBS0ML/dJkVgXJlALASXJKquPnJVjAY5d0elYbJDMI6qjolIhBOlCFuOTaBnAmqEbXOe1sAzcWzb0+axFNdddb9mWf2R7Hx/FRI5wevaOswkUai4mDz9zAWWEFg/YUFTMMQ3TKdk92l+mRL1/dyokcT7wqJDtsywnc3fF93gA11bROpN63uS0Vm6E6wrcTWOX2Q5XlgjsaY3GpBQDevRa/iHXj2k+RApYRs6qoFdGK2CdozGSC1FPZvUEBWP01652jYnnTd7XC9WxfEO552620r4a8ow2mS+ARqdn0dXMPzpdDPQgGCoTuKJfgLNUlR0LwBA2j5xacm+czz4KnFqymHVVWkpJHju6QK0oIl9VNw9i7S4iQH5zLcnnBix6CdQgXY4SktRmp/n39Kop30EEEaqCEyrBMrtupxIEq72nX+5MOop1pAuKnm1TzT8znnZjX6ypSvTO2hPvmv+uVqEnv92kXj14uh2zsz/N0Eznr2+AGhYpQs0w3LqenV9XdANJbiSxvb1N4eBxNA1T8tMd9x5gwzRifc+GP/VJHgzN3b28nVW4MimuuMKSsStzDHIu7yefPzZuAsKgfbz7lOX20efms7C6RWTlS20SM3BEyaQaeVPh2I4XFXK/ZJaj467i0hVNs6+nL4ngkKQ2NfgG+5YFZom79J5bOjbmcDAawkb1jcrlkia6szdHz0i2uuujKAmpXhv+h9c7ZVKLpcHnK1qAoGRgazILeBFf6yrbX0pivwebHFdh9yOEMTvnjKmyb5oSgrkMw93/jHipyG1bGRnNxcJnePKQ4d0kBkE7CrZaUretuq89A107+qykP6Dy0b/DfjxekHEUz76dPQO0ix1Vu/TsiN4LJ1fYBukwr5bNCcJiTwzd/asYbyJx+c1tK5VnnwkhXQG9CAvD3OFhACEhJ6PJ3GnqqQPUcAfTzJrpZk2yB9BOlCa3sxKy1GX+PS+GUDlczfqkekFjF2zjMmuYdZD5UXEz7MDPJ9evvQsmpcQTuFpw7QeQ5u/LcN51xUdfZgU7ZtzVd+VzcuSqf485TKGe+DoS7bxGpMXoO4aaVV5zOjRYVDZ//2L212zFCBoVzjuk5h1M7tRj8+OeU/QvsPdhh2cSByTgHZrVLTrUhutgIgOzALwk9T1KJbE7JOQO56mBIpHrDMAuhrH82Wvn7MZL1YP1nX0SWBL6B1cB3KUby1smAFZzw+rzbTO3QDPpmOezu6PIlx4r2QJLuWFjKplI00XrfJwD0xSDZliKkday4cefBPtl808rtxHd18R8Cy5FZ+q8BJ3/Swi2u3DR53Ov8GfK+t7mC1OMQ6hyechpHepy8uDZ4njliJDCC3czNROhV5vASVKtN0K/1pYIOVHnmfyP58nx5pG0i18o/IuWzTnbFgOcKLM1Mzz6gcRGTtUxRbATRQsVg3yZs5Z4Svi938hNOEXQU/pj5iBYeD6uXBnmGspAAdU6Q9UyZZ4O7tCCM2svK1+N6cosHbQuQYi+6GYSffF3WIOYE/EG/cQhfZQqtU4anTdoOm8ePhw3EAnmfQryHBd/nVRVnX+nBZYqtf38PObmM+cXKZQmtxVrTbKZM3B6ZFAQB7Tx0Ofkg4vFcK+ceu1e2kHh6oOs/dsnzUmAD//ywdGc/GbWLNb2pHsFZmpDRvFmnINE4EvGRGBaZhfj3lKaD2zTDVSWRdmc9in+8VFH7hPKl3xGsWhtv8iW30uIvkrvyKBgQks52ceAZtNxINrI7jLFjBeovbcErClvap0jzcSvYbT6fKNxmi5klIIyjyFtP8BQGPQUdH8E7XhuGzvybgR/+d42v+gfcgC5a3Tv9sVS3Fs+E9iEazeKj8hqjAgoCTwyDy8ubVUNJ1HQxSu9uuXB4p/fRmFrQgFM9vpszEZfQ74cLnIME6PtTRXs2EV0omWoH9OQEzmj6Onps1E3jz5Fsdqo4VFuSFi38peAESSKBWxCC32L7PR2G8nE+GE1RrOvuI7Wc3aFKtT6cAqXXTFhK+8vEFAx8H4aLtopa9EiSE0hYlYErheoxHAPvzbYyWxhbU8vz51ymU14ZLfWsF1r6ZA3jjR4ZhaYxC/d46AOqCg+6aEcbUbffHtlNOIIKd7W4q6ed3W8Z5c+eixUcLP4mwNpa+hbvahB5gtK8wmvFERWPMW2nCcyjiyRTUzQ6m7ELXK205Xkf93VPos99m3dzLfyu1yOjAm/YzG8j52aZ4IZqFz9hPASDHfFp5oCCpW86uOJts1bkhO3MVAPdslPSzm4HL/jlb7bfIEf3l11S0amIfzmZ+4SqvL6oCHsD8GMReYRYPeVR06A8/6iyEGwnhLzXBdvcV9ONKZq8bjOVFtR3i2CuBXuV0GaqeEKRNcmlJlRMZf1oYkr3cwgzq5Yis5ZbE3ZdjSopO+frCOUrS1idvVaiYtriUZsoYs8APrYkRC7ru+LGSdpWhTW00M4t/fuienGZSgCd/YA6EGm7lSc6D6QOuJoqShSHZ7NpMSrpjMX1iRA+hGhK6CPelmi1pJykj4OODVo1lS8nIqbtdsrAmUuRApVLhQ3WvAwwQV94Dfi/5W1GRz27JclboflQNTJZ79JtcwU79FdxIQcxXY2MNHiQ3BLyt5cqdRU9p+EOfG37WCYH81Lvn0YZpycpbiBpFCIeVtDtBH52fL61QvbzRJ1PHc9qX0Pnj93th2IIRG6msG5AWObxnHBOGwf6qMarJFNet0BsGw6orxq25BW/8UN71yLfxAuYZJ6ztisjvU6u2I8xayn6P6sGKCdVKJQbAjD0a/Xcp3YOPpK7qIGTp4s/yxe7OGKyhacBD4qjUwesw2+8hWIa7BQXQX5omrlR1XZ7YrsD/NJH7+rPsM/6SDi3gnzAukvyDIirA0XIjRMfZd0V4BDA/0xHS/3ovgh72aNFUjwKPpxvBYQM06XLHZ1Ux2AlNAVOA5HNLVZJMMoehPLLCMHXBsE990dlcQaJd4mfCeSy2rbjsOGZZgUGBct4cweMYnYaoW8guKiVz3fFafCugA828LO196rLyNwESiJ69fP3Lb3KsFQ3wP3mxX/vLBjsJl1twTEuq6xRMDmXpDIUHYT3lbjuA5DTGQO2mK5JaofRLn1lQqYSkH8IoKAU6y1XmrSbhChPeVFNhCQwXl+/3HRq2OyH5QVxYpgCZK8zruN+FH5DIeOc/F/RQLaa2fGoh0dbq/01iJ3VXEbV8hAkibQ5gS7dE+VetE1kItaBSfDtYY/poWFwWAxGsiQ5bGqTHt23q1z1VaPlSMNyEyQ5DFuyrS+D88PvrwSBvICKjdNqCOcvQwYHy1Vz2iJo3GYHFg/ts7uHvS1t4Ku9waBPwrHUTezSIVAntrDbd0zOig3sc0E3vIIuv2H/F/z7gfGBr0T1p6Cu/zCATGUGo6K5bOrKZU0R1PHvDoSP3x+Ja2iuZ84tRPqcJIr6gJ5pDN0KxwyTqTEgQHblwcnJTTh3ZL4X4SZhELLAqnobmqJWUgmjk5Q/ncbE2h0TOVVtkusOFh9qgjc0NlxFGW/Fe2PhhA7aBfCPx67l09/4J7QIvgUgiiOtQB9gRHQNP8tztKm72IsHugdw/kcy8lvjPYKsdHIn6V4e4ebydDctBsG2j2UNJkQNyBPvP98CdmjElFPfkLp1czbgM93jPbVyLueDoy1ezdlmx/bGj/Y35uKntDBmXuRlHbiAm0VVYToRdKcVvBmF5VyYUOk1V6/zAGuR73snbejMxAdYQnCRlNSmG/iXRJDdx8eGr67FFKKtF2UvrQmtUUXGiLQT46UNl90qWEJ1IdmHGXD9Nm8UGiCc/uEsi069nscXwzoLV3Urgs3v8QwT4+O2vHpGyJljLP1xk+IhFByfWvEFWnFRerKD3rqea8WYozC7iSqsFYc+/wJLzK/Z/osZMvkjemmrHi7bFG01m2St9cwIi2TPzYOaAjS+evYqrdtO82OCQjd86S5Q0vPNUrXvEainD7biP4aOJNOGkM6XoqzuIAB59OWwQnCQdQFNyRGEllzrHB+3n8F3iixqtvfm/6gRyqcY5jXhyT55BneokXVjynE7AlxmiPxFGF2FyOsLp9G5QWnFOF4hlt9txzdYejcgMsNZbopfpgrFVwpjIzWhcwPWPshd55fJV31Mlg1nz6bjB0ThwitSbZLv7TzEDEuVWHhFzUJQ8SbUWjVcp+TW7Yl7CkuT5/pjfBFPeTnsBySHbZB/y2DpRHhx0VsrYKeZV3xWpfY6RncONPqQw++YgXzDQHcv9I3Q95FIf8rq717P5QO6pyeMSthcZvLh1/rqPxVq1s4lH6qOHsocbQI/GazP4N5h+wA+drw8Gu2i8/Ww7t7Ljgk7x71ljWgxeMf1ndlq1JiIPL2Qd+Kt6hKUfws6KV4N7AsQ6Uu22raluiWleVhtkwOhEqlBgbqFq+HucF9j0e9swzIlQXEcCCgC3L2v8sSGvmEWdfC2ffAV+GFZUceT4tUNz6kZSWIl+ugv2Jw/hBJHOJJ9UJ0FsBd1cmUMz4v8FYm653WdqwcUFnd2J20ypU4DSpiUR7NwpdSzUeRFW7f8Sbli37cYEOgYZAuQ2ayoa10xP9GH0IzwSpF6iJp44j/7mkB6DmtpaongtpVcbOx0Zd+symLzqMg/zZ5HZxjceTJYdOZOwZIkRens7jL2lB3mvZn7/1h9P1+nPNzeuL7pvXh07ocwfYDBB22AUag7AGAZFJtjHh9sqAoEr6c/NNxBv+JzVRNa7wrnH+kw5MZ//AYH5TsULpzzahAunGwOqMIZCHcKeovr/FJ4VeRj9HcDCjMQskc6vvIXHs6824Cu06OkMKBj3Z/2cDbd59/KZiJDCCH6APcaSw7aNbjRwoiGH8A4d79CR1+sAtPuslxjIBO7NX+u6RVFnoWZwWyN50JAxVwW44a7OcNGzBzTpol6LOInD8h/FTgTtikOLKYAoGFWzpgEQljyKTyQKXzG3eF+LABHuCYgaxr8yAgHYYWyTXkZysD7fq9Z+ftgBhONOaQdJRSH7HuOvXIRr0ZPwin3YRT5owf6CoJdL8grHxWgEN5o+XkRP30xilmya/kRoPpkH6cpCtRZbp3RI2ViyTfoNpFG2WVy9hADoghJLCEVWvCzzfMaVSrk0CqFSMmsudhsOmEit2+w+kkfYHZzGoAb9FiRZO7yD3kwV7pDZ6qIfEWmfA2IhMgG1SNNc5xww+zaiC/DW63yxJ6ofiSfEIsElWmjzRPsn+UZ9AM2IcgM8YG5ScP1J90Ez+bqfWYo3aBnDHVmA7Lc4A85bnjTQutG1eakDbPJs2kIfF5IdiHYguPS+AhX0sHcdb7r00Oplvi23jsMmvaR54u6tlmpvP2hJlGsMB85PahKpjudqAAQbF2HEltA6D0AyOfPYqlWJN4ZRvYxXTDCxV8juCBn2RrA0RBR/rx/kMjuZrNQiLwm82cKikqCj6c5nJlomMzO1zB0sKOx7D53+s+CejPePxBPbDaPkQT7HzGUy0vzcDg0Cw4arS/s0Bcx9254T/9Wovzu1UQl7UIw5onntUz5zQVywANhlXVaZomNs6fGsQIDjPnZSMG6PlWC/lxM5Y1Xjtkx99b462RpH8GgKW0n4lUFoNKZKi/UML3SZaxY6TDMBHMtL7GY0Fri6DyErTexz1NfcXuchbEn1Zeyx4n9v00/YfAP+N1ZWZRJjOOGgtpb7GsnMX4l7nb7wdRGZUzrnazhQ14cLPtIafiwougt3fTGduBQY27OVROwKrQiC75Tr8NSjeExCG04Oud8SqIE6lcAHp5nh2Y8yAJ+KbEV+BCIjykXOfxWwULOfDhlZ19yM/WOgpJDC31HDhYjEXX6n/JCD/K8lhX8s5MOxfzbEhHbFylAMjPk2PzCdLh/R2zsPa7Lf/a+Z7QqunYp/fqi71obUSPfVQkcB5pxrD+REqezGpfgpgy3TB1EY+czMHhkfHD0x1esEL1Q/XLnIyk5x5mUsMaxGQy/o8hXj5F9Etto9ELZbnDB0nBzD+FCdnKmXwjhL9L4PEaujM4R+V0UvdvY0FFPxA8waZd6wzTwnc+mIRuj0kEYTC+V3zwtoGISThbbB0K7nDjuOxIqt2AOQ5+MWGj1D/Q4pume6BMosRmmJG7aYh4ybkZjJk/EwYY/+1NlwaiLnMXekuzqZJMgGDFyme3DHAqRNgckKVZ/sGHvbiZldx28oziGZlIW8bG8cKwE9sm7iCW2hM9qOb/Rydh80dFPpClggBo8Vfk6fiv50eWzh9PQ5Vgk5grMtVd058+vAngc0oHgU47zuGsvZ7tBzr8VwOFVc+MvrqD2HlR590q6U9NgoYy31BmLNUZgD6jK2PERpcHyb44J+0+9H5XAvTxOSKDzfpkQwxPtXpNixjIkoSWCgr4W0ZvyuiN7Jmwn/Y3l2DSykdDKu2YVgvcAmnqWwywschSXhHnMLVD+k/Wr7lV5/cs7J/SuX0m/upoBHqov6LMARFD0LSCNyOzDJFr81QDKfnlAx2tAnxwc22Eckq6mF6A9kwWwiygRIH87j80HB6eiVDglVJcGpu6e1aMov94xOE3bv8KGmQ3aMQtplnh3d60KMq/qPpHFL4H9IAlpJ6PVfAvsAsMS9TfHI+sLkzXNaSnDrWvOLOSizzJxDfepOGXF1VSfibHRFclM73tkIiEl6Yqwo31OFyrjzJoq2IDi1gi1TyicYIzNREqPkStlqlFEXyDJhOobKohoHiuoysKu/4hLOgHWNmPBev65CfE9z0SeJenLflVO1sMPkdIZRJbYomrj6EZHHBEsQvVjDWVAMq+ra/y9LMNS0kW7Ogn+njangNJqhfiCdMPjOWK1CdopYB8euXbZPFsO9b9KuMNLcnqap9ufVsYIZpCUhwL0hx/QrgGBiIxtoLVaBFnLPoP0ZLP2RE+nBGrGFYG4MiyazBu2la0QbI0KpQGQC+McXgumUicZlQL47IPIuOuvOBIKv97C26w79142eIJUMjA3kNSLiy8/+ZJLE4ISOlB1hTm3LBO4Ox++WXWRUTU+IQM0OwXOFvfm2Xwy6isuSRqwQm0dNc6XzUC8qE1l7a2Lq09sA3f3rI6hKmeZr0WKVTwGVsyT6fhv0+Zm8udP+S9fKyZD++Ggl73PtPqo/QqhwyjuNeDq1r+iP6x0tyEYIF+Wftzwp9hl0NqHTcibkrhnmtnZLMlczJupEYEO0UC/eQvAD6FyJUotID0bvZ4HphdANbTX1nVsqPIpzP23mGWRf8CXvfmm1A0BceoBz8pEiIxHTzyCFqSdnCNkpSxSVq0I67ws6/qLMN35VYOW/WZnnSOSLsBtizwAU7aiWZE1ee53RdwPIjgxuPkSWputXBI6N4x6NLAcoH746rfYWHIh352DpJaX/ou3RiSLbpqDxzHoUueynp557SksDxU9Yg5aqmBbmuFtDcyJuoOMPG8213aCpyBjd2yQUF7ImAxNa3FrGiTT+MIk7KWwxUU5Ce4hjwKqUn2Me5pdAtXE62GdiFCs2ezisEPswBwDzegK3sjXuiJ4Bw2vEpvq8eJzO6LSQedzrEMcKfxdOU/BFmdFAYWrfnzzT+STTgUWowXDjaWYEo1ElY6yaeJfVd17SGPElwvDoiF5UhFHKiJRmSnKgTIozFFycyoUd0yrZjTCFvNMz4mIcltEuoETdk06yy3D8DigD2MVU7Ell0+fq6RAlK4BcBWxcHtZPsZuYrJj7CepDR4T69Grbk3Qpl0Cqg1C+QnHchu+knE/8GS9hFlM2cmn8CAl7jw0+gWpuDf5jVP+sui8JQspUY25FFr8pXF2T4tu4lz8cVaWLYhSMh/SUzTJ94mS9n27bzL5FXIY6g8Abj0VxuBY6PYixiP6nQpdx6BvlVELxV/6Ty08RpGG/TrHenmq5zcrRtmIIhQ0t0GH0EBJ86nP91dGMBOtfpoLe37W2xjVhM8rqC2tYzyfB1OK29TCRFu76sbtMr7MZqy9AOXlXX7D0GoIStU8jb5OUcxxWhAWdUqVKVLKRp3zMW6JdbXTlbqD+JQWJ6qYnaphoQcmNYnrjkuef/M6DMrQCOXDUmnclDvzUTLCyD78oIaoLuYtKPxZUdGx+c/Uzsp+jxzb6XwplZrAOEqwakbYoGbKcLwZ+sQmMbHzBEzpi93UZzl3VCq2GTuoR7xbmjIr997jcDj0u3ZCBYD5wFg6v2NV9Yz4NakWaFAe7tptRrEhOoGzxKcEl2TAgMiYi2TBiuuBpia2IRpuOq9EI6+U4fj5msmkEz1oSlseOJ73GqWQTca4k3zzRNNy7r+4/A80XlTcwZqn8OgkM2RSe2x+dzB0RcuR1EwdRDKLRpa1KV2Bkmls0IEMtGGvOTNr/ts8O+5PnL6CXoHcc4UMIs7XxtQ8FddEQKlQMcZK8mCN3tiIUX1VMol6DSnub33V3cl4v7BO+XIfDrcAkmCCcEEAzUXP3OuidCKhYSNXxwqKt3qgbiyUw9dBYcf+red1pqi6j1ncUOA5uETItc0s7fKWS9vTm1YUZ/vtDyK5Waer3poc5FwqiY1DRrzmwRf8UhTL/IZkdIm6ghN7Er25UJwL+8OTlOYgERwRchBNp5oMgFmIpNoemLPJg8uzDv79urfVOGyY/Qna1QucDkyhfp4pZGrC0YzpPI8HEQ9XwMV+Ws9fCqEg0QHixQjeUIKCxgHaGMdG7n47R6SlRbqz9lbZ4TE5bvW+NR7DTRUe53WBDHnn7c3uXyQoo2vjHV/jY/n2H9h5bkQybkBT1XPuIXC61i/63ORNT1q4SdKskcLtpb5KhdE78NEUj1gxM/liK7YSLEPriwkRAv4ToCwt+Ymd1HITffBsj/4Rqujdpfjjv47wCSj/OI/OHpoX6Ykl352yJHPByr7bjrtuJ/G8hx2rHIVJKftCsVHbV5AL5caBG8RNuPB6iGb4nJ2dzum4yFT0bseomy+7ucBrx/S5eQkxXdkx8lwiI8FPr4VbQE1aVqhldjEKjjkAwn3K/Myzwimn42mnZ2UgNTv6nn00sF5Sx9KP+Xp/Thonbc91eyUbFeN+7BYIwv4COKr7bS6YWM1o1vb2aThO2ISZj8u1SbU5yz2OSAXo+f9jlIDwG3fYLXwWHZuwPk/bR/QQskUPdN98Lw77i/RiUILMZs932vjSYY8UWKDDiYjjXZcZ3LpgA1YEnXPggYquoqIic9yeiVUAUc5V7DYSW+bOnrC5DtV34FHvBVdOkLAI28qrJ+Y5fVJcfbKKufEoUaPIb+jgfv14eZ3UT1KNu9dryHpQokJM9OglouasLNv+a0nuHjV/7Sq2KbOwEcaO0bqLGEgZBNISqPbj0U3IPH/NOQXQ7Cm4f0qlMDXlt0rb8FgAXxYonctjlijmp1dxeX3XAhfbJEwFk5N4MTtUwGQ51co30ftcjezzuHKn8pgSJdUaQE2iwdzZZHJ6Cyq+V9qeNr+c8Uru5pCDfF+JdJgx3CG0kl6iqdMphiS+ScVW6BQO53wW005R/nwAT15YZLImfRxfnw4av81D7ybqusmlLYyhx6/0aejdxo/yokfdKCBg6ovp/hlq7nMRSeO56r1N63DdRIbaDfQDdYOotnx9Zl87l4gaJGq7yiqp2MqjZguTFIRLiMlhVmKPU0A0U8APoZy8B7sw9F/8AtYRPS3I/7VCcVDUVxRDPb3b1Mfnt0i4xcWzautl9nR0p2hLBEeun6X+79XJOKhHssnnZ5E8RxF+rDi4HF8J70BBxW+CKdpua97jB2ZdP92iVsIhKzrBHHJ+atHJhZvvy3n17TDaDfc5YtKkUzeYuccE+pMYdpXrFywerQo9gS9eYfj9yLJk5X1gYR496qYBCDjMyuufO4tO71e1y/IDf4RBLutUWgH96zU3+z52QFFmq6KJT4Gwomv5cybQaUnGpG9QVeurGbsE2dj3srkBuU3A6GauEY3VSMt0MD+IR3Sh0X8wqkS8hiX1vxTAPSbTg15UQXg+pURsXSsAU/BOZT2xdKb+yDvLQiLA49eK9AcaV1Ph/d63n+jBF5Ir8CVnlrl0/pQLt4B14ZD76mlRtxjvLA4JCCpUV/6oJTr8rCedGtnFbG3pvJuLRCV08O0ap7fLi103TGR4601z2GUgNNxks150s2CfGMHrllohCwmzNWJv9H3HH24F4CZdaCZzeZYY08E8sgXO+7rwatR4tF+3V7eE/7FNyr7ScCWXL57h8JFUsw7TprayI2rCcSIG+utDlbqdSAAHfb+d0Q+B8vi9znMF8JFF8VBLfFXFL/gM/DUlPv3EXhaM+v8T0YPPVLoQjPzNxB1FjUiIFgwzlfnbOC2I+0tPPGOwy0k/hf750oC5seijt54gx9O3tFCwTcV8eKGF69Hw4iND8yY+iqFCVnJfIjQ6zpHux7pvuzKm8vWZ2GOLLnkV3Z81ENKH7qeYq0R1rONpgPV6vzqYoNUmgEixDfJSBqD0/MCUQwc6xWGyDrRdMnCjd0/RsDcRHfsLN9LK+0bx5GENlCH8KhrUwe49nhQAa31FKOIlZx7TOqTaOuKoQ/R3oObFkYVicxGbH1FXf5wzBReAOjHxm17waZJWwejY9OO458K8SmBNm9glGh5AdK/cyKV4zJrRU3CI6kZqNQJ7JBMehwZqt8EnHbhTb3hePwdCAb99NcoFRvcgbymsYMX586YYJ+4FxQRmt9mDLkTpjy91As08J1lM+GObl4gCecz89HpHTXhietwSBXSICN3jWfKslhhesvwZ68i0tEHCpQq4oQsB4uL5hEYAhK6WhJUjC9EjR4qWZ1dDOmQbLU1SWMJZO5/tAe2RbloxH5X2D+MiN8am0DCV5UtB5bLmNjl4DmbRWREmpq2b3lE/0ZMZR0ZkYezDjqZQe1DdSUk/bw/IWNUcefe72grvebMCBeEOh6FV7F4YixNKFraPT4yeOZB3NlfGEU9LdkkcA71oFOzRWprwDuQ+2ohKD1Qeg+r82nV4RKMSUBiHZyVvRnbRQHG5YgC0JX7TNlTNLUTrSNpUz4Yi1+lo8wRV6pQjWLB9M/K6z4HviIKgi8tOIAnrF6QTNQmseGH42wjy3A8TpTT7MEKp3vE6OnkLq4O27L9Aneo2IfWt98E1YMHrvs5olZZZqZc0XIjHcFXxU0TqCYkOHnvaZMRMMHfYwOazpUCQVVbf3+D9sab6KicKKZk91jBDaoKqFankF7jOOAmLdfsX7xLfChMKUIozqYY0RVuh/h9SB6DhjoF9zZLMeVVz9AE1+R00/NmAOqqty0e5hnzDyN0DP4/bTVfH2g/xiFQTebgelItfUkM4n9tjSpwxiwsGEYKoxO0Dmp+/exbWSUmXfBVfQm29hx2lMiJgrKrZNp1toJ/jLeuuTb5aHESU29wAZSHsuxX5ETnfyEJMmNEtSE/Mh8qyayr1OCh7BDMh+jeX4SZquizs7TNWIscHfbRX69jAMtYm741fzxlAnWr4EKUSK/uThWXP1u+Qciv6YIA0z0PS1Cltpd+uh1YOstaScM8rW4GlFJBxdd7p8PmRYeX1dWukJnLuw+u5Kdqxxn465uby47yzXq9chQeCyhE4/9xiYegLGii0cL4SP79+gNYlDjOflz1CwxFQ4UYq5w1ll2IimWuSmHiLXKnLdZ+d2pYk2M43xUjUgPxSWVrzQS9jGiy0uJlqb7xhwVX6VB0kIFRFirUw+zN9kcHKnu3IM3eoF47cH5BNezpnwyCPBL3a4HwX0BJo1HHb/q0g3lqepAuencHNRscOm0R9vyA5DrKuKAc714xdTa5KR3IwjdqgnZus3kvSfAlyJtOuCDn1F28GtsSw3ZPpXHpW/twqgm5MwFju2lvFU4gA1CfFCiy+/oQW09vNGsrUvgB6qGH7XtTJv0fYkh7zluTOFJzY8HK3/i1MXP9nkUeNgFgYRQVbsHS/ReoJn9onHEf7KfFkAhecQGTet3Nao7715PzKL2PgCEEzbGF8HmCowguihOLWiwPMue19uaZN2xon5UQLuMXxqThM2hLBU+iKZNPndJo16YZwQaOehrNuhM7vq7NkWNK2xUImes6NJmo+Xd13EO9ffeSzD7OciakzSTjaE8Wg/efQV6z1avWzzHVhfBlAeCiJwLLjx8uK37cv2BjfFKiKCOsCBnq/aUeVK05f7+C4qk7OhIzP4PHHzehzPSBSc65/3NZxqpOJijmFXPR3Edr1JmL9kqdr49vT+vc/Rjv2//iU9085EOl348k6LE2FQrA8pH4kMT8DNz+6QN1wABBAnmVr5jG11EGdsxq6ov38Ov2/HMXVD6nMy6MbRTqBJBdP+DBJ9VEscA4wELCsoLoVbgLDXzq2lPeowtXKEm/o4LODgOSDqCZ3yFaSth2A8DIf1WyRbxakElZw9RJyqFeCgl1Eh3B69aGyrLZWsd+GvBObsuAu4jfENrLvpalbGmzGnjDqIwfxaYDElMarlfqilgZoPsW5gzdNwsGzzU7KkVNrqwoAvD6RUCQxeCzO0y/3fvTiazH8LIVWx418JtRiHBLFFZRvwmIC1GP41zw7kvp50WljWY4Z01sr9tv4j/1p+y1tFbDPAn0nDAVT5FdTzJVNgWRbco212ykfdHzURTxAtHl1ueSN+JCO6fSfu/L/zI1k39e+F/V46lFgov4Is0bwM+fY/SWMPfI3yYHwHb7J6SA6E9kyvoNOkADeA/9kVBW8bydXTngY8t2QdeRS82FrcDjaGyX4l6e58jlE4xNFiSmPRW6q0rE1D/2S7IC2u/uDzdXUzZ96yxHM/GBg9FE5o5s9Cd2jvpw/zou7uRSxSS6hwVD+dFaIuQpbEIfung0nAfrHA7w77eFepWLVVy9GjX/F9o0/CGYoXiUUYTwkv6Juh6gxXGT/XOtwokxxXT7AHp156hOtobrtcMOlT1TvedCahM6ut872GHw05tY+21+1pkh0Gio8EYew+4c4csJ+BCjHeZeRwmLceof1Xje88+dYPDyC8PQ87VdAJpyc28+NoiyRzfrCYxK5b5wKccQSfevcFeHQ0CUF7b6Mxr1SZEYqRc8QnnWIE7uKzr3ku4WisIqJY7uPeA2ywH7yUYOEs/BrL8C9ZCZtWnSnX+M8zkaR9f9LE6fq3qDlWwl8FcX0MIT8CGWT5hutlq0GlCX9NsPUdyE2SoKGe8YFgjj9u1C6INsbyw/i/709150gD8nA2vv5iIr+vml4WrUnP6oBKFAq9eAXGG0ne1zLFj2dizeezZu79BbJZqOjOLidHbY+cF7GqkBY2uIa1zXvQ8LhBBgROKkq6+UrPAi1hoktkAfU9y21epj8+JrddCtQ5XQ0y84Zzu0W43oyk+sc+xr8hcCpoj5aMX3iqZnF2sVDI3J11T1Y/w5eBHru0B4gvlg1Iswy6aMJtSZdVqFju/x/heP+ts2dbYRDURXJA3UHpCG9rfjPu9qvQAGcFtJ2iTIKqyjFGPfMLhetLwQ57FoYCHL2dMIzSUMWvlaZmrem2OIvRpWND/M2U0tVGEEkkwpoTx86Gmnpy0qeBTIgEPLwObueM85IeFGeCPJZz40poId5P3O6IOEM9O3BKmD+iFlLQH32XFCE/w3XBk+6dhNWt+wbE9p5rajQSSriiFVRMbX2G66kqSi0pZnBY4NCXrRW5b7N+LlbA5YostPCD59USObK58wdv96QQPG4tiGQhUMOcQt9jL8SZgbwJvuedoYsXTUPHROPSYdv7Sb6TGMslZbb+/TchjObcIod+/3zaT/yLKiH8mgSnV0lOGCn5R4F/u0Ug4qvVZRQkRHl013a88ouJZunGA2kH1vcqo+BuGTquvSTVeAeeRymkJNkyde80G/BiX+UBujEDN8mtosEYKfESbuMN34BqlcHtqpiw8kANXHjRySudYkHlgeoC3aYpHtyAp87q8/iFlX0YbKqgtifg6E53Pf4chnepsrSzVkmP5OyI6MUTYJihO+bnHHAOwogpgT1FIgCO+9Bnvqx2JEwawEpUhf35W6TRXmCw8HbOm5Ib5SqwPb7aqdOnO0BF93gTs0i+4D1ibOZfbBzvbfKPo6ZzWZNOQm2qiC6OtKQv/ICFMVZo8Gajr73WuTUBF+lFjBrRYzgdICRuLU5+gGM8NDD6FW7PlGELqD48dOit1s+XAU1LaLpSi+MsL0ndsix8MaQgcJpHbDQmHQ9ZNBwA0aZKKGzrhrmFXipMsmeolIX4GyyHskV5BzlWQ8JDujUhWFI9vK1XdCzW050btghTC3cvq+6JOq9E3Mi46KQ6BUKsJjuX2k9Wd1ukpuQLwV+qXvNXeN8vYWtwMuPH9QqcVnX2JlGN2NXclJv0KCjQAXWLkTGtiPOg3YpqIMyRbXwXMLPd1aEH8gtseZOTk+JMWu2Exsde1W76Ww3bIDsH8pQLuf+dQaxoopmQdI3kC3rijNEUQqXrHTTruHk4OFGj1neOnbpPMWwL7YMWIvF6KkiCyki87y3YKeSCEmqQVL2H008QmzjDNSZoEuAxSk9hlnYT1Rhm3lm4aa/2rAcAO+gAoUSd42cIwVyymjilLMQAkJ2bILvuf2yZ9KA2Pkq5s9TkkQMlcyQLPyTnEEOpvFVASgpbhVNcahAA5VwElX4XImEhqtz5k9DNRLSufb5DkPbKTZ3VRMlSF6WpCMWaeTwGb1jvoXJ2nxqzFIrzn8zOF6Nq9tCEXwiRtSnvh1cGb7nTtKUu1TotCXRSvSNC2IR9RCGAIe1Vetmj53jjiGaCAvghjhvzY4+QRyiNr6YjP5W77s8ry2DBSjphRZtCeqyom7mvLZm7cV+eu9jsBKUAGcxkA+KP4mN3er8Mkg+RhRxUGaPX9sukn5AoYZhz0zi6EgV9a8uXVN2lXHX6H86QubrS8y3ks1KsLtgd4ep2snVBS8wXnRi8AZ0gV4DHdv1JykKoNSr4O/aXC3PHGPCrI1hYOfWElLAPOTDH3UZMChv0NYgkCLn7lvKzf3MlAU7X+0jGItDdWLGt08RkBT0kzdOoiM8Lu7xafo48fDQnyo0vJlcJmjgYTh/Q5m58EPF80jySc8X5WphXGMg2fYLbKod1c8cm7X59Cw2dBtI5k8xqDFIcgI6Clh/Dj2m/6pRDCpoZLLztXDU6bHf+gqwhEw5tsaHoQwQpSfEvjW1jMnMc8HGhH3tuILj69MG1lWNNBDrG1lAr7PYrzwsf+OAAgQ8MXBTfR/ZGTygKOAYn7opoo6Y3AcnBk8AG+N1mf309RsTHMnGY4z7CrFcRLu3Bb3jS6pXx/nf6Pt+DeLTmtqOS/HLoZfUsZZRgTAQIWJ1OAB9KmT+cBfYlI3pCgS/Nkf5hiUmIyLWJ3sfnpeDDICJGrsAuCmqWK56evrR1FdGIeay0fnw01GJ4+Sa8/WDS0PAHKx0TpNQlwsF+xx+icBgMz1khIWiwJnEFp/PeoY37D+6blhd2UZMJzn3ivC2+edWDKuLpG2V8O9BTyFD9wTKZZiOvTt5Ey1grDaWFhD0t6oBfVPCvSg1niWkHCPzy70XikqCIVn3An2OmkHl14Rp4voaiq3Shj+UdclUVyF6V1vd5QvK7aUT0TN2hDHqEL8ZG48xQV1KE62h99znQ/ZN190qUnf5WPHzaPqykaor3VG0n7hNSmDsLM59BUbbPWw4yRnFz6ieWPfNr5+fHUoAN79eR/490QGupTuVb8WonNS8wB5HgdwhbY3Zfy5RZAK6jI+VhDgfb2vfrOhUqhAs1ZKUc3mM2qAVP9b50IQC5lfDn+FGo75qaq2PUbHhG7SLT2jftSftJxAjIOrTK8qGhSnSxmx8+MnCLcxe5pCTwrE2olL9EfaI4PBY0s48lJ+KPN7tTPXWPnW5ufpsdOHQM9t/Xwbr3iGn8zahCEN/q9gflLy9GsoqxJevJRXTx2wEiHDlRfAAhJgJKTqlc5AFcB7OudFEj8dSDKj6zoruWAzRDl0XNAiHf6ZDc7L79sZizq+2oHdjR7HrNDXRWT5rInRcmlZkvo/R9HGsvrkzN0moF0GeCyrEm0Z3PQ63/LKY5VS6uRVhPb8RROD5E3VmSjh0zJ7TD9zzFEPpreN9MQs3qYgZfvw1j9WSb1soUSCZc7sHNDxMv9BRxaq5awbuN7wVH2EIwBa+oKSJNG7CpqtEvFfA2rUPWlW392SAjqUdfmEaxqHGDkMSfFj3BbLafJaFhJxp2oEF5HLN070KslZQ4k2rWgdTWeYeXRXaLTIn/hn2Ybz+assEKfioJZF1tFWMap1uo4inLx+HkDJCngt2xQ8BfakbaO6RCIoP9UcEy+ogd2w7oTLOkT6+7/V74Bam2e8f7BAl0lZz14xId+PTVRRrvfsSMxYpPe3mjzIkdebp2fK9KWqskctKjkaZin4c0WMuf3IXQBu6ci4GpZPVxeH9WXvp88OprY5kx8/3SRii07zODDbgDr429MH7/hD7oNTBlwmGcx8wMqIVtSb9U0phSMhqwb29OVMIuHC5QrfCUsIboRiznlAGL6dH46ANayyX9LfhKdVFM83OyPkxKzwlgpJFDvWG+0uPZgLI+y0KDVkLUVyWu9Fv1UzuteFn64uv/JCc4gJ4CrnTJXOkI8gw+4y5heKb+ifdEZ9xGy6wEoYmyY1SOTM9GIuUth6mJ91iJujEEPYSl30Imripf9LdGCp6t66WaVtvCa0fKd23zrMa4ivIj0M5DdVMBS5nWLfqvTZn3V5JS6Rgq9sLp88EKnWtn/Jr2+mj/JgcbfWACvkfb7XmHf62VAJjSPUTR5WE9lHG4gOdnU/lZpeJgHvuvCN2B3sKOnO9hVvH7sEacnLP7z3yHVBjVGSnNf4m285JaHzOOR2CL/D60O41ZOyGJhxL4miQdrOtH+n4TuphgaKasJBkfBqGIHiAOR5R6XHFcKYG1kUmrWfIbG6Wm5FrNUgfWtjHpxV2KboDtXVU2BUA9ssKG7rP6BLlhs9G8XF+93L0+fc8nW1Yknv7fq70mqcX+9hgMSjHd3Re9h3gBApMxH5vQXcZJO9mmwL1/m7ndiNk4Z+t9HGBdx1HvWfAsdy5B0mbQVgpc2OQUGYH22cWFS951Jt+AvU9Tp8ff0ciH9qzTBgKM+yWxh0HCUbsoStpN6fyZX2MsIC8s/B6WVNVX+OYZqBE9E/rDn4XyeBmtu6uBD0lYevRUL0IoCLa1w5k/ElY6hrmHC72LS7smWKAHZgVc+k2nESAr2L3IxbTI/uvgrreiq5mGaMYP60Kju7W8wJ5V+2J86XmsOwepNcrdoF8/g69DSu3HMU5KWENeFbAC4Z6cDwdvG3DKmwKfousyfvMWbqgKyDMzb1sHmHf+LrwF7Xi9D8QWp39vpV77PIk64tjHH6UseF1y2pjHpaSwQ1JXTLXEy7sfbiKFquL6VgyAdnTBRiS/7o/s+FsvH6q5Ynrk2ZUweezsOpn7646zphR9dLEnQ6Gl96bD+8RmywTLoz9Ra4+knD/24MpJyHTaEhVaLAkVogotzeBJTO1fTIHxDrag/0TgZvsA2ikN3oQ59fdNocOUf2DKl6PW45lVnjmZVUvyX9iqhSEVUDswQu3WQ8vcHO699DYz6vvbL0IthmLmjMMEd05bJ3r/t6FK7ROno4wIsfZj1fv363/ued9rMcsJCrBzdP4QI/6PvJH26RbcsEjEDaYFym//7HEfjfQYlHyQFun0UmRkHzNwEFfqXdYyPS16sgQ7ZBK2UAkeCQR9eeB+/fP9O/Nze2dg701UNu0UZUJpnlYoiSmCm71VUNdqzUvRGWDUXpvGT0xcmaV5XSJ0NXtPdjcS4CLaV5BihSZlZHLN9m5e/FOeZSQP903dbI9PGFigE7rwf/YpJPbVtTAHYX5Edxj3DTT8stA9h3k6UB5TAW70DP5gNewxI8pmi8QjYztzpPAkZAj2/9+g7B27wmVmwQZoL5dJYCz/qpfblg9WhUYmtzzhWqvOWZ3zK5eLDWCqo7J3vU3l6vxUbT01/EJFwNeFx/a0zTxiw8OJNAmQLjzoLlApGSfDPXVAOBH9fspdXsYSogIA7kgJ+scslpZvqdyi6Z71I1u9V+7re6XFKkdA2uO4MR+W2OtH0I2s/Axrw33Qbca9b4pnhZmboo3cxfIhKCSKMAEvMFcvvLwocOwXZzXCdxbSl9NLD+oQHkfnmF8VmtfZxJ9q1nokPymTmaAQN0gWz5rvU1tdXol0HiAaRkbqaU6CBRB3sGO2zRY+i2YvLsjIW40cQX5BagwRClJnJRH7HjQNyuE2RSZu+7XItOzW6I3LP6/9jmQuPMypsDTWX0MtDhzYBVhki+LifShAr+gAQdqaYCEgs7aUfFRQ2gYJ136meaQ4m24cw1oh2gI5Mye+5u1IVs19K9GmE20tUep85EXapvkPZMHHM6BqurbE76Oz/4ux8rha8CafomEDdZKF2GRimny3q2Fhr0+lxTBl5v8z0QVOAOtD6p5n2tp6iBMpuYGZcPZdIY50VpLr/Wltya6txbOzntiiJdMi/BOP5cqGSed+eON4Icr48IlunMTKAJ07QhMWGUTDs2OduamqJWC+9MRhziWi3XI0KY4ZdEWCjzn45gD7oi74Uunqcxsy6WqSYRQjoZFI+bkVVnS7KIKHfN7jQ6ZPutAKQ/7xm0hMckEj2IYaoSpAhaqIiz3dio3Mgpu3yQQIgohqsrEH2Olj58JJ0LAHCTbIm3jLTqG6bMLlu95xUOeGla+XlR/pG+S+hIRGrBIoVWUKZm+PeUyNnxbssFbpVOuOPxJpXiuZaFlZCwMMJcBltCGtotnmn2gJcWwoh+DsFnEFtkKew4FHLeJ3+T6Kco8DPCXuOXAR07GDLbrkBqFZc5DQSWICiHmYZFwzHkjPfLcR5lYFHwZTQMiF/e2EuHdK8Ohnhmp2rARYeH5/A/wzXDBYWJ0gkW4mFyvKwF20kfTf9NdsKCA4uPIpgKFW0w9sXx9wvMoHthPS5zxAgDp+ywliaali/VdtWKcqt8eFZDt+EqQ3/JAw4UjWh0zKQNOytGO/tbmN3OLGn2/hqA3J5ysJyqpoBN3p8AvWMQCkBXSSY46HQP1Nyk9JuhOzJcuLpp51cI5SOf77pxcuw/adjTK4H+k9FxN9fZxWvmrPxg+ypppgRpJZJt+kPBv/Xbk8BxhtwVH+YvPGSkYdvwoAnC8srvmFWbd+FTo7yKzHE9PJWi9OiR/vfnpWxBUu8nboXztaH98negHJk+dPaOjJQSu25C/Mx/UZbbheBmIw6/7jCOpJSc+fPwI6ppR+rYwUdzYXLsi1ReiQVByQhqSNu2Lfb5EHMopwmxBB5Q066SuRaTrh/gKwopv4YqjFx0DiLXD+CxJBtcMkxDGRbM4N6saHcG2naJp1LKdXuBM2Sigj5TsxjFRyoYSe2MJn4z+90GwFaVSL8nxEyFri0AR963JJCyoxN/XrGAtLKwj2jMszEc73/epN7llWtDJNirdFDyhi3Y7hssXu0vB5aVGu/rK9dXSz4oY0FLX2P/Ckn1lnBBhY4BylZ730hZiUYee4W12ImNpQ0ab9L7fJJAoXgczIct97m356Y0OZ4+QRFOLExxw2KeUdf2fEFZrNcTWaonHTZBJkbB8dn2lfVGG7uZMQMuWP/4/NkV8jr+BOU6e3pfksuLGlV9ebuIwfZ4ztTWBhkYkU4vRw2RXiEOG2U7FIgxcH+UEnwziLxrMlwqvuUEuC2kgayhLAXmn2NMWtLfCRhG20p5IfzQBkkzi7EBbwJpuY1nNQeBnT79MCtnKw8QNbZQFBhGk2ZjdwrHj/xijEYpM0en6u9ue7zdkuNk3YeYCtBaQIjU9+kvHh526EMmgr2JOiWvgJiPZN2C0+R2UIjzRncpQab9RoYqeWESRuaQ6Z0ctUczzXeYwzJJ1TENcVVpH5VvRd8BUYVaiuUZc0lhbwqDdQi92E2YDDNidiEUO/XgdqN/A+PFZvjIDfrLYxfaiHrgsHPetVmPlxaWk+KKv7GLCcAtY4gZg3iM0R0Kb6LbYkFOZdEJLvhXx06wErc04Txi34do14xxtAno+4QnQDWfIctTtnVk/Tg6MFWV9g5XU0C3IjmPuGBcKsHoATn7vrPVID9KZO8rcquZBc6RJV637j7kEY7VfhZLKuPMJDEcGYq6rYtb5bRtKHFCYZv7242NfpUTrcyIE3OHeFHyfsw9h2xt19C3DuZ18zbNXLyG/45YmhKmh4XrjLx/ZogdIozNtPiLctb5rXzWFU1DM5+FefR2rpHryNDjd5L68X+62kBkGbtNOA9GVrH5VDquXLNHPaysGqOcM1kU2gQjXfFZ38a/jWEFZSXw9nx1M5/0BMh+rDCM5VsF5tXRCDYOvnEhtSdlN7rkh37bdTfBwrDBMz1LK82rj+k4Ni/jJDVf1OcVz9hSZ0Mmz2ZWt3RYirs3ww0AmctErTGtruwnlIeUJ3CDOKnebeFCRSk0x192a0g9RLYjRkH4GvsnnUSVkwNWXOo5h2bOtD2DeYNRScD5+yHhTukTvZKuZqOieiSPYz1BzQyNXNdj649+nrEUs0sj6gYItetM4vAl4hK41MduRkEXH2FWlKB9+BwVLHGqqNDDV9NjKrggZgNcuaHlKJq/MNfn+QKAh1efYqKxFcHKgpjzWugpoOQqf91sMlaD1+RvLxkSX9GUoygoRvGEJPK0WSllPmS+H2QNdiU4/0YQPUpuzd9IhCNj8rGLqIxEVGTjbaIX42VvxJdK3YNDS2OxSGDLkGxu76tN09urxTMP5pEH5Z7ZYonyElGzsGKBh2wugOXaW95pch6uAF8GLPP2i7kcUbQgDxLXrYN3dB+cELj5vfK+yMQgvFtz6e7wNTyxBvegXEEmXSPs8BrbOj0rV/Z1o0peQV67musj7dihol+G9qfSa6JAFY88B/upSMFrYGb+NkiP7vDk1U7dj/xXtx2ill9RGdyYFAAEBZVOR7tnB5jWT4LACkhm6rxLE4xh3zf/o0JKNz5L0aBc/Po5z/yYEZ6OH0i5dk9OQAN/1hPAf4x3eHjDkh0JfX8ZU80gWsidccQSIeH3UlS7ucN97W17+g+nbIyTmO3x/3n2JxALBpjupALY6yYHhIva7mAOyGJUgAcHOTMMQmudARX7gt/7D59Uw3myFMesE3JHMaUf9B0slBjjznXmXnzz+hm/xzVQxfud26vkdgoVykNSm3YxI6CnJhc5eVb0ReQhgq8/I6h2H/aHrj+SVWjjaAl4X+cUU96gZYQTEpm9ESxPpL2T26eYYy1wd/Uwp3GHCqER8/CIaO2zVzY4yfrc10WIgVYguj9O6Ikyut/NI1xEYAaZIkSBZYiZtXhB01ciPKbuy4Uj+jiJ7b9+CvzY5MiWyhPp3dleRpVP6DtS0FHnXS7ekIrv7ymWTblMPDKkaXor5i4daRJWOwNSnY/zoZL3nHE/HEXKfIXM+ilKgm+s1MxRVqyuR6aL3gqaqmTXeqFBR6QxFBhLS3CtESdgiP7btsN041b+Wsfr7PDH7bWGpnA5AeqvcaM1xi7Cn10lzHaTvLsdj1kGDsK2M7ehUsvR4Zz0SrQ8aX6z7q+ADnSNL2GvRzKzpp4Es7RdLfVxEA9fXm8Z2w3YuJyAcEdxZasNkNJ9ipzn7GviAM24pSKmuqhh652J493SMff9yuosS7v63F+ePnXC4ZN+EpyUrvZp3P0G7Ph23mLCpUyTQWOOJcq5I1LWZ2rjzsDAzv2ZRgWXDmyFebc1wNvW9azYY4dCL7eUPAcR1roLOsdRX947pivfs6IgXbTTgV2w1UiipQ5nIRDu8+qq+ePbJFi2kW+TPOqyGCo2alWKGj0T92VOAq1kClIAnsdXSAKbA/oODdEew0A8ax7doX6UygSZPZ3ohYtQApJSBa9dwOZe/7Yb/e5pn4Q1nBYf5UUA5kaVi/0iMl4Es57PVDyikcFouKTAf55RFiXGZSCvdi8ZKwKCRpHmM1MSCPd4+6Rj0dgsT79oxvTSpSCf+Is/c14ya3Tkvb5KojgcmSHfZI0scuFFcBxR3suYBtosxKqO2yrvXcLJU32xd01pwVfOLl9lkElEBx7RjgE1Xy1LDuzwKLkxugK7gCKGDs5IFDDFAP8fBkDUHITMal61yiqZ3WhTQ15pCKAm3gdX8y9763WHCKBehMPyCS/zDoSk2luHTxxMePsW7q3bJKb5oqJiMXfHV+7zzWKHI68jwRiKN70yVr+cZiZggKxOqEbxl+ze+0F5UkMhnK33Uqb2hZvjiENdI9cd8FQVKf3Y1P8JeYJrjRy/Rr9Rqat8fi7loVmRYIzHhoxcuLSBfqxMZy50z4mKlqI2pH1Z8DenH6pKwGsUFjE8MJuSbbv4JQ52oau/QjWOr0RdkdVxs8ZQsN4wckuVcZWfAUd9aIuQBNupVaCky4Lhye4BeWhPJ9Ii40N6pImlkV4hpy18NCfk+TqZ7EyNfuSqOw+UvH/prpqdJbvlG789Rt6kGMFxYos0GkAUXaNLUKlJLKuenAV7napby8fPxIMbmZPsHe9bf3pOFqMZt8GUYIBBRvxYQfzIqnXgBFFqRKahltYlZE3v83hEcZwpJwzJ16TC5YMCCHX3b1hNtVuNC92n3WnmM0mmR/p8DXgI3kV8k656r5juruYrzkkbIz9dO1tp98ns6CQ5/eVjiLbgiwhLmkbJKWJBGi90lPS/Zv9KtevyF7TRN22TR+MrDA7aMAxh2LUBFdQLGXdLLRjp919Vn+xS547oy+kXuNiQ3B0/58NcznKdgbvIY5RRbYIMUAwYbLpxX52QJJ1e/IYBEVEWGl/HU18otS34gFUvftAvHB51gjdHR30w6q4PU+Bj+Ng/b17uyF6K1gdC92XSf/OV6eemTYw++iUcEB/yb3efYDJ2rnemFBEGVREpIqv89sQ0a1giwo4/7/obrP77MF8HFOd06q4r23OlhKeXLaaqr5Ug8bbFvbkYCKIQoBj26GkPgcO8w3y3FEjr+2zwR9yqeAuwvLF5laRkfm4/nMQcQjcrMW1fUQ+AESCV8yWMYEfTu//fEQC0SArc7zcxT3NdwRWaNvKmSXQCLS6IkHnx5XzH0fywY/mQkIYg4bj9YP9UuONOHshML5SAhH1RXMbpNWcApMY0e7rAVfrQmmgwB6tsw1F1QwYbZ2AeQm3ymG3+wd/9O0B1aCQcAa1Wcb+j65w2xL35k58VcSi+kuIcncccjD3TK9XBVJ3UFuM2771bnPqBJKGcPlwEwmq31GdiPwfWUQIIZ1/JwsppTja6wxSAUtOq9h8uEXkDH/zlQKOb3Z/cczBdAItIx2VLRRFts3KjwWMal1HKMpAFl5g4s4fcTXfcY1PhJuiA/Y26Biqvx4TmWI3uXib3pS7tvnTKG+WYTCJK3SsyFaoG376rYGzeJJAmjh37P1QBqZLfEHpYDv47VwJe83tlkreEowloXmooT8YeURqW240IrXmVHkvNDc8UkLIwr8gz5jRsO5tfHtzsFlTSXHyMgCzHXEEiMV300ZTtQTJqReIgB91zFyzqQrnYjzgHJAmWwnSA4beyXAoRyQHeegvIVROIbRhRujMg9hWT13IcUa4c6VA93ddNehC6u7smg8xPCEsQgRKn8GacwP2fisRndVncX8ogoVcdvjvSL1ootr512PtBJjjuhSHHVouG4WG2VvPLmVHQAw5gSRTiIuky66HJCIMivacEvRirbZBQt2vLsu3Et2/fWs1Fggi9+U89UjkcXK3JuIdcjz2FRNFkDV4NUAen+jiDgZTeJwN8bxzbKavzANTRjHYov5G3WAokiXWJnSAOUsy1gXPBO3VbI5j/5uJC+FDgyFt40nCE/hCOKs9AvixFoToSkvPvqDcauCmZ52f+3gGnT9mPWUMvr/ggChxbNQGZQjpnspyOBY0J3seuVDV6u1mfgaHSDU4ljsD/a/d3R3TXvDCzgXZnupnZFFBO2q8HzF+HrqT8d60BbBoPdd9t1oDOILfV31zcK4TkrbR8KRkoKIHeh9xkB/npRHn4lTjZSXGZ9mdCoqDMwLozmrrCgLxuObS74f9LtOdeV7XxVDWZJACxpW4waQiMZ6bVO/S/1uWZTJydPkbQYE7HlAkJf3cKcVmckiNO6tR9m2iaF527NF6BLKLVDIMUt1htWHeDpUWJ7tV6m1xN1qTvaCJ8+Ne9YrzI9d5aPNjC1F2uz4oeecrP+OLrfjH8iWg+snquyGD72YH4E+vAAvHDtNwl2J5Xi3oQFDdq+koiKbSjsDbsrllIG72ZHqJcVIhEpyVbrBiRUkadGMhBKkZc2+PvZA1C1HYysITVOpVPh8fsHUwlcv6K4QH4HxfnX6J4DVuoEzp7Tj13NsIOX7d5pphhHbWDJccKfjklRys3Rx/DTIyBH7ykjFFiusrdc1+O8lbrg0EQibjNDZsdF79sM2eC97t/qLN2lSRMUsgrk6v8lu8y3apiYy9BQiYeqjGwO+XQvmSuOscOxAWigI5cQy86lzruXr7RJifysihTDMcAptpXM9ml3iqF4ne74dpPASdOYaEmmXW2a3a66Ob80RgyTEmRHDqj+VTFwTa9Cj06Nb4o3Ti+487jmmwvsHsuQOYUIj0FvIO6efx1q0YsM+Cy4PblPYYQhHOmDBSdP0pCn70E2q/7gmfZSH1ACqdlrkVaXT7AOhyWfbbgJsLWo3uXB6trv3L1ERp1UHtxslg+MIHwH56mcFph5m1hSSMLgzumB5w1tFjK1Lxy1VhAL00zUj26NQhHiPO6+sBwIbkyN6Cv2FtJr4BsNmjXM6/+a4gIIaGY+j0FJiKyUcAOtfR93xfHvikhp9h1rNCs8vnb3rp4cqrfVV8LaqTm0Z8lNUUG68Tro86qnN459fgnq7MqNWHmOB/iuffwBe+4yjgQuls2JfupOldOlS+NmpJvIFIOSNSc5kwi9vt0VhaNgEZhSvprNUEcHwADH69VmLp1cstdupg49itWDjfKJZuKfJJ7EI2W8qfR+XaXYjVMLxetWpPy4/VBRS0JKBB5gFfx20uOYXT9Sh6Kq2S4lee++hf7FLjSu3EWmfkCzEthHrU8pk3CEVPO94YuUiM3S+ETUbw/86fcaDpbXNZuYdhbQU237Q9Hmh1TeDShWWeFcbGrT/7Gu1J6eNxaTYeXpzWZPha9WI25ko+ecFbYoG5RM+OgB+rqccS6izHvB5HTBaSra2O98Mg6LXKNTsLpjIonan1rwHQEhTrNYYq4bf4lavvltYbaFpg1USSn6TLI9Gjv9sU/nmOmKEQyUwn9ISfqvErAdUxKdegupdfZITAliTx1Xic8pZR379IVEO/KbERZaZ/CkgCPxa4tcxcsOZ5Wz57be5LVpoUzOBjVHHF34oVwKAPX/bDa5RN4+GNqYH1WYi5OHHXDQHDk/ahlpk4pUUXYKb2AWZ8GNHpfHMhMsSzX43GElPsz2+MEonTxfNz1cofMgTCvq8zN4vIVQLPl05yLTWVaW12qMBIXMoDmH0hMsnCx2v/HHA36xfIo6N6Jgsaa81+4Dd2L7mScjLXPkwB/3e3ySLNbsK1RrFWyUZ7wOSdI/oxFoG42gZohG6MUXA7b3IBiY8EeiPYGvm73xbmaJYnmdwII5m+2polrDPvY5ggu8bwrf1Rs7dULRF4oem9JMJqi3cbSTCBwUE7m2cQ/hfLBgMYWnc6eM+i44bD31b9DuJsXZ9SkoOmMZxia/z+Cuwra4W6WQgTTe1pNhMp6XB9BjJ52BWx4qQU8rPR5gy92MGeRP1GTM0wYiJeODSb5nd7xUvat2M0XkHueGdBWzL2jNUodrjxwgjq5kJWGdhFLjKLxlj4qf0NAEjut5B9cneJIP1Zip6qQzcpVYaadom4pWYtIxlRjIGqDATrL1d2yen1SpW0a3cVcsLGE0rsHrV43VeXdFQ7/HZ1rKZlzyN+HyTJfwANaW+qaiyVz0vG3gIcO5mmLLTBFSlw5x6eSFIVtbwcU48ffiscd65ZtVAFpheTMkC4OpR92yQn5oV6a6Op6RWgXV1nS27sHROvJA4JU+q8zt5oDfrmZT3DCEBeEojN2rvg2nXIS3kCndp20f7EJy5FcOChdFzxSBNjUQLU4W5BrvV36UBnlIeQ1RdbErDUFGfOQBC5gUuyPMmjhSzTM2z2U/SxvZMK33F/R/fykewtcr8qN7tBc0+MNA2u73Hd6xmdZ0AL1jA9BUGmltisAfLGiW9FlYOry8EC8vvrtb6ytoVtJJ/0+JX9/MfYaE7NgcdJbwg0B8PriMsDLJf0NC44t9AAKjJqEBqjN3rum5B5s9yIviB3ocCi1O/KAZdI+1xq+RjLys1xwKENLZ8wKHCxgYQo31lh10DpxfQT0NH1tOkOaOO17TV2KMK3JU6cNnDMLkpuAmHyrP+7LxQrg01Y03NwEnjlp3O4bBgf+T7z8MX469vADBMEqAy6BuwklS4aWTRRy6zgC2Q1bjyPYXUCAmS28J/yGmm9yIh6H6Y7JtKib2Bkw8EbNSnrty+sZ1i0AeCf268VcnmB7oxEjEyN08ebqriz3gVCtJyEk216zIKGRl57SarCDVwUD90l4fBDhqpx5Yq5WhQQ66NpCP4mtp7FGScZL5dCqqGqbUG5UAVit6cnfc5d3bKjcIh85G0Ywiy0xFYu0kI12ZDyoDU/ghWzo/jeUFoKbvdR/LXNftRnOl6vwgGFn92nNQp4XlHYZNZeLrXlhBwucbTdf9Yozjq72n4NJXCcYKGpUCIe57qdjqfedks45ZjskUAyOLC5HM82JYbOcuhtKlL8ZKwRsZPZbtHqtUsMaNxiyrvMq8N3N0SF6xFan6a+9miFftfdy3g9Bp+4SyajJ2CQ0kyEevzsoeNnwTN2e1aWwLAX2cdOy1+F950vYuM0drnqT31dqLSiuaPly7Fj456bjwVlFGM65RJv/nae0F3HIfquEvuwT97vEXJmGJoY53YaPjsiQPjJhofImMiR8kjzAHnOOj1QPSnHs2NTzg3lHIuBuqMLcGXqYXL4uyRQrK4F9cNoN8Aaicq4g2gy16wkFJJjqFiE7ZKUzOPdKUD1Kg0oSlV+WXzhBbyNZN5NfkERK/IJc3PKIhfyyAZkPI8Eb7BrysyhQEBgyvaWNztgkvbV8ipDVhjXJKIo7gbuGxghReraPJVAG29yl5geq6kWeF9+uscy0SI9yB6994gxvdwOOh0FPE0Hgm31k9WCR3hqYTkZ6i4jqsLRSDjqNwWJb/b8GTQn8xxQi+NNQArDf/Um6qHqrry3HgNHiA7DKB0QPgNgUYGtBo6iBW4Uu4Wjuar7e6IhipcfOxp83srmGUpBz41nE37vp2nCyjNeolh/OSY7gILAb1HdxifiOzBic137MhOeaYwOM/hwgmMztOQgf2OpwOhojV7LHpPjr69KP31Lm2oYeQdmNCwsLZXrdl51TAd4IR1yR5IZ5sAPmdgJ/VHEwz/7BLk4nh+dvh1VrYROB0tCkXhI8qqd03qSckToxsZo90AcGjz2M9nscl8mQ8MjJOHFaYQsyZfPueFwvwoCf7poPPaewTc6ZwCBUVgcrFyweV/wBhqPVRh6dgHgzfnp9JdnnkV2yRta8y8MfiP9mvAnduNgBNQp64csisvvsmQjiUvZShy4Xm3sdYc8LPhMaGsTnUDn5goNaNVPpn7+wlnKCi/XeQayVPdwRWMTY5paYBrfQE3VDM4el9yKmIH9Jxej8erdQV9djT1FtgaSwDG/zqoy9tSpkt+Hxl+nLGsFRj+7zaeycmj8e8lgro7+DC9/yKzM0srSlQE/w+VKb3arj+Yu64drnWrM4LX/OSudmoc7E1Fup3s/xkX4BKdWoGjBH1BctnbQiJjJjmSwXGwwUvnjGla/cM6Rp4P1IKUb5/+F362jr/t19N27QxObZeqD5PEISTym8T3Do3tl1B1ubj1Bt1Kz5YXUiDnsWlpy/hwe5j8/99lLm4b85vdnOXqlpFR42mr3bzlDnfzw/lMCROzFYbYnEOnWWOx8R5dP5+9KMiKCbzhwAiBdmdOW33LvjDtbbXgIZRoNav3EQKcK9pW1hmKsfeECDLBOg29Y1FKAVZq9jYJPemm2QYo9f18Mb0hQzy/ThDGpYcpm5+uQCZ9XCIIo905v3Zw84SaVB7KijDLFTYr/f2Zomo4qxBZRTT8ufOL4Sm7mQ7b93hABSJ5PxevSbqcNK+HR1bgOsoArGOWFndDGTn7u/bZcxsGSOH3hwpKWqcCPSZMzeqH893tHt3t3A4kw6tWwCD+7aoNk77gKZAg/AzGFsoA9TRbubR5tQQxyd+gfYA1Y7xFzQGq3vRnEwDWJ2LBD5YS6XcJxGPv2kWQxaU1/AfUvGHVYLcDR2TOJQuQsq83/Qxrs9K9nxkqpto3pjL8QtCTh9mLFKVr8BBV5lwP1LepTXYCUvGh2TUQ1p9xn7P45iW4gTluvIh3ETcVMZJXlryEFtJLIJanDJ8TfpkXjMymzgRbhs6v7fxyW1Ts+5+pkHpAK+DGZdMfTsIi/vlJHipbgQOhHS0fc91ctLksJ7kpaZm58sOk45rXjL4eQGrBWND6/xn6a/uLsgDuQStA4i5qu1I4yMHRRNPKDwc4nfjnvSGXHR1t3zj7gdI188KOcRWgqyCnENrp03DtdUPgn2nzyGWXj6kO85XqfF4dANi+aehCeb606jFbA+TK5bU0GT7HWNUtiHZOAD6LpgfK1MNokPUmgMpDZeIHUxrRoT2q2SXdbcXX7s2ocsJbhMwLmPjXin2Yu1KM3vfXsmWPa2skXMNgktioMAxRzoJEVYryAvDGwI6pHPuMWm5j4oaMwJ1Y/5m48lAQ5AgjoxoFYDe+EsznKxp4BfSkMIjSotto6C3kpNMy2uX+MIuRnt6HRGVXmM+uAj5I843hySlstAEEVfP6abgiBOP5e+t9nSURAk/qFiugoZC7sB3qeg45ttQ/jW5vQfrrgYdwYzJDli+I6aavVOH9YPr0LFsUWPxZ35fgFhQcSyBctS7ae+o7QCkOqIpUNy7jOc2F+seBJ5NewAyg3smOutwNM7k6M0dCwkpaxGAMxs5/3U+OP84eHvPPax2QfTIBhW/vP0aqGXqkBIyH6xgE913fNlDNSj/3QJuRKp6+CA6wU47qlGoHAuk94fnBxwi5+Yyy0dBEcJRRCxyAurbKuyhdJwEDxs74nC3wOZFxhxE2eL4lNjDLBXA0dUJ9GFGDPTk1IASgEwGgwwwUxmo3L0n5qsSndfUzP8QdwiMGztmZpsYx8/7K/R3hjHf+HVWpUCH4LRPeae+M+ghtj3/T3dgYxoYHUcyrxWR7JJP5fETXhOV4Eum4ADFkUE7f+1HUIrNPhZcnwh8M2OFXkyJvK45G5svntTgh1DDFmVX47ALQzLyfsUG0Retc6VzHfRgA1KHdsRXBxQu1Cf+1k0RXptbm4datRr+hj3CPtOWTvDMnoCFFORmdjxlmIza4/F5US4B+rDmXz49c03Enq6qpv1bgQFfsOggAVhFE2jCyaFamWAlGxy4YpaBkrQQ64Bh8wkNfQTYBHVUoDfGEiNK6ZG96HEmk/d0DCxwLBn7t/CPnDnS+OZ68COxGLS7veZ1E1c2O7BlxJi5QgYtcYbUzM7w25rVQHobXoPvyvwZP7sv3poj4y+TKpKvLnS5Vqa2uvjKBLT72G/q0zPP1GVGTJVrmnQiT+0JsOWG6ksDQA7Mo7TJuO1ZacWnLI/eUF7fzwPpejy65bEwLoKMHVXyZShaTpp3jRO2xQRcGw34Vsw7d8idAt1E+OE9KNaBrpaN+oqOCREXuDZ4Lq+lQBLzkJejp7YoI4XOczD+wJC0ZFqZAvXYt0/VatV80QgqMXSBV1xq93BSHn66hUQ9ZZDemSNX/qfMAnrwH8iBi/yyQBOnYjmP+67nc6nQVNMQCoMCCgfYdc7oWXLn/kdCFCbUKib88h5efUCN3t4TDbIzf/N3GaCKq7H1jldyAngw7za1Mep7Ypd25UisMZgV9JsFi3S5Do/mysNUxo8M6aMe7ejrydN2Wn42JOLgKqC/QsVR65lPY0TPHtaNNup6Vv1KegnPBl+Ytsj908sKEeGZGZqpBCvydthId3BIkVg8Lzgcrf7eCLBuDK53lhmH7TAeMpzMFixFitl4HILdtjWOTi1VYPHlJskQ4ZmVII8jdhKi5UR1+oCcoMXm5XfsTfvmUVLPhS24MEhouCSbOrUMMrwMAszR0pnTaOTuw+Y+M3TaMKW1k7stATdQ27m5jzLgB587PxbS6st5mCMZpz8+8uzjK8vG88v3Hd89UE4JXyge8os6I3aon1zNAo2a5fK6F9KEySHtsWxQ7OWsq1so2ZEh9jLR+cyvI5EH2NXdneWN9tkhGGeE20LG+CkaQllWDJ8H2bUggp3UiAKa+b0DwDq+5q48serI8u1pt2ecbE7w8a+YCe9fmI021qUL5fdwzfYA3pzq4g63e9nt7wX+am4M0YHSiwXZRwp8ZlIwj2O0aCOsVYZ6AcpwQVUi4qtKrIHf5TDRU6HAYCCOVnL/Q3AVNtNZwTGyNcHpmfMlmRNjuhU6iZcEIqtXgcY19CcjrPB2a8+jjrDes5cyK/SVILNQmFyOM1FMxygPzeVdYtLOgMxdBiC1fUprt6Qjcbts///gZlVxkhs8fDlED7+gu9Qvb4ngHKWrWlfOmlJuu7ZzVfJNKK4p+9HYMQnjT5wccc2pMkJkYrAwa+FU+ClFs9lsKXS0AWWQBbwz2/xAiIhBJfHLxevV0T7pviX/B49adYey9o25OUWyIUzts+wnibEOos+3tD4wvlXgxiY2NkySRqYcD+mLi+gDn5AY458iIfqOI7Q8WxKkwW1uQAxVndaaXva0SHZmmxbkNxy581n0BcuniOrJ0mRwZx+Bp7pWmUE5OedotzgVSH/Rl4/cWHMCanN2I3L9V2cuxlkXDj4QW5coWI0NWfGqX87zHiBU4j4zETu/gtP+3mo+Ftm/i6bUG7Sf4kCqazssEMZsPWpEfL1Jt2AGZgw3N7JF7zO+YiB9NPVbVESe9oanHvdqGW/l5ZDC3Wt2+eIIY2k8P3VZUt0QLoZt8jx1raXrh9jp2sXeemr97P8HKImouQ+pV9tPUx62KDTpMULxrRPXEn8T3syrhmEJP9LuOi1e6SpOhtf/hzKgY+eio9g/J0W1f9eNPhNP9dynEYKpCmfmqWKO1abjAelP3H8MDIBTPOcb3vorGqBCYsEFyBuOI/QI17x7HqH3rL2BZ1XfSDL9ork7I8IjIh5iUl08GxfxTxPJz3OpMyQ2hHbUsVa0TeZByJ5fJFyAHdCV0xxO+Et6K2oEi/wxPZDWo8+OfYepNAt0CatMgIvKnKKJToJuaO/gC5v+8CXoTe4V1HejFvt1pnsmvfbC+KlM0ztuSXBjk47e0cJ/dia5amGlJpWpsMJfAwX77yJ/znbH71ayX2SfHgYtLPlvRppWd4cLrNgEHOHgFOxtrkJm4JPUXfM8JlSq7twmhWDPPMT6np11/+hWAOChrr2wHpGRkZX66zDctJLKTmumDsP6wgSMAj6QEhoRAt1cSEwAohbA9rTVDSN3MjbiHbxFHdSqCwh7cCQ3thIz6UQzAAXrKGhQ1YqsfPs4DU3NMyBxsadRcKnzis509HFP6oJmMPVWKcH/v3R9eT4n3mKNqqqCS7JdSbssXW6+2ywaYpmFbgQix6YV7pAe4DU/PE1ekI/DHr60Q0/nXOggXTIJTdZGAXbK8SJL2Hoqm3b5Pwx9ESdmC8WfkuXD3CXsHGnOSpEMrj6aa3UhX8fEDcTc4rGbamNBcKqv6o6gOPpjt6jPzajiCPZkKEuIi2nXU/9hsZg7o/2F8OHm2ZibsHQbwM7dGZYSE92GLuuWjfUqgYrMj9GgPbbGhqUX10QJU2rWt2Fb3zmg//nO1ZB5qrlZV8IAm4+m78tINT0Vbl3nsCBcZfZlsMwv2QIBEbDOYQk3QloG92QQ2vba5ozXtnoOoctEqqCdhAe+Q9QY9KCYdTEF2RBRfkJp/Sqd2yNM8slzuLT1SdY6g0TE1jjr0W/Vxqoc/7tVUZ6XDuWBW4PnYu2n2EuI5muuVyG55bPYBWYcomL/tnkBND4UcVG92pI39uxhwSWEj2vw8ynSDBQEjZ+atnYRMLezX/fzWF6t34aaIHTMOC36Mg7SppxegIVqfrpqH33hAsG4yT0K6jloh70s3/KtohG8hQoBVSWn11iHsUANuDdN36EQ9Qn79KOIuv2RdGV3jIP6VpP1KETIGfk9AKePdMRogrWwfTRjO1Mi1ouf57Ks5mEpB1I3+++tSPk+wjuGKeZDrU2SlFBuw01gpnKhJ6L0z/Bu3jlc6ahiG82wC1nXKfzL6/4TjZK4Q/Av8+lpb7pwpspmyvtR/xEx4I3JHO5j2EdXzSxRfvTIHY1qkD3eVrYB9NRHYLvIo7Q+k8rZC/LYlthGwkDxXkfLjFO0kBdOaPqX+uSNsxySiXHtRsLaA7AGBMF6+qU+0PkanFPP/7O7R6WovX69SfoeXWAMXp1rTOgcDcmcsar7fPSbfdHiNaxLU9Sx0+ZkU65d7OXRmySrs5dLDaDuuJkHQH3JYkuiFO+K7S51nGMm9mV4ZxDxNtxZIHYdAIqEJztpEwjxg+VepHe+f5IDW2Cm+G7O4+hUqGHgtXVOJJ4OAhw6WKXU1qp+q4PcHknZD1ndKj7T7HJ6EP/0NyAEd9KLlhZNjhJVJaYSxkLY5shyFV9ElqW2GRsmwYEtmQmmwFunffKcLM0uPVggNGSWYDQJ7Kdv/mbHwhKreYjUjjOSQ7jxBJY4EuhbFARCcc3nrBdALuzS8Mh2tj9p6cWMrfd/xNYWt9NqTuRyILYoeqIOEzG8fjJe8AN2XiXva5F8qI9JFj1T9FGV+3PXr4/3xvMDFTmO05PUdLPMnaRrh2HUo5+Nv5Sf5maHW7PBE1PmuvSEFv5TJ9z9V5ijBXGK7II6sf+1Tbz18LLOYDek0u9YABESQapeSdtAOGPCGliojLrMGoBg66i7ZFOmwNUZY+39Kx/Tt5/Mg+MZ8cDizfK1ftHfjFAVBzk8CT16orawAFCO1+gsguF19nGz/qWt4c5f90OuYoTOQydu0s+9dzlnj7AtCuZ364jNg5LGjxcyTfqYioh5m/u7s1OrV+uRXs8M6UeeHqvhziogmer4NVZw+jzPACNta4OKQKYaLfOTL562tG6uFKo73GPLp7sBpTjWgKxQTaOnk2S7wcVjThlQcgZOhXQtICb1POACi1DFGVJgROP2obekBB0NwjVMKlEe0iuZy6+Yf1andlXJLz8Vv07AONvR7j0AMLzHl9Tgf+u8iG1B38F8JfiyXRsp+f5mQhObFff0F2Bx7LCDNer34557y3VmpTWMky/G3LhhN+zuFeOsDGuSWMATn5c52ONc3Hl4iC83H9oHSk50fNuhoUq71yEpQWpT/RG215bzgC/EaFUYkiYE7QURGmAeF/fkK3uqHxHxrfOqXO7enJimAjG+YO32p1JixK6ayw09kcJW+qetR4lCgqnS+ZbpZq6G5O+BKW9dfjp9uHSINg0MST0lN7YhcLfQIywEk5A3OFR73KTSs6ly1mE9vt8CdaSer1XPSbevmXUA1VqEEtaOVSSWvKd9vIMbGYj/n9V+qrKVR77B59QrgtBVddYZRYzxjN1xexnz363zR2OPlFCGBlBvme0jX3Kxic4lsSFvhCeZ/JeNaz7lUBxrJ2+7avQeA1gVh+9/keu0Ero+sPVccKxH665OTOOaIB5GxyhNwAArmc+GDaXSdUYybYP5sdexZtTQSepY0zca1JKCFrpOrFCAifBpBrUoFft8zwaZxKxqn0Zk2NTeMzmo9mcHTDAGstBEzd2M0PPkY/3RE3sa+R4H5Cft+SZ6L0oHXJXfbsaMQtBJBept6ICugr7gmDVpRoOu1UOrYeO4TTiReuo2Q/XWtY+Hxlr7ghgSRdy7StuzqQMQ9/TEP1tnO6DrmiHr2rbqE2WowexiCGpbXWtQUQrgHe0WvIlPWxYQbwlJNc6mjWcGuOSgUUCQ6zqFm3xNMiB54sgh/GL+aoOYsd/Ww4ddCy1VC3QpYkt3I/wHmDDqNa9wwsfnw1YjpusAZD0MIPpBLmzImSHE2kuxW4fkp3z4m6hYZ9/K53OQF1rRhBjPwmVi+gNYkbo8UFKro/XfMfAmc7hvhQVdgBfF61ChwkVi8+VLUHU0LpxNfHa7rOhdrsHWKgsghLg01u+0PywNrxDduJaWzseJMEuISYBtGyqovaZVPWJxVi6m9AanrqHZNKTEDzK6zxPU9ln8M5eGgXvmK5bWhnV9qBJ1RJTJUEHqWBfS64MTzw+XuvKUqibZ1TWXSMa/jAtYq/tTJvcSjbHj+dbQ59T6SxupLAI7qNIkHUUd2ezOjAqgLqLaSwA0AxZ9bXidbEoUcN2vLWqOYGEiq0okQJnNhaSKc56T0MUWDJolTkiZ6X8IuZwh+R0wvEgnqOGBM3UBlNN51hTyjYVc1S+DAs+uxE0ELsBxTPdNE13dNy+IdELqQluh9l/FZ/daRCjPqdNVTnd6bYKLKf2ggTbD1n59jFUVar03FTB7eLegW6z4urlh4qMZ8yFtwlbjp2oQL9Nsl0GoeLmX3ekrdzTAE/l26LgQlbHZooB+phvWfwHzyOV3xoPjvaTEqEV8HJ6X+LuIaq8azgEy8oHzftH3sH/dWd/j6bcqz3vpCAUrOr8eifDbj872Sy62wU7o2StqRnw2MXeZI7x8Exr4uzBGwmyeNpvsPVYt+ZgLsTllUWBv3RMeYgFE4olUm1jYI03RJFkyzfzfg8krWbefpqkS1OJZ0p3Oq1+3+lHYCDGL1aMBF44XbLrpvMv17SS2UVtGCwUxsD4aNzWdGu4dFPkpEp2d9v4tWxH3acF3OHtoYolxRiOhHfZVkBJ+ZugsnGaW1mT9NtNa7EAeO4UdDinYE7q1oXKFrhPFv0QQCw9WZRXTn4sr5P4MTuVKTwMoolV49uCQU8rCt0Sz8++yCvewsGWbkYbXjloNcm/XWeqTbcdo/FWFupYIfUBLiBEpqqkio4mwj2zCuzHJLwtJF/EPaxqSQalbxKoObX+jWftcATdwekeLDPZJipgOe7xCC7PZWbTxp56MII/dKELESX6DjXPLM70L6FNRVVGaYb69QHmIdqjWdCoRlzfxhlsXydUQaeNOlT87VsJHc2bBV1+wsmneARc1NyXDXjoSifnSL3ZVG9vAZIv5+oceUHHr0QP/S0JSdAp8TPrxAdGZ+1zPWXAfdbz8Hu9EVc22Fy7FWkTirAskAMAGy+sRe0GvACE4MRaxwkjfvSqNGuiy2PH5cfdL4Mq/KCbTYmzYtZi0zOvDKhn1sAj4nXQ9i7X5NY/7DCpC6a8rlNXVJsydbGoyp4lRnsG3HUX6gR9DSDewtEsBBEQOIjrdRloBAZf/qC3lgU1i+ZzB0DIOTvoHLpPzHGpzc3QnMYQWOut8eSytnkuQZvkmxTzPGqvAMXOndGhReYNt148xvuDbm6TiiaBBybewETWLZ9RDJ/fXexGsjpFQwYbKH21iVramalhgXKGUjk7VKKTUWyghFcvQyc7dgzUfAjcLcMfti50JW5H5+ZGHzZUv9u8m6SbR0YvqwQKbmuVwZiGE1QKNzGcQrjCgiW5UYehCaMCDksEPV3Arz2SqXglozcgG4IQw8CBiRtCQTJlO0LPitJ3dAwmd8uoK8mDBDpGl5QGHBYzdQpxo1r3BXTVP8v+5mhNSBAT+bBslhYIRueKQtDEpDZDYOKdmRGCN1D0uHXlYIfc5o2M8hQzUFqR38oLVPROREJOWSb1iLK6Z0u/i0wunyEmSJnBl7Lw7VUjULwoFU+430650PphGfiHoVRJ9Yj+/GFOaIRT2YyDLLfftzfGlAtvwUbOcRnqEqKuWHPVBxaZl7j+fY7XPy8wbdta5UZ+1aldqx6v4rxCML0lADuS33Kn1YIfGG1OCnDnBvcqTc7JPwa/6RnP6LU3ucb3ebNFZ0drCvtURrAQfBNGLkWekoOpqHpF7l1UqshoHsp4hojDSRjIT2s4lf6+N7Q/1cz3zByoLY+Jgddw6yOHfbHMhTWOCOSRtJ2jyG/MS8ApADTj3bQcwgn3PMha5eLhOGUi8XZoaEshVreCgBjxXa/pnO0NPH+2MO9zYebLe8Tu3jb8N0k6bfP3PW8Wdapaw8xSiRbjF0LZF/K75rewuCAzBGhiWmKGi888jB/JQBSs84Ue0O7qLLav3aqzOmLMntLGfBjnwVaK/JLFzdbgmrkGqFs+r9+DAcBJn3PTudbxfO7qONNJ553REqzGob15/1/g/jMd9CtTI4+i1dG7hngRJdiXUoYcIXzDIQjodNp4XgGH6JZPrKSePBTTYtNn71UcSa9gC6h9vwHPWZT4Rzc60pnqA9Rolwee5G1Y7GLs0ap9V2aO5faubY7MId+HlLKtb6V7jJtMILbLzl0265caNWNk3Wh+tVGL4awe4bIWZSfnPlMKXXKJG2YaT3QY0nm0L5Lgz+Y12hXf3/e/ukWdgPxSyH0ATnV4QjmDIESizj2AnDSJW8Og3D17RjruOKZJNme/1zUmAYawlqljGsshy1okyYnf6IF9ZnTACdcduCbjBLbOKFDAbM3vAsOB59P8iiByOfrysNUR21+QVXAgFcljsli7ckawsGtK55KhEhLqDU4jtEu8nu0t0bx3IxRGbRGYXcoW3//1fYsogFs6q0M7LkGaNk3h+2Xdy6r5g8BiK4O0cWmM0GiYouWewgbaEdWdBNLcg+PWVOHLEN+OQK7w4nk7ITxLCeDxIePZJ76IsZ8qlAWs7H9YLeSylJ8eegOoPOE+apf6hdh8RSX9UNiclwURsyY0prbYZjfJ8jQQPSnpT9U14EGqLeu2lOgk1tabt3P1nYPNgTPelkMaaEipMPpBFWwyNd5hRfwlNk8z5vAwa1kJDol+zdtd7ogWragSBMSt03DiLJ0yfUN9/bJxRKjCQ57dPrnWfBqjg3oFwaZZ+zLNFfT3X7O5mquW2PnkgO0aZCiWp/w9f5dSJpJDQZ5GN1n5TWqh58VHDD28yaqdhNvYM7hM5yya89AzQYgjhNW4ZKorS5SKySPhvd1wunbiSUv34S3alLwQA7/Zw4yYIDKUQRmBQT5Cr7EOABufKITXmjaZURzMDV1enWxmu/dRD1y7arqg12mGGqwU+bOUea1IoaysvLEdMSCdqWdA+9qnvJJilsrU38n2bqrdYjACeu8yg+f82FktP6aVaPNnpHYtrwd9bfihjZuqoXrm3Ox0PR/DZ5IjeQa9Uyi7An+BdQg8MF1ojalg3h36pJ5jY2iK4U4yPjmWGjHaaNC3XyicKNFiofVuqQPWRM3tV+nPGnlHMrjZVOWdoEds4//0v/HuWuN/pzqip2tUYxJ+SMz96bvZufiPEHdHzIFn6utrIw7j9elLdxrMATMOzR7FE8VO135J9O4Maxpb+G/lEMR23aePZkQRynKSEAbBCBly+NAUlCjSPzm6Ew2TfmbZ1sZz+fEGWOJGCKhdalkCifE2BF/mUJOhdfyAR/OHbPzoafqmrKO7G1xy6Yy9XiFQ8qVYhruf7iDOGVQSQgR2IMHsuuARWqQKDd3ZGZgQVi/dfdkSQX9sSQkz1MWA2Trt9vTwETkHzeCdkvmnUE3UJBgH5FJvDgUk7mX6ISgEcI7e90L9AaeJMa+Wir8vA0fIXpd2NveHkTQacdqM7PYW5+fXVOHK0TIto33Z54LbHTxQKTHLQFzzChYFbMZJmxmIdcfV8EOXD+JnecjpPGsAzmfSJXmOy17CcHKGXNlsFJ02vIE5uEJyJ1qmnYnfHvNvn2awV5jPwpGfhy8KDQoHKsVT0apSZUqhO6+ldMjjjUBr5jshWqnk9A+moPWFCexQHm6oYR4v3RMOPANKblM9kg/eyYkxJUpaFHA1sjZyUgH8N9WmLfCKi11/EdBiGRg5oYF9S4FPJCgCAd3edkJJ4zJ0In4CUSF2ysU/UKIoFY9Tjcsj+89hbkG2CJEY39IbjioH54D2W6to9Lok7gX4Cm967+a3Qy4Eu2aaS4hNd6elMGkTqJpnTMjIkO7MSeEE2389eis7Z6XOKE4ZyURMy3G4sjJOdEN5hTOw3SWSwbekWjVVbPbtqOglFdx/EIvL9i2QnUSPpbZszU/SAtBAPJkOMcDklXgyJ3jQ7iq5ERAnUuUbGhmRwRXpS7bNR/E8wOuZGTQyAZRfF1882R+hoedhaCyaZdqPOgR6J/l3wYsqgb5e+Z8ritLCqCUByzySLnFIeBJqrkqveeBUvdbRi6kZuNEmAzv6F4y+JlV/o3+otlmgnDvZW7PQ0vBtUg6t4IZxuIeM4uKhKFVag+pNcTMREJWdNAFKkvMExUoNa21BumsRI0Vl3aDf3TQ6XLhO618Z96JRgL+seL+eVAhlVpnvR6ITWXMFxCZNcQ3mOlDBMJdq+mEqtVj4n3sQgBd2iOHlKummYlOOPDPDffgSpuONO5XC65kYLaD2lWrF7AmiAC24tlM+GAlqQpOI5Cgk0kN53qUEs3tDogR341j+ZyYFT8KbWYMj3sLHSFS3uz4YgNRQvGCl8sKJcl6OIwRe26mc/S8CFVirm+f82viSuLPzp0+mcYoXrc+LJ40CFa/Lv5U6382iS8xCfQi6LpPlsv+R9nNiNE5nlgjHeaQ9zTMXDPAEMxnum2yCJusX05JwhBBiaI6b4csaMa4gMcqgLFNrJHpAKMCNRN7fDWCfa3dxGSC10cy2lVtemGR1AGSphPJoNM7O6xu+X5xTSmXvUio1eNXVhCQERpyUtEk38En5FLk+aL1r3ituzkRKiAN8eFgkgDcc920vqCOAVSpJM/lX8vijMkNTiqEV7DrBAeTMSmxwbdkwr4ONMbIsPgtgkK+rg56dMG0i+/6ORYAyGm+d618wFadQbr0jKrAsQqkHgiUSLtxTm6xzYp8AfkVdsBO2nOHa4qebz8nrLuyzw7rjhfQjtZ8sIu2zbpCznIclzEEK7OTlb9CuFz5jVfPvO9ew1ViJxTS/GnDthyoB/ZBgRdhsvK/ohN1fArpPl4eB7YQnbK6jdCp/lFIebxS4A5l4TqA/89q+uL7x769fGswjWz1VN/rn1AhtDw+U6bN/U4aIdFWn77pqqObKNRyhmSvI2iH3DfUyPGzUkJF+r/XUR+4oMndfUoi+CLI8oegOHIE1O0Ua9gHvv2VS+oEvPAzOQIAsb8MS8re8wiMYKfGU2PAiSqlqrQC9ltNPe/oz4cJDUvbFgpU2f//bXuvud7/0VsTj9D8PTLGTBSjLQn9rymbcwbKI3QfXdzWCyFbhTb+zBkGkYReZI4EofBxnJBLbBty68/ttahkT7ATVQWdGPQmCwcUjZEn3VhL9F6HEQ52XwF0WKJVlKZcGfprRzuDzPJoVZXpOHx2493ZzVBYoIGZQhCY+dIAK0UCgg+zJx8cpja6nZabuaRn0/xL9FlyaLaKSdJ91AdXGHfOnMF5VMF9/unGIjCQVsnDkJdMnoCBVJ0wam7K17zIKWyt99aSuix9zcttmhoIMnMML5C1KR9BWMjrhzyfyfSejfuMkI0ispBy80zf0uSPBxBy9YoUrSmCAisw+eEFWe4yJcnrFlNXozxe9jgfH3rxQiQmJqUAUuhIF1PQiweis8u9zTdoLwz2HuubDZkUUGPs2Qws2Pmor9UcPUaUJ/9/sbSHiu1mvhIK6kI1lIAmGhNd4Whyucjyl8aXFf3WH7Tt0dgX0QUfY0bbGZVKv9ZWYmFRlbxuDFyRZp1z8gwj0AMjGMfv364DvrKvhEkIA0P87x5jE5IDjWbjikyckgspdOcOwtq7Qnj4Ye2E5py63JKiRSRN1A/wft1EJB9q9dkSnYf9jc/9qqN7r80+TFT972p1/blfWfHDkxbnrT5kpmpOHlSULTQy74DunqLTLsCMdBleRhYvVnKFc4pi9yYwW/A6bibi1PNNFONbBzpc5jgFrSVr8jfGluY66VASHnQokcFfdAvBfvOKPzG5tekyH04Kx64IjY+KWfnYXqTqC/NlbJc0+vrbjIWvNX6oIi6fuPm4cu1FYyq3JaNdz4pGF9YQG+J2nb6td5e4lINfyvbWTFp3glnGQ9bLYaBlPBdvt7irw7Bahc//flUg0PU51nEXvwwPZFyzzOCs5YKSA8Vqrb7roO591qqLDjPo2i7s5B4WHGemSNYL1nvw/0Xp7fgDAUdQ6FvVMA8LQO5uRbX2iK871M8ku+ff7jh3xFhcgSTr5Wk50IsJuYCfT3S36c45JqMcl/KkbVRHL/0F/546QNG2YWZJ9nLNLiifiyoaLhjDO6iqmOGSwuTRIkBUEXrFmu6pgw7LyiTO4Td8Ww1WKRFfk++AqHYdypadEZJQgAiTdNqdlFWn4iemKIa4rV8PbAXuSCxfjDNPx2M24gXkqcOx9Tj2DyY/p9RD3PY5oWQlolzvOe4Ff/xoyPe3OUvKnWMf842hckjM4OEinbZHNpxsvbn+M4mLHC0CvkKmuhO/hwM7iq6Xi7LZqG8tyu/oLqazd40OZH7/ouEZwNFHXXMw17aCqqTi9AL98aV3xrAq3S9Pt1KoSjgDYkQYZn1j4HQDQYHI50omRDbv2px5tWHma0M9CLOYw9jxO85v7U8AOR+dI4XyT4ZojHF8jwrfaDdZ/gE2AsVF8H0Qbl1DpAXAGAXddLcHFPp6H9nGaFOwTCavyodJgajiZKYEYkFTegARQuEvDk3nfIWJCjCD/MxKYgrj6eCJSPI6dgS8ZniOczDDWRwOWVAoW3pszv/zU8SnJtwc9ba4KmrJYbeS99YShirZ9tlTA+H/uuN4NxOmn4ZreESAYTKq2f73+WPC7arzv6wYvsMx4gfC1+Hl2H5/1+0BzrD/nj9HISLIgaGw7XkB5+xl52+6j7z8tTLqkOhFsn3qnqa8wJh5Gy2Ie/yIpMhCaZeeiFPV1ymsADYUil4oQfxcH0OWGA76cAWyA7BZLKpwnVnFE19xERE0CBMOwmutBle2ib63Lp3FO8c8hf2MpYE5pwlD6yj0QHUpdUokJytaGcP86zKcZRaLfyVLl/wD4Jtw/AL/QgyJAUe3EoBbis71w9Y0+DPJiOf4au0halZuH7H5T1mdLFLDcCwTvYmUHssvFo4cKJknZDB/OTkc3yDIBZ1yyHFfi/wzOqXct6TKr7kbemDdfO4XX8LCM9Y278ZXdmXuInvPAa793CsticHQ/Q1fbWQ6zGELGHXJwIWsMJcBot8qeneAW1nRFUsaTsH0Z5oBPcHVmHe3ubtunSgoFEGpMcyDwppuGgwJSWzXeKFxWfCIe8lTQ/zE7uBcxyo91LRFAjG26FKIGfOHvVDsi7TnSUVKlwCWU5XBgKC+JZK3AhT6DTcF1sVskM/80nf5rZsE1yEc88zthg3GzNpSkLggPA1/atIRxA/9D6n7s/Yb/KDA7VtWxel6a7Yn6rcbTtWHZNJIZVBiSKjptvE12xEWYsnNcc01Z8ugm10kJkZz3g6NPAUVz8FEU8aPnf/a+wVsOibN/VHO854kMnjaeNkXfplEpyNCXiE+tk6VbEJoCS53GiKXU5sz/REdhgWI9WADBSkjQF/MFJWPUfReDMK+U1jEPQLFySzGW42XTfqFzu7eIjTliu6qp7UVYHtRiRzo3d98LEfLrQ+dExrBw91+D+vx/S9o8y1psDZTwplqYzrOd4TZw8+DPlb/brAyKx61hUHvgZdqZ7o+P1wYustRtWezbuBVG/domUE1ezcQqh4G/bLIwN3nxoAfnp/Ca2aX1Sn2dokALN89EBKQHVu4i3DZekjgWzAq/8dZWnsnj+sZm0FDrMgiEp00OmE2vCCRIA0ktAd10DQyvphw2dV3Tuc9K+hlZ6Dq3d9LI3hE99k7dE64d9EcV3FtvEdVAnBCcGZue3ZfWydFZ/59hkYI1jeZ3CCr83Lh0CSEbCECQDwiw0aZ5qv4emsFwjX5rgg30IwUJakvq4Lw4LPj/P5OIct0FIA5mIVRMZWMr/xcXw76WIPVrq9y//No/NFmiJkDnJ9bOlqpj8aRHgptifN+wpaxKvZ0lG9S+yxU9lVci7WmpSACZP9K1Nnvu02l5NA+ayEkSmQ0wziJr5CYXQbsbd8TuwrBDkXeYTy0JFe5B/0CjwqIQRVhQqexgM9ZlfEM+YmzpLquu9Jj6nNV69On70ZwIez4HBkp+gf/Fqmz8ofPMSw9h4Rsic+9XLcRIkXAtXRPBsR4Xxlj2fNMa3f4ZnjnNPrOWYT7aOsFQVzQgzkdeQNMLi0Du0zDa27IcgtiP8cfwEpGwrkAko1mQqDUbWN+GHhhcOvB2dahKZKhB0T8TrjSC0KD9lqldPYxPNWYUUaSHqILlc/gDUB/sec2gQYgynKpUu/ihlYaq362iYUqSMy+SbAtR0roc07At7gQPiU2f/zTfgITF6/0s1mMx26IkGTuNgSqUspL0NwgqqGRGgY83L0VnFk8/gq+ktDKXbppvnpR9q3Jhpo/BE0cqWo+o79S0K7SAwx/y53v2Mq4YvSHYBnzrGwuMo0ZXO1Sgo2dfKSZOXjQhi7MoD92+/AcVNNGJkrClBKGhgR/Ke6dHynRj+djXD/DNmSsA2D2xsqq8MRk7iH+YVbMdInCZVYKvOpV1EQLnh9uVxv/zOucUaNsu4M0Nzv4y41hbIxSq40lzVqLOkrTuo+VCXGTjg9K4irOJ4e945xrJ8X270pwLXQraHzMMqHen5Eo/pP9XDf4ZSkkDadp2fKf+rmjO0nYWrhzk68UoR7Pj7FHF+3SP3lHoavIJ9IaApGq2PCrDrHp+EPvSXm1+eykWzqbeTUCl1qmnfSDFYKJW8JSgxf42AOZX6JeTYv5osKqCyqyP+YEfRYZsRdcaHeLKRgLAiA/FzfrNNYLicka4mOEUDDIoDlHWMoR4XmHoirTzUiFJ1r1W0JeuPMMEkt4MfvyF6yDesXYYma/Ddbrn+sNP+o4aVBK2L65Arkscsag26g+gwvXupEyek0/2BAoTcO3xQjbIOR1QAO7MmD4jj78G3Dn3N/XioJlnttRGU2QBbXDMZ/HDIpcsPTvGvAXtsvecVifIrNasFDXXrjBUVF/iamXCTMgwWt7Zwn6SeQS/0hk2EkN2XaGIU3Tpa4hesZGt7VlVi2PLWNfVBoYS92xHB/d0ktAzmstcHovNE+/S/pviHUWmLhdWGi4hxrGhyzYiHGni+Vi5uOD7tTx+F99oDGzIiEEBPCbp84Irifk8CFGCbxNUKb5qEI0htraxDXIV+z2H2CJSi/nfiigHwbIELT4PRWenHvxG+LGadtlpXITPji9muXCfyHHt6QaBYrxbjdYBDwiIZQD0w98ubxpoUKecyfOllY0KGL+q/eamNGr11rFkMFXDxv9ZPlhZ5vzmkb/K5kqtaLMHxG33TNwf5zBLrsuNoWNbgXg2nQbZ6a43aT+Em5xFZxYYE9KhQmSYuLGwdeAr4U3LRSCmxxJZQrCuIWa3gJtE6Mb4dvGzFzQz4jN0MN/UStBZJZIlKdnKHAWM1oYxiWs0g8T1fIbS6NrdhpRZBiaL2Uti0DIItRWlufMBu9jOndyVhB3fDPtEjnAiuz+AZqYAyY9nlmXBla5vOe+fKh1ti/yf/CX/QaJmTokNKD50EbKe3BS3iiYTZxZZLbvNocLGIJLFGFfToqWkp8jY+xTdj8XS+cqWrYleJjet+YKZo6MGU+sZzpc/MeEd4yMw/L7aLlb+5EvCfKVt3+I27XQP0q7Kl74sn0Qt3aNZopu33MtJsaNYc8EtLasxekGWXoRovbNHNFO465r7bSPhAQQc4EFLpC7A1hbGpVVcC2kTR1lbdVGWAnYnvkrEpYUET08yVK1DVNOIg+zxbCKL30j9tI2wpHPu+g/OW8N7ptv9Bx4WzbEaHdvw6NKjJYA+LtQu/hGEJFGmAoHA7NrH7iEkSuQnonIMyh/fvisSqHTw+lB9vWq+93ca0FgmCyTVHGpTcRkSL+MBPpzFL8cwrkdzNEaB/r7AU6n1/G23nsfjb/UOMp91Pf9m8GaQScO8t/4J3aftJ46mo2GCbUhBxBC7aPCdmC8pdASt8qyoGZPmtXcv0gqwuA10PK1zlwu63OkbkOh7IHUky3/jgzjod5EUlNZ0K4IiDj0Nao8uQ7uFOynZ2eXuhsiJ1XCImvDauq+SboqICbfmJphQEcSdYb4EHFaTrBcwh2E+DgBZABumeNrWxTkdnJvG2/t88lSA93pMjOxEbCA01lM3rg989qtLNUq3WC7t/O9MPLj+Wn4sn0wCsbLBmLY+O8c091laVLiZRYh13TE/3z8IHYZKfSkHFEWFGpY4XAGkjRFViHo3OfNfNyjqOCNOd0QCndQgxTBbpQRevpVTsXUWWJUGvvMMOtlJmToyTBuFVoQPGkCPcQmJN9VivDc37AkbS03hDJNXwYT/8m0ZzRTV81iSw4mWKCSvttU7d5Xj2i2WEc6M110Sa1dkPkYJ8oZuwbA8y8N3Yi5VV6qDhXBNz6Guoxsx2SlTeAyaJI0eqsq/AXe6r4wlvIE4aExkUASZnuyYVuwikbnpP1+V6hbHdCdAp6IQEmmUa5onPc6htwjTn6aPagaEVrVBILPcAeuwVvokyb2JDD+RSn18FX7RL+8ELDonvRSLRvHxPf7lYHPd3FpceMUcIdimHMnNzMRSm0VN59RJ4+qZ4RQDI5QX5or1S5EX/JboYWpIfUh2bbaSVU0DLY5FaSt9nY8Fg7iCiPac2+Q/rawht6sHfM8sND6YZogaJtN4WRk6WNpIpTnTQHnfffbqrL6kSCtu5ABPJKt12QlhYC5uDD0/8jSKWcZqHKRYNAo8ST/Md0RlSQOGGpV0g4+Cx6WYemdqjl5p/tpiyjuYxHIJtdv+zPVUb6YqUPvWo67on/ECv7lZrmlIsXO3WujGsuICWiBYnfiUNxaijYgRD1fGtXjDd+eJ4K6Gmfcm6nub8Pn975riFSCCfR6nRaBAJHkrLVe2dWim520f60lkGj31+f4w5xRSk8v+YH0sfBjVHMBeBIQ2XE5xFr8pTUehQojbrlIZwGTIQBZMM4371PstwC6ZwD94NkjMMDMPOwsga4k7x5JNjmC4coc6NVxRqjviZP+d1SIAdHMsDfgSWRGC2okI8wbCYOuyy401FkUe3S7EoGRDdIfouwpeBcs56tda0TlDpAvDxtorfVf7PVX+fI9r0MpmAZxsXIZnCB4X/D4dlXzu+3OIjlR0dNy7N9c7vb30yn3cTcK/N5TYD1VvOt1q8zG9Wzci9C3u6fWjCi5xD/hRtYWm7K8rZktg4KVctmscQobbSn4rzfFnxzh8eTYp6wilE3UOOWQhIgSOtKIcjRfOOJ+Q9dUBx6dVRdDRrYPDmsb6Z0gf466fvT/pHBsCwxrf1ruoQWz/QWTsQOxaoida4Vn/jtGPxYxiG9Vn01UrWoMGwFEg48WtU8J5s2/NkUIcZDeX/XkjanaieVEXRN72+wFVdyIhDt4/8YV2Iu7oY9NjlB6skgXvNV/17kYNfUbveh3iTeWTZisVEFr3s3Pu9GAI5WYNITnJTNTe9PaWArHvVSz5+ntDDyRuACKF8Qn4RB2Oh1m6TFhwLLZEIlxdvdAxfDo7hafe0bWfRwCer+B8xGPkhkjKMJRHI+6PoO92Z81iWRTSLlOYyqwsESS/0UqhVg/y17aXOphkrP6v+W2uLQltgbbhxdYu+Wxv9dKj/HSLlJmGg6Oeg/rTi/KX7cSugagKgiC0R2MFPc7O/PGkjsNvUqd8gxDHjDXbnztjeX1h7gsaRlsD3VauhXYeiUH6MJjbLKIsc+PKKotH+bd6pNEmkKMXQuAj/Kn9rFFUeLUuIpUZ7ulvhbH6hrCXSKOhACNws44IAsvME5GyxFN5L8lazqtyfV4X1KlKvmyeQHxnhU49X8N1DypyBJSV0tuenzQjnV5Md8IsfAhbWRWiq1uWKCoBf84cdWAH82o8f/Y7iBoTWYtSgsUCLzuRYdh7eExLWRvUty5gtRAzCRh29KmWX+bgw9DasedZC72b+KQEnmRSp5vUgxVwZPLXtGO1ZxNMc60UOy7EWWCVdGdc9mQSYJ8lKUETOyYGuxbZzV0f/tiquug6gVg2WbyP1vonAK9jNZH01l7ViwmiU27t0dIlMXZQUs7qn85AHptf9WAaQp8mI7lij0FnMliu/frNwLQXLPIMtWYyiPLsaJVu8r5ivu0/gfFpum4yFF6gM6UHbfJ3Us7XL/OBtFwCTIuxWUD1IPLcyraKD5gugTi1C/QYKlF0UUOz0wMiiZdYmYDxtuUxGy8deMNK0YD/QF9wAjx9IRVLuRgVaAwd+qXVcK21PAmvQJlZEuMJc/fqKUMgFPrtnIFbz5kvGICmaBRCZgfymThAz/vsI6k2cCUnHeM7UflpTx+tMSCLsETEQ+QZqu7SYwdOkdGOLwYfseghggC0pJcwVRMTQZmcc42jijErxSS28TwbEAkna0q0W6ySZ7xy7C9nr0QVD4OkWTsJuq70n3jIMZQvK5q0TSJW9wo24xiX2rgPPc9c3RSIJX00pAXfGbF2hI8+aBR9RzCPDlIKt8cEYCEhuBZ3dKlivhMRLaUwjqVkXtKlqyF4oYpbHvpC725AFFEIsYwS6b5IfhFMY1xsMs+hDNfjbK4Epxa0UeXhBZfEaZDnItzDxqAR/+4IAMZq4dLqhD4jGfEMEQB2lsfKSGwyVV0xX/0mNIG1xhchqMYhfpkXSAFsMbWgBx2y33G4yGuBQL6/dl/zCh3CFP2694dD0HSEdCWB3SLOpwam+ALpZRwG6oLYyCM1wTz6BYaBtQMdFTLdd3ZvWR9ghxPhkIG0Kkx0NKZfbEdMAW6n27TrQvVgAGcZ+81aftN7py5cFORutBwCucYbW0I/9YfGKJhulNieLnU5vljMTqvi4peIH53lALOIJecFsH8XhKv8lkwAT3ONOORLKNcLQPH8HZFavlEzo+J4MUFdyrxoORCftzv3XCxJJENrRgF/GB8lKJd9XSup7GNILJJN9qEg7KHzL/em+hBMO7j8ETs9xqHYSSYotDdCbw2f8Fotddk2CheFXp8f37ece/rtDlHB6VF3vSDbFQdAw0Z8+AWN9v8GkHg0e+T+vDYQ1oOlxjXjAtYN8DXvPd+HE85oAX+mvl1loznSAmVxQ6g4BX4qpjMl3Du2tBLEvpn0qsBaWWnDwr3WHTplyMYP6PdZUjfa8ntBMORo0Fmrdh3FNEp4QwXlZq3qW4f2YW/+lE4iuJrJ92Lbrkmq/Oj9ynV5ntdvEvdjlrBpdUsp3NXFPv2B7N2mZKYtQVk9kWrHyMcUqCyxb3fzN9Xroc5e41+ewPZnTHmC6bUIvfxshwBrRHRamw0MLDNazJh20RGBSm582TLmIXnmNSRv8ULfd9ZKfm2nJRrk4BttcVnCdz/OnKWhIE5Nweape/tvw/YkzD6JjyYaul5cl8qKmccFsLXfLTu7iIfNJ/h3VGGg4ORD4ndZpI8RLQSyuDelqpEOlFYEK5v3bHoCMypE+7Pezu6sJMMzQ0GSo9v4EoJMI4p7sPlDjqoBJps1HnfNwGvuzIEWpRRZV8r2G+TN4WY87rb+RvbFbuKfQcF19+8hLyiYiHYvhECxm+IC/sp1ONDrqlC7pL9rfcFcggKTzrAfcnEYOijzD/lSthE7dYqypJl5RFjUlV8g7tKn8JYhv3pXUZSI522bJtswOytim5mLr57OJlXgiygdc5Z6QzWGZjvK8bfXGkRAECbzFb8B98o99IL2ubr7diqL6PAo3ggrRKf5ovcxUe5aCrznhYlzLYS83WcMeB4C5EFE6GM7YDwbO8LUR15SNow8R0taGh7MSXoRv/5xRUz/gjN/KZmPwk7dmuoIm1NgehF8QEu6thdX8zjOsaHMNoNQMaRGxBBinVeCU+FFLp6Ap75lhdzYk2HncmsMuJGNe/4f3OS7UGNzzzAfdlEEIGgz/D6zqw2XP8VWv1qbzReGiwb+EJnN6i6SooqXl3NOVrmYACsPXodGXmA4ueGKmZzQGaZIrB88xVnRkg1qwPMfYoFmvQtiy/D0982H56apwwQdtcz13Gte25kCKSt8ZlU/11pzC0RNspPRSWl/COyu97yexaXerjE/6F/ZjmFnl5OLrfskQDKm7dx5feHibgCsJrFtynXMYGN+qCQJocsV0WSA1pMAYynMKu/vJCi18bclDeTlXuzvw5frmXjUXV8QdU4/5mt3h6wWOWu+8Dvnob0PZXDTFbCiQzYoxvexy4KI88T9YhKY0x8CR/q973oEmVVUa6cIprK4sDDRBJWs7r95IH94nOzCSZwBOPPHGdeLGX/tc27rRw0kjTnLpjAR8rKe54xHbME67KPYccsPd7CGuHuqiahQwZrBaP3rSA3mjmCWbINjriLwbBTc8pRYy5ZGriCCuq+oQj8QMTPdwJarTpJBp049dYVvc75c0sArA00MuxuVWOMqFeYRpEJy7ahKbW36o50dhFq+aNTrjqJaOWsmkqUIT4LJm18IoNFa2blT7rxMAdB7mehoz53Sr6f8OZL8pQoFkLx0VGlU/CDcMmCZkIQI9vHIZRdQTSyrPIWo3g1S1bewfjC3/PFENA33Kh4xC/tjMou8UJJawxwDiYYWS9BJtXFjzfzvoGTeifENdl7LNud34IxDuiZOq/pqj8w9yU4nBb/WbEYdBK5RX1hrr7qsljXoDI/A0VliHOrkwG6ajV03tKMLXeWqWeCFNLj3AvRL0VyFQ9/xAD80VUh4zZhiNJq9PQdQ5hREPy6gOfoLPt8tzzC7KD3ag9lbCvjtthiWzq5h6T0Zls7/Sy2aPggr5hTH35eZ63qBZNp4fKhl6hQ/EtgWVS0xyteEazMz7NnS9suODUoaJcr0nNrgZdHIFkZpSQNWYWQXM67KOAcqocDJQOwIcraOYQPx0bd9Pc8w/J7MjimKjOQUGe6OmD5RY4FiBqN7ktnO/i4R1uXg2ErpKOOG4DxJMdmUKdfOdaxzBPZBeR2Rn82Hw2bKcd9vXrA9QNEXQtfTp+F9fYIa1lHGWbIUZpGtfueWqFT6v3IvIqjAq4Pt5y1ng3WZrnAj1q8oJOw9klPxREqtsQjPNLA/5rd+1ucblh/AOjRn2C/HVgYvKYoVtW6rmZ7AkGYNI/zT+CfgdAFhuN7XKtegMbYesQf5YFOVKhdlMEY2eOAnH3rqkSmrDJZX0UFVN7yEwXU+cFq8cqnboKJDWM2KPh1Daax49WRpDHZeHLHkrLNlNgNfm41clv+lCBYTv4LDdyyaG71UI2LiynZXLgmiiKDPdZM8tbVCJCMyN7JM8u9VIOSalKJEPSbSXCz8M8kGCFhtU8R4wo+L+p+lmsbqybRj1S8ByhTPA3VSzcTP21IuWtnuGBWmojAnwvOVPJrD5NvXTGIlZEnmxyzUc7Y2Vf4JofxO6NsjIhgynRAZPEem7iVCFNyebJb6gaeyagi9XTneosS4IUeIr4oX449GNqc1Lpq++p26ulWkRbFGWIO76YnAabfxdjaZykp7l5vaCsznP7XkHMzQN4XaJUsNbt565n97ACnMS7zjhP9d8FgRvMIE0YGbb/+AqAvRNttetv6Ww8sWCqGchK7NfU3Q1yNeiQXLpNS2E3jrXvadBrs20yu/JKdBit3JPqSc/vz6otDVr/oON39sMF6jJrFaW2idtbqd6xjql73TfiNY38Yfh0WtU67RMTnX8USijk+ZUcDXe4CbQlqGXX7wYS1ybAAA9MQEMAMDLpjYUneNrWjFlQd4gdgX9c7JG/zjinTtbw/LzQthdpJ4fQi7DJpAjgh8rXOroAejwZUTabhCqxcWb54g39x6+Agk6bYLKalloLMqNg/ou2G/RyFVVumYqY8tMXO7h6zb7Q/J/pfF69FMQzJ8muH3U21t7ipJ8uf6kbRbHnCCpU0wfScvoUvXb6Zaymbh8P/QIiwLbkT1tKZ6nC3YUvm42cEIEOu4osYE+KdpaD8VlXUWc2dnxktY5ZzMkpDxGaul1xjyX0/nPePS3q2LVnP1hwBGs0ThX9jHzR0PDATEEh/VKa4FZRcOuXNiXhir8H123SCatiMN2L2vr76xo2SAOS11RSgaJwENgL3EteW5RH95kxgnbSSTWFcWXNFgyiPkdFV1e8WKj9UjC+Mp72aSkBIoyOz1IV8/luHk03weM8wSTISxAYsIFMR2fhy0sEGsyA/QzXhb14YNaX0U4FqnEdop8/3dJhYByW/h4VjoaI8sLhL/E+rw84bKlvAh9OLiJtRsqipn2V4HEz6RIXnSH/4W6vivrQ/2O07Z8wd9HuDIsBsnNkS0WxsAxJmO512N/JoVfC+TKx9XWSggF/Hizr/fIuZjPmiUybFBTC1cr9Wfe/ghImtkHlaVfx5mB2tneMJ/NZzSLqlCPOvzsqrl9Hsd8CdTFZZzgoJXBlupRSDT3Zs2VrcGguAwcTZ804i8C3Tqw0vuYuZ46CCXzuplMyEAG3klIPMW7u55kKDZ1zvx1I85DO7hQaH3p5ww/qeA8fptDv1f4kzQle6F9dSnQUYqEH4k4Dsg6ENxJHGN2rA03b0/3Qw3NWi7FzUHg3pCIAApC2TadkRJ+RcF+/UseMAyX+9WE182JB0+e7pu3gHZdOyAP5BS0H87kUH3Bm8jXv8ebHXGvW9YmKF4AWUwJLHuPMOYtR2kn4eBgfmaEgaGaTFcv9kUJ4J+QPsarku8swuUVtwJvGoREK0UEdyEnTIfZu4RzaKqrf3tgxG0zbhd0p7thNXgmdtwCmpdz+6DFMRbkpWxxDmPHOynEJnek1fVUEmW4IFCKLUXDbVX27urKWAO16RS3g5J9SG088MuyGEP2KhxRS5mB4ubx9N2Yc3pABP6+7g1OqVSoR9yM0QyDkFEq+iJHIaHL3QK8dxFoO0rUKM7K/khYnDYZgptW5yV426dh8fvFF0zQC+K7PbAvQCrVU8tkRuupMJtQKB/zoZeicIgOATrAQ4v5A/kkrIBGmOIQ26rwi3SeRdLOtP7Xwq5Tb7Y3986RbEpK7rltJ8UToAmEP5To3g4h5xfziwbQVZJ1unBJ5c+xSKkklmlKgq4m624uTDJYCOQQTRJXSsznM0P618KkJBW0ppeEPCjvwYfeyHcdDGnD+VyC5xULfkySjIXP7jlsB5m/Xeg2qJnA86kLXaDE1jZ8wxmw0lzJ865KXkAq5EOeO5QP+Ly//At1X/FNNFDG1yQH1kSmRLMh35qmnw1Tc0hay7DqDbal8wUnWwH4GdhQIURv+YqEwqGb+cXNT4ZFPAG/lMt6gO0mdryV9AnpLsKpfdnGGFwt/MF3dnZtpHkCMwuqARAWk7bCdiaOGRjgK7tBWsDXtvX6ZOcE3nQ2E2AyqFC7188KQDegcsf8sQx7nS9lgzVmk8uc+/2jrmF0uyMOawr1fDRcxp3wV2pS4jLcCmfhbHW8cs9vlJ64bH3in5DM6Uq+E95Esg6h/uQqnF76vwCJbPJ9B91qLrCR2G4wDkIF/CnrcvVLNVjuS8YIJ5Nl5iMWqZU4s8odD4iyE//HV7uRC+fEEwmTfiyZQObjNLRn+DQIdvX4/vOYyKaDEQ14oLcLRPePeRpEuw3nOPvI1r85/xsfHde3XC+T7t5Y6oliyD3cdjmDuXvGrE+ogU27QSf06LfK1EinxnUA3Qop9SpHDvknGdTqVVCilQpBUR7ilP8Cip1MleLSBwJM9DvjJnROXIk3/UT0P3V/ZFEuTQbU5j7aElpGGvXntPOehPhlrxpuORan29qk3IP1JTACFRbe27zxk2dnBlY549KF/lxbrDudAiB+03pewewI1YdGMMFqgNRfG4JuL04UthfYTBXzj7SEa5jwPhDbGrW50BzW9ocTZU2f1mJQqjaSP8X3CttQUHFuLCsvr1VGaiCEdozqwdO+2b1IKZbgpAZlNaBkFjjYBeN76wQTgJjRSr75xm6BCHWU+VB0vqHj5laeQU+oRLDWKmCZ2Z0Fnu5rDp6u7kqOR3cyXepkgrrs46xMyhiBu+YTAeYrqGo9Vn1gBMqDA/AMW8BXJP7yasxTdX5TxV8JUvVgW04guvwmxgr23NcFqF8apyWq5822W8OaAstHdmRYSY7wI6NZ5S6+H8cOpYWio6dHLz+WyPCLgX2GVmnjH06gqEfeTjpA1WnDfiKTVrKNL8YF4Igfo7MiYS7SLnWOq/PKSJRGHVYybRzwNbrc+A8acrxG5uJ078rQWU2jQXe0Xca1iW4TkFyih3T1azIzrFc41hcqACADvTwYx/OGzxRSWFQAkgrtpHl8KNak9ReTlWlgkUCOsZAaRVOVLhTydOJKT8wrKsf8sMfHbBA6XcO1kFeS4sBF4lqPIBlcr0P4/1eWEDxIX9pM/loR5xcBPwoDdIv2O0ZNgQ5xuJSGm7jF4yjK4XHr6JF6b/hqpEXrQjwIeivDniiXaLJrIxybU9tPcnLFBtXb79mWgWhzggLfF54+W2yTjK5bR6CcJvga6bwT+tT6i0C8qIHsh0BP3j8Dhq9TmTGMtF9eNeSnfJWQw1zz8Alk7C32cWuTAggUc5OCCXDOUCQ8FmfeqFGO+ddUEW0m00i03TgChBfandW2vjxwMRc+J5pbEDDPw7+7TPYl/Y4eGSJTvfU30ZiAlhWXjf/SCHYHfRk4+rMsYlxN/DJ5BbFsX0wqH04Lh06X0oikTZA4bo9rqw2KTNDORlFv0HXTH/YCtKi3ihUzWP+6APr9G1URHqShn0XwrZ7vy+OmN0A8M/IJ3TbTNvGavM4TfXpdVJAKyP2x22XWTS5IAHl1+N/FzXVpel8gkRKmmVawUCnEOrRLnVZNg4f51GKYxtdQvEBhVZXtJieCF/Y8y4sRFIj4JSo3zOLgUM16u5mUuNqnXCkOsNf2ybBPXqk+jNyQmQXMRyqii8Il04UJgDr9sG+On2mfNFRz0n/HWkmmLYh6kLRMoQZOl/0Fa4iHSXSxejigVVp03YUelHLSgkUHacd9B4WqwsqOYjIeRrHBnlzXaFLu9shxmVttVFwRywbkRjR7I0OPPCL6BmDycQBEYWmES2CgxdakuZAQpkM8AJuUERurgiXwrLwCvR3jQbJ0YknN4MWyCsrc/yv3NgR45LKGl7ATeuDm6EtRxOpModZbzw3us9bJsWCPy+r2VTHX+gdtzYoDbgS4krULiPBVxEhHZnOGoyQhXfaxRMdXvBa/bP4QbC342x2xg5OgHe0wY2FbjCcxXZ5f6cq1ewEl9el7q04EDfRBBeAP+FiQJq0LXWVZ1JmPM4Y8Z5EocXMr1v69+U+bbAxQHy6rmALvqOpu1sNHD5BvI2hbpVAbC5UguV8F7gSEbB6HI1b03Trk5OM8eH31SJOY+Wo3TlN4pnrgdA+PCK2PaK6YwuBQieInsqz78QPADdtdkCMyZka9rwVJNIuJIRRzHfzkWq0GvFbFTYmXblsVAbxPQ9lpcLNWutDYzLGUsaxsqMnXy0srTwW1W/knIxU//ybRknRmFnA/gdk8maAZlHCjcBViVcmbc31z3ZWR4qsIxDS4ogy6GZTIS8N9nSLxb7uIB5eKgodXTqcQ0YkJ9EdQVmKGvHqi+GAaOuI39odweikrpfFOaaRChbVqkg1uPu8FRC2x2PHlEISP2evq6ayZsj9L6w/eYNLoq2eKouEclW9SzyAUHTJINuWvSmQhSrLe2zUccmHzHZd488tPckW2gvuECZSEP2mcOVlUS9Srz5rfIv9eHLs18i3nGMdfTgXEqJLgfg7NXizSTYIeJN4b7HE5foKziuixlmkIDXS5p+vyhGZja11xPIHwknjziANvnRujCtVVvcOylCrBxPPmX/WWar+y7GAo4yDk1RyUQEDvX23DqYo9DQAowSF2+ed0qYUIASL0gjvNsPqCCOsVEZi7KecMwxjH4Ls7VtgRsq7lze+lYI2H+xzEaVp7OWGLJV4LC1AJkIqtr/5bV66n6035Ugy6vWRrjrjEjFPL9CDH8Fe0pHG9SJs4ufBbMf6GW2tNRfWuOUu/0LlxG6FMjot1cl/yAtqwUwBqQnY4RJM0qp4IYKOk20IpuhA3aLsT2/JSyxYcv/nFFFXYIwotv2FS3Zdi2VGfiNuWSeUR3nxTb41tvgKU64FwldMYd7MPn9stQ7YVpGzIB7Q2JXFfbbJWC2NJ+GXUP5RLQ95/nEN14Hh8ajZA3e92VMloOB8ebAyfo2Ql5+Gnr8XBDq2HZoKKPtlV70Fqj5b/yoo/i1htHN3UmAb3DrT+yIinU2NfKw/z0mHwPUHqb8ObLs6Eil5C/xaI9Qb4aHDKtQRMSV2wJnc2sTqqjnwdshtnukJyPsWQqRk7o0tSJscLMazA+OcyIrz88LU2hTk8igbsarqZjnZlQJJUOE/l/AM7xn0e7mpHrkCtdKRMjMjg5ul1Lluz5n8cEJ9BB5ey9OnbEfPd0lk3EDW+7opOGxNzFgb1ofAg5/Tk1m+XtGolAHtoLz8C0OcAohHqfFRYpUHUYYe/c/1/ux38lkp2dUFPopm0FM01D/63vLJnWemvbWuYiyVjwSHygLBSJcSei8HWFPb9xtCuv3U0Zj07zFdBqldMSxGJQBlcBRlKsygc1BI/w5nvIrgFr1RgVnA7dpWaAMmpXUBCzaBWaBysBNZSvpb6jFspr7kT5zjxgHAG9OGAN2pDVUoSR/HUanj6SLNRhrsdxlmpsrP56mzwDXRAzBFftyaP7TMf86dehMS6NAdlIFK14Sn5Zi8TBYr1F0HQuPyaqn5n74BV8UHKaeqp1u31zCV5S3Aqs+TGONfeS5JeKRpfBJqn4QevMtHV8wnxZpgvTPkKxuh+rDFMg6Fefi5soUOS3iXINp5atwHo5DOIQ0Zgz/4T7Z21EmpsY6stRtLEhlIG87t4zNEey8wuH+G2dA3qMn8uAZrRd+sRpERDG1Ddb/SPup9QFLRDGvJ94rJRFdHGrzk5TMS/jsa95XLPNLTkYFt8UQF04IYkKvV07YSVLlSNkSLkpy9STIuviyXf7PCwsLcqrIKr68PJRKs453qfrLh8VUjaBNB6Dde+roCN/yQ4IrWCKzgGhyNSvuFVh9wqNZf3dlJjsCQjLhSc4p5bjjsRC2oBP3YMks1HncWn1fCM4WJH6rdKDvbWKW/5CmvX6kS3K+IQ6veZFpxl2CO46ygIIS2i5gWZC/fTXUeoRDexHZDKvEUKjuj6BW/54qUc41vrkPcj9JaFZjoM8JhzcUtQcefaKglM+qvvysW6vdkPvWCCDcl6V2UwXWVAnhX8bEV+5NMT9zyACJtJoGyeEbBAr384FLQAo0Fae07vAMCDOqOVv3mvhB00uLPrGGDRnIvgxLkJiWqCspvw9RmKrlYa7+kiUbzMMxdQQMKKJcHWyqhV2h/3De8OMoU7CoyXsMj1rE53ZOoyETy2r/xRc3rGPmaQDdhY1sJ+A4uQTBMhwGgTe22nEsju6OKo/GDa16gQHejaxtqX5yC9YxsfMm8nymqBulylenmjayXWf0BhxvqIXFAsMV3pGmXkZkFSmkhWLweYVrjrVouj8GlfKm8lze+e7+8Rqgb1z8+S4IlZ9eaZ29t/niHBLM1zQ/JTd4uliY9hqe5Wumzj7VwDtoo2rUxrcgamVa0a6iZOHG5NrYpROJ5xkg0QzXbyt+hES7wWH8QBeD5tHfZQuwCAUsAB2XUUpqpFweWKzF7e11KLge5UNYkEuC1SOs1Z8zUkvDPHZT+a/1CwJVOBkLoQp1UnTXQ56Ahi5t8rhTQvs4EUABYybifodnxNOhF2ndcdXyYJ7G8PLKAWHgFxKkGcVLWpizyZ55n93N2f98HQM93Uorih6WpVcTM55YFJwfZeiYJZU4U/jbJDJnBIsPNdCZRIYdeDtqA7cbr/JFoW76lQFf8iOS6GKSw3Fe6hbMPUKZNBzPQ9iT+oHVvYRDrtMwDttzImU4Y2PInBKb/M3x8axwtZhO0XrcavbJI1hb8absKEYkkW81nEYPNbMXvXHGh/SJamprBHiByGBvEJ1O0qn7fEVxvLGCZ/xtluYq8iIiG9bUYWJqwpXONZg7Zk7GhirVpKiI0NLGtKXRr8ZdguWbU1KlzFRi8YuMwYhrfw9reHsbhFZUPPs5pU9sEV+LXmaUoFsVUTT0NXC+QllgtOfGUlHWE0eWDwJAMaMZ/LXD0iU3oLSmWuHbfGvjCD1olZ9atPJkgJYyP/zr69biu7l11dwZuFAuYMgg/C14CMr+ON/Qpw/gzTNu3zvvQSgScgC6DYCvUSAEVnDmjOJxV4rY2+bozkYXr4KTM+e3YnhdGaXyvlQmH6n+YHbbdPcQ1sy34X2gmm3ITl+QJqkc17c3WkV7YtASh9zRpFpMZTDY0BkdgeGZlWNykhZPdNGz6dd2JGrITPf57qolNTQmJkU5vV4CRDoEr7GEpAYfk1AlmX93jAYMmkQB87vMZ6sUEMilytUF6WwkQjvV0L7+zva2bHPZmdAmtiYKg22wtdLdkcuKGy2LuI7Eu4bU0cQn4H3Ldif7tJuvO8eEZNwjWXz4TekYDri/VAamjTRHnoqnJA6KCFlcO81+YK/b54SSRObRQ9dAic7/9Xnqec/SzDvkIrbBE8KockwHHIXuXnPFGUNTMgXYR6L0ikhIlAK0vtD/F2+H7e4yh+njq4qqyBZP6JwK6SiJBrHW+VwP3ZnIrIKbqgCzQNZDn4xqfoAqZWLi8+1XhrCg0tQPOzIYj1/tX5xLuEMSvjSMIUERUnzVPxUZpztBrwFg/678f7IIU9taZ/ekOuYxhRAN5uEX+UiJBVKSOXBoqcFSOYGSVzgnnHGeDcteOWR7S9T4I+AkgvtzZgK1pYh0qJNsJuasKTiRdcN9S/WLjOyE3HyhGjfa8/nWJ6bWqWOAgdECTPIKQRFMJL+nhJrc6VvWfUEk1QQ1vGuo5cz3JYzmPZVZobqvsayGkTMsiEI/noM3KrACU19stP2TSz2kiY8osFOu5sN+Ozr+T11jCJlDsvTLOMpf7KfL2iDAM4svemIA1H23o0c49LMAxDYbfj8FsZJthO6mat9ouiNsANX0ObM72BzlFK7BMr/HC5YK94BW83xXZ/r+N6M0yBLWICQSSmy3UvrGGaDL3AtSoCbKzI1HJaDhWXyxyATFgZLWu+lFXxji2lbKSvHeMRrZpGltqFk0XTE5t8AKdkibM849RGqPlw2qkNnlGRnCoVaDh+LI1aax66FktIN590Joa6HgS/5TGrB68VNMfY6gKZpuKuk7gTf+Di3MCpSN7esnJ8z9oDN774TeBLnmx+444OjZ76w7B+GLHK7VKMSZL1YP2rzNceiFv8C90dY7pZk/GaN7vW/2gEKt52DqF63i4Uz6vtMyS2ppYw3+YuOpYXRTs3CsRd4YOPGRkK8d5BUrUkvH8bfEelAPfn5jB5lAQMMpVjMVZ00Tlu+fmRdeRFCLcVjEYg2IX3UY7EiGdpUsuNiyR2GOAJRF9ilMj3rr4G8kPQjdRS9XX2QPPsfCu3CT5mEHBY5XtOeDmomuOGFEdShXfgVTn/0L+b32Op4f7ACOSqgjoN+g03Aeu/90e/SnBk1Kb8KQaExAMCYHpUZrmDXv88rMeqoRlsyec4hMGBzANvA5XtyDyw0dkTRgQkTinBtPVFN2vpycJg6ElBSm3JelmhQ3Zn1Av4BeNfyHrQNZVdJaCCQ+EDuAb2P40lFuG7tjT7b4BnKUQP2PN8TUOF2QkwVRnFq57f/2IZnWoIOq589z2N8eRAKsJQnzir/7inSrobG6CfLZoZgCCs7PNbJwotXMu3N+LEOLO0z3JBAvwdMcbvv6T7heD9HwXsAUPy7/ioTAj1GA01e+gwQIys2TtBGuCI4Acn44dBobYcTIhtXh/dwf2AcwcGWEDrH13cRH0hghoymZEhOgQAytzIJ1EzHVKeNse+Cy+Y6JPBb9gDg+9epYeTIKpGzSUkAIsTZHoOORotticMetzPLJzb30rHkCLW6AiKpMZYjwzzn0ht2JH5/bm3vEJwZeXHoHYRXcSsid2ZVVff85w+18Z0IQMKmI2hetTtb+VE8KA6dwoWsyFmJ2NMYJutHGTERUh88v+KnGNy1jgN2gcPk4MGIcXkWed/D/x8Togzs506O+Lh3wndu2MSpLhiOoMq6/3CIPRSVbhbpZ1cgSyFssMuCBiQC1l3y+OAxC9L68nUoRQXrC1LnYHI4UKxb26SkSwWs1Ath+8n+LkMP8k1qnh9SN+RsVGZ4zrGbQEiCFkVk/upomi5Tkw19bTa3MBMxZ1pk4VSwuDWZAfKdYHaoLYa+utcTWOxe+wyOpnkp/iljyxFSPmNo/WrfH+NGTCLSMgPAq84Svytvz7lbAJknFLH5nyIvPa2uUOkq4l1bosVdM7BaXdlnCl77aXJ1NcK0VlYyVo8l6hihaiTK5MyDWCsQP9/SPbSB8Zc2OCILemTzGgKUAbU3jP7TJVF9BDcb8tj0NaWUc2NVw9gExDbSndrZq7zEQHLTDueYeWJh1xnLLN6Xgw26ChfZBwi/et4AN/ZiJVJoKLPFqu2wwRAysocKqImNPY37AI8hT8qXF7nZta+4z6QouJ69TwhFdLLU0sA1O/TjVe9C7pOVT+TlIePCDiIbIHQnqWyqDLmPRHKja+UzKDx70wQF0MVxzc2wj5q6q2XbbeqRPpTclIgy5QP1KyhGpw3LaXwiWPzr+a5wstSB4FlJhRRIwAIbzXaYi5S3+BH1jTwxcGB9jOPsRWbIKjYIRfPo1SrBFBx26vE5kYtypg85litt+qGmr7dk6LxC859uvzjSjIe2dFJ3WWFrHcl4kRQglngGHP31uzGN8Jud3RwcMpIGc1GW3A6kBcabFgBLMsYjWpPsxJRRNMCtiBVOpi3MPCyPKIrE7k6n2Fd4voLXLRPF4alicH5p7XWmKpihNZQQuOXVC3kZw5Ozca34ayb5KTO808Kq+hO5a6Sd5zfIH1Q39CJoq66R7STdyvpdlAF8X81xwtAQDennHIEBKlATeUbDkUDb1j42WWv+TADUmxuyLfIr67NSR5KImOTCzUm1HQZAEpPrB39wzMbaSo3PjSJ/P1lI/y4uAczsBZKCktq553x/8h2+CfnCPKsBbZnRa8zjc/jibFTqK2pTnGSfagywJUQvhnExurdgbbXnrqUBWBsQ6lcBUZM24mvZH9iFZ8BZ0ZUO4tl6JhtLFk4kvdev/KahlNJj8SCY+IbWyHWuTxr85iOpzrQyUcqvI15dqHSYbQUpKNt05LUab0AldB14qjAVheJTsK4yX1NZBRRNW/tJ0bg4WOsoSx7KKSbD7M2FwdtU5MBQ4Uur4LW9NEwHuHFfLiiCujWdgUTZpmO3oReddteeWBR80SkbbiwYVF6kj6gbVoV3QtIDVBy9o9nyfEKlY8m2LH5hRnmOwa+awLVWNzBz3GBABaVqBoAjQNvZ9VtQGYNfwULKp9mM5XSkifmRS3Hb8pcNWzFBwDFKTEgHl21YwC/OqBLGHpOu+eZC3nVZi33nhHP0ZzYx3/qDKxS15uP/h8jxTWjRI7GgTnsmo7CBMyDozRa37EbqtO8LSNv5cAIV7uXmNybKSuuFd5cx0TNpiw6pryx8ReNOMEguS0QxiBHzm+q5PJ3p+uluhh7onq9U05Q8VcLDKf+mHbxMwiYpsUhSUfIne0x/GDpoA8CaIP6cwQpDfScFvz1EK99H5wURHiKFBXNX9iQYCy80LVoYEdZoIQmPfNLegIszv04ujGegzKnWFY+2PSXck8Ck299FhdWErij64mo32tO/SuGaHBWkold86fAkUi9WX5nG7WV/7rJ1/AsHuN4V9/AQCov9wT94U4WMmouoMLMd0Qh2vIBv+W3y3YVTOSTuHNixaRi1QaI2R8c50ANBFxV6neI1kc1K0mvLqa7CRmvAU7NFlR+vTfcC5DkPZJvRkXR+bOOTpXwkRnVpfXhI90fZ/S/n0slyonjjUNtLVTr9cbKx2cNxAaVkHkEdJk7ii1oZdeSFN2owJEwi/FZxlEoBn6xYwY2W2wdiFWxfmuKT61X4OEZvO4D7rECdAAvnOZUIrp1Xhlkti4esYBVFd/AYwAdjt0opBkrcZmhUqiiPQQcBcGGNjIEP1e0J+U6Fys6FoZ+wnGP4+hGwnewk2X5vn5Rw9LutuW1lFFXLy3bii5jJiorRyo4wedqYDvGBiG4mZ+J/PVO0gvSQFmm/IH4sk+Z1wl0Lb5VkKUjPPgHrvlqh4vNMgAH2VKLPnj/JTw7UrXSw2DABKhqq9/BnPWw9aAcxeIEdbBBkRIV4PBEp0yx6ytZ3dURMAmAp/XBHJ+xiPGg4GWTmb/2bsQD/01p8R4oxlNSpcAHpp/ATxeQPsE4Z/nbHzGhRYVJNmwCHu6u6AKqcwAIJOL/74E+tV8xOl7RRdFbMzJh7jBNLSCwKq0kVBLhCQ9Wk/TXmjkNhRc1/FFY+twbXspScByQ/E7B20dIWx8tP1dYAucP/mM3TWuwJOewiUNjrl7BnlH/BhpmXtoOwh8oRItDyRq7LR3EoF9ksDG3rgONXEg7a8zzC7HSYLvk+SGH0+dLN3wp/oxKtKHDsP8g5Ds4TdGxABSXmRLbAw2Gsasu+0W2NC8CwxcYkFoWEt3/JQpSTyZFwX9hvy7FGfR7NRgrK1laXytIHFntmd7ymHwDJA77yYd3Yym1Z5bpiRLK+vnBUblpFdJH6nglujc3Ex8PJQYJMdKAtjs8RxmrS4iMVtulTmBXhKIEU2p3szBj601CnF3doVM8nTd6hJBn72zJvkomcQiYAGP/e9pKJUxqE/FFRJLovUV9cx4Zi49idfZCe/Gjvb10Qmtut0FOZ/CxPHu4Y50Ka4aH2Z/N4DbFKpgMLi0BiXYPGbh21BrVDS49EutnLXa7bF6StoagY7Q1kBgB0NHSDJxxuTqj6B1vpvTzzRrSyg5LfuAVy5vF5p9KnR8ibk4YrIEOfLD6TJ/1F+Kja2yxw8r6pax4OGQ+9rmcW5JidS28mQP+VIA5iHMiwlI1x/QyMAWA8Rg/almZUJPBtWvl47dnks28kU5F2tmtOsT8EBVR3FwiIw0DaTRz+mPfz52lL/ik0d3GJlTp9zy5OsotJNFTubQ8c8WWpmas4EZGwzJKh91qRIqNWTSX0hfpLKNFtF7IVRGpxQcvgnG15qiqytkyP/YvqtI7uq/fWMKh8kUV+EmgpAimpAI0URAe1Sl/jOhVFpRAttlTswLfpA3U6XwedHem3YgnFkzwdo6A8Y4yI+Xy5vBzx8856ayR/2IhEHD9nz3VhssZ9JGiyeqiVbCpqQG0oHIQl08DBHrhRRUdB7ucLfxi9cjCNM/YJxZYff91bwhLL/Et+WWx4+IYXgLYSOovNopb78oaLjqJvZpenttkaLUlhbEJpsQFXkN9/Lt6NwocU4z3LJFFa/rZ3vHljp0RdWGxAFP1e4v3IpsAvQ8H0zX1Ba5rlNs7MxDlxm5CVtBj9Wz3WllMRAQlq//3pPl+xCCx7yqBa5sF38BjwhIKwR9LQNj9BFOLs2C458ixZNwzQPOmwStt6SnQmT+WmLPqRE7NVvJSudph1Y9Zw3dyBhADPBovAEGjMqTE9Xh3UCCnJBND3AJnqjR8Jm78yovk7Kj0fugcS2mhZLgEe+NMLeEnfC90HOAaOESsZXMydwlNwgS/vexEW/3ZcYir1psJP7Kiwedb4EYUYb612Zwog3VkToNZdGdqbWKt9IZOXCwf9XnEv608rYXw6TY3VoEvzHrQxVvooEX5YR8ugENyAniuFrUIjGKeQRCvL+ZKnJ2ezaZ9W76y3D3XeDx4mOrPNxZqrGSPG8rHJsTyLittQkh/2JKFdDsgjNjT6lE0Y9tzZ1yH/InbmK/fiBx98waHaNjsYSMoWMI3m1uHABDRoYyHbQBepOYvvdxMIsxUfQRygU52roYmstt5VNhG5KkLKBz/wQmx6GCg5ruVfR7PocbyDDoURFhxKGi6IDabrwCBAhQ5WbVgMDaQyKOxpv45q9B1xHCOcpgWKhxJRge98vjah6VmVOcAWH+cZggT4ItRWQD1UiBjyKmbrVghmhi9MyrXexADBnTYjw5ENAfy6oxvczwLxdf3mC2suAxoXHRt8Tpc/Tji1IfmtHz0PIM4tBUsRbyAxRTPjdWFeSPybzXzPr2+2i7eumAWn06vhJlWVGOT9rnIKkVAlblnFdW5Re3YD1A91bTNOYy3QFe+C2/FP7GVXV5EwZudh+wiLh6TwDqetjmZi9E/EEXnXKuHzJr5kci8OTYMpTWlR/iHSGWnDHF2M56wSzIlRCBaN8YknWK+jI9L5V1LWTxkR5LEVc7FJTLhv9a1zsCJlRnY0pqEJjEJWWJVQJmM9yDJbhdUO3bXF7y8MMC2axuRzyKTeZN5TT9z3O4vI98/xi69iG5XNeGsVB6e49C+oWTx7VnAC99VYNlGS4dPs0MRxQSVxgPD9LDq0MUOshsFkc+CpyayO4b+Ao9Tm2nPRg+Wzin8f8LUQPDJMFn0aDevYgc8GWVzktOwF2JHJsN92C0EnhUZYmzaFS5vx8we3e4A5A68nbR2zJ+dDEu1L1diFSvpnL66elGtBVpc2o32k6uMwqTge4Fij2+DWvbAixRhi4Bnrr2sW3qGmAyhU8k2WI6KZz2EI6lR8kiHuzaiYxfGhrHegDQwG8XkoHqW80Xbb5B6rE3KFLpBAnidcErgscJjZKCEuJ75Caplt7YNnQ2P/itf2ax3Y1lgUuIwct8FpXMVmLOfEtpsKtAhFejL3Grvm6qCqmXKsvRGz11tuJ0b+KlCjrOf2Lhyjvm24/PWurK1ObQnTvUfoBWBXALSIk7wNAqS48DGo8IsxOzxuf647FTZ3C+yglQM4nqsdGiCHQ+pdbbtyddbTKg+kz4+YYNQhH03HDAL021c5pFqyxAa9fHx7VDvSxZejFEXrr70GI+HSHocKUib+5lsDrzAQapSL1CBzr1Q32553HMeYDeojHn2GW/oAE1HRgoccwzNCzJr8lorkeM5iAcHMzSavoDAVWuOSPnYLNJyOiPg22qQ1OegzVQFCV5QSPp6lAP19EeB1jcZ9heKmoR8A2bwXG9V1q/NzCFfg4EeB63LQV0giZvHNnlcSd3hWWjpzaLHNtAzJtWBm5Obj1WGUuWNVmI4ATM3HjJdh4RJVloMJGByQjGsJH+DfL8MuGsYUV3lDp33Q+6t4ToaUSVeJ9VuAAZryA503jWa8X7OZnddlicCtFiSUpjkgSQxKAQHR26O/PNCPgN2dfZ93qjK1HeRKF3PoDVs57Ek571Mr8Nvek3u9A5OlDeSkJyHtIMFkDb9lErXeEafdJRLyn1QHNnYBHGHAskf0xvT4yLqVZS/RPhqvq9pYnVTAFHPSYbx61tQctj6Mq7zBqLoHfkVzaElwE0RpOWC8VZYXuB8OqGzC7VsQDU+01A9cCokDvC2WCJ8UBfw2X0vR1VOTdL4ZFmzbyXDFF6hRYbC9yGiPUjnDhwwOVZ3HUishPSlsgz6ccMNgW0HolHhRCXpD0myDKTNWEXxsJpzUW1/VrPFxJRQzl+81JoP3KsApkwF1QJtiSEkLUsUtpoRGhqvplPMElteczUEdBuq/jszl0CbcSqWccMDpijEOyCSzr03G23irlm3Ka0+mBCSpjHaFDAm+RuuD9o8/HbEUoRJ3MML9ZwY1ZjOkqY2HGxKYFA/C0FFRM9blONpTRKjeQRV+4Agk6rz5luN4FBM/MmXbWdgl5PorQEBtly9JrD+OvvCp12D6zf2fGryJpIwJjf7Nn/kdkVkros7arSm/D4VrROfJYAM0eeDhAjJBYAeI02RPE4DNWbjiGMvWZJXP4L6RG1ccZWJqvtGc8Mdaj6QeUAQFHYi+Aot3DLaiS3M/2vHz87oZqv46S/2c4bVb5ZaHgpPWrRwa1VroRlFxSNCOlzI2UhoVJNwuQsnJSbBGBDjPaRFoDTwTeNdMfjCsP48dTOHhGYopIyPCalsa58mdT9nuEQFSwhgPfVhS7NaUNj7D1s/lZH2c5AtcLtqOt3nAh/QmCME6elFK8IbpgIyjaxY71V+fwKjP6t17IlcbQd6+bwBQSaY4xQNAxcF5tba+gJeyRO5sA9bY8ahqWnKeFTQr42RiH1CuRs5IpzFmUdSieyg0oM3Zt3W+7+SZro9y48S8JbFh7jq7uE8XhG6/THMy8CtfwL5fJozwwBABPM+GP9RTOzMsfDzt3M+BS8Fncqlo+TV5YqMyHYjZGkmh0FTT0jb7SJOutJ3BiqbHdJF5eC9UE69PGob/TjyO7U1dHd0m7qHgr3L6OK5WkuPdssfooABDpVEhwr37dMMsM86pcZlSqbfKFkPdzsxSmUBOrv0s/V4vZa9PCruQtN/IAVGcnLULSkkbgcZFQlskCg07ZDSAOI9JOJW86CebVQeK57YD2F10YGW1vGq2/DW/Wf1J+qaC2TiRkncepk3JQx/tnvqKg34Apo/LGNhyHz1cLGROxK61VFGZRtKv0NjGZAlV+EfUUfWaQSDq4bsUmjtQCgfSsD6KQNTtsdO1ZhE43m3AM6ZbInUpcSN7rpPdlPvAYIeqiqlLV9GNNefYcLfukitVJlTHz7E2q36SB4WqqIbZa+HorBaYMW9Lpn3jzMEAs/1paKgaOQiUGsaDYIWI/Gbow19vSL0yo+VGIaG1M9txZI1I2JU1D9svszmoS3W5C7sgdO4qmHqCwVkodW+CfFp106JSJjGNaxMAfCf34PUNHnzJKmqp/Q1d3Ie0z+btciSG37Zups7Q4XF6RnOR3y74xIR0sZVJH4IDwcUe4JljFGLR141gyishYDe6dv8htb9j2bbBzuc97kTAEiJbPnS/0BqexfEGUwMP2kY1LQOK9ReypDc/oJASbYpmqxlVBzSHwqR0sfsi6lWVXzvJApGMZ5cLo4MBHmCR7HEkeHQ+621wTnitoVCvkTUYpfGzz+j7q1wYg0hWDRRBiBAWR9DW4wgMcIlooLAA2aPiNFpuLoh8d66gxXw1dbq831qg7fu4Sh9N97s7Y6Vkhm5w+Ig/Qmf/2Gn5QO2uYR6U2a3I/fl5hGQTuue+Xbum9EWDexnI0o8A20OZsgHuwRZzLZmv6ZPkZKEGHTIlWi6dZNweW5lae4MDEr9L6/K3lsXUao6iUDJAQJVudwbg4oFeRt8V4lKUIFvXaSUNerGSWChmWGiySaaZ4EJshhJ+UB2CWqz+URpkBVileMzSrI2rjpZ8vhXwNNPKgbXbbQrHjbou4spGKd8PQwnZurZ/AGBqelHSc5DgCIPI/hkswotrMgchsQiZ8XVLY79alg9MFF9PK6L2QwrBfInfQ4LS5ER3ItAH/JtZdykx3JCyeCTsoIAMiX/4yzFMzrSZ2LqwqtCagjVKdrMZ/W6PdBHhz04MyK/uGBLLFrr1wOmNnG/e2Wae/wj6MeIO41MPXatbNubF6iR7LawlyhifKIWat8ArV4bWnWQjTFRSMPsZDjaktAqEP2e4OH9h/oE/GVRUeItJaL3pA2lGq5DEUiKpzYSj59ZKPg1mgv7RjXXYcqwvtFTcaWOv7sn9a0wF/MyqR8Yxr1LXpCOuH22sINnPMNk6i+E5O5hOV5yNt9E+QOxGpltvRMLQ2TByXoM3ZA/SAKkqfycQAbc5QTpYIorqG2OlT84P5SOzpzWau+/aMYMpXB+CM8YvjA+evXjbsf0f1sr8Ju1Na2jWTAPV8zouSQoPh+nSHjuMq9x33fA+dGDsxq7wiENbQzPZpxJw1x16FYxyPwqBlmUG2iHiVkVvnR3P4HJUZAQtig/P2lWMxxlRC3dlSApjv2DcdI0YMR9P+CqFT93GwCyr7tapW1T/TWSer65U9QGzOLkexuWtrmSwiOr9atYkA0TJIhZGLK9Ac/w+bpJI9jDLf1SWI9u9EWuu1UwwpktOLU+w9utjuMYrq7J6M3Z5TlaNDqwH2maVwCdEBmD3pCs6A/ZDDDnvXXuhfwEdlu9XUOohLIxgLrxXETuF5KrzoRTG3lJ/RQuiQ+rJpkk1ii0VT02IwCT5zKiUAKIL69DKqaUXatSFm4+j9JNm77ntOv/jYJm7uJQMTBwvBk2DfJv3nE3zIDjhxMC22Vx3o6gH+PL4f0cZ4muLIhUmKho/0/VZOFCbPYYu/jPLXpyyl7is7XTvggeMzBouE8ZnPjHKkbsc63ckvtbsyR4QJDSGrvXhsE8iO3L8TQ0QruMWuiodmdedwiGtIZy5DvVO41/tgO2WtjvQn+b8duKWMnVorvSBAZ0GhJlEs63CmLQR54IDdnebzaPojNAgvDzpHDkZffd3ASjxzvcbTOp+i39HFrzrNy6RsunE7p57IS+tBk7Fd44K3ktx3PSpeDN279TokaKZhbsZXZQnogfIKY3Wc+pKmJefiOwmUzfzt8mowKaST/bmzUdSZXMZA+H5IndItRSE1xwctwZUXnxUd1+8I4MhfSE6lOq4rhFWaZhe0WoQvCIFofL4VwP6JMgblutVKOZ/8x6LYs/13/L1FpYKCSn8wZgmTv4YjNBJ2k7ddnLaKB7p/E1PM6Aaoj7lvpyP+DNzsteG2yHC4YTlMFieqBbn4Hcdp/m2n75H47NOFHAyMx2vSNY8ZK4+HD3iwdtc8rTO8iy0rsfokSv/rnXHfA1yH4T0ZSq0MtMkEZVtFi7Vt0v7/eqT5q6hEIv64xJmdS8+Jz6AZ6djH3Ak1FR56s1uU2p0sGbtTd7t+3zAjEenRKc9tnO9bgfN6aq90Nw1mEEdHT6ZWiiXKo543dxBprOrffSZqG8sPF4/z3e93opReBQI6c3y9C+2oj8KHm2uKUtpDup2vueWVf7sgNYcn7mR3s/X3GgzfavukVhXZQ+IwySFWUhu2GckGk99R2YeH1X1H0m5Z3K10x07lR+hp1p0/fecZssT3+WE4/Mr01YmhR/VzNcyvsyDaXDT50NgHkHGAwSTm3B5poY6FDaHlOZ2RahRcHpkGDYhaNGsemFuAeOpkW5TPMQIgP/Va8KGwPONM5C5/ItO7l59RkKEvCyaUzngy2G9GMRCqpa1CLlUWkjeJgPxnVQhFGW+l54wVDnqbyoOxfAfQvG8z4miVRVEgd93ZuE8j8JdMKg/cELTjCH9eR/qazuPhc+WwobZpqSADaKnxD1Zc0eSOuCMLW2qELgJYztkXLDAPydxW8+E16DjFGP+hk5OGuonr7VNmM1wg1lil5dyUogY+REFNOb9ECXTwbyw612Q84W1nO8JmBOtKj5Txz8oW95cBJIAxhoFIZP1UBiWhI3+1YcyGIdiD5zUfB5hPig4o4xJJhwkkRrWrCkKzUYkrfraS7MX97EHazTvjxbDsgikTMm1YS9Ol3/OJR/+8kEerpyQ1ZQ5uikE9WH1fIgY/UuDzrPSUaZcIfOWVl0LOLFQ/pvfHyZ63lNxrHviPZYpFF9HfNrOiAW88VBIyNNd2E4LQ+SII1h7NHfMCdDy4qLGOqhA1RolQbN0xZdl9JEJpLGMn05RDtw8u5NXGHEVYD8/jzK2NL40SKjc1rxVDsmvnEOKqAxeFQaLIOyu8vcSggkNcEYeooSbpS3dVeK7hIc3MeDNjqHj8JncOh6+gRahhLGHyNbVORAwlQtNLxQ3wylAehe+wafUIkr1NtEgTTHdCnrUmZIhmiIw2tEh91vusq7v45PapiNkPU0FQzoAWnzSCv8IZSEMXUBhc5iS/7B6obBCB87kJK8nIHsuYrAq5VaU1CBomBTaIei05o0a7iY79yeKJx3IwsWybOaHJSNVWDoVu7yhwGHeC6RVT0Fgfvg9qEpEL6uQH4lP5nWrlno26ql6LLNLV2BJvQwFzaUCGM1WOFJXTUgLeh8ewHr4TwuAn7/qB/XpBEukSBgvw3yGW8NKlCaB4TtThWGc64pCXZ9pqM9dEEr6SKcoEhVri38yqYmnrK7BPnf+iEmZBJQqIkfA6iLTmm5fllW8PJbXHNweN23rWs8geWnd+BygQZKJBbiqtNjanKfSvTNPPZywkKHBuul6VAU2UEV2vGvuBYQBFhT3Rk6BBAIKczPE8JrTC4tWJlnTbnVYxlQdLRTzx87L2jkHZws9IuAeZfMxqzNiAFqkMGRkgHmdx9Ip8/PVNAPjaZpBpi5Z1R7hdsoy6sPCZPorf+TQwnVTuWBFGA9Ix+I9xc57H/pAPwV+hWRLG2ymms9ttaZxD09otPT8q2krO6Q7b3uGUY4a1O6J6GhYLfe8UTCxMUwTahZw7K7/XrtQcZE+z7HbBmXVG+IamJ/U8G9TBPGZGcyViqSBlZK8G0+Wz8v6xRGGr1k9U9bol9RXGjaJ1IWvXHkUbLll4dRJL99eKUAAMKcJL+CVl6G7ap6DW8xjdxtLscdliM1Uxx1i1lCig/f/Ph+UsEGr2aKUH2WNIPaKCzZWRNDDhwXEa91N+Kv+VxTQWXJgj/piTk/+ogJkkCwe0YaT+zEUyeJwnJDnQpglPVNc/tV3Y27a71a4IfGCwonRfnYWu97mohFhe9UsioJAEla19D3URm2zOIClMrDXbxd75shWj5wqYv93HuZL1v+Ndq9m91riXwMopMgLcyypt5dDhGjVp/aBHT0yhMIWQzw421ZFdIlc+DoCBXT/nakynjb8+1eRT6G3TLcxz4Q51CrqRRkfG6ZcD+KURLGc9aQSex0wddusq1eFW5UKsAW4QNzG0evNN35bXnCEktxW983JB5g03EklQXPvFezMHTREAa1iLcO7bJLwe/XFErZHvpUeYDiYyQHWFd5o9vVN2Rw92mhfFfQfFZN+3PWVqHLoNrcQhU4TOX1VzzLGNFRJkhpTAYOnKuUfKiXhZQW4tYGwEnNNQEIiWY+vqkorF9/SI7IMqYN5mvxcHuaRIIf1wZ84ApW38nlhGSrNiLAzqnYfhrNjUsEkhBls5qv8/62xNUtu0y1Tpbb/l42V23+ERPw30G90qYYN2w5zvy2Vj+IfNMdKJ/YrY20zQS52xCwYgsBXEWEttc0KOpDOkiVd7P7ip71qMRxIAeGdC6/0JZQENfHI7x51SIgVnwMTgdV452svmmHGoeNzEewaYk3Qq5Gj4SWMlU72oWgw9ytXV/gqM3DfxebCKOKIYTzE+NHa4BY8kHEFDpoA2nhnrJPzonXG0K8moS1zZJAZr+taE3WDHEKvv5zx7Wk6VH5aoVdR9RqBLVJ4CUMEEtUm8fzNZ++Y/GhypqmgKMUM8c65laJa2JF7mwHYlk4qkXJrAsUIf4DuYzefxFjftvwtK3PA1WanUIkBmuzCUfL/fzWJMS6lMn1wfVP8FEpCSAdsCttDL4cfl/WN3T7Wqyx4BMzziROG+mn2pyo0bQcWpsEPfNsyMlpkxhx9VGb/81R+a3RdKED3SC6h5peotJMNLvvCQHVRUW7P9u76kw+vyB/jA/pkbm/LQsEHNqCc++FvfbUznPEgIYWjkfE0Twuo80oFzy9eSsz9ANlLjj2rFJIgpO0DhPAdwDngA+x62LylQSb3WizpK7PHaZtUvRMuPBeJvi+RqMuxDmKwYjbPb5NOPQ8r6enahYORnAPtUe771nl+8FUuRaEpTnzbbiYDfuI4lEi9Eh+HRNM8X6k+HF+HXFV7CdIdgHOxUAP6aXbO3i+XjxyvCS0cO3e7SMRGTGBnKXxSgFXYytmYgyrviUfkfunhkiC0pde0VnEx0QedsTu2yBvVmeLesdyZrgSOj2MSV/ASn7JLf5IISnazXso9KEG95KfP1gr+LDskoIHTkdhBow2wZTaSnVtU6F70dUlqLrITuFpyj8KyBdj8pHySypX/jmC3WmTWH6H06xlQf1ioJMuYvbCGOUTFTwO4AG/0H22TsUhO6O6VHBtspxDa+fFWBwVhPKQutz5ilrJ72dxc/j6jlGOeg2aPPqoWxavpiLfbGnL9BCKYZ1AWiCmt9Pmh+ktYGxpiogh+g7mjDKv4TooOoLAhvpXGundjE1+WRuOdBOiXY2asbJahmcXPTG4smebPUaMVViDjLdIa7cXO9GX8pfGiC0LoB8vhPzaABiBk4ko8rZ+EEanqAN24jQmiCkhTnChDnejjEiHR/TqgwnZEsHdnsfgfml8HDX3s98QGimjEsVfExYs0XmCmXdxztBHUwmmYp3WGP1CM1Ad8h+aczQKmqCRZFFRrP/4RnspuNW2I2K2n5UhTytSijtGGdMKVM7d1EBqNCzCbFGUeYgx6CFsTsBCU3Dux//DR08mxmRkbhfziDLkSj9oVzTt1tBuz6Rw1QKV96NfaFOg5xenCVlOC3+TIAidUKTF06TJc+qanWv9ty9tL7L+RWn/Zhg/cIJFmwaj6kvOpEmvK9IroK3aoJCLHsK/I6cNYK38lQrJohN/OZ5wGeDZOUCvfu6pKYAlk/1MYEfx2lf4vKFo+WhYHPBrtv0A9y8QZT3jKi3ATvk54x1oZF22N19OIXOkTzxS52N/drlJTBgruXINd5Oo0Cw2C/QriRulLAKksqflHfKLyz40mbPHIXbJ42UjSvipzniXRyk2KOUAIape3luAoPkodrvqBLvK3660JKbeQ7q0e86KDztM7OiACKQXnlSXevRXGnfYvACDjTR5gYNiZuYlASneROYQnkVAg7i3NfF4Huqca9/pN8eUc7Y+UyAS8cg8kfNl1U382tE7hJUtGkuKlhkn71sv36o2NN9RUrRvgHy/Z72MZq8TuL5M7P5/LE0MPek+8DQiuYN96zSBxoerbU6nPwM5MY+Qa/IOyAuIMIXl9rSriX4/+TjH/+RONrM7N+vfrX0Lt+l/JlY7xtrDmd/fqqhjys3cxAb7fKqA77+hiJQJqmh4Uw3SwMwVo5cUk/7Q3lwZfZDCHn4cWqgbfajqGQE3OWI9lfg9dftaMczpjfJxe4/Q4L45Izsn94DVDAiTGmZBZReqC+yy1KA2HkZ0P+oOTffX8NQDeXqTrqgSbJoSKXBp2Qc/vSO2V1yp34HynTXFYvtyNuttDO65bzrMZEe8g0Fr+WdlgzLtJMUCrtcaOadOd9LpTNM/ohodsDqVmdpDphM/qqkJgbccDUpEATU/a9TJzHGX3qhfgpF60ef/VoXlv+RqCJxx+KoMDFI5KgVn7LSJcDlPEmRgSFzwrLTtKSrANhBuuDbOHjqqEhbwZ5VEQzSJZYghmQ59CrSbUGTHJvsP6NMUWF2VtnDuiYnqSUQgjJ9YFOR0OV1aQqByjM2+lqrgQ0qPuuiUT/rx6NASg3Qg9hwxHUuY5BnpNZ9tn9wFaL34ZMCRv/nZ3C10xGNR59jzn6ixn4wGD7DAj+NSfaAE2ZzfVFwvsLsaTXHhMMM8efOwWMvPk9KLGAcVDya59H5hkWHlwu8/32akeegVinILu0M42OoA28ZNe0gBNm6P7zPRT1W1Nls1sRqKXfSm1HYhIgo/HfMg/z8X+x7uSsAu5GzZpgmm5rOU8K7G893sbJyIjr98M8XQSY1MrNO1zSgNuKDsucBQpt5Fi+Lj28fjC7E3BoNw+p7XwVmrYrUYBnOinxhVppZ99qPKvfCBSm4xI5pAhd348Rj7YqJTBu9w82xNnM18JWlcQSByE44b9n1gE0YTUri4JS69cF6KYu1Q510yhFdGeQWDhRF78VeSLFaNW1K7GcXnREplu0QH1Y5zwryRL6fijBuCm/GcuGjQosfDerV2v1OKs2mLLeMLfUnO99JX2eYbDapgyWAhlyS1bdjkdofPJ588iNtmix5EVy4KPMcQ7Y7Z4kujVr6UrWvz+Fmf0amPIKjgcIBMe5nc553GzVsjP7YcA7x41wcegKpWr2j7/8eC+bwsJE12E+iXU1mkNxmPdyxkdKbjPoMktBTzm1J+NxZy0VpSVuiMt3PKTtp3UH3q3y6KUqHRB5u02gJGM/nM/9cQTcwn8eRlYKV3m3sCm/7/U9KxJSpD/jXw88GhZuG2V3LoMeUpet3w1HqriJx55XcadYE4D0P95UtMTYdS5MGhW0sm710lo8glPyWvFvfVpzuxW2uoonqgrqJ6c/4xVIautFGuJJPH1RDNpBSsIInsy0grQUuQZDfy/XzD76u9zJDJLuhvGk76AF3hBrjyo2vm8ZbU4hzqPVEt8bYrfyMzrkN0Hv/ND14OqlukMf7E8mGusfZujEGLbtnSDojUI6yZ8ECqtvlzdbd0lcOXPY2to5zdzLd6k/4p4uRQ3JgSxI7Ki9gLYS3wZ+lCfbutPpLX6njyAuDw4EO0rWi7KgwUAJBG+mc2G9fqR5mbBAxHT5mcJVisQvbxWKIWQFd/IHS4VfZdBDVhuc623wSMDkbhYJcAkCQh4RHUBN9xdkEOOPKYp9tyMxfqP61RmUaWEzJUvyCx2eAvEYHOpXTd0ZvraLq983wcXnPp6jUr26TZ379Yf6Jju7DFN88EXQrZ+JDiYh3FGm5qgMbWRkQd0nDfVDrnl7qGC7BAIgI3IaGEkTyoZt9aJAQg2XAROubIUFc2hukSoDaN9aIYP0mAQrD0tNUvFxfBBg6Q6CeyexDVlSeYY9QnMYxAtsqqJ8bte04c510jCw8y4KhdQH4gdgGub4UgO42GYdWAQfjKk6bWSUv7xiIJZGKP6qONGdNlAwKcTpCqKAHEQJuDW4+k3a+p8yO5lIL2hwtzHsSscGBdJrhVyD4IdH9beKByHnh/S2cEou8ZwmV3Ex1e2fpJMo5rrLC6DPRIyfzXYhzGYWtE87APrndywKkaeesF9ifwrMNxYSWKGyxg3vebLNBeHctmkcB3TXEhBMVc4q0burtBYlLiDBdb8YpvC1mPruPPJkSolcmRFyG+SGNwbSBuHK1f/sv7oVjCW4PMLQVl0F/1QG2AEcyNTony4lGnZyuvwMGeD/m0ocavmuzUn8oB/MB/g8W6j+GomiYgfvFzPC4kU+R9wSjLu/kg5Qk8jDylXvXwT8jqGW7ud/WBMBA0b0Am6hMA3KnEAcD735ydHtIzLQv9HX5YcZp6H2/6qXgtQAXJouFB425xRFa2i5RtwUE0TcOqbNeTwmjaTfYcS71jKxxtgk2ZE65HOvZ+fLGEbmYP2e3XOBtepcA4dzIRcLQAiVZ1+jwnHCg4d+hwoNDn0c00vcjSIk74FMRi+Yz9jeSfml6jn29iYi9kEccAcEkqtreZZI/KVrCktvgfg1kjR9W+HuzJoiNzog9ShOakdX14QpPtj880g3ToWW1K+KU/tN31DJjUF601qZrZhUk6ggLi8FURw622y0xgu5++Xh1z3Hcgpq3isjke3Ris5JOvFzC2wTCv2iabHheiPWtP5zG3mBdHoI0vHhiZNxBnT9GN04hq4ndjG6e6GXL20wGEx22fyv7sq9b+WoMMpELRZ4An8aV2u9aRT+1tErzkGA4Jw2791kApdtan31+f9Qm0H5KLUB9nfMKzKOjJLsBfc84fI8WQbWOwCJ+DHkgEhxWii4WlmXU4X2wyy18r8ASyhD4AFwrkvZ1H75psAb0x1NVD7H1uxwP5gI4ndwCx8Gx+oO75KaIbaR9Mw2eKFGFQohhn6jBzeiiywgNmFPDLBVD9ypr2XLOG+VLMIuwf8MRNMNu52ysW1BdJtpStUpA4EoZpm+/gqZdCrkHOXzaEbRWzCL9EZMXl4ab9yM0+8p5/Eh2377N7Gh33M/wIsdKbym6MbKwejGGdJuK6s3g8Bl27RZzt0KPUcIm7oN1TsBFyNz2LdFc4YcXDV/0vvVWB2/Szpg+Mw+ISzlMI2uQZk++aMcZmLcbamABF3vufma6Grf/jsXBmHrzvCDvy1SbuyDSWpK/tMoRON0Z4LeZCkngGfZbWg8x4Ty7ZseIReRgDzepV+M4PShS8rM8BDzNhXF/OyVw8ECS/MXwIKEN3TvGMjLWi+LSOVFIYjWLW5mzl7PLoaH4ya5vIVmLCb7/RBc398NsbczYctToUQiG4PraIZMOYQZPhjH7L6THZelaLOBozynLnyGp67XHs3HC/8GWXC+qEvPvXpw93XoAd6HXD8cIWjetF1pwQ+73I3UYwgW5ME68f5EDojlQ0wNw5v4SpB0WF3pUOY6jntlNhhQD1BDHk8FCKL//P2wfwjbToF+6irQwjKbpC0jyxAbx2KL8sx0GCNv9qSvnKby09DDdneFxnDoGmee80TF6k2/CD5By4R6zZfydfBVHskXs+VV6thWujicCRU0MdE6G1AnO66kPh9moYpPGJkWlxL2s5anN4E/Tf3w0jBhq2EcI60X6JX87CwEYwAqTWEQXoWEAb2ZVT3+yVCR3gj90okPMMfMPqgrL8uCE4sV43reL7W6C/kTrYGel/6Qr/1w5eSwqr0IJf1Z7gJdXM8QNqic+Ie7G0+i/UG07RIBBzZ7DIjHkmNZ/qWiehetqYYUlKjV/Yu+eFA073OFxsRhCANSyRf35ryMqJYv7aPmXz7JWUqCC5KtK6KKAyd5mDSdeoQ88Nd4p5LKOvRnQFm6I5eoeRDnW8FJUHBPlJv/doYMx4iwJJ+Begxc1q46X8Ss/thXHjfVvTuRpUU0EI0uSOOSDyTgyKqWDsgZPqlrglWAyqBwIdDrBuzPk2KYcZmeJIn/ZAOdOy8Li/yjn6SHPZt+/rdmM2PBDJIMBwSuB5REYGGYT2LkEhIXLR1dF9Y+U6Gfgm9pep6EXl2VvjW8IeiqqhSjMbqKmSvPW7gjDwC4uPtzNstfGAeTM4icLfVpg5srlm64O3UGtx+6mHtVae2C99r2OFC6fMEArIt3bp9CVKtmmfOtos4WcoJE9L6zlG+EJt9TLLRzYj9NTVJeckN6zVdMCm8YJVQVE7tktzDcUgx7a9H5HChHBDzJzvo1q3ykIOg7yDnL9mkcH8dK2rj310OOTjcXUVu8eDmzCdC8oKxAadsNResM4VwpE7ccl38ideKifEZFEJWJGSeZxLRVAcRmYMv33XRu3tvkmchuyngGlTUVpelGSlkL04aHdFf75yT5xe0Fi+G31V5Wbfqktxho2oJRyODKBphJZwjZL5EmsSKHh8AwuhSq5kJS7SnUvDM9BehGk/XZY7RMNSRGloBWlY4k4vyy4cGL0LiaPFJpyc3CEk6Zr2aSLYRR93vpiYTKbpxR5BvCuSpqXwLFUeT+JSFULeEeW3ixQNPRXFRzti8ureh2DdCtGJsoT8iTHDge5m80k8Ibjh/Qb8MxXK6gLybi7dPosI/ijxorYCFSDC+yBL0mbi9gWCUCTIFv9u+0ESk0isPmn5OLHRAwPdxvqFAszV77WbXPjmi1cvHYZFVfPbiScL5kbV7Afwg5UJDLb693ciRPouLnxrOhCYXTPo1GLHAJJQ4ZnsfpVVwwWRtlo0l6LCpARXQFUKavquY0SHGjmb7ayLNWUm+IUKkiGJUJVH4Ugu8E/y7NsDCGl1ZcvIBTOEUKcE39GIJEf4m5YosGfkN3jnu2yyE78sWw7tdKypL3DCJ8jh7zY2T9aLzsk9V06uRvvrgWJpo0lWhM2AQkS+TzTl7hDvJAjR0xQ5z+1xolyIl5bVcwKxI35I4ABli+jHL3cDCv3WKD9odbJGsb7aUngSpz2cRRe0Mge1P2ulwpp+nOoxhNhI143gOB4OrSv3NKfux/nZgD5DbWe65FMVe+KAhI3lmPUGh3QzhLIt4neFPMPT1/mb8KxjnmzNLOHz9HFe4IaRfJ/cORZmWwT+5CvH/AxTkhLNZeY6bVCGrCBkaLxFKYCtRM/lc3lvH4fjp22Sws67YQW2tPbOc7Z8aRY2d5WiVjjNTPMfcFx9LGKLfDvSYdFKBDtrIFYo4a0lH7xPZXaGTVu/gqB2gNd+au7k1Y3KA23cZw9yKoiv+SW9UEE50CcYHCF2sMtyGoULWFgdvEXAo5ohI2ieIFESV4fL08nSmbVGMBz7EX6iqUwfM+wy0e/B0KouCj1Bw9/mbbp3O6cOO1X4YOakagI3S7+W3eJS/RSa2itRbl2gTS56RL90RB6geomIKH4m/sZX8QpF+EhPULFimzzs7X8BDDCaltOmUoOYIhn13Mdl0/sdEq3T3kBBp4AONBP2CS8ATitBP7CEGLBgRF9zQvbHdr6ycp6F50WwhqZzodaH+WsyCXp9LL99m9w36+1Yp+B6b7XZWC1HRSSI7+ypy/W3ScE/9lJayCQwG9OO0yLa4aaSbz3+ke47ofQ50uh1Hjd4uHmWqvkaVGqYnCokzzQknCx6fCPykOaoQCcIIc6dz5pSavNpUJTtOoBYrjCAylfIfftrjxUC4uMbyLrdM4QPhfQRI480v6V4p/ke497wGafqCMellKDCy0N163fTQueT7fMtB8lrbF2vjJdWkVVJwOxvzjeiikxAPZ2E4ZUgAZHYkTJwvneLh29Ir6PwEMqTgOwwZksgAyChFcWJLCin2eNrbFgSiHn81dQ4JrtEkEQDDtNZa6cpxDWu3KThYCeV5qspx2OWhGhhwz42hYilG4gviJVZEd1FydyYiAbN+kfH7K3otoqP/Z2GMj7BbfWfkTJW0pIUmd2IFifn+5CRWDfLqgkHalmlclGUZVIbGWXTQrkmSbRaP68y4Wd/WjSitrbc7jCWVzD4x/ESk7G1xhLcyfebe5FthEwq/ejtbpXApq8lNVjFQj4kiKCrx/FQOY9VTWsc/EEX7rDWErRncuyBQjFE4CUzej9HkbJ9xk5HbFfGJh/jxMeV8sZVoMeithnjj4bX7XrDTN1haVV3piEriiiff4nZV7lWO4wNBS4mozXQDYb0QnsaCWzFHpYSyNsUeGlB3C3S7rZE3L1LyRDN0+PDX+Nki36VZIbAE44+yICpJZLHfdQO+UvODSEnYSZ1bu290UvU2sdS/VJoXgZdFBCuWK+p7FdFKNVpggyLL8ZfDjGCFpQvXlVTihf00kcyiMlMmK2kHDQAw3fNtkEjXXcw9/zCcbu47l571t1rdxR8YuxitYkOlJ30T17JuW9xYKbNGIVPMpF1OFbZcJJK7gdtaIHiLhxoL6NKy5DausoPv9ecbAZQq7tEw64SoqYAze2Pg9KLjz77l8taMqK0gxBAgygWftUThVMBG2Mn0DAVH2tzncOnj+BYeeGIQ8aZNP7G2AkhqYk6WU5QQ8quZ0hzY8a8eFCBix8mcSniKdo11WGdT/qSGdbQ25TpPfFA6RiMB5WbDiloLXz8+QF01dnXUrrJqbtSfxbvHs6An885SmW01f9m9Io+tQDLhiGRf+Y4893jPSDpgs2OFjRQYM/zWMbxB5bERzqv4qAkA3iQTNWbvnDl3j+EOj5Oe6WQZW6VrEi+jaMMje2q5nZX8KcWlfVPITdWrg6U2+R5Kz3EWQnIoJxkSyt9qQdtDuQH/IGCkQl/AoeGRxcTkq5O8umgJHG5tUB0iLvoqR2Y3oPqLvci5ToRwzmbxKU9ZZm6eOJJL2T7+bLVe1FsL6k1DhF1Kp7Gy5gxRF1nCo6r8EGjrgA/Ej+WYNfQfuBC+Cog295b6flWwonQeuwQG6vf/dCxXzIBYERmJqaBH3vgan52jhcHaCKS82bUZGYHjgpqxwGrFtdbD/A7siJKm6zZeCkKvToP4mgLhyJYAfC28oA+9s4HrzFEFMccWkK6rOaHoCn8lTHwcJZIPocDWI7dVyooodZG33fnuyllGIzbnjjYWvklvSDeXTcRLltrZXpOjWoLKtFQVo0R6KDfgq4JYWY9XZUtRFSO0P9yt6aPnJ0rfTH+fzoGkBwvDQOlNgCA7bXa9Eu1eTCMwYqN/hKHYki6bkSjYvvYkCJbtjC0sEB+LOT0LK6v+FDzla3NJCjiFQtQNGkYUX9Qe4oBcZjammFgyqCKnMFUEk72L8kqAOWt+IcpIBCCoaV3Gk5gnNJ5Rzy9wqGGef6JrABy4RPGgyELwpVaw0Zhdr2T+MBwyAC+ajRntFTWNGCQcIvoeD3SngjCHDWepc9AUn/aCORslm97PUzVxgF0o42/pVq1c2oq2wPk/0zqhGVDPKFd4kwEO3orqW4TzjzjLG0w7Keh2QUZkMfj5Vkii919l56xIQzJIYEcZhTxo55IL65IP66//9+liPkYCbuFPHE6YjIDlACll2uz8xgcRi7i4QjNVrG3tWY1vwxq4dOEdmJC0si5aMD37gYtLYSiX+wcouC4nFELGccFB7j3HvtwZ0YJPBHp0WQuQJZFhCGEsDhmrE9jt8wIMcLq1CIwIY0E9Y00zFXj7piB5ehOX+eyNee7HC9DtVUQ80/TIP+j3KaGxpv3PnofLcGH48nTSXOI4ENWmtDMIJc4fkTFZu2eOxK87/g22Rb4kijjf0x7wk4WfhcyamEycHVyWBeDAmqWMD1ymBYEJxq0gqoQsbASyyhfGaJWPvrObRQ48FSxZEDBlxTLZahuiS1X9lgxnaw+TLX/pge81rs7HKdSUgMXiCGQuvNwUJg9hv/3RWIkDGh1CbCzltpA2pKBPZ4BYv8Oj9TXVHYQLNn+fiU72sE8z0iIGPWj5Go3qmkiQn9ikTB5RhlaIbBICPrgQVTmDT+mWQKh4fukdSvB2JVAx1hsIuAzOdYy9F/S9zaSjd4aIiPEpTAepL8/O1cl9AtaXXNXNL3jUTb1Ab1vGkeLzUbjLK8bmS0fcotA3vX7VWLFZfYXRhzjqFTkfyJzanDRADKRRde6bclmtMvFT8KPupq32bgArAlVEGn/6oRrTWd0qnSD0MGE0URKtMaLxVh6+JW4UP83IT+ibewSBwZhVSNtR34gXjr2K1psgwHNNN/a82s3BMdLQS+ZDOcRD4ecljs/XEY3UBngdQlZNDXEpV+o4gZduZ1tWtz9B6VfDWerNTrjSmq+zWF3yz1jNbodukwJQ+US26HP3iUHO35ofH2R4q4VaTEKGNc2FlybTPJTBY8u2W7FOR/1sR0D3N2rIWK4L0jdH2hO+zb+4WuQMpmzbtONFwXpd8syL34vkLh4Il0lEK7lGgoqh42SqWjaWg+Ddd4Z7YeIlWzmlSrk2hlpkPwrtcctRjp/Yqba7SNtAdaHSQa7oCn3wgz35Gru5dg+NludT+uO6y7N1hq7NUySxEHNwXp+q/9d7CdGZ4E1EiXbqb+nL5X8YSpZaOepR/ds7fRyyyKBMIE73xk8xq4+zoqUaqeHeuh9Gg+6oc1l/w8SezzDty4dm+jfqDP1qIh22ZfamUClN+rPr/V4EWnFd7uEGet+3R824WVU3wwp9ioDF8P7f5M0ZfiBAzeEZNFMN0v0RC4DDG7q0otYRfIbcoZABjdNO0fJi0Oeb0VEFOLQP5QWWLJPiXA8WZmhdUwuX0YdNhSALgX6Xg+OfDV5EeBke1lZwp7ev2BF2d40WhI+Aechk/OO6wlqVPQMbHICA1JkLbVeA7OtxRHu6Rz1av74SeBpegGNxR1aqsaBdPcs6/0nlLe2GykJVmu94QqPh4XoiqcLF4d0klZ3dY8csP4W5FI0/CI1Z2iV7Usf8EntDcLy23YWWxKHotIYnKJEO8MPUaymW3m6MPRKsNuUk6R2RAzDwKUMO4DfNQX5LJ8swV6m07+55qgqQJbuVKtE3Gg4mb9QTs6ejryZNSr2oDvZBtVVOz9xamfK7GL6cqim+uXJL7AtfJsIx8LAlnp04v8eg7XCw2b/NKV24yPpxhxOoIe6/dMRb4KHEyQF7tJV6E8nJq4rWHTOi4Vds+WLDwpaDD3NXWRLoejY35rG9i2Cc+cBqvIiXskzVSOmQZIRD4ZRwgG9IhFaqxe/JhjyWORw2o6Wm3Wyaj0rSsshz3zQOiH0EZpZk6A//lOcIJgMTtmIl2kaww34YKoM7r4IjQ/+LIiEH2VM72CKoeKU54BphbJtgW8PtXTHA4xuevxlb3eJqyd9RofXNcvIwedkyZm4MoSr8cGwotoS6nUJPc3khI8syRkYhckOd8yU1TjOC551RY9jVkgx2DYJeu8VPlN4rjAl08TYgcub+fk7LOe+4lHF6gvkNpvVhB6trRt38qgMA+yWoZ+JaVZdoU9gzwJZdeoYqNYVDp+Gp+s/KMDs4n4zJ3AVXOxSNtB/4SiLT+rpt2ghceYQ3U3AIV1ikCJmsGE9XuRd9+EwU76cntO562BY/BwCWD5NcZ4AbRJDfvlTu98xV78AOqVs+YVtKWWUH83VHqRLn5aDRANDPb8ogjG9R8k4pEGZbFQ0jQqrg0a9tiq3bvYluKaAWbB805FCxbMNNLrnfo8nq+Vs92ov/Iupa3EOxQnwmaHzLfJZu5jFTSqdoA9xcQbLMJFjZCGUyHwD0yRLgZhQvmHYpHW/SRTjijRu7tNb6BCt1GZbGVR7B0wjZ5BqN1oq0H3bxaZt5bvqcuGz1sabWOGGzjINbCWR5p8vIUOKvrJaxEpKSr1YIgkGozySWuPksohfjkgXSXZbx8CdEXoSQkyEKyqKClo2pFYEHkwOLT/PlNo/lNsRhKKh9X1KgLJFPiLjRR2jIfvvp1LFkwcw3HJFa0Eo1lTsWBgP6licnHEvwqh5RwPkFI6aHtMlKuT0wESTrIjqtCn89iMRdwDBqmC84IoTLAmUZpNW/tfre1PL521cxFlU7x8801nBtcYvL9O7XLqdacLA3eu082HrucL9htsVJq90EiQnRO1ujOnoT0GTyZnEAkCQIKh1cfgQp+MZBQFeI3yPdiSOQ1nKiaIgnhaRby4COHPEO/4q2A4cQyVTQtqzHa/znVK7MuJBdNqjyGhPI+dPTnpajS/+t/pNXb7XFhPvb+Nx9NRFk7O/jNH3pVsoy7IbayDsSbuhbZnPwFYIsnCIjpUronMHop60U/bK1Mc+fYvyvxOldxjdlDU3901jperDo3xWCvZpSlCx9fQataqv6K8JDz+bGfbTKbpxiMS19m+RZbM5d7t3Jj29aRv9rDOix6OJWQGLwUFcIQIGGsLbt2lWvUWw1DqLWVzg5atOiyY0vSU2EHcTxyqDWI6GY5pAAeU3tK3bpv0MFe79VjO70MbOFW5w0Run/iJGCKzYfWp4mJNV4TjlwwGRSjBMWhrDMX7SDxSGpOyZq/ZkYwS785fbzMYbBw58xdz8mE3tVsEaRMHBlulrErSdApvi+micy0aIxNBExiqHZs1WeP8hzUeRarxj0R1BXJwZ/jYxcIDIxiU0CEbqNM0xA1l3JlK8zWGkm91yh0LR0w5qKhVuZFsMG55mINLk243Xu6W2MRRnuZCE4BIw4ZLnmS7c/kFfkH/IVuLDCEf7lG4EsilaFuzpZx3OYJjiJOoQkk1JhejQGFTyI0cyxkiNgcEwT0+Yrgu/NsINcaRuHQ0aqxYIdYgzGLpeR8ekHlXvbq62Q39bBF2FkzEjrzQWWcUQ/FSniOvKsGEcSz/7aencHAIzeR/2udvsGVWZEGNJ7WtQxZTxNV+ljGaeLIiRa45ttDKPTD5V5PKugtS280/M97PNjaHT9lD1svZjoc7zUmP2eoSY1ZN92cV73zT6Q14gadNUfOQNKrOcGBMQwooTXVCJh9OVrYXaVvdpA7P/y7aEAcvruKWb88L3MRAECqJ6f3OKXs3YlMcyh2BgEj9r/5Zf+q4HjE+RSppthvt4tj5whlQhYAUMNHUBiZg6LfvWewua/u6I0Lp4E0TIvXz0Be7tWSYd1j/LmEFw0vB7Dy0p1YSuI/pd8WS6VAgOCMaHiKSgNrxR1M+NixhloSlAdY0WGscjWgL/s5tAvuQISEWlPRp1gnB0SUakf/0Bw+sEdRlr/oKFYj9CLQNb7x2eBovs3+UBl6EhaU602JKI6l0ESp6P1bUg7WdFHrBJ4k/T6CoF2MIQ81BQHNuJZ6jtESsu9vIzENx1QLDJAcEO63qY+AxseHKSRxT3p9yH7eIz5hFL56O4thiuhnqw+zw/AVs+biiCFGVUNkyyiqfqVZ1jy4+C4YPfIEB6n445I1xeRq68IRCUKg67grm0AqdHLGUDEt45Wl0vcHouhtY25q+AG+lDGBr+OO4nzBY6G6dH/Oce1sfjahJdqbFiTjE/oNvdXKlblPZvGOs++DrLXqlkwaB3ResAgXPYLWYoIETkO1lHS0aN0LdudIXl0xRsT7dZcqOsoEctQawIsPAFclQbW3n0+uK/2YnD7U8CO7qp4NW7u/cq8jKJs0iZZeVE/pR+BHWK9Jp+WAp15YfpHRlAvprOAAD0OOsBe+nL6A5p+1cDN2zYNkATQzuwPUts2McyeOXEpUulpcOu94PoMs7uO3fleevlU0Z3ZrDUeMAUP8cvU4GzOdbVfi2oBrXD9ZkpK+4YCcWCL+MGyknnGFLo4iK1z9ieKYV9GAdsyaTkKcD4i1422d8r7om2p/Yf4qn4TA0MUKN4XHqmNY3LJWx09MmetWhBoYoUSN1uMaExK7Xp4I6VNBWwvwuoABrehY8l8oMNua04+CC28IeIovZv2txtK4VkUgqX/ms7pU1Lyo35wVSOGEPGnQSAPAedDSg8GU/CNb4EQCZm8ypkXDhGVod3j5PZE5TuynioHXpnIAZNGjgmKkl3HE59pYqtNpiER8BLlRt1c9ML+pX0L2rUronoRp8XMjj/lf+GHoVJEIXE+JSoYPQKKslQlIINtwav8hpvZ0/CfnhzMI+xAJ3QFzzWnVOVjcqjcBGjwLQY8Tknr4TzpGbstx6JEiO6KI7l9qXFTl21+S1vBo2EF4Q6HiYoPLlCABIQ50XlZPNz0w1v2BSN966as13RylIDobUf+i0+HeLU8Jc4H7V/fLLLcWZHP6eIiaguVqC6U0g+JxKwxx7VtF9ktDCSFGN5C3OOXr7VkylHan8WpWP+uQtB2+ebk88wQMZxZc/K1eNMW17l3giV2snBKTrxyUGA+A00Swqhmw1XEcBzNcRFWoeqibIGDORalq6/ov013ILIpppj40rBzd2GbGvbh/cSop2MyAVPtKgVx+ypw0PMy+ErUdTvuQVoAf4O4kKxdoehYZP0YZmaZhAUAajreQMZxcyy3ZfJ5agjG7onPXFb8H9z/XpQ/YizmF0se42w0vNFcWou1Uf5OTMyUHCzu1BxbT2nl/n2RFvjR09ZLdwAbVZLCkn2DNvBM95EAwZaVjsR6cdvekujmt8uabYJliaIlP1yeQXziIGKRX1fP4B4geUY5LqGtSv9l1pWVk50EG/OtTQ73fsEp7gKfhSG9d6HaZkvINJHbcc+3oYtLuE94AexfETW3mMvxlppIrXEdtXfTzvkCysVg+4pqdKmDejczJtZ3/CrL7usm+lVRL5UWqGHgkUojlyzvsgQC3T30Sf73GDfJf0kKG41JMzqvZgQbR1TgAy5Op6fDBm3HFGaHPesihdtCyL4I3r4AheNAmgZcc60eoVQxEO0mX4VpjY1Suou5JWwqKbvm+kE+X/uRV8PbFsq6wRFjJOmjtZwGyNm8igmo/qsl7YKLv5PfyeaV8ezMYwKtTtmJaOFhsESrbRAfVRv4hnKRd+ixyGk3iXfLP0OX6lYCNryw0EfJNgNVEp9LxxYF17gpA8bOLWpL11D1zeVMOYRxz9E5kSPGs19xEMTNFQMlwM8nvW7hMzCicO/EOJoL0pSeFdodB2P32iwILLH7Wcewe7grw806gzbbeA4aBhdfGj3j0tEo+li+RQOplpL9GB0HNNlsK4w6EoIAMYzJrjC3TuTzy7ISi/nKOEtioPt3UEXWKI+bvL5xo+Xl3pOesh5mGDHchgIpPa3es5cBzgh6d0upMkFAB1qCThdGd2g8BkE2o9xmURGVw8XJq1Gftz7kq5VgDfiQWzPCfIc226vjbukFuDVXCPjq1EHi6zb+8T7Quv8+CgYeBE27dW3bDjHRl1dt50qR+j0BS535KVG0PMAvpTPlpMsjyTEa/Gzwp3QlAqJNQ3eVlnOYuZBQy8hgmIJHSFK+sSXebuCNo/PevFJXyKFXK4EpjB+WnSPk1FxlLrVcrE10CDQlbDScEoJ5EsIdruiijnPFf7yPzyuJYpoQREe90AeF5XuJokeFE77GSwV+ET4oj49Xp0QPTRfl/FcpDL3rsj6ActnA786A/f3KZTDiqMxcYOfa405uNwpXHjww8S9bv3OZgRXg78f3v29M25a6QDI8Xx3mvWwGpUpWn37fmdDAdwQ4igpVBFQuo7szHkoEKzygNZ2N9RP8mAHqu98OdoDQpX2KPu7Mja8ZFMEL9r9lvJTi17HMuUmDphVm9kYjXngnMBB4vSKu8zKxChePnO4MBsijFHsXURe7X+sCHqYDwWep3/IfhA//61L4B0Y4ishlvU4v9SLhNyUSy00qU/5Q53KepbiNKIyRAONY+TEW9E76cOpzgQOSmbyaAqGFW7YRgNd9LixAGKKHDPym3KAzST4lAx1ONmRErs0TvjZLF0R7q9umD0UojqfRlbRVT4U1mv93q7Vjd5/CZdC1O00z3ikN7Xz0vsFSKMkfw4fgK56JLtu1nsw/3PxmnLfIJd39d00kxfcnBgx3/EbAIgxHNlAQqlaos+oYc9F4IVhvlq64rtS1WqiSAg+oKOt8CooNEW99DJ+C17fXAzynv5YQkudTHkaURL9YBhb8hBQmbfLjQ+SaEWyFclTtDdW5+RP8Wms6tH1ZORJ1C0mDT9bw8ZsKkBBFZAokDMSLjhm+IgJHQvdmlT25m/JFZn3sJ0+N9MFgjRzNfin+Jf5z7elRPTYt16GyLyHSOMItSJgqzVfYtodUv6PgvUf6IWhVYAGFF+HYJXve6P+XnI7Qc1Z3LwVBVVMh77od6mepLNWz8dlZ5A20pjR/ULLQNnKHFp3zNmi5PVsViAmGY2XpP1FEGEpwrQgRJ7DsvPZbnfgLT/n8CDtDOqEm7vv2IhWZ1uyQQMLpqV8UYTsP5kPSNwlw9tqbck1YcuvrJn7Mr+uKa868uGjvmn8kAqOFGiKR/IOxSDBIAtOTvcOj+ObINt8QUKZcNJOPRXpM7eFSmAstjNrINJuqUKsGL1iFGQdnhuX4b+XiH/EpGCGIWiMJ/iQHT0YYyAVDaGnuST+q+arDWSpfYe1u+CIUb4BGV548ZLRkfBqoMv+D32Uxy5YrYJg/3OqUdGLccZ8EScwvSFlFvwKdLtStgGr4kep8ym02me+cedy4E2gvvTcctgFMNHdpUJ7gXQCQFWl/EccFbXWweLr6VO/Ld0MDtir5X1N7mcjwETxXTSKkXuybMpVXn3d163LrwThH/4nCuOBGjs0qSm49cG9tfIFlNXJkac1EaS89djJuZXk6J2jrVMIGVsv4AGMZ8EkzE+ceVFAn1QWGJfERltal05M5Fzto223FfEeMy4vEWWQ/rDAqUOSy73H+/ZArgG5tHePkc535J6BGKGfa5bE2PkRHnJ70692F1TGg5yuhQyczAd3cw3U2VCy0G9F1fKJy09P3shwtXCCuo+nE9lyVgROsqRi80pZ77CKYeoCnSLpiU5axItF7Jz2ZtV5V9FuBM//nve14RK4EL0VENNx1BETq0Ji/DQ+w350UhY9MEWQryO2uQM4SML/E0Cw0WKg8Xk26YB+zubl3sMRWzZEEiY8LbsqYxqdl0Et1GqRGgd/flVF4NMPV71hfyuQANdp+loCP56ByQwpwgudX6JvUI+y7w7AefgrXxr+nZwVCleL+yAIgxMWODMlZfZNHjh5tpfv1gMyIRo4K2XMVwdSvdXNYl/T/HzWnhjXVRzrGhM1XWD2g4dOLWHnSLuw52fM+YOS2YAXwDSZBhNu+FnTqozXoY8h/eZwUX+YLnGPLrNKLchKLZFwXuI/Nl3ezzTTqjPc2gARaVj3PxIfCixLI9XBk4D+85xqM67iC6zSCbtvA3QoNmEkPVYpVmBbG9d8PeKnkhYJpcXTdjklMiLcfZnoQcNDmGlln5Kahjz4JHU5nh78nQ8IQynUKs+sUMU/JaLRyKKxAdyCAb1YGCQv2witu4DCakvMcFMnvODXJkaVIW+/fiASMXKHDVWKs3dhoCe1Lf6/lW/uNTCYkbLHskM2HU88DZCL46OhE9kB3EhB+XlNuHpp86Z+KXE83DBXl7gf5DrE3wjUJRdiQYyQ0rVfEiPDvkr+7RhF/mG/2xZoHPMXYDsc0a+79FvEEqxLPguYm0agCp3V+tGt+8ZuZMiilIhrTclxjmczl4ff9IPADiuIQ+Vt9EolLiPG+D2zAVQlaE3Lta/ZpDte0YWCVGEXFTyy6XCS4+fPq9bkO4zL1+HnwgR1LWLVrTnuPc6UJzEKV4aJwudJAw3A0JmdMXxx8D9pZX6IVzwULgxRaqi3Y2UTcnSDKvLk+gopQgmgpOAH3Hf0FrJXS/gSVRF5gaNpdiaJwHkxbTac7vbchyv8wajv/4tZXfMhUu301FrOhzVm/dk8VXu0Zbdf9FEJAMdHqduK6C7eKHuQF2diM366SIU7I9iIW/zZ5LzBqN/X3qQ30Lq3pkxUFgSzr+ajfViWT3UPGlRMnfqyDo+qyAL00quGkPVB915ixX8X49KT/I7+D1eux8wPOJgwZjUbfD1rl9txVJPJWRPyysaUGZt8zlQbLbKgKuvIaQztyFQtjyHn0q1tTT6w/DfAuO8HcjKusUZtHzzmCSz2mj80yUCIY2fT9JybnEhTfMLYvFDhY/U3pxaEeJMjQiYTI+b5oFYkkpEJ3HwHIIXL5RhixAfPaFeoj/q9rLKiBO1QtXYlhZnw5p+eh4OvxxyuCZUSo7kPJsF7xLgjscedZ/NSmLSDxsMO4XbyPlYV+hpGga4El9CYTvTTQsu7fJ0IRMM1HivXPk67HeK7C8JS47i0ST7k2ucYE2Wn4GWWfUr+f9yS3t+h1YpO4IW+J81L8FoXYGOcyMIfmJ1Tsj5p8wFkbgAys/QPxhNVOpNOvJsgXH68jhSNVoxTUhlB0Y6aC/3xXk5/G8kMDRZ1IDWFptJfUOXSkbmORznP+XBVpbXyEgdKXf6pUqbFfP29cuU33NmuvOuqvkxlTVsNC6pCfgEz7C1sJNDEQhAvoRe1nurEka0mnCkiMTMLBgWomxTA3tEtebLrPhUv+AH8TJnb3CgOmEBCHOMft5jBtjwt7qp40+FCGP34N7d/2DOntrwILlb3AAHG7qq1uVQCjnbi+0jum4yQfCf3oGGUyw1hajeOcD6/UvgOgffyG64MTKZ0fPAvgcnPrB+I5M8WIseQsHYFYyVSXetL25l3udEjszcY+Xf3G77awLhmBwNQHsyG3BSYbRALh24WO7ZN3xNyh7rMLXCl7kTbHMSTsQrdowXYyJ9AXjRrf8GCJpuFrzz8AJrB68IhLcRAKM78DNp+1rKlfDhtPorMkK9gRPXStVEmVpSDtTpTmXU857N7h4WVQf8i8XyXv9OvE7LPkqCAwLB4uTP5hK68e99ZkMAwjw+EXpi4QI/tM8dQ1POF5e4NRaEp0eGgIgjPI7C2SH2bbWaREbkpXru/56NR7eDNy0PSp5/R0p65H8p7JJxoZA0wjdK/jqkObt8e68GF/UpXsHd9DseUbRLXPAFnioWzn1Zrf6lDTbGyFVzxKnMWsw0CgPUWozKPsLc38M4TDxdkNS9wHFqQVDKp0EdWkRc1kSLpoKseUaWFs8DwTDdY27p4VsY9Hdh4RNkShFNWtPljaPkwbAzJvahrHNttr/fVEMz7Xnxs+sNrCzgSgPgBopvgtrypyQ33prU9SK7MJt/zbEsJZgdnUDr+sA1pO94e/QWNwjxMxFGeewhXCtDqiC82UCeZnohXMRHMtwq/Ontcc4Mx7VeJ/BDpLlO0zyody5XAUQv8aaQ+5P5MBfWi5b10hUgiLtVyT2nNC+dXCTFeKpRHopvec9yX75nHLTVMpUY/Af9ysFS4mbLR9dPLe5OjB753HXMe0mySRNxkCliSATC1yIy38ipJOeyVVWB8mZtniwt0E8hU+sYFSf5LP40cxR108u/B2s9oF9GsAQl34T6yfxm2byZyMzVGdQZx2KAGU44Bm/H1Ojj4tteK64Jpcim5WeY1T9ZCFJlAaxeUQef1FWS5GlA6POCrvj2gkwmhiNpqbE4vaKd21ZLWWyURag3TR/JiQSpseNVzP6XcYzMUoaZNiIBhOBDbKvYRwbLoQQBsRaMBD44zn2enwON92ZKNGx4wwupm6alYVelRzZNGJ/OwhGXp50qZoj6RdwTSZIdZnAgYWO1AdNEzJGuQ1xiq4UnqMGUJSQ8GZdu8JJduz3pexYTZZgz458CURkyARFiFKeKTs0iKYmLFyA7ecaITIafeBVMW5DYKc7vwIvH4VBkdmJFtL3jD2QvWB99o/QBdISsE2izhkbnt63aeX711iob/aJci1KnBaDaSIz9TfYizhda8RES0PGI1OiSYxnGWbzMCX+aYrG9LfwmG6CbjKNQbBHhoB/iqnxWgtMJEWHtbr5a/h9Rk2C7XxnGqdx4iUafkG8wN4vS0t7feVOg8/UqXhERjHC1mfCpGp+/kWhizbomb3lF7xELDOfeIN2IPkGJY8ujZ9kbF+gcZrsaCOtlcJ8AWmw/3qbFdke1F4CZGsh4A5sx9DCbIp/BPl+CQLfA56HQcbDIsCVq+ugmymkNpu45FzsgA23oUEt7fzsMrq8cowP0aFHnM20jccYPnCYUvvu6tpWjmlpDc2Y5jW4sMy18apUsj7h+aYZC+DwMCR9tnAY6iY2m5fzfn9jnfhLBxTpvg6zDJBAWS7tN2qWdkgBZ2Zn0VdejCezLaPtARumU6je74+Jsd2OUpv1eHDK4f9JO9H/ShSaWQun36mMT1r4Az5yGJD84I7inQZXXAKb67nmCXCYMsEJ5PMKXGAUIvTJaEud4xVEaZXWIFIr4EWA9ORlDYNeSKPjyYYBoWTuxC80V7q/FSCBY7Rip+4/E2GuWKNAxvoOhzmhZ31txcjVObUxRyOVcwDtw3bXpB9O6sIrqA3RttydqpNRpIedRFbb+8zyo092zVDY8wWvpoALJ9kIpCF04zDlndG63z5LApOG7GTKUgCMK/3Ynf3Y8P3JUarGpN47zK5qnb0wVD17QQbqXTT+5KWohFlLJCpYLYmSJnJSiiQtceEJu2Pp/jDeIOBdD5Ot2+YEIAwWGrDzLImmzHtqykra1YL7lrDPi4Z3PZZPwxhHtVaC3qqkrseDbt08u2Xz4LDKrJrzMHhW/MHV2/U2dn/PlY3JcdUDBqIj1nKFRjY8WS421PzZ5KbjiuTaxz3l9uK7hkS2wuVkuAJQfqEy7iu1+CParjOsag2guOTv4iV9/RDU5UcoB8lBcOPmpH4wEQIPGf6FOYrbQzTFhQ/FCR3Yc0sWQdIGh6zIK4PJHHpeRD76wqXDEU+9EtdMXQZHhKpKSVUG18pC6s3fumSIZuriLm3EQWXrZgCcWLD12M/smVGAhn9OlM81OZHijWzadxkdH50zBELS/2y2cXPcNw2NYK7C4XrRSeA3J6XQRB1OcdhLrcW+4OxN4tq2RzEXGU7d7len9myyABMX4cwgDsHeRp8vYz1Gw+pDLcaRLkYQAQ5TXDmaodlywwbFFAEKDGvyB9mV9S3DMWQCBcVpU1Xls4cS4Q65MqqhQ3CJyJEcfISvTUddFIDbjH0lkk8D3nJm0XuH26CMZIG2uZBU2oBrm92+QTId/eUs3HRbp7yRXqN1FpABjBJimSlEwseIlM5njoQrd23JX606zkO3SLo0J62tGbXBM0UIXXKE3dILgP93CXddOXXHo9BVJTGgAEdpLWzwnlT9rtzevfDbTEiwBxOilR3q7F51soU9P7US51CsWSwQTN6oDGKMLs86CD2wiedRIb8CNLif1j/jxZBET+Lisik9fyMVgs+V6q0hU2ZV5kdIOtKgjX8IwSyUXq1Z0nlE3RIo25v8njMpWD8MuAXvrOJ81glafJjiwomyxZ/BOx6RbRdhLiSy/TMe5gdpJALV/4bEANa7P/6AcA6KEXzNrMgcfHT6VbxuujsVYTC+cl/PkE8PrW1SPhKFrCBKU64NNbLpllO3Lc9Gx16e1SQCmGeM8Pbj8WGtlKaXdczB232LPBrKiGDo8v40cHJejTHXfsM1QzrSUsNsL1m3kICVFrqDgqvzSjpuVFeC4+qH3t5bBy9LwUaW+yO37mOUoafDCaO32ZPXvkabXd328LnksWtz98jGx+vhJ9/StzAKRJrM4TuucSt2M6Qa99g36iW+cDslWHrUxKxWXmZRDtuhl1kFwLjtjpTYpXe5UrOV+2211EEgc1fhq2PePuwuomzVBDisntEqdoFDbHm6FQMxBUstw1Bn5wtbo8Ced1jWBC6uPRTK86F8XDCGTY7Gv42gaOzx8QRDsrGlWF1HhRy/0OC8f6AgZBB6P85jQGD4tQaADX8D6U3287uWIYkrj8kaf2EdF7j+ygXf2MVC2sqr3HFie1O86NSprD1r1TPRJ5LfI/jMVAvSs+xYilkE0FjiRRyb92LeEmy6VmzfhhTCpOCsZlGWFdWj7Q44t7aK0K1xT/S4O6YLKuP9EKWNdmQW7b4jCDn/vatfyAii7rR4WsiECA3l4fE1gxuoz53j3bLuO8Re4OQkzhwho8p3Bc1bgI5xtUWCI0PitzuJAkPGaBEixNsBlKUkMWN0gnO62GHEtxjbjiL7EICIefNnjYpJxNqhMBoE1CgqZvS9MA/NMST1LjaOL8tYWOYfF/ABHkxZjLDpFaXuaTbnWEccylRmrO4jj7l5LAYPuyXwHqxkD8HRbX27BgcTWiDpP55Zb6FE0s3xAwfSdwSYsQz1FJ6cD/Ip1UXNNOkl60vJ3c22jLNjq+NtWJOdbUJ4f/dNEe+O4muJvqo4S085qB8YexzKSD21zzzd4l6mEQW+aB5I4Rz5g1HjDLaRQ9X6wF3vIls+Mhp0Xj1+lcFNkDhzH9QpEOXl3zNGXWxpmLxyGhX23hkRIFvXxWbD05Fkf4D1CJEZv0zywJZO16mJZx2ZGao0otrnJPp5BJKBAiLjKMoCSXJL1A6Fs62q5VcV62cLxpqGzAZEMX44o52VcW+eDzU3GGoAQwaqOIZ5TS3wm0QAabbK0EzD/JFy3zi1Fq1FMP7GGVFLJCv/XZuV7OnruVzwpBbmGNbJAtcE7KTW/csxyPm4Q/pbgZN5b7K29ZTY123fjdPud9kWrWNyzpj+lspK6GExPv5VdNnRoHwQ7J5E2k7mV3BKJiC/iDgTr9CTk/0/LG+455Pwfsi33lyG0LVWmKxZiV0MNIToRjPuZgBe9JQ1di0OdnoOSfu/P/UCuTA7V0XXDhgqJ6ZVWqtrUHk16UaobUtPyZ9mDEIFpW89XW5A5i0IKJg5KCwW/Yt2xgymtcdYKVVTn4+MrZLbyhH6zNJqkfKraBm4WUoJOxm/iTTEfMH+WW9aW0cIgUfPW3IJ8fsqRNJGVfiSnwhuc/4HJcZ4dI3Q6vnfhnQUGRaFASqDaJiM9mt64wHJRw+MjaRCt5EeqV+hq2rwY+PIUGuOfGzm+Ei/xp07163dtecmHEZhsCsm3kvtPL1Op1w6He/xxGQgx6TULeZ2QjAX+pSZG1KDHDRZmJACkX8mz5ww+AayqSSr6XMdMGCxBFGLW8G7lHbLujPsL3mwtfpKnLdTmJQ13Lsgtaoi4uVy79dedCh+GnXKiD+Z6BM+619FkTYQOkRsEkneqcrTUaJp5MLrhfBDfs9oGcLx+Aqjz9oAmuCFhUAXWPIt3mWRuTV52U/kGzTa55b86iXzF/++Y9SrBaclIB5a9nddKWu5rblvoP0CDNPxJ8rF7qA4OFtWhhVgeD2NR2A4V5letFwuruC2SuJljPL//3tsBwS1+qGzni/yyrqDL1TjDxtY2Og3xw44WAfr9ZnMtlgmSLcwfE83S4WXud/6F+/iZLTCcuy7mMZ8xoj0yKeaJCHRHOV6ZjcdV+GQWA01ljOSW2EJpmW/s95wr3WNzpL3Zk7ZTUJda5BxLAdPk3J2/GrvTusA+nFlA0ZdsNnkqOGfUMDMl1p0GqyTo7sIR7jpVFwbXhVRzJS+EkL6cfq0TlHxEaYkd89ys/WQVXMCTuNtQo73SeDEwVCu5Q4i+hpUirKtB7AXFO9xUrRPKyEAv9KZSxhYU09j1S2Mwy5u8P1dWkV0zOhQnXcfOS4RIpmN52nqwAfhxVllYTdTxSY2X/HIAt4waqdgD6exOhbtI7oH9Sio7UpsgcX94JjC/XM1QonjWs9GMB+XFiD+FqnQ5pCWI3qT1b/5BXQkspZ+9SSIhYK/2dY3w79SKB5fewhR1qdhNg28lLgt3hQGrA1dMk1xOkV0Us3KHHqtelGBaaz0vrdf7FXdEuZetlZ4ZXrNmyuzYZmnOyw2wlhl2FKM+lTcZdyZ/EM/R7Tq8MPaVE/6H5QBaC7jE7O7GUPieR0C3yHMGYGLBNQwJANwE/CzQyfumAasiepIdqzf6AEL4qFcnGRxCwq2G/fEjCrG0EaysvRw2qPCgkbiAjVaRb8o5oXiboojXIoZXyYYo2CpZ+vcdXHPzfEQh6AldLTk8HmEkYE/B6mE8t2WGTdDMec3hdvYGSzgYXm7ZBLFCdr7kyt/F23qzeLslbvy7OuPB3SFwFLeotCpCLm7Nq5xUbrRsppEaMlDq0BFyg55kBOP6wBuq7rmOCWum1T0rRP8/vY0Rm2+nicsZEulTiapfztQCUn7tY+BvhVrPgemALoAXE+M27Ttl8SqcID3iDD/fuG56o/U99eAkMdWHtHIQjGlO4Qf1unexIDQwJ5GOalyOEoNwk32I9BTaxva6BOwWwDMDwL9s3hYxHtKv6LbA/3ZHYyHNusVvypdYulnF2j5t+G7NXxJgYIwA3ycvpU8ShIZ2Dyby/tynvIKTTl2N0KGMktIEGe0l4ldbVNrFHd8rFlSMzOnTgBfAgTJKayEBwkVA2ITsxMrgHhYh9SY/N8REB2Fxm8kZ1W8qzcBnvzvDTswywJGoBoKjQbVqjdADC8zgcM783DVyaiKwwt3ihsAQ/ev7mQgfXB3sedN8anxRGavza/wNhssACNIrL9lqQsRP81UYhJeKpFAXZfC3SDSvxmsThJP6ALz+SaFcTE38njzSCSHsAPdFZWKFsw4saMrC55pC1dogElbhh3B38DtCv43GWOHI28Kyay0XT7PzelhtyKp4NL5QqtJs9R6+Ucw6R4Ip+YrdF+KsD17HmCi5PKEc7HChoxb5dIc4qPTuKqIHAZU4rT9I+FFludW6Hq38vvEocm3NhZnx2LYB212bDOGyPS950S9fa1yni7zS7G8AUNockAGd8hN4y93Anp1UlR7ky0Pq24WdWyCoBSCqmWkUq8z8rFnYXX1cHYfL+QVKS74ocXDGHbHllPp4rl7ZgHGRPm1cSMHpfZLYANPXT2y0K6k+0otqm+tv0uxoV/yRwcBDiZmTPKMQYr2Rto8l5+L4kMZ1PVZhn0kIFVl0LOy0eiZGUoijX+Q4fOsId9J7Xgqf9ppA8r17QXNYI6sJWW/JqdOHIuUmG1SbtdvCrxOSOP1SJzNNNCTxmgSiapH283DaYzRIvuk2Cs7S3s+d9tarWqP3xvFlfy1Dr1Cx1PhgXMsBi7YpTSlX8hvedrsQdqvqq6YeiElGbDi84LTUU+1o7qsxz6RKx8e27MPjcrpA3o9D/Wvgmu6fdeoUB3Lg3LjsfHiQ1HBKVOt+C0hzfnlY60nlFMEIbaeyAWyQ9nbbh1ieZQqQm6k1EWspo44TmDels8+8fj0gOgGfno54S2c/+8IzzQ4JQwcyRT+R/pfyOupKsb+dWGl4sqEKHZC546LzAH9WJJxw3zeLAXR8sUsBcRD2kACTPoQhZoJ+GwOXu+nAFnVCAzw0pKU1jjxXzPd+xH1wet4gf8Aon4PUEW95BxanTQ/oVLvE+Jazx/rnHphaZsHqCrozikDUBICc+NRzHvVPgvm4tKtVQtnNJacy7J+Edngo6KHOkqXUQU9v5SD9Q4iRUf5X4rpQA4HOjUZBWDndZItbIb8G2RQKTXZZmv/dinlL3AEHWX9+QGSvMk9bTPifNF+TYBxXtwWj5lt5BHbyzOk9NqnGelsQEFEt19vfnhUfbmNDT+sPgpbdsies2UK9JPG3zfYIF7+7wdNXIOUIEJVSb8c46UzWfCnlLGocNVhUBtiv5vV0Cau5LNVih1kHwpAUaZoKWu5SR2zoAheqxUnDLM7WLaOQSrqsBjVDmg/5pMYb15L6PN1nVSqQxn/mvYFAT79WVsabBrvu/92tCQFeqXWJ7bclz+mp7h4XgYAq2aZbaAmeaKb3ebtTqPdqfxPbLDXnmhg+00hiKFZ2Ze/WX4iaPdTrnF+7UH7BbQX6c1D8TblvhP5tk6FvkLjfmluDpFt9VW35FObyr0fa1d3jq0/Cph5s76t1zhEuzLBuVrGyIOl1DO8sYGH/5J0WvN/Yl7ZHirliQ/X4MUVVi8XXRKdnECXtTRb4QzKDzh8q61GVyyGrjSihv0njxfA8qkVMr/rIGY9+akhqp/CMUc0QnO3TvXQCRKEf8EpZaCwW4sxB4+Xhc7E7Swvk4xyu8ggK/qp++/Vv8KykItK0HoxcV6h6nsjqI6QO7JrkRkLhPX+UH+eyUTZtNgJK89nqqITFtp/zLfNmPjJ7MtKIBt65N1Z9DMtuyLsYzbE1+Upa7awCFXCco8MMYshUoTloqT6M4j8t6CHbtbDCc9VmuN9DWZd+ayubBFNkaBaBhFhQVfYciBig/stYghsaZHYoOMEsByPFARqPdZ8pyzJY4F0uGdVpo3tVmCDWDxvrB92QbtQA+sqPzKSYeUe/rf1pn8VSJOcsgVoBRE65R0hjvWSvfNhwtU3/CpX55b8lT0YvxLF7prbwikMHXvepIIdW5jodk6dPHPsS6rB51wErGot6s4PZ30qvxqr1s+SHDgZULSo7sUbIqGgBQuAEuMPu2CzdwtM00PzRSXhXjly+aUB1dhTHmGM3/4Bdlvbr9W9PLjktBzeMyRVh9lKPz+m/lWtHQh0CY6s4Spnxp1G9O5NSkuwzoBioDWeQ29e4TLUPOPXY//4ufJ5q6OJvbGBvnb+HkbjtwSK4lCqGdbzAI4wYyJmv+odqt/A76R65AOmLx7WIKR2h9CzwmK+vm1xTlrOoBH6qLdLf6jy/IQa+a4TWwmqo/q473ENak5u+OaFf4Z1jHE5yurSOU9vSYR3pTPzvoj8wOnZrJTjCx16iJF0S+r5gYy6u5LgmcmtCdUWU5cgu0BwRjDsVw8fJoxrkjhrpL4O6v9kakedEYLLQrKzKhXYBGUzieDKZAs65HpIZ4RtZ8nTHcDSiEh8x8Ay4IRn7AvKvgB+/I8NopReQoRK/100Ku/ddV+3PLirGoOvD1Zoy8LGPIeiW/ihCKVo65tWekJhzverdvwpGuO0uiIKkZGOOPvRy4KlPFKm7iwaDKHe73AD335J5gBLqmKpWWPWxpEBxbalv9fcDWjn9CNd8eQ6LMjug4lYqMhHNCMK+xSTJ/C55M7rMdXfdcGf2CNI1kX409d/zSPiQbsYqD0qu26/72vT6EAUHWRxYh1dVENB6SsQ3dMjtYCkrqHirkCEuTDXDLJCtShm15V7fzxsGnvTz3yclGmtOx1h2X1EVeFugXAJsiXgi6f0DNQGw3/EWTDIeOlwtBnBrZAN7KbOkmIPr2bL1yLsbUHHbGHt/Lyg42hkJzj7wWZTmPte+uXqDpL63zq5KRs+QNQ6ISp09QFqBJ4iSAjDdbzM5W1gzdEev6hDfL4C3S6dvuiLMGQ3IQzW3f8W8klTuhs18vpzwVPhDr5yK+GqPd8yW3Usl4MpMElMQ7VisjP5wL+MJA4/+2af87KhbsIIMo6qWsN6hX3jhXlu83dLOcsDO7sF322MXnOjSRuYOBgmCrrGv2C7le0R2LJqlKXxYrkvoDTmrtwbV53/pnEJOtBhyeCgdFLkg8CWCE6dOVi8a0Il9lllo7C288/CfwZFIGJS3K5HwJwko0GX2M3Mi8WesUC0SLZazdqNj0nW1fvWOTCk2LEQ2XT2yahJ0gzKluog0qt73mqemsk5QAVLzzqxJ2d4lY4QKuakIFgF4lrPCPUc2aWAzK7BXNXdDZS0nSdJ/er5IdVyoTi3MrOkQlKDhAhM/Br6mFs4xxiLOMVhnCXNEAUCakEK0yEIRKt8tLh5dAq0gRQgng8greCAhrUgjDEUeoX1O4E+kIz8BruK/YeTjXFzhtE1rmRrhujRBkH2q4NxKoNFN+hzyg9NMePeCC/IfGTpguevSRl0HbLiyg9GypHYYiBMn20zcCnCPQ739v0p6JT/KhwM6sVymbOXUJKICpIbhmz9ifTg7xkasA16zLzKGPk+0doL3/aQbtNIoTNbSpc2ZI5ofy/uNTg3iucAFjvUcdhtpukYE35+zbu+7EehaK3cB9FXEGuzULACguMRh+iYW9LpD1pQ3Lq5minQiQRnvshCY40Ro5pRkjZo8s1h3r8n4Ig5wT9rW9btQcBUqO7oqrUZHjo39akmGgBm3vv3XjTsEBUHdSTmGiVgYczxxaERInrUvRkhbbkdqJpWttWKz2+siSRVhblC7WBL/gUR7B7RVzxJ4oyqG5dGSK5KEWBHCd4p3AE+2Pttx/8IKII3QIJeFlbG+9JHU9udZoEy1yjbtVNH5LO3G+mxQW1M1ErfTn1QY0boGNnGu+llXdsmUevltwY7YJsImJM5OfEcUSE4gffRSFcOGtT4F9KkkTUfJg/J2XAe8RaTLUIS/95ZOYx/27o5kSWH8tzGgXWGHGVsh3oTOmt9hIT4GrjjmScAFUcuEMc+/iQwNpmnsjcUzV8JP7C+gMmeReeKRADzLZMuApX7FqmGGA8oA8pDhrRApx6zpvuiCW2noKbjKxLhQgZfJPH7LDghdgaQ6zHpf9sX6FjXMD3XhkPg8qybZ9uoIdkCkBOXg8mTJY7EXOVw1Zuh7bc5f6+GgSlFDnQlndiYtmmfpugK2YGorImvHGRo3cKNXSdv2k+cEI3XrWpRfhyKieSczpE4R6z51N5y+Carq3BZLz5l1j0+EqWx3+PAaqNrHxOt/kLy5jO2oKBaXlx0LqSsAhdVWYft6N9OXrxVcDu6CVHNUA8uJfZwqTu4notNMhttPIx91maiMZ7Dj7USDt551nIx6lIJ+Az4yyS8qE7EkTHM7fSI9J7KXTsaVgm27tk03aGGEQonJFVQN1FVovHX3SrylcRpJydxxMKOWEuqgb3OoE5FFDTqQrX9SCEsgZlPFAQgzlHby4Vmr608B+NonjyFdOclR9W8cdjjz7/eD8Bv4hVhU/XVCCpRRD6x8DoSFqgI++MKZG8iOw+UAPSFwQwWvLlF1CRKWoFqqKxFiuOX/Wvz1cEDwT1wJQmTXp1Fi7e0S9GrT4Ep0I0HTkbm6RjxF1sy51NEAHME5o9VNA8K0nOKm1YB+bSdi8u+U8xLYJSipJqDyeL9R/s3Nm+CBNoIdK0kocdh0RvCB9ONC6biSsv+Zi9M23dpGl0r59KuylkMZhsgpDE+5uQOsw6oF7a2B9hhjJiBeWem9HVqdHvhDcXNjQUbrSxcfkmYPRDWQa+RHq0W9RnUpTtmDFifhdsrwszfmbfWa3okLYV2fyrdxgPsNzUglVvuHEw07APEGLrfIqEDdVAXwHB3My5xn6X+2soTNP1rJ14MJDlnw785A2mWVwQ6JHS6VOzd4NPEQp9I7zzFgaJWNw3/XrMGdCqRAvwZYD6xnvCcV9P2jYej++SWPbLrryJBawtlJDEYcA6wiRzEQoHC8mDM/T5N1YOgWc8T8Ea8gJP45tpu3WRs2HtY+7vaFdFC2+3I2IjVIh/CuVDxh8BJPNP5Sq1ODyqA2hjHJcatXy6OJeDP66enjv/vhkZAusz/5YWtJdwMwcAd7qbj8rLQzalC0qkWhNBCUg/Lxj5z4n7vBvEorKivVl5hP7mCkeyue2VJ3wg/W3jJPDNomrfka/jjZE9xKhBTquYW9LdZxsrgW7McfAgDk1dbbU9H/S02YPleF3ee3ihXbWWjMDFa+K6dd2KKrmy2X7rgCeNm++JBFVRfA1/aeQYwLoXZsE9IiCf/vGAjuxXU2H0tnJOadh5cSHJ2vZRNGUJufRlNXnrynIf9FFgt2KSFAsvRabQGG5sATWBpJTCaoW1ff+kHhE4FZ1zlJ+16iY1Jv+5yOArO8rkr5+TULh8TD/sxySEqo7SXIbxz3MvRvwmAap3G4VlQ4N1EYFvee1vkXFtcGeQbrUtAniM8+YbjWLmjI8PsKsGaf8T7CCFhVM5AZfqeQxTbczXRzr2W1wgDQmOUiTiAW7c8O3B9E4CB96mugPEUW3d0nJ+trvHphvleE1kAlYzb+2OAXzYqfywP9bgulf0ETmDqJLFpMNVwoEM5uU74nvL02aQlyDKh2+oYtcqw9USXuPLV5UlMxIlv28Py+cdPBSRE+6ayaE8TTw7A/W8ho+Lurc8sGYBisq/2gUBiyEvAwJbNFKPfFTzK5Tm3lsY+/gr2GzXW+E0WHECy9jEuNq1v1wjtT6lP412m8Q5ON1dNKKtqv8cLPWVYroGM07a3i8SS8io+KbmpIUb9AnBc3iXpVzkKHZwndVNdqKSdPTIPmzf1At9VQSWZNxdvyfKF0KnLDHSNuYTsQ2q1HyjUB2ZQwLS1MFx1nqN9g1W5FKhIpMUeHm7FyTmB9TCs96KMPvXHcdarP9JPkYgz0Cc5MOxoutjJJqJqKOmF04oAEXv8FjGbIh46fBFfwqHyjxMAHO2fRAOVSTS5/L2YZInWwm+dAuEH5Ef2F4XF1Dmwr7w/B9s9qcutp5oIWphDJSmNYrpOE4wZdvd4gcFezH0nPWB+ol7X4ASd8osuyETFoBODSXr7W8kyAyREogHukrG99Abpju0Y6atoX5F8BAq/0qx6VZKxlfp/yTdS7NMgQ3/xWT+GqNYn9SmPGVBAQITXuBssUT2tmFOyOGVSUa4LL9DOhnhvh7DRBEeQWEtbR+rI2Nlu3g+s458HsloizFuDV5IUBdNm3kk33yzfjT6sK9JGOWPCfPUKV43tJScCAKurd1AiJbdeDYEvihXGcd9nP98rVj/UcQzzsjtAOx/Ehrvb1N3sFukpPt51rF0+YyEYYW28cLTUoYyaugFno5Wd4BcVmtua62F/kIv9GfrwGfUkp/Q1MZHwru2rDk+zPwWXgAhVdAehJITj5ifOmPdNWa7MGCAbsDnO1jf+Y/yi3M4Fo+V1TCUzWSN/I42r4PcJkOMnDQxJ41913qjYzSjseTZ+a1RV6Tztt/vDSVxJaMLmx+Z9YSPRDcD9wlOmzbonMj4oHTpY1WpxClPxZ26ooyQziDkoOwHKQ7gpyWL2Dbvwb/QiLWBG8pStdSppDjthYQqN4pua406HI1l0SaVWV+SJ457hfkN1SKQhwb7RBdt/jDirCJ4QByUE7PzfjfuUg0rAmV11ISdnJ4Mmg1XYOaX0BxiXBfmehwKdXPg7iK2JxdPOUzy+1gymM/QOifW05hxs8vkcSvCEz3yrRFK+9/YD1emry2Mh0gOgn0nTmGCpQUDtL/tGbNRnfIljbQRw86t5+yjLS1KSEg5+PJs1r/TnZqO2HHDKj67a7oTXqMcMMaipS2E1wwuTjPXu/Qi9XC49iFQEHXQiN92PRnuoIRtMofDu030moDgnQkCJKWCp7dHYdXhyBZWlOiiCitnAe1pnXYEDPVZ9j5numqJqJJNToJVvYnkNeQYZ7QlVXWk1Tlw+pwcmODeDiWNvB9ZbbUwJ1RnAl28j08WRtaaf8uHVuw1P4cQFGVLMSc3nMhspoh9pS/tu3pis/ogcCAcE3JBr1glh1bkNaFZuhuoykgHqWROMua34kGcskY66BubOpB7COJ8BXRVd00GK/YgwtiJf7gshcsG+tiAhGoDEd0DKp56fRTjKd1FCHkmMH3o8vjlJVbCuEkQA890cy0L7P/3ImDlbkwRRpLgaNuFQFs/Q8nS7MHovGcMU+WEQQAvPTGP7g0Vl22Gkfgs78S4UCxnO/gc7J8hC8taC15meaWBAisXEoO1H1Xt9EsCxSKAszsDDeQkmuPDWPR1Z4IXmmAd/yYcGP0F8P4G6yxE7BL3BL9gynKwGQIcjbjMtxwrXhj364sZyrWnFJsI74VwXyUulTSAacEjUR0pfJBkME6SqD1uGkyrc3VQS7zZwRJE/F/PwTFpAQYoEl1Dv7qAARJj6GKHwCdPpefXbGdtM25nlZzuevim2k8JG06CfysIWU9RgDO2AkUxZbAjPhiN4LrJEjF+gBf4ppL0ukyfw25IK0RE0vj6VHjH/WMR3T4SeC9ljGzKrOdLYsfvt91gf1HQn1GGS3b7S47aDdkmnFOnHCbPuZ49okwFdzi4iYVKXpb29kjHnvz+amtSSM1COHRMskNlPR1AevH1eyTrHUobat4I0Z6ya4pE5d4CSInTPUYSjbvGlQnyGCQlQDo563Pvdr7ksI63nNSrnsf7A7RrTo1nZcybQjeIOtsugu3ktvPd2MMXv3dv+Jc+m23TWhxw5NrfV0XaQMzd5oR5sMZN3WABPZcYHNf7ObS5AMuTJ9/ouQLho1+5riKkJ1W0OF6/OhkG59NqvywnWvdh+JTLHUQciqEu4mIZt3nyAvXOd0jXpYFNjJS3oRUyoyH/8am1PBrNIlgPEfi1c7eL+vmslqkoJ+XByd2c5qkvhjoWizCaaFUKmf5EAZ+TZ/1KX68U/wwpmeSbE5ea67Q9c1wEpK7Lh90391q2HaWgeX14zCiC6ykVvUSIxz34cSCZ/vbXyxAWde/mistmFsGZiGcnmDFAX3NFAjLY+jWaBuT6lXThTmfYdzDc0XbqFG+aAUBMuGfj46V1q62P7qQmlA0q0UrhxspW1VNNGu0sitN0g5kjq5oU3Q8YrAjHapiS3p/n38DEDF2f4FoJIBIxVjqSLe+zTPQb4XCKMzrSSAtANwjJH+/EW2+vMbOuy+ASqBZ0GPQ9uTXTzYYTsPdaLNUNtfh1bN8dSqSqnYYsvozOPMvm29U8DCY/tzSCi5hpyMQL+ChCKzeL30/QED9hyDeWm1BE/tHmvcm0Jpm1LYLFHrRD1uhOkAr8Z8DTNP8m0liqFAt01I9twQa5BliiguNB4EestyGn0b94gh4dUbXJhxhj9FMyf86VpAVjjI3bgvkwYdJ81dF337Uw9ZOPhU2fufDP6X8y94vPCfHbPTljE5BfuWhyDEwHG/ZRY5Sz1ZS1PAR9OrZyUnWKrJPUWNpTLsPLtrR5nHZ9OkwPdkgeDGe2f5U1LZHQk8u7hf0NMJ923AlokFenajmqoVFYFVeuCr8jlq9i01OrZs50Y4qZrrfrHKh8kDvX6qtrG/QZ4PSXxT21sOVkgsZ+sRdjE6QQ9F82aoT7c8ZI5kv1hxaCUQaLaOnB3DA06LffHXKwLcm5RhLfFotsyLZ1ucjWMn2VhOIC0eOFJQLVaD+5l0eA+KQRCnifVlK5APhVD3M+9qWxB7C2X4FUC/PHvNlkdIBIuDr7mBIykCUv4bhZNxay6a2CQBm0ZZCOOqZgbDU8EgfcBQQbFpJIMtzzg4CZOHISx/WWUco/yveO/BnTD8K/eKptpwRzp762DxpuSoIUNZCd4yNMah+dPVY9npbhxrdjxNrudE45NyDpOlDwMqT+ZBk6DUPxuzOyUtIS/5ueZ1zTl48hd00kZD0vpDXOKe7owoYxnOB3Vx5EjPZ7SSpvloxKL3sG02IkCk52Hl+BbxpBz+e95e6D5bOuTh0dJdyj99H2oyEj5V4reEjMjFejaDhO6AO338rNIZ5wkglm2hRifitGlpews8mpcmB98umwBhK2ojczB1b9dsgAgrTIP5OD3LRb2hVDJJ/vV7zfW7DzRxTEFbkMb4qc8GtcJp62ZWsanq2yhIVAri+SZD9lF2lJyag1at2PLPlh3CIj2zQEFc69QW0Br4Ja3T8Up+2iPZMMBOAlEywq6y5WVcy7zFUid/hYaUUEa1T881jd186IQadY+8A5IWwsZYGF8iY4eYqRd3dHfrypq7HgqvVSpfJnQ2b+TvjUjjguP7br9i6tn8eZNmuBwuPCWJx5W6bUTKG6eQE1Wbd/vjkgQQ3F5rnn+jsfMv1NnSRV6cEEJ4S+9h3DPguRHz+4crtM2bJCgoTIn0XdyacTGXbdVpOMEzs7b6CNwF7iV08aW/Kk9cwThcLfSjQMywvESOdElsJGpTxis0rvRwzKwa3A8yZRfjyJaidE6x8CVPEFv0RLaUCkhA3N/umZqxU4blND74zg1D2U1oMPspbm5lQ/A0IfcYuAbXYUwkMdxx0MTXUj6xcKSn74KWgS//b8N6isgBq9MlytxAAUWy37ToOc5zgx56kQ/TGlaLbKTCI/Tjcr3WJf6s9v7mmYGuMnWrHRCJyAP9VdcNOt+jBACxZ12JWVTH1sIxscoDp+AQ+vEqnyAXYrgYzYcPkHf0ygouMSlsFqf0dUod8yG0v8dsFVWnJoAxbX8T+cYno2C0RM5Rc3UCxHaIIpY8dIPtAazVi25HPLz1eeZg54sig4sRneHsExahQ461dnqWBj5qmr/qzoMn7rTZmDmM1fo9zI5qEGQ/S2cjeEfW7egJNyYHKYFSKS1far965KL1j2ct5tWlNW8yaTwSOcm64egaqXUmToWnEseM3P57CZdj97hiG+D2q6poVBFOcUTcJMiFj126u87QtxfRy1aIPxYSGgbD5AiLxVCx53WpPJA7QPsvf+dCaCkiRZVDWXOQ3taPHebFGcpl1kTyK1rEKTjnsrM5MInIWGW6cBMdK58JzOFZ/ZMHAzzcfs/k5MgDnWPsEWCqkXdxXWKTz90Lby2abEMiZtoRNbTJCFIHMrRcxerfk0hBCwtIOZnTsfU8qakuiirYARKWjzp7WEGjAK7Xee3QFIOSb1oUy0NRJ28R0LY/FMkHQd99NOzeIS879YNdMhklPH4Kz0xTNvqYs1cj5muTBAD6rA0J2hpqL3Q4L6DerLN8iU3dOMivJczgVkWHgksp279y2t8wfzFnuJOq8zqf2/NnTosYrv98/rhNyZ19eD1SnJlMcQNc6Se0/J1GH3bIQIhQcerUhp3K9aOaHYFtKsyQ8G/Mw1hL7VHAblAButOsX9WthqOKCTjKFcVrBEIk4hXWfM77tbVCsfVSir9gQ45GelscgxX8LQyXe68FCuc9rlTmmqUuFwkTTLD9qiYXd+TjubuzPJZJ6lk3NJvymJKk3CS56wolvIa8mNoUaB71/WBjvKNqR/9NOhosltSJoX+PmQhGKqDaLc8n2sIRXx20/Ysml7Op9+MalynlzuHlrnLu3jSGcLnOqnN67HmjGTiBfR4LJeyAXmoInDBspr2l4ZTdEsBw75CYZ7dxo39qgy8XgV18jeeYDmnkuZBV/bFf0zNWasAmMtGibUXtK9MkMgZIQiQehJQ+FL3znsgq/WJE6TNN0sv22ZEMCfpVsq/asHNS8MYv9E+HWR2dYr4HFbfxwx2z3DXIAGp26P3jFJqaoGbe88j2Cw9kgdpx7kIJTDUxWrrYA+4BfMCar7qNhyx1wPuqz47eyjgzczU2KfMw5yKL9kr5xTI0J1HTLsn2LifXGar3iQn9vHjRKnJVTtanVtGXG3IdgA0jH5kJkEckTlD5IyPDZ4kwiGIBBkegqiV1GdGW401OD55hnybJT/Tn8jf4o6x7M2OYo73noSjh80oN6Qe4Vc06aJWTxZHqWM+rwxk0ZLeh1sS4RnK0m/ZKwkuHrdnQ6oLyGW8kuSetVbxYdU1lYV2t7Be8E4GnCjAdNosk/x3SttXxVbV+MFg4rkzgu7wjpb8fK8r1VKslUgGN/RrRS7trZMybJW+r7ccTNwiR6UyJGaYDWsCdMOalj6nckZMYK6+dmWYfzh84SPd5Nkyin918g1GIJmVarDah3SpIDDgRpmS7XZh9uHOWc69jamLPKHDlGfsn0Ate+qrk9mbrc+SaEt4woVV8Q1L1osoHnxwWoW3UOWeklgassAhcl9IHBJHFboMTbufUiKXUfy7heUXRc1NfdvbSFHrHRJsAQzfGn3CfBJ1RTAZu5fztDNm5GA7WAOstdgpGsS0RaEVZYkHUEoboA2rhpEZg+1epCY9pZFPo8QZwLyDC4yXPPMcVWJ+crPBcr47HGSRHdmrPgL/BX7FAQWuLFDS5NbjEdipomLrvVByiffyLMCquij2oeQY33InmNKl3T540flOdQOr5gyushr5/s6TGV18/aA8IpN78Txh5SfK+borDpe7Djj/VkJ0AO5BeKeBWg5WJwBqahNY6W4P0XZL3OdXuOo3B9lW8NcZ78ZtXmsx8uHJDArezqqtFei0XWUQLA5lJQym3fia7V+S3A3A+1tyqMuH2sudzErE8+e161zPsyrOWIIhDOVeyJePnA8DMydEDJHrXar66SWLtVrqijnzdfk5iHtx56EPBb1qucuI06pVn7Sh+pNKhHlFSpuODhtPIEUFkAMDmS0JZ2a7SvZHgP39SZiOQL3lntzfhht8mXYnxcncgAGFeALZro25DglsmFcBjvdZFd7ytvFzWalddnbQpoA8sxyKoR6HnaXMocBlZt6v/OXoXWW+B6eqyjUTnq5ZxNNNiD+ckupxLUqDHZ3/sUiE0CIYsixB/chRCxIeQDgQb8BjPea5fCKCLWENZ0GNsGD4T9bjyGJT/pKJM2wnK5jnm6AxTHu0yoxGtGAy+jOFR77KZl+hwZx8KVRxKokQay+NCwA0G5copuGTXcl3cmWeasdzd/IP1LL+kDWW18JJKC2I37oiS4YoXIs0omYY+aAwQEiGCGo56skI8p3kh6/2CdoCZfum27+vqEr8W4CP+J+BXKaWyP29OrR1s0LVlAB5HIb4QJNvSkplbmUmjUHMtxePrU10+R2X1xlEpIW/lao+nQzFrT4dc+mDyoxQYgzXVtoMDnIblHEGX/FKDuuoCe3l0kwm1jWIGGavA01xg7ocvu3w/ZPHYXtC2xZmz9qBprWhG1XnFXd7rfPEk8RPQx1K9ZIf4QEhwfghu50jkNyuazU7WMOkza1TWk9jJxoeLXkS7qvoBvMyyVNLYucQGKyJQ99TGgYKd9a00Vea8fPCFGe6B4CSIysVDcxIvYERYcHb0XouaKTYFw4dMIR5SKxZASIWBBbShsVczsXcc2erv+Aj8sL2/gIHKNl+SmWLIW+zroUDp/Yny7ViBF43wjsbr0qvZyZdkhcEU9y/nJBc9yXd0FTS/VITPeOF489JVEOd9BhBZqe/VaaLsxT545ArSUHrbCSsEzetARml0kOKkw0tjL9fgOppdRujsWBLm83QNxvPESOo6UCwCRCohoa+hQ2Ba/h3cd2VbKvE7C45gs3AoH6glEDvAwVNi0+S2Da9/Hfmf9LW9tiefDmzlaClcCV2BSmGdacmi5jl6/sHU6iMXQOjK3SNvFZUGoA1RU2bNJLFq8E4J0fCwhCFgOxmktLxBof/AyymiFdh9+Riwog52O0nFtfDisehUuYxEq48HFw5AM0YJamEiSWa1JpO8STi86njEvGBSP8TrYQ5OVr9/6xHkNbuJOKunIdqT1bN1QmcGFe9kzA02infsgeGsv7PhAh3TA44Thbj3TfmGUGuJME6HBVc8ATi4mri1q2Rg3gtUw+e0xvXLIG9vlcdIDPRvWKxbFpa4mKLsWjxVIRuiydIeZ0+UbJFcpa2DLl/ssw1evguqfop/kDHObpVK7FZCdQS4rvxvTYc0eR94v88+KPlZCAKLaJjInLzvcIx3mWCfxms61h5wHn1S49pF/hYCCONurccANo/0N3nWKJOrpww48ksr6cd7tjERtWyhrup/tMoXPOVP4Y9I47cXq+9g/pgd30z7rHEuld8pA9S0B2SWCU2Mn2JBm022qtiNFb7ho/G3BgCMiOFt+/0dKhtVUDKK9ewMQb0K83emLdhcsXPD4jrBUGHodlF9x6KBXS4rdEIchldE99oNU1sGZomiYNELvy8DF/Jz/QgQtPaMQvwNEk74S1sH8UUKSPHNkg/MJpgWNd8hzHz7RX1cb/j3pmjT17O0TRzLmCF48TfkkW658f0e0CeAOKiSFOp1tzcRXrx6GlxqDL4GOLAITSNE+jafQDFOY/S1z94zS8v73+Jf0HyRYjcNMkzLs8cSJuaiNcbhAvrxLf2A2lHt3/WY6u3Gu1r+6JQWp3vi3TUQ3slJQLUawRZJ0HWJeP2UmeLCXrueuG/qYU5uv1hsucSblxCvEjup2aCp0Afh8sMn5M4GtkqIJeY+flw8yaPSGcPIwu/UlwGaR2rQwMaGa4PdZ2m25sabeC/Uf/WAQhNAMXMLiZsSEochb+R0kN0bn6gLeMWUq/O+BLgZHhGa0IzZ+LKSE3ONvULwFnhy2pKPquLdcfDFGOu29RMoAyYnD2rSZGt3HM/Y67b9SV+YLrinu9blRKKLdVOYczLIePAY/I4W4q6fp94qcSC0ouejXgnn2LSqjO0FVOIQEbaoPX4h1wbQAPi0JunFJpHGchmpYBRzVouHM1594HhyDtRNrTF1RN59+QzftgTv3bY5EB2ippuhvcZuaA+TNYJVBIve3ISrIeXvYP5zdhoLZDUucXfXX8bf4IK1EzKfjsbeepc+44YgiqDCyDaVlZ5CsEAR1GX4Q6ZbsSI8CYPfWrnwQFy4OmWnEL13WVhjAH2Y2loE4SfXYzlb2S0bvdYEYSUb57RKzWVYrvCrsDrSW6bOj2y5L/CXM7mtM1fxy3viE8phS3vx9BBXSkSkDufw6Hi6sz9KkgjIXdKW/I3ZOhkeB68Nn5ydHscggzQeubGMkTH6QK4WHpIjtCBTF2luYG/olS6y1t0CmWeiuOJcrO1S8dCeWpTatsGFWoHOf1hWsO3/RLvuLqPFS9WxV70g5imEYNoKeX3uLG236YVwRKVV//yRXgvF9c3SGtls8FBM6gorVp9E1vif2ld8cy8Z9UtSXDI+GTipwDfVbYiOlrQ/MPDhJYqOS+1PukPGIUHvsaFgn3MezjweimDofWVJ1BvD85My7yxb9AruipPLwAv8G5TkstjYZE2cpJ1/tvQwJl8KCoWB7YcBl6aJJNphKXpGHf7/Rcbi7JPOr2t08bgtPTqYuuxErBvnFjH2tZbou0UXncnZJ2xzoSHzi5+cqpZi6Ymg669i2E2VqQ3jKVlNqF+2v8ljt7D6J78t4Qf9qYzwblTaz43Nzw/NQfSm5ffbayeqAII1olvr9lvUwmdvzW8rdsSyMWLOb7k9BqsgzIZLQWUCiqdCKjfgapiZ7F6KJoswQY4Jxt6ZZrTookvky9uUzWbM40e/S1S5yizRB1tnPhcmlE9E64IobcUQvcV+fC1o9cUdq86ZLp962Ki2NznVYdqVCyyjCWAGk7/OLcT23LVMmBJ1tD2eZRmjffCJyn2sQmRkRt9MsXyoxz0grTtveS7XqETMdJp4s+qNuBA4HvMYQ4zrjCoePRkI+MzezHgUjmLtuU/OYnH9sjR6GM+mMJ+nXLpND78Ejnwr1AH7AxLt5HZCdqA8ZbffyCVSOvdiU+RlchoNeUMLvEyD6/zp7pbRYdSYkBiGU30nNxUJ84wk5SfRCnJjZmA54I41+ozBrFSNUWcBz/HITH1ooTXZNztzv1yOexjjIbOhIw4ojuchKm1zXUPKhO7SCBmfGc2qRsCza0fjjkY50BMhm01r036gnrO1zEMb2F6cSBCiga1GWpmJKIfMxaWqdhakBSDH7ljayZ7lW+exQjXiC0M0ASmasDoyffYs8KDdnsLoMQBydQO2H/lajS5WHhsjonCJQQYvdWtpRCYn/B/i6DpUu+JA0x5PYdvcnVqJlVw2pLUjWs6IWyeVYVKmvWazRFhVaVzg+wkoLm2fyXNxziAZXBhZqZvNMysiF/cbZRevSOz25oQ271oYP4/2cKFyFWZMUWUWpSg1JVqXjkSCHuZOu+IMzLnqb2OaiROWlesJZZiC0yVcM2ZcK5NhNH4clQT+WfSkai6Sh56DAJgFdKEOr32pWtLNNf8mPDS/XJdiIsgyhbfQYN1egarZ86YLe2r5QaLcK1s5/wLJoBUZ+nPUs4CWOWlV3a97vCPhsGg/NKu5bTT50hmJz6ad14TM62tyswQvFH+qM/zKvMOhHI3DVfgJd0UqMvMFoKS5gh8lj7MO7gyfh963vWugrDPaZjsHHosLcYttN0JSbfYE9ZOW5NSkHg635XpAs9Xs6M1rwt+Kv+N3MzQyxE/X9WE5W2rXYbWE4BxNsw23uCp5Jh/QkjuwB+kucfgHDkxKFaEB9AcVa9MZYvR2Tbd6ecMMnY8p7hGEnAtzjD9TKpEePbXTVJ+aVPO6DSEZBHxMIzM6xXxWSLD3oUBt9p9GPTs4AkYq6V5BiI8nia+ppUDRRSKVkgmK+LNFwQEmaPemMu3T8QT9jXF8Zpyv4t3HV+33/AxyDnIOXhKMWHjW/5htaokDFdMKzz02Bf1t3UyvdjkBSVxYe2MqbmPrhb9gWR5KnJJMZrSOnwxZ9hP3QAJLCTxXpEr7LyXUoZm2y8g57KZamPPnAuRW0sFIM79rCKBFxXZt7hKl2JIIcmSs6khpAoPfxXNgzFMtNOvu9mzTzn+NsUXG8xvHvFLSHf0Mjami+tT7Zmi9i95tPr1CZqk+oxkMDnfOvsCCUweVL5A4F45UfI7aDeAkVBH4YcMrNMWpm+TOcLHcVl61bC2CT2U2Lz9OxQJo6vtF9J5+8COeTGdA0qjS/ZvMm+57XjRheg+VAmJWH1Rm1VDkKK9nXsSfO6lOYfpxC6BhKrjsxevqReRwWa17AfuKPjZV1y0DWLTRTsmPI42LpHn4MFfZU3TyqGo4sRLz3j+g3ufklZpRBWiY63quOO4m6TYDsHONOLaCfFuDDftClZoeGNkYC+1CPAYR6+UitMqBGsSVQ0NhGQDrsumEdBoGPfdyFRIxKrmT0i5VyHUZZq2/7acDpJIVi9ucODuyylIHVTq59+1XWiVfqbp+CNT1LFt+y9GF7YZHe2P7XasRyDe2vkcYgq62FP50xad6/kWkx4+XVLELECmn5Mc1EtsqvIOCGcH47IXuATnYFXzTxwGj8V2Obp6rD0qgl9XtV+pexMAJbhmmNm02Ln9uU7ZNbv0U8nnHfkNOmNkLSziiXtyXriXlQ8GN404i2axybZyJmxuzG73T69k/3VhHMkfcUcspEZlBi/6BzFmOvlnN8a9FXsFu/+ieYO01npuwuaFnPix53yH+IrgNhiPMr6frOZh9qsDmim+kk6TH63CBUVQsul1W+qj5aKSEDweOH+6AXkd+3nk2+pytf+45/Zlwr1IIyC0tnyW62INype8AAmKkCDaqhMZNj26CMsOjfz68OSU6eH3IbcNs2bEE9IkbkEYkNtd7v3MuKTh5DVpXYn/CRIrwVy4p5nfJSLsB7kaQ1a5gux3SDIz/aSNlTfRp5KioREHOOjmTZ50bVna73YnZ3SZySHsDonHVhNLsi1uSg24NmptqQMy4dlbOyuWs/fm4UdJ/kuZi+TUexcw5zOSX/Ky7tT6cBWfgmBcImMdetKXOa2tNvG4GhPA6mTn/ORIYr18kc2ClLmDemeuEerkBw15APATcKkwzLYPR0z9BvhxTuWKWFPC8/wXT8ACwpYgHR+Vs3yn01mFhjkvGtpk0abhwE+n7L8+mWlFGZCQAgOPpzW/H6WvMsou09zC2kxCP9gCJYW+JFdwYmeuq2kMZw0CJxcVR2Hn/uHMj9iMU6s0e8elGjxjIZLkAx/IUbLrBquWgQtxSqYMEE/LD8qsMkY5Fm8CgPJIzEbyuJDkdXAE6p322jccWPf+5EACJAUT8CSjjgtuaz3YcRf5BOyNv56UZGuj0ScT6tMbDN/rsGuTGTjEU+6ART6wl9ZSFPc5DZpA9HemiyeQi7iTmL+ChjyFMgSLhumqlnJIW7mfKJhZwtZPi87Ugfw3Pbd16UI52yR5xbI+W+nwisMhRsATQyvlzru/8hG6CFP1DigQQQrvNZ1yG8fk28SgBleCz0NAoYO6AQSfQ+UHKh2D59NEnn6DdkF/AxOiZTjXTwu47qRkqlLj510N1xyXJ3lmxazWDzwFWMbk6qHYIIvYteHt/us678fgdfgSbWCEcpnD7Rz9c1ibouaSYGKBOd5jXwGR9uINdJ3j9Q/lvTzFwvNL1kXL2xTFBLSouYUK+QFiLO1euMaIHInBk2upid3V2uQuM6Qw89g6YFICPQxhz7ontpWMr7HRO8lEL6gz3D1Ht4qvR1PazGLqreGoOy4/a3/N799Xj0lxQQFCpPfj7YMVVj7IAod5nLmgjX+B6rljT4aQYNcPuy788vM1cQ+QCB7NKII90p5jLrsWYxqLBnSp2Vq03vos+PrURK1ZkMs5J7jPpF6ZPgnwluzLzz29foJz79C0mfOc77rmCPSwbn7hgDlUcpYyuefi8dpPR65aKxsIfKAfxH+29DLZh5odEtSWBg4/z0fEUeiLNt5lNiRX4rmljm0+BB/X3YbFwiWQy+Ktvjg+1/UsdQxUTF1rycCsauiOBCpwBb9D+sU7lgOM+yiBP0d5/CKrrm/uO52kAwThJJH/T7jT6H9IL0G9fvE0APuLT/0ZF8GEvhTvqR76MhDfQlKf6CE8EzovFUK89JBJO1zXRliaEB3zQf+MsqJCseHeMpQyf0/Kc81D9ZuUnCQHMOa3Kn9Stuypvys1838BJTQExdqVnox7teb5YTJtsq4wmA36M6/B0vFTzwrXsiuZvoMp6CJBpvtpz6pJvhfUZeCHjQ/fktuihxgGCVpIkCrcKMEFHg3DGEgm1haWVa9wN+BhmUHArMqFNuL6JDdsQ3ieLUVNyNbO0BKL84+SJvQmyegxoX2tk4Skj84OeOqcUKP+CY2Z/ZSBicbtLOxIo1S5QbQ1KWJ8LxW+nN1v8u00qyVc9QGjT6v1Fi/dQiWJFLgEituR2GuAKRmGdb3mdjecqW6e/P0e+H1PYVCakO6Zb68tJwP29QlMelVsvDys8uDEpWvnSjdJ6MaTy4G1im2ZQ09BN9thJ7sknm0yVnatw3W9g5EyJNUmedS/d2g08PLpn63o39+s5+8zWbaI/PRg2aLQ7Ux0XxShPKvFPYtz9DQpGpqvFLEBrHFa/MDUdu/QXZSUB/A9301h+7vW/rvKSrbMFuoQObYFI4NjaSqMmQcf7mZMbuGNnVCOeh0v14QU2ieW3ZJuJPgTxVEfSb4J68YoqLHQtrexuFILeTubmrCopijagmXdBlbmQy988tfvyMjX4CBUn04SlvGau1AakuG58VaKVVwXlDu/6hQQOwTBc1HMdIHyWfj2SQHZ/A1Pln+NrMhTRqcJcOdBG00/2kDMkkbQDlbQ2HX+3Rvbi7YuMJ7ZHwuMEcuAFSpa6oa/a6yVvhkOHdnOd6tgUXguFK6+DMT4ddf+ycjbv9ARgExNv0yLcWm3Y4NbtqlehqfQ78zL0bYKbn1LIcg93PePfmm4bv3+0zoIPohGlCjqusp0EHjgUiZaGJjz+12Uinr/BikUTT1riuWNLFTg+xRIrse01xe/z5f2K6sUD/hsD3YnEWWuIXZAPnrAGkcTE7Vh971oPaM9CkKaKGdq1JaiJcN5nSVLmhkJwEM0+TXFYJ/Bxp3nKr2vx+UM+1iX0z4Uu1nJZrVzUPUYzalImd8RQnVkdzm+yhHxRY+VzEV1RKEYBV/HifzGSNa9L+NcHEgJvQEFbS+fAn7EGqUiCl0wD3zMCCDgeLuRmcQs/06GmdQ2JBu6DGJN3b/RvHr6i3G3HQ0AIYv11OSUE9NpRetoKxhTzs0V8ivbpYpohP93jiQm9JsjVnTi3S/G7vIKsChsZTuqOvUxCNSPrgGjGPf+alaFJ7AwqirKR6gfJiKsdp8LjfhnqfS2vZIi3czJEXdVX73fVr5KGePwmOTp/5CdoNwzXk3aEHjoboiJkkl5w1SOq2ad91LAk1SD1Fp4YQLqgoFyIBvf8xcaYD8msMF7EqC77cicPyK0KZMgGQpnDj6kvObcXHHal9mr4Pi7SPKXDoCmJiCSfEP9aOQZPvczc0WyxSclQ0CRuYOYap9bJIX7pbbRc8X8ERVPYavXydWNbUqcqRePv98tGjCSR3KPxnZJ5RZUXzm4f12hmEZgdSQKn5MD5vhS+S6z3+Jvokaq0K7L0Q8ppV21q8zphXRC1WWGtoUVzdEePNBpJmUDNPqF1zZ7NitUYYBds/jAeMq+NO+L6nz5aFTsMShEfPckW4/PdTRnMpOoXmmYq5yA0icX4JB1Qk2URPjoVo2BO4oXuw5oe4G+v03NrUr3tgoDL8k1mD+m/By2e9gl5WU+o+QF2/5OS+0R5pGkDhtOSc9XcwntOZdFz2d/5L8e9xBL6QAfV6/O+IIzBESQQroqjHVAliYWzyiO0Xlbfv1mFpmDeb0Ax00PP7nmAZHr4LvaunXO6jcKSP5I8keJ36CRjGoYRUIVYiZoIEL+16w5/IfoUFNJR2i9ypptI+4VEmPc8OZaJRQmUV7srOE9hYyyryrUhVjXpAjF3WSxz3Tkn7gqjt7Tgfs+RqSdgI257jQXkRfkXJQlEhuSV1eYvxhn5+3QfgHzcwpckGDDivA0EX4RMu7YETqri2Lnz0Pnph78xC5vv7aDlKI/dLebZcl4+Nk8LXn/QDHBXls94typ9R+vt/ke6YyVDK2dk0Qg01XSvbBIrE5giJmYVNixTpfFqpcw8LiHnvgSpAtS4hJ1SnrpGJY2+SIUTy0HCAXTBpy82v5hTULo6zxyRwdUtxNvA1Akm7g3B2+SJpL9IPyjArXUdARk9Zvu0Umpkk/A7NnKUXu88aHwXLZqUCBTPzDp4hIECDRNdURoCbxn9QZoO8Yu07jzcEKV01AsgKT1fJZW5xX8XpoSTL/75oEU80wmY1+J5x5KuT2teWEGCcD2bC2aJGAbINusXNsMNmml6mXEyyQjz6LRcwPvWprj/h3dVkNaUOTDHMRur/jq/3q/JcMk3TP+ngsl4ly6gA2UVNrnZq0gC3x+i2IVxCTJXD5xAzxwnyVGDs11dqsXTM/bEBtZSVQAhKwN2IiL7mBmyS8Sz5LZ82Eee3tMQ4mnNPpth3sWwPSdb2OY0xaCARlhzbdwb0UriITP8nZugiSm3iZ6oHLhm45rbR2fLNeCc6BSe7b4L0f5lEEnzvq1l8lB1BhfMC/GaY5qITmMcfv8BBQNcm4Aqps5/XIGFUAqMFp3XkJZiRdMNu3qEukeLYz9vGWZkzeufW1HSmK+3q7dvxpy1sIPjxUT2yYnr0iWb0eF78+S/pZJ1F31AJy+wtYdVd13dKTYbcGaGDNx2kYlpBxI3RuP8o5yKCBi5ojxveWrDIHqARqbE97apZZqkdQq7XhOzSsm9L9T4QvUWw1o+7NUApXa8ANDMfH+KNZaVVRwuTMRgfXtyqtpjZyXiUjDdwGtk6b21HuEn3JG2+NV2Xs7P/xpgQup6pl9hwKbFYsJWBO2YMbtQbpYikD4PxF/9GxvGr4OvHPuFJ+YOq+1MueL2yyTXvWZ1gBE7kkX7xgQWvExi5eIiSL/QnIA3D4XVR0qU7hmUkJX2Ulgv6D3EUv/XTe0JO3ZDgfzajSqfpkQXa7Tf6xR7zHlpBrV48837JHQMePAzjLY4X6Ij/2RVE1WNRqWveq0K82jRBh24mfkPkwC2LJQOKW9mCBruhS99/KzkFPCjEu5i2j/noR85CeP1U0SfRKkzSb6MMLuopg3Z3v8uiG18eR+d7WDU/mYY5GPR2XWra0hveH9u7iqs8ZzANHOocUvbaY64CpojfB8ak9LZDfJgYSIo9+F9n9k9s8CUxSw3sB/LFPif6aA+8zFpLEDiOiNuH83Ivup6pyKPGQ4GHbxbZtcrXkUuQ4sM4CIibk87NI3NJjWtuWZDFRnL4W+F4j4Y5OdlNjHoSxz26zBltNEUj6IIPs0mm2JRhXyq506GgZUsIjePMOsKFWXlH9sT2AFaffyCwk7MvA0p4AdMBsr0tXJdM7neCevSUHwC2HD9fYUEZuMuGQMXQ8kLDVpMhLxI3tHLHrS9ufoOPfaBScRlurg0gN04hcQnC84KbzRWujfZWzTCVzkJ977zeTbeBxpmJ2iq+mIj/Z0pO+YjKrNVBow15U/ZU7VyCZrg/S2MqLpxRKFpUj+WKmbw66E4Srxc0mxATw+wfhCwcQD1S25pIdPwyh1tvJ1mKxFcJ2Da81RovRz7kU2zT70e+rxkOImzeMfl9Rl7QUAxBS2yW68UpQStblUUs1QF1uNAWQwahMZO8PyfSbwoSr3fATMbUPCzrksylrr8SXIEU/vwjuC+r3Nf61tCvP6nXB9cs2OCyejcB5ghL2P5yghoNfNGOTON0KO+kMdCu+LKW7DVzxnIivS8KXI3d9xL14vZsekWPD4IT9/mYfCe/pgUGJw29yqova7+X8ZzbkNgvjlQi/qHjizmUKREhTcaK+4wR38dKTwgC+GW1d1g4omS0K9AC3FiApz1GSYC8n7zbAZ40UszcVxwtqA3J4mT4ACRYVh33fohulAsl2/B7oFHujJbATBV1JebKeNWfEizY7buATq+iurRxLXPz9MHYNwY8nXNSnRd6nz+vFBrcePPKzVFAm5D9Ip90KFLBNfqaLHR1d4gtOdZKaqYPBZxvR/jjNFjG7cD9+1tC+YlYBWD+rB4v1/zs1BfGiRC/d9gXr/F4sRt2eGzK+LVNk+t8JLE5h8jFZdLMAEJldWLx1UIwuWTSsHSmfUkL65jMTP1N9/faisZI+rF/pKo2c7SSMLzMs398QEGcaInLk3gbLoqo82jyQyVXobG7c05idA90oLJPB4VQVaK7fgUzMD1N7c5f3uTbCvsg0Vs5p6+TOyJ7ri0+gnHwWnqmpB99Hm/NVBv9l93I1u1iEBLBiXgzzuuen1KtlyTgF5z/eQEF/9PQcCW69otufUBjTr43C5+hPbQkLys2WV5ywtZ3LO0zDK3IGi6rUmsOJcPsKNBMddxf+/0hi84PTi7aeyOfnXglHxUvH6qjo2EhuxK/wbiDqMExsZZjZdiCDGUP2I0P58H+iMMm4JRbD6M9RZF0Rt9jVByhoKdOJUVqveij5HVTOC2rbqEItj9Pvaz1SKkmj/xp77PwNwwJuLBbryfcsiefhSsg/H7Dx7NDoSdhb4p504xrWLh7l+4M6TVICnrFObTiKBUN/3JbYOccNZxex0dx1UdAo5galKjZDpPK+dSdZwrmLQksAb6GAWdZ95Y1s7UhkfmgeSZZX0n9KNavo3uiuTE+J7k4zMzLYSda8jWNV9O/AqvzLqSSovfUToyjydwVbgvM6NRbLTApmCmGRjtwY+3D3Rf0Xkudn7JSVLrtXEQ6vlw97ld8/OfK7OPybEYNn1xJOvBCksxhxsJh0/IMM7kIiKqh8vqc5KMIrJcXWrA3nXEHe1nRmRUG4IFf1qllOAw1b//cHr+mGMQeBr+d2oOgmdjVQR0aBKjhsryVe+f5cYgOpLr9xz5cq+kAPhwjGgCnYrBxmfg0FWP+Gk14EcmhQAEQnqn6VYgtavXokGil2kC+JTC+z6eckd2gQ63CRRAPRbIKUtOQi927XpZw9zROrfM1DcRyZHRQlClFVoMgeK6JuuKnHU7/vdCmzRg7urzOiUtj60rtxQJBle3ni7AXLPZpOhCqOtxLJvPvR1LRwCKav/4aKt/z9Fpmjo4mG3aBUrtX4XdA41hSAVjK3KUDnR3EYVvHdQw6kt5seGOCHb9cymgqfSNak6PhE8emuYJXbrRhE0kZx6XllzaUFB/IGOfG5PEnFnaQ1fgeYFHdH+pDCS0Z1vJ1hqCTiEfVUaOx2MdD/BnZYw4JHc2DZ1+SrBSL9Q+qAjwRvcln1hsHxoSZQFgS90vwwkbzDvNepvX3gPBAApY7BJZt0e24FL2c9GJAmPIdDRKeg/MNUhvsEW6T5J8cEA/JvmShCmKpq4UXjbWvq9KHNO31NJ/GGe+KsiueV5vXlSmySE1joFo2VJReRu90u6JEjXCrkwVmjGLjsVCQHseuiGUOmRje4H8fOTjYMPTp7F7tIbQx49iuCMYQ1ruQGnW4xwEI4O+MPJ3OUhuGGbiNBUjymUsynUNvfJR3pa7KSFywFjfDiC4ekEjRSlRl642inZ9Ip4KCtAWDlCyVMOIay+o6x5hhEgWJGOlYpFhmtGFK3uF/25avgf3XFbrgyblLRKhmxDG9iFlNjx+rR1Za4FjQhk3NV35MzNU3yKEARS2jZgdE+9oc4bvOEeBLNfQph7R7AB+pQ6Ek6UX5Ug0u9PufF1/fPLOes0w0vOwtISUBFWPn0wQZM7FGgymPLnUG0ubQ/W4ZXX8uVUIPHakAP9t8wQi/V53lN12dGTiYzCR0cSrh7XnugMnkJGR6HPmY97xAk7U4OzsoLpC5C+0dxLqFp2Kp/PzX0G3rEi10T2oWeTBf3jA71HzSm3eE/dMN8FadIV5vRtOoZI4lCHIepfNKE1nQNtDssBXX9aCP7/enC2aH7tVyog6miHCQKnMz81oEWyHByD7ZIHLKsT4Yx1JTGVO6zIWOdUtCUQIpPxe+WVgC12F/RNxrEiiG7ZCMktDFcLREbGOvW+li/mgZvjNWJGMSDtGXPjbmCubG2mnH7XzUlBl013f2WqdJ/kec3rjZ6sdSJ9P4V9P/C7nDXsWwXdFKEsKwrEypIrD4kbEYPJbmsJNr+e6bRLCIIOiOR/qYYmkab3hZ9AYK/FI9LUDgiYmhS8Xg0xA9PwwcsojQrg9BDxTytxi59iMYmDQKucc2Pi6ARueHmwzVmHzeneXAUO/hyUql6d7Wb8tyVjHoHSi+E7Xghv+y1awh8ChmI6P9AYm63KIeS0BAXHPPMyFBLVzBJTlDGvlZIjyO1gC4xV+LA5+MgmmmkOLdz2E4Mbvm9Ptc6jlRt3pIc71ksEAKQh5ziaNPd/5HPOGgCgJUXvYsncDbXYEdTt4ooliOb0z/qd0ByChr2pBjpEc6txMI5BEZ+kZ+QDY09qUpZfXmQt/Se70c9tK3tShWfEX0lVCcqdbZyJp4ETi6BemrxdlPqSFooV3qiEvt89PE9jYNIdM2iNcp38DFBXxSt+pz3SFX9/lwNrCVDfJz5PjhSWwsrJw+c4QYDGaowoHviFFF6HYNI6RsdD46cDyRj+YRFeAY+L5hGrapKnWvUuyoRvAyowwm+V5qhGfeW9VqC0tpGa+1pc0tyAEceQOavtqEBxOE92oHAMyMhu1T90+8pOvjpWdm21qUFojVyhP1UNeBJDFa0hcDpf0AVtctqWtMq1w0VQQho29s99Ehq6eBURnFBkIVJFYf8z6Pyzrd5xYerlth2HTudrKy1YBxknPjinGWj5ubVmK4hlgYnjikg09UTgtzhVv03WOTfkG9qMfNh2uG1uDKQ53qCPPtZwMPn5f6GBo7f52Yf++cX7c0HII8fbcAjAiQFEgY9MT0s4FZDMNghrodMbxVCfid4h5VXTwqWunHkEvp046jUcHXJy+IImqk2pUpeAmZ/lb6Ioo6D0B90BKzPw0zcTTs58DN1A2w9xQWCDQ4j3rP+/3Gf9dMfICok31PxP9EYQ4bvujS1CeCNeSlaqdyXN2zzh/0jSS1G7RgF3//7Bx+AEdvN18hCqrWu+TX/TSdJE2lp3pV1GjA3xbP/ueKvXFfA4mawhnhhnU1XHV6EIewU80NCV3RaUkac8rYBvgn4H/OyQkg2FDtvrbHgxgxV3G/wy5WZNsg69xepi1Vk/47eBNshMChnD0q/h4ajkqnFLTR9g4mDuRFXNCwNniI4/hrn47oEIy2jJx7+P8Uvj+GEnybSEIDcQUruWvR8s0rQ3CiNVcvqWVdqTp68C0vHH+480i16oOHyvwiYnrMkdsHY+UCSnOFSduunshAzmhTTSCDRZmgK1jBBNewmHGlpPCP44dErsIYWQ0B0ZCIGR51jUKOySpFTd6Kl0Vsg1t+kYxtReNAfQiVk9Bjt+lbZDZnlFnX7F+C/SiNVhHJOGCkY9mrNaiGa+XywTNRcu0WlVjeV4jeRy/70gwhfzOOr3slDnsMr/ZFxyWSPjdhE1FO3I2a9bUY9rfoOYoQox2Ekd73ZFXuq2BZ1RqjKPUsa+hHpTwkq08FezpcydV9jrwQ7QkR6eLeqdQ9S5dq8wrq53RQj011c9TUDZ4QIAl/jwdWWqAJkblwdncgJaAK+Eq43cKH3HiOG4Z/OTCp4MM4KJ4GS1uiTq/c5qhIDs3+2uXYxlnUcKWS08tZn22aS15pcAD9jL5o52gPC697RAYP2QzZOQAn0mlqmWsINXpIeVpxaRDqgaJDA9VmmrYsgnZhosd+ifUrkUXU7EQsDrT4cE3651y57SQIChRLDEwncDMBWCNLftZy2k20I2ED2xS1OHvLZyKYszX6qpLkbNNPE4m3fQJL1G8dkBpJ01qfilJJuEvQ6uVQTABNskxxR9J45eEXdcpr1V8mH7BpH/YvwhQfHh8RV6eE8+rq2if5bmCHGPHBFNiZSf6nXwPEMYhkY6XbbOgYSMkDgfpqMoJ0IxRkc9+FgCoXX/cEq9/uayb33kGVqxXB9ArffSfbjo+r9ZoldutyHBKR4H7Zd54D5MR56Ue1bfM7MuM0Rx8I571gXOOWJzhFf44Myd2gTXkGzf+0ngrQt5pEXN4Zn8y7Nf0+5DMwHRYHyGmftVfkDFRoS5xn5F5t7bDIkUkkxyzX+S3Z4PyHNbLP/sA6kv9oqkpXXlANZPdbvL4oFhc2su+X6BkN2tyA+hS4BTo3rlTq3FnEz+/i963azASiTdVkT2S1Y7G7jNtl4k5FZl99rTVT0nb4nMUSZS/NqAESlJLWvDbQo9zKFjsd7M0zhfV5tdIvpdGmhn77Q78tuc655MT/pqclfqFNF31aE/syBnzb2xsUsSIWm7ZcksWSrO47nU0jf8rMfzpgciJz6GJYbdbFQVgmYG/ie85glyZyHu3AYiWN4fdqb1Qdgj3cwKmkwa+92BVnzc6OfqiOPkd1ARKsNBMSFjBdf94y3B/LU+9pKOvM0dvMPtw0KGrPXkoXRmwiC8/wLIOYRjXvj1yITvNMAyBflzpzFY6gdhjAzvN92Sqa9/kzjKix5bR0kH2O5oJsvCdTMrLGdkn/s4hCnk2qz9Xo3TKPsnTlByeWHsySlGS4VjEzG2KMW8ic9SUi8ANXvIwWllDqNzhDX3RgTRI34rgDY3ZWDkqkQwyxSM1DJg1EXLBvYj39xH/PErmvQU3mvEUVF+c7mxD+QJSDBsNw12vwTdBekg4AFi6u782ceK6vwsn/FT5eFbJZ6zMt65exvSaYRpNZ1GZFuLnak5fS7Z7/FBYOCs+m1vneX9vapXaM2f82wHHKMjj4L5FbLAOfF5Yap+9NPfX55G4FzsdaHVkOZqN1Hw9d00US91BLA/o6tbC1TMUezhw5TybGMUXFRxd68Mu5afWpalrGzrhrzo4culNh/X6i2nhplHJYWLvbO+gfqiACpNTuyU6Y89lE0rdaVWiWTQFqFf15xbycKokggarwHt2eBG0XhU5sCSfLzRe3rj9vGGo3QyU7st499xxvN8Dm0otYEWYhkLwrK0SWF+YNoCPAQSGUPU94+6Th1OZ86WbmkYDyFpaBFDoq43r4Tx0uxnAC6Y1DXTmB+4kOcCgZ7GCGxdZEAsGuc4JkgwOoEDEBaTHMPur7rNv96ywUntJdywK9dug6x55F0RIkdrxd0cIAak6qfswOkj8edeI1LHfk72y2G7b/Gtv9IULrPjUZLavqg4BfGR92pc3c2PR9hBkTCjyhcNaKFontatqBKGxyF5bJXzohvXvrskey7NjgMEbKkxbmxyX2t3H3GEfIiD1mrO2JPFVtlNpxUt/sTAaVJ/f5aE3NIdISeoj+THKbghOykBln6L9j5OO6TZNFO6kr5i7Sj4+lhhu6+KH1wDd/rqs0ORDeM8SjTqJK76yBnNYZehVrhpyvZWC1l7kt6A+VWJIyC9kb5K6YfWubaaJ257QmgQ04++daJeTtgwc4G9SBTTItml7TE4M8XD5cRQcze2JKqDGvk1QW4eqPXYvS8WNGJfvkLQkWd6cQVz66xUAEZhG/mpaLdZDwjygV/LqtCjmRpjXYLIfTGQjDG24Q/SpYF+d6g/cRN0HqnaiGu2LftInarGy0S18ni1WsvuYiOCTv5tzxOmNweh7UaGTlDUle/au+Tkz7X5W4NvPEtqTm+VidZBLzETQ4pc8MYiH3hlEyqJCGccSt2/FQtNy2KeaMeT2UsadVeiumBnliQoWvRQA4Q7AlWu4yrO8eE6fF5cYfB2O0RjbHzIgnwisQOM4eSo2iF67QX2mg/amlg8GlVUIhv4NF2cfQ5QKLL4oTkmN7VN1MfUP0EK8sIyFC/AZixiZUH5CxnXodO76ZmucVporXlKu9HY5jAer+47YLwahyMjOF053MNWRraaM4XJCNB2ACWa6rDU7SKM+GkXc15w7FXsGsdWwRr1o++GROsQ+NrF9bxPptijd3HQMH5unRbZ8FQSc8zeUPjbBCAzzOQdBLwYum5lyMyIp6gbTXfCll7jWW/qY2seDoeJl9M421r01w1imz1fHaRlpiQp56BSC8HsNsOJnUzniTf0hxLULn6O2u322ijhaCqyJfgJ5gscq7F/4yU6Hdmv3GTuoV3t5lUPWtXfDGBZnENZIzxofdNF5Tm5qy0sW5Ih4L92ljR0jiITHfFh8FVqL6lKTgVmDuwlloLtBPDFEMgWZ+ey2W2goYTvGZN0oIXKGyBGhKwn1FGsk/vjzSjkZ3SaC3VG3fBb2E91/Y7NicMC0h9owpifskZVj665MlhLxGV8ZiRswE7ER7GK00WCuUJ1dcVo56d0wJJKGhyhdsqC6JLCHvsjolOq2E/BrUb8hqP+oYdywRPMPKSqddwwDj4jIBAJdvnX4R3U9ziH6RQ8d+jUe3vDK7sCgUkXBft6U6hhVklPuyiSkkLUPEL0mVQHOVVyLTa/udGDvh0La4JmhYSl4yuczwUAvlpOrhSx1cPWE349Z1mTPCFGOH/h6JeL3JJOfKvrTkmbDpw9ihpJcfB2GBLHaRh0aJV+XbsbU0U97tpvfVyga4QmVpdHvLpI8lWV5W0J/8PAdN9MeMMikkwzW9CGjfiTGOINTL6yjjbESNBbF/VJGEhvMHavF2fC3nXyD6pGseibINtC7KuO/DVhllc0/V1xUb/a3603L2PM12zIJtyEvKC0lTbro5AkbMFd7N4pbOdqViZhtYf6/nKr93FX7GNEGi27nyrykbI8nd1ZTSh6Zim1ujHtaejYjaTuyEu/LC4NKm6Awk8EMwC7r+3i0NxtH7uiRkvQ58bL1ZL/WP+9VFA4cV2tolD3V5OdtHeuuYP+BduR1At2pz5qzf20bk1D/d8TscD91zDbvYQN6EOJ++GAGQZmVWzgmLrbX2j/N2vbeFa8RkjJlG+Ssri113F7d0rUk6CaeZISSKzueH2Rg9yiUQKxsmgF0M4bzFZvfzOJISrtLo913Sw8SJR3CPYjrIFmTHQo4W9LWCpxLz3iK/u/w/OlSpGnU6ISOY/CdSI9Fxg7HQVN83cKdt9tXUkvnW19x420u8DYFYf+rAUbpyMYJJZoNTwMLpvjhTrhudIPA3nTDK7iFsSiHktQQmlrUpDbrvPidHAOjY5V2Jp9rVPeLbiB+uNlTGtHE/9jteS74kUdHrjKLY4GttNbMOt9ZK4zy8S/NyQyyRiuby9kdQ30CEHYNdFJmYCALo6A0s0S4gS9pyiZderaCHvg2wT+ntQlXJSO5g7SLkujl1WMZdnjw4uLxMlRfAp6LGpUmNAAEt7xrwgw6gAW82Vl76rulIGMwHFbPRJdtvVN0w+3UQB9a2mW5prj7vSAWjokV29Vr6w0KRQ94zkLjNOV95sDOztfxibgiLWhDzOkIhTZ3hO6IaQqjIsu78HhPpjqoHohRFd7BXWIKRQez+fskGyiCu/PvyjVk1ltTTAPLAyhtBF+gW4uDr6EdOEE7vrk98GnItwbfuVhYMoj5HK65ORnff76bdQgVVIApugES1rEA+i8tqwNc73GEp9/eoo098rTdExgmIJ/oXLeufd67MlCKZIIIbsk3c/RLUUXjibHbuWm/taislE5qjmeoT9k0uttzfSNHkplOloXQbWfgvt9pF1+foveW6kx9qJwPAS78mgcGHiEF5TbZPFiyaCibQ7WrPSj+3lrpqlA867HOklugsfrGAHqN+gl6lUS1lENvmknzkFwjHR28vPNzHkA5ON9Ajiw7eKo5GyKB0rTvWkPh8noiZOZyYrgHPTQ27a2RBvSxVK1o/mlz2FZiKMdNCkO5lQJaQu+qUcM5olxJTaKQiyd1I9HX9BbpTbF9PvOlYu2QeQBdgGLcA/RnO5zpAuY6Jwyma0M9krjMV7i8ABhPmw/d3WFUP0ZUaZ0uAtpH9Gqt7/aP+3VrWMcS5Ml3BEi2YgldV39sVA3fBHCD6EP0H6xHhjvRZ7o/4ziquxI2KEUx+xR9FfwflERw5sVFo7DnL/XPDmF/g5EffgbS9sE2nSR++Nsc5zRmbH5Fmzion/VKq2tE9REhcw3wH+0jZ3gM0zIiunm/7lgqdR5WoJt9VlWG7JH3bHClf9D78R6JxDFvtKhHwa2SJQ7rLfkqqtDp660Gpw8psKCOyt7akgd9ApZByr/zotn/IdKsdRLSLifpIPXYOwuyKY1koNamklfFvJ+3sUEVzIQRjemthTR5wM34MWOq5S7ZMdLL3koEDqOGp21Ij28ruGtG3YsO1TIbGalf9u3Y7e0hqFMIIlCcbl+6ZlyeK6Pm56Nqw54FnEgx0ntcSF1kaYpHaRuYksBiQBQuPZ8xcqf/GsAAzBO+pjnJfR7eOuryHHc6tzrcQLasvsVAlA5XTq+UNrGsFSTIHnhSneCFZ7bwvdPJmbZ5FKHnzxCbbOWZpdPWVuXu0NMerjOVkzU4g56M/EAJgfwS4MGjyCeOXq0/wZU7C19rqLEKKzGOM1kaqJk8XN+uJzXTORB5QIRhkC08jdSZSCQsgO6oAX9BC/CW/OD51WUthoh5NPIX7DbmaiBxoUcGzqVIttmV4pjx5ex0Moz5emz6cbkmaGOjiCBuuDrzwGw6knTVPKdfAmydEmxTmD171k3LbQ5e15WYWnuYcH4cH2orhhnIn/Sem1FDmTzYI5wgz8YrxKP7pJ39PFRxTSBu2xhYoaTldDfYzwKThvjDQKs0UVq2evcJWZvShY6PEsfjxA3NHmOjbKiUCR1VU5EF+XTI4xTZiP68Oa5iJ2D5c+nZ1GO8W2WAjnH+Fgrwtu0ZZsh6rS8Z3AQ0n+gow381wmFL5qH2yinl3/vxZxlRejqSZNEsZDFfZrkbGsV9iR27NqSUZUPTiInmSl2cLpoZAulPnV/4NJeBL499A93R+7k05afnTlXpEQwngLpvZW4bP6e3MF1tZiA5/tLxVLPXxEH1kBPa42gkFSETBGWaiNBOMUKFAbmv/XrEpCGGgq1uCwBOawGAnPggp7hOo432R36eGKAzNJ09BGRJ0MOXAkihtqg4Iuk+sjkYf3KQK+HLJMjriaIqBB3bA7b2KZOhlToMoR6rxuj8VjtnuOQCACF8jCuWHK0rSbqfP3V08jD5MFeTy9GzDAsoe/N123+JN7FV4hxfhP+O8CTh/lOJEYEBGMQOemdGUX//60xpTdKrndlY0vxXDnEf1NYey5Udw6IJ5/nfufVBb/8YfNnoMPlfJyeR4OgdoQNU9ctR0SBsPzzeoOsZGhmPbeHCqCAqldyz7qbIX6F6GqxQsXfdSkFCIGKXnrPScCPn1HSE2IGM/TX9CX5vDtDRgzRnxLryNYQ4tL2UfedZf7sg5nuBYJCqNd1mAivY/wvN632IKkl/qCe++mOMEeBPlUIBlmY8QOjDYT5kBhn4jpRp0kb4/1q5KqhHBGVwlKAQgkIGL/bPvDr0QtoU3Wj/eM0F13LyKDmrI5IgAZ8HQCjSsNtBvU+d9ofe6vpcGAUKWQB5XrOVxEKrN6ixtMTYArcG9cVesw4WCZg4liSoqFf0sJuD2oiTh3hmesxIIQIqaTVq23Sex12RRSUnXeNm1jBl4t2m5VNb2+2xh+lys8JtMsUXGckfLkweN4aX33yZAHnwtKyIbbYwP1xOK7f0BhYpf5J9t5UjqILdjBkOj+LI4zbyWmLoi8BDED8Fklb8fJ0WqYQUdhXtIVyuZNmTpr02kfZ40eaU/D5DZHrvDGUl/Y7VaiddCetwi1r0+s6PkPC3BYub5ntJTLlnCbqUDwa5bgevwzIt2SEVzIDXK9Blv3wxnntY6xYC+1T1hacqEXFJG13jl9NM7olFB5+UoPQOf82qvYQ9GM7T+yLWIzcntl0I5cHCwIIXhkQ3s6K8JBXBQyTcSicO0RdRNh+bqpHjXQu6JgIAddYh5onZvmbim+GUVYzDn3uwhlr4S454zGwIh5at0SW0SuKRG8glRMYV0X8lpIioHMsDHZUZJPvWYzOeOBR6RmbbXxJvmhm3NPR70gnrGlxQ/USRWguuBdPkQLvXdCy6qwR7AbGxCk9ESZLDcPyeai4lOgBVwrSye9ylfPXlWfCendjgWW0rYUQA/+Bs9HfFlAHiiq4nUyVUvB9ZgKlG/wTrSMyVvnr5h93YV3UNilSwQvN1hfyngXhX4Vn+JFHZNryHWS9NJPYZGpOlxOOLytw1sZ5p+ZcO2VfflU+M9UB3KOnPjs2jKvvLrH//oEqkp0fIce246QRzcqroUeG65akfFv0N34Gj3Wxjm/1fXMV1+lxmFsjNFkqPM8QP+OgWuf0/548/TQ+6o4KLgnmMSW9d6R0nGBnSsVEVYGODjQhtvZakO8ygec+YwfxAgWHujuEOI+7JJKBTgRi9T22x4ZHgToX0jLpdRKeDUBYYdsKh3Xw+rtmGWJfGf1T8zgvPYp/GyNG8MWZPOXl6h5kKT292ih2L6nkCqqARUIbX3/iGZ3XQK/Knyf6ieQUEk5MdYQqJDrPdU7qLIk/YtofyV/YN/6Th9coXSA1BUiHgOi05jTTq+hk+0UFBSmssmg7epSgeiMo0VawSyJphNopdAlbYcmIIPiZTyUH+1BJXNs6wumMZ4+e3b8VkaozanTtCdxEqNXPplBViAbBcL+MaeyM5SdQ9dTPhAWxho0acMYc0axFORy0EDl44RjtQwd2MS2TyuXnFdhVrEGTB+HfACz+28rhV/Vhe8t9Abm+BTdcrqYgtg15Zc06MuA7OR0CMURiFcHERKE/euZlOPSPXNYas1RS1oLlKlI6HcKJNWMYKtwphnx6WDVWI+T4znBfBaogE25IwODykXCzkMlBT07se2HmxoqfJvijpZrx82fyNhpRd5E4LzMZKyEtsoowYvu0RgYLiOj2N8CCPQBSeRmcf0HSgnL08jZWfGUQDJqFgSp2o0JHWuM8Y6l9Td/a5TMUZzO8nSesHY2+5EdCqwZLtjMLiviXE/rAue24FAikFQWZgCbu/jBgrh+FnQdJrBu67ApVem23b+QVovBnHMGa5LlhJMBRi77/iTqLa5mbu1me9ZVD8EzpdWqbQ1jKmggvk1eII9qI+q9jtG455h1e7QBw1UgE59NfwkxJaDbzebZJG9ltBAZqUY44QM24vFjvq5vTzRESHK32SYNXT1nop9pkwND8WOwF3H8tuKujofl9D3wiSyH/WCbM3kdO7PfE8I3OpLEdp0xExl6CbB29tj/6H0szdGicviD7c/3RXaOE+yVxBRg9ydzopUInq6xjFacJL+pFsx0XICgr2vHgVRPqlas66IZagxana8TwUfahOvgr6uWDeidoTAPrRGi8JohF34Lk2po/nGFQZuAmiF5B+Zc7tsK2RaLX9UAgl3hvnrVCCMshMLhiSeZBZfAurNnlgCwWh7mcUC/bnawW9tY8sOu+8yxlZz7to5wRr1aeCN0FMP3+/eijq+7rQNjyc5ZKPPqgP9CG3diVkAIum4WZsbiRT8dY0XUf+tULXPqm7bOhmSQcziRR+ceof6G5Tgh8XRbjzeVbdnCOWCMGaUpnL8cbkVngoe4SM3V1jKzXciHum2crDZYvKZkGLWOPIexzFspsVCE84aUracTCD8uAYefHIC3eBGa0UYnFgB5yM/oS63Ox88Q81mXp2k9u1K606nPEXChrB/Sw88UI13w+rUd7kjnx3PcINA2jXX4Ayl/sEuXobjw9es9xMM6ttGnFkhX4Kw9LexHY/t9hFK7itusVPeKzzDRuqb7OmVogAXrqOqcYfscIDRp2vugD+pKyLZDOqyQwo83Pnn3SuD5idljO0ukkON6VALhq5NG7/FdxucHK53WOcIP13m+MDqhYdM/nHFtIV7IyLVSrQdBlCrkHf39hWKIqP+2O0YdsPkdjfJhe0lUSQtfgM4iWuSDMoHi1gOfLwXeXpiOVFIL8j07gkIBeJtgIb+6jSh88ktNRg8EutYGkC+7BeZR/JFv7cOsIfUESJs5DS8Uydn8jPQqJjm6rUrbBRaXYWK9GLxKSr9zFE3PwAkIt0yFB/ACuFW+fjc2zXeaYFnRoA3K46P7rSOvZa77UI6JxSiiawYE3JS/9pgwklzd36UixR+Lb7BqTxBkbE1cCWZvhwQZbE4W75aPtCrk/ATnWUrNt/EPLv0Agsa3yfPMLe03TBg4SWCaTCpsSiWR8lU6H4b5+mS9zJkRx2pe5p4JPToXPLj+IGxHFdTyY3gO2TCQT2njRIw2WUxkDgFNGPcNFw3ILa+UUfUoPDCbwUWbs0h0QqZTlMtkCVScQEqXtyBIixZD72DMwNdLA7T3LiGcEMn+Wm/aGPumz8R4sP7ngGY4dXDfBqeizNvauMIjoBCrHfgWvYMk+UTTd4E4LP6tKtFtkOGfr/Pgc5TsTDBS4wTd5bT9MWSpFFSoLirj0UUADk7JDN6Qa4jpEbdDOzInUTIJBkj1QlPy/7pXfPwUR7tmtVKNpx1PV6BoJYfLuVLPmoGEINSKVB8qfWNz8N23rip5cIm+9GljKlwm5eThj8UrOFC4vE6iPrTQbwM49QapfTtCen70VrEAuBlzb3pIsl6Up/8FKj/zrhhsa8mDqx02l/Jwk5DQ9O1lyoltV6/fRvBRKH9sbwpE3yYdepD0wRfqNrDLqfb7ZLOY9irNtl73oYY+qpips//eMTUjKha6d6OI53R0oryZFWCNodYYd6j9ksrONSfFHkTPLLBhsl1MD5zBgfJiZn4pWVI6Y23eRJ53XVwJ1sTxikW8VOLXaZp/06OjvMTDeifnuv2B2hNlvb/EnH2Yfhd4U27lt3imJWf2P2eLDRY4A1STGMXEysbxw6m05eZ5PAzxVllLPiiYU7pRfGbgr/hgobuNj2j89qyKWPVsr5MHulY4AeGglgltGiIc89E0E8eh/L3h0VxmjJQsLV/o773CGc07ILkCLE7w5YRQPPVgUx5Sq/xgPZMIZ143N2Ralz5i1bgdXIVQaOVIo+PkWL3glydFUBdxRNcY06jYp1KebfFuLkl43Ef/zBJPJejRiDzz3UixzH8BUhoxd47Tb24GLXBP9gtMvrNkysyPosO3iYytuDBlhtKZ0B1wxYVW/hz7AqH2biEHkk/BGFqVBNj9y39gut0PoKV47e5mqppTs1SFzFBSUbOzC/OEgUVy11hTvtJoOaViQCtJW+jCoiBMFvZQc4oNuBQcS03uAj0fUk+qVe1dwm1HgFkh+DWl157M1K3YSfGcOCUT2qN+xZcn73eL3vzFRoxPy21vT0M7py5qaPRo+iZeyWzYQ3AdJBTJQWtoLsIbdz6sTmNmBaCjZhTySUvkDBcx+0TfD7lM5Pry5rKjtAYRcJXhNMa8RHAzApc+xuPkZsmRsV9LG+Tnuf67BLgowv+Jp9JqMC08ClwfsdgjuDnDzFM1CPD58v0NL2TiYrt15Djx2u05wkacx3EAvexPg1AMVhdtjchB4wlMKRUbbIgw/cjgfrBafLcehzTkbQBMtjCeH0kTluKWMEsAoHptydg7W6Zsyx6lgLDiBEq7D4x6QaUEeCcPOBsfu883fDOgixMBomTAm7mzdWaFSTllL0JZK/uST9gMQZRnqjRo7vKulWwqaWhyuecixbVj+H7UiOO8kSivn2WpnGWCKIp6m1p8UnCef5SR3HslJA4LTKbzw59zZIBO9edhufHeAM3T50vj2sv2ehvldFwOeCcjZnM3RBeuOUVVBLKWbp+2NB3T6wdZAMVBDl0qZB9YDrnmew3jwplcatT9cV20etnYWQ7NB7N0O5gLy2bwqn2i5EAwJL0LYJs+Cvyjr+Z2GrMz6k/cj0QU3lnlAqNTwxBwQYOML2korgpFS/+ayxxPwWXliAVRJqzPFn9/enz6J36KhTvWs+iFEfDZ6LCf84jD99xLx4FIAn88Vg1JMp3CZ8qdmbBmWRnMMLdHUEqVmPLmRM0FPqYYQJifmE75oQFu0ZwbeeJhNh/sXTNgLyWGdpRnMqPLN2rnD3loqppvvqtL1x4Hb7txOZ1GKvQd6jB3wEiP9c8CJ2CCOxHIu4Wpq+rkqxd3xzUmN1utQmys5kBR1nPNUX+wA73VMFFz2L/WjptJnoD+TxReGvF5OXMlmVKGeHRN2+MLX/4kEBmqjcik0JoB7bZYifefOcKJ80Ytr+6WrE6ns4lFG8cAz6sjcC2ht0sWAb9O24uaFhQJ8+cM+ug1IG3oDO2xzcW5+DpL4YV1/KEYdBriT4yMJW4YSBGLA5DjcbNu1Bq1maqsejmJM2LspOKnRbkx8CxA3FApbMM9l2YDPpfgbASvk9VVlF9Z21//EVncYAc5vmYlnhgsfUsuMqnnfvPUEVOOfMAu7c3F2BClavlnL/gBX5M8YarSdkXEckB7DL5ed+PZkoVTWsJt3f2R1hPDnyf4luInjoGSNh/smGN3ItO2DW+XFLpr02cvF/XZ5FSlfgl0OtIlxMyeY9CSqenr1pOnltxoyL24KlsXrp0VEcIiU0XpwmGn5I5o1jfB0esyI5WPtaLpG6/878Xri+oiO7Ic0cJYRB2QYu/mi/k8z4V0cDgOZVhgjS/dDenglHQ5jxYEQDE5uuIIYwWbYzlg3ukWcdMS1ogeAicN56KBg3MJL51UR5UufycZd920ytYRxNE7ZATsv5HHsv2HBKfiCFFcehsi07dimgb6f8NyzcXFgVzs4TiKhfk5lRF3CAs93De7Hik233VjLP1wLin0XNbLGsmSnywxURkMNGNmOkayVaQAZY/xAVBm63GF1HiLqt/GKS5D2+DEkKG1DCURa0IDhjrsFHCBs3W27hfq4p25xh0ql95nBjDXw8QU6DzA32YfmWltUofmQ3RAKWS83DW7Lkza9ZSYQb1fN863jGLpP2GMnRl1SuyQLg23U7JbOSRNV7GXy9ThUjkZ+nHoLixHt2LuN5zddnoodJ7LXl7VL0E5cwlhLxHD9Ya47SCCrIMcGhTZsT1Xdh7FJwLeAj6hwokFaqEnh/ib5tBBYzn7yGYkKf6SBiFSSRHyPfvtw5xMjjG0Hjq4g3BFQ40owvI5eyUykR77krJowMrWfqOCvf2vLVV74IVq5AXWEUyXDEEc/YssgGslw69AzoDU4Do8RajC8OJdFmQWKaI/LawtE/K+ixTRviHOhIpOwFkjZvLUAod8qfU2SQPteztCcPUh5g81ek+S67P62mr3x2baNSdH0MXo2+5sNd1T1qhE1jgvK892fhXMQukUBsmzPBcjjZRBrsIT/FQb2c3ErIZ+37fo5yfXGuQ7F41c/hOTgnpFg4Ga5KVOt4qfXV2vA++DH9vfjQOynq5FAJz1a62Mwj6Khgpt9xrUvKd2A82/RtLgBrPlc+44PE0FCPF2AmOsXO3L8NrXA31mALL8nBATNHFF5FNaFx03nO3a47ktc1bLks5umfd32LncD+KZyKtqLwnJlmnHhUIdP+zuyn5k1z390uuI1FKU5/2i29n+rOmn7eNM+yUZeZnbeAst3Erk63+sm62c0/QqJLc03mj8wuupJr8ygH59RL21LxN5U7aC8YVaFGvVgaiBmsJL+siTGw9bC9o2HFFrFX093cbNNlpfpA6pSfRQrTOUqvf38jkf1jcsQ2vtUb0bCttyYlG896impRFxXP36JcE8WetFIuOshoW1YPlqgLaY+lvg1e0Ruai8/Q5sYMWDgcoff04Qa95bj1nbu+PA7lZS0Zg01CSa5boe4xc4bLLB+W1TtFj+GlKHNp8DszB2n611XlXVTxCK1e86JfHEJyFBTYC/vhqeQ0KyeswGsKYlvMuHG/P5oUNUh2gSkIJ46YuO5nhhLuackJtXdiJbRoEwkveeWZj0mLydI3/rie+BWB3wVyN9PCTxii8pvL+RHhsc9eqma3ES3DOTIkLTfJNN+IGFwTmJFDy1AQey1dhjb0YQMHxyDIXuVG/ilN74APusrV/ujFGg4fi8XBerzHfN4J0WoZzbOz4QhZ/O4485mppAxbpUZkOW8zoJfGkIyuvjtXBPvJtRWBHnv2TPX9DUSGLax6UBuHY0/IcNvqW0k5iUv8LGZME7iDFBUNsMyFBp0MYdWz0v1mL9U/UUC1Kt4dCEX05EKgyOaZ/ze4yM+lNzzwYa2B/c7dRJ35Ml9V1Y8hkWedzdXc83SGDF88VLUZQrU4dPLkdhwdOj96V1ru09pZ3iBMzmvmHQ/PM8N/8xI5uVY6nyS0/ZD6Nx2t3u7GDFaFxdHSGUoYEMjuAPehIxM7bmlhK5n4fmG/VEkh28FwcfsLCnFEQ7e4qDFHKhiKrJsupIVJoqb5AT3EIrMQbUNmV+ywpVsTKRbSILMfdm9xRaapIDvUYhggkG5jrqgyrpvL8Y8OjyYtT+tZg5kbMw8sCfBZGxNNRkcyS+mhxf7I3/0gSsoN9ucl+hGBOJQYI6QZS9RsqkJLuDlhz8vWGd5gpDN2p+r2FAJcPDNfNLuNvCaAHFOT7kgQ6fhkgRLT1PFX3+PbzSt+rNvmuI7H/ySEZCr48DWBZHvwammD8U6X+NKFDDIRavH/vA4t8dbIpp/PaqGMptixqq/+wToPi43sKZnMK/mf7b8YJKfqGq6y/hSC++Mlm0CLMrflZva0h3ZqtvxgWFsegt5sjStsqMG7WtRtdbh2iz8Af+a3UuONp7uK4JbUp/OLDE/f3wGbG9IabVfZPfXdCbJhjubo772T/IDf3TmzwinZ3ZxFro/6tt/2yaHqRkJTrKraqAxA1DG7y8MDQvM6FmVsCsEoas98EDdayPW/sc+udBy83BE0YbwxU4N9Yv1zmGA3+tgsTtje4bPqQy+4SoNKV87Hpzo26YUl5Bj00kIYvdcsBHbXKQZfyk2qPdWF83XYCPbASAkbC7TQoRhcgnH+5vKaKo/gcg5DYjWWzS+AUNc5q2UpwRYt8ZvVHzFgXlvHqvGZclVZ33rJVNjzzm29zsQQJbfLBwsdQ4owUWFb3OrcL1HYZbECg0rmHHpeZNKv706YoXWehx+OKcUZunH/9jxvGB6WD9nyVqAR6EPJj/Fe/BHr4qt7RR8e5sGxryOYPyaAqPY4/XW/LeEYFB24v37+XZ9WLuGXXK8uWLk5YBo1o5p8HlM+t3x+114zxoECvEGuVeMK5Dc+0QNspGooG6zOXmkIvtJqUhehQdHyTpgd2yHuLd5uarcuohPnRa57v64fBkBedehIS9otwfOfA50OTRudKjWv9iY9HAyg3s2xtvFSbjkRzRgq+MZJ5a1YKuU1y1tpTkAC1586FSqAqI+jO75LjeVMvEfIOYhaXzEQuV5+fS5SeT744MTIchtDNdxMMC9n7X1EMaiWoWD/EnXjtE7qo1YAvkNpvHjQei5G37EI9PlXhlBPUMolXvtm0tQvwXW53p9bo7Y/hzQR7YTBNDhboxDJC5Pp2g21sd5XliZir1IJMuhfIBB7wYcQVy0Ja/kfCbYw1Xg8kdrtGULCknwfHUVHSA0AlOP1DJwfHW6lO+Z6zpIKueWideRu5lo7YeIKKHZjKXBE2TdXBpgLELm67HbZlDf6SJcUkS69q1Jqmhg6ajCpOxbJKnhWWJVPLBmnp9uoRwGTmiWvmG+IIDEq5K82eS2s4LvQpNKjKUuBf7zCipl3J5Qdh8Jr3qn/tr9IBD+vvkwLjE/rJhrK+wOYwT17rrZpkkM5izh1GZgOL6D7vfy2PbEit8QApk0rMUiqlu+PfqODrTFYIv063HX7Qb4774KctoD7v4SK1LSSWLzX1cgXiSiF/EkITKoZY1AemYxbEHepXtP7gL1duF3sbwHIA4r/Z5rIruVhcycmYfdNxyAil4D1Qstk4zvmM2gbWwz5KyR5O4AXzSnjF2w09YfcgKAxxy/C8OvrmpI4HxGlQqaiBxk1e2Ds1qwpt/Ocm7IHH6Q3MSe0cP+sAevdTf4p/01oOggyRwHZCdNp9kQ0fLlFUuvbllkO3nSL3wwlYo2yGZ1B1uqCc8FCE3gmKbV6hTteEJ/9Mk1jsK8OP4cNhpGIDuCHK7N7hBE6VZh+yzB38GWvygkVx/UoT5+dP7xEkzwe7EUPSoGndYjWBK7JAvcFG260OlSZ7XU+cMz8sclwD7vFFp/Q62zQ5ULvL3KbtdUeH4jL1dROa7qCDibcbW768eZlbDr0nJgCEqy8SFF7Ev4NxVPGBEtdfDF5ddb2/e/PMujrlfZKceidPIzmm5i93qolYr1e8HrmQHUuBOi+SNjKltfvyn9wBW5qIo9KHrzaHRjJF/0m3rsmBtoSarTwqiKqN7ivtazxvIkSGQt/IkTjaNKmte4ro+wTSugb3djWgq/jidSSd2dI2RVi57mrplEeBQicQelHrLzizhWBYAx1yec+5+BF3k+iorK+V7burRube1OsV3JVd5bATytm6JTqJhD6gzeP93YeeF2mLuNNxeJL1uqP056AvhyUS5ZhTIJ2BRuNpNpHWu6VEwN6wsBm59OQSs12h1+ypTRdBd2pymWPRqsnJycA8boeM7WhUOZsM2KrnOqUapn27VbbbuCYb6Fs9OQ1+l2khKwdy0iRAAG9nY/tEAOD3k37HNgtXO6siUJg5jNHae46ucE4wK2wYylm6cH8iu1fu6OigSkFjSV7N4vkxj5SlSGJo2ch+heZsxJ/q6eMegOvsmq5+KbiM2u7K9Rvuz3kFHAcHuGAoVfNw6+GtA0UfBNJtYwN7rMXAQE3E/2ZdVoqqI42N7CM46dfEnKiym+9qcpQrScLkJcO9fD7NkODpIdt2CMvEiyRqoXmBQEIlxFqX3h1xMOWEtuOBIAWF4SchY9himOvpMIPyGWhoTDfGPSGfDwjqH0uIdqH396wFWNWmaOA5TBVu48x4vsW7unpfnGk1AG26vPIQkIawB7hKEyfUdPLWxRhZ/lj98gOP1KdM67qI5XoFX1zYycUT6pIH3LBbiyYjYks0cY9iMfZFUrACo9RDkzlO+5OoXt7T8CmUk4AdkvEu32G9g2sT6+2xqYjRLpVf1XaC5ebfKlsYJUF/G7u5wyVQn2VCVz5PfP4uiRJgloRGm/h3psTvtYcc/T9FN+SaaB5hR3Tia+obOrE3tUNobf7lt6f0ato4JkkPWEV4iY7xWCZrdueo/1UcfRukqR88wCfWpQO5UdoyRe+I0ioRLznokcSVugmd6DXSxNYF8IEoOVFP+IC1ZQ2tiQx7vXwoQEtalFvU9JIAwrODQeblPsXn+9MiJj20Sa7KM5T2bjUP0z8sJuVU5/81Bx8jGygY4w36wD1coinJbuKFga9vlNsXm1lsMGqmUR8jCOYonWZtLZaPcmZvAq0oE4zVkr2l2ZZH6GE3qWbAkuoctl1UNTbank68nBSBTH0Gz/8GMuBkcqgeDNsZRRz5Z3lfuFZT8zf0FwmYEBSDAYz4Lnd4PqXoOOGv163yUS8qNtoQrfwUtQxZ17G0yzwvZs7dYLkuQ3LI7qEsEbNKq0rh4GQJVnGTWbmnnlWiPOh9KAJo0MkVQ+OcSNQqG8A0M5ycIXUcnIc8SHVCImqyf8jFdxWkCbXsrOyxWcITp+FstRCBZQZVl7WjFmHh7AQq+jCZJv/HriQBsjT4DMbK1ZMTX93Np7ZjlCoLkqpqSDmnUiX0HqWagO1jg5TeC+9fpcjPV3eCk9rwOGdeUQcTOIaAeKvYKn6I4jcwUnjAlbRi+RvvRP83rHpISbbA9Q5jvr3/vOyOCVvlCw2fJIGRe2IAu0q8hfDjTnETC32xszPYSoUTCRta4FvZLhX5q5cq1Z8WuXA/acRBKbLQkoV4P06lq8m+IiIWCRaPz7jdPWAwBrgs7JYpbtsbZsZ45uRaiYAim8k+WfClPlHKD/83svMx97lujSqmi5OH2vH+J3qNimhlXkQwgkMhMhDZAhD2Cp/pX7pYNGaVpdtWvflh4B/ETCqeQ73/d+d9e5TZmZIh0AafHSv1S+PmJIBbp/8Mz3eSkRRXWRnoH6fTM2bdgginQSect45D3qp8N3yCuRNTB3itOIVBm8fehuC1ih3jjej0ZK5Dn6Y8kh3K7Q2Rx40lWT08pqaVdEx1MizDn3d3By3sfVnT8UsC7vQCUH8h+Etn+C6h0ywA9H7RFgjhDFMK+20omvmkYnWv/0CoMeQAIi8QhpCLctvOQf/BfU6B8f0Jdbs9Ae2QqLJaXDQuW5ZWpM2xgRfan/z6zBi54VaC9TcVj7H4TDZKzpbfveEcNALMzabIl/YgpzI0NfOJ9gkwef3tyZsswa9ACV69kUHy4rbYEnfzUqGLd3iL1mpMyUYQQVNRPbrTi+3xks7PsQ9uAunMwRMdSyiaIlB6+ocaqXIse9BL9PRuDS2+UBek1aAPrZsM4nitoac6vOW2Q2Fhko8V432CD6jL4vDlOwIYl753lQ5M6IP5SkB6R7Ov345SieOhKic7NVSJlV2owAty8oRn8gwo8eVEX+Y4jKgnepXfJ+7LbqZH6rCxEPq5gZ6SwUJjqskJt65Sj58pjSmzStX6QObi357gvBtdW1TGU4Nv1NYaGOWzWFAkH4mb6NTSyg1LgbMhB1D1DP9/+NBqOnw79xULUC6KFMqM0lm1qhI2tdAxte4ShldUZm0wK5J4xEodgNoKfKmzUgNPBQTJg//UtRhd/WPyylGRGs6Y7H7nwIgFJLLEUa/7p0+rztl1uCD06opyZA+lEfRQkO+1DD6v2NABmNjnhjtaQe8eYke5HWE8Sk8tw6/fJCJEPhGxmh977U6Cc+AiaTqepBYSHGopO+Iumd4bT5Ku8R3oDL6Fm2v8g3SIoAGp9dh29CIgqgBJ9IB9z23Re6XGbhJKe0fnmfVqopnz/JWj034/ROXWORraD4JdPY0cT8hAtYWqHneOLGmzvBRqZtomsDcZZwBzzneXIVEin1i+aYZ8ZXYfOPkmvLWjhO+jXMSInGktiKtBOnOud7pp7KDYp7K48dhUw+PZzdth/OBptag7PVjP2LOS2GLHxOvBqqDJhgYBzc7ryLAudgXEt8tsu+RowTsJ7fkwpzX4izkpe2Ph8pw+Sh3gsCfZ3x/4BDmfeIQ0zs/SvcfvpDsC8E+1F5w8rn4C6psfP7pWxhRb5WUgoyAT4qLZaPyBd3oWZ3XUz1kYkNYNjbIJ+EyH3xwqEdY5725MWg6Jj3CHRdSyk7DNW7O6yB3oHkI3rxk5BjdYS5ORjptQ8v9Lgrztj8mLGaMURkgPPveJfAbe6SdrX4gblzL3mteNgcMk69PoklWL0lJaXcub4mHur8WrIUpY5vR6AIhbOZ/oIqGxP0pn753lIm5S1U1Xnw4dTXzA4JEoXPV7aT9eqnuduy+vYm6fdzweqavckoAqzl7tzEaCjg0FDeCVQj9STRFqNK69g2sLhuL7ivB+f9aCzT9I93UI0evYEY/a+S36PLo60nJFa+K+x069GKex3s6XiCuO2UiJXhhj/K7PgMSbXETEgFv2v+7gV6G/2+BHN/cJZjwftVZb2ckfpzVwlmYgvemah+nvvKoIu/D6OLWpY3sBqEKQnB57cwrQRN0zenk0pYIslAVkZwk51WgKUWSMQ5cZbSszV8bT5xq/fGtRu7otko86IAdJL7LSF6F0erWaHUsGB07co45Ve1N/yzAthi1gT/cDH8zzund9BwhD2UZlWWWQV1O7EavPFqy25NNGqdW2oewec3kDfaSFQjcLqguo0fUKzt4B84JDiyfoCPJmUddrWcjv0TD0VQYqI2V+h7MYhygEU6NSNPxPleD6p9WYi8adOVw41PLkMLRVsDQ+POiOiiQZZA29VnnPCZNqS8K9iFACzC6gGLkIGyY95HVqJwUw+SvlkTAbedH9v8XKzomqKUE1FAEgu9uxAR6pbKk0duWyFDyHdG0iX6OCavNiJICL/HlEP/hPEzjBiH9FQ6VLx0ZhzIsMyroiMzjL6AIQrjUbV9ZxxEPlxtZXM7Du8FmN9iJOVGQZXga24cQYSE/FBq9b9E5fD3Fe4yrRUQ8iOdn0C+HCofCXmKbPXxZKbGndjUFl138lfZY32rQwvB6/2Tgy20oa6B9OS0bh3UoRLRuQ2yWOHaZZpHvpV/+GFVkgZPJsYjw9QJvATIpJtNFY3FOSuulyITbmzUaDVd7WyyN+OPqXVVomnLCAZHV9cAJGpXyrTi7AoqFz+Gm3G5C1AhWRlTalGGFnRtyzK9vlCLTfUwsHi5CfdieA4FETU26LNuOvCpOP7IuATSjcTrW0yF8+Yr0zTPEJjbq1XTH0VOMNggJiTngr8Dw2z6cVY6TtdkzRjV4e/bHNglp3t1wYX+ZSSQYIWXxBosvBlLvQSAOg7XJ8Ilp57U8QdDsgxwpTZE0vZ3zZwvNGvp2iHnJ8PONKwj2i5x3f4i8IJ5C0QjTZAiRcfUJ//n73vFi/VFyBHrCZifJ5RuZ4oGON8Z20aS5a44+P7EbRy5JQUNIXzY4UHql8H+jvqL6U6IFw04/GVZxo3AQhjT0gbvU+rzss131qyqO/swllSszbISOFg1+8lwgJpgLgjf4L4ztoeNI99d3I1M42FVYRblQvKmVcKaDHUUqiRZkQd5TEgG4e4txYMawPDFmqpj3ZC88Ti2t9+5W7gjjRUzInpoF0sycBXPFL6oRGIs3pCL5WBg3ks7AhMifdQK5oxxSmnbLm4DnETzwrK16PYXGSiYK1IWuZ7XhEFAnv8obUgRw2it5qxvX43DAxzOUtnMymzfPFQlto9NHlML/2sPCF5AJ4mZsA7BzFW5bYesBLV0F5DfDslab8w02vgtn4YY10w2CxK30mElgYMdLlWEFpBvP5lJKWDeBofFi0e+qQ6LA35E15bIs6F+d2MAhEmc2KmIwGlRB+Ug8oFQqhlpw2H54kEgW1ltEvVkAnA3wvFBGxU0A2sz+9BRa4gcfb62owWoFaIMPS4LJQrSgre2FsdhbFOhRdT/f0TMMoGUUJ3lKIoFQX1xj4ZMFR+lIYvzA6AF0ycRDrDehe2NwFtYKljuvdrrEBoQx4TUlwYFKtuPAFsrK3SBOAmK3qKrLwNfwV4qnVx/Rpo8GLBJLQKW5E8wVf0WVynSdJrq1CRpQKvn3HTbBVoozL8Yjdp0g6kMgh7pBl3pcGQRQl+bfPWMNvth3pgj1DrtJUGl129AFXisLUMeYGm6F8ekJyysTql9sd15ouGSrcRzZVUkPISOPhvg1EjlsiezsJ65FSZQX021Vrj7ty7MIVfZIewPUgn0UMv0lPol3R4t66SiCOG5o6/gVYQdJMgaR06ywG3WgZJNd5TFN9NZMXZfmEkYJYpHuc2dJroHDf1ASwlZO9UWHbAvWGhAO6ZmciwpR1KjolTNK7ix7BSSglWtsHrM6xJAwN2JhB3mz4rMmPF6qdPLWPHU+trp6fiUSuMQkuL6LwbYETjxLBLXTpVbZPGa5ILmKQ01s3+fcOKYpwkgEno2W7C9GVNO7YPz4GccGlSLLY5zBmdGNiQxaQHwHO1t0Rk5bMbWB8+IQtiF3w0kYpSWJwJlVPKrJHmxPaEaLL5VGoaUOhPhZB4bzcgeOdYlWUKpoSjld/vCyGEjaV1ZaA8cp1Hn5Y3hl94aWaAPd9r0L2HHMV0WOZvx4J75UT9Ukaa+RgzMHC3lfyxGmxpd0kuoTdiNCX9KgrfvMWFKMl7ILsTNET0A4F6cZKseOtCU4iHbpVZT+1rVjMMztSotf6IOjzYe42epcpBNqlvCYCH4DJHimop4wAYPxueSR1JMBr/p6bDMAMqfvoUdKFEhes/TtiDGP+bNIojGw9CeQTpL7FHX8jIWG+b3WMZxpNplt+nlkBnC2MNbyvgsqEPwqjfXiR7LLAxlTx1UkMme9ivvUgHLgnNLE1Uh8LGWsK1uD67IOa4xT6xg1ON9dTIxxI8xiEnPKnOJb2X8FwMpv/9HvKaGvY7cR8jR0AQaIPcJOF6jEcbI8GIo4nDm26JDzgyh6dsInjlYP/626hSr0eE+ATUXGRjJLeOasHbk12Br+JAATFemAjqf46vwFxz9V9e5WLIpker2yfV39pOKHMTa0s5wqf9UWzDrIy2gmEThkDU/8h1q3L2h3nawsrGgsa7B21hTpCPuwm8fistJG26gzD56lTgJEOpHGJdA0y+JedoQvuftHxF2YUyfUsDM98zNWeuCDJaHwr7WuUau/yu//gukF5aIGmeD6tk75NTH54jlg/LYKXKaRJQQ70Gz2JC5HfjsoErA5tNENzXsruA33EhWouRLWWI4DjRw/UfH0XEmHZmrn6EKSjJEMoeBdLPxlhd4jAVZ8onoNbM7zi3H4YCwzRIL7HpHPP9UnuyJGD6KdC/2P7Re17vFx0rP29K7E/WXCp6gy+IrchxX8MA1jrdeEK2XNVrqxd358lprSlyo/XHEFV08Qez9CN4C6U2TYF+iboMY83/GU29dLMeSGvi+hJbZ839vyYiJP3ZXTtKBnXiwmzHRAm25uaiBfIlNqNCF+PjfmnI3TDHCr2UPjCUsV34smo9hwoAXgsICH9HPPWUf2M3kOClNKPeaOJmT3l2ydJGuyQzGpgqEIh5QjEP50a4C9U4Zs4/lpimo6zy/WV9p+I3PYX9evL2PPiG2I6omRM/buUY9/OiSR5sEtJBhTlDU6TWplfO5edPUSuRyBzG9WWGTFaJzZK99cjqNeJUdVb8i1Nh+Dn11MHNK6nUr6vnJ/XlCnxbNQNnyoqE8ZdUUrcY/AiFhZnHsMHYQnTpLxkICdWDl02xVZ0kygMc/FZMtBOM3elCF/nKNk+JWEqVN9g6oos1EfW+SxPBFDqnmMRX1O2haclMOUhyO7WyhRKaFmg9D2DQnfggIicnXemwOVMkWeDD33agtgkjQddemot8Fx8MY4k9SNbR5nnQYcwDRsYRFk1GZ4zaqwHT3sDKbyvkUWHklEzzNxdRiFWp02TAbzMmhOFvBaoUwYww4y0lYUh8w6gGhWTqta0KTrLNd426Gn33L2E/O9U2NCVXnEqUfgdRT0EwrtSavVPZd/yVr3To6SZvWiWyhoS7598GhJfReQ5Yb2RQg1Kz3Q5FLQs22KJR6UWXt3AbJs2I8RtsHLsAIvvfJCTdzjA94Hd0TX/uRKCS/7mW7TH+nT7Tk1WiMkrKi/1x5+QmGyEtFx+09ufvsvQ3cLDBnmbhevn5K1B3Qrd1Mol/ymU4kkNhGogOu41qRMQZiM9B5w4+T9OyIsMBjKYXSEXUISiJo/b5M1g+hTq4eMe536YUmWc189xBVdxTMJAvfPuBhfc1JrNhMRypOfzhHrUJ3zTu5FFKjoPOSYZJUoEqjudmLemiiC8BzFhUhd2vSv1JeQu1KUoIpOjcBjOnoMvdW3s8+9ILV6dWTuWsAeNb8KJ3x4+G3P5iEjePCEXoJnz/mvXL4RZpc3uY8s0C0KEUezTsaisjXSmQrtijjB/srwIC+hrm7yclYHhpGFGzgW7pMWlSh2Z5g2nvTpCmSRALLLXbcnlSwKCg7sJvPi4/hdH7wlzpnAHVV7jiN0x9v16lN54PYO8q5KReJw0tD9xE1DWNAXAqeF0n/ZbzxvxlwS5HXoi0+/OjqNC1MDtH9vYfOo/gAV8w2atBNmBCOuKnV1iX+yZZ1Wwajd4hcsg0RkjMkCM4K7FVfEvaJ2NKn0AMiyPuxNkDzrzAAuCMuTw3TIoQeoy6z2wKg5FESlqjU8g6LMVspVFMvhX7eYn0Z8YxURFiW5Kt/TDT69AiRl+BgIlFzIkM+44piLHq1ZDNxBKY4QQJCSjjJjg3Wrau+ur1a7+SseG7KTZQEnNdxDjCAWqADYfAPtfuYCxz8ZL5s436xmX5jkIA5qG3fVBWTPxmAM9M7iWLTFXMyMhDBzoOx4folVarlUkSYJK/pA6oqnMVAvXPaHxosO3DyozU7W9Ubm/yHC47M6atl+XWhBsK6m5pdMiojqDd+Iyv5zsfcoPYmtN2CJs/X7UA+DSXjmyjXFnwnQzgRa1uv7ZApyvj62/RhVyoGZ16dVotmc66pagH24HHT8Gp3xCDR+6GWFB//PYlYlimM+Db3lGJ/LlCKpuQOVS5uiX3CtwjNAimLtPUwGkRfoNOVlsxxV52L4RlmyieDkzHMBdNwmuHxYLn8y70yraCIYnz2RgnR8Q2fnkQSTthXtjSHyhFgMECR6GwhqfMOswxQ/hNKABKZ5tbbM8JR8stz5pCIvjjaeY+NX4NNFI4lvnHMX1JJqwPVVSl/mrxUelqOV1Qv9pdKsW8bs9prAalLJAgRrfXa1eXrAqaMf0wfSM+QD6nJaNzMXuU2DUSrA6RGy1Iv2/pq2RSXPkNC0c8eGkJpmzu1YHNdqaUEnGTMgOmMGrsU5IALlBNj1hkJUjDfSoO+kGW3WeD/1bryelKBznJmPVl6pDg/feFvxon7sKCfXlswXOJlEuc6ROgM7pfJ6E0b9PM3cfzBFpWRoJFwABSQHOAALs60//D+SPTMMbshhtYGOzPcSUTTH35tDGbvXpmKNr7XDB0V3dw+eztd75AjbWPqJgm/y81OEEAueUyAE4abIVJCrIVzfsRCYgIXf9aqlcSFMTPyg6xP3kDjanoIHa7kzpnsgJOC/dHKEwYf6Bk8MscMq/4oBo0jXlREOStDW5MobBdcFcuQYDgq2hM99QHVuaSJz7l2xEhv4gOPqeSSiTWppt33CUoigOYJpUgTOv0/Ektgi/BvcfxPsbgK/mZdeSVACLU8VKvPCAxe4KrOZPQVvHwavsORc9QxdfrqiTTwFLLIvKmcwy69gMKedos/NJN4OaE/f6z45Nv+JsQWhBiqidkmp9udm+rxaM20raXGMuGgOp6I1MetCLVtbLVMFuzCJyLEhqrlbWosmrHNrOimKjriBXtHnLtUQu6njqWUWtD+wsLYg54Z8WIP1DQhP2K2amIkjDiADxcg34i8kd5GO0XWw249wS0l6iga1hGaLiYH6DP1P2l02epLUm7Fjv1rAeP+Qt+t47dCzDQG1EwuEwA9HAKWxd0akqy/bO8Ox85yvryrH63NMPK93ZT4Sih8y+KAPispbh3b/f+DwSyQDQ6DNWYJ5RZ0se7oIcy42oMaw0OhXbCiAZJt3jvAypZvUkOC9jzI82wYRxMpTEKjbWI5RY+70N9UwI7NvajPp7uU71QyEHnD6F9EseYdpEWMW5RucQHCv7yVvnokDd4CC4R9PkYVSVh2HzqG/bd8G5O844HqT3HnKkemEM5Ufjdd8sYqIwj9kjABh9vvFWsFif8mOvhN3D1raWmnSB+j+hoXHhXYm+vTMoHcRktZdAT7F+z9K4hTMXGrNZT255nUXBU/c0SNS3TRNcWlVWtw2NJ5xOzXAFx//iCjghQtMUzK0je9vk4oAsKsk64XjgUksf4iyaM0hVyyF4jqoGLMh5rrMLKL5QQNMKZss6fTnUXs+Mn319B2K6KuMLx2xmsVHbU0jrkZL9+CErBy0ABqWS8Vx7MtHD44N4nDWlBes08LmeuJMJj3C86lzQTPZEdFyXp9jJ9x7iE5folXDJuQZtvMmF5uv8hQqBoJRmX+8yiJMYoziMOBN065pQo0uaHSuPVdUZXR5e0KfRbCsHhOVGaO0FdC7DcH5j4QlhXTsqgHNXqQSj9uctLQpNUIfi4KwpBdZaqD1yl7N2hXmMO96jDKlOgzSy12RAwQk1x6ie12p7zrTAJrCm9eA99UvMPeFB5bxAqkiMlFunOqtz6VHKgfYJE4g9G3sgcduU7hAlGsMFyDcQNJxn6svkdJa2iQdi1V3CyQzGr1+EvMhxID8FdkcRc7arMjicCA8Bez7H/UtzNGBezwDqlL9D1+LDoWT2FLx2soDAPE320x0g7P1kt/itMWUEWlXDaZdsIK/MXmO3+Ss6sk55ENRuda/aVpuzD+PSEYXOYC+ltlQRLgD4D/zvZWW2Xb8+e0yj5XJYdZPpzeoE2WQSQcJS1sq1kk+MdVCucTH8dXPsE2WpojPwwVOmwU64PaBROlcZuUuCB/bb4zDGjfG6pkv41U/tSk4T2CU2YA/JbxD3Xd6NEygHJV2NUDmUjaOR5cCNcKCGCT+DCEAltrnfrS40LYC1lci2cXXPdjSD0TJ/s4xeT311YjUah2F5I1Va1Ge/O0ACKIAbsQ+USdugetu7QE/V6JilWU+RmRqoQfzOxTt0fUAGynh6TfROrrV5kXHR7daJ6fXAVAaGDhZlxUNkvP11S/VA6LnoUsFeifU+ro1UnJPQwpnTGcOSdr1QXIO4f2dfF9rACP8Lc4m4Ub89rtICPenXPZVSIwD/TeVRnemcbiDK8lk2jaKb3t3H86zKhKFOosaQIp6gpu3qS/5DI5wUSU4LCiycqeaWI4jkCTA7h45OBbMtQG3uwyvK1Rw7Qw1LnapIZxbd+MTI/Bdtnsi32Yl0GEmLqX3HSqr3VJeLkISUW3/Y5tNYHf9f4oKren+rMNBt/fECCCEJvNNAVLaYhGIY+jQGDg+zPZ1WbV1O41p2KiUumYiNsCVwhRBeOKn2o9MOzlfaXsudMznd/3DeIwNDnQv1GvfvE+iYaovXKmawqqBP4mJ1DTgU+6dTGrXQsTZQJn7Lxbr1uxCX2PMwLeGCrgBItdXSLGhysp7t7sRm3NfQqCVs5EYzs/sDp7uE+inSSY/UAJfhap0cU6l86bujK6aQ9YcoSl1ztEZ4jYy1xCYvxPAq0oIEeHg+mya58wYzSAVckVyqmHyWIj9q9M69k/25BYmG0vCtAG3mZgGgo2O3xBkAkwTPSK8dO2czNjCVkyuSJScAhdbtYdT9LL8mkHT1xYxEYrsEfxDRTvhDF4DCftsPd0g5OZt0ASGNEZFsG3S/98g8prLzNQAadppTqyIryi54UrF6ZWr99yNW3Js3iT1yaeXpW7symKyPxgvp49kE7bP4YpPrKphyjdSg0WBDqeKKqZHD5UVSCK+T//Fe7MOz6OcVXDBOh05jQmV6HK7r03OGNpNTPZ/BpwQoaAksxTs9gZu3Gg8hkZgByvDBu8wJLXzKX2WLdkCkWVEonGAwQ7AJeu9ZjvC3OhM7b+s7Lb2eQKo45oFFh2NqSRw7BWBLvag2r0PmDoMaqjvtFqItPd1qxYArZFLH1NF5K8LHuuNT4TJwir3eu7R1g0vj7Txi2YcLJhqvFakBa1Bwuiv9qe/MQZZLE0kqza/GxCXmrMeAHjfudxsP2VYPEstq22gt8HMvqPX43j0M2OpspmDaXxGYe0MziEqgeA+vvoicQoEc+ew7GrGn6SygPcSZKf3g8PjLv0zeMkgTL9csWtHgGUK5DrZY6KCLIpPEzz784r0tIZP2DFE39F8MHaC7/veVX+R/2jK1cjeU+m8yaupBIYanmpJBTGwiUItrs/nTtuRDOV2+cBIljTrREBDeXbxGNg+3SdfutPdmjoyAypCu4Bmj+XftAdDGuDgZ5TkJBUcJ6sxtMvTjtcVrcB1P0dxDbH6QQgkDdqihyl1uPeJvGsW/b30ooDBn74iWQCY+mxnpcl9fJpTVx1vmAb7l9gkNqt4xqAgEoM3tnfroj8EKC2Zb7N3/zJp+A85hhvQsQAI/tkisx3k2dZkzjkEo7gGAdkLfup8KG8wFppQ3ZXS95PZLRJjcoOtlZ8DVHxuXm4cHIBGIwbUdcy3z61ZgcidHvdwUNlHqvh+fBGlDqJmduRSB4Tr5fIIVjyELZwzInedxP8MuvNScTZEjYX2Yhw1tfz1HjWVvl+8dd3z6zgEHCEc8/hraACe/sw402l6jYdlu18wI5GX3teXwAcEWAyIs+UyZrs4SExo2fkLESTRhSG2bghRX0fWZzwMFLqH05+Gb2FHiLQvg0nBICUUPhCw4y9IsVR4KcSsinCTKdPs2NZ24GdKe2OwMBYc6dU9wqfmID9fOqqUPnk2J6DZ1K1BDMnW83zPwZ2m7ZSAFh0zcvJuAAtGiWvixz6ggvp/nz8BtWqWOvhVMnuJHT3gtZOUlsMQNnYVOVUVV3qH1IAB22v4k83jVk+QNcGKfodAOeEmIdMMJYlkfe0Z5K/xCGS250GUA1HHw2rc306ouRBI9noSBSDGojSjGnN4tpdZ/18ClcAKOuQwTsWK4BxoTgoBC7dFbWiMBR6KsRxBWesC/YEnq+bufBc5KQiwLZWiAhYgJRTCSuMKmGX9ULkGuH1ASQ8onylfsMluYrXpArYHPNPxXq4NiEVoPwxlMMqbRYvp9acF06J9XX776loZzURB/kKglg+UJEXW0tY1v4xX1jO/rW+d+GBihnQbwVYpu2vsXBvzzeLCgsSZSQX8mTl+T/XCOP1QD/weUOvWn7VSZQ0/rDj900ysQL2pzrdBK6vSLbOMVx8DCOp8sl7SdQznJnOyrgrzX5NDgkMxZgXh4/J6xZg05tFgY9ksEC7kbllfahHeZlWfrdjke/tLPDMwzkxU9p4N/ddtGdUiDEwNQNmWttbSsZbvnvIFXRKNOCqQPKqxqm9xgidsU7krnP5MdSiWGWb+YQfE9XOm3ct945waJFEAFOJ6o3mAqayzfGoAEjuD9wMAUcoYxSQiZa2gwAtiUqfOiiRUMKEx9FIfPO1j9eJOkEsoSG/kbYFzAC+eLlNpHvOJZejH5g2NCssko3PAP0jusx4JCqd2UrIW3B8wX894i5sPaxY251RpVDY4V+eVFmZ+M8YXXipKxOk1hCl4iBYZWMXj0T8QJO8XYWvQi0P1NsQ08e8o0/Soew6rVI/u8Pf+WZ8BvgRbtnfb2mRbVUCfb1Hy+iLwP8XGoQC3/9deg3yX0SzxAd198eUAikfavZtVmwfLk2MSgVNOCNkngyy5oaannMZekxdmRJbUCd93pdkZIuwGV/+/hqdYxFhw6JaEPoY4INEmX8lqasusqN8Q6SbPbboiHhZpQFfL/QeqN/p18sL3Jba/IwHEygbyh/FAiFNETvY94qkBlsfWDzF48yHpqBlH8WVQmEwsEr1Jvdwz+3WS5Q+D6B6aFLL87NZXc35DzlhYxsi871iMNdmMoSugPAtjOt5odf0odln6uUX0NVArIhDdN+m7ZBB+4WAoe7hwt9S/bMbTVH6Wm2IRtGCksdqpqo/YJpXT1KwR99o2cOfrd4ZyeWtr3duY6E759VsVUmB6KB7Gjioh1BvrX6edoWgpmCCvDAXVymtPiY17xyI66MPRbsYrRa5qaSkoKSPVaPKtq3yy/NzItsF+g67kv0RtrrBD6zMAoZmpewgZhKK58BvC35F0auJbEcCLKGtUVGr7SnupFsNzb4iX+humG4aMzgzo0apJW1e4ycMvyMs7ffMM8We3ENCDLdDdbKZpxq6AjGBwVUsX71AMGD65hIRth4ybnGD8hC7k6e4rzgpPHBYAoySAHHGgoLziga//7Q0KpHXI6VHbugRg16q1UtB/ZAIqJ376XJuOFT7+RqSb6BTKVh4ZZtcJTCP8ZhPlVsZDo9cGtwkRFgX5oHgHKnZGSqL7+371rcuKolVREnyBxOwRHdlog4yUJ6+tOiy2Chq5PJbqS2m2KVaI1vBNmK7CrksSqIIdqb5C+dprcw11VMI3O+ky+fPkYyWIg9G6HD9TGUuBEIsUo7I5KWBgxIGZ+TiiJmczoJYYtyCGwOpb0LoGuslJgdY2Gr17EKbHVmOb3fjScYamypJ3Xy99rELv95xPIAWDDGExHqwqv8krV02OFB4r1/VC0z3XhAPPD4121b6s2YR5BbEQfxVV5K/z7jXFjwt8bq9sokJWzRjPTUxKPI5ogB+/zUM6P4PJgvi7528n8uj5soww1bTzcnYZcPM7Si0NHIiUZc01Bmy5RWpNaTdWGZXdV//aNUHWmITvDuqMB8oiGMdSOe5X0TpYpluqQeqJn5UriKROkJvu5i+JC8FPfqGplnMAKy/uFfDyXS/7Sh+pz6Qm+43yJxUSKPhsGfH2TO+LtRDeLpIqbInCwbRA5cWFUUf/OjqFQYF2OwtJqrm1jh3f1EssoYYmMaKIvBNL2Zj0jf3YcL4FmJl9m93ZcnmpvT4IaG2DRSvOmDGeBIcbREn11Vz3RmvKQ/SXV3de2KoI6+L6nGjPmG7lxqhYwBu6VDsyj4xlL9XXqz6W8SJoOncTfZrcMFCSC5KifvU1TcI0mxMzKXLmEOHB4KpIXMbM2ldS7yODfrTmOcf1ClLM/V9r3ntY00b/Hof47iYw4x2oUXWDS0Ke01YCRd2j2MLQWftzlKAg0uBvU3YoGU7IsqhyKx4Q8U1+FzS8/4z16lm6EMnvCL5RP3O02SDc5m68ZRC/FcXebjilUhGhXkTsSMpvXBdwLyAO7uOx6zS+Es5ZJKSMZxpMvcVM907fuzf9Fm28HdmUGSJpcETwyg/oLLXrv2KzuxyaQv3tytj/gHtLxxI5IP6a8MD0rF8wmY/j2YR1qR/tCVJ3NPaAYg7B/dgGv/nx1trePBzsFVTwYw1V+EPDtCHDvZpBJGGjBI3rCnbtSu8L7OVjLjiBa4AD/uTYdiJAoJLb3f89RF+F0+5gbmXh8futIeqBxOUWFn2QdhpJv8oGdr9srck3LO4WxsEDg28n8jhRnC0XzvvHiY4v2zseS5j+KI7xI96JBc4hqdPDOlQ5ZgHBLXZs4Ba0ecsbuYnAWFw1ISW2NIBzL+5ebi8TLFBNLCIbX57TAudyDhPg7it/mVttL+slngv5TDZg+4bm3v3boUjGg8CQSuVbwOpazPlla/nvF+b279gshIlDDM9zTG2Y+WXZeUF9sLpTih5GwISgL0+vRGS0tYMRsFaxKqXU6/8MMJRn0Z1yPoOUL7DFbIUOlTDoeQHb5zxZuQRrBQguwHN5nrwihDnSKkueYax/nETdq69LeA5UeWiYb9tMstYQDqEogg76SAsT+z4P3Akbr+dBFyTl3lLqL28p3JVZR/hgQUPUQ+Z0ZncbY49IeQTeZwHdrfxZM5YqXNbzQvKy5yQdrdHJeTJ3dqdM6xErj3jMBMMo0Ra74Tz2YKwABjN9NKyOhAp5dtYUeSbBQ7r/xFoRNju207pG799pJmNphH6v5JzQAN2+Z0u4wTDfG7PCAJ/AdzEDOo4HlrOIeofVhYq5AYrPSuo1N9FdoSYjBRO3qrCcXqsg+OaJURzQxWEMFdLeBwO36fffhEZ6mQ5Zisfttbts6Zm3voQdG5FlF/zKiTq9dc7tqHQRyGkOcm8XsOaCav/sWBSufJlMLP1KLkBwpPYP2wnTHdZ6E6aXgBWmNTq9xRHPDdB5GwdDiyXl09ND4Z8b9q2tOXGeN8+13wy60w1vDXFfxyHqyvJpswOwE51Fu3u35MF6eSgAXVIBn0GJ9aAOu9n+SS3Stdkn4plC0XI7z0Yn2hBmfgXPA41PwzD3lTbPQw4pTPngs+5wAWMUsGrncWREisNPH46vrP4mCWGbzALCiLDeVreTmDttPS1c4d6c4AdAuNS7jLBSoUdsn+cBhPkArPoawvmMGGNYbUGfeKdlcqQlWuycWKm/DT/SJJtcFiautGGPHW0pdp8WVY4VEiRFCHfgpCLwtmxCqZWp56mMo+0v+CEtjjmiqli/hAk3vv1+MBxhtn79oMFS5EdFfP4Nealf5RWqlfymUt+QFeDr22+r1XtoTdsQ/BQy5E+RqxmzPNTGxwPuIsGj7QW5fMssz9Ot1Ch2EUMl0iRp6RcCwu37dklbYx1iBn8LpyjMhdxffLyNsG1I/RgV7XUVGEhen2rwOIaOSSaFvrEvKUCvEB+iwjSqfF/DZzcltKWVS0VtW42BzOVDBE+a/7e/cafixIaBc+bSzobi7Awr+jqhjkFZVCYQRGXuWAOccRDMQ8x6mNfpN2u+ds2g89f0QzXc39qvvBHYllunJwYTMtCBycj5g+r12lMyKGrq2nc3Q2sQoDAOGM66hFzFKpY7T4efPLSSJhmiPivY9L66vNa+5C0NnE4YBC2e4zSjtsNRxsHFfTGEmL1RTcsAv3i0JbSxsJeN0Koe7RcPfxPs/RWq0NRdKqqckGYverKx6IlmZD7pb9WXODnJBO1+0/WGYA7xchxPtcRKDXmY7F6loIRpyw4Ba4Vvm+kstraSt9rliQIKKdrQuspKkgJNn1ZhqpaHwOGDkwVHW5TVSUfZu3kd5J4eRg1PwTkvr+7knUbdUin/MYLO1t6/P45Nx5bPQa0TL2bBSk0CY1hHcAwTNAMj6NtTSzGfkdymqBbJQEHtUH5wpi+HVTyyfjxN2cebJ85SaIdWwlRtTpTSQ3R7DgrpBryquifZpoQmOxJc+XYremdoNAl5BiIwxoLqXU7jV2ay3fe9c2MdctpjYz8sxqGaRyURMogG0QqsZV3UKYIx0U4qsNcbarpi8jT7JTx0nb2jHqgs3sN0pJ1tWgLRnqM9a3sBq9Gf5ns0N4ztKdHnc/AFWPaxYaefgZM/8kveE4A5ey9jzM5fmmCMHwdfHQrgrIbuRWMqfg+eG1I7ihaBbi6qNG7XbGjYmkO9HcGG5FPV3M/V+OB9+h813DvJiSS36O2J0H6cJLmDK+Pxa1IPjtyPsqC0f7XC6mR49iiJxqDvYskHAeAk37CGjB6whNGsdOwc9Odz3Srf/BhkevS0NVLnXA9RO2rt6ZZHnRVnYB51JnBvhqC8Qb9Ki6Puohaj6ZZ2FKlLvAe0zFuyZ5DrnbQCkzcGY8LPOY4AzsAyLDyTyKrroDoqKE86FjnC3r8Wz+hYLAVtr41avMxGLqZXWK7Z6lEgRWydcxcl5RAqiG83Tj57lnLVmR7MUzVmeUEUaB6SToB7Blerfrqe7M8amzdPBAAdbf48V+Dd0i0rUXHeyvifl4AFzEmCiidZWPB7e0tq5Qk9JETxCAOjVK646NCNJ0UPWgM9yWTuYoc1pkF+1uJjrFcmZbbJ0w1P7ar2awHzpMX2qipbTzYzZpwgLaTTShOq3IukEkBBMhOJFR4PagPuFNFOwkwwS3gXmbvdTxX5qXj6IhW9qF8QZfus12huGGYcIP3g6iTWat5Q5QUmW90FtT5nbLiPnZ96Oz4p9a6iXE0RPikJkbaEAwQaqrj8yd42+IRDtRdaPFR2CBukDHF1nQX45yGQwrqejXt/LLM20d34ZuOkuoWjODvKexbV/9Axi0h/fBWHLkgFgIwlf82QHyiC7rB6f2kkh5JZCwiaIic1xf7VZ1sgDNXLiluNkECpk6UGYDgOTVESgk/f1Xx/o7b4IGpon5ReJy3JwUsJsyYS79mFhdopFPf0M417B4bXKgMPwaUTjUYsnUNkN+Xhn/S9F6zPYErDXl7R9FJ8ggui0rxQTdehhSkLDknRMAslZWm7VA5BlAihnJMUwAmb9UauZDNrN1N5CyNm7AZL3ieNq6SnA0yttWXpeuS0TJIMa5RDkgz3/euDoSHigbyLKIyyMngslgr7vQMJ0P67itayhDj8gURURzKwYEbZGZc+nW17pkaoLZchURtfUYB946tUaQK5+Y5/p50V51zZZPZhhZeTiNuX7Ex9T3jYKUDB7R6rudDKbcMtyn0EnZuris6imncJkVhrdcWU0BhGw4ld4L38bVFWGTXm9AIobLHU9O3dCZ56ZaZChy+vzhz5o34jVp/F/F/iLUHSHgslcgH483cxGj8p0bKk0xFvvKna8IXs1OWj9FX1bNwAQRxjOx2SOSn8ztIVDkRljS2ZUh8bLekycCfKIdYgMwnMG3I0/BW4JdHekJkPkWceauky8KMLaXIZAmor1O3LODYqM/5laQtwWZk06kdwDzTwaRMypLiCdUiv09CMGZ7k3AqQQgeGc64X69QYiAh/uPu/V4Cmw0thmmJ02cgr78WfUWFjXzbzpFMV2m4y+sN1JkrOlNLUrtAgEi5d5fg1Iq9dt8z9qSsUya/YY2YuHBq+WOkIwRK1z6MIgQecuIMVvWqx41xWwgNxfEuPjZPplr82GaaSiKEUTN7efg4M+ATxY2qAmvrItS16eVMR4pLk9bTwZ4/C7J/Pqgf60vbCqKRkMFn+QXLsokoMfsvp2ryzC7wuDSHptbYdJn+MMENt4wzZ+wtU1QHYq/K8Z6ZQ5P2hwJPqdoCKrPLPJyth0wF5TWzaIOkGzM8DLAZ/lMcZdO9Xlxe2vyjCzNM7IoyrEK/LByLfuK4mIKvH93pt+YfYE0aKt14Wd7HXvtq2PF0DMu38bN8FLZS0sQd4cI3OscDPXOi2qHlOHptVh1qdGk1SPWM7NNXf+S8T8kPcY3IfXPSi/O+gbXeHSj20SaeSNi+Hkad4l71r3PZfNt2AhYNYkpNxdmwsSOedQThSh1EUMcO+OICSnFYmPf9rN3V4Xqd/6pdX8Fr9yKrHr/bsNBqhD2bdsIlG6kPz2opIVu/0KLnSPgLmK05IozVOvsTC8eUmc5ptxsuU+hPBlQDlhpNR5A1MmQPLMpIQCbgji/fG5jAkXBJlGYRg8vC8PKhDmmeUqBhwBhwUFhk/bfVANQNDm5k4EvtpW7C5ySksRmnVTXDLcMfLv7ZnWeBJGcI76fDm0xPCfoFuZLKqMdv5WxeEZP4SfvEK0NlR7N8S8ddHxJtASzC6gr//kn4Grs2qK2qAtylTzpP5irlI/XSSE9BMmMmpgynyUUNu4RVocLm+i64cK4UJjM5iCBn8RpOj/YCMOOUuEVuU0/c+i111Q2do3/9aVAmTbn8bElJCQSs6E21iJsi20Cu2npupC7cCnws03bOxTGvecCySgygNSry+pyCoXOn9A5raAC/3Yu34qjTzco0kLtDrnlEVhEjq97bIntMIeF9F9yT6L+2YZmMpOCFyhZHd6o6OsfinX4WIlwKRYBSVufcQTdEr69p80a0akJd/XizUUY/UFNRR+MMzj5OsMfp+ZyhICivMFpzMPnUsxqPnRQLggp/PmAHsrSm0Q1Xtt3p6ksdyuDTsdIl9u9Xxeab0KBU2VfqbVphyG0fIk5FI3UiOCtVfrEZOCAJhtz0+davR4D/R/Siop+++qhEkz64HtCw5RuStUcWru9sByOnT+72n1J6SM2yxlVa0hMcr/r7Gw4NYlfYF/GZYt0oHy6TmlGrS+f4Knhk4xtlHpDaT/54Nfw/VRjrwjB+D7cmZ+3I3M1mh3kby2HgMer+VNN+VJXLB8A0Nmn2COiG7tQt+ep6YwNDESo3VQ05eRWsiXOlCijoDwAM36xT3MDW5JzM3YlJMj1ijaolz3mYaUMia1MNEKmMyOlYvu5w4I6FRi6a/GQtoL7Ly3AfYPbRqI2Hsb0KRBHYvlyRxUomwpujxlF+MzSyjSXIpzeKMb8E4MvoLU/2wbU0yajl6b6I/YkxvPvR64X+eVQjCgBegqmxEIvz8Ths8r8VBflDSbX/2l1L1YlE5kUHAZPgVI4W1ktygvVNOKUh/e6LeuYoeTghl04NQ3KcuKbh5oq2OQtX6BV3KGpkbT3miuZklWYAbAPWmp9EB4LuKXKs0/pj9yBuJTUm8f8vvX9ybmmWhCJTuCfcCZb/breyjIk+k2kakWShkHwgSgYySKB/D9RgS8xt6UF40cF3XNQTJmsrGPwio6sypgtgYYXkqePCM/5rllF+MPo8Ef+uMMNimzIgVDhBjYWRfRhwVyHwsDTZUzX5FvX6HUqvwWfQcfVbfYQ5WKP4vBvdDUgHYU48O4kzAPbkY0Cjrhvm7i9qf19guBV6JVR/iIexbd7/y6k/iu2dxe2DATWstxrlfUu16uNxIxIU+bmvxcqdtzAL0HfJ2n+zCnlajuaU3OfxI92eZqJXETm4FyODxbrqmuiSA3cU4D3OVqcNQI7OiFd4AY1qlVhvZLsvbTJLr5QLrPxgeATMNsPnqghA/3MzcZQjUyyLx/N/EBTA90r1kINU0ufy1zAZMHuFtL7lkLFkiTFSX/YfHf7yyVZoqAr/SOe0yooTeo+VJG9uqe4XKIX4NLON8TSqcfbLGzoUvJWNGNjCcHesXq01wfduxNILNb48n5SljAxx8QZ/TjFTdvLQLbJQKWTcaGFVUcsOb9oEjRoihYG7f4vESe2+T8QVmjXi+SAjHfqeaZqA9HbeTp830qPn+x0UDkTtwwdfUdKds0W1uIu1AO6gi7USQvskovmz/ED47YKYH+HN8LGjVCdlM/UqiA0AsKynMD1XTUHYXIXBuPoU4ykcY8L+IzqfGYMhCXY2T7ssJ+zDNdythLKwgCpCpyCTPhsZKWOOZ3KpSA5vvhO3v67sKgNIr738eVTrjLl1usWFBcLy1axWa2R+P1C2eRG0TbAqUr44d+RvOogVuHKldJQ/gCEHfgViPwR1WF1pfjw28cxSbYQVKZZrPbXEPMnGAj3ZJFzQD/ZKd07T351DS2lWI6aobc1rXS5Q77618plLLEZwrwTVlgmkFFofmp0Hss0FZps5uVROcnU3NDpLnAtFUBeoAf7R5BfVSTY7YRErRYuR7HvQF/NqxDdjqL0Ra3AiSQLbSrrUI6XCE3VPN8SacsERHPzNXdXdLq3bVS2+Jb8E5yO4vDRYybHGMXeNSn6BiMhuYIu9+x8YAF2ruB5FfIhxYDwMYvgG+SP/Z8S93ZKXj9hs05v0su4jmr0KeFwQRqe25z9j/8s8gOEzP1iET0M8emGtL+hV5deq/RDdd0OSMxZAtiHYBiA4UGt8vvNkmlBgEljLdmsT7jtTbd8GYOA5H8Td/vgBcOSf4jxHap5hlR6CgkKThTGnCUcgM+4G5YnHqTq1OpDcWoZYvS76JEpGMc+ApwRy5Enju/atA2dQofBlCOUfsTuVCK1U+Y/q1g3zbdAFNL8SBsN2tap/9mQn3KDxP211/C71c66d7gQD7lKMbxps6lpiVb9hlqPrZJ/xgzn8s7ilpCgzbLQuBywqxrgAsJGB8XstiXHiZSdFso2OPBaRarInWObpk01U/6RYBLu66lNagYYq/tVTa/fwY7Hqm1zpoaxNFDjUfO1NuGdqXzPP2QHCow/IkmLMeqKpqa/pBTLGrL40hahj+ZvmeKlHyZr8DmPhC8AQEq3lSD44bJzI2yiX+JUnPXfmlqWwsUmcMBetDwt7/ElN9IVb03mqA8lGdMmPpNMiEWLK4IFI4GppL3qqRkHB8GXtV4Fr5d/2gw6NUQ/HQGoT4CWWi6ZCnl94tLz3rjSUEryDziZlFf2RxmEAiklVI42gR2tFTay+3924nUDLZU7FvIPCqM0OPGkFh4zxyHy+WzuKrQ85YLbrP8T3r1r+za5pTZz61XpHgh7JlEVrSkhr0c/r04cBH3/0dXlKhruz5e4uWVU2XJXBspmXReEkMHMrGP4b31m9UD7wUmRsu5hC0AzxCTdc5KuRjAflQeV7vwaxNouakOUCwvIARd3a6qpICpEB/pMWutECjuacfrm26RC/lxESCsaaE6hpbgNZdPvZaWQMs2BhMdQq/363crzqJJux7bkdUKcPgUpMW+HBczN43U0JLetbX3F+gFlF2fECo6vl9rn6nlv01o8wjpjqQFeP/r7zJGDfKNlz9nwe4t1je7T/EFi+Diosn/bt2CpYrn/9E0VZfmeSfsSdIF0oVndE444e0dXhHzzbbl41DgrLbiV4pZmh+DxbORo8iptHKIbKmsOjsEUk4NxsRM7zyKyuTRXxD9tz5DYSfywHuEvMvaxNP9Faq8vE78lzNDXyINgYncyjIEJi2CNrWVzXGKeqqPvCBYPKboTV1LCaSDXzuJZGO+AQm1HwP1OcrropXsauvkm/rzs0+GosdabEQz5jJzsQ4AGBwtl+3p4M5W5nCs/xTeWXFN7V3UqASme+YJvPHi+eq47gcXkMt0d0lCEXUZVRW8UdUqKSKL9WRp5u7SIkAB6VufLeb8uet+FoJLykwbDF1l41ZyGvsMrtWknqibk0LQJF2AOK+WtfpkpZxbARBfTGPMW7I9tb8RLxat/A+ZGraPuw5NDLPJPsJC4mLU1aNhv93Y4c2Blj7vQLAXXMqdIPNniF3PbqO4Th/dSFbkjRMg6sJlD0l2ddm6ss79J7UUQOONszg9Vt9AnGxF7K66Yq+WcBJejSlzf8767AQcKXVWd/1uMP6fGdqZp2Lzn804AhQRVPZ64opQrlTN+PZHcknK4jOEDNqLfn2SrX2+goTmKsEVp8eqXx5BEERY3UqyhtP5+a0W2N1TFeUFf0Ww/Q+ImVeCVTgY0N1xkQ4VDVxXYrkGyJV+6tOA4aJx2osmbMFPBIYuF8K+xd+/XAuNTcjiNs70yMJa4IXirl0q3l1kFWJ5P2m3IFMvMdUAv4tlO3mjc9WHKaauEgKNbM+VuDSY2N7rjwactv7NusV4i7IeQ7Vej/7VGxTwQr8l/3Rhqq6o02yuaC7kgxVkO/XmYyJeidUxV5/d6G8D4e0MzbQKYt7z52jRyQqlNdpa7krneF9dKmOkt5i8IhDtXjrcBxbogd37NROvqYIbGAgvCctlUKyRMwFEQGUa8M6ljhXYKMxAJiHlrCKoAqMePlpXSUmCCWUvvtMgMruEe0LEypObu7V8s+mYj9tnXpmbJitk0P6bn5Wa2Ymy1gEJlvRQnurVbVbVRup2ndULyVEL7kNhv8ubb13mMqzWZwbi5ztUUaH8as/8sHjoEgwpDNGFGRHUd67G8w7LzWco8rdCTBP20Xpp/bLiDJjDngXTXvCrfguxqPzUT1Tb1hqTTytAHwETWbSp/gdc+zBtOmcqEn4dVuzz5ZiDxPn3lu5ViUEBPmmLe466D7CMGYk8dZKCqpBDC5hiDNBOAVyStxPAogbKtpVyzcNtukBkz2wgzlpVKPRExVkUaL9/4zlhENBrUcoB6Enrq03w+tkcZKXgM22pKatG83lX2XNxKH6Vk+J/dEHIbQ3XaC0WFpXH94o/YgVqV4jTxTNhbqzRJbXp+C2DTunkOKGbbC29KfFhdfN9oWKcIeIZinAwz5yc6zFPJZrgT88xI9jZ2KIr7qihE8M+eVzTK0ss+pVvB/DniZf5QkDQqF/hH1F+L9QcRSUr5CUFfkiJ6vGyPMx8l8RlWuUyZXQBcXX7peCCVDiKxInV59b5O7buCPyEUsQ2faM/FZ8/W/a8N74oWWmN/dNj1WwoeVSYYW7gq4LVjB2bl12xjgD9A46HTYXYLfBS0zfMv8e1uPm7uxrQbtAJUUKHR4aQMm9TCn8El55V44iIgHKrRsGse8sFknFhaFaiNXAPIa/ju7+yqPPEp2DXcU6WUXd6WsDVN/zu89ic1zzw3T/TE9QGMbc5fnMLWjH5njAueC34iMMnV3tq361SVP+o5hj5CMX8Pe8cJ3y4u0iTKTr8+gm/6FuZMBVCe/QxTqWO6U9gaFwut4UG5H3t2M8xARclxO3p0Ed9RZ+TES8SdBXuJDJMo2QOmAOnG0X11wkGXs3MfeI4+FneXl2PCvb6nrq69DDs/NwYujzB2M9MTEaNtqg6FgAs/BI1cF4UAFvn1kjIwJs54nToHYrsEBxy3AsWFjQiPtD+g1Fm4MDBlwhbZ3ckfs3oBrJ2rCD2/kzPTaEcd99rp7AzIuh4KUI8DAVhH4oLseQV4RTG1+uQiiVfdiAsUKzPquIiCXJqmjp2PYCZ4kLMNEDFrplJyhn3aAhOCg92oosXrkHpSBsWBO7qbc2kifQqhnPf6NxU2RAbWQAhYQwnuKMUbWecmiPTt3CHcHC/b8RcdWlrj4zVx3DET+3EfRGOq2xJds+UmrBPTTUEezFI6ZvOpTxOjCrKQUVAlSWDRlFKchLyxhPzdaFjGTDBWJ4oH+i+gfB4yHQQLfemooHY9TBnKQKVfBYMwADXSd8mh7cx/SPGsIDpEkLW4fFLcsQOqN+soYWl+z5ubdkDnN2PfUGYJHGpDsJIxIAD9exkONPc/fn6k8o97xbNonfTaREFI4bf8LMgjsprBFgfiMTVVamqt+X1BfCVLwi4CaPEr/tUZ2ffgrvUBfQ+bMUUjJh7N2e40l4zKR5M1MTAM/gdUVYQozYuRKl95bdXvQSWad5GaoEFJuD5BuoqLAH1/vOK4uE6gw+3ilHK49IQAucQHBO1M9UhxYAIlCZkWwi4XrYlWtl7MuSpnT7dEkMcfgcYABp5O66OL3zzfeclnauWwrcjC6Vw2i+ZQFbe5JqkfK5sxz1E6jEYMurki7WPayyj5OYS7ageJR0kxOHOTAJbHTJHCiduvyxmoO7k1gncw35+ja6y5dlABbqPhw8X19tmDNv7BXVdR7Ert/jdjflf2O/bS/BgRNB29I0pDb0CVZMdXSD7U7JbdHopX9Oqn9Mp2D9HXUV0rkVobONeoY9jeeKNODER3LX7bjSzIfQ6FW2LipUEp6ruYoBHASyuPMXc/Gva/myJ3hCzNoREvk++FIogrMBxXx0HaRPAHk5vqk0CKOB/6JwKKoN04n41CYKLrLtf45SFLRVkRF6dvAPuFSosT8yI/Tz/5kiRN1WJtQmi7/jQvyNftBmWHt+vmV5fJBCIJveyfwuDhz7YfsJl0nhjPghC47EKcEdwsoBr8NMg9GNv2bDJ4kVxpvuZOkUEEXOHWaWnMxdIf2DeSp2HiANAtf6xYSOXJUNEWp0/AoYC7rVs1BnUX0BYEym8SlCPmRRLMiUn+MnBB5ktAvsSC9MXms9P/my7PtPgIugHX97G3Mrbfv9jMd6OKdyWrZPVhIZiQrTdGQCu7RNTVJ2DFSyFulmSbzfu6mdX36QzJjtDtiI62ckeTtZB0mjuXiFMzGov0GojZzERJqSiUPum/l8Gc5QaSuuYDvEZ9kUsJkcEOmi2DHT3B5fwwL5mnfvap7VuQTR8NPe+zuHU7NdHvd/DWRrjgfIqwnxJ8VONqKsPXLlfIosJcr0odPDxJiZnE5Jx483saRHu7lyiRIUCc+KJC53P4zFSkhCawE4dt/fCjxTV7jvGyh/B2ZarnaAfsMpaEc/OcCCNGoYYOOoKjTUe8a+URtnqU/79TdwRPWCnqYWS0SJxdsctyRTWzGXBXxhOomR7/7WNE9CdWe/iBzxqi7+XLe3shm4RQi2+ZTz/4U99upNIn359v7J0UWP5NbGwl1JLSbuCP78cB4Gibzasu0XjhqhVCSMpjrQPLz0eJ7XQ7fKD94lUHRCqHn20WtcRpK07+9ed/Q4txdSZsEd0QtxooT5NmaWmKcRiHea37JEBetmmFHfDpfqBafo7WkTWvWxLPTlX/OaS8yaYfFiOmK8NJHXkMbGvgYZnyQKuTzd7oq6avhTj9Xwgq59uu6/bUhustxTJKGqIeaPOOhaB6647lOTMxRQnLhbCcH0U5SCfvAfmt74uWCXi/DYMZS84htCbgaFVVgALiq8T+IQK1hCt/eYFyk082sX5GNWIpnVKpJ4gZEwTfr0SSpDsWD6FU6NW5NBSVSI/mCSpqspMT5u8zCpim+UXor2yGsxS7hwGbjfFnwtiGuS0CcT1LvIxyM8jN4fz+P6RfsAf570AjXnYlWsQkaQHghDIwSFBl/CW5k0b3byepsAyQgKy+SkeXcNj36H2cWBtQA/6SmGax5oc0bgQuykz23YvD1GVG3H2xvQPvWxQYk87h0z363Ru1RZ0gA+F61Riwz/n/fpJt5FWf2S/gXSt30YBOTzwj8a5Pap+MVfxAvKSzXjZ1PnOJql+vJi8LmmPz2FYPQ12Cc2imbs1BfuyvoZi8y41GiKUsTS/eKI/yxp5VmrPuAoV/qwxr7vQMJc2kDxg7IIl1cJ8tswT8+MLboWHPvW2hOFaxGKXgeYpMxbVsP5ngDENlIaVcnn12GRo1slm+GFaBRObuU1B8iQrdTZlw728DwvMqqBKtZugPb4w4b2aIrrtkpPMWph3K5HIkW0FvXhjQmHfIZJ7sr5J+8CNS0sy9Spro5wMI+E3RLr/6e2brBO0M5PjvB8hV+B0o64UIuJXo+3WqN2nvsUXJxS3jIf8ugNgr1KBoN2arMgFntezXy6FTvNoGxKGco7rQO0cOahS6BGIZ0f7tZq484OG+1BCc4YyBOPgpqXY8H3fxKDQa08KcbVW7fyCQspCgYQ3NeKfQkpP/H8O7u+xRWN2Px5LyxRXPJJjxrNyQXY1naa+L8QG9kLpPfku/Yk5NzWyPQRCYq2VtN8KdYl6+i75fWmE9G1asZgo9Ch/AKWUy2w8ovV0fJnXXiprQKGPl0sjpSBAwL4gXnCy9EfXVnbkhGKWyqXeCnLEeMibZ+VZZQaTt44RyOhtGwvQub1XCC8/mY9cR629QoAuSY6K9y4WQ93r9ki/oKwYhrcNMFgkbYOVSecAVRS4eaEplGepNvTaLfRjolNQr0bk6Bi41OxW4Qx2DgOR8Aq/euC+/FEsd8wTqJkBnrpyoo5BZLlueHuIY7gdloV8xcgTWUHsKrOjV1jEnaCNH3CZo/NJESsbfOud6eyB1zWKSNzt8p2NPw7+UKrmYTSB2xmRkmZF7WAO00khfeIx3hq+fGWFMfkjm7ezUxOVqJbEx85h7s7yj9S9uo1zWIjQvoQ0o91kA+uPGl7P6TQmtoVAH7YOB/G2Qcu4kOCLWu9+x2099S2TpFMcTS9fxA/XkHkfeTK786tH7W9ZApsssL+iSHkNaMuvfLo1RZudQLX32F2wytlLOh4TRppxMRdDsAwjErU5YnYI/lkNHNuOnRqklAoQNysl0HWTeZP6N/fPjZ0po7eAh0cSUUApRBzMNjbmNzlQNEuXdB4Qt7KS34tll7je+1AJOv0QZHs25qLEFz82FJyjeQqpsVQ+xsbvHHly5L5zmw8EE08jTEqRYmNMEyCPSZzg4uyxf7SIY7aMApo6FX6r2GWqiMLuJ5t2hALRsjGAAIUQMS2gnaPWesb/F04GGkFu6Ru4XDigpsbCahqhTtBOuFsxz8+NmGL3m60fjP+vQpJr0iLgwoMUulbWkSDXLs73Pqyk1myaPcHCbz7yWIGoObElNwsb8hNcskYpI6v9XhhJbArNxO0hhbW9Ht3LqdkPjELSFnYYOhOGtVy03JLG75DQxaNWlZJVW/ZXPKuzo1bijW/bSDPP1GfsEopZMsFC1L49mgVddhYtcP7hJMjcBuvYn3bcUxCQ/QYkGefdZQQ73VMFUDUu3LuJIisaq9WSoyJEm7jTCB+lIpBujitU9MYcFgV02zTjrD/LlH/OneCboZX3qMboGitVWc3ddrXMEdVRxBrvrPpGVCPUmtFtl3y52AvuwlHySmpUNtv8LzG+NMCZLQmuzZ+nLLEuhF0IL6syUjy26om+yjLMyU+HILNSoI+fYu4j+ZyhGhxnz3Vcrbpo4sZmSFej3SEJ84jVO+9OZ3i1NaNqDbcUtTjHRPXvyoygY6VaSr5P587H8mV7TUnDhuwVGUcXqjtZbDoUsI1BWYn3XI4qfFf5jXwI0H0v/UGjwCrRs8ZKJGuR1FtlKTTwhmesufQv08wfrguiGcM+cVFPSo2nM5kmQYOsp+heMVnNSjDUOVmOAkbQEEJmoaIZ1bXp+5tm+0HEtsg/z3yYYNtLAbhqqcpIbS6MZTx8t3D6SN3uXxxAESeWdN6hYCtKORj+jWM3aijL9uw3v5kjwGPwoqQh7rJYX4JS2Y8x182lQsf2zs4vpaU0CWh7KsgtMpLHGRYfM4n6vjtd464UICa9RJR2LSUx5B+5+Z6FqxfZDwpP4aPTISZDBt1ZN9Sf0XWJHkbPKKFunXXcIfnqGt7SWwJhu0BmO4MNHZkPg2+aeHouQhPwg3zy7XUY+N6df9jxZM3uPGPEp6CyB4VzPzH4Khs2MUl1xW/rFnBLYA4Xwaa24I6UABzdrxhOvoys8+izkQRZaV0h9ByKH8JpmituY6Z6Fhw6UwH0mPNY5EiVLX0gRvKLX00QP3pQhy2R55H45ge5d06G8maWrm8GfVVaYOn2+Kz0tmZa+8Pcl8s78zsAFKKbjD6495/CFBIG3+2o1gQanr/szue3WhPT9c3l52rhFp6yGTollDMqN24MIR+R9K1L2IIoyAcBUaMtpw+2uQjxUkpyNxceEEIAjwjPUxOFIhob3B/4JZ6S0P9HxO4SrWRGGQ2+O3ra53ERXPoef7irP+Rji1W6FH9hR3q2YqNiGR1JuzYPyUg90KktyPct/pTqfWFkA/8jRT+6GOGqbF06iqb/47XE+EjGlUc/ItX7VzBrfea71M3Clxrfvv8Ye37zUcJFJRRXrJGHkB4N/YA1ogZcafI0xp9LoKl8z9qsAPfzsgPaP5gE038HHOa9TKGsp4YNo0vaX/EWjMpK+FgVYB+PIOSGpnDLywfvoTB7xILHKVENlaYfHTcere9mzI03GwWpnVF2KTguOKO92JCJkK2uSu7deZ/rnEszQKwst/JaoJmj2dQ9/I0rVYem0GYdv5+0mCwHGYBJnT+srlrmZEeAFJHSwGZGqKChGo63aNcQiCosmxmkNhtdTMWDbG94qhssz/sbLgZXW3KVaylrp1aeIP2P7d3wXbce7zBt6kXQTDKlFXCkXFdHRjvWcYMa5/CLWtXjw59SbxBMbNKIdKJJbTvrSo4r+B523xAiqxT033kMr6TqA7Xk1z2wBJ7r1uGxSjjyjnwXuMBrj39cIJcyvQ1oLIubh8oEPDl/YsQCzGzAkkjnu2FsZCuG0U4qWxkBUR4YTjhNIBwADgVmMUxOWUd+X/2SMhu2XUUb+IY5lfAwgC01lJNjjYi+YlrAtZYGULYoSNl39UNbcenUoE0uIPy8fNEHFfkbRenXoPL8lunKhzrHmDgaJ7tVy+M35/3Y1J+S/DNzrTKGMgFPR+iBT0nCFnDRkoXvh9H8YTsNpwNUyVCVwfLc1hEkLwxrc40Oa3Nq5Y2/xkdI8HIKFLtbI81Bw3XDlxTRLf403zCbUDphXrJB+4zsfo/nVSOHPx6uZqClQ1Sks5I2llGE6bTV0NFndfALZJjnBB6MnPjA5A+jaXAKalaKMw43bXdfLk6XszlTJHx8gr2ybCJ+y2PrXMVfIXgvYW12/hgO5kMjxVkxC+MP8Wl2DchmGxq+Bww04VRvJxLURSAbgMURTX5CLZN5A91SfxVF5+nv7K34/6npVrgcLPoV+d6qAnN2iFQyIupeACUYeg1CiT3KUuoQzW+ZSrbSaLDAVI5HskvlEj5DGiL66hA0mPIexKMPDDCS+qV6rQC1I8WOSTySqCm4FfMzqVXI/BvUOjiok1ZSZJM9X/Tg2j40pX3hFJowoekNS+1huaNy2iFDhNgHiT9LiV4iRezS+UuwNp0B1enuSc/42+8xrtz7Kza1v6qB5P4i29Oqw2qHpOCg0WFQLCbSnxBFIKzT8U1dCJfls9f1INMhLbcyCY15qDSOnJvX2RH7PVF/0vN4C0i8vyO1fUk+wRWzsUEkc29RqHRYf/r+hAF106HkaQR45G25K2UkZG63f07FFs2s7B4g1eEtdSQSwgESP+jk7/CvCBrG3YEGIW7idY4PHM9EWT+rwQv/msrLEVe9Urd09GCEgCo8h64pa5Sa+/4pJBHPaSmHdQHMWWQm4GO2T7gszo14fnUfo67frs26ItVnLxF5V0RtZtvXFHKLkXYboY73xXc2vbEDNUUPGYn5Skbvk4mpWvysFh1vvNMqo0M1hUWAeXJ/lly7unXpJAnOE67GmSvXFSZYnAN4kqSUE/VHkFy9Z4bLmhYab6pOCFNgHKbQj+IGvm1fYE5RLz/dmxNe35ar1yidAywugiT59Lq1SwD5BfHSdoezcVzXZCLTaXFAuchD+T7fbcRM09irrfk5MI9KPNs2+ctP4GmZ2ZGmK735/q8jWno9YMt7WEAKmbNvP8EXgDPLTG1LPNFtYrz4IsxPCCOpATmEVlYOwDhHQKYu3unLstQbqNOMIllhMSTle+yi4lyUjXCWzr4qGYS9+E69n3sMrJbYMHapbWuoxm5iGS6d2QAcQGpD1CEamoLR/6xub6JYXexKiXFIL59ging7vTrlyqHy5dK0rBFjkrR7JQY7ZKaRSDcnQqjTfnOFJyq6ZJkFFN6MmcQK9x2PAnEUd0fJiDkPybl6/0f4Zhxm70WaA9JFoprIJdOAx4c9LbsHxTZrd0O+QE0974A5WQsFWd102JxKIqmC2bq8RFFXhmydqx/ojpEXfSeDapS5cK7PE+f1PAEBO4rL1Fz2DOrYQ64YZpYozos6LTP0mmeXpgRkEPbzn1EBU9X/50XSWvq8TpiBEF88UKnQY4ZTZzC5xRrb16k8b5kpoaVwbiKxYPhO+vDMWEqqm2DPycgvGZ5DBSxcl34/viLHK/MVHZErXyny2cmlIJVO6hFAQOtR56TT2kvY0Ui5eUHTSYVsLtrhdU8MtWa0Z/gE5gsU73VkhiQ1DTe5GnN7LR32GS2y99q58tcY+S2yDMmjX81o/FQJTtUX4mki1oQmO7EcMVxMjaLOiRTFnOu8LNRMWmq0f3RpEr0q6RQoo8PgBpQN5T6s93UoG7vb/ZDYVjdPuiOI/DsNTJik4gxrlZ03jSt9YbnpQwUf/3ds0Aac1T5sysipn5feiU6tUcAoL+PgVnNBKnsmV6mBk5kBSDp5ikNFk/gqHDKRlMtJ8EXIj7P+sQXFhQhVqUlKI+6mzXNCWHyGFLEK5meIO3MsMVVobNhP0YaMiSNWlyzBpb3Y1BYXOpjCVgDxy35+rDaJtK+KPqfROHEyVEQhqb0cwUsSeWhYeYz9dmmDwJqpaEXzFzkokm56fUn9ENb0OscOLlisca5RJ9uoPjEinMOg/affSon6EnQJ/4WmgonUsYOizu0bqs+loj5LpsaU28TfabaK9taLCORfh5ISdRekiT1j1H9Oc/LRdJ5tVR1GkW2YVeIaRoMiqigoKfkQu6j1FT1DELlrN40ylAT7fsOYUqERQ3OID+SByjBiDZsCwBMvPMtpRw4Ohokj991LUPEw5/LA5p3SZNthnyg4pmFxYWU6Xwv93Xxhb/N8hZPkPyEcQmPKinbVsK/DDfaPeIk+dOoMBaiQ2kSgeAyfFfW0JlolajlIKMUlzW/EgFsoBsZuoxMz2XKN7EQLfXPjB4SraFyeKMfWiphdULm0GSAsuMBxyNdRzuLhxxDjA2liuF/NxIX9ApdSHuceQV4foTg2xkq/ScHUshawvfM1H63wED17Oi4Ws6taymzl4l035hxNUHz256A5D6N3wWtOpYCuxHQrBTIEAffJznoXLhQPL3g1iFD2kfkXJ2SBUUtmW8YRB5vqo1xofYPzdXd9cXTxmWpx7y4vlD5hsTM9vkdKepl6ZQn3edQDAmT7dJjve0t+uYb7nqZVLaqcPpRh7zsvkKBIcjR7HWAdYbHozjmO6lPuhkrCHSeNC2bgh++b7mcfSgWOJfLTTvO35l8AubVcrZ05RCGTxp6jNN8TABH6Z/pMNg3hYFdigsIfbSMaeuirDGllBOQXJqsFA7I7G5JcYeJ3QwA+VTb31cG2UxbeV9bzcoEf1yVgFQWG3iaSJq8jpaJtEvU1DXIczrS83WGPHKMbcv/v3Mbn04404nv2kFwpWlIBiNmTMtX640PbJ6+joB7xcB3XYW3J+2Fvw5DO3a8cMMgNPl34dX/DCUqa/s0xWyfEzSrfQafXjqYUjyGDDJsImzpZsfwFoF8NxhtyxomelnQSQgBsc0yw9A5YV1Qd32rqcJlop44c7dBBDYMY+q7CKg4yK2Awzndj5Bm3sfxZVdoI6jiO26aapuFb2B8kIuNb7qL/Di7x8Dv00lqxE+2j9ZT0feQYrdCL0vA9zvNF6X4zOTYAJsYrUNL+oGXtvocXb/6Wy0IUkFtAuxMkwr5kuTEX9HVmf3iMPEUzT6t1B/yGt6WyLtVrJTjMBpa+z0XoekJgeHmupp946OZq0UQcUMOOLQFHfLJkVCbYXTHdXlKJePeCW6Ht2bjOD01dtRVILezy8GllxpTSl3Qs2Of1cKPiEWPCH9SRheegAUL3XFejz5bOycqGopvcSCeqR2z+4emkuUPuzJsgSoO6ytA3qzOyJJ9/LDyqNRge+DFty3YYEDhzOef7qGtwZDlwTxOw1HRuEQGVcB/fiuZFYb4TpSsWxfvP33bsLIf0EOil8zgOmorVozOBampnQBd7V/dz0J6g4iCwzdHEMYbeq4Ellbhb0HY83wonigAHac0Bl6zwIxH6HwvHvWasF6uUTFgZ/9HyXE4DWe54r8tvij4gmMiOW8McEoNQ3aYWSKNkgV8ZDcWAVdZz/UQyZIg0+l5yDPEml9iRUXfsNGXICsk0cvDN0pR2B1YN96W9qN3WFX4mL0WrM5sv56fiUjqZ0uGxxqqLjEguu5lUeRL2LAFjsNYS9hw6YjsF4cuWOx504+x7ZrGg1rfYyl2cx4xIzZdEj22G4WZrc/tT6ONaapuxoSIVxmfJZP8IQ01ToAVlMHz7Yb0Plzcy38AoMjvH1OcZkRuI41paRfIjC5QOHdh8BVejLTEAUU9lkVxg00u9vSKJJpWovuV9cMU/owr4eTRvM/rX5rHTzIKv08fM5QClwkFa2wMCdXF07mVIRc4lgsfUc6k3fPxqdOhrVIovMP8TQam2ZwBRp1Ja/wxoDQq++hoOmJytYE8HzNcOUb3hNfr02RQFP9/k+R4HHVEOyTMRml8+Gf7yX4tBs+1lKyqQS9ylO2zg8yH/Ek8/oSbys0Nm6V5EbITRg8NG9SNiMyKu4eMDgayCDseTmZa9ZGgVdAqSVFAr5uo4s4jZjELnixRaGKm5sL/qn1BeLBfS1DjiDQbNurlsWx5WxyXSH5nRbqLDD/7qKdYQTdPOceZIAfR4tILR5vqigHaqa7ggwc/+xoZhhmAT02TvdtVyYW5WaE46o3llIzvUB3KMDWlyU9lAky4uOSVW1Bzf9UumyehtxAmABxHznYMfckSKPt0proqNdN6L27rVc1tOMxkdiE3Tgxq83i9G64gjB49M3t8uXTXJkRsXCZUgi+ZKr0Ty/xV515OAKiutj+NIDCSWIHOt9LET+otPKm2PmtrJyF5V66MZsBaUzpBJpsIbCEIGm8/liVKQYyxtSlVgG6c3+slUjguGy9Mxiyqv+m8uxt8tUkNpBSjUZnRuq2wQ/Vsw/CfGEbqOU0HoRF3SZNbRfehj/IbsGwjYnOO2omH+8UnpmMw9vsVBwmixVT8Rr6iXHy5NnX2vDJvPaH94LCGd3vnNX21h73X6vAugAvvypArYSmeOwLdlxBdKm3A6SuSZ5WgRNZcfOhsFKWswY/zvdNLYNM4MCEEJ3QkhlVTrx5/U9JWMLjobK9yuKXvdROU4zDjtuszRs8DYGeHEw2Kb9LQsybl57M11Mv63Z4ct/WV0z86+v0kwI9YhE0nDEfcj3dD+XsTyOPlFjRmlnIXL2MV8D6436tCgk93QdyscUtL5etN7l+isDlEt/8ifCl2FLO2q8h7DnVF7ZNd1ERc33JLGXC5BUvvtaSPea2FJsNdy25nHBcFzwf4XVRYeeFGLj1KW2eYMR6NyhqN8oLiKnwkAvYx9759Cp4L1gxtv9SnAjJvh3RY0+j7JSP3z3TA5BITXLb8KuKXZ0iZ0qxy7MnzVhNfVzW3I8R4XJ3fTefsP4yMlRtk9i59Y2d+EmSLn6RQPyw1oxAAMCAQ8mYK1nI8jJB3aVSvGcjOMwYSwkxZeRwW1GywIi3NxqNpTfq/lyHCVN+mTvthkG9b70bnZXqircIOY8ktD9iT3CR5MuibDNfUg7kRqIlwMLlaUkirZhLbdhSUOSxvdg46LuQ0WvMu9+pBSRqJC1TQAzAMZ3B8NHfBKWYj5Ac/d3eiD4hWn5HEewc8sAU+ukzug4AUtUHVzEllFNKvpzmZpYD+7LRVJPLrIB02QU0eP4rKMEXrZbIswbdxbsZm6xdQFLQ9U4rmKLi0ElyRF9U23fsO/oeb3Fde4VbzLqu7q29dBVFmpByHkuiBhq3r/3U3OdTTSXX8DjUeZxtbG26f/5/k2p6/c9nY3mCLsRx53NlnsCw2LlXma11KhddWP9sK3kDEg8ckJjCG0OZAMnjGcoAD4pkPHUu+rCLl3ZNjOWYVDWYjWU73WVzGHyI3ZkI2wCJzHuaqJKkEDPFiU1gcg9SV3KwneLvsYCTJExOARAPi9taDuPxELGrfxPYUFwmgRXwwUEecCst9SLRL+Lkje8pFx/bHTskH1qcbosclkbZZOgsFS80T92MinDrEGgo6Y2HVPlmTtew3st2pgi/qAHPY/yhzSSWDDN07xmZFp92TgIK5iONDnpV1r0YSdcAvQwcNP33+O+pmPRNljYRv05Kh+qkoPckeWjjJius0vEYo3cixf1cE1dh7rSEO021SWLE9Ee1IIqoXh54/yC5YIXl0Y1W872Z/Vjhthc9+L96XWFLtxS1TaXrjFMSG7zJ6guM1EKBYbkVJy+62xYPek2Qa4pOCjAsIioEa3BcTwtTKcZLss00M2CwqC/W/fbrNCBIfq8nlIki+uFhaRZFWpTfeC1Q6/+sQ6V0GT2cfNUlf6wi7FoROGr7kVoljrgfPKFhnRjjkNHKjofH8eR7Mc+9vk+9C0fKLpClEoE0wA3EtOxdx+3P8jr2vuaSuXTFuDecnVVUWsmhermCE87twQ4RHh7ZdKgDzJjYNnh6uTnPhfvrajsz1bZ0ZfRCvD4l6xBykI2YhKJuUC9I27wABkhK7xFN2ZnkMD9r0w5dsPOQnkIZpsAgyuiWPQHZYrmq4ZfE4sl8YBTGIa56yqUjTaBEbRgh5/xyT57NGp4k7+WwRdTAgbXIDLKkzWj0wM08Yh5zn7JgKDK1FMrqXid3/1GTlXS8FujnljTKUlmsuDKzpIxn4NJ8vgtmtgiEPxPjxSPzkkDSgFG/6ub0pJQPktEQx/p2E1o8Sh4oFu8dq0RfrIciVjFOXCw/a1FwP0bYu/X18NS/NnWw0uSgMKx/Hb/i2rg1LuRoZJnr5uj0SMdoOr/Q10JYF0NR0OGBpJCNKO4jL7goUuUb/hhtVrTkIN4w+Svi24hDj4fbOqvs8ciZ9jbf7y9ZI7KPtB3jkuYS5BxhTpam5wThIOzQErFjUAseiNwE8f6ukgac6hbhv/st0wvD4B4DN5trPDWaumYZvN0UHZfnUTeZ6gTZilvNRkQ+X6SZlVH4sPcvnT3q1wS0n8D9v6kbBResWVWJdQa8nVjVGciut8jgEkpWvDU/G+v7jh0LV+ElPmu5sI1Js9jK0hAmqHrCm400xS5F/qGSnBBXrgYUeaTDm2xC/LWHbaHpEbUVLUOG8hGbnrs1U4tzM6hgQZWtVoSeqrc5hn+pnjnH4/wkaSxhaqW7vHoH0m+Copb/hsKo8xNkTWEu3Gf5L2h29fNmGoLFmC7a0OCaxCFB/Qtw9W901fo4WdF9YR1AF4n3TIF00o4NY2FRa4LwoERbVcKyCxngdISgZeU4V1V0KAuCpkGiYxkEJQI2sj3Q55c6OeNq3xG+5xpmx/euW2SKqjeGYwroATZGgsIMqLpMYLgzBN1QlC5fOoNtWCtZIccmM7HCq1svqRn7M/tw2Zjz3WlGI3tGdfE7kif7aI6W40R1hIsVtd+wKUHwfwN/anHbWmzn8Qt94QAkst8yYSQ3fNTxibvHR08RTpF2mL4fOXCJKtDHSWpGQtHOLbs92aC0CyAjre5pDLxUxWyVCiH031OIttk88s7JYTRrCMRPrk/+cHSODgkyd+le1FyQZHvEKwCGvUtY/d+uSH0TXSmNX3WTE2GJwCxeeK6Rrz7iH8wYGZ1h0AYkqqIsrz6Ta3fYAb89ucZGOYsAXNCBps208jMNC0IMyW53Nr4TJLQ4gCMTAXGqD38FIZWIkkFuh/dkjoILBMmFFn0DsLBHMig1j0G+vjoXup6ExSV6tvP9tiSQ8GxeVj9tvvfAKOzVQFKAGQLhIL4d6NfTvuxKuwR3vAL/w29r/uFeWcsW4VZJgxzAytJAgN8YnDgjmHVCUoXu8tWHciPUmOx+d6M589fr/F1CE9Rz6iXeBpTWF1QQ8Jo8kMZ6/To2udcKa4dbjXiNVq8ZQf8rb/+cYGWJ8WcHxWEPiipngquFK/54eMXO81fhWsfx3hFe5sR3e8v2s1jZiYh7RfBy8o7BAw89xdeWvWuxzOuzGS65AlCcfOFQHAbYydRCCIBohGPq1vGyJoORSOTxbnbI7hss3Gml6tG3eORebyfKYwgq82BRjNcAUDYlF+MbtqbxU4uzjuxhU23aGhPMFGpa5SRggwg2l2pF7RWCk7MXBfgvCB0C4W4GLHvYngDuEJqt0tWARcl7pwUug5fYVUUQWzFhPQWcA9uUWkUy/u7VkfTTlIHsrts01dq28UQfxETsBpds07wbN3BWcmXezqneCc+3eDWlRhNTErG2kb9WOlUo87c0aeWCvN546XG0MeLOMzi3zxtUcptUUw6g23YpKpjgyXUVv+oo0GX11CvFAF4Hwb/dvgx22kfxeg2MPqzB7BVezxRwkTJEO/3miTCU7uWipJzUJo0NUjlXJ3e1cM6gb5h3Wjb8+hswF87XR6D36Rgn3fNtKLh/29neE8ZQBsLr37zqwkw91ZeOnwjDvgAyQeeAepq3fNtAXOraZAoWJLWUvnlnq2hCElX185NA36bm8Qiji1G9jjH4Wb+fgDX00CxNSRCWAUUn2kZkFPvSbX3mwPPh10+5cDARUBRsEFcth/sgJEwuisR4wdjYtBl4zvLqvTtrJUj4vyrpb/Yeq4ktr3x+qrTYFSQ6QmwPzfJnyZSSduQHeNmy4KVWcq5up/RXanhwwrk4S5O9XDq3Anvl5NUfnyIQUUJjtQaOGaCj9Mx4Y9wlDGFhzpdB7lqZSseo1Zh62tix+m+FglM9ySeJZzicFFlKDvTEeyLz57mOMUEUdrYn1QJMqGJIwsO5ZHmUWV5k7yeDxdRJfUqGlQ03GD1zEUVzOa7CgqO/YY17rUO0EhQaLkdRIjfK70MZKPlEO2H3nAKT1tEo2yYeQTdPH5nCY9GZFhRm8nu7WmiG1EIhk7EOgybNN6oAvRfPcrUwHz1ELQoEyv3eJLgmj/+dYtozUQtaWfEfQ9dJ8uLQIwecZBsEhmDf+7pQ0p+kqwiS6swPwu2SO5oq6o1vYCJiEs24ihl2AS8guUL0XTRVvliGrQyZ3KYM1Nu1/OYXFgJZy8H6bt5/7PNvgj4dMlPwPlzl1K4o63ZB/tcwlC9t7VkS1NDx9Q1fX5fVpxtRmeD7Wm0gievSXJlFwGScCNgYuDmCqGy34TeClhiim+7uw35qSeYSheP1L1Wk1GBSKqjkOUX0X7UvP7GKFfwSd1LxZOKHFKaKGA/6AHl4tfCzpl+XSwOholeRCatD+62rTOac6EoBClHe2ctcxYz9e0D+IabkX9z3VqiHeVIdB4mf7CbE46T4PBodXDO4LLRqvkKssC+j/Dn8hbdjvcRFpARGv5ApxZsjhloMNvjJOM/FlcDSHCuQdMJJzc/ZozUhaOTkNCTxaAswmEwahKGMrjoNv6JMnqSyCisoMrNgiXEGmlGmsPlTveKzkGWpBGlI1iBxFp1vIixGMhQWyKmRUtmEzSeJzGizYqpJbH4XJezLF7Kp0jXjjNh0zL3Kn0J2kuBm0pilQ4ur65FwxQlJuFdQ5vU6Y1bG72Yiv8EojWGKsxuiUTUixGpx2QAZNmXcErZV1GFxilZAUk326meBNoBCQOSUAc4a5BqynxxNaZGraVNmEZznPCSlZGq/g16iFVj8eBmMtAwe23kKlR5kzFCYPfLuNkBhryZTMYuYjQn8c2O10r4iK7dqXyoDnqVoLFEf9JLwlBPkHlpZDIiUCxTo2I63g7gSMF+G7gffkowTqhOYhb8AWNOuv18bGixc4jj6xxqEGTLUJNtVD3lh6w28+LxePIhAOBoCU1TcPtuZhJF3+ii+d1AzK30Ei8EBnK8VQs9SxmTs3+NzSX1jTBvY3hJpzVr3zT5+qd3UyJbo+Wx+a40hH7/eW3tMBN2R3/TH3mFWO5oZ74SGIhXOnvdt8VtSOMvdM8yfISb+4yHvVtoM+1yPAxDlSORJ50G59Wm/J/oWYCtITWyWO5aPKfq23AglD9GWw+UB/bb6egaj7YVkhFrKtYtf8LFLT5TneYm2qmr2qvuScnFOj8btbHmgUyLa//k44f+zD7jSlLYTvo/Uwq/IarLK/jwgixNvJlCOziw7Wa4SNJ69ujqUqyxc3f+E57jLyNc6i1Qup9W+VsTyrbdrRlXvs3cqGi0shFKIE+q9O0byrg/SP77oaMM3OLKMP9xtxyVl7HN5vopg4VopFm7ZO092sWeL3h8el7jgIC1Y4Bz5t2jRPB+nL8rDeElNu3lhMG7F/TPo8GTEc7EcL1PPDzPXMg0vm2mJWj4K4MM13rP30320jPc3NfqsxUDrtxx6UR5STDpdoFZdd9IMp9EIZTTpaOsaAwg9ry/jWtNF0ma+aDi8Kl3e8HUULi3+OzMmRaH7uUbCKhKk+OarP/glHvRV8+KnI8w9SYLbEDXSERESarE6/ekiYY6gieWybDeNSE+nxfrtzb2RcXu5lzmw6zjDwE/Gb6uPiku+DpZ1VodOKVzPVU9F31re2YaHYiuzMmy2f3xvDsgYMKLNpW/PwsugC9V92x2j2jWTYkI6vMsSyIB9k6etf0hWmSLCHjBxcvtg1iNP4GELFFZ3VKR2N+JAi4EeAlgXcroeSjYLEduhUobYZqBXUWLngY28pkyvkaLIm8LFPxdVz2E+BWPtowPgL6achjeBILVLfC6FVcAoC0NOleQkBPIVob+E3TYZYR4aJJ7pMh4Zo/sG0y9V/TubUXiQPhxc2tvKpKUf2vnfF8QnugIQGNX38yr6LEUfw8pZ90SD+JVt4EFs4DohD5153NnnNrLvK27O++XjtgJzruUVYa/Ff8aREwYLBa7/zb0o+FoAG6pLeaYALA53pOoXDGvf1EThCbDg38T8ttLscXgmTM92Br4lTAF1zKOEh0qAd2H/flMldTXzGBBzyInWSqH4dvt+wGcga6bG4sCTajLN6CEbt08DyjZYQ6msHugmJHlMJR53uaNKnU8+cOtKqnft+FZ2pqsmIwRDkpHPYRWGnoN9XXv2xX+5+rmlM9wz1/OyT66UGLsGR99U9IYajL/WT0/1SiM2ycwf/vBudZYKMkkUKx5y+D2R/UivjFY9qX1z+yTSDjja9yKHzLuzZ/UCepWHwgbkO59tnpQZeKDvkXjzjwRANmFyfZFa0it9BYZyzl3dHQd8hiuClH4JQUmft7xgjAX1keZ4Jqzr69r0tqP5qugEqz1qiGLjKXk45h4UZjdLi9BG9Nq4C6p5ikqU4mwmRmWeTVsXJmuntbGsZRjOcMWddgJ7izd3FzBbfOhiV6UBIYWasLNt8ZWic/NZr+OS3SwJd83Glk5783uhwo4+KhVe2oUl5m/B6wbf9ZhFI1RScvANjkwR2pHeCtWSgsciDzl8TdxS/Piihia5No/Abk45ZIj+4Bih8EkMUoFeHKk4U1rUCBFcTgDfr24HUITa+Ls19hWZ7vpCEUTzUVWfAljOCe1VzAFkgNkvrBmCzdMQHt1yRDhqPaaccQ8CDI347tgCT6L0wykFKxgx5sZlxs/VVt7ojz2DY0huADDC5mgeqFPZVyyaxf1INdZyb95uqqqWq29F0JfEql3gtR4Ol5EHXu0aKKsCa8LVe/SAW5+iGn1DWzOOYmM2tmkCF07bvddUVauwQm455cpCpoKA6EcmHaZk2K5fHuTZqaH5uO9YoOaU7QIwJHuCNRdBaIrOnM7CMcILHhgxpnnFEFjPEpQ0VkO+o5ewcx9QSsFMT5VU0sduEV7+U6h7B/6mpDNZH9Xlld/FsHOJvmRsoyuOgcV30hvGxBxp535AkQi1X7b8jTRUAizl+UsVEUk7EZwTIqw7Pzlb/V4vEmD0OHJLBBVc+CSEj9m3YX8+QoUycud0/NVcV2Z4sKS5Xtz1mqeqBeEglcNJZo/kSGnWI+SF4d6aSN41quX3w76su0ecELoIh62+VZq83GRcUEdhZpvsLlBzwH5jMVCpuZqmDpbcVkFOhCwLsedNR3h12YkEtbf3e+t0F+xLZ/shpIeDjxQPET/mZSD7jCL+tUVP2bxItxjearyIu3CLA8itbow0OPz0FRSpH2IY3TG4onJYT1HO7k1iKmzw0Juomqu3w9rWK531UgKnywUNcM2B5h2E4UKUr2yGAU2TSbp5AkkWhZM/A1eNaeuVFaI9ROmBRfsFMEjLBTemgLrQEQk3geI0RTXrurmyOdl1LfHobGONKzUKcR2DVhwX8Y8QLuLBCmsfebqvhwOfETEZWygJSIcDwTmPk0LRd8tgIytWGwCoPH0F4j/S+UMlyzLowpD3kV99S1tjY20M6xXwtOB8a79VXBSAlKoV7/E//IjYMLek+QyqE60roL7ADawbBEOmDLzVsuwf+ul2tbzKhY0/r+2h5UyfLs5fnVNQcWOpI72DQtuz3aCyO+cPfEBPsefxdtvrjTUm3ZjibWpEJNIpAJcNcqBCePw7LldfIg0x9yPKjrI2sqaK7ulFok0OlXLivywcvzmmnorq77Tnv+Q1b0wJ7QGTE6lPwwd8+qOe1LX/wj3E7vLghGnALHK92S8CILbH/0ljJD1JlG3z7gBGJ+hAXNTpofk4KktEniTmIjVgRQeYrGaQ6KG/ZZ8+4cmQZp1NQheINpbBaZIvtvLoJWMIcDQt8doTKNMWNnHHyj7TYD8i1yRtXp1Zb8vzTKku7BYX/Q1QKN2Wh/3DNBkEZeNWmP/urJM3cm7FhaytNlE9gOASMrcnvKI4bfm1MA65yZSmgXRhSuBnyVskzFSOm/FMAXtqXlgsat4fm6A263j1P2xe7U+4Z+pKRQl5tj4mf0zK5v52c+uY10ch5B07GQoo7Vh99Ygotn9VpgCSIxo3b9mIsJFlHKWP4cMho6rXuA+EE8pKYixj0oqPJaQllpbP2yoBqthY3AszL9rju7UuGZktch8FEonEmeArea9kTEFw74WgJGc5+OXKHRzN0iI5RwI5IHWaqQjA8mEe8k/1m3OwLzGwYHOyMH2T5s2DXCAC5u7MhQ+q2CgveEIZLetDrYsfXaidDFlgETzFrUQbSxHg/JZSxbXnxhUCk86tyBl3MP0GtJ0v4+UaQOiFo2e1UfhVH32JcwrAsUTA5iEvuccchsLU1ZEWJUektJYNLJBFDIWPk3tw5D2kxgvrwsjuSBwYfyJMSGByVSIa9Q4vWzKcS5Mtp12r/DhrPjCtcqGcnigHE5Cy0hc84uosv2V314/pdG3k70K4iT3Nv2IalPQHn3CMpfUYucZHMs2PQtWHQvYRwpdOstrkdjGoF4JXtTh02tMvfkInVZEm1iSjX1RdSe1abjFJhry0iAQ5IUeAwy4s4WzSCDj1Tj5U4Gjb+G6meGSroQindUOp49mX2Ict5UTfJ7BGYXRRrSGeCZM9EfcHrUNjH8kgfzrmjJU4by5CRVr2mFmu9fZwxgEmb/zlNWn2/+U8b1X8ZRQ051+k1t2AO4dgq/Uwe3LPee6GyYIvAj+lnKjvOvubOdlgEAWS4mD980Z6LQvE68ME0yzVubmhYpz3cjB+egdsXMOH0eSKiVfjumjjflEUjvRbjIjU5TbTNKI5HjpLaoNvEAt/Mv5wibVgONlvvP3QGj/Es58Mb4falVG6t4yhYiNI+wZXPrCwBdquXIU/JnGtNIECR8pJHkpIRA4FwsRoDr1y0SalQA64v1C2W1d6ebU4jWZ/+kosE8xY7l2zttNq7Am1zljwmS6Er3ut7jTwpQVLtxfk4CjR8GKSNBNf8jEawFdkaMK1mJOAO2rzDjfXBbYGTsowQsAcYyo9Rq2u9cPYicr11HZjASjSnqoiHNl48lIQIPPgU3mspZy0p88s3R/0uy11+XVWN2PcY7wRitcP1bUyr1mRdSqWWLSj0a8LcEsIBAKFt7lvK49DJezQB2Ex+fMIUOEWsUdoshoph8V+Qvoa4t4P/CrYGqBuFUsHs2kkwl6pdzPZbGOUK0HUC214ZEBOCoEvBzIcZj9U01vSVVCl1EdZiRCm/SgBUrqDiVD/LCZCrdZ32zWRfnHzBqpKJhDQRb/Vtx9278HExCFPvYyQGL7w6w9zKvu0jwVaiQ+1hIZ8L/SCROGH2sZfk7VslcEkMSJXWBEZ5kTCxoC7vb4JPvCgYc1QRB0MH/v6FltVOHhZLC1Mow2rYW4eixHy2nIYV8MpYOXe6ed+wc4wCsbGgFB/mmtE1xlBXUVMOGDc4PW561snHZzdnWyeJEjdcfR3ir2AGp0sZTmKLMjKtzw5wnL7NFhHeai3Zt+oFPzZ85dZvLneikCvOVYosjGX3uErcOK505qN53QEiz28hAJEVp2Qj2I2qQrDUiw+m5PQnkm+fbbKJUY/j+CWUwD6nPea4XQ96R/Fivkhr7EbMDZ09H1eiFnWyuz+5CRhEKmQYPMMYB/9kUhJ7KeJOtwaVus21+mpAfA53PtVYaBu2EuBbV/6AobhXOtQ6aH1WISyJIkzt5bvzwt0B8ZVCal7iB5flUk+IB6kOf8X5Mj7rRoe6LtWFaTMR7Ji8NLYm4k53tRW8Qo6qBkFBHkfZbQOd826HcX2LjjLp1jWARTU8kXhGnlF/9HS1COks9d1cjV/mo7olP0BKNN2eQMgtDevda4KqY/QOOSVXczPEujjkbjNB1nyTpXm0C62Vsi0DnLEGhxqK17G5lX5Z+NEBGlfxnI2mvJlvaLcSqb0jvUQKCk6l9jX7JsJo6F915BwWVHwID8NZk6y6wh5dyjAReuniQtmXUc8x3Bl4wSzbOKEUk73GH4q32UR+nCamMw3NSHqAB4dFdmolo66BPStOm+aYMGnOIi7/2Mhcpr5mOCoAVTaOii4yQo4HckGMp9i+7qRGUNXZSQAWJjm65Tcavbmlz+2Nq568KGM36S3mwTkKoy5IJPIjo7F9JVJbcsx/OaN0aDI7N/WCC6XRj/XvcSSh7fMj5maABvqzbSpdTT3DKLe/APc6uN7Me240ovsVhkrAWikg4o62Hwtz5cMnLPAQsqF+hKOwfQxgBFhJmVvbf8GaLji6gf4KYHqrkbAhezI6yjHgw5fMg0q0ruKjcCa73Aq+cb2RvP6HtQG8vxejhj84YuSZXSyKz4HJH71uyS3bFZFMVf7TeeVlBIu/ae9/5KWnLnjZsLjERXLhRKUP4nTe/CwBQZ/DBdZGJJwKctJWXK2E3iUdRFLrBdnrc1KZWG0uib8GlHkLQzUc36PAQ/ATkQlBQryQsMFOrtE1vZh1x5sc7rW33A6NUXRUZinxTHumQEELxortN46b/3xldHBtCD0k3WcwZlIao3ID4uSfsZ3Nqg5Y+8op5W2/mH/srBZX7p7kDH2ytoq6p28xMAwMvCInJ4VzTf9XWOq5pgukUyQRLB8dwppTozllGhZlUs/pN4z0qkOkL1Wp69schZJM6KG7T74dON3Vmm09Uw72kPELV+Sgh40ikiZ/4wb5vlQLR3FTZraBfYFH9Q3CDGT3XVCXKNIpVRWVhdZ/qOO54qNty+tkBwcaiQ6MJS9wFk43TajzIXj5rwiMV67ucP6nwnPRSTNG28w7XY9dUwJYFglpddUmJapFKy0E+TTNUedSUGPpPrIEKBBtMeys0fQ0zD6atkvpOCIlJhY1Irdu8tnF5cI1Yp8P3gTzMShrn22eKakwlZVh2cZeZTxHMb+680QhKHb9USg4uqcnBTUmooy8vYy9vCWRAv/ICPiSbMPuoMOEMWVClzZ6wTRyjAsiNi4ZVGVENnR/RSLOYiq/cbcEKdxoI24cBOecZnLSw1xH45htf0ykBU1uHSzBhpyunDFYqvdmQRLIrqFKnnLoTLhU6680hXFU5tTrSk7CR5ef4XpgOez1yWBdsOysisxqmVwApRCFI66GCAQE1wRX6TTU8LTVINA0B691MxXJANMQzyQL7sjwWv+y2nFVOBOd6dThluzM0OxR8z4y6XfaPs0Xwt7zJoIUbB72deqNin7mrURXY6vdnis656lzir7rAnnOzxN1XnnaE27pALIJfEVAaQ2J5/Cs1qmnf8/fyJf3g86HKrsvogZYHc7oLi46Eaym2qyYqGKgfFRB63YcOVhH3ko0bKuMKK6dHdmGrm14EB/LkFKQMyIbC9ZmZ4VfdaUrOqAb1X814KHYcyR6n8Ld5LbbEIxJDnUy39sOV4ur9I4RYDv6lpnVpnxEg9sHWe/MDb+8DoCbmVDr4AImszhtLPOe4zs3Y3uU4TpJ6sNJw7IPCC98RBb6lEoZZRL/BUuB4xQKMWTbvxjfGaG2vKgMyDppYx2pZkj2sqfU7pNPYIZRvzR7jU/IkmZzikYuI6xOlNObygHG+TnPgQLJoSwrGSnnrzNtGjFwv5I1mABOoCH2OxrTmyK7RAclLw5Uf671Q+yZjtUvToDzXHroastFzudW0Xwgss8J3bZ1C7QyNl3Jd+Z1ZAEMEY0elOGCJgMOCOdehOsOKq1Qo/xp30QSbbojX2R1g3VXtZTWJRXfLtax7xPA++xi5qMu/hffTScBKx+Rg0iOiQDgQhCBkEoqdhKt+sJIOHWtkdO454MO4VpDswkTdW2g3hDepNjVuC46nLH9beXgiPwC0N2W7D9g2KY6xPE8LJUG8LuWfgBcgi8JXXM9l6w5nF5U5yEW1mTC+kBgY1rmtbrhyH/MZTaJPhqFCowgSL+ypI2jfI5YPLoskGjf3qbnyJCrapyhKjYo3h6rpb1BmjgibaZxEFpC63z4kxzj9FJKQ4PUx8RxqFgho/0LEHIwXtD8iC7F5xk+bRfR+Mn2KJWs4WzHjeu3LrEteDfjBR4B++nQe4UJbbaIoM2iuMUSZqUT+oBeD3c+H/4FCS4LUEiXBjAJ6O7YBz0nrjAPzspmXytez6UTeXQhL0s1IUYs1GjD29xYNvIdHLX3NJtVY9fVQ7y7foUswOFff+R8fYfDh9C0DQ0wx7v0fOj/gl/flNd6/ZfIsMP673h+W2binqPUQXJXMAxeWMcjZPh4V8m3xZ8xH0XhnOxTPLNGOGr5EE2g17MqZlXwJr4AjXKSYFsdHWvMuq0Tru83M+kDsATLYlyrchCk9PoPbl1wEM/clgliU+Y92TYoyyB/SJWctLaJoKYsarlcj7jKo/g3dkSEgE9XXdErzVvW9tHGRfbndfetz1AVJh4QwJjSvOxiBPPGZDxiC3/NcP34W/XoOgyOo8nnykgf3ZRsF40m7XksueRXJU9daAv8S8hsaaRnb82ZNYXHBWDr6z7OpeFU9pdk3xrgpraSXlC+dyC4+0393hhk5tgTMpMYi61UFxMHcy2zF+/NXJV3V9F/Dxxi30DIoMmKC8cG+SajLGTzs3GG2qWxRlg9bRBzZr+eTG7VUiJ+VpsO7R0aHjTprwyoH7qw23R9JX/Ztf6rkkIAm5k/jOOnxAjbxe8M5m48F8t5V7QzB+z0qzCNdjWGbAPWw+hVRxVwbjk5qNbP4Frv6P+OzjesOCJ36Hp6dLugFm01kkxFDg9zI+mdKdg7WrjRpI+zN7LYrclhDKEY4Nxl9eumPYrP7sfC76euugb9hBMqvCPhUIQVhaEdLG62a/mag1WIGrGcMRxFPmZEG791WKVdr58repP+NUGGzo6KuphtFawd+uqz2mfOt2TuSiP16FchR7oodhaqW5ihcPr9u5oyxp4XIZU+/KcrPGMhbJsvNpXtvA8Lbl6a7n783YettApij04zfk9dJxDvazDMQNPd8JO7MDdL+X123wEWzbwx4tafq2unVh9lzeReUfm/lKBuq7gQ8QkMD9+Q2dNe7rZxUZzHc0lUQgZ/Nou+XzDNhcKv2QbP3MKzKLOIf7JMS3srNhB92+3zLslPuwKWU3fqbFXE6BrKQyAOXh/ZI2j4tFBPoPxYXPKg/ASbdI8WFt4exJm4AsTxaJFVkeN2qpZVCUXp4Qk8zToHb37uSI4ZYj/fRVtn8oIWbFvVXZch3mUbWrliqxAI6E1RI3wL9vPeW6y4q29ZRO6RLBJLwtUb1I/NtMdrBbHXGypnIkFyGZ/lmMBT26hYTOQhGbWzVrXVdsj6GctF735geBwbqlpBUSsLFuTh2zlK/TcRcRK9IJGR7j+G8Wp8SqPYyeRSFYDoFL+hCTmwRn/I/FG0umbX8qSxAVSAZYd3fTg+tFfKOdqLRHFo98UxX+U6irt6FPlvvAGWNEKWNyZtY2ki4Eott6jj7+UqlQfzk/QA3ksUzeDfVLj9cXH9kcaq91SujOWWekklC5tAXSsIZt4xLxgN3oDvjsd7yha+Z33fmld2UgpZIRWJVwheUlvOTehMFtCSTvo23rezGJSZI9wXvGHN+xf0+C/jiLiGyJye8KUebmEFjIawXBpFUaku02AH15vdczepkzQqTLGBRlhwadW0gnZMqLPns1SRRSOak8PQEUQFPiIjI7zNyEkxYNCC/8EP7BETSPxZPAzs68E+gJoFSyG6fbHGmbD1XoGBnWxVFCjidA02npqAAoEbDmmFUi3NfX4JQjUy2Grpjh+eafc0/TOScVhhRk5SvDyiwE2T7Q6zpcL8W+c6FxEr3m1srf1SIbmnrrVk4GiT5kbky1FfyW+weOg524uHPNJBR3+yKhEutKt/swbA7D3thZxkfYNqhpxVxOPMQhNpUq10QmXdaRZ0u9hyIhHbib+ZmCIIuV0rWSHC1dJePAg8s7C+crl5aPUpx2ZhWIDpxYAQK+uFcxOywEFf/LMbk4OuCPY2xiN1PDhi1kPFruMHdX8nffVFqVtNI3T0Mux/38UYicLo3X/Vso6z5jtQdeP86jV6yndoO4lQMxbxqNofr7ZQuqlx+PpyYykhVt9+gi0Q9qZMPVxovbHczEJLgcog1TAOUqzCM3RAtkmX1xr44ttI7N7rjcxvL+/sEGpkUQVYaRa0vpnarGwFHBQ9qnOpJ9BjdmM+q5hsLb1JGsmIXJCrXEKj42Xiz1yW7NVH0mg8v8d5v0iaQ3KuftHx2pcvU7ijsvyISMrxX501EoWvxEg5cL4OZWbE3Rh+ayz3rQaAV42uQDgurQht/QxFTQokRXoQVC8AT5TMTmxzihJ/bEkaTVQcyJ307nxxPaDNmfBzauBeK7Yj7rXHP2GyBORdPcSUyQYf9YF4MnYMxU05EXPxW/pD7/KuuYYzIpCP7FwW400QGYM0+0l7MoxvKpf2icfxCLzBfHv2waf1yrqTQbG0yLRjd5S6zhxoZDk0Rp75TMzTZFqE0X4tdo6Da/CRbgY914tgE5K5WyNmPgFeLKpTbJaTV4N+dUDP7pmWkL0X/WLSlw9bsGSADcthYl3ohFNgybNP9/ftEyQWDMPJdiFLLStow4+zF8uetd8gmM/evkggIZVI4qVKTSuQNH3QLwdHumBMF2gUq60VaNARTZBJY9fq94z5F2UTqHJsVGmz4jl1dWko2nuy4+UIYrIml2oOSXAGYV/nR6fVTKntgeABWi9tWVg3Z6Ypjia7PEcxkpN3gwW0durzsDBe1GOQ5HTY53q9sj710tMC5AjJ5t4Hj2Re8r48q5xY8atZjG5TQH0679BlpXjlSCXaL6/m+1O9JqmMaq2UYYtxhE8Yn/hkaENMjD4ZmrSoisrP3EWv0RzpgG/H92F1sbpsxyQVovKVqt2VDGKOwXrEsYXDIsp6mebOvm5xmBVdhDvFI0sELNfYGIVENmvFafU12EHfjjblfhYSg5o7GHd2GVjtB5zI+4FcJR0uVIebGKyh64orYlpaBE1Y9utZMEdNvzwFKpJrbFMXxLBCjTUTRVvUKQMjHg58JO8ienbM3GoaQLWVmJSNuJDXbttTG5n3f7yOKAa4PRqXZ3e8mRmas01FSr7f9c1Tss2Fl8cC1xKnGcuMA7odKdhyXgsKIi0TXKYxubqML3tOGRs8x0H0TD2WF69o3Y3GE8Zdr+Z4xsfulf810cQAKJoSOFvShNALntDC+uEQbNpeEJEPlAZ/P7XoclJk2IQd9VprniRPA2CTP/77zlyiGlnFNnwjCgMj2k/9dlzvx3WpdQa9dHImR3Kf+2ZBd7WhyGkEGXcVK471miDsfm8kNVxPElCN2pvQdcCxRoBczYZTprHEzExi744EUcSJQOgRGbUzHSc+t3cVsQNTtiK5g61vF3sP86mygE9hgZpiQiOvuITLS8oFxxeo0WywzbNAespP0gB4jlnENe2Npu4aSq1lporYE8LP9Psxq2huoTETlGMSrMLzrc8vxYEH6OUK1BD5WZaWdPYL1kEB5zxRNSx3Y8cBgcm8qrxs7ILSkbEKXcrXlDTu6tmK3+wpsT3LesLzKtu9B7vjfgvbKCnsH7zCF8Cuh5Atv+rFrpgmzpftK5+q0jlVBTM86FrZz5isKZK3xSudBF9t12jBNMrPFwKsLwhDnuN2mzz69BQkoWl/vDEz7BBS8WGS+O0rP1q1+LB388g3WRRXAkLU8fNzA5kv+meGj6mw32uXNXhRcQriTvyypofZVsGGuDEG5hI+TQqvDCcNqzPaa8nyP00PVOsUlLg+H1CFu16jXZiXZ/i28KkZlyIQfhFtQs77Sx5wFShjGaMVKe7BjFaMJ0srNaffsW5wc3ok8b22Ms6iJB45fKPjRASB/JQtq1z2LjaSV/vHsLIQEMki8FYb6EzMrVAcNP7mvzmhg7Op2LBgKJGJ+JE7GoGRJj5qUx0yU/dlsGB4+EvGJ7Wf5gvV7ZEqoKvhIf16QgFjoP5SbsMwuz0gZs3SvtAtbILFQLvXxgh6fHbr2tA8To8cFPVrLFwfFydE1Y2pxlIqUEDpfhFAl61uv/45pUIrZ9fiLyIYK1+3TwKxImBTmGHd7O2dA+lHWol0f0OvChE3BXT+nOX06lqjH8fM70GLa4V3zM5302aSyrgTV4Ko+W4mxlLGu+vHBHSUsK6l5X9ZUw28DOtztTPV6rnBJ5pY54J9EXWgEAeOQflHsdIhM+iM/UDK/2EHE/zMc9y5uVS4z9zco0+3shDrLP2g9X8K9xTMh+96GElXQ/XvbPIMgm+NPDLt1xHXXwxPCbB5RJe4PROlhYAG49+ZpCWVF5bQnNgw6p15pIZjW7UNDIQA1SJbx7Me5JSh/84tiRGB1j+B696qUeIKQ89+4kB8yA+8kCftB+fykvwiJjyeEEWpwcaCBeVThJS5M9EbE2cADnOyrW77JeQpjDWp5SNojlIRRcnZyhCX64es2zRbPnEbp+hSrRXK/Ld7MBFr5lkyJiMSz3snuZWJCDJc8QrR1mbRF9+t09oN9qnn5YhwACDs5dJaKW4T7aNapE6WvSYlAf0jffASVmoQtAUhr5U6DLHLOnLsHOI1H2yibss9e/2SaFw7LQhieeKxFgoDQH8fD9prCasMvGvftHJ00N1uzvddhzcJArALmxrli2krUvLHwJGradCWyrtzAQjeVLr0YC5rzPMAWIYapbyMcUi98h0iB+BGjIXaRURyttL9aH+q8pDeve4+pSZHMq1PmL7DylAO5rgBuM8ukBdIpXH+9/YsitUUW82vMCAv90TWmE57GzpNEDNKG37yIlRkaZVU+WrLCfIMxC7thKvtOoY6rYGDbQJtT/uHJ0Sy4zD4iShMUTLx4ZYtW0ar2S13xDIs5xKn6gLmnIuwmmBLd5pxnyDsgsi4M8XM6IOMDkcGj4b+kX8rlcPApByDWw/Zyw/+X1tPrFKXrRRy9h3trFETFDcQCM/VvT7wiWluqaFDYxhh8ZbF3ThGTEjoULC6DIKbSD+F34BHvUyZI9VhxVJ/stpXXt6hdYwBhDOWSuVKDALtt+441Q+oj8QV6Hvoeg4ceS+eOOVDdM8aUHOyMPVH0m1LSuR3sNzMFTJA0ez0VTc/CzVqX3WOKoHG2vcRk+Luabbx2iA9p/gC9D4Vf8DgJDpKGINqw7IrRjARrYR4WJ40ex13YQus0froNPZVunm7AdRPjWkvGGAXFSgb+tVcVnl8YdINzaBufColXr/4OfZyuOlBtJM4sAsXQ5yiU3Gbj2hvLbRRnDWaG5uk+BSE9VUtqinQ3spBgnoiLIaOJ5jHftjuw3RejX0YegDo5fiQvz+yrjEqjJ6KhXtg+ZO0rR4uETOhc9P8ckiqz0d3WFKOryFNqVYyVit0qZw/WDyGgCmbU171+fjaJvUCO5sWsMBuGn1rq9Jqwe9HQ2TZGO37h8ahvik5L7HeymB3mepM18+LZ7bo3ukbKdHZfXgoiSweYhEIJ4q1/1YbknY6rbLKjBH+clxhbTfLzDJvfBXn2+LEUTxXCAxE/UutrmIICKrms5dbbCb5XN3OsWX3BG87F6e2fqnlmieqTOQfJ6QCkEnVJmcJMIgzyH3t3uc+eI+4CWo0nAL/v9eCk8UWLEghIPlS1kFTothf/QY2IQp2Vsk6DWGuA8ETs9UeUG6fdXi6kpNqKEcbnUumWgl/SMK3d+WdS5Ehjyvrnqh6A9oEX1OzERsRD5zMEoFaZiDBAY9vVpIvyem6uWeBRifhA8ARXZxLUmj1GgO2+l8nXOOf//Xqk9DOsKU52WCb5fMNURp+/4M5EkMYtOUCwNa78aqUMq/mSSSX4IpSaMramHnE+2/3nNDQRTwYZQE+9lI8TucT51smKej6S+vymsyy4t3+0tO4wvpVEL5jVBbH/omA4EPHhKxvCNadPbGe0w8iDM2HXZRCWU2JGsD/g0YbvGcP7jIMBwDgbGY7Q/6coIrpkoilz7SIkKVr2mfDhfFfqR+i+3SGINh+1ECuqbFtlRzb6HEhi+RhjsfKRLo88VE3FtWc5roEXGBf6wJF5YCUgYBig49U7CRYiw3L9Qx/mn0r/czK9hahzWeUrJ7fuU8HsFzTn06Hoq33LZA+/RGYZI7Eyof87RBtQUW1uy2TjnLgsjSzM/Iomxc1VC3jRpy3AxSsaambH9RUjqnKZQLr3V8ToOyNN9iSO3b5WHCYrT3cEvKgA57BpbYi8v064AwfG4spqVDu3WKZb+7lElTBF4To56n6ze7+nyU1zlnbJNPyuz7iU+22SW5ATMs2HmjruVp4srwkW/f9MfoHxHugXoxyQtHNjuG67MWnMcQ0gFJF0nvHfz4EREx/PczP1FaGfnskKJ9rk/ByApAj8Fu/mAT0at/ffjQGpHqpgcqeXviBpqqLZQbkojhRVOpfaHzc70/xAxbpXFEst0Mi8RJw7WWPR/pFxri9zuHv1sGIICOpEG4nPc0g/IaiG4fAWBbAayZl6pcQAq3J688N641tUM0TR5wRtAwB1P0xJfebfmGZdnS+IUvKDxoOS1f2sPIb46zHwKLnzP1x05uQUz/7pGbJ8I501iXYYRFXKfPJfr2w/t7I2OvmqpPLAliQMihZZucZzA4pvHVPox1TShw2mLDlZmopaxYiShrJKiILuqPEZHccwE3bhfwEAeLrbRz5vS+ijeMovHX88NJXgo5+bYrn5+kq79WPb2WWbSbOdl2Aiqe9HY6sP/PBcxYwhxx5EpNfM34QqKLx1J+/etdezqbNbMuq31+ulaIg14xsXK2IAFiRGuVyaNG2SjVB0sFDk8K9RnlLLtQEN19iLvSSnlVLKgSghSWRzpnmUEK+hT9gQdSSlAR7e5pfJ7A1dAh269guFuXfx2Dvied1zg5vR3mpiCfabiZNsIB2izeb0336osiz93A8LxOB6GiUX/3LIofek7EvKfM/l+lQJVH1K7LLYVm6KbEqY4atFGFUZEeBtv7AqFtF8QdgQQhw39Femtk4VqY+EfRrVEcdYreEJe0Z725BdtheBjhWj7Jats3u6qF5p5s+PQYZBdQ4cEiz7Ll1qsgKLlxBumRkuFsDMxbodkBy/K7lb/G+2rcCR1edE2bJAWWpLjKRkELyY2t7y+isCI+5oFx8vTkkcOti9R6JbqoevKWJDARCEqHAQXCOe+gDX0vq7/wUNuqnELStHMUsCmFFKqGs9ROmMJWh4q6bhwWF1/FHmq0cBeMvJeVY9/wkcFs7yw8UJyds2NbhT7ZAc+eQ5iacCWe8KKijRe2xZCTJyGXr33BC3nI/ezxS4GWRDrXkpKRTJVqaLDpGZ4mcMzogju/WpZTpF6wsanNQcohIhQzLSCudqNPoLavDwEqLWqZQLLStwwFII/omA1NXWpr3ehpUXcplVvyM6Gxwxtm7nIx/JuP6TJZQqx29SVMZdl0BIVxJh8cgB5JifgwtsWV6rpcVCmk+92x7wOXLcDcFCYF9Bek/+/uSAHPtLcFwoN/ltLy1mv/Z79Nc64pOabG0bUdyzEpwIHpBt1ITWhaiMMZEJzRo6tAvv9h1yIc2EV/5RYMJl6TgMRdGtAQQjziiY5QE1XUiCy3Fq3kBb7ozd4w8gVpyAvMDiEdqU3+TbqLm7Ribth8LOqhZWcoQshCKdGWDReVkUiKwddukG6wqiewJXimc3DTGQGJ7SdRWWrjAaEDhG0RG/sjS0uniXeKOmx8yRPOOi5q42nugWGf46nJCAXZoSSkB3N8hGld8R42fahFGkyJaRhooEcqyKeaBTvuSpbsp+mQ8MTkHNa9eYl8NRkO+FlZk4T7N5Bg+Ji2a8M/YMej/IxGW3qq+RYi42jPgXf4vbJnfKePa1hfG2pX7FMT47RlaKNEGXWj8VvqpNPoCM0XA+5zO2DSGV201VXqbWDCermjib7j7mxYBNMe7Kw3tf3cvgyb1I3LqLAErVqdQ+tkfwkjgg43LvC953jDZZB4Q0ddFOBhw2Z3+x0xBR7cy1B46ClJS69hN+cBCioroMdm9FlHGSGxkJVhzDLWhZLfkjW1D0jYwIAT2tZhhPi/1bMvVseUOjpKa3smlV2iGvty8btyUf2mNEi0PUhignQyvOqj5H/5FgBf+ksN5sveITb/IlAqJKkXr59sxwzvTPyJHzWqEhMx+p612uMfRyjM4xlFzDaLLM4VZMiOy0PTgQZXByNH0K0h30plgP3nNgFYVdxc9Sv1Y3exobzhtaJBSGfx5enew9yrICgRZCmsYVDpIItLkcLAuZFfcc/cQC/TjmDzdswvVCYwlWZrNQZj4lDDQdT5UYzndXiwrjfpOwWGxtVJJ9ir0h8kS0BjeJ+nDzj5SvhV0rkknoYkPLvRD0x0vGfdm026YDDf9Z75kYi1cy4QkG2Gem2TU4BQSm26+2NNtodR6VgKPQcYfw5KAaLfW6aIQ9bOzgZ0hjsXhu6R8Od7F5czaA0w9BAEvWNIUda4rTQ0wv/PZagAJAUSQEy6TPbqDxcIuOwdag375yc5gvx3HrDW/ycxzuNX4rrOZUe3VHC44GpvPpgYPC+6Z0y38W66Gx70VGBKCtkvj7pk1ZYDxsfEp+Y6LHKLMeT7rXZZOWJSBy3r3cHwbfshvRqOqxfZaZ3fK8u1AvKBloqFonMNNSkjPhXBQqCLSn+4DF4iCrBirpGLZg6w0+QoxYJO6rEZMcxpBx+GTPjsqfY1uKR1+4BIf++BKKKx1lm3vY6RX/uXJ7/AX7mRjYt89o44U2fhFuxdaczrSXpY8ehVFNjQKaWFdH8m/b6Ac6WYrxu8Ct+3Qr3+POp/AYGyZX2+XOVwBcc1kjmwRhStMwBN55EXCSbMNEaYAPg+X8aA+q4LMyE11mEA1LTakrAbSY+Bi4Lk4cAJqFwau9KZnu0ko3RuOB5n32s14E2F21jRFqH1as13SLQ7vKlfn4vNJfrn3wFZcpepWtbShsh+l5+Z42KSut/dCe8q7MANw2Y1w3OoJ4dME+oPE5WD3CW5AdsB6CwLRV8/st3KxH38NESdHgN3vG1AVWjDb+fOAMw57jd+fgHUl2n8XhzCih5IZl+pCDjYhL9zMMhJogve1sJ+rUcuZNzsg1zjGpw4X6m8wvGwV1euN4C83+NPv2ev+S9OQhVa07EGsQcj9+xz1zLIuvNU/EnwaAi2WvE4kFVqakghcj4+JjcC35H68nzUGSQz/W6bdogq1LRh2qrZcaauBUUeYPVAlNT65adOiZXaOsHVQ3Q92FvHuzV+bRBh+kP7K9ca7kVAeOWMlImCo7MPmmYXL3DS3fDlmgNRwTx0X6QzuhOVpbhHb3kJq8umpBu4r+qL5s6Q/Nxj2pg7tPKuWS4+axsLpThESSOjTQBtEM8QjrRLZYou3Rs7rrV+nC+zkPWbKm5oVJds3JHTjH9mvVChRdOT+ihi4g4cCLfw4qb23YQshm1H8uhk7EH9oIjTdY7xrAtkyzuWhvJpB/+mX3CSnUawjeA5sSFitL8ZbpnfHEYx+AgPtlDKJEXS6sQXnuaxcPz+2lmeKxqjuvoMMFsHmg3HoiDwl9XvU8TNS88EQX4iFS6UeRtnRPQRwrq8dj9xwgI03ph7wQIGqAe7vgGvSmKOGhr4ydogtxv2wZxdrcv+cUqIkPRwYKJNX/uM8nfPezNyq121xU6UqoMQ874A04A2r+9e4QRNa03ql3bAIQ7fgjN6RhC7k/aJDxRztaSUF2ZHp0W84xyPyAj687vj700maa9UtSeGKKgqGLKfC5CDPmSxDL1J31MTUbi43/l9Gq89ipvuYdSwTW/q0nZGEIHAuLxkd5grijeJ63230k7BrZWeU7QzE8R6qTEIL+vtr+cqBDoPlMJX+V+IciC/hlH4eFA30tZw9rP8iTi3TL73OsQSAR2BCrAVgFGqqkdwHfKOF87fuyfYQaiAauEqkSbLUgZdqA9t+vOA/Od6SxcygHz8vGuhwSNLvGxa8d+/s2kqpUtytFB+ux5CDGlAUArehALU3/cPYtQ+ETXSgz1p7nZwFQqhhl5UyF3zTAEf1DmcQhSXNrUdf5hVA/kuGVK8+sa1BgGwVNNWfdG3NuYOXE0Ufsb1UqAoF47a9zvjXTHn4Vtm91quokIZkDDe8o3v82WSW3bJFKEQ158EpWo3bF9cr10MKhZDSSxZQnfMTmJWbNqqLnQl4vd//dQO+KtWZRrOPuefbWuASSIfoA0FH8RvZvJjxuxcAanqxrRH/suTMseuZCi1BJNOzFWwpygl9savCt3goXhMU6xYMNfZgUbY8OSsuvT6tO0Jc5Z3MqOpOYU/7DsVsWeJ78tAmrLTLsBJE50WGZ7TbHXV5TNRD5chlmuvft9q6OZDfiCYTgcfHAS0/Hc2JH2HTu8Ia3W9sEe4bPlNERiucBpj9ECXUcgp3prbUkSOp7BRLPbbONvPbk8uj7Rjyv/M8K8DMEoTBNgMhctjTYamoF90M2Sp0GthT3auB6OyunGwSEL2zQtepMtvMsU6gIF1swtlEGCy0F9eUEV1dQzK/3w2ZDt/teykaoqNA3hhs/pfbHZNblr0ypa4A4e29M3BxABKW3o+5tc1opiJtna0bZDK/P62RMV6HAcD1ewCyyxLq3k6mr6pnHF7XOpexfhm83/ZcMz/qr3AspDjkQDJ322e+jL9ynRoBl4YnZQ/BfShyKCvWfddKQgZkOAYx5Wf09MAlo7AtQY5DEc5uk826JxRI+Eq3K3RxtfYc1Se/21yQd7qd53jRtE61aZRRUXrFf77Qy1XmzQcyfzuG3XqFYtDn3j5OZOUkBMIBpRvr5pnkPvXXXd/T+Mjk9eLCy2Ntp7bkW8C37j5ifvseStydYrhetNdzmHekXL/w8fz+w/1YyFxnlnn+AVqf3+wBFC7SCYU/8pWnX/O65UCGEVSSFNRNZfkH+CESiiLOU84QeiaGPNyP6zstn9DewjejAdY9XEGrZwGUP+Gs+XfcQoXJVeniSPl0Tmk4+Gm4TFl9g1gLLuoHpTPIymczw0U6cG6sg6LWBS0vLEo2JH7uPGUPiRuqv8qqDeIIS0j4Yz7azSG8LDOaZYYN+4INA0dxbO64Lmv4ulhUqPkDrLMu6wTbYO1CMZMkCkB87ooTow1zU6pEd3ZEspsWOrPkd85H8vIIZcOdwJ2YH470Wt7wbbNyEWZMNm86lvK+HVLWRxHXGDl5sja0doD78LpLg0rkfEeZxUVoxjQG5T090b/wTUpMklrvJtYisCGNVP4ZU7RmsQ/+el74MxhLKyI+zog2OrBlCKxcjdoJo1+NUWoDzAQouYfoP2itGJT3Et8RbMi1tHIxjIqGFPAmEQ75wGBcGLsHninh89u0lB3RllkEY3QYe3vk48je5E2dAPcexy64kteXaeyxL8m3FVI4UnSLtJlLEuEDyzz7X4YLaOgyU5FjXiYvBmrwybLpT056JCfCzKt5z03psUlG38n4CHQzFHMYMIry2FMmdfuf6JXCffaEhUfqFcscg+PWazWeGDWGLadZ7ZKXFd8qMRfNXaxZQjtz+Aed9Hiu8B4t4Q6q82nnL2/nQ0XjeZcS1HNH34tT8uv3v5tB4AnHQU5g4oSGSj1TEEmSOVSXGrOY25yzuQHZLrZQ9UkzQtuCwngCglJHGykmmatwVvXWmb+S7+TQ572lrlk+iIZUYcEKqd00uc98N7yHNUF5UeYKfshOOEE/SP4dxD+QM9zilUUBkFqy6a7TpNe47PuoqmkgMX7QkzUquRczPwXs2RLtWKfI0N6V7xxMtvYZkSI9faHduM0E6vBly6h+EyvoZyfcPm8vsLqneAMc9ACCRg/6TdaU6XsBBJk4/yapsWlbSgDOlYeAwI0B8LxI76AhluyozloWseUkfFVbOewUchCL9iMABbB9B+9ZLIyoB/HHo7C6mbnUOUxWuwb1HzetLHIZ/6y6U6GWSUE9PVFPNtc7YUZstPbuPTRiT2tPX2EFaKqX33yONMEyLx2W6SO+kZ3zPisOt1ysauddGkzmhle4GioMMdR12y+l4fHfH6kft7lvUBQYN4ZgWisuvE0ksnbSZoM9zFMOd+ugawuZis2R0kZ5o8eQeoYz8I9LIITGIYZFuFt93twhT1YYDDtBF+fB9iRxPLwIc8EZVXpP67ED54VlUMgXawTX/2O1xcjO4Ig1svd6FZT5p/y9zfQ0BzrwghFkraW5VujukgBL+U5cXwh3NDoLwrOjL9xpafTm7JcNpzhuJ1a5hzniPbBJUB38XGIXaLQnVey9pVpmY313yzXXuGI5y7+Bku4pJtzN0ECAcnnxDINVtZrEi/uWjIiTAuwwKzRxeFyz+1e2oAlcPLTR5Cxgewr1XJRo8mI0FrEAcrq+WcSx6fcDIHSQsvfBW50Mx0qxELqrU0E5IS5zO+NMuwzkPjl5pq/5nr2QyDo+MjprG31VctTuWCWiSBQpOdSOxccFuKVyIpSmtpnSgEE/f6jcdTlBm2MXLmgheprzVzVdayTgdY1/EygXGsBK66mdgTeygUuLUIZq1qbQ+L4PBDY2etnNJ87EijKWPXo4dsEOEx3p6Rqr/PwkJyZdYz0LLhj0zEXBSFct1O+OMlKmzNsUNngYAKtPmm7HdMlioFVPdDotgrZ4yTIEMSWihP+VHIlOHfnTUOqicwaDagyNZuWPuxM3NL+YSgnG/y3Y7ASU62ndKoFCsxxVMdTaaIEdp7NIH5oHLrIzgwACEfLKBb+vcM7HbsVkyGLkcRk9Z0FaLmDEt5zb9J33oD8Smsiwvrf7wB/j7fUKzM/meSGLGLUxFdHpa3a0vgcf2UP62qcfXS1m/gm8Cdt1ecXGe8Lurvc2NApRy/2L+FfgAwFlkkQ+94EWAkqJ11uWKhCAuM1m8+CNY6+F43ev1qx+OGBHjfUfCoM/tHE/vZFnYUfvqqfkC9yITsBsWVzykHjs6d6SVigVATD9PwaR9Ht/vlKNJftscV7FRDZ2Kdll7DwfCBmPI/HQB5TpkrAHhTruCaM1X0LYq20tjl9kbR6FJsJbamSH0r1DsKe6swwxSbyrQxWH0aEBLV4oKOjbngOmQ2MQYCbizhFYBUtoomYohntx7lQnCs0Rw5cNSUgvBKduQHQt1GxKAW4syYFfau3GtI4oWk1lPA4S7BmIryfD/h5fPSEYAP76WGriy1id3Y4c8Q80JYfXScLEVZLWlFbKFSsPpVytMiPasS+dYMkTCa/9/uYj7UZxDZ7VnB3B4f4jcp134rOgMSvjoaTFKuNeaiQjxubO4qm9J8vRLZv3C1pCGMZt5z2eY1G1kUL2TVomwWBSjSMOptVEFXf5qyfgfUveGXs8ptdpnpUs6plzY17W3q+HcHdTE3gVW/vRYnygNK5Ol0A+TTFHZR/TuyARjkG5OUGELAvgWDsnLisr41WhLQhpRE98y7QEsSTz9/VOjpbimhQyzTl6Ds854mK0m5ar7H6EWC2TzTb1VNx0Lji7TKhr2ZsuaQ+AeHhaRDCVX3GQbSfF6SX0YkS89bP0CS5eLVCeXUnq8U6UqXSkyOHXAe6rR4ZRGIFpgwMiITyNZBiD60AQmOu8vQRp3MoW2BThop423nFJBHqvf4+RAlNPVQw61axDJ7Hi0lsanMbSgTqBm2K94ILgEjaQD1fIpO2twIxKhAssFFRfnfRfDpPW1pl2m6E460MRdhOvQMWo6qH6E4Q54cl0//t5QGiXC7+6f3OxqWoCHrGUbSoac2JOXb8FcnXUGNJZ3MyZCWXZBeZDZDZOwEQ6z9eqIzHoBTUXzBIc5TUpMCOvHj3K0YtIeaZWSBtIjBPtsh7WPXzREPsRTpN69w/dlslry7WwjcX2isXUQEyQ6imcuHQkHmW/oJYMxr8NaN8j0XmwJRqC4/k1VPZSzbWUhaG0ETl36KdB+GgSEtpGtPaGniVaE20OAchTuhKDXTLOU8YHwKAKy9GTpw5r0hM0bPsvdrOOYbHunXJPkVXQ2DgwKOk2XJOn20LzTbBxRSY1Ht1t7NTu5LfRR3f1W8Di4Solay+/eOwBZp/M8mn0+JYdidfBZWtRWtAls7I1Dj2MfCPwLV7karz7IGMC/HpHrtHSjUbhhNbQ6blMwuWDCYNwX7lUqTo+kyqsAy7mc7cP63UOIwLIRr6NP0h3oQvKMGjbVSixxe5gtTWk8McJLPbkPwSZtP8f+IEfFwoIZWg2c0DSN6KwxmGRm8QMBrmOxXeO5O5vLQiM9W1cBJBrtyhf7Zl2y9MFMl0XK7MmL0PRh2Gv4yICE3wKbEhNI2tDS5tp4aMo9qrX90Zck4nz4JM6TpDHuorEdxV/oD1Olenjwsh2K1gyC+tFDHMFpJaJcP+rugNVgHBdgU19b7G3oO+7FuPndLIZDwye6HKvv++u0LcmsuCefbDjZo5gbD+6HBHtg0JpFJ9gkHxu5/p4ilSU9XGQ21+cLR7cvcU3e8cvQph09AvlgY8h8anMtkuYvYkuBhFbAiiWtQa4b0rPabwKyg4tumdtkjeUJm5yPf9q8GVTZsq6qJ4i906x1AqvrhlPtEQy8F6X9ydgCzR0nfQzgQqjlEG4DJhsvVNxErSbZwXbGwWy2jhHrxCWZhNNxygtxu7drb8F8opem20sEWRj1E57qxsba/QhnQKy3HxgH6X3dyBSUvZbxJFG/ZBLJVegN7w71g/FyTKQCmgarM+fTAJY/jjKIq82Oq1mFT8SPMy7PpeswUVaeakFIPpF5O+bUrCRk2LfI0/W8CBfbipZOKDQdAtqh2XFF1lJZlluEMZaSBGJmkK9ylb5fjB7gWFqqDBRx7c6h/ADsdBG9kQCp1+S2CzxTiAok1L74yLlnVzYdoUjVagrN9z/dw3HNOXVo1Wb1l1cqQkj0QIVXzDZwGNlw78ygQxx49OyItx+vNZaJGBybZ0PtOJIzvOqIcsuOIKLZKiJC6O2JOvmixkFmEaE0NE146Q3PfoJg+VnyL6GH+HmCe9AO8VAZvO7GbHN+9hL+5jxtjHdg9TPUdqu1mDSpNFRfCN/lxH9mKM88Jp1X9Gy+N8XMGAYVnkDggXR/LqxO1ynbr3Ob49TZHIDW5OFl+f78TCAM8DL6JP6Kdb0Y/zlRjo+edDTVBs5EYWOgm3uLAC/BMjV4cn3zLP0NfpI40aOjAS12gzTpaIMPvBGXnWj1Wg7seg9mhCCPgy2OdUrRQBlCuYiTmfus07PpB8lXG44ta5GBkd4BDGIQuLltwyypLJHJflY1OEe7S0vE/ewfCoz47uT6fb1lRqWbl0qZ/riDg7zcz0DMCyU5lEKkTBYdbSPvJhPel7t9rME3KVR2i8JEVgaxubm0i8f9JVQ62y2/wfNt0AsbV+XG9cir35yK+MEEdrDMHx6KPYMumiQ1X1JErvcwfmQgx4Jmsl+J/tYfIESNEHng1X94TFpsfy+72mlhgi4QhiMvboxGC/QOu3JkpuMJOuGi4wGrzNM+V7Vq0jreFp7z4vVwcPzkwBXdWlB/NzDAEVCbJxWdXLM+uiSaLOMmoy2dqRLLCEw06A1Gdsz6JQCVMg6hxObYm4NVsjDwh9WygCiRMRBL+pMrGfpIMV81ZeAsd//2s68bIzC5NIKthvf6PUvz+es6BAQoO6U7HNLbqXEQcCobIOAjE6H/Yh+bl8srWOstEDUlJywPyW+00rghKO+NHPiDywT1GHn+swH9RzMCQ+tmW80jHsIY2kHrf459fnuwynTMBv0x9wArM748upNy8lFVeiMjp9dThCdh9jTHHyBb8eSLC64nP2Yu49QO1pJUfPmHQoOzKqoCIIXLZTRCWt0SWoMA5k2bfC1cJZpY9E8Nds6ePUHiTbKj3W5FeoXmxfDW/+sBXvE/s6iEEZktcd6Ww4CV1SKZCBJ3AkhBGiiezJhUxD6eldnQBJAgOu1LKnpUlGXs3THfhzKKZFUgPDdZR/HPcZK0dpGnmGf/lJUm7wAcnYaa5HmfozE6+vXaWArAa3JdzY6T7X/lD7ns9/IUWkpQs/QjrcG5Zh7CxZUI78xQ3TM/VCBT4gLsomGhadasXUYg7OlCRXTUtT6SixUsYa/EAYT32uiGqYZt/dYRnm6a4VwXnEdHL10IG2zWUNI1y69xof0ZKiVE2nHv0aCydi/bZ9VEtdM9QdRE6FRvZ3aa/QF7FcZyP8v60jdM1CRlv5thww4Io+ZeT7wlb92spMQdmwvCrukSf1h0LQoFFAi5lf0bDvCSDlTwWpvNF2KaIlPhltfndHhJ6w0E8A7j40Epp6oiBFvKn+w++47FbtFj3azOzl5elDSsgMmsPbv+v0JwRa5IbWxR+PvTmzzjMrAPYX+13X/oCPAKCujgU0s69HGHk+Ar8+1ChzvTA21iOpxA3Da0doOjgn+tAXz1FIXt5CZWnztthJS0bglt1TD5GtcsMvQKuiQZSU/jtYs95RbXY9OqysIqHeOeVgxuGCZCL5aP7FFcgpxTWlOxHMqLibQBSvguXEmYpTpx4ghDzTeo1bQmW/JCJqXyL10KlOJgBSBtYMQbqzu682V+C8LC2T7nMTZ+BZ9nHmEiX91IQfeNofD6jVLFRm9uY3zZJNLxhepXd7EWU/cyHAS3CLr1r/Xs+JuomqACkOo2gK7ZcQUzoamhXG65e4SYc8VUUylnK7VusVkqxZo5Ewl/zCBT/TEqFi/OpADN+MA79RCsZVIz9RcDQwvtZt8NIlNB2fdExmYCF1XkBris6KkxSH0drCm+IzaPh1hsGOFe+LKF1Mog9nndJVeC1/fYUpUsw0dzZEEqfIlb2OUsKAPpyaiVyxTxJBi5jpIzxy86qusJTCRpErV1oPzaMEAfeEtdqukPS4f+WipaV3o5h+6kxg79gEBzpOb7WPzEzus8WTBavalJA48XioELkirTl7qHo+AtRjs5ALY/FrrxsLna4hWvzxbYkxNJ+favBxciGMQyo1VfxI66ZZpYq8Xz/amHv24GbVGj98tcYv4v/d3XDavF0ZhKVmQYOhfot3Y579oyDzam5edZW0iB1nmI3FYYHPiuTeh8x6Py0N77hYK4OExC/nzzKqGpsqTiNlyJhxO0X/QtEaNYTjefcfLXN765gUlsmuWaqIFXUgY6zMFSAUxfFfLWTVH/rtJOKJTSvWvPrqS4hADracHJRu9i9P4aL6zFg9CEBb2jYCK5kwW+HVPc4yhAP/Erpug7vtl2DHhvMV37GY7gatUIGKoyyJYRlasKa8FB2UMyGi9iPtC6fGWyy2VUVkzXHIN5J/p0d1VOeCcajCZ8tvIQVuBDhQGgxZ1lyfomyAtoHmK5vCTX+W5HNWtZ31L6mmy+W63fwfJKKsRlx8vJPZsHlkl0y7DAiMXyi0FI5kb9LWESZTQAesrOZ+T5NUi60NUS/QonIcbIDhGSVHlN44h598IJEQVOU/lkYh+rS6JbgVXf3xWVPf0zczG6h6aFOrp89XuQbVpxaL81VdN+m99IMEUhsHMGV1bz+41/xEnyCpBllME59NcXqriOpugmDvBc9cJ5E1U6GtmmkKCFPe15NC5EM7TNfg+R6WT4eTg3jfeFdmhWRSdFJDO01yOkOat1z/wUbFFgDmXhLedM7a56nFqtbLLm1zukPMLGF92GHPIO/WzZKzDktoSZQEH1p4ulqitBhhDJqUAUU46GGbW8deMxpBwFCXxt9BaeiZS4gHFFOaAhW9Zqa4ZR1bu6DGY/wmg+Pyf267+Ul3AgKIRN86yIdhyckOIUiiIU68qJiauZXe4CrsjkvYhBc4uOJ1T0vSUMUWrKcGqv/7OGR0d1z9Jf+d2YTo02oDv/yz7djSppXili8uuBB1CYbYGqaPH6SjFFiZMPo9es7Df6wrom+ByRBs8AW7J0JQ8JPPMlWAOeuNLW7drVE1SfKmyJKJuPDVKV6mb4DdVXbPLhySh0ywH7q2ZTLRVeyErqYmH3e/8324kGxMBaxViipYcS0Ffi0pkz1luOzcnL9wAusf+JtD8RKjIMfOYaFH0k/MxGRM4uiEXDnBg+JC4S56AApp/X7/n1cXzOTkJFamqb2kw+WoRYYxMQIc+cbs78xLkJAga5DUmHJkqXVQn/ukYEEZpWRoZU/fxVD8QjFgYMmUZoP7nJy5aiyQtu9bywB/r619Y/OZyjPR90O4JEZT/HLkqY5TudIM8Y6GiseSSEYb7KwXi93QUvPlKfR6xfFBsQgCOo6XEILQBxoanBBaxm6CHZeAqFWxvjNkAGtfV13s7urI/TeE8HkgQqdWZOmeDRqMeqJTQIy8qeDgt2KpHCt3V6HGhcNIEGI1DTTT5ZHTxnNubks8u9llqJ09gczC4pbZXbgkznl6EHXi8Pc/20p8vTWNHqyxZgrvdMelVf5e/8eEYR4xeu2wM+hYrC+iJCeL71t6UOkOIfhxzekL0nLwmpj8f6wpGDG7Df2P1EPdgzXLPy2UU3zjpgkArC63DuXuuHfOA10Ik1K/cKk9NOUJFsnm9XF5bZsYQRHlhxjpMR4oURBGsx47ioUaAbrL5sRKGjMChNxlf/V42UPqGHaph4uSBVTKylrFyVTai6wXwp82Sj8C7vYyvmWUzMG9gUNtevg/ni1JpxEcnzK0JjUSum+PpgobTaD9PlEDohucxmVgsu9x2TqwrJDomwomsFpDPRu5umegYrgwVrYBWkm2Z3aW3JVP0L72rmZksnBdViPSNlTZQm8PTB5EHanq1l3Cq2ZS4Q2P9GcTccFoJVPaQd8gn6FzcuBd+z3hs2IqF3vuU++W2b8al5HuRRWRzqne0wmFaB8z0e+IDTgHY3ApJHZW2pxMX1tXjS/O1bEPrFUIyMW86T8ExECuzMAdf3uLHxQ3EOTC5m4Sw+WNn50bdWUEi59zv02S6v7A9LdGKicWxLKJKOKc3+QjDNFwh0vfXQgOtvR4qjbsbpKz3rKzYGZ3bhdTDVfss8mQy7a22sTlk81NfRr3JdM9r4xvUPwGj2nYWD32/cH9STcr5bXhyIlDRmSeyPipZjVzyqX0lte30oKi1jT0w/yZrZKuiPUvUAd8Jnd5ekn8694ka8vGUqb5nX0VKdMVM1mpAEYQv5cEzSHubzXPCIxmDtiDd5JwT9lgFN7Rj7B6E6LEgVwwyVELt/N/+xwvtPXLExemGoap8bpPAAMjnsSN66plXY/KZ//h8QhIVF7e9VHZ0Do04zpvRsKvIhwXZL4r5721bWQfK2BFRyRVqk/a6e5cFVGUBPkU62WUlCfY2e38bZJzraYsgIW9dUTOkUi3u3L5Luf+LApWarp9EU9IgaLIsZoxqJZvtnd9dqML+S136OK67fmPwZrqtsG5u7ip+dajVR8LSl5E0NPnSZFqk4YpDeOxNQA2VhuKOE4l0AqZ71rHBzrA2VzvcTkg2i2dnCqgGGAyqqAjQcL7dAnJPbFock7//Z3y9sY5vbjyYue5Zh2l9OihANUUeqt7OOUTZHcB5vhFGecxKlQaVXVtAqz3zkS+d06nT17LwkgQtPl0nmff9yRzf6ULoOXaL9G8iTAwqw2sCYWXXjeQhnPXLijj7tpnXqwPYgOvLd//sEi+NheNWSnQllIKtXIWZ+GR9BJyryrLjxPGHVyO/KcEdufKbt+dlpem7nvzcpyA25HLiEZzdJLX5KotbaGT7mSh7nnfGU0iTN/05UkYefzdLoki/jhWSzN7yx0Vyq5YrU25dqQj7Xtu7+WWcqwOdLQ2ERduFO1QIz+K55ZAqkjIq+SEWmKwELszGnk8UbY2CQ+yjmUJGluxG3wHCmgix0eGzfq4jqvokPZwOS3JGMqNDjwJlGYL8K933Z9lX4BPerUly0mwAgUdthSAd71DsNsnXnFFKNp4bFml1832Cg6UD5XgO7F7o3w32dgxKw555j/sqljPw4lEYkJkiRZWrm9vWj4BKNw+tEaX9fzAI7CTk2KM76dMMdN5rP9XO+Grh29j/inZEViOmA849/0bIjP3BYHuhxq37Eq8M0dIiY9mQjIATIxyA17ghh4GB/ZjC10/f8FBu69uLUBL6KqoTNU4DRCd6Gt1yhksZlmYxwKncADG7cJzLOND9Tu5LgQcOFgf6ixZn9rttTLg8NpEh/idz8V8HhXDfDg1JQUWquP0jQQQqjzNJ+eGGhOzX0Yc6AfqflLI7wO3ym9Q3m6pxSeRG4/oUIlVYhZkWNi7btw+LBZo6dDe9rr36vMC4iuYwo2Z6CiEtcVnoTwaf644r07KzBHecgf/OyjpXLrDMFJM2Cv2SuWr3LRehhiWClz1IapAnfnZp1JU1foSWxAHT2I0PWj6jYKIsNJWzIsyHSsdpDIQTiy88qxM3X48lBoXml3P87zvwPFDQIMHpeYsMTMB/arrPV+0/DZvgl4DX1XbzRdo1+T4rOPJ99M4Scmkyv0+z+irGW6vjr+XCt+JRH7c/gfbqwTTBDcXb5z9y7KhevKhSlb7WH0oR2xBiOrgx5uMwfAcQSIHgdixx+y1/NjrhGKhYtBeXOA7aJ6pAjxkrhjV0QEJHfDRiWHWjjcIoVjmDJkcbVqpYWu/C/CSu24I9r/outqFnXazvmJ/LwebkxpnHSCe7unjatMpiOivswCkXmGrEaNIbVG3K/CwosPKcBLUcVuBkzSbrl1nP+hTntYg/60PkGOa0knymJmFF0yKHvgo3hBbTluPedMgNI3eCdkF0HXwBDDanvCR7ZjzBXbzHsoZoMQdR0f8Z3VgrMRIczuSeQIOd57LQgI2eoOZ3IVu8PBSb3DwAQjlc4LFob5XXON81OqbhI/D+MA3WQfK2EMajGi7izv4cVYSYktZghnteDZx6pueovhM5rTj/C7jcJ9jYB41rkQxrNPy7X56cGyt7m299DShACDDXv21rfq6b5h1tZGqc7TUYBl5ufE+zFxcYdswjz9Ec/TMRZpTA24vbumkW4NO/77HFhByodm6+3DTUS91s2XeCK1s9iRfXuw4xp4n9j4awSf/x0sjdwZLOwOd145DmPfWzynq/KFKsEo8y2wFSaP6mkeMXTgHBCiAe4HcRLqLu8FZSTE5DAWo27V2Tua9KFElL94kLSFeQNWQvyqEtW4Mx0ofCQPyhQ3FjeWDHMjYumwr9oMYAjfJTaEzhrsXqXqBgp9DgJOcJ1f3Fip1x8pkT+jTG7Pl1EST4ijPqvRzpZ89p/k5E/niFoLrLMfaDTzSJ7x5tDYitjOp3ZsChhGah0GCNG+KHyFBVGkZhwLuLXx3pvbOzdkhMj99Y2FxAPl7N5CYGf+OgdKdq6IvQDp64zbFtMVZ/Ne45Xjhckz/+KjG7FFWCory3gZzFbFx4psvTOpsNhBciGNFeTDUGHuAXn6nn+zAsD7f3Q9HTFK4/O3IGtI7KbH0aH1NIOTLprcR+n8gpnZvS8Om01om98CHE85JBpGQUwM6XWTlJxVhqCUpA8tiWWi89ukJCvT6Nqty9WzboJqnWv3/HSocGsHpZCjGWY5IOTSHbe6BSj8xLL0W+TmU4fL4b1oXRSCmMkbr88pS6dvAKwy7Ow9xi4GCzGld0Kfk5ojZJDxOF3uJwblZtdt7PavXWZkzy7H9R0QX67SY1SbrlTjgHvBrXFP+HCrNHC9K0KftkMktGSX5uKmF7jpw2ZtKM9o2YhnXna+0hnqdz715+DjSq8svXKUotIr7vWjxfVAMKzOOJwS6pjq6LvAgqg808eYi7cM4jrQhq5ckAuVPn7Gl51ru0ZhbvU8yDZsZ7X8tstG9tku7kqYlhaqsXNXdmzJwUGKWVaXa6+c5nI/K++6wSfEYxRho+TPMiQycZ439x9isQ5srIPb0ktBTxo+/uoga/3hExTLqYPM++kEjJzUfDmbya42kgcCwTbvPa7ey/Fv2uqHLge2ZZeJSztHFqn4beJlZpteRe5Ow259Oz6dLd0nzB+NC7fAXU/M9LRJbT/Ww1NAjboKzddmzKwbaL/J0cRdVNbHeYYcGn5HTNieEbZYN8JpVKVT13EcqGp3+sFIf0l937NkyBfuaMzci9e3HOLXlGCqAoWSJw5BtvbMOCgBmx4VEDfaIFGYDwZ5V7y4CeavF4xw2HN/rhEU/wkZaNS/fvtjtM3bIMasvH+2ZN3MxHMDhPeKbxNbbRHIAhAfZNmwCcawsT0K8Z1PmqCRORe9vrIGWyT/rMnRInAHUeaof1JRmvGcBYS+U5EP9KynB5Aw/v/J8zC1oF+gA6Fh2g+z0ISvHfCZi0UvTt3QITZTCEBRfRtE/b/YtStGwfawA+RWICdEepmQ3pAwO+J45x+68GgMPLVgEY4iik2XkwflEu8GGVxxwz8G4QpE3pqmFckKTNiGHrPvqOMO6Q8pBRSej4C5aBETJdFJXSXL9gxaLZjs9eG9/N8sKoB1gyVxMxrWae5c6CLqcgDJMmdN2auYFcG+Is4CBPM17Gs/NBEgQc7rKkhfE5JGPDlSBKIqoMrTgMkHhd+7GdNV9ymAT+KpTsNtZfSBLxA64QpGUMvUSHsUhEMuG+Fw22Tcc8EfN+gyHwxAwI38N3qVctxHGYfifFLrnY3beWxVNbjEaKiw7+uTGPcrmoJ4hJWm5SinT/eUBPlUnCbUo3EPmLYDVmlACHipyaEwUPEk0IWnLPNWymFVPmu+dd4AUIgoU0y97oV9DTV9Hyp2XKJZfXCamtxlws0qRJg7FzSkxMjRXWM03YgDsg/y4F2jm7Ukp+DbUTH6z0lHXnj4bby4xKC3kiolvNtBCVBNfjXbcYIIMjTxuNrk22gn3JZJeYDVYdst7Jxa0/dvAFMfXq+D4VU75SxjsZmiaD4gb30/xKnXi8vmxGQpAw/hQClQO1fNiQIVxVCzdnGn8rCauF/n3Q1ANsQL1DumV8JGN51HuaH6z3xM03GNKVuKQ9bi6QN9ipu/l9QtwwzjN1Su8ZUfGybsUeOIB2lqZ31BiHVCUxs+zi3Cawj8z2RkHkwu40qITIXQPzXfayh/jj7UXSl2ai0SbouNZ0Eg1lL3KAQBQkrfG+ObcfBZZR8kYIkv/5uVR/ZnTgXW2IVcXW/tFCzXtXT0N2YX8DJeUcFuCFZoUvZtFgdToQKdUI6iIh71AxRyJOwGf4W6dZUIufAc/CRD4xZruej0ORblSoOPL6CTN7cmJVy+kN/k4pPz7rVtOFOnwZAHHfSSMN123wFzzv7TsnZwp0RWP/c4upKdRby5lbdCGxJGZGk47XfelzDDom+ghO18JyixnoXZdcN4ZAEwXR7qVCesYP34/GT1ENDJvjzNMJdp07/4vQLPAMzKv945GpoaZXeYfzhE9rUE7X97cFQk8TWu7DOjgK57MahwAzR7eXrTTPxVcJWvlsVGZ1uqAAZK+HVvZ98zuaju3HG/VKSi+YWj6/ozw/vbe1NvcjyVMYvuUIIuO6Hz+rAHP+TYWh4T+Sw+e+KL+AGsC9u2mjXvYowrIPualaNs9uXJ7zj3F67WSEeTcuUBmL0RGC9SJEGvMilyuJSzbRjDgc0nN0jWCBuYLiR3LfeIew8Db2nrNdnj9vMsbfde0ax8PRy6LDdPqJg28BBc/X1E7ub7DXNiKyLJX5WVnvrJRDtuWmD+JuPf+UO+VjWmI4hHizNJ07WL4eeL2tmewhBqHT58RD05OvLTmCHT+4/LVxFc6zKSCsXP1q82tAUemymbqa3PAOrwGOdBWJ0Om+TA/kpgr7HclBm8+5VXVw88dkM9523dAKXpnARLxwgWQO3wzQlf0DxY/+fabNO5FLmexcg/vgX5jwxIMg6yzYeJStB11xJJnd1Gv2dTIP7D+sPp92/KCmExbxLPfQaMjemLtUFVTfPOOlqxKEsU8MFd4NS1Vrg7VIlxMiavOLm9eH4v1zNB9Gdfmj2cYbGOiBwgnrVBgpyWQkvGVXPygdlN41i9uMHtz1Z+D2nbqOyfYb2CTu60htarwukB/0JXVCLXYrB7VBYtu5VXEqPRp9YyknwtB5XN/K1OqhzhfHiifv6b8k4AMaflyjYytkhbkSwlDrn+DxpJBedslQ9d7EwylcEhHprgPXkwKWD9xdL3UKnUBZg4tIFoKT5FseKZeSQXd3lfl7AgNgJOi7F6zA60JnfhsXTwuSbYJtjYg6rBmP2/8e/TAqMnS3S+UkLSEwbuoRtawm6yqz8zTeLAuebO5l1qIlOsibVTkethV0kOi0IOUe7i27JEngrsDMgI8ug1tLYlDPnXtldyYVDXDhNajycsZx9HbkFjJF/Nbluh09fs/GB8E+3V8Njz65OZ8pj6BxxDVtvXQKtdji+5gbTzo+aYlZ1YMpZ08iVA14vuQD78Y6rlbgU8M/vc12y3dDv1C0lw5He5L3jQAefCed8w7LN6R0mKUR5vypFeIx/3wJDa2AEx5oInEoHKaWuh8X0ZUhkaSK+DGvmVC11tadCT/ksyOfnW5HTHfN2BjhfZajNlJTqG2uiEgIhZfCJX7oIGVTE4VVG+90kDPutMG1k0GezX7gfhlM93emSzfPWVwcf3fDGcZHAYqXitQ1OzFGA8xOtsKF9APzLMNpUlF/m11dqMkWW+4GNPRwOXKbY6oqdmiao+mIQ8q1MBxyjOXnMoO57WmcOqQzG/Pv2kgbdsc6A/og99/MwUm9k8AY54CUuJat90QA5fjQcLDNSupYx+VyPZ2ChBNYzZ4jfE9LhiSGhJzEc40fj2PNzqRx2rWbH/GLF3WoRbzfpzBEIUsmq3QXhIkh2iXdGAWX1lLbuzPfWdjzgC8eLgheDbiqrsjPgzXyci+23naefxIr9osAZ0CSm+TO8s/t+4Bd/m/0yYmm2g10jEnKIFrh5rpfx7EB48TFiDW2vP14uU9LmCNvoWdRmU3Q7vk9QbcHCJjbJPyodFy6MpTGyCQNT02Vws9sEFrm0xzWzssewdjtc43oxmOr+cjCDyZL3PIFP4t3OPewb5dd9fB6EXiI6MmEB9T6ltj851xBZNAX7oXgGcoaxKcKFfsv4DTmBZnwiQRAKLamUQyFpouwUjcYhxAbQPRc8U+qn8ioluNqE3ean8iur/sKPXiA84FDDzoZmaQ9PhdAFi6OT5PKshhYwsaOp6HFLimggir/Pgmi4khHjWYhywjB2QO4tBb7PdEPPBi3V8DvJTBImNnle1uduNdrc0peZh1qYEOpxTRigtYpXEE/vWhfeS8Ei3aRsUgbOQg3J0xKbWGwn7D+Re3+/xfJgMNfr/1Ou/1kfKBLfEENeKxOQcBsXo7kZwNmjondRyu4lE+dDXpPJXZCQTkz5rKNReiJkDTydEd3deEJwTrxuL2zMyZalm/K15VzmjOQ4uz0wjUMhgHX1sshNTLb+fLb5uTyxmtWY8S5JttCyauZ9S7Wxcn4z+HvxDiGW0UVx1vkg92DSpYQPvzFvYBKp0eSNqr68xBRzDAc+esLRJ4lthXpLr3uT2d38gU4Mf9OQeJTLdGZE+gX6gNC+jgVUNqsDaRlE+ze6mA0PGV0cAe8ABbc2MhGDu+odDRhuGsd/8y20MJ3/z34DpCnWaQmI8UQD5ouIVe8VqOlJDhYcp395Tmly0Qvd35XbhQeusilY0wDp2iql6zi7O7HkV80xRsbGarIL6lu3q/eZJEKMh+qZuyPePyz84OEJNefc9d8W29/IYgRVxYKeXlJ9MkesXW3QdTt3d7XvyQlaaAipBEZbMXKJm6/wA/a92jkgnwZl2brIuPzl8140XUsQamLSekMI8ppG7YAK4u2HDrLApmsNVbMWDhuR5k6QKZ80ieEanzWO3/5uYGjVtQ6qdK5LU67DYJ+COcZTPKzUS9sgS793fHSp3p1KtWc7bdrTlDaDZKQrai0zbqM4JIx8EEK26Q2uC/9nSybuXeXKNKbEr9654pvW3rP8FDpylvuKT8K63KpePHqZUzyiCcPsdDq/q6HgJ9pFYD7c/d1GT60WfU98JnLZRVXJlIke2s+SQAK3vPxoitPQoU8HgCtG25VZCxdyGNe8ttOuUt+ubb4MX7rNWhfPc6Br8F4hnplZEbn6XmdxhCt1arXQvdbhj9v4K/QWn760AHMehj+quSleE25hlonux6MWGHVwBS/2N6q1FxVnAVgLhWxMgK0aWCBVKAEYQrNT0dCcA9n+I8UO4v6Xi2pYk6ubpH4KxGXcOFZ5oJg3vqVtkXuElpB81o97VwfcK/vwQT87/5HeSk7Zgz7g8hwwXGiDJlYgCEZUOlJs7hSY2fR4iCwG2iWKzZVKVkkk+MMNWWzMQrTX0haCqNFQNuxBNdS+8M7sQCL71LYMBUDcShV0/flKV0K1/nogPW1c5stSCQ6syuqw2l4REeBDAYM3sNXl2s14Tu+828+z3azko/roR8qapSCqDzIgRQ2Eo1wGregpGn+EsSSF/Z0B1scAh3PyBzOVOXxPtGayKiQUQ9X0nE/HLp5zuCjjotad4JvVUfeGxINBvN2GP41noKCdxQIvS6ju9Y+R0dT1N6PfcD2bgA5t4M+cWhwYS5Wnv+T0gAzzrBTxGJH3ihrONKrKqans7Hfi1KKRIiZdyp4KrhAbbsJ3ZxTmoR+XTc55gxasx0sMzQ2kkZ+NGZ88MyXHz0rK2TDTblYO2t2qOLS0WucNrA91brS2qeDz1erV+8U7YVvkGLe9LvyFG0+dhgZNh3OKgDgLOcShYjIv3DZCFbToda6hFh+1xwgNgzl5uJpm5MTLPexQ1Bmi70e/1R+bcp+dg1LzMwEIWFabXX/7W+9V6+WbTL+buOiQFw5A3m7NpQ2ZRW6+yBezRkiNrlFDggmx/Ut/6XSrhIiC/VFObTbS79OubuVNRzspzhTxjWCW3nureWJ+Yt/413v2f5onVKgh1DBzVoaBiqlooQpn86YqMCEXWd8g6kziuL2iERM5Re7cpVS2Pl4V6IeEP4EF1NkqzCkY+5iYFUKYlKd2RSKj0OA3fQ1ie3ToPIlAuw7R5/JWfVY6hNL5byUhJ0xYT218OZ/U2l51XYkrw3Eu9akveumMMsT8oJsX3/CZnGowRLzHxAdyk5rz+iQLnWRoADyXi4uAXftNYtcbTZ+W0lpxegKEHdUPmiWY7TXhrdvHk3mbV4iCoj8KEOhQ8TopQ8KCUZXfmFnJXVx64SrYGOuE05sgqE3GCF/uNFYgutH5m18HU/fiOetPeCUYy6ucU75b9yy8sWbkWv6Qti6mUkqPYehxAzv5Y9gwNEyy0IxkrLSA/cOhDnsrIbJQ04rWugH7oWhgXrZYJxGEzil2Gmt6NGSgCEstwZ5BB9lBZ7V+Tn5TPzO8ltRUstFbKJnXaLw0H70u8f15R2bij9PC2Mnk7qj2Z8D+ms9GRQ3owUHLjmskV11TuE3Slb/wjBjz1jpLJDfE4tzsm8inNRFg8XLw4D9akmNNYVOuRzWSCCcoKBEU8T+b81AwZLGTK8YigmZw1XahUW64/PcozT09N2Ado1TmgpVhWxCV7caCeCuXJImVFxXZjnPUHYqtMafR9pJ8JXC+sDfcfPLqE7E4qKmCPQtDLOR0ATKBgFNvEFxG5aGcYRaBDUleXCICIZk6BtALKrd1dP9Bo8ZIbkZkXxXmyupK05ltWVjijSJi9Gio+W0Qy76tsi7xLLB3khJNGyXPtXCb4yspX9wwcKKy17qgW+cZCQseb2dtvH2NgB2C+k93qI56EBgxbZ/lwbnssz/8op+CogVzix3x/EEtlgEMmlvnNcIPjm2Ba061IkUewOLwmBnNYJXCAXvpvxaFmTHCGqidSrHNw247VAYpjP69JSxsCU3qayZokSbZBWsFsrv5EqBUwuoPQjRWXtp+Tns7gHw97za1tSJ4+wkmmdUVN/OWJx8aXKOuS9uveHCMoQK+iGtRDmzi+D31XJ6X3Jxskoz5UVvNhpkificz/oFE69OgodqnOYIeLxf6ODB3GbHdl0/k+ykr2fq0tRx8xZZQZ2d1DThl7ZwRyAtVeNOKZld6g/m8uoKIoni8WDKJU9cl1A9pLrME+d+vWdMOKC/5NoWtQ358OvYGKSpGC+miMjf8gK+6oEyZeO+HWX8TePZnAsqH8UTnsTdcgrqbNgWSACbYa5IpmGIm2ASPGkEwZrMJOY+7nV56tgEzPGuWbhmo96e5jaRnVcr8hnLpAVrbuP/ZGu60nmp8UbI/K1vMcLhZj4/IwnXMwZYCql9aHF3NChhMQXY8BMNiAyneX2Qf4GF4So0/LwetGwjU0k9UNJ9VWEwrCU57JoF7dxi7FL0GbMTzNpCy7tjr/1ql9aOR+nMgZASwq3/V1o6zKdgW1Klk847w/B3GJqtGGhVB3d5OY+gjp6RogPMh64VuTdsw+ICg0u0jLMftNg/oi7UcTW2N+v64Edb4B0bL7/NfW0K5S/KtgWaGyNL1noLLx78inmbQgaArsTfc4NwhJ/m/EVLjGTWBPQ3wuTS983pAOyYSG8lU6EdJ2ISPkbNq2njC/zp0DQXgrp00x0Lj4SSp8I/pUhPhAw+NS/HFIITDG2F5r+f43lEnU0fKNFmJ9/mDbWs+z08ZC+kei1Zz4jHnS0u8NbDK+uG2IqvpkEH4NQOb6v2ubCYIviDgtpkKbzYcSqZSImwAXwklQMLM71p52YslvNu2qBBHMQ+myysUKBddoG3MfR5UDJeDSXryiXcLyvwkEUhvfd660enl34a9m7henZxyHDqNrbKKD6EFnFqyrfFRfg9qMdxdenFoONBb5SttFK3s7pnAK9irwY22P+b4jhDJukfQAIY0NexLo+ZatWgCquxAoMb+f7DcisLrZcpuWaTzsBKGn5SzAxB1g364QO1ogcGOs8rKxiWw1qW8exZwPiFf5uDKvjMHcAiWvhoGUqx4Ci8d7QwJpvYeuxhgfK4e868X5Ui7BKIao0EPdopfwYcu5alsawgUCA+yRUTccg6aTIHmXOyw3ocLj04KJgK6GhECzfRZE7Qi3USgnVQ35gBiqLnhv+2itO6UfgAvloTfcgvrqaexZbX7KdYLTxNnsiZweDozwhtCH+S+ZOIZbEikUv+Y6qTdH2XgxdlXfkbP7E6njeIh4BuTeyunu7IrmfyIPvgea+bnnTi2zXmxHU9JSo+dCu3F5yj6tS5bFx7rf8zFngd3ulvXGtu4xGNFyTV+zdWiIWA1j1mYho4Kx+vt9I7UpSoTUJj+1GKSv6pz8evtJrTgd4cDlUinTxZP8TrBoEKcgWILmwP8EEYzN1nVeeBwCfmXhIE1D78pIj6pFUaZtPEvnvyLg4tnSEwmgAxUuvmWIoPHOx5HbM/Zj8oW9opTil7OjcXDWXw9y/wSOt48KIfNSdFu8RVShMqA+lUdRgTaayhxkLxECq7IIgW1XjsGk4OQm2S+j6DRD6IxAf7LRtIub7ZbLODTsDh8kndk+3QPLbNY1vYFr30QMOC6dTm7gdphBbyCiisx4cV/wSI0fkuNLhcW7SQrw22GcIznuBT1SnG0BWdYPeKxH26l75Oc/QlorIvraI7p4j0apqU0gn1xs4iKMSx6HeRRC5zn68nwUKgeSpWEeOazI9pVGjJrB/schYmeV8vp4FUxzgYXppGjth9kpjn1vA5Azz4cvQCn2vOHF5taZYELU16HkAp7v+eMTF84c/wK1Sn5AHYCwKJ57mSzGOCE566nqybppGBsrfQaWD2BnwMjen798Q0k/DM8wONxGS4PrQKGOIA5RpPYh95zw9dQhCAVkzszGNXiREEK1hRL9WS+4x6QkH9dTUu/oadctQKE0MzzLmae7iEJxxW9mHMzxS04D+DZBz6xx/e7n0HDlvnVvGxKuaIj2ElwN6XAu8SMuC+CAP2K5THXmsD43i+gYGUztyYUnRdz37y09OdJQVleIAqzkGnwpbDXyxIBep2tbo2uNu3sOw8h/INPuB8GfaDQaM3v1NQVlCkSVQMDCQWORoypqELedgK+xMjpR3tPbKp5UzG23XyzZlfq8N0OM5MJCB8eH8vamakmlPirTGx/BiUeN0Isc0tYapi8fBssokWLtbWRNfiTXvUX3hHjvJ0De+ikPb6a1oC4NxUnn+LOYPPItBsHKdvR7ffUFKDk1QjVyOMbgTPwSU5siPOpHEnOX19XK4y6Hbs0MXDfm7Nb9FWkiOjdn5RdIS1BknuCe0CWLd4k+6COGGy9dy0vByxcBaJLjMJdRUAT7NxnRDQArQJnfDpQ+RBtkavA93PQcqJt1XQpIJRE1r0Y8bgpXg+gaEVfjW9voi1sp2JXYY8eXeUI+vBaDnczZRaniUKiw4CskrePNir4GBu4j+tc64bXIadzPiSKhjbG9q0UkofgbgDdOuOZgmuNWSo3Vp0MVXOoqIN5zbGVscDwBfuUfXdbnQ5hHde3yHvwJcFhAjEmdY/Gtuhxp0S3GICCPz9SNug5Zu/PbQfsSTbf53SWeaEAk3KFkACF3eGhr6zDCnxIQD2LigAV85LPQPxv9BmWbJpjvJU7ZikIynQzNM8sHDtFYgsdVPjMqJ5TBrjZ/6zdSYn7sadjyqPJwed9IikZux/9CGeIwqO58seqyfoVw6eHkzNbnm5iVCa4/zmORwR5ULOLA7LWcBQlB+RgabQ943BNxPckQScXcQe4irCsbKJMHYLU9AN1FYPL+GN6T2Dxt9eGQu5pLR79GWuqxz0eZxrcEGo3+d2dCo4MhWx47Mt40fC5BA/PunZnP3f88VS3f2vQyt3Nfx5mh/TiMcB6Q66CFWBUOpr12KkqpsfhAbuYbk5cZ/fqrijV3sJ/tj2haSsSaG2/qlqUgDfd7efWuvmta2UDdVQdlIizmpqWX/v53weiPaN6fRnBBbD0SG4vktXeyuL9JGu/aZOss5OSHQ/bUruBkblgCz3W8b3o9Bd4gv0ZJUksxqzsMPdMZsOJ130PNV6xIb5Qm5NacWKoccxt6UCkCz5trcLliWZAt9C929k47Q9+gQw4UG5GaR/MK3rpVbpFoeKlu87bjMsxZfb+QPvx9DUB2UhCWOSXCDUXID8d6VWoRBnq0dKIt9cJGyQcDGms55HxmgOR1xl2D2oVQwN2RdYrIqt7DDlioRp/aRXa6+q7K6Gn1bRz6xbhv9TggrR88E+YWz/G/55bKwCnGBKIdnZlbmCz4O7IKFB0D53x2kayk1OjCUWoMziMzOnSr+cfISJfLK4lfqEsteVw6k8HuAM6JYgYGisWgfFpl3u7wXIy6e2+gkkSwQrnbAmOjFAerhbFVdCW5Ta3AgKq0E9ZaRKuBPMWWj3rucv1uM6HHuTHP3GtlFygmLQlFIvqWDjebSyyquLVPogMFKOMc+hQWcDTr2EXP3VFsr4YL/BgN2qp0g/KTgLDz/nZjB2qBZLgagt+2YoStUfQ/TILCBAMujBU3zGJyX0Zowm4oLIKOL/JIt8JEIuWdMyGmAm0PVaJVFv7ngSGeSEbsq4AI1JhuWRo9kYYES3y7LrDkIYpVCpJe1AcmzH/pPgZlMoXfe9WKAsuov1B9heXx03gc2xLbrQHiZc/gkh4mtrocnc0BwW4quI7h9rZ1b+n+8nYAEnaRQxEqUNqKAVn+ls66+gB97/esOll8FEm2+wDyunyVVmW5NZ9hcGDWuEm+m3mbRJ4lSmHMUFWr02IYj7iXDoWZlzL5kMBRD/SirKsGT6GbWTcAVITgnEhkv8T5Uda1IafS7J34lEawd3k7HWhMeYASvDQLyzYCbUaqof0NkNDMM3jgVoZSfVgNSbOODelMc0/2RO2rgSTdx9OcPK/FCH6n90YyflL31ZIxf4DBedxdbYHGElCgnydD4Qofq6krcNVwmlTdrvv5hxvulJ62vKhXJdGKLzY1Zrvramf3MlpgtLQYrf+YhAmA31Pg8+dWcnI52adqDayfj8iNW1zeMu+rHW9C0qIouuiJWaOa6SF9QUW6+yfxqB1PHgbjQHqpwAU1R/IeJ1KU015Ar1kYPAm3XyDiUDE+bkH67/P5dHGZOKmo0/dIP1vv20CuXDG1rlvXQE+LbjveVmIYgfMgxKPVtMfMPh2OYLrT7lsmSGyTn2GXulOXmte930oJ0OKg1if5v377l0yy37QFEnf+oKSDT9683B9E+zS3ijE9KyKu/YkWR56GwMnNeqO0tbG+BcGzb6OD1GO9ruOsvGgJji24FoPpts59N3ivYotX3svsCjT6ZlZWT1v5M+D16VXc774KKvgsNPNdWKZYIEPuRCdgjaTmv6/ycHkvaLPShpgMKyY1d6yrVeIVil0NEkzDky0q8AQOBfWvovRRNjEDxa10kykjLOCdIBsD9O255J1nGgLum1r0/K2/CUUCCHjzId3N3d6bClGNgSYsP0TiIKI18ImmSU0sWLJ6KtVwRRsmYvM56tTUpck2ahzI0uGLXJDKt3qW5ObFm243oKvwmaBkUq79Nz99wowMZoyb1uKCYq99ZzrO+gb+nNoby79edTR9U7T9tkhoR6tjsoHrNyLdOcO23xmPMTCljG/fa8F07e/sLBIbGDge/QCHEH17bDdR6A3Q7sh2Tdgy0ibjpm69JmKCyQwuJywxd+9mOTe8DgoXOPu+2yFu+kjO6FNMqz4BpF336xKYWj8xPq+oA0bzJP3MpcQceP4ZzP9POSLoUIT5qHXDINqRBWuLCTIgBUKBhiZLWSukeHJWRzd9o9QnyMWC+b0bfhOpJZ+W+4DW9K0K+lJs0+yGv0c8EuSGJ6wtmx0N14S5fFDiu3KtqVAjqgRfpVbyj/fDA9JGVvNYnhmymvkd5grSMKrmzgtF8rKEVnC0FGt9SroBDkHEc4SmpM8iLaPtQf+SkjiqLE646JvEbDnblAHbQRI9uIE76AQ2BfwCHSyrwNRiQqO0JmQVQXO4agKJAlbkCQmyYIyW5Fu4+CJH+Y7n1X5nqzZH24DR3XNJ1L3qVcsM/q+gboZw245WvPPuRmXw2N/tOODA9+nA5T0WRFrydcUa2xmRNMqQDBpAveEFIT7/R1de04uJORdzlFIHCzbmSFn+2hmEv+98+io3bH5hAo16u6UAXVHl/IAREJ065svRppr+MtY4xzmH9qEn2FGpTBsGOGOwZ/TAH3prg33DK/S+Ld9pM2LFIvaHcWxzh98pUWMTODi0+/nXVP4TPeRAFrydtPvDEo07aeS3TbkUaWZFehZI6Od0RnD64B0SG2+9Xx44W8hX9O0cAix3Ok0PkR9rBhxKKyI4BE4n9OhWl8GeCJ8hi8NJ6/9F3mn3IajpR6RSy0tUYNestqwDZz6BBFQLZwqHCr6FNqJjt4H8Qd9XmhqUi0oDGQIZotsBZzXZuuv7xF0IBLZuGEVLGzu8hmZydVgEpDDl00vRY05SpgQt2pUl0w7DLbShwepglJRngINzPjVF5XbEzK43w40wYzqzY1ee5t7If9ifbKY2ISevn6fp+PIkOH8CJafTSsdViUk91B+FxEfcdJJdzK5nJBDo+6HurPO+5Dv6QDcYK8QEK5tPv2cP3w/UoQw1oHyufLwdzNJrHi7Pub98rOYmT3KF+N3xAYVK/2+9oxtcqcYyL8wZHulEp68grXyq7uzwirHN0+PMHSblmYtn2TzYub03owhfmI8rMVMtckMrU5jmFjdGN68PwWqwAf3vGZBgBxZlYlh2MN2j77AH5KDYRMQFZNwbKj9nsPmqpd9DYyhHTqKcd4FZLahhI6B1JrchP8cP3gZlSj9PUgRZEuk8PQAlao3f3IGfDrYjSDQ1C84vTwLRi7ZZ1J7W4axZO0aCRmuOyrdS0czXQETFN5tDHwjMz6NKy4BLpFhYFYVDlA5LYKRSPFC53QftzwNfBnnfN8zFOspAwjAH0xcuzVC2L0BAneGEU5KSpa6RjD3ygQvSpD5L0vubx9mD5dgFBTGrGup7mfei/4k7vtXSZIGicPwyJS6OwvQF94T8RN9nkY1x+aPKqxK9/bh1sQ7wkHqgAy40Igtv5aiWMWaYjGfA4cmfjQqhnbloLioarQyx4lrs51qsJ7L05vKPbaI3dkgBxeVHn/033w1hLh5W16A0Gir8RaVsuhS/UmukPzJbRt/FUHUFnQ1ho32wqIOkBXMeZlUq/AmX/4kOdcLi6weUDn2ylM4eaVN8F5FyWmCY6W9WU1spMm4wXiaCxM9DAJd/qTH+2EQbv/FoeEQAkwfOe+4SGDUZAenuYYO8JNxcfroxyVHnn6BwkpcTObsQUu7MFL//OzrXqnOTYtg7Efxb4w+WsPyjjpWa4b3/YGbQyg9ku8WarHsvu0wm0lQFz9tfZwye8XQnuTmAResbu0C/GEDWYXFnGDYvpqUuB15LB+veclhK1ha73YW2Zr1fCd2/tLYWspW44X1TBFms/OCCqvAHK9qaIJkCXO62rhJFsDYee+7Q3WUhWerfH/P9nBrmzzJF/M7eP4mhEEJ6apB8ckK8I/w993sdrj6Lbp/UIZoWr59AVe9FeJfqCMDFAm/b9hLQp1ZoMH4ov6my9F6yfsJaHAfPnwa+iOX3kqcKCv/TX3k+vC/BBMrox8NjhvovLCowwu01P2R53fxfCnnwbLybA1dZ3G69SXm4sclDUPtNpEsZoG5oemy/mt00U9g+qNq/PleVOimmNWUlJCscNPEKafbCZg/e+SOhHFeJUhjjoov8752h9whZuNP8mu1Btqiq1toMW7IZh91yF/TSBlX/ny+bLGnqnBgxKUZRYZDtbL5qsWnQji/+IbjF+6ntkUGhL3WG41llMsWzZvNrdFOhYr80g9gEOauXL/CsfDvDEUN4TPCSahoszJ8GfDNvUqAb2Dkqk5J7UiyQDwAV3i890iQUQlkoLqgN1yYPbSmDGImC76/9rk9OYKo8QYug8fLvJ8N9Mc14rY8bMN+1Oh5mCtj8c5ihs74V9rzP5sZf3TmhW82BwaYxxq5KYW6adMcZKhoqKCOBK0Hc/gMqj/QO220VlZOdatr+ou1Ul86alRAe+bsTMIGmkhWari3/RytXpjecMHpFl5BeFg96lUSZtlMnyQZdbgrdxCwbFzd9w3TsWpcK3/MXgnv9Ymw3DWfyz5PDg9moPfS1SPeVWpGXwxAt2OLCEM3HaaeodttxAJJJHT4J2Vd8DYmCymA/ik+RmwCTS9gYLRhOk96XVJdTGzcJCR9MwKm0XhrJ9ezkv2SJqTYSYm7moIsOeDu0L5Z+iesBSQleeui8X5CVBoKPNUjN6LVedHSKayOjQqnmq4rZnXpnMidY0fHmXjhIfmOKIRTyPDFFTWVEzhqaIUR6FKAt1kiCDH74+SWju2avZptJAIHh1kSrvFt9euq0ABKEOJLJwTGWgFxiH/sGJ0imyPMqp6hkQF1BnxziME8NtuWlsqGO0zcJrE0yhJsUwtlKlTT8XsPfhNFoz3UMZUBrbR07tcM2E1dlZfWM+8ogaMXhoeXmTNCSeMSd9IgqtfzckCp8j8augjz8+zEvg7VhTmVfylcsCGGSplnDW48CABo8/88tMY7feBKzVkjcH1ZeZ1Tg/WLk0XE8LKMuS33oFXfMwDfE757pT9H/yDqzQNqcURhYZywuMlqSm6rTFE3NxuK4c98KCGNEDPFx7Mi1+ZurGWG0T4tbdpPw5jVNpc5hRbAUeFXBBagLCPUpt0tzZD+XO2sYxq2qhoJ9zGnrVV/0kt0d0/OVNsDJxlhuljk0Qgt8GSyuf9Cs0g+l8IPDcSMURGeF61k74R0JLNM4LksAeHAP9NqH9aWonM2MR6oOaIc4DBn9WWlRf9SfLJXJ8G5+mDpQHr3M3MdR5tQJfCLkxvFCk4gzPQt5JKET8JlwvvOFcaFNhvMET1mY/jjBdWzmBvh4ClOBAN/mCcglQGonUnVo36xp6c09BOiwTgsjmeLWHrTWHEG/T4SdYxUooxsJ7eFfATUs35IpFjXSef29ombFKGBBdL0TbKGgWhqSTN4uCme5/6f5CBfErKMx+QiTea4nN23KRmMhjuRuM1uE/QIB9WPf4wDsNd3eimQzB14aHo18EpbQLtCG9UctdFCVQvdrZY+Kywhftk77xOjblsAbQnjL/uET7O/8S8l1kHUTVsrbpPUCgpFcOYwMN1I532NQkI4QLFVksELC8CtSgE/LwHFSnrjCMrhTAvbrc5IG/zxP1cN0Pkx19mLqej9NqCmVM+Z/9dPyS4qobCLK6vWjVFjLPgt3eVF0n25WQG3RwZbm8i6N0DV6WigtdAeAbcZNKCQRXIxm0U7eVIi8TfdUgrT7PUKlraBazvz0DQXzpkA6f9/5ffVGWKQ8R3rwHusHuqHD9h4WubGX3dVSRbMCyfoLBf8DZGqwg2NflgoXbu+cpm5qINDKUiFMaZ6ChqllSs2fD3ReEAHci5d/gsfScyl260tyG/6RNjlIgz3AIWASkDaFDzJzVlungulermFlaB445XU37JaG8akgSdkf6ArDxo0vzko0MXKj1BfRIsi5dXJnwB6cLwj7lXJ2lWepW351X1ieo1S3XsfgkApZcWTy2xdkLdzNVZmPTJJyPWSdWpKo1Y+daD4TsDxnE1txS6zSBAbYosn/LLPUMbM4y/lpdsr4lSrb17PjPZimpUq5XquvmikazgxdkIatct4XX2EzLKgyxjhGz5EcaIJ0BNNS2csoezvxWAluNUlbrvu8gCMSk2hzI8UA21uXBO4tElRfh82oslLNYjbXFJ5/AKbUwFvi6DO4HEGP3Yg1gsI3Ky8OYv95iic+MzxlbvmCi0+hL84TDVbPZNmUvmzZY9VbmWsjH7TL4fJe1r163c4kQ55RXmTe+nfwn1ri4NdtPT1dGhK3i4MhwhvlLuTMybaQUfaYTtaS3Cz5jDdTylNEIDhLRMnBxNidojysflfUghoUh/9qPR7UHrnuGmkas1ABaUax3XMg7lQy9UgTDCvj3nXqiDR1fOpFcCKGXbysCmtvCWclQs4zJff2pJYttLRwlrfUvn3+8xwNWq+pVoahNvcbNlPNx081CjCLDJ02Tdhm1hV2PirLumVfZjY4G+cJbHzAkzBI+MN3eQdLXCsqT91ps20S2Nlh8hEeGa3R/WzX2QbTl6p83dXu4rjBAnR/AZ6gfx3gJPj5ICmwcQqsxkE3yiDefCb+feAu1RHno2R1hRcfbfj2PLQ7lbGA9fIp5J9g/HXHp3mzyWd1MGDJZgvji9biEscejIy7NnCbjkhpb3aHFjpyrwT1/6FEm+Gh2HDkv/uoZxMSaMjZlY1iP3Tls7e8Eb0MmtYQ3gphb3yAx3uEcJ/X9C7YKemsq5Q7Ep7iW3yjqBLQTkTa7G2oncez6s4mYLGY86lz77M/VUrTwSmrf03mnlnabjpmhXyal2NJHZXeFyRurij9Mmtl862H0bMdpkUwRc50wqxq1+5e5kT5LiQC9Ox2i2+yhAOPQaVRHQNnzS0GUo3KmWovA0xBY7/13ygHbHlgXejHOBUh3ZCeg9r3tnvRH5TpD9iMU6gFtKTFcqX/cwVnVpBQM3ro9QPZZDNtqVQQVmMhmxip0ewiWhgXMcHqfmiqIP4sw4dVhDvbKtUfX1nXRc7FMSREC6LlEOvZfigvhwfndm7TqmJLRaaLJAr4dhXznEj1yR7l5BXV61bNkcITc+u3X55v+jsh6WQDXI+hbo3ahVQJe/rurlEXa3DxYs6Igw2cojvE9e3I+YvEaSo4cU5/kC7kUlBvNFMJtPVZ1DhKAVihN8RwC1PVob+Owxoqwgr+x/A+Ivd32wZiLm1aBHlOJqfHgam4msYzV7SpItmZT0Mg30R4+qseCu8w49yUs/9qR2fupdxDXrS3m0dXlSV8rCs2szwptzDHzLnHqFaCkwNUFzikn+YvWiych6M5BpWsvENkRfbwr7+GHr+ILYkte4BKrUr27iXBWzP1KpjTN4RpdBsOUAMRBvFNK4lw6QT7s6K1ec+5L2Ss7BjnHgfDM54lxgSog3eHxD5/mAar9PZ1Esx0fMYM8i+YTn4EBYhD5h12kudgRKQ91G/fesMIwV1oCPVLP6f+Tn5sqGyO3IRA73HER6lOihChJblv4e9BchcN6JYgPcENu7YeiprxCalL4bmocwIf9ENDT4ErD3LAhUgU1c94WqRVAhZTbSvr9LD8cDu6il8vlfiCOIVyiWQ2LGZ3Tkv3YdNEJLMDdKJbSaTZYYQXYaxtU7HSgUejNKXLRn/nw5cM3LGX7/sWzJVhaPuyAAHxHeUDApQvW1k/kNcnxgqcZ7NDd3MJrC32YRnlnXpqeykKmNtPGbBaVL6bVvNnS/Un23npFD0IX8gVlOGBKhgC3oujVCfReVXkRajyTf92gpv6jYoHXe2nprDc7oUrg+iu4F6Azstyha1qrNWzhj+91Ue6+EbNTPyJ/DA4PC3mElm+mWrWS4AOE17cY0Sny/XuhLP0k/H+COAeDZUdEzxiL6Kzw0JEaWyCrKNcRSLexKAtXeOY+6f9W7biZCrDDjrQrwGRMRXY+xSeXbPXceJggQZdlTq382KH0+tVnuiSfgEwo+mvQOIB4Zqlx9ZWvoSzzLCoWdUtVlUTuSdmw77kppWwwTkd21JoII5+nzK8nywDo+p3MWHJdx1L1kncXKjej8TB2SjKaibXz1Dx4Iae2G8Ld1eTFJe8GN4nGMHw6qxR9xgW+17Q9cO9GYOm7WCsLv/oY69hM+AyKV8zadvowfgS2lU3ZB2a/jgC06KwhIjcvs5kpDwBFk3cCTygDskskKcBU+2tPRfkRX2VvUiMkfYFiGUQRwLB8VuP/SXg9tkIpuQWTmeNh02O2nNOv4WHeoPSNWgfzTme73M6GHs83gau44hi1Y9E+6LmS/oBZMgNHwrKfmTFWlSmv6mM+b0frPUr8hn0Aj1J1nQ7ltOMnOkfixGNZeNoM0QoCBjGZ3pGOfOSBGNQgfU54ioMi9hwQ5FhQtRpGbeROO6ejybawVMGDIFiWz975+bHqwsShKznepMhwCQdlgOWE6yNnNENbUewmKPLhYK83iWohXyddnoDusVFjn5UT1Ii5+cX+xljFGEiuoG9pz2wmcp0btTIfNHUm8NALVVVfP8/wo48PjFhg/QQfMuIpfZ8nGXf49d1CIiAGOm7FochkGj6YKV5hAP1n5zIyplKe6QCungRw+cHYRZcKYTgaAs4lSFR0MI8uiKmS9YdCTax7QcfRU2bOUyeqQgRRGOTFNtZ92MCyWsx2vE62/YRbPK+FZy29VxjVh4jpn0CNVu0CLBYqwv123A2DxbLUpQZ8dhpG6UFickqHqjoSekm8e0yuIlSBUlJ0jgo38xcUgJ8SMGaFJfZxRqPOl/p9ffc6HVEbYsDEi0fXdX/jCOd9MeDj2Ul4XB7TAsN3gvkVQjVtjfTdUIYOG4U3/ZqQQG37GETy23RbRGNNBmcyI7JjdiBa54/6C1kbp5qlI8S7ngpJ+T9lK+mYAp8lzbJrhYrS8TNHC7aoq3OkK8ERl3MBXVGechxnFXz0YuBXr5oqTOJ/p0AYwaJLldcSj+L9+Agbh7brtaGN4lBwJ75qk0RKZc+oPNwZV/63632Tbm+KxmE2wda2xyQRPJ1Ult2gYedckVPF2ERyvwIXtUOpUc+oos+ECSdsJlu8bO3HhmJjl57nQjwiwGbfm+IsGItezrozbjNMpJni6G1i+ccuuAfobfpmFdxFuswyB41o7QmgLSBi/9+txx20Lx/oXDge6T6cvxvj82vHBg9QY6EKXa8QFdvkOyFepgUvaqToqkEip34wR2v1rkSmaR2NKnCtSIfgZAfr7wKR/Y7Sb4ta353ZBDgDsK1G6zwxsW2FUl20EQcg5akUhBulahx8C44s9+v4iqaTuGFFoeo9eo1+V1g6N4BpLXwJL9/Q2VxN2kXf9HjiA6WSzgEDtjB8+aP50TYWGqCm5NLaRDJ61M1ybcEziP537VepP/x/n1Gz68spddfgkDGhCqbMIRLuohsn+M+T3gi0J952Db4b5IJVEGmMuV72sNU1crhQIdRqMwvGoReiwH0HTff096Rn6t48vjWbEf5q2lWlap1tKbCa8qLuzC/XNUqdHKbUHozPoSFgNw5cuk6zLGVxYCBqYZKvMGVhIIqzE2EWtMpICBu3MOtN2joJzWvxMxLREy/uRSti/AN5XyVWi9xshb+w6HBw/GSOSzbu3rfzPgfQy69Sojpe4W3XbPUSnl7Ilaoz9lhiPXKkWPuH13viUSoiNgH5C+IAPJoQhbBkiRK4fDhWeAHE8pg6t6yNr+uYwkHCcvBLpe1Qsyx2HzDiGhdlFJ7OqjXwByj3IJQjAJrUwpmfSfZQIvUpYUIbPazriNCZxZ6OQA+3vJ8rGOqstlBUsWjZNbBLPzQVh2UEnLT4eK0E3G/zwSnAL/3tzTnTIryGUGQBAKfoS9KSuB68Z1MuuN+HOeL5RD7G6F9bXJrrOJ1Fr1fZi3nHLkAUJKA0Ts9jG1Aoo7V0ysVg9EuKrNWFmogxn13a7S4FVzc9vIM50NL6hLwtDeC+qaJfZKDPZIWjchysJFPzCQfYFVEBx7Faa/6niRxYK/V8ZrPENGW61t/FQ6S0lXkzEnc1p2DzMjuP6Nl0LOywNp/9tN8Ywe4D4CynV4IMFlCwuUa768EMZoxb3wGCWxHKTDUBLur3SCpQNStyfYO36A1Gxt2o1O0B1XXEGJBZ+X5CpaYs9+8r90mg4IlsUr7YbsFSJWbx/7S6i+jL9XcBMVcR0iLuuKXLWd9mygr5pMpvDxfl56LYk5CQbcVcWvPnI7mm3vGxZoYSsh1BSJyzibbFc9+/MQY0oHGiQDigfQ/ZgeowYqv4tiIv9flwgGsz1PLxYwPV5Q2l+UocoFjsejo2hXOwb929lvH2PwoKTbS/CCgSIlOUt0aVq5iw59xMMfGGZq9zqrhz2CLgku78Yja647VxV+xt9NIgg9tXNOJURN1YaRxg++Q0BDaYSmMZgHf0eOexYxpCJ6uv/QBh0oZUa4+JFDVjy/BxSNHS7XvYln05kikBiU+n34u78D7z4QjAQYxAtkSkUXorDFGTxQf/rMFr/Qnvh89ZcWFv+YtUTrNZo5ingqIT9DfCkNyyFJi3ZrdiT/H5W9hpnU5F3VvE1pfOT6lFVWjdGq6GXdQI/sdQVAfYm0XvC6bwrkDzJ2opVsG6zc9fQQusPvJBo2Bi4cCExOIfq07onwU5x7x/x4+M/0y6Y/040XoGmQK12ZuZTXXqXXy3KRrfPcd6GQKRmSmxwvqlWMQdHSQ1CFYusH+dvSL75Nbn92Rqfenps87LbuzVRx3a+f+wo6Atoag6vUPR1SHlijgpknP1okpF9AdrUFHnU/yiU2Ex2vqrBTdoYUoML+uqbctzCGSXupEGDunNDDvdIYiSKNrcEX1BrKzAYhek0DyTZUqPIS4ErazJow/rqeSGAL+LD7iqNsbxuoE5sBKa3oYUqGrLY+nJ0wiNaZvzkwl/sUGgTACo2UP3rnSrMFGwb/7yshQWF158XMwIfP5D7GoOjyzQUJrgLvFVHfdb/SedjLo4rbyZAU45uPe/3fWUXkHPJmciolJE+LJEwAv/PYmiBhvDmOLo22Hcg/nhums7wEdS9xlV1lRlpMyf9aanD1XeG1GVNIkER4MtpExU7Xt/X28Rfra3FAEIPgysZhO72Wdkps86KJKZBTbU8XFtdscO2qaR8ITW+1/9VgcU47I5aF76zwfAP1e5+rLfES9DpKbQFI6jR4CZvB/gl/E7B/9N/gVLRyBU1o1OMiLPXiR083I4FQ5yC6f/ehSm4AGfdEDul7C44cQCb9KOVrcnFllY4f5B9TwJu/iE6z+8iFGstKwbsszqP2XAfBDvvSBrppkGQxxkbMNBbCLYsa6oYpH7P9sNE8UWBh0FgmEhA0GnOy+XnHsTtvCEzEz5UAU9BDNGJ8VUWwcXbl8SP/zz/LfPLPd1mMToRAFCFJaNYlgz8pwzPMlU3HY7kErUPoFL4YZk7VG71v3WRJ7XlbhkY4TPw4VYY81QrCZxVibptzx4yhZsd2XWrIG+FLv4sIQC+ilOPEHveB6w7+cQS8y2HyM6KrWNlgMR2asR/S37cX09HWohQM9eSK8aUXmqT+6Ja13kWY1dvc6dmddV8Hy5NpgA2tjq3LdcmMb78yNob39i+moaYR/ySQ5PkD0e9gA/zfRHpUh1CcrnVpBANST7mUSEpMEJcBYa7EAmIs3nsEs4le6FQrGH0Dy7rndQqVOsyAKBQfuGTcZc34iL6+amxq9pbuNVSVrKY/yFAikzhNAzN2W4qLJ5cRuTXsEj6d/07XiLMErajJ5a4gFqt/HMrSvYBH06Yvwa5WiJuMtETqWXT6HEqcYiFDUXrDqQHbM27Y18Xy7XzEF8q2LGrQ3rJqtE6MdD64zNaL9nnt/cIpIp/KWCkO/vSIA6PJ5vnPhcsbXB/z5T8C6rrXq8qMrj57GArzm/hXPOJ/6Do+cGBm//UEJX7o8qQWE14XCFI6n363y0XX3507CZZNfaJEqEAzH+jo0O4HEiQAdJKwRPYnZCExIoEqsc/7++8sSWhn+1MKuEoQj3+M1q3Tpr8N9qtyL/dz2rsDSKb24JfAOm8sI0CdEr8dEveuCnlOmHQpBJlTf7tgo/A5OAR+Sig7PSzVpDmbyCg3w+BvHTgWnZO1DcgJlF/2orRg94a26C0koXztPZjU82AFH+FaTiQNkccqYHiFEuzLcoEdicTCJc/BTym8bTG2nliUrWkTCzya8lydj721iXadsx6ZNfdFAVliFcoe5nZkRh22qvUenYPlw/yuTx5tVIbOtgQFMNy/hap49BxmU2hj5zR0gnmAh7uhj7S7jAeKHlD2G0O/coGgnUfNfoiWQmIehw4t3U0kcPF3RDSHCO0CYppiq0qoiz9+MlZMOIDYCkV/0BEzrCsAkRWp1ddaP/Op0s3HG1DEkmZmGa3CttcnuvZ/uKL5QNopA4z42Wov4HaMoW5Bf4qayFGlzZquhj00cUKehxJKKBuWx6/IUXay2WKNvhHeDu+/ucrVBbdpB6gCdiA0zQOwF+ogYHuD7yRF8J6Xkqmy6kQ6rjMdRnSZOq9eTz1NAlHoIYZ9J/X/P4KHhO+hXnu3EcP1ZFHsN9Xo82ARwltFAuadrGAODJ19LgFdmuameWNFUVAfw4ZmKpilGgY4WUL/C2hWh121LL/uKCuRG1Rp63kdgA+olVUlr2LRB/A6vJCwYAEFma2qxpkv+3PFKIwKuKFpMQQU7Jcg5qPvQEY/h0jozbQ8zQZMu6vOWdQSh4bAoIujwDFwVT/ykrLN1+qAIFxHNNvJdgYIbaYCjCx8bLXIYMXJelbyaW1PG9DePENxdtWsUpKgcmAdc2U6yj+j4wkLhndpJHrfWMT1Mjpe9xhDitcBizG+1g9dUGXVI/Ux+ejKMhNyhp22O5eVA40MydH0Bmcs2oTrY4gjZw0QBRsL9oXJOHEdb6kUqaskS1UtURztnlEto7DsPbrPILWUOoblkVMFC2nClaqlwPMjvAXdtSEFfD6n6Jes6bb8/OKFGtAnZWclG6CPkMWY908y67gsRMaRCUeW0ujZ5XIwLjfx2vZZNRjgux40TegpngvYs1AxEzMS+wqICDXhksQo3w1mjh924BRlDxvS+ZsHgqJr3LL9cs27gN5QedqzD3O56mpBb/d2EADetYYkFlfoqHJn/hWlZCoaQGyX00FxWMi5izDammRz351TFMx6eVdOrwpJIEImqAcQgwp5X4n3XyNkcdkDbVR+iFXeZa2w0VaXrv+yHKhnHstWEeNGXFylbIYd5WmpNzDXX7TfatmV47/ZKQiZntfAv7OmMTjvRBrkYwqZ7TvoTne5copXxQoGzKvxqlQbsmJ6eXc1B4Em/gX3cQpk4v/jNNSau/G8HeTsogc4mTSG49Rhx1DofmiPTgBnPjmJ0RF96WOObUI8LruVYHG7AS12abaLnAQEx2LM68YwVQ898JAbdb4mOKSqVX0D0JD4ykM9xjRnDgSNCs+6aEik38u3e0Yvw4vx9mQ85vnhhmtJzWFVzUPxT/vMNZ03rjiAp+6UW9Rgheh5K/CBxemodAyG/s96s4cIaidcspjYJ66CBk7aLsjRBKZgyaUg2kG0lhCFWrXR++eNoyWXd1uXniIqaDycRgt5gznidZ21WsmCvyIwq1ojaA1vcNfppEMpEbRwMY4NBPzktk0dQtn5Jog1muutRh1oc2yskwLy0a/jgULsNfVNjb0X2mdkqzSGOtgSuv1BQvtGUJw9OrdXMhZG8ebBDJ9VAjfqnNFodeYFCB809+9P6uGaeT5r2eaRqOKEDKM6zvvtiJDGeXqWTax5T1NXEeceM7lYSsHLriFz7543arqQaxTMtjmBDbjvAHuNXDN/u13MNH9svY1UuL2327FX+bz5cUO25N0e35eZn9gTeexD4wnLB8W1l3imD6sgBwaG55UVUeI93rNvmYO43GgjaLYatd2OEhVAsUyH+gR5k8GD/QZUR4066EV9EamD881/V6G3+uKEbLAyb7Y31UIz901f716lkUKlO1vrAtMprw27qNxCC173OFAlh05c1r//HdEYaVEsTHqTxpugErRubmLM4CRCvxKILhRwb+o409D3OxYmFryFL6iExbP00Su0Hbv2EQSEEG+1bHaYmTFGTxTnf45XwDsp1ECzjRC4RuAUOwd8EMQwp8vkdum/ZqLdd1A4MdGoGsCFZGbmBXwlAec40z1A62SZeYoRoIq4rpGQjNykACcNuCsaPpaSmJenZ2y1G5JqMVMw/pfowShbPh7qsixUCAShtNTvCv27DQ+lfLZd4NvW2e8xz6OD6TqMpfesIED3efQNYHyI5Qp+KM/Cki3iXpdg4PF3EiWQlzVVegccbLXHvo8WJWtzzn59Jl/sg9Zjyrirg8uPR6NMOcXgcKScWpExrRpQ8T8xgJJeAaDTjfT7sH9BtRYgxiSD8jzNO9O2HUju+p+2KZ+OKVbd1F0JgOvygHPJYFTUdS/8LQLmw0kwJK16zFHzvHr4bQ5yaCk13bwNWLEesDctT5aGow19XqmDjKwbFItTvNNsjEYNrkILQvDMF7santw2kE35/AZ9lpzHz8YSXWyzOspF6fe0psDknxFneCrlzyHNXCEEIMUwPKkgmK4+Coyro3vKyPQlzUqZE3Rb4XMy4PtpWgMPu51JNQnshofoH8zNypWzvMesOmK84q+HVoBl6BYNJAz7fiqs0aLF7s+djBEWxThYcy4hJTDNttKXhk+xsdN7cFaNQNU+cotpnt7VpD8KqOf0OlodOiPpfm+Qj99cXZUHioRRqMPoqvhkx07wdJzt3papE7w4nUYqPnAGlhAaX7920X0DZgefG4BLQxA9sxcsgSFHJV+/Y0Nefkuo1E5hegoBB+2sDx/blcLJkUSX81UgWDdrUYj6irvE8iQj7ZyLZzOh11y8qLE11+XyrdXjtbCjU1OiZZ1Y9KbbHBwsZ1AWFBXkBXCKSCv9DwlR4FremTmU9o8gWmFrSfObZiNvpUKNKNtN7pLx3a8YQgaBFXHiCgNzr36f3xwZFML7OMICWjJUvs+cs/TsYkmulBbs9lOl7+dWVK9v3GapagX7EW/7FA5xCw+e4gcOyOCX0E/qUhcT6pIoqEKgN3oFf1vD9zl84zGGMDRcWymEyOp8HqKX83vI9r9E47k8pBKAPgmeSMFCU0XSqKsZj9RYdoNoYryFyh/SJKpnvsgZKMeaNXOlofaEF/sqhZ6gPgdj97nzautDS0oeOLAkhKC2v55pVtv2LkRAJ3pk+8v9ECFiJhlfzgMOLM+ZflXpqyGahN55X32MzlN19OG0Vi+wCJ/7yO96Gpcv/LsqlJ1T33lYjPM//COdI9CdPwlqgeLw88lhvW6ZAlLH9TAxKd6RWciHgz7D2jiZw5H6aHtU2IR+rA4haOXVlL/qNx2FvoI0Bd0Ry3GAd3DZzR6CzexR9AZ3Z4+roW6n3j55D9DY6CdVSS9atIyMFCeMo9rBSPej4zlHCQ5dyIV37rMRBpi6ibIrecI3SFtifEx6zRRVQ8qewIqnGNi68gvR9lF0NzeROsUXCwoSa3+TdE7wi6tocSXcVjSZgbncmF43rfxcE0pX+/DlaY8YBnhoyrzbzaDJ/hPIIdtsChqjMXC9esfq0EnBsPYv/gEeGHBUjGAf+LlwUxIFumgEQpeRjIgyFoNLWw4Ge/6HYWCQFq1LeUlPMB06I+jbqHtsij4YGfR8CAcywuVo587CpqVoxqf2VdbiOYBRbc4u2GOXw8eGv8hTz6sjUuG6HUJ+4uxPmQQRVn9Oq0R3QDQvLqpgwzUttXdEUgQrJciM7q37P+c/UJHrT1Sx8AaHWO+jsDxVSd5f0vVBtETY6j/9G/yHX/iIQtyteSRWxIgaMKeGNBybHSdMM8JJqVaU5RzupL0EhHI8AJZoBCETKajrecNupCX/F5o9KOVG/OvzTFskyljnD8odgcAxo5zwlqtvI5P1MIRf/g2c4f9F+pnjgQGYQSG+N2M0Dv10h72ipnQOUS4SiSBiI6i6BW/XSa3+OMEEFSk+cGQ5AXX5OJ4gtGTI469TPowkSyvjWAEQEfP4Tmhw4jXrmi3xRMVIMkLBUczXjavsPAXek2iiigADVof3sluFChYRjktMYZv35VsiGCQYIkCQH8RzX1rCWOUE6HgdkiFfDKINEZWv6qxDmAN9kE19r5HRM+MKot+4rTCqW86TPZ3EI6pggSbtJbzHb+y9o/qvsj4d6nBu0lvkIUjsxxh8FmNnK7pS8B4cPvU6H9Nii0wOXHdShFIwWFJTR2IiosLthpc5RN40iKDxgX3zN64acg8/iOh0c4iqVT/+lZu93pLEFUfdIiGueQZKDr9ErAzbo74tb1SLtCr+svmEUPP8jj+s0klqO8VKGbwE5M5t6xWdJgJh4ULK4J2oLZXkeHXBn1tlAJMq4RftoJHVBdHDjwvKBxGoV93cChmP+FHk01thKTFr/RbeYY8ildeaEbd5fxGv8OYvAnyfXdPtot+MAxGmWCz32UNPHuUGedgQBjdT4sKm88aHrENes4RLA2LcPIMxtfDJcGrxRRcPAXhCvofZd/CySpZRynxsjvEAmLPryXeZ1U0sbr0w1C5zYIEXv6AHfwcdH5onanRahGyfKLFHVXYcNrf+BVnHVG/s0dBm04yxZ/1LLY0gPX61Hf5fGgm7+0aM/OonXr27N9VIrBkO5gMyEtO286Xqjr15Qv71KH7HKd0ss6jJ6SzH5wGjF1Fv/cRHNXzp1gj0Lbcpd/hZsl5VXMU12B2xsNKYobdQ31FTVNv3/z3/+1KAseKdoJHZKH5mB5B+/MUyv4K12h7xGVMPw6Vnwvcnq0dzf2OqbkjQEvIHLxdvCUwgSQ9ItysHc9AECaH7HP8/K2O/klCH5QL+yGT6cs0SzC5fM51XQtI+G7HnwdxMmyindrcYNJH1YCL2RBcF0mMptxv0JBjU8d3epiLD+KCNv74f0aPFIgQFczc8qhlXiJ1MxW3HynIJVlb36JAIbex8C1UenEvCajRw5k9YSwahabqEdx/pPgdLahvxqJMpi0lExu5JQ2APi5wMUXrFEMBWl8J2b3uAHbk3Ui7ci9jxlmkHgIzUno1X2tkpinqJumEqGcVO0n8z0elT35OUcmUbICZZAy2/n/5lOqczSAeQiXgrrmi/BBFpy0Y4TPjEUQoO7Qhgc81kb/SEzMvZlzb9zuVyGtFZVHgOaMLIPW8Ru9RIc6Th5sSV442yQD2kbjFm/G0ouUhcSUnmRaJrmbCDrptX1i0NHIXZkjqq2BbEd9TfOOpVBoKO0eZuC/+ZSm9LzFngstHKY23xfxDDLMH+iOyZARlRw8FmogYUJjS2LHQDzp+UYwmXTVBCoOtG5nFOx1D6ZcQEGyMxcLGZKCskXVkvwT+HuwWG2QaRBYKE5ZukQ0ydaYsHh6pFAXGMe6rfP8LkEkjABVFl6sui9noogj9Ada5akHxLhoPEFwi4VkqxuBMAjGahDMixEVFUABEG4Deg2/ocX9iZK82SZu6DZb9d3s17eTecAaCnRbHYqqh2s1HQPjSoOKr7gGrXvSOQNTeUkTFwEWWl7E+f2nu6Ngpp67majjYkk90opjMYALQx90hZh652y/+EQe2f6rY6u37QZAGoUQ6dE56ujxAun4mJnhANzZ3llvpKI14pj0oG/1OLPFsE7lLYEjj/pMzPuyn30x7j1R6d25z9zAOs2KvfhHeU8uVh7M3i9yujyCTYy2b8QdXu4YhkdEixnWOAH6Ef0tW4wbmdW1shAsGBoHKUnY3h6h2Y0c/0GLQ/lMi+ZdyqevIEAHyM426yYQNg9Ukj76nAOIbcfO2hO3s8OtYDqLCHR/GoDUK6qfQE6n6+0CSJwFJ3wQ0SqhAoKeJIgWYJyNT9cLwKJuhMuELGpECNaMPlmx72FdMNI1iuQdrnBBw31bvMHTgaE0Kb48W/Vuf+7cSkTOT91Kh/bVQHvL0NS8qoMyykhYYCkPWrb4QJb6W9j3g7mj4gJfr6HRf1VQWjeEVxKD2isQH1MAyJ6rFaOvWmUA5oWI1qSY1SmeomOTAFk6Zh4MNAPnhf5TEa+NYfNgMEM4Q7WFuylAH5YwJKOCOMfzbyxFgVNNgjJgLnE85Tc7Xa2KPbMBCIXS7brYQ2AlQSN4hVLTbPE8vi4n2CkVHpvHpUoXKnaPwQKsU2tmMV06b76i5ZFHjl2Ho+a9Eaz4ExNvT+UplriSvXAyt2mqTxgD/O6oWmaMw2pHxw2ydew8AiRpxkBwZWC5d7PcGmmJazsy36y4gKOKEoyWPP4yZ9hSK0eiz3x4fBcRh9KmGuZLqlQal2bzFBfMhzCE15KFxYVL91OCzOAidPdZAK1TgpewnsSfHbPQRJR701+CCj94W8R7haSRD9XH7cqCBQtO7uTG9VTcX2D0k2NCvYR7NGBPtit/AuxxcsHfmhQSOYzQ7FUOijnpv0Ys1nnuE+eA+OEm8UBo8RKTSYwERrZDfnpSOzt+Xn9t058N/p1olopFdVR2DwNRCMbr3WM9H/tHdNF1kyoGCCcZc0DuNbtA7Y7JQpKkeE8H1IEjQicJA30c/mxwRlEhdZ6lTFZZsDHdcqPUdYkVFf9/ymAVkq4rmkja1YFMoANDmtrA0JoqT7tmOi1WjW8Lb+R6qCMw4/Zn+B8SaDeNX0Ks3HT/CpEAo6zLbbE+cUSOA91z+HJLqzgXtSG7pbFKdBg31KW7iR6vdRW4QvNoT6ieAni3dbJsB2JYQ9qMuWNBKZ+tP+uh+ua1/74BWlehUjxIkh332CTo9NCrzET7AFe0vC8aJzRPjOiPbfKlo1y7B4amxcbg8gPZqVGw17DhFHwUqPZJn4/NmB8yhYCo7469isi/qjrGImPFstnc0fCNKG6FdD44JrE6ZfGwD29jNjh+4mnnNYoy4jpiiKvhzUq03iYf0fRv0r8GStjxmagCnhPZ3NPxAHJvLgyqigIf6JLJnjIKUGG96DZjg0cnmNv7QUS70NlqRsftVFUtCJs3aAmH8LkFWKYg9dQEbZ2qzME4MEyLTQ/QkcBb8UQR0roztuTIv6tjEOcBaVt5B5h2ewWgPGYzlxswPUYvQ/MjQ7WDLnclaK1ZYEazfg9HDdw/k3EqYEc8erQxDocjBVCa6R8+Se+SVV2SddhLBtEb41uASYQZ+Fp6AdBVvFaAfB91X9fwou6hfJseIxdo60kkmNVXyrzODuk8rQy1XwXl1e6uDkbEVuwKBu1l8fEt06eKz/YuhqmXDLeavOritTz5zyiUNtaO8jzfYFc6wZi9r9ghz+y8dCGYjdG74RcfGm903jp9x7F6B7IkiOdD/+u6o5HzkBz0mQmgKyrzylaRhLdL6RdWXUqCUYgMeegKkSBabmSs1qfLMaeoMET2uYAMvyz5Q81+Jt9BDqHCjfLJxNhC4tA0B0IEvsc6mQcTlkwPDsTCTkFsct1wUT24+mgNs3yeJAo0ckUViJ62qLWUNhGgi6on7Ixyb0+YhAgEC0Xh2EOeXVKYDewsoSjQvN1zQVu1Ym2ZPPdxqGbKrvXkl11oOw1uqMeiEyEADTGMsetva0MUXqfreEFSMdLquOZ+OYomKnlFrWgXG1Bq5XL0qyCzsft1JjmmQ5U6/52O8rdQNUuXU1/9IFytKK2tP8eflkOFErzgrjPiJGLXGICQleCLEOIJDDIh7BMMXVcjNjYC6IHVL6cl490L2Z0RPCks6Xny8DOB83aUWe47Rkm/XN4xkWt4ip48a3f7DwYoShjHsUv+L9k+JKy6sxX9BWJTI6zr25nMRF3wBCyQlbn79XbeVktKfks7BAamqwiDvb4qb733ZNJHOxN3wlSanPQ+hdhtksB5KbbXEHZlIvwVxIThCnhuyjYn1gg4LN0ijROLopmdG9Gl5/GfBhs9rQPHUaSy13JunpT1wrGVsbADL5NnxtO9JjIIgC04CzsxjRF21mwDgSSN0bDwCOv5lZOSZ66LYNCW3TMa7A3KMlcgA6r0sDixGPdLURQf1sElpNikNMuOKbi/AMpVSPrpxc6U+gz0A76KJCgvjHX+xXxFO3jJzFsJZIqVZZ0qhmNi6OkXrR6++qDK0cx7cmIustckbhKq1J6N4OOykufmx9Qmt9gruAGGybM0tP7iivZK2ZqlcdskbfoWwsji26SrZELk2IpyK3t9LPfHB+oSQcR0l8LfdjFg5nraf+Tbal09IZEhWKvol4PGLVQGD4xtjFeFZSRwN/hG2u4UxxPEU0mzsswbt3g7A47VQqqhnemrO6hKooCsNNSe2W1zUjbofXAuTvXVpJrWQHw397vhxLw1il8QBs3/DtS/SCqUfra5bArd792AycUoODQ9bI9Kd1gg9e+sz/yBxNXaddwCjUyIP0y2k8iINqCmW0zxgEysxWv5DrSNVog6K7E9ZUvxLEOpr94rUtEzQcSF8tJmw4O5orp7j/WCJumAtXn4cenE8kNJszko6rWt3PCg1O5lS/7QY5NQpetWKv78I+50IjxmvndAJmd8iUvcsTjyZIA4wSmC6TjiuDIXgy4TiKUlVZKSvpvpCON+aP3FD3WE1gogtxZ+iW8D3sCoctGUnModv9viWPo1uYWktDMfCfBYXIBhoe3YsZn+Z+2vuSOR01QTSqSJOIg4ubHQsT5DF2GPpeyr1RcY3ImSuUD+ose6KFVjE4U7Asn9kZIDIb6HVhDkuLZaiU5b8kCeuYzMiSOec3MsOQ/C9c90+A5UXBqNu5Rc5vEgMvQsFL1EUr8yemteBy+Tbl4c9W+JGEc1vCB3rzzWPX3NASjmMfv8OOdutbzyaghNcnxmQRM2KyHp3a9ONNW1ZFHzAprdYWbl/GWIxLj7ZGQDoDwsDq4Gji75fE8JQNXXalakyZOaOesPgT7tBlbJb/CM9nBDNHpx5f+QGyd6Mh1aMsM1Ylny/uhFwZ4XwGuiH1i0xkMDmDvzj/NdM5jyfh9cRITPbJ20wECWyu8M6pW7Evdikxxw0H9d9j5nPoeQAUt2SZ0G3j11zqz4a9huZU3o23rdyLNiGE7AqVCzPF7OHzRZPARAwcxLDq/thzVgKSEwN8FHdIz715ff48Iwu1FcXoWM32CgSPcqMpmsHvvLtLhqJjQJDA9b7/OAlm+jN9HUecXImeKZbkTryi+tKbPT/0L40KFXKUkL45RyR7maTW1DqQLV3areGxitD0Mg5hyE3J6UysZ7S+LcPgU5mwU1YkRrbq+ZoA+fP3iV0FPsoWgUCVvI0tC1YtrdGrKkEEzPZWCfbfqGIGkkf2NpH1EU7Ee5nfIXKuVf6Fb9xnCXU21FY5gxgBzB/3oqA5nbPtRX8s4e5/xUAE+UvXQ8DD0e7E2LE0cYZ1Za2OCJ0IOt+fyR+tFr6A1e91G9xGh7ArG30c02Yy7Sxob4rDN4eNN9L61VGUW1+kACvPD/mn4EspBT7JqmsSnZt/czud30bK8lxO1V6T+1n8ZYx46TAeWIJTn9jjpaEa1yu86MdLD4qXOWQ2Y9eCThaVB8qEgB00TU1LOlsXjQj5GrhZcFNowzP98glNI+grYbIa8ChiZXz8LQ6XuoMUnn0ErW+1u05eirDyd00LwmtcE+vO4CA9ez9vSR91TJDeUFz7xIESOYXPQRSfZgxlLEa6m2F2mpaRdC7vRkvb8nghhy/nnFfhmAe/mvMVmPSr1R7xBJIOw107xL1tm6hMhnCDnKowKxoFDz0aAlJn09LEtzvbaugQjyb216ZwK98KTapGlPuY9jHocQ0YDHit+nXjcSEfM2TMtSL+5djyzBDGVDaIfWEOmxkxILwWIPnBmYoC8pmT2nRorsF3TZ1VSEpJw++/B0b0TJ99iQWhuTniBA4YEqd0FQ+H3SgdlfIw1nwWHNVxfud4xmcJ5J+dLALr1dMWOdKHTMaHGCuwFGVwUGNw86GSlLtvVPfLZ/ilajwIFAAG/JVO7bwke2H5vaH3HUIExWwJ3jO5WxRvfIhm/IDmqvVzk/A5X6fDLi0uDVCe50NJGMG60eGsJWtS9CeBlXVMSxguE4v9pYp8SyBZa17HRQ/4xNHfSetOBlObgWYLiv21ATNxn+qRGk73dQXQjXh1LNLGpx3ofSlQX4Hbhmr9euLygx4Xyn8OygMh2gKCeCwKd71B1jF3EIzVP2uLYP2wG8rYjjuMrkrYwzmeKrFEo3jKd/GJAdRmAydp+3zEOqtPTneH8EVVWAcLcw75MkLxm7BCQfq4h1fnk4kj1igGEJQPtJHHe9FJOneoHxeVzLUVaje8d+1pnZJqeoGcp0OYR9m6WIlhSqIqVkiQATpE0bqls+WYkRyzbYbR5tnYZkpXfMnqHBy1rfElkF5WINu249PSGznTAkQx3Vo3CdmXv73QpUfKQ0qR7oxOS7ZaHXLWMH3gWbZVjg4YL8d6i0+eKcC5i6zhtG3Cri144JswhG+ZrpF1xrAfS+fvdKFDOkTRA0mUqxyS+EsGzP08v52inqpdWSHZ5Bsbb/MY3vGognF9QQtFP6tX14ERlb8BScX1UDgDqOor4AY1iyI2uz7GO0ApZCbaGyjoGUJqiezda1oloiRbq22JmKeUmAxP0XunlGQNjpWD9cUcOkqgVZys7xO8vso6KlBnLd0epBxewOcN4b1dQSJ7TJfDIU7IgJVGax7rZArkovIbEPaoQWZwUqlqXIRG/Y+XaT55N4VoU/VEIyOwoULOUmM1H2B27Qw7P7bJ+yQApwcema+EJbP4xkyyuoN743BjoP7MlY+O4vaNhEbHnWnzERUBJhgHfXkzy/uVFiw9lncSW5TXMgGcfEOd9XVX8IxUgmaQngI+z5V/hYG/xkoQNxAyXfoWATfCg3sp6B4Ek4pAKzrfsEd4LUhdaJxsy0DjxqpYMfE6cAUCSCBemmyzQZyzWrLx2YXhh+cozWxDr5mghEheKJCCHfikbsctl+wlB4Mk/JVb618QQDZcRTDpHQoOiQSmQJYXq5ywPXWAAtOAh03r/wTEVhX5A73suRE4RnmOlrkQrXnK9fQ6pOkKOaFUHbRWQDh+JjnuNuQHCXFCSHAS8KqDdA9gPMRxuoDBUWJRjP9W1WHAC2Qyj4LHUKkYZ/mSpNwKwrvDMSp5tJtbyhUIErCC1/s7Iz5rPDUlKr2ivDzDFzsTI8UT0QG+kYXkjVxLs+ZK7dz3V5Dpc8JRx0oodw1wV4fb4RBoiTkHs21PWEo017lzTnxTI0vc+nAw8VaeRT05Nz1tN8miclcF/CmIez1ovGPDKhwSERuaEzAalY4hvE2fkJgHUSI7iqtf9GOzr9J1ri3oLHCxntDYGk18h6B3mOEgBTnRqhfh30NppnXNw7BcN4hVwbqSutDOHC8kUfMGeTkMobXHFIW26fC+hRMnEBt6WPKMcmeIo5i2+WqqhnVOwxmHAseDKU+FgUikNzwpQ+szAnX4uGRNZcOR/2P25lzzgtpPtGXP1jPxneSRZ/eKPHcbuj4ZINtFGZdlmP6mkxhDgWNZ85cj5w09zWAihRQjXW6iQ4RHptcDFnghJfgMw0+zJ9kbgITk3ToeBbzgkA01q8hUVlWLA5e3G5IMNVDe5n/0rkcKRPqh4L96QjbCUG2tDrkf5lo0r7Jb/8mtaQ/zGHA2E3+K2m4GKmpY32d3GJLzSvHex/ihiTyPt9gbhdcFbc/AHMmGQRIz3tWehUzq78NK1jfTdk1rKfAFcFLZfKHa2pfvIhGy3knKij0dmI8fkmZEULxWae2aBOhkRPB3BPP/d2Q2Al4Hpbqv2dquzugPAf9Tx4SboIxqnm+P2zRMoin+RvTip3RHKHJa0jmpPGZwjqEJYgAloHtD1MRYROMtFH7n61TEjG9A1RD8BviK1dlbijMXqbcw9zoh+niIMoU7p8d9KecqhExchaKgebUcwKPxmboIZXkXUviJsYEpvIG7t9Q0n7PvOi9nSLQ33C26m0iEDPxbW6c3YvBquUKBsv5VSGU8PTHyyFe0IG1gJmLKj+jwAUTB9C+flQRcD8nKgurNYsVZHAvJbdIiAVYxkLbJLZK7rQnIIL4khyeGKgG4vweeLZxMfpy9tkSDNeFCogyxvS21exiHY+TVUN68ckIUoUdGn7LMm+85teiL/Vd9xbWjHsnaFNejPoCkg+lRC85y7J4/5LqRCrXR/MWUnm26wzNveKtvnECAmSH7ZLrOQu5LrgvuQSkgoTM3RHb5dBx4n2LTvwUFLEct5Ajr/bIF8vy1ezLYwBLOdeZluVSMp37c6kASOy9wzgGNSOak87foIICmIGZWpAOYAjIzEB9kXmzo3k4eHzRQxR80QFxpkyCszJrRIB03F/bCSVYkr95dPft8jF8Oo6T3zuxziERdL+RqYwWWvxHpw2B6IdOXW/L1l4WHVSBCbgmzLAp2iT6XUtkgbnBU5XN+DF9XJrEGp8Y9zJ1ePDvhlXYZA1bS8Je3K+KMCYE7Woe0nayUzuT3QIcvf9xVYhAoFlXt1MNctYXSu3YzbZMqqIe9ptpaOEetyEsSDPSAMyBcTxR+PjED6KKn2tp/wnDi8Q41NUZzTai+xR47jJZuJTt4O7kpRN0nQVYDgGhxyM65aetZifjiY9k5FSApEChVi58o8leNE7hwjvAuQT9nr1xfw1uQmCVk1bpbvXk+5qIIJANM7qTDATRf0W02n00KxG66Me1cUXtUXEvwJGXD2Gd/V7zW8iLHczA94BA8RVx5j6uZbFh3YS1jWniHnA3cyRdOZiaFVRpbpSUkvsCXqdjovoLCxPbwVZkiWKk7anBcC0L1zFHnkWpPFhOnCD9hrb9zVnd8e5SSagcjUSP7kGNqBnsHIaRKHDdQ+1+wbPz7eJ+j3mUlrYBM3/ayqBsQwtMQx7bS8ZX+lDfhBUPKI8Q+B69jWxkCN+ibUS8Ci9XhKyvPeVqX4BuWvprrvhqWQsQ7qRcXAR5MgXM9VaOTr95/l3D5RhTMi0IO+EbjoIHbRNWT8QnqJ63uxCyS3+mOPB5eZpPfUf4LFZcdd7c2vvk6lxgcOV+BuAf2nMM10+pnb6ccmMOGubCtPOUfu+6ke76NqkIW2bGaF9dD960PGnLA2sadBIdm6dnE+i30iX3liC+hS6EvHsFqxDV2J4gmfb8YoIcKdtZVNZi/CFU6cqpqUbx4l+2FEcuxqk433wJTEU/ywkXIfUeS6ygNF6AHxjoa90K9Qb8Wh9NbOYlIwynI/m3HCuvMiwhlrtw1b7V7bX7ufB6tr1q+nXyPWRCmk7S9iizziZaC71WWNMIot8JLtguTOBDUYqmUwILaJZr8Vxm2LgawEbrw+E02nYliu6jfRQhozCOF+wyqHSePM/EjjkeeNG0wZWnxfP24oWffkmFuA54iwH/Hpr1FCTfu5puXfxxyAjxnGGwmBnHHr+NiO/5VN2HiVlwUc+Dlt83sCHYAgcWcGZW1JifFC2S9zR+Dq6YtAealpZJ6zrauTHsDwoDIeBU0mtRhAWwz5or+puqnxsm23np4j2omYc0Ri7MnCKVZmUWaH1fbXjwdKCjgQ5+09lgVpVqV5m9sT11vG+b25OCzwwQHcq8+eAn2aWOjjmR6whs51ojdD/J1eFQsT5iwTf9f09Re7hSRZcEQYfcYhASJzUiALS9k68WKKfJzsTQAwXEXQuAcQizqqHOcrZQ6o0GVqVDOmKouf0ELZrHe/HAAePSGJ/JOocgEsxtjpiPlcgSefPug1uVoGroh5dijLX5s0akbRO4e9gljeYQEO77YnKf9JtOgJYiIpweCIlMRXCXIXpqtB/atQFG/SUcKw8yZetHs+AKPfjvkzjzIIH8PBLXMHqlsDUUzwq8Nro0cJCB7LgAt1uXZmJQKFX66/GbeDsdsmoKeZ7tVz9R2Z6RaaVt1kEDonS9xuUImBu4xUbhs+OFTwnecCyuVo2E4hmRUW8nmz8zh2lIiErfBfUaCFrdIXgUkSPrxqKuB+w46X2fGFCDV7EFlsOxiH5ZA5TFOtJwlo54ogtWLerZ3whMrDPz45tarxzRow0KxLu23Ma7GBJlt1rSJkdo6ZMgpt3I/32X43LkYyH0lCLB9lTm2bm+C00ZMdCM0IY0knJmLmanuJUmMPsbmLAdEqOO6dWCRCzeCDTh1N3TwrhdAFwmncFPZRnV3HgSgbmd2LEsk581Aj1C55zT48c5pSUy57XK0bwhwyCOFnLUKXzEf77bc06uIlJhRUg6kBcA+ze70pFbTICOKBjq4eThDQ97YcWCxTrrtJmNHkkCfGc21wnKMPfVjSnUn345fEMSb8Qn9NvCBixyyBccOiCwtu4h2XsvZutOPe0bnoq0QWCwXFr5vSa5iB6aBwaoa1z4mmlyisFhoT1b42RxFj5JnV/J9Hm5MZ9ZFPTBrDZKzfC9l/r61xBPOm9JB2nopneX3dGjZA4dVSOdpxnGwVB/jMPNm7tmdvaiXQdl5YibS3eGKIHyAB6Msb8rKBhP55WwHJua6fvrQTmO+BqLlvUcU7ey3tFVy/nZ3lJr/xZZIo1HQ87kVDQxbHDp0oj+x38FKQBgKHIvLQxS9cCrrUxk2TIPgT+Y4SurhCnLbwU+JR2oHTxv2PngW1EH2SbNczwTVAU409hRPt/PbrJbesXeeURZakAqgYJCp61Usm9oCXzYtEMmGeFmO+JmcV/8xqhslSZhfg8q+QXHjGLFa2rmrbn+OhCiFK1FN1up2n0ztM8HTTXt64pmXiku1FpFEenVeprWWXOAZXfV1x91yjC1Frh1nlcZHLsJyXhG5R4spNGViFq/OXCuaCnnCvHWfR9zzkJAAE4YImJw2ZeOMBMQ1c/bPLPIsMBO6jll7wKTeeBOwUAvwoQtEfkLXVDMNJNkoKiTQ8kd+1zD8dao193Ysysuho0nWVj40oQLr9yK54tMR5PjK6rUuULuH2Gwu6+y+kSU1BSKwg18bwVzQqlAptAgS8opYIKTOQohokEMRTOpOqzQeSatDO50amXMCt8iYuULrUSOlc//YT5GIzHBDaiZnPgOy7qCXX4r53qi0FrcDfVGFP6rb7GDDosPKUgrsD/n8APMijwIkB+zJckCgvPLgsCMl40gTtrOdDgv6lMygnp4O2dTkwpDljTeT/e6nwVke7Gi871Iyp+30aTwQcJc5MINkIHAZ+gxc+askS9xXNInaT64zQrfQaGwWGEaJJLFXRVowZtti8TDb5qRpYtz0yI1LTrmtdw7m/vjgleh5GR/r5av4ezM9QTj+t0pH45LdqlhrZeD2RtL111NVzXzLr4pkxDpy+aUQZVygbOFMM033TlfB6x1n54LVB324kyfUyxjfki9Nv2rh8d6t1K3AvkidveyEhIR++FyOYWPBp0OLFUv2S3rm32OYbnhuYfr9j/z3te7U6Umzj1dNDUp+hXVMHj3nVXlaAnogR+gBrz3+9FqvaXO0GSbgVu2Xj3kgtc4hfwfKhKoYTL45rtUJmA3Qbx8vOeYjhc6VP6moB8lV+PqacJSL8dBvsdbmVQz7tI84nkTykP7vAUs6t6EldANIER64IvF3Ut67A9KcuAjipbHQGMZxZNolYwrNV4zGw0nian4An2ZdYBdSFb1vGUocu9M70o5+5/Q6G3mTloIwrE6BZs4JkzdULaK+lcQHkGph5SgTR082MGGtQ/45F2yOSXJkVERIljoEFMEB/Va+a/mj7sowKTt++lJMEG9HyaCWxPrYfq04YWUZafA5qfCXYFoKdVDClT7QEut4UqjqbJGuPCeFuC3fBti9l6DzMve22MtLzY/WWKLS5SLLWAaHja6penpGWLmTMknUSRsrd1VFS4x7sh5PnommmIAncCY+DTRrxCCK49UxMtBv2WkzngX2VCVnc3T/JtUA6CwjoZUVRgbeHiiOvkJD+kG6A6XFz3X7ooeP/5EHJtW0FJ/etKew7Qk8DRW7w3LpZk6QnaGLodp6UfpWtlR00gUA6ME+WDLciEZ0DV8YPGPzZq53xP5y7yzzY6kJlY69asOeYwHiUAgkrDhXW9m6Aob2205TcCAzEPo0lEs54ORvL/+ZCPnw7pH7Su4JoQKSmCgNQouK+PIBfuVwtgPyI1ObAs2/NCQy8pveEjNW/FmCSUkUg60+A+EeXMNqC/1a2l7nEZc5LNNblkyl4B6lEcACos3wnczXjmL2XQ9IBuiKVMgTx66tddVACSVCW1jePlas9NNUydCj90gRoMTmd/48u8BMT87ljT60cARqJmGfg8Y9BlRY7b5lXNVzl3ca60MOU842+BLwjkuTRhvEPuht6E0WmbxFmys1qx3CPlrTHRLWvzMD/x29uWHm1punTtS+RPR7kjpboj8OQCnlnSH+xcVpkBlaoklC6RY6HbGanI3CNGPfHtEs1CIhtqRFW4smBjwshsxvIXG7w8jnNI1yt/Px9aJSj4Dq0rNft18aa4M6/hosfWJ4FxrQOddLsvhX3qOk4AFqQ45RovNtNlK7EXvuM9N3FpJMb5/ObmJeVAPd/JwnYHcpCnQavvJduGdXrOvlaOSgiFINLjHDHuwJDE0K77Cz1ypJRijrWbZEPToZPfIO8TT5nDeE1eb2kLxcuvg9kmSWhOgB+nXtKTjTgdZCKJDmCKARMEks77ZflEvisqjLfwXuW8OOSfARn6g783Q4XqIZUXYNfrMTMlkgJVRO3rQMZuaEcPU/dNJJA47Azgq19/05uSx8yP+TyIYSwghdP6t+Bk23Cahy0gyZSK8Unms8kqcSquGevQiLqXn1qGOssTOgwwzLY9E2laFcjkwT6AMcFb+n+K9h+RAPGSwFs77rZoNdKeBigOHpIWyiPtwjceB8Yz/K15HpxE+qIzV1fQsAdxlCFK6WFUjXiLrxcHbbbwBTVh3t33jk8gfOzFFcqsmHM5+TMYIKrVMZWKFLn5F7KBdHivNstnpsn8BWQbiN8ykbD0C5KO2TTMt3zVkd49MdpAlURnHZBOYBf7PLAvRnoGClSK9ajpQ9CoAbbTkYx9lQWSYyFHYneomM3P6rCDXNJeQYRX8CxpWq6ODE1AHHiNo4ANA3Xcdr3GE35jt3LA72whlQ9xRz9M8Kmd5bmjaM7TYips9KONmQ4NNSNlV5jQoo7YgO+DwABhPrUeqfxOjixP4Yxug8aYdizkpwOv+KQw8kCmF7UO5ZaljxnEJfDCg6eXGDe6MlI8ju4Yh/pOFqiquC4sp703m5JcjpD9vyw9lE1e90IFpaAEsE4/Il+kNoBDh7qyVdz/guFpA8TqmF5L3ZqsGBbeJFMR1wW10ogPhrSAGF/hhYVjSoApAwfZ7BjU1jCYH2e8pROHcDBM4CesidDKIw1sEyoKok8M8bjAfjT3LGsC4dsqBFNxu3e5Uyl+eASMBvsGYkpGlTSVyyF9vChPRf70cG+IDEmLp0Y2Ju9eRJ3FWuCEAUIQu0pmqg3NOZC0p5/cSCuP3ewRtQZXlO3HYO6y2sWFcWltGQ7hmdkoTEBvJ2GlZBIqu8BtM+feMbIZQnPF1jlYILZ6FYkBJOTzPgu4O0LqqDSGcMzxCA752DKat0xMMAvp/Q85V7cKq+qNZLjsLJzOOrOUdkTlEeRK69em9L15nY5j7K+O+3rBFuEVw2mi4tVlVVgQLYAf3ku8RDGllQ4mJm9no2xBuLojE7s0XzQviYSgusl/cYqSISJQb1hmCYHRn8GEw7t2cVSILclq5LcGJLPc9zu7YcUj4nC0I8SUvFNov3pxoVDGUEZgnTRMjjeKlVTXZ1mYmu/1Rx694AzOwyPHPlRvPbWjwDv+oiiAOdJzpNybAGogx5S8RAB8n5nm78ICC/QtjKlapMYVmOeL8t25YCBm30Gd5p2FrCyJfEGqwHxnYYQqNdnLi7MXMigBS7qhgMIyXMb1YXHyGvI9WqyrrvQyhITuAT7P5XYf8sGjSb5FBPalCRm0Xt+zXDzhBmmpHvlMsioQjWW7AKSlWpheLThCSgoGVPd0tbkqzvf3NgfS5TakYlf8tiZcwJYSess3KfQytT6gECn+BAFT4uNCMMpt7gJg88qBFy9NRJBhu4pjqq9coy3bfs1jfQlp6DWz+wSUQ0F2FfwTPPQdi+3shhDMMsy9LSJ7zOi8aeekjwl3ZJ3bUsaCndEo6ke/xQCqpP9Bq14aBRIHpxpWl5ayW+YUicPFD9qXtBEJnzIPh+YkWp5TslCdswZbm0ipBuAlaRvG+J4wWF1ktAQ6i6/tpaoZjaBF4ayeuCoMyDI/V19PekjfxZNdweVPTYfTMb+WKLOVdMcYAL8XvED8oV0Til2+t4IIgjBNP933sxh3gJjnpei32gi0F8/PqtxEYZNNUCBtrExpsQO3MuoIc/bba6pZbC2NrLAKkkw52sVdYOTvs0hdoNc0ej7xJwPzXLObW/8QQRkZsIv0QJdPtl2YKtp4YjJptfncfvulY8wSuHmb/beJpn4NGyVxnKrT5Cer30rmIGB2dnZXmLQJ7Q/HuQ0gHl2G0+8FHRBIgVCN1H7/hVtGNpPRyiCVQcdrAWYF97ojYclmSxHSccQWhuk9/2x1rdMLK/b5Rb2mu/WDDnMyEH/ldgv9tSWkLybFRsbIx6wXe7NaQcfXuDW+MLJCsT2TmYQIfw/bTvnF+F6Pnpib3Uc0P2hYqPCXusq4aLeEBiZYoVN2sFYaXuMa/WNoeYUDFRIVjxq+ovma/84RuyUmJ1zsdFwO1j5/ScZhNsL1WJgbzuRxW97OPIy+d1Eo+GZXfXNg6D6gEBHAt+uMJz4NexTvNi4tQ0aRgydUiHYJLc9PCqfQopDXg8bwKqdm8riI1tt6I244xUkibZogWusBgbaZl2LWFo6LiYSgWJ9d7oMcERiIKmViu9CVkjJ8Q8HRqwmq0wfESfTH/O58zQQeM47eq7bMBoGkeknIjGBR1rwhy7Ra9c5tfN+JM2Vg9WXZ5YrIxU5NHSRoLnK+MrOQkBxjZKnSzNoFdISBLO4IkoL9QbTpmdNQsFUc5VKv2Ds0VaJDSh6pUlrptXm2JbXa73jFMDwOrciWWQjk/17gkpux7t7otLHPwunlZTSfzzq/e7yr0ypvlodEk8ag8oBuha0vWmbyHuFtxZVMx3m+V3mCb4AS+wc7zchcHcqEQubyNoRmuYIdR+JBMaChaG3jQ/eQoDOEckpO1J9JkM32GFj6c0B2lcMU7Tpyj2litjmED5RdHLFHyFrMwlsosOmoveNJFMIpXTXyg6jIoTe2xbr/34HSQoZMvAAGi5BnlIEA+RjrYaxpWTdDbSW/8VD21WbztAgNI1G+fjliyjoUGNwtWppVnWeDZHBVdzzJRSkaMY3yNb98CuwBYMOqTdeVLZBnZKzUdafWkaPChX4UJ2ck92C9zI6yhtsHEtMMHoR2/y6E1fEynp94YqJV33+GNllnvs9FOWVunO23q/RnZkrfvtmM5NUy1rajjnFeGBb58wGxxRy31PmE4HfEWJLfZOcWl54/+KsyfTnEO+SqmwGQlt3veicsrbfwy/v23FAGNZnMnD4gosM4uaw+ewwmnPhOWHkR6Owc0U0PQj9A74ZmVTIRoY5+vJsDmYIa67tCh90knL3A1eBeyMGuUqu0eTYpMJYYV5qUuzxXpi+1fTv7t16RIUxXtIYauu5FhHb/2oasc/yI6uc3t8oO0tU2tLSIWh7JcZeTXJRXE5qHytWuLyqooaPTU5EeMcwqUdbzixSkt1R+1uPpBvNxYx7X+UpQEA4tvJQUmcOFBRbQzUBUrXVPfM4qI2SOb7DM7QEpSVLgrH2xI+1tNyw4ed3qcFqXTqKKe5667EGud1MnigddpEltbyGxY0WmTLDRfY8yiHbnl72IlnNvLZ3W+g9gisKBqiQPUwvWyXJJZXrGb+cfwzf9/0VnYwEyBDJTh0qIXdrxR1ZTbVeSADC5g0qNZcPSPf+6sr+WBxBLso3SoKedIUuZjpW49p02VhaWwCF/xfOvhciXBvR67eJ1Fr2l5HUYksv8Ihht0HfXpr4eXJKSJ9mRBLRoNZF6pSCv3RPgEHdu4/0IXz+qUhfqQO34a8wSE5UMoVvxoLosScBfOmGurJzVC1TpzqyiO8n7wYPa4UfjFtxs7mozKnX9ueuqan2u2wKkuDl5IKs2ejeKnv07WYxvlSFZmmTaMmN+xzxfyYRphfNz0MXsGpByHVLXuAXSiE3z1PDdP8M6Qqs0W9PFpMK8N2W3IIQUvM+UAWW0TRxQpInAro6JxoWzp4LpDwy+kkBI3SFzt11u54P8fwuHaw+xBTSAjIO2m+x//PCrD4A3ogRfgh9eFiwrylLMxKJsuDvyJqFBOhz75KA3mc6IRi74/1INfhpnYNqlj/DL13wO41fNIvegSQaV2/s0qPxifC9iud/u/wnyZ4IgcxGEXIAP0EI6LGA3idGkdZtIdYlw72bKJxutg7SkyWmdMLVaoXRCnSsgj/b/XYGu+1Oq0Lq7lACSYKdOlwhz//coq6DizoO2YCvXsmh8lkEKqqj2k3L6FHSksG2IKI3VJhl0+KN9rAptfrV19A4I4XtIxM9BPcDQwsZXLPHuRvfJFmA5xqYseUmESl5DyujiBBXipZk1f2YoHq4daJqpq4sodvnzvoLm8qDqVwQQJ/QnGs7xyAkHVH5zfdnPKaeRgYDUCxbO0Fj2waYsQDCcxTBlYHQusjpJO63ulq75GQ5fm4Jdrvq99jCPs3XWyvhSdVHLQxSVSCzfFCmjCBJkMRqPDaFjIL3+Vezsv0PcBZnHvMAlq+7ocvHGzmTMwgyLEViH7ivG8Y5DZKlsRdmcDBAlD+biJ5vzyLKzVvDpEjmOUFsskzfQQzu5z9hwnHbQEnPVoMyaTFlsu7ID5DQTARGAuDHJNd92mCSryXNSAE7ZJKt0oHXIo6y8b5G/neROrC091VJNTPpJmygTsk4zJ/EsZTW6n/XZiN4QFMJyzbGzIMmGSSb0Zbbzk1PcZL6tldMCtEfRg2YrF6jfyrEGVbwWdBHiIAdnZHd6ozvlP1Lk3MIjUxNq+qkKSoeTZX/lYfsHisYwk00zR+mS2wxxejCXK4N4Oyefsx+nK87sYjyLXxtpB7Kaia8R+pXQg4dTwInB8BGuIW7Cye2DpPH3NGPxqOGuyPxj6wuaUnNrPqTEsUMsuQjzZmQcMurabwE8HicTsM7MJEvcJnDaPxs4PhmCRGam+++oHqzt5AVMmVmIcWYqNEzz29gIwPhplWAbpzHRHgkstEgg/4fD85MU96lzbXQlThGerRCYFeI1y2HHeTzTxewoGMazCepSujPO8MxRrJ8Hd6MfQyyY7a1HHn/r+gtesMNb66t0rLAaZC81SwJ0yb4Z3PwK1QhdbTBxvcro/V1mXh/RrAtgHOtwDtAC1A/xU051bwpy7oIHym/k2ffiEUgmjHRAtUU7X7awN46RNnN0odVPT3zSnJEknYvs7JZfcXZ+JTcdN4AQH8bK+/NepGuqBG/WFoVK9/X9IKb89AP7hrXeGfbRiu4SdJ6mWCjY9ilsdfIJHrWMdO3ZRcNd/C4p3trF2nUkcfmGQC0kaqPls1QSVmBOHgXbRWR/NqgLMYMysIXJfC8gYfHMRozjDiIiRbvd2pUJOpL1qXGFuoc9gdXBYwgpEgVt+cj0+R+nVT+b8TbIAn6MUppta12pOYJRzvVxko2Cvs3pacvBn8nVew5tpZ10wEzXDQs+mtO+8RVgaoZ0jgMH/4iHidm+Y55KCBQNruWk41vTgxbTNC5AloMwAZADTBs/ZpU39/PBOJJ7j78+dpcx3eA4MG5ba8t/F2IpBdnq+/WHpryYIsk1o5Ul8HxBRKDAoHvRPlIx969lPOLcKGMkxgFF0bkNFnvXhC0Phyy8bE3hB0wkNGjSW1jaEA+KY7rYHqLqDApv2nzdSPSRWLq5i+VbBGrMSm/UsmBc8eJw5iQF6kl4BjeICw9FN45v5d0AhKXqlc0imndC1Cy67Egj7ZGXuWjWKsrHflGiJjTmlY6lJKo1j2WjNv0PW7ZCh0y4vZ16n4fSjkf/Z1EA68GpBYD/XzmmvauFWBBFDoX4l2GLbH34MmEaEPgwh8WSoNBZ64uqA0iT/oKLAkTln0uZg9LisoTMYxk3zORenT2V/upFE1LbBtvj6bjLsnbZ3G4CDNQ07tTQ+q2KF2w24DAG/DqRaV7KY5Fup5h875v4u9loDfAInNFlQuwCrZPbmb4iwrIT0dcUVvqS9tTCLb4vDefJ0VdDrMju3TlKpB7eRXyiODNBQm875j4r/6aJF2eSxJ1PA80xNXu5C7neUpdAZ3/HGmKC7aMwtzdE+MqWvfOobvx24EDY7HPHirozVuw6eGC+oCygcQB9JGmMQCd+WVEC+SJ0a8xBuT49WZm5YkSl5mMmy2/9IVfu/lONzEn5UnknZX9TRbQpGji5dN1ZkEcQQ+siskcvxZ8NATlCjGkyUVwIHh3d4LEeeUU+OnKrMC3oJu1Fimu1bmwavm9JS4afIoQupSPcOTnUTh/4pjm3cFbf4AZW/6v4yVQgkVCeWAmjDAH6SZ9pl4QhV/KQUzLowTnOJzU7ELCG99iM8BxeqaDWHb4azZeIw1+I54Z22REY9qmMcz9juP1km53be2TU93lAYXK0TeyQU2iAH0qEXW0DE/F1BZo2i+oDIg1Bt5wIXCRW9xYpV7yw5tbcXFC9ARZB1F4tjmA11HGIVMlDDrsCEk3m5x18DoAzuU+uc3ABeq6m2RxfBUafV+b/A4r2uAbEiyk0GSwlO6g+6kg9TNkzdk0AK8Vh4Krw+T2qW7wzIc8UpDKU4t8VEsfk449zwMMTdaq5qNRC0l7V8WVwKWM+Fqg1xnaCtEbA/KDiVO/O5ZX1WK/JjHDTccXHMxnFZ6GsfEx67rqT3whJgSvqdh5HcWF6pl+kUJk23g+FRagb76Vr5yqjWI0cMp+lh6XVedOWUhL18HuXqK4wZ0qUFG6JTCDBdS5LvQrelNhllH1CXr0BNBDhVplcMaCNIG8uiefaEKfBN/Kc+1HTgtE9BtPSivMDRo7aynWI6oXvHm0QfpxkJkuD2iFw1+22LApKMnahMEUcjOL8XPvv1Rsa/nbM+4rhMUw5hJVvFkYWlOyd8cf/ByWTEXZtrZ0eJSFB35+NqoV5IVYFsgiKOedhd614pVTvxPrmdoatyssvQ4lwLHtp/jBOGVUQded7xxyTleFRS1n25KEGyqDFIg4Lef7RgY6l/vnhC0Vx0AVWZ/cw27lGgyQkFPC3GvN43mmCESSc6hwaF0M6VF2Qw6pWyyoDezivn7JxXYSeUPae7mgxRwTCzmqFN9IOBgbie03SmRQagiwjbNN6M8MECdgWPRvT+k6gDoo8TKUuXR5n21pH03xIGaF+BCh1JcYY1aRtWirk7qMSqi9tzSZlGD9222IJqYhg1uakeVoeeVA4ddc1SXptHpXhXOCgY9+vFJSukjFSfa4lGdnbe7gRAfq3OuF/qS19BjcgPnBitOearahvW1Z50pYzXW1atW+qc06uVE/Fc6AylgwOvAjQeZZE6EN5kuqNVTDIZzQ/LhYH8lm61V1WXWvsbxAuTWQ8ya2FFKl0wksNlMTRtD/hhN+Yf3jvK0xhFWholv4XRYyxR+MfUgKMFxEa/eE5y46/4vjcySlkT/bVFC7XvDD0YyPyKvMkNsYRhxBYucMDwPyXGeMWpQYey7hzQSWIibQyG3WLzZH/o3EFXqpoq3VaJPCAUv3y7xjdltJK3MDqCpp4eyxZ/NWkIvjQ+B+tbA8/y0H/11d6I9REp9wtx8SVdoTSjwsE29XfKkccLnY7Sieyu3U9Qi2QEldp5ssWthOUbCR+1jrTux4ZgSDtBZOSFDl8M0I+kZxA5J4xP2P/EOymgAHEpPUEpuSvMroY0hmXj/Pwff4nYSqqD6LeVtWn6UodY0oEmvbE0CM2PNVDhgcVhVP7HF0kRqErbdDJPAQIJQeCxgg2suWqleIaenk6+PcDlqoNFkekrE25W3grnr/EyoNmr4AOOBi7/P4qwATF1O7OSQKWPLO6SlpX0V118Z50L5e53Px/hWU0gUAn/kly3H6HEPd+hIK1cDm+M0hHVqXAbP6ifOUdpOC8BxNoSRLUHNDnkJIkuW6STcChOlm5nAZwly/2V4+DeJ0FCim6hwgN/GleO9jv7LbC2sTaaVH+l7UlTvgl+B8aHEj1z2IXmi+b4E1xBf8OCn9TiGlVQZERGqzedjxtLei9FI6FHzBTIOPx1LnkZHBM6Kf7pZweLvtLex1eIj2Jyc1Majjzc55TFwNSIr+3moQGN+i61+Pq51N6F6B+l6ZZvq39LbM2+dmcABJ1iH9IoLZ3gvWcdyJfD9iL92Gkrxirldt4PgpvL/hT3nWno0wiBz1ZJh2Rezi0iBVWhmh4AGjtqz9NFX8q95FDSwgHtDw3T0CUv+RFoabZCPAlcxTUmvKOOGgwcHIIgJhe5T5sQhU/v8T5/d94bcrnHdzHYMRSOQ9uJzZ39Ms8Y4FmSVKLGrqhSEo49g7jfogajPkI9+mymMKdydGNAM3TCvts7yHVK80C7bdiPI+tjZIZjvRQitxTWDjYMHvL/dSP8k/rqevzWp7gzNm9VM3O3HAMpMwNeW0ZiVWW3Tbx/b/5TFiPjo2ZiEoOMMBPKUDeOnM5+InRkQ2QKyvJIU6R47EC/jJJ+olkIgXLJyjVWyY+PX5YO0NKXEhp9EpzlCXqB+AQT7f11K59XqI6bqx99wVbZ/4YPn8+g69s3KA/OjcLGTsVcvmqyE0qQj7i63EeoeyXKtaFCmOxIGdBTuwTFuH/1FnetdrVGGTjOsfoyZYTfNGJWtLtF7JLboKMYvtSY9dMDr2STTFiA2Q0F5bBWgpNNIbfjYRqVZPOTVxrDQSuzqX481sErpzh0nz/o9N17WDeqz2S+Jylw6RGG2atCgfW6wunjhnWr9SASgLWTVRykYE5prtQBjU/ndoH8KXrh7JqMqM8wxpdsZ249xKUCZ1/O5rN2cP3cT6L2Fsu3fAL8MWsdu+7lLqPwpHy9r3NkhWQbCo81fbgBDYzslJ2cl6vN/CojY3aOvBLJgOZG8IoUqPuAo8HLO3vFkCVkNSxAoGgbG0LMnkahch4a38RYECP9NVAR3PWgb1vAzCFN8p2i6Fpx037Fa6aviG3VXdfeiPUK3iefi4mJsRGxkmucIC/ExV2C+hFj4UU3DOlgpTObjxq0Y0VlG41NQkBbCPMSVHOILKSOo+du7/2N7LoJti7Z3pTh+hjAnrd1Qx5S25Rn0q3tEILAzqbcbWRblJbZXelEyj9eCRICma1dJ4wiEoIUPqdrFHnhuWY/tk8Xf4ubz8KI5AaqRuwo67SyLTEtl5wAbM9QyypDhUejM8MQwF1r2w3kM1qIilFQiJDq0O/rWUXAuQNp7e0O+Qr/8pZ90oz0tE5Uy5tB3XPVdfg7lFudK1FmGnVqkWSwhVPguhgomGGLkKuMNqbX6vDHWHqdVUw/HtZmD04msbNBusqO77KYS+h8JQAKgBw5wmIblWRoIyVizES0NyFBFqn/oirmwyWDp3Hgm6n6bgRgnXxEkDkxcmmofdwh6Sz3p/olyWi/wReMyPc0YK3K64e89ROQktUsiEMBmc5rOrrs8Ivf5fSEDxguqJLWd+HRdx4x2mSnmadErG0Cf27844aPVtpmxEuQdTls9xunSWNmjSbgTmfbXBj5ljbggi+fknVgxTAtOaN655gtKERfgzAGDVea1dj3ZT3MpPYTDLa5yKfx9qHfsiP3yQQIxfxZ2eu99O0OSyFqbClk1TLirdVV+VR0GpvTkdIsVyp+AAVZlLIPOLUHPpBeu3hqkGqKcMF6o8AWj3FjtX6/HiI6B9e1kBly39O9mYz5Xoo9H+J6IbyrUcnldPyLCia6ryyWvcbTaxbsC7y2FvnoJdb9fykORZazRRS/0FGM5Cjoyi1cirjpf1UbXjevGgwO1nANDIH8RgxnL2Jz74waV0LigBYOL5ATXlANRyryTfG2WyeWRvg0W2wd8CPnm4ltevDmOhps6XX3TiThTGY0NZXHdUGIMjLG4mBY5n8+pEE8AvTs5Bwi6NL2t6pn+qOrmhbJeXnKGZM1bDxettO0qt2Z4VbpdwrOFU2T0BeXcBaAqbFjS+pFi1FJwfLlm8wvfUhOwfigxf+AdD2jVewkV22G8D5D5bAbl1rqeXwJ4LDWgvyaCyHCKSpsAH7jDo19OA06yYE35L8ldZh5LHl+eaLFQf8m12JXdU8DbeNJk0l4e3lQPQKSV56z63+7BN/dgp4haVeiL5w0J7hqal/Rg4o4yOwKNF1W7/169Q49t5JTbZWbY1/hs/n/eRo9nJMwh3e/ALX076A6oC/OmLqqhrc+SFcTOj+nOhV1a/PGKNSpWuMz5JHvDVktRmEmdJSynjP6mporRZ/Fp23fYz63gE1hdOE0QJA9oOB/QCUnc1OFt8pdI6AzmT7ClgDlktnXIvQgO5dJO0e9bZCeR9bC07UwqCH4k9h6Y+dU8itUVAkUkGapwO2h5vMpgAGZ/g6bHiB84zI6UgxSV7r2sMz3mjhPsge/iABNnTB9OYXV0Lt+6G/mPXdcftge76speDk1F9wQ6okafo+tDlx5mxpqZ5DCuzfyAIO5FijK/JksP7/ttwgJjb2DVJfZvt+UpI7I4mZeszaDiTf+vl/wf/p6Zs09t5/hs8e41s1PCAPFMsFofi9ak9ahFJW+6da8e0Fc25+0NSwZztGeEO26tTEhyotAdxYeGyfZt1AgEjnamvJHgmasrVw74uOwrU158eKz3SDylQ7TNPfT+q1gd38kYcvX+qdXfZqQjDgZRJ+WR6YlUMdPwqo1P+qEc3z/9xxNGeuLTqe47V7d32V1+WO4dy1AOv/L/mfRRhdgqBB1AizCA0qJ5Pp7K9GGqPT3fnM4S8WXpePnQsx2XgqgGkAj4nkZmeijSVLZtSrxOe1DpNMUPwWz5egqgAoFIdiEEv5IIhGGvvA+WJBMTAFVa3KKFHsAnfWpoZCtSFZSjvWnQjs/tpCKUm381qRs6ijR1Pb2kaQ4K+U4tYZ/HmaRz4aJ9S2XYGZEg5stgOR3DJ7Cl5H7zp2kVmNC+c/29hq8fBCM+L++u41JGPMZ1ccCN3DSA+E2TcelRkzVPZam9D8892Hx507eKe18was0LzUJCO4E2zX2peXAx06ULD8kkRan0SX1J4waD3GTippuAfe3D46O2eTtgqElZOsHj/WRedvbYOYUVbYWB0MHMNi5C2WUvVMwUmRsTNchtAHWJUU2LgYBJV7Ajk9eVxiDU9avP6t8/DqGhe1Di9K67zfgtn9FR3X6T/qRu19Szc5NZqfpxG3n4cJr2zq+2s8xCjLy0Tr6ZJGDVPO11uX6WhdiLlcF99ykCUMq0jPTD24+Yq22vp2BAzee1V0Z1jDasKYwPLezNddR6KUn+GgingaYqtsDGMzS+RLV8YuoMLx9Wiu4XjepCDYQGz+M11to9DrB+vDX4FtcyEEzaT+nIcu/jqd7OWHlkIJN4w4jttTVCA214D+OYXofFwXGDcFIcdWFq/GDbzeQT2di8Unj6kbJrGcrSeJemEHlGrxb4ffIxBOb8g++bBgiLd5xlBvpWb8sELyYEU7DHPM7cvOlfuz0GfQGclOO2OsH+81XC2e1TNuyXTsPD1ZquDAtJWuT6VEe3R5bX6/GSoI84OatZgU/nRZCQcdV6e7a+RvNjeZNaej6rKIg1XFJpUyb0PwNnLnsyUDu9VgJcna2eDgsbsT5DrA/Wc5qD2nHsdxt6ouFMwyLJqXQIUn7Kn02RGXzYYZn3oPX29mHeTXMxYpKj05CWX8Q3DnKDDpRwoanxPX/BxZ4QRxi972UPnOAVO8780c6g+/1dINNPQD+LAcAk2pEPbyyUZLznT1XwpBZDnQXONwuOJUz4foIyZyypYoSFe9lUnvudWWmliTLoHSucUAVLMygfj2hW8YBN2RDkraWSAo+ePCy/hKuLdIZO9HRtPE+Vf1zuXbWimliDZ+QziP4HiNtr2sEZv8dKcWuycfiEwoseEodxuqub1aBBv8EcBakFmHGpZUslMipP5pdjTL+3KrJr9j9gFx8r4DJ/8yHI6odYedJTd/o34ddPrTWbi8cTLr0ENZg/v+qmCUZYKcDFy3qoz7EQFvW3Q+WCIecFSoBpLf8YDsAWpnZu/I5mvINDSeRrHu1QmurdSiq0Eh8TOONULZTe07r39p49sG6VtI1nKPj7QmNnC8xerEpkQvj5x03jpWPIVm3u8QtVmm7s32TDUs+82JNXrhwRsiYPWpcr7yisp7NzV2WFZ8viHXbJ9IHHzIiDQXCQkhAGBz1OaaVgC3ED81ZiGpMZfpefU7TUkBCjjLu7vlMtf64WczTdFtYPnjc+EZQglk6YCOAiOpd4j3B7UsrRMsSbMQdYMVYpoEsLjQNiSjW/HS/MblmQNaDQ3wMN/qdtGMDMH3RSb9qnahWrGpshSVhJ04Etrr/mmLDY9qeE9W5VY7Q+d1QKE7VOASNK3+BDlpjnxuFwjoRaT+6wRdKIpvmVXDxOKt4dmC3CQVdHIFaQrD4uilqJPRI+S9v1mtiD2E7dzqYNBLQu3jprKT9EC9i8uYDaNquGhkaTaUpxmsUZ6v0jioTd4h4fvBp9XECahy5fLNTc43Aw2/zVEZ1wTGgJPcipVewxJn3q9olZc2NylWWK5JMSqQAx7ahQizbdLXbir4rPW07s/20Zggfj5IMqCCU/ev8SuDnEzPCRSlsmahdsuXVxXid669Id58/NQeGbKkSQ9rQql4hgqBsiDLtgZU15WoiL0fTa7XzGy6wfn++P2WpgV9itS6+wzCUR85b6FCjoT/55E7cf6uIENIT8DIv8YD+JAZB4lW5Lbndm8zDStxyCxHhjV4IsQIEKupOUrz7brC4lVJjpP3iqPOdD+DGJPizUT2MZDExZ+OTDbQRDPkq/b7wZyHyeazA1nRgtriiYPN8qHIN972H+V5KWGqrNfjLxlkZEhdwAZpB7no1c9cKgepx1kJv+ScoWUVelKebV+BNnkKv8GjcfnCjA+TlW9qJWvGJHpw558JUxm2DP4bQaSppa1LXVtkj8KBbI3Qi61D8qD8kq1l5WTkctMp7tefhx7sahVoiFXmK1cghQL4jareRrr2c9OaWFhnkySVGetSyX9LadvXQYRben1+sn3IjHO2FXsMyxuwV2Q9xazdQbSoZlsckETVihYS3HrOnAxURxS4/Alw1I2agNGXrnRmGO9QsTevQ+e28Ugxvj4IyZyNNQcumnB9a4HcaX8400oI44ykZhqvgx/DZzi2WVT49Gqb8yPfDDdyLCqKas0JMzVvYpkCAWeJP1ObB91Wn7IKyTN09pILCvz/WUOyElhxV/6HsmcXixYQsnWLDSlhuxBRpuQ0KHzFbkjCDmabN75bWYf52ddUMrQeY3poi2lePn8MQMHWoXt1Y44QTp/G7vBjNj9e+mxF/IVTabUHUrho2l18FkCDCUbbMHYL6YN1yttUF0W25bASSV4vak4VFrn9Od7uYJZp+omLz35ARMLZGL78KS67ha2tNPiJxXs/gHWjx/B4EJakgoig1Pk1UtW01eGvTHlSh5Zj8XVrX5tMTDyGAFeDvBlIxbQXpBi8SelSd17OcfJe/bHyeIGV1WVELPncVdE01ed6Jd/30CkkdWETxzGx2DpY0MxaZDKYvRng2j1hZprDq19vNNevmERak0ejCGUeqkqwJgy8LKezl+bMvf4wLRbefVqWKiug7p2Kb3lfQqBjoc5NfDM8YXX7ZdlZjnvPPSFkAvmQhl11u9ORZ/LShHI9cEfhOW30BVuA6OzKkAjxkDOiwT5AwmA99gm5b5a/JKreq0O5vMIKN0TH5kiiC+R1BNRqQInHuXGlbkAGChSZ8mqP755qziri6VTrWhWOTQzksHn92bzgGxgSsrrTuWVqppjCqtQV0A78qwtoGYdc+tBzrn9vBAnDKhwI35fXu+stoPY7oj8wbt7vkojPWaJhKG4hnft06JlOTkHP2cbL2hGOGXXaGDMWXmLHHlnmm5VoCw0qyKqsyVbs+tNJiODDg3iOK+zkf2P0QpCW5U/RmpGWepWWCjCkCHWtpjLtyzzd+JGkrA3AcWmWxhaXa1jpJfh8GCWLBiY9UB7skq7LwYSOKRpS3OtawPYJ/Wpjgqubv4WG7i5LnargD4nU59KPgBvdnlR36oAPcMnfyk1Al/Oes7jbjNqRmhUQ90XfeSWJ+sPkjiEM2Dxtc/+qgAjGsdudHKxqHHvBebM9kx0pxWQM3jig6ZIwMzh5wv3w8rohX9SZymb7FI5yonTmgy8MHdkSzrNer3aUc6uRvSOZlyi7fyDycqP9oGtDFaBJIPY+gF+XQpTfHBxHyEzewbdpWoNWdM/TePUQj0y2IZgAl9en1jWW5x9q0CWJs4Tnggckjd4VYtEnqCFutgrBFTLDshaqn+jyvHBhUs69BEhXy1VWl6t6H0bpJyjOKYLRmkiDPu+DasOB7z3EGfaqzd4b6uxsloPHKr7UrzxfFibOitvgphaUXUhLZeNwulKmfyWDKmz+rYeBH3oCQi249intpOjb9aaIKlWm3UJhvjT93AUfSIkuMcMLVDtT8UA9HQJF2FP8/IlbDLI++gapH1YxnQQBXsQkpzlGQijJ8JdZ2zzpjMVo1wY7gDRS/WVV/oiXRWJwJx6S/cZZtfElWiHcwTKsdncKt5Rx0CO7itc2luO1R6dlyulr7hfFC3vqfm+eVNfKw3a6FBsUB8VE9dxDWRjlJJMOXpua6CiEqXDKOSDjJPyvdKKZCh0vZd7ZVUW6eDmkIrJQlGisVsOEHTrkOudbAvWa/rDkJ8xT32YOwAkjrrOcV/ZPClgqVT9IxEdRegtLKHOwlXO+ANgFeOSC1iPRNXDtaRQMc3E9DJnJGW2GRomNhlTX2FLBOyP/YFheLMVDtNWaUgqoVZxAu36YG1N3VSuJkx88pOl57w3rbMlmPRj2q2uQpQNCBDOb/LucOK3MyFj6e3myHHD9JeXdPeXtpvB97kuGoYSy0qLPXRMGbgyY7f8IPaVexATipf7Vsy4kjyz3i6GiWiDY4BbxZyeUrayEoWru+XMOmTs1hTee1O8F7MJltM/V/etGYwJ030FV0yNYWF9dNl4sbWKvQ/ukqou9rqgdXkfTMmNtxuBCzX88VCv63LF8U8CoPd36yMZbvzte0rnOkZY1LvLxukv+cQymmAprdSqHSCmq/HPG/QqCdYvy9HUBqA8VCvDwoXyIUn3zsGGOS92+erptVqoPdjNs3jqGsRnxVEPM/0ozrwZdOQL9Ra7lQrCJ7d1Pm4qTaXXm/UqQsMm+JENQBl08H19sWwfDEGbVfrKm878sy7o1lAJ6W6BIUT7tcymgwuI4Q3lJKxrHUzeTUcCKIJoxAjTzXQF8WkpZPkWmmyngXEp5ylwKLpWrICcZMDf4+eKUiF/oRe2kN20cjQUnAGNscwurO2ZCFUf6iS8Zdy4T9JtbZYCraEnY/R1Ff22MUPS7diK2CDP5N3w/rKII5QFhqdXsLg8Hj2rOmO9/hAxSTNVU3W+Q83jDE0aMi2Vd7NflaTbku4yeqljjAXtwljTu/hRgxqTQuQf7UYBndqjccE4D1j2nvkMgbDs4HDcIVRIxKVlnFKnF21OJ+FN19XmrxacvznVs6yJ/uiumV4nBzZkcttmfpGWMszQrMPeZSNGSIPWmBXB821BM4wBuxoATTQ0ZcuYlP1CcivLKL0hwEZN+YpZ5qlxLPhf/+iDFZLypTxyZ2SSSbVPD2q/BZXSHzoRBL9o8UswDXG4tdVd+ewrPfYofo19td52SY/kW86s/FqcMVYPGxKxOqe8NFkjnSLUY6f6ICUIXWercthUXuu88xSrfQ8C3hkj3yQHLcOIAdzOxCEUAA6ybu/G0M+yvd359S17bKlZNmXQXPrHBtFg/Hkoq2jwTszvNHh0fCi94Q/RbhJh3Tc0v79zoNULoUlkIlcw5zlRaoqdFjxTGsFCcOorJx3y8HwsTeyxqwoKc7LpErbotdWKz6LKPua7w5rKWpLkiQNwIlks950Qm6ZFJGNRMSw3sc/xzYCVba/ZPhBlNgWOY+Msg6vTz1Adh+oWfJeGlb4jB9dNQ8QmqRgJ8l6zB+Pa1PMprP6+unMAFe+WUNDQjAKql1rZDiilCeR3BTBOzfy6T8sb6iu5EHGr6LHi65Ei4wGSIab9UvkzFZtpzqCKWylcEuG3HaF6vsY2Iqy31Hoz6T+Uu55Yymf9OyurtZ7RqYxQWtmZW0CSt8AI4qMtnpehWkEkGY+2IGHaue0yOjyhhyU6FzAIaLOy8mHAzlg23ykM4jIzzEqikNxOskAhKFMHtUUM5kjTeeJ2aH82C6G9eS03/MeVwZmy2XgqGAAMnxwztzkCm9lmHHomW68HgxEGEct6WF9woi0hzngvt8JbHo0fKjgP62b3aTFL2pIqALWQw8wN3GC6EDKz8ph88CgLJgfCWJXq6y3FuBAv5UeXv6GFFzb+0UekG7aeKNo6d/OybaIxjypqWtXVLJPKo90hTbG3MAXMkVjhROTDqJ1dtb2ocMLWHHhODVKfkd+fPlMe5GKeiPhLpQ0oH/dzq8ZPh8Xfz9oeXHkrX8NIXaMVFGrKzS8V8ydZlrMO7XIGvSnljdzLdGmr6sINvRYlLcs9oKe3j0B+GsOgqzfQe+lZyFmeXWLbrs5ipFkh6Gz92UptE2pxQGBDnnJBfn1wEzcE9qsBnMXMbciBF77Z+bdtZHUMcxSTpy8S0LDuU1vg+jcFWBWx827zrrvmZWbU/GaBC++PK5LMon6yg3YWe/1KCuynWXETUw0pUmxPO30u8aWJthF1l0nKaDz3a7G6hltS6p3Dz+DvWyW3bSaaztQ9fjFcWk725qqPT9VknXhU654DxFSLmaYRbQrqfuNT7cXBiFuD5nSJy6SqqzQl2KliAVI1ifC0emTRWntTJkU4m0KHiTR9NRWhfjOkxBCU6ZXxFDcMCFim50Wj2UcIbaJr7PLDSk2D6yCqXKlcts58hMUlzN7AjMraKS2hgNGp8s/7m0juKdvyRdRIGQQdfNAet4jGK/UoBt6Mec52AnwzPIa9itiGM3Nhype0pA1r9onPU6MQdo3MOxs8oZP9TIV0CiVH61HPdqfA8cH2ZRO7Okpy9/4AALKa8HFnsT0osEZGOB1Egwxj7wk1dmosE8mV9Aa+AZRc5K+BP0///fcP6rLU8GPfac9VkXV+L0AEVapJFTBSZoyN6n7dqSwM8R/AApqMzh1Q6yANUGVtT8PI/QwEx2Q9Hj5Jx2VHAhXdOfwbsrORNDreQf8K1Inm6LQIKvYa1DOHi23Apv/T5yhePZ30Ba7ujSmeWyfR8OrTU1gYElKtdsit9O44aaFe9Z2FkNYdSuKqLmjZf+dUZsRqz8qtjFQ5E/tT6zV2t2zVah7j7kamfEo+YP36LSo6oIs8SvSrmzGt0lLWHtYPhT/P0a1WJWnLLXZG+NQxDpOgeLAXbaeVzndR2Wkt3IFRCGB4klpU7jdVDKybvBtUUPfH1eZJNtmlY8FLGvUtgCTzXOm8ImR3U+o3wYD4eXsOU1YCno+KqXRNjvPZgq6anzFxnqRudY54vIKu8d4mB0WVXEsrgr9e+QgfE/m6zo3xAJuWzsIqEE7ZlN9X3JyFw3UL5lkn5zo9KKfg34oDfjnzi+BDqklkE+ydaM5FWBDAz7hj1JNG2U04NzrwO2Tcch85bBWxgNO4OsI7vu0K4pAY5n94PrX4PUu4RQ6CDi3jrSkuhvZtyC5mSmM3XzxCDax/6v4YhxI+DUpS0fJuCrzon8aPnqMc2ZdcPF1oeYomm94V/N1mPYSmhcVx8XX1NiSDk/pl86G3beB7wMHZ+6yFza1DJ62GYtG/s3TbVgerLY34mU4S5mhEEo8lkNrKB2rAdBGFstl1cncpZn9bBddb2kbK1RcstXEADLaYbzbuinDSZi4nIyVqqIJogHZxigRI4OVTgQPvKq06/LDZpwRfq7AWnSFPh15Ab82W18B77RNkZjtmyHm6QalzONJv6bcUF26A5irDVL0CnE7cnJnAEp7xbAvIjWWl4F2TDO2BsaI6tUmZI+x7UhqEwXW3cyDRfpqoXg3gb+LsqS19DJmNn7mTzKABG9LOb/r7YWdh/jBr22mpCJcp6Zalqw+uGg+Mg6h2TFI2mwuycs/svRkQLqP0ygrAbwfytbxHO98TZxmfXajae7FoKIIcoefNcTlhNoHf9bdZgqJrMHmRThPUPdZdH2IMGAeR2pJWZ5X09fyloNxI5hLW9NMvZktmuRiGn6W36crOQHDzjh1E3sxTB+i1QcxoeRfajAYZ91QRNNYZNbpk1Fui0T6v6L+dTQkz5l3VQrZVBd7cJ461sm7nJlvC4ALCKf6kTXun3aA/ONF5C7271hx77BFZcJarv5mC1IF5QVhdL4A+FpmY2mZK2bxVj4zHESBBdIjA8KPwdr8NepTG+M+IjuUb1d9V+Gs1BqMftCADGvFALQDaL2Q/zpngt1LGIAgPBGJevDWDWP6wCNsjtbNO/4o1QCQx3iWcKaAmcVDIdVGt5FAq8VVAZ/lEMwGH8HZK0Z7sYhfVQra2HHvzJOnXAC7Z7G/tYcVtFpa3f6DZPV4Lm8DDHujzMSumSdfZE8NRYvcz0kzds5XbXEhb51wRT+LD6gHi21Z/Kw/5VBPfNm3dzASZo1WbGMVjt1EKXLAhnl05SKP0Z31uRMRk+Oy3+XdImDOInqNN4x9utbQxMtf4/dqRoyGprMZKkxfuPdhmpxx2pTvGzCQ8oolIud9L9GWicwrllbp2hx8rdMOSXd7mt5gPaFSq9jhuUWg/Yeds//cfU9FjfxsBcfZFhPOABghj5IFxDM5/qBY0HRYCt1D8sxgcsFqWTqj5npi2Fc5JZmmW7AuSsc6U4wGMuVmf0jYufwT1/kKjc9bnEAs9SBpyhbvfxQ2j6PB7QaDLRCMMjWcq9kPKofqe4xe1A0u1NwxpKGYbv/MVUOEDD1a1LfNEMCjTLkdpVtEi1GWy/u1Jv9SqqenXIXghNnLbygb1nbelLo0s0b9K8Dia9DTgoFscF92XwA8YKtdTltj9Oz6TWxrJQJFM6Uf30hL1iDsO42rbio91Vw3KDy+5vIkg6Xfu7ThA9P3VLJ8mpg4uKalJEUBYmk0oi0Inq8Vz3CfnAE73CVxdnUOxYqDOEXyj/6PxmKCCVEdvAD08UE/MBVVhvc+2C8xkczMeCczvX3jTDu0zateH0CV4iSSH4NNhdfuWK0EVTxdIIFoS7dbum0cFUIeQ25iyjwDuQk+0Fb+Q116eoa30OQDdTPwA/CEgRC1eJ49IVc6PwirVjfp3qpGfUIu5jR3MevN9MikLBlTOLKq4bKBA2pE1fwFgqMvHpwa8Akz2c85jfK9hQAROVf/7p6yHd5o5Cvx+RMtU8UJurgqjnPYOIGiRMqZH6XtXP9Fr5R0TCoRtPdJ3/ubRqgfd/OA1dhgjSKCApGCOw+ZG5Sb93NoVwO/lG6qK69Dv/63yAHRboluLG1CEyQEieJds5O5jt4GIpz8skcURm5dmYiWINgXMVV44tqLs4h4QTXfyvb0HA5wdDyJgCzzmIEXT2tZBjCDFA0Q50wa0f9NIkKIkFOfa3ihc9Ehul8cXER4sqFxb9CRT/fJyFfA4ojdao1tqJu7HoZ5kO+j5Y17kRV93yNKP2uhBAMWrKZYxsJTMBdpYftsRi52SdxvpbT6JonfJmmJq8L3Am0hQrRH0sGFvoUX64FuLAG+11Y0+NFBUZ7RkroEAYH6NcamF0K9XTk4MJzomhSg1RhJPR2og0CdfbaeFAh/qItushTE4u7Q7BJMlAotnLFTzf3CPIGfIAzsbqj9koiHUlDv/Aq0JFy6xSPAD3WMnRLKercaWMkWM6iNoP/CPa6DqZ+wTwwvNBO01blpCF3PR1tgQ+e1V5EvbzCFl3mzBGpcEO8kAqQ2c1aS8EcWhLJvpUZZtZXdyshMtISQlxAVDu87T31KExLNHNXiJs2ZRTdxU6lojXlGzOGQt3KY7UPN9GxiHZ2ot3Q89e8y608aNuBgjgWGjEFzTbW6FIK329bBDv5fKx2ZVzkBmkRp0ROyDfo1tJYSStwKzP4uKaSmxLOi81GW7yHRcdDq08N4fC8A+C4IouITZkQhm6NYajzjALhpjtoEByv2U9lBFd58XAkbtDCx0WDfeG+0+y+iIjGzID+JZyc1NPApFVEO5S9NoTCstbeDpUQNb8KhJ8cUTwfvkAtKxloxGXGarMLirK9WKec2Mdl83t5OUgAh+YiqvB2bIBlrrCeWuokoA1OhWoicYxLwhKsP+OV/rxF7pho1M+dUNApdrBf8hy1gHK5HUeXWhJYqqvpt0cxLhp/2eB7DLxNybO4fYgH+gS8e4e05ZwBqe+COHqW13utOOjXEhRnzvAdpdPWJL5wapSk2ryvUOw0/T6BwuKbdIuvhai65vqKq3TTxgLmr7887nGke5tEBJPrkWO4tB857UEDupFw4NYwIsHaYLrUSCzU4LfFaWqHf5ROhXAq3xCkLGRdYVRRoF0JqCc3oR2lvVMAF5VSykd8PY4hniq4COkHdkEBIViUWbokYx3HyklurPLsVejdg39CrGlJXMZCoipS0MknvUBxnmsR4HBWYxaB8qltqaKDMVM4NaCKoE+sGeGS0Lh8KEM1utTJDk8/pf8hiPdza6YJ59Om+IehGxKSZlf3MHCQTDp1/JfNJ6JGrXrSp6WLkIFugIO85qPb3THnx93JwknWhaPjbJINL/9v0kEEq1zRmWAR6+6yg8h9jrMqpB2IZm2j+kJ/+8an5S4zWRzQY+aejayZelN+w2OxRzxXTdBvsm07OIYDYi59vk19TmObLfiktUxtjjLhbLXGkF4Z0AfE8S585Pp/6RdPdkRGir85j8yjQt5A8+Mz4N/TMsPnEmmC0LoGc7s54NMI5tyoCSq+Vuei4wXf5db+rH6VG09hwIAMK4S9N3ShNy7LIDJPK5BmgryE4R8UaAyfnD6Rcz2cKUKlwxBdk2ez1IvAkSdOqz2VXJIBmSG8VLyksvuuZMKlEbBSVSonDe/+Ulw44G+tebRESdvFa25nSlt2YolbxKWfRxUp/uvxgJkp53ACj1Ju1++S0EkAnQ4GKfhkWUmC+QzktQYsV2QBhU4TpaX4C06xuIdszygCAMGvKhSqFhn2Ygo8UdxhNRXz5uOxofkKrBqjdjArYmmVHW7uZp9amzLiit5ttF0f5LXFA8M8q8BlFl/FYZWh/j4eOHNp8mjCw7lq+UWreMu95cD7zapCOuR2gsotaBzqGMVxKoOjCVcgb4HMeabw0ZTy2tcgHyOLZGVwvu1H8LW1g8aRK8f/L+hpZV5mX+3TV59yRPhBfgBcXYAqfpDlJd0mrjCgjekRPMPWazA1JMe2N2Ib1spKK1rtx78HhmDLJYjSMD2OTAKy+xCqRwkrJsdOQdr+u5rGAL8DErRaGUAIFWLkUZgISKFR30BTSzF7BihJHyLLt83F5Dyy/WxnbuTA5WhvVYVKZG/ezZvroBFVydKJ9Tmf8J+l0xl4wQFry3HcJ38YrG3LguA1dO1v5zUapJJ+WHoI6AjxAmb8VtHiX5LlzJzGSumOoUptkZWbbLnOeoODXjSzHdRH/uhx1RiBxGUVvdFISiQHtIxHprk2oTl8nCrnNZqauEWfv89avdDGhpRCSD4nDUM2chY+8cuYPHLkzS1c60vrvRMVinzmC/FDTT3GpIlFMR83isQAPIkCcjH7t8tsAeg5SFWbtxcveZJ/ptzSQyZSq/xka2XEFrw2VBhFHT5Wzl99eVTdo++4WaIOtHnomSUmbY4vO25jTrHvUpHmzaqvc4ubaI0GxGgxDjrEEKaZXt0HnsDL3FuABBCITGXIJ1S2ZNdedhzJT4auH8GQXtVUUk4DUO78ou8VNWGTa0Tb/i+D5cRNslEWlmMTR+PwHtf6ipNN6MnvefRvPop9BJ9nfO544vhEldYikuyHffOW7164OVy2yZDK2tLbBwHygm3HfDmiJ2nu5kpZwmENBUv4zgQ+JjswsQzKrJVGFn19dVWwkNzVuH5Gigh8JVhtYEz3AXDGDZ3a+YOOkU/6GT4wyqHZQEElgWpggdCYaZV/4pV5j0/YrJvxY4NxKESsjJCkfzhXse80c3gze5KBN1DV1j+mDZtdD30VEspfMqXHWDao2BkbA7eBrOnDiINdhGYFEI/NYhIoIgR0JRnjoLR/evR332FZthR3ryovZ2k/TMo4R8QJPfaIQbLeLP88q23CkRCnabsHHDG0bcTBKsqknYXhklPh0gsN0Z/+ZDPC0IWTw5TuWql6Ef6I3B9gRuqvxOr/rQ4zO/ACDzFaxNbaYaiTSOVOK+2k2KcC63ZKS8LRK4VUTXkffPNKMiBGdy+OVYb3zEvmxWwjnsmVaH9YZOBdAeww52dMIKBGd+oHLq6L7FwE5uvd6Hi+Su9igeaS4Ul9MTJWoRKZfZOkWBeJg7ZcPXW0MKXqfVxrehxXqeP+7YmS6Cghepc2PveqPa1jySrF3HZfkBnwmKk5Ld2kdf5U6PWGehKm8H2UHb/Wgc83PinJNvV3olLYrcaulOF/EInm6/vmI1Sw/kky0PHKPXC0Zs+63IVH0W36CHqFPDFX+OXaV4uEBodbk8w/FmMurCm+lDVXOqxO2uq51JHvtFoAzV6O7kCJNtyCEBblLixcVtTghrPis18AeB2sw5nDmqwLDn/fylqzmjJwJDLeQLUEf9E9uMjRnCKetQYKeNe5UW7Zb2HdNREidU9dYk9RY4lyw9uy5P6wm+6L7ZpPE4pJQ6jT0oqghKTzg8Jfj/uXxwXXIDmR+eH4WQW6y72lCBKXFiiZ9GoCFoOoMfaxdd9sxhu4ib1Btsckvg1VGgQ7lyyD56f8hjkrNpk2SXDCe5kioSI8VJg9X5EpeEWhcGNDjyl0YuMRrd+qRGb/49Ku0Uy+Hhs7bZDcRu5lxFbd7qwED26bpbc2ru4xdCeD9nQZ07CR0eosyVHBITNu8wx9yjUc5pDEYCeJB3UbmcpPPJ53SLfKVKig8BR7RkK9UC0GuzvJ61nKmD5BKFr+njZRkyuhFeUom8ZRdB4tXhrPfYEn6AeYJca2RcOhNX/dnCLVhH0xubTm4MEewRPYHONd2cKmYhHmTK4WuHvXLYEgphqdI8gksmZo/oAg7uo11I8/vOq0YImEjVLcj+oDhuCF4WiTZfsFpatyy6jsTBBneHSVRu2udkMZItD/mcq8ZOZZVp2dPRFKEtaM4LRLo9Ydq5RP2bX95gZXkh6sty2yQOWiw2wwxnrybrvacZpkTzISSs4Pd5HH9w/QGThfSgYDqzlsaAOVcHBI7W8lkgY5D9lHW1ZJ/jOtgI/aNIJvsrog4xfsTVpziwJ4GRpYHWqGpp1o7Ee7cP4T099KtiehsdFaQip12zEImk/TRF0axZPcL34cDFPEqAuDH0YpJ3O4TtfHyMHkod4nS0aEOyb1vXFaeLx3nvuJkaxZX1PilQTv2WAJFKweDed1HvYKukz8JkhE70owySDjR48zCU3x/kOc6AP19eV8UZSU5h+7cUqWHSBFzqOIRS+cxr0qFbupXnnImLjbW1wVIcl0R6WzhQxTQ+oiFXdfZh+kkZ1LZ71abjamnCYCcvAeCyzDZkeV934FFFkthkBUdC9HjDMgcKKmaEYqtQC3OYYwzIJac5iRGmoOWEqpyfzRxZSmASwmT8x21u1PyO2gmEHSR+6UGrFSO+tNO0riVCFBhGeJYGK2dr+/3SIV1X8PHtLTd5x1P2h8GepsVTmAi0vG2YiyFkB7BXpGc2wnNesTZP+qQ65q55JTSUGrHZXB9x20ckxZMKpsn5zMf3mIdr/rKusFhLQAIsMPcvxVgaMwkS8VU+K1Ym+cTBRa7XAOOmpDWPwWB+BdguK/kCmxfWYm2QKUDfavnkV9fuXfkXDdpV4jn5zatSGuQ3jDERpQY8dCOjM4Fg0YAOUYysuIL/UG8gFaWa0imUQN3BvrluVPITcCvMvcBXZO5ReI3e8apybs3oGDD5rT1KIBCe1iUSNo0v3K6QcwldOstgw9pv6clQkMqeX69JWSOnK9ICxWGfqwIwy7DFdqyygfYgRgPeHLW1Nlu+jn+d1LHBIKz4U5RbYcZxub9nAnj+VeMq5uentWuSMRaRcmdt77UYvDQL0ncxrVf7w4vkc4ldnHU9lCdDO7VyEwIffC/mvW4xA+wHBroSLZNe4So7FEkJ+5maB0Sni3zyGXmhunaDmmaoMcwp3X32rq1sSVg9uf6C1e0TeQTi9jVQi8KRtElbxnK93OAGwrl+VJdzh0u5NIoBJDwn6YKsGh0c4RTI0aHm931JtyQaP9eKt5JowxBRpVj3VYStGgdNLUVz00xvCMJSq/6AOuoZVwxaIh5dzdcycrULz8WcWaXp6pDyVIXzbY72yxiI2WOAvHyBUkXwEo7Eo59GQZ06/BANkukIy+SIBXiA9ulKM3uAmW9h7fjCsnj6ZSiPZY6OEeP5Jfl/waOTWkwlCtaH+WHOOaYyMb4YQEjAqdLbmbQZrREHrVz+R6+Fy4On+hwYn7+ewU9ougZ+WIFfneCnkNgHWdTbPY4Pwn50oQcm8Cxpx1otT9GhEy5hNhNJrXJf1mhMVFPbpkd+9Ho4J5ayi/vpBllYLhyLtNjxoO1QDNy8MFGquZka8UuTKcdnQ7Kz19Kt2oRRc5kPwBkWNAFihwBC4MZIW9/LHKxi5UWBlHZsTVXb0FGeo0RU+DLBaHrd0faXm4q6v2b4c2U4UE7P9ma0IYWKPPrOdhav2dCGWB04F9boyMoKe3OjGD72K+mEiZwoYGrzDfPzSMqdHm7dhiD0GD2ugnawqS6iVEe2EyNdP1Ueg8xGrwsZEIB+KVfRlVsG/2hmM/Ktx3NWBP/QPLprNpWJaUAyKYIh3FSKr8mNNwZuZEnv7lb7x+4KDc0u0+NfsxnPMxFqbZHnJGzT8LqmiNRRXo3dqrYwask1SEF3iMLC6KPZYG745Fy4IyVnq9MPOtX8Fu09qaGFQMMxORncvnSxQU+33m/2L1eYeN81hqnfqG+SxlLYJ+I+lONqsj3u/UEVeIJE8J/IKI8WCYMDXnCEMnxfzHrHFgDcPrbTWrhWF0RK1cWhZWuIJ1guhyBaPXWeh3DYXDqbuCtH2qs+vQ5L1txOGwjTGD44NiSAMvSFD0ki1OndFi5R4fzfwrOgAo6718GxtSwz8n3iIoDCQtSKQMS7QJu5twvr8x+Rp4zUlWnghFoyzR5YdtnnmKvR4SHmi8vbtcNRLD5HEnc7Jt/7oMBkJmoKHW/KHFHquCtaePJTmpjt440Ai77rEpjgptJYjowNLzITdWmGz5+xDBvqGIZxDzcOtLlyOaJB2AAoBEYBeER4eklToosZmuGt3g6busSAPWT8RzE3FFskrjB9L3CYk3irP0VVo70U+gxYrBbYsAPASJZezpxLxlPEqOrYWni57SfmjR4zPFGLzOVMdCaxoFzaiGMvdQ6c7SI7ivsZEXuEubAfh2k8n/qHskeMVmAuFfZAtfudlS3mFPdXOplEYBjkizDknYgxxFnB2KvpmMZeMJ+GSGYP0uPvmAY4NjRl/iiCg7VeAMhKZqqx54qEcIeP/HlQ4g+FJmmpOCiOwi4z5de1R9RF7T7bO60YBVDwsfImNKg8AjO1LPdX2/XuB5Ib4smwTbOvTGpHz+7lOXEYDvca9hBVutnHHK4NJ4AsIfNLCJm+Lr/yvZFPYAR/ZlzbPQqDRgXaobT2GgQWOWdCNyanq6PQNtBviil+YP9qR0hr4oTjg7Rvdb6diU4Eh7/+Oy2ngb0Rw7A19MxTTMob+CJrqi4i1VCb6/oAXII4MGSzrziE44b+K/o4W0ZVBQGWLjWUvZlSKR+ncSDJEHcN65OlYRjHyntQnTFX+v8aQNDdM0KwP7pAVfw0WsX2KgAVor7H9Y2l/YXuTbcjBGN2GAlTWkFLwwVJkeDXlep5Nq603RvLVq8X7GZ3v3jc8CV1hZVNugFjr88oib5tiGtAgFeUE//hqICq4gHwMi9auhvd5XMhZWdhSihVzMYTHdyvlHdjUgM9TVsPfnsL+kF1JBzwpn8Ewr6vVezQasKC0I41hmFzb5Zk5RT2m23jQA/JxAnPTigr7mtJsY5YHcmLnLcVdqxUolbzaDnPXJhpZzULVk6+r6RzKzgBeVM5Esl856aS1B9+gHG8AoX8vzU3QBzGB2GT6VpODhkKcdUawDWwR+PQQ9X6STUIA/nSPOO0Y0zGcc2cUYTDfxsI7oMvmJXgC8oti/SrH+n0mCWrhvslgA8N74Q4dbaw5JxvC0MBU7+eeTncFhJDUaQutxzZUgrTEgwtk+KKAUcrkbnjydIogFk6VW8FOrLN5Ul0Q1GWedBQ4oGaEaweH+VcSMXYEsoptv7mMoESssZt2Tyq9yj5D4C5ZqRZ/zsHxaKNOU4Q7zUuYiPJ6zFUWCqHFTUtPJKUzrTEhc5PHG6I6MPhfm/eln7/h4ek4oQMWiYsQUktdFIYIPusyfN6LNqDLQfay8tFXEwHVqKfdWmPKQMtp5bcByC0VOTuSPmg/WQksD3bNBJS+8zFGvTK/NT1vEcmgjFOsNd6qC22+9DYs5voyt48cm23ARJ5CgHU0KuCWYgBvkmnn6DJ0A45/pWcVPPvfn/M1uYiWEY5So9hF6u/yzaMsOm3dK08rGvxml6++XAtHWITaYgcfmUOL3RLBU8JF7kOP5i6Mqj3U1He9QilIP07rTWoGDjPpCh8AYl/GgItt/nI3vvWRvvhXBwo5C6kpW78pLNuGLMcT0ceUrCpAIlp4sShRMAFCIy+APWWY8xUKcGbV6DzGeOU4qUf6IWs/0zQ12UtwTn+sHJyNgpGf8R+flSkicV3nqzcRhC+aUO7ByW0vtTElCiugGuR5xTQ8hw+4irzMyquPunuAdgKhAd4uDQDTaPxBcKJLjB9CpaebeZssQZ8CT1TRwcVp6BhRvk0mkRhqrfHLOJsVLFu4YO8NsT78nFhXHTdCmuXXFj3UAGS8belt2q2s+6iMXQgPsWXr+82NzKZUawQwopWDULV+0i9oNHGoKqv6lHW3Q3yv52bqYbw0D3Je2CZhr+jSh+Si+/ajFQ2SG1ARo9MFLlIJZZEjps43pItL2Yx4oD25daweOwQdE9yeW6xaB2xSgWDNHXSBgM5HCl/+5JBAUYXixy3vDIemlc09ZGHUQhI0v1q2pkMPDjwjaUVn3xvEAQglc2ay7aSeVN7WtcsVOPVOVsk0HQB2Nw5nBQJqBKBN7z9E9L/o3HIzRFA5ggLOp1iXC/k9wM/0WiQztJvQPhSnjJT2ukJaNLrwvbDb7VoOLv7+ugyVBT7zBiQGxIZfz+sFnriNqw6PS9nsWJbyU/gQ8BvVIWcDuUHZ+r5YDva+BlZiVf7oXRJHxZ+Na0xyabrUZlxXc/6JaLLAu2WnFQUHhhtksEz9YboEq7zHiDQAXNsmQpvn2rVH9OaB7LN7FJQcLK6ker4NqaT0KeK2UOTvwuTS9BYc4ZvYWfj10TREN0+rYUgkBvzLy7CNqNYTAVYqKoAzQKnvs/bw0oVrkbfZ18Pgtuhy8JCyltoVbGBAxlm1MlfkHowFXmHVFXJSNexSUeLiD4ntFKAJseoK015JZInm84Y35bwxNtoAwRfuJTN7zV1L+3vKyWbIqkMeQU7R4EFGkSF4jDzBFoI9Ijsq7TjK7WvC+PkHydeo/UfqGjLVMUjASkk15DjECEzBfD5lILdRn2eI+mP1kody3ZPWxV6ANzSHAx1fKoxVy9UvlevmYDYvuGTkPW3MUpSsoAhIEsdRp+pCpkHxK4qiSm1oQZccSjbhLe3j59QwxoB5H08H+ZuMF7vnT61pT7K5LtlUgBJekn9c/V89/9NLlQ5Pu2DmxqluRNZnCZiFnQ9ytqDd2Soprdgv2ZNCR0nTfm4K0GMWr8QZ0q4BAaT8pQbMwTxI+7FiHS9GYHR4bfec06mIO+6TM0loj5LMU+/9vhT3mQoEotLg2wyc1jSp6zD478T62Nnsdc6atblGIV8E+TKlLCvcp0cNhOPM1OW3ZoPVJnlu/a36fH1W2b1teBOYPZIB9El8CCQK9OOduPyObk4Sz644XIY2wZsDMYufYbq4mlWLYkqoXTsFZKVniFLeqefBaM9CQPlqn2Cae/02HYJ8jQhgY1KzFQS6C5RN3UDaDBx5RrOjYsiM/bSzh3CxKdTllQTo9KBKjuo9opMJ4N5IXzHZDDirLpsGIFD7B6GQngHDG0mmi4qgakw3yir8RKOHOMd5KEYeU0zpNnVFTGmGYQn3V/xWGrQLFcLJ2Qd8gIEifzXxOhid6BfJIzq3ltfDJaoWjpa3H0V8PbT8ZsIqAp6vPo/7EaK5eTLvdWYGXa2iL7UYcQ/hvhEWn/rdivIGGznQb8tHe9g39v+zBGKNgZiUz2oIIQmY5qaAPwN0+P0tSkF5skbq5JRh5tpueKaruM51YjlWO+dh3asvNm3L2/u5wrsXY2xnlzQUlfRKfBaHHcy13WeFPYovKj0L/AwMLUkL2S9Fy6rBJuueyDARPfdESeZZ3DZVv3D9yMGQVncIdqqzzI/qyQrLsZojZoSl95LCIYHo5CUmujGPCZLFepysBH2hGxrXYIzmnSdZ/vwT+ybAKXQnVuLFga7OWzF00hjCOPvrvA1SWzrkGojlN8q4PF6t53+hdjH5RGxgaw7wwa/Bc+FAEqzvU16F1VG9jXfzqGeB2Xq0pe3U9i87ij1+3m0hLvMMaPHND2dzYXUwtMMyP7uei2shJO130Dp23RW4rqIIjIWvlAG7pKsMecSVz47Bi4LlpEKvrUNJDhPPqCuv9LraMcRQ7yiAAuTKJiPU5i85xGVIwGBZQAneUphueMe0srruX6YMvGf10W78tUbp+RtYu8XfSmCyKU1C+IfHzNlkiSbq+NFxuTUjZ9XWoQOFjKVjJYpxNqn9kq0lvfmbSio1s/ifDoNDNakMXgFt8o2bd+fneCGl9l/BaClCFhCplpqtX+IaeRSQP2czdw3xY7z1F8S8LFH/gZfrW0eIOGV9YL4Yf3oybViMcwTqnMGTkiU8Mcg+ALrNYRiUqUPrzZLrF8bYH5uKTHBXlLD/Ioe9o0iEkuum8iWtXOjYV8bOt5QZ/VZTXOjRNETJYtWhKAWvdPQjfZ5im/WsI7dhHCscuofi/x1rKFrvlZdY03GiWvRv9jw06mYvh6xmEQJHntORESVZjJPcaAjBczvKXRRak4zjQrflvHOg/xm5MvnUtRBwohA4GGU8Q/mC0bL4OqWll7WzaIsPbA0TS9y6JLt9eUAa1halEQ1xqtpR1kP+YaYIvnuFPiWFwNcp/rufxB5w86lweFkCo/9tIvrEj5fInJaLEshgHOOKU8u26wOnDMASWJDAZod/W+K7prUngbM065/ROOXIV0hgAp0qXI3xuFTWGsvIWgQ3jVy5wLVCmt5sVZSx4GGK1+ojfkT+qR1oexMjwdpQ6iX1q425/0Fgf4onl038HNxYJ7q+rRgys7BzoMn863/XgSAZgCLVdmyc5TjaIwqBcEhDNY6z4QicIg7fQmfKvphxYW5c/qi8h6FXQQN7FMhOFuEQYFN4IjNkd+KJWGpi8g0QVMwUNh7rH6WmRXRUIPPPsnlxgLFqXURj9W86atbLOD/qco/XnoNbjyCQo/u/tynSzPQAcBmBp0b0AJU2jcG5Ux4hE1KRwgOjkCkaujYm5AIV3cEc5/5DpY6w45BY4+7R31F4b9mpkl35FQkJVlIOAhG80VFKO5iIVXynw67HsXM4vpzlMLs7duBPqASuQ33EQr/lIJB7qkHnuu6SgkEm1364YYlFaFZSwVQAD9db3YNq5tKMLbWhILEz4rQhhpMRFOhzf13BsQ+9z851iWbw5bI8BnvrLnHvt0q2xwSaPHbUVAf0lPuOopoZjJvkla3UmrjrlOJLUSAT4Lbr9HbF8kwPBADlNO23bl45uebQAJsNKgt3v3joSfoJRPRLU6jP0GEI/zfPcSNgpjbIOlXwSjN7hOu7VXJ+WvwDb8Cusg1cOKXqYGaNOiPgL07VgoSbWahTBTQH5lPvEae3b9wVtvrIxs+eOG58+gAqH4XESwmz2/QgF3RZfmBp5B4Xkw4gJXIeP+b8HhyaSMgL/F0+e+2PvL5tC+iZ06qRyA8/+pdhSpESpJLE3K/kpmukrP10FqzW3X62MW/ahQAuzHrq3z/HJEmX+ntOeVexylMjAyye7iK0v123logT4lthekmt81PTYi14soPzj6mngNxQwpV4gQt/3Bcp18PolKxR+tEwF47gUadywonTSF1qAnuuGvgdIySaaz9IpQlpYGfSiYHJLV7xR3He3tKIirzjpbafk61bGGGuSs8/HGAoKX28VyQO65++JOcQbQ+gCPxj0xnf/gwA+O4TFs2WRvjGQin8eoLG0zn35R6D3jOGk8oezoqmnL4Yt/A3Gi3TZ14OBntHNUSHZtUtCvGyHFaUCh8BVTnsR/T4yU2/0xPHtfU4koknTqPNIKuZEXeAuc7S9xqhXk7kscaVyzdPDnmdPcliIbcOJBoQrarN6ERFaldiTrfFYijn6RHtb/PZhQebnzWPrYqOEcP5BJwz52f3oTlseMDeBD5e8KRTLPuy8Pt9S2fY47Lj8dUQncZZQ50JQEv42eRWcOs/TzFXdMguHPxiUdsNiVawYxXPBN4VkfUy0lkdVNs7Iq8k9gfM6AmI3m+6QaKuwArwTXbIXLTUJFYqKmNqtgAXtGxrvydjB1NeForN1vy3QBwAFTpPHpSh3IFjKakc+dgB353djiXGIIxfeJrScECt9I5M4Q5oV0SN792nuzCM1axbg9CFE8833EY7xxBXV1RFeH82heA0dpzMb3Vb1FFMpiCpvYbQrfHz80IXJviet7xoHSsDzBnxQyhcLYwhAWel6obOGt5CBEtpBrKVl6ufXT7jM4npm5aXAIwG0Llsct+LbBXTeWtCRTRz7pYNuCXIQrPKGZLiyJYsdsr/Rp2VAZsK3aLDAe4FP8vHvf/CIXBBnrxbZLHlBIbLQURnRUqoRbSRmFJU/YsCnImdq31kXZDORgb06s1VB5r1DUPKErMTIGHZsrl2ZkxQws0r2mCTyxlLN7lQSoeIZDzpdC/kIwNQvZzkuJiIkQhW8VoLBMClf9AliWyJYCwh6q6RA0opIyHhLtpVLyyEdcazqoKugcnVHpyuqscQULcIcvF4G+e7R4iraKBT38T7BXI3ZN55WIJZkfi331EQkvKd5m1Xq0HZmawYuPdM4XIDyaxCxPAlZ4+NaBdVOYLekE8/7PxhPXD+7N4fvOhYhqvctq+xiSvPqDwuER86MsyoINKoaeq711gUS/MbOFXp+sq413vv/5kvJwub490y5FK7/bP3MFQz6xmtwqQsU7vZcFKLeNQL8LcA/0jmLRu807colu6ObLKGqlW5AOg0x5BkjiSYKLb+hS5Nhs723pl0bmj4IEdMIj3IR+teepF4UyImEVq8wgzvcN2lUMHePZFFEkGfvcSSVgvo+rBmUh6ChLBC+ZWYFIFQMN0hPQw0Y2lCBpuPyb7aqADK/UE/Sv4Yt4+hQRoTU946Mn1o9z3w3TZCxeec81+AY51SIs2a8J64BwteIgRatUEAZCdc94tSKwskkz9SSkhC3UtbgLlAbV//+uYAggqmQYm8LQwMaDo3ApkewPW6/9gDOpiWFLwzdfgl3/8qJBUl9EKyp0a79qnvLydduBJrmZ98sS9vPKxbSmTHOslk4jlIzvTgvYzsiJYVRAHCjQT2OPa5POXyeKhhPwhqZPQUX4nsjalNimLfjhLuTGaOYvhAkMs92iTUsPRLgskaGNNRy7MXnsrXQz28nWIr7QZf2tKYF8QVALWt/h2EM376yqZ0JV8tavFwOMqASZfgD/n+Af8BvP9qANUx5F7OV7tniKp4jan1pGROi3LYqfwFfh3aZDLBzyYzq985IyAo5FT9Mr3baMZjlYfzhx7IwLEFGuVBcsk1lByDtKJoh8bUoaiMEf2JDYcyWEqvPv2hxJDOOFa3WpIqc4ZLXxPOxTOfa0cnxitwU9JK71bra4sj4trMpb9il1HdTVTz7rIKeYJoK3vGZ2lV1hKB4gOZqyr/Df/edMjqM6lAcy1D0sxquua9VJuCaApI3vn6WFFiTU1DfaZYnSR2w0y9yNpCxhMg6ITjpGm6TuWrce++F5Pfaaz6ldh5miklsBSXFiMFQkPtcaBT/hbB6RvfvfUCGp2aMK20xSvDGInLRsoFeGNYMRnKD+TjElu0rKXc102F+jT/hoR5YXMOQFwVJ7+cPTFlG8SkpNVeiJbqCebrYg1asvKIvHUG8EjU5omAwUwuBezLrdryNUrmOzKQoYk2sRtzKtkDfzNETYIDkmTgVuVO9s2SFYrVIO2TAAJ8sAK7dyq8N40GnO4X09NgJJZqMaZw3wkskJxDJjPelHuhsxfYif5jQtGTp4xjTfjouFpoYo1mIcxREJjFF5A6maHW1QGKaG2Bz6OXCZJqlQRUHUxsxv4sg11UALGjr63U4QYkx3qpuqgP9q06xtOpU92UfLJ97zIfeP2ICmRiRyfs5/9LqidqtAucEsW/gUC7V2bpqZ/ZWxHpUd2qgciqZHARf3ouKaJ/V9cUvAeYAWmYRxU8GWQEUwd4I/lrN4XYEJTuc08ToR2ehR+fwNLfWrLfjnRoDFHRMkyv/LdgKcHyINj+4VmqogtlTKqZ/arVzrQeb54yhJfX/H43UE6NwckjCWXJZg/B8fR2IctgvA9/dzGUzxDDJLO9R0SO8aV2pxvbvFNVjR7NVYOwbUZ8cwPSbwJx6M+41JjeqNPxMmzWYUJUBqoJFYP28lgOaKTQisgdx8wC7NYoovBN0WXonG6a89uxV8TQVK69rWlC0aWHtbD+fTQwFUGT1+3DqXcjPMUUaabXjvcACSwnQsaqehgrr3NY2wBrEbjOHTkhbbutugNOMCMj4cdJLE6YHTkymQXVXsQ5luZBuaCoH0MbgOkx7WSyoULE/SIg3gaxYt6i4fDilZvXIlgq8ty5UgvRj5SoBJ57bUBDjjP4IzrSaZDYaWVE3OehGNuHpm3DXssVbS9fDOAXlsE5l0DWhIQcmsIPio2fGVK6MvqMUqGXz9n85HIZfmVMlQFvZgu5jgV+uePRCNuuZ/HYQx87jk9uq8iZDBq8hIefyPYguF4DuBDIgWLZCdsk6NHFHGJiTBs1G8wQ81lz3eGk94bPF5K3i7iuOMzlrOwYCAxrK7sQYdNFNhGlE+ogeXK/LE8FR39/PJets5w6/MG+Q93zieC2D8N8kpHKnNS7TohEEAK7s0RQj1evajH7Pj+bnMiRZ+10aOk97sfHX6H1a/U0iDJTI0ofolGF5daQSklYII7EnLyqaclfRLdwqSCruzPOgOhhOAfGEhQgl2/yduQ7uy3dpMMM0w5RP4SjKoiq1wjIIJHLz/l05i/KEIVXkg4UcU5jP2tDInMJNghsyQkLLhH6mihA+wkoUSA83q++GFvIBxklRp0txuLx2TYfT+JpDL+vXkf2KXjMniDHNYNQ6QOCAfJed/GiLXqi5XAB0HbhpDNdDWo6ZrYymB9zOJ5BJo+ZoRDebIFnia5S6NkT1PH2FgsjhS2irAqYSPuDHvVahbpy3GEh26dnuwuqN4pkKh4ZjhTygdgYWD3iIojQq0sw1XiBZT/m6obBqMrqHoDcSKdf0Otf2cnW9o2YgdzYTmwcA94afclzMkHKTYokmYN3ZLdtodxe9YK9LBwIFRk3qb2m/npglox2KXTNt3sv7U9TcHVh5ixPlvVQWUntpJQgC2jedCg4lVfkybIcvqUawY75dQDgf5Tm86VfhjTzwqEyv6/wxxMgSB4Z3FED7gX4bFGfJgHsCDmXMGnbb0cTkZTROHLLuEcuFT4dbPmqdk17oxaVHExR7NdxZV9AMPVPeXHUUweTJebcb0efQ6MZmkpgoxYO4cjh0X8BZI9ailMEFsb0FeiEQA/jxOfh65EmLaADjcWlL8rsW+TtT7B/3ZlSM92y6gAqVMHYQoauSHVORC2hc+p1V9ziENfUGB7FgAya1+nMY7GPmFNSajI7RmC3/k8g36zjKpW0c8ZxKnX7LZgGm+yt0BKiUtw+bHar9BXYrbTLOBj5ltmYQMxRNFk+pLsu5mm7iyg97X3Stc1R06I7l+MNbTjgvSHXELlbhCPJvb7G3d7ofLLaDwOiBFdl/ZMGhGxO9kjyrfFdWrFj93xuTsoXdDxjG/MA3oaYI+uf73wuYmKAjv16fdjI3iztp+nlrVTGtaywQBc7jilA6PKz74qY9qT6iMeHzxY7TCRDV7SJm3vq7nnSCB69MLQFuj+pdsdZXk6lJ2jCYHUAvH5R1ST5HqsptZdwElCzOW46NKOG3x789cQVLxYqAU+k/Q63BzIRAJ9saXWSXOPmzg2zWwdhX+LSAdNn1BmhSqrAmCEQ5vXfjcw+dKOlONIy0TERu6gyllYSwo1gTMZq/jt6oUSRPAats57P8gWqqNErBXFAHyYsFoLhGAn4MY4UWqmB/7JJJGrzsKiHAyL5S0DG3VLgBXvyAtYeRHap5AqRYe2Gw2J2QHl3qHo0vvF/UBr5FwUdqtf7PFoYWYALxwh32rg17ewEqTZD2ZrWMoAo9aI0RJeav3QKUnx3CL3ZagAafSRsy2dL5noa2xflyuta5uu9UPdi3ZB2NTrLXvlH5qI+mKOxODKbhctXzgcFl2KT4VGyP8uq8ywQZRCQctNPXFwEx/VKmDI9mTYk3q7XCmJxR042HWNcRa/WPjTXeSKzSmCOYqA/bGe76afDqHNaTEj7uMaRc8Aoo74MbNO0wxlSdRgp0dQv5lNRLOgULWDpRSVkVyY/BgRInrHQKz7IoY0Wy1aBXAxOasZVRqqysgUClCYEOovang80kPojc3M9HxHMWDYo47Hc78gLSNaM4f41P/s0IHZt/2A2FBZntfRwL5yTmkUz3alo+B9SbUQX8cvUHf95BcawHe4Jrq1XIk3pLT52GNUJtgBT22RwGu8bBfi6HeOQwvaVyz7qvDEiUJ8dR91v4O9Lox2ogLPz7BwIm63f2Jrn3BeEIgD2Hpxpp+OLZ+Ka2z6+qr8Li1TsV9C9MCf0BaiuaaqgksE82NtrHr9LlO76dqUNd9ghboARzThSfNSF5MtnsX+9q3/IytnfndeW9FqdHQVjUe+7UTybG3Mnx9Dv+0dZwDPsGRAmNXD4WWk6f2lf2OhyJj1y/VuEo/eUOwLi1DdjePXTrm/mTEbxEu1EtqW11WMINU7Tgx4V41ZfhBlX6mJ6kippvqIX8dOG4ZYoe8xz9fh7YihQCozuVGYdnufRsdPHjBSocXpDS/1xt59gz5X7hRRCeSl26lpbvgZ0WYAvOOBWid2skRQeQzDfGnFS9Ktw/hX4P8maoVFIR2ylLb4j+x3qkSb5xx35pbGNrOZMF3vEPJA8tpEiuc+oCJylBgbDOB70YxAroAecR2LlYEjV06XSuNMlMIzHowCbydZtnPPRY9TWYYLSCIMzxCe8JslV7rrBPm21ki8p9lii5AoxcZgEI2ob1LPhuAFnNaG72eDQyIjCM1Tqtp37tprFKYrJKKy6am6xnjF5uLV4pZ+A9uw+qOUwBxCO/C2LPPTStQZU3kHa4Qz/eZluPl7yWfVViDFgjdFPrRSEcXbsvrdpZECyl34hZcHkZ1GkGaDgadhCI9+KLIu/WYDiSr3mfXohk8Li/ae0BMKsA/qxvpmBpr4qhQroYi6DmaKFhx2JjTqNhbumrO1U3eJMo8NtYVpoaqV7gqUH9N+NPK6C6MO+ee5lKVlKb2gDlwnvLtM+TpRze+8PwCiR5lsuRK5EU3qKf9xTlO9vkuCb9WHH9OWDjm7UKNPmz/zCwGazdJoYCQRS3LKY4g9NdB9FlQ+yhStVkb1GRZdgPwS6pf1IaVUfZUrj7OfAgk4PVqwKbME9XkxFyVnhnA7KkLaJ8Id/zEHi12b9n93kRkYnYqNn7OH8+opHv+0HW7IjYq/xYjbAcQmOw8yCQ63yEbCanu/Sk7EVzUoL8VXAU7NJT65wGAHdgU/hZXR/dR/BthRU0rmJ5NLdtlzbOaLMXeXc+niIRSQnJvtp0asw1pnOlPWfAJtIuRhfcgCV4Y36cCEK9MR+iFS0cZjEb58erqgwVPw2RiLpDrxhvmG6barWwR08+rq/yuF/JrXaO4kAq8LtH10hYPmDZZ9gKNhUk25B6IbXC6D9vqj4aKhvYjedqVJJfZjV8P/JOnlra8TkoKIlIQrWzb55F1ySPZfsN0Pz7YvU6TE2PMRSBfO8DOZ3qZ/6oM/8sxPWerA5Az9y8xG8VUnwCTl917+lYO1y1xdLlx7EX4z2R/hqLlovVHrrf8lkvF8I8mHsRJq8e3wFakNEozrwaftDLh7hz5+FEXiN6LYZflxdxpZwB6k8vo7TIf99GijZITPsi7hlYYGwEaLgAdeJe5TXtCYsqksXcwkMLjtwzTZNZKXq9RizbuFoS0M3fDxHi2nVAEo3Vjm2RYf4lLNNJ0Juz46qiqk92rSOaKMoFwRUav4EPw01KWgCGDhqxSVRiPd6wEtYrqInPYB0T+CMMvzPPHf/APvMqzzkPk2DNVN+qQsFhxwLY2m8vxUbKPdZyirl7O9p+wl3Ii2gA8CrE6TEK9da3Z0YX0F2RS6XSsQ6gepH9bnB6yXAaOsnn6oljEtmEAam8NRv6vVYJ9FOMqN3QGI5/buSBptnanfnhOYmm1/sYDny622gxqtnaU1QRV20RUwKSvb5XzgMoYY+PzFMfXhogWXDYvOOmvXUjTOFV8ezXd9ik5zN7fRe9R7MKh7cgqIMzUOIIc+VI9/MwGVsZOue5eeJzkkzA+h/A456imvnUnM+hVvjwpBzMUBwQUdPrBqdgHAVIT3rFsf/Lm54j08nyQarUV9pfAtMglP4x5vfJOqpazI1P6/X614siOO4zOfxbkJMRAPzHAt33HtXwWwuho9cq+kM/39vaNF7LKPVDzqCr7Jxb/20GecSJiyX29Pa21DMuJ2+QbyKy8ZQzNm36Mdqy/124ajeG9y2YjdF8pHcC4zzLTSRUpQ0HVBvbEuhD8rSYjK5iBAAErrozsxlIjPpJZfvGG9HqYE2Bt/aXsTZQGUSZ4uGzNt69LL+HsUjM41KdKwUNKcgealVcqSdUqziDA8sDSXfJ///+mtbYDHaf+wgX2WQF+DFVLwyrftjjz6rReRSM/tFgdKeDOJiOjAE1Wrk9pvk5bPQu/2XgRhPMI4buzlKs+6Kl6zJ2gJR6VQEvK+FzzL49p/Wj1rOGtpc98baIVAsFLhvfWnb79rT7EkCGqCpX2KcHNuCcBRjNkqXslB0WQ2tZjNoGcaVCz+copa1eFKxBh19xzQAVHHIsyvPDl9EvwhmheG9TCVuZyV/BeAmqi2Y9vJpyf5Qc3rXytA7M0QFH5cZosN0FEhcY8GljR+N94ZUXeLbRX5NcpD6dVD1FqXBgV8jlDI5GVntyZ9pAUgNTQMo9p8Y5BHIrUGYpU65MaHzNmPk0vRBzYoNS5fsy5jvc6HPQrpxKekLVFkIoM9ExlZWGW9lphmOBYe4lCIp3ujy6VDpxQT8Lz0WEKnltTZamm+Mj7bQ0EKeKps2+6pHA2u1EVVYxEMl5lW4NFKU7N/NmlO34iOeizNPFkgMdokufH968cCW/TyiBMZ475X1va8obM7XjeMhH57EoRkK6HlXHl/2NEurES9lYDely+AqwfnnaO4rsdUht3/OP2ikoeeNrqGZUAhkn7puvJ5cXhRsWczRdB3Ztc1S8tA7e6bDgTOS1TAAw1ufLJH1YsOwqZOJO7UG03pfTSecsMZJPj9LZ7kF+iLoTr7Gg6A0ffD4NfMmv7GP0DM5xVoTsjux0fT1m+HAdk9JLZohmXEPqqxnpMz1MSbZLasKuIi1j1Q4Q3V1tBBPdIJsAfcdiDA8teg8r1oPPlc/sLB1Lsf6D0H3kxznpAYZZcb0HQmlSTi5Ycn/wCzVeW2DPvb65h5soOah5KOGp5fLzlTtiuzq4eZoQ8J515ZvkQO4pnZ1DcvQfgBKZ6icKDjSABykksi8r65BR9dWkFNCtaEABHOpTlo/4kb22Ebned6s/hciaMKanwkhm2d24CQa1DxvOZqnBbu68BfeOv6yWyScvX5y9vwFydIFQrUBcQrhEz+WOQJhGLEq3sVsc4ThnEyA+MQc6OXC1pSG9n91tQX/f9UyJ67DD2KPMYCqX8QYm6vrgcB75VuiXmtbJ6wIRscMyJ+DPGwZe5Ya9j1DhC6JC2fsz9Rln8R5SHWy6UTLe/WzsFo/ErajR94rKwUXbiZOn/OuRHWNEDbDOW4rio+GtRuyv5dcZ6HUrU6zvW5FnnsqZt7lprIO+lssPG21eYDzynrujL2fkWN4w+A0hXTypBt9hynW/299MrEjyQYvEFNIs0hIpjKQzYunFVfR8tZ+7xledkamma73TSypMRo3lyWtQ3YLD77JT8hg53mGt6OP8xtvVKvDsl5wVVPPQKSZ2aJQrePulLYoOX0BkvNg6q7ZaB8jZmihZjlU1ERUbzTt7pP1y4s7yO1gnrCG41mepkdsEOPxAV9jT5YyiI0oSAHuu8DuaS75VbDvESVAN/l2aqiNffWDKwbhIFrhm6uh79lOKmAfvd0TpKDipQ4o5ltSyf0QiVmyTL+kdKgjX2miWQoGgSyX4buAk+ueEzvJPm1AtMp3uvTRsngscQytMQZgfBv8tRD9NH3mQDTOWsuw3mwnzr7LGRP2Yes+eyg6DtlJ7/79t5exc4QH7fBK5aTg+kIi1NKihqZIkZKFm4SSKgic0qRidspHgtx+nHJWQh3Q1n7dPil9ERHFIpFBvynTE0m1DivYgH3QgciyE5ZKbE3B7opKCFYne5SLD8LUd7nKKYKYuXjV3xe4gYcJA9M3aaZXUZIF6CvjytI7At3sJH/TBVjxs6kySEftq2xfUuDcC/tmTVFrLsE5PDOcZrmoS/AL0qzb3e1RLwUo8O+X+UOk4s1HoraGKOKNfqUm49+2vNPbUmvTWK10ovxFbDzMkZgg/jGUOGDu0/k9zZ6jCulVD0vnEhb6g+l9O/OUvSXHVce/1Dqrg1RgCeIRsTVPqueIa9kgHNNiPWEn3WDoXQxjBcFrOgLFQ3RnlZwLJA1GpG3NZOOpAk/NhtLcBgDbgFk7owQjuj3Su9cJ1KvXv4y6ESgVT2Ah7QKSoWCn55gBORbi9bclIzrnAghwOfNsIH9s3QmzeRzrGmXempc8UWSu85DsmzyJ4pgB0k5aEllcQ8ZMM5SIFXzipWYzGBRFWtklp+tt6h8tPgoAu2goaXgD8YZTYErc+AGb/ws9AKQm+WkbNlFh1CDT9Ead9MsMGYn+I1baZL0g2P8pYCPpkw11+dcxUwfOv06a7JJN/75EbY1XGfxY5wmI2wOlbmybqA3YYWNPAfQhnrpHaTD/zit3C99V9HhXHWPkX7YdOZaVMoiZlav/+4EDjDD8lPCBpWD9dVfGw6TmxsW+ADr0ZNtS9eooFqXZiwFtzoyP+KKPmJY+zNF9jFUwGGCLoBsFQP0w/O8Cv/8iSil71YlT9G7rRdVm3BeeOogVEuGi6ZBVa96VyMpavMlM2X7VDjBJEkorUbAiJhwiGqc/VphQfWBmslDGJkxmIJA4dQJdkZWZh7wuC6WqzLSocxngyZLfpqAys4b+yg9v8f2Pw5K72CpouUmDeB/XF0UxxcFUs5kzIXfbmCwJgvF0Q1ZTc17V47unsXFBE3PIpdq/Zh9/AhQLPRQTlEDw4UvnEznygyMUKAe6ynUVZgLkPGub15KG68bX0g7+wexeXksmBteye4PqRhFVANoyEGVoWUif896MuA8dbibmISXy9Vj+UtEWUfKzB2sW/PR7KkkRunaHPrwLt3dEwDH+tCZ5/C67Ez7fbkBvt72bYtav21LHxhGrEPJJKquSEyqTiZAFzKbmNaegvSt9H5Mxjhf1R9SZYmG7LvmdyYjT6jFqw4Xshay+RYzKNQCL3IB56WddToE1SGReiB8B4Mzc6gMXAJrqO3ouTSUm2JMgJKsBxAt+4xBAUSmQlBXLRaTHIIO65IanEUwejU3rbDp1hBJ9Pdw5nx+BHZit3OCmGPh2xNGPwhfkKKuABnY0muIgKC2UQ7nLkgQgKrLRSrCR+ze1oJ4+egABHlBQP3LDejogrIiy5KCEGXYfqftnjWsrazms5qAZRmG3KMAZ5r8Zkc8eM5LpgAPVLYctiGPsN7hOqovr1uzYQNwXSo1Hs+ga5NXufFvZ0NdFwPlb7jDHxFB47JEDBXHpRCt7ek2aPagKEPb1gl0kPJVrxlc2UGlufYI08khF/Fm+effw5oU45FtjynEZQWEcuyrbp0tPxTLrhbmXDQAkcH0oZYrPo4hd8zykO6GxM6uSmQYHrK34foeE520CwfXYr7UO2pO5+2LnOMacgGSxSstPU3TQiqV3FNKNjPEvx4R8x8nAW8Ga5jXSDZHtV2x2OONGfKmWe3CXQZD2GGJ+PncJdFFmEkjGuw5iLhbVVJzhVOSIvPptqIh2RgHn5NTIWnLynifm+yiYfleyENvfYaUdg6p55uSQmG5Y2L0AYP8DYuu/90rLfcgtX1zfnaWQrTsbtUel81AennHMgn0kc7toUp5aQUBVFMlNPB35eGKiElOc3Oy42+YS+YUZI2zOu52qye00eGqOUBhqLh6WdWpg7ysxibQ/OSi8xc+EFI9rD/WHO32SUlfo/+/Bls+8hi39uYqV5pWdMrAtmQTuWOV9l+agtlFtfdH7sjDrAXh2QyYirMdFb6LwJKLpRt/yuCFacVwC/+CvUuyXLs76Vmp7VuXSFeY4cY7/zRgPqnSh3Wy5u3qvTI8T5c+IBIrx4HYvXuqoN1CUvsaEOdtELekaHbPX+TZFIJHexBtzjHj0EaOSZXeH93McN4K0QwE3Pb0KhAdyixk918jbcMTCArSeIGBieFyttoej+gUHRudXDoX1z36eDmY+3HP14wxIUS9cWmCxMHU85oC2894F5px+iZV0/yRk+0ssLqUtW41l2qaerl/wBIJkpEmKuixFoTxIG7WM2LLEMUHpueioBDtwAiG0Ryuv9QKTiukilv+jE9+AV/llrHOyRAm4qTeQVdstSP/UoervUoQwntvZFIMD1wBBr9Xv8jaXRND4ugnDxYvWInL+72AO10PXp3JKK6OJoaaDheD4lYOK/hOd/UCpLiBvoPgcze4m+1pyTj/PLRmRrrAZjgDo7ARMKS5B/WmLBY0hq2wxR7dOaLfgrHXy6B3CS97AgKmAzSLqlHak66tC7A3DEkEvO0hCJcnuP+hA5hYpGy2dtlcXqdrPmT13qgAFVr5e0JV1a2q13kcfrRO4NwZ26Kb9W7yFcAffZTIV91rgA6Cz8TbSVFQLBCqWWWx/VWdkJ3mYU47FByUI4jxLolBWW1W7OArMSSE6VNE7fws+tF9H2cecX1ONwxhQrg81S1Jh24fzqUzCmZtkcwb0s1XKrpPdQcVzEAhpF0EzfhYUpoJpQ7KH4Tun3EJIgc2O1SgPxpDKIvQ3NMIKPADJsznvgIgT+mz7m2JWJa+zSUUb4VUcA1UmkTwqtmkQNQOkk01bRMeObrsV38i/WW8Hd/Qsx3nKbEyKDrBBoQ4+Np7C7MRspYKQ76yULsu8L9/feQ7U66ndLnvp/5uScba1UXnAUJlSIrDXJ2gmMhTYZOiZK59D4oEC+oT8g83kDf9WqnZF/otioGs8errVx0n+aMrQd+2ZyER2AuCMgPGL5+lbZXIjSiQgyNisoIsASfVQ85324ee2eNGxoGU0rrRFWZsLlZXKI+oqHf+YllDHNpr+v9syaBa5l4aa+5dYJPqvdXsGCqGwbkSpJdpPKR+XmjnSZFBugnBNZNEly6qamRJL+qTT3Hy10TlFrz17CNsdYYV3HwOUBNvRfCTCYUUxgGnNAwyiKfEBSUQ2SWDdnJHIDbiXlzmgJT57aQoUwHBc0CUAEbBtFGjUTDFVW8CXZAkKa5h1XTukhwkdsIr64943m3gdQtX2/Q/XBMi2Y+rZJvfl0vptUByzW1ZxCLlgnAGgJR2umkqVcJBn0EV5Pl+aon8Hl8lyejut/qC+9599ZYHjTUlB5BsFERYN6c8yCWlNKqOkSj4aG+Rm0FSQor3JVpiVCJ7QBfpNNWKZvtGbCgxpjqbU5n6mAWcIyze/0p6H3m3yDqMXZEFwBClk0N5zWTNscluuZorUkvP+jYHaQ0Xibk8HjgR+hMTkWWWweCBLRu2TXnnUXhXMPaODJ3mG8KiXq+Vu8mIkfIRymfi8FaNC4DpdSGGYs1/Fdq25OqvfaQrjyA3MAfTxyOzvsPDyIvgxs7W2Eyu/0QRH2VZ+r1Pc6K9T0LbjNlDbIO1PhWBZ7k5FQRn6Nd7nQoofyxcB3fwYgUY52UBbo76tmt/vbd3Zlx4tneDHdEozeUoMbwHf7S3Xc17AUAxn4DMEb676J96SnhxkgwDe6JOQ7WW5UFliRtLKGckyDB4jdcd4icnXoEHQplesPs5cZdNCEGi3zoPFemdtXIBcW5Nv658qge2ea8Q7+akch18wRDIFJMlwOF0H6ISODXqNm6Hma6Ud/xFwkpuSvE0FAOzmRiFMWNxzJ3GGEHU2sQ8AGFt71TANDEqeQRBYSQKFKtkFRHzrRSB8wVR4NgtQ60DH2oR292dHDBISsk6bb+UqKrasSqhTlQxmPqtg/0hhMjkDuUNwltopMOl5d5y9XMY7ILCYDUrsWtiLj90bP0VW78Wi7EqW72xGue3M9FFynBgy1IB46D+s3TjSBnsSO6yU8R16GmC0FmHCAqE16zoKOV90dN/iWvqAcCVOSxh6qQDWNZHODNxELBCqwieQ7FrtM/JVv49kmTUypJJvI+niobaafSaCd9OySZG5TTCCrSjfMdLXT++muN0M5oU+fK2Kwre9AGQnLjmCw0N/NQ+Cnk+BW8hJGYZu9qRC5fxl8MyeciuV49XsMoGMvAYz+x5nAn/zJbMG7RVLXV4UkeALwcvcDEhgNJQAju/dkwlOe2TJ/vSqRKomqQa+7Ti0482lL1BKAe1q7DfsoIcthEpMvxGurtPjXh3yMF7Z6M0hR+NJMVBxOjDpLmhKzsq2GvFhESCaGE3Z3lANhCXmUs10UmSDvaX1deZZuGM9lQNv1H6fXPC30VhtzpPvnluHiqvC2bQaQ76ZnBFgmpS1t/dsp6B25K2NCzpPgTPimShdM4HmV1Zir1CQXX0DbVbBoMUOthJQwNaT8FXI/dofB3YYgyYeX4MjEgVRT8KJgZntpNzS2hvHtAeXQEnQJtY7+1GGC0d43xK2wBKvx+1xRHycfZtmzwWga5TTrnOOnM7LMjWL/xUVyfk0gH0dU8VNDcOrKtrBaIB5WA9MGMSn3mhlahCtf0V8cmYrvPcCQCiD4h87CiQfvh8YeeH0UCQ56I2HEDrE7tQoNMyjnOxCDnYEyrwp6SviJsC8hmrfdqHmRoU9pR9Zd1/qHjMEOQ7vPtKPtjZ/JthOd2+ZXraY2M07BI7iaRRoAY6wo6ikZjZYi+NBkIlS1kChdARMuV0BYPUOpA+78eK1aViJzpvHI4hosnCgQhZZ7eEnjp2Bs4jbxQG339lDZi3oA+CLLaLUR9+SN4dctnkN7cSiog171A/dwhZ/vDENRIN7PQCcnhW6kUlQD+iyNPJwpMsMvynH+xLaW5sovmNGHOJdTUPzB5zZCrWMCmyZ032AAxW/sc+NTRephTy27CEfB0SQKYcaVTFG+KaUJBUGQ4RVJ79RxljBRymvJ4egj045TXfpS8gVXU78f5ygJ1rZZ83qZGMud5P9kr1p6lKuAuUW8pUDw/ZFaC5So5lx9b+8LJJwp08h3fJzTL5OSAMKNIkNyXa8zBdGCaHkeQ3hMesIIy9yPeq6ZwpjURFroTEC7fFoaaWu+8vR5qitxMvAhpKELqLACy/C3NffZKZumDaEITumvR9CfbXgpyfnsRdcwBT23xFgFZIx7BI9S5PXPJ/+LcTv1C2+3+pws/DKun9p/P5vlT7liWjzgEOvK97gb77SEILoY4H7jIND3ULptiF5o/RCwPXlkUzHzkwbAc0/55uq19fOoDnESi4MSRiYxDto0oAQnJ/3ENGAkdQTImAclKZhhtkIVnEvk6vT5iIKnuZjE2nNqQZ1dN5Y2EuCoR9tWNKHui+g4lpib0p0lfScyXzon4rrc8oKyuuU5H6nnBhaiUjRF3IIjm447jHPESbJRYDVDI4cS/zabhYmuBaOtY1yAw9EFDIEuEXypHrMLAO9OqC/AHF3PdY75JlsbhOgIBiC9xvT+60f8ofX4vVyn9Bb6QO9atLuSonw7VDN+DlYNRnZlasLHQFPLyMr5QPm37Zx7w7OWvluxQ+JKEwBar9YGYYTGcBgUNmsTNA1Xk7Mrr6UwMjs8zRtSusUt5RQ2tOLV53jkkdbFgVU5SVsWTkk0rbSGNAfd3EZN3Lg3dxBqmE/uXheiWBgf0pohxLyOxthIUiisCw+FVrxXUoLTQVVGSVLzIB3WUfqhQq5nvhuNZOD7UjAsGnG8+AxlObR7cfpABRBymZZxIkU+GA/rGmlfTFFKB7PPADszFzSLlWeFgfJpgb65LJb+0XbRVkjnS67wtQG/+1F6LrrwGXrGQyUgTL8BLD2cQwc7E1AECcy337RbsR6r87zWd23OKaw7bHm70VFlTIqLi8KdpUgQ49pXoM5y02F7ZjcN4bFfXRQUXD7uy5CR+9fLQY+9Ja85UT7Zl2O9fuA4EGn04RhPBvMBpj2GK/i49koKfYI5yq/1BVwsEwJV3s0d4DEZUIoBjnrzlKx/xi9lvWxtesd6RVtSfo0hyONRn/IEer3Cy6ZOwfCNzkz+25xQtNFaRpEusOwtngYN7I0GQLlOpSZy0q84lAHjtlO+wGsRUxjLa3IblF8Ab0FRUGAUWhfQ1cwzrIEo3DEf4O8NnX0WveSk5TMO0sUPqoLhQveYsrhVrvB9uOZ8VVIwmS3DqGHyWp3cnY1mmuQksngRe6esaVoUvsuzOsc81sBgYv9DBXjlsH9rgSAxEabV2IFMFgk/nGfZn4IVSnCVJ5Cs0F9q+YAGVEHlLXlsV+GQUQ+UfyatPUlb1UdwhJ2gLQYMljRxMENaXEgh5Ncqy+5Na9Zfbt7DW3PvwH6SA/WjLaN8+J2nwTj8TRCKcOO2Vr7JbydTOnmsaBVDpI8KmPBpF0wmLspEyqZtslWEREApv1/6y8iPcfyBwHgfOJHcKJKO7SB5M0gdXLSS3vef6/mbSc/0d9FeYY4yxPQ29+CVqIPiiTutwHZU1RX73gvwc3/iOt3DeVym0Md0wkb+dobfxcuiCmhKAthDPdVJM9H8QCJK7Ky2NGGZb1uScCm9cY8b39z2dup0b6VbE06+yiYS+GiFdLd6CbfrKXE6eUlw9JgMOZGc99XJuFGokEeY+jjOoyMC53ZPItX3QOIWLiAHP0nqqLY6zgFe+OoZ3M/iP8FSgBcvgc2CRU6ueGctn4s9N6IBJsnRvr35ynZZH9jgRa1mgOKjCL9d9uNKurJ2UTgJTcE+Kq2OjrryN3vdDjxcA1LRgvl/vZ3fGHrgXqDB3DXyZ/NqFsrtEpVKfZYFwr2xEdiEEStGEv7bcqd0EoesJ5Q2DOhQcY+RO5fqhweUzuT48Az73UnNvXNtVqRNa1mPc9xfnt/zBCnbo7s7ylFPX5HT9sCmjTZaJ7p4Bsvwd6UIfZt0uTXSxcvVjfYl403Ifxe0CPYfZeXGh+/tRBJnTTrX5zg0Gy0ow2Fnr58d76dUY4Y1PGPUu3toMHkgiqLnZ+ssZQPcuJCx+e0wP4Jvc4dNwuw3AiYXmipZ2K1LqwD4O6B0pyJULQE0RisvBaBVsU3Ct13KYznV8nTPrOaTosm1fm9Jy9QmsWcx4W6PCmx+By4xixx76JDt2A4Mb/x1Y2UXYnj26wxv5xqdPzzEdk0/cD208hBoZYPYdaZfP7pR5oWQAFCi2DohMsAulBIClB3nZ7o+IMhqDHdtIWf3uzJrpLMXByKKfnI8qOznIFdYS9jaVIyZNENgLYH4c2CuorvepQAnQ3YYgkgkG9WMtd5dLkjhfJ2qFZfg6xijYRSp5A4bRQv36Dnf2Wk15ISB3pLo2S5y4iT3LpDDfNmR+FjBwRHIRYHtcR35tRAZn1LajFB4knSSNFaFp0extpWLk+uOufORElIK4eLM2HLumYt5286gGi8jsHS/ekz/vEk2KpQvKW+nLrU6gZWfbN34VfLuZGOajRl2hxIFpYw0TdWHXoJoFumg7hbIUfs0dEYGwOPEp2dip5ff271OXSrQNjTH8+hKG3t3kSDM2ZRmzQIzn0KFuFUFnKQ/wWC7+McmctwTQ+eQK9Ah0VR1qLM1QlpSctq/gCrMU/J7+/on+S9mrBZQ++T9i8DSPOC9gynHmzLZXl3FkXJwr3k5PN55X6nxSV4m02OJYnOBvPaDoYVtOz8JsJmbd3LE4CMOXZQHEqfaLv2CHF2MNFzckz4W7EgDEtceVSyPA5J4tuiuu5yQpNGlu4wv4PdD8/A9WWtjkX4HIzMOuZxyY3aHjQjo4Vv1P0g3eqTmIbhYP9NdRrVbFP87x0IAnjgUzPj6t7H8vbX3ZJGbcf/7DFfZn7MfunPKuWLZsPXpCMYLoDmJRersqVSq+vxhLsg6L8Pd131huWYvHq1nIa7N0b4MtJRj0+DMzZ8ZWgdEszb0+mrAHVkcOTAnenTaA0js2SWCCl6GhaMrbTgbbxHDS9rrIxojNllPqiqPs6IuiFVOaP6jmuwdytd0ya0SFTSQ8jBkDgfzGBJOsnWLTOFavFBiyKUNz0zTvC19LQM21oV20S5HGK9gs1SYhiUyC2NHDA8P5MXMaSa9BcIduczNkLj6+A7GdG0nDX8mkcJQVBTKMO/6pfAMO6+PV44XBb14RyYvXnGB3hPafVY/WYPSZbsEVOKWtjqzhszMv3sMUXVQa924gKPSwJzuqUDu9UCy1ipVZWlzYatK6WmOH4Uc7P3bozNVGMg2Izr5LOs/z4pdSmjWEQhnijn2tW61Pnfqqhy9Iuh6bMK0ExxyzHpTRSnd7A9fEVn7OLUK3Ewy14tU7dcrlLG3z6go76LLclik9sDMaffdMHpp90Dya+g0iwLSbQM1TiH/KONU/a3rSvZ/BMhD0Ogm9yvkXNa0Xc30W+RdmHzpRcMwBcfpmL1YCkgOXTPPQJiOb9+xP9r6az/2vlC1J5cky7zD8XW1YY/Kl30Fo3Pdkwx/OvJrFWciYYjmcgue/AY0VpjzKcyzlAaE+UWHPx9WsSjdKbMzlNvpvnxK08z74IACz/skXh0G31XfLBQL6trzu/9JgE8DWUKztHPqIiPPNidxw6HGfJygkcyeo0m9m//V/o+JUXJ27m5bH75N8sUY7Erk43ll0G7eVoyuO9nXenBdf4Xezr1iIrG/5k4vGgSLpcw7Vj15iVBKWq/Nlg8kvKEv54U76qFWnqtdiHdUCMWpmCGV5HNoBgTQnrsKovNa+8oGBisc99BsS4bQ6FcoBcF2HBUEp8JYM63aVyq/ptSrl9MPv2H3/ZkMzUENMtKjLwbD3Qruzw1bz+CGvg6DgxgMQmuf3cTfpeGFF0CxlTUZuscJr57skncUjNM1M6ras1uHVaIiojiteyz3lN6hy88JCsB3eCgC9tiiSPDgRsnD7LtupF95W1kzywffP6ajj0hgsouO31TqdVi7JwAkbgtUO6Tv1HqBhbkUc0eOmkeScvUm3P6dR+Ynsu4ziv7P6N4zt0tfhY9MpPuBFcnWGseqyT9A51GmTY0IyV4dqUyxJnvPG/Ezk8LGNlHMEAnQf6CK9EXghilWCJ7D6uhXdv7LndVsbhdYqcY3ltOgSg26BsDjh2TgZRvR9t+L6Al9WXTEEXig59gShkSeLFevvcVCe9MjAtIwFvE3PyrSvnifjT2JXDIzO6vHB1I+q/1koMvZH2Nc8+KRb/xPx9LD5PDuGTSTnKeZEdPqnqmCB2jNR4DbRGdUYq+2YzZu1zqVuiM2/UieIGiybIEJtpNNyeCIrl6l6YiOQCaDwaNTHa3pLtrKDecmkE0y8Osfgy0RWg8dk95TgLSy8dzs9vFH29NtF1MOp4L45vlBFFU3HUvqmZDtPeNosz0UPIzmxZD0oJoHlA9BsIp4YD4V+RE9bBljN1x6I4kQdj0dih0FEGJyF3WL0qLNQyXt7S6tjzIQOHRF8VTAscl2Pd3G7r0fmUOgLdTbE9vRo2BzZ6a7E79hzN168c/hDXMwwtFgXJOX1uSfGXLpOa/LWvtpHKKxtzf2QSjSiZ/PFC8YhzzWno8GF4WwrcS6rTzFsbPTvRZ6b6dIdLao1FNzSZffplm2Jq8dFz/JBLETBYQyZpSg/O2KAgQ+h2PCvirV5QadmKy3lI/vKw+6XX6LPSNJSLsdVi1vlRhBf3W1Pa2FY6ftWU1P2TQFB1rl1uxFyC07Xs9/PHzhWMeF72gNK2IDS4bSoQwvlHe/S5mkSkLEAkKwa0Fp+0jgMt/d1JG7TSiW4EXX0dyvuvrfaS19SIo+7sfCBoQnAZI9OfjQGYawc7CQIi+y6cVnT2/oiBgJfXXciqC5TmaF89Oket3s1n0qsgQqlW6WEucvX5DKGnyn3/kHXVJGXvhbSOYRI9ZYaoy4U7/7sLHSnAjTKSI5PmXIcEhOK1d+TfZ3/NU9wDPGMno16Aa3twYGxxGcEEt6zrCgIX1DSndEiUcJXnZbqNTu4oMbmgKVlUEZilXsK0OvLfwJndFu4yAHwxfw0d0py/AUhxpQNwkymLG8YbXGLBb5+5OJ/mQJjHDmm4m7kv307eqNk8ZCXwEIuCT3NyL0zwrHBP/9C7WhYU0Qjak6k9Fa8XDENOV5vw54ouT0vIVfHdmhv9KHLb0ga6/efZoWXynmlXRFQi8eHdM/iBnX0+6vyXuVGmfQ0Nv9bSUSBuJcVGthbw/Tfs0MiB39YNb3G25ySs2y1nNYEUXm7EaflkNp2Oc0rIcYvgaEANFVxde0U+8zB8Zss1FOslY7DqLMetXmnm27EK7oqPRXjEtm5A2A1K2Ka8Q/OcnWgtaoTNRmdFD45ArUdmd2SnHZLqEC6Kx1Xe9I/Sfv2qiqXnK3jx1IEQK1vB+tE9IObjOs5kHEqjXXHGxvoMwTXnowESORD3u9gjq3p1uMUAYFZxJPS9qv2VsUEjRhiWn+XEhNU8H9PEzBTnYkDM0VHJIqYnaqOWJ0WYtfT7WphG4eqZRv6bW6yRZvL+HIfiFbKGZHY+l9zjylof1sw/e0MvGyjHTRO09LjeI9YpU0acQn1M6jxhW0Wn7xLj/s+jrdvBK3CoCx1Ey/RGvPFmwJzL4G5M5XjB712OwsetWrzGnZsneBPYnyUmb8B2zGSjZnUUIsNdfzONq+FgOCny7YeroYvShCeNr33fmY3IQ6gN7NALGgwz9h/pjqkmwTYDhWgf4G6Gs9iV3yrAJn3m4nbANrnNdnqlpr9CFg2mG9zHfakn4896ZHm0nL5qMGjK8DuzFcMtht7WooSgiEDREJV0AtspgFxIaR7lT+kT2QIQrq6GdFoMrfRINiif4FTNPXQ4ZdxQFmSndVqOFSxYM0dXtn6ow4E3reeOGbax+4U+NKirw2NEfmSEwRcUkrt9NPMJu8r3Jc21xvWyt2eWrE/pzvRTa8tC9mw5giFwTQZfXnkCZJ449WnfgPSXvaN0Y9pdukWhtRTHXXbBkZ3efEFdInrdMNr5zXYaQlKhekTqjC7f5YMEXaFlPa9DpjotCJiywLad1MvElw/ZkAM1VKh6SGqa2Au31mT204ITgV5Qg0FNuKdy7kvZGWoLasISwxPd4o/xpV0m0nITpbfdT0lMp53TsOGSBaoZELAHesfB5avt63btoZHTJ0Bg8Seykstv3/8Y8DJ+w5bfDFdXDhpLKmXbl9Tqf2SBwOjr0zApTpgqn0U1Wo6JuakPrT/MdMlm+pYH2Zpyoec9BCrFgfwqa0dL/Cd7QvYKDix1dcXutbtP87fL5rooiHMdidbcthvS2nkAisOhzmn/w5MBCFM6FbqHPzRie1Ww9nkTFW81Xg/qYRuieB3/C4zRUo1iodG6KXOh6005cTNozQ5tCeFqMHreazpxX9xuCHGxpZQNXtQXBSjGs7yGw7fi/XRGfbiE58UbNPg6uzRyJbc9z5bxDACWP3YF5jDi6zWwx2QhzWd9MqGUiCrfAAFGEQ1jKY4WlYpqmW9uqItWHBq5dkBJ9Gi/k2C5kMlXqUWKEyVmvqd33tlYuArdU1fla7z7idbnFcOz1dCYE4vlPb0yg8cXeiSwuIe4+SMkDqLRwHVY+/tmuVgsb7idsh12VvVb8v/Er0L9wULIeeD0ttMV73Sq2rp0uxtgwOZBXfTCIcThMx2R+/8qCRmxT21eGgefQT6uUinsFvVmaLz0rhSn7e78TbWMuReZA0qEjQVwzd5p1QVYqSsuPgq7gyxVFbgrabDJtd74M5WMUcdeYKoigyVmNbrp2F05/ugyoVcHPuWAWrcGyqHYfO85lFN/6CHVeXdtyUJ3KkQwb1+tbstwxV9so8S8VEVp8yPpwLHsaWDcQShT/2iQX6UsvZ28CDZ5lSFSU6CTaR8A+R/4PZ2fHUltRmZN+ivvir6z/H1FKTkVxS78T3iq7jtyL0Rcy/9HjWXodieJvot6e4vcs4c0ooMSMhBAwAU5OLtk1Zi5Hdn7qbRZSxwIqBL+lxK/Vn/VpHk3VseFnlllMfPNq9PXO8sN21Fiu+gCbl8UaIIq2wMwKVrBZrly0QxbchWrM0SwMEmvc0KNDtf2mR/KS4U4CAuuKhbO9njUNIKsDEsM1dT12eTBIePBl1H0Dkued7O8kx0LmnB+p0IGioJ5LYr1VmlhycuxCfvxaRee1Ed+yMEBMH4uWR1KNiZy2XKLeYPdwX8xqI6lL5756W4WJiu8Aebq2PwMOejxJrAgHp5FXQiCe6aX15B1gQZ6aaDrXP2cJnrVp8KTKeUiSgw2cvS+dM/FvZHLJKezKIZQQwciduLpFnVMDt9ZTmqaJNK4sHgeGt+h7QSri+F3CjucTbdaCZRK2+3/F7Dz27nHFaKAQDP4D6Mf0VGzJbkFnLH6nmNTGmQa2bcsUtL22jSX/qH6QqnK5WRohZvqGitdU2LTHLu81tq7wsHz2AQf8C9DX78eEUAMaZcvjJdWGq5TVvkNQQoLPxSTwThXpfVraTcnhyiVd6+gNoorgNCu5s8rUftVyY1jjp85BXQg/kGvUMuAL/le8J1RH+ZqMRwqE4/SX8aKGi9PqP/fyTqDYcvzNm0tR/lfqwVay7w4t0vrE1MQ6M56RNDuYJXz+hZN42m4VE+G3RTwgHhsDYdLVZ2gyFZwrMETGNuBOSa+S4xRc4zLYLOpgT6rhmpWP13MnAhNVnCkRVaZa+8vw+IU2wmTj4AIYlQch2gpQRiAsSoby9GYON4jOlzkXsR0Slq3M3qWV90geVS5lRjK107/EImkFDLPaVEP/O/OsaljuRT2XFTehuOt14jXLqSJI4kZVdw2rAJRVDZfDKz5Ana2xfGG2wZuNwZdFY/1y0M/OyhkeXqpt37wOgRd9chZHvOf5AJYOLiOmP7CZ1RTF2ShYazgvyXUBb1s3q8aIvKFS3tY8ttLrgZyaYjeCtF7UWeF1ECdALm9Ft0KGtH6LHndnDV6LD2ZkmTGXbNbSyMyCxccGkZ3Ef+hCND0t6o6RNZd9qVt44NGRmVgFae0Fe5Lv14gr588p8JNippOzchjTBbrvYfQP09cij3PiaPn731l0GzhJs1VhbtZkYwDE7s3zaUhLfKI3gVeKSqsJabqxwC3J6M7ZC7pQO4v3XxryJF5vcAhGH87dsOQL0bjp+zirmKL8UwcD9SpbsRI+uRARN3ZNEHWfrwfxi3xWFQmRMjw1B30RdJ2v4f6G7cqOcnt9mry1KV1Uj31wXlVYUmSzwXLangtQQP5Zo+DJfolT2REWkdEQifNS/KLh3KfoLtxc6/aiMQU31xaezqK4CN8Nr+yapp2JyN9Ys3OuuZC6dKGdeTOi3kGYMtsPkDwENEI1Hl0Zutt6VSfAQqP0NtI5NDgbn9ZkrIjv1CB9C2cH5owx3Cwx7E+arBEv4BtWfctViIx+LiT9Ransa2llhDfZQeS+Vqr94EbZfJ8ao1M+4q325JAYhOnTMu8jviLhl+eDwWSp6uJj2LnHZMiU4v4puB80Cka03trYhWCFi0xTtn0zNcklrVItAiHFiZVhBQ5Npr2XETdx70SjBAr1SS401Ska2uDEeQ4NfUBZ2yOiAa4u02qWSoavnLL4P8iZAjkDeAWd8xmYcf9OCdPs90FuFB5vMdKL11jAGHumDlowlIItzp2cqOZV0M+qtDOQZb8dwQ7Riaf37EKnvElM0l4pc7Dn1f9NyaaNsi7PMbi0KZT239UlMCKdjtwU/vzbNM3C7pBOyrxE6wK1YSVHgKfyOBhERxzG+RJQ31ElDJiX31D6X4eWTVezG9uVX/Q8gbE1eWlSIBwa9LZdn7yk7Hqq1cjRKrFkGjjNHOvtt+gtNl0QRRaTMlLBwG5hElJ6oQYbAiVsQz8O0VZSKdYHqXErh2y55n0BcP6AD+8CvFEYu+QP+SXn1ZyCPD1K6t0FgU1qp/Oi088OVSmU2ECZO742CWqCOqh6VNqN9tHrwVrvs+5Vcl889XN6Rr0awDHu9b63C38bKLzYb5YfxzNrB3aKLe9meKZ1IReW1laRUjoIWZM0/aoAn+rwNc7N7tD5gNQfASrlPQM9MY3ddBPWEPfoh0jjvqIWppcp0Zz5lBADuYE2q2G5oz2jt3Idi1SjF5v1HSo2FkChzTq+WBmhsj6+5mOOL98Pc0PXyxQIj+hO4ATyVORWbzEHf6zebe2hpvOVCtDHuI3fiqtMrPjmpk6XXIKqBpLwh0lqzEPRgHNxk6Anf0nio4PXQ1EAoMWhE4NAQnnYpI+CH/JJ+71dDXsK/BWIDgIG38iqNcm01TTDav1JnoI5HSD4w6x5WFukHilf3sOx80Ecfa1nNL6i1SpXbhgtJvg0rmQJE80rGWIFXkCXkKWWK4Gdnd0KwDjg8hiJKJ67T12MChXqo6UCHXmJt/B6Q5plI4y5iL2Xx4G8hRkTxEUahC+iaAiD/q7ILANjXHR5TkhdpSkZbnPJMsPXTWdrZnrgWPm5KgABAi4TjzKgG7GbozlR+jgNfBFec7WGyrMYmXJNPM0tb1OCD7qO4fewsXue279TjupeciSvcpXLSiMEfgIg9gaRaQdmQNFQ0HaU+yA/nDYJorgbFLcdErlnOz+YjpC/41SRY/N+W9dPLaEM/DJpljQ3xmVuKeknnvU28H0jbnfALgIkLRmLfUdBHcEVj5DxZvRl1md7SALJBCYd9uvn8NRyeHHd7HmUUbNk860F+mg9OkFl0leW+qxMnEjTRmGUrLDUZqMeRESoQebmcW2XmSoC+WeST15xCWvnRZAVvxKTIpap1Ug07b5MyR7KaFr+Ir6JonTpSkDZU8YvQh3qxn6MCGESu5wnZ2gPYJvsWBmqC/8m42HEPyWKLZbKZbhp9erCWCHA0aav+0L1Y5l8gEWzBIstuRQN6g6L0PkgaeKeWd+u2rp+CX9k6ORRYgFzFpG0zTwTQCx+0nglH36cghlB+ESLfRhBtE/JyCgF35AnUqqDWR6/nADhsKPKDnbIUHhs3huKhR7hB5miE1hJkkvtLLPboiMpVQueANgtIDBCK9kh5UiUIIu8b1JInxMIB9tGH+GpZEnBgGWeLNAf4/2SMaamltvJZiYaqWnKTohuWcIAJro4nyGmwGNGXHnfVg5iEdWxyi57txNqdigXdMkQDxiiuNOHx2s/4gLTvai3+tfiEMP9ZkJYSTktPTczEJOYsFAUeW6UEzYSYNOQcILWuzYyS7BNRCmS1LRmV/ztaB1VeeAGMszD9ZkUgevQEK2mrAEDYR1u67qqTRhE8VCMembbq+guwqGTeRaWBqKHnqfOkt0j4Zcko4QsEhMAxdU+mVzfkXphw2EkxGjtlaAZNfugkf6kxL+BT9pBdFBT9cB3L08M2J9UI0Udk8KsDqqSjLrrJj8kPfLCBEwV2ot7cYGvNrymCxet4QHj7nKed+Vj5dF9xHNX3PAqbn2rEuHDmVaD49eybVvi4vK9sfkrkkCUbEuJFURCwSJ6Kl0DaI7meGF5opGJ5gjDyp+/sH1WoUchUu3N7/5DcHT1ehiPeyf4L/ElNvge6R/QRs2cJsat+/O93azHAJutn8vvtt3a5odlR6/TPvPadeZ8xOc5bXgk2GBHGZdoKDYQzr/S0UKrsF0NnyX+taVh/qjangUI5r5TL8P/8+uD8TkOA4UtAj9UBPTyMubc8kPul4C5MDly8IpbEse191vK1mBnLF3ehZ/DQ0cy351wzCPxr0nGNL6F8qkuchr+Y+6ywNp5zkuzi87xk0m6/y1QGkXc5i83PdVC2uNRabkfoanW3OSFKyYltpqGR9X/YF27PF97WAHlHGiS89dJp6AwR9IJu/V2Ftgtq2ouT2cfRq5v76e3DzeuoBxUHu+Et5Udj2OnekHBPW5cJk80V599oO9buwGR+XECLW0sRP2FxlM8XAtRo9cnygPkChwz3qUIFKftKd08RqJoKXMK4j0UwG5q/mHaeysKo3ODmbKMdm+DTiTJ7+8LdKcvEUfm5oZ3rNmWj7gM/4QRgFHGD7LIaMFBwhwaaz3hMyQzvIVPjiz2yQVCd51WRbVec4GAthA5VNJRuQkUeCMDp/tv73N57zIQuIh8IVL+cyEJgq6oiZxJcIz+V4KnQvnU+ekz2O/kKgiC8bUdGEx2U92PphVU1EuKoo2IqJUoRKQJ9qG+yofiG1E3KxnJPT1owUl70Dd528Dref1aTkU6X+PZHCF33CVNv7awpoR5C8s3wyiGqdN1xE/GDgszXXVKbT2CnBZXxSziKupbnlRR94lSmVcJbVpJVVVMTdmDH0AfhOYAR4piV0U363CI9swMUYWtkMxlM8vN5/W6wgU2PMxCxUXSIWbyyvZ2gsclJUWM8H4986tMc9425Yun69zhjB3gACerA27ClTZV9J5zzmJtyWKHSmP/ky4UAd3rJOXN5Ql/kNsDRzy7DiWTTdP3pARL4cYn3dExCE/yDnMMyZXgzBmf0aSrrIddLOY+KHl/19HxtNkT3HxQ3ggdEMUyHBA69XvdSmi2jvnu48s9Jx9nOJWfJcrFD8Zjg/2f4YGK3GFAO1oswow3GG02hJLrwjh1kGDyt6Pa9trtmjZX/ZEsMSDwmfeLSpb13RFwdhrXUvkoGD0+RBj3XvNuSZeQfvLhq+BlBTh7WbLM0/PZHOBHsz7/qy4mABSJG6ncMZCFR0pqcNxg2Ma3bsc8O/nDj/U3u4km7pOklKgr29XIoM7pP8otYHDwRqHdrnDgX0gutLB2mhFnI63MnOsIKxZq3+8G7seiTa2HRk5SA452+/wO4M/Kq2Mj1sxQi/tDvK/2wNolS8xam3j9kd7S5BzBettJGj4H7Ptu5s3N0tURKuTOpdIw2vcYhWr6JwEXyyv38BK8RMvekoIIqT7Xcshfl7+kI2wJX8TTL6xDBDG8Bj7xhxg4gzPw5ZTHq0CT1k7qmoXZnJUESEDbj9I9NzNyX9PXBKSF1oXmoKHaXL3N3PKFvIY5AeRYrpG8Uw/bkbDLYctZhXhY71B//kmZM6rCXxB8VgYcbExacOmukM4a9+pkpd0JU7VFIJtdYNvzIQ407RzEQLlx5r/uEPcGkg1shR0yqRzRalRj5INsvBHkzOKbAN8nPspkdKtQoWjf+Q4pO+N/rJTA21PZUBUou2ghwdcLPAkFfnNJSFUOywvxWf5McR2fXEy1+sVeK9/Vx2kyeBKA8gB7GsrmyppHxQkRpVN6+5VjjTwUI2aB+1nWWKuz0DkU1KrW/icc+Pr1HhqeetEuCZl2vu+D4Wvh4TKnIY6ZaCd83+IJE3X40DdGNZL7JNuVjOqhahmhM3P4cth2mCYYeCVhHdLbkaKhWfGuoiWOBEhoeREWvA/Nj1OWY9ebkgxWJPtJMM6BBZZcHTYqtnYsil+rPLvLUocj7LFF7vtUqpNf7y00EbNsBC95ProK9a6QnDWVuHcleaN+k+hiig30LObfvhJPlC1wWplG6/ldOv0VZnSoJkY7BslM6HRIxIIpg48bHBdrgV6i2VURq+LSz0a3D3hSevkYzh+4e9QNgFZYnuUNY0N9mM1aeXB8mv4c+AXKKuAknDoGypZm22LI9SO4C7K9U9RbkHOKIO52bHl1O8D9sxXjv4UT/y+smoh81b2jc5fHZjeT7BUTKBExEINrOa9f4RLPusmJKFptBai7RUVnMl1mmxmgGnEFlmjsOaIx4NVZMYoDZQuk+k9Se5X+dXLqCtEbBRpqN0JFnpjIz2wzG/CSHB1BymLBhe+5V3l3QxyHrwXPut2X/ncXvg7CaprJJUadoeNLsNIrDjLt8b0WH9TrTLSlTWZNrzfVBIJ8XXJsKEABRHY9xIywZCIcIdZPAOY0TSrehDHSLGUkEh/gGJdLQe330HhrvrVb+UufbjMJtdo1PRaizAQqkOMCtlA9NNJzw1dgtRG76c8E0+fT/vtgLi2pk2kEzN8r611xrZAIQfaXB1/JpNUAniKWG4sukmw9vsZqQ937RhOlwrg4OhB9dRggdsMq7No0SU+npl0bc06/JJ+3Nbf978tb9xa6AEiJ5kYQrVbQj7nAJ1XWLAxg3sbxFdAU2c9Jm/vUH76qSVF4eBh/2d8jIPa3C1lKc/R+URDXmnHOu/e8UrRhIvbWTRoD53Eg+eVkkky7HJAu3s2Vp1iCHizIG9ezP6uyECKhnpkF8UtuROLEE/bOYYem/eO/ICuyUoA0x9GOOeRpQUszEy3MTPv0Mj/KLecY4cp1uW53ApyZtzxHuhuyYVGEtIlf55ok93reSUmxtWJ6PBjfPA2WSyGMotRJoPr6vWvYzvMpZ8ei14eTHUwjh4HBEehA0chdGPQOtpbejzTDXiLiwM3yI3rZ5c+HEYe1fbGElRiP+A+FHNsJkkOZNPnoFVWH+/Xrq+uGKjqYvY014VuSaI58+B9C2+k48NpaTEPS1jOF9DffegvrEqlIqwcE8ZI8uKN05UM7D6WcgHd7Qd9CY1EmsKmS20nJE7tRKvXHKAqMDjvtDTYi9855aTDGeUb/PC+Go/X2KzCHOxMUsRAVCA6G9HPXDUjdfSqgTgjWmb1o0O4K3T5mY9Ux8DDDBnAz2Dvf3FwoLstKwUeiG7M3Qb7hC0H1bYQhENlhfIZXqC9Xj5ek1KzyM2SKEqJeJdr1aZp4BFWMSfmgSJHWWNxtnXpOcV52fyfTuS2O8spRKBXaBwoSChbkZwDFNUjXSG9gfhVmCxEnlGGO0/G+Buc4v+I+O+5ORJaWtDaNf5v99/tweHSgySKR3A+1/D/a5GtvbXMoJiBP+2LGDC5eDShJ8HiIdW9mFYW4yO2H7eeQKI7T3irXY9FQ5d5PVE7btttmGRhDHY01Rhd6jfe+XgR9micrsCCDWaD2/VJdVO0dxsIIbOVHr36hY5bSOWB2VXFGOcR8q/e13cTKxT6spYpNcOFa5d/ZfvcxoTdjYD6vXlRMPQ7EkFy73yJLsi0HjeimGlGXgxa5YU8/JNT0SVmqVyDwLQ0xBy+JLadfwI4JcNDJRC9TBFwdjS/Qp+JUzwpiXlKK43KzGt6Ez3TSfpBskBYPnNCHFQDbX90Ze5aXM3aGK8t25qwfaNIxGbrlq2+BRwbe8zvlAGFDRxifuJcVrKMp3VXJhACJXpKC90vKDZIdT4C6f/RHv5Uto+Spp2fOKL1PaRvcsI1kqY4Hwsf1R0V4gEvMn9z+s+A8NUlSpEwc+bTov/Z4+HKD5U2P5hvU7asgwbfOfLZyOcs5aKkDa7gYZzZWt6GU9zy5ICmpJsJA4Gs24h595wVffkuHQlsyWSRluHnQnkmxHEMqfns5wGoWJ6ojgNeT5dS9b99Kf+kLnDhYp6uNQpdy2BW/Id7++njNFWrToMm9JbO/CgtAsthS7MuA2lHbVF7Rx+qDvUw1yfNUm2NWWbRU2cxM6jJYdzhdBXsW/6llgL6KjgYd3LBaBkfcnaZXbz0WjwMonForBhKvkT0WBwpl+mPzC8NJ/oulGf7HrF6cR0zcDxfwoMo1PCybRntBySeTd7RUnXAkFXkPYhEJZI7LxavzjFaHio4jPov6PzzPAt/K4GnBNtqOAR0Y+hNLA7uE7eg9S38rwRChaBkD4bs+pio22ltOpPNQrdj5hGHa7/C1pQXtKqCMl/C5ZCJdzcQxLwAeQa2HpwWYjavx9BQSJqLQ62R/gyknd8I96zS1BlszSsJpcY5FdXS0781ZHT/8nn09fJUi9F66hyoMZtPz3YBijiWeDIzo4s4mLG91v6b/Bp0mg/VzfrSmxJexzqQISC9OjdIR7M8dHk/bI0V+TuUM4JzUPvEeo06Po/O+bGLUssBw02tPjzpBINZqJxufe/XEumcOVNC2rrHMp2q6v5M+f5WPHm1/GmuL3NjFguEUuoDRr5CoEj04sVbKAjZal5kRTvLUOq3ltffaZc/n/44K7E2ePTYvz1QhHfA0pgIm/rHyTx5QWfkOMObnF50+5iT2+1K7gwEBreZDUHR8X7DFXaKUUrZ0iEyuxQpoEHWm90h/owHwcoJX6Jl7lfXM6svZWWet8p31S1OTlrAc0aECaEA1g9degWoOFgCdB1JUnlq7AfKiBWLF1pC4yaJ8VeWseaC2Mpm983JeLpy6UXTbZIBo7LjyOBWPBj+Ma2bq9ubMS02IvI1HNKYXrZicXyE0w0P9b8XmFU1y3Z1wBMN+RqjxDod01GZoyqPra2nqNUI8KLfhy/sdM/nbag5zIXPxmlG2aMxjrlXpPw6rQm5bypwd6fqrqS/FG+7AydGX/JTUnePPhsoXKRvt0ppt7BtkxIBgpwyTgmFKRmJyF2dyarqYSYfC6NexWWfw4TR8y3vf8QONDrdY6n8agXh8jf/9MCuRxxYtpBPOA9xy/sKM4aotKQzkTMCtT6e4kQOpE/w9bWYDQkI7ZN0mjs4ZRRQ8c4meTLLvAif0xy6nSCHFeDBuy8UPWT8nfEOOLq/z1FbtClc1MeoUgiF3ascnDfd4NLL4N/bilcwHGs3aPeWPoNeB16+Q+Q5Bd2kCh90sB6VpK4Q6WpenOat8HnJNnFPhDlSEwD25UQyYf7hHhsvwb3mb1h2PZZWuGPPJjdvbuSM87nNM5KkQ7vrSg/niPcNF0nxYCy8kE1Hf0eCIEi2zk78KkWSXPk+7OaHMPUoi8NHqQ9uZ/33aZP3c+LQq1Z4VIahy9Enhum7zMepyJTO9ZAd5GKpfe0GQVN3h9DtGpYHGRJrVDUrAm8EoHns3epr0WPfM1Jtzvk8WMbYqyYJ/8Baeisf1srEHzdbcFKbme/dXyq7NvezgOtltPZQHUprvpmKXpj3SvfUMIZvadLhKExCgspt5lL4SNsaXvTByerRsztAGoNQg2rsWUSXHoIBMbUBGNyGvpxAFr+bcGpzsvwNLSfy6A4a1e3nuT8hds3yOrDbmxE1vCDi3syC19sNb4QZ9E3c8MZK6CMOG4a6Yx/ylMaP6uDsUfrWJRONx9y6+0b/c3PzS3LXQT7rD4IJ92YWNJarwlSFIC37jscm7q3HIaXXxSuLTw/gLMNYE+1uiH/gITrv9X8iqQrg7RuhACVAUbH/BnH8wiRePidU6+g7U8xfmyNgmYp1gTNLwb8hSVf7ABOWtTCYCt/Yu6FqAY5ETadbPIyVyfuesJsOwDth4WAn7xJSzIJg+5Q0Igcr2a3V9SbkYDcYi5B5CI1xRboMhSfA49/gAOMfL+UEAgz85OfRDVf0J/v13If5BQuqhbhHc/nn4nGW+AExu556vkYTYkG8fm3oYCqIRa2CE9oFKtAJ9WGixv0lB9uo+cBdXxgrga0l2nPuIwMZbewA0B+jZcs/cTLH9E9A6p95YHcGPP+6U9XpAp59i30LN91kgqw3yLBiqtfiYNb0FgzSQDvDasVTpXUnQfD0kl3NrCeS9OpcSS1YglIgVsEisWThbwBVTt68mdqkKnBjMiin7lsJWGG2DpIEu7eZDZjDf52Nvv/ukWxmUN5knixmsRV/dIDcpQflabuOEye5wecNvYUKqY1TL+ga0SO9tJsElktX71qbVLSJZbxl/YJgYoGDw/TSUkZkZ8plADYFIOGuUCt7CHi2+Ou0lSgvEj7gcZlLIFgB87FUqNrC+0iEx0pp0JZyLBu/gjdaglErwSfPw9gviQz0y1JlvZmnfasxQW/kCqYFVFI3By//RvQVOPOdmizrKtG19iaZdtg507hircfJTcEbqYzQ1sy+oN9FGP4WKfvkkQlhPNDUfbTUlS6jqh6E3yEegTue6B6gWtNsawPcE6FbAHdh8Wbhq+UUbvZqTDTLYCwWMGQRsDZR6hjIQMMkBYqG/DilpaLrz8J1uS1XF1E7W+wkJu1Iwk8dPgRO48BDXVyA47xtwRzfsWq/M+M5AN96EPQjfHXUH/EDcBM9yHdBOlGpVFsZscTjx4aA5cS/kkwjXLlQ/vkvynWsGfv1biyJaJY7vStIthOWHrzz00Of7jWJs6GDgXX0WmPV1hspEDlTmqgF3lYtdnTWGt+/UQTyDc0DXp3QQFCpyYCyXAS7kQ1ZMlpW9Qb12GEodGnL7ip2VbFCgNkxNvRLd+xkc/MLNaCvzXuNzlav/KfLYaGEInKHPLNIdFgFWoHD5BjImu02Y5j8ezkGKhUjSmJTyqB/e1/fNwECQKKK5T5IuCtLUmghxm7xbmAnxwHiVgbUa81Gl2W53fWjC22rZcVZkrmljU5iYfw2rAbNUSLFejq65yty9ECb5NF1H8dhdFviGb08fZo64qNeMyA/DRc5dybsC9Xwo1rmgCRQotvGNfUQn4OWidfVcX2YAFaFFJSWSzRk1J23P5sWdC7FSzz5ISd+33yZMMVNPnfkf+2alvaOI+CkqLYiuD8HcYAAsG+8rcBbE9BOe8KUF8gpp0JMtCIRxFZZl1swiMBQP7hQVHPhjtxsDXMbTEvCzjXbHyoF+A6pGqJimbdp+ZEP8PaNvXyiVUifJcXmfq5Ybg9MI8Y4RSU1HMnrNFRqWXBO/B1uxuL75ZY3NKQ89dHeOae70AexFxbeF4WGQC39PKKmZ/DgTewJaG4kqidKW260AJpQrk8OnaKJsU9+gPKyWTM/cDRZpXpqAuiBdlU+UuZj1BwChA1rNrv6MGLLFHfJBp2v1xSJprfYEHP/Zrq6ZUhufg658QrIr2vMd6cGxbF+L9C1rWQcpD7hvrGCtp4EPSf8X4PBE5rNzQMaGKUrmRETw7Z4AYATMhghYvnjzMmFraxzjV+qzPpvgDwIo9MB5CD6NhmH17DUEzQJcnjggJNrOhsyLih1ubYD61ijvvPlwd1CdUQLX9yDegaeWeI5VaSe0QTN8VnFYjsCpAyBZQHdQrXSq6gaBjr6ka4VcEY7py0SD+wDlkcyZ0ETu1RTQE+sGXwpveESAw5SNjWfadZQUIc74FB34YF3iB3wmO4U6ND+to7WQasSQDlHRiYwbDaCAKqz5l1fOBXN8lSVxcF5TF4D74GFOCwGwkqIwTHqVJPrbN3jg7qrNddPgCS2Fa2qDp/8pTJ7SUwONw+9gznWUV6odC4GywHhZzH1piTnDCy7t9QkGOrJnQUWU1BIHFqOC8KVnm4ugXJ1BHX4NiWpscOmBtnx14utGLRXGqZ6VO+DN7uSoRVcky/h36uPdxgQjMZRsU2SnYnAL9GguWB2/gHLa3GN2ItDTAued83c+HxA2XWZwSvVf612KsDc44yQ9cgXcBwCPhYAbX5ZuWO6gZRj5F/OrXYxYcmbTnHGZp55e4bbW/cArfx38r9l1NdXbHsnHRAD/PZ7yHbadrjd/4icOyA8HUtzczy05XZMfsB1lhdT2Aqwlw+I/s55T21Yj1/NP1T+05F2Zdco6+EGRwMzEITnbsH0asX+r15CA12DEzIXQd4io+IJwlNeptFNjpy/MUreC+jr+4LyucW+pGy/EQczwwLQqGLZqhbur1qJ0BgITTtN1WPnzZaGrNvLFSgLwP40qRvhFqzvScUArSEyaqDsh00P3uZE7j832lfcnBvQUZ0Gcm3PXY8GMc11JjA5sEJw7aPNer5n/oQ2DVZS72w+gMdZddpgbERZV35Xvgca24vBC9gD7wS1mcAuHJtCtuT7F7J2c2TDe5giGTg91n6Rn8R0im9ssP7I22QlCbUeL4PnpkdAYvBLu9quT6VyEW4XeCYuP8zzNmgKpGl1ajZHR0LVKy7bpDesV3w0y76Eu4jDKUwy7VqQ5v8VsVzpzaSsKEf/QV51ujEoa1qg6YbdxrZ3JddU6nkoNAOCdBvAbFuNUNZZa1LMWlsTRiwFwKEBkIa8K+Bdb+7kAeGIAoUXwkOvDU1wPB0rzftt2VbhQZXcpeIhIvH3f4408qVZP5M3rXDHF1LvWuIWMuVhnnAFCmQyHOG2/uilOqWhTfPZaTSlXHplnkIbVUrlGETCGcmf5DzwxWtr7liyUtzHpgphvCsCcflKM/j9zdi8Tk96T/vqyk8ZK6oBA6IjrBUGnBh6jawUUusm1VyLDaX1y28+QATbVlUvtO/2E1l7hl0ptKWbBFb3RpwcA6LhHO2KeroPtFUcl6T8Y3QVK+zsVlNFjBszMrMAI4UCE1WiYmMhxWRUc5ePgpPSN4U4VAeTZsqHLojOH4QVXoa1gBFXjDGgWGcld1OrFacXVJGL29Rh22ndk8vS3pCkwmvBEChCI+y5k1OeDFDoy7lWNh4O4KD5KDFDZeChU7IdHbt8yvkKKfhDXTtGqbF/tCc8FysPiL2TSUdVaCJm+ZpYzxGYMZa7/VOT/fvOlod9GXwque9NlMEUbaOdXOC1oHA6Lih01twY60C/ZUjlnVmkIszgxIY53/DmA0NkKfYOlMY6xw8tzYI4HWa3nouzcQZwZ52BPD9lx6sztbs6Bko37egZqeFTq8qutxCqu4dwSqtu9B5UqDDvZSwk7ybOTBK0yGbmbAoQ9XBDiJzvnadCMdVLk07ndGCNxRhRXV2eX/Ii/UoZYbR1LM/MxeX2wwOD1zX+vK7qYOe4crbj7FtSOZb9ReXa/4bUP37nsG/SZT/sA83+REYetprE5bNm8H2l+3HxvQSc++4QQ5H+QdHB0EIy6ogotLuXHn5CJ+dAWPfKx+J15Dl5rD79Hkkx2SwOQDo4RmOQm6OD6tqCS+R/DGi8Kl4MX4TpPHxfwQtAP+mST/mYEDQrFy98yHBEyAXpvgQ5ywemQKwrkER5Kp4Ic2niHIw3i5EeMwOW3DNSVEWQIYy5DmU7WWAX+hpDwZLl0i5oBam+DlRArXQbSKsAnXf8xz93LGuV3AuuEMTh905USvh3b/ngK+TbPQgLI0Ku0Ran/SUM/TG7cuWbdB6A/v3zKkGdbVdKANjq4PtS4onhlRxa0SIvmB2QHssvtmqs1n7aeEb1aYqcf4qkMbHBZkAw2kRR/cnkKw9gA7EtY75Hd+u/Jy/qja/cIxslqleqLK1zLIz1542YAj1VNSC7wvA+17KRYVKusk1iX51ugE+S2pyqrs8Dc3epbllk57DoNZH8i+p//x29yyWZpFzfJv2V5YhNfA2qIHhHkbo7lfgulk1NYza3mljCS71lkqr3uZIhP7TjihXEq4ApF6PAu+XB3N819rQ/xORr+tlPhv8r7e9lNtxwU6GRCw+GhxXujhJy1inrF3HYva4tsnKEe2v0iJ/AowzDJSTVywAxaxS6X3k4N6pjTZGdkhMi6q/QCrZym6l5OHddn2CGC4Si+pcBTQ6/pNxXkhQjJHIRy115BWDaX5Q6J1eruqAKGU0TqfxzDuGiaR4TMr1UYhxvhmZhRUvaXMjyEvTT72lWG63htcyMcLWgQNd0UiGgDS/qfbSe5EYqei8ojtTSjdHZEroWrgdm956Gx4nCYDhPfXGdNuBvUHLZLhH4Gwqac38n/IUy8Ry6hnk7I5gjMBkhGNwvgChukU62s/QG0Vs2RhfopMxqQaKhq2mwG9wZFy44RYkLD6VN/5jmuCgQx5ynDFOMYnSDt5BP/zX7C8t5P676JUawU3DZUH5J9qc6We2QYULglgfZ0ANIVd+R661cnOdqVulJKOtTadtQ1oI0U2XZewLSdqhatRXujyI/lUOiuzMkMOQwSnrSE3jmziTKVdrRxqVsWd/2Ks9u917yVT2be696z2tx2IYGrDzrZoRouWlx9wdoMU8YgjtQvAsZu/7Quhy4Ex24TxVknOKVq6cQMvtB6ZuXfpIbKL96Mnm8Z/4c56giefNcFRifwWp3NtCxkaaHzaKrLWrDdoMbcSS+5ur8DuG3KaFCyFteYDHgHrHxleZh60watQGimqzAfj87adg5zYWlz/7s/kgDp1YhDRwakMTe/MyJYYHVS9D4iSv42ujG/0pg1LvTLgfySyw+Sh82Ddy3eoiQhPEywhW9Oa/jIhW7n4KDf/JEvOI7+Wbgp34dpMZ5fQBWR6HbYh4pByKr3gUSF4+l5LlakoV3V1D+909PBNb2r8B5xWccs63JYd25RdfLOiSSJ/NYwCCwyJyrY2WZcX7BQf9B8RuocSwnqnAynQsVfqiWS/I0fR4YuDenl6E+S0dTfLlZxn5KbBKWXG8yYJmHyfCFkEZ8dSj1pWUSTEcMzOL1JgkQHe6VrVCnCVxIgC5Qcr87uzz7D8dXk1wiKqqqz1Z/nMK6wObYoLmxpCOebaS2vhGGPGVJLUYkeFzBdRCbPHYxdegbFNUITKw1SbALri8wmNKV7VUlEdDJHuU0Spf3p7nQiu/0KbtMNLYKTge8RwFLkVyw/5mD4DMYdDPGs6Ybrx54J37Xlaj+NkJfOfRrm1aqtkPQ8R2ES1Hb/oEhMFGIPxq7Uas4w+OZ+30dPiYcSQL8Rk0kxhZ3BKfYy8gK5EXY+iae9AyHvA5I4naRc6D+s39VP/rCb80LfAYysgEc76BU5YZJZJupCaI1hNvOzNiOHXAG7xt5tigg35XCJVFOU680G7XErdka04AfJ1cLpiRBHjJhXX4LfzSjJtSVAVWXKhOpy7wpRzrXuRPrRpIpZIf7dk4GAx75iQZkwlZO4YVihf1qrdo34YUejF1c3UXz6TN+9XTyXd8qPTF/ZkB9KT6MBUPHTTzBfF+H086bXx3h7vHsshIuA8lb58i0kUO8O2gLc4Pioh3rQb2kWd8CxIADsP7oGNOXZBCqCHuPUqcgWTrRcIl+6t17mAO88pLNZSzMBkrkfoQcaf8QNdrNfAvd8vd7iaT+2RhyRHIAlBcSo64miNulRmwkTiyTvKKqnVSpaMuJ6WIm1vBoa947gI9oOUrYhuuyaTqQPiF7rgBwYHdVjCeHTHTCn4bRhH1nSjue5eNceZCQQkeFM2+P8RDkeMRqyy1LpUU0Eottm4rLl7e3xp7dsAlGD3rBUUZIC+hFNPlfRlIebrTi8eGxY7K73cMqFwBTQUUVGoiQHKqSVX7mRuR/PaGqxJAurjwFC23NnDYcAK9LMpTx9XyQdFx2iwFU2j2uWweYv2DpaY0Y6TS7Rm3lPjCv+Eqs800RQCIDXMVd0w8jXQzu3BUv8Wp79zxK7nopzNUZO/4+hVZAzgKTK/Mlm6Idzb5qdBsQDezpc4vXQnsF41fdvZawB+s1Gtq+ySu/4PQQakDJTYqUhRTiLKXstx8rcbHwRkYbGAB5l0GnrgqcoRawGeMxUfgjvkYoFdIPC9d4et8QhJj1Z05yalLX9i4twF7byf/rFcEXKg/BaSm8HE5ETk3jNvsge4fdIQjGpnSiyxfgjSSzBT+RT2FeUyi2J2r/ypPlAl+pldX85UGoDkdP5kUEiVvrBgY8RjH238cksqnW1MwFdzKhHRqeRmGUBMQ9BuRa8l3delbLFNZWT3KgWR4H4VILYJiWSzAJXm5kIofiwP+ribZLQkePGG+DBMTqQg9Bg3EHY6kkEHE0YIjsMr3lVJj+ZIybre0Fyit0eVhyutE/k/1iRpchQDqrhbtHNqhnPmxGnbq9rjd44lyDWmpa0Z4adWUXeW/5McaP2oqx3NOB9xhXz4So99hd5suE7G44gIjJeZXvINiCmHwSTb+GGg8EGj79vodmfOftbLRV2aA6rBrcU2qHf4gHrJQMtQeKQypxBXLZ0CFNVmTvLPsJWKI8Q4cXig3sqIfCCFSuo6+XsgepwF5mQaXV2t2Q+Bobc83ni/YVIxgU90So4Yp05Lylr0WRl+r3Ms14XGpRsrTlT49T7JgY/DsaImiIp5k8doXHJyNJt4NOnyMjY6JRo5zZlo9lTwrxh85rBvCHQwJZwL1wfN/MVc+6t7krusNLIIUFXg62iRKZckwFqDk/Hla8M5GAeXvcQT9OdEMK1gwioAIDkeMKWoBcYWUhn9kdBGRkSL+FruEY+kVdk4WDA0suP+ZN7PeBEkZkdVeGvvA/H2rATqPMhm2KPOhGwMc+zM+XfjiaKGEbO9cPeXM4jFH7ePS5yif85Tj+OI94lKLAY09RvTPJli1TYEErinDVtAFmn+cbsyAcSWBg0bd37EgK832lVH2yIHKSSHXwE08Lhos664PKbMDnEwDdjNjJ6a2Awlli3ZxkmwR0r4fJgxWte5JxNSbIzfnAIGaDT0kWO+WI4X0Q2xM7di2qaMouzhA1C5eMXxp2nSJ5iMEAVJJOVAKsLR+tnKcrxoDj81s+q6EhYqzaBQQOpvumpn/28GMmLn2OYRSpIxHYhFL1ISNSqMfA0giyxyAXyR+aujZcGP9Nri3tWZYc1OG96EOvTV3dONLqJtjGBKQLc6pTLxHiDDH4Yc8q2qnC0r/1EGtSeyr+FOOXJ2CnF8s7vskIcbuWXYBgG4uSuANt0wlE6+JAq5ugt0n9d5f4JW/ERg9kMHUbhXO8GyOCjDAs1yW27/WP5Yrn/MvfSgeMa1f7o4AmqtPQgNFbenzJn6UExm3Nub0AL3XQU933LuMI+y/JHrAM/3qv4FVYnm64lNXP96vzwMAmBro0RFvt58WZNaje9igPlWV35HwiuvygahY4Bg0bJPYGg1u5abyDq50aLMP4YU6B/ODzoz5azDTGi6h8JhoyXkpdowMm9CBGJtK5wjA8lsy3BSu+7xhiOOEajk9swEx7CE0Pq2GzB15D9VhRVpWiyjp1V6JSw0c2O3WXy6qKczgWWr2q4TdLUEp5ai2j/Oyo2hgUxsl2u9+2JZGvfEvCFqoA8besck21EqW8Hk5u5nx6pj1xfrq5W3uKpVKG93o2Lu6i3MROvbscYaanUy5MgYnAkTKZ3rki4jAMC31sGO1gFjyukJUbrCqXZzDS2644a90YPeaL4K5y3dFhW/4s8aUZWaqxiK2+OhG/wxLvKoouaKV48G0w0YoEbPTTTS+5Z02hG9LiWPzz6XACsCf0d0aq1do2PiZ5bkvWbpkM93m3SgDOrHWoGRuB/Zmb4eQcfkdsuQ0hli0xKsQFm2Vs6TALDBxzVWtvx1/fhORRaEOkr/7ZeWOvAbARgoW8ud18cY74v0qTYN+nXqXfo05A96oIVXEnwGmUNnrPDU5x4P9ArUvyJPSnsbf/Jnqnu/YnLAS3YCethmZ+j1SHrXjDZscdsaImVeZmsSRoQcNv0PPaN0Bo6P3jlqqPoacYItA6iRWDOvP1YcsfaDyF+5gCLEnMjggpnKIpoiDG02dcXzxejwr2IKv7ry9PsQUapJnSy6Gfb9COw/B8bsIrVz86gfohP+kphd7g+JxcVnC9LTVoLYP3HuMdMonRcMGZFk0zgvTBzH6uhJn5vZsBDAox5IG8fQS+vFhfAFsNpisktyEdCqHJ6GL3uX69ykeA39pkWjUq5AtX04A3mTP0q4GPGEHGJSAWRNXr6csDPPK5Oihyr8QpYmKCwshOZDRUTZ61RiTe55m6AIKH4Ap3IfRBPSH2kzb+0LuNvuptMG/aKH4d4lh9+Jbq7rfMzsPqTiupKqFqZmcipRl8LIG9f/6vl9aj4nb+COu9JZ/INsnGDWgs4HdI3J/yT+uOWLVHOkxQ63OT6jw3jQ+trzg1ZRN2vkM59c6A66DEA2etMUAQ2ERMQ3p9LZu+SpTtzEfHY3RIdYL7qocK2KLOD4Pj9HB3vbN9vprHuO3dUyj4WrfHwQbWbMHJn8gfaX0yWjX02qGauZTnuwPa09FtieXjKuu/WuFmk9FF92ojpjQvFkS/RGYZiPWCqSvfpQtCgwJ1+pC8DoyHZupx9vM5jiueGICkv2YlLvJkUXnrwtll8ri9eotjv9hxucLbpZdw4HJjfq5dO40MvkhfjVQonI5iA9to07fb2QWVsnpu/mHE2fU3UMW4/4phfq1+cCO51Q/CszH7vqqbP8L9VCzAjdlOnQeN2/d8UavslVtQZAWp0JoEwsMplwKCB3wdpAwFafaVcF6v+icUEjEfgKKlS9CmawJDMChOn7v9gXlyxD8Joi/p4m0kbUABURC3Q/fF3orQI0rdw2XNeQrTSLJylsTHm4zDAHY5OyzFGrGtj80w5r4bnNoTii09hBZlpZ0HGIY88VGkipiAQfHoKvWh8T6gAWODO9WK4xIkKwNpd6BRDVFUFDFTyJ912WGFKJHFJE4F6Uh3LGH8Lmw5t5cTmqjRviBNsUFpMpz4EJY5dR1ZKFPoMFx2vR1+UboQANzCX6YoEu4P6TSjrfTvriyaM9wRpMWA5aHg3i67F+BSKgptjIpQmYvVJ4tG2spMDLb/WuvZhg1F3I+VthTU2efUhpQPGTJQ7xxawRy2ogqo7rj9BU/SmH7SUzyTYiEMhWYMsE75ls4QGXFy3FoRriE5zQHE3Eg4pTXexXTPtAx2cRoHTFj870by9glyeuI3hZYdfkCVgez4G7gFTavqMpo6jeR/xkuBMXGTLesMS8hy6Rkn65R5QaSudPZigRJ0pIX3uEh9BQls9QmCzGbWRUBoTFgj+wpHbpc4sTDVVemWJzTqAuxFl4yJ0zoJZXmfETXikBYVDrZYC2jwwRUgBMH4OcklNCG8Cl9OA02XT3C5lO/Yfo0isVSAnGL5DGdkGwER4OIw76qZZkcEbIXBA9+mLO40qZAQn5j51j/4UG6Ha0pn/UIygXcGtcrGstjUipoQozSwMhNRAdiiE9T4ekTrD9O47D60MxhzakHMC37Xgc5NluwKXJ1IxKJSVwyswktgBCZ3c4Hf3d2Iikefhg7XmArbzOfY0p7o8HHDD4rHVrUC6WYKMmds05d/bTh4lfYJEOqxtiGu0gyeNPwKiQZeyd7tPrK4f6w5v4El+jB7O17OAZ2FaYlBnVyh36eccV3wFNHiXeKH6fxlMvScFdnVI2rnaH0uzFhASJVWkJF0vkDIYwGBO/XudKITon28Ywvbj5YCyd8ocrVKWQD/pfHfuo8jC5MchGuiiTeheckcZYlXr7/LypLy3aP0kJ5iPg1GuOSLF4tr9NFINmr2bTnX9F1JtKgSZs0LiRRFN8uZYMbeRxWkKEkWmTHtkJZ3RAjBPxxj58vJUS7M9Iga3t1jr0yUWuAjawfwCHB81ZEpvMc+h/afQVfLwBcbV1vsaxM8qrOAwLHRWLu/RZ4IcY9l0BacTiKhXAznwcbs5POh14WaUGaHcosks4egu83dOf1uhwvROCRgZ4XqJrwAXAfVHiGwMBqUO3kSWP4bdYV8f4EU0ufstq6YyE2ESSjslOAKw0QHEeZ5/DJFL8IbPtq06Zly/L18CBmx+41DmBpUGOEQoEr62EjFA71afje6RNi/zQN5qBfRFmH112/KTXYaXWWzgeTORHgJc/K27eTC8ai7mwUFsex2RajV5OQsY0OQisw8gajCBsfLnyulH9N43hLejIpgpCCzz9EJreX2a8JYKqtx7DLOdzW4QyJRoPH4za9a51gBl5Jq5717XoVwf8dey3W5zvcZoFGk1+ETLGD2fWcVsCKechZGTZ/W543ywjxa211hk8LU/XMLiN6qsbUL907kM1Ue3YnxwAGuH59Y3jBwGtSFCIXSxmeKAOge2DMYZy8EtAtkCllmrzx0XJdAFSFB6Ibxg8ijOFq+tkNxjNNsyS38QywPZ7jQgh5/qZEzDMOTpSvwSehHwtu86NUJg2nnRw4J0jtSERnBByGYxFgcpACZsNccByx0bfTQh+tKX96vr35Y/bjfN6GqrIujkqEzGtRPmU5mgLVgxLGjP5rZJ1UCXqb8EulckV+MlZXiQuWnrIyZ8D0HRzn1msHJy74weSGzRASbep5voO39HkhAVyx99FgoKnFsN2JEtrPS1MtZ0/sGnqeZ7LdMK3fSvOIPigpDpW9PRIfD0R1pI59CK+hCZpkOkybJBlIu/I9XL4pPanWUOIaxVFi2PcoIPLhC7wD6oyZ4qxXj67fzbU+v+ndgS3FQVUDdan04DXVDqsLX2LFD8OKWFJvLEBMzIICv85OwQ1Voq6tZ3ywOtu3sF3htxVPmum3JOlU5ysPa0LIkBNEXYwU3Xn5AVRxkfB53NJw71AIIPXuSwlxcQ+u8VdY9dxTkv9TgC5GnoCo5+mbnOLZ4esQplOaC5gWO9XwbCmNVO0QZKQg/hha1T6B6bwqjCs4ONUDvWuxLqRfKYNjPMce8ZtLZQfdd46wRNfoRKPq96ZNQlwbNmG0d3pbw5/4NE6kF2S6/Fi8ztWu6BXzxK1YsZk0iLz+dOwrGUK3sGr/wWWidpG7XeKFgsfcZv19p/a6JCUsCY44f/J03N98j5AsftgN23UmhfYP227JVZRVv38CJ8I5ht4jKc1mT+2M82fbdRPil4O1x9xOA04p8ebnUWhnTc/Fogp5LXIVnJk49mCjiHhZLVAknxVuGS0heL9wLmvoF/9jjoMMoMxAT1FadH6RmaI78l+re8KbjbY2U0D+NddL//yN/FjWXDmXRZATHKpX5hakTQFivFRdye+dSpL6B3hT/Nm2RDEjt9j8fvZrvxs8AS5dJPguSu8EpWXvcwT5Oy5LT6NpGfRJ/oVx9KcpTYQQttyFMHFDswv+nAy3AgPCaj34hLdbXCcfCtKgyF+MB/n8si1YlU0qpRR5/aFKvnvGlYEufOAZF8c4xuAwz6or492VIOgGl9ZpgxAln8m0MtYPWoDri1m+SH4Z8MVtULBHNY7eVtPv5yC9VIkraKqaTyp0Lyn9RTABOA5r86q7h9CpbN7QTpidueMD1kyxeBMntxfXWtokr2hdsvvWNObhPnty/Zi1LYqQIGxOnEPBpJjt4LrsU12e98FjsPcokSPwB8uPJ3R4hL9fcaEjxWZGNXg3LpchxKfw/rok6v4+E2hf1NRkKDYJ9wBSFIvVsHj/tqeUGSQm11yw1/1MqtPXxldIyW9bJS1RAWimoqFn9oWVFVHTusqzl5ca/jUcbs2gVsaZ1TPhY9zkWBzejRkvBGpPdC7RAXlTsmqgkPSfICrQXutVE6W44hEu6OM1xEPbIw7DBpTPON8HLpnCJtXUN2qFoDRdEPPXq43AciRuN/2TBylKyQ/x/6QYKPKvQLuvN4f55Kpp+F0V4r8Syg4QkxZDSD2CxTbO/andan8AFhr0YmrCEiUWadBu42HJDgXUglFea8ChBphn9X4EYn6/Gzcf5RoheALzVkYwAeIkFJjqohb04PNLzTf8M9mgsEEcx+ewNhbY6Q2ZUzA6OZ1szl8L/f3Ufdy+l/eTljbkcWJEpnWSGz6zcoSFIcqerzeEf1z0ixAgx5kLk/OiPvSkY41V60mhlCG16Pkt2lKTkgajNBvwdHA7Sk7Ym3ByHFEhwKWAd9k9bERd+gDw4T9NCIO9oZBkHqlqww8k1JCaazbkbH4GuuPzsVjOlpOX4WrluISgvT4BnSB7wmmLSHLmNszu8fQVR5AVsVQ6c4TlD6nd83BDAcMAJWMX7kYMbUSh7+y4rhMYKfbpNLJ2U6lDsOdZb6a+/NksLPp9fxULMU/te5H23nbcsxwERBQsewXjLGRmp15gkFKWoIZaA/CvtCSMEOZkq6om887EbebURMGNXVaj2SzXR90hEAoGHmICizl9h98+fI/zwwpH+/NePydgve/VzTYHEXMWlck3+L23qIelp4LTEkeAcs3PDsxZyaxeZ0y0IBvJqU/Emy9coGoZtMIJK5tt8/WcgSmo9srpeG3PP9wdEB0E/NoNN7+8h8baD8bU8QFBpbCi8t63LCpbYUY7W50VSj7Vw2rxzow4N2EAzg/44m+apEQEUtbobIgAV0zYP+2uewRUr8gaLEjemTnBrCgOZ6saRLlKWA6DP33+vcADnAcT5by1ikVVvL0s7Vvaxhr/Y/21B7I9T1TA5V7/e0fXQaursoqYhoZ0U4suvpfothJx8p0RuGrYCtdzUHxbrBq6jZNhoLVkOOCH9Ya2pi+POLBK4hp11bRDxYCBl6dYaibr322h0famecRjIGQXq0f9UhILcGMm7iEQV46poCmBjkGuvP77adrDkODZ8Z+buXVBucPjn4J4y0viStneMnlIUKrZqybr0bnWlcjvxfOyGJQ/z1/cXbjTbm8qYDicUEWLnpCCqb3dgfCa5OF49cPjwp0b0oPr1XU4ye+Tk2iiYVH/UandwT9Es/Glb3Zp0NZTZgtMuZIq0XOufpfW6xciLUN6SyWoQ5nbO/OdrqKf4bvWKPHc/3q5XVX6Lqr6Y4P5aacruDqDuaGBjzn+EzCE7HyPCGuze7wfKoCmJs5Tm1DparyaGEOZYgDOFvesat9sj5GIRpb03SWE4yZGQc8eAeAI0CQEbgLSKR2K0E4vha2UK586YAK0icu6M8Im0JeC8rTy5pAvoALGyNvDfcwhkJoZeXE3u9rrikwUAi9Dhf+pvWWH6AX0YKUJ4EjtJuNFGoKRXKcFcfwP/ODKXq37NsGkMeVLQYvruysKxBu5Y05otlxqv0ljrpE9SLqFNlT8elo9/OJI2U2LWMD0hDAVxDRGxGSVaRYcB52hV47gtFA/1tM6PmY13z5Q0XxncTf4n7hlbMIFnzO8yrd+x8Q6xxQa95+TClkBAvxCwv9EE4l1VSxucrs6Kbv6RNhq4K9c1Z0AIa9aV1ka+DvPh8TM5r+rS1RlZXHXPXtj2zwLQbzZZy0CgzbO/iSD64bBdhVFLjGnROzs0QKuNF4fCf1UdOmnk1YTYFW8tagfcs/vvIr1ns/0mir+olclZwcSKk2clvqFVc+FNRwzvNcuvR76GmdvdsSSdJmlgiaIywZ9hLeiWTG/qRoU5XfYnDJoG9j4EZfQdi+V6874iKvyzq9NWILiWUQvmW/p0WZ5mqDAcG3L8t6+uttI18HDwHL7kKv6ya3vpjvTnBEYOd3krS91jG9u1T91WjK06eK9k5s2riDCUfYauASnKZeAydffvelgPiHQKLfBiBbD14B7epDVzaRhli8vZGxQ8tGx26mqdMta30IZpK4j978sVJbpVQS65QjSJoU9d7yXGEqULKVdryYV0vtR7KU+fntTz+745VWQOpINOEo7kTs2mhpyYRnWnwzKr4FUyFny65Iwx5K+twVKVYMx5wRwIRsUG4gHq8CFB8oYg6dhIZVDfBYpCgHAcJGGg359CmpYiMv0FTdSOeFQE7imc0oJEDUsHUpnOptX6CP3yTQaMn69tAaANPd4HcPOOfQKN0DQ+FKJ7WiRe7I0wucF3fmO1AuIUDGcxKs+QQ0gVE23S5zoGdWp9LyTEYlzuB+przkIE0ljiBRkCHSk1ztNj4JnRosAMu2mcfOBvAu2lFW4VvaQvEgc65sMfjalSnNgW4D5fEVipbDjhmWaCPlhpoIye8486YVxeLGnstcve0LL792KvH0LKE3oY7Yy87gYG+0HbhUKl/lvUUJI2bLdgW1m2c/tOZX9DHQxnDjGwJlntkN/Y5KX92iaq2I3CfOnKJ1r8TKLQiMKkytx8J+he6CcqwCT6w9kSSNyDcA+jSoMeZJBKKvWG6prXkUTm+UoBsLsbgYOZZgPhYd0AKrgtjTcCJtdRMFvqyi+ojeMatJezHbcKQPp9lj+T9TQj24Ez5/z7zM4kcPpXYq970XP1Bxcra4Hoidfh8lQxk81Kq96B2q7A27T3Jum+aD8KRpbV9OsJGvznj3PhmMaDzH5f+p2I00BemKWeqvvIwbkgxhMk4KZfUOrVb0pcztFsLlSNjM+2WAwCwv3vKV+NOvJxG2hhBOPEooZ6dfU3mmaXo15BGbddGdht4q8D/1tqc7739SFwAN4HtxyI7UM0Yyjvur93LQszw8kXdG49CscO0ufLRnkEr7Iu+MHC4iy6QS+UJQUpAgYilJbge+lj/5MirD24D6VEQ6c6YGGK7MSr19kIIzpIwABn9hO53Hi7+3pChcjyekAGp8R5UJniJHGp3DXBT5/ggTzzJZRtiHiLujqL1NdodYMd85yvz5tCiMxHR2qvH3YeoTmWzluMa9AHlB75gn83ONz6knJ5fmLy2uApNtc7f5QpFwKKgwjHaz8MKXUzDlpyGTWpDEfsVpcYglQLFUWiNLQUJtyWRmefb18nfj92DqkKJz5xxbw2VwrbQx/7XsY2PK2RCgofjMZsJYO4tB9qYj8qBFhrhsVIOuiQbrIDkwXRhRt33P57Z08l0Jr0OX2xyY1T612crJTaGWsuJBBEw7PL8GrI7LwomzciWdH6lcePzaPG8uTfSLu22IKM0Fg0ttK7NDvQE8WcpR9Z9QCXtjG0IYo5Y/lpQ8mXFhuLANnEVyd1uqwKWrAM3x3wgR5+V8f+O5hluZgc8OAVV2FxS0xhnu02AD67TPTItE75xfs1ACfLHUZkZejDXup8RqWeem/dZNjnl2ZdTFdR6fxn+jsi2HnMaV/pACpzvkETBF18ByHm5FAlPY+oDzQkXksl71tYJI25DMWjq5xBJbmGGZuqcXi3wBHJ20lAoHUY6LQiA2+bzpzhAgSx+7Ottd6+TtwXU2uTYENPf5p30+Rl8f/t71R7xyehn7x/EiObVjw3MZqNanx/GbN/Ieoyst+iPtkYAvh6fbVkyKMMAJxODaBpAqM4n2nEIQe/QsHOIjTF9smZpgfKADFp4dx9uabqkRKcWN9t2xp8aVoylX+c1AGqS3AY2/rXzLzZBa7POO/KC6bc/L0ahrTPX6Tq3fHeHf3b79NIBR5+Ag5DoWvYL2N7eEHUU2M038aXX5Uns4Vpw8f3mC67vtd0iVmqnyQJ6yLHZFewWD+OwSk9mpF2gIsJtwNSAR7UrA44XjAWXLu+R1je4XAz1zyTBFlL6Fwm3uYhMBlnp19DmD1vgoAymwERSeTMEykSsipxGFdrQy6Zo4QwfW8/exovdYWTsBwiOh65CEarJL73ZlF+H6s1U+3oML3eW9Jcx4xHSaGt20rpq5BB2npi3LfHEUt5rKwliqZUPkypWfu2svZ5mvomL0NZHIdqBTjBkifzJBlz8moWJqOHBW+o5w/5q2vcJoHWGN9GFU322lSQA8ojURZhek+x3tNgVyvJjS29lfyLt6Xi8xFftPV09sgOLJEaItgMdzOV5MdZRKbRQbC9z/1M97r2CFv68hjl8R1EAcXyf+J+fsrZuIQq2YkTAHRebNdoz2zb9KE6ku2cmwkFA0U81MTb2ETX9adVsit22f3pak2W9B02f4wB+22SO/v90sRzDEk9R3Qks1EtAL04k2dtfu8WCscL3gRSxYcLMHl1Rl/qILZZ/7n+N9sj+yGoO1w9Vi/hajgmGirRmeXH7/h8PydhuRa52eNDM/Z4kd5GS8oRsCkXLnvkWsC+jmH4fomtLPzHXRKViEbAMA3jejLnsf/OdbcCw0bE08MBN57RFfROohqmJhmuABk9dSFeVhjE0XfRIoHsxmBZEbcPpEXzwFxogt4h2Ii82rjy6Dqw9ULDZh9YlTepOO16iCLN+Ga3k46L6Jt5zxlajrqtVd14yD4nOnYdWdGaMfv6BpX5RKkKw3hAjL2n9jMqpbdTW191Asp3qgMxFIDqrc6MbUyCe14/Mkfs/y+EYKOUm+t6YxbaOC6kQVCd7qiVzf23ZvR685FEXDynvWWg9FugScXYkNiE8yRDK5KtjeN9nbpqq3Q9BaOqLFCuYV+ElgJGatJbhIv1UiCBCx1ezDMUt9HLyy+QKSWTewCCZMsceoAYLna2lEr2ogvPZVuHAW2OPf2Xma8w8v2XdiL1rHz62Od39NCAeGS/0VoopCRF/u5EgbIK5c+3X98q8N15VN9juaMhTZJFevQpsAyXk8OZsV8Wb1s3oxdfF83E5mUNBGagH9+mkkHUDiWXge0ZZ4yYjLKocdos5K0O4UWKrswgQU0NMOMxoI+KwYoErfo0+Xh2Tt/gy8I7+gtmFpVi10CMvIFz2INyltfX5sMv4uD2M3uGew3PZbYrGbuM62b6iwozNuW2wBHftyBcxAf69B7IA87H8Sdv6rSxEzSTiSvA37Iu/Xhwm7eKEseuecz67EPqibAcF5jq4PO8tfuZDijtQTmh1sVhbCO4M8iKBConDMeOtvFlu/o2ytu00RzxKPnC9wl5a76UP2UFpPGMHzmUlCxMc+w5MkFbUnoagum6MZZRF82QG3lPQgtFk31a4gX91vOHZA2rXDDKts1B9EAKnX0Qoapsyk75vqLCGk8Wf/Nju5+C1/cXki3bR8/5cy3jlYgH7RBzdMjaarvq8kz2laEHxaWkUPyWS9B5HD+KXpScGyHYgSQETR9vJLz3dDgSZMqJUpN4WxTL7QbiYnJtcOnmNq45wV8vbyU8Ru9haXIOdeflcIQ2Ft0JYHxjsMWG8XVwQr6JTRXTi0R1RQ4qDBgb+K4JZ+fl7TeRCcNM4Zp/QqFREaPf802uNBUh9pCIIHJ9sm7zqmzWfC36aN2J1gyNLyaCRzySUcr43JZqmM88SFlzr9roAmbOpcKtxgJxUgHghAxKSxKYIBmaP97tiKhLjZMMcuYGXeNhrvlXPfLkmvK4CDVcxWc/vJdU5t1qwexgWCkmjCfS3ZG8fIUvFOFBq5AB+dRNgENrrs6j0YG+sxzlE71KFO6sapZ83ZGbMj8un/vk1im/l4KLVr5UitcQmSUMwvxvfFezHTdI+H4GuqjoJ9xUA6RJKHkiLSww4/2304FqM3V0DZ0Ie2RHufhRrGhx5Ayxlf3JsC8W6TzRWK4LIhxUt8c+OZm/KUL9n50yuyYyGCm07pxDzKaEB8Gjz3meGjb0ll3L/fm3drkuOZVei6HpcYRxucz3JfgIUEmO50zO0hNSLyuTXwSUqkEBBLXYImVQw8ZfNuPeJDg1ezsxZ65I1pucmxyhQfgemhkA+g91UxtEUtwe3dqh8YFBNywi5PzVkh+VIXX8RYjrT7+FfMaM7UGV6jjQ8L+3wl/53eC4MGzVaboBKLTR+bhAVzswKm0XTgEs9Pw08en3oLiIioCFjhnHOHefmFaAK3TNrakk15YZdEgD+paylXfVJY8Sw9A6n9Bnic89MRvUNjnQBfqGYGTihrs2vz0lVtAfna3nMXsOTjMGc/SrrJlx8YKJkeXTpi8fYK/2v+7iJTWVGj17gFCX4AVZixFbQhZgqfxmRnhwKVTtlwCVsZEwaYsaNzfEMLK6nzuS1bNOERFYS90obmLsOq/0mX2Iqkncae3xJxkaJ8p//ESFhK4qD6JO4TyahBcBSFNL6Dr/heSIl9hwI6Puw2KaEE5Jvoh+zIsN00cPVONLq+fefzo+zCtsGL8d8hfsQZrY+B/XnGXaugJu3mbpPmljMy5BzcVB73CAbqfrYIFQHmHcVhtzfvzNNJFz8SIc502pL2avqh0etrZk6ZGHJmBsaybd8rVh574nb6E7JY7pc+2xqLR+XPMKXzPz2lunB1HQXTofKsqK8hFB/hMiXZ8oGgObjXAie6OkXX6J9Mo/DT79vAV+FXHOlgLM1to4FhAxNWMDTYGwUWLULqW/i/avDelBdPXD3fHyp5c+iVE14V8C1nQ4yO2HU8nPy7CADKKW2M9QHt5y0ZJfDeg0PwdFGbZIinnl0q7+SYxD/eq2kHYjaJaqeZqdAWykTjzdgvdFcPAcyT7C+lcTPYPDw+U5APL0Dx3J7/7oIQwp2vTxMsd8lVUUpLo7Y+A2HKKh41Uqm7QejG90KnV3NQXhgTH3TzuWlzZyn8iV4EO6O6mLdvZaeNltBKv80uK8fEItPehnIKIoF9vnlr7yQyAII1OhvTsyxuP7DXehUCF9gga7hQRJPNXYEGSu8rvofWMhveXLy8qvanJnLznzm1n0UfaUHwtO0llszs3+MHMpsOQ4dnQDoPmw6M/zUG0rl2g698oRbVFNG9Fvnkl/gwOqi6bV8fS/1VcTNyCl9eU69Re1hueM6i7CTY3LlEQ8FEADOS5UJwQ2qjp9m8SFIV4F46E4AZrsEVGRkpVvJoJ/BEDfYExFS1ueRPiJlqgr11sYRHtMPxztHdKRzHFdSNQDJacm1Z/lChfCP23X/OKaS91c3ApMmsZECe00Q/SwZ3AEPQ7DKUmzo4HOyBmd1g3TIIVOfr9LsEhqtH7P91lAsh5u3Utmf6cQDDV45BCnyQXdvJBlrJstROhVsht2UgdxaMgklt9dKcMspiAPsGTTcHeOrHDJGaZUC6pPpzyjNrwF7sglRsOcm6KxPl78ID3D50cC4rcvWg2KSyRHyEh5KtKvdXjKC5rPwV0NLo+EB/VGVMlgc6zi/0TgaRVbC+MoGNaR9DqTjqeZ/PZCuN5PFGwtIBWQgQ8483UtJ5oyZD9d0HIHz9mqFJqNyJu2CtEP8/M3BhF0y4X6UcC7eaguXnd+GYTyf4IGjUhoBdq2JKSQ4rOnj6H5z4Qfw7ed3WlDNFno89k8txxs+mL9mXxHzqZK1dXXcnr7MN4dBwPy9C2Osi4vZcNuM/0+CX4Q/CSb4f3yCPuI0ogRq4rui7FaC/O+mfuCENEw8xXhiArmA0kp/sZhL3SNZPeL7IsQKLqYoJ9CFkEAFpLvW1+BsQBPaZ2M9aWArpwRFB0B9W5djFXm1dIWx6+fPG9QKJSgRML3EwRacMpgOE2EWU2t98o052mt35ACacdCn45IWcuF6iGrTiiqSZUZOvZF1TYlMcQ8hmbr37hAjXX4aenq8OZi+5Qdd+a8BYiUZyO4aTl1dddf/x3o61Q4AHIvPNdujC+7BKIxn8+cWs1jbnvmxzRsW7pVgLiffsww6y8U8Ybu2iFNeSWjQGJcCLtNFuvcm6A9skLvs7hZNsMs+EO0J9RhkRBB8PUZ1ElYBJAEa3irW0PJEor5vgpCxt80WrMglxu8SRjHFtkv01EfJfEcTsHNp9YMl+ha9Ws+spb6USM3bNRJVtWHV3BDyTev4Ri+aXBrAOkDAmhqRDY3UD4VJCByFXyxbvJAY6r5BvcfxOstq6KNjZfud6GqXATB+4Anek5XTgPfRkaaW5Q5WNx+m/967JC5SDSybXIfXsxZ40YTwI2xIOpM7+xmBd8FlMUYhRh8uSJb9IL0QL5MCKCVXed4/k0SZI+317/1t2omhpHu+O9m2niQFopei9VEs9cGdt24j5HMuImR9Z0WoMWihYNBkqJNpYaWaREFT8uhUFBkmbK8XTuP6Pc1B2LjRPszF5W1iQakvdY9nGncuv4CbETUurxXxIeVrY8TAc2ga6C2o7dDSexLuNsY5RfwUlgFpVxpgDvxq7+I5Ntp8Mwg84xiaajEcwXvn5LEz7HbDU99lsVvL+pD2Gcyhn57xiuHhMvlf13HedKQ1IDsrRMTG+YaqVFozzU2qbhOUTGfJ4XrrMLq+TWK+dSnfQ2/IhP6QgTW1bp27NlsvWk124UEHiJ551axBn4R5lcVX/Fkvi1g10qkKbM0Ui1Z8oJggg4xZku9wOEnE2dJ09QvHlECl+tew/IVPoWTY8kE5Y+yk09SKi78L/JkBGeUS83KGYVY+JHjaATuIZx6kJqFpe9v6ngmTs/uVgVug6SzFzyICBCn1lWa6sNKIORoQn05lnyfYw/LYS+PljosslOj/AuS3dLmW9G0fYI/BzwOVjjSQs8AouenXNy6MDMt5Mp6IH5pNK54IYTMfD9KNiuXEP2HwM+g/JwKLChFviPBG/qnYteAuAiZ79Zq4mzoUR47koE/QKnbiqyZqvIgFjJDuSyiH7Xr468H4YH7WJfpelUwetjfyF6oy4b3cDsqHqG3aV8ONuLlUjg1IP7pw0xL5E0EkUBNHDG+b6Jg3zbhTf8eyyeteAPTvnrtpNzyMStBW2M8EMF2YSApbXiCKpR+btCWw5XqOIi7r4/wiyWIcTgLUvk71sLX2HuvC1qfy76dYc3muSBCasL83l8YYFTewmfnv9MsghmyAbUNtKRCQ0FqZQN+xBi+nojySJ1a2Jnuf2yAlqDcvpEgpedugHwhRWWWBEU1oqZOfkiRtv+DW+Uo5BN5Qx4ryv2QJz5o68TvqTT/X2MGG0fUoyCzUuvAWdv4Wz56fHXqgjyzxSHT4rOkww3u0PY3dWAtBbuYZN1RW11n4OJABxMkbeCHH+XTHivO6C7e1HIu/4XpdaqcGa192YRadndUl6yUyRveuDl5DKRGcuPu3Az2qCP7E/E/o2cgbPC76L2XMiRRYWQcH6ALcs4OiN3Vnk1/+9FVyzC7NG2lhnjWjGLLj/8wDKIfchgzsPwtfyvD+P9pOyHXlBwgL7qtr0bo4f5YuVZftqGpscZv2dLcL6JWJjk/1VI74RQpz+PcP7r9SrIexXPNMWB0o2oqTtVa3zSF2K9UTA/ws/dJ7XWIQVAB9i3QfjgNXZUYEK3dW+DgjSV3OOwdWYGfJ1Xg40LO6y+1O37e8H/Uhyv/7Dno9zPpuc8L6BAoDdzrUFaCAFkQFYh5kyO1utAEGE8/Z23qU1cuXJ61hnIl5RGTqTafdROusKk6mZqw0rpRgOd2SMSLhhTQrbvKs3qbOWrBNLVy9wRn5hfb3NXQ8iNnIiAhRskWo2tJmuFD5nPzOQq6hAaW7aYByG4DYrLuJM6vprfZ99BPeFdrQZaGAw/ZB84RRfrEptSEIT7a6CC5Jlb2C4lvqGZNoQNGvkGefzlPe5vzEYBFaBYixVnPWMrXpOLpSWM05WJMsK2Z9OEqvZZzPOyhxo5VryceqBCAe2WCb8B3dtyCQtBER29HaTRpyVkxQsB/07SzJHvQGvVs4pkMxQP09fk1GJEqv5yATDqHzboEbvW3vMPq7J14KuybeCSE4j+FlqtsJv4NRtHK+nPn3iRKKW4lRk/cSGBLqtAoMdFsuK/bBnr78VRkvNC1pnANJOPhPe4P9CfOX1W81CLFs6EPPRgP2NX5Tn8DPP/I/QhevURUQNOcjIHTsT2xgjQE9DTXjrthDvrtbPjkktClNkRJ5oyuskcQxxPuVYtJANd8n4h0/Ivp+x46jBdYt83pyFBce1M8SDFqig0YbUps5WmNvACuaM/dH9m8/k1eRJJ0EjDILXg0YhHX5xPdaMXaSXbG5u/glBMA2LXAyBfginAw4xDrFiXJS/ZqffaLeu2vqBcxiar1P15YVf1Mi3sW3HNPq+Bicwjmv78YPU4xsgMyIuAhbgizPCjXzvGI83CzjW+oMVNq6pygwZbXVrSZFdymYuexA2NicbKFCzSW2LGcTSPBE8ib9JQJGzIdS9451bO4nKibpnejIl7j7laDH4wlfMi3ZrAKNmSj2gl1GhuAHmhfMFHYr1R0iYLfbJ9bMNZjv+KT0TDCS535htODLPZ2QE2/9npuTbSnoYGkotGqJqtSYz+IEFWEDx6ml/X2vi/zTzFsTy8tWT+3rtW05KbA86ymdtwOCSWGpFIVd4qPpWYPFw0lZjhfmxOH4LSL5qRRSptxek4CKaKoqv5UYdreM40kAigqkq/Hza9AZDk4XmXHTf1ybtbYYTSyGxOoIVBzw3NBUdnEBjmBNOOUCKX6hK/V1g5+88FN7Qzm2XbKUpZ25q2usaL+AbORN9jwKm5zjxGr+SEzRuwmLq8Y6JWQyMQ/v0bxDhIzfsoA25/rZjd+jNPqAbbi0QFOAIoRxZS/N4RDfKvBcYQWxazezgq5RGZBPlyUJeoEhF5PTPJ4+zk/5rhYlIq/QVL1lepPWHrh/0eZcMgN4avl3uSp+ofnjlIIxRPmKg2JoQtVLYqdN7wAGByb6577juvXXnrCDFbr348VlCfYYq6jY8vMLYI7tlivMJGFTG57KCaZJtP76Oc0+78zxoJTrQu7ihz1urDSdk6Bre74OGfmj/Hos64B0j4VJ/czO2Mqn9U+kqt+u3qFUmwBdcXBGnwRTOAJtpWEyqZKJVSCmnrCMqVolDice6kljyZodFMpayPGP+8ef17znhDY0VKjweiNcUm5iiuZEBTvZs92iISQabBxVP/sPSTi4TAraWCWGQ6SzXncM5h/S4rJ36uUobmAnNi3ODkc75FC3Mpxc1uaOh+vZzu949o9iAAx9RU6KeDkJzJgOOT0fdJgK7pnNkkAJ9ZG/kkNmUYmS80okjf7RUpH1kagDM6MYT1tNCQyYhjXuLUGeiHWBlJ5GY+qHDKBfjmfk6mK1Z0D84H1pWlbAnVAaA0qPVzeuK1vqLRjJ99fLG0ZZi9XCcfcNCL2OQ2wK7WX7AdaMRAN5dKnMnrewfSsFjUhC8b4BrYN6QR1O90jZzLS0BrP4Gn6NzYXMMIvlCfQFKhjg1kLw33ujMUCIOYlOSm+KhTdp8YnF7iRc/dcNtWk4F851/NbqDWt97Q225n3aMVgT5vQJpGDIfuw6TWPLRtDdro9che6lQUNb4uwZ0NvEqpNUuWFh2l0QHudJjwSrFzXnQNPz6SGU9Kpg6XfGfQBMma9oJsTTyFBzW32J+KhEoJlA+p9RQLs2P/LYFOn7MUot8GH6aFyJ0uigo52H3+cONKh38i/lPOyjY6DL+Tm0mkDj2++qEQEDPrUo/iP3siOyI6zSV0iTRpAlyRYudylxgFzVVCxGgfXxQdVSs03f2zUvOqlFVc61KwyPV0uDNp9YJozhYrHvwGaVTtPaoRIa8gOUMZgAO2KaCA8fxb9MXQemnJGEBAPMgLtNQ1uo0VKrsb3lVvQFs871yv/bFxMwyX1jLSFQkUMCUYoiDo3LkPqLmPaNb1/0tl39LZKn47bcp50op38geGRrxCcOo2XGVk/6hwkfQ3ylmpdzCIoeyUO5IX1iS55xCUwQXbYHi+1mRStpNygs3bpslFWRPqr9GHRBRfe1zin6QuDieSYmttMyCPZKfswbwPNIZ9B6QetjKxZi+fBXsLJezJ+jm/BwRa5cihTwP9nLhq3lTCXJGecWc7NJcAZM8Wm5dyxD0JyFAD6V8dT4emnKHIavlzDUkpLtlO/eWoLD3PWMdBLRen6cXlo9iWRlDW6yDbpIVqCjkKWV82GMXAvNYFswetsqs+cu4s1soDbEYhKNfvn0E1P1T4L1wJMKxZs6hDuGiE1A5pDdBGmZULwZsewB4pOvL15gxVxMXU+JwcmdwLhLXfzpALX4MdgNB6/Mev0sXL230R1dZTBYc0Z3+TDykBur4ReBVNowBOxxBpxFrDUtlvAqAzOY6TCNdWp5/oiOp+LFhnRB+Vrn/yUtFiieZVwYg5337rpxoZmy7WvD+6HP/WttuHwFgulCiZyuJJzuxDyC2P5frOnrdxZHkPDrrLgaVIMw9NlEek3PMP27fxCjmOWjt6z/B1fxMpsO3Rndbns3edsN+9sbhcEDTu2vefKiKHHcJzelN/WI9AUcjbiNFYfkxPPyEbUnhQZC43owsrcGaUoTi/eDr3rfjmCESfTB+HimQk8Z3Xddpm5kltzTlGu+/SOnLxMCXyP5P94foiubniTelKm2DJKna1ExFE7HuJskRzlTCCpRB1cG0hsIrzN1ddBd/YSYny7xqJGjT7mlTzrfvTJPYXW0tR1RFAuloab7I0tFFAxvlURZWEN2WhH9q4lxe70Z6uwQCXiSJ71baOljN4Yxeu5IchvjGvRqcCW4mow5oKQjEgmqT7XxloRnrcdLz0ak41EYwSF/phObbEksrbuBwtMWibFJpriW14qqSp+UwEpYwW3xbim3pXSta+bseJyA+M7YOndPEDsA3feGUpoZl/aOT8IybCtcNONyH7xUcJ2L5h2xU7tRiBA94b7q9ADNIOsqnLsUQgQ98yHr8zFP+WPDMJa3VAtW2lgJF3bYvqR3dsmzlioUh6qS3tLueaWrMpfRVdFbMljaj8xBsZl4K1PqRbb5e537joCEGlXgpdm2kdLJgpOqnqZGjnnO39jUzSQZ6WBt+oCF+D34ArUJCdhurAmpDPANBJJfnuX9FKWsBfnloo5Rn2L/ZAnRGC9nhPFEjgT6L1atsjbZBSFWDHHi2f7lws5DfXGfxc4+rzDTFYAhmNbSuqwH5DyJ8LOghJdxdkevkmNMt1LqxESRnCu3tZFuBqyHE/PjvHN+Hh5sRyTtCGNf5+m3HeHYijaDzsBb6LcUK026gHAPe5x95n0SxfhGsGV+5jNLd3Bo6seaNTlmDR6o/Yk/IqS7kwhYc6lFJ09BSxfaOWfXmqc1jN68E0P8YBWqzK5daBewP0XHHSq/VYgtVV0Kdw8SQrylEjK4VHbAyeuK74XXGyHTDn/PCOK9/VAfjCcn0DFgW6u8qrSVsjBErGN/EtlenitaOEtwbnJKMrJ4OoSxaVuSycFfTHB4wR5GlPCUVEgmbJotiUsfDfLMh+JzRcYrLBDM5bgUxbztfiWAkYU7oGLzeKcW/NDgiwu6v+OugjZy2P+mp2/F7Hh7oyZrsmfXQjlXQhMfkDEPVH65o1DuhDeXtbeJGHMSIWaZa29d2yiWfgIPOsc81UdvPRkjiqwvQObnXceABpEpRuklXDiA2rwloq1oDmzYYcIVYCaKv7JX0c9S5pfljhiYf5ac5BQklyO2ZsMuxf5UvzyHneR0RM5LLiRetOvDTuGk70Rr1dHHTUfepZTDc0E1vp/o4+vaCu/Y5gHH5Xdoii0lwi+fGTXRPJfku8CPA4fxBcBC30alB9jeNug1xzdMH3VCZWDd3jiWGQz5wR+V+mtzDtot4RFxIaRfcM+xFu6sq3iWwAx060VA56sIK7vaiO0bAEyKTW6u4i4f38aJAr6JBYxhhVO+/sCtnvERrX020vmFTN1HUwvnWJMe7KG+DArlOgc1Gajtr36JJvlGwoV8Zcjr4wVcWoH/7sdPzCCjmqOj4kp4iJZnUYigT767OW/wumKG5wAbRnDHMGjfRxqfRPpAPe4uWtCfbqTXDiqh5cWQgGq0keTdSMKz56TFK3xa8HiymHgQzmls5odmF67A9PSo2dVmxFSg/BcDIaRoGwM40krNXZUMbQiyo5VZ41KD1uQf2gpCCI3PbTbDj76YMmoGLQfD1p63PDvjfys14KLxnqgiFUlb2GXvrQu1sp3XuJAuISVUM6pJaMVSr9FNa8sHPudczucIcvE6dh4ShQyQHfx9CB0ZkPFhJg5Ox2ji8240CqGhp5VPiGXSB3XG6iJoDiLVWJeRBXEdqkwRmK+L9Gi7PBEHedGtcPRIUPZx9xfxbgt5EIe9XtVZyd7TyHXePNf/7gf33ulLCZi2z5LseBKSNJ9jwlPK+VXR1gFfwaxPZSiUfLV//kvvr7Jx4kheS2ZrfQ5bMHf8AXWf+CM1/TNckBzQ/RFFi7obbsKoNG1tjGpEVnQlw5dFNOYiOjswhrdmqTa7WJ1Pue1b0DMAM0EFAQPMWX0U6FaPQNEmv4/SlE/IIujxZ6Wl6cfmdq5L6GfFa3/fN5HpK+W+B+8oCn9+shhpKpJpDW+mH/cxHakE7NeJPiIRBk/XfnM0AS66UHqGMAi8TbN578uaWIbZ1l+D0eoI+jcsuRI7UOXispytAFU0RWfks3hvqs50ZA1sbk0N4Zu/tznERwaR+BTHywKaZ/Rb44vnEODDv8MJLSGp6xdPMHtOqhKrjP4fyqBY+Z/cuW2P1deI1MSSkesCKcxLckGr+zqumIRghpc8nDihFC9eq7VgunXyv24ZSCh/e6jzdKtH0CB7Y4gACIe09dkeEgit11aAhBLWwGRUkbUactgSrZDmi5JXzwxg09QNaOIOiQZlg80A7ePoeLZOLG5LBogDQ3sucNFg9VOeC+9rJdj8ARiJy17Qs5Q0qfePP1LacInKHyG8WNzl8Agyc13eL0f83eWI69IrISejplOhZKL8vpn3GKRmG8xRzyrfYkYIyf+q9kcPio5UVuUpeg42UyzATWB5uN/SKEF9fbVgCqUT8fho1bXvLErbVlzmcNwhNBs+DxHhABRcyCFRcsT490Hvpi3xmK1f7eEC/iMe1QvkFx7zHCssG27vNMKZQhOWxN1u+SWrn5SXF7zpz9yBuw8UhOdgrQpqFAfmVb7Qx/OgRsMTkQxiLRF3nz1CYEpzkdKpdslJrjT1EGKo2VpmZ2iE1CyRVrQVmlasd7fHzR9T4PoT65NH83gExhgsjaFmH7b7weejLlzsI4z1svH3P7mQfPt0HrZ04siq4Frl2WCP8JuSVndPyc/tnpmYmpGh1yiELdsRfPYUTSSZUdL2W0HQPxGV0g2w0DA2m2CBohV9Qd3VFa72a5J5J7ZKNfTvynYaflS3JTiugMsopLJJZOWDBBv/mzCumm9JIl0HMqNcWS8431nDZtKQcyoFZx6GWL9yK3OYd84iDMlxLFKqNMA+5zU9hqvkkNtTdaRfaXvGmZMbID9lKdLzolSNlmDBn7TZBzBXE+1C57AznX7exaIp57bcwNkti1EYLEAMmGCyyYzz5O98FKHiMt/3zn1Fajtcy56LuzECF+yZLApJpbDODH2Ek1uV7kaugW8pdsjpLmZrE8dRQRcI5Zm4ARHZMYoLYJJ7MrF7nRebiz1iNOOQJV2LYzgULVCP7MbYFUE6wgITgZCnrQW4v5sdfvefz0S9MbWidTff7pGqV3TIfJ3mt3GV9gWtF8XrPEMY6LqYBQvo4FHnCqiB0fbK1dzOuei7fn9yMyonZAILpLu5+qH1pTdp9pb9MN9ekUuuCF6cb7u5wZ/AdWTxRtMANTUq6VHU/jGUrBEb8w76Pw86ebpAqlPtBiQXXr5Ctg0UyX7SjKao8dGQHyIT4HfghCFj7DXiCFuxMFyXmWETA2adqvqw3ggHWy+rkVowZckvkIz4VRzvbFOAgHZrmScjLp/KVpAj7Mp+g4l0Db4OmgI6/u6PVI10MFGz5P6Kio1nCzfpJ9EWUfuLKNIuFLDFUprB+o4BanIGQzcM1847kpwaAfbuUhDoBOq1uEJtQ8anouGmqywjKac8fF3MI58gYAYBezKxrw3nAbBQXSzEKLofjG95z/AZ5mneUU2Xq+3xkjWo2TkHDu3Vsxd0ubgMqKhkwGgdtzqnHW7/zpM//IMUeWjTtOolSzcDzmeoVYTc5OcszaoU7x0jp0Qf88clyVPriCAhCzQwJyBBnKCRfSp+rMUiB6MylD+U4hp/SKsM8hr9zzmC6W8mZ2QdfnUsmPSZfx5YIU5Qs2OPjP+dOEIoZlbSvQmF0J+HAQAtMo1dX4xgbVKkci77ho9IDjmtHfAF/lTVNwWoiX2QpT9c/mchga8jJZQju/ewV8uCsHCsloYAErJFKWa5Vn9s9lSZPpiuVfSXbYx+C+OKqFXTcvPmbHLQ2dI97oxP4yVI9L6Xfh4b63kUD9Z1oU2km8asPCjCkFrC7SjxOim89dx6k2yGXCnvr2ERGOxOo4bHExkBeBtp9lMQenRv/kRmvUZ4O0IARi9iYiHtbDq4esSS2g1C/xAWEwW8of5RDWxd1M7fFdUZ/DNQUcbfeCUCo7/T0XdFJPA7yS6VAD9yWlo84m58ZBGVrfg63T4OzzHbWTpAFmsPYO0QX0KQN82HFyI16hm9rG0lBr+89cK7bqEKjrBb+IkgMteOP9Nn0e/Lv3z9ypZE/Y/+h+SylkYWPzws+F2mI1qObldMr40FfoxeQ9x16BUY8DLKwwfYc5RVeF/Y6wqWj6Q6NAi4ou9H99JQjY2+ozzMw2G74nLfv4nYmoAKVoaa4CoyJBUWIv9x1h1fEoBrFcj+89v0EQhUQ1i92nDEwrcfHaLOlHIQoydegF/m5Jcf/9/5M6pHOLoTkLYdVlPFPKBdmbx2KCy9es32hyYh0xL13qOm1z/E986cfR0lybsyU+t0yjYVRzWixXm04dzVpe/Epj2mgXCVkWh3vCKN8JgaEoQ/3M4cVYmh3s/6k5+KhgrYsS3cnTpaSS6hXWrht7+i56MnmuTVIUhdlser6trSImj613+P66vqclC8cCwB/smAyNf5LkNTdeMdw8ir9OcgT121Stb8NCNMq3nO+dg393Kq7Vyv/NgDsJiw7PefRO0j8OodSlsf8x1apdgFwicKDlEdvtT02ZPtxY8ZcE49cPPL9UUDVL1N7xgH+10kbTEoUXicjCYT95b/2tTVukT9Es8YrtzwA2dEj5CQZ3Yhd9gu5IxlGDKitf2Kg0997nW4L3hst7tbjmT22lVlI8042Trum1hoNibveY4V7+oTMJaAS3MpMK1v5/5laqZXOCB1VjKr9puq67bRckL4oTaSLVAuBiCKKUoxMUz6pZ4UpuhjgeU3/OoUcStsVq/bqYOgCW50cCNfwcjcRwlJnTxLZnEgyJzofLrpXyKwGWWSCeAa4A3JgQXzHyP+0FzMi7WwgA/5sN9sPogKI/6Jvkdl+qNi6Jo56eXMYVo+wvAkuqND0VIfKmWAV05lcvzIv3TU1loRn2HdfVhpPGb+qc/I0P4fBS2taLJe7wyqkADK5nXQ8GgZ1l5M3AzPFkbmWxF1rXi2SPbSOpUgync6SOZ2bPNcIL6SjtfkyY6gd5ydL7ePk1dkhVhVMdmHT77jutzJbMiJmvYB6LodQCEd66r3qgBmUM2FnsTM04JsoK0dynlS84CFaKeYeqFvs/R9tGkOqyErC/BQsad+jJrbiEcOzR7G8CFzQo9koFwNn2jiJPJRFqVSWA23U3Ilc+aHDjwi3tzknqoVLNHrHCfvSGFa6d5VFRw9kJeRYVzQHCfC7TllNJcIa9+WrpfxrNWy9Z6ii8W0OITsFhX37OOc89hgnEw3KFEjO34g7kgwj3wazjy4FTKyIzP6m4UyNxm0uXzqO9RwgbzcfujnJhHvdf8wUy/OxIepYalOOiXEG53bAT0M0Bi7m4+k4Yxs4q7fApGBWu3RxM+yt4Mef5lIU2dG22hwu8AFc5ip+QwPbYygaoBcE7Y99tz28wSyaXa1oFVmf9ie3WlBzMYsoUVNmThOjt6aFjNxN4ux8XrpkdmH32OJB4RN9692k7rhtbtdIi/xa37R9Ngav5/sg666AUzH4yi7fdMTH8Bh1T+UUS+BMXNjvQFLSsW0eeA4DVID3X5cPsyPJ8sn3v8pd41VALDdVC3CLAPAKMz/gmFOkyaCb3lJQDlfGu05Rz1uBH669Buyiyy+f7QcS7LGTW9R/GypG4xSDMFAyCu53UzT5XIDQh81eibjRCdYiPnSQSdj9y/Xwu1BaJTnrH78d+ML0eGsT2or+O1IZ14qa5P3KNTpQVd5eYfRzqnilI2EvOuRD9jCgrkfhkvY2FYVr1hXxWZGW8ePQzNH2MW38VWeD0Q0s4OF2NAtyE0TD/jkBir+SNSNXd2f/jASxEafm8sXJVnr7JJO8Fh9hwlMZAeu/e9ry83Z7XMeekRlas4VDUfZpa5wZ8IpTyDNh11BSG5L7S2TZxu0D7q3mTl6s35myN9nzKr72iPOTnsDUxwl7gpFb52POPkgxWTeFQS/Mlu/GAXbruJ0VTMJpaK0cZ0TETqxyj2Wj9JnyNDkZcHwN9/lxZRwoWk3iJo+jG0Ci3qCSq1B0rHPWgwsxZCu+ySy95vPckDr5Ou57cUnuQNM5f2llWwooNMGkcqe/153s/IrA6Caj0PoCGME/WAJbKsC8oivJ2N/VBSyGinWSywK0bzFh93MJ+H8lmnaKo27cIHi5zAvVk3WxdCUFp6fsHp68Gv4bUI26NoDoe9+/GVLQ6VA9ymopLd5NJGdObXtEDqHK9WpjEos90NpaPL90H1EHyP9hYGqVIWC+ysg4jTzAQf9ePegEChjFaAGy0spiKc8i/yoTMCB3vBRz+KkfqqpiNHrlGf20GLiAdAcoFu+R5QcqiKVHYf7QX+MoYaSpIbrEoXUW2hREFuVg5yZt9bOBRKjjZPCKYtzylnFzN8LZFOusXRzxK1P8rz5VvEi1jF1g7eSEwbV6zyqGBibH+0cBQke3/JDx7+P5IzUV5twgTme9NA5VvdYEPxoAMIXGdFeOuUTsPHZ9SN/7wCtW1+db+1GFrvIyOYT/oBieJbG5K1MOnUd1Gyaz3Gn7PDs8Ri2xQcKaeIoky0cO7nBuQa21nq6if3MVSOpAtWOn/dWnhj8ggWG9Yws+KYKG/UH5qANA/W4ggJj51rD+/gWKuDMO4uTMSJAX9yhl68taCVU0SRy7dg2x6IgW/1n8cmV3E3RZzuq2zeY+GSl8bEPY3n5RwA2IW1fiPD+F29NTAGJQu34w+P0URWD/RIExczfPgsAaTWgiicQGWjTpgXlW7qshuIG1E0QWp+slUw7qK2J9EkmmyvG176htr51pWT5jxczF2SUWrP9a4CWQR9uTP8l6FTnpw+1L5gPv/ng2CHERUs6ZEmH+7gPeOA4KnoU1jnWCTB61hOpxNHpjji23wNI28FzR+/39Z3/cuO5+dIy30OzViYnbERkFhYTVWtt3qn9nb7A6u1/4nKkBsjDUsIzwtQ4kyrFr12DXOt3D2jy58NqiQy4QSbbGFUnyH/U33sv4IIk2Z074zvHlaGoO1rYRaBxsf8fFbeO3Wq3wtZxdRMA4naGuiRsRX8InxM0Ay90uvnX3stKWvvcjLFsWjTPd/515D+Jo6aiL5gntlfzDIpogdRiL6PnTqtVvZP/Q5KQOcEhEvwxMnzkj/hjfsFFdlVw9x6KJ7uD0S1jjJMokH8oJqrAqyB1pgA6t/iwZRmnKkN9sEBHVstEZx63wBodQc81UFwUqR03FDkdPG1lr/yj/08TkvrEkKrcIdz6J2MaxTrzTviPC7t6dlK3XAYk/XPqxHdMmGO4eo3tbnJ1Ase5+NE10qCazwrlq/vY1jhTugBQU4JnpI9KnvWYCYTDlg+777t5/zl3U032okeMrzsyd9vD9ytvJNuH9gVZH31BYHUnd0KRrWWM2Mj9oxY/r9b7vjD1lu8xmcZk/i+31ZLd6Pnb0Iq589oqHAtJclTLEepcqNwS0LFodQlMMvOy1xMjCStWabDwM67JbKWewGXcOocFywAq6BAjFPU/clH6L3gDuvBhaQF4d1OWd4bRMHFIdwp+MIsFg2UYOQDm+0htiiKukqSW4O5xfl/lBCkwpVZV4vbmSbQQ/gerHBqyDLnq6MLX62A47MwqU+nFjzs8GOv1hSHdaYQAsYE9LMJY05M803ZayBkLzaqQjEZV0+EY6GVER7y9qSA8hhrJXdvKHiATRSWWWfY6RiRxg0dUSLp/pWcUsAQDpurSImKhrTFgs2jBkpl/ZsE0rZROzHHJh+i7lw7zkX4ZBNbmiSLV+uyJ34+zdytZNcWCqPz56uvNMrlYz+aHv7zlNqZLcogvOyd2z0zE0r+sH1CtQLX8/TEWGP8HEeBBmmwKw5ueT9z42d/8khZL26cZAFzESZ0g8NFLj0+vqCStVS9PsioYzLN/5aYDDn/3Hwy+R0i+4187J2u4wKr7nG5h0KajNVv7jbVzA3ChshbdWcjNY2wuj62+adtcYZkSNLrlYX6mPC6RSz7UoJbcHGoVeX9JsgTexGJdwTnNfhpggfoKCgwKbat2YdShve+h4MqHL+Sy62FmKRdFaJm+EeNcKSztO4BUsUAOBp/+Wc6mvoAWwJyPz4x8t95929o//2Ggb9IWIgfs6M9696r2w7bnNgCsNi/3Fg5Etl9CPB4+JwT/k6jWE2agjEm1b0UNWSg9Dj+puIF+z8ptts2gewpZxn72DJ0fgfz+4QznWZC6L9aJEQ67cAWyVLuQ26cIdpK2+Dyw4TBQKdnNLQPnHgpkHj5J+2nTM6hjsNII2IwO4FsQny2AYrMLfcQ1tjXpGu7bi4ed9hATeDHgCdqKmcsCe0Fsrlk3Dutkkqy7/AuiG8V1E9VBB4FkgH9FUV3BXS1PAuJRsUho8E4kW6R7m7qQ4m9suI34ZdkvoR29dBN13BMR/icpN7vcscG3ZWIk9NxG0bbzUa28aVmEUmMZ7SbSfsjjq7rK88JDgHqxO95WeSVgLMcGOO+tp3dEAdSm1EBK4moHoN08j+6rR2yFZUIWHPsJIestCUZDkwuvhMFDKqemdwOpHxzjdFCWV+c3A7tyNXpbo4OHAcDhdVTUv2cUDLV75Hfvg01k+w13rTnnhLY5XtJwlC+OEeB+IoyBniWyGC8SSJJXxAoQyCIvQy4OMgQaJpRSchg2BK1Lau1QQduKbFpnVVURyTcixhq4ep/R01O9iRB5hTlJYNoTCH/0tKU6jGDWxyVv6Di29IOZAp0hNJwtvWK8WzojvNZPcwTct0k0HmVsRNBbXbqGhnu9ikDQ7zjvxp7EaI4pn1GMC5wG/lQncVzejYYAv1tnA6r1OqqM5E0pn3/Pc+jyKO5PLwxVc/xermFI+V/7ZXcTUEeiO2DmmtwkgBxSsu1Sac9ggoY4POCdHXZ3hLr1SilxcECTNMoW+utGY6cEnYSZgdneFAUt7edKb+CzneD/5mCF6fY8RyBh8ojcv7zgjabOyjdlETZM4nP9NbO7NM9frxtlZJ/oI8GyRyuNAWS2LfF1oJefj6Lb0pPqxgGh8FL/Va9BsZh73woVu338QvrEAtmfTxYy4lV3axj+nptPQ4qKIrK8c41UV7qCRrqbYuL59W8tOM9t6VYWXYg0pip5gIhwNVvTSbdgOw2TLEgzXe2xCKvRTP2/S0n87uDE2LaDon9dnQ+6K92+7wD/U1sfCNkobP/hgGlUuVCjeLKfRWre2fW8pxsZwASXvwySRzx7XQdcfGZRHcNQO76ukcRz/rpHDpQNLq5zACwZgxqj/Pcbl2NuVXpoFQR3guR8skEYbbvpE4j/JkHWTgb3vTwA5epNgVAPP/NyZTldJ6o6onWxW2/jPHr92Xgc3lctPtHqJPdy7gHvn0bfLRKwFrENnQWe2sb5giegwU3vde8qdMRHmuM1gJIkCEA/pMjnMFn9jssJgj1ypnp/Wseix7lR+p9cGOsIPhwYkEckm1SG7E9jiKvzcv3HRMWQW2H0k1bL1uoJrSrwnuWvV+Tn9sq/vsPjDAiekOXC0b94nPJkid5VECAVHxZ0AGNiBXTqLc3AGEI9DV1RNuG1Z8PovwAPDNyR2l5EFyoJfm2Su3yQd/RC5f6ykf+JcW1sDDrsL3Ph72ya7pw+TtZ6TVrYCN4fCWFcEgF/Y6VyMaQi+4NuO1NUmgV6TWIAZyM27jkWYynZHRRakcBWQZN+qacaQFtz9OMUm4YDVxIDQFz+TPYbx5yLtVWbuUj/wdqybMfMBVL5qxGeSp07EXbox/Tpc0Hd6wEHDd7ZZOh916B/t7znXYbkUof62PrQGj4Tz3b56HVJYBIqknyNhkGq/dd+Q7SgzZ5FLrGpByofRB4U1WIq5pVaZOdJUa+5ingOQ+JiNSqrErO394NK8CwIDVplFWTIShQbBUmNow0VCy5qfVE/hLMAr5wu2k5QIA3U+agb0IzvZ57KjzVKNGjuNjNIQTKzTvI7HSYZN/afMcSMii7Aesjakf+VpzwNfyuki4xnVKjb9R1iMcmd3nQoFMbK0kn8oi/5IvarTEUlaMYzUaPmoP8RjbJ4bGWSoyQX+EfdWPthE0Mt/J1tSwbdT5kYjTMCxnp2vdlebHDBKBBFdZgcOO6Y4q7QMQcpryc+YQSo/niauITCWdzWrwm00uWgOvS1BEQWdZOiHI+HlFGYOwLd43/KVPEUwnGwBd/TIWBAFP+B5wpCChBSe9WY5JPc0//mbUBAwz7A6s40uXRNC3skkcNtXEuuWyk9hPWjA4CYi3Pb/nG6dvjmhGNRCIuR2q2FTD6tBQp4c82TaGWGscghlblzhCjedWYcchXN8kY4VZcZeDjN+WxPJV6QO9Z1WVBIAyJh6CZyD1f2lYKwjOusgy0E5WIx82y+EEBgo6O1dkqgUD8CyY0moC7lRgNZOUx9fGiTOvEGqr9+WDSdZ0kBJJdMJWdc1c1dnhv2JecR0KvIvbcjvM3wPOTOk6uEIWieBz+bhZiKljTYD4CY6Myu15F5WAYIlbln7FRo0XGQx9L1p4qjA1ns0KLWcxPDHbzXEKFMEg+z50VKbc0wsP7yg8oP1gn8Fkro7rGtnCvQNxmq/dFW5lvzafIHmkeIXTGjYXp4SFKO1dEyKYv7soMBpyh4Zk2FIcP8Shh8ND/47Q8O+DKVUJ39zhLp9IYtrXssUyYbrgnim6HzHp/QBFsW/g7nBtJR3auiJLgrCFTsJ9vWtZi+s6jXD+aQbPF2olbYsFX02somKnw2q18iVv3LGvKBjm1iSmlbKzGOgJI/FLoMarKLSiLP5woB3MtDcahEkOfX+hR7B9h5kfYH9ZWgmYVLMqer6SXgPW4nYSwd9M7vLpZZkHxyUY0MtiyJSx53jBjzL0BTBLSbTSUFTFgXuNGfmNHGpqwSl2ZYJ3wY9kuv6kzDVKq8al/MF6/Bg743KBdIaC8fQslXcq/YVm/s6T/cXrt3kiz4CxIgwb5RK+/6ruI6pQRCq58QVBqiH+ChSeQEnnqq7wJk510JvTA2YoDIsyUzAypVGgFGFDTHlSF8BRs7AsceL2rlQY6HaKaZeb9rufNpubKH8edNQe7rY8eA9GSoeFXUMT/1gUk+toN7LvJMOg+MUsmqUiUOhIIqwbyQgYY+0qchqbCEhbHRFjQ2fhZ9HSwtfRBL7X/A2MB1rUlCx8WduAcAz0GkVlaUhNTDwMvg7PvZ2IyrQT+gE4g2siPe7AbKQfToePws38wIuRUr1DzrnQykfvvWtyBR2XYMZGzvwRW7n4zEG4SjyOGnmgeRavXJ9R+UrE+DbW9M51T3//jMGfQC3CwAMGB3hfrFkYf8YLLkF3hPmOaotVD0abyLKrnDNTB0le6K56YME9Kw+lID6AjgIoWvx51laXxSQ/7YENIT74H5ze2UyexAM+x7O6yq7J8SxJ7QrKXvyMJvF90H8Vq/vC480Il1R389qdV2ybmJd1VCQ98WL2o/AS6/qGgWexXC++FtuL0WISsA3rLuc7+9Maapjg23i5lNGiSwj+j/9569lqMCAk73pNZ7UPJTe2xR/5wrX/nlQJBgZNRGe0tcAqkG1qC7cYieDsJQDBueEy71F4DMu3WNN2eCrbl/bVJO/IfAxr88QlckJ57jRpbJcKQ28XxQ5Anp9r5NERRMCx2gmEdEY0zfiIxU+x2s/t+X/oihZukt9V20jSjf9KqtnU6/lXmEBqTUk9WLt3/2ic2Kbdigic59rybMboXv8cpnsHWrjHbQ9VE2jDDzH1H7fF7g4cPKFnIYIJqynJEwx2SWeV6BLR4cKcGTQNgjoEiqrIBxKqjVW3Rz3fsga8IIEc9fmnlSNjCyGBvtty73XSceHXH7P4P7vxpcD9szfaewjabjddl5nZZL5NPLXqj7ZSEhdYdaQ+SKY+bCqsPVsVa2reRTz1o7F6v4lDoNYAyapqWk/VzKnsAltE+/a4xEzNKH+RWev2AoXRfYePRqcbCzzg7t2m8sZUw0V0S1NEuTq3Bipegsu7Nuz9Uyh2TCAdxVi6H0pUM6yaHBBCpbSj37NJfW+RC/c5N+zJhxaSwJqo/oTXN0pYMTcaS9Qx9tilOc2VvpiRGRbb3mjgvvHn7IhHWt+3vW7XMouobyhAdtoZBnugz3DF9BR7Qb3g/jrwlTb2opG1AfCfXFsIdKkxLtDFijjALoNX5Lastouyfv+zBN9TA5E5JX9HkxoAyebpcReLWyZP8BkfqOfftzHXezZmTIwX0lQeDZ+pYG+P2eTcM6pcuCo8Act3XlJjxW6M33fYYDRwoTeSfW6ZU0LzauyNBbNqIgBHg6FNuiiuciKkNa8Q6g91jnq73xp/Qh78bHi0WvXJGW9091j9CFdpHJUwH4LLT/uw0k0horoqerzq6ZZRMfzdRyEEmHHl6Sn962DATcAWNjbi96LCFnmsY07N/HsM17WasUhOTH349QZU3NzshFV2rMFBOYur9WyUWLH8W7WiQXug4kvbhNcrFHC017aBcGb7uc7mtF09IRNZUyqxBnr8hOZ1C2wY70tV2D/I2LWVF4teZYoFg68QDsYRpiuXExiw4Qtj0aZ5Ap2eKkloFctDB4YXtGVaZnmDUZn2eAlq7IZ17Mc89kvwHC/XoTBUncvrK9+qfjZus2zZbL6GvNr1+olP/6iqyXfKVbZK36Wy92C3VinEWl4HjT3uriSqoSvQ6ZPallvkH/J++GIbtKykgcMZ74f19oBx7J5QcUu6Q3y2cM01lXi3MqnHagrjkp+tWTb+cBoSTaIF8jHF+SVdsdg20UKqghqopXTevRQZnorWN9pJk4TaJ3mtBfPxlxzcSbi4ADgtNxQIpAMRCDgvISdo7uiu1qkuFOMKL37id1yaHkoSiI5Is7ndmwNaALEuPoidUcS7fCuVOtE2qVbX7K+V0+pnzG/tNF8UAv56B0iJ3wck5WrSbAQAZzMczdSarPfJErXFactW4BDGy9A4sbSuUL4Y78WswDu9kikWRSLQ8e2KQyrHWh4pPf0H+oTZxNvFSSrNWvF29ZfX8mkV3NrGdhBZeP5xo/4lc8RqCTQ+FVJTKs/mGYni0xHTY9heP4ypSg74hTeuRTgjEVGffPUrDVr+DCEI4cgeBPpl3I0kBdreXnlhlEMN+S/C7+aER/P3o8SIno6WI48t0A6wBrvborA44NvkuEDehgRwOa1Yth/MubuCTFdvngNLpdTBB3kLU1qoJJ8sy4OuRDtlmBIDOpaoBut47OClEq4ZOJn1EOzkWF7oG8DQmwB4LACC6A7k3kszAiTFJA4mCGJrxD8PlHC39WhKm/H3kLGrloIQa9kiTAenyEvxergFpfRdKwJihrq0FS0Rhc9WoOfra0Pmr6Z7TXuhF9JdZ/8yioITTNAWI+ZgnLpZTkD+C48GB65e5NCjPS43mPcE0oIiBqWGW54T8RbFok6hGbxRzCRIQ/Nur0/lag9zmEduGLkDg/ACKB9AW5nJe7aTtqg1e2IU0yNcBdDVq6dGvycZQzK6/7T2MqvAm9TTRglThLy7Q4JQ5yMpZe8sxggtnyvoK+v8mKCiArS16CVzaDNZVPVjEii4YSr4cOAo9Ii8gm0/vc9PyIo/NoWobm1bW6/DolD632XHYu5INZd6O1dD4/x9Ka/Yw789+pWhnK/HDXlUY+Vlz3y5htT9+U6KU1M4JYHGGUJ0vs84xTHZB9bneYsbmTZmPhC7Lt0NQnlu1bGHiNy+YEuFdbb65p7RPA0XbTPUO/+bTJzgaO/d2Y1uzueL5svmw4xdbFlUrHKam9lUVuTNdWEuCbY0Aw9D5EX7brnhYPWHT6ElGbLV8uVuq4aLREsm7GepPBnpa/r+MZLYE+zItijQYxCufcR6foJBqSHZw8tXu7cCxiGXKbfdcI3pIv5Y3J4YT9yPLU2MG6JvRIv+b6Zr/w9fAGnns2M1l0yCdDZTAvrWmc3fUDAARvIyOUXrsHOlJ6ELNSOudNXkHbn8bVKqnEsD0DaoJSycwogiGkQ5bTP5mQq5Z6IWGUxrrvSN7mDdtb1I9ixcH8v8/U5h8VBBaNkCmKVPy7q/sN+EhKMhQKbfAGQQSUBe0HLJbdASy1h3TuhcOzb8LTf+EhVW+Y7CSvKPS8EBSdLIv/CHrjpz1kR6rCKeTV5oXb4bBpw2QAjCAy0id6e84RVPjPIsRmxw3eFXNWx05RYd05TG5LY8P1StX1/XTb0INQa8xrOw/LSzVGaN7/dlj9YfmCzefeNZaI7EthwyBHDgOpj5PPR5T9VlL2gagjamqb8FT5HA2IFCyTFXGGelGBw9pphfSkGSO8vqwf2OX7bobvJndJY7+PmQCg4V9kR6iNccDEy870GQC/7dyxoyUsa+dJ2Gojb2uWVqV8e+/ygsT1mmHu5sv7nuCNrNsxy40v2HdrY4nSu/TshAfomMQEuMxfJc+SuBgQOoh4VKPu4/nGBtkqy+StZH6KVidV5UDX1QEfV1v+pe2QmwBIJQciaMXZesqxaGRFsG8mrdntg1O0q9WTIUsYEwrq7CHQihnmmW3ixPIp3e9sYTs30nM/hCo82+qDAftSTcCkxYAFbCEYWN7QH/fSgRE6X9h+9EOKA6r2lXmR6rzTn01fEHluNnqM742+0kt9DdYXeh93EoiF19koT96z+14w9B7aPaaJ12Rn1yN00PskkN2RAdIN8B/ZmxdlNxM3bcj6ta++mOtrg/WG0eN9HU2TfIxTrrdSA5sKQFHR8wG40RHjp73U3vpVH8uwaPuw0eAGsylWKpkxLcXWhz2DSN9NSsOpp/0Rj87wf4nXnZT3jVzRQwfoLFouvPyyga/Etkq/mJDbI3IGECRTxCf1wq9DH4sI+T4UpCXeuFqtZEZTDYobJVXOnHrG6EThwz82FljPVFVOxNdbU1NtZvJDOB8I6ViS7RFSjfTbmHcnQ32KHve8pxzVy5R1jfQcuIqYHdn7Opp7kP3nfIAS4H9YKEdnDqmfSn5wORD2yd8f62xoXkSuAupJQ4EWvj69uKGzgCjsF6GPYxUGM0PKQFBEOQQcEzssmuDS2HeVALITUl7rbpATJOEDiXrpQLs8bGnn6epi7uIMC/YKYisBgBZggE7YxoKYuOu0PB3/BgbN45we1zCCkWcZZxdq3Hh2P8uNDbtKiNsLycc/KG2HEn1q4VOysQ9WahD4QQWUc1FBgeeGjW8UFC4Xu5Q3ZI3WtIDCmpr7rggWCU+ZMkiJz6l5FnERC1/edvhy7OgE7c7qNbxE3s2X8YzyF1ZsjLvm3maIJvcR3iB0lPuCWjf4ALisAegOAJlD/ksAS9hzd3ZMZRqpNjNZWfBljiuq+DdSFrcNFkRIHc2RhrYTnoFKWbfzuJYk4JPo3o1URxo6rMBdtfQQk5IV7QHB4KvUmH+m+WowOJA2oBwMmatAf9XwlIxprRpbxRIW4W/pUIx87JKU4hP1FWM8FDCCz23xV4rax1elvHAVkEHBzK0VuticUHBPNYlOq9PIXrY0qmUY7Tv6JvavutvUUEPfc7CK6lggTJVXgASu4BSe0nZnIf8uNV8sITioMllu8FNoC8IrN5UggfF90GxYvvJ2VJVMmcvbYVKRURdQkXQXLtK/VCghAghevMU525F2+7SaMsd1Vke+HdktMB6Kkck9XoFANtFXpLM7N48A9IPTSiVXpSYZfUJbIpJYA8cQnBG60jxqmqall/NOrgH45DP7wDbovzW6a2u7VeOuhjdwBpVF3TRJdRiIVIs+Y8Rmi8A2f0fySTICIwM4k8pyr+4wFhStQToSy6BK2ScQL98BGoOdVks7XdpqtOWlDYvIo2WpCkQCt1tv9+yJaaOV/vCkiRJEPbiMBRvyF62v6s3CfSVMbHqJQEr2a1vbJ9toxLDiafxjuTmWSuqB7BHQ+rY5hP9OXXynK1Y3SeqTXlWNQbQ4rMLZzxcqDZL+oDp41uAPbyHiJ4Ese4SBPkHzDlTtm+A/CEZbz/6RrMVXc7sGuuRzBmygci/GQ6t1lNwVGOrtouZjf1vDiMFe+8Bcg3jXaHkJvNvP5Ybj9ePwC/luCC9cKIqHgWvNnKuB12j+rNHuaAksuOJqG4zAAa9PqwZ13auDsE9qjt7YTMwNzmxfjxDodaim/6th+lrWoqMlGfdbp+8a5R5y2iLhOoi95H01b9RYGRlSRjFviPUfa3Icwioc9RnAC/esKYbZdd38+UL1i6nb+V0vhacQSy2CLvwn5CWcgRNRpWu2ZXOMRn1AonPlCzLyWURrbU9IR8TflohwKHxsDQYXF7oNVT8DRt67hcuTThDtQdrU1kjrjJvzpeo/ymO2o4BvTDYt78psAWXZwfNooelgtbrRdI21IyeBng5RLCeFMNtAW5p+2MrYUwCk72WovvSHgSukk4UWkSMRHiDQDEM+vr0jJur1pW7OiaEI1UQdVMV5qcCuNwRIiC0nuTLomUDm/1Kdk6fyJxjqdzENwhnqDWg/KKinp1lc0Q0VEmkwi2fiaEmrMHCnpDl+lTn5R+9scUvKW5kVQDCDknk8gd09YHSayuf4851PHBoX7On8sx0wuJDQyDK8vrUcDNdBaatwqyxClvPZS5o5aWVclqDYeKZ51qjZbsaFuL7NQxDxUY+H1f2/6thHB75XSPsb6T7zYbLVtGCsK25MRd/+PZ9ZpXGwaMpRU/BT+/BH3lXeWO5XLZu3kYCOguWkok9UI+W4wRWnm1CqFx4+rfb8ZHIGMFXxcITCN4HmGCuBGjkPSrptma4eMN7PuMdoC3K6zAdIHtITXTiUjGUfg8q11GZNS8Trfeefp2QDSnVJ7Dwn1PawG3cFl2nIpkaQgrqCzZEcWIzyO6neu4KuoxiieHa7cONLjJ0r17CwRBxEtxhGTECXYY9YNNmtKCrbOU5tP+nF1SH8Uuw8eBpH/4opLEiETaacZOkMLp+kRYAWBZqEajPCSqrbfo6YXqDHSlQSTRS9bkQNRGSWkyfNYMAiUu2jJvDe1/typ8PCVFcxKqcrjdb0rFEG8ZuRYN0yBKP8MDZnlcuSdSzh1nerIKWSARSm3+OUIBIfcOLMY6ewd2rb8D+UdoYDIG/mrOvONNt7V1qs+gCioUwevomBnRqxYADmy1MOhvp4M3McMKyc3QViv/qgGlODqinP0zlJanIEuq5WhRU/poh36XqHvpx6RDV/gqEvcLAiJk0TTzPesUlj5bI/GsMFQTO9uyFGOfWIlP2ZQfpA9BnGj5IMkQeZ94Wze6YEHpYv47uciH5pbdFlHllbDIwKG1wDieMzINc1ii5AJQ5A6l4PNc1Z6KcRwXmSOiQD6MyXch71vxTdEsp6sWxclfcqRlMYE0zMZTNow8egwdtEfB1QOFHy/iJpnpoh8j3JerBI1F+k/dkeEbAQK6NJ737xvqL51uiQ6+YS/GNl7kVHFznUoZrv5CIUdxuQUI1L2RIx4opC8UT1avj9KUweeDE5j1e3jEhWqeVDXTyU+vuu2YcBRIMhT7JhWQ826MdDyGQMeIfEKnpBOejgHYwx3Qw2ed8JkglUpkn6r5sGao2e0kq/aJtm+hZ+fqsbly2n88F5TrPoeWILrnE2hPLmPvynt+U8lEfeEq94+GxHl8cJkL26YQyNZhpXS4gvg4RQwSdrTKKkGcEgVaXPD6Ud8CfxsWCTOP7udlWAVn7sNmKbR8rD4NAHEwoORchDhglvO/+cTejEXrioGRQR4fVGdSg6qZ5N1vN1560Z+N8Bqk+EB8qOVVLHbruDzOY3tiRfHnuIUQI/xgBFpHIsyvkjhO1nprg9lhnM45LMU+bBhd4CO235qttmtsRW6pyX6p+xLwK6MVCl5eXSXsfMU5+WR0k9HVlpl75COXalvXt/UMqNllgwiNwwM41nbdI06lIzyl5BaRi7+gb3MQ/x3lYVsYDLClNhA3RVtuxIVjYrqU+wim+ymS+pFbLb2c4VloW9IMh9VAMhobyQP4DsX8yi0YHdXSpTjxB3+agSoTPbY4Zbbnm7kGGgWQzBz/ZrKPGQ/o0b8RUm2t745YMdfvtluT3svj0huOmfvNAKL98RuTjVSuoul1eGytWqaaa+gyw60qTcdjfoJcyxU91na50r3DAVN04gwB8pW6ChsId93Rm1qJmuuCbbVt1ijQK7yy/F7+joyA/4W/4I2rtdggZDRME5gBxjgIT+FewkqgPSnBuvxsALblF69D40kxhZy2N9/M4EIk658zFl3L5vZRRFWZgOmQgK+oyHjGYuVgAckW4AYpuOLROq73ny7MWK57l0eUkSJyMOvAyEGErrlBw2QuHUwMV2ZpZnfTVQ55/yFeDBTSq1rrVKay0wxkSIEjGPIC0rxAxAIcte2SdC7rKulQxS2UQQtzV5js9NkVISm6bf84J4sViqFLoeZpk/UMAoPdsRkpzpNzYcPkZ0DS8jPKy4DRLKqo5K2xfAtGXoixWRv5Rdt1dhuP4U/VbFNYwSJ9Zr/GjsF5fyztUXjmVnLA/mDWiwXhqZ6+y2Zj7AbD8oTGUyRsKbLI2OB3NLEoktyP6nEW0KJQsYRM2wmeIHDrsyOE6UlFnXLkUvrrig42hNt4msuahA2JmBD7m8Xk2yuG9y6cLRlfvMSf+m+hE5LUqZ3f7sbjZXddm1aX1Vbq9H//9+TIi/Z3IGSVVBMcpXjwd2D9fr0HiO1+7trwEFO3sMbVF5Futkh/P5z8lFT11+DQ530wS/v+V6nyhhJQm5rpmL2cgyd/B6gBB+4xIRz3dAWNwAH+q+sPQZzSp1CgDl1LpJGyU05HIRw8L+s08x39to97nsnjhhTp0kfgMHRX4x0ULUUmRrEJjd+z39doXM68Nr9oSk6UupkyqAUFAh0mK1mIGDPJr936zrljmaVBaGsbgYQMj2yGzuF7Wcytl+X+Mq/mnHr4S6TCVO7w46k/ZPzchs9JUGx9kuSjv1UWFTM4tGbXYQffilevlAmZLTAMEI+7f34gFsbw5ecI/z8Nsw1gdm7wiPL0AdWjwAyMd3A1Lsy65rafN1oo6F8cZu0GCSN4Vc4N+e8KFoKoVaNyoEo1vfPWnCWtfnRFTN8Nf/3z1ojjA2cwF9S6WT5wabxnBluoFwjWphr5S77HNgvDDGPepzkOTrIVc1mBl13a+tMHTgFSHI+PZoqOoWWywcJgGNJv53a222dGHCQLvPlLhrIKoFniijn3/OLzf98x9WCqwf/xQS9Zlk/ptn/lPUjwdRPqpRh0TngldWajc9xPe4qQ850/9prCIFXvdizw8bo5zlHuwd3tSkM5XE/bjQGtLSUeiwSSUGLbmZjPSOVN46n2ojcvOqef+pDoJx6Yir7NPUv1EtLSIGyo+jzDKQmgKEISzpgrZauq0E2mS55PRDLQ7dSDqzm1n96qqgJMtknFu5fMCSlS/ncOx88MCSLVB0n07KKo9/3uaGQFeAkrF+UocIkGSbGZUzOMMEPbG4J0KiQ0MGDHKeB82+jV8yDOi+H6CuGKYRtJq4vD//hoIzDgFG6pcqx+Smw6WEKqYrYdYwdBeTafEB1Cni7OF4W7+0Tx9wp5zzY8F9xWZLajI3DajKT2Dsqe2lFNenPxairK0vpEItzTJIrJFnj+GidOlIm+ktTAQk6Mmam9fpqrtuy+i6syYCJqC9XHuuvQq86np79VvG4sS0TPhN5b+ILNjelWkVcOj/Ef+QZ+jLwINldPgpdBYH/cVUa9Tt8F6qayJqo+oY7qGUityRU164AzSbeZXQrLeQZM0xRvm+iFar16dcDceAf0hIHuATdPP3LQUdxnLU70dMwt+IlINiV6zCpVfPO3hHrmigjWzLVuUg26XvzW5yl58wfEJ0JDn0A6R/B4Dmi9z+xOWgwqC7Ey5wbsiC6v7Ihv2qwEF8abuA9ASvwY94pQB4EcxRd5ih/76LC1WxTNiMjw3oXe3bU4vnVpGP2LWWQS1dzO7Dt6hMHwOH2KRh0RytftlBcbcwS4tg4TWcHIdexnRzlL9OWRPTccmoDm4S6JHC8fdj4l6Y9s+7tqIn2Y6NipGKqRGjNyQq+LDVLp842ItzNieR+huE2h9KKikU//gJ7PmAx+5Ax0dg9T9xQDa8RuKy0tzYv514DjPQTqdVgcUFRJdtxUgterXxMA1wR0pkzwkv5YdlV985rI4QRTmCZH9RPIiNA8eaJxJsGkylmGarayddwmZKMMejsKCxc9idY14fUP3t2vN2fQ9kE/CJWCRe38OpkmmBADb4C4SnV7bROnj6h31G/9j6z4k5DXE3ludsgjPjTk4OomnNqVUzU0VgD4DeLHWG9j5RotMFtOtXTooAskgsgHyAa+bYNPmJ70wWKjqngPRo0BN/DWkDDYFcCtsW09VKy4DC4b5NjPQHOsDrAiIi7ry6CgZm0tHb9DgKq8D5UT37dTMwsfrwj7FZ7JZYiSZsKj8pbnNSZjdbje846dVzH/6qJ2iQXgJPPjWwLr8i2yeLVWAqenit0imexexMolum+kfx4LA9LIIcdNsnj5g2CkfuvXxKsl2EXCzjRMUokkwH55MzODqZ+nOZu7ESe0E3hmy1/tndSTSGrVbY0UFq0ne8WpmEmCf8/qBxF3yW3eeI2cwH2Rr4XjtQ63KG9MmVaXfXThPvmw9VbWVF6+yqJZHdQ6IHzlokvqp1QqIHHAs+cIUa1skQMVwKyslsKiJ6ciD/bgX7WfHZO02LIcruVh7xsHXbcXf1e+c+aHfyJSLzQzXSQxFyNDTNdLYw9s/xaj7tkE8O9svAaaOqeYkUV6WCLcjJNpvYsSMncEM2tgmDFhxe68IDPhFsv0q0UAI2gNjlKWchA7sGUigildpoHrAevJMWGWHNbiCD0CaCyK2Wc5fOTQ/VtgPLgt5YUV7g0YFQkTBKUU30TFWjXXR7qq6nx2BEskrjGoBJHpoxiKl8ToDink8TI/D3R2jLp7l33EAvy6+GQqAvc76SBga6Bn7lJ061iU+/CGS31eoJ86qoDCYFD1DCSwbTzegYcZNbUDBzQ7krKhuVSUvfntDErXOdwkM/1cBuSfeHQh3fIG82U3isUNWELaAI4fCV4688Bb6B2Alevs3OB2mSpOyfLOwFJ5rrHrSG0+LjYjgbqsLmqQNTZMTsucAaPfayjVNh5PgLJiCY4JMfLICXolQoruHQk7c1t9/0wQQO9uQWfZJGILI3nY3skBwR+321EKfOL/cMEkjNtXSPtoWwtYHYancGEPFlOePKMV0sfvI2mn3J0JzXeEgLXSz9BrRmd7qldVrgNmxibu9oAYEQqH5gXe6zFUw0m1/7+LAeTgHEIu606DrRRwaNUOm26Kt7Y4vssesqbMZO5fEiKwlhM2J0y8bV1myTLraIAsEqLooEsF89m6TNM6iOdUI3Bm9UwHbH7mU9Br2BHVD7e6cDJapkQ0/kX5CtER2bpe+mC4Jkx3PFYPbdToTfoiV3CfQEJGb9xxl96vWas2dEAVviVYEIIa7xQ4uBYUQk9BrSl0ohiFCF4gqHWh2x31Gj7vp6Ue81CDHW9qI7I7/oqhwrBf2VTejeOP+S8mOvlxgnh/8RQ2G8FyNtSA2anC7T0feYqvWcXhziT7UstIoPUeFLvHZKSFXn89/pJl0kEYC4GKLCtLgbjiqYdBx79lcUvLICpFsCxWxVGNLdx+JYnC+4qDkLH9jSb/x4F8VsQakxRrfK86SizS2SB5opos8+Rg369nGpF+3BGSrctiuaj/p5+5GqIkXs5ZgZj1R9ZZWEgBMaNgj/nemdydj0i15ILr/FtT5ZtJKbvRooHOAVUHnEPi1sf1xlxgZZ8pbl4FvOanmJelq3gzzoDDA8z4zs8P+jFZcDZx4pK0yJ8kMBU0N2KS9S8NygG3fSPdXE4S4Mj9Yb/lecnSMdy2Ws+zJG9z0KsSvzfeI3ej+yBt+mTBhRnIPJqh2iibf5GHABHLOILv3EHVuJ5VYY5jsZZEKXflLKEF4FxchD/K6FRd1NwxzJQDCqZ7vujmP9L1GpaaBURE6Z/cZFobscavgMCcoSHz0tkw2HomcRa3xO7OM31u36Gp0F5EkXMv7pcW07Ni2W2vVdfajbiJ1tmq2FR3tgVGpsz++qQYTLLPIeloEw0vWB8HalNlco/Z4hUsUPiaFSHHNzEmEq7KWZST/BnMr1RinBrfcXU+I2TajmARcf2oUANlEOzD9OZXJmeSJmZxjDCrdTTZ/S352TsoyJfw1l1+FsRMcdW/BRur+c4k/1hk87v9Pgsj8cs7SJM7Sr8CTxY0pBJVskud0kysfrc1m6M81eAIURy6Ve4F3y+YoQnsxr1r9kBc17J0GoDo+bkcOcIvIzmUxZ13PRXUZlQsMlc4Yt0FR5RJqZJGcc24+4oFwa0/QYm6lp9q/mcf16Ca7EgOeSmsEifwClyqyjX/iXjpivqu2iwST+uXI8BnZ3hP7cQF1hHQs6V+U9lGQnl8lCFWHsyInIBVE60aIK8ubH5ELo6a4Sv/ZFB/GSjPShwyRuibcbxl7gIM93xLmKy0qmCxrpaFRpKZ5lI0u32ES91W36/zQBrX0v2qQVYne8BNaG9Fzg9WjB9MdC69CfUDJUYqNhHv3IOgMaoqGnXsFcRCeAK6A0Euj0e8LjidXWbjE/Ge93MFSChLfdIxr+RiO/lYwWb5nsnAYfjb12g7BV0zoq0RJ1CW1lHlKnmo4YaT6y15wImh2+Nqp/wrdIjXRnSf3syrzDxF9GHFdg3qnF8va0U9q7TaAlSR0xBkOTKFg9/j8HlkH2A5gxJhOEpxr6YWJQdX52ghcQ6kjwQobS9UmJ0q2zyVVfyf+xQSImhDEJV9gv2KjWDmTcVKG2NZtGoyf75zyEIvhe6EYO0G6rqv2jGIrUEjGAfeVXpkH0T6qTIojrIP3JY6Bsoz7aVMFnE9bgbcgHVGiuq3mUPSyrgyEQgQprljujtTjZmTyY5c6s9sR7jJW7akAAtR/jHCGeqG8JZs2IJSsmm04l6AzRz/n7bu6uiCM2gRo4QmJ2ZfVCeoIOq0sAi4x/UjgR018568dm6J7Ib2Gnpriqo6vSLxVyoom46kkEEeKoymOny2zSVI13JrlPtH8ZNffuepq6eQTPliZC7PgK89sRQ6CpAAPtt2utpsCu8cOdCNZtyyLw7XkUzw86cb2hvKKt2nyPfb5hJ9RIS4rKIG4gsIxLL943VQVBCx30vemT2n/uGYBtPxENNMkF0qa2zjzop6pu7REM/EX7dKR9AhewueLRlX33YsBO9gNB98qHezU/3tv8G/yCnEAfqRwkSCBHY2T+VpkpuHlWCosjFJ96SG7GKDVCT3LDKL1+2c2skwPT9SVt9jptIfZy0amKZwsu90CJYd4GOfocAi2LOGqsiYqULhf/x8RC6SJcYaDRxVBYX5pCpL35gCLineiYtpThdNjpft3f7kvBFYY3SR1Z5RvKD5DbufZYn1p7LgEhkIbUzkUSl9Aaqn0xOJnFMcUSTL8GDa2Iii9dTEN9YP2sz/oL9r+h/6ry1p5AxiAlhXJXopfAerq5MR5NAwxF4YMTjQKcKG/NUst4SitIWC6+07AAiAKcH+5HylZecF5Fb7XWG9cV1D0MJYfwu/gncp/B7RIv5nw9kwBpbnfUi/nfHGho7oedSxRofYNVfTGr1O/dP//8mFSZJ5SSa9djPQr/sHUsX2tNe49QVEkGZ7/IumHbsbLOK35wKRjvUAMe0jgCkwJjj3Y0ICYy7AsRRDyWxIWk0OqT96zgY7HCcLEmuzrOwfw9Isl0rdpFiWK1UJk9XKukwDpUdHWb8mTdTfSCRhbhnC/qYAochSsXM3/oGMEICQ1P0Nj/neXbbdDLpa0PhRVTlCIwQcgEfenC+qjrXtef0ojWe/HHVgW71d5V8Q5thyXLvQrC0Vj9czD8D+UJqD4Z4vZD2921KKjHT9apL7+9rZj4b689pfqGv50uIqsA6DF2nX9y/6F9sAIw0DrIXP1YNu1hauaNeBWqiJhGmmfdSxDloI8ZHMr3vSP+ymjzoLByakAORYMudkOUXkiakeTju1oVZEKtBlrGV2neg4nDVuRlE1eYfioPhuZUy0jKflpdB50IWSqoy2NDqs/BPzQa9mAhmt5lu8YDoJhtTCBah0TR/k9FiIqoFS8eebvEyk9OVg0JdgLRXfejJDqnGv1UhiT8ny/AyIhZf54gYDjNkD6viOmhkEZ5uMV0aRT1RXt00WBKW6KOKcsbSUaKLlfOVlaM3UBymZQ+SXZ5R6wJftauPw758OTYioyPM8+ABdiZlT0tTMEhjjOAzMFXdFsfm/K42PSxwGMAggaOO7D06Srwzy3xTYE9LZD8Sxx35Y4Qxue8tLuz4PHKS8rirXbpmtvSh+EkJF8TYyy1dg/X1yTYPe0L4nstjWs/fQGfrIJpoIEKCKKiAuWgTVADkJ4krufgiORjYIY++qMl9VxeO3eoyZ4lFzy4+gsD0oWyONXzJop8XZjpOTyH8xvgV4GGIw1DTjjY+awwSwbL7f2w2aGcbNB+xAxzfAM+e54bIENjaQGOS/1MZ5otFuMA1plE/s49VWMzFrMRo+nr0E572AumfXQzHXtdgKVyCcz1vAsNtY4d4Nns087OXRqLJpCvHKyJRE5Pd9SAymj++iF8Ow1k7DW70eCNGrDpaVbWLI3LPoTjjEPbUjtDlZ/6FWLzZ/q4DlU7KaQCjvvx6HL8XZ61euWtfUCyCh3NEbxlDmyXSA8816sqW0AUJx6TJMDqhz0q6IKyanwaZMw09HjzGCrfqh/innW3dn8JjOX7Zvp8/GYg9T0j1z3hxv/x7RQBZa017SNMkJRrzOfckRnCMWKq4jJLb35rqhLBui/yGu6aDfu2ini/uu1QQGCo9z8OQQjG44oONrG6Vqsn1RtL5BZPaxZczPfoYtAtXJQ6vP82T1Q65W+BcfHqz+zsOAynURq75v8r3Cp1oH3PlxvIkZudiGhDRp+4CeEg5H2RrIiH2thHIfV3SU73jZpJSpV8MLzta3ULyKWW2nteFAaai4BhRBBSkTKUGenB7l3eB8IE0iZof75HBfqzq0+LMwdBYmJVtdE05nqk7KxlkMpK2VDDIk+CPJJPeLXW5NYSBveOLn+RYVopM2Xv7osYp6/L3fzTxnhL/cRzlAfBO2iJYY1jqJO1fdVQhHi2cYVAipq8eAy8iOQtHtKhO1OCzcvYy10og8ASxe7gPFWJirhd8FbCkSPEKQTQmCQjzSCxRNZm7fGfCh5Dknk9/D9/kANgp6HIiB+o5eqYkmJMJGxveBgnzTllegHVsoMLKU+uQsqDQk6YJ/wzLFE8fjsOQy6wnZyrTWcRt+S4n+gU59MGuS6nUBB/ssD67L+godRVoZErEN+gdoyCNydSCBBKUZ9tjYWIvvtQHrBJUJyom8az4rm1QkwM9hHpjGUyasUunpYwiwXrIBZeuIRmLJ40j3HEeG41yK6+PCxBA9vykV9e4A1i/Gl1IO8lZnBsO9pTtJ/7EeDfQCpeKZgFtu4RvYAnoI6BGGATpARJEyypiAKlre+TrsMv8xi6/fItuZ4Z4hmIe3K431NFBksVuViHsBoYK1zzBVctcN9GGJGy3CJ6QPqAAm/RLNAL6erQgcMKI26hPBd9AbBgsOPav8Tux+l5wUd9NQB4RlHfHyYv7vhB5wsZD5R4NlYK9zVcP2UErVX2XywrdD1L1ERQjBCajTrZMZf9WJKFVy/tYs7ByWBkzHJyIMH58n1aL5WL6kqwmrkLWU4IA6lrpx/irJojGrOAJ/JhbY662jdj88PbVnE89gtWyhh70x13iAm2GtIq6W6SkxRZagTZUvoQJznZfGhZoJSwQ3YKclolPVDnjSgD9dYEk0K3brvGilcjoV2vizGadlKyLOeiJ4YngZoxCpbVz3VTk+gEJn5YdS7vnnyiih6pYs0w38H4536qxduYWnFZJrdmURi1V3LKOJCkAWCNGwSRFZn6urLHvY4HNicoovY6ntybMpblSRnVKj2u3cjZF9+c79rTC4TIsIqi5nSps0TleJyQcFWxrXknjPnJ3FSm5OWTcaeMZPUuKZfG4D7WKRQUlOguAZNrO629EHxb3XHk80fNHpbPzovdkeyhI7509VS8toxbHduxwh3zo/Xr8+QuwS0XHO7uoLp0K1QporJZuM3ML0R2Azuum5Sm0N+6pjDM11Xo9mCNRm6cQcIxFLIORU3c7bfNqj1X2kX2UMs08GCr5wNZgvxkri6l3+6tm+HeX0AnIv34RvN16/gXvWoqYCiZ0CfQ5RvVCdS1lpxL2O5m3369PuC/JVEsiRAM0/Rs8/HK61QzF64PFIWYIhvFWboEMFMlPnfONJYVRpblgwVjb6H8RnOFFWz+01LtykVtW1gI9sfKdXALF5xR+ffXC3GPqwiGGJsjtCSDa+CI6yr8iklF/D6R4YLpbn2cXz285cIaZMCGM0QMeyiFdOnfQ7Ykl986D3N1jK6pPYhZA1lozm5NIhG0AVLcMIxGNYqzcWPxvK1U0GXkJqv9eYAjo/TqGIUt+x63fRDZEpmNxhdLUgtdT279Gr7/YfGBZqPFSvPjyOQxdTMDYMnIgn0bb+TvtIEQXHhV5yNBdL+uYQfTvJfJOX2Oq8CJPw42xelsmnADALQnYBf6DRJmkkZsFd3sWraZblL6CHVwmtBRvhLMY2PVbM4yHmEeekk7rubnkzArd0YCEHLCI8b4jImNECvEEJz3WU/mFMbFYe/fCuQGZqAqT/7Z7yWy1Eu6wVKUlSP4/bY8rT1NwTdrIGbGU5EfbrZNldOud2YihO6OETi6FwelX84IR4sRo4yxQTtRC6fgP2oiT0KJAIRJFflDjx9Lv9GrA/Fug94QIPQamJJ0cVz96T3mPk33ce7moMRMpouLekIf0ZIKcNbj6NxgiypMvzsSGuFYiYKx1ejQakXZPxrzFk9nuiQrDVCAJBCI65aJ+TW+zinK2qbZexEEucwyM7U2OmFHaBNAGPJqCQDY6deAaOegHrr2lGn6XChh8V0Awo3iOUzCOzjAV0CpTTogahTiZOcILsJIgDuEbugyOtUfmmZjV41STT8chlSCpVGJ8euUtbjOvl14CkkHXzgLvnOsC515db9Pxa/BXz9JfaETQ5dKCN1/XSgCL73FUheAaS1nmqw1k+r1HX2x9R+4P4FBnsMFtBzamyFbWDFa1GffzwuS16kPl/n5xhhawetOUTpCkkst49Sy0fVrGSbOMMyiQthZa8LMYRLwdwS7OD/8P4lnpuYwkVpV5Udfl16d5EVhpLYHNP2/JKFX7Zfd9FpTJ8oCS7pXReoge7PpfdogSqjpBVargPdl2N3IGW/+rv9H/V+MIAx6mZodfar2Iycdihz2vLKz7DBl8P60zWGZAjF6AhFcw1UyxP4gmt83t/PUc9+MIxANH/NyO2/+s6IshJdsDctdP1+QJW5PbixzcyTuX6zeTzrhAKUEp1j64dH/Op2ZY7Y/LI4GE0QV6exwNoJSS/D/waf6UUZ8o78TfAnb4tjgPNNpRYoUDqKkXBosGzUFklz0rJDq0DYMJFdmIjARbarZYu3oUCnU99CVTw8uZwlXqkPYE/Bkwhat5E9t2AX9Elj/NLFY6OUChUMr1sDy5TMciVIB123CbklRLZBLgAx1VvuXSSxRrOezt2Z6+NYLT3VlKltlEB3OM0HysIKw1JucWGu6+z4xzcCnjM6nq4Z3UUwN9NQ2HM4vRyEDbi10VEZ75cWyvgWuAsSq7OaY7NWpcbfwDdg9N67/UwEUKF6gAKFcI2ryffv8/hYVTSM5GvDCVuOLHClIf5qn+2rJzxKpw9yoNJvM24D4cvT6S11KATzRWrCw97tDI/wCp//IjwwIv4nA9FkyccKHvqyhU4K8somf0tO2kxfWrqnM0knFYENb+g0Gp+s8UCDS9fH5pLcaLWDqRAmfjSaNDsQtRhr7P5YMnG2adGqCD0lUUpvLmv2ylKeQUuLttf5s/3TLlVL1KaExXXlak1cWeU/W5SWfy0obhzo5dl7onNgqNtRhGd7FrSPJevje+xvhcOaaoTKVgFW3NoG1PX5CKOjm4L7TsKvYIHkZwtbLWCOSGLkbkGVpON94oYyqFXbyOzAsUKowTvGRXKNv77NknkHs/dUC3qAAqjA4QIgs7hVBYbsSrZiIbfJteQysPt3qyxXe+6E8NijRinXQr5qgnux7qQStJuT6ahiuoYiF46xKcMAsNZGiNh/VQ05SMxDv+jr+EurgNj1RXLaGuCZcrqBFnHkY/3gmHRzHYIQVXC3Mk7n3H242w8CIMlObx2pzBujD+hxsWogFFRsxFIhWomUmBk26RMHaAp5pi2PL1sPOTZk3+Fs6OqoSBmlfYqfpKaoW/pPZJ0Yqzr0+FyuT2k+Gdx2M9zRxb1h5ep3drnyjBRYiGNH0CFuP2ErNNm3i09iy0ZSAws5RSoKHacXIzBNazpd7aBAsLJnbs/T4lUIIGX83Nlv2Bl9TOO8BwLc0cGetYLvComJb4D04att/Zrag241VZrIVorRsU6oCZGAhZqouarW5uF9leWChmZc4dOJokkhcv/7uLd8IUP5xsRN1uuP8faeNrb/628t9mZ7Bm7PviXWwAZGRdPANESSP7y/yu+o2jBJztLB7SM8n6dLxqWepW8rZZ4kpNCYVUq1N5mBm7Dse+vmjyT5zuQRNTBTXnu05e6u09QTV0EwsQrmEAEo7un7WVFQsGjmCqXjc/yDTh4yBUqIhkiam7kun6gHT7rli8omnghoI1llo70jaNlwAwfsP1GlNERJWgMcKSZMDg2om0WFYNSNkpPvAZ8N+VY9bPw1PtGmCxVhGeYfKa+Q9cMYNz9VKGPxO44RZEa7SMgGX8HSLD6lkzMeTtIJ0HwEouMBgwzUSZblzj36lrPoOigK6twBnZxyU9GCt6qt1T1IEujt7eyIDbAWXVauG+rtHK3mVwC0jOsLZS2i7RV3xlvzUjdWCXm94oAWS7FmW9nOoXJEo119V2kIXcIUBs6VJm/2hGAMTGre7TPnr6Oowj3Oi0oNc25mFkHz0m2VBEKOK6JnZuVc7jhrN6BX42k0M1E+ub7/H8GBpdHcc2H2mBz0ySkZC/ObwLpNHfLDvoWH0FFjDop3gHTlQSownmsk+UFJ02mbwjQCICeDRalITPuDMZsCsIjUfoEgmuszga0HTTPw9cPmmIn/7oD0DgWcc+1vTQfN2u/eylS5bCF6zIwj61FfGUmBJWn62UvKGWWU58O15oEXlbsQMczeTYWqVASBqAmqkPqIVXW7kxIocmBZenH71PVClAwdmB/K+oEPgbQyz7CGw4hH/fQK3MxIq9xyScUDuPz2fiA9Mn60tcbrPQmL3KCHENN1Lyflwa8RlngwoCIq51P3WhdiIZBJw9RQgX22SKmFwZul1OnYWPV3jiSL2/jARLR+39gcdb51F9gQ4ATTxGlqO2V4GtK1mVdw2uyMjy7UX8IM4vZPJMMczu8GGkNXcPad1cMKnEv0LQRpgOfBjcPOX5aTga+U0obyMQkCoD5q3rASIM0cMYi3Sej6fcnwNBQw0KT2ieXvx3FLC92hyU7mS9i5SAf6eaNGtbQZ0ekadlmTiKWem+LYySPac1YfWkQsex7ejYEvW5AHQ2MPRVY+HAeBtAkFd0YdGAW/2RtCbjS3KXbhbSRfYXsKqrE9KKYxnr+hrhQZFgNIUPEIpjh83wn5mbL+iIMJm93M41mTGGhohxvkHD83P0oVNgackvVs9+yvpgdF5SvOmR4Y8vbPZYzuZldab/rVJ1vZ6oCk+vgLAWY73frHR4NBNG42SoBcoE6B0Dul1C42bjaQeO4o9r6pCXVp9CGhohr0+h3F2yIChzVs9D+L80tgEheB6yKrbyJZTH1S0H9fI5DFNZH2g0yY2jBOiDr/Vq3Jff7cHSqKbprGa3lq3qprWYilcu31BlLEWoX8aUHpdzx5Talsi8dFztyGVssnHkCCU5zyzpib2Lqd1eb9hoQhbDkrJjPWh9bMqlJOepLzdA6MQfEBYF+CbP7ZVYdUJlhA426pbtJBf0sRKzyWQ/2FagR4Wz1OBXpGTh8/JoPD0nSvoREer7mDl3WiqYQf9ys30agHjaHQVIiasFMViVHGHXb6Ui5E53jHhK7zx9O+lIo22la08Ca4ceHJ0MrKXVF7eelXwrpqrtRtmZubgz096rpoyMTvocoENH6Yt5S+vIP3JRBnRiMQPHPjf5CxF7MHOTXWuvdXq8u9mnb/LFlH2fi8uYNEQoJdoZz+MT9xRnGESr9OkRqpy016X3mizVl926U9CaL9R51i2/tO77JtET0CG9AgoufNTAnidPpLpDuPnUydZu5H0jKZ79xw9enJ9mIOkayN0szB2VA55tn4l8wK0S82SMBPO7q+pVspWWAMrt6tIJcxMEwPaokmwmMgkYmQDE1TUUY2PEQhYuJfxAmwqarocq8IeFervhWlUFPM60D6e226PMw0y8+5VlGhPrNLsY9rjNnmilH+olYFSOGBwrKzFo0ZYzZj53czn6tv+XvxVtuQ34HhJc9/kFHkyFzQNKdj8ZSHbvOTbToprWVMogxwi5YtEqcPmVVrcj015I6Bwv+6DXQoP+H0p6T/Z9gP7TZnkSsYGsKf0IpwI23FwtiWPQip0TqFTYOMrBUr0ecv0O9gboh8Zk2j2JctKpD9UVhPwLuQ5evtyOdkJBGRW2z9tRsq8uKOaSVmUvbe3Oq+kUg2zbvH/wguaGgGne69Ci94FF32TOHMq1rPGSf7fBI1Rj8euheZRjt8Kz1nQmG895s1z2FEuvHzOOY+Q1SQ5llENxVAx/dm5102Ll4I+Uw0vYoXhBmNAQew+EcewOzj1N5arkObfIemtbUwK/6oOJnuQ6AU0IZ6629Ck7XxvT31ca0gPijq+7g09qJbP0thCgmlO21DUQ8mZJUT87AGGaS4XmEj4f1mncqElOWoZStvgpps3ca345/EP3fPZUDxurruY1DIhom6VleHoHBSKNgYCsWPEgr6SxOqDobGRfHzTpJWihlCIRPXyOG2vhYJ/zkyxZItWykMqRAT4ejJWu9FPbGsKuig86S6cMaPfYpmR3/L6o6nWepK4cTOJ6gDGJkzkCbJ77iC7rn6tv1xgE56XNwYg45/G/iWyitNpKZtHxX5TSHpVPxsv3LKf+9g6GJO6NaEKpZiSe/3VxtKvwyXuWzImlYa/yHbVR8Uhl/+dKi/jx451K9aOmnaxC8fcdml3OGpQHhfzNrYEx4QHSxS8x6S7dbSv6tkD8/2zJOR+Fb+us07PVM3zfRLU2gYrZn8OCTJISkXWZsV9Ws7hKXtcYX+0PVtM9hrZf1BWrpZEbXPjfoKLBTttF7cSYwT2JM+EgoaJ+BP/914h78ri7SnVGYTyYKHTu8ue0nZ8gas10i5mzAXPmvsXZ5OVce/z71yAhI28qzc2W//vBDDgsWM//aTbn1ZfwRVwAytXsL62YYz/Pz+3FGN4dxz0Pj7U9QSdyJ0L3MmDdi+Z7EK1C/0k0xOQojJgGX51yVXdvFGlK+672IXCHPLZmlziewk/EopbfYIZZn7OdO4LQDOd7vs7DwaN24sicZZRIvn+U+CYAoJ+Qi6mFNuQMGI7kpfBfRkUaClyTR77XR9fs7u1zDdsO2wylUYDbGvY8jMToo6llVsIY2bPQqQFN69eXzCVcxAmpbbHfKjHeG44PqkUaYiXmL1Cz/vVHBo+cwuJ4d4yCPD+5oVXqCeDujCvHVb+csBKLW21zOZR2McEKaSwnGj5NXefvjO6tEWSkUZ90LZJvD/o8EIvfPOtsptWAicRTAUW1iLR8x3eIbHO83o0sglGdyKA0uQZC0e6slq1Fc5Kl6DqZV/3amGy+f1ahWNxG7Gj9fEUwcvkjWnVGeGtRMee9FhG03d1iXf10RwkPPFp8QEyNYz53ZRq0gmyO7ke+XHR6c8SDgm/AkQLnTjp5RTzi/2PZZPKvAot2T+OKtoYDRlMuAIGXKmdIQFNKphUuZ5NB0CJBt0nCwMDDqle4jZYmpE8YxmLYt/0VjsBkXib3FfHg8aIwvutgqCjSeW226jpG2zZCmPQr6kedj0yzN/WCkRzu03q3Gmk/ZUDK1f+QW/3/hxxvU5fLil1XzsCZfBGJCEtRQgHhxairQm3/E4o5JEiMjUqq0NcEDW0vxVdevhYot86KHqfSlfHZSSkB/GnEYgNEBrJShPeGgVg9CAO8fX/or7rZos63NqKaqtFyHAUph/Lo9iF3Ko7lL/e/qYLjNdy4guvbrKWPWZPauFMsbm7fg27dMNYRtLoW+4W5LdfGI6ZbyuloKmRdms4a6DExRJgmMOUDl5DfjX3jIu1Rd4KQpKIXK7ewobkMXw73cGm3AozdWOhwj0mVjczYqlmb6kqn10FfryHQTbgW8o2LjOYhGds2wuhkeNPotofCSyClicbKF4vMzdS8nFRJ6hPZy8UZ+eD5jl2MajbwGUnnGJuEv+76J0+S1AydE7nPEmXGBxfgqsdFkqsTy92zZsedcFPl0tw5V2THwLLTILjlTuWAs2AWKt+/0GG+p2k0uuobaU018d20hiT+yTKwLq6YV0vosVubEFGMfHKAYIqqcEyODVJbzqYmmMkdlKkLTRJumqXWKGsXWf26isEYTm6hz614LwUrboDi7ZUfGOKAujIDG35e41AXSdZNYffZ6fpOJAyMJbEFv+QyjeohsLJMB+dht2onLrXIV6ziEpMGHuh0x3xh6ybnuYpEd+3YQeew7v89iRs3jnvHNbcDfwZL9xyaZwdweku6Db08b8LNLJcaqX2Yp0cW51rZvKZ8mXubeEUhTb+1fjJOwzZ7/vNByss6wFiVwkmhj/K/xHrmBPSACbPS2ATbJny+4vhfZeBh1e5NkN9xoZc5ShqERG/9UB9dmtJ2KTZ75S/0C5zgt0g5d2aX2Wm4vHbtiSfN6LKquA61icwrhN/3Fi10AK+Lq/Ys/78NFTg7gVV+/izfKTKUKEw8sgMjHw5LY5RxeHRIKueqjTUjKIuetZzEJlpbd9fM0BsPhOs9TvdWGVYtTv4iSUGuaQ8myZ5CN/ijaZXWB/a5UxRXprnjYjIQyFiScQRuQQvXiFpk3HSdIrd8IOx4QLEqWKAzElkdmbHx8FCvSTDLjhf6U7a7C9wN6ifoEVq/pUOrCncoFUvpplA5tEBdS1Eu0Y4Wf41j9jmy97hGLp6pPOLrgWdemY7oBsExJ58bfocoPTs1rQ+iFhiENIejB5X0h8WsAEyAS4cD20F3II5BEHTjW0Um6ej29a6FctwA/D/5VFsNPSh+4Cv+dZQ8Ham+gND5cUFtXTxbjDLIU6kjoLsGps1ZMvLyKMNn44fIoBYyZiAlznsorVhKCucQ9g5N5SMPktK1VW1aCdNWYaGXA9qJKA16bN2fwptR63XooHwvnaz/dFOvI+7+JZjz00U7sOhzq7Fdwh8ShFuBetFeVXwSKBZvrawEXb6U5TKbSPrfXz1q+N33dvP4WmjsEMYvAqz0yQuF3ldXX380577TIQoP+jvSbw7MHzzqIcgGBEbNz922QBXphquTPocc3qwUfBvqBcDVJxTKcEn/ZgDckrxH3lAuNXBv3MBzRlfHRrtZXi3LU/ScP7njEQWai7IRwU6NTxhDx/9eeMVxlpjz3F9oG3awQ4HLDTjxwKU83pZbld97IvI4KQ4B9wTqzhCENz3Q+tUV61R90+ZlDCT0eyHSA6rL6kAFT46aYjKEM57L/plPV8J/qFl8r+M5nzactrSMszC6gwPWLBsfH59b/95t1+vUxlCR7p3pwC7Rt06HAIJsF9wz7vz+3bY0NpAkHgkggSJ4MVV+jFd/n/yBMZbnaIPI1gIme09IXesgVlzcfacppFJqv0Wjk8VnaaR4z/PFH8DiLQD2HST0/MVgN8AUgtYcQhgK7pDsAGSdO6+PEg39i00wfFqJ7a0oQrKp09QhSzZc+ogil4F7yrMGtJhmdNU/cnuyaPaYoGYGYbj8kE0gRixudCpN3+XxIo/IjMRF+pqTkqRuJbY3oEj4U9lAyk+yJ1JY/+pWmg+ACE7Ig2+MSt8WBJbzRxouT5MlvEudNc07+ityYeMtD1Lc17o9fW92gr5oMfcJsu9Fn/pUwoLEtdG2x2rPcOUKxBsVLHQngrmT3epi4VzJOn7LWoXF6n4g8HzDh+r3/HezSZAjIttDxDeO4GZm2jSoTALM0akfxViKtMAK6NRwdARRreNaptB1iFTF+0UEEZlD6XnhOZJO3pSGerhHbbyzPJnSUU9+SpPwKBzEb8xOUcYnnXNRjSqZ8PJRo09FKZRKi7Al13sssE36b9afdEw0Zi8V2EIvfhfM0mYfsW52vhkjF5k6fuhp9Q3zS7LzYlDO633sriiz7W19Kwsfl89QPdz9MVuZSXK+/Kj8XJp21fAdEyX/V8E3yqKtX+qLmsp17EnJBUYTabF72wDMI2TFcs21aPzKX/YhqNtq2aoqRI0s2uLHS9g0106mruTqtFIP/3Gz/z0h5TcqtbWGFiZ5n/9SlDLRlAIHkaGfBfGw8juubSV9CZM1BgzFxHVW5l+ZETv+zbkAHRUJiwiMhPRAajloVS65bw73PkdPtoMLZ/Fju7WfQC3RZ9JzKJViTuvomxzRxQSg0rB0gL40uJJSBni/dMaht+1s5ySSnWHz6oGyfIrNA7/jvw7ArpOR3kUxlHw5CdshWYkwS9NVJa0YIwDjvNUzKebxb/dUVejbTqZIEzpLW7EoH1yVq8DXPwsv37tVm7uxkVOHrFPYS+YUC/5TXJWweuUO8onuvQS4iCOgc6XbrqPh/zYdpXQki+eXT9t1RX28vHF/p084yaaU0177qUVaWgsRPX4u4L0zVLGxeGrf0z8T6VJalchmBSl8bnMXmNv40oRWBB0ClZMh7pWzblZxtjY3i2BIwwqKFnUc48RJE5xwcYrQokOkzT3fmG9z65po3XYpinhYJVHnWvXkeJoZ2lzq2PNoeFm6OrPofiNOB66COT+dlMt8UUmyVD+ajHFNPB3Rc4sZtr1rVoW1/1bcK5A/bknAxcvi5QvtSfCxzJ+Mb1Ty8Q5CenkhcjLd1BTZ8NWaK+SmnpMCk+8XydgkGCvriRNLGSQgnbRHG7p0yl41ga1qoKwYZ6XdVFk7449+yCgB4yn8Y4ETQZR6R4EXqrD06/MtkwrPCUfp8zpqihmiAiRGYoayGAcPk3QZO3TZ92O02uO9ZYKa4Gy2Qzs2Q7VSDH5H9gCe7H0/Vb+yioi7xpZ4qw+zE97+hVx5K2m9eVCk/eG43xY1c/cjUyXl5p7vyOrzocZsMYLHeTdeIqWmtrZyp+3AAQMtnBfGLJTbMVIgw6qZpnysqsrpqQDWUiuQ9A/5wNQj5xteuFkvSmb+RtLZr9uSlGVv0jEIoSZvlR6jyoaHWYBbk9bzwBuSMGNiDaahjDsT8D14fDXUAoFYxyxOYsgrpqhitlX6jQBxkmDR7iZ9hLesK0xHV3bYg8Ucwg1E/Tb0WWsq70lA1trVlKm/qqztBwAJlqeMs0vOkIq80llxxJ4Gf2d3ebaDMi57w5J0X/Oqlg4hPtj3+IxME9i3qo0UiijwkhuUof8Uy3xeUr0MGnzsP8haH8Vf+cocBMXkhfJXceVpV4Gr3kHzTJ1XeYioK52fO2dSFWgDyLpCRC8O5huuI0922v6MFT/PlqWzqDFjmyE4OIkQOLQ7DYMmV9ru0m+y1iNkL7k+u5Bxcb7CNBzTbPkn5q8IfuUuxqGtSegpZCwz8wAEjOgtwmAtI/vF4uza6KLShEjPu/Asr6JbBr7rPrRHsnL4HtLmsDNLgE37GUtLUaWUamw9wOFCw8euJkuW3cF0iRjdH+gaxV7C5nC+8t3wplia5cld4uR43rPdGB+ZvEjQk5PmqSnu7+gqaKLqbZ3Ft3ttBriQpZH+xZrXTVkEloe6XToZraHLVp+Ge8gAFQcZ0Brv9aehK2e87DqssH3vAZQEpY9tM6RkEA2vtmxlQ/QVp2tnM1pclDnOa27Ic0kcdqqIhN2sQvXRDyhdYWXLHOCe+elYELMkz+urXbc3JY6uiBXOgrwXiP9SYoai3UEdKGOluAMw1WAeAEbALcN2i0GFiQIk3AJwMX4GmNzj4zyjiLbHEDB0sDc8BDR2fEnhM1dv2Ax+LXfpuZkgRpBKAeeXdbMMrSaKG7Chj/+w8uPjK1gJsiStM2VfW+KuRHxXin+hhw6joDkd8nJndk1M4CMJST15SlHHvqIi1GiSBYQWUXLZKa2pT98+n9D4owKLqTZBpuyNF3gFmVcFqRLko0xjP21xiO2H5RRL+Jst/9wppZWTd0YTDj4gKS4IDTPBwk4zJQxbLIo3yJTrnh5jZT587/Fj0JLry0Cm02KO0keSosgvkZGkNnLipFVtUEmCnMnkuIG43jiGJkDbMTKTPW7ToEs9EPgNub0ojqct2AWZvIc6967cersd64gjcJM+tWH2Z2s7BR3VhMTXp1Ba4Pwa1sG3opzuHCV99X0+vISCdJqHljEDg+27Q2dfG6FTZsXtaXagYhQAFrmlGUgAr2BqeUURg/HwALGWy8c55a1tDtDgyQ0DEGuMypRBBAr413LUPYzsudBSLoB74qMlRTyZYESiLE6JIbCDjR8F50AYEtgo1G8rzqe1TTu2daO+yQq74AQbY6Fgi9hoNmeRKafhPDWpek/hs7i/LWXsSUSOFSbVJBeAtqbamtm5pCxVORxmD3gx8jqScZ1ZHTw72yUbI9abyGva6j44qb9MIcj77/6yvYlJDCzZ0vAJ6VBYoyX9D6iMgm1QoKExFkbayN75JcncxVKqVOvEs6+I0hnmWIDAk8caESfVIp7rN1aWPHbVewRm2rdiH+1UNPmdZvlMiaZA4lYDupVjLGMl3xDuaXCeJnaHkgZX+d1Pj6AlSdO36yVQ15IYpZLrtrmE2iyzOOAaq1Ny8BP2MmMHWDJwLn27YH5DmrB4El20Pq7ccNSG72hdq4ZCDcdSBrO4+83oUSTMYV9pegLiu9qnYpop48wFSVHEqwPckMPiDzdy+ybHCHP5WAn0bkQwDhfmXlFucL0QolEyVo/2xQiRAhqn4kU0ZdC/wJP1yuk/h9PVy9CsKpGG/Ums1IeF6I6Sw5YiZNPVriuYuJu85QbgYhZkCYxhFnwa9eEY/MLWaAah0tW/G1TaeKkGJtJvZuB0getV9XTZIuwU1O5AGy/Oec8ZHMLgQAWe4/ekANc6MiV6ymMNuUSkgqB5OcdoMqGkEb0s49lFgKWvQl/aIpCzASGGyNB3tScvWIfac0E4I25LO5b0ETwZqBEGFBWSp9uKcslkTY9BEc1Ykg6JieUjYdQ1LfjHLYShRVnNSTLa8cjwWTd2gWto4kwCGvD8UX7zHlR4r5V9c1BlH7wCAeWOzdyy+fiOS2fAzGxVhdz2jLOddzS3N/MeNllItlLbdiEr3u7GHYaqKNDf1pgAev4t5N7Q6it+mzrguw/pepl5fru+pfkMYjwpFJyoYAEIc+ODPZPyX/MeU3ZNLbkv+G5lmFhE++SQdW99E4O0nAcWwJCGDAwYK+UoE17HuCY5MsR9xI/JTyAsw9f5hipduE8DWXxYTfu+v9fuWEwggWAWChcmHBjzeIHbEKd2Xo9+GP7TeYwrDMUkfqgUsq+1ZK6QO1KTWZBD1hJQDHtKFDMJjfcKfaeYXaXyqzlD48yLlTSxHm970AkzfScDwcNlckZjuw/EuWJ6DjN0KZyBRXc3PMiTu/WlmcX7/VGM0dUy8RmkS6upj65mtfhD9ycx+81f9ngg65gXgBituctys4cKgrcR8v7Gq1cqzLNi2W2tqinJL33pf/30R11OAiFmkd7NkqH3ZbpZKkaY1SZYyKKwbPejlRhF+1g3qOnPvAhPv5zWT+6qWW2PO7w6NkewREcRLktrrEwfu6VHgeEEmC/jys5DstLYcRL/1QnOFOM2DMhsbPLr9N36DajBHq2O1SegHkr7ATcSMBvbf6tETPMKrd002DwYdH9bqvCmc6biRNCMl2NWv3U3Z8tkfMSFeZN3SOJvWsN2F7bd4Kgxo/JikhQ+M5PkKuG57X/4x8dvkAxbOprv/DWc/LD/Qx+nTnye/6rmZ+LIDSxGzEZeREELcC8RUWXjeJ55tppjaNwQZPXt36WwCmVftOADaUJl1OoNHvBzsypLHbBfmE3YjbVZSZmhCluMFJB3Wsghyn9+qkXaFW5U4NE73uq6+MyVLuJTcq3Fkm0HKbxnLBbHHTL3/fD2zDsRxFul58+eW/YotzqVAnvcZRBm2Uc1SBWXCxEYkR8pyYqUswLt1cPtmMykPG+mTNnMO+O7YRsYwP9oj2zzRDquKBaAsrqyGFYyaU/Pos8sQtu9B6bFoRAosiEfcNQoNMPBNzKhT6Dqgi+EBvtvsuuxmmK56nV/b7q+KIvgsBoxZ8Shz1jgRhh394BDlElNEHm5EsbVkDc7QOQeVTX/V6mVaScyBLAIpkwVAvqOMLR2sr/5DH/MkxGjBYSJx5RwYnIbzYflQI1EiUGF7ZnbCd9FXKC20KcrdmntVcaefBIRJx41i0Mf1eLqKiK9vKM/qCfj7MVGIFJUAm7gIBcJFviAz9nzlyQXyfIrGRw0y7OCQnQ9PR5JLLIBpwlfTDcxguwsF3FW21EmAz2y0nFJWv2frqbHcW8NMVQu/KpJUuXPSKSF+e3a/seTeKB6BxB1jG8yHFpb1QpvOtRtE+xm+R3cXzWeSolmNYKM7TQWz57cJkYIhz2YHfCW+XLfgLf09jmo4+/u29AQu2EFfHSJ1L64uarQtyARmoksQkK9PONk/ILx9kdC0L6ohAZIOf5VET8O0bXYQ7xDkzwBIxYxII2bRqOtOMhS4NgridccTvh5ZmMpdUuEShr52S000N08dtT2C1y6x/U5WmZmGs5bT0OGLFKSYn3BwxMzXqSVApsekZ519hvo4Lg3UB6oiCRfgRLDPq8AQyGAFK/K3N35gNGFK9D1cLMWXXC8Q4cvNq7EVS/6vGqmBVBPj4a/fAtDM97U2P7GnugSH3+MoCN23WpXNZ2RGR6YFpF1hzOISm4hbWk+reXTG/W+Tg7q9nfNiBVA2HoETgE+yW2rMK0zACI/mnGx4Kh/UgfAOR863cCsyEVvuCMrlGb4j3kC/zSKAFUM/uMplsB4r52U7HmUd3OHq8lJLOdEtr32yUsXFAb6tPKZasx86OvDUBuuZl+fwMJUzxoUOfYOUhQNzfjbiAOfAfsuI+dLTzEN+lP8Z/0WJUnMvfid8QEduhJr0VR160h1qoiajygtoQfWA55Jj4qrlVpl54B3LPpl8HkFRdWiT8XEmP5n/wNqMsj+3ZbEXfDqZkcTkTHjYERH4S3G5Zyv6bt6OVRc6P0LF5NTogaS5l9oy/rjMeYgGodQ8pGBwl59DrhXCQVSnyCcvMTDiThV7nAMLl795wUyRLfHqYYHZkqqeChw6AX+VrSV0wWIupw0YXxPsglqUuD5w7ZAuntr9btrRmoCBsJlLsLa/WgP34bwrq9mm/JpfQGOTxXrkGL6fI2QzRyBfD/YaV7F4JiXDmqtoggWkIRMPF545IUYMW+OPOWU8MomTe+oseBd9S91/V6naBkK3m1qapjbCkCxM5BUJ7r/VGZMeIjweqbjuPScZibwYhD43Y3HoFhPHLttH3YbTs5NUUck2kqYbyayHE1VRufWGsq3jMl8hdcnOuds35e9MZNnzJiXpImswl2G/hpgUQtxsRy8xw85vi5Vc3JLpJQIv38buEYoxekHYJKBzG8W/h2pTyvdlwbPm2Y/6+CiJf1sB3EgWMjWE3cu5lqbZW7vVPF1hzYxqbtKx+eGscvbiqVTPt5tzbPllsv+c1w+D+Hlhh13CukAcdvSz27Attk+61VESLqM4EMX/Sc36secNJLqvepZCqDytHJ5sI9wuHlmui70N4EkSMONfH/PHK9t52xk5idpN2fdMx5YHjbSAw4RNEntjrTw+x/wxpamyihHLOVAkClhAeC9nI20CchMSJQ2tq+Ot6nDFgyzXO+PYh6lvMWTs7YivClbm7ZS/L16QR8ous4IjyvOXuIWAARQn86EbgRX+KBYcJ3avBjKtgoXaNbDIuF0NQIxXs9AX+JROLXe6Ry/ylyPwOwxYhCoihGckCKZvbMPdPql5M/oGI3jq+8eaNXbMO+1hIvA2lU0jAHPyHhDu1+YY5PH7vgCIxck/ZN8TGBMRpUF/+wAQ0Sg+WwWmD53Fg3JkIfXKmgBpt3k7e35SWq1/HDPuPfOKw8EFUPLtZbhMd11D2TheAVN8WM+r8Y+wDYdLCRmqVSDe6NFW2sqtUNTGvkCmTHW3OgkwOm9ji0hT6J04+UN6D6j5E1FR/Sni9RIRV7frLGQZs1IooJidFhERZsWkFwFqVtRU3jR7QBdw0lkhgFI41MkzQrsjUvlLU4V6RdMIocpq5IM0lW7dElmEQ2FtRAMpRtBtsNdWKbyRIoy9PSf/kur9udDvEv/11MR0bAIyvsExhjsds/x0peoqaAKGZeDiSdh/eEDhr16d6VNVh2uauPW2FYDE4k8g/bexe+J7YklPc0oJZcojGn1w2VCb/0RE4ZmP0ERQ3QvEmWaMehHQnV8V7f8Y+JSELt+iMwx0JwrpnRsi1/Hbo0m9P9Wv65Mudrt1kO7UUvAIft0wIi/NLNPj3wfFpyc5JsGdL6c6jY7RHV4HfCvLj02k3tt1jGmzexvs9vDnBmVGZ+jTj9gpMza5MxtubElJ3c1u7EgVP4CDUXgxI5nAIBFL0VAEc2vocW//rLYDLuq61vtX3N5YpIBioUDOm+NY+EfUmq+S4ZmakHyll6ymXb90yFf60EseZyPhWoW5vRvG9TkPYDf4NQNocIjcP1wATnYauVAWqEF4HAmN/frDCDO8I10vafDee9encwBLJMtaWAr0N9pfIvS0NCFqKeWfUj2ysojspAyRb6CHn0I4sCPYsNQcblrqEdee0Kls7KbcujthozISIDLP3TwPv1NX5L2Pyq90U2ONgnFXlMb9ynjeywIu5BaQ5Sv1YmwGA2ZatEWUrLt3+CQOHdSJj63u5miERYF+QWih+Rr+rYgUsxRzsdJHNMlpcWndLl6xTAkoc3k10aLBGlLRhQp34HqzfVYlkbQTe1WkNLBd0DGz+5DAGq7c4mjTSO4mGp6SLswLZ/Z3MCiXGiPNxV0jHgzpzpnHKKIfZgYg0Hw+lvkUDxOORBBZnlAg8utvZSa77m0Enc2vcSq+tVQeyOwecWUx39dJci/zP95dFY8Yh0MyGIcc+vDcgbhloIghHVitMis3NVFjGtBYjZYfg+qO3a+dcDC0TjwXir/pWffwBPxluvPLW0erUEYqnr5NcleM+KWBuO4+vrsDgjI/BJi1ehUpXKZ59rq/FBVL2DaPo+lwTJsh3Cy1lpnjQrQ6C59NcytZ3RhRUIgsKAjBWqxlDBGy5kqn+AlDk5JY1wsHSesLY/84oKTKs4rHRxzouRyGbZz0AGIkTXNy9ZFSQs0kwp+AxjDLajRwWaZpyx092nNGuUb8EJyYSbwDnqqHC4JWCsp0m1ecvRom/FDzh3zPEDrlDL5euLvw5kEnc4LtUvCr9LImuIt4V90cEjH3GK4SbVxSuVCbWKkwuC04pxeicWLBbZlYji8ZVSp59l8LUaPMxYA+y2rNTPTeqgN7YOXiNsvCmXeU2g2ndbbWm+ErouD0BnQqfTo56jbz2rpVF4/SnAQea01lo2q90B5N077fLsuB3cwSSmkuQqpmkAjOxOtOKeWgsrcFE56RjIKoUhUwbCU2EB8rS+6jRJmRuW+FXlKCtS/IGTPlJmOCu8w8vhIkja+QpZddXfGTFwmFVaLCfIpJhC+Q3NHVdBxElvrkY/6JKQ2vvoZTt1Rvfz5nZ9Fc2nc8wvK/EYzKSWh0g5Y6S5Vm2aNWNpD1VYkGE14SbM4IZMk4V4I3S9BP3+nKFerJf8R4rSVfH3Dbnyp6GWO7xL/lFBfzKE2zM4VOSV878qN/ZgTpGce7+AaT7x/uXJdYrxiMx4opF1fG5x/FTIeHa4xpPtYkKS6lBQDesK+wKnVi4r/3TU+bLqJ2UuAL4X4Ut4CtJiYiKyw/l/V405YaVTwiskPq9b9BokLvbJOqeNZlBBxc5IspDdKao4wzmVsKiob0oxLMexAPe5qzaV2/2wbmmvAjIM/2wsOn2sQO63LLOBxzgzoxf7aqB5PSqqT6U8ZFLzOk8mGnIk7SWuQrlbG0Z5Fk3zGLOBBVMxoj7AcKjOsjWCtYKiR+z53A/ARQVhmmBZ9Lu5gQExfPmQ0X/SoboxL4oKp5ozOjdaYqhHKUd8XIFxaX6xktqILrmEgch6IG2KP/Z8wJxKir4eV5idPtFfucJyEuXlZ3QEK8wKNWft/nT36/TG9JWnU4Ugi0eIoqTqbXS0sjn5JR+yLkeyD6MsXt91d5y2nSIJXotxdV1e8yDvFdUxq5Pzy/xs5dBsGqcs/NU0pCiJleXLzmuJMfA5MY+e5cwMpJ/zRfDrM1Jest8oSjUAnX+0WF42vdCCk3/LvBpHooACnkLc5fJGTpnTO0wKGkVv4qsmLTCxxiNszIkVGqeBYf/T4XJxQE7wsA8E08u0AufCvM1vzPIiH+fZAdAVgx2fAtt1Tkg0XTpxBDQ8b0geG0j0KAh7LDYdch9Ar/eLYX2p+aHzn75X97yxEWu9I6f+y/Mx7XvpuD1duCG/E/YIbMf9Fg7PbOnh+S70VwIOlBdTp6Mu9mzKYnArtT+9ITb87JEtu04z7g0fqAPIkiFBoqt1yFVzjPl4Dv3M+MEaiQD0/UfzBCq4FAcyMLSAPhclFdAZuGcOToWueNuLxxzXLZm2LBdz3liE3s2VnXqn0W2UFT9nyb4NzGAtlX9eWNs1JEsxM1avbS4gHMwWL+77csEdu3eh9g+5WgZrot/VU4WBXYh1qqBCW0FfyRnLBPILMYLB8eAdk1/P8/rz+ObBHusbH7rARDkQjF7Gq2ijoC2cCpPdfZmbCZZCvuTOi+vOX7bgR/TH8B7veDcQHFA9Zt0xQ6ia06WAX8A22wOry1RrNt8hQS64bP8e8dq7M55y5FfJAGb203wV8UE+wdX2z7GFvqmEq0lij+go39N2tEwb2zTvqQ9PN3yeA+uwarbzwMGf/zXsYvbYkI0RogCsq4ptGw+NCRDx1F0o+UNGlGnb/y01xPIrWn7418m19bXmHvcdTInT4nSOLvTXpoVx3wSm+qX4q/+IlGVdYlBPmVQkJ9+OAgk1HWirAXqEVB/3l/RcPFQs02kkFBIDoO6xVQVVhWkO84lcQevittaRpWdvqhhAQlCJNFv/8B2TKYPig/h1WJFfPTtdXmKhRlR+WgzerU+GKcPDXIWWSwuRnFCyds62Mi9WoaCHUjP3FFjD/l2eSsNxr1CK2TgcrHZPnOBJP3CBivkC7Go0tIFwI6QIi4ggiJbXCejpszMKJJHcOcps8AGNgm99W92LYhIcuIrWh9QBMdiQuyZ11GazrnGD1Y2rEDkhqhXOAe2IwXFAthv3JOmEAcAaMeGQcrszP/7ilLmKg5uSPXkVVuMkdsFfDNnDAmrfsa4tv+RixWfPmiAuaMmdhWKc8jqjHsF1OvsBMMhwwFZCn3+OJmVRUXBURFIeuel+NgMI5a7K/M8Fr9NNRc6rMEHCXUnUQIDoGsu63+Dvz3FP3asIbcxlPF9kaanglJ8JwYpwmrNOOsYfVsrP6e6v+s0Ijpn8bzVOVXJRehzCIy/P0f+z6X02r6bc0FJ7uoPu431VafHpUnz0VYuy5pSEIwMysNq5E3vfpswRGGBoJRizY89kPcXESMtq2zReBkLglahHgliEAyTuffSL2v2WDy5kH65RJgstXIw7Ouvzgrzho7c9A8xCuwv0qlmctkWeVD2Bs+SXjioZw2ZPApI9T1y+u1g0xw8iveFZTjmryxE6/iuiwmC9serN5oROpJIsLAnFAO7Wh+evI5g8CoAN2FajxBHZEdqxZ5NQOf0/6nL3kE0tv2eqK2fhwXIMm0irjJvRXi2J28JdmchKh8EXEwA39UNEvZV5JG5r0DtlOJeVWn+XSNQjimR4LIKN60ZP1btwEALbzsOXxMGVtmafcrNhkl/PlPEjkRBVzh+ywc9/FTLDS38zwBAWNWcQiFy1G3903/uVdJD7vV+z5mI6QAJhm+zANm68TkPXY4Ao5W+PxfR/PPdsrys1lsWTYmYBroAVoALO5xuRqB5FjeH/N0hRtYFQlInu9tERF8NIYVHkuDIg7eGBwa2n1sXB2YKwk4j0P4BidD0WZaGiCUsxZV3gx1Ujl5lMwzjUuIrars29VMdxW4x1dwPIK0slFhpF4XjWQwkcVc6uzAd0NTm1UQQK24fwCaV+gMWF5n7/tQGsTkAzncHLu7w6Ubnpl/9OgkrmNwwBcnQylsUielKxyRg+ccrVsXxiVqD55GGF7d27b4GMtsCYtHOdNcx6wdjNAFmmZQWqE0effU2zvgOqDx0TB2h7cfHZKwdHYFMYhCytAUUwwzgEqWGkHl1Gw7WUjoVYUBgAY1FNTkNWxWlyytuN1I2pfPZKoBJKZtPN6rl1/OAg14QYrVXJXaPFXW20u4mFlUdrBmBwfk3POpSLzSIrbmwStAPX0z5Y3Jt5E3Pl5hb7JeYBVjKX3XobSfSr3/kuMls+a2/RpSBIx+VtLozmHTi1PUzHgIiSIOf9jngdN9r3HkShM5iLEE6G0Umo3264MBwHZJc8REeWf05rHPJ90Rhs7Mu/j2C9aTe+RMwI8/Ux6YgBf8XVE1HFSM19x22edLGzPwvALwoJ6gKAyETIi5wgQ5KvDGGY5Qr7YN9EgAeLJDytd6aUNpE+A387bhG1tleSZgHcgbRRlnbaqFPjW7IbiHttmGfOK8BnjM7BIhEr7AmNFvch/7uSRFqKEh5THHXG8UQZZO6Pz7gWuQP+MG4/JNo6R7/T0mD1j7VkNJgR3h8PjK4hfVUpb+BlP8BDt72nbcfCJc55FcW7O2JtbXows6IPvZriFPHoz9sXzm7a6xkgsoiMl4sD5N/1MxdtFI8O/yJ89F6/rdqSLq/z0E70bAJxcFAPIuexIhG6WMypjD2JQKiLLXZElk3v78qROZVPZCXLeFyuqEWJmHHeX0QZoSdGCfmabcnkVG9TwxK3Tf1UfPa9ZsGujLz2oYTbjIhXeXM9kzQhbF8UozcsnOCahg3zZutAJpcqI8BlYcGOf9DkMOGgN1nPOBhChMCV1olAabewpKsXV0QqPSI/BQKjvWuBWuBne3beGARnPoF0y7z5w5E2FLXbb3aKek5AOqgcNN/Pkf9D0vixyVnV5C0C02O6o6m2360/0aKJpOYfJL1dovLYp0cb3fhFt0H5upU9l0u6GfTRpexT2PWkWqivv3x/MiG3UfbMBlYs3vXLsAkq2QH+HvsKDqvfnsvsldeCRnDRkOVAo79SwDpePUGBA5+CuqV1Zv557Li10iLeZo90nkZGCWHx+ucVy9XYTo4Asf+sck6ZVTxiqgxlMIpQBzfs2royGIxgVLOaDYOO9DiH67nUSylJUMMBbyNtwO1mbIDYUi6kGb9z8aPICju9G0qcb4kNQos4fYYUNxCW1vwSUfGoQb2KaCCPhwn2GYFioD7RHDKr0/a1Or475c/OSViq1q8/nItA5mTLu5KQcuh3lASnDOTB3YRn9fiq1KpzPnCLAQ+cCZmnNsOk89eUlqtGvfX0wszbiIy5iVaWIrOLxHAnqZkI7uxSAdfUFBska9P5+vZVaBJzLPH2Q1fi4EfYqkjRtr+dGuh3/8I339UzEtELvwhYXiCZ/sYOLsdrdIWKaXWcnZ7ox3rqK7FbIhI/6bKXM9sqY9x4LwuRJvbeHBt034u0mHbMdbYZJdd3Kyro7YOYe0tvhguzjjo2rngcarSNDr7Vpn286PVShiz5pg2Fd92sfT1+v3UQeK4svESy55Iafh8BQU32mCFFOv0caShXwv55DUWWNZPp/le3Vffhynkdqfma6RjVTGGOXvNPTnrXUZkf6GFC9feFMcSTivHv/KPvElgxEtU/dIUrEXeqUFb2Tcmr4LKk3fZF4VlqI70XTiuY70FKUPZEK+zDtSNO36tHfI/CW0bUsvpHCmPsnfoDbc1L96eMdkw8vA770NvTxdqePOJDQC4slqV37bB7otqMC9LtmARwXdvaMPOkMm+1V4OtDu8y+ndSq/nAXmamqaGoMAwapfvquqMY5a0R+ci6sc3nCbn9//+A1K8dANSnsAzXiVza1rCVfvAEJaiUlIOboVTIsBHTRclCg/NeCJwzXl1KUVAw9ASk5Er9hjbSmltqmQs9mF2//nNRC9mJmSsErpd/NuZ88nXaXD6w8KpR3ObT0g8UrZmbAlXx3qi9MOOZCnNZM6SnXaCUaO4C+ORMX0aRavtz07emm0NUm/6wrPrRRmC4ZX2MHIYbJlZxbaMz+/b6Mawn3w/C+OP3lRQ8dakrIy2mTxJ7gQykklwLlpVCdfuJfRmu33bCPQoXK31BHbxxeUQ3SbML2xs/rjdIZLIWfS0oIBBVNIoFFrCIvC/TJJFiQ0Gt+dgPU/Wv302V4mTUXLCvyMl5iDpABpBYMjbvEcNkhbzu0/fC8zgQbZczhDDfWOpvU7IegBr0EsRm9RfUjJHS9TyEyGCAizFpxOtTHevpXlH718XCI+0ypdTTXK5sgbIDNHIR9pZIYaHJkQsdPKtR055/DET++k3QBVki0Zriy+VHXkuCi7cBFXN6+IIypsRFCW17lVAc7qdpjo386PwirpKXjHXXcp2zYoldtl2EWh7ixvNJwegZxtoN3PgksK2v3BFe6WrWlyaaxV+GyBiwi9men4d1Nd76zuR3dNas5cuHRAeiZZunUc04ReBhBMihQgW70abjBUKiyIHOP54/zz6vcUSHnbJ42kSC/wisUF2PeyiyylASjPdyEh1GpcLprTQO/+d6jSlnOCG6Kvl1NhdfK1X8XzzR+ECktVbWf1Y9LH0nEFAH9D0gMep3g+HvDMYREd/qmFfiMrUnl6woGi1ZY9ue9q3m7fSY6zg45Yf7efmWP8GFhtFSDhnfwmXEB3OX63aVUM/QKCc/YHapbF+fADw4OJb2aXiGNmpviV5TGtL5JFWVWMwPLjQNwi5FNjihNQEbXO8Vcz9qd3d8jawb1qy08pvenfLgibWEHWIqLZia14LxO2hYwGC5GhtV52BCcd3OBO6IPqJUbwkjhzWkaEimZdVCnnUSKeqe346zi7NFJS3ye18UPPaPBdIpR0a187ZGVOqdvoVTyAEJIQJtSs9e5KhXkmkg9xgvEngDVUnGyisjxzutDkkmFTGl6LuHb5+0mOkdec51YZvgO5E0g5+dQpGGTEZYLg9bAoUq1+g7rTFB1B0Q+Ug0LnhgMW+a+McvzEJMYiBVj2c/ftGdPS2EaYWLuIJDCWoMbLeX8VNppnIS1pm6nrLdLAHOpbmZTTGWPKrjAV22837lCpWGzoFc3+HKbkSLf7U8xBPYjFs/0q7o5kSdW6HOOmoy+rY2x2nSBPErfr1tZFSiaPppVAQFTANzDBgejL8doaFVKlOCMuGHNKbN72TtRNrvGLj8HM1dw9AQ2ohFOt51v9WKjNzF8Min8BmaIVCQMlxi/BxnuB3YXwZRSXLpV9JNS8vc3mElPWhFxQatijAk/0vhMxykEzQsBrkexqLUB12BhCR7sArFuuauHNQzeGnWrT22VYdNVn7z9YvKpK6YJw51s0th4gGqJRO5Y0oqIgtthOua5sgRmRNrSf75bwH/YqMr5FcMe6LB2VxRh4iCwZUDG975WBPVNzxn/GCvN/WNJNiNXrSv94rCFpGbg6MxF3SHG7VLjL2NvBLIthRO5Eu69LvIx1MhEutC9gHhFl2KOZQRsrnyQ9fos+BMszTY1EHPA7yUAjKYlO9LERbNLhdNE0eJDsOgRY/2tzoWHQ+aEkoOMqE7uX4wxJZyaFx+oIwkNMgPZsamLznpQUS+gVPXpwNfFIB2HXGRC6nW84JIf5gzNZzs/4xS2S3OT+s1Aip5HJgAuqjz5j1l24eWJ3IyrvysmxPZ1ZjBFTHflXRcGrtqqeV/ERcO2392YVwMs7JEvJgTXdw+ZNGWxQScMEtcKpEEFdDG2vLn2zwtzlTkAavc2bAdd/uWO5+ETtpnCaWtdivO815r6SIV1gyu3NM7x21XznDJGACcgNaZyvUUkPb+LKmDXluNVlek9OzU9ug9HUJ82DwatBp3tZPm8Xiks/mO5hDpfNHFJMvIa7kDBL6SjL/dDGgW+wqWrmj98meH/X/qNz4pq2KDrzv1PpytRU/0i2YTLHe+AOQbEq2S42EWlVJu8vSz/tS65buJrhHmEViCVoMMSPo6PO82VAIgT6aUGe7NEwdRJl7cZxJuzF4WRn5TMzGNtBjWfhdh5cDvlBaUtbMMIBTIMa5x4u0aHwENJr8cXW4bJb7FYqzRHQe0nU2PUPW55W4vLoXTFuondWmvxJ6TY66olMU4Yqg7JQDeViDOgXCKeylw4mx+u60gqFc9/sdnttpgibCCRrqnZTC80eGtqHZzP18pXawAghTWObmygkQjCO+73UwwgvGbAl3mNN7U9iH7vjy+XqiQtVnatCq7SL3Q8U1/f2P6WXu0s/icWJEQTdpdpkE3rT41g9SIX2dPzAvpInBPUYahMeefLQGQPxlST03GXzjaV7uTTitGLZ99S70cgjQp6QRplfKLxzoyDWu20D9ply4fCm+EM08dO8WPhC3JPSCJuw1t29aQ99i0lqAiD7u6L2leY8zm6IOM7ThocYIuTp7CH0GWWm4MCH6OrHzsmrZovHZaxtSTfC4JVUZ0DcqfNK7KRdR5aDRS3xHd60lLQMl5c1qkqwNAKFGSl31+gquArKnZY8PF+p7d5k963Nbm3GDUxttyUmnvu4W9PkF0I2rIlxJhzXOVJEjzhwWSV1CkHRWIWnBh0kdySD8L0B8F8s7sPpec9XItD/UAOpcVWfLS/n7Ood4ozMQzEUoabeCiUqIgiQd2pBkc1k5tqXrH93NCDS4CR0MlKGTopmGDj6gKbg+K4z1odhZCjZCIsVBm6yY2fvK28VQphdTREyjJ62LjUxvvtS5VzB9a5iyD1U+hCa+OfV5X5Hob/6a/dPwyZWmlMBF3mZ6mFktktK6UHw0gtC0ffOlXOOR1Usf0jtxfBCUa6F37AtwuaR9OZIBYKiIzu9li9kG5TE66siHw55rc7t2ddGQ59Js7RcUhjK/karxfcyJ3bQvud6Zb7YikQTGjM0xqk7AL1549D4lMcCJ2KnhFHFsGNa2Y66ueLhv/qbB1ULanOJ3/XdMrNOpoHJMtkTZs6xogIcyIoj4yMVQYzY1P3AyWHJoLnZoPH40m9UhTXnxpzAQLhOaeHeXfQO4GBYap4QcYKEieNmC/y6tVZ6GqoaF4x7yaG9HTPf0b9tVwPqaqZuVpwpf1qruSSvBOzojcWaEwiK7gF1q/RTyQrVB+2SNUz4yg/9+REEHG3m3hICIE3Kz3MSh/PtOSrlBIsgkmq26TLgv6pqKBRi9TbahljTxsime9WKvWoWJnkTkmkDmQRbMVBsFRW4z+n2x1lhEEA/aU6TXzx1u7q2RzDQ2KUdsPhf+owmn1muGpus36/QhnUoYruL1cxlOh9/X3cMiPRvBRvESqErwo0ZWi+LDm56jlwCWxVgrn3TmAZHu2BZLyP7roR7QCgdjV9Qx/opOBM6nlhi/FLVd46tgo0PaCDgu00PTAVhgqC0T9tR0uhywpGsLrMTqEsHFHWUxdBYZWH564HTV/6VuRsxgAnq2iuweq2wBZNjmkFp3w8YNMJanP2T7LQ+mGu0PwFAAOpvAVeq5VnKmb7QHa86eCMB2MDYmVrhtr1TIVP1tc+vFNzlUCWAXgl7d15MuoSH8JCxwagkdnVbm+Ji6ug/6swwwoJH68AUrmVQ71V39FE7JUe6qlDFyyaFNg8DIkC/SMvOFR2owjU7OEfawIe2HFAd+Vwu4J1O0ZX2i2bBq+EzycKkemMn7SqY8iETo/AM6hay6+/gJ538LUnlmfkf1wxJAdBKtHgxkfly1R1ijDM5hX90k3dlb0Y2cPtfsJ3I14NTNYvQhCqpoSiocZ0R6wF/xyny6u8sXRpkKDs8hKFYWahdfriHhbxmT8njo7G9EOgjuu5ILNUNeDKbsH1t4cQNbm847ESxuvwLEHmIk7UTVDXjBaBrKwcOd3muQRvZnCMHCAdOofNj2rNY2c9mi8PWoRuH3bsTHViZWlmCuSgjdjGUfOXWonexX54ufYHgq74r/DhciZrAgMpQPLL1t0dsxiiRcttL+AYKRzOoLKxNEDmYEvcnYYIa2zA8iNSrQ4R9zvcYP+WtJ5EL8dBIRc+nqjkmHYZ9JyVraIDXh2WqmWdtMb61kfxf1mpkGOOwmYEznXyMMfpC/ERuLYtgXdI1uYiXDV2aCqs89RBYydfbIwxCLXDHPVU+clsbQiun/Bd7oliqln53mxS4bpfh7met9gPWXciGsNwQQYNaNf2iUFlZjoMSpJcdVqBEWasm6wap21GeP04BRxjYADThY/iVuk4tQGuEmsTbqkZ0c/pihFE8eOFuHO1cqxBvDMNj56/EK28nNXW2omDiP76hzfBzGqt1hW83S4yfCr6MJTivE7fC22ZtYcRZn5k8pB30oJo5aB8YBet/0D3V28+TFLWEUZl/QcIWF5sIjzWlaHIlcwK/Ma2TbRqSIZxnSu7LuuQMEnd4vXCOxEX7/izQbcPiiuOEAVXZ8SF+WW+g7e1rKnixV1gE0oOKT1dMkVPBnHn8iQ7Hh8kfF7V6noLr1Wr17qGeELrxA/nd+K5g4mdGXkrjeMIKyeScC1K8mmwLrknwJvugZTFl0q7sTPxmE6qeqWC2GUqQn/CrBCjqFvNib3BXdvJXuFz2KRE6/O71amqv+QcSiY+3bIECE6zRNUddv/7J0MJ8fgQoG5d5pGTYQwnC8L9lDBCpp27/6k+mHA+aqTgq3tcuQ8faqqQR4oy8RFOwj2oQGG9htMfzkv1KUItR5tnFUIq0dCCnkQ8mSSoqjVryjrjoZ/vS+mRdJA+I/XHW3fLY2TidM24DX7R5sQXQv4bhf02L8i9B2qfo+Sz2dmIkfP3/RE9XMzmJiari2Zcjx/jeytBYa3VwYhGH7j9iPk9IPB3ifDkkiqsQybeaf1dgjM2h8Khrm4M0AhwMY64gFrs12mF5rKpiI6uO7kYUmCDIc+Lus0Q3xdDn1pUL9fRngaCOQjBFYzm3JnYSaB7HQODxcOhPUGn9FrtpoROOCu9ayxKSPuHfb2f3UiOepf49ZnaZshjtfdBjTxcBMfUlQHz0vzZH43vF67JRFXHpvMz9uYaiF3oK8wSPz9Spwf6b5Vtqk6dRPS9N6WeQtc+ci0CiZMCcz1jpZKt5XQvgt9DmwaXWiuT75vUVxFQw4QzSbwqAVGccVkU3srpurTL9llj2VWLgrKF+EESJmm44DOSXhMIiRBLvy0yOjNaARWPIQ+vtphx37kiyYLdobdFTaF48BhXfpgjcm492DY/fhjjVpP1zs5rsK67xcIhZo7ylLj0hkVdGeON4f3wG5W2mMq6as/CpS6RsMSQ+fKVS+Ay0HZmVHTIKX+WKZtHw9Z8zZ4F8XzLsqv/OySXrtENeTN6OPsDbyXhW+yBE2/8T9R0h1loxJg8iY+gEoANLmBcvD2CRlT/loSNjPxI2ikVhrXzc+5Qzx0LBpxn6azf2IPF2iboX5mTfscjls5Af51HPZcYrJtYP9cQfLKirrrFCVaYbdoqBHaCN48H9QsRh1xfeOqXE9ozJBvDuyB7h/1RqlXqmgdEA/MzEzIEDlljcdtGHUiRh1t5npiYM7bLhqWYTv2DALNv2Deix0DlkQ32nKIyY6WW2TxvxQjQcyCRIUcz/qOiPwrRqFvE0bFqPhBUrwTtuFciYGv3l6p94E/7xpyJj6SWQqspWttPZTjj07Q8o2G34ioPbRdNomPzigah11QFh3myztvGeFz/gbv7XzYGqXsksq2xZU6MqvfljQKOZ/fXwWFUpEBFC5dqdaPeLm4uRlwaYloFrQCKmsAkHNrfffYBEiMtq+R0HctT8ohuRq8o1NzIPDluitmBvnb6cggCYw+ZD2PWkI+7UaQ1X+ThpwFOLBz02f3wfi2QAs9UH/yOMEfs5l74wk97z44mQdW0l5BLZEmUDdIXMGLH1gWc+rCx1iimxLnYGeZEm5IMFzgfyPUFGlIBwTJNjoNNZKPtCLgx61geDdgCTCo8KpCii6r/hEcggzsKcR4BueYUzaAzO49nisZg3J76EWe8w5dKVwD8HZHckHqgDZ3RFAzOf7uV8MJXM52L+KOfZu92THvNglcnmkmZnvQg37LV3AwtJIq4KvrbpENPkC3Yjih9jyO1eEtzLYUO8PK/nH6VPGaeEZBv51AKNMk6d0e7kMen/A0x+VtTowP71EXRaXDQ4yFG5WaOFb3creLEwvm+Xp5N+P3pCMfIGAbZCw4iTNOVi/JNi+pEj76JT90QE/2QSCjbupmyIAfPxfNdYBYCupydKf2uoS033B2OSPBJpju25GB0aAsIvOJXapdSTAsa1dMG+b8ZxwY6akA/cLHv/xFYstkf0SXm2rQ23AYbfyHWVuVX2Z+PusYzBcLZSeM9luCnBRICHE/tdNS/e7ISR9kQ1gbuL7GvpOw7KFNohsmFPyCU0vOdub1gln5QH27LnkxW8qp1EZwLXQVNv1yKTDizX4LYbhsSYXO02RNBYdXIHBLRxQNdXee9bESTWqKyNt9uDfb9oqAuwNZ2yiM7J2Ob/M0W5RUaVl5wgSOA7BLvg7EeAT6m52aK2APuQOqJ+CH5lN3dRCbqIOUjdF7kt3479z+5DsGa9jS8JOzxJcaCvtQrAPH66EXiJlthvjtFRPyFmabnGll3NY3QohY4SwpsUJCSYK0ZHFuGZE+vKCF1odUuPAmKS2llybpeMD1In/YMta7GiYH0wQaWh4mgcw3XMi5+Qnsb5nw7aDE2FFnx2rPJbKW7/1PJ5JXzTB23LJEJPGukwCEpTPUuJohtl2ZyYjvNwLCe1toBo5rLL6Fhb9XKaPo23DwqX7RyBOnMpFkMBp27LV7+ZjNTCfiQ1w3H4LiARgRhYJB+AMONAl5ynhcVToR7qP9S49bk3TKuSUvrqYtBUPXB9iRlWiwxzlCmcpPBt1mmrQiR+n6luRoSCd+CN8hBpj75ylWq3sh/AjAsIJ7hoMM/ucCPDPFvrt1JzcJqNNBQxofFIlc2ROXX0KArv0hXwzsAolHINvvnoHaFTBvjS0LTxj2YjjC3d55E5ML3A/iPG19Inc83T0iz+gLL2Z1iufF/TUe0Xb5L7FK8LtpG/rHVdiCsyBzwZGl9+pdggYhfjliQZEWo3aHhsNVZQeBwTFOKZVuJEmJgXtvH64+tefU33k+YHUAVe59qf+NDsKD8fkweIGAy4nlfMUy+4+T9+JySann2riVcIAZMj4EnNA4AWOs6MpD9xEwEvLJiHuRfR+VI7T72zf+5L1yZ9yaK8uttEYGhjEwfX4FW1xE1CQIX5iRXd1T36pyfFjQwFbATxEm7EG763rGEOjRgjYkM18QhUHIFRNEbpyy8IdDxFaZxzHPEPx0uwCqCcu1X/bcmnDK3jl2rU8RqKHQ7o2kuUWYgKnpSz6Hj3weTqAqAPkN1VW3T8eD9VSIyBdiZpxVQqJSASw1M4UJfhPv4sdhVEgQVMxCUL6BQurdBFlftjG79L7gkpH/774Z/Sp81z9JWM0ruK4H1Ptzvj/4JE2YIDciEpwkv2diWSZeoW6LUz31+25eVHtu9NCpIpYp2ixVZ3hV5VwtW0kYtD0NZk7muUlLjXJ2Igw4xxvRfZQnIrCxQwf485WbZYGpDL/YBwRTs2jSeWnSIy7urk+yXx0ls8htniKuRDpA5BSC1RTpWvL7rhOzyXW84cVhbV+CVGGXmhKK4uaTIdg3vCCfeIZAPpkovJxfM1MANHXkP1OAu9XavXNe94pQKa2VTANU4DesnR8LB+4fLgN6Pt7Nz/4KyY2/2L25zX4cI1JOO2TyCzFvPrX4M4sEMIuaj1/oNpBWZZdvRgV8PbaINF1oZqtxD/LAhCTpiV7qvtlt+Z1jOT0WxOYhwYGTBMcgz4Gk12VxHMS/enA/4sMdkVDSg/jrc6r34Jk5yn4Yt4fSx9CuC7IyP/JkyWKjypHoOhAbzye2E0feVEeJN1qWj+pUJy9PjxgSv5Zq0MIyMqEj/SCvqM0iCLXUL6K1+p3B8DWe/5e/n59AlYdll+Zeud9oVfs5EpEhXEhtxv6stmablh1LovsPqf7ef8u+1mTKsapljumckiS7PAgzq0OUvO05Rr6kqAIPGi+BXgIoD/8lP4/ZW0IZyitxxce4GqWyHcE6/t91zEhgpwbDgbDGCXxWx1/LJ4FuU9Vhk6UuR3CSggGciLLWqQplGe4HkKy6Vcafpe7CUAQ/q2i3VRRb1SNJTHBkgcoEubaBArl9WttSeOfDXTecER3JCMgBc6S0iCNFyhWOYQAOv2JtUkkLvkxN1UUzwF0ajAzGTXtQyPby8ffETdjS65VRXvbtOlV7mH2+YFvsOlAfZkQUGCxJ6ql0LmGFF9426S0yg+MAhCNefakhYd4U3n5LKZJUvF1fV9jG1X4GHX3X+AdS4Cd4oWdKl8k/e/1Egq7Jqj+oMEpY03TFBi//yqHJ9AJFc6U+K+D5LSlWzeMsxT/HL9Jnu6FhViA4DyoZ6+XjefpQi0Bahpv24NtrnVVyuVhVs+Iu9jk4YbmyvuTtpUzfQTNTQFL7i58f4hgxq1EWPDsQnOaPxkDsHJJKYvp4i1FwgU6jsXxXeKl3hibCCeb41gE3ALDsd+dN9xWVeypDHvfsaiwYVS9OihMBl16ypqo119yHurtFE/zyiGONMfF9iGuLpr4hqXQHrQg+VA/OF/1/Ujhsg8UaabEi6GPnnkHvDJHKMTou/ohduBTzg3sAznzvSsdDWZclhLNb7LY7MtNT0tsxaeWMoGHWCU78W45TxSMc2jXyRbWQr6N7sRuOhWPn0ZmVh15LWipBI8lPvdFIHbPUPtRmtD3nXpndxWW0RjZYv2l28ZMCyOCydno14ZlHiHxZMrjKQ5sN2tOJlbI7Age1rUOsvGTEOHZfOWooDF8awfUm9BrNSlzEouWNvzx5e/stZb39St0arRf9y46ByTE7xQb0Lls7dXwyXwZFGH+lMfAp49PrUBpDg+3W0EgvohqXCmxs9edAOGUg442MLkPeXgnLJLXPmh2c3sIodhCpAvAjdoSyXDf9ESksuLRFuhtsfZRRYp48EF/Mx2aIFQ/lCyDIyxCyTmI1G4atO5rc8YRVE37V5o3/Kep4++60dBfINDAmJt+r7Y4qhq0ZLDK+klKN/twp0ZFwf5IIcrbuURRWXIrHyGxvrsCIAbqbJ/Om0k5/zzh7ngK0vzL/vbJW+4xbXmizij2P2un3v7GK6EU3X1Q3yB85lq0FLSd4aNvTA3AGBg6sYu72yAmqSTfKc9Nphs5H6J7iw5IZHllLSTbGO8IdL7HShfHrjuMmFHZYNOGAY+7OHkc0d+EI1Jmt2WzferIlXKfp+f6SC7H7n5ZYwhpUYEPu+QIF6+gxVPVXHYU7dloeQ7hoNlj15pltfLwcog65YP0Zu+bpNqQXp1JCd8OVdAMQY5ivqcFklzh9nZBtnSW5hpvwPQg19EVGOLfZOfyKkyJV8fa2sxb5lP3HUdH91++aWz+noeZHuFHvXBVz8Tz0WzmnqOPkPOjDAAH2l2szourvw+D/W/H+rG6B3Z1fKnKPwPkTRd5BKAgB5rvPmJGDWmrEcFVEPcepvLOfxLtPy8OQZl9VprbZJB8Nk7dQ9bWgljJi2Q3HIkJY0jCSuAjsT8prBIyQCarvHWLNXNDoNKJ1MoalRO8pgxbVNhdXhaC0LhQ6pI2GbZomE10CDjF4GSUYd14Itxprg88/YIrC75fQlbqgd4M4HryD3PcXCZePdPQ00YC1B9kHqMwmwIiNNXRd8XN7tpybI0l9gUFqi9g2WRUsjxJl7tltQUSm/6khRo9gliGBU+C+018TtY/ADKGpk4eQpfh3MMl+gHf/28xEYLJkXlITP3Khua8ef+15vMwQAvCUA5wrD6Gz1clEhiXDVOHSncNcV+1Am5cfVt6gxmjXPk5Qv+/iPhL5NQxWf/v0cbsb3NRuGHwwXYXcn8tm9I4qVl8zeIlo+5v+Kr+QPaVIYIWKqWdUT7Prk1KjEe2Vtqxup7lfozLsChclRPPmYJ4JbtFsF7kM/wslhvsao5sYta73Ws8MNFFORluawYhIxTC82G7xSqebYst3ouLBSdMOLLBHH77bRl53eNjcBnvkhkbIgjLL2kEyRMNMCfw1QJGVKq0o3zms2gHIcQ9H4MfD2/J14IrX77n/SzrSEEawUEXK9M7puKMSzF12WhNRrDYBceYLhJPiA3sw7u8EiMfOT6xhc/ugOcfXXCSp5nAtRIII/vyiXrE/298SqU0+cdjJQMAemcw40Tchv+E1AC1kSi2eThBOKWMsycW62S/L9cSYD+5xBCq39hZcOv3QglKrMPzzkAGMgyO8WrcD53RabYmcCKJ00kXwlNQdlbpn7tTmAzFY6mNTevN6KGTAYK4WK3N+FtN7HhspR3ZhOFZbr2gDizL3QnPb+heFXzTBTWsEJeqtlMWkEIQty+/PZQfAgcLFANQ0DvKX+B1sgl+eWwLbjOc45r+fZBntDSJ2bJEU05s9mh4nQaoyA4LKWV6OOS8S6f0uh/pIDSc4O9YPtUpQ4wem9reypXNFcYtIS0ZMwnfnWNdP0JHkjdnLZUsT2Nt+GjKW3bK0Yv2hsewntcRW8Rugat1OCDhMBK89IxkPZaV4uD+DdB2GWARqylEWzOugZJ0FhR3YOqmB2xIQtyC72NzKNygu8CjS+MS3votQmycI71KoVUdBSK7/uLoe8Ccw2YG599vNqLrmiqiomCBO3qmY4BnzcyIbdNvrzcLufuoxeeBlsC8h88wQ7uPcYFXHzenPB0JWBFEwje3cUD+JKujN2+3l4qUxtxAhPOOVY2aOrlC1EjiETf1tvNJH3VpGFIZ1NmkMk4NsRYRiEUWAfamqtt3AT2KIKiF2Q7PvwxJWGqo+WV4IfxJVT+FCDH1ydWcTB3/pXXeXdQQMM0zUUIPe66Y3K3uWuPVJYs7nO4z+24iW4ABZuxr1EezzGPc3VrJ6WTYmZVeC8XoH3AG2bxg205q2IVWPCmDzPRiIikaIKDYTxfIoh1csPRj5LUeilapQEk9g/yINkMLl13wCNa00pKKrlWjv15acyYNbE5N2t07ZNWO6r07eb/d1x84H3YRnmDrYeThv/39QRYbodSplW9wI2S0QM8cRtcTVUEwmXuOWMAX6ioja03ZTJv0TO7K5gQXecsGfv2kHNEhwIiQslRSWwUFIiJ+U8yaVL3SM6NPhhUBJFND2KHIziRMIm35bx3xPSAss6EhXfIbPY1cYL4/XPdnxR70YooDF5j0SP4GKyic2Ykejap8HSgfSyu2Fk9LmUhlM+D8DZquvK1VS1YjbhL2PKpKP/uhW+OpCg737xe4GUW2Z3q12rbPP1urqCkZqCDGD1qIm3vst3IteqS0aLGrL2tpfTbbkWIFwwQS3LXClq20DAEyqr3D5PkQNdCMxt+KEzt0Ud27jX1ZI3kFgqU8mqhWcqJkAWRASheMDTN2F/NI+iHe0UIm6Y5fKcRzahk7Ewt0BzQXpKBWSy8qX6Fuu4uAZbRnPxb3BMzi5lJeUni2y/LSy4KrVtazQf0782+LkS7SyXkqpUIkFD+GMB5O877pBOdVkp/fuspt3iVQrunmFBFYy2TVBb6QyXVKZiesLbMndpP1UYdO4pKzo0Wp+QJpPLwkAYi4lROfbgvQACrCemVDz7IqkKHg+v47Cm56Zw6wvTJlounsGAD19ngQvzohUDNXyggCJUwuUZbhojozSTgXyxs3DviAFs9xb1hlZqR3jllitU1hSW5TXmySbF7Un4wmwbNXpEXz00FGpp7fu73VkSUwrLRvPP5yrACyOjLMpCd8SGVTVJyWAcGjTTDzGr1xjUR63OsGCeGVsU149xulqdqzYKMneVq3UWUe9lmj4+Cp4x2enZYyB+xcmK6hqu6/WJX+9gGgnVor1GqX48w10rNs4PGp6cIjV+P0aZhRYmUOCQysHZwuZvTlVZuPyi/E5GxMeDHVVuQDhHeHWVu2NQpjt1d9HB/PJPZbZKH2uyaSCk2pCYnhiDBnmVG/UVGt2PEWVJVkeUzhGtMZOtUexpmHM0gLAdJO0Z6jTRJJVuDbQBpRJPKr1BHP8Bj/MI0QAHNkD4O/18xsWdH5sshArx1I785vFSJn6N80iWJYGqWAVJtgiL2y2g2j1tgXM46j05iBh70Z5JBegqjs+je3USHm5kd6ZMV1DbfmxzS0Rr3Hln2rdcF9jKzekV9ZwpvDyOmQ8b3nsmc7OYTFN8VEPnWBoLyd8BejTqhxMWjNrpMcFx7crzK/gKWTZVuHUVV351EaTnSVZlqK114dNw6qslucFkRDYdpnSOUw5AoxCViiePqrJR4Gv3pTgmQE7EX/jZPGqJ0ongrIWdJ7sUPbESL48D/TtkHqPgkI4bmR6QI5Zh/PXzRUxHLdBIRcLRrMkNHlKxzwmdINqFd+G7gjQTgKoiyX6AmY5natVEEFIc4+UDUvarQyMQiPDMLgP1YDIhcATlsFuSmgCwO2um8yvjR+Ah6NUhwcwkw+4fo9O5d0mmnEZBh6RxCNBiZgnggZUOwNC7e/KP0pmwFkN2asQfbFndkm1mAS/51Vl1G5UJVBO+s235eUDmcfpA6DMzppjtbUUCXEhbr6NLAgMFEbcNemtq/dmFFc3pBwp3f2eSWey3NG6AZtll1Y9QsOBFxzDC/O6TSKzcwTivzm/4zN8NM9KPY27rpfN43EhdU7B5rF/ozEV40gh7Upsdo3/OZb2akF6jjJMAWtA8a6l/5BKOC+tjVqe7exqfXjClA/I486vSaV6pM01tLV4jEJSCTD4GYK3wUCoA0AWBwiyMiRkZoZauLb+zPp0kYtIJT4hoTOZPvvYt1vIXEVR7YbRZsGkJ5GAqFH4YOoQn//betsHlUaxcSQkgfEW7wPpAOydASEvsiNwxChHhVWRgExonDENjP8YTYO6MSNB1pE8M7FVIKL8FXzuZLOfbyYZenEyy7IGOZVInoYP098MD4DULzqVablaClue6YTVAvif62NKwXP1SASl1DMW+A74IGRGYxaUUA7hGyqLkqJ06kWe37iT3qEnFIzg6w30kK7C9qpCArKfMtoDdOTr65q+j97Gxve0caDfp+MusUKra0aKAS+PWhTzMGc0WnV24q35v1tjM4Foo+LXlZjYKrTmsRKR2t8aM4Ih+tK3QjqVg3Vp9jtpFYJjqGLKOJAI8jb9Yn5NQQEm2byvsNq3+OgyC2K5JRN/A2NmvkFViyexx4QYGTHNuSvfIh2MPUnBbx1zWdcRhH5/0sIRs/nUuEasjyVLuvl6DixwxQqF8yqY4R2gs3s8DpfvQQoO7fIQW4RW7Zg5OUh1HE/3IlAyBtb0noMk3ED1ZWWO7Z8K1MkGJN/406v4lm7F2hHF9zEuBQqDxNJE93e3sqDngGSAsc1quz8aBYHG9Kbb8NlE097aBi6+JLE6QDWD6dAjlmlhmxewrlnGaXhjH8ca6+7YDXpQIgfTJnQsYVqraW9i0chK41YbLQR80aJdhoeSdFlO6kccYg1QKs6XY7ydvRaKTwd8zG44JgbKUYxjayrkfYZKRAkO6xpHtWoTWdByUHeQg+1Yp4QlCHqz738Q2PfJwTvxZBBgwekBWBq8NR+O/ldUwK9rqa+C4A8ymtIYKfph7Z+mwvXAYO2xQPfONY3EYTsZZ5KdIlK9p8c1L9mwWJRkJaRETx7QiUF0y3vkYistdeNeMQpIi5Px6fqTN7sxjF0OwVDphNNBGsOKfZ4OgIXykHt+3kKaK9mADpcqoiHGaAGFkpR19dhgJLXCDADciXfFXGcQwLGBFHStJoG91CkxPAwPDCiqHw9rKKEPK0M1TCVn9Sh3q+retWt0iv7MbyTyd2bSP8TDcZU46uSpsQjH4hz52KU4xZNE1UKRfpvSMqtIyJVF+MO+d5U7NCMirgXcHeEO2gWr0z8Dkm5GkI34KclzvMuCQ4Wn84lUCdH6a08R2SRmfNb8UVtil7845XdY2FO5VQEpHVfX+NrYnBM9GMvOym/gBSRl1sEqzH3O/wDFBFHaB5GxI/wFwk06J5/g6YQ/rSgyrJzQEGL5pax33/BU4YXyx4eFWKmPxMbvPK8eXOfXC2HR3mDXC1dIWTpXDKJcWc2Rk4p9wq7ng2kSZEjn4T32/4P9+JNSDdM3AunWR9Ppifuo4Q0x4fzaL/wFSECwu0YQgm2/7j63KPOyC+vrHkFr0tVpRjWFdLmpQu541LoipkgcseeoeM70ySf21UPdPC2z5YpIoQHRV9NRuqmCJN8k7PsSCeqlko2X+tloQOil2qDc0ZsljyGJqq58AKRK0KoH77HslfGOaCdKRk1fZuECGfgl2NniEyIjvF2Qw0daA9wRWYRq1SceXJJWZTuoC4TAQ/ubZ7Bq7IRRkaWI6pYSItdFTs6iV6ym5Ny2qJlubi0KApFDo5PJ5fwgkCV33KA5mlJKHtBpFDRFMzMKOq+xEFhlaGBt8XCRY6jATmIqggvALSV6r4eh+Z6sHDsjEMOQhoReKLPCi3Poq4NAToJycImYhE2BbsOydipmgL8+u8F6nviMx5PsXruFneuTExnYidvoi+bcb9poYHxi8kxxP4U2smTRcYkPMErIjGIJKxC11EWzJUFdDW8tWMCvX/xJw/91lV7bAcVn/uuKqrontqrWNk8w0JlYT5lcL+I36a6sIZQH+SJP0GxfWoTb6v8oZ74ZJ2s88mqH2FphElBjjfv6E9SGCGni4Nn0B92CT4Eo+mIyKYSKDmYQeLUaPv33oFcj6zuGUO2xJ7+n6qpvunX45lmHTFYNfkgloMTOzLbOdzO09NzciwNARKLcpg7q9ePCjH/Z79r5v9DPhgOpSpoboONkbqUGNx3YkOs37hR1FYLP2imnj6DcJajpsx5uRQZ7dnhW8Pnu1p78XstrR7s+d+P/UB1j067/4xVK4B7cDvNpMR4YV7lUC9ZufPUSSD4pLD49KZHqAFptFjzPXJC3qXUjfPcIHZtrNpzM6aKTF/k50zQroyKtvj2rzz75EGmpZdpmD8TIQBBuWZ4zZhgmQGFM+e1t5TK40fT1xmuBH+O/07puznVlgYTUB8tCjjmAt2tSzu3LesM+0WPybpKIbVhqypjkWZp4Zb5yKj+1YJlPdy3d1NcBHV4pMMWj0oMcVHPYze3vl8CPlWWgpE86Wz0zErs8pg5MIkrc/3+P6djJT7b2pIZ1bFkFLt3Y2MRZ3621Kt5WObWzfmajgQXkE/hVHc5wjgTfBTvGqwDj10cuSTIf/0x4J13jZtK8L1KxowU4dO4kj4uBkGJ96wLOICvKJCnpWrPuXhfNK6a+aN499Fa5ftQsV4qUGDUiBXx7UK735GfIYYfUL+JhvOcUzcMrPo+zFr9ot1uCEMAXOQsTEEnYyfZAkgxJV6loh2z4zQZ+pFSUJNLjp1bqrdgts4NWmZx3yUixLK79jZCzTmZUWhRRWPLoXJJuL0jQTPLCHk6UO9qIMPCNsJ3cCNlvOWMxrDtNvnGcTjBUJv9WN/6qm4LseuJkGhX1zRwPPtmNdg4Cj44hLh+ZERYu1uFNC8mXsua7XvUKvK32A02S/X7SgaUPBHZxAEWw3VZ8+ZIUemZG3D6nq3YkZEcd+RCzX/Nsa9R8eMzgntM/+/fsxPBKTAzf76amOy88yeGeYKCc7c3J8R4uN0AHo1iiwDCmHW1tn43XxM27T/14klKE8bL1SnjPHp0ArWIwviJpNJk6D0iBX8G2eGA09TceLYFQoTzLEhADp3Xq/MHDc4xAepENJXTdAhI7wi45hWuJRsDqHcWpep7IULgU5N2XRYZWSpIXYH/rug4a+xuMhyJSzdWrvikDT/f8MGmSDbmVUDyovnj9mw5PYm9DyyZGd8vLL5BqpEcRbjqYfOlOngCFYMZE4x0PJfyZHh5cMDY3kkk/ZSpFxl0/C0cK3GVIBW08XLW78nPSEKnWKFBclvL2Lg7u1QHRKHDcJcSdUEixtIY/BnVAcGigiz5wmvhx+sQFEkO3C0wA1Motq526WKkMMo3BC+/XA1P/BCbpHBjuTKY0aZTi+b7PXo1D5exhJNfy8OtAuBly5/RAsWcCzjY+N142l5b/VxnmnhvO738iI2ZxVt0gW8XG4mtklZcQt6YeaH1NYG8gddVr2eR3BfvdtMk4p3j8wUdiIF1TclcknrcESDk8m5QjQzz+xZ7U/KsCszNLNzwhkUvU7i/KFj7QQOS3R4IhseOIc8vbOLnqaTa9GLb7sGX7MKiDvYnSHYFKAW/kiTnHN1kq4dmSdOmeZoSRBhlVCbFiJRVh4xBVXWFmuehQNd3k91VtTXyobynw+sWF8UdpK5RFCxTKPZgPR2uIZK7gj0qpc7gW12xm9FVWyiY6Gzt9ZZoVesiVP/hD42jkz2dZlba9VeIvz/xmIJwDwlU7u9RfA0NsCkse8eXNoTFpldbSZQ9K+4GZjlw284iesIDYlxmJwUk9wA5CAJ+VRUsLjfyhq38MeOigdhDsid4PdpmacQloLSwIZt6//TOXY94KF7FWwX8EXdaOaMWq4eB8sRMDwK8j8/ATq6LaiUnO6RGjh2OclxBDm6OLBkj23Ofly16ratH9iWCNpT74zu7ES+SdHVwABMAdnpWrX4b3ge5irXqd8hEPDeOCt0EFueDNlBTlVDAYcKXcYuUtpWUt/b8Uq9jiwd+DUgdMKhB3L+wDlOZwKS7iaN1OgNqT5XNhdvbxoi64w+mRB+Cefi5xh2JdjvnBAlOIh33nqUjM/1VnX2J5bL74y7pL1LDe1oIeIAzMeb6lZtA7Q7pLlMnlE60CaM5CD39IgSHdnAaythgV0JCWC2aWgqwSTP9P7LIzanIdZ3b+AmhsO8p01H7/5SPBkRMaacWU6U6kVOZICQCSh0io9HpCmFPcAIgyXZog0eSUN9FJk8ePHJYiVza+5oWl/uEUMQxX2GHqHv3c2fad9+DheJcq3SQxei9YvAstvJXSi72Th12tm/VMP+vmw9jWU/uO/UegfYhuNP6naZ5B0U56c8t65Z94xbYOEabcj0R1hm7ffSUZOQ1Oe9ZyTiSWqRfVxVcNw6TZ6DsoLbRURzaC79txBZS1pMGFsC/Ti6ni/fG6n/w9sXsn8RxvY/H0eThkzsJy8bzTd8ILAnocFLB4Va8kwOrAOHW3HtB3q2WvaFvM62FfswvsMqIeXo858sZ1IDEyVHIXPnLuYb+FM7XV4hDOri7UgTuOWOj/P64rltRAV/GF06vhDOOcO2bUeQZEIgOn3H9JFu7dIWObs0eXJCIVmgpfJ7vLHL4Sa7R1oeVJgGgpZ8lYVXm5vsYcyA2YjVbMrCYzNTCxEFRWST5dboiZ3PvjuGOWoMeAU8XrRTLB9YdR9Q7jAuGugOyDMW2YmRan9CwVRDqXcJ3eF4zAsXHVAXC9UKMhZIlqOKa/DaTI2gvmjLQhwVPeY/5ZLT0twRhSkiySRmrvHdi9lXo4QSNioxskfBZ8oeosPgo9HjI/KC6P3/7DtCZKIEL+Nov2VV4WExKO5vUn56S50l7FVmF+PernmI0Fhc65sSp/sGtW+Op6k2I/F4yGQqyTPmqTHotOCfBuQdIpMG6zy2QDT0S9owHcCxCEL/hOyuax/txbzdNdpPMsIH4yTBj74ryriOSfFqU9ARrJGa8q8cZniCjy7QMHOlkMvJI6i11EG88okkuHEakCUtxn0oqTk9op7lZUx59zOVjmfjA0KwdH7YM6tv71A+8BDaAKYx+BvOo0qs48FPA3MiT8zqsIU0HUmkqlX+980aSlVFZL43zaFln3xkdq07d0y09zylxXzT3vpePZ0QcvmB0zBreIBtcA0D3zKGpUORH4NIhMWfJSHeqkJYviAs8CgJrZdvVg0L5n2rk+elmc0Yub76BbUfuthoP75duP0nZUw42a6lO+kocLXDK0Y+/aeQj7fw1WkE+InI00xWuSKtNdYhCaXnlWGznxGEV90lx5pa49ymiZs2xZN8JE5oSZ2el1QF3CTsVZth1pXjStX6DwBfMeIK3rxzhQglsQ29R5hpN3Jw1t0ZA4dstp3ODmtY2L76Kj9vp4ynEww60puHJx3nGnYKSdrVfX0iL+oq7qs4XXUzBGBMqldP+7nv+St29HbWPlwvg0lRy61M9n6d9vFLhZezoQUZvqn4xzHwd9J/LjbNei7S2gc+r2G/pJz4R0TOUldJKXhzv0gZVs4wvM4a8pAcP+mQtL1ZmyR3xcyXcf/K8H0575Sk3qiCxzaX1dlveAzF2R0XA6pZ+pAucJzF6gMnc9pTX5KxVkQexml7d+syRiCGNFreUWpgZ33u2bpaAdCppczySbvia6RXkRcOiDBVc3VnWZxlOLyR7UO1+sZRUGFmSjQ1UJfmkgkpVhDeVl4BiHIKU5qmezJsQHpiSKWw39LSZ3LJwVri8eBp+Vywr6abccgxpX1h20CLlYsetFhtAtOwlmY7syeLjcp6zC+bBosh1o9OJByyQ54ru+WQ/dKh8EFl5QrJSi4vUqRHmNYlNwTP6unel2sXo7P9aV6ZglYtsM3XW7mgOFKG1LfAZzUj12TiM45T6TVHLLx0FWaNwsJr4Tj/y5UIriFxwuUX6Aeepag0cqvhJdlf6JQ1y77RartnGEXcsCme7tyGgyWfrQDov5THsiBhWITgCiebxvmuE3OExGLI5YsMv3kkiuhcPQZ5tzQ0B/BTTmJXT2dC+bHDOWlyVmwI5kYbtxBa/ZquAdmNJxzJH+WUdV9kYEZDdp2sutf/eIzzoJVg5ezmpCopZyOnPSjBGP07mTgWgDTARiTpm9eWpT/4cakdoUNiOEeHg7MwNWCs0HB/H6lPL1jpuC3+O3LZk63FqCZlXWyqm+IONQZhQv15uPMbPYjDUDKAVZtfT5HJ14hlkGYShOer0Il4bwUKxCdMDccVt/BQvl9Fin2gHuvSo/827ShhyBQX4DzJNaGUeP53+3dpnE2FQCptUxqp1xJu0HV5HxY+dw+yeES2KHRhvwFFf8wxh+rNObvae9B4VS4k/w4VMYpP3joybFh3aJhQ+SM6bL6YHj8zCDxKIbe/9psRae9ZCMqurhBETzdDRxjsh31MPwsKFSmLIpINhJSm+LygKv2KTsfD05oyaC7BtXlO5r8j/nK8bWyHzIIuQQUA3JFSLnBEhYlNxNX5r3dbn17u6ETauLKW7xLvB/81bA6jUoIQbszq1NRxQ3FTuToXunNiXJbT8r79RvR6sP7KqcYKoUB1uFCwY2As2V2xRjObDTR3AYTx1gMQ3VttkJKV6xhzyrd1WhGPpG45lMQfhNjTjCs0N3aRsPrrKpjn78gztWwQwd9BFvn1Oc3WFpLyas0QsRvdtbhyejBeQip/o4vRMnGuIeuMPEhtPotkTMW8mCzXsscF3QIe41xcRtUkHpqFyJrMIseGV3gk7V9gun04x1woCy/fR89ZfE6t0TzI+B0yjQeXCIQ938FeLp94RBD+3WMgpSVxoAf4dDkM8uxk+6+AlYepq9+BSulK2hEDBnPmAPrL6XWUTXI0gvGuiGZT5li4aAA0XGLVpphIz0f1mSPESK7o6IeKy5eSRDTeZRjI4jEF94k9dI+nCLwapG7cgP/6sPYof6K1pKtbeNRecz2buDD1mk39V34VpH7kiD9NzywDIFvg9whbBvK7j0wyslJpKDP+7t725+CexN0arN431KMmYFLHbSWmtIBtXcVXxUQyw5sXXDMSZGUJP2KbIC+eBR+uPXDTxu3ijMmfsRl2NmaPsENvXOpbipMGj8yN5ZDtvm/vLfwKvVAE2TRCOFOaLz6lDp9bx43FxQOhfQwrWXvKGfq5rRMvbg2yJv5Wv5VVe+FDbUUkqs8UamNKsZzPMZdx4YVH2cFE/VlgKEkP4t2e/AtA1kpXHgWom6L9BVFDEtWYlJP9fGliyU/YFYD6xWiJHB2iyFyrZSZjBo3okpyOkA4gAEZ7L3HZGPKf4cpY1lb23mc9Mb2naOd27teNcwpX3SH7JxaGs3+xYycvgfGe65muZoGbeqQlExWdRy4DcKABqSs4jKyvfZrVqnOzJ3A+f9Dt9c0EUIqJKRPXbyWfEr8AnVWMKErZMrr/1wi4vIDCvfGPACw0fiKXnMZkE+Q1f+RI1LkuXO1IrTdrvfRPBgx8ulaS5fACbU5sG9tLuwXL3w6bFmQfRj6cfrLM0csZDr+Gnw1dOGhNn9TcLCVaVOZiUOpBdTAK1sPZa7xSPU47dCZ2UhhCmitRv8k+ru8hU3iA0E8RGYw63PVZra43EMneqzNFRmzntzSbl3NiCeR2iH/LYo6M2kM9HWRERPd+lmHotyzeV/W7+lMr/Ue1wjMdrYYRrt/Yg2UojfiJqSm1/xCNsjmAkFhbNTWdy0I0E7++9c9297U/R6VsMY38Z0kzR6mpfxkYLRZF6NsmhVhLFvnpkNcZnTYk0DYh6bvG/ARchq2ziJeF4S3U3aBPzkh87VbeeqMxxqv6AqjAjA82bSPOmdoWEwgSqxh0Md/i1c0PAnn3W8sA7ivR2hE1VlFtfvk/Aq4t7kKkCk7HgCdC82Ydv+nzPSSz36MZSpKkb9PpPP32ZDbWS7zuMzlxGf+1dpzSkaoYinBCtP6br1M4CDXqAJsOqoI+Ywp+eIT5Nkw2PW+tblzLK34wvssUme9nV7wtHE8d3f+Bv0uCQtnLu5HyfRkJTgc7FChdH9i0alZHdzA7CIlQbZmpwRnYhdKHhpWGHEj89CIg9Fw1QqIWWfKhDYVObb0tTfYUOsopntXu3WBcmIVQJaFZyLXcw9zY+tyJ/PYSlzhLmQ0tkEBsbokrIZ9bG7ut4CMtFJuDfvaWlOkZTTIym8XNHmNbU0BJt+KOjqtN7tsOxoiHF7H+SI5UBuTBFlgdLmgBytZz7WGjvDTLgMvvatQX7oXKKNGvKQlMOUc5y5pqlrw7Jx/8DCcgdp56ilUn1fDCYjmUmrQworOxRSXjxTmHdIZGmyGSlMPR2Zy3UWn3HQm5uRjAXJmYEIaNBdNtEIhw62yJjfIOfDgqz7RhB+AS64fb3Fe7OdU7Olt1JhWAifqAIHl0YLFXWHFoIhoB/AUqiW+xEPAggUtSMYx+k+yL5a4CSKjWigt5Z7foN7teORgKeVslkBy5FioYuZGOYoo8jEBQSKKjJ8XPt6RXytvfweF7xuEwRH04wT030mCoqnzommGCq5UNq9Nmqiz5JF6zD2oVHDURmuYclO/qJeMzbz4crO0/hieB2pX7JYTo6/NKmhKLX6I4iloMfPNhh5JT04+Y0gPpLOOoziUTKdfxFTRbcfzcUBOsSEICOIMYh/DK9lQAH59EJfT628F6z02kCj2yvOGsGxJ1auWNmrZIQ5Z15PtVQ2qt5hB8m4nqdBfXXCsjNFGlDNxQX7IvtoFfrvBiEafhXfr52X29HE5/cyJzPGP7TCenLoZugNsWclPohbXphmJOE0hCRHrNBLecPwq6MqLHqU/NCeiktqDZsWT3OSuPggLKVtLNq55pAL2GWdyUkJN4NBPVLb75JbvkBVKB95bmG07+93tjDUManUYc+oBcnMNBiPny4xlvzVvPS35SdGTbTI0Mt1bIJ1YwQeSaZQvem7y44o4lRu3naj0nfBZ291b5xX1ysCuZkr6zhk/yUZZv0UjMBh20fdpbSlAACko0q4EC2S19pgVJPrKLHvIhoU1dz8j2aDE1iRl61RtWSGFT8kZFfivvXKW7q+R/3lKNo1HqwUr5+l4MKFsG09n5JZCfsJTemdYpPuB0Ri6cWS/t91kJfPxXg3mA+jl8LD8NEi2FdAwFUREEFveDAUt0/W6wCnQvZkZrx6pMDWTDNttMiN7dJAT0wAvr2wwvTyyJK/h+BlQ6zVJxSp4zshbqk1peAzrlx5i0RXZ37D6TFBuu64ice0jHn+g5+jcTI6j5l/HKNGNxCIpYz5HVSYt6GIgiil9hqEGGkTSv/EuDVoS5s7v5hZiTQ/ae96pgCmSvYHEd+1SsiYALvNYlqeEhmx+mjfppJWNh3c/ak1Y95JeOyaDDiH+KM2E5lBlCqks4e6XqiGCOOom7kVWHWNLpc9x2ObGrNlMSNkYR/x7ERN490j9plV72n3jlu+Sw2OGQv2QF/2USxaeBTh/3ByfnDUlhzAbmeYkiI4KYYln5fxFGktbzLNjc9bmHyFk/0U6Ro4drz/uA50CUiYhWE8Q2RV2ysNOPWUomvy1ZAlaxZOWVDND8y5+nhkkjjYGHAby+vKcwZTeiYg2MiQYLoEwpoBJsoR4I8sJgSD/TmB3CII3xxktPWoNNlj7qUxuJ0GFWLb0QYYBHpuvXMyLsiSUk3bE2HQBHpsDb08CRnwX4HSXeUsyka0lWZEHNkMtg85QwUnohA5PUSkzEimVxwAFsfWVKUYYBegQwlN+e5ceh+29oTZWvtFGuFbxG1WLM3SMIbQwXNMyNjHgXDbf9FL1JS2n/AwcqBLXGkIe03MqTQRHcV+7rlLPfQb1+jj3781Z1KxlNEO5ssty0cK8f2cKHoYN4IatFU6dvK0V0KlynmqfreECvTtcvARSCnaFqbbt0UY34rfka1FkA3zXZX2Tl5m6NNJRHeb2+iScofKdtXWNgLc9xUBp/5bxOZpSJm4F4T97Cxq0bJoEdnBewPe4l3s5Tfs/2GFV3JdFO6srFRmylE8tdRHcG+WfyzR4mKXfmhtJMFsz18OTgQEtnSwqaewYzrK043lVnx1PpURX59c5nlpSgdMuYFnkdNJ0LIvQZ6Pit7wurrEXCsT0DrLyANTS7uWgJDFdwu0vNW7uNCYqxMLePGUSqdWWHyfszy4oPJr6cb5sV20jJmGMVlhlsYOqi5tzKiAiyKK0s1s1Mu7FnO6gPLynOo1X7sIvYwiPezRuVHk+JaSGDPVaqu2baho1CUzTXoyJ9aLor5hWUfIMd+TcUI7XftNPxexWztZInYnxMQNPOPXc8hof7OtZg54K/jrXIMXTI+b8hoqEhhouaryVfpv6bEcfX7+TxRhxPD2gG6HvKkK7fH8yBdqFmvsfYhu897aub686CPgCoVV3k+sfH/LqVdXSZtMns0/zYRPSai/axR2HRn5xvdOFbE4vQL23oqDTXa+fCKVgMSgLzKejW75DWa2bXSKWs4TtN9Aw9zoQH4bBdwCrBdaEY7+esli0YUZP5D9OZ3fHD0+EOpOXnJgbhKFkZgIghWx0jYBIGTvO1yqX0NQs6F42zUDGLC9J9QQUju8RVL5nFoxDpYXgoLS+w4+7H1W61U9Ox6wgEAGcnO2+UE/Fo1GhtU9bBaybzA+/0PwCEc8voBed/jlWseyaN4Q5qryroedrzEKtLRIWzP+SQdBZNKWqAJWFNBdVHNnxwl9CgFlN1R4/5VUy946MGDwXzRvlPn4OcuHVt42FXWR+NPyFg4K5VxbZmdHrgV34PpmbsV7FvrM3ijUbYG1p83HfKGWOFHLOfT3oM5GVt8DsBQGtuyF++9Co1ZoWWa9dlNtxFwHU/Y19uI+5B7TARYPP5wXBKAK3kB26gkOLCHK5ik1ED1VwLxpcoBa2nx292GyKQAh8/wdHTKXcezZ4vASWv3MBbd3D28/lHWsyv9jnDTVl7T6FlGqcl8c79gxVxwYzh1EnDxMBHlk+zM5e/aMLUe4YKqGTCXBbBdl08wShPERKO7aY05crBvz3OzZV+do11dzKDhgbLlxaddBMuhDInIzNGhBbwYdwPH9MtzWni1K5GUpsHmFCJVf3gRvFUF7Jtktf69uNypJ0F1WfK2QL8Tf9TbU15XoBNfI1MOpmR/zXrtfOOGCWeU2hjHZab527O7Podi2dfBqb2JvkxwHTc1zIM9R7gV9qPL1kz4lvXLIMSTxJyzh+r8Hxa20rsdBvy24bG8RroWzD7akPWt1im0ZWO423m2gRjWbumT2dofTJ4+iGWQh2QX1PpAOvjvvBViXQr+cyBXUxA21/Yz4agsytPInHQwRR1wwAg1V8rki766/PPZllOXY6GiTwhRskHJzzQH6BWoWrI4ZwPeXaT259uE2pE0ofn5weslJySluXGp2OoHu9mMMk+1ZewYvG6s6RZsvL7IgcAAiwGUtvd5u4vp7rJ8WhWpRmakeXdA3PqP6hw6/o4XA0rwwSFSXti+Y26aYkDdKaB8v/l4tlsUCjCKSz0G8jOydpRdyiM9WsLU1Shdmdy+8afgDbeGbHFVVhxG4sPXll63EJr8oQvPHOoyR+oPkVwUyrRm0FndwPOxhZWx+MpHFKA+UY8sw5Qu9I7LSy1sXJvbeJsnZ2IZw8zlXr9cJLTcoyeiIpq6O0sYE5+YbMPDHruxI+Itpp7r77/4IFErbrlFSUeUwPVefMt96F4hJpwCE4sOlOPxOpbv/jQwdCIHPEhlI1+mR5aPhlGK3ZX7lr6FxmxYK/d9ka6bJO5aN1YclIqS76lASjnzSHoeY+9B2bGl+esRCYoUeTto21kY3FtGmws05kL+a+IUsrNge5qxRRTEZyypU3DJScG2s36TkEFud0uMefJIZ7tJLBIDA5bPnPskY3RkX1yqKmw5zGx0TdLqq9lTHtiDWPpwaob3I9YknHM0rBENL2HiWKMs/LSHIBZg/y5J/YQrYAQbiGdw2knRZxlu/pfKRA3gCtZbX89FeyfJycJSl6dztWUVNYdJUT7OWCBqfG9rmzCgiwulY/oX6SLk2CrJEOHqpdv0OgoUP7Z9TQ5CX0uph1VXvP86A9lyJmg5XEfiVwHRl0J4EgTlXSVqaOjH52bZZKed4ggbIcSyeMEtGZP18bX8AxRI8Ug6lphNWEiQBBRXit1OBYrFxZvhwx6NhM14AnwBd/vszPN8lqqIE7eHwl/LjcjQZcJcngYim/87qIkELPZvaPf28cLQr761brhq8D74OcAVGr49w7UaO6jsjdM9z27sftodAJUqhLUuE5fft8gQYI4DYX+gD4om9MOIPaSlAuqD8TfjB8k8qGenh8yDaRAhVs4FpPKowE36kDl6H1VtmuA6cjyTY2jv3Hj0uHhV29Gl/foIwQR1AYzycaqYRfD/bRzOtKct+jGX8ITxy/pZYLhvNCuAJhBOVaiy1MeMphNp3Htc97/nVGa5cUWKt03dZdJToaClatAb8C5xlkx7SSmZBQMhbM1u9mptwl+ReNToRAb2oPa/d90pXlLSp4R5ZZsd5hXX23xj+zKhcazoyOgGL4K1D+Wu1BLBSVeLERIR5OoS71x24TXh01BTETKTytJ8Nr0ZGEq86BSsb1YxBLR18uymXb8lt8vzCTcIidSqlxSLeh8BeKu5Di4igszpje1JtKufO+16Oww9JOCx/uyzGr2qAKw70gUEh1VUWQB1ICsBWoKKA+BiVlTDKc9Hhb3uzo1MiU82ipVlRC7UcSUCfG+3t+CSmMkNszgMSx/o3Fv8TePanTzwOuU/ngADE4VoPDdlJWb0K6eRZyzsYaA5Ql6SRNUgF8k+A1X8nDAi0Uva+9kysVFojGrlNY1ngxGd2jfOKVpQZW1kBn0iiBsDeP59kUnkzQ3FIdLxXXeDYK7xnd+jlvz4xX8VCwQNI22/BP12RdDxTZwIg9AZfoOwd14eUqX2zLA5mvxidKxLt+MPdInFu4rD+B8rT6ylnTI7Iq0UD0eyYLB0dZ7UxAEE0reKyJq6lzK3yBrlgIIPq4IA5XRpbFF/7Yj0lMfPylWfdfUqAtsk5irEETEvdON0Cis0OdNBN18I7YELjw41SpkzSAjBUTdBVipXsenVbn+SaL9xuHyFqXgo9vbetwDjOrGzQAt4k/leKXYbZsi9nAvuPHgt3mieGghANhnrvLZylTzGY58OADAKhoKOwrARoFFDdZCDzhmzojyoBkxwkp1mWDp1mZa8QAxixGxmC9X4pdOKWXvVAuWd7/bcyGKTUZHwawhclOhGDOJbMN0Y40mdLtTUqStu77feXf+SptHSaEMTrQ+6HzR6Y8lnmDzQ+5XwjToqINPUiZmqGaO6i3Ei642m3xspKnchxTXa7kiAXoCme7aLO6fpzoSOH+/dAVFWZiC1xHPLu9VDH5tbrVVUZDQSVpAlxZZ33K2mYxBdInyHRkP64TVTWOrpNzgirSdF3kpeo8bR2B7HDfa4WI37W4ljovRsYLcGlhIJu+5CVdp8Qi/qdE2vyq7haMD4EVHL9gJXZoDPf/9jWi/ZusjfKmC1FRGlK6/OIm1Z//pmegxrG+ro5794ZDbI5RThoyKAcE1nFQ8JWmPxKU3b2s6cf9nxL2gOFTYaY+ehD7sQeLZn0cHSmosUGwtQnOzIv0G/qX3+bxd6l6tBTmG8SKE8Rcheg0JyHYIIQ4jPoGsrztDe5vCdyo7LWskZ+nlMdB72eZPxN34FDZYNAsyfe2qFKR5+Myokb5bVxsodxYMtI0sw2ZsZ2yCNbqoDjXTs0+8Qpj+n/a8IMYyYayVY/+tUaq5cZLDEatByjhSHae04I0iAYaTkS6tw+cTG9xCP65fBpL+wDLVTzRznlNdnh3jDRwS6rRE+BLmJOB/+OjCspVZepz/hCVLV+Uz+XRCfLfo1D0fXe2iX8R2VSfpEJKtDS7AFV1q13RlW0r4gjUziLbMGM5JbiGNhh94/hsynpzJlQORr/Tq34XWLlBTf1dizZlXN3esjmnFNIAJR54tzr+c4yCsasTPzUEUkdlchs5A9BGaH2f4YtKXdeMDBcocPkw+knMvll3llui7HxnBdm7VvUEE/YqBaxS3mgkWD2IKL2M3DgC+3j5vgu7gWOgsqRB3dGn/FqZ6H3cAik3sF7ZnTa2s2ZYfarCmE8f71pfFWMlRq65HUbEvBkcOPubxG0DUjt6Gi+BndQS9tQyqATOK1szDqUYBDLl7r5rM8AF5IMic5bCGqUI7v5D48OB4+/3DpyGd2rIBS6fLyeP9oOydVgl7cPF5NcLNTxQXKtSfLdpWa/RgjB7IEUs8oLP2PV/13bI/2DljHnLi/BRT5Eywiqu9n4VF2jxhV7/X1A7ULqKsaIfoEY7a3+P+rXvxLO8LHA9Br6L7UYdXHNoEXPea0g9sS7pJY96tSR/7znGGqzw3kWhbJhba+cA9ttmO7uU9CUQUWTSKo42BLHmDVjLLvjskj6TgSsgCmZ+ZknGCi6MRwGLJyx90uxEp6Bh2Mz3/ftmkVv/B3s73xR6sdIIy8zlz/0ZECbHotcK9gucX4X5KFHv3r5OFjriCD6pPbu3cRJbENWWkWaQBUAzzeewX7FCzqSypfrbAkCYPg26dJ7JN6KPbmG+zXl+1O+nzwen7ftmBfpSIt/qydr9SkLlbHN3rhdhy0fVfY+sgbjPT8dmR2/9v9CXZtpj0RJWhevG4RbQLN08PwWZOiTRDLKX6S2xW5WsUz6B3XDKW3L7/Z0lI6mAKx+sx08MwIAEYfL7EcqUA1Ujyc7yt6MdTdUXyFhSy69I1AOX2GqsqJyM9+JOqfPj1pY7LyR2cEL5qixVzt9+p3S/Ioq8IS9HZAHhgqExyC0UexU9hgQGMMxon6VrEGsc/8sJ36Ww0TUXi6V1CeLIefdyfUqrLLtQuk+yhSpeByZvCGCa+qT/tkCcH6MS0iazrg1JQvcBoAqqgh8fyBFAxZbw6criyBjGlLFl98DzXE52YEd5WAg5g5lDBpI7KSEvOv2NN/dWoQNPqe0ou93Uy3Vp/UdgvCDqUaiUnpIJgE8FWDa0cvuLoCEQEXfiPMPBpKyGNhoIvYbsxapkv5+LE5xzyS4Zcfw3cCl3ZLCHnOrrPzjW4BejwDn+G02gaSx0ktUbxa+p/rx5FLj8CF/85tZZCurh2FkyahPikeyDAZGX1E5nSTvm2Kn/+8D2eEUfF/rE9j1jOc2EigC+UkUkmy7rdPITN5eiA4M+8nikts5ngpbiuGKd+kax8t7W/BekggWncTWSo3HkHQyngI78t+A0ZBQuccGqLROi/BKH2gydJ5rmmPhinn6HwAU5huAGuimnRVYy0JPhHn/2Q2oJSeAh99ZyoBo5B4etjGL/1GL8nm6oaL1ZJk8LrqKQfw0QsDBR0psNQ7wrf/uYR+XrOxdMuq5/H4aSeKMIthNWhge8gluiaUA6oftMRCv5HhVBIKxxfbJjXgZqXBduIKWvSLb+uB0qNrmVJdDwY1wqRWDFcnW3PPVxAMKu7Btg9TtZLirVOzWcF9QRVAgpQor5f6ytQOqQ8+hw5yLec/hBsbDKlwa6VSIp717SA3opgLFqcdh5IQd3QcuQViCxRmRnZSwJ0FMJa0QpiyuLPP2Jr7h2bb4J0tSagRN2o2Nk6zo5klXxEkRruv8T0bpwHeK9V4ui544mWjIscgawHAcBFB9o7phSDk7lL6db1BZOlN9hrg/qO7CG0vPXiUMdN6g82ZK3+aWp889GZ9hW0kgc7Nt4Q0lSSK6plCKKYTK8VZACKKwapfEx0GZsfCKoh3vBxuXsDPSHU29aT6TsBLxVfmn2nPZ0XPRsJsDFmGSJWoStbl9KP6R+3juH8dKFZkJZnbBmFeFGESW7BCKPjL8UxVaEGivFmBqqjrqhtTGzBn1K2rYhjj/u/w0oO8kdjIqo5mJNlL5m+2hbN3pgHsyxzVAVA0w3Hj1nDI8KUMhTYZI+oFKktc+gfsBu+Dh/HyrMOV0Ru+EP4DnnDPR4tbyQ/ObBXiQ/UUAPRnnEou6c1bZWDq1FVdy6iJ51szvMnPDFeCErcAy3ZUl4IVE9rApafTn9X76KORUl6i5vcvIB6nbwGV8xiHdtXjPLsjONPlUfsR3B2lsuI+MZ5CfvXfOsjGDtTk1CYE9vEDxk4L0EPkh2Ngvhx5Wq5Q0ldIZLNqkhs0rgrjh9ZexX/HLpYTas2XL1anTWCIm5CpVHV8+4aYL59+1Xpe5gHcD7lkgUK/UTVMJhQjAtOozNk46i2rqe3IW84x0D3t/WlmEOvlW2fZL5vc1LuJYMoFBMyfzviwdjdTcykpA21X5eb2+HxqFBNKnoqLZRqvvGw2KknkRweRztEQ/9DRRG9JnPHM3MHfjNAvfFYNzNaypYUaW8dcGn6StXgu8+geBSYLHDIR8mcsb+PeeGhEqkzxomXfEW394IvwmBL1FLR4yF0pyXP5ZDB6RHae2FJ4j+E6rziQM3vo3NW7FYEDjR2lvbSH7Z62Q6xdSrgPjR8Bi2JDD1C9pQ/nVWil5AIwFLZys6UkHSE3Z6IY5mEilivB7KPBPhWHIxsIRlvH0UKG2V3+6IEN+J/ADpA7PZBIM/CuAH0MZSQ3re3wjUHoJByzYBiGuo2fP2VyI9zAXdmd7UsP8MGHyMWZG92KueSVYQUhnuE2AqNo1okSU+ktuawbIDxVgBTrPQ6sDNB8VoYVHvMi1+nVCJJ9gvyihFIypCfgBBrf5/FrIG3Oy6ZuKSIerOmca1Kiv4KuDaLRKwfRQgvwT8yoIIxNC8//iWXhfRveX3S/JOsiU89UIgfCs/FUeZnIyw5BsRfrWfYD9n0nSxn30NY6cvx9/XU5G4FtcQFGPnK9CHe4/hbCw/0EZQFjeTfHoq3XdVXKEicGBF9aQpVZqburgu6RFH2IyXzipf0MquzMk30jZ1sw2AgUrxAB2izoiHLlnD9pjbvvh3YfQCZzru2qrIKb4BYoFZ97vFrS+PIwLbidjiws7rag9iOeYRYUCMV/7qFlLjMEXYcroiATq9ZtUhyFNResia078sw7Awib+xC2hA1nbH2PClzrLTWuQFwHyHWY1Mt1vzkYqrmHOzkHBixyB3FDmeHICldiRFbYBt53RBodT61G1+YD4G0wAINlGFdLhsSAxUjSLz1peAVK4uk91neIPMInBlI1ReICypmGUkeUf3p9GBDboLsjhww62/rVMerc8goOiQxL8LPtDZnzQb4jxsz4n/qzLAM+V6qiM05proz9LoMnVGJqEW7xnH8CkBHtsR6ZyQoZOzfNPGdRmUCAVN+8EgZSGBmebspyKUr3IG52EeQ8l/DVH3BeB37Uk9sV/umh55tWRTcOCKNVoFjWAimNn6LsCikEGj31cByf8AcV/AGTgaqbUTVEBGp0wXmhGnnCgmqXmkuIqiO5ny38+vDiwutsyxvscZeHXySWMbkc/kL+fTymzI2i0tHJ5Hy22vaOo5bOUYdZdM+OXxIbBelw8cWc/bjaHexsTQulVc71sOj9ntmAbPxDd6YgpmXxw14Ym2F6+5rzJu3oU935S2FWw2iXZ3H0VtulZA4hmrca9Aj2T2NcWLF/FmI+5YAEQiqH274zMCPH2KrVvxMbpy+77y9DoFs7IOjsbc6rRelHVqcNxzSF/DzOvJa3/Awz+N4e+M3TfVSJhbrVgJ0Xu24myDK58VRDEjMlCgkU121FDDH2o2XsvGvmpeiBKfh+MOK2LderO4WHsVkKoGxcc1SBQK6tDhQ0cr+A65nMYlh2RHNSbNdWmPrRB2GVj4IRzfpvZcYwHrmBVYg3UXt0qhy+bEt8jGAVgEA0Um47S6Gg9TNzrvkPiDim8Ejp4FVky802gQVrYg2rbWjnAKfx/dqM9vST/3DLi0YPgg4YBO1XAocF7b8km/ceXVu7obYJiXXoi83Ja7xsGM6O18k1tF+zqXplGKIBfTkdxykpxA0sRf9O4DE/89p3iK+p7aILE3svNItGxT+wRyX1I7bIASBHCP3Rk1wme+ntW5+gfbY+/+whAavHPMpExsEPP2C/6Ata/fcdExNlBsnVMP7FwfBDQ8wtjzw7eEMBW+Gio0jydbycdEcGb1Ot/YLYBbooqF19w/lu9T7Nnp3QCUCdUtA154p7ZcBXzdGMrCB0VyWIaADJCmuBsntIfJa/Ftdj3mJAG1/iTPkDIkXhEkT05zGFVNRcLVE24zVT+ae3k0+ps6Wzy8RuvrvWVfft9UhIqwq5d8a7y/w/hxxgP+BBeicXB7WXgY82tn5c3aSWpS1kGx1aCN3FrUwdLAOw6kRpG07Uhy0ykixr21W9cuNpnejcwrfvpmGOMLsTLzUQ6Gr7hexPJ1uhcDwwmEeHmU23vF+pc+GhnC9NiLcG5g01guDSqNGLQS4limMTmR12759zdxZ7VMIrxy6rbAwuDjjQais7q4/9JWVIhQ1favOp+39oT8CapAAFrJHbX/QUj7H9X1TVCYtvBheyyMbTUdRDGvB3oNApxijErDvjySUbKdW0b+0PtBLshTTerO4CQ/pEhoV314rRYGhjaYFfvz5bKyp/XtLf579clQInWgVm/FDjwq5jMM+377jQeOzh8DDSO1uE8Nx9zV33V7NFAdqPwJQLrj+pbDhtSfsIvYdeMg9Qajn0wxDlx/H+36xTvHGY6JPdtR9/JRtgN8FEjKVt3yhFv+Hct+Ykbje32Ue+djdK9/S+ElMX/7sKSychAA7szI7EIwcWtkMeIEvQJViG1Xs7XSMm6MVBhDhVQU3N6iliV94FiSRa5Edp47NNxuj2yuXrlEdApATqT/ypwPp2Bahz+CdcXKa7/vHsZ5lgpA/SuIcn04pYnbSwEWYVy+fn6ulZh00l+vAbe2S/DNwKkGTyebFIIheoMf+E8HvLXHHkvrI3FRmV7M4IelmhXa/Z700I9ctMdQroVrFIWkgC9eQBzgc8P0bP4qkJyrQt8kuDws2SXeHdO6ulUrKa69ULo0IxlQQyhH7yY/ejqYt5D1sBx7IBYsL/b4wtuxE03O9URsjZW0SLFYT0TzCoxDsg3V/JwiWtwRCJTDGf83YPvayi6qfSBT9q1RrAVmD5YwExzbyYGhxf0ic9d0UbwNqE9/6L8pTjXqJXHpJwyN9T0oKSBix22tvBZeKhbEZUM9nU2sq7vXjVEO9RrFm1FF/sCIAxKjzGfhTehhYW/9uwsfZ+8G0FLBvFgUWBk+gxGyA7zhwmCO45+GvQ9daUrcHMmuzcGNo4T6gGxep9MYXtzd9mmy7UCxXWpkEh5C+c9rlzv3MhZre5pdIkIZyW7JGt+Ljh81UUwigtUCwjJR7f9klvpbgwi3x66VKiYoPliGu3JhMi7Pj24MaAFLsw7VizlxSDfVUsT1Y6MN7hGURmOwVfSdzeo5S61Mj2rzHbWKHbG05jiMtShuL3mU+KUloRjU0waHUldpIioOLJV9u7asMFGqGnoUefWTP707exRjokxpj5FNq9x2B3uZ/Alb6viVh4g+/P/PJVgKB8azcJtdQ5jYwHJKUvzDMmAnqgfGPHWIfE+d9tbxFjM9T8t+YFr3B6gKdTcDhp+leVRsTQ+50HCZYXC6FJXtRezSNAriBZvBvWdmaJnc+jcm/QbUEAbELbdG94yKQFTWMleGNKPYoQQr3ttlNTIhoO/XxcBd+Ea7SaHhhwuvg6m03YuawD8HeqKmFo0yo6/IGjCsUYznWM1IGzdCaWSiIxtY1U+VKr1sNJOibf63dgshsculPurWRBBoGY7b30Zi2QUdmLF+cPebMialhMRhUexd9XUNWU0EhN6M657ijIRTvAKGoiEOLoNLF2fSzXQbGgsUYfw1uTcM5Ova7fwVfYEr+t946pLvrp1B9b/TC8XD4jCarWmZ+AqWV1h/+Fimb46w34URRwVXSG/Cit2tpdoD36cjzmWjCoSe7mPeuvRu6JNfW6kA8Zvu+rwRjD91cmk4oHGZUYVStuVPB46R04N7iZSCYu7PJj07Ane9yW1Hg4VqZnIN45ZUDYASLR/ZxHuiSZjfXx4P/95vGi8yO4+aqMBc1B/pZOGXg92L5hJMRnfm0ILCX/Xe1P9aE439nZ4PrwBa4kGXW01Rp0CP6GFODdxOb1cHpJCYGKyIN8x0NSN0gQfBvWn4uUgXXbX7ah7HFbXwHYG7pdc1F1mtd128vrnLoTkWIZu9X/XTNpj7FW8Zjns2ZtHFATSJS0Cssi50O2+AX5D7FB2l06w3rTsYVN5sI5s1AMoWOGlbzT9wFiwiLF4hrXexXtLOxS0PSF7Y4oPc9bCOfbNPWjkJ6e2wlPajKuII5ZAjrNpBD98WAX25aqS3pbNmFc4JkcPlLObcI3l+qxWCHE5dy2FznhhhWiGOWnUGp3/OxwRhdzRQFey3+pZWvZhVLv7iFJNIPMxKHS01QBjbixH4JX6QkFg1DypaIJUi+lHc2hmp6ndSlAOu0y9EXJmZOFazNA4HeieKLamApOrHXPrCHi13NJi0rUg1fckMAH3bcGs4gEHBavo9nAdIWCWDGgJ5cs1vHrPZj71XF0bDV7Ov5GjjsmzCE6Gs0oVHZs5r1aZid9prN+mR6YQygrkNRZ/ACwXek+F+2f4oWhN0ji0Zqv7sI8EOzEudKuiXlN34OgbKEMR1vI/6gqQVS+0zPFWx1GBt+V7wYEGf/LbjP+VREpYqsYaPQ2hQi4owws4fsndfEnLRbXszNPXsVkZeYX+VBoN2itXAkKbvk9/gFX9cOS6+veCNQIcqZF9GuUd2xUSu1PNJkAxkB95rLYhNQvh76ahs+HgU7HEz5ZWsjTSEnWfSrv5abpSxBLOr7Lm+3NRPA+X1WRYg5fbE9+wohrQTOZblNz91eAi+yCQm5Ui4EOOiNrleI5Ak/j1P0yMlLQ6mX/RhJhfst3nKiodUX2q+cRn/xpZx0mCH21JhX775Hot+7Fl+s4WppchRAN5h5ubTR1isxGPOSbABw+eDCWn8tviq0IAnuH9zKbNyj4FBU4+Bk173bPrYezDNFQUm5ZaPDZuYbQsSEPwKzURPLbDzEPnG1lkIA5tFnkCRDHwK9QqPpkNrmJu6swbnXC0jAjA44h6Su2gdN7yCYF3XkTdBPm9Ay7CZKq9E2QtnKszFggBlAuIu6KiadQzs2RCht/U8FmKsTcwGV6URDYzMBYEZOE3o5NyXnHktUK37p0f67jnu/x6aEqECX9Hx6c8zJhu8DnghZeafU5WxQM67h+zQj6DdPnzzp04ALQ2Nq6pOSKLACR/E13ozt7tT4welbIjy++9CEqra5eIuOQevriHrBrqcw2I9GyC7KYerVoaIjBoqThaHNW5iSIEbDKE6lmgYKILNYkQngZqf4vUYMH6rv1MXg1x06tt1Q8ZRqLyyfzdWVHBe0/ElYh1zVRipiErjUTk4zT1VThmDpo8+cdA8NwZ6bt9P//tvO4FQql3LhM9txTYLKheP0bA6/p/hJncgOewxCQaLnhuEDWKuOdpaLCzt3dNi1pGCpHkj+mPtUbd7oceQbDofApdQOYBKgLY9avW8z/lNz036uV7Qi5mPhfNXuQScWN4U5Pn901JXNdgVcMm2cdxzSkU7XegKgZy5d291uGaCY8K0PP3ZJdw9IBHR41/VIxYsTk8gh8uN5SrUBSus7/qzfHZxDlM8MaHYuoQDN/odXmzIb3HYWjROBT01vudVtwysasVAreDYKpB3dVJnUeAdtsdsI/OShtgz45W3L/S52LruWxpgwXDZG+1Z5DgvhLuDOlEEVVhaY9ZcDJtb1j8Qap8/30nmv6whlRJQ8ETEtfmalUaiE2igblhxyrONuwTIjgkFO9IxClpkZazc3y08KjM+qUhuAeMYXN1WNKi2Sg+Br6xNxYWeEIKVjTn4zqyyqV396aHTTijIbq1uarOgVYGLT2RfTnNxjS2E1tfP3nfCefaJHikXQ1W6/iCIbMqEQyy1cebbUg4TbXfACc0UdOZTwYybwOsqAjiYHs0lq++0HkWzqvblTqASryy67pAhp9qWBr7H01eU/IFuI7Wu9Ym4X+UiwcmQqKahoYruyX5oA9SIoQETdLxB1c/cQVCNAQanzclWO2I0NAEv6KWhsa6eOhFgCiavVtvXQuHyDSLTepUK0c22KJnQ+7/sZHTIColSunXHL+7MO1wp80fiMPcPhDOm2Q8ZeeloV9NR+MhTUph2fhv7Inr0R6+CeGuoUOkdke3A12BHSbqERkasur2yU0xBU2i5bbieyt5lMxjQxX2hGL/8h4Bxn6NyPpaRhsJ55SuwyxOls7C4zMx/uIxO3Fjcjr5RrerzgfvhL0SLBURPJHQR/HI9rBNo8nY25OJlRaq8O7DOXe2Kvx/uvQTDgbh7EFbog+0MNoY3QZ2UnfQg8WwZcJmPMw0IBm9P9LNt9c5Y73nzvsLwRvhowY5C/WlNtl6JPYCKyH5Jsy/WiQYD/Cf5p+6C/pj3y4ttXOMCZoy0LSbfSgajhg1QZsxF+Vg7c6KiNAVNW0ipoDNtJRHpewu82IHgVNCsmorC957X3B9ItDZmJwqIfO2pdy1A684HNE6Hv4MWv69NjJDdKwiQg0i7Is0YN+rpUDBH9Lb6Y1jd3ZhF8ysqDN+lW61NsY/sx4xnMBwDOTNYnLgeBybKltdopSlbTzp4lOi4VORqnjyHIDKosq+y97hsRc5u9d0FcF+APDK1Nysz2YTudFwNWHi3DJR2J2Malv9KRzvgA1vj/uwxncS4qCgf58W5TkjLD46q8OG7JGRu5adNS0nynpEUgDjaIjoyoiCldpKDBb6A0RZVFLvWo9FTlCx0GsD+UXauF4eLltB7zkH4xB7OlHgcPGjy4A51Qh53efujuEGA6qa3aV+K47zvla38NaFWSd7xU2PzC1OMDhYn/2iDb/wobHTgTkYHUSAw+EcKu5iCl2M0wwDSg4HTMNDBqfP/TMhdL0HXuoPpwOF5UoNCMTWWrJJYrk81QVNmNsTANJFAAPDbnZ6piDrnl6L7SJ1BKamkRuejnGzYycritiX4yNCVxl8gXZ4t5sRErXCKFwzX7JYpAlrWUQmQVsfMwg69Cw8kZ82soaE214IQ4O3/YfMzhdVCs0h0kh79X/Ykcp/Ocggr5i3l+BgtizCOhU/IbFRjoFN3y8v7RYZmzR6LqgH/UthobB4gSsusz5WzC/qyo6NHnyg3IsT+C0cGOb40xMWP1lap+WGJsbubnFCSjNxL2ArlOeOSVMhNmY1USqrVzqmDj/ALzPeJwogqOmjHV5VyWg32fI1M8r+qOZYqK2qptYN7ONZ4rdeJAxJgcYzyneh+zvlcVv1mmisV+mZuKWIdEWROvjvmjbpak5pCP74yHWdGCTqER/EKmbSsdFuQHPtchAlmYKseW1BnZWRH650+bCnIX11E6fkLlRJ1qjES+VyqnqqYzeVFzrd5IrN/ado70HBGLkHBlKVhkGCyEVTAiI3v5OZ54CD+Fd7oFVBZPY42XjaTixdiYFV2F+yqjh04TO7TfCV0EZUYkpd80BJB5XU1Y2cC91ktXnyASQ/WMRM8j4Sb9bTzbWIEhdK0ayJdlJa4ZaGo0wKMDXxJI3ucIHRkRcX1yrn4bGUGERmK/AGQdeQwysIO9QbvbVEFtd57UgG1wCdHXEHVKYO3I81OyADFil4IYx/5UoHPRLj06IxKPjilbtMXDoYL578SKCIEas9+Hh29GhQcy4IgPmJ47gHU81WUfE0DOjRnRE26zE2BbmY7SJq1F+95nYffbl82KymFB1dgpvJRK6wKYAN5advg3S27Hz+lRsehhg+P/apwY63ujlg5yYgCOO9HuTn/v6fr8J6ZQWMv+d+/6Dj5po2ZW9yoUABbgEqj5UrhdR/+3LUOXnyi9JQrr6ZKjIYi/te0igZiWUZhwvdIqZ4q4FTfM0zUtwgXXErODQu0pOVEGNYgwLobFRXd74muWKRcM/amDxq2VW2SErk0xoB48u0IYrDBn7Z964DT83NzSMVQujDvdo4Kza4Q/LtAJ0q/E57gI/VQq8uXgjxD8aiRkvCYVGi1fKT1m+J/mDJOJb9KlZPntGQ5SJZDii/w1j6B3fpvCPMhDYDYiwgXREphX5XeX0A3hFAomR1DSeKEL9IznsuZYPc0gAqGKsmoG6B0sXiI5Z4sqGNP3XCCwM9oHD9P5ginugaiD/6CgHY9iVEE7FX8fxYxyySTSSy1Pb5GyK/MK+jcC3ZG/EfiDn00jx/xeS+Vi39udM4MLys1/KP+Wj7oLVe+EGHmdJjonBooy1l1PLVUrUT8U/6ExfrWvMPdOEeKKRo4IAakneTvHLEoE3xm6Q1z2dr25fjt6UhAeqOjgnAPqWyMdfnFlYELvPOZkbdanLoW/GBEZhOmT6XTCG5ixOXrAGErgFdK0ua9GkVRvswAXJxmy2llutwdgzVwcehtUuAPV2FG8dQQxnFyKsY3QnlK7qqiJG7v/CS25YXNEOQ4VfOuixiDU/0wh92+YfMnnarnZ+cLN1eoFy2ZE2ZOjakh1XXMvYH/4V64OCVGwnhhPk20tMnFC/PkKkAo+dw+XtqT+/Wq2v6/8VFHB7SGcYLyKvR6IUAu9lL0G3pw08uwTB/J1Ufp4EVa62eIBU0oPOMKm8Qscu6AnmYX9B1v6VsBzDOHpGoxv6bqd6oOatjJtPsFi0XSeXJtJFTW4UFtzNPgP9tUw4BdDfHdzLnMD/ue+22jbsHFIlHD2ckykKZU7ARRaAYHa9kDyXGgPlRRJOw4DCYCIe4/sZSmkFoaPIaFiG18of+fgIko+eSTzHRwK8SdIxfp2egw5yzDnbfZ5/Y1uDjOxQ4iZqyU3hNWHp1zFAGXKTWO4koz4Hjs0bdTPfXMRfpUE62kP4ZJEaDNlFpIFQ/kTTW2gQteHqZzir2PRJ6vqJ8VqUtYV5SeRyPIFi65aS8YpRtWoC9KoeD8cnc5yXeapa+dZ/CDj+tFbSdvuUemhNtaCGLOOtlcIkgSXpkBakzFoeM06bdsAnBXPTIv+tykqDPDwwyAHoLzSy/9oIEP57cQ79HgZ07mLuS+H8eigr4A/tcErrh+c2p8jOgHv40V4jKiCAQRyRz+OOkHhX6mLPsqXG9Vo3UsI7aNRMjq9bcuD33pQMTTgnd1o60R5Wjb7W76mNRvzrhtBe5QZ5CJuLZgPpFRPww3J8/6nSjWyHXjUfTeB7hYLoWBDvnIhK5HbA1SUNu+ZsPrhv0U3r1CbLK2TYd4Lq48mjm+w3MzbWqztPCyT3LpinWNQdU89cuwogRsS7gBomGtGVCPL5A4zf3PAcwFeoyXjcAYgKHOZ9y+4AWQ+7ATdGKQYk/Vyzokij1ewuj0r/xdMVNsrPWW0UL14HRQlZKd6nchMposnUzxlWJeLeqvgGAfcCwWi8KwByGu5StVl6wYg4e3m/qURzLg3Uxadc65TsNQKOkhNS+jIdArlCBgmzhPQDB5zujmIQwWl1Tz2sTn6oi0jRszAgpcwYQIt7nsxEZmLnXHkUIjklhD3e67ckee8IzUHyLR0GAN1XZAHm/ZORyG3ZbDqkDo/5zIm8zriore6kLrsymnCzKI3zDaOXjI1P6rGM+ewpSALr4gkSgHksXQLxxj2vrtrjDijnbXCmEa1OWHxLD+QmZMmyPfW6Trbobn1A4kkpnSQE54i1KxHO1z25sUax/aPhiPV40CUXnw8SctymqhueunoctlJ27Oy5gvIJ6X+NetrvVnMO4txCTl320OGCFCKFPzeCwv5W/sz23qc2/nhcoL1d6mBoJTU7qHT49MCMuCQ+eZeVCE6+AWZOtfPjzznmO2QMzDC0Rku0Tr4sAMojt79S97pbxV57wFKQeieF3pFker5++mFkxM3s0369+uT52NMqcx1bU9itWgsb1fT5uc+R4ywk5hzYwZ+TnGpGoW8qx6o2i+SiffvHn50JbOLUnxgdADFe9me5Ho6TosfX/mpAoD4s0BMKZsOsQyMuGcU4Q1P22khEQ/GtGrr0oOQisyq/A8ZF2+MUAeN2V+CZiKbKrxDH4ID5NcRsxGeU7DfUewh3bDfTD3hZp6Oy2ooZ5JLltvf71mrRi86swvlHt8IEp9WhLgfZ2XqJcnPT3zmUdAYtUHe6WeYdThmBXuFYPjoua0y3csS4Ym/NvD+jat2K7/astaM4dUVYUjSY6KyxrNL08eU6klJIrjFfmNayxC4plYa9CwwI8LuTRmzFf7g2iNl9oKmjXzkOsBlRANQs4EgaaAMfMTLi0fw09Qal8PM3JHd5/df28Yhse9/lhR8AG/sz/BvxbH+cCGCKf81AiVwe0lDPGbUygcz6FVhkSy4X588ILzFSJK4DDPC1k9ZTvJbwKxPyD05zTLK5nCiJ+92H7B/wU5PIzbOsys+RWX+5WEYIM/UM81fQWLez+bPMb6mzOeBfmykLD5K529s6KcreuxC6eqtU9cSUMg/egpT5e0XAB8RAnPMf9tijPVGM8PPv8Xt6lWkTbuKTAXAQNME6r2jZhpNVo4VLnFQzQZyAhosHLGLiboQQ2OyJ7B9jFf7s4YG2QN/qCfpt3F3LeFXxAuLkV36fHbwZW+4B61EZLlkez8JHdCMdBJBhzn/zE/MFhSR8gM5187AdBivbLfLdH2S8cx7dP0+o931dp9Y3r4RERLSc1zuuVpGQwOGZNJFMX7cnIi47U/6/6Y6zzBWh7/waDOwUL4NMBq/d+D3jhgjx2zOhvkYG07DIv4lbhPE7EYDLBWVbu5oupWN5iBNZN4TCnb3EiU3ARFJZbOMCRKaeU3lx/3ajlxyH3smk3mWj3KOCnpYy/RJaiHr/BO8CijPnvqDiqjXxWD3/uRtNslD/dt5/yDzMyt9kMIY91Vaf+fxJKOasW5U5pMhsqG0Dn1fwAddqmFREMoUhqKRPXKJIBxnr4SQM4U+4XWDJ7oUR0ntTCXjVpmhM72UENZmu7QusurkZBOZI02V9FqgGXJkK5TZPrESdDY5cqiqNThXm0sXcq4xWNYzhOPQS4DZXk5vgYB4ZcnzoTyihqLVWKzLf0hjnmVJepsNdfhPxSoux+C4JeESavCC/lRDGBDkhKpPag/J35IP9NU5mFb1Phse26FeMtYKLMroA086Yfz/79SJeyEby3BpfVg5ViLeH0PHFm1JR90A0Ljrk7U0frekl8kSTXILg9Xcw3ub+p0+QwLVUbVe/kyH+b8XnskbuaPt9slyWrMPc47k5DUn6GlZq0Cg/lX9TZNlE/PCBxpNq0QIMmjFJn2d5fWuZpjj7cnD2C/tr8YPoCDO9uByS6hWlbGQTcgw6BUWctxmmPvgrLnCsgp6rdLTC/iaSJJxGfClbaDDkXyquWHbRRYBxqgjDggacPW4k63ytG5eqJ4xmYAWus/KPH9FTjgwUPocC+29Is+cAPUuJnm1cSNJwrtC1GPJwdCq4hZOx8XA0UYRywCAuilzdj6Cy4VNyzZcGP+bvyeLD7wk2TK4qYm76O5rBQVzy0axcTEOveuRHfABG1DawCT9Oi65dCVKkhERI281Jq7TEonzJG+dnBeXXgOmGexeyWRv0SUZWup69BAihZKe5IQIIIZN/BC7ddHQWkhRXuR5p9AY9Lbh65U1Ou0ur76V7ZNKM+N3R1uazIpBh7VOf218G0j73pT/sNo4NkcRsjH4owpLmSqwCzyPfvaHCE+QAydyIppy57Bayz4A6SxpGcZlsrjCAeGjOOzfqbTkpWS89BWNzrWJfZtLSglXpz1d6Aurtx2TmgCVsyWXMn2KQSGlbkv2OVCC8mXkvBTbqiY9PBdiM/NHaVAnUiWcN3dQ/zjKp7c0di/TejXlsBxZL7mAfBGUwK31blvGj4zqaOT+hBqTk8ptkjVoS/unHTF9t2UYfQW3JcontV8z1c1NPOmDTLfhn0+uHNKkLuD6Q8LXS5b64NVoWBe2LqKogZpzpGl6V+o+IID5ju8S9Ekw5eeBq2349IXA/myTeMYaRdA88NN7mmlO1zPqQg84/AuOGk8jqABw+dOXWhzMRdttOaX5fi5gNaveMzOnRM9Qb/N0bmFOF3lrKc13p6Dn2pglhdxt+2npph/1iXGxl4k9SVh6IhzMe+kubhCrWmeRP55Z+JfGt/kgDz1yziejlatTraovvlayh/JLRYnKuwWsgAuLaOlgjz0fz3XD6pfJc1YtaGFofwbRtYX8CNcwneyttsSpEGwqoQgWxogGtrckMqd96b4o2jMaKkim6RjN0V1YbK8Rb+yMJFF29KHx+MvS31Wq76pIl2ZzwwHzrQnVFPvxJkpErx6yHV5xJRVezoikiGZrBwR3j0mOeAe13Y8j2DOybvzpbqqqe9McrHDYfms+qW6k4R2kYS/bdEG2mLUfRJnUikxwe36PMJddBLuJyOHOBr7Pxdd1ZpU4JHLXEfgReUg8gXWDW59KzfE/Ju5UNkCwUQ84kUOMSOip8xCMeKOSbxYuKsk0+j03Zm2zfmBE56AAczhIJzC+utE3z2iaCuF4q35ufuaeCgdVdXGEbGkRxzf/JX+hMV+n78QSOcPXjKSdGhvl217whdjTvE1jyvVOJz9yLSpj0sUW0iD0obNwqhJy5Myd1e0oJLa/bhQCE79QBn2o/fkI0NX0JieDeb9MdQeuJm0ePVrLrhAMbR1MExYP6JUOLAoytXBA0paEOM//UuvO7SxRq+ODaWkcNTIXsnqg5fdozUSjnP3fWzOWjaayN/IOWAKns+J1ulx6zSgBN4emdlq7n7+DwGKaWg0o48cxiWD5pzXJBvTCVPG/2ao0zTV+PLChSWRFbynkr6cfsaWV8YaaUsTJoAWPg/w7R6VFFzhWAduNBswULNG7AQ4/xVc69gV78fbbQhdT6AMHkcuLaScjrZKwaTFipCMUmlgwjpZpordIeCRug6hCUyajmce7ngtkqfp3uqn+Hl0AMEcRg+YcIdYFqhGcrgg2KmENBN+3IJetg6nbzEMNCT19t9+1YN60YYvjU2zGhD8362T6wIoRUDHFFwyB6v/XpjQYZhvIluOw6zSxjpgR7oqrfyH4Dy8Sj2kqKuUr96OvRxO7E62VdknNFjW7W7rvcy9o9i29GauC5h0bDy5VZr6m72q16C3yeiPJ/q33+YVE0UWh4ftzlDqY1T8Pyhthpiwcx8zauhn4niJB25txUJojeLZJs6FfjYGMeMOfb7XvF1aLDsMSDmYTc4qXewtrlglYJ5zhNVTmL7rZoGr6yGKBCjPCD0qB9RpHwFCEazLyrYXwfLiRVZqXWfb6nU/t9WCX5ls7y0+fF9TM6iIjChErb6R+Bq5aDMh80l8YXp3SLjZaJPq5dCNGIlPERzT6WjNz8n0ReKunnH3+un1ZDLjcMXarZ2zU3L5exYjPatEjNmv/KTUka4TCpdJ8Z4NbKHsU207ql4b6f+oYbucjV92O3u/2DdHZkensPb1z7MArVok6ZXe1TSD7XtJNGasKkALmHhIhJ0RA2/GpyjQu6MoRQYnvtbqmb9r/jQhGPSoQtTb6oczqdJwLdJX6h5EGKzx80z3kutZp08ex77AFJ/+Kfnjz7zq3o9dP58IkPNaugkYsw8GbQBR70hlcs54M0V5A1z9Lx0neYY9C5PbddUVHaI/RtaKp+npMoHgUq6KrGmQUuNt4WVBVrfa3mFNtuDFIznd8KNaqSkofyLnohLi5PjSYVJCw4ImGRF1Ba78bIxQJxBU2HJfhyrnSXGg4udWQjgWaiWn8tonta9C5pjHl94LUGOT85/ArUlC0a4Rheszs9/7RiQh+KCBTi7+0BJWhYvkmF9nykO5NROQYMrcWgtAxgpPHqEOK9Zc7BSsUZBzP7KZ852LGVDNLz+FVQS4ZkGAeljbcPuNH7CpDwwNPqxGhTh/9H3ec9U3YgABVX06cM5PMeKuTD5L0MVg56CLiYmcjwnH5um9MU+MHZPTOR4V3w/CTvY11Nx86l3YcoZNvNUdoJx+MJluxgRwy95tY9ObLZ/dtFoj8zng35bbfcyPrmlI9njxpyIbQ+rQND6AAYdSapNOY0NQtCd0MalvI5xBU+6O+VieaFZu9AZvlwDbKZhoWanDeaCyEyt3tzivxkQddRHJGa/8TUppjg8MqmYAyygC0R/uu+K9gextG9a3SQ/1RY9fLnjTXf6/HVh8EtnYO+UWy2P9jwFkMXLxSQnTxVnzkMclx4jJHKYzsa2KjFK7tf4GKoxuplsJRg0Bl8cyGCaBiNZjGjv4bDQKNbskK1z/Ap+dtpmhA8IN1jYnA0MA2pKOvqAYJvLc7mpJ/PvCh0Oed47ySQvRPn3r/VmtOdPtnzhE873FQlZ7bSl1vMG8HZLF4R/vov95MiwbrN6OZcrhmS96MqjjOkNGhTOFqMA2KoGFGwHG8qXFRKDIl34J2TA+qHVlx9zwG2QCCyXB1v+bqLvn59Ax9GjgYAaVQ+KbAMV3S4PZ6s2yUd+WmK9vi+wgusB1PpzVcBRFFUW0E23o7ONvOorhNl07+80N4PxgROdvsjr90eWV1nti9b6Oy/l/sLn/9kRGihObmCcW0F+ZE52C62ZzTtRYkcPLLufemO0CNOjFobwyiElwwXChFTTgpcxeWI7IKRR0MaB4P27oP09vXhYtiSyOlpdRtNT/6+KqRiXQ84mJP9K3VfoYDqfDxoYpjogUla4cj0KGwrMaqQpGqdJrEmQIiqP4c36xiab04VBFEPLhPrf+s9r/hhbg+N67shr+7GytiT/bFQh7rSfYDuwPs3r5CYmObXyDw/ANTHej4plXgiGQfH9W5CaW3lvWCPWS2HNtkntteAZqFYnhXDJ+X7GvTqojkTXu0GnTr+FOdzGUpEu/6DYndjFgC/iLJBPVck+LP/nCq1L0crr55nxRRzv05KmosHUESWt6eIsDk9+gPdFUiA067F+w/GoWBgjiqav6LgHqmS3tll518AzRt0GYSBIn3vz25dBD7yG4a09bGhcBqc+Np+VP0c69EJlVqIjjn69e6AU/TAiLhqBuNapTHKwOmoXM5dcOEK2bgny7hfyToErUHFNW9zlA+lKOKzjb6zvE21s62iIjyZMz4G5fbbiBK8gFaaxpyeagx6HO7TJLxdVLdyfKuQdgjvHVVqOIydamazsGotM+pgkoGrOaZPDPAfEnLPXU+kumGzzyzAu5XkCHn7wk3/8I1qzIBsDzyOZxxvZYLSH+ke5HYF/lUNJHky2DbT+6IchiU35F5+SC8HIzD/oL9Tlmn60obpXlfCpuVxJebEKm94y7HKkxRUgXguPAYHE2fx+0fHjpYXNkT5Fpk7DUCCmhvGQKkJGFb9+MnfF+tOWr+YqKFDuCodaJm1tyRjYVVI9jKTEslTDkUtqL+N5dAI4672dYWSKnbs/60Ogb8iKGLuQluwroa9fgCSB+Qj0f22lFiMaz4knMauGND0l+q/XmWtXia2jL5QHNhGD0xtDJiaFVp3Y6/jsxf7jkoSNmHfUGOTdAwz+MQ65MngbY5xAw4nwFhaBWgqSruw+7YfrSfyXELSIAUlnhTsNhcu4ovn7aWkiW4lv+XDyKgXu4mMAyOSd6p6uHOYGSl+/ysCnXJWG8ISRbiGicFUqzcMubmwlkx93uQlZ87zm40uc2hOI694pqAOvkp7BjmpbYMXAU2ZaaPm5NhlkjvGo+q1+eRNNW/48hVXXoFBPcF13S1lwictDrYNqdN5NNeRfbDDRTxBc3DmkKRD2DZOjYnnM6+v0qnR8baimG4ZRFSIn6fpzCfPLQCDxYVZbT9Z5//xyPWqS2ODz/N7XL+DvEJjAFpzs8hejVO8tbYzNCAKH7Y32tf5AcWkwQlApiZ50OYfvTEhQpaSnsVzVxoyn/IQ+KOmjJJdffzrHBmYNy+F39kpT/KVI/NWFYJHkRzHOG26wDHiHFnkz11Z8Mg8QnmVrz6vbWOQE5iMdZwG5R00X9tnQPADE4KxsBitPv7kfHZZMtZov0ry3NWbuln46R4ZOtejH/buwBqdYBJ/OvGEJjjqbSeLEvclSV5MA7GlzPIN98VBZelcOaDe4e6qMzEGlkS12ihqrt1SZ1+hqOCl0thzu1/97tnJIEQmhorn7a546kvOGOZ9GQ/G2ImgZilmC2CsQft9f8dlbYmwYKZxByGp28rmp/bmlDETtyVtXhnRivLyXYm6r66SrVg13npSJd7HsgMwk+TDg+OJj3R0O2WkQ+/6Dct+QUd9YK6//944/3NCUNCEDo+n/BJSaGce/rQQ2wfFL7WZvCbOe8CjDS/WpKKUsNlMzu28gOcwIMaVSb1oiKWXVwCjqDVYkd7I+rYQquBV6xYhkih90AzQAmnY+FT2K9AfGdbpumnHj1/gVAmzKvfn/JM0wm/FZq4c6brGlQadCQQizld9YpyHVK0+iitKVfL0q+OJocq+1ONHlFOgUTGDbqihE+VEVhEoh0qQcRfuP/8jIekK9Dg6VHt9o5tWV6EVxHK79j1EXNImVhaASddzppMxNJLlItn8Yom9h65kpj0b26g9+ySxTr9S6Hprj95fqcnxsmsZUGK8pIw+LdMiHVFrhXd4orShfOoVoDk5KnIvtTnDS/caIf4DdJQwU9SdbO2a/+fjxzcivtO58Sy+02bv8v81dYxWHzt6nVO66P+K132QcVlsf5/0F4UtzqGGkpOckxqAmkzM2WyeFyGWh2uHuijzEVgdJCBvAjikQUVQzAcY3ohQRYlLyRlc9zfh9AUwLGK+YjhzXi/nkCdkpsEaW6UjIx7UPfJi2aB+YMJCbmYX0u5UKJxHGK5UbUNrPH9E1/T5XyPXdB0oUJ2Si/wHuLnV0wAU12L2Gnbh9hd7ZKTv2fmqMY5M9lDYNRP54V2VWQTQHwDTtfcMZgx4ry7H+ocFXOZd3TD2PO5UY/+jUoLwpQNSbMvJzvV8Wrt/eVSC7Y0w4IejVP73eFb8Ux312N2fCRCyv9q+I9e+eNWVIkqVvPoGZYwb2X+jqOyWHAE5xBdwO7LwhMvapwjwE3jt/982468A6BYM/ZZBs+qEjIjgSJq0202o+F/0UFMpNOmQjLzhsh1mbPN0RELe7iLccj5lLFnQu3oDlAPEOMwNTz5TMNZe8UspVP/2cyLEA4OS5j8lN0EiJgprCYKeC1R/wTK1ia/LTTs18swjpVnsjXrzC9CA5s1tzdH2+NvmXMuRNhMn6XlvMAiKpzf5ZjtvxtqhFElqqrsUlC70TNnqcFuh6m5G2Syxv/TpRSE6ViUvpaS7kNAiOGP/STUdurut7jzRVGOblq6oFFm6nki+WfZvsCYn/Z9n6l7p68yuR6ecLkz0fSYFlDTMNIyOmtlSc/qEcPPU1QLKrdJf5mR6q+gMW/rPiIGjR2fh/1XAkMLfI/so6nd1VqHevoFnS1gyhgr7OZsCWXwG7qP8OmM5/up0WBdjQ987AQNkvaOQKmyk1d5iHegBSsCoZW2k+uR3itD61sBYFEwIGyAoHw25AU6L3zWSMpxCkepwW780YXEzxy3nCLnqk69dSQEPvEPF9l98cSkU4h0aLZ8trt5Lp9s2+d3GudLbNYkD8gUCCikAejZQOT6h4+dx1EE21S/7Px2b7/GzwAoeU3lbDk30KBnEqubCpNY6y4YnhV5IOX4rL0Ij61rixoRxw5FR8Cz7wT+S3A278es83hiXRilvvpf99WHwndD+NTe0pJH9OX1gDE+r6if5J0KS0aXr0LQ5mrnYBtPSt4xZabF0T6jmSP6HfLmUsL7LOCVkbJEbiYDB2L+ZboTNEwKDMqFeXhTeDZ15YdpCo9tjiOSSWxZN8qTGbVppWP1cepzHSZqWvBM4OgClc3EVltvqltxnOKnEUIYAzUY9Vps42xQLHEcYGCPicfB+k3qPxAgTcwZ4PTvNHmhJCkiOWMSqlZfJV2JveH66W/pbZexH7XiKvPytUNNJiuH1+Ja9oLHAr/JPMuyb9dN5cZFIg6kQ/2ojEkxd8MDlCUeEghnQRsyAYkfNWJYzPBQA2oGYV9teq11CBqtzPyuT69Ogr6AfPhGGYM2T4T91yfsobghY77KCpSWll80o6+EINOJ72WRWmBijkZjDHgm0t2jch7wxvDLXJeJmuswMJlrlxHQFWD6DeUUGBwtQzK4YwMPcjxK1pfZWfIjjdR4NJpB1XzL3TVbmDJomnZxTq5Jt9iGnTGJhJ528/We9s5J3dXw/ObPlA/bUTISUjZJsjhQiaes+bkxRfC4D9K0Y8ZOYq5R/KXeJ9L1UFi6Cb9wJm6wzlPL5WUvoAd+hNP66nf6Jnns2ZiLP9uzE6KN/5KCnGlY+hhElmKd8exI47VKzI8b3G48NjcQLM+tlNpNcedipKEPvqzoDr8Y5oP1ZLTIQnfrPpRAD6FoltglBkj/5VubV7TvAgBuLCOoyu3jonbFIXikKMkVD/tzYspBdQbFZulxMwYxTMiTaikk//JHH9s3z9s6Xl9iXAq/1LJBKp3cXolQOfciZaH3rDQ1L1on4QEJLleAQTyK2VpC6Ww/2Buk+CBN1iop51GaELefahFj0wZ3QpRZElnGx8+mBpsaKb5SDDRi31CZjyD5drcpFmxbhVpIKE3FzPxmdvV7GdyDKZdpK+3VFVmboIYCLCJi7LDa29uzL36S7njkff8KI+BJz8XH4NsWJgZqRtbK1C2cygMi04fa/XuJbWHWU8oiwrOQ0vfsHQfUr5n7mrg32QLuwrMca7haAYAW1h4miKEwkkMHGQW1SCvlvnKCgo5ekVrwFZ6DuJSL8BjhB+9J1rZJd0CgzXy2pjYv1tnunCVEnvkHx/ZqfdPWXz8C605AK2URiDQaKKQdDH+4nZyLnms0x3gkNGzE0j2yqVC3i3iMcDxwsNfk/iFDfz8IzFD2wpBT9bLYhFMoD74JwuCQXZ4JJ6hsV4A1z3f998VifNlnjxwkhed2Zb4h+rs52JupZzydZaKXnAC4pJWc0vOgFpGBKY/jRfjb2ocwloV23uAZXOF/PO7dUpChyQUlk9DFQars25W5RZHZJxwGIu6r+X62aj79tyslII1ue+mTofhJioEjhMzGEnf/0CYJuJ9tgTxZl2X//xjquXcsvh06ZMMNAmw/SasbpinYl/1MdonexpPSbxhu6wy0xsIRW5uIvXyevP7QbkAXdSjf6U3MrNDOnVn+Jjl6Zt6rMWhzJx3eH7QEP95OISgVhrolNo+0ygGNUjX0iiHBrgeXC/bbR+HT+jeX1zzIKLbhbZh5IQTXQwZRMbfnsQIcgxCQ8CSg5LVUKSQxx/pDPIjfI145SHf9caAkJ/bUe7nbrDd3BXjeS96nti5Czd9Qs0rX5m5NY4ERdDaaU7P1LAxxVt6+fYsM6YRlsuv8cBuEG9lSIyKJPCZtRVfx97n5jCPQFyefADuVYwRWYWl6hoJeqapzRjY2z28T4TScrchaQGMIJVLi/EK5DPi9hsCrIWiv5rHNM3zV9R5IbR5xncTYUCmoO2mTlHWza76UILc1szKXleBGE7yLTBaRfLNUnvZcwb6w0dqCBuFqM/XmZbBA6/FC4XqxxLzXC0SFJkpsUIVogvQeDGJ4B4gkbmeQWqPscnT7mZm+p0TIzyophrJuVfFhXNgW46ZV52lImPMEUrYcPekkgrlPZCJdpQDt+hi603cMRKCTFF1vMGE9UbKfQ+W07sq0Qyy7cjgd4d/5GfGxVzheH6IXy0NbOBIHFBS9jgCixmzhgY1IljT0Cel8iyq8yEMWr1pmu/fAE2DrpuWIWAGHH3uPOkgJdVqAfwmgpchJ9dGigeH9YbMpPBzCDEaLZGi6Fik4y0pt9enA2KGRKq5YuQAy2AIz5Lfjs6kIih9dPkM90uy1XuXZA3yim2g5sNHhcITUYrvibZjGZZyMXYiC67/KKB0+K1keqIKptwTT7Jv7PcDhr5sWcF99Fwd7+yJmnvJUmjtpRXdI1th/om/Cke095v4/tvx5EC/Jk87cOxBrsxjSJvPqmdyDp+moCfQWJZKjZ5qqzZZHNFsRviuq6Wt9pHdFic1iuFnLwnVnTeir8MOatKB0qYydquc2U1Q0NgqahQLa6a4BqBEAhTcBg5dEUZbRPtWuZXn2Z/UwniqhOLN/ZLwYWKoXcSh8ceFBt+F3NqI92kEdK519/4t7CMaJIj5SQNwF8bxKNmuPQU9mCNGAoZtK54yNzfO+DJ46YiIp0Dd8McmBMboSg/CzQ2bedcmboSXsO+4FJL9551NsNa/oJmzWLhKux0id1TSGI1zw79ZLd12Ls3Zp3kta/BrsAGXJxWvm5nGb8xSXPWageCwPMSvPw3mnZUPW4k/qBltusBx/sCcgRSX+Kla5uLgHOBKYyBF2cyEV9FNgm0SAcUkzOhBqWxkGUI3RsiG9xnfRunldiNPjAxEu3ZfNtXx+6yXfLVbAjHGYN42vFIEny/H5nyBqCLbKZCuTIxGAOAImihGvgXMKamb5b3LYBRqm5JJ+09V2MHdx4xEp6g4MaTM3mDcuys0LUHaf7eau6tJal6sha0pD9LU+mYHa2fBZXLeSLVgTRT3t3ppERo3E9+ef8IVSN3wvtxqU3Yad6rgpZdGDErscHBvpWV61F6+3IY6gNf9jJY27COCOeoxLLqDfxU8h5uX0GFRu7g0bOg/epr6tre1quSQ4QFVuxlknWqKuOPwTnBgblIScSjk8uP0wsxYHKfsnforNLFhy5+ColG/QM3wZIayRMvzqAa4goo/P0pC5H3DHLL9Fq61YeDBejM2asuBlmR4W2SQYELiji/pNBMa4v0bW9d70g6UhGBl52xsy7JpBp8vBbmdOB5Z9rc5ktDwv9G+2iBIkPQavnRhfXfRuMx00dJui8LLaP15bLEq+TNritdt6hh0dUanhSi46tHvASN+zH0o1dU8niUpmRmJoDjAMnUack4/jbXgROXcvlhctZwk6G9MANHVVPLhNtRsaa8C7bpcAhG6SUDyYr6eFH4gnKy4zudKZRFwKNfG2ioyGmrpmxjHkSPH9R0y7MqpH/1IHGUinHI/oK+skJOXAHLUFWaAD40nE0HuCrjqxn18/kJbm4IFo63TTn9kH+8dyN4lw1R12u5xaNpMGdc9X8A26rCgRSnuWR6n7+2OZQAfA5snv65rTPFzE6l5Ovv/Bm3+DUfM+51N/4gB1FceN560JA9IyQ+3XcJNb9Ot3aYiYWm389ZMSOPEAdoc1xyBQtevo4M2w7Vi+mFahHPV3JoX/lEaPochKtA+xPQqAu5fyIRqEzaFXsYymzeFhx0OiMrBrYAQBmkd83FY4io/v/6EEPaGoRYLLFgEZkFnOlC8PJ+UuQIsiD8KBBgxj7xbkX9RIGCmy/6irohPyk+x2CZR4vP+XYkTGEalDhDEueCZDRto65sRMh2Ml7asURHyAmzJoY7VYTUS9WwAPZWubaFnrC/JwFBDEKVI+XD6oa9Abud/cvGknP1IlD9oveMDyv4joCfvm5SWsX+YJx0BPGS6OHUWY70fuEfHd8Xi2u2dYjpzQLi2t0E1q5Cxod1xr3EMCbV4jqPA7taBurm9VW31gVEmgV9+mU5gdddEQ3pMqXqbpyGhmWRIyaloHycypVOmzsVVqKSLlXYYIxpP3AVnf6roc+u1RCPeO9feZipVhUnxh8pBJ4GqwWUr8GwFrQoE/1SlSbcvLDIihv5qelTzM21ooE7dCPhxpoD7Mbu2UEhklrucCPFxgT7BMOmZMF9UhB5O5kBv3ue7/+oYuZBBCwkeWH4uhkQ1ggSdZm3XUoqH4L/p/FG7FyFnmFZDi6WeIbcfGNcDcHejueqlHq5vN6uePfQ6MtRC3fizkNL9cqrVGcYBfHNjU2crxi4SreCv4F/n2zz5lNQPn9WBy7BMmGbzbva5CHSjIDqq8v4WR8UxyMcd9K0mjAnRDb3Xxaia3JKUixcfh1I8cyS8JWGT02S/Wkli8Y6XzpTPOIUR1vMhFZXvGKA1vcwd7opH4PYLipW17qkzgWv23rut0i3pWgHN72H4j9TMr0vsfeFnFIx/qDVWvuVL4D8Kpyf/vPESqr06md6ZOw4C23Zl5jkzc2UxQIsHsGD2sXjwUw6i6Ro7xn4GyAfUzJimunlE3IO91JGWKrEh5ngeXwVwBZ5XxrBZ1rn9hQC8rl890gdHNf+crNj0QsoHFB1xZUG09hbZ2+yvtIV/X3UaHcsWM8CVJpAPD43nScSLNDb3V6U8DcJ9/GLtnzyR1YXp+rVuLPnilRLv2BDxR6mmZz010F51L1e/+GQQDW7gn6CZRGAvemNi0PWxH3G5Q4HoFQIwqqu2ffc7/Fvd1ELrgusJyGWGRhy7aNwd7Bmg8f0R3vDd6/ZDlpsLweCs74bY4vgnE9EshoW+YF80znkNQiUjMgo64PnrgXzHYB1DB+sXHYYTn0+5ZnFPrHIvSYU0bkC94RXwn2ljoQIXM0ItI6yZDY+yaekKmXTJgPUQYryA6PBz1is1IATAxTTPtIBBgRVhAmM9I8JAVBfcwq8T3/eDu4NO+dp93SS7klJUw5JFoaQlJM9dRSWBLRD0/CseCETKis46/Mz0mR9e+raz0DT0HOYBU1fbhgLW7vpAD39o7AJcqPN2/Bev8V1OL/2Q1xPCXqIhn63AKmDQnLCS0W+7wpaUemzrmj7niU9jPtO+Ofn+Iujnr9nS2Up2xBN+2VlmP1HKshH4jo+8t1zKGa5x5ivRwk1Nb9K6NdgCB9yr/i8hal/JWX1tUvQ1XKkti0THJsFmXfcxSID4VWkVFSKCZlbrsFBEeUvex4cQFgy1sjS3g2kxO9rvwTha8r5ZX5lKadj35W48cpbTwOE5kefPQ/4uYHcJ7JDVD/UxiTasAJos71Y+HZkrRMzmH3gqXNQQClxA7JMBF5iYzxkcdJhI/GXgfLQ6tDsVwS2L3ifdMVr55dWCk/o5Rp0yLXVvgIXT49mnr7WLcchb/tg+tkwKs+yW4tXzSrl85dpwobZaCIUQu6sDg26JVvY9eR09HA83IN2J+LN25Fsz9XB2mwzTFqtm/GMHQhbvaCZRwZ8z9JtZ5Qqz7KT+p1gPTWBBu/85E0DG99uqBAlrPDlwkLy0hkcqKP0Ynv6W4Vivnvuhz9AZXw4PdCL2rqdbEoyM4FbiTB8WwR+3rOpof1JXnkZZesFt3EkVU8Eu/gjGpIMx1rpvUQnU0Q4Z2i5tPZT6FDje/yPjl1k7nYiqXQBmiLGiIfWnbQqbqe033qHF4Tz2z1Pv9df3xYMV4L1Q2XHhcnFjv7Ocs6G0wkl62awAlihcBMS5JiQX3YR+DJu+1Fg+w5eOxFYzx9wtelURvGHCEW7bilk+la+a9W8fcJKO4ekXtBISBRmEIz6U/wBUizjaz9r63PMhJ8/tJKdm8GQ4L+j9Bx399AjVDTue5jpDrUGg+dAwG7N8n8EFCCr6DSYqDyQD3mlzh+pvkYlOLnP+vVIxD32L04qKX1L0WCCvrD69Ftt8th920kgnFq/y7WMaX8TGaaEa5fHbVBAzcJrsC20+VxcLPqHLQzunROLdSmpLArX1dwtq54OOFuZ4jVO1VLWiZy5K15kSOUXWK9Yu+REIWLYonBW85YegSvhUIvHiEbIJhwjaxhusKr1Q1ToL1gkogcXc8rg3kw51y0KVU266CdgmkwjmTITjqEKfT9WoSrl+jboQxfftLhaegTlbsOVFopf1RfRI9vf/ErQ4un8X/KUMQ5ViQ/y5UmWgOCOZfT7kOM9igXM+9vVaXnP9giHSq2Z6PfSNp+TmhXTJ54/POHslFiCOY4ZcKrcEXE+gxARlA4ywDbWZsS1pOVU0OpyH11ZEcr4crDeUdKRv1bXW9GTm9BKF+WMLI68BifFq18JfcVSksgzotLlLpVZWr5R1vaqEbDoTwqtTFcXecFPTSY/gx9vCjP1hpVCwEl4ND4z3XS94CQwGG9YFnW3jxBTXFPfeNFl7Km/uRUhnP2Q18NYyPrL8Y77h2R0tsRRPDQDwvK5seCtwJM29kienTgypAldTUdYolb06Zj2dORJVNGjsJpA4ix1fHG0PYVUo9/0xYGngeexNONzgvMp7WLY34mogNLHVgCDLyyzVH6Si0WCjc0aWrPCqLjPfTKQRXymKXOSCSpt+EhRHAWKcYgoRMLi42t4Ij/MD3//E7Sfk1Sefo11ha6GLX8iJjJJmGfkuvM7a/D5HPv7x7fFRVLDFaGQNdOufM+m5Zz1v+BeEZNtgZ17YPV8z1KXPYPQTHy5UHXGGx4yDFSoqpNd08DFyPrn6LnpezirAX/CJUzUvvVoI+UXbefCu0BIfQdFLga7vp5cjsjvA2wDnC81OxMKc089jiOxVnvOeYlJuSe0Selq9xiDXIltJPqIbbpCKR6PG/oXp+e8M1ICYcpKXkiH45YFy2q9TW492YRODJ5+7TJ01QcENzZca4oBJaoJpMCymfSFvEaNEhUiw8Chb3GdWHvFDgYtYYPFmlH0//lsgZIqjKj4UfQpOtkCMZ/54dsk7EX0pPmudIqUVQldlqkAx5J6qjza9M4iuXszSRXK0VahtNRWlF/GO0q/NfyLGjQ2C32ESsizHT9JvdsehJduPTqQLg3IhBYDtW3VAUpiYHO1RO4HSkuJGHSyTg58/K9FpgIx5dSXekgpG7Bsb1yftv8df/trfB02diNG5QvvpdgMSll6XDzQtR+fqHXBfo9jl0G393/S177sme9rBF+KQFge0yQXwq+G6kpg1kt1PxWkJ5XnF6j6X6vhW7PJxHbaCS/EzXxwiUsfYPeVb5TrXskiHpZwofoUXQY32+0I3Kd+Iz8pWv/hFFeC+qikqO3XYOzkvLPaE3tYmlzsVyd9DPDXxH/ZZ7zK8KOv9eoONue/QAMFTHFr9uonG/+kCMNwhGGmuWTfImzGasO0JqTQSLQ8ecFo2+vAZ9gtg5q42jCrmcBxgqfh0Cd6fWqm6EIQ/wCkLqUZ+r+l40vEtdoVxMCyHX6wNpIVDPemPAt/m34MW45V9yUoIfVGo5xUZe9Ae1kciurYw6k3h4IOEKH81DMZP7VW/c+tac5slahnCabZ5YjW/DMprpcNIsnBmkZ9pS9xSZRCXS2l+VpN0+2bKsaMrRolscTPMzhigD9squmu/E0DE56kv6UkMumVaC1cAIlVwRwOgCDKx2vNMmitSUGfLXzwwI2qmsB1+U+QrNMhOyeHDaHuTrqA78++2HFUSfH+60vmeKqaB/nEE9k3ok6tQjtD20PdtIyGrPtqGehpogIYDaLkDQTWnQe+EYo5PfepAAS9Da2S1VsS5KHZbWbgPldhFdHwbEMEhjRgEsRg2/4n8NvKzZ4mofbvLq27BygGGh++8t6g6ixOxEn08DWhgqSV9uJFo3VQJV7b5Byn/PQKnK4UkgWNqj2q9MpnWmbwMtgj/AGrWjjjkgi+Qf91PZf74RPnarfSGpSKSxvgdPXpxiJK9fulWNMNGcyvBaEZhZ3Y26fr+IoWzjhUknS/LusUUZZPIr73VCK+eXKkYENZ9CdALnXj/JCPrxuWX175oN9j4TYcdkoNhO6TRHsyMbA49AzZLOZTlX+xmj+0mS8n9/w87i9ElNAK4N2TfPydcUgoD0IF0kyIH6aDshMN3IQc0MdVH5/t+LuMa68zMdbb/QwEBy/hOu6Ujd20zaGqx1LksnwRfU112ZX3aCmVEDZkZaniAymNlJAS4tpr3l9RlQro7Sf5vF479QOqB4YS8ni33I2tCBORlPg+Vn7DC17ALOp6QDnwW6TTayHKnfAZ5W/3uKbtbzgUPhmVSnTLFCIQWFSNHXvrCbIiDWeNn+jWT31nP0RaUZRBjYP/0Xw2qdiNFIAkdE2QC03Q+zijzQVWeta2166BlvZ6b5gCh5089Y1Cvb4cxi82jg0jCiOkKNb8r7QEV7gSpXnH2Xa2Mc4gpG8HpH9bzC9bVwo3I/e9yeQIdkA9IoQMpKPBZ0lMqvUAwgrVgd/4AaJ0xRyU+3AK72mwLTzEZfGF5DFCSbRlvYbYl1uxIphB/9LPE0gciW37ZhdGT8IqF951ZLTpCWzEqBBHh4AcpVAfB/E1BxszpAAbL45hyGwJvKvzN9pG8or3v0m4k2Fjqty9xRndsyQQ7Cs9XkU8EhLSeFgfiRHg6KHeuVgqICpxjYYNmtXU0aDYq29puW1lO6J610BUjNrhwYA56sXbuHLU8vEvxalfP5zxcD/nJXckhFUVmaCImOiAlypk2NgS0szCQZpMgznxRlQ0hincdliTDlKRsxvxWiLsPbxbAkf9Nb+afe3Uli/c8mbXnbErjVtTlx6mfQXcGS+IkNUpA/B0vr4UAbhEnXeNIJfKQ8lRHloMCpQnb1CEPcab9BKQPPv2dg13YIcz958G5pj1ydE1myT0si5n/GpvxMgpsBD1yNeHFI1zn/8gBD1LHV5r9ByX62syLFVJ6Y4UOWGrxpcEvi8nlzzHv+gALF7p6PVMdR4kzdf9BTSjW36rWoTy3VONKebFe0U694NFwtkhl/V5YTQH+s21wF/YkVtmkbsjcY1iixX/UDBOA81IG5FG9Vm5Q32hj28amTxxp3yvdCeYz+M8ikNzs7k59Z24IgMvnG4EufaXe6h4orEO04eC401Fl9qPwMmdRYMmHVBYBY6Dt7tvtcCHeJRnyxnlYmt0Tw1Vw3LHvCVs+FWUjKM2h+tBktAzDr/UfrW61U32yTtuFenuLB+yExiPWXhOisHTTLnIAIshpQ1E7PhOxMnLYnoeDqGGHFnpWvdklHREL4Owffj9zAI08HsdwSjK929xXEz9yTwqinCUni7aIIPVbwfcDlIJ1nT40GQ1K1sIhKPWs4+nspEchDWP0ZMBPsVofMq24WUiF5ty2/uqd3fG2MyxOSICz1yieLgB6SMrunuiv8s67QnaRga/iu0OmU6A7G8qcb3CuLpTG3dvpPBsgQsT0+87Jeb1C6qWJEPkqTqLwKruIoOeVkYkdA6yNTzFC0xRWxeweaTeE1B8n8a7u6yAi2K1wHPPxGqEdab+nZly9hd2mgLoLYothD0KWswFfj6Yc0J/7xePa/l2Vstja5P3wDf2WzB/W36KGOZ0XyZ6Z9EwXjyBrmBFqEOFLZNY7ll7DX1tUDQ35piapNWdImY0ngFIkkXVGYrp/mjp065ANXyQczavl+4VVX/FAdT0DxUxRbkIvMFnx1kfXqE4q6D/Gg9/BsCMgL8MIzqB1UAtMR7xBtGWSyGAJzUt0SMKB0jRv1mrquInu3rrl2D0vaXqCRxl6ZmiaH8Zuv8pk4Fwv3f969RMZhdsQ8KJJxw9RrBadusDfmZhKVOiDemM1ahJ+NXZJu3NJ74d0J7M2qKVJ9Xc2NFbDvz73DjqasH+KycOBXuLmQ6Y66KjOyby5r7fxc1vw//WLaIjh6Kr50r0/XL+Pvaiy8CapvcheZz0yYpkQLzWM8dGtzuWmbt3fnLMxudEDmQofX9vOeD+QHpYsD/oW+A1FZ+qiGgtPeY8VhDazGOWgGplAzvu7pnDe7+kKZjtg5Ghp5l8qF29dolnt1yr7uhq2h7MpA30hwOy6CwufLx7YwBXUDaAgXrMlYvuQ45sJY5NlHbM23Cw0CwQiUV65PPbkzvHtV7UwMlp8BF9scvVS2RB5myMToO7pgDRkmhhIqTnAg8COg6I6D3dz8DC8pUIyfkhDPYcGDrxEKAYKyCIE31u+HNw6EER+QMANf1aLn6mP+JNC7Lu+xRXSE8La+NqTqLvkrXCX5+ojKfUKs/ZxQhOPnGROVVUXjrE2gPf6TR2eQD2IH0SoCy+tUGds+4EYrSykjI4LQAJJdEhFVOtskJhaMQhDuxygmRl9p3f6Rs8Qal6vPtcWDZbNsezhEB1Sao0tHkVs0uFPVPXFZ1LwSoTQsc9VYOFixV5ufbtLtW8ApM8tCWo73bgWH648qYYbIc9H5SRncenFoC8ZLMu+DbS31pjJoEsqvrs8VNR23HXP8PWWbCmhsVXrzKZPyxOAJKD02BMc90byfXoQCSOt4DrTRkbQMkDsFkn8KXfdjpgqDvjS6qhPhrSKyvXmNMNbhcx1HH8HhEDQH7EjpeJB9x5KBP2SYGFHAc7b3l7/VSLEQCpzJ1DA+87s1LlHKn4ciY1tflShhOFRKy1Mwm4iZx5ckHZaTulL/aVx89DMHGUbcR0aNnue87sDKb7Y/nHtVv5cEeC/2b7Z4ZErKS3TIgrMpnrkSdBNVPk7+42YufnQS87oyI1+94wZy9/vcyPXhQZ+SHXcWy4IJ0oewWqtoC11Orzwe1nIMpPyRpJ/aM7qqQ6qWZfRUlTJCoSszyuUAxPRBq9GLXavsfMh5vhXQrui4sbobO1bPy/rhmi1rW+Hjpi/Q903PBRIinGd3j8qksegvYqaZ26rj4qxlE30DkXQvUkVth+aEp4HdQrvtQcfutE3Fh1jKAtx9OZyAO4A1tYbtmvvYqXCvRj8DRB00EwfTpqFvUNDCCPQdGg/JuCA7q2cQ4ZMTMuCMzJAg8+h/lQiDG/pCN0RqAtW/Qvz6GIfUvrzpocjTfosLUNee1Qte6Jc+x2Yy/P2M1wcj1Dgnd3GnN49i7g9wT6Y2GkpnJsWkJmJpmmXjV8pRhQIdH3hy1fwxdCPPJO9oVmsOBZX9d9ht+3bdC1Ea7PjZjQrdSuQDcqzo9eo/mroVGG1V3bKtxXEB29flLc8/fofEWuxTDFbrpy1Zcfv79BCEKFj32Wzwf6at0Nuks6ZdJd1pLGj3HRI0pCCrjKElAwSu/mxre2z2o+xWqs/fK9uMoEQKKpDBfGcVz6W3awcMkYzIoF2jtZ/Gc1nrJViqepHtQzRqYTWtrEF9WgkBK7abcxdHM2G1HrkeW3G646gwtuKKE+f6RcR2cKLlVkPq4anJLculYDxekQOCElR2Swv6XOkEMzVIOFOjrYtQ0IFBZFMKahv2hjzyo8B2Kbq9lzb4QHRzYb4QLp+bOIRCvm5rGhKv97EynRzttkl6W4qpKncHCXzxtlRWaVvTk8gSax8Nd7zfwQMEwd5Pacr4aQ6wMqHh73zJxv4mhIpX5Fp6C5+uG/bFqvFhy47HNnsEsdC4DScSmuXrpDRtxzsXLfvuqWD1ym/4hT16vQHa0w/ZiMzxOAA1MN4ncM7Bh3CxgQ3fb6gd/dRvLlPrwWeIIv0Gp2/bBOUMT9bo9tDaqcYPv+GARdOEZwHAvH+2imciHl4JGyjZHZ31TIfjY2flQSrQHW2TceAMrX0H+S3p5dyIUTM7296uv8JmEeAnKedFPLdIRsEFJPR6mhdR0O5dtGdIfH7creK8KDQEUASILP1cRNPVVTMa7dAhNZ31NqGMi3ujTYGRYcCPdSp5VWHeaZnEqACZl0mzoFh9z2QOg+HZHdF4GbqpXpx5a+b8ckI05RXe4PPBXMSxx6JGL+4BKPPU+Qu+11O7aDFwQockeQu4fqVf64Ae40PRjVGJTqVF0rsGCtGGIOVbKU809Qbl+0Yhha5roTnNp1iYm8/EuLz+ETZ9WAYQPbFTEUilZ+0zU1qTMTjSSpO21RIJxHNrvOUHstcHvDjJOt63urEL0UsZ1672oobk3Io3iQhd4YalmMRyjNSIVv6e8k2jLzMBw6cxTg8Uj4gJoBDAx1IOtPu3y1+ok9N3j1J9bFnx2r/rbqqI1LYoh13Tww7gkDHegBGXHL8INoOwB6aMMxQUCtAYLhGQtxHxe1B9mBvVBsC67pIp+LkARc0Y5yXDB1LqrwDWYFRqXpLC7yUE9ZSHCrjCQ36pB4o2i6vyoNpfOCpw+d++aXrTS4M5fuh7MCqNkUoQ5cdC7iiHIrWALzRmvy87Ty1d9lxAXvbpi9f1fXnVpMd8xq4KjTvczqsWy3U94ziFH3wonkOR2+b5jhatxlVG11tznpzcxrTbLSMfgD7mgK5ZqBeIj+/d7hGEJwKoLRCgDCpO1/gyBI7fpMLPPAKr+NEC6OamylOm2b/bHc/dKg5wXIOfRxlv/hxDf8DsSWHZDrvsEuEhOdDGEautONNILdKclFXWIDSqvbnwxtld3+A3wCkGPlGxT5geEbrB6n+NFeiOkPYL7uMRylnjBC9Oo/UHPloR718VkwnAW3o9pMhjbX3b62Q+pNP+O76j/pAgjxH7XfyclWUG4Z/+Ge5YoQSbPwf+3ENVGXWS8r4Uso02tvZnif2z3kyhNe80z60TyXxCSjX3FQmtc95sg9040nGrRKUFPa5enVz2/cTHEsoqsx+zhMayO8u4ZuGYmxJnStTM0w2tT4dW7M0bZUqz2DqPNttwi832zeok9Sa7boQJxet52ojciSuOr5MTufGeCO5/2im05wnkxyF9fgSAjl8Sly4F3gMJl9PKb24RReld3PoDEnlbgSQWXD2c9WiysbaOUyjYnfUPgD46VKeamOIzSMzBHwIr0sprr1GWP3qa8fJ58o9s+Ps8UbjQ3rI89BZsWoB1j93/6++za/7T6SHOrsY75ldZIp9HHojtedBhIMx0NN+hxbfQVgOTJnT2TVEJ+1DPtTxLK69uWVKu73nEb832milFj3FicCGE870vB8Rhh9Xs8+f9pCORq9cZG2x9VWHj+EDW1n9mJdBkz9K2VjAX2hZoK9Z87dfrxZ8PGizcndprW14LBp/U7qhd71+z47KA6Ef5c7QdPegQ97mu72fMstBBTMQEQyQ4/RS1EbzUZPFld+/8rDg/rFn5csqJOdvEZqUFGl+D/jsiPvYbGsY5w0VnybukAuyDCcCAqR5eeFKPyzSCDuPQoTH+sZfDYkL7sb+nE8EXA9f9fihAPSB9SCDuvMs73mBmzY4B8xfconKPXqtnrDHNUYQCBFjZhti77G9bWOGlOpOzkGaeg77Lh3Z4Mjo/OH1tsSYuZ96NypBRXHr7Ku6x/Z5U7y2FYyfKdrC5jJb+2T+DiO+3B102C6kUETnoRJNG2ltTs9Z9UNQu1KgPQhIE8gy6gfLXXIiFfNMY9pFubg3U9et+BH1ki17MhvEMwdZCbKBpfuRUL1O5TGBzcrpXpQsFWfgeAO5menBkqywOtSAhH4tmbYDD7wU4dJHqmbG6XLwSQ9lCz/Qy78KGa7CnvDmHWHh77Nta0JWzzWqwwVjPjq33fs3W2XCh7HvQbfL31385WQLROngdiT7z/DfrgvREp4q/2oqVN1u5Cqzy0p0IkKEp+1vYA2+UsnGvboU7BDb0XtjBP19QZqQdk1sDn2D632Y51w63CQIBg2ZDTdJaOY86vnvO6xBx94DQLIxGlpB45cf9geARzyGdujoUaocogpi8biTaSAbIGRyCSOzTUnR5D6IsRf9jVrGpWBGrHtPS1SatLVZSsR5b67X5S7y1v8KE+jiU9MHEGWrrqFGy9ZeqEdcVqb8gJUutdA+4k2Eq9BrIzJXVqpe3XJi5JBQMVHAql0AbrrfGi3x4zLqQoDk12BOZAiwtRz1v8hSpp9jKmHkFFxKNMEPDMJs7oaUJp3kLGhTrkEji+WQHPuFC4FLPBQAG3mNTbPjmLBove6aCOiM7RaXSO/4kIcGwmAxUsS+2pVG6NCSG9Tij4T7UIpOgnioGx4Drkf5pfQsjbHkbXht2dG1ng9aa09EUB1X87OgJEvvatdDB6BSQo1Ez4IBfstZdHCHzXom6CEwcYRLifVVYPC50dBDgvxzmTgqCYP0PCmMSXiOuX6ZfJTX5rdVkTcA4q1bgpcMRQ9rq7IMWUVW/gW0yrh1nvvSxJ3u9yhyEWUbpU2buKAojRr+buy6oRSaMzRoFu3wu3idB6pb2880BK3nRkfNIbQ7Km2zrqLdL/1D9nFNsszVcA7d4l0xiLPvjAM5x/zDILYVR9OZmCZ1l1j2vy4keqtLgMNy/6X1KzJHYuh5a6wkvIGXe/jhEEl52dML02YDGvGIfg2/WStlVsbH8bclj6LR+jYfhKij0TStznbQVpLtOLLd+6ntNNxQ9UfW52itCnQ+2l7qsZOwEYP/0hKGjpary3qxL9Ut8VW4mTdYmi1C51yv0QyapnkS3eszZJsxilBtHKyXmNMW4yePoCRg44/6H2Ku1DCL4dImAdoXpxjLb32JpaLBDy7sVhGkeq9gTrAkS6Tk5Bc0BkVkdBJ5HLA0iQXnABtmmOacl7RtPyZKCzT0P+aru7SGvTSgtucCX5NnY5gmdNGZrYaqsVInSPkWCWcfP5CSow5IdQihZkVv6gXfiP52zwpnX3QwSX1D9oclcMJx6B4/rCXamPVXDKgu+FitBNgNgXInurh+VzJSvK987mfKVVvdWcPHdaJhkJsI5bM6cby9nUf+d9vBQ2mDY5WylbevG6VV/a8lAaG2k487bCXIJ0zrMQSWifbBZMuDoCnqweCwXc6yN1CplTyh7CMqB7vYBr2B5CNEuNT4MGDdnyCpndHwKkh+NYMoX0hqfo2vqA7XcH0qnjWV0iTBPPeLj5MryJZGGLfjf4sR15SfOn/Xl/z/5vRCv68MjPFaPhkvxW1AM2Pabl4vkVhJZI5BdWTQY4o/qCaQuYVOz5MD9aKOUmTEu7LmnYx2Vg6PftHTL1L70dfAW4n57Yf5LOrkNm30P0/Ihx1IQFJrj7lstpt3mFMJ0OZuaVXCLsBs2o6xPrm4Ingk1TbNdZ6INAMBpFzE4aweFyugV8Hf8pHkJyuqmlFNfFFkliE6UPygAjuBpmJEjH+ZTDybwtVQGGscEYiEWR1xnpRY5THEEYcgqkEAgHe2ZAssf1aYjtf+JOcmIgGUMVGFx7pUnucEfBFY+IZqRvv/cbAFppPQnsYtiniBFOflmXhPwMsFhb8REGNOhhB0LOqwqwonOH+n6sl2+HB96YENruDF2n1eAeyqFvTFtbNNXTc/sVdbFfwjTAyuFOEhFfSRFf/6w7Kfa24MmaIhgywH1Hk7paooJGj3WBxThhD0nAWSdujflvPoOk1i3L0ARhzmeuuh9s/jLtpvW6iodjTsp/B/zCMf5u4B+LWW3RyS4S8igf7sRL2L0qjtC/ySkGh8TcMVaiLzTP0co8SuiLjmNedAvFTW3oaXUGIlapRpXvthATKJE2tszhCzHpqZir080ewQS95Q9cYWHQXIMx5kJjpDXe7uwXW8fYEV67BXBO8lgbF9lyNMwMJtY1RWTTUoGn391AA6D4qKfYemDy4Pd16Rt1shl59RZyi/+hvrGl9LkJ6OHRldzz+aywCgd4obYDoXTvNo2tERiSbMvwtTZCCgDK87UOpmgnW6McrpMfrr1XIUNXSnfLpyn96G3axOsj2k06TsL+oMDVUxuKKd8kC3BWW2ASMVNWKAUQn/xKf1R24tbdvcPf1QZXGNi7zzs5zUr7rPnnOAtpcd9GfjCNuLgu9nr7nRxVWDBY12x2HyGql4MKKUKGJPywHX0shh6Nhk0d9G5o8TLTmxe1+Bswjt54yiAtVKIdiHzMAhO0tHTMt8hldfKodH81IeBhEXrPbfCuHJN3iQtefA7uwOr5U8p0SoGQuF3NGif4oKBCTC5KXWCko+7joMV2IAAMnnjPPtg/FTIfUmETF1oLonzny4m6KDDfCP3Ok1A7cbZmq0PW3Q0gkYTLsv5ULWvzQoLHZY1ZSKfGz++kRHOaAAzZtxjLN4y2G0bWBn0Upi8edc2T05apYN0lnYvCXI9c9F90JXnHF/Dw/56IxHEUjeVMNjA3Ol3gbxh7ySFcVr1KRw5u1ofr/0k4gYzPhWJFMYsYghyiw/FWkQjyDFK9Z37NdnBfDzQoI2/jVPPSNC+zXK4vI5F8rMdhbIVxplxCtvBr+KY1Y3CaJT2xfqJlxIzYp0/TNoKlHDwIi5V8KE9gx01aAvBAUGAetPhFyBPbYbvzXmXJlSOYVomHVoedVaz6F3YHTk5NdzNnbLHsLwotHsCYImkdlN0FPuQKCdSJWWeL0SfXyQ4O3AUTm01CXWJugD+ShQEfb4Lt25NIBHvlK+gkCwAdQ8SHGOvX1HRWJDtFYtyFjohR/XfAoGu3TzmeDgis/DoS3nkvJof9CjZD1zgxh58Iej0tDukrXo4iAYZIUuPdNGK4nMoCu1sqQMAidRprhDPkHLL/QLHVC0RYXfQj+RdPVa/Jvj/6FYwkJs5Je1rnBnq5eiJypiv+R2J4etqPeIML6aW3HTsfkSlHwtD1TurSVwaRincBQxi/iLOYJkVwYw7HC36zs2kopVIxjfkOq9FodNwhh8QLDPebZknBFjccp0x4DbrFxDATcNlnPXzoSKkQBU7sRT56N+QYjpLiMfAWLC0bADltieIXAiKnTOBy3PbHMZM41lwyq7W4b1iC9LKuFks+ChCTZQ+/DViiImYuVjhdJas+P425ugg1h7KbxWofkgTQ4qffXQ5zn+5Z9Q1TzmpKyrncG0gsXobUnhjgp2wiT+mknUjDaLX1sSxgVJiu8WxLKjdfDqM1E3OXBx12315B1OvAFU1+8ir9swN6Np3MpKRirrXMEEsPCubUMn1rAVOsCZd7S+bHqF3Sjx5X/fKeb7s4VBITYwTOjoll0hKY9sYp7pDcGUSEA0Rirh9YyVxYRzWwQj37BCIzlcPzrdObdjN/ZWFwQ+XS1lOwOGAzE4wSogQg/39PJu5/VZAkYJxRSE4MfOndbQOrlPXnoXd3SStgND8e8gSWxoViuh/hNENemqBrNSrt7XdKaS8sT4Lw8ZMHkXX3yPTJYIO0PZs/aoY1OBIjFKKUW416OOqqYroa5XzGanEL2HTb4SUfBRwgty90RyAoNdq2A0VfQut1WqLVqbU6D58QZoEoFD+g/S9CbHolZnbE7RCRB+RFo9rOEOQx7H8DxFgjhvPjVSCm7XZHcnBFRSa5sSpyPS141cTyJhDU4WrkGbr5H+kUoisYxnben/8NGJa3H3HIocZ1Tk3zwGPXegI+23aDhMK57qduEoDTeLSpHFVga2Dc7+bIByI4sx2XyETnuBoWVxt/3Q6CpuXUmospKe1IITr6KjeHkgzTDRERzC2JBiYOqYBwZYzlfll4188BSTd84FhMC0igl6zsqRZdYPBaoACYc5L2T6Hta1h3IJhwnwim6EnuNT8GF6i1xx9LpRM5lo/rqH+BEt1ahwZqvz2lT5T+JIoSdsF761fnpZHwpkT2oFqA/qcmjue82TClWMVCV6JA9/S5f7FC7cSnFMW89vWxmzhgXMWbgZ0aAFwwrFcVo4uX59nXSZjBKv9Bc21WibkDDvNpXclDZ1kktrMxGQYQMZVBezF4A5MWI3k2jb2+OnG0mTOrIAZUGivJhejBoSz3TkOIQQPnWmI91Zx8BQBsRjo4bXQYYK6ZAC9mHnXPy6RrRhuGGVDYwC9ATV86LciqaIbFn/43bDeQCMqNSTmpDVm/kTcABkNK9yJQMB4oxCpZ4uIWTCAEXLdB9tc7hNyGfgc7jo8RYJOJnK/X+impLMwfrBxVNQXISHYn8S630lRFpFGwZgS/7+UTZG+m/ECDnyD6f9x+RwQLDEjIu3ko8Z3ibnAcx4K3z9s1J7BmlRvBD9hZ7rNbG170ia0pWVvP9VbtCMwq24FTGyLSaAeP36O3J9oVnSR/qNkQQXiQkE7lXiZZg86mI7sB1gQnFd/U6z4CIdvuf8+nC/N3SXlMnrTD8RkYgspwAtkKaIOw+DAVTgOoXxxDiau6FSe2AVtMjAZsqG/fTeIilrx74cVp3/NGgTVOfsjUODqQkc2SYNM+2tR91u58Qv2ZJeJ6+dgq+tN7/Wf42B2kO2ur5jA/xYaIXTOHDgdP3WpMTmQkyDuj5Kat56AcVMfhuxPUE9IBLFyu4W3rHM+ef5+d4TMZya1KlX65R+0MVmrLmwOWvVDG0YH8ZWJYUpg8oCKXUZIJ7tMWdvu5eUiP6Lv4+W6jHAjcZJcS1iG7byA6cZXxhvKncgK/e59CuJoIKuPkWrOfaGfeimLap9SV5f2uwjZymezUiYhGS4lKTKf3lUT36pH+F9BAcIYolvZd+iokleUMGZWi0GToy2EWjrt9+lPBtYUcILBIDXhWOFZZaP4ErfEtd8p68tc7S6yNluP1oUCOz1bIyrnRbcr2ZfdJkpkHVQX5Jjq2sEB/8mF2iLb+WFJICVg90rNW1+yMPvbqFWt0eARke1Xjns/A6QkquD9FUnExMPZ2J3QYw75UEtvD7awsAXAFi0qgTEPNnN6R9vN+YaWP0puNmMHxfAEsS/a+qxo98Ua/TSdynSUeMUO9/7NJZfBjmkAoRX0h+DtVRjR9I7R5l2r7XH5zHF2fQLvMGON0YC8Kdgw/TPw7GtHDWV89MWihnJlQmzJG87UZEg6PMEXQcgLt1yOtGh3xjsvYfktgSb7ihYgXQ3JI7MoBLbSCdJqGyCwLnIBBp6UpZJOTe6YS/8CdxnO1bfxdfXaUcppGX+/fHpHRNsK4lS8jwTp8+fRSkotzUUY1EUOs5Ff8W/X2OwX+fUsTm1IhSYpinB0Y72TrJBP5ekYOsRR4Gi0F6OQ+ydjPAC7UGvu2CZEiNDwDpqrN4W1fl66Xn85x5KlFJm3FWzPX465jwBtI3ybH2mEMhNrQZu7QQSQFvsuV/NFmT1fg0vFs/fhHM6iu+AtkTQoaz9LE3B2uHrfm/ZVmt5CeQks3reo6Gvw8sZFhlGiiHdvcoXV07nQ+S0Zu1zP+eoOu/1pOGOaVTHAxLjZSBYr33rsg0EFDnHb2EWwoYZkaiKSSYRe+C/3DZZYrXjA4wr9xI0QJKKv0XvD0vBcuScmMkbyL+Jerbwcfp0efTR3WXaIhMjz698TlbfToJtJ3MECPMT1JTMk6P9LvWfp0onKqY4q0RZbKnSy8LqC9MajeRzFoMBZUWjrJH5FCtI2h8tK/HLnjTuSZFmlkEXmNHA0NxLjOzZadD71SQRmuzNMmVgLPgQgcr6LYfUnplRDdxvZFSsChAyt/0UtyrrmqxNiXaebgR1TRKL0JHADvw2IGyZvT8s2vffsxVJK/BYusSjJZ/XXIGUM8JA2bM0HgMMIVI1D0ShXblPMLMnMiCUl5n8Fr6vs9L6ynJDNFPlktwxrDuOzlG73Z6w6XuKMMn4JlA/WZbG+6v0RkGTl/ToMgfjP5ybz1wfQx4D5DJkQqIPUIrBlF44+9MAnxs3t82/lbXyxDA1ih1iYTRLGOrYwem7PqWo+t6drApnT/U0zDQ0ZVuVKSqpNiHp+/ZTa+GfeWTst0HQcx+Cqj2Ft9S+7wiBLYO2Rd4CBJJR2DVP9vk/6cwXtwXdrENR+/COvm5hm0YdBR3zdRhfuc3dvkszdT+7I6GqcQKeLl9K3soS0pcY6fbnG8cXaX7nThZsG3oLF0A6gZJV3UzkECwr66sS8/NrOYLO81yG1DPqF6dtQH1xjqxrTgWQO5AumZ7lkNX7WK6snXfknVU8hLIsG1ru0mYzIvbiNZQ+vfrAj/LTQzipe3me85WFGPM6F3uvQUwDzm3R769Z1LEdw6PxRhLAqZBNbge64jsWu7Qc1eQn5TxQMgHju3ZzqbulCrkUxhHq/61duWET7TMVlJTETWQXSL7vUCe8jT9J6AsbI30dBEtFNW3FKNJLCJyixMTLjEvnFHRxErFrOMsz48uMso4CwtFS/1hWse5Ml50cQ4oAOSf55vG9zIj3JoyYhni2JcL+GxX4s8YQiF8cDmcPH2N4Cp46hvbgrcmPsVgQ5WGYOMyHFJaXPzr/nG3zFoaIJiPLZ0tr7+fROTocSZRiqpTa7dShUPcKvaTluLDVPSDzsyWS9qxb5a2xqHr/Fimzzp2yHWkcsAylCzqvzC6UxZ10KXUsDoUYHwTclWXRVQjGQB9FodcGrypEIrO7Zk9pSJL3VZg3JcEf9LQRxKkCSysI1jZKnlkcefWTlV3s6V4Urf1z8UZ+LyTnH0kHaGIbfgVMNFYphxTvSKnRToLr0xPY0XUy2Gbw9npzWgATHPfIhhm5F4tKr8k28e8gRT682RIv3YjmQvIa1o8RpViR4PdueYfWRICKoVUAiRqGZ1NgxAuxvcWsGMmOMtKhmDnK0M1y327UNyrIZMtP/6cOJvypt/HycnX/qIJxJXssO/CG+CYieSYoa/7FZK5FrP2//ul09H06XWJDzmu6k3FfHgkiP12IEyrXYfc5VHEWd+X8uUlL1/duPcUn4qyBPgXiBWyoNFeY9Ku5LmszHFEXW3tqfHMpKb4ciZu+7di2CoAujqhn2SkQZib4WOrwHW9cjpUvSGCrLREN8XBuU6tBa0wK+Jsf4+mOd7jBXKxsl1oAbj4/iCLAKek7A4wYQmV3EldZbqaoQQr6zx7eeDoGA7A4wPpicAaw10En8U3InCe90KFDXHq8rN/RTF+2vpG0AB3HkC+2igNajBu9PcRDqlsP6O6CqsUKwNB4z54YF1lOjf16cscAk7r6qVqBgDFhEZBJRZLl0hFHpVL8I4/vOXlWgmsARx/2KVQ6Fav0+CJPPFJUIQhL+bYYeyCuZP4cwZB2kzB5DwjyhdjYSJJ7hj+d03uVhUKbiQZu2/wbRo0E2Bkl0TvrrRnXtkPSZtn2hQ7pVGwMOmy5Cj4QwIq9IHrr7IuC4nXmphXdL91cs7tNSNgC1GCh47t0NAptdXDB7ly/sPydWOdQrZfRlb0Hw9Pq9idpHolDHdnz2JyHiCWeN71XsNgxKk86FV0bZKT0sbz79cu59QxPtoWrZAcNfQQj9DOJd1VR4w5VWWA/8VYT9t3d2N2EBQB39UwobnOLS9SKmwVLriDm6ZmmneOhCro5+ie0HzC+3VDjPwjtdrE+ONnOyGi19HuALRzfosmSVe0Ewrsmy5QYmng4w9IhPpJ+7ygeMqQe41+wUARQgutrrkRGGydzGGVkHXBL2wXj2KjqN2R5MNYC+Ccn2UkHUBukk7CO1gz69Os3HhGsmmEzcI0DXdWJiGYp2W6x3o+RkW4RTb/dC9QgJcuNu7BVPZmDeVszECfEGr6A9v9uFGNY8DGH8+9Ddnseb1F68/u28GwXki7K84tinkJ420z37l0pGkw7zpUhwqU8wlia5Ll5U1WOuI8LkxqkxsldJV64skEV4X93fLlkPGPK/kzHDU63OqmaFiRGpGRZU6ofjSVXH6RPJlYHR66L3Yt3OoiXUDphresMdooCK30wd1BGTXIw/geLQoDv9kt8Z/51lxSMfTMC42w8SolS6GsUkD9MGO6aY+dZ++8QGEns+DpRPwu0Kp/S3g0kWAx4bNfRj/HRK1nzp0qvPVAkWBSipRfml8fa6wpBPpGrpOUZM9dNVG6QpsV7QRtAcEr6dErQssJcnpJHH6Apw9w9NgjHlwakfCm/t2vDhvmCepy00sZqbGWMygjbw1j24Tq79cOS2A855pshObE89j8cWzRSN8z+hhkDk5iC+vTz4+fCJs1TNwdJ83XRyduYYAKYpTYsRGqxXYOFhghh0W3OFKSw2ODNYxl9n/XN1uio/R587fADaF3z9JR05uc2CJo/vlA76R5odXwOr77LIZb5PjnFL+Pw1IQC2a08CYgQntObHuf78ynjLUhRoZFtc0qkFLwdV9tEaHFU+G2Mufjq4lMh2MxCUwwoi75fWacq+FRXysOKm7JnGu6A1fJC3sWSaByUmuAUfohcu/xLi7gXky8EqBuWUXrUgiSc8YDYOfqne7cKAoSLNsNKCBcUXaIg43Tq7Ga1n8hHgIc5rF07Uwnki/MrwudNg4SmUREThbHLmhGzhttxpVmKaJUvdStUkIcGp3ryYVJQxeiXhrS0GKZhbJxq1puoGklKK2XMriKlhI2vloPCuvxGDvEmDYZLw23x4m/HtUifGEm+kTBzCj0clpoq3yq/mo6gSk2pe1h5sZnxJBQOYgX0V+JDhOjJVfkblm9VCqopXj1GnnW9Awxl7uDFQOj6O7iDGGhxZ6p04S6cbW8Yak4DRvCaUijMNZYc98NLxiSMEmh8Kk5GNgtTCdigX1q6f3sAC7U127k9CiNpRrbgMew8AFX26DxJ854HUUiQpIOe5J+Xcq0LKUOu+UcqJ32/iF8yqj0hW6r8VJkn/v91qhJL/APb6ugIV/kWzprsOklyzzWaCfjHR4zNMavsI4KMP04rgSM3MGLmRV+irIOlgMfk44J6PELQRXkkvnLgyuzFPEzjosWxvgY8X/+sSpjzIgAPdBycvCF5OHRAMQCTzHTD3uSbFRTWQ9+2Z4yoLtvEReTwAsq0aiSYAvqDV1j9xSvztzvLv2yJf1Vu+9M/KlsCqy4WkreqYV0hrfYuJJA63Y1MeJ6p/bCrwNKkOI2wxIrhyM1koGgcUKgmxPws5SoY0UTe9oabTXdEPKftnt5wzcce0TfRhs4CohiAaJWNjfUY+fffAPypakt67NWLK41OZexfWz9RrvJbtcDbvYBA9/nlADu5Up8fwy7eWCRKdIPTNK+io7SCUcrDb8Af109cZsoqW4tRoIM2E61QsqzcRRqn34l0VuzEJzgrq6iULgYK0xoSbviM1PGPHyv0bp8aVzzaAAWC8cSzEq8RsQHwFTN60P8GT975IrGnQ9JfMFq3YtPAJgs8NaGyEb3GJU24bt66KwhRytON7fBpCZ7M7HD2IuLyRuH7UiUWrYTh0D0znhB7PvZOhkXe0as8uqZt6BevrZw8mBJY2HLfGAVFff2NkcOV+NIDg51jaLhqUQtSEo75Pp14amej2I6Mnp+A/uTal7APklyfIJGdcGaFcbvLTYoHG2draqnAHohIbxTy6jUAejQe6SDsZj2jAV6WWTTHssSDa5QmP59m2VjVMjblg2jepyEHQdfmb+orYTdNvfONAidu4YCONL0qODSCBUY/8/u08w6Wt+sGuyaagarOi5Zr16+kbY6Ol4swhl1jmEX2Y+sA59rBe+bGjYOBM17FnJ2yn9DX/M6SkJ2qI8JFd8wLFTfIycx4bMbqrHmeK8r/62jQ1fbAN43X29SBWqSXTz6V9jJdElvpbJBqViuh87xRLsv1lkfzXE5Degqm/cadFRzcDNByV+AT58+iCIz3rPI6FqvB4f3KebHV8xlVds0DUX5LJlPMQ6Gb958rQ+cs9n9DFwQa5g4qYnrETI9lkJTmVISN/EjH9JEKa4gfxvUqv+TlOKP/DOCYYYHVTPFiHSL+FYsDEOIvLCkZml4oJ+kIbWd4NGsdVD3Ud4XrDMNphXEaF4b5KHl5ol7d2e3GMn3lilTbvg0rES0jul6vKS2TfDVbhjMhhj18l+DZSnNiV0+J/Fy9Lnc1qfG7O5gRVRx9TRGP/MwZHz8Ipxo2kq1LR01CKB69W8t797TjdbhaEfedPRX9iGxWqIeOsRr/hogFM9UdCqFB/z03cW332JOQXVyX7X8zyne6cM2YqdHtG0foDZeCKtzfmQD0nOORju0di1KehIUoFj95SzUwvpqw6aXBBDbyfYMJHYybviJ9EaAOBmS9V1KIAVbYV5EBq0Dwk6uajx1pUnvLCRrq/SeXq3HAwsc8DjYd0oV5Eg6zYKzap5TsvTWjYH7Dx70pCyKmkQ04m8VCAY4TjWtRIktR4K3yv7arcCKykI4Q4Ao+fnS1GacvQ/SLJJxenTE8uLl1oK5gTceXdNg/9V8bAhPvvxJyYw/mHhVrzaOXYZYZE9TS9TUYLCLOqe0+39+z3wReCOmIK1LkcfVgpuG4LqyA5KsbJfLMfOmmYFiSDyK6S4Eb0RvvK0MnuzAhvBZ3MMRnWXK4N5zHvt2009uzdNSAk5ebV7X0flRRgTA/7WtwUgNQT6dwKcDboyCkRLIWmAbyD6X5wYRhsjxa+xRo8qqzZX62yKTfRHcBQTEXwouFcDiv7Ir1xBG1XGJGZRgf73AqFu1MNdFbSYMLCJynIHEBVRkQ5OeBS0lMckAszpQAHkzXY4lCmaIaoakP7PwSWpttOX7NqUgJjRr6gqxq7ogS62TooB22B6EVKYMhmh8fXBHdY1nA3UzCboTedPIbiXsi30cav+kHcr/FZDhehjD4/1tTAdFK1nKk7TB0Q+FQi3a+Ar8EsbjPhH+p4i82iv/txIM6JcxBFmFJktHZxUtUS+Idveu92yz3sI32tpBiOJKVJOBaIhTq8qFJZabruHmLUMi63YkLkghbf3zPUrpGuQDZyRCriIgMdgne4DP73LV0qA4+480qkZo62gWJn62GgSJbAGLEQNyGJDCFjepANREI8HjZPx7sQvmMgxiPJs6YpLkYov9Mb+00noi3OkGXNcskhdbul/zysgYtV9VTuOV5Z70INSfqlVDa4Rabsx+0CyCND0Y/AiDhzpBZRnl9FxElYcAehITNnyMztLYKZkCvwsCalNp1oNy/xgQ8VnTxZcUyB6yCfGS75RcCPNDXluXF/Z4tI+oh40dCtqAsNNc7CL88zTiBwQ7arCXWwdb2OH6jhWRa6fhS6AsL90P4gpReeNNkKrKXt/VKfBg08QCgKKAerYWFoygZHcTUZz/tNWfLivga/c2GtgP0KdMV2TRdjddeIpJDnTh/GYv4DJZNAp9TPrUmVZC7ZZmpPoBu0Ko6scSdilbuLZ/YmNmaUrPgYekI8W6P4Xnm0zW14u7pIfTZvgz8VAzhCeDczRuoV1rEZDXcSht50nXO2ZJH1cjjWfcomE72OJMEElKI3pVNLDxheMLOCfdk7Iu4ZJRMgyxhxfN0cblqKvB3hBNgERVsXYYq+4KLtnYiJfeMeYIst9BuZ3eqSDvRVRuCvLlEDAT66ubG/q71gdgPd0nqbnHrQWZkwZyAv0xyWPx5BZruUKQDaHTJRSL0W5eMLeDPeEpFWeLLYtzfe7oSbE4GPZ5+Yr8lL1yHoDrVc9bePmMt6zMMa7zV+K/MM02voMpfmGEXxdBMUlpH3EiCiYZ6L68x0a25JPQ/pkZuCOXLia8FV7IxJdpoUnh/64V/zUysecCe45TKc1rEcusc6bf6M2o4pwyeNAe+AGz9H18uvVIyzFfLUblnWQFpowZtk7GKMVITEVBJbF/KkJMRtJzXWOTkwdap//l6pUyKHIn8m3TLhmN1yHPBhAlKAX1wmaTGh7h16+iGqlxWqW4SEWmQ9rEZMklsHm+4Hg7eD/Pqd+JDOeH3FZhROa3r5zyu9bGcAypxZkpg3oW/zrclSLfuhYq8EbDKjcC82TfQq7XlCfmuAGQeEmbaFwmt6vqk6mDmgXiMCpKkCNFCkX9IR9SjKPpBrONhtak52/3UwWUId6hV9szqT+vLdKzEYJ8AYQ80M+5vRHhp+N4+d/UVWL8UYvoDbkPgCVbE8ypEIg9ruBkelpMakdNbV47HOfJGcxwU/uc+gyvKPgSAvD35nOAk9EKYp7SHPS17v5YcOVlsiH1Qlc22+uLqrhQHT0HT4spzMGOloyM1KmmuKXvqWR/L+FrKtp+7/kpZnDDFinImhL5x5kOhd/IIXMtDDG9UrgrS4+dlVN0xAA/yxNa2y7DW06t0dbkSNM2phLkVS/M98j1T8S7wMFvIo+3LJMYYuCQYCqx6M8+zjJOTrGb0+mkOB1zJEjxp7Ar0hSxWJlVEYBNrjwJlNgyUiEqAG1XHGVO0bJuhG6gvNVm7jF/XUq7nlvaCZucvKlrWv7rOuRed/DT/kaE+cxwXMf3dk8FalPm/pH37uSdhruPBfoFEZDSmY4xdWvXrblDtYJ76wR79ZMVWeAy1mq+NQnkTswGxLI8v4HXcQNlkblwK94ddonqfh7TFNWZAEcjZST4gv1w+qG7whSodpjOw60AkAPDMaHduzgnJ2vl13SpmjpfTULuVHtT4qbUNcCR1v2cWspq/AsxRGINsNf5zTAs34Vs3KODh320frEWgxIAvZJDJBuErzkogYdP6QnIXfsPGSOoPx+hGLvFqceOqzS2Vj8qljtlUVUQPk0DN1QWYm4i92UaClg1ZDMAtXN4gcZ3pOm4doJwN6o3o0nWF0PbSMh64LepedKh6C3zu6Pf14MVvKl+flUvvOhceDk5qg/ZTrxjWplEodfYqTtB9laGGVFoYdoeaCEZb3t6nQcVrjuoqQy1EjWzHJXLw+LVmeRtCFlrNzM8aNivP0GJ5M19aaKafSI5rz9V4NWlGTMKrGUw3PoRn3EOyzkZYi593PfOx45FhUMsZr7mYu1rxtkZpXoi+NengbC9isFJW2IPY3jt4s86i3gG4i0NfLh91EYdnlbzi5kUveMuInxWtUq3NBgcO73uUehx/dY74cPTnRdYK6Lm1vUA15YLoKj2hJvO0Cf8YnfJ3lgyvzoDssDzFf70t/v3ePIMWlF1bppaFZUgIHaZmCP/ba7nFMw1yeZ8Rs7AmvM+s5CEJ3IP5bCyB7sZQZ4qLfw9VP34ol1yhMVD75Nh23CoxErZBt6tw3lGklfFwCK6VfW0M4rd3c5xkJJZJAXk+7bT4Iwg2T3ZX8XYjvNDnJq080ldoIwyaVdtRh0nSdGwz6tg67HoMKw1gKsrstBS3ts0D41iDDhLF4W+OalVNazxCcgMAxw1FC5fDicxWE900wsAh1AwzaOZxvy+dn1vbHaYcB9QNq0qdOVstyUsejYlXpSYulrlMrZRjkxUykBzeXDssrBsax+qyyTPyU48yW2wRBvck+5TF5ppZHui5VN46csnQQUcV5fa4LhcE3oaELOhdbccvYWKe3prz96NRvwxkLcLT9D1pBxWsFkG8wuCwgOBfPitT4ZxHHn6W7aeVBgfguIqcDq5LibSRAYuMj8Ygqjlhx8alRCButgsa5Ot5ij3Jkoq3+7zAZ4UH4HH8XboDiR4BSF8UiCXbxz5FG3bLgvJPbqKL0kC0Oqc+ztkWB6okwcUjXEhvXbW5VSmsBn3L+dPyil5TIx0u6j3XFoYLizsYQdEh0baB3kNFwXq6A2VWWVXWIK98ORGYykWXJnR8YkATGFGXUlbf7ERpNa+0C1PuhvLoEoa8MnBRFJr8gNfukcGEBPa07CzfScvKhRIgBGT/oG33QLb4QlsrwrQuFtDirxxhtqR3sxZsF578zrxVAyZ+P4JaxPPnuu2kFSv+Zrk/Nn4fsywQWA4cF8mgBscktX58lZV+VQVM+X+WKqKhoJ8NlyW0DGnHtyv3wUCCye0kLAvR/zMfwwtnWFIazTRzaJ+b2Hng+CQtYU0B19SY4Cx2Jdyt8VLUI/8U6aAXt2VxFOrwgm1i0rTbYKC3S8Bw2iMEhAp9n7TPm9abBG6opfaHL44r8Tz6x0/lM2yrT1s7/n9QWuZqeItsRgo/l7MqEJvNhYXKBpI1A9a7mXvxNHT8p/TNsbsgFUfyY4cxKWEMOzbUB67uVnxF30E3t+IGPNJ3miKF01Nm3dQ1GOQ2Fq55fbat3X2ltMrd+xUIO4IVjfvHZUhmtuIgq/hBAZVX6+awslQRWuCAglkymwKAEYoarMvicQaRj5TmvAc/QzR3jv15hz374k6hm4tsif9doxcgiej/Hykj1QKfcbv4UcTY8aqLjSZuGIyQbwTaCtAx8BOOYUAWNBr6PbGvpMFeLB4YPsqaUAdaXGfY/DRTx0/E9LVX7HZ6QKgBnIKIhsFwmRAf9vd0sYoWT+QUCV8Pca/7ENAgVsy4CBWdVI6//1J+AzAGWIRpXy+lM+gLNDqZsA+8n6ODMKqV2PIojTQTwL94a8Ungox3mMVM+7LvB3UDV28NIQG5hcHxprhX/g6ZYg27e1CsTQNgaVALcOT6kup3BUulpwHMx8F+ISVFiqXf5dO1HKywOcRmJQBS6qk8mpJmK6MAf1Q7feg/GwZlCaMWrHz01HX/wbzq9XRtiirSTTqA3Pbm7uMNVSUkSZg7KGMZPVWRFYgEg+9wFqKKyAkUmv5vyVMU/CMBDXLaYdLnqtuzNSeMIWitwnF1MQFdIUWO2DSTFkx3aVIQC4XMmHbO7muvh4+ga3bui7iyPannZg/ynYCqtWQd0f25vYmmpbfK8NJahtVDE3bsSsTUxmx21pdKq3M3/ISvkBZ0km3LTeXxZ4fILT8vOohrLoU+YlzxWO5DO3vSAtFPXvGbEqkv2nMKpwNzLS25Am1Suhhk2eThfPSv6Z4+NL7oqmY8aXCPr27C6Ck09OfQby6hvyXLuB03W14Zg9AmsIcQC/k7rqkQVTBhZGomb3pyWFobNjPoAGNYuFY0RJG27XejISX7gMffpUqZl7Ww/9OqDfFPIAcSCV1MU4Y+IETNju+50CMYFU1HB5UDxu4QBvavNT+MCKExJenq9u6id440VafKkE6xZJ+EaAKCHN723+4rxjYTgwk2YOGhOyUqGAGxo/TdA0j8g1p6JxocIaUGsi7SvlCTTej5OlD49aubRB/YENZGGi9fEIhii+u9434Pkt0Tal9jJ56HJke6XteCD3A91YGidqWg9Js8PX+5D1kvcjiOAdZ+lDLCqMPHv8ezjiAwqZ5G8Bf0g8i533Q0aamRFKerbBpR+NXPecHzhxztK788DYqfmYiVdYWEGt8w5CC77o9PAJlJC5kE7dlXWfUOnxIR2I243X9ADJqro7SOEvP275Jw04cxVmcCwT2SArsAzkVTNg0lEoVyJPKhBThJ2++0pB0Yl3NqXOsExo6t/MwxWWSBZzP5DI7UZMJtyflfLsAwT0DBMZZIBX1HQZiRwohGnkj+Vg25XDwKQ+DXt+6J2dTTqcEk3BuCGunHPXyCCPinYjyBzUAAXobgbiyYnq9RlWa/So1FQVu9a7ToiB+sRG/iGNKAapM45CfQk3M9ANA33x6D92Nhn6WMjiPnK4HB7dOzu9PR4leoSKjOfJ1NTHvpVDaMwPIG2Jl0afJjWhhBJ0F5ibz8TTBOPEf9OzTF4INrge+TCDtQxii8isHWlhLy/LTcB1UljaxNiiJkoLmsMvSpg7IrVp1fDgpuraq+2DZVcf656dRz83TWoMfqmQab3ioLiQ9bceutf6jS41/5elCck64JiYBdgm6b1Fz60Zs4mAlET6uuvllUm4ItKd0uJaYCiyyJQBc+328vjbB5ZcsSg6fA95FdCtBNB1xq2lZ5KflahOdiX0AyMTLtCQ14Q9RnEaoyw2DxaQC3xciCbdiyk5wyUayxPekYUqbJMl4gkgaxabyMljrv81qYalqiXh9JSeJC0RtExuA3hcejgmh7f7VrOLMH9QQ7PH4K/yeix+aSm3fMWSHPQgCvi5K25qkKlJCqnQ4WvzIeAjoa1SB2bJUdLWwZnP480LItHjRhViMr+V5U++5g5Oc4s0L25PFlB+vfm1yfF1kcU3xn0zDjkMMV6iHMlUQGhy4JFL5VfMc+w7N26ynhC6uUmGRxGZ/960MDfPMEOZJHbSGICAYBu3g9xVQYtPAdnuo7mTZA8cbZlsUdcCSFKVDOX7qE0hzvZhzT8WyXh45ZGSsDc1GXz0qixoh2iEoweUirDgi197MNwaVTTQqjmDQjmehZzoAYU8mcjzED/y4M18Axfhtzbrtj+xJtWFeL2+qWr7IDCfq3HHWSsQDDodbFItRI2dDFVBl4vbmZuynUQkEegTJv88qZuxx1wYNba4TbFySYCIQGt8QlFxDdojVTFoUQzoSrOjQweR9BcyERUhoke9PU+h1dBXmemyUk/46/WKNEY43tZmcKi2HNXYixuwj3DpunfchMUjquE2i3eBtj1C3vazcZhDfRxz+4UMb/9eheWfKVS9k25RaIIww9jY/5CyoefpGiUW+Q+BOp08bX7TaPjxoLgg+WnLt1wcoIaIfwZGht6ykFWGyVhs4gQm2ju82TzDX4dzI+MCSkzbXoKYZ6PYC5TKBeyx++Bc6jxzwtq9/+0H8zo/mX5mUV046LCpnYqtCh/YUqMn8LvvoQUm0Tuj4wFYf3GFt9m9K6mALwU0cLrw6MMSZ1YuphlJQ5sye7WrHOJhLSwzVYesLqaoXSsoiVj7vntS7AMtRQG3wq/385RlIUYTm0S+l0lpm2CLhm9XPIoxv6aAa+rMJ4y+7A0vg0LjeVORKkoSFedmE5vpYCK5pibQaQEiOis0gHhb7+CONMhnC8Un0QrUVp2iV2UWJA1jzCtWuwHJE841urfFI4V3A1h/pOycXbtvAeMT9WFg4k9lHnhE1PNPkHvfokrPilgtZjF+fNuOmgthwOCjGTMrBUwt0/4DsHlNWKYcsBuh1NUrZo9E1pMHe+Mu0uVdhwLZ4FfvuAzXO9iwXhEVFMdW7DLB9eNknFfyI/bM+iLhRDoG5UXXrawD0QMtBpKFyzc7yfV9XlGCNy69JFQdvrhYjIheEooRj1KpG/62KUsoZy9LRrog4b1YN57j1zoRGICNpd75j+ekRorSTcpK1vIEpTQ0bykiGKYYnoLZAATtv8OfLnSoGZfNk3YUQzSXuND1DbfRpfw9vyYdlsPsHLvpoJmJ/IGzVOSSEEgROlVn4fHNNODDhCM8gpoS77mGoF7ywKquTU5/Y4u6O9uuCHAwg9iCnqUEWm4ej1RWtJIfvtffk7ayJj8AnDKMa65EoK8PCKCgw64PktAC/hi+xo8medK6Mq59G52jFA4J8VS5XvYSIOO3PJp+lyeRXdzHJmsQV4JynNm3iU455ZHFYvii4b0MSZYIjBB5mErlbrRUbOC+0zOVThgK/8pYY958MclVLEnkxlThP0z8ebTIrkEvEoUmfKnO2sY8PjwidFtAh4P/z7F2jc49e/ve1979iVrb2XNPAJjGcS7R+5cZyWXOZxAdOTMulejRIjM1zTRe02ae9KmY2zyuYL51BiI5OSfbTPCQn0INrXDHr0t+lhgUSY/2J6BnT8HiVMJZ5hKNdN946XjgOfSeuOCusVQKiPlcnFA6rLGGcMwlucJVs+l/EMdSzT4l/CTrFO/lTZGtlNI8BwRurIuLelqgh15FgfT7ymz3KUI1lA3cC2s3oMk6654m1z6lqEkkTnII0XRo3ojX97tL1foEEYPkDl1oBPQ3DX4ZR4yhvWP9jdRv6jbgx9GNsULiEll8ocsAJnMgqiQ3Bmh9y2SSiKJp4ydnv11d1dq17e5/AIVIdXcUbVDtbe0u/ESPxc48wZtJjkR70yOmH9DhzqcrFVq/TyaCAEjqip8V9X77ithh5QQ7WUGH54WVDW3Ziev7Ar+eu+QPwwWmTcBIcfc5fZ51ZsqMFp0F1QckUjpSAikNCqQK0b1TvFFHqH7MPJelYqZVqcrTPtxC8U9us8L7CgDXASJPf1w+9Di+mOXV0YxO2quBDV3ilbE6RteDLqBS+5+ndL2netjht3lm9N5ttLb/4sU1BWyOYKvGSRxG36Iup7dh5njINgfxW+YHEQR46jEhcx+5mKm3qP9kG/ywd7/k0vSK887oh//YLyn1jkei7n9FrtyoyhtL7Czt0NgXm/CpLEA8zuDoAx9ZU/ExSqk8w9PozGUn0YOVct0Dy4+dxfs7YiXs5IykL63M9OayyVpRLYTQmKkoqrqMx2zjKoefM9IFHR2KL3HnYm3/tKY6CHDYMqNs4nT662Dl+61oOfZB36zu1CX0b6553m7zeMFQ1LIwtIhFbNoa//gNyBFODXde69DXZ6cjo/XNka8VQswJ0emPgQMNHhfQrYmBFZzSdrQ+qb/JaUbmgXILbtA4ezgMYdCzXz+nRnsC7wgBuwFIaYkeBkEuo/82ehSS5p1ub5bvsro9CTEsDemq0CuwNXh+0XaNVXcG6RWiuA6CESwuDYeTrSAx6ZPzwDeoflCi9WvS3NUaO7s4tYyKrYvF3d3zuJK09AX0bRVtZQQ26UEREGZ3qSqdBofW9sQFqM9+mdEcrX3ZclNxakWsiKf6bMlQArMSzxSeBjvtTPB2PwsvLewya8aEcjFYgSSE3eb1CZQlBZM4YoahtqSgsq3r0Kg1XRa2QuSDBZvNrtidIAwMVThyDX9uFx7/yfphNlcfqy9Z62u/i/kuXx5gF9JtsmuB0w5uSWlZrbcEyWvFVIHhBqF3Xs6mm37RAjPEl1t8Udf875+cBETO4YOxvc7gnrTChNy1osbt3cjg56OTSxE4CIbLjYQx4aafOHQAUwr919CUTQ+1ATDoB49krdMFRNGnmp4mhyHfyKZRb3DjS4r6EZecslehu9ccl7cQ8ZjCNQRjFeBMtNVRx8DhnX/6kXgzbswLOUd8SiVsfxPDxSheFjk4tbsQTYiC9o0jyXkSZmcmzAcZ874n/P7VQ1ZDDZQRPItYh81aUwTFCckhGlmXIA6uzJ9XKmCkjmuBXiN5qfoKS7AOAhVuIira+UXvBDLF/F+iIK/LqL52U9iRdJ8EAstbRo8Zw29KZ8dk2Fc8vho4unCjuIonzjw71pv75O/KpA1sW/1degfAdzPMsXYtB9QPHc43Stt5bI9PRmbDzw2kvqnpwEqsXZHPb2DcYO4q//qxRmKcA0KpwtXKeTD9F1SzgWnKCHmHffjeuSsC3kKL1cvy/5HJl+sLJUfWTPbJql8ONxaxqsb/lDMQLWPelXUBBjbXR8Ha94u1HnZDjsQlkwqvsigtZLrwiTP5FHPgsmvdwUoEbI5UTrXiVj4YRw7qNqEL7N66kUQfWm6mEVB1yu7vlrm1Uq5m9bS7fz1HR04S3Ipz+q0gvT91ou5UV+efGZ2PAZIPAqY0k+VCRyk0WEz6NMuGVJuQZzHMZmDJGS5XEFSeo4x91k3jbSKy9oRAVrdrhwjp/Fg9HD6r4tpiyv7TdA+EU/2e6jxgDvxAv+hc/fi5K2Yb7B9cnPLZ06J71DRqWbCASzyemReWJ2F0Yx8GX/C68RQiYxsvXHQQZ0uD+SVZUPkH4Y681usGMJ/Mu9NEt+4k14H6tS0WYkZ5lUeXcccc8s0i0cPEUU/cJj9NO7EeoRCPojY3E+6aU7Afst4djZQSSCzkeWPhHai/UMD37sjcNManc8i9EG7iXdjmuIw392A7XW5nSBS5D82zv9Gap5llMM9R+uNSq5DyHukgtJnHno8Op6Dfz8g76yghJqXm0Z4RRTalevYbLNtNrVqAQwTrSVH1iMBRmPGXM5V5qrGWJoUMgPzrT+Z9DwAKKvlIHqO7gjZQkfe24us+clq1jjg8C4wGrBASRtyErhYmzFo46PDr3nz/e7i5MaX+7J4nFgY2ufEHmqCXxZY0XnS8whHk17KzPU1aICZViLL7ADVpC1LUmbPaY01X5bKdDnlIQddMvAym/+Zv8YSnrjZujnatTrq/tkcCKOShfpjHe4YHW1MuubpawBKXWRkiWc4pLcG1lOxBdVeYdUW0MlZwMoyo3NkgZ+5MN6M+XBSs2QGF4LDGWOrddhYlQZDPZhleJsjfId6fYb5+lPcv/wn47kkva61esUDc2Dq3RyJDbz/DF+KBKlVRQcwYpIxr2tXGlTb4qFsdPpGoblnCTNZKosWQ2xp757Xuk2wJvmlaCyEUhMTFH68HrtgXO1LwoG7uHRXMFm+K6ampRjUWnjcMSAbdGKwvnbd0nRo8m7rbsDmK2Uni+O1JQbjIKbCHd5+t7G3zgg4cirqDQWY8T4qkeSLRiOGdWgac+Zi3X199vwul91mDF5qWAcf7FqEnzS1MIplc4KKrsE4y3axw2Zvwz3Mk4TKCbk4muI0ObUZvfOO3gPtfTZLHGGIIa6k+MIAqHxeRGkkRZSqRgxhxT5eebIEY4AZ4WcksTQaA03BTy4bpOIJUSczCTfHCbfluTnKSYgOESFP43zHwV3g3LENucOeyGV/DwlWNHoMlpr50tgWDCaA7Cl8zWG2MNtPBnJcU1ctYH9uC77HAoFio3fquXh82ZDoJbUOFhdgq5h9DHYxeule9FAYTJxz2vz+634Psr5wuJYb+z2ukZEStlrISyGSTjQv/FI0h6yRW4ZY832+7fFoeKrFz5VfebiyhUVm+wEz6ITZmyTCcs8iYdpl5295j+nt9c7V72sVF0CwoYfMiIx/IlK2Q5xdRh5e2GaEt/EFHykaTX7sgvWJ6sPJI4Yst6fvMro6QifdNQkmp+Lx3siZaqPU1OygaA88eTk5i3IdLxYhpTtYnHj+jrRw6hdFHo2iqfadS0KNrHR0QSOo+Z3lGBj0Nt9e72hDlrjOegszCiGy4TqSew8owAGEI3ybyeld5WYFDLNfbdN6G3q8J7GrftI9kYfwwA+uvOdZ05EUlJz7Cc8yaWWrYnts7LEKDybdSPjNvbT9uM0MZcXCgPfEoR9Y0NNH++8LnCv0AVyqOkrgV0X1sRk/HKnHocG4EB9bGy2/aNA9GgWMTkslVZErT6JDQCFK9aaUnrPTfDr1cbuPOHiYgVWYuuwxSXNNqDkBnOBVZ7gYulRy0WEKCdPamiBd8wh6P39c5zGiQ8WJcNpDfRW+0/W+m9qqtDEj5hZ2a6a3Co8Z/DiqDq9C2HgEyF37CRIG3+f339+AQtZlm286/IOGnvw/Y25nEaui5aBVnLKK3nq0bkIX8ZaILP/svM6ySIeHeX8D+XEURFaJWvI0lcvg3nskaYyCsrHdIxcPqMMZ8kCwZ0RU0lD/qTakvaFInwgflgrs0klXsm3HzJPvr6HJ2NXxHK386s9DD+DDTP0kh+utrc1QOAJB3hAJY8kXYbRTbcuEWcRp4m9riMXn8X5Yr5x00uOoC1HRGlAoCPWbWaZlTptswxNFgc45Zz34XNd/PRnQbnlVuw2+3ez28955MXb7LpYhf1bi0XHhcDhSowSAfJw+oeE65rsuEqV4eUvlSWfTpBrLJfSfVamcAvziUp5mLdIFY+KgPaXEiNcSCisv4vQqUcnTJ5qds2GXsDXujPx+jHubwpCfPoW1yI4+3h2vEy2TZXqxYfm1j9SsU674+XpEghSukda9V6QXGqaT0LQ4rRjcxifS0ekMyP3amGb42g0lAJR50hdso04TUOSEdlYehFi/iZmg3dN6sh0SU0SA8AOu1YGot0ttvCvrmyJWQd3n848oSaIvQyLrdgKLaW4vfTPJ736DL4aQJWrzwzrGhWIHDhuB80IvPVxqpxDkMQSvFDAAVYYfqQtIVH2IWpVNj+dTPHJ8LlA54elW9AWLJQIaAZnFvDJiBZIUgmJogySoHYy68y3i2rsLxvStEiobLCqB31p6Lij/mtlCoIEtX+JEMMJukMechF4kCdib7K7InBkarjPd+0ue1asP5432diASGeaniA2h70wCh63ECC8A0Q47VcqISqnqz2tAH9XCfPv3Cv2Ic+gxet501nZ1So0NotoagDW0kx56AHULigucnm+aEOVn+eZHT7zpkO96jVN14tX0Eb4st3qCzKUAXDCqiDw9mlqbwkqxSPLn3xJh4gsgZgj3J9vfSfpKyA2eOjyhzuGoen4ChkEkA5+L1GAjfmEWajuZE27HYPrj89NOI0LOWLmgvN/QYsI2p0HgpapcB6JpPgoXlmZtYqtxiHCAsMcIfLwCxk3PY3vVR4Vc66+XZGBs+l+tIrmvJTXAA4baNqIN92IU2ybntHCHP3766QaVXU+Gu0fbKaW9tLaSZANqTtYp9bLCRyMKtTIlgtzh9P0tGmvuVk2wyqnuVzWJ0mQT44gpoQiAugCeQByE//r79Iua3PEqcH13gh4HKYY4Q2ihC9X5vqI/oUnrHnDqyRf+4ou2+XtE4gDp7B+F6H/6o89x+vdk5hPxCE6hGwXUATxZfzHw/XZufIHWwc0L/XmHQS+SYx9H4rgn3XMoi1nUhOSrjoG8z2znCJLuaUjI6S9KzjNas2dQxuMrplMloxzagSDpVIiItawHv3N106VW2ivnUu0aOCjwYJyU4oKKys9Oh8GwPPN4YVRD6bF1/hbRKo65hHEUNOfHnCstWOF50UdLeP7llzU/yZJxIS7fvu3JGq5OPwAEn+IFJe9C7eSQ8vjZcTYfiiAJaCIQF0yVCkfTVuVjfKDllKKg5urCFcOwjHZawdRZrU0MuZzYJD7Ok9A7OnWCWMI2dcXjv0hMokBSj8gQ5Zo9LF1qi3ASrMsaLXRyuwJ0sCXSDttp+ZjOq2LTaMKtl5sIdlYEk7CJjUCzvV4MHEGsQ/I8fMhWk7crFLrUXEGJw1+rYI/rt4lVfmc9k3UosCTx5r5pgU/gjn+8HYWMkTTao3lCzNIZkrMc97/vnxkFYHmQLa3VYwOFYNQwh9X4wQW3rvx33KCAJ6XMPahnkFv0WhLnXYNcIeKcoP2kJoliaB90Q2dY3VY+qs9apOhYFgbZxZRV7MZdAYCoh2N1FOXtsxd/S5P17bqkH61wIoR+jZIA1a/cbHxHNeKnnAsDb23JEKrKXOOpTh23a2sFuL1ptMhYV6wWMAPGj5PT/0UeRV7J/aab1ooh7HjqfP2TasWwtgU4iyhJx5u4im4kp783arAnQuYG8m01P3SX7o8nEVqsm60/A8PcEhmM8GDwh0j9TuP18lVDUPU7lrKAiEWuc/qzJPLbrvVs9/Gaeaw9k7N9WIgEsuh+ByRBPms6qwD2pAj3qNi/HDoQqikrPJbabqechwqvrHwvvr1OPP905gB5gSv/I5XVVlWSjU0v7a7baQxKrFOoTs4W/aYdLNyKUw58PKcfI15RWkJYKjrT2Ox2DaO1T2sUct4fs9cK4slJdqmANIv72/hDxIWJbidX2wi7EUxX7/rIYgyBwsr9XVOZ17isaQfUbLiVI1F448nH8iSqRRC6nWavjTST7FqspvMyDvLHb3suOt/fRnGrgmsfsG24q7+AURkPkhzSoDZZfNmhsA8E7kxq/Ds4b/16EBlY0gUf7SSxBATayk8s1SYDIe248im+COEYdUdySpRGaYSQqi2pOoSHgMtwBOKbGp6Nezgg5O1H937ak8RsF7cSFhayXnSAnqmD3yH67XNPieN3kEQVce96bLs/VlzYhWGeo9EF/YleJwTTc2epvKgUkP60+7M2nckPjl5xSA/Y/3kxViaIrNX5AUtsBZQddq3dzZ4usPHGpHMKnV5+WKe2s5ud8Ih0RW0BprEPMpl8QXk683myq+0vG0YvcU5A4KrMrt01k5U08VKrKKaEhCE/BGtKdpxf630kw6VfoBc8ZsPMY7KFGnIF8z9DpqDWQJsfZRRcMgKjTjLQSJdf2xSFX3TYw/udOoyMBZF5UoYuGMGlsLlAF52ZT5WhwpWsDhxRt67G9qZpM5pr0gyiI4g/V7folVDtzszpwXqbSE6cpOy3819RWI/jc/+YkD7pQxm/cwp9dHwOIGjGaqNJSLCP7ndZdLuGkuMmXGGPgr8Y0rONp8MFBiT1tel+jA0j/RlkChbWFq0PR89vmpQNNiqnxLVxhugYcWFYeI/XBkotFvsTtCT9HAT5ln1xKimLg/oXc8SXfMTMovCBU9oVePIZHEJaTRIzUxAm866CWnKOr6OPrlRC2CdvWoiqkDsOSLOR/6jByaX03LhcnlXlwHDnlLO2d/drsZUGaTTM4+cxcjkfWRrB8Bj696KloEFth+Yg0xfPN6N0h7yV0loxJcQk1FKVA/64fC2/MWDpgkoWoMVY3af/yWod+PS3G7DGTA5W262bGmjYsP+2AWxvBM7Mvv79EsJNso9Qh1RwIw/s3GfvC+CfG96nFVsbsjkmlR4jGNip6DSso7yiyH2ClV/twAgJsSbDX5V7DawxnuNbHqX1cNxYV6htsHnB/JK82T9vS1xrrHpJEk9LXDjoX8+gpbbwdvxLifLX1+AQDiV3dWF+AvCkBb5gNLUsmOb5b7N6IrqRUucLnB3iz9Tx3jSUvHoct9qOlUqDjZsIHb3MtpLoqcYnZWJRoVM0CdF+ySYF3bgx+HPE18oI5m4s2KKu4w8MM/3GTUntTMx8dDtVHlzz1q8XavQzJ/7Lb615PmrRqJZWCuBLwpuafnxncoKfeYwrOXiOXFeow5exhRqsSjFSakKGRp6UwWQw38KgZKhT0TgsNUIVmLDEWOFweefj5lBYjtlOH+v5HukwoO2kPlbOCwplmKdbN8vVr62UOlGEDkp/ivL2oVny7xDbYvvRfD8USUtFR0OxeTxZuDKKufPfnGPAi3KPpbxS+j46pL3H4rFtPWBnp84evSkGTx2N9xbjQ/Ljv/6CjfUBSTuCXmrL7ror7YVfZhSQVyelxpsRT8BjaV4/e933mtKnZx09E2FS43vwsNzjp80EPxJqGBYzLranC5jy2NIjlXEVK3q95uNdJRxV+10dPZYLy3RqsobLIMObTgH8JuNnfZlzI84zPrkIszRF0Es6cKM5CwIHPg7e+gpu6SYGv86uI3kpnWragvKt4O+5GN/bdkUinEwOUjh0s9ugYUWUrmBj43XtlF+nRgQ88wBjE19p4WB53zGIUoTNBc66ZIqXe1crMtFKvG6gku8chn9TSL0D50RoQHTHFat4iXqwGKJ8lf7qIwALXn1MRI4gZ3bBysnjnahCv93b42aHI1Oiih041/bPZGZasJVmHvTAbt0Op/UE44Rj2ZmIbkAyNeP9C4CLep0GQXxjBD6F9XgTYLxOpEFQMazUZlPlYMvxVuzWO/xcmEo43HOOeoFZhdmHE1TafgKhfeJJ6Ld4zc53gvPfpMJJIOCrfXrdKRsyYR0tws5BNYbhZrzxqVV6Dn+MsnJ0NgtQXJn/AasxWjZotcg83A/g5p/CdgbFgrDgTovlanrwh2Dlvy9fOidbQzove3w6cIhR/YLui2NpNPeDlG/qPY+Afphw4RrYot18Cjn4lDp0N1Kngr5ZCCdsEnpnwyyVpD9CMiVwnJ0bwgz0qc9IRRbwZ/j06I7HFlsxVhm6MPbDhtYk+TYCM3cWsfQsok4S8f0cVNROQ0Zrarn1TVa1uCwTgToUgx5z1iWJfZEp3pretpEGIpdo01NyB4MdxQDl/L/EMQE11UV+Gu70nAvVfeNGvjrCoTNKefwpaUdQPg4i3Oqamx9HFwL+qLJWuLwPT96sPRG4CU9lkdnZ8OaWQklukNtqYUFtyx6HZiOERp2Kda4IFR9xFJdvgtjJa2cOLgk3naVFjzSiywHDGvu+RrFZw0Gy45fA4g2zjTFlRqPy9S5C+Ok8UESgBds9OvAgBrTJJFUUxF7B7oJnMt3TzhTAu02W7nK6BZYh3vzku9Evdgsg99+/4MH0cfk/uPTI1zLsumVi5piMKLP5ig4+7pYh7etOnzk2tMWZpoKPsmRR4xwHaJAqijqBVMxbPvOPS3IGM6nYNokz2QD1hFW+YzH/QNpoyuufLtdwEgTGBflZTghoQSJZNttqPfj0h963f2NGyb0sh9RP1iYbLbevUEXyZHgtVfjftyTCPZNi6YbGLgHJ3jRC1bwmMhvGaK+N/SvzE8YhlMNSLR0IW5L5cgTXY4ncai00FQi+Qifdb2BbBL1mReclj1JqSbuxD4PpqLvc0z2EVqAMVwyXAMkfFgwhmJ+QXAIblUhVzXevYGcgrX8hoy7b5/9sn/C07v/vnr3nTPHA5OnqINko+CvbRRzT8EJw/Np7/NSOXncEcFAvgjKD4fUyTp7/3OlsSFyTgVo6fD+L/gNoZLET2JgfcnFti1KJ4J5LRF5Xt7DD0ywIoqqgW1YHrqBZcLCGVi6Fk+O9VhIlhuULKsVD321Ms9rd2bxFkkMOZYvkRft2WumKp8DLyxNEfb+qN13XsxBO5/lh8ya8jO3jONiLM3ZYYvD+UTWkzTkNsFj0Mq+NAnuy60XFaIQVEZubpvWFhF3E4DwDiy8aDA0Ua2n03g1Kb/w/PWBGtaEDF9068Vi+i9XDPAWX0b6vONXwH7cUJZ+k1lSrw+TXFhV4Pb20zFDn/6H7GGwJCUwyqLmYmQuPz0Aj5umA2eeNO0MqQsbkl4LsfP7Rhw0X2Du1bx6w4wqKRQ+UjkhLaCdLtTnG035Y9C0xPDTBkF4Svz+YHWoibQ6Yc5IiBs30eGzYpQoovT9uc7RtxqIXLY491/7BTnKaBNXPEGm7PPQqQY4GMHt7ZA/jzyaxaFi42pEqWTOTtdUO6sDef7YpNvAFxnCdw7JTZX61keES54lR1oOKI8oFinEoSMYd743kI8Y+rKOXMQNZ/QwZuRqdlAtAws578x7N0c2NFIl5NcUv65/EZWy6FEQ424HaNTe2w6ahRVDkWcOAKv+tsfJQWevQ1aeH6mnFT/lYSMcu7hzMqryGXT6wPQ8TzdqD8b5eu26JbHIniB34EU2iexabJ4RVdaA7jmx48CEoPLYjXVcXCA+LEYv4a7L8aeo1gI1lgw/PlSXev/RpgAElhQjYFOS8Q3Xfcmc2TdRecZLa7kOKzifPMsuIMLaeXCycA0z+LafSe5QIFODOeJbk44+SHqOIdXRYMHiGPdCYOEuWeB/I/RIpMJ5V0GR2aa6UcmPQ6w5McQxD3mTHkY9E69QXTxtT4e//kIYWK80Mp53DtlnBtoFVeM0B8iiJFThh/bjLBGSdfFjpAhLHIOhm1xCdLlQ7xqRRBZBaVqbGpXUGT+NCZo574SmdduX+RHMT57bRQmbqJBuLUvZ5yogo3edmHZMVQFSkBgSXh7lWOGAw2FcpI1hQflKmGooJTrcGQUYT/LHBM+G08N8/dRmrYYXRsrYWlsuCspxrrBU5pXw3f9Q57NS6Z92Cf8WOR49it/u5BiZfRffkqi0fxLi2q0408XlgR9tn4mKPO/HXpOcM5Diyv/LLDgETMyr70zTa9H/TQ2XbVrXnksYuY++pWgBhlVl64uGqAFHeOZIAZJrWtfzpqm2QDGRz92EN/vehCOzPBF3KcYZ1xQr7aU3QaQU1HNufv/P+xxWmm4nJfbEjB/sB+uC1gOxU1jh0s+VCNiSS7Q29/9Qp8fTQvkHY6cbMgIdFGa/r7UXtgwDmvNHVmMmgb1tZRlEs69AQrCK4EpGpdNOFeWq+pfQeQk6pHrsFTzJ4nt1T6veDhOh6eTqfIIoMC78dfipcRic7VERDZEs1Gv9EbMJQUpESMBEC50HiCoRzhl7MHC5l19LvBtCnRTPHaNOMW6px6wgN7gM4wZUcc/UjesEzr1zTjKW0186zkCjc0ipRGSP5UdYpow2F2/9Frump9FrYcjUYyISe8cgjXJwN3UETvR/Sfr0bHwg19fgls+oa1zmLaEBCg//ut/CUwbrWrFTHyrfkurm9HudKo5Duk/n1mEPgwLqHw2q61f7+g6xbVZg1alEuWBLcB40qv9P/6DeCS3yQzdNm7ESlSNCtkgqSvzyuyA03Y7d5R2oaS2tGu2rTlb9dTDDO7PQQxgk+1vq0hPfeBRk79PYTjJajOi8x9Q+9ztMEuz1YDvPUrRTKbEMf+T+Cmj9MeUWJVhsA0ISC15iVwei3tmmd++6zEluJd+/irPECK/UgdJMMx1G70t0eVaV4w4Opp3N8s09Ng7jg6JoBAHVo6052Kq0AAWsfusuj91UTROlKbP7TccFOef392xb0MNohqWo0vJ5q3bSeMc8m8c64Rnv9X3l4wNJylwg0sf7/Z8S1wFa0ASOJZJeZlTSUd0OMMPLl/VXdns2V0a4BjPGP8mZFroqrlbyt3HdYfawO4Z7JUOn4yDJfoR33xvP8VW2bD/X5gR97J5xx0IfRAY2P3ukWE21imSjYJigOW1v5Djx46Oblw7sxDiQEYehqxs6WYHR3iTtUn0aaNIuVVQuiBaSCE0rl9J6qZwdu3C1rYFx8uGRBxcbAwZ+GWe/figDT39v6RUzFH7ALY9+TBLN1VP2URxs0bxKgzhktBGApWbz39KJeSSXCXZUBGDCoDw+HNsh1HWvQaKAFJO+AEVD7EYPsVr8DPErxCoJokpa2EtRVJvwgV/IfSLz3Tp77kj7bSBItV0yhesNpRVYS+HTNEhC3MzoN3oEGcNwOIMmSOjQ+tmZ6MNnrQQkdN0H2Y9K9PJNMJpS3NDJp1xuMoQsO+qijVrbFyIDRIurZIDn9kPYYeCvs9oC5OicTCtXigGsfmOXd7ZkF4yTlv5+Q4wZrNjDvTyDcF7c2dylXBD5l4b5n/VXYwpqOycSg28notaUBDCBbOtiUF+bl+mTo98sINvXwZXfE8jv7zPpp/D4c59SXCyAHfjOYZ32JeUhxgW/vQYr1qQQStrlPWa/qRAn1nTni/TTcmFtyZqk7+36x9V7KtgkcT960oj86HnT44Orr4yGOaw2pO/j4GWBQXk/OjMYE7UTliSd/yghe37W8XHdNsK8G10WUI9oHeI04HhFAWaIDg44Z2ULZ06eyYZOZDWbNGN3ALD6UY7rWi83883/0PH9S8VHAJRkFkcX6IdcsX9ZV5Y54BGWt2A/pTY9KVYbH64cy0UVO160DSn175L3AG31isI4RR3I3VWRdKp6Kz97M2UZBl7HoQ4x01mQxVgA0lOeUcjXCSfzLju2qWjkGjovNStSmtjG9kwubngDpVvBCPWqzicU65yxTmLy9/u4TGVYqcfGSNlEKIg+0DfuWmHNowJ8CRGjPxVL8rTKne5Tif0VT3S44XxE3+lafmdbsmFrmHVWNI6xuVKiQuC32v1Fk6FVkXLWW5fVgG4pYm6imPxltTHyH/Ab3UipUNzsF+34qhE1YvGxhR2w6lS/MIIeAEBpy7VSSsEPwETZdcMdMRfV/vfJcsiPVvbcgiwkWrbfP0Yb4QZ81+2481+yFoxT2uP6e8NP4lG4ZKL42enZRIhiXdZeUEBeot3hJPeL42izONgNXHYhmIkeIXsl6ZfYGX3fzTwfpFeEfRmtcq/AZS1Mx/oAnCHXHWXOgiq9E91Fgjy7AxInYR3LMoTRZlVlR+mNO3nTTivst8oXyFGu3z4FXRj1UT9jsXDKef4lIy01cU9oTFhOp+A2WddeKarfqEU2bpcVVNOadu4DYtBXNCq+NotJHIVJOU2oM5SgeL9comDlvTORVEhcK1blHdw+aSJHsqmdjQ3kMtIlBWsDzLvqmwSe+M2hKUxIyS4kWvnFIv1ZMZrfHdmFxqKR7oXLo5jZcUJUAtsHMkoDbP5h34Op/zA/IvJIKlIkp+sBkpKGFxGs5AHjeeV3WCZK8tKMV4YNfXrDKIqwOpHuvAl60iYbsHBf8AetQmALO7/nGbkLsTx6squdxu57CtgTOARYEvxaHGKQ6AIkgmpdcJRRgz+JMby1h7e9Qg9km/kWBq+EYqzFJdOCXoQIXe/DYXhSsSdjRcuquE7EmTJy7devnLZsrwkm3W3gj56iiYruzZZWt12Yd5H/fD9y0apSqnbaDiaiP6Dp9+T61j9LA4X0A7TTOaGI66BYaU24EcRtKrKvlbhWq/1wcNEa40Xt7xlvATwDl0uzAPbqF/57u+dXewaTaa5Lx/6AuFLzuelCl6+GXmm4ZIW+Hc9V000tYwHoVKPMSKYHoZlu1e6duoAf6Mxv7CWRi2D2hraRN+LePTuWaPprK2SCBgmtamyvmcKPvDMYOGqOddkYgcZKBR6wKswY9HpjRqMqLgXvAvdhs2kikWjvLYsHXv38oV1YXlxj1JzD8gTA8xCaHofhc/lO8gs420QdI3LgWE52R/sACrBGRQ4Peu5n9fQOrDAOWZNO6QX9O6LQ12PM2WXdJYhmc/DbcZojerW+ftRHUm5MY1tZ3q4UAa5DraXzFfTTu6bLI5ED3MjHoaIPcNkZ/dAQdKQ+etjKSSw+8lYyG4uW/fTP+rdl+GZCxZZ9tuxAG7YVVX0vGyxS4wzBqqASls4ioqoNBNnSHugUfif9SyVlkjUUyG/XZeVg+5jJZ3FZvl9esmAhWRE/OtSdz9dPR0FbxOKSMagraxBuTVttdxLIKjtaRxNKBRR4oP2en33yQ2AqhQDKCK2jHwMOGZ09wZGJjxHAScVQTlUIALV9qKUO3wRuZ/3w18wlGBDt9WrtA8vGwtlmc7rjf2JcMwOfOgYnyBVYRDNvT0mJBOYb5ArRHlBIYvX0vMoKDQksiflYMmWkNsrFX1XdOjwDSep7SVh0cQrp4gk5pgXJwmOv5pmDaq+4n+n46Lhnk3bFxl1kJZQQcaV2A9jbJpi/Tfp071aceyETlyI7zh7ISkvApTw1dnAhv1mwK2kxOwvKyljHubjlKg/KGpoe9v6CYuWoNVT3ndghZnMrEpx/mQqcw/oagD2E1J10Uyhgd+cccEYgpKgDtnIxyMkUGimzJEbhxWVnHr5QRl3Qxzl+K5oHgSvGB2buFTWX5Qg7TrihDDv25i5xk1mmfO+upej5+O8wuPpj3dcQS1TMl8dNQp4M8/uMe8cURDoMvsGthqe7Ebc+dRUViNo108cz19G12phjNNpmVdAeGVzxdSChMmVLO6t9xO6KmumUcdRiqNx/bvAWjON+ha8ZbTZbBkRBw2nfz68p9QWsDd9vrNy7dir8JosydPy/oV+A3zGbCJ/wwXoaaKikNVc2QoIMyyzb6jrw8RjftjeRmKMbwvGwI5eS1IPIBzxJla8GlkcWZZvVtIILK8RpTGl+D9K6EmYYM0uY4K9vQvr7rzjt6s8I6gVywHCvzeo0zTPVtzxekdCs0uQSpq/HZAAZU4G0djk+A5N3di0PXjyPHRcmsYHUYopJ1a6nNsQeiBnvCLHHWNBBjFWnTogLiQW4LycYP4qNM11V8Mcgw89RR5oWGIirlZHttYC+zHSxKIEbOAyYkprFqn5aJiErnjfZ07zMsMo53tSLHapbc4edshB93mJWmuzVWkRjGCz0w1zClO3zYYc6skEoD5fMZBQIwOrV3KrGLSVoS9Vs6xe4Lkktp/pKvYWAhECO1AiNSYuOjkDv0e1mN5K2C7IVMfCUuOMGRygjFuZCk72FwvzHxPTxwsRS+pyS7PzhgRG8rnMgEBEq4BVGbdrfb59zzJDbkSC9IvUhWQ7Yy6aRKstX0jR4hB7tZZpkKJ/u/+3hLkva9KIvWtBGH+pNcMREMq1Mobgt16LwriQ6WT1wU2s0O3SglUqt+XecHv0QnFF5PvWtbilI3g8vjohzLah4UzpsGFHpMmCEsmmSOvL5KnRDUE+CPYXlI2pF1q5vq1c/+22x2ovKBPyvTk38i1OWGHq/b9ik0v0Nh9MCiuiE8rDuq3zmbpPxiYy0F/OqwCJLJkwLbkQ+XXQV1Er2mrv1gnblW9/3hvnW/3BEnn9X9IqJnZbg4EA0opIlb5pJdM2vs8NioGDYZ6rFx5bkXGRlaHdJGi5p9rCZpJnK6gzgS9YbcYZROZyoSZ6/Oc8bk7x23EACwts1CAqwzyySJAHqTNyP6WeTmCV3CRM2FO8FFrnaLAoJWKvzTDIw5g0s5bvzVZku/VMSfLbjqnheqJSv/eNjmzJHEaSjkQ7x4SsDSCSQRaa613Dg9X40JWYasgpoPyUYqRu9nVt+ZZY4RakzoGiZHpajRfxnox0FuWshAxaeo8sSRHISxkbHNYwqOPXROa10qnxmz3OPO3rXeBO3afEQRHlmQFB2/DEH+qOD+a2Q1OpTz+SSbSyr1qlCmh8gV+TcTnD1486iHSDcY8EdzWXrW2jWu1oMPhu332gIv2PxBdhrdntWMIogcfXphtMY+vmjQ+labFgSwY5d1T+9LMdqyBw8jWn0KYYSQBJvaJQhF47AuqyGg3UHtSiFn7U7eoIk+iPE2JJRsg07sp1oZp/uyUx12Dqh7fNiUsuaHMMRbCN6XivQCVx7O0voflZOVIl7LRs64CCE+yihg4GpayDpiVHkKIUTkGyvQWrrZyeSEjcLPhWk+pFdkz0H9UcUTvOkELcXhGZy91djGbpWZEc4YCKiX0TghlAiMtiGpv+lhMFxirkpTwPyMhqxZkIWyUQXfYgwbiEml0Uep4AZYcSzEECMLKTlAgpMRoh9jsD79B9QhXmkUzG5AgryUZRfnsimLUzcHRvvff1PypgS6pnpzW89QRf2at7jBsOdodhoCWRLZBosu7c4M8VOWmpeFJkM7bPKqnYdvTYvnN9ovqsG9sB1Tp3UQkmxCmmdmaoTo4bgA04C8JvBSCvQA0ps35++LMOCvdcD2NwAyWIbpi7SOHgQeCCHhalHhe1ADuKUezyuDnDmNHhiHFnwTfMfCwnF1ktXddR/BSLRwr/LnOyn03xD7qeqpOutCoaU8r67+78FwZ26D3Eq5dI7/9SinoCzm0+HXERkOo0TwzRgNVWwjn2AdAzSeVI3gZRXJGiZLg+G1Gw2gUCzc4etgYNNkTwLzj4lBrTP+7xny0I/EWJUAvJ2K6phQpqy80WdlB8BJBmRe8La4dV8KRdmSyxn9/9KobGcKdqO454lvCcyVZInneqKWCAFoDI/F6SKet5Lhh1Ug7CFvdGA0rwqB52sMODKQCf7nuSjZl/gM0WJDmqJXwQ8PIcFyL79W44e/TfzWPXF7e4QpMiTWB4UXW/olpq4zOvY235dHP+Nz5SRDmNDyhx230BSB0UGu86x61ClAD7pZ/VwAo370xjf94twDnx3vwMvk/BaevPBPs5cpotcVfv6nmSf6JWkNE1fUz+3ajzXPJXg57GFoNZS57wDXYux5h107jajnorimfTn0RbReGKeBQ/w6/dLRStdF33jrjAi5vqawUjM3p93Y1zEVpqwq7M8qfuZ//YH6XV6vH7G3QgG+xzeXLt1LfUG4dv2zg+AnTzlyw0aZ2Ot3bdK4pdIWTjXb5gY3XnZsP51ZbzXwiO5RDOWv5wqrr+nLzpYcS3MCQesRQYOeS2VHUQbJ1n3yZ+cqe8YgYkNn4DMlYv4CN4XBQ0xkpERLKPSQseqPdtGDLafM3c+cNQ3Ftc+d2c4r++Qr5txzRrtyp4Ts8hFG3tePlfpPMAVNJ2YJp+dJ3jZHyWc9E3jp0/gbWsi8sDW3OhUvZUUIbrBLDPv6EFY8DglG4cJxnoQvJWdkngByNj8JitlaqkSCJ8B3axbxofi8VQ/JNYIzAwyr6KVVSg6JYnFlnQmaiUOGppRuo9SEe592aczQaq6cFpoNcDhYLT51Gm8nbOCnYtpXa6yN4IXrx7wGzhZsu1frCOhh4YFhsRGdYdQiCha5TNFZ0pVQ0aoFn2YiCRChcIKSwczQnnI2EYP7sP7OwLpd5FabH4lP+FEiTvMJuC4tA6v6lB44fGJe4qLTnnUeFvd7ZA6OfyyarLDI/Rn5ZlubuOKJ85MWoN4jdvn7BHPGob9NZ415NuQzAi1eqsJFAq2nA/zVdYPkLPGmRDyJBA0V6GlwDLO6ASZ2D+eSwH0Qs6M8eWerTUs9VnwKQftNUIJ3BAjVZ3axwpmkSP7qQAp0J9MIXraldsX5w6Rhrwr91HUxysqZ9at8fFfKvA1YSofoJNeIEY4SAQyZwAVHufeASdd+cWN/JbOP8UuKq/tNmC/U9RYaMc0kzyQBVv4k3dxpp9MGCe8bC4hzb+Swcbc4Pm+h7vaTQiwqJrv9lXMz6E7kToEga5G1R43zZhu6iRE0TWouqeGXotr4C9b8Ch1oebIC/TNIazfwQFM/nvXFyQoF9l6bKJlE8hOU34dHnYBNba6opXfbnfGexbKytoC1V09/c2bsdbP4l/gkkGR55UAGY1IL3TWcYZPUYaKo8mTSkdBCiT07digxyufMn6nra+5++GHjl1J8rvT9cHXaBnC9ZmzGklm0ix4UmCorqPgk4wrfdmI58BV0MjHm7xqZm8I7eJd1SqDbtkLN/3WeTpJhJtJ4E7s+yvO/HxyDokxHYHGmgJg6RDsI+SUqLkZ6SOy5G3FQ1vQ86oiKb+cs1TXctmxn+9QrH+g18+zia2OtX0u7zFkdd2VyRbbv3iq2d0aF4enoBG1E1UyRtoqUvfORKdVK+OI3bBHBisvDOE4FgJX1MTPfiCOc0nW507/qjqfdPFfMweFb3fKBqbZjdzFz9t8pbQLFdC3melGYfCq/fZeJLCdqpQI1GwXtssSkToJZ8Zst8JqkOEue9yKn+FKLZLikfuc4yqk+jjcrUKGxseJuCU7Ds34NJoaBrzxgdd0pW4ZNmX/LCFBLHkHH5gVsGN64H/EgUOC2d38lFBw9EWZNJhKmYBjsTaFMY+fbiEPeoDlRslxAHhogM2IMx9lIYORIYXgeR34l6PVWwSQSY76/SUr2gM3FVL5jp39ahbkSf1/1IGdVgLY3PxUvbPqKflBq1ahnbVqNSICSjejWCfJvbmzspJUwkp7OOH8Zena0l1rQ5KAODfE4kB8JvqhmWCP7xOIogdMJ3aqWLI9KR/pesTr4e19ufLROgy/Dsv5F3fY15hyrxpiDRuGiGHUZ6ZAtnIIhcsrHHMlyouRcmJ5Yumiic/jOKarBQIxHOqBDilLl03tk5xXgj5ELGJW9BRVNazS/Ocn++OqYHs5gTGCXEEoN4QGss+KyzaJCppNcuLvN/RsAlpnye704E+3cAGCwOfsTfGtGuY0KS0dZr1Z0pmErV1onpG38ogRDke5V9OP8RWVM66MPSHpINpaEnMG5+D/pNLKCskcDE62/iQvkARf1BlJ1Todqgy2Rep4dU2+UyuZ65dszAoua87qXZjxMBuWM3m+NRIpf/7NflZPwFF1RKG1v4ffMgkGbj8rihhlPvrdyBBUyPYD6UoJ+2iq8iZg745wf3ZsuceCbWWCFiIZ+/bC2Vzx2Dp64ZRkE6nEHiaeuVhkYJ8k5q/p/o4V0nNgwkjBYhAeQb896lcr0qbz2uhNSXmu9gW8NFzZ9sqm8l3m+pxWuLW3j3ylqRILK1yceFMuO/NPrCB8cElTpgchfMHSrcv5NR6LZU1q7n355nGzsB1lgK+e/HwtS+0egddOc7+OgVfFNYT1WPnHivBs85cWEnqTvCvdz6NnzZu5mJnLLR+bDyToJm7dng3UOyzvYOll+6TFh94HOmrkHgQM7sK3Smo9Y/a5kJAketNq3cmCgBgKn2MDf/mh3hTT2Ul4EqV1A2VnMxxkhxa2DZJjpyZHnkjmtXIV4Nj2XGjV2n5lx0Aa2HZPmoHn7ncvyB2PkC0Vzcw1xZpWsZWCqiZoMyyMXq7oIfZYnbPoNDzQgdmcWFhjy0axIhDLO1FVydTMIoangDxP/SxZ08VyZOdvTbHaEPl+IHDC+3HVOxcIMXJjh6mZ0Mm2kibHgp8WOCe92mLVxJ2nx3u+86rcAGe0i5E4GRTjAbv9XwIvkrkBX3DI34roISsz4J8eM7ay1km6Zz2M/deYG5A51mbM0dDWWs+Rjjwi6WL7yJYPLL8U8pie32POsMc930g9EtPrgweQacgRTxy9PKpi8U3iIT9YpiiDY+ohCwsjp2Z1zq789zD6PBEqvcj7SyYHrwXaxAW6FktOL3Ew1HWXmCQuuMNTRfNsvy0nvVNexjlVqh0WRsxTMqtq7f4rzaVefj4bV3sL5Eg0xQ3nWv1do24ml6YAeVztOGufASln03TNvU1T/aMyHBLfMbZvy33ftRpT37NKIA7TXaLLa0cgtjZ/Nwwr6Loq3x9LR48BoTuAyF+U41x9SoFS6B+z2MVa5HKKfkVrCIlS3g8Yw6W0XEDszWYqIJD3IcUJVgrwrcvTt+636mbNxzzyJVxB0cZ47sdfIzPMKfBOM4ijyo/jVIctCHdCzDDDz2D1EgI6NZKokp7Jk/iecEJGZB2g5prgic3la1QirE/yLIdF6Xz+AwbEwu1jRzlwpNYmsco5JbiGaaGFJceu7ypQEtzFFpCrEEWnCli+XsZAiZCKyQL1u/zdzmu6MTeuPFKMPap1C2PT/4m8vju6DBxi4opbBB3xnUo+PgL0K5YXOwyMbaWu80i9Ly9WOXW6MAG1om63/hTZNNoHxnmk3nQOwJ54fghPIA+B/GB22t9OM2fDxB8wZk29qNmN2hrR8UPEka5Y1XH8a93ALdX34S3Y5YOEMV9YpC0NZxcf3GYgzUJEIFi1UnUu/Y3nx5nmqsCUdCuG2QOKADsQ0YnPsuJ3eP9AckPCfaLUPt8R4lm0IARy6VUma+doqkKe4CmJXtu5wumKS4adGX3zyjvTwkS3EWS/nsoBLv8rPb4nWCq130SFaiK4D6lpDjgVdCbzhP5YyuTaUvonGksL37Lf70dEbWY5v/mAlk+pWbAgHNl4JL1t/cfE5ZjixYSjTiWktqWKK9Fga54rbat14qvcNDIdHB48q0ZhnTAWJUhRCeI0inZtHQSP8CF8dXAjf+rXP3tZfm94uKWZ9dZXjgvHYJ6WubRiT6I17ov/lGegKKppmkv29ybRNbcHtqJgZLimJ3YY2/20gzJw9tiRAVrlTit17oDQvN1U+3rHt7nBihdEMg9AN5SUgaEfO6ZBVho6fI+XM0Gexs3yNfGgXwkgfy4gqu4pXYxiGnHiKOjJ8W2oufiJRBJ2401zSRGzZmrWHdGtWrWzaPd8VjoUvkoEa3IxChNBO//EOQQFAYrxhWDtxckvdpltLVOxkHP/1rxMPkhewQZwQhFmTMq/HG8+C+m+mOtQXnqr/K9g+vsFq8mzIr9qs4uvTI0pWCv5nTdFdkixb07TqeFDbO/pXAG62maw/Z5pfMka/Al+TbFaYbqQFvwgKCKPzxzE66tmQBSpxzSzVKCZvEaTvvg8blcNDfUFQFiHI04XkwAwmIXuSGI2bnj0v/bsbIC1YsXgA3g6SzMlWZW7citq2meEJDoZWQnSQVVGqpqtxGSqLeE2l8fWe13jSmSm8oHQbNZ3hGpxmLyQr6qmMkgnJy4W+hcOqVhs2eHZDhNY5uo7nVaPsR6X29mW3nm7eq80bfUYdQW8cCFXkJL0D/t8qHsXHYw6xp/WTF6Ym8kEYVPLmV7OEbWdkEEvjlRuw5gl0s82/h4M3TEnCbZ+6InVksqyjvwLqZZUsTt2LO+OKoqYd96BtrCNo59b3UftqQ29CcSDdjaCZG+bshjLA0IfR9VUWda9m2N+viwEJfdLdsCJqVrPKIc0oUEyaAVzwSf9JsQHy/QDr9A5kobhStWMpMCgctM5jpiM26RkIGlQixpHUnhapYJJ/l9lya/v5tWMQbTqRF0IKW7LoZjyfA+k+1IgYQzyxZY5K+pHbNS/ZZAFObCsvVA71BEOi6k6KP0KIWI9pqPNag0pvdufeu9zu2swC7Hy/Zk0aUxFbXMQ4g9fVcwPBQHIaiWE7Q2lO9CyLqWnXFp9XNJeYP2o1h86rIjvMoVaZTmRQY4aPUeZjVgEOT3MvTMfxOv70pOfieS7jyELd6EDIitkUp+v68TqzdlXtWlIkWtn6smhbQOCU7iGYCb9H6YbQxmbkRf/YvmY5IQ79shV4PF8i20hxymDDLKXwGKeaLNzhRQefCzJ5x0ojBxhAnz+joad//YV39mSS6IYpSFUmyfGoCfDWaC+W0wAZuUt+D7DZHR1O2tZLIFcsxm/y37KrMR3ue+mncb78oPDbvSscTCLsoFroY7VzeUZqhaaahag8nf3I9i4eWoVCU2uoFMX9tLJ2ZW+5hnM/sBHEvvv0fgDGg0yXO+J/JzxLjnlKyDTFIgb6/bC9E4smSI7DOJd+qMECa38U4IPoIFhM82dLhiLZVZBi16iJmciGQXC314tQeKdvpZK53Fx18Sd2kX+2olftw/Ckj90Iq1YzM697Y24zbO+JjKmLzW1kXD4roHqUIe4M+GHMKpMwFMki8dVYKWo64TTdG47+iUvLq+GSVoryadCq1616llDem6XauQIHhHyY3Z8tpXM/YPI688sfyxG4thcGBQ6o0bHg+cHh9DAL3adW0crAS4VrBWGmwqUGv76N25iPUw7/42JSILGqHYUFHiqii3E+E41rVjOhCJAfl2idl1mJcFNagRwvuGv0pDFcNfwurJAjAAY6Rja4Hv5T8dHOHBQdT4R3AllkRNDvkAHzHQsvMRazhkPg+uBgxP0ahWTwBKJ2N7je20ZbQUCI4Cdf953Euri1+6cLqYMoVDXaEzpnbZGw7HjZFCYF/4BafRX/1rLqkbB6p07gBH/8fZrE0uvVTbvp1Xp13wYNIEzzpq3U5KkZ5A7aKh9ixVX7V5gLuaN58mwUZnQuFMXCxSFrQY3FCQS4SFOQzaKBYdscKFGbjSEmmV3zah6U0uRXGxLXZHdZCk/8rOlclTt0+tsTLmkY28MNE9XMEEEM4Cyx1lMkcPBOhReG82fde1hhNS+0T+PSIUPEm+Uqh87cTk80ubZQ0UqOFdb7axxgC05mJ63rWnF5Kx1RcFLnfulF1vVOm+63/PAkxzdF66nnKpXBxbpuDaIJTOFQkMRnh+K7eS/nwm8SBNRMTZhBMndEhnrfqI2Y5S6uKkIdpHaHoEwi4fhuh7/DEDcifNBRuQxU8Ne1z5AOirDQYnk9q1gTuVzr3E5ODzgbLik+7vVi+ygu5BQbj8QiwYpBB1JksfPze0EiTGQkJVKuXa907aEM7u5Cnm945fovq2DLTC5xKXwp7tZpnRB1apr9BGu+t4T7CZ0cnZzCaZzI/qRcfdm6rFHF+AwYfeT4EVAqx6Hly63J0903osQB3dluefBmuq5OQMx9tLHaNG74BbuNfckavMeq+YEGULRslWmk8X1LxvBPHJvGgnuyRbZ86+jr2kslBjAUOFr0gNxl2stY9l1cUx2uY7FQ6o/rur9+InOcCu5RbPQQq1h/SIdmfng8FyMypqomTSoKxmnx1Tf5A893UQBPz9ORFBPC7DaZM0KPkkbFEVWmDNAUBWMRK05WV4B+rzV3R45z/oiETIN8XrJOWjnsc0SyU3Des5cnk2PnI0nr7KyvdgtX5nYmbVWJRZh2MW/ZrWJAt35Ch2tCtAEekBKv+AJw4g/hMNUSyGrdxu551g4QOhntCzWf6flD21xaBDzW1YNjXwvNQBKQo8BF/KYZq3+RLW+49r9PJoOSKTH9SwVYRFeqXFcrZS+WO0T1pZKZA3YB4P/BMyy4TBRPGWOeQ7VU2SCanJradDxC0erE/NNfN9fRjFuG/p4WJ2ZGzcqA3klEVTvlzSAlVFrrNb0Sw1ZothWaTur7pDnXB005lz4FHIX8wgBNGeE6YT3TWgNi014zTxpoRjNtAYz8pHpJYExdlsk2LQZ5rWUsJ6mMUI+bii2ELE2DbX0CZbpCafehlIYmyBeHXLUnYEPFZePPfhBduKOXIghbS6uobLEDOtGq2aVdMdcG4Y0JJYHgJwL7OdgTdjpkb/EChoho6RGjKUfCW62iCjFD7feniYIr2rcWi8cLdFN6TGze/Ahk9WDDW2PLq93MMTjN80EkC1dB5x4U0NE2VlLQIJaJmpl3P5OQkup3yV+lWn6gr1iccxKtjOVwrsRqf2gldN8rdflxp6LJJwb40xlQf5A9lTFjx92khIKU9GwjcdMwPx74tAIGBrvj7E6jfEq0kb53uPL2nQdoO7iklNHNvrJbdoOHTyyl3pJlcKfu9eT1kSjsqYWrar7s8uX5TZY1+XMqsbZuBMaRLgSSVQnaN48PFfO82fLHInNLAOGhNAYFYqDTOh4t8ouLbZs6GRB6iGATLDEeLuQM/UpMCIt0uSuXifOxCEvdztDtsK6qFrG8pGk7cX02wIGJAu0JQSnTfq8brwtcwzNfhpFhP60KOQUpC84bf7t/qSsAHOpvONzh/KuSV/rRTnsJnbcp9v3TT64nymYHq2jYvQtheFNi+1b+b0kzhEnvt6m+FoPms+BUdQtzG4AMYcsodANTYLgHf1bsgqVN9n0nTAJFGjHhBHt8NlLU+wCqBpRZEZtNNLmRwhoxd63iQu6Cf0Qnta118x9mYYf1NH823/u/j02hU4gGBkiVVj0V+ttfu8tFaDsHdkMTrUpl5ry5yAksUVkkQVQEmJ82w8UOsEaxmo9AV8SjQo2oxUGeTwPNfa2TrVpRYyGKbLISFHdRZLPJfGSAk85s3zXU4xZayQZZcG5eTJYHDAw5k3c2J7lDbzeaDWhweursjaHvaAU6cEYNNi1ZuIPH6Zj8ZjmMCssBy4eFbxmpA7ScuF/8XmqYftDnPgXal0Jog9FD9OwU3pOfEjvDn9o5ecpDwKvefFDJ5W5VKrFBAD+5C8IfQz8ps9gEwp430B+xnXCZSO0a4Tn45KFlOU3e+/NQe/7bkgw5wCm5IsnGOh2y7XiXORQFv37H72HmgFtAEyknq0zl4Sv8ekYGrkWVARJMVsIJYl1yuPEiaD3kzDLYiwW3TKDzmWRzI0IGKuVZDHtRNX2rg/m7PnOQ4tklDrw1n2E7Vcd1fBuOUSKm1Dy72+jT/kc3TviJmblbTPBF6K1PQMFc9Hdw6WvgwkmrWbEgq0Xg2A/hNK0QHWEhQHwhc9dYCLlVTAcrtGVAGGG+t7i4jHv8rdpGs96yAHT3tj7tiFPp1nZu33XqqcJ7qDFWvRGC45WixHXjVkEbhqwkjnnuvUGF2nBYcNHWl3ZB1MFUKBKGXUl3pjNpzcQMXJdSV4JI0lHP01O9TeMDgcg8TJgr8XknKvhrLs+1z5GdLGbqRGt2ryDuCm/u988XDl7MxKwpFvKG5F5i2+OnWFdKZcVSN4GNKYh1V41i1+hu7LFnYm5u2skTgdBhEb7cxKXnMq/qGpTXhz1CvokP+gIOomCZ2u1PrRgBau4EAmPqmknhQz+mTlBVjd70WuuQt6LCURoYXFWBez3QisDocdU7qGH0JY+j8mB5oz43szFfdPTvH6UjKSXIpi89QViS6M54ml5B+8lgZujO3sVeiTN7txFiTY7MJG9WKUxUNg/R74Fj4LppOSg77s/9tUWR3IGXMCkNDmIrTCWverFdHbkKwAdnypsTKC7uahZHGPW4jdzu5pbYmBK7ctFjxWodWj3p/L13geYPc4RhekSnfu+Q7EHiYg6MKuZVl1kEiDSuNGhlPZ4EnqWzoxGMIWa62U1jtEv0JA4DftqWDTjXeaibUUbtOMhQozNCLzKOEzifCpRDY8pI9k6zJKo51YT4XNh8y0MdVb8lDXuYRILYwbA5hYskiW/yIzkjYeRod370AzYLd67xM0X4SKAHVyirUJtbyvrPQ/Pk0oaH1t/AM2jbJDkqncmNutk0ZA5vMAvUFCmzskG/6lEip8om2bQ6ByylsbVTGTT0yVgfEtFT7irXJ+yMKb97LulrD9uuN3XlDsIrgFlp1C798jLHlqPRP9hW9tUCxfyHjvOH0Y1YCqxRv4BYuqP6RpfWIboKoWJiHpPxedTiEdfkTZdSTXPUhhcvnLRQ30B+wcLKXo4Z7ar/5N3yodkmOftxtmCGljxF0M42W0+foyKjIk5V+Jq/LkgvhJWIWLCAE+UoMvmRAX9cDx3goelNcJEfiY66GKgxpsesUFQCm3UUfzwyv7hsmtvnGkuiQ5Go/OzONNd7VLp/HqDfcU+t+H6+JOmjBF8yh1Iq9GrdK7js9kV9SfDNEjx1qSU0uO+MZ11EFZk5A7qAbSmlHOSw7XNzKbicu9cEaTmOciYAfuSBytdjaiqeLnU14b4GUC7xw3lXBqgqK8yrNExgS1KYuWm4UnfBJrLFnno+ZooQIysGO4lPM5vb8HSTkO0RqiINOCqbJghime1mmU93CP4h/XDSAT9+rlNQ25xI9c2YnyZfuRS96kWL+5qG0bVHTz7qAMv5TFRy+ZCgNwj1pt09EGiNDqmrP5d062d45nRktZEdXjyziBAqENVzk5CjxnZAHcvm3sHeVbfkKxQd6FdzvHQd2GZIQDbvlr3jlckQM1P5GHoGQLb77bjb6KoGHlK9hRRUamMIozeGz4hfbVxTKBjqbu63L7d2Ccjf2jugj63U3ow/3FLO3gd+RhrL250kbYEF7fNTShTEEAARmncuko746RfLRFzGYHxD3/Ll5vcypLleADJEqzmbFCmJsPq7i6xOxj7OMjSQ0wVlAVgLqmTtMot5gPLSOIsPZutEIcm4kr5QorW9V1NouAz+k+GA1T/e9XORyiaHbweQ6feAb+PW/i6BgYG60KqyzHKUbcAaM3CJhIFUxVMs/+Icz5XAavFFW//QZ1EGNaagLacov6uFHE8QluQ/8020Xm4NoWy1kn8WtOqifn2fN985QXmK8AzyUml45xnand+28xEdbcjsZ7MtOTowXU2Y7tluLfeEyvmorv0fK0ahK8rReZ6+tfI7llWOinY0BaQv4i9th0M1LIe2HAouxiimXOAIiCDUV7ruUUPjaZ3id5Iz0BwZMwCSvuCcAcFQveX3tABnQQnnqwovJqqnNXm5bFC/CzpHR/bT+1DLUFXSC1NPql/BlJ/ga4NZTqJtvxZtA7zs6YTGtEHtZ69KSmlsi4/QI+HkatY5ccLOCnOkG5qeXOIo5U2X10bcAz2JWE5rJckiKouZQLBt/D36Zx7vY4F8cE+2aKXI08z+iVMu02iiAJtDhFQgbjuomHQltBrd20mjtd3+U/rjCqh9cMPpgzlCnxM0O6tadaQ+erSCUcUCloxnkY+JjsjmKnE4V+blLi1d0L3GFKfMkGjeqrJH6lkioLljtlSBnnELUJQfnLvan/NZ5guc2ZrMGOfxawp2J9fZgmw9sFtbZOBWtf7bEfdSiKhph/cA5gsBP3MwRxreuCS4ZoAP1IHOTsqjRSJZvha94frLP8a6A2CzRIU9VbweyO6wK+jYHXH5TjpF6bXwUalf4K+Z4A96oyhG71sdm9+z5BEjoWl5bKQqE//pI6ZIrbRH+wR1vKz0pKwjbs1j7kuT+b6VSbE8nXtJ0OtylgQjJBPTdnT2OoOXjZPd6/HC5iH3T8mAgDVfubyUluFRoymaikOOAjfYDbGwA3UyQDA01FNBeak2Xk+P+y6LgUZvn0+Ic6xG1eDRgAlSU3OhQyVmqtbkqp9uBX7NZEfsf5u2dtOQQayFle8szO0iyAHdE5QQeNsD4bDnFrKQPso5QA42JSZxHNyH1ICC02sRim9Bh72FaCHxmlsBqaGw1+t7J8TWiVo1rDBhIG69/86gIxOdC0ARRGIFIznJOJ/o31X/CseuNegpLC+jlSnY7zLayaJGVxa5DyW8dX2cjN/vBmvDRAs0STuUgZ1C7+g/HRdII0U40k/aLNG1x0cUZcANnCyCz8YAknJzqAuSIfvSVRVtwNEaek59KV/Wt2JLbqS3gp8yS6hTEAuQSfU+jN05MLoNq5Kp7EpJCHJrSaaaE6voTnumNtC0C2bOkI8/Kf4DKxSTIligHn0ppnvcSLjxjFBLpV4iE+XfuvuEdJSP+gl5kEiJKF18PwvVK0CYNpuM6WpaMVNHmNVifH1Y4FDPOdTXfQtVT9c+9YuVUcFea9XK5UO02qSKvXKSWKNDbJd0cQ/QAs4+Qxlc5vBgAxP2s6azQAKvAZ37/+yhKyMBtzImhJPa/wk6w0HI60kM8lJkyhikWLO+ZWxphH4x7w+f8/1uZ33fP4sg296ODnBj40AwFFdBhPjOD5Ema9m92RmtPQDRNtobUHaenV2TKjOiJtU5YGMzhQMV+qvAliHuDShrUtwf1wuDToUrmF+pZkOvKAZP0Fi7IZ4lohmzK6ER5yztWyLdiNWnWkU7MC/vJbDirLwK8vTKHmXp8PjSlbG49592Zxvb4qltpcgnzszSLSOk71Iucchp0zCe7mpLnqkbn2eLE3qHlBhRDDSSaZNwbGzkz0F8KUP99oaYpOhRdWXeyC9f+fCbn3wwTk/31+jE3bp1TIPmAnXCN79QX2r7xFshq2DHIb4MrsLdwrH87oE6JwAISh349UQdzrQ4ZyxwZOD2nojMCIe3+rHk+cjqnVuXfNzP9ML7R0Vk1q9cLiwB4m8WJBs02UYcNbXrb0o1chlSmKpNZv4nOfNVxkNDL8PlRN/woU6sxvdryedmGIOP+M75S/EJv4ixqGbXNJwhEOg7+Q5+kZsL7jRZ+P+kl7ekeZA9+CGmLsvLOS2JPngpAdJbiVkPfQ6D7TOfyuC8RIULkvr7L5IEcfWIm8jf7xal7FTACVqVtu2FK0Ds18afa6XEKHal8Imq6rhDUiw3aXr9qWoTFC85Bmi/g70X/bNdHV02aFlXZn3GYscVCCzRqX8zNEkYvYRMgVdZVdg/R3/VlCcrAULXN/wbmo3ZOoaIwHmuxmB0NjvKwFBrPUIyjbpz02zWJm1JuQwyc9snzHCkzjfC8j8HkS68NfLWNYJG1kzB5+q1wnxSc7PZRAuj4fKadA+L0K/XYEur0aTNrtxo8v2aQpcvdvy3fz4nfwemYZ9+GBCDMsUw07bp8APUfnPBxhd43X1fP1GFzOnM3sUaT05bAlxG9pGOUlViCHySaaRgtTImbv5uykrjZCE14NXeiEpsUYPB8/nNihz44M0L157sRjnxPoX2HYK/bqMCztAA1BYcRrjevf26+EUw+q107pqASTj7j8gamSQsuZ6xrdEB34kJSNSIYZirmPM3pc+aD4AqzyK0g9Mg2BjeDJZ3u48wiBfQWE69ThI7nS3YnPGwh/OieW9wAZ95+eXcf9Rb+zdYxuv7toWeeOTk5lsjOwaoMTbp4RYUMsyPhATDUzrsU+MNYi8LcZJjbm12ejef7vn7gdhbNDMGm32yVI8EsHlKisii+gV8AzGHLfCSWuqZDxXR2INAlWIBzsO6yGgFvNnIUbhoIVVPxxNhYTTcVSjKUv35CroYXxZsVZhMemnU9VU9HCHeiaKxr2vGetu/0GV2NMnivT5woxMv0B37M6SU3lSPpWzOciTaZStInzVopXx6INFhQbIf8v/yxa0QEibXd+Qm4hzXsAaNeOabKgC+Au9ALj/Ae1bRSpkxCTFhOvK4bOm2ePc+3xzjRkP1NLYyR8q85S77AdZIArkKDybFwHW0Au5qZiVaTJGi50SQ7UVEq4DzYoEf6+KV6c5TQEynq/DplWOgIaTOtXZMCGz4RKpETZGtrA3u0P3wN9Ma+Nkho/UX816Maukyzock1k5NUV+rq0Bbh61wIRnhZQV8EV/BHHWvPirZMuFkzwJcFPeK0suYVklTVsQ2pVxfdyhnV3Xqiu5gHJp7Ztb5o9UWNZG72biK3SIOpZD7lQqJ7hZnrTdr3Q7QOSGakGq+YhV1vFORZWkwUtIrw565rzCEZO9jFynQ5CTWyyjxl9VSjDbh8YYO9LvviBnTfhBx1fFuo9SvO4LOfu5c1jQB9UlASB4nCfU/XjvEL4GSDj0DVyo56/IhLRoHVGmr7mlJjOWqTCO5giHzzpPfcS+lpuv3oatF2vdnswrtJWN1FzkwiilU3yQer3CXdn2nTeNIs4sG3B9D2LXjXFR7wa28way+haN9rWIuz3BjDK8ZTMScnTUlTeg2nP9PN1b2gUHeyYEHfRRNwWoBtmhoDFbauX9ynG+SyuRzYDmEqCxkedZVJTYX30zqQ0o0Fkn7XKt/Qb1Zu5yIlJzlgpLFIBlNPbg90KGeNZ8ekkQcV9JN3qZom31iFktal26tLh2bhV+2o4kqmxxFNoU2tFxiRmnMm3mLIoyGLnFnh9jQuRU0sI3UIbw2FPzgT1K209DNU05fYtg5h38yZGhxGyK+DivF0/Hxl2iX1fzH6sThr28OptDUfm9A/txXWacc/QEPL2w/wGSJ+/pIJYVbC8ItlCKN2YOWxUQjkP2oARi9A5fhL4oQ/YffuF5iAoYp9mVMfY3QzHuJu6fXDv2GCwTwbnHDHWAvWnX8JIIIj2CjIWBL5Of/riZDraWrBSV85OgiRr98Nyk+Ls2kNqdmSAKX+uH1EoWxivSDppl9XLbqwDSG1grMeT4WfYjbjrX0VQsQ2C9YojSxx+0Kpm3ihd5RRQ8DcF4k1vk35woXgAb0MGnUPgmaH8mHnLiuTlp5auqQfrkKgnJ1OaqIGeL7sodIjgBZF2JVFFFqnB7K6+XJ47vYUu6DX2/I+zJhqkGaRWPDRoe2tpIC6ei5jPw/KHznAd4mCH3WpTnpI2JHQ7CsflDd85bLoUvzZXi+lRWfFXiMXsPgVFTGFp0nKSWm40uO6G81pkhKWyIJnCfdpuC895+17IQWRNctEtxZx9OE/6kpBZXA7ejudS4pzR5REr40qyihx+g3vqONNDYUi5WATjnW1S2vRWTv7YhdullNHcX0hom9OcJIE8MYCoKOlEA+a7bORpVHvQjmYoAdsqsvbwZ8fjTkGzrbg0UvMFFpo8W7+bm1swH3Lso6a6JIUH9iWsPAUdIqYzDbMmxEYhBaK0oyDcJnyMNgg1lC25mDmsbOKAZdH7vRTdBpXiT7aA4BpIkI+teQ44q5NzlFPnQHNA3qnOafLTd4GcrQw6MFlASEzMAxRhAlxWjXm01Pe23wb9Hp3etYxpWlGV1WBgqnp9hYBouPa3mDfYwMOfcM/a3/Z5qZFMeUxj7fSGFZkVWPPApmW0aN7U+1W7Wm2hM++45U6o/RPVUxftbZhdJ0leD2WcOgLIBw6/rZf0mjZrwcgDVRMNP93zVR9tQ0Oyb8c9qUQ+rjVVPqLIlbZ8CnOlt4maWzvLLKbUS0mwLcfyo4Borl/k0qKtpW2UOaHZD+YXl0u8gH39sYpBPrJ+Vub7x3Qsezslt7Y0PiBS61dQ4OoGgXHmOGSYRRo2fabGoZr3jDPs51RC3MA4oxY9urkdSXf1m2EWQHzKMis/TH4QYZPKovSzB9lXavPpq7vLbwJ2wc+Fn+gmNcXK0Rs9O2hReHwpSodrEG3SLmvkmQe8GhRJaxxWsCMtarPbFTuKVa8q3x5PcIKu1EeiyaZt3Ulb8XcUkDLZMheEjR4Mrgs8ihIZrn9qSqMB3LYC+MiYZC5abF+K+1qHNOx1FSpYbofGtLZ/y75uYoSJly3F7k3rPhHIRVYtB7Orz65q4ie5TwAYSiaqQGoz038Q4AoUvTA+fYOvkZR3HQAbAD0NNEv78D3KiIuOYWKpJZJS14B6rwViCRDeXKcB9Vj6S4998CtsWnoxx92jPNiwtLHqRK5zAOW8EAPUH0Qa3kacLZe/jbOs+/9QWeqKw+G1L1s1GKnUoH5rM/gqrEmvMUA01pwsR2o9IWeNUV+4z7goYSoZeHRrrNHACjgA0xIQLid18RP2PpdtWfYGeU6HIXwnHeMpw2b1JOq4LGf/fH8JrSyq5/OwOIrqzPdhcn3WQWbMaPrd2Nw7bLPdYJxSewBHZ75b9PaidGwFN05K09NpO+GdLqViRdKwcEKDhVt0R+ssRWIo8Pu7lsAP1UQqiWhdY31wSKWnOxrNqLKuasr7vlHOdSMXaPF0UZ8FK8DXQUs1eUgI8VqZYIcTDh8YF1EhoB8TshVpMlHmFCU8qhw2mY9vql5uTcKmkDiQSHtMaRAzohelGqOxUzxi8FmcMleKG6maXkBUZajb4XH9bgitg9QRGVI7L6S+MAEwIW8DyCsB4NShfzQOfzk4X92TifDn0tBN0HLDkBtshuO17F7ive1Qs8UDuwj4/xZeDdk2kBkNwgKtm9bcDHaxW7bh5zzqoPntPmvtIG19MuGdkMNymA39oYyMu2UQgKApQzUXpXehM9eXRWxJsOguWvSJHSYMcSRq3uWoWp4k2ar9r53//eD3jnNnyI6vGlbJdDaa19epPa2K/lUIQaM9lmAsx05xyjrkwi3CfNrirp+xnuOXRTLuGYkM4DTacqGKsYLZk1tek0H3O/2BYXVyLiWfTdZqD9uPcBSnst0DoJ8e2S0ndppGCHlP/JudLEvMbnkYj0imOYgCxh/P05+ZW6kXvgaIfdomHQx4+W7w2S/eGRu7h3/ECJz1eOZMVfaONQM2JGGINukKEjX94rZuTIjQAPztrWqWCP/AOeDQLP5P4AxzJNXtDECuVeelwa/qE/ys1MSlVxE1BogOu5rWYQKz89FaDNhU/N2HeK5p9SojjkGszVVzmbQ0tCpDWW2FsRlbdzpyl+OUyc6nfBI0//H135DAQ18B9sFl2fuQINC+Dky1iCR9Bxn9RI9cHCrN2MBbPPgVpvnnJoEfk2STVII88QH5mzIQUE2KJIxmNdynDnIHAcKCfQl12mUu1riKERpw8RJVOUma3g2gmHF1Pmp89SayMgTBuYHlsi77YkJVTrnaeP1blr+2kiu0RjmVMrhtw/8X9k+7dm97xg0ChKZ1JYC+9Rm+PB3R/2BRe8qkKDFILmDi+jLp7H48wU+ymN3FD6zS9xrdo/KeP6DeNThL1Mv9WDCMxlSSNbfR/NdJiszsB97RZsrUVzX7pQYFmyJ3lKmLkrGjdTIRu1PAUKyYfl43iId1wLCigEyxXjEqTi/Ckpfx5Q/MGZLq7Z+r1JTrkuQZ55yUdXVKdPscoImEZU8hxQ5I4Lo3mjDmicfeDgM/BRObTgGM0SYZ2hsFsdU3MWOzuhc1YN4dd0HvJDJGjUS29p8TvEnivQgmA6nC6gR32pVzyr69/c2nQw0qgXvscet7lyph8T7qn5kI28fNMOIyt4s8sonL/qF2nx1X+lwFvjN0GJbvvJCIfzpNYdBkaF/lDoYwvrtzpdrBdpU/n1OaIdjSB4gsQMNRhyG+VhODtTG/XHxltrWt8FVildq4HJMJFjMEheUft0lEbaL2zqq+GB2QHuBgpd6cqg37bynEwwv77aVAAkKgZMB+56SIIMcxl0qb7UgNPPE0GZsBrakAP3acrL4EEt5X2LSb0y7Zpd/pr15qyr1dMQcc1Fg5Tkv9YyNXAuPK6jghSPfBXrhpSRDiXEeCWwVXN1V6qsjIGrrB/1Ig5udO1IG3/WAEatSimJdJ5jAuVwU39lssOsSyTsEPWJgAOGG8jLTNeIKSGJ02eCi7soji+nxTOZzkeQlrl/zW1M0+dVI5/V2itbaQHxKfZbAityTyjRKOq9XOKRgnCp/HodpFhnHuRKWmRJCHsJIF2poVvmmxb/IBXG95V80Vm/9Hztm0S+6pRc+Sa3JLtIOBkcaQAM9EEInEdgUQN8zSDggRZUJ1phdfmTSxc9Ad/8mg4Lq3RByhjKnPYmf7kGK+fXICgHmca670uj9FnbyHvZjVB/5quBVYJCZ1zTjr5jbJi0DijgGQN8IY13eYbjQTisDMkZNsNNGnl1wLIa4ixdNCww3xLRccg0cgmcagCkmbl+QS9uhzrfKRKx1hEP0SClJArnyCIAyRGx4GC9aeSwO5B7cxIJ5oeghqqDFTybbdLG2E7/uuh0md+MQY5SpQldf0aIMV/tCdb0fFR6MRSaTuuocy7Z3dzAkruA1wGbs//DraBBJYrlCBVOTrjGAUYQ7HqUL4+kJT5coQUUhjq6zKEzFVXbwKPbm87Mt/IG4lsticvBINIKj3DjV4dOpWMA8mSRIVPNhuIu2dMDwLpKMeGVIQtK91FQ8i4UedNgLg5WtKwy7BCQmrIMbznfErCZp6JKjhIrp/OB6nGigd7afOWrT2yH2nmlZTQ7EDRLVb01AUB6xgZicZSwOvh5eIJPOxbN2RAA0WGfh+BqpAVMGhlWvlo67ZHCwUpzsjahMnP7Z+cbPOFa4+NQHI4STNM9XcgvnDdc83baulE2s+t9xX+QF7qWqI5aECdUbVRsrYsRO6DMjXW/wYdgdjH9HlfmhO11Ld9Mk3tN//DGbWqBOoIcupZFhFJawfe2qFeWv6OTUNeteKBNkOv7uzBlikFfxgIhA4k5DmpAfui6UxoqIbYYzyJG60F7EfHMYnjls11xS3O7YKOvl9WLkDLBesJwa0Zz2y2rpPzITS6sOLmec7XIFraV+r+QCwCNd7m3dK/LxYS9r8OqDyEktt8uXYBl6ql2PmB78Tb8B1sWvD5tPU4BhkTjP63V7lWrrrZ+ZIbnE8jngwFJOdK10btxTU32/GnIDb3ync0Bex+3eYH79UDkjT+6/CjjPHfpz7EMlArmLmNN08FJvTQj7ckkwigJKSNKOtMceYxUXvyGXCxBJguw0MFP2+jrkSqjX2VtOPMN64WGJC/m/GMAnUKmoev9Qf77KOleoohSkaz5Yc6JWy/kRv011GeG/QW+QXJHkaSwNl3PhSaz4tGIwc2zRVo59g+q3PqZdH/VHGJkVid5rMdg71wP5gwdTf6d7/XN3RFBznHqWe3eahwUKOpt0JvU9Wm91kOY9CfQQqWylRDlPsyJxJsWYKzSnSpr9YOBhlXnL0yZYdNl2Ha/o/KHhapWaOpDYPIVuMKRhUrp0teoiCgPq/ThpM2n4Au2DaVVo8jQlIyeA6Hl790wp4NQUcXU0Pfm3CBPSUo9tWXgszpHttyjFqkHCvAjGyIoJ7+wsHJb+bnY8FwSHztGK00VhVM80vmOhcS7peJX8RLAfRHCva8ca9R92nFsY4jsuMVNFb9MJPQ+WwLCV48u0gPST8af9WH+F9JDQ4JD+BCIb7jcjUI/uSsnkL/OP0FednCA9IJrwA3OkAK4+s+VsUpTqkxYh20++Wkowcf5nJcpOCnkGNLF7dNF/rHic1SGAMNahCUMGpbR+IditgXQmyFoj5AoX9YFfq7uJ3mQryc/+symkG0DkQszwZ/E/MvUfcl0tM603pCI1ZKVi3AHgJsFH5EwpRvrDlu05PBV755duwKjkWmG21DWNGJPUUeXj9nm9xgy6wr/dZejwE7xXhpYwmUWYJmnRsk81WYSxbVHTDT5+rTUbz6k5ljvvVQquEx385vqAV26CsNbnfzcV8trpskdPsR8CMkJyGGEgRJnTc/+4cu4I2TNzx09gpE8jZYap4F1IX0daRbdk1Cx1gOI2oQ6StX/fwbO5W++srdAAJV5TTp2rVZP9x+O+aANnAoiCdwkwrxZAUdwm3f+JRp1aX49q+Rp6hY/p47xD25Oaz2bJqX6EEV485vnSdPtWxHkJlmHd3mC1EClaeUU9r4uQ+5TYOIAbL51pnn/SD8YUBe5vglqkFI+3w5WRFY3ahTe53Xy5vfoOJYPPO1/zJiWOC9muaOqiwnZQKgJs+59eUr/GjSGxe/jCVCGkqFJ8SXf1qyhCov5rSQmV9iEbztUO4BSFrqvSUuUwJCtzhSn1sRBhFhz/13Wg4a/s3xj2Fgde0vGQm5C7ISoicL75WNbYBxdSbLAvqnTwIGMVcduk1dmhRJelIYFIYttz/0ZDEPbVTvVdZfQX82kwlS+sGcTItnmR6kzqQbVK0Fqb81/Ot0FjdgGDxM3CA4IY5FBP22y361w6t0FcXlSMK9LTpuVt4IyzE/o+fSFDjS1E1wetzzOQgdQqk/PFHkmuGNFMcv/SuHddMykggRTtixbnBe5A/GbG3cNQ7BWLnR5l/ssaYn8FrTy3JueTxqVk+rZXamDuutpiRCd0Xo8R4zaTqqjksygSMeFNvfAjjqGsovU9clgE9zRDuROe/x+/GvAh1h5Ikq0VqWctu2ZjrrYKCc5d0xm96kL6y2gzJP6F2QG2awh1IpX4Jpcd/Y2+yv4U0NFUnVhcXQ1VSB4xy8lo624FrjvKuSDl+Z/agjUG5CiYzo0YnvQB546OYYJL1W66ss1EkSKmtTCg5X9+6ZAR6Ccp6U8e5hSjh3FZvUbbxKpi5TWEIJSIpcOXGiS98HbX4J4qK8Y9RKHqcsHnUkaQeeknYcSYFcALUe26j2ezIDejIHSvfqJfWVTSHABjdUIRACfAIV9F6E4GbtqbDsKkFEyvzwzEaopmrwx3jdiE5KEunQAEEQZqvBnEg4bNpaGefWCIlZMJBXw6fiYqcXRTZ2Uh9ysroCGHrhDAcLKtdPnvEtPNE4qcW35AGDkncxabqCOx7wLp79tovX5k6xd2GoN95uP6K+ImV99PwYf61qjRWgmLcSIRBVE03/sTOMaInpDaIFGv6ZXaaGuuv0ygJY/ijf9+oBvsdnDGcxP8vG5Va517jproFoXY7AolNYotazQnJAYe65MEgI2ipunU8O5vy3PyyvWzQ/bp9tZaAjBtVXT15YoWVTqoDS8d39rqo8gAqHgaHVhkm3cAn08UEEH0f6e4laYmU8k+W3cXE75JEqGklN6gskelDqtt2ukX71bYw9u3fL+rUQeWF8gdSKwbE8n+DAkePmehojKc7OdbMGRywWrDxHTUSI1fLKn8ZdxunujsSTHDZ1yqXerZHs53Lfr/irpYn0drCbMoT0azrgGj1ATY4dqOV/sVuOZ60lV99e6bArCGFh7W6GLtshsiWaoyFeHL/NEt6GTejQFYI2Lled4ESgEpGntzmvC1bcRnB2vZaZg+70dl+Rxu1tln9wzCh8mULhJDzfJ9bniP9JZOpokFeg0Lu61B/VUUf4TU+/NpB7ljhJWIaYycgflAc6ZT2U4Uj84+Xuj/+QMbRSztw1CHDu7c3N3XbLIYiCEF5nuwAht/RNYxIp34GuzfH4QlWVu7SVdhIyJ5zjY7iJOXgDVW4Td5FwrlTgkwsjB5i1pI58SXjBBObNbFIwCjxC0HGmKHw43MQKz0ZHHbrFwBz+tFbXZnLceNaZJj70twG2sI88o7gmmhDL/cj9Og7o8bP0gWjv0YyXwN/h8GEP8j50bgMqzQdMsyguUUK0p1Z+VGZ/+fVKrFm/W0gOfnFIKZv3hzXyFHJ61VzgBjEn4JCbQk1nEQsvCb6o1SAAL5qRoJ7iC1/aNUNHl0qOfjtQFzBvw8fzOVzwlkP7WDVFzuHdclu6G9BOhg9ujlMnKHhHr7FODRvKJD9GLM6Rq59PF9z/q1zQI7Hoxyh9lVILjTuESVAakQnUTFZi2iMjiEgddJNMnwTrJRILywGCt9BKEYgXCR5b2hApL/3xZweYgio6d1UEefK1zU0EnY2SW5Fzgb14hANfOlyO3x0SbVwy4iA5gf1eUwBUIZeYCZEJnLPjLL7VBa3J3OUliTrkZ+LSlAhKRneWtwls7mWi2ctWRGAlI8s/d592aVO4tgpigVKjutgbB3YAJwKcwCs5T4bmwleGNDYsgWAM5mRS1GFWsOfTt3V2nY4CZL/XyVJkrfhe/rzEJQ8kuDkdi8EWtb6q4svcC9lJyMeJSplA3DSRmNeIu3fzmGvsfwI6KP4rLomqCXxb6lcY+YkfEd8rxtxaVNjZNpGPivXLvDOMJnpu8NmNWPv1QgPPvURzEx406x3PGxkxvxSYVy+iy83FjhfCvmO7fnDpD9N3Tb3Ukh/RGMyFz6tv8QKkFNBOa1MDKI3ZODQUi18dW2WhicQ7Eg1kYHVy/vYMNbOVfc2/3HQ1jc+som7u021YkM44zefzf5i1yL523UsVyn+Fl9NSP21V2b3ykciENYqCea9uaXOI/mZ1XSLkz5qVmPBy8kVLqDWsieqAcYQJnQ/bIB/f0TK8SCFpRwJTTDNrNCp3NMslCigH/82XDBQxARika9b9t5oKDJCB7XXy5vQ2o3pFdwWp+KsyE8Fe/RdfClsO94vhLObKNrN/ouNy6hW1p+QLnvkG6AllclnZmx/ISkioLDsAxNHgBQQwEGAapxkxgK8h6w+kkpTbgoRdQ5oHENLUnqsjWI1Bgc6RE36pCxcLfWQuXKBiBNcImE/2AA9KhwEDy+/DmU+LhH5dfgErHIyYVGiu+LTWfcd/7pFYQ4TzUnXHzpZCeZ9KMydqz7Our07vMUVk053RxrYvfyf1+e6PmD8zasKAkWcFi10CBLJP7r0Ppibx+XiOVcQz/T4lw5sYvGr9U1h+GYRWWYp+g7WxYqq2DgPmi4QgqmHI2CZ5iqB9TB6YY+nEE6fLCViII8pD9SadyAiPozPc4S1eapxtiNw07Pz+GUrtz4zWIWOH6lLXipCYX95Mntecbx1r+46Pb/dkwXmhQqAMmFojOtieLYpdqqDVU98fdf6GBTNhlugPjUjUJHg8nKv8KeuRQ197bnEr+7JRLy8Mo3m7eSV6srbrMCcrf8eOZZtpDzb7lJUvsv/emZ7nE073RFQlo8D/j/fVRz0rluhuuGVYBaaQQQPW2MJ4GUJzkazthrHWm8n6i2ChOEcRR+QOx2Oju9BXBnmvBwhRky97XpeF1xWs9Sk1KQYv4q77gNSIAnv6qc6CKBBOrbha3xCStsIDArwbJGEUrDaNUL8lfK/p9hk5Z8B6ctOgDzl2GpKUQ8iJ1s3BZiXcPsyjdX9ZqlnDKde3VxSGBANXYsqo04CRzoM3bRhVA5jXYVALshK371R1dg2TfFzvK2erelglYXN2vvfyQBcx/oRd4ubUI/DcXieFPL/TPYFZ4/XPTKpW5e2aB713Z8Jjv92ohb/0UJIaFiJDVDk4vUAVHasSC0MwkSZoXUshestPeGDPu6mkNsFAgD8Z+eNfghCmBwIT/yTNYtZ6QF9WKjfLPub4LTR1XI1G33VBS6If0+I6IEYVA0LcPxvgKgfvOoHRrdwkFXZ6ud4Pcht3MddvMZZl7b7fGzfW8tZXvo3Lwn720psEulIYCVpU0Ej4MqDVGWgFxDK0Ld82Ed/X7bvtl4ZxrNUHylPrZSQUh412RXNey0KtIFP6R4fyIdR7jvc2B38o9JAsZntszgeqLhqnMmbRNg/KQZsE0nub978dhIDNmd4uLZjv3x+LcIEzptR4XdG4+fjQ0c//7Lz9sNYe9x4QDw0gRDenGNP3FIdcF3HVYORYzsOItogGJWxP/FH3z09/VTYBDGwqUNYyvkQWOVlDeoeyJwIqqXqyN9icTEpLKd06mgrAkUmjnDj9ZczeX9+NnDeyR2waOsgGY2/1X7fsyyOZLjv2gRuAi5DEf7BGeqoQtGef+Rk0+wCXkhe7jx+IFfzkwpLewCgEuIbbmaLR/1Lh8V7lZR+EbZYxts/ASE3An1shfmf7FmXk1rPODpASzJRPs2flEJSdqu98ziXYP4Stq67t+qjcDTznMKzEX5agdp/zAho7zeWMqY3KB3aG5HWl5liUJfl5KNysaO+uY/8fK+/qFD7m0JsvBj9pnYs4TodOGntxTcIR54pq9Pq+8U/ETyx5GHLAMtF0wJAyGSJGy478/m7AO0P+vr1kLWebquMeb3qhNZ1WOx7YaBmxsCFOJ8kEIqTxTKLNbrA9+7FDguzO9fUUqPYkg9UBWdsuqcetTpYE7z/6k2ca4RLzqZElzwCf9qloj4zm+RNPWuzcZTArhNuQCPnDSgRnNmk1gh6iV81CB+eC5ET+UcQ3cE23pKxXf7zOf/9u4oedWgrfrZTBIVEvwxZ1bRhT+LERsCN+moCuU12Ddnjn5alutjtTPoEAyYu75d3h8Ecfd6ZX0Oa9j8/G5VHGmiVl6WbPwkgtmOjdDDs+oTJ7jPRGvVT7O5euXYgvwOnobjz8/s9Imx+WHGv/qegMiFb3lwiLE4GuHLtk0v3ix2w79AivX08/7aGi1l/SgC01WpZJ84A5QSu6UDjmxzpwvjqSnlR00N9Cm3egEm2n7vtnO6JGye/v60yO7syfkemHYM/jtSDe6X1/rgdM1TuKRqkyeyYvP63dGLb8dIzcSRn4tNBz98Ab5Dw+QZ9aIx09VjsAVaSegquAp99kAV3okM8Kxyfr4XyA5BbTC/seotAZKtnx/HcShV6tGywZRiUjPdcCbuMuDO4zvq4abviOlZKNE1DsFB2R06gOPcXPZ6nEMnKhmuQ+uv69aGJ4f9M5N+crvGK9GJPP+tl0l+f+IZlrR31aMs6OPH8DyJc5bxM+5vPOvspV0RLwbZfA2KAMLJiOAWQnKIPSP1wPjlnG1JqNUy5aQhquBnPPzYNmssSAf139TOjPCiT3z821wo2KRjkwYdbWqVTwhhCQkZx7Ncq9XRS2lTJc0dySwnk70TUKNJBs4zHkyyTrcZq9hvUVQNemBwkhj/31d8YeAVqHJjhsWXxi7P7QIj0TowlhB0lVfU2QAOKTkgsX9JuRNrCQmP/g0J0mm5Qcqxn6+zNU5DHYKkNLflSDqFSyhwyUyzY8tucsvxL38YNBxacK1z2DvOSPTB1qmwtnAIeHQeGEjBQYGQWASA7KXLsQ2jlXYvANqlmrssFA7YNiBvp+AI5k0iqKaPhkiRNCARd9BX77EKwLWKXgB3Rz7AjoFUv45sRk0jjA6j8tPhYmWyo22ooGggHe40f6O7FqLaWTrr8PscAYW1fG/GK16DjfAYZk8+TmlHCMbOhAvPEtjCTNiv2ZizAFa+xT1GvW8dKr9vNq5C8kqWA7vN6Oc55HFLQiu00E1Iau6yrzpB2UQrCqTDAv8vLB5LdeAOoZaaFIcPKZLXeMdtCN7sO0RdpPdwNl/M9JXZiFlK5jKsTwi1M85xIdWY7yf9NzsGL+TxjcwraGoWmFlxhfyzzbaNkSKMflEWWg9omkiZHcr8BNkDvJOJkE+Z2MLkIkqy7BIf8uPV+kOSSIcovAgxTj1kizIiPFMB9sgqPkw2JseKHA5UGoVvX2tKGnF2oaJ/c7+SouJYoam6Q/CQN0OrwbVlKti0LzitVhUmao9REuo2Kikqrx8Edf7pgePDBLjAcj/s9DwsbeoWjPIXUGbPCs/bfH2oHpnm78NBQc2UsvF4OE+6kQ7/NguwwIpE1U13ldope4y3wX1pMZAJA2xO/KGIDCtE8AayDb/e3Xc6AxuffYsulm4kzWZrR83T3JYv8opaYavg1vyqsFFgPsYJDkaPl/Aboev6Pl4ZEgA+94FStOVNxMbliaE3IjcJlgyuo7Oqm2DviOilV3eWV9gxesK+kRLGciXxgSIP4URD0xYUP1nas1SmWEcKMHNL5ctvzpT2v/tRw9qTENx0oi/5YlPQl70upwb9zBf0Ss5+xHwiyU/PXqvXvXDPbO8rs0KeVj0Y8E/czGxQOe/dIvBYmQLWw/ueAc7YlkZtRmkKh3wKNwzynGYlBxCCDCYFyutdAr7kPub0doArmJ45ev+yi6+lE5/ZSfqpwH4Rtfe9pB32WkNRXZIPI9K84M2WLztSwH0gZrqEvoHWd+Pq/Bz1jwMY2b60nfNz8pxxxcXzn/BEABsfWHRz8CXODPg8nbBnWNRuJuGixDIZlR+udCK59DNVV/B8uNW1pSr9GT9hykPB46jfds/7sPwwfcV05xMYl1mmAGoU5YpStrvmIJCamhIZ+BG/YkW3QVh3e/I8qLZMQr/5q8cik0Zqcl+ld/0ZDHDqrImhj8NRomeKB2JpGEKcwgymD55AGhPfDAqJ2hefO7qm/qTvcLjBV/H3/ahz7BXEpZjRMNJMzZx7fnHOTqQW0snAVk+DtZRHNj4UyCjlVgj8M8C74+KlVecoxdS9fJiapt8Hj+iotOXYMJBt9D7P4WlcJznvkNtVzmNKYziFT44fisRpobma88D+GhDXUL4qhlZ0FMxZ40HXeLxB634aKVaEC/zrYS2ihnrA0H15P+bqG3rjaMK69CAA1Palr+Wpr2fwW9wuW1isCF2siWCD3y33jjlsQgUm+rxO1uhP6O+dXghhFwp/aaeCCLK/vZChQMQ5YYm/puk69jnIHBF6Ao4X53p75Sn5sr3HSDZRJidnQ9qysccsMpdpWRAziyYor5PsRq1gU7rtP65ldmZpFjASYZyAQFUYeI0tONmU0gXBxCxYt/whKZxmXt1RLUK3yGOxQ9FLYX7dHRq23bANN5uMjRDf8uvvqUwTdvIfHImzNFXyEu+2Fb74r86wHFmncUjhNglz9EkcDCayIyYjGRu553KgENjG2wTv17Phy56S4SsN6x6c8i4FX08nUSQ8WRPYzhxodSFWPs3lFVdRo5Ygvq4+0gXabXRr69rcA0l4gsYwYbHAc/kSeQstLw0yMS2q3EJt2jJoMalED7FkAVaJ7JeYF+BSqwcxIa1fv1YCDLFvb5oKLIo3/agc8GUROY9+UTz8f9o6VRxacX1Rk5+EuAhFdI65KLpyBfHYiuZ0AAxZ+dCHhYIfX4umNDUDIJ1ZCW4RMTYtg78l7GzSHagbftuRzjtgUxvLEYftyVLk/FJAsmJPMoT2V3VR+Gy5vN3e/9CFsL2TOF3J/nDckrZl7uuGtlXxEl9EMgH4hBIaVasoHpcRYG1V4GipCkPFKA2MYK+7SQsx9ZD/PrBn2a3wZmu8Btxq1C6TEh0yZz+x+4IiAgINRMGhvKKsjaXX/Oe5/hra/eS4wPu3rqx/iFtPQ4F748n34QJSCbAyjTcN9fbWhgWdDmqNW8Dn0nKCLmISLDv1v7BxvbshlAj0Z92acr79g0RXZInCsnSnzQqHkP/0zQ1G1rFn3M3GpYGYE1Id3gu5tmBiPViuBnkdFMvpnQEeBQj7hjSwaEcbi5+13mT/tKehfDluL0WmOXi0+VBgu+O6H54YzBVvR2APjGZ8+xkNow0j3LRqoZebpHF2n0ZuyKpvWaCgVDIohsob+qIRnh1XnNyJ70gmQKw6vlFqcYtwCYlGqncaA7Dbz2KdacdDwZdJaBzvEeOr4s7ZvbqdO5VVhmlaKo4mxqOpCorp6vSBIXw0e5s3UUMDSLNdFzH6xkZylGt6zVVZuuYH7qfSbL7i5T9/g7k1JEJecoIYbUctsJE6MDRtt6EBiHy2pvL1e/JgbonyDOo3dHTNg/GYwGnrOd5m6HVjZR9xbIbv0f/vIxcXdK4WVqipIqyNqk0540NcWbjHSw46hde2LyOpCK5vRmZvHBXTsOqQx2+Fi+87s3gcbfchP+dwBa2SGgeQfwkEzXhEKB+niPaLzf3Bsvxsjav0HiwnZ19tp9+DpNu50Bml4RqoQA+ci+tbQaWvm0nOpl2naQoxKiAWNFKRajvwq8dRy3uudxIpGaUgbz4Js4aKy9qgkcu61vDx4R97o7HE3sn/3vTfuTuOwGNp1D3lAVTNxIHikRjK6uDmbPZBhorOsK5gT05C7po1cjr4FlgnTomwyCa8J0eEPoOHJPE435m0bUBKNhFp6yGQIgJ5D3TIV2D2fXl4RXxmMr/lt9uUqVz3IBFEXE3wiKWOSEE2VDJGxOwW0EHKZwc457SscNLr3ehoDttxFvz9/p3MaSYn8r7dl/JNFPv061l48akfqkmE6Ii74aIkwxbyXbzxIuY3ViqInJTaJ00Ub0Y5pUkVHB8sVN04HB9W2M0i8W7t9jA5/ZeKaSB+2jGoaTmC9pAaPrEdi6kGf06cCkctqO8xpUgTfLEFk4Ive5TvRSjtF8fYy0PL3VuPqNyXmSH7KSr2cT/26PSEz0jef2WSSeYg0KVJLt/h3GG/agHe/xdaEive0wc4u4B3io9KAV+qTnvRaTljOOHZaJcHfcm5tyx4n3C58oIBzHd/2ma4if/aFicc28ylZfcN+Hn2iO9zB+x5qLsZDCIuzL3tEuPYqVfJIU5bQ3ydm8SRtJjVcKmf0VnJQBg5LA5EuxtnGMXnsJjstOk9BVAFM0rKsk8i0Ae7v9W0Nb8klW+5Aw0sHANR+jiM8lHNf1tX4nzmqCeXbboyMlYmltEzhz6eQQnC+rf7UKjAHMyJI/jT2wGK0dF3iQj4OEBOTX0IFlSSuI4sgCCWR0oyEwx5oJMR8oLYSkKrxJyvYPo/FricKcIh+iIabnDE1IcAxCXdtyhATTOs6cNyeAlb6eZr1KHb8AIKfB3HViso5mdQ6b6rL3LK4MUkS+g5PvY26VkEFnXIeexLQsNdXD/lB/wUHsgbU/QmOnhfidfuj6ycob+ySw83KgGVuoVGHBDi7yUwsFURams20mf61GHEDtPxSHk+/oEzzyVGUkhBm6q6aGy3Q3kEcDQwUDw3p3Y1vX6KPc/bI9GJoT56LyPr/+/d6L9m1vvL6IGh3LdzarImgdC/xO8ao+22I0Lvx9yHfpMzVOH1Fut71lHqkU4xIeDNaEV5lDljepNCz6pcb76zgGJb8xEjuTIInetVTU3SGjMsc7h1Mpf23WfG8udFbVvwmU6yF49uwLRCRkCsj1xvJchW5cNpw2/kYn+xoGJzeojiMcguGZFfbS4GkIcd8hg96MBdZkv0NdKYrqQZAsKHMYHLvatbv1itZIlVSOSZxqj1cxR6GwK9AsiHhsgDHIGGDwQRAMTAj9jT/4XO8aBRp7G4DQO9HjtiFUUHtDmoH4UZiNM/Q50Um+yPltyJAUH26PlqzxuWdvd5QU03PBQWpgyu7+1ygYvjVQggKM+HYB1p9Id63UtkXXOkurVZ2nqS/NSpwVf6N5/mt08GXbllNwxNSCusNHDX6VnyH6A17wkUPqkmN3FjuYQcfQfjlBJ0QS9P00zmmTioiTnXEbUyMHX7CMeVYSpGioHkkDcbknDiimdR1VN/urG+beOu0Gfn4LfQ1gu1ViymavtlvmcnN9/6nHQMXBFY1GQvrf8/4T2Eb9m+9oN5kwM6Qyx88JcsYuxq8Mmi/UMQLEwdqyUiGBtY44vvmeJrvNQnnLsh3xL0P2K0OQIEOX3gFWHYp/iWIO/Aof2YP5q7JohQsple69/F8xYN1lwG9tOLpYybZ8l5nczxK8doNZ3arhQobGNWfo3GGvtLTM+xP+n7cyp+6VcBYGEwlMgbrlmQAh8Ccj6nkeIMA70qwBiPP37xyX6ptvvDImDuxea/EnoukzFlhZaE1QS65MXey7M1vJOt5l3oz7TB4i+cfdYWTbIou5s7J9LJI2cOgYuUymmMFl6vs+acpCHeKn4mAzGeTNmQJOd4h1KJuMw8h1h6mG++hXXXNMNoj2PqW/xSNQYGKEzPt3zR3LcgTD+PWVTLqgxfUbQUQjbl17jIdhcryGJSCNLbH40reoaxIHfIgsMN4tHc7KT3DZXHnIiGW1DojiAYu/uQOaCqcTTkuQD5I5STz6Txs+7GOXrrddwSjr9rqc6LadsfS7mrGCYJJFReJi8Kk5/XaSN6xywjyh6jcFbgzl3wjO+x2zjR61NTYeSdMfVPUxRg7KKCglZFgv1PAnBAwVBUZZ357HogmuVUlZzAMKXFmbZ8RnPwoJV/s7HyYg+q23+Gq/1+otefDPvlaVl/BzjZisOxpKl+lWW3d77lvUM3L8GMgrMWXTTqd+48BEzDtf6ssqOEGJjh4VxOveaq/rJP4mQNU/Zyzxg3J3/9VxOfmIzkeSaKkO8i16+mFKVY7GKgFlFdMpsjJz6VlQRpSlNpCWRKJioGY8LkG+8nKQVupabVPEDE91q+okkcTyAKJ8dgtwC8/CKg5KaaG5Bd1tbs1Y8l8/ibl14bRKnwPHuEJ9h5B0PTcUbnxXY0z0rpaReTCaquBMj980dmKvzT5RpNGlokJRNaJc74477Lk7aZZpInhqVAFIHvKpspOyBIvpWO0pgc6ZdNwf4CmXCyKtBSEplWPYcKMmNgh7zFGmOIsy5OvM+VVgvrm0Cxthv6aRWVfjKBs8imLuSKiIaanig4mETUr0T5Ofu4NvWSpYo//42YRT8lps4ztisVRrOrADsHv7OQ/KbV+JatZvHFviutffxOetHQwdg8XAzpqLx3lJDVavkazDTQWFuvkkpVd4V9hEC9BCXdmnhiMroF1TDuNU23uHR4udSFdvlPK9yz8DrwqCK08HGyeegf3fNmLdPueGUTPjUjvdwIZaVZRyrGLzfte1VLi4LiULxQtCNAajhwosu5aNRNzS6Ef8fxzXmk4AProZv33bKfk8f1aV7r+sn+I5bgIpTuaaGRPoVwUqp1p/bFe9sOWtSnj/cuU/1WHUu9j8rGl9SRHmJIh7B/lRqK3bVUSU5SKbE6Lf64zd7l6Qx7245Ja13+zr7BUbZ2sw8xmuzdVfcqxJK7Z7m7RrOIL++K5q2WV6uOPttEWgfJRBRU/bfiN963PCmbyE9wDTibdXBFWpri2fQHLHK6qvJPFwUx4IxYOTFdNv0DtSMARSUeINW1NlzJcWgwWQILHogd0neK22n1SYFlL/iTX0cWzpXjDGXbz66UkssLZJBqDeFLihKwzZOssJDKbfYOiFR25a7kYjqxG4OEHA+s+tI1RlMBQdC42HChxhmof2HXnGU0iqbiWiajiwInkxiDn9VU99AnRIGjh91otRmYnZnNyDrzvgjex/OU2ch7iQ7GEo8+oWuy2Uo2MhnRVL4maoBxjFWv4apCQteQnEN8/cwlrh3OiwYBwEkn+lNsILCm5m0jE7kyPjKNV9GzSPAyWHauK9yKy95QKwU4v1xx3mUBcmkjAlKBIWgQCFGHDI+fN56+gWs2K3WZzMjF8PsyynTZE6Kjktc1WKg4EzxhvDAZU/GMDaoZYoV77OEklxUROekquyTNmBGer6Fbv8SLYkpv5ErVHEfnkCekww2+Rr5HtkBuxGajY8jLDm2hJ6yrxfDDvk85d29gYaQaW6CyqLMuVaN+h1xougbphQj+z46SChADkgqYO5IIlR3DZgXyyX2lsMNfJ1csNbjBhh0CPwixKdfByn2W2L56wZdBSObazUQyAzDZdTXQLcxQxwvvCG6yzI2TqU/eZOkwCNpYw7sgF3WVCO01eOXercINvhvaQQtLTKH5RDM/9CrdL6omUQtp12+kBUy/I/W47gckho/r7t5CQE16D04PBku9TljewSPQSChMY7MtliH+tYnzbrgu7fQLF+dFDBbQUaLgqWDnnHpSTd7mK5K1nowSiLpuecVkpEDcUbXuc8dwPnMp3hr+dHNQhd+xnRUEDWQ+Hbf7lqjjRGnK8hk5Zn150hPSU4GRpBSMolddD54bKejSFgEOT1o/dDqfEPCtEMc/7Y46NXW7AOMN7B+Yh0iD67Yux2XpJ99FLGLjLD7A0Ou8bEDHStJCzL0+Gupaaax4L0UYlupA0YLfvv8htUzeeCetFqCcIvh5vhVOr1OVs4qJiox+OsMjqhUHP+jM0Ih4mfipeTGFJyR2+My8IJACCSmzxfRLo3nIy8XSbYvrqDsntAeTxkwP7g+WAlYxheiKsQXJZvO4AHOBT+VKq5QU87TlfPx3TIQjRtaLKmTrEYgQfZVdGS02YXkQnnxfhMKRInmH+biOS04a1T2i9l0jK8TABZUkX4HG8oJez97z86NwqJ0WEiRcM0BtBZy+IL4DoKsgnAcNN50Ysfy2GgW3inwyhDPAGIJHZC43WGsVgpMvBcvQVcwqZAQGDdWc7Kr3t0ei3+Oa/GUUt9GYROuCZN/YZEGl+hA1Xfip9PKfre0I5wuDgbV7Rku29xqW+zarLZODeAWuT9A4MCZ4L6aRsubw1XXNVK7vKX/60L5POtUZOTXuQRCFdD66FBBjJL9f7eERRrjXbsGc/cGpCpVURv73D/cPvx9CdJ4Z2qVPAhlk2+vBy+iOZV67qKI8VGazsuRhFmZg3vsvV0S8/kf4Si7Q8YGffrrKHqBtSpX7so4MN4wroviv1hieNY60L19oWjsPl+NNjj97thjl2yoehFXikq3A0MGXtZov4lKCsVp5ERPZY+6QRtwgEpUKmBkLQPN65wl736qcI6YWSbaYUcSq6QzFpp1QIID8BGw9TB9HU3AYks4hliXyc11+WSq9Gq+IBZ9AmaMHOWGjjKDpi8raVHEtvrfcNYU4dRoXC32c+JnuoCMvFRhb6zAxHjokkPgmuH0SSVRuThA1sVfQdv67YI5lLZj6cxQL0xFd1He4+MWyW/DB9XBZKFa5zOOW3yyB7Lyc2ky9JNoUQn4eoe8ZzMDtvDH2eo/3b0pzpptCDjDa1t+SuzkYCn5LABWVRXzaJIHCNCJORiKl9v7h1njHkpbGRDfQ05JisPfpZz32DTcQsX4S/3HiSMi/SX2ahotDK6Xxow4xeVj9gwT6lxKI0nCzTDCj0z3bViNrxdnKmFknLyYZ0rvsjmWhUiXM2ec7SPR07SlvhwfH4rFhl+81RrnaPu1cbFS/ffgg5iiLoyvw7qtMr/rM3yz2dzIb36be6RQxmMgPuf3b7cMbp+93zAddyoEV19pV79c2W6NeYC1fWNHTyBi3f34vrEvejMZOZz7HePSHgJJVcjmiNAFf64hs2l2ua28vAVl2L2KNW+qYSvkf0Ou/XqSYxvpEVYSABkjZYe0Ex1Gg386UdtF2hZIb4YsgNc15tSu/ibjrakWRQx2e+hd33O5eP1kRtmGf4ynuoNnBQPOXyxhv403va7T7VxlJMf3/zo6gkc6Hzs9RFXYpXippRvmap6SdrrhQPH0ofFqU2XqeErwy116XDIPv+fBRtr5pj301ndlhXhAPbbJVq9IqWvV4X2mL85cS9t4XnZXuW+d3Z+kkbZrwaFGPNkdQFYbmsvi8zhQCa0oQBf83UuEc3hsPQNNac8FL2vdOx5iHqYfGmzOldn9nwyEFmP3RbfKV4Fw7OCrpzn+PsDq73eiRd2ZofwVk/GurHj6wzOjCz7OCHDy2I1R+P1Z/9B/1ta96rOmO4Tk2WbWfRfjhgwguwfJ9YMeocLHZdXvVSeE1tqHI0Hg06XcwbbG/IvbeCQ2d3y9ZtsbvmM6GQzN1otJaTXqsAdSyZ62Rj0u58zLbqk5YdzDlN4ibnc4XPfnGKDRTDa6Ajvkggjus7TtnyDMRn8oY21I+b4j0nvLGC6RR7Ifd5IJhgW+knx1JrD9ErR82UqZuKx6kTnMaU1wDqq1eeDJFOnCYcH8yG/ZeNloFFJ9F4olhfyf8nLK4I1OCDNS9c3XMXHuY6vAvDxZxg4YUV8y8h/aWqOSaoQeX3hvCfazCxniigcq1QawKGAb2P+JP6Nv/fzhMR4u/WpFUfgC5EprYc3dxeIHDjhGg0+KJ47YQelbBULbTYZ1+Wu2ebCe2YhDAZZrYta+rk79BQNnTLLJdzXNpLJgX9pAi1d0ViONpgDAAwcTryu/nOoOFh2XeUo7cKfdCdQa3Vtd72GoOZPsx+0AOibpNX/mvNyzaeUoF6YudAUxsoxXu5U37MMNFhN1cok0Okir0IYvC80c3oIm/vptohEMd03nsLj/iT/e/MWBTSuNK1C3vFozOjZsG/uDlITIwp5pHDCmnxxBnWCViD48sE/jBgMWXBlUHOlGM1MoW5daFc60wFML8Olj9kbPe3KEKVX4mfBS2aNDxCkfTn3OWentk/v/zegQjGF0QgAOO9QrY+ubpY+NUIF6NQDP6svw15jqykoaoDjv0FRRt1bSR1iDdTkvjDftwe57zdnwxHrYVx0VR2/Ki9ZI99dp2gKoGLzTLFyKKftdaNMzoE33nqozfyNqOPL6HbcTq6mDi1bEUHDqTLr3LeylZf7rDhbj/Ophc+9HW+mlV/i1h9rXXat/txDJPC2B5Gf5wWWhBVuuRdiZzoG1c/vzf7PzFIzH5VZFAMTrCQLis0vLKktDniWtqsarpF6XjqLfb8cTqQOHublwk3bFF5CyMUAMfqihGfVVHS2As6nUXS5sjAZ34MUhvVvMkkDPZNpwEhoTub/vTciOmIml6sT1dhbQZDkP9oUMH+ndwsrTWOX3YW0UUxVAf/5bhmV3R3oTXrImITRwQ+wwwPyO95p8byjCU6kXeBrJfzJHM+tzwv3OUPdj3+SAjWrrP7VdocKZkRih6VCa6Dkbwy5GEtimkcrMEVixJN9mO4qnphgh1iL+8gHIECHMjEyNZ+xRa4hyakwG68Y17t2wt3pc1Jylv0YVhyVMLFvPLqwrEydiuuds0r5tE4oTJbwiZ5Ps/6EC9mZSggSQ3yqgTKJxr/huG2HQOWlDWOyuj+pfguqlT8Nu03yPmpy3X2ICBX63xun2aaQ0fTgsbakuG4e7qoz3iGUpNfOAC0K+xRqBIGWB1fE68B8GQsOKsIO7QJ+Sk4+lJM+2lbTPtw+2Tmfd0/ROEwCd9VH70ZEMT94Rr3riqJ54ucV2DG0j2ZpSlwI6b2Ql6GGUjZn9M+ikdCK8ST3rguYq0fcCbh6tInLsVlOL9GW1Wgf93N4/5c1dE1CuZ7k6s2LyLQuikwO4pBvwQqMPwxbsnb22VvvC+BpJh7jZOEH9E+CPkhQRu89cqoSremJC/LEhpOOFRvDTuZP15Ls/X0VkZHIip9hK/6F0vRTtYjKqMdDgvwwkWF9P1ZF4NardAhwa/RtNKroB1R6W4/o671bITJrcFArqma0E/ZOhAbBaYZNvG2X5CpClJraJdU2yzvnOldyjNDotvGwyWbOkJ3VIvOvBxi4qksAs0+0GZE1FwQvZehbNaieuqVJuwJmh9Y9F7JRQwP+0IFpVdGsQsbNENyZ04oEP1+1Nf7z14OTxZezTE1sm/rpGjFhR8XFFNoZUDKKQf7244TjwynX+2pSGd+Q7+5QyRkT+ogOLatn5TRZz8RmFL7m76raiBnb9Cvw49roJnASn7kqO3q+qCeTNQ0Lju5TIZ83RYeua1kk2YUgaH7L23XXN7GpNJzfe8l9lVtliz8YCNPr+gRfFeXxiskn7SgVUsrkWtKxya+wCZUEgxMpi5kFTzjbcNweY56fK0nLdT33tI37bqTT4SlXVcZXBZnNGnOWjDLalvssKUjQdQgSDj67UVa8cTRMTpLZvVt7V6NV2OE76EJoC2H8udWwBLJ2a0JIdvV4ipDw6+DSI6EpjtSGa29DDtkSJwUahZ8wU1nglWX24WGDAcL0WqkwQ3MULlOz0ODeik+skr5+d9jdqg8/PgboQz7VXAvOEpSugStpHNoe3U/4yRyu5lcMZgXbEHLQLVDQI9gsFQCKFms6EOFnrKXftuOVT41jXEePw/Szht9CVeWJOsWN/emtwnDkQNTEQWaokdiolRGon38Zdgi6ET5F8BSJZczit/6Qibi7OPzKYg3uCkyh/r+cFnVg+0hWb2bNVpxQUz7AWws5H0QxagsDabID3p9VKTB5s6bxDSyCbA8u2xWV9AUVyMKKZ62Q/nPGvygQ1CzhLiGyKNupNgQhkvJM+iqC/ytEZB9+1AMakRrsrSBqZJC1wXaaRB/WzfZL6MPE0R4TylgrBYnqIzutMVA/uSK7Qsd9gl4i89W4Bd6nPFZQnqlqvt0uh0gYvmGZDyiHyed+HJ7qlSIEzUIVQ7d8EHMeavOK5qeBizCfSVkH4sw2CGzSig6C/ShdUJ6qfZ24vV+gYIBxyzJHPvhImP22dbAepc7/39AbITT8GPxQC5pZ4MmoFtorn9rzEeu+XD0easrEvYU7UNMpBDJLb3hEFiGPITrg6i0Knlzoj4RL30coPVIcQvKFCG2Cb77En+MHA/FUW1ye6+43BzLeycSK7YgzwTHK/ARNBAifqPQ8aAZeAuKjKwQ+RdVsSliH3/YP6kbrQgOdB6gRJZ92JrIR383gxJv0NrweWtEwZHjDEr7JL1A06Rn0frigBEjgJF46ivWxIZ9P4Wk/gSrBOgc8IxvXkeOKcvAY2Bg2bpTxIBl74apVUhJ+pWjhTkjAq8XnoC/HF5yVoxfEepcsLli+aQQ1rZu1JeNwFsPoTBL2srEK/kNGgfxAboPlGhhRvpyScUC5V77oKpuWcu2GKVEO1BEplU91INkVAdZa3gruLsZJg8vAD6Eg1bcddOL1zh+MiuTxKyYjW8fCSjQuqm4/G83kaTHsSszv9cB2z7dzCC41f9lsc6loS0YjtRoKAtKVEdudZ7TdN6Xux7l+SjoiGh8EAIjFe3+uMK/E7UoaYsi5Wmp+EmueTR9iJv544OLxGZnHGZNxbX5oQ5+LJ/r4TomxOdyVn0W8gOIaQDWQvXSHsj9J6U0ZLOmL9+JF+GTUWwEOVXsNqtZBAjQoJ5X5i50JKiP4j87lZiaI0n4HeiDwuWUW/w6qRnC6g8oK566IMHSAv5FT5Gjej0i+dIyuDM6sBIVgQs6CeHn7chnYpP4gkxALnYsKgRA3fT265LySHNh3/8kPQm07EOZjrhfNMlsqqgjq5YIB6BZ1MopXVl2F3s7VPI7JEcAKoZFNuwiNOdq7u2I/PjqHBmhEpKRsKimGOXEkVSOtDcrgqaQsk+H+gv8ivOvw4b6kNDBm57g6MfR2aLgjIQ4IDrmjnlBnyrDj+SgG0tb8//dJU47+lF1tW3rzpWXQJo8fRjBtQm94qpGdHpC7yEC5Ea5kQaENJ8Z1OKp/kkyM9NSpj2RTsR7Vx9+vq9sx/9kM8TP1OEesAuDP5tWniooiqfbvbRe/3K5TjBJJ+Fnmujta9ZpW1PtKPnSd8nIcg4JOPgcP36imi87rvzWagqYIhUI/miXkZIYzO59hoOrvs7xSckmVdc843Fj0M0i+Dki58DKxB1fD9Wh/55Bj+VZaXUXclC8CgsDjjmMz6utLTBUwexbn/AXAq2OG1ymGAG9PeNNEfqV+POkuDyPbcDij/DC1tG7mioaRc7RqUmaD4kaRYneFkH1ybcoaMqYV0ueFoIDNxoGxlbo5pXIYcKOn/0L3sLsYGQH5ZwGUti6zbcu4npRUsjgTLkbvbtouIsnZblPbo1Wg5cmfc8PXkNxcc8VFahjvPN30262eRx8bmwxaetQEE3yGzRzLUHmUIX/qfrC7MWlDE7U92SunXm4Hlqu1U8SYYiZCrcZx0WabO/43+jkvCgDbYGza6/NHLTgMKP+94pEJyAHeV1WZyv2hg0h5ErttFbsejMU3Ka9b+0KoKJur9lO4R5zkPuYuoT32KFb8A3pwSExgw0rtHTvL7/DjVh1eJOonNpJnDmv60XHJbldRDFsA4ZCnGigzaEsRDiX6it2NADbpWg1nU0llK7NemzFvjUv1J42UD5l2i4Q33RGM+X3fIBYVcKvTjFEpkMect0Stpfm2kUcGCvCZnJ+cyrclhZXky3NGmE7w58K+mUKklqsynJ9JbySJEbse1/DNqPK7Fflv3bRNqTkzPyWE6+uAMz1F8RXs5VylbYKh1xqQtt9OdExO1YqErSF/I8A1jtY0sdfR5YkSTu1QpXnb4F9b4JqULQJVEdRxXndz/2GnhjVRzWUjDHSnDZzZGtEKIUhHHhuJq8lFtkl2ajNpNHjXF7PQMvStlm24wZIJsztYLf+4lfQGSxi9GWaLo9vGM0h0Vi4extqdL8eEcBND+Cu6QsHmQ/30KUrLV8GEgutNhVTTtxz+bJ0GxTs++GDDxfrCCPTsMhOxTaBLx4Zybj4M6EH9WGXS8u7HGNTOLPnRGXRfQ7un+HajhObMIEtV0Nm3Fe26s6YEnMVFs8w2QHF5wyiamb90+X2d7uk6y0gHa8xz5xb1b/Zv8Y2JRmFrv3aTsZW5whz9iiKGHp+oLP4wAYkJ58V4p/RH1kNYfhVIa5/Ck6zpUiA2H58dnIzGBW5kR0N9x14LCswkzjn7bC4/0qqYNOfvAyuopF7AAnyCKPNb/o2np9mOG4B9P7+BV4W6k8l6SC7/+NoGJkuBonxj3J60Cg9dBh8PbK/CWVNd4mt2w3TUYqDgTDwdwqeGdij2Cz4R1GO150eALj3zwK3zY+FhYobnSqNB5Ffz1FxwbdpQI7kJ2MxLvc+O8IWFylqLGjryMrd5ZrniTawDVYZbZZlCM/pJQVg+tZ4M9p334cEZJc7R9NG0GkTyWbC3WyBwjceVThdY0LxXMzmIMCf0QC4JmdMqbkrWzOkLTbrj3O4LGQLJj7F0H7qgqFBmg9nckJfqjIM17DzakP9wM6U6KJnUWto/8pGBj5czIa2hcg/7lvzP53kq9iGMEyj4T46qO0rizeTfXXgAKG56E0N+l9GbHDHTvHA8sfL/mDR9O99hMzu4FmhfYsfIHMk5wNEuWQbmI7IMURbpdaa9/nbX4ZOVCqDsUeq+uGdMb2/OEQpH8QsFKDX0OWZGFKjYKD3FkOs5o+6/wrbZpZIJ3LMIjQ7OKRyuAYO6XBtkHcH/b7Nmzv5XbMx7iqmLdiupRqMCJGAovbUbuze5tH5+Ji9R3Rw16ivfAYfCe72qjAMk7KDgbjhiHR/lIYSKq9bHks3dwpHJIdROSEEZ+C7vJIsOvmeK+H6aUzL4Z8NrEjQRzVORGwaSzFFak1dZxtFWbBFLV1JyUzkUJubs7ZlxKJsDbcY2h9h0v4uEKTFOUF9p8hG56BEmOOY9W8g7KP5soJ31avDM7lAOu5XBWQfgx6YMDoTeB0dwXAOLxmx7w/qv8K6JPFcgbHiTSUM0CN/C81GCPXG0K2BrTXJX4p0/yfYNrkJroIiuC9jQNQmmT9J+LzkFGVQjMeD0GnGy3orzogwbD5SqaLLYIpYRoPqWq6oMOZbawXIkF2VXoDbG+eV09nIIKYA4D1z6/kkq75o5qS86QRhB7RZVXp/ObuHzK1YPzNOc2GjgBbxF74fRRj7JNxAnkzA4fVoznca4iwLQ9p8WhGsdtQ089nboD6/ikLRbnrHaXLbDO9fche/8/uTiTqyVWagnTmfABvk9v3M0Ox05Zv/Zq+IkCssFfK19k8F56F/dnfG2Jbk0HUSAcSlbkzW49EO+/3pyWfFFXCvUUei5lU+HeKsJb+aMuEsnh7rBZmNqibEYge7rYktk9gWDaoamAQeZVBUU3+7ZGY1KIxeiYBMl6d9PO0WLr3Gvn42OXWZq0BwQ61PY2A8h6ieJi4I0d9HCEtcmZBkrAUzFHbNjqbidM0LIZUOHMxrXj3D0SUneyVEq2KkWcg19v7TkA3sZLE7WO/K1ecdVSW+bU24tIaSxWjXXUYtqgqjwpuFIvCCe+2B09m9mp6vRD/PnCzxWsB17wilZYPv2IksskU7bDUk98stcYkkcTb+wpe4Qp5RWFphYwPyHJRW6goS4L/FNuO4iMXIQe7HEWKdxcnup8xFAUt6g6zc9fGZwz6lbMnp6Tr/2/OsDndP2ZINEOsLoqYw9pKrB3Am3ZXqvCN+kudJhVwReY6OtkcGsSvh9HWUzJ4qumLV3uVQJTjCAX/vpILt5JF0MP+AOwj+v/hPTFrrGoJheCBy6aGB9c2GPKfhFHDAWIm5zJzuNs8LCJpcez8MRVV7fkqwaiZN/YdnBbJcXJ325GMhiIzAg2N+a13jKDQ8uzhfDy8d/y15mloL6mxxraetXLA6qWKt7OQVJZbcVmXn3Do+F7nvEJMAoGno7z2PZb7G77yeLomQXVgSiLVwo69iEYIBjcuBgqDpKjJN4TDTcyThdXsSbNGj7lgCq6lcHhnvjX1Lz56OT4Ku8BBU0dbDyUsCtCzUWGPmWp/WJMu8GANux/XT60PcEiK7j7lJnHW2ZSTmRES0VSuYCG4rXJ6wqhHjRFLPSESa/CITs2BAYTV1Gqf44vUNEj+bYlNGTVkVEXW94hMn6d8i7rjOGSYXN5rp0QBDIh9wgiWCJHqv5AXEBFqZtmGYblodvvU7jlERnP2xfscEbtWJFZnnfx/YG0AaruiNbOM/albcNTP9VIH/ZVATcjgeS7xLBG7ckJGfkRJclayRzM4+qpThWG/6CDaM0B4b4HYWf6pi18SfVD2YOZIjlj2RT8rG7S5GOto1WX0mm1geTObsDCZH57kphGwzC3DWMh3ESjs0P7tW7b2FHEAhU8bXyyRn9VXw9gKGoM++iyD7GjbIDPbU2h1Q53fbBsDOH9+cQNv4DiAyr00PFt95bf2QDMmyRKhCLjh6nItSob0KYa755UrulwtQOZec6d8m/IDf4mEvXiN2ceir4meE7RNCrxyGEa2DryTFC9JsNUX6fD1hdi90K7vDMtevOhunRcDCvX+Rgxq49mYDkr/MBT30xZm5sEfwgc7yuVok9DROC07ux839bnPui3W4dxrvwQh+IOq6BF314lu3wtTo90XvH8QyvZip1yPZiXwfCG0nmb+oLfBiTb/+N3s7A5RtyR0RRlEBefJ7l8RPik1XIk7MuQvFatrf4vaBRlvRVh7wpJnNpJt4H2cZBrXqKAgRPAq+S/jo7s9Be8a0Q/+CaWw8BrVgS0FP9SVynyX0ZVIXSMBFRUEdrkZKK0oFP4WTfS9PVBiprQ+xSCMhTBaELSSXbjmD65sK+YHk0jcRg1iz+3lWz61JGyE9ftDhEetsIiQW/WYWSgK/Oy15EnFB5IHzhcWgNJXll3DJ9AmIVhxu8gOjRRWlRfUXLowKBgyf0ktN8+Im2Q2+i2LaMNSlHVqSE6FU7kKV9EuXD9GacxCqUkd8KyagRJWT79thixkpeV/M4p3f1SASWsQnWVHeY5AW4l7A83Cktc20BIfPveM0A/dr/VRnKql2GALIAFCefKC8uPOnlYHBD2wQRGkFVFekIWe6qK6OV8ftkalbLFyviaTBYUs742MdbK6oGFvC863hTw47Us4H2y+n9FlkAy7jxmQVtCohqHRS390mp3lHwcRPgeYolP1rIyq08EGXsxQ7HvNxQz8a3TEMe57nnBRHJB0GWZkvih+f53cnxIO8PP0BClq1/LfsUehTpSUfLSaIrwERo7gbW8135JU+PJhZElUWcLlgCrG7A23OMUTsRtT+C1CKF3xeX+EmRt9j6ImbLegl6TRTda2NphIzv2PRj9kGBCCPQ+f/DLsTSK61wdNMbSnHvoNyF8B3hB5PSyIq1gfDhns/B4yZkR3XKwAh1aZhbRB00o1LBMpj/o5QDbzxpXCC6fm/j/7TX5rmF5ENU1vEfqkUZvup9Le4nS7jY2GufbFzXjCrCjy78KZBDX7PtuzhEGO6RBeA9lbZI5JIu6Q8dF+W4l+9yPXyAo02tcx4vPkbqP9l+JTdiUl386MBrQ1CEL6pSggW8Yh9eVn2FyVZ9JUaSZRw1dh9HR6MheWLmNor80tWWvNnAp6k5ZukKUAA6C7kJ8h4gcCwVQFUSLm3UZiLMF2XFFMpOrbRMPhWI4uxXL/LKX7IYGU4UpQefoMl5QDp4ucBMupIxkORzEt5MT4wIY36W3GgJpN1jCznWaJVywdCEeUHZbqTZqisrumc061sW6+3btCn3Mz+OQipb8kgZgRa4Oby3YSJxx8KNT9zMcSus16tJLHyR5F1YmX3eiPICUCDlmnzML2yzbitXNllCKRiovGp+zOl53JgxFpm5dcaQBcM6Sol/tA+811NnNBXpwwrZRTdSXUq1U1nb3cwA4UgqK0QhjngU825ZoR+HxbhJDYkfg3hLVngHGOJkc+HcRwfXjk/4A1WwZIkEnKQaL2tTy7xz+ZPpTvVG9ajOZXaKo9Wh23Y/nsrE5I5JxFp1UbRHnsmSXuPlLvPGIahpCYLiURPrazso6trNfjHoSXYvpCyYTJ8jVpnhcIFldjctRFVQARaW3cO/P3C0NQo15+QhX3Wh/Gvqf503Mc5CB5cy2xUjZmfvDikS9UYElomYytQj6YUBGQgkGpBHdCgpodZ5oHFW6u/9vqc3HB4gB6yBPUnrr1XG+nMvS7+EebRA0lRQYkhFmn7rfz8bAL8T50YkvCAZYIJ5Zctv/qboDRo13lZSzRew7yzEd7BpJ8NJkn68W1xyAwmYuQgDmdUyy13HJGJBD9LiSr8vFfNQ19iBW6jXWqcUswUPo+WC4Jc1qfFNy51TvnEEWIY7NMc+4kUvp6jxxl2+GezjAwEfDHl+TVAR2q1Ak0a8lRFFse/Fnlcfoln/W/HYYlNmyfgAsdThewOb2oMDIIu6FKCgIsAIOIEvEO9dCGlbMutPPLX+NnuO6B0+wtSVsQuKqga06s6r7kaaz8bz8j0UhLOhhJG612im4iMSf2fsYqAN3SAScmiwPxnTf0vPzPFarXbd14MS7DwawG+NF2+QtaCQMy42kJtNKZa4Bcv/3zz0yfCxbKVBNQBOwgQQqrKLCxMOrjgvr+pxhEexp4qPymhQk392TAFFB9NHcw7P4ftyijmvO6AllfPC7AgCmm9QCRvC5rcI8Y1MvSQmGF5AokHIRYpylWYtdfUqdkA+HEng2oHyqmbzFXyMu8B5V1O8Isvu8sQ7lPF3/665aqqzRlbkWdAJQaJpcLk3JtpNGFAEem/yKbnrtW06ATpGzDt3a8OqOrq7psJoOGkfJhWHe7U6yvzIJiPaKTyISFvmSxfCR7Q9r4r5hoQlEcG+TOOvSlSZXDnptXBo5oE364gj8NCxq5lyYIYt7plTcwcNokwDUmfzGYbv8bpeaPU4CsXXFtTlIxMuuLbEskyptnuV40fZxkYZ0q4ILf9+nb/f+gVIaGL7N8gBYSIo954RJVi9jS0+n22pZYXXZ3kmYJqnM8tcWgiCawlGSbtLztkaEfXPCf5Es2u19Fr7cJHv9WpCJqelwGqYaLmOjG5A2lFV3de5Ya2ruxVtKixjwo4fUc0uGCIdWHIoDmvpoK7LhbnEqU5l5G+BPSBknosJ6iTAbKrbTbsvem25agXDUur7jDESWHWiL3cAdG6/8v+UaREoheey1zSVJq52ls94LpicXmzmnBWtP4Pg5suMrFDBVJVUCDgnmlDB7ZJfCMhGwx+eLhrThEGkQTnwfi0uZmLro8DStWR1cUp6obBXoUazT00AbRQtxv+TSU67eMVynfxmMe8Le1I5Vo180YrdWA6tbDzp1I7U2CcDsy1UYqiCo1ed780kCYcM7RzKabv2FBdL0nOBFAeXSdASlB/EclTTjlODL48f8KKZrOR/+ZA6jy9Ya2TEcUhUnh8Kf0cvT6uWwrhmsPQ+mZWHmnYmubkmsDSLTtnjUmVX2lBMZw/LMTPOAA9WSCseQ2j15P4Bu1zIwMh2mhIF+enHq8dtcCxRHmqB6fqB4etzKLePKqshm176CHkPQgVApcoxptuk3byDgg6d0tB6sogMLTkANP8A1phwaAmgfHqws0peYZQDmirkeLGgKEh6esQm0Ozr7r8BVtrAZ9Ep5TIPg3m21ei3okvOWAoi5nadnhrNm4X1f+X261uXKJ7tytTXrZsXOXo32Izq2OAlAIYnfcgmYI8PfHYd7dQpk2ITDuyHwJVfFBn8D7dsmpAdg5VBV+MuMnxBBdZ9RtzZbj34eub2HN9YZ5QoU69ZgD9zKcJl4WzUMV2qp16kYU+U8dXJAU9zccO/Ou1is5BV3JeDnYV7Lo+uasLS1hlnlio1cPMsFE32nNPYqnqZz90hswbGhfYG5BgveecAYUo3I+dar6owLFdQsHXU8gXgEKUhX09w4LWGL59NOdSDBGPfQLSMSK9fo1k6o26oXSF8tTu5nudqZAVH3aPkMR2SSQTXuzZarq3cHdLJGM8a5btRMh76qdPjywV6xUHSsbck908nvnxR8TbXuqAjtp+6JThtJHdG4hjfN/7577WOWgn0Z5PQjiBFZv6Vq2RcIbLl0Mxwc7tWvmASKI4/r3MMCx4VxkwWVbYQDCuNFqUY/SGtqWyl2JXxaTwAq4ovNGq99qXdkbouuMScBFVPO2HHl8lRssVDXtmuRTi/o01EJJZoegRgVlZrv7jPtk8zJjIi0Bv4tq9JrLGSyUerwqiKtIZEwVmGfQhypD2CXpZR4v7ntVhqzDuExLHDu2dqZvoHsSiiFNYIL1iX7y2JScDZnezFvSCJdph2QYUnZXTWty3FPaPdYkjagswO+tovEHsoxB3zyfwVFiATFatmiKQARGLkd+qThCFJOMgXXG7t5cOiJ983iFHON8Rma5zLwf44BYrvFwgK2e0nWrL+rD36gyUUKjY4s2uHlEGjwousopehStT3fDqGvq3hRbMGkXWblhGpYF1M9j/ZI9DE5zUtZl+5FyqayWeu+4Cd+rbHXOZH/uAw2gSyEz0DQ8l/PAbzyU+AuMu9XJnnIpZtbGOLFzCbiApqZ/lnP/YFAVkbhOsutz/eaO5cCukTvDhueKMBh4YiEq41wD5ICUVrCYyBOBgEpEnxxDOyhWCIyI5ps/88CBXMuwx0oIuI0D75WSOFodON+g8AQLbXIG8cldIkLSTCpN5VuaPDkHUd5cHGickuezpgTQuzWo3XEtAqSHcsoKkMh6wolwu0DU3yjuqSCov7pFdbRZJCJdH6r2bZF/OinjScUEI/ymgg+lHZuihACvqrSOY+5ISv2NWsFQCsUQ7xsqyafrlOflFL0wbp63oa62W0HI21I4BA8ssyAFip81U3mBUbqyq6E4vGrbkNLAPRqfBdmoi/AJPOG4WBjKg+8j1+q6NC0q5lgcp8NaXcHE5SGoUaWxwIHy/Kae/73U62Wt9r2k6KpHLyrhuk8O2gIqO7VRg4vVjSNHC3/kpLFSKbxjDyD7qMg3eantmoOVMeE6O5pYju/mEusfVySoIGnUa0/mdSHEETpQEZ5/I0b1/8KA/UG+4s28YsYDu7nlTzCXpbgLI/ZA1UlFP7xk1JD+rVJaHul+ROYijO7nS8cSQrJ798sogxcLavz+/e2v0jBQAN22PL2ZGY455jmVe+nAaUuz/Xp2PpR7ASq7kmhGiODNcwWA9I/g3tI6EjOuo15l3hMZ2C3G03PaBCqm2WrUepx1EVQS9/IYGnBsD7Bz2qF+OJ5B687C5kLOKiiUPOK7QQQJeQhJB2K7hxTS9huES8qr6N40HMGsuFKWuvaCgzhGbdmlK/GVxf3+3j7dqQWn2hHzekbpCjLmaJzYUhW0lYQmt3z8rG0mV6L1nKbLeeQehuwKKXU7YHYb/ckQoU7pBkE6FhnRzoF+kuSH+w3/dfB7ZIpH36NUY47p4sp36rdwSXAyB+nHNudLxtfp1BLam0AWQI6WE7tcoBCmpJv6hglCulFw9kus7+w+F0oklx3t0LywEEj16FNG/5MESJO1fxnm5dvahfR2K2Mq4JhvdQ+LnuWlDm8yuhheGAmINErqvNDF75mUbtPXRmaGvndXP6IVUJHMwjdMwNCTHdS+ByWdKJo/+cpYnZiIk412BfZKMUcY8ty7NExdD1Q5v+9QWgsRAoNyPgsp3UCnb5JTOml4Dqv+iAnc7sLWu1T2JlkEsXBHkqHWp9ppQPTKbi2ynCHotcUL4RRXcvHmgSBC1Bit/zyaCM68q9eBRnaCUE7UDnyO2umgdnSRtGhJ5ged7XSv387uxfurxIzQR+eEObRpDbZszSErIZGirnckGmvcU5NPr89fYIDC8psJxLt9ZDlvUYFvOektEMGVkiId8J5ZavmXIlHy6NlKzPZ6cjcyDjFH9gEgGcrVZb5kiXNeE/Ff91UfyfQMYiuFpHVbs5iYHtNGltD4QFb0miPxMMRiq3K37h64kt0Km2k2t/pO3egLuNzeGx8sEpJ178G3NFkOf9xkAjG2hu3bhzUfaDSuW2Eb54zk8mN10or8Vv9FU6bVQmYe60Zxt6DuajJ34Je4wwUcNiEPDWBNSDOU0mVOXZArCEurSfzbwP5gmA30iSJzZJC0w8RzUEJgpuB8zS9cp4+cTNYnQLYXwQrUqS4u2+XD1MWrfa1IKoRJtqzd8hE2N5r26S9CsNFDqbxuke4RVp9JEvyRDI1J58gGHFhv6ZAb9HSfH/NuExbkr+L9UTYPBVeN2nuMRP7tz8G+OFk2off/H+P73BV80LmsFMYgXERR7BW45cdaOfI1f8aujTEA+VkJQYa4wVgDjQjPa2bILaJ5sWskc06mzCswIWVbL2Z814+WF90LBycTk85V1Y0o5pdquZMBez4X3bPAjHo8JUItDClaCo4ev7fK3dS2kPX3eR2Aa3hx5Tjqg5OW137PFwYT/jQriQKindGrSBA15FYNwNy6e3cP2A1Ef0+FaYswjMRtE3SqgQXOzRpOOdHOPqk8xSQKINR6oT0G3gdgX2DU2ZH+EH8R6dNnCwwyye+LAuci1RGWIZ4FrV8fIE8sbOUBWMRWheeXWpvjxozrOsjEgAFbn0QWBEn1S3RPzfd1A43nAIBzHG+d+/kZXnI7VklYjTbzX41kTTD7UpogZhGpc4z6osQ8Khiqvi21QlTD/TlLIGketOn89MnPzYB5mI8/l4xvGjN/GEj/ze3bJY/O5Ea13W6Ial7azxilqYzBFC5nBk8gNfeIy8wwPtTg1jRF4vung4LNYeXgscFkz8pBe02aV8zWYwhfWf7pRaSXvX4SPizamiIeCtl+NGrOmg+Rn4ZvUILsX6t9dGTPj0kGn3Hr1rsZYZcQIVoOi5nz86UlBQcIDztZbqKYtThCMp75DlZrHSADV91iCXsVl2gSQVNNQ5dEQVQ5YhTYj4SaBrGRYn/Ar4YAKqrslsejY6mxTSK85YfgBmy5Aru7t/KEgsSqyOUd5q1uruaESfzXZqKouaa9YLsBfP+ALwGqCoUAXLWv4C2BtJjLzCYDso/68a2YAWjsqQPgGM/4F1edGBfVh/uQl8G6zI152wzwNsxK6h5py4bks8ZYbifGlHi82je5Hpn2IBYiVhVt7ehIegFMh9ztRrm0PgmLCbI5z4v2n0P0SpXASzp7T0muYAA0iO3kLcZCrxVhWEp6Fny3BRKMnlfGWhXr1bZzVMLCv4v9RiXFdmzHku5SCMx8UOVZGk/HjzGHJqOdOnwKN9wbhf30+gbYr2+AXEci/ZTBYXYarM7ru/I84JH0h/L9YMAGp4rKKJHjyCMBBmvNaVXdUVtB9Pl2NEBFvUwdPC98wjju1MY4HQbFi6y2QOTk9LOnmyhZemwsZU9OzmoUaNz3IrXyar/5nq/75dgVftx7WfkAzEsyD7PnZPfNJJyF3FF1ZtfvElAqSebTflpvcYuHXH6SVd8sFUAoVgcDdQED2kdtCT7nsMfRaPrMoEo25CPTqg4FNJwbUxusiwkOLl+pB6V7fQFX3ZjemAbjedrmdDXdiq7WRzqBkc4kn+97s1qN8FbKrXW/k/6PGxOB7VNRkj8jj2QckyBSzvpTZufyFIaKJ6QgG+e9dTE+np9GSyDjpOjjI4Po3VlcJluLR/ESOr74SPa9vl7lDLoKfONLjSl3aktzR2acAXL9ELZ+P6ikq9YuhC69oKugW3UyRcVSgnkto1sw3Ln9zOrSp1JFXJeDmqcalKsLP4AuXqJV7C/zQ0ZiAGg4xTE6gOtn3HTbDBlyEmJGTsXTgEXQMKHswcqPcg7lJUZzfNrP669vzSzDViGct8P2hTjqEhGMIHGFK2gaa2zDjhFMfjZSP5Cf4Klt/H/rRKp3koAeASG00gZFl9PP9Ex5vdvNNymEImm/Vp8OO9fObj3jSG2jCpdn6l8TNU6Xisk2WJk2Co/X+EPg46LcVN4j7ePHK7kvahepAI0TkdOkI9qIGohylK14wn1b9qCOOzpUPL+ZyqOq+xcIulMfU9JLBecLe6W8L2NGi/wkHfD9Y3xy78oE7HrkI2aTx5hkv15/dgtpDPPZ2DUFXUAE0hp6kujVLCcBvALNchLWvd32YFwNO0pwdIcy2eAjhgn5Eac6DCedRRaY1mncaAlZejaT+xXBpYW3M+LLNYTIIYsP0VOYEV7zg4PF1EMMrkwvu/w5lI5FmlJlDov009PkyK47c9lxRWbvNdfoHSYI5ygAPdJAsmGA3w3KQvZ3WEjz9KnfwE3xjCMAz0A+RyIsP0Z8Z2i/laQrjYhD/Z/AsNWs+VhgxilDE58q1nGXrGuMcOrUCFtAA3Z5ku8w2rRevzXvFl7jHgk2pPnDoHtu68FC8T7NzFtUphQcyi/0xG5qwJrps1QdhUSrAh3AmOdJhGHo5msJtBJbh3XJ0gQv6VzQHGSafFLcaTJcG+wVbgPi1GtsLFK2KEMZBdNrr3hWPqv6k259Pk9BFmsMYwBozs/Q7fXmmKTBOPiKkJAr2KbSjFrcHcgEedzuY1jW4wWodacZEOj/ioMC+YbtzbVWfEt5JGIVqq34M+DPQF4P+i2C1avDhelqxxjlLFt+pm3rG/YzssyyIlasFWrl5sSECNqXFjwFT19DlYadBCcdJwa8oeIUDbSa6QTaWPeOd+k+DRukQ+PfYsgJ/TB1kSNVAwiXP12q8JYzf1u5fLMNsp1mVAta1vMopUvoqRvXWw/vkBsdKEGD6qFHGG94gcc5hQJ3LHQNYHQz5VXEYDM4aSuh6GOFw+jMBwfQqDPZXbiAsd3NV5l+DYksL4daf/FZrCcMzfHCT+/y2EYfw3pnn+b9aydoVITjmDL5ikzS7Qi7DFLjmG5VKIegyZt+faOKybGMUMIC/fobx5rGuOHRv1oupGHEefmQ6lqZzMaxDFLzKVMXHrEswxg8iLxYZ5+o5vJf8mCc6rXlowF7KTIllx3wITHJsvmTwvWdi9raAJw8cJ8+BgKzf+RGjhcbok8aJyiQoHnlxG8gp0N1VS97YNRqgOdRWzqPgGO2CTcTsxspFqwTXUA3WTOl2mIIfHYPn/3d1ziVil2OxdKMYrdvuXxZYiHnpLYu405Bt8BG7n6rgSBxIvxKmqIKyx+c2b9bZXRdIhPazv2ZmKhtGbo0piJu9t598HMOCFaZJxk0NooQSjHwJsuaKdULjBsDS5KsbNVvgA6FoJc6jYrNsGVoPA4QNOcLPscexUTIzeMKTWJ6UIP356/pBTd1xhKqeiDUvGv7VnOlEOYGbN+bJFstcYtJsepr/VsUHB20yNrL2lK9j+p95jNcQLGeL7Ea01TNO5212V2auNpLyriDJdSi6w5b4Hu20s4jv+2TaWPeFd01QYS1AKzjqRa2Q/Xn5AOcEk9gXwGXfgtaooNDnI1S+BPOhZc9bo8QlcUbgeDHGpioEQxJcpcsnOSeS9knXkqWaG3EMUGC9RXz7atq0KzeluWEsBDOSTUBZKM34OGKeM/9mO5PludxJ4By8MCpUPNElI1GryRqzqxUe5aEN89SRZ0cP8WXLmElsMvC9NGHonWoz6PfjcMku5S/b47cTTWNajND4U4YCcRiuaCQNU2FfFMcxhQD6xu8Mned6OAZkp8ChC6V9h1+4WNO2a/Nnkxn/BMSMInKYZbthZxCZ70++k51X4ldEBzm69ZtvljhW1FRefgXmKDLrIbH/STrMfO80hxF3DP4RtGr0v56kabsvDaVBQtKS+wO/bDQopdZOfpYQDXwrFcUnFchaktLPD40KnSszAW0vTUuWsFXAIyo/4bXSFbujnSk4SGeq3l0RZd/cT3UdOGMAVl6vV+r65VCd/RpCQJhKEOLxyUy4Cfy83s1l247puUGumMDoE+yvVG4Kq/2nDXRixyIadqiZWIn+YNq/UaRbogCM1nwHTKAkqWqIAUpN8+JIeNYczAJOKDLMq4IgcobTwX4rGsLgQZ57mRhkCSCZNjrr5wWdyrQe/drsV0GW+b9yLHmOoIKHtA1HjxbGglK3/ef/miD4VGqbmys9NRbZptknjncSvhmf72GhWK5PX+v09shzVLvqLxwUzuxw/+Re+dUrBEqOxPpgaY/yNb4v+v6dfvwl+WXcRmQarr+rDYG1xAa7Z8hY8pESSoKpAk9Pl3akqb4NTy3Fwki8fsqPsRQaVHCa9Cz19uoEaKfObl+mmpArjetnrnXuRlP5rU8dSnIgtq5I9ODwLBkTkjQ32sf2uBK443AsXBXJXsn9V3nA22L+euldXBY/L9cXAekeTn5VaMdBj60SxwXhYffcJ88jX1Vx7ePgqeE+iznoRfDjz4mHdPpaXm5R4IRiyhCErtRfNdUcj2BXXaMBDOMhEoAIBJOx9uEqXM0bLY0IAGeq51zlxEM/z5V1s9dPkkLA++BSUuNfIySvBpPpKx/vjemu/5jvZqmYpxHBZLSSvISx/HFISKV8Fdxf+xd3hi/c+nBvFUi1b5nWpvqHDipoPrlYRG+sTedEkJY40brEKczhQjjTcwBkN7XzQetCKvyr3coczBQjySxq+K3Rq2za4cMnLCNyvhFahA6mhgbRdLh+BHf2CE9UNGpe+/Ccb8NLBxRp51MRnktkbXRK0ijgH9JwSovQb+AGcMD4prrodKIpkDSqZXV+cVFMI9Aqm8zGWOAIf+ybwLzX3L1sOoinlCVsH5cgOyS1IpfwBgFAbDlNoZpSOCPiSaQmtnAxFoKlt4nBqRZ+217uJLPgnvxIxrb5xlsxXe1FQOoY4lY8vbBBPzIN6TphuE96TsFt83lFunU+Jm6rBwW23wd5xjYUoJt8/npqJJIr+1d11j/ByTraxRVjvgqVs1g9SeOWs0EWx6JDzLGG6LgZ7rttDj4WAajPME4JKA/K8kj/B8+L8esYDxEQDKKbn3RkEZYUm5E7s6Flo0LbT+8ivgt+8xIScF9WLzDq8MAGhvhCkre2SLEiIQxbRfK/3pycRaT2iwKeASz2pVaNOMn1ybUgz9xHDRnCcuaiuYmzeYtTZ0faxeiPZGoOF/J2j+S19vblWENIdgtPQBUdhdpoYssmKFx64jhM+P+m9uFsq6V3/0Zm5PuFbDesc5kqQUAS550S2DlT00ULJ22wU/Ksh3WK2k1Jf+TfHUkaTp3CRjYc/XNF4CZqYZhjzAIfIYo4utLEkfvfJKa+6jRsNajH3DGgjV41L4Ll1WVfoOoro5MralYImKD+y53l4agUfmoK1grptj4bYy5cQaA3qEBLiN3cap2L8Ci0x3suqfw+Ij9mNTbRMcJBa4dRST8sjIBH9qr/O2JNmHfG0N0Jir9hNYPUysMrKQL9TiqgThOb7K+QB9CHP4hIEVTcdk4nmlDdo2FhgRqWwkfbbDoki91WfErDkzgcKnbwiRRCbGn3TaQS5IYXGXTIfdSReGnVF2Inz/opKWLoVYK53ZvxOfRf3F7QB2Mh2UdiPn17/OS+CSDGvKqI5QLgoN/Y4aBfmvlrwvj65NmXKkV/M5rWpRdKorytefk27z43awrJSxzyMCuXpXqvMCbT2sbN+CJuBMWW8+nixWLXw1GDDGIHHT06OoSMmqJ9VVYnwmaG+9n9JQZ0XrFdRm7+YHWPSXcbuG8Rif5XcGpV+g+6N/5YpJJrzsaS7MH8PWnvbr9MWRaEobKa0zZ1rLy7BowPc70YkYU5x70RfawmjLmf2nbwU0rE8U6sE/jx1TiR70wpgTOw7qK7gIAVK7wWu++rFhg9rKkSpZWFQWoLK9bTsE8ervwWXHFCUMd6j1Iu4QPqrtvKqpICqkvYovQ8y4Gq+NVHwAFwmtpMfRNLJSsghup562y/dTMF2xpxbNY/38hI72JQT5/4IwUgIcNykF33V/I9KAsFmm3sX0bJNtIKZe+FJNXxSeW2F8rJ1N86YtXbLu0u689bk207n218VIbqcv+qGGBvAumo3dLv4/KU0wrKgvOifyaF7+Ueh1N80F0dplpZYxfsqwRxRBYAAcrsLTMDqFA7yRGokaASnVwZGXF0TxJdPO3mDm9CetmUrlrDp1h5k6GwXskrocpJ/r1QfRqudTLm/2QHctLibn5E1/iZxS+6bp8ZJTIStg9Jr5QNT0t0mW+wZsI1v7qRJE5lWTLVoHGn7ZG3CzCC1jcgMj4xJvtRyYpdN4vdgnO9dBY0y9SXqZhpUskWEJOwzfiSzEQksH1DY2foYy18xJvdciRivz+v7xCkUGX4moBZk+PLDrX/7qDeaf27QIZyRjnaKBeuKF8htn2x3R7pkgFOBSp2vyjBN+tgJp5HbtKPxhoNAnnho2OGYEhAo/N/bMB6UNBBXOZVA54AK2Oibc0W9RvluiiT5XGyQTbFPLTKn9pxvzCD4esUYHdm2Yl+thlEY1ja53RuLvjB0eSK1xYoH0fNMLzCbTQCjvPcxkJKmekps1bzSoh1ymru+SRwuq+4SGQTwOkKV32fltrUtLd4uSwXdyYsp59k9NmDgfre//jpUyUJyhh27n93moPQRzLBcqf+VS4Fh/46SUvuBdA+76deYEKEgi6i0M+3kG+aS86NaTfWmX5/lD+Fod+aHx0iSH7L7z9NgcHJ2o2Uu5x0PsRNLFDv7nWaRjWDNdfO7rY1Rtyo/HuRegMXptoItvX0c5L0vjybcixg92cYCIVH1y7VUDF2kqtxQl8OkBpnozRj8PJKfCezXmrh5h76Q7iO8+F3Ep6aYWuvsUP7BXpvCNagb89vZNCp/R6mnNVdkuItBHztimOmMJ2OsTw62mTEj3SiD15VXl5bTOgzdSWyKuvZgJ0s4DTxXqlPbbN48idAnLpBZ0wQFypNU1hPKhBoj2n3liaMgNw5TTJMXmHviZtcbEG40jzdB4YBMsSHze4mECGvxYZfYwxLBxvKZvOeKIfKjop+1HWz4AFm5LMgvkh1uvSizBbQWmJX6paJq5hxktdgWFgteUNzIvRr0JUYW3LH+BSmiHQYKv0d1oVCEHapx9HPc6Okz7OidyAIxJqEGcK2IBp6R/mlOORFUnge3qfsaQ/KoZ2uBfAxWA0PP3siy2XJiH3cayw9Q+IzujAd8GEeKRuhlT/LikVTPOicWkSqTuu4NOFFmMeymdzdhX55G+pRgPwyVSw2hqpTT4AGLs02ZCanUj4q63O6PIcR9GiyUOKnNGFpA3tuB+kSoWzV4+BXwMnAIfZHiWlrx9KCxnPoF+5p30AQ/hL33pRZpKCfTZXvqlweSkagF8Ir48ix5r9NbBo+oyabub9ceiRWCQfeF62oyHHcbn289/IGgjDfDoF5pPQxmArnE2B/oAJsci7bxxr9GDi5fAk2/5dGNS7TBlOO/yGDM2v/UwlvbzKlkESGzfsyqSTvD6khBz5sBTHxRq1sLnlN22fR9M5dGaDMLbZ/dWKphHES94yOj9SOWNludiUoUOU70a4vYih9phPj5qA0hNUO1xyCRT5h1qyRzfHD2Amb/+ooK5hDkMeqEMQv4EB2VjTBLuxB1IuCMaJbp6Wfd2JZVEzpZlTCYcrcM3v9KoJcqfOmQdahpbPQUHKJQDTHtf+MtKa2onb8MziphpjKGSHz8aDG282w1rqt9PpzslmTxCf5AAofELnvF/SkHPRcxN/zIjOidshLvJRnz7++Fc+KuA98HEvr4RHb6tNNQd0EK0rysVDyoVRA7dW3v8Q+KBxbv9J3LWpGWW+ctIr0lx/4TudvojfoGz6BiShNn7FMkYSbg2ajxkx28Py3QLUyYFrL0exFWyRmuMUeL5FkfpLwJ9hEY57LALS3gqvgcKHjSv48R/z1Nho2DhRn465u9Bbdfn8bFZAW9a9Eo6DtzNwf/W/OzVclWEpGiv56PiXTaNOljzf6pY/0F4SiYRTOlCrRiToAieOqP145C1qOQFzcz9IWGDkaVKOXnkc6AM4s5LY+30XCiov5GjtDswy/pd61jv2biScUmOhPr97bXqSHJiBGj/AKVY7mecsoiV/WAHj6evoy3S6ETzNposRt4rJzFTvRtpsVdsYu0MxfMBxCraBClCDXfxpTk152MxGM+SOUZM2nKWjDFCAMfnVbqcS7F1T1OwSSLABKAyU8PtcxiW1PoNG6cT2eiUXHJlhjvyu+5b0pJAAqZCYebWyz3zqcP04o/vovogMKbQ9xPtiZ0/doV2qVxFrhltyg6N82EQdoAVeo4Ut+2xJVLQoknxh4iVZOpr+gmJUFAEcNYMkVC4FC7PYN7EtRbmojULwHxWyGFIpFBa2lqL36acydkOMC7XBql9lnu/f276x3B18/vOoMM+L3hym3DEeNPmXE6PBoC+kHMjJ1zi+MhSQSfusPInUD2HxPM3Eo/SsB+GnWZH1b1v4QiDqnTHeQvwgbk9StXThTBwZyruUU7tkwixQQSJ1EeIxRe0lK4up/lk3WagJd0t804hz6QQdDuXv/HOLOoY8yKj4EeTeeYeFmt8/WJ06xI0AmdadyRYSOQ35px7fOtgixTgWOsX8lSVrzXJITcGDafhDusy4YJzF4cT1OBRbK3khfJeCrqg9r2XXuhsXbKSNi3x6Izrw9nCpMLUWXRmoouMJOosTuJDcQgHBD1mYtaBqVMPVs6GXr45gukvWUZcZOEnMoB21cAOmRV6dpO+2saHvRqrCUVc8y+7cNPh3IrWfilZk4JqzVrEhW6Dgh1PJYg/lh8/AC9YnfyQE1TP4O1mfAX5/Du/Llx7TX+1n733zljtIkWoBx11sPuxDAVZCwFh6YBMnwMYtHi+uB37ba+iFnNLpA9XOwFQ/lBOivfO89pbXuFPu1LaruVLIalrZmG9mohyl/DHwXjDIIXGbeY857nTpaxPZTqH3oIS6FfAXDWjjILAlXmFn1nuGt2/AYg8hn6Epme1uzauJB5NtRra4jjrFNcTVAeDzfUYb0kkOKKB/MpUPuvdZNz5p/962Y2clq7323nXahsVzYDxx7oxcHJ+19paO+Q6VVb2voO9p80Fd/b74N5O+oRNybGAEl99md1pN0X1xPKbk88BID9jo2SUqWSGYAe1gXQ+xo6y0G4AMEWFkv9cgwJFmzleSoglfqQ3NOoWNGl0IASQz30bLqABQuo6NqDdC9bynG5m1SlDWDf0mA3xSptDE+7VWD7S+B4+6LKFPxwilxOxhbw6EZgNHmnzfyZL3bS7Xtpxy0caNu6lbs7cHdaU9trK5tij2fiGa510tqRA1dYDC6Ico2Zk/JG19edPrz6L7FOuk+tofoxAWCIjYsQiXLG5/k3D7az04x+5dm+uBh7SizouYjXPDtobqmLExlxxAMzgik+TDLSq7aN1yvo7RxsVC82e+6EfrdN1KqhyCBf8fRD6pYWgQQCpKbFCVQjqP0zlzYpKGvVJNLd2Y7T/qvdXbzCTGyzn3Gg1yDxZEd9KSWMmOALnL0XCjf6dWWqRec6s7O+ZS4lrDOR8vVbXcRSn3wVPmq7qI4USu+tXo0ksheFGjCYcHftDXR++SiIWeXNsBc3/ZXu16kTs+Bf5kW6a4rVkZAitvAkr4iEzjWVy5Gt0e+UDYt5kLdj/5ZQeRjzRINBd/7PDPVEtuVSdMFhZS4QRh7di/bDmhkpUvC6fgxOzpxRrtDVeA47NctMfuDKMh2/a67cWk0FCbNc71tkuI2oGqpQGEbfyVeIP2CRK62nceHG/tQDHWVFIS94qgbnCrh0VNnOVMsxSgI8nb9oxZU/AjAnH3c1HKhkrpU4YaT0U/p/MSey8g5ALa95xx3XcBl6TtsvqJxjROwtRUoif5HKY5kgYnpolHMhb7TT2UJ75PywZowO8ZHgQv2HjbrL9WWXLny5h8MXxTQ6TvbFAgRY+MIWZN1c7yiACStCiEFKqaTJJWoM/CRVTf7SLNXnoFq1Ov9CQvrUMN2ql8WqPKTbeBx7aOKYYilfsRxLdG3Nzf7rg2qMuPlYmZ7iJNF9jFHeFhShppIedNMegLFFHA1EEgKpDP7ePd1aPb1gzH0zDgTaagivoH8TPkyATkRF0g+Lu6aBX9uJxxDRn2O+3jvnmZKehfUFAAHS/D/NB9hObqT2BW1035UxXbs+cs1+Ws/eIS3pfxV6ofVphY+qg3+me33ZObIyCYNom8GfwjRg9Nq6D6Kszr6lZV7JdOXBIbJy5f8+KNTiKBU8ZIoQoNZqzm6z4LHLNEdqf/ZPit0Fr95uwCulNvmVEPBOeTxvhI0o6CkgD8bxAtVknD2Q5Raaws3paN3HJZRHtvsFq+/Pme6a6p00X5URT2/gjPIq79dw2YBjGUEmaNrxnHKtxdWl9N0vsikrpdkztiFIqHpYpbfbumdy6WxR6a60C4aH2Ne5gAEAJuojqSbMJzsbUJunDELDBdKa2TdWMc1MEZMHgRuac2b2ZS2pwBiYIGuvlqWsPZJu0eCK7VwuA8wD8OJyj+k0GLNWVA1YkWKHYNOhMG+3pbq4fGbPdjBfaeDqM+SZSB7boJmq36Cd9StnkLSuvY4mq8uIDVqnq6rMOt/+FMjn7Py+Al492KKmghBAF8VO1mquBhB10mdqjdfpgJqAG2qyEFb9WYe6l46eAiklVJhteit+nd0Fk9MbZnmXv+MOlODXrvBW/yaYoE6fU4Y/XfQ+s6JkfEH/PRSHwRujlTJkoMbdLkLDYl0G475ozjg519WVV9xSd7yJYZW9F1uD2lIm7mUPldaQSRpsE9eMcxhoiWtUGqBwh8dKmIW2U6mGd0sgQGliI2utHIT1xAvizkJATLFzvHDlpkBB7ZO0cHcUbb77u3KcVeMDtcXtT2DveTA/j8m+bsjcOc1dBBHf2GzWSQOCN1ugvOyCXBUn15XDJyop9/Ozx5C2h647BtxdgjSeCpQE90+BGeuaCz/bI9aoOxQ/56uD62oxcQ42K2jJOrkfvdAnaXXsk5PtgaOWqnFf1YFgvgm4Y+9KQqWXQXFJ0sJ3tEXSBfZd3KDrap4JbOAjwG/pRDFfZNTAgV103E1OiVdGbGWKSAJ12orvnp4FFHMGC8K/5d7Z9j/Fb9q+/U6B20o77SKZaNLzeFjMTjnUbmPUkF7oifhZ+/PI16dkCMLlVED7XcSZ3SSHXScggCMSpK0O96dJCdFTIby+Kb3bNX3tVitDXli3m9KZVxLNO5jlvrhfm6K/aiEmufDs2/fWDIMqssihomCTnXODh9YkvNeZtzubV9RmAjGCF/ZWm26JpJeYMpdZhA0ysZeFuZtZUkr8KwQpPEj6DnWeoTfwZJOWibk08/hfW1LswPOpiAHwnmtP4y0vE7xNCiUf9YW511SWdl5FVRkBZO+hhpZFoiOZa+hd3uEI+vBE4mxqeYqyNpULAguDi97V3JCatmxrGrHR0MTYa1rtRSTNr/y1+hyX32q40aCJ5feOTlWFk+fUbkJoMBIdA9C4lT4gnzJ4u0BQMWE1esThEhZqtEAcYizNrjKugCfSFntodmagsC+bf6HkeBgSgiSQps6OI0tDq87Yuw+utg/sAe9lRW9pA5AL2zRD13whpgT14mxRBEQApmb51llxqUKhBW9X0Hyn7wuovbiPc07JkNxwxyo3bP778UaN97ZL0rLhZtk+uOE7aoXDqDBu/y8kDhaTcYhyOrHYhi8tLGdtZoU8NrzTXN+X2qAG9JRBrLvxheTTh61gy/aocOitNo9g03PU/r6H2ktB2nC0x9uG1F1ORkCoamH/LGOFxaIe8tF/61QVZZlO6OGmAAXLvVxZ8d8Qe2ijMZvFZMorl2YtqwNZPPj/WVWOsM8VPapv1NEm3U3CTLKu5SrW/qGZQPNdnvw/JWVGtsLlZ1lTZP2QhtZC3zimmeT9pkFW5Dp0Ceh5wBQdfRzQ7CKv1t9xyOVW/R+S97KzXnqyZlR9jUPvMqWP9ckegaJb9akPPDywxcJfrSeB96kXra5O0FtUH6bnwUZgr6ELtOQX5XDeJvSniqhytms3tu7KLyLJTqN1xs/gB6biIGZvSBCT0U0LIMUSrUZ73uazFupAG/qiPzTTYfFubt3dDoFaDQ5d0RiSI/MZXxP1s7Jxvptq7KkQV7xShdqd6i+G482/0fq9764xhyeblATfgWFXDZcBNJyv8C+72jNA3h9EedTvd3Ji8ow8r9cpk3COZKqZ6njBdVSt0xZaay/fDH69LV8IbC+347MVo3BjX/yOPAiQbRaU6EZlnYNIXfSQwJbJvs/oT9D5xne1v67Wy0/DB/wedhNMc13SIti2mkA797NrKEOVzByc/6aFVJHb/GAh/eRvqy6w1LRPvCVQ+QVqLtSO8Dn6E6Drl5VTHKJUc4iXyClWcaNcJdHuZre0dVPq+muAUIItFDRoz1NmmCb5L2LAZiJZSZOrFEppdaE/KsHipoYnsHn6cP6c81epxLYg5295RVKcyQPBniL3AstSUP5tpu2Fiu6z4RwEKzkITNdQWFHXr1VCAPc4GzwSQdRpDLyN4VUYAYsGVS0nOqQch97e9d/WY8Ezu77tnVTZPjvEqn5sRwxFuWx3h9THEocDDc2a0Vh6cCQIJhjuyqGRgge5zOk6xprDmDzuGHDsDsjPVaCN3mc1ab1Lyt8y4rry+Nm/jJKMT5m4r5zj7nFv0+F+T0/csemlgYZdq8YZrxlNidx1lhJP40Q1xRIBYqpdPjvV1CEVAukoCf1KPEOOl1Zy7hp6GIAJRAY715sS0TRpP5dLpZGoHzZr2xpsDbtSyev++JdT8SKyAqVGSuVFCjVyU1tSnPOi+e3gZj2C7Q0aPRVYYUKtYyL9LUcBDf8QnD8CAb2Pu8Fvbx9FbPXtiAOIpuojchFv/UyI1ej/YdI839387Bo2dQ08DZTS4UuhDohQJeiFG9rWuRN/zBGotxmREQdo33XRo5foktSPJBIhvFpiLMgKPJGh3pCEhiLANDcCZM93crK19A1eTlnog0XxY1I+338EXOqk2Fx/yR8+g61+XT8jAMiRVagTK+aC8OzqiP9TSSfaHR0fbqilZ1Icv6nDyIax5BxmF+3712JbZTXBV8A7YL0WGt9iB7MCzD07uJGNteecH7okjrnTnhkLkfCAujmac3CkwI8Tgia4CaV1QLnMkmtEhExENRNwtmeVtR6No65T/iyvQnYtr3FW3k/jDlgsP0QngwzmGFYe9Z0/2Wn3fr3NR9YJfiDTxgtlamJuTFawTSB5ptprTLWFnSbiRonj18REjo5sngpKY+OqHIFyOE3HOtRpyghab2AR4khmPn6Hmf3knFp5OLuYezik++2q4XBbO8x2kqAtNojJNZY9DyOVasqg2+w7yb9DtXrR0vZ3BrtZ2Ga/dOjumAH9fliCoFVuR4MJ7097FqGQ/2RpA35Z/RZVB0YwR5NYQ+m7hpmIWtBoCOsbL/aYicv8amYfqovIZpSwL7YMZt8jlual6/2Q+yr9VVaRl9EHNcXIPx1Os6ogxbEoOhLen1xgCOFvRMUJeXXkNpUak0Sbf0EV7Zm/Pgi+vbwFUD+bI6aI65vQRH9ZVjQMatUHnMzgwssJevvR4T0ZWgStqsuesrQQQKAzaOpF0JAQS4qKOEC0Q5BnLn0z3Z+/qmL4IFGWdIMjlQiZvemhGwR7TOrFRtWAataSmSncfUuwG3fm9z60lDEcOljIbb4tNda+0Hx77IuH5HQ+Juht7xI5D2pTnc9RPGfZ7O1HU76Jqszs+OgM26AgJHuUeVX/V/brPAa8n4Le78R+9/WO+n6+3Smg/Ad0N69tOMxCTUSDB9eAVYR9mkYFuKC2TRv5l56LoIdMhXT81AMC2j3gcmIYFoAqAWxm2bm5CXSLyAVe4Wmz3r/lI4cFPEGnsnqRxNspR0orK1fa24ux3vlZiooHgFMPbcgVUdY+oM5VKmM8heNxeQQzI6wfTqs3AuPoPY3RbfwwX96Jkxy478zsYKDotQj0x3cydT+RUhNMjXCRcWtR9281kyLLnvwoGAS5Vksttc3viSLK1akFpRadFBGqq4zbV85C3YGICI78/IFFSrEbh6iJOepcoX6udc46UBB25ErmTQAFZzpJl4oIcakLNWGxRceN7V4NnK1sWTnIuVp9ZVBCsbT+Gkc+ErenB6jpItk85LNGUvN5syWUW5eW3XH+V+NF/YbHfe6BuJEIrnDtJ3IKwn9lLHWRlzhbp2+cZKp7RxZ8ce76vYE50rP5STjHPU25hjlQ6Kr0j8DPxCtS44qzrkwQVU3XMVA2kka0xCjvDFboPXvhl/DfWdtFrdUe9WrP8Fd3Jlu5Fj4toyBXW+OwvjVSMVKIMxbrRa6g6/8B9AqlgD5DEqkJWcFPvbdD7q7+SSoINSATng8pjKREqvwNsdRBRpI5N6x9zSlQP0ayMScVzM/lTaIuSySUZnM6FHBOyC1acfkIa5Q9WYS1JHWW65/PjkP1mUQvSSPHNzwoNfwwsPH++ZgNERTrShtcl5J1ryPqNzzTqLC1Gj62d/H9JCMSlDXPCVmvX2Zei10TmAUgBpoJCPXlCtVeAZP9AJR6UUAyOb91Mks9lQbwezrHJFJn13zPX1ZAvLLDkMLssvfI4+Hn6QlUQgk95i8nlwgACi3OFVH0dKOlpu75tR/3IJO6Fu0iZmMQgTtN9qmLejD5WGTIqIMkxyhonUehyP44Hnjs+3gImBcvCbVY2oQQQfIMX+IKQUDgM9v8zdLfEUvH2+UggaqJN6ITzj5k+J9kfpC8MNNU+Nkjvi609ptddakmSg3h1edFE+fRfqZw9vPlwgowhnr7+jP5uZIlifmYfa5Dn0r/ea0t9m3OGW39kHktn18P1KBRCO2aHqQOBiBD7Hid4IeWObato8B6dbMAXxm0WUldzi9vClCgG80noVdNuIJvCazmyAJF/vPPGgB2bUulF6kfohq8kjmp8u24vS8cQUERY5A6zhI7euEl8N/ZbtvTUnzdtH2g4PHSuIz228i+9gT2JwCk7Yr7POEoZ8JqV0i5E6lLfYBi9Nibd0AObRkuBVvyn3b+MskItPxmQS3ORrSFk859lecgxyvpJ35W6EwUhwPGVuS3LTPlT1eDsEIkuk+j0HjCyhcsOeMRM2S2TJBKtT6+8R4yEWvNlXDE10Z8f8phzpMygCona8no4Osg6Nqwx46GKQ28FuykA9n7C00itrGqMuiJ67Q0p1DthNlQZYP5BRkDmxgQYedUxCawv5FBmBvhjdVsmEUtp1q7pGRoK5SiZQ+zrFxmzpIPJuHkUXYTdN7jXGXhvm2zE0Rol+8en8zLSKGTGP2mPstI0SxQ4ca0kQnXBfQBTP/Xoij9AEnaIGGkO+QoJdl9DR/tzG0WVTZe0kjJgH1DjeL2DkOGfr0UhsS7OBIVFVwzww0n/PK2+3d4JOkmmi78oJNBZXZE4GorDg9Nw6gLxe71Bu8C4svxbTxFGzPv94aemPC1MX7ct+bRIAS9IFBFjI6fmhdUgwdfTpR9TNy5ATeAXrCeyxRnQIJ7nc3CdfmMFcq9MDqD8KdjJMsckJdJvQmfmwEKWtugeVrr+OsX9g3MdWuZU2CHcJeui5Dy11RfQGWWd9GCUOgE3cWrXOdLmmgJFfMWyOIa6EdnHK3RkRXNrImYZC+SoXTPppxJp3MWmafNIe1MfUa7JUW7DmAdlw8KAiibv9bSxtbgYdWdUUnHNeloVxl7wCOp39UefGVklJMNKhyTi/oTIPakvVKKOvR/EPwxrUnC3CuoOp1QPr6ie1jmY3MNAO49wPlwIfSP4rNygDhC7bKVAcHG7V9rUeuSEXGjHPrNmjJb3tOB2RzX6YXWk3iivEbmoSCq+EfNSQAkHEiCJ0BCtGNK5FglITMO1ZFS8x67SfWV62/MvJUy3zg8LbRLyrJMqPnTM+2UVmjtWqjnIeS2UC0Bh/EszOmUtB4iIZHpzZGY4gj5aqP3xPOJ+WJUpwFg/meP8rxEVbkNz7+BnKNpVCsxr5IkUmUMGiFjG7ifKJoX04fSh9p94WBODkI9qcc+IuivKEgafFM5qdhmEJnh6YNIynScuKWhybvQY7X02IM4aPGn4lRujaUQpijXES+fRWMLuy8Jx4R5VKV4Opj8UKAvVxCycM1Ly/FO10/FYfy8sNKX/7JdivZkey1XfnIxBQTfewyVZpqx3ojA9kHJnDj1bbhcXci0K1a9mq3tU2h21f306Rt8X0enQjQO/VZoUy+3kn8RC5Tbd30nH3OsZbSVzS6IrLjsuKGZibNQAqUZSSHqZejZFSu1UJLEDVN5XddAD3D/92HcjsB1mzIIzozAb1zSVi5S5BIzBqc55BoB0s5CePcrkt/cSpuCyP2EtC0XRewIyfG/FabKbyQvaRRehDqcAL8E9jb33hFvyipDWHf26H3ZOqlXiBIvWzCEwVkJo+1cURmUNflSgbFtCza6SWqDOz4XCShVRERiZtwF9wO5Q+FSpK4ACsDSXl6/YC9CJ7SfaU5VBzGgXbQLyiqtiwJoL+HrX7Ze7/WCEMrJrIvZJ+vKLQ9o2d7bvBbR3BWfYK9kKEtXT4CrAKD4aIHb/nSBoC0RRntwbGTdv6FeXNIHoEuieusMRZiFVqQ3wRAG4LfJaEbVLls6HPwOaddK/JxNPBWPJoiF7KZFIJwIGLUfvH1yOjWeS6GSu6Le3kmdXnw2V5YLvzItFZcDWQinrkfemHUpWoO6CK+W0p4SYe3bGbAnfelVNkk30ceZ+BM0x42N40vbje5RbNxF/BzZBoToauOqkpZpxQhiZ38zQuPAgNMSQ6SEcZkHFACArwHqZd6grm6hVUy6dZQmygxwPiSXxEMJYby+pchzzqYr6eCjAY4x26KgAKs9z58B9FQRfnbOPuOf79cdOp0+SiFJWnaTFJIBPctMbPkPs3pZa67gx2wYxv0SAAxCVKNtqoeQYnxOfylKiHo1ZG5T+llCn26SI/Y69/LEbfzagPdbf4ITqnHyTz1fVHSD+TKiaD+OmJc6dLLLkbSiOEdl6+/L3xdPKtvmQGc9PcrA9b7dq4BTfOgxPFUL45xngfw5vXEFjGM5E3Wmh/Jh26QEwHvglq4mRIfP6/1KkkSy8s+Kap+UW3jdkLFXDCc7vTkV/bHDqG+0hOmsr2bgnzELpudeIPhzwM0SMcxB7sZ+Am7bLAl4KmEnzUzrY6IXK14pKJ9tzo0wFpqdFOzNW7J1DNGCcMStJovwoxXOur+Svu0FhchT1VBnkQDeXKBNtmtXHHx/wQjZ7aDAPD1+hi8e3bXCJmY8SWcWwmpHTqBxfuUGSYRr5lgGAzgc9vAXS0PFhrY9027lQ+hNk801jyngJkWwh0e6fN8tLQrMGJoFNmyuHy1y8dpD41xgbdDLYLGtNdkOGYf6sQEX/3EkqcRW1FO5rYzj3Wj7+htWtEcdtdVRrPGj0pp9NEjuAsM1QgPEm4HBnlTOFn8OyayxwRvROtoE7XBC/56nMvlwVd3lrkv5XX7sHKS3O5DwVY7j3rkknisFFzAU/WsjDwaF382HCSZe9sN11s0QFvHJ9i4D3Uso5rXXDal3n4w3EJoJBsd05L6oAt8CkvPEqyH9ISCM1OAHNSpuSQKPRzjf6a1OY0u29BqJ/VnvQiltij4qGT/rLWewjQzCPVlmk8CNfGQUCHKQ8LupUBtrwrq/XAv/4pfqjXrse47oYiwNjbvDbgljm6NLGTtS6Hx64VRZQnLyQmtmnKBQzegYGqSsRKHshuZ+6mvYggiUtnJAG2T2LrzCRFH5ssyMM1siOY+j5X6NkiJzzgBORua+asdu3TLVHstJ87aTOwM5wDsGEhpOBHnO4G3rwii3siZiRBAIMDelqeGPhxxMkuOAdf6r08Ayck6Wywt/ugbJsKKLm6ZqEO07hJBthFAgREZOqS09I8Gdr1zZijSyGDrvk9xJTeCCGCoEbWGi32nuBuEsosvODIus2xwzn/sdlxB9mpTUx5+B4vDIFa1xkBQKsBnuLZvQ+a7cY+yDWbVKW3GK5LnJZM5JkES7FXljVElvdHbJj8jMOmnGQ5UW0NP9P0BGT+B7OeDyPAbaQIDgAVqXzqdvytVx+mQPYKJHxVt/Zwztorg3rV9rDHyFsOmII8x9C1EIZaNHVjki1NZUKgA7Y1zNDQDzGJkF5AAeOA9GFV5zimcM2r7aRlTo3i8dfRmxm+pHlwBIjHo8E7z1S6ZrG3QfWLT1iKkvw2GkxeKe4cX8BVqmh12kIml/pDG4kOFljbCCwfYj/+OfClzKtRaD4AIRZX2nkk4I/kosYEVd967NgnGEYxwocHXAzHnIHLZt6QFJ0pLG2FuSXfG621Obyw1Neo8jgZVbBYzpOXiSGh1GE+GH2ZF65rpWZwg0g49hqVf+CxBCBHQP+m9RV/HBattTBT5yGiPV5DE1nTfv2JiTxJS7Yts1f7jzcjZiV0UzT3TgD6zEW6uhxCSoH3O75j4P2TjGYFXo/JKWl39t8CpOkHAIV+4KSwdeLzvpDzUAz34s47rZ+c058GyxCJzFP4VhF1qNo5Eqpa+7/7qzAfcUWTlJ0l2xcSG9AAQ2uVBICE4M/kM/IgKbmz45y46PIOVd27SWzurzswdVLonb/9XV+ck5dbZZrmMcR1TU+7XICPIvmecibsg7aYlenojIkYL7xV/DfZj8IaH96At92/fzh2t6f8diLDAKMLeZZaC6kNwesRDz02cY0f29dtvMyhiADQfI3I7t5q7Sr5sM+l4Yp7esIadmdKCT/ZfCWjWjAT1mVK69m3ua5rthPsxZDoKVc4Ant1Qrm2BoiCHJk6/dVu3A+RSC7SsayfoVdTeYOt4aj2WnsV+pC7gTHvZUO/Oi86JRy9/ppno8e7/PAfAGsdXzM4IK2KaoWqWxdMqRcbw+24L0dbdvGMfxPXnccaJk8pSXasIllDiH+5ftx4M2GrE/MFFGu8RTo99VYewzJ94XNXQCsDiWOQF/hwYwl1i3EVAyh1wa5frm2QlCsUPWK4EtX5ZTkLhCZHp61rlcLPy5X84V81GXPLPwVXTdAjtjTjrWjGQVjA/kzD5vg8qKZAW7jYprxOtlgpe1JlDtEfJ/NhxUgh/mA+R7+yG/VrclQ3nfAJgBuYy5AgpQhecUtFg0mqZFqgE2bHqlXEQa6w2m7W65XYg3TV+FXQ8yFQvkZBO/zInh/onvZUSreGzJc+mNSleH2Jqp0n/h0aEoeq3v3BGj+2XntwcuWGzyihwOC5+RcX+Fd3DX4tWO+eKgQh3uC/R38pZaUIzzWHJSPt370n+qKBdJEEqpD0nEKRMzFh31Y5Sg9cfsAmZpoUBTShQYyo5zoPE1jMWOTyZwBETw4uVE/PxxqtL/nhc/aqv4fVNFl13jhtfD1SDBuKjsGxSxKOqY3/8BARhD2rY8l+BwaOzOg+vrJA0IhlNhnUJMT1hGyBeYdPwOHVCDt+WO1iKLNmTMeeqdCzMBQ1pR7ucl+YUvWkfZXl9Xjd/DjMs2oEtGc5Z9P8Asp/LPvHC7uMVIphsEOmVEvFF1euJQ+XspxUvZL1qZxfUHB7yDqsZ5CTYvMf2MZi25d5tXaQjKvgf1O6VlRkR2muOIdPeeWBaFMc1x6F+IuW4vyKsidd+jYLY505hzL1+oMGm+hBWALkopgiIPxgqP7y4RSEm/+MEizsflpisDWD2CgqiJ5qH+WwyFkiwd6NQRCYJIkskskkCSOzTyowW+mbgWKmdxUQ6pG5YaXjDku5Amk1JvaZSqNNtqbi5dlqrUkoVEyRwOuNaRsbOz8aVjXSPUwkvZRECt48N3v2vMZAieNRsAa1Hv28ZuTlOv6mzLse2mIifrb0h4ZcyleDKjl5IdnIA0WE5UvpOb2GU4ppyq/IxYylhVuNNAYzX6CQsgVjBypbYHXNETllsT7ps9jup6h9qc4vFHQDW4ApSOeFXUtBVY/RsAI8TcZ1CFz5j5DR/GrH7HG3uXM6RWO3lHEfe7iiSC7Oz1l5fNpAyetE83Rfc+cwGpD/X/HU/vgOibdX1me0NvwdoGco5iXfjCa3sWOYTYcD7FDQhvFCcrslm/WuSJDruWCKzZyvZ2szl5ZEfhNen30DHzYihDuhfDPr95RFvFTdNzHkDnToG+0zrpORpZfjFJaod/mkegcaeLkl7SzRZjUyasGwydzxG9LMuSUZnH/LukQFIehlkDkwOvprjEX1OM6F0XxgVI3hW10pjTT+47l8q5OybEdc56fZGNP+NVcNmaQZ6eRDSZ1+M1x2AQpQvPWYKSotNXd2UuP+M6lGz/MTBkaCo3MfZqznYW5uCIhFql8Sx32JzNs1MFgb3x+898+F8AErN0ES8JWuIELgbiyPOjwFO9tnzvnwRUJ2FKzKi6LEVSSpa8AXd+EXxZB8O6PYfdiLFVvMSNP7015u6z80X6a3WGcT9s0399aeQ7MH+uerat8vqGJrDZkNZeq7obIZYx7LwEsjDoDn7YkxmxMQ1SBG49u+4yuMAN8Ny355KqGQoFMGIfk779H3EQMg8zkIl+6cw2LpMTNHxe+D8bRyrI4KQAExfljvEyNGPnQ9RSNs2QUr+SmXaq8s+j+ineNdYSCp/1/suPR6d066LPQWgJyGYPvvpwn3BQY3CUuNntUXxWtfxzjqW/nkus6P6JxeGx3uDxxRz0HXqoEciMRIustul868YACIc4fy+SNTnerEQCinCqgYqP06Z4x5p0hWKCpi//rnSaJYmsy1+UNXO0Y2QWNYeRwy57sem42Z4gnr7kKRqfD4o0dR6enRJAu848Hcq/IzYDRDWHIVS6avkY2yDcWjx82u1DxOfxDnyRbTEcdLDndJeRXeQkwdSLFJQCMgHr4Bb1KHVXzm+edasO+u0aW05BaV16s4gFqPTPtYujMpKctwM3kfCXcQuAcy5msZDOW2sDyT0/HuI3XW3ndGAxajRupv+27P7Exd4cPAf2CTowVSePlLofKDVWodpQvReFguKLhJBzXLeGEo+1/y9nZksUlhEr9C8uAR20CrwCUSMSa7Y53GEIe16J6QElCV4eFLNrDAdTHNdyr2hzCIXR3DLnuP6kVggfV5rMMh+R2E/A5B7NB6qeUWjPSpQs/aDcVEL/XTEZilFvsQkr73keN/QDWXrhRj63WcxY8/08SWRv3XCNal6/fv4oPclYNSQpxjToxjgQmmAwQ4yORC83mKfO/grXcZiLlTq8yT/GBHys6B313i8Qf7zmnPGFo9diiS4WSFgz6xnNEqpDgoOkzjwLgLYSfwt7Hfr9C7eJhQNf8DsIUqdaOLLhRJi7bSTFk6B6BGpQkKnJWVYAozNLrLZEKL2M3PZn9FBecIy0pUbKdkzZuZ2Z8ikDbva29cv9bgN1QY/ghzIpby+cv6mgFLxwqlANLs3Qp13wIDdiuXxj4lAL0kzXs3tyMH8eZRvYPZMwTbHUaMsckupqh1mmZ1ibxYQ2gzhTlazJ4pqJ71wOevxX4TfUwOlG5MtsxCuhQe8q+KKNKS6uROeT79fjnJskzWpjfFA6KgGZIVARsFT0d4Ek+pTpXSe+EykGzRSrRBx2Y83cVMTBCnP5Jg9JyZOB+tEt6+DnRQ1pDfZUI5JKIeBbhrNZp3bJZdhO9rJG36vwXUMH8q+bv/sXso3N3WudK4N1pyB+yx+wQDiRqEiTautEgb2pXjxQSSo1xyuFizrMONvxYJowLRhJvlRSVNXnIrE+kANErrwzW78hqo+smFpKtNTJnud6yh13OqvbYTYm16WPqeigphJYZ4ohJNtXsnmaBv1BICBxv4bpNhKQ86M1o2N4UFbUeFnR3dy8q/c1SXKUBF4hC/hSdkRlusDm3TvENA/BUKikdfWldew00xJbxE+9JS7msM6scTPp/OMAykV/sgAvrBEMaPFVpAG2OB5iw/mObE/Jh7NXtg9M7PNViMzZAhNAaLyHirGli2K66GlJb96DZV7DqbGCxyhrZxx93GzFVnIlIN0sr5qqsbuM+wy+IdBimZduv+r5dvnwZpddRvyLMkokS8CLObYto/nUBEt8gAl7NEPc3oF6xf89Jqn2W9bpTCFbIkQ4jyDbIyGMqmP3xxsoVFqjyyxAyrnalvw7/gQ7edro7PF3IKiVBRCwVXYbxSHYCquAUMXJrllLR0CA5smdowrMTjVojSpjrHgOzyKNLD43UaMIacXf85xOEBIWTtGuCQ52A36gKWhrZrfJQHNzvUpWRHTBT4PxS82kYTvQpnQAQ3Ke3wJ2KziHa9ChqV4O/QzQ8OAAqWKMTkDC8OjLJr5BAvq0PJ8Z4AOvVbEz5ciU8YMbOz5kFkBopxkAVEQMTxFSpAGC9d0W8rnQLnLHcX9MSfHsx5FN20vU+8VxkvmQUQsnpOmrkQfVqw5b3DYnCKO9/vTJiatKFw2RBowr80Nm0sCy6OJj1FiLm8OvzJ9P0Uj0EM3/kH3/B5YYMtvPBQw+bcGdFDyy1k5DwdRUGe6limVzM7/aez3PvNY9eUx/J3i7ev2wGz8Fse4NDcZTY08XcKO7rE8jjpKwgqrteSRbCoXBJTz3WLbAd368rPPmrFwyXD0+shNGZnYfIg1VDn4kWp/WX4i/Z4CamJVb1le4ThAAxLmzk6c64dmgDEcxuw/27mV1ANJ04k0GnMHEX9ekMJgdfYB5HJmrWRa5ew36MF8Yx7cKezzqLJRhrpM8i1fKNIelxo7/9XLreyRXLMl80egD9lAdNn/6pqL5nXqySvq1tvviY1nbdmmzoVKaMowdqGWPqbmgCXg5DqUZ7ptw6VXG59HmGqSh/nnbaeLQyF9YVaU+4abt36HUs9Pbkc1o0YZ53eim55XC2kiwYjaBPaYQAijz1mX5oT3O0fzYDAi8pIseVv3spxasQ5uwxLTRyS4Tp9OUM6yDZftATylISSkg3Kc1Mb3sHGcreYwtWNvkHUiZjIrbL8kWobmKS1JzymKIudNNbj2PbayGYHM8Rl3glm7pXH62hQinMU64QKd3D5iYnawuk8chwVYYEPcpKgmRguyUaNLbZ8Yl/3qhrK39hdqrsIJMNI67FXZfTEBZ9p69hT0GAkggap/X/eqYD5lL2qZpE2aLKvExoQvUNijzaGFBuzUCgJ2MMO0g6ibBQD1d44DngT3XidkeW6nEcV+UbJJdeaZYMxE13IBJIfouYjIlFEst6A/3kIkUjwKKwXDfn3Vad4rJdMfhbvMs/AEroHcx2WjQ5CyY6BTyZPX9qRAcC1JbTcmOXRpYzoITSq2lshahsY3XKhZIma1dI/UlC3+c1yZhjEaWVrbuIFi2QDGqzC6U/cXCANftg6sdRKjcA/HuzPokBC/Xs92uVtr571XIAgmxpfiBgtee3X/97N3NakvYv6acK2jz30AGvlGFCXwzN5RSK/EacrFl1wlTyrrORqgU55Jc04n4RkLo4HN4UWFMw6M3G+oBNlXmuCwNeV7c7rh/a6Z4Z7x9jZPAw18tmPVt4ADR33plaopv7UVejQmwUNoLjfpaEsANM8zuBJ9jnKG2SeaglXxxHqndH+VlMk3HC0b7mH3wEMLvXQJaxKhJgFaW90FBM88BqKmEgKU1uW54i3eEemFZ2n0OdhigDFjvE0l1jvjqFPuxusYaX/HLCLORQjspJd9KARejMgEMIbjYgEC2CdZFEu9WIWp3FEQF71fyJSAntjEDNH00m8qQ/eHgtRGEbUrIIFeUjXw3+sUfN+l9DaePgL0oCCMZyTXgazx0MZpBfyInBM0XtiZU3uLQsBKJx7NHnruxJmGsdU8BH79pag+lIVmD1i0OUgLM/uUfFK7Chr7AFBLATavTycVyYJc0CpFTc5Wf3vh1Az0gZYhed4R1JdmOM9nU/QjQMAF9AUswV7EwJq76umTLfveP8zrUgcDOIN8RF+/Fz+zj1/F6OfEXiiMbbcg0N8KWlWxEFD6RZ1i7i35l+DugrcjgBWmRG7rKfDAolI3p32DKGcAXsSIj+/KfhjWQOCG/KLh9+zu5Wz61PTB5ub6lCDpN5til6qjEwE9R2SnBqcmGUtvKvzw2CCynS4TXAHET/6tQM06CA0I4+1tS20lYssNCWRWMjUckoSQ8RbbUTPP4n0sez/sDRGe4jHUCgwDqCc5WQTxQzkWHN7Fx8AQe9t5yibXUi8U+Bs6HHIhnORmbfI4bjQfaCBMo8/QmM8cWoUJ9qG1Vy/STu1TcR0Sv1rYaiMD+qecDtQEanKBj4dS0383pRBu4GOgq7bv6rDsvuFn22TtGW7DUV/u+y2/+J4P1r8xrlQFsJIvXzaQNdjIzRUB13AFaZNDbl5UA7YrDfBAlvxtUbSM/wqEuEo4Go4difCIjYaAQIkYwux0yr4XJYC4tA8nRZBPyl6s5Tod5JAsV4ZVPaZ5wN43LmWkfEGJNU6CIM17Gq2VaQFRsfTGnLS9075V/PImMEADgv5EJZRMxARiD1FxsPW/DQZrlFartiqim5M099RkHbFoum52m3NTDzmSs42kuSVhmBz3lXcEXi+BqeCDjwXfnaiuA1soKQ+cpE5E6n4NGAURgJA8ptpsDNNDisoWchZEBXPiiAXSmFLZo8AZ6dl0ZVQF6f+KfUs2WKUd9m0Lrgrj1VymDdufJRPWwoXwAa+buDZEanDplml6U2SIuEcqWg7cmI/uauOhkqAEBy/kboKC46+sqvVFeEXJusHCiZRYYVY7Dc38io87HR5wacyWIaRAiwL8dZNMfXfQYa9Z4lKSkKv0tL95EwnS++Utp8axi711hyJRfZmx61Q/EXz9p5xJ6BAm3NDsD+MdbmXx9JHoLwMQ5beIIe4LeZDjpzi/RmMYiYDY0c4mwPaHaKRa/ORUSifD1SAkDRzz+UgmM5P6mu0oXzKcfUWFrc5W4GakqR8h9/vPSSPrHF8VaF+B1H+7QzOsb4XeBD8VsN6rg8r8R7YKG8cVsUSskHxJnwRGPjwXh26EQF05R/A/zU159Qn5+Mah5RPrioPQm440mRctBbF792qbb+NKQEDqLYn0l0KTfy/71GQtrD9jHbimjykc/NL2TNGwDLC4CBAYMorpHbexS9DuJOwylHoR76I07PsUNzXCLM89XFvsqqqAgwfcagIvmhhxDOay/vSfBi+zFCpQVrgVdQIK+lvR9XGvLVd6/p+PFLRAEiekurZSA9vm/XPX5nM+csqK4d1XG6wJF0SMP/ewGmqrLL1hGIt+RPg+43QVd5X3sHCRUMu5Ab6+jGo4omTRmVc74oDiXNNixdAVdzI0WsOv1jZ+7P6NTzhHz4vgalffuZ9pVOmBw/KuFSFRt4rb0Y2P9OaITCv4xbOpEHCQInzNO0insCjFrLSw8xMlW57xm2kSqRMYvxyNezmJ14rrUNAOQZxRpClufbLu3cYYv/LBuDjC89tjJnytTsNU3fNz06wup4NjdaGIo9961D5SNrqRMSHDZxXhvRwdsWXT+4iOWWS3XJGeAhaHvgo3iwChKw0MQArsTqR3BAjJ5YLXcjuR4/olgB3al7fyyrNIld1caekFZyUVBjQwMNyXfLkRS26EOofZjqcME0PiczaFQIgNPJ+Z0yMqeSsjZlnEubXDB+3u1DSX1acSNCEJ3VNMiBON9snSFUFH2G+WLdJHY1AhSWbrgZbtxOYghU9Fw/k+m6OYs0qu2gVCIUeAv8Ydj0e8WFHfi+Gb8gbtB7i/XaJA3bK/4KOlMb9fM1m9z4xKj/0u99+vRopZj2EegA/cSEVFF7owz6qtpc7qiMCeb2MFCwuE2KzqaltIw3xy0SHjzssGSXydUE697wyYYAAeSRMnqRa6UQ5MfEBYlra6DK6gsOyzLmiFsGiFQN/jUnhN/nhEvmjPGpArxMQ8Daia3kHfwsbFwFkMXN2NX58YQZ7oitSGnjL26iUaqeaWHwD7FsJNOABhl2F7BUkNi4/xO63yizmd0b1CrKLnuO27R4NNzkhc0KY9IDxc3Cd7+F2I4CY4Ij4gFah3CXGACz0CaZY32qHsMJy4hKcR/vz1c34TDyJ63e5ljl6fXfueQjqEnOLZlDev7KpexY3XVfC3XoLUgkzLSrsPeAiAazcRSOwfCaa7k6fsUgRvn2uQVVE0z6nMrupOuh5AxyKQtezYxY8rwLlDhAkJgpmmOLRhnP5jO6kEByNGXvgvRRH0DgQ+B130sCqUGIYTXbF70xL36n+2grD6s1Z+Vbo5mJpEn7L7s8DOlkCDuLU7UfPljrDRj4SptwRZipvJxBNYxSQLDJNzl6HuitD8AlW4a9P2NmFDx07hlvYehUr/ehJRH+OmBKqgtTykiXeOypgsxJ9IDS+CSURQ62o1lwpoIIEVyHx22482epRM4dFmLxLH9wLtscTqrzm41TxWEveSOU0iGPGPzIkrPHTRbcFpu9u4g51ixV54EZDhhrGxBi7/qXd8FDoj33QBMy2laIHXKrByexPymumL77GsdWI2rXtjBjJuizNFIeC+KLz9VMADqjb6Selyf8HVl+mi/sjeKQzmFIZlAZPEteq9HKQGeH/XmQc6GAYVnkSdmxiZbW1bWvGsOSer1Fp5moYD6ROKUb1+cxS8TQpConn7f8WOefGJ6bVb9IIvfXv/Cl+GVsk9Y+tqV2sYMeG3wsra1R/sCkNp+eVANu8doIKSQJ6uvmPgVAe1bhxP97tLZlBuvv5HFkXXwlGvJgORgsPgEnh69LQt1TmYHZBV+VekYA+q64lnTtbTDEhmRhx0D9WXV/l7DABtZnQsrrsxmK/UMWY0w1rImvcpFksUyQ59qJRp28SKK7txuxwtu1+NjH1T+UXOfqBtG8bSKbMUEb2lun04tJ+OQnMMdoKIWVS6NbWOCKJ+b2tpBxCAm4OEOQPUnSB8pDcv5lk8GuYsnqRVxoqwpZbVNzIsmKDLbQxw+HT4l6e5G59cbZXmGzqzbch/W5LNxT7lmm1DB2ZlM3rQf8cMvZTRLzPH2cwWqtotR5SRBMbTB1k3ofqfSn596uhmwF6puqJj7jUauCVFHOkjnQtyDgHhhUH3QKTVoAE5ALOaeNExRr9YAgkZt0cYFn5/gtmiRYYtwzkXwxyMqgPKbmehjm2Qyg0fVz206IznMvwvhTqkyHMgm8xCpczFaCEM3bGNWFBnvTyZ1nL0Vbib4sPMeQvvnvZfW+jzJRs0Y7QOa/qMwSG1aXxbnPhnxZXMvAqarWILC9njbyr6RIChmvQrP1HGnkjYFZXTQfgc62knojCK69Njg/F8CPWsMfMWBu3Chq5a43L2Kh3s0e0D0rnQenDjxo+G56n6CoY18K5368gb2PKsmmkeDPRVvHrlh/Q3HR1HdKF9tWglbgshLlD0+RTH/Dk6JbeSXSOGlpr28nbP38HPgVSeOvqALRsziDehsZU6BVM4w8m3/0neXbmvivz6RBWurl35NbyQVIxPIZJ1ZNmZSsPg7wclcE4Xfbw5yZHwYlOb4U8aO8SnVMjO/i7hjQ0C/j10WktM7WpXut228kz4DmEteAxDtY0KphxHkJODwbnOatz1sU1SWczwZ5H+8BoPtgjaR3ruvnWZd6R7/osZ+oxZNDANM75tF3fyF2iO7KxQANIPPXKlgwMy7Vxv4ZahCQEpKRu2cA7l0XmDhvXhgJOEX3YY1EuKq9Whe/4CfGvl196IvorWjuYlbppR1YJrK/nLyY2J8pr9Y9DXTEysglCXX7IbNrhXsNLXavJAVJZPxBYPCBa64fXTQhLu0FP0pGjZiFaOdiBZoZLsSFWFDTqqHZdEgZ1mEGDX4wf/1tb/nRzZNh/zRUAkHl7B/v5OL+HMZ2i1sno16kRxFwHmj/ihX/Uac2zD0PcNMkpGOOUNoBrkMtqYe9oKAuVKfwHMpnAHT7hGLG7NhjPmniHpSEUJDx3Tt3znZ9EMF1uCEtGjARYxCmsAx9hSxvaphgx+eBNgMUBiPzBIw5T6QlGIgluUnQNQbiE/afy0IQWPHYrL2Lg3+2hmxRq9IIhGiGA4zbH6GXcQAcsBi09l89wCt6DVugh+rSRJoeGvr1GBG6Xo7IwZkKCBeilN6vC8wmXzGzO3fVGh4BLfbl7cNWz6NgyEF0VB6V3R/k1HHHc5/xJo2dNWFm83FGTWtovitbMwb6qIOzoO9Em3LDHlvF7ilogrVHBogiY7Z7pPHeTkGkj3g1pPum4fHy/EgpzXgcQ5J8RU4AoRIONMh/Z2LCZEIG7Q0q7hDdQX8CO/Vosy3/5AlPKd2kd/lksPF86yirAuaRNCNKCjHWy9VsB9Z/yKmTaJ1T/mX4W0lbR88fXnundSPPF+ycSVg4bKM7Hkk4j/XDusodnGmGpsuUUu/FSoRiWYyn2kT7DgfRhTehvZjcxeicTld71mOlhukGbMT96kJekCH7fWtPstktB29b4rOVuvgEUlac1OLtkMnN/FkerIew1/Uv9T4r8C0CA4BSI7eSaSJVjZkEXFTfqLBd5WYcfN7ixy+NCN5skf91IQ2OUdDs8hmC2V93KRAqnxsgUx1fUK1lHHVs/hwBfp5TXC2e8KsOD/Urujfd8hI6MpM8yYWvq15Rwp1mcRaau8HTvQJxBEGPqqtk9YOLdPZ9gbOCWLzKDwuxBh1HFcqkd7GMmjDvTyzYG9WqI/etNQrHfugyHgrUw7XIADcnHWa0NEnyOmT/IUs8qXl+lQKeMMce1cPzEzecAGS3gd29g4mCyjgfycbDzqqd15eMC+R+dQbC56W+aD2qg8k5QNg+KcZKropwqYIfeFzLUAVTWJEu2oGmP9RjhOBxUg6MXiKThQzRxxMkiawHZPOE88UGCxmfrrgqxDwjEFULVWoXXeGiWU9h/duewMlqNEgrS2RGBZSnXCjg9DGjbkHgc8U4BNz0bNq5r3UrKwUz+2i2bG9UkePUcGLhkkfywN6xgunJa8RqBEzZGwS3FbO0MdxAch14mMfftLnFJt+GqmpqWfcwXKNvcNTaUmqZe33Tuci78CsiEThXUWJ6a3geoe9GHML1+OcvE7J4SCHv4J7nGAc0qsNam79UFimc473Cg5KJfrp5o5TDXUt3PnGodKYMWGitmtUzFTl+WMl7rBp0CIZ/h6avsILGb7JInuBijojx5bMtiDHRQecpW37hK7g16csxYZW8DyeD6d78eCpl+eog7PrGSgvRF5/O8SFMa/Z8a5dHByvuEcMZpB6hUJ9/os0gPvGIOtVfelb3DQJ6ryb0MZET1dc19qe+XP9V1jKRS8EehYWTyavOl28myHtt7Xl1XiL7+Pv1mDDg/YDssYkpUxq6sQc+5n8c+2+zEkYmPr44MXoydRDon8gsXQ3CpwUJxErEkUg9tQTvBcxlpF9mpfQsv180lFzMsasS+9JFpCJRRQiXVsLlx6sNlfIwxCKQdOkrAB1+QfwoLi511YiiLIPCoIC/jugYe+Rq1baKMyPLB+DWJH0n8ppCd2c/etgv8LckrJwru9jV9W+2VCWEa1X7yN9p+mwWpCT/nvp8tlBlqAYwdmd5ru6eC++6b/3a1/FKU2hBvCgLpEZOjY/SJKlAskljYTFfz0hdnzBjFPd92IeAIvMHvnHqpgLg/of/Ai0B9JZtfZiO7Mobd/JlS8sWLm6qUSAMk2D9wug0XAbyYbhRaQdyTUGW61agg1+sN1VXl1meQytK79NQjWe9u1+NWeQ2LrxaBEbe7+f7Iy1+sB25laenia4lB0enkH8HtM7X0mATSrASzNtx5VWP58wGtJWaaqKWcWfRPK2YTAEHD9yD3PZqhHkMovRwkfkyBjw4b6+e2QeO+oZUYSRWPNKEp9B63iSHh/rA7C1xajs5sgkI3q1lxXv/HeIXuoLbmgJpOMFUgd29y1BkmVE/dUmE4aFwEY+VvpnmJmWzRH4j+OYqL8jLUDlLl6LEJ+NuDfRQ+WUudcFfrrcZdLWga1DWuK6y4zHHfoi1ceSA+ZNHFGBUMf8cDuTKjowuW6yE9fA4rfQTeeitnLXK7rws4Gp+W09Ixr8pawwVX3gnH1/WZlwA75HftBVS18s5F4M2lQxgqd1X0Py1wYYtj6MatWUu4znRBg1rGMlqbpxI0ZgI5/z8hZzMymakUeZuPwgIqyoHhuhdZhWI6WZftZ9KxXgHYkjjQnq40bEC5NAC9ZlTjLWRg94XKdFTpiB5M3d+Ufa47CAxbpaI1Rkyx2mMm775vX64epQlXIm8GSHc1fH3B9zlLnfQEzGMXSfdkh5U4kIrQiXD3qdfw/iqOvGJL0vwRmd9S0kc0WF2GD+eYD1dtVHsI8DEaT67wDt/8YT7t+0v9Cf1rYwe3j4LSHB86Cfepdf0heRqKh3K2m5TOGuZp/3KmrvHKHFUq/DubsqDRkrGfFWdzlJ5wcT2IPoN8jG0A/W04FjdygXjT05viNizFwS+HUR3pacGvL45yfQulT6T2GJO+XVpwq49JP4AY5xnigTkBCtvOB+IRaRQ0VXoMyzFmGsxVKmNpSSHzvrJ34AHnwBfPXqYX4Pp/FVJYVZwDMTacT2GaVfx2TfWlUTjHhN0zDkPGmiIgZOltpaNoNCebxmNNU5e1aFgUFwAomTz4KD4PuGrZhDTgLUAh794Ru9uRx8oEa+RCuSrsfMajLUvYceWutxKMItSCjd1osgrM1M9lFuUYz5u5WfpgD5WBNfhQVI+HfNWYBLX5l2OE8nxjP3glFQatRWiILY+Gtabmch4MdnjsB6SJHuWH8kyTzLFCZainxDY/TiVzSoHZYXgUJmGsPV53OXV8c72br71aU9ujS6MzPwc3T0mXHcBo9kb0LxiqRMy/xdKNkgOeKH9ZQipE3WYXLeslw7QabCUg2g8ZYdljpNDEUYX0zBCobvXUhX8F4rpybMdRzyVFb8Sw7Ya1QcCOF4tBwEMMMq2wI1Z4wzE3sejPIX5gxepeMOUQW2fowbiFP0ChMJasZcwY89hNQNlH6oxd5NPfPh+nbgELSO1Hquc5HPECJCK2EfGrgweF62hi3L+1QuVuGODpFPQbiGiCKCqcSeNvCc2Gtv42wc6M+I1zAlDo1vzD/zoZgv3HrcnIGLlmhUmnJ8ov85I65jdcl216niT2yfXhfEU/VZ0U+V4ICWIC5wNUY21lWwjfed1GaJeFpndhhblf2FODVRrs1mkT3QIvsSLs6JRHAZhlLU4hINIoSb1PjW13y4Y6sgL38fCfSZMcl2E9wk6/YdhjGpblU/qm3jzED0p5EwmQ6adxkAFqC/61ADfFLa5wTvQ5jllJgFJ9msFoZCN7J771mHpa41hmhpnVsrbNd5vQFqCEjPiNVBGhWKFsSLQDPesZDQ/BANIkxQI/t1i97uHk/a6yYhDHtXAef/UCKJZSo9j3h6AF9giR4JIKLn1f+7icfzxb1el/oruZ+MuImsOyUJkRrrQAeyYXfcTegRdMkOKNe/2hgtiSmV6D71SHDusQM5OMUBQs13T7fkQd6dr1b7zXOUTOcWW3DSbAKHGHdHvBCZINvmE0jAMiw5O2z3S7oJkFbp/rOh8Y96O0JcPZDvgpyjopCDixVdBDQlZceTaSZ7+eFA670Zz3yHivsVU9Vycd2aDLz6pokWoa0DMf9jh+dlEwDECqp197fgDypvR9a5+taaoJQVCmGZMJTbahurW4DZge3JhMV5l/9+y88q2Zrd+pgu5yNHDy/wKP4qkuoB3Xb9Jwuz4OUvWz4DcSgqZRhVkhqETKCixCbBjwnMsNfwpn6MoRWB8HhbyUsn0RAOjyVWBnTsVeF6J2sJXy2bW+bHI3hqR5UwmKeD+EhScozoFhsp2rIXzgGKf5+Qc0SGptm5P+NT5Ekb3eR5DvFUI6rZnTjAbGBuUcrtsHdtSeU0VpGQEpwAjLaUKJtzUR8WsAFZniLck25AbxGP5hiuZBEZGA6NBhwYLQa0gVSMlIhx3XDxuQzzlEjnLpI1yulbLP0oOmWsAqtJhK02JDW2li3Rj0D3pIVzcHKddGKRePi5wV/+0ZRFowMX8wccduIzBbiCQDy2fIgtHCHw8CWGyVbQnH24XyVcQe13wHpa+Wd6CCS1lf71jmNjdW9j9l+9YpkEe++X6ickM7nOXUT6xaxVFGi55n95+ZbeQ4Wc4Upgnr+xEEiKa3ta5zhcZy8/6fajVH4+jpikEHXcQpRpvP6YwR9fVppT0XLw7TAxeThkEj9ye8WQXUYjpf28ANVBbhke/Q+caZkEcLJfCA0bITqBU+jwmyGswZ7vmMw+WQzmYlg4oxF/NsL7UqeKzvn1edpP/PMITZn0J6jd12kKlF07lu0iX0MJPnv+GTuPtUQjXufiIg/dZ5O+lcr4HPYdXDJ3Gpu/PmFycgKDordkjhWxoOk1O6K+dk9aP/RF1mUbHPPvkT4DWbDXZmRrSfB1I/bDkjeRRWruOldGxsovjvcwuM6tv985nlMNEF+fNgqnP54ggfLZjVy1ijpQlBv3vMVDItAyDAD8MvnI2k74DPR+14rNg66bguINKh89IEvsnrQke8bH7JWHjHY/2NBU3CX5rSsA0i8up3HRNYrnB785swGNF9ziJvpgWOfttxZuo3jmNcqKI8RZAdJBmbVDV4hhTuw6FhpO9XY/8u8oxgckStqsIWzYqEvmdJ25NvlpLE2jbL1P2A0eP5onCWMxSmrBlOeiLP5NfNprQkYXSJaihJ/DuJJq/x//f6ZBLAbqcw7J3SOBG9prBmr9OmPbvSrN4vnCKs5hF1cSnatSIq684ZozOMy1/U+OMrCA7wV9iHYJ+AGaPbeivgfhSiqRIVquM6UqRE/Gtoeb3kl6m1NNxSWhXreBRMtEVGdTheWM9fUhOJFDzD00rH7INHsPPgeGFOs3l/boMg+SVL1w/60YX6lygEiGXfBfaFORkiyguiCQWGJ5waNaHGhwFDXhUGn2kz6wJT2FzRjyTfYkAJJHq+qcNoSQxVHnAQkEcEa+RwlDFX9IfOLYiNE/r7QRSIEDvNVMrTZejMkPmf2jHUp7vj7Im+iK4AfI5G9Scvt5+ToRq3lBzdSxe4u1cljGImz/Ofaaf1aX2+lyZdhaIM6SCHATFhVtJ3PU0kZQVGietjYGHwtDY9xoQebW2HhBrJzv3FdQA7XB9EDP+ur2frrvyeBCPHsQqNp7+ESx1DWUVvqOlythSfXIyFdh9c5j/llEhTz6FGgDDfTIyOpbtEz30Xnp0ScfnTjar7wTYRQA1hoRHlY+ym7uBXXMr4SkoynCfY8j/lZYgV291KwZhZBoB8r/vRbDQCnohF+fIolboHLZguIcnyQwNWwZO0VSSVVRXFLxp7JjxU+eaXtXjV+OqfNwMDD9n7zVt6FchgkkM0PV0O4WR6Ab0MbC2W0ZlqA25ezOb8GLF14lHCQtiqL5ebO/T0OgGDxzvEfkmgurLAmFx+Ehp8S2FH1KmfxccuVyblMmmjRwKrQp91N42ahpt9/xKk+SlS7VurFPsaP1Dq+TdAl8DVeCXWDXebRatF/XxCQh4qnztYUNo95KVFSVJ1oEShtWbduw1wYxUOafrzRFb41B1tuxto79jcNgonORDidvGxErUXjZuxsAjiXJ4Rs+PoSD+nj/5zHbee1/13GZuN9Y4J6G9TR048jXNjdjQDl0Otyo6yfPUcpC4zot2bDW8j5zJ5zAnoXVB0snmYVlSAVlMaxW2CfBnQqNPpXLTac7mg5R3JRUSNj0gCcP7hmInNg80G7nPQ4t8dlauIWPGWOZWHAXVl6ZOBCVS2dcLrFIS2K4UJ/xjNdpMeyTM49z9a5PI5mNanqpvMv58t53+3z52Ew5MYxJSKDQ/iRZ1SqA8HjKUAenXwHrztfQkw+8/IfkpE+c+7keb4fUvwVGapzJz7nboeeJIk5xFXCGV7m+cXgBjb179hzLoP+SoRXn0YwDzeed/Rz6Rej7+AmcSVoQNEoPFZ44UZKM78M3otBsnGfrbpOLZART9yKidiEyk9qvikCuZMoKJ7pUkCsJv1cj5dJQJQRqE+6oy/Uz7167zU+8r0+xeRgR4cf0DR4Adcap44bBFfjvBBjqFq2Giq3pY6IJK9efQ11llQAa2lSgsmoY8ZJyhJtURU39uaRKBU8llGcxMlexwpyhpE5snJXsgDDD5/lk6j7rKGp/0hW3fcHrl/SrGELyXy7tHeDSXo+xUm8JueDKqFa1w5sUFMnQ6q7Njahdm9fjZzUlMfe095w4JD6ozz9xvTOdwXJW2Sydhya7GPu9GvYCiC/9uNlCnTO671FBZCcg1fzUZL/D5ndDIZ12VmnBxP7O+5rV5agjPtIIxR5vevDddXmhlukxINTmSBDYa9ekFT/QzH9tu6zcnTeX9lHFZgeBkOAI5CEtTEyvUbvoD88coWZAoCBHlE9uzrradlusMSYRrXS9d4eFK3LZcvs60EODiBzjQjPLOeZRnENMnKLG0Q9jFQInHPyGIpnHUGpuTDg+0BptTHIjgtI9kkzhw24ygHc7lpXa1qGIpSnktCjJ2/2ZyNK26xbisVuUAaahaf2VW7QXzV83wmAU9AAntNQm2MlzwVgydmqzUHj9EShmifYLOb3LrEj4K6kJw9jS5BYLCIXxiFGGTNztshHDlHeRvWw82EnzvDppF4PE3/ps6qmhXDNm9/u5witma4FMXvqvCGyFBEHoXNiOoJUbylngwFsBqMPKCs1Uk3mg09VwOPjuP8Uc8Lsqr06kcUcqolheq2EFbYy2VjrF9wz8CDzUMsm7z3ypZvCVEtbhXuUSiPGBo/T9W8R1PayyOCNuwKXqWd0V6sbvxULsmzR7SMGsqepBhpQMAms6K1BJ539h/GwdOHd9+YuunRtOiyC/k1m3Fz5lMfcm4p5ZEtcg3NzjKE0VoyBN4mMvbuKnWH0Rjd41Wn841dqDAr6dgE+DmwqLxN2FzcRvtFkd6O4hN7l4rZI4VzJ7TFyAoOzrINNU3rXLSB3u0AUYpG1iGGuDrRpYzwoOzlKS2E9FKZxgwX5r5qDR1A6P++YIbLkaizurIEXioRuJSc6FOhd1EXGMQyh3PIxsO4ausDBbFL9En+VXUO2cLffvTgZapI95EHOyB7Ssjc3lpHh/oijxw44/y1bXbxFWQ4lngcFxUpyVao/4nH3EijPF9ho9JGFA4VAHAnRpv1tfZaCRUgDakc/gMmLOSBZwQrObl10AKLXAERBiSuv9GFrGWcexvppsvDdIi/+l2L6hTH7zRCH7BdrEZhuVzT7YFjhLctSqGF7L33j3LL85yr5K8Hr9V/4So7x/nhpS/8bNo4UxRIHLir1amQVKLZQt9+tfF7j5oJ3peC6XMhF5pD/jxCTGBI+6kMU6ymVAarCndXiXpPquX39WfhFLgGgU4HZz/Ekez2Kb5CABa1WHZ7PILOxsYtYulJLvr/UCzWhjBOqS2WunM4bVIj7nurBXhgRl10YctG6/0JXldGDVK5pka5Xe+cNBGz5D3iqsaqHgdV9HG8ToXO/Odo/5gHxqxkLoXqE0dTd5OxOiBkX7hri+kRpbDYkk4VGsuWENOtycnMUuKH7T/P1d+8o618Y53MmzObk2RGj4jMPwJ/D4ciWTnBBimULXJij5OBKhPs/T2dR0mu0g1poA452TCrIPdoPPWWVnSwQ7+exVzPFRvB67qH4IRAFZIag7nTWAtM+LPqZT1GF+Mp7sc8uQ6JVrzb++auqpaFqBRodF7Bl/7MoSxunnegKR1H2tinUexxQ2b5SMSFTkwQBKXTyRIwGvk+okos+eq4m7FuVTwHu48gpvfJRC+xzBs4XwjJUopx4HmW8S0R+CXELi8FIFgwkiXqb0Mxiu0Y+42rmSu5PcEyEcumi951ZCIlZtchwimFuRs+Cn1006vSRoIX3utdfFGra2CpQhsYnw315eKgO+0KthWzEuO5Femzyb6lPTq/CL6i6SdE/fOFY8E9G1Z6hd7g4H7nCHYv2IFIz1Wf4vmJCULWlCEZD5IYyzHC2JOrpDh3jLAyJwmr6jpyQA5FEtLiQeCdAy9B5BJuI4+R765+BUHALxHlPWjoznMWkYcJKC8BlNHaz4xWj+z7YLCdKJvRFZKOjiZWzWcn2ycohQ8LTOP0VWW6atxrI5h9lkF007tCIWIk3Tc2VtXjj6e6TlDXKzDJZnFwvYHmVCLsZb3Mmxx7Bjc58NtIY/kJ4bNlbBqaGANz+eg6F2p5wpu6mdrxZP/+bmH3NxrPuXBeQr2iUCj23GQeDElhbPOfDg3zUjUogj8iNnjd2XU8EK1cuspeLV65HB7baMDDgxknRMutk/fgzrNpY4NRkXaLvux2zlcnGyQqLhJy6h6RRMZsABcH6UmJvu4RcTxZkzSUGIc/lA4DSThKv5KTjJO6VAX2hUy17/wDu8v+56QYwnGpMQQ5yydWMYzoeDVPEDVRex2prsDtujOo7TkezCdAFWsS0t/7WGmtisjJ++gfU76dV3uc/I907eapO9gfPOP8N/1Py4E7o3ls3fJ9BZL29LvpRGGRYGNtXfh8IaqFyag3VN1DgRHeqqezq8bAktsLkX+dHFZ1G+bIsEk5k3qJ3L56pmDr/wXl0tb3aIj4kaF9Voil1DqOzqbMILlmQZxB4/PunqNPlZnL/DatMi3XwCFGW52SptHf9XcSdu9CsycdRvRM3TsEwpccLsxflvsnnW+diObtZ5ewz452QzzvN086TSfAy+5o2ODkC+IIHqS8+KrBSi6f4vtFVJ4iNafzIlbyTFc2QJ2QURS7eUKr2QlB4mNOYyzS5JFs0IoqCwgHuuZmzcWSlv2FoXXx3NJTucjlvBr018Fx5Mmr6McLI16wsOotc+ifkz5ljHJWV0Kl2aM/Ch3UBZNlpPXEGjH/3FtU6IJCg6o7Jm05MiJib1VU9/l965Hm3wgF0mXFAGcl3f/YIefDrkGBKu6SWQsx1/Jda4Q5Yg05j5Zgq3muhNI6z631GGBfPBwStwaqo2yDyOzL6TYBqROFrzc9cxnIT9cRjf4tIQDr+iYqoStPMvBglwjgfhOE2EfKG9BIaWZDPhd0zsvDjmNYREL5R045aiw42LfGlISkG6GwK1DH/DSBlmu+AIH4wFFHSFfpIyY963ut9UiThSvwC5RqGgxZ3s5nxGdKCEvmNlNjmVz1NUNjArlCIfZ7WvfuRldAS/qNvMuQk3EfTXz/RAZJU+Wgwh4G4g15tLGv1G3MUC2CFbTxezANR8cE7d/8Bdq37UmSI7A9VRUwtYz0YNfgQQFYrmkc+KIBQ+qE8zyladXpgZMIgaXfnkr+ruzW98KxGqRzl9zIec9ENfI9PTZmQOWXqViZPizCG01ozdtXjmf+McbKnRqlNMl47eulQ3SEcqth43EAq47nJNAHdRFQ/BQ6MJG+r3OH1XG3qb4fm5paMAQUEI4evCb0N6J750QUuHfS6xx8pm54IqtrHhhMnKhJp8T7eyjyx+rUy4IicNJjVPsKVJ5XQl9YddyBgXzAxEIX1Z7Sv4Bs22rvrImH6eELM8fP+sMd39u2iOEl5C1zzdJLzb5f7f0KG6LpH16fV519utNPeBKIb0Wtc0CU5GIQx7nj/fjr+9tpQ4FfRpXehSrsB7GHaU0HIs7eLwimwUjbxQFN5Hwt40qsqb2ukQgdFt+2xaBVHHTsX0JMDzBhgqKjZ5a+pCTR9OOX5fCxnqIhFLOyFRpeIjtB7EMWtQU7PUugadQc11K2m1H9AVKNCs75nBN1cmiRm0un7ZJaTHzC1roSOhroUxGgeBj6uch67f88y2hkh0KAoOoU2QfX4OjCDKL2uSVqx3FEIp9URT04czIHhamcHzS5PXhcf2giTd0iS9geHM3zv9IhU5a/l64TDZQ0BApmnE5J6SA8EJhzg0aq2rmBT1viycHCnq7ju6QL4zW8B9B2Zf2Irw6baNv7Wi6fkpL9czH0VSAfek2mKkG/0zz9ruGNFzu3geymIkAzRrvQp1vDl9zivfdNT4fQ8bKJsafx2uHFR237qvSVX32jyFh26t2LmK2OMaJEcOpGNRpSynza0Ca7GIEMi0YH5hT1ZNQApjkgdFqdnfPUda/rJVi/4OzyXA/o6S7lNLpKgANuNWCxXou/wcCk/4xXSAAi6fgWbWKoLABfcaO8lNUHGLBJJnS9S+gEBedHU8aVt0miOUCi6+02c/SeuCwQzxpIHB73+HyxBMjzRvo/Kw67230/pbZ0I2K6cO938894CxO/vEce4qx+YFAdG0FPDKvJwtG40zBBO4YhbPQFX43GHw/QiTLtDtHdujqu6gE+LzOaJFubjTaKzVRYVU7NnvFmMNFxN7M27zhdKlDrnYXTuNrl7Kat+tLGmUkg1MwJ1lAUnjKNrML9M36s6+jyZans/IaFR03yQTdcIGkLP6MKmKWLTdhF8GFU8hr77V6X2DNZcXCKMvCJfHatIKrEscVlIe0QuNL/2k8l4Rx8d8Vbb4Stq+SmkLxcRg3LhoJVTP1s9KznGshv7GLD/MKUqs6DTfRWb48pjXzYBS6GEJ2E9S60C2NbKxdwKDT9442WMQ7lj8lGTGnrCIgsI9LqT3u00uGb/00PlLSvZEWOT6M0jMkfByyt0dd4ZgC2k/Bh86ZJyjUg3G+zptQ0D7kLi+B3OMnhRy1FZN3pBasaMGaBYYd5ms7p7ULMkOCLMIRq3+5w5lWkmrR88ePdfc5CFPFfoOiLEDeWl4HAxhVAa9mK7qHFL2EZJWjGy5LopPsRUHSZx4qC0ijSvibu2bW7rrOSzpH3UKNPZ630VpYYBMe3DtTFHjUjgBQs0Pyp6ux4F0jVUehf50Q87ZLu91SOS6+WWwgKUbjAo/TYx81l7WMNif7v6PdBosptDFhL+q20NxVs28PfDbSGXR7BsPBgQ7xHVQ/EiCS7GjzHd/GU9RbijhHsvUVMADrWJxDO1ILN505tyaXHyTW3NTSANsoKOUtQ3Pi6jdKIzNEL5XJGQf6P50dAks/Ph676c6FNgS+vXM5esVOFoymdAA/+tQZLKApiC+5NXSzBbZaqkwWAhOTj4hSGWvgJtuzc7d3YeXwamMAl2ufBtROXf/wiNaq2iAASQRA3o5Iwp64yLIxJYezJCoyq+GzyRl660qMoHVKOqXpWN1qVIU6AGYdWWEHYWBCH55rIJ8Y08EpUe+gqd/2GGJyKAh7p/LTjLZt102kt0zGVd0EwJYjGWCsXOZkJythkxmpL2vvUOhShk/K7K9VStr0twIr+z62ulwmOEUaKY2SVvWbnYH+0Y7YOT+eUp+TPvkBUL9ZTs+2uBMhLeLAeaIGOXGzzRMHptShX2dfkuzUHeVobjkIuS9/f5IADKFVQ3YrR9sumSC1JHgxw/5pCQctys5mrirhY95/aQC6IxwIma3urP8j3fxax9n2KvfjX/j0GW51QK3NvTAP7Lm9FDYXiC1Vjr+RvN1O8COFVu27n+7LaEtO7lKQPwmDHKE32AgOXo/vrh/CdPiMNn7xDBA7qtEeK5CjZYN9GkxEa3P7eamzwR1/oeJId3vM07aM8muuI50uQhwVRzpSk4ecUTEa7vcgEoItujxKnnWpFqXhLl4IyZSCHwlWOEOhKSWR0Xg59qtDQDAuFZN1I0p549NRK4XCEBv2LVaDo13IVESa27Hn6aoyCdn/D5TycusIMp2sX3OgqisegEel9Ex5QHfhCj2XaqWWK4WfNHqFuBELZ8GtmarrABAJ9wNCLlDklXqaeeQYBXsrEZJLxnFeDxW2Ew3HdFdgy/PSnxaGAr+dmGzt/pOBfHj0v9+C6tAnSbVsEp6EcsahAMw7bv3hKZpWcR9Y0Vql4ui3hZQt8h3SVftXcsAufDMXi2JgNDnLCW+SgVNEw84HhZ30JoOL01LVEqyS3gtknpqd7myDnW0DZaWNdw5Iu6dCC5lWMLuIaqdm6heZ883Lpd9Y4Ctr9wwjcaEBKZRkxhfsgr1Lpy5rGTpFMxpIR22lJkhNoo2ESkTaFfELcKRvt/o+N10QK+5RVYYZRb4FJgxa6+12Y76TSVs285/1MVBU3SvDJCz0SRZRIpOnpa8V4+qzYefYJB3zb+EwOjSGPH/CaImkvhwBTQvIX2C1YCuWYpJmy8hnqg3GsFsUzjWvf8HOA75ObFZ1vzCN7T0Of6ANm7aFaeXl8Szavcdj84p2DDUKcQRVBO1zre+1jp0wos82qQT5oukm/HGCothO66sYQFmIWqtBelWwkp/hrcM9M2ye0MkbgQh6nPP0oUNOlVjDkGdbnYCcYPOGgMqwkVhZDmGdlbVCNKQVld0hRCAHgprvQVKwXP4sQ5ebLkGZh9lWx/AZIYM3OrovpF3ioNrgbjW4b049fbywqbB9iOxl3488zNmMYriAewuf/jsH9AsTCjwazw5IzDpxDkZoNrsHjKY/7bSXc+hzCio9PmVYhKh8ai7YTy2/ZMCcJvBc5Fz2+GdDOR14TgwZpB1rAwTtc0/TJcCElZ2XO+0zcug5JAesmK5EYrF7XlPmlhCLiDOgmwY3U0QNZ1mIPtv8BUNnMWw2Au5+0S3MzU6mFQhj3Y2s6zXSPEmM08LshzRbl9DQk9cA/inR3VpitCLHWOGj0r9ZNuIeHq+uhJoIxVNisRaarfGgVDlaq1gdXcuEvtscqTBO7ElKy6WKhjFbiieX3lJLu9a84TcdwRcYMhNYrChHMmiEicsaluF3ZGOLO9hg43D2wTeNotda8RrX7v+rbBVwnC5ldeATDjXa+W8R4NkKvH8ndM3ONmWN5paoiNPpzzJzQXUZvMbl8pAKsldN0FcBcrbLpKiJrrSdk3WdmphddEqZIGkDjk8k2RtuM9GZJIqowi4giZoSuVvaiCjewQSlRWX6ecyNHZapymbp+F9AtW8aAkse1ASJ9f4n+Ske5BPnXuSiQ+Mkf3Nj0YBKuK1qukvwQo/iU5n3IPzHYqB/njACh3Pnr5eeVfp/Lq2qqttvGYa1urhh8+j59oYj4WXxGZCqjOgqcC+jyppStTrZMiF5S6qOlSwG+43v5TOCnitIi7uuLIEhgdjbKbsOO2jjW9Pg/iQxaRqnqmrBjLpqFOc9lH05HmjxMPt+u4usWgj8k2MZPAU4AK2QP2otWVVitxQzw1x+p3a/uqlAzm6jvaUNVhmVu+gsY0T3Q8RUlE1dxgquyfVy6ZgXwGbN91o8IT+7d1HJZXxQXfOKGWp6U67MzlHD6JblY33Fl9983KVSH3QS5DIq0Sh0ij8gWhYVuOXD0nr6fvlcePepQMZudn2OLTh6cOaeLuGfeSG4yivKMT/RqKS3nn5WvWWRzub+LLruoSRPlu+zD0RSi2ZK6SmXawicAVoTDxHCl+azzOgcdVst1Rog151YmBcg32sIEi7UI9jFHIcxfpOeLO+OMOXYisXMrXHsmPv8wYFJ2F7KES9Q0BRjcdTmCpPxy2smje3YE3JGM6xKtN5Fjp3gNX1890H4g5kRkeHBCLUHxgq7DcNo3W8IrgH5voXRq0CHtGwmK9yTi/Ey7QiIhcfDFVjdwy4e+E+TK8BrZMwa/42qEb3YPJpvRVu4jIAj+sjnbfxxGtOv0bK66ZRJ+sed9EmXt5FgUBxllOBfb5J9v/Q/Hbeq6OQA4ihF0oh5cVNaLxOr4XjN8wOqVYhgGNKGBFZ1IbmjWzmIqaBQo8D4XU6UJ2Lr4Y7jSSydqt+VKOjFAS3BnigixsS6bmwM/D7QG6MQD2PYvBAuNzfjZmABfX3m7E6QVHECxPynMqJ+S9sNg9vMyL1ULJ3k74RE4A7YVWD1TklU2PA8YbWRRegNn6qXUw5A4woDjWhyfrqbrnLbX89DVvcV3yKgXI969jLIDnQMJ8KfNyi0kAS4kpJlcrtLranuP7yM8EgVawAQy74yIWJ2X9U3LkuzKLyfpV4/tAvDkca6f0ah+Fynyh6+xfaxdSt1rlIYoUbZN5f806M0VSZQNH9srl1SAIxnVSzxTRgEPHdhJq0kpIsxUF6VuGnQAiM4yo5Zb0bjOS4ZM9eTC90aQll5aNcWINAPTU1vn/GM1t0U5GLnzFUMdq5Czjt1eMfQB6xht+LNAzqRMGg9yzeiROOefAZ0hD9x92+IoW/Mut9pkHjSJBAVI2BMdlflrMSQAUq+149pwJXT9Uf7nTVvX3kGpI3UWbL658e7eJ7jeSQcsTFK1iYyJVn7d6dtitBlxvopxxXnKp8Ur5rzHufLZuZz/0S4s25is8qrLc723LUh2AVfIyrOztSa2OdCUD+Jjwran11pOfsSt3HdyfP3FoE9Pedo8VzOS8WASf1aVCplHDV3RiZg9HO32L1gv7LGb1ktORf8A1j8vQT+dTdLc3tP6v9Edi9GFD9gz4zcRUTVwD/AAR6Fw3WJwMLuwvyYuoyk0czIb7ggl9G3HxfscphskeCP6jxGtViM6NbMz+glWc89SPT/s+PEuc7+iu//Eg6M3BTJTJSMOj2zs75vJTqVCfIJ2rYCbuFgK0DCCY3teiW9O96eKBkBP4ePXRtGY0ffrcvxD1qsuDd37msz3er8kLzduBXt9ucLU064Z/QO3zYGUhULXhIgB11mQBNyCF4rKPW2/yT/0Bx3g3zqpjOIpAfDqGR2PPNYwQiLmIubQsjSOIQ4Nils8YVZf0s/snx/0qq40UUTn2P1KUzP1HGr04oXIazdJMCZaYoOuBFPDSWQJMBhh9QSD2RQ+UwN3A3LdvMSCD3owX1bLtdmA3W5C7F1vm6cEGEtOvMQJwPiYJH1/Is7ht3RPyL9Z2raDrjqC8qujcX2/YQa81sWXTAg0MEr77+9imWY/Xg8FMOkng+JWSjIABPdqHPDmqs04FUMG8Lhf6MvXCeUbIOnmFVcm8qhg/7sgZuSrMhdtacCIjeg/W2keM+bpvnj0VDyngOaunjjv4vTNkA+/lnRMIvgc2Wx52boMedmr7SrmxzS34ZiW9p7HCPAYkrkLZQ6F0vWPdjQixsYT2hQliYod+lKAepQbCJoDmKbpYzqBHpg4jeh+sC6aqjw9OlBGUwfG6sUFLRthH9/NrwvE4GY/tDAxJjPP0I8N4B7kNa+7Mvl1dml1aYp0U4zcJOItpg7iQLS7hsQciXKDg29VzbqxXjbdU254HKT8CiQcMhxILByudCvNGJADCqhrPe3v11Zn5GyvuabYNo8nvBKCTY73pmO7usbypKSEtkRhbZ+T3Vh1KaAyTUJq6RjtrS4UD4VCuqb40Mf/R5GOHqmkS1EnpBn2JzNgSMJeucrzBzSg42PvVoLnfr5UPVOX/VR6RceO9mzjHpP19db/C5/JF+rhyNyurNot/Hom+UpGtGn/PBctK7zNVvF8D6wx0VSsMrDG3NmVNSGuE5etuBqhhuQhzK9YzOiDWOhZCMGWn8fn+6h3/T0j6RaIj/XWcMMFi2yW6B+inIOu+AwCGlg/ZL3pm3vl42MBpGJSVdUJnQ0hYww41ps0SLp9Vvs+IAw2nYEC0+IVCLs5IDE+RG4WoOEgjxWcgM+8TRVOoMPuyOp9ffPIEzZOsUr7kv2HdD9F8Br92HDrEtg/lMADWiMvLYTjBgIqbSLgjLKoEnAYkqzr7Z1ByUpq0Mlp/OVeg2ndE8V6rOtE+JuD5v01SxtgWUMklkqV43u2mbcoOzYwl8zEqYE6N40LMsF+hxPOETh3lQh4otP4bwKlcfqMZjKk7fUqKW6KL1kSX+rjaEe888ra3T5a6ddYMZ3yPhlcgNI0ROs0/uVPNZopMc84wKSX0WAvsG31TZ9RIE1MSnc4j/Lr5LosgelJP9n+jLwj9p/mM0BBvxRR0tGVOPoW1501bEpPFC49DMYw01GYmb2fSGqj+nEbYcj1D+iXvNQUYLcIjC8j8OojcCQq1Fb0GJqhSM2TF1H1gEK9Wvp9TMTa0faSZA+0686wx9tGZ/2tKxH2p45Kn4UaMDhoaG6kX1Tc3IS20yTCmPm6IU3u6XhFoKQ2eREPPqYnwrJMNmGP9JskdyygoLO6wG42wO0o585ozB7xJ2muVhKGfgP+ht0P6FfG/7zuVEGy9BR4EWV5FGrgk7jy60Q4ll+wqyavzOO+K64Sohjhc8720YvKkGbN3SonIfN57URyrWFfof9Rs4gFMnrFgHzMh/1QX4KlCDc1eraBATG+0WcfBFe4bvUbOEjtc9n69axupWdNfiv4F3vqVxht7MJ1hKBaVuwAK63Khk4ca+COJA0zbHR5Df7g85msuutam0/ljfFMTBl9UIsY7hONnBE9zjtZk7A9GMHn8L6ESCciW5ELyLhyzs/8ykYtF9vJgdS9pNDPx6GmA0sOqnT9pnXBi7QZStWhF07QS09m6TiC2kq0HtcYl8HhSQ9lLbKtEJ+E5fICa2JPdxmuuJCuTsP094VJrxQWt5EiIq4n4y1T9uPZNxiIVgSVmMjrM5d8e62C9VfRXOfS0I7BFBg/0MTvjJGxVJ7hgyGzEFlFP7ESHEwD/6Eo53QnUj2aShzph0wxtSMxkGk6UXR242pcwI7bt6iwP8iWJrVPWPWd7b1nvqjyoWXCTxLubSA4vw+pMnuP2zBfYWG1TeHq0dnznlBxSLcL+bejBfces3FKZWW8qJuVGnSru2cTEfBTW/4UXJf7XJSCLedYWdrZ4XcHOeTewHaff5BmyGyumASZBluxO30508Bho8AQ1nYcGydRR5lj6VfX58aCmmwSLlgsPXxGPlbiLJnPzfcOGSEnnhU1ygQQynX3LydM0evZD874+UOXPAOCT3pzMTXQp3bR8wrJcZHBN2tSe1SPaxoQSK345o4I+8gVeCXv6pFJr3RYU/0KwnjzjeGrFf/1Z1kgY64uMTLAx50DFEqg9F95XgmGDKyouhwIX3G7F6MR1YqCr6e36t7IngQxak6QIRh4tPBczpaIcCAAIV38VMdhBVR7pqIOXRSl2v4GW8mby0hAx/+8N++ns1gAVkiuvSV4/KDVjaIJJI+NdV3AnmCeE6FRV+P3unj50V8b9ODATgRIkwVPPu1A/nDWPeglAhJzv3o47er1WkP8jorX9oog9y/P0spdjsjhEomuRason103JdwDB6OnDRvOYA8UznZpr1rpSaqvDQ2ri6x1q68jrtKF5Yk4lywIZ65NBek4Pv8wEsBorv9CL9oFvUmnkhZ6wXnUNZXI4I49OoTG7UKqXkVpD1zXO+n7gpcE0K9CFuujf6D9FvkWcSBBmuZGlGNlVkxBi3guUNmUbMikaAhGJJl73l2XHj3roifLJbHrTBBBc6f74OhgLCvvhEYExC/dT4ElYyAsffh3+5IShQZhb/NV4BzgOP9+5beRoaqync0XII2TK6gVvj5PnpMPCgFZril88dtsGm//7UXdu2ynGHtgF2/6ZGuPvIurA4T42+9SNwdphwTbp05NejN34T7l+QiQyVRVp7gowiCusZ5VZxAuRTUzseeNN0DIj2fcE6FPlu3eIUjo/n8x4lxFV4k1229Bfy5Tx5sPSLQXQ2544nv67mixmOQ9g11zZi4XwQ5ct6AqKKo48onrO8MgOs8JNEX6/HCf+JM2crPzGr5NQFFAykSafd+P9F6FOXrhKFrhcyeRnmitKdhayhCZG9l/vSbKuVe1knMYSh9rc682PvrPTxYQkbGbfACMTSLqHxPgJ16xV1GvazZ+NlMtKIIF61TqLzn2LhWBYmCLFL4aIZMvg11WTt6aoqC2ESloZs6ZU+5MEpABHudtvPC9yiqw20oWJtr6nWz7ezaOzqXsvPD0SGRmiIF+O7TAy7OCZfqJmq2E8cQcdvXcj+HPopUX81rmQeE7REuRqV5F0Hnm7CDYFO4fIJ/SDg6ipzd9qj6mGxImfL90WJ+Qf97w2HussX/K8hBWHdK/4yf6DX6y92IkTzE1kFKKu8TVvyA921IJIcDRdpXFQLZCSqosVv+V+lXehtd2yl7y3u1RAKUdknboRk1awpzvOA8c1zo7xGqtq27HWxitualx6NRl5K7+v+QTyIh6UgFIzl57dkZWYMxygwQBHcrMqBuARHTFyHTaFqBUY6KcvekMY9VNtR7vVH0tNA9U08/oo+5IlUcnlLn/ujHwqr6NFMouspQJ1WjoeZDuan1KUArSDvudK0ZKY68/d3VmCMoIMfGvGDYqaivxgavGeaUxLOeHieuJn4Sa56WXjrA37rJsYEIejIf2bZSiTx5WCicHia9ZUEcpN+P2F9K24NeKzlccdb11vbrSuzkhdPxSzmRynjZqiUu/9payBnAQk3GS9oNU3enPCcC1AAk+JvYry8Xlepr/c+eRbN7ppE45PuzHK56gPbfPWQNRcWfA9WtwsZ/tCJTioST+fkQS2/PcMh6+KC5SXcqp0085YjmJ+WWsPjI2yPHj7KzS4GXZ9/ycWh71qFQzOZ1Udi0GIjnYOGvrYshfmJjemL2xGptkVyUnAOdtMGCyRPIwfWY5RFHZxslSj6qTE2QQvwR3r4jx5gqb13aTtzQX3f6CsjVZAShiI9oH3lhQ+G+WBKASBl086Qn/FFSGnGxaAzj+66a4/ft4bjciD3j8CkwSK+j9I4kCH5q5Metro/hUz0873lHn94IPQCFEVdOIAcgOYf+RNDeanpOvXvMp5/dd8QbnSHGSK1xKk4S2QhN3t+E8ayULgHlVkNU4bxCQ+kQErWVtJylcW/Grgm5So/HD39dc6/ATQGTrgyses6GUgg8aO1NvbdlxhaG21KuUTDfOnFFEHg7q3cmIXRAajJ0hcc9j9P6oDkLSgqiq3IRtTStjile6K0NX6ZglMr7egTsWt9RQmLmoKGk1iAr48Kt6pQgHt5LO+qz3daH8NjGbElEWGGVOgwuHCIOIl+wj5FUIB9DJGXV8v7JbUpL33LJHGpROvIfcghxEiKU3vLRsFsex4B8QF/3A2oCVZcR2cdg3Txmxf4oRinjPbxeBM4w11nnknapPfHvpw5dbUdTWlWGHkvS2JBYIcDPkswhopydM2sNSSht3sfe25HYb6WgtF0XghOEf62vx1WNQ419IkbuXzIGV1owWNnEh5Bc/wD2pZHxGP6aqXyHoqzCMLFGINJvDrQOmAPNwtBqtYC41HqQxLzNWMH5599+lpMqb47exr0P7GkOiyqDL1i7EEdTGPBMfFxP4ob+u8XoUx8H9qPaW5Im8ICMR+7nioCMIPbNaeUzanKDwnFftkHC9O8SEMoylqD6AxX4SNSNlR/tmlGztZ6TYnmXeqC6Xr2XpEg7pKdYQGLG1yUhbbJ2o+Rs8CljPgpzMbnS/kv6JkRX2nMbz+ib+/vA4S5xZ64mcPu5wWzoDWS0Qh1J21w8OOb41a9ysH0lSw0+ABKnySip18wKw5Z0APPBdB1cI5KjHoTQlZXLFnIM6nJ6k8MNpG4RwNSCK6ria9h0h9scaWfQBLPjgj1ZrrGaXiFPkIEmN2PkPC0K8/rdXPpXRTZuBE7zqONDU6/pw0BgKgltWdar9Qp8BSVLKX8aAew/7fGi9TOXyrYN75g/4zVeSfW+Xxd6wcYL6479/dGG62oNggn9UeupfqiFjEkW7Gn297h23QcmuIDeEUBUUVZASA0q21cg/oU1YxyJuneQPiB08MLuey7IN0wpJab9O9+uG7zbR8tAbIdac15MYu6YKduHoCQ+ON6AAv5kX+gjIJ5NZX9ZOqNNT3FxGEAFhrpz9AKRGAjnmblMvizxaKGuhYGACFhfWzI8xpECnFpLon1dBF6BFMzX9xqUG88wAiYHLZ32jLuEYF8Z6YtV5A/Wy8gCgehKHZOMh22RElLmUjrHG368wSsju9LIQtnS381ZBlQ6H5JQxWPdAxMurYvosnFc61SMsNVI4dnv+5EQt1ViB8tmVQriGZ1puVWatH0+8ExYsGe8IUjYbZATt9BPrbeJ868jQSqTkN1FNA3bI1L9/wdFY1rxQrnAu1D0dj0MWajP+xd5dSg57Sk8rJ23qMV+I6h2enOplFJxcN99a0p6mgfUreigXz9i2TLdqJELXovD2S5XiAxNy2aji4k00Rct+QnKP/B5MHdK7snhFPRkONH8zZFZLBl0lr+Sj4RITHFB9FmPAmSjm9XVbtEuf818Hg5YMw+vL9VWRoxrnMei8M84DzvEZ42bzmAJgmgCvLAnX1+y0+4Y9fIHSIx1uJ4ZNl8aRouxIXu0nENoQ6kFjkV+rfeM4QxSLKM5WgQ3hKObNX6MfPkJMn0yu/fGzv3a51RDb1XgtnaX8yUyxprTPij/ufGgBYyZBH2pZ16r7mlm7Ndvg0PVaa3YRszROb32yslwrIgpiIGMNjGM5fIL6maGr8sS8vtjTpD974NuqFDd2U/X1VKbT7jtSeNkJk/s9/V3I1ecsKojSUopIHblxOqo8FTHXb6uu9cjFR33+N1eRV7o/IiugMpG4a6SEHVcRzKeOkMNrF22Ikk4u2yPykvuyL1RzZ1EP7j3MuuhsO2rOM2Yo3RMa99DJnW0CwW5uVzYalxs21I/j2sLW7j8RDObO/Aj9mShmG/PK76j3In4sOqcAA3VFlh7OacXIaR4FdzaLIsDMUfeHdbwI841YdY1XCho4srU+3kDs8o0RkFI0UXnc/4fItEcLxVNRjUHnI/iDeXD2uMdRffeLE3a62nC7irLQKsttz72oNUUU/L0b2tvYKnql6s0b1kqWn4qGYo9DmRpV0fslSM0bEwf2sUDtNnq6n9xW/ffnQkdGQiP8MVgZ1CaDNmGlBuxLb7AHpmdenuMqOWyND1yuz+41+/0aV5MQCT7tzDdKlMekvl3PHjFpwBcVkL2QgqSHT/CrgYufLHVJEfJ7ia3Oz7TzSJMIra7JDCovrciV+3fnVPEmsczquPKFeOrG7f8vtriB9nYtvY0Zn7RbIqX/gzfFzbM4RS4jOeTLEvxby/26cPXMRJMcUfmGVu6P5UdFjg4zCn6SWPpbM3bd5BicNKrOGAgSpSJABf0nD7Ju+mlHozqrPGw3WfrkJvvrHRP9Pf92oBmRZK8fKH6etAj227iF8ewKcTSAD/qRrC1hqcBLQXcVlUc9VkCxKvTRTKuxo31WgoXKq1o8hfDWvNjL6UyX0qC7jthqLc6DldZzkBc2FYYrJE4H8+9WT3qmGdZFxcoKIuj8LVZhZFWsUMs8NQdNuxvWi0v62IGf1u1HYbYvlkEAM6DQbI3KwvlhZLO+h+m8D72b0kwN8gV+IS0Y/bbir5z/vOfpmTYcyYavIvagrOvlYFCLAHPMwkuD7jwGt0JEF+/BNchQLA8BSGMY8e2gmQQUMyn3vKIUZqfEUGwsSQ1IfHn1X/LnQxEwZ5kxd1SqckGOcPKSbJoEO/5NxoUZ1zGU9x1kkXBwX9CpkB9oZxNXWYWjlrsUKbphkIbFeeGObfLspPH6AC68sLRYJFffaBKhYv2GEPo8L4wDTtY7JQxd+usL8MSNMfIgU8dUNuQew8aZDYLRDTMN5nqmYUbCuHHQ/6N5Rl3dWlezNQGewZRvXM5ZoADRDoweRidVh9iQRo0Yf7XmoQauQh/XwEz3nwFyoQAH5/zkrIDW1+ELs9dXOrIjvr2oCHBrPBf0KrqTq1ysUG3FjlH1AcvhjsAvNi4RVh/gJ6brozCuh0HaWe8KMZTud350hpmphiqJbqTApjF8MzBAfERQCNmbOoR3T1YZHtf6HTs8XPHHTPkX7vOkE8kMJBZDh7ECzEVjbBhcaQfg6/awz/y1LDicm9Y7iscS5WIBa+nh2Zabw/j0QSxoBXtUX1licI55+qRKT+FLFs68scPkkd4b9wQLZj6xK7zgGutR8/2IL2NEMdWliT1pOCxtcwkdXVlgOR0n1ntQS6XwDSV1g7ddVH5EJ5g8L7K8qjwnHGkRpJqUg4uEYm3eEJn/46OL27Gcw5jnjljBK47HTcgGL0xkc0AAOXjg7brR4sm8hVnCpXVHThBAW5qmGSmoHPtT308Ksaa7Bgp0CBVkcALHqBZ+b8DV4NhgkcRh54gcaqqayYsFX1BZ1FpXIrDtYFawKHmqYvDfrvT1sxSpMoLVRn3bgonKmLT5EP9yiaL2Zkz3KzzLfbNuhS6nnNSnUXuGnOl7HXflzhj3RE4H0H4uhFLnXffBE0QK1C37U9XlZKZv701k93QkwsNg2fHJstqnHlJNZf21SMX7cBbzlogCTPyejA0LUjqCDKEE9x8z8prqSt8cMF7hlnvv+19eOwH7IHf3m1gsBQDTNSjdKMUyAZDWT+xqKvn3OiCFDN06YfY6ulO/sSKAjrpgjP6zw3KDn1PRcOXpg05+SXfOWUTS7pklcIlN+B75FgMFQJzraFoGBum+DdXW2O6rqRRQluFHeP1es/V+nik//PavgfOajhZLNIOzJCC+nid1wYquMdPnBgnjdMev5TERHyYmMJSW7d4apoZKCbLl+kXMPz1kVEFnp3FnAgMNhUdLZSg69YhRIuIXk26VxcsBl9NGu9lpdTbl72NUTsMHBexfpiWOFMnrpVh75M7XI9gQLwUNdYqf7VLhvGrBpHx9GQrfO57jNds1R/nHueHNQtMA+9DGzt3H3CCXgJWmqA2wB/dQDVkKx68zFVpRk9v7hg7Zmvlk0PrnpKC6o1VvhKD+XZCl5GdUhdI9c7NW99DXHWYW5uaQ5qL3F0cBm+zxe8JRC8eYtJLWuJr+isdhzvBBVMr71yyBGkeE/s0EVTxYgmesL/wR9aAUb4csgCksQAxt8iqulI5cUVLMBGzed74pbKL/BsEECxRWQxf0kiFlhDMeCdVA0eK1ULGZ6LyRux+aYVJGqq/Y/bfxebcb2At8QrTlauXFNW+dy1omTL4cg6MhqIWu+mAs8CpILaT++ttBKohpkb74EE66Gu33cMcDbPOZYhGYwxDxv+axtBkHQHGVhQrztxEc1Fa1m1h/ShLC2ONkjlVtbZeWulcAa+ZVnpqMRF0bIKVCybBoxVCd+i2/IVHGHLKXLpP4erF6z1DYo5XupWbX12K8AGlMr13R+y42TrKVH9ZPRnNmPJkBiJmk4xImhuIOqdo0pawQ6imKshfABQ3Vx+9VwJQ7DUd1x2HZmkAyIJ8a2O9/y0sR4kx0JwLNXKmL8I0XshBzO7p9TLWoxqjLYwpVLWvO0vlxJLEVdpNzpTGTMz7SQz4YWs7LOhQz9QHlhlcmaubwQkTyHCe2K1PAxuMqANHqm9N/a5fiub7ZZxQhO7jRT7WEpJS/B9ATBd0BG4g1qQu54ekyWKqINkHO0ZYtzlvRszwtQxOmdp1jWSHvawyI04XY8OI747W39aMVy802dK5nPX0lAwmJ/nFkIf+u5A5aLcSqCRU6qnyMmvHynxv7Uevd3BfheyCNGdQUTwREWKxroHY29LeaSTkdj5M0UGYCKm3oMBfqlDam3n1sooWUHTy+wUSiuJLRoVSp4qDGA2UIzCtlWNKsMSmIfEqKhA9PHFrcUA5t1mIHq5L7Lf01DpTBO/g4H4L72lIuYAYxDvvikWQ0xXe94yg2kFPzZyus5qJ70e9IeQkCplctBldkoPGY0WOATUW9jkO1bZuNnEb4Cn6FGdqSelaglpAYaOvVNakltQP8bkdWtHOufcljcMtQhbjSJq5yCn3/gYWiaEiBB/baIcU9eP9DXkbi2Eix0LnUQfcNzWG+EZ6BRY3kqURuY8n9xMrlACS73exGxz0SGG+ha1L8eYgOdzAzoLivM5OMN7Gn4lJaGksMemtkBl5ZkI49dk7/iqjHdhi6ZumlEyAQiM5vy+aMDXcrLA5m9g2OOt6JYXtW2Qw8hQu3R0MqTqoqeZoegBepcW+lGuZMkEtAuKmhg5hfOtLzujZQvo0i3DiQZ3DOSg7xvimOedrViEeynb0Bzy9R8THSPgoz7APe7Z7RZmiUdKR7tilitFJLbLC+RFckqb4GP/ej9sx8Rm8M1x/KbkzHZO52WgsBrdAnDuEs/7iVPOOUGwweVKX8UxOvHzN1nMzZAe3R3ko3DAnjip8vFX7YgYvvs4dj2bglJXn4yt5RnirBaHGJ7bI/ViWliep7Vsa1LYrgwT/iHn4PPqG+C+yWDwKuGIRUYwlE3KNrHmkSOhxYHm26UHnm0TIv+e7AmWv5lMu1Z6aNKlUXGXq8BMv23FYDgmVNfkM9lvEzBVXOSxU57PDAPN1hOnyLZmzweccwkiA5ZNaD9ABWS6QMNbcLKg2h8srFC7GBRBZZ1gB9Zy05HW5wb4b3dPPX6vx1J+edHPFNStk+fqS4RVvr4Ke0QSKXmd2yoXGZNyiHYFchm/n0jLS6Cb9c2Ntu1r+p6yE26ogh9B08F1ek+yRsAHEkic7JFZIwNEr8/rLSRyKigQYNVI3pdHTiIN89/kRGMFXUdi6aicRtsikFGlA13JtZR/BdHZlwoZPbqZ6poRzBieDq8HQjK3QRfUX0GJhOEkJugdEnExNC2hWdnglC8WuZZjNVpEC/zEX5oK7JLSBSlAjD5KSY0ev6WzNFnMghnPw4Z/0vCNa7ay606zohLaEBVVqU5oxebB8KY3zob1B+f7llagC7d1csjf8crG5kAZtOMCekiPT3J7PQRGa/NT8mR9ws/bX9vOyMqUZG+3E/9AJL5mTE9TAt7HCPQEcqEHv+L6B8YVI4q+2S+ASzcK5HU2gGqUA/yjdnTYACCGL4+jHrSaEjFaDqtbMidhcsq2MRLZ2Jz8t7FTRM3PKVbxJS1b2SR+o3Qo96KPNMe93Pj4Qgw/nD7KoSc2R0rfRdy1XE0BwtTV62kznP1nvJJpGCIB334O+e9oeBCfTHyNbmt8dxS9l3vCBoIVKC5dnIyfz7GY8UcjlaZXTfbpyW1Chsw/sWNqPzQiAesjAV+tEL1BZFFYsrd4ofrnX1TIG92tFBrjOaOBsWkPb0as3gkLuuUVLlSQMHOugo8WVwAqy0dhpeWyCz+ouIWRhGASc+Q7z1LoV6Cyqc57nnwPc0GpvLFihhMczBUAJkM3h0ltniryDaI7K6dsxpOlJxCGsvhpnK0RePGcp7l6BQ6bldg7v8vNeM7PFWLI272jQoT7Da6W5pv+CCAXuaMfrZ//wEz8XPFqkQTBRoaZMZRNjaQllRgn+emESqiS5Ko8GjENJE2GRVcbd7fySYpgJ/3IVBqb7sIpXzEcEEr2J9TQiR4kh7sD5rfH5jvZeh6aiX1iU/GtFAozpSd+gUVLgrg2JJkZWpteovH9Hot8JGM8n3So3tbJ13UiHEQ7df9G0D9qxQFFSoVABDxxtxbjYrRntOZ3eFqeEJ2FV84Ekpmn3OU7R93j7YC8fkwmZ8URy9edWOCn/X3kCJ8MB8jYVFDp0J/RDka9wZ2UvfVHU0uhJAscf7/B7xHZSdmwsDSU5VNLVldyak5cgY5hE7hOG5nzzmMJBMTjS20DYL15Wr4eXdhdx2EDrrntluO8JnSRaS8wnRnFZ/8IJF/Y/QuR5hpTFG58Y6yaAilwTyXKRaPTy/wIJxoXGF+sg+TttFcjnP5PYapJEx8/4gIU9QiFYWscpVv3tTkAnBoJkwhX+0IB9oO8vuO+zRFyqxW+n9mRrc13gO7kgZ/0kZ/t8TD0mHvG9OGdSrO0tdJrK7mCCHDvxoMUJT2y9dNb+Q4TfwEFt/SKTomxGmTQ9nTBVu24ibn2kyH4G4BR6nRfK417Z61UNJEpZtANwjeE4TmjAzn+hXk0KHbto1Sy4GpMLYAFRDzkAqtXJLU9Farw7zmaXq5RyFnPEZdhqW2h/RJbSmbGRAp12tSukSt3SmdOedCmuVNHQl6hvsHlwwG4+yxVnOpzO40WTvbqXH3M6f6Aral/TMdbmeNBCI9HpTqkoA4WD1UADzL7NiiOLVrcBFWqXNV2UQVPLlkpR8bu28cz1xIrq1iTOPr85wiWbw9Bsdg5JnrR8b7SbeInR20dtA2AYpG43MdjhtvKCPaoqb228KleWTECUtfH5oeRXmPw/ZyG7HPEhUsNe0bc1e0DHVBu8d8pyl+kG5giGx+S3+kFLCI9VDrTSoFnAkwqdfCvsiFgnuKpw5NlgVM/x/s/FWLadwUjSEoBTUsHyUMCdk+0ngAS3g/BNzusyFiAiYiDrClF7RTVMHEiJBuxpIHpo0m/UCTEr27QC9GX5/u7xtKsBXWtszseKE5N2jcnoqzhLeQ6bdDH9+cf3qB4GfBIUCozyMHd+nhtFROPlZfJqB+XPo3iqQcA7c5yvsg7fxMrPu6cOb9YxCczukXPUKcg4lbWZvFLEeCUYgfHPVK8ZVh/BFYyHUFuNFMXkfGqj2Byr0VZe3eplVIfRj52ckZwuuERnTUYnQ1zMXXt2IWTUSVPY9M//ijiakPUbs4FEYd7rApT3dQqTpOJH8chu+rxe6XB72DV6th1U8f7VVZC+hDKFLQ9TpoxP6tS9kL6M1Mp1lrcc8VJ69Rk8KQy6wViCmQrYlvPjqKr0WVbJ6qdlhKt3WdHyoAvCFJIq7cZ2+XrsuRftwovd6GDc/0bGwUjtrr5m25mR3QKwoWwJqU3/YJJF1abGOcWfgPwTa6ccDQRqi91yrmmodRACAdo7XKiFQhVilOW1wXtKDjYNKmUd37u6Oku7oW3ol9K4E+TMfj35uHC2QyTZSJackIjZbKlTrcFVq5w3yQxzAZ74fPM2FBSlHkc/cZzCIK8RR4QE05uwdYKwyENiWUMvoS8rH9xZWE+9/zgkhDgyVBzsXMXTbgpDO3cdfWiRN00FjL73IXcS14TZC1AqstdkW9i79z68LAPVvIwUQHTVK11fcpVnBSLzsmmWqesELTB2qaBBvPfyMzRy/IDhffz5ZJ5S/TkxLHhpQ9PgDRCsubuPWq7KTVCVybnwrKH3n+ow6S+/5ObayaTphSLDYAbZiJPWsVv93E5FxvAphm8ADpsaGJo8dFuCXKkBikVXDFJe8PKDLOAwlBsnhBoxNM87qfHkHegOuPvK9028iypW1olb4TrGDmm6tBs5NRKx80pNCTCUPczUgta+Ohh25e+AtGAX8BDjfmaDYty67II7i8WdlwSVl1MwOzmVC8K9dRqWKO9DuEdFg6KF7LQR0yjHtnQyoE6nBUBfryYrzpcC79+UvMhHKY+q3z8EO36HSaiB9McwIhQ3jWc1aed8faMNGn2ScXPWnM2pIFc6fNQa7r6uG8U38nHo52Hd14yT4iZO4EGyBLxcHJ5tQu6upM/LKa9dMRb2ZzslG+XaF7tfU6kvacZGi7wYoqzRzonCgLJBfPP4MB8oNKCdSFqI1ym7nN7Hmb9wba//VZxlcAIGyABbiyPNyfAChnVnB2omODVyBOKihMkxigdxgDbgL6d5uHIjHVwM37ubDdzG0aIcxH/6u/u9nnBWmJXMcFzALVKXBie53G6k91oVtEOMaeeJ0aRKXMYmV1ySGzZFjObOXeiOSJC7t9loCYT29zFIrs77DgZOIc7pj3pzT5YmiAJa2TsRymMs9xJifAEMfOso+oDjdNjWybqntWpLjKp8/A5j+LV4cEzTTnDWpM89x6BPiE3ebAbX+V1F1H/QLY3oAVLPnZVFJhyOk7QBkBZp5irzSTjTXbYSwmzbG1fEVNC9/TkfiP3ZAZyCKQL+mcEwDysnYf85ox62UUZv6au894cAoKT3CBCr4aohbarScHXZq0vQ0fTuh1MtO5e/FWpCx8qT6MI5RknlRMVqBIu8i1FxWn5K6nmvEUHFx/lmNroXCvh5xFFNaQDXZTpx3qxQnMLfFZkR4gqlkV7+2feG+23BCC0hrbJEm93yQcziwmLsvGwYhu+rhYp0wFw2tkyIg/Od9SKoKiQS4H7vYi+mBe9/KyG4427xgkwEDA/OcuHRHejH1wTeOF4uKBYEdNxY/kkeVi2P+s8XAoAz2XjEyxcN62WjOQW8u7ixwXVIsufmlttCdEAF0uv4+Pxfa+asbd7HkZ7M+dtJJTsiD3GB9YMguYyvRSVHNsPIWQQohg5ZAcgz+/ExDZ8wsnL57+qMFqNGD+n0vk/kD8ymDaIrtcIp0D+XlJK/WpOmtJA6DTxCkzdH5U8713J2f5AMIqePPpTFoqRzSe3yU/zo50NIB7XEPkH3s98Xm7YP3cWBBqqqRkyAeSlURS/hfUeDdcWbaLAmsO8zcG6HR7OgXdt577pM0QVXTTP1tKxdCJ7siaVVm+IwwTu80W8adm3PQyrZzvGA3QJ+ss9opIb44K39EuypJaqokVzCJx0YOS9TkwsXRE01nCnPm7nBVQrudEWqBMz6B4LMjdEwWhGvYel5dLqeCFB4t9edvjAjKl9jhV8OBAkYfVSV9qd451B8gkpLD7F/j2IFCljFLyKburgzzDl0SYoQf/Ergp+CFp3dLpVqOwFECNnCc1XPpUQVd1WGEKah8HZIDpGiLwBC24KHOmAZe0o6WBPLRJH6/qnYJ7CgfPsxcecIfbu0E4g8YLMwvkVqHHP8xX2Ocv2DVdHeq7q09lZ1volGCihQbWPh9Iwp8y/Z2t1slj/ysZHP9vciiJ09XPzecinXtbrbiu0kxHYnt8qHABbD+mjc9KEFY8nzNSGD34bUJ3m8ROitfLDUCgrG3+/yZ6D8Qa3u8aGBdX6GMZM71CxREoassgeAv+UjiCF/3YFUeUs4zFxyRIrvaka7/YwVjVoHDKbGQYAJ+zEx9/pRo/rtQ0T2896sO5h0JziR0gq1HW3WSnEXrWcUTVnte3QKlrv9ex2Wb0rR4oE5mAodnoOiP4WvhRVfqjv5eW/1Dsn+h+IdqJn7xCZrJymH1ECwfCb5abKgUiEtFdzrlmKIonhIXlyyScrVrvRGBzuk3Q+XnkPWiSEkQfFgV/5UjVvQj2HPOGvVl6xzzlbXHQI4Wl3HrHP/k/GaE3lnuSRCfiu36fxCkub9w437e1UPSsA0e+unW5nqV7OWHVGUl9FRC/uDqeoOy7fPxkAezrDEZrq39Nwblns8JYUDYStZVmRUukcDIeS9lWNvskZQuNY7oGz5Nip+CpDuXORAv7kWKG7CUwZ/6TQNfL9M2kJiZkZjbzjPQ6Aun+jfXBqG4R4KBxylNRN3GfaEJG8NeRnR2tFUQj3JhX/GSkZwd84Kjxu9VNece/NbmTi7DyFe/VhxAlW/gBhIAAhhxm9fp0P46XSxObyQy6IgrMPhQ6EyMmPFJMorf+ourL1g0D5SqQjmpE0gY0XKYhK4rHYu8hMQOmRGogMkK4Ez+VZOFaelWdb5xHCZ5cZqZdKqNoT3BTo1+azcy3vn8nEB6Y2ucjANt/whovbndgqfFuhPP8czt3I4nWeRWxvTX6M/xyCM0KBTgaNHFtSmtye4uji18SzTGapMRW2tMZQ97aOx9lPQtRYpw77C8P4usizMZ0wte0d4iCaWUl3K+aqqvnqPTxjrBFkSA7X7jp0qDkoYn2j7hxvOEWhq2NsuPPdjsIbj2Tj33D4dKXyFf8Md4KVlnHbwvf+RGhUTN1reE2nKrN1Gp/uUOXDtPnpdnFZh2aihvoGnmtK1radkaVL5m6vKE5D3jndoSwAaqj01qKG3NSl1Fcxqs0HKiKIQx4Zw6UCSr+Y5d4D3FZVkD7Mos5GR5t7HqIee9JnxTiPfpm9jP8PbeznaUUIFUDN/qajLq1P9GFahwX1tOROHNyvH37xzvPAgg8X3Da//CQ6Hx2UNki5OYqN+cck0sXVC1xBsADEEvKW0PgRyAEQyZGfp/EKI3sf7GJ4BlrZw9V9zDFXwuuxOV7HITkCJirg4wJh11mX0xVP67lBgUJr//JJKQbQ4hxleWeOhTVppw6NWMe60PgG+2r54QCUmm8UxqT2uTeVc+Exv4ReqwDez9RhnwZRpudZxvSn2U1TGbkmclzXBNL4EWTs/brziN9UZ/nuxbCIFV6XJa22pn5htALjuJPqTnibEM9Gv8W+exW8kPv0mFNJreYKHJ3hqFS9xcWq6uNlK2EqhjS/+W1OFjDX8N3nIWa+nNbMRbE13Vo5R8P0rHTtHzsTUIqbN00UDuZQKN0gdUts0hATwtPLeNdpKFwv0UrZood40mFVa6lf0W5g57HeKjZ2YhL9c+uQA5OSIPf/ZXuM1kluH8PBZMMv3VTwPwK8dDGotd64nQCxURgyDwipE54ItRBbvrnM4W/fPuoKHr+w9FLrS2cm8cc2CmwbIzHgZWR0RRoehdmli/PmYihfYKIgyy9dMzCCP8OoT66Zt2lwAeQ5cdTJynlPi1zaPBoWwNtbE4xBiwl3Bl9esyUYDOyBGJqVE74rnAYJCPBkFeXBtV/hpQLzZKQmcdUlM/JHxyYHWnG6C8RcwDGhkYJXnvM2B+5ZnxkhbGuBHCIMV7Nut86m3T6iLuJUfwQTAXPRFwnINjMAjCeYoFVlouhcf/bKBjvC26ib3bdZaWZgCZPmm7TU29O09YIjAZjQ48iwLKbKmy+6W0JT64E+vsGM3XAEPF7KdDu3dtO3QiN6v9LFqJCMrbc0zhXADUkC0czf74GVJGtLdyksMQCgckjjTnWVqLlSzdBnSLor5Tk+IaUP4e44hMB8QfLklWZ3Ge6BwL9kN5LOEFF3Ljds8zPKkWF3iBeopVkOneFqFgZwuPUaUo+ocq4D/oPbYXpoJMTwmm1Z3A/7wwV8um6JUf5CG/wusJebrXHcF/rq9Mdbm820Ljq2oPvWNMr6yGkqwNob3YB1mOTBkWTxrq6rCOEl3mTuIsIKOXrrqvyCNQVeuEWh37/qrygFV/1Q/UEAJtLoMhahPwCJ/fQTn/ehhnbbdFKxKcQgDVqUohsjmTg7oAZ1NATzgWIrQnNBKJcZfvt+cEHR+kzNmwylKY6UoDMiyfFFM39fqJTDSLYfzrcwYZPGQUY9DxsZjJ+evVuCuwLDKIKka17ZVCwchSxd1yLcCKMErgfkGS5q+AF19C8IpGoxWQrUvD1Ia5nxt1fkTELzTBYu1JEpXbHSSANTZn5Tk0BVCB9FL2m6RB8y/+FE98btows4aUye6FH8WTnK3GdpdzPBXsTe6R5OuKJHpiONNWyGTrRIHbOD0bOx1VgTEFnOsidABDCSxT1EeTTdGENcwTbnuUO1hJJ6f36oMC/6ICTEzIXsoJ2FYBb44nuOX/yPCJGuFoXg+hIeo4TqknXhYczu5EIkcnlPJf3Gmdzh4v+y+n7R6xbYOZQnsH0WbKNDzS0AIzPatRH5QaiBXk2h03HEwgRaaQHboRF/KTjyiQ1R61nKTSSd2yye7KoSCtwts/jR9/YhkFwxz29VyFjMY8X60sS/0Xeu/FS6N4xr655zJMuvQaaf/eXKCQT54OLLLMktRBqlho2Ycjw94VCVcxWIWjIn7FwbHgTR0iO+EH5SChV4fm80fGW5UXDGiqpMGhUCvJNhLad0pSv8CZjRuq5iQjcdduNDkEHqKLy19uhtLrUMXJjuNl1IqbAnwZZerYsMxe/sLK7cjo20z3nJrhK+eFZreuY2Tc7pFTOTR7LikHRA0m8KxQxCqdUgf7BsD9qRWnXuJ8QSWQqShKUAjTRAqbPxFvm5E786ZF7rM+po2nryskG4nk5VclZ7N26zJX+AVeqnax4kTmmtmyP7i82tpoS2S11JkeCPeaeUygR/sm8XVXWQc0mzwB41U+XY2hGN6P/sLeyeKNMNNTWoBXiUdurqLDvGPVQGHTPqCmrUTaWinodP8t1t8F/E8c/AMxeRUb5ZfqJKYOXwaLWsgzopsi1mLnhDJCB6GNy0hv39uAlM9efD3xseNfjjccw6no2pJ7ffdpE/2FbDvzLpu7lyguh1tMvi51eMdYxAxsRAQvdhA8JmNWKIOjAPKRDNAlR8BkTCBBrEuZbpGXvN/l4x9JEfNSS0YzyP72tsjdfLrgO6tLAlNIASljw5R3S3CZPre8PzguYX2LXQzleLB8302HLUuX5PAz6aOtkL2lU0uo+Sic0El8785p7aOVU9MvFF+7tdc8qL6TqWIJuI1xDEcSr11QVt+2Aw/oKtKUAEtmCJEXu5jLvuvQYQOLK6yk49STLWUS4QzLxnIKgG/7sVQdoVVwQJGUOVVa7XVBJsH7zM0fjaklNOQ9Ry26G1kKvzB3ChmdZgxFPZNlR1cftjooF8bNzCJGmOvXMO1JunQYLOAsLJ5zGNNT6G5qjyd8kcx4GnA13g6MsyuFLI46JOuNFjQOkQ+XbQZNcB2BmizHXTniEo0NJnyNd1USBsJzlbz0ANz6adF/XrrgHa0Y/AAa/qYAHR26SJ3q4QGc/c0zU1D8NRGl1o/ZnP8Lq/S0xpjb6zZxmrZYqUI15yI0fnnFdWySyruZ3eklDltyKRYyDuEegaqvFPwvBomAgeK2ZIbtvfQDchzUR/7Up1rIx5oG+Onuz8T/S5I35EVgKBljzMEZoVjHJXKCLDmcVMBXepeFx6j65L6W1bw4v5utnXMZdPqbbUDiOJvfdG8Cx0+Wo2mri0o1tABR9qhBRCBNL214bIYoPGsakhzRbXZb+CMeKNv+Cz1biXl8WiNe9bmJwG9T2PH+oAwkTa/C6b0ZofUT/ZqVED6zfLagIFgDE+/DTseaHurlksOSSVvAsxK4eSpUYA9wmoB5DfYfKOYQncEyOVF46kbB+bqOlAMEWkmXoaWUSyrlbOfF5aZEGzt7tm1iC4MJJlbkftuGXSDPcLCm1b4oAeDydd6vLGcEtDUiVAftSOadRZ1QwHgLN23uWTXc6Uj7bdpyWP3qkxbhOsjk4N6U/0rOxbJK1w9aSJoMVw1oDL+vZIyMlGaNFLOvVQMbk+swxWXKmM3XuHdqbEjWcurU5woVErBqwr6ZSNTST0I5DzTZ7Is7DOlSGNljCoaC92nNQ94ttVUSxe35LLn6XsFrgWA0g0R4We+ig/ocpvDzXEHAeujl6d1rbxGTZPDI551yj2IcKqjCf617yTYPUHnqdPwPoI5WOxScKTw5rZnTIiMRUqIJyvZSM2PcuEpo9OMZOvCTgC5w2XwaUyfOmBDNMQC/mxk7CjfpGWRjNFZsDb2mIzoalBemzcfP5ltWOTXBnrzNq1VCY+aVkP5NVlWJaxXVKYUbH/S2t0UrpVCj6tb8x77ITii/HLidswnCbr51TBJYGg2HPLNbcTQlAKd958KAjfLF2p/adQpxxAtoui/bKjPmiyP34AW0IRki+Hgbb07vteh5gcnZu4PKyOTO1K8erq8H6QUVPK04XqBPj64VDvfIFouPqylE3vwRdEt0boichpjtPqXxSoytrgGeyO0YQxJuamBMGgRjk48hslm6oJHqulO8w594KGwPSfUaC4E9tbNjviBH5+FHByKTSLPgyzJ9XQ5cGRy1MP0fx38Cvy0Q/UR0s21479KIdgLJYYD8qanzViYdAJ+lsaUTLEuYMp6UvOT8x6odRiOmbT1AZECoqfikXQienC4u3ghlEEFFu8iDdTbuBkIS9ApDeerFOi9oU0ew3d9ogSUtPabhSX7b3h0PtlBM7PffCb0mYi0ALKofKvTO1odMzxuk4/o1DF3csbPPi8Oq3fVwQsyzC/Z3UwdiD1kWDAGtaCIdpSVKwpdYX2Jx9HRiBB4y8bh479o4zg6PpT6exS8lX8iYrQ/q1UPsoe7kTSN+MSiar85UXBTTAX/M9ZYdXWitmZX/M04MM6j8S7mbzRLoiwvDnLnW/srCnlTBvXsWB897Dt32/EHIx8KiBKtlXqscQ/iytqkg2+1DcZ/cEgAMBlFp8GEA0UFiZIOWT4hF3E0ILdXL9oawfvr0k5kmXbgJAoGscpeYxcbygQNL2oUzkBz5fzJKO4ga0X7KkmAoKE3lcK0OgRpqXQyRfF5iODrxmCAigR/N3/dBqyUKKkfUNbTCQj/SYZ/5RjV4OsBLR6PIFSmREX2mbP+qG4DI9o9DCSoXY4BgnoaCJrvruidrS/Jifn/ko+iuuthWgEk3mn4NZTShc2rycGbUy6KRGIpXHoKLV/D5NVJ8KlnIwDXKpKobqppuHqCaHLpDBfhRX3TkqgmcP/AX1lJF3iaifWWOqi9TJDo50WoUWHCmxVih0z0g/sNO1y24O6Zdi8Ru5lX68K8VtkrRC5DcGlco8UGxUbTjY070GG97c26ML55eepLVQz8IH+RH9VnxKlTUfssSfMfrIeNNRimzgE2mqRYtV7Vp7y2k6f8zm4i9i+5oOlnsrJdPdHvMf9ei3tlE/N7gxmyUZUJknWN4rRo+mXWVw5lt84OzjCK121UOkfYCbF94EMpqUEK92S1+wJNQhZkB9riY3XQ+d+TcG9s2zWPvUt+B0PdN2KAa5NGqIFkwlcNSvdPwL9ws5vGNqQzDsmjlN9zYdlV1e34SgLgMAEzCBEuimuEYX4w5i0rMScgXfJG3EIAONKvkonjhaw6mf4e5NCtj+yqXajKWKhSAKYvvH4qEJ6SscdLGvIumvOl70fonzDLzLEBlaZkRvrsl5BeOW8KLCcoH4W1vS6op1jmpslgI1tY1EzXTIDi06MzfVKUo1LmP0WHpVLip3xgeFL7bjd3ZUhUVBnNlThB1RO2OUFE9Ub9lJR/FsNSV+6cVq/99Ex54R0qxcc/YY1pltpmFnMw6Or++kDCxzPT/c1JOqLXIVif5n2nfO3vWTf81lN54Q+Y/Gp0lkgJ/tyCU3v38eY7ewPNUB6HFxQTZIsQT9RvhN7pXptXsGJ4WUyz8kcpHFomumoy9KMwbyRnGtTW7VoGnNuB8iiRxei+a1HBW5s9tBJAC0D2DN6H51yDl1hKZ7YMaxspMHDFwwyrIZ7YIwJuALHzIRt3ot5pBcTsAirl5OGro7Dyq+5cuSA4PGbLnEsRe0PUnwFQ8vyecMK4RbTWYYI13e/KmsKbXCCa0hupF9RT5GNq/UZC/r5w8vfBR5/oZnt5M0SgycEnC463/WGWUeTKzgLIbSBXq5oL5gs4C9aF8vZSp4R0pQXtxSGSeVMwU2lqphni9HlXkM54ejmvBPEindR7uDKYfLjQFwggM2tk5h2ApvLQ0v9mfFTF2vwBFXti/R24C3IpouviIDhdiETjMkjqDWo2w00fyG1Sj1wMBBjrk+JxuanMeuv5dejem9Pm3IDocKG3zwytQBucuuYmKfa6L/oDPv9ucMzjMPJe/XKGdAdSe0IXH5nDHDRgyifVYF88XtgpjIDD2GAzCaCH0cVPAhiU7NJIRTFZejCBnuJEc5AHaOXHoaAytd8Lskyh1L/s4TfMrwu3HJlhjXFH7b+T2PAAVx7htQeBXbKKpW5qsbYIzQR6S3xtslU6zrbZyOAQk4Ix4wxjGpCMZcJX7RJepVD+PBCMqI+3cvdJbc3VpsqznJ/POBwEmC6pY9NZ7ZxQAWNdtkAbFhoe2iGBoHuNBEKpW2c1lU2hyyW2WCsPTL6JXuiqFG51Bf56aiYuoYbnG9KqXfitSCYfi3GJD7czkPYaRwMptaNvxcuTvfDvQ/1yTQQFals42q6ciTXvSngkOStm4DfmzRCg8EC8gANoNb5PQFH+uqoMnSj5qiuEiKd4QitHUANFuSYZaC3oo35DScCfTDcUg5VeCgrX1NdWCIPuwZQu2j2wEXr5IYAwOtRLCsAzNaOh0xmIsveYsCSfMckjBqtU9drwIEnNHJdgRgfHPhXAM4JTsmzpTTCenNQO02/JGHjxO1eJPVKbQaPbBeeVdTeihG4nzEavC0l+OlHRoVR21xwQbatbB/kcZHh2E0TCCEBCxlL54YpoRt3yAjX1Y0xVLe7U1GUeSVgIlaTT+W7iqIp6Em6p01ZeG4qi2GuOdoI4inr2kU76RrZk/jmEs28AzwjYTJ6xV+mbCuI99Zw2wMrhTFUui2YdUgTktL6kdCgglwKNKEHIDa8rakSnM4PRdWZr/I7yLJOgW+yfyExgRZBlvfSAWQWBncew8F5Ce8YLTwQFnnKm2bGLI5hXRYa3tFNyahfGpNfwf066wIG4EvCy8ntHsKMDLs8goEAPBmrpdR3ZAIQ6PCseL+bpGz9rRt06fwtHGOgAQC3LkFKirn9TI5BmhrIIhfz34qwvuUZIUTYK0N48993hgyIJy78NGfz+ZmpLmqrpQ5cyXfTZFIXjMcEpUptGuPfYktqqvM+RZmMvXom+UHeDmJsKl0DbSk6KeG09+U/94OOTvTzErRPTsSqoI9hsFocCf3M9wCLUsW7RUnBmRMxNct7d6RXogA5k/i/5g9QM2FdkF/KD3jd30uBaBoe/+nOuEDqfDCjJiE6TW7ntQzRv79JPWOo62uZCx373FuY4esAgjTcieFtBG5rXlYyFlfFIc/Ug0IsZpoN84FL4v9uVLHXUnxwQT+PnIB35yUtz11kZCFKXlSxIp8s9AwBPkDFTeWTIRgCLUPfJq5PaKics3R1G4Kac7Z80nj/msZu063H03wuzbOO4SAMx4FvsA3henpSWX51btTHkT8nrv7kgSGuGP7zHeBMO5tfld7Fzmw3zGHeqr9OJ4ovC57FDqLeOyfb6wZeHFixNwez4NPeVn+diFtV/G1f7gSU3CGmVC9AYTIfHhXkVw11MO26qXamEnL84skwYBPbpErdlC7pSOcOCltTAKvDwnLj/QIcS3zbvUNf/u7vD+ZtCSuCIlmkFOPai49rWfygX7MVLdVJIZG9Xd4ErrUIkRX4UOm8C99aTTNUt9Rg+X1DJ6H3oMD7/r06YN21aTJIWLeIhuQP9V6OuLcK0URyMCemDq6Yt3YQCmNNJhAq3loYSQQ+pkiKr5mVFLAYRtLMO9QxQV7y7kqfGf6HisTHhXT0B3wTkT3blpXfBxyYN2pwj4STuJB4dyJkYkrP/YOSpxiwhpKO3VNKx/rh80lqlkeEKuyoJqQoI+CGMJi+b4c0j9KhJvlhNnU8/Q8lLngsgc7WiOVMfr+/tgbVN0jegv9um8opZAs/tRT++9ALzqO4m1h5lETSs5MWaCwmld6Gge0LjiFc2FCzNnKkWGNW7zls1egK1UMKyhcCvG7D6cHKIW5A6M/F89RrQXmPUfitI2Mwte8vwMbI9n81NHnsXgbyhtr8Vavb+dONWrcoeLVJb2+rqt0nkBkxaQ+Wh4uLEBHvY/OXVfnoM4DyDpgjzlzQ/lAMVBr8tFuIP4YJaT5C1VqjRVHrahtja4CveqJ3s4X1xGUnRtOAQ3PpMisu3rA7YiZlTkgrDnjCQDP2PqaqpHKa3N1fPtzrNynYbVr+WNN7+7se/3LTYf/YJa5CWxnjqsZcM7Szi16iCV+d9FdGa5kLmNqKzqh5ndSmg3wj55NCRZ7TaLa5WAL0X9FJ35TsVnvZMT9tlR5MTW5/06qbNgpIbcqGhe5kIbW3PVm2iASptZBwiHPZgOZUi0LnWJQd1XEZ+OwKVtIFlJ5FOsLLdJmEKWrZ35b4zY8jBMk8nCNoy9Nac969NO73rsLGF9x9uQk3BIhnvS3d2wQG9vpx3ge6aKaF4sWJhMgG0hUXZHLKvH6clLTDxB3Fzo6lJ1eEtMgkxMIlyPy8b4YJW4GjuOs826ZeTpART+wo+AsfeH+d1OxE7B/WgIz/CjhYXjswZnNotHbGAdGjz+6H0lfSVmLHhgC5rjoESKe0Qw532rDhOBRJgORezhxM4ysZlIumyCNa1elxYl3BOJCjGOzhT2N7kCGrP3GLLq0xaX9wvLsoSX3aUCk8b0x0ymNgrBt+JnY37cXdR8fMkclEtHF+Cm4jix85Wey6029IQEEmQpqKj6iPbEI97GAaiujCq9bYZpBgwmtNVbaziFAu8NOSnOwsf4QJzKcTzVQInH51apWOHfvPrMHsqhiM/aFneqJcDTl00Y8d9APuM2l6iFSSznzJ4GdouvTHXv2uEi4vveWxfh1cPEmZ1Rc/ceHDxq8/eS6VRN5sA2WWtD386wUBhJeTJmr/Nr2vlJ1pBWcZ7WYAHpDO+kYKOign2x0v6QIacMj0Fz+wsBHYYSSENrpuwMx00UjGpP/uPEGbaMV7hc0rFCT8SKFRDry8AQGTetVrKjQrrrW9nrJjwRZZ1xjiXyB09cGYBVN+yHeLtCYD1DfkMYMHt1GjFkNPslhS+BxrxYC89/rKysvRyBPDDR4TYX/lw7PqL+jTY5Sc6h5pF+fr7xtf5l6lQj0Qr5CaIeuvXOY1lBGmfQyAf//M2cxmjfcdqqSCWoWAlJCLrXS1hSqXk6r+qGy9ITs6wtHbnhf9iS5MKMXcDF82cgOK5obyTAoyeni31DfrNXF+Roz2uShGuVlP3qtXD1DBdNuoCijSmD2eNPMymQW79v3DG5TLl2/uetXYuNULQ6kv7lzKhQ2ZnOrlO0Rcp+iqH1JdQb8HSMtf/N43myKs7aodWDTZGH1FCJ1h6oUwhQT8LAEcA+1zCV4Bi1R2rnG9htKM4dBk6y+yMMXgAoMpf4sLe+ZNzEXAw8mKlHWlbulBNGl1zLbu2/kRQujWuJAgImb4eKXdsj7ruM+sop9a+CoBRChsU5CJ7nIQ5sqkhJ1QUozo9WBDUBn268ZzQcPEhrHuHdmoL0uFKuhH00tz1YoRFM4ozC+twkpToGSCfPXeVsKpqc/TUM5NFmoe3oSSp+hsPKB1YUg7pe9d47gFFb0nb1hQafVxg6Lo4m3AtGcyjmsYswFQ9pvffhDEG4Pptj50M2IM6kOHoQbUOmOCb9zXDJX9H/OQIMiWBilLixEcXLc9CknyYWyJY2lfulT6/b2qC6MbDnbcqv47FTS5/ZrVIcptEu+Drr2JViz1bDWKGrEBURVFQIx4TPDOZ/+hpd6B4Lqygdvms1jKZinbaTboBGcQ1Q+bChQtxfqktRHs7AS5kB9U5/mPaZhjicVnmFLY+5JEI0sAJ4EDBvIV/f8PfT1CQFf8w4bRenk3dsGpkf6NM7XdmAxh/L7ZQfaztvYGMbKryfDJpYxKCWABumEZzfJOLbdrF5m+tJMkXVZzwcBySyDZNWcrAf3NZz6j0HCk5iTHIes62G1ukuu0lloIZbdQysW5055qL8Zj5wCpHOsYiUfcc2GsRgXynNc30nIUNH+T/EpmNoeYnFTHroTV4CAAQOoxUEUwGK1CpAYLn+6r21p9I6MRJ7PEQD+pe8bxU8FnQaTgppegQoX8419Eo3uCTOSXSDV+vC3cb8PAHTwSs0neg9SnX66I7ZwmLz+72HSodj7xTGte6N/MCU3jl+sVXr2sOZ1a2IwA7mSpXyrAsMbHft4yb0eCl34TRsWFUbvXCkGaNZAPR3jzp5edlX/x+TUNe+RBc/6LcQWZoHXUB/TBQz4qwdyK+LDTg1wIMOJpjsCwNEtKmwp1uwIENb09PVS1BFqj+aLcIT4A5C7L2W+wSBNF8ElUXqomCJHKtK6K2Y+H/3BnkZxMvZCT+35Bl4gql3AjTWq1ERlkI2nIP7Ni3aM4aWEm05T86SopsFSecUYFq0X+I2JQwiME0M6e3bGqvWQ6V1hLUZBdFAnXFkOfpHp2d9v3XR0tp4CIlVrkGZRYP00UwotHDjsDkHdF2OQs1qwvuq5iPvHVRypzOZwVO0qWWX+AJD3GkqpYvJVmKOQWoDvyuaYfjvR4cSavEc9WvSGICblwhbN/p+TlexpRE5BEXHJXk4nGtpUzKIKQ1GMTalcpf3Zmk8bYRQtnGCXC/mvcqknY7xE7PRcYvhbU6bhT/9CapvMlQq13cs153U1WINxZJtrVc7jDQMGpGe0RlhlH2A957lm/m6jOS/pEChzS08Z2ErLICb5utMbSrbLdmkVm0DaPf6txlu55VxoL9A6aCDn8AJN2iupFV50Ps3XXK3gIT/cnsE5D8xLKw4G6h+S0BLNGbVO+6voFHRbOowIEZRh9f/NdPzhfeviEtR7JdWHXnVO4XV2BVJ7o3ZUO6NnCEHiStpqhD1EhaEACFjMB6DkwSJZGqCfrPuspseMGgN57LYepK9iOpnXmc5J+wWnYbKW57uCBynofFxvCQZctttqBJi7KbwJGxNG5pnyS4JK5oSOWxYFoMzBTfspqx1d5oiVrUtCioHboDvbo3sfg8IaH0ac2xaZjptdxpR82B70QdVTEDlXywzHqOtRuOaUm9dmEqyLP+sR62YApNe9MOK/k26V/zjUBDg/3gA8MAG6BWZ2Yh6Ufh0UTy/pZo0exHwjqdTsVW+FDR229DrvFdSpnbLr/ccrYAi2Ak6qzaqtCKWzEqVrg/h+xSNM9ulth3uSIxsLleocmdRUBVFGz6uPucmaw+YysHUMHgz/z9fuVqm9XHW10Ie+hJ8Rr7x2YSsuQ7sxJ79lM/ur6Vg6RxInzYGkGkiPmDFHVb72F3SGkFRyYNL9i24trM2Vgc1Ix45FwVbTkg8UeKmtoY0FB4tefqx9jj2OAw204/jjW8Z1jlntDI8sFOT1Wm08WLGgck6cmHoFTHmjuzztKK/gqsOreXAneRdweVbHFTN7GPIhjtlmSelgz+jqrmBC93l5BSDADC9zjTLOOseR/gc/jjYD61UgWy7CkjF28VJnrAXjiFq0n/V70rJOtPX689S4BetMooLlsUfjW6duKXJJgRBQ9U4p+T6Htfk8r+LYB9PrWw1I6aQXec17nDV7S5F4cP49SSrQZ0cCaSpDb1Oqk3Iqs/VSp5Q2O7iCKvO73PjNh0PprnWqRSbULLu0o3i2T3EaDyMyMJTgzo3/tisuv/+UzUb3O+JMCSP0r40URA9ogQ2C9vNkJ4sAaSpr80Hi3dWqoFA4uH/Fm9Jubyqf9chvoOGa0TRNfDIhfVWI6k62VCzIFAfwZDWJ+beTlR5wLL/rx+U3IiEhUUXYFI1KQ511aWQfBLdlV57TVhIi3KcJaX85qRiPpK8VS2kpb3n2dH/2f57Zp9EJLSBXjwZVyZ2kkJyvGQPW3RQCA9pO9IUkwDQp0nucTt+mYhHzmXrY31uoNqkLxAU6WGQ81MizRhp84AUaHyt9Y3SM6afzDr2s7MDOmvzGqXXROSyqMdXWTiLYcqJv1xbKEkqB0yD5cyUw7zJcGwdSWWPJ5wpVjBRc1sHlZE1QOfc5g6wbrM3ZLwuJDP4veQvbA0Lp6/obBBRLdpPj14STKgnevaNYMF7Vb2nNvU2Dw8Fk89GUv6IPXIu4h9KdfJ22cJDMJcOWYoH0o09lyXvKPSykkmftzZUlSNf7hEgptv2/vYjBqWU2I3vubbrFHYVcOt6GJiQSRBqCSKdygrb2xngYHvRN1UMoE9WKc4ON8Z6WkrcD4Yv6eHcQASYETBJBUTCdEO1bKqafrGS7iMyTskppSrOU7lLXNsXWFgG3Wu3H3BBryCA9oxUyXSCerimuMhZLZaW/wqStB3TRXV894a2c/hjRjxXtmtAdaeEy66MDhiZdMQ7TI4QR8OxKupecV5LJJPapc+V2NcaG3Q02QgFvwuHVa1gwkb+j4vrHkenwfphdOnIH2YJZdczwuShDWmbeyI7pfLFsXJzpSxQJh6JEL6Go2/MR5k8bgoP+wJ4n0oBOKW6wNqGAdd7Iu+yKyxSzhq0hcQsC7kQZAsjW9JDhlvP5vpCPN4OqfSImrvN7vMnE5R4R+TBU5kdNAamacajp7h8XArUrN8+KFhtVLodhdGN/FBIUgPiIH2tx6oMpJ567HDTey1UPCKyenFcXJAYbHChXhQoPQFdBewgCY1zJ9Xz3g5LDnYfEVbM9lId9TIzREC2kprG4eARx8aGTfOoiYKGPz4ArKn9jiYpJKbtZeYSFGXwLguc9f2JYG0yJ2QRmJqFEknPNzlvAaU/u3rY30IoQjqjsVOa2hKOytsaaUQXG0lzxt2ZkWaCGBNTg9vpqbNWfQDv7pLOMqKbmHk6V+1FWrHXxKBQ4PRreHziejj/Rh8w8fHEMPmBf4UtUU1WXaBRxoVUOBn1/vjGLbgYTLEiAP/y1CjOlILI3lIldR0Q4c4jZTWwyZOqj7ZX+2iWE3YV2S+iQuFgwFFyUBthFlyOHTC5W2WyVGpimeECnH7hOtcxqauoietzbfc1+3fudgGuWv5qaFI4vNw0+PDukYOt7OqbgxC7Ts10Z53lusnW2saCmDK7g3zgItS6tNmaTk52bcEyjKbW6xtMW2A6OHhJFS0iCjfoAvbZJ7g0jKHm2o3jdcwH+XrGun8mUeuonfMNkcdyvgQVHfYm7ZacEdCL2zB89Rq9omleZ/lfaw2d2p5TkW11pRrdLEUwjoUiZ66AvQ+flN8LXRP4nb4A17HwW95xEsJo1GgxgZYmNicm0AwZE56oGCbZYm6NQQT3dEyDMCY8Lgt42n1cjCz9iHKZTXmyyTDeV2GIWWe+OezlwK7GUy+oD8ABWxlIG/7vtT5V8+PljWXXT3wGyQad1xByIf+pj3dhk+SSpoZ6+lJtAgTKdn5CdVnH1HLhamkDCf4Twtr1SoHvkQBuYXiZz4CAgQRh+fe6xiSxD/h36bI+Ot9yAyIAvreqBLBA4lfUMy6dXiGvsi6C7QgVAMgyet7rgkXE6r+fRRPBj8mkKb9XO6EXau8j3BMTul1hr/Wq8EGSJHwRBjdjxqD8z/jA13s4FAWn6I6USv7lH5lVowBGYONYaxjTkKFNpocpYNsZL7ByVUwEIRNtClnHDfbeonhVRU2NNPTcuc39R//p0GGKLvQMb7i/NuryCJDJlTstIRZBPef2+F1Ync1RD2EKBtdKo4DIuL+1mbtwStFSrhy+EnGdPgSrTe/WDdSGv/BKV3Gy7/Ihj/qk1eHf/Su2BAnVQQ6eA4ZCocSx9M2KrVVYasYzUPV1loRR/kdz83eCxzpGJPzbNWPLXJd9zScdDhkqWyCuQENmgA+6w9LQJt6Gq5uexepALZAcnXl9BhkWyxPxwnT3wwmWAz5sQrHFZhCj14K22dbh6wqseVSZigi5PzXaZQQ4h/hHYqcnQxsh1ppaVuuOBN7HUp9snyGUgLkuqcU3MI99Wp56rKn+RopizEZmdMVMSc8lGsSCIiCX5Oyxj1oND62XxdNHi741IpBmVDct9RdJtB9zdiRGNKsrYp7mQ6e7kOnbtsNnEPMI0+D6IW33mJIza9MIef6EaCwxEPaU2N/5qeZTyGW/nP5Ce2ckiMxX0RUkxZl3NOEPpMYUm4CRxNDkCJbUPfpT7Se1BD++Jn3hjq9xoUlbA/IBeCqKWoto8mXU/9hV0ftbei2fFxB133QvdDoGdGNZY2TduDh58mErAaBCDdcX02038bnrdnP4C1Plr9MnUN0oNoMFitqqVBP34c+M6HzNacWXxWIv8/mMzf1sLNHnLeG8KCnUbdgmpyIQWwfEbuLM/H6Q7y4CbTipy0gfuZMAzVoD5NSVqvaiBGkSfdmexuVDBih6OkFXNMBOvKj40HQS/qs1AsQAA8bMGxB+gO1i7cUq39WcjNDNXgKAJrqFZ3rLvZ1LOED9rhDGtU9+MUbbuOETOkBCbp/qvLyHFFstL3Xlpw3IB1u2MxF07JsgLoztgNaaJu3GmZePtZrIslXjinP4rIcWt2txPvbcWNryv0pZAlPC822zGNCTCSku3omKxoPu8coNhNiTpcZpKIwKNGIYDvxB20vj0S7yXvM3qVzcxLE/OfaUcxngU2xgpPQccIYip32wlc/x64quSWqoMwi3OylkKmmnXNWdIFaWgPAotqqr5Uf1xzthqJURevIuuxt7GOBeF4I7OauMGsqm03QG3tLlEHZMQNUdCdRymy3E3vGTWUx/zN+41ZEVMxrTF1bD7bnD/kK8QxYOuRI0tqZDWlaP5WLQFu3v+Rov2o9MWXNm30xr4zPb2QlftJx34xPO5l75DDUSHpEKjajw0sBYdSgqgaM23ZhnOCxWlGs+Tp5tSMVx3XsjvKg+ikvtVTNyBLvyYSK8ntVWx5QOfKvoei/R2RsTRXf4gq5Igeo/bR7f5kMwhIrqElJgvQ7EZqThskHCXc9aEKEdP32toqNHVtoe8F1ztw8qvRzqMrzun8rICYy/VALVwRXb6A+XRa3Cj40+S8+m6vdfmuT07zk3bdDwh8Dc2jufcl3msWr938IzWebWl/FdFP++y8xmSOYd3bKvSI/OBf7gBTcfySWSPAlOSRd+vbXg/IE3j3Pq9xCbLl4L/YM76ch6aaUPwfrruZmbIIwCNv+1HrMHWMxZ0chBBL3jTp9aWZysk05OnMMes8LK4uy2jdmR9CSrTLpn0b3Y5txWZyOAQcemw8zfiLNSoWgrpXnyxJifsc5Wkj7Hir1U+b8LYvi3cPwrZGBpwFowOHrjQOOV3r+V1iewpy7b9IZe1u8R/D82mhnY6eplVXAn5TIBfUCJKBhtZPOQl0s3RwHwQFoxh3C+Pcp0i9U/2uYqPvnW6QKkStAJtZoRPc6YUCw8Lzr6sFjK0+2HXyyljmI5nfAQg8c1l9qJ5xpUoHmf1ZEeSc44ZC9dlceDdIgaMQqx4E6rDQiKcdv3qqTSEoNmf6FHE++i3W6OdtJ3wxsHXRQi7cT5mlmTBkop3dR5YlytLjEPPL0UmvJVjZKCFBycuCOa02HVrwb593T+LZ60ca9oaBX8DgnjraDmIhqluggyW8sHZX1GoQwTslNfW5RI/XwS8VHmpwzJdfdigD9ZgjlRSi4b+oMvdZgD6V/77gJ0nwigIut62/lbDaBjiNNsukjnNcEY2rXHvSsqDfoPab6nBKYkMKkC9CpLQdQRGf2VmnKhhGC6EJMg6/S9eXnoL+qsH/txAYBxxxiuBOxgf9jZ5B4V6TeNPI1SSoALa+uvp6JCJ+YtrmXKUV5X1dOfcgBQDDDD8vV5gK3VyUg2/tpBtLB5sOmomuTmYNrhX5Ppx+9EBBnrOOWQ+Q4tN1tNsL+5L3Uzm6o5DBwQ0GL5NOr+VtbgMB24k4QUXMmjhtGQ2QLDAXHVzDb7xZknKC0rx6fu15TrVZo9/9G1C26OCYJxyh5Ighg7d3RqDHwTdUG88ecNvWyLBxxto5lOHp+Bb/x54t4EtwJ5RNjJsak14CsgFwnOCMHlyJQZDhvbp6A9d30G5vp8giFJCdRLPjHNURMENdVoAW6yGBOZvmMXR/LKQxkXm5Fz6A8vbYteYpoxi1osh4+bnHOENXLQ1MP4Jf0m3uiMZoCfQRiAc5E///JhHNRcMBAomSneR4XgIOSSWFO9Ch8jf4u3WMFfkUQM5DHwHy2K4cER34K8PAl3CBkRFg6vVEvl152+2/SuSkZzziESjJ68ByY7xX3og+DIYUsPZAeOnbJVtRIPDRyuPjVjBCDWZm7FqDN8ew8aP/MJH2QGBdJdluc5k3Y7ANty24cO14EBHkWasOFM7/e/9PQ/eu/eitd9bKCWYPBI9uBQYKijymzlpveiUBMeeK5wV2ChmaouehKZQhgytl1iAz+ZqkslJhLaTpbg7LMR/zNmR+qeM3tqyF7wthH7p4lHjYNFQeo1ey1RiSbZ6C/NiTgAYaoX0M2B/k7BqMTaBI9qiCZws0/W8ECFcIm2PIKuKZBH6p1CH1pJiIPYdCDn9HoJomxrk1sPQRfnzZgyGNxQUjBV9SXLU0EpN/+fbFhYW/KWzDlXR0atEQCeNKZ6ZPAElRSg2zNKjO0tR7oiyaTQhUmjkG0424CpCb8673eOedQqkztbEYR7Kj1D0uDjT/86M+AMlFz5tf4elXxkTKSkTthjnSgOnY7XAef+wl2djnR3gVQZN7hDDz0UydCJmTr2bvJn7u7SaLqWleSBK/ssZCT3IlYmP4SGMbaeGH5yuUlFCJe0b2GGk+YFcA/ojRFsSfjxlpSFpEAfEjwvub4ZPiUQaOWDi/Fi5DwMuOSnVf4Y09JBm9gKDFl4okJkXmaljEL6QOY2Tc8ZNMW0ANto7HI5hQuCsyTnAPqUwp9LBXjpWAH7O3DdiaN6lQAa0FQ2p3J5tKNuSde8gbxdaIJfUNEKJdg7GEPX7LODBJ68qwQyrYuL05XetbbKQ8zOnggYowjLVit0KQXvScMZLecjigN1U1p5/QnefPvOjGQZt2pYywEQHmlg4rjkBC4E2poIOChznZo6GK1W+wkPmL0JzhMehn7aImJV4rrlDdg0FF0l1+HezgSYKAe/iEUym/piylXAfqrMPCO3MdvSTmV8jhg8eUwOLb1YxwRIhvWDJrAeoTKk5G+fLiHcKQy+MKdrU79gewPA8ojZkghZa6y9ivu8KY5YEX1cih2OLEg/aMuy27StVO/xomxEjRtOHebPf6zBEA6np7MY1dcCnUXEDM2wnKWklrPPjiUxmlntgkgrTv8da6JRoo/uHc0SyxRHrAp+e0uBACeM7Me8rM3MG5iEamSi8oSxhmQaJI2qIcXPoPCXDqA8jyC5UBvBSmBFxmESkqQgwhfvG/2sEvMlBqWnhpnd686JXzFcJMjiI+xmmF7ZvAjV9Wo+ikHLXH+HaRI/GoKM9yt8e2nRaPocjAo+HQOff61RrLu+RuNiYOEMgJEvw38wOnfCxkidVJP/Xyk/fHiDq9Xt4SaecYQlZ30diDD5SWGMNqFXRwB2ZXAlpT66Yph/Tfu9VAq5ZGbA/zYTiMHjJ04dYLLm09hQH+utSNxuDqWaR7sVySWq0EHRWqr+Sfw9WOAoSM/d12+k8FpxILQoe8kJu3QsrXN0uu/zAxcZ+FKeYkZqkKv5Jr/oPIVe1OHhaRo2znHXEbNwfs/bx2oMAeat2BExnTtSykQKJofOo9PFsbsJdbPXoID1auRFxw+VqlWb/IVBMRSzFrgOVQh1jeLi+iEjcZ3wA+bpuSGwuO+ohbaI1tzE+/n05Re/JZBWbOBeWHRRDN1Sk/uTF7xOjYVMg0vhfMATdplOlooxMi47lDQrCUMAzqY0yzHTXzlIw9gSbuoRvcoevKpDs1Le1fnX2CeHkumdO1VCmsXPgq3LDI5zZnWsEMmME1c/1T1QUjcRHXaGGnXuMgV2trgMKcgQsi1LTOoDFsSYU/PWBFemGQpZCAo9B6wrqL0JhnVnkRovu7ef6YpH1gxxq0Zw44DI3KeMfE6zwZ8oB93rWAAe7cWK6HzcKspwkQ3LJbz2MVVr0N7XAvzYEd3x+T0L+vLabNF/gHmypVatOb6T2yGJzcd7up6hVU+vYd80TTTcrlePWo1uElXlTXu4Eye8+F6/K0G9wv7WS62z4YYGGS5znB6E6lQ6VX3nVgFgatyVQZOqWjBXbPYUu4nqRdzMOZGBTOakemPWDIUN8EKcbF379/qSeXEAEvQZ7m9xabypT6dYDmVC7jcuhyXwbUs9hDo/AduQAvpKDlaZYs/bCifptg1nxAy2P9+uueU6j4NmNxTgTuLWqqMkb7yKCocj8LNLQi73r3q8ArVsbc4pawBNzCeAyFEqkqiWiFP38K82aVlizOuRnReO7ngCExXmw06+xo2NFrttPFmznpkzq0Uz+ikG80gg/l/RFr/3rsn+4OyuC5ftIQy0Uasxy+LYfj9UtUTW+2LnXRcnR6Jm1Wam52Nvr57ehYkUZbGcA9j/BU5jSDxEXYfCl50PtsLfyPn80siHYpLmf95ANqJRtOg8ROZHmR/NEKPmU8K0q7esCDSliHTJnvUNYyBCCjTZQWJ6TC/XCeiOwOFQW9JoErfh+XRgvv7u14uSuWBTI9Nj1sxKkJpqEwfQzg9C9l1AndrleOH00Rkj/KexikV0HMZAxLTox9KfS/eLRQfPGhWq/kd0FNyDk6EX1K1ARYa9d3r0+5dvNnuFV2S80nsJeJ8vjkjB9qJiMIHnLllW3bOHEOUXFlfC5d55g/DX6vnAnQnzINYWBqIhkmRxQnWmAJxkNK+ZZBeBc3i3bubsYTWvX74s2uxmZJSNtEHCiB2duA4DREQfaVnuA/ORBKV2CWsttCFApjGCNUnmRind0NwDU6I2gziRwHsId+MaLjttCj67lm+zoq/m1yIPvByw/PLcOOFjT095MCpO2Jwm97H/EHinBQVwhMbiH+/iXs9Kvwa80QraDP2NnONQGR+Je7q6EdFyMXY4yeulRA40ZLnUg4Ry/MHdVTMOGO2kBie2ChpB/+K6RsPJgvFPb3N4M8ftENAMvhiCv2LRCioMlmeBceP1oTP1dKzb3FxmGMyFtr4CXEmSBV1Tyo/8GDFlEygLx4auEG8+QhpvPlXqzuq8262cHBkJi+Ti0T0IiABjpAHWbutZE54uBd4zEfWMwfhyBxPKtP4cZmeEWDw/bhvrqyXYDIGHwC8SBIjKZKG1IF3WeI9grRbn/1MDS9+M0HJo0jVzy/QGSIDpSo2etTWTQrXuPr8VHNvtX8l2AfggURYVzIGk7J3Aw0Z+unA+nvwTb5dsRL2Y2xcTVJ/E97wwNj0GXQIqYoSWFoisRbk44vtHX0CDYBEjA2fxiW6VuMopk62fPZLMlxiBrZBgTlnOYogk24Hx/QSbhYzhbUgEOlVaYZhqjMdAFiXFGeeBWtcDhlhh7M8UCvbzBe86Et3gBdoPPXJa6hGfIdonvWE2w++LEtmAJ+sfDJp4FFEeiV3nTW5Q74515kSHUZHzJllEuWNhBXxuldxT6ChW1enSdZJJitbczWy9jJPY1ZBx7Lrjwsi/2F8qWnkmtLeLqCcJM1X3bTwW0HsMlwjTmImU6V2wOHLZ4NuWqdhdtakdCLDdBp3JpZvttisENA/WD18ThPfMChagCUrhDDXpbp7AT9kp1MbAo+ijuOfznWJo5uEMgclInrsgQTRFig10XbVLVxxeGnYqWBVm1+prw5tACnKfNhnXPQct9eiXZMWAE2YgNoK60wVurp2OytH+fiqFSAzO7rTglIx3R9JgIjKATbJJDzmqz/No8USknW6fH/AXD4ls4yoeRibpjBj8dKF4ZGIIaVuPsWUa0AgF47RPxF6qXqYVLhdhdzAOLq3Tejv9NNeI9NJIUY7jgkO+/60fzAGwyRutKyUwQXVE1VbWjlaFqosM0QPTaeqRP6uGdK5g6/mvDevuiFiRBAvULax1SFku3onFt3iB9pOWhfYAPwjI25o0XGiCVas/LRIAD33PTBMvaCxNBqxTu0qc3aBAQX/O63YMrgX+bIJ+r1JBSTu1psgeBTShihG8erkeHFj1fgrXIVkZ7Qx3DZTOjpSXqSuvL2nmQbPZVAvDAQugCQfVjKuvGH3qhIfI4Bi9pAGmD+zCvQWJp/NMSYKVZECAyZHKmPVez1kWs5gQH+1rvOtKxACcoIpkhvD5PTFi7Bsjim+ZQblxIx3Z/SQVLbUfJrs3vQIeWl5xy8ERRYrA+NR9NG5LphB6E5NywmsSwEu26Teqzc+j9HdNPfXhwzqdBDvYhKBbD1yHFjY8KJkD5oBOj0ZBfcJQQsW10cufngVXcf4INfC7fOnRWrZ/TGT0IDnU9j9mCv/SCiPZkZ6Jdjev0L0MRwgcdWt7uew0iG8wtZ8lc3eDwgCae4LEAgZkuqEz/SorruJ/maj28XkU3MamrZd3To0xbBz5IHSw35l6ACh4jOg/0IGvtNWzBKJ5qbP+IYaPcccycA+sqaIWa57X2vqC9ucOKnTcb1zXrkLciAFDVdiwCn7EM1lPjVg5+lgWWVFHoaI6HuaOWIhJpdHt+m79DkgBNSwthJlW3QCACOklwnzj4ksiSScqIyxRZroaoDuMaPNXjILuknTiySljafwDiKwEYTr0BdCub8EF6ikkBdwSmogjpmSFw9FPAI8MeVhmHoG8rz4eSa8fQwKRcPldWTesvLfyMMJKlzBN5Mjcaqs23kEMICmoPU6XL1KqI1CWY+8r0ON/XjNPHeLBCpF0LnJfwPBr17uiXl62O2Y3wmWr4nUyJYNZk+GAX6kihDnU6zyT2//CNfh0nEzOPBr9gxYcxTRxOvnZaLf+IqoT0kUImBLMDt+upF1C00y73DkZWJUxGApuxmMUWYQzMqrsn6ug66pSa05HCY9HK0dQG1Dx9AS+jkzjmz2zsYpzDQY1aI5ElxKJE5vu4t4wJbWT/Naj9UPyJ1wZwNaM6Qp7TDwOah2GZO73haA2BcU3PZBw74i9gTuxEyIV0gL/21MnVq8QUz41fITFekKxJrJ7+jiIY+kZMwlB2B2pe15gCEJCginKEEMjxmsRgjAeDQPPs1mUl9KIhiGEJmJJKnO+41bIjKXM1TuAoWUcTkhiMQ8hQDvVeA/rF9MbJ6DHJaGz1kwjQUhU0RtU14BY7vgSDylCOHcZX26Hyz5PKV7nv31StbaY02oxseO7fqW73X8WtujkoTGSE4WoRvebVvJHqgAvmpsfG1OeYZkq6raiTvam/qA/HT/Uu48bz5YYHFURp4bu0HKuWFaI8cYaM5VgwXfO5OHZn2VfW4CTb5pWZ043IVC4NZbOSODAQfhWpmq0YB1SxJB+ce80sNHAxdNC3EbFCTfMZ4e+qxbwgepAjTcNssnJZhUtAtVfIj4shxUByJIchawzJRdetWo1x8mo9qbQV1nSVEh//QzXnx2NTGyiLFUimwNMOAKz9cdGWB1cnHYDbGlVta9Fwct8U7slv4mUqtCjg8gR7dr9GVQyJn6v35QROgxreNvnZ1WhMqTq+5/V3uIvr3DJH1g9GO0T+g+2MecqW15qK7j0Av7dqL6a2Nuo95tO0u3uHvMh0W9iYIeSgtlRILN+4SQNPyFBuPWjrLlXBp9hjV6aCzZlV4DF3BfgpqGGOqTJOo9F4dxj7wezuQljpeBsik8FnWDr+g0mzsOZijyw7a7f3q9qPNJUkrJ46nB1W15UaBjC2SSC5vUj9+vrGqc8Z13Vrz9/fIx3PAFBySM8Pm2ylKtsGTAWIKAPmrcAzytu9OkjxuwkpshMzJOc/TvEX8YL4XT9POSZ33lkKnuyKBveX3ZuMyBvH4y5OSoR7s9Z9zJG9HKWV309f/0ZFXfpy+4qgRTxAr8Yhk6pGrbT7a7AljlxF4ryvRGyL7xjFgZI2cA/w21Es8lT9h0K71wpnp3b8Af5Idaol2THaiPnWrY4GJyq27OMMFFrup0WwQY8IaTFZdbkMJiG3FZeLIsS2fx/zPuzYyCRQnSqNvxvxv0OwAsW0lukfMkJpYhc/jEhwtDQ6OsYR2rxR0gYLAXBeEoYiLjzhAB5E+aM2h6qEgzX5ZrYW53zyVWMGOas3rrATM7VLdVJCVEfR+WqYbUfoflRM+e2lUtUBRAjXMBhSrd6BB245EX5z5AHvkxw+jnahu10eqQkMY50KDS+33mEeUSkV/7vxo1sjLox/tzLRZFq4CI45WjN/JYC3NYC6LBKK1tvoAHDPn2t+1TCjS/I65UhPfFqEj5Zi6uWU3gpfQOOa6XQVJsRmkfWRd7dOJ8wyeQLzL4GR3hPFPW4A79/CtwUKgxsL+gupXmZim25S1c00QeK7YNj/unleqszxiSUt5hkbwBRbVAQJV96P8woABz2/9dkW3SH7CyduXbpuqnx3vms2g2zOjsouNSUMYNMJMXr2dgdLT6zpUV3PLp4mi9qHelMkuiBQfO5/1RAPbHNgYX0amoeGIGtp3fNuUJicHrcB+V28DObRnMdz835+Q6MHu9AW5jQsO+QNC/Ewz5LGgCy4fWaLJhHg5yjMtj7jZHYRi8zQ8QAll2nFY+2g/PO1wwIvW+rjkjXbBmoJEGL4mU7CU/N2B433Fp3R47xhXLUwPXExeE9J4407LlHd7b9STBrnbmQWTwBgtalVtibPFPE8ZFYYsB3Ne3ZDtA7nySNT7PCY6H2wsP9NMYwzNR0URRn4B9noSpkJepgcB0PrCO52b4cc9mubMMM+XaFlHmdlsJ39r0uH/T9bW1JU3LzoHYzhS0iGvRaT7Wso84Hj2bj1WQuk2/zhagm1H55V8aQIU9SGs5GgDj3HHycvPoOHfx/48pkf9iGG57KHlvTRGby96thDPcbo4oWFgD2DHhdduJQKrV9mETQjXfntYX48Ox65kP3inEHqzV3j9g0KIf7pIu4BLRxcTpUnhgSW8vmk1jscpeGoFgkvSbNgLsK535j3M70bVTfrm+VG7sIAN5P8hLbRaI3lQgQpMvs/E24013vWyHnv//J47KnnpuxtmS/tRAvGvnVOHnKHFf3YMpCguWuFMSuCueB0Qh3ysUMGBLzygwhkz4Bpmdd8W8k+gqURdw54lCPEp+pNa6UNoWl9OvT1vPiXJf3evmB7SpYoaCZTGPsAQ3Od5kmjaUnmKDwoLEx+SNVP+foU1Xf+BGpP1yIobm1iaC8CwrESP10xtYx/zuIpnuibkE3RsMoV/QO+4SU1RZt/3gCfGgErtAWj1h6cMRpCjGm/zdpxaK6Cm0t5XIVKqjR3SkSSWFbPMoGNGTTCXS1xPd7iKMQM/536M/ww8CbtywKimA2z8qcpXPBTKCzlsuUy1Ka/j4mY8s1iCxR8fDZzgQu/1ZkeFvis+efrlu+g2v4eoCQvvk6P2glDvNXTMaLxPpB2XOWFRUOnnpCq3zamhbhUIfh7uAYjMBHz8zwusHjExjuIF1c5BMTZgtjboAG0xtUKhtwO+B7R9tbAiryfiZ2Il9jnSdnf9aavPtj8yPBI5ELXebhemiggj/pplOPMvgNwCmrj7g8okJOl1awNBgK2XYzM4omNZZcsSqZ0qpdoiUTG9cv11beaJzNIfmMkZrQfFsEtmetlHAhF7ugc1ta+wM2+B9lgTrxjTMdwapHS889HskJ28zhC/m0g7bAyxZuqoGyKuYHkLl7P1YSX31rgOp1g6UiZEZbkXGO377qoWkU/r0hMemjO+sGESugwLJk2N2LiRAVIFCADxsZdmCHWXwPeHQfFuJKBnNxrdxaNHh8WAxzujYHn3zol1YxcFVxFYQQ5lPZf31B+vuwKGBv2GYjDno8WrC0+CXUaMpZZsVNQVVjSpkrMYXRsqWHPpGTdQkkMjEcu8HXbdx0G8JsZO8Rqlp+bcj6GmgvjnCOPq5/W7vULgpN8zQSDBAUGQg3UGl7rFbzREJxtkT0vfaaT1clvsTLxVf4kPSN1bdKP0GUOMhuITzG/Mpqbsp8yoWFxJSpfJSeXxXnA9YneddAHxNizEuXBLJwOBaeoey5kDDU42fcTmCiGSjrzwM9SyYWR6eRfNFQohr1ySSE+Y7vkpOhRSxkJRiJ5Ds/BXgt71ZrDBajOEWwd6to4qejXKna5Kbk4rkw4V8pBOUtJMefeLMWujrLZ36+xz5Z4n5xXVceU7OTDBQxJ+0WLsypRZJtLK7bvHo/x/JdSpRfp8Q1vwIkdZfcpeIKGeLLpu5yYefwvqi9lY2vEw9aRlMSPZcM0FMDBQi/LIFNBiFioTZGHuuL0/EfnmOf6ARFw5K253+1/6lReRpshPUG23jbzzikYQJj1tbF3qJyfDtbS77XBUAjfryEglhf7VBfJh7DdY+VM92u4iQvMlOHsDgKt2tUY98zoT1pzS8TDUKAovKcyIfgdvsV2LZ3w2CYMQesp0UHlxkeNN7Bua8Nmr0onx04o/KZwQBYTQW1ncDWfYRFOVqJKKoPZn5gv1F68edMVtSZvBxC7sBuNYZzyMuGq0zOVR1Iq7ut9HJbhibXfpq30wsu1p/Qpp8Rn/A2sUemOZFuWna8DwjJK7s8myfmGT69gAoe/KSb+EEE0EnjfsOtEz0PGOTbbYsioOhSqR21c0g9DG3Kfd2mvIOFcJK0QM0dPiKy1T/zluE7WxB6fmU4JOoN/J6pKwvshO4Xpp/5Ps5AT3n2fd1dn/7pviAM28gBMyFhvfdt+U6TmGkVherxDbzbHEKUKqI1/QMpLrPz4TZ0MUEQQxA5I0yOxLk7M7cw4Gdh34pvwu6am/k0MZZ0dsU5mLQWYAeoO8r1vta+L06QvrQXCQHq+qqU02uqq/tAW/sD05rzT2tnWZOcbsegstRlqr1Aje9OILwjEiv5A5lL3SmjDEQIXKmo6xb/YUuaL/r95XnITNNsfsu4R07q2bhEuHHn//F0Wn9eLBz7rUG5lq9OYZMj9QmZNglmmzyJXpbL+DoMtYFlQGkQZNYo0hWWVxq7zdN6Mcr4KmyUDErC2W5gKcNJ0H8QUPOH/GOQomvSbHiQaMFmx71Y28mXOk8C4aYQ9OCKLTnllYNk8KG7U/4IBlvkAkRJVi2rV0jCUqBPKgusB2IOnzSXwW4EQCRbyAEwmbO70MQL0ntgv+VmLSqz2FWgdZZiCJ3mlW42DQfAlM0julcOTV8kmQJR/Pz5PevCjDgKxg/8Y13jkQhZ9Hj8Umi4sX44R8N2rqDOqPmvYuaQdYzOkDyinf8ixQ6wmyD8QfG64H8h6JhZaCuML/H3VwNAwPbpWhQwPg5clvSDV1wOhEALVqebpjOD3dXrxJu1tP7JnXA66WF+yJu4yTYdhbs+h+Wi4pdSxaWtlqE6Kz2VRl07BV9MXvMYWRKRv4vVDsc2HzA/apqxGZ5OIYpa8bKTRuqSC7eu5s2DeO29AMd3uzOXs1xO+jE1C+aXn01QPnVuUlq83yNai/dKvoC89nsx1qQoZxw5dD3rec8jXubIQXIvYOELWRM12TIzx0iws745fOqLSttQbBE8O1y5qaKvYCx2hvDR5ZwFgJ9XAZ3HyOpi19rE/ElqPA3LiwcYYOEKV3kEL4dkEiIej6//IVQt/kXwQJlBspeulKTr8VLC/x+K1padPbPqfSNQNxjOSZPfgbn6gNbMzpa/D16zntvPdbvXKqvhU6lrUJew9YgHTKZ45mp0x7IpvnQrLhm8GiNIm4l8wM7Xao54xzryAFfsD1lDAN5QaX9Yo2e35gExqG+fdw7c8JFiwC5HyrlSCnGXyfoK2hjC6Ioz937m6gljlFItm6NF6rNwYohWHDMrg9GGBXrBlDwRw7Lia722zIqWMFn5M0pkqwHaSA9uYmjrjFeQYVPunmPVqhk5WWZFCCbxUSXIcOT/kgRm/Tq+wwGvr94zCXXOXCFXh7HvNh+RdILxnrWfXw9RKuZSX6iA1rVeatr9XgAfV8mss/+Eio1tsu9CjkTG5/H6aeTFnGUyx174KkzYuTfqlQO5/sXDqRGcyRV9PE3ss3yfzU5sODHTGxru88pqS9lA/m+rJNaeVLB2qQTkZq5JPxsVew4csvzh0ecbyFIzhAsLaLbM6qbudUYUiu3u75AvV/jI0DYgLL/qrbq9qayr1H0prAmmSYhD9eid9BWW2UzeFSeAU4uoQxWRjIogVmSwgk5L/0cvUMP9WIVDH7uhASiV+3jDxUNE5Y4AtQQCLXhB/CeowGGELnbRq1vrTP99zoZbpuYxSfxWch6jXv+Aliy9s4N2iHICDVUO7UcPxiwxr82gF+yJ3g+ZsVreFat6LyWM/xz8jjO8uq2GjK18Zfy52l3Hl5r/7ZTxjwuCOpX+b2lNW3Y8Bw8rV6qFmj3UM1ZgxT06Kc5wCrKBvp+jjVjktDpeLnwntjI9/HW/GTXvwIRISwwRsosp5tHNXc/aEv1JmuZowACW9JqKPk8/rlj+4ABrSlVW0MBBOxMZYExL0JG7zEhFigz0tEDDmw0uernL7Gc809dXpB4vXcdJU13NNOzJEdl0ftQGqQRyIOIdjZ1Wa0G2ze17XBwXsDaHMVHFGpGWikI4r7w/WMFVKCmxec6X2B99V/KE9XBxW1TogAFbbB+bl4KB/U0Kw/P7PlVyuX+GOTrvgGxqa5UsozNSmkKwv6PFPBq8vCS9/EW5hRSKYHegzdIqdv5K+F+1CpAK915QsTfHZnyasESdrQIneGm8DOsSQruSplOqXhRWzENbrulewAbEaQXHI23VJavULMq5tTsKRE8+4/sJ2RuOGpc3Do2KGX8TrUwRkU8nx/wegvLYZ5+LUcTqSCjCt5KkB2p8UIsGct1E8uAx8hLHx1sNWsp9jfWW1Bv6z0uD+yM5lNDCdd5/K82ParvT78prNJDn32k8/dQb7S5jKgTcTkLs/C31SGMdRXEquPUliWsxiFNcj3o0YdaOkSzwd3ZvGv+BWsOahR6GFDzNySJVTijb2S8H/2WZvsKwbxBISmao4bmgw0zCf5GVkaMqZxhIW6aPsdmB/yCziw5da6Bp45UMX9jhY8tHzWDtJmafPve66AEd9L1fOUQyjUaUa4Ryi46GdOqCp5jVVDY4xssau9oginawJTJcSQuNKyiClPzMel/HGBZm1lvfoZgviw+SIcHreW0Kv3/gXeGBRfFHrT0D33cY3QygBSdUxwgmEP1koYaeS+piuJx7y9cvxIRmDHvzMlVP5lwhN4de2yQbygn/GjKDXCHNCoaehYPqtf/zYHl6furH8GPWqm8MsaaDO7MovjtxXEGXjxDUpCsC7NAkHaiISC4dyLoEKy+iPAmbaC0Xq3Pz9yY4B1IkDsacHbl1BmqWU6kt8Jofom0HLsm/AF1pHODLsVYxWa+VBp9EzkiS6PXfljlcvcY1rH45NUq/GHYNOYP/AQIwlViHx+TjcyjIbNpV58L/RyMsKhNVppBuXKS0ziKhxaeNXwq70bTZF5aFOBRbVf9PcvYr6bTXcK6XQy0qe0PNRJrJqHnnkgWqGyCYLUb5YPYgZcuAoo5wGYazUL0Smrmh1ayT+0zd4DtwIuM+LYHYVjrA5t02qUzLlt41oUkEUNKIgymMPCeR07Bb05sTb0BseQUAqNAwgjVMzeLzPBc1JIkYK0LK7d5YlsE441cJoULt67zjUw8O1IfNYnk7utvEbYfmNiEYVWhsvxkdwQZQnW/IpPfsJTaUDZoGrMn4aTRlgs6duLwtBrGOsZgjEsCfJBK9pV+Z81VpM+8m+9VY9Gf3HjNOuZRi59BKwdjQnOPu9IrUQ551BkBypEtBPCEIhr/kwEQYOmIANM5+ynwGVY24aVJyJ7OsrgElWkHBJTLciOGLMo88/FL372FUfa08O1zs8TE6XHQaPRr8BFY0GJmEMRl7OiZXZa51DY8N0Yj5A4nJizEA/rv945Tx04txsoA/LxoAjvvtQ652eZpn7h8Mx1cFkcorsqedBiWx2uasNoHsfR1Kl2LxwMz6hByXiMEoERSKoHfRlMRI78DcgOFP9XNeNi0ijHtk2mL/gutvSdlsohSRiKo/6g9XGt3cuGIjywxma93378Vwr/s07tzykMVFcJ4OxVUjkzh47kPsz0zseydn+kWPgvAC1ZREKtxM2sr7czCgrsYJaM6D7OK4hMAHKcu+0Z2wE04X5Gl3UA3krttcpDxGxf94rMd0sq/NlL6LEO6tpAWk410BSaGDmrHa9gZGM6+l9ItbUbv4EhrE6AX370U4G1efzmiAFQmGwB8YTOKcyqsjWJhwH/ESBGdWnNTplBMmuuTvgBC5UImuhqwEzRlDY8djpkXWHc4YTGaUswXj6O/9YhMR9h6IwkVYooHHTLX8VHblEywUWBY5mRueFUfVNGD4cf/OsvJqkwYMMLEt0qVslNI6E3l9E4GMyrIM66vknWsNBdly0sAf2VjH7ufgiuszATjRfSpNe68prRDtKCFSHnfxDKiBCBf6Vper0FJNJ39TqkG8vKeF+2qN3ulEXhqy3RgnZaBMpNsReTv51/pYMASeOYI/QPIpVmiP0JZVuZSNA3kDfDK3qn0yJKjvSpstk+i0mxilnIRmZYS3xlYylwKTX8KdcsLRU/WoFw5b+DOCAFe8D+8K3kSvbwjxFAaSKs9lSrMaTWT41lVuh5Rpe9yqD2ILfpd1R6pTFMaX3Tkex0/nfWc183WcOl7BukbNNocviJuIGbJ8/BkwUQm904voOnrRkGK8mRiYdw6Mw3TgZ066mlndCDxRHuiETGuL19ZQjY6luibmo1CL6xKjvcXEpJptlWrVf146kNb2mRQrVZghIN2qf3L04KFsvQXQPNA/mWSaLaousl8fAJYoWvQpWnx+IrN2UlTUvTgSokjcbGpR6wYnUxFy9pIhNLTDZ4oyAYEYmWSh786+f5To2lGjzOGgmixolH89HW/tzUAB2PeeJWfCnB/3h74rFgaglbINYXCLE/ORBToEHpy2RNmxdPAzW2xw64lnSmy9t2DmdxhYpZEx6G25Cf1gUFwqh/1WNWxsZt5PWq+lVcTOM93i/L+ZvVAroBPDsDDv1QBepV3MuyXGBElSj/+imtuSd3tUBhimCbs/yo/m3q8WWUxA8oBAkcEYY7q1e8NiKZ7kPswzhWLb32mBSuLMS10Rkys748lM2XWV8drc3vta+5DfIbvD8O/MEZF0ceXjt4UaBsNzA3zRXskuZik9cVSXwodL70qYjfQNEMaMwMPwq6qyhrqDs/vS39xkNgzDvMPPJDFL3Innl2BYwyxggegJxzcDgr6DS0ZRiD5H7A4AFRVxzlz50n9ho8n44iYLj51JPQGP2z/Xnp5jxpHr9Lcx9fkqa7cDLtvne/4hLYu+QJFH1TH0sBb5Kq+RlaNUi9qLHoKq6FAzgVtB+S3Dk3bwrxEw11n5uy0VEMC6Bcmcv5oKGvC7TJ27skz0vNx2dj0n1BF2GC3AMDJ49YDhYrx1ohKYQPv3CezAON9GJHHFeB0RsTPC+vxSAWqdjYdo+atgGwXScEuaxE/cLdFY67crOIlBRWDGUvsnQP3wRhcGObYEnNPnZpsxUR8W96jShMYzmRiYXNxRL05SkcptWAdziM8huih+d/ZcAnFNyzuxhAwBwudT2l7X6PfdHKKRhhTsE8GnoA2xWck2B71psBnRJKGpWaR11L+0CvdujblmzDBYEwSkMVV2lGZHC/5i1P+y+W91/WOi6zKm3u65jTbUU9A52zOyCBNNaiuVyugoReI4rcOMSIL8bQHf0q05LUX4r3uaqa8W0PlY+ORZmqFjUPQKCg8x11TNIpyJcJN1VXlY/yQC05rkKAGHzyP9jAIfK4aE3RhZDnM7SujtgeSDMfeoKyu9GZuU605cF7KGH9Bp60culpnOQBoQ+U49q0sCR+aTxjQzBDDwkIO0pdr4Wam4mB5iPm9iOEO7B125v4I9cVR63ZrKPeeayav4+FNTRjsjREdYJ5RHycJwX/WiNfX/z8LE3D2Xtq+qXXgpSdTPaUvDGnYnjJlZvHQLLcTeMxCFQHSYoR+POQtiNheX7dvJmzgIR+xRfViandTZB5R6OgfZK5nVRReLTM6nEpe4PMl2by3VyyiZwsUBVyGBn8scAvpN2KgKqkeV6DmGy7Y3lXQ089uDlqd1IYoO9qotPUsaQYqPV5fIf6opAd3q8OesxokbguYgeCqCiWxP5Z3pXelq6oUbkot3NtgYZ9/u+gdFlkkOgVdYwgOozO6xJWIihPbalBPkbUO1v18ZTdJ1bOydEyti3AQA3jLvZ+oNKDvJ0Bfuyj+CuAVj0qLsp6X02pE47XrshjwaRTvgZxyQrSIdmVD/t1Fl0sytFo6bD9MUujRNTOIFyQkLTAE7Loye5fOS3GqhxhPeyCQpPeCfzZdNPdMot4a4DpY5nGyDQiww+NYc0UaF9K3fqOK8yR3Lchbs5uicwfV/1EkN1+ouvcu3tqyFvJkWWQwwD5SRS91XvAHkSbHTYvfrMaR2+MdXO9ZGt9UqUfzn9K1Y9RpGUPJ2X04iWyBvGBGYfhb6bDZ3rUMIHmzEm4FknsjlvuykBSSRgpCSOO7Cqp+R3MITuQ2n+8BfJgo9fbJMCWHOw3QnctXss+gao+hXXf7kAj6Kx2Qs1l2WgUMlIFbatnuH9ca2CAYnEbbKf5MXoYb7DKlP270b+Cy2Utqi/TUsseIQTZTw/BrMv7V4etALK5tWHV8UejlTC+5xyqs4fcuoPsDoWaIxYRh2NUMvpcALpgkyG3nvJbEWYPgO4Vayax/BcVHM+2vsC161Jr5BO/NmyGllAkzp3sbvGorukADrni9LK/RcZgSIRaPBTPWEHKA0+s3itMgYGqmxQv9KdS25eDS5d+6s9IYv+AjTXMCh7ins5lAfFrqcrT+nlKN8Byo+Cj3CsjQn5R0rRkmX2Im6iau8/YPcZOyc9O2O0xT/tRh4xwdiyd2tbAv9DDL3aVCq8g9kEq5INp9EYgh6EMi9iTgE5Zlr2TBs2KxawMp3eKrF+3EzMwaI/l+E0+6mwso4yWi557G7MKYHabg3aZjXnOmqHrB8SOnNpIlEj+bQ37FvAmSF64NDTEb9da0jEQPGzinqoE+tJh3RlGolpKgM9QZut5yFaMrhrF/DMgkxE3enSXHQNB7ZztBkeyCkfyfqp10FoX6+/JARrOLEEbMCn2OerN9Pi5J0TgH4VW342G1iNHJDS5TFhj9oSHjPXeR7BboQi8cmssF2xU7PZfxYDYPYtmv3xDk5PFhAePlrD4ej12oM9OA7M4CgKmbFnrCMORGxnhHQzEDDsDqDXtGYRNAdbXWK26NGdwt5QHNXcyHkaYp6DqpVquR+9Mj2gzzrcsJhPwt5UozfEhtQ1HJuw5VTu2HYI3qI1S75rjIxIyTexYyzf0iUVuZVfQGBNpf5otczwMWUA9Cjy6RrOUSEcOulp9Yd+sFd+Q8S+TAxtT8PNjdl8MphDP7gn0aA0bsFTHQEdvoVdR6DbwjAFDr0ibc66H1YnhH5LXLW7sLebBjFMJ/CY9bG8QYfZlwM8Ip8821lvJaLNbJW3r8xj3T9aonzAdhwoiv4suee5ZfyHz6QWZdPOIUi0madYH0EKVwppLRJvqvCODUH5D0VssoFnnTzAGwgx3ok9l1tVjKw/IkhPK2cV70JXNt9+6r0qEm/hJ+Oh3mHFr+nUM2fZQrRmDo48eS4NfdS8qhVFB5hEkrUGD71fbwE5oxAHknTtMs6PMOKkDtlJrY/bBvDbTXodzwHwn6M5BvNMPFUfhI0aJy7gErxy+AFZ87HFk0uGRyPF3r+XaGT+DX5mxe+1puZJbpc2XFpHks8tdxR7nIu8iBbxUUm+Jd6Vuect648YR198MOxyRuaArA8Yg5EqOKcfrKSqTaQ343KVi+unNCwUqRlgta/ZngyAgjFpZCSts2GilpLYsIkf9cSTfPlgPomHAcg4+gtIyqz/zpwXG/Bwj/ixustA5pJCG1Vgaxg4GMMhqNGRd/woS+W6s417AR/MCkO0Rh+IK/vwh+R94bkAtvpm0Ui7GCchYGtTKXH9UcyBGaz/kkmhXuYroMRne0QDAF3yMjs2+TWtmUsSVtepeVQbd+gLYgslF1ffNKqS1JBAUpPLL2UeGtqfCFpRzg0Bx94xuUWx+y6vhKJ8vxi0PAATyt+U6n5dzxP6jssEetJ7+sxtP/nzS51tvg56bTsQ6F58VdgMBrfAqxqoW0uu1ZpFUKZyltLVBIUDfjdDdMrjpwQnHRSdkCp8xNHw/qIUjscUj+WqfSdgX5e7eqiFuPpnC82wlvBOHhj9G24wKrnVr/wQ49pD8XYhHU5ibsEN5op/dyjUgTlc//pQxpLeEIT6+3Hpswi50m3KyneydGI1CN2U/8VMH6hz/x/k+VSdbyKjydyldbGQ1Kc9V3Q3P/ydC6y62AOya8TfPwYr8jkpF+3zjvLiPam+OuR7VRnqsJ/otG6qaPFk2EjA9vj2gTDiSdN5JS2mUPJxYpAg52tmm1y/VvTeeIRURkvVRQkXj5UE/B8OTSvprwSqAbzGnaPCpjEJAc+8CbveqCCgOQLTi6yCTTSMk5EbpfhYg4KxDr1IjrOImX34Py4mHcpqUnLlMayvUvg2CQKTpCTE4RJDQdb92sTehRiRVcS6qB8+JL0ZPB0t877PFp9j+YXw+SZIBj0zUCWqh6EQoteI1fpNYKwwfKD0bg9YOKMRY3NoG656Vd+KOf7g4n4NOpjG2abPMm96uS2S72Nvjk/o4mtfR6itrZuTr+jBEGfvURk+WmBPD5Yj53oCn5X79unEaLRx+rkEVFaqXRr/v3bK1Tb21WJgNdBqdPGxaQSvV+NTC5A0eZnIgv39s8IssPO6MyIQIqjreORD5jlN9Nj5MfyXuj9xNqmaRKshuCZLaU2M+7gRSqGBPErXcIP7AZVnNkVWjvn3knWYvF7qUfikT2dprTQ1bFlimMiLF8O00QA6hM0euWOD5BiPmgbBFwnTxWwayClJAA+AAN4YQy0lpxuXVA5nUwS65SaYR1YSrj6nNkeEhxOZtmcyk63zSo+qY7l7zAIo2XtpmyCbQcayMyge/Q4w0CmQhlKniZ9O26OL6RH+oJqkGuDEik9VSckUUXHUoeYxQrONUMBipWHRyTBNoYhT9o2u79ZQLkTsmm17hxg/5fwlhvHYBbsw91ugOJJp60+xNJONc8o37qXIzhR4YPF0qO1+g3Kc7nyqfB+fZ2NRWObH4ZSC9Q+oZXXfVkbLyEQ8pSUbrZMAXAZOMyXPiJd2UPGnq4R4N8NJ+hSxcIfp+iHodhEFpxMlzS/zDIhy75QefGjDP8gCjLzCpif+0qlPsUTVb4dXRBnQBg1vrvlL5LJ4BImSqF3/4CNq41u4quuB36PQV/XiCeeVtp3mkMKv09J+JRgFvbp9GXPZDVKkF/BsJAvDSecG08bKtI/1DFueYzzWGSTQi5zuMY3LFluts2B2sAO5SbiOxJ9Wzgh+CnnoU0khiuvzof3r4HfHPkf82rnN3dYMB2yYhTqITad7H/V/ZLJH9N9QXCYiTx13c6dkepJO1sVmFKQwSPzeFORhkcndveRNWcMM3b5MZn0MyM2+izQ2b/sim0YWpdkKsjf4XHvX9sWknJioYJvXbXjLjwp5kx2q7FmkEtSgvW43D4QwT5KiZkDskAG7vRDKDj8knXmXy2h4AJkFXmPOiYSmf5UsHCPfXkAv6R0zvbMKTckqmGEdjvE41RS1K/sw1mcpm05GQev5AQB9O++VFfDrIWsfJEEz+gBYxC+6E+yLswQfakYu11wLk76ut9nnDaCmzp6c42yLFkNYL+2LuqVIZ0xqCHmP7GF3zZnxe0v9z6Itkd3PGpbr9LgbEYRzT5P/SWtdDg/2GCFBbzArj+nSspZj/D/ubRI1LIOazg1nxYjejvqC52wnnqbfe6VqkfIWdDS3RKPeI4XaJGLHvxD+9AnWQhwfFaywKSiULCneh+x8GYJcwD8LPcO4o//vP8gNT3XdtukyzqCWnjGgk2dvUkzKDbx3RxIQtZs8gBFVYpl30wLA0ZJ7h8KgiJjdSllTtsiF+emgIVUszGlumzTgDP6iu5fwYZSJBkuxTRlNg5aCK1BkzthyqxWYnqy/gQXxSgjgOpNHG+YAGwyxsJIY/8bxXnAKt3dMpzVHtX3CPESaBNMBkck1TepmqYSFVgo/15kSOwIgQsBbG7aFeh/EYPGAs6g8cD0Ktahe6NaC0feflxJ5jDKYlVd+rvpxmpTAp528tCGBQVnLN7yC5C23L1QkNP/L8pWZCN1jmeA59imHTU1IVFlcumOZ+Qf26kPc8F3RyvV6+yO66PEP+g5epIWKhia9tY3x18U1xq9X63gTyfcZMekfhNEIbSoKME1binzoGyD+ycWk3tJFiEuN5foqYZA7Xy9ekUUsgmk/53CkcXrAvZexm/14f6ttLEQuMWTwt2TJn8w1BxNNGFZlppvciu2ayspeJ+CTEN1aOgh5x/xZwyo0jlsIGopfmJ/gsyqwvMlHLid4czbQ198Kmf+eZGkDDaKIMj7tthOU1aoWWG4a8fXtu0XGBnBXd/w1/RPX/bvRJzejeKM41dudPpQrPqsadmxoHEavrjCpV5ZVW+i/cnfQX1Hgzr3VXYMwRJlAP8MBKbs/CLUFotMYA8gX1EAMIMRb5NQe9fdTL5SJoAfZEYF9sNgOctTNUpMXOzhndXkchjWqEQYMqgtc0vVFNVooxIvZT6SzVtUMYbv2lKYwg2dwFItDX4AlAHtGd2BocSeO4mTUi/hUun/KQE1FnKBnyhLYznpHn2yizCyXkGXXYRY/k3YbpkkmzBqg++BC8LEcXDiaMB2Txp4fffFJhmAnwb/8cvcFGJAHzNce/e8Xg//lZXsnVGBaljZpOH4dRoZOtIlZ32kr7Ly8KKavPIRn58hGBWKYOoR9euZAY/uR5QcY7VqZoTC6A4039kpYPac56ve1mKoF3ICDdaqS58mkhIwqzXN0POV5TNw49Bh1HeFHV31Vk5Btnc+aHmymYao2pMWX3D4W8Dj9JOjR+BQyOQobeSEcvR2XoRS+OacODAOiRsj++9aEWXv1VHLyF0+oG+3FXtV56M6+iH+viv3YkV6eG0JYozhtqXbFBKqExXYAKL7cG/h3kWd2AITaGozIQLa2fmz4JX96UoB61QQdGU5znaGIpodvT+fQxbHDfyFHcsvbXedhoYt0yA/DV4zl1yNZIwYGd7Dw4KRZGU6He/XAH1W9oJ7GfDk5AM/EUjVcINwxfe4s7XHbBusPjSrFneeTeK/txnnZnPG4Y4276Hq9hZnGWx4Z8Qa0DrdF7Lkz0zr1MqW/Smy8ZZpToL/zZD1bjE/WkmXs8fna0kJdwNuPziO53KrNXUaMPVHdf5JicTsMPbgGWvfGhsU0QQJK4qn9FXFftGUgG/gjUQSY6Tl35K9XK3nyja2fN8bR086uGCcOwvXTDGV6zPdBYS/QfdpAenuvSYYHcJqXXyPxlqAOqnIqlQXoCzYFRA+qFiWnxuSygSeS/vwomDe+zayARH2tSgGjIin3WUVJC+BYzgyoHJL9imw+lnaXl9tNx1aUXu7lhxKu8+o6j+X8SarTVq4uLET/pGUlK54Bjyd10bOiFSlZoYsRhpeSNKua4vgCzneGaFfsX2byyZZycmWOteitj+PqYSjslhRiFl/UBHnkbPmwiMnKyxCz1hH58lZ4P46KfwhjkWE3q1SoI0/E+5e8JPMV6Yx3GJvzsIdhqUtxTGoWdD4k8YVEh+5N64NcM2PypUL+nI5mE8k/n5+usbgOrkUmigA6OdB4l58jz4DAA281JeHPiBMvLP0bp4WTIvMsjUc2IC8+yxGwnXcuME72QYdVHFMMw5FIFMhByjJgsgYuhlE/izKBZ85jzFhS1UgpSVkeJuaw9qNmURE3vaBWNaKEGKAZtH94B3dZYtmwfoWPtWJAdwZHD+8QtdgHEi8gdHCnu53f2OwSHSi9Ri9zEEQelYOPhlGn+o1nM16scMFJARVZa0npA5q8zVUIDAXzVyQ2DtfvrigZARb0rlAyFXxp7o4Y0h4KQAuPdVCYuC1Qv3W3MulFgtVsU38QqMpdSUeRYFNFc22C1oSzH3x+W+GX5fDwRng+jQgPRVgCmSppqNcHdEnqM3HRUZQOJH4T/oskXFR+e/znLSi6eXzoPUmeUVNaeWg0ARjU2w8KhbIjdwS7Q0MIMmvGwHCZFA7KBxxY5hlS52aNcfReMKXy7mEH4Yk8h0K79lrE6VzVrdrS96lm13kLecZeypJ01141bLHeyjVLxdxT0DWTju8arMvlTSGwmwM+6XoWY+C2OVstHpGngxfNhWi+juTlO0pYok2mJHNkkIlOzMtRpRddQ3Onhyin+1V9uotE5CqxdL9BAW3ewrnCUtS/1IuHKbBQfSa+B7GADB4RLu6c5AF8utCcKE3RY2RAoxzNBxenJvdKsBfh+58RGX3vzf5uaYoJkitSWRKx5WgYSICmFD6eJRdU1F8VlLyGEYLE3P7AFv8bvprxLiW1yPQoDr7/kRMKRpbHAVLGLPDre2S0znq13OUAi8uZyhrsvspybiB24IifQlKohynfBbc5QiCJV6/8Mq9ljpAacrQ/oaF8F7aNVXmRpXIEdTB50GikPcFhjJQjRuQO+x8JLMpVCce1raxVyp0VgH1ZaIz4HYdLzevM44PyDY9j6HEiWbpVGpOMs7u1AbuKrpvv32660irNmtNwnlSbSzEeINd0rtBAImmoPbrV8T1UMQ69bPucNC8Lo/G7F/NdhgkgiRm74lu/XwodYjk8VYNRm+0RG0vER80vb3m/+QSWcxNUIQrT2OjUS38+F+IDnmc4DYeob2kbClG02qqQM+b1dSNVJpfwNWaYQ8rd2aVr3Hlv6jLktiaH8Em3kT5cYxwLwGyqoBw2liO85WgluCD1SSs8Om3My73/o3VYXOcavu3ffhBCGCbvWC+wT4177VKlCy8ATj0Lm2vEult9IuxRnvpOJ6oe0JSWq5viYGQHEKtOYswV5KKXQdJIZZI3QVgzSZfwHWdVjO1gaq/YCll+lP37yLewPmmhJelAPzH4xSHyR5NndBthOVsoTdSz57rdu58qMjukPFpuWIIcgHC2EJFZHLqYddyd5UfTZPxMbw16bS29mW4te8lsWxPtYhI7c7uTp/fPfXwQcn2xaswhxKYR5Te9DicBjE328wmbbkrh7SgClFdDVSbeErGfN2TU9KTc0w08xKMITO6Ik1oEDkmFts/nzr8Hdlg5LGoyA8iD4ZUXrDQmxu15Njx+h16DPSNIHIcSxkWj2qsakDdvdW25nwMfFrKzstVpm0V6ts4asrVfu1R84M9dpI+EP5MbUd3gFUT5ER1pvo1ZyY0idA9GeG7QqZi6yeO8Oh/YUvPL1kzv0UThtkrg+N2EToWJh11V3tiodZnsvoa2dwx1Mp/Lc7/tkCFVKRFa9eJckl2lygwb8aGs9fD/7uxbJqI0AIMyR7yZykzog8moxkvgMhuBiEM9yUpU1nX2KSyD5E/p4JAri6cpvR9y/LjHpQkPz+n7RCGWetA5oWYpMjz0+Uo2dLzyDqInyz07IRi8xyd4N8MTxQ+jOIONnHMd0Kv26HaHyHZNDk1yjY0H29epIRK1p7oqDgWSC6q8pGLu1OoJdYLvjjmDfx1RwAz8UacaOsTXuS3Viy2ogmzphxy9wfDK2XBM+PAteH9Z5rMGeuQ30aAlRHbZi0vulkw9/f/m+4Db/MpwW8j8yw61WCRfNbhOJqT1QVPNr0owoaKftGqExEBkqNlHdfA6QHJbvnAwPC0iOQutYUFqNMEqqP4dyt5Re+Vh6wVXjzwLDpTEjLrPS3O4HfgBhpf3hWzEuaWdI5M906J9xO1jGXcgDqoDGJQe/vt0fwodoXoH5aQrvU4uRBSzXMhqcfn93KLBG8GGa3znKsvz/WPjx08GPNd1vazJV6ubAVZg6LNrTwlurK0dGEB7C0OcQE3o/X118mGBQM6ZakEnoBvSpBtPh8Ix2b44JvJpHpNNIslSDvjYyLFrUmNTdPt437d+BUMoDBdiGkkKA2xbZrOpFf17rlaW1dM8DClsIMSxDmOeUBAGqWt4MsaDIdFrCMJMj2J9eocrf6jYG9zenArJcNW2vby4tU6aMAIsuapEMRTVV0Iumn2AqV2n8NiaB2cqrlSO6tuaHiencouFoHJxOkMh8ZDJvgTM3yDQF83/Hw/z3BnLXl/e78qrJbA5ZD9XLwZcctsq6uUURHm+ylgUYwOSGqHRLhOlP1gwwu0zXl1ZSZUk3rrQxbqQf4wGaNodqiHmL5biDD7WS3LAwBQCvDPKQMFEFH8is2FsqwFm9AucL+aD3PVo7uncBzSp8KJjt1WYSO6QgGvepzIUusuciZ/kT8H/FgcHrTpbNb9JDJoJyXr9DNp0zFbiJpQSBYaJHbbqSfu2YjuHlXq212qDLaPpzM6s4bCkoRESjGA8iA4RlfOIGpn/wSfK8Bzawg/t7RV7saQDrVfRgJIG2fB2tUGMwGrDZ5nrgnJyK7mq4Mlu1MfNolHCCwoqrTDCl/LhMm+5SA/8r93Vo4U/Fnp9DAXFcFsJYMIJHpm1L1ch5a/zrFbZztwIoB+2aHZKRz31OFx0d3sT2d+fx5tYAjtLsFbAlB/3QKXH7bIk5Qyfng2E+T2c2ULUcMnGEaP5i6zIo6w0ODVR1iayfxQ3WFGELyVG2gx5EDQ3P1dVSHKSNGSlRl2vjAhkFzNkIyClIlDKwjAfU5eLwvqPOYsg0hT1vPeq6lHK98dPPbWWQWBzzlp5FLdCE/t7/nFdvnYuV5ktnMfy2XDGvQAQCIR7rcqKqKzH4+w4bmEZJz1jo75VqWqsbeZNxDK732TO/nsEBdA5067BIsvibQG3YNRinguVdpUgkh9HFDWwqraifE2RXpjjxu05hAFYSKth9p9aueVb4miuuVJ7BVdfr7eUpKjVd9aafPIeHo3MBuZ+wrnaad5RONDlMUTEuJ6Y72WVmFS7cvjyE+kj6Z2AE2wh4QcxmIl2NjgRkbsX7kjzApok/EBo6xL5OFtcL9zQR6w2SSQRkUamVhUOY/Z3v+ggur9tD22HgVYnWjdhzspVkPIr1UE9aiRf7dDa5oxaCAPXNm/z1FcgwSf3vAjm9+8Z4vUsQXRI64MMYD5uLSPVvuBimd1iq89kCWhw92JYVoCgp8HWIaRAfm1McVqAsw0TPENyBPxBP1nohBQ4o5AG4lmTX7MH7mjRWQb2wdrEtXx2AK5/QIejpgmKN/W7tH+VoaP1FJ3U/Lu5JyMxF2AvHdizauSPjr1hnvkXXLQT8DNO2Wg9K/88aHWBUI8A3R8BzKJpe5W1ivYxaPaRZ+QaErh7OATUZeDGDGJoylKyYMOvlRx2YxYOVQ2X9B0mo12/FqnUpP+9zrhXYk47fJyFAuqRnertAY/CbUc96HySWnggraZwtUaMdEkf1MBB4z6M+MDJv3FXWaimoYysh41ABfq2Z2cH40FfhGQXx8EH32kfQ5KMIXS7HWku+Ppa3+4QyN9erAJP183Mbg52AKvNTcXL4bz8lxUIBQYVwut4F1AP0zn1Er8bRxZoDhEZhOpDhE5A7bT2ilZB3Oz93LJ9U8hGcBm5KfzpK8XNKSXzEXsd6VKiknwykeQhRO9clKetrbdjYGvOpWIrFz5HMLKh+vq2duhqC8NUPzyq5bCduYc3kd31SkkaLPyc2CNXhOlFExwQemLQkWk/1+c4CjgW0f4Fqb8UN8CpIm+oDIrvTRVup/RnRvT06L2YzMjfiMybpp0QjBUgx6OcG/gNmq3TAVhMOPXzSTXeCuX2xEoM3BIEC2++fdhzix3w3b2Q3NUjFDIWUEzkIZz5FlhMHarABDTsejp6RYX2PumLKea2t0xaMcd2CW7MT3qKxErXu+OgZMFvRIpURvzjCXtk4slrFmnuRo3ykl2eoanaIN/Xm/EY/CmqoEFw3/xHHYJDSBjndgnSUlPwNYNrxQ3Pg40PjzfO6Q8eGO6Yag7Xh0OrbED5mJY/iWqVkcZusyaxQgE6iwOssrQMyxD0NrqXfAfWkv2Lns41fJNr6fGoODcFBWPp4LYQIKuXpdSdCA8cLW/59BGSDiUhyTWYA9f9oS1QtGJGV1nmCztrU+uwETsBJv7sbwEcdZcu+9GjKwLKuszjG2NqxKQePbduC6dUo93O5wmyCEJP3/b5CCE6CUcZx7kgnBXX1mZfc8sVpEg9zBVsori9lOapXRCtTJm3FWiGrY9WYFF5tVDT4qitT6+zfQQypQsCyaNI9CU8gBfn40LtOgCMG/HL+JrzS4AKhP6OeQE3hetfQaXdtykt+0CQGh7d9Di/mi+rNvSKYUpBSiWQeJ9LL0uS2yjsBu9X1acXIJFPdq2hM3WmpyL9S7gAjxjk5JKCnaJZfw+7YV5fLSrSeBy+LtfX3SZYsxOnO/TqP0UcZNFPyI3hoXYZdH2QrmYQvf4lFaMPNen65pkgCtwAH7PhpN5icbrJStmZbP3TYgVpDeN2mylw2Ak9c0JcJSbaQJzgAEKq3k5bLcGB3/d0NpUxBJv+0+mu/WJu9ZHRd2gKqf7Iz8F7fgOFGC4p2jEitwzV2cvlXN+oV0gqaYGjE751fIWelkiQuJhdNutMYrGHOgDcg/sB5M/2/GGbfyJYScWHnf+bw7PpKuIGdxQcvak9Tdv39rIKRGBo4wj1D0G/PuY1YxDN7zPEolWJDRxp70eRUi3sAW8ZPf5IVKp65oaGlGPQLwkozW2oQiHxTt/m9ME/ljBKtcDPvN2djZpV2tjtyM9aojVFB3og0Q8sN6wKB9wZ+93xc9zsJbHDo2s/C74+7NWZD34WDADA3ypALBHbu7iDhfHQjH6CxkXr3aZzpueebQ8d9uQA2YoUqKQrjLDODI6itAuw/uKOguMdqne0kRGj+zSQWs/NUVCdBSdCcTGl48XG5EslBtpv9WSjZsSc1oGFdiSvh9ne3xvn4KGlf9eXsTBQDQi75WV9E99YkKGtNphx6cLkP4W6UhtTbx8JBxQM+9lozHF5uxOwB94u6aCjlhd2gMmPmLtQRVymVMGIt7nDhDr8IjkdnVPo46JOhlBTaFMnHpT/DfnR4CzgTIxHK+1ckqc/7CWp6DfPwD2G8zHErkesymd+lHK2Vx5XE4pUCDQzLm7PlEu7YVQ/jKML3F49riUrCDP7Aud7xPwx4H7gCXRHo4E426BlHAn0hvh1sKEYqCuNM7iu2u/1/U0+TNrEFTOYPE6XJg0lWm/PKxWzDAEAYmeMAF1Gj1oXJGNKsTzEDCGCjHhprxew4gDscQ9RjqjhA3L7s4QRxROs56tjpKy/PXHf1redmDEfXxyepHgSApFfFEnG65L/pq48SxQ81dCE0KpQ5FtejKu+e+1tMWJMNizLZbYzijpfEHNnNIVtMItAkUs77vRlVPVrAoZDODmpn1jxdRBhE0/BqdkVTOkx4h8f1e4nSp7EGhxCtQy5Iybpb0axa+Ml4HHyN50+HoJrSMYU/SFHuUs07wKea67+o4awR7WXS+PSVMcK5yHWceYssqqiIQ9aC7cpnaLQhI3xb5ozEUjWg6qWdkIoG7Oe0ZkZoD22l91cOAA1NERhs1NlMJsIh/o2lnjswUWYSW1JXLOVHIRhBNJHc/TZ60+pszPpK3+Q2ktjhXH0xM2hJmp9biQ3FiJ8hd3rcWH7qdqFpg/7xUpxx40wnFHMARXhk/fvLuRmDvllDGJhVpEjBwPlEN6wXUQYwdNO3EzAoVpX4OB1+w+ivGK8rY5qRa/5Mh9mNGGE0jCwHNcVKLrwSfnQ3zq3E/Iso6oETmexuFZQ8SQq/3T23azrmQmTB7wHl0bDVf40GqAoSUsvbLDk3zRH47Ml0IzlaF99Su6AXrDDg9Q2FPI49PoUkrZEyCcZMMefcR9j7WmCCkUgYJu35Vayc/uuxG5Iao0giqaQVihkl02BjWJ16xpOlXEBWhs3YDJfxIroaN0NAf5PvjyAw4VFV7d4B1pVzm811MihvJmQ17h6LSqbTYqPTgNpiHKUzb9njM+Zih6Y2yoP16xL1DwGdfQpcePZj6NjZltuvoMCQQqq1tfTzC3dWZHHx3gGvfG8awAQxVvU0Q9wbxKOr6cCnG+S+qF0Z0WgxQDbYnGCGNUgLoDccM/GKm1tpB+0mrpl06jUwdmytX/5s0Tuku7QX2scf6w0m7VJ6mUP7TDbWX5mSy0qRfG0PApd6hbdmgVIN9gqIoUFxouP4vqeZzaZ/Qy6JlM64/IWAwjhuFJ6HsUdJZ8Dmxh+oO/Z4X+eXhr/EJmsW6oPNcjAvpNnvcWJppxEbdAwqLcOlE9DYu0pvxAFHQyfhf9JZrIOfbsh9TL3tIi3LdBb6OON3kJJESuM4yt+9zWE62woBVX+d1FMtgLywpaEYgcj+O4rvruZnUfsfZwl/1FCx8WZpMmjJXt71GjxbkgumSAfkBCtkMJQPzCOyA070pS9CdzFjieBki1fz5gYkTvhjNpgtQmnKO9XsZpkaihqhq7Jszg0w3bSxNMFiAB4i8bvkp6HyN6KKpjlz0qQ7jt8iSTxSJO6OOIdvtZagpxg0VwIe4FknrdHCVyBVd5CSREl7UZ7sWKTNmgIMEfdS2yR8WKjnO1xyU2gj+FNjt8zSkZM6IFY1ZfCgH/YOgAqD/g6jDvgdlVtab42z9oUUvPyPQxagBNvxkxCQL/2JqXbUT+pqaa/A1toZZ6jY3aCRKPj3MWSjkm/dAhy1rWn13mU72xklHvButm/14tb0cV3BGpXHTaw0azR1EQGzn//aTmlnBK+H6rftvzUJMo857VeOb2zviL6wJ83SjQ24eJpVofNXJX84P9YW0HksqseR4xV0GY9+nzqrRUtaQKzMlUIt1m5CoIWUz61UqIpGFZoRf/XNxU5EwAcE00PEvwTwre8e0NNTmS4SkOwvw3Ok6sSGvUOs0kwZ7rGM4Y639szP9gENQpwgChZBpzJKKf6ThEtOfp0MJX00BIv/aDmYHBOQyKsZTYf9OIBvczfE2ex5AbNeRTn1s7+ZjX9JwCbYDkdbX8DpbRsIvL34Y+lDCtMNv2m/m8bJtFGV7j/xSf7AvX4X986YWHYW+/7MpaNNQmUrwSmZWUajZoxJxK3JDr84O883sDohK++W94Zy3ZEf1EGDgYroniffXVggqgp347/SIp3WiXm8qRSpMoNOvi+1/X/O8iuaY4q67WUba5WArfh4n+PWBLVfVZb/UqWymt3CeV87ZokSyPiQD1yYSWLNFu8386znGi4dgaw3z+i6JGJXcT0avkrgUp9mTrHTkgK0clgzn7MfvemWvu6SINvItfyOg47OzmKCxZsgfFBkGBuM28ydGhhmgQ8NwSLZqgTORy2gNR2tyzp+5aPI9pMeaB9McjpcQepCNLZG8srsSB6n8p4NhblueyAIt9N249S0dutWmBSj5UAfIn//P9CYIXbJuCY+QwvvUl2EqDonC5XpZ9EJfedPeu4f4TZkHk+8eJP3IQIrlonSakeg7nYXlVOaCaT3Yj08vFhDcjRI51WS/AXIoJGSLuK+PbSUnn8meoJeNBNw9gqfynEx9IlAsjVC9ySQGH4u02tgvHW0XxnRY1hGVNxh2C62+nnpQxLn7j8GU8D39INA+wp4N81ieHCuoROXDMrC31sK9PJVe+FjK1i+/4eSjYLfhIoPcj7Iys4gDkN45G3503MlyL8yqzlwfNa7vvIT6TRUs1I8mhStMj4YvMX2TKvJXEF31tsqCnwmo2fyW1n1nrFvhxYZknTOCQdi3OrK06DcVs9+Nl9tzXg6LBmBbRyy+WlkcuqI0x27bradK8XSTW9U4MZ9YEu4G1u4ZoU1MrEw1hvygFKnpBnPUdcgYwmtXCMtpBQOTJxiyLN6KJKs2TZmXWv+7fRO33diPiZH7A+/gE2xVjpDIqdD6oRbxuRvr5h+gTnHh9Gqf18dopmHtkOnH4K8NMPepdg8b0ItWTnUfhMLrlVl+5alkRAJH8ECngUjPWr9rpweygqFta8afJlsdDDyk1NIy0ewoRdzjAMRKfO8KhopiTC4MCSTbnUAx+WJf2wLLcn9SRpZ4tGJL2xRyPoFPGKNI1zq1pAIyNzDbB3xdPNQ0YGtbitbeLRfzEsExIQ8ThWavJygorJ6S/HTpXFmFtLGsx+aFkP6VzcQpHxg+/BZTvb5hOFc9KhPgLbrukR9mjoVUiDj/lB3W0kLU9FD9gz9pwyn3Yyg/j1MR7YI8GxSDhdvOQ0kmUzch4HVpLyvDozHkkXrqcuWrmDbVUsWxXSdaZsJX2+MRs18En6lrTIf+FBt9FPZvT7a3BYRn0AFb7ninmsMoUbGl1waSX6X8chXDcBKm7DtbouBy/rRugginaOqwLkEwN0BuXs8UdDbosSf2slawPSTYPKmjh9MrFmBLVzGuV5OOffBRZeqjDxJyZVIL6ZHYnuy9ZoavtEkx79qMtP279GeNQBXNfkDx2jnefsKEJuYyDfiUBsz9RgVk7lEvPskhvgeQmQmZHjuiGyNIc/ukmC3bbyzFE6Csfa8dr6nwYxe/HHnBJNou4c+CWzPcFefxd5lBN5z5ksRaYTpKEviL6VlEAWtpKWJYFE4EgVxZoXKof4IqNU4nQw3HFF0IapkYrFFUWT/mGhYbh8K6Av/b6sh9iB+sitfoU2kpbh1C6CDVWkoEJeb1aIMXpwQBETiQfFesVBKJkWucOvKxrNFXT9kvGLu8DPD6Y2c6wpf8r2ABChGVyO+n+kMEjArjLapAzgjme5x+Kr7mxqY1rRQqaszafeWeKFBRP9UiWGpimXELxYVRtxEe94Q3yoNhs7WTloIHb3Btm0TjyFwOscFVfX4VgSDUKbSuiMBgqx37jrj1SGelQxMwHW8XCJw/lJm7wiUslESyUG6hL8P/yodcf5RMAv7g4Ji4X1CzQs/82hGwiLiZOtthloN9INTAjsPcvICajhlozb+kWo8+BKU1LP0Kwq1dtfMpIvvTmXvt1DBS8ulISPR3SgY0jyAKH8A9ntYH2SDxYo4KWoIVZqYKa6sTFdLFNSc8iwM2lebc4vXZrhuu7J+9UxIukPErnUm2NxlAcrmgyC+H3fBE80qs4p14yy1jveCSvko9lxFJILQdy+dQ6UC8zmg/mLAuQY8Lbqsa0/zIaOx/qbTTNIIXFRb54NVYjoLwnkZsKXnjDr63nWlER0TmL5dtIQC8/3g26dsRWvYqb/Qhe2vkiSsW3QgJmZaTUZMMEO+jhwyTAjMY6b1PSWWtyVj9JJPrGJBElHUnpitF3nzOddJWrosobqWTzDvbKTee2Inu8tV/hcv19x8yEi+oqJ37MozvdUOKqglb+v3nWffXB7wBt1mSAb47KXsKZXamELj4+NlvOzKnsviGu3euorj3JajoHBotaM1/BHD/PEADKHCGSKfYTUdnTBy2XOb5ziAXtdSkOgQCU0OmBTRXUH/HcmjOIO3LVX4yyaxz52+6TscZu2nrbDboMDEcgUEOW5qC5Pdn4BQUTZGJJkuZ8XqbPaC8m4+J+mvKyUR5Ua4v2yEbty2/jrO+2swlr5TqPvSRJpwB2fmCP6aQVzPfadwBgkK/EqA6jx5AnMjg07bbH6/UDpS9WEfyMhj6ZJv68uvSso+u5Oy37V5lbk8EzLeptIMztDihd3hhVoRDQpXW5MVwGWJ+wxdlz3CzVyfG01Kc/8zMNNYy6BIzv+tharT5UOhi2WzjIBCd3EQI8Hz5wbQdl8lwX/CS30mi0Tjo+DGpfPkUBlofvjUXxwKsz14yQp4A7Mm9qflOFkDHpKpoAKiU7IRvvCR0jRY53jWoe4l2XISFqGUuGq6dR1vZCgMX4itrCRfB6MqQUt9MFlpsFI4mgONBBLpmmhluHHStoB9PyjuWKLI60kP9Mnskya8lAoIrPTPQU6C8wk8H1LDAf6zMl0FNp1LTQcCrqNy+SvwlCKlmLY+onqjyW7dnOr/vA1qYjd8SM6H4Zdwc+WHbFgB+3gaQ9YDbUuBWSNdB3BfpOLKSiEAJeRDZWrTCp4X3HQheRno7P+Ep6+b0giIvCDlenxmKuDtvQjENlqHU7m6FqBwGlUejM8q+7BZ3Somsx+WsnWA+IGdQiOrmBwVsBzTq0wQFG3xsmkQLFB/Q2iRMvDhlzsrTvQ70HASJt+OO/cbFKJwHjUqEcfxqdTxRyMKgJgfQHcGeqeqhWTOV837qRcYUjLtD88ehFF+aid73PPjO79OvTZCrLlygrxXIRWnjMRDEYvEJfhzrJrK7Hec+k+deyTisSZGrDD1Mw8w6g/wcPpiBZXUHU6dfD3pv9i2kA+4oZLF5sclscoOqm0yL3dQXewIMXSmqTXtLWO3jjihIMjRcF60Gm7HwsPwKZhIgHW9UTHExAFCyv6L7EWyt1x1EuxJZbmNeMH0MjFeFcZUNx9zYN6+XdGznOGDoT/vnMWcBh3wUsXZwA1vXylnTqeYhUh9yjsYKJm31wOBKEIZ3BTPEOxGPWbV4k1j/nht8/l8AW+3C0d/duJxjHvOkvdA/M4Zjr3zfQOcXOGV1MKRcJI/qjkXHQg6fj484jBZSOLybQepLtYD7mbIWb0gqLXp+PrMzx3RVrLPbk5vHJX2aNJjS7PrCD2LFLuqogkqVIlbEs917ay2h7/z8rh0QmCHG7UqhirX3bFPnuI1KbZc61DPWPh3KrlFuTxGdWGqLjlRTTnMJKaHx0waJsIZ0O0qoyGWFQlcYAOIY/KeuydruDKGqi+yG0yAHbJ5QKX1Tq2a8PEo+jAYh90dNivJYv4emvk0qzfO1NyXA7zAI3rIFVEpc9+/cX3JcL8YyyJZruZf7PL7RiFynZXT6bcepU+QPVP42FxGVizs6cZB/MgbHqLOoMNEk1Cb13tlHKpcJQ+VvTAX87bgWcJtrjygrqzxazLgHd06YxlEWb9Z9epuN2VGvPyURFxIERHppW5SbHa7+8z/NOo0PjmLgL56epsTmvnTsNLPttDYxRECZS3omhGN9iTEOpJlmtqq9EFDQhmSL6XdWYsMHrrDqxhMWxQvFeCVwfsieZJR0wA3Omux3FmG/s2PKtldBGDy5XLwrNecZQvpQMLBkG12edBxOAvyCcovQz/z6IKNy+sJHTKIta0ICWVw6P8P1gSg7i9nrFwEhojndtGWWBs5wSEs3fjAabE2/g7kkGHhaowcFeJ3utKecP+WsU3k1sqAasW0KDpNFlN9cZ/GpB8rxp93FyUpG8nIpztS6PqzTii5LaxsreyQF64AvEd2F1IMzsxDSE6HpDP8qAotwSZxUwxJ7S9k4kKdsp2d/VgZkkjcUmB58ywxLMxBKPMnJDS5a4gFO6z9q9olpuK1HP4V/hkPIz+3+49KNP9ELpe87SeIZgWosEQf1Nyh4yfvt7J8rW0/QIFmEs7n0+9JwLHe67iaYyoPWShAkPICcmFdFtNccHk/53xJX+VoQvLwKm5oHn9EjLobJpNNh/34HnKjNzCAPLIJF/P6CBTB/nRETzlh9RKIHZUEmHKXqbhh8c/F4ppj/vqx6M1He0YjH2r4dTDWctSSl9MRVDc0Zwv/x7vjf6mHmFJkVWvCheBWC6PdVby/ENtZ4LMRANf9LjURWtlBtWUKmbxFBBu7Nt/ksNcKU00JEE4zBiovVXlxmX6qHV4ny10TjQ/7M/bzdHkV/NNgkZF2aBPAP/FqwCDcqrApriIMIEI27qbj8iwzN3hVdPy9EtMFDPH5Bs3I1TkGrdGsOsEBsYnOf4WSY+/8uF5yPLABz5hRy7r+GQCir9UOOPPe7OFjc0OzBXED9aSYVy8IdUrvmYqWSnAZSi4QcGK4jBjNEYZ/S/Ev9GI+G/CJC7lzL3Ue1oOvltdeRMWftqYwUIOoXdlJt64SBA93+cq0PJVNG6TShyXDzDPjAe59v/qMSTnxV07Paf02GoDhIFP/e4LELFDCH4f7WUvxA6aEXyJpOqCFIvMS4SoGAkQzdVNbpp1t84eRxHN32pBXJyHCsE8cGTacNo71INnobW+C92LOytaek29AKRYblKtu5PB8b4vp3neSTZNadowHzen9wURJyLy/Yg9IIYAyF43KG8qy23n95LqVhx6gqgZuPV75bYF1Xk8YKG1TSdFXLkClYjEn2X2mzVS0wATCUjOcQw/+NYmMQeSucbytfDkokOOwtc9y1Jo90RNZoBO7eQL8g316PF7ndDWS45ksHRFGUY/txompaLJUT9D2ZimAikys0imje1yUM5mjJnMA4WASY04kZh1lqQOVkgQc54CXT5nw9g0euUaxxbhHzNDjZ/mF+wio/YYUnQehNApGhJZEmQ/YN3HFEmjO29gQGnc170c9NIpdnkXOPthlMs3JZ+QTP8AhgmcJ8OhByTro5rUoPc19ShmYgPWrbCjxt2QMVjMN0BfmxwLkSBkZyGVl4GiO30TWFi+60gqS8hk4sbqDQJOAT4xx9S1V3sSK1P1iFo4mp2QkRIbZu+BFFfkbVV1nJRSAYtoYlwiKzfhgQoT6eKp+l//Kb9Fvqm3TFVfXgm8JHmPLd9y/EMeBJRTduHwgst9Itg0EMb7xMt1MvVu/GjHTXPOpSdFOis71DqdraBt73P2kBmcG8JimmTJXrC/UFAug79yXHMA3ujn5ULb3CmdqLlb6JDqPJdottENMFyhPN/83+KHnwIsigFkxdBwRQGRg5nrt6pWWhfKWtyTt2cTavDrVoJqCwECOCT89WCK62i0ynAUKhTF9cJGB9dcda/1CmyQzW5psuUS4dQpoJzUdzLU9kBD5FfYI3BG+UVW6eSTQYoNplc0Ogb3aYgZA/VZy4vFAYIau+kD2df/y6jBmM5OjL3qguNBcynGVn5fNZaf+q1Jr+axvolTNyqVge/MXTc8fpWY17nVX5wKdTVc25hovT/QgmV2xAE0i+uWgqVuGo2UInF97y2AoebUeyAcBNMJtyjctCdgNGrqVjscQgrfD47Ld+zThu0tnJJIN/vWmGvZpwEbrjKTmkm8kX37f+ZsXAHVctYCUoeJfHcT6+oERI0XHwG4pmGucy+eptLxsVX3vUJMSwLieN3lZ33XQwCw9A3Gr1xqvqCNmnfZUyq7RTiWwgbTR+d4HgZWurEd34BCLfRHstUYhPSuX0dWq/HRVMnptwz2ClHkm0B+qSlpDZ4ApqbZoYvNdr/j+heKa7AwCLeKanDyfOA7WdqKJQW/SLPaZsqHDDM7T6YRiLstPZTVtMtBMNxPBZvZzT7+9+nCwls/CtZOuwGds/Q2Ak8QArqqun/OcNzzmCi8CyY/EsJp7vRkya6f/Fi4vNjMjWeX20D2cmydi5dRLEcK8ympqVv756AK7twW/IwOKCFbV1TWp8cnNNpf3JoO56ZRJnGlYpunhdygv7vxW3RDWbnoQUjdql5aA5xnx/TiVPTfhgrovIm4sAK2Y9xmHU2MFiVzeNpVZILj8h+SyV86aRvQTeem1EGd2Vor8alqnUXG0qMKerBS57vUpdAMJXltasrwDN5yR6MeQqdDb+iFL5WJ2zB954X9RwEyceBky8u/O5c5X6PH9N2MztBoUm7x4zUGK4Slx32om80KjWobiC61r4+S8eEYZr0GKCYzunb6rZ0YTLAU4sEpf92nZnJ3bDAs7eoMfTNVbRv/l3Pudrq2nAwULTjGaPqtIAmFoXdWscGUl8/iNCEM1kPHfCq3JMS4FTpCvHxxhxeXZtmg+1FxCumwvWrQgMbMWUhM8gAKy1bXPZIe3iLyK6ZTaHcrA30TU+REWx5jg6vH2Z+gvhtdr+oSXpyZxM7rCbWlUpvDd+b5f202fMt9HrYDrbH+379fsBYvzdQuvA7AhrCJtjjAMkeA4jlnlewMedFSoHc/UqVryXY85RoJBt9HX1ieeQFb0BfHz5bFC13qfH/0LdJF3swBNueLTHkFNN9EN7khs0SSFX98qmrENC5ZnjieYITHFgu4asm9oWKSPbE3ij4XAVd/QmHHmrEcaZmxAbW+yezJmCQjFaS2/6L8k0wuPMI6Zd7D40HIlTXQGV0cgRpZSfNlzQFZggBWfL/8QxCwn+a+/lVlrQw2kZ/j76w3raKc4fdlkpThFH+M1st2na9htBWYPaP1yJXATEi0UHKdgK1rXAkVgPdEg55yxHNRvPaJZnOz3V0fiagQPXMgACwQty4vljTF6dPBF05IqozdAntqXTISqM5KF8Q78JuKpjiqTOzGG251O2vWYcLqq194ADHyusBocxCkkvXmqgjh3xbmNTAwfFfFFp259MfqXHjDASsNAh3T5SzgMYdHTBywDW6ytpSHhWyXpN5rLMpK0jXfi+lJC0HzNSparLn46ziov43umwBZaO96+fKidJxCJvZQMGoBAugvTmwSbMhZZLNNM4JNkJE628MfDmgUL46tbWD+Y9+0l1TznKqkEa08f9G8e7cecBqsN6+TPkx8zHamCHLY+5Ckj3+25yyQQNhojhCB3/iPRUJFlAJmj+n63ACFRuWIvv3oQiw6/I5uI7FDogH2tQQP32EOqvjLAH9NBKuCcPRPajcZZbpABlL6PgaM6NXWKXw4r9Lw0aptdLgcrFKsmHFqbKHXOc9NH0bIoXPj5X4KyceGx6cPgPng7y2noeSgJ9nk0EwIq2i2XImMU9JZ2JjGR0Ql02Q0ZoXNCWC0IPKbUGQ23BakAjD3/jYv3ozU2EXwaoeZ0VIFdcpctEJ9W1TlFsHeeqPSsf2ucU9NFjz/GHHCSizfTYuLigcuIHC2JfuRK4eD9IJ1ToelwFOlvc8W4g8CrH162Bf6X2vbx49xfiwWPq5BRRzkW/XXene3DwmD3wE1LUfzgx9MaMT7cjL5l4t5L1NwrRhik49eZKuEIryCsl5fyj++1e7Z9c0Y/BUxxX9Tzmbh3S+v31+qcUR2F8+yiQsuaSPvcakmNZPeIE08UI8YYGAXy0JWMib0zpnpUWdCdQFXcJcLqMy0idTfrViSXW52DvisofzpmVmjZWJ33m56Qa5RjS5mEcHveh4o3ayuun9ebzJ64QjBfqETUynQZq1sKCTYTfHBz3VkOcxmsX6pqG4qyERFudzfbgRHR7d2lg9u2cObO0EBwx0ZLr1Rd45PwarHnFUMJacqMpM0kGNTRpLiFw+5Q/Z2OYk5HHxotncqbnzJt++Dikp8RyL2rv2XnjxVD6Mi/8YNhj9/qTQxTFEm5MDcqlOEum0jOfzX9BEvKSaU2KdVRcxUChCPA7KcOK5IeK5coFfM/HNDj9k6nal8ObPbZlJFCD34Jc9Ou0ZhyQT4+Qkh55V5w3VtUfsVoPa7CYqpbcNpC5N5gnaArAV/U/WPPEnjEc5Q+NZVr88URHRDc91k775LoyGZ/W5J8O9qacT6p/SSsPp2jgjm8NJkEuuuCu53T2f7jUsYeWXt+M2TJTouctItLfbEJdR3Xz/CUCCwR+j+M9gt7bcQuy1HSSufp1tkye0cajfm84FHND08kh+4Wq5Y84v5W2FGMGTTI35REc7yrcqyMK2J33xbb2rZkWGvQoKho35KBhZCcvFrIWSPuVN70O64/0TK2fgL8ZOsJIldKPrsT19H7sSPylFM2wq9pWXx8ELQplBbP/if8SJ0cGHpXcmiYHf4witDuDdPOsh4Fq6TSQ5mdkR7d0hCRL0B1Bx7Fr62kakbiuwoZDAh2CQoKedyeKRMnw7ckouvj3DajvaWjyRPxM1TRu0wnTZwxHT+iPTZ7ZHzwJlXJaJSufO3NlvwqqpY05aHqYR/7+/lU62vPD3KWClJIzjNRV6/F75EUUzI68rtW1OeR7FMZTfzz6W8mgwEiQSeA6CkvG35r70E2s8BgCd6GZaBnz9sctsnlebUQFbZsQRp80Ye8jRkBv6nn+0YbjA6ZK8Zk7vniqwB5nhXnSu9HBjAYqghonNqivpPPdHzK97r0Dj30pmsa0FbS5dJHmgFh/sqgDw9nLxSCZ5XhqWvb9qQfz7Fv7F13MRoKtquu+rYxp9Fir90+tu5EKsH+Tev6pLx+qrTjRx0h7IdGsR9qxxO2a1ghDMC3SbevOP7Ueo8/HXSLKkllvniUITqMSg83eAMyPdWdXPVnDl3fG/mw7z+HL7EJHrGJf7lziXfrRXDflA9AWgu8re2BdMFi34miMLg3LpzKJqwo0sSsKjhOmrLjmCNj+WNjxWwSbWmz+tz6Cou09jHDIRXoUdBCpQncKpuv2UFJPOLgovvcLIEJa8lCZb96D1yLX9dKADqupfh8GbGqpT2ZoC98jjB9gVVTfayS+7q5MyIMkdRGETOQrGe+41uxEKKa5IVC7/k+MfbXgsfUNkf84nrkbfRy6WUDWhKiwDqNSs+JNhmwwxJQmhSL6i+IsOD80fM8fHAkctnZCj/+TjV7rUkj1/VITkoMJlkhcrzXeOFZuy0WVBBBmfJZHPww7OByj/xCRiOtVab5TccMPRkxRtWExkdSldFi/xbL8lIso+ceRR1OhdNuALWQ1XPZUZr0mwF212Ci+E7+liY23gbrPCHmnP2GPTr+YfEqBATTM2oFTxdiqXpt6meR1qF7uflw7FG4WAk7BnySn7lqCgNHxygc1DDkJK6aaiak397DFGDrX+IVVOf8PqO2te4E2LzSa6ovGVQSp43QRm0enpgqoXuxAg2abABmhPIRnVEhI7a0R2UAXQRYYdUhmQSAaIjioVdZTlwuvuQjwHP43CKXRvYdvMpLrvr5KGs7evhlow12jGQeIQNzhv5rkRCGdby8Rb7ZZ85DhjnYvCK1+0GqIHTvwR0OzcvyzOKFbQ+sXRfFQUupudw03TyDUdiwTv+UySqITQgtGkWvF8drrDXgf/alhGm7SkfBn1QopiSvhDJJScGkG0aE4QETWfIP6AYN7gG3r2aCTC0wBboqj54QJf45aDs7AVJt1CZSRpTB0T4t3VRRnUs9qDEIebb9cxjuDY35iPXwZWzP0M1Pq8NYvoCR5duuui0zIGBtS8pZlgS1rvYH7sJW1+7ifDJ42Xas2r4LhH041KlqNva3zXfBOXc3GVuHhGajGY5bLLoD6L81rkKHL6y8QilDHSzWfAQfsiMTmJ74ND8dOf4Xm/vn+cFYRJO3b/GoigeBND4nc2vPqoZk23Gj8wyxMalcD8IaP0U6zA1l2+RIqJZOxmvG6ulHnLub+fmYLQoKe2gpTqVUey11qiLoPV64jGadLKbKLRd1ZqPMDXYSs+ZmikgmBbB0+e5d3vkjMtxKks8o+ttr18R4bapuJOhQ0mtQOsOY6jDtjFxDFvBeUfpMEBKMTneTVbqmlFYEpSsG6AZ1uqiDQQsNdueB4oV72WidDEuqsZjX5hJWbl2UV12gEdBjUhLn/by1QjpBe4iLaf4B3tzHf18UB7/dNMVoVS38+E2w/GlU7jHetM6/jGkGvCimo1ArAoycNEn9LSP+TIVlrs2HgHEWnuRV/PJwMKXKqsh0KdQxF7yRcor+Kkzcner2Lyiwah96mW3tUwkHGwtsVuzRT/CJRsEyMVzvy+qgzDXW2shwNyeTbqieFnJpsrttCgakIqFXy1XWxH0lqHDzwWvNpa/eZ8GL2dx/cc93tVUrWT5qDLGPDEOuoJtpA3DWV771u9o+Msa+kMZtfDfOfhSgt0/2z/mnEsX1F+9mf52EZcDv7r0kC9UbI03hIWq2oLo+N5TnInvdYCUwVm/N4SAVueLHZYbMG/mg+8/lLS71YZ91Ai3Fns4piE2QIGTM6nbm2AKG3J8anCSyswOF0ao6rVGxjr11nkpEROu1lJJ1EKhJ65LC5mmggUaYRnxlDoZEfXZ9PoEyKy8nUJ1hPP+1dtntbHrJ6fYfV7QRbVlB24mbOlNsERxQVvpu6U3QQ0FHai4PiWh6TigbX4qjIvRmIOWCRMzg8eKoZJZ1qE7Bz3+10okWndC/sEVplU04D9tWWX1wktyhWxnHnMd+IG9jQJaESTpz+CAwUyCY45OJen8vVJXyqQYtHCCi6/S0J2nuNXqOooi6lE6cR0rxx8UhJu3Zb/0VROEBVl4vc1NrkYd9EWFrw+0NNlFnegrAdZ9LnpUb/6Pr7LXt6HvawE50Di+c+FB7NHv5yjPE3c9Z5rDevG2alY/WsMEqbMJYfrooQ9N1Hdpwf1Dgvph/oVJHHhGK6E14YLeMQ5xjVW1dPtOCvmfF+objWg1vNcTlwaXh6ld9yYAek2ac6Bunx3cW0OHxAItgh5fgYmWFIHk4ttmYLZkulnjNErbaSm3/cs5O+DZB1BMwbsBqs7HRcayUw8nmzYbEGFjmX5dvMUvpOyg0szly/0eXrPqSSJISVvDQlOI5pqUfuBmvoURQDWsCMg+IpFoH6BbtNIKRzBCEma1lt/dH5eLB7F/PhyJAJu321pKVYewg/1Dp0L4qhwxTt1/chS6a2hO1Bk3BGSG/8Te3m97gAPgnOUQby7xFl9bytmiV1Nz6fFk6xWugLeqy14ehUZL9FVoKE2mZOO7UDO7YnUMJC5MWeYf0I1/09XG/SZF3ajo9F5ylgvU+qIXeK1F1k4sNvXkL1chpMqhp3bdzAYI3Yh0mt6HtoFEhztqBdSJG5MQ8V0Ze+UD0zh8tPYX0UKovV7PVYOD9MYVMHd2EwBFOphDU3k7j2ievrURUCfs0QAKzZdl5/xNow3pqp0xdTa/tgCfaYH4Z0U0aoL3t702bDySA7eHHLW06KDcqKnSvo2AOYIHzCC/MVLLHwrPe0uzyCv8QlDT+8aoxbrCJ5BZnM280MGRkfRgPzjJm9YVNGoVbWfWPisL5rlp23jU0rDtjjGZyoQIG3uqb6zlxaloUNZm8N4wPjm5MfrmXB52ATclmPt5/rgFj2F9hRX0Q3VUX51EFZ1PmuwsN5dqQSogHjBpimuyJgKSkQ121BMPK7ufy+pz+BnbaQUyn8JOcZVNi0pt61FScH8AkyMdbSGM4SxIViGWzyIlacSGH1J1nnLwAtQLBWplXtXcDOkFxxoGxdBJOkv4DILVgIHmrLdZ80ajfdWdqa03655ZXRcPQg1R6dObnAbyVQp3P81W3PIanBR2riSd39jOL6AhUdahoIbDeK22pRu+kVUyuQS91TKuyIQWrJKM5daaYSDJa92HmqIkxHf52/ikq0PaJ0bXeDKJxakHDxkquQ7uP6/3CBelS1bI0AwgubSzLxJN2EI7h83V21VyF/pxiqWEk5iHwv/u12o+ynixftW2KCu+AJIkvyt7U94ZFl0lkB4Ew1Ob6N42XzTOjzX0XP6rMy+IQ/W7r34jkTwAglw93NoG8d9QOzDZ9w8U/6iG86vjR0ZfyY9UKqDWbhj28cuCxcy0EBwXSbpu3L9FpDH+OhVL8v0tbrbTVWNTn52abB7s5E5m2c/CNrl4BTyxNxL98vnhX17fXJGEypeMKc4bLIyGytqZCDSNX2AeIwYlPO8JhCxBxJe+eTD9M8scji5gVPuJM6/RwmjKYOrLamd6D7oO/4yy+XhnX7D0pPRuS3v2k+WMYuCLgxYq24qiSnjVMCzJACQL3Cnof9PwC0m5DsVMZCnUI1b6YIH4MtzpjonPKCJr6sFC35D5FDv4K/xfLu8lvEc46BMqlrYBR3vxFaTzuzI0LLDMp8HKEKUO7epJCzh320DOvg67ex4jLTdJnZ9gK6TXQU9BDYyMZvcItu5uLoDckWWOF0Kh10/Fd1pcV4z13YigOeTVMSttJgQOjlxb4V16dlvgHoNDZyvW4S2ianzizsGInyUgGUxq+Y1Vj0uT6jrgSGBO/ms1Z7fktR0MOxtXh0564TewP0Ymb0bfb018HTkGAhINWzyPDu0Gs/uwmzAuEsQ4bnh5KssJv5L729fgoFBkSPs/NCbQ7gvZaarL61cHc4iijJHvufLBlU3u0T3rQMWYmoGUBmz/ndAMd6o3TKjrUID11kYf4FOXcv60/Tp5jXusyrJtPsX9QcJfk4pyqWCf65kJ5EjZFZlKTMoLztGPCmyZSS5Xqor/LdHF3mRbJrv/xw68rxNu1faWA4DrGNqyV874OhtZnJXWyrhiQJt8bidOir/+4K9NCb2gP9Y/zJmgDSD9s0nKtbmmc6NFYCfOjCbuH76acwL2dfugzRyhiH0b8FSs848/4ndA8PZNHufcKepzH9KZMcTTQs3rEmH4zh+OIC4hUpOmFI0IFF9w0vnFghmPa2jisd94aa4oUcCgO2my9pPc3IquRz0uR51AVuTHFP64OVI92qSZ8RuOfFnODa0ygOh6in7xdET9dyIAzu4+q3ktuXyR9OOjHkSbvQQXdcmCfVV/zXgafzqwZqd2tDrplOVVYYvO5bojsMa32RYlA9vmuEW8yoescGMtHOnPoR4oLUH/q2eX7xcjA97KlYEhCcIMNyFBH99RIpHWBJ2rNwfLoseKiJrQtVsaKjdGG1zHHiPuDTU9RPtu8NK0tHAmJOuuc3YLMBX7scgRVGCuK3mNQ7hSyWNQmIwQzZj27LMC8w7U/9VzSx+WG5a0aznNQrlxw/oBM8QrtNf6yjicorymsEBrLv25xJsJ+/9lNFCaxDqccyZDCK1Bp3Oo3Ia7yNtQ/QXgc/M8qxpLJqO7XYnAvimVx63EGyXtSZe1J9mFN6oHBBIeyqKaTRU4ExJU4ETnPOnZNX3hfPJOrBfJN+ImlPULVPvPrb15kV1eNldGMYUgSn78OiIaTFd4Gm+jC70NwEVPFRQiCDWIxBnH5bhtnxorCSeuea/+Ro2BW4hn8FmFmgVhA+6FR2HCiDTsFl8T2Zc16dfU6HVYtHoqH8OSD76OUDtaMlvbJ2TSHaWwPJQmoH4kAv/aHq+OqhTVTOSag0GnKs6bc4u6fPs3SfkEkXJeAO5Go0DC3CHdJ/7tS84X1iNIluuxeso8E5RFhsXLzmHjEALQTBkTPxf2pXaECMEiOKivVx/0QLUmIZL70GG/o39et1LNRRe06rxcOEVDFwvPHlk5VZ4lL6lR2yslv1D+GB+9PrWGwdv5YS80aAVJd9EJt2btptDIpPS3auhhoDf6KM5ll/LWDp8PFfuTobjPV74yOlWxmDJxuz8GB0N5W+jP1M3mAP0zSHEOIVnl1oTdkVPXndyK71Wg1aEzdRD4Pap5n3+Z3sBKvXq5Z8ExebeLdZSfXoUm/kHEdBU6gSyI+YNLsCEcHIsSURDH4g3AoZvQnJ8QRRQDYy5TJpQfdmyzQmX0iV67aqvtZAcB5PsbtfR+rQB32WWzxZp0Xg8CrH4paIFxkXJBuIrCogkBW4fzEHYxk84p1Ot9Qvzf2s1dkWnprSvZ2Mo4xRBX6OjoBtUSgRAu0Dk47gMeirnLxiLYGBV6b53MFYKLsJc7Pkgj+3b4uI+YU5AavLM6J7DVC1NQFuX7/p4jIE1WWbRTxfwlVa1DLLS3lLxHaOI1fhGIMe4iB3hKLxBXwZkmNxzptzDXEW5KLDQ+Ff2XuLkBMLfl7hoV1lBlsswSzMao+vK3IoaIQNzj1AgG6Kf/X/A8TIPyYKCBUna6+wRW7FYwFTuPdPWqmenBv6c1DsUMuYQMn40J+k0fBIoj2Q9jYmAIcuekOVxmtBUoZxlaEzdx4Np8LlOmlyxFM8C61VbyYWSa1Qenzrm4XXEGd5MR/s/kTuohefas4p+/rNx7ZEBP/ovmJsHFdLbVn6SOjU0GwmVLWkp0QOtgfNOCsCC0GWN1+cVPIr6RHyTPEANF8Q+yUq3D96cHyU2nNBFDEg5gkrvcCznv4VcCQq7DKpfSCCP0YX/n0V+dqTvrR82EEzfCFrvb55z/q5kHSdbTJcdAQRslgLnuuWMWQEcuxoVzGeatwKrD7I0VWJ0cnIJ/cHCHHgfG7igN5xvSBsl2TaHAfFpohr+pO/KiAhZdaLMDRF0CwZQDCtKah/wVl5169G4fzLnO3QDs7KCu/7MJ/9iKuiP2aJFhV6ecU6fX2J2KnVCjvQ2CS1zcpMQgGN3ybx7S7cmXLNFsoFpGQLsy/vSmB1+f6KYWR/q7sgzNwsMVAvC/bpuQLRYgJ7KzwSTxSXeGAt5GsGf5RFpsLlYF2hdfUUvIwkVZfJMFfz7nTQUmFqEulwLoXajjrog5qHfbGeKfmy5ULbWOLcmT5Dvf27EGqpTB5HDs4Dejd5mFKSReOahK3J/i8pYDb/QalMrhjFnj5c8cnqnN3X5K2bq9cwz48c4yAbPmAXNVgL3qmKsT0TK126fN50WTdVP7OLpIPnmf+zwAsokacZICDVyODyvVdPjNu0y7O9jZ44gqtN0QvTlRYDM+GGTv5d3JTdQObmuOk/atTGqMoOBKiOFPiqXabKy+czwtq6hSNwb0v/OxL64zis4H0krcEA7c4zR8UbRzpx2JJkvlcWeygxQ5h3prXam0DJgEhYcpsVwS0hXEEepajg7R9Ea454MzhARQY/Nx/8+Q7qkCEwIIcYs8nVcNBC12UODUWoIlFbZvlwcj+ELMsf3zR9CPGYZEVNOmPSo0bjRm6gPUCYpEJhM2L1S0SSb7bEgeN8lLIcN2mr/wTrF/dvf+B5GsxeKIeZs2v+YFEQE1wMER6j2eVhRJ5/GbXCj264q+A46SFF9qjVE2JHpz1qEuamWRChgGCnFjPTmTQVwBA4hyOgrmo9zNoDf60YsQoZJrokOgCN4S9yMioo57g45rEENKB+ODywu6rkzKTMrftjo+XQukgCKR2mxi2q+o7naYO1jsQTiokJZqx7oycDQ6VkkmGKu2d15fnEa/3GjrN29LyP4jaOToGk632YHtLJmCDDkaEss5sHpHh+hvCK3gbL8KHtH6JMaSAMTi03b17sY+NJpezuAm7D5Kx95pMJzeCDoAsc0PJIeJqbUsUqlONa+0rqqk8lF5xKBYcxRyRr7nlFdfcfIBKD3dwbQNv4azIuKgQK1cFVPHra8q/xGKXpxTAV8d96jbgpfBmQ1QXZDZw56rnkQrbTqEoX7Oc1dNEn7EwLpBctre7m39B2T21BexXcAc1cHNKeRI1C63n42oi9PtzRNGA79G9UWry5sDEen1LrImuMMmvKm++bUpk9DrlAROHHTPwGCJR3T+B8bs8RGGh40ffG32HnCC/wZwyfCKcLAXN+9q/qPEifV4T3D/OfyuiJ494nu/iysS+5L/3i4DcdB/6U/XSee7khWUgK1MyuF6YztxikwydpplbEVidmfCq6T9TIYAYPZVVIN4XAfv+mGNERX+YDY7mYFcowRQ0nmw5huZjXdp+WaOSMo/JKwdLJAZ+6PN79WNRh9Clxoz7+bnPTpJyVk48Frngb5De5YTsfLHMCZgGZ0hFf8R+8WP2BcV3LO7mDQgV6TJs6mb/j3sVz7+zLX9YN6IaLuJaPrMEE3YAXpPkUxB4yxloui+ucQLlR5yDU4nM06NesRvVByY016POMD1Y2oS0EHrTVoIRRtth+ddSLS5H1eDWVwxGjjq6dkPUwZpYvV266BGuvmRKUSl94xMj8G0w7N74OfHA4PSPRdQn0t2XwYeGoS/WE7t42dGgZnXBeWjlDOfZUI5ccbMvjUd74TAtVavH7ai6ar++s1QvAxBZnb2ue/st0S2issKy729aPOMTi0AVIHHdXRV0OgMfCYJw2ku4/Dadds0ugPAhRcVJxv1Me5IdsxgN6cy135egRjrMn4dThETnfkhkp/fLQeZxIQcd1n9di0N5F9VjOCBwT2+QYnBUCkFngFLYq3No1EoLiYrl621ECEhmM3VsnBRKXA/PzH7fSWfLxzNOy7aCxHx/JsQUUVuT8JPx8D2VcniIlgElUCSDiCJGAei8C/t2dsCPwWmSUDFxyAGKpUT7kMw+iKfbBdI6znrdijhaaRa4J6CjjZ7nJqJL4bOXhVlEjRu2APE3poVgJADhk8OGuylYKWXe4fuXT50I+qCvifo0MD0hFbPQvdgYLr23x4QwcdFAwq+HGFqBHQ4SEFTINxyF2k6uEegRD7wR1i1E42HA7YiTr7jCSpo189FmE1JTXrpWvO4YnnCjImnb9yoi1s0q0yWiCR9SBnD15uYwMOT2LuErxhA9sAzX9zeo8cTqJa5uWsbtiecvQelz+2S1x+5VHYxGXKH1uUGjs85xLWIgrv7m+X/+0b3beYmx1axfzaaGZUWNGWoFleKWRvwvHYje9K7wPb/Zq2jQ75vrt8t0wxQ62QHkzo54NmMVVej31L8lQ3RnhIJGodk3JvUByL76Q9d4s+ErjiJzHIdoKq4bQBXEkR5zB15iko31ySj+xRtI/JLbfzXf0E5DLFPOyENgmZ5KHAs9SWk+LcIlqM0UAhQwmxPW7bN4o6YdHKExIKpbQW3V6tw6P0jdSeC+7StFL37orUo0B2UUiAHpEJCX5ci3+J/cz/t/1EqF4muc2RvxG//huWga7Ee9DCxLlQVEoPfZSOtIf2rtG3znzIHFDKg/LsiE4x65K7Yl9klv6WMR1brefhLapT69CtXOILSIE/YzALkEJYj4yjPOfvqegfyJi+VMH/HZbiAZiwEjUdikY+joyZ2kbDSqOkHpjurO+/KnK8QekYhnMBL5PV4z8XDQSvaJf4IkKObU3gqRtOvbpUXQfXCo6k5Rmi1yM6RgHWVN3EXEfNE4jvBILI9Pzyx2pfh5ElhcvjRMqn3I2e5dzQwQwmA6+ZwgjZqvj2bi9eynanIqW8GwODQswz/xFCAVP3Yn55XzeGcnSh0O/VhC2A5mxrmOLCkJ7fFEiW8b67CfPgzCPp+nw7JSkUs+o9emrEW85asP+6IWIgLcb5Z9qobZWO2PZSkzxHu6L0lh0NKy8q3CVV5N64jHINReQU0zR+NMMTagWG9FDsPTU83f0Mc49R50NAUQsLKmN/YBKcXaK3WpoGuHk7FL3AYo/JGR9wSUifDT/5y93BX8Mr3RBk746V0RNblQVlxZBbdwU6T3jr0s9ldRcu83K5ilQ4AKRFVJJ/06d+gltoadJddInq20m2BPjAR1LvOBtS/miqRf6DYq3rjSoKIVTchOd5TKJQy/jeTocO1SsFcLqTltXhx+l+4leSYEdo+QJdWIewxgthnJL8bgmS4mnXOciu71eNq2RHMQAmjPCkUNL5ksKaCV3+LJWqWcRzRRESF3Bq7rbKKD0HEK3OB5StVzK/p/MSNaWOV2Sy5MTCuzEFP07N3IK7MmG/s9tSdoaksIMfIc/YVaN9fdEulCV0ewiA+OixdfGJKeytGnMfWtOVR9QucT2fhfEOF9z6g0t1sUJ7TGvCN633Q7qsPZh/Fw43dJDXYqMjtHdYW5yC4hi2QrOiHr1ZcpE8REKf8GvvlXgWHBm56ocZmkpIzYJG69aF1HMAxyJoe1Q3145nQ2gphsN6wNybfVeymqTUyZiJiurNOudHqHzFTLQdFZZ0QfVKEi9549fiowt3h7bFr8URNSua/r+eH7RdMr91UHTsKw3hxX461F74FezyXhhC9aq3EHMBad0oQJPEHIuJL/jbfSxCUndnxHuqLy8eFFvub7CpPcsDYAwabxAeJHAqlwVub2RzAxKoECd4lUunAZ+0ywqPRb/7m7u4IJtno8w/MP0k82sFKo/v75a5hpFAD8/t4Sc3sr5qep53b5rIJ5PYvsVX4vkUeLVZI4jNofVN24amfSTe8pv6/GZu2uXC6sLKRjq95TcoS/9gkLOqbG3qoHvtP9N73DAfnGfJfeuEU2vetVfwX1R8hY1X5puILXmBOiDqToNURJHAnwLeR6NNI6ci3ZDs2+0AXUMaag9gN3m12tAHoYSfCZFf5fGWOrjiekr7uviOEoVJyTAZ9JhJUrhQAuG/Giovg+6/9M9CAxeqfrpDKxkDMklIPa6QA4LFvVNh2jUyfuByvQ9wofArJEMzZkOQw93z08MIYxxa4gfoT7E+p4sHoEviI46OaHu+qyYRC8R8FR1eiCFdFKu7FyF1IrreGTEht7hyoYOzmJw6SgiAo/QsmkpX/cTLMeug5h/bKjqSD070N/s7PoqcXPktxtM9cNxJL8iuNJNeVRB5bR3vHe9HtMrj32bBszRLKpKeZDxZlMyWZPJ2dsA8lkwiy++wo4hgpW1xxSqJZtMXfwbkFtGJIyx5ZCN93q27KeMVSO1Zhs3P5IsXXWVlnvpzLnmvCpdB+2AEXBe7smAsynjk0kIUdw8NY1LT7BcIuJgxGv66tPIV81gp9k6rJvJt8/Hdg4J/v5lymNciwVQxCTZJlIcYc3MymjIJYl8nvLntc9Jt58FzQMD0GX1P/C4Pr4eWRUJ5H4RxuB8DVeLC2Rn4nk1ZEyMZqR+1raQjmPgHTxmcFUBehT7JDUU9OWBlHewflLLLwIBS5sJVCW+3JNfZCma8OXJD+94WT1+OA3B56q/jkTiUEHNZN1yavTqb1MKUgL1QCyzuJ9sSPhuW4E0w77SXtPkNKd/QltN9/4cDWeXanvHCyMHeb/EDg+bWCr1s+WbBWvbWa2TVg5YSD7DfyMbmajtHAiJrc5LkPIpoMuJf66rGO3ARuv7x8xyphcRKb94093Q0WeY9WoJxlTKGPQbwS1LLHu0XrdESguqALYyT5Hg6owhW6mWru9i/5kqAfkdw9OgChIE13UY+R9h4aXK67xoppG3pTR0iCmJnUnOyv7h/sygTX1BPAtliFBs4pqc8anh4b/9JWJFKhJ4MuPnxsGIY5lyZvlAeDNDTNsTJnkHa/tPgb8M/n/k1q7xnQWxoZdyPfDUYZPVrW0Nc8/ggUMj0/4sxsd1Wr7tAN9uZY1o7tkKKqT0YmFf47SIDLwgQ/crzLeeOLloBMk0JTR8fdoOaatA286Lbh5NzfFF1PV6Fq4ApgmxNSwmfaYsCp7tpaBa2uCo9xNNa26tUrnCnBUlDE6dV3SItUYI27cwb3cRBsmZZvqV2q7khcuzwG5xGpO8sfbklh9RNLuohuqRmImtKcPn2Y8nGSYD/FdMTVUhFLSXf6akCUhjiQcoPZqMh83/X/ivOY0iin+3haDZse4x/JVJ2lfbaYSibHkREJx2+4GAeV1BneqkvAYQpcaQrVbQ1sJDsJ2tmjAVgt8PD3YKILdKbrapzSzFIDmWuxA8qdYsYcuh/PPcrxO9KvzZtCy/lrRMsIK8j2HznVoAdDx0hPG/HqcPCVUrPFG63fuWUUIa3BB2heYAGYWS84qzCjO+V+d9OsIzEH5R19i6o142LfFjSqvFUfv9Rs0mpLZRfEN6l+crd7NetdJjiDcNTwdxbj1QZOgFE9wy6o+zcA6G6T6IptETB7EZ0iUj9dTVLSx3onG8NgZlTn5ZWfvOsdI3mLicstvnyNrGIww7Bo3g82qXQ+Wiqhsv55xLIGfIsgX4s5JiHwfpvFGuLQ7hzAK7zFud2BTA4bM4EALTTpXJw9jMLO7A1nmaFSa3wvoTl2wgrwU/VqSWKj6BvFtK5c+LIXRO93yUOkuW17nva3hsi5F9ECb142cB/P4kwMNqEtNYs8dyIskFKk0HZ9Ks97vjDv/iMb7X2r/IXyRPMiObj8pT7TLFJapc2POO4g1xoGlUlCFuCSpQWGHCA3kv9AwPieHT/cCGYkII4IEeVxFVeHqC9w11Ojrl/tqqdmi+F5wT7gzjDzm+Nf3TudGyC+0DdyUcjScH3S1h1MtPsF2qdHJ1zelWUq3VVUakv9J6Sj77oa+39HBxSXd1u8KTw7uLgUNFmcQLohAP8ouaZq0OONLqIy7yVJRa8xKmbkLz0v7vZqXizfZjYdDH399AFptJyDoH0dQd7c49aJf6PziXf+L1XpjjOx4mN1+ngI4ZCHdD+LI3rG08kdLlQxr+9Eo+mjLlRCI1B5NpHeVF5TU12BaN3QziOpj99rcflvUu/+qNRbchXhIEBcKoUfIBzxbuYc/C7bGhfqrY3U2KTw9Uo0GO8hfKKtpLhnMDIDi2RHY+k+e0ShDfsQnYcYBR5rjNO8g8Ubf1a378x5H5U1kpOpwDZ7ZyyAr97+NoM/faqBEShFMGaMVmuTOaRKKD1or3D3A4vpinj44FnlfwJEQ8heui0GNGkZoPlEEA8OBOD/pr9GD7gWtXIEu1swmkEKg6TGDOdvjpFWcNM01uK+EwoVuZyldsT1TXDQMeYE5n59sXUrs0NQQqmeswFFTs4GIQ85JKWPc1BCwSoVZKdaDDnUCtqIr6OGfcpL0X9AwHatt1TeObuSLEZxrSVQDmGhqaXanoSoYDgTmrNsQqHbPMtgDGRqbljOduQMG8AmE+p4wQmy5E8zghtPIPqIhMLMeV3zWrceUGmnYqz/iqcGuIC0VKEton550tv5Kkmo4M4Jf5VLmHf5HVEGLthq65aR3qieDbDOF0yveLoKvVzSbNUqUP8xk0dF5tcPnPwltOeweYhY0CReOvSCv7H/p0+givwX6JIKZg6Zkv4Yzayu5Y5bWOOZHRNb3hWH20M9zeDEpW0R1jTBmeEhJKq82fbf9IKojXMujXHcgHM/0sMECcTnNql05l1Ol9CZbmsc7kLXmxneZnlRuohLw3YjRWH7jrUDtfKacjt8FLEVMwD9D2CyqsOHOHxZlER+Q4VdEItLw6JpC72/DJM//2U7axDQrcP2VquffQfhFYSJvEm5cUm3bLI8fbKp8cuaUKrPt6sGuYev6Pu/av6MgLaHs3+Qr10GMRA6frd7Fp4p8LnCzYHcRl8K54EEJNxzgxYEjxJkKljDDxCeilPpJtb7AvIXxwWtWpj1RHZ/0k+Wa7+ULP4Nr9orjlw3uy2SG+0RZ2YbBLdWk/JTZ9yCexsKGvABOLqvpwAvLrv94URGOJa/mH+yPeLBBT51PSzBi2paLKVHF8b/qBCBpxzwP1m33EYgC18/GMVjTY0WB55KkHr91KfjhLOCPYsUbFbxR0DWoeWlq2jCFvvTVE7s4WRIFgc8OW7rPxJVCY54QTUwcvQ9aHo2bX3lY0gkWART8zLFfZ2IkMQVrz04ZvPTP9xH8YU7/ZW4VA/tvA0PuNur3R7fRab4ohxXXkM9qI5hf1XnVKNUYESHBZsHILEz8MnLoHFm5xhMzYMMVumzuSTJIMcxl8O15HzPx2u1TcAhN8NWTLGeGEM95kBFodWkbC4WlkxGeGbIKBUYdHe5Ey+w7Z7FB3tiFhUOU7+jxSLg6IbE25lflXULnQfRaqOY5G+taF3DVeWAGcM8itkrDOJvNwcfTosMhgmMIStlfsascz6JXtxqgi3NQ1u3BxLGkSVeAgOlBq1LUWP6/GWA93Ic2MLRQh6/V2LckY7lb8o0mgPEdIrB1qwMo5B50ZTgNXojkV2wO25SDmVOeRI86GuzXQqFBwZ+YeKzhUZRItYw9KNMpt5mvXL7HPXStZzVXM2UCuNGoFQtx3uqCh1DwF6LSydB7xHYobefc4quPNXUWohF6piVYO8M0AWURo69kDNXLGNpM6k9zaNGJl6fmP+mX8nfverGulLJF4HCmUPT6TGxM8bUdS5Zm/2edWR9B3YVwu42FmsWmm6oKowVhWyqfpmQ5BQq3pYUaC1qBMVEFxmNaccxtc1hZcseoPBFCeTjBG2ymFP37VkFZStYrInXDVOos0CCGnDSz9U6mVzBtOP0bSgs1ge8scnBWe5VvUrmgu11jN83mDOmra5hyj6sJLYsH6hI5LUVftks6UeE673qK3sHEj0TmiLH/EG0xzuS91aOxwoE5srlfu8UVC8n0v3QTGfGPBD+ZxR9Kfgni2iCbd0/apDxp9RHVhjx+P4umHpwuw+2UON4kmWpGiOuifV4mTCMqqeBRE7bZ3of1CabWotrf9INGf6QOgz8iXV1+8vyFsdhZmUvWmO8gSA7j3Ci5PosNrp47CWw97hgRkAm7b+zgUavHWW5FZn7bXGDQhKkcpix+34J56a7OAcZ6HLObqnkNkwUvcVsmEJu1bJoJTmnv3QtJpsYvl5s8Nyb4FAbiZPgQbwsEVHJ8SOL/mteTOFT4CcHbia5Uw/qyXPiQjqfwH16fMxMpJcsJt+8kRs+qdP9hr32UaMBV7WA0UkT5Im2AWkt/SRCL8mm2gdkNsA2+NROkyR0WmEJNVELVXaPZJXEjNlrA0l3t38N99JP5iQnSuVfF/vsNCD5sR/qNHFCVpQe92M+Fw0cTI7UvAwPpXCxKxUPpIK5VjYqWnhLyHDuAk+d6+gTWq4oebHNQpwHsFkmch24NeGFy4bCeQO6CSB3znUHJTExVuFpIadBeUCXoAR38BPHAdOlpm6npG2owMV4fEA0bqDotmMdez/qbM+geWnP+Wa/0VbHaanwcppLHyKlWHPxDNHa9dLf3+DsyAUoGBngXkckt46hHBsvsiieFIYalD6vLiVHJf42i57OtP8sv4D/LzSxueGwdir4Vh9FP2A7jr7QUdTesAOVbqUz5Iol1j4sK1NkEMv3URGOeoODnjhTBQJOuAn771UHmXZ4LU3dEHFursPZf9whB2/ip05zYdVjC6rO2IGO4dn09YVEfffkce+IAyKUUd3qU6Ccrw/Ax+sxbzbBKEhY8RSTOhp7L10KLbkvU1JmA8e07rfrDopD6lzBs1JlWpyg2sUj9jcQ2lMmvEjTicDbxTN84Xi/M4/+r3yYA6JxZjl148e1t/h4lh8sHzl3KEzXtURnRBpAeVot/NtlmhhnGjBBalU1lRJP1TbmMiWlmPb6RsEfKtYRAxoisILVL/ieC6kPS+lehKR+kyCktGVNkv4KatkJCJFL7Yq+PGM9X688VrjzVlf2R3nNEp/V1Vnn5mIg/nSI1UgY7PxsHexgXvfoueLHBkY4r4YgFLm6JTtm8+PZwFt6zVfRz5O1faVzOQubwL01refu0Qugd2DtIQ+c/lRwYFF1uMovcYfsQWMY1u7ySho4Dt8WLke9b/AIsIVLIOvbCV28gtFrypB7R7pk8Ef64CYfuqneF9Jz452FxjGQzfTgOmfpVIvttQz3jN50IF0UPhYGYztNYfywntpkq1piAGFXoXQBOUrI1TQr2fu0ROkF6ip+4I4vxBlYdi4RuC6aK363INQX5LZ76gVXZSn7gkVtHsR074fLnOSFKPMRc35oZUNYpQt0uKfmSmJcG9I1hctaA6eVVbYgknbKNzEKntwi0a4Po7MCJGLIrETtemmB78GVAlelN0O0FiIzK1ytgZKpAkC0GZRvULB0LydwzRFrwJ02o6mBuk24yRSwwyvTFuPht/AtywbBuquIJr+CHlBTx8MLcKNT6wKcGhpEyNk8848BQ9fRu0ZIuqeA+lp2LuDMrtktbzF+F9QT7NoySY/LpoCs1jv9SMWaWh39r84DmS91Y092NkOvRFHmYZ3q7IcWistX2386gRiu3LkO+/vh6zs27Y7kFzZY8oBrmSNZyQgyTSU/a/kGdWbZ5CELm8Pfgmc619CBorQkLdcLqPM6xOcBHu893j2flvkXrPT9TLbzy/WxGjpAxYlUVYPt6tMhcL1DfoqDRwteMXUjoc+v6wNif9WKaehbYRJskzwsGhfG/owBb9w/uSMhdIFbSAYzPHuxZAROGLwKalHNbxC+xo73cTbB2xDzA6p5oG9jOAJhayiiJVCKwsT8+8heOtafWRDruNngbFW4ht9iJUyLQ036r8+KYz6W3uhmTpy9uoWhM/yEMNIh1UkJH0u8aVtvoJy9ZgEDIabXMaQdlhkqFkKcxv46G3SCoHMSNdCeaJxvaIWQOdJLvZjTCNbWunEoDQkQ3pjkaxihszTFpybmgHh9D3wFp7W6gq/feFWlZn9iyokVHFOIlAKEym+tO7kgxKvNcHL9h6fcGc9H6whGozQ+cDqDNy8TAJkO4mi8/NjuRpqLif3Rv3D3epvkco19FiHDCENbUt8U85ttF4jq3xp7dJ81bDRcr0GE9avzdMasSo3l/0lkKgkjDldFi+sAODQOeEzNH6m2G8dlU+7EKU44Bbifqs4TfnKl9lAqEi9iIez7KZfgFCoKMbz736FAiS4ZTMBifSyw7LQbxASX4/zNk4+f5ggxM/teVQ0Alvmf1khE5tvje+fuvXGJZuhYCtASQ5x6cCmT/hQCCjmmK4OgB994AIjEcruNNlm4ZsgyS8dKa1pGStXy2jl9md/rIB0G++0I3qE/DX3OuP+JhGGIFGPgCWE+Tg1w9Zcw04UOKX7xkJaXE7J/fzR6XRFIE6Bhc7o2dxzWn1UhTcCNXo57UeKxk/5FTXZwO7tUjPmpSzmy7Sq8f5XVlwMggYJfZn66YXhiVKIC/rPOuqhwgIXRbfPhdElUH+cqYhLo5J8EPeVx45VS+/ik5mpW6Lg0THSKfc/vLR1OLeGuUX/OmuApYSrNcGUaIZimgwV01g7YLsbSJB81AK4zzSHbuvUuuP0hoeLgr9xADQ5fc0iDwZL3S++Q39PNl6WW6ENB4aRE7x/DkW765UdDsMU9i4T2uxrSSPVMZNZj28KOI6ekdjlbZJAQzmf/8Hb6oYNs6fVDj648q60IaIchzQwqmH8ss8s0xvvOa6PxNxRGKBDKEtZ4GdYY1sqMAqni+nIm3tzdc8GK5hyKLLRj3uZbB7A5uPLWa3fmA3ZL1IEKJZRyhIXA+xthsXEvhhtMgua2WzS/O8NhkD2jN0qyiNWvXtwCH8adWVdTdKpMoaC0+cPR/uG342OjdCP3VvqQc/tKP19IJ0ZDEh0xse13yqHOYOKNhkOlN4CrsO29EpZaLAKgReNhVtNHuS3Q07gFBt4Iv+4Ptpd5naZoRh8jfsTvXP49hLzrxrCim3qsZt1+SS1Svz88sh7hux8GrdmDSWJDYqI7yAGHjQ7KjTX0HR5UpKt10nJyanSSZE5WSeF65xN+Y+ltWQHjIHJdrgulJTwn+Nw5R1KeTYXMVk37HOeHcl0jMcunHVvGZDtwk3d1zBiakGkWv+eBn0gASNJxf5dL6IarnP7GhikZc/T1cPP8gJKHuy26Nnl0stwAVrOZlXbzVzFpZqSXdl/ujY4SWvNn1lvkmXIOJxtCynhJskvBOK4Rhc9EciwT3TgRvrMDhTou53fuGlk4rYNc+nghWs20RuDhrrANOAWgHK/TMBa/n+mzn1irXLWDrVHLHJH41BhgpBojo26T2jluNiFYz9VEWVqJCFbJKgqTaQ/pfwiaZZAL82yNeSPi7VOE5GC7nUyv8G3gbeXaIw+SNLIzG/reoC1Z726xXHVvgPooZnG5WHFuVpEsxx80UkCY0v2wEFkZuhB2H9Ebk6NQMBap+VQXHJvXOJ0c6RVfE3h9tgbmJr41Z8E04sUXN/V6xBc4eERLr6aBNwRWIeVS5qQiEFCjDshmIR/ATu4F3eMOVk3HVmfcP9V2mVZcqPGL3LhWB568hZ5R0xoCQ/sJbxmFg4+rcKuZabgEjuvnkGkTWaIMnpqIUPk9ppL1pHHRJBQM1ahQ7P0GLrxXiGVIihpopSoJ8Y5J5f+/snCOualrgeljn2UZ4tcEHEICP0QTdKr0T+qKCGUXq/vb388akJU6plgtLKgwhqXpLOUKhkAOk75vr+8yYrsD6t7q7EGHyCOnbh4rsWQcEfcsNHmvEYO4NcAZ4KuQZ7mwJt0DDp15jJN2+o+WqKS1nsjHm2BFmBL6+3Utk2ZZVsBUFb1OvM6UgFkm8Ynv6Rrl4ARDRZbz6u/H0s+YuNkb6myvOOElF1/HJ54T+d0GskUKo9RvlMHB3lDvrMG0StaLtOkfEKasH26q2ZIUXbJf/uedwjm5oA+wnz9VfDq519fEfn2lP6b6flajtbpfmsCubg/Y7zMXoO48D3LpzXYIMJtCChJU17o8Rj7WhutmLH9uYSS9MfzKN5uTEu+XXptYm2wPxIAOEZxDSGDQ567c8foT+BWW/5ywImVdeux3GV52euiTY74O2nzRwagnim3WPQ5dwihJOym3Vkqo4NnTU7QlL79xry7KBw9yWja/yusJeo6QBsQexAXl82cS6rCRp6bBHNWpiUM+T1ITH3eXgkNs4ttLEQyGi7eN4Kq5WGpY+mhofwTUXov/WM/sxI4f+JCZ/OIx9jeUaU2hRBA//f+jtOlUWmZSKiQiitDWBLqSwTTklRN42HPlc33E1Y5o1Fvbu0RFfeSUejVGYsWn/3pqP1jDMTWpLz8u7o/cf7Gv1/A9xnCUqhJiMDm3SMkAOdCSfes7eeo4/WLcloXe9LxW2yDPxY0phmGoYBoKSBhMNwDtKb8qQ3/FF+g5Z1xq5GLIbjVSGym32lc6VoIHNtQizBfpdyTtiBlOQtHhY03asxwlzYWyD1FpwAxC3Ww0pIZFcaS9dNQT8X1NoaVBKjftSTgYfYie4GMReHtWlwsUhK7JHzbl3A66TReWq7NTq2FOmf1N/aSe+cvUPZGrRhB7xZehkUjU+ITRpdd8VU5+XLLaxphn/EpfYD0pLi99jSvEskHuq3Q+lTBD5ww7i2BIECwCf5x5DxkSmkaQHjb/gOawXu0SCzkeOwDPv4xILsfNfoJo4p5ocdN+tkakJv866ql3YjDQhGW2oDWDDYJ10N8yItpRZKpP8oRyRnIrABSTTYODwzF2hwG+QSbwIPD6S0lhdYSMZ/w3WnYymESLzCrxKnIvZn2rHQv7LCJjRERTsoDT1oBnkVUWCbYSe5pdHX2MSW97z5AksYc/cqE7qDPk2kQBnJHJopD31URtyCSKKkEaM4c9M1UIEO8J+IFTJaq/HghxmwEdGye7hFnEWpEwqtQ88gTJ9CqoeaAlJpS+KvzOH94p5jTQ4OSPhVQqb1rMcySBJfhzo5m6As54Rtsf1rj/0UeSms4NbZsww+hW5TV1V9EHT74K+7lVfzpT8k3/q8jD09jvln1Ob02hDQ25WtWwdRGpPGJvi9qcyMhOGk6cWunRS0JOitTPF8ZYTbRoQm1ir9z6Dq98L71LzP74RHSSKLcnLNDFD4QpFV7wFj+LA+mrpkVa06ASOShQXuyFflP+6IGfuwcAgRk96nPCqqG4Jv6Mb0e1s84M7usC4KRxvwUe70s+jCZCjpb98MkQcHsFbSIffXw6XvOcHgy4FKlApollJnkqWUjg1I3g9Vo0weqCDeQj14AOp6tWDKQN99YY5F/BWlVa9WNV2xt1gz0x/1QChvBQnHSC9TYUklRlbUMaoTLHzCt56FQFAnhTb8p8Caej4clbVf0CCgVkVaqgbcjpPQMy6J7aPmi9Tchc1a7T5k6UzMIC4NC1dq/nwhCB3l4Clrv41iyRzUN2SmX+Dr165KKWFYdxK0PYzi4paxItMVL/CwnWdvLD17UXfTPQjF8vAR+PxMCRYEUSNI99UEgTM5XhAXDgDgns02+j5Wus7jN8dfI3JlE8KDqnmNRsVmsdNBJw3AaxL0kDt+i/4MXl0DYOXJfLkihFgpwm43sF/a914FTNLpKX70p26yawlwn+Xf5DpFJqR3+AEnkI4oaDVYqsxby+Zj32K009r06rlM7GY7fjRadCbxTLAs0GbF7WZVTg0sMX4hCIAg6BZ6a1ZKjpMvCrppPk8OQJOsIA1bBV2xvMk90O5GVWufH10dYR8hJxl8YvMiOZAHbk8WKG36Sp3APbwO/634v9LVA5d1/hsL/xbkxmkjd+lHkMf4tk5fPzpSGUADuPXBOvSo9L/Xtq8RLdIo/1R6W8IB/ogVByknvZw9Wan44j8F6V+S9c5BI3q2gkSNCdVcRunOPCcBXApbDiUU4M9WQHBGE1eAvZnFmiQcqLkLHDUq8rzK/dCWDkUqWgpljhEzVwOEBZuD2wksvVgFUOKf/byKK1wQMd9cq68yGP1dlP6YFrpQZGceGI/WfzFdGjNyqB0VSf4r++Iy/eR66iZcc/hXaAs8yidSf07zQbigHK0dzGD+ZdodXx/EFgnJmdJipZGi5cr1rAZe5O61/b6e0THpcbksQepQUuFlg/TKL2qEZLkXrjwuJterS5NvZ2qTNzsom1WYm4c7R8hQIEZ6MO+Plt9ysSauD91tbL2o99BAzUc4ctapynfz1K7RR8AxbPWcV0X3DTpqw8KbM68zvqvvqQ1KTk5x96C4HuA79nxAIWicV8cH1RZlWVuii73E/jEB1wP9bqBrHh9bpnl4pDGvlhOkQBkDs6vebznysfKKUmmieHKd4wBdynBobBBSTm3WOMRVLmLTv9jOWro3tl9x57WlsqQIUGDFRM1LQJtRpMRfNybj3R8dUpJ0CjS8O9GTmeWp/zq549AanNFiRdf6FEH1tC+WCIz9RsV2ftxpwZhsTra7J/FF+zMlrZisKpJ6BqO5cu+RWRaBW/kaI6DsYEBs0DxxjBwitjHvWEn9Db/q8tcGEUNwR/xUPHuYI8A29ITY0vdvTBrCNXAOi1LWvaGy2MniEzJtgxSx8+WVCl87bkSWgQEp3+7fUn602TnXtqaA/ql1gKKbIvQoNaq4tmquh0cl5EqGcS8EDVQQg9DhHIo1wEd/4Say9bDRW++PIXg54s4XHL0Mz+d2jGdJaXloP5ZmNaR8/1JI5uBOX1s4Um87VMZzemdNnNw6ax3oji4MkIb/hCK0yk0w41WTwl3/BJQ+Bx4j4AYQOoFgI9G2oxPifa62dKHlbO93vEfJkuMiLocswtj4dXIS0qwtqqmaZE92n0qTrQVBFAwQhkHrjdZBc+FiGHxTV9ZEsHv4YcBgQVUFCjXAz6rMsu98jDJjBAojHbZb3PVPBfbWAmzHUzV44R6vkW80eVEEklPVFp2hF9nyIAx9r6A119B5xOUArKlE9I0TeH6V5+WEQiInY8SEU2XYoiV+uwASn2eI78ZCA9TGgL/wJFhUe8FifcIOjnnLDNA8elGn0a9T7eMIZ7KesjNkg/swoWfE1QSDTrIRJKfC+5uS3PWIpZ7bWGwRZ4CnTdm6pK5F86AQg89OsJ45qrVLn0NtCSJxdlygaTMkpAiZiLy8p/7bE1wjpOvyo35addgoCiWjCbFDoAdSFlA7RoQkl/s+YbGKlsdKbg1tU2kfv1yLfWqLMKNlByVT2grgf9kaNbJLr/u3WWrfbk61pjEXV7gIISwi6KBPtEAyLVIlhZ886hqE9LG9iUU7Xd63WyKJeMTz7QGCLLIG5v9uvZHqLvtGWve6ebASLzGXKeZffSsi54YagYYkYKGR69awuR+pw2GZeYsRSiygYOTXHWZ2kr4rhsO7Hh9iPmtJJqwBoZySaT3xwTkhbFxpXtAurpjvf4tRVuqCe6PyDcTDec6IDZ/K9Tk09LFnLV6y48aT/hCh0Otj0JOY3+J6IOHRVgoYO/9pFrQ36i8xuhKLDom0COA5m7jzZMd8uG7+yg2FhgT/gNYn5jPJ8NEPrLy7I26x4fQi24K5etmEJozgMDaXFhiAb1mBOourF5Nt2hMIyoWjqRo+NyeJyWpaKjoAVF3U6GNwtg6Y5v0Z9FqG8KEDbyOW+b9zTYBAnVcuYINgpMs+1dOFMeBTQqSdeLBhBtYao8GFGTN6jH/0dKl291jFAI9nHEaK49NitpsV4VwiAziEEaY9RWGH3Fjjtu2+gvB/t1rV49xJWIG/D2vyB1t3RAjlLM+dDLK9H15gjdHOcbONYeho8JUnmCBlnp4RnTUlmpIcyAIYfBXYyENqVBRHGqhRR2CcYyRCZ6xEqXKSkA7SlF/wss7+dvANWQcjVVXfGCaGpSlloBz2L+88GoASnBHUI13bli5tBijONv/d8BoMOxJnclp25ndZZGQTaMVwtmvg+AGn8ShVitSqbDETnOOB1UzGbBRa4s3PDdOTiZErzwC2cE/kaOt9Ww9J3C/FGAfuRwupv8/k6ccEX0g9X1W6d4QztBEpdWD5ILS9GgD5Ym9klo1ssBLMpEwkLqzAIjVVIrs9Pjs9BZAIvoDYJJJSjdgHdMIuCnJUst5sAplbWj4nlFaV9nNyR9I2osrfxuG6bvNXJYnLg65ec9OamLMgjHffS5zeBfcmGH0O3lEQlCwLpBFEIg7f2O9bA2FJvty11/ql3Q1wXBvLdiQ9kosFZzBiX4v8YlTHy1mmnJrJ7Q2vbihvx8tbkv3KgFQXBl33rZWwvH6iwTTjjeU9HF8eeJZbzwm1EHi7xXTstx3vug+iXUyER3z2YIuy3CTRVMVvajl9YyPYtFhLKR84hNzPS//V3EsTUkAlaYfid9D2TkabhL1wLmLbNSPgBkn7R7WEYXT1B46MG/FOzipdY/zytDiZAJOlQzBe1hdSBGNr6Aged0N0vUT8VUyOPOyumrKYiY8UF9ujmGnOYRfmDeeNYoextNpFVStlN+QXsKODVHNDGCJ6CSr4glmvXAkboQTXbqbF0j0mvT22vnibGMmdVk/kfJeymnCuM/wHwgTlRQyi/iHXrx1gFE0iayWoVBLgIavv66tZmN2bOE0Z6gXvJFiqJlIgpSWL7IDnDgjS4cOhBp1tIfMcd6k4n7p8AHCXzHexsYEKAh1ZYO302HOWPZBdgf8xxI0ZfrHUjxM0Z+BzUu+3lME8afDlL50aPTsZwua1js7YlraCdu1e0Dn0CdiZsNLlSJbJBgwYvtKxGxHJ3/j2226DR3p82Y4Ac1AbIlL/AfSrKxEZkDaKlorGHRaG99/ZxJ0/8YCP86PFQqKjrsPUIW2b0lgpvgtttEvj4INiGEcVD2vr48XZBcOiCpozb7S/RHeABAeJZNXgzGq811xyReUrEGHm/oeyAOTDmv0fEVOVA2KzvNbodQHC8Qk26TZG5La7LYcU587GJGTS22SmmSdpRHQlbA1e4PkhF53gHSjDbcI0HXxs28+4UK8NRm+bVM88JgFljqJ0ge9NuUB8KuCahZpGFhVoTb9bnDGkfjoqznHJzDFq9+AV+QbCZq3IA8S32yUSai2//UGm/y4dm3HNTmK2AJ2712xI0Dqu6BIT/5UxMZFsrhIfHRgjXx2/UtdL09PJH2zTC4NxgZo+hkJBXKIEf6EgqVazd/xqqlLtiR/QWLUYrVIWWdBTL6KFA0A4p2NoYBMYI2dH82H+aT3ZBnylM6uiktUUa69yFvjaMLyi4CKoRSwHI95kTDF1czcHCn9bhzuT35uGDJ7QvCd4UfhxDAPaDSAvzV8+ezf5bB85vmxbI7Uv+LeLc9QUElfjxnavOwaovkvaT/WqIriMekUzZ7wIzjOh/Gf0gFV8JJtsj8+u2O6AIqJjVLOVzzhu+EunN2BX9ORe061s4J9sn9omja23DMC/3NSVvLnBNbl9E2b5w5zK9XXyCL7UPOv+ZZdtUeEDU3Ncw4uxiim4/gTPGrXFGNz3KLO3LXY3olCwUjSStHSu86BWta1Df9lWHyHHU91m8mTjENAlUEtQmc6MNXsTr7RM4IIziTBoakxLtmCSp3Qd8xBTAq6jy/RlhhUTmb022eGSthDXvxgfm0XIpsClof4/JJLO4XPRheWWm93+JijIxylMs0zzFVFiaDoZYw85cGA2TotarqVzv+/gjlAI0FLt59AHeGi3mhVk1gTUdDn+gSY2vcjckHqBTLD9C0HY6J2Kq1+L/xU45Kq6l1MVEWtQZMK/OIrfPQ/kGmpADIssT/U/Xovj1tmRFh4QpxZkXtn/QiEL80jh5vryX2s2IeS0GDseYDvkFQiASvYx11ACDzjTaOhhS6LYLx7fiqf2+gUP4K3WvVJU8vp6g4asHNBd0xAFA+zBQOOjx9drqgFKRnf14s4o6IDcwCxE2i2+jCZ2DL0IHI80S3HZU/JA5IbPTnTefqwuS0pREStC0fifLo32rQzbkk+ZMw0zdgLTgz5gZmR9LDpjTXOz9qth1jU3aHc+esx9jxtAm4gPkprYbjwZBVfj6keUlf710JKkB7RAQ5g/PKghMjIvXyDXDpWNCUmnrcero5BKBng++OmD1Ga1jlYZHVyYQ/2dcieoTAocY6Qmastk7VYP9W4gyXOXqRFZuQyACX2EHuy8/pVZtAGt92gn7z4cRq4vGQT0gkG4k0vYVkKdFEFQz6cSjmupPLLqFZcbcpD58lSyR9FakesAy6Z0gsxzuA504Ft78bOoC8mRtUz/aBYQSkuk6h0DBZbXxCVSwMsPDeLFKDEtqkMCamxCRA+kJmmKnNFx7wr+lbcH7pscu+iKtIGVWnN2mtuSujPOHomWMhr0Lsbem1Je9EalHWui/6zJiGCpQX02DO46PVHnyhJLKAYsO0Mzriqg1vwNjHFZ/wSTjpccRc0NLTjBVc0P/Tr5ymTODnn0Gno0iVlp9ILIi470o33JRsozt6Z4WIyKepj2us8BctUPm/zu1Cf/YOpr6jZTlhr+4zEsRmXrLIyiO9/RL8+C4rjbfApnylzhCbxqXcLz9eDEdKGPRQ8Rzx6s77BhXJxxcGxLHI0sq4mLqI41+71gBk9sq6wkHgYT78LsfY3G8Igf6DrUTJ3co/Nz2ZIPg/MHy1X42t09QYFOED0ECXVZc7CDTfPKnSj+EAmztdEbhsRflBPtNDcB3rza5TfnusyfQYevwSBNYmvzd5mkLWyDr2qREzp4VuCzrDjyhWQXua5/6+POybe0AzV4ngyVFEVYvLrzHCK2dVk/YlTxjtUd4tvg4Q3/BpPI1XHIPN6BX4qOvJiazqB5qcPIcnbe0p31wedq4F+edKTFMm+jOFxzHmry8EXGvkQZlSs1IylrwZ0zMskjP8ndEWwFkT4sAf3qJZTroLFUHiaiNaNi7WPWh5pBYmKg7sr24jVpro/NdMeN4rsgZ/5IP3yzTJHc5ME3h6tXdoRGIjJ9ufpbTkRpKy8NMufZo1ej4UPxZ0aX8+fUom7mxtQ2aT2wSDE4rV7JWcEc4+9YSi8p7Ax7oLFWXMRPz9q8VfbNI2srlX6OyHzBLexMK+H2XLK8sjG8/YGo64lvgOh6ChmCFnJdY1tqFPyOGFHk1zRRhpoN+rsxNRnoKIzXAVlxHXJBpFqdHQppyALD/6FlKW6wK2pflSZsc6DrHQGD7vLO1/sIcwxl5Sssw8TKlcldWxRW8aF6ayr8kCRFNzjvTbQpRZ7KIHRZc0rrqaK8JHUsgQX4OjN3hcTRrPYCPfLmzr4PqAjZLJC4fqcQqgkuBSaGPTVzFGVm9tvs/HtGbP1t1mXvTWvckdjGcpxK4oWgpLzEikfg24f5Kp7RVroXUTwpGzMFhpDV31+fgOKmiWYN7FC4hdT3z3urdjhIrVn4PQD3uSjobwuZIrAn1mvYaSv094/8vCECjeMF3317z+bvIOLmRXm6kDLeAszZ7NpP4nbQIZxc0dXeoO0DvRpeJ2EYMrXye8YKrNE/0pZ/9qIbarhjMLl+yyjJgC78199EX8cEZTQ4Wf/6nvP6bKqwbgkwYu4wlXJS2W8jaj3sGhhx9K7leuO/TF0AOuySSgF67E7lKfzlnjj4Fo/FhAN/SCs8T2HSo++grQ/CU9RyDBXPf/vAZb4gTseNlwPAi5ZMv8fDMWWSYR7GnlYueRrx1i+q3tZfk89KHJFC6c1sRb2D9qT8ZVgEjekp5Cl9Tvjl+cnerV2M8YqcntAyAo+bjmaZ1KuaR9gCdWkL0CKdVBfgVI59T8nAq7dtIUbHGLB1hzHB2aeI1tm9nAbRc7nq9tLSKmf0wJUU5PdSilm6aBq0IoWwEmJuQKWu7P15cIX0At0urCLWZLM7yq6n05NECxbkW77Aaw2SlaUZJYtxPoUmJNCpdTb9pIWTfxuhrjrKrzU8QkBFi5h0X3+UREZpzqK4Z3ykmacHQOj+c4EZx8iRz29PHDULQL7nluZcLHpj7ROxKmnaZrXCLF5H8iv+iqADgh5cjssVAAIFUikfLbKxMGl6XHTq3/8arGcGt3ZhhpQLxFVoIt7SRutlk/C47uBooRfJC/NKCugK/IRJwCPLHopdQgyliND0SV0bwI1GYgMqb/UAMtfoYIm9Qqdol4tj3XVlRKCT4EGLFTm2ZDmux8qH29PDlo/cLbY5OEJ7CebagXqHHyhRuJnABbij633WfaYx1ouG52euSiyKJ0BIO5zYX6+mV8LInkWZNNiZKJy5z6TbWiZL6ccRMCFMlG7h/NjK4I1T+u6FSxmvbBnmbUGlIrbrXrBIYo5uLg1E8ihLyF+eEpiD8go9uQ7kOLeogUGe7/SIsrYn4GNp2kdhgyUK3NGYeb57+oTYZ0CKIZqWVp6c/aooQaSlXN7jQM8mYmytdPGZwZlMy50FVDaR5ouFK+cxMHvYEjY2WiJfb4pQIBw3N6SrujsueFqOVB8ra5SbpnvyI05oRrVRWTFwr8P3V9xQicPw8bofLwcckSh0xUlb/qWsXkVX5qasIrm6oAj9vEuW3iOyId06poCYIxG2Y4NxqaaJDdoPj/g80BeicUMW2Z+75MlKPTI9GeaGBEiePxUrMOIlIElZY7lzVzhgbJj1QOsbfk8xRowdck8o4axIBq+A+jhmGFAWR6ALEVeKptlhCYzQT0a5YBYQprCJg3vhK5Wd/KWob2BzFyvE25i1YOJUTX4V1cn6NwCsNcv3ZWmRExZhumXdXv73E7ETBpWnj2Bhn6NCkXCZJBBr7OlSgNNxRdcsP2SOBPJR5EIc/dbZ/9c+UyGCAoNQxiPnPiFI6JWEufxA81kl7inBk6Skh5fvuSfvH7ztSDK7qTGFhQxbXOMCCfBA/t5hb8nJP4l+CkNcnZk7yUqtoC7GuBZqzt4wMHAzD0QfYhu8q6V5D1Df3uvz3/LnExHLTkX7Rf87Crh6JlFMfxMckioslK+HzY5lZa6RwI6Knpred1tHKzvHlKJheWqSAUf3LEGSc+d8xs/uJeZNfXB9KaY5xWFUjhvc9tx1q+/eBOb3NyQ4yW2mV2tgVXbOACwnnCwjqUdgsoEKUfGbqDaYHHjfte08VXBezK92566VDviGvBE/DCWzTLFCYlDXDWYrdEqBLhORUreuhrpdNFyt0oCS2FFew3rtbnfIJhvt0JKiPGDGviMYJlBqv/P7FR/5q7swRmJUEgzwKEbucOhODD+P8Y229088pgRIivi8WjkcD74ww52OyNGLebbekFKTjFMDXYnE52YYv5Viwg1mZ6N47YqVGE+NNZiA0cwgfQCNj3tgZbmlO/8wU33vk5ZRTaaY424MfaJxMbbDlbCG9vgpWQUOrw+FzqGflQtwaWbBvMpbQLzM8m4Dx3r5knZdAZGfS7jl92UlrLY6pZ0sMmx7kCkC715Jx+T8fgdUffrHXvj/O91w1yMOl/QtfI6BocTShFjNQTJFcp4Cy5qNOjY3wftByKHHymr2SbCm6zqlaDIi1l7pBZaHu3iTFeYnHQBoKVRfT+1zE2w9y2zrtPldyOoa/DCo7P6sS7RZ7DG/Mh6TuzIak1Xs4I19Nb8vASipnXPc0NNnWHBBBa1pl1kPxmZIVyRH9Tl1LyaonIQUGohXPIg2m3s7BEcZZRKDjudFo97RdvPsnmtKUwaiGiSur0oppsSirK/9wRiMWoJgiSBb99GkjhZ9HOJVNE4CGOPBfqXpjlT3bq0iKQ2RMnMSbiejjj9QhQOfLxpRe5LkFXSYhjrD85HONtqYsiN87iyvMgElqr7WuQGsDGSJRIiWEsfXKQqGcOhdWNzLm+65hJYht+XBNHJ2qtxQrwFe4kqt/xkHus8RN85HVGn9vA5jZdyuoLkrkXqvkCb0lO2zaOSdq44WQb4YG19X5Dr3uMb0WMdxJUVbBhkG/L455sNDDVquBmnN2BIfiCXQu5woFx3WczmmenoqpCWtdYAEcgFruW7pee9d/px9gYR4793ObpW36hmR5zLEdVKDL1rZFIssBXF8yIzWCW2wcjp/R+YE92pbBpFvIsM9kN+DgB0ltxb65mcL6aOsKzf1+nLl6Gm7WMfCVHRuDDxte5ZXO9CwAsJy8Z3yMkG/xgx50mGnWcH0tguki1QZ8/3tCDQssPNqVHZ0CHb12MohhAOmgKhciuwd+BXOphQKot10w9FLC9LFwD2UW+0teDZ6SaHL7Htz2gY+UZJ9diXsnlDw3DagEJ28jKgrBmmhMYjxOUH/96L/QVyx/k7BDNbqqAPapkXQudKKELeo7uAyvlLFt5AouNfiKO3myvTWLBpN1U6/aoBbpbrUh9H4P4WrM0d130UYkS7rjQU3aZrslYK25vnn3uDwAol47NMiqwl01ZM9yH7dRwLg7BDe8YbJ18yen+/TTZirq19RVd1ibdJJIiymW+wC7Y0rK25eAoWaXPz49dr3y6+x7P3u+ZQEApDvG8KgR+kNU5HQ4sQvxrUXxCKxhnYb35GIQXNb0DSH7ZJzoDYcEshK/bFAgg2LCd/lJMczu+kzcSDuCZ4aC3W6CzCUR9rTCvh/Nam8HasxauWUAHSTmfZPEgcFacCOgT5+fKAdoKVtzRXuryJm4Nw7caBPaa7Y2t+umwAGkhfSz+hh76FPHmGGq97yVPGjbNvD46FdwjH6otaY4uAdgaLqeph1ODzeSINqR0dNK8Pn4EhISH5Z07AVE9gXHSkneCxG/4kH5mTxVG1XBbLjWyKryMM1p6Nu60OUmdLj7muPc4PadSCQzpjWXzCX+RZOHq9X6fNuuAz/60+8HIf9EnFo5u3tb3ITeINptvK624peWwqxA3MkmjNyzGhbSYVfwLAWXd+HPQTLvc+mx1mGK3SiizDf6pyzhpOSRq909M74TcI1Y3nG4RiwhwDVrIwJvFn5HeELvcGkgf3dlcGegDwuKV3/y0Z7/A3ARoK3EOtKKlGz7TKxX2N5C2EVPk83IcqUav4RtKe+U4KKIIv/kZQNLSggSACVBfujN10SEQFQXbd4WJuJVPIsypDPTyEgu/Cn2UDZujHConHbExzhf5SBdxqd/f8uhPsg5z5awZRzmauReLC8o2cpdHd9gSBpRhZAcLiL3WJwmJ6MPNhwt3Tgt083jCMPsvc5lrEH8k+Ayhk1jBmh3ISwEzQXKvUL2KKf44Tf+7y8d3vagKANh3DEBS8+do1HjSd6xM1eX+2WrtM7OiFmxRA/NOuq8OI4neJroj6Pr6j56QMM1fbn7zp0oGPdG5JTS564XTO8L/a4wEb/eg1lkcGzPF+HdIn6svxSKqyAejKzr5lrADSV5yz43ULJmm08SBAwT82Vf4ZiqwAmrATYjpSJU3wWIJm1VVsoFKZCAJ2kA+c+OtjwqtU2vMp+cuObRpQN9xvF+lP3xTeJbwQb5dr5wokExhIGkYshq8MqYqvs8c3U936+ypVuFYMGdYu/6a5pjoCVE3JbUwdTby1cMJhK9TpM9DJMe/5J8tLXAPBr4A+2Ldyiy8AoHdl67gHexguwnykgPeIJxphvr8cb3gjkDt/f0GHjiQ/zsq9VLdf2Sp3hBLr3JLQHaAF/NaDkVreX/yNC9WdGl406cbrO0fxU1l2OGLi7cMuFm1aJmnUsUT0EcHXv62VdYP7CMWJQuw6PyPbtfmVCvblkja8QMZOODgGfzEyU9eCbfb62tFW/Wsgw2r+ZBDAhfodZeUARtS2vDh6/V/nvrLU559B76sETsxJO17nCzWJdpKmdmfEfqg/somdzYicpK7vsRSjld+tiW6D6YWRDJv8h04KkYimQvdky6YkDbbb2ND9Ph5wrsUhL/D+Y5HqVOtrJGMmpklzjNhGJbuPHsdG6TrKkWrUkMTWlCZI9yTjGq4oStopjngd1cJAWHj3MN1o20s/x2pwzHwU21Z+r4MTr+r8PAudgivLYxeWSC/sr9C+1Ntyj8f+V/DlQuOrpgTNpEKOKzB9mokkaHhpzSABoUrIVPmHzoIQnIy5wJ4QJaOemW4rMaFe+N8TPPrrLFYhsAjc7VQxLoNNe57g54Cdck29OagoxuuPadgOXN4dTpf4D/hpqHrAgSq/+WVG/kwc7p8Stf5GWa+XrHPBraT9OfeOxdR6Q+Xkgfpyr1RGLlzLUp0NR28yKEB9g8VCtEJD5tWWwj8jMdRuxqAncZ9W+Bp6BPMTnxwr1OZkAjnVO4LPNsOsbvj9nUDFF24+DkiF2HXLK1djUtplKg9oZnCfVk519Hb4pQPg5PusslAryseRm+Qf7tPHaV98KOE7LLamFwg6npRT+f6QFv67GPA4Q7Kd4NXqPTUj8UDNMXlGhDkK+iBz5EZ3JuNrD0TzEa9FKij0Ul8WMH466LJbF/44mH0obH6EfboUqCSgKFYuqBpgFFv3Be+7vJQzn46KrkwcNT8JUwo7PKC/FKOrEKjACPBut4pwVxHw7P4CTVtj9/11/qMdKBODWOjvoms9nr8gaeidIaX4E8VpBUrpazRgS6aa+FKREIO1x8y4trS7Ot0MpVVnIuwH1MQNsbu75jMs8TjCzr6Sb/5PoYuW9hnP5X9Zl7tt224BKqkjOPrU5GeI1itiN6BPoaVcOggidXU327WsRZCMBf8GdFrHotef37soy9gGGzefhpXFBiHJmrH7LtILxyU/gptnpwI1VeEvzWYECg2FpDVXBHPwrK8mkl1MTMjjrLM0JTnPFZO5vwlhizBN8Q/DdC6bailbN2/MxpBj2qzX7mcMYW3ptIsziRVVS8pGfyAou6vPmGGbHSMFQ48KMhDDHcLjK1FwCjl+Jw9Knfj7RPYATArbGxwxlsKTMZ0ytvkEqBWLPoRLgelk3OYy/oz9ytj27lq374NbTHZzfUxwRg6z9guJOssgKX+p9YWS52fS4y+2zPAlj6UryP6PjoAclZBBgEM2WJOUslyN4a9dm8ANw+gcBYdfw3Zh4jcSzL4SAGKk2/iGm+HdLS1V9bS36NO4mDKyyqKCPfzsiYY14a9Je+GKuI+DMIgOwxCtCqTmD3qWrfk0cSevY77U4tOmHgg7ShnmjOTqXGq8L90ExiovIYi6SakBDO/huQYKqSwkSjggqxUXTiOWory13HFjRsjaxjZpfzFFjHJPaO2Ew05AoDpcanyN+jspf7lPHyxXeC+PtVxYbrv9m+8j+HeSgcaGRoNQu6Ov4ff+LnEwAqGY/3QIo1fm0d/Rlbk8HN2rw0t0v9NnM5ySngqDby/fTpjqYlYdmo/q5+HW1WYbuKZex7t4pOC2Px7RFGeqm8Rgxp+teCW8uMIjbwjMqAmgCyhAO9dCJyy6FDbY1vhjn03CGXKYNSuZ8DndZystQvFHI/9HHdeCG5sgd+ExFbfkibdar6JULrqnSkxmSMcjkaJyfSvA5iOI278PHfDMjfW9zLRkG9Vy44kX7oHUjjFJ+FfNtWnLzC1dzF8+fcsPXec3pUXGJylLr84i5DREGqVj0Js8iCFbrVX4UNUx7i5jLMO7bjVcQZzfoI4LKKUkiVY7qSAkrYudCCbJXC43s6Lqr3H7ZFWNO5EEbT+juzBR6a313f8wOGIc/mGCVy8sSUK1jgq15ENG1blLPUsYpLelTp5b7ON0ncJvYHBKR292zTiIeB3Gz1OmE53X/s7FyRZqC5PuuFTp6l+YKtKZdlXchAeb/8sBb3yqHjdsk3oRZQvH2Sq+NkchcFBPnAm4XCSILxvkvCCGchUFjAdEhr7WJy/6HngrR5DZF5fxT244PbsqBGFw3UcpFMHlR1O8lRV91HsbpRyapEtRBjFFNN4Kr8Ae5vdlxb9UfZtOpOPSPbzqKaA1MX4NviC9rTaPNnIRuqayrB4g6i1OkDiJpmvA9PhC76k0hDxog6buJyf4FnGY9wlAVC+dZpAIty50weGigcOFBSF14VTs2lk+K0T92rYz62310DIRaQyzhIQa5SqtXf0SsZDqG5WbXhkGRPOm00PVZ/XVQ5gw4ZXyeoRBa0WVhRwv+wPDWMaR9Io4gY93qtXONdQoCfHCBlY+La+bc+Nxx44sjW/7jchRUglZHyxrC61uy4pEwOtiecuTIHHQ0bv9zHN76A1o2mzlnRGW8h8ytgrDlLlJgW5lCkjdqaDxtRVBmYM7y17KLgfai/UyR7BaE5xVBXgh0aFfpmAjgfir0W5t4XEYrE4qZAKnLc3Hqy9ZEJNAIgFYMqijpzsm8ATMJNDz0Rw7j9BpT4xy6q+ZbdABVJfnPEWl3zLFFr4AaSl9GBSKguVUNBN74BDnMQqj6/Na5WND3IJSZdvjpD/8+VaXxE81woVL4AJHOE1+aw7pyD6nSs3fWMtcoWqMFiqmbXLgtWbkeAkSxMqFyxi1lx3bzZJfbEvucmbTD/VU2nFor9gKsUiFiqS3516VzVWBgIlLrVzE1XydZwUGWxtlZR0fbhsh3nqHGN5zzLt5V1FmAkki2Fjn225IE/9x415f12WdX2FwLB4mOBKmP/r/nDyOQ2EZ9Apb+CBBH4mdbTMjJYxF/60zZW2J4ymRRVYRFceGSl55FyBWUWlb8g/dOzYiE4v1wHICce/Zl/Ne2HesHswxvCaYO5hjX6uKtUqwxVeSShV5YlLUsVvSD1nf7VaeyXRTodRjNd6h9DuQmGW5+LhJZ3Qb3RTchFC+QQzZ3Oy6Q0I5Az/dco7pU5kSqVlb3Obvpm3mJyOqV11tu76I+Tfqnl6r8CZCrCSDBHODgINO18Xo0eVglQs4HgYNAUehSihncPO/UT8H1rmAVZg2cdRgfG9drV1nYoLeCvGulO8Ze2Lerzh6YIoFaNMYf1re4ipIBcXkwWJHyAS6VqgEhqiy2+Xd1tN3eUsB7Nhqpyl1EpY1m8sPPjeTjwgLT0W9VY8IeRYZBvo93cmChVc2jdJb/K0ZRixWY5JSEfhgaQkXRs5Io88akCyVfmRHIPIv+boYT7tnDiNMYGY094XBLukQkh0k5jJJh90OhC02FNy0rwVk99jFb9tc7yd7KJi5LVHF/TR9DgVs/VcUvlDHA2jOWKpjwjEN9bQSXpwnobhs1tFsjp7emsRh2oy15RJFuIt4I0SQBc0oY/tTx1t9IWKdkatjYoCVzGJcduvXSJACchYzE7qI0NxQvwwQpLedjjv/QP4G9PJs3Rql8nQ739agCZu8Ucm0LMxSeV3VWgyiATXNRdAnGpVH9HhVv5+rheSS89RxB3KYAqbGHrOKH83Txiy3TceGSwQTrm968fiu4z8+z2HxQJ248aDrnpoA3Zu2Xu1txoNAzg5owNwCGjFINCdYgh3W2bc8IUCj0xVygFp7SLkfGBtaDrNpBdP/wXvhaMotkXPiGVwf0aAOqcz2cnP7RpfL58O37+TJDxpkgRe9VxCup/uMe/ajts9nfnvP0Al+5GpGlhdokfRLTx+JCY4NpATy1x4DTfCkiH/UPDjblaNRNbVaYJ8pyX25pq3U7vMwI1QtFmgwc9EA32EvAZcwffkrCci1C+HnnvGH4jTqrnoV71/2YD8g2fSqYZgSKlb/D2EgJ2G3r2/KlsP7BZevC3EH8znO9gJRO3apqQvNVoCxSS8guV9RBH4d1fF5x0wrDZiT20qV7vvs70QAqwiZR7yxvfZdz+KKaE81UR3WOt0S9y8umbDNg9XjHUV+y+0vdsc+30zL5CkII1MTIJfoDTJWFy3h3ncrqOrSc21ywLiVfiIfeRGTxh/pDZyolfTOpC1uSF5v6NFNRu+kY7NBacRNTdjZEGPAo6ZZ2u0aqlH+mOtoZMvhJjBDaN4CPrGGNcj+zCL0fTlKdjl7dyQAZHV//fWx7Le+x1ZCzaPFwflYpkxX2RSJnjvPg4kRsZLEHasHtac285xku+BB1VoEn1eXex5KKJX6kyEBOjzCgAOy4h2NIL2afLB6joirPZjJx+qGvdvOTvtUDqhtTwf4d6jfT2+na+zL9BW+O2e3muP54XjjfEePNo41obeq5ML7fcWFjMFS2jGrqB6L1bls14GAkY5a+f4Wch7fiIa08bjH2lsLfsmGLz90iHzFEmoBZJRPDCnrK9AP3GJHTq4XOj5RSA3I7kSwMB2cnR2ICXsDwPY/pLojboydnU4Pg5jEohGtg8UOvrWunHKkUfIMAeL6+mMqrQLTfdR5QZEpYDrgvVyFDjuUBvHfOXcwsPv/eyy/B4jLIvDutO8PpaG7CyDnNbo7BQvUBhU+8h9tW86Q0Ena7lb3MIpDw7BIMhnm3utGsdZZZy9kXaLbcNo6ZVrWYcqzeC40odpthS1HTgMVNrwEzKkuHtBg4PqDQyxlT6wMrzcMRbhm4lJ1bF9lkTelr+8Sz7uYm4CbdbGxdFwtgICUFdG/2sp2I/YV3xmGR1glnAdC2fQBxNOmTu+n6papIohlX6MAh0rdM+6Qse3NoL1r49T3B22K4OFUXNmsFkoZPUq/bCZesQ6gqf8bBH4eJc5qEv8ELwgR7fxDnSU/JC9mQaziz9Ky7mkpeSZD6bsuzRo/9zVNCp8PppKWpQx0vfu6lCtY32i5M2UdDPzDaBYB/GnqGswbDUXzQjqHEtyh0jx9urwLMTR5V2ODSpqb5HA0io4lCY7qNWT4b5OS/cccIP/tB6Di/Zm8KnYaF88lDbibLZThWwJMKQpzN0PvowG+HiHPEfJ5clSG7bXh+54rfbJWhLUFB/8eHbzLOLApMTym+mooJGd7iR4WBfBmOF0pHMenyldrjK1oP/5xMyx50natPEckqXNfdtIRuKs/ZE+ILUHzhXdfItzCwLfy63EkDuzGcXGvpGFYknqs8osrm36Htu/vhjGZ0eKwHjoSd04MNV57ihlmxiSg4ihGVUFQxHPfGGNetDJUZCIu1sj87wDtnQlpgD5Tu2WUqUbi5NjcOCSrONwSITOuc6taFcIvBr2z3uUDkL16xkYBjy39JD37VHokIcO2M38PzcdoCyQPvIkoPqv/kfUJpoxDbH0+YWE6ZxvSSaMzpGfGYphUOwafvOmD3w/Z15oavUW23K/bFqpfSxBHVPGRYUWvELdT/B2pIIYXBdKqc23klPfmZRx6VH/G2asZCsIuIPxP+YRZXxgHFmm0GtU5f/hDuL9+4gHdGGJflROJ+kcaJxr/bIF4jPRvSgvrpAzQ8Rh6zfkGREDCPF0NapxNtXK4alySMAVYneCX8pwItgvuj0amx1W8PMNvXNP4q+r8eFsRMP6xeTVz/Khdw9WgUGQYI+sXVmHuY1Y9lNMv5EnXo+3m+1jXN72YVzCQq27OTf/3pcQ+LSYCyHQv8mUaWSn/yKiH7sdpds2T6b3qJBcwJYUNG4llzFuXW6vMMquoPNO4vE157Dc1gPcxUERAPEjcj1LNd0x32+8h/fusBXSQmgJQu7HIquLN6F4tmS+PclNu+YKbaESAJzGvEDX/UORDc5gPJfrUi84oFAOcgMfC9FaHpY1DZ+U8Qcotjici3QaWoHrBweIq79ukzuHFCGUImE0xI8IRuB+1+FOMUJ8Jv9dRvjVibr2sGN+mt6T0ux/8XfdRnzAx6Vf63El5RtyWk3AR7593YW8aiUb/tcwziIAZNOeGWfos//u/4lWWLyUkXFGfxyR2G7fY4EuwHw3CWulkHoNBaN0LAcEX8gLLyjoVC6nPlG2WyWxNT9PbEpMNzzyCsIZdWDbOS6CYZi5FsPOmWQLj9gUUnXl986m65VGeEUX9g5Q235JOFu2C2qf4G6vgYQuymbGTVQopQAzSP3q6PoaO69UFhVvG025zXqejEXCG6KKOcmeMMGBbF4b8QfN7CYlTZPP4Te8OcWc8Lq7hrI9iClIr6e/sBW6YWzF3c7//0DGHTv54K805H5QCNmQddABoy8n4+Gi6Zge7vS+VH+IeNOjMjOhmexAZQLLwRR3vxOaFSzYnFUz0g+iG0nK/ajIhmf4vjdwzLc+AEmpXszZHJdyvOIFii4VofRYSImRpq6whncxAE9oz8GwiTu6nryof4N3ij3+lG4Kcr+OQC5hYVLW9z3IJzVXRwZhZBocQ9wk0uHaC8ei5P55EVBIkYm3R4k7Kd4SlzVf14BU8B13meaaOKr31FZbPtrHU/Uke0ooKvHthwP22YZCalYNABH2R5nmaVpOLltZkdK7HQUgo9s0YpBddq/Biwv9AdDFrpiRfg+8RJz/r/XwMECL5ehjwi8oZq3MWp3q4aggP2xCoxGMwIOlvrklpObldpAcT7cFrVKkNQHSDhIKMnZCZLjmfZSZnOyV24emnoD5i6HXVJvo/E0ScVbeUNLrI9VEYyaAnj51iQCkikGsAhFJV8SBzn7uDbw5FV59Ozh41gyIYn8/T8QMRuMKEMOTjdS+5xC77qXx34sLZHUb99y/h7vD1iXLeDcNvZylS4MxpYo7g2+t88fgOIKf2Gnp6t5PcamGab/X6NWha1XAU3FyQhVVcyxFdKuvK4YQmHtf6tQ//WyNnCP095JgykuejPwvULcNcC8PwuXn3sJCtt8zsTXlF98l/LORQN+X3Tkg2McpRMwSP03A2rG4wUqEHNEaxobD5sF5q4Wd3zazaG2czKxk9yBxAHevv2ip1rF17lw/6iJz84l47D3ljzvaqbzz9ki2e6GAyqy01CpN0u3Gb710atETepl3e5+2OQRLGYXfEEmGsCZ/A3TICsSsPjdJYGzMpHSqtyskqE3tynrTSmQX3DmjEsPJhpgSisJroeGxzlSu8GiTz/6C9qn8qAqFOnVLbHhlRFtymuvrvbljpyzKex9kOc5wk6ctRLVV0GjtTvYx5dpxVkwObqpO4eW7/4OjpX7JpwuEXEukVuwS+gnCeTR64CqDsEe8fvqG4KD5R1CZCTY42K5ZZpViBBn/PCUfDiiJGJtLAIl2GZe3PgTfZlhblfNZ7BTXrYpQGbn/yXLivR3TrkZNFF6adSt2bVpAO5SoZWrtZ1WbaZ3yfuGP/mUQpD4gvg8GmssAxJ3P4RtWdrG3wwHLLWeoGQE0r++M+7WMrXC94YntrGXJ8S9JRL7T0SmO/tierM4158uWPmIBSJ8uEHzDU19PDXYp41uYqtu+TPdpGM+XYoYX0k2PY9Y8xStWmp+IESiDa+s6O3LRRCzwzN3OV+OdLzJ5P/8iOlVnjRLCjKL/7GodoPOZQNtre1UQKM+EZYHRt3yktx29CmgEFH+RZz0a2pcEvjcXaclmw0MCNGfpi0df7Ny78nQ5nn+eLEoK6okw/BIHzYYxIlExNVeOQnW4xyRQEvvt9a1Y0e+gXnlbu7YNERNFiOe1dksJDfoOnT7lAuSep+UzO8enFFmnOt+pJd5xwH4spfTDu2MSphgSz0yLL/V8gN5Mml8KQ4JwqlsSTDYEtTHnxpWS7kZEaY+2f+e7HbWRqUObPHYQ8nWa/tSMypxO8ltXjqZxEHcKYlxfdOcSxsHs58RtgaRPpmrZhuoIqh9movzEkz0+u3vCe2o/gtImQewWpM6S4B3jRp+wrEHmx4JjPS0pgndLTE7S6gKL8wrgFMDRWka53Lymc7HNlA50ubxcbzP6m/qgD0xdLKutUHGFlG+WgUYX1Mnu97arwLNckCTowLSMmfWF92HuNmdJr9QQ5vDNFhKf3R5AxRSGS6KTtB0HyV/ZBwUwIAIYiL2Ev4cJF3vlJLQ8/FUGcl/7ifZX8/k6U2lD9Q42Dm5JGYvnN5J4LZ6wPMUU/uVaO+7tnxSZ6hf1x9mqJ3KlWWYUC96fhF/DQr1jXTH0W88dTdTuKmvXgsQZBIF6urqspsxBq8K72Q3GRuMwnqxZjugH41tFUORF1di6jkvwbEv5ZIF9mXtdsOXzoD4IxWSYhA5JMA5Wx51oX+BluIhDOe59ZtTVUtiVxzn0L06H9eVHayutYL6aZC+YBy1QASWEiNl6xJjObrbDUcnzeb7Mza3vCozokLMsocx0Y5070bhxC0qce3TkGa0KvkDqlWim7rYT/7q0iBIxm6HtJgCuMoa980aydA/AGT+GuQ3hHq07tZjUOzHeh4nuw4dA7pW6WEjxyLk0s5FlLGYlOMd7PqxdLlvOKXwxvcsONhnA8HSTGzEp19n2EcfWYJ8QTr3dzHPq1Ok7v/40LN9R3HpjONOV4NIvDPSl4muiwVwXEaPGjSKJwFdTQjB0HA3k2ctpjBSyayOeoMgW2DbLMoBoTP30mjtdFNlbCfbk+L7ajtJCviqW0UswGNmWOOGi/XdTJuve9mod8TFmwHaMg6P2R7urawXONH09clwuFWgFk5RfCs+7f0L9HdnV5DKQncWkBhnXbI9t8sCtXtFG/IKx3Pz+5wyOALuZtjA1JTMfA3zUl9/5JVhoETZwvrbvMEFnFe6XzAuOCsRiPoVKlFwjpNzIDsskqMXaN6q3GJU/pX4OuMOv0TFJa2iAcN09eI+O5ZyusBkhbSCaz5o8Ea0UwdqWvgNcyiXrmcBDmpULwwvg4oLEJxGY7PU7RQeDydyPjmQB/cHwCacNDLIppfgunggb0SLQlISg06s0SQm6w2s0ZaVs3LdKUI5SphU994lmyhxbpljhLEZguiYDRgvFCJpgeR1eqVuFrCxLKnPg1zfqO+tEDD34Dqu0UaAQeHxEtIm9dWMvxecXcrbxwDPkl+vktXhHE5jryCWqJi/4SHdsB19p2ngjhGeAs4XoNn1YkKKUxNUwFAjt/aV6CEOVPiNSXK4FCbhouUh8zZOAYGNjSr6bu70Ly2b8/OvFM9r7mENjC/8X+1U7uz581FeY734dIP6UAC5WS6xKJ6HBnwQYzcpuHnbAb18K6nRD1mn2DINNZi4qpEE/dFBZi57AzeRpaBLq9kWQ80gbYygBepF/qjOzQFV0cQMqeSJ/er83Rwq9Rp3KlRONmkDCk4DBYHtVbtenXZOfgUzgiV+OueDqt4ZprwMQ1Sx6WuXR3YndqrE2AGipD7s9L8RzOeHFnMZ6FHsDrzNLuhFwWdA1kR55bth6ybF33n06JtgszSK8RRG4u2CThGnoJ8SHufiyUKdNfO6ItiPtmdjbGZYT4s3tgpWBPAPT9DJa9ZbRPaVfgN6iX39cX3zyTxuLBwxyZkPeL9miEz/Pxl5eHEkDZW22RvWCJMffLhdViH3DFYVpRHOENmocrARoV13E3xg2uvHuEMfKxd79h4JyzAebxTBet5CuauVzUnH/WD1H4KHLv3WxE1oMaMdD21n0DmUq9FJrajUYYX6VwzZKpFa9YaJJlFvRm15t66W0pLaONd7QsowPeFimT6Ig6J/CFuK/eG39zWmXButjxPNYj3dmBiV6wDkxHbzrdAkXSY0MVHTFYvo8+OMiWXlwoLUDfgL1cOis7B5zMiTuDmLOLAv70FrhE5e09VHo0zQS17J+0eLprX9RBd8Kz6gIF56k92oRJaK/GujDrjmwpkGLupcx66l6ng7dreP78h5SrZa7ePh9PHWm9SdON9vxh3QkHixy5V/RqBOhlhEXx0j5az+tSBHnt5vnJBE2qtm1SFzty7IyxYugO761xfDtSnJdtQRbW8dIwENTwu3Y+jPNHKIOaAQiCQgtbuDSElpXJhtXBan+b05pscXGyEQVvcR+aZcCqH8EdaSyNHjl4IM5R/qDHwHuubBYbKST+IGbDouA052IiIIoh4t9Iinp4yy69TH+DTDi5D/WjOunZAlQ8b2joUAReWU/BjHzVOl88FpKMKKeI4geP3mISuB6N9hSuo4VljVUri6vNmYqTjAda7u5AuEP/ieGp/n9XTA1Vub0m+PaZPBbXECllpXxo3Yifge8MPHDfHe7TjKY6MEeY1kmQXWLagkHSa0svwP9e8s5ALOa/Gn2Xd1SRnEoOYaJvbazeXxhGhj3g0RQ32XMWMi7AcFaBPTkDeQutvl59q+eZfyRdF2IVrBJraApb/I8MIXCdLGfYhZ+v9KKMgWkP9lxGRKBmwua11qgxaGLXMKWaQsJo7nKtXRy4bwqeTcyoiNB9613Gx5El8jIqWnqi1wsrqffnRFIT/nY5UbqZBgZJk0C4qzsNU1UGsAWrk7MrbxvQQwwJkt8LXCBsdaAJZA+3dUB8CzM6tZG2fQGTyH4X/9PwrHNEy03jCa9Ozvs6H+PJbWOpBz15nyV6q4PWf09F4NhltskOdx2lXqGU3A/S1VVuVRv+5pf/exfVOoSzIONi6L2/L9jnSBLp/lmmj0AQded2ABXTGw/8Lql2rC6NFdW8VwW/OExPL2s3dRPmtxquXQreUS25GF3WxKymSo/fa8+yQo4mrNqqrAHDio8PHTYA5sejTkqMGzgNgsy40n128QL1+pVwC23yeORYMBsJbpvZcBXMrqLvTpxj74XGSKr15CT9jCdaEwCc0SPW80y/RYpLsym2SuZ/J4SSD0i7HpzrFnKpQR/D7CD4QwiszsdBw45CPBCgAdZ3wzltjGkQPJEjVNUj+FC1C9Quf38YMeM4d0kwSfve1i9Dch/JKuOC2yx9tMnUUgYCoDYI6ma3VtIGOicyuga9DH9wfuavCjLKq1x36UQ55H2QuWmlV7+qbBoaORs74DG8qgCoAK1IuwutBKjqVwAO6RAtRn5BIqKAFGS/NQ7NyGND9eBNlb4SqLCPUqR2eHarFQ3ip5Z+jD+v6KjcrKJgC2cTz04hFbLMEc7o9dRCuooe3G8gforWXzEuTiGOLxSeGWoM8E3a4MKx1cf3OjKLkPeivGCKHZf+6sIss+YHop928RLZxrJ0i6Zekgd1ZKIXAdoi9iTMa1P2gnCiDr6UKzBiBqPDW1ZokAva5wu2pBbbOOW6pAQfpXveLGm8mYzKhp7WBrNTLl6Kv9R6/yjG4MJFKpgewssFT7YEFpSSCa8Bx8GFb6jyru3exU+xKTed+ecQl4/ub0mPEHfqGVsAz2QFC7f00wO8qDGJqMya53UBYIkfg7pJsE/haCrG5jP89YOw2t6qcF4yMhykcfU7Uz6wBDmxm/kWfV9qGNU9G5pPoUBtPOEbsXU6Et8XXFrd02Odw3X+IL5XqVTQaiWPErie+Phl3bFXAssQR7mdygQ5NjOhC9sHPNipxNQKwAL811XmGB4AlbXMI1Q4a/h7ST6R+8SIV490iId/EZlDQ5agOrRHwYjZMEI41GtAJMsLI+XgZp1zx0j+RWgpTHxO7m0cYMV7ftlR9+1zt6RtRr59PMaHXe+8RJAjncBk+MvYorXe5hW83Whp/QRKtPWvUZGSr/lbGaGeLuSc4WFG+zIZyd3ro6HO++x7xHOEwMpFsJoIzrpsVybhnQ/oc2R3Rr+a8302dzekr+ngWYmwQgzbUNTfPHNGqqWl8hin2TzfoyRocixzlTNU2I3FiEJ1imv4jlmsvnqd7aXBKb0mSO/zj4XpTv2nS/+15bAwxEzUE66WdRJd5M/2CHMY1A9vdheNpUAWO4VyabccVJH28DpJS31CAYbh4Kn97Vjh8CzUrmjRmLB9wl8erud+9CNyE9g5tyTLwA7hhPfEq9dM26IBXNqfyJ4NtsL7DuNIsT+VeUZBeh4R6rUZPnVsA+DV82/BeaXZHYtsUSsvxtW0sgkCUHOSiu4ZSJ/WZU9JDzf8gkwqcb2s36HKsh1I1qHPcnpgJ6/M4dr+0a1WVYVT9vuAJjYv7JylzUdbq+lYSz/KGRpdciha2ztKgscDwRjFrqka3LFe9rEpqAPq6o4zsZVMfrgpH4rXqDfauiJQrs0TF0NfkyaZse8Sxxujoy3ULQuI0iOvSM91sbuk+r7DomY11sKFEwN+Vv+wMkfe9xkolLtIkCBSfKVDTgKMVaSZAZfYqlF3kmPojoi69JQgL1AHKSLZA1Y8DWZ//AdCKjLDKcEZfVM21fVlxhovCt4udhbcTtNWjqlzcd6QX478dVW5l1M6ffgneRYDoJGVsJWmmKXap2Y2Ncqdu9Eq2KXkkRUHvMOZ08X5x2kceM8rlbHS5nYKdcpe+HE/g9QnS0SlzgNKB6SeVdPRSUeeZZmaJyaPvNXoBf73UWICUYh9/2wl0f8jspqn9kF9dhQBe490CdCHMik3IqGa6yYvyTkdQWJ5Eme7qzVRwCadI29n2zD0TOn8OpPs5zkIGhGDNXNPC25bVEhnXS18CwMUoBTcQkioewWlQUSdV736FZjzu+3eTCvNwTxKETHuV74nTpv1zJ+u0AK6ETtpfcCIrhUn1OAglVUrI+8LIbZ1NUP6g/xwKkuhEYqGGwh4XcHu/BPKOUmgDoJKUbkT91ELtC0ZG/aEtJYaFgZEJTIIT24b8qrxG0XjfNQpOBdsXugBAMVgNAoLn/yNOLGjIzHthBFJ1i2uPNt5E6vfnHTFH1A2b4IrwzYgXt9QeT9R2SZ9UBttbXmfVa2o3ylz6BXxOccYg3xt8xxdWisCaP98sFvSSOZN50RriaLzY9ww9Bi4dLc3AoegHaX8BNbd7PObA93OV17mH1ArA5VCBLlP+Oafd+PfJG8UT57j8JbOUpj6qauvdn3+AP7Dl+jZ6M04tG4FBZMC4umpTVfPqMGDDwmr+lvCEMYd5jyvO1Rplfk7jPA/IEDsTmpHrfk+RVLSuXPIP5XmF0ZC//bh4g9b52uEVDfTxq5PdIhhXr9Pxh1CxH50DPvq5Ii6BOcSdh4w7S3I2qhjgyKMEQwvJh1KrO2+tctEX03NIjVjATzha+PT+FsV7zkWYNn3BI+Bgqsk61B4XBNytUZRlnPMKVkHlJFkxRAX7QlIPLMzdZC83w8H/fGrC0x23eydccr5RvnphmmqWClvJhFhrfsx5ec3PkECYgo1ZKHNMky1jxIB2nLj3HCsm25KvU//od9gl0DwHvhWW3MQpzzUBIIm3LW4Z6Q6R13PivKOg9Qkhc/FT4c6SVoWdTe+AFSUdMtttVTCQ5NBM84W2dnuJyB6YYfbV0tEU89qszsmfoyiqYZyUznKOHzNEiQs+gKrBWIj8XHXY3Fbu+eEEXc125hF87Nwxc845FZKgbUHOOsG2J89gV2X4Nid6bBt2t4TT284IFFSnX3TN5SoQTxykD6WUrDifsZgVf0SR8HZ4EV1UVeBdHeaGtZsYfLuio503azoh4svfK5SEKn5E8RggFNg/bt7kftTafNxnW4fmimYcbK74v0inxnL+nNTfePim52nHR3PeQe1jAhLYh+tyQeIguNDw6IpEzwPwttlwqfVyT0h7jtqxPvn2Z20TnSw4Lijx2MtyC2pRY7BNKykWT3zMNLVp/pLGUFG5iZxufD5cJQ/ULkhdop+NKAW6R8oHCBCNSIQIEKtUKiC2RSqyfgp7IO4dW0Lt/r7qIpUcaSALMxhGg572d7apxqja78yluVWcWvm+KKkOuCD31/edy2svgR+ZTA57mBCVJv6N19cuzx1GE38SrEzrIuOeoHtqgrMACpHcDGiEctyOmdSH7PtT/LX3/vMq9vPupuJpgG8zKq1BG9Q2tDvv2xP+tiJ3kFOOniZaEEoPbf+HiajTeY3RQavRYk/TyCLOeP4tlpoxwn4z0ESpU12Lnid2GyHqKhR6BYnjCUA+789keLXbTSSPp2/qsFYhAyxk/Q9hKDJkqqxXeLhRu9hl0GIs9sxfU0mSqRAT7PQi9vbjSC7e6N9GaurQRb+W4Og4NcKI75NHLARVEBUD8bOWmYMxtJZGi0YQRBLmnh5h6lsbGSlj+46+0vMBCyO8JXRhv0QrhyHIn7dROMtlRj5rwevqE4NlxeAC4R7//oIpVVcM2XrYYpiDp8uRRcTJoUJv98EpzjW3610A4EylMwD+GVNCG0IWQqeX/PMclZZ1DPeCbqx8HE7xkcfRlThWqjcDe5B2StPkhslxVgW8RNmrIj/eTDZxhk85cJyknyBhxt5d+wpF+u4B7mK9pftuICXn5EdkZtBgRUqYIfag4WcSCxwzg1L9iIDRjZlkmxdntHWQty8UxeFDciNt2WMaXVgTX3pqZMObBl8xhRBG6yUbmdayX4N+CQwD0Gm+VMsOUJ6ziU3jOJbUvfvxfoiba5iLjZVqoyErQkbdZKjgAQsa3jLmwNxn5tNxWUkTMHqjp/Y0zqXzJv4QxKmgwKG7Nhv5Y3/hE/OF/cg1umULsAW60KtTBeKtbPsLlsGp639+CCfnYLuAxzKZfY4eGIH8mFQZT4ZXvYtlzQGn1cqJxwq9Kqo0cx7ORI9e9I9K0aPp53cjTg3F+LIId+7GmFFKj3cgo75zleFTpTroOJRzthxN6Cyr3ItsOhJaZJACPeIvlpXrNpzUDPvrYKQMRJKoQh6Ru2D+Ql0GoJJoi01+LwHhhRwki3LdYhD8+9+XQgfVOBbycdjzDuffobfvxm6tRF9ADYoyfWohm/to49mdMgjLLK9wd3KIPN3/s3X/5XLimAY/2r/coWXVXEqUkJOmxA3bAfGe+Jo2IudMgk0sE432uxoIKzdyR9sSoajk27Wp1Np+C5ybopRj+tHKyJk1Jbpj/02nLtAigW1PJ14UJ0pjmHbLScUxKoa8pT/b+XWNxDwngKF/qFbyVHDaZ7zipC+7PhxW83IPOrFRmbutPcK0tvsV8+jlSG2OHPI1baZHGbAVbQNWN7n48PY5S6n71Y3aiUV/eGeOEVAJV19pVXapF4/86UC0swPmXxOJiOIPa3tbtXfXhAdh2I8sSYLGylp3Rx9g6ZTv21LLABTE/6c2RFHSwM8j9mFZUkNiLtYGvTLddG5cRowid1zMufZxwP7i6EA1HNeArxG6QBZK8dD8gNsNOJo5iLLKn42Wq+1Ks64jwY9OIT1kMWoDQzat2X4KP0Ey7zZxrASk+P6JcqcQSRzyOc4RUAdK0q0DF4vKVHGjDeulpQnhCbLMq0L7hhVCxVXs0E0mW7ThBjP5NzCPvzjSTcKllm1E0zmmIR5E2Co+3fRoBhysg8uJJPa+hzxWHANKpcnKmY9YggsP4J7s0z8Uzt4/Hn4vOjDPDjKEofY9e8poahAingTULEkAUrzpPiB7FOdaSOuHPbocuMgyOkpCQU5FuCaOWr1hlDGKqEbrx5DSyd4Y4kqU74W+krCwu4Ugtc8ftKyjH8MwFbrguOcx3jmotlONvPv7+JCTW68j8aO4pf+IXo7RntuydX3YD1C8KGz1+w87zDXSCjlpADeYuZEsy3LbQO01xbi46g5pQgikkM1hGJkQ0109slFz1edZaeNBxiOWCcv++k98WraqESZvwrF0YBVBRvZgrUc3+U8JYuSM7fbmJogI8nhjHusTMf1wDoW/bFhakZsfGUna8LSJCVVGFkQ7TjAtzKo1aO6r2vy/g8sUJVo+XuPGEjFSO+SteiPCG8QrX+isvvBeZTWeadD5L/eL+yjtfF5WAwvjmjUvYAskonTdtFpJpPmHJuZk0qe9y8pnl6gd82OkijrwpE2itu2/eojXg2Iwo8m45HuNSsNtfEvVQ4QmJBGTmB0C7UYAuu2QVO4L4svMk/x4diAg9gBB/DPAAuGo4B+vnCW32k9o6B1mtEUwQbgK7/h4AWWFUkMEgXt/qFLmrzZmw3QIBQh0rBgzoRSNUTrNSFGRPQfRJqi3A1s/Q4kmuBRu09aUzIq/xSH6IA1Uu6uEBziph3nFWZjDtnmNCYm7uMoMpUIlKHkqGJM1iPbH7n3F0noCUOyAtFCyDeWjY77h53IDqoNnTpMht/31+v9bAyr9Cc+PDt8Dh0XjCkct1lGbwm8SMCTUxtbrDynYe2/h4gGyv1NwUAYgjgLveoG7BpxVeD/h8gxmppqv7BLNPY/gEZV8m+SAA9lSzx/e5CLLjghhCTiowdjI8iuvzRAf5QEjgZLO6JD4Eulud7gpGbXeduM8n9PAi+NXj9Wupiy4S3o6nqzslzCqH7vASX4wk8+h+UF5PTgj8k6gDg3VnGJ6ul8ShTRD5i6pXcAuvfE/dehKiOtZ+CCWofyMdnJUBf45jlAXuA7bV4TnQWKGeXwPshx0g9MV7W1zbDITitdggI/HhuzPpsJNPG6+GtW4XN0aG3aGE9C0Rw8vp61GSqsTyQGOlf2QBpFBcXm+UBJod2413oQGNeEmgMxy6PKUYKOpsNnX+l1c01ymY7bR6+W5mmlHVMlg0FcYRpeYXpakcqk0IxlgnYM8NXpWSJkCyIIYWCk4H7MBGXEYZwlmV3Z71tfPm+Z9TpRu7uyOsiFOzx/hodPLKlizdZsink9D7r+95tt1ltRAqsaKlrXQow8ECPMiSf1n9mU+HvZKsCUG5Hk8FUYGKB36mklD9HNsPsDfevotsnNw10Ifi72Ahx8YWT4mQUkWuLR32lmZp7fvx8efd5ytn2jpbu7ukM1w9sTHVgb1rYfU2m7eSBfRLJn3lPdZz4SKQfcskR1qNg1OF6SkhmWmqKtHLLK8XOFm4p/Tx5Xq6Hd9LiCLAqyRYeY+6Yk9mUkAR+//tkiYkeDGpBIMHV+QxMXFBDXjPQ1357p/mP3TKP7VcB1g4KGb6rmgDAAOWe6f+E8AJ78L0DRsI7bi6zIlyhApibHl1mS2Bq5xkGl3TirQcbMCBBGrL6NpjEKpsu0sF+xbJfw8U54XIZmey9t7pvnQDsD4w074DyVb3CMDy5VBrn72JECv+z5yHCEOhLonciDAxgk/oD//l44Fip4olfMF79+k1JR4xA3DbEuZYuLBowo2N/CRbrpH41zDQV0C9UVErhyj7gMkYUjWPg2eFReul3QJ65T5gzZ+E5Q12FGTPIl2kVjc9cVvUQnqdXG01qk77C+GAQIkN0AuNI+LdB8RgfvRXT+Ct294Nfk4lNN4Gawz9Eb9NoymEJ8X+qYz/935IvL0XKjicagrODqSxbzTgZdibVFW4vQMAnhizI/wIpxkzYaED+AZm34oU0f45jKGv/ZTm1RqTv9DhWVaysYJ/+wIdAGzy5Yt+R4zGNitXKZYWoMr1E/WBkZJ4K4X34FTe6q6A9CjPXVEXMCCXowzjo7PIMqD4xdmeYixxNYNIhR4/wYDyZxqqOhtX9yW9WcQYPHB0/x3/bq67uSExA6cawjUNQt3ScrUZ1Z8LdwKXH7x7RKbQg8rDx5VsrVU2Gb1X2i5IsQrRVg+1JfPK2WnQ8GjfaSZJNHtKqwB3QeaHckGAcBKIT17CtPGwdKLy071/CMoSMxhwCKcr5EXs3wRTkKQUgIhaccrHyjSPOKO8KcTmVtKAEFYJQ/v3o/WSYrwgfqkqg5e4AoGXc2XGDh3NfWqho6O71thjJg8g9OWVcs4XzNsUiNKzG3nWxn0RSrXWT/YxrjYCvrwYb65K85mzNdHmu5XemNUWHvkN+vm6jATzAGVPKGi8YX099SgpKTJuGapjwa1VdNYU8DZ9JLnAlpD1PoQECRyleLEUNwuhrsc8dMx5VGp3MeoNGlROmfyNMYAdYbblrieY1mNPHx0Lka6vI1yyDMTyaG+NOgMO5F+AXDp5/NLaH6KLnjfsoI0omVtk2aQITCGG3KLBNqjqo3LPAHmCcpDx/h5x30I3vMwtMCWtVv/SZqcivMxRIqNLdB/5wIx0zSLLXj+/ngQbsJRCZu943k9rtoatBvpUvcn9VC7WtvYQ8umEGrE6nlGd9ovRXVcUI+h/54fol6YTQEFJdjRWfhojnkzoVFReid+my2q/zleN5W2m2jjxqMgh2qE5Dk0sMmUGacT24ahP6GGJmebQ7dopytZF75bfkeY9qDliNKpkfivV1TsWgwCRAYz5ec8yM0XCLDX2ooVESyDP4Qd+SyELjKY1ygM/cX+qoSR0tGqq9gZUuvtVAXYJ8ZVwc3oZxaG0GBhyGaesUNhgemaGB11xBIAZACM/1GJ2cyzfArdFyNmu7ZlpXC/3kZ0INtKOcZ7bsPB5uengG4duAlk4THMfFXL68XMbvO+BF1q5zBnAsEENutMQlopvdRuP8rMO3+RnOdaYPIxDy2lXJJm/DTl8/mdS39RFzb9QULO8OjnyKOI5UsKmJIk5Kw+tl6n4iff5hNol+gEJ/AZ7PTawDvFoZAGoYbgooMTkdjk8H7MpdvOcLF1t0FwUE0OdDlE7TmInfoN1b014Vm4tDGqgPMk1r+cHPw0dLK708CDXs7aGhlHEH8UPMkb2SMbg4hIpPt84mmHXA+QtgrTFtPe92jub4w87BNfsx0Kvpp7U7DYkElBbxfgtKvJHiyT/DwUwAleWJxHF4mduFY4b069uiKMAJkzb1kcHtwg+I27/OhErfi1P98/V7D2pbaFL9Ns0kfVapeJXBh8gpQXPpEtiLp0L2ANvatFRT+fSPBQZF5BR78StKE9r8mOuszONicwl24PCoNzM59AjIcBAioNBJzv7vmUOXVOcY5plQR4Aq89WUd2SquIkt/ZuqJhOskwAd5LaMIyqIOmaedau8hi2UBdnpqos6H8ItWG6Xq2ZzYInu8umI9EwUzL7DOyXdNLCdvPrL9VBfAroblo262HrIzar+0w71n0vAJO3yZ4gbgiARU5IabGwwmJFnKkur4bxIUp45MtWrDcsjA13Zhpqi7vJYNOP8xgHSnRFoze4BjF1wsExkTfmcTsjG1M7g6otn3RSqxR/y9Ci0QteubDhWjiNac2z2VtpQe8T+6cCLyPfiXC6N7h4ZLRX0CeP6GhXxGsnUWoG+vWdbMAmIqZyZosrz627NKAO3959UoKmhBAeH/0MIOObgNxGSS8wUTvlq0ejR1TLIyZv+12Va4QNDkRxlpV7Zt18IpNNn85HnWmkKcxy6OyxMLXeAhH4nBrxPXL4a6+y2iqIUJgL/8y0+0yVsdPgfd6Lr/NFRXd6ALTVEuvuMQl4vHXY4nm86tvc4bwqcppCMOxDbqYMv5Xtq2lAPuyhkxiBQl9oPg1nVECSVqLQQe86N9RtDBfJ5Gf9plW1sR6gCfrw4GuVTP+fwjXTVNPR6uoA+rgycTN+dpOcSiVEi7q3CfMiyEYvECDlqHr7Df87cZzu3HZrWbi60+LLoDi/6nP+hGL3Xp/5SEUwHuBBILygdApn3ZaXa5yy561+jS/LbGqEdu28QZXpeD/+KoFH4mLnCJ3o0C3JtfyApDdSP4AiyGs0I9GdCF/QUxXJu9gYRqLJSBuz3MzRiACAkjiEvUeTEaoBr3uDWXIs/00iRGDEyPPvMOOVTYn+KoS1K02XYkVLEgtFkVMQLjRLM/Df34wpW31SbvcsTTOGuBP/kHzFk7s03uV15YVMVTdTD3avob5/Rye/jNl6zuUM5UwHhrlFqZfeE3Wzv1wM25JDC9Wh+qE/h7Fwl/MjUpYd8JrrR3tMaPZRw+hsrv+o0X+BeP8PhVutqHzJUdzmool6Sk9NIfaG/d6YLdmstOiiIC8MHt/wiWdDnTecNHEyGu4r7Emw9SpEpYLO0KS5AKvq0VTT79RIC+L2hPTJiHtQe/rBDwFxrhhSvgCG6WVnIYvyXjtsrxXTVBH07Qr7yElcE0uuUPVc/K2mKJeRdiz9x5kQAeBrF+P0ePbCEATsrEd5YkdHZLNPSKPhssenoCsaKYCkNshRqH7qhsVqhxpaD4l8IXQWdEXoOm7Fb7zADqKTBTGKp1LT4LbXBsuwlu7nVtr8cVLI3hWgX96vfn/8qtLomm6LlBXgqCoNTkqiIDdJTJWIMTQ2KS7GxPSmpObF9RrtCimIduANN1Yk3XlyFXbGOyRQ4eSfNTeVOpUeBgDAdLB3EySq3kBPm2K6p0guMDG1Qc1Oz4uiA2X5/Fp+Q5Jhxq89gSMv329leNWSH2U0Wp91fDrEuIqsXw1OdyUM+N0DPtk/0FAY1tR0Gb/5k+CQggTsvhGOxtv47TQ00NIGE1B87WOwxjUrrk2h+H1Xcz5MvRELa6fwibyhUBpXo1B+H8XoyUSxhRImhC68VOgZudcQSbG4ot455KgodB4navtBVO4sgBZHZRe/sVrDuGJHjn1KLqoFOQ2pjl6j+KMxT4sdJAazunVUtCXIKowHz9la7VohomkmCjP3y9fiTBvuV5mZWwjKaS8poSrcMocnwwgE6h5Y731vL8KnxgSwqXIhqJut+sXbJo1wcStnx5EPUVmmeILURfoti1v1I17ZQyrqQWY3956coBiVmEMUZ8vX8iYqYQWakraCQC/XFDLhwnV7tkx0sMjyiymIDnw+8Syh47FKjcdraUy6U4KhpxgbxNVVOXhv2AqCAFWYDxT/pddpBLnX9ThJHOwvXDZtoJRUcgr14KnSQazMphhKQBlgzAGY7xyoHWHAjw5TMkRCN0WPwZWKp57X1djXMI8NAvhFiKiqy+4HS3t9chMREbJFm9xNVixjRgqqufiAv17Vnb08opEJFNJCAvg+j0W2Er8A8VxW1Of4CeRzhUPQbDCYEYOwBuUm4oCnQhQATsXEIx0OlAjLTCa1AVrHt9tp+rJTP9OEwH2h1ekzvo17f6jIz9o5OFL/DBhtYyw2L8+2EqkhSvHRLbM19xSfIr9Ph8n55zCI/6p4pEB9VFtd5+oBVtWhzZ1YwKDqu+gUwe1ZuHvev4iwJtthfI1mpRlNpBFTMNxIpM70jJgHsOwbtS3OZAMYe2Q7ZY3XSszXXDe5+Y28psYmofnNzVpLdn5nxm4oov42x1dhYH4OaBpg+m2nKDhFDqNjHo75ABRNqn+53xI1oZVsFIIa6yUjJxlDSyLLNRX84MVoZo9TYKuKSwrVhr6oRuReFvxUzBCy+3xaUA3JY44uFkyTj4JrA2E4cxzC/EfdnfCSKTZhoYm/OGF7LFiIO3FEOwsaF34oUki+Nm+34Xv7WIHHZ0V0HlX7tTiao55KyhdFgVNapnypUzfnwArkTzir/SvV19cqwBd7WgQyM2MbqhR7Kh8JbK/vN/h/q5buJLJEKUEJYhelw4fq0UIeM14umyu2jbl0tML9wjtb1mMOTQITBIsu+vZXfJg0T0FmNbS6JOBjbFOHiS1DaJkupXGRYTVAC8R3r+wFJx/LsZUX2qx4ZM7WTW97xTQKYclxEdk3zcOQah8F/+DAi0gNWPq6HZ+jOFNfTePyVBsS02BAH6fCX9mG/fV4BSbFyjUMUfZ9wOcLlYgrlYnodb3NcbKX/Bxx/+WKISrns6loMddhtgcW4555jSxOgMlv1ucwajcoOfhvRjP+BS5jtkKdBxbmlGhyIozrGxZemJf2mmmwzZhIfZAMnEtfLaCUmMoiPjaPJDqTjmDBNng5AwVL0p1Ib0WRc/bd//+9TCIInJztlsmPkbJSQLdfHCkdwSKlsi8iRV+4qMQQIHplDA+1dLUKbaNxs00KfvU26rOmWBQF2AvBsJgU7fVQY7dfy6gG8dhg8blvt7gUpUTrzb2kH9MeN1qMwiiqPAXgemZ+Jaf3TPoYmfgf4D4dHlcn81WiRorzBWtIFi0+/hLbyDA/s3gbDwvnlJfkeRRgsRYaZruhK+QTQuTF9JEr4mlf5yyxIQNdmWWaCB/bUq9WIE7YSJzYYaJK5F8WgCAS/X00Scd6A7ncIzI5fxWzxRd04Hk1KHFfqaCQfF+q/qnZjcC8/ZVZRvo9CS4u4rle9ycBt06xM5nYL4A+kj6KLl98pvB88sgS1aFuzfgD+A3wCifnb3auayEWZ9VtvLgWXDWvUqRpjnuToATiqHRp0loo80HNdYWtJhfi/fT1hd1P+gBYKICaIwjQaRG0EJTAol+nhRVtXWiDY+hGHud1+YXaijRLH0bUg3N+u0EOewIPX8f9x2WOIDEMXUtKdDslIQzd9xk9amVojvr3OEl/prJJAGbbFd3u6E3giYguhTfJkT36bY0rJWTn9YGIRrw4oTi2qHK2xgfHN4TLz7sizY7OHZ/TkPx+fOnalA9xMe92Tjn/PA8WKJV4WwbNp2rpUMqh48wleNqdWVjSlqOnv8C5K8FvZujIEU9eZ9YIqaSZ1aJnccvbg0ETnvBiOl2d70Zrvlzv7JHIuy18PSASZu03yAqydakmzhB3NBZ0VpGvcFCCfaB+DAhHjlxUedJpx+gxmk6UP5rAwBLO7yCiuUV6l3UgE2cjtQBRD+sZwpSAo6L1713UZ4Zk6tk8h2Cg8MHv55z4VjTgg421Mh0jh6hMqY6U0p/juIl5zEmvRwPlE9phCPRvhUTzV2noADMlLvaPayzCYGWIJRGmf3KvPICrlnVdp7RvfwN54ITNCIbneZe+VPJ4bib2tVeJgjZsvZivH7IdMJgHnwNsuLRoc2s0A+VEOkcjMzCdgYE4qOzIGsu6SCLFmNMEIqvRJkZiq5zbi6Si4KImonKvqKFmpwaWVFIFh6l1+HTxtRtR0KvRGzixMbH0nJlo9rS8sO8w7R8hRLhHaQXGD3cE8G7hu3GVFktmrGB5FkL3LO2mBEYN8LfEutfgSAN5DxrK3mxq6GyLyr9RKF+3j02VyjRyQyKbjHyEinj5lqBDzA6dyz25jQ8wgS8Ke/Zv7iMuEBnei29/oWHWSXhXSAXa4+Rf2abRoYyV5RayumJtVEH+h8N5NbtxAwZK0fKgrjtrJd2I6QGEvyE3qj7iHdZz3zrwUSZqESfzaPY/C59td5dLMblfYGkc1Lxx003TL4vq6lZgXPI0S1fxD0ASU2xbdlfYhFiYycgaWRpNvuR3tZhq00HDgTl2usk9UfbDcMk89on5mHdMCj2baKIwWmjQdja1ggCR2BAR+wToEUL+g/dFak3G68IM0sqMfqyXEJ+AsK2VpipJlqxhFPhXiDkndMWEmEXvnlNMDUygWg0qrVfCzHEzBv2XVAV5ZvghInkkhNpe+y16Ugw/2i7/J6WgYMyED+ASuE8WZ+7TZRcSe7UeKvRmh5F0WbrVyHgqD+vUF1PRNOlm0URrX1eeNTymXMMDvpNrE4yv/miyWUPxEsRxt+cAYQRkz9X2bLIKf0Xn5gfJq5t51VefxNpNPC7wbyPGc1+3XRugu0lrMcJL4MOtlq6vUpdRBoEvV1gxIWQe0nTrfnYe+0mfD/cQtL8J+Y3TyUGRu5M6BHUieWB583nTi6u5wAXkZG5JLpyCPLSZDzfco0pV5Kubx2u3gwfrUrEeTwM5W+TyYVDM1iWFDLuGTKYOJlz6Cf0o2GD/q0rY+G1GsDEdCVcwgCVLfmptgeqeBCrtygz3yTZDLyBxvNuZAIDKynUYdx1HoQ+hieAEQZTxCSgrvMK3IieXs8SzRQvPoVpytmmO0TmXOyD2lK57MTRCGQv+uUA90CBcItu3ugJqGWcOPQ9e3HfbdzHsBM8841ERZE25onBBqj9YjzX0U0i5ORNub1LdZ+9xCQhyTwCxRILadSDMBK8oppHA0BGu5i2A0KQmAaOYgddXMk6PpGKVZoYw2QzdI/xNqDV2+5wzDZceibilbuyAgVOWXkqhENaf1mAP2q71ZoEOuQKYxb2gvf2NvhjLhWAmm9hC883k1oNVSOuO8OG03zPY3J7zmUcvvcNVahVjxWqOHG/xph19LeUXXsS6/lg8VKY5E9N4sAUscYVGcLSUJBr5v/pOTdqClzWP1pJW/zIu7H61k2izJxL+yQHQaGJtZExsMehl945w03TPdWk8XSlDaVovRksItauURSeCEXQxHD83bUkmAMQJSsdBmTlTbxe7IffkldcK9g9smOv38vYDjW52EN0aAbsHOiFLaKqkVV46mrKEj24RRTou0gqsxBr3ZzJfBpXD4+SRwhLlinuvXSEIxUUD28MccGlf3vDL76zKNBW8gMv3AharYcqw1bmCznQqkyWtbOUc2L2a6Z09qpCQmuP3SfgIJN9V2v6waznypHwcdOvCN/ay0BcGY+31xHBfpvSbBkln21IxtJ2Q/SE45jT7w32FCrAx7WJE4l6GozKHIG/WfGxHpuVf0Z9oBCMjr2XbcmCG1Gb6VSFel/HPDFRzOebn7kmYYr7ElYJ96OUJP0MyWBAYjYzgDBbPjsjPlH+iJ94uQ/KRoat2MkwYQVQD8MMUlKxfqwzSb5XFgeOwGMtsOCkmOJyApP2aZ8kPU/WUJCD+cOQocy8Gw+CFe60jSJRWP0gaVQ1TFIyLzU929rOpciJXheTNCnJNqD2Lhu7g88+uXDMR7w8NHCbgNxO+d3I0/NTGklINWdjUN7pwooe5LVElyV3Gma4vhfnDxSwp0qrmlonMN6cdjN/pZwz5xabagUfdWlc1hSWWwZKP7lBVIKQwTj6/QYboD8joTLDN6kNyl/oPwXe+NIrsoO/qZnLvnoeUE1ylNstdU2NRetDkv+Oso3d3mJP16zTz+2Ja6r5tgWBg792vVoYUu7cvJaRUloukRadB+GAXJvkVYx5OtaFw2RjGemZ0XstaacAdz+A3VuWkvGuCnWny5aRXX7BRLAzSNMXP4CBgIxA867KVSce9jxN8JVmQWjV1cZdfbpi48xghcxY5pG0gyfIJAAyj2qQaJA5GfWsZd3ceME0cw5G71odi7uQCWXEYhTi7ON0ZA09767ZrF7LA5BhwNmK6NskezgzqF6TFkZZV53NSoVDqX0sIfaopFlmAZBQAVXpKajY41Y+zoVKH8H1rMHH+w4n1RqER4uIviomSrcIWlODu3lKArtTbPN3VW/YqA0j6utyvm5ubNcmG2bWDBVp7yiaiozm/lTyrJukER+IPixvNRNqXEgyMgH3RluVsycY5ws45yV2Ne+q6Eg7zm9gdiywnez4RKJT2THiBn8nQREwr+km7Z1LkoS/6nWelbyYYFOgdCrhI9zIvsQm7W3qoM2CeSm6z1nN5XRCiWsW4a7921BpNLzyn6lwCl2UltC0ug7W5ET2+bhuZDx2H3dh4SulMonABMwBQAMixbIKbwutUQ80MjCP4ZiLM5htWc98lrfhXxqQf4Z/rWo1PoVccfcgwOlurm2PQxEHoufWAUFrIpkV5tdELUoK+S+Dk1sas133T4uSYGI1oagUXPCu7BVi8SWKdkcq5+LxiPykE63TtKUYENYJoASn7PaQ0iNSm/3qf8S1Sb+vE4epDOJH+LO28c2v5Rolc6lzpZTVaUY4qghvGkntlA+NY7C22io5h+qwqktgxQZ+Pst0tw9OR4UMBbW4TlwbqLaxiGx/SqspspZQ0PYmYmpXqHlQiEr4+ZcfDiLNKwOgRvGCP0rT5KnJnzNTy/z2HBqArkvrMz6ZmmXjedtUodtIPqwfYRx+MeNuavoRe3LrRlARLep2HVNZ/4B/HGyKRd8igkQW77JhqywKMjSvkVQo4fDui2PBSoO4ZsM8IFHM+UjVVKoozRDLLqDs+1+3988CYPiMi4rVr+xVSE0eNxGylwx7xTR7DaGy3rLOiejTlHJHw3xQEj88VEmkW1t3y/Lx6F7Zh28VY2tlflUrnU+r1tyRRIaJV9R80o8gsHFl9flexgQPry+uuh1ViyVFIHkGRUYOJl4koL+UFigdTUTo3O6mBZyD8+GP2AqCnp7PxFIIhBDqMuvsqtF2N2AZNPeojzj75tW7MHX0lKFafP6lEv0jRbkoSHpMQraXSNHBQsQ7wp+LioGC9+YlnwhqR5eBqBLmJ5PfKHg749WFDJl55ulo9ng5NPom8ahtgv6jw7pGCDnhQhEggDhgJvOAf35TrkBiJe0iENlK5qu9HlMs4ZMr9GLw02GZV9O2n4AA0C47QAHrPs6/1OWxsuanzBxUeqQ7vEoH5C9Brfx6lF8TgXxwBaGK9WjLCwdGqWwIvcs5IsDG3xAc/CHA7C2pGYBUDNdyz7FA6XKB2NDU1VeotXNuBETmUri29u7YpOQ1WqwVQn5IqrbRGrc9urzeSlJOlU8PjWH8VZ3/VsAGOQdEAY+ux+nuYM5fq5Nsa5Y/DO/LicaDwdr/LCWGjvrGJRrLGJ8oZJW8TynqZfJVkUiJ+RnMZiICYvwMbZuYTPrS88qX6pCxS7F1939ObjeabYdG9DPif/lotSsItHP8Xl28sOp+yEtCugoevevZsIVu53ST7X9CjTpJ1SfdvNQZj0PbLg4JHqKbkBoOv2hhGvMryMyR/rPWfoYtOdSDOaK4fc+7ZRatzWNMN+uKweMjINB5oamjimp+2NIDp+CZaBSIakk6VOI3HBqYrn/sb83OvticHc7u7pY45kxYnPokEh3xT7Yaw//bM+lO5w8a07fivYq6n4Pq9Fu5EwpXcF9L3121l4/ELI6D6hU5LT4mwBffbNftZ9ddT73jC2zi6K4Kr7RzOQjTMfJFGPOociaURoFls8WIEzFQmnwKjkeGG9rG8ur8O4rCy2teE/yJlumZZDRiCHiUmWIV2eHLEVaaUqTt5ruTs/1gGOxIAgV26S+6Oh7zOly/3W44nBP5vyM4r5zbG8tjO0lRlOld7b9BzjyfFkhI0necd4wYqIx8SVnI9sZmoXSjbw8bYETGY89n/vEB8bngab82G1F624S/IEB/++nDCN1wY2kJKqwm61hgfFeHeUKDZv/mFIBP08tJhabc5M/AK1isH52vwstwfGxtOcu/TYW2JWegYjdydNYIa5lQtqmqPSb3P98nve4jt4wg20ntLwiVUAe4HcJCD5CirYf1yy/lb/2/jswovC/prAbi0zHthkIQW9Gr75b19v0WLrVuOUt61kzAgBcClOVOSUatk6mNGp10yATrEcnjH3/7ZX26WW/rqmaBgHn97Z1hURKoX5nTyHUgXffPvJo52aASuW0LckEGBUbalH2kuvOKUWYYV1Mn9uvjpbLZ71LCCX0bC5TGoOgYMAxoyKvJtoT8eGvrNvbFjLcV1Oj7H9xJ2n31rQ7pY+6lCKaR0Gdc70KxbnPeuc1B54Muvk6jlehBY0h12HpCLJQZtgFK8vP8ABeMKAw6uLVMyA19M6JK4RiaRxjKsg6Z0hOyif7Jb++iIY2J9hp6m9axJx7bgOBVLM3NjYj89xI1xKGxwJidTMSwuD34ODdoGvuuY4IxD0kJWbiVmHkkOTgWFrnKCui/+vuxv72P8pA8wpnZqEAuPCCCGwEAzWM+oUKIwOsA756Abs/uKyaf15ic1mgTqFmtD/ZVC282zAgQ+ZVbvds0eEvRxbaQMRQdX5mKrZKHHNyqB5BYZgzVh5MXtyvTSaR2+xS+mrTYBjBgJYC4QKwMfwtm6gSAaIPYm13q4IZTYYMK5SITQfxMkcShOay+h3sh0tHG8mw81xo86OQCCwl5sUqgiIwSnO8HWYzTJdCHPUZKzRp4OL0dWfLmJmTlZvmpAiB9OTHeItpbCzmmr51hy+MpPhP5cR11HVLOroA+d92Mo0xNBxMMDLKYZHoWfaF6JcBljX3D7rIRppD+BK31nL97juB0trxeeRo0MSiheeP0sTog/qtCCAVeoCcloJrDlLu7S0CBY0pUmTr88haGk/sb7mOMiWOaSNO5ygsvlTkFCkR/6XhD9a32FVKPnmeLcNLe3kMPtJT7MX8JnDjhLmtbzgzo/WO7w8Ug2y/DUtYpEr2ow+091q8Dat6ev5XNgeg9jtAFQMAdUMGfBfoV7hBwrEirfyJcLp5HJaE9UgUEr0SUnm0AMXquo2skj8bl4uDgDA2tw0CF4aDqV4AB2c2EmcQ+y/Tl8aMSgeogbdjtbcXEUOA0sPlUTZ3Nalch6mSZBTpsznecC/pVMhAq7m3a6gog6w5GcBE71vVhx0UTqdbw82nSgqsUKf7z4If0o0Bm8YGbd59xdRbellzHtvPflSrH775dgL1/xRuHDyBVLqHJ6PBlQoAMzGM8bWJkArHXI4vQs7/JIypxvja/cS2h9HfoYwpX+MzbbIQncBzKVaAlypMvvaYqBco0CKDzHFGw3FUC4EYum+/sNsYXLsfdUafUEdpsUY/hVk1qIpx5u7dnMExa9bQRRsvAfg+evKaH1LeRmdEsPapCaeXE5xRiRsW4n+oFc+NEU6+RCidS3BHDShy1rRG2/dSEVpXCBhB4F3VwtfuyNjRj7f8DZC7EWS746S1++6aP7gbHl6wVQ5HMx7u4BQqYwF5VXOkkwBWBNaUuqw4QTIsaEiOF8LEKdcnB3Uhpt5KLd6rcT5N2F5cpWPTyvOF4c3oWim5hEVEhKTwz0KVvEJjK4qZc9FkHrcXISZ/GfPsATgI1QYsqBixtWIIM60FD85UxWnySZG1SlUtEKqXu+F/ims+rkHkfVcghx+mHHInjl5hEXsvkkXZq3oCd8E+roJNPA3dEKPbhUNW+m/EUKKEQiAIHPxqTXqh2HQEtn2RVtRW//jQ0O5ICt+GJD+mVktU6Mo/Rj6kDaTUH5s3o3r/aKj1p6Q7hhL+2aN2jI3MXLJzuCwt+7YCa42X8RZkz5l1aSevmW4edFi0kwqKUOcIQ43A/ohpDFnR2mfE/7C5XS+xICeD0CYeGW2PAqBy25AQTMZQktFUUTko8WiKjiUnnVlp6lhJyjuP5kacfictbG0GkYSfU1PYfo/4fmwNmTdzUgNOJCXqa40jvXgyCz9lGRBhDPo4PNqOUDJCs/agZtsLiAYANjh+dfnl+uvGan7I9qx3IFPIJPXvAXEtheAM2hbTeNGIP7KLj3MpoAfb7KV2HGskhYzoWVGbOpfY9dnsF8s90YTnPQqTuuxi6PuS447BbjlURmM+1/vXf/C6bVtr1uH8Okb1xF+AbzPXbT1dCWkEfFkfqSQCpcaGtv3lhIT6D2ej2Lws8b6kqVn1Q41x1m1z1QFsDONzgf/J10XrVAxPqnjKoDtOWI7iNez76yZ2hghum9QqyRVEqpYqvrcR7y7tRKxKzMI9Yi6jBH0zofJhgQvptxiRGWfzJpNbUJqHaUbltHMGCOf9O/VqsMwMqIhuDqRqu6P6B1xl51pLS9ZsyjcOrLDbjE3AUuGkrl0oRrz5XouNWTMFuqJVAqW/5E2C3rSh8JEHMxVUt6qhcgU/LHmN8gDYaFstwQ1sbemUX0uvwpVCPdNDwUSub5BbB8y08W2l3Ean/a3c2kH7EogSgUXOMLCdZnn27p4HKeAJxpOLTdMuJL/gJK4UJvZ00Xb7KVVEokeeWWNLo1JIsumYZ9oGt+LoSLM81iquAheWuVBhNJZEJ+z0jVneTcoBQEs0e4I7i94wCDf2n5bgraBVmYl6rvU90pO5QX9IQp9Ba+aqaVtpmERUGoIEDiRrMtDW+u9kmaDs30dLyxCtwaWXbT4H4RYGmUNA3CR8+RcHDdSXxuXftGhKO4T15QgFCm3IAF5YDBXSJdgVYYD9MomIEBs8J/XgILedmKzLtbWoDgsXROIiv6vUemcXP0pWF0GRuPE8GGLf0kzOOg9WPSSckzu+c01kMyUyPRhIB579zulV4ZzXrLZREHGxQqgrN+0YvVMZrl2dvTXdXmosmdwdKRfxQTJRd+fVlT2TPlAHVe+fbts3wV50B0U8OKBJNBNPUxXaIdJ/JFFd+Xfe9CESBrK2vCi4FAE9Gh5TQ4DCgkH47326S+0/hbRDfF8osNsQKVIVQywUdu1AjkdGjCWaeNA5v4/G9mRmOzxtArdZG/3qnkB6S4aUVatXCKREsexPFWLd8kfi1uBk/Q0QbJj4xuCzkpNJac/DIWVooOeJZC/o9GGamQRrEJpGIu0s0+SUoIaqrlcq04Koki/forSjAzBYrUrjnfmqyiRzWhjd0el2FVA8y2GroLgeLSdYG0c/sEBKxUgbSDQaDFN0bweFaR6oaw02mbFDNzylds6PqnF2U9Y8K2F+thlIMLBuZ6s+P8gYymlMwPuzXAdYJK6f8214tnAamNzikb1jYCH/UoASUWNkthZ3Lpzfgwj3h9IeDdjXnd2K5l4+Zu2YPD4Q7Xer3XJO2PGTMfCaX/RN4B1tU+iAROM+kgLFavwYcnx8+cBtYOJUstHlVCAoets9hVW6Sokns/jo7exUfqejoFU0caMAcfKHVjGxLLUBDS66+LQq3Y8gCBK/UbK6bu9v+cYhCJbEwtqeHCjA5cSIcTO9KPGSgGi+2wTm9CafFb2OhofmSQWiCembC2gwKv/6wAL7l5SXaq5vgA6jT30f7VEbz+4l6xHJdV5GzxYzGs7PBQS69u8bF5yYSwirKZiUy1iiM3T0yQaPT6aB6iUveAWxAP2PBaGDchM6D6snQKKvscUirbmPGr4kbAzuo4jH/D6Na41MBmR9VCk6zgjjRGNh3dnSRk+f+9LADQazeqqBAs8W9BLB1SH8xTFjdDRl62seQTayRC3OP7Z2wqm5eCwcWJErMKOgHhMfJnwySwfRXSNsi2kZP0khkl5jG5lRpgkttUU3I5b13w3/vdx/HUwbsaWtRO44Q94B8FzkyiyGCvE370j9vvCsEl2wBbp4tYfa4C4+HRxB355iQ3jqsPvv9GF9hfGmmzvhqMdisD4WQXuH1CZZ0uerJJUaowiJ1MYUrtG1o6r+n+Ij41FfpizuUrAFCb544twJUL5PP7Ajv9Q7LKNtqJblnJCNLoJKAkxZOIzEHB8EZc3uOUpeGJ2npSo2+oVrflmafHy1M5HZNjJOLMqZBhHg2F2gaSfMbLyzdkQ5QRMnH8g4v22IxDUHkNutGfW1oKgm8TJLgpnYv7r/0O4EaewdUZkLyM1hy2Kcdh3k/V7b+IqncEDyL7ycnYhJPg3oG9nzrShzp6csFoBAZT9q1Om3nE/pO8nEOKXuqMJ+DTWvQsVh4IxsuwIQm2z0LIFkoDNY6OYaLVpPATuHIatktQwJzvQgya+HIX/yIUb5Yo+GiQTCu53OUfhERacw//6mbq97TvCyRnKc00qDaWZweRKcRf+hzUZxVOLO6l7uRRZT7PsnTQDRD8etpnJew6X2RFsLORRUS6hGtUwm98XNL+7As+RwM8+d88VSds6PN2tFsAYZaBqkxZ0YxN/sUVp5mfLuf3VfvNHBwTMIX+tDbvZQA78cZtjXfrQ7JZg53idE3yMZwivZlPjfzBeCgF+gTHfXCEvPI5KbIx4C0GYafmYO3RWOp3o7f6RLdI47eSyJRqNqj98juG+njc0PsV9h000N4wIU5GitV2njKEtCwICczdJbuIoSUGGyIktGKVV+493d6InLtpVKi1EZymEDh1qXeGPGnJtUUCbMSjlULrBG+k0NAERy/IeeicYGGHxyHTK5/OPY3UQBsrIJNWRBhtp5PlBHJNShCLtJYT3NYQufDdwy3XXlZzWCKKZQsAj5kGsB+QHvVpUnt3gWR4WfAAWDVpdRqOFhzGOnHwU5tCGowZE5aBFUalHi5MVyaNSoAoDAW78gILvrrf1s0oBs1hjJPkmGOawohbs195LEfvuHEvogt3ka+m2kgrhf1fcnG4ZH5oUSvllXBWG1+Mo1yI8UEUHjzgFKTTxxFehKxRzoA7DWVqMjBiEgcTn9DYDckS9f40p4Iex3BQvl90O4fUP+/KTEtQC91wc6grboQ8Jf4D5zxVaVwWqhce7Bjv127zxpz8QSYbsMlRmHUQIfAihr/NE2Zao4fLopqkHlEeUxn/fQ2Ct8siqa9e9cSJdwXqs4mRFRTUh6pkWM+PENkDyD2zt4HJiquIwqzsu0WNcKNE3wDM3WDkxuEzDXBAelli/wAVxeTi2d4KlBAccSA8mEmeDLOK9WH3/M8czWfIdqggbb6wB+J9cesFG31SxUaeBO55YcKKKeKJjv+uOM7dNUBfNkLnW9pSy5AiX9iTdoHCZRfku7aLrBtn1mhfjDsUZbI11IxC1mB/NS3k0RnxjNfVMrRL+JBskK0NJeOijQk5pbkG9wQr+e8VelFcPdL9GJjsH2eoKPDZjlWTiUXq66yZKZtAdOGvHRKnYnqUoHIltrp37NEllVc8p8mFIALJaPcO7dNMUL/KKzUJ0QNeSz+1cGzi0YtWeefRB8Zl/OEAMtl2JJzcsEVWaRz0dcWyPzxe/E7WG2sP7N1kknXSLaSbetXCTk1bQVR8F29fRYXi1M3hLyPIVL/zCPH549PH8piOgnLD36NdwdiV5+wtWru0hKvJSNV2Uab64/eVcngmkXLnqUwnA362JnWuHKsgKHXzhyQGACCEcwq232nSkmILRuU+ueVBudH7+dCNCJ9Z9/mojdw0NOKZ9n79FqM6jolV1PoIF0t0xSWisdpIuf57ONtAV06KpnXc5IXZCDX8hX1JJlm+wswf4MPOGaG/vWTlUk7ltRczwq+zwlpQ29iql794IJPkVyxUcDN367qsKonpD5GAr+TClMrTJbKJVQaLK4KGEmgEOk2ICU1MACaeD1+DvhuCQmqjRk/3mqtHK6jbwU76Dz8H+BYit168MLLWfWy7H1PJhTge1+d2YJUKvNdIN3J54PPIEtZP/uw58o2Fzr91ADufFogRNsw9i8nQaeWNIFZVU41F3x6s4FtraT1bCrqw2fmLb7WYvVNHZmQyi53tTFZ9qOmk0YLAJKhrXgW2ZvtfPFpQtZIKqMGwLZptdb6Agceb0YN10zauiBMrgkRbuH/MsykdK+rZVL3rpxHU9u+nNDSZYu3yYs5HGuvWoZJn6TM0epOyCqO9UkPWPw1YDwL75mRYgarJj9+2+VJ7sr9rfTdb8LOAvgWyTLb45QlJYm5On2qbQGS2WO+EqGoYWAKvYeNQvHa7za9cLDcf9fL66CurKCWvpzlgiWKKA8CQMaX7sW0vfdX3epsJgYl5/Zbx96youJ8NoXvGLdMbci5Z18pOEDsH/1NF62b+xhWYcU//0Ya2Lu1yc2kO/cw1vH7MoBmBZ12vYisoCFE+zbxkzMlvMMrEz8d54/4bkDrICbKsqoo4EILVMSvuJpXYvFKHCSZSiyjqBRYnxWqx+O8KAgs6rTCzNcB8EOhpQlCKmc3TTShXR8HL+XdzUulP6buOgg9eUxGwtDqH0hOGvLvkCsDKcim3LFAvLBvq33VIUvv4Y9pttx0GMzsbMW8IQ4mCoyE4BD76Kw3ZGxCY7zcoMCksveyMkkR6zhaUsjRC4waw/xjAlsUyq8cdswWdE0er8TJQpfGc+MRVQnE63JmRZjQ2tn33YXN3LPJzfKOrHoz9j1DWVCQvCiRrjo1Hdhk4AkxVRC/4x0lf/3Yu8D2QIS0sRqxQc6Rfq1Ox60G6PFye9V2xMPLo+qQ/1HZvFiaXGhz7FgXaF7SZZZWVmDm4JA0nUbpRsOSwU76mf82xB2hdDDv7Hh5wGN7bjWwiPgdbwY/9TusVgmPNE4D3LW9DsLZIwd1yQJ8USKN/zpEPnGAhuW8gkLaXgoXslRe/QDaY30v/ZVIRtRDaXcT9BrTeHChQyczV5ljWzPZPBdQPVQeR9q+R6Oq1CHVs9vpUuePkWnr2BxsItM5et/H2/TMG+XOqY6xhjUbT0KrBPfLRSC6oy1y2xZxNZQv+jbgcjFgbUmLkXRVtgSQk4q1pYQMMFFE3O2Jg+5BWaJE1ZSSj/1w6oetPmwev2NDh7nN6vaBtFa+NkS1VO8MX95f7DFHD88ZzHnPOwgam6MYBUJbuxbBCoK1A4255RbWVAXsY6FMf1iYCZhRnN46qKodNhVWDLQqkPvuOlhnvC42EAQua/uKxaGrP/cLwoBDxUfr37roK1klolh0rwrJmPGC19U2IFlVA5vdpOLSDNaXhunu2kToHoibdLZqL8Q7pZ58Yj6Ii7k3C4nm1JKJBbGc5oR4knx8njTeNyta8ZlNy0Z1TiGND+M5+V9PF7iYovEQeAOUmcnPpwbZHJ6glheni/jRDYje3ZXqge7a20oCX9VZEk3b88xWgImS75ZrH/n/rZx6fWwIUuxuDOv43xSIFLY8AdHA3HfYL5A8LJ/88+TRgp8b+89d0FAGQjwVeOfNzRalAiVv6SdzfbLlEkwCdJa9S/+rBgro7B7EwKRoduNpPaEOa0Q4Y/m3p+NW7fbD7ehwQNnGUp6FOoruUIjyI9TIk3QZHb7YzAbV0qM52KVuriRxC0cgzxeSI5XTcXiBTn/fUMSWk3AKOjEno4EyHJ6SaQW2GkP8KGkjNPKgx/JDuYi7fHe1Dyqbl+sV53KlK0ycysp9kQxdRQUVWCcGX1N75dxshII7HpiLhT4s8sXc4OzyiXHGLHosHJugrxgzX+5e2SluiPGto3uOgSOsd0lOWgaj+FEutOX+fVPmn5L6Fhcsr69k1Zy8l7Z9Z+4/mZz1Rs79WxOYpymUQKaeQ9OjwgMnBgVZRaEmh8SC5ZGN50ax1uF9p3StGUc9w0kIt4dSp8X45yKSxiB3dVtVtMXuC/qCGu0cvDxFXqCgnlBvozc/Tc19TBCD4rGnGkvhfJp/m+R8TdW9KugKRTh0TWch1MaTm3RoyGZNE+vfFryaQmMXZlx9nRZzY7a2ywba/ASr+A1tNJDfw4Y1Sa9dSf3iFIocm5HSCbYzceI1Qamm05mRLkVL7OqaTxyiDFH1ATAmD7emmf5duf+iwyX9HOC9lImwfe5wkwNUt48CM7tEF26WbfcR/Sc5v1MCyCM4po/ZlpnEEa492fTqrcEEBegL4bX77elXS64YdxvHGYmt9s12CFl0NrttczEumrpa8Qr7FxTyyBiALSh4GFTlbarLTYNAdzRLltoysNmclgR1ztw5EBEqZWA3gXsR5qLNeX9IYGWfZGVhXSXsDGha6XD/dehDUHVmoZ3pIaOXjZXv9nieDbLzBX6ngcPhlnogijtiSq51UZUho27GfXPhXV7V5cQ+QmTH6fVKuh5le/rgrPl8dwKsu6motXXf7jrF45IabG7tgsWwDOZ8ifKUMZ1kegVvXQxDQhO8gFftXufVnO2e4ZnsITkGqwzpfrDhiMF2re93rX4FsJUnzXlqaapq2u9S3fT3mVEQ4IZOSkngn9Z8ax9Ewf/9A8JX3V1sOQzHKbuFfj0BC6ZjeTlqSjU/w4uqDw3HV3McTAnuXMgVpiMrLu+p3cEMoSYWT0ZEUzr0XkzixT9u6hzOmX5l9nsNeGDPV3cVP0YKjN2NaQq3yC/Ca7XcDveDmtHMxvzKGsfXoxcghNHjV2keUVP460LZ6A1SXg+Vqqbfyhn9LC3aGrrWTIaUSuaYXJQ3xQYCgkbjzIOmHWdGSYSMObZ4jQsAeLav28IUcoeeFzdYD6efAU8wxxZX48Q0DTEkX+Tg36hxfSusKz7xpfMzKpuG1cLHs4BdLRnNOs2sshOSvak4wDNdXO06nIpIfKAv9DdNi8LMXrMSM+cM71Sy/JCTQgQzysOMjCC4/ZAZ0q2NXAbay3FzLQDRmO5dsu9PTMFraYR8rsm/H+5OSb/bYttDhFSR7GjZ55lCgBA7Nc4NvRlLVSuIrORYD8dEMd++EYWeyGYACe7PnQaoqyopElIV/NeXQbmdcGOJxpB+UeCpHsXpQSQuifAkyzO4jtpDCwz0MnvPddm682p/D2g8Rra7rfh3Oq4mu89T7EbFwh5b6npg5vOi1IbS3kH+vNxH0Ep2uOvs2ylP4XFRsW8K5hR1EHwkpogp5NfwrAlp7rqusVdFF3P2jm8jklMh7+UO7eWcDP/N3BR6shBlkoddgfPwiyXIfJLFzzyedDNKpR20AiCLK9RmXvBTaEoJ6BAeRs0ePbqqpMnYm4TcdUkKDsGInhtionczqnRC1osqha4tJcVVtrJzaX2DI7mxkQy5r+XM0FKqmTCGHp9LTr0iQOhcTVvmsFl+JmxJXtAKg4MKB6NwGocWza5AoSAh4P45211DcNAYQZCOFISg8Bz+sTP6mESVoi9r9ew/hmwzlgjUkEwTvg+KfXm2A2VCsem2P6/ouuBhZL8crtNFs2MggdPAxV/P6+Fd9k3VGWtAfRvlfaNqnvg2Ec0Rxe22IAf55IgPgkRSOHUXuCyybSCplU4dG+err5f+U4TR8K48V7o83tUYiGlRKSufH0EbDUWtpW3rTkN792dqunwBNfMieNbXt9FX4PLLQ4a/I+3W00Tv6niC9LBoyQHe3MxTKo8EDquaVMXqeYkSHXx2fjU8LKP8F++MXDvgkynLlthaKHwsw4ePptofd/RcnF8n94jF5rQOxlokLbsjAgHdmCgQ7s3QFBMR/XlLYCKOZm4+r566KgvNc9JrTSJRO5V4bXkIlpMZ1o/zKfcIFfAtUozyVfSmF0gVCX/RkSARwSbmP/mUcmuyPBdQg1JIoPTSYiV35NnqSX+RjvggcZh0/DLcl05TUz7Ce9mN1OmG4IeTXDpGsc+a7vIp1Kaxv3u9wSiSfCZ+fQ+hhElP19WB3JXgPb1PvTSxu2GQFtonHK+W8HTOa+B5J/uqR1xv6B4IHy/bjSCEu23Mtpk0+lQbUckEFGcUEBWahK8IpG2a1xctSINEDAtXNjoEvwghWFp2bUYsOoVkEJI7S9ynY27DErLsqFAT6he/iRnj8Txh+RKXtYS+B63V0flea8nSk94A6iI4k1nY6EUsjSeI662kWoLB+DUoqY/l9HMOpnNzuu18PHogQep3vLamhBNJMSbhB4nvPBgGroE8qatF2KYHmX570dofdp97XDjWIKnLulsJonil50DmaXuuOENDWplHPOsbqG18nUEq8vWVzGd7qehploGYF9rqskpvbdQHfXEmUQyZbqWrpEQ8SpTLY7+7QFjnVjQLwIYy1ZY7wB9N+82l2IrpJiMoQoZzsnFh59ALqu+TXNKuoAGeqpZN+eWS3jIZB6lxP1AsNExrpCxipG86yx+rMs08lmzb+OjNdDXxoLnmIzt/LFCyOZ7KLFy/DzcZD7PKKCEOGm/Zow3aniyvTeAhg3aYeWBCRUyZ/61K/UQ0aNdnJdyEBivNBi22wTBkiRF9ThoZRAcFaP9PhCJH5H13SDfOV/4p3KDi6cfwoi2X58KnBNm+pGTqUjEZmfgxrptZeyd8knmlpKoM5r7FObPYhDrUBW+2iWQqUid9V2DDTyuZ5DwsPqam7N5qan3W5XJV1lqmIr21mGfrnfMiL/BNqe2ru2TIp2Uaj8mvB7P/Pp3Bl630XxdqTGy5QpJnPvEQgkebnnL809Pp2oYhGnPZcjv+sM19xqUMFLA4jZeO0QGJhu/UGpAUZfD9IJIKGyGiUHxESLGlLku1OLBbv4E4feSkuWA8T7+hFrhf0oD7z+rCsKyDyxuphSOEMi3VCXRDp6L6uAwcwE3Zmn1M/CvAUQ/c9fN7PcfN1WJJeuRfU0l/utSbMOxhU34vgwpUYuT+lfYGFV2xozBUVcGOukLEeoRyxIFGr6aH0+2G7ncGWC6w1qT6FTskLsKyJRVWWzw8C7tXIiyrlGBmD2uPhvb7/hwOrdYtJl2jRQXIr22sDx6nYIhqM1/tIalf/u0dCfZ+ul84aih8oXR3pb+srMm2pVuxSkLzZMG/VjyfEtuPQ3/bD+iBP7gZJ0zzd+ono3RPiXMD7DHLCNMwclOlPDHpPeRZPqdnPlDnR9C9iLxA/gGOrlioHySuAZaGOez4x0MPYiet8p4cb39g+UFDqFTvi/qCgEEOkmGXtzvia908QLRmXcYE3N//ofQo9LT2P1jwpHnqcZ50v2ns+zy9zNTCEgq6oVfEZNwGfLAQ8zJhytAH5SQc9E3UtY8WyKDQ72OQ8tZnPzcZRCSiM50Ob5XhDEvwzi2I7qIziE1n7um2TURnx+ghU7fzyjOVSzm3pwXcL0/xWcOdz+X8rHBi8xG25Go9yKdIVdOwsQ0Uffr1E7u8RKmS9JYK0D4+nnijBZAlkoeA3i7Gb0/7YiNgEZ/iq+cvr979QuOu3NoIUCEmoQbV9ik4XlVpEOnFml2vTgMbezRSzXMtp1V3XlYr18GZjbq+nDb0wk8iVNhtdGCtDMYfzfmbMgWfuFtdqp7H5fWAm/pVNhMQSKTXeO82QhGn3d8AT0Hcls4HgY4RtSTkZK9l9TQQeFEyaFC8nU5iLJPWyvU6D+U+JxXFaPv6qmJhWFNlmZSLQwBMZx5DNMmkyqzCGxo7vDEnJYcKlLAN1mVwBZRTAQwZ74SqUUH6ntGkHKgnvWY3MfprJHzHiW4mLArv5cTT1oW/QBAi+Wsgo6+3StmNG+gZvLozlJkFDA07R2HKRTrlpbD6YqtMQgmICOzs9l2fA48RYyDj9Sd0o//cG0NVepNhz//L+PO7lcSbw8nChRed+ThcDPmoTmGthWWcJBLFtUk3WxOCrkhc5I9jl1rrwmXqK/JTV/QERdl38jlMdV+rGN2Y7G95+hXVBRJ7ouCuhR/HBNrjBX60UeRBY2oh+1KTXJu7+TovghTj/poEsce/Kyhzr/OVDYQL41g3AqfmlCwiIqccwYO/AUkBh14l8doP+rZsVc6vJ7zR3hsjzMGqsor1UYuLeVrIuXZDTYEIMS270u2ee6A8SafWK/LxLjLyaYGbf7qAVGtPZkfuLRGTH9ZWO5aym0s/2/iwfWZ/toyECLucVsZwL6oImej6yTfetiSgqGwFucwaoJAAwV7dV7GPn90RITjKCYKhPm6YmkVuaiklhQuXtdDQoK6YrbNwbseE2pByKaUHjUigI0JfaNjWK+qz4CYBiFoGYUq9XPLMcnWoE6MdN3Sk7XC44KAmtS7QhL29svgNDa3yCMEVLU3wI2PIg99NyWrAKpP0NxYCxh+8GfQ+wJI2dSlp7KCMrgI8w4zd2hbRpxjZNvjqJIuVgoktn9d4Af2UenaWE31x3sieD0sCXx8N+gEz0sLWac2Q3Z60j4GuHN2ZuNNNY60ByIdHToGvj/yTEkZrC43/ozv9H3arZOFtENN+6AFlRlMOYZZyCHEF46cNbRp7u/XVuxeKzqYdby3rW+nMxmzvh/FKw9k4AdY8Ev1kzH1OW79Bx8xL0MKOL++Y3p+MVfCYB0HCDbKo0FAUlBzbWavd6tNJpwwBEcIGruJSoqh9i4dk5jvA5H+l9Ht5Z3H91AoGUyqKdh+mCkq6yJUmxJIFXSxACL6PJEuQcttiT5oCOvcs1LgXTnsUPpMoeffBHwjbW3YC6SxYyX/XMLqwOx5VV3OXzAoVQLD0Jivx2OYDFsY5XOhH46BqaWXxy5FdvKg7KlJpFvpTWeSrLckbywUH8cqsL8vqIJrgMWoyotq7MPIfccm0jfFMPcuUIEenYczz9hfGq3vUD4QRYJVeZntb4ZtrRj9UQj2fW4GLKOGImHjPiRClE53bKfVv8WI5Cj0+y5mgBHc17oTv6y4oP263bbVwZSfEmrOBD2WonqSIxTLRgup1jepUlM0IZENp7wBeCOFojllbCx71/iT9AQh2CykOQQToCPMet6Vv+8pZGZlm6X8e5gNT+5q1LiVo3Ip2aIli/UEtGi8wVtQgAWMjENDEo7DWQNA+ir5koR/MitHPU8hLLuwt9XCPyTbDhSK/H5m4BXJ8aZUpwdvzfUj8ZMS7J+YHbXipdB4TB5DtUf4PyRXWse8fX1q8/b2+ON1LHRvyIsvuM7PAwrojQt4u1Jd7jzWM1VyGfs5bdWKSJdr8fNxs8qw+8K6BH70ROTkuxIptOc79hayAzWGx9EprFn2+I00FKqkyJzImjwdpdmOekfNsOnOyCUMqxAXnJG5Yr2cCCWLsVRu5PrNpRa0UuFexzV4Cx2tvmLz/KTYCmSTei5PcvQn4OcX1EcV+XOCrTA9p9L68Zb0My+CxaAeDc3wZlJzg04GWgTXAKVCteYpzvSH0htIr+AiCRSJ8OCfChG95hkK241pltT+t+VsVRXuEPUDY142pSseS9zfXq1wckKAqUm+FozRpkQMyvBkjO15EpA1msrR6nA5UBwMquS/KUlJmCmMOZMVwFxn2l2E+E2vbZHW5bajB9JCIgu12yyc3go5ZnKudAXBUVgqAM2CaYuwAet0J0IgfjQn2gBX+RoOMThwp6z28jSyQxVB0FGGPu88BoPo0YRRyTWax85QCyIPsPuU7mELU03lo9N4lgQ1YKoI8DiF8cMGfyTLHo6ZHExYTX4SOAqwTaXr/mDwcUgIB7iIsqr8V1wVREWq9y8Yhk/ZvqSccVgyojPjDR08snWxDIyVS4oHQ1gQcs4RwUnD7br7XzDYamkqpETnf6dMl8lF3QwggYsDgQJtvo0EjQ14IE28Tw40p00PYZ5i5dPnesUG+lSeSMsVUeBSQecnEdaV0XqSTjDkmsizzFC9yJOJp/fWOwpx1A+uPMTsvT0noUkTuV74B2fVbKAIQCsQuHSVPVvpsx9q/3Zzwib8eQ+jbZj3NHSRjNW6phAe07ZPgrraBIGWzT/iY79Ev2v8eNRCUqAWLagzX6dzNv3TWAgMKzJI6C/w8iby19auihQxcg/g+5Sj5c3jbnxUWS1JCCKazVsg4ASkHo82VZps9NFESmJ1njJ3e67NO4+icTRqdQupIv/DZqwLDNZA0DkMRr9LMiofh6nXnmCRQBdM0FJ1xcAr8Uo+QBUQoit/dsZVheZr83G0dZ6l24bgwS4bRfSTfa102oL/kNXeNPZClfmFDzbYTJwsgz9Q38rlr7zpAEALuwvhV7cs3kbYDjbdOh++0MloXVwXSApMxN2rUgn7308lU6zRLCso+vjQIgT0KEKPe1/YJBX33zHSBO8gGnWah7QKf0HqnpWTunyGEzVuaBaN0+mINQIByBLncs7UEHsrnn6I77OxDcPtJxLgZGim/oTcjrQgfwJvAZknrPcccrIxaTl/tpKNkvmLhKzKJXSDE5SRnQqfD6ehZEn74XVvP2GiYgUTRJjfufrp5N4XCXZTs8jr7iCiUf3YBdxi2H6sq7jCxU3+NgBN3PegCMCpFzZpQoxkYPiZq/MS95LL+QnGn86XPCf2Ok7BJeXyRj/vKGOsSgU1igulVBOZJiEyGL048gkZohffan3vsMPvKLEBlvW7E68GD4m3KXb/EgMn0FzMSnl/I3kC4A4Aqty8smPKSWCSi2t3gzHT7e3fWeVfVfI2etaS9bY46v6IWFAa8FlOB0FWh1OipMwR3AbFKWFRS+wlSmO9UVjD/NxdWlvfFqNu0yBYWe5Up3SJtJw/5s4TnVLdkQaWBOWAGMVxdRysZPKO7rTIJQCjo3bCBCaxeIChNsF16Lazs5w4pfkeXL1MQ19UzldlYuc9HAH7vi7ANbEYAaL54RKbeaOJ0z4vkK6j8SM7Q/AIqAoaxzmyqvcNR8nIz+ayEIGACL8tlyKKKXSzbKD4hTG2XCFJH7bA5OeUWmyMVczEHqG63ICBkqQs0S8IMNIQSXTG/K6qQp1IPf6IHGaDX3IP1XfK1b3JtPVEZ5VC1xlx3JJkhO6aeDwDDx1yIf/+GQykt0u5ETlCBOsfPNbvdOUoOD0RrDQR4uug9A6dtkQRrPELTFSEjiMil+Hg2hnZglEnjj/9WOBm0yihPxf/t1dUb2o5lyYkUkdNXclL0KMwEFL2f+mN2KPYRwe1WSDQCW+4HclO3GPLtGX9ls0uVq/smsBS9gFhAWUEGPKfQLtGu1/hRNqtKVD9wPzzuWJ8wS4i/z+2wrnjJGPESnhTSqFrZNmzQSI89BNp27V9rWCIsSqLfGgaBwQ9Ah/nZPRweyoE99JhoVGnXpLBs0gYhz5azLN0KQdivXbTE4+cJ0kYlEB4aWvMPMHKgrO0M/2vajIl06tEyX/yGlWI93ZI94pFQy3tsQ5Sy3tt2EIWSctfd454jz4sIxX/pYMlPQINyAv9SU2rE364jcDP5bkhdp6jss4qI1XJRbPHYdS7dlt36ViGHKM6gtG4205DdqbERLQD4PecGHGsTIAy4PkxXf3T34bZBf2nyEI7eY+zDxCiHrDbq/Qlj5QdDAIzOKq6ODrDNn5gs3ayAM8rEMdB9lSXNoKxBXK3/xAcqm8B//GJJy0NDTV/pDU16aIuPMciWkOIeAy+1luAjGOrhZoUIylvLGtQmcgJBTyX+AEAKsI1vxTKPCRbSA0qA1fe0MTgTOq/ym6Sx5Bn0/DKXhRccqh9bCr0rvsljNEvJrpNUsbFrXjO8PcOYwjIP6r+2aAzKkCymtlmZzXycrkeU90KMcSQDe4csubCVM/u6daSt5pZJEWmUU1iR1Xq2bMp6fSkO8Ewue9x5oarN+IjS9ywcuyRm30GHXwwSzBHGvO5r1fpxL39SYhj2vJiaRVvWd4kTdjIms+kNzq+Wm8DLBpuGBAouEqs4GR7MAAcweoI0xvUeBQRAnLfdS8ql1wn3bWO8iQX+unz3ZxaITHxdSE8gH8e6mcTkGsyZoWyL9pSBLWSyXpyPTbz70Dw/x2W+lBXE+8dhP8dCSmyJXweablnzZx3Af+efcf4DVTmz8wbWTnafoahpdJNzslKVtFJHZNpEdsyu9QNnC3sTGrdUxkWpX6smcTobnMaswo/NgcHvySyvpZ40NJbqutiG3AymNYnijUCcVDKAx+EzjWt3XOVIZ+j9Bzg6V8tGhQDVbF1L8IkgKBgARRGGhkpLPA5iw2L/nN/aC4EIOEqvy2wJ0hArwW6i14Mdwwcd1lFbxFNHwGVgehUhYDfkKVkGtctDUZtEh3/+xHqYPMPfkP9vPX18YrAaCxp7zCxvTQ+qNTQPObAlfW/lPV54Dr/7zFt5cPxYaaX4mRSX9dWt7L1PTx55DxQnBINF1nYUsCNxTwj33ZoorrKE6Y6iWZ6gnMSWDSxAHtCxbxqo8fcPdDHeLkCtpXrjmbywvEC1Nk27627m59CKnB4bgMVfEeub7jMi3S5W5ir4Dd9zQ0byPlTHpntBXfDZ07Wh0Kr5uAJ8X5p0vvlw6YoNhGbzba91tCSUVa2lOR9oMwomxM2PES8n5wm8VQCIhlh4O3IYv51u+UnfIIbgRQoPEI2gcrMbMvRzi8ye0P8aIjN+ATb0bgAZAjQRUMADZz5VDbFLb3piGEvvDVwGAmdGSPAy2Z5D2O1H/P5P1ZoTsJH4NOvJJKZdSdOoaxASAzIG7zWaf98C95MOdyvKQ2FdI/kWVpTAaFK2ZSxlj9UXhWkITuQreXLPvkqWIiqHgKTcVcsv6L7GP7FMdbVpI4+5MBtE/61geuEg9GyrAPdCV4cqcUwAkvVDz1PiEOiUwuKZPToORpAKUotb4VhrbcDXWySRs9K8B9sq3WebNsExDpk7/rCjfEljOvZnuhtkkdWQJ0oequZazYScWGnIcZOGMAr7To2kcDWe9uIft7jcnjetg3eTRPXIWwCn6dP7eJLoP2bltiIm5SAwkJcpwhH7pRg/hMxJQYleDKhsGa0WwahsRn8hrgR1DfyYaF8kyarWQOkq4f/OhHskXrKsz84Hpq1uL5PBOYs6LSJC/X+IVXrdN0SeURQd3qSh9YccYjNwwAV+PcjV2zL+35khBR3xORP0jUUHC1R2nFHsPezz0dfdJtFWPGUPiMbx8Z1anD81Fr+lPdCg1B4+khgu22bzWV38v50yWVI8W0Mo2jNDPKP54URLQWqVeIH1rP/cecsw+JeBXtp97ASzrTuE5U/VkzTC0jY8OM/tF/Ck07hIP0RV42W2N2X7S1iVDr8Kpzz9jA5vLgruyqZMicE86szAnElVxjjYvtoMv0MIPmYq54gAu3l+JPc59A/q6OOhCLBvXM3LP+WB8ATeZ/mf8yHJJHkHJGlbAhmEgTKuYZ22W9nqpY5Q60hOuI5vKzvq0XSNUE/1zTir2+b8zuYO8i3kVFX2kf4mv3ANStHESrE7NFPQx3W2BBt6Z++DxmuLlKNFNK5icbTzmnNu+hzvErIOWEPtCKGegkOpP3Og8655rrIqsoL2tIPnzXBjxhocIvQl+6FbUkPGR+fZIo3VitOgduvsEnWIOs80yADNIV8ZkjGn95kGA4sYm0npaAwH3v1uQAV/PPUxQmz6O3Rtx1NRTLbbRoSlovHDxhPno6ntVLSzry/3YiGCrabrorSa8ycey5mvKtVooQIWUTFIN04U+6V1jl2Hd1XDA4h9tHXdi4asP7o0aKpsYxv7dS3712uXGmZ5xj07+CRGQpJ855N7W7UtFAJEY9OFBvkwGRitvXqfufYQnRbSulewSUkZoHCDwe46lRhKzF88HxWPMdFerY3pVAQ1TUHtt45SdwOl/LQFvK0BiKo+x0bYxbG3XTnD03jLE9FxmGqzVa5h5/z8hCm9j7ooNsJsdADQ1A/VWK/yyt+LKi8JPOrlTyr3Ec7dsLAweThWOzjuAc775ByAItr3+tGVUrbwJE39uzKToGTOogoRyTTGAZ8ZHCyyd6VCiTBZhJ4v/3QRmfw8EJZgUNNVli7SgGgIdfIJ3v+W0379TWQ12Pb85wPU+AUP0FeM+SEWe+YxCR/IgCv2jt1CUkek1SlC3y7/gnj78WiXTClg2OzBr5QTpIlod4FqVW4kJwiolJaYm2KHu5/KUOj3b4kVoJayFpxpgYRYup0RtkH3w7ab5Q2Jg9gOAF9AaIUFcQ8agBlLP584RJgWYxy5NdrwooR1kU13s/gtDpOtSY9MlsQpBTJmyYqh1lCnMzAbzI3Oq+u/FMygQ1MWM6+0lDjGfK3rGkx74zX7ATSf55VIpoybO/owyBU+WOdcJJoMyUSluMXIup2d/OC6bYFGb5QHg5M1U2oRO9RjWpb9CIY8K4IYqSM2XkY0/jFRY/sSJRE3/oz/PZ1c2Ob4z3NBzVAgmfpdv4NxBmotR5l8+GvGrygdK/DIXu/nRG/PUZ6lhY0exib3tEQ6EbTuJ1H7L/BRaw6HmGudUPS7vucxFSew3UdOmTNOJCndsRAunFRhkC6tyW8ElRrN1LITzC2y4ZS8KYpNlNJ7gpp7PqWlPv/z/vdu3KqT3ZLmCRxOyMZOZCI8J0riZMUXvVyNkrURuqJffk9a3ycng42o259j2l+MPloXESRBuUrsJO53N57YbMbFsDYHmF0ofvG9M6LnwuXLa6IXTabbM/x9r1eaRCcY7znxYCq5Cs10zkBhPQsLBrqb42OwDjGVaIpC2pq6x+Oq07gnnNysjQtcYEYmnhNAlBMCorhOjAGltDBTBHVrjf7Xtgt2pMnjUbCoU+8zpEApjckeTwLSsIFVeKVpdGCZ+Sfe9yVmnSP4UQ6CmS1PLv0Bk5lluYxrOTsdvQMIXbAyldGw7ukUSx9rVBaxUDJEdMueVlAvoGDrNj18/gD55bN/FU0qzqSHBHEAp1JUGtkLrG2qjlHyJCwXNWfNPf/07ulf3M35SspFpMUk+zcr5nr3fVOl8jdtRtMzvH3AunP8cbk4D30gmZq29A6EC7xnouCzL1/YEOrcmMmw7lO0QXCGN4bfS1QLJ+aqMlEKs74/cfQfjNO81EuFfSN5avdTRi1mDXVGL6/fO8/UYfXRC4hya4SLQhjiEYXuU8FDtolc9QCbIGxJDDbWMYMLyHeHiSQji30DQa6cTlfeFc5VZQlANmpw+Mo4pbk8Cicxmyc5TBLVMGeVdYq/XX4ile84Rt6v/hVrL33SN1YanMxC9QuA9NYw63x7v2B+fQlF7VQ/dM1XNfDXJxgS9IEPwxP4HQt/IKLoViPzcWwdL1Arn/mg8o7nKsTCkskUI1+NkojVlmUWantW360DrjH1xhWCU3I5i1qB8TZIrBg5fb5MQAaSy7x+/3BakbK2rZbqS657OU6Ekn7cSsfDGAsS0xYNkcb7ud+A1FOHOuerDwC11tCSgQAb82wgQ1oKO3/cGSy9LCx4lBcGMjMTklzEqeXOoRZPzZUoX5qaxdeHkWxMb+3mmpf7zWhzJsfsk1O2sPgf614zBB7vtKQhWprXy8HyOtychjkauJEMVds3TrP4IZlcfBZuCN28hQL+jN3Gydbv0v6sz84xNu820RHAT2Q6fkyJfRSoaZtKO9qdtxD9Y/8VrgLZxd03hxdBeybq7FXLcr4C1SqHXemCTcN4fWAReBF2tmlE8LpyiHIAFOv9ZahYWLmM6YWUuyl0nFx23PvX6hk9mfBE05BI32gdrIhmlcLeVGBbuP+ammrCeVHvdg6ljCujV7eRr8ExpbOErRrDcj8gK4nkiZyn+88ykLe2Xo0xkzuVKNcsoTISviaK+cyh6GAK9nuxgOODJ1ZO+YahGNEDR+0lj8TpVbl+04ga23Bn+vYj6G4L3jGPa1s/Yp1/SvX8MzKziLuSS8cKmeep6zjafvP1WjnwD9x4RCcqiBy88rTyeuyUEMmdrRbU7pRj9JSZ5UZ9pxVTpn/hkdzo67j+jWqIZ1ps4mUuxAtG0TPOqvhD2IfcLTUKe0rEfiI49hTUzzKKo6xURhn8gDjD5TPEg+5w5WIiHJOL9HZwbI5qHtOl+GFhqUVcv3hI86+KTdIvQVXhGgFomErU8Rjko3UGo7BzoYYkapJZvK0kxHvDtBPQSsuhi0Qcprd3XUxll3lctLwhWUziWbmA4XuQA4G45hzlOHnvimXCUl9M1yVm2qvu3r8rwYh0wvYh4eOJstPEWoiG2+LXtQ5PxbtQDSLJ2jvUHNz2R+Hcu1VmE7wifpO+DVQIOWeFe6B0AnwpmUb0xgUYfWfwtrioI18N7nfVQrVfv8/Z5uARYF1PEShArmYMYgoA0k3odaMbRptn0px3BKRXZx6c0oyZdL9Hj715GQOKpWodhKqQeFQP0CBy4e6itEFCcq931XaCJ1H/gWXNQj23pTlmF8oJSWQ6hAje+nmv4N3/LgHsOCyfneOJXSR1IO1UrkzlVnaC6j2I4lSDsa5vW70068X6b677TaA4AT8ZueTXrxPVauscalDm+s1JYkrOYGoZP3LuuRLxWni8+RNtgDjSpAaqf3BK1vSqvQJpRMvbYgW/83ZDnxdY3iLLv4jnYDIp7wgarKb/MM10qlgSBPYOk+wVTNPbwJhmq7AWNE2WUZWPqlnTNV4ZcJW4kPakL7w/QOcdi/dSuaaS6yW2UPkU9Y/ROlNQttXKLaScoCtKSKanxbdO70fcBPcHI9Xwq8aho+NY3l4HkUNcrmm3KPYM3GeOyHjKikonN2g5P1B5XBWqT+UVZrg+CU7LXxIgjYV2GsZcR1X9xf6JmcHL9QhXp5YcpmmxEh+37OEMLywQPJz/c8QmyVjHRbxywT9K7RtyVrf4Fr+GgID430/waAn/GmyP/C3IWlJMSPqIpnnQhw+cn9CA1RUs+4u9PIxYGhdz1wDs9yISNX1piT1j24fVE2bb2J2CKAzKhGusP5DX/J/+x2Go73lnf3+7ffjCNn9D1Yx9oys6LzuxMV4tt/5kytvY9bpBPBAsSSHo9MpHPwebjv22/suw8Et3/Kxxfqvhlh/MBnQ1Jb+APS23hXpwbzGKv/33UqLTYqkxRmiPdoPT7u/4iA5tWpJdqyViTDM4OuVrHZp9NesWvE3uxvxDow8uPMaTvB+fM6cugtPx2DcddgeGpUXRaIOtfhCFfyJL0Yri4xbXURQrd3Z1GLN+kf8/T/GdbX5NL8MWcJhOUB2QE1HkmA0t+49h2193RhVYWZI96ysJ8+o31y25Bi0KcsJPvn8a7lyK8/A7ml+68CgBzc+831SRxkmKBidE9bjJ+Whwi/L/R9g1Xb/yXW2tHsfVZh0RBSxBs4uzxRyYBMz84A/jMkZDuVMZjUQxAzuFHFbrIY9f6LbpW1FRhnY+lNftrZftP5HRtTPymph540em/hrEQht3dRG1Siqx7FfGD5P363FrkkbWdy76Wldqna2B4tlhpwPZWYapSqaXzD8c8qniLuXPeKTkJTkevz99zVHmTSmkQwdAXwMo49HrYnkfk1gAJfm0XP/dpbMf5BitX+wxHVOyIU3ghNQAkmKBHT6iQyL+Vd76K1cztQQ6JGWXO5JXY3oGzTW1LUkcllj+An5/JgXw4iAEqtoUb9ndi11iPrBFn3p8zLxqRFkkrsBNhlFcp47MLbfWdXOsjK75a/cbW1OvSapTDb3w8Mog3PHHybQJLv3zOpU/FzBJ3f+uSdJU0Pyuak5bt5SdRTzQXrvVAzmVMlSeEfA9i0UGcU8+OPh72yXpKXRp8VBpGmeMGWyeRqjC+0p45Q3ZK/ebPwwQwU6v5IULy/wkknDCy4TTeS7imMUHheX1QQJkuzjxvGHfNBDK2XGQhdon4dXuVp0DF1ICtaS9smzh168yVFNhVkDBbgwGZscgP2Lwx7I+OMbkKF19chLRPr16vUSL/M4bha7QS9wdzjk/gJw5Jhj+Jb01txU+A2+gC7clMPTP6Oc+DnsYqjYVFv9jEm/5ODxaPNt0ajXoQdC1tGrFuuS+rCEDp9oxQBdNviwfE2b9TGMEa9OSs9QX+tx1uaeu0BsLjqw7Hel9gYYKVOqPI+/NeArF4nkwYWirDH6H5c+UQNvDVXGqcs2igAtRWS+MZUQ0IIk+LQ6dMKi6kVFZUBzQwHNJkFfGad41Ol3DrFNW3rXN8CcdPYoEFadTfZAQVnqN4FSTrTmJ5IlFTKeO60kPv6Vl46LtOFXomfTsPJTlDccRxWSX5nHd8v5eT84wslnSjoBlr5ePMMYaZMw00luIpm9i4kKxfw0PhmkYvo6MOpOD9A9bjHr7VFudrNhzEni0Y8OCb9DVplY/dEX7DihIZAVud0S2nZHstxVQ1dz8vYvm5FAxR5CUXwjWfeFw3igGHvH4Iv8wiXG9z8detcZaWCDCsgMyaOgJem47y6ZYIjP0m/PRFFhC6qtr9IvUba8TTLeiQJAEeG5fe+mw0XFvp5FCpqqgDZ2q1wW+D2fvnTtDiFicKMxIPkypXGbH9TJpiKgVsF2ZxaUW60swkXs8d/uOIxXFlCeCFWtRh3ENlNmJRVV7LkQdGCftesn7/BqEwGFYONg7l+AJ4JMM59/RM+kaPzvTKjr7B1V4KpxIZjrMOn0aQYob2Z/SkozT2l2nCYNawRDn6MYHRgWhzPeWiiQTZAsN4vc4Eg34w9DlapcZtf0fHIvyQpCvw8G8zYY3aW85LeQmsz9PgfK58H/OVu5BgBjtH6XaeqsQo5g0JbuowochjCjkNN3aND2n69HoL8MTJV10Ib+b42H38wSYPYHm1BI0BChX3cPdlKIsshQekZB1SBPbds55Oc1mXLvjX8b1IMcAsdzSfGquKvxh+dEuzOcqYqu3ItlsTvZvagHTeEpxyVImjy/nun2fZThJX6/ub2WNr8A/Jm7XbR7t9NujB0K1A/q4kO8qEqrwFKOulWp6k9xpqKZcXqzusfW9KgzNG6BIY8DZ38JSv3xQm7GLOHqhR4cvdmhCsFEPs9t8Arspz7U5Mwm1iuq/WtLiU4e+Rrfw38YumvOmpbBEXkg09Wtas7jyJpKDsbmClBrbnBh6/23HkgZ9KCGsYXJnmay1LLDyQpyZiJcz+K2RB0cPgu1dtPpxmo1ELSvm1hltkt63IYTmmvvL4rutFOv38Byv71vcjazGGYQGoRuNbLgnbVcyYq6/QRsAFQCGVI6jkln+y6vL8U3Vpxgs2Wb61AhdCPoFNooj0jm7LnNPnk4r5EFkvNYsk2LPLq/OBeVTFBtqmFp/josEs734HptYjgIZptuIrZR25C96G/IoDZVgsnA2c1ylbR+bzUl0OSwPfjcq18K7UCe4CCHb9f5XIBDXkdv0eXVrb9D0HVPGIDEtBsvmdZ4wd99XUm+GLWmTFYPU2K91b863YhNMockDCvnsYCMZKpZvjJAcX1Lx4goNmUx1AGa24jLz06pH7+7hm97K1EQhXw172bZm1fkAyFbA9S0CefRMRrdUj2p1vzD8WW8X/BjHLpluvSHSFXmnsSI2BNo4FeKd10eMQJ74FodfD03nv1fKoeT6I4woIT4yqsJI7xiXRxehbXDkz4V0VyM99ltlMpTd/pIU99grSxJR2uYKP5vlaCzZWJzm8YQiflZyV4pbqoi0+OXjKW3cZN61PQmYHxbxixAQ7ennWCTnrDNIuuabgdAsONgP+CbwUq+m/gAYnwzH81Fp809XWU/XFAJ6hJGa8nGNr/pD6nEKqUO04ZGb1cyV8mhSsI5krZ6Ji6S6b+S/qwnOrg7F7ZVa3fIPW/p+biZydcNgiy6QiX37pldkV7/zqMWc5l8CQy/IttKgRZKak+e/kf7AAEFU3PAu2DKSwMrNCYXJTGQrPXoPGPugk6dOl4AhNfjBwdg298+Kaz4Cd00PfOWyrSha/Qbre22mA3heAX/+EUC2//7MWBT8bU+aWOoco9OSmQ/BhkNkG4U7UvQkMbW/hBZbT+3ejlvNAKwp6LCTwmmQBEI3hMsgEqAWmOdi2+8Nnwq7BZmtCwq/3GJ0Ncx4kSevmBiAqvADzpj/VY+mieGF4m2S7LBfUErYBOty85328iYRfQbzxDNRGDZc8BEOp/r/+m4s0RULo9Zuw8m4xOrMEADI4PR+cFw9zGwvQZkZMp/iddB0xeKF8RoZb6ua3U2he7ckssVMmzGJebbs5BA9wZXXC1HKOWDjXJqoNl+wsRScHbopB19DdNZwzwlyh1m+/3RJfrkqU0Vk9Gp49fbd8DKyn1AT4TFJrYqbt57BoBTQmokGp4tge6G6LgLY7UuJnU4HRsSMO2bMgAOUQ9h3HD4kk2wWMGd4gq3yUaSdk7ne6/WzmFJd4l1ssUjiwQem8eyBRlZT7R189voofptx3nBxHrMzU938SbFl9EqogcvwXHv7M5VVaCFDFdj5zt0GyXU/iZTzF8/YwRFJbYr/+3668qidWIKug0TpQyhqtLEGKj7X74IXsGlM74goIDaoCiEj0r58QpgF/n/TnQW8hPrvuRmITJPMSqsDdXvayPBOc2C7uCcawwg2qPI0nypFvK6YcOT9YDE3h2Xl8mf5tXJHBGz+/NsfUrWktkmbr+T0hCuGpDOa7VjQghL/QEokwjGBE6KoMHWT1f8Z7pahlkXpZXCxCoy7/UASXAdMCOo6mNF9HuKX3ZnkDAXZdZosWlRYsVuKWjX4bVOWW1qhMe7b+gJEinW77Gsnx4RTBmsQRnDCc+t8Xk9vjL5isiCvI2xwdTbAXT/jYQ9aKKxBFDq4QrPXgMWx0685cOlIrf7+mF3Yf6KShnAJK7MwxXqvXwv3loZuTpbui6uVs7dQDSgvVCN+4zH8wXL2ra8reoy1/ha0hKdN32CWuzUm3FwGXPflAcA85EYVUbPvKVWDuRbfTLQpFOvHOUdODCmdW10E1sy5QEKB2+vUCLL3owQmWRiSiF9v29ySwv9z2XNf2Gv/H2yNbfNenLmVFIVVm1Pwnr4AR6xywJ62jnr0+/sROtPyhulHRKrRpPVTLGDoWtivmDu/E2nEPHAX1HMQ1Pe7juj/7F9XciKT50B8i+9neEjT0fodKeWmrXdFtnWVJIP1ckP8LzldxFmeR1b4lM8TGzpyj0pV6wxVwzdcLIZMpulNK/Xa/HwzzeVmcYlgCr7b4GCQokWJM+uLW0hyeZYtuuitvVEpnEEQFXDj+Z6y7iATU99pq9wKvkloa1S+kYqiut1F+GwQKME/O9ZzZgBwkq8NbdgL1vIkpFJjaP6dVILL/vyWY84QTvFfW3nF6ivyWSO/tLZH+b2Af9KVL0PIivvgovjXaj/Akw3e+DV43dnqkRnDHJuC/iob+hMJRW6V8Ck7wWWf1AsT2KT1kqp+zCBIAftIC1wGQ77vlJUjzIPDEeqU2+QRbTKC3I6EO4YZ94nfpCVZONmx7k2VxthY+bs/52q1/9ErX2w7kZ87m/EHZ0OgMa55T2mVCDkwe12nZA1HcvtIvlVrFh6BSpRzNcmbFM1H9zuXTocsXh8vmfnuEk5d6fYc3tNHanqBgDLrZB/WXDUX3MdEbWRQ7+KEReRcPtAxcewGGlzhdQSKwlaRMPfbkeDk4IoruuvN+ahIUzYwpcTU32L3D/R1x0Syba5HLKWpzzaQd/pwYUqqlU71YP9n7Xo62Q4ohoQDTI3sjLlW1qclJxSnslyBoJMtKtCWPbrU1tEK7kIYtVe/yVZL3YXIdImBSeCeLbN0sQBQpSU3SzuLA9BwifEVrHFNXWJq9+vRyvscnn9uH46kURNsqVdlM7/z5c2ESRbHeATu9v6rDMr3NV6X53YlZClz2F6PKI+fGwtvAFsEpZRTODo2/NX08e8ggeMu8n+5nzWxuV0m4GB0UaHFbPJNzMLec8i3od7jh5wUKFveusb+6AhcV/Hvjyu7t44lVmFecxPSbzMT9xsBwKZJz6PL9Q+75KbqHDMBvPCn4GaNjlWtJyY2Wk3r3L7LxwLC9p2qDguMMDkuc+LIiKKUbDOaiQobrcaDEiR0Rhbv68pxttf7ggENHKfYVkP3TDq2KEWhPjs3fbEL06GU7lpzDwXwaEE22Euq9IAUvx/poeOkQ4kdWZAhLpSKuSoXBvEQozPGvUVbSQPRHQESAxFgraCbEV0FnbVdFzLi/sFfEYXNX5xMXSVC2JHEhHFmHOnCH/7LchGzEdMzLn4nmzgW5qAWthwXoNuSFBXzDu9mkPgWIjDXvtVk6Ri3fx1XEbHb7ipGDC4iteXYt0fumCTPNaa65rc8M+5Duuvw7hVjv4sbB52UAwj5dlBV6txxDw8PsqQ02fCA7Zj8kvAIQQn0AyIMy3Jvr2W0sMnEx0hxQf4StVYJ5XQZWvlxQkkkptDWeSsBCymdMWJwSIyJ/ML96rGo52YgJgBGAa/az04JedKN+cQe+3GXdVf69Hr4E/tp0B1Wij7c6xa9qz1razs/4+TbebwWm9v4hADeg0kenQgFU70/z6iMP0agl5JDb8JvqFPCyWY6azz7+r6/hJelfbZogAFDJFwSeLOSYHF+RLMZJXhaIlztCOsTCInH+2LX/mYrFXdC9hBehECzAwnPzuuoE3fpESf4vBAFSZOMHwHBCiQ256rwuwVDF1sHE1mtk/tpztD9dOlOYKOvZ5IrojMiBljBpBzFg3GbDxCK4LJPfPjPLKjQN6HRonHZwCZVZsjz4VfbFniDDoZlzrtJKvJjgd1R8Cfr3Yv/xg3xuR1WU/ZGiO+nqHTk27SuRdZxUTqhzy2Udyv1ZbrX0BWgkjjtgTqH3sLhnmfjAcWbt4ZOn78rsmv5vxcChyvVAaaiuXmGPVXmELQnjhgGJ8YiuPajr3Q0ygpYfN409YyZDIeoxzO1lX1AyqRC47X8TXlPQRXnxZWwc4kT+gS8YonP4iY0YCb9E8i7W1dfIY9zfa9dDgacFKs5bVh6CH0EfdCKhYgDj5ZtwLNzO2dXiwUmsG71zHyvLLsdBEBX0N7Zavl3QxQIGQbZltz/AsM6iYqwRd/wNfSnzcVYWN9X1tcPFZDM0EPdR0BAGNNRcNNOmZ5heCsBT0ksGCpR4e+1gWtcPJiIgY7qOtfqfyeDqwfulB8VOIqwpcfp4eY8EM1oRU/HC+uRvkKLpbl54ies0grrS2Tyfko/fm1Ajlm8QuZH4w4S5WlKMmzQzm03xrV5/GYgNnnErvFaNBfobfJS0djbfpadrejGeLrvD+WtIurigGP/JmUj3EAf6aaHk3MWxrPIeJvqZDL0dOnByAjtf67+jH+iNORYKSwcte6xsO6pSUoyqcnp2iamfAxXGbueIAPKxMmX/mtcZdgcXrt4YEyA8Xgv9Q0w7ZrHhqoQ5b7r5PzfKYA/kZFEsRHi5/J+Vao0FvueUuwaIqxsc+7fNb5SZE526vpN8u86G7nrNe8VlCqLLnNBMtGj9nPSU+o0IBu0G+HyunlTPIVGkFg9hJhZ9chxQUck20Ufw12nZ1naPqbT0joQGlA2JH10Ry48nRjbmweKMx0hH3Vu1J9Kv4G5J41E3VNl1IryZy/ZD7ueo991yCV7vtTFemcaQr46rsj+U9SDCnaubQAdb8JzxPvsJdy4VetAH18Pw2Tmm71c5E+c47bZOCU6ciDiY5G2fBHr8jj/kVT6WLx7gpafN+X4gGZKPZAmGqCAZgFVA+in7l7od89syNUn5+SAqP9vFBvIT+/TBrhVRrJ+kFjDgwQxEBdIbdRwGWrbI7f5sx+pAZonPvAgQ2pwqyb/B3kLkW7e/rjqzgJVB3CPs+kwjSmBgn2PWs61BEcVFoUWV5QXNCsEeSCZisr8Xb4epe62XwWlZOTM6d2n4gJW963NTuNvlaEzCDnlpjX8YxXDlWbSej5gM7p/q5rYm6En3wzU8zYYtr6r7PRwufJo8RCnNOF+YqLJ2JM6a9xgMpYh960YRtKA4OJfH5XYUr57zOsZOhQieWHexGbn7d9G1xgfCHQD6kUoncKoeCxlUk6G+2hLazlxMxlvNrkUxbWP/Aqx3Psal4z6VXYr0xLy4pI2SvNdXe4tmTBCKgH0Ny/FzJBYVHMTuogDToOZ7hLFDL2wNrVswn5z09Q9kyMYcxU1MjOgg5iJt7chJrmfNDVhlUFPtLW22iMaJpMhzuICihr5eF/2I+FXT2GfABz4odGF2K8QcqU4R9BxEQIw7+CVSeWp2RcKpn98AuKJDOyMK1mgZy6ja+H4i7Ej6+gun0uQCIfBfzxd4bD3wLNZ+DbNkdWbQqoc27xivcttuCmKDiwvmt2YwRSpE2ga1ceAR1NXs9Fn6Vox2+J9AwiVfGKFttU59ZatmVjN1lG1ANXkun8y9Lwpa3gwoqqwvI8iPGt/RYTZ1tusSPm7kJoiob2PR47nrWMqm0bqqnQi0yb58DotlJ/vwkm58WT1WjmAJCuDUOWgyig27mTMitq5Ye/PYVNtMks8ddEnty/I2jjIrQP6vZ/g8S2BF1dB7MiMuU9jY3AfU/zpHGTc8qmbxCZlt78CUysV9QBsoocuwR97Kfd6vEFProSDGGFJuH64a0DmB5PunuwI9pJLkPCQjvlAILu+OEa5NNvJod1yzaEgk6FUs6hcwH6Mz9KWGx2zUrohCT9pvAa33eosdl2tI8sR1i+b4+BWCp+LwXP3VTGvw/9ecVTc1ArGZLHTYMRUA0ZaxFVxic4GclJZ5J9Ja7YCIi5Y5Hc064RtAYvQovYb1CXxiTJmvupGIqBxNR1gDAVM9U4mtmOj7bx6RZxzGaCK3rhYsipH/VnWpKbAB11qNYsAqPzP6/h/N++8QK8oBbRJM+a8eq79w8gUpZCcqdZmAu17lSzVj+7HxV05hgkqZbIpyr7okPsxe401RhA0/Lfb8gUvzbFqSFeZ+8ehDLcppBdDMNhI6p1CPoZL1SPpeadKAAmriqj+Z4pd4b8T8smUti4qZlQlk2Ea2aCyDttCeeSReWjJ4tuTys9UC4QpkoUNiH3Nkm2Ueuywtq/SRqFD1KX/J7jTjUC7aRDlHbzcjYmHuj6T7bGoQoIu+JK+vjQtFZ1CZLNwggV8g9NcziRc6oabGoV/KvlD4jTm2jVgvNg2gzcgbWnM/MMQqkP0XeQDk1z4qAvTCDyqOLcJVG7SkL4Q61fqnzDzpsA0tDnFdHykXVlJQZi5q7EwdmF2MI5Ba4skQjsWwJUe9hKqopBH9NP4HwTA/dsf6ulTeeSauSD1E4fEjLewdIubhGhAPXTKCI3uXkcVBYTzzJIowrbaOOlCr52L7wQXaO4N/aHgJQj55ADroTQLCAKQuJ6zHwOai/t12jZR8AJkRCDL7j8DRRC4+BA+cHM5Bj6I7XwuLFfr8ltzo0t3lNTr6EYnYP8Ndl+fKRwdJM3YmahRylS+D6uAyXGIBIgADwL+ldtFKHjq8fN+nL0WWSqrGFdFEnDUGb20qYHi88nvoqpTMCxaUNxtsxyb9rdkcEYIsbjNIZmM2JYFQF1nwMikCQ7ZKMpG8VSCfiJIStqG1Gwp69WJPP1p1aPbyaiMQMmNDvVN3zgK6QO7tOOE6DFSD1z13fT0nm6Dc5Lo1KTuq13qKVczOE3+9NUf5/vjjeDx4J7o3oyykfe/LyURwYEdLwAhrLPqIHwtYsog04zQAAyQMYFVDQGXLb3jqBLHk2ykz8dCq/Rv7pa1Sw2OnAiYHlniMQr5o4nr1eHYvuElv6uSlu1RYuRzIZ4WndmeZIHaE4yDl40Ad8ntMdl7z7QEdk8QXuPYOYla9dMCQqdrGTBiXWS5bcdN8vVMn8f0Gs8IHpKEVviZ0MNdl0icOn0Jr8BE9A78f6OAuwZ5m6Vxt3lrIHMm9j7GTcFMT6d1RPFynkXuQquknHzuSyIfDYzQqy5ecs/KQXbNr5eHkZCFkqkpk4m7byBx5fIVBDxOIFUYooTAGpnoOSkWLpMyIc9J2GaJ1JO+1Uw9ZUL218Lxs9I8mCrB+5BkItL5JO5vt0eheTfpjNhc4KfLeNrZMjhqVLo3P8TagWwQVJ9cVELMlr8woeDSfXVa0Uxhg+4W+LIrqXXTe60WxHo/Fvp/gPcfMo1qdSxG5vYWR6GpmoQLHPtw0uQSdOi+LqeSpVJkGgTHfctGEpd3sINpz+cs4DdjCqMdhduTZ7AUOVV9fmI8nSAgAkU78T+rfk2IU8P5GLhmXKFb+SHMCIPFePLEE99p7aLPk8shPLtzzP+vLq+kRahFtJLs885ZgqsM6ULUo9hWMFldv0OA9xi+6gtOcsFeLDBYnbfpRPSXj68zaiaydSFlInULOTSn9YXdhZX9Dl16kFezJOoFUWR6z6iJ4W0e7qyipaJr8Lx48p5dyHX8l0VatFfduJZC8HA8LZFmcH8eW70wTa1kT/kKtW4R5oYMBEEFl7mHJcZL6T2LUi4LXYJM8grDcqHiXn8Bbi/J3DIJVoXJZZpD2y6i96AF4I2uk1RYjqBw+/aawdeNKZJlfxbnRdWVBOL7gr7nUBS0gnupq1uJR/KVp0r7VCb1hFdCpVdnjfMmiX8FIpRNcdj68rY/AU+mgsJi9dX0XzU1TWXrf/OLuYFdkzbzPSRfR/19h/oc1YAYzJUpWBNCPxKD2DDrc278vI7dwhR1LEmjtNpRq84wwIe5me4s1rHE7CfSpr6u/Mxx8mSYifh+1mMEI1hzEFg9MtFUq+B/TyPVNUPPLcr5jDzjw3IpP57Ap93KdRmBV2sRWG6LH1/vrI8kA1J7FnjomXtK1tfaI37BBk7m3Pb4SgASGsEZ6jH0XM6BE6qY1RaZKMY5RbAbvsp+9yVOkrakmaOzI1a2PoRc5SkmA2xGr+XqXcQR/NSNX9tEEqb0KWcuarHLKcucVLEi/0RA8nY63NQz+YCkKZOl8aQzc/G0FehaQZhgBn+I31bl1TnvpleQMYIgFzi4Rit8gDeCCDzrNvlaw/OusE+WqouQSOn/dynewSqBg/4+gNeMuKGmJ8d+6uYhEHIbHB6KJh5MLGrz23ffa3yGb/5lTSWoYpkb/FKWaAx40un2mQ4hvVI7OiwofStCY42v48FkMrHKPTEqKHRBcqeKDUCa6FG3y/LRueNmDBY8VxXPZx3Ljr8EymP9gWVfDFC6XPd0wUkvpC9JBdFhxAuN4MHMl2W6F7Ec7iRHA49z/ejBzT7hHAuov3kMPtdLrLXrljP7GM3QCpQ3PrKFAttxJ/SmJpqoArDXcyCH3P45NbNEA9NI3IW0USBVXb8qzkO90A5j2qMbdSKS3rk9MrEA/CyLe+W5hFjQoYyA2PB+KjXob+XI9aiRXoV9C7RKcb1Co5MA7sfis/d53ZY+iZDH31r7XIYjMsPOY+74MC218g4xaCFgOTrnxTWiOrj/IMf2d6MBVxEYRRVrYI0a6PCbcHcmsshzYVyfCVIeFB6rrP/2cqXyhS2A1jgiHShI+2SemTxRZM81C/rZS9V8oUfLdZxnvi7uIWVp4memdlgS50aHTyczSUg7zGZWaQ9EkP6SQ/3qDZQ/JkhU36XgS5xJEa/9/5yfxuhk+VZcstlILyN5uRfqRjLYQ84NJRjI/KXSH7a76rzMrg25s8Bmjiuu47OVjKxLeLYR+yvES8/U8rQH0t3TIgVHIH0ANPGJk4+9sqr/IV23nzhe0WbeXcRozEiyU5PXUaGo9kJyMQPmRKva5N9ZSIvz/ku4Kt505IRs/F1fW2EeIYcHaPOVmDGZXZTz1Ev7Zho0veO/3oj2NV5yCurNlp/rsx4nD5kyeeHqQL3t+vNEoi2REmS0X+RdOLKhgQwYKuUm8QTL8FjiTZJmdzFag0pKBwMP0e4uBh5n+XKyzNIZfCJVHenCdPLhGSB9MkieIkr2yadddIa7Jx2U7vUs1Fqwx1Ran6Z2Dm9d+Wzy9d5Q4jei7IGS24ei5fdkQnOZGRQvcfridAKafAO7xKJeMZ9V44EeswI5472ep2EI5dhUH0WxBCdz2ip2HMrpQTpFMVJxeMTfFfZX3tSFXDu7NLQqrD35HFLKNtCKNaRcRUBwKGDfPe0moIXOTtOlAu9LgLQlM9tvl/g79NHfw5sGAf23M073jZXg1InSS2Xx3NtKi6NLKXn5zKm8bRdlHgBW8Nw6CgX8oCQl1f2szwv/JrMVemVQRHRVE/RDg46sk0mZXkAYlnrGZYKy6+X+8zbm8oUDgLzya4M3SK0Prbndwm0gLfwtYbe1pCScGiSfZuWsq2vCbEVkiP98RTgk53tj3mJ5wz4Fyea+rUq/q9JgnlgR822sPIb9qQf0tsM0mCRCzPUB5JeOIBoMfUYiiOvvK6RwFGy73jKOCT4DhG8ZCDFCCA2i4SW7RD2GYX6fVVuem5UfKFKTLXTUogotA4Pug8uztLIxzT4Ri6lB67Wkx9mXJ7wTVQOd9Z1uM9RcWuCiuNA7eVvU4qP9KfOvXXSXl5V62WzbpH+Nvw5muCbMrPle009BIuRKwchk7ieAQmSLEzo2ZipdbWNqNk5QtMyFYV7m26xpn1uF4uoq35eUvZmGjuK4P9MgbqxHuSRgeeeRj4qXlxtaa1wClq7bUALxuprK7HvTZxVwyAExvln5tQKca0wk72XeF6Ufm2MglvZYO2h+UU7aY6OT7ObednpUyOWSVF4WYb0T5WfAmdaW+Sx77anO4yRYh8cqNHE3PYzYBKwaU70x+R8E59mkbEX52U/GO5vk7W7+p67xSSD1yhpwFqRHMBxm2l6EkyfLPWgTH2mLvddGd0YHJvS+u5THiQSrOekNG6QXYx+Dqeh4YB1+tbuq46bfoS3F9mxzGo7QEpv/e71RTM99NVoa0f3SlluAWJS3hwz5sb09OVI3GUVwTkab2lmxdnqe7Avr4Qt52NFd7KSGhzsbE8WQ0IgWhPJaoeATSZnDP1+Ru4RbhIwdQlnh0RWFkmxbbT6hWkoa1ICJXp1aBvR9tHP9TVCkcFELOnJfx1CrH7NqclGEhEccOrZB0dpZ4gOQhIut5ZosZrCRWcyZeI3vMb9vux9SnSsiaTcYTsei3Lziq1uCW2RmMZ+AfUvQLbHszJU/tP9VFpudTCrZ2RfFaRGwrqO9DnopmVuRIlicqkiAnsN7ZEvl5kIOtRHNdkOcjo+/flvPlQ1vbEQXNykqIncV8EkHnDjujmtGwAZLFE3bWl8tmsKoPdZOGa2F6eLpdlxZkjDSYFwXFVcSQ0XAcbx+Egvqjor7A0P8WV0jp+pybqmcFOzgcnt0DJp7+KSKaoYukEw8KIwiyd05vJzHlLyIesmH79+pa+mUH57gkzjA0IDlNXySrc53ePSGenJv4p/VVLHIpnD0GvrlCeQJholMeY3ZWxQX/9b52bR8/wiOtFzDOc0yOfXHjzssW5xm6d5n3XvEd+JCiBmlnt8HqYZZb0StdY+yGsDuCLjRtNIlhQnxD44JlGrES68NQZsu7lMx8/xxW19KLdYIPHYc8bk9nNAoWTw4g+UnZjxmfKwwSrqIE1TPfpHVCp1LZCemHVUNC11UrlW2Ttffntrw1mKMUNFbUbZ72VPRJikUHi9SOaaGaPyiEDkEZYAGO+RU9jzZiE4vTHr1GLdWqGkNFsaiOpANNPHBry1FfTPqSHee6BBYhAK4odv6CvgQxEbNEBf8x3WMw+113ItzPzp2h9pDYkkyRgp7dvRSjXVlROLhEigT0qDMpEv697u5Z5EReYKai+7D6mAbfoF/HbXLlgi4UDNRBz/tIjkmXP8qBPy0BJsHpQN23vCXs4couMh58s6MFaJ1tsrvee/+VsalMqz1Pn2EIWUW2LkQa9UCKfUzMtm08cjVwmFdqLM9M64J745vHReuOmGOxPGxR8pTRKb9WkNgzUVA+RlGWni7ePVxYbtHbPTt8TXYv0FJDkTlBGDwVthnz7Sl+RvnoimaXzuhbIw9WWiIAbhQbPWFDoPdpub1IajSekwulmZ7qB9XdCifpNViILU9J7fn8jv/gbux6ZO6KMfSs8i+Pms/LiL/Jg7jUHC2T0hOWbPpCBzZMj1XWJKcoa6fK1Cz35RlRj8thb6Z2FNXL3617uKbXBaM2Cr5NP+sRSlO/D0Ny+rhj73KoK9Qlek6bTL4OMN94T+RxfR+bhInwIuH9sClPIdx4FaQGVLFjpEOxcHfmhCmmyMDc9nK9kgtHxAD70IDqUwhahQBeEd+d/Sis1FfpND/39HTshWGTtikU6Rp7E9TuA63enP0+UYeobudLdj5Yk6Pfg9bdjbwdk7radR4lRsbm1I/3i85FYo60vCi42REm0jDJ2vzTiBjI3/3weLwDh4Q7oVePDmwwwcZ/B+Q0BsGPo7+cBrHKSZlxjbN+Rzum+Yy9U6HMy/wkckQ6WXRMHq6rO7A6kdBR6Bua8D8RMqEhQwwcnVFm3MXpgRbwFIF+IXlblDKMWSsq34X72lo4LrswyWYbMFuhEZhBYfHDCAnPRuNAwK2Y3hxQ19yoPM3bmNpy1qO/L6ZlYFSXVpI5i8hM49N0U/DiX90ksjB1A0SKCw3QB8s93GG/8Ckzw2gulOKVfjHjzJZ08yVAGNlZ+YE67XT8ii8vCk5bbUSeJeQpxLV6LR+jFLZaTh/7nmblnqvwiZxCKNivzV/+qpJ63tLUjBg0vhN5H1HX2W79nUyDncA/MmwFeYexK4kWl4heFVfr0o/9n6tJrqqN0/lF/JoKp2Nk7PohimPIRCXD+Av2gTKdpS33dCa7Om1tZGRy/ppXZh8hIbFwzvptZoj9w7pStzAJu5G8Aj0DTF3aWpuhTjX1i2vTPgpAn6FCj62s6bB9FHeBEqBGejnhqm2F+XR3v3oFiGGRDW9GeVReNdzW3xn/QnvuR/mCOPQChE2I6YZrViS1S1zFBhA9kLE4d432rFj3SMZmYWUFv8ZrpbghrmyFlOHCIYvVaZ97+1kgQ6bNAez7BVoOqX+QOpyZNEq1Pd5unrdtROLhquy3ILSOLjiz34ww8Qx5NMfiqjhNpiw4/n8ZHw5xF2JN+AQfo6lazlgZQP/Fe0pmfgPH3Pda1YB5pmU3/4TEgRjJkRrK56B8lP4tMZKCgHap0Bf7+5ZlfX8yySCWX673BUnXiCRVCNgr8+Z46qkC0/shUMI2G5jm9hEJTsUHHngM/ILXDKdspn9/HxZiu2vqRURCw4mJtH0azjCTO19aAMOQ9jB6bATLDIgDPXUs1KaVlKbj75jkcokI2ww/eqoKIJRC44Xyh7hJi5OgKy3FTr6gsKBLVW60dHrbpoKaAv6CVNnakA4qoT0mgO8S8v4svmZkl+LZgKWbe29zrTFo2lZILnO22tYTUq4ITXaR+8y/rZZZugBEaEpT8vDQoIZJwYrRxoqgui2Lqkq0O6qwY0kqNEfvJfh9XKVkBFtBY4rTWc3sxeySzQ9ddho97LXCnJjRYoB8uhv4zRFLpkDnB9iztG7GtZWAXZ8l6vLFz3f1Lu+mq5cP/0/vAeyxr6NTixcAZAO68LUJe1c9vrXZ/FNBCdtcLqw0zBwfwDtXg0Wm+/Sb1geqTNPc4gd8WhtTHEJWIo7OMf87xzHH4jWfjfOZsg3aezMebA5IrXyr+eQy7jw4YC3bZNJzMrRx25RbDP5PvTmbBemUy2an3PW62DdbxkYUhv/qApnXLb/3SkcNacFoAku41IAlcqIPmskK4KSFWksUB5206fMANGLzqMG71glRCMav6DJnuFZ+kWwOnp5LMRGtXqgEwk5YOSP5TMRbu5yb8ZNdvQTQE+//EvbGxYHNEzl5VHapq4TkIVsHqFkfz1SBnmAx4Hs6r4jSmk5CijB51Gl1XHWJsx5bCNXk2cXFNXH5W3ZVJr2qPHAmV6+GXkacAXbJTA2JbH1xCKpS44TOiS5juP9HHMxWq2b1cN2l8+H2gAb35aIB8/v9sXcw9z6BuNML1c3PFjq0oyFNG3iJCdm0+mGf6zpGV/xBxFYbo1BcdmBtYCwGJtCwv+Lc2Ws9NeCgZz88dshDmzTqsmfvoqeFNAyiimso2dGTlfpJb8paed69XUm5sTAy/9qP3fEHC3j1MwyzcVXPEw5QhCKau4MkmhKaAsGyJQ68CYI5KfCrhCmtfBux9qx9fKV8g2K1Rj39/bHFA7Xyz1wLv+Df1FFoLobT37rXtUgvcdVzKjtke/XGSsG0KBpUgbbEcAJCJedKz96lofYR3oeFrubePyVZ+hmeDnlkT7OpQM3MspvAe/a/9u8QY0fPUrmuUzWN8mX1NSbGQNzxgsA9VC83sD56SIQfpBPi/6ZOxx7m4o1X7iihyXZrUM9MjCRzKkTIzkIUZcJhcKAGhXKAfdRIgu6Ho3aazDtCA1tVC7ekxX9OeG+g3Tr14greJmsnbq7cnXFs7Ze+4XQKo6Dh/MS+9g9OpV0bJKVMbEimH8/tkCsdIf8knISduS/qWMyA+kbQNvf9QM5QofVevMhq3+WTwvV3cQZ1x//gW/8yEhWzWosPwO0EcN8lPjgWeDI2HCCUB9NB7CCvPb8NFth5tSGvqv92XLqHzMqsgESupuSxcsERhNjYi0vKL/l3UxSW6Y7I3cSy5i4hUNNO4ZLYBFxz9zSREEs9gkGBihY51ayBA49vwwoei6pysGH7o6lfptxGR1Y0gCqLYnNrHknX0TgEdQ1TAv/OjWMoPMo5IwFQmBA4iiJdxSv8ELQhfPrBTYnicp18bLcoUVESd7EKdPUYpuLgeEhbCVY12fPdYSkIRPV+xjWDd9PuvTC23/Sno6ADSZLUO0bHflG9lXfOXpHVSlqENVp5tMCqNwZzUnIvSfPO9zgldCA5rYKpYGYB7O+e/uFjzg88oh2paMfLKyQIk9FbVO98bZeOltdWGd7HWsoJhm2I9SDPnI9Bvp9dMgPxb49g5ZQtu/S63XViEmQ/Spx1T+Q6cmIaISeqZQPbMru17qcKbfHOsxWQA8iv5dzDDPKhEjpMxDvlDAFlxLkH+RldH/KjrMPVf7o+G4l9vmrzTo4BpJ0PH9sJTXZ4CK0PipZkx9xCPqC3P6U6z0+nF9HGKvHiMI+jIMAzDtIJmTbUChL42L0zvNAx8BgBOiP4WcUCuv3nr1QRAdXzejSA6qrO80Rt3gjf6yFX0P8hvjc3ahjhY0qhubdA23g7+wjYEQsPhhYael5Xo7uGqlke7N+HmercVhuC/YOJKo4qeKh+bYliqg2scPX4IYn/s1tnO6u8vdx/Vlsf+BU0F9wcd9k91ns47ibzak4gQ4ssazVHo6r18f40XcXSUJ3/TRvtiYzRPQ1koCGZ0EYNbNh2ZY4LbxNRDJSghryrBzK7tY8pr/mdZtpeKT/oE8mdZhCWhm1/XfSGNFDtphXVpBgGaizzjGv2iwXr3rS5N/4oJrCYyR2sfx5v22mEdEzXdajHBQ1bE+6ng0/ti+K8S6PLgvCuN4XSNLmBWHqA0Z5rIO24ixoPohPxHZw8BsEpNLTR6W/XiY6R1tSZpnfGS1cy76+QxajEiC0ZM8aeC+jFygQbdiqCGkbeEm0nWZ/hnfQGa3qkQC2sFvycdkJit2ohVqKaPC2U8TrwWO7YswKb7Gle1zA7A7R5M9XRUM5JOqpYsFmF58aIHeg0VaWK/hRfZVYZn7vjL0uXvC/uvb+/D2smN5tJG9WDNyyhTXWb1G8auWUnzK+tzRTCZlKAx7SqCBtK5rJgF+7t2APpgqkkNGLYhKUDVs0RXzt68s7X8Rd/4f7S3M6MR8LUmxKQb6NWMbZqd1sKCCiCL8+CjSRSTXJJ21AyIUsxf09PcSLNAUpymWq9UbdrXsF4Szn2UZVpash6WV3H8hS/LsfKRDAoBBOFPgg6qujwxSVx+Co0p9CZEFyHN3ShaHsiPNxhPNMzdxPWWI5vgwNPan4Gs6oBLT8mlyuz7xrsvvOkiVVGc73CUuzY+rGhTz4hjXoYE5nGy0/UHW5e7/r+uesw3iOjPRw9XQpZ5eknlDQGeMgvHJMufAJNn/bK0QzajpwSxbY+ibhrXEi24uDzsqxm3+T5jSNCOhv3TvWkvdKYtNW8YFH5wMJQZ4QFOozccruY+SWkRgto7p3J4LGwhGWyX2cBhR20gLjimCpeURuhk0F4Z5pkP2si1NxxYnqR94iM7YfgrrY9lLa7JqZTlMAASenZW8vwc41LAyInS9p+UiNQIsfHUfniCi5AjgG/VTq/fWqys6cs7spXPAThN71pWTZ9VSYWbERW8GzpKBv1tz5d8VI6z7elDJk6Y/XeZV8AnsDz8APFLp28LZU8mcudQxG7bP8olcJRh1BaBeF70A3+SeMyLI0h0awk6RJNCmbQDtBxohFK60W2ZBy1SmZ/UlLsQsy16dJGgpeyNt7G7ipM8LW11tvPJvXFhEbZFmx10mZFY39B1kxYYOr5kb5u54Xwp3vrdis9nGanF8krcRVfAtr8anNQFewyq5oIxjvikdrSuYq1y8+qOPCJXPtej0ClDxKjipEDQd4Ox99y3osJo/QnDbhC+OVugPlWekZoWSGqWhxeTfnEo7Ik2oFVy6d4L0XsWyZfCpxZyEEq4UE3ijPPmQ+UmuSu7ZuOF30Czdom9MVSX6QryYYkDabeVaDyao2UTaELljm/RjFsMcArCBHO1sX9MZ+O7YD144gPHi+YlORIJ4fFoS5EBwh1XMX16odR/mZ7pEBPIpLsUZNMj6UhueqIyW+o+D2sUDnU6r1WJGr8UbKhmmNH4jwhkoMp953k8TcflnBvppXPUQkka5E8jLO6jp/DsFf5vFCAbOknENbGK+X19pXVVhzFsa5vyHeBPS8x67eaRYCYb+4sph1voySZMrTRMi1Z3hITRA5ZUW/JkhVZVuInp0HOp1t6KKDmGR8QfGZ//PVS4MMj+rRyxUtyUTNw931c+/RS/XD+kn1zAJQcYa8PH7NqDuRCPXQGVE7+63KjAWWQU86dl0y7aZUO+Hy7bNS3vJjlcDK6tfFUNztL4hPzj5cX5N/tYOcdzVNLPSo8FxMXBEFCN7WfDEvY8W6m90HbN8PMgnvzQ5EqOG6TwJCcT+cFgE1ajNyQ9lmOu0KRmhMk4cgIyraZyzrtSgH9cUexGSPIkJ/fTeQ/szc3wJA+OWLhtwMOdx8FEtV708jRKbp1XpwZaZ3TkNTj21735m719l5WmA/c2sN7XQtYawcioWk4ElNjy4+VXZsErz2Pe0K6tp8xoXpGbkVfpr2AYKtKQaGWzIH2YQKs0+v1MOUnnNqp7G8SQnqLd61rsIHtylonD+9hXUpSzXH9rlPMJZC/Tr9Wu8cHzPcR8ruY1a+1WdVRVJethfDQjM/RJYptRjJ5lYlHQGThlvzuSI4qYoT7wCeBzqpnVrMZt/oZAuwt9GTB0AcuJWh9kPoo53lhhMjh7Kzvveos+dfvX7qGOrYYSSi1QAYnio5k2HpW2LnHFBa6RUaA4clbb8+Fu9OsnVsVTXsXvmo9oTTj5Ovbxbp143AXzsJr44XoeZpKXUaIB9Lw3omhA2TQXXJamgHg0qGQeiDLQDjdgiY6izMd6i8YWOYGGCWlI2Afq5wSAfXKKNtHLpLUR9dtPXeIdDgYjq8pOPFS4BYt3Y8VR2Bc1cb1FJvA6j2uyjsBaVKpeSFL+kJqPFYb0cOSq9I3lBfMzaayejYr/ZMdqfs4NeC98/kduOi9EDpO+KT5bxsOJKSDU/d4qzak/pfdj+j1YpJ5RnfnKYlo866L115So+Hz0lUCdI4XrUh4fN9jmc8U3L1ICq/8UiiuuguDnrkmzbHwzgPxKpqOxpIewXpBtM1MhiICF0kksM7fJfUL6W6Ty3s9F2Tq+WeY+1DawmpHtHqWmnl45lXmfTkV33QqCF9pU58PcWI0fJg8DAFK0WbK+4m8r4DnapXycFqWm9/nyiHO1u8HR1SHs9dHk4GC5ceP2kp0DNqUcVwsW7MMeGGY1MUKkUXkBIkouR8DQcwt/VUA6rQAW5ppA+mn61k5bpU1qgI2Oua5kQf35PTk2h+SICNlN0K3TTSj54TRmjvooejtCPneb/rp9HtPCFFq0gP7K89ub+Po1a9+NqyauivVE1Bi6r9Z3sz1LIuZasOUvLrWfjyaWnjS8/ILO4DS4SXBilpQQgnaei+RtNJyIpAK0nNydY6iuO2dHGjVLw2tI7cLV5fppatPsis+e/Ra5S3VUD6phpLCy7aq/pcmeFpVSF9Df0BxjUMN7qhaxN5sfC720I2USCaWK1FVtJw8g6cPvrHMyO1qcKbTSiN0mvOf9YtJ75/vJ9nPA3NEm2w4N7oCXRKv4KD2d92FlVJBK3WLlktCNDfq55QdNdvv8nJSuNfZOkheekmXSfmQbNPLi/yjOB5OmZ6l+ACb9JD4JXPYlAa4Oe0oMeeiAgs146yxDP6UVWz+sIbHZ7LSSPAu2YTyKSX0ReKGX/bII5pcOe/jDp2GFRyPpB5ex7aoli8v2JlCx2j0z2YDzy6Acj7dXrQvaXQVp0edfKI6jICPdvE3l2GJSdKZ7CQOxP3jYMnD2Pj1gp1qvAawM9zbOmftd+II2jCjXkLbzSO7q2i6Fvfqklc5BfAfNcoGuujTIESR8/zV2wlRObMJs5D5ZH24Ab3LqvLvbfMopY4WdkS5VoPSPAJsmWd3kVHhvUND+upLJr0hjCkf4sAM5lMEaYSE9jUgNSJaxQt0Q3fGG1SdAt75W9yq6Hz2pOYGoZ30NbmOv+Msi/Iv87Zlv0k1F5e72ZvDb/cRhz54VD0Lxln0cgg2xmfwyAZspkST9KUt1JMQ6yfZhjMV0sxZOBTXub/NZdR3LjCx5kpfZVhm1PQfcOPFN9HWT/A+oQQ0SkLaGfNV9lK2H2lnVp4f+hkBP7aV9yUJHwAbLroDn6pZx0ycgZwYKzXwyQgLjDD0U1Kgqlq+3tZNR1VevtlEiaHAzuUFCre482icQ2LAKbCasUNqZXnzY5gF65cPkJY8LxS03J5/QCNfP/vlEr43c2GobL/Avn7n3xDw/T0vG1fTeQC508lauz8MugxdZDjRMD65HLgd2xLwiIlrlkCmmiEQ+bnlkW3eiccjkOP8lAxYhmGAlFdZuRWrrgBs7L4OkrKxAbg2/l9nKZvB/O2WT59CtgofB2XXeMFcRxZ6NuzbwsOkgv/7YPx6EHAqxDw9vrr2AdgqohLgvyEGaR8L19DjTMQR5Rvv6l3fxbEvTkuEHERqK7vQFrx4MxCzVncZj9/IPBzFnpSts2tN0wXJEJx+9mStkCh8SYw14CvhAUodv1ftxW7NhNay8Anjir3d7f81hUeP+Q3W6W4GesTfGiYCEUsIdOfxNa4EHZc1XIXwsGwKBrWR1TohRJA8Qeric6+RtD5l5RT8dZYJCMrWz+xg4UPEF0L9y3H0ldyi/dxNN7Xdf6ZHgo2g3BOvJHlvwhaHtKIQ1i1jCSytwd7CKMMvrSt2pHyFX+jvNWa0l0dSA8SZSz45gS0n962MR/Ci4zrcH5YbFdjTXz9ZUXiZ10a17Buzx6aC6K13RVFlvriPSVZiasA+mNNttD7ddazM/6uUE58KppBAj00z8lvCw3At76E94zMYYl0xoxiUX8gYv92lsrgnd+pxBK/XTA5mHbYR1PqaECJ4slefK3uJF4ap9RsxABl3JJINkXanLN/azHDtyV1iRaJSfFxG0TAA37Xc15dDsPxFbnXMZdSOFkA9KPdvosX/7oaSS1DcwsVU3G/1nwcGhWMi1+BgWM+hXZVIRoUMZRXXxAsK+rdf7fKMxGGjEIigdfij5kTAlzZ/5LBDS1FH7V7GLAm/ZfHF+4NWwHHKTgzvl36m4K+BOJE4Sw5tZPeVmj2o/JzBouM+h0su6LRQQUWw0NIC2EsXXmnwpKbgySah3q8sQ24ZjFDKuN8SDlsuqO7p8eludnLnazEfwE43s8FfDfox9B+jYAVqZvF2kUS366zI0RAOFCOGpWgjVbU6q6tDdMmGAXKRZCYxET+TTR9wB6o5pn3N//oXh1AcuNpBXuP5s8IZOp4NeLLnKE4Rdn3BZu1kY2sxiLUOIaDfbSwVgdnvRrCvO7asivHzaLeCR56AGa197yzHQ63C+PTzi3riLlRkLmLKiHa3ilGAklaS5lxwx8UOCC0lye7p3d8Wb1OkjooUsCiImwL13XsQ2us9A84apRRWVpQIe4T7gJoJHrs64cdwiqApCpj7JzcdRZ3wbsSBsL0P3CLi9xMQk3rFCkC3Ok8rZiF2toJshti7Nbzn2Nk7XhKz3ZIkF2loaE/pgUZuEuRuwrAjdFN346j+u/4JK1VnrfcWi5fopaeBhM96FXKzFsACuBJsQ2Ci/keJnSZWyjsZzGu7ZoqDezOwOCTjthzpCk8BpIMP+doeJcwkj9HiUybUbgwKeaSX++oIdelOGhtbuIAFpSM6G5k8kuaF1PmYz6WsnXgUYutYkt6GzHpt/CO7XDP3jXJ7fzvvaTfQ2sIz6PedX6pKCy4S19QSFALpUvgI73DDqw8sfOLu5wHx+VIsTnBOe7I9AS56Dy6J5A7BGKYWzSloBk2/JaqfB2gE4IPAt2Le/GDS4lwoZWKSYUkmlSgBkydcfB7LULoUy/J68/Bb4r452JWy/isucKQinRGWbtCqEUPQQYBPropMfPsaJ5PLhNAnkR2cC2FJ+RMC3q+82tszwv2rG80DO1tGINjC5LjRf7wn3QLK8a0zkPWzAs0H/CJAys/0FmHuvmmc/PZa9vGOsp9chgFK6EanMA+eoe3cCjRBZSsYwNC8V/FsVeMdpiN74dPjkawS8RNk/TEoUJ/yeAOWMkySeXzUg925VZ3WPQ0x8gYDIeDeP76fdjhIBAEWE6HhmyJ1ZnAZb+lf1CyENHqFHgLbxvyI9qEm99vRbOXvOumkd5bLzI3Yl7LKRH+j6yQzju7rtnq/euO8B4XUXvd44K0OcDsWO+8MnRuFpPOyI0J3XPBeL8WUgV27dmpuy1l3cls+SJT2nKPw2qMkXMYBi0P52wMpGvzY/u+hGVKXMYTlvtssfpRO/03zA7ut5uyckgmSa7wlS1p8uci7US4bpMeOz5javH7B3S+yIwtMd8ZFdwZdfTd8P4hsA0Wa9nsati0PFzpO0O1ACU+j8V5dDQ9vgkfJ2H6tkIzOtRyfOQCKVcJ+D3QIzBl4Vw8SzvkDXYDpKIAx+qBofC4uTiRn9S6bn4vnxLuI6kWM2cPwUHYCQga1ovIrLxlAD++F1EGoth5rhp9gUM9lPeSIefB9CmUvHl4FQ5ILxCpVEU3qJlv+TfUkupV21BapzFVd2ZFoUQPb8aDuZX12sMQZlYLlWWGGwPILbITNQDiU5yF1zAUZumbYCZmiXssXIx41EE38dTeHfE4hC88ss6IKVgWRRN+isttAZxpnFxNvJKid90sw+Tq3h4HJ9abrFh/taXoKFcOZg6LMtp6jgJbPvoI1AwbsjWSB/zzcy+Jnbp3b/B/pkfLap17Ppnh6vCTg9N/f6YW138MJ1ft1mavueSF3yINlZEhUNaex/3uOZQ+F/IRttYoZDgQ2vZNLomTMV3wMO8FHphGejpEgnrVm5IYD0aw2K2vQKeuE+c3RjQGuLgJNTo2oUq12NkXEIj0/0aKFwAyWB2x2MQ6FZdn6jmLY0DXtgP6og/h/oGK9ILaLS23P4+lM2xGjSXGgb65IluJfN3/lx+FifVRcHKBEBu68E72D4G1IK3+aBluuJbQuQiS+/7+QHGpFV456CR+D9g6dRZDSaId9Zg9FluojQsNhIu1K9Ca5WkGQUKJrKDU9Wlj6+41wCAHydN6Gz1DaCJo8Gu9JR5zEVlqcf/aRWugZrq2D4Gz93s5s2BG82Gus5//ley8HTJ+t3Hr2NSjSxlWHWLiGNigz1bWf6JxBEltkgj9q0/nu2pBeHT/6CC7P2pyPQOGA9obqT5/07d+LXW4oZJjSWYLEtCTJue5+5wTMeLvr7CH5KU1WbUdYS0S2R9qjFiMTJ4LaIDxNqtWyys99AIZ2W5MeKXGZPG68BEp6abtYFeX4x2lfJS7x6c13Ac8VAWRoGsz7fy75FR6N06TvV4wMnF72O+Cx9wwTD8xa6hoNR3h5qOz6HPilt1azBLQN7dBBxP4ATP/pqNRz3bhyKTz2WaC2DfCnD/1+KQEveNSetsEzYD/CW7KG8TVGgdJirpa7FMdLXJUM19Bz8rIAN92xUOB0ewdxLdaZNw3885WqsAH72vpIGid6DyoDnHQEngfKn9q6l8SlqUdnXuiPfQXMeRAoABNkI5tj7mZDtzduLK1nLdBbGBeMXQnI3w8/QvzHGIt6hPdOjJoevF9m3PsXsqLPcyfpxhMgs2nau0k/hTmKNUjK/g0CdqN9hD4PKpu4TgLtKa0YPqfir+P948r5EBMvHLZlnDaCm7KyYoCkhj0NlLf2fR7b3CDhAJSjDiO7OOBJIy8pH5XuQaRyWbh7qZKwqPrQyNmEc8W76sJPHvwYAX9Au7O02dU4K2EduxacKsCKYYuk1EhQLGbHhBQJfO+IDBcnCevthujeLVircsh5YCviy1lTwOUYJaG2bnqcKuCCD7u63oeyu49X1ccMCw7H+VtkVl8Zevw1k/2Gx3CivyyIdoQ2MBA0qRI9wEgPRbBgqc5JF8plAUHjlS62+QgnJPSA9Gm9qToF/LKPO7vKRqU64Jj9G3z8cg1wDzLwkRqeLCxMIRDvUTJ13hC0DPhD7HolgiHDXmiCjrm9UP+6kcm/FqavDyts6z+wGlaefCgFspBKQWQjA9XXthEjgIxKQP6WNyF1mAB3mKZUZVcqsvc28Hx/76rL4xgQGvGn0AhKNhmb6gi2nQ2ZRxx+CndG0vDtJVKOOaNiP8LrXSACHxqMHZ7b0Miq6dxKDC+ynbB/zY47Z8ZuxO+1/oBIqbSFuQBTSlN58L4WzS0MwmToe/U6F6CmDJHza7wfgWV3RvTPROnNQXcgoF99OmUDDWQU9ZiUpQtokNT3B03RmzNY0G7yOXQ+YQfiPT17e0ipbFx5uWokzSG6xznQF2wX2xqAHJ2TR5QFcM58Z4MFbrXJI5IMc7FoSKPns6dMHigXoi70xuBGa4Eh3A5Wzc/k5QY8CSDEPLcRl4jSJ2+K9XhPD1L5hg0Qp+v+QjLhT1WkZPcQ+hqCcqtAYoeSQ+AsJzhGZ/xwylTg6PgT836mOTujSYv/s1pSly149nkT2lcpa8OpfYjGsJdzKFK4If/ulB4l3nGPl2otMiTNKh1i2TNtNYB8tQ+6UI8B3DXa2ccFe7hVT5liXwSOcH+9l5BhCiEw3Q+qwmKBiEGE1KS7ckb7mrETZ3XMbBL2UoWJilLPrcCdG4csikcmffIWiReUOnc0Ums2qcRm7AoMx9m1kRVuz1ZvKqnd/3nfNG19VGZnSdTetYna1Lf/mFmKyBaVaIQQ1nSAMpaGSf5rzLbLIVZ8RmBN3Wi1XMMgsUFi+Ru+kG5ym55axWbxUOp+cz4vCffLK7jbrjTXfIE7q5IzebgqolHBcUWAG7vg/iT70QjIGX93BQLSwb2IlQVRLrGNYuQf2rgP/tfIe+MN1KRvaFVz0OW+gfzt9r4m1uw5snlF2pOYEYox1UH7K643C5Fw3oZ4b8ScuBORXVqhYX8iSlvOQga2o5sgEJj2VDKibZ1S9UEsFq9SE3lBHx+XwiXQ15e0mkBpJdqbLZArurOpnWcFEIy4EXM2QyoipatqAfwab/nu5dTeUFLPxAKGkhtNWpDEQP33Q/S0I9bZHwVnmahzv8Td4+1zl1/uTV6w0aI8U6nGy91II1DPDjSq6B+lz0IOyJSlKe06EkI9PSY7iH5RWVxcHQZ9rjjBIxcoIIHGLVovwSf0C/dWk2FgfYC8dlIO/rmOR/VuzrAwcEYXdgidmVdP51j31jU74xnsbUH7AON/myIK/RuIW8Isia+79d72VhUhvwRsMTCVQjpgHqEDh0qlCKhvMoEgT6w8P9nAcJuaNbNkNrGJbd19OCxfca3SssOj9hno0NAwiNZGRqqaosQorSfJjgdXg7Sdv1mIvSePQvyiFbuW1MEUT/HBxGzO3urYt5E0z9dnCeh9M/rMiWLASU4v5dMv+gwiBnj9r6319y0ePVlCiSHdIOR9PbgiMFwblqLI2pAiRp+G2nBaYURcTMX3OtnAeC5q7pT6gV5tibEkWC21mmzcD0R22+mUnJ5P2y0scZ0FQ1J83q8ng/anfAEHDd03lsg0/ztqLaL3aZjGJDS1e84MMPbTTCHwFqq+LE2jreDZmLv79KV3mRjAXvU1KPK5TOLLsf10ehr94UymTPJZm2eKmCmhH+M59APSKGP4t1mM7EXBITKT0+b0x1ROTLL/iL8zDW6NZ8HIcyglf7qwDCJd4u+xs/mUKFBEkbOhFiZYsd7hL0u1C21l+U7REKlVEANfhZaHa0r0+ysKAn6fqculqo30n9t8Nooslag2tQOej6OhRt9UvIyUK7zkFNpQv2BfiuXWYR2dZFzwnJFO2Yxslhbt+6Yz6NXBuLenUTyzq9c4XPgJeXkbs4C4Bf2xhRDDTCxNmnhFeJqRWJFWOa9486+tepahWALCCjm1h53FDlXxky6ABkYoo/N3kGxIxZ7v/ijNVRZF09lKxOPvzky3SX51xRxCCt8B92ASoXx6QhKI0DekzJsp4c5dRdO33VxDlNtl1taJw1msKxX21WwjczuUwzF75j9KBuAskHvxexqChMQP53G+gOfpAwj3DDR86Y33l2A6MZ+487HXBGt1lE5B7WaNxJd8XgEepRnjUf+IAq8JHc+pz3f5WvpTSaGrvOJ29gsm6UBpF1vWCgh23RlL/QDdWd7coYn4U7ddRRg1zHJ6L72jF6spTIazQYljHne3M+pWKDsZtmerlhQhtR9lyyudDQVpUW4gIt0UwSG/tGhwcEL1lVqDQsMhJV4Ky7EPCOSwg1DjRQcZ2H+17lbY5n3M9Pvg/G/LJs12PecfVEIfI3PIS5B2wZJ7AGVYxx25ZDEWzDnkOaQD6Eyt/bK10z/7T6woYUW8R++UwdmZUzGsal0vViPnOI5f4szQ1SMWp8iobZ7uBj2pEFYZkZeU9nOsvW9KKGRWG5OrDFJRhpfHlJ393KJ0Zw/b9nbtDL4HIRldUE18+YtA8hW4WiiqMgcDsZRNlea2wA09n0oiYzYmSMU8OL+Dvl9zGCX5qHY5X3J7XG4EqZmGpcDG+iXimr5hhFOZGUH2e2gG2gop52h/gEGLrru/RSn3nClf3TMuKpPPfgTnjZVnPHaTmP+R+ktmR8bLKpju+5l1D8yuqAGrWyU32QMykkrJnCNmKx6nXe6O4GSj88A2ohjEuB8TQHoTcpNsQhnXXKi8Xht6wW3TultBkucE+T08WYHtphD+kGWlz533Nzh6+2iDP4BeURsyj9n9+jRSNlWBdchtuYgybP2LCdAe5DnCqZsUmy+mJj9F9X/zrBlvUoNjXjJm/Q1zaMWXlMQufWs7YfUuMdRlKIWEAn87AxvDwYtMv9qftuBHqjGkBt/nkPGAJfkeoIZAG1XWcJHZtBIY4famk78QXinpHLGn7LMdnpA5XL8+QaGNLkHoRRDL2uGE8HaSw6Ysbj4TOeiEGK9e3fuEk3nD4X7+lRqCvYrw6pUSrLLS4BB80FOWiyh7w4YzvkSv0U1IJQ/c5qwbP5Twh+jqJUEeWAIqDi+81fboHGN57ItmV3Yyl/ELFsGf0CkzjufazTK4ASi12InXGdWdIl632Oo0auCnI9hp6QAA+IAQX0nYq531XdDxfX0ArfbSjy3OkEEchNh+zj/72ESeQOkvmx9tEKp/WxdhzGeQC6N0dgzlM+KlY80komekvU5OC6Zuvh1pWK2z+lI+kvgDRB6cNQcOuY1L27B6urKsq1FSzKB39O/Q3wohPu8qbm88HPuhsHr+3MtnUuVG5qEAguGkVoRfXbGTBHaiWQDUNBQOvdSpcrCUXCL57H69j0nlvUS3+GKWSDY+iJauZDL6pwfVGmf9oDEKThToYWX/mLauLyqxOziEwcs6r6FwK19ezN/xsv0Cp1xpPdB2cZMp1yxorAkyGE4RbVpjPlkOSXBOCEvalI2o/TOJNM9iJbsCUZhii+87h1vfjOWRme5/oqQlzK9e/hg5HpTQILnklGEFqntafY1tzaUFFuwqG7DJq/ESMEzu8/W1nFzL2r+XlukGvq/PRQEMJptKP9UaoiI8cXHTJfOloYhI1MALlGgKXMebayT8Po1j+JaNt+HKeC4SP3wshzVvMR1v/a0CllNmXcgu7PFAy47m0yWab6I+37zJxTZsUM0KtEJ9nxoL7zuXY3v04qMmTybkB1skarQL9Qq/GXq/OXNM6hNdSFfkBPbsvZsXJWpmQ78NkUs6TY8LgUitPcrbJ9RFKOIfQhlzYcGbsznsUtArzv/l8mCQlE87agvfYxZBYpMzsz9t0Wlcg8nhHpFeb43RQ+dXVqN0d95R4aYvDAd2/LxVHBSTGHd+VJjlZ3vspW3XCOIS8aPj6MkbBd9mSCfUhiYCua+yr5XkzO6JCrJ2oVZsyLkF7q1rfneyTxy1N8iP393MtCCvgL4BkaQIlxn0MgnHyG5gE1UpQgEkSdjxcQ4FFBUd37euDh9Xq18gk4M6CYvYnCu127i+AWnGDjDKmKcnGueO4sLWCAneWKBentN3IvzyuhMi1t3+Tj7i+pqSn0lJ0dqXt4894QYl1KXdbMWyvnWRTtXsNyOtPSZcRYJxl/2iuHt8wh5lLYJ7TPJ+VrS2SOo+Qtav7+e6+5JOrwm2mYJGBuCmZUCS5619IQ7S8Z8PqnzqptIdFBNuf2YlTvD2BMPVrjLTMTiQZ/6u70wlCCZOesY/eYlORNHCQYexqq3L/6Qo8QlVhp/udHZyKMu2jYL77DglRiHGzjD+B/28fvQkAQXhJwfqbgcedKJgxRh7FPHKt8QQueHifjLwCuv1TUnHv2pokKCYeIURa+nKUgyIV4eUdjc3lmK0KmHeFX++vfh+k84UvtKZl63Ek3/bmKVZvZC3c/SP6hxXtkLtTwbjsWU57hPr6lkZho91QSHDpiUzMaW/wQv1He1yj5JoUr7EmoDkXH0YB5Sv8vcDjZX2F3YcpRW6iJJwABUjr6C7VVRzCeonbuS6TrHz5Tluixcj2xNGBKrqPRwAUsBfuHh8o3GW7PIym/G+vGsXh0r7MeVO8v9OyBtAl3SVJhMGsRXF5m8M85nnpgZMEZ7+9MQQ3cdEjOwZdEX5IoCqsk8vnmwOOnbq+AaSzTtbKWINwvp6P5vU1GXJUMz/1FcuMqOF3bc0Vy0Uz5nW4eLo3EeLLWVeO6tl2iNHPOQn7hMK8QWeWEk26EvYxiSKXkcuu5OIlBkQQzQ1SsglL4oXaK1MyZnhaPesskCfHGSWXvThrZTc+8b5IhqkTX7LU9t5tXgR7W9sSgDzL/K1pnnIzuDJ1zBGT6DChlaXsoajC+5wRNiaLObfGoMYTQRb5DgnOyGqqbsT0b99VmC8o4xADQOwIfplQOpdFxpxqdNqbewKBaoRbOZPvHnhRxKp87flq2Pj6pUxZv/rm7Z11DHk6msN94f8nHYCwkYG7M88Ue3gRsy4op21rS45jpmiwyfV+CWS5ptYQPeUncULQW6MDmL7Fy9LGruLc43b9VidCRYyh6p8X0hDWrP1hsKtfGNdPu1dM6aTTrVp7U5f3a/WktYlwtCS0TpoF1ALuyKTTx5z5Y5+GrvWoVES4A+gdegfnToYjQEEjKZQir0EOnUjfjj43O4YWQr/QvfeSXlX2D8etR+NDtfWa9RYLV2Dbo8qI2siNDtamFeNNML4xE0r3lH4/10h8zqJv3xfBg01xuwQoxVxWfvNXYufO1EkHVj1TsusthBMQfoNTKA9uHnvu97zHub4xI7Xz77zDrFr/zPHiavgIam6xp9FTDoAGAgO/uSK6gNcoM/IN0Ol7HGVCJzLBEaWuQ9LO+3x5XCa9Wixmb8XBfuzDXUNs7JlMIukoM3SrA2y/J+XH9+4c6RVfY1c0t9h8xeAsWZzMh73iuxk4HoHW0eT0mDCT208tH8OietODey/CH9FQvAUJfWlYL6L/zUhh64neuTEnAN9yVLq/WJCCEHLrBuMioh64Zq2u3bCab8uFID1TJC1/yWa6HVtNM2kcv1XfH8z4EVR6z6h6DluElnWelN/+rvoLrzBoc7XAdVBd9V1cpFsHCYB3dOIAwe7dakQ5afUyFu7wD4kQL9GAxk1dntcT0lK8nwrikOn22GaIH3sJV6bM2rmYuai5fBHWy0uXVR3zFy0N5RhxuMp8rGJlsB/yiwjDxzGM2uIq9nqpQ4hrIOs3t9JrcoqCrOeZB3UgFMAFrSr1GEk4qMypZBPA0lqrSUgUikb/meq1uVXhlxkxMZfGv9DznEC8i0Obq9GIw4LuOMygbbI4qGG8JpR1K+sk9nH7knCtSErMgB77tNohqpHinUoO9bpI8eKm+3Ct1/m+NKSHGjgXFeM75Zh1SLaO+bn/ZyN1GzyzAoxNetdXrLxDitz1rzM7vBlGvikyxyRGnFz1sjDeL0RzUjt8bBvORKCDe5f6BisZs0AjkBBqdEf5XRskS9zSJXMhN2lP4LzJOqk+m0TS/Q27yAdYAMZ2qBkQ3BS+CUWKLGD6LKPGP38Sk0HpV4PSkIFl0vSOiKg1CiYqegoRZcklF0eHh71CPhlqaf4cFHuMdmT/uqovkgOna19dHDTinrPGhKTR09hJC+1RqZrstDr4EC6mejBYmjtSctAA1O4i4J/QglclMhobgVkA2jQEF6txn8wgRAhh71CABUreWR9GZ/1J9Ian1Sdllg1OLcKuibRwzSLUhDxUly5n3Ha2fAFLvXbCbD8C9QpEO4NwHhQzuuyVXZ7VX6XyCHhnwFaGMjSmmoXlXgJQ+NibGg85s7+DCPP70Gil5PrAy4Za9WQ2GOIy0f04nOyiDEOtIhTnOiMJS58rtTD6gDoyMLkGjsUlOOwWwCHoDT8HEv/L/WJgFrjCHBGdV/y7p3YeBbh43SWk8BdJEzet5siZ10NAkGRqRTjStP26sl1lYz6I6uFT49/jvF6JcvETtIHwgCJk/ClLwb+5TUa6ykDeJnnk0ko9qxW6GlBGIx8rLJJI5vXaeqnxtsjgnbocnunANXy9ixStsJcVmusAQ6pIk1ATRSO0m9cNu/R8lSGsrUpXRbG0+pXT2ZCiL1Gt3lImFdBKd3sHStqkD7/9ou+umsNfaFUr1SBj4tMCY6U+rg/b04qeAFNWRJsHCyOM3gyvoE1DaNqWCy+9tsw3vAk7qN7Mcgbzgqig1iwntL8/9aWv5FaOjN4tGhbQaNIAuJn1gmHOQ4lqfRuKMZfJw7K4reeCJQq9JMZlFNqiU/4WpZyV9ZesMEPbeH5TOh109u4bn+lRpFk2RFMQTxNF9et//ajN1DIRUT6VaFn4Mn/Yd4Cu13XA4emt7Qoc01hx8Doh9AZMOHbaXWnMj6T7IlV7YXAtNuWn1Bq5N0wN8RWApPubhVHFGfoLi/DNEhIWGkFyDsiydxnlM74WI73Ur1hrevLomTW5wYSqeCokBlA10VIPrpfdAsetm2TKpiV26I1GHySbVk3W1vetMmjmtjy7Ox+D/rhLKCKxQJyr2xaoeo1AIGlB653vBlUZ3aRGVZLeDcdNeu9kLGG/mfiZbtSCCykcrP3GursToY1dxxYrF265k82nNlmpW2f7nE/nVit4XRzDD8OL4q5Mr1qKONCBKOkSrs2/KUqEZXBbicKmhMS5296DE2yDH/TphK6EWWtHlbKIGawE7jYj7DQfExqDTs3N7QFBmZIbcQc9wfarc6vKM88L7hV/AJ+nROZiPF88a/PB0FfgRuQaBH45mxErTQ0SPHmqqziBcWTuEJtHN4Qh/Q7qZufOS5NBXTax54SuBmZL9IhvnS4cZkFYQxb7XCIC0446yq2lbM3H6+6tVbSHwBANimAd+AwwtBGSYOVr9H72xhP5StUYL/R18s4Y8pA2mebsqhbmf/ToRbSQnM11oHMQ/ddScEQniC7nBRCIh6ilygCQt5dQfl3f8KC2T2Wa00cU/zC+I2dBLQI3yeV1MOPIqXfeUFPUFrlOQAhDkaUGTfefUG1v8ydDkTvei4t8LBgO31AoH6UyWmNEMF0N6mahaRQyrKZs7nms9NVEPojHVkefSZ9vMDfz/l4KnZ21re6tt5clhLRbPBsU784rzbtkSSNTzSeG9ja1LFU/JxMLWXxSVPyLIvroCkOyJOvTjBaKOkSCLIphAIE2MdRPhqbAahIw5RHph8+WYFerR49k2hEKja4RIQS2sRrxKPCOUsHCsNIvQ22O4tZxaDC5gd+MsxXxmGTabaFqNvte5pAVq7wyMb2P721D09AiqVW2pXghBU2PexoPp8vxC1GAV11XzHxQvo6rrMF9Dlqvbhif/UFyKzU7WRNr+49vkicIMjshdnyktKBJLaa4/7PwmIJeRE4uiTTfVdXs3L3Oz9E3i/THvcbrrRxwby9XCFwnUBlt2NGiPO2OpTwJfJNqb62d1xUznMiP6FSubXiCnLastedgwhc98wWc87V71BIO8tHsA68gytfeTWQMtmuBVrIH9MQsyI315Y9uSM7vSoMEEmu1Y+5TWgk0/ZAYeypJ4AfFIcUaELePJiGH+T2EuMqQKeTDQ9W4adVwishiybULvkTbfqkAP29++MmLapATICtHpS/IMY6X93AYb2Z16VV+xzwQBnAW0ocomVL6EaJvvaqM30I06v5V6wuP/ichwaA7b/SOGUT0WkYJjrX6N3XpmHtDsXblGUYCA8PQJNsFOCJnSIIHO56nSARxjX4/bL4GhT/DXVluGDRz8CqMlNYyE2LOHWqruK+9EqXXolM9tLv+qR9xqfBmYNQ4ASnN2x9ydK0+/jC+/Rx8HO7thEaJBG+Ivp+LZWB5Uh6/AUbXceKKNZacft0t6AinkuCcNJeRkykTGkkaMItoMF1PyDPADLYdgoJOl14Geu0cqiIHlEx4/UR5efAo6krf2PZOz3Dx4uhY+/+ZwKCzkb3mqLBeVvBF2znMgikVb4LbmlY+QjT8qlN5FYEchRBE2LFyrVaK8ux5gpQzARiByLCHhpGXrpkttJFMWhYltigVu5ogRH5b1jPLOwbmGi1AdJAkT2SVeFxR5BvNc6ofV0pibAMwIoEVJdaWSCFQcrntNiy5RRPTUN+SQCUu7Lj5hNRdgZCNBlI2+ZT4AspRz5U3BWxzAfakyNnZbQXk7lB0rlpPzFwDAcFmUKRmd4pI5j7Splnu0FKqQAe89ZCN+ViP0hbQbi/jxl3HxPUODGWQvirRQX7CLKPEmljcNAZ7x5G2oURCTnwlJBE6NnTPRF2N75KXvB8L5i9VtVRteOFF6lzS7HqaktfXeQgfAzRojJDGddcwM14NhNwn2fAuNp0mkVW7WJIgAVKJGJI2qRo2dM42rgUBwAKuWyRDHAd8Q63gHsUcwzKAsQ7Kdac6NJ2ZP16yt8wCjifHjw49ncL+WsgN7tB46SiMBrCv8PnBfluTmAwBVcxs+Jrps8mkOi0nXYiMB6T8i6kCDFGR46ql01z5r9Oh7f2o/V+NM2SJRohXwxsxlvZ9t72qh5WBzO5bW0HkzUQkNNdYLocAySnLtchxNgIMKhaUM0SuKEyQDrPoVExeBPvgI6s8F4yQZKVm1EpEZOLOV33jaJExq1RxfwYKxzNeF7sf6qYv+W3QVNvkpd1Y+5tTAzTMVFZe71iGenSi7qqdMM12Wf6QDzjPy5XNnnP4TJ7q32BB/r2eS2iaA78vEBxpwVpVcs1AtrNlqRrWJ5YLej0wzUOd8XAiEmg1Pa+3ZZwjcCdotcSw8ENPErNGZhePorhprQSDJf63XO63a7RhxTxOUkTSzUKpLsYBkPonw5X4f/6ok0U6R4OXkB3BV5pgCx7ZK1585NEWPAyoo1hOkuaPn/uONsFDHHIx5ZlcEAv8oUus2Qz0PeSQrk3cvmHCNpzuMpmX4azzVdjd1OgQkVY3zvCPAObNWjWQ1EPJXp1GjM3FMCBdiVV97NwvkFfnI8FArHHbw1ZqYzNdNlxov3nDfHXDP64YHOdDoxhuoEfr3PfF9EBsjdWs1K3Z4pKGWc0ilVzmpX1oeamyUPacPcemH1TC/f7UzdeuA5cTSnVGishI7r+G+CkuWScazoevfWAfQT+KO9SgypOMDolyNiZ4T4m9k55hI62tsGs5SvD4TwL2x5U3zaAXktHp0e7+/bh8MmKtOTnZUNK+0QTFO4ZAkuAMEZMwTkp67O3CKgh9qMaaP1q/m6gf88c02bppFXDv0CR9k93V8L4pSQ7EPYL2KBuoUCUpnviBwsjv7JBsMu0wpEIvqyvoCeVxa9wl+6zsTMrla7k2naBeSAdktUaBiSZg2mWzoDr3hR7eG5NsMYgWaF68zSJ0Ku7oVG+MQvSjcZv8Dlq9GJCZ0HDwO40h9bfu1AR9y8OYvZ2nC2qTv2mSfzl3IruWNAgqFESPswtZdCzUBtIxBWyg/F+PuM2a5S0jiEuuTVtiX4AjZkf9NcXjYa9YFpT+mk9h75ID1u/PQ62lbYonAaw+QLWKisTyuuyuYgJsBoVCwZuti/eSnmlLMoIWGYKSn/nsDMKfxj2kgK8pVx+zX/HxFlG1EjsGXNPZw4hjg2yHdaIPzbJDO5Pqa9Eb/fDxpembzCD7j5dYAjylDDZbHNFhmah4D6si9RhJpnRpgOjI5vNCy38XVfy5fbkDqwYWmzo2i/WrouomdpSa09DXUWYNPChhhGSVjXFQ06v/S1w1fRUjKG+ZSHeBhflhj+ZA9QFXvZa+h7NaboX2fWGaRZanH3crAlutWi9w4FrNF4eiQ0AQGWxUbFesQ07HVzh/Midj5UWYhwMKHNenEjRfhFEOwe2NTFvfKlmA3jThuCDSbiuCCE3E3iSq+jdCd3Q2uVW4TrIBOey+w6iU6YbCDP8vwovgib+oM1oZU+lOR/jquyhEbkaipyzSN6xhPG0ib+/SUNArnwvBOUR+ADprVDNvzYZMEWOcsDoPR5rN0Wb8uBaJbWZq2SKu7Q3sQJhNoMsb54JdCuPVdbB/AkDJL0jDBX1FLimvtOMrPJuj/0dguZ97Yjcfba0cNOD/fmN3WxHQhpWHuB0E15aPOe6BwxT7bwuEhb1MozcNO/X8aBcK0XtsaTwKGTnw8U65rWpYdDKM3ZdU4/fLtpW978n5TWzRDqF/dC2Upa4O4MNJ0dPwKGjsORsGmlzDgW37XVUBCMNhZoyRGiTl3FeJHZahakK4qw4nyYWPnPYehkDgvO/Et4BODNJDo0FwKJLCc/g5QbzOK25bl64aitKdaisT0ssvFAN34j2O+mnaOE5JUA3PjcqQ6X0dpc8GOBE3zo2nB54Zabv8sYrDBBTlMXCqH0L9EFiG5pZxjd55xI2ORrqZfLcAE1bSkSWLTq29Je+CfDvEsiazXZ8J54BLCfRs4pGvRk/mgqOgMtYPHuUJdUlzWb2c8kQPU7eeL8GQilmT2mafcr7GTbyxu4Lg62NAK4bgiP2jG4w1axLBF5GenwqRIbirnVahM9hUnFTuWUywczf7D0Lzyus4F3NMgNU87g6S40LzlaJ6EYXhsi+OMWj/X7y1MQOnSxOXbGrBbsi7D3+tPcBod/qLFqyNHwdCOaCMqkQJ752PO05od7UJeUJGBrEJijJH4KraKQ+1kBnuApJvyLpkbl66qtuYxoyZ7uO4LUVl+lgLgoUy8hJRgyI9f1ggFo12k+f9tkNA1sm+dnq9+vXAedt/euHEkVUSS32ySqpcCqzZT7vOPd7JlgZcy6ZfoEQVdYJbgzoE4yoPOMSRhhHzJ85AM8RQ6+RHUNmT1oc/Fe4NVPsQbC+WKcmmSUXxhCPGSsLYgjwO95OoizyB5JCa2LNU+fEJ5ui10U4QHB6pPO/lYoRUneVmTJ5ba5M63iTsefoKr57Z3Lns3ttuR/YmLzbyFx8iA3geqN50TBvzkdtFa4/S8LPgSvsX3krfVE0Es6Cdvqxx/kMrSCKf+MzcHRdZsFdUwP1JrIerBsdt/p3+eqPCws5MMR06VLESI81Prnfw5vSK2jAu/eHKy9kuOlyiPq+6DCYJ7y86cXqgU8/tZw/KOSduKZIBsfOur5TMkLC3lCOa2oBPq8t/tSg0F/3lTTRCaXy08DxC4n5j0U6VuzhNsPrdt/nIfwpytsKzDlq1XtJPnr9AZBcbs58Lzn4IC07H4mVUTU6fQcD3BPGz7J3Tiu0cl8R2SiTfvbq1lkie31Lj3uxi4Ayv1h27fGeu/ZHtrY+9maTpiAwPzNJTQftCzUnc/g9zmB1dF/JLxuNMldr8mGZ95o5ie6H7TRFeqLXF9EkFtFSs+0EtFY/vyWir10m5s3mZ5/t7ykHKXgEpZbJ1WINGS0UJ93PCJJLxOTPgX6dDQ6gAWS7vIplKjdFsHOaBHL+6u+SeEGCdVzYSn5Opht6wugsDNCiHHOYlEnRYiJAhLZJrXFti3DgC3uM/N87pfRxfQfZUCo3axXTCMGSL4zfQSF5poSKZGLPs9MvxwyrpFZRspzC+QVWBgX5SmRJd42DB94TM2/Volck+YSW419V68N0FOMqv2eilizV9WQsKC1I7hJOWTq8fliJ4MdDh4PTP0839BI4hf60nx26BQ5IyzpgEHLEacREQIbro56+fTX3kHKd6i2xXb2D+zLoD8NQFyLN0zmGBd64lyrE74PR0gKxCNogrfNW/z3YO5ne3yXCEwD4gLxaKpV2jjXZd1gT+zqbcWY1yKcw8UUTg+2i7BZ9o7zSE62iN2QckcTS3N9OCcYCSj1LFqUaznpUxrpi9UDhZZr5IiisritYyirytdfUYOiWdChkFwQJf4dqTVGVVYtTMAFgThNOF05/3VKHqGSqsfu46YhbR7W+mLsFCdSLuybe3RqZcLnG9rr8bzufDUvrUFNatSvLG/XroUveR/WLW9+VInqVZsacbOxRwvF6JRJbuyyOsmvawMs4a2X4dVXOs2y6u2otSJOdV53UUafM/oL/z+qN31gpIXyy/nY2VulZX4cWJwMw+1fih+wX6VvZWD8SLQwgagygR4iIMzqizmAyz7u3NdS69tZIVgnyNgOH4Xa/6uJ514O+kFRx63VfPGgnIaggwc0ab3YeqFRJdN/0prEKGUc2toTUlfBZM41eETYMLtRveWRD6dpDTP/h5lGmwXZXi7Guo+E5wRpEVQGycGvi9uCPsgyZXlHLpCEvDlJlbL1P4OUsZAuIlDwfLnHBROJMwzm71ysMYZ55a4LOdD400Kl116uGfKZm/NkT2LUqQjB7LwGp2arEmS7Au2tFMUmZQEANxamkeLvQt+J0FNcD+GDITwIRk2v4fruv823SDaHERqyjY+3bCFa5M6ccgKBcxe4gru2l2tZM/CL/siiwlZms71T5MQbuK445h9n0rNt8mpZv7R3G8t8KJ68kPmv12Uwir+7bcGORBrjrTLXXRUC/bFEeoZGlrpdLTNexz+RyTqk9JABIGoDxRZ2OMj8Q9vnP1aRSFWzLt19I7iFz4kzlE8dPxKpL//LBnhPtQ7AR9a/UlBKRsUbkk/uY10RXF2tN49FITYEVFk3UFXUkW2D44rzTUTNLLlbRSWh3DqGVB8EpAoVAbn7BKPyVD7BmXbIu5hQRvRqeaqPoL6FLa3O4c+azz043kTY4IZMksGSEJl0NF7CmQFV+fHoDphX9P+qxr8Rcu1WJTtkYSmFeMkjGYs0i0xzguNIEGb7/0+8f1DRqIgaCKq9PXl81h+IAsyouW+WI/0eGowHMquIm9bqWH3vWTxW6A2QhCGtg1ZC/kwjGdV9o/RIm9Mg9DfswNylu3kzAf+VZGEWkUGjAcLEgdJgYAGGhQmlJ1I1UiQYTWmTa+0/12PmqhVWsfgQlJlANWzO+0pubvD6rn9vGUZiPikXj5C+3alYDgWfvSaY1hFeCJukYtny35+xyvA7g0rFYtBWOFNeIHNidBZnN9Gs/uuZrt0D4/30GPLdb1c2JgfYuigV/Y9eh3MW+vHi/zdSOOUU6LgEc7SFT498GLzBQNWQbQzfMgidPdq3HI9mi+j335ehuIuPnE7HzPqBNludG/zcOokyRoMiCnRwUkSJExAFFgow2JYhuY4N+2PRjXtV0lqB31g5PxaKOq0CcbjR4wMYu/qk12yeeeAAgZ90NfIoRUBNf+pxTAlgO0WbzJmIrXMLM2JPrNiL6dJSgco7MuSl69DWbxZy2Sb2aDXCQCXn0Mo9X+jZd07nvIvJsdg4RiVvPC9zlva4je3n7rl5cQ0w1bNrI7dLhG6RVZMFg3dAGjUa+1PfioIeTHLZiiGEwZ/DWoiVjqwsdDl4g87tjImJGI5B8pPtZUgPyTP55Zhb9fTuPYFRnEbImNQLMpkEqAoKFjO6Ru2G9SfXv4HYQ3cEKesEQclY8OSeCxqzYvCLDNgBFN0C3GTX2qWQo30InLz2catkNqUOWOJeqdGSGsMP3KHCHPac4YjUBlKRSN+tQHONjytgJt9lh67q2QwBGdh5mFOUyvc+HTGwezyVA1YOpJIWbeeRqT+DRSRKtV+J9/WhrDoLM/2AG0fJT/TR4k8Ltg3XO5AS1SOPiT7XqGRfWcUN3fgxemOSUBVQoB+SqQ84e829Ky6IIOFftrGXEx0sncaW96YIUtHxFY/3cPCfE2SZKLb6em/U8S8DwXsShDaLFg2Qhb4Mn8vQoVfn9AlInEAcJsUttYZIMX6Dx6OjBbJT9y6zrISRpRbG9IrTZvrd0rPpCqtpmy9a7IP+iZlbpdh79ECu4vgxtIWpWbfc1yAOSPvsf4N+DTcLDPquXzhGIPyMH9dFilBQW+eSyEkBxCU+3/0EUdaJchucGgWtBwJYCktqe4hJSLequHIDuI/k2HrZiBsOqyZqfO3g01fRtPl9znX+iJi9NLOOD/6yWAYsEmP5sO/vtb2DpQD0afnIHu/CFADI9/e1CNrkt9s6wkA+lZxDh1HFaMRmz6btM5J/Rh5uFLrwy3VFPhwT0XXaLrfv7chHhr8xPvgAYTl0FRgfY5gY336yo8tLp7ZIcLXzNWSUxMt7cQldvHpgYNWs1cLbKqFgKvsKhckZsSbLiYe9QTpQZEba8/bbuyhWFKcSBLXT/ZpMHE7JHD8Cm9D3CSC0/ykobVq24kmmo7A8VjbkiN1Wmhel2UGHxXI+xJ41gi2iQ4ck8h14oWkHX2P1cjBhwS9Z2VZlcmCQJXrqaPRVNBMIaZEItkZRCfH/QRqiT8RzV3qaV+3FT/T+83dgyyrDKoc0XsNAFniYqU0VWvPsNhBqOK/fP3TW/yfky6TH0YHNZeEjFCUq1uK1tZ7qLWsCPDHVf2Xuoh38K/G31O/WMEFPxwp0OnxEMugDGbb4Y5gQt9ENs8ZwqK0PJ6xUVLD84Jm8ZAsL3VajnzfqdOqlvoZGGggzCdZa4rmKbS0NuEA7ChK2w4j7uwHBaEhHELMRbglZYSOmnhpc/ckmzLxPlY5a+Y3LY7jTiOBJuxj5A3qHDWP/GQ5CqLQYWoba/yfSf0Na/QaelmT3RqbxBXUd3599v0lSeQjioB7VpI7YgWOurM7IBIW42qpub/w79TqK8FgOK91HXgfY/CS0LW8QYe7+CjrM8PtU76nr7Se8yshl0aF6MpVC1eehyR0RizSe/gpFXtb2WTpVc0FzOEs9Xlv+Gf8FrZWZ0jyyXe0BjxiRzdpIyh3t7RCwLZQ1C9hq7SyZCKjAIapit25eA0if4szx9OHlwhoihwd+bCWSIzDut9XMb0A4jxaBkiBZNvsbN2r/uxYMjzaCTE8fvKjYIf6gKvltQvtBkRoMrUnFhN6v/fu7TZRU9nWWSdtQIyJnL8K9hrzcNHHnnfEXaF3SJHR37nq936v+8Cv3ShGZQQ2ctP1YmaFuhe10JS2rNSKnKH5pru9/eHqElkuPnZ55j3+/5z2l/gTlv2LqguLB48sre0fJJY+HQyaQbyHuETizbWCxzobc2zHrN2Zry9kDyPDaHMH9Ol5KMu2Y2wwSDx25Pob48VXIF6M9CHzUfDuzKFnRTfR+0gqH8A5PDJUuO2k1QW2UtGVW/2PxI61HLhreh2yfZKZqGlQ6Pkd1+TR+zZmlF6HRu9cor2jXsg3IzyfTmz+rDRYwXKbfCkksrkxoF6vfS8ThZ7MXZDUxotKgC2prCuCVejTPWviJLAFaL4rCIsjdQzZBvco5B/eebpenGx0HNuczTNoPwT/HaRJg1qPQQIEZXKQ+uJbi6pRQ5vrcg3zJskYCSUea2nnHuwC/a13VYKjF9ZHxx7u8g37xsSVxMbF6figrd5cDHN323syQL2Ami0yny5Z8wVoZkwkfEIiB/ZJTSWfwIHE/JaFGgho3dpsSyeLi4H4ZQJWwxPQgsN7FDtl/RhuOoAmjlUlryBdH0UQCeLbNj1OH1EGkkkcG7mHGmg2Xw6oQITajHz3q6Le8s7BrfBiysT78aFJ5ZDYSSIqZbFj0Ufme5ut42jiHLaYJC6hz0n0LkJEzfY6ht+cnYf1O/53/sgSDlCxzzrZdTYsNoAUwKSuWBwmf3TEHxYzIpsdETXSK1v4wq6lc054qUll1Nu9Tp0pPcnb+urKGx6b9G66N6kcpVf5s5gFV/wHwpG9jTH/oiXLgnKYFlqRwwPD0kP7uCTtwy8lMld4ucMZuUkHCZoMBneCbQDlF0Z6sciHQrf7/0Di9gtBn6TVKOPSgRfomgvEDE8+48WD6OBZcPNhaye6L4ve0lDLZu7laKRMJ2vToPQv/n3SbHIlu8IgNiGQJquHdtCl4onCj5qJxgKLx1/DIdH88CgUvFulq39pkRMR5lX2xhZoO4SU/vmJAs9YR2hpoPQLJdluDY8Kyz5JgyWFjfqgG69ati1Wkn1W+m0PY3WqPBklcBnuwewNOQ4fOQlSn9rQMICqzYfTjAALkaBtfZ42Y58MJQaMLvBK3s7uiyCl929Gntu0b0b9VI3GzG0sww/pTq3214DHlbMAsOb5w8edbJWKpo/wuBK5mDHJT4ffBzRcI3W8nNZH/1soK0Bx+GvPsCu1TO7RGeORKV1cftzSi3jBj69RjCo26NTUQcu9avtBnG91VlI6KS0pFk+qIyR+hTwQEUyRcoNV42ZhJHqC4tvMAgxDdWKm724nlSLYo7FlLhH69ffLZ93AqmOLBCFBrFIc3O6KoqPWzfUIk6GFon05+R756uvH6rlMIpDx5LNeRr9vvF9E21FMlebzOWZcNt7YEcLaV0w4I/QdjMrrQ2JTMF2CEexmZHeXomZ7HDH/8lBpFpWjdPyDgOjUXRP+eWrsfOdJZvwLGBjYZxp68P/TpOuGI0TkPs9Q96B5OFOeizTsnPEbjw4/PaGsgPH1OyfO5MbV38imB3K1XcnRXanIkVB/5NhPJfrAMklzEdTCdNROBfJVWO0oAEUb/+DulStvTtveGOKEzqzbXYjlcLr5AWjELTKM+F3OWgVVZiOIhgqdNBVpx5lTUJ8oTl/Gt81Gv5PE1wWD5Nxy77EUOF89IMRVehiWZdiuZsmUK3R9Kqqtgd1D4m2C+FEkCA88KFIiBXXD44r30O+ioSoCBdpAtOhpSejt9vNx+w+2iQGdejWGS/rFbyTiDTnPFcMRBYM3H+FucAsN2o9vZ3tqcfC5fJi6sjejvvIGboA3gLb70wqSWqJ8ZPPUvvqs4t6YszD8FIn+z+NwuRIsSeOtEm3EowoiGPfIngJ4vnEO9Bk7l5CastkiUS2ih9ujl0dZ/q8Qt/r5Fuilj4qezdTRcH8ZbX6k2V61tiFGFtKkbBQMKHr5h/Vy+ng1Mkut+D0EVOFvu+lmqw/j5Tm9w1g/csGtpLrk4mV7FQKVUbniG9WmjFejy9yQy1uqGWPDIyn5Y1HNFlrfjN7/OVFp0/BD1udHFY8/XcO470YwsJsPGEfQBLAhlPIuMlwAqo18s5jf3DwcRlMwjo2h/56R4Tv8mqhg3aGtuyWIogGwQT+pyHX/Et+UWkzbC2V8Z/JLBiP4n8g+o77v28egj5EEdHrewwn/syJNU9LX9Qgc2MnTBJuWPLAWn29fbFSmgtHVMzwDJHB1dMhHnpJkMlRIIdY110DT9gNa08t2MFs8uqyPRVprIar5w3UmcIvW32FjTyr5buH6zwYRV79m+qodPlM+5mql/qb9rqTVN3GHaIJwRsxPjGR94f0mxfZApQTmi3WQaQG8bXjnAlvimSQ/HHlPnfghZzMlqi3PMejGOsOy2aSX1y+dlullSl5BI6YWfQCUe+ZZ1VXy+ZHv0fDYcnRFZQbLw5ygDTESIqk4WHYUDIZfSt1C9Hqy9X3qlJDmGqxxxvUrfpHOHPnERykK9c9sWI//dL+VQOwjNEqzqQ/8vHwqECd1Ftr1vqe81GVl3Nvd6Tf2LEapjzK2v2ieHYjdoW3cdFfEzdbqTcrErlLv95y3exaeJ4GW/JnlPzVr1wu2ek7xQB3rkbqPRl1bFbzqckIZZAYUtsev2pVbkzzWVIGnPgDSabS5gKD8XQ1Y7lvgQtnLh32uEzL8jrIlgS+YgIBKsOLinP0xLHtw4R/gs2fp4p52FWiyzsT8XJJvXXMi3Y9e+lzj5jL/DUtbvd1Zqp6vrWO/pFqLFHktnhsjE3KBftTgB/YZxGqmlneMl9gKInPlEoS9mmQqtNmsmjWL2/hWmPb3LnOAPrTy/eP+/KBafi5OfeSf26/yU7KK+wZU33tzu2fWLNwG7x2RcwDwPafycPKl5JsuXZ/QqLjiERmURInqgERzc/t9vkwLjNk19HanXyHIgBYZptA2c/7Dw/eqxyf2MXoBJVNs8allqvln6AOph++QxavsJ3fL8TeLA7jQLL5veaQ3EOywweM8m9ysqwmWcLq2jfCaDw/P77hm6FphCspMHmwj53e1ViMgoiVRsbDGhgLnRoLHmJhe+Rj1S5Tl81DsMgQ/snVV/UKu3zbyy+lTpLztMYOYFxxVXGAvlrzSLARt0fbOceb/4LOWz+TaiVVuQUKT9v5CkIPFZH52thWfsAAQ0M1uYsSj9/x3r7Y+Xs+lviJCGHlyrBWwQEFVOflTAecmLRI/CI1x3mmv3ovNDx0T5xytZ81QdWr//VBG4BYUB80j1cVwWaHDpWbWseWsn3IYV66YPOH9Xtk0Lwl+HNBRHxDCfta99RwY0VDTXJWhq9c9IVHUYubUqx70izx6k3NFqLPEOWDo60MY2evHeSvGbdv/EdQ8fuV9XzjyqCUVFH5mgQmUdhsXX5V2L+zXGVn708WIByW5Vl1ilbjuXgb45IDP+jiDAvCBKXfY02Tsf8j/9Ub3jtSv8w3Lhun6GszhDXlCJRo1KJkOaDQv4Y+UQ7+QMNfP2MWVOnLLvgK1ZEgmeAsyBVnjr208ShptVXy/IAlV7YEcVwe3tqCUoSIJmrkXsFi4Bh1RJBBjP9mWGJdUPVYM4b1J+dSLecsEj1vL3Z4ptPJcm7Rz91URvuYW3NRZFdeuVsmF/ZEN2tJCiWfb6YbDeMRBYF57j8DvLolFo84uSw7HU5Mul0gfy6ylIWpUBsMO3wTb105O96/y2BcgjuUbDW66wXyJ4VPfAbYiElHXek6BEznfX50ZzD7eUiO+/UYK9iWfluNjNFMDQe9m/WnRg3gCIoqmGdGEm3r15S84AXMe+Rt/PnFKSgRia+KqbddQ/E5KY+jshq1Vk6FQfVp08ZMWDxRvLLTff5xwhODkjaBq6xgnZkC/vLQbxNxAMnULauXdR0sN3fWy0AG7X0HwSc/AIwqrsvCpUOrOrl0yLNHHbdSjVKGemCnUE8ZL3HsfrRxTSs3514Zl6vivBJLSTQsNG1NUwMS6NWdhxD+7U3w+WWAu17WfBvjY9gR0beY/H0VCnAcU11RjN3uNZZBN1accPFUg8vsgV3u0ZkcptayvUst8beGC8w/Jt7/fA7K17T6tbXVV4UNjmiBtDDJgd5efJzDPL9BLIN18bSQNFqqJzK4pT91PzGZsz8cpW9x0ES7iFQgV71sTQ8rfgw2hxoCnFXdO+8quJ8yO28HwpfjFn3q0PvELMJD081bMCLGo/LqyKSfvAuprq/YXGs1EtaYFWGiYywY6MT7gFfZgRXG7Pikgg6D9cEXyYQWq1kUP1RMrmxUTsgnnpyAs9GFadApb4M0mk+M/10RJgzgQ4D04hhxO4FEkH+LVZSrI/8ZDP0ET7IoKd+4DH0eLA2lLWmFJEGTiKe/FT6et4uU4CKs6mgXlG9VDq2gZw218bc2M8NE6yItGjtOzrq+a61obNpXie+gV9knsI8QubGOSLcUHNtUFMF69+gVc8AtJM3croUGlBfLVyNiLQ4V02odWz2TZ/fSBhaQUwBO1H9eXVs4eW5fjVE51UTbTnz2cgRJtFxvJ4erVPfLIYKH4BQbA7uWVUVG2/DgzUIbKPvrRisxqmEXTBt0XAYhYEJ45nmBqSkK3BRZltPGh8PM7f4luE5Ha1tfzyJTZ3QUeiy3TjdSe7X6WDgVJ7CYpHQFR++Yhj65TAahdXuG7wL4B/sohgXuDQtizC646eIb4uW4vLFu82oIne2/ZqcZ3P77VtMaCYyoAhIPNaczbiVCMKrkl2woBJWxYilFO57UjgEKMEfmEwy/fVYRjNS3hhOVn7+SHICBtcZJ5wIYrWFXJPpQktRceBB4kJYQOvxLu0B1TBvzOwcK+tILHFoRimDErtGB4+bpaRH4JxGP/GXM/DF+pxcheAI/kPjfyggLbsM8C3ino0Vpzb/VFN0tOHrVbqSB3y6Z734vkMhXtTf/JX36eH0QhSYpaLG7x4PrTDXIlSOUibhyrLG0xxMyu3aH5ten9mlwGESF5Gplrxy6umQOXz86Xzx+bQRnRw9SDll8z8OFA4tIyUBqL3LD7to2/wvh+HmExg7kuA8mqn3rCV/iH0LbmRMcRllNWYRpnGwRtmDl+nV7c3xTjy74BUPUG27rEsCYfSrswkkIgIBe0rIgq37yHZ6kh/NkHxlXwIsv2hQJWMcA1Ftu7bpffxJg+m62kQfjVwqZ+q1L/KOJRevPe+ZMwxevRmEpAbMGKron0KAsSSfpJ68oqR6h1t3FDMwNF9xh8iLYtgFKgb9vC++onZbpDYZRciIWphl17Fw6jgsH1dyYzxQT8A/QdlTYhwwIcO+O6sJYlkamNZO33Nv86zqMruxLYzZ13FVf6KvZWTAn4I65ELCom8e+oB2u+yKpfHQ5ZUvNakun/b1SjOrNVR4NctL3E8FPLI7ftC10ZfwilT0MlGjYqQTNJ1atEddJhSiLNTQgmqXL9Sls3e29wxURbiWnx10tpBIMlcZAz6pXoUzSru5LJACuWk8WHoKOXDxklvKh32P8RLhFm5EBhGCril6QUjrNoSWJpxx+cKOZpmnsaFhxGd8eofmMn38Y2e9UggcKnXInTKyaQ40+uDrPAA6c4I3q6yyBmgBGK3h+SlF1lJVTGn2bKDVQAj/g23YpdvGrTvNWigwt+5l9SD79Jb4Hna7qsUOEsXJDpzEC1kERT0hrAn1qELsRR+4KmE3yidiz8Cu8SlW7+LpmpSsX8YQsvBsJoPT2LQKOQi1a50VqA5vLukkNSdeywyKoGwZxqo1c+Kx9Abst/b+s7hfMOzD32x0FZDYwMAkMpKFK5XVACcKNGzOYZGezH03B2RLnw3aXMn4mOhNNYU5aSPbp1UuKvkPTr7BgcjYWQ4olXLYZfJeFCtDuqRqEn+MeQO0y75M6v2Rsq3+x3cTIuadbgl1SYHGlCJW3jk2WclaLrkZIscR8pU1Fhh7bO/pPSiQvYT17GRTAmQShBWVRW5xrulPDz/v5qJn1oHapfnBS0Ci5Z1omidsosgZQY1UGGDK09/vtDfRuxiPGz+E7vwxFnBXIw4AgC5BUZTv9vTyQDriktZK6CNsnO/VmxzkS+iCAq2CFXK+PVtJv0E0Ggy3070kQ1ilgXbj9s3GjgZxQYNzBFNacjDr8DqgpPvzOG004c8CQAF0e2O9v8SNoGcuHJb2voHYD9P7O3Ju/Kg4GwedtkqatkmQW2njHl7fE29Fr2+8FbEtUtaqjBHLHe9LumEY6eKJDV9chNau8xuWzLihWcPVImdDWLfBa29cS/8cY/OIOhs746u6tPTc+OZj3Bli5HYmp7L6r+oJ3vu/kkTvK3V+9TO9X8YJyLRuK5e+/kOnZ9TbRB2Tuh+n6e1Nx7jFO15868G4zU9aZS7VEUob3x8DlAJtkxvNbifQsgzoDa339VzxYunHpyFUOBUjFIo0cJnsuSgw6n+eCQC2KayV2zLQnACUh/6QKPyz2uXvk7v1r4cSe2lMVYurdabY4qFnwk5ncpJl4qh7WNACTeGXFHwfdD4SYatB6qCLwSwYxLy8FI0VCHBpS4IRP2h27YbuyRYpY+BngET3YcQoBs3cF8dXcPynBgcy7pu5YhtrmY7KbGDZiR73v8XkHXJI8VcwDSW37C05V74BptTTjBxrYfa1UF1Ww+UsF0RJq/VVjzScnYmCY2rZ2RPl9d1xI/XoHCCxsX1ymqgjfSla9Uq3KhlIu0RvqiJSLDUzUeuP3omyjDRApjbydBIt3hD5fW+FOWSJfuFk7llwIuo5obPAtKi4UX4vnBJF4zZaqa7Gm6Hc5cCt+RPRoyRD2hpr4XgzztjUkt/fFfDw7mRZT58YZ5HcBfVX2aaxwWVqRGHdAXTIAuS08gk0cAsDG1xEkwkhyftK3jC3rWwrUwQ7SjqWQmZiykhEY0kF4P6JcGrq37H4zWZVg7gijhlc1pqzOYYm/Ovjo35g8AZ4YP4mQuPdbU0/szMNjwOM4gL6JMKtXrd8J4bR/lLqZLMw9SdCVROfC3D5kkD23jPgj5xe9LxvDdevA0eGrY509h+byCWI+o33TpXQce2l6DNN3eYriHgpyyn3UfHiZFcDS75V5Jb7iAm/jRhKV/jSTv1bapeCUmn8Mo+Qgl2adYg8/KMe8Ts3uxDQJWkYoyR0xPYegYe93REAmSqf02ygPoXepIblgWyM5oWOAEBzuK+58xFD5SZhSCaqbC+LNgnSPRkuIUwi1lBxnSxImpKp1or9/kL4m2lFhCNB/QkBm0YJNAO8wBz2FUQEmIKwI4ATW5Wb3nCv34uAopyAucbvY8vwq59+r02pVakA9f3xHOwWTThWsZPYyeXQGai/9ClkjwAHg6uqCW4LUE5CWzhzVkZDmmws1io5YDRiIeWjt6Le879tjNt3SZRskjiSHPvhQLVXT+6D+dV09NQNkRmtJ9MHGYaG12VyVlGM1yzbEFcwuK8zE3xprhNzSSbPWqNBxG+KylHQmRK6JYV8NKmwV/YtZ/zkkgug3JQPDwiU8shG+f0C5SmrFmBbdikP3kI07WMdNP9ZQED9CihCMGg9cJ7BTulLLDJWzkx6MSBiNB+UQyIWq6sXy5Hmig2mSycj90tlO2d/aRP3JzripcoQafwq6ySJgjqtymaRlA4SxcwbeeZbnCYxKPIWStH88lxduk8EdYeRrlUqQM0sjkJ2tg20P9Czthc+iobNYMEJHIlpIDKlJPWyznWqRKEZUYnyiCGEaEuWP/0lUdYBmNR3p0utmg1jMd5BKKqnryXVo1bz6MXHixOdWckjhXKZAFd0AEEVXzsem+Kqpk9Ig9qwFdMv8s2MHgYEWaBzy9VJ/TMDubDawXPEVlIsQ1yavrOIRgqCrPi4AhoS/Csjl7mA1idHdJZEvSNWI0INptxu7zgFC/NHgEle1pn0fxx5pOFW4OXqVLSudirReqKPMvZ1SE3mgtCLnY4hvozAzZ7GkUcVJhDrKtIaFj0tYEZSFgKw/DKve0RztY5PYKGeWHpZO/7Lxg8aH3GEW5QOlTd9astPAEAASpsERJxJ+eI2inGIhkO/8UQDWlxRg5UYI+c3Qf8IosKSH2uegFrmu2KFitdN7L42Sn2s3M/b8nZL5ng4ttAmB+J55GiIzTFsqE15ieOK7WIHH3hx8EKbdJ2fQWvrjNw/iW3UfRkVSkAmpr5GH1A0HUie5NLYGcEhL2JK95UR8ecAAymXmBV+Dwo4dlDocMO+J0EksRked621rv2hpy5jpN5li5d7R9Bc06OfcafPvCTXCYkt/R1Yf6k1cbsHDouZl6bDVCV+CYQPJoTCWjyVEBEvGBP461upnBiNqWEmqfjnv3oNEzZ9y+5K3v2Skv9iXPV0W6jjVotLU7HK2L/IDXOAHaVig28MMX0BYjlOASvzQ9R2u+vs2Pc0DZ7rizQGpTAHH/FzDwbiWHAQTLCc2ziNeNGRCSMMQsqOOH5H09m/gceHO/8T6f5LD3Zlzwe1tqMiIMnbrh9DO2WEecvq6R9EZOiRAlR5gIzwY0NUwYEh6kGsKEwCSh9vCk268yIdsiD+T/4M2aJu8eIaUXT+cIkCn+uePz2SFUZvJreRaPRKs6pbeAIdLx4WarVHyS03yFF9tQJKUudYhnu194oNwqMtbQHHJgHrR3LhlnGR1cvLi/FrwdBdc5pJxxqUIIzfZ5sFVHRHtTvtUxZcSYny/w/o+Qxtu5FM/BM9IhokC2CjtG2p/4pk5icUZXEkMH3Vih64FPeTt1oNfGfsFSgh8IuMmPVbBtQeN+J3MFJq/nIdYnBoUERPIsOZkEv/XHPK3eLRRcd8XKZGxIJ9PPJxUhqZiXI7wQZV1boApY1pEMbePn4jJvJ+NLQIgHpVWWSVmEOvw7wGWo1QjQF52EWSExlKkqX/xzSkRsctSKqf5gBOhcvSx36CwwBWoHoTm9Jl0omcqiRJq72q9GJF7qegnWrYyq2y0yXSP1Uxc5VznTdXnUQqa8x63pHyiSrzLaEyb1Y+S0YCn9vOYjHUzIh9VGBlk/7SMc5+wpj2QV5fMyui7ZUDy+xxxTGX2AUALeXjkyfRCVHrbPPfYjDoAmIIdlzTfsjl6qZhBYlNS56SEz7f9vWCA9wJlTGJ85J2VCJ6Rrackbqzyodum72P8P2byMgoSU9iFEDdo5H8D1acF+0Jn3LpzVLxiVlgQzwwvdiZIeTTGpdM48IC7QlX0UTmW+hoFWknbL1P0dqBfBS4ZZSnxwmwQ6DWeQ+5HDj8dRshJPwUNivbKAr+x3rYrkxqgVTPqNQpam8+QnRoFenLiCIrx+8AWf9FgWJ8v7b718i/7+ZBnM+Ez6z8WZwJ96LveepiTbyb+Wz9LpbvnJP0Og74gbaRpyjaHmRTBM/2ODsvbHZGbs22jvravk733rpdYS0FTxhSceI13E4zZRpswBMwBTvJG/Dvu2L0xCY+m/Ys3gQ9LMiF6CqqsG/hHmk4KDxNLQxodc8+QoxrVeA8tsCGo+WBXAXO86ZO4TDnChqSLK4QpS5LMSA31qtaCaWOKtvScSMH2HSu1Evb2jdtsLpmXeUF8UWz4FQ1DzA2JAfqhbLiAGokg919/qHjYV1AXSpeWaLFqsE4i0gsFlfFcy9bJrHc8UVKhz7HqQV6mryq6wN4Gd0ny3ZZM46NNENQJO/7N8cLFMajMyRPLpCnotQChFkmEpIh6kdVfevzOPUhTlQL8+jfBv6u2rmxp6u76qKbaMauxCOYoubiZACovWYwOJ0NB9nZ7nI2RcG6DB+GjJ9W0iFVfSTtVwJzM6hEYijqjPvgUp0vaBFkYWTLigFZtjuaEaTD5r6UEfKiOaLEDmsUCVv4RtDY81xLCfAsgOl0C2MMA6ie6TVKIknwRqPIqxoHQcZDW5x2m0ZfXVViVWYvUl2E++CcM3eydZJoc8ov6WwKTCkeW9jisFKy9w+hfeyjnaNYBJFYXeG55ENYQwS/IdrGKeC+EePzX9ZmAVmRuZk8b4GpuMMslBpd1XhCT4WxXMxsqZKZnY/WlQ6+g/QR47tDTNW4z7aARHLjQBrx6Z0TtfyZWa6pxJU1s2jSD3YEkQ92v1B/r/ajxNlLUSvCVPwrRT3tNlj7ZGlZA5OMbg/h7bKt+//iWhsbvLQ/IesnF6vFI8kxeglqVL7x9x+P0N6soRb3aqBZRRbCJpbm8T4gnlgpNtYNvzEhommAszdAT8NXh7LCScGZwgiF2IDDGbT8PQZ+8ulWLBF3lNqbI+mqVawXmx5kgZZ96AKYHORox+QIB8omrxw6Y+R6ixKDbZ1kcl4p/gzbehbEdjhz2cbVwSgye9mteaCE9Y4NRU3lEr84P4F9QPk5bYPDVDHtavgLPSanjybk7TZwSFCtLle6Hx3AmQpjdP7CoJHYu+UTmPY7W4fmvaNnSNYqWV9Zagpr54wupjL9nYah43A09uRdMWrqlsOE7JuaXRKivojf5KBGkiqhVX8hb/MrjPSV+bUR4Qy6aunacnoWnkZbKjFIOR7sStC1kpKj8d4aSaH24TRJjwYqemjEag1pA8Zd+2FU62VElTuD8oNvjBtHPM2YavS23cVyYjRuVmYvaiCIFkVmFYgS8T3TwlF53YyYzvRpEDULleg4A/t0e4CN8qPezawRolYapCRpur04WJtOOUA3K1U7ytt2ICEWrf3gLVowUr5g3pTSK5aRILrg8f1L88s4PMYhASqsurVKm+DVQje/snDE7SgEZ3rjrUeF1Yzkmjmt5Cxwep8KND4SHiWbjzXW0GEKDFf1GriathwHMd6Y9m9xnqxa+EQlMhS4luY70t+DvnCq7ThVN1cu0wl6E/S+rhCGF57e2RG3jCyLIdS0/y/WJRC9M2koc55OjK/uPtTJDgBkuuML8kPPclHgGLldw2Uwe9BzE+GE4JUZFzxTGraUXjjnMJE4tNuOZuLjtQd9eA4dEIhpHDmU3gh41BbGN65kpQr+Jlf51gBnrpmR2eDUwSHGW5r664F5Dnb1BtbiXyEeYM6rmIr2ea2A3l39QTVg9Ld/FslHkqYZsKBp/LG4brDJazlFkO6JNX8iohHQI1zgkSyFOfP06+09S88YybJtzaXY3lvI6zvJstPJFuJJeoUQhn80TzxHEduPy/DAJnDJ/UGk+dNrwWLA/AfSHkMpKunDfjf3s1rPKHqmGqSAMjHCtCIR4bCzH8d5dP+5A+OldqBCdkz/lG/xyZP/5nHQ4lhZ55KEHNiq52FoY/zIoRVlGWDt/j0VaWH3A2ezDX3IrQQxKEhlxq+lIp0GkWfElBLqEBd8/wbAFPg4gTnDu/BMvSCk43Ci4pjkQiq+JIGkPaEAbc2X9l+snQQm3UOWb1oOQk5WAR6LPVarFSHt1NNm3h8pYjgW81MokXBgAcQXcgy4URTKAdyRSPRgs3mS3bRjqaVDRW5JvMh+L8yF+NjBymfZVZ0cJMn3Bw3R9fqbqmMvuFr09ls5JOzE8/0/PsCVX3qaGMJvRIJ4sZltTeE4Z7KpBskUejYy2maWUM6SrXaphA+U3hsxlRJMef1ZXlwHmPNbPlNwgGRvHTUTK9Ah75zaNFxrshqRJARM4lmqTStdgTyIhGAPyppQelqLopmND6c8jDVou7dIxwgQa6j2C3R0eMPgu3+awXSwUqlOr5FyE5FcnEDmCgTj50dx51W5qCXZGGJdwZnkdaC6/zTsejnDy2Ef+F0mAdr1dfZS5m9T76so20+eLNRMFjIZqzx/+HIHfBeGmhQHeoYBSvF8dyFvp8mVKW85wclBGRnOqOiLEaiE9Rb1EkQluSvR6CN+aBIrLqgeYtSvd8X6Jyq0cDJjuyBXZGTsiy0WE9CacWTAl9J5qM4a4tLASOAFoYYUqRNMGPOPuZgoVxMzZ0VfsJ97RUBAQSgHG7fmdX+TslKTGSAEQorElPRL5898JzeWtscXfeSfD/PeEVGozHrDzLfyy5zVF5pLBM79b6ZBeKXE/8FQQVX5vbsnDJ9RvuiTkBAteYkQ4lDLkzMBq/6+PA8U2emlo4k46jdGfNF3bVAp52lwrnnRwRWI4unrAlKXsXpFxpzqjIZkfF+2VPMdSXPNBvf8LBYxJtyHtnCdF1xrF/9wqvnAPL9KNIYozrAhlHEc9eIUcY24PcRVTbO9JxHV81Cd2G9F/WKjshVtTZ3efeueF+G4GK/3lTXObUjQlJo92CmGynx3Od1zT0n9j2kuTAuVrb4OIbG6HdRCrRwjZD+FEavGIU8+hd3kSKYafIzZK9dhZsz0uEzeTqqFa4rMMCytfa7BFK922rMgKKyXcw3vmZoS0yl6zegJudIthtFGzwG2YZaF4/+oFFQBUYPvSYSkul/3RAEx7PWVoBWA6ziZv4nmmJzpScyqB8zkORNZtGmrBQ/ax0V0rvZzLmKofffc6/Wa8nejzTC8dyYbhUTEbVsCLFFkEfoJdwo4NfCvxnIMaZfV5YTgIQVJvIR+EW7sBfIusrtpTNltFzQYCxHvTmkrDc4C1IL72fa7vNCWgqeKPrjwoI0b21ts+bjF2A8oWtzTtnJn1WTeiUKdyAiltLpuZxciF9/H6TDspTV8GVNYEUUyw6Oon+HNCSiMamk8ii+MNAxADJqwwjeH2WErj/99lrXuZ8Nu303egNe+Tz2E5fCpDhGmd0RWpT+scSKDgV7c//+ZHN/CIZ73IQZujqCz94XLINEAOFwCDLbD4FpzzWIXWlDUxgz0CVoARrcQNTo7k4RT8ZI1/TAqFCHe+hPccXVNd2i1klLLdbx3SDd9bCJuVdjWQcCJOypx4y75YS4ShOaO9tasc4qewXdJuh3JCEsPVvvAAKyN+w7GYauZzQhDkUEQYquSFgR3wJPVQ1e3My0GLLcBmWI2W+kUTZo3UZiCPFmo6CgNPhWcOXGEs/LZGRObnk2+A6S+G1CczJ7Wfdru117cbJpw4zaNb6lQmGVRud85mHgUiaqhhZthkZPHJQ3GxpYbFFGhIEq4cKFsIr7yf1CRwcCrbpPbxnoxf3l3KljV3ACDk+lPOrqbVDMjFH9y7Hoke0U/Yy6XpZah55cGWn66MpAaW/8cvyJOObCRPAryLAzXr9PpjTcRZeGnzK6Whqwd1v0v6rtGePXd4sOdz817BNbxhLy3khSaigSPyqvfyG1E3WCuWPA1F0ssKH+iFJXgBf7Nn77L0FBTrx1gt2uBnf8J7FI8wT9y9vkwJvDS2F9LGJAZNcMn4SGQ/nietHJ1X7/9WsWp4JpV1YrE++Iw7ogG/V7QQF5BKpT6swNLngraiZzUHbBtJx80memT4hmOA1M/qMJer5NB6wHHkWEo7aNW6IO05A6YbneMsD3PvFeYejp5fKiou34szPO+0V+IuJ1udFyVJU4ChFNQKK5+rS3nQQadXrqByvmPA7ah5OgZsSQpD9Q/jFBehP4Yz91mjRGR7m/wDuAJteSOj7p3BdIfvqMo7mlUvO5J66NNs4HqauRG4kXDcvfPH1NrJ5rlgqpVfv/PARzMAbRECQFrvhvubITtxQ6aQu6LeWbLmO9kMbNkyrJZXmJuq59p5kJ6BOqy//GR/tNt8FkOE7LrvCNQrG1/gJJ69sdadcXiGibnHsdTHK+pGW+AO5G40ug6GeAmMbHXhrxF762lAUCj4AkTxUORDdB0liI73gjB/yPqGUlUCtAiaaxsZnHqhM4W4Jemw28CD6CKrjulAYXJpGgdtH/uoYq2cT3pWh+StyAeEaano4QwrBzgO9ZDkSkvra7j7hpgnRxTz0StCjg4ezoIchYxnzVvDIGKlWr2XxC7f+TLUTBr5UBLj2cfHjq5L2N7zS3CPALNae2OpYDnFPe8RgJBWt+JTFuFafR2HyHAJUsTjFtm34/vV5UwcadBbOd3Pz00MJTMxW0i95TSg0CslZsdeJ3dMt/7yGTM8u7WfGeiwMTGeMHJeAbDW7kZPHu/r65vdjNodcyXVNOhoQW7M+AxFrDQSkLJUrfV9fiIY+yJf2OnxrEc5DZEfDfxg0iR7mGAa+ZpkGv2L0ChH1Lr3YI5K4nPxNm8vtvV6R5SGQ9vr2nerTxK7cc9nzCMO6eS5PD5f2Obdi/WM8p9bx6db01L/tNtR/SgersPCEtEfpa7Z3iUFVpyoh+6ppouQLULD0VrHoSueJtl6kZRcNF7H/QbHzhjr0AzzcBks2claUMR41n2/LqJnKNznEt82i2G0SBOE1uJcRCJnOLsWxbWoSfqHk21yZt1Eno6IVLozkO/NVis/7OhGiohLV8YNbbbyYS7cpxd8c2Pqaev0kRb7ScnRdH+pYUKXwrgHmLpLCYPiZSg2b59TAlS43TZxXVQzSBN2eJSHdY3LXXQ3yzfX0F8SZ5amkLdr1gMB3dLpurMpG1o40dJoH0bOMyMZvIiPOtDrt8HVshpkOjbgxjJq/0+uZkWViK1XA5IAOPBZXNYqaRTG365Ua18xWV1NTimUbdOc3Q7qDIhIn749MXBxkCisNeUAiQfPui1hQlAgh5K9X+BPwdzFmrYYAHkAlk93mRqsOul0ZlblkC0M7TNTIMJD3KX/BrkA8ZZk3NR5LVmEoob+k3HlyUQTz7IlxNDK7cl+RYQ20nKT8Na7uMcpBYyIj7tafZBhXSxuLWa9LnSHT+vTgMScOP/RgDYocx9022IJXRLYwLXyNCYw5NqXZghcAFqctmClUZmzJpaL8XFxw1U4p8rpymn5KDihAqOBKCVOFn2FeO+W4VOn8RPJEUz2OYJwUrhj/C2NwJiezMhBO/cIfU3TmrFX2NSlHpD2BN08PB578md59Y3ZERoIfOJNKbnud2Dgh33/9sRJ17SlhPTqrx4QVZD/SWpWgJrbinvEZRAlOre7xhULgn1+Edu3pHVEpzxSsVbPlZSQXb+2Bc/he1er+6j2zWXJFJa2Gga4tw4pvzHKC0anq7Or1s4N3Lzmom5MAIQxqgkHkwk8rZ11X8iE43Ien8PTbVGxlJ9XmvXrTTEQjGxjmAx7ffJ7gSnrzy469b1yLTVGuxvuGHgZrBVAvjS+rA0WiCtQCg5Z8WNk+/WBdGxGV0dNrHIf1v3U7qhHEDLapD47QuZOVpzX/tUz6/1XIgz+UsYyeun5tNaAWWz6EOgHdh3Dzw+QO+SYDCkIW9di2H1KJd5bHpfFd4AtdEsOiFC67AvgH40h57dH4rMwzo4LligvZD1mmPQvdDdzzuyNt/1oXPCWsWdkUNR/Je3v3yklq4az3g0m4cszU4NLyzn7KFToKiRD5IGtq3Y0NxpEZXkq8YRnA27oD15cej/IerBmZkmkENr0iR7gnQMARit+E4aljPjaQacWzDtCRvY61JaS0ZA1RGc1X/maeAJguiA25fUSgBeyUQWnmrmLEoD2Mhzw3XeWF+Pgjl9+lZMFkGFZNw7ObRpY1wfB584Kg/pMdHOtmGwgTDmOMCKsfKShNosLV8dnCAkpLk7hKHUhGp+9CoDq9/aoYjhKA253UrCD1q3RV3meMOJSMnGLWdp2DHkuFLmwrCxSBD5fqnHj41dt9FXV8FULO/JVNjVVWtrZ1Z6H1YeVXsG16u2u23biY6B6BxGLMT/K07WA2Bu1CZxIE/EtFgL9fDNBMXOdnge/kajRc/k9pA+MjEbJ9y1MvCe8OEfCcA18uG+ga5hLDoca8jjNEwE/TElXGRgNjS0OXnCx8dDKrtwv+oLR0Kdzx8eNke5iGLHNNIyGuCQM82ruGpc3fgWhcG5PdUCT3pr2rT+cbrgS1i0Ek5Th743KTpdISEK/EfOsJC1IfpAPLTZM3hUxflKHhtw1Qdo4p8Q+PsW+Jvh6O8k/UIW665tixY9JalOZbIH+CKaKDHzRKuxJ57mvcrsoZZj9GWR4I1axoveWE6fePfzfMZ021dqZhP7LlNsbzxWqkECygV4Mk+kNCpLgfmX5+TP8HiBVvXwZNO1SYHdCLpJ9FoZJ3O+RO8omXn6XuH7cLARHeGU/iRhG3y/gzHiDmMwxGVfYTzlv2JLXIjb4oWarYAHdxJVH+GTUBoUOhPvq5VSC70WXCwuHtZ0lvs+BXK1Yrh/GXoVPZcol8RlcXTds7NeZ6Jn6gmKawu45OOMNZuyIEADEFaoighGHpUzGEeKTYfDs3lWfta0zQ0avgTQzicxgyVwkG9G9RBR7Hsu4u7p6eTUUVzFf49YV0bTMFSakOkKcl3lVkg8Vo4hpsEomRIfUV5Dg9czpksDyh88waNEm0BM6av23gxlgfktTyJ2b4HjmLPrQ1jjXat0VrGylE7jGl2PSjW9rdrY0xmfDam3YPV5lFet2E6QqV+qcvaHi7z0nlB5OIzCc6bFohMcbOpkln9EwU0lGclgfNT1DSDryhyxdSfkKaDyuz869Q8jVGBl7M4pSJgnR8q9iBSMOwvD3QqwdtDusf23KYphiIWdKkv6kXHbhOrLWO8eMS0nu4Fx1TsD838xVX6IUDMZK94j3ATKhXnszZmpAU2vY8zzlyblNaLCHXfmzjEwm7yHm3AVXEzSjz4AYGXJDUJvDBH0W8Pt7cNq9Qn72DzhceOl6VWBjSLOxyiBb9YWzfTAVEMyWcVeDsUKMv+l+PHXapLeReMFLFVFL3WdBVnGbyERGA/xCu0+zuV/eUrGmaI17wJRHgRjKpLQxxOVJWF81PaKXd+4vY3MXRbX151xy3/rRhJ+Xt3yZfXV9QnJaS5Hbps5mJtzCU/MTN2zHvmHqlJFBjlsvguupUCGFR82AisufeHzmb6gtoWWNTubJdW5LLwNyLW1Wx7jEFj7ujb9ux8v644yH1r/deQI3PfqONavV+7+sK2Ajh92buKFXUPza/hOLQc0lqRzyrnxPPr6D/lwQpc8aSOlbiZq1vBGbHUJuVeltlyU+S7LV0JI7L9d06XfuhQ3RUnk+Hzfsmp9gRFDbNppgEIYgiwLOmCccaXGNack3tRgoidnRkbJWAfXNNOj5AzpVM8eytQFU92/dFPqcL7qH+Y/79pmOb1JCZcEE1HTncXvg41/alPE6VeOzpp2DRJfbasvuUFIvzQu0AZxCbe7xOiNYovFC2UjenTLzGkuCbqfORTyXY/GWI1j4nFQKUOmBryYSVG9gKTE05E+FfWyFa1tgJmbtdQWDi6Wf3l+VouV43BEFe4ckiuVnjP+F9OUCV9ITWLi3mlaQZG6OCoLZZUgu7Q/Gz7UD46qvba/DMWZp6X2v6+18pzMe1Rb0T0YQ1zqknBl/LREZczE0VWu+E5SEUJhklbazYzZs2uZ4apEEj+IAjDLfvKfWXe1Ry/CzpMfu5sGWIQU0HM7vvOgm6uILnHwnA/z/gXdq7gq1kn69C8hao7192y6OTKQh5QvFkbbKJfTYIUQgl8EdPPliy5jgcH6hSBG55wZsxVVDBXOhQxaa/A8JsAp5av9hshoMPXleEd+Jx1HvFS1JwqNiwSZ6anMjl+al/EjaE5weN923QwecBEtfCn7AWTZc5ZG6VTY83HhcY/1futbz7a0YFIaGiTxyrMJmLSuTZ2CAZuNZUZS/+hu38t3ZqzBLpr0lTY8jnyh2W+H48XibSARuIZen0LsIMiLNcvqm7VWeJ6h8jcFL/aLJ8zhlj60t1zayKRg+3UDrn5uUb/ThWNSfgN36NPALxGkc1rk7zSNH0Kw7vlM6dpATsWWPKXXODJDUvvOEMiPru5xHfovPx0BNj59uq3+du5ByPnV03JnmEeCUrN+vxXJ2bBfUZo817vnxLyHoTDKS0oqTyLgyXJrNY42SA+kh5bpKyCz9QXW1i6qkfwjvp/xyEimZBIWvOI3+HZDFGsAAbKiX507HyvhIxWephnrcrNG4cjf6vYKRRKsbry9W8fv7BmR8kDIdODgevmusuP+u7h2ubo8A57LNTE2h8mg0e0lATuzXktBLHvitzKx72yXHXq7maNwcjqyXerrYLesa38QI6HecNKbR1Y0jywPbu833GKW8IDWRMtxqhtDyxgiNI6RX2GKzQUUzuFoncUJi/HWL6lFW1L4Kzsf3p4rUmeltMpZs7b0ZA+R0Pu5+mvMWeS3gORtPkDWkFHtor0uNLcZC/HCcGOFJza8dNKYe4q1t/FMKt0ih5VguE16OhIScjESBFLRsowhnyjNHdTS7Q5IjzjxViFJbMx9h6DVhKR6+HFehcid0U8yUa0MY8kycqXXDYZELCLa+Aqg4RCa9t8CmkuWD/DNDeJx+DPra0uRe6tm60bVMr3vHTnFf+eBk5K3p5tniCzX40bZkWID4Ra1E2L+qgDFV90VAcY/flIgGBCUbs1orIri2EpDRDe1jSIrflhFUncmi0v96yvsWiHlqs1w4vZTOkX5pvV32mkhQKfoU2b4UYy2BDrVrAEAVV1As3FOpETaNmMHz6skaswMVNrKwuFolkUI9brIwVYuFgHvXkSkkh8z6f2E/x8kSXuNlG3GjOs/b0QiMazbWxK469OlnBbMt87IdFpnxd3Ejz+qKZzdyIPjl/G0tZ9hcta0Wzg3MSBvomW6L3WjFoWtL6BIwh9rz6CCO/XCrdUjZ2UmDc1HlAp8q/Wr40MA/WKUv2AImgwVMM5KnI6dHxSrhQx9SjeKpjCNTCfleGOx9O3XrOAFra9G8lijC/qbTpSQ+28u43a49KHoVzwtYhO7SUJtkuhaQARlpIyw06St5vlp1YF/9xQ4Wxjoe7Ts1qGzqPgffrOaR/brpwhMQtmVKd3jW5n1QE+VK5Tis7YuooHZq0xxtU0cq/3RXjIvTaPISEL5jwHEkEx7/qao5DF9YB1QtPtLfRPuZR5NYmVVj1okP2QbjRaLs07mloaZnwjry5p6MECl0t55LAvzWwl8aykHNWOCkdr+o+PopOCUPG35vtfWdiSEgS9ZraaqXBpVMjbR5e0vFemjEYDfW3zPBkhgZFVF0JYbEYBn6GtZl+vCleb0ytwSO6hU71eEEXEmpJW+jN+b6B9SywbwSw0V5fiAxEWKriZLzoZJzuUEp8OucMfJX0fqzDMDSp74LYFEOObMF5uJuEuxZ3j2vzD9h4OEQv7uKO4YqK/GF9PNgxgNu4ucLDcG1TrZLUOefXlE3aBhHw+zjtMHq1yZuj2mKloLr5b/OTJYPVlzQV8MV728Hhrp6u0OGc8mbfKDVjsSCFKK0nSX3Ev+D6urTloJ0svMjD4krGY20MI9HErxPEEnZ3onoIW6/CZgZqMURL1rTKbnS3AdLtYoKGP3+3KMcQ8147VWVmsfwy/4dY6p+SmgMsFKwSjbiq2q9LJHPunwBjRo1UVfwHn1sDJjMGzSNPVl0XyluthYseK76xfkewCGTENIdq8WGEfBgBBVINjOHFNLXOcqTQpVz2ZekLPEEgzh/ZoJzYMGgKu6m2qVImf4t0noDP4jOyDAArIM3X3BiC7/E++gn1kIq1kIDTVi1mLTZoU/Ot2S0r2LUVXXbFUqzKUuSUms5xy1l6zTaTYrg/6ODp/YjPutA1z1YXipuPH4UvYm1qhdp//XWB88Pc5e0mvyPHbFlRTkLO9FX7pmZScwfreRIe0kf2qplv7wUOLSResL5iBrDsOTQ0XmfPfcVCCBqEzONyPv75ZNdY5culezxtlpRFZeAG8l7K/uLmREkKV5PZXWIANOq+c+Q41p4OWaPp9OnrS51UNjRoc34y0P5KzjxiNGGSAyzFNTZY+Wz2iD3ZJGzPlwwzYsmSdzRRFzT0tA6HW238+G29rttVzx1pRZIdtdVYV4voHd1sHf+hKroF8WXlO1T06SgJAaivbW73L8m2tj8XVzokDXTitjdloJZAucfNHuor47OErxMO0NQ9PxVnZz3A1WRMBK5W7CSBy/r/+t+L2YzmZ1XEppbPJkNfqtvyo+Lju2f7URdfJlg69/5Ff/A4on2y3ZFYYnl7VqBU+lOX9kqsp4c8b9N2XDe5Q/xVdYFxv+gG0iW13bH3tyKhGukDr0JfG9OfJXbyHGknkFTPhumey+yjmisr2pahBgt+/pD5H1YJfa13ObVaE3Pf0bD6Tnq8SoQ8y+t8WUQY3oAQMzjGE6J8NLy3pW4NFKV4TP3doV0dnW+KU6zCCHayRGsS90f4betmaa0neo/UJvUEIPhpTGLv0Ztf5zSKspIhmzbKHQhCrmsPHPjNTPhOrX7jih/EyLIRVgAJCoXULSlfT+kM4v/SmC0pfxqRuqablIoPH/+6B8xMsYVCPySIKn0rr81ne15KSQcD6IQjyq7EvTvCESaBHalFOwAkOlEAO98D6mVsxwEqdQaPtIs9VIxLUxZqhCsEmX0Td/ogbZfDRIwppNHUvYk1WkPiF/XXEBMC1cLEluSMGUuNJIN0j6B0Keveg8gwOqct9VT00byVLa/P4lkMJ/hZ2Bk2BQH+qvUFdYbgKCofnu/aNNWudXF2c+4YT42SFm2DBx9KGLoaQc/e1hexdbmI59HqWNv6hKi/NCbFEcOoUGfvbI2zC+8frQ6BlMwAlOqoADupPMZ7+jS19XE5FI9DqBuGX7kI1gt4ZY4xz8RfrRWfWHY4pGSAQtohBi4vzaE/5yVIpvYRiLH01IIVnJJHe751rXiNgddatzO7Q//PKLyd9ZFntuinC/B4oF4wX7FcUPTwxx7GA7TcKJAHTD0/XTFFR3Yrdd2Yti4N47oBlcPDX3hywu5WunECuaY67BJxfmKJPw9V3D5sEoOOKRmz7EHuPIebXfWp1oDSy62LpQrQrR8gV7S+fwn5lXsrSsy7QAB3wqEVB1VfqoHd6q156rk9OR5sJ5y1TPyjkRKYCz0V6Z7aRByMMqcr0RgoGPHaScUQjOpe81gr0X0QHiaxKmX8L0Y5hnJ9fxOtvELxKmxl/K9YzZK8mOkIopCS1q3hN6ueeOJ6DBqKBPr1stT3xOiS1j9AjHdZCc/p41M22sL61D1F1g9KVE3Dz+btPJVyBxkBtSXzbKiS1bGVSU8gwiQ1irgoMZuv62g1KWVNTg4BczskZjEFShoEoKtat5K+4BSRFrCImgYYy3AdoSRYrRszUsBbAyJDX8uQNPubBpU1w+HdcGezB/Cp6d4aPBZ9XHUa3CxzGzkuHoMi0Y+kK16DzEQKjm7O4gFeFQ3Wx7FYOVJG6zQJynYVJ6h1qLX4TwUX9lCTCKdfzOeHFsz5pDFGFOExMTKkvJRU7Z34afnE7mU/eHz1MhEmUvyFxkuxOYxMs/WScJJMEABnI8fGc3asdLmuMqv7MKZt+njTyqGmPVZlLAB53LOhg/r0puydjExb3x7p7wkmFnvu7gSIbIyTsqrqkpCG//Dr6yOmeSbdmCzQfMrUpZGTz5s3+pYm2jzvRZAaQewfIjekCF7EMH8WH82dke+IA2I6k9fnhY0JMOlaJslLWSaU6E2I8MWqZXEasQNrUR8yMlubZcvq4bqm2qRSSuaEswTNF+mYqIXp8dfbZMUIcxU4x94dsZJduEj8XZRLb184rONNfvQhLiTh3cNDnJPY2+YAvdQ6uMAHnwdD9Uc0dNG1X8Zd8V1O2JE6v0Z5IXMo1MQqmNdseQ60WYygqqUWiJIKK2ypYIR5RLE5UhKYkw1G0k3hahD1ZTzonUN5n0eNd8l3MMdKsrIyTfYhB8c1jUQy7vlBhwuGHfjjS+4/w4aYZYSiMYEBUQMrWIJxJV9tyHFyI0osulsjSPjl8F0Xp+lkowmjZ4D2suifqR3M20OlaO/vUnAT4gIDp36mawJWmbJ0iBZoQkqci8sqi43ss8MRNtMf4yNCmtz/tBdrb1Ko1URfCgM+oALRvhmuVlwJpse16OoMwAJ01Mea5TXtYOFHCgnMT5n+J2l2VXZBpgVJrKYsFaRcD5X2oDB2JPNlovskDkdc5aWZQvIgMqZ4nya5Mdt4F8b13WCylR0q1DgS0jxttuGAiDOMqDd1bsERylsrB2JYS4oPtNF2CPdy5Z+wVQ4iFt2FXXcvOfpR195LfgvBcT4fQ1jaMxUxGKsBkL+66Fh3GOGwOGp6tdg4FVATGaxNFTpMBH2HelGf3IJyWzTU/eXg+nU9TPrMD7zDiUSPD7XE2zTCtvixqOogfEI8cJd8somHpUzrlogo0X9Y9geOBflzs6mU0vAHZbbASS6Z/J+j/iaP4aDDjtIv75olLrjBtipNYNBCXmBpgA8TrKYT1zZfpGs2nFPHlWjhNCPftoyDqZUyHHGYG36WhbV619zbFvGANkbNmRnDxKRJpyfC9/dgg213+fDmkv9/GqXqXf+gOK3ttd4+J/oZJIdlgLFhlLOquDFLjnnTiR4n0Ut5MXHP+ekdJ+zUhzF2yD0IlenplkbYdFH8NaK33Nqs+cHjryXK0787p9bE5fI+5dFM8eOEAqvM8FekCmv4UvF19XwHitnYzvdxK0xMbRD0SkautelvL+14O37o0zQ/62erFXRITE+OLW8Q9dksS5OcxBn4RkXrIJI2xvU46sFf4WJPGtybwjUdK9f2vkgtNbhc50YX7AliL4j3CXHLFgzcKQ+MgIw4OChEnLUuwYtbDWWC1Mb0YrCisvhaMPmKaj1B5MMi7KbUBUVzhkqwxMzxf9SfcyKx9nayKdugPUtbmqPvYjyOV5T+YSmuTAAZC6Yrklz3InoEf9IvKiV8P9DVn5duQePrOBwjuVQOyzEgGdkjDkjVTJG/qQNLLR791VUmNGgAE0OleRJ5znedPncw0YYijgMIKTLL5Cixb0XjsFNUMzSBvBS35n+PiEY8OJ5qQ/MqPbqeR45fjryHMISz6mbTvawDOMQutLCWPz2caf387ik8u1SrPb5kGQYBrOsl9bCJ9MdvWInIc5/tTUbrUwHbCvBe/qwvQ2rTAKvBCaN11QWMecVM48EmcWDMU6ElU4bqOf79If8y2ZrLaYV/YVcMXuBAiX4LrcNQ1U+P/EgB0qI1X3XPMmg8JYwFHXhYykE/CzwPL5QerH+fM5/zoC8iPUK7dx+1tu1ob7b5iMCHA15qch1uuvYX2FiE+C/+72xAkETxJU7o9JLXINtT1R0U9xZ0bjFiwXlpYlv2drz6O8+nXlZwDe4cCEgOkalhSZTFB2qvPweiBInRRcNkKWGL8kK2D98EulgUnUs7/tpnkM94/JtpEL9kYTfwCxfsYZGOE/vnvEbY1dDc4P0aIvFMeme3Rr67qXPiuYuRfFsdGwb9bW2OUrIsFOAncquHGCPgQD0r+kKA/xBWjxSo11mo8/WNkBw88Dd0JRWzcUJNoNQ5nxCZIAFkw5T6McLzVpxYKEUDRfeiyg8198Sbhq8HJXO+czOKc23j1gzDfPy0I13aacsMtc+b5pqr5ZRJmCezCwpzUdtPtiaA0pQYECI9WkTmcm4MA2rs5dmmKaHUfqramFwgiDve8lt1LAmCKqMBFc98z+T3BK5ftofaKsrqSdpWxFX7u7qQuUZAvIDFzyMiDDQ062H+x0/F+0A1sLPdgLPxNWFBuzhQ8D10AyYrS+iU77+G0i1q6+/iNVI5tN0SoAM1jCDjELz9mDbMvG9LYbjBQhFx6pp5ytMh94swogOkrk0bZX5DksMxV+dv0sO8vrawkJqC9tgk17x9D8Hy5T9ajonmROWfaAPrJlTo8Eff/fNHGLz49dz+HOM1MFtnPcAe8lvo8k/U3XvBpu30BkY87fotQBnGKYZ3X2P7dDUb0dgmfxZfsxb2asQNIy8d4m2roPXDM3LoUw8HBWp2M0SO1xUd/ZvzCR/Q9/2vZzgdT0LPghqqAL4TXMsHEwhg/YhhBR78oPfRhaWt4ePMxkD9dGHiwbH0TC/SgM8QIzF7oVXp9aons1PU/i0oqDADAV3oQvN5uI3gMGYZ21iNKJilo1199pQa+M3XUgKYHvD3ePUT7g09/n+mw7obgJXVAPm4tVtsGqtbBPCH2uzONQSXPPWmWpagbh6SjCTyhWYq1HrEkUiy4dDu8ylv1iBVBy6+3vCdHGhzmBt9McTJrJO9ySKdI0kLnfBDK6gLvo9U4Sm78FeeJcb9+a2rX58X2vHaRL9z8nmRD1biSAh1lks0SLUfFkRQbGVJtFGKPOuopSNpMhIe2p8B7dQhIkc/D5LrugcfUApKYF3VWgugEkzZ10wjGtlWXRBkB9VsYoibAEcGnqwRAhj4QLXUGUJkkcXZcjVa7zoahUgisPOaELYxo4bIH//B5pNgx0M51fbTIoSoioW5ZWheBXNWixhP0PHopR6KmxKe67ERg5v4GrX6TxQr75QITMkpuCuwfijIY0Pao37eOK9gujQbD6tEUzeDirc/hGjRisLKeurldM9xuYS7rI1NPKNM74xuMcnH4N3JxHEwY9MBWmpDrSEFgf12VqogC9BjmBIuD2T0r6Lk2KG/r4UCuLlE9qT04s/MZB0SZNDSvuLUahulqfFxFVWBuGvc0i8NeCIQXmOzR1esEJVCw8dDpu/VRZxlqXQOTo71bvs5sUKsC//5aqSax6rpLV4SCXeOVSgQPD9euMDzRweV1oqSRrgRmxb78sKhwb/4oXpJo3e0CoJBQVnBWc6G55u0vpPDJ4i2uw6PlpGs43W4orl/Le5+47ibhR1pZcXHqFOgmARZqpulEotc2BinVGETC2CyNsYnn5u3chL4F+fZu4Y8Rc2naz5JMIdcnXUtXy9WfGfPtemoZy9p1fCLOmhjqdRsDo9yoLTlitpKvbQdSXAP4dkEEpuLdQYTANDfUvRvy8X7424SxAwhj8vaUzmOXiMf3Ixhc3M032kPOjLwPyXQny1CDaItLvumZWgnLH8+CASRIw9/iFEkWWbY9DLG/swpX4DLhn7f2YF2DHfYkXm5feeUyIn0cXSg2u4W0Kw20IfkefHhu31AjFw8jZ1INBSgLGrEi90Iy1hsbuzN+j2CqvY7+8RkjyufYhej0G6YGXdPminZCdLVXzUD+nZf7SZHiNj6ESBULyMioSKwTMUzVTjsreNXIZOTylKx+63VFrTZ4/vu3yUPsnzRkA6lTUBoJHW8mKY1Um+O0Kheq9SlfpOpYwgLxthXGK7gF/OZjLjf+L28nnX+A2M44ojlOtvcTF6u4zuOdb78ISfFJMF5BmiRjXYvu7boAn7nviGtU14Vdt+WcPZimDmgcgZBSEpJcuR/X5wBZz1slNhwbSHicmbpteAUEWY9ztjPjyK1RM9dsdYGHzs01XW2X/2cBS2zK5CD4C8TzxGafG7QmbzeO7C604sCXGiHnzAz3ix/fGZQ/2TrcGqbvBT0KlEQw1iL1zihtuDAjQE+GP07eM0tBY7XmveAikk/2oHzTAVNbodkxK/nmWG8RSFSB6mWaa6ZjkLJ6mHVEYd4G6koiqkCwBqS1wwgyOooZjRFtv5v653mlxuH53qwLhXIwpqYfEuMGyAhk0eEQmuvexM5wW+VAvwZ79DKEfqjh9GFg1H7cDyBnGObI2MK7H/VaQ6XuCqNPwrP0O3xAjy/8lQiRXfm+SJCx5B4rE6+Yrj1c323Yl0UOyJ4X+v1WxOyBh/kHHpK3k3JzDZANRn6jyhAou6ar4+KALS9CMKni1zJ1+l1RFheFIx2knRsybUbhOf2gI0cgNFbOBZ0pYWugofVlwb+sA0tDok6nVRdhfQBrGsoKCoayrIQGiMLDZxBEmekScxkKnu8ZgWtqKFYOvuHlGZmpgC13mHwDr7QJaHkcro0z/N5ASJ/c8Jx9hukASGorUlSq9D2Fbf9vMI0+nZ5nhb3dvAcgYpNMRWtbHhKl5gPQOgmdwYtKJ9I42X6ru7iUeh1Wdqdt2UDMdEAk3H3mjUCfuXlna2QMQIbqz3FovN9Hqh5aOpbQ7VwWY+Ky9OijSRzXJE3cj6YvhroBKCbdE+/Sdq5fcj+WmEPN/eHJTKaCkEf/J/xNmtWlPNo+4aUc1w1YuSPZS9VbXHppAr/ruraNSowycIyqh3Mv4MCcxV5/8tDcb3hWAWhAZF2wH9Oz7J3byqSgaccHuggblltF5p4lrhRs1pUbxtPWlpJZhGb5cCJQWGcQRWJUgDzvQsg/XhoITS0BXZ8HuCxwpkKKlfj7rWR0Nq3un87AXNgOiXiTM/9QRs/iXzpZl3NgrN4ecuRhoJSoO41XyUnURoUHA42A11m/r+6g3YX1piJAIwQ2V4k394sllLhyr1hqU474FS5PFGdusiovciahKIrY6M7rLgJxqccxitRLY91Jjo05VY6qXZDkC2IAJAf96xnVTvPELfAbe9eFhRLPgdvhZE0FyL1H+IrchgkiiHEovAYnpOtiB/3JSYKo9uskmHtPg6wLYbp4PYch9+ZJpugMdA7Zx4pEv0dUhBrpMmLm3VTa84Hsvh37ED23JOdWsr+tOWVQtxfbmNx8KEt9rPYfy/F2sTlNcvbaYawR38MAJdxce3L8L7FGXmK2AE3u6dZEbznm3dUi0X5CIi/XbfXVngxA3YjWp1XnMqZ8M+oguUCQwVqfnF4MtjrHfu2uGGeY41EjXuPQDHI+6u6Jt7s1vkhgQfUUb/5xjzSddWXIE5uhuG7xRKHIElB5F54o/9/OFcVp4C77646HEh5KajHLuYZFtsnVOi8yHRbenz+jYeFTzcB76fjvrv6q2+ROVsus9aQ0dv7NMKncEuwgkEahCwIA7cAXD6c9R4oaFqGJiiqY9JNe0jswuUaidrNlrvqclWJzPcrbtqvs+446on+V51XOjGK1rS/oDSqZLjarWIVDXmUCxtkT+FgxYIwyBUAidH4tG2MQMmUjUH8aYQQP1vrBMZbCD1ZwzlUOmbbwsxx8qgHTxxk8ys+kh1fmdNBKwJCgcHJvR8e9ZieIdogkwMXjrrS/nL2ZAlsq9ZPth41jRXnmYlzwX/shO1Y1uDMzincRltvp4ZaZX6RrH4brNuA/djdIMYNJ98hKde92PPZT2bs8tkNIJnnduarfHHy61yhz9FNrV7HLpYKsrmS5swuHJ+HqRqcsYsF26ZGe5pa5hTbIRRXBSbiqaWSmlBXZ0Gdoqq6/pm5QXGfNhdTfxiN99S9DFE0dawhAdzv67Vdp+jU6+gfnfhJdK7iW/dADc7fen8t3Yp5BfHcPAgCcaN/Gyvt8oGh/J1kLGRDA2SmAhHVClmzsIU1xtLopggSZH9HMAikd7Cxnefe71wCLUG6jvnHxH8tl5WxWVowLLGas6sjqrXWUNIiA6XUzViMuqW2cqp8vyyCyfSf+/vzKWRq843IzQ1sh8sfeKCUblZ/CIEY33mCVOYM+suQ5fxnLZFtg1qPbYeIudsVSG3B5snnxQmgyDaU9Wg1baxhkNmPCht2zL3WAh7ux/cCioJWn5PqqBu1lclRycz+1BVtPb/RctDYz/mI3QQ9IX/1w9PwdOTG0c1ij6yPV5gE6f9BGcLJoI+h0midnWfECRRyAh6hyYn5cjFxGDcmLB7GGpkRKMW1zXFFoC5iolT+CH6T7vn2du/MN7FA3tIkp8xPNWF8FpbzMWXpyYfSkFGz9EQoZIcMjpthnEPolg0W2r0QWtaFXj16c+IfVpgyWWudenNkUuXkRYMDQ/AH8ZJsgCVB2vPXyqTu15BfIaS7Pch4EqI77QXVy/nXanHYy+iUZm8DMZPOx7iRCa9wcl6Q6HBT0s5WmlUsMbpIVK5wdoNndsEbUPAfzyyKuW7KeZRk9GBOTmmmpmnfr1edOjXcKISc61jmNphCREQi9LIzGQjdtdVCaVwnu/vNAF1vBZn4U71v9xgbbQpG4V6m11gf7sM1v5MQC2twxbhfOquty7eOjLfFL2P2zNgw4brzLylYD+vBgk5gc9sMbwnyS25Aio+CGMQrtt99DcJXml2lKJ+P8rvLjoAr5bGDLAMugzqKX+8pbhMQ1+TowFtruf2OXnxcIIgwvdGhwJ54RQo/k16bo3rp56elckcRK/yoYoUY7AYddP9hsur2WiifnfVyCz7eC1lMaFnaR5qEJcVrmON1VW/lvx0Vm+CB8ChL2kLmWd9OdT1eKAyGODx1y5j70nNgM9MeVX5q66I/w8A0V3fDLr9cxll0Ec2FZ9DnVNAcF6Dgk/NC6Id/JsHQUfCz/IZLQ+I/hC4euvuSPBU2Nyh5TbYEtXinu8Z2DRwNPdicJA3ZlRu4uAUTLvRySFTl2r2RBbm1tUY9DE+2X3gR/yZC+jk9R0NKuBcXV6ORrM7efaMC2fRlXID5/oSVMtyko+IfjD0AzoSX46uNdhhIv7XsShWIpB0mquD8ELmMISpMqs7zDzHe9qfT8mv+GrBWyZYlctSNLjzz7xi9EbT+yFby8fa38XHe0GVo3YuTU16jtzUzqwasVeVCH8lNgGSdsNZOOlHrk1CHxdOSIx2/K4X1nf0PKGrmJzNHy7VffjE+t7/o8i+wre7sn/YvUGOK6RWSx1BGLGQLyMz1l3Faj8oJfuBnMpbnNO3aYpCdev7W0F6OPPa/SA/g6sV8GPf1yrRTB7lUkzktaYFvQp5O2QU7bTDdNt3CPa/EPcFbJGtQCiZ+wcKNvM+aMZGAXeg0CTxX1LqD8O6BSIdUc5UaBWC5IEij60RKoTXQl5rU0TTyZTxuzvjv2WrmZkaM/xxqbu5Q3/4rOudSOZS9vQsolQQWexsJ9IN4YzRRh/UFFUV1O8mK0YR25bWL2F3hSYjGcRAyYuDj/zQ/ycEtmt5x9aInA1GguRPe1hxGUxUGslvtRfr8cLv/XXKT8vZexqaOZ+B7NISyZNi/ceKefKMknkgpr1ZCCEiIAe2zAX/F+j0mlguyDoOrEv1B+MuLaBoP035yKUqExhuspwE+zBNFYTWhZ708vmpqIvMFMySSeNEe2VM3Q9yQ6inPvIMJnLDnKzRFeX2/bl9w4y0tbq+aolT3L1cZAnqO5LxZ2CDaoguTmipA9fY+kJbJ7kPqrhUn0ksLK3XLOku5XQpCtX4Df9PFTHIa09J90PC7nljQ9j4flOG2xbpcLcPkLflCg2jtHc+n6tFF4wam+TvbKqisQA96wSjseTnZ8XrNtOQZeMCTfgBjimrRyeZiC3RETjAqs4PUBGPLUN48N1nuMgl4Ofit+V96B1C7jsPr1BvBjV596LE5Jz9K/EuZeH15exDWrTNSH0E6L+xn2CO79o/7NwGzBiVAqmDuiC1S6Jv6C+jRIXKyMJ32JIc7KWttS+48Tx6WgPlqxEHFlZn2QgJfJCeNpwCj6uZaFkmOX3il0s7FYayx+B4h1900rUR8k2zKQuKe5BzRTMyqh8zRFCvhjsaYcGuxiPkUlNrrhLBIngLv72+LGu82sGuvMIlKdPytdKQnr7obGo7Q41NYWYXSAaw44merzi/0B0D6WQQDODk0jBZrgcFMYnBLtQg2+uiLyqB2ovI+0hm/9Dvfhq8WKqe5vDVD9WZD826Vd7mCBfQ+/ffxVIHWsEKlFbneS5P5NdDoaEVotvU3ur5/PLqqQ90jQbJklDZakAfR0IMvnPyzxHhmIGlKujKt+V1RNEJRB9B5yJEqhWSpBFdQ4RSBRtcQUM2d8tFATr6WVmNcyJUe/Xc/Fr+P1n42OQbG7ru0AuEVs4EjZyxzsREX0hxrfsL3pSmNKIhq03N4kD20TZkuXriJSihcdFSKb5BxnmY0QbP03m8nOMGMZpE+NYtTlVp5sWEOOAxa6sttRH41aekVJIome4betj1i88G4CxgXF4lCGoNkv3G+o0x9y1PWj7xSG1hlunwqkDRRfsh2t6fi04IK6gmi50idnwgdCho8TGOlDk0d9jWg/JaLmJF1Qo7nIeiFd/o2BVqUROjsBYMKb+Cg3dcuXintDiXKvcLBazC7O/ucuiDfLEx184qsreWitLlGIuAd8usd0CFgIE/YfkhiIDr7TtmNdpZUxmy0Ifz2xNV2COHXa9KS6MCfdvrtfhQjayeoiNdAguKr7e3ioPnv305cEXXCsyfZ3VbsdrFbrr9mURDJm+4X1FQokOyURaSBRj1ww/f+GEY9mmKDXpI9Ov0hV91uQR1AF35iNyFNorUiJHVx1aW6VPgIp0Ol31UzgCW4CfPWyKNQ387MAaOQZ4FRy35jqWJEYkE2FTm8F2+8jh6BtEvBq3fqQgr83SSOGgsrDhKhI7U8+dCh09Yi4i+Td5B43hin5YAfmAl7/5gml5l234dxcCwXPKk/P8EIjgcQyKY3gtuQH1EiM0GneJ1w4xpNSmsXW1Y2aJKzo55SzZTRPBXAxOk77U5noAzolRLKk+VRFRugpTUcyWVd0rhHnfMJptDyr5MJ6hq762PcdxfDsBi1A9F4fw8mUAlFJCtLsMK7Jvwwp9Pp90N2L5XNqubR/loaxGNCQsUiNxIlCSJuT3GY9ZEYLUEx9Kesds71x/vG/6nogbNsc9cs8MVdAWfCtTi/N5ZTCndt3TzoD5Qa2xOuo8q6a5OBeDzPa4jNZD4efAf9HKD2aHpVAujRvg3cO0smdSVOJ7UVE4lGFU+02V//3Yvq76dk8WThk11NG9/L5oxUXfjfF8JwuKp2mpYuEXc5xqyKRECUrnKNUX4xu3tTC7wqqaIwBKbsQwC6fOE1JgpFfxi7KsMd0ceurV21sgR/+f5NnDKua5aKutCIo8mfxS72CJi58Y2vLtV2e8TBcqtTKnps2VBI8z5Yoxf0Dxth/7JkUhsLjAev/son9xACZm0Ijge0q+VUYQf71RFFJ9gCNevfeXQbqTFp1wbJsQL9WKAk3J9/oy7kB9brZC1nylAR5wMshUW7c7yjaDlUmsZA9QSFbOKAtsvEVF0KTKQWXtciclkaUDWiOAi4caDL6BmJop6/1+nLFH5XCBnagOGsgyaugNNysd9Eqf1aTGDYmbtk/cj2APTdXO1Hvu+24EXPDhT17nyKra7AxT0gitaxVB0Duq3y3vFGtXPoVWXgLdY/En65wRSDlY63GpDWhPggZGMq2AfESyDhe/0LqtoGt/18YH/SQWHUMEp5ukf6ZJmLsrxwKfxTXcKF6QVCc/TcZfr1M5rE/cASejixlmz/63Hl0gB5xv/Z/mGI9EDDYpbxH+QUhz5v3s1ZGgC5HPYu4rRrZCkvVYxWAKusInI2vj28u2EkIXbTQifFwqHen3UThAm/fx7xWgwYn4KxpM6aGD9TVEVIiwDI0JinoB5GAy26DpVrhvuxA2VPybhRYk5eUC8gu/oRwN5K22lFd5DLP8gglLgeIs1Rz0lMwRVF7x6PfXVIcqkYB8Rhf1HPb3kPBrsuxqrY2DOr5gloSXUke5q62eM4cNAV1GckU5braEm5tFaHEQfm68VOHrhyNF1hBY4wKUBr16F3y8rvwGdZoLo57cnIyjzaAB62csF2dYiqhnJBX4OOZi8LN+jSWJx4JB+qXQsnJk3kdzPsPvFQ1nEhmKJ0/J13j311sOwDfHv5+9NqxQ/EmCbWR5P5dKG+LovvQkHoh5volWy7NSBsikoAdlmcXc4+E7uMGvjIegYXUL5gkJhh0dc1Wp6nIxvjcWuO9PAWGKGggYJEqUAdltqTkmjHL6ZBCX4nDZby/86nBtvmBxZWG/5pVK5CMQclNw980zKnqghlqeTYWYOM4QOJII46FCXLE9P9rjc/g4OS89MOr5aW+IfCpRuFn4nWwKUvCXCkXf1VGJVECVU6vM2+KLc+FnydDiMbztuoeQjT3ovWo8NecKSDRmwoeuhlYj0WyBhHpvMHEx9aO2j2ZL38AHUf2Gvgtt0S1wT4drGIYOq+uvn4jKcY6vSchIODmzqHtXEGdb3AK/o5V3soRaa1musp/939lsThZQD7d44ffqMdnWBiI9pOjVbjaRTAXiROhvPBcIMWYChgliZWy4agonYfvaP5MnDfosTOr4zI4gwBF1YkWVJ9zcmVyHg+DyclhYXodkJ6qfALwX84EGuBRyFsyHTPNleuUw/Fvw0hcmICRJbyHV2Owa3bnjs6wP8VcRWyk6QV8KufuABAcbcX6LqiU/P2dgCiWx6rdEEtHOrP3FwNhDXKt3j/f/RMiYg3alm0jfSa0KZqUZBVFbBcx4Xe5E8URmoWwR34kIyYRWcp/PqcWlMFCU8NLb1Hq/oLrEGPouJDx5Yx6+wXTNMod9c2IVBwmKDKxwOB0fhzwuRA0ptjqwdI4wfK9wC62SrmVBQlhVzmzIBMf2un7TVSmerWhncuulzuO60qdFJ1aCftbGNrMYdwMMT3bmBAZ8Zm9qzj8PC2AIeXqR+OxBg1lP2AIP9ppILxTHhFpBAGGHKiXWo2EO/1tt3MA02/NRK3GvwTCIcCYojSm/1exWkFLg7XRldhAF59mxWMYLDBYaJ37eomaNXYk+X99xCUd5nyo6ojaoCmiCfOW8ZvVgvLjDXu9wAfdAiSGQicjbVWIdzECcxl6bQihjamh9XAXp6Ctbjm9OT+bpw27i1yMvCzk+QehQQ3lZvCv1/Hhfen4O7PUq5rmx9c7tBKNS3XCPwUzx558X7gNMu2C3bp6Pox+ck1nTMln/skOuFa8ztDp3rdVPLXTLzU9sXfw8WZzhk+j7tbAGgYj5MyIHaUb85ZB/q9BwFQOoiAdpzOfNwTp01tW+fNUV7TTaxxNoHOLmOLFbhd3L2/HC2z1MwWJH6m1epTM3dLSdLw4LIT4NAyfvXLESD950o1mO/HqyHBIxsoqLZI5U9Zhk6hfLUzwBJ7ZP48KIPzYqA1BJ3IvWGV0ociw7kNfkH4hRAn/A7kIg/PPNOrrb0j6KoUg7wqATgWQtUrw0yOcyN21Ae7SdRVFWjb6iQvVPAgUijsP9Oo+QRZ8+azA1eD+AI28eVom1Y7gcSqP/f6KW/Gzxsb+dFNeBeJGVRaVqacHBS2OCqopXlFl8gcUwFpMrc8o3JCEGVGksJdecB/U4joIIfXE+b7JTvh5y0ePjGr8mVVCWHCgADouaUE05Pnorxtm4858OmKl8Ev5w2HovDLvbgXYTRVvbuBzF1weCyJ0K2nlg+9PNduXqbaxyuIVHAwtcBrl3GjyxKZG9wAxazgxNYOEwjJSgmvONLWUNC2mgDrDdAuPe4ETpQyZhRVeFoGZ8bMb5aqsxQw7BGiWH0Nosw0cjyXXWegrLK5X7SO949O5XVATE7drZnd2W2hHTAlSoYvTe5gHvNVHaITOyjIIEFI+PPtCF+C0DfhL2d4PWbYOp1hiu08nvwGf2lNoNM5eNeG28cMN0ZFUTQj0BvSWGd19DtQCUHCFnmvSDUCOS1KLFB0q/3JWUGSgT33qie6Lg3/myuOQqyPdBD+qq3rRWchvXGEbdZnZUlKsx8d4UEsvxw6/aOrwFr63iAQVOJCVQWARBZDDEAs8T+DvW9uJ4MVo87+Xi/hAD+48JOL/cDUDQ18D0Yr9xDr7XjEjOuAAas8g0oARDIc096Z7CvNwC2+/EYR7ATgWskAnBrxbe1WlVDVieYzEc4PuSyTMQVxh2xBTgHNILLdKh4UO7UDWcHgrY4c1EiD2Fc5DGsWV+LI1ez7YBFZ+cWUFpAfb8u9sjVmcA4a7arcZVuJc5ZhaXww0wzgVX/t+nz/umVg2CTUOXAkPg38s7mZwtZ9A+aS9TgI1mbRtoCd+qR6lEib2T/qW4XmTyr8Tc/vZqhKEnYmNRnGTi0//JJjbjcvTXYTKIqxvzwPCydagARibi1jeAq8saXObUlpCu3u03Nao/g/xB4j+P5AUa44yryM1XGrWOIcdxWCFusYX5bVGYg37MYvcj+ZLWI371O8N8u6oUPpA25AQnokyQksa3AxtaNF64pFHgoGJo6RWSJ1i9EVODjuHJg+M5rhQvP4pdNMKPmcI54f+ZZlCMaWUHSZJoqYuB3PgoxGLbAULaAFSf1DR/X4XDBd7VFsDEUgVx43nGlCw130RU+gx4WBGcOFKha+HWOpbylbfVHL7vjODH2hmd5EyLVc0Ou8curi/zBax8kSozt1HJraklvr9kaRRAc/V0bBrIxWwNOgR3mMqhqtxzwb0reXH9L8BrTbFijFuocDttnd7NXuC/AhOrWEz4vwWBCH/KRWBQkSt5ke+jU97MQrMkQOjiAG4NTtlNwrM1JOOHs71b6hV0C7cX+wRY4YMydcgAoGD5pHtCcS4Qt7zsDM3oLC+n/xiLEKLB6uQcqOFzmatRNjf1Q0Jm9q9PyBlZzvupM/f1LVXm85GTyboaR4Xsou6zESGbj52qBOaj5RnZ/pA+gBHkvXtvBSOt5vCzRiNicwrkk00Yy1VSi9YwBsgy3KfRp6lYQHwuSilLduuPGTqSjx0DzqgjD6uS43TpGf10lufWP8Y7I1B4ZQt/l/NGTaTpQcYepZMXMP0dMH6UtQc1EIU0QC1vuWNYwKUdu87/WTS0JI95zc9Ea2RpeUYhn0wtzc+RhbdH9bq7rf36N8hvxX9JiuC8okrTvZPUWSXEgIFHC1kuRkJdI871Fvwn4iXO7WkRhrOld8anyANF3mmUT6+3+p+wdfTWZWeLryrc1MZGU0dr/PErGKdy+OT9pfxHRRaQXCxhjc6/rMjFUBth1f11aYT+CPVUNr1JbzpLkexBruTZFZfIAHfUHcoksj4mG5+e1/4XXdsgU5kmEJMo53HSbk/kBsiQVCWxMRfz6kVliHUIPK2eDkHLog+mdxsVhsG+Oc3s4SnwRZSqDP3NkbgQ2wMEqn/Zx/xyOb5fzluIMIunp4IyfBqi1ExEndbBBaneiB545z9zxffen8n1Ab+kmaeE0mxcaOwIahTVx8TAWjtxX8yuEpgIDRuzhWS8oTamOiRvLJ4BiAVuv21IAPoOJ+4ver830ZtW4hhJZreJBrWdfc1Sjsu1IkQZf0+AIxoSmcep3Bf59KvzvQgzfEeF7PD8eWqDepI2V71pWV/Gzv0FsqtIVLVYO36ywZWJKqvAAyl41BFsdQYVSUGSEdljyEh7wXBE+Mx7jPM2XO6t8Szj9xvZM1VX6D57gJXWp5iQlebSIlxyv98s6tfGG9tm2NiX63uYpDRdL0U+oTqRM2nbymRQ9Nt7Up2mxI3+uKWJMWaCMi0CBpNH1C1Dti6m9xyt+HdqDqN9I5aENNVGnmBvUj1EJMyK0XLxFCLofmN8I5IViB2So9H44q8hwen/bCnC83Ld4nm3uWNTxfGU9BiuFFTK1KiQ4XIQvcg5YGwl9wBXJIJd51khJrxIVtPQdGgMAuy7G06Y5AxUebtXFTQzZcYOMw8pujRd8em+tfI0l8CBkaJlchxAZlz83rptwxB1Xzx+NRbV9vnT+GKgUcLbhgszqaeAvwxmc/jXSBCY7622gf+6J07ThX5BoRopZSDBGbnLLmyIfqcRMUD0dEBbxSHYhXYvY+BubS/fSMx3lXWHMKLfh7GFP2Go9USAe0FB6Ork1s3YAWrSXwH6ILJ+fcLKtK3mKcDAfjCCqO08zEy8V2Wj8mUrtxjMjiZpZTU/PPJwQSddFiuuw0zcc3pStKX2l/o09G0ajfXsAnvsBU0qR44LjdKrC0AQtXXVIw9SxSIIZ5LQZc53+EwOBmE2afP+jClphWexwmEgbcdCCkbmKkIn+oavjSxGU2Fvagj6RVDDiOYC3qwTfo9qJNvQWUYs5ThS+iF3PqadyiHikaqdsR9X9zeYE2i55Q0k3AlOQDzSBMSEfTNpAlFrxkv1QKpgDLLjJgZ7bglsHEGolT3a3G0x6khcfsRRPsDVtb8a8AQ0H/lJkjIJQ90NWLNWIGrmowh/+Ze9jQS1evyjG7IrsgZugiXpLNYXDeprNcmNa5ATcer5XPRDHReeJkpo4SFCkuNhM2SYlsBq4Q00g2/A4G6FmQslNpPhacimRksXQvW0BdrOc3LwTsoA1GZTrRfFz4egq+Ndt+7I8ec8Dzzfyy+7uYNoBYgrJA+Xoj/BHrjOzGGKmZR7/EXlFqd4c6S4cdNe64b2lyLKV9cYvQuqykYTuhcrKXSke559l7KnnHajxHNcCGi6jYjILjFjrcDMG1B8VsvF0eIEjVitCCoS62dK7iJFIrGR4f08df+4W+EwynvHz7bD+xVmQ0xOc7n8fUUdtoaA0LWncrgTpx/wk5jMQfu1Q3oJG/sy9B5r34uqhaXH73+hRiUo7HYLodLhXo/UsYWXD3E0Px7EzOLQvDRVLo3DLNqcjQf2z02lsnRlxK14S8zGrtUrDW15raHelT3KYfT+8rUmwndI9gVzDw/iq84aCEpx3Nid97pDCez3J9F11yuGZm6jbYfSvaCzb7YYTNt2dt1oBMUMO4XGzbiYYByxjhuCB1t6ZIsQDHf+fpAxSJ4g5wKDq8F2QOUTdxu1kCl9xCI7KislTnCo4lBkusE5DFgf7DGXRSgkadoso1VdwLlSAIkY1Q+SllHHvuresaPbxHBiKn/nYRjjG0C+ijK3r4DxLPfP04fFYU1HgSdJ6axTAIa5DEbzfy9TlnNCNny/eJGqkZoR+Qh+/hwJwXrsOqLWjpcWvQfEvLPwfuNyDva95KwSNJTpZFqVHUhmjTGjwBS5z0MW+6w625JQfMw5nbjb6/F1GJliYt8ZDGyxEK7naYTLVSPBd1ZwiLGPVghXmwcHH9Afrrc2jy+W3uTJ9SSHhJTTRP/hnmCpAGUHh+vIgnPM/yZDj8sCRY3fyNTihVeINXWz2w6NfbbRU7B/cGZr5TK2AY48ihviDBPTvANZ0qx1dbsnHzvNGUr1rAUzC8bnkuNQ4ZM27sWeRHazc99sedPHfe/03KywvjSPN1Naupq7dK6i6DyGEXcCALyqTcWoQZgonZVmTUFahDP4mrT5EShFg6QhMIsXr79n/8EYikrCqluRPMYdrocikwNAeAwi19K7RizanOn2LCkkOkqUqcAoF0yw4uqG3y54I7VCD3RqFEGNOWtHqVGHG5Fv1LYl1LkIQI9vNO8ZANat+SzZy7xXlA1119cme8I5kQU1FkbdTHPvaOWLkVbkq3L+xBccXN4JPB5/SR6Q6sqcAMit0rAlxzGgFhnZADBZMW8/xmckh8B5ghnCpSBx+a4Z0JvdfW/Ki3lsuG48TISlvKNzMEPLm7jZdS1GDnsSS0DiKCl7jWBZkVNNIVAoo9ajxJLXdwwDd4C1ZT5f+Nbyv9SLn9i4L92MoLfEulcjpboTfOk+3oNQsAbSN6B1p62cqkdLUaNCKLC9hDMcs75d626JQ9Jz368TFI0XHC7tUnafBI5KGEmf0EvpaVzNnIAQP3juA5Kc8tTQgL3isiItV0PCjbOCP/MnS779IQiT29EhN7Nivb32mWHFyGBB0wjZzxmqU8GSCdCEzRwIrCvy673XO1Jlm4PhqHe8TnytlbEKC+eE/Nh2b1FOKLwqMScLdJIN7gtsSFdgh/8XBO2ml2LlOdBx4j3NhU0LpfEsqHGV50tvmqVGk+7B7poZZ4SUHCpNct6ai9y+wy6TcNs54rZNVxjVT33LAooHRyqJPsNkXwVVgA3cWMg47PLwJ2GwA9JfIzQ0Krgyj6lws9WFiqHwDrhrvEi20iVm3x+1zXktTIVqEj1ZoQIo//3rnGivHmxfjuS1XLn+NFxD/16UG+szW71I/UT1cI75sxpk7Q1YJNVL3QRr0f0sjxNqzu0FVSEhMQMYep8a6VJnSdu4AXtUM/OttV/soybkWp/J4UO3+lAWGM2kHg+ZIvA9GupwhZS4UaxVwVrcfj0IhzDLp26dJg5uqqsNDQI8YWHAiNB8NxUfuWKbWAP053uKK5sAnqrU7gwhjv83aQNaUJq+MV8cyqKba/zyt7SLLZDOF3TWG0eXdNawVWq7tuCIrJzEMtMKawh94D4TcjPQJfYDhjkXs2N16rTJL1gXgT5ItTi5qUm8yhHvKSNVE5HJPfJYxyjLCkJB+0YpGHMUw0AsZLK7GrPapBsjBNQ3ddOrO6GONJVU4pEdDrhJo/nAMYf1ssffX/kXfUAXmTTmsGiihCcqnn4lM+VuhUZEQ35S681L4wavireWsUpdS5AUYqQv9OJR0WEkBlMove6mJBj6WzAj1/QBLshFj4hJPz1cGgL2xtzm4MOV7V3LtZNcJRGL5LulxsHJsoERHz6T3PZwFzLxsSUp7IH4TZLdaylnbYsl5jnCzjttNacjWNCCVYwMnX5cl+RCKGyJMkjgpniSqM4fspHzGbPz8x9X0NLDOasAaYtzt0GrP+me7sFJl8TgA7G+2AbfMKoxpuxZo8YEP+COtQ8yNVNBeWaYQZ6WcSK7fZdS7F0nKR+6x8Ua5n56v/hIGjUh6rtCxTnAVDOtNJEx7/ZRPW1pZq9NTmN3pUNE+1Z66O1GPOZdfc8b4wpcl6YxXrXMeXBRNssrH1z1pd1Z+TEF57XJYZJd2eN7gjMTy6ERraJDBaBqLgbpX6FbyXijWWQSCz4T0hZ0WcE4mf1NyIXdbQUAGbsan6a0vHn9C4D8rBwZz4EWbyFDn2kRuPUmZT8ZoTpR5DhzKSMue3rSdeiNaZ0yh0fMnzoSZ0YL7F6jq5+i0jOjBjaWtyuIiqo072MOmyhkA0JZgSA8dzbUZcbSDni9s39C/GpkdYKIM+2LCxeVpz2IPMngW+RGLEXkGODXmY3NqF3r/kXmau8Ja+7JEDkFpECaJdWhcCqwH0S0sdUxzGwxEO+4v6fOEcqv3XpxI74QZoSfQDeg1LNxf/z9NxDPjQgiGoyhaFHyQfQKnfK7139UwAfBS3IrDwFjI4roifp1gf/K8okmRnq8jiiQ6BZII2hiIEFnx23algdVkWGgz/2x5WCWGb9vkGBg+qINbIE3wHPo0t3PA8T9+P+mz4YP5X3XzCyKl5UvmL+NcqXclrBZC3JSv3K0Kt5VGdBIGn9jUjZZedw+lVxf6+A9mZBYI3Vq+XN2eCcSho3OiRw7VoSH+0ZDqvqAtmlERbQxCGs3XRItmRnUgyFC8HxwwgXSGfmA6vKUAs5XTJTwMcm4EuLIZnm9UvMJ8SzZ+266exa5qSJipD4SjPuSj/JQjDzbb4I1nlSnXlCze4nqLmBwB+IcfsEOL8RAl1IbOebaT9rQK0CMKEs0Cs2UzHF0+QX6K2YwP4E3CH8rD458yWIisEVQBQxr7hKESkPgxAKRq4O3BNt4/p3z+5tmEAlOf8Bx0yijeKyNVT0QqYgboMbF+R/MNr07x7JnABOEuyfiZgN/iwn2A3Dhj+aRYS+DP7PONqcY0Fw/oYt/mT8gOilpZpUSy93Fyy1MrHRJqt3CTll6g3S0AjeYlZ8q2RK0rTSdB61pPIqdw3C3EfeRBJpS0y1KsR5VSGE9npE43vFl9G+LTxC9FZMHgQrewBe8Sfj1Aeaxc8TOP6lJnIxvNGrTMqNKBJdieJ31yIZwd1tc5TqjOK3yMxcKDHTGZwkvVFlPd6bfsSaGo2QBoQ4WME6ervA61+A5Aggy0tzJIe0GsHkm2MJNQAQPODiMO86AoggvQTNDLTQi7VaY3ZiZlWOjkLm5d+Oo4SznffFLx7xzO11iClAwpaWqaMsLE8fWeWmw3XWFElozR6ddw+UfbKE00WGcYOfgHyvlH2raQX2R+9DOnQ45Akky3WvfHRk5i4n2VLGrK7W5UpI5sqs4u4FIt+TX75ZtYJ+f3waOHf+OF9yA2ua0rQRIdykLKylXb3ZrexvNXcZNhDU3132ZCqE7C/WK5N/W/vXeWLpHaTO71e2pmOj3jZ2EVLcQ6O/TH7PodikHT21ESvOYBw8ZkFTkW0lSai+DSeYuChqrrt+Od2tUxzk/vWuI0/zU92ZhedetEIGL9Aiad+X1V7+GqWFeMJlEoBXbWkoYOoEYy2O8ThiKaPVAu+Ya4nlAdsb7Ph6PcRomeza5s+PZ8Csa/UdQD4cl3pYJML2kRofVLEj1/7/lYLQX8wN/kszczZF6DzQGK9Azm6Cl3pS9NF3hS8sUJfNkzPIdDBUUH7oDYQwcTbDkRThqm9cJnAsNTgXjod85Q+WYN3BGDjRxCERQkM3EKDEwMOHQNdvxC0Lnfdu0QN73rWTs7NhdGhhm5P6+OfL7k7CyaahnZj11f8b//ZT+yTqqYSypzRMbINoBAeDOsTQ/OIXGLAl0eNYJFGKpCF3q8FtPWo1dPHlLVo5Fan6nhXLplqYvtNVJC5+MG8h2m8yNLjR128Sj/X+RfqBlYYSJzGN3jdsyC3HBEcrJ2e86FxXqiOLyrP/OTMw/BiCNp83Eu+zjVmN6QcWOBzD5OOX5Y/f6g4YGz5dYtZePsHEI3PU3hxQbuttDUdf0tklOJsk+fAdCdySHEicgvmoGHSBc8kKsPBWXsZvEJrGWlMr3thfFtbOmKB2fH8482lNpw2EVAChDIk5f49xgTCkpRkcPNh87lQjTXs3A4fKz6xPhhylIEydZKskbLDDXEpwKCPTf6w7mXo4yCMIUDsdLpXguwddWNTln6jEaqXoM0Lw0/LGMeVPk3SLrBh4nIHnymAg4Pwv0CNOFOwTTh0LDXPDBrFs6s3uZUAQ/GKfrgwgON70Cru/omeiW9iIYLJ7KFDqVZNpos2dixI+3RNo3OV81i72FoN5l1rV4mH0mNeHjG5eLlSNwRdAuyNksYcTuO1MJrq6H9c56YMA0lPaZS2RdrynanXDJWTbCnZL9/Jl4UnvKQTp0ShO6vIKwVrHshnXe0CSu4e78OryJDNSxSnmchn8mVFLQaQx6fifWxuXB7FfSe1uN+pOtEd5T27zzP9KOyxxVEszmqj/SJZ0gsIHC9pCACyWMZgGufptG6j+kcdXsG7QL2eo+X1vx5KB6b+do4BAh6lAccQ927DVilNoZCKx2z2LsRMYY7lwu92XtmYGboDmCJeULplgRFnhlniZO5yGejOJ/voGmSMHZ8Vwbg9qhDG86JOJE6QON01aAt//x3Do3h8MNYiIVoiPgZ5MTf0L2KbRNnvD6TCgl6hffIRMnNCz9M7C2RA3mN1yI+WJWVjM3gtlUzxQ8zvaAtAbmkWeSgZLTR3+suJ6pxCxBdWIoxQ3Us+VKrAF4OhA/4rYAtZyAyeS8Wqh6U7OxcxFbGFryTcnQ+BkKuA0mGsPuDg7Ov40E64zuWO1A2ueVFpRTIp+Urbggjz4pH8hNyvS/+s2Ty1NNB4DtmlHaJ3FinSQplfbgx8Op3tpde8tOaT5nB20Y45vOeqSdYsc5Wi8mm2znk+XK4QU/9/3EhHoNavSEHtuo9p0zQfr5PmbETssl6KdQ09ldxYeRe9zP3DpijGdny4d64TBWEjtxqB63/TIHRdFGPKGpwuCSaWJT9jFriJZfhoUONpIjiJpB3iitDvu93ktRko9Sn+iVYZEmMv5HnTby1+udNU+Z7poJkQMo5lxZBPHpWX+bNTwTLwrAkcRRq+N+zNka7SYeYyZyTX6Ca4cYAuH2pGOPl1nGaFyGrSoMLFYpH27eOfVKo/EUFMfXDVKEAf70qIa/DZKNjRpgbRMwtocVlWi/yVlhzT4RsWMnze4xX5vOkzeHCZWd77iPshqVQ2rbtPP5GNWIX7vGd3sd3vm5d4AmunO7CecLu7yC3cZR9S5U8UhSx6hgHR+mkzqFAa48UgNNdrV8JhdAwV6oTGV/mRkt3md0r8bNOfZfmesAUmjrX8H3Zw30O8UtbGkddwOcMyQXE7v9iGTN7Dg8Nf0xx+TPZSBFpDbGCx8/Of+zfrWmo9XY+0sj1Xha7FB9+uVK4mtpIhA5QYYL5I3lUqTWbBItHtx5C214gJnO+H5INuMdi7/TmsmviK1WBw8cxjPWHmFhJm4DPyn5yq6E5JOBMRSaUnkbduWEFC4q3RBG1CqM+DwXhNABfQ52rookmh9I0gceDD0idSUu5/P2UFWJ8KEcLd5PE5ROx5RNY2VKhHYaQs0P+HyaE5jEjjAYBxV33tcTpJj7y+0wzG/O/+6Jci0xlDgRyQLoIEK857q0kx/Z5h1LlmepI52uadv8AvoREb/VQ2gCal8oXNJ2g0Bgg2B9PT6xX5uX6xlZjFnq6j46gqgZvilBm4F8VPvkxeQvO/wMzlMBJ+vebpTx6cm0UklT7OfVbuCjHVdWNeZoFCzAMO7NQld4+u11kmjxdzoli/amJ8JASlF1T5VN4Jkr4QG2+Y3HTrNC7YbeBs0b2ya6xo8TFKhXDatUxg8KJgUI6JKAg0H3DyWqv+e9/GOpJxpM+aEqKR2M01S7RkS+8MfpCssw814KXdwIhkFmWBNF26GSHYFiz9ASWSITNtVEQWgbNTnagHRt/EI0JAYtum8Y3OnZVf+3BgrlxNnYUpVurug6Pml8XoMPnNFgi+Vd4ZlR7vZYzvnMqqM6ZCwZyM8HzW8lvHT5voXspmOMfPlpPrqzdDf9VBlTSV84UwIIZyy6LzSPU6icuZIf9KGLsYaPRWpzwNQEuJDT8ZNkMeUsJ0Lt82cTyOVvdC0Ti8+VYe/GQtTjciPqLK/XnFRWlxmx0V0t00wW0pMeSkj1WmJcwk0r0GtSqDQWbNlK1mVdLAY0x9r7FWPZ0DLrjlV3fRiZSRYFnwYSzI40t4ivQgjVK7M88ehzEqFl8/XccnX3fzfnLAGg0wVsgwtyMFTz4OTCxcDlYTcEHApnqkyoUiZ1qyL15hdDULMa7fSym/yRTKnEVHyjfFUYN3t1c33DStLIXiv+2h205JQAzLX/Yv4fUVgfS9VwUUtHh3mYEfrHSrsrYiHktpClPslreiY/6aeR89IfMjoUyv0fbToEZHCLNqYW9a112KAFesIZP4L/w1UVtQ+4J/tiJuF3RM+1pO1kgCwdnhJ0JVjiDTxIp/RnVd//SHSPl2pByB+LFJPGyBr0gIOcbOOFZrciOPUw5/6iE7OKbWxGCO97K4xN8uRIM0AIoUgxcnubYUj3TUu2AfP5nF0CNAbMRuMQm5lkLG1tzpOt5NCH4qqE9ee97kToPgLKaKlwMxs8AnAJDl5oJnCJKQG8dkpwTn6E7FfkSgN4Kvseb16XJqzSYcR0TpRKZp0FabfykebvoN2xhWp9HKnHVao78tuLfx6TjPwDFYYCMRH62sDOIGS4kRv1B/srehO5ciEH2TUzQVLZVZk2LVnZ6rbs+/3ZoFW567Jz2Qa3O2nq6WHe2/AYN/r1lXQpL6Jtl19bwC/ocNmkEjFKb777kyTKXgNDQW3mpSWF2pfBT+FOnu4UiJKJYXUHN5G35cb0rkUU66yoseW94d+7Ac0jeORqZ0cYpFYl6Jg4n4n5WdpMjzAdmSjhkmj/rIH2wES0ucWkCzBKq3xYN1iiWVq+0YnrqKwR+m76C527jhvmxyhILJqFqWMrPGNlLJCvZH9OTUHDpDeW/fP1agqenlZM/jYsxcJuvCFjVkVSIJwBuA5feIdzKvCxD7iPTLKdb6fljxexRYOX66VnWngX1N/gk/bEFXmBb5E3EHoDa+cLkce4Jy8xa3lkdJsWR1yNpSXbzPxrLmvXx2IMhUlN7k2IxrUQgHTwXJEarOGFoZXjC7IuWGwJUGz62lMSrQT74zEI/WToweMQ2jGeWOMClVK//pXbXWTjZ/Qit3xLbo1CG17XFLMWLhjILDsoCUZDVTQ5BRlIb20vAADOFR3ugwASxceWI3RA44hH7nP4LBf+EIS0u8Z8WFBoNinH7o/25UWalmwkLbtW3ubQYvGQkGae3nXXhmvcebI9sjhCNqrvalM1JPWv4bRYrE30IMrZ7GROkSdmo+pbZ7S1WUfeyWtqxe0uyJPSfBl9Y/63sIC1jyLRbj9SfUDMqRZNe8XM6AjWKrRsqoS4ss3yEhClXTJXSMOOZ8fUmFgTC77SCQ9KpOXiLpMC9UESDcRZyKa1MW0+gZuJ86VCK2G6gSbAnwDgOEAbtYe8CZqewRm+xpU1cn4ss+iso5Txwcw8t2+hR89RUbjEs49sEUVt2SRsF9ZGK3FTah86j5Aq1aWYenkuW1albhCwVdm74O+jQsQO9jv7u5KdQHA48gY/EzA0Xip5p4CYzvrwmluQZfyLP+BKE6qAxj9jR1SsD9YzjXLfF0dm8BD/EhN104zXfGU3llqL3WaoD0/g+j6zDkR7hvykXkWhQQDNhMKl6XRuZk2ywUmyJdgvAR62blCcKfVrN5cYq/B6co2LmrnN6rdn7vGqE0ZuzYagp+ZvC6p5kCdCpLzuzgAwq4qJCXzVEupKw2nNG9mdo/fvxMilVfjr2zvJpT9LcrKR9QqJBQlppCqs33RMdYwUKzflf+GXkkFYUcCag1/eoxvaVQql3xQCxQFP3gGpVqNtxdnfrGQqazsQINvv2/d4Q7l0Tt81C7zoQocUeheQNvKwUOw93j+GNNg0Wfv4Xl2acv5HzoCUgHN80U8usygpgoUY4N4K/1hGKBNKoSWYsNAJZzYHaB/NqzBx7W43YOeO/JhmB32ovfCuyMd/8VEG1l07uG6eRZNdpcGV/m7fFBEX5XYMGNYjFBrUTf36TwI8JuaOYQyXASYQtg7rxMFhdPBqQdYiD0GeyhoNM03xnYhP9Gf8DyJFDx9kAjLhhNxZdaNxG9jHsmD7J+y9oOf9JM3cZ5Xd/Pe7KoxG1mqsQ/B5rSFOHxAjP/3czNc4eCUz69Gd/P371w3W6ExBY795kyj96r7aAgRFD59mbKAodGioqEB96kagv/lM/dm249PdM18VX6IJ/+brWW07HpIAgjk0ZXpTrgrpWsYrTxve/E7KXRR/33OPXNFLNfWveaz3TETrPAL5e0zWaJLcQ4NvqeWjMD/z/1kh9wA/RaAl67xGooLOx1BMFDEG87QNjT4ZCFjeNPMo4hQMSvE/Tg7CagF6zJT0Jb2mZQYSFOQjTqeXFXqsG4BxiT4mv8/ooh00eg74EJpoXnYjMy4Kn7s3m2mPiHHFQlU5Hzp9npMHNxZQApXm5cGAtk8wqTBFMGnqdvR27xqXLm2wUhFVTzHw/T5cIZ88H8SYbRK7sFR4r9b8QkAKWwmncAT/gg3iixSfU+EhcYMSnMRTbU23QD1RjaZZ4RUNU0GS6d4WY4+Gj3j0DrAr0KYJTaWqfl2WdJKSkHbezFAlzB28tjuAZkFZ2RzIy0QPOrGMiv/G6oEYaxhLRjDyeloVv/YEyAgnMB1xmkacTiKP0dIBLdQD6DuW/5hJdYExnDrkyFSfSE7e9qZ1R7dyCfHN1Hd/9QYqEl2/tWmQWbDC837H0kSTS5Hq7n5FqCmFJxmV9lqZ53jvXwD0YcMjf5grjAbegviD4ROaK+t3XZ5vT7x0xOPJnlBFNuI0XB+WfMt18xl53ydDZV85ggBZvVJGId3CgCUPb/N2HHCz3GUoD8YcHe8ZBsHn0omHQiH42G5Skf5Vf14fU9fcvW2zG4gybK0RlxZBe18fhUHBnu4bBox/Fr51rYLGe1fRXPgXnyE1YLLXE9YhBXSaQ4hQ7qB+y8dz8j2nzCdm0kX6Jn7tjgayGLBNe6RuD0ZV6wwOePk2V6zMAsL69fnCMc/t8ZuPYSiiyqlESF2JZsMYAPY7WW3CLbM69Xc0cflWW/qxrZIaIsxaYYF0S3C4e08WppQcziaM3y+5z6idkYPiT4oZ3g2YBuZ5dxLPl+GE24K2pDMo8n/Ws0TQdPZx9R6BBdUSf1fiIYVNkfd3/14CGutkvVINlFbM38tL726LabtXyX/W6ZnUCjsnk6HhKZ4kZ+QJStrOO4EXwWAe1gfwBE7DL9x3pnsfiYr7UIbmp7ZOF/feZDDvOv08rfp8joD8vHtKnbCb9sxt8UJjjo8wgVMRTVWy6VLp0X3/s/lXQ3PFEBQ0RGW2phbB/jwHRtFPLTepyBT6unamlY0Y23y0KagSf4HuNDFur1pcM9B+ARa+KGBYXg4IYDDZgNxvnJJo8d7FzrAdLEd3A1tVTXmFfee78PV/LChq2Qxp1HYWFpo2kBjWzF8BhD4R+90seGeB/jJlyn3GZ/hV9M6LYSfyvO1pPmMkRgWdpAiCUekr2K1G/UD+0Xv+awTJiGvRwr1Oa+heQCDpuUFiQ/lqAQ//2xjqLIb8aEA/zRJWONDDqOk8Ai3CRIpnNU2NQNbTkVvSVFcO75LMwE7E3YCtUMeScRPC1T6pEVhgP4ajTbN0lCXnstCevpNj1Q9kEr+pf2TrpT9vTTe1E7pmOuVLokbN/TgG3TFXnxrs7vX4NH1mEOMZc18H2Hhh7b8bQLQ5qJZpdvVNbbi66f4j6m5gbBC7hb5wCTmMXLWMufiK+DSr82yeHxgLuH/9tkzr9nEZvQRbgz82cWEUW2318wwzgHtsMLnmSlUyM1DN6tdsgXcCHJYEP/ojm2fNUOIFkUnDdVYLfiT0nhSd97resF5QfIsVQR4Z+gmPnHHA2oB784nFhVi/neZhrQV3zrfjmW7N8HJMqN8MG823/EErcB+6FZcdpulWiAymkFwjvIX4DlQY7d24APzm+d3RPp+ZkQXFoQimvk/LT4qwqnc4q8MwTWoV8xhYylhy3N4a2Gq6RoYPxeVZhwuL36iPiN8CDMB/tS9FW/HzVu0Rrl6HLb0Ep/GpSGOaOZqtAvvBtk7ZqhK4EZFf8tWnEMSSeJ2YLiBiBAaYGw+4p4NsW/DJ+xaJcmH3od1+z3euHmbwIp2ypVYYEZDF73QW42Okbkxai2NxChMUwu90EXYrjsw778y40AE7c07yQT+A80HWrbPNBIVY15QLDWq8SYjPq7WsSPtd1O1JhdbYiY2rJlg56mcyaWB+vJ/FepHOY1G223QIhIXL5pamKV/cC5hz+o8z8zGLvYEzGnHir2RKxn15zOf6G6i/2qRSrbh/PynSF2Hw0IyaE0YsqVW1afos877OJq5wQ66GZ7KtqmaTgY9Y7Kw7qaP9vYPIMzWQ5W08eholSNhqmvihLoh31VwRbYV77Gp7ecwxKrvuLC51v6RRDBJYqAZZ7/vvhwTrcWMT50CHVqRYTPhAXDyJPP9M8RXLzc9SlU239Y0KhWB9k/sCIwuOOZoMSeGqApahHHuM0lezxz1PzDJC5dUte9bW+cVxzKGTgfVFNqoeBLrkJNEA7y5PRURKFf76eyYerDHljnoWvq940y6GIPfB9v1/VKU0ShiAhqY2Xz3v2iguKIM1GqMo14JtziMekhapiov9PicDRSMiz0pvWi4vFa+0VJe3+wLkQrXZgtbu5V+ETPPHE05qszM77nTJgtt1gYNGBhwG3sw/O0x4UK+EzyJ0BANUK1nDifoDThwsbh6W1XBimndUgoAXmaNtaIanHOouJZbKT1EfgcdUob+jC41AxCO8ZsX64AG3pxl3onRXqt2esKjeAiQveQXS6PmDAb9uI9HdVQi57JoGA0tIOLDNk3v/X4AHDrttOmx0GOy871MozItSU+xk9OlcpNcFkbA7XOX3i/aV/wbk7qFiJXK2Lgzoliu/Bu9EWnUr/Tpmvk9hgWEZndUg1akShbfA5F87XwgkP+olsbC0dSyneYntOBMbY4ov9Xa4RY4XWbDqndVWysAED5rVEU0Rniq5sEPrxOR+FiMeCIIJshhRNTUgUsUwLvAZihY5OzqBErws52BdVQN3b91vryfJkb4L8zGYy3KNWzoTuCTC1NCSt6usBjO6LJeCSxfYNuhe886mqTu7MTPozTAFDMQF44CiESLjCPKtLrfLxwl75wfPu84duz41c7/d0GMr/yZviuonnMs/astV/BiG3lxp879EKaXMXfew8bNEsZIHMazNmT6CklJZsqs/ez9RnzwcVEwO1UxI9+OWzEPn/H/fHW1XaWR7OeRWc4Mtgxn5HyXTbsawOhJ7im+gIVb09jwq/BQvqKP/SHKN9BBGAncBsCPbsPph4GgG/Bmw42/RDwqOkOPubRlMr8Cq8YInr6IyipwHgfJolkYwiKLwGJUPnl2KP8Z6Yqb+/u4bxuUDLO8InyFNfGSe70Ah99r8xw3SZO/e6EW9vr8KwA28L/qmqlCuvf3+ui5EryzwnpYbyqELDnKvEQAqFCrEcpmdUqDZELMc16lESpI4YHt0N9JjvohW+y7S2q8OaYW9fWZlUgAxnq6LMEbbWgMnoVZK2mII8U0ruSZwYEL8fm/+kW6O2fsultyxB7LIGB6/fGvGFXqwaGzzZlWZ1NOlUMAxSBYqC2iV3AWozjqEq6UxCKZri2dvJY2XA2Wqt4cr6OBFV21o8MGLZPK00XbGzVS0xaa0Qxjkv90vV/sIoLUBzqOmEkS0iqEwg7+aCEOnXTmt8Y6nThejF3pqqTRQiTWyVGHA7M5/P9pQ9CCszAl9PsqkdgDHMB8EKu82CS5wBpGtHAJ+HJ8tLA3aB3sGB7ajDczIBolqNJ20hGO/XWzKENTWBbOEvsQu7FULRhg1IX23w1bQm0+CD1TJfz5/nvwXUSZEPO72IWdAcaF+XbF6ldoUgCW1XzU3ETwr2cJ5Eya2SvP6uXGYdL9rS7ferslS+l7vuI+OyupXo5pnWq0NhTNIzvXqlc1rPk32X8rOYWYlaso01qh7+TC41dmODM9N15S0RO7FggfWXAKFABwFbypxCigG4ZF7Nce3Uz4EV820eAg+XZo1/m3Y+S+dn6Q/BOUwHFTgOSJCL9BswDIti1JafLuUPBoMBMhtotWCPs8JgJAw0uMYDhBjsSn21mkoN2XhN5Emefy1aGiWPxw1YqjtnjCquPDiIdisfZEC0hty2aOaFUQuzKF5POsXjwcMdHRe4pGUXJ6X6/BoMovpcyeOFVOwtdQWCHjK7l1c9InPV47zGG78cpMsfCjjswdV45xawAnGDuJkhI1v4eqaPyosNrK2pnnXLZkMHtF58Z5a79HeEv0TTjwLBhZIpaog0B8uixWzBcYipdJVy/F9oL3jPznxVlWv1SQIGVVE5b3s2V4hU4dUaGf2xX0MoakEbuu9fD0E4wZOalkM+cp4W+5YNtb99d81GKJS5Fkx2i/UxEPu4pa0g6mv34Pij4JDc6KaDwgHMeU2h6uQ+p3zc5rzGsAA92kn3O2OryiouIvX9uFPqaY+qqTP/lq+P1zPOEcCsAfYcZboTZHugcNR4qDDIC3OnGFZHQ+mcOwGYFEmdnDSDLoWS3o2lk2xivX7wR/dTxjR1x18xv91BVAIaN3UVoI3xlAtxVu39yE8DhgxyrYdTPLAP+QyZIipGL3/g0wq/qNGaIiuORqOp3NWECamcpgvFfiOPjTpOnrhfZWpfW5ax9gFaofEPVUmKENLA+Qqf+8CA2iJCMfW7sB3lIkVFTugV//hnjUjeJ+G7vUMlnUHxgz7fl9rITW8BguDVhj3x6+EMO7Hjjly3XIU0DgtyXMdTPihTA/Zg6x1VI2dnB3Z1z0DS8furwJkHqdTJpaiJpfcWV3foISCAJtKIEeyjxsohDCkGVBJwuXTvMNCokPpbedOgfpzCLAIGhCHkSBOzhdTvFSIkRMoQ35nTq2gm7+/tCqzb4jaXlasJGMjbyj1aCmMQJzJGsVjuKeOzgqgv9by5wXROH4YsIQ9MlV43L4PQRyDMH4ewnmHPJvGRs0iTTLdLwv1VsqDCyA5c6z5D8+bvlfPM/P+KvJVzKKkAI+QkJQeLuhejDvfKmc2po2xjdDR2V1wo2AdXVc8QCuaqxCSivd+zEkeOTzNWppLR1ZfVU3/chQry86nPDhCQ8oPzFf4vqitj2rmqPfh5rOD5QB0ZhBpHPGERdyO3rkdsVkQaA9RxUHa565N6fwLOa5rNvzunspHqokYX581ErmqNV+xmnH9sXOL/2UclpGvUPkWXLPtCkI6VpCn+8Ux85ed6bRwg/+RWfU32Co61uNoWYAFFcQBAoCk5KHdZ4nr7CyNPsZv+mDFkai9ViVM28PrwwxHTgQxUYRj1n7DIPHzkhLxTdjYQ5ByGktwwxChihrTmf5XcGDVoQXDsDZh4Mv+Ap4Y+qk3s0JGFrv+Xfnymty9xf7DfNkfj4TrVETt1Z449hDHoscUKFjrX0q3xeumZpBx9YOWJilpnDG2WLWC8tcAYm481mx+rkAzmR1JN9lSHNOi/4bKHxLPcExr2bCxxNDbAog2PELOkvrYdFnGOUd9RfZQQdoMo6db8XiX0sJp/gtugQusS3jXgfhXZFYiZef/vii7+NcEFABGtGq5T8jaCrfSw6L/eEBiwuLw8nbxNdbk61MafixEoDfY8lnXtXY9IeWXSwsrl8LlXsIwWdv94Btj50LAQZCaudxGzh+cAVu8FAmoU/kfuEthglB0nYxHjjLqHIIlpnqR/U/gzXedL5hhUIzThi6G4TShVpfA3Y+uhMwe+ZnvPw3OkEEBjeYjkU0gQAV2gfPGiHGUdqYtxqsUBzpeofYtRx84XO9ETxwBtwT2IUef85BDJkur/vaNz08rO/n/faZY8V3/q3Df6BKBdCAYi5LRWQHzh2l26WxNbi6bDd00tYqdn2nwFnFgSHbZ36C1fwsp46dAwd0RF/ZCdkuZk/5EARUxirGtW+Sy0UqSPUENgBca6ued/hhj6qXN3nOMVAm3v67RxG55VuLA+ZBnqTeGotqH435udMxbFJanc7H3HRszKdDV7cMM+C5Z/yKdzlm+TzPM8wbloFe8m9uT86YYUMyXAJv/nNcs8tojEX7Fn4f1H4k4hJFEbbk7qe4JtcoKvKP2GvH2aU57vC911kS3u5+6qXuj3BC1mZqDwcL4UCAn0N9Yk7kbH5AxvtHSe1pfRfuhA8Lt4qVjkrSOdIlPK7Hx9LmqcEIhqEmoNYtKk4pTSCCOmJCDm4X1jDVxf3IaOyYwXZSxk5nm3hsOoYZN8iuT6rOE5V32+eiusvNdsLHqlbZ/vhdb2qloclW9PV1li3kMoy9wfNYL30xnh8VZ6vdZMB6vcPO7EQG4FCKIOdgxJpn+ahI/nNawWaD62oS3VukOG6jA3OisVGJ0W+uIFAHX82NmNs+3BKzwR/jaO9kbdEZbwLnXS7hwu40qZXNzqvAjoDhuDnEaRAcoJluYr/3nP3UkD9ksXGkRjTB3nCmMR/jw2Oe71LcV3NGp6FEhEyzBAJqvjM0VoSSvq/iGAFw27rQs2zrG5JTcW2K7XF6BK5r/Sy1YZPmnaQ/9WOzmQtkDVZ7HeVw+5Ddy+EhtO9lEn75rRM4NwaCo4Q1T//qX+dKBDdR3Zb7swxmiUotcYKA6lhrN/H+89+umG0hmiFw/9kKcvtXVrsO8d+uQUHTwnBNfaMbO2RtK7/0DUNXWp5Zvdotov6mNUqQ46sCsZNmJaVs7zpjUYRTon1yoCfyxSt/smyqiRmTHIR5wHqJYnbIFqWLASifpJi3ty56SBIdfjydh0GVVOxInC+6g9G8tQB404aknJBoYbg2H9KZBodY14BipptgUtYY1ft7TuH2sIsdOG31M00QEcBF7UC3XBOcZDH+ALcatQOr5Hc8orjrLPprC/7VCjFnY4FTkILzgCEA8w4qPO4OrqJ2moYtEhB4mmwjJfcvq25MGz8+NdqrhcEMJHUoZPnmQTL3SWgFjyusbeKG/O31Q2FSC+x5f8faPUC1aK4rkYcqYX1ABFVr3U8jLanHuC1twGD8uBnQC6VKmQXcEB4iDt5IUycdtmeCc+2uYewnE5VojPY2bh/D0fuMaloMpnUeEdFZJbdOObv7yneNlqniBFuItbBra4kkiQDScNzYloS+7CwBiRJSY3KxJJfHFmfVEBz50o5Ge+tvLUjfP0HEu/qKd8mfVDP6J6BIgt9sBANZxfMzI/2E5IYEBbx7tyTZhJRuhVb497mS7HQSL7M3+Jx1UdI4CcR2grji80vYjs/Sp9qohF5G5a0KvswmKWt42Gp8mCC1zfcrmtOFES5CiEJO39hT9OrD79nE9kcvRFol4zz5w5IoBCss10PMJ8cAPeWKOje3wtbm16zyC2QgeLo460TcIdCZ/lxwWhrxoFll1lHrwhT/Bio8Meiahp7aLwTmKlNTCmdbMxLaoGbakmbaewqDILodLEGwZVO+DTEM7YsEN+jAZ7tutwG/XWoeaKWypooWoAB3ijiXCbCiuBod6O8dk6G5fmdGt2P2cpjMcTGK6grUEnfjtbAkvhE9NF0iMCATaltg8jGlNq5k2ogOHXrFSC+BhV6rMVmWeYlhSzi8AUf41Op/zi+y2MQHjarC8qrPtXz6DPYfruMmfNHsgfvBJqqhBDhPSaVa2YtZegJ48tSVLen5Ferh/S8CI67MNPeMrOcvk2wOElSIM3rNu6C6fMOsgJDE1GI4wJb1brisC3j+0q16EZMa04lWitZX0geHbWq3w6OdRQ/5kO8sVaGdzXtMeADQ8yxu4j6qbLx2igUooFJEmOr7R/Ei7mutqcO/oGjDdBIh7E/9hq6JOlGgtnKjKSYu1D2Rp51UFDyJLYbGYYanUwESfNxkKrRZShRXVJTZypkE7nVaDwonws4v3Gblo/o7AM5/Cwjlg9OjfPrPhmQ5R9DxXWR3n374m53kQ5IGuoR3vxb9/aq2BqMNfMTMQ7cMDw4sIuLlV2vDk2ldBX0UOXUHI3WkTxIAGRcDKhVxLBz8k2BL4P8zeYpmN+W8tlvqra52mD7NGzp0Ji3ORKubbOTefNnFgDCtJq6WE0OPDsHMCRuokmgBW0wuI6yH/VKCO1JFn0D17TGesSdbYGXUfxV4j8a2sk1oMx1nMrkbE08KudXMW0gFCAigCbKxMKg5rD40FETMboAGdwgkuEoWXsjPv1kAjmLZeIEuqI6H+Ox39K6YiQatnvTiKtBxW8Zm+3wVPFyw1eCPXcREdCWhm+ZDwscMoM1dlBww/1i/7djplYis8tG0cGsrouc6+xuEPAClv1LMugxlF6wkYBN7C9D+wkDPwfwB0eBxdmQvIXwDh4dH/gu2BV+PjGj79h1ExNWPSZOKdNx5VBl1UtHxJ4gZAnUrSsdMaDC2kM23JlPCFaYckfhaC3UFxaqIdeDDmW/szCBhCg1jwDK+kQ7l9CmRezXWog3usD/1LKz1YjBIPMTN+fQLN0352j5dkHQea7AaAp96VCzrKsvqVyPRdmaww7PrSTXLIP/GLuaAGGhzG6NfdhP74ERRlPXPuU6NTuOZuMfIykP31nNKYgbdP65bI3F8TYOFMSpf3ZGMamvHTgH+dg2zyTe8h+o8qd6/d3vd4DIaY+WTQ+WIqlaPkcfDy8TLI1kGbZkDOnzcWTQPDLa4HDxfWas0TfQkga81IIUiS98TpK3ZFkYauhLhh09G7T/TkJVPAPmlFR0CRLQgU9JWRwZU3dNxCnaz2hg4GKUWlM5FsHvNeIkN0Yg34g6MVhwpbFfpbP7KxYsN1G/knmuFi8Z0jWSTM+C1zCuhJP4TZzoWBEg3qT2CWS/dQAqAdkyl93RB9dYaC1DHKzWemtW8xYW5NIxrVBjKEqshjf3a1JcXRIb0gU2ErpXzFN2r3xdPMHBbm3JDQIaQMsegtXSbDHt52R/xYgRxOU3MMnK+z/RML2PJjw8MxW4YulvAmGxabZpAEpPI07QUPN6cTCqDJg7cCIi9D9WVrQnWNxYJ+ViepWGs8nziSSdyfbRXKHeALB7nw6ke+A2LXmTi+uAJeyx7FBDHyZGQBVL8u+aLT13e1K+SvoaE27I0DAoBt8aDYQZW7splN8R9Dl9+YAH6qflTCySICh7MuvrsrKoe8paL81+zn6SxEE9sSRjtW7aHMSh+I+tBRc6JgIXOWtdgve7bi/O4iaqwr4ZfYZoEz5Bn3O4Xv0ZYe65KbeVrupTQcwzjxmQdxw7Enu4gkt0fPLsm9r4Zd54ug+jJfL2bNuSBF1It+LDTGbOXi+MyJVX2JwWmPULEWtdPNlcn16ZBDlFBMk4oQPTCrUtKPKu+6aE8pDp1RHaLIaMk53N7yGuV/kI89vrg4MqD1Ku3oXMJCOzMz/4xVK1DnJ4zJc0HFoYmukBWwhJpyFhd8RJjIJcSUWIXghW8P3EYLE1+jlF4u03oTwvnBIXY7d7g1JqA9gIWqt/yp8WuvTJS49wVfOMaIyu4rbrTZ8KdB0shW2asyvYFqmLVmG+LerWugBdPqTIKPUAWrHwZtDlH21fQlJlD1iO3NvRlYPKGlgL+1gbtd0piB2N5UlxSInV5H8/OC+eOqL5RV9TTQDd/ptJ7zPYh2UdHBwpnIZG8zGICN781Id18o8Y5orbPTzpcdntwCFJGD0pcz4DJX6KtnRVxBXtYBJu/QSAU6KO9EVmlkTAf2Weg86kdirsXgfrJ7zYwWD9HxpX9AGyyVMsLTZStB0nK/DruHc+pz88xQ3LXq/amne4fA3yQpIYiasbZg9mfq7/RyLxGAzxMZ8aO0XqwERB0KQEcvFQMmgs1HteVDWEpscDcY6JxMPUVo7EUScNW4mGcj+ueIfyN0HmPhZJQgvF5764hruqJBV9nPTHwRm+sHrgqy6SwcnYrFmg98y8fiGVNVUetn6OMh/79jS649/Tv5m7U/CzCZG4i2Wjk+LXhBVSQ+rjL35supBRLePIKV0sLdXNVVKwkx7MMRYP943yuOuac6he4TiLJfUTxTsrAz66KbfZYcMGuU62w7kD3ZBtEIqHULjr2ahn1aW2T/tTSjaL3HuWfpQzpo4OPGZCM1eE5AEEQ7SeLAwqN94fQKqSCf6NfzeIxY607VLe6JkuLvY49G6JXRX9sHFg04RcWimBt1xcZ15hYHlfymWe1V2MF/jygS2Yk2HrcqySzNZK+q0Jx8ahjxQuvH0+W8F4A4ljN7ZfxdA47qngq8SQFmtS8Rk5hujtS0ducuoo1/WKu6loqmtLYexDE1oaFGdbgQMESbkrMTqs3Tq44wSzK4N4Hzc3nfRuKhSxHAXKWT2QAlnlFgc+r/eThajQRFO8aR9MS9VfLSJ7L8FvCbFUSR8W8wlCSAcRdGyEl2vVAOZvU4zBekBsVaMdTjE++3klUS9FVz58RhfTTZLkq0BvO6+ec7Ijo2/5Rr8KtvaApHDUWMwbkW042ph8efmp/itWfucB3bMGKCDYEIg7u9DBeEr99UUPsu/5BaC3dHDGXzbo6NvU4fPOpjVAA46IQkJP7w8f3fYsBWRbpen8EXHDpqRyZtLXGb2r/w6A6HbpMyDBgIQx8vqlNkoxdDolauQWL6NHiHFnJXd63Zf/t3PPEoTrGuGCJfPcthbfLVntys/+vgbaAUZ4H/CymA17xI0ne3Xp0lPcMXNE/HD5E77wVyWsKed1ZEzMjNXMlkoynBncNM2Vkz8451hHfh+/XV5Ch1E7F9FRU6QFKX44gRZ9jHm/Gv5ii+FNKsnDXAgrP5MhEQa4d+bV68Jdili6QWlm8KG6W/6OlBu4TflLit3b5T1cdoj5drdF6JgXr4+AylpzkqlL0zKlbNPUlpLVt3i3H3W3i0w/8nyALP39czlWWqHH7X+U9irgLDjI1SESEsZSzqhr7d6u/h1idCrllv0znL+2/VZT7BduUBsj73eG1zbcnrxSBWRcOac8xWr5qz0i6uISUWCHQqq0XJUTmjZoX0zJBfmfS0p/WuYKddkSph/1XjLrR/unp9IDNtCJN2hb48Rgtf/cUI7euG60RBTjvpIUMbNB0FeThDFKeoDDazcrW9ZG4Jl+cmznQY13EG150RfVC+64VSwcei/RSyK8WRcZFDGYrYxDHeZuQAy1R2dexZGvMnw8nwBeVdAjuqxVhmPhTh5HbIqZ8DykCM1969oxzPdsxztg4MOdWOofuoL+PG0gBttT12R3S8unCLroCx3Xeg+BvirYev4nWf2wzBSw5W0IzWXYLGqWJXOqkTy84JMUNJCG6WEVQUwuOmAq3IeGL2poYPPLD74XKBcF/mS5JuBmXCKSq9jhfcgdLwm0Hm06h47ORmLRXfbvn/kSEGeqKRIxwinkZf/yFkaieYYK8DjJnQAxhCxGEUHj0sW8l4xJ6dP9ht5iWeFzoE+Q+FiC2Wdy5fZtugf4qCMGhC/MM9plchuH49ncSNW0rElkCFESFyGGophZDiWUJKwgdi3YPOyjd+FIX4uWCkRK5ifHITshrBeqklDYM5bR41gl8r5vBHOtE7GM5x4gD07rP9tismR3PZiXNTx1pYH0MvMv5nEnbgXu+bv5O3EjfF4Kqayt13Aven8IF1rnhkYNZ2Q/gdGuBbHXZ2brP9srFmdcvjZAHWMB6vtmNgry+BetgsqnseXYMbP9nkx8h02BlTzM7FlbmIkRDKytvjRKF4fIbYMtHvsTEwsEqcwYYcIyRXQcKyP11bm3zqCIupCSBRhMULkdwNw2vfTHYh5WvWlczbtdNHNlJBNk2cCHFZS+NMIyBdAxyprpmOweGeg1tjOqnQaGvTGixMYTvt+mdMhS6yVK6cwthjg/BJGYvhwAmpBrrxx1UfvTTumEmVCeIDBugix5yvIrFqV7AMfpIXykfoLjMwBDtlFHI9CqlCjEeaLKjTeLvDlD8mYsU009I6utc+g/lu/h/Ov3ECGJQjx6QDAW7tFkJ5b7P43uv3i25lv3V9M88DcGU+IVb/x3GzVFhyuR4PUXGH1qXxnkPQl4yI8fWqp7tHda2Ec0D3Pa/sC8W8RwmaVGxlnS7fM42qVxA5Cz06b6oMf2RDCHbb/ffAvRvN+sh6zECrBHESc2N747gok+/jqAoQk7TxB0RbcTeI4S+t/9Hn3K1nq0zpe7IEVyamzBo9Vq8tAjY8ng8VWwFRWxfVVBf0YYWshpLkTOJKCiPwLuegQe6vjCzfX9ENhpwC81Rg0eM1+VdV57vTt8D93dhDci6FYIG6G5uO/1g2yrd9O4iL/zv1tfI+vkKxY/DM8KEKhXdxI4Cc2BnKqhv8FB9XPyr1EXMkTggiEWefh37bzUssqdE4cSe8Wor+JP15cSU8FNBHvMqjOgw3DvC8KjLm5xWit5lHQvXKvo2f0PH8K7d/HfD5UZ9f4ferzivtDZyDLT6UeVzNmaNLc++inEwr5pKXZusV7RTWPydop4A0yzlewV2wBnAG/t6cUNZwltjCeVstYAwUZ5cxqXrhtlqgeT2tq1J5+qxKk4Xah3ymub6H44ALC7nphJ1nvqE2CJjJ2NatjvAC+a3xAStZL9S4tC+tWsXsZV8Q6jrHWulIUovczeiZwE63pCDpO8PhRplTwdNhrnxVfoTv2VLaUTVY0y70/Qiv536vh1frlL8F/2owXGQoSgWkPVywWqa92UjwKi+8/NBB7i7NaR+BLjA8AoZxW32r0V2cwdiL/vSxVXwPH/zmy3yzLsbT7sLS0M/risPMHZSjQLU/Dhw2kf0fDGsc4dgmXlJtCluqgHzXkgWhAGqivwOg6laNR4f8SmgZV5JtaFikB2+JaHZTqeSYwzdHWtTmj8ZCEm7YF0Tq/4hwqUE7MhOxGjdbcV6qLI+sITmlHjS//63pVhTjLjtvApm2FBlFQIgtlFhPncIFJH0jdLM+u93108vCzYmxXAH3MKjQvEBkFjXdEMwPEBrkC6PSRgmkXtTNZ34McD8hReqT3BdGCFLYQYn+ne2mIOZkedit7C6PZOia687nqbgx5AuzALPuCXO8oHXCRxghCPrXsRCeHjixs0WGePcs1uCs1vpVHvUlJSEo8h1nPSIkXYEJUypzqWjYnMeyI9KTyh3QPpfCnLzM8JTOjSwRyTEfS/9WkLWnNiNFOe2XOSRWdBIlfFbeeNzHJMWNSi2NccC1FkQpS9jdnG8BRtVHbPZ+DgIzyTG5Ta+lMe8SjmB4A0pgauo7OFH0Lb7nMYUK0V7c47mp0gv/BuXoVx5+rHUKi532QEMlURVMElOFo/uT+W+v3YH0VZnXsftrg4WDR/WI3fq2wbtDgG87u1Mq9scE2CcjRfb91hqHozzSy1bOK+pHjaiX9EcX0zSVERii2BsgoCzb0EwdYv8lhXVuiUH/rNDgvQB/3juFV72aCNpYT99dlC2sHwAOBVGMbeyEoD79+paLeVyghT7pyRL4WGa5h+nDvvG5OUTVZV1bZ5uA/VbuONr6KjQGsojdosBvHG1eR9i9e/uEJjs5/BlmMrn07Fz9Ny635kl/Edb+ZNyYIFo9GzkPMUgC6d2lks4QapVErTzVKuq/S7le2Jz9EqiabCFiafJVwU/LX2drP+v9mC2l01J9TyNztZ1OVXsYlsrt0k1yxZ/IrwnPhOrQDpdxehw5eUuz/A75bEGFD0LKgRZEpsuWalOAabZrhOSvZ3v/Za2cBBRa4oRHVAaMLXnZ2eW/6uT5dd87affttHoyNJvrzfDdbW0kYaCGiMBwqe963uqd/fAYUY47Bl31V/gsCCCBRwCPB5z5DLbdNE6bfsQFHsskT9Ppzo42lElOKWwRcOc3CcmHcfD1kPKMQVaFkvyLZAJCVdAnp3qlkQ7RAu1uxxttxWhMQNxhhTjzSeP8fxuSyjkMHhQOtdS1xN2Cu3ROw3yYEbKUf6NpfjYRjl5StZkf9KjwLhVDUu/o0zIsjnpcYnX9z0K7MWPDtuejRqnrvGMwB3TjRLfjOsP9Xy0K8/w++iFtRjUbsu6d4DYkks7NOiT7tRLuVgQh65m7DMrF31NTSOBeYMiPFc8+Kl9j/qrw65RTlS+4Zv9FmDhvJaqBTuFq8s0PTGss+1PBl87E83cLPTm8SBmu51PTZW6NG3B4SsX+4CVtlXfUsiD8gHXjC6q21Jlj3qFl3lxPPgBOD8yrba2/BEBaaTPW3w8rSnkhXLjOtMgp9PQlqAiOhKKEicPljPtiXRd+fY+ceLef5Pi4xR8eUooKfvwX3oFLGTIBH5S01KEKn6LnsU/U/50xet1S1u6HB4Z+CPsoEzxELVqMcmNQv5XwhJ38uWIUsl/zZ0jWagdFrgBTy5HwgRnOAdUvOzv/xv5b4A1I8OXXebEN0XZhm2kjvb0jsyS38YIaJewzlui+YovfzwR7ET2ANn8Xdyjo2wQfpNYOSo4gybQpyFcIvb/v7F2YEji9s7OADizS0/JoSWSGDnwN7mzqEbXMGlreZO7dRqWV7NDmy/u0EgUZ2+JlRQ+ikyE2n7PSKsSzuBFCYoOPX7hUtkBTKwsG7KB6v8coVYrPAeNIFvLb+Rmzd6KQ2inWigcEmzRShT6TNdttVtz2bPAK0a/HAWo6+EcgAmk51Z1g4Wgeh/Q1b9DD1fzf2L+5/ka9olHbIKjfQdcAo/ZkyXYQ0cRJLI+/MlLFI5BwHwynII6j46gqeP9Lc731Wrw1QNzEDVlLBbrPQuqqmY8Am750SOGssA4Q2JMrCNT0HOD+Iaqd2oxJZ3uHgST/KxCJru2WhMxITIa0MCwkbTkcsasY+c0Zvy1SWFIa1N770pg69VqDM/kTNsCoqZ5Gp7aeTAAT91ilfWO5kHIf9ktYD65dY9mYFl3RdrNkz4sMpuq3MOo+oQyyVFcjfrE2MDp5hNDzjC3C8haUBSq3WYzH3EH7l7Ny0sVWR0SNe/YEhdLcwi8z80mSqDUC5FfFekhrfXC//sdAhwt88YxKy6p3FapQKc/gkjw/XgpdV8lv1z4ErIJByyxIS8l87R/SOr+2bYEj8MpYCizdjBJquEaErMUfHkS8zRKJ3/mSz3CpcKdFeyPPiJ/HSGnYZkFGbwnTmW6ySQIPY7yH6ic6wOzJdeyWSYZlTyewa6I4EnN+G1NkvVSl+7em4gDqWOdiH7RHq216hnJ0fEFVh0qdUFsMJGuWKrezdU8nCLvBuEM78T9lJnYpTcJsxTrmrgcKUPy9i5SUSolsRIaTzvefmAmbNdqGtZiSI5LMCjXjofmR1K5k370S6ikLh/AyuDwB6b77oxyUZc6mkpniKgq6yk3d5JsqthIXtz9PFZbhmHQ1Pb7q9dNjksoRH5kl7SQUuvT+26H8iAavl8WjdKIi1zjrkcNhFv6xPb2EvxiVIRITz1d6kxOoeUHMQnqEHDIM2us1RT/Qbbg+HujuXhSFDMTaLExFqmH0oyoWKOtk8iv8tSyB0iQt2w5Sim+TTj5P+tZ1Osfmg6AzIKmsJeViD4yaEAD1ZLd5rhc8oXUyKaLbtlvtYY08C/sg3TJIi4fER7w+53qBSSPg+JFw6URlbyzG30dknD2vNGOsXeMcIOyNoz8ERZCvylp7875E9Ke43LvLZV+3Uq06jaw+YEvNpr0V57+FTEz1uEiMEQ8o7fRQaV1cgIcqMG7lvubEJ1r5/MdaAmF41QZeNkZJpjNuFVhGpnQZLulTdqFBMYSmtVRPBaa555hnirIf4cyb+pcdQe2JDM4WkUYRk4dn6EwgweIYS0tsM5rZPx1SR9T6vhogALjB/XkI1WkRFy3NrObhCwASwrDTUPZW0/xUB2U65VWTFw1OwaYpW9EXYAEWiH9X1dbQ0pZEFkN3bBiBUfwuXH5oaLevubPs7HBbFS0jm7tdmp4ZH0TnPE4Wck9gTk5q7S2RCJw4u7H0Hx/eWvjNbQAkhJpZACo0IZal4pRVPcfSuVCErZA2pa0U52qeo3qnZxDF1DDCbxWuo+t4VnXVNQC9LLZOc/55eU4z16rjvkiBrjQlz0R/SgS/Uf73tIr8aDb8r5D/0ubOMDtdeCP0xw+kA+dbXr5OsLzrlV7nGgf/EYZ5RPBlY/dF5r7P6oJ1WJlndAeJEebk4klM8WdsFkFnsH5B5OiBUbdovf3UWDGXlSv/2Y4wCQ/Qc8pegUWvtTIppJTal25cMIvQIM4w96YdmA84QWgSMsAu1vdRmn7dY6lVe5EdLR9EmGqSMLnbSB3yjfxShft+VKptD0gyLiiRtbnpYjb+SPUJxpNuBMb4rW6ySO5u6AfwxWrUGrHv92E0xZ6bn4isU2vcj0wbitwAxGAnlP4gO6BnH0qAF/o55S13C6sBdivNYcHQwkD3+tvTggyq92ypSJi0Cd0Ak1SzlkkGog+aNPgHWQ/xusNHGy0XEprXzu6DakzMQy24YENt9Gin1Gdmk8hFftkdwMliDcNbpMxkme98KYwwJUSP6Fzz3rZ6Q7N+bwkxLKOdsp7oKYh1/Nw9jRzBzGsXMDve9ZakF8grC6lNFwmyhLbFxcYPG88A+gOlxZEjnxEgf8tJxXYe0vdcN0e8yPEh/lUwLPSrl86TmwUSpWnYwX2obKWfmwCFCTdooZiT8/f8WLBDQ/U4lM2d9jtJuXQVZI/H3iY/fW7nzDyE8Fj01PEea93N3eCbjrlbiggBh8J0TMCO5rpEEvb0pkW58+L71JR+ym5Y+p3dAXFBfoTdlvtHvLutKqYEZSYpS3t+JCAUGhyMavlBJ44ySAcAqOwG6Sfc9YTWtyOK0mPayedPHDQ6Bh0xKRCe2aOLKKhR7EwrryPyQ47Sr9MasuPfEXVnW+PEnA6l4KE+BDesi7HomRvwkpqFKFcGf9H7dJGzN6RUeKtXsPOOkoHO9wFA8mvMH+mjjx97HnXzRVDzAaBBbg+IS25GuTeRA6+nsHvtEEuorruRkn57jBtDCVG6EoF+xJgIB9/tqFy53oceX5abbd8K2cwQEuwdpJ92QpKYZvU9HI0GmhjdGZIDoKx5YL1QXcheTci5mEge0Mc+v5qBgtJZYI08lLndoeR+v3QbVnh/5MAv564bpwRXIA6ROlv+pKYN7YxIhJYatcMibp5eT7ztDS7q0ydGwB4yaxjs+W6K1wcuT5J0RfygipGmAT8h3tdqVBwA9sk3Mn75kItZgjp/VUbTFTVKJqLr2DlI19639RfK246vV2G+RyDZ66to9f2IubWl6/ZyICTGPt97mQHxqOn46o3vdRE8rtSrsmJw6cs9LCD6b01z70n9L0gW5qc+ulCklOt2Gwx814r73MTHJ6tU9nVxQgZOU7Dfu0/kbVuu2uT/BEZpmzGzVU2amqLbyNhQDOpfJI9Urxb6lJJh6ghDxzAOn00SD5KcWlwsSC0BfUGal0WCm4K86hKbANnevuoyqoaH2mOvgz4pbD+JbJxDU4MxO4lLmycvazqDTf3j8HQ3hQNYt55Da2ui0EwFppfe9bgj8X6bJSHSuaPkcfpyunOFlYA1QF29kiYnrLDqXNWCWHs3O/D1asr7oMJtRshdCeasFT27j8UMTBL5TWZ4ZE8StO96GSHGzf8uQ2hHe8fBbk8LhLPCKGov3g0eDmEBaajnrSCmA1PJaF9a9rKDzW/7goH3UOh/0dEW+Cr1Pi9DWJVmqgJ0JH463zptVDFGJF/gHjypyn09vob3u0DmRNuqNckXyM12DgBLpmFLXRiDgRBGwvlxecLG4g/ACa2C1X4nzsJojSqOlOpkNxT2szG+dOq5ENChhdhBVhkOLMfvzAWKg2CE85vr2TBAWvnhRodsA84DP/o03j76ixfW8Z5mXfWB/0/aerlpI8P/bt6h7Q/B1rIoskDrE2vGxFzFZPs/GkfvMCuEbdd/FeBJVuY3rN+a27VSYvTy6GbBA0pozrSjFYuvTCfCpGOtoaRf368XcAHKf80slv1ZpnjlQP+Q3BC3QZCGyXHKSMELIwerM5a0rfVoteObyNvajKD6UXlYzbAqGWzuYc85/nGPUtryGpd7CfFJuHUZPoR4rhse/IAtjh7bvIoMinXoJtrLmUuGvRrNalGSrNXOxYY3STQgp2JfNoS38rYTRwLDzkqrQVK7dr3OBWFvKhInSgVXPdRa54cibiOFsQ9QWGpLSqP2csGDTNr6+lfBozv3Np8U4Sao9iWazB2Fl9kw3ormK+JTvj6xnkguJD8LyKRN7KK0HENnBCRhNT1jh+Ou2NKyxg8jRQNH7e1Y0zNLGtkPqmQTgfhDvJp/yxbF8mf2zihfaqc16Eufh8H8i1WnZtYVkN18F0nzimePDDCjoCOaZUjG/vpRqMxqwZpkyqEMIM5pnPU3UxaPLWyK6VY9htWMyZy+MykDQJXQIESsjiTSbv1b48zziIuos9gvXLXghphlaGmw8kc5N41DeGzVhSRRaeDo2epcwaQPHBmL7Rous73cMddat15PM0IDuHlijVjJYlNqYKBYtlguhITfNtfx2etBQQCY8h2I5cEg9cBPjMYuxVxXL7FORXx9aEOv5rZ63xUpeYHnsvdw6t76wRALptI/4dCpR/qoYBYF7g5qdWVQFkSl9Ka+ehOmiIPNdon4hgPIHKPVMwSubVlotEkb/mQO/jbyMParRt6yDTVuVjVjEnpZiNZeUIfoU1+4/Qgu2IqmV9YksbaSTQ9j9tUysCSlMW+QDGAPqdaCLReQjVvOaKJAo8f2JmgmKFec4FC/ulTZv7nfDUUnlHIdpd3qZ5YAs5ZBlDKJTIchFXejGYmRjD4G0Kb38KvBg3nySbmuUa0Ce2MT2go3OWyHBNC/Hz5dnda8im2+zt82ZXyL2y3AupCO9Sv5mgGY9Bs1+mdqvRBwICGDKqQ1n2WnwURJUBh9G2iuENARhQDVLq722OFqoEmvlnnqwyqmTpbQNdpny8QTzgQi/AgXtIu7IFk3PsJV1qx4KDc5+XgNpEu17rPT7DZWce4wo8kcvL0Ntcdk4RCYZBFTrPBfpMySwhRxPV9ENSOl4Gc18zJL3XKWh+kBfa5OBta0iNU78BiSfOJqcM72dAQPA77FAwCcy7X6CYyTmGd5PwnrgE3GdYerICCehD88VTic8euCjIsxhJc4QfL3psFIyxE9KN1gYi57Cuaa2uGSWQxzv32CKxbZiGvwbmk07fVLJiDoGzwc6gVSYw3T7hoO9gtKrEe8rryiIrroqF0HZGlTvxkcxLZKroaMIUpGe6zT7WRZi0kO1aPSbdRSSF2DeYxqffvKf6uJ+lPCC5rxzL/TuGS6sbtXFD8zcFGbdDZgq1g9AnzQYt0W5pJe+9WcEM0JFS40bZNHXQ+zglGx4eMwALp5QIzzerqt+8C0hHJINIl2TBLly4WDmP9hXxVWhVX2iGZbP+je2wU3h/0jGfmojY76emSZRZaa4/N8mvzGkfX2Wf2fS8JVqK4B40118OHlCwddS/ZsSM8EBTc/J0sLlorddFzM98K0ul0C55QP3HNBDwELduWSE/Sj9WHCgpkQ/873azGuq0MrbKygZv70wCTKPHotrLzvBqsPER+SoB2DiPisfOjElthmZKCTWnySuu7jQmojDQxzYJebrdcEXRwAkgbTYZIaQwWWuU3/CwaZNUGKSPe/bwPIyxOPGx0OYl8UlwTnrkMCujTCWzBdRClwF8kW5xY64pleaaE8Yn0jfgO5iloDxUkt5vTpQqUYA2Z0DDQRnopC6sTDs7aAXTl/FRadYbJpIV7Is85aCvIPnI1wnufO5K9AdG40hcUzM5Zxp1rGmBl20oVDO5Qwjl2DxCeCt0OZ0Rd1/ZlO4iXWfwc84IjG+oJkgmQvn93DuSuQ+L2EaSezX7a1bv9kALnY5VYuCAEbm5JoZYPVCCOpa7ApJgT6GrBw9umDZnjKBpTQSDGV1rn0NWGM6+4BkyoIzbh5sjImQ3G0mEOeoeoi49bL8aCqsK0R738v7RHf31VxFgy7QkI8cgxhG2kJUu813ORrUnt7GBtb1oYNA4j3Jnia7NQU/onx9HBJJIlhJEq9jTCQZwbz/aDx5zYwUZNsELg9Doier4e6+hH4/9LAbPAlR6l5cw2UKq85w+vBJhfdoeOEPnxLNeK4HG5jLK3QnCCj36V73/6A9+GnvMsqbqFVwt754jer4pSz7oi2Ytk7+81nI5Wjz+0P/EZwSK38aiR5Ullm6G9AtBGZFIxZwp2IMppawr+jWXAmTlqeS0R32zoTALv7dBnCH+UlziSo052PdI/JGfPkAAhdJNqxKxAXemgH41pxmNgx7F6tT9JjhxbG6uiT0VhbEOOPLeh88GjtQFUkjLc7NS/35pG6gTCLCSIsGKJQfLuS+PB8Eo6/PvAfZ9dZzKbAEjLNZw3EgqiNHTPk9xchPd6pfiLaGEJFQK4Mzho0JCc4KBcauYabwA7NAAW6Qfh8rI9MHLffMBQAlzUDxo7hIv9dZANALNQfWBZFbbikZQ5o/lfnoQC0p/xKRNEWR2tL30b1w3jdvYDZsy6KdxWR1/Dw2WmhaHipvx4Uwn/JwPwJPSO/3gNKyeSzvPJIfsmU58Sriu/U1ApGX/MoHjWKD/8+xMPLgox35jNGgQLCc5TOC6CbrcOAt6n7YUf9G6/AVO4dWf6C28w3iEPJv3o/YOy+BsjE/YILmxhKgC471WIbKuGLXuKNZV90at2vPWMFrasPZHvG8chi1ZCf25aHEgkzmgKsI3/f4iSU0RzcuYqcFAYWLRY0U4hGt3yWOD1kfyV6fcfrgoTyPmN4rsIE19oEzLzqKEVyzjrDnn8B/1h8l9ArtC02Cw2phH6ysl5Fp7Sv1B0Ix//znToTyPznKDGb8A/UWFb0uDEuVPv9dr5ORfotRF9Qd1YFqAOoYBo0VHOWz3Ci5FmT8lRMXnt4MjKtzKID9//Raq3e+tvSYwPBaKsJ2KlIdL3GDcS9JxebbhT6i9IQXQyUuScvDVuRY4eRs6u4Wkd8EMPWulRYID0rgGTN1O+56mkW0sYGc72kx30OfY1+MbJxYikxiLKjIlP0SWrqoPn+bmEdHXsTF0xgy3s5WAL1Qo1J5spFAgRbRFDs8izGPuplDUJmEaL+dO+3M4iOTlKEAJZDLy5XOildJEC3OoQ86CdsLh266g+WDoJwbywjNtNuM/TQcD8ufyW8CkKxbah+Mnt36vyOc9C7KDUTmNuJuMJfk1zRpAUZN2DPNoKkJCnmTwNUGbMVQ2JRX1LBKF2d9A06qZ2PfV5/jjl3s1IZc3eDwspwxe8rrFx84b80BWuL5deGFdfjRSlubpviyuOpilqs74xiBgwVV5MPUEeY8EP840S78C49ya8B6u1Utwp5EijBHfU6dM8kgEAEJUnjsbBEoQVRCaONy7YPHcCmjjHL1NEjUl+BIPdyIdyzzrBgnbP71xya5rLpXEcBvxD9mWumubBcOTgJ/K1rCMtB6ZDy093zBmrqzdft4Mpn8+3fxvu1vd1u5yt7clF07oJtNq5cmcxRsA4oux6okeTe9GUcmgYPH1EphRujzI9+Iw/HAZEgrY37t2o7QCvBf5RyuMqWO+HqRwgnqCrkfpEhraAeCp5DSZWN5sNG5YUmkUliI8GMpF2S0O8Z+uLXPQnitt+ilOMY2e3x151dO0ylFAxqpLlboL12cyMeBfLs++3QBkR5UAU6WZbNRIDAVDI/eCL9F3cb1iO9YMQXtecKYYGEM3bfenWFZQoASck8MEPSqhdh5nSLbcapda98JWvOLEOusNPhK6T/1+kkKf3qTnMT5CE6InAknaitFbD6eqjd6Z+OM0oWae10Xkxe4FF7va/cm5tqahofPoD8yUYeQ55yZ6TZO8N3wG4p3Eils0qZWSIR2dSs5ClgzSZEvRUJ6o/eUiHiYjIxiPgegnFKBNS5SekMp9484i4T7zgY/+9c+euwEvRDcVj9MfUQB6izA/VO/Zm89rOEnYarirNxZpLI2lnpxmOQ8bn9kxhaHXuOxReSpTCtUMSfNW+aOurxpWU08sBHImONVve70zHVYR22U2CnQ0dl4JEnBu2JgJoBlAlPw0RUeSF2RN1JvaW5TE5Zo6gV+KPkXq26p6doJaDaZa3pqRMhCekAFLtCeg8ASRPOuOwV5jy5a2DVpjUkT/4MatRvlJxCVf1ZRZVdvGRkGDBms0HOgZH2KlEHmOr8o9opr1okZUomLszIKfyuPXewfobyq/6FJK8igyr60GH+GcU6xM1SUOaKDpxFMxel08lsILhyT6Zox8z5sU283UQdllPI1uE2RE8UPpfsTY1ZKJgbFLU/FS3qggYOfYUrzEJxSX8PSmovPPnFv2OAA8v8jW/12Es3vtfSpIeV0x4VqMYc5jDlMNqo3srDmG3hSy+l1uq0Q7Ne7DhR9S3e00cOfxF3Dbo2LjWew140hRiNsBNjSeDWCcGMY0GxSOe8zG2Yc0vZrUBkXb2SpnbX4CQUOr9FHHnrb9/hI6e9G75kbbymsbLL0VD9cK9hVwimtx90owExvhdIAS0GL7LgZ51/zAh2q0MycP6EKy/GGe9cI7bhnHn2QG9pI1NccWoLvU/DS6rpEJgHwKFzKsHBjg0GpHlHo4SOpksoMkQ4avuXjLh7C1suistEgMYXjiSFefwMAhaYqlTJqC7g3Ss9OTvM3l4sn4T8RdkYHo48zXyihCZCu4gmw2V8I40HgIBnIscNzYlQ/EIDodwq6MEWIsy+BL/ZOakhnqUi4rgF+TZMB6jmv4LZKj5A8Iets8Ac3bm7v0jhmzCJyn85f1YgV+FgovJird/7BcV9R7eEyXIjehVMn7x0th/38JIjQDWgujJlXNW5mDHCPtgurL4hLIOjZc6KQazZagQJeALOpv2Kd1nY7gD7CuHH+fK6oJYjP+7eawqe/x6b83OjLWh2HYEVEFAXSyrnhN1Ekdlxnf7jZv1heu8+1QNG+7BFt5ODPvFM/2vtS7kJMmq1E4iSNljHW+5Gr0oTDojaizsRfM8oFfD9gbWK0t1h9bhvW8/zloQ8HdpWh+p0hMrCCYTgJGvqYCN4BaP3RJfhiM+iXqyPsarer0JE+P0AfCSgobJS35F5EuM9HSMKm7NO2/5kzdIUlJku6A0lg9ugGcpYkAGM2D3ekyaufrp/2DoG56fPxwkiw1lGCPkGmPtpXhphVON87Dbhv3YVCtRebD3LZoY6RS5AcJd6Ar2Wa3fVaXFbcK99a3nm47XZkBz1r0QerQfKLRtqVRNwX1qATc+Z78rCHmy8MVi5dEhjgAE2EQMK2W/o7B2H14HrBZ3cNR/ylC0dVzP2QytRiH7sdZ4Alw8BK1+bLEr6trKUFfeyAanxgBSyy7vDYjCDSvtqQYRBDfWMqHsxmPxJk02MbeBEW4WfGQwWPR+KqxVXig66yy9i2yyNDvFsnStBwZPjMay8KQIAkx7uVt2fTsUJe4z2jcGJpXeUXP1eK3TGwu8/qk9vfwdQ/KG+c7dMdoe/ZJgLmGwMjKODFQNWrL2VTrSBMmjEBUFH5XaxkSwuJhJ/wbHb4tUZca4sAcllSlOUIeROb6ag5Xa+la6yiLHfiPoIK+Wc1w5Rbs1wkf5v0kpHBxJXD0FDT4eS4pTMpUvaTl9PuWcPuaUagU5O8kPJEYbzQKOsr0vY8oN6ieofhNUEASbGqGVCgYW396oYxkEoisZkyHrBmKcBiaROv20FQy/OejjnGH4TJM6hCT0XOWw++QBHhLE5F1T7KPQ09WStAmwp17LoZohpctmnlL0rXfWuoO/9LqMqxlqz1dubmzjrlNTZIAwlP0hiVn9p6kGBFNSlZ2hOtgSQrghYe0UGtSNqdE1wiLl6XiDxW+aoIQsmyTfMJviyYfUsyvtdlfrrk5EGHA12D5DiLVp1FReSsW8qQkeNWeqoOwZDDrJezcevEh7TzumTvoQYFkHnpwm7k6nsrbKV7Sj5QAOcepaup2BInaeLGFCCWYe9BVFWo8BgMLkG8c5vIRvzaF34RbEE6XmGCLVUFnyySxBnABf2QqzxidCzxvBli3VYCXgXLgC8jbzzXDsMXeo4lJLV3YrwDSnd87pqWtFNlTOGwWysCl0LF3aH0cje70fPd2d83+CV3Sw8j8q4psABl39bTBLG3N/I3mCil3V+7ocdh+O74BawEcZz4OSJJ7xflzl3EyQcQf6LFzKR+VI9JHhRy5sW7P4Vfy6umXNXpuMmUT4qx8an9Vg7ro9qbK1XxU3NCLc7xozv+ay69l8mrws1j23/XZKAFWlVesPlZ3oBH/jxv1wWCFoKCVaB8S14muM4MiHKzENtlDTKGRuusWw932MbSUXup93iozGH6Nn+wXDcO/Xxs19V3fV/QyETum/lQcd7GLS7N23BzmW1rTpwdi4Ksc7kEKmtFnRy5U7YUPvrpOlD2tGnKMsYJgmfn1SBcWbJdBB0H4Ioars+WHUJGiCwIEufWr/sorFDKaQj9Iz0+12CB7cG+kmz7MwTNHwh/E5eIGbZ9LOe7a55M5hg4GAUuaIqlxCrr4nKQc9GXzOgO93DLPg/oBeD+12l2uiuwtIR5qBG4SpT/JdOb3dVyozvX98lu7ApkauybNNnCGVIs0X/+zaiNl5ay8vLO4V80VqUc0SumTEmj5SmLFbsQ21lXDg0/mzcM2qYJib+mHWdsQDFh89HN3GEoGgZaFL2/7XdU6DcOAe+RoGSQwFS7TGqZpwuUWgaA4KO8j1fQaTZ+CovgcHzhPayScaChw2ryOyH4kMz9n+U+EvdnwfYHxhxhKy+4YgeQ12kSnFeqg5DdLZqusrcQvwRXit7oeSqWq2u0OryQCs37YQYIVcGBhTm9aDODYM4Pjo7JQBUuMPJtMymTK4JBkPq5BLgKznUYH+vnsOQCXU1DepZsxzARMPv6+98CpE7NRhcOkuhc2ty5Rj7AaXyfgSVblDtxmdj2Ap+oGo3wTDG+ByIkSjZ5ANK51na3ZlOv6Vb2nDLVqLQWxQW2vghGBQskcI2CNT0gs9kmDV12muJ+zmEKm2XB5yl9fTAHaLLYKklfIE5Ns9eakmD7nKwEXJCyRAv6b6mIoJYSM/8y5K/aQrK39fqFtgr5eC6LADEJm0NvQw/uyw9jqJZQeD/vWL1lRFYD0eDRdSB09Dm/M8bqip+t6mtfmZsjXB6trRGWA1fGLkoagzbs2MgHZpe5SJKSGnr68/N1ytMsUljIdqTC3JNUIMYH4M/31EMc59FxDuYKfya3uSDYDOFqZZDFEoS4jn4oegYIVLiysEepBADSqpWjh0DVBPbas9YaKTIJLzajUM6wxdyyQmb4RLIw3eOFHEgxIbvAmvn4QdBsZJMjbjayjGI2nZjP2mRg3LFe8Pl/sfqzW4PoHyZLc5UPdzru8dZBB9uYpvUs1o7QJGsA/vj/b7PVzNu95hNwjTC+wrLzoaz9Bdqj6YaBnvXd6GZH0OutjicAElO3Wt0+OpfuIFz9kojHM4DQo2tMS8tIbwc7J8TqgQ5/m4ug2ipsHdC7Izdd3XRerXwxuviMYMYwZyHxtu7nZFWgs2UrJbNeO2Rny662m8BFmf9uopOZVJQ00cG36Nq5nOK6Ksbu1NdWSSKgTJr334GMoIkG9NtL/rRQr0Vul4yATNVLlOxwt5Hacpt9UYBi1V4VNc/DS/PmHMb8Xxw4hvCsAWDmVYYKPnmv1YbsLI9KoomhjctTxEeNlw277/Q/+SKE0PZVifTjA0r0FTTB+afedqmSkVslC0jKOHq8PIshhOLkipi+6edD2qzPufli7x5MTPHG7ryOwuh5Ysu0+qhLTgTwHW8RvAn5G0rsqM18mB9EZlMdkwSSsXNrPmdBgS5RBwQ2hdiYlON9yyEcJqWdQiIWyGP/qpqXe7GDxC3pcGgmN0etM2tRvbgtx2Wz/eEkcmTKHbnqYy3vl6/3qlGH0DkbKfrfxHCDucHXxw+4QXHXC373HTFJf/iJ5mwjy5JbVwUYngJoAOr23won4YqBzgjK9HOByIPgfgri0C4aZwqzQDryrujp1HPYwKZWqEJrYV8NsO6zhHkQ8oCn0HBXjUHMWK4HmG8JddQgEZys62BHoPFizE3Chv+IN1J4wY6MRXh8BSpaDWc4//TgjyKOXR1CF/vRAIMHLsnsQVahwtykNJKuqirXAhUpmmZklv0Vv0EOpUWn1xpWn/LRI3R7tkNcFCHZDb2UFD984c7yoTnsLYbP8EWt1/2qAVD6tiK7/d9jk95xwlsYRusKLP9CjnsocxXQi6+6CxRXRGy/t3LR22C834hRFytJZw//xFFJ38059BPhfQEnxxxqHRljBs8LIB6SpddRDH/iUdQXdZJxaK/vOpC9XhyvLkB+a4lCiqnTJlo0uqo6UwQyvcLSw55NCqYy0o9OQksEz7HvVwEvxMsLabLfXXa0N8ZrWdzsuwJ6ft7nYJ6vOkrYeoP1rfDsszxI2vOAjtincFj9+WRlYEmQ5IhyV0dFUP8xduSTGcjp1MRvTll/joCtxPqmtWXkRGPYgnkC0TPLqX3QA99yaPQghSRkow6XT84Yk7kEfD9plSWgxRfwWJ1g79qrHDyvmevLYd/bLvaVAvRBlczUkBJ2uW2Fr9Is2IjlPd6KiF7qdtrh9dx4mRk7+yQ144yGoKSsJqPWGD14OoWp1gLdYuThW2ImLfOty0k8BwQWmzMcsU8SJQbfcpv3VBu0W5rqAl2+5rW+Cx6aiTg2Z7k21VeZsFSUnRfx19SRn7ZNulqY9xRyFJQBVMxEH14xJFSvAxZ5CxspFGU8mo+TJMKUgzoUqaMKL82exIre4fD1xEqbI2T/JtSaxApzU6BGYCbzadc0pzJZXUekQmjeDQCDFh6Q2NuDvLLOOH8QmjDbNLSNyrfP8asXOIvuQqKgNWa+vKNeFisxcHJcVbafOw2AJdaY1CwAvO+9RIAkfVC9vvjaPkeX3JasbO+ZNLfbR/SXRk9s2LI/hIdWroUDH9dXBrD9f2THAsSKOdSbXYRk6G6HLZF+HvThlWipiSN9W+QR2S9h9MtNmcTbPNwhP9N1KMc2sqUKFfptwdaobuWfGdHROy3q6qD180lyQkLLWddDEbyq35kYkYZyNre/P7LRLGzEE1IZWe0HKDlLD/2GKXdB9JjQiYb0e+CDfy1gTH01T3FSvuxZd7iCrssUfFEJvXHXxh2MBBh4L66TwuXDGRz3fsdSgpka+0QCnXqxgF1gj5T88z28betJcFvJczLOBZ5EXFrqXXIGQfoWEyBoEoD/aI+A7oWJGb23oUDh4iIDvw5u5N4uratehieh0xGy0vGsCkaDE6lFqhM2spb9AwRcMNs6kgRv/jMASEF58qea+poCeuJAVBp/nkWY1SJG7x+LwuO+ssQJSfWom/Lv7aTGMyeiKJm6GtxhBekbpklBTeX3lR0bg8BWLeGuHE1+6Ju29Qc21Hio8Bis1bnm5JE15rt1sMY2qMvH59OhyTnTZJlTLD5weSd3I/kejBCBLI6DG1hE3TeAMlup/ZMlJeBzsLpZH4w3/25oKW3mAJ4rWYSSp3Oi7p3DCd6X37zLH0n+jj5NlzVCgqxQNIpWR5fVXP0s+Pb8tamljjo7mze5e1AZcKvZlLWEAXEnIqd6V/syYoZDLPiBoWMWH5o9oyfzZgbjOToaU0+MMANIXOKf9I4nPyEcdmTrSdmxymt8ws7jK09hP/sBUQ36zQG6HKv6wLUv2uyCbSeLNQzOECcr38yRIoFAKpRFVU/8uqubzixjC/XWUGJ4NG8TH7UheOcAtkfyNCs+yuF+OVY4+NIZT4JCWqW/78lqHyQgATHMmrheqlHm24J1TWBwEsTi6KRgVbHmQeCf3sxgoElhz0E7s00bHvcGowLZ8hIrKkeMa+lvSRfpGh4o3AkkuPblu7YAtNA6sNKePfd0pDqxsvu8XNR7sBnTyFDvRCupAeYU0abDaQAxuYQGJYgIxpQPPhh2HBkOYpDFT5V039EF3lmkQZOPczswRcKc3Nkre+l6LVxLbimiAT0Z6eKDBXMHmqw7FRjnQc+RVY3fSydIUEZ+uBHv0JDISsMscydvFNbEHdB44b1db2NgRokfKBlPiKTrSjDORA9+PgkYViX/Lju82xQzc9MjzDcafoYc7Q5Fp360JspdaroNdPBUPkA635jYaAdb7lNLjEr5gilpVmCESNIH7P8pZlkWkLrtoEArS5lRJcbQBrmHzGb9FrIv7260IwvbNlBbEWhSP+v3TXwhOMuAw43BLU0QXYdAaBDFG67uYJMzuzgmpojmY1mICa/d+36XK+j/OEpRrRhZU5woA8sDAi12zfyhgMdDsAEYfTYuxkgL+YIYuRqqpWwZZHkhrznLxZf7ueDm8SdDDPP2U240JCQkwkTQ129CHoxfBXe6WfflF04JSXLqVM4byJo2W5JoTiWi/M5jbO6kB5nDyFRhX+SJH1Xy9/Lh0e4ObbWilTw77fjTkqoKeIw2EwucPxmABQNrKnxEdgR5rrLUlFKc1bgbj8ILVbwnKKxuxif/wfbZeePiKy+UayjZKI/trKxnKjnb0PFkmcLQSevZqUPvJvZaFYmmNuTxHjJ9Gv4xaQSnD/tfgxiOckC+bRUfe40TwVQ/qn22a/IV2W/PnhHz103DFw1fJLpc8XW2f3Mndgz73VdB0GKvCh3yHwcoKzbnYOdTfiVg1hKlo/AY26CVQpV6UsWVB1ByLARwPtZIQetCkdRukOhHEZxw/ZHbSvnmB4eUBWgusqZ0jOFIh1jlpAp9xfMyA/qOgUeN6/wFYCqoSsAFcDJqHbrZPfIA86OgwoOggeiAa4/Wp7VPOtfQrcIbsCLJ97GqvH0SiKImi8KRLmQhQ5xwEaGWvhhT9Ita8YCa/sn2l4tDceuWYMeuC5VB8Sx3BWaD3Uzqmy3ocO1O2LuiQbJyOkxwXeTygPNNHAmwkYAYT72X3O1fMoiUVnS4NXUBD+0TVU3NTfbSlXve3BZemIrvA+6ahXJO5l/UQwKl8jlF4+B/UqE55juX8tDMv2TiPCCLFUMuJivOWqxY8z2mK/lDcjL25hp0uTxy0DnMO7/bx6X48DKVXWsffklq6Mv2y8ViiuYZsXCTQUwoHmL7W88mEtmO95+PBgPJigBRcLVisfcnpvca/Byb5bjfWFWk5DeH9hp9+jXELSYMC64RJsQrwwiaMRrse3szD6d10dgI8BvnT0WHRVEITW8gRetMYleLxteu8W0cigtDnnIACuqwUcNWfVT47VaypUPWz0xS7slLoWplmKn5IVVW6/tc9yAz7+/DKVZDLxsQzMfqKitmAxgeHjF75J0JRnAWSlKrFmXUpiWxuATUOHyE8woOyUTMoms3E8ApYRdSdJhOF7CbTrZKfJM5Uxt7J73k0IryCPVFUzcRwXf54/meOuBKwwUKD1T+xjq8Qim3l5cZ3oCa1OZdgKKIkNSxaSCjtVE+cWoLlrrOR/UMBZeB3eNzNmVW1TWTUzWmAF3DeFy71vUhEUvjBBDcJGVUDmiYMUIe6S493qVVnaXMlsoR0fUqtdah/W/nU6lZRwM5yBzSywdjdKFOGbSz+TutfpCWhnZyuodTFIKuTSb86btR95FBdxbSj7Sr4iWL5MohwYPm0kyLGjd3bPvljzihfdbI0TN1oJTkHrnT3XPuxrFIzcVqJc9qe71q51wxk3c9GtFQEt1khlLppVdF1zUOWFLIkrrr5twrGDatlFmQqrTU3ET462D1HRAPP8dd/3ogNLvS2lYb6Hnv4syzB0QDNFQlqiT90XvsKHKSZKmnEGgCYVYFyDwdNNzl5Med6gpzmYLXA4q7+NNUaD3C1xPnmO23TV5I0rPQ2dNfRXJWt8I4A7Sak3RCsjJdiH4jjmT/au7SNopxrkuaHYADC/dYwm6DqAPxFmKiXM0KfEGwgZoxmRT2g6Ubn3fRnGf3nCg03vz9UPLTaH1rULMZR0L1J+JbZR1jzwbg6A24RKE1faxOeniXPmd/7PWr2Qv6ZDY7nRKyg5LgBC4AdYSwdvY4gWF5NW1SRQphBPu6O1Gw9oxAYBorwyeKUq2hZI1M7Ya3YFUi/J0IEymB7A1KDtPjnvHnihIVM15Ha2ZDvCQIz89oqz/j0geBbj1GX7u9CsBmLdeQ1Bn/+Ls/gSTarJEbsi6P292NdNWvBp93gZrzUFAg7PrpFRIdasp2ztFlsCs/PLJw+kjWIHK958Aya54Gt+hkIV3Oe6PrlXx9vhTWia/M712yEwf02Y0q2WcCZa+Pfwi9EEjG9s5kHEMDWTLJr48ckHbPmQ5A1qhE5MTUnqPU5zIVnqDof2vCSkVtE3aEq1mvpoVco+ilhPLs1NQ7/TCztnBMlb9KKq4JfJQVt7U45NinKyLv+hQcNP9gSDXOAH7gv1e/3I6ZngXjb0R/EgV98+dSGdcRIun9PEUPxdh4FVBPpW+tWvIrPGAPu111Rn7QMtZuguzQoZqUroppccYw31ZIyxHNt+/K8ErOHjf6N7QxDwweXJDY6tB7+OGE8B05cF0tTeX7KPwSIkYzHRecZeayEF8x7TvKEtsd3BZmc+7BZo/C0/xeAolndm8ixPCo7c82oPiQZnXx7m6kuGPqsKjSxry/WzQsxszR6O8FxahUMD64JcjUIIzHsKzlACv4eNz7oLMyYKN2MiqBtQS9HsYIiZmbTmByXew6HtCu9uwMCPWifP/PORRVJG1HNoAvQqqQdCh7JMH/KIurofqU6wRok4vWc/uigxYuBKDPkoHdP5V7laBlXxSc9lSBH9nFN+eFKOfWPHvYjShANeX2UiD5i8oTDhKsqTU9qqHbcozyYRvKH+aQmaJmEIT2jUz2zN6/OWP0BUk822R66BclFEdFnd4Bxp+8DuNVviSfyCTBU6+kkZKKSg1TFBtp64x5ZelaRIrIupEV6xPyPvsMZVaJVbGhoRcqcaUvE3JdEh0ut9uNrXbfM/Us0BkK7i3t0RLne0XVjswKUu1+RQ/00yNYlGnzwzHbYsnf4x0dpzOUhrSLf4xE8ex1jYtx7wWCLOEDnBJqOR6UzDO7WTX6tNPXfIfICJ+m6xddiHtlAhGy7YA4yFBP4QHCrkYofGe4kc1Q/VqPLnoM57l56Qw2bD0GQr7jqC+riMl3R5v8kadFhq1cE832fZrdDeSYAGJ8U7jlRVvrzH2uktomS10eMpiY1WmNrQ+KWt8huinsFmRKdLKcLM0AAINJ8qkGQ2Yy03fhEK8aa5hqrtewKt6JmPamfDVy6Ewgbh0HfvEq2TnXbkCtq9Xy8Gvy3tn91NGukqAkrD335xf9KU8dbG8SIoSlhJaS7bXvyJZQwN45wFoWNvJC+g1cguW50Cgns2xT1wmBh3lm2khDeV7jlJ19TUCeyB0TslnHFmEG/M6/TMeDaaMpkymadN2BlDVqfSNh6xc4XhIWf5adD7/HuiK9lMJTrOMFMIoTvexFl+t8vSHpqZpYM+pG951Z2S1bOO4xXpp8x4XukhjLf1DbbDjuCk/U7RwnQKm3hL7IoIF+aBnfJj+tSw5+coAf8mfc4hIajgWaV0/6xq2iPFmXn0yn1xPs2y5ih25LEr3ZbHMotU0FZJBmLwJe2yPt4caqFZau1TE1TxMgU3zjQ074QTNNJqY9+hyK8teNYTum105QDqHu9K5PTHVVI9tPBG/Lk7s6UGiiV7WpfqfyIGaCyfJdCygQOfK6GLSsJhfzD/kAjg6iOw7lFMUTJzxBDWevzm8RKmYfdA6vyjQ7T1e1G0EPMxrfmsGxmnZxCKNoF09CfYRleifMKLq+gx+eeX6/6QQ9VFz6+mL/txT9a5sBHkzwd86SziMEJgwCyoGxa2lXvGdpg4jNW9sUZmLAODPGL56rdyFZiKUTMhhU608zkH2PEEWQd2t1GN9CdEYP58iQm60UeeijigJQvwf1yAeWeX6GVD2gOY8hcbzyzBOU+QkxpLsh+73gjZe56/lvgVYNg3jzhqwGzqEXVdXhTrJWNjtQnvSX/LVkSS8lhd7ImrG9okhQze1EcWL7bTpMHTmqDsnWsEcBKuhtpzirzOglVVC5QKg4KMzSq1DXoZraTwmk+V/hpe0ofibwW0y8scz1xcHxHMXwhnD/KstvZWjG67NNbkcKueNe/WV+ChoG+OfRQ5ciPXuJlVEgAkZu9+w7EI/+bicm7HT1I7ltdyupTiD92A+9M8Hj1VoFnxT2ntGEUTlXbVcT158vRPoklUxEQksLAzUbsFSRh38wahT22mhr5KpmHLtwxIHDDhbI+7ak8n1SfIbRwbja1yYRX/mc71KTXPrFfvJf/jtK8wLMhC42i+A0ciZZZavsOOy/GQjtBTKXTHWwiuKyqnRI0jiXHQewX8OxlbAOTkQ/sEoy6pyjRMHrpq40SdXlRN58iyxeHyvopkDfzIduxoX89eon7FyaUSjTPgUt0DEQRNiUWxk0BGT/TVtHgMLx/gwGxJ0PEnrRl0Bq5rmU+8k5PQy83HqZMIRC6QxPDO0wR4AigvowhyBSO3z0Ux1KdqNWZeGg7stv3fxNG0kRjzSvw5CwgSsZ6SR7rZ11X1FmX2cBUzxIX38S+L+KfpOSr9brCAzdiBKd0xfPyP3tN+dxM6atBL7LB/tbTjNKkbpBwsQDupMzRNf++94SBcAVWVyKzu80Jd85ZhCVXTN0jyE8X4TZxIG1/c8IOYbYX34r5F1P+hQasg+UG2faUsXaJKwz+OFxqbpupH17HLUnaKljYREUV4aE2PTQwo+pAUE33wrxfWroJ4M2maSYfuFmRKuqZjqp7N7vccxtjWEk46wvgz2q/bVYvqADNSBAKV/IroKk7KC5jwF9MI3Z/QcDYAhD+igQ23PhUwSBFIlG/hODMwuuo6UFNIThF6fRXeZOnM5+pBVif9ADQ4LJfXM0oUlHd7l0VXwcSPiy21EK6PJltgSP5p2NpkBuWEaLTmSwMkupbZ1YjfPBf30VqMn8VDaYNicQShjj+KYHvl9xmsC/z3lIDOfVYyu0MUzd6HhxFygk751UC7VCQXrmpGYFQLc7qTWx6MZVpDmCK1/Q5azKsZ18ND0C+0aD7SaZewbj6+JBJyzHjrMXC5mNhAWNQAJUcCvuYUrH5xjT337AxddHzeGaUFo9jNkuzR5VQ2y1Cc5fr8mUZCZzOyYFhJhE4rEjg1dPVl/6cQyXk4z1iOYHkOEkukTiTKDChhQ9bVDBDHjPwmxtXcXvLtcQe1mXU/52EAhMIr5GM71Ai//BJthAEaK65aLkUdTGMEwoDWdjyoxQZtt08fEo5HUcNjMH/yL9YWrySxOH0dWwsuUDojaaxgeNSstX4vP0uHYLR+zRnWtYJWFnXLUcpDe9DOX9M0cXs38qX9j/y50vpvCW2ltcTqCzDYDdnObYIc3Qv8HsV76TsIFFO0bXXzrbmKKfd98/iucTHp6gV1lFENDfMlRR1njtTxJZEC2yo3FMdK5W7PNccVRWfsxOyVyY808X/0oIDfbmK/Duxru1GVdnX9wuiBNGOydJvkfDFRaC7P5DSR1lRU8dVuXVfK8648/JaoVC0xWJkhjHskL6BglIJemAHb/KidoVJm4wpRjSCogWCf+pwsygrMZhL6xSXKT67FbhVfZR07gCS3weP9BaEcauXbcdNZJj+u+qSf1fvSS6ih9COdClgPxSddm39AhpGrK5KGoVSk8bwrExOESkIkPu10R8ZqpjzSRRjlRTLwJgfBzRru6anTiWQOjMHBeKnpQ5boxAwhDm0lGCHvAaOcpJthe1fNElxAWZR1zL4TwzaxXf7nBbBtTWXXf9gCuEXMFx5E2I+FXpClw8ykmlIkJbH3Y7Rp5KSuf9Dacf0p6Dk235D/bZ8bWzQn2mqD0Kbp1M1fZ4SuE+/lUviJr5PH4dLwy75ld3O8bWZlGJPri5hWR9yzHaZZeHUzFQ5c+At0nAVPNCLKuYNelItuPVzlf7Q3bnykSgkTQv8cCfw67I8f6sux4QAkmw9RAGg/lFWVaN9DIZb+aNGAofQf9lVwvw3//cCqzzfI7jxZAhod3OT4Nwb5rYQgXeABpx0eoxPk9GpUkie0bV8vUXiB5eRCL9OV3LM6MG4OX2GPJLEeAbFijqkN4baBSORcR70BtvRYjzfqH1WFv7aZXkbPJdWP6jynge719UQccV15dW4VSUjDcSTtYLx3eFyNHmqlKWjlwElhunzwLE0KhU98Ke5+8FioCGd6uiUL4R4dKKGWdEsX4jvQu2H3kDAun1TNNTYtubraK9DAVYNcU9/H2ljGglbY/zhKqvbNYhJIuLZOTrx07XEJs9t3qlR2WtAoMn0ifs/EjJrh24Q6q7I5St0bJkL06hNlgIF9EbRCSX46D2vq4a3Rdp9zyYLMNxehCEYyDyQpH1ig5oJdBtJrE+59uD9oNWiDBwK41+zl+P2VIs1fvOhtyRM5w2Ce8RMvXrW/oEVo5fh8fSRuEdjHXZvHFIuoocMpk6CSgFtBvk2Yavx8douP9Inbmq3WJDiRdTMJAiZeIHdsTYnYCgRP6P5/FIrsjQH4ogsGaOzvMXFbL+28ZI/glMlkL4G6Tl1CdC3ru7AjEkAt1m5f0dNTyZd2OGgD0j8a9KwvyTkoURPnSHHcdj5Wlz8uZa6Mi96NWy46PMGNiznS3glyDWV4JZ20I4PW5/8FGiNt3bghA/fYpQyeCGXDFK+t9Ul3wsZ35MNyIJ/NOBMZAd7tXn46V/fdp4F/riYG1JWYIlOEFBOlWygFDr5m/I7Uch1aZYQVa8mnT8kAfgRViISfS3jIjSY7sLeZwMpKhagOBiv7T3zaazB0zpzKEXRr5XHBBrGHfZq2kwmTH670BwqmffvN0tga2HbEsR+LPEhdGQxIbiYaFQIRRhPUrwu8nsVFh2wogbtTwce3xcDelV1DfjBS9LzuGFp+dyaZtbYucMh1jSAru2hvUlVqV0Z2wagVfYVe5UTDgVDFp+i0b/FHodgYWjc8IebRKyvGvOPabYvJTB8LSF+B0IELn/rLh/w9IkR4vmah7fSxBIXRVhtIWh7zz3CL8E+/o4nI3Qfkzm/MPy6ftriHaM0nH1Ar9YiDtX+qdFbqdiCRShJg4xpPFphKE0EWB4DytKv7iFLYNrckXaXlR0S3ZCEfazCeJprORObtrSZSm73Q7JUOZgqYh0tGahnYREvy//SzXJaLNkWhRwb1YZbv9irEYcCEqmF/yK319j5Vo00PO1kXyzq/Xpf++mM6y3we5ESKyXnNVi8Q2TWsB9q3L6CTGtGpnWtUGzhIg43PQeaRDzCn3TRB+2nJG2WhoTKgRJzmFCAnrkJxF0196E+zpZ7SjbPGQVaUIY20krSr+aJMyioPNq48kGuDP4F1QOH1FSFDfeTr1UjuBvoghxafjTz7Zx0opjYQbBURObX958CsenLB2n1bsDKdLPy4Disqx1eeue1sXpy0pjuYbNidluRubc/fFZzA98nv64ZGE/xRvFIbsrGotxEKjZa8+XGp7TC/1ByfUgvHEBCskmG/WqIawmIHGBpfLUbrw7bNPznPhseU4dvDZn2bTkTMiT7vQ/VeGXJxAP/d03PVMWQ14ZeP5nQUfyBYasTnjYvTuhBQbqsMu982rTKqlXfE73C7GbVUCOiBNBTZeZUYL+TRo/VqDQFZw7MTxSCoToBAs//H3Th4Rqdj1iw+6+Foatlo8p+jIO6mJ0bSRk3Xtt6I8mxupZM7XSLasbHMeUCQVbQRm/6d9X5BuDILHaWtcZI/9Is3qa9Ruyg4+KEOss1eej4wklw2ZU8rFV2CGuVNthJhC6KaClZKjzZEggQzdZ4kJv4Po/KhF1F90UmSoA0sLfZ+gG2nlQr/UgH+oHG39Pfn+Sv6tVpx/g0nO6ezoB/4kI8RAgVPhi91PYGYLyaVvXlSqKxrpDhLJyeVT94UkV6WCoWNMs1vyh5Lt4NSDvFwRsIDOFQo4gvGHho8UnX29/iGmf/3VcqMc/xtl+BuH2SmOjeRFRTeiM4xyToK7pmuzv8Xpj60XU39Ue9/rLXIxgIoBWTNIEDdjQE8xsPJpRs/5wfk5QBZHW3UzpEPeKlevNYydOnlBKjUnvbGl0CQJxXPuNw5EnrgdjlxnbnaajCjrM3EcI/1R0vlZ/86T0dxr19OC+XM7JeIrGFXj+p/srwd15AUJN8yQ+wQK8XHUAuXadgD8+uyRuy751fmFWEUEUHAqHjsmtaPhAhwz3IvNhuYQqUqq8zO37S/nEivdIH/W7aHBjXrfHknVSHjLA8Z48VtP/wV6Kn97pF3t4KwEc3x1JddEAfPSnnoQN0gF2/btysVaIMP3EW8tafdLvoslWFSP0tfdyA2xWkhfpLwtVMP4atXfLGS8tK5g57mnXtfUsdkJ7FEY4P3uxF6eg/N+HbQkME73qVxZG822ETXA9hf7/L0H9DMuyvHqN/7GAuPtsFHEmmQVPCP5peh/sK6PXFewpS/efDS4aUoMLdxPuPYUCge1ZrifS+Uv/Ex4oFcLhgy37IxwsFlxdX4sjTnqaS0qC2UsrNqPmMfzka8kNQkz6+gEyAlC+qkYJG748u0hiv1z9r0ueIDAWcwyF/sOvLs/vgjGkPl+IgVLSMDOor75DIEiIIaSSCYAMo+MANsW/D2xJAofp58TSxTnyI55+aTjOrH0rUljOAgbtSmtWgeduuxjwOOf78SknOfCQaC0NQr08QyQuVZmbQ7Zx77BzJi7IH3AfR82P/WselXmgECfKYgZ3PS4h/5OJn+IwLxnpQ8Qjh9Ht8xLGdpn/iFWRhis/9BWHNkRAk5Z9nTJusvw1qxBbPoOX3SE9kfD0rz0/M/cEkXRfZI5Q4SYEZUTDlRlC58igyhMbTWZQtywLTE95l9YtSEN9JR88WUupmd8Z8s9ypiT0Kmtz77A3w4Xk2JDI2RQtO8lQ0wdvehMbx59ZPdTB5Kc8zjILHXPpXM5mEbwLjvOGkT+7XAawSuRg/wn9BlLIrZj0MriJI+uTnYWkbOrHqra9kWWp5qqJKxJId7ohxzpP6mJNrET/K226MKcqPyeV7bQTV//JczwUpt0Up0RxO26mo11BIttJKXbdzy+zy6L7SV7aw5ggYQ/UFoFpnyAAgQkQitfTwCdHKHQK4M1tJYOJ9BrhOfw1QRvQpCwPo0VatzrgGQL/tFFu/CjqO9ft+mVbQ4vBkATdusq3H2JuCoRIOVlxK++Fwz79lhNqv+GVhUtcZQ/gyBbUQhAsV5AS8xCuhd+vd1QWEkrg3eQnoyOJlp2B6K2J1Trqbty4hCmDVbG/w+p/DtFIY563rkKxjYvUfJyKNvGAnKjj806pxHo2ggtltPPuWlltgi1KiacC+HnnFVpadyvylA5jaujt9vEfROVq6/lgWXoN572RLAVF9ptZ7MkTSjxHXf12fwfh9q/U5QA5ABBlnGlRghJvzFU7cr1cy/qH1arV7vEcfAZtTxfaoo+ew444a0l9Yj5YGQ0nF2pAMdFYcS6klhPaz5Qu1k8vHdVtgANdKeKaa4TPYNpS8AiqVqGJ+TirtcO+ZO05ZFHjl7XIYO4SPyZTkBWQcMSt1PKk0rnJudhg4Wlqmg0iQjCxjn1/m7EPdgnUnA9Vz+JZkrAmRJps0x2IAjSxJTRiAH5hfF1ly9aLp/dFKPR1tUHLumTCVQS397IqFXujgWh5LvbHNMDxKIh2NKXuvvNobm5ZI2ERNg3k8nWTcsIb1kmiBw0wniKLCWPIE/oFRV6f8TzOQJvNZbigCGHFOXKchVmwKFN8i24hn+J6T0t3KDYydaPJ+62wlqcT4E7Lz4wOnfPNekJiXC+W6sNAqotczy4z9iCsdR+q8N0hbBUrmbDbiI+/QJ6ZEyrasqnY1GXHyAPorJ6xsEI/JbzmR0d7WxQttpyPmgw8FzFGmLuO+zyCoDAGsCpLhbEbuhXNWjNn3zICD1y3u4n8poMRpDAogfKf2mVevq+rMhJo76ZDYxh5vTUKiQESTx8gye3en3xGyRWDHmUsleg43+zmFeXLw7ve4FMc1X9b8rG4ZnimCbMXk9xabmsX9hQtb8gOMMl92G6M7GFbDdnMfjGVuJ5c3LthhAI36dre5sXi05RRnT20dU6lsVvHiezAubemT5gAPKYh5BsY7yYChUmUPZsUPi6eulUwoCiHVWModD4VZ/8ZUkUqQ93huNpbxWOchxPFfdbda/azwLFYlqENhQt8Rxq2Kq8IvOi4lz3Lwab29+ambmlyzvPkyRiZUBWfgNhJEtxStcZL9gPtCr5zjIlr9UGa6shHzv11Nk5EPOw6Z9IFn01Kqh2GNfLw3HOG/ZstVYyBHEBb7US7cyrBNBHXF5OWCdIVg1qk3RDJkKcElyIsoQ0MXbXbsIu9VlGqHKiIAV4DnZqGculk29w2yBeR6KYuMdxc5s6DDkUdMZna+E/3r4Kh2i1ZQHfEvjj0kGEZ9Rdz14Jl1pzZqz5A9B+nQABDbIOJ+0ENrNoImA2PvnttyrMWUCr83kPYSAp/tlkkaBxwW8/jlKAIK9+DSyGfwkJP0AFKwyj79th3Nl53HKEe4RtzNW2V1bNcenyjP+4NgLHB5WxknEmzFKv0RtjPqsj9hyBBHOd6zIgMrHPJ/Sh+s6LBBQe2ISik51N/w2JSdm8TmGFO96rhJBBwWw/zcYC4n7qTEAnnqUUD352AcMZnAAWhKm208tsFk/oWp7JoyNR6wWj7MznJkBPMfpyXcWhR3Yda5K8comt+fFr2qd15pUyXtaPqNIFZJbhyKxJZpMdLdGso0y55YHjbL19Rov120huhjCF4CDeTDuipWrrP36O2sZJHSrsxEJnEhUlZ6ixWu99DxTInp8G+DJpwonrF+db68vBfjA4U0Rgk3MwDC43taD83irjEwoCJgVWUlOZIl9GnmteE69oXUjwuiwvRTLCwjxVivZUv0SbJAU1u/lBBqMHeGXWpZsh3Wb8adbF4cp7coQwsKpRe0UbE2vkZho/k7n8xsUIWbTKYsWkV+ewAyaJbLnZKmdU65JYtKHklMOTzND+3mrsVTNFCbLe/c3Wr7XANDMp2/kksug+FZaI4f/BL7fD4gbiZ+ZQODJsLqrMl9OcvrTtYyMlw7LhMWzN+vrGvqrsxb/3krSAJUAIU4Q7LDcA0K9iNElqeTXqSYT5Ib8KZ3O20VLCZoIJIsD8Ay4+6HQPXDw3OW9ghhPqbCRykpjRWmsvxMn/lls9lc6eEWrIpdmRLhUyUZK4ysnHBeuGVGkp19iPHWs3XQ6zEJ40yY49UU2ae3PM8xrVvIAAlkKTjvqW29YozJZ8arYCU6ry5PYb5Y9FZCDCNKbWFNJAL0PnJYT3OqCwNIAW9d+YxodEHWfXU9ODbLWeOhXc9E68S9h2vf9372KcMZsrv+2CJMrECHNpNKYg5daLkjDigg92fVevP4KxdNWF7fXQyERxKNjdSlvtFfFa7NSNEu4zZqCRMeXfQXs4SL66cWzchLttmH/GFb5mIm06VvPrCAGADXmPbTuvbRsyEmygGCEVN4sZRUnl1Cnr6h9AaSthq/2neG3k2Dkq8Kg2WbFPjDdhBX1pdOgAJbYyv9Ax32tHy5QNaUVIgQ0kRmfHHvB/qx2n1sk6SE7d61sbrFWqe/8hVB0pCXZTRXFQEax6UTy1vF5dSf+hd0KDqwqi9c3sNqJZOG2hwGpPraYYWmkHakiMLuMW9F8nxPyLPHINMZnxzKopq60ey+8r1Gjxg39tMkY47W6kB4v3Q0o+8Z0TR/n8IS28HWIuNYZoCYbT9cc6pwJiPfTiLlwzTILB6LUsRVpFRvYdp56MIDaKklPZ3eyHu/n97GpWed5Nf9xCANkt2L7YfKLqbACxlYaYJ2pPFlzShVmcPWkWvrrnKulP/CfCFXDm2CNKIzWLlIrHycJMMJvPqBFAk/jgc8EF8XRN60AP8u094MwapdkLmxHEbZjpQ+6pWmCVBncbx7iQOmp7+9tNRZab6YE3KT6RJ6I8IF65QgJV1x63VFkjmIKtDVUF9wAZYfZYU8l+cN92kTHHD3u2g38LS26nDCkyj5YXyadNGZ+sgGtpkktTtLY85H07eWTx+ki3Mkr9Ejpu+eyOkKcEkxqm5CsTHxOcqNSr54CrVG/wt8NfAAX8lzxFnLdqZU1yySTnmNgSZG11VMyiBPteGXGpp2ptKUoyKOKKvawnHkf013+6grTiRAupF2jurNlYQ953qrkPo6Nj5d1CTEF4/YjIopI8CUH4J3IPwI3oTu6zeRFDb7hcwyaHNbBmPwVj+WKnm7CSiJ8hgNRwyJeJIJJMSCvD2i4Jxk/4k4T7TJdQE/eniNkNs4zeIGTYI5ChiyrpU2IdQZQtq6YwwojmHxhxGeYqFEEbyJrYCh7hCl551oJ++52NMJ0IU0uFPQaxmTgg7Mc+Gxf4230do+wwtLsqr/fdKLnzaTJRKfVSY9fOC44lRQOG6AuD4GjR18BqAJXSD/pl2Hvz8DtHUB4nddT9nl3T2EdA5iK71zKg89Go2Sz1zKADb3UYhH0el836shyWhvIU9/sJkCQsWG/RtTS7UTupXPLBKTUrX2Gcd7+kw7TaqyN4EIFGS2P65oggeYc4tvoLyjay+TKXsuNlmJp3RoC4Rno9oc4kq/m2fWzwNZZsrg/P7KymN1akS66ZreSnuyNuQiQRYnk2+9Ywf1iDmEJ+kqtUHEoQrmxNr7UoWdeDJfKSFTqB9i+JXOnK2TPcdo5UMsbM7ZR+mGgr96MxpjDlQ4baaDtO2DfJd/k3Yx2NuGING3g4x8lOi3inpcoGPFvfkkw80V+PXuUZ+lwkHvVi2lw7Aju77rHc/61IJnicVIyhfGchP7w2PVprqDe5t67JhJ5EGeLQqZWKzmW+0Z0c3WikJ2MivCOI0YArsig2uS5MkSawfwK9/tJkTxgkMoPwLbddTfRwxo6RMlene3MACbss271Dgxw0+hHeylkuk/7fYx3VV/Tzm7Yd7RTXbVlDqBF4NZk1D67FoGJsNOaXxhGPfLhru77yAFRZz28NIix8hehey+fFNAtGO8SB9ysVO5YSodwv7NnO1MCzS1TNX+/1BsnVARWrpkae1DGYij/kJ4XF9jcQ80rqD6txNDaNefr9FrLSdkfZfmrVvSP5BjTJ9tJpQgndULuB8byxwzcfnPsuTc6LQRpcn5kggYQl8BX1ahJi6swSKREZWTceBM8S3ZtQ7YeGqYFFo3+lBMtD4yj6cjuimdL8xL4lskeVM83Av6jcYuGYjf+juz8b7c2ZQ4SwenzzNye55ooMsGFTr4gaZpt7da5SQAzU8gOKqts0d8DFD0G3lvz54nR5446V00lUE4P5fJ1DMBvrUcTFM2NTK6xdnKT6osSxfgvdM2gf0RA8znf/j92CE23Zp3fnA7BUhvATQeGOvGORAK6OOjr+xCgCjOLZ8ufAiRseQ/viJEYY9zSovzsqtsxdLQs6Qhxa55NA79bHf8o7RcTihMLKVJYqFvmP4zwzWd7kdcheH+YjDqVjLzlpV0erof8nKLyua6D2SDxdgL6huARndYuBqE0VA/KLaWfoKc/QCK+Cuu1qdawvxWNIJCXrIlTLdZjCSViziH6aZ4vbA/2cuGS50XE8uwZyAd0x8AWOIhO+uOmCcpmVM2S3naGIAN2Ak4TF9UcSMtDZUHxNo9lLJ1ifujbO+gKiPmjBP+q5N0A/+3IKviRznGxZfMAwHE+F8K0Ta6VgW1I9dVE2t3s8UpvKv7XTX/kfFZyWd165K7D9H0+bYqV5Sq5CXg9Gbnj41j+xYOrmvQ4aBoAW0kCpjbf3wUCatrgVu5kVaR8RNj2XXII7WmoR5+9h8ZVU/t/44C6XFbjjrd5M1/mujyDOmvZjJgMUEGc/3GpubvFt/R60OqxIHA/p0nc9V9oq/CtVvanNBJwxtZyHPR2hwHlsKNf0CSIjEQQkzNm82ht1SOVWBG5BTodbhkwIC6w3scJupkQ/g/X/hKefc9A6kmfcu3/VmSaywIcm8BT7zrBaoorUy/CpzkeszOJGX99n7uXAiHblPz19RnTJWh3tOh7CWmOv44TFTGUTswZf9uBGnI0M+BPXhXR6YIOdYPyVrceZBiyMzCU89z6GvBcTeh031JWizFjj4s39Q7nAByoyKiL4RQ2VrOIakzvOfRSZ+4E+57VuL8h7T30+ooge8VhtVqii2lv0+6QMgmVVMYYgckt28t8SHzrHc+NzPMTBWiMRG0PQBCYPqjXcUZGvwlV83jv0n07aPw+o0F7ISaEaZCBCfHEagu51lGUCTNlttMhDc540cJG8UaxIUoaAB1GGpiNPOKWL0W3A4lao08dAmxWiB6AeK6gZtWIV4Tz99a3goYASAul9uns5JjduMkbxcfyMJj4/ngUwwIM/njYhOQmKeELg1unkIXSJhQRNWS/DRpozcHXivN8sXYEYAw5MFu0BpjQ6YvnuccDth7uoHZ4kh5YjEMnXlPCns3ItbYIrSN6v50J7v98n5wslMGyInk/uFQXUYZWzOpAtuNEQ3PcxV8w9LDkJJgSbteqDTaMH8yMnTz8d5buRW3YhkClRtHzErqogbeDN8SdOsWI0Nsg4CZZuB545q+DWRHveKOg5pxCNOCRnE/R8i1ylBgu1beuw6DEkZxuY1mWfbKn5Pdxzsd0VHtbB4CK5l9Yhq/hTjqgTtry0Z3gJQMRzR1+SS7oTMmzO62G89bGyjJi9BqMW9UPFZaRuIiNptCJMtas2ONoAQG6AzCeVeJhcPFHW1jGfwDHHXINWuuNteqK+dI5fMCcQa45njnF9ZZuFNjqU6mLRrwcLOPn4qUjJcv5nGyZQ90nZqy2Q9s9jNuS4jzgu6PoQQWFSP1o2fGC3zubSNeQuceYacXXdIIT00vByJtsq/S7RMLZ6hU3V7Zkd+9k/5q8Iz7GBx5dOYx234jXGoz257vVgIaNYVK0cGt8WMpsz5vvaNUzNrYWYwQroAl01ucCICbgyqlnPz1JckW4AEQTnO8vPdzgPpwhFIe80J/DZdRoDG1zgxu8UsoNnwGQSme0vljPmIPww8l37jStCDT6OWnkQpckGLHxRLvJylxyMURb0q5MelDqj9YOMXJc1ownoMWQjPeAIBVkdE3oipFPw+pIL7oHw1Ay+aO+rVrOOt5pCjMvp+QcmEfMRyqoDzT5ivWAyKVvlWVDuFkq4Pi8+CyVwS/92t3rWkJrdWXTREWo9ZKoS9HeX9uPpTvF5D1+03ALPRyUvicVd4VSiMcgReFiENy3HZyn4jQc21aZBecK+TQAZZZBZmqTByXGP4f3VS7r4bZvzpJYg3l4g+Q9TdSDaFgU2QHlvg/N36IVOOEwD7hPZrMzltnwH7XTPvLhVrNcSmQlCezpr9ok85n8gBHoDI7ca+q8Oi9vGsY2jHheYmpkKXE7iXMLd/LNrA0pybJgC9h8r6rp1tkm5XeWkBmIrp6pHDPrM4CkeT5X9GfqkgxGv6Yz6Pi0CGTxLuquXfFBfh2S7g1oM1piDx/h7mXPlcX9m7xQyy0XFzcsSf+UQ7pkkLRnqek5/0AkNVHHGKiMjko6sRo5G7b//pdsnN2E2GVR5fAjl+v/CIS7dFN0uMluQl5HfmpGIu6cS6dNro0A5GPp5NlHYpsSKGca3e0PGq7t/Ktq31BcSjd8gAo5rPRkNMpEqh6R0W4sEXLGHR/NoZjovaWco/LKffT81Cuqakbc0dK+pyhs5HYlVtbn6pLuYCokct/1wwOKvJLavLaOWpEZUmKrKK3vRMLPUQkVgUChsPs3nR4AWOi5C1NzIZXcyXcWk7lXtaM4z0D+Ua74wc6ZjHZpgJ83FVnu25i4BQNw9iqnDLLzWkwDdyCdYFByD01BgFGv/SGwmzIFzn8E2lhgyxqpy0+8e6ic0vdriaGDlVw6vzas/DE8TcVh9KJCSjKPcCPYB2DL6sUQHVeXz+5t6WO5GkjtvEUPChdRscT5SwcGy33AfYn6fWBXobkx0Xaxih8bsZNwv2/vlNS799g/0H+0ogWyCu0moB1pkhaHAuZTFT6MMy23HXlsAu4n7toryZ1LQZ/N2ZV+0ys2/YmwlCuaYS278QRC0IyIhYHTLnSyRk2clmt4iyyTlOy+i7xPQkBjQKWuSggUAFGul5YgjD37ucnPpImIrXmHzSEnRvWaVyyHQxaCNLY8zm1In375Dozi5x04MnrXRLUsRH43hRugJFs9IxLfD5T4SHVvyxsyfV61fH/KTSLoVNP3lvhJZJ5NmjQuOwZyjC4CvZm92FRWbu4eMQvCM/SaaUeEOZjnNpbItmwad2zNHO5iniVeJxEnsD4oiL18+3/cSqzxauXPKgkLCTifqUQjsXF18bPK88SWIt7OyZmPYXlaNlvHdFX24sU6IaluTAsy2j8VNPyGfjo7YjO8cvP3jfMdlOrlgtfKFHpVot7FHLH33d1j+N472z/Nzr6ehJ+TacTW4J+4zqQZrWKDnM/jmkItZ0/cb6/19FHqDBqAYF6SEzR13ecuXNNoy8SSc0ogpLiAeoRvZWkTfJWojvQSQ2ueMvV2Cuvv6w6o6wChCNvwYvZ7OqbYzH9bBbKsxYzzuiQM97iG0Ub+FTeYcldBozfFL96+XPJmpgPs2X9mz24gcM6TL00efh7ohlKXkER5tVLOarNHgT2YJcJqM8IEvXt/B25FuJcukrNdXHCH8TWg1cA14OCysm6ZMb+QEA4bTmDrI7Xi8PltBWfoCtMJ0H20PJzjf7vxO9r9jDfaBFpaCMmrvR86mRPSDjCv6QU9OroXzI40gpfQmAWdjc25JE5LI/c530Mj7QoWx9LzjwldjhIFwh2A2zcYb2Uwm/IH0lkeRAWFisqp9r/1tIJam74qgBW8mTYyF5hlY2WxKDQODRRJDiHGG0qB4bp6pnlrk6YwIIMMZ9+97XE/naifgGxh25fElzUe7xbHBZjq+AC5/4L/R8fnYvSHuG6oEbC7bXc0OnH7/I9pDMoxPysUm5VfWLT+A62kLs1l5bSyRDNWCwLFc5D37vEFWlloOpPbVCGB/yzdw61cr3laCNDVw2rRnJew1DFvrw2a3Eprp8oQpSNakpNpGbj0fWSXS1nSSzx8WICAAJNO40XEOty+Zczcl3dOJTXhlndWMCEFxOcAlpp9D77jQF2ZL2R39t/2jqclQKzgzpFvjpudMzAFVie2FoGZnXaMn5xeYdv39ZIuqoAg/m9qfsiF5W4XDB/yMTUOT5IrtjIcNHAg+LxAccHQRxmBJsfzBU5JvoQ81Q3XozIBmpxh8H2XvdzfyCmRA0OpJLiTG6BzqqXqxFUl7AY9cF9i6VL5TZubpKCIErKFGKZ2RaCEC713BpXsZH9H5/s4a7UbopwK2yjUnGTpb/VSeBD4Y1h5XLg8Zfo/oeXzxGahdpSs6JhJp4aGexJ9bm05b6rqjCKoSMlSA0Xns+ff/AESE60ccqQPF8mbx5lDhL0H3OZSfZytXgdZXNTx6iyGdPmT8n8T9fQ6EmSHqqT2ynUjjLbR+Kf6Ibr3WqmFGT2ZLS1foN2IeEBGMgVMkQcUb/ajo1YxCZCGdSHoUyxETUBxG88ar5i1aWLBTXA9JyXmEeAhSW51FdAK+zv0kfbrQ9fP4ProwSI1bm7PYBWmGIYzQbyEo5vmp2FLrXgXpXhukBcXE4vzDL29G0Si1UuqdssSjbg1raqjD59Yjla+NegVwd/0//2rJ+TAhlktQP4BeOfdjeYtuX7GT+hzUuk8O2paB/HkLqlvY+MWseCLLhHgiOBcysVOznPGX2U9jyU9dGxCdxc99GjpMFUmqWHcQdOSgiEu0xKMmYh1t04FxjktCmN+AtBeDEWvDuxHPUQOIP4y2dUXWwVwWnpBCdPo38gwQFHyJD8ZIoPe6jRT20Eft3UQ5WUryivMv1WzuZKPv/LO7HwE/hCfr/37D3/t0aZlXoowzxCEs8srbGX9z/vaLV904u0w73YElg5TOvxup3skt2jbmQhfX0+165Mi3b0cPOZKayNHDWbV120PPWQnUMcv2VdTeOUr4OHWxFpBc1K/L2WJZsoCW2brTjWKlZJYmHNRYz/ZzYoOj+qMu04a+swjSgpkhmG57tUnnvk8A9WUVBE33CMF0iKXfxZU/EG5zScUe0oXAX5+XbkDdMYjZWW2lkB5ROLdxN3KVlEwhtZJoMhKlnTT7BHXeUuA6dJikXlI6Me8CBQPFjCyHTJ4QCRJEymej671H8NURzKSQ99WcAJmj3mbhxyKz/a24jFU0xLk/seY0iVkOJgBlMe+Zq0tuzhs/OZKfUFWal6tHKlAbGunsVHSSuy3oNWxmIp6bc9rf4w8KfZuLNJUzL7E7fQiUY7O0rJebOLuqTgWLcZk21iGLbvA6NoEk/aQ3ANsp7J4GASrFTtrwcHT3jXP494U6daNcqwXjGG5Mm54Mq+1gxkOWODQVqcSs8SyAiHLHkel+2QZuQhDeFTvP7ePgM7eJ7ct8B0hnoyGXuvLrGNUALJDjqzVNTEhM2EzegChHePkA8w2qEc9HyQuuZm7o0kG9aIiKG/Q+1EtZkujE9+A73xZtcznWqU8OudSisVnxQIW7N0RAhtygCXm9HObXSjS0K9mxCRfKqN9lu/EiDHLcVMb2XiLMZngESC8mESHiBtgrwXYX8dZGhugepHU+PLDORCz+M7CxnX+dQ+IMtz3QfEmHKUBA4+GaE+nAqj16XT87W7X7CFQMTBoEV2ZusDdKsuK61otGfLJK1O53RM3YRUea/FQSNokVOZll4EfS8CZYE/d8Q67U3XZtNJzZtlLacgT0j+BBcBii3JmdA+pxTZ8Ete8idTT1LIXM4Ew6uZa/QNdW2YOeORL3PJxvRsb3caT9WrWQspx72T2U13IN+eLTCX6r3x7Q7hwUEZ+1AR5YVh+tEyB+H2ox4ShrdEGYTVAqz1F5LaBcmo8r50ilyKuLIvZHLKKV64fGoqht9fmYmcmQRfusaRWvfUa7qP+Dr/N9rGS6wPoiuScUesqJPelchd3DGyUODydXtp9JNeK9wHb7SOBDJ0gq1SF5uT2Yr4KwErfTuoIVAAYyqFkYStFZMbtopsg64utaEUhDnG6nuk6unjiNEEr0hUm+rn60+/J4908qk3YZX0LDsM05lkCbDbC0CJwMHAJg3f7IhHl8TTtSiYasCNErLPyyF02Xo//T9DPve5FM1hgmd/Kk9Eguex8gneIAvxpUpRD394w3RUbWuaO3eLse3JooITIX06Z9QKY02nj2ecuP5pJZDxUIRvNE4qXDy7UyRG8My/hxuS3UHuu01XjnD/fmQfqmHySrV24frna+UwBsi9y+BWaqUvEawVKIQO9NBA9G28Q0vDsW56tw08FtK07CQuKChgDAYmFDGC6xj8utcITw58GXsZF0uoBb3wyvV4J7fVwLasBhDMojZvq2YoaZFF0R2A+Yf483WRGTUHkmIHrOIUnaoqYA0udrlXYhEAZDo4DDIDolKGBkxwlzp1bkdIVvJPwdqFiGESzvxuDrw30+HQRFfMGLv85kDOa1GDq+vKySzqBJHwzJLpCcUeXhvAapEQVZyzw37nnnAbJoLRgWl5XjNKavPD56H8xBePtMH49r+erRHvjTtUFBJUFt8FQpV+SUwTOdlDP1N+9DPmQg5gopShmQD1x55c+KvNWfHOe2e2tIX1n3QwexO5zKX7UQj4D9Y4zgamL5jImoLWWA+lWyvrj8o9wc0TkSc+HJBpJbCAPyTveBWRrg3Vd5cpB5xkbyvtqEpOik6h96OWthliKckYZbtQuzUIbWS9fFWGyBuC9BbaUUTt+iAZGuCmj2TuWJK19UWyKISQ/RJnMQPBCmqohXPWHlw+JKNgPwXQEbWWWyRbhP8PkLEm11MNTXWoDUlleAnjG9nA9ssnvL5sQO1PbIFna7zaHLnKZqDOfk+4N4kq7Le29ZrydX623/pds4v1W+jGlVb9NX2nPuFtTtlZsoqy24t8fvjeJZvJycLABqQl7tnHneuLMKYD092Yl586piPHXr1K8T1K68Dv3R126n3xAnRxiTJPe/yKe9yr3fyfePNNe0Ketm49NaX+aTspXCgMe0FM2erigNW3o+bD/v/DMM8lJio/taJFc/bf31yKoJAre5J9ZvOrpE7MFShBNaS+rQ6ScTnQp+pRWiJ5lkxYqWeQNqAsITroadB9WS8ovyohd8NfjWfmesLh6VFTGsru6TGu2b1/We4J7xTVszqd9u6PFuUO+k/vfviKYRjwVRkUzKXaLtve/FseusRLTcdRdI2b5easOySma+9h/3RZcorpXSSSZgyILethssI3j3pZ4sLZicYXiB+h6YFLnIFS3XzNaGlxa0WjtQGbNYxAZpu4ot/DwBU+194+BU+BmBAcGlWXGNvUwrQQkWRXML1LKlNytLSyc2u1ZzqlUwiKdr2HM6/05ofS51GEP4LUmQO4cHlBJkad+5ABzdOCEUl61UwAUBDXP5BY2cGzB2oi6PUw832QpNYn3WHJhGbolqwOnRse4F4yW2a2fwsO6xDLqPPOa1RXiaKGmQ1h6AUjLLcBA50Wf+lpYs7BaJLnRNE+Vdb7AMG67NhOMykp+psnjvMD+8pyTk2fzpXw5/Ji2QXul06sRIVNrutbgKmg/z2fxbNvrKCEl4u11SkECKzIkdG+715B1qOdSkKC+jQe1pNeMYTIljVmffQqheXNPwYjp1NdLwR8QFmk7cllYeNm/SmYzcp9xm4S1KKEe5NFMehpibHqqgKV5UXHGuh4/DBQGh+RvlpMxemK8xmYv5HEbQOvbQ6Am8PZmiIzoPa9rp1V9caJDm6XjWhfdJbBAOwQvnO04cuOSQ3kDE98F959s3XR3QU6w81StB6Rp4+GNMFc3r5RZWKJBm2zojNkv/ZxN7shIpwaDMODH5Fn5j8xPvs+nJwM23xUxSoUfixzdDwQgFRk4xR9hxTlUkOE5CsduoiJBmUu+MOSf6Drs5cePBBiwg4mxwpyBVjbGxtas6XU4AtWsCkn/LZxsBVJq7LoRjIOzQWs70Mow6e4Z/TSGimwBuU3gmC5+i+eBGULmkXGUPwMFs6TiUP7oAK/M2cFONVPRONjQfKjwK//ViLTetZKi6Vu0w1fF3vOv9/LABDOyWGx8n4LBakuAd7drp5flp4KENx8j4HVJ5jiISZRS6i93Wn8P4ItQQJ+rmvwQzg3xa7JsQwu9Je7NcRSvkTeI7QAWzsJM5tmSYgTVxruTymzjUN/XFRL8UxoahhbwHX9ENGQDbAcJWQAR1bIACmIcncKffetHJoKTkbC2y2xWWA+/sENI7N4ZKBQF0pWFt48/Rl2p0uJJfODyBdu24GC7TFfx8PkifawA4IYfhFTtTWAwPlWJE3GVF45ePNBbt1YyJNDLUS7FMCdD2DMSaSUaEWZOYbcAoGKPewcLGQc5rge33qSu8+b7AwBBY8PGyRC3NSxO5/86erKPsjX+dl4K62VzLviVja+L9i+dZKWRp4FiS5hWW5580bYjiUYKAVVgFHnhuukfT3st8+aPZJTeeqbybHbGaw/Us8+Qo2sdEQ4c8l/yF9SbfEjSTsnacgSgECFF13lYvm7aLG0yORWAhn9hZh/tCBXh1Lpqo2pXNSEB6I3a19lEYDHeFNh+MaW1ixldM9KtXpodkWyJzGq+of/GrTvruVSl0Scvx6kfQCJMOsrru3sEId5uSYWG0gbqS8TPvqvsg9di0sEbsjgO+nozdtxWFfW/6xAdNHH7GnT/vmQa9kvvfH7xGujf91ei6pNkK2P6GFhhbJYmiVUiS9msRPGVL/8IXLcAH38XDGwm8wMubhhcYqp2W5Zamwi5mC3AD9fBmv0+mgd3X1l/HGid89BZ6+8uaqzUs61I565kE9/yr9yFi/ewGaIE/MTeyNte1SPY5L5QQPe/CExdB1zJW/0XWvaiBwszyKdjw0EFtAkh50M0WlVfwRBUETT7Z+95B5W7+dcTDfS6YGjcVEM+qtK7+Wb+wmCNIgw65ue+ieaaPeYSxGxaJUWyUwcHBbOEpbb+c19SQFPB10EPAxtGOAyQ/e7C/nQ4gnkC1aFoEW7hCOWnifz7UDOHVDZkPdh4usuNsuPwwNa4luBePdYFU9hA2FhehYPgdwxLmoRvgXpHqoux7U1sSBgY4upI0UNwqLqHnqZbYF6XNb8Tr99ggNyzW4SJ31riFiSKxUjkJfDK7aMy34ln3qgHtS/ZW6oz8xI+jC1hH8cScBC5RtBkEFiEkz8oLHca+RXcOvAQLxOjtUPJ4bxO9WeWR+gq1mtehNO0KEm2nVttNF6dff4Rwr2RHRJSOZMMKWyGpnYpOqZhh3e4CNEVcQ13TRfF8TZZpuSn9mETPVOxIRCDtKm8InEGbUTCCtQpNATpFAfS0x56iF4kT9v9vqbGsWjIKgoacr6hbrVUu9nhTTWVIIKOyJ2fD2wVKIXxtm2aKeBjPg788ZKQjH/QGXmdIel0x5JWOhYevjDJw0Sg/OkxoELiizco9p1CVx3mCE3mLs8MAVNmvb7hd+0DFVOs4nFTRK2LoyHJoSCFz/K5jbxWt6AErRAOYawuJBmE86ivKm3eDe7mGZN7RqPWADA0kaIniPIo5QhJTe4s63YERSd4O47WCZ1iH0RJ7NZwEALF7hwIor0xvOr6QL1Sjm6hQfNRq0xkpt4jMDbaK2m8hoL9SK0Qrbaws8PHRapR/ja8TRJ5acvwexaokNJJlM6S7/pTsItgrIwdzYa4Y+Q/DkusaRHpMsBGxPVZ62gZHBvEDd7ocejKXI8UvyebxRNdBTe+YEy/VLYmEr6I/WH2B8zBjdSieCfg0bz2B59dBPP22LRG11owXpuXqTwm1oijq++7AQzDILG3OeWRyAXoaaKNAcF+u1HT70C8CkDCd3ptt5ezx6C7WTE6yY2dxw0eJ5UpEh2/WA2lARkovAFLontksbywYBdGmWmUI05ZJ60OY767mNHMMXwbxaNsk1sf41r53B30+7zk6iv/dC1/O56P53M4ypQsa1pXF5iN+762gfPNWQojMxtE7rATpSNvyyFvP8WkTOy40edCPfEXfJBx5Iw839jMtjJCSrMhar/AfY8JoU7n2Kuwy/QciLd4QEJP31GUqL7FvuagFDPkjd2mIKMRzhxLvyjLhYs/R7L5z4W0ak0b1S40O148iA3YVUxMsVYRPjOJ0/tK2bwa58/l385iqqC4ZXTYM0n2sx/Fj+Ss4KS51i+MbjsBk/RxjMSuh2RuFGz4JznK/cm2WnjeNi4D1hAxpH1+OXwh1zvKHvcCCysyGVqhoVuPu/G2xFBE0glfva1UyJIVYcT3kPFnQxf5KV1ElqWYwAAFXR2KqkI2qn8eXnmJtaTDfWnqUyXQ0fW/TjcXOTZOJw47HrX6XhQf1pYnMyYNm2xeAQNuxKGrciS49l4Y7n6yyIDbJmYYMHY96MUl213K5LpvsbdW9y0q4U9zOAAk5LUXbF/Dp6oSXNGT5cs+PqQnF8Cg8Q2ISRG7gLqSC+m7aXBjWIhk728nVZtIQ8VimioCjWsLOKhcwaGxhsezTfb9LTigT26wfFjUiEuznmN/64TVg6qXXSTCE/BNzaH7lSNLQKJSxAsLtvm4eYZJAvKISdAP0T8u+aYI/90Ig/hjRbss905xvxy5U6GmDixXG8yg5L00coDmZHCZc/HP5NQt4DbRGsAawj06H7f+2+O5+OKPG/h0PwQvYAAJZcWOh/kqkU6E7vNsd6fZHyAeVkBzIqRnti5AHMeAYTK6WZvxXg3QYp6lAQkcLSqfAthQyX5epxwRr0Fl+T1rI5TfFHy3fMKKFfpL03nUVh96eBmkbYgdZNt76tA3XyUiK0LAcFvdDgqrixyZBdlB6ImF8SFe1hsMQ3HjaUcQWv2DjNr4+To3P7ko+suF8qjImFbEMFgaopHNUyHjUExA/UDbRiq68UyQdoUT9D4wL5w3v0BdRf1VZbydxAUsiHq4UrwK55PPnvO088bn6uS3+oM7b9c1PA0+wbxar2IqdDfOOFNXYcmmbjqSQGTHpTcDREWMg5OH35+k5oHsXfLdxbhKai5++uLAhggrn7bexD6gvyXKZ1A2uLOj/k7QbrK7utDl3LFV0DJ0dzHy8iJ6Kc+TkIw4WKP+KpmA1V8Vi1ru6bGVxk4eeTO2konMx7ZmsbBeOGKzqvWUZS+NaxoUXgWcyC6ZIao5n0L5j5A49mvOUU+lPHejkMF3WkPIxC7WKgkfhZVs1g8ODR7DKmyNF6PURGOZJp8n5r7xZRQ7ERRq49RLfYsqzosTRAFjXz2Vhz6vVlya2TsJDE1nsvH9BGXpKP72sSxaMu4gcWgD90Kx9h2DlUE+6gsZISwVsIWCEugGEpM3Pki28sgNc54d5zqsbARTL7UJbj8CBSJJ8AmgiNK07RH0nX62ee1vcnZXViexW2mQin6AdGFqP1KfZOKIOCyZbGK7H8JcYY011nQQ8yy2CGbTPbLE598isRW3kqrf4iOkjgsxAZ5Tp+gxUQVBPIiMw6fpnJj9Npag6NQ4Vb2WxSfOX9qeNsc0a+kGl0HiQL76hHiFq6nc8575wYU375Oa5jcarVKx4OcGZmjz5+R0S8FnXkDzlIAqMA6OqwrLpCpLzxhzmPHDrJ+wRnIt+VdmHtL9o3t5Y+cwkWDs8WQZcf5jZokt61V3xRwQz5vTuvWQcEpYGcg2QC3NUXotYKycxvSSTmObWPkIGpEEoXi3KQguHnX3TrQJNyXelh/NEgfPuP8M0XGyaUMlCYsM8IFxd5k1eAoMvMnnzUJowXLlLsodXv7XhivS7IapR5ZEEa3yb3MCqoaDLF6Qls+BEXApzqqdGhxsAM4ChWE9rVngr8FJb9vL+MPT/BqwUZigB6vEtXIo6UCrgvbs2Dss8D1ndznkKB7pzBAXQbbzL6/ynp6hPQpnMp6UJN6CaC8zaY7VCyJ8hVbQ7i9PITO027BvGNx0aAUhTMtLXlIth2opzs5z30zvQFun2NgbuTAAR03QyZnj+F/sl85nY3Acjp5xGDWuzI8jSAAdWckWfBqjSxjRnKwxc4AJFxI6A1veZTocmhzS8aDhMYsOoZNedax9ovwix8BorZqkM4W2bUGDE8LcozmwBBwB6xzhSjGNIzuqPPW9+J6nZUnqnUy8yvYrngznTzjbE2C89YZhWipWr03RpSxe7QgSlW8AVPJEmltGfEIFo0eHxqiRETL/r+MDJEBLD2vObjsHe8Il3A+3+ljJ+Sm8wtcjXgbP/Z2QtB3aC0yLTX62nEXd/cbP7fIL+YWglL2knNrOrik3/r19+ACa+eD1Q/XFNGBEvyYo+4K0VFFt+uILMEhxcWUkPMsenNGbibkPMDEX8mxt/A1BSy818oTjVtnR02BtuLgIWhIwmZRFzgGe0XSzWwzckddjcZ+2h0usMYLYvd+kVSS7YjMmelmKs/UVhmpDVwpOz4iId7UC/8y5pFqS0o+QMR6PXN5Rn246Ym+bAF0o1raSOuzI3HhI+eMrNXlVog9PL1rP6L+RncMwIt/aVFB6rH4+4ZlEincKTJtoWZOZmq1gFC8J/ORb8j9BEKs68SeUGu8tRe2DQNlN+lL/Ax1pmqN++h6anthYKKWjCoHt7y0JsF6tszHCxUbXWHS7S9ep7I4yVHbfSLboeKvxLF7XBkdOQtXVLs35oQaJx+q2NLntiqrLKyaeqtYHDvbxDGZJtzjJN9rd2XlSBOM9uI5bx1gfPM9dHmkcMHcDH9ik5haHP+jUwLNLjs+FuH/LDGPbcatvGzoEVuZHjqChvE+VcvB2dEdsoKaS4Z+xgidK4fqncH2hfg/SQzmH0wbsauHRqhMF6eeb1Fpr0UgKVN7L/VAXHNp1jNIS85tULTWrXAv5mNM9LXekdKdM6ieB6gCPtFaiSWmmB0tnMuq3singPbwUgeXfAarD4n2YAep+du7ae5H2tsVCCR0Et9tAEN6JWAcKL7HuOpIYOdsWvvluSb8yfmsJjoqRygLPtdLEw0WCjIcr5qqF2ikBM3DAt9u742T4ZUlVzrPRW3pv2i71MBxnKvQMAU8yXYiWQZN/60eOet1CbxmCP0W5qq/IdiQ3wvi6acIwcoyj9SVWvkrRlzkNN4VmWtYvA0hWA6ykcM2eFZ6WbOZSheklD0urF80Cl/xvtyyaEKJv09sBuu11XG/njUYdIsfAv55q4JBmQPhQQ0D4EFSGPFpzf8MCaRy1waIVJeNgpoUtJ9uqfT0iSl4SasNcYK79VHorIWT0TISvUPPbySxzBV/fWT+umdJMKePO1Vup+cFRK/8rhO5UVD52MVZljdx17L418F9f0dwPdqEkmr2yOpUKjD4JrQL0G5TvgZip9SEgSyy7Fwim8qKnKTHTrDv1CdNp9watAYk67Q+wow8LHTC19ZcQ3Us/YN/TNRSCoMxnaeKvXB+kAUbWBynYd76UakcOrMcd/TMeh6NLM5s/CRdWG5yFPjer2xcw+JbJxBbHZAJNpobACh7AmoEuUS4w0n4FJHj4rMStknmPAZETyvjNYw8IMoJP/SMEnX0uBEtKIfw7p3zSIzfi6LRT6gtQz0N7NL9ic5Fc/g+KHY/gtrIXtT/KcB0TQ690jveWtrslnseel3ZCbrb3SrWpmP0ql8bLeu3qFOsAOuRicUW8WyiwlDC3k747JiKIL4CoQszVc/mcn8bC2seLI5IUb/zefJT3cQHzFe0uJXMFk+ruqBJ6s8kW5xTJ7558CVWmLN8g0YY8ufIe6Y8mku6QH9h69kH3GIJdCLrANZLsy5G/vOVNby6FOqLWB/qv9oDETqJ9rUqWZJfQoYve7TOtU54fOEP5e3xRyUgJBkRACUhVq7vEZfNzZRjc3dv9xZ6P9+hy5kaTGFKRehwQ3eksvJ7BqZWM9wAMNT9CIBtWFbVF36qgp7HwXNt2tcgjXM+sT3IE7WCyy/wKFHwE2laiy7NwejBRjcWtvBDOGJ/afWQtsKYXbtBVHTROGcsfriKotdyrWSubPMEYVsSn3rwSHtWfMYOImLUmlw9TBfcww5bJRUGiyh/10JTrzxXURI1tKIaZM9tVD1wY9kQJL6TD8C6JP60HoLr6uwXn4GXElLuqduw1emUGz9RcKLOnxNYDarx8vNnleiBpb7O3whQ6xuo/Dev2eezAYHilkvHKztBe4pNgt7U6vZ2GHOY37wzi5F8a5cNPpxZF5l8c47qHbmElq2JS9wM7TnF7e0TTFWQTKYXn9zH7Ts+3R6iTeCInVdlqOPmpFa7ohdjFXjdSnlPs4EcrUX8WmCM4etgu0gZQyk4UeKtpcRcFhSOaDPjR5R2tvLeL4vL/dinHCyMouT10vWRGG5JDexVJloabAHWVpTmdxkrppR0frsNZvXCsZn/hgFbmGv3qJuQM0v4YaqHGIf+MetV6IbEKg0dy3+JL4ifdW07Iqgr7h8WbGYkoYwmuf3VIPvjNS4WZ53lalm0yZm4hRb66FLl5fJM2/LJUppfrLihIonKolp6AjKuj9vispBD55DsTHLSYgiKBHILJqchDjvNunZFYH6uP1Q1Sj+HtOmEXxEQVg2USNO3aJzIR30Ri4Awli/SUF2Jf8kL/T+V0cmDV9Wd+8UlH3jpFs/Xze3aSclJcF5t3JQc8lC8t0FoDDPCGMyRUMILjPa0ZAbMTBU0YHpirkfgsb/UjMMOwwjTKio7Z5y8VAXh4LmRzEwjWGnlYs8z5LSB4siMRC8szYGPcGIlNWfd4KVZAeZwHSmc9qdG3Xt2X2LhiUXtfRIJcIyYkRMp6zm6KpNtFpn1e0/aBCu1M5TOb0L7V5qNnGfQRZ8iXKvIcc69/xAvowVXHXuFlyclZAHJHaC/slPIQJnjJqghoHCVcTgV4KgAtKDrRSkVJijcxMR6IlRKJRJAj62vRlS6gHyPAZBzTVJtVkLCpS+l5htGHm9Uz4EVH7pejOdPSgFGj5OeOhSOgS2SyTMBsSbT5GN9U63AiKEYA44MzbZcka8guXzf6xCJZqcKyVAQl2hXO1v9rp4DjKawI923qjyEQ+yN8CgVt3gK9dzxMC+pN9VGM+ndZmjxm40hGshjpIhcqm8Dy58d+QpdU94tx/Ehe1mFCuWfvjdbHP3Hl/f5rBWzIlTtUHrM40+ZHxHoJC3igcn07NAhFNZ0yd9+AA8g2yuBDiMInDu83/TcvZtb3j9Qf9AZFwrsk3QZkZQobavpLVYF0s+tS1NxvwudVNSjBj3TkUBwX9N2mUQlYx0yus6hCeVeips2DlzXHAr0snT96c/tKgRWDlI86yX/+U3lxUVQ0zIM7S7AiOaZB2BSENm7Dm41VxPiS3+SkhF8CVo7+KSFBdYBrF6uiWKsZUUcpJX42zXPjnRK6Do2frKCHejn1LM0BPHulMtJOHDNSg+Ea9lM9hwzwiC/Aq9Y0xBPBnRz8xq3+E9grH8cSG5OF8QHU1/3/m557SNwysv7+JN1kg7WDc95o8369zlXrJmLx3aj8uq0f3SrH3KQTA9rlIqgT2EKg+RHVp2S0gEwtsZB1gjg7w1MhDeZyNQNP1x6Z/fTlTiHDYu7ff48xJ4mUcNJj7yyWdkCBdbb47zkU4imzoKYJ1w+SVzrI6crNkP/FM3SQZ0sgrLV6j3/umhoHv94/84SSydT2W59cpMC9skDzgdH1POsPCRPb+MSDDgFbe39qjDykkPLzPM/wZFwRR9HJ1i0O3dIUDV0Wy0mGTtEEu73DCnFpjHGlpUchbuBr/pnb86i//iu2fWzUe1DSsHOGcDKYx7Y4J+aUEvEQXLDYHM2ZfYgfMHUZtoOEzR0WTFU6jq81ocL09nnFk206EhEAHgTGgfOli8LrIYwin2YFJHyekf7CXJDoPh6TigNyY2u4U4PKczIkTmx0e95UlQdF0p/J2nXB/DUOMzVIWJ+cxXssrJViYDkUt4p8BLOl1+mOqmDITyE9YV4A0JrF+iVthE4XhP5ox8VSpf/GlnDtwFNKIxb6wlO4hagtnEw8eNMNuEyXb1Fd/oo1AgGhuh29jJ1AAXf4PYOoE81+SqQFCunvFVf1My6LD4cszwtuii7bf0iK3hNjlDyOxH/QdNLQT3bUt7Zt5yqKp5IzLkbet9eZ9AfGMd4S6h3TeALnvjy+ryYP9SSZ8chuoj7MrQCuBVwbY1HJmiKldHQ6kXyDdRd30UKRJV3ki6MWhpdPQ+RkARr4CaP4UQTcoT9qxDupRkIpBGjP+XsO9yUqHw/JwB95vi9Y0ZAD+rYVSDm3xR49pcO4bjoQTDM6QOVI7fLQUQsJi+xfK1oytKHxHiG/RPeCL/W7PmxXm7OzhSVsD1KROZlvKDZUgL8uZume6sSvSkHyjH+cfGCLLx4ykIn3fx1Hw9PG2aN27NKQF6ISvlykEPTtaheXscp5CW7sgR15tADgpHUS0W/kzaPiO3Bo9m/C37U+7DwDo44Rsmnqgf/W8MHanrxEjQRQwYlQ5p9n/ZIqvUmDihj5RwsVS2djIvZtJ+kbCdbYXXmNcO/Ku0OyHVdcVNJfvpv792W787iuQ+56dC7/4rDIuZibM//uXI0OL8kwTqW930XB3t7PhcpOf/thm/ROQTrS9N5UhL5GhDaOIVa3yg0f6C8kvp4jGUgCzkuTlgU3qwyDTXBTMq74Pa6jTFtww/ZDd9erb6gOl/xuXWr9UFTzfSpBmCTKdorRz/aOLd7ep3oo9K8MkOUffbkqVwitrwkb0/CQm1dRaYYA+sjp1HQju9lfEwk+nedyl7OFKzaryE//uOf7uRxDXnlIVrwYJtWbI/2TCcybSQ5847Qw3VsXyG+82TxFaJrjqu9cFwQOMzRz0ULAzb97VsCXfrNqjhOOtvVDAyZioQCZJ3npWpMKSDiTLZ5zKlEH7FXvi5uL9taIjYRneBkkek4Z4L/VeEttLBP0025xXesrpj7X874rm3ol8MKauwdN6KGjCUSvw7q2CQHFA5nsENctcvqsuw5mC3QSuabZUCCxZaKVcTY49ec+gYlWGAH2VXRmzjgF1kgZ1gNY12BfJ7YZv+DNQmzC5yffmblf29vAlifPazZT2mqo1NCzwMym3dsRU/aDJ7gKYiQWSTGvrKS9Ue6JKXIGNh8WTU70+Hf7Km15mEQmuQsN+CcFpR8qwVkOSE0ICMJnlOS+N3M4KY/zhLxNFkk/Uwv0cTucHaQ/bBBm63e3ApEKxXWw6yS4iIElSLHPo75a7nKAXBKpq9nNRAkQV8C2VhPHJy/L2RYKEu20ev/Bb2zlxOSDIBGBFYAWesmEX+Jz3J7NeYpxWqfuXw1uUrkI42dsqK95okFpW/JvRrAwrEtLgMq9L7GktR7pZw17Hu50PUYUJHsEPhVGO07qzx+bKWmJV9tPEwaQlFOsdsTb1S9S2O/3OBDrTxZ8fXpiMC6tREKlSsRpiexQwlAJHOfHny23RJXKoPQ86Zw4b5npY9k+7sdrzb0EkJaN5zLOQn0Tz1zRajTQWPGQOXIT8D82BACC0xMpPNfck+ZEIA04UM+dcfMipFK+W0+2GT5MvDvW01D7WAjam0vZjnIUJH6+Bs8pyfQq9O4swH4jlyIHhP6lMrjJ2WkFAb5T2xH08bldcElVTdeGnQY2eZy0F+INZwFDP0FsgQeNndoqc0Jb5PsNiftCF/073Oq3DNa1owlmI/Y3mFNUWmB8IQGg9dudTvb/XSFf1A8zAPRxV6fCsJoOAdFBl9w7y7I2W6wupQWcAGYIqSOAzc2wyDtsiI1zzvagKtwAPinYJ+tK/8ZGu6bO4Fv5PxBuDX+f/xZO1vVlzkuN5gj2wwcvuYjAWel2a07nec8Hj+amVk488ufSbtOP1CowvFO0C7OLVvS/Q3yy8ee3WsjDMoo4XCQhAyChj30GRBH9Zkdj3Ey8kXVF9JxSgbTkcqCdFsi9Qsy2XHsFtPhHCZHe+pLTyY23j/nUYcc6a3VhyO2P++fD3jkfp2nJR440JEouVmMrO9XqLrdLONs5Yxt3mEWP/8QpuMInhdyFPtUdxyYr3o6ueQve9BKGgd2IN2dW2bAeM8VupDRRC5qdLfZwx/1Wap9xw0us03nDl1ngph+WYzO8TduOrN6diHe0ni4bLH69Vv5wyaAH/Tllv4IjiD/U/1pVRIX4M4NUbl9ql0lnnAnzfTIHGHo/Dd3v91MZhKjeCwzidnnciS6d7JwHhPMLDPz7kkqA7njy0hrbUv0Pm40HPt2kZf96NHQOZeZGfvIZUbD+Eo6mDEpkRB4MlxzKmzyi6E7tA8fKvVjjEIaDQecnkHI7Cs81HBQsvI3AW32NmrgAloP8GKBz4u4z6AWigSOvQNCdgbKptfrui2STzqRMHch8QqWk0Dmd9vR+4BQgiXEj0pax/jyvMGxfrCH/qqt55u9vfEaXAC1jJR1icPG7P3M4Bqe+MrdBXK5BfbSjuszC1kQzciONKPYFYNVjzOEVx4+DXJvE7ZCkJeu96DgucF2B11A1+ecq6365/Uvn3+XBKHQvtdbPjh5XK3vQJNjRUFp4E/tZUyzDykSCWKTXegWv9mFpEO0XsjuOvpnTVaORe0nHv8c25C1h0SSPSK56kUmbyOlPJVkunpVb93/O8cir+x9U1OKbJ07ODRFf9b8+95rDnMuVFlmR+nIaWs7qeAiozL81+lgehNlC/kMp79gHrVOT6//JlTPFDVLokSc+JNEdJtNOOGt3eW1HcIGY4BmXQ8S42RNUG93NUGSciYjOojiSbiMkmU9KlpnSHOaR3zrkNV+ifKELSWUcDD6sIoHZyWcIAvzpOa/ijFw5YHG+/1CgCGmxiQiWafResaiVc0rQFxhBRkLp8O7qeteN5ZLWyM3XLU9jhBt0hwAc/wfpN6Iazo+Fu4KJNnJvOvRWK2srrCJTEweqlOGktHDCRaHSEQZHDeV86ZKsAUz9aC87KZt7KGwyx4dK6vwetj8HsBWOqXWx5+/h32pGWzfSqczzLaBBJkyicSEAeZg38cycU1k8hTR544SUzUtfl41rcGGpINizx4AMd63jLnhpaGP55GfQEoDfmjHfwAFugkBtkriB1yL+74y3b6NUdOEwTekqWl529mw9F4IleNbXn1+3nFVnhh/rHnxCZv1bkBZoU2vQiiWeukmXj4ThrCeQgvo/BCd/zvpx1p41H0h+Eip0CNEfcxZzL7+86W02zEqSlI57f0MtIigh1krS+/yVVasqQm/2iZJzX68Qd5SvbqUgCYdQeuLJjcGqujBBZm/3Ct1QZVgE37MDU7K/YSr7qLBUdEJY/u9f/mdng9AAHXXoMjRUNOSQFJAhWdYjiVKvnuy+MHfpz9oX+9NaVnY8aIkXaVNxKAD7QSeGdYL4ZBed42SvPhQnHGWG0zbsL4FrWiUHV5E3wZgEvIspX4Z23sjnnZF8kaGDbPI2/N9syQu2Ec9jo4Gtv1oVKfX70E7gDBBUQlnnrbpuSF9nae7y9TilXUpilV8mGT1pUAEq5IAXHQdCbRFTZfFvTt0900Hlpt0Es1GyuqvWJ9X3PtRM1sPs7dYeVCdvvCFf8OdmiElShDTr5apITp/DRRnQ/lX9WQtEKK8OV12g3xfei+Wvtf2C7P7SrEGF9y9WDeBt55wEaGkAezESvuWrl1Tcs+yiDHXPmKO0El61jwK9gUr/nzKV6KoFcX8PffOWjCh5fTe5cF8H1/uesV8+SbuiqB7kOLCR1APUNtSQhHkDznG7bHW6pfvn6kihZjydrqanfk4XtN7HATSktLhscd1unVcQJRGrkh2hkfLqEzeb/iGDvwVul17JFFhc04iFwbwTks1FA4yBhxnTpENO7s8uRacPVORTKd/FJSAQb5wQxeztsbQlDfzQBUGxomyJuunf57eTZXOxj7UrXjZc33Ef+S57UQPWp0+igiEPdlbeD/pkHFuxiJJ5H/CtDbCiBXqhBurTf1Y+p9nSpn6B7+w8A/XpZPKAT1xzXy18NZ48hM9YqApUvcUWc6s+4wR8jf4bAoTG/Nrqof1pH0/I95HAKhPTJXFM7TH8m0gT574+LkmyEvYU3N84yuL2tDavSMU7IvCPKLMtbdDLzEdAIq/LkQ36UHRSfw8ENteXk1oTZGDT8bGETA8hFsplm5B/0T/zMCs9qm8LT9EQG0bWu6u/AxeazHlVnJSZjSGrNIhmKpx6MNyAws3UVHqr2qW+ZEzB+uWRsd9bf/0asn72XrFV4LwIs4g3J7Jy91PRKOmg22FKZ5PhLRJ+C5lST3ncFnP/k4VAJPNcUpV6QQkH5ISytSdXvFXFrsPLxcVlOQbBtReQKT27rGAH+yavoIIYILhwFLPy4u7FSVSBtsj7bezHjXn5oStC7tat+5kpyvq5NoU4wjE18oooC4qRUdETUxT964FtWD8xScCAFDyfmT8sxgq9FVzkF7cq7VUSf7YcwuAiFm/OaOI8B6cQSD1GeKRiJi7wmbAzxJtE2Mm2BIV6hpr4dtLNazd/9dOoIhidL/MuH5uR2xlgiTSiWVc6+FuMzNKnlWjzKy71Xcs5Sq24w5wlUkMSp1QYxojl0rUWw6wpxA4zl4TfZf+613BbXi65WRyL04sOSYzUMqNYv9cuvkwi0wyNLi9qeDLD3rMEndkAqc+YEZz3S4Q7j+zpITRhJT6C5GuoW7KCAynguDiYj3y2atl2kvcxjkxYIyvNM9p8HChuRMFdrCQWMxht7N3jQkA2vI4N+nBkP/aR2BoOgwi+KD7SkK0vDC2MLwtfQEU2wBHTJ54Gfs/c+Rkwj618oUYkrN/lbIsaq5kN1AR+dVVj6pk3gB3mqllHzUZnXHpOt2nlFfelha2t9tR/dZS+9vTBsgGT6iG3FtevyZ/cXqEoViPgMLSB8eIcqrvh1PMorTUc3KU2UuJk+YT6MW5ZA8rOXW7mQXADwrWowtfTV6Rhf2eE1nIGj0BPk34HBB91EewlCttlrBhUuAJcCUeCIqsMe5uJriZ8JBsDkl5RXXMS8tq/6CFkkg0C4VyxAn0oNwtqODkdjHWwNV7Bwl0he/L9STwBkspyDEX0/Z/jwEwooNfXlIXSSB9uWnrmgA8VPok9IO/yEHjBjTf5AVNRtjEPoyeXuTcwKbI0l0IErIoMDTjo4mqbIGCv6XBneTUOtb18AdGhNq6AtF0rg7OanYaUDlOoYjwuiXfx9BbuiyQZipgjg0vwIyuSfdXKbD1GEksinp8SAp5npb7v6y/ng0YVjmuwl7+IKrt4zsK6mLZB3pf0W120bDNJ5jRwNAJMjG1aBI+T5CXG8kW3XuFScF6fZAMd7HqLyaVNVQ32X+rhR6FV4dWQfK9uqCcD2+I9jqyTst41Cn0/1nNcz105x3rkYSFNvOth4tNPaRhMPcaztG6fDfmgaJPa6QVZQhNvFeZdhDalXCEcIQNtqld+Hwsnnk+lYAhyZ+fxpgPGpfGGNe5ZaRbkYJgbeZfki9scrRATTOQz6acfPS+IWSmfNISAOcxHB8Ki1KSC9i+2bAfJD8tp3XMXIEf9/P3hpafKQziMooTNovVdwhwV+yOy9YkD7sjhRwVG9vuavAWSI0oYaGzUare1uuG8Kk0N1JDyKQk8KB+CBWLI2UPfy70Sb0aeB9a3pphpjOytBUV/a7nut/IcXuO+FGVsZVcH7CFao9JaxTn3GLKcNNAu2uk1fVQqMIHdBeOjSBfrXr9usHCM/wMWxCATsuB6/zTcLFLQ330xh3s9Vj04lAIdLOVtMivyW2nMH/gCb3hBTE9G6WAeWqqB2d+lURPuYDGH4Bwnz3FmcKqu+CeguMEmWB/xLASjbIwa/k8lhwqyxAGDHFeByeMuvnMm6Blum76BuH+640MAe9/GJLGxA/JPy5ZTIuGVQ1WeBtD2JPKVVziBIxeMdQldbE6Q7W/zaR7glvGiXrv6IM7YJ91qW2Zes5CNymEJHXBZDHqWuOSc7YK0Fhni3VZcUl85icYLcuq9UJbL+a9qMTCJ3XtjSwmhAYt5QAKW1AFaSIAjFS8mqkNjXUxllAeLLcRRydHdvu49He5jPy4+Rp6u3tgK2LXd6/dSJkysxLjOf3K8OnWXK1suPD50cbNmL28z/NDQbiDSezi75szQSyqhFGMzrKHr7uSp4aU2DnbBmRUU7C7hG3LFWccr4PljwJj5FG0505RZAuw5P7bSFwaNWRs+/PY+dC3DFr1pmp6VM7wFjLB0TvtuK937omQz6XNRFVnEzpfWTw4qnlvBNeRbFsYMgR8NpMZpbH/orUhyBRzJLk9ZRw+Xsbs79DWSbNNnpsFWf8g+BUI6t5s0w6OhM+xZUkLFDtSggGhu5Gr6uZygAkUF5b0ulT7OUaQuhPL5nkLIudDYf0fScoUmFW4dcqGT4o6TvPAy6CjPhmbKTgz2t0pM7rIwLHj2VyQf8MY06vBJ5p+AKlOkMgfoW/C5NHrb/2rMZSWPY+svH/gvn0ULN9AIH8aq6DianyIv2o/ebsQerCxd09iqxJO308CG84gy1uNv3Jt/e+V8m2uWfCPuwbEGtYL3YDR8gJbOZ8wwMrZCqSN2tQzYCsQpaziVxgM91MhmUvTlcd7KyQ+NjLsu/NMAyIhik6fQHTCuJPYu4H9xsOxWhRWLDkVtL+rbyvdlZoTyFTQV3p/JW9qo4ZXVlmCiwb0Yg3ssxO3HV1s2xrPLnkOzyNCyCSKVXOe9AGvqkmRoD+cnsr0+k9yNcdRpn3jJJ4N0g5QjIUTgk3mFnO54Ex59SSrw2nXPMDEtVpZLNYKT9DTkDBS/1z7ah73neYwMSyyAzG6bqAhpdZqvPQMb5GtMf03LrVqT6d1geL25UBrpHv62TozlkmQN1bQXpE0iWoiL43OBF3PA9krRU3FYnaZU6p3og7gQcU4An+dTzhqXLjUvJF+E3yhJyjX1uE0df0W3wzWhwaXJmMfvo1eXfAFUHCP9mExMTOpkeHKqoCu8W/Do0tkddRUJuu9V+EICt1x0lznF3NdvN07CnQeJ+3ANNhvKs0IeI+6pz2fhH4IE0BGaKLhgPKEoIJEObwuv+EtDQfqyuPfJbCzbwzQ2vCwtSM3LP/Senldaf7Yo5D8Jph/0M7I+fDNfqO3yhnZoHm5MPvGuemA6U/Zb4Q7UfVOA2MxvEkAOYTIJMopdXg1cfm5dsc2J3lQiQs+KnkN2Y6qOlRyHbLDktS1VFa+x1Rf8kcWeZix6gFktADfFbS4KD/T/Ki0kJvZyZLn2mTVRd5thSlfM+Mlgugznf83gxB90uHVmuDOksEf16i/Vn5Ata74Pmqnmzd5na19CpwUDDCUgskKboeQ3ZCU/vcSBZQXzmkNolpeUXO3ifbnhK3zUHdlydHSqvlz5aJO9MbOa8y7i6eu55L3SI06FeHip/smkBc22MmE9XMBx7bHZIhwaqhUPoLOZcfYE6klO+a1Bf+gJCjkmMCwBP/bUYlju5cVOJEPvPK5p2lU0eqLjTDSM/uAM5vr92meEi6sX7Uba6aYTapLE5udf3frQIAM518Xj0U6EyxfAP1DHeSO5GP7nfRuQX+0A20E73hYyg6MvbU9WDuGFRMeyc8NHUGImo4PuPHbyUs/hCRXPlJzInXnNDOnBiOr8g8QSxrAYUkBdO2VGKZM4Vmciz6pPaqyX8UDLXtUXkV9SJuYB5RRWDJ1TvGnRD8jOsH02mnq5wbAauhD24OgR2xtElHKKMEMlSUnbnAxRUKaGbdAWbQnrbuQdZzS2N1Xv/+9bDvQ2tNLzvXJv08p7XyPhOIxAiRDKVylG7SHFC2lo7I13t745JgVvsXO3Vy0MkdJIbo9LpQ7oGrQSfwxKjpAySfQyLq8LDmMZVwmCpkJVvNjR8KJX4jfGiWfsdfjdiCEK3wgTSVL/2qYj3J3qWM0xsW3i/xiZ8HgpoAB+YrJlCcb0MBeUgVCRpbyaHwN3Qy3akoLZY2j6pUhF/KzoCP09MRYAbMGrZVCpXLpYMczfhkf+cBagng48tNz9FK+z6ecE5I5FnF2zj40Zr2x8/QZNG9DDdag3pWdiJuOuchmfV8e1AVxJjPBFmvigT6T9m9etFT/rPVsL2oahr3/qjjG7z74w29CxRnACyF9nl027/Fm+0unmRFwGyNkK7yIDGq8TCHZmeJ3SgJ0RyoiIfhF8cauy7576DVvPIJzKN4ZZS0YYXPc81+h9z9Ap+vr5EwEU/8SG7tlaJu0wMj0bsLmdP2aQ7S5L0E9o5JQBeBpViFHPA7k08rXuRnGfTtRXUkxBN/UldJV4DRKPDnMs3APY3SwW+SYdYxi9UfmMGJSjEWrBP0IvsxL3BI6ZyJJdexR7AMrtAcOUwKg9vaD9+j98YD3Q3Jj8eFoB+g0BVKqBXy6hCyip5mr2GkJ+keE9+qP83ucBR+KtLZVimGDbRkNqUwdZ71SbnPdexhpoHqvAoQyJxTJX1m/W2+Eyt68tBAP4wgmiYuijTh0AfTcGNUrJNPEjnOtKbJRcQh55KwftVEdLLMwJ+kk0nbc3V+3YQLwpxT/v3vC+hetnvasvpwPZYXWyFL0XQ3n1nJhEH5tmxjzcj3F6mMH9RX3FbGbzOm8NK55Vo8OUPXymjHZuzccwFMZEb550EU8heL2U97CqeSLbIy9sqBJm5afU0M/PM84gZIQTyZ02mAj0F9w7QXPnAnZmNfgX49JQkSRMJhdpGicVXSiWJEOmabxKKHTF//bMkgFp8ahe/BbwiCSCj5m/q4arqKbkerpSrQzWxxqlAwW5yz8v21PThn5yOxQ5CWbIMHvYxE78NdQ1Kopl7IeqVk24A3tWE0N3HkxBFJgVaPhxW4GRmk3P4GxGUxJA/70jO+o5Ht9fCKm5+6KF4uayWc8I9oa/EP+hVoyhelR4GsFE/rxPmLe7H6MCXiDpAOPUIrUUYqC1+FSG2K3By1YoTej7INOLaNuOd39viBjaNQVdF4Hj/yV3X+0cXQkbRRWycHWDa1PxHsIm5o5bt2nvn1vVliXvb1piGXUbjwIMHntdwIlEeYfbUjKQIJD3by+ngFzl9I3zIU8QUl7hGQgvKojs4R0sigY9JIAqOvMUadRY4Q9OAKjhtm9caI12wl9I59tiVNJDr6Pb5V05AN4elSZskeb7mz1RmccLfRQLEzSpbDZ+X2g1pIRMT/b6F97BZtG2apuEerRH+4+rF3QK8dAW535lFlwtzaf5om05xqcpRLZ/xsAgIn24by8hvi9zDYQ4PVko5ACkqvE6mbZgSR//9oGZAZUyKGA7RrWDQsLLCvAO97eWgc8M2gu9rDPOqcDXIE/YwZjvpLBfNETCNAF/emP/tp3cS3qV7TNFp8b8boAFA+TtvOYtu+Z10gfHf6TP0xZXaR7Ble+1VwHrkc4eGXfmnyaRTn5pUBlIkUFZL7hyuGYCWQ9005wC/fAANyNLgqz6JMrM2FOm8TZbQ3tbsSxGfejBHUL8j1srnYEFPWXdDeSZbRlnE/yzqKdwWX+lyslZ1bnLAYsY+GYw+thOJOhzWKmdE4kCAJTVHtvIaFxR+n17R3mQRN3OiHFmmVPmrHiVGm1k6HTAiIU9hP/x6k9CM0EkoWUw43kYQrEdIBlXmmJP4gx+cDzJ+Be2SrCO06+AkVvtuuIxiiPNS367cA7vT0dDe8vIteGM/yJq7qEKTDgFYcAv6MdCn7P7k+TKi2Pt9HD2aEGl4KQlP59sfttZq6XPSRjCZRqIs/k+X/OZdbWyMvsVsQNjEq2bVdJdizId16rmTZx91i/Zwkt3hdJWP61a//xOI8Nt/t2YHa/Guzz8B0YAmudoOA2CaNW+XOotG8pbWnRaQRTkwUDsrozVQq7HRE/yCRyax8CLVR0YXi+z8IdiQPkqZRVzt9psNcW3k1Xvp7oYTsXvxik8QQadkP/KTwFH3AGEl9k7lRk8obAK8GFRXk7AhfqOrL9xfo7O62YwV605JEGTIHKPVELS/8Aim15olrvWEZ1V91sxJ6FUEGEjVzJdYNTnfncQqgdJU3/tYdtpnK+Dp/7rHCGcV9LNzUoyhWM+CrdgH4q5ABWfFpf3mtjHjp3tBvsqRyzrRGhM/Gi6nNnqW9tXNwwvyUbfaouu9ok5iF6qpxSHaOK3+l6tagom7Rp539Cjh3/fNghdBFHMZLRASYafK29VSyrLspmfQmOaa4VQbfKB6Xtov9F8q4zKfaHhTrga63i0/Mk142fANA2gOynApwD8edN17raIzmejtRnEYo1U1CINUfxg6frgPglzbmb6u+pFLGpbODU3MiAaXGkghult6wb9CsfYmGTXWLGl9CHwitSA80fbFS/su2CGSXyxuUvwg37ox3AbNDtkZlSHqf0ClOnEqE1hfLsbjz0knKcbYipbGaRkAq0BNv2NFyzrQrVINPHmCtHo0I+qq+TR39HAnN3fZABZ9QjdpDm5NxX+iWELukeRfYiCIfDxdcic0CDXez0X8Tj6FE6GvlHHqeaH2+KFeou4XUDtp7m42pv8MYEFSHdm195SegHjQZ4RnVHhfP49hoY5D/OF8U63PuUxknob6U19gADWiPIGDRRlPCcBqRSAv3wdTzffEzVuBaPT/x73ex1HJ292LQ0eTHNojDie1t4ayhgoddglFNWI69c9je8ThjXipMsRr6wKiPq6f1J5OHsY0VqAVqdNqjxEDLOJ7gsxEN4n3505x4eEZIiGNf9gfcHNj9QERmttLpC4WMcms+5ppPVDly39XOGes9tSWcygNsaeHfeQh0DvWk4SE/Jb8q1B5j3qhUnQppNo6+HYqVKFG49XbG/o5QMM6UGp72wBSy7fSo3dzC7XDekllAotibEylilfCLZINttD/TKGjVuEccjgOmLL+znemDKQe1ItAd1R+211wlyCK6NNM5M3J5CjBfEB2k4SwGym/kE73g3957fuDq3OKpU7YVYJTRJBZ0MaZvkmNiXWbyw4yL4OSYjHZOhhRi+vhctHYQOShdf9pWnKIO/nRk7HLzunFashlVvPliiVlwgdIjDXEDOKU40Mbx0a8aZT/VHBzn9H5X45N/VF2fnai/GYPZZWQQQaQadHyA06BqYVWBxZ1UKhKgDJTCVSXMtDHmolcBiL/Xykqe/SdSper5SSNp5Eg2fCQGv14wubGTF2TVF5cRQF+93dwBa2F8O4F/f+cVPWfHd8YYiaOEXWLLtNrqGAY7XRUKhLjNONShnIxnQSvLNz6+xTTWTKhgw5h8cH7FMqK6GPV+5NO5qJfRq+qoDliiDYrSJ3jObah9ypY12/qGOAcYG2jamgNvLPZ27+ciHG+jvxZh7Z1UrlaUU5uoW5pOzNYKRtYeqbOuK/U8cadIjj0hb82hg0T6NL6cbjElIEmRMznLpgCPR9KS/ZCPI0q3I511VWcFX8CfPF2tbJgeTvkKt8VxhQ2FJPOuk3+hS1VdYxtAIE7CMhglt6s171UH2UQqdlrdZ22z0+y8G1o1fVKEV4mRbng8KcC2CnF7a/aYe9YwkcaDCmQzOy1PkCOKv9U861Fi7Rq5am2ZEcyFM6865Hx6ulhXo64OzdIzIYDZsmVuurBxwagm/NkkpQX+74zxwov4FEN0Zm0ccRkb7ejSKjo4BMHfpPxbYVSP1CY+vH5QxF+Kz4Dy0EnjyJtFqO0i+fTzyyBQ719CcEYO8fd9T/gYRk37T107UBn698EFav2sUMTF9TLefQD8Z5WOD/lkuRSTNPvpMpmFTV2S+Cux1G3iPGFQVhmLglbzkjYh2ZWej0/6kgvDard9NG9pVIZyRQWFxcTdGWvqy57lAwYrWFUpkybwSWsYpKTi2ot2LRe5KWokw/wlRWBj//m/Jty7yO870Pk5r1Sfh8ug8D+oKHmV7GKi7T47OQD68CnFVKJolvFx7jFRE3Cipa9YdMy/nzCgPVYGUomQozwnAlt7gHS6a9gqSXmv9Mmpgad/tV16jgdFFkE+/oKyx+h9Onwl3SAaIbaoku+qItdHFfz5Ha/+1lDymsPrMnRlWUal1JCcLmi0VpVe1OpOZ6ljJ2bbkrXKFLHGg3o9tfiZuRWLSL2buQc0Pdam6+RgEzp5DvWnF+dwFFDGn7o2VIW2z2wtJ7cngXHV121AkQosrloZxLVlksUrvjQHfKAAVP7rhn78aqhkzIGXcDJEWDILZ4VBCRBOJooxHLnV2TwZKmQzQrGnuSPKvxOuMZmWC/ndaq+fcQlGSWoB0Ve5XX4Z2VxsLxriKWCddPdOmgZXN2JzE1kpLRx/B+749NI9nZ6kQDk/456nPbFAMTP4/zPwc1O5WCJiaktPDvXgoSnFU14zmKSL2vhskK14UTHWlg2jA9G7k60eSTJTxo1FxJnrLR0ceJduB0JPE/Y9g5A0wBmYjRTX5WSRHQzQUbLb4CYORoKvUOeO+Fer+5IJ5hoEH6JbZ8/DohWrb2KoANUw2resTMjv1mT73Rvm0tsNDewUscsuX3UHgGANdErhWHmmEKazEmUt/x52+r8+B/wriXvLFCaXZIjJFRU1Xpz5CWEbxuEP+MPApM83Kl/gp/zFAvxoNmtytDvxgLG0pDTMeryZpU44P/T1rSarWGKkDEg9Xc4rV7QaEsxgpsJNjXvpzQ+rMU5vwzJI6yCvQ9eza2E/6LMI76hdUNaE6ia1egrKCtSyYGqeD7VwD1mEZZT3yMcE7xWgnPwnYbnq16cYYGm7pq0954utn4XgIk9Uw4YAtevKUH/wGmHyc1bhJSMsDNacFKxtHW0SL47qSoZB6UoOLeehBtqwhwR9R1Bs8sKZh22/IzJOML9lwniCzSNpHKhGoEbsk5Rmr+wCiblOhwadQby40njf2LYP8ZZ0/3/uQuMjXGNmcCmtE8wQuyBJ/v4KzWq0ppC3yYzQof66SfBbKTB4XKzHufDP34cW25C1zh4C6dBm30OhUbQfLa9FjAw02xhnoqyBDBdMWGeXD+ZCdUWhiIsVNkrm5CqVEXZT6sbls/UURZ9ckDbuHDcRPguK5KHLn7mjm9nGOTWqPHPamYUub/TK9Vxmm7VNm/WAvbHpFjCsjq3Dok0VQOVswa0J5QzogfkaRZn12n/C+BcZjcglN/j3yckE8yyWqP9599i0SXeV9SZvJIyFGiXUv3kHkfU4biGvkA+8T5wB+xNzuYOM99rlMvsqiYWKyMiGRHypn0Ru24vVaC9ihdWZkjO0x4ADEgnNdsv7o55GUF1T/jJCgHSuCWEXzRvWbMrLGQtMhhXNpJblsZYV4lEJmD+lBLnbFIghRX6JviNRnzlzhDM8oCXmalfweAlav5/ybLVox9/3j/beaWj2HBE/hC0QGhWZpqlUxPybcZKIAG6mZA40IqSR/b0tIx3hOfKJfZ6sSx516T0dC/9sDU6GSl6+V0nrGxajWCFWA+oqj0FvuQsw0GijJmReanZ+mSooBLTiV763iiAC25gBq+u0aKUOE2HNZOESL5Hf/XbpsL5o9/c5xgwQwhb7IRhKLOSL5K71TsULANLZewN+KdHfLVX8Sbk0fMESfKXPJ3RmuSWRYYoZG/M0APmnBPJGwUh+AMfuLJJj8IdQNd93VNjsBy0/S2u/pV/MF+GXGyZeMDVmdPGcIlUZ/SjX3gFlkYNK3G35J7FthAeIcCIhiRD/pYpbqR4CATakSfkbd1JjHmbByIvb4trM3iYr5syKOnYsuq22Ulei5nBZa+KNYEunTDW1hotAbomZA8aPxhqM0YXxsKyd8jUiimBk2v6xDKJ4otWNmQCGtuO9F2v8GgOMVDACo5+iBtCyOP5miBGn8xcPg0yXtdhnKi5eUn3/aZGeHo4Dr5Ow5b/CyhMp3rMVLRkSGqUsxd+r/QfAzsw10f5Cwkxndb3of7hZqn/eFuFhmz1BmmkDv6Tr797aqKarEKzl8LnrfXPPwgFadyJPN51GsuryPthhYj1EGi9sundxJDsaB/EC7w7w4yWS9GFLl4JIW1F4p4fH302anl7yxBCvprCxhYtEf0zqdT/d+KHRffcRkck6yde2rbTuGlAK86i23twV4Vglt4+ZWVfsXb67IIXrpK1vojF6hCOGGTqrTCg9stm8ww+GxfEZkFjFgXIq+r0eDto7yvP1Hti/XhsnHAVe+KeVIJTh3I85HK9cmNPOntgYTm+9qDU5SqqnI/g/s1FGI/4plpEd1GB7FSO/1vgG/vhnFEBV685N01ijTWAF+zG17QE8Y93OtvjinqIeKBWnT1b7srojQ+dCmvNtbE9ZoIHjREyLAiqi7mdWfA+9zm/jNAA5jAGzXe3pokAJZVBSN2jjVo5iFGEZEILni9HFIDWms20hOw//GuWoHKtvBv8W9EqqXgOy2d2JnbKYkvWc4KC1tVb0v5vsm7WXoPX1g3OodbRIHN/+yIJxfGbmkEJ+4LIyNnNtRbHuj7POwyK4Q1AK6G/2o3BBOiSDptIHUJ6N8JJw/JwlmWRP0+ee00DmUrYPcwro9I391QtpvGdR9D9DoiOXBWqmWMU5eNVNo7valLA1KJfTDkzqnnOY6oUM9kjDsmLRPSEDGvP9wd/tFkXz8RyR4QVBtKPVQgxEo/RCdW046L+0l0ClaDe02JujzsVQwcgpynAAZgPdsq0P7b+84r8hpCWSS9tiz19ItxJQnLQdRpVwTrmZ/LafpFfnA8lUfvlo9tsp3pYg19L8UIRGRf0L5EzYPcu2NfvuedUNF6GCoZ7tEAbE3/88J07FhZtg3Sp9VoX/pFFNeX+r4pRoUY3NHSX0Ws7v6I0kMpR9QHw6HUnLmmyJfzXWH6+wjaBbQ1sWA6E+/x28U7p4a851u1kjiAHOs5Z5vBEBDX/nS2rmUotlqc+MocXtlIKgLtm/krK9AWBRBtXAk0Ez0M9hl7Wg0P3FEt8fvgx3cQs2NG1gwf463gjAcXF42T1B1uM6IDfYXrLFugAoSusfZS+HyAlC47eYKZjVRwilZcwMwItS2BbdVRc5BQgcUM75h8NeL+GFa44V6O0EAtv9lmMW5Q36nFtkG2kRHoIYwBhY9CZ+rgjGbFlt7ouNRNVUUDi3raLQLLuSY9DUP4/oyqQkiByTehyQx/MjoysS1bWqpFy9gkQmCRg7k7EdQzUxJcrBelHBpiRgq35REN58BzLm/8ViSWOKZCPwIbl++FK3+hJcYd7b7O5K2thmX4CvErIU/v/hMrWdH+zYAb5xZwEbjBwYfadHRAQGoz8NdkGo0QWh6/KO7mJpTkPjQvBPF2hrOSMSVxa2bowsKTy12YbgNG9kHkEzWra2vVsvdcj8ltZQu/7cKo/O4v7GyPYV0ygrd2HkGqXePdvDIV3O96ZdzsBSaFgqrIrjJPxw/yiLn6hd9+H1Fd/HcgY+qrnncTZot7BmdY7FetyU9tPF+2NBRQL5nN0GwMPfR8M45foUywr4mmq7nsbnHi7spfS7SN8mr3ZnBOf7UuHR99BUQ/2zXyVVZZH+/QsUSrpTTVl6y5lETMJQ0LzIsIZ7DPXFpQPW4APR73GL6/3vmGLozp6fLAXhx/DsV2HoBZbh5SC4ufLSf3mbciOOhn2qhuW8sfOjFcuv7vojpiSFuuC9eIG8cBKl6V68FIMLFV5XxAjHAPjKEPbPelfl1Wfu0qg5OQU6Jy8O0/v2hxK+w2QI/njty21tbd1IW9L14HMf8MH1BaBscOAo/3MfDp1Su9LJTHIXUpyaOnWiIfBitb2qxFCtSj2hDBwGCvCBHO3rAm0CXJZ/4Hj54mwOvvxbrS/S52z4RUGx7IdHViHySSq9RTEorvZF0TdfONbSDVh07N/+VjOefV+gqI4RMK4KF27K4MYDX5tGX4oLXMz4GnFarhrzAXbfLGDPQq6F2ZO4h/UK5RUPgm8XTKv+LYGzx55aoCfTtHKaNcuSI23xHaq2DHWqATeRX8q0geNrfPF7TVpx9QTfCWa9h3ckSlFDFnNr3OrDOgSIQj5uI8NdxHp/PAskpWWtqNzvTx77fE8gFsDE3u2V9iFLDTB4hWNprriE/r95UB2gTKZ/ybeGQe5CKgTVvd4IG5NN80H6p1cUWTDbe5ZEzuaqP1c3O6s7usxafFxWboyrhXxosIzc7Hy9BYolZviWmK0P8HGZYGynyvHmMGlgNr+myDsRj5k92Y/l90dHW7llcA2X7KpmqYbD+zntLXXP6CmAb4JwhoflpkHuiVPKZhgpSm/KlhXp7OteUNwaQc0GL0zfDoSHjJ17Nq94ibR2kHtO8Rth0F63PihvUYQgIh+7VdWA4rkUXyehGkrXldlmYhPuJTL9E6NcNb5MAORFFaMYc++Ukcl0XsfmmqfsS3bGVO3rml3DHoP1wdqwSQ2wNFML22ny5e+yFt+sMbpB7F/i3I4LFsdi+0iAl8l/0gjSJrOyLUR59piSCnKSQuL6c/ROqIaf1clb1HYuZ9VKpOnCtvYAMv9Fz1aouuhvCV+sAV3sHuqJst4At3m3p4/1/sn+Pb3RvX+IopSx1Ue/R/Qs1JwjVuNadF13pvhuvaaNxPeL0Cs3GLMF7sLmgsgCzpHLPdc1G9xe1LF3km9codboThEnTd7042xG4iQE5YMYZMG3cr3N11C6IObKaRPLMCSZBCYlkU/FCqDrPO4aXxiFSOoGcGe8zE9kEqN2SLLNFzUQyXIR5yEk1sm47NCrkyYipT2O6/qnqOg7nStGAMyEjQ7HzAU0YyfaP0IbpjozUdNBDgeAer0KVVKK0Pu+Dfcnw4lMfbsFaDhSJHrd8VbyTzXJPogZ7kTkkBv0t/mNTslRJgb21eusV5G7OHdb+7X0CDayESVaygzZ4ENvLJcrsWmxWSuCyAgAd6pfzlLw3JJdJVdFVnMWY4V0c4Sc0WoEl6hUzuu9ongh/OilV6dkTSYDApegZkLGmbDUdvCQZrwHqFQau37t5ghs0JItsczwhzuzqaA2ZpjNR3Q/ztQZOz0cHEtWNthpaPf2yK+VjiNxFruTSW/DMZdpOEUbjpBcaZa/xZjileqcHkjwgKXnzmOjSCKyWmG4vgr2hZSNmbs/DqktxW4ieqzF6aSN5eA0T1hbnscP7RNC6yDGfO3zv6unIhSz6Z8q2LW61wUbstf0b7X4tPrC06Zxd6esO2mHo8S+V6J9mvQKdfz852nBPjy4EmhKL+jKRJQdYRFBrllEvFHJgshO7ePW1of22dSXcwA3RcC0gz5CUCKvtI6gDG6OPX/NsiAUvr2F5R1v6NEjli4OiUrvpWVa24l9P5eXtAx/4uW1Tar17XejLBuFCiD024xXgju/LoI3F4i4VTgcTyfI+0t6jspOtDNZowkwMNWQD8Itq9BHZBIu9SONm522Y/PDRPR2poCtRp1p2w5PhqHjs9t4/ZSqg/u7Nbzl1E35hvB+HrIc1eHGpzOAB1NBBckYrz4qfukUyL0R2UccSew9Fy09zSVWfayQOVqrSdrqJap1w8YDAQY4i2mSS+/WHCKm2fiErnr/oGrcOL6YSGsai94GzlK1yRY1oRYoPtiq5RluilDLhlz2nlu5w1SXQl0xwj9hWePqi5eZ/pIfqRYwXJQ/aYIY1ASa0qjeX2BJ1Xck518PMdC9DI3P4hq/xS6okbUYZqtWoJ0FD4l3PNWs5y+i3cRBLnVoSPN4ULTFBjjv41tmKO5bvaUeCb/o6UBr8QLFzvHJQd3/YYuy9FadwHaEwkpuOM/rjmQwh7kPr3m422/4HRaxnfWI41U3AkzCvP/8Ac+FLZh78VOMdf6UQoIKty1IyW0PdCq8gvYfYZ+tYMykwjF5sxLXc7wKro2s8O5vYSuGaEHtleFOTHdbLdZ7id+Aoq9b3/IgdlnW4m1MqIiBLQHnTSCXgpc3rN+mGXyXJOJXGkqmJI+YPUQwp+q1qEiLNMDGHT3go8mydF/FsUNFxY8v/LxT3rq6fDFxjQcbBkVV/YRDVKP5aw7VAwpr6OfMz4ZQ4cklUT34K+OBqc/ArTdlhj4mMMCWate1DWJPlAclj5SUSaH5mYSyxfsoJsFtwtSxn2NllCXl83PNqdlLoWpeahDE3nsWPmTVtnTefSvRSIkw7mkSMEsD3tRecJDJMJmnwNTLESi/lhwfhSLyzqx3paVov84s9cVHqBO8916shznNMSK7+noTOlglzqC48rz1Jw8MHCcx8/mVQ0MNgJhakEIZJ2TV8bzHA8CfGUbQcfDIOmXaQoL4Ol2JKW0aJsiMlPrn+99G2DdVmm6HvuLndvWpgK3IPnnkrUxnMKgShs7/QAo7vJYSxBimhCddHmDd0XgB712uBKLVuncecv0LseCs2EaG7qS2bLix+ZMf9W/4iR+NDRKWaSPU+F688AOhwL8Kbmh7HYdRAEo8q5/jyPaGDVUXhRfy1JIY6FlLcnAyTAVoQGYjdBOSuKgP1En0r/R6myzhZ9YE0VbIizXzNTJs5JN59NxPI0q/H/IpJ2kAV5V+WevINhokbCZ4IgLFu1XxDj4uwY7mL0HuJSzLuDo8IX2FssbRWX2ak0DAr8i71LqQ11G7APNhkg5qzibIIkUbjCvQPipjH/z0EPHz5ZDSafNskyRBFYuQyH57eCRUgUm6gGBeu/qGedpZ411cyFhpYkNofvfzE6ZWqEvHOikvgC0qL48jXaxnkCqw/PdMI+q1mC3SdcWTW8W51lEX83rTIjfD1sow8WEWmTBAJb+VOdHQKwXrAEHSrTtq9McJdJ7/cVyfpPyvGfidI0egDzu8/eElYoWzTYiPGX1nplwglnq4AQwhdzagVJj7yNXE3+58T+wOEC4F3/HBNV2FeJzknHZ6tl4WGHUL+t+3hlVjDgKhis4PppTglllEJK8CutGTGPZ6eaBHsOWIuAy6JlIyQQ6pQthKQ0fExgsFU12YhZ6gMBfPPL0q+p1S1ilE7Ce7MzKzuc2sU6nGAQU+JA5HR2E+1+y4kNvejMURC9So9o5ynWmvlqmlRyFzRbvwf2utjgGHebQ6pNAa6zIeGl+E0I97l068d0rhsaemQVAHrlzd0zZmSA7oBgM+noQeD9Q1quNiplfGGQXaZOKYyHcloXEo6qVGm/hwOzVFc8TXi/BOdPOGBTnzFX45JW+Gs7hDf9Tmt1k6vzFE4oszpiXa4x4SdsCt6ea4gFiZKBbOhqpx8PZsjgGwc5Zr1QZ4vSYp7Qt1BMqTh7zJgU0NYzgYFP8b0zkTQW7yYa5AEYscM9SGOLCTsU2WED1HnfLOZKcGScXYRobI+0QbBEcNLbR9BahV361HKU9wB48TPzsgDwsoK0Rrc4Tt4jqGcBv6EFsRWkJmrSkHCRXe/mRBpTEANXwHf7ejAglgLwTr573EoXIBMogXR+PBWQGvuvPyqEh3huhFYfDGjpWhtb1a4oGdWP2c317AaZHKk8MzKIM5aJdqOTTdHlnMywobMNd2RsLBIGWSEaT3YXB8qltV0HEAMgsz8n9y5MJ9SecWt51DNndwLQFZh0+c07b26ctEcABBpSmftvVa2YJqLiXvLPkJ/NBd679iNVlI3mvfLeCeuOXeVb9D2gYjJ6LjSqvZGoEinItPiay6gYT08IxUoQS/O0xVnfZBjS1Nt5SD/Dz4bEshW4geo3NH3/EMpWqrlviTIxruCNSUAlSBF0WBfCxjd4TK1XDuHsjgSSi4pfGPIrSVI74AhBlybinTroRDZWOnpOns+y//uiTXGBhW3NhmaJ40RkPjZlcHOaA6M8v41KgsQ+Ew8i4TEeGjidxMDkVgMXLHz7o2rBU+okF4moeDOUEtpMV+kFYMGM2xTBzIsdcMsajMCZb8gE48ED5yo06t7gY8qrxiMLGHOHH9U0W9UilK0y+QH+GjIFUlfwoVmH5V/pXWrjdnV+pe8EXiPutJqle1pzuwF2lQUYWZHSsLhSiRBN3zLJRQYPzHJgsK/f0hdy2AkNTDmgV7KNlmgTbnbcBO0zcnY7FG47cbm80nmqfI69C6BkzRRyoU/cyjk26F+UVsHCF9uIQTrXlptFPAMMdqAeCrIjZi3gfHWFUYH5k5CDKDtjdvEX+dBVqMdEIgWBXpXRU+Ns11FOYXG8VJ5ppsiUNNmCg6QVMSA24OaLJIsJrk+rhHlnSEfLYloGKSz/dWBziJe7fXDwu1EyMdO/galKAe4oMbytfbZpDR7G7U95UoDEZcNDwPxHTvIA0ddJSf9NFhESQrOJxrU8GsR8bmpB3EjFsdT1rGPRsYrmkrziuawQzMkbOl8UhgyCiq4bpQHt2dGutKIG/Gk1BSbRckS5cc+YdMO+2lWSbuLDw50mgOUG7JltL421JVLMyIPwnQBGMIs+EFcS4lDI7xqFrSCe2tpuv4umpxYex3MAU+sEZtvzzu9BpeGJhpjY5TtCZ3n1oBpLKkR5HHvYpANxia25ndqG+wDD7dnZLSYxphau2bREd7BhVG/w+p7JKZi0E/yuOmPj6TLfWEBvi/tjwM8fDMnQNGnpArN8/+lw22i2Nvs2U4gFMXWvQALMxVjn4GxehhQRsAMf2cva1xYhkutiB0PY7QF8ZMJvGDmUP3a0aAcY6TI92qenOD2AeUJFM8GsMQirwB1wVfneBRDHAuIpctj63DgideWZCOKLL4RdcItsDvB8W+01XNT4P/ivTLxsYFqzORX0O769iuzXhc/KgInr53oWJFwKqXSDUL4VWzZhBdwURQpP5GEx/EEp0LahdW/rIAZ9OfhqkB40ucihz59NYSYWCET0wGUiieV5WREXcXCEQLKornaXNYXeIECI1hDnBvYDv8SaJKGSSbtwX9e7Fips+MttEmIsESjLEVHGl4/Ey5nERjQUjR0a26Ih+7EqromO4hrCE43DtFdmV/olP1oIYGq+Tmcb/znRKW785/tybiHEzM4n9Hz3tGsB+KtVmWfRTTxdkgM2voA/t40GPPWYDkovqGm+IgrSzGB8zpL00y3NdDkDAU3x4XhwAHWcxLVWEmhFtZtQ+pyDTCRuZEvzxrgASDFjRaE5PxofPDTC0o1/FNhP2/ArJACXn2hYIzU77Gf11wQk3lwju7lv2Bp2V/tNutpOSF9tbEbJ1zMqHDBHXVheA5jz11ShbjLVuLrl/yAzcY5gCEMxSP+QmMASt135KXhKNkVRxsTwzaknRWSCNRFH/qeUHu9bwsu3ryER7p80QL5FhdvNmaTXoKqeJcB9JlsHaco+XtOm75rpGEYVEYL+mMlkBvHrbWMn/Np6ujyTSslRfjHle55gcISQZovA/ZajtcxEe+SE5hUGrRcZoNKXw+EvPt1/VecosepP5jokOaUA4KxVvmiLD9v0KBwdirTOrPtkI87A9ULo7LhAxEe2sQO2mzSTQ8tcYCFAkP4N5xvDlm0wLrP/zKqEUYx50GewZIOOMLm+4hR2eN0tdMixiiPbz61y+SR+ALLPGde6lh8sj7hhzQU15esZLh1MFju852rBb1IEEj9Ij35BNgAD/sNOHwcrxDz5zjMEREBwCYYhgdfOYug4k+nZmsYSTFOeQEHEQi03116jz0U72M4Myfwd8KrmVFUq3mGdDrQSfSihb+GlVxIaw7xlqT7t6VVGefIWU39LDUSNGlcJmek2bxZLR2/ZJXi78A+J77GN3ML63qOR3Bztl4d5dpmPnZXTqBLetqOMs2Ct7JuNjYt3Ca2bXrGx9Q+jHAeuLPYr8dXOuQ04BzlrU/dzbKJn4raH1gwCTZu/XtdLtc/APTKMI6lmhkGqVZJAyyNJP67fLGJcOM58+3jVBxrhcPLxcfIxg/WmA0mCkltkKc8fs8F+loTtDkfPcpsk56YueEwwIxfGCp/7c/TEVtKmkakvr+X+Mgf4XUJKAnANYhWI1fi4ITmm6ZZfu4538TqgCUpQ7l+a3eHcM0xOFQHuDmRHQtlMEGn1euxQPO+7Qvst+gfHYu7WddjNdY1eKHQW+rkJdzR7442EcvMoF7ZsXYciDy4uJ9rPKsLwg81bMi0j8WVCo5h5/wgKJgn/o9XcYlx9eTF8Gf6ys853fza4c9id5UBdUzfLptIRZ5NG2xdeUdrGHlOAib0j/80hmglQaHpAQ/O57NTfP49NwJYIKsz+cFabiVAHtaZD3zkNnnKiIIfAf0ShBuFqFJmUgQme6us/DdEGeqRUbT6q5t+zV6qyCKHDB/JDSfhaupMvV9sW0db8pPmCz45PXaj+uWpxiaz8btLfRmKHr8/hP8+60XT6/7yvkzc4vE4uTRPzlYT+WoV7cuRCYW6mYGBG5Lk34MmKBb4sVhbsxBP6N4NFoNFMt3RWZ6NyhtrT5dEvz6Na5tVz7q6dlFRqv5aNhAI1ELGF8s/lcTHRFNYUwxFiM6tUUF4gJeosdd4CYSPw4wnuCEB7nlhc0c4f0zsv5ChVdSp2n7Echvr8GiDkRQUErB/wmZIOy2JfEkFf7A3K0idb7VMFzfQqjm/5dCi+v72bvXNMMPE4dHRmJtgQHpN6A5SrhGECNAAx7CwmNET3V89JE7/8R/WQVMsPSRDMXDQ5xt42mrT2/H0kWxGUncJpjoFq2ssl8loxWHcx0ejz7bCzXMgPVy6QUPVtfwCqKdNTsuCzToGUZhX/cU+Ty9HMzZRqJ+fC51H+0py9yU0711BthQXN3UOEUg2u7w3BdrmX1L0NUhWL5LhtbQkLgntCdf7wO8xGVH8j5jDgXbcK03m1nYTglQkVKO0p07Fwc5TXXRgT7HyDeQaJA+HC0+YsUroYoZrGnlKVPwRmvvY0y2NlEiTpRZKm569hGzcWVfEOcdxUQDuUSzHrtCK+FcfcInk5GwaeuNdFnz6fkIfXi1RyWM5nMZJm+BWtmsyD+DYSoejMGDSpM5erRffIBe2cvOiPBOj4QcEzvd8ccMjRpMHgtLibRMgBvkGKzcy43ey+wc6U7pohSFK+zywhWNoyvQDQKQT3YdDbE0Cq7MM0scfgVWR6WdXC7s5TqrPRb1qAuktY+lbVZoUdjeVZgycLmmo4iIhaBjZF8L7X+PkBvxhTtpv8DbkPlt43hxyXQorhuu7AEum/GKleu9iw5mKwg1SEN+I+aNIr92+q1RWU/LgTJJra+eWpoF7ThSu4R37WJnOUS6jK7gcwDoYQNjBEnpUihIiiYLCv2+XwJki02zr3u7PCXefIGGXWWHU0pz2Ak2tbSyAkfWiEJcztpWzcpkqmEbG1ehiv2YUCMz2sD9x76C+pY0Mz/873ClP53mH3vL5ddthqsewXXzwVAF/s1hjs2bG2WJ2tCK7IzIfMgLyRcB5LqiQSyzeBAouaatXpPSHsPxHG25bX0FfNHYvB0tCno5On4/IpMnw37V4O3fdjzK/jAC+S2iWh9jMpS6RXJhf+koVkRdNejMETsRlGQcG2z0O39Zwz2yIGvhETe/+rjUlITPuZrxQCbJIYjuSOGH12dnIxfEycubfk7Al3oPsOFSPV9bme9mklWkYSIQ3z0Q0IWHfDeZCsiC+/6hCyiLwKXlgYRYJmOHB81EwIBlK//eAQ4Y6VbHZcE2ZPfpyASMsxJdzA5j8mhLi6JOLbhhHTJ8ESuAYerc0Ebk0aX9Lfbw9WCoGIigZ7nCQwRm/OLqk5WIDS+PBi1/Cr8t1zxJeNxwgk0FeYJdQMlR7TuNJgVsQCDY4N3wXP77AGLIZ/r+9mX7ZpPBeE2mUmwhimCY4QasLw6kA6tbECzZhlmfkjriGVlIgvxbYhUbeQFZgvqNsQG0RPOQ5RrD6InwqMa6rtYUMQ3jqJNSm1IRIItSFvgRDvGOVel0EL04YAyubdynURy6dd2DN8XOAHngDf4E09I9ZngIkO870ixBo+RBTiXP2NLSdzD7ddXYZmeIAisc1W+hGnGd4W7ipZEPBfj9bbyk6eH2vdx6Et8RqqxuyVANJfZbCosWeE3Ubbwti/ZF8suu8p6cunna94YZCq6pPrSQDU696WsIIqAQqmZHhPBT6cepBwL4s/p1/7VIZtwf2l8ZJlIwxtBdKTxOF6/2ObSsNLO9ZBKjCiQoiFRcTa5syrIhmDgoMsNAUV00oVut6Qi3T740VBf6Hs08ECl7lIgDoswXDtn1MTq6cKvm59Jgr1nEzcjgqax/8Mwo1jjhSjtTmCEn9AaO0gyjbgLxlqfR1YmJsu7s5WbPwqz4rIlcD4VkB58gvF9iIK8XcKJZCnpV01zTftCfYjzrUWpCWoii3/MOyV/LGb4nqQB/XYnSsXyuxIbHYJe2pMzvhcoO2jCwV/CDyRxWfo0M9rmI95vVJXfmq4X0wkjqe8RwvZYxogNhB2FT0UhWQeJtJhJiCS6RBTwjWsPfUOIun5EOUTN7P7LaUu0/Pz0Y4pu9dKDqXTIyhjZSQdZEmLmmIyOBNLX0def8hqBbIZeWZuL7kM9u1+fZfVSYgGwJ4BnZguTDsF0U678JTaGzuTFV8U9WiG/BjDviUIR9ES6pUVvEhArSmu/wmFgNiI1gi2s8xBfBR8iZhoYIRGWZOG8sLSWai1MDQGNeGN1VsI+keqxKhLew9y6zR1DLLKeeCg1MzQrfVqCVfBehVzr1FBfp1I7/aVWaIWxvvwyyJXRtq+frn/gYL6pWBzrSLE4c0dtk6jf0Or/4P9YQNskx22d2uXkOt9uHDX2S8Oc7d+aOgcrTVSTyuhoVRqntLZMC9IZTYWG8YXJrh2id0yVw4fvnsB0Zt/HoQtY/kejDwQAq7snEJNesD9esTSfDkax4HEo3hwcZAWw6IsoLy93a+97yBaIF8+5nJG7p71iNQEVF+cksoRa+sP66XpSKkISzlOe5b+KM4pxae95nB+ZBEWgJG7Vq/Vxb6DjNN1dvWhykqDkwLqM3Y2UkNLBg6FF96GjDGRGRpGjjI20gvpSOleOz2oXSF/GYU5+vHAkjeMFaVzIozZ6r6NfAZcQ9rg7H3erApXwX1ZPp23aZVWVIrSmI7q8KRoz1kxkNy4iswtrqc1go2tpdgoQBKaV/rgUtceUWnOjQq1zXMqnpFHlEiEmkZqNAJBSbYeWrroNf2SyTmL+W6drIrrrS5nsMQZaAMdyo/IIzTaUr634e75yTmi63dtzWtfyGOJxgiQry12SkXch7eiNk5hlDTvzBxLrSR56At6H0PUZA2Aus8YO+EcTJ2RLtMtNRR8P31ueFnG+pn9vZeRPa/W1173ks+a7sq+7tBQ543i24ne6i78+FlVNkqLYNgUf68dGKX1pRetLWVIWLklgqc9YFWLiUDXmmaUCslEquD3W4kOrQY4fS2hSrEKq0yf9oYU7kZOouisi/IxgqhztbWJfSPiiumxd17hQiVJvo7x26rIfQwlZs1AleLx/r7hIoNr85LRqmgNeLk6eeTnXT/f2SWE5W5nq0JEZl/B/8dmHVGtV49tO/BN94QLXxBWJu1N8q14bf5b6FHT4yx3+eQOeCfqJl6Qa+Y9vvD1STwfZK2LU28Z2YxVd0oVXyM9rutIk/14XfakdKoBQI5+keI/bcqqj01xKmvUPsgu3VQ+HqU5h0gDXnbHi07Grgh/SkS2iDuZSdoIi5E5kvBZZevKSiiWwCGtQfbze+qlWPMpjKqr5vDyolLKO+MSy7gFE4dq4XzWkoGzw7d4TlJuKqLDxnO5UXKjTn8p0UUSXG8TJ6FGHHNMwSur1XTpY7peZiBniE3bVd4GQU6LmTyvOolfApHB7U0YjyrBrJTDVXJjLgEtTQmCrjcIv3GJnntXZzVHffoXkf7Ict6jf5iA6fqN4P4+raqz6vnjUDgfjlvH7YsZLP1vofXaTZFr4Ab7S9udYaL5iPr8q6X4lmJ0p/aThuj5vKgJv/7nNYZZ5qNd8QhnjrTqic+CDa8caIcCBxoeL6lXLKfNL0ScMDKpkd8jgoQSRKGJyb7/4fwm4dxsKk+DDJe2k70MkLtrPAGH56ZS4edj0slTJRGE92BPMtk2dM4+ZLBENJRjb2e5XTHD+F+vqNYSvr0YkJCHLDySU1bZKkTUlZdbgD8X6qMagr/o+E18I6o48J334E3C0S/uLHqMuTt9FR/HQ936N9M6hv37ljUCSVvV3EuwxLYNZ6AGbRuAWnn9LhjtczrTJMKdmLv7LCiqk/ZX6y+WfleypuYlkAyvwtb/pzuL6xIYhGpxi2xbBjfFFG2SeicWvvY1Gu+9H909reThA215SI+KJV8euBfSYH3vO88UqUpFeyT3AbTtWvq+SQZ5l6+y+AVMTC7s0GjKQKhbTltgEd50Q12RJ1OntKBm9Kcqo70PJiv9XQo3GZRDy4im0iaDJbmIfKzpC1PxjVBj9WL88GxRypx8MlS3Tv44fB3ekp5gsh0mQRsjONGTtCIn+mRHCwO3qGjOtSi92SmjVt0sKxuE/PLgQiBqzjc9keuD3Lk7jj2hPea8jq7Q2+zn7hTw4rTNXyTwXPQ9K4khWHxwlQjEDt0BnjWvnLPUWy4XxnjYhlhjwBYq3xirJipXhPpP9PauB+C9KQyvaNrbloiQxz6jhnRNUWSQeKmV95WQO+0qGB5zaf6/+AtArA3lrf76BcVjIqkA0iNm0jl5BoljF7u/qQOoGb3SDRWb1vzT8Yg4/SVNChLk8wjIWNjyGwPDlPE1OmYYxR5N1MGZoMaHIN0pjI4iiSMJNLNp/+s7/1FmXHkhiNiUlOLqHiCrArt/a/9A7MRRF+lauitpHmLeli27opdX4QWCGsFebHOtIfmi1oKPDLVhaYrsmvF2KdVRWppJi3LsMPXkCnMSh+9qHuQ5GF9E76uUEeW1myLLsUtV32Tn4QTKmV/3g9DOKHmc4/45bLugYTKaMmn3BsY2583ZKnZCDpgQgSK4cgEazsCRucpTLS7O4i5d7sQZe4XIRY4FFNURJQfaXtDYmr+fx75EUKhpAqxy3+4HIYGnc3rM7hfZiAUkbhvEdoj89gHuodAMZM1a5U9dmcccLLSuiktxlmGDLQQ4lJhV6HTf5bUW6eXlS9UwSxm9CEyY+IlDk7AxDyws2gi3J8lxKhS5+WvGsqRgn6tsL7g+p8c6XDfCAN2b0V4JHP6ddjxsABAlbPIlHOUdciwJGgmdEMORiCQIRTBO9ibpE5vbn6nfX9AYO54T8rhfSGi4rH2dJBA8fCi6dpky3AsAWh1Ep9+LjhnzL/NJsPOeVNUwOgBEErWBEvFkuY3X9ZckTGzP2MBuy6jso25jtpXVsWSN/HoVDO1Dyj/MYE/afCw2T+27i+pAUot/M9NZfAImt2wzWtg0Vu/BdI78pPhYWSvnqXDC+3FJ6OjuC4yGRTvSCTMc6xYin4HxNF73fRfP4Ti1RWSOQi4ao6OzWUisWKX8nP/T48DkoIKkrUVVccjupBezxqT0iE9aRyQ6lU0G4peVl3HssLSO0V/x468AUanjWfx95O2j/wo9L3WCUljtSdJcgeMjtK/5G+us/KokU97PzPtAM80F1Rfy38oGO0XtuSELE/kK5g9OkC11INHTBc7tMuWIGEoeskuf0xl6CWNuZHIc/ZgG6lSw4Iix+w1hGU2+BV34RGj7hV12vUi1tRPJASZQH5oQ/pARx4RbAWfrJHJBWAu12Uh2L+GRIZiZM6Cr+mf/TKFAnjae/c7cIMzJrp5/gSnI8KWBhZ9ZMZsb02oioq2kDcvS70FPGYJF3yw6HmuhqA/R++YpWaqrsFHHCxAO22ssXGgEMmD0DcWE8BKPY2uQbXNd+nSl5xJrz5wwm6EYGziPcd3/SLAN/wre9TK1myaHFs8Fl1yfSwn6RleQvPc+GMx4Nwh+oKdro1i1QbkW4spgwHmZsgvHAHgwgO9Fz0ZyGQA0qVYlRWDRySWDkL55ivjrAzLq/B/3QkwiEsfnrVewgHWNNKlH8OdVv73z01Dw0SFqqoOxnI4rE9Jg2AhsOD3fIUcwn3CqURs6HbXYmMWVCKvLMvDJGsMdhUW3uUSz5e9vIIlkc3bRIfw6QrlZRaRRDQpm3JlD2Ks4y2O2RIlkq/FY317A2ddJvubv62WwL17yBME4PAuI0wS0bVMeu85IldyE7G3urFaLSKAQrYAMIgPdV8anMMInDEJkSh6MN0N25y6zJsOHZRkxTtjexTlNadQPPFLWM2xV9XbYPGPI0dAEPlquyI3JOqHeV9/z6ArXhtLCEixfLHXWSV15phDNOx5uA5z32vdSG6gH2FPTJJ9Kon93UHdPuq7fnEHiCDrgSLtsPqYMbTzRR4/CQPh9x0kN57gUz8M5cqCp1Xocss5NRJIK6bBqyAigV00oqkuWJYHDmxNCKXsacJ4SFKsEtWqGUaYndxtUvlgddkHkvE2xlbvshKWFnbOb1XxtBIHL3Ko62s0Ci8uKRvl6++ZwGb1M2rBsqJjFchIFrgyR9y4b7p9YZA5QqmPXy9RRD4AOu3c5Oj81soFm9bOn5TpfUCEZq0n7pCa314GYE19Uf5JsbLyqddojAvLteExDVIU01gCR5LwUAP6v77ST2qv8+2O1m0SORNRHYcCNTwRJBZbaqq2BhOWzsWl6AXvPsNMD2MvYhyO0nFc+XZl0AUbm52kZJ9HEP4G/W8z34wFcC6EGL0yHLEKEGc8YkekZaOfN3jLvAWE9fvd2HKey713+aw7KFQlxuF+DuRHgdlPlsKQShBW/HJDbPHDP1TcFFT9aEAAxJBswaBimBhQtp8MoxEeXbyukzSS8MZ9whnVU97KaBtYDt6C+ApgFXmDW+jfsi/duiIrR+Qo2rJgd8fxSn1mNsf0wKkjmU5qDE5gE0EUleSSS5Buh8YW/mA0XDKSJVHmoUn26F54CUbfKAQa4Zr3RyxkZ5ucrxkWK2hatqJ162nav+iSz4K/9VSBBIK4Dm2AcybJ5oka+zbDskQiuF6CVrmV0bihAC/hQH+jFGoQ71lHtMF68z0HgcB+9tlCCrKfTr0VT58bcYNt90JwlYStgSazNbihcBjoB9caT/EqcXRNvRtOZ9dvNo+RSsVLxeNQqZDzk90c+EfoHfuBI1AsQ/zOuY9hm4TlXweiIpdFQeyycsGHid+TjdMcoGM/Hb5E+EEV/cVFQxnrY94DvwoBvdvdR2Znnfu/i/OXzfJAddYtKfFfr9gKkcOfEJc/ZrPX0M5eVWbHaoG9sRvEvSCTzeY7TeKVgxCesOcbP3Jou2Xz1tFwqbjJFsADVskCe/6J9uT0VVcn/61jsNmKa9JQycZ6xxtQR32iUTkkyBZtSiR8I4FYooskbsUE8pIJ9fSgk1wR3kZ3EMgDul09UcNUYvO9fCcI+4EIAHsCnaQKDdmMJMgYXRd5/p2N2UUARLutWl6jhISGJRWio7iKeI5DG1K9au+oQo3tBbqEdcamTf7ls5Lo1smsTmbcZwI6btVLyxMCIDh4tkGhqXU2c1HCNXw8A1Si3i33PvE8o3Adlg644jbBwSBZlO3Sao+EYHW8st3E3wbNYdwyxj7uUM46mfIRWYExe6lknBFhxH7sY7H4jFG7+qgXEMR5f4YHTiDTm80MwvPmKAG4qpSQ1nfbWOwhzjldddhDE9bSTv/ujR1FwcHgIjAvt2f6/udQFOp6OYTsoKfFdiUPOtD+vuAL3XV98SDBVUhveNyhXaxBjTwnNZsKSRuBW8a8RMoTaQv7oq198ILUeSJq7HGzxaQ/TtKIP5wtZ3l2J9uQb0wAzz/1t/0poNXENM/Z5t/YINu0AWc70UO1NLIOUkO1TQf0N2s+uCvYIdctu13/AAZ29Et2Z7CLe4zyMFoWFuzcFgGlmpu484Cyb/GvM8YpTekZ72iewXbqM7okEOXBss7OislfqiKvuBrWmoIhzz8BeIb5X4PgfHvatMXhRGqObB3q5hg1GV6TUV7sggL6shh0YK6UdTJhRFUaVIhdg/vpd8DSL9JHZ9o5w3AVzbqKfNmBEtHmBPw28RK+X0C+2OHN6PotUDVGPNTMmvx3awMiGxGcILBB6CuRsrYP1fm62el5SvY3LfyU9u3gZ6w7KjSidLDkOcz7ZZb3TEMDN4A/Y7Oc/Xvy1fm4t2TVqcw62rSVMwQL4oBpCIuP02zz7+cbmvnojz66X+HubMf01RrxO94RccC9OV52N9eCdRDWafhqmRAn2Xj3PMuYuUjPebRwXTRRgXy6T61JNqpqugA6x/hHycz897goOGZpnACqH5eQAdde3J/qF+1LbnJdAQ7flhBtysCPohTGgyn+pceblfswMjpXRyvNN2L2BCb/h020S/4V60UrMigT99rrECIpTsU9xNBxlwV9JtkoftUsYB43fOprGwbYB6LpFSEWnnzGa9zB7WCg+64SYicaQkLVeKYA7Mp6vFDzjIa56hNQa8f8lWNaUMcsEerUOrg0e1vk5LQcomzmHuI8b7gwByRNl3nJTS7SvkJn8u+eQwgOH3FJu7VyFzof/OYgh3mhaUhaR38kBmnqd1GAVO9YrWGL+irtwwS/ZtDhFGTCbmIijBC26YJYGrtJL4ONjeY7D57zPKK/QBixDnfYZegg2A6RV31/j1arbVK52sc3lzNXiXv367CClOrkJs7pHgGktkPDloYZ2jgmgtPrlLObiAA9S+junrwTg3pyCcch4PcF9dF2Acr11G3D/Bdybs6tc5kLHyzVnMnqzMubWqnCe6wKTb74YdSPRYgqBOw/A07K6q2s416+iuWte2l9ZBLM0Oi7PjmVPUlPthsr7VghjHII+X/AeqOCmvlcFS/ZORsCmdAg4t7HYl7MyTaOJlrYuXb1tfth+Nb+QfKS5yygAEA0IqeTAQilKtr0bdcWZx7TcsNMQcU5DBDscsrK6Rzz9iGdmg+57vmPebTclJqBWmBry5wRxwouMk2rjUmVcMagdjJuwpei1E43CTs3lzRvR/3k9rBzK0Z+KLoOF59RO2ZzqLWeNIAm0DNLZZUivJ+56ANvYpgEG2/jY1BNfqoobfhV0foUvpdn4ggNSyNw8ACB2YF+cGCI5C4dgRuECckUt25y17SAoE1OkpWJxa3odJwpHxk2D/pHPHT6TX+4cyXmw5hK955r30XQ5jpAnBjXQ+ag/zO+FOHYvXSEz3PdZXSG8I05hc42bbAwC1oNkJrIWyOoBBirh1g6J6CGK+64xTvrC65oQIazT959nzO4555Ro2c6waeCRSLuKJvfzIUdbeyoVk2Xk/khvFbuI/jeIuDQ+37kfM6Tqx0e1vGGkr0+tQHRquVa8SvDUAH72h04xDwxbMF4+R/n4iWfTskoz0oji9S3fZlgCY0MXq/UO+40m6N83WQjfFPRxCuHRuaZiDl8GczcUZKMr9A3aPdqCEl/NhDqaF5CKBY0Il10JJnoOmpkcdIxolhBGuZDLKRECvEznv2qtQL7NCF9tmfY2GCP1wHHIFuCw98iyNDLThrvagh8A6j8ndskRKgRt1dtYDmP9GTrJFZTPeQCxedffEFVk6ypSBG75Di0CME4rAPsLTCuUFIg4+AlKqV8v3RVQuCTAsBIsoWsNhPsthYN9nMvZb03Lxtx7p2G2apMzFLCkIwsCKPr2f6pU0pZtTMPz32wXcYBdpkHyGnBfhskv4yp5s/p+/j5cO4XoDJKbV+WFKoTeNlLUOAmEK+K4ngGZDLYF+vf9eX3ohcWLE7nUZXbUFXjo7rVl4uWN1OOiQejH9ggl5c5YRym8VHgdVnXDj3yXkYw7Nw7m7sEQH7h2GfR4fZmndGy3I40y0rl5jrw0qvUJFZoOY4FxfPYcJVGCbHbW2kemyJslTkZLXJyqfEMNyV/xRI6VcCLL94iBZbqcNXe4vs/2EM0uy5PT6xtnTv0tLYO1yH7R1wJfeDzHabD8oCIWooDgK+TlGA2FxViviIg6rVcTP+tDh1RCBg6WcTlkISPgdUbOmuqReFXjmBTINoAq74rNzWzoqFSA4zS5bOHS80wpZtUBqap5I1F3EbMHHTZVHMlQBL2R46L+3P3wR8PQ9JJVQ9l+EHC8C0TSP+xxUT6FZh13VT+BHWsVBiZN6PBO8xDPv+7pGVpNUbaObd3C3d5DYlIdHsDD2xEb78JXEAwem5oF5L/KsNr5eTDZnwBj3RW9ljSL1QFe+uno/HiBdhbhQwYltLnqND0ziqf/bRqzGnzrHddj3d2TPmnpey/Zfs7J4Zbj0tfoDX3uZMD2WoI58GiB8k7J+REbAdfCWql8w5GFrfBBKh409DnZiqJ3qWtYRGqcqbzWyXyj0b4B2QgDQNVdmVdyEqZ2QQi7M+2Os1ZVs2dJ+D2q3hbpbfwwyJJxDrfqBVw3584MbY5P3xfhUmU8A0OsJvYQUSYlC5BgY6ylYPnOZkUmE0IIKAwurJ6LeTE0SyMc6xeIHY4de5LSUJu01/cKOL2oGm8rvSLj+BhXSWvZmrsJTsATV3ziY9GRgV+1fNUZyuX5VkrIYiAEmsLh6YNZ4Wz3Hgt1xzdUkpIfSao7EHLIcp3F24MU2goH9sE9vaAEj2+W8VACaI8EUkaYkzovCQnJ5/voiqv7Wb1qyPT3j1ZTzcK9PFB/rgE7YV5LZaKjaHDyZ2rPhYZZ7zCJZ4cULPCqEObFurNfTxVc9918L6ZaVOl0iV3Mps9TbP534PyCG89bmQ6vc4sXpshQKKNAsyb9bWL4ORxcJlCDoX9SRPMlv8gI4kO0ZhJfXbjW+W802D9+2u33N1RrtWU7MHqFeHzMwHzYABL7J7TRPHuIoumlvkjzC3oy1HGbKsaxpz/3/ny9XLlfhPJzqajS4gRsyuyjZltVTmgn3vqp6zi2xvR0vJpCSPwLzQVA5/+oW0ayieY4ciGjX0OP7YLICpIWuBIyNF5a6QKGa9ou1/9OAcGljM/EoUUUMNwvoyIoP8qlLOKAMenWzDBkfMHsqjjExAa5duIQz/HoV67uin/6nr7VeGBrJRjs6an8bXg9QqIVdOXCfNr/qg413occk3brKcyCP6fdrqdhwfkMP8SswNi6z+YJY6BPjQSbuVHLDwh9XM08SpOz/jcHoVJdobAs3d3hKbRokTyEOaLReQNwjMrT84pT7PW3XYnG4TnrtLJqaWM9FfbA/VFF0r/q7xa/Rhgt6rnIRRxdu4TQjW+ZmJs2YwG0IzSOMaovevUa3TVvdHNrmloKqwi3kX/kwJzRlqLYjTjPBa9GHEvh79Uc8/0rJlQMsfPKgKVt9b9Q9JanRfoM5wNF83RRv2966Jo9E4zrs5/t0JOiltZ6gM9ua2VdX5vhs57zX9YiA+WEIoMNdFkdF0Io2yaQ8NUziVowHPvoYViszzJF0BdnP5oXXx8T3+yXv74UJV6gGCu2FNn3Qegr9oM2HdXSVxSebDFv2uVH9iTaB9ZbC6IdE4yLldwOYDMehZNq4UFAbeoXTVZplKmOHGtM7jVPCr8aWDi/yVJ/GWgJenWq4Cu1oOl73QFWLyVdKWO9IsdmReTjFFIFWr+POmA2+cAUHADzGumXJXZ6cD3f8QwmK14fson+liEeKMf4URNkxvb8aRo8ZkmdL+dDR2ZvL/Z8YQ7ZNE8u9UPE0qiZsfohcAEOL5A6WCuX4CAmkCBVDYNAJ/kfndbImWiO3xNdOBAR3ilCc9lemznG5SQKNGFS8apMsydPTONoRwSjRxt3HljKEAb+/wRDVUhF2i3e4BXJwR25Vgf9WuQDppJ5gjfJ1zBPj6veUKIiitVgQ6CEFVGe6oMbr0OyV+Fj80lYazPZ6OO1Zv+ruLKPX0zLFnlcRjTIw5423h5BLLiule2Pjvslvra9gtYFzEmuJ9p159K1cn/fhWNil74uj+kI013BtGiKSaayW5P+PUYlB14Ut+tdMjVKVqyYNikQzPOKAinuG1DbE5i+8RIzc90qSGhZ7HWl6eKJRdd6pfl9D5NKDX8FQFjsKQ+G6CFsD8MVP4du928OBTyM/NHdmJxBlvU9KIuSpVhBry7MK4z4Xs8eP38djth+XW9MdnDp1RMTHHH6OAir9u5gkxuVU3xbxhB/cIIHTlLMETyhADn2otMKvekY0+egXi3Lc0FPUicPtMQOMhvVJ+tIKjYIOJZVLAv8LOFz78DhvmEqkxBu6tfGj6//7GMvODWBJUZrqlWYzGJ/od415R+hIScInNN2dUlcLIEf203ek4BvtHJT8A/gA/RdnjYfrep2Vn1CqutYSRqjtb2wCbITYhh5oKZODzyQG9zmaOnBBz+odAcelUlZsgLT2JgpZrpXtQ+OV8GdCsWbY2yEFzG/8xYbMkVRue6Je/5ZS0yKx2H17elHoNQdmcT8+X3dmlKglG+Vv0vxAMfoVa7bKfHD04InWKDmA5eemzaanCdQX6ysQchWd2PBquyKDCB1VwgqyGkFH0BbSTZIExCBG0cwmrjhSnAPd3JC2GGqxd5JniZDbgzSSa6QtLrcMEZ0jHvkPdcL8PindERKBwiR9qzBAiu8BjN/bw7BA9aUA9GEAFITSMxHqq47LZHpZCYn6K1McWrA61lfYLVI116zTEqsR8qzmU+KwZFbEw2tRXjxvtLqWsC/Z33lCY4KK9uJXNTV8wIYzqWwQo+OSrdtl+H/l0tTStc4SID5mXyaMDN1dalgMZtCZM9uoXyBvgB+kC1BpVzvoD+fyYkjELfyB+cq+pkQn/RwB2Of1jmkF09xN5KpOB1OwhlKKVlE2r/fJWSEOCTZwNMQGBNQzgnai62s/NqsWV0jkxbYxlmw5Y2PYPjETGHmb4eTdJmLqU6y6BUnk/0V7Iw2J2q8mXkB4Yl7+dxHBbskvejxV+L3O4jpCBjV8jNF8b65r4gM91lZUopVZNubiKA/EeUSLei4B31VAiST8V02KYBVuQuaoReekDAXFCJN2hFOzlhcYx89Y6TCdU9XY1xyknF5jjd5jBlvH45CCKZaHAcW49O4NFC/SKw+aQ/dp1hQtGjMUnHac+Gc7bqXI2iw7axn8SLKfUB2xQwRiqD5sWE2y9OdXOdxCs2stoowd3ANQRX2/WCMRZ+6iAbk2aBMDbScOLSgo85h8EzsZ1lsczH8cTVLlthIRpa59N/YGU9V0y0nPY50jGNYLDqkFHL5h+zoJhSmT187TdFbDRWQE08Z7OiDWZya0pIBXU/P8PQP2UIiWXdKCL3YKhLrdK8pkIQXMZoK6ICg+m2/6BEhNAwJDw3FCjqrUpD06BZgWXzzbpHGe+E1SkHO09UBJZZZ9UEh5dyJ6Ov+epE/UIOYP6YDDASt5uHxn9/B1WqV+fEVB/tJJj9xWJ5KCU8Hyq/1L+ahmv/orhHFoYmWVDjYWihSRqQyGKcQQuNreb+s5jQ1DIOk/zzs7PBtregmbbmi3NjCwrtG6b75+lufHxSHSTzEscgH4lCa5vkmOX+r/mPeRIK2B/4WOJyi0lxgPZmyKwKeHlO+uFLW58h8Xblo5Ur01Em8+Kn7XdCbj6W0z2n5F5X9wmynsrFyTg6N/APWh59Ly9O54iVPyejEhRR9hoZbJQgOMuQOcLiH8mVKfU6yHLC0W3plYL8sJViiBsIE81o+cN9dInewjItxjNhES3HetqIlwRWVMS2h5/69kNiNIhgjJ9oLPUiSp9Rsyi690dPHWPX6mv/hCPmtjsVXaOiR+XeO2l7gAIrwTbdm2xWDiD2T9maxh0/sG8MwNdEmvYNGB63u5dV21Y3UolaCl35FkzxOkwYwmTsugsKFdNrd+sVtDUNTEMDIpMVi8XEkzc1UAFieX2KgP2IeOk+FBAe0/IDLvzSRHKh7prH57kuG7a50qFa1NpW4KRN/AuLu9EM+rotZ76YbP00ycicCLtcLSvzHMQqYqa1gho7aXd5pP6ODDZLSDx+H5ajgtSKVAfKfkbRpEg6YmlS5wmrhWEQMTvIqyxoCJyKpSIXGflWzZ/NASMjeQJqRWacuLTP6sI8nX4LIPZGrdQI5z219zPynWtD5vWQuHCc3uSQf1Q19F2SmS0EBiikuWXF0tWVP7DC8zM4fHUVg1GABuLMXeM8G3NzlSUD3yLKlXXtZQokV6XmJHj38K4GdPt0jLOy/T7d2AeH4cm8YOj1KxB4Kp2NGKJX4Ps7ulbK5XWWdwXnof9qaZwc8KmiKzSFxc44xKCFgvPHKpmj6hPkrbnF+3mpzKLqt8GivnBmhkpPxTBsks0wxhLx/pVCnjXHcvJbsLkxtw9YZm3W2AqbBfOUvmlXtNg72HOrlc8BU5uc7SsuHUbbtssIZy0VI4iQfYBIUYCYIInawsV2q5ByCPUCrEk6gSsA0Ex1h8wzKffNaboy5PXzS0++dHYCkhNmyd1gH0Ik7FWESgxvmqqzIHlmpc8b6siHtiCNOiTj4ou5J9MQXU8azWKxHiwinxX0lKRZideOW+LY5hsEiBLB/au7R8sV8cptYC2FJKoMc9HseuLhWK0JCs8Jxa0M8HIkQJMKJyIX015MYgFmJU5meP5jArlrMVxkJA0GuXpwpMW5u45pLEePtHBR+Q6oXlGIUblRb9IZBdIs24xRU/zlhihpPdIjsZZ0F9tDvL03YMBLsulqKHjkD0t6GElS+9p0d9dPyAxChbz6wSIwlMic0WPOua1RvQTyThlWRDDXnHp26p0KXdZ0MYwk3pc91FHECl7TVkhXWAGQQ/gQYsem0DhuJ3G75mJJ9A2wtYJFS6OVJWjVpbjLkG3dUlC+Fonyg2ZFLblB0+l0uQReUWyMGK+hkPqYu2HwvPAT1B4Sf1gnj/0fy36T5LRn76memUaaszX0Q5VMOT+5aa0E5yfYRTZ5z8I0vKuXN16T2tzEOHwYtjqeaHLoysOgjLDO+WiIi7ilQla5NCtPiB/4lf5xIbAKZTthn5XhM+uixVdeM2FafABo22vvy4OYwhK7TRyMua2wiktWBNxnpcTzoEJi11g2cz2BbOSKrXZsdka/rc9L2AN/9FBeG203lCubPJV9Qb7uJ2vWxgBpMFtcrG2cmiUBB12LVYWb6/8Sl3J3toO3q7kQ4YMnFAjw3Fn/m3tRALuygg+AXWY/Gf6DT1uk5YicW3NDduOzyke+sle4+2uLaPra13DBmARaTCn3mS1sIxtmP8jymPirpDiAGxWY23GFK1I0nc8u23Hr3v+WySDXxQXRgKRPNE1QbzRHeIyojCtFCRwUd/94VFVFgsQyUlFXKIAUIUhzapSf6u6q0ym8Yr9UfDRrIJTYWYf7N448tA/LDCIYWSECZ0hgyOztqFydNX/3rLTILNEJZm9jCXPbr5htXrObgkWVRh3kUQ8vwSVi54SqvOnP5xdOz7bFcHKMcnCFkwD7Bk3veIxMpRp6wWG8vxiyozZJ1BXCwt60VaMfSDG1BPza20iJot2sAyXud1hAl/pWnYN0brcVTUgoB407H6h/G/xW6fBd4GTnF21j00QzsMzpGFGg4vAqzTPvPYAOexgJrrUCmIg3ZUoJ4L5FNSypMjZ3G62uRd1+jWVEbLQXjYnAa+mCEFhRZC74PcOqjpCG5PbofLGYDmtwuKGmhTWcR0IeW7sNRy2JeBs62tWY1kSlGMny7umbvwH6exFUeUFwRTm9GyYVdvT7Wcn38NliysrUopDkJ0krLzeUnQi+PDcBvpTFym1GzoovuFmZCshCRwpnkrKWBw/YtVp17B1yFdTPmFka+URtvTMh6rAMZ2nzrw/cI/QZzgSg4pCG4OY1Gu2AwWhAesAyZ3/DcwU7kdXdy0lkVwEulPh7c75S5OUuKRLtLKPU8DjlJrfqpP//ts7QIV5bGOElWFeQPCeucFIkiAeUPlAgYbfnmtOc1sbvnBJy4FBW3cmSNIFZpqnMfAAHtMHnLMG1fNdGV8ymLPdYToT4WXttv8eNoxXP78r4FKZ18xlAzwhQ5OQToDxU97F1hdr4mjMHcM6IoSlPb3kpPCiuZBmMF73uFC0ftqsE5t4zp73nOQFoDgXS2tWUNtq87qJxCbVhkDW0F7l4L/UwvoJ1hF7pYRNvpwEEi4lz/xmD8kfC7lwy3FAprUqDu/mB8iYO/U+jPiPlzl1JTf7Mt15Kuw/KVExcEyJWr4hclRP9tdk0o4PyEiO/PX5nw4hyEPlAXLr11XSzSXIH6Cybu3+klN+JS+Sm4SJm0LgetI+IDs8mFzDcX/iCj+sOW481CPAr7QAY6BOCrq1FLMOjbreV/KMqIpLgDMdXXZkK5oqgrDBwTF+tSGJJzU6AsGXqh0sUDtgtCOHje8AUYtMSX/bVUYo4/WDxjuaHLxyf3R83jde+miQLHbbYfDprqbrFzV8VD6sq+D3Czrvg3+5/Zt3O8Nh7HwNqasL49+tyd/mEt9119nJiAsGzK1A8GJhnoEU629Mq2I/uIjzuON13TfjC5zuiluRpQ/hEBJJDFM/mNBzH6ieK+PFf3Z0kIDmU14y+o732TgqQa5yz9Y6HbD5DES0Myg5cv/L2FD7FG60oaP607Lx7B00zRZFmV76mu0fNp2My4v+GYBmkwzcrp1J73V+zjTDfE8SkBLWZrXLxV53/16s8+nQ2qTkywfkWLSToe8sP8Q+yEkKtkpPTF71m2XZ3QJEWAm4AArWhNfrd6rprXIxi1ANO4/aIgEWGsw38+YUgL65HGH2UkrVmCoEpkTo7VpMfxtWxdd4AJYHOGrSzEoBiwHfi2xHYwuwtILcM77LMbkBWxTuGDn/lyMrQXSqi0Am4OS311/2T90dqccVnH/5q79hxy9Ia0CZYIT8efZvg1I50iGvE9sOaCjQy/BsLf77bJMxoaIiBeNZy4opK05uSSZfkSh0vg9phfudoFE/RuFAZYi6gomFeJKVFrId/KtH1+2vwpVOwgFgUPhFbsZJIxBoySAkgiaCOMfi5EJ1EnqyCat4EvpN81/WYMPkoSARoUBQsssMsy3pDpK/M32q2aIOauaG+Y4ZzAQ0Z9698yW2LI7ghXiDtXLLiqSfeVRWn7eXVtAebHXsGEaKOk021l5RJW/LmmRHWWzqMe4AEZjXFTj4k+74osRP9dNm0kXTNhFKsDE/lu9V2lennYAnF4pGLUHTXM2VRL1h/w0ZSENzdVfTDhJVYX2cp8QTxUFAuH+o7Lr+E8VYdEOm+FSTSVg2H++tukLoDrIcoDu3ox915lFuYJJJ/2Y3Q1VV0uMTD82kJQjHHjCHbFF7/FFPyDAj+qDtWIvTsxyBjy9kknr1ONGicWwmP910nU0DJ2BLe//XUpI1cUqE90ZU5ftcMgIPC0XpFdzydZBlUjVN4K6God+710gs51i315bKhA8A05BO+M7Rgi5sILpD0xSIviH10pfZb7EdmAyaJbHtLTsDamsHlccpiYUWw8ayaC0GTOXZcsCaUG37rGSNR/5HuleygmxRQkKgYJ53D3dqvZclELsSimd9PkoMTJ01flPRVZKnsOpLL9KpSVA2WN7WdmpzleI0MUcdr6MuFUMXZkMA0Wu/G84JfObbpd6DAnCFVEf4+I1qBoyt48UCQRSuQiWbZbW4fZUFMntlA5bJ5DqEK40W9pXVeNmHfE5ZO19HEmj7qf5cUw1lcuhkBZ2tcw/1ylYHiEqMiWetdHLrbGFjEFD8coRPmOk1r8Cms3JcAyjE/21tJtuY4P47qYa0zvMGGmsFixzP8T8hM1YdJFTlKt7vPV82VgduE9R1QLMqM9rdd+4khnA6D3aXJicLlcsUJjXwXfLZCUwySKuxVInZe4SiQgvoSf4d2vrYVhqyerbuorTLhM8FPrKrq1Yt7QFfsUK0vI7BqXnFHqndJBtvjinQUlmjAmO27IVAwv41cld0MkOhZd3blOp9YlFy0sZe9v668qD9QMTBVG/1AOAdpYkg5OopsMQOq65w+2SwJjodcv9mwjyy08cEwVgfug9scXPUwqIUeo0WmmgKF8pgsp7HkpzCY+5cz4hW3SVzwLFS8HeLFNExgwpomy/4zbkRPfe9bwXiXyNpierZ++qaNnDnPqg4CSfTlPT4hDKulMh98YVrrRZhM5C0VNGqgrqZ7/tLUD1IyKZH/0uqdRfidROnZ1ocqF7uVGpe0L5EJbkvPa6TAy5hrpX1i0wwtF2LSXflr842s48RPgOTtSnPpgxFx/Px1GiRdNwgG9W8p9og8WcNH/6ibvatZhaM5M1PEm5jYFcMH2j+tvEifTFcmt7z0fwjx8Fi6lnV17m0bHu64LooA6Wj2Uncoi6Vl6nGCzLnsw3q26MTJykW37gwN/DT/czspEa00tYhKI7pvTbgjiQ6+0ZHzCv9saLCXiqKg1E3XnpOxZGrdanM4BlAkc94409NDBu3E1YBgxcBK/JUkwq8NjNdBzJH1yhtnw7DHy74V7IPGFX1q3BykPILsx/GCb2wtjTibyXiSK0oWG1I/2YgU64zqu0ZCAsZDnS3i7T1YmtyNzr/emvh4rKjJvQCIjhINQsGjnmVDD9u2LwWlRvMl9bxSn4bMBvNjilHQb2zfPU5XGRBcuEU/kMN2wnKD2OSeMDvSOCZZo+FNnHqTow0VFcj1CajlsKkuJUhOCiCQVZi7Z4nRWzzO/WCe74w88MIm4S4WVOVEv103BV9EjkjClaxkL0mWxL3a/ncqQisafmD7a3+fBMxkLbhDb5QouMve3X7kSqZ9en1dZp+uurp+xG2+PTDgKxdsKD5maHZK3IayR7u4Z1g3TY5DfHGY02G8NCTtZp4JkprIpP1oyzekkwjmPM1NAmspHPVgzcG/AoeeSCx/oOwBA6ZrdDO+P61pRP4DitHV/TbvuIWo4V3YEmTqZJ1nV6ah9SHDQ8N7IVnXecnU3cZlipQhkAeIliVPpZW5hQTozKyGoguCYV476HWXxQHQR8jToIhrskjotnENsDYCeurYwWjmjHeV7FwObTlL2HoxGsprRCkrKdO1tNNy0xV155xzWAYKQ1osvlSXk4tlpEygQ63UqEQ5JeLuuBwDK2B2fbRKUHTcBalX1+w4dWgWvbRixbtaNUM57dHpWMeYWjpB53yaDXO/6VL8ps/Gyxz0AyNXmT475QiesR09WOaIAEIqBTo/ZjQkMsOT0Jwfj9Fr3eU/1HnVog054ycmpxeWOnxHG++7QkZrQOpglrofyKrMuoewL9OseDKGJDpFECWl/CZIQFkf6iACKWt2BFNYcPB1mPkHbrL4O8VxlOeiUMlMpohgGeiGdR7iNa2jjcbygNFiglF8REbXBTgmzURzAd8bhnstOb6VZXrihUfKSW3P+vpXzUU7O8TsTzRIguvHG6HQCvB3CLVKXug0BHiqd8oJbUXwDtk6cyW1oW1tqyB/apHCC2bjUr0/ZHIKpEnGUYMQixjKvhR4dRcMc2A9HiPoGS1n8wDhUT773yDPl1wQyaItGFH52Ah/mfvZu+nCiROkz0qNXsE8MBtgoS7nf2JLLouiJhp8r16D5C2gbYbg0tv0KJAh7H9p+eiM7yfn0IFKk5GhBeRSM+8pcDXBUGEqhb3yU/gMQ2u7DUscxCRjRq6+t5D33IkMGrsMMmYEGqtKQjvOeYKMDJsndLaOzcX3rvMEse8HqT1xRPYFPVo4m8AuPIl37qStgh7uFonjoVGWNmpqSbuc37jhlualwpXFsiug5rWvrhCoja/d27QV2Caz4cg0BQ1LbVpIgPAg2u+O8eZXpxKYJnmE/TQHjfDFW4ltBkgk2JHlgmLAmuqtEQ8JF+j8AJJRAM/RyG3PIi/GU+Yg6jJkqJLoGuSR6IEiTS7cTHOGC6exPZSwsWY2sE4yZ+w5iW9sjjcBLymTchIBeHp8+nJETj+raQhonXQwdLPCn05nX11WlMuJf6xqAdLfUvEG0eWvIbKVhLo1VPkiZ/l/Aaj7oq41jRqoOSz4nzoxIuky7oMpaUfGiGrI+Owd9xPyaouRkZ/C4cwPWsQb2qQe2+8qwpwOJ+4nHSNF02oUJtr/ll0jiSDaXTBBA2WQXgZDDO8AYc7HApAq+ZBcxcJo1Nqoun1VJtkolsWPIgLXa174VypYIfKKlal6QWkMU7TzT25nabvDo0myWlOdAbZBAgVrX9rXxNZs5mvp8bTz9A6wjQ9khfp5ddLVLEUuRYvuRo51sTQO3ioMsabydO2et1PmtZnLvIK7a8giG+noC5TeVTNU9CTHxV0WnmUN5lI4V4PzTkff2wTNTFiuHNkQVac6WJc9Xv34B71gL+MzDNvD29WtseUjCrXBRrty4k+p63ojQt7/w2aZfgdlis5thNEIaJTtaOklIDpaHGhpfTtHqrh37Q0JzJWEjowMMAZCKpmJdCYGAr6zCsfpTzD0j0K66Ke0DvTrDTyO0J45JvObFEYOU6GVLo8mhV66LASi5a/AOA3kWMyV0WMr3+hlBfC+b18Dznwv/Oydi5lxnKJDmJLLfkF1vcUmSj4hH78fI0aRuXWO2ImEl4G9Rc4jN29ccGON+rryLtKlWq7XMJkBhu27y4sXXYqPs1IcMvcOg+kY32ZoAlBNr0FZ/++att8XwMus3+qmXthjsD38kijA4bmNt5QCM5NtfWdDkvwKxrIYd1WQOFI6Jp5dsEWOugK1GwvaVo9PcJzeJa8UQBsqGD9nMvDkwOZu9PQ70R2kpTazFrML+dzTHKy9QAikuAGu0ztYG8X57RTHj0p56M50aeg+Uw6O4zHBYy25iKsj6fdnr8laVsabOWLYzl5goVIzEN64H/asI4Ps34V5/GOwO2MCo1O/+92TycEHpmwPtFbwoc/0ayToCwX/q2ZbQbkOnNpFRwNvVUQAjhlZq6VW4DHsHnjftP0XiZJv4+YSsWmV8REOZeAABk7l5RTOIrSVodnQH6IY4shldYiamYAjgXVnFqsH7gnkwe+Y2tZgfQdihUKyKJCfhBrgqoowEfZb/+8m4tIur+CrzU7nYCCvXCqehpZPrF+V57xX8eb0e06v8x/SC/vfpOX0OWcPOuvAAz1NfMezVofmgzalHXYpB2GGT11C0qjYu9b0HrJyK19Iouo3FrLVvJcqKaNdar8NLa/jjzyUKGtlROPaXVwXbinEGA57ICGIMsPp1v1CxSR8eq7WpPbUiyybW6bXybxpe4cOfy+gZFhGFj+Xf0hrgTngmuyc5vMi+7YVn879+yE1TxzsvRIuFLX4qUz3PoXlhhZOsQMAL2cOZjKGKuaUXyS+OcduAvpnHfrZYXbK5wEqdWDKqQ5MO7YIKhzcK5MkvB2+LsVleBkDn4LZp8AkQWSBHZFUDdwRirqRb2yxL6HIQY9jFg2HbXgyChOqoT80Kym2c9nyBV/Xrj2ED+zEUXXcqCaDbedPQsaJDRh+4pg30VU/i0QqECVM8dOnoPtsm8clZa2kym6lPi3N3ceNFiZXpj1XGhDKpHBSXW772ICka31O8KVF0lc25ScipJoZwghuFemjjCVvcPIh7RKf0IyvjLIuDAFMYGN/wKustfHBg2CZsuREYKInzRdckXABf8zf/T3flRvPtuUeMLXw17czyasyJMTfxWGA6YFqQCsIxMmf7dPuQ4vp6HHNiwhFRLm9Yz1S7dDVVvfINKO69EiuiNf3SK43sxUYb7LpoVXMUBPZC+2v9YHtdKlmzgyckOvi/2CY3EJV6zASKtavzMb+FAFXLWxFrRKWiMkQ258/3i7IFsrcd5OedMmXLURmV2lLAJx9tw4Avh8jErhdMh6vA6h55ZaxVaih7fs56Ef4tP0mbEh/c68RjLAPlEYbfOC0+texb8zCNreLJfWj4h7D1EJ7Ef2FVaFxyBb58CvYqo7DNXAFQjzbuyxf4NLv1AeQpVFmuzXUhy6ORUQVh0sPqLq4qxdYY/aJsD7OOvGu99CHmH3GCfcDSDUuoqxU0+amLMYLoKn4yQiXbdd4qfAoGJFV9+bLRaIU4q9Q7Wg2/gGbdUyi6HX1yvdt5roGyJY6NqbPzr8VTdowPE0WxckCLMAGrCGW+NwuK1ejrMCnhUxN0PVnygVjJkbtNXzpA3JmRx9DvGodr5hH/IinKEoB8c3T/yWyVxF6ZcOa4BbB+YzNsvmWaVDeYkP/lOWwhg5RF484G+wgD3lwolsI0tZeOTk7SBxYuQuTtimDGC0anTupYTxRM+iypkqovTYf1B8V8C6bVJsNTd5zayvm9U/QdG+vfckhYYdjBwx5xwSJ9ZCzo5MEVTr5Ry86EUQThcPwSozeThvdElZm1dj3awDzNgoErgMF3hX2uOrIVtLr5U680calDGvK/b8J2IwiiGWbK13X5sv7uf3zUXsXD1Xci74dKNWq8o1xQFKzxsEzU9Ro8CTl7j4VpxmotvnJf5Ns9HsbVetp4FL1OrcUSwuMqap6IexlXZpMqYZkayYY6JENF3dPEVa3mDY4DFydogEJwNMqVcQXKaAwk84AOShxzGqEDXGxjAiFFC2R1QOU4TV96GIN7M6X2jdJ8lsirwl+2Q+63JjdbgFl9I4nIXRaIkKKSn7+m9QiJQVrQvVhhUyByfGqmMU8o+bl8K+FcviQAt5DZmtSEW1ZNTLCe4IHuBB4Fxrjw+fVdHe9PtA2SaPs6y7zv0h4/crRQYQZWlAt9fZSxa2EADQmZjZNIxaQ+az5mtv+RhfFnCB5N/etJvAW2usGaht7tb3U1qYlWLrqx+HyMhs1OrfERPlCh7aVQXqhVFdsJduMTLUOCdI8ffQh/FOeM275uj2sE4J9kGiXZPuQGX4Dpbuh7StWUOWPsCWXfCrseztSqYIdRhupmtc0Jb5FmbKfTIZ77U2GT+M0LF34BuF52BaQME5aVRG+cccmlSVkAqD00PcWJfExQzmkdC1KJr2P+SNYdkfg0ivwB84HHuwkCvaQ/OeSKSIc6fwY6wjaPJxJDi69N8IVxO7JLF7R6G6/cPM1hLKlU8XZubuXwrRitiyksrd2Y6IOayXH8/EHRiOuI2eIuK1kfa5U7jjHSE2paCBbqdhEiPWMMWX9+oxopncHwHyDVzFd7Hgbynu868jPSQlX3AHl5jcJLvQDkY5AXKsnfIkbChII3llwU33wTN31JWydKh+fdghOUMDOst5jtDLswC9PjAt9TAWrRNtEtYW9pz7f83zB31d75Q8Iloup+6iy1H5hlXjZq8RvSN+mdg9dHq+ak0VcJ+z/1TV9O5Lc9mX+Xc2sMVBxgwHJbra7pV4XV+w+KwFXABZGaEnBX/ByKkCTqL/Se+duBY40I7K0Q2leRljERL5Da1aPwiAi8I7LVVrlXmm+CF0KogMQUDFG2mTcz2co3VDiBHhUhzNKtvYMwk/jnxr2XsXpisy2gw8WvFtF13GkmVjoXabViEICqoEupE4eU3j7vDBt5s3SbY1FqcbLXU5zsYnu3mHrjwe9qZBIizOuscX6ZjvXPfDy7uCCkqyUxl0YOqa6F+4t4pAl6j19gY6BmMhtDjUpTNrUaIw039z5vndh6NGTWGNiIiEVcZLQIZRH1njvGMv0/qWdtZRBqyELsbNdRl6v1hpHIlM5AdlecDPBKU43HIWJBOugWtevK6bfh27vw2nxCKYRgHa8gqLRSj8B0Fj0Atl0JHm7EQaS6zVuAthJRFBtAgve/FIP7+ND9z/o2SDAODGtzTt7OYHmtfso+GR+4oM47IQEbTo2Fh0CPmLCWIrx/JiVN3mrxbu3KF+nAzsliIvxyaAtHLcz55g7rnyw/sPTiTIR+Fo6OJC5s2DJkOvJGL0HKcaCZtJz18fDLsjN9QbHXgiifcBneWBPXWzZBX6mrBubp5PPncJXM+qQZ3c2YMDTiAXEUFssDwy9l/owd4WriF6v+byIs+ut4Awwl+JTAofnc8GPgA7dSmgQa5kxiPman6czkUIG9bs7+PBjIxyyDqCHg+PCoux2eyGxEAAv3F4oKPSgvRSzqUb5/37XP1OT9r4Lhg7apykNGnfUSGzYY7R7xWNt+++21FXOwy3cYoYNY5yAhxOAgfIDcpA+4+R4ZlZNvNBD3SGmIYEZWb/DJe75T7b5lEECUDfMoTiVah1Z45wa0OHjokIWvFglV4LGhZ9qAnCaok2MwC6lx3T8XUil3guQ/8Ol7a03YVxWgvg2oyXACyCNW0A2rXtMSHe16M2NNh9ZxORLzlh2e9CD/T+7jdD2nbRBy0CnLqOYh/fI+ubn6wAcYEPhKZ1q1HTkRNHEJ1uoB3zS70WV11lNSWoazodX9qAkNa8eXmaNAfZfRU9qRfNZDRxtlJKguJ0a/wOE+Loh17nQjUYCY66nuYaTBGMuU3zAz7g929c6E6kNkoi1bzuLJDkrGY45JMBhQqBvDdo9SihU3FkEPUFWoHVUXFuYiFcluTZvyqDOhgoddeYHOfQGuy7+4A8uHV9D7yuBX43uYY8KmgR8lb5Sw5K8b5e8jdi3K++nq+GIEMN6pd6TiZtdcyskjxy3xhoyWyy/ixm3IRRsY9IURAnE0vJpQGkqf1B4mf95Lqbdfb0nQZU9jbsfa52SPELCL6DN7IOPnKys3mPAsLWM6CfEA20CZnPjidSy/SwurqbApNCjI1lMUJPAZhdGO8wLan3M9yPas+nTKCqmXzL4FQ8/C3KnibkFJqbUsHBpzXjX0IXrg5Hq+KrcHWi6hD+YB7O9Z5eQ6wV3q6Lz7pG3r5Dczyw6h4Mx2nOLxkkXUCb36Z/b4QdUGL0PZvaXROX7iNr+QNSGHm+xVnGAuo0pEVHyqQyx1CE9KsCAYbkpvgdIPgvF7Qr6FGihSAory64rW8TGrkVVWs/7yIUlNu5fEpQ7m/7/XMd64sMg++vKouPMiOnfLLt1n9Q1Zcfi+DUAoeO62RFfZ64xiRlfhcKGXXToiiPYRkHFye9C2CyZkeAOJ86pVp5zgCbUyPgkZJwoGOnCrP37naOM65zg7gynCycXW7j51z0aR1y/ylOngTWRtxNQ1DV6ENlwdxj7WlOqnmMDbrkQec1S7tL+FJmcgiFhWw4FY7km1pP94guWXahWMLFPGXG8DudGuTfnIWkDvVxUH8rdiFpmsISFlIM+xDiH3y8CuHehMUqaydvpswuH2KiXrBwCDfEiFPMikaBfE5mW8mQ4G3ySe1AOGy3elUydoGMBEw914D9pZGBaQGirt2oeTXhKl+mYJby80+OoY9gxZdUYFYvYuox/WW8sMZxEs3NDZK068iXr7nUdfQVydQMW/zUNeEYwa/H3WBDMMvkNtcljs5lGQNUWjbizmX2Z3s6NbZR27rvlvf1KsCD7UU7ZUQMq+LPJUOyJHemZjijbS2jSM/5O2zEDE+I2OMK8uV3QjU1FD/5v/PxAR/xlLPdFZ58pFmURMZcFaAEE3+hXpCXwCyxrpJHmik9d82fk8aLQ72734Txkg0KQ+6HbHSJh/SfnFNqNP9c39k77YXIwx5bLwU0OKGJDAsXrq0vdHNLOGa4SpXof2vdb+ekSYddYARWVKKi/w2znheWhgLq6xlkWJhnimKLUwGpjL6hGfl4t1S/h4E6k/9Yy6EeDeHYU51KmAaCMgm5/a18noZUTXoJJ4O0tLRzKYZXHK8crHekU6CQr8dYMTJPF5pssMnwcMS4QqXum2G0kaghpDbrD+VtNzhDmCJqfabns0MeDtIT/PtRgO8Kr8gw6sD4OOtknvb+QhFjSPgOtolkJ9pKAI59tqNSnBEz1A8VzAePxEgpVNHL6KnAvuWUCAdgfXM1LNisQ4S1kcDyuAWCxXn2ibwNLDjpRREmw8jsKEZhoOKp1YEZwlnGXiuzmF6tW8Q35qjGn3DEHQul1f/CDsnbFkpsRQHQaLq8JmwdVwcYLmCpL845b1E12mfxIKLypPJyrgE8uFMXELtWNPvJjZpIOZR9htTur5cHZgIzg6au4+CUW5x0ubicdHvtpexEek6u7bpvMVRDASxNMxaLPSsPuob1uyqOhwWkup7j/RS5h4CG3xaQamBVHNYkmtoNfLpU2PZJENheTpIDgVCIKcNgpb5h96pfmfp0ju9cC+qcSz7FVP9ArZto8/RS1IhmlaOqxsCmWP+vZwQKWN/ha/p6WdlItF2SWYdwlEei2O269WyDENBU3r3ikx5DKA9HXVgqjmLSzjBnc07hxlpOLJp/VTlBsRE9/PoMnF8qjr6YQJ60LbbCG5xp6WCb/RMkkrZfSM+vJDT8hMQhHQLWWcllglPRIHp8AdtyYDu0vvqS9rI3YZYcFEr8NlxzCY8YiO4eZc3XvMRzlplkWJ/yoFECBjEcLtpCUa2Nk4/z/iindFKkRB0qUTwKVkSFybhDVDK8+Mf+06ulbJyk0xfX7jeiB/f4egEoYm1GwZqc3eR74tfv3h1vBbICXT1x4WY5UwNqMUzZRnZtmwltJmRYGenK/ztcZqAImH9yJbRJi+pP94TZ/C/ma7uqmb0jSlklAkNlfYX6Vg/qK3WlTOwHvA7SCdu6nRDy/kzm86R7BwT+aE21S1cqUAEfeVYwk6s7Na/UOBEElEZuoxGhFbz9K+6S7DlIh6cpHUhVaMdm81aQ1Of0PsX4gg+Uj9VIacegmrdBFGRBn6ATSG38Xyfx89sO/aPVCCtqS5BNIm+q+rUCpHMhlfzfzUcJvlaMxRWA/H1+gnwq+BLtQXLVtkmdgANahwfwFhgdeTHUjNnBL2oxM82cOtRNH1mMIiJe+9lHYj3UmmfquNxhokWDswavd3r1ETJdJ1bWSVjnJ7WSAIfOAw1H4FqfibhouvSpqe5RhONv0T/2Fs5VLjk1KmXahrekLpRJ52KTIHGqAyXU2eORKO3a0RmJVVR9OXq8V2ndAP0pnXR8OezOaZSTarXS/Hv700LgS6IHZK2PIjj/K1hGbMyFmPVZF8THrCo948kIdfyG8P8mAbzCqzR93uqhfGh8FaVeX5GUDq8M0NV6Q5/e3pcMi2IpzyXKjC5OsBFW56S6omsfc1H9PAXmB2OGcyefcdjudNfZFuZ0IPyAeDnbY+uVpyUYQkxZQdPdewLS5I+Gwyej+D7VnvJFuzoyIlapuNXDzpAf4Y9MwKoauBLKajSrSlkvIrKMNiBNTMqOx0UmKnCk0qyIALcd0kU+/4P5u6YyOa6FdNCbqC9D+T9uI/tuwyFmyPIv0alRAiWAlgZiL3jJm5bLjsVCRrGCC/rrF4xjDcZLwtVvRx6T+ceYMotPw9Tvw/POpkxix+VE77Ty+wE+nJwXZetsBiFzGjFLEpl4EDycc9hduW8njJuaWWeWO2qa5gJhee9rSLAt0VBkHVEoBies8oTC9zbJtSDJE/ItBomknETrowSCSMQTKCtsFKbfSAnTuBOa+7G3Z7Te/2KO1DWmWTqsCAWqb9pyxsT4tKggzHZNqJGxWcMqzlPPioYWcYqXq6iJrlhfFBCy0gCn2SZs7c3dKt53jT/fYNnnvoa0nss3VyhWIka3sHxcq2w2Q6OznxphVqUe/EZrL3vVMFwIV/EQiOA6z6j2VP6IWnHIrfHwdw8R/EdQuBxefGk1Kev4iQT4VY3IGcxNpGFaqXPBRG2xG1Yp8K1WphqVGqOQL2AdES8T45Sm74Ozp2K45Ls3Y6uVHh9BEPemTi+jJpj7g9r3Z1s0ExLKgFsAEXslNCCEg94nCRQ72gTCa6HW0V9xTWKNPO5svQCs2oaCmRx0viWcoiXW9NinpbFc4ZTRC3F6TL6+gdiIQfLffwdIiHSFtLMcCLLmjGS8zXDB6we6NYty1aTYL+YtVGzOacnu5cqczxQbxUQMnxezrQ8aA9xhxDZpEnmyH+ard+9Zlm4OTnn+ND85e7yC5WCsUas/6GmkcwMrFTarBg5oWrnx0ld1Oh0J3j0SDl289ozAKPhgLhVIDrjZ8gxs05VLrjWYcg4jXdV0r1JTqUiWbchxQQQBkHN1foK1q4DhaBqDsc0F8uB0aEzUGL+r8V/frUk+zvfTTfSSp22lXGe4laxzeHDW5tFHgEOX9MJdurQ3HXBKH6pLIzF4Hj6921a/Ii8NzevEiaVfHQ0Ob5BFGmvzGD25yaR4F2sjm1n2TG0dTsVwYbuFR/UMWFbdN+9bhWnlohJd+xm+t6RMUwdngpOClZAPC0cRnQxRqV6yDZ2t+ZGd3T8GeUVM/kYTotH4apUApPGayVEYnvMFi0P9zemozgyDRh6jZ+ZclbcVwYi9VkjdTBs5roTZzbVFWYYBIyICLffN/ApZUun3oXWzQ73ALLY3Dq7Q6feivsfMbalTT52leqhobRA/2acyyAQwpkqhOLu3AtC4YPearBsbPIQXpcW3cLoixqUYllly2FrMsBhPlyDaGM2ObEB5s5fCpSZJp3I/b2dW74OwSpzPAXlGC31qZoo2jURJxyArMEJlVOc4mH8bRoWDQjASaFyFGYAUrco4HkdKizAa5ue8CQV8nL7iEqYoK4B70DOdLVkW4VsJWjwNB0YqnOqTbfXewP5BeUyiPLd74D7v0b0TEROAycZ/z5eiQUz1P7n6L5MPr7CM2g3u6uKOqgtqCHpbC+YRXsPLjM1akAy01ROyGZHC10ndDW0IrYLutr9DkBsBnX+iNkrI2nD7irS6c3DBLFWvMy9EmGgLeHuU8Qhu+O2ynYpt2pU/5SGFp05S4JBCxRIEZnIxkPmiIoaFIjPTtdYy1ujQlHLPJsez8hRdDIBrlM61E23GUHvUQ7NiPXOR2bB27wq4fF5mlLAe3gsUUZAUoVgiJ7tTC0zPfsqBm4fgsPAR82vw1/EdixRxzGBj7kF3Xr3U4fympq9OyX12FDMbFsLQqhH9on8MzlaOrMC+ITx1jAwzSwV7Ks8GtNS+IBgsarMn09P90b0vKKAcIV6CVCC8G68x2MOSUeyxXCiJZ2yahm9q0hIjVmL5TghKlj1GdD4go5BSMAFppbQxkH16k9+sd5NtHa3pqek5DgIYeU55YFit4jZLg+RpQBm3nGm4Y4whomW0PfxXQmKgIJwaygGPjFTy1QZTj7cqLfboQ6j9eUz3VpUGqyuR0e3nh+++otcdISngZoo7Hwe+kwbRQiM1kKlqLyRGVLxjHO7k7MHy05iurpu2HxoYQX0mpHQyANwm/CbkyorLPrW5OmeiUGkw2NU4mR3zxS3fc+AxLf1N3dBwbe1zJOTAQj+nL9YLuChq0yrNnesbaX0E8SO0DUyqh+OR4Ujv/O8cWP3dUG70OKhi8uZG/KAnVizKDvTtk+KCd26GKP/vIOKeRlTJzkDS/WI9ulxcXjIBwcDg6PPCcvFTQm0aNT0zuvizcoohAM3GK4voZbmZf/OAIZ+b57BXdFrRtmn11sD/3EfWOPgHkCZXLd7TvfhdnAR6MVjpVQQW47FJgjy5zFhTyopsg9W5BtilWxQgx4uijwKobR8Nvyo3L5dK+OUC3dqoeY45I4ium/iaQpIS2NFg4QMoaEYLemA/csx3pqH/jlnqCQIpzY3zJth52OR0iY/zx48xX8CJX28CPcE/h4gC+NbZw4iaqYenIPY/+1pVgth2ahWxml+2AeTap8U0K6Srk1nWd67ME3WCg6C9i43z7duP4IaR5QGLT9bRvxV5Q1+9jgkB/btbi9kniyrENV0rK74rZmEteD5nWvNNPstQMBi1maxBgbhPaz8obu8DzFIEDejq0N6NecWC3M0aESbh3woriljbo6dcuT6x3lR98xVCy5/y8Lx1kRXml+xyIv/ae5mivl/6TMuvJkdWfB/2/L0nZ+hukWsm6VUZHVWUfI18KfMa5HjnFgRCb0iCt+FQ36mdWzI8JxPA0iwL++7kNj6dlaRfH04TihsnMTaeAcpPUjut2srkjV7zKHRyohQQn3wioPBgKK/UpFao1HFQSVOiGnhGf9qhGFdKppSOQiC5EVDlH/NVe+tRX+NsUz++RDsltzkiPigb7GhA/+QpSFhpOC+lB9wTxtDcGgJtoA3ym4k6R/EHGn9pgmEB11ZPqFbYg2HGOykthI26He4HhVAFEYCQfCx9QAjQAp7/yemKw+iXchISaqVWCxz7pZxg89gDPfeZnjdAzX0my5ro3k1KMqBSZUA++MTUxhItNimb7iyE6fu+Sj3oTVk3JKmFhJV7r/yvG5AGjZTHYuGFqNrBJi939CmVNvChJYx4isWEj5TLGKeHIYTRGLboHJATBnTfhE0PBbM0WDZnUKc/vazWTvpEDiEbHt9Jer0ICq6Y63E/sJXF9Bp/Js+f3kXX7S28vM0QEmgQzF8iB+mN4O1P3kckkGzpb9lRvcbX2ZYNdlnpeInQEJnCeEjY5h1YGobsvH3URuaZ1l0xpHJfDLDelFvuEpgW2p9bQw1UjCj1uqKObiFnSTn25xr16ZqEG6bWH1k6qDhoCyeqj0DMZqI9A43Uy1POWGj5tpegcl9iI/VHRZcQOoOtJ4FedFkcEgb/KzqOkELkBIGbSf4HO9V4fL92skByEICCLlKku3jCBnwnGnydVGB7DqOpMdnbfUFgHzUVAUrnoLLwFOPXnHNCs2A+ugwyKUeNLrZ9msBwWctz5L8r3ieuRAyTv+66Ie5oFUyzSv8HOptsPubwXOoU61nC0ZEJqgSsH5lRM85EYXMmXlJHXJMDpC6ibvjjNenEnrXh2JCsL57ZdgQ1z2ptIv7QqP7+OhJuWHADagbkNAxGgUT6FwPhCnXmtZYAL4hjVSjyi6i0CpdMh+lUgmbAz/MagaMJFY9bpCDi7D6T9knr+I1DXJhfxcf/IC16XgVjj3O3qL/xD6wSw4MVen5b5X1tgYFpXH4TPHH6LTCuFuKJaUNK+zeIGnMCVDGolnj4Z51aCdDZj4NHuwdeOXTp8WA38CvG8CqFrvKu+iS9fBGcbTV/kzTshEwKCD7nR3kZ26Vuj27o0L5k2ZwmTLsW/e9Pt4ukFusHKIZnkFC+nZmL2Fpk4Lf8vQs5xk3pQTB15bap4+GqoPAwG6DDipstCHtnc8WjPB5djDhtybdfMGx8SCod8X5tO+IOkKX3VfHZIXsUFvAfbeuag/oBjoyF21BC1rDr8w9xB4XP7JsMBUriiExddKXBotV5H8vmY6g3fldehkwJhJuDQ0LfqJy+T8Bc+4VVXvRyqOcWIoq4n/SuX30A6SJmLq8Yk7ekjJlc6S7YYBLsEx0kvI8z0r4EFQ/XjYaQbo6NempvVn17H8s9b51Pf+ngMLxFN+L7jr8sEOo2uT3vYSh5OcEfoG6f4v86umVO6NL5zOzV4DjPgSIi08Qu9LsiOiaAFeaMvLd69PqW5FuEJYjlcUBXZvc6tbTFqrXIL58GAjBh9QFPcR/4jU523mroQE4CV9BVv1OFELEPpsn/WiNDq+GtcGEP91cVOX4QpHFkfWAPruoeAttV/l45PdCyvFnDAz8+7GhSvVmu/nD8F/0wugq+zFoTf0zua1KKti5oXkyb55YCduf0a/tD5/nfy53AwPsTyXyONY/ZZNXVRZxtybGVyr4wrhHs+m71Xu3qurKTDCPfjfvwe56aZcguipS9PM6a3/vIWSJmJW1Omgfwb8E6PX/FHQ8xKrS1AGWgvOEbwciWxjm3h+7EITYhpouYUgItpXXbpl7p1RZT0qLPJbVfWrAPlV5N49NigrjkT+nPH666zS6TEWN+NBolSu/js3zcN6nVa1FPIFKetR5JDwUvPBTqNMEcUrX12zulXGJ/RK8GKbVYe2X3+eyunAd1DqtzBkJ/eJW74GezUoade3h2PsqJzqF6zbCzkorJeAS9QU469hu+rlVSOPOEQEJ0qYYpNqeX64azlAeqVJ3elqzUB3gXceV4N+8coATOY8KMD3Q8QAwPy/CMGRjwyvvAh7EuH3J3FC5Jl1x9R6bOKJDzpQvZyquBsYWE2xQZkskSBzkt7vn2rWUZRC0n0CU8A5N87JgCQz1dcDryARXcTlHkLu9ZN7V2h3S9/k+f7GG+i+LfEh30NR7RoqX/wy2A0ZF8Ggx2fOyEQW2kRZ4bkywo8ZLUs5lKvmq0RYsEXvII3CxieA+m2frb/TWmQf3QyjIEd6USY/EbvMcuRf2Nghq+REeDktEmGRyv3UQzsoXbE80iiE8BczT2vgIgd/p9GYhsN9SEEuaJm2lceNxsnadu8EzErdnEUaqhHuRIq2QB6dnmFyQF0QeiOgriURA7ZA9IbPYfOfT2AcHSqEjaM3GicNeCrKAHRlzG8Vev79AQr2uK3xPg65wNdAal/OP2whV7k7FvetEGESupPyLL5q8zMGmZA+ZIUWG7vaq1z12e3oW7brVywNXZD2Fkr9JMDdtlNogNNZ3riUi/qvPTGyly5WO0NYoGvOWdfru89TRWnsdnU35/QmrBZq+ElFHi4UFkibQ8sxevl57lnVnY6OecRlyeC8+kNZqzJDb9SCOjWimf5vP1W4jEPSdmSNtdI2NJ+ZTse4rSXsSCCg9x+KzgtnZQnD/8tOtVFXRSQp/KjeEW6aObz4ehzi2U7jpqvUBN/1671pGboke5ruFM8uYd3wngZZRB8ui6m0zA9jTwifl4LrMSzoSOOdCV7/vMuXScMjmpomv/bbak0rxJ/kKPcs5acDOZiJweqZnyj3upQDrf/0+ZUiMRNuEH94iFSHtf/kat9hLFdpOfge1KW34tMkxNMi6hInGANl3LBywyCjCmCAKScP2MWGtEK5mtqUFDQSbAPCMkZyhbfy3Ff1Iof01IP0/ftGeCcan/Ie62ZYlDIzIsocFL6RY5GwFZVZX2amTrYRQBGlixXkNum9gC7jNQhtkb4yQto7lJGlw9+AEGzwRRv6Ugjs/Kaffl5WY/ttAryjNJeNJSx3gQj3pH+mQKUxtLLP8+47Qb62keug47RE+sLSEFPpUKUg2MLKQCqdha+/s8h0nYaRXu+16Uxoj4NMf7M+OJtx50DGiYvBaT3EkiIRR2jwUEdpZXeR3i/h4195VGbxGKwBmQ6sc0g6S1QXe/7u7k3JLhpehwKApzn0zxE4Hde1dvqXXcUrz4so8dDOxGkd+5dZ9A8s6b6F9sIPt5yBburTs61ht7zs3sRGLFKqPr4KuhTuteBHNVjPoSkc1JCe4ksPtgIUFv8ssosU9MOjXjM3etr1yquaSC0SiuDp0g7n1mCKoaJZYx7RHW97AqxKPccV/n+p/ByvkM7zgHw3kV9Ew18r2+1GNsgKL6VdU9Fe9HG0dlZHX73ypANZ7DlcVkHgGWYOExERqRweJ0Sdd2PepyC11wrjii877tbTIaSIuhZkCZ0sgtS9KwUIYyyxyy+WdjprKpo0CorNG+LAtv1s5/+Ysr557ybCjr5AwGFtvie7OgjZeAkXGUcu79vTh2MZ4iqTlgpQ9mVo/hN3DvpLxIGVdXPwIG8Ddfm0ecWeXTv62q+VuiKMyJQmPMjsfmzKB2UFyfzps80G9IubluHwnMoAN1eFq+3flC6jYrHzGCs9TZ+5HVsOCeH0INesCvJ+yu414XSEJMoZOzwsLGwr5X6gqm279SC/YMa33pCR5vV+HMnRfm8l1dIj1NopE1XI2OIHWqDUHS1kZv7np8oXVHRbzyXxtfBOzKltYzchlPNvpP6aP5ZYqAaIvKMFRmFjV11Ifvt3kYsy+yjEEH9Nj9aUsso0B4P/UABeDHThY2B9W2xNqL5HSzG7eGt/W2jCA7/nipKdQQNz66pzh0/BjloRC+LdhhARmbd+kfa6O4N+f6n9Y5nixqjjcYoqNr8opjit+G02MkKZ+ChNZPZSnjZsvwn/1WkbaZSt87Jm8RzBkN/e1pXJnPFk86KjMqlJ1WJZUgyOKF5jdLVidxar8jKCtKPPdkU3Um0mQ8YSYo91MFEfKiATYg2VX+zslCEkD2qsriS3LgbL8LT42wsO/Fx7QxR2C6OF6VdfC2sC73pGxNOayEhLuLBvJap02M5u87MlU3LGuLxhLTEB8zifG1DnzaQIBQeVOjeV6aW//UW5PytOUgdmsd3FAssWrYW5b8oTUcJWk6AbUTW5VrAuZiMfM7xoznzxi0WMsXwrl45GWlFEHdKe9OZW/YxtvSzySqNd1cl7gSlnhEPoJxOFGRumev97KYNUk50vrOupFA44v755ibbnWYfZI9lq2ATcnL/swOD4Zkz/FtYIG+r6PRd13E6uzq779rFiPoxoXVSp80t6FPnIz7taUhbg7ccJ6kcZXVScy0sULA7AoQQoWBlrVYFy1yxaNQXiBRs1pVfZb+MQcNj0VyBGfYKwYDkkV6oJSo+eQnfgYLl90uvsy06Qvy7cKBQvNhl9h34CczprPq/MuuQpvaEjhgU8D2tKu4hvWYRZjmyxO6UbvdRu9K/ei8avH8T7KKpeegD0cLF6gqjkMScUTiQVk8Z8WAL7j6mq40VqEnwjq3poToHTNYzb54Ay4O09i8piWV9umLz7jRqcxjfrgw1pdrk8FvLDH1ebEQGMEYC9skIWLuKujhS/eycNF2XNXKwIoOw8ofTsE8pk0WLEqKQnIoACu+1b11orTJxsjw7R7pQ07OOZf7EfKs8lh29NUnzdV+UTnhnc5cVNhDsyrOevpupx0ViI6Wp9UmJCWt6rWPUwMDI5QzJ2HzskqccuY0uJmoqyzk6BSObjeEturRcjwFQuMzqyAJhZGYXgcUYxeeN6ACJlAcGWcsySxicxlflk7WPgDA7fHCsaqV9OzgTcXU3EtIw4JoMG26wXIVhUopFB/XSaoSfsthZo/4Jcj04ZZ8N4RMx+229mejgZ5TJ+JFTBZFQOj5U8cL4mU7QiEIn6LkbAzgAt1owtpXnKWrImJ8mBxIxENapyhx+DfplWC8IENQ0s9iNQJKjmWe85S7VJSlYZK9ueCXg2fS2qupuGNAyQeR9aTcPg+otwjVmwaXqY5TmSr19/vAySq4evYknVID8lZVmjunQVa+tcBQyz5YVxYfqM+yEUFt3JLI+h5LM3x6SEG5k7zMOiDZJLz/UUwLcKS6qXLfblCXv5uuSA9KKjE9YUq5x+RyJ30MzrI0R04SkIkPLE9Ufm8GE+hDKafvEs7YJu1mOf5/ieJ2eOgiaOwkp4+8JtQOvJ5jAvU+GARK92DmnSa44WUexHdQVziqnRD7QFL306H243GA3iw1F4gxYdyIh7zJeJcOdrOGIrUFppwva3GczIKxtJupw8IEG9mLvfOFusR/60Ec8i98PwdBeRzU5S/Qvnk8+4enTeiK7mfRGjnwHudQmsBVuW2oNdYlmb5/MqSGoQ0dI6eiOTalwwvZZQudt2N5Y3ud//TjbfV4Ca0xOJu9LJOtT/J9s/QRg/5PGFook7b3JkUqkXU10NRTdgjOhyuqZAdjZU2nvngT0LLxvMygQh303SX2x5mGcyYmOtDnHRUmw1A26ll1q1tGT8sdVrXXgtEl8uqwzHzWQAsLN4AC8zGrxTuIi174sOPKD16z60tSp74hGYBd2Fm15Ki5eH9rjhJiverk49Sq3uHzpoxXU4evgaK20iNjlGIWUFgRAXltKXjA5Vkb8KHHqglHUJTxRZzBOZ9IQYFA6PNqLuFgbMrp2sf2pq3+q0n91kx/O0tJK70igbK6Tbfm1Nzp5bp7XI2SR/YUj/4qYJ+BmMtcMbGoLRe8PhE0tlNSIHu7Ib1oIoDh3XVgAgUet5pWRp8wq36Q//+eix6+KohxrJ0L3UefQNZQxvaXVIDW6tD4a8cwS/GrfcVzIjcix2H/yZEvwPY3TDbtHFxMus0gWYJV0krZt9gve8NOtXoPBO8GotmXEIvsKWRmIGZdObpWbYPPhVNLGsZPETToOtHIgtbPWlq4KIwbKOnCgqYhUsd5X6J0h8W83MYWDCAVwzRgA53BrbItffNV72ZmmAl56GWYBP5j111rBnetgh9mePgGsZLL45/mGenMppWW7RDaNK5cu/a6jQ9IQzYmeI1Wx1GtW5An44LM9IdCmk6gim5ke/kv5nwHjX+HvxKe6npeWk41Tk0baeY89Xee/DtXjn8UmU12MRYSE/+Z8mDDMuCAZsaWNxrP8RCH61v9Y2lBUJScD/06dOuftxTKRtf/Bdr9K9xrCQpYZG/Cxbu5+cxIKKKSRLr9HV+FlGlbDi3kKSCNSeIF4Pdi297JANNlD9kUeY6m1BFQyxPQ45J+CbzVHLkBQO71cggKOXmx4ZRthVh/1rRssbyaWpX1LtodJzpV89yNJIwkrWV8eQPZYuPewfj4wt3iw5XBEstJ5mRkp5JSAIAMd0sgWKanmfMxrtrAY/+r75PFms0lxjvRhg9rBqceEoIVDt5dnHyxtk4EBHBWWIsmtGuCGAgCPVWdPxE6KFuWZz4xbEN0qaLEvh2NBSYtlMl+hNn6Gu359rq6eBW1mIF55UVwTqKkXrVgubaHbj+0WQzaTbQmgMdzKjeUTkH2GCyHlXnAELli2in0Hy+W8CeHX8tdUjx0411NjFkKYHAAccqbGnPBs97yDRZ59KYIMK56CeqZsIJ7i/NPsQ/63fxgejJaqwlWw49xGLf/NOcKNYa5Lh0QaMXKM8peNjU/zaxW+19Z49ftdvHoTXlV7ZSJ/MnaRjSnfSQ9A2Pt9UIAO/ZmJaGql7D2Wejc4/vK15wbfvyOFbFFabynupPInhcEelT/YgNrW+rjjAjrxVKZJelK3OJIacz5kAgwJBgpWhPxj85wDphMiKRiOqb86RXF+auBJcMpeR233mRLao2u6M2abvq+TAZg8D9OrzUrIQEplhxcejpC3lJbax2poZgbKtzUOqqLvI+BDrqR3gSWj/U6KUCXszOeR48fFkEIE/UcW7O/N9lIDwlsiTMrwGA/2SaRm8oqNXkkABKhJ1/pCrB31zMNJXImyINqo9bpXdwGNZIOpYVz+Hgg+337DJJORoPazJhvFJxZmdW4Noe5MVF+jEp7pqVkH7HmE02BJe4L1RbZECwJJ/hNXmBirrtirVFH0JKvLRTnApjS8vjlcjI6oUi1bIfirXrucN3+DRpj8/FoY7hnE2P6MOZirmwF742yO1k9bvKE/U1QQpahyX8gqDAjXIqmkDITaJymBUebJT4tfctrJvPWy/lhr9XIWqKfrPRGBEDCmvyUAQBDIH/Tf3VWJXe0l9ZIBpzHItJMplSj+r4+RJHJIixjvfeasNasDgfH9yJst7qGyROArqjqJxEq69jZ7neWNg/K5EBj3gJRheb5kiRfzFK9LT/ZwhozPI7j3YzGzHaIgid5V5IlLLB8nby37cCpsNU2mTHJOle61dOYNbI+iPzIhQtfTGPhUTSb2WASF4NmPrdzcqmItGBl/h9hv25ZrVnVyA6pAjp6lpTCMTlpObMhQY9Uh2dfhvOcN/jaF0rSq/omU/5n/ib7yBprdRI6+UCqVFcb403ZLsbAv24OPr71UJXQGjoyJ9vcNGTVdxqoHkG8IoEfCzUl6zDwe4j2+EWymCJpiIywHClgXyuFasueJ55Dn2EppPk9IMHodrk9Kpiajcn6jlBZIljwh/+AD2JPap88ylBCoRZ78J0OdzKZJcQkdlspSd6pjDIKZVMKSOahcbta5zftpq6pFD4/oH3lQXor6BR7iYhueNF6E+t7L8rdbPgxsfOO7luOZ0451t82ULOPBE2f5sal5UWpD7ByeZga/aITid8gtg6ofLsbWPV6ZKMOjXI6BhlsqTeW6dxOjOwY/NvNu6XJbAHv2Xka4RHOwo0oX8DUm7k47/25vuETVTICCO1UsZjHa2WTnUTvDgTo5r0X/8aqVcHBB4emJkm70u2wCwt4dneuoLrUlArdyD8aeogIwbpEWen4YsFfxBne7Hz5xkZUPOBUGoyMI0+/yBbW4avdODidh1x9HFYKKEOEhktDfIS6dzYejBDi35KBbGFBE+l5U7cU5RR4/HclnxZlpLuq3nZqO+v1zRyyMy39dUmXU+ra9oacyue8HoKbaZ42td6x00+35aJ9Z94fbb0tDad2+JHQQjrNexTBGM78MUVqBofOPUKQgyYQ+soWHYBanQeyadTF3NwRfU//hT2qay797jX6o6f7kqnHjysRZ9J/CzXo/+jNYjzNdZwPGrCEvqwtM7QJgKUeTFeEgntStbOfVyloQX9SddvRRJQT6DHLvcPsCVxozRKg6DcW7pAG0d9OaOUzsQHnXIx2w1SbqgwL42/Xs3+Cq+r3KDBmfptaX++ppJOIPXPKWUTgZRjekOZTG6C7G0mOaY9PUv+HIgouLYVpX+bSbvOAZiHx2/hk2saI74a2pqBkS88WYbCghbgBhfV37wc81k6pkrFStLwfaFIqCo4ZMCXOaDxk1ALnYiwBT79/dx+LRJAn6yMI51JBCFAHG7LIyvZy6024yLUGS2fEaGSLea0d3suaTEw5B4Pkx7jN3azhm4SpXWWqdBoaG8AJNS+TS2ajYjK776BKI8U0M9sF6SJGg+WoxK84WFoooyOcGNY3dqis46qzzTReJpUX1BjCccMZJVhJNiUx7TSR89Mu8qPjVXAfch5Y07mp9tKsQ+QHnAE2WQ3Mg/zlm81RuStaZ2QRVhrgvFp+hRKq8fv307aEu8gLmW7H9zzn5JcUwM2w0I+Vf3NdDQD1HgSul2J0rHyDFpAv59T2zmsN1k1AZw7QVr9meGamrc6m8ddYmcRujw5x5wYDa1T78gu9/7G21kRsL1D7CW95kROxw26GkW+Z5q8+ZLJx0kfaMlzGzRX+eW5JU/udF/h1qDb427dclW0GgMO3a0kPxwb29M7kaqE78i2rqb/ZOcG9XRDql6BgynI2fjpir4gv2rj9rXiRGk5udEj2eOKiddXx0Ynfezofm+KCIJB2ndk70FjLYdV874Xvbt2Iepdaj/H+OZG2hjtP1UHQ+0lzueoJbT4ZrigMQDHjZgvryEEKuhqcbBa4D55jd6LMnYjP0zm1xqmZJyMYQ1XckGQ3bGy4sUwXSjPSS7mxSC4ccvsF5lwp5R3EppcYRPmEG9td0VnheTJ77bxioH/zeFTJoXKv4QnZAsdqwV73AA48aoeAiILde9fEt4H9VasjW7IlNNj604fxj6p2La5bX3GIhBobyB0gf7NzU4aUr079NIe6oroTQDrIGsbaf4yxUXvzm2f3QNmnhSs0fbPZ7razV485WEslRNHvveqQuQ+++cPHtBPA65ZqsOgEc+H52nKfQwqwx6IRaWSBK66yXHyKQHZKnnSAAtYme5WFyCP2Z33vut+TaSXvp/s02FVlNkrEHvYuuhbBFGbUfMR7t2F9mvIZSxjpn9BeZwd5BmOV+GIw3zR6JndZPyCD8oB3i7B4RDyaYYG2tl69786u4jKzT2ZAX9HsD319NwvK4ovd5LxoHn5Trh+xAnJPmA3Unqx/MAC6HdUA5eMZ+MVKcvQ27HiKEfYBrV3sYys7ko83oTUp0vQZg8dGKAoWCKkInbF3xsVxPdCctnXxluFY/nd/8Ivlvi8Lox4BOc44cUq0UuQ98zMQQfQ/n9cTa3mPvcg9l8xwVQI3iCBprsV16fu4I2dOzIctZrQBeyX7RpSV6eU5qJyyNo0UAO5T+eAk+jREvt6Txdu5FessrhXD0Cq54LkqikOq8unK7VDdSqKVNnT7cMWBogaLg3AcTPDNcV5thOrVnLCt95gfmYIhw32RmdqFNJQ3aZxMjF5GWow/6ULpAhB82j3vHFJUo4urRuQPg67sgrttlyUAXEUETXoqgAjio4wmkmx9y+Cp4areyVBMB9PU27vE0tNhRs792ghFeDcSexDOWw1RDejQyRhR+YyvSSsOxRtnIXo3zZgb3p3RPoA849C1+ptWTVvs4kRdLaYOe+fGX0KXE16Iin9GH6j/ocybFKVQLkFosfmPxklAzJIjqVQfiJS7mCzf0fuAKqfwQKGhR33Mu6SOFibON7V0Dz9JlAFt17gr3VjjFvqw0wFRoy6R1GzmHxqiadPhKXBHqNx3SMgHrClZrvZoDBQ8Ge6RG00cY/FZALXcQt790jZY+Kyv9K8ZBcrfBiJiq3Kpiq6tsxl90D5bTxIFUvT3T2VfCvSGI7V+F0Jnjcw5+MTnUPqU6rzgmoc6F31mScslOl6Wp6MCpUYzCReo/EdvrZk3zQ0QjrANgicrVvFuJfuNfgt8mKNFPESje/eRf6uIEBJXKsq036toYtq8rCNst4kaU731dOsuSmC/M0JVkEfVYBciTd/6V/L1at6f2+4frGa/it0pPT0JIJgDuQivwgkYFXT0Y7xPxWp2ur2opQ+crT/3ko6uwLbMw3ATMooUev53Chs2jinWFrAh6McDQksjpbZFlmIt6bQIjRtiBcOQCZllGTX7yHHXbB1kcguEWGUSYwyC4gXelgoOIH35Z9x01PtYXmC6HiUd8z0Flxc6kGEPilobRqnv4E9mc+f91qZmSoXmukhd20TRoQIe2ZXIkBexkv9FhnX+chE8t87Ci1SDwt/jdHxJ4iuD/ttNqN46R1QKsUEVnfgJJElMlYB7aD5jcodi+uM8ct7/dMST/w9TEfTUJbP27PWB8n7WBS7xVqHmrUVVmo7kdPjR+Setkkc7hLzvsHkBr2BKW9NeYQ+K3SVjjpGI+PmFBomu2qGLPgLyrRzm8+nb59FzAdD5G3kbQOy5XygU31E4kTqtXX7FdOgl7i97oX7kteFrWDkS+ONKmQL5r1o3GjXAHXKO7NdlrtE4EFVwNnLgyftIKNnF6F1A88kvKlhrwkJb+QwEN0PwKd3PMwdj6lqT5atny+gW731+eiMNjpleDC3e0xEbmNXxjrlc3RT9rOtUCJxp0URuCaInH+4+pSHX4E/gEx81hr9aa2ZgpuyDrOCq0DYtJQgw2pd2JeKQM3udfbC1Vpnx0xs6iOkpZ+VglVxYHGtUJDTJRMW74eZ6qVVyPDUl9phNTX1E1G6mbeF2UMBecfZM7ykiaeFkT3xKkXruYdczrjPX00pedolURXA73o7aU/ew6qSFEFDaRnHznIXxg2lxCVAbXNjBxZ6CP4McZEgxbPou9Q9ahZzuV5PQemsDbBOyaME/S65cYdvJHzJyVs1PGJvX6CBBxTGBpxHpUJpZVxLDQ9o4q/GH4YumGlqCHbtrpWLPNmhGr2f1jid0qsLmdExIhGFQNVdONSgOrQ2hOEqJ73woW8Rku6hsbFg13axh9YK6wusqdLju4s19T2v4hgMVrcNp7CJJzp75h4stGFj991VlpFNDO0WfiZt2MbAeTZyWo22OkX4xPrjsXcn2WA+Jq4jY1Yto3hxtHJsZowVoNiOpypvnb1Kwq+thtxrGFdI+Qz041gKRyPj0KjJz3A7l0bOt9XlZHioiwHO4qg+ZzMQNBWz9fGEb3qbKeE3Rc1yh06kebpmfwZbV5yvUOQawM2b5HqTfMlD5Zyj8fsdgmeWAwePbNQEUNA7nPi6ZxUf3xWcSU3libtCCmGS2BOdzmGit9lifLbIWvZVNgHSxtwhfqoCtuklC2MLa0cgS4yrkIny9RearBwG3PjRAote/b7890X+t8Y1twOZytFhNWV/nbdVu8sLDmds22VWaW8sSHhSGGLv/gkWPa3VmLfhvNMmyslqD/hWLJzC0dC54MLJlBW8qjSMludr9vT00NAtVIgUX+BgCSj6XLKfmQYCTwvIsobXb83P23VHLA/n2Xocx5M9WqDF5RQBnF7RpXQVf21w4AqvSQs51bqTcD85vVSzSdHxucH+Rge+1X0/MpeFuiPnSjmn5Pwv1hT8mLZGaEwZKjvtUFxIyEzBqqgyHh1MsNGK7cn58rLvH9Do1dGuwjZ0KB1xgugXdvYYhE1fq6bd0Z4mSD5PHmSLhbyaJ9q953EDyU7AZwkZMRKpsiC1ZakabJQYKyC0EIVQ8NBxXKqE+DfXF4Xgosmc2LzKz9wv9gyqLwI8Eh0aNO5OYVCSGpvgEWkPXXehaglwwcxbwBeNxLzU8u0LqHes7khvkP7gxrVsf6v+np+PD3/Rafsh/FcWtcTMVuc7LC5m2+YS1UFOCjb1CsqaggX0Hsbz0PVQkhxSW1ldJgxq6MFvRz6EE/So1ayWdY6oJ+7Bj/xjxRkYTPY2bL2XgVA8SgwEU4as5YjYalhuZvLAlPTu7lSmj3+OMnYflIGcVTZ0rIn+c66SySigTNOUoc3i/SBtKwa9isibfdHGZPLLiz2bNAbrNJMGbk0/rrCdh3ac7Iq61KnMqHAY8pahehJU4ReoP77VKlcc+TOk5qmCgOnhvXsFuUas1BEN9cY0iWwC/+nztsRFM0yoSI8B7Fgfu6T1Nb6oWN6E8yQWkvaYUXmnliogqewtXEoSS0r3P33nv/R6GL5qwAjDLR3Y1ll0ouMa9LJHB8y/mTjoo7GhZzu+85z8a910MwRBuBB4unhJonsCFHrTDB1EEmJanMVMsdeRN9xneUNzcUk3tUQqsKxA1BWvKHsHOXlCCH3xlliiwjJoOsBvXTNvc6JdlWCsr00QLTo9Kz2ZVkwfkPdm0KEHm88I/ZemvhQKdaFSGM2DxHMaOUsOAWVXJ9gt23ndplyv1NqQSBK7WPA7cNx3SInx1gZanNCtg2NnSWXNPam6kUPNTkvDG7kvPYvmuh7Now/m/KHrvmKz7MpRaBjK14FwsAh+dSd2naibEinqY4bmLT4wA7kVtRXgWzkb3noIL+KbtNT01BodMCYlnTyJK1s0sNCwCBY5431Q0Q85VNbpbF4/gX7+PLyBcxYBYUMvBzEMs//O+MEDbfWpj1G5oNAzyxVUO9wyfl9S+z+dDiUIjbj7EL2QjyeL6JvahsXG/c1e1yDxurSEukiUl59XWCcRp1/Vpaig/XEopbAtA+zO2IzY7k32rE02BHymLD3/DCS5NrykgyV0n0l+GicrOrvhnKnxnujosJqwB1dYvHxyM1x2YYalMhculdm9yWfQe6uOpV6zJbkfeDE5RSRA7K08eiL3F4BHZRGh0XZOoEJOMym3pPEQuiih6XjS3K6JBLiPwBcl81IMlhk8Ci+9M1Ol54DDDucolOKydooUfh62DMyPygicS1KHZY9ua0m3y4OKfez9V3QT/N9UQioZpw8fm+L8Q5eF8WITbWuMF2oAjtoXYhykyzhfPLqUB+LMdR9XUxja0UWmAZ5zajX6w5oqcDJHEmOZOR+nkY1iiwZLSZDH9fViWMaqbg6P6RjjkFh7vSXyWDMyYekkQTowPYU0oXkiOykHRI4gpGTswRsFyQ2sqGBJ34gQrQjF9GVqQmGtrdO9QPbqVV5D2IHaw2rYZUNsENbNujoVl8JeLCFtYZjMJqI1gy2jmqd7LE1HR9cO64aCutsff6Ftbdt3XLsvHCKhPyRTCnQKmz9Kb7YUB8yzXWFThuktlRsT7MQF+iU2FC+TLCOmzMEJaIA0m6LxgIC1Pj6fCfWgm3o2DVa8exbrkHxCIPmS0snMClpbEAdyRClPYStLk+/PyRbkdBQjvaU6nUESwHghDn+1WLzwLrwsJ30kV/Jtx/Qhc03DyeSFApv78a1NadKceE+JcOlxRifA2YtX4+b/HIDb8oRJU5sNvq+DliOKUPi065CadA8CahDRHlL2aGfT2ZhBZslM0YkFVa/j5d3dXr6VqSvBPADgbRcn/+KicNtIcah6bfF5jq0XTQfb51ACtOuN7m9ySvMap8cFiJJMk9C9f7fVvuGwOCG1QJ8duXNmh0e1CNMHc3e/MqKgDIUq1kL4x6HB0YrF1mD+bf2drqbfSEthpgbEqMU/hB/tMuMqeMEPnrrWTKukof1Uea1x9wTbxsok7N6sRanvvvRBl7JLLy4GKycj8ONtQ3vRe2j0Pf50spaiP8gL3kGey7hXIiPviltm9PPCHe2pSOapROac3GzRhu8LtgxonyHZELr3e2SkxZSwmoy6oo8NMjZYCrfKnzpE6g54uahqBsxZ4GYuSoQAfhUmQqze3njLtM6kWim45U0VzQ5nwQIV9iNtoNrG7QijdNKY2QxnixAWBsUgqNZkxoFpArmHJP5kmlIRWPvFFasoEg3xtJH8l6gNkFtG6FoXhFf1IFvLqRLr1wNixhkZMSIi8Q8sS/UvaNsTMG16n2TU7Li5jN1aTzyl+IlPfZAWEsvP2IV5LhiDZ29Fab3UJNnTiAy9N/qRw7Dq3yECtPu0ax7LWQwWJeWq/bCVAGm4w+YKX9lAZWUxU54/5AvvLpexKvFjZDoo4Gp5JAOY1q4CqjqHPDAdc9PDyqdqWj3Z2I5LVWHNoVPwd+OBuRTIsycqoPAaeOVCuPMNzRnyNJ/agbPT6/S7WX/GTM3Fa+Jb/BqSx40rum+ZsDpMS3mb2JRo//0Ol9kUWTJZ6sC9ZSKqMKeOpsShi6aNQVxTpCAUsN3C4HmpuuFHJallx/QEclpJ9FXVj05PIBZx3+yWjxoGpfPCpcv7ybWroPSNTZSMDsnuZxDMD+qJNK5G1fSDXtDpqK4aldiuC51XSszFoyZqD6NxWYRi230coKnuKyeBJq0+X3G8FK92ibvPjgUoTXBLcj/zLtjguQ18QKA6e2iVJETRP9fqu7GO4FpoSSIqNIeWQw5dQvqTBpFh5xsDhyW4p3JuqSH81lu/1eDdUY6N8d9Rhfl0P/t8fveB39YDbdhHIUU2rCk5nao4P2vNJLyPcZ+pIsm5R+cfwQaM5xnIY9Xp2B8EA7edjz6kwyQo1fziObeVnNW7htjHyRyxAx2q8CEZ18kYG5Osx12HtPuTX+d21n4ZUaDpeLoCPgYb/D5pXZHgH5A2Q+QXRrzq+jCGgr5VElvdB5PvMehKLf+TZadJ812NVGo0BonI3Hvd2Jhsv0L883uoodSvPfixgKOFsti8lEIkuztiX46JY5ma3QX8vsNNOl5lZc/z02jaK5ndvtEQ6B1cw6IXKe5yS5F1bG+7stG76XdvcI/RC2qNBn3jz+5Qc7Q+LvrQ61rd9QfgnUvhU1cRjdhSrJDYV9rYOJamibgqzkrDZbVleWB1SQK6WNEqgkp2lNWuC0+M5t6gEABPlNFLfsDbWfAbmvyEt5+RqTGT4cVD/CL9jheg5CY4LoLb4yzkBKPZGL0gqQ2PP6fz2k8YUV/mvTJvCNJahDllnZGo4vVUcQsCZMsI+IXWGatOQTrd4/aitHsX4wE/xaPosmuKYEvXmUjPbbbnzKGugfVMWb3J2BLOlpA/P5p7q+dkRAnS/K9jn8RX3e5IdFgqdv4YSiGomIyYm3ShgKuW9uxG0UonCl99B9H/1Li6p63zEKypGfq1j+EvVjwaKkxg90OIF4o3CiLTgxm3k2XibhgqU6qwVl8tKi//9jeIzHmgY83YKygx1sTSiuTedBaNl2/91jWbMhnyb1YkUkmHv2LWgq2ZVBJiJx/8/OHKBIf8pTx1QCdgqJysxoiBmKjgF+tgxGYbUNh98rc7XnAN6cB3Pi3YQPsUpRCOFW+F6G9CLrIRQOGRB3IyvynnxCi/bCarCFgdTQlooWqMWe0xOvv+pM4CTaCX7iKGt+6/8TQMcqYLITMOAlY9uT+9ykquhLAxi3YbANwiyhqp7wiHjSjc3nT1v4psE1xEAKVDfwpPD3AOzI9VmJhIGNd5c1LgbbJhmHGbARVlC2ORfvBkoe000O1qhuaSfzODdnyVbJoqx8UVWXUSedD8DqAIHQIGTP5orFEGjpQCdypxoy2eX8JNyd1pGE0qwUQ/9UzWyAvI8txrNRzpojkNkGwFVtPYPHP7jauQ9BVNF7s+adbcH8ynpH68DUAkJZpvCEDcrFHOlmC7QYlS3cG4m9bIZizb4tuAK6Dqq2LtqOUSXrKxbpcLQcfb4swzBGTWCKIy3ymVpniuYP/pYaGyTE7pWECBLf4TLGhQst2Cbg1XcefAPhhWQGJMyfI1IJ5v4eCK1wCaKUwnZbFvYehKLBMWVcMlP8kwUhb1bkGXnpb+ygTCWfeBE6jqJB1ETrD1LCG4xar/+SA2qJsvbba7Xel4aKoS9/WuwVWPwQOlV/C/viA2+EK7zCmDFgp3cplizFjutHgvPt22zJ3ViWlsazUf6TXLnkHPjOmY6ZtAML/Pq9UKRi9W6bNz3vH4mnWiMXMfeMKSQx1swiHcP3hsKlYPB9nJX5Q6Q3B3Cr+R0No8+SEsOBAUf4GrB+/YjyQHSSQxdCJ5YjBVtDurndLD5uKmdmFb7tSNccr8TgU8I6Nu6lOndhqKQ8djaU0cgIIIL5X2yydy3srvImAfh4wi+mnu8sk/POX5cEn8V3AldhmpTAWJREADiJ8XpfnaCfBaPev6uc5btpcWurhs5m2hK7Wi89f+efuxsOWgi/tW4u6hiRhB4+RLmc/SdI8thG9ZZv49kF+coJyX41dMgrCs2uJ/h07jWHvxDcROpMfLDCbN/YDqSu/dxb64UKm1ZFZVOyH/KCesqvT0bT5rBEMLkQftjk+DDJkzmVPyH/cE64sfVvI1XmQADT/Q2zYrSxcGIPsCGt2cJfgE+p6RkKAzaqZ5Og3f2q5cMk/DxusNTnRwlLj3mAnTnCTgpAMJ8FA7ro1o6i1mOjVljNfFvrldiCUQpMmYLOGKAUgzLpN93GCNz23NMJM+oFjyfzzsCrEexVU6EchMC5DwGwVKP9z9dS83X7Omm6xEUONL9q7S91VXEajAaO7mnxr+whxvg2/BpRyzJcROLrJfTAuMFz/LqXZ7oKOGdEO7kJpNBL3/BkJR29tbT+xQFBTVleB84Qy7yjzSzzdIhvg7dD5TzXk7CJmc1kHZMNyovzFNYqiiSDnzL19Y8cv+Mc8WCeAIUh5/YGgCWyGW2oGVOUDzYmyLEI5Lp1tYOblsV1aoUuc3exIngk3o+LlQ9vEtWPRFhmJ1xTQm5+kmaSwKdqcSFUSyJw5WyFqcW+CFAGkU/791zl43p/jYpbH9/f5enJ92A1mkszGCAE+/PCpRjKO1qr8C2BfPRCKcjChMdB2zn/lNSgAF4Wjd7sNTj+ZGV7QLeCscKgwkUlFpaAC+udqXFUskLcWMtYHAF7gxu5ii0KKGGxo60Tw0eNlAAdCJuWCJsVGLDXK7bMYGSsLRahRk0T+bjIIdHMNdo6evxzWl5pziabmhFSbu3Yj8IQypM+crZqCXumn2rLC/07rcNCpYWJTidEUyXdARTpuD+grKmb0Tynv4R6wUz3J8DNl5DE48JSgibS80S89T2w90jMkBvw40VkiSBCPmzSdlQuiKXMaO4B6SDGO6SQEqXZQu9/BAcrVClXp2nEROEZk39+bAaSwth+9tZTLRB7JbjIYoU7AkuuMnfzg2VE2+YatAtdh2otnZoGwcqZzH2jX3J5h+afStR3/X6GvuEM1vEjfWUnb38vCIuzRLzeUmx0j6e6mJ7ukGxnc5lcmPSHfc6c/TQQnHZpghs9QVph78eZzzEs9HJtkVcceKGf3hINityOXKLz2U5apuTVhWXQYYxwtYuKMDIHGrzRkV8rA/OVxd9FiV7v7T/XQpuDmh32xiFSpzg//thgCPORGQdqOdsTqtPiRJAx7mgw1CpNqMJtSoFNrusb67xiMABEzl6mf1JYBOG218pp5wfmVXy85J4b79zi2UJA2DItZq3y83k6dfya6fs7y02unFYQ6ShrpQHG/JiOxI4cfL5uCXGi5GPhMrjnXvAMbO+luisa0xUEvcJycwV4w1m6UTqECR0sU1Ma9eZbeVy6uHYN710XVv3d7oeTqXSizQ9QFykvq0dAawFFOirkUBC+O1snShAkfnEWmJBPUXugDt4N5Drb0MYvJ4z2QStqrz0yqdlPnp06wa9NQ+wOJ+HUocd6fpi+DkQtcBKFM+GTDLD51f8t8tr0OR/03grYH+du8smJEIQOszlX31hoP6SknqnyxlA2Ee4OQ3Uhp07PFgdrFa6oYJptZ7PRG2dHnF9jnGTdeiW3ZZqHHOIiAfVUCRmPtPEc2nKIUKQ9OKGRZCgpMspjpL6By0AC1JSiSPbpCng9gvU/ByLCsHyEvNikpI6PtSWYqtSUpbOX34HyvjCw5zioVDMvbVE3m2Q6ga2mdnJ5ClYeRFDoenOWGltZaTjCLRMHM2AtwUlXGlENloq2aq8s/niBPn5fU/VvnsGK5blHhBdeRiuQjd963RyjGYkg4hqF/hJqywvaTqv6qVqmTRiNUQoEv/X1hspqQc2v6wjEMtVZl92xTEVFQCL9GWBAimkb9/7QFJbxOWqE/AdJsxwCnSmcI2pGTEj5mpFG9rl9kf4Oy5sCAXQKeCkiUWZNa1wwEmq1L+kYtXAoxgU5ScmgIJKnAzupyUfVHwuOqxZNeS5kxlKYl9GAFj4h8jdeEfRyFD3nVSWdzNMe6Do+vR4y6kV+V+fKxMb1Gwg7mqSJIJolTkjGwEMXKX8yANOtiysG/QsyZDEpSxJZGcd/OY0m4STEB65FEGf4qcjIWg8xpHjBJ9BNFmVpqafvGW5V+eYaeqpuaNA0CUK6DPEDZyOpOg+GqDi/GEBRPz0TJzdu7mJilI1L32QyAd+UJQnXJV9AKFVGfftp0QN+iLW9EI4mQuMLBWaeEdk3pj9f2zRLA4OnvHJh4GG4JsvboyvRS0O4Cod3yDA1t5JY2lcxe6ZMJHGcYrTC351MIwZI5OfTCzHpTLBZRBjSjq5SesfBiBfDX7sgtmMPuzODV49yI3+Yqfw0zMfa4y4b4odXJ6FqEUsFar1qe2CngUhxwmOJXzF5vqr51PoK2Y8etivYLBj9z5uFFfxjk8C0pW8BPca5A/dgtOBy9kyq8ZAnj3QnhaWCjaHdPcKvo4Scyae1L8SWT/qdgvTEdRfOMqcB8dXIhq/gTxxu5z50cNY7OEcKeVFIzz5U+sIy+vBKWQfHnLkU+6a94uc0/pNMFYiEcwTvzBjJURDRJgt7xQEb59NaMUbJVFEQjmMNYqW3uhNXe+Qge2iCTBxjxT62oCVZK1PwHluB/MkEqCbQ+81V446/JFqgnICYnxA+MiCZi4EDJfE//9iWK2svZhQ3BmC0BX8Lu1BuSgYosJM9lZUj317Uzx6Axi7GoCE/3PJN5mlpnULn4YcR5yhjGBkvLd53ZNlb90lPrbEqf3Rk6/JRPbgerew32/fHyNQZAoAWooPShj/wpdiWXgciZRiH88n15NR6B3gN0VciuZxx0gj2+dwolrtyn4BPAvR48keUkr2Lm67UJESk/9oxS1wBPHjqafI/LD9b4lPL23mZVbeWwssDz+YtF+1GZCUnPywagtZ+N/IdTCFRVNF876UB7y5g9oebV/ORiRVanRLoXkeahpSS9ijOz5JEj/kn54jxokSZIWPzNxTYT+T/J7/LMR3kf0wxo4BIWJD+/s7gYTsUdupsl7IgiBOvVb3ivuNy7VeWPk7jF3igNxPt1qjKkj30o2hNdT+y+Anrvgz8SNdhc1Fv7KnzkH1CejCNOSfNgHvDxC/d/4XvKu57tPXjCMrHybChsm4D6KUMnuUGhWwCOly6Fbiy24Khik5YpiuFOkWWsZ2CD8UqyutNxMmTFyT6I7hBc+T1J4wgKIfNHdu5NR14lSBZzcplZoAIlU79/+CabrfBZeK591WOLniw/AHTWLrPAh4NSItYmrilPp15/Q2ar4Zci9ih2vbh+aapN5wmJ6g6x04BH/xlzrymsGedRmxUg3DPBw5hDTWClJK4aUYVA5+pE2j16hG+FPesGhhq0dN45Bk/LAK2DXMlIMhhKEv6HhQxuNPYrwgw9dykf5ruIzpJkRiZWPoDTBDbxEI6EVy+ouRl+2okn5k0Wb82zuNVAjtHGAsC+jxoeBlFbawg0p0y3EMqk5dJcSv6ouIVnVdvxijE7us7afBSje35ozGZQpntWPy+3RHD5PNtrUZ/YZqpkX4Q8VLNfXITLOi++FyBajFCwcLFjda9VzvZLufwpG+2FpFzfhkSzYzcA14DjZKCIiE4QnTYvPitdf6fSsqdVv5zmd068Z1VOE9vJ+w5KGFsB82xrEm8nZhjd+DDV0bLJeTLvGCgSL2z2J0ncJhllVtJ3XK6N2EkUqfX27fKSgCLslw501SSf6X1Z2XMw4sN0BGkcK4tqnTbFm1VJWvgCc1Nsgii9VV/E9Q+C9M/4nFgOAGAxwbvEvqdhgULRVKwNMpLmemn5ARYmuw7S7FUsXql84uxvurut+jdRia9NiFtrxBZFmMkkDRnsrsijQ/amiXbbMOK5v5FbpYEISbc7IaDkC2H/hAF/aIAuMY6jI4UbXki1Ya/WqyMCzN5UGKRH3rjP3zFDGNe7zMEYTeP1xHzrULjMm8URf4EvZZVl8qcDuO2mzTPnzkolTztANO7LA/57/Ai0XK83mMY/VNq7vne3k9TSuniUmWFeukp+zr684BsmYocdk6QqYfwmzdm4LTJCtVYF59knaIrurrpgXLvbd/fbUDxUcKifrRt72acYPqJTB9ZWyLzyMGU6hxE5zvozZIHKHO6kTRKIoRljaCYV38x0PPsP9+j8eAnVEu/1lxNqFxtyibZttNE1NyuNyNJ+GxnrmG4/C13763d7D8uJ5XcGc9O3KSbiiXCFb7gwYEgRE3f0WhxKCKCZCk7ZXalwpXat2ExZLrCr76cE2NXAHIucrGx4VdkKYsx9AwKvhrwHSMhCI9GES3o/QneZci962+rd9gCSy8mF2S4MqkEU793KxGHA3gd+98gPrVXwvafIXYyUo8Et/Yo/GfI3BAlsUbSEJ+N0Qpu6DAIx9aHtfAbnfhnPUomgxfZEW41yE8g4K5gOo+uj64Sq5jNp/Zyhp7yXvyJmI8YWeu8BAezQf1ZaCFydcoP9GzV5MaeEsHIhincvt+j19aH4NNu4zQTSUqxo1Vhg/nvp7QBwx4zekLIy+353+oEH7Jjh/lf8HO02hipCuXTIEJC4xkt+ZgE16PLMd7w+i5Z2hUtwXxHGC9husEZNyDyxPhu1fbR6qsYl1yftBmDoc3YAWLShbXwx0DghnncQQ7pEp0TE2JYfpWrRpmzqyfO05MUie339fZUKx2UiehVw+weeCtgZNzgOGjHD89gh0YCU62HjZhsww7XwJep5ch88apbCAVTR5t9ndskIP2jT2a9KalI+XWBmBIG9EXw1Z1g+EoaGVSFLHwkhK1Fnta+QfE/xtV6EJO/+G1P4MMXjoF00cSoOWRoBOmye6ktn9cjOG9fp51l3onMs843cY8visqOHFrPg+8U/E2AzdMZD+AI2YstcQkvllVw6SjjhjIush+Eia/jW0tmwYuatYYMwjpjnxHDRZX1oT1HZc7FNzh2XLBeDyvB0u2y/p9aIzqOZAK+5mH5dOvVEDuInESijPRahF5KEMqPzjAVNA7ErpVeYbU6pj7mzvUPtqhAYnaZmNfotUR9kTyUdSY/aJJmfEx5uweD1lsMFeN1qUWo/mdjnjLPFhITFgKy/JZpKavYEzDCmkUsqm0B7AMU63ZTQsQdYcHzqC2hbmklEqe8Ypz8t1OnhHZBLgC/7FT8FqGDWFxhFe5peGTQWVUG+4VnGwNaP1vY6/Jf8SF3BKTLkGL0S0rMbgomDfGSKhaHzrZeq9nULdwi4F5m8BByxmAkuH4n5f32fWt/KXJoQ0akxolinkyOxH2qaZ5qdEvhQ4Vq9ETY72gxPu3OtriyMShukk8j0Zvf/atYoYWMVICiJN1wNKXPWa+PqfE5s9WdNxnBAfxLhj3w4ck9zmz6a6XMEX+5Hk4Tm3rBLOdhMy5u+rFnyDvmo/Pzx8qg4IwQXDJEvjWzDywWL1jsCoDnvPYfsdyPJpq2JBeacVNaKDszd9BrSQAtQ+4aaeTYsYnamALeUI3nL3Aot162yX0V8zHTk6jFgI6vCvGcMsGnC+QhoZqejvKhuMxBTSGI8LIut7IgCZfsTons6OxIWkxMcv3IbLyQ5wIUJVBp67OVlKO/n5wk70YsgTduAIeAk63xezmhv6Outcah8ZEGSt9dRezATXKhuBQXxU9JbnvlgGNkqsfI2LoCZirg9RaB6DPXBp+wCjaaBoE+L/2zgsxIaJIRzV4FWyC0zchbszgOM0VwmNpIb5vxh9Ac85Wr4Q63ARCMjQVb10eHokAwUYuoD6eX07yCfk4tzIIh4nr6iyLYMkSa2QjXjdNTsz0F46aSYEMzMUZfjvSd3g+T1iaUFMmm1amQtZIR8A4eCaUPA85Ga7dH93+2MQoORfbpgGLzvsgxUQuvMfytA13cjbqCO4JZ9Co6ORc0ruGoiyT9oIjHIErZvmMPEBRIrudhX58mJEi5FrIXeOGaKVBFf4SAxI4XNRnRdB1sp1ydWtiCbJuzO+n+VIyDLI96Z996e2ukc5oxF9cacZWpUnZXgGzv6lJcFTkYyoj9+8jz3tklj+DwPnuvykcCmwxzQ4/Hf6yilWoCFr5xFxCyiIcO5K4UqhH9+9FLkm2RzAoEh2iuC8ffnQ2/qnCfyHDRAKrqWdCJXVqGB3b52myN7lXzWLc0MmY92Ro7S8Ro7D3DBwnQVjP6YY9TBxlejd944q0WnVjm+BwtE3K/jQQNi4WDxpvXf3Jn3XS+x5JHk/0vh0zvV/VGAFbL9vO1ccymaAeBIf91+9b8kGT3+FoN33JzfhUT1W0OMAaoTfmNWoKkxnxazZJUqiv60bPJblyWL2kXPHqBO8xmHBz303sv8daeZmhs5NLZaMRLBrEgu4QridiFcqWLn1kUMghq4xIfmCpJsl7csoaf0O5cMt1vnOX7rE19kYSG1llsWBy/UlL/0UAPkgJVQupNz0V3dCtJJ7nEHCPJBQJ5wSYVwisPD1DsnnDUCVeuORm7/FhNQDpyGzhcapisSBNzlVDrX79vTaMHx8qoAzJ5ycXYnORKOnNaT/jJtfhZ+lO8hFK2/IejdI2lauK61j7DomoM3uWuUl99y35iR/HVSnsoJ636dDn3S+wLP8vw+p2r6DiiLDGPSns/sVRjDriqTvOLFMOJoSgMhtWtYbagZXzk84GNx2sqo6OgZAbPVQ1PvwrcFIOpTkdkwjECPfUEQUh4Fhb95J2Ld4pYRAj/zy/L/XcHNAeYx02cMVV3vYKW82y3lZhVTc3J40c6mwx9MAVsVBf1BcSQWbV13PChge7tlcnzLQfxhfeKPuJAnVB3dQXQB3U8uUYwMHL9IldBlXGaJTyT1wlF48HU+VmleXTrm5bgP6CXEIxmvvd6mPBYsUIk5OSCa0yGQKvAZ9FJjgXDhJkSh/bqxWiJ5UEVzDBA7hQn5yOLof7RsmTuLILgEPCWk1VdiY0PFovyBEUtjmGR7K2KpKSQRLohLDD4PL1X9mr3CPPQ4NCfUOInK+ASTKCVc7raPy02CLat7vGjrcIAF38EL1KL9Vqzt3uLYWepD3uKjqNlsHRpIWBCqnMTObv+V3xfPbgpzBcut9H9c+H5KsKgCu92xt1CmEZSs2VRnMMe0WT0vokdRoRPQIu2qfxbQiX62H7dOKuw26tcExtzGkDipnvywxmYFhlMEbUTpjS7qM2Nw0t7HCiG2B7/COWKdlhGKyzocppJuGpl4+Cozeg1tQ9ZdRod8B+ttazLJ6kwyxB3bO98m2fEkoCn1zXOvlY2Ho0puyowfU9lICGwGd2+nYHISFZsiLRvvBY5d/EvUNFNqVdRs5RN7TJdho5wSbnh/PbLvVv0vBEclyh3wj6an8WijSceFC1oAxMClFcXJ1JfQKE/H6I0YHkMHm6cw8m8WtaP9cnodgJDdEBaY5ppi7+HpIpHIuq8tBtV82EEjcspF37QQDiBpn2UieZLIwDl75jgoMahfYgeF11IZslTnzN2rbwL0343HMuzpaabirEkkjCztXX0xB8HETXf07bbVEJrHQpzVzOomOl2Z0qA3b4wspc1wx5QQVlF/FtW55eB6G/xAlhJSfK8b42n+63o1P7eYePsa0dXnEt6VHKZu465llms+8yuTS2n9HaS/+KfXalr6+s8tfOaV4vlZVH/dA9xuE963zTni8ZNdBt5KL7lzTJbrtwHe5qUBxcwWErlDNwEpagLmMfTYpsvV3CWUIpRUX5b3T75CDmS3b7+mWhRdsL1M+l4NG6jPpmkk5TPUIkj+MEF9LWQf79OdFokAT4C1u1TvKbmEZMfXuPw0LUzVjLHedGAISLkKU7AKe69j+ILO+jGS4PUty9Cdh58mdMN3oNe6ocdNs94TOvuKwQZpOWqdVZc6ylF5nNwmcIWsV9mWsrVnpfFyMtPsxq7wzoUpvf3AiPaMDyLxgBrxxySKM8D3f9n7dRYIQYUTG258Jrs/d8eMF9J154Hk9LxNINbZ0fpsl2M9wYiaz9GBVBv6m7MF4DaxP29Ja+HqjXkQx6hj6xEvGO8qL0rB8PPLKrwDkSbNy8a8oNJPWO9KXwu1SWhDuurIlbZ9RlkiD2Nypx//UiQsebPYPStZNtj6LAMT4cigK1+kVyB7BiaH8FYX5gglAQTbZ21LMlhBrGWe2wLIgvoprOKY9UKv8y6WXM/l8ppP4wOLEGFvH+SIbiy7bJ+h/1XMoJIsnbUi2HeUDlZ0FcH9FndVRHYMYZxP+YVwoDUb/EFIRAJvRd6k4n9QW6AR0qyw7/d0z+Do95HOKElzfl7jhbNIT7F7r6NRr2dfWNA2NFL7Kuu4ZaQO9vDRdFFhjKqbkrR35CTv3P3snB0WZSJgMIicacsh5+CY8YQpUZ+Y/GYOU04pA6rcxINM+Oaxex9gMC5tKYSfRanQm5OasYqg0aLGz3t6AE6iZ+V22zmqXIwU1JExKJzd/90JeFvNpks5+BoTbejiMy8B1AGY59OWBwMG6BANwoXlj5uFQU93gUGj1mxMwS6VqWq36LyOql0mLSpcJCG0ESb806Crrv7SJkFmVBfVE/E0iS98HOC2Mv2dWTovJ8wi4IBQkcy992PMTqM13hKCfXga1Q7IAONc7DNbkooJzRbfUj+2dejXs76EBgPOrXgYQjQgRWIBdwcutcaSDcbmCE0SLPfPSX85XxWcUkaRYJzgF43zPgD70aO+MblBALQHAO2AT94yUCzD9grOoCWOB3h8dPOVjurQDe5NtP+CTpOA6/rtHKt7nNb+tD5qugkvxDLY/2VNzAE5oHDlQnXFGq8ophkcgkBRAN75xwT2G6w9SlHwT3tlFe35DIvWU/nmEL6SvhrlheM5Ap+IGgTsxOez9uV0gr0heYNGR9jmk7VOg8h+3bh91Flqg3HYYsRgM2h3caNNVf3ZCPYE3KJJd0z/EBez0Mi0+zNAGM4VEqn/NxQ1N7PrcaA9qM2cUdUjCMB8c3BQ//qYxeq35bgjBjCkjea/akeLcixyrjTuXGSXmj/m9SUs9dyH0oa+gdE+FccAEaNtmUb2iPhclpKbfj+u5e6yehgys66stWTAJLHt4b26lBVm9ulI6MHvD45rtT7xD0B54YTyEDIiWnTwuDIRFO0c1CvfJ1Kd10Q6VypH+JRO/FBw3wDgBKi+Vf3IwdZY4cjGaWwOlL278jaUN62mA/MmTvnzFjZPXsZK0/PZPrXxcWsnDrFGzwUuT0NowIHqleFSGE785ELdzSoN7VUCqPbJsM4472/EjvTeYskOKuCloJJQ3iAxdhLtOjsJVu0MRfFgZVSTz/2uxfK23LCj4LsTiCrCEmEHfXZ7/oHt859lztVO4fmQ9Sohhgs+zuG30B92o2hkEqnxvhFyaH8r19qg9HHsqiEhRBoKFPcQGaqEfzt4ZiW+nfs+8BlrC5jxjmGg34ki8LJBYyR7Ej2vq/BNRrhfUZJngdFEjEUu26rFXpHi8M/8BSbmUjNDtMh0RMClnhI1BmmDGMp8Vifk5zo0iiqQyjkKCgDcSJsh2AhwOGvM9NleNeTpFoDamVdsNaP90pqrs0xTpTdReWPN/KBnTpeIVVgvZ9Z3fxsVp3DAsZ3N6wCPHlXI3G/YQaNGlwiu9/bv1HTU0+XsI5BPsTIP/UF9DygMCZmsLn27zQQBQVlUNId1VW6USzZNRqhUDq6+POuObHYSzwOTYCeD4KpE8zPmMc72g+fsXjuDr9rB3I2dVetb11wm0DTDHRXpwBzes4HByy5i9RZMdPud7oiDOBljxJ6mhydZaGHXUDqY8prX7VKy8ciLVTlCwiFMSJZSH9pLI5oPwoBYzwkB4PbZwaYV75QiDWSAmFDA3IO2cy1YiGzY3p+W7B2ekj/4SujmzpFIqMDyyWwa5JCgijCcNKSs02HOZ7ZFW/Fx5IDTl3zD+EewYesX3p/eEzIodjrZtp1NlAYj7eGuvxwfWBxB6DmdaoCEEE2vDM8RFWTXhYirZfnzS3Ta5u4LbwfxCXscD326TRilTFG3vPB0hCLez78BkCDLFKD6qpxrcBCSfLboEYsVYoLWr603FGb4MkohtRuGnnK0hcN3XjEZJYTElojJLN3/twrI0VsjJLqDtgTkkzA1NQ9NyI80PFDdnQCUFegUXHjcCvfuRaXXkrDeuf208iojcFc3+BnzQ8/b755vMXt3qi/53M67DyAGWEQr6H/p1iU/ouu7eNEm/hxzgMtR0nhsVpP1alDqe2uUI/KomG+IhsoqwFds8Zk0qlYYA9so+ZSQ2ojCHW38Ncw5UVTJ0s6Xar8LqvW/TscstzS/iDaITQdfaIju1rp07cM4ZhFq1qzCGrttNvr+jviGTSrkuKRwCOa4A4BNDhLc0+so7IumGNtCRUydXI2I7x3pHf5BnvYG1tniRl2aCdgH6OMveZCEFp3q+lJMy42dCVg3+3iqgE8xaUI0FM2y6T2S6YI9shgW2vYesm7I3ijsy7kft/XZ0zRGzHBC6VDGMwcejQZR6nAnZZ/Ie0LTBzzhCoIuR+WE9zzaDGq/lu5/UEFpNERvxpOVBfImlVcnLc28QBmWFkKnNLKcB09FYWZvkK74vF9lqWlyoDlXKbhAA94JAt7VfBR1ofkpPdiUoX2epel0XLpKAE+U5FIJv2iMuZA150QJrAN7bJOToRuCLXIwlHKZcLYAJGGCGtsxagjBn0VmMHbK7IYtDBEqRSs4IcgErHvLdVgE4hTRktWdC30GjymsTXWb9n7o/Wt7YwbBLWX8zFvRd7dkTjHRAVCQswu8+IRUDIS9fWA/ZRjlr5KbUttjdgPqFtOqS05UIGECy30cM8j2SzPK8qELTLadfUAkohta/n19akdaODJZGdBtAyeTWhjuGkn4/lEjnrBoN4zpRp6moTtWeucP0k7otnX36M67KiWc3KD+xD5Di7VBP/YMGz/vYB3jt6/3JPnfkmtL5TpZeyabTNTuGTlblx8CuAkyJx87X/Zv8nY2kFa+bJUJBzhN5n7Kfva9n2UgQAZ/aE4n7hPHDynPO0PEdQBM6FUuT9lz2Y0I98gGsoocidVoQSre/l40Z+L56zUNjwi6wNZYDUuCZbazRt/8I64+dddaI0FYn1TeLgyUj42z8ACyDNX8+A/LlyMfnmzIAbpsTNbYYPH48BPmoKRr5Nmwudqk1pjR6gFGmIdND5xqPxr3U6wzvTieYUbX3nUoLVOe/gl6d5JseXjGJUkbit/RHYhwgMQwRro/nTDIhK182iA3aO119b2hXgyP4xki2D5qCI1okoqVRhUXpcN/f8IyUH1S8Q4qytlZcJfa1VMJ6qtwZqUbqZBai6CVyvvaL0lmBkIx26IiPkAUrGl0ae6v5ueVv35eW9R9nOBecojP2WAyEFdtW00TVovGqaequO+QraXByGEDlmpTjtko46fyrd5vscyezTMvUAXPsK42tVP5aofcxx1n3eEwZbpmDof/aNbRFeOWPE25MeuqekMzxCF8MeuKk1KvI8E88Dyz+1r+2aIDCzH+Irjli4a/sqz9lfelyjTXOxM5WnwD2sfZkam6MBHxkz8TreGr/APvuok8rpno85m3Sx/KHX5zF4u1ikiglJJnrwuPKxC/Tov1VpY7u27yw6/rlIMB9m7XIkckORI0FH1mv4JhG7EKvF+0xlodd7SekIHiiII0s2saSUa9fYXnWpOsw0+PY1kcPE5Lgdp0uws8zt3eFRdCMjPrew7JJfZ3AQoT30fWPR5oWxbdnrSJM/YdnViKtraFNwYC0yxNbZYrvJi58zcnC0jVrZGO7MvuLSPcD7e5lDvEV2TSc1zGU95esPFus8XkJZrirjAWuyryCq+Qi4cimouFHWLP+R3yT8TaewVIKr8SG6LW+yrCaKL6izePduvkIkwpTrDsDe8QtXzB26DHQwRaI9vHxJyePBo01r7dKR7hN67Dg4KkPLYHgaNfmO3z2P/xy5oPDBWBO0+nNv7F16Zpr2fXoYTNpNFW5vXzoK6oEVod+Us/3nmj2RFIad+ITUDMIsh51YI0WMAEn8wys3VzDqHnsOEKoOYGc8/HcVUXhKsFBuwk2VPzVhwHCkXQ+O9h9jdFl69TrwaopN5Ha43iMzyQZNuEXOXFIA6BlyfF5LMuY/YXxCDdstI2n/Cd+b8HekB2h/BH0i1QTntwFkzRKQOWwe3xZKmRQ8MniVRl+Dy4rQMV7NAFi2i1DsQq6RLZAY/oXJDtf7JKRB2Ea91yOlyqQ1In/Ah42sMj8IPeIyqJScKoLhnYF44r2hbPtKYPHnleEPcRLB3TV6rSgmUyaVlz+bgmCnh+48DaJX8JFrJ3l0c8QDDbJ6ChMI82tZKyrNQrp5mvYenGPt6TyLu4nhUqwvxOhwmmo1SlWZZciMf4CpcoMXK/WQxDMp53L5gZ0f4OMKNUvXH2xwiB3JKNOVIokSXrj6ViKhYMd5RD4t+qjHvuPpNFnsfVRp3p8oxODub71jV5P12P//9suHb5bBrskVawIZWoYMxMSrtZDycBMqST4EWvBJSPddOP43a2kHZbEmeBsG/vZOmlxqQerkBjJ+00Sg3zitBUOC135mFJDjBdZ0daZi4ybNYkcue6I9IjeQciJUOVYa9yCOkmluDfytPl5u4dSBm3k2kU94OfZiK608cTy1M765RIq0wJtkEHnhrCH8pYo0V+ry2sdV755VkwuvT0StcroZ20h7BzuaenPmyftTWL6OnVjxU/sFWRfkjE/HCRs0wQUkhJgs9WhxwRkfHCLOaiyD3MttMfp+87G4T066NRlnI2eCcq2MUc7OyxIi6afWpBDPfl7aI1MkY5XjuhVJa29iwbWS5NT6xy1gWfVUYzcbCH93it2l55ATTJSBzqHaI8Kp40SB65ER85HbR4m87W7M2L/PFXHTJEz7ZJqBnXi2WlGkFLsYDe5f2rf4Eir9fzNJYiVsNKFfdu0i4wDPGwd9yjblV3LaKCSeB54T0P5V8XGAn4Fvdy0fiUpHQGBF6h9n1iuFMXMrAWinMp4e52bo3Yk71Ppnt8qVcULlgDz3jrbI2cpwIbwITh4M+QPtIliy4Tpr4zQTbEKWm+up07t+46r4389OO1MItguL8WWo6sJVCPKSGnbKeQy2k3QZsOXks2RtAL5eUTQQnoQIKDumFK4IM27bnHvM3/lL1R637cAS6nX/Jn34l0rJTgD20jQsH8h6SEmS2btXudQHVcQwqzVdLijjQ//MH/2ME6EnbemBcdVxNEZMWc9SzrLGmi1qLhb2IM43yrgcWum7xKiRmv9WDaCldFIpebc4YDc5uOJB/DOn8cDU3AEYCmDRBIzBNaki5P3IFp5EovyHwsBG1lj8aMnMwrvL8wkqeRNN0g0D9YupTzQ0QRphA/6B/7TEQYU+2nTdPb1a+Zn5XMDUW2sxb93PkapXV2LMHknEbGO9K5jEeuGzM7OKW52y97sywgGNpPS3WGTElf5Vs9d4dwPpcpUFRPX/Cy14s76HacY904D/emSkRloBY3i829DiRilI/6gFsK3zwXFzNl22qlvTD6zl4CG3iLS/RwXQWe66BM0KwFJiAxTgFmhUO2XXPo89tPXBT/q/smc9IEa+thfjOVTXLB3ieZg0ljVux4fURv/Yc25O0NaWmAw/12fSu4pMLdfPhH9ylcrjvFU144PT2TTmMUrfiaSDLKr/OGuLjcjzNyUMXnNyk+FBjB/JKN9HHDU2otlbszQalEEtepPUxqZDG47yDRZI6RKpOP8Yvfycu/6RWLHmQ899OTDr1kuikvdneBqz1qrS/YKnPvlpVPrcYvzxcHrgHA6FFyn8zddnlD2vUPjS1bXxXl5yixY/7zw2QQFfJqZ/M8beZg5HotNKNphNiETi00CzT+AEcDSTJEBQ5wYdUwTpNPnW+gZokd7HDcDBaCnCoqNrVrizImhzQfk9D6m5QWjNrCeiQbJJOljPNFio5KjF1E0z4A4outcNNB04++gbpPYW5z0XAuxWPusr6FJfsF5WsKoNI96nVvqcpkqON1xdOYpjQGSYiW+saRqwTQq5MPkKselpnlNkFiCCceEVsOxKzZfns48fZ1EQVVdl4Z/xh10j57D0o18Wz6R0yb6TYfQA3Le/eMzmIelQ4EQ1Fhi1kNfsIC0T76eajtFOKNdzer8mlB+GR5Pks/2BMGL9VLNPfIKplnectsZmxJbCJdxJd5NR16b6riY4zXpJAiK6w9zbVjjtphmXojtPNqxN2PjkySftwemo/SX6DNGjFJZjdktjHoY2yIHtXRmMvpO/s+wVBX6L1edJEwwzPKc4h+1L2LT4Cu3ULEyp2oluUWq1nZA3dh45IJi7P8k6MstwzPEkH/AnAMqzKcE8tLxc0pQkPgRo0sGaUl0UMO2dztetSjbd8wMPu0p+kgyN6bhlecHRi4qp4B0FDiAGZmjh48kBBXoQmiRchVBlyDNGr4R48lb7Mm3kgYbIDx8gjOLIFJ80ItXXifAzP8Vkvq0Wz74qlS2GqaeU//8wDVV9is396AvcvEOYmwEjKEgf3d0JmcSARAV81KvXJKQgBnePHqwnTZDhMT0cibVP8E+H+r9ISq/sc3w3si0zxOsqmo80CL7UV7qqpq2Xfll13nz5zYXYltnrvXFLHMZtCmVYo4vFGcTzhmioOxfB0mO/W+cI6AsFCgLgydpbwAun0MYyKDAiwaEHPPabyAb0DXkKrM6+WW8otfQyZATpboa+/Gry+IyL1OAh9BUDeat4P4bGlKvx8xV07unqMBrvOeykTFYYIYye4nsZgtMDMUSBRLJwfdA1g/x1eWv3sqEYHcykP9QRdIcmZEfRPu0aLq2kDa+wpC85u05NZz08oevq4mN9UDaC58ARVpYoaoPThwPT/dnSo8kiFFq+NwhlZ2lczgZgn/nBwYN3vhaVvG+k3f6Pq7RtIVWwpTJHq7CIIHYvQIA96WlcB+O3hE69OJTiYKFERHfcrGoGfH9Cp1IFxu6P/aBYQkeqL1Fpo+300SnY6z0RnzANCIAZGi5RUGrr5a7e1nQ3cjPByzGHWMljJ3Ss6tAcPHNpn9e3hIwJol39hrZ6sSj5F0nfgm+RRr3cYXiVQddrWsxOUiadGVSHRP2uRVtTvicuTAXz60825TJnxUnox8aoPkphgDGFwhYqM0JfOW3g9q8e+G8Nrnp7YLvbZ4iIuuF2AzIUQtc8ZMxNHyO+NWPlH43mCTE6OEtNh1ti+zHIxXND1Od938/Js4QwcSOaGiB0LvkwKxZSR+lVyXe2dAhTOR07sVHTGcS0eQCcrybl3Xk/blG5sLhQ+0wcUz2m/GF5uM6qBPWvIXJxLg+ONCxDD/K3nms8+H+AP8R2zz+ccizZC3wulryTT3N2FUET/1cXMWqJXhdbEc+JriVXNRDCTetaAcqHWdw69YTQhABosWbIc/yJ/33iipTO5KK+/ieCiwETmSAe2CC8Lw7wetcpBqakwARTVLR9H3azJn/98spGaYvnrfmA/ikfgQ0hGegAlb456i8yJMYI90EVy7XpCBg7LT7cKoBQM0t2Vm8bgEElNCXACDrrUa/zmyv0efJCtXPg2kz/8fk6dLgaRfnNrKQE+1qowDGw7ea9yHIFgG+JXy21zrYgGhX57BqLGoycEWKFVvRxLjjET0V7LU7oqz2XHFgxo7YSGqmmX7alVzgJo+dP/BFfnN5g9MhIZ7cVzJ2ecoPfXgZdu0NxYJ+PpFyC5ww7cdyrC6vN8N+vY76wx5g1DlWU1Vxl6vNGLC6xr9R2dxc9HRZ74OyRp+jbR4v4k8R6y7aoQ4fenJI+B7HFpKmYOkxjWJBIFMe+8BU3xOUeVZu8BosgEcxELYcg4xUes2YY4eawD3VZjnXXYZ9uOP7Jwc9WBXGGfmA/jkJYcSkAhVo865TJeURFGZ9xHnHHHHrQcwEg2T3x6xF7EhRL/Ea8gXIxTHfZRp+yeoG2CzneMZ3J2bkOUoWvJrPHnRw5x360o9fGkAIzCz3ZJ9LLtWj5gyOWe31QuyZgxUUvl0ZglBTlTIEtgVNsUz2oxE8ew0T/FALwiMW2/sWcy4+xceXSOZlKPceqIpuc6gmcKfEqpphg9MOpiaW1/rnvMnujOC4qnJS4CuiWvwpJsNxBUDHHS00yhMgaIsgi1/qI7ZhIY6E/gMN2cb0gcFkZg0VOkvcifxDlt1Vn7msDtV+AQ2yiPuCCiZkeCzmMmf/RUlfDVzclSlum0jEw0KL0Ujfa+/wjw10njYX/Y2sU55i22tlAhQ3goGLtXvgzs+1eVfEeUeGhn7XK9djFm0d6tcHL9nBonYoYlvGznJpeVoHcfKnFulcf2Uns5AO97MQvx6RFPO7MlQ0l5H8DnxZ2oq68Lx881VmM+rLaIy3BpbzafQiPu3/2na6HBclEmeQ68VJZw3wGyHtV9XW+HC0AqJiegk/Mah8d0+RByGdeyJ63hKcysJZ8xbMup6pcaC90HqS2tRxF+1fwPnrc409iVEdxh5wHqK1rGJ8rRGBKQCUc8ggf/5awm7QZJiCMegEQBXPsbljq0YuBDRiZOlsgJF55+F1NaLgSqcKXrcS+iKVb3XbCexqvVHCWt84mMdzUP36EnYht3/7WmlwzQil/1JilOiJD4phshDpdGPX5Ay6/TF8xui2ZoG+RIM0ZsA70nKn0XPZFWxN4Kx1nBfFNjWjSa1nTLuya6LFOw8YvshvIkgQ7oDnYXJRtIVIrV/GKnSveHrAxACJFt7Ei89YpiRJRfqDtr/pJQnme0j+43Fel8jpfOZC2scvWHxTU4yUbDltOM+Amr8/X0lwJDVHZQPXA9oVOGHeH5qxYCJhMdXJP50vtF6yxAM1UteZyeBmX+bopa/MonbTOpBLlWloCBMMFTIPVnECKXvyvt4Lv9NwCSTQIZe2AVfNMDl5ftxb21YbmslAaqmAWQMQz8wD7+MoZ+g8jF2ACiw2Q7kjVb7lV0pJxuoTz+w2cq/Ho4zhPtcam3CmMvwpkC4fmJ1bfMzAjN4BfJuv03qNi78X5RGWCHecr+Q5XREjUwB0zG9NTqSTkc2OE95Ybryp+Yy9C7vdQqxdpZgzHec8MkxsQ/fQFcCbEIBjInAbRMSWOIEI7Z6UuRkjozon3u7mhZ1XW2HmKb/jRR1hfroomHjdmuT6x/urY6te1y9ddDJynjVz3kSykHUoa2zcz5FgH5/NuliijHnxEMjypHFg66V2apDaKdoXcxLByglHBxA/N8eZTLvaUC7lN8opXXrdAMyZQKwOhEMd5PAP5LGoo2aG1g784nRVbA2J7J8GR9CNwSs59vW//N8NrRvNjBkCZNwRr8mzaOzPZpHhsYBcMlIfeYPKDZI0DfRWhpxqEXv2sVeScdo4khYQz0xoZsj+TfeeiQwWUF4l62+2XPHhCTk8VpxPxsWWtIy1f6+axDeUev4zxMI4BgMkshHooNTv62sqKishPzECqTbx+dP+2vDWaLdT5b42Pl94w+sN/L6z7tNSqcG1/91xezAVOvDKoPyP0sXJBlQe3MVv+G7JS93uqedBMjC2WmH2+stRGGIRsVbaLkd8UtcEvvBlL5EOyU0cGp/sWWRkFrEjGlMM7DL1q7G7wjsJM2dd56PuoUpKYj23BBHUtru9pa8VaMuMwhobGW38U+t3DHimMBWU/umjHP4tfNKdGMU7HtxalFX+cm44Su/ZP+45J+j5WuNnOM4KK9OJOXtZ2WXVfovLwrz4aPHK34kOKZFHB1BsrRiEEWhSE0zzyhZm9OvdFjqV4des2qED5J4PF6GXpin5Iqc/KcrJrZS4dbDme5mobn0bwFp6bZcMJyMPZOVli8UjkyH85dP7HDeUtw9FSjE4LDz5J51U+qNaFdB0GO2BkZ5nj0AuQcoGdCWSUhsE8c5INcFYWLzxnWt1RFx4d4Vbd7yHhBmm2YEMyOFYij8NgOmIn5GjZIciY9NELa8+D/dLONGtqOXacTbUVUzEbHOtTJMISV0WmdFkv6Nj/U1MCk5r+pnol3nNcgYXnTvV2/z5crMf1gCK21YuZq2zp61ri3LIWLE3iNp0f+XxNKZBGIi6owGTy/R+0t+mIlQvAPSUdWx+OYm3nFEwAK+MdwwmW3PomQ5SPLUhuJVK2SsefT0K5Ye6yOpiFAYcMLfx/qts77MrCi7SP+zlgi0GAn8rk8MorZJg7E07HPA/KWhkg9woMANfrmZnKwsB7UwLizdDROsCdp/7ACpXEG+L1Us6cjW5k8iInATsc+zFQcHs8q70u0NzpRAGPxF9gRd6dFFa3mS6P6xH5LKle8pky7OXLs8b8hf+G/upGRBqHTwIlHIz/RUNadJI1riuikLetlg6CM6l0cFZ+SPM/iLSQ8Aju7ZTw4yyCKFqj8xyjyuXn21fWR4hbS0U6Yr/5+G9mt151UfNHiwPMkaHFgGs+6OE1VG2zozqCCY9cfcDmEewlxpvfLk6m9uz8+E8UTe8ov8jz9UujupJ5x+zt8UddwDPoT93iYhc067ZgpJMqMWeeBq22j+MivPf4jRis9bnfuQU4kTuuQMKHxP3S9tSBmGgCRbNBgw8n3gSJFjQf+Tu1pPggbClOG9PCf05luTMJwX2YTNJA4w+MB+YhHP2oXYCxtWVvh6an85qev3ikBT8mAMmrjHHgMrsg7MqZimG0dGzwTkwXsRaTWX+lJSBDiwzmq8p5wuv8vra/yoDIGaslqT8JrIqUV8Pu2pniGS8ARjMQfi2vUgUQievTNSYOqmSQo2iEdkitZ4Vgb1uoEXSmljK9VkywXfRYajuD5jrzeHYuBMrCD0wdhUnYWSLOOWyApmn1DgJB1tEYUbkXHEmqbOK+Ph2sHHUFKT8uV6To9C2qc6d9cSnLng53PEYoWjFEK1OqqF95Zmtdur9OpcKW44IPwFU38B5VE//5ZOcJE+9+BtLWp5WTDOfNoTdY6VnNH/4alBNJ6UcU7E2pM/uq5anb8TUPi9ZNM1jgWVuyz42Z1zamYCz6SKqQUtoQXrBl2W9ebTt9ABRsCF19eJCuk8h+n2OCOOqYeplcDy6UrTgpUcwsawcmsdaStgdy1CxSakXoB1ctWlFbeZGXA8nI3vNotgGqsjwCQRNXH1WSYxVewd82ICJn5E6nGDl7RVlgxezifSOje39H7EG1Sr0dMYR0Hq4a6TJRNg+W7XCECkT5Agsf2d/3IBbVtJq86p7stwYjDDIwpP9TimjmW+ty7ipp35iK0wNNpMgvj007hw82QuJLnLKuMf3c4mqHcudHpNQex2URneuguRL1IKEN+IsoT/xkQRcl3k6QLiJ8WC8RK7B6YPCqFfZhaWIH+cE2s2AFoHxMEETeVc2vekCRKcx8EAuZsP3BVrjK+gGW7gbNKWgwXXeNRxjDE7PMgvP21FUn/7IDfBxEmTJVrhVRTgx6F5v0lmiPUitLtCc8aU6ejWuBPX4HS6n39awFc0EIKwKhVAP0CjWDVSACCCOXM0//nqnhB2VobaNz98Ygr5189AXlgDdQ7QfDCWuTTg+rPcUti6v04ohVN5ud0TWwwWQTxkwWqoHy4pkukxX3thatedAJ57KV2dExe3ezy0pNieEsbT56ln6jborhKm0dtPNWjVNU5w2eBiyY54Vx848MAKO5mFQ8Pm4GitXaG8NylgbEqdMQYEL4dq1K3RHnGV0z6sbM4RnEvS/gOfQog9RpDbRa+geHhtzA+O7qUzjjojk+WwqYghersLN/3r1AvyNIF9FcXUbgAHJmRYp3x/7LQiz1gCm7++tGIYAKdev8+oC5Qam0Xur/RKdXTPfhRHi09qpTkIqYvrl3jPBAOKkKmthgQ2EqFHqExewx5251zk4hbRyqwSP+T4N0ftx+dQxHYEwRc6IU65PVm7XJnvDWlN+HEO/3uWSrCbgAPUdU+jhUA36ky67KhAI2uT6dRj/t8oCP4WZ4HFdoR7AfpFO4daH49yxA08NeLxQoLmAZ4YKzAaFfbxsMEhdHC/886s88o5x+BgGBl7AImhslWfVuIk8OmS/E5YEjymHw+i9kOI5S8UU+q8RZ8O0v1OGFK+RKpa1BwI5CcsWApy5D9v18/cwrV8SCCRGdphtl2svFNdYKEMT7xexVvZTGotgxDaUo8YIzwKXYHhNu3pwsG0FTH2n/Q//wx2roW4cDtqIoKI9pxXsQJ5q6VxoOadfGuquTQn6XnjvhSH93FmhFHGdmTVV2RJ006HyRCd5mP8lNg33GgzYBTq382b9nBDnwlS88WkIHTdD5yktHDQA1vGYegZELChPOefqG2sStxFsFtgz7qs9oUNrSF4Gv/kaA3iSxhpGpFaRKf1A0FSKsEO7m7xF4w+Hrd0hxJ862n481OsceLD5Jku4PZmt4f1xFHBY4yzBeeJbn0dPjhHPq4Mu81t7WDBQFVeoEJeY2kOwXOhr8lFfESm7qYhpEZCd0mrXabiNt6Th+Vi4iHMY6fVcX1RD5ZA2thHJ7+wszZhVtp6QjWwY/csFTZokVYLQmjovobJymFmUjt9TwfnT+hm1BL2NoEhuYpOzfz8wUl1TVTai/cAEa3mbI+PNFpvXCzw5NscPQwQKhMAfTx5q/FE/pyKKN6jo03ibvSwt8TC7o786cA2po6IRlsCxQLUXBGtdCEMRz7TS/fm65D4twX7hHO7npqN+uVgQxh84X3MRjUBMjLQYSZXmUHSHZ0t0EyH0A2EZY5QpWXIhG1mSW650b8qHyyEME/n/rQYz9usMGCNxNQ2Yiae5seFWa6qN5bPAA58+F1/icuc1P5VHtnUfn5X8gCxXe6hvZgzBfY/GCkDeRwuKX8la3NB0R/sMaae/ox2F0XNAHZNPph9O2Qo1Kx3lM5J7HuoBLivYAFkNNs60X0ePzBCxXiBNegbme4QUoUaQNs0YUamN1WF+3mCtJ72NVcrfCAHvnsATfzjZDbQcPFv+MYv73KdSNaZ91U4+On0RBpKboWtRU8vWm6Dy7QbmAdzYOa4MtnGYMyZkVWtKiqcmtrpcHh5zHB3eBAWZB0MREXSV5gc+AxLZ8AByoQoTYf5xIpW2hYkQ3I/OKk7gZ+MMnZdnbSm7JvPYDB4XlF7fX61ix7h6+3+spdpo7/UF/7BTK4hD7jycaA8ut7Pn0r+kLkYswgLR5TtH1JHAat5OsX3z20O/EviLQtQhHH4yELKjz28jF1yFFKcterqQIdtUpawByzD7Hjgqgk1reCtLOgsp7nqh2w0bNJWwqVG4xc7crgpqN0AFCkJnqMWKQVTlIR8qjQ9s7IjeRc7lhVPwR/t/oEzWbWJbzJqGS5rD3QJ9PISZ8rF+THqLoK/MZVYqWzEtBohuGKVwpW+mn2PLp5/UZneubHIiA7y/S46jb7cPkDbKOmPqHzuXqc0V7JG7q8atMHH2XnlLXgYhiuCPOS7PC+GmZi4/MxFGFOw5W75rb/mLnJLmWOBL7DSoVtr5GJf3Z7qzQ33Q1aCuR6BV1oFYRKxC+syg5Xda4pen6QUhO9z0AkIveOLsH5gU9SeOX3wDjP214C9CQ1Ub+I4CJ1wdFt+lC3wgCwNGc0d9XlFwR3xHtPT6PTJaEIkFQ9WAWbyWRWj376bSPKk7SX923LiKg0dZHed6zMRtoPM5L8VVWlzl5QIprr0Dt7NCdyp1ompm40z4uJYsMSHljo5knOdIjR4pBzvDi00u2zzd73sLvFJsr+dencM70FgGlt4+4BSKZ0QdNu3xC7hpHh2qLL51fi4oLZEgrYF+RDlPIXWI9+fBxqKYrdN295Mg5ePT5S/s/Cm+v6OU+lj8SOiFXwHn3/5/97hHBZ6+fUmbSrzqoMMYDUenKlb9v/uMmF7KsK5VvROSyivQj50aFl6oh//0hKqq7rYl+mqp+4/OhJTBbWP+5KvMfMKjgkpGsOXavENRez/y0DetJWK7VmWyee37fmJLwY6pZ/TjGzealKStbuF7L57ZZfv61oQLazi+orJtxEM7UKXfcH7UpF+VD0jxMhPIhafOEstCOgsOcqrOiohraJkH1bDn4T9bE1ydZNy7vCQGYrZ4zvmdICxytUeMjHIvYbYH4P6z1SHAQSBjNtrMS9xyGB80A85b6OpioHv1dCRmiuk199GRWMaEBtMPeIFVJKaw66UPp16mOngydLwfmvkDajTEjch0rq/9mSG2hhUYK1NjIw8mO4WeYx3nztiIEeUiQ4uhnBQiDSm8pisI/SXCzkrdK+n/Xt+Ays4Q+EYxGFlJkyuI44Hbsw43IZ9Q98mPeyi4L08IeZM/OnguS+BbzV+choMbaB4dbpwc0n0JUamEmd0Hj6NKxkC1wCWqBC5W36MXEtyuv7Lzy0CFUMHlvaLkrEIW6+4Y70krDH82Z25JLo5qjfgHD9kXSa2W8ziWXgqVeDIbm0av7MEaorlU+vvOsueH6+nkypanKtg/KybcB5WXs5Z7kpcscxraviaDV05C/vsiiSQRiVqye4+G731PtsCCuzNpLRh4b/K7x3cNi0xh0NdRfGSoZlKn3ibUMtU66hJVBou91c+4QvrCh1mej0zmtcqoPEczFEY4LANQrieudabYKzMfI+Drb35WDn4ih7Lm+z+p6aSJNozYhsBIbUCZlGNOEnfZexqVdtw5QszXsPLVPqiKD/fkt7psO2RlCXQvNT6N9N7ppnbnxnpjz6AqQGXw64+7roHvFyCBW6H2jc1Z6tuEOsvgQa3OlKvYmsruXdtV+Ap3ENZUsFPWyyTEZNKSimtd6iVpktgHr9rUM1aYa9d43hx586i8F/HAObY8TTX5H9Z3sgYTVyth5pvZDcsShji8bChEmUv7MlE6UcnnUzJKZPelUUet0fAjziJudtIYafafsGFqO3mW6ZDEVqTyPMW4BgTg2DsqOEvSMQmSGuvquORcaeoUGJGCg2cEhHjNC+FSY0nGQJ/IRsGNy8f8HO7AwVHVsJJu1JgmF8b9ETqrOhrvrucO8QSZkgAkTgGnZLugd9lsYB0Lh2O4hoTIiEXEywg4b4DcNxjBB6C3Bjg7fVEPwe+Gyiz28tG2kYy+RMiFWj1Wg/YweVD+IkHoKo2BTM+LGiLtJW7g7xL0+clfPtLaCd3CjHBDrqVXumtlu+0aob0Ni62A2xQ6q3gU8eLYBqk9gj4t6VYAmWgYU7Ji5K9G3itXa/TWc8X2SmCnsA9qfz/VMRR7RUdtBX6JFjYr1t79v1cbUqXpQYMqh1QPT3TrWch61LxeIIGqjzh/Lm+O7zTwaNZ2MoJROXlI9TOjr89nRnc9DQ2HVdPieL+80m4qxPzak5Y5hYMKlmoeTxa+hdpdWx/mJ7mfI+sUEdXx1trjnsjI0eNPgFfteJeNspwS/HeZ4oKVZzh/jt4JfuNmkkP/e3eEMEmz0iYCvvl619FhatgkJl4GvWdgF7FfqsrT5Q9IdAJF1wEt02wtqfy40Sm9EkwzNSFuZpiBmy5MEEnMzKQ1epNgXEz5/rbRyx6WZSXYNtib8t5ZP/cmc7MF65jzFDSB2XNiS5ZGV7z9VAOuNozQFg15uQq1u8ODtBjR8XqNbt9ac4rX494pnyyyv8b1gIX8+pafup562Huj+uAYtI2BeXXunDKfEpEgAh1SbYa9U+FWqE7cCCJdYlic0FjR9lUVygOQ6nlpHouNxR3Yq7P51QnhskMcgZBKoW32Qh/RrOiWkP3O4WVu3jOOA7ygrzNKx4Hycml0LRY9lD9c9WOKXvWJHuXM+dxLGf/k2Q57bjkbKNXJdwPcFAAgkoT+wQJoZOBLNSJBz04dkHbNAzHcErVSsMuOTaxlK/7cP0aY0r8SFAYjRtrrF6AeFCi8znIOpDTOziAewEUAa1IUVe/oiwHFMTdbGkQ7SV1AIeGpI9ijRxGXnfo3AcD+1ygC0nqZTehG7tDj175wI6OMKI6/xDe0jTeiq7iZf6HPbIcfU165+IULxJ7JyfQHk2V8yNpavVgnHo8FwqkDvjmYEExgHFb/uyTxFzaBp5+GzZhE7OUGEDZW4scrI93SurZghFiKN+zXJD0s/lXctLYHO/eQV9vVSPC+LUA8/k3OSeNO1rMAZcOfq0rlYLO/FONpCn6y2ybgG7cwwIBSels3+PkyASG1Jsr5V6kSEQ4OvKAWJptHHBtEI/AMmmDwxPgyoAbOBoxT2OpY9jC/CwNIN+USfnb030JIxG8CZCBXrkWzqTWzQPdzQVAff7SKdCNwmBHUL+jOIqJhyIbvJkOYIkTQ7dbRVRnVU9Du6flsYciwTh1JzBDO27+0p/S61j4wIOGThATv/63bEGic5DyHJZfbdWsnGaxuvA1d7a6V4MNgtlK6P53JB13ZP/JMhRHcYOk19pKJKDHrWa71zpXqBcrWxXj4+yEFi/2y8nQXAu4Qm89+WZwiPSUOwHWdmYhXoPG4nEC6Yy4kJhNJdvSHkZnxW22NC8mg18RkGCYEy1HH2iyUh4EXcnwJsrYpKi6p6MqtvaUHEhC0diiaAEfpE32xUbPoUzUxPOODaHNLmHw++qOfieDH2VozLDnLSBB0+6U5EN8qz9QM/FfU473jEukCZAKSL9vfyuIFt7h34HQUYubLxrdbCNIAv664UNYTeCd0XSQnAKsrGUwvAKXrioEDvg3Z6ktc3iFCfDnXl67JljQVN9nGkBxQZhEZaK1OhKfKlQQN3fxP3kM9IZemILYUmDec9dlFoCE3X1wKwI5SGrdESmdx/6P2JsFdKkItViepvWhyzV0bxwTxCr57yazJzpLVbhHNz5NVELXg71iJcdl1TxXL/qdPil4S7+rwehXfkNriWoCgzaPObAsmdZtATtob5CnJOQCavgxG0iqYpV6/mTx9twx7RNT4re9a8VTKtRPrOriR+8QjC5fcqBUXNj+f9ETwcngShwh6PPSoEsKsX0KHiCET5cQDONOI3M7ZhaKnCBdSGU36t7Y7nPTda3ExZu82lY6f49DFi27Wil7ZyyicIZMLEdlIRN7zHwmI4HylvkXAiDZN77cbXEaHwKevumP8g/Qvg/VByuE8k6/6lf1/8WfDKd5PN2DLsPPmzQnbogaUAn9petg0xU5vqE2DyDvIN6b3nlO49aSBdBn/EE93h1cOj0vRoziU/tI8TGWoSVDWH7+arKTbvvS/fFdtyq76ZXkmAx2TXnHAo2WNkOMacMsxSHXYXDxhUslzXcuTg4AYmTGIYKatLNB1fKhm9GVOhKh5j3gbzKp7K9+mbd86D+fhXT+z3KDsefgpX54UHhuXvxzMY8haN3Uv2zL2J5n6pPbpSTc7zfD/vaHTpqpIXzF+/kbQ4ow3M7bWEuE7RMw3Vm0jMEYBT/An3PCIt0lrAZLzc0cM7gz2zohr+OQjI+7s7QPG74uLwmY8i4xxaRzvSOKxG6ZL15la1gvy5e5TpUKLEcLh3rmuKH3dxYsj8jWlVYmuxj9G01jcYYk+hfrxrlm3U3GRaneoUEPSXtl1GbTQdMKA7NWWhgoNmldwb0DFc3vrXoxfMrw2Vp/rTqVUjZszmfNphg+rCZdNXhzxweoBKRAYJA9FMpCP4UPd3T1PcnZUvPqniUnoGtR6OTeli7Lnn/64fxdcxmbNO2jiE48u7CRMED9oJ0ifDbV/oEywK78VOLeAe0goyHqhsVAO2aumwqi0STlQWptpUawDGM8xRsdxEmeSiwsN/L6vrm6Llra1ljBSbsJssHRsxqshTqmBW9XNezIK7dCzAAhVx8VpSBbf0uDsthwPO1Zwr4FBeK41OMaBv+ZLHej1jxbjXVql64LsHnM6plGDShMmNa6dcoVPrsOSdaxe8ycOyT54z0eqAbDEH0eLMz1qhjfFsaBCkWMVWKvVaG0BWSAKirUHV+eTaJK2ZV84AZun41wIv+9QtM2rmRJeSRRl3UJWkYQYnwIbI5xZch9PQsZ7xs8gELZDOhqSl2HIt2Y/3dv3BA1+M6v3XjVZyDsAtZjTnFyb/5R+F3Eh4/HtVYg7f5R5xWIltiVOp52QgcU2iUkah3fKu4pVDRRjGEtzi062AWQV3SdD5LCTpI3bktCnfpXReoszKgovojZLYoU5QWp86NcnmzuXarvlMHGWrtaHWyRrqDjhE4hWcjxk9W4tE98Z9maOzTaSjF5bBlndw1YLnIQWeW2go3caO9wBsDdGjGnk6XkLSXSBvf6E5COr6T/xYrP1xFhX/71OYh3r6+Qi9HPzJh5kfLvbgH/yPFggsvdnwQPNcUdCUs2L9TY9uMEcLHWDVzwIO5Ri7wL0t3VEZ9ajKUGo6begtXk0VLTInboHduUKZGKkplZAgD+VxoaUUkgo/7/gKQPi9UE0RUlVDMq8Nr4XpW0txxpYBZPMnFrUCYbdFRIxoF2HlOwizQ6xHCZ25ySOxDKCPRldU369N/Yy9Ju7BPZkuxcSvaLT3ykNkN87SnySIOvGvk3kg7jc0TFMK5koPfAFxNY6rUqMYR7vJAeaYs59verqfxD1UAseFGkkGDDjj/PcN9dun+YYINL0/tHg/pHqeQWxYtxsbWt3aLUq4yEAo2d1kN8GLagkefgPfXvZubVU/VP4//1VqedZ7vgMl9qrVTybQSc+C+M1FkU8JmH1V5/W5f3zyUzRggsCXkO3xoj7Sad2H32ecsPinmEh86RTh0WYzD3fP1JiZ2eyz1XHgSITBO/cu1enqXS0n2DympeCSdUH0CuDeKHXRY9bCezGtgUoA12A3TJJsOSTDJMPzvl7kX+EkA3UsoW/Sz9R/c8Xnj3ccLys10BOqXJbeUN+DPEI2x4stW0hUvOQyPajdd1QAC0kL5Iev2jqjYKPGDQIlcuiQdvfu6JvQtcaeGhp6KRzOBZV1QFg8x98g7DbtO4jlR068InbF6LI8ERqsep3YYm1QBMTWuOppbry4er3U+77b0PbDzPD3Ial8VU+6JsiHq2vKIHqAO2dxUPNaGzVVsG9ZHIn7kJ5n8aZJ3TkQICL9xuaTAMcaIrrHIbVXLYZRj5MhbomuofdRonT99/aDsAwCmcs7IG/3agQcwYqYCv/hskPvGkZESs5O+Eazsvd50jc1sXc3mbUpA2GUgThLrt/FB+a2wfSET2qYZ1VLO5iPdRZ+uR1rBl/SiQdyd5074eT02Pd5yU3fqsNv2K9h0kGGZsNQqGJP4/ALXDb9ifGZre77iNYDHH/iQaDc7I52bYHRXEZA7ct5RYURF470r09voMye1OdFXIJZEsW0GXPEo8PDCzzMgBvwG/fUMJ7r8fJuaGy61c/QwsIky/2vC6eyZLKa+c8Qn5dyjum4TkbheOlzCCUyCu4Ab6c4UgDxOTmNB3QJVnd264w4zkaDYCjBoaaVPQys8eOrVy7abogra0O2LeoLxSOivL8wiUkJCI5xrfOZfRfoeDM70gFbPSQNxK3G9EfH+aRWtT+zWdNXaAv1CzZUsMGDIdXFsG04zzKoL+A4zjJeiMb30y+Q2sfUOqRqE8x0uRgq8Kx9zyA0l6o1lgL+bHxJo2B/ItEhrvXhsob8JUdyFbcj0Ao7MFIW4DN1Ilcj80t5aQiX8YE0caDLfw4z2gN5hBX1B0toifu0mikKh8BrGXOhtxROSMlTvs+TEc9euYrIrpfoq7O+Bv8mgHQc4W6VJMdfNWgaWrtTh6mpESdjzcP/mKC+YoyIJs6/T/y6fEU7Hok1xtEe7uByv1HPoMPnaNrFqF/30W2pZVKlygjWGVUqJk4CjkJyW5B7Fc9uaN2P731jHlmG5ZRZojy0tQsS79xcXYCizGD8c4QkcMuVTvQkCCxweRiTjMjWKun417zeNf+M5W/t7HmNvOOIK9ak6FoL4IVvl8MfTFZ8xABs+WdK2Dbfbq/sV7BixtNZe7/WdBCQbUFRqbb1ezcJfPJN7MNi79A+SosDYsZYrozJ947821hUZZV45RjiBLT1gBuKkR3teZGIrGU2l5dl1BwL1Puh+0Uo7k1paw+ZQ9p0mDvIjwBhrzulWClzbELtGYYuQBu8ME3hBP5ahohxZVNbih+s/BOfaQ0WhFn70R5XTWVfahnFKMEVU0KBOqcbLTk/lE7i3Q7Z0azjol849TkB8eckZDlfyX2b385otPAf4fNEj7cQvKaCOt1h4SwpfJflUeyRXPaEt8WDNoVxa3m/y1hq0Msfn5f7rX0OdnSNYP/O6jfpCxO/K/JUmGf+Dj4NmtF5TB5oC6+jWuy1IjOIspc9M4e3q0yNl6srNcqIUA9M3nORSMjuhzhw0l63nwF5rCGSFQ+cRvd1RD9ZopYlj7NiPxFucHAIZH5jeeaofEsIzjCCZXyTHHqVr/ZOzHqkq3yUcMPfTY4tJvQcgVv58NxDsjmlHYFS3r2iq1pQztRwii8StWZLfL9Gax2J3jSRdnfI62vKr8VM2+i6Jnt7NbM8QSNHuKmr1Vk69KnUlis8/gVPXzcYU7pDiUzm+eGwrnhqCYOn9TVVoFn3RVgqIrVq8hK38QQFj+55Fxj2XyMXEJ3oEUPWDXkzNKM2VR/twDXrAkz9TScixJefn07fdlHM8A4elORpyiDE+dX1+aS0J1jqLlDv5GLR0bShxi5+n11el+vVIJyamBGrDO+ahmBjY1tuY0agviCNmuViwXurRaCSoXS7wzgM+IuSmaRJuLFXhrV5Q918k3jASUst2jKV49zdBoAcFEQWE+J/oe+CaLKbHp7vf4oR5e6xPYAnMp8xnrfKCmcyNq5GcjJl0AtUOS3S5l8QImTDEWAtjmkJMGYhgvt3KzGv4fdPzjxQRdZCI/8kDtRek8QYbHwB4Zs21PLKhuwqrq5aEFEABmvYnpFFEjzLq9wMxA3stEo/WBST5ryH46YmgZv3djA2nn2d146d+rhyo/aqB5oo4t5IF/jETxVaYnoBkAQew5hH2c4RGm7+O1kXgcaP5XlnnWL6AdP9Od0wLfN8nr6q1HQzVam1rctsu+iF7bgnlyipxTWUm5EHK2xoIExtqjNIxe1O4MWeo08bWTZFr33guu4yG1KcMW6qsKVB5ibhae3A4yWvBUpPax1hHBF0K6KW8NIworlKSyPbUW/mH6u9dsAsTMnOl2JrhSC93XpiqOMYgyf7XzsrRBo/RUerxL7mDgJSLsvCFMsR95Uk5VfLCp1O/YNYAdrhD3UZSAS0/7d7kpPp/SpW+rdnrCkMlTMsqDGRS3r+YjIPw6QeBDkqdb70soNc2V7Y0ADX0mHEbjz0DlTDd7JCSTjJR2+RiMMRQMk6G33ENR3UuRDV+902LfUAxwT1o+ATaMf9cOfHIxkYqVwh+2yb2yIgWJh/gmuE3RtIwcpjCP4kMajgCQHoswdxuJPm5j94Is+ReawL9y21g87hxGPPEiy8C/bQ4fFXW9Sr9xeTelSM76QSb7Z//2BRQaxXL31rrqH7xkDOUueuGJumHdaSlfs/d3M96ygZaItWHEyYEjs2POM24oyhjrxoxpYOaeLOk3qhmcTI/grKFT8rhWUgYdkzu0YbpR/yd3Ja0iYwaH9Nfz8SZOMFHZAtTqw347EHHj2wCL5siH+FR7Q77Qb80QM0jDwywAfaiC+iKvJ4eoXoui97bza1VJhY1CtJsd7L4t8MmcGNCtuphs702FCKx4KMzmc2/2TPlz0i7x2cAjJ6pKZtOBAInS/NBF/KLp9nbSAkdwcj60ExQ9nb0M15lUoOwodIW0/0rwRY9gBibFnHBr9HJM5iNoaCo30k35buloYmJMe3Z+zLJNA9wPoO+3yxSFzOkkNwKUTNCC3s10yf7yNvdIV7uLEYdcbG8lH9wKmonmDsJ3Pju2EgbiQb3tt6UXOWlZZLS+i+5EeTNvr/19sijvVgF04Ed6wVx+YQMFwSq/RNHT1Z20nr4Z0aAfXw1fHPxqZiwpMW12+9PQK9+SqRfuNZCEicefNfV2KenH61zDZ3m7W17hUE061yZQDN5DxHf26sKlWnwjbvBZ4D0I3rONJE+ogMhswNk16ainy1DLMd5JgcCSVQXWZpMU3GenpI16NJ+7mh8xIQ1exfHSTYsrDBWdvsy6wElpeQjzskbRiJjyAy9YaW+xn+17zOyFVVlfaQI8+DP02JMkYYAwnryQqL16OpNmJMDzms2A5waUyulXsGMNBuhNg1Ky/3P/GNolVChgmHwXtKxb1dNYOYj1huvCn2aTv+MZRKOE0GkUDHHth1OGt1b3FAoqukfi31wEOFl0cITQmI3iGhsnfgqwtAbIpXA0wXFBPTpr9pRHXKjf5d3k4sUzhSTN/VX3KBHzff1jknf7A56M0e/LoAouoN1PSJc/CWNwVqMnyU4E9WxFCbHyLeUc7ftODz0iFlgn98C4LdQPPL9d+j5FPaOxLcBVGzqQGRWTcHO9uoMYRpPom3jeJTo5fYpXrKwGEnwYuB20Gv4DYFMb7zUyXKkMxNkdIPg5LIHNRTy7v8saYFdDQ4ZIDlzc6umSesKH+EZ0XfuqJEXfgDCRJ/Q8J5rhJZf44D94+1uMl89brGXSjEYebFn36HGugxrCbwYqqXkou8wefNa6UxismEVEOD9p+Uchkd5gjpXP9JwXVc2HLQyfkRSMjaj3EI+0oQgwQZmEugl7TUW/AlaxgcSDkQdNulXSkBMHN9uBcXuJ2xKcPTCOyj150fNzBjojpb8EYltchgxE+qLKS3ZZyjjanH14F1zvNVutRCbRS2f/sKGi1itYSJtmQYjq54yhZoo1qBHgcb7GSG6ZEfBYm6ZYnpwRoavC5lwf+doLHMrq6vjONVOGRgnl8Kg5n6AANhb53KjhS01RP3K1nO335JgxvaP4OaTiF+/xIB8dMIlaB/9Ldln8f64JtVmaNroA3yg3uvTQm+KGB0WSetP6rjFhP8uTCpgsbjtiAOI3VOOjiMuHl3vb+gZVBzElnvms+OHPFhSfL6Msq6lwQLIYLmzVSV3xqM4xA733nbsBgY/k2evFiq341Mp8PbT+vbTXuAmXutCZvoz47c7qUly6GZm5tatWetaP5kr2jYmB9VkfosliS7hZq7VpU8boVuLU1FPQLOQEENC0qmGOXZ2F+28bao45PsJ3Y1aCOHDtcoMN6VothA6PbXUzR2d75sLf4cYQRMGCYIUyn4nyVV55DldK9bAZzAEBgy6glTWgFs0Mzx7jdmIChMrfPzwV3Ab5XKeIRCM/vtiUPtuDMOpv7Q/+EFhWAfTKOYwLJ+Imoms89E9ni9O8Zi401tW4EOI/OmpxZ9Ohm4leBU6J1koFFip+xRswc5g6rCcGbVsg47s+9lUYMEiOne6uqiN37z7H9octLGRtLcYO3jj+zFi0gOjQHYrOgrJHPBjul1eZxXZT0UMEXt0pj0iJRZGZzdwOm9VqcnfsKuvJLWgKYs/qyGUd3vy6zJp1JZOzP0k16qSG5Gk5AjTxGzDbtqzaweQaCzkymq71ikRsSIfaGtDjGscER7ZAlbYS85pu4/KgquXMsgJbgeIk8Usf22/dAQFN+Nw4thrFKtseGuaA4PvokS2zTTwC7NKeLurOZntKzqVvLqDiP06yDwxo+D7walw6NWaXcn1Nq55wkc2EeNaYLKweVhTAYROzIchysCw8H8VvECdzOzJRuoPeHTvZIV2aFRsR2/qXty6BhvbhC9wCRhhjB9IXPL8H8wAhcc4MO2kIKzGdg/dRrGyb4mcb4fBpxl+JWeM/BM3GRr3x/gsMM1rmhgoKQGwc7PFXqoGGOw1crRgs5XZKxYuEiJu2p2IXutoUGIGiPj686YGrzR0yp6+dpovA7338CGKpetmfngPCBVhkbSv4W5Nz/9cC+XPiKSrxyDpn/zJAADPBXKQP7zerW2G11bxkCRL7mHumTWot2chifLhKq5NPRN20dLAlORuI3DG2N9I54raQ4gzVeyBWbfor1cyViaPnxaCX1ptkZkjcp7ik1+VYcwjiv5OeyvwJMcEAhAZrZe7a6Z/4Q8dzOK9Uykj1Hc/5xVXp71PlAZLk/iXl4cSN4W/FGqHUDCDaHlvBeBX9gGfSbzcixzh0uBaFjIzUiHRLsU0/WWH5e69cFGKn1SON+nrEy4DUeoRJb47bwlp55pKpi895kL6OiN/E5PSDAW4MuFxrHpB3J3DI6tgjAm+tAyLjKDwbwPpBoumDrMxlmgeiuKB/KoaSLD4D2ke6cjWjFsh9P9gjz+mboHn2kpT9l/dvtPJi3iY5cLWWAKzpklM80wkku6z2mpsGV6ibLNYwxt6Cps68G+HCMHUM6FC+JWvyCMy4kAVhUgCrcbGM2BOwr1FUjd0jN6NL6+P83VsfdMoDyT60bbwpm5q2siRleBDBrZsAcaDbOQZflP+KMMBECz4dx7HJ3k7rhDZFDwNJ0/h8RtJGb6IHdrtlciracKJcmGjjCZ4Z/t92zebk2hrnHKZA2ndceW9JH8hVhfrXlkgP1jwAK/RJvvItGsSU+SAzICIVSto/sNRdTOmYebqbDavMJRzKUqCAsrROJqIWXbrIbIIewRXTBQ+VHywTkEeD2AgWpTwfmpYY/TcQDMnwnBbNajXTUep5BgJUwW/4HE+ggeH7/E/Cugj7ORy/17x83Pod+StEnBcERJFCwA1UU/NzBzJDNvchisb3eY95BuN3UmA4rNY/not7MQWKVFEUgIwTxNYDtiCFAFuQVlYVb7abtB3SAFb56SiM6lgvo3F4ilT2qy5wYuNeqJIjAy1G+tfVQSWTl9AJ74OItIu9A+1hEPz3ZFdI9IBvI8NC2ibquSBnSAy4qalAgfUXq3MuuEhTPwzJvtbqo5mUrvsHAd8DKvE6o1oVNa9LaAsPsxAqaxHaSJ9z9J4k6vjWA+apOGr01AI/OONhFh2DX+dq1owQDc7INxyZE+ZlaYxYGRb9leCfL14QbSSAkdFIV+DVjZipyEqOm0UYsqyGZRjRGb0ieEwY8bf445Fh5DW9c2vnxsRQJ7uNH4BQpWXeUmjKZvCz7tY78jFlcRe9TkSVLBRSu7Co9qmfqJL4PlKE8lpQ8fg+y/6zWj6Hd/TnYYrRlDGf5uBnF/szVDZ8fqvrcJimhHXmAUl7Z8BwIHUU4ACp9WL6R27Aaf4bb11ZExJv9VW9tAznEZTifPNb7Is9T/J7fOMkQ8QBWxbNNV1P5I3fS32177baxIKxHs8OP4ItUJhZTyCQsDJsRTOBM3a+nCTx6Vo6MQp+2LsmhnF74ooYLFPt1r/Bdbgfm320Z4Jw90WGX9bYlZjJ+YyQF1x6XV1IY2WO9Pk1zi5OTu5/scMKsRghi4YM61UnCJKtn9dIx/EK/nMlrBNO+H9SwsZzuUgMzLmx/PfEtiXvMAAlKVGpE+Q0I0PDwuc6aitTuUy3aTKLC0M8r1g2lvCOyyhHAOyKQG5sSzlF14xXPREAee2SlceXvMcJeUdxsn7bClE1N/F4X/z7G1dx02uwbLXpSeSj288V6R6hbg5v50k9bhn9YAI7rTJDnVGY1igzZn3+s9fbMBc9VRGIdXr5Mk9PkdJqavjtHXnJ6vTZmqPfnvA56L5SLMeJLdr7QBerXLPfETMwSqsxOx2JZB9xOAcPkjr+hi3T9ump2o0n2FzMAAjOIhWB4hao/AvzKwhKNXzFmGHOWN/S+FgoMEvVV2QzL3nmnXRdqlisQif6HYIoSrEwZT4pYWGA0iCthX4BiANkUYs5wGk0FGUrIcF2lNqjUwZgh0lu8O4a+VJdMDPsYPoSrgQ/ZeFhubzDq95UBdB+Ek9YCwaXI34UV2HbAv0Z6EcRl/hmx92bWx/6iSgXfazML3kDO1sAojRT7inevqiCqD2Ewtnpm1heQ8ppNziKE6sIdBQWSghdYmjAJLlF1Xm56hLz2pe6pB/nIDhzak3GvsDajdTfk06g76dmiOqDMmBKaA9H8og4MOH+nxvwH9J5rHkfLoGyfX5fPphCfvx7TDPH0/rSOWms374j1WyVKE5gQwwNjJogdzUNOAP6NTABANTQFhSNnLy/IND1RAifW9lilOOx6ExeETs+1fnD5UxMVCcesN+q05+X5RlO++W+DsocGLmZwUAmCxH3vVTR79215LkrtSOe0O4eFmbf+MlsqWpFhYLR1pOvUxXhaivuiDqcr9yNB/DZYAN23DGUYMK5/6WbVXTXPXhNQECrB8xqyyS/6j7NsRwrxWAKkMsiO3rBcw5ib0eneq8VOgZ39ZPfDdh91M0E1/dRZBxxLMGFb6OZEzBlKvc52bzCk68QajDd3ShLk0Sj4oUNPjtJ3qo5K08JSWa63B+qVEpRFWLM0F75hbCyx17jwohN9XaLy/SOzxLOWAedM2BCpXPIZtpNTHVeBMqQZfxdO6JpyViJwz68y7shLWup12Nv+9xWpmMAXU5/v0dXPE0Sz0VcQlTFm0zrUUL+xKCKUBfiP5N0LL+aDqhnVebuXb5FuWCnJ6IYRIMw6gyFfBYOHh2BcLzXRfYwq/f9wf5qR0ZpZClqAaLhp0x0AfAXUcZxldY55BLUzefPnHq43QT7wP9hbPDCy3R3lllS+aQr6ClYNZKkM8xkVJEZN2m3yI/U+ZrS/hFNhcsbginz4vKOoQUtDqkhH3Z7iL/4pzYeA3hLOXTOgJkfz1TY3fVB/TOkR7BCo6u1Dv7ZnZMjvxsru4HVJtbP7eIjhFjCASJUpkkkoU2/VYFeBg+67RZuCrrKqavh1W2aVTqzpeLEcLFNpNNbUkW3SxuJ7QPQ6OMMQJSnBP9hg77L3AxSK98q4El9GD3oFBGU3kHIOGxKGSnxZFpge8f7HkROLJ+iKGjvdPplCwWR61LpEQrW6QQoB03oIOm30v2d5saYsgiN/RYHlmyR0er//+1AB+cuVjyBXcu2ndupT+YRdu7C4rPrvZACCUiclbYceEH7r4g09Jcsh0gm+b6seEaSWJZXnrPRam4H07ddviCuQ4OUOFODBoYg3H/Ha5DGbvyUkvSip/MNabrJHxaVYqXmmtt+AgbcrJJF089jhYBgQpOi84ZKJLiC22bRylUosP4aYA0zDlXiedK0tRH5DeeXDoz3h6P0IBLap9VYQkwKyFfCrBHGVn/kvZqxP95KKtpNXQdvp+QPJ5XT6wrg1CJphCfqJQ0INXICFj12j6bjsudmh3748ytJsi2P4rqu+c72hhWECkvVWyy+UWjIG5cVHZGtChj7/iREc5KaDyoqxQGz9XxOhBv/WuydaYhCUlKYhWRUlLKi/D8L08tTVS/ft/cFnSrh0FqDkYmE/uTefXEXdc1zbDFgKZnHIg0AQXNQTze93+NtK1JPb8hH3V+wwlktUfX6eQIELoZKoEzwKmzqYDSn/yjoJVyLfsy/2dqxYmsNCJeGBaquU93ux4kK1rSEBmevNIO/1t22KqGLt6ZP9SWZTvyNeUthcIRxHgN6rfTVE0/jLj2u8zvbfgQdd4JwGaqtRfp8nsD/P0SD5jIbQjvrxlxFCuLqv8/sJSmSmh0+XYcwnqg+P1nNxlHm8DwNt4aKu8/ByfBr0uNYfqAl/kau5yR6kh82Kpr0QCOfGr1vWoZvS41f+VPH2SGxxljLJYJe/M1jSXZMBNcK1VRJPIbChPbpfo+m65UePM4uuPR/MhkKTmdv3ulTd6/6X0FADGtRnG3RIyN/DAKZrxWNwuvuR7F72FJGK0K0pQQLvrhpObyvrD+MAODwEnLwAxZd9BeN6J6sRAEWLQP3YBTKqqb9CV0+N7bto0Zd8mVYzf708w66J2T6lsTZ4J5dVPJ130n2KeVbcd13h5w1D7/7ONr+vkQ31zNsoUT6i2N2CmSRYA8omQfhqNOrscAu+Y97MGP/5htUgbbo5pc9w3IajQ5yoHOA6rQmH4l3zgjB3u1EfD2DLR6bJq2ITureCrxVaMp/morl4gkWNeBmnbyC50EfaizBrlqfrmGs6tSzCtpmUSV3TX1FS5md93TVZvUNeAZ+5zPeMrM+KsCWgtwAJSFuqTHnq6CyhP/dcjxcWLvINt0lt0aWoYOGDmwXEdWu5rDboYf9UeVyct5zEmRZan7jjWCmDkTE96q0K+yDdBegDz86Ife1K5kW/VYZkD9MdbWaocdUz5ufLdQ+h3h3JhgQO+ALs6Ob+raVX2qzt1wyvjsRmPrGGFuoxb5sfU8B1A5X96NXjqn3QbGtoV7MYvsuFH4AaMRBGyfT/P+3mxhHB1BQJ7Rklvu2C9cTKW8mOw32cnC95ogC2Jyq4mEmHcFMRdLyrHHZv40mNX7U8C8jMzteIoiLlgkC3+OVRt5AWzxvju9Utr/Y+Ul0M5/M4msT4cIcjLKATRe5UuhkBSBKU+jrTL3NCZ/m/FlJ4oVZ/KFjprwLcVkGOSocb+MpYS2NoScXpONu1MYSUIsNNkcWyxsAlPH6ST24kfQ0PhJsLPDzEVVgohW23dd++Y4wGvMWUFF7KHxqqaL+Tf98fDtB1lb2Jr9vJ1sW451olQTOmEdu8M7hXmwyS22OX+WC9KLjuqmjRKO7WdhV3o2LEbIl0XFsdFDmzDhKgjJxCgztwBJOtjIOoVmzA8O30hhwnlpMn+5M3IQOeyiEJi1vc1NV8PwD1W25oHXuw+T55cVKeXg9pivZITx0uPoeAEjbiwOHPSwpZ94GGXjZneol/oM3a+nsMRqDM7rz5faKWUI49zvZNT1rtIUA9Z2liTR95ChnbgFtGfLH5fFf88WgRwdSIqAhGG8u1x2f8Tw/t4bCLFu0KkUw1JkZiigD6AL7JPf4Q7m6Ci8ANrgFCvZprnH190nCQGY4rCMEmmR4DloPwLuyPqSwaYtSvPSy5dTg9rwpVb4nrGLSXwMwh1CvttUuY/WTs0RLM6YMHSDtQEKd4Gt5GGlxdN4Z6/NYxwosQeN1h+I8fRVzxC27chr6wHmgnTtCUNqzY7k5wrXfoSBooFSoQvW1l3xwX6skoky1WGcnndKw5SiEP7Px58l9KjRJ3D6ElkeNrEMN1vYfhTktSKrw4Hhz18e83UGGrbra1l30nxAV+f9LKBpy/lHufHbUiZ7tKNZ6F/rf+PQ8hQQbvBOWr7llpi3WTesfTwCgbM2SSIOLOLCxQ1+jLYCH2SrkPXpBxEZOXxvN978SPhYqzX/cchwsB0qWvzt0YfmZNjGVwYcSM5nSgjcokXM3gPqaUK01s2+PWs964Ag6uIhWj2PfjwaUVHFueaEAYVzG95tNB2ZXd67hCoJlY7AVCI9EtfmmAOc35NGJwvO2AQqUa9IcxcfUIPaafrKK6TxtV10ZDesmlYi16wKvNU+br8m/Y8QCkVo7T/q72IOMJyrHT74nyIsK2WSv27R/qoO+2xHvRIYMxBR5xbVpbE/tMAiAisTbv1AaMdb6pa2dWxTz4NEchaMzEXtlxppz0aShKpM6PAqltL5VEc4r7lc8zlwwqdLzMjERStStLOBmKgBaaJOGzVyqTecX+PQpqA7MFSy7jwMEOjZHSkhM1Kz16q2H8dKaSyQei9OnRfhPfsEb/soEdo1Ob0P9e3CBitiifG874Mse2hUgYYzDM4BKahQuFBDkhxaVnRKfMmd1gXaZz2LvwPY6ckgnZOKv9odK5BNg/cZZQNg7x036OjHX3ziQGB7C9WwZTBgEYZdxUgT9pB2z7SYevF9qL31lltRWUCAANc8IJid1CM1wL8XiDQDID2n58Pb0eC+pWaPKFVYSlekDeLNbd3EB+ssAKM1uG2Kpc+ZpsSc3+kZLBWF1n/UFvDnnLWlF1o+O90T0JQAjuh6Au7EQvWpir14DVT0oVb7JFBlzZus4T2F3UEmPDW9xuaj9PPc56mcTd3fbGmdLuO+9yXN+wJekRMz8toohCNxJvw+bXjwXrxOf5KvztPRUWCqw7ixxacx9s5FXUJJT8VTqq6uXHIPji15tgohf0dRCizm/goiYHqAhvHhrhzFQy7IQNiniu7igybBeXzLHXq/f8lElRUWvgdD4+Gj8jLu3w4lNuh/CRYaCxCBjSYasvWJJWP6dPtvNbWdgAMio4uZDAlHhcefQFsFHibXjhP/fYBBpv3wlSu9HarIiF82JcRCh4lFgcXV0XqX/Y/imtBYxvC0RICL0p9q1EDpHx8MGDtumXEz9t13zcTr+OPEOBnW+qSuF7oQClnOMfogRYmib0Yg7NU6hkyoJtw26Z+6bry/mAjjutj4aJVhu2bfuGIZ3XRF7WsXym1AZY61ijFtMd5OxoUrfjLo0evSJkxGupuaVRn487eOauWj8cZ4NKjAV492OmY68+Ah22AFEhh2U4pDdLnaNHRyp2QzfzjI+PXrxQffevWMYscy7jqy4SGHtipiKVMMFDR9wvxX8hiekp1lgA61ka54SNWGthZnyplWfDDyIEOOSu4qYjv0H1u4ikwk0we4T4z8OUcM3/+pw2J6BhjV0OyniZG4BPEBJPOiqItr5ftc5v7CjXnGojwMPgxpFDGjPd+l6QOD4AXI75YHdEbNHnoHrHwfCf28e3vnpRk40GTzc+BMLiInKy/aY5NUeRoigk69C5bYKF2ZTNJP1b0BWRicS1O81YdtqXOemdM8GmtlsGFi0ENKchMLGUpg+HY6nkXIsOBuNE+cFwx8Tg1A+D0wqsfyChN7q9Uv3dWoV7BWzajLI3+uckbMLiLmLeNG9FJKc+06YXo1EOlLcgImbGqU35zGw8Cd7Biqe2D1go3g0B9R3p6WIzsz25FParlTQO4dBT52owz2hyIiqtmjXUh+wCdKcGekFk0PBq+2opxf3Cy45wrvhYFhWHTaLim+IuGtJpoOV18wHgfBZOxSSUebFk1fU3GScDZo+8js2N+xGaa1LZdHT2Rzza3LSRwIaqXmSJc6CeELuMR1vqVhZdJP51I4wiHmzk7G43qk0TuBC4+wyor5IgHlo6YiKeoMhL8/yuKuj8An014giJceq6aegQWIepXQqHQjIfyJc+TiP+c3HGR7xLzcRatTeJlPolXJ7SHYEw9VFVw/z1l6p58pRfhWaMJmjJV9q4kxIfvwC/FUixLIfsSC5V88aUkTbLAMmlUZPTa41K0i+8Z+v5GMQ1su6dpAGGdDkTywV2zT7JGTjlPR7rq6+FJKTzlEUrPJmkh5UQENzZvJOOjMWcz4xysp9T/9VvREUMyrTIdzLXAFmAtW4tjSI5UVO9eJ7wAco1VIoysr+X6ZIhtWDu63LKEeOPGeYsEGy/43hb2tAJNUjT2Pyb1JgzmkUeHF9yEdZTWUYP+3khO7mz/+1a6u1KM6yapZsXtAqafQKWJN1ceN9LrJMKrp1m2CD0EadaHu7q4Kgs09WGsHcrUR5792sUCNeGThU+oz3d3k8S1+8kfRtnDdbqvKqu5eQqFekPLBBHt/dPYWLMYWMI2EdDWm8CFgmxLctHRlaXZMNjSSuG6RE4kGQMS1FUPI28I/0YvsKaPSnXjunHEqGUg21n2qy60F+gIDLQXLtns1jKAngN7tf6z0lfHy9qr4IXHHlyo5D3xw2vQSplYnjOGV30yt3iDIFex+vvsMtWQFD8/65Tg9t9cY3d+gd2E7JncV/Qs5jZ2Zqt6bWUwTYIY/OkVzMid7CSl3zU7DKa5Wkq4mH9s2oPn2l1+DJXZtuWBHEsGMs1a4tqK3z1hw3RYhQEpqXNp/o6xcgmx6jpVbSF3iDpqNC/UG03Byl1ZyrLDpSNg3j9yPAExJuHQM+aZ2eRg2Dg3Tc9U8T7tN4XmKp9x5l0k0VAPqAcQKwbVeR7qlAnZKh6LFr7GM31rNohGgVd7qPbJFsyI1EnFW9IBNz7EgYby60DIgicfDYxHcpUtqxa2eMjLyHXQHx3D44lKCIzClpVz+UMFgUe8s0VeVdguSKIwHIi9OVau3mG3xloi23cWVRhUPA7mNl+is/0VwNL2LciDUjV52LsgO8Sf6JN4eUaDkAbLEvtY2ZPvfP24vHOjPq7W91nHpRkhK4GfWRm8wP00vxPEWI5glJuvufVFyxxmNWL1G+aj5wLuVdTLZ387DIOAWcYWOYHmi6we4HLpPiWvxTlRzOLew3ach+t4lLiQ6TED0L0SQSPXYvnA1ocwbCR0C5zHmg1ME7wLn3+HFJb6bVoCbhpAMsq/oISoEwyjMbEcnpRIf1Obrsjjm3X3CLLCbKt+wwZ6DgNWDO/3coBmU16QkY81UL753yW25oedVJEEEC4YcL7/slB0RN0N20nVaHV+J+N7HKpugjvEM3EQcQ7pUZR4g4AhxrPOBiMmKwgn9WrTILBNYSKd3ix2I1dbtIL5l2K4qv70+mrV0kUUDkkAJLVZQ+WdKnVOvMxT4tg5oWteR/28+sWgGa9d9Qyym66jgw0F0SqKsL/VWUlZ5q+xSTub7eNZ6pnc0OdWR6uZh9EDZHUs0ETIuFOGk4e1Fs2UIPmCyPvOkaDysKvDkjkPk6EbYHilAfeOyGP344I7n9QD0nMJpqpYwiYW/K11T7JxIMdyccorz4ylWClLg0dvFaTZlS28PO8IRxjY5Jlf31YWbNpCzEYeAvxbyj8jO4MolHA/gtr7Z4a7eqt2TiGr1Fc6ZBkPZkoFMvYkkRM0mKqFbUt7sTCnzyN6CAyxUL6Wo7syVDCLrRZYbvlvOZ7GGPLPWa0G1Zrk/vpmKSZizSoNMVHYsks/3PI3xrwh0AMyD9/nks9f40R8P1rHr38XAb8SVzFyduiYXQ7nUSxWHZbYYMhi9OtevglyzjGbUuiCa7X9JGH7+MfwDfKQYYBZUijzwxhSwlG5nqHp7GpSuJ2cumE33bc0PGTvFjYpGgMG0HqQjiPdkVkzEFNwdLDIuCpxLW840LXs4y5VzBm4jhJWCjE8sLyzT35K2DFv3Xb+aijeTuhLL3lPU4J+8U4KnedWCMP8qYj5I2irerj8jZF+TPBAskXcBikzs6AkEmNtXlex8KoGHlVsKPJ2dWtTg7XcUri9j9nIihi2oFUwtEmObVqA+8wLpb0Rc0fhWbxKw/YRrynYoE6fy9uwuET4vWoXb+CtSrAhHKjyaEb/e03F1moNzj5wc5XKfzzd8UD1nubq+zdb7rv22wAN5ZJwTqzodrCCV9Ko8UBal07NK238sz47+M+o+jBQ4y34/YxC7EDojTK5kzmrBIyDPrrhLBTshDFgh7vm+swjYLg9TIT8lM+uQ+lVWUWZJ2BAQshjMQz9fW6f9OcMKD9JD+oiNAxy38ZL7KHWGDiJxKVEYoe261gfY6f1BNo18vCU9q0RLeTlJdpSXLNs/wbt2qJiISgauU01S+kPON7M8xI7uFKD+av9ywxkZ4HCbPEjtFrpRnH0oOk/p+oDZXVEBZCo8JntEGjXJdPUsc121J/6ICFXeuLRTs7u8AGV/K8i/mEunvKnJ9Kd0inx0FfAJGDXAwR95/VAVqNiZ1VC4hDFqpESwvudY12TS+KIzaLIBfyYaveN5jonLjyfAGhZF+NWX+IOz9KBkZQUhzAkqk4dCuHeKiNhnFfWFnxen27hbQN5QFSw0vFYWb/oIQd7/5avsHB2CPTmsznPXOC6Ds5G/qABDr4K+I6/QI6QFn8zh0Ou0KoVyoDpJKFDRwlxu9qOqvd4oTaekAwuATAa9e0fCa9SrQUWXYmojKQe/YQhFtZWaGvHu0ZhJPValV3xowHWNb75kxe0KkJhKXXApwqo52O1uqdNsICcZJcOWk7UE83012WCYTitw14Pgby7HxdekwwGYeMJmUV0b9IZus+nuGqRZ9BYexNr6Kl++887+rd9IdHEEaEUUf43ovrx5P1UGihxg/YeCQuZREaVugCDLrOdq70LDaGrH/eGPFnT4/yT66MWiLhYMFbXruZUf+hwX3GiBJ/EIdZ0ytNVwcK+0ujtuMb5vwBCfBMTcSP2o/TG5sMLzbXPKb6SSs21tFOxzn7ohEKBDwKk2iYqWlUmdS5mieVXDId5UXnSkH8JS62PM4+eXtTdrUJpJkCA1PuYzgbZJNqf5fAq7WHvPCK7rJEb9cRKpyPhB8GHfFgFYr1nVR++yvy9E8pAw7g8FI725yAkpMfTomEVVCKasZg1dI99VACXku00sJKHJZwkD/GT/R1/bHxYNB0anQEhqW5NDvVJBMe2aDcLiZUVbTN6GTk7N3NJwZZPxrp+2pWTPOePJ1GdRkAyc1Ogil3TQ69UWUTwbfjxvw08n0Rtunus0dSvEcVYjhjqcgBsaov/Myl0edC4JQ+KcOekmrAmr049K0PZ8F56tZHi5lzeHJs40Gj2roL6NxAi2keFKNX+Bev6sKVwxfEm7ZsZbK66mt9gzZEsNBKmH25iFtc6PHqiG1mr0G+p2JFELJrQAmSb26C9VKXQuFHHNZ43lf6Vm9UiUEIZgzNfA8EfMTqiH1qcJkeeuy47wncmMIuesp0YZHXd+ymnKTdksMqXjzw0XJqbukGTxZ5y7s5rKah2OUcQdQ9pcKxwHVw4NCDhvbIlAgEJ0O+Rf/oY/iQGlYR1nBwIaAEfBCqbONpuirfZnHdt6t742UUC+rRZ9ACVehNTv8CdfToxKX2HAbMqU/FkwNdm8DSg3LTy8b/JFDJhQ796YLJOZrjRg63UyXYeqz9F2h8Fb2Risqwj+eJrLy4InFzQntQdTRJnmqf4DZyCqUmp7ukZAWqWEATP6FnTbySes83TbneG+0q69XfPsDdpw0v78hBunkzIR3MNfLiGNIRtCDlcZgJDsykKpfsquYiWrWtaR6Kr+lrGJmmRaRwe5Xah0KjoMmGLx1jfQ2evWf0XoaSPO07F1ojC4T6Z0nYusuWCxUra3bZvLlo+PEOJ+zNzASZA70yu/gQMFjOpGugz71dFXZ7m6y3YPEGus6wh3x4vAdL26yXb2/5XBYcLcpNcQ2ondp0eWYs9Avhhsrv3CzQJEMg5W3tQ15849OAMP7NsOcKeSDre2SH3nZU4+s4XbdXdqyAdqtx4aSfJ111m+iaOb/j+uAmx2fomZjl1VO4GpC1PBnZWTnf+aR3Ro8N/0AaQ6+t7OPAEFEALeXJAudmhXJszyclA5SyN2ssEo+85l5KY0GjB3Zrrh2aFgkKNgdwCpHgbbKBpf03k26zKq7UuRz4lFx+kvxDH9JNZK8XH55hBHYG/tPLkVGxz12LKgGYzSDRtyx+9ABVi1lFumt70KXyPkRVquWLc/jlC0+KoRyMrMlL5upfWKrVIj4YV72TRn5u9QQ4J0ldxc6LNo38/7+h1Yvh4EP2CsWVXJWd1aP+0id8H8t48cxeSRULAlkS4bG19a/Meums4GTNWBFOGQEwyUGUcdHHVasZ0D3hnOXh+wgo6vk456C53n3fBxn6Yu6UR6bsw40leY6IrbgqueYbPScONGG0uCaQalOMRUZZdD5b8lL+5Ikj4RVHtJCJzS8pAwHINV2cw/loCD7BSLAmJAKcXbyv41Ncfy5ryJ8d7Sehme+wIOitgNG4tTW9hOCB2XLKdDFrHQsHx8Wrve5WlWW6+WiDYHlqeeyeZj7R0Ke0dw81FhcPSiR31ES8YxpzAVMbmj50RgqiASzX3hEDgk0Ws8oe1fI/eSY5Eb9SkBmdiwebruVhQgthT+B4PuWVmwFZ9Eqx2sTIS59Ml17MWBkk4UbyAk7AmY477cpcEQuE3gRJ/cZcR0F2GTrQgSj5NxFtbizWzNxRMRZHvXjRtJ97dmb9jCIKXiasH3X90P33IT3VME2+U/jU64DXDRB5SU3FrtMdETEiFgblbD8fK8TcYVhwYWstXtEu8fAorwVFuvcBUWqDECAYhwpm/WrraWipylcMbuE2ouYNDmqv+QmwAoGTTuSwzaRBqqMLN6sWydV7rX8uTcrCfBXN/8fVFYOYllaJb7dE1rK8suuHnM8xeFCnS5HaC4Wjb2FvZ3YQGa6/x+8+IA18MW74deEJfRfKPZMgATIrBIFFei3IqNH1l7wmgy6Bq9fgWX3kAVkY8ys1g9NgjW2vsx8zrV2RayamYZ/duQwz2uCzX4YW4/XNxEa65PNiDZvWhtwobhOcZSN0q4DIV5SEevkOtianLQ7bQArlQsNrvGBuKi7+NYJ5ZdtBl4gwXNmTkbU4TFO5d1RrzNchge1rqhGg7dQA7y+70C+S3m3gKJFs/XKr3J1YbpiQC0/yqrheblWKZytHqU616X/yh0CDarYshiyWdIR/Le1hO/XAfoVPTFyHrI+hj7VBAwyw4BjD1mtYRHSaIc5bh7xe1V/KbB9NQWJ/7PijTLAJDZZ0/mjh4ZxrBtoIQgiRhmHCzGlneKmuS26yJQ2AoLUnp6JeaGUUvKyNJHlqwFRR1mNpEdBY+giKmfT90F3i1wI5TMS7mYXPcoKVbFvI3XmseHuik9IEGOMErGHbVdvyJ3cSwQHSYI9JMfHt4ibZBbTTRDb21QKFbi+aJAmWKDWONIVi9t7Q6181ZGN6Zu8FhlfIlqF8TzzBhxzZvZ9/28ttek9lYj36/tFqNrUjxk3CodksgW3E9cZzaXTc47vH7CeLLZxoEFDKmyhHwknysFD3l1h8+aBucoi+5Ubyoy6AZZDmR14ftT0qqy9WWscdM2rKXqeeV28fx2/JtjU+tTj713RMpslzch1nvekLafO+SZWSA9fQHWI8GjdZ+YBezVXFh+8NpvbjXTn/b3JMDhMP7NnLNHnzGJ5sLaaK1VSEidYiFqUAN74JReC1Clxq1n1lMFy7m9QiCIUo2TDM2eSyEqmCKTK94HpxFhiBRq50phdw4JGTyMI5HiLRYJFMbMlt2EpmyqmuIrw8onD/TDRzY1kfyx9b3eAWcMucYwJ/EOjLMclff+MUwz5gaUe/oe0NW9gEFgvxaKFkifihWNuc11HcqSnGga9Yor058vuSqqP2KmC8pF1nsbdRVMw4UmFg49rhKo09+aRGhjwliHUumccZgCKIoRjFJTXYnjy3DIUzIaKBobXmjl1sfTOOD95U52sL8x1auYBxvQmD7uRP9bTXioNl9JOGbmar5q+1J41mvk8IRnd2u3nBNul+fcjBIKm4Y/LvROP/sLdqSrvXFOUJXbzrQYxefC3y37BzaJckYCx5akJUo6j5Neqdsv7HZpLKGJbjjCEyultzSmH3N+gRtxgjyEzWZG2i7m2JD8uSeKQusCBG6/noewwKy7sGQbLP6fgfb13rkJzPpyZH5e0ev2auwPBvHlfp2RSFBgvtXukX1bK67StdEfjjmszCDXGz2G8Fnew4Bedhe4W/xgKQEPfQRuRw3704rZRWKTwnvZzXKXlE5vOrvXkA7bNolzC/6tAI4nNlBY/6BlFQtd8KyArSKZStppj+IvV28CwGeSmmCX4baRWXlKXQ4DGPFm2oqek0izbUzRZ1NjzgE5xPeIX1jhnkSzbmdyx5ma68eO2OdOepZABOhC9yASGAOzGneftqsxmGPbh0BcIxwKmjxFLGXvdxTXWBhhaWw3baBWNxB8FCVu4Acgn5/fUulTMgjMgQ4caWbnMbe2HQrJncuoF3KYSnwpkXZjeil/hmdciAT80ATozpUf+bIiaVjWmAhbY0VmsUNYK90AKjZl2AXQoObDngcTtClL8jDydXcSoKtgoWFtQQJShzkoLDS8odEHEDo9ylIEmOtcdP/4i8an7FV4zXykbnwDBFkKhfnL+lxjAUC34BeRFMlj8F1NNjIDRzBA+sDLWb3fpybaqduVnvrhPPKViSjpDWvcF7lTMhrxxa+IYDoYazS43zELWQwZg3v2OE5LeFkqPUKFiNT32XVI11GLIRNsplyMnhfPoFMRPRSabuIR6/nprKYQt9OdVYmP9My8TEFokGz+pfBQbZecIfBU7oqK8TY94PpOrICQTfdlCHHorIbzZSMC9rEyw7UGCsBjtRu9hEhyG2wYGsE3ltriTG6XJwzb6Hs+Zn+G+ACbSjksNDTsyeb41MZFcDGIRmz0MqFHZKCMyhyxt8QCkrkVCTNEPOhn++7H829vKI9HYSyTVpZbhEPUledgBQ/37cPUs6UV8Ubg6oR+4/R0ivek3eLdhNcjbmxIlpjPjviNVcEnQlADGeJziK8KqAuGqqdbX8bxR2LtFoRY1xnuYYm4merUbDJPowD8mIUgof1Z8uszc49nqL4emu8gdcdPz+0J0xXe9eo14Mzv1uvm+S5x6Q6nM866NfojKS323KxLjn8DseNodWdO0kx4tq/SUFMNvSSWlSrIg2fb8lGKWTHqYS8nWgnhJmtdDCwtU1SQpVfr4VhpWK4tOGiSZhX2cx4NbvK5IlHE50VylXVDddd/Bf13UYo767NHPathBatZvZL1Xw8DWFJZcFfzVn0XWRbod+Ink+MV2h1QXNBfqhDwSqoVNH9De3CraKzORloT8+hTfKB4SKZheEHyVpf5TLDDJDAdEqcrn+RWb42ietgci4i4ONPV/G1gxCdZmokcPOUWY58+0iTLN61msNfE8290jwpN/9vycEnkmt3SnuTAgOGyh2dMrVSkfjIRZQxrFc4S8L73ZwhWasEUWHFf8A3MxnBBfh1SpWThLzfWGcEjfGzWoAD5pYrmx5kfnS+dPzagZTMt3zmKiDHLs6oy9Sy8uQ/g6R1xi6FenJK94CInN3+zOmNGsz/Mgdt8MNuu+Uv3a3tA5UXLrHvjMNrlHdbXJAGo3zXNlAuwfGmm9UjtefEf7VM800ISCqEVwAlsJ1B6Wiyd5IudVFKWuobXKnnJOqIbdvL7L3QEE6LjFpq+iOt88/37/i1TzyJnatReP6krF4Gvy6xi5qmh7alg68BRbdUFvCsyZMVBnV8tHDPBlk1ztH2ZVmVcmM69HxGuDhic7utwz2JZdkBMDnVGwR383pzkbR3GNpDx74cbyIKahtHaz4YtLh8njL4njOcYsJ1KQ3oXM8vXFrzu4KNWF/oJRhIpx/h7FWsvaK9bRxfWHv3zJFhFcp/Y7iOhQ+3Xreb2guqAyl0stbu4R+uqxaOAcOw9QQNZIIv4aL15iOlYERYNrmrTSln0u9r+Z2z3a8mKuqy8XrIMx9V5ljkXIMEhjlFO7SAaoNGyJ5Gh/WYmSsSiC4VqlimMzxkVW5icStdPd3f1MbKfGRrffs4goRiiWk172oj4gu5ky9H2M3iU+yBhLYTct++cFojuUmMLRgh6FRYJsRggEaEnT8+Y822Az6NS0arsq9QsDDd340sAs0KtUpPOpf1DfTmwg8kuel28IXsazwcMa2JcA9ue3K5ZVGpmpw6Zu1A/lsOSe4iKqmjF2bicqwUFGo7LSd6h71zuosbJ+aXH+HeEv9Ah7sTCm/CQkVN9xjDggfy4FdToGMsZnNtkuu43PBHOPzpS1w9hF5XcYUfEPRDoDgvKWjhew+Usayr5ctFCcHTOGZM4Q2NLtrTt0Cz2zUzdKKrQqXmEb4ZnePn7BHoIhxyJaL5CbujfbZKRTkxLSBpBVdY9SMYJ/7tWZUYAXVgxrYw+DzG2I1EjO3gCHi8cQqdFdi1jt6MN/MGZtT9cfW+5JqORqr4CzsEHCN0YmssMofq2xwO4M0NqBXfBq2J0Gb590xtbOJ1KcOjYfb+70h8ncZ3UZ7uzytLCe1b3TvFyAIGvDEw4JQNvwV6VCHcM1KNk32+drOsd+d6RWuratGJzkXI6qRGeVT0cOO/0rdWM2kSmIVFND5EtDjQQwED2yipYsjzcgWTOgyF3W5LgtC2+cLbo7BZPNme2u5tLT/rwsqb4t7CwWX8IEix0FluBw+bGtZIPnn+yrDKixnt/t1yPQ3/zd2qSn6ggzW310XPwhk7isK0FvmcttvMlgQOlY8/JA5WpY1D7zzBD5VmYwFWfqE3Z1t1ZlXeO1ffQZsPV1HztAeJSzuQuSFQxGl7iRLVQdbcIuCWKn9roI8kYRHXzK0LgobNuJ7ty/NvcyCL0/kBIKohSIU/X8JiuUV76/mGVKsfrWH2Iq7a7iERTxWN/LgOQJYAhGshz5wh7gfMcZNsUMDhI+zIRu/EOepaMsQNe4NhXCc3n9UtyXd97CCJ6Jn82FVZ1Ut7R5gYRrSZu/e0nIsTmXikauGHLK97Vl/XWRtOB6e5MBTUXf97j/w9KjKOSnoicyTzFET1R4F6hjivBT37sHXT4D7eO63wCsOkji+p6s7SSWnVGraMBriqTmn5RTB9E1G4QWazM62a5pGdgdHzpPlCfX+ZiNHoIahp1ki7P30OWbwaNYqAWwcbOdOd+8Ofyj+ovnsjdn8tOLs/ZOqqZQa8DPh7kp5napZk0EJzJYid2D25CvJNbTXzVqJBLA6ilVIMA9S2DqiZxr4+975SQ3KT3hdxYFCYbMQkG6ibO/BiSa6sPFrX+f55kfffFfEK2kkRPKlsQEub2fpgL5zxNrG8SnqG4z12X5fuBsqI2d07JqxgrvhUgUan22HieT7xD/piyphKnX+OG9dZBb7v42lYNHWjRg4xBSgYuaDePTtMvrGi8scsH5KQv/c0dzKeut+BJEGMdYbIg22pUFlYNn3O+KCjZ47Jwy61G484Tuq4IHvhkOeyyofaWLuoLU95GVZdSAgnXQrmygK+Hn2GDS17SB8MHfnbkyzOXu7j7ax7XrtDo2puw71fNOTb5kY+Aj0Fb+HilUxaD/R5ndFnR7OU/hxojRsJJTB04tqQsPH4bESZDFBKz2eo2bz9QUpemJ+oBirBvkY06YwuOqWfuTQKbYvQfQHf3uOFZGG45xtbCaiI5ydbR1mDo6GTYvwdBlo6CvpOQ5eYKjQN+wqf6wrIkXM3Rk+hRZuQTIzD7TCZiVLS4BA+OI3e5roT72jK/XELiRuNqmF0B0GsYRYirHNzPYkPpBLZ6ChkUt5LVx58psttv/S9re36VtxemSk83w9WTKMWvBCNkIJzym+s2vkW+xZJDEIy08MeBm19B7nae9IFLYRTKDJ8TyEBUEhU3WKkQO9Kx0yxEqw7Gc70l2Sa5fDgMJDBGBW80KQb67mftJ0R3WJlYF9b060uh2HlaBtzAohVDKCI81MCVzauzfAY9a/NmIYxoHf3q4kqsaXm3PUjrg4d2sjKSMjADD4e5SzpeueO2kPMG8uzq0AICMMPXphLc68hLlorY4U1GRHUBDHzcEL2zciKYUDHK7tCjWyA13MS6SBr2VAwXXdFCWM3oV5JfxXPvTDf5GLzuGg64U0TBeS+axTeg2RWNx2GWFFUU6Z5qPa8zBJyvViEuy4I1WXe9nly7Qt87P/mq50Nwbgiu6HSq3ieG25EJDpasBjKLuzOwhyjn+Csz1tJQyVr4PAyczofYpiXM9FZOiDg/US+ob0u5cd8/9ZhIe1rmworNAnbu/NGjnVxpzO/8J/SOE1RaXjLStOTk7ExHk5XNaCuNGlsDtMCvJDGxzNHlg2vqAxXoS4FbcyvCqsdwqZAfQr/Zn9QExYuxxi33NeKMNCLcvt/GETUmhjFYJfobK/vkHfVuns9+oYwMfdXJ9oWkDeXIQoiqafMbgJCfVf1qHecdI5rc3vaOk9YvBBekpLqrQk+W2anMcvrqMaAIhyT1T3G0K0i5Xl9ztvVMyayjE5+A4ayf/quR8M+75NZgs+BzO3vgGgnRp0tGrq5kHWucKeTgzmktn8/yC5AnNs5ugiIRFyypN2GqprLaV6moNRym3FI9kimxLMIwcucb6ZhWwQ/5r0XeH0tRCqjCzFJsio+hT+gO7hVJsSmHsLZK8ZAPmlzqjYWovbw3M8hfBP91HNz8XLUiGFdZ3oRM6rAj/XuzIi3VNWEDpmk0t332p1cfNRXUQKFBcMlm0XSLefwNqP3G3Rpr5zKEY90Azs4nWGsDZfMlvcJVngFzGQyWZsH3q3gKdz08zjAiqYX/0wMsRbvl1BlvBy6XjSPobilAdk4ghV97eKk4/ihKzNzuF5J93I+IeXouFcLT2OIJqy0mu1WLfBguhwQ9VgVjUSdXKGWBadKL4f4ELurVEXx+1CQFsHyjVhMRmpfsFOZTKArG8cFnS6Z137IjkCjNXihHrtFzM6nbeLkB3vcznsdn40bqlQWTQ0n3rFZy0hSNAkp4x3BA241Cjh7TM3SWPnrL50anpRhJiGIiNVHw2IJ75LsLrrCvzZInWL/CBoR629gS3/VVSbcdRopEiWyStDq1LKROQquIg5r9NeDf26N5gveNwj3rAZZSA8gxACeWDBBJ4mS1mK9S/jJbziFCm/GO1rA4+NR6LAP21tzTHdM1uWC9HXeWOsF1uUX82nnjS+tG6uEY5p9lerM0GiRkv4wRFfugbp3XDXNmP6/RvjHR1Q2juvl7435j5oflnlBUHKzQWQZ8bPT5EJi+h5xQM3ATmQk2ea1y3I3Ntd3ldBnlmsqDXsv5T/dMvI2dS/GEeXY9MpOJnqN9sHky3Ck8lcAUaEKnysR5/8PaHFzkjXI8mzObN0Xb1rQnsA7wjIRL/whwfDJb62IsZmGMXyRcOIpmkmpM76r85sBQxQSXhZEW953RcclgawGRfUqboQ8gnZqt0h5qbnpSvjFuS1OMJugRAMMQ5rL24mhl+2+GH325bWenyxXeSq3NesFLaTEj6Uv2H5Ujw+cn9zjJhA4RBL5z2Pmf20Wr8VkP1x83goV94ysFHa/QVH/W11GMBxjZdr7zsXFnoYrphyrbD34MSdz6w1Oiyl1q+nVQiQ6bO2LEwt/nOY1tGA//QtFUzUliznNbYqGo+nTezebsPU3uOivKo071byuPAdZPvIhRRf3/bzPbbDeE9Z6wAvCwlZ9s1Pd2nEozuZZHTZjnRKcUKunBpm1x7w7uZ++T2+Dj7vFLX0gbiGgBYgm+2SWb1LkZYYcx7/7XAS0VMlX3ISiIpQzQepertql7MELDqGAeXfXMT3O8gGQ3eMJMjHmETuHCd4CBU/9bLJ+7qpYKyx/AEJ1pJ7JJidilxac95yh6DmDnvHDmnmbQQHKaxYO6XtxLTlAuCX3BbPcRj4STDmuM6yhfXPhKx9VhhXS79NOjtjOmOHRZJ+I9mh4ZkD7XdK07FGerDpat7Z1xqfjgQnNG/V9rK3OXdvyxaVNmR+M2WrVwMqNp743g3iTiu6GoOJ4JYfrvMwL9CpYbbWysW0B3PYmHv8UwrqIWnC5lWVhGEzoq8rPCJm1dWc6x8wsFuDXSW9uke7BZZMbfvc027NNu9hWeJcU0958AHFhdYv1xAN3Y8BU8D+yEyQq/haz7rW+J8HO3oGBKntDT1A5eQeMQzljMak1oTG1TWMpVrvz7JEUl5XrEGEZyBUVGO8xS8dNVNqOH4JyX2O8cp+R4O4EJB9WyxsIFqjb6kr+2guIgPWrWVKE+HprqLzxTSN9imnNUwqYkWiwUfKvNRHvDDlmhhw157yrVPzIMkAQevtbnDVceYZ+Tu3B33BUsjYpLR4KOJHiO5jjHA8BzdkTBlgnt22hXarBPjBTHOr98J59Eq135i4mzrhWGVdvVR6Hh4LQr1WtgVkTLSq8ga6lG5brjqtBZHTF2ECvcJmmcUnZjc81mqAoOoNW56iUqdPoLGW/n3z+Z2An9796NWMFQ6Bg+CmmEtEL1L5Eg5xcR2xCiygN8z1tK7mAwJOo3P/mB6tbc/lFtk5GmQBblka8QTH6YuTf0zZD/8SFzr18BYj8+G9FrZnPm8zbB2jpP9tqV2w3+w7k+EAiQf19jHKr3y1e0geSk/DWsxgHbdgKCNEFoDuXcr3bByTJ31vhPJZThnSxe/tkZx+I+bFQIs3c/cIHVUq6eWcmCQOYjipPVrBYmuWVobuAaJzZulKgQdiKBdC86AWUYEKd7iEoNUsycGqFJHg2gICzE5k3rUkuf2q8cXH0lG7Dhy5CFhpijxxGgyxL9KvQIXY974tyUBSD7u42g5DcktU+oId+AOXL+moaI1g0tWSXcS3A+2dfiOqguHZzhXI9OciSbOx84eY22mIh+HXkEs4WWyDGV4cJ6p2SN2xRs7L9rsYXCL+HFMhYvzxqBlXkCU+440lJGkQvqEwvBdbTul1c4faYdDUMJVAOHKmdtdLZLX/P9sYpBclZhrtHO/haswifbWPYjWB1fHxShR0fpONDEiHeYD4vahf92gmI3jcFJ8RuciIN1AL4ApBqh0kM1jS2Dwq0Bm1U9v9Ql4YYumsjiddKZVCUxzri8e854F3NJgsXDBVd+dhpe7LdcRt9bufmGL4Y5wbRhkn6WtqyMHqoSzfHFiNXlRcmCbPIyy1SQ2fM8Q8wpQZKDrhTjds0NvW0hB3uSMR5u6fi2B7E3aujPejOyQGLHhtitgoY4gfrL8iH225PNp6TfmXRsXkwejzA0vMD2l3h584Rq1bzXH/ortlx3cWGFdjQzgDWMrHf9qJSqlveWzUIwpyIgJrplytXaF4zXSWHyEsttHV/SDooX1MRJf1Fsby012KUlVBsPD7/+UuMVyEUx+vmsUUF+DXvqtD1CKmcg2IzaM6FYWEB4KTlMP/nt233MeesG0mgMKmrsWCg2YKbgD2e14C8E805nzl5+KW3AAoXvAx7yOyZT+i0CD8467Pnd8eiz9DAuPWKGfpf7qUaOzOf12EBzfdKqnDPcr52zEmCT1tIQjhvm2vpHxWfPSRmV6oQjvqHXRlho71NvRj1yoks9givF8p//qYmzhHYsOdr0uZNFBaYL6JpLjLeTtcjxtDChPYHza9zchxaTRp/NpgwTBzoJoGGrjl8bSmQi9YH3EZeUEFZeiErCc+TqZDPsmXzpiZ7SSbNQjTueBlnW47UmMAEjibSM1KKRrfQpT+QrfJPRzcpb36cEQioVm//dVNtW3fB6Y1vh1KZgf36d/wh2H1ZxncXdWk9MD8emjAb3YD6msihbPEoOgSIf/4l7HXTAFgWxsh9n6P/jJguWTkRMKuyMhzcRZUyNJFdhCRwpEAXPbs+rFINl9IOnvBsI4zETE7hS1MKqX+DjwQ6v9YK21lzF0V1z/svhT261tvYmeZwT8oBaUvQQnc5WZnethwlQCpn+a+XIOcWfu8J1++EwYOQ3aRodxYJyLIohIDPmsDhur34qZukia3k69xUl9v945PqcvtYqvxjAL2RHLkp/5OV1Pl+6NQBM3v/Xn4suizGbIK5csgzu0LXYzOd52nyqdSxvmuJOVOlDbwQt7QYvXRG6CtgFCbFfv0SZgFGqUYS8k6rlzmyGUyHITj2oDFHHGBuf0cE4ZltaldJn4N+dwg00S6PI6g6aNes99rkD5W8dJZFOYaUqlKDxT9laqN6/cgEAQawGeA1CcMtLpQFEym2/IWOmdy6ptX6Sifsc3pjbvpeVH17fF+FeimJa2JGFssahJDqNAKjlYci/nFKPMQr9HI1hCtZONXMt+tmTGNfD8XzMjhdce2yumGCnVaMo3kCm+lqS18yFxzLyNmEtAgK+KCz+Coyfb9ctEfbVIcptXy/uWFAiK2mSLqv+8+nixN6HNKWCfbz17VFXmRtjm9KoH9jdPYRhRhDtSl13OjLi0FhOKjb9Clnb54eMMS2LnsSGEY82cA6IEmGTmp6+ixtjPNBrfVPaPHVtvotKdupsDdR4hU1USG4hJbYR/k5wQzTq33aB2MqxwVns7JaLxH2maCvYlVHcI/jXxFXqqQ9uvOE8xfnTqKqEuceX90rVS/wJZdwMDUXDBgmt1mdBjmS3OyrdJUhpB4F7ZQtBMP6mBMeh9cXtVbHU9tayiEjkorlojKi3MX56K0cQLaZ0ZyXdxl6eT7iCBqhRZ7wX3Ky+Sr//KQc9bWv+7hDW6pobi5ylS8XAbEZj48DhfbJciuf859d7oSCIWRuSPBKuDeuC5lBGfzk1p1Je2ZUHQyuIu9GhxleZoj9mLGwM4gMIpmiSfEhlaJFel04yMGkx7ilqWFByGt1Zx4YtOSN1vFDQXm0E/Sm1HP1RhR+Fgo47F0QSCGzr4nz8yGZ0bKZacSt83NErOQ8tL5Fftk8P+FyRC6jVHSRaYD7ZtlnbYvKNlMo7YFTQe6ASWi1ssEjCpIAWmMtzREQuXnf4oM9xJDX99xKbj/LNDPIyNH9VogW4U8hT/k5qK3IPAckHmGeoMyLYiyr+P92CG2UAFMeqL6wKXSd/SXHdOTfVrtaIj6eNHz6BlTqspVRu4Bn0duGrPSeGJe/UtA2eJ5x3BTa4VpsD3LCHpKUBB3461FsU0TxqhDB1G2MVLsi+Cx4n/ncxsnE3oj+3CKxOlOjrC8SkUODiJepLQDhmc4H6UNqCkYP3eYTlWPhuJnHOlq2o/OyTSGHVdLoYrn4cJ2xlLF9siq6KpR7HIF3wKUTRqT+wAf37v7vWu3itI+ZrE5g55Db9ZioMT+HUA39vXxEtTypuJLKSKMPdSaWxhz4Mdl1fpBqav9s3Q4nijsPyhjaDz4qGudpvh7e4SrX2kn26s8CiSmZ8m/aK7JSj/vdltIVwaT+hZe6ihQqM+0tY8ZVyNapsKvCEocrvSaxmIRXZmAXQKvqTe0PV+/a3WTWujXYeHaEQboNju6JvXlsrSGPfTujyq32D7iNGIC9/doLOBhvbGmgeR5Ut9ZwBXYQglVXy/zRbz0esc6V/vFOqeeVXW8rZw3DLxy2NgzPr1rIgHe2BEkeAUyjTt8O518r02UTrZrGWEypAoqcaItVKQ3CBRS7OkDzU3PcLGeCGHf9HgnqPPu/5lnqoPdDbBbE0WB0vt+TsB2swlnPmXH9HLy02dzBmjpFMt4FJQ45bD+E8LHF1fCQ7PmVmh/a9xMZlfM5dkNYsVW4gNNJQSt/gYE/wBI9nv61vBJfFbcSdzYlU6mifP5yBhpbqE7uqPRLZ1o46nEPf31WWBqk6tbI/pwFqxOOckmPrHRhdjN/GlhsAZ4YGZP9Yr1rlOuXpOziykgLgBdpFiaCYUQRIWBnvS6FQ4Z3ZhngF9KRVojDnPn+tT+Jy2Wf7IB8Zk6uNgN1cCURPZqw0UVtlorpdn3YtBJbPs478HYDhnWFNwekmAphTD3I9Lnp4zGWYBuK52njVKzzqtaATHkFI5KrDPmLSNp9qApQVVZQvzg1IC1eKC8Nb8XzSpsAvnjezXHEKm+dmg9tPDqJK1YXTLqe9sN3eZETlVVNu+mRIEXmCLONDd582OfE6Rj/S1npspxb2DZlueEvjHUA5nQUVmFGMT+7xBIx29NsCc1rGLkXczTgrTzVUge66uFuTVNRsiXIjxeDRF1JUUdzaT50A6QbJZDBgi46B19rh8lUkr4QBPyBUhfez0VcQEXnZgUkEuvYBWG+yHgAVpyMFX8VSVniLefhnDk584kJNiTLrfx/8NSbmdmD6sqAdsn7ZDTrlbCSagDwKSawHQrMDstK/bR1nvU30V3KDDZ/ElGxcAuciEAL6zw0WTQ3PcyuiqMUGgita+gIcna1bYhslrh0U1T7g9UwzB7RLd2+ewQfsV5hZuEpPpuz+GOqKH5Mt1Nxn7iWgGLBcsLLefTmxp5bxg/6a0fUVMsgk5NN6BtmaQZSp/BnKUDfq/Cv+XPwjenqD//J6xhEr/dqfR7ZbsChAbFrETRDwi+VS6pnHIQ355xfWpXBp20OwfHumjD3EpVokx00EgzQKWzJhEI5DZZs76S7TP8Imp+HNPpvlgCCHBy0406OFfQnryoA2B5qvMDy9/iVusetNndnp9vTDACd7kOuc28cZuM7S20NAJ9kOtlMNdawKtGG4JxbTANd/R3prUdDZ6zQByr5EmVSaIxsdvNEPOuvSR0eULceeRdc0+QSH2J5B+xNgxfNuqNQXbAtvlP+GEVEywq3XRdNK3jFOWCKX45czTheAk6kBdfuNihv7SNqLyFbm9HeSxA/1FXv7mWYxxNxCsr1uRci8famTyQzL7iaP9uxpFzH0AivTDySJvJwdrBffEEv12ROW+rh4K36avB4tn1Q7NXsuizkcAsNco9BhSENLdNFnMvPqqUblxtY0F6wdM90JyxchG+JVyXAKBj5eIqOJvJFIYY0x6jk6vfZvzHE2ekxL7pVajHVyPpwbqzI85HOWtyBK+Kr3nz80ae+rCHSWpvSAyye5vKMM/Z/FzYKvfPcM2xShZKHks9lU0aYmzFmAHzg7ZdREjV46Hs5MARskfhdltOkbXed72ftoiVf6+ljQfyyMk7MadvfUxOca8aa/CPs6Asx4RYaAFsmq4vsFYHDQWYncVHQX9jwmMfDS+l0rIyMrvErpBOsPYlE9cblLFgZwic3GnwvX6L5DTYG03XoIenKEbJPiMeMxKl4GU0TpsEGeRinJWY/ZnWSaaARzVMVdhjZAiFuZQ9ltpkIoNBzUBceudvZNDaDnAiWzHa1CQyqI2AgR9uU0Ihox4k2d0sHXmcUCPlozKH2Kbm4Hv+9Ie+8brL4S6H9rAXpWFrr9WDNpWpp1HSedVOEjPljdgriFlUiLcTabTfVvtBX3yOMX4ydPuUASJvj1pG3O4SEnx0BVLaXgIcJabYi+ymPCkF0rG9HErbY8WjGyQKVfuAGiRgTnkJYJsdwa6MXoRjJNScGRWLgqe4lzOwa82Khg/mQPj1HHuuHAAvkNJ5JtNrQgxmU21SSY5oo6TJ4EZfYWJiFMHmzVETfiFp3f8b16VZ4eD9kd4T0mSEUDZMW2AbiH6cra2xw/yHBqiL8z3RmuYOy+nnp+ovUUjbvVuV3ULTTE7I0+3vof5bMoAeWdQXTdJz+7UTeVXLb5sqnXSgKVtp4kNC15HdGMoIYkE0swdO1VM4QH/ikEg09YZwFB0aXUrIcWeZMn+M6oolIoHVzof572mG3rYO7JP80mCNgnh94XmuPJ0qpyZ1otRdiGmRAVOTqEwYkmgjz/F1Dm9f+e4sEy6lJLfi494VMYCrOGz1AwgDiENVaksl02yh/6MVzSnoAmcYY9sOQ3+dmRZmJx+/T5aooeNaAf50jk51d0VIhP6JOoF3uOIbR/kL5wuYAFBdVQVnbE3cmbUMlOkYTAo7Pt6PlnWrgCiuGL8adfs8VrYabADQ0uVq/YVqXyNmMZuy5onuxuQmClo856aPFk40sj7A5h5gvpyB0J0IhjZuGyVVsMkYl2dXChdG08jJpH8UlXFCrQqQQdsWCWqgQeXHuap9Ig3phkCn1rP6RS92tv0KMUqm5Xi6w/hmny6K+zpPtu790bgGxdJ4L+pTf13bysVS18CQpwm5YXtb8QpTEKcB0LXaP0hXy5ONjpPOLA2DxLA4KD6dvsrkFVOuPFfHddAyIm+WXE5+YjfIHs8ztMw14C5V6spaXpwJZeE9xQm6KuUVuDqV2x/cPV07uYf6l4HMnCvR8JzIgy60Gw+/5xiY+jIMVpBxx/vWjYHdBy3aQvhwqP95jx6Wrdy5R57FNROALaFrs8rNEF+Rtoffkhnyw6cYZj8wEa8+aVwNtwu7bqkfl/82ACU/me1mG/HRlCiOniZSloSgyopuOn7j5FgWci+3tGJ8FQo6FiArPrnkbruCuXOatymJXSMn9Zpk3GFDtCJdMSxaDxKcYbU+9FRoeMvdNCGt1ybajGF/ZJrELxvUynx29YlDMkmON0/Y7y3cYwvYYRjHwYvL3qbt5TmY87C5Ji3/Fnx94gcKDMvgtMkplXMSmnHayCU/M1pWO4saJ+sZEhGpzqnTk3Cw16ehFqzS/hvOLTsKRgmbC5XqNTvvNGyOktIjVCkiYoc1DbSjutye4mx9il8wBmvET+8xVAtWJYwNaVC/qQkzaBaXek1iIorEzRbrzyZVVFWM0uh/QBaxBCNbceBv+xG5IX/fVRjktnEi2CNUVF2SiAMaJJrQxpIlft8XabM8WAD+5hkFr1jAQoLqAfgRuNov2OVHUjGvgcLX1jY6ABpMYMn/Oqx0oclucwE9ul62C5xMNAISI3pv/vUYItafiNTS64AywSHgyBfIdpsOcFKL4Kh5hgcvcOHkGQEC8auhQT5+XW+hKF+BpFw2Anvh8y7kFHWfy4gWW7RJ6Mp1dz39Ntl+FY+HLQ5dJN89uQFmoHlBqrSFh938eBFMoOf+x0REGgI/JwLP0pNJULKXuG0YeoTAs+LpHNFRamktTUW40OvdElwU/T3RTVMMbT90MFmCWCgCbzRqkdFUKt7um25hjdyPTO+xHVESqdaeHbyHJ1XaBhXDJ7grEWB5bXhMMTcZrL9LW6KRPz7VfSldq599pn0KpKO5m/gMxquF9CjRxLCbxvREC67l+DK1DRCWltNbYR7TfyDYXf3T5h2lp3IWopWhUBPBDC2bwk6GoSYkGoDNaIOzm/qrifxSMdMdPkXwyC/rDMZMf2JeXYWTGJEPQCQMXevI6/gUgq5MQX9eHRoXhUWgoiQiOI+cOzSrt0osKQbERBw5G8NojOXnaPIK7gqLt91A9gMwjKy2MdxTgOpRqpOWF6CO/ofv8rAnY9BeVm3jNQKzxhg5i8hM0y3jBWZo04CWj4pxvvtL6SgZVLlFDJA53OGeefKZXJkE9cCMf/TJgAn6aVxg/n4oq2ce9lK8fuYKffsDov1MTtKMeK5stuhcUDCH/OZdEm7+24JcZ55IMJFVuepYNcSAdZeH6g8WKJaPMcCzWT7FfCnb7imTo207duMGeYZvWwkDhaSzjzVEQs75xZhyfEuQ0a9w9tE/sJPkxGeQNP0y9YOw8RA1f5DPC0poDbzqZXE4Tdwh84PqMQCiL5YdYUyDilHds4C6TV5cU3/JyTzbnRov652vE7BOITM0L1fTLCn3ON1AXSllfcA1HK6zgMI3eHPSxh7q//5/DTeVTIyqLyltV0mSZJbrC4tP8g56TDqoI4ZjI4kfDTcXIrMkBbL5EJNvvIhZxzIzit+oWH/j/re+5OW0lw1GEhpZnd3S9wBTNAHA8IRf2JS8fNx8iXPtNOBBeI/4Wf69/e5THDMhZZQSPAvME6I8NM/Mk68SqNwRx9NDYdZb5NibjArUDbDbY72WoxGgkZXg93peubFJH7KjsgAhteHfC+yifebKaG7eHPVe4Ffma5+0VpDckp8uvYnnWIu6ueqLf4UQp5oG9qBuPPoZXUcWJoz6zo+t/eFdPgTfq4/bfOKGHATHJ/h0YYjVYgdK4mHr1G3SOnn1oNYyT7t2D+dX7fQZMjw4IGxgXa9i80JlIwXpTcn0uqTaW8gZTRKvH8CLOWjhTBUgkdh529nr6KSFzJ4N+l1oXI8isab1xAeoWGL9mraN3vdFqm5gA7zgPNCWsZG3TW9U4vxBwI3j7ciowWKVh7sD/+Sd6BLeTHxaHE5DSwrgT1bfd0cGO9NBBjBkrDn9PtRfrD3BuiJFimpKu4oGHDt5o/MAC2JfuhQ6kpozP/uctGzzLrJQ9s+cCejeg7DM2q+cNIAxW4Ekru4vYMceT/4iNBK+SW4D2QCVV2rqNrNenJszHEkWNubU6i9ncP6rkkeZLZsHYgaKSisFhwdLXLUAfzshse+jIq8fW1do5ADhwYKR9u4VMYuY7iTcn+tKqtIxYZthSK7SIZDjwkQmJR1khD+IzA5cdWo1H8+S5Y8FwwLB7+AKu/lxoxbPxLHqXzlAX5QYbZVnZc90od2XX/VJNdDQaISZW/p9BTpEXi9/mtSJklQj3xIYkzJJA3HnofOpqejxUv7/BNu1C5n/KAMp9mmZeSn7HnEJTW0Az+51S/K5dQRfS44qTRoOaNVVLQQsXh4Xc10rnObVlCN1bQb8T4XgvMyBUg515qKUb8Dt/aaZTdiME7yByI3WrXVYjEoLU/9+uVIWGf+8XWvmImXRDCIgza+BA+CrUiTsbESxIHRhRvZnrAGmaRjz3R28Pcn95XQGzBOc4Ny+S0C1gnoMjnEyEebU/SwKJ9jTzm6qSFAfKQzKKLUmywOXk94rPVX+7TN8FSZEmVt9W+/ZNu6l/mVGPYGhL142qIMZA/Ob1IMGSLIB713eEuTk/SFAg0wPapN8z87GalJ3jHHKWje2B7ju33aEMbMlRHuhsOi4nQBakpq1V03do/GwIUgayiCuzqq/CwbvbjRtHdpb5ELgEsVAQg8c9bKdHp6By+JygC+b1RdDpL7IsOiud9xNJ1STKOGYCKZoRMlgLrVonAfcOJS04BEEGrg4g9ie2Ty3Heu2Ybqk4cqyK192lWtVn2CCFl/KcI1dXQI+lQykKeqamVddk/ey23OEEvtdiElPk6k9l0UEiaNkGgMersMjJQw7Z9rXproCZQ4RrV3CRgLJ/WwuByotNfbm7KHpchG3pTMDWMtGe6AB8ZYNNK2ZvwS89hr9N3n3d76AnmWDlg6syOi2MHNNq7FaaEHViHnIvHpb61CNL2LDa+cfGdF3p1EgUeczczxELb4EDvCDoZ7NID/cgCPQWH2nYjuCm/bcxsoj+zdxYpiqwAvwIpX5qfN5aHSE/3aw/aJXkRG2bFpjZcn7NPbkUq6Fh741/nY2lmmJCRqPoBiGOtGQftipdrS0TMeQm1QA/7gG6OTgJvB/bN3M+kk2ZCHunCAydBnvmUb1AVLpOLxxkYlswY8xGzmN7xo/sTYPXT6r9ELmUk+0DWGUyjniSAWQmlqbMSNUB68eJK2o0eA/X51EVNr3UANRM+7y1+lUQLH4H5oRnzqYKX6L/QsuaWPEPCqOsc4/iaXVzcEO9zWIy0qQToYodzv0uFGOEI4dGtCGSD5s0MJI37DJfG0UwNUUltTOjAo1aiHt+cAH26d8b62EGLQmcOAXcOM7UGh3w8FacPWkG3aT+/ofP0JJzAmkTqCXh2KC6hJzwzICDmMae4NFudacPtjrMujKIk5uzsgX2aI8KxUoz1nIkBmtlXmXS+H+q+8FjsUG5Sy7pt3OOqyllHKp+mOTSdatBVJf5m+ch8TkVgfxGDduQ3BPzkQBSqESKcPiGU8s2mFBwxcI8zPExO0Ai7j6ym3FiZWEQZ6Vqz7f3WACQF+P+giXC/4jUgbznnJ3eFCyuxcKOcBFCLhZ0jC5BQ+1yJwUnoItVRMHyx1+gBW06TYrGJg93VPp4J6eWvwLLcD6+U4NmVrWY3Q7GXo3fwPYIjYmFbXXGdy2U+w7m0FQVk56BbmxFQ+3PGlVGw9YUZgGvgoMnpaOrLcIgSYifE8i06vsdaSws7oVETmjGkPLgKJe63hg3nEsK8vFW36jS2F3VIoFp4+QIOop2h4mRHYIc+oKEhRlkcaVrPnqHsT8Yl0repXycQjbririJGR7g5VgcgXYKLS2a0W9Phk2YPetcgc4H9rodc/4gOEDlwFKHz68b0t+BhNHYUi2KFgY+agaSNNRyMPCZSUhGreS4klnO3auUqiQesdiuNtN5zpHjC3aKZi0BLDMQpocbSjdirLrEdYSXQb21bf9a/3UmYnJp51NY7H8jTR1GBGcJ1UBQj5ka7h32FkkBs7DnqN3ng7GluAkTIfQeBUw1zk2aFvME3M6ppj9bRclWkXSw4ak5SzSa7ct+7LeYgLhtZ7G1eNhtHA9Gncg+1WJUZdTg/eVghuwTXPfffHUPvHZFhllssYgDszeshJOm42FdfKI33ugBdGRZqz7jxCQ9I9PsJQS5sDaiyD2PxC6XmJ//jM3Qbq+XzKXVRrBsUErwG4pyz4F8R5aVWs8epc5DWVEj5esinXbzgtCoPHTfp3bk6Xcp2S0RKtX1wkskVa0BEm/5T11ZxcFkFQ8DvljHo0UeoY/ZdmUunAB8VAdj3BVLJtr83aI9gNvOq1xZYeJg0FrOachoG0y9PhYN+9wJq3UNeGXN1Q31XqLB19knmNoPc+ApOeci7BD6Ye1Eqnj9v+/7o/GQRg1Yxg0YS7YheSsxkbSa7f52ljOiEHceCHuTPUqukVs3ascs8IK41JXt4dZXUrQaI8nYntF37YaTnKN79IMZpTBi91MyDLffOHaRujiQvqVgiWZiYxK5jTcw5wwPOotZ+JqejkW/SI6eUUQohe4+hevGhqU+YN+iMyJDIiATubLXi3PfvUs91Q/xcadKXw4BEe5ZPxkMcC1qh7ZiwzuSN6n8MItYZKs23I86pWutEfcH7RKgmBH9tVCommvhP/hpFPbOf426iY3jxmb5Vhpj5+XPv632adQoYeW8/QlM6Z8ry+Xvtw17DOPTqgJ2M9a/hd/JIGTNgPD3EgAKpnq1gNYJFuHFdgyC95bsavn7kTDwa+jYm/StTtLuc5OMYll26gUiUS52mJ1i/LZ6N1LE5CG1PcNE3GGdgotxRSX2Pq2BRBHfJ0SDPrKAfDkpg/6b/6QPoJskUMHTWSjgMSUBTBlCLtuoJ1VhpzDFkaK7rl5Hs7/HYahLGw5BE9NahRtt1KLT5ZH3TdKexfEToC49t9wtwlWTzfC32HHinEkelF7RlgiZo2mk2j7QlTBexMVAjYr7o53C37bTlkj3KHZk7ghDAYJ/Y22VrNM8MjzYY8GvCQ71Tyj86yZ0GVsr9os2/T+78D8Qah0tkz1ToEwGps0qSBZryNb0oduUPwpR2TpC+uSvnOEBF0WH+5uA7L9QcfFHRB71KOOI4X6IPlcUN5UVdszpE/P3CFwm7mKVetV64LC8NCl03+lhZcOC68YpZBrEzZdgN9dlCtYboS3xzslnBYpnPAuROrsgPM9XZRWl2ePMk5RniOl1AMs6QPDzVBeki8BbpBC8xqCQRRrVZ2Yq4XmNihqdnO+/aHMR1E6bld5x/dUxgD+Z006k8piyhBgNzGLSjZBPubxebUU470b/XZJKlzwtu0WPPbiKvl6aSKTbRAMurS3PNlYzkvwQyIEiNf77cFY6fUpnS2C7AkCqMVHie737pqIC0nqiNKTnDzD+7tDQvgOgRhHCj23l3AK/3u483m8O/fdFoBfonQPnLUIe/FLSTfiBDnLWfLV6tAlsAyE6dpd1UaSJtMacUHzbbVY+NL2wKY/DwzBHAbcXn27Uc6Jj7inutKGn9he722VjodTxftSiiGFlS0Quj2MElTWRRiD21TlrBe4T9+PgUMikoEI0z3QBc5WqHUKwra73OWNBqSidiCFtBfJ+sqYVyIeaCjHOL+BG9Z2U2oDkvH+Kjsw9wQq/4j95YqFwjV7d7jPULvigQLaPPr7CIWbIa8d1Xu7wU/W3Z9shsDuF5cpgmwLTR7HeJkZL2l0PH7zjD7j4V0z7Jix1fBG5RckXZTI0WEi0na9NRaPyFqh0MNDmF4LCvFYWeyit1HvfdsKAmu6bXIi+s6NeTst9jYBLX9Rh3g8Wqyilk9Zk+FTyXCP3iEotz5Ka5q0Pj062ER1dtTaJvl2hnVGKXmE2mxibiD4L1Ejs68MqgUmvBmLjk+PHwRueb2Hag9Pyydo1UroXyfr12PMM0I8q48r+d37ijSEdxjjaNOka0ISR/rLswrUZKrYam8rBXEPFGokLKUHEFbmAyis4tswvDKlCiaeuLi4Mapc+cG5u5i1uzWRtq7934qyoTdL5dv87kLBBHwYaYTec3lFIYcipVcajQ7TLhYXaaxIVBdORq1c8onkVxd5McuXLyuFN7KyPVE73KplXDUxd8p/KR5muiw2iEq+GNanWfrCwyAX0p4XcGahV1G69W53BmrhIpA1WWPfuBFrMmEBK+o/KXnQZhDUeS/K4AKKVCOntHaO4vzdm44ws6hGLvgzu/C9xY7PMxpl811tdmD2y78xBi9FgR2e4iDgVMhbEfU2zg9h+pPghSjKxskl4YwYBGuxzBY3PXZ7pEHdJ9dlIV/Oh7wTPpoYFWL1IwAk/szPDmb0CdD/u+HzNRseBsz7gmb4pMvrBdk9i+aq30rDWxLO3Dt2m8LZTiF6dTXATC5imgaV3kapCIRYmwvRe1oH0HGam/WyojqIc2x4mcqYpb8ejC7xVzjnzbeBjLpC/msSk6oDfL0DtyxP1CsLekMkGEtiQvUb/3s4Y+qdXacFjIAc1OPyDhCIFTgdFLAixFiBVqC1gWyHBxxuqEHESgVtcripRgtcf3mfG67kRsR6fY3numu699E6DG7krIT+ic/m8FdJrby8GTRTkzKGXGhz+LmH9X7dkpfz/yJSTkJz8FvctPOqdNYVpy6xJa3B3qgNW3ZvJUwUEB0mtehoO7qXfuX3j2TtKmto1rswyIQCFbavfGb6ECbbt1Gzc1U6YRplItntZUoHWq1KkgK5O3H+0EWsg33am6TP7ZvO4A8A6/+aRpQVXLfxaSd9gjYwuu7rjcKojBB3ibEnd3DKq5JxcAnso90oOoNCWrKJByPCJZr3/8geAW8+P8KLQ6b+q8yg12OKk4l1CGD3Iu77Dh/V3lqPbBwNR7HajXGTgxEPJtxlCORGfZkaySF5BcW+rMaG/EHMgmKO59g3IVSKIwKBvCNwIq4R6ONwvYsixeotDzjWgpekzPzBeBnBHpwrKwjdKQS3b4sMjEBaVuFPmo7FnQsVAB0AaGQXSiG9JS8RXVkBD3An2h6as+IJlUJvv9HJ4ayfmsSNsZEAjWVyHr7EhmLAQKUOB+6QKcfsxR5IvOeVpJQlDQDWscBHuCFiJo/l/9B36HfYVlkT0lY2x8bkGpyVOwK9673P7uqNYxJYyL+5kCbCy28lk/yoONJI4PJHj2yqd0OdJhJZUJbi5nIfZzLo41bWOU6l1Ixfsap77C2VhXTv3mBX3BNaYsnVFJCnI3ts6zkzxYhndTgkz0f2gtgfG8e2oartppPtLz3hzfoVsMvobeSFMPHLWxv40BfHtx45/LGT6JAHpgcCmhBlv2ELhcjr/4eUkgf+DSkL4z8i+aFRbVYx1vHQmuYt0KF9C+CExa3TdhUmnvSwRiqC5lgvoVPR2xhnD/cb3n/jnoTSuaRMHaqRydauorMAo0p1WRr6Z+OdE8iOo9ssqNWqthhg2cBn/kbmC4uUqTzOVeuKQ4JsuZ4ijRGpJ3qncJ8Lst7geDu/wqxigk0l3gEkmz3E7Y2eBGBVt2x34n++hb6/ilgdsnkcQkNJ5udaKLLvDwffjRNGjvJh2MoRFc6oaB5yO8XeRjxgMOWg1sDUxwUuelTFkgL92wkbKPx74H7ae0qbDF1CcTZJRFQHsZvhg96MWoQCTDjM4evsANxJq5sGDs15cZwIdZyhbps5GbKroIueNAqrxkhPT1L3/uqgsl6+be2a5NnJH8GWq1vrJwP2k14EZAOmC5n611QwCZCng645O95BK03GnUZjRYRlCnKlTgYB7XsRI6fC3fLe6HK6bRXjnG32hLTTgNxZjdclS5K+kgAyxpgFmPvv+7O1V3pl3S6e3za8GLyU8oEqWdTHcD2p0WlbYxlyGdIDTkqCl1gz9eU/XIxP4+tVrVz6BiKMMeLr6QYkXbRatx1J7XZ5RVEQzQ39OYKhGornyWS+XPHj7xjXS7ByfFHtNL50W2HMTD+jjCySIzsyaWfMWCkFUVqbd757r7r8oUrXRjmrhz8AY5CiMFBcWwlXUWGqfERqWZcGbknDvUJvsKsnNj6Pf+DKM1Pgr2A6A+gUbURMOHNETngO7kPhIFFSmcEuVufB+LZ248BOLKgMuFSNXNIRJGhN6rdVyhKojU3jpRsXm6AYYj8kn6CuUBMluH/UQT+SFzUzmR2XUQN+jyeyCJObkAbDBSfkiCxZHjKuDgU81t+MndBUjz15scbppc1WG1m7iPelsxTkf8n1MhhqZKwfryJ/y0s61Fdqjeo2b8TPKbgY/vgN3YjugrU7PCASD26WvGphLYug2s8MesD5d6gtUONddDypvwsT1Pt/Ri8cCI4IYyKQQ+6nIgzZeHvURVainBN9fni6AhDOG9KLljYQSBIx6xGEC06HhNXSccewmdL5TrppgdDLciB+Fg3cPZ9kN4Nd+YZQu65vqFKiYVYIX+LUtTCy6PhwpYMk669FgZL8DYi46Jp39o0lAaEalE2tkeq9dyzyqI2sOhpmzCyogzoY4+8uBH0MlUY8Fn3d5TrH6gB9K50dKQhZmGEOXzuC9xwh8bMRgsxZCtUPw6UuHi9X8Emuwh/lAG0jd0bxu5lQpiSFxMmwK0LwX1z7zE9Gu4rtrgxldGrJSYaiKBYZKfZcon+SjTaoyt9wR2uP3S8+MXoqchnEclmwnu98tePmRkkGiMQVbPr8oxjFifPn8puizhE0Uq/NkOaN5V9G6kzEv36YM5bQr8S2RGnR2jPEuNXOdjNHHVIyyjbCZrojs8yQ55ylAth7L3qHlYmIIpr0nMs3Hm2+1XpTrsT/zg8UKeELymoIaQ57bgyS6UzmfSh62W9qitPsg2peJKrwJwZMi8FLtzZZlqVgHHP8LzOhNG/vDWeSB8Ka91hKLeg6UFgNPeEwk2UO70cFNuvUmU/nuOLaUF2tNjOWjtuBVJwHh0OKnjCnKtcrMrZ4ct9a3If1GGHj4CbCo6JBTNny6bL5Vnold/Jgh7CX5RkI3IFqfyBzsfC/TV7p/sEdbrpyN+IVnkKbH+LX2XGGcX4zWAf3KpCJQJ02PWfQeYDjLSutXfWHf0mdyu3hEMjQiqYa55DT8llIaaM2xq6n4tAO8kyNtVlcYBBSTSCHygHhs5YIKEPU5dHqBCp+DBitfpXvYuTIMGxYnlhM3kcEQ6SlSr6oaDT8BC2yavAIMRxo2bwoFTGH3bMP9Bw3qKyE4QnpNy+yI3CqANfIlTinoqr5VYaaKTTQfzp8WrsYDhSInfY06RGAvQYn6doUEHdH2YKYYCaDlQwWDEndR/AR+ZLJfAN3uHZXVYXvuD88LG5nChQKFiQX/cs4GOLCHAkWrIWbmqwgmeYo1CTWg+vmwTxzJFMpRkGfRDjvlTt/P0G8IGeEg1DZnP4aFVBGGifWqvXVEk+TPRIgkdPicqjISPr+7p1mr+70yKZ8YzY0egKTw6ohdvfcD7nJUD4tiKJermctaFQJDZI56NhV5gqAp2s5HK8ZH2SXz8lU5D24hkxcv1JbYci/f3969qmPOxc09NoSjBO+V+e1AdpVP/VNhDhIyAtut/FRR9DLrwr3YI1ceZHio59Cqi+DPbHb2fmIT4lw7/Sqx5zCTCdS28sN8My5fLrAN1VOqASE4nv9bLBML07owQDtKPIhimRlkZVTbjbR1FQBj82eQIj5ghu3M3O6WgRo0sCJt3OLH20JgGIIRTw2gJiHELiHP/BwnJg4OIZJAxna0WbzoRfpWd5+Go3+tDFQXwekNe7SX+pYAIK/p1wdbPrFlJVdpD1mYjAUqfCBjErEqlm50B3qNnY0eqPDjAaH3wsClDlqmHobWcuuvHCoXTRB2Dn4zKJBF/7b422lDFmiUzOa56RERMvhoAAIJ40rNC7derljnYh9WzhVT4MKXLsyvxuDdxeeRN0t+hVx1NTA0DFSoJ0vejlByjliIENdWWqm7JHUoLpoHyJBmdk/Dxwy8TwuLBW5wA0mrOZPmwokXxrzNc/0lb/bni3Ou7d1iqNYhiE5TFSYzMbIjdWAE3consJP6vA5RyvzpXchzoY4GdohkbexeN7cL+ZUFXxhq5+w8TfFrdEYytJQ93nic7av1kHwrNWL1KKDU1VJd15d8MPDwhqUahFvsSz9qwY/a0QzGAQWwftqys7/WwpR0mRD9AM9f0CqAJOg+4RJVatE/RbQOXydakw56AJvPG+skYokDG8hK28eN4B3tlIB0j1D8c3ySpWfWDfLJEa89Vct1krYexvFy+fY36+j/nZIJeOHSve3T+ztdpnI/2zD0/76jMQ1U+WuJU+3wb0FbP865Yc+axDnb2Fs0+gHkehJMTsu6HaRp3TrDUzsoKmt8q3xsBkt410PelZtkm/SK/5KvsWKBMBDrXmqmslpAD8fzx8OybK+UA1IvPtQI1Qvh+Hz8a/iAevYIWC+dwvXqtq3a0pTB9rQyYu2RLWqLhv2nM3HYSuR1/B1GFRcWJ0Wm1wnpi5N8bkDh+qb9ZqhPJEPuCoRQrZ8D3FRVPEKx9KJES67/5URm1Gj7Ar2yIZvIzGra1vU6Tf3B6Pkf10lyhtIbin1c3+MUgZTBsnaRgc2FExGORf0i7QZ180DXSXwgDUKK8qOdZXlp4o1QJwCmQwksIz9ozpeGsvu9Lyx/QzeW8607z6pNtnN501C0EeJ/qBP/964t/iBC99+7tdn+GRTo8Tl7rCGByO9Sj8PhRayq/Y2GFavwSPOh7XiEjmpvRM3v5JKVtrURJKkDAdVm5gWaSkGtw1qkgnr58tUUPTHAp8iztH4Ph3riQyLdVsfa9tJiqdogaDJ3aLy71oNhX2F2n2dgAPKwzdLWTI07Mxs1M+SOxLS0x9RECWddVSKRM3zJEuQO2bdXqBW/FqH2HZX7I/8Xozt3KVE6QWd75f3zG94v3jy15V2IDrgb7BkEi23+UsspGiZFEYnesMBtQ/RuOdHbQ/7oed1SDP9BGTeXaM6Qxt3dYcyqf82oxTmLoi5WI7ZXdyc4lq6utzKeiNLo+wnVOKCDUabUXaB2wOTbNP0UaUKqdQ4kWqcbTlOgVjp5i2gOXrHp4z/ZPb6vG0OnoX+V6654H9Z8pHwo/NjdNOyFk7GcKoQF9PVrWxMcQiLdA/c9tohygAbFoQPOlCuwdetQRSP4jR8Tp2PaoESX+Vx2BkKV/Whtd0ljx6FOu1NHpyxHuqaCtn+D2svidsLGNu4ZFAl616R2ALW6SzGhxGuPvaWTY7CXhgMplfJFeF/BlAtzPI5LmBr27nYjNBm+hDZUq4eFZDIaQu76WB/USGT8b97tt1EGs/4vl8KqH83nKxZnFR0TZ6RBDFY6Q1tB37NKhhga4s+cuiIVqoYOKzYHOmk3H58r/0pbPgvHeK3lnvvXGJ/P+GAqyToNpeLxa8QZfDTHPXJ6CYOm3d2PvKCEmFIeBrMlly6fxyU0PU0KTzW+kUCpF0tGOvypQaoNHs/adF6+5bFtB1zRWr8/6fN4stB0nO2anaIrpQeZrD15eDGjc6HkcFOrVsIUCfCLIxriQvpPnthBHqEj+e2PRPgn/jQreBwBxLDS3kqIWA/TwL8hOSNDUfNb2FfbO+XzCeYBsBWfxKI3DEyUG5FDyANxAzAdbCdS6Et6J3U7asYrR4UktZeoLni4qqrw6mwfqpEzEyy0AlGRGohETq3ttuMfDhGgy0vHG+TDwB/z17ZGK0BRruaWbEeQ27gyuxy6FOsFAqmiXgiJcRoUcbL8DzVhrIA3bogWBVu9g+RPuFfPxcLJ2fDTLahxYMkOGKz+eWr0LFaWnKCvM8YcjciuKl9HmiU7TE41+QJH3csNMyhI9uwJrTIqbfI9FgWLi6OrmpIqK9gxxo1UkZVHbBseEgjZhhhT1y4ZgtmtsM9Ak5QowVZUQa8LFyPUtrK0pUzDYPlj35EKhoaHErN0HTcc+5s+uICxbXNV9mro+8qtrZyL02o/1vfH83S7n7J+WwCPfL4I46pBay/0rq6C/33EL78X3bjW2W54+UJJdrxsqZ0065LPSQotxP45Xc0N0Bjrf5/aedD7pAcrHTPBh7YcftSOGZ9iPZjOTM0Ss8gzIe5r5023AhxmAmLCIIS2GrUwRMdZcnPYfvQCDG+j4ZXprBRADCIX3h2rb18+Cp/m+14IQeBhAfH32XerHiTlMklK7soqudxKvcUf+wATWr1u3aPyPD2Q73NfyQch+kY05959wfGmtdFl1qhECV/3RVV0A8pTOVHfXxQBNTGaEfVHD5TogF/Rrjdp7bIunNPWokaf/o1Cn2uoltveLFbaCzGmJbgzeFR+EA7lk+inMDMqPHROF3glcUYR72GtKELJ5AlkrQYc5JLd24BnEww/ykmuPpQChXIoUFGplwdANd60NToOGx3xFSF1T0LRVKZEBNWpEJN8IEq+cvtHIDJhEFADciNy6pVvNH/AcioS/4ovI/Qa0y5PskDUVz4DNFH7Iv5cZae3PhajOJfYml1jEHyBtG7ooWqDb+e0e84NdVrVjtY804vOR+XGO6hC2M2pREY89PVLuOgklgHRKrxyQ2RbSILXqDro/2QxJ6TjEeB/6PLj2BZBYcvqIeyXFP7lHyVfRTRA9fejuH6YcNsAQiwo+thMiXH7DYWbOtwAmE/7gLzUM6e5t3XGHiYRVBqZGu/yNyuMyZe5xBzgrhAFHrmkNUiZ9qZln6AmFFNGcjX5xavQBupAUN/G2zHr6fqwydy6M+ml5PyNWp39YftXHKKDurvpjFyrLxRSiPsIIg1rS/udGwNkjYrsp8ap+tM+iMpefrcsDt69dKidYGh6dOETxwTjcavEVgPDlZxnTbuM2WcaPg8QilXdcARd81NxBt5tamP24yxKPN2dwJY9Ywk9IQ2iZ/MxXPMMU4ZT+ntK6VaJc9QfgfNSDPtXjeY4nb8la+12lqMSSlVYmuVb+/sqd8rqnWZl2OoOfeIV8PkP6g/oPVd9sgVM066iIwmh/Y1WxzNKPoxsK1L/YoJ3GcXgQ2AuudzYJq7BGoQEtt/Ud3Vk0zpDFZfIYCn1Bu5UrNwloeoXrMDQKOsZjEuM92/B2YpMLDPvftIMAXDc1o5k51zBHi+hlqvbVw/EbSiQKksBqBtvu3E7V9GqPprvcWPE1l6KRLnXhMunwL4dGJ5Wd85dmwB2onRmmVxzixQbVEKXMS7koqkkH9z+GxfoljiIj8+ong116fxHJVLsteFVk9Jf8l6YAC4fCU7D6FhpKmcuEwanHDpFkVI7A3jescl4ds7RhAEP+nm1VW5xZBKBao3VlmiNtHWdfb5gQ2LPr9YlCS+4Puq81+51bAvARHPGzFaGdImk+42mUVvKKsq8koPKw7ZnXyj6XQzmmZw0FERnNapCp6qRc4FuOYs/t7x2kkxTWIajltPCBPc0FZqMFc8sPUmRFf33gRyMjA6L/T+sYEoyJxIiFEnajrHvLXJ6/lPeQbPBkMTibrc+mhrqs8wiPPyK0DIZAGzh9GD9ldgndeAGT3VhsldVI7LD+g5jVRNNQSb/kqCvIDOEy3u2dwffExTdDUN5Tnd5ppO0URivrXVjC5xKYuysv6r0YpU0qOg987zfCMj3hktXdjHZ8zmDau22F8Ws1JemmMuFAP3CH20yadw2wjrDRR2+PNArQ6psDdt8vif34A1s+6EmHL12ejwUn0AssyoJyIWetcDxysH+YFzeLvlWPi//U46VrkdhVmrEVt5U5rsY37fAiFE4x3mMzyQe4miXszj1ujpG5VRo9qLgyrQq4IAC/73UOWhYEX4zNx376fYSPkK06grpjGP1RYVuWux8ZcalUFYgiSowcVCcoxVMna+tt6iVKRv5pJoqvCon4FFqdNCAQw5O3jD5CATao/aZ7oujK3xcqTUkoCyHLqjnwQ25VVZ9Ki0MQVgQE7+5P5gOthE6FSDcqNFTWRXFWW1Cujt2uoNgkN7xn9ZgmAglxHST23Ec3VSz4M9YIyntjQXUhHTbZ6pAgt8EHKfEWsVF59FN4e7x+kbgNdw2mJcO8agmqwrlTBzr5N0Hxj9b64FCrLcK+KU+vEawiRAngDCQ9wtt88vSxZoahYAZL2zW2B0GyjWj/AOPVxgcMLv/ySR3zIzg1GcHYlyfqQdnB7YA9HkRio0vH9cSpgdvehuPWIQTmySO/RuOv0TnPF4ssUH/E1e2Gzf9UhFwIuT9E1NIQBeZKxqMBHXySrlrY3rjjl1rAH6PCnllYebdjRp/dh/UyGgxdkZ5lEFGIlSgL0trjuVc3UHTbty5ADzmikELW4TUzqANR+K9dc59VV2pzbMKj237mrhTqrWpB5qNug466DqT3b++Kre0aTjRZFSNuVBIGzUArTM/t6GItXDz5pIEaVLLd5P3PLAI5jd96iBqbdq2du9k9w5R1FaWXsWYe5nd1O96KusH1hFE56llHe/74cqaAtA/ut/HYzJHXuiy9KobZHNbqJY/3p/3PGtK4GqjJ/QJz4ZfNbsJrx9vswwLQtF2j3o2xytP6V0IneZThkfp4HT87dhee3rv+t/lWjTdiw3iYZYLoVBLo38q8eSyt7JWjmv4f7GMbWT28hxYFB0uHrorPDdEuSqh+sATucwSv7VWMxB92y3NYVM9TozV+e5wp4cEtZ44Csaqu+IGa0r7bQO1bhPekyn3aJI7lyp2Dvp2Kws3PJufKPgoe9oGOSgbiXvTUwygO0JKTD4F5LzN9A8fmcjSILWKwArW9/R/bDS9AHL53h1RU5GkLS1duCoG/CKNtDUIH71GptYmxMBZ05NUfUkhl1ThUsD0bk9QdpQubsRacEtQCawSubfnbgm0Dn8CAlR/+k8K36Ub0yxVtL+1JV3pnsoIC99QMl7x1YMKA3N0aHp6d4d9BAOYOZX8imN1cbrf/8030+XaqNm0qpPaOkAQQWcN+o+NY7ct/d+8OwA+ehTrNIvaWTEvY5Bjk8MtqPlyFYviZdykEfSs/2gRV9YXAqsV+qFL1iq5+dQqtihTm02gik4fsJLZyIAKTl80bnKgXCwTACYXMnlpWCkoASZXPdv6Rv00UxHKnxdqMVA41m9dAQdbVQ5DonnroA5Co6HFxl2J7bKwqq1b7U+ExfjauOTqdowFXz6Pg3/K/EzItDWBfHhBswxbCdlV4SUQfAL4X3qtjYlYuaf5RU8zUeJPOe9odyfJR2PgfRLXgJPJvcqD2JS31bjPM5IhYYnwORs8KflQY9Ada2rPlrSaKg22KgdPzfx3XgkFdk/UPzUU0lQ+GuywC1PyNaaAxJmodWGl3SR+FLXh6d3l99OwAMpoKwMQAVc0jlLFpQ/Yc7etXAx1IwQrl60vhORd1EuZMWnQIyf5CTEQt1Opuq2PsntbAOi336u/iNQgc/vxl6MEZXZ7K6Db67joR9ryNBK8vA2VgUUrmq0YrI02Z56TwnG30LMntIWjeoAHoEPmXJr4+guO370s9eW4YN52dkqPWNfsStzjjIm/7RfLzFu16XqS3QsOVULiDivMpZul1idqgx5gxSlsPaPwOlTlyvSDHwXovmHGi/e6B4cNGi3OW4VPqgFRAQAw2QgrgMIbu2f6oZnECyIgElgdh4wiLCVQJZxaXka6/6Fn7TedbViA62K/CDSSSW+EliYnW1v2aB/U1sHr5yUTdt/4cnkAQ2gnt6KY4sxZS5R/NZPja7bA3uI4JLLfayEEDa9hrdz3pQGXpQXB7oukl9fZS41yCnC4WRa6dP9Tb/xYzMYTLr9rBoEhx39IkcTMX9MTTqYf5JOGy+f+7fZFx4y5SMpg1eTIVBa42POmZ80BdPObn8PHsyP3mQ5F3qXdd+kZdaVvL8yl6LNwl+9jsG88qwcQsqg9wSve4AGrmnPshR4xXi8gGCysUtK982BD/+OoqWLgjNMV61mYORF+x9TTU6pRQZWBcosKKo/shcw622OAqX8yo7g4t49UeCM+Ni9hfivIsZ7+mSEzkw9Ins3k8t0is9xoZ29S2VIKLQzBJ9EwWOTQdUOI/IWF7nB+aA3KcO2Oplo1HMNO/T7k/Nfczx1lTcT6GlXbT5K+KDlgGMXA6vjlCsKJ2IypqWE8tbENjO92j1090KN5uCkopK24wRwfLENIzULDAfFrRdLehQKVl+EGh1bCiJYgdUHKLbbgx/b5SyYuI5KJgjCLWrwpy4P7QaunXSPqtpClhCz1uGScCHUgDsia5KkeY4+PKm2cfXA8ooQnqV6MDjB8f04DyygFb6SQXzWiM7+9fpa8IvFZDuF+h2FxZ2bsYvIyvqazWJrQWreu6SXNWqfNYxWq4ZZK9cXEFErYr23w/Pnqy18V8SUyeivnyulZSlZnwct59gOFnJTemZAqPCU71Jt4BVpRpPoPiPeRo0dQOxLOuvUW9BqnvlZa6TeytE2QjGup5X0TmUGWz+LTUo9aZqsTOx0b6No68YkSQJHOY1Ys9Xiqnq9Zgd2p+Kw709daudYzJMMVsyHCdfFyQuRMTT8UM1wAzpk2GHZbY0fG2f7COOzs4xT2erioRLfcANjovMOkegQrgMHTlk852Xb96MI7C3gjRpBGvj7XTthBUQmUnt6ITMO1W/HFlDo5oOBSJPQYQGXztbyhs0d8nhn/zLODHOb4a/SGP2EEbSS+oqCM29D8datHjKGbI6jj0k4jtIcCxpLeOuvsVZsxPhK9mX2n4pRPm+uIKwfS7Y0nU1aQ3PLOxVxBxSlbqDZwVfjT0f8vxGQKjHXI8ombaPqc3QPR09QJnt5m/7vSCbmZQFeXtShXBIlY9Jbv5e0avDcE705k1EVGAmGDB7cz18Xc8JRhWPZw7WYblpB4tMHXiubSKSzefpi9LsiNjEDzI5ZAy546rOtnEgt86kWjE8VwBCY6ik55BHFaM5zoVAWANM9na62PPZKaxXsr/gxZmFxa8X/QlFyrvsGy7kMiijGAaYx46dF2zb+uyN6OS5WMVdd9LQhvtPA+dR7ERpZj5fSXVrQjiyj0vXqWVllCqhNU7Id941L5G/gI2KnGTEtD0M7IO3BiybEarX6jSl1QYDwObb9xDtYaUJDfjwDpGKPI+Fircg2p3bYKBep0cm7IXKFfKXqY8NuLinMrCXzYevyO+WUgG8CdyTjR7K5iXrv/7QnuqjjzQ64afZ2qOHkwOvSdTX5GkoT9O+fe+NqS34mmcO5GWDG/vARRQbFQdEKyx79ujTW8w3C4p+As5pzMjdJdqKG5yvnOMYHS72e+r7YnYCPy6jbbJ80SoM7eV5uhY5mMeG97gAob39juaD+io6mXJiDV46PsusCYDZgBedFf143M97v2t+anRzNt373/8AslTV8pN6+WesKo61b47yNs0U75S19JED4wzGku8AyEEz+JrYCcLCIBtX0chWyu+9iuXoJazwzS46BvyAZMdsO6ddnyHZYNqf1TrdEQG8rSP4Cp6SYl+yS/naihnaEXHFaE0dSJQ6BY85rjaDYm0y5u6mGR5xryTskm5uPUp25+aBDLblELxzlOmJhtVRejhSPSo/ECjfrSin6WYw0zLETKxetc9qKyGeVFoSG/kBvLOVfY44Okj85bA256Ysk2gKSYgxBn4ndrGba9vxjRTR75L7fedji03iJoznWIw2sOgnDjP0wR9A1eGWqUml5wy3SIjtj2sJzr8YltH9CY2bexsBDracUPlyRraFwZ27gO5MtNiFYRYh/nOmxoAw2nB7SZ/odx2o1/1v1Gp4WK2NzeM0Vr6myp1ZX8luHyiIrcmBbvGpIKyZAuE8v7vdCmO6yRPFNCYeAn3Emt4X3SCDkK5zXTpl0Ej6RJkQghKzyM5MSSS/3P6Oz6obqBGQ3z1qmqb8MyY9iIK2iRCAoUgwffhTpN0r/cXXDA4MYAIFof5dabTmGfxwkVhfWUmvGfGBfQ10pnETOQqNZdNATZtbiBzj3p12Iw/EwoB9jsMODFHJK2v9AxArsK3aLRwmknlEGES31FP99xMV3pntjPyYz1ZubgMS5aB9iBolk/Ao0ruTo9/KvzOBAwzXgE7AgZUq0klhHSX1+RO/F+CnBTYZBiNLPNZPZJYLur3pS719KjNxDL7IzhUs+AD28g30Q4ntPqfG56JqHu+T4vSggNtsYl6QmU7Q2LcnMty5XruzU33/c2Tioh5HGlX+nnQj1qixRLeNZfXzFf/Mh4I1X4Hlt+88HMFLr26+082iCt7JNPuRmm3FimrcBjsMRFtJ+HwloiPTMTyUZFne3dp6jc5e5pijD3mMIoJ0MLJ20xTlwzD//P69pyw8a82wLG9LFyma+VHl4dMQtpM7vK+rlvODJR/GVbK1/7eAxyxP3zLgXFsl7RHQ3kHpxkqF32syTh0IzIzm/Ed4h1rNTbxz6qMvxGo21bC2mWkCn9MV9l6drjccehKZ0U+GXhmK4cW9gGNQfUWwHI3y9adrkS3AEglduJuLkJmIUiq85GLxAuhbKqL4YWBlK24mvXzed/DUl9SgjSCoUbUD/TxKlwZk/rz3Up3gBqOWusrkvs7b4YcLqCpaMcbpSWEumfxgAoGc2LJLML9hlh0BoEKlgdpsD7fe6KTHL/0mSQEMKd5yiDcg7foMyvFLADkU9hDnwZmXfvCG9JkAIFpqa/Y8CNnSWEfz7OH2vPbCXfyUFLqUEn5gWSqvIzlJtS7ABvnrBTNg+hB5U0QufN3EaFPXE8UpFiZG3EwKFafAMwJYKJ//Ord1uZRLtWEL7IwILrdqgpruTPtsPqGWahW5IMypzlOGN4IbavwBUhD+1Cg7uC28Gof7F8mAbKLz0oL9PhhRHnYpQQbpAVoxZDbO1jc4z5eo16zEmch737e15UZO5vJuRxPr7HZRv9VxfqsqTVV98H6p5uT3CHgr8iHCfa8dWZr2fTL7ymAJJLbUSeEEjV9IYIXVzocs1hq23+XjWhCEhgqBn0X+cB0Yev1V1zFUa7VaX2gUp8xxFP+a7VtoJ/MjEZ5LvKO/5cDSfDBEWgHPoA5zAJKbIYRYfqfl4Y1HSvRZF839IudmYciU0ZeUMHb52T4o5LeDdF+o8fa6wCLXJ1MSt+IhVjoF0mii7hV4H5w3w5DnbtahF5kumTjaH8ynU2HW78u8eq2bL/ylXHLim6LuH1Fu6t5DfmoDiR6SGbWJ0junQzxtkXAkpHswpWOcrGWuyG4vvniY1AESrFDJP7XaQaMGD7v0SUHfW+a+Oxo7knKB8Rb5oig5PlnJtkqH0RjblmFljLp3u5hfptb5m80V5WYX9frzuEzvwfCf95Om3CDYN2x+wXP5jJ5MV1bmCaBWj7/UsnwAA7OLG0pUSD6bk8ntB1bS3cc+MH9HgNn6UaS51Y6iJXFGo79trKuNwMNuPJgE//3Mo06qe4nk0n+ytzeqY9AuEjdxswsEdP7edXR+dZrcvgCP+beVhutrXfuYr010vDUYdHrw7tK3TAppoGRwNoxCrE/AK/hEJT8UAxz/qCAubbONFFBC2nYBZz8zkGsRg1UwPAZTsoL8ko/BQ9l5NVTnMH3hhIe6GvSI58mbAVk5rYj78GxWvi0S2cMJ5mAhP7Gs4H568b+ZZfL7Bm/NqwtyOFeZfr12eKcDXiFVaCa6UqbhCvhK8v3vBBpoigJJ82uvghz7K1jGRTQrilhGCZRrY58ELjRLLk5eSVbuQji8RR7knkZoiaQrhRRqOgXCMWAYAtxGz3vcXPljjGjy5rfiBKbDzOsLGK+9MDZn1mXzHgbZstBwnf/fTk2593TtuZjZrpnza3+sm9utkzIkjyE3RAlGO28w2wOTK+8LqMwiz28i1MU6emzbkMQ5bMsyMzpXl9HKyJcYGQv0uCxQmqK1HehD1g5hMlqzrYL6krfpuE6z5er299rbOEDxSL36UfNGGpqbObs6Zq4yeq/SaIiHPVMN5XwkTex91zO6p1/2qNQMwzaGKI4uXsLrH+YMH/DwTkJznkG0PivcLKhx6pGrccpleFVXzOHKKXdwQtNHZfyyW8KzY55a99YnWfvINVjYWeONpJy1EwiuXOAhrQxNVn50slahiz9wS6VwHcos/pnRWTeMRbWi4znUheBTf1BfpMjt/cJNYbCdoKyw25YkqdVl2uGYP6kcTU9R2gLvXkKGsYNtIyLMGhJIj8XE6C5h1An8PYTvwTVjpbslwOO1mf8Mh5SqfHkFsNM//urvyK72XUZ5jrDqjt4SnnyfVdMuPEW1C2RCXhpkmJRXYOsSTTk+kFN9n8yI3lB/xr+9c5vJhCLTwrmUAbKMC029wwVJ/MMKTpLRpC9XsHV+bs7qYFa481wkVni7ZyHddx0HlIfIcH4jeZxNpNnZ3ruEoa7uOdRWbN+7QrqgtGMODDOqv7YrQ1T2NXnGNBgGtpyst0r+r8HH72Fis+Haca2Y5n/wn2l6AaHfZp7d+6jPmUnKBaIOqzr6CjMB+Lci7r+jx7ddTpPZhzZWdv+G863y1YiHfhJVk/1rfNY5nuF+wopT4x+GVMD6+2sGyE7H2PnRJgD73/5RO+W8kv39ulpmkFgDBJ9FJg/QLU1CNUNZJlCDu3bof5UowaBwbbe2xmv+ZkkrgG/Ifgyekzlms04graeJwNcXVAv0kz6eYNgwpd/wkGkxBhediRQ5jqtnmj9CTSgk7BjvpN4Nfv08O/dq2mqTRDgr8D/8W++YciLFDNgnDtRv5mRbl37TJ+XRyg5wiFf4mAeAXNodERWycLowUWiWAyt9OkdeT40J4RxJag0+TwYJko8HpdsFUk1eNgxJV4uHulc2zRPQuMwmciPPzYm5xRy+aPaIsXJTfXvAUD+Mbxsc62lFxlgkEgEb32IiqQsqeUxENr6YMEZyQaKXOtchT8162tKaV9WVk5cPTNVURli+kU68D6qAKW3bbpRfGGeVGVqLAiVbdoHwIiswPiqliGovEgWn6EQ8/myZSnInf7eQyBfiiVaAm3fmlCzpTOp4PzYvbp2vpWfM7DeISbClid/fNFH5qqLCdzjKazhvv7t2RScbbHBaRb+MwPMXyg8YNN3XzDlhshtQanLUAcvHhiBQ0C6pOEmYCjvy66p0l8P9nJqlNJ6Jhjmim7W34nXBNYHhG35yx1i2ZCppBQ4sowRwBWO49exdNwTL1/x8dGCXw7Boi3ag6tZ8Qtpj/AvxHAUMVYQ4j+C61pY9W6y2wLHOWiNEhojAb5QwC9F96d2YS4OoEihFBUYXCu9znkcmxfpPCQfDYLkfHSsWXnsNq+M1K2gKnB+z+N9QEhD7i5nLbqJACgavcTtcAuztXFI1LxuYpvCO6ZwHbp1LXtzub+bbx0Tz8j4W5OeqEZuYU/tcN0Dolr0ih+Xume7m8bllgw3DEQocySfZMfkgQWDfrJ0gBqeCy4Qaq8hlajlg1slkx4xB3d6vOj0MjrJi7d5yXIMvZ+PHCYgC8/qoGTEuQskU1BjRVTJrwSjSx1ANr2ypORUtWh9PnsoQP27IeqsVB8hCQAsBffxWJlSnx5Dh/ffmBYPvTOCFyKcHiHxhbL6wA7URSF5M+E6ZxJ0Lw7LI7DEgurMecblclh91PDOncOeNYMpBOLPR3BJ4NFTqIEKWPOsJmU6atnstP1pScNRfVMrg91Nn6CiWOA6R8ELwORm+nZIUsB3VcWH9N8jSQFxRnSDBvnDJhcpt0F1dJXLqIj5Qz02Eu43w4wWUFcpyj7P0RynG1juMEHvuLNNxOyxTgmM9iJ2uwfugSCR5nVfltgbwa7ewz8KhgTxsBcd69k8mDhOFG9zTfryzY7xc54rQ0lO4Rz0vo5Ho23dRbOkqjb9Hm0fIfG4lxhnolM1RWdwVDQS6aBW3ry5s5lTmMcrcdaWku6IuyMuaUNSbDpm93an+b6XE2RTu0HvvLdOFUeKMrmLzkQzBUnHjvkHAISnQ7xuzDfHUdmrAhKRWjNNrg7wxuypNVeCSjVDS4X5wPS6qFGD3eUi5mfmPHYnciWXxdRUJZF9xa2fqVeSBJEoodeLUmuhuWFFVeF3LohOMmD9MGSEFKGr3N1Aep7739nhBAsHwevTb5tvdMrTnh7iA3z9OMB3HbtNqaBMb05V5pOABlW39ltHPbkZXjd28jVLcdMn2j0SIxswwJWdxHqtWrgt30mOU2jFYX9TSLXWXYzHb55gkWP4I788WDr8sJII2ODu/iaKZd5zy9LCpjcnvGoul/VZ/ZRPjFjR1j2GOPcbC66FZTzDgdC0i/DAPiCl29oya79SIsEch76dv7DVQjLh15VJ1X+cOLyE1we8hB6EaYIvVwyvTUIzRhrS3BHFw5BE/DUXnuHjgsjVnT4Wy0Z2JZ/8haylxRdTNrt9a/F3olbKWeaZr0a1QHOuY91NmiLZO/vDejRmMPmsWekVN+f+g4zgMrMiSb2d6rnH8IcaFhaTadIopbovjrb9M/SWBoeJ5uJ1H9QU8nAjwBddj3IfY8LFO51XD7kL0LKdP6xzVqfEYmQej2sPlTQi6byWJhUNeYVZaWmow6iSom4MyoZnUARiv6ODuBqV1dOhOP0ZEylpoO3HInGD3M0G3rq8R9hSbi5KdyFlfGaYSxe5i43DMluEw01ORwWUa6WpigyuqtTmaI+IdwvqGKfQVHFuips84k3UKgtJVlX8DRFsX8f7KNtnW4Q6DaNszVVWUmuwWWzCFYAwcnu5k3dzgwyI8gDQj+DRXCSQxTBL/TC7hf+C39NXAB2XVRLUgCa6NDVtvDJfuQ+4vggW90HA0XcdOw3HqXYaKIOsxUkS0N4APie2k/FIcGLVaL0lJmc20i2w1dkmbBCyzb+yIdwmKoTRy8/9KCm5+iLK8K05Xapfa39T63e7YHZyorNVDLhhu8Jo1QHTzF2CGHV9zyYS6Cp4eCsfGoU84cryKkcjMqwsS48FUcdADJZqNXVDg5QanDxTHk3dtaOs3qIH90OL5AjApe1AXe9qQQTbj77eTDtf3V195G9R2Wn0ui2buFzmtCZjxngOzqr/szuIYePMPZ2otIGE4vwtevOSXTSsasnHJd+2oOf4Z04I7LkNAGg+ZCNKLjLeOwq1CaZ4Dm6gMyKL6je2+1dmE+K2uDUmoD7ImrNkpIt2HrPPGnfW1MMFCH5UoIKjIUAG9bRqJ6L0G6L07lRcezBINByp0AhnAL3LBuYh0D0fRymEYUlbc0ZYRQzTgqK1ttcH7albW0fvfRz0JKpixSTFzMZd4fUhYGrHaQxUpheldZ4pH7NEXLYvr7iNYosCDrwPMODbT8+BxH+GRC1Po+zDs0j/KRVGAuV4V03+BIWHq4tL3/UoO1ve8an9Es3DaXjgmi4/V+KBo3DGs74ks+9hYSTiZwO6eYG8T1pQXuel+Wt0ocaWxhZjThVmoy/G8QDmAMQ3kdldX9RTt2Vq/OTvsQQhyThdT15HK90zgyoPFdnOoD5F84fjDNzZUrtZ9LS49tEycrLPFYd8184blTKknISMWVKVJ5QgK3rkfGRbaK97FcMrIJg7w96OW7GqSIvHdjJO5zGSccZdeYezKsrSuleR7yakI+uGYJsZEuRMgIALyvRGIJ1By8OxRbkAigGFRaBZqyNyK/eXg9sGHScd8U2zCpN//6JuczfZjGdV0VoQgcP7ImXNfDOq/0BLPPr+KPka1+2JIkM9doJho7axn5NGGdLVefJRNXkNeXHo+3igeNihHlAzSL9ByTpWTl0PNmuX/OTTULMlpsHcgLstw/Ha96QFcs75lRW66n2JG6K17t1S0vhjPUN25vrbgwY9Q2m2WYUSWn0j87aKWCKOwzp6gmFLILOMaieMcFDLgauusMqJlUm0IxX26UsY52bmtHsQS+O/QbIfWczv7OFgH8rNxWOVYRKpKstPfEc5u1E5wWxeYSeBi+JUi/jtFJTfhKi0bJKILjMqvkhTJVA8Az737zx9fZs6J37V2o7mW6ueLTTZModZiT9KqGRQp5Zqcn3cSuLfgqwvqux3tgAuxDRaDirA1tqWLL6JPp3Lb91+2CkXbg5kkN66BDSEZxjcQvHErZS/l3WPDoGgIRSnuJUWIY6RiWrDVCZaAw6f/uZV2/orbeHoOthOkz5bEhYtRBxbArmrEyk/Ew0csIfI/InOoRqCbO9E8KyD4iYrhtmn+Y18Qrc2Jsmzz8Hp4hRwTkklN20KPDXzl0e4ayVd2qAU7LuxOVYla4uXmEEnvLOkbhuyG1qDmtQaAqRxgkiDqwQlQcxr8Am/bPJN/srNT9DJUq5MUaYDg2Qv0h3UzWk1iMQjEgLnT+bZSOM8fu+kSm9LPZajaKfXQxreahi7AdxzEp31Q+NqnNaGsQQeM63Mt4Jiw6SQ5xNDr4Bm1M9PhwHvDeyfYnF4B7SB4Rne8twvgoNcAhqk4siP30Q2t/Os4+GwTpeCkdhehJeEUsiqNKHZH9yDZ/v0zIvo+sF1OPVL5isKM2a4BCOZHYksY2Z0gmfcXuHL5n1W2OcZ8EVomP+b6HaiRUpbg/LKvmWg66BpUPJaykMzVg+W8sRgfIzuPWioo2Irwh6V+j7xvMnPgbp/XfksyAREEYR6hm8vUyPkKJNa44HEVlH+zRF2ahoECSHhkt0m+0zZ1jPFVgAXSydq+6Um9MKOcPzCMTAbrxIEdE4IS6M7nI+pPsxr0eE+7Luk09cg2u6vgY6tKj+vElUlnNY5scmMI1SveCmYz6ky7fFKxowGoV3+QgHSpH4El8QahhjRPjllbJ0uaNoSVR7dx/7F7bjLJV/E1yWNMt4xlH4w7ZC7RhqdSQ2lcs9zyQDxPYqc8GTE2USEIuQi7Hg9OZnjj3XFbmuxDg0bAFGm41GjGOciYXI/tpxEwpC9/nzNYhXW2vHVTV3xb56n1W5JgLGAzZsMFAgvHOv9TX1NmEFxU4SKkKe68IdxxTE2mb0PJZ2KhwPHFwMPwc8S6p1CfOIMF3CalqOQoeQuCoZemF+g65blgvY4dHb+Ji0bR+NjNPJWAP9pJPSf0425/yAkPyLMnEfW+t50UIfhgsPVGEunoj9S7TXdYdxQBMQhpPuQhPW9rQRblDSi6xF573slXq6bBl5TGxk/jzCSrcapWpbhq3JBHk2p80ICIUuHilTdNS4DHCtM3pRI7Vr4rW2YWllBkfc3n+C/tqnlYKOMKNpQy33dGIc5TiexHsxgNSbKFV9NQnFyzJKkpm5Qh72KvJqfvEeGlruAoTbSFznt//SguLyl+bfvMVlg8/4WX9RCxb0UDVWrAKyfOzN+T439abCQ1/c2Q2XYknc0jeB14rLPeCJlMiNYIUV43o7bch+2hdoy4qDswUGVYefnmn2i/Zzayhw0Xk/lvsvcM1rohyMgKe6ZvrBuOB3prrxPMg4OYLLo1Oke+GpEBNkF6Wc/lFTNWp2i/RyU5JEgj/Y6nZrETpQClhwUlFObxmSHraE5o7CgPH217FdTUwuaIuEzJt7MUoA9iJoFeC6zA9TKMUg0RkYSKY8fTXeWLC4k0jAc1vGAyzwbpf9s9Xa7TKbunNoUNsqy+G9oAY0AjJhLjLKJsJNkibZrRF+F56NFNaUbnHJFlxZ+5fB8QFAywxxyjwrMr4CTSPCtAFfxkyJW5FlpVawqQIQNFUBOBbId8jRGE8wwN+xZhRQpELotfJ2ovWL7lzm6DL8NrSrAii4eCM+GrLnm+44N7ECIj5J9e42mBk3TEb2yvaFFPiDAx8r312SeZg9KqvS39mKjFMaVof5T+lUk3gRLRsw9REP9sc0Xi2vhwU27lWpHt/CrVgQuwv4BIM5QgVZWrtdnhLoeNA4DUvdJznu47Y6PMA7lWt+QakOytTU3JIL9PD57rbP6kZ/p3jK0/0ERdw2+RUbNe4BYLyKlmsjgonvIePQIGfVKYTc/HRY3Y342zCel8Ab3kLfM7grAZHSTfOiZ6ljH8ANMb3GhJXa376PPFEo2NqjAxxv/MdaaeHnFvOWeyPjSqk6mc93JFdUiri513+r8v5KvcTC6oJllkSjnO4Hie5b/hm8Ahbrx9UspqL9I/aqJTZhQL6I1nW1lPsSOpwVETblX8lQmEB7iO8DJbsHWJujXF4y5QaZE2PXb+SvpqK8TctIon+CRvxzj4G8I0DetwokyMWbZFBYe0gPdM4o9EMZCZVce/qC6lo1M8em66tTpEf/pgYRYoHFgJuZcj4ZFnUWspL8JX6I0HbNzQhlEh8LrJ4zsTpBYAMqnRSmD0V65M21RgqM+q1hQ3Taw5Qgr0dVYlKrWjmch7JU0tlf2uq8UhEfStNG+9fZdvmkaw2323EWtsW9PdFk882qIPjaMX2fAeTSicfsT0nj4/HwF0LgU72zvRIExDjTn8ndDOk0aiUUiH0Pork5pLxU8xHEDSYrnstLX3ugAqybpbL+4u3Zn1Ec9WQvwobQx9XeVbQiPd1tfoCA3FzviuS5P3IPQ8nqxjMCbW0bOICm/cfxA8V+Gru2F/XWMGG4X2VbLAbGpuvQInJremCUAHmB1NL70LPfug6azqMxuj+nXa0QLDkxe4CfjViiEOWAdjTtbJ1PL7wNIAZ17qHXWCTFqaUqpMRDoLjqhapUCscMH6CysLmKjLSOTsbcrnku58isN5mAx+X1W/ee+++qyV1NBhSKVg7KeraQ28ofVC01cYVaM5RvwqQyr9bHgc3UX54J3RzxZ4YdJy8BB1xHg6lNIBIgsaYmm0OomrZBZcJQHiDts4erTgeella1iff06omR03z6AY/Gg4k0cFF4el2SWzAc7/vDpx476R1KxNy5gsNlNrody46IeNlbK0bwYXn7IyT1xXlKdvcCjT+j2lDTTdxrCnfyBTp4crO4quuz5F7x/hdnJ37/3yvv8IPF1eXhsX1PXTTMuR8BOa11h3QM+6W9bARnhXVbyUdq8beIaPyHEvWCDsHQ7GFxmo+WNYYtkmQaFHyEPiqMnG65uDvspbSNu82xdLL8WWpbpY9mdbShns86cevfK8E/hA4dV8rPg541hjLlN+bHVNRlDORdCRLW0inU0l+4PHB36diQBwM2JrwX/7SWcIy76HnqpWVgFLJJ3ml0j/syP5uk/hWDicQzQMz2htWSB1I8vOk6KzfIZOc7m0BI1eGsTYr5uwKVFrk5dsjtVM2Z94N+GyM446TYlU/5tdZyquRRw5QtakljuPkd7tDLadAL3Br6RnOvLaopPazpaoSpn/dUTTEMKfOtNbRbvpWwkPNewHZOiiva/VCfYT0C9G2IwEWmsvcYbn3D5R/yrldCe8y8YHd9JhHu08qVghFYIBxM1RSyKj6o/3ZWYqYuE9YZsM/E830R5Ut074jJSko7LUgwEB/8w7/Eb2+ROtAh0b7nrQUt+fpj3iyurg683FYEhuwR/UPyyEIT/9CJcNiR9A5mke62RV9tvE8cAyPvV1Axk6WMMqztUQdl/3FOOjH5GIJy+aHhisur32JKPRnNecacaS7hNjxNyt2j8DlQavHp2pey4h5xc+XAU+pyVCvpR3AFNnBTJZ4xCwmLsqsbb4Y+32xZA2JMB7kXdb6XGN5JvmbGt0wXclKgBChG407lgDXr4HFQebjWDMOCF5PX6nWZ5BVupMgjA0S+hEJIaXrHdHvaOiQtxe7mqcrmjYMc/DlDIcMrUFar9jNEAguW1M0DOmQVML0Ri7YWqXLeoGCAvG3NPA7tu7/aVX5lQBT59hgHarJ22EOaPdBIQmLR0fRudnQLSN+MD+RHu9eODvQDU+hXnLJ7pA306JxPTLm4px9HGR+X7AbdKZ2RKQkU3y8qV5fqFysuAHss2DivA89+Hou18erAwebeRPvnhudYO/zhsKAqmJqoYr/d94yvWwIoT046nlphrPbHB9CtbqTx2ocace8JGnwTGtFvcsC3MPb6UGRgZHG4XazcgA7JxpNQS0uOhx9gPbWuJ+Z/Hsr26vfty51vJZ//M/K6pVauwyMTnwJ1vCnm8b4VXqIDiiqF5Xrvyy+/kEfz75Q8OZSCDAS9CHRbTa6ZVf696f9neAoOl6MWiJtqLnFGGB0kslNliZmgL8QyCgkeTNI4g2Mq3kj6VsvI1PnKqWwzyX0KbH33j0GVDNP5XhhJgbHornrCU5HixBYqfnG9Gwjo13bTXTONPM8bEdxQ+q2WwcPs+6/5vfg8wuN1w/AjTrdWRchTknBOmhMfCTD1sheDFXY6cjEqQ0N02LJrECsxDOVtf/i1zmCh0FVBd1IqQQBluX7pCgoPZKdtZV0dwtkQn/MHsoXcP1mhMoP+9cPSOlAXgsLFfiidAft8BFgf36kZYQKfZX3VVuK64e/AC39cBRtoaiCFSpv3btcvjxNSRa5+bUe39yxm+x28B++Ug6tOGu1KHeUSc9oD6myOO+0QlgQN9GQVm7Y4pqkkvbTB8W8TDqBvzEjbRQhTfror9Ofg35seKv8v7EFz8toyqxWYUUqS/u9c2HY4xUvH/6KR4H7wjBvCHjFFFFO80HjrzqloCcoK4vxQlBfma+npcOsZrPZZylpai8BD56AX22A5YphunSq0fyie+8g+58p/AGpNMCpeYlMwJpm81NQawVCFPD4FbECl7BoCdjNkZKGGkeNEmidE2eMfW0fhBY9KzGj7501Y0xd5Tqnjh1fUlqinB82ZypkecnFhtYprqqw52j3Cbvr/FHDRGAR/K9CM+skmcnxbuyLZdb8Uqz6aOJ5HY/bBFM9ugaLIs3VqfMA+Lucw03XRZjcNh9P82LgTLZtvD+jx0MXz9eH+9rRIQkeZASuZh5/5BK9wjUZFmXdfGzgUGmMSsTBB1AkM5SSFdzaADcSiQ7qUT696jZDCimNi+VTS7+NENk7pgxr9vllM3ZmPnC/IPZ0t3hbhOCfofysgtZaK1yRpsnki5/QXVrHmO6l5Rf7i5JZ59TCKa63byyW5nKgxH/mE/iElKDiCpZvjJ7UjoHVx98ZrMyPy1awaXmXPF9h+u3hP9rqJ3vkuUBhJY62Hai7B/if51AOiI491N/idHM+5zhQ+yBjpUrFVtoCVNkaK6SpgLkwt5EfHo2SnVcOHAfeKuNO7Sjkk33hyci8strzjRXOMjwtc1Tlj43cLUZxhAlHyrjOLL5S+AxMiqm29dJeTwQ6+8w/EHqQZV9spD+P68GaA8Z53lbk/ZvAbOWTw4TjaYgQfjOaIibhwh05TboThOKK/ejPV6r/kjy7lvM+hC+Q7rYO5d9Yvxp7qeYDdK4GJN2qa49re6oRepRVGkhP4jF0rPMxwpNgz1Gq3QhPqDt9i3M411WKAnnAFDJvU2VcGxzGJHG2OMWKGnWZjWIlS1OSszQlgUIAcT+Z7N4F+qjrne4KoyJWWljJL2V3xxGp55Re7Z7+V+ww00saCMbnIGlkCxFY4c9mn6ixINC03TegnVsYrNBJ56XTdb/hSy3THGKQK75CuIKaaBSgW7PmJasOivm409cdbJw5CKmJkzpFkHx3HwDAI/bXJBYA86giu5v9QQkqbmiawQo2TU4Ay5i2cDK5/Bk90Z+O6NwP2h/ivrqW30FQwVfgT6XzQle1Xizyl/xM4T98E+3HhMux7YMoJGF6oA+ZfDGnpnYQrbQqvQ9Ycbo58JNO9kE5sdd0r3r/MslYIcImescjDPtCKWYnv5ajE3cc3WEKHxPuVJatmKUHDMkT5n0cUZUcZmENoOwzPBqTKWqsIUe3PZL5+P41d89wNN7w8EuQgVX+cEa68VHx36fkaLBIa8JUMqNN/kPN1s3VUR6AnL68bbaR31xPvQV6d3cihGSUim+VWAsJjo04jr8V6kDxhRzN0lcxT6FcMhKCZTQcmZwFSNqTA2gTADHetjfnaW8tndKQW1nNQm9u3GrjvQ+iM4tsma2NaRgdVQwDxSLvv6fe8QN8HVLuSg9W4eMc4YZk4IlXv7da3UaC7ZZZhxMRTpXBCR2HY/8S47A0CGfPF62+lYAGnODIpk+HixnFR34CbjW/spjWrTifpDbi3jitnX8Wq0mBRjPy8onVMyYRr0O2XhEQycs82mZSBnFCIR919XZjYuYIMzUAlKI+Za4OXQhRKLXkSlKrZb60k3a1HFqqZo+sShHcMIrTVrdJrqEi+FP0I3seuOdeRi+ATQdNju/QorYwawNgHEH2fgCSb2cAkY5V79Xg8DxLtFbV7qqQLexp6Btd1JzlJF1RQOlJdk+2NEiafoIp395+CMf2+CuSQVDgNM6W3P/p9zTJW/mjbt7Pt/w56fa6pF1v8KurS4io21dojhWvvSOxw3D5TsmwERRaUYNGeOdSnPpuu19wrv03MpKnI0M7+XmdBV4w9cdJIHpi4meL7n4zVAkQZBBkHQQ2TFCsvlQcMg0ufRlGDj6/0k5h2EuS8htiLxi67091ZdqiQqvtzcArVq7/HZT6WZf/oixvHXpXbRCULVaOBl48GH0rTAcyGHV08a9etQR2XQ7pHgMG8TVzx4oAqVhfztxCaD4hC74F/nlPs8pDhq0qmW8VWszPetkJRDvmW1OtvFoYfP7a20BFEGAsjWuQNpPPfjxYhSUuMhlKFdlo/YvCnxHVbbfyfsroWU017nfa+HzisA1yjyyTZjmlGcSdHKY+YS5pSJ9MkRxxihYbM0/Vz0h9322Os9K+heDAW+qmi1Kb48zF4/RGzEfmhJrmFDprvQ1JzM5L+a70JctoQDJXSHSNgw1HWfhuSR8B3DC/wYx96+8GncC0ALMhGYHsBqBLsmzcHIVbSyiRzXWXBgcl3ZSqcmqVbSbh71j/LTlqz4sWj4rWSOjO0RAqwmrrDpfLe3crVm+UWhUG1xL5lgH5waZOkH+Oy0a+zyHJIqlmTZZfgHWsnOv4+GZaC4Ywd8z9liU+c2rcXLligzmuV16ABTQqnr5xavBe0Gd4htGt3VzQ3GH5hjUX+1QW/hJeMjnm3oBhAD/9MlchD6VKYjCXM/Prmq0+rCLpANcwhW32cGrinTokwDPJ6RXkhMzbI+AGQQdCg/oPDZ0D+kEN+aIwF2LpeOPHkkY0iGyeLSuJ+T3Dvk6pnDvcqzUFKvRtedbond5zcccCOjM17tTiEiNNElt81Ccts/w81g0XwQOCcaya//MCAnFZeAe16mgcJOj4FA3mTwI0L73Ns5G7yD19sj7W8p6ygFRbYQQB9uLB6JUbtr8ZlpcgaJfEeVI8PfOwt55/aPCeySqNh9qYrM11/yInuWfDsxasGBKo082cUDGM0XyESXz9F/YzaGvbXfn9Z7/6EufL9dmQmJgbehOqtkcMnPuyIaH0Bj6hMkKKpJedO6EmAC4JR4U3jHaiD0xSbxM3aaXhEWVpGo5YyGeCE59FcwTXRacMxT9lO8fyFm9Eyg9MpcfdSFYCR+r6hTnvW2HuVzzqE7GCXPCHDhHM+Q5A0ri+J2Ovq2+Yh8jXx/eXDHSGkK6x8at4If3ZO4W0cBrklerbxKIwh4a0cbB9LywTdvVaNFIhy8i/gJYKIOQ6+Jr/HSvACvzEf2uoORSv6Mh/EaX1mHDsopWeyhBb4i9XPkXfOROm05XMzBpSrW9ddL3D0mIQmUF6cMjLiYluTpNIz7RHeYP7B/PC/isF2aZ/KHMGqaVyWNXALhkCO1jl9XnNVQWqOL2OV0pS5Wf99BF1CpnWsD/zAtdktoO1+Xwn88sbY1MOxpqJnUdHGhUlLqj4WTyvJC/E6GErkFH7cwMl8XF5kX+hd3upVBGCO1zOR5NkaYfCYT8vICw2Na9xYLX0674//ydcZZPdX/ornvyP9F27kAIzNs3semDLb7KZwPQcNj5cjhGKn7jSopWni868Sec1HrE8yAzk+MARodnhrJtr1LQQmIlM7VqnkBU7APzkhpz8hfhRtRe2BxI5E59TldsbZtMB6FGKcUO+iV454xIpycUkpcq3WM34IiDFiskmDNtnSjvuwDoJ9SZjt4qCFmR4F8PfNbhx0yA17jQiTrAp/Mk5TUCWZCmAK8z8dk+LgMw7Ph2ULsjQF6v102aWd7FJIR7C6B7zSkCACgdcjybq4JJXjEFesEfiU2Q0d/dsI2QZcttoDV3huFCjiBo9cNBY6duT2kO04RFwEUwKlLQmCOaSGg5ZUeRxn6Xg39y+zGx4LyAkkmy7R9FZAj1UueeI+VpfbkhK1BVODnEcjlwnCrItHuvU62pjT1/qnDCsu8J85LkoXS2o922tPX8VLhh1cBmWOB/jMYInM6TnfDbonLGmcQsZXAFyAXBJ99zzaW0t+iT5zDLulamZpbhebWlLqjOrAO/+/g0wMsFlTGAF0/6qgewZM2BRIsJXakPzMkWuss1VrS7e0fMmtNnqR6IlALY+IJbGzmCUUQPFzpVB93NZNmLIO3nHS4MwmfFpsH5pS7Kx7Xqy3bMd5YgWP1RcVLeEdwp3SUOBporQe0z//3X/jNuE+/7wmwPDjZxmZoz1b8bHXsxbg975G0gjInm29dsNRwSX2BRIVwmKtlPpdY8QDDqiqR70Qjxq14U1j8uqmOvIV3nAzzHjCZMlmxGOmXhOsx7I4bclskQbjJXekDHzoV1v5FCcewOk4KNRLewN1GiawA+wUd/9q9xV5zUr6MTLB73bkTIfg1C/islzFq4UyAesoVTu3vqf/pt9jzEA235Eue6/iqvNKuRtCeqPU+46mIS36lyL46XzjsODxxghQyPU1F9z/mqdyD3xUdq4ne+jy+i15YHKORZL6UeQDPeAvLb/nukK8X9hRYe8XXR02axNY/SWI8vOS6UX5+az1+/WiCC5S6iKKcmvGFX6JpZheCIWZ92ZVINurr5MUNGVkU4487olrj/7OvddkPCYMeNBfeobKZMjN2GvyQxTLJ4KN1xPiF3GQyfLPY/cYUbQJ+rpvco3KTMpLXVMu/3VDZNVYyiABoQGRxRV6pViIyI8uxdCz3yA53tQSRDM7U596OlN868WyU7c9d900AdgcSHzMHZzh/PLrSu1X6V7RXWFEGPW4m5KouyM+TxSZ1uZUx9EDcIOcNYLhqsag5Fh2XFzpOa+vjNVreczw/cZzPYMvGM+22jOwGsL4KwTJuvh6YMrOPWk0GTWQLqhQa8EKpHO4A9QPaufA9GmM7VIKDqAUyaHeI1QBx4+xYcUxdTnQOflRMt4pzqvZQw+FaPFwQ/tZoHt9I1NrTX5zQYkYDaPRGUTDD2rUK9+6GjZlTdv1cBORScQFDuvxkWDgBD0GTmQQyv/9E9bb+pDB1nETsmyn1fItYPRb5GUqvN9Y/uQ+AZ34XacmYlsCDF04VvGsWWM2mci0hZKSFjCbBxRydKYBHwXqrtMxapENRc4Hlb8AUPaGXr13j6QulI/4RUBQSw2bHbWgjtSY00omOFGviRG0/NXhZAFjlA8Qhd5JzI/WwYaY0R8r958nOO2yeSDVqJYTp0EJaz6LSAmLV3wr7dTHw26k1lpK5irUJWSVDU8B1oIrfwbK0PUTrGCCfA3ROPlk6hTw2qMsjSW57Z3Dj3ZUwp9B17DjLje3rNaRSNEiAeRjsOkZr7qfz1oCUmFLmgQQNiq+4D7dHfy0VeC/vGnBHnSvWK6BHkGbqyE5180FFIKQSAKHCYZdXtk2utMoTsnf0jVXZP6b6IIAdtESjOLRPe/56EeA6Hmlb0MGg9lNUXdvtpYR9swxduV3sLTjaHsf6T0NEgs4G6ft2nrcupnOb9p6IXwHxLxacMRCQwqTpD+weK7TeE8juc/Mix49nBmys5QJoTeVKjI7GJrtuTtcSc7+1naxfT+cu4JfHuM2XDGNQz5Wi9Z3DGMS3ztP83z9DGuaGDkht/7mydHcBdu3TqEp1ILWBPQXN5TGm9DyGLoGti4WdNd1LK5PZI5R09Q7Na2qVM2u2TiJlnD8hHIoY00zSEppED3246swoH52hF13C0eBrcevcaI3XAD5AfqhfqZIrEgh0i5BTDJi2yrXXBW43jqXZCpfNXCef0AGvsDYgD3et+ZT3QaHbWupTQ49vJ6vP4HwPTekXwRbKyGu1rZMO3CgNl1dd9xNe0UtrPgxDLPg9mtB6bRMN0r/fc4ZTi+mHGRFn7l7N0NYpomIPO4zSYlcdPputmHorRkjwVdXQpLzDfg28BuqWmfVWqYuSMolERzw83irq7hlmENRKMlFKdd7U+7TJq0Q45HrV/X/vrXrMj0zcUZqTinp3i8qw4HVPo1HirSZVXrCQmYY8pa4SmxSXiIIk0e9b+OBM6L+3XYPJmEYsD8Ayyqtkknh01vzWE8dwFamYsdnioXy32atbs0aK8FAWD7ZfNfv4UZBxPiJ8rxYbaHar8jLYP4MYntn0CGdTbCko2p46V5P1LFiTwjHlsyRaWYDgfjuZMebEONHyrHl9nivRK+OPuoVuFh/iGexeEzilB4Gsp+nJIl+BTkIqmawqU82AwpR7CKkDjDa5D4PNBVgTVHhpZ7+zfBUKAWpMRU/gsmnQ9QvekMQuwAEE9OBnSYk2L8FwMnWOTC22qhOVCwtXhXrt5lz8FCVlqwh0/TVDCCOVYYJjLmXT0nLUhsm5ACTCpN/ACJPu/UzLFxd6sGq7copyNt3WyWMvvRLiUKjyW0sqd4i3F6HT7n6VTMXy4a8uFR5o7cGcR7sLe70OQk+zxtniid03DhOEHDrzNxrx9LKWMSakzNgqSjWfdcnX/Z2fEn3JLFXzCxsYxBvB7ZJyArF2KZiFmaVVClEnLH/yTt9izKS+wK1QRR1jc3Zda29fMRwjofqDt/Q0UVZ8uWReS0WJ1zWeHhDSo8qiABngTHSWra5VHjcbY5tzyk/puQ5C+gYdotme0U2yviM0SfojhLreFJaBN0zXi7hm7D0rruA5TEaNONuvaEXI+1KorFVfc9sn18Enr3LENImxi4dzXxP6dLJP0pSI67MWKsV/dtExKPFIC8sxs7muKXyxzUbrYnRDkH6UjxpsCYWu1vbWlF2OO/CvMEVZfV4CTAXhepKJaync8GwYmcsqKqWV794dT1CN7fovqawqUnANiJ4w7Yvmj1bV7euRhoccOuP6OAwRdlnl5oiRN/7OgpMN0uD0d61P+7zLTxSreRqhM+SDuaek9tc2UA0fOzuyK9PfPQyvVjpnfecTVO3POVOiadbxR3/s6I6UdHA+8WB0wgD+gIGJugxNeCUo5iCvQJ6WpdZ4UWqSJDMDXqHdR8ZA9pr7EOwat0cIVQKLSvi8SagN2yvjvRmbSxz83/0f/7lxoAziInTralby9wl59OAriKc51u6mit7Ksaj2SA/Z1X/A6u2zUQ45jobFJwssYxAFHnQ80+hkbKbLkF4KtbdTGKDYaPdCM+sLnbWYUkHvK1Kw9HGtKVgqbk9XEfhHz6TwdGppt8Ic8U1x2uMCU1rh190ZkNmYjafBLNApz5XPnMMNCWFpVVCY1hwFkgvy+Lo1uLq09tbxX5WWZRCRI0kWpSfOjnodym6KYuIg7J9GJwnAm7Kp2/wpZqvlpwk5Ifi4zAur+YUFDQvBsHSEpdpRwrKPi/5XWSUDWcs8Rsjuu3G0gdQUZ4BIXEcUMkDTbb5u1cvGlqxyYmooG9Aeq7EfmIMb1d7ubkzFmiaLbexFFqg+u1GimLZtUHcHmmeE2fuHi9xqaDdeLo6gxDWB/NV3dzOoeRJWt5QysxfgGqDVKjtZp6vw0vTGiLdAniPjMny5rboeL/k1JBCHVjxuJidXdt9BIlpxhxMxZbApA6YWDWuSIdACDfXo7rq1TSjgq4ktxgEgCJcm2aEdbpd2coh287fc2DTPTL2akyiPubhnT00eJxaQd7eGGVdUBY4fytiBzFg5XhMuR2eR/XySzWhiU0P8l6I4B6aiUuLVruCtnRiYDpiX1p28PA4ZpQu8zdw2F3EaBw4R3/bjJwbxidZwxvzPLDS0/Vbnqjd2pl+3t8r8M29pIy1MNMCZcRBSE/QVwKrv982r/ATMwWmgVrMZh0oR16bNXSlaBhw1avBc0n3Hux9dLliRLrev5r3z3bjfd+pOtdDX9ySe476/X6aJWQDnIjRsdalCGMqCCiTAO2GUGU0ejw/1dDCK6ZwezOxYm/Jdx/Jv+mzCPOzXE3EzObmwoBzyuym4mk5l3xG6MtNILDMpg5fFjolgf7xOWQKd94f//78ldtubbWDbfOh7c6z0q/NVp5sOFkZqf205lkWW/8cW+wC5DDDxR9zinnRuGfFGxVHxhCudEehISTqFvZD+tRMob2uPLjd2N471u75jPZ7i8lrI13cZVA1yppHKgQg+rhrgr6j01AEn2X8xmTW+zNAJHx84LmShpdCJ+XddNg8OpgDT3f0Ke97grTqsj1TzDJNMIb7UOBQGedZRvdFcq8Kog1CwQVsz/tPp8/Y6mrnEY5gAZP4B3ZOhQnLqONDIzjL+H9HsgbbG3PEIm1AOpQtpxFFhZR/OeAULSGSsBB2bDOjOV/QYXQ0tT3av8z0Dw47Xf1FGqFmOKYCaDMB3uI5FP0J4FPaJMDsZPLAqhMm3O8DpTyb0p2t9fNigOAggtSeFW6lmaoJsGvibpNJsXolEOytpTyTVzVIMjmPu6DoPv41ADew6r+dARXqrMBqmzozHXOJZun2VQxv6KbVwhGHwynh3nbXbW3rwVEZ1WcChfCzFlrJj7zgxsdhyMeqYvcu2AmRlKEX9m/PsMJNXR5KwRXKCeIMUtRb8ovYQ1wNsg8NWUKlIEbW5PCIMYJxssIh1a3R7BXdMM1eVg1tAeQrVDmI9ZimgcxtFrC3AJfWOqcwT4lYWHnJ/Vw33ni4Yymz5kl7iKQJDz5fze4lHEf2BO9+k39YrRugjws5xnFeAIMX+H7EumygbDW+w9OwelZECXZhxJVn4WvRaFJ9Ci9b29h8pIhB8ZDrVQ3XzRs37Oq7lpo7iB+7sXmkHjbsV+/wvettXPkuOknLYWJW55Z5dvoPdsYuYvBRr18pJmbA+Cwei7+/Bfg5VCfqF8Po1oTdFg/5Ok9i298EYHCBG9XbsEFHkVjWbYRBBXQorwH1Ha7CtUr8BLpaz73b3oozaAy/xI7H70vXtdvpOgXFzBV9eAyv6ba9E072HWAh+hv52EqFyZHYeQt7oenEv2Mx12bANMcgu22Vsx7ewNTrcY811uCzpECun4xiFNLzjNH3ffXDPRnC9CisI+EkJ4ZsDoWJCOzfSOOld9vy8WUU3557YsGGbHEpQcVI/oEkcsOXFqoN3ITIdoGtrPwxqdnqUDd6wJMRuLJxFDBR7lD0h0HIEU30RujgFORiglIot/Nh4r63p6/TnazhgnbXInZLSmVUHsvrCpyBi4vwBSHkpSJ1EFGpcKyWMhzxsOzpPmikerlmtNTuv6JMOrcGONvVWePCqwbSJ2ib76Zfrn8S4GUFGBaPSwSgf+MLERSEeRcigLZpmHCThBSC5f7wXy3EVV8Bw0uoJ7j3TSblYw0S5fu0JVH/GEKVQuIGeCbiYOPEZ/4P30EM3FuF4GQ5sL2iA0n+sqrHqorxrHm80txI3060ODnNmyhhtzxkLMLKBiwSTfrire5WEe7M5NSFc2PylMgKQOQ+Zk74t3Ii18BbLX12UykK4CCksRgVQAjGqnKxdfqgE4xmQ5tvxADmmsrSAo4DBL6+GWjraaINJUkekrx1FUaToC+ibTlGWyROwULtx44800Nx1Plxb/RKvJTr6uPNrtSXBu9B0dPsZsfm7qFtB6oaqPRkUwMhWvLl+g7uqYJQYtxF57OhbPO32BLAFq5vrgPWzHxRl/wF8dc7vq01FISJQn5IuLddyOLEaiVWI05toISP1xLtiLjoKdjk14lVhXE6exczzfRoDkGAEKuCxMDqp84peaDFFQ+QL7oC2RSz073G7goRr/pCaIHKRx19nzXDZXu2TDbuuo/aVYRpIx8oWNYaw0HwYYDnF75uLBYnKyCAt3bl3wRDW5Bmi6N2fntQQvBg8egGAtr4N3YU73S1jSRtuEXBSPHRbTRdNkSceAoMp/d9ADJRMTocRVqJ78iNjMFlD7uveLOgsdlSLccxfCw3hMv2N8o22eoTqQpSYlFJkDAm62d2SpDjIN+UzBcwF4N8KKafQnnO3BlVwPZ5dQhhjsb8hFxWWYHnPmVZSYmqsHQekUDxIRgyAHdz1CaAvPBddzhPq732ONxX/pPKuluZyaOwtEZaAJIAfoTF026ChrULigPFCb8n61jcdWwI8dp3ObbHVxQEmHezFCTyCZzpYK9LYlWK778f1cjiUFT2rga6pjtHWB/xsF7jz+94wSX6izNODNWvL48drZe89JYMxGUepTJ/X5MB4qNMcaFAYpe7LKf7zpvKHATy+36Qu4TS0qopdmNPknJwkXbebjn8DNOtYQlpupullnfu9s5pg11BMokKPb7e4f7i31l1UeWPtqMKeiO6O1xo0pBkH2d4H8cAU+GmiGxXwz/gWNZDTh7plONrMZCnXrn2167DqJ7YKr9DdsClUTkllXNLlqMrmuDtPjVO5jjPdSuFHtZlnRvEOoRFifMZ9kwf5Ay8man+tGCyTIEtQ7TPFPjYcFzZDoFhwtwkIoNmoeV6aCDqzo7uleFaDHCz7LZobJ0Rqk+MCfRLIYbDqwpfWEHAYn71/ay5VSoHVYF8UdLkusBnd1niEqchNGhvJtGtve39TCiocPGlx7sBnVxCbtRC0/aOtJANeyXk2TJ58dJR7tq2WqlvkZP/eL6q9dY67U7OymJ0iZR3FOYOszpQFd5tFiWoCCiI7eanWrjJ7NBiuGyyPesBffb/B/RjRkhapN/qxL6o01DzCm9QkIOqA9QISHoTy0IYT+RGmAAJUQBxILVlNsF7W4oNphexRIbudZx+khEwZ2yVQAyw4+DhC8xMXkEGsv4cFygp3RGZ517F+V9BhEtKNjqAvjoW5Tp48H45vAH4oTdcj55L5MXWAcsbbvNE7K1sdqf/KF6GFVDjXqdYmrJ6H1YGBu0B+f/uIchTx+XNk9/PCaR3zQQC2vROb4nxwClHUWUyJOQ73gElC2lGrTGxWLbZd2YzuxpvIHKfKdVywyzy8O9lg2CXl7qKCc+TzpOFIWexGyWKqaDmH0NV6LDdr0yG3ATiTI/jv7mfeo5V7LUWTgglrEoomqe1y7whDbn7dMXEYUjcKKJhbHqSqGFm33dRmgx5DEa2ScK48mqjNcBTtKWdBDWC68udaYzKSUdtzewjXWPlnzwcLsZCPQ+QL1388T01YmsHKXChfrgJKpYnq8QMvuK+mN8Md+J55tr4fZR/X80se6y03nsrJSe3/861rBt4/WbXQ+RBWvr+uDxJguULr5owHMriTDl4XeSowhjS8NW5uHuATl78BMzZpV47Q8XtElOFfZBcZRengoyqCLu/EWuFtPEFnuPljgGPthtds/2QVXeoWgpSMT2KpaxD6o+XH/vNwA8JIfv3xXCBTAfmEEd0s9ldNO0m/RLslxQrssnuYqY92xGMcSnzQGn966G/KWGpLYzS9jKSdgGZGBbUFZ40b2YWGMlVrpaJbXKA1FtiPm6FYXPN7b6iB63CUv+cMt5mkizr8n/R8qiio+aMVNwtKD5H+Es6vEPJBv8OFsk9Hr8iquiUkzNgQxm2IoeHXWgmw05nuxmrZcp40vzqGgYFNHPWbdwS2RF8ffecViOxGpSwo1WsamfWOzPNCxpWAUYVnRZcruaJ6iigDj9KaHJ48SoQkQkws/IaPP1Bog+zaGCDrcZQRxe0hYjNIWMdQOeFqsCdbwDl5PcnvAIUsrH1I/YPSaRPGrwJZYQ6gktYc4PMD1AhP/s86fuSUvZX7TzXyEY0LTHCF7uGaHYSNTyrXLE3/t0O3eweElknbu4QmNX+3ITlFaa7c5pibQ9pg3Waa6FB8XyzAZvzXoMNw3bAz6W3OJKPoOaYnobNKMQrdp+Sk1XJ1ZGL3CaQYHzXgqUg09tyeh2XkI7vq05PSSdM78xB+4qqsGEruMw2P31/542ofSXhdubtkvf0tSjXxCXTh2n5634snQfazzgApgvoHD1hY03Qul/UvFD+6hPl+wFsRn/6HCrggdQo4MCQXMs/QUUkDDKRrf7nsje9/wuEchvfXgIDPyYyNc9njnz20it2pa/RYPSXiqGJQPlAr+IN06PUpdOAdIMv760CY76+tksMuEUo8I3keH7542okG/DO7XNo/rStRJDps/QMQ363HDaxeblPaTX8+szp3NAMWAMC6hYCb/H3Pj0mt2qtOhfOynruE269si/1aa7juh3TecFZ7d3uNvNgwvxf4Npmf2rVja++PmA329JWHtv0E40SBZqA+chlnp+DkHKh4c3lh8dyZyVlst7rhYOrc9wy4g0hXnWYp2thbyujwxLOrm/thmRwcpHjIqND7/5KWcO8Oibj61hft11snkvkcyRGrtI1YEQp+OTLZ/GMrE4x962TDDS26uW/uJDOYJ/mjDahEwUK1DhjT6Lrs46cpPtEPdAMbS9JoWmeNjrb6BtRc/LV5xAwETK+wnwmLXnfpGh4ji8Nw+siIINZs0adDOXcOV4352x8vq67FTOq/EPg0dcIBYkeun+UpGssOBt9YmW9+w32Km6grgSkrVh7XaBtzaOV11gcilZ5zU/IGZxvUmIdUctmXRHRywh/fvk/nnD0YnHBEcp74C0c9ysquLQvMky/0wxe9UVmx2MFkE/lbgQWLy3efqTzSaIES0Ki9CmcjNkDwbDtvvkzMsiplt4UySOsWTn48SHfygjH2esm30cn74JRLazHmOzd46Ulq6PW0wtptmR5lPoQlnIngU5Q4PEy39y9wc+C3jfKx0zhCbfBfJJ75dGe65xIM7p8itbYCsd07JsRmevbevL1eSyaACBuWcJFbHo1Z518MYeRH1wUEylQq50DQ8BKKp4YwHFf/++5kwrrxDC5WQn2s75N8xfbGAjhSijCN84RTSYZe8vdCGZRp7eLYhdvK8cdBhPvk1IyI1m+Swg8jmwvpKl1E41EovXvpqlBfYTmpXhq+Tq/5dPxqE4lxI1Vk4f78TTocXXbRyl1m85QsqteJWrkiIauHu8ofuQ/Bn7B2QlC9UMviaz+jlXV6AbaVip/MKw1jcV3uokO2b0HtkAZfqe25hDvbbAVSqnlMgGKcZS+6Ko7KJ03uH7Gz1CPhv4q2oCNGeXdXSvQYgvEutUxItyuGO7ixqSYuRQ3h1VK6reEQXvbuYdN2rNb+t0J8RKVpZNSHg4erEuK1tNQ+1kWO8cpO5ZnvjDb+CHVmluNm9tB09yP4nkjqNyLa1TbarsgtZ8ZbQXPWHgZgdvzDWFDS8A4zc0X5PY9BlqpM6e/tE1tERwp3jeaWhXWxpDGSgEoRjAySdtpz5uG/482k1zkSs43n+g86qSIaKCzwRH4NMXy/7UK6dt+TC9IqRnuNtISledeWGC4pxz1dZiUDnOuWbw+1+H8+xLKaef1S4BrlUTIdwvdxdn4kGuI/8IVbKkdRhTeF0nX81z5BvMVXujDJeHHXZLxUt3JMcNsG7D8g4TpuUeb9Sl9IBSHG2eYTl+TitDxd3fkwf8QeLN6BJ3N/upfJyD+eO0VRQ+mU6Ckj1I0qCeCp53dFbXfty2mpbBRU/BK11E/8jBdZMvnm6uYxLbdfXV+rArRQcbtjZBOwGrDloZeevlHnQUNDnew4BPAX6bcxlDNJbW4DWk4Wk/758jrFFkncC8fodk3xl8Dz4nAIwhmnETzQ72oBcgbjUjD11H2r7POngKMFEUOa80hZcxsOA1Bl+pHkfcJgOKtcP8RfxsayIaz/EG40ou8ArAJ6kFHHKNay+RNqTrCt8pq+qptcogaewqtNwt/h9bGDkqLEpxfbFs4F7hOjO3Nw702rSw83QxHMKTwXfmgPhYS5pQGi2IvIjyQe8nteODJGDt1ZrzDIPw0CtEAdWE4BaT1zMNOneNs2FDlVJ1XOEG2hoeUR1Oi8ijULSRXetFRUCM6LZ1A8WINc+G02W5d/rWcmyV1vgCKGvbmXf8puHxBYKY8s8BB+f8CCwUhcPBp2Ch4oqDWQjOO/HQ40MtaGixoEGDaws9tKDli+XQb0jOLOioIa+xsHRwCXwBeV1Mv2zD6AUVDLzVng0PfZYc/6BB52SUIQVzoN2i/rNTBjzgB3KhQeE1IQrbGXWmebh4zVsC718WYvi4oTWKq2aEPvWSQWw0wtV1f2Q0wSR7xj1qKNFzBk6pT2WNbgWHbhk6X66G//hJZ45Mmc8V9axY1NWn3Lk3Y3WnMFx7dmnqx1/ny1bOUAWQkwMRN91+NsfkYZ3rRxaUSFhXgxytfp8j9IHV04ZWQjJN3jG0mLC9uudoFhlgtKvfcw3aZ8AqUXrGSJj3HGFOwl4RZpJkQ/G/xM7jzDmAQu+EXoYkXkeEBXR/uFEv67ObFqbHb4X+VYnKBAqWq/slxdrd0qxno+EPoeaKziOUIoNxgeciH1nBgJBfZKe1Qro5KoOsny/bRNHANS/6QIYXAHICwBMT1j+a3Y13sXiVMB0ZtY5IfoEVUS6db1f1xSQFbDsOz/qV5P6JCVuSbiXEsLS8+ArlUtjU+X/edaIdShg/35RegcwoTwosJEEnMZlmu0uUwLYEK7tjqmO8P+QG9tD5we/n4b0g+Gw829/3DaGTsf0osu+CLLLIiKnYcaNG8As7kyaK6ibhsSmwH2O9A6fWgetOVRw1aIONJgPScppt1IijM+0QIyTlT0So32OTRFFaoiZZK0SxThBBOOvzNmoYqALr9F1qIT5bPpocY9DY0Hm5D8y6M2OUspBNBplFu/ykDgSYXdCvBSWFQ/HmTHLju7XcSREqw+KvAuTi96kQ2pxmOxgWNzwUB9e5+EVwzVdb5lwhifs5xTxTpcE1VRqSG0po9oOswpGbJ1u7b2nA729G0bBA+g7HvuKNQbFeVn1ApDSwqjO4finupVVw++NCFm6WJsHs/OrOfZAl1aNh/PPQ+T6JrCmboLwOTkRZtEPk4foO7ckX/UKEcUt3N6oorwz/o+BwUIYmz/341YWCWg++2n1ymccx54L4baxtk8xvo9z3n8SqpHZgwvdrX14ciY97VbCYnwEzKhAENHjU3Dig5Zwxvux9kV9BKBKbE1Iz22UbAoBHf/u00nnD+C2kPZYevk5QieM8vApT6oV+qqzvbOTFZyxTTOBOvzSYX9mNGf3BI+r2MYJSFjKm8TKcJcv8+DGg4svFWul9w5MNIVPhsqULyp9go//vSKFjZTWk5Ozls0MsW2OBkuOgDA22ny4Om9mbBFdWEDlb8Ya8/gCLc4Ey94S9PIduT7SHB3k2ANcW8yuKD2Ak+IqYZllf1yJRQqunSK4i3frgOp+mMlIvlhiSnDC0qZ5hr1BRIiPgFlnl1jwycno6yHGL4+RvAmkOKItpqmE7kriuZ/R9k4eH+HO1MKKyDZG1tmbnZApiQcJlZOIU+CPpu4/H/vpixA7GXu7XbY3jJ39eyqWpzsIivqVeE1cvXIRFJYfa4hVOlJIS4oGGOsUPzkLHM1vBDIsC5Pxsv2BLQku5TQx0CU2BTpXTOwHluGzdm8MDaZg2uOp9j/xleq/REeL/WVneAUK0SaI9Tc2Vlh6bIr3u6kAbCjhsaLSXYowStBto8tRCNuxgNOqEOSVEYW9pgz2Ve4qZODX7u16eMH1NJuAuIx8HL6+SWPGNw+8ubH82/CwzFCRhIkTQGevbFJxc/KoAvFx5pUM8bbIMCO6cgbtQmCbQdX31rx6mttAdZjhuQol9xSAr737AEYMgeGy33u3ctbnM0uWfTrNODOwKGkDSNA0c2NahUmsETkTMO/eLMyjvWEjn7Gg1QxhefyelBRAfyiZ0jLTvOKKaD9ubyA90QcGBFWyaAWrJGqLls29aMbOK2nn5m3cN4f9NVBwmFlR+/PwbRR1Z9aGw+d3GWtrs+ui3d9uua6DAhvToFywA+F2M0Yvnke/iYf3cmKlLxzJDiQRIRa0trNo/hEn98E5eHmgf8RzbTPq7vkGO2+U+wsYQolUO/I9EUIylPSc7h6sxC43wz0Ot3Jw+i2Q6eRMNr+xj/14wqxBJn/MDomtXwe+249xCAwrpG7UBKD2yqqVr8VMUsOkAm5aZ/L+UTULVzqepj7HlR4ULJkVKyOsntFUt/m0fQ8GcgyqCT/i+8IHSS4rQZsCSVzdg0/+hgpOeigse5u9t0xfHJJdA8ZyMqQQ69jhpeT5f+chC4rqE5LfY/jW7H8j5fuXAvfDly7B/tb5P5OLHElQPiw2haQ02QVDn242rjFixjU6vnYgxz2SKDgzTiYLYTrmujqA7349AER14ybNZi9QtEuR9j4CglnibMAjRv2XDxLD6mW72EO2/Hu2vHvZMq1wWLZMhkCzELd7qkHUwdvynm1dvDsdklK8m+H275Qsw5Z1FJvYO1ZC9aKoB7aDQYNYnHSb56CuNYYW3HmXi6ptqVlAvz1JA4xKALdotVCEid5FBF/G2z3YQDLZs5/UVqyiHWyyVJYSucr2iGS1jSn6liY6v2Cbq6sn6OAgqGwr1tob5zvF0qFrf0h0h4lKY5RusGqM8UbZAsav9Kr9GxO5SooMs2gcWz5dyMIOMeXOyYaG4OPgANu0EvAlkk4KZv6AJRlK9HQZTccmf0LSLYM0juHmaRikxfhAMUvUtPj1qb9pWWUwVj9bAXHu4Ss9l6GwUAAaVaWvveJ05YDAc3vQKKDeqZVqLmQlbfjoVKWrEqYchZ7P73gh++/677pQLqs8dMWiRk+hU5tubIs6hG82eTgM5gWXtKFkP1s+U0tSrs1oREO3LQAALmTvPfArZ4DneVZ5ZJs6eN7JnXRSujHapprkPslgZ9gvhIUPIOFze8Dyq9rIxqEMMYHpxt5udJboIqppuQhmTjoOu2HIU40MCSI378v/27GoE8h41YGJrqGWCqVHdLXe5W6uo+BQJOo6e5muDBzA7j8C8o0JRtGPOC5fYno8k46oJE5iwaRoTSLfAHDhQhyXsKpHoT1XxSMB4BYmsQyknTMRKvMpA0YBpTYTCezzdCv0fM2q33xI0sMFcAOpqvr1oJbY+I0qyQoAa5k+vf7Abl10zg+XFkFOoschrOsauk8CUcrz81RXwEbfr57Wj6dANMNsMuzRNCUs4fHpLrl8mxfKC50LE+WM4xutJmx7Ip8a2F+k1RH7NuBWnTV7DTLpn+FbZWZAxDvJSNlJl6znKUwnKcUhe0YLaYLYc62wPmt1O469tCtngH6HQbcxAtKbJvm5lJjtD0B0F4LAjLCLSXVf1GnNCqsVqu0/a7NKT87riqATSpNaBK9a0KSprr62FobOLo7iwy+h+ESKFggTVoiDecrmrgq+9/vgJMhB4kL7oV71ko4TQNh2EDESVgWwf/Fz1GJGxtxfp9XSaVX7fdczlvad9D6YvnOm/ln1+bnSZ4irFTp94+Mq9yeEfhdeoDH1xTN4nVKpdKAPP0vS8Q/AW7kVhqhRB2BmwKJlOUv9KYymY8IaXsoqMj+UnrNpYtFSbxC5qcXP52fAhLpoXBZIikLLp8vTOkP/VbCwAOPHlA711WUlJi9sbC6sIxU6YBcvz7HM+a7od1wJCLfokFoGntxUYLJu1SgWoi30Jm3J/ptrsKv8EVt0cRjlcPkDVWr2Y9tCxacQ42DF+gkuK6QewjmOyfkDklJCmNwhLXE4rZzEsk9r+jD2PqqcvkP4dr5WIZxcGExyZ8p1j/9U6Vdcs4Zb7f76AaKFJGO2XqmdJlkTnyqAHJA83P3o6001ghY6ddl3fXR1vK3CtpcNZmzMscitjNL6Yt5c+bTL9buCel45vYzX45MifixE50dP8LRWnqORuTe3SgapXuijK2iRjNgmvxQo1FBHEwvpgEXOWR0FwtMEisoEB3dIIJfcrpWFxDKWY2ZpgW/ofCPIv2vNDnbgE4VeieFx9QO8Yc4ouZbUNvaUYPljajHUE0ywlKeFZdW3uhjBlx+GaK6WgnTH3uYC48g0jPAZbyO9YzDWUFTJPVriEbPMomb2j41efi93TxjRBxxah2zZBBW/UEIW/+V2oYsL6gtdJ+j7jLcsxpfxBeruNR1FzpbntT1sno0WWrf6rzR4aY1IoZbxud+1Y/NnkKufo7BJ6L+c3XseHgIN80BhRv9PcDTU5JqzUm6TocesspRKl7WQ1KdKR7t1f0UfPw1JuoALM0jcDs2qN842ck+M/a1EhgMhJg4Flyz4kjpFKsMTpHF0lpQYtP+UYCjzml9JhTTY6YYhk/itxDRJSGQwznsgZzGvy3nAKhnzxKh3C/WSRl/JKWCrFe3hGORXhNyCbVNdiKnuhaFpdtGjrjfpwelmwzZK5ZljrHLXurHMP5IF0ArwwDQM3ZwwTi3osHCcFeDmJe1NLdEYFQczbTdoYN4Q21Zbe2wpJvss52FRHBwZFg+zWNDyjB5KR5c8hFyv5MpiV+3s+Y97FrttpwWG8GKFnG7xLKaZzoBoO9D3KtpouRmgOxVDrVW0j4kR33rgc12mKGn3IsNVDoHuSniwAhuFQrKgBEKkT6ikuxwLMmSjFG3AuWfXVfuAJN1sRKngkhez3IZj/N1RzkD0FmZi7x3RaPgPRuLuXzE1+2Rd3/f0wvvDo2eiL8GMs8mY5vhNIKcWUUHmCTIyLrgIohqTTaiplFca+MHyhKHdpUGG8R+tssSKPYXdlK5mzzXDv8ZMgWFYEfM49BzEg9wuyv86ptJVO17ChCr6AigtRZ9NQNVQYW9/7uSQ+2SKBzuZc+mDAldSMhK4jzeqCklEglX2pzZt3Yw5wqUWig6gQbGhuDdm4yZo/Dafwuwyn+K3fX2LvAlsuoDoEqrRmf7m9E7AsSgda+W4vbg/jGSWxB3bNJI4J/tz9gmnhyLv5lHEer+/KMpwaP7/mk3r/hMdqVT2rYqr7+IV+WovXkt7nkQfcJ2o8Se9iRoJEdgN4HnIWsStTMWh3Y43iAhQ4RmV7AIWBDLElfTNjnYBQa5dcL4NCtrTt3M5p5PYR6m0t2O9sUJzkRgoBOd+cnNUjkU2LGhGLMjsMW6fvvPQH8ghdBR2u7etfaboUEJRQ20Gb3bG1/s3Bsun64RUzEbAcLZpsbBVUK/nDCeyhCceIRyojHtdbm45O7uEVRTpXjdyeBzCzS9qUF/Y2uvlkA9E8msJhUg/ompjMLu+3kvKZgWv2nnjbdrAcR5kEmiogLfEoPENZE/9qpqoRw7KmgKVn04ojDCDVsbZWmRDGvJcRGTWrj1FRul7guWr4SVem9515+jFvykoogvvpKtdpNtuPimZZ695r5N9V9AByLwXjIomERPXwWjejyckefmgzumZjCz2IKW/16QHfvV8jmMp6TDhQMfuBm3dn+9u7yIH4gq0X50lPUDdytqyu6rfKtBZGd8hF1TJmWex3NbQa2SkFaLyfNLfuiYNLpruaFe0QXP9JOPUeDTsGSY96gxGL/8AJtyNN8kTDWq7ZOPSQsQqtBtSWfmAgrBpHWUXChfjdAQZahvV2BzLlEGSZNAZZ5+fiZ3xN4kpSExn/dJ5EdrLURIVLBgC9VB4WI6scNQzdjcBPz7oruZjEFSs3OuJPAY4EaHWlQ52Tvofi0xvccGAkFXu8VGY/MeOgVfXW85eMe4q7qzq3mOZOPhb4wrI55Gu9oAlRwLFyY1DAtH9r60GWQZGTm9LCZFq81wbwVzJ6SWYvbt3Vtspoi0+pgpokuAhULcOkrclICe7KIq30oOYpLUqihzGrjH9Nsn1/PEMPZOi4FB1r7DZbTivrFa7cOQG+Nv7W93I+PRb8A1adzfqlD0gfCgkBImU96ji49URWpAmTvoAawAKmnL5l1Fnu0Gu/HPOfk3pcHCezT5h2ZkQ8Ewce1VFxiG4T1WC9kZzgWjNs3jVYJcwuROTJfqtKoYlQAeHrcuGyqjxZ0yQN0mhOcUqL+rDovzalGR4PAuW1tVz0zqmQ+Z8eiZC7vR2Kbephr5lNBU/BkEDTsgguXCpXwKemGGZBWu2a2IRHHqCjejskBPyeMmeJQotvkZsqD+7hcSV2pQ292qgNGw5D5ha+YQXZWTUKnoXJCK12JHJxrDiT7DTEyT1JUUTtiRc5Ua0S+xYtR/dNca3+hfr84w/hGDZZnXcZPt+melDgMAGBmxVIT+VFOW51GcyKgPmFiP0HQ7c3LobhXCPwg7GX+fUB13f3ND+Ae7gmGWuiTRJ2wNdb0z2adgI0Jlq8RIk2ObQfZQE4Zgek/qAnmE1XGuiMZA34Ia4Zi0xuy6FE5pKGPi3+vHkxbTEfXh4/PQZQnBvXFSwvFMEH+/8IWCHI6F9D/zEe0DHwpomIVWYMjUWHDeUSrJLncHP5xmuIOEK86rB9r3S7+LS7T7KGedWgtwAWMkRqHUUMoWTy+SRxrOFiLQ9k6chzIMIkOfBbz2F3J4OPcoYIp/HEhS/gbcqTyAOvVRxceZ3NJmb8ksedLcRI8gZVjvObiaRfY1YO0GV77F1GaAr+eEMtfx8H7nneKD83azl7D6/Md+ydkoR5fSmjFIfewROBhtURk6R7ta7LW4KYx8bD0krfMjUvaCfU+PvYVRhRvz/+ljhh347RyZVA7Ftk8cRE1C3e3hV6sFkpIQukCzPifdyCgxvWfH7/jsit81XZ/EFX3P5VBFr5kmBZHXeDjJVOUyoXxYTpAm6ijjfTES32lAcSWv7kgFX3OqvCMZa1SxAveAiRSrGs8eSSdRq1YbIOiCAzxcNQlrhd/YeajABE3a6r4B8P32oX2e1UfRrykgN6hfr6ieja357unSKrNX2Bmzbl6VKrf2Vj33+2rXvk8IxH0sEeR+wzxuLdk+Hc7WX94tRG49YxX0qOP1kcYrRl00vNdq5SSGYHlbv8WUvlsjVznoBrDuzQxSeXxfC1/q8qp/6M7VG3VDGgmlvfIyqtN2dvV7WWzyOXaubM0h0MUOZt9oBMBld60tgaaAPSpu+O8W7CT7Bbr4xUkXVatFohuLzZD6sqczHQFd5/vEu5RfEo228isjHi6UeayyGWDpTRyei0b3fzhMBSg/0VdDtGI6XBDi2c2pp4pERnnmu3bs0iikQ/Wuk0QPLYN3lnzQyDWWLesH6P/tHcXYLVISVI0gJO+0WJnmXxzOX/aYHUVBfSkOhv0NwxN9orSsSLMJVFjy3J9hnjeaphgsIGjbuDIv7HMSsEYvENRRVAQm3vWcH7KNUy7XLA3gTxPQZ3pbL+9APOGP3n5EIjfvBkFI9SZ/a0I/MRTWXNIP2oLwjbUDUnoI7ZogQDec0dhVBdmhk8eoLTTurm6B0IOyUYfXZIHQjczxYR0d+8pOQ7BQELoOD2/SkeCfBEmTDnFTkDDHNuJP/F2SFdpGc7ECIoPlxWQxdQdOCbCZoxbxB7lu3Dm/ZLaKNBQq2CQlqfsL1yQNz3TLoAN7znFZ9xgllcXCVtoQ88sXa4AEJoZ7vom9Nxv3oSCND9nKW0sxEFoiWnQGmTkNSl7FrodhJa5aP4Cmc9fNNnjZup+G/Qrt4qL8Gt99QlHcql2o4G7SmMiTKOd8cZELg2iYQ9pR+bDn35hjfGkO5j+ZpwQiQtyIv3NQx/VMmJMSnIxVYFgOpiG4ouBkKQifVVvsShaSX1bwL+EGBMHo5TDEiuWC671v578dDiLxiS+54GmCZm+U3Kh1OxYyOKk84oYHqBOvg+ikaj1suqq0/ZBLoa4CcFFCEClb4mbFXtEN/+/7cOQtpVKmr6S1GkAD8+UqnHQNXPW8q4eUVGnMX8NL00hEknmN+J38jewMf0jMZyrUqmxEqWvhREfLDL42faBflWWnPQpMWwu6QMwVUDpIwnVXANeEx5iQNqO/adzCMgoRXeI2yCJefejIgpRl2W7ayEZQo1UG/8Ixh8/bqzGdKHYkPZOyjcU4+cym6tTP9KAMijeB5qx58JLVa3MYxAml0aubYW5cCh70EgExvwvS/6cB0swWOkdEA1eCLQi5ih6O4uF+9YM7lFXdOmfYOAExU/sVvrpsnQTKzBl3+ilR24vdxr6aHU8bWb/nZy4LBelO/iwdCwisorqWhF6weabVHogz3VEsdLJtsi6dTyjRaWGlhkWloKMdrGBiG+EThF8NROh5+imOKQ1wDW7Yygzt9BB/UTbsngUuoxxOYGeLwuan2H7DYBAmM1KaKgrHsib11MSPS4dHyR3FKY6NUoXGzElQL1DgqKSeR4oj+N15ksxlxVhK2gXLnR1QauE+LVDC0FEGLiF6HlAN7BVnQZ99323MWT5yjXs9XzUxGTI5bglLWBnp32qDdho7RM5Y78acm5HOI/pIX6UeWR/L5ctJa74D+WPqVw5vzpFBgO5eB2Xnahrkvn9C9H83cLnBvqQyfbnHSebM7Bv06+ic+A9kLThk+2BnW/JFUTK5/ykUxSOerJfcEt1i9YUAl5xpj2HRjxhkpjiRnIr0RI4hDDKlGAz3LKuozMImfb4OVkIlOoH04WeoDxNcYKRx9VqAKzR2FA9X7hc0oyWYtLVYgON6tUT/hCQiqjpH8wdulv26F8xt+Sh1rzbIWPO7uPOByJBXEyF+xD9b1CTQxtakllK1MTwMXyCVZnj4h10NKhDu0zU2z6yhcuF1QOOf7FLEyE15ZUlMkVkTyyXu/cFprWcAo7JXaKCNy2IVYqQM1n60TyygtaibrZN4AYd3R6fStGGUNYSi3/kjSBfsCsEYhZv3rpi0Dr1IRfk4l67ZBxAMsNT0IpOQjbNLsrXB2jpznfN9EEDVlGUoxBom8Jq6tklI8PpZWqNBhnWkYzjtIbRylsAo0NFaUSP/Mkda5JZ+POcXAb+21VD43s+9anDYpytIshBnun/e/OuPP8O5lOrqK8Ar22YczX7hoG5QGXdRXao9aW+Ua6XwgymrUVipgwqJfdUFdZOgBEfZA7xxL5MGGTL9jAYbn2blHoDpI+k45CDBanX8VMSN7f3KtScKwlgyqsUw+NygG5pr2gEry0LzLUQe4xlhqvRgNYTZBSPnNXIT+exTvShHrXsIy4SaorX/VN4a6MBulwV4H5HdrOl1YUFLemVThpGEWII3Sni5QcH9/wJYsMRx0vWJSIEjDxMSYEhLRVcmT0v7tiR+ODWDLpJF5QJFpthwXwHYNfWFba4Kf+z9xLSGNaTx4oLJ4uehH7L9Lu1ixqRCEomOk0gatubfhK6E9DyQ/b7hLmf95vFpH5yJwXTPB/N+AA+RCiWXg8gyUGCG8Gj9fTX2bQye/Nm7JOj4RgrLoRHeOqy8xEMsHnSX3y3bleL+BlxNkuhM/SXL3ySoO1Dxldi4HX/Wx85uA/fi3/kUWd0B3fcO6mfaJjjq6/l4+y7sVY4Bz6YWl/7NEEYPcD+EAeCXVsn9ibWrfxXE/ACk4DfNMIZD5Gugod8C36FgJDcnZvlksbLmi9SKoVz2y2t17saf/GjHU1a3DwpaELuCt/EKqjQpj+W7FDOHt9mJPVyaobv4UZYcBCUiHL/3o6hOSGVttMiPVM7Z1cn2ND7eW9RSpD2T8+ZYvwwEZKc6zjaj70AbT/VrA1t/Ncw7sqv0LO6WQVA5xb8vE1v4LpI2x1biAxVpYtshW5CvibFfN/yhMAVdG+PXc7h+0JYuXPELNwThP6M7CW5QUkGq0h2UT/6HV/T4cmW+WokvLfLiiyIRC5x9VkGgMHgsLbMy+BpfkI8GpAgzNpGtvIMqhCXqIGVYb0g7HkCwgubn6UOumVS+4/siIMavJY5ELmPLDrV/IyKZH+r8mVnlKnkwo6gZeJslfdhyxdgIYqrrwhy+XARTmT3nwUncyCnIFNAC5IObwQkCnQTSqjiy8965mTPYHjvxx2i555xJ5pJNDbGRb8xNMj8y15qBkqq66DDzzjL5F9nVEHutPw5XXccLHSgz/YJU43lychEvxcxFKrH5aEIaMsyG0sHVl0OJlNioknilsGPtfgFwRwHPFN+neIw9CYt5GYrcWRezTAB7TS/VHtmGdObs6iVOfZYZyS83rXry/KaPhEpZTZmoIOHYWDvkQIqZFBRQMh6vIGJzXw4/9nUvdUawk0Z/FbM9Wc3qWJTYRZIe7ENZmTYZ1S4yA5imnmTJiTR8LR0lHvk/GnCSmD3i4TOsS7LqLJGHC1aR0/jKwUBPL1dKUaJcXebLNTKe9j+TXVFNPgLTcaFFpaVWctA0P6damtGDC7uwPZmzl0q2WhiICJj6WqM6XbG2jFVBsVpjIuHw5ZH+oPOynTeIEOkclN6ZRFHO2lJbGgi6SHIzWtEQM2xvLUG6cBkI7BC1NRKH/svkq4YgUckqGijgouEhDW9RT3Z+MabJmf7RKC4l1mUpOknbZOl2dC0V68qsSwAqsweZ25MpkQJetKAGhUtOezMsgZUg3xvOpcSfEdklQWXXTzQycFo16xZOpWYc/4naqhlt3M/YXPg8eWVZCcHOEQMIOHm+RQJ4YlpEoJd8mcCQXYIC83Ia33wdXBQqamyyljt6DATnCFatJcdjxJvlZsThNnnB+TRUlwhUdb2se6Bu9uCsONo9ecRMobCEa79VNx/tSs6NfPAXFN7icju8IvXM/IBIVMxcQERVdvz4jKx+oV98CdfRFA+3jdLc3SKVtpoUp+Kskxx9yW3aSZkL6B4Gn4mzisI1F1oBVQPcNKUJWydRHM69CDRQ7LlItmh5QctHvSkF0sHhTVpG/S/YZXuCTTa0DmEZqrwEExjQdiqsWikuHJheMkJgKNwNJSz83iVCZ5pv0B7MOdqv7gaLGPQRQxTXnPXK0wqTCSAyIO+Y3biLOkfsEi4Vngz0zAP37Rw7wXtEpjVb+pgKZnVuzribYm+AgPrAM8AzmsOcj75y2rDhjEuir/v4Das2J7E29xhylDFA3hjItvq/zbyy5sw311g+pSL0OzogIQiUjA96krgj2WlR4O45afnYxJ7rDiBJM6kHkoseeFTWRwhb93lOENPxMBR9qzwVl/3qCcboBsT1rUEcKKSijq1TCxGnavs08BFQuhdDHlS1x8LZFouB7Z6pZLnLqQN/jcMRdpzXQlEETRKA4n3pWcubk4CqAam0kx0Y1lgjARnykB4UCGNLgMxFyo7XEpOXZ8CbbHb9bGvnPkxskALm6NzQIFpra3O1v3lw5vlXdXH0m/PTfQxs2KDOuthPWN2D47gggtH3kGuXE00YhaZzEG7Fd5LCSkmipxk4sMiogmGmpPmb39Qd2aA0DCj+sHJ7PJO3hQUJm9EJMe10y8wiAaz7+sJBnrlH8tUQzumMTE69ySL+Ih000r0ZrvnfgVKWCug56Bu1QZYe+swVvAmD79hdOc65RSv5uKsfiYNSSj1O6D1DMP9yC8gVKTniglCClz4D/faIzEKbPQBQEtbpoMVWPD/XT7BSFtNpD3d6YfYOqIMbv8l+6wZ3zbDbJdnBFIsVIBR9nzltjL3zFGQM6NnOn7P2/LmXcozgXWoO7UPYZtTi4oW4Zb5pwn1wy2hFZ3RBxu2phWz3ZJ5P2/nLbTsooUxwBeo9YPAx8drGRE8j/PwhAe++znaMCLIbXoNSf+/GOhbeiqYAec0DHIxz3FjNxNtnEkR2yAq1kjdoIcs005EHfuo0wm8YjKCbD/0ZLxeb3wKcWXI4LR0BLwCFtn4uqLJotX99fvAlbwov6jd1wdN0pWosYmHq3BYODtctmNXRzifo03eZAtvxMxihvlIgBQuMD+z6visD9TJcKV27/u4EIzXOa09ARGueKvptHd/scTQLs6lrBTRfXZHlOaX3nGjrN4SPdloKiApn1+tnHvesw3d1fJV8hCANI4swa/C4+JTIzGN82EaUzJ1XMCvLoWARP3uM0U7X+asC7yKwyreM7+HB1E8tKcTBGq5TcJZib0tLlO3Iqtwr+t74mU7prpwry4hYL8VEMuB8OmT5JRN1w1gURX1S6iQWt0qYX2eSMVZJkRAVrKCe/5Gsb4BsAoYh4Wu33wrbLi73/2m/566UIeuD/RB40GTc8UVSgGBcn/wlgtQyTE7Ao0lFqNomRzYae9RA5hiNrxkwPM9AIvSLCgCRB9Q3//Jyiojrvt+uO4Owzo7Y2XGACZxdX4uCrsOWlq+WBFtQyZpUm7PBh567lD46aqgRnPPZ6k6oi+yr74CvKpIMsX7bA5e3mBU6eXTVbxnGcCnxlsa0aPweIeyKEdelYTnCZ9SslB8+kmIeuytrV2mRGZF7FZWVCx8prw9FVdhfv6L92NyIgY7A7FB4gKTwmq10im9ZtKatDTLwjOjfFMJz9w57U6mxHRo6znUJep1bxQCCqZ+Lg3dzZWF6WA90EI35Lex2IHgAu4d7r6CfkQ5MByxMsO3j3yrYvABwC0yEWv8iXfwoovtiFiUJeeK/VxVnWZcspzx3hU8L9MSpkpEgMYk+y5q5T019ww3sVN0A7qz3sWzE07/E71xcxebw1K1NJjr5Bn604Sh6kwy7opY4Nv8Qt9XHLpoH9Az+jqLC2EHxKFwCPnbQzsMKbuxmhKhighIvRFr59TorwFz0Nx4aExds1WjI6M6Xh7KcckzXudVn7603R6CS9bZNYhCjAzkyqjk2m7CNmAd21kMoFg01sWmcweD4rLPDlOgI7GJr6n3juTBSot/irBUKKLrKyW09Qd6Qa8JlR1daBvjmXVF/TsQexO6b4hsqIIVgy6Lac21XYzkrT7HtVlJKbSRzU4nkXfvhYmlMrXquQn8+4hJjEt05nOSapJa7ZQ7fAxAbF1w8W8MNHMqtiV6AHlDg7bOWiZiIudDoKjNAJaO35eYZcgaCTi9Da2jgh8uV9YMq+H6xArSI/2jI+lbmjX6bF83l52fbUqSlON00oftI0pdTzNa+VQ6R1ONyL8/6dtXcRfQqTdSaAkvTF0ormHNxbPcAD3wDUBRRWNMFwywqq2DSqk4+zo+n5MkvIsrosO6l6nVN65dovEyQL5MCt93UXbg2tskRNQe/+Vbux4kWv5X337IwRR/+B229vJLUN2fIiKKI1ShpWN/PJPZF/VuAy9shnCeeFeDrohQHUpMJqtxLTHCc9RQT6GCxmVoApinLGBoEsvBnRAobZERpMeMuCvIdhLSLZxOSjgZbQhL30emVwJHdAfU8qLCNMBKPiGtrEMPX49lUA2KhPnsWjIR75U6ufZ3yRFfeTjje7ZFWZM0MBooYFxeTyusXYzVTuoaPBt/rqP8eMVqsMBj/D+D//eRgiK3a3MFIfQ49wfvNtqJBxBa6PPqMQ9ZbSBN7klwLyhe7JF2TccEaKO8mkdAuvJzYNo4G0vNqloj3XfZWZtP56yqgmzk9h6umlqaAsK4EFOzT2gZtbLtUrzht05MD+wmIbf94dNM0TGV9L5NSdz+ATaBSPix8o0M2qO+1xDsGORhRsDobHqavhdNW58PDwwBFcDok4HxTjRvSHi4hgIA/RFRePACZ1TWogMbFE10GvKUSrZj8dxdzasxDNbbBeSq6U8CO/99bz/Qq9rsdqzlr7yul1aGnkFe2Oy2n3NW2B/D0Z2TyeWj0sxraI2FJM3qKieFLfYM1Oo0LHb7g57spuHz5iKx16vymo/FD1+XlFfUByejyQv1QbpSrK1b2un13YiCtX+1UsOX2/9wcGV7MrTh/Kz9RvtEhoYyW7+do8ruaOHUykyTHTDKSPXm1U6ssPgXfX34oqkLQ0tKDE9N8WRb1z1uIWC3zFPDGMTRWjcXRVQ5Imaircvrt1GA2f6yB0LF6lDpUn9b8t6MtHtk5M4wBWXDmkkLnl1p7pPYUCcibkv6OGCUuzfPlKMGaDyGZPabB6l2bB8CRbkd/abbqu6HfCvHamLFE/NedI/QpCGzlhMWK4LxjaH0AMulDH2EOtLbrnLZGNsuBEqo0ow3M9mcXQ6shNdEGg5wvsRKMaR69cAF3WlZnxwHCzeXSj5xLynAWJJELNm1tF7BddElcv2ph+fBSRzaU4ccGhem7WwkDp4nEAIuVisIkVWAs09eLQOAB0gZDA/Bqk7+Vl0l104wiPllpV95UI1J0bw79Ia1sJ3MApAF7iWcKgn2uqzPbypNFLtf82+7d1Wt2+66epofG3NzFHt/jyOh4hXeEHBWcAvxrr9D97dJjRXbQNbEO+t2mnGX7Xm8yrAKxVZsT/pQqiFriLtGtCfxBIWpCqCUyarmEprYCibtw3OtZ74fOCefmpgbyqp2HSHXHnB0wwaYq6jNN/TG71KtV4ELTx3pzmCL07szGlTD2mMWFxymPwB84RNNKC6n0lmj+kwk7FhHCg9tXK05rVsvPF46TDov8qsd+IQ3DhoRQQyhOpKE+zZhEFOW6HNrLlasBE7wYRJvBERdLYnAsvOvO0q/RqDShLIBnQGeOErWzmokOzQ2Czu5BOLN8c+yhWbzk8bJLn1k7W24aMNtpZOPExRVhBwUQdpA16vaDpi7Hy5PtY0iFO7XhxS2vC+BsNCCDz3ctiD9s8ZKFWrNBuViKDcfz8lCt6WXDARXkWX3H/R6NblWrHe/d5cb5nwl6ql8EzRpY4kLqCqKlr8n6tsQJnDUhejR6TuEsgpwoWGH2Z5ds1npWNT+nUQvYFJ1X7EKnGQIaHwSMUBbo3SzeDJNCJB1Iy42d2pNnZ9cCjD8bsFjCrUwXgonaBnBetRGXHBS9VRCAGNUWPsegEyHtiD3VmSeQIaxuJ2U3sB3b9JAJL7nM7nRKLoM7db0FdPv6n+2xNygjwkOI/Qsx5scD9lNjkZG4AO/yJ7BPsMqDCM4KXrnUOp/usUnMAv9u71RzoZgnYcI0Oq72N1oq3GERhnonADWGW5SUKdB8G34pHZi+ZhnJ3iatDxlxfpMgzBqT4lIra51Qaeamkl82CNl4RyuChHIitJ7GUuH+cnVS5/pwP3iJ62xnZYUpILd3LVXjip9OsBJXaR73cgOTf/gfa2qyuqqZRmUEdWjQFsi2RD/0OeZfnwBdl11GwANS8W0k/o0m+wQQtjJoJO2vbbbpra9iVesYmcl6Snj3k120wPsTPo7GB1gqDOMxPNQmyayLwqDoFp4XK7+PAhdSDj+El1abjQrUKRBBUtuaRCstn2JpRXC7vlxCTssuNl/OTWzNXZWQWzM/3fLgxMY0hQP9uEqFdMe0z9b+za08j0n1RKCl9hWy0WR+2FH590kVrjS0qhAZuqbGc6DWfWQtnM2dIYxyI7f47Yyd12YDPZT0DzVYqKjxulbL2w7w5/FoCnEBPpsefVMOnCY9VBQhCdgTWQxaK4JzGEJ5t9fG1QNtKMvIo9WNmsHLSxP10xEQo7/HVb9v5bDfwjhFkuzN6g7q2UHBa16DwTT4MCIYn05Ckz6PIVsSotcR0o8FERzVTciveIub+ZnHrlBCiYx+lNi3QpFJoA0PgKi/j+q8NJqrf56hjGPz9iP/T324WwIhhjUcvP4QVSkdbpkya1umVmxeuFBOAZEnfLK4NPQiq+2bxNtIgoC/02EuJ54UyWton+bEWdV2t9unNMjqaZbzoEAtJq+LJxMwNtNj4iAH/Hoyv0MU/SSyckxK8HZscmWro2CSzAwRe8ywwBhqrVPkoYecNgtn6JC1z3L7KD+/SUf0OLnkzWEc1GmgWv0/sYSibJz4hPtzggINCb3T1bRw9O9aA4SjG7iGcrxUpndvaa4Mj5/m1N2/FsExGaxfmcuHkhX3wwiIn6JJwBsYiADQttvzSvJBMzg4uq91n1Q66NlycYZR9DXk1+Ot+kGazJjFesamA1KInFrLCPDAQQSHJsgbCNXFrKLIPw8Ns0SNzfFNK+dc6kdlMB9uFVj37TrxxWgQyvS0XchQUzwaiziMze1N2sB2tjKk3yNbd15Ogg0fQloLCRmeGvo8ONFTYO3Gf41Ifkqa9bm1mQkzeF5IfgTu+TH6L962q19/3xQFQovjATD53YdF3EqYsP3ohdnnUJVQtVNSX6/ImuBPOh2Qly4yKBOwHXN0RMD98bYiz3thQvYMWFM21xoBGRRs4363RLYtKuLl+w+Ya/FKqXuVeOfX1usjEbg+0a5Phyowdir0969ARlrr/d5A2/QRwlm69kY63D4h1hlKQpE5fwhMNeh439+eNprmNk0mZLNzClIhzGrh6uXyAhmJG14jnQhpyOB7xrddzKCyahJ5zNBRnGEuUt+kCDnoD6XBAQ82fybOTFJgX1yTnu1b9zh7VJPq9aw5E1NYmbCj9ht6jJsEU6+nVS6U8OIt9IosmWF+7i+toA3vZ/AVQnQcpzz5qMGbW3m5lmN00Av/tvdDAajK9ZCACE4bDWa6IJQXNk1hPPVmmQKDXuDt/5d8qj1rlMfdsNVpIBTPyXcVTgZDOjxOgwl737gyQrrUOfnd9KFBdMCcUQUYS4hBzDQw1v6ND9okBT/hWL8qoxUE3TTNbrNnXR3aBZVt7eAhhv3fmmIB0ERVQftnFWzfxYii89hTkkbsKzjVVwa7grzMI5zAWGUE6HndOZ8pkBv9XPTiDZ/jR3/vFbAcaN/LKV2Dgy5NNuv8WU+lYqu42u6d6hL8ASijOWttpPymyd67Es9YPsJo0zDBKl/wyuJRQgQnS/gGnI7AEtFZCre6WFDBnRTnJDfSZNKmSoiE4J3P+LD6VCCNXNEAWtujmAYsA21No+8fwNjw53OnJlINfw2vV1IGnNGsckLyAKhuJFxx8D7yKa1v8Vl72CiNypZS1MO+C+oDK9ry9iWtzrtp3PeuDxESEcs++5Eo68XB1f/6jymAcfl/tnoFe8MmDqXfuTMG6xddIs/Fk4AvjWR8p4ZpZaAf+WwxN8srUxiYqKmsjXBCBPeNP/2z/zwUSYHa+oZIOaeudt+VPmIl4yEL+UIE+kFmjIo3Izn9B7are8svqR1AcSA9j0dmB9kVl+uBXUBl45XVhdgawNHgs5JSd1AXVHlGKOlaB1MKjv2UJ7SQZDjg7pb8FsSuUHUSPJ4eVICd3+Pzv+TVTuRs7Hk5aDf3J0TxHGGWuve6p2DKDqpIxymhijvnwL/DLgHtKj/j7Z4DDRWb9vlKSoojMxKdGMg4XOBaiEb9XRThl+WFjA5NlQCHCYt1KCEoGE1R4dc+8TW17ln/x21Wm4O+HiH1F42BrghqriivgVQDG/FmyRb73mVevce8PR6LaX4rvXtnYFn6hIkuHkediLY0KaWl4ko22rAjQyE8TS8ALtfzhJpFYSShxKi8lOEv1kHX3Axz1lln5obxrjet7eiDlWSPPWz3QCC5sVawKiZ0BNHFercbJ80rlwxPeZJeGCcQa62g3Dgrn4YGYtPb4qwIJ18NLKJZnV97OqXokVrV+HoGz/hBqnNhR0VlZwdTD3ZU0BmZ0edhI8hZef1zVyBmlkIsl5i01iudz2ZoRhwQl2Gq71x+tcqIhpiV9HAZuKebnswSGi68tem9yqMPF6SxbCBLyozO5ZhnoEZhyCy15TVy7dVZ511xOvFyNBNbB7HLlO0axZs6kHv12mFJUMwjSddiWD9+ow4PMOCcaCZ2KzWJ6/pIxu9HjjQeMjXLCk05UFE2qSxYL9kUxKc1bKKw7lGgLN3vdN96TD0nJUqwvivOduVMox5OdsubMfPuQDpLfUa1Fj3c9yvgPs3Ck9UZHpI2EfeOFSN8uH1yAv/QtYO19S4fI7yPePY/1p0Hz8Guso2kktyzIJKzMKUXstJGF225mNJZJsqdihiLzhfgBpNS6DqyYk38IW5xM705X5Lsd6TAz7wF2L3iHTegaco1GBvkjlKxLsFsjOT2MvTVYYjgTGd+OkBbfK5MDUxPYVAHrZDbqoNij4ZKN2zCVH1iLkOZso5recogdPwBd8EM/up5i1iUruo4jY3n2ZGG+avEUnC7ay8YyXN7veW/OthXWcE6X4fN/zj93/QzCqU6p3w1hX6wh+w32ZdOCGIIhXm3wHnYhW9ANyg1q8Br/X/pF7qhQlVdCIjWRz0aOeznoOxThTh+9C/eVorSn0bH3Ob9bku536U0Hu8M84orUVeRA4ploUYgmw3EqBs9OYoLS5T1R7eCgKe3bXuDbX0ZTBgjPdIzIexkipxO2jJNjAa9BZlFxwznVlHT9ry2NNyoFmxAd7O5RXj4vMvmyuaGj2eR6A70QEooM1UXJL83mIf55S0naM1X23/w9e07bkaHLs02rejQXsTGk8YFOrmRi/2JQurA6+l6HjKq77qEXVoz554EwqqOe/3RyMCP/dRKuwU3VdN+DKjhuwE0GQi3WPtJ54dlzJevSAlmrdMBJe6USJtrtMG5xz7Lgd/E2Zu/HJv24UEO/dABFaGzAweDD3jGcXZ0VdDCATX6HqVMRXORoOn4GbT2ODSi/QpzJi6nlJtcu1M0/NYGFa+oVq6WaFwVM3Y/ESHK1aGTK/Wki64JeoztV59GvzYJZfPtctykdhZF8h1iMyl8ubbX5kELjcPEMLEtB2dzux+/V2S7fJzwCT2zdI/BFkpQF8nwGqHsiAN6ytlJfjcgR3nF/TpIuO1ZhFNWDmLCahNvKdEWaRVsR5NjsvIK0KwQQ3iCJXStXNbkjYEexlR2MYBM4HdWFA8DE/A+1vZAbGJch3KaKzu4GIPMsFHms2/dv55LhBgim4Td/VzM0gpZHvSDw4s0drPvnPrNkKEHPcCwzGI2LlTAV82ax4YoJFAiR7ka+SY9c7/S4kwtCf4A2KYceNpKVNAUSOMeYrfTMDyD4+TCxu5Q/HvMucYCnRuJ15HO3TwgaHqLmW3ydhCljutoY0puz+j92hFcEAgDhVICbI+lCG1EpjB0FIKCUJ+XLYvbIb+/HuXzCkrSSlmWn/X3WRlKbXuvbS0r5vtSz8eti/AsoC96LCKThYDFrXDbhdaPuMNiHN/66zdDKWaJ3/ejZwmDix/xQEqA5gTF+4/GKODlF5b6G238kJYi+6MxU2bPHSM8oHCNBwDK5/8eYT/HKqE0ba0DuBabFrjI3yS9tWsoDa2Kd9rlJPmKb2AbOaalmkyb74qyaX6ajQ/gLYgEjF5sAKNTMyZyhh3HQIYSlK7jUfRW/8ruMQwJ3b2DH8Dww4SpeF45lLf6QrwPoLlh8yqoUMlRUzOtw9A1CZxri3NJmxiYW4wjLBOH6vS8S6EDsE25+BOODtOK3zhyOmUFKVlVzNWJeaj5NVIY9dUTgCqfX3/4LEHH53mhW/ccWZznTd3G+62a82HbCHnV/EQOCAYVw+RORvGhjrtXgrRnJbE4ohlRkFHHKuga7fHMZzGVV2y20Jr85nb+IYQp94G5p1YuBZEMCSmw/YxqfGUvO/XmzZmNMK99ipA5jbC0na4YZ9zk+Dq7xAQQR6xPdWvGg1J+eQhfcxivQvcNCIuenUmwtCfYyBhR289DxNX5GeYsQDiNjesUr3bYnefyyuA+8aaHI+T1KMj8Yh9l6swBm5zSTCHTYiD3pOmQu1ts+WB4UqARgxI/xifLcqMntXL9z0gNlQYK4ICG6YjFstH14fjcTE9Gdx4Oej6afKreBHRCwnYTDclSR8YdHxrZFFcSiyRjbTQChSgkAwlldc41hUHPROKVuMPFXBPLkuOpa3G41zy5T3E5UPhKrqpfvjCvXPgL9I5/vgmjkFDcuJXuC34KoHvWA9MmKqZWQNYhV10MrMBAwVfQQ6HK6puKUL/CMr6wejKcBEGiCRpews2hpS4xSJ+nklTAF2AKO15UhaXxaga88u/ZaSqdwLyZ93fpcF+k4LN+yuUmS6+bG3HC4jBlglP/x+ES0NPl0Pj7yG2iEc5Bdt3hs31RdO1fjG4ZxXg/xvoKYIsGyyPuMMtrH4rCZBZFf7cKHcKX6diX5MGIYFgioqCMLEcWLqX0s7K6ZB8Sy13Op0L971n2CU/7ZCGSBlJN7iejBMFmd2kYbK3FAcsbiB5ygTAcmNh8wf3lBfH4tDJtxM3CdcC4rDX7rFsNMfcd/Pj44H3jzVly8IVWoojn9og++oUoaacdycBdcll2Gis+cCNOKKtGUn4mnFhtLZ4Cbt5LcKkVXNYtDe5UY1G3mzCwJULfWy2JewZR46UaZdjepnt7WCBhWTtkVmQ9CyT/EX7ELmOagt7ZhNvX9KRweIr3S9PxLhz42gR5hQtHNm5Kc/Z6iy+HVky46tCuvzrtVOEx4ICIvzPuoXD4+BvVZgE8E+bgfXgklR1vlW1FmHt8TsEkEgFtOe28GQNGfk1k7G3qM6nqptNi8EVriFomZdRrCiVxrwvm2TfTObP+IrE4MP4sIzMA7W0Hwgz6XKZooGpTkZTzPkTSPKL04j8rR8i9u6K2yu2uTTTy/Pbg6Zzi8FZ9TlPS1jYn0J5bBCVF1OpTXP22qCBv7cLiqmZ9US5Zs3ROf3t5GBPheg2XixndJwGtBt7CAJymABU463g4OVif6hN3wjLc6jDfoOsxlXa8BF/pa6JPZPjitgyrKe90b4kV0mf9cHSXGn03n3X6ncDXOAtNrWjU11HJfAj+wTmJU1C27E2LjAlz+56cOJ7L5OYq6gk+TzvFYdLFfAXekYNeTgyXeHQ4/DgULz14lWAx5u8tD9QDz3Ai6w+wAnV3v3o4e/LRfAmNaGp6PCojqDv9Hyp8XGuy2lmHU5EBYwDxP+L13q7jtWMT+f9LOY7a0w0NIfe6yTP3/rzHAc5xb/oUn8fl9gmGPku4lxhy5Ju8na8OpH696QPk9KAH6xPHpHSKYmfhOs/6fAI0DhLhx8J+28o7ECHM+ZszFAeHogr2tKq49FX7ggNOxgdYa09L3/REovYMu48JcS1cK8s5izNFqdI1Wmp1UOZXWJXL5hOL4S6UmQpFNdBIOkjU1YQjkPoJ19DnNeavuti8iXuMrLYdf05dz8e5pRrtib1VtzN4BkaD/it1Y7/Zu/VkBYA9kXDfHk2E+5Cg49mVvhB65uhTCPdYBkJsypElEDx96yw5Gb4Mn97sKybtyrQCe0Z9rZy8rGuHihmhQX5JACYo+9Ba4Sb/TjNWZlFdOk1rDIGRlmR7sdLVCFBPwCoCnl4YhHUkK+t9St7kF7Vz9WGmmmUeda+Lcx4zULSEQHKy98PMv2StUZrdUSw+BmgUa4uP1G2MDnBv4UguWm27HwfVRLR56QFE9bGrZLFmWBWP78GN2BVD2ys26Y7VUudpPJHB2YaPfl4wZqzUphd/hVDtrLsmJbUJFHLOkcY8BlCAoolI63WLr8Yn5oGmXApPAk8MZfI9ik2YdkFkgnw4jfdxdqr3knVtqM23+eGmfoeDjcQ5kIxADH9/vVmRRL3HMPBBJGy5cn7lmbQcXD9yVHy8Vtw9u6XjKp5pFWK0g0HB35BwCSX4jelkkpfkbYyotNw2oS5AK8SdFW/t0A6d78HEAEpeIlknZEJjRmGlTiyTrE9MlX8DejgC4yxSC2vt+6sGFqv/HTt6c1lUz6kdlYZtasDCkvwRg4e/08QFwaUS8VyTHc/PDjpK996UXOlw1uiM6jsEnwNQ45sf36boC4REgGzFHGE+7gfjliOgqKKT/6eGhDuFj4zCnl0+hs9VFOLi+FZ7siD9YStNIl03ekGetHKFJT+OzGp7MwbcQWfhq0lVsDeLT91BjQp4q4V4aQnUVTmlW33+b7mdFvPR66JthUuifTng5B+2LWnBAz6SOIjzJpGdJH5PcoVGE2EOuBt4tSXT40VbAn9aUUzKDMhrQkdwdt8wRmW8zKibaGcNvWmVay49g0zK0Sxqm7mlHn+uslN4jUkCZMlJOqfW+ryyNR+MQ3Dy1wFc6Ft05tUNiKnZCYyJlG825az1MlWKe84PZm26J/Nef4XFvn2THf6KgPftBIsT2yQIp4yAEHwjWgXjyN1NLHKc5RhUC14ILj3DDsctvQ8hwIO1brmKSamGEdacMWx0g059hCN1QtxLFF1Rx5qLrWG/ePZdhpNMFSzDp1Uro34pNnYVrz8WNTS2rhEpFmIakpDsEu/XdhTzUIi2p6no5uGSV4CgQJXYiGUWQgSX1qrsK+24P1Ld1UbJpJWapAyHe12lGEjX4lQQJJyxrCTbn4Ek4t53uKgE/evXCSYFa562vL3QpTzoA0Z9LPCtsA/U0NJjnGiNYEcrtolaDa5MrwUPZ2BxPPv+433Muqvd19ewBSP7a30RRs/ZOfQhZaD4O/SyAS+k6aus9JVYEHfb3W16dgnC2co3ynB+HBxUpR9AWffswiGcxfVHux8W/O7Yn5FNc80HGvOcO3l9pSigLgkmuDd0GDFNuyshm8nqjSrJ2hdN/0PwTqLLKK+huHzs6TlxRsLg7oZUKbej4M1MDPaczd2yFpYrEmhasSLZqVXEfV7Z+XAZs8LrerpVPuNMgQTNO3/vSI8NtvYcmiYDhJCP+F/ROndb+Bc3pYyW2ZsSEgdEINykia/TSYxjf5DICq0h/wg6hPRWrNsP2tnzNCU564VlLPr8pniMpFE5szFZLkgLgUxGOFsvoPhB9PvtcT5jGI5X3Bfs325sBOd6nzHiUcloy6jyhYuuxSiFALCcrCu9MKMjJ58kOyzvtvnrgjAeYwkbNqWvJtFUbsh88HvaQS0Zi+ERMlx66QdDepx/QTQqoGspGd0QDdnlEL4OVbg8BUY0hxbfbsNpM71Lr/vgvtWcaHRbBQUIeqEw+xzvbtP7WMQKv6ftZ9NKH5SM1x98yui2fXf+E5sA9Kmi8EUC4Eses7ethpUQlQNhwZ3sOrZvYCxjgegd9QkTUMVeF46RhKTWC8FWcBfnVXMqMJSMBovoRtqLBMnzTMFzmALyFu0qn216tcEMfF2iK2KSAyq+Q9KAlOf+u4IXObdGDgqLpzaqajWB0VPfBMGubazr0Ih6ziw7MrADv15Ce0s3/83YJr5a7hp0ajKld9mxItNwA86mPYd/NY9adhcSjzc/y8a+DtZ8jJq3QiJhApr0/Gk4CbICVjKbSpPRdBNb3lGTiq1I6oNuwGxVNENzVKXYmWb72VyolItNkAjJJ6pCNS2STmvcEFtpX6hM9JTzuNeu0ajaFd4fkuJDm6qwUf0PJSHs7QPw3sK/VToKQL7BGQBinyMfGx0Bolf26dfBF/F8gOv5fNiBFYO525c1Wwh2swg2VPbzrxd/I71NsIdiLoBaSz6Czh+TFxWJNGJxX0N5PvBWH+3/No/Op4s8FshhxqMNawTXRxqvgw1v5lzf4RkkTJeKDpx0aPaO3vkyjOlSyZrk7gaFyQ9PM+Or/CN5Ymgo5SzRtWK2fCvKspkkFXVjuMF9L1rc2sPUcHu5BMjfaPLUXtbIBIdAV53HszpFUa961BINY2b3qXKvYCYYUqT9+Te+45lT8at2Fuqzk04ghZs6NClD1XA9nYCQ/vsV/B2WtULfkq/Bcm3hnmf13Q7ycQQNAe48Grhev4fzw3x93GAssRGVNumjJl4oRBXjB+QXB6K24y1VkMq06HxpUf3yAHkx1eyBi78VMgxKe+4M4Q5/43rBLXVhfuEOk1K6LIpJ2PYbgMQSUsjtrHxaJVbomAA50a4Icuze5Fr1P4S13nRxVJHRqRbDAIAyUs9E3MgfeeUWteufNMgxVw2pRxOzMwAheIeGBzA7czHy8rJo2inYUPmG7aWROZB9NiKJMQEQwi4PeflYvHCNMn497gXR55SaRVg1VFWtnl7syFAXAfVwVY5VhREDpGZuyGOk2llbCql3qBh4qphAHK0RmS6h9Zq9ji/6rKBHUvs5ESHP01qqlzH3aXbuYPF6S0qgIqgFLClLNjUoyFhgU+eYSW65M6feM4TDLnYF+jI6LTrGOAyl47GcMf9o8fYdbpkIYB5uJOCBjxTECqQRri7KTr2EP8mm8oSW3mriEkgnFyi9VhE2ZgNjuFAXnSPyhdWrBFg3/WUPVX6IMH2NCfzjRXRAkEQEef+kll8Vxbe4HTBHrszBknKET8C2DiWoEylS73UpUhzd94FwJHMfKunjhveocPr8MCvupDnAd+mnWvJGm2mX+7c3+kwwIPmyY9y/03q/RUiQMMujMmYHHEVjfKyqwieHS7fVLxYLpEJUW5oTVCX57lEnSPl+07422hwkUW2BhfcV3LhFm5H5MD4q4fTZtNU6nQIY3vfnjKskf7LTcj2YRypiE7wLMICQye6vHbDwx/VGlw972T8dpIfDcSPMKPiQAD16pEA7oU1reNo8a/VU3a8J4qTnhVUDVaZ4FhtNjVXJjpTj16APKcsc4E6/WXFSsZSiiwuSjBS09DFyqo+sXzzbGNK9uUzIskGfKaSyoT+lINSKnzZcuZjXii4WNbd2A7l46h9/KWPEDYZXft/q27rL6NwjjH6oRKYP+kkA1WpUglLTF5k8C7W9LQ6MqcqbEf6RibntourTTdqCzlwCRsKzhWY0W299OBiD/GMZujId+RgwDVAxv1AC2B3BuEkteFwWyOZ6apT8Ju6qxsmFVrxgRPxRStYhcAbrWbLjFTv24c4w8mV81+KZvV7IfkT4KD9bn5YHlmrlZbDGQMOQyLkwnyWgK32I4DJysucsIAgBNbQc81lCBbTYMpHYovqr5qkHNafvpnEdNmg/hokAz/dK5LAuC3mwz8L2uSDM6m0qIfRPWW7iKfvq8bGH+xxrunZKEngF9sWtQBEPhKrY/8OPkh1O6GCypC98n6HwpYuj/o1h/AZzp1B2kfrYJ8LT0zJ6m0VxY8rJhBwZtdgL7LhhUFIZxgxIKwan9tsgjkUWHW7bZ44MLmn005YwvbtIkPnsgJ/mqCj2BSYXZt2eWv0Q367Z4/qvloHLv0heTolH3FQm1CZhik+03gOuEFLgOCdYa4FJ/xa18j+gb71o4pUMm+mTeHqYXzdQbARCrTM7lttywpozV99Ulfl/eRRkK9xWUUqsM4UptFeesDjbTW7gzRTjxNuicAwNR83j8KpTn2GrnWPXmcFsOl6L3MIHCawVdIb7a4V/FY2QJK41O2+q8YY9RYU7ekfVdn8RmWgTrwoUqTW7pnAiQaNvq9uUcMBRMENL0er/jLcWJocEnW2VXUCZKMwtujQjyCZhDOv4ZkB3l5I952yu35tDk8PEpbn+a9cPMCGR8OLMmOo0NP6r9C+WlJUNRVH+vK0E20m+K8RPG2/tT5vTkxiCEW0GZhBeokqNebSY4j5VD2PsMK4zpgQfkrOh01EdW/mSY7dHfO/iimHgeDNLxlD+8uLAgn0SjzzYnV5QwOXcxf1VXeVtCj0whjvV7+kxEVZDOqh793JZYaB/nwos9U6Z0fnijgKdEimz11wZZtWl5zgWhyi8q3xFW/kdBY0BxdsNz+xhFtrw9SEdGiSCnPhTcrJLydm7qfRwzzw0LjYb4rUF3cLbH3lZcHG/6u1tbhxrv1eXD4A9wqm6ehckou9hN+QEZePKV67H5JHNwL0bV7xxfyGRRZqKlW8IeB3EOAQgswp2WyU6A/WhaJelSE6+6zqj299buxUbhicygXAb38SoOvuV/LmQklRnh13Dvb3VtbC4wJWojPlV7/72n4jT8VYS5SVE+j+CrflaEtTYYfXBkHDedhF5fSQwEF4Qaw2S0IKNFQMO8SL14g5TO+LGBs2aXjoQLCLqjltuVo4CtS/B/opxMzZkFqx9bed3yv+GGSCxFL8rIggO0t3YXF7fNj0k3hGVFJnRmEAQ8N4GJ8lxUuASS5vziKA4UThEtHFuuxpvmlBlpG8k4/jR6v3WKOBhN+QVY9QFRkVIOicue6JhASQWjG+1QYQJn5iR7ZrqG6WMlFNFdQ7CmiNRJ7u7X06YjaGI+HmSmwFwgXEvC8XRudlGtr+4EbXeRoeEc2KcU7hFtqL025U6JDtc02h44Z/ZyBly2GIDt/clfLLeAsf3/wC7okJW//Yk9AJbJgTl1cDnU2CisU6Aa8zMWAw8zkRrtf8CDyUNPwoKoU6tKFGa7GHCQQMYEj1JyQLH+naZ3fy+XbA2+Lc5erSInrOFqYaz4UB4wpOBILUOYao9n5aZoHHxs6315TfOpdy1KDn6Ob0/Q4nn8nFQV2Cr3H8IKmnkPgbbZWes7889eVnmsZRzunnU+Ifoh3+93d6FCh4fjXQrac79JxKLFns3MapLRGRSZU06nkjXOyOKBOayMA31F7jO3jcM+XIGFwschaY70A7zjHJCyY61HlilXEcaDozrjbpLprazak7udSGwf5E+UlXbbIozalbhzI5TtTdo0HrX+a5pAnaKIrBTdmhlU/eszxSOXIXqLTu631Is9h23dV14RlRG0sTSgMu3iloNlES51EPb85Q1LDYNecITwHQqK0gTKt9T8JBxz0yLAsbs+wNKqn+c29WhzSRg+sMiyxs1f8lD0rIWLC9or9AjbtjHg6/J1l7XKynPx9DUO0jDg0fUDz024nzZTQ54tGUIXeoSK+kA7FptAhR42e7wy/nGnkU93xf/PHGhIRbm9PbMhLWIS1ac3EufvOrHz4pKnPOxAWBpXaYr/zw7FSEE3YnylsvmQ8yGES4T5v2e6Z1gZNeWnu+BRktR2wmBwAN6qk+Ci6+X5HXBcc+FnvovFSJ6mPkWAdVJuW2DhJM2Ed+jQxA/wn0HStzF4npPPYf2iD7KA7VadAwewNkAC0xKytaXhYDhVcIwFZ2JInUVEJmi/llIZcwFZMEnDE/1mikKZHK+UdjuuoXpFZnFHg+h63lhhDbkhZ68c+kcDM4hO/n6AEA+7iStb5jp1In+xZdKYk2x6OlRqnnNJl9YDJH1ZML1y/N4DJoys1N1njpUjFjaGSDgcHW/AKtZMsTNm1JCWQT8Adg5mfJt6PyEhjl/k5r9/FrR4BYvWslJZUS0uC8wbynnVuTD9CCnLH+eTYaS/vu7j14TR1jmdrgFu4kw6T23699t8y0v1PF+sBcx99weh9Vi6bo9qqRelrawyASeN1AjrQqHNrP67G30Rnm3iGcL7TKFcXfwmZ/C2ZPH60GJrjci/LzHFP0lf0SHDgXrFdTfWGuNtm4/O5NiUYMRNGYr1Ye3uX+vnJh/4z2zcIuyz7EQz6v4sK1A9tNBPU082oApmyyyue3r8QIa2qpmBmGnyv7XEd31Wuuaa6kp3m1kcdj9gcVgKZDtrKo6z3QhZNBZsam7QHEDo+6C91yYbjBaZJGBawGNeGCLBmpVM77Nza3O8qDgz1E6k8dVrjefXxEY/GCD1LkAIPWYJiO7qm4+5tkCVsp6mzo2T+aRgjmtJC38vjM4r1yYCELHLLM2sAIAuHGtCZqZvFKpxIpJfFTiJ1wG3+wvV2YX2bmor/jWy73dOmoVQM/7trH/BSNZ0atxf1mpgRJ60/YWemrZXpb4Fa75ug9ENRWLG7UhZ0XP9g7tscPAbRBBXYFjR+CuXRth2oEerPtcsF3vTnS6PZ/3RCL25GSqY98rO4/RVMdkM3ZFtfrrtmduxj49dF5syTwRrjQsiGgsm/pPgH2DGL76VMmijyUEAlnwatP2JowBcBCCbjCzA4zSORJiVoq0fCLLv2/NxBVmeO6UuXzT/XiKGjZCpUqFc68g2Fbo6/gyQ143zEvn0AVPLwSiLFtYa8YgDekGxe+J0Mh0q2IJ40eAqezs0jsPWpDAVEsxqGSrgE1uHQccilHsJsAYyEQkh/RhOHs8ljIYLUpj+QoFo7VhsMZ7EuI8jszcwPwH+ULbEX68EnfGbqc7MN+zw8ezHQ0HzFISaMrfbFY/JrDBNrzPXu0XvV34hNHqW9dMHzvpOh/ECmOalcRQJQMnn3O3PVuufNrEhNmacRJQ8mw/7z336ERzCXl5hwNr5o1n25eALl4MWuGB3kR88Xi3+yG7can1wtxrKv0HPfOv/1+ngmgTGeNXwGIbZIbUqisYa+QGRsuV0mEBa4Qpckuk8MnmJr+xfEctmphHudslrvrle4DXtzZU8JgM1kpidiyTIRrXh796Y8WQPh455PgTlIGPuYZlQ3+D3NfG5WcUbEnzHS9fB3sAGscVrFV56xb+VHtRzKE9ndqFiizHI3e3G20RHP9NQXzHVTyEMwd34DTvdn//G8LRUca6kyZV2ZtSgjyXA0YK+qWjvNLTF1NOd3hvVGnOAZqve/5ALmP9im8ICCCTRalxOq5NubtS2zOdGYRCp16lJRAHFfACFFN6pxMwQtdz5fWNkfnWeyk5puHiuV4yLiNDavQssMRj9h2ScaartoJS4HZw6YuJkMxlenc7gVqFmPDsNI9kbzS+AnogrzKgPXb2SzxGp1qPGv3BDeVj6GP8hbdoH9GDy8m7pSKjDY2ncK1mwsGeY0CknqhN3oON4UfTciazQXMMjQp+g6JjrSDdRPo62pFy6OW0Sq06mNAhHbNuyQIJb+gKC5QcJMQpRd1wfG2m8QQaKBqHIWp1IJbvWSjRM5t1b+ezLgR1s7du0lG3fvXeUaK4bj2Jc3sSwqfqH39ptJQmEyR4ICk1RXEz51Abiyqxc7cGJQNb5lV29RNve6coKCiO5b4M8UWxiE+Iy3nuccDbh6AFJjaFU40QqULF+QLi0E+rritR6YWFHOkcDr4GUAUKrGfmU0BOtw9TAqxMLmctd+N43OO/Hwy2wtfriEteCM5AFZRAjUeYv9EYKJ724XJZ/pDv3G6ocwxTxChHRJ3qcrrTnuCbw5O0tNM2avvv0aB5OdOpAnFih8AnRouqFWREXp5Iwb3DbGPKn3sDdx3wngqWluQyG0cDMpA6s01psaKVN8wyaIhrwDCfGhjHZHYVXcOURU07ovuleA/ojdAGgIEppNWWGhlvdivtrC3v3zsPp0eBbHv4aIrRUcTg1P7pLAsuaQU1vgQUXk9Zh932ijFquJ09FZoRodn4vdtgoynNG0TSGRIs4W8WWgMiVfoYeX77bHcoPaPB4XZCTyZNGue7Us7i1YwjwLXnr2UyBtJDAJppjo+ZqQdngQnaksa6rv5Lm+DDRp2FoBQ8FNizyWWk90D82hJHSoiK56vasZNtrTjVJL0Td3IEu7p98Znso9MzNKBMom4dMzf36E8vo2i5t/+ppESCR+p7Xk9d8WLlxCmyC5t9szEXY+5tYBqBSkIfNYTcsFyHSRKqETib2RPFbRJaJ4CSOCmAaE6KZ8OBw+Uaa/b6gzTEsf9a7AHoUQmlQAcKSLPKnZcRIMxzPt0ZHF4lMOzb5pXYlXuyBeg+CSbMfm5UuoeDXFNz+7HQ1qsXtmP4ygs6n4zkUQlEc83zbqveuOZJcshkss/nIr+gc6/TDD8p8IWVR7W2CzEY8c9mJaZrdcQJnKRDOLEDAB32ojrzcYQOX9Qpc3dlUQCkAMpqZla29VTFz7yqMRiPtM0Hfph+lO4jxUvS+AJaHccTaEI6N2a62Oi8dhh+q7elxRTxh6s2FA/nkWPctDsUyZwDjhBC8YbwmhSdMuQMtIg19EubIN/qvzB4a9HrcN61+mTr2Whsmdr5PQspQBkvKm0d/V2xIpaAzEmqTvL2JB/mr2DDqzLIV8t7Xlgr3YtrLJu68FL4K0YkC5Y4mhrQbDJVxAWOW7XWCpChDskxd1A4hlo5x/ocD5IhAKNrnvErn6M5TeDvLf6nljpYsnNuayNbVaJxLkcV6IbwCkw7FiH2mdTlouExG6dqXdvXJxfS4ZHbuKiAdTGuWVeGVkA9OglHapFOh10cVtD196MHNs9lDioRXEy4mHTheDdUdl2nZvoUEjjV2GmCukDyZFD0QZ53ZM2w6z2nueTIydoXwOkS2HQfW+WvruxfQ1Mzk/0QYpQJn5IGA4vK5tiaMk+8x+JKDjfT6tALVqcUXnTOETn4mLiMfmKL5u8TtQ1nu7+cEHqQFv+Dn4qN0/rbaJcU4+3HfxW6xDHa2rnveseJAGsWgyJYpr6HvJHLkyCGzJdBsagAAvV/aH692N5V8thCsHEbuF80wRU1MGPOghDPJzL3WNvvIfYY3/xtnN2aZYIUtRN+BbnNrIPdMAuNhxipGik5lm62DBnfbXUclGHfWLcYSSjl/uQxToS/hgVxyy+1jEum9hltw1/L4PiT8+y7zmtT3rkNzNbpyPuHOlVYeu0H2qOWGvzeCstfYWUuDZQJXOb63xhsLkngMsyRyv0HHINP7tK1bRi+T2lV2B6xpIyDznJvGmI4iDWCiSm6mLIX9y9z8x3fn+pVaaE4FwFu7Igpva2kaHWfzI4RCouKGa477m5x13u9Qrj7wApBDNDirvTsHtBzTZOn5fBuL+7cLuf1Zg2WrdlmnQiScXKjWs/Eige2v8ZeJH26XYmGdRfFOuiOg4usnZ63dkLR3Kl2TstuWMXmvJRfyAuWBoxodn+N+hYTQSC0hmcmALoP8N7f26tuvYcROXK7MzODKFwpcaJxbAHbqwm4gHJW6qAyhN5GmKqE5QXaw0EqhnpLjpxIfzdYiokFmeyMT0tKsbMeqZ07b5Qkym1QUyHVDkQ6RfxPU9s4zjubUFpjBmsU15ZqoULnXSvdLpzTG39/v05ZtmXq+B/mDVV+lHocM5ho2m1r9YQ2BG37ME5qF/C0ohqmCICQvWP5mOcRNPTioOYyp9jJHvGQtaUgiD4KsHDwwMDGfBs8Nj/oOKkWejwyTrfa+KqRWdwtTSzntalM1ArzZyCS7Kp6cexBxYm+HkZDcqVstJ7lXCRLNd75CegEfSiFtiWJldWq5ggXtUB+8Ku7ZQcUUnz/28QNQfC2e5xyCnTfDWgVQRase4P989W0le5XlmDfmqTOKuEiv7uKEN87ehX3c5q3w6s26NlYnW/1sF45jsKik81b9jEsJB0gb2ycc9HZIOTa9fJsHHSz7YWBjRKt1EvVLqUFJvOlR9U3Uwo3mWTNOL/pb3JvVOxnAIoPFLFoaveIX5hQAlM+YM8rUG9gzK9wlwxovgw/jOWhOJ9Lp/QiVxw3Be1+0kqzkd+snaI9IV58X2r4z20aLt0gYrP2DVjPPMxpzQarQfWr0aWrByjIuG4qPmFY+BbsMus/KtSfOB7kHyJ8HPJrSl6f7Kgh8CaWvXnL5d6XPlYxeX2ojV1I4/RMB/mfrMwQetDKlXN961R0v+8rMueMSEb7zPysYZEd1WRX27b7mrxSP/4MN7/ghad0cnM1YzqIcwEnk2L+apokfNQ/rEkTB50eviP9DhcpBvrEjMF+b2Uo4atRI85B9zMUTQIMbbOb6sL8HG08scRvS186UKHbYnzr3rk7LzOLGf2Th8yHSOjyYTgHCwZXo+fxVxv2AHKT94Mkq+SChRsA51d1T4sbhFNKZ9hz1hNG7W93BJrvj3u7lLMcEHeCOz4iBrnTLYo0FFKPNYXlubWiaCkOX5CuZcYv3MydxhgxtGUiAzEr8TP++pmsBcO4wlBZkaM3WhOYzb00pa2256LKK0c8yv2tkyFaBtcbH/w/T82Rc35+2rtgiFlizwOZqGMhMG3gb/yBJX9nnjhG1EdxzNBX65Jxki8p+1XMhvszdYXkiXZcGz8sxRS7olooQ6cfUenx0Hcm712e557ySvcvxZiVm5yBdY/WTMHFYZjWzwO9Sf1WJxN+bpoup4c2eExNVh0TcW65j4WM5mpGstGhEp4ejtvUhO05GzBundWZwlnLx3N0alAgg/QZ0c8wKwvfS6invBHJIWolyxoWiujTFFIs9BgmJD1m7nJEjQ/CN58pC5pg39p/zCoH3GxhFanG9GrpbVgTYJjWqBJEILn+qvl4ARj1ETG4clEVbijAU/OpoLdw2J5n0bPTHSTBquoQm144vc4R1p8vQPo72t3TVIyQ469KRRD360iwNkpwhNY1oyHfLHDs5mz6qkJVo56+pkUov1Xyz7On06w7nb4EJucnfj1dite6pVyKJ6Dtdyc6XEI8VMnOmc7fdnlMgcb8aal3CtE8C758JJ2YCVt/XEGFSAsm2zZhuLT0vaUD67htlbQr9mthpJ/zjDRVsnFN7osjvzYm/jJ3R+9/yZxpGp+bshNZSYMUWAYIXlXpHg7dC69wHvZw7PmfxgQp9EYiQKenQeHwX4qXIsSVlOwBX57UqHHlntcaMpLFOxbUdnCV2cPj0BV/wU1xN7iRAX9NoLVBVfHncIOCzf0kE8oOSRqI6LszqxfBqIPnTp2u5+pApCeDUrw3S393650xGK2ZKPfTjIKdPdjmkQ9ls5m8Ovv1IagrejjabjvVtIJYzTHV+RDT6A5cCfr/T62doFLWlmKPdKgv74kesG9+AYAK13ciiyvROHohPsfrIaCxRXZ6952U6qMeXu5BaHWBTGjVpoQB/+L3puFJNEojuvCS9DPmzR3plqb2JzYgC4ThtA7Ils1SDOrg2YN2qYQU+nNdYY8SI2LTwQPCs/SYMmVddJNy74njDfg/14UGkka3578J2zViJd46U2NU/RTPjpf2bAqHeo8jIKhOoS3K6iE9THGBtFFZ7/ya3eXc2IrgUw9QYGnHqaHPfRbLKUDgLOlAk58NvxX9kFsOx5POdTwTTmL89dYdORhEBExHg63ZX6o1drJDwq4x9x/9WyA0yB4udZt/yXKvZKsFDCt9OYsb3EldswHsMn8kFue2AA2EXvOtVKlfXKk4JtJ/yaBr8p+XV9dvVeijkPcXU0cu5J07KLdHQNyxppWlNfQ7TEv4OXpb3K3kr8rzQiDfZe5DJ4uuTUBX6rr3/Xu07+Peq9dZ5tKG+VYh6UEFfGleVXBwZe70FSo/wfN8GsijL8SCVlsgntrFekoyVGIHyhAsFyoIwp7ihSu46gN+imrH4klAdtLD3yhIS9ZAEI1bwNrYwnDZaFrvQlvDViWFaaHNjaxf9k0WCUFsvsEph98I8OmSkQibzDfBl8YKFj4K3u/cbS5ym/XWDMLLnlhSgAZeyHu+3Dg/ab9RNq/wLgesOMMgR4qVKE7tfBKKecrENQWBL3SMpDlrZPcy6Og6t2hH9F2njIqQE8ckoiIimwrJMkq/KpciWgtTMreSnu4smR395fOvJ1guC08RVp8eLwUkhmKVQGiM7zYRkLWoDYGcGnPjfzOSq4/JFjT+Wcrm/yZbt3v9kiSxFDDPjRpTY8NQxLU87BIuqhKvB62esub7IyrhfJtJ/aJnQlg+IZgsTzhy8/tAJf5QIXb/XJ2yKCBNiF0+TgFhFoH7zsdSf5MpVqn56n4p6yu+gcw5d3Bwc9ENOfBZtYOYkUB2IEG6Di8wCco+RIa3+r1WJWDY345xff8PPHs9WI+dofsT9kpYyK3S+PdGkKUTZyHsOb9xIGnExvP2dy2ETUwILvUqbqO2JYf12PSEfH7c1v626c5dA+lfuvtw7BcMD+2jhFeQ25L4ObkaUporOkTQj0PD1bIAq/7NPHp/xP14kRJlr4v+uCeXuuzekZF19b8l9cIjN3ssmxMte/4pHkuKp4VUMFQWBR6ULksE0of5PlgRjDhYuzLhvvXGFMcpyzkdzoZvlDV62Yg2YCakST/Vj4HY4bFVqYzYlKiYaHaOkFOaGnc3lQ65zKJ8qZk40HWN4DUaJchXPVOvKUaF6M+bgVUATObK7zHTlNseIoloDb61APR7Tvycb/w8qGHzuT7Vo+UobapA53Os9Ubrp3o7jIIYTPSFfDNOtLz5PtVbeEgqkiSRETroBgXPCcTMS0SSRxt0U1e2MurV3AdyTL3ATP+cL7woWPjR5O6MUa8rvR1M1fpmbzSgF5L/k3HJauAUMzC076ckqnXFevmIbaghoWY3TWgf6yUoa/gAJCumv7GNyIdMNfCIg5nqf47q3xYVO1PyWMc9bmO6rfYMmtRQnkvkT6yrSSFAMcfeoWGccvNGVuInwFMyMO9+JAEeKofl70GzlaIl6IL9hKG+byI6r4A15MPswQNn0uFJ4mG6ayL9dUHAuaxjAmUgZghF30NnuRyROIsZ29gKPxKVyl07LA0lASSPnP9HD1EnrP4zmSy9X8DNh2/5dyXJDRpXxslOgnpG3kIzleVnTupNH3jbvuCfQ/89RAj8nacw/6/kVCakj/VrlH8TMYRprtTTsmEm01Jc21mefo6i/0Y29LZF+vx+8bZ+xGtpAj6LaCS2An5wfh6N5fWg0SotBqWrhPffY6l2hvjKK4WGo6Wq11i3HKkte6MPObqAhF9zRKGMJHQsgO4eSVduEQcHWWI9xez+gI/tl+N5VFBjzdKlIrZp3B5H4Upq7+0I04xbpFuZjH7XQvpjzFI7+nNybjXiUTxN5j7Uhh6s5TV9xvMIsQVl0SurMG+zY8NupM63r6TbVcVdJOtkbLR1n1tIsYaXeKxtrmPhxgvbTSNOvX9XHQpTIDqzwdll/ycMGf/dIwo5FYEvC3r9DOiGXBGgOkA2scFy7DeuBqPVDVUBOnvpXRpcR+A7VfLTGDWY1ipU1Mi8GPil24ZKwcWe44nR5h8xsBoS2pJbj/c5aKSdWt8CC9cWHaLBVvFFmeUG+oiXOp2xHHYD0qySGJjYSrg1cnb5PfQX/Fo1HpCQcCskwQ/pimoh2+VZDrvDIjdUTm262TPdr2u5tHwxBRUxtAWHlj1Zb6hredFjrt9nTb3RA2dKCzcL+hy72WZ58msY2Gc7LIUji+iSRlQ5dheiNJlsYK0ElR8aZHuVl7Itm++zXmM3ZEXN1utFxLJoePe22D+H9N21iROetYf9TwBUDEV3l9t8tUaRL+Ub8o7rhDiz9s9fPk4I05RmIF+mwemxb2HtHNQCFSsVEkEA9jAMCJVNVKY3YnGqAQDS/2Or8p6b00Q4f80YYR1v0WgOC6ftfB67fbQVvL+tC9gKhBQfj+innct0WUZ5dBUKihw/vG2ltoAD/XN9jpRjPFf9YkJ9rwb2epB695ASEk+Y1dgRK9FfjTincYlDGYcKzc3Ki2mO/e/TULiW1axdAyWhzO/jl2aCIdYO2rO+hFPcorP2QgjGm7udg8+RR5Rd4fuh3n8fSoZEe6ytP5qa6EGcILcPkVotN3+XTyphhW45X4tBxU/rY3Ahms2m4oMV36WGeIZooomlSx/SIjd0vmOso3Cr2g3lxWAdRT8/Wo1m7r5mg6HYG5pOf0o+X2qXSD0Kh4x/v6e767QCWwsAeuxMH2R3IrWk5nYRwoe/uOsALVHVpshipFXbhu+jA+NZGkLlOMzYcGyNTPsHZKCY5/oOaZwJXYLgA65jNPOEMG2YtvPjFIOJDF/Rs6sLE6Dv8KLUaEkIIQY6AyqiAZ/LeaSKEQ8UtxEWHfHiZNIXnQYWbLSPbjNRC29s5lbZHjEix6cVQy+X2Re5Ba0WRckfLEDeUEy2MyU5UwJV4Ij5sNrJSRWirudjDyN9AQ5MxoiaIzBmENT8l5UniYovqq2xr38JrPFg9TJNIVqbGIAXaVXi3DMm4WZxKgHFeybwik+CWu536/iTCDaSiF2ZOU6gxHC5nYmTIQEqX3XHZThBpyOsXqw4QvGx6rWxCAxu7JMhmkePDfZqD0lmKXsnN9kCCYe5g6tW1vboNYq7WyNLEkV9WMYYB+a6BAJWpPTvFotthmxq9IHcHShdv/YX3NCgnA8lxvrsX4xG4tbFp6Aa9BnEEB+fgI339NVVB0IlqGVhVffZkHKBQ9dGieoOsyeD+BRlR0jgfaGX+IjBnVfPp43blJVD69Db8CgbC09fHuQZ8a8AxusA3HJkJfDkdID7nitiMeXu+K8lDT2ckwtF7UzzS03wofvHOhjaXHnDTkFX/IxvMfBlBQP1H0we6JBQ6B+mTtgKi9bM0Xo9Wq9TKvtKtnWSOgOUEYznmj6x1wpk5le0xYG/8T/WiPmX+hmXeovJ+M280rm1QHPvWm7I3j3ON6UACm6wvPQDP+KtfnmGlE4G/UiuV5I9U1VD8lx/rSz2m7PfDXR4ltMdHvENXGZrNaLsg5s4dk50jJEsy1XGBPCBcuCnUptEP+9F0EfjoXKKfrtKieJjKBkL/9hsOwuP1ouHBzjoMfJjQo0J3VmNZsEZ2JLF4vREOCZ51uljfbMVOk/swZEcZFX7cAw6E7e0ZllUKqd2bSOZEvQSl+qYEX0lWwJwFuGd/tninzJPmazKqlCvshIfaNBVrxKgiww2rNXe5MVfTW1ks3Q9KGBkv+IJvc7z+DgRHpMJFZZhl2nrHwtXM+dIihvH8ktcosaclCVEuW5ZaWMmsSQALgWV2f510KMEnhMDY/Pacx9SSNFbjeS+REpn0QVStMbpon/DjnsbFvj0OJOHj8a8K3WWWSDulKQwTrvhkHhdc3quVNXz/e75mCx1Nqt9X/J1gCuxGfU8VLa91AuipbTpgJmvrUk0Jfbfa0q7I6xp8wJ5wX3RLiMPKcYACF4vIPcbeju0JhFfComwB2evt7E5knd4tAJ7aLyYX6Nxar1OhoiwrWMbyCYFbqqOKxerIA8trNz6gpGsDgRPZrX13bNLaLjCsdyMzSET0H/lOLWWpeOSVQVsUKn7VgXQfEh9JiKNapZSoh1KapTlT0cXK1OBno3r46pcBR3qsYJIyl/8psPi7t56oSIuQuiwrMdRmv2t5HgWlWuuqABtKZoFsnTPzfmETgBRTIE3gD+eXoasd+DtNmsTo2bvTX5/tuLoThrAu1ZOK6U6rQPmDir+9hbyYuEdqveRtjb7piFctabrCZND4PBI0dTaiuBIdZTHUdkp7sthzm8pQEz/Xuz6vrT9VBbhhIxDsOAKm5H478+HA5gOkGZqjju6NtTbzrx3w8ae6BvpRxCkWKSV6xnYrH3Etoj4g5yueITwpPaO2UNsvoSk1U8A+VcnvEEBZI2BKmpmCYHTgshEgAbtru3HWxULq1k9IeN66hMRCn7x78Mo/yVZO0y73WllB8+vgE0VTnLQ5D2kb/DFE/XHxgUBrwClCXBuiNoVhAO0UKocViTgf/ij+pKV14/l60xYpsOVc8o4Ww/OdJoXRLMAsp+O943JiX33rVi1L/cr5WQieDofJWJORWiIz8DX/VMgnEKrIWGcIZa1uAFGEAiB9HO5pK5fZeeNkbvTwFmGHVqAjCe7XdV/Kpsy86Oi/WynrAMcEoU1Mos5mIwKH6h2NHrkQx3w4rbJF3VQ5arBJgLfbsewKvBEj+dw28gzi9kWBFU3/x+5+IRVFEPbZIN36/jZ++kGBq1ndzRd9UXaNFpgobiQ6JjxqdprB4o+PXGUyOak5qrth4U75D5C36Owd3fyyZfHOgc+bfJSybk72KfMhyMF+y8HvF2mzemgzXlf782w35WpYMPwwTdYVTLNgtDez2H/hADrfnNzD3ar9OBq1vFkPDSJ9vftyuPm3jbtMyf1BOjFmvcEual/iHvpSHslAhTcpYhEjuy3Jx3W3N6eTAdSAh3XASUTPATO0msGhTrNkRYEKV/EMow8wALL16wlFdRP9vlYBYfURAhVuHjH0zeubHJ/miqGQMfUe00hhI6cQ4wJhc9jhsWyoTO6kMoHFm6d48Z1XHHrOwgfWU5yJLE5PpvVck5aDozJd7tmqiophBf51bTL8cEYEz5sVAYMKhBM//tuhpxZawuriOmCfY/927BxlAdYl2ZyL7kStwA7zJ/6pKAYq5cqsxhUNulyV8llz5XNDkD0/EgdpJHxCd5DiaRwR12IgYyAnPHwCh20R5Hy+LG6iFkuGHFQXJ4L2f36cm9XsjcxbWI4DGGATSFYzlQRSk8DfCy09n+SfqURfTRfQF2kjNqzuUQGOEg/FXLVNwDqUWL96Uyejt6rHMzmMnhVohNTk4WpdF/yimQwPO3Dgj7y2xdL4YA8boik6UNieYXzlF4NTkq/QGBHVGJ3i+Bo9Em6UZwT8RCLRW0Irm4xiZi/AlYYPM791oooWbfQzj7Q6sK/l7aJShAXNODYvEvSj89SsuqQ0jE2R9xgjsBjeyM18ITT/LbmCxxFbd148Yt9Q1hZVGczvj3zRNyXxhaRbtZx1VW0RooSSYmT1GonwQNc13QOh1NNO5vc1NxvVIEXv02QCfcdZunZPjRD+GtiQ+LTlPrMWg80szY+BL6VYxX3nYO86gCpvJJWMa99zIyquZvtKA2bzAVIYI0VpZZNckNRyOjirgF2LjEL9mcu58URgEsLVmIEZ/+T7s+1Ji7KFXdhb/b5AKycevTc/0Res6v0aYxGbpY5emvJlA+Y279l6MCxjTQquCari+NpP0bHFPD2vLk27STupoin0CRwtCxv/GK/97TA86bvvCtjqr3w0VvXWlpMVOpdnXmUQswj3GjGD+AM8MAy9nuqmXhMoUWRBWmVeQ7Gd7UUKXx9Tc50N/17ur2XxDkudeNbIKY0UYTUDSxWmBdkhH+wDDGyLOesc9d3rzD1g6H/J9eZw8xVx8/m4yj1AfonsAonEZsfDSzJbOH9/wxkcplWCFwD9DUIEJeEglirzKiPmCIKjsCgBy4j/y2h3Rn7FdUqjExjNAU3Jp4Bskz6kPKd3KlXRO21JaI6W3qFGuimLtmKx4+BVUHDbsk3iIeOGvK++Phxb5vhRLFxaNI3SbnRs+9ccCm4SnBek7A4wmgzxY/jYdvH9eH9w9My3a26CxF9FkfxWO6FvJ8Royh+d4qO/vnfaxow+4APpQtPgnSD3W4oz69Cyyg8KwDnHtF3XmOCCLnJUhyT7SNYT4s3bpWxYiPMyXx0k8cn0ZLm89LsBILS/zNioG0sCl9ZtQvmIoQuiSFXGgoBLhnPR08zcG2l2+Y1r+143c0Wt2T95SXznFuZJPWB6/dAfB+d+ISenb1Vwp6dg+KHnzkyAshka4NUiyuaAsTXwsReLgxzDvW6GGxoQ397/0QrmicYYixvUcip0L/JtvUp18v/RTJa8ObyTVhhCYvdtPzegOdpdH1UdmgxWiTE4mFFwgpw/+jzSqv6P8HxGyuUd0LDlLcTn2Em8kFUlqfALUVClo/ARDz4BpiF9RYEFhdjygmSXnqAY1wNcA/m49EnfSA8nrmI0KIPXqybCI9EMHVBOC0fQX9u1GMQMRy4rK4uW6CkIMh+tgNXvG4yMO3+4IvCnst2nnAvMjEMkapacUB9woNm+IbRhKCIDWhAtSTfkR/FO8GMmynhXxLJm23U/gBMuYFQnFGdaWu2QFzLEnykF4RKAaOUMT0iEUHVbifMmwX7oZZi+uTQTwPVlicQ55hMk6wczh04AVIDhIosmXygZ/iesctNMHo4IcFt7xLeJvK7NXSE1QJO6FvHME4BtSCm1aMYb1Yn1dLBCM0YMfowR9aDx+1LUsvj5fiECflz6o204OuetGP/R8Ojss95TovCsgRPC28+w7kndRof2mc2tkbnXy7WCuuPbecpOtyZLwOVKjAVeK9E2Kc9tMXXZqW8w5dGvQ19HJNg+FvfYni+RqGmxILZmcnXkTyLfsTftqJeCR3VBln0wPAWUyns5XUp7fD+fC8rzUhZbd9QyIW/F+AWJJ5t+grqY+Q+K6MQHrid3uctI0LjsNjYyF9U7riE/EuwL9anM9mvXHqnrXGCW/5HVX+qIMaQcsnbSEXs5ygE6zy8iulFxpz7g+a7lgTREmyAIz2QiPl6rMIqifuR3KmeqWmN2bMK6LQCcrRylxYJ81jCdNQtgIcW0BkHVpAPjySz7yHRE6o+Ej4qwrOEb0nXmZHGIImjl5Kq5B54osZC2voVaigpZJZJQN/9F+T1LvWqvMSsM+Q1WDD4r4xS5KxuC63Q4yF63FY+ZHJlfVer89K4VO2sRCsXZLRHo+XHAj2SPvXxSS4Fn173n4i+OcXcwr8kVbJBNoY2TuZWIP45/C0DRsHFsHmeSuiC4ofWQ85Cv0ywx2CsBq09bezRIj/pMOFuVJ48t+kyxEFPqvaTKKTgc7g6fNGXCAHn+rhvweZNXwrBsyHIAn5dPASECPhSSBb7wcPaqychYayHLIS7m0noO1qtCbT3MPFaRVkka1Bke1Qv3UatRUGPxoZEA4QQ3+QZPQwmyOIoAEWuSmgUlT4D6G1J5vfWPK/38I//96Hljfj03950Pbqj/FNhWgt5/j8xS5ZsAUwsjNNeAFDu2OL/39/sdH7pvevNipiNk1HS1mOFtj1vljPFlgYUgXs5Av0TPH3V0JlVpnDMOGPcPHrLkL/loqxpNnqGrYBkQLBP39RhkF63luqZXW2fehoRutGk3RwfTEFuMT10ROolU6tOookyqZeA8B4Aia3C5C8/r/uTnSbWhxscVV6Ehhf+DnX6mDnStDNQruiYbbiTbEha8GFnpPd16GIRTlbWnvsCFBv6Uj0fce/PJRaRE6/qZUA1hZ+8G6knmGuHTBDu0d2nzPCDt6lP/BHWkVFTXd7knxLlK0LEaI2YHJUaX+7J0LzZeduR75zTVITo1c67XpgvoZmGw2dgZu44NZugyiirocnhsqzwBBR9p0pXCZ3HcqBjjIFgTpBobl6AK83EqcVkEzCgKtGH70OiE6mR5Cjitjwwjr6yWQINMarni7t9soyLArjoZAQwqvx+JJeJuKg6pQ6/eoBMrEz0A2PY89IY2w5gzO7aXV1NzAtPkabsu+zZoqM004UVpxXWkrKm7nm9x4/LW6zUnFPRhJsXJ3qCEADRioAJSoIVOe/T6lkSG/3yFvkgVoolGR3lftZg3ZuQVscGPXprzBdqBgI3f3J6NqGvgAnc66iNGB53d7upWNgdwXAdDXxhp9fOFQdK0YoTGeYYBCW2G66Z8igQg+k/kMGy6RmM8XU75ciMzBeYkMvjOejyeryuA8Yh5vSDa20Epxs8FibW7k6kZE49wwAM2mKxnvIM8Oxpb1qKoMn4sBTt66tyK7FCepVUX4R5rD6gpTBzZ0TkoU9bZf3oq4NS0P5E5x3EIYkfz/IN8B4ZwRWnv79kwYvIkHdGUC0dTQ7Jxo+78CyKeN/n50JVtELa3QUlG5ToS527yKn/G/OB4Xww0kbQwf6ngA4FBSLbCWMP+iwAzOj7QLSE08PyF43hIccAP8FGp5ffBYGq9OUAgUxwCw0sySDwfn7HlNzmCwLKTQYWctDaS0OES/W+3CRa/vQwKw5aIad45iut7B/e+4XlGbgcLHBYfPAqCPaGjjeKtns56fbnBTBOCxJHYb0g5yZsOr469Uy5XAIqJ92LqbwFF/Rt0a4Ao5GCxG6rRYWhmkHtBeLDDhnfw/zKyidHX6vJvY7PxIzx1qCb46DjwKEN/urzixGP40HbnqoVtUY655YbUN+WxgiV/pFiyygcm3EIeBMtIPjYGzpXcbX6VrxpbyNUdAk9qzR5ByI+Iz8Oh/wGupj9scMaq5eZQjdM+83NyJuKkk+6r+PDZMM4tqNKN9iAyfkVNBJFHFo7vpWdde8JQIMJk+6OolOZ7/7dy30MABJp/Byy8D2W16gixFdxwZjEKVacJwHmAdu8gx9a9VeYztPV/p/wFQdBKrqIgSCJpatlWOqscO7kCLLk0FFgdNgVetWsu4ZdEt7gQJ3f3Vo/E0WZcAs9vPjOgwndDqG20orB1LLyp4CgTnXNRAj2L46iPX+4V7Q4GKQVsr6xJcVEMeEqi5W6DKYrTaFtstwr8XnmXM8jhaR7HIdVM5FXDSI4AZGCU02Gf6umu5ERnW8B6DDIE5fUa07wN5mVrrlXxBOknxW+qpmV2Ffe3tqSWk+0zLhLNCm4+3g2cgYhXGYcKmIvxkfW1oJFlNDWke9RRhotL0y0kZKdT+FDcDOD+8JAocXHPpwSepdJauFWkoJSrcl1H/FyrGL4g1YttCkyrKBuNT3mkZL6xwZvJJjQTY/Nw8WlZK0/f8OilPb9SDxSjR8ppixRb4MqD1UAxKxlzm120Q763UbHRJNvTC+zyQFG+3lvh38ePlny1YmifTgXVagMCXTEZl1O/N5rl7OVZ18kQQ31o6dIa2pU6yASRduGTqB+AYPLPWbKvJ1NxevHuBgvYI8S3Zn/BK4GsCUCuoTB2lMuMziCSikHxwcmrEHOPVU8KaNYdgwoaiVQDdOBe2OiVAjOsLFxXPlxKxt6fx0Yec2INFipd6eshJjVe7vofH+qyvDxROl7Gs0zw8mLFwZnl+Rb4HzX+fhrV+Il0Anxsw0BdxEjaB3ak6B0aX3lgy6xCkdAJJXHJC38nhB9twZc50UrBTxp+9xRFLZhmva5f2jUdpIafKJ51wQzronerlAZE017QJWzakVu8xIOjtxFKbmvYUcOooHly7JMNPmKgS3ZxbcsYm6qph1HdciWwQyPVcRRxfzNlt2/Tvrv4Wq2PHXO9w3pb1iN7Z0OyCldloMr/+HErD30TAFMdGf6j4qnmje67VMyWb5F7xYUfz7oV5sagn8dGOfOpbZ2kS8MepfBffBrrFYlei5qBehlWvSjhgImsSQb2wc8PZIcUlBgaANdCfdYa3H50ObgzzKSePWacb+PCO4D6wM8kG+xjSxtEacvTQrxrsaTs81pMoHcgB1aN69ZxiuidOHlH56E8XTtOaF+talA9QINiSnQlAe9WPtnQmTBL+739Li+MWa3L9/CUafcyaOOgSHcPqYMLj+UT0G22VVlLlO4VxFRFPUrMH7BiXFepO5EwuESuDI47UgKpRomYoxNA4weY/y6GkX90Om6W7hU5/4pcTNh42zGmjHqyLBXlAGeYi+61gH3OuyEVeXXzEPnZIcDb3OSzRANre1CJfVPL9hC9Ff7m8DIF5JAmEknFmTy/wPAS+MTsIEJ9qPxeTP0MdwHCyqEHrA18xO36PTCyXuAH940dcgvEDjPBK6IrVo+Hj08TkKaTwQEndTY0fIByaOImiMET5ROAoDzmLbUYyB9Bg71OmlEKBGVos5nI8w/TCDWNr8djkRR2q2xu+dtQvdaKiVCAdw4LSO+PPpD38GhXDIuvFE6RcMDYlSwZGYUgZ2CWG+e88W02URsbVEeJu8dfS5kY/zdctWRV4L+vqraoSIgYN3VlmHJE5fq4z2KVOTYERLyTP4GxxjNb2UISwXS44aA1P5+npEBdvfAeEnpwfIHXsoaMVqOKBlhrgTzZjn3ujfS922FixLyzR7qMc1HnkfxuwjFqzMQRr/KrfbNQh375sVHOd69wgw/VWOZyHz09ma+Qs8IgkXJbrFiEc6PVau/nSvtCAbn+dVyJ1v+Ld/cXiWfBMSAkTtx06/W1QnBMWMoUTOV/Lu66PCDIOAUDd10l33/AKDx/8qnjtLxHnAmtq3yotRXZe4XH/Ut9XkvRTYG4jfMtvc1KXGj9i0rv4elr8hUD6k41/VHNpqDpm6p1QlADUm8fnOBYU8XGVrhAFSBbVxQVZhqx9to7uJ6M2v6z4HqDawFmojogBk+yJb2CyEsLRODpAoLdiQWK3wKyBAfJc1Uq3s4bHP1GEVdlsr8FEUml1+oKQsi7xrrBhmzYP80HvRE0q5EgEcGL8uVz79DPsVG+dwRDy5581eu7yD+UNqxu+1Jj1ZTrD4pA9qHwhONzqhx9x8ipdjcJtDmIYSYOTFt9ll3PZCTvKOzDbSfvKGWbtmEQZD2kxtCaYE/gcHxEVJF1rAEWVdhVdvIGcsHMGBh+A/KgIrbg12r6O6iqIM+ETRq7DrsQB8Y9Ht3yZPZGCACTlwavFWlpqOV79RL7NG8o7pg6MO51OJ1zo7YEvAiONFAY6IbtO78D6bnzmkTmupxVkPz0peXTvq8MpjvdiDMyswAvjwCAc9MIe1CBC39aKo78BC8qhDjEMMEugW9kOvX6jjKJXqT6axQaR0C4YzbbE+cA37sH9r830XEKo41Wr3wcSjFoG2EJF79ZDCG8zGZBCcNJcOnlCg87oRVJkDlIGqYNYOYyiV0xgrC/PF4rXo0FvF/RwrGFtpO6ma80ejMcV8PgOVVqsEQA4F+v0KExRH7DUJBP4exmYX7hh8o2xRaBOwSgjgY6LZ133klL1Bciwfyn2vITnjZY3kUTUQBx9o2P3Y+OGp6x4lPclNfOiDyKga8YPjqBABvB8kvTWEXOkI2ldnOofUNhlEZJ93nYNQDxDoSg5kAdJnfuAA6wNHIOkBXoSkpG8Wqk/7hSiauGE7uPEObqeHp4H0vMCVLv2vd8Ujtq1RXaKudQVb0KqGeqporS7ztXEctjcTnKIAynQUGJRv2FWBbXG9X8m9ozc0HWkQfTU63/lIzAyXEZmqdydbRMZuIvUsuzt4+EAFcB570gCp0cJo57PzeTsbfWiKEmic0rgo2hwv1XVCQsB9a7rZxD4jrqBJmUG3bgShZe0YMnfuMHkM9z4oLpkMaWKGtgmLBZsOAdfY+U1g7en5BZtKcrZzJGl+mjZjcmNGxws+ln1BivjbY8Dyi7aGywkj8Tx86hulNux3bpCO2+x0rkbqEVgCRqRPRnvPClTsCnSdw3lK6rWqfF9fcTZ3UTTf38RYkZIJdwmDr7TEArZCjm8s004dVsc9I/sGM5+Uw2QL8hRr2xzAepdhkv/SRX6RWQ7MEaBgBhTLoW4gYVyNnNSmmLxM4IzlHP8kbmE2LcQJ+300m8VZ0nRKx1Sas3HgCHwQVbv7/QeTngFW5wIPnx8aZQK9yK8AftWoRmjQ880w4lLQd9cyrC9ppIRCP2ZgQg6pDPjCWwlslKvkt57CYjsw+VUQQT0uzj1Z+b3FyG9qWJYuN5Fm7PD0u45uO6c/CFkJF3QWY9ZBgP1WZoR1nLyPy9K8dR3TKLf+juNESdpw14MKsVzEicgp7uA0BA5C9ZmbSiUo3SF9/04oVx0RMv/noUmCRww81ZLRmqvSpb/Oxd2yVJNcbpsnRoFC2JEPA1p/j6Nnr3HzfLMiN+dby23B9MWEsBMbxyFgal27MpQxflKZ1aVAWGDa+KwZnCSYNgC7EpPuSYuwyrvTiifh3n3Sav9mDJCltEjgaiUbS4BIPU5bOtmS9SoDVtAqaqX3nNP2vKupvXDFpkDOVpBYPEedi7k6sNLv6a+C29Qxk8vLYh7Zeq1ohXrTg+jpJbiPcDpbdtwg8YIDU4GcWyhU9rkhLyDB44Mqa9ccv1Z9tdVveLXUCe5rvdhSiruL6+PXxkDoEl+X1f8cbtE/rv7Ukmb7h1ABg6A/S3RMLgdqwnU7sxpIT4oIn7psUvPn39YlGV6RK8/gdu4iFNrQd8uYQKrooj8DGguY+OQdAAYeYjOt9CVVaX4FRXmbF9iSrdtFbiPNGg/hT+decNJVesDZdyQ4bRI+Wa64W7SV4bYaFcIWKf836C35HjlnsTTe4E7DcxXpY9U88Tu608oYPmP1E7JwlTpnEcLB6plpSS4cBs/zA25rpVlQs8NmLAvX2Ou3TETc9VC5Vjdw84a5yL6iZZyiueSgIPrBK512GaH8XAELsqd3cVg9hdV6UfRoWvAdX1getY/3JmYpuoEDR55DVfCzUmNWMzGKXJz+4Us9k7QwLoUL+2f/tgU/0h6Xa1o6xfQCRWax7GQp2oG/WgQb1KsZB7+78jlC++hYG6tRuepW9y1zmcy7mfeD+iSBYLJRRV9LoKPGJTPMvY1bAym3H6UVHTHhPqQNxVufRI/rAOLGjOVw3IDEG3fg+lh2kj3nG4nZaAR5tf1sdJVUnkpTmkXgDD69kdbGP7DtdTlHmpv7nkqwOwu49tX861NRBqdbKP4uPdp5XO+uqSFLK2qqUI6sncVqorCEL3eZJbPgcIHsP21PmKDOPjmGQ8xzCWP2UTBSnwadNhgU9roaMWy5YYvkCbwv51pCLstNDL7f2lvdyS+4dVYv96SRCZQlfPoxTl/ANnvjNeOR4spgih+iqhtyKKshEZgaXIsSDW+YWXw5+d/ViGzwIYGxwxFcwt3KBHOQQ9zk97ft9wQ6+m4+RGo8Q2Dgrgwzg4SnBkN0q2Cta6CjcSVY1yEKT04OapX1JNaxY6C4FGnf7snJuCKAVOj2L7E9bhcsDUFw34u+qtLNL9lw7Xh3rnXxXNtG8mtM1zCPFU+4nHNq9QshYpPjvr+F6COHK45rLWT48gfupN/HBhyUW/smn3EhVJd9pqe4EHNTKwrH1HJR+eG50xTqi9jHDKJM+TQV9W0Ckom0MJr6X294oHwLLxnp6FAt/8iaNa4n5+xz7y1qU+H7pKtaihn1oCzdBjHpIkGtGwlv6QsUSI7B3UogGap84T2M+2X9x/6/L9zw9B+3GqNuBcmgbdh59rFM2DTE8NU5Ri4R8VCZY3xmuxy/EM6kl9dCWwbKaSytratJ7VvW5CwoF+fuYF8GWFcCy1H11U6l44/oMzD+jmRlYJkGWXym6XOBhWK0mDJ8l77WoWEccd/XYok1Z9C+KstGuwPSOCUtCOEq8dH55OWDJrWV2/7es+NWiJBdHR+teKpLzJ9ikyXYnu3AoO6KmNyaM0aF0TugDVb/fH/QOITRs6Gy1x+sCiTmpHzvBFvvEcUpbkqIFlXiUk/yY0S0eF8rwmWyzQcV5+drADBSAz4BjOOTou160/quSGU9hNxGHwMCbiRoHv3cQPhYJsEKGww7KH9Ql2eoEWM/hbIXk0UJoe2dQUvN++x8JbWiOwsEZnHqTV2YTboJGhd1jr33TxVvTEraQInXfZMp4RxFqQgnFDNSttqSLvTPA6cCJuhZcVsFD0vCV5F3GwJEienooxIwG+ULz3kny5Yhh5rg/TkvAtB6ax39tPK3pZf84ORur+9ptHw3LuLRHE+FUOlk+I2QikF8znCecv6N7N2TpLNLZoLAsFJfBbiGmSlv+zEn1fCZN6YeJdyhfUMevnpeoT2L6CBZItgUFIQE9JpWyG7UW4GiXGinfLf7kw2bPoukGRE3y+UOKmWHHGV/X4/NvWIhCLcltxbk1T9J6HadC2CIwVbs/+eaVjN40c/QYHfZ1DSrbBTMPP1kiKzLhZrdPzUxk+80AKeG2i2AaVFFnBDkBBpq2dXDzkbkReqAz+yzgXGT1sTNAdUmNdnrfNFVsFmhPOqocLkUv4983XIwn4p+Pai+Zy/Q4zx8Bfnzy+2iSd2mV/2ZrZNEMIyLvBNuMeYAVgMPEuCKkkX0dTpDNmj6yVJ1WolN92cqTJzTFyIjR7WT2ymkDGlcgauEdDM7SyQ7l/qpiZjgvuwyAmUTzC1gKcB7T3Vyj/O9qWfeaYOmTDCL7Z9lbWDTJZa+3Ca46RgI1BNiywzMb3vbvoGqT+vLrhiSB7R84jB5oDkoa2kJF8hWH2tGRClFgcBBg8NHYYMUtiY5IMY/gkcRwAYWBUFZ8CwCGEvhS1fDtbo+EwK3yGlPCgzbu32pYQKJ1A63vzKFiX58X4WaO0VNKYoZuVgPjdf5c4v3wfLrUSXPt0iJXxBEVsd6CmfIKLBGGn3egRhaV8uBEFOg01iC5MP7vRxB1SabdCJutstFuPYdItBy5NQbI/JeRBchlos7PAPkolXLhp5zj78ycUw2d3/tHG5FLzfoFuJcABBsjfCwH6XJK+0+ctCHYMJcPlxWvGiJOhhic5PKKa69th8o+z8FuUCLfNAQ2XoWTx7q9kccOXDjM25jK+9l6tWl9iDSmHs6w6o++txeP7sZeX/bFUFxVX/ZGXyBh4//sWenCGNoPSVXh4f25AxvPiueOHhVjfMOo4ATNi0UnDpgj/EwsA/PUzrH+VH2vORXnVkZzG+RHu2hftY1Z2XZ+iVSqBw1CV1KQkzqocTTYYjj+AYv8OP23N9bt9tuqx8eY90c4I98GzAAGIh0NFYvLKgQuADoWpoOh+ZeQwn9vb6ai9buKvFsusZr1sMf8dHZFhNBhq2usda/26+U7XnHUYoD7Av1JZFlku3bwTpY6s5lG/aPgaUWTRkSv+Yg7YpsWw4wjoyntHKMkgL35u6oyHmbEJb0+UKa+esOMDf81NITLwytYkioSe1X0d5ShbKU6ISXOIoCCdI0k1wDDp1dvCwbcTWWHDScGRYRuxa64QWAiT8vIfyJ0meo4GeR9mT8gV+vVKDNzvqZ3Qyjti0H+N2BSnxtsy8xrKSUUQl+JdnOeSeW0z6Mk2epwOAGkGbA/WJapIPEkM9Cz4LE/eemLvk9M+mc+zBV/5pBppM4w8p2aVHSPwwhCsxhWHEOD3XP33CO7+QeA/4Mx3N3UwvaL2/27v4Dp06rlfSbKNNXNctEEt7CXJ6HRqEKakGbJrC7v/vAr55oFmSRncgNndixlk7HL8u5Q4P2ZmjVyl7orYV8a0JL/+GlFENCnO/i8c0GuAFpmwmEN/YR7TWLpph46Je4Y09Rins7Mo3E3ftafJhO6eO+SbRp2ktUZQMjvkJl7ToCk4GM93vXDh66a4qRm1rg7/joe8npP5Rwb/6mQO8hzqYKLb6vDNYRIVApIthsZexR1s8ht/BCz9Iyfj54ecQeCgvNdg1BAvSYt1SYrhldbrcWUO4x4U/BqG8LkY+BGkKW+EKEWgaYZfmmPjhohSHi0C4022tlhZ8U4dLzim+9NulC21E57R434Hg71dWnLPv7wcnrp1fuEVBzhcPSnQn3V+y/r4H56TFXEzsHMc0OpNfc77j4EzTuxqjcSARyb5VDMnWAXJZVti7RybVYE0HunVnU3RGoAIh2cG43ogbwnko4A5zUx9VxJ5n/XggAPmiBlZvsgK44ZxOmd+joltygbd3c2V0hke0LCFjWamzNPcz/42xCtwnpK9yIplhTEGZlmVUBGCGwsPZOC9K9b4O67bHU+h5W13lsQYhwsdMkQ/Dxi1x6Sy3beg6gS1/sGYYGBcUzrmpQ2Ux+AxjxSGf8Xv9DEas6Z0gTOn4habjjPRx2Um/ypsTBjxO/d/nqF9tVuWVpkNMekVLXAAfONiZUCDNLDtukWWCf1Ao3MbVZ5x6f2fqBWrKIE+hEMl12ntIcWNJ5cwso5Ej+6gLrQrWdgxAqYCCOK0kW/m5S5cyWJ6CqYqgaMy3gBkMyhLcpio8lw/2YaG6MHik75RlC2akd4zcdLvxHaFiNuKA5ikATv04VbUFGuxcDFL7Vsgqh28yMdGm6qjfbtz5Zsuj8Yhs3CVKAz/qtFbcjXTlSt6/ped6SdEuqiVmcsM4MOGsG8GONjUDCnRmpQWQ1FSNzXOFQGhL1DeNCmzTIphhRkhP+Ed733quXTpKCtHXmgba36efNWkKC7T3Q8Zk+qNvfzzdwhxbYNwpNKyx1+/Qc6LFdBOExsfL1Uzh9ITdfI99t5kuJX/pkHdMbfSyybKIwBDT07K+w4gOkQi/Zw7jErnV4hqGAXQV51JZZh5GLXni+vduJV1D6mcDZYUUYyydwNAEslplbn+XIyAt8BbMtJM2e+4aje8MxOScfv04EIFfbTOR0eg7cOu7kuz1f3GJvN8CfXijioCTfkCFPhL/l5MzC8BK3BuYIvkAhoTmdKPR1PDRYQPRp5R4Z6a1+vUR9TX0+Gnxhb3ZAOu+Gx/otNqZ8tO9CvLbpgChYTTlqkr1cbo2V5VqQ2akLkm6wfCkNX1zEpydsfAMhrXoy0h7F7awU0GKkz6FnRxTed2kzRVioTuBsPho4QK80454l9yKm2bhaDD0rqFhSCRhJdDZXPzKMNGKr4MkLvHanSi2qhWhOhL2vMOEcklgJJ/I4v2m8bryZE/W7XEtKLjONPalDYBlOEeBZ10Cm+PwtcpmGuDvhhL1vcUoEftNF75+CwsNcDcc6fu+mKQJbqKeesmThBnn11eBrUfpnfsIMVZDmPtrjqBTq88LnV6IWVjr9jdKA/WXmsf4go9gkbTFT2nLqihOzvnI4+3nqMcRmM4JknPjCpssPhyN4ChQAY3W0c+PeQsj4n6muhIFVR8bBbym59htDj4xchd25f2yoNeBFJFl0RB4zw9pOlo8rXuB7rCeAeGkqls4y1SWTn8Q42SGm+wlYLMmykX93oVnJYeE5mG3DcS8kEWy4/18vxE075BTp87V3y1TzrgAQ90qlWqWdroCyd3ExgoslHGjw4BtzemVheiKzy4TVGfBl89z5Q7cxtaM7SDmBHmgFMDwgV4q32TrUaeH/51D25SfXss6njSM3E2dNyQXqelXLaId7S/JSqzwseW+SN2PtiwaabY+XG6HVT2v/+boaf9Yt5w/9klBdDuBCOVFQSWLLJjlq3NLujkVggTN7l7t69VD2CK8Kqxo/DX7WmtS08a5PPH30iV3DyyJ8Hnpom5IOIH2ze/aj3vF71B4wHLWZ4kroBU91yVrjzRWQSnyeA6jRxRrExfnKJlpl8fgrDwtmA3K1TfH32Ef14EYJ8vJY/3BEXYlVpKHDz4huueAGATz6MUpJRXDI8+Gdr7AVoCuDPDoUb9On3ATLms6XwpJO5ZOxGIx+mkQqKmjx1wGDoGt/xoPKU9Si6jQoiJmNSG8VbkJPGyCnBRM6kAsZMyYABdp8Df+lFb59p2fJRE6xxOobeWquPkIgOpfy/DAn6vq3fJZoOVQc6UUBzwoY9aHOzTKuYUaV57VrOBC0O++vjeki/m1vd0PFdeR4UVJsoxdmo5FUFTZDII1z1Tt4D49xGKdqYqA/ElXYmEDIZhrYt0vhENW20bw5F6rzU6woHBafvOju59F3gsuTpMxA9qzrT74zgtUtOTIv0Jc6RM279WXiZv/r51blHxX1WJJLS8Dkiw5WRRZYqDqxXwQleRI9vlHLwtzjKtX5er2EE/YydTCFOdKjj8NG38dMRLiVvF2/1aCcGWPECF65KbLNcemsCR140E6p063p5xeWaDienQ3YQo6dzVMmxKfEae3keJJdFme8e4cJyuN5WVx+j0XtSTrv59oRAcQ+d88561ZzkHqduusQA3wa0T8rhOOZzpqSDTdx/lCt3eOfJccTfkqOh/ejzTbAYzkJ2XMp5Az4CKGPs9Ag8H4UuL00GFEQPlvl9HhY/BUBIA+B2+NsLGHM850P6e/eY0N5XITuRdhM7oXDHDD+zLrMeJEO87sfWduFNsjAXfBh8kuKbt6+GsgHy3mt4X9JF2bga/iMhqrPPR39p4LE9kUjKM6RcCysxD5OJO9T48Z5OSMHprP2mTClXVVrkkpLBaVLztsnCSIhbrQD0gRtARkXc3Cdt3/0zr69qPoyHvJ6ba8Wai6H0/t07AG/CWIQg4cxXK2lr2paJC8J8w4HrzpISbGUsWo3ZXze5fD1Cm8EeaYQvZQUuKDobZD1oaiHOT1QD++VlBxpCKex5lGWUR0Ppz97wI6o7c432T7TR3FFnKhssHCGWawKRmqXAG9Xkw4bhx6VjQ8EIamleWBIXxevzU9mGtXp0pmsO7AK3hDlxMORX1ZgDwAevDPGB8ug3ECf9Wem1N/2/t61Mhn4uFLlHmIOuIbeWAcRX5Qy2noFIklp4UFhUHkmMsdQYZrcTRyga6h3rNqY3SnU/UbBeloKKXVSBrgetkGdx7eCAQUKcJo5TogxoHWuVz7d6dj+R21/MeCztLVR5FHB6ci0Ye2AjETNNliy/RL9/VZ1j8dO96lL8VEO3ko7frgF3jqNR0pS77DOJ+AsvGuOQYdNEiArkd3xJDY7fmvU6mKS5tmBvYIHMpObrHVkwMLDFRnkVGmjPnRlu/MG7G+OLPTQ95lPsJwf0Ic4qpX3bR0elGxRNhu+C0E6dLHIESNLvmP1tidd3KMKCrr+JGD7xMhPLXD2uojcD55F6/AeKfU+gzTCg4SgW1Mcg8k84ALU3A7LvrthZY5BO2WMSosczfaLS3HIG/EaoZ25Tv+t3AeVmjniv7MGFUxrB5kbptALkhA/O6CC0ePsFJxxQ92iHt/DPyaCdyLLUcNg9Y5Fm9pVHe8k0dAbdeJSKzfGp9Yflpjy71uETEVRgkNruA37qyhopg4CpTuKa0W+2uzrZQYpnVuPgwnISzHTdJxJfsMX+PQqjkgPrajmPRYzZs9XoALzFgy/TjnoP3dZDkFRlaXCgKyKvsLsU8rSIWorvj37GvnEqD5Pjin3pAh8BrmzK3X9FSL3Zyl0oEIzUaKykp5y2B6Xa7yD98+d32q/oj+0sOQ75xEPPSBgp9WhYyrQNOuN4GCjuZZV7KSIsiWORTux7hoCtf9LlqA5B30aONEJZa8DhvZE27kGi6NA0F95SEBnbxc28CtV8Gkkl32kLvxZcF5ZWiqy0vLjerVYNkA2k8ls8S3/AkIyJpOgWKT27u/LbMPalZSUrzAOZbbizqDTfcpwttHG6dljrb0RiD9rxgTpRrRfyI2YhfezCvSNmKO8TL3MDWDwricJan7cMNRZ0SXkFB8afdwlCJUpWVHgQ1NLDwt5iGCTl7J1jx8bZTjOE2Q08bDaPxakGHA6DDNF7W3dlSoVTQeqmTjqHDQOvLMoBCpVnC0psAL//tWupGOMzuKhBOvQ8YM6quLQZ9xMKZHrWjZH++ADmTjrVZWJ/RLvF4l58W3nvGq1qVlzJvJ0YZytpgMZu9CP/i9xfVqutS3acZEvN8q2jgopqrpUGEXOjrDvMRXSoHfA42J0v67JlYK05Qy1S332yZ7oG1Fs0DiXGjFsLRI8fvmpBIBOB+EgLdmiBH4UmUTLabsYeMnZ1Svn/wfplcaIEnOY4h1tk7AblqcpUTuL3Q5rI7efEmtmZ4X4WboPQCy6isTSJVRHRnnhTzDr32BBapjTm36bSki/PjBqt7h4ZrhwD9/BZgs6a/0GQfoK4I34OLfIr0AZuMW/mzTA/iEDrbdIlt16pSOe788tfazMEkIqSox6kZIPKFf9Fwd2Jj2FZWL92utPtxbIfolsLW5E8yee2W9EWHyt8F3lxviGf8eXYypfI0bRX3XgwoHOavDT3dultFiyZXRVrwR762OJmh5Yke/wvJ75pDEVRqIkqKE0gdd8YaHjM62wnHJqXrzm/xeG3XuIHZzJ5OCZWWSEQLR6T8M4HEvPGOIxNIc2HVimCgDiFtTpdjwDdqd99CxfAXhfrI5xK3cxjU5Oi5v/beFXAJG94C2eUeYQM4ApUhk5FOO9uATmbbKPmyIQ63gWWiTOFfW1eUO2xQANhJExzLSyIowrYLaH531aaVIe3T0XjyIyDBNkZ/r+dSb2fEV+qaCq517unAAD3ZDSqX1bUYcRC0GmYPes8AIdZsv8GE/GJtynPZ3tvLuU3NqBtd4251iEpy00J0lzL4hqtllUoQ/WpMinyWrLJ6BF0GiIOhO74kRgFm0kqgUU6J1wVTNyb2gnLfLOSCMSU6F3hVV+5z9jrLxcIhPz+CABd3BJaNXuLohLFCOZFfsA2x/hDGE1y9rYZAysX8UX9DaiRtzPxWFJhuEGqIW+Skr/hfn4oqIBwjoEAyg4NSkE+7qZWkYLSUYAr/CnoUwpqYKBtXfjtZBgRyzzWZWRDCLoKvyKAH8ZyF4wTMWhaeBnZrmY4K3BXJIYwqpF8mJV6pBrReaDvYemLjtBk9B/ATnptGAWQvvE3DZjfNg8FKz/XgDNBWcgkCvakym00qB/WysUakrTFrkMeh1c7H+p+X0oDDcShX5JpEML7qlfE9sqL3gV3HMNUMaDPVg4JnWxTbUd7R0Aj+8964ze8+bq0Mkz0KC8OJsHDQ+1FUp1/PCvGeP2QnAVhWDuGAPhp8M4buO6OoMmNPhr/NfEmOH3wHkaTs05p+ju/jmZEkEK8fmG+gqTwxEBSr5QdMpfALltPJjtDv9+g1lVGkjdGtoGQNEyGLliprYdg8tJ1dFIPc2m0r6G8Ns9Fj/ZFeHtfZemphGnRYxjVgCcEGSjq/9Sc2ncFv22TWeIk7xhTMwSgBUFtpD5F/Yq978SzqCXxCCSCVGmPKbJY9xf20a3/NOJudG1/nYTQ4CVmvXWHserHeAtLOoZVOCGHDhkp1D0tuFXFWtICUTflaCpjeBjONXwAYvVxc9Z3QgPxPUOJHSjW6p1lNLhrJOYRhhmDM2k/8kO1HfpnRenhunX097xV7AlIYGq0CpfkI468WW6A+8xpjSqIfUooZT1xy8SO/kmQYPJVN7iR27BrINvDc4IUUBKuS32/cUii4ni80ds6tj2HTLU12gFlPA/fD9PLEwracD2RzBMUIl2aM5bLP6FSDWETupJvk4TTx8t6jUD2enDGpYyLLTbbG10pfVBR4pzn5BQfn2PAroq0Tl00EegWldWNfsyGfDAIXPUHM0beY4Ay8vcJ0Kvff4YvMv0o6wA0UpU3uBXLjxwKttdrdPRTNR5Dmu9TM2lem4pb38WCI8i0IA95kluqdQgeor7nsNHsgAJLp58DEu98Zad6WEzF7d58zCocJQOQ+N41kjJ6ttDt/zVyJnqYdkHcyQY4s2FSJo6Zkp9KwwFDpwXu5HBVl68krZwDeporLm8WVUtda75seBgJWlYD8tSqW1CYbNrE2i0lv/cfxpgnDk39ObOL2Px4SLbcZrQoy/ZKrGtIZnx53I2JIAi8B2q3NtDhLTOCSN3L3wCk2pwVFnNO6uF0Fv/J8FAg43wbS2O6QEkuLKcLQiXYslNHWZqhXVmbJ6vVBgne+aonWmlgqbAcBsJ6UaXLq59C5hFI1DCrSpI00eORJDLsQcfG8exRIGUDn7Bg/5QPJwg4lfodkRtrGF2ICFhEPVKxW6+vQRsluJZ988iKKdcCMI1eC/EeWciwIwxHKHIM9YzWU6VGh2DGtE+gKrQEAUXJp8UYIfPsyHaKRMNBQmzHU2Ec7J9BELXjdYtesyh+/10DhTtyrRddnWn66WprZHcIGD+7jqBp7HANTiYQ0otOwptADTqN1ms4xDwrfzsqODHXcD6J84cHOZ2XQ49yLyfEGH91iA4NHVajoYk2kaskpQ71zw/Opz6NRYaVDKIZnN7/Neh1RdhDYgh7xbyui1VKkjFP/174W/4htg0bskH3iSjcE2wl+AxgV3QRi30jPoaFj3KbvSMqnEfxOTfcD1cqERQyWjlBfoJ4YsbiA7EcikGFEmicunYYw9PoRyYROaFeNzUH1kXAK08zUX8wmyT/SyMdyaWPfVnhfKs8RwtxMJbpLbco1qlfxcKJo1Zsj6bkKHqTYQ5NqGFmiRpJ6HJ3Ucw8odO43c8Y3I8rLHX/rxxkZToQEic8dh3jOIGZoKVRMUvGNrYNmVbl5oj0IUnFCcbOv2pb0yJkhPoJO5CQGQQ4A/icPI/bbG7bDHWWep6NZLuHoqJmZUWl71bcjUlfLUbJTamRPtdOPB8rDq7PbxCyVYvtZ5G+KHYlcUKurRY+E7clZ1Veg2pB02h/lhsSYCmE2PzTIImB69dkAVF5O8RI/knP89Kxppig6kkcwMawIN/zMNvNFUWXPCkeOT9F0n6NH62g6DJiZdaQWHxZj3qPqNSS4iF8NYn98X3xf3Yenxxkqntd0wq9wg8517gS4sAj22ob2rAN4ZLRJYAxqvzrPukeOh5PvL8nJNXhl2ebgyQWouiyvCXBrfR7PRpNVSQXH+mVInWivN5K+GRrxlSF99yiQmeh5NFJkqkuz3kRq6kOULk7mIdHGaaGytq5H8y7qB/wC2tFp+w2phawAJK61ZFsPallbfmFjkRDDzSUs/FOu6XmA73WWQJyJxzHhsEzQNoWHhM6BupVM1cXSKJbc8XkFl6MIAeZrvCuCeAByTf2mmAs59PTVkSBP1BWOUDYRDnDQromYLtbZdVJrvSmsCkE55LCEXoX0HSW4LgC7hA3swXcgsIWTiRALa3BsjuZpDhUUc5EEzMPkx7g2JHlzwuC3HeAgRvkK5yGgNyZlXMXGdXlfUwB3zv/53dDgDMt7DkqiPxGKgjptQuedFtg4at5QVq15NyTmPF2Eyul0lo9BrShigL4cy7+mw2Br0VFWeWCkl4lX1REVVKLkpjZHh2qEZssRqT6UMK7T6mBnWHm/jRYlE3mhDeiypPFaIbyX3jkH9U1QdPgKbIToJQnjxvWxZWY2m77vGMudecxtdPKIentyYlKuC0nQWoFqX5Xj8fay/dwjy6L0eQkIM/WpFdOjqh8BeOq+iO5hR2He88g2jzP3nDmVsnAjlUNHUVuojIr4l870OURR7xK6lveGeET29lCx0dmIYdxEsArS+aK3GoFAxcw06qhmsASpaAD9pKZmHIr2sEl8ks4/PANcJWOb5RmgVwc4ektPfCxelNhuifJcZ+AJIXkJ0X9Nx6jw9zJCoROAYEAsEbYAI+folLncFFvjUfeFPsY4jjkkCgtE/e1KwttUXJkQDo3yqrzLJ5Nw1u96EmVE+48P/WxkXHgbgrRY1XGaQ7EsLGAHdlEGbs7meePoXOvKZDT5Z1nuSMUHwSiUyVDImJ3K9i1vscjNzidlNhjo6eYabbVXJutf+woVsGpVlqnb9X39b2FlKNxDit+kgHiPGXVXhg0LP1cUptLODIMu4u92gFhy2FyDCqfuzFb/3zM3MrxvO/zXcCrC3C+RG5F7wFjt5JXxFO8hMd5T6AjPAd2dH08woB9xgadffAP4WHouvRp08cKnrSal9QHttdPU5JZAYXJwuRnfJ62Lt/XTLdFy/+5sB0gL87Sj5HtamCNozCcMq5fj/2Apz8kY71vRArzR1xF+6Q7IYrRK9CX95p+kAf+cPZPnGcI8D4Ll9p2TfjcpaBCnA0+/x3oNP34A2wHui3nHQwI9uyT4BFII3M5tECpgFWNvR3uqgsYbszarakw2P/0lsGT/SlJ3CRofamJzVZWQ1cJDesGlg3x7OhTFUw1jivdfnhYUzYNw8tY0e/yfIYw0u758b4zjC7qCGV+o/7p6KLjIj8DZe6PtDQgfXGcimvRkynoK8S6NSdBeclLG5b4PUzBjTn+bbK3AMKxup2Vv3QRUOH62wVvJq4iIQeyFimdVZA+0HEaqthNj6C380xK6JA8xgqGC/9fzVsuLD2Iwse05pp4XqPTHPBa5MtT9xY7YzcV1FXg4XVwUQEFyped70KFbIASunrfjrMMeNulAhrvPsNPqiTUcrkKoCFT2Iu+pP9kWlGmM7ZBsPrJtQwDtN41D+BKKUJJT7fNy96aZSXcJddTEG8x35KFEmnFYXU6elWovoXoQDZew7lLpVXy61MRos6stAJF5OC0Cl545TSWUYfnxHqNadK04gMYavUVEemxutNL4sCOddvrMnqr/yjg6STRrUD/2gAp9wxWezqBehxH5LdLBoT+qwdbIy9gRX1NNDoIzcthK+yakjuAWoeyl43ukzUdUhOtUSgMQ2AyftV0GqP/1p9WJv2CU3W2WCjAHNIal+5N/JeuXv6nJz2gwkbval/oF6rVDxQkE1ZHEQ6HJ7lxloqbm3I1slBcdoQT9o5oFeTOetcKqjmxUp4DcG+lb/n+ptwDojnasYja5D1aZNYfB1dyNU4SDHJPiAC8u5uDaq3MseLJn/ywj/hqcXT/baSlb8DPLAnKMEPvorRPYM7Iu/JwiC6exXDAS4OJ9cw3hG+qxpUb8sK26zLEzhYA/UtsoW8lZaH68CH0PTJNDSy6VSisKA5BUPjmNj9skQITQS9UagOO8+JpldZ4dhBmsJ3TIUjiQH4dlU/6vJuP6D/H2ZGnLcLlzfhGiHEKLxJWDnPHhW+LHkwkgF89MMLG2RoMmBDkxJC7xU7ZZ8ZR5ogUwjKDIwACUnZYfVK+8rdMQtMPka9qi9OA/OcE44dE74MjZmw5FQSs/i6wuiRPqGCz/klMTinXrN0I6IyUh/eO8YphGvQyKe7phL6e/JQ6v4hKMbRHwmK3zS0MxPSzTDdzI2dgRoEI2fMt3PNvYqzORugOOrCMov7zADXmdePrXxvOYKE0/0PZnTSrcxdnXQN4VcHmXpxpT2eah7B6BB8h7wvCG67Mu/B2CTKRBtQk7ENaoPQKXyaWVSMmWx3bQJLUHvwQG11sHi1CQtwODOVy0cmsHOs8OfDttsQjvHosFJPRE5UIKYRAOZB41afVTxMRpet9s1Zo9aqpvmLcfT9amXJ8WrzXsDKMNmXkGAQMP35DiZNnoH3iOm+uspRWqF+Oocem/OEyKDkDpFFxwCiKk/LWwMxvCXvp+K4Zgjdppo23mE9A0hzF7lAnAgx1zPZOIeX8zkfF90+8Q+8Gwwjp/F2SehzGHBgN50IvTlnlLLsrzMcqjylyUakNvaBBs5K/ngdIHDun3SqpHGhuoqcppLPgMyGdxsWXG7brXkIb7O22FCOccPpG34cgAnwxCW1zDc+E0hIZX+/O3/82qkBuwmPyZ8Y151a7xnvLazTG7CTiuxqiCl9It/m8Ie68QUTPm+OH3slTD786FWFT73ET/uPeI/xN1bGJV5HFaP2Aw+7rmphWahE1/0UDFUKyVz7YjBlvq5kOyUR6zhCpfRcV6WLVvldeuFGbJ5iZtIOQdhXtCkrG6bia1Ffm1JFu9Wi1qVsRpHDUmN/T9tWS0kVdpVkhdktrE81baDgR6BMk9hkVnohI9qZ2NOMBUhHzFbfmKfUw/uLREiCtF5qNm5T3h0Hlb3RRh3fFZEYYL+54WXaJhqFsvovH3dYkkXEsa+oMTns8QeqD9657xJB1SJjKg3xQHM9F5rsbUOmM4i1QIgawo6OAAFQ2pJ1C8jqOrggDdkSlBi/l23u0aurhw4yBYrACbAqg3+ZSn1QGWemKrqdhFvUwk5JLjMG4xoo+RNdIo7b5aaA2J65k1aK5TI3AASo2khohkGupshFC8e8FdUv2gKuUFOw7dm15tAO/gKg/AmHDB/E2JG4d8nJ7jT2EK2F8NAHN7aSkeceSajCGF6x0NxogRqitmAf9P4rB+22sDrtRzlqhXHW2zn6aY5XmcDhkSqQeyXQ491e879Cgm9WCoQxdSwYUzO6HEGWj0fAp5QGI1MEttrxRLPbH/Q5fE7sZmD8XwpE+k7b5wPlozLTDCQTcqoIqn+njDFCloV73XZorSzPvUFnjeNjnCXxt2oT0OZjwxubGYsZfdHphuc07xHyh5xR4Q0Shncac0UztvQkZWetCgfvoYpKaHOIpeiZM7GSdZKWBM80urXBeWUkfHyoZ2YENEqa8LE6h0QcobjRjYSe354Q49XHOkSDWfdlRBhAJgrOAQiNdfMqWYxt1NyAxG1ryroqytsnEt+/UJDQ1XJ3G7QmOj8eJNmBL/gWqcGhP0klVxeap9rt7LaeZKJ2mytxkcCIo4SrN+V8VLJRWmtItR400kd/xjhP3WoYb+W5Ylh/5wbEvEJJZ6lEVRz96m7E0GhpBdygITxatWhrR+8ltI4djDSlRb3HdOFj683ifF/0RXOD4SP2nO3XXScvS2rXHGHkRMSy9z9SGCh/K6aCGBZaXIwEXhtUX0s7hSqOuNDeMSiagKbZqljbhJdZRcjbYLWOJwaC2dejPrJ0XZ0jFo5vwj8Sa5U28xVVWGHRjip6WkD8CXr1KsovnsZIk5XZ9ezk4P7EfUm3xQTiVQ6nu5fzsiIy1RJKKG9oTEVrVZjULXbG/18KeEV3MfoqsDEvw67Pi+AFfGhZbKY53QcQLDzozxelTAXzkIzNprBjAK2CwSEzsDoRXy3VH/hsL3nbgOaXWaAjZ6TY/rwdtdDZFgEoBjB1zH5Wj1jwJLuKE7X4R0qyEuo4tLIUY/iAamBzW6UYK8P8lKkCO2oYduqtvNk+AYcrixjwhuADf9jWspZUvjZI/hywqONrLH2zFciBMUgnz3p64kMUuzIXPnXUbN6Wik0CODziS6GvGCkhkFNv1cc2/1eZMmKI1bm5kdiTdsIvPzi570V0y2nbl3YHBRLiASyWilkhPwm9LUvde3DtxGqFD8ZYzymLACtaBinOyqLjbOMty2iLPpxda+GifG2NYGQ314dKcqz567abUmVBBZk/OoUcs6uFoE3ZYqGrkxmL6FAIHf3Hy9lWJyinVkHOWMwjTVQoDYmZvlsi7ILFm6B8QNF4JxuOizmch4GaaPjxgB4MvKzexBOfjO+MivMzLo/oitqfcZLgpTQsKjbqzBKEGiL6tiSSz+Vvbx7+QVpuJu/ohQg+VuGkhq2BMO5P3x7opLjr44hWHEWZcydHpyZfC8k/uQj/OM+b0qho9r2t22zOETiq3hki0dgBQFUiucy5e254wb4/3bl8D7kZApwPrrQIy0HQtPNelQP4l3cGQh/wa8jXC5WZC1ntlPaDc2W8S5XC9CahZaH8U7vhOU/d4cnf+84417L15YNDtmXINoEN4a9vuIg0mUYHH+mESLyftuEX6ooDx5DNwAnITvX/8Rl9cWiRTjwWxbRnBgKhhAF0jm9I5WRP+y7e4Oz22M67CCv6uDstRS6j2Dz8ztjPvmi1LlPPU5ul3tgxiaBRoq58enKJ4ds9II3pIjUSsV7ijD9Z8ibQNp99MGZq5z1hynTETGWl1M3p+rl+CrrWtjyZc6fQUuwvsBJsEcn4amqPcNUbXqFRxJqoige8jnJhNjEEMtqel9X1kSXXxVbvIvqvcTNtEop+/DwwqI16yeeNPFXrpP0lHsg+91p/S+DDH3nE0RLIzYDoJjNg1vfqqr2IjKoJp4iLc8Rv0bAx5aAlH+IyhjKcQWr0nE83HcCRd87kxQ101tuk4dHzH4s6KYSre3QMVJHVDHa2K7TxDgFq3jsn3SO5G4AIX/tRqKNiSbtF8I6qIiq7T2Khuyion/wHoCwhn9ZsBeiadTnCrxWTNVtTiS8LFCLBwa11QfqnSBPDk1pk7+7ZRX2AAy2f7kZ/heIb9tDtRN11wGH8a9wm1PbyHfz/FxMaJ3BFjYUfZ4TAQF8FNZWzddgecxT+bgW0ZCsxytzyVKZfUbdkxOH6j6VFoOj1pgPzFDGhxeFXkpR4av5pbQg4YOdqDLILGF9AuG8srg73cBYpLSiNQlyhs8jWVl0wFgvw1xLM6IRugWWIoOcKVTHB/YK+1ai7HqI3j06ngyCUfM62xlSbUiG0PZU4EAprySewlE2287fqdprVGgZP3WrJXf8BVMwOMKkGDinmVo6uEH6zpwwmDP694mJrYEyLaWKDWS1dJazEjXjF5+bPl6CPuwsacRvzB2bLklLUN5pdRbW6c/mJ1Qnn1iNw0KT2rZ57vBryY90NQAMrTOYQ0nwQtBDu5bEwoGptMVxbKzvb4UK+lzYV7Do0sAlDUHpUb5sY0+NKMqFtf6juf4Eaa147qiNlrUeT5WWF/7tIBBFXxY/a90Hh5KZ2clJfa44o88OLlaS5PFrkSUm9MGV548tt9BZgfBl4oR8B+HvXJ+qoSFp6TNYj5M+WuqmM3z1eZAwtdsdp9HrymUQJ3SxFH/twIHg9bwc/NVMpoy1Q5yosuVR1nzxqTkIuw56kD0I/hjXlPKFK51yuhbbcXDhojOAmWz/SXWhfrHZIBa2M1QsOkuOtZWkTci8R+u8fkUWjj3HDAT0pi2BbPcNwBq8yQLB9+GhhE4JCbt+8hs45vl6hPTd/eTJBlIpbtabz75hnXZ0k/rORusJ+4ZTJMRzk+uv1jmaoUcMNZ9aCTeXGjhIVh60dU9lFe+9f7sEJt7cKy6+KEOODxSj6EBfD2zbaa1EIqBY/UwJYW1hbWav7PCQItYOhNg/CRrFzlQk68kF+8SE8MZQBAEuGf42Uk0JKzhxTuUHeIBvzsSbgngT4MKDnTTAZeXftljt3d2xpl7zuEPJ+O2yKHEf2uOMaBwH3ncIsXiJeo0bxqU4+D98tGj1S1L/9IkU7fZxs/RnzrXOHknjK9CuI454A4F4NgH/HQEMB5IG/4eRgUb2PvHbupLBRSZqieSHtTIDUFp3cM7x79NMRysCoymjEPdq+5tNwcgspoyTBeMrCZNcQmgAUcxZF9HtosDDob0SjmbjUjRs+CGi3ZkwuFNbqO2h/1CN5/dmf/SUdVHq7Ry1P7CiK48+mOzn3jdEY3SfEEjvzo9+4cQ/Z3OmB9JQSZnVTkC59wkHVeEkZloiBpig+R2F5v2FKpASCN0hPoa/vUCZxjZhcC5z9l7IX8hk5AXz8INjJfln2eMke7iTKSBO2yO+WAdub4ob34FpUBlKIGcZVl0pJ4/k0trGr+1DQqeGp82UkiAbItp50nbJlYCZI7u9CbqPs+dKg7A1qjWRYm6JEyGdjZGkyJlA30V6FB5MO8bCDz24A+ZRlcG0/YGcafoEWHVX5ilLh1dYRdnGko1GX+XufkDXkEcJsBTp3UJKRuq6BKhjazHLpYItE1+hOwRTqPLBtc/eIgCIGYIwldxhL8CsMomSKn1RIXtE0MHCnYLM5APIp98Simo7eX5E6K3Amo0VRq672OobwlqikYwIY10QuFIZSPbKa9zEcQenuPkQsTHHyGxQZSTAybOST8sHMS5k54a87lz1gmsyfvyOMm2rxR8eird1p9DmZW5InZMGP7GGnDwXUamtQdZrtpYBGgKj+iDSvpkicbABummqEY2i0eqiCP1nIPDASvAFPtb43Z6Ml5myM527mwX9CKAJJmGHQc+Qnj+tPEbwTGPxMhIAeYtAspMNgqUyrBqEscd+gyLVm/MGAFOQ1urpb8wJNjUtJElR001+reNK1Q1LVvZ8xrHW3CT0xCR5B5H+uxB67o3+opJ+5NFecTq5QUWvbFV8AHuZov8Uv5+yo9K2KO8a/1uQ5bgvUCusGd0vjjk0xFZYuxkocIF3onRPWFVibLC2twVoFXbBnXmJFprMG5eeLGGpJS1pX11Z8+efP7SWiGL1SXmi4RvLzILrAR9+at564XgRnve5GvcG6p9rOKUQGdi7Plde1QMGdCp5P4fNipZ+dWzxGzqht9yo7Zn0EI9vt1kWp8FDrds+9GS/M0SK9VvtOe9APSb84iLYGhoeTncGgTHH/FxyaMl4Tuajr8QcY8rvazecw9TfPiT92SHu3FDb6WL1ks23hST4fF5za3iZOZYrEIWJXLBPfGQ48pvjSEGIJSiGvUljXHUGDxoZozEV0ijIl8jJtDnO2Satlrs878RYxUS5aCBwgqWSIwSrdBjpWtMZSzZXiDx18Rq+maS+VK0gIFmrr+04sGWfIfdZisql52KOi0RZ7YGxcr1VujgGqRzHpWK77M+kyawyI8Smw3QdSu60TklkYFNx4nKxcoBwGLcNEkCSOcbHbZ/MuNrJd05KrZB3KVip6QX4bqAAZdlbL6We7d8ymUUI1wUyfSnfzhjyOPtojvPHmbL7obuvqEGj2bD9KfCaZjpF5vJE//nd0jYw/anBcGA/geX8jSIC66AOX6Of5Mc7zIvc36+K+xXSSl0CLflIff0ZQv7dfnCMDcC0AflcrKmVsXQZKEdfiNxNejMxv6KhmbrUoWQTJNXwCMGi+f4dSPAYDSliEi6da4gfo/KxW4t4LLYwFvtegW369loK8tbKHpNZtStlrMc4amsvULlXgprDaY9jy2Y7TaFyAv7bT7RDq/h6EEqpMbL8GPVivGMXWaDQpMLXThwKWB3otio235f1CcbGHU/ewXU55MCx9EyjG7R5V82PNfDGZdVGxnlIZNH4fsuUlsNygMmv0nzJg2kvmGUKub5cnnOjSIB5aymEl4eJf9BWEMoWUWBOsnXovCLNESyzGgP47bKqB43uNbn9JEnjXS92TgFFwT1pPN3FFG4eEGXsLoGvAO1fdZzmWFe3G4sk/bfnAMpZJ4hp7YByToPE9YO1sUUWTGuLLugtSzYJZvUUsd67+N4QNXtxL++gH9DVXGfl5DyR+oYEjqhmHp2AVjegvRiWVxhnOCQfT+Dm74DQnWNG7ANE+hplbkwrJROKc5CDrO+pRG1sdFp7AJMXtQhjxIflE+b2fch9gBUnYJVRlaCFsbdHzf4K/Vti3oSaQzf5WKSQFztqM2A0hPdBDHq3GslTUBgQx1NYtkRzUdP8jqJWeHe6locUw5yfOnccESAGoKpTAqiUOz08oUQ5YOeN6ji77x61XGYyK48hbOiGyHke2RaAWvCn2QyFOG5G4JLWB+XXb0BiWSkvhOpmwYOZQESlPxc9vFeywPXYX6rE6cnlqso7XkNVYiRDXQX6+WuY6NHbfsh9Y9yVUvdYJzZfq8Cw9Aqm4WURbsfo29ZxjKccIe/fLdFdDpTB0croRkdjaNFt3po5wt6He8NNPXW73AAwlql1sYpouq39sdGMl/LHD1wQ6YkehTpmn8OCxaBKCEqK6/NZpbVtuoBOyXVpX3C/iQQqqeqNPugKy1gTKPmN5y/f4Wg01ejfImueDMgJvQPv/8Yb/HNpSnK0kNPSuYukheoyWbDd0hYKjbIn4jBZY0w6HPZ7iieyoFMLhGGEw9C52/A4ixSDP8HS48vM5Ays3ia02EjuulLea9nMiGYSeRxMNsbo3CXUw3+5m/eveVoO7zlzSUvA3+e7jmp7Iv75PqqSYIuGG4944Mdyj359c0UnE54IcdMCKY2xTv+8OjYzL3SjRBZbPukeISpon/Pq1uMCrSwYH7iVKtKn3y+JiwKRs7422Y0BS6O2ov9DPkWuW2SgFZT5HWNgqob98nHykJMPCfUJdON7FJnZINDgttz4nGA6fz4ccD15eZVUxQDngFGNH7mFuZzke/Z9AJ2CgSaVhpI1Un/FVVkPgoFPbszx4XKddxKPi6bzSvEkW60WLP5Ot0+xXYWzF0i8X8g88BXJcC7CTLn1QjAw1PrPX5hO8UTwwxXjxBBHadpd8G6ZtvXriuENYwLTiykOkFo0sObKunW5iRdyGmH69Pecr5SlyzmrP5gFaXH2cB/eci8d0QU2Rez8XMWElHrJM7Wd2l+GHkXC6Eg+74o2SyQz8Ksr8TUVYBZbLqcTU7N62tJthU3yRFO3F5uVQMfXTOeuAFGNmsSPG4XE4Gk5Tqo3CAusD3KUDftLSK+0yxyaWgvuepqhvLWAGfVGKALEDZyDYPKiGNV71iipQ5GI+EQTPr1jV4PqRL7bYkQqTfh9CTe51w5MRMKE7wadI0fNygXKDPTM9BxLNr4s6kzfhBvwM9dzIdsrBDs6Y57DFOOGCII0dgtWZtRXKHCZc3FzRGgMpteuCbXtX8PnOULJlP9mp4til8w5G7nGddiorSUeCVI43wBWMlnH1Bf4vB5ITaUNz3BOQowcGn7objMDi1NxvjFT845URhpkQ9cUPmFq19Xp8BXEiFbFbiLdjFEx8EZC9UIY0J3ubq9BPHZBsMylnmOheVHDxPp8WR6kv+hm/DFel7vVpHJQKCpRom0943T32P6ilmi67nmgGx6a0vJ8HeDuWwwbP9Lh7iICBUMtDaSfwOXPZVsNDAUEkG3vWgUVUQ3dLzfqKyXyJo7tUi74ASW9tFts0LA9VxcU3/aeQGeZ6h2JLA7iLROxijDX4kY0iudXXVUxheoZFquydMNfbcMxLbK/AKa8xhEkJaWt3c+PrkxCNhDell3kDuj1M7mp/ge/iFUqjp7CSblLw3o6RX+hJIoaed5go7btpclgv3TZjCwWzJs5REQuyLfmNLdLgOMCtnMYwVAMAnarwGluGcHdrpY5wEtsTP7MsnX0t3Q27OU+Uk9wt/EkmdJrmE/tpNKz6GFkwvidak6nRj2UhTuONRXcEN4YrZVSCANr+l62EqRR96Bad0hC8uyPfRusr4u1SSyOL3v+G3AIM+qFXWaZhQDv7jo00MBGVtpgmmBgyrw5c4we6tFR0NMexW0l8GyyLif0bY3iUpti5wd7wBJGTxSXgnkV4p/lzFH6Lc9tiY3clF7dKM4prV1AmSi7PIgMtfbc12rr70Lch6a6AtBHDMQJsP/O3ZqbDDPdq+WCOsdOk030nIYzQ2ifAssyqabOFRA7NZJ8Th1cbOVnQ8T7QLOoul4EoIKzq52+OoD/Uu7qGNjyQXPLW4+66XYWJWbYFNbq57kihO1yowAroCIssEZJ3FN3ok4BKsWTAE2kSNmrRlf0clGI2LWhKFVM41LIK786aH+ft4N6AQt6JF6lA3CqucaGUl258iUHNRX0FD1TyS++x6kXGzM1RIuJgfm94PuZzVfqTqupTFDX+u/vrFpsJk0L2MRvpKqSHp3pHR5LDYYfLOzQuTHbWrrERTySgqWkBXXeiqkhWv5QfIPsNvG0Nqv4PcDddBhGrubn9vxYLAHVZw0Ll74mzWH9ZZX6W+ZEpfvXRc5xvFwOzmQc5ciu8/vPlOyD263aiRmunVgV4MVq5nMhvFpnS8HKfgOkrtDRbnO3b0J/aeBBWaSGhVZjYB+vdi+6dHHfmUKKQI+UauCc752p8woecBaL0iuuzVDFAw54xoyRyIecCsWO7sKtswY19C5tivB5m2Lq8x7a9fkb2Fw6Dr/v/KRftB3+WVwSxHeoJ14zsmQ9vajHVt30ifWJqtyfSXoJLpcrVz90byQx5GV5EpQfhg4j8o5r9hZGu/IXl7/zfX6c5/DxK9xArCpjj1aLcYZMlVgdvfHDGVLkXe0BxtLJUIp729RcLnKX5dox+nlL7OMEY53b7y68nDxXEBa4P+7T/wH9d2kwoIizY1LQjAt2jg0eaQZnltJ2Z0hWtzJ2Zmu6VNkOTL9RVqEcQMHzu/DYMAZOc5Ha7Q3g0Gp4oHdvD/vIdLbIfFKAoHOiyVrqWAAFhjZgxADZqyjvl+G5VPqhN7ONKVnRmuRxoy7Xw2IY5eJuq0aJ26ezogGRdCBxRpWGIrrHIjajD2KIgVVJS8Othx+k5EWc4dqLfw+s+pmeU9Qo5f3KZ19Hy90CRtMFxR4I1Z+excBCinNA4Rq3GyIOKU1vuvoU6ZY/aarPgBpKI/w69xVHgrHcb2KSpJxioxOhLcT5m4RQd40kYG8sNITnpQgA96195PKy+LRuH+BZedDgV20dRqRtaNe4CsmQbq2SyZY6kaLkCYNqPPgVln3X5ZoJTxGvHJo4uS324ulR2xCDRNSTiNClD/4pNG2IXMR0lbkyAt0dpNC0LvjmkQ3k7z5fnrx+fM3FhyeU7gTvkq7frv1+fNDc0d1AelwDMHy3BPLjS2RtnTPFgiH/flHvpaPHJf0GqtBdCC3sODKscguNZ5tX062bnJ3tDmM0t3HBCV6LLQ0PCL1TZevchd8lgovqdB71CbuBut9emysUFjDUef7ExAwqwMEr1ZdagPUNv3janO455KlSMptOC2UwJaWZwbjx1Fq5hrUzwo9AzPlkj7/gIafnqehlYOI1OYKkJvLya9uPI/XKB3GfmGYygSw2pefXP04z/+3GtOYeUqzuQoobMXlt/b3aH2Q1EjFqlZTYlDkE9deEvMpWwXJeQ/mhUmhfAoKCsY4NqJZZVE+Kx8+x14yVDM8Zfl650Q4D8/tMxEjpm9i50mDRe8HhoCHFrk6CVjgJfTJ7+opRxPp9P8/yiX38WwjewBq0EhCPem7IyOCR5WBAJajpA11be7IJYbKr4rMe128dGM+FLn/H3SAl5h00ROcNabkcSC6q2E21+++OvoSxCZFrO4fZNPAUMxBJswBpFTUD2QDEe19foSBY/okdCSAKZAx14oamDGU93/lDWRELGuRQlZ8xP8TCenH25+O+tHZFwQYImv2wU95RRGgHoNfti9MRmEu6Mp+p4VKs41B9YnbGxTHgjKkWZBm+aYtDWTLQqCDaz91HNcVQeGlwyzxbPW8jyqjuasR0vvaQQDJsXv6gNOYNRyerla8ZKpaURJGM1WzMTrlyrhR5W929pHB0zNwuXbCfkIYtXxBrxKrMs03/wth+puqrMTuelP+QRStU2NJiZqyEa0lGOcpkNGR+Cdd+l1JEr3cYLCn9U5a6qfNjs47vzEdeP89U3i+3+6QgoOJnh/MPyQgc6BMXOuiugSbVap5cQP65csGfNVvHCQfyYfrM+osgJ0k+gCweV90XKTROFLxiWbA89sSDdlO01Zei4i1uDpEkxg1OPQfQetTgFfQygjJHhnzIX3HHqzetqrMkvY/DFovbrhfpaRhrDjGHJQiLhdiJVJwNkdJBC1bnJZnaCFuuYIVIgCUUHbJP1TgXvDzDVnVfqeWLru9FaU/dQuSboiE4/DV01GNtp62AgFzJYx6eRvAdJ6kg+LYfSntvVUSAd13ie1VN0clRuWAyXucn3ZFdi1YOGS1RknNE8GaXiTkLKSoTyaNuZ3vXayp94dVD2xFwn4NTO/p55BYWmiQsIe3iNt85nFM5xums2HjKXT1ypw5kEU1YT//7veeDwCgIXBqt+Tm11RNSuwYOLI+b5w5HEO7OKYtN7wlzxUuzctDtgpLO2bLLQLpA/hyVUMRQGta7KcOeSaQHrd9YDGQpfawKN3IJejL+WmX8TxVS7Q5ny3UAPtZq8Blxk+Ml+D/+jRIjaVh/mbPq3hQmF6W94BVc4UyFHWfMM8XtXFxL813CpoqZuIlxCKGvjgT1wX9b+TdkrCQOLXZOvTIls+w31Ui9JmnT9aoteN8OpwLGB1i/0Zu9sYVP4g3I3JkdqnqHZs1pHhXjaUs8xaqtI9ZJ7oGDmZpf1bwYuFeX7D6oek2rKwOqhU+oJGWQuVOO4gkpjle/t9y17aYT9g+/737pLPGikD6pwWC+RndF26QKW6oGzy6BPiOcSCCy4iVU81ztGtVZ1oZVOBj65Nkygs68Q7xrEyTMB7/hhWI0alOrnecvHVUStA1u83/KDaKsOR6rKD5ckGUSW4aSgCsNVvFTj1SvFWhXNVHPOp/kw3Z0KorkhFkxpstQC97zpWqCYu7UOzOwoLZV3hCYxOPqQAuqtGW2PR0dG+4WtU5Z2Qlt4WypLV9kV5x0s3wwIZ9l6ri8CWOuOK0oJ/s9tkbLiLgsb+BkimEGBvGaBDcQFzLeUAwlj9BBlNy/amX6f5jIlaXoMgtciaUeaGx/Z+RPCr5e/8CRk9he5TnT5u2P+6zZK7oPsqiIfm/0yi8+WXyUPczHf6v7oQ7j/9mpSAknD/HI3nc3dvh47+qQAdJMweoZdKkBiu2HSP5BV0l+/zPlDNjMvgUVY+4xwZMw6Ys8FFY5YJ8tz9plzZGblMqAsua5d49+LWg/PPXOcxJZ/7cf7oXiUYnBtHFrl/TBc4xb0ySRQX0zevyW4j8bGDLqr8FatFZxHQ8xWTvjngOmLiUHpgrOYEoMbc67QaFqJk36JNdN5/iX/B2tr2x1p1Nc325RcheH3o/dnwTfSEcBf1tWjLmzNcAZPixrmPgtxmAfeL/xipETNGpUVorZJgQM/ZVM0bqCMFhtAfTSsQl9E/JK0MZIGo/PlErJf8iL4g1+YpKCRdCEBL3PhFYBUA/MWUW2yZFBo0iTzYqiTDq8OaJvSp0DMiXdw+mr9vbLgpfNqMFAL090cHIpKCzTFnXUHAJizmOi38naLiUzmHJ8VCCTG1zGrlGDRyKGpSsf7quly4IDr7Exa96B5yDX+9sTOsXly/vqihTUlIJgBnQeirbvWnLDHVNB6IIRHx+LIVnIz+GA8j0b53AsTaf6/EZIvxFNRgiy/dY0karNnmeLhf5Cr44Auz98G+G5Nt2oFpU1SuktDSvNq7s1Gf9S596A+Vow0I1IXyeFWpZAG8LSSmwMJEiHMxixaJlz1SJfxGIQM27J6AcoKrsQRvdFm9fjys5o75NOeXG0ph7cy0EUvqP4TLAm1Lw+X0HWvvFE1jK+bO8L9vJawXnB16tqdRR4suSH+HYv6jPsNg6NEFD3VS65SjPLI5EwryKOlVspvSVkp19o3boo1Yhu9Vus2K4o8F+KeMl014vXBB9Yvni3DrqsTg8VyfC9oJWBWCKf5wYA4+vPPRqMAaJ6QdenqXp39yXDq8x7yaOBUW51XssPmt5Igsurk+ASstKmAX3O1+mmqDUKJIc4iJtwRt3x8k6vs/2zkO+DADtuBqGJG0fHj0n3JjNzGg195m5Q9990UpXCCrnbl+6ElRqsBuSJfjESv6S+bKBExGwziMep3pQ3sL66LdpmtVb5IGflskO4T/T8OB9WT4yPBGPmeMAqdaIEA2uN0hSU+FgC0XOFW2FK60H4waZ5cQK9+LczBo8KV46zZa2+nTkBM82OODvRSDmt47qsBsMkRRcRYeZKYxzAU9oeXT2ZAPyf9sKsgP5WOIzjL1Vmk28G8C9dDJJXFoasTOt1Lx1x6yWBydcot7T8uurh5GM/J1lzKv9xAAFkGsH9YELZ9UL4Hzv7p2pfSaqW6Wx9jVfJyRulDJaqrAe3odhFa9ORau+sbiPO3K+mi69++rlXKuDmWTSUl3vIiE7Am1TPI02ITgwCX/RZZxYwHhF3a4gFp0/pwjvWwnMnaHskNo0GvnqJwZ7LqB3rRkV4CjTafDfcfWbk1PVc7mRmbwEcXs+w4HANOvnPvwgeDtzwdALM+ULdbCrbFYIUD+X4Aud29RQu6QCmffAydjeIbp9141MsgUahCzmdd3drnTMgDXzoB/31MCLGDa2hMF8Y+WkZ2fiUILEu+GlJtLKn33zKsXmRzOAnZBIwsla9xipRr1dFyaeV8MmFsPmxAFWvgWl+tis6iIDOngo9Ca1vurrT2nYe3PXlV8c1XlpOuhISszSbA6fAzB1rqlsD1PQH7zF3SwrBsz2gj0OaGV0MrW2l+xZvVDLyhXStbJbsKZCxoiV8Uam8E8BesBmggA6oy588+WvN26bf9meQZT0fxv4udrR6ZoByd8q4eQqzTR8yyRnEWnB4dvePSfL1+28zLMGNGy3DZtWhfdRxONQXLD8XtJvbXCDl0IP+ltwRNzTdGjT5H4iRvDV+sfBg4+EZDBpNnAFb67XE0LfP0B+r4EWPE6ArJhiX49heCinLyy1yERbXvfKI5yQCz3vDoipHeCnqgG53GIFHRI4FHcplhnkzOdJDVlTr6kYYygt/Jdf8J4jXdU9uWKCi+HVpdlqIJiwnuhcd9be3sDt+OD4lhZeS50bd6atb4tbKDsYHpHPVOMggrbk45Gt9Sxo6cNuzyjeZoxu/Ir2SZHzv65ZvNvIvoVum8FbUPhquDi7iJaoRymURmKMwehxibgaj+wK8LP6zGutmjy4xEuhweazoGfJEgcn/DJwv/JMNH4llQvFh2DnqKS2BBLEBwFQPpzEakEPgl6mayFDdcE7WBwpzURXpV5FMdlPSB/jcVgNu1lUb13Tjv6s1JJ8s/fo/yMynzYWs6sI9YgqgQzJmXHieTGhpVG0R9xNhvnwUScteDHxZHGqgRMfkc8oubeCJC8+/TDXb/GdRB+V+SJNxoUFX6zL00kDlx5B5SZFZ88F7ME8gHY4TfHgGZ7YDjBvUooP5qNJyunbsE985i8lBEXQRvhXRGFqZLAUdD3qPueQZP61XBLBSZpSRKpI2poRwI/556SN/3SgcWclL4BGWnBgaCbF8slc10BRtMvE/btgWbIFYTP9YRCtQcKt1t1FQ4Rj5kmrwrhm8qC6Jyx4fEw5EbBaZE4lsi2Za7x4d5HnWJxQfaUFHphR+UQD9fo7XcO/VBSOzC0exGUlRRov0d9Hs4Pkrd0miJtubYawIMyrwstTBrW4oXNqycJh4Cxal4XqzTUQKVat0Izcg0bQKsufUawweNrkq2vCJFWgFpyNJBogj9cM5um3Vk1whEGa4BtPXMwq+hq0V6ADfZjh+ORRTEs7/DP67TNEOp4E1FVS3KTlSRMfqayj6kAI9mi+83dddSwAUUZboYDD7HKSZKff9SF7G9fiFaNJLaS45rry8C0w00SlcJRnzlotzEdJn1+Cxh2OwtFApNC1HR4XdW+dQ1HEH2+M/CIK8wWMhgxsEl+dE0Sf+nw5m5C00L06CM65w3xgLlz8A6a91FGiw0bbf5x1XY2PalGBejMN9r/xRRqnKa5yB16C/UoEi6X2O8/9S+JAFo/aaNo8dBAjpl4qrZ64BDaylyFuAxn3Pyu7IIOs9S8CY7c5ThNRPA+y7S8Y96cgvnhuVCFxcfoak3+K/XY5yiGUngSCfwWNxci88k0YUH9peZpB6Zjujwz/TqNJ2ml5jAifIbiMSLFTOstczoxJwa7/KQf2UUi+ynWDB2lq/N460510N8jj9aJA0Sq0NQ/OFgMZN5Xh0ZRKX+JlIOLdP2FuzIfRaazuJ2dHL6oK10PuUREeSzV2S0GLKSovQ4PolT0OaTos2uKw+fS3ugt9UoRfHVPP+miCcz9YMPp5k3DDWaLMQlPedO130ggYYW6O0+5wHz/qhaa4/oi2+DW97qqtzz9ptwtW3tcGCnWOxGHCBTfjchtN8Xprsph/HEG3DAhIHecmn/daL9r9fkxgMlUBS/QP/f/9pMD49qXcKoCLqN/r64ActsCwCWyytyNoYCzdQH8r4ywCI8xjrOg5VY8mBnK66EOfxc7/QPvusbyVxqdrOAZu5idA3aF5Q04rb4AT1s+4LeIJo4393kfSETC0yHv0HnuG0UH9FBwyc7N3bFweOuwUgS3C33eS+VPZz8KXkkhK2xMlWQenlkW31sGJT5G9ldFJPpPDXbF+NQ9WyKNcKqU+1OYkcm9CHQrcIFIExmcqMxotwArJO+Nj2KVjwaNoHI5qPV6yz578ue2zPrhvzlUJnXTvyPo48MBWmqzfqmQc2Gaj4/0bRKj5Jp/9+ft87K/Cm5ogMHt3bIxku7Zp9lkqrLXWn+BdGJAXEmeORfK9lXXAI0SJXD1Kq6Vpbar5o9OOgrQBwt801TBeVTymq7cZNLJSQICcE5Y9CbL/+nlGp8JcEE7PeD3eLV/90PBkJZhf5wEcI9cpzHfkI4Y7Bo8wYajdZmizkOiAHbg+8sph6U5wTzVe5rlyFBv58+7OCzJog9d2QfhpBp4j8jo0CnefCHEYZMn7eUU5HNmWqYSBCzrXmm69CyNyNep4NSui/C+njhG2axLNzmA402ReWo/VKl8vHuadhmN5gyvU4PbZyU/WL/bLiHQVsmLstkhC/pjStACEDIIoTijTd2Bc7Ej1p+mHMIKkombk7rVqTd/l1CaHCBH6fC7+YGvZlRyJKHU6mBmiH+10qRCE4cpE5Q2vhORlMp7QTE8Zzu9Sez6Y5oM2jrwir/pdh8ZPN/NTNkTJJyuUmbrX0rYKsxuR/deRHCpHNS+gqpnC57yrRDR/x+KF02BvM9XLx5qfh+a1JXK6eTdIJag7dKs1jX3Hn3NlhFZszSxRzkesJujzDlaJxjQ07jbAv55Md+7K86Om7+Tgeh4VicTYUB1BXbBeSPOYxR6LzGUbp1DDd1eqYNErmvXg7HoTN6e/bOdqPR0JHuRPLLev5TwkZ/YMAkQ0h0KajtitpH+X3iU53zDOF2xoUQFGA2IpbjN+xp3Wb15KO7F3VaIIyhSNvSCr7QrI4zy9h3VaxuAf6CPCV7Wr9X2c3X9+M1cttq8QJLmW3Bp1hqkmNTSpPf8FwqokNFjuXQyWnjyEBAC+sCtsnl97VkHW52h9783u/ioRMLwCRHD8bBxQb+etKl7qB0mg1huOWGZsvJkCY0+y7BJs3ci42U88DHUtzTJ6ZSh7jzoDYNsrcAPqUSs279+nwlG+iUD/BBcTC27+ARZ04jFSQbQ3oV2fmQSkJiZ9JkeQ4j8i2oqfq9Ggp5aiKe7/8GBdhfsGZayIzPx7VHFDdaRvaH4tEkGpqhoJrpx3IcFIN0u2AaBYACB7j6R5CBtvPQc9VkIAAruIykVRKS9EMVNakEI8IGjKbaiI2Fc7ql7tR38g0QAnwfyQ0dTTrOOezWmQG2IPhWSWmiHIIi7b7OHMXXkMJ2UNG1lQwjVOolveHxcktOaSTgm3LWvFcuCNCL3SfjgrYOPdld50mlzbm2xihy3aYf0JYfQgJErn1QU5JghhOuNekKb93pHgwlJe2lsRy+wqHNkMwsptQnNvXXZCZZEaGCEj1UTbRtEW5r00CjZP/VNGwWV+fHOTArDbqk9xQPbgyV7P8ykbL3XVc1bJEKGwlQRxD2SrGeTI8WG4vvAE74+U1SY47/l/CCABjXMv7CRO+aodqjYhZUkndkRl4kjnMPbgB1Nt0zRI6Fjjmdz4Ay2q8w3HBUL7TnhaqwOHZjqfC7Vslj6W171yHTXAQAU1FjqpSEgZX2EbvxpVkzEHHlyJN/StHIHfB7nLOQf9yg+aieUfI5JWLDYY2Xdd5Q3fSvzJ6Ezy4tKx5FdGmqfuRmHuF6tn2eoHRLGbkgeSo5Oausdm21RcoHg4OusaDRt7daYKzb1wqB8IitkJI7BqRPU8KhPJC4JwTwUOXzQ5zqN1UcPIIn7IgmchtVtEkBe/Vh1Kx0UGWGFa0QQiTe4cKlX+yrwSL4JWt2SBSxUVxy1SgU8NsbT6h3KiAS1A1i8OigbZNjN5mFh4lYMlq/WM7crGzfSykHLbxUkXcU9rvMIB0iaxtbZvvA4El7X9ToJnmK4iJv2Mgl0iD/45jvkRAnN8f0TtiOWAECZr7xlWC4OxvLL3tMD/BcyJBdhcsaY4rM1X6luaKpFqjQfk23PgDr1CtzyAwYEvqY/04smPCvPoJ14t1BgBlOawR9UgWOBOFyH1hhJ4YxdTC9tK1v23mQt0KwKo43Lt7LEhpGtLgjPqZfZDcVMkAOTulBJ2VrkNykhyPzKqWhVAJBuQUKaLj6it7dbPxWg03H8uesrWCTImKgP8mDgSio6UfBlHJPlR02fmnHTgZLa8zkg1QfXtXT4pV1Kwj9bNK26+YvmdgBbH19rHo4ZGQQpnlnud1OOvRwG9OFLnX0jXKEf3zaB6Cgo9xQegAZRQHs2gSssadiYC5FMUdeIJLVUvo9g4a349P81le+3iMBFzQB0cM4JGSMbeTgEvuJowhw2Iqjxd2QkvCEafI5+lYQnUrSitCWbQDlvrgmj7Q8XF8JmWUMZSYUVWnm8VCQ2bdTDDzUZYaBlb/hODF/sW+vn1CqN8TCAmlov9Xri4SCqS9Ug1tWqbqy/RjcYCiZVKClTIczUZXYApoZNjS56LQmZULqSGDKDMzxB16zI367wi4WCaMQ8COyQy94dOuFqBrsBSlsTW77Ym4GneXiXwOFR1t6C1x7M+cMNCRCJthQUu2lUPWTzzFJBR/aNFe99LOkuED+4/8nz2qfQC86GOIinP1XQeYeZS+GeaQzE3Or2zUEdC5Y/xffx4qaKzJu3nlkKZ+0+DIzy/keAR5vOpAUrszds92Zqi//xD5Nl8nTGSLUdQUIKNWaV/sVMuqBPpwQ78bnkRHCGPZJIMEsTjxKF9dw/ot5cYq57rHvendZaqF/JIg1Jx/Wl8prGRvSgEl4EADFHSgIoIcCFUpGo5CKPaUPLY/zgYMMGAvZ3ZsDiMJ9yayNGduuqOf8ACOUBvokn7DsWPqxbGAF6fVjwqdUt9ErGYOxvRckGUjH4FEc3YGHwKxoK0M40F8NCT15cbPbycNuUjjp7k99lKmMYZ6hKEdsiZwVhsS2w8ZT9JTvwRJ7JeqqgUpwaSU6DzY7Mvsov9uhexOSgDq9MvnlyHxxBO8TgnY5sVdCAsvTQeUPRp+pQ4mLGUaAoZmp/57CiN1kz99zF37DJllH4Z7yJaaCVMQCAoOhnVMK5+aF/TyJcNhdv7xWYdBOVP7HfHD++LwoFq/XXApdqEI2IfoAptECnBePOSs66wXY9tE3oXOZvnLN8a0ery6lxdsFMtIOQeSfgo+28GJnH/P8PY4ng+SETAbZRsmT9rT+tOPMQMjCaBAn9wUlOqgDfutPANL4IDCj8eZMdlJwndR9YACFo1mhObBFyv2kyyr2Iq0EJzEIlm7YZVaoWiQ5N7mcwF/7Gbsn3e0cRNrRdhaAqwHEQq+kLcU5dElZWqTPpjWzRhpk3ycS63wQg00p8k1v1bArxhXVfQ6he2ACyKws1MPBzcesTv1iEWkmCjfTyqKnhXZltH/wBgBJNKzgnHeKXs/+oJXP+jR2KNGEyTx8owzOZbmltBSFb9xVG5qpfmqZvN7kGEw2CE8597Z+gYVurQQq6y5V7WhuanFu4xeNM88ny6pebWd3Llg55N1SqIbHR1Z+vZqEtYjoL8VcrtJ+3wDPt88EVehPqrRtIw6Xa8fILJQe2tMu/Tey8hGkTN6SxZlcMzWjo/diAQTDHDxHxG9zwrXA6HkqpCosXscb3EalNVXbyKwSoyoP6ix7yCnHwTmzuqgjmVix/B+lX9BDcYNoHfFmXNDeMItLhQwtKFUQeZCSiq5WeDpIc2NXlH3a86xSuqPZYmc6JoAV4sv3JAHmiregnuen6l1ddGOYqoM3GvAMzRRDVDkD4G/cFo/cknt8eCXLlBMQtj3N53KwXBJtu844av3La3oCjzCsJIs/KhsL7SgMs9Avadh4LmyMljCDRwgwwtjDSe7Vd32wJFUhjAlHmMyTarNMmFQIpJ2okhsWqlWCc+b/jE4lJ4umVIKz8Yu7n8+GtfQ2wFm4kO07veefFY+Emdbg9pv6QswZDL713yrTonkP2OY2UcJT2cYkuzPSO+ntKKdAooKHhc4NTK9bxfL3g7tzCeRyU9ZR9WhmWUfvVWBH+KRTG/+hsMXmxtq2pSxUZFk+i8h9uI/Ev4sKzYMWvclPHKdmjcuZIXSbxRca97miwzl8OAcHUlcJcPS4XAsvhFK5SjGeyf53QeqzMAfVzqRZqqSZ/8CtiJnncF50tBJbAyXImrDhhSgLv6AXIoHg4WvtOn7za0VtEuy3UNijZEoe7Td+YEqxuO7itownEyvK7+RNC7IVb8/SDzw/9qoflytqbeYPIRGI5uirVX7xNqTRj09Z2wpR3IJky5onaG7zVknsq6LBxYIAIqf/QRsQDoToDgmehdnsRlWgT6/gqSeiEJUuunCa7DO5uaHeD3dQkO6c+dXMwg71+qqYevQU8Y5NfO2jJN3QnbxDjOHEKt2u981SZA2MvtlCrpK0xfrMpyueppUQ6fRgTqqUymJ0oVlNd5f9yr78Dapaim+OcdS7qy37wuf6A0BpP2Pwk9IYXaQT3+7gMAzMeIjFFJ6w3tiXz75q9NEjTLJ/boQ+wK+XOemTtALHM8ABxykFlLe9V4jvKVSvwvNIUpPzIlyvuuvP8g4dRaZbbLIed0BkEXyiSYnCjWkGXnBnd8bwfd1xHgu4rNIUjOb6DAKfIRp2rrnY9y5ritPdyLFwt3+Q4iXMlH7/XIruvloscer8QKRyy+zO9+W5JI61AwP4DaSGXOMpoFeIAjClc0V2t6kldIts+e5LbHToyiqmsWXDexP00QWfcu7qNZ+l9l3wKHK0c49nkeVoEBLt3JgRY2ikXVymGHptU0MVRwrUfo8Rn6Pducf8ecRVeaK61g174jx6Vm/UEktYj3XOUpOnRZuuiAS2FznOG/aykS24GUgs5dhHXWIquMR3x9UJclkZNxJzDf54Psrq+u3JUqCSQ2keCZvnDfQgoh7aWakaj25PeEYu1G1Z/BwYWn7dJandmZXFKAn64bAdJLl6VT80+Wku7x1WKe8B/xKAMKyH4TbrLn8ahLCdUe3JMneaxpBEbp6r3M4oBWWKZvB6VWpOwjErW83CjMCLwJJkwl7geFM5nR/kz5WpiDO16d+YDEOOG39mEc/9tHwAmUb5VlgDdtAlP8Lia+fQYTNcCLMu23T8t11ecfFJT018oZFPYWkXlgVaTzlXCgI/O0Bfyh7jAEN28z3mz7iqAns02jxzDoBgaa+aG8WT+BLnb2zqlZiEeHmel1k25cpA6kQRhVTtuSbcmeLlh/M51dY5tMxRvNBSwnXtBHcr8UBsNCuK1JgJ+mi91DjA1qNfLv+3ZwLHV31ZbLtkv0RM0/IaZ2UI9l8LRMQPn9fj5awD6w5qDmixZnr6oyTjXr8BnwGv+MeZu7lGXg2jCZGUV0y3pFkJdqO6J3INO5Uz4RIN2Na2VAk8QGI/3UPGeH/yqJQL8rM+2ABJb1DnAUTX0f7jsHmfqImt7JQ4ZDa+WfFEo+fva56X3XCGGZ9FG3CZ2NF6Oedko8n/JdaznXufqtyGmykSgQLBAmEbLf7DNFJkTGr9EWuj+/S4JT4z0qAEqP3H0SukdNWBD2oO/07OJb9T0n7Hyc6F3VAzJiVkJF2ri2p06FqXbOCUhQvxLDyrX/r7hnDIDG7w9HOXEuVpG8jmnyXTTSispCMG0NFyfWsloIa+LirbLL0mw15rxnxBOuEUznKcS0ZgzyPq/gpe3zeF/yeuydpMifELmNwodIIf++cYY0gWg1BB8neJYNfp3m8Oz2B8feA5vl6oKN8cCIBQu/9LtUg0qGpvpFDqh6Bw7I+YmZWpKeFYCMslnB4gQNYThqodm48U3nGO44pVrZxKwI6J3aYc7ZnFh4pQ7wuUEkXGzcm8FcD2hlX52NCOtwvBElAKJkP1KEMvZc1+i5E6TFeaywGa9UeyeLg8DZOxd5hxDGHghk2L62UK/z6SmTxkdzgHK0++1DRPu4cunLRyzcYMcVQxDznwGe64H+HIlJ8cFO9ibocZ1CvaYW0EkjcwXd6m9qy6MJMXPu0Oj72tmqJZrCq2y5rykNdUgTlZxhC3vRofv+SslRaJYN7oVNxOGOoMAZzb3NnE16vSEWus0I63ouzPbGO1OUtqbZCqIoPeNgrhcUFSKgl17f2tHNJdmcbqK2SPsq6Rn2KY+gOyHheWthjDEK+yhEBSQ0UFN5DsW6PWiLxr3ck+nfasc8CVld6qdSXW4OSAynFVCUf8bnsnM7DsblIo2FqDoAfNhv4l1maa1kNxtzGb0m4l44STB1mTlOmqpK8k+qF4kKDMo+vVA+fjwFVea7eaQuWcXXmZKcycc9/yJ9hSmcDI642ncC2nfJLIFmLtKPtUzXI1TdtJKteoCBQHtrNF87n/mM9dpgXAo82XFU6wDnZSJHlh5m/ALG7ZDO1Pr1Q+wBAx6jcAGTWB/1rITOh4S2x4iFb9YTjjUVelZuMx+w4OFeBUSJXlH8ZS55nVhTKZdDsL7vFtFPUbbOboCHl7qjh74+haVWQP+kbrIsx0HS1NF673X7WVI4SsP0KfQCr2Vel097o8P0JNtBcIMmYEMgNgtsbiufi4sYH+tujUsYdFK47N92KBhy8DnIkiDrRqFZliIj54zuYkr71jav0nQr3/Ysx2hnS3kxowprY6J/D3dgYNawqE7MTLNbjQLVjhc6br48RkCpNhrboEC2x4e+acxyKgBk3Fbw+tcbnWMuDPscdVeQuQMsf3sqrkGDDUtfXZtMPOJr3FlSzLN1hmGnbt2yEB4cpmSmwRA2rQAXcFW0mOh5MImT7Xkji90xpctKz8QLhjaEkr4Y1xH1eXmE/Z/fVfF49n5HYCMdnxidR5EE6iM3IndybiWFV5Wz2a6trbXIbGrialShdPBQ59sunYyewZD+MZlRdfs3ns4I0IuFA7ezr2TQfe+4glwVgiCK0sRUmaCjW796jVTxNaA6silys+Pzi+ToOaheIZsOUM1dileLcMiudGm//wBU3smlNUW3n1bigMYR44JBugemj/Nc0mJQgjq77o0RrnwHvPhrWj0rPwH7sOoF8eO2LJF4Rxd4eC/a8GRDhknZuqeI0Y/s0vqcboSXKQPGrJwzjVk3hDmpkH6kk+Iwcnj+EgOZIiUyY8XIujpoQbOELbrIprlVWer4wY+iGOwlpJKJOKFfONoxt0uq7QnX2gbhECKfYzN6+KoVw2KkcXkkpfje0V05SwvHKtqrvhkUsxOZSLail0/wXF0iTPgJ+cWMuslDd9a7DmLHTQY+v+lUc8HPVmMTeFbrGavNt3q//x7rDEOsPZI6JMUAX6o10NSqA83wbkLuJGZS6IWgducMbBlsR34smBzKrsuEVoayXu61exqk5QLR0ewPjhRNqLF0gn8HwPKcCxqBnjn69XbjJCLgCPj9+ohZ2BzD5zeNJOdmhIuwJTzAgY8Y00PY16U2UgGY3USHUZ+nPA/bktiKWHGudlchsFG4aYPo1h8R44+HruMnVj/oLtuu2OuGxnHA6GidoxtVw6fel7w6ewRpi5NHk6xp0VlgMz9nylaFq1xfLWfnqbLvmzc1HbsGWLTgcdYyHxwbGjNmZQc3BRh7YraicDDiQVqttfVQR+oKoI3FAZ+AxrU3Ck9+tXv545oII3qAjEkS5dw96PlCPZw46qmfyjGz/v8HkddFwV8HOH8x1g4+pvnv4Yk/YACl0iLhxm47sylAudrY7THPd/YmE2GAf+QyDSKwoKt96ntm6SBkF6JW3I2nG0xKgjYgCepvU6EXlLFOBARL8zEQNaxoggG4avYw4hScdJKQHE8cFw6OccSmZL6vt/lkcFOvJAzrD86mVMf/biK5UNFmhG+lTfE0RUGGGw/Re1YkLo4tmN45HC7fDXRZZlu5Tt+o2r9QNwJ3BAtpEivTIfqCFe4Shp/1O2TZ6scUDdw694Z9f9NfKlxqiQKEIAGSex+IwCiIQyq4743gWwdaddL7aex9OODlTOBrzTIavehdxLEGtu4mEGg90f5MUpPp3oOta2PQWe5C8oHPf0QK8V3jMb0r/ZHpJxon7RiYYyuDjBfHa+A0/EswTwJX2Aq6HSbLmjWmu12KB4OVj0IreewwwTJ6zZyRQ91b9YUNg/1VZVVQpU6WAN1HnejxErKLbdxddPiHPFIQbe7rtYEPO0nyUjRgCrEEwwqcKK89a+PXsXVYcptL/xxRpeU/8Ce9CVp5XPLCAcAbquM11egz5s1BBF70s5ze3247xVBvq71vX+/b9PnlP3S1DAMmNZehrYpblcvg7Au00nljzkl/gpgN45iK6oS27BLJECHAk+pBjn50mr60tM7lOrVeBK8M0CrU9VV/AqUMr+ljR0hAhttaNswNlZ90StStAwDkm7SMiHQIXi2E8UctPL+vYA66YexDT6m2M/L+XDy26J0XDryH1rVWei3Yn+lX7FDAsMF6FjIz/1NHgc/F3JknTYtCDEbwpi+piuHDWBnlOL7Ya5YuiC8hRwro10aFtahuIBmNFceftS8hQuOZCoxegWzDmHhYvXRAbY5kmQM/SjJ7CO9unhWYhTCGtu9uYtTb3OTMx3ly19DL2deAe4Vf3ZTAbCZBjovLX/i60mn4R4T/YpIygif8E73AKwQdOHzUWFd7uOq6gcZRkSujpTuJrDR015nXE7i6NnZSSTR2UHpXGZT4Q2XO9ogv5SiqM3/gBgmkwVh3ZWyk3J/dJvQe6N7UseDsnvRtVC3NnxNLVyn8IEUPIISjJ2+DTUNZmnpRxXfLkAyVAyVCmUi0mMpN4paJttGAbvFCWNOTQtjY2/2iA3IqUhSEBsp/AxvQqvu11WGhoVPhUr5aW90+USzRV0bbw63Gm5fMvjl3hkcd81duxDI5veKRK4jRDANfDEIf/dIFhASds3NKj7J6Hg0c4Bc2aTX+M6M4Jq6/Nt6ccWI4ZO0mgJKNKws32fW226ZZ1TOTIhf+f3q7Ak7EWx8uJd4RcWws/3jYKRVjXw4FbfebhVmDFQwc0wWb+NE9uzNgNdMiJ9Lya3eDLJYrej+grUPL+kRFHAeszbv+GFFIeZTLxdJIP4TOFNkMq2jrvhJcECyuClExLI5zpSk40N1a/G+w8QPlQTFUCUqZPGjhHWPN0QlaJAsHCY2rF8QLi35CnkZ+hLScxxfcNPhv69z+l97oH0JSeCuY8VSKzCH1DtxoesykQoYqTkkX4v1oyF+r0zNIi3tGGsVtZTfPBHz4dUsTNCQdsCLcVWcQcLVEU3mhLhBRvCI2VuobEORq4QszUX1Taynu/ZXalxZsg881lsQDrFLmGfId5QF63/+e8TJr1c5zWya1zSpm47NzRlsHIYtv+N97KC9EcoiaUZJGRxthQVoX2QARH9BVRavRK1nxuEFcZMrqxkuwrd8eJ5IiBBOb/1xTROGrLUUwRP/8KIwOTzfpt5skeedFJbDEWOH2rHORviByGaP4OUd6jhno0gKYqmyVVcFCfab75IAcNTqhk/M9+96EY5ieVZUR9TqPZif+UACOon5PTI+CVELwy3nzH8rSStiXbqDeyHSEqIiU/VFaS81HF9MdX2CAjMyiEnpBieBiRCxIDnG7/A82tXogUNZpS1e8bM2uP9XyZemQUi53rAGxLtRvBSlwI9dDf4HthHEPoOZP6iie4/inH9QGjlRdRocOP+cEgr8OSnSOLeJ1ClNxYj68j/NyWCLHKLAglO03HkLVNRM4X9bdPPvWsobWJRo3+5i32bqejt3QCZ1Ul4S8uiF1H+l/e7Gy2BNqV14nu00BVpS8VkHoiCedTIlJSB/LJoWQpiCNVZfYl3zBUxC+ANPH/+rRpq4lw2VZjKtECSUX5RWPXPB5q2Gp5MP8owbXKroFGlK/1xf5kGizfvwyelNNn/J5fpusoo2HiuuZcGQwfsFfGGPu5De/ybFySsaUPg8iKKuwEEew/rX3PNqIn/wG3OR2YRfRpQHvc4moEZz5F8U+ntWs0yxaR+8VcQcrq1OLBxRXf0iCF93PSWHaYN12dYPnoJyTKomFCs1ssn6vVsEif86wAoni2eXwS9nQZwAKWxUKmIm3TqhBbi6KgWPZUu5dJbU8R1DlsBIjsICNvzubFBE2Lntsb34KhIYvF1jE+FtD+xRNkCgXnbowcoZDaeR9I5Ue5TqG/wPp1ANPlK6rioxtM7oJ02IRuJUGVCcsl1pZPFtDhq4UnV7f6jp8xnAVhVQlGO1TxMN1i9TLgejIcmqyX9Fs15ir7X7l2TnNuv/nR0sFPOP+AbSNZlpeJbXfD4wAHCVOyn7FdtLQVpsWD6a9OLZfvtdZetgOu7+8KwbzyxM8wzFCEcSLXmaGuXylK7M9eqHAg9YFN2XOhAwX05aiBJdB6eL6zjnLR9wau4xRNdO/PX5zHmLQOTq2RhAqgPk9lxY9Qr4NMOA1IgxQs9CevPlCvcnNv/M8vCzNmysGcMDX0XfsXX5aZGIixWsjcNiNxhQm7dlR7Gj/Lhq9qRdVjNwyvMswxsCPhoM5f+1aoUnabDAoxtU6BWroGDLKHxrZruYlIh+PmE8IQvT4eeAIo4GF8HeIycKTrxj4nQNJm8HW/9TVvo48srnJPuEBrfZNIkUbIuhtl3yurs8myUbT+zS6i8I+jc4JfU26kc02wAqZV0xKJfqAsTNsXayxaokn5391kxMlHauRiiwYMFHPPuOstdrLiCaBYcHKz4BA6rafOmnJGVyouNWTQSDkZWBaz6c34bEGOPl/j1w6K4aMbyoaBC+vFmMbLl9wKV2770Nspo9VLYKAlX7Nmnm51SxZBtFIBTZTd2ZonDAY+GJAf8LwTtylNOjDYxgA/u1bv3NsZhkDpfDGEQxpWJCsXup1JurkJ4kGamEiwpN64hJSUI4oDXj4WIKy3ipocVhhWekM8EvOEC9cH87djwzgwZ4qXSc5zfD3r1EC/d7QB+hxH1mYddonHxe3RRAzUwd/4+iJxhJ9r92VQHsyR6+HVctLLp2QLyzl8NlZyA0pueR4myyfMa+iu9POjNnOnqWUHK0WRcYWOMY077IlsxT4QjyNitqmDSEVhFodNk8wZf71bJfEVfcpAh6kODK93XFHIvLXxMIWkcv2pX4bv6jhUSlexvP3JfoPr29MjGMiLPl8Zg8XMyAk1n70DlosqSOLjuUE2TChNySr8I9jYi+h0adCmwON2cOk3vQeys6pwAZMSq+hV4ODoOxTiGO46/FotUjO+J8RAHaZwDT0gxcm/GGBZjn/JIsBL0dm5Qw15Yxv0CIIBPG/vF0xe77iLgRN1utRPBKnId4ElsO3yeZ0sdJcqtVjTEVXFyuKQmc9HTxqzVRKbbM6ZPGeXdaxplojRA3oLxGTa/zd/Dwei7mfNvlgwG1hL9iZaQZDwnS1QxYtwSeZwSWcowe+UdwfO4sUqVWbT3XdFUd+wpN3Kn6eSRJ5vc5E0qzvunULqOShAB6ktkPM2BXma9+i/CJvLJq6Y8blzTwyH2UCuzHLNm/YBZyUdWayJrtV7CkdS0FOaR1Bw3GS5KRjl55wKp3eiAtev5AVDoxARWiIFfainehvDD58Rgyga301B7rcRhKKM7QEyZP6gb+kkT3/tAnteUH6wcvdc6UdgimESNdK6R6ZCVTEMvL2NK198SoD01Pppj0MIZ+n1zmdAXTUiY7fcfi9UmLWAMEiJnNpKXk7uUswUfgNC/reYwqhxkOi62LqCNLybc9BTqWY7E+AOf5IZFO5pIsWUj8kMktv/0LMhtRXFJrhZayo29eIzvXxltxO7TuivzTgxY8ClCbkRtdyMCdBqD0KgY2xTlXXvPOMB879S1qnvmQDVAhZoLI7m3Yd+Y3321r9IjhQjbLqHVkMeeWI6LgW+PoPRhSK0IGhLUe/5gwKEiyZok+euxRTrS4/0Wxsm0icvrTwKIxJFhe7XrLI2CEvU92xWDzun0YIOYxmbfKMqNJh2z+4WZx/5yGMnQz4u8kZoMl1ArJLXoe6s9xty3TIn+1XZvypZyUXSL3gEnDt6xWen8gsAxoqavQqUxqI7DtMfhnHAhnnOE8RMegUqJY65dEm+gJmBxIFO9AoIBNf8esne6QSjOwGp3ogcrFF2YxEzWHZ0wk0qkz4wpD7FF/IS2l225d/+8j0Jyc+kLIgzLEMXgwvBHp9be81AVH/cAPgLCNJztoQp2RpTAL6NvS63G64enJ1c8R+nqPda8pazMJTtBzIuwzZGW7+VhqjeFwI+rvAX2bjY5k2+8kDJGNc0qa1rclmNOVpR0duPgv5+u+mu27SPMA4uGSCTtV3RhiYNXrUvaKlnDAJ7B6+Hp+OpqYSuYzuzqjHKTkTQ5FfNdohhW0Ax6mKA8z+95trJsLfdi5EffB+JZwDiIGffcDPc57VlsMDzo9VbXDsnSJK84/cPDioi5TM+1chAP/WxdQjD1jJd2OmpkoiE1Nx6O6nPC+Clr5YHtGnxBYm4/Z+0W/e/a6MdzTZC4iq/byf7r+6jXSOtEnBx6R44UAZbONgdfDO6yyjaFcxPrZCmpqp6EEWJYG4SxYQQfWD2vmzq44D0RJi6CiF6d2o9Ue+YoRytRduwRCkL/SZnNCo/qcoj6uLuuiUPW7cf+vOZYyVfyJ+NVOxLiLBG1d8OXSM8bf8Is0G08gdwUBox5drYCoteb13yTAHIJCB6DYn+SaQpVA16ZpVU0Qt77x+8Cjk+7I5s9NzFL/o67Ut4o5o41/2maJvTcy6h8vkXaqOM4bN85rn3L3H0XnwwHOvjq+z2LB5mQCCUFoP0B5/rqDUbkquw0JWZlJSN8kogV8RKESVS+rZeQIs5QF2w9gdjph4AK+yjYwxj/yKImJA6KEv2mE7rhpnFdT1plkjOMPgPjtEhgE3E5tOk98h2aLumYLpUfCoQKCZKedrMVM6+X2Ei6GkX9h36fF7lYgd34jo3SONgrIltiak6aEIrkWbQJRSP+AYPxgzzNcgJnCpEA+nEu2Urks2NEQVHRXOQbqtL5RsuwKwY1ou7U+YMnbWktDtgsyMQs5k2y0P20+6G1wqW9ZJ3i7QsBiiZgNQ3/B/PcmChO90m5UojjZ3+JuGCIhV1Go/cI7BL8kmnqAp0l9j1SGdaz2VThTtNeX6Fz8PbyN/MCcOaaC6Pv2s/hYdpZhZSC3yt+ehqNVUTPEDCJVJAlF8cOXW+t+8IEtUPoX0MiC9nAOKQoR6ewnRHi7Jn/T5tto4bryePLTOPBL7IJVdeMzTuS+yFh60Ad6NFQY8Kf6LWNAdat8t2Q1c9Fkdvls4MQRVNFcJCj8vLzXRYLb8Phve1TK5avykp5DMWGlF8edXzQV/NIx1Y097iJcr+t6uoBcnFcwEBuX47X0xe/Tk45ZpPf7AfSZzUfjAVeNhfUyLBzGtNMqm+8xj3zEhXAu/hXHNjn5smKQMYkx34ArVpXGvDkYj+ddz5CoC00JfI40psigchOSDel7IBPR2CMD9GkgYyTUeUd8v8WqlvZX1z54+gsc4fzBFfg/5ZMrvgN7IMuCzU9uRz1Z0tOQgLUIX1HOEBnCraVBCExft2x2MVZsvA3bx1bcim01k/rtUThp3AwgfEhCZEzRlCwjFEhXIEj0xsc6WqT3RZ8vr5TcCAIz5VHW7ChuQJDVxjhKtKj8AYhel/ZyOX2LXAHxT8nPT+mfMRWVhtgJs0B6zNtIJvLElij5Q0afb0xOMCCw46TYxM+UfVLWhAYDPZcVZDfup71dodwXTaLCKnhjfUjE5N9Duo+CV34PSggNfTah50rpC6mcIiptJFEXIpwbaejXVNMNCZuOCz6bfNlJz+c6leWO/7MvQD8NovrKTE7hpbm616WIC1dpqHMN+/MXX9l9QEQd72rRGHMQuJxzcUEFCN8nKHgZ0P8Adq329wPHQLWVWDH/yk/4jKsqGBZSv47k33EVLPyGKkEusssO+Pot+/dzEIUwcCDPaWY7ukM05rJI0vdreAYlngNpuS/CPJ1+UxFyQVRiQ5/sSegHxYF9FAQTue92GAvmcFpEVeU72AmrtvVjC6bUs6URhicdet+VNDTYBVf67SCgmaT6JHOSzDi/WetE8wmfhhpJBEUGl51g7ScJ7L0SuBwVRSCKekllMMp+02j6+oOXj3Lag0ts8Ui/wVx2777Oou83TQCsQLXKIhjc1XeYP+CjHwxEf1SFhYXd1Ajsxa+mOMxMYKgU+epLcbhDea60jGrQuYb40Z9hTNF5M86N//QtBM7Fcm35NjRrX1iujrw/Lyej28V7+iPgsY68aiOygDBX69j9mitCBgDfNklYJ80DACg9AlRt11NA+FF2gx+rRGDbPScyx+2HGB3N49ByJ5BYXB2jNm3Ck1jOnUl3afrN0PWnstm62sO0Wk+VMiuTn5lcPfFXhrjvgDI0xzAVs1w7LPeHAQdkhdtDpriyakjky1xRpdsTAZiYfGEGqRzvsDwl4oMAH5FF8QtWTw8HWDsopF9VBSKmFhhsd8j22EIqMbsP27LqRS/tO+BQ4YXkh0alMkAJOZ5wVTl8yWqrc/5MklVYIUtYeRQe+Zl9UfSmZ++F3zOyl1zMIJq1PgdiOVmh427qiGPU9PB2xFJe3O4pxVMIpocswqVGsXOXUUe5iJOG8KYssImHFIxH7EbfZAhmJHIdXDMNGkwrpLZs/txH9OyT3l1bu79sEBumiLfss04R123xz07IL494mFv77/CJTMUmROHKiL9n3rJXf9MVR4txNOsWKJoUbrM+Yn8WUTvN1/4EMsEwSdZhm+EOuAmeCfvVEE3QMXjOShqvHq6fbsqOhbMkiKEe825mQXswpRZF/EhnFaD1UOQhKUGDqz8ywBZtEOInjlgAV0XacgFwHqCv51QMO/T8Hkn9JTm+in5bGbTLygcxEhPCE77q+QYuMm6yrBpo8ZTuJyHLjvcc+kiPFhtVqep6kh7N/ahfyLWFhxFEkK0nEWaFeBvADOrYH5JkDumCfnSNIOnnTg54jOrz0pLy/ahwKiQy8O1Qrfzr0DjsaTH5i/qdh72ZPG9uSTrXsbKPlX+oCYBBMpinvwuVeHbBoPsLAUv7wjRrd+HwUzKChHOdVFz8sKmRMSlnSJhrSHX7KpJGYAai3FwETaWd8AWJiEK3kXqTyQZioGRI+enTZ+ggckK304VEX9wl6MQNp1iSqAWADz1/vXkdHE2JAS8yVr3lmjjaaQOqTF2UACvLwJBV3S2GqUW28RkoABz7785OD0GUISO4qvP+p5+CsNSjUSBiAop3zyvy+1cNPtl/aNoy1OtET09zu7kuJ2/QlRO4nn6alv/T0iUlCOPcA6SDnqJSPOBE/g30zwJB1yWA2Of9+1b7wNW5RduClWwlivYBMT1hBGxuY58k538Rdu7M3QMeK0ccd07DhrtQAQGSIgKAOpRCMAs0ZKdSqlHMZye8AeB2nfPqnATPM/QPMIt7dt7aI3zzcpgHiXyK3OWz24gEvjh9vN7IcfuG9bS61eBwOnXgO6pnm1R7zMFfDweDV9l5OshjSx0Axs8DYvWRTZsnrdw17SJOBiGKp2cPrviUFNAukEPcLE5Tv/XJtJgZDovnLV/RXr6AhUZfE5byb5bZwK1ebIhg+WIQt92WDLcRIPKPghJtBPf9t/pYLByu0riJn2b5bLtyRyoe4M31aY3nZsRQZlYPbt/e8LuOKpSBVQF1XIBhQZkAYwyhGqRXixXVtuh/w8QT2fepp9C3OFvWdPga8bWRXO/GkRIc/6CWV/hsVupBN8JCSkhR1abRQ9OsXa8nnVSL9UBDnF5nHQru69JG1iWO6qtTj30gG6nF/wW90Xgr10p1SkOOfgruW9+8A5WYwnmrWFoFpgNOrJh4uwI1N3ZY4XN6YppsdlnMMn53FOWvGgKdVDDk43OZf2G/zZDSVeqz3Hl0ZUMRM2GFFj1ihxR4rMutCvBIpZ+kYIdR1jImqrq+cI71bXv9BELTzpqeQpA7Yqxu3DZ2/GLjEVI2qSe+dgUv9rSyR635yXW5Bsvtpk1yLx//3tRtERys67r0XeFQOqiR/TZf70Lh1Ee5kgI/dpNLzPchpyxZXElAvFvBd5tk6WG0ScoonWTuBWRaymrY1tPT0tP3+kNhzyjcV3YahjFqAW8qLem3d7Sqtgob0U2r8TOUsTgaPUACV4Mb8eTtN448drjhpCtq36TLJ/0Z6EC0Rn6VlaBeMdI6jjkbjVp/gFUd6gfPvAPKj7ErPvMUNxhLCIYFUp+lhbTPijnvII7T5NCGBuHtHZ1YvAJcpJvCNnWCF7IKtaJXk8q6VK84eqGMWvAM57E1T17F3t3HDtO07HZ2rAA6zMDAB4z1PsW6SQmcK3MuM9MOWzcJIafd/JfsqnhV3GQ+U6z40ZZsb+eTZ2bzwivQyGpQ1BpaZWYSyNXOl4ZmCer9zXZatZXwRmjS32UG2zgxB3+G2NGqcVCTnmLjiGZ8GvkWI8O+Z1OYCCYO7Arfw5rT466MdYfw1ZQKyj+B2n99iejG+UrNE+Hu5jXZ4rz75+rv7vc4WMBWLfLp5BUf1sDt4rQ1PJEtTcHBPjQ4FJz0Y4CLPy7PDn3AqK1399qwzJNB+4fpVOhUFhCRU1XOmKtbSCWRDvvmQGWadMmkMU4KUQj+XMZMnuxtN4J0Ow0WrIHKI7++Hm0U5myNuzQn67GJhs5ZtGtpz3pBP/AFe2jmBcOGZbKHUTVQPvSDbRMFgZV8S459fIIup/BfiXanNJSBxvcFs8JM3xM+4jJgwIUm5EOsdGaOv8svvWaESVkWhGC0cXjMxyQ4eUcy8bKJc6+KGhjvOZuScB8oDZ6HXMGuuIlo3P0Z5K8y3HSSzscoNi7FeCj81Qg6MrgbLjKB0CBMmPkGeZrfHwC1VvCR04m0nlYPF9yly23sQQvAyNcjISAtx1+Nk9TVxzrJZcAcw5fkXLpjgOej4vSy+IK4wnRmVzFFyPzvnu2p3bySfbu0RWeMkjY+OHeMCIs5l7AfpR0I3X8FD9KUcXFzRWu/v+kZceVEVAhy0MTHY/3GJRwCliaYIHtUcWdXETtd1OOpX7XPb/jD7vTxdIogFWIOV5TpbwhjmFBWbBQAvRhOdiG8+aVi6NnpRVj7f/j1+UIkL4U/AHIjrwCWIcBslQj1xAvRH8MvPsp7zcnj+B8KDloj44JZaaRk6MCreeN+Ncmns1cAa1qY9Xc/HU2XlGsNKHl0WnagoD4JnQ/sVb2Vwwqk0luwDqPh/O0z7/8pinlWF8C8NoEKeLEunawDXJU4pSOAENae/gf8Kf1Nu7GNzLYhsOpftq0pxfxCLywFKOUgf+bKC+sEVcjAGp7q2y8vI9Pew4dhpmhCwnR/4driWg5GsAwIVgpHM145JN1A2J/CycEuAOBAFUUij56xOtethPj983Cks2ZX4L/651SxGGmEJCSFT7vmnuhfWwEX0goULCNjRVXyOyUZtVyKAat0kobYurCv451H5zJN0j/8F/6T0e/sv/vtKAdYm4ZV7Q8Vhv+rW4JTTgZWw80UmeX33ZwQZ/g+a9CMY/nTrDrkBKvqEkQDXQdgLR6UBfAn1NRREI+LfDi3971Dv45lhnfpEYDyHQse690wCamc3C0ZqgDynz7ChhXpwml+nnCsQV2i9U9VoAAzIW3M9YFK1Dd1N/xi5YCIbqSdY6uDgupFePw1mC2elHuikSrZKG1ctgyExoNpWB6pgQl/NL1DohUUQCkyGv+VLP8utedr1vlCzQGqY09sYnODk2KdgnwktxRlZhReXHaeNlwew7gIt9clpMzKlxiuwP0ERSC/7DA8sJFlsbTFKnjXDGw4Z43bAQ1LSU55tx/7lfGU/9Qy7jD/BcSczyErcgdm0BvdBnHTLbHRfY72DT/uhgybwBdSKG/rsJSK1NikNlSDgZFfa7HgPuEgQVvp0Tfk/YHEC03sGeeQWzSMTp4ZQGfCl3v2YCkCUxtVmYuHuBi/N6qRPytLUpOMP/m3ZigWCVme+6f10DHesTdqJLbqpXGdLkUDXLtwPI1jMr20gGgRk/cUERO8fJJgBBNt7zhRVH0Z33ciKWLrziTvZzYEUKiGXFPiS66SwPPB4y64b+BYex5T9bBO6WoxBDyEq3eh0Cp8AQMy++3hV+YGWGUB6sqmfP1y2Q+JcK0Ng2h39u9UhWOHu7Wo9m7xX/kauPz+kJSYNczpsKsGurFhEzhiEaDEGCVAlKuVyBu/pCTTIQWAODPDWvmOal/he5q+cuSJdJmLIR8gS9eGE4F1Kua5CANhtrF/jgDecZTeYJcRfuU6ZcpeV1G60QhgHoHzOKARt0YHbrD6dHuEfxJ3qCLBAvyslmp3iY/ARF3/XsN3YVBKFTmath77EaYbpZRiyyvI4cERsi/nVx9XjAAYMDOj8ivcObfi+R3jifSw5qeaf2lsEl+mW4pugRPigBsJQ8UtaWfrem3HNYcq4TQiXYGcx479XmZhZV7cLcvxTVwxe6q8HdQTYSzWGJu7uhGVFkyMABPFFYoqqYFmEhHw1DPxEMEv1xhQNpAfPXphFn5EdXefomzgnC+dZYEGXI/z+48I9Pjc4HymZG9Uwb/YhGz6zwKg6V6wzK1e3XKOIhPHVitQNzaKqn1XDGjZCqwwHjB4ibgjqkax4sB3K8Qruns8S6JbJtea6yJmOMSxynCq1yh+zL1JvOGf66s1gIc1ltIiLIMPGElbhvldtJJXViq0U93ThPZKxU7PMWZY1+CJaMb2qOJnVUMpKMBlrTDSHsNpzmjxugucAdFUSLtmPHGGb6Ia+jGaazJwSff8e05U0x8pei9gZniVPm66gAnEwF7EGRFEH1Tq3qbJ/TCm62wgd5vBdjOP6iiGWRaDQvOqVXPu8jW+iVAU8uS4s61zLUdxok+uV495dWC1BTMFOaSjhW6IvHJ/WmXeXTWKAx/q6KNgEIDglVhONvxmA2XBabdR0Bg4NqkXQJ+9QpOd+cEG3+pQ8vp/s7xEM7j7rSN0dGbNHESk3BhheHy4FofPUTDAAxX8O/68HHWKgOUt1spia/+EGO3Cfn5S6Ksd3j22Ivs0yxBmvRF5d/786ZOt4+Hb5HLNTuOkNxCadCuS6jXpfEZZXqGPutPyJjI2ExS4Y7ETXNZfzABoVua5kJMhvrTm1KH1OP9ujnG1ub+bwQ21cIj67gwTCQp2WnCBRuLoNbz36S4HSWrVkEjhpL/saNbiFJP4fueYCkFTGjDuREPRzukcYxxQMk0O+eX98LPHdUACUig8nVin4HQvuytfZFSxDZ48p/kOlLL67VGPGTRoStM7li5EsK8rSMGtbNTOUUt6dcF0Ja/Vh5erCniD6Qp0azY+RUv5NzKyKjBoByew73mzlffSVqw5Kh9Z2pfQV2Rbn4AY1t9P66Ew9Q+V+eIyM7ONWabpTOm+jS12iO9Pf+5S0bTv1+9sNJeQzExut/F/KiYYP2Sl7QjGwUbW/ETsHwxJTWX7X9hMiCMr6PEfkIo0ORLujRK0u3jjbwkvvclxAwq2LYPT5m+IGtsUwXk9ezWrhVRUzc8Hof0yg1Q1u2U7f49exjX/D5utFq4L+3W3UIbYB66tylFFxsbHPkvlRhd5imMfPfMN9e20VMNcIKTiD/sA/4YaO/UnDjqrc9EqwN+rZqotYhN9u1yHzXhp7cb/8r2J+hbuCUJj7mGgUiMfhKp18FZqO0v6I2bmGJfy9JGfXOlZ0h8FSK5hnJuWPvNWn8eqtdkjMlG+SzvQCY0tN0Vx0czOKycDGVlxdEw6n7vsE5q+NRmaarzMZors5wyOWRMMXAF1nuOogvDLd5Q3XXhUQkP0py2aaPNGlvfYsMnEXKroUqn6mA9sMDyjK+Ru+MlpfTocyBvTwv4Dyo1PPhGc/9xodPTYhJunjXvtH61gbCl+IhCK1E5vQJOpWrCmXYhwELE5XjPu5em4WrW4Kgi3PxhQj19BVkzyWsyBFZ/UO70sdgFI8UG85sQoGpr0i89dF2thQGM9bXqfgin1SXdks61g4R+wHlkyXrbar3aem1po6MDBCkq3hZ021ZwqVb36splpj+O2uK5TkucmgFkHWErbtUBeWYVDrtwyCrehvYqnNhnZSStE3q9QrSN9k1pXeFjlrWeRbhvbOtf8/ywBcsxAp8pbdQ9LmSvZjJsfo6yFM6rarfeNyjUYDkOIkQ6dzrfTPoxB5nquSOmVacxuNGlA2NVKOZndCFqfwVCJ13AxvELVsSQUuai6IWaOUFadpjRjx1JZENI15Icx5y5C+59cBeikpziEwyCXonfqrpXaeQoTSwgJAtmJJZaxA2FhVXv46m1p6ifnigCE2935KWY71w4Cu1DnSah5YFFSZIlYiWfqMNoqj3RFckGrfuYkDATUxonaMXPnIyQwJVHF2iyqk9lz00TODofS3y307vb2kuSKzBqFhCmbirwtGmCrfZJmt58GhTIH0dT4xctjjFnnOUHgJadMjwrr62YlpKov76ewX8kXuOLGqSzGhT/ghAy/Ykp9klFcA3RHl6h9HSS3hCQnhaN+Zq+XN21d748hCXMpq+hP4wqYS3dCGUEx/hY4LLbjLzhuvwq7bB4ABTiXDryBei3EVw3wwViiI98BvSVaiRHSEP4ofyLZ8Y8CpnbMLz2GEH20Rx1tz/GzfF5BoBbUxraVSoJA5PPnkrLQzcybjfPL1rKncZCNNt7YjMBVSIYV+E2BGDrby+QbAlfO9ZRCbjiaLw4h+r4zszE5SGmMS5zhsVVpL5YpEAGV9uiZbEfWdfR0M6qiljHaDkrXlrGoMqbP5HcLTjoOTdecQLLNj5+crpWRabV6/Xu1jZEIOyURnikRSJ6aQetOWR8LlrhD6bvy4xYwixI/RXA/8mzCUw2eUS8HKQRphzqcuA730GSjKAXQd04bzV3y1vTMvKaUV3JMlExwOturC/4hfOYDJnFvxPNlqzmocmKFpSF0R/7bQZzTnQXtmyHmIy3JnPRHO8yNRihLnPULnBRu5bL6VgvL2WLc/Wa8gA2MQjV+IABJGk/et/jGxQFu0lkcDL5sJhNEw7vgcjSAKmLTRuHEJbeR2b6GmCDFvWNyKjJ42ZntdueMm7EJ1G7X04vKelV1YCo1PRA9VCZ0lPZeiAJPXQhfbWxlR6k2MFZ2ZbNdXLc2trIXKXHHcPjlxPmi2xq2sM3ANyaZjwmeQ+z1VMhgjdrDSr2M7QhrfffNM804UaBv4M+4a7271+B0pXsHCV5mIZtY/eRCgeRD+OfBQbXp23LxSQ9yccwm/eUD569KzLIjFx1yu1hXOjX2q4Fh/oUyduKjcVqovhggszjDVTMHiLyvFxbGhVZSR9fAziGRQlOJDSse3oz5Vf+7h2vA/PRwF9Sb8zKZpSH3wEyeN18o/ZOwaNE7ITd/yd3E1ZG20PN5Y5jBjfnnx5ZVshzsPDLe2XNGA9B1TFRgwotn91JdtdrZ5Jgl4VxegyHyGTmTpvEeZ4HOPrehOGutX4OfSOhMMMQajB/aiGuQPKPaMRxH3KFs+CMSZKXxecJnSiQQWt+EQ9SlrdBbtQEr2mhi4zCmYc5u57rr3D0jlE9DcZg8LF85ZQNl6yy54BlD7o4in2Nz7m6EU4PMDxLBwg2aakA5RG5o7EPaQkLn4R5TH6G/PIRmLcsol62ER/CXp9iNLMcaHLUZ9IKD7Ms4GNPjycBQzUGCwEDQsJKyL03DJzTSQAj41s2L7/H23gbBCFnwd7tjGGrldGkgqOCqXIP38NYylW+J+rEFyjoqZNdIX4Vvz8IBSQy85Vxv9hnmJMr0O98bJIrsQhIBo/3fveHaSjoHF/xHl9JBA7IriHci+FltPMY13Y1GDNkB7DwVyduQxj+fkwltWHEKfOfowR7tcCJ6cVRwmG6lYyJnRJMN1pwo0MeOrxDh8uga/VCuVJW/EVjoWvdnW3dsOLvEFcLgu8cbNLK4eMvQ5Ns4Exdt6OTawOdc1LIoCbGETl+MZYwjtfPkF9tfXYr040ky9RBnDqtALk+5qeqJdEnGKUlkjOfk6v5q7R5BkNUXPp5k1q79Km6DEskPZ0MfcT9r2idS7CjsszxqCIUWptoJV4JAlf35ORcE6F++zGVWvTi/MvjxHREdjE86gmmoO2QI68pHFiIbHWOGBqIaqZywFg6H7+BY1w87pkO4Tz1GyUX+qIzcflytuc41Fu+Voy3R0Kx/VdTCN8TDx85RJn4y62YkWXtXun5X1qBto/fvC7Ey+hV0k9MuzyBOHQ/1O+EWaNeK5+6yp2wg5NStZtvg+dIYv609hpCMO4uDLYc5ukyq7YQjBZcXfkZ8VAYihxjPIAWLzdOwjjnQDpGNh3qzmUkNYewJM91urfZJIfGBi0MzXcBqkKiWaOqGobFd6nbtY9wF14WwFGGy816aES1pBxv4fPlhadGDZ9tDzVdvIHsf6j7lgwShzQU48BfYavugdmizhUUoA/SIWtKSD7uFxUigGgCDpL8zDa/oDAu4Mza8nt+rXBaLK4Ri1QLJL3sToBXotEAZu8WwRqAo9OjL/zbGkIckoLOty9gYSWBpw9ak5VubaG4TSS0jHPOR+dSoMbhDsqes9WgaBYoLA5g+OXAd/4PEbRo3MMqYiUoXGmpBOpWGfSicwJRZYfrWsVKUosuKudUzecA7EJN68cquDZohXUNw3zR9p0P0LQ3r124mtAMZJyRmY2WLcDBjizIM4TTo4TWYcIOaeTvTC9q03fCIwIUP0D1v0qrVbNqUYrrMk5wf2F+vQZl56+1cofVyCHoC0icIJfNW1BfZfXfpRlrPiz5WRXaOniOh54AMO2maE8SSfhGv3IfjCSPBWeuoYp3KEjSdgePANpOrT8GipjbA5idU3tZ2UMUnOYS5SRHqrNlMxdTQc59PWTgMT8W91BHUS6QATjwUOEiSfYQBn1aj/4bKkRlQMfC0/pbzxthrtvNOP9BYMYO1vJYb61kuyuYl2N2P8LAFPBtExhoqYnFFcC28zh6U6nRiUJENrgkQbEhtvaJaMvPsmJPsJMFu9r+ETy7KNZsCDpEcTw31h5oKC5NczTWZIHkKIuHg05M2NDkjpB6HuDjqtowZC1+6XDMM4N8q380z+ImOZmtqxJR4qzIlEKSS14iuZ6RHQzr//So1W6DK4ip3v1iRTsLFkZhRp2sX4EyjYwLYZkFFSV3aPhAoKWmV6k7ZtFgCSMmOsqpXkSjptAsGFaiHMVOyngU6LL5dEtp55tMiHMOikVZ7+SPF3Lip3Ok7hNLQK/dIla6GnkbEBpkhbKvCQNocm+htIwdNTZ/oG6B3tRFMzC5vSyYzlpUeMyhcqPLUPq5z/D1dBrF1squllay6VIiiZO0lhPdsMEUumz6+vKWojwsd59F0SueHWTIzs3h+0xcNoa/um4HukJqDxrvdcxalb7GGLf0HmZojGNeyuAZZql3/WzZUdsa4GSOU8kL4n4EA047YRH2XH1GhZ5VBhjjwEEwDuuKyyDNLKglx1R306oZSe4BJbq9Pjavp32nb1mTVfjOk69MJoTSQvabiqyKicUvfLTPQVKDV+u/td1CpNPh+myGC9Y5LrPMvpM2MjEfMqWyPvQdrIXghP+bWgb3Z5sE1nuw5r4LdEW/M6HJhalP0xrsubQ5ohvo6Ak0NLFkqUvJDRyttBp0B7G+FVReu0DOSPHkbJ6ZXnlpMEZl9NpNQTLJ83xrvVQ7VZXkQQBGtX8uJ0uuf5g+EFv5Imyq3gJ4mP0T1ExBjUYnYFIUrrzQ7qwgD5qblHyESsFVSTel0JjXHyqSTLPrTgGf5SV19YuacGW68XmjPUEDXB3IZ+U8IhBl4TM0wzsO/HMqgUy/kzLhfvqHjS3BXW4FlcOtA1rtY9cj36z5usW5G1yeGOoAP84FWuQFFyGhECXmAjUqqehbHttqMzY7c3gw3k2DIxuF8Ia3LyoRmuZA3SXx2dOCn2q8ZxQJBsdNArSIldtuBJV93TCaKe3vw6mAzO6iqXbJJ6jdKZCSxFr916Th7VbLD5m9dn8x25g3bOJAKWAE+NiLBnW/0wScIxR/QdqgWA4LxxyIqB2uRSxWH6c0s5aw7qqUSnghg2TjcROU2VO7ac8w2YRo/wfSqhxnKsE6noEqkr59sZP7/OHXtCkCO6yxbozyxlbhGltKxUZB1OYKoHR39yrMKXfrfc0hfe0Wtc0ubAePKUhZ2lzw+CSbN1Eqe37O1jXmfBHUBmDKJR1Yt1z378F0sivBhOck1b3sGuBZQThapsOM/RVzYJK6i70jw4xoQ3yYT3nc2ZprM9M4Mn55SlgfMrk+XLCLSkQIO24by9t1C+C5QMJRco07SrgzrxUCSUoFao82LEm321pPYhi3H/ydODUDRp995w80TrU5ipdt6X0rvLE9TnJIv3lUFy6QICOK5i3Gg50S9jKJCLprjQLlfqJOWI/vLFB6neV2uIb7TSk8VA93HL8XQ+50MFH3XaHs25fl4Nc5kQtPY8DAAsg5AvbGeiWFS4Rw+BchggJ6XenCSLoJF3cpR/MNh7uGw38UhjICFTwOT4PCpLcTlJRLOIgQh9zyjW6xLjDyZmxVl+7nWvG9L2ARrsS9LYhhT02RE6lfRRd5MFZ+G8YYXfcGqJqVmzn3aT4Ts1mQNhBGPcaNWeDTWuRbVND6jrWIcQEvhrwOdVlkiMeQinTs6857dOds2tiOOSJQmzQuRIqLpC40Ov2NTuuyM18QPDYcnSJX4zndg9P3ab1riHtMDyNyQlLTlIAm59MllzB7WmF904I2MoPGEbynZRWnD0WHsyZrf3a9oasTa96etcb+UVoPb5uPrL2alUw8iRDURCniMQVVCM8t/RCyGK3ejNuvNHHWC1eSoHzTI+lR/RiKi/i0ajz1QRtv1W5KwiECqmoYX4vM2j6m9lX6FNMsVwcxFzil2501dAurU/56Dnsz6YHLRzFL90BuxKLORaAYJG5/4ipEY5hXs8IkWzua6ibntANERTuQKah6d3/4MsZQ8jIqBrlvMX8BT7PQ9PlM8ZaeQHJSyowrRrxdELQjd+f7dih6M+eUWUxUR69neNjq7NzJeApFiUpqAGjqm+GWDwNbuFodC4m2iUkgpRp0h8sBeLkHa2fRUqOPp+67Ljw4+KUzRfIMT1NRnuRP7mdoDeRlgKIIKfJPGB3FJ8g3lOJ1H2WXbQjSv2VWScw+N6dwFCu7hMQq941SL0r56kcU45enHbLFyshhPfC5G+w3/z0ifmJq1x5iNX8Pvi9Oafv9Ro5ba5X2RlyCXl1+4Oa3t0uJUH/ruhjNJqxc6pEs/WYD7OB0kPs0hby6/2MhJUDRlXm3KX89EezkyrmCaLUNdKz46qhvn17k90kW2NKPB6/r9+QkqB0b/JEddD4NLdKgJKfJ4Oo01xoY7peBUbujue5pwb8nasLR2uRAs+frMrP+zP8hMko91s8oRvvKGzAaaQsX+0Gx+GMBVPhet0svfjm7jJaiAEscyQTIO1mYQxpFprBxm1amHCfR9w99N4oL3dG8BXHsHiIMM0I+FE+sg+sHPxNfFiDuf4bEa4c/ilEH4fR75zv76Fr/A/XwcrP6NfK3Kpu/J4rrOmL92tbU4TBHqgDq4/+Hj8kOCWy99VfmKmXIHhh++5ZhbfykYjanckeQEwBl0+ThHgcn0u5S6WzVDzMUB/O6hAkHsQgnMgEHK+7IJW0Aa6GdmCheSuy5MSoBotiPCNIC3n/fjJLuZKhUcqqoYB11ISKS+8S1n8zUVhAhTfEoToRu2aCB3Fg5i/wnWTebh8lCZBHVVNgvWpRwON2JswdjyqcNUXTEIn7kYn38iDSPQQoNNupaMC4aaQWmYSDHCgP1Bf9N08h+SLe+bFUw/7HA7aszpAfotogaGVkYjos7/89UFG03JjAeeoEPVI5fnra9gJh3getVIvP2flj5H3hqGe7GdQUK0IhNRlXq7/OEAPyLU1BSY+0ifJDAq92bvvCz55jMz6UH4pubJohCjD9P2Shhwc+VNqeYEMfKYHi7FImyoOFaPP3Ry/kTsiI+J1Rr8Szbfw5azZxYbPiB7v8lqUx0ULNC/wBLtY78mZwRZg7EgAKN4DYAooi71SBxHJv0YXfRHMvmqHSfvh/Lm6LyGVnGraLVpHXs77k+6r0Fz+j44X8XwiwOdubrMxHCjd6wNeSkv+jVBFxMwv6x7P1nmpPoAWUwF+ojpHex7YFfzzRQpaLzUwuBaswWjFLFZDav5EPScnkE/szALiz2W6Qf91a1Q4crtFk7gRoRQedFLWF5T8eJ692hQ+Mab/0cj6UnqwHZIg5mGUZf2WlfQIOCcAsUlEQgelbJVrN3aEEUnv44s6cSV8ZRa820piYrkErd288hEUlyHnkgS3bGTu14tCvbxVTLH+ArtD1+6SI97Wz5JoO2hWfwL/VnspflCaoO4u7ea0TMWSgBbXmJLz8YpIcJkL9Dpnw6tr5MWWSiIc2qGSeIUkywWEe27dal5w5Ihj77t7LGVRgojreUR6tEPMT0nHIs83t943Ew/LQKhj6KYstHjQbl4T57kQ0ZbYLp30blZveNU/90AElYxKGZhryOd2Xrz/iskt4G6Kkmdp9l770GXH1Wn1NGSpLpIRt6TRWq0+CgyCYuDkFF35BMC7FekU9FPkNDMtNQ7A6P+/g9anNpRoXFLLnPu7OiINKl0maYptb/xG6DE9rJXodjekdMbNDurR8gWGDXLQa6o0omyxmH8+35PEwCZyx+aThUvlfNo3F1N96JDbIvGE/Zjc/zRYO+Fq3aRB44wXgYSHLpMcV06z4qKqr+8uFzJut4YULzpg9KQ7THVsxmjz7197E0XiWdFKD1oZB0QLusORwlMClNvLA5m73GJ+/vOxKfptTYeLZTQsQ3cSo2wi3wzwIAf7PVEIXueVyq7r1LnLf6yUXlhWMfJFAgmVyvtdAW7ZVTjKWAV9Urq+Hv+fXnViyVRADh/O6kQ11Sw+hBr9GLosgPVZlSUENoO/JkLpNwe1s5pwCmEYyVBRmUFAxkwje5nDuo0twgdQXLKcNtPn2XhkYtQW+GAv8N6omDsathGSVAHfVeTDng1Jmz3D2ZrXL5VAN5UkZzCcDv/qYw4UV9S8zqPuTrKNqRyS57zayaBO6lt7L1upPcfx1ttTPHPa5XTOprEJxGG8HBIQ7ZIroYG7jHkJnLQAbfXtLL2n/ocsYP+PvqRtpB3mBftt0pLZfQq4k4Xks/ijOH7KR5IBBRdf3EXEdSxqjKf0p9Ykgi339/jFpAa9FpgY0lkZfwi8GH9c82zjvfPOWM/vjRbcQ9hlhlkJRBd2P+AREYIQErm0ZuccMbQOKhA43ikGe0x04h0allSF1dpn0e4amRYsuyIYWYaKCRflp+sPD+q7lkrX0tD2spIC7H/66wDXFc7q2FNQFgOjIyAiShBYK6T8JJISxQSsKMc9xG/B4Tv91X3BthdW7apUgAtVOk8LMna/O98fFL9hye1HVbQKF+4vBbbyqiqAzrvksf3NkoJul6zhDzB4q9U3Me7nyqBIuGEpDdfeLNBrH4mRXwMcTVmhslJPrU1030h9Q7XSftjXiwAQea8Ja7wN1NzqsnShjbl2jNi1cNxxJsci/XxjRew/ZF3KbZa3b8pJntNeZXT6D66D7bgU8xtKM66Tcu9WkFcP9QaupXoScDQOE9aFIx7TW9MlSXc8mzlVNpkaaDzeCME6itGa2SB+SFd63JeFUrKvZLl3E6cgJgFV/OKvbgFFiJPuo7485qeM/SnqGzHBvSvB+DAelEeyLWuWwA7q5c/RJx24vJOsTHLOfXJhho+7viiQM0voVguYMswx/k8oDmoSIX2amNhI6qRBQ0CGOhQnGFQHvf2QWfLq+porz5tHqGm0RWGAlQZDpeJKnKLkqfS3IvF5WM3pvBB/1b9Za3xxD5U3kyNQlrGHSwhRpdeCDawsH50irvk3M9y8CtA6Qd+XNrJ2MT5Pm/1/qStDQJFTZcVSJJdDprNFyImUvw9t9OWhdHGwJUtIG3HAijD2bTtDbN710J0gjgj/qNTfm453cbkTz5vxWhIy9d4vBeUhgjXAesrGsZ+E6hJDPl2SlwqEyXxnRuD+OW0j7XMWZJPdQ2hyOWTZwFYZ0DBigUcbppwh/0XSAkWvtZVmf1DOWHJ+sr5q+X+OhebREl0huHwY/o1nbTMhVJnzpiMIBjlZwrx2SachL564F1FC9EraGqZrWpeHnqrh2To3X1KvhplozwXldgEVajhbF1pohdDG87upWwQ0qR5rrHeTep/9WqvbXcXXm0wQIIJgsGHhq79DHOARDjxd2ob7EyXDIpnS5A1xT5f3ZOl5lojM3ZJCuGHdc4J1+V2R97Nyi1ErZsdNNgcM0x+jQiJYrshZifZiJavOZIjIKGsJm7dPW2Pg+1vJRUSQ3N0tRq9DyIuQZEqJVylPYWeCuMNkSD/pnwvxnb+OnCuTpVg6aiYXOVIibu8qtj0Q/mJ6rQVGgjVbhB4vNTH/eXmHX7o6y53AshfzcpKUQlen6fFjnl1GbO4nDN57NWA4PkhxJT84CdEcEmmXSdBNU/gwQ8Gk+5FR5ZTxx488MbnRrghZas95IVkPHFL372vpBQP2I1w5AZtU7b5wni5SoWbV8zJov564KhkpmMjsYP2++o1ayEag0ahct6CBahBog0BNMvoDIf022NwdhHhbuhBRATK0qb2U/8iqZswsMnY7hvJ5aMSfKZ4ygKSiTO5/FIQVbdNG5ibVpih/mwNXRb8fD6fpbYRL91l/WddTNzafPR3uoYs8Zy1K+QawQTQsqPYSkZbMYLbldkeTlMNq3jm9xUyiAyztQOXY9N8+P6QmSFdx/m0gaCLuu819l+IZMSmNgFrTfc2CN1qLXzyQxi7Tm6mSWMro7G5Lwu97ZHj36gD9h3LdS0yF+1xFmyfJ0Z3577eL1E5kPsTdWtJ0l30wL5LPzvw0GjW6RCnjSfc078Cr7xi3smIV/9J697GO5TQ5FzuMyDuNw2Qxq4NIRRXwkJJjvr4k1M1tXRBQMZcWHHFx2lK5VJhCruuEnQy2Ku1yI0BxdqyxQCM7r3/H81ZuXK19TvPGnpfO+sZCTMVOquDuSjTebpm4DeKfrdOTzMhk4e9xFVWO/MPqTVWDEsPJk2h3gDTjhRFeZM+qQL3B6XGsKmDbqQXLEGEwEMWl7i/Q5yJGWqkGWDY08x+CPOVNMOAtbrZkVnKWdN4tmveOu0fKk1KwRGWHaE+L65dhg+09kdq91weLFisMiCd0ErhtE/AxqHmBppWHPgh2Fxo90oMUzHoi2Xksuba2KTsPBlCUj1eDi1E0MBRyNa0TckyMeXaStzg30PJc12sXxvuIwBCkaobDzAonNmxo+jGBuJkEM5kBkZs8qUjWKZwXPGOD1isOcMrpnWAUf7DGnUS0gYyPU+dA9b0r+WFMIsFY9SEUfD5N0s4JmXWG/xO+ejlCNFgUOsDHMS19wSH5xsapZ26IMWTdPEK+8HB+FfAwRwUiTUjqSHuXgblxMVlXMz7DhepcbEzv84QPnVvwuY1OehIgxN+noDE9IwslA9uEhKpER9zC/lpMMOKhbhQ31mY/ALoAMSzdD0aI6V7CdPyFFYzsDPSUOMohafY6AyDiGIGo6PR6/ifbZFbxgtRqdpmBfpVpu1H7WNOfEeremnp4Krtt8RoM7DlUakT4DbsQSagayLwjjlN4f2ZlD7sYZssXDjVUwzcjTium/XL44ZVKFayn4GxBeVICax4BJXzlb5gH28Xib8ISHDuvEyekmZn+7TC88J86mG4wo/L0ygXSm2/Hvdg8zmiY5RCxjaOnMMNwjbNiIjyoAJmj0xaavqEklq19fbw/+AhIUCWJ8gSyps8ujRRpr1PgWafjk9rdVgDsZiDXYSZDvK7gk3kn9WmYOTqSxbdZENnciyHefs+l+QgNbxP/xBMhRvoBi2/xKhHUH/RjHqkDaOO5j9zNzhWuGVpQcg9v1d3cf5aGhm3RRxphjx1eVKSgTHPpPq/LIzWNZryI7v8TIbIgKie9YpblFE2Km+NP88ZNCJSGLrEyc1AA0eldnLsSoSJjLP/SIeVHRxU9BwYfPmwyJ8lv51sovZ2R0Pk2r3qJ3jl7JRM4yJi69/j+YaGBO9f36M/9yWSUhLVVbsOUJbhtb6wVRydIIUaGlPKzz7CuByrGafbWk3L1uNKRyCc2xjIPNDumGHoZPmcBqSSkPLUMT4ikYHhY1lF+y06V6gV80Y1DU0drSz3zisRTtn+9McUZUCWtklH8DcUAADj/L1ZqRgUM84qwhYKDdYRReN9e7ZxgRA0cTwLIxAuaq5hzvuQxv9EH0feN/oV/9OzBJlXEMzy8Zq81iBe1H4sOhIFlme77iyWsrzbB6pQBNQusdSNmvu4vsZrSKVbG9utFWlmaCjEop+BtEskVie1XdWVOhE2cOVAK/krILbc+asttCdY/mxwZm9ZTNVwiZRCJi23wADp6UCtirldP7r92a+FUS7asYwe6hH87e42NtbDwk9P11zHLo5MAoPjBpXwo8ndEXmjF6lGq1jwMDeN6MqPcnFfu1jk5G3JmxAicxafwatSVhguKrObPFl5xbEHWl36tfnIfeqvsDKtqZpY+hZUBcdLb/GCQAS389mSIW3hpLMvlB/+IpJNqXSHpRcZIYMr/tRY6JmwYTpvBHZl+FJxNOruvJDskWkMLHbObLw8lUT9js4tn9QFLwcykY0inwSw0RiK/4DpGO2lzS4FSguq2Zo4I/rOJtq6VQ1a2oIbSlS12t/BfrD0rb9qajr9onVhfSe9dyWAZxbM8yWdQsLXPv+rjL28fyhuiTVxjQ4u+35P5GXPKrrDd11XT62D/fSoO+XZewYFo7+E/AJf6yVcmUebSRFQNrkhJaxMH69MkZ006J5WnYC4BJn3K8ZNDBfrMfAxM5pty+aNVyIKxjoTj0GkQYkFo0WVbdPAY8C16WyaSi7uDXsuYm9fXulHIoouo+QOoWBMsW1mY8+JMSvSVRfc/IROLM6P2Q5m0x8KuDOafGtpG3NBwK+LqTJ9Aebp8jJooMOpugWdbMAMOilh21nQpUtENfbFqsdjwyqeah7yl2ynPnDi/57QrU01qZMEz1KgkYDvvwwV/Twvt7iUhXWKAgE4Vsc8qT+9nNNpuHUz4p/Job43x4DElXqTLUObrK28dF5L0ZvQI1A9F9ONnzDd4qdYjX16O+jdFLaEVp7oJ8msfiedJzMRKlV0UTMtqTE2gxCO/4PFOyrb1pfI+g5Ei2zilKJ6WTfio8mq+lF7Fqnd4XF+09ZBf+jqlujj8qgsuSLL1ndPowNi2nJ8u4bYqfopkcyncvhPWERNzqwR3Z/QbnjqKrg6zw1TZsU3SS05pa/CG/pD6aHetLngBStctKvjEBK+1CBQ6Q98Mrr1bqsBQ03EvWIdDKlR6L1OLxvVvR/TP2bGb9woBoH42wfOxEUWbk8lJ+vn+uO1pVSRBJ42aqGGxL00f/3Mg2I6XaVQP+WTNJ2Csl7NCicXtJjnw+FTN1DvaVg8LcCnU3Y4o1cFfn3HwU/QbhDSUuvPyQ2iTO3UEJlRCFCZlsQ+MP3UmPyIwUJQsJ/Q+5odqXaWX/89nhvpl3IZUEFDu/9eZmA2f3RSpqQA4JRakY15O2SAYkgNz/S/yIsp5CC0YRJRX4nNo7lakfrxOPgnUY//dzsFgKduviRV53aoryhLhumXN+O6e+baNafSFozzCwEqlBZTSIyOrB7HuSzeH9BhSJ324JfGo1dks2IbvmsbmLjwXLP6cQQ6KiUJt8RJN4lO84YOSJYHY+mpC+u3hAzDePA31G/f2jS/KhktYTPZaMhwZBotRC/+7q3ifMUAsPVMTYvUtIlGgr1r6QPRQCj2A5XRjpqCveapJinSrBOQ7T6qUXZ9J7Kqb9IdhGX7CV5/A8tyvWigOXxH8D/zD25GoeXB3oGb3Xh3j/MrPNEyPPJaVV8MuzaoyYl3wRnlovRHDAxN+clRZfS6QvNI4BIpNgDaM7WYMMTN9pxsZKrncbbpS+PYACTgdRlH7IoyXU5CAIXB2ut6cVKRI+DRh2cj+9T9Ba1GhWA8VIV57IfS4QRAVK473nM9tuk7HUKSgnlSm+VuZ1h1IzjI2om0n+mCYUgz+THgeMC5NvnWkgc5XGLgLWOxTgkTLjjEMBcd4HJkVnZXQOoRp1Vt92vkYq5wjlRtmJFmltXpZIJpv5zxAW00DYVyBDi3et1DoYfWBviUQUg5T0hbgol6rGYScC5NungI7Dsehswo0BvHJrIVPOJyT89y/0u3XkbVgZ6XN1Y9kQ2rOq50VBY6LGo1lBniBXDPHXFSC5GVEfXsBdcRaWxPF888fxBXRNptYraDDOGMchsdVnNqiw+beNtsTH8WPg8gcKRb4IdCZ1KcYYh/ShywbBEAC0cIFLjUmLP8t6SrnGlQUZmXlrSu9Aki4D89VK5FnXUTWG+IRVmAlYhCrBWESgq6aMr5Ko9XHaqa5RYKJyO+FB7IZ/LoMCbllvFTeZrJBzfl9hV+3r6H1EIazlW8S8CjR2A/rQ0wXxE/6nWrPsIuZOGAOfouOsK33qfoo9RYMbBF2auPG7u/nUjnimCVq2LhGNDzDR30NIgY+rtq/QvYovZuU4Jm35Z7FXHPH5P+EPygMa7rfA+jZIRgvx7bHOuBVL4c14KB0bAv6zdYVhrOc0A2BrVHlxDMOAa+da49p3h0qcSY7R0333Yhs1gFClnJzoQXpxfTcWfwwoAqT6bjqGoIWNd30yr3OrTZ6CRfNmaqFXUJlw49FoX5vdEUrWrHCK8k9ohKC83DosvGLt/1FAo+/gBkGEhw57jxuSorNIVYZS5xmULzX6ZZI9Oa3Mji80Sj328z2fPZdM2xZvwtom8FpSMMFChqaDpvtamJRhjg6zasmvJERXUBN8b24k0x5Vcippa9n7th1CRgRbRinMq3FtiyG+nvb/bajqtvutQn35eGem2DvUzHJD3chmXW4vm3diMUMhQ0yMTx8Po2FTKwbUKnSyal2w0QvzZj9KI15GmAMfdMxnwdC8hYezfib8Ij/1XoIYMBkYhLSoI5ydSwNL0ai6PGtyA7R1Gbbn5ENhI0j89gcmVlmlXJsej0meuVX1vtE93L6NF1CCj5Hr4LLbrLwRQ5uKo2jDCldEaBnFzGMVaquRqNdKkuFMoQXXb9zlvzqjv5WkhyPGP7ekr+JU3YPiQZTnpl6yZoKzx/wiFFCGhQ+B3tc5TQPFpNYyExWzhynhahBiB8xjg8v32YkLB/95EhZq8Vf0slOioD8h5CzeZ3YU4Bzz3u1LVmrim/eR9mCBBMCt8oBwfY66Aqqy96QT3QxaIbgrS2cyblzXI0RTbjCNlh2mUQwnOdgCH2hf6/RO8Oq043a4+MS3MaoX3vFqINYa97eKyk5eZbQnKWY/0Uz/tTyYDaK1BDjpxvwBrLooiYrodFHs2Ku+Dzgh5K5FFvsSGS22CuP2dl0hHvmfBfDeWzLueQ2jaVlzAbxk5+mQQtf0yrLLplvpNUFkTGKlv0gjJ7sLmyonv612smDblfZAwTT3z8q6e9BZjzEPjWAf4si0yBPFENrXPBfMd1St+TLeZn9D+B81w3ky+XkR/0FHZrreobo8QLi5LK22P5gjGQR/uOOrfCjcOjanEuFwlM1S1Kg8K6c+6BoAocOLhHUPZfJBMREreQNXJXoieyXGLVSi1a5l6Bjh6UUe1mR3ikrMerASuJedH6e5cVz265XhPeFj5fdC03oTUXxNtH09Lq1CMeMcbY+6IFyq8naWoK6xSDDGyCF404gbQ2WHLqeNC1BROTIPpXT1VIg2Q/i+ZrJsB+j287wApd2U6nQeWGJqok2QzoLkOOanfsboZeFREd3ivLKrHJMFvuYfY8bA5bSNR63CUiEJ1o9NUrnMMHD2nLv7gk1RrU4GVula7Y53gkVVvJYFYaTScU8Dwf25LZYqAwISyM+qBXcS+H33i7EXj1YG7X9ZAyTU3rVBNbUme1hxh5CduMZiQlflZwk04IPntzXFbL41Jq/q4lAjVVLCc1rRiX6bUN/am9EVEgHBAvLCaUX4WPOvlvR8/WNyEtCy5Y3GCwKAQKPgpBGQDJmmXxW/esDaaINOf7tMlrkIoWMV4BoqDWKBIolsPdTEHRfcE8ir3/x8kY99WB0zpI5qd8/ZwhE5+k8yIBFJO+SaDJ5U/uQBE8xAyMO+ZipgNOC3rCzYyu0ZniwwdRwpaeufIlkEwWvbT21jooyTwfMzlF6hJcNjtoeDe5dRPmY+tfK3WaWXZlztLJrg+dfR7chVkcz9Oi+QwmG0pV45FGk9Z4DaYnlB+wtZrY5hinFMOVBGtpG6g1O9xfvPEwS8WDqL/iKB/c9gVFJyvkwdxaUDe2oUzEmbgYWPsY7YS/mC8LUa5Oa9p6I3/znct5Pe3qyJKeYFpLwPhVm1KA1wnf0dDn9lhpqlGkcLFeeAYwEYGpYDdcx3xpSWJ7EqJwYCk/CCvN0gkMNaiP5ytGyVF6eFWbfTS3rPgYi/v/UsIKV0LbghfgfbRup2NwZQPtG4wCu9YQh5LxssFIl9NLm4Fzmt2dHPOQUvOr0eJVaF0SI+IapjlyITYhpA7QUMwns89VvEwgx/3nHKI18pJ7012OACLJWMQh5jsX7EQ3pHvLHIc1X/ZYhxHD5JYawbpJEulhB/EJVIDgNFCNm9M+bsA3GpPN8N19uZzupgmz2d+AbRZdM/GLurMl/mxUkIaRHlvRPj1n4ed2rJuRW2EwO3sNkBWc0hB6mFqzMjQMqvEjD0V//8KX2eSP7pKN/eCYSMdrbUqFBeBkRYlc7QUPikhgXTDfTVT0KQJeqC+ysSGKEZFO766nbGF+yr6CKDWcT+WZl1mwTqVN8b9IHEaUfmnMU1cInszNAA4+F/fHCnPa2w0tA4tsJGqW3IHFu/PsFOAHAgzFyrcv2sotU5GFst3qqXuFAvSrdkbvRIKNZoAJobGjkzXtOA08wO1DeCI+TuNFb0HT5FN0fdOGJa8u8mU3ZC4/Mu52nEQQIeZJJcE9ID8/cQhWV+YLo/AQ+Wz7ZTDG064+DMv+ztrpR0taV4Puw0gdVHLnPDV3jPmDjsXd0W5pU/2kAEGCKGKh970WsNaLITXKayNQAcLjjL6iX7rcF7CtK3QPM6kQaZgKvkvK9bN/KpU0eUf3Bnzm+NgJpRh5ICM+1Ze+aFngcpT8yXX8pUxHru8O5KfIidBCy+0BppueQpsUW6rDCm2WcmwPskf0GNirlw2B9tI08jC9JBvX0SxbgvgBc5AiRcl32Y+zi8EpHjx0P5I26sxg4w0chWFYPZlLuVYPRYAr0vy+2XzGg5MGr1U6Za6L8tO+dHuCH9wiamnK/fOUtQTiJtFcMhLohcSbxH00Sf4211HNNap+JlZn4ZjvHd0Jwi/eb/jS9UV8wIq+3CGvQjQH0f5HK6oVo59XH+NNJ3f1nbmiNB8NsylaT1KWq5TmkDbkd3L5M8mLtOu98Vm5pGfAcpfIieZeHxyQDKHtlMIa/yPYUW0gggUM7O0299x9C+dJj6B3KwGlCV243jTyBwxUhd1vpJtTFLghHOcrZYJ4jvxTNLqOqT4aRVy9GP011LreKvwJ+QRDveSU28sx6IvuLfgi3Ze7hL4Oq2FFrGQMqpejVmuAd1ArHzkKtuvuei+s7qIOEOcs8EtvBqPVcE7MzlbBHvGmybSfsk32pzl5gySyEZabjYESYwRWT59ieRFBERCu8vtP8IkAtHJHgekzJGXufocT73E3cOm3l7BLADuQlXCFAGOnbmZJQE6zvVKVy2DtpQauyzc2+F285iU6tk/1WY5JyOMK7FnajnZ45U0uREqE7nfVAfM9vxX33IxoF7WIb0Y1g+XaKtNfm/O6SmanJZYBVVok1mz8k1lcm4Bn6I4gCaEwNx3GwaNtHEK/O9NhUqD04dMuusA12b8jRPI9kPN9ShN31ywF17X5qbJ6YoyHj8yiIQe57Z6f4F3KH0xapTTYIh2V3L3booF6FIWaL/BLa1FFwbr8G+7wa64i+LFRiytufD5p+6+SY5MQgQNH1+YtdPhxLRghJhV8UGhOgliASDE4ZM6NpN+bcyGL/vTvLcA7vwyy1v3w5g1beb+GcM/K+1J0IqMbzhlIgR3oO1ZsS9eOZo1ERZPOQ30D4MyBLXHC4eVgLqePAZLkIKE562e7yhEJhwLbrVleAf3Sufcqz9fmTikpu/DXUsAGocwYe3BTGvUQv0i0yXGFOHGtxidWF0VgCICTEOwTc+GJyg4Qxypl7y89zqFAKOQJzZixXy5oLpDj00NjbI6a89pXfBecMOicThsjTeYKd/GUJ8O0kATCSUa5UT3yNs/cfMRykBfJtdEKIBUBfg7PZBIeQ8DzcvwkZmVw2mz9u6L1XEYk2W42oFeRXn83vrykCklWqa9goyuuBmexaa/Z97C3gHNQtADP8sOKpj7FyO3yvDyqwRSHY/KWJQ45ZIZ/786IFxGQ1UvA8VZM/2jDNs2K8vYaVXW/7yqDnLnRoxUpTCirjKHokf6FOCNHGzW3+Q9cp3nekc+29K0B4GOZTiQAas8oFI62NJIQHxmQkq+qKlSsqV+QJDYVCH8CASvSPHFt47qGqYz0P8BDYcWAsxAhbqTGj/jOE3/xCy0xJCVePmk16G/LE7QKyT+hcD6rlOjgEcBw4TvVaziq0eSHhINTZMSD/y6G/S+NtF09S6DaGE3Evio9PqpxNj8Cau7hGyBxABeF5KzdU3xCb+28t6ngVEwg192HS07MnGzyyDM+IbiDMELzBimSzxd+Q7moldh4AtUDNLCiOvnv/ur2Qt0gMfXJevsCnh20P6dfIdp+Wm8y3mIdruzLmWIYeQtrZjVb4VOByUG3ytqAo7lH2RRN3uB+p9Gq2RynNOffZLluI4cmxLB6cHFH7fl0Gf2m5eGq85VXnBYEdgpWVv45NTvHcqvcpD6PQJ4ejWL+hVXE4cps1mtgIS4V+Wk6gkKj2EKyiAa5g+jiw4NZ//ptSEYGLchkxFKohrRAIVeIaYVcvHOKRFATAsxggHBtdCeiypR+yrxAY135Ez6YRjePRYD1GqPt9WxXjqbHlqNnYL9woKaRClbmAM+59BjlSd229pw8lCHXkBp9Ji4w6cAENaqxO8/Hvh2hXP+k39biiIk4qBD7bzfkvSBMR5bKRRkE3dT7d+0b8U3ozq8BLw1jVG0TvDES6rxPosnbdYnU/+1W/jG4Ssvm14Tp16KJfF8O3x/LmE91ih2YM4ALgsMr93sUsjLjY3MNMnttU8dsYbishAoJNykpcP6r6Fpvrfhd6TvO/SYuDUnAjLbdO9uyDxwNeapcn8r1xRSXtL/YQ0deniRVjtLFTgUymvyIWz1Ek9lJ56M5atsT72b6b/IB+zkb1LsddhYbc2nJ7hFPrleP86iWds5uBgb/vSR+opXpuUvlIzTHhGy5pTLbWXpDsq4iRtLm0W64MRocWT/Q3DvG3vI7CBw9IW8cs+TRDwy1c9kY0tW3om/3AHbhSQdpbuPAH1meHS0yh8dbCp1a/i4qSJK9gilRfNdIv0hXXLq8JSQh6wfd2jIIrQlQivxf1vwUXGYQAvOLJnaMcAsDpUDs8WdFX/UZVgZSb/4X769qfWsnQ/uRjoQ0fy1jS9R/lYN8qq9dAq/qLKugNAvMeu8IqRKngEq91sflD9gdT9WZU+6oo4VYGN4pa8p/kwxHkyI7W+v1iA9tld+vVEiRW2XVRyh6YHntZYAQ5Uev6Cp42X3qysHmQucWRTUNRqssEVF21mSGNXWf5uw87s8zH1PCfhbwdVeFjcq2BCT41+BsUgTH4YL+3dTZaS75NTwcBvonU7Jr1PjZETUgBytGGzCwF0JYVmf5Giqybz8OutGwh21avn8Addpa+s4souEu+WbqLZwuu3CPSZ1gO/HsH7KzTkSrbxTi8xtnCooMLPZZcJN4yFnlfJfK+xagJ/sqY352RYLmn/ZqEsQEYfQ87tZNrXH3DZg1jVluAPbHBljo+0GUQtHcPjqMWdI9gnFrv3CsJ9z7avltyrAQnOzV+7Jep1ew0nVbV8K3Nv+dicCjc3gVC4WLPN/fihLjsxJBGuqsD4r/aM4Ts4tAUpue3f6qqad1p+0r87ua9OYuinuMPDA77hKBM+zheU6KMJPguJPoWZ2bpw/jTAa/9dpLabvhBXhxURay7DKDq871J58YFxYdECBz4r1CAd1tYdg2yMT4owhNKHvuZSQRoXDelpDBmSVzRiS0kGN6DR1pshGkKnCCbpKVUV/Qxk7+hXqJdX/ZUp8tSWQr2VirnEi6WVOOX0kCmV1BQdSmBHKkYwT+xszAqu1+0wLLF4pHr/IlVeiLhr/bHBlXdAswdrJdpJwVlyko9KFE/RVo2a429s1O64X+YexmArfRcnQfh4xqZAjAOHEBGoNT+hJd3tAejJMxoJ51iCTfmvUVtXSXKow6XRuKbU8nZilJllbF6Iz5ztFSIZyyDEmWtAXwCPkRZMwNufl9/2iQ1gASIwOk/0XB09MwJmFIauyz5q+EQJbQmgw5aJBJ+fExL52rxXuoGKmkJnhxtAMDU03ptXg1EJN1L1vTu4zILzucjrqwNJB2ZQfp6PQuGC1yAQy0W14Evo8QeTPmgA4aU0h4Zgg+kjrrPIvOQhZsqI/8JcX5KfVIg2pPsmKz+OfUWkAglJ3/B1aZIUrG+QQinswqPV2mjzqcbROV9Xzio5O+C9mo/PaKDrRjeaRk5FKXlE/rMVa0zw5vdx+h7tNr1GA5cIpZKWzBfpNbAVHik7nlaX+Q1lYi5OpjWckgr13d3S53tmO7gbxpgwRBLNx/meaUAti+myOuYRMs+Mb1kkMXtChOxMC6F28mtIUPd+pqaV3VhCKbQsexaXTuRyKZKC7Z04PFst0fcrXthu49h5WQUJIA9fqoCQbpKcc/+ApyTS3jqHJGu92gueZnH5ehIcfJsgZa/DKodUlKXALb40SFx9RRRReH2BlJjZB/DR86XLQfDsDwB4uuY+7hbl5JQIxZCnbWMioRtvI2NyPxqwL0CNwa/kn/pw7MOXHXey3TeK+xh7naBfUIxveuFsXss8aGMDB4aCZGnCDMcjrEyrUhXdhLj4niBWLYOjuthjawUb6Bf4asiGccRl1t8JPds9ulPWUgaqK5mXa92ku407VzWlx+S7t91IY+ZME8e0jvIrxuGmDhV8/dzEe5tzhGyy7k9tSbUXfj8GMeA4LnKFHGp0cgDmIL5PFQaBSlzQ1OSrekkSTD6W4ecuQ2jOvsSk8jJCFKCN3csRCCaEQ1V04r494FdzYFSyAO/OVXrUqtOtKUkC6vCbLGUqEqOQN5XHLDVZI7Ed59YnruVbWJMn0/UCH8iqFJxZZkN27N6zJfsGcIo31n40ng6SaRHGZ2OCViEwJQEIwZUeObhe+Y//1iq6vpPXHcczMrCwjCxh+KTloTktaVelnoaH/wx2KVE6onVQrUMzkTBtGZmuNTse33ewMXDIz3gPk57+po/zLjvj8Ha6aWgPnflAGuWJPEThLYn5qePq9+guR248unPEjUWkTpX+ybtLK7GnR8uM27Wapex0e5R3ynmELGpuQsPZNOS9kAJ065PXas9OMwfX8VdTetnnmYcVqMyw6qsBhczvn3KAZ3hMeMDJ0KE4ER7yb3p/kCKLdAW2kBg41ArHulf4fxCDebh5uY21gvwdPmX5nbxahaqDX3PyycsrQ6zBdbaBjqGNuW6pVIIYRYd1X6eOWAKiVyu+9rDBAxEx0cRlEOXwHQhQB8MbP5ekDfC0LXduX/dsIwHLqpHLjHRufa80nUu0fX0g2hwa6UXzaMKB9ADMxyOhaaYcsMf/VGyTnjs+uArymv2rZzv1CJJshwDWd1ibPL/wnALjkfeGTvDj3cSP/SKQyX/GsCWFob9P1Rpr+r/hST9W6fNjnCsOWxHBo8/QIiga61Xz0h0Y+JFGFUywaL75Z9NC9XSvlcXDzswIHYtvm21RgSLuZZxnLi/AScaLeAzXbUbD70pCiefOoNWoBB4KIRFhwG09sek3cFi8oRypQkHFt+6d+P+9KxM9M8fHfMIMV1oNCpaeQYHN/6dcDIDmDxUCA9QoTxwT+Q9fzsYbf6kk76xuOgO6HNhGG0XAt5/QqpD+F1Rrm5z2Qt0aPYYfwYuLplxnwKBANcjXgcW7ywR2sE5qiwEFgQdxUpgJ6ZK8/zFJ64Y9WPo4JNqLQg6KAKJGEM9KCYoYxadFtXVuKEu5GRbuMITNaJb4goadlM1goFbRUlxCU2WeOkIMCCTIM6hV/Ljw2nE1UGU1t9yvzN3TKqlDYaGmVYMI2kuxEYF9xJ9kxssKvFckxy00cZm5OtuJpagQAujfnua2BufxyKy/urr5WA2W2PHTpyyVblahOvM0V1Heu1iQhmHPMfMke6f3XWaL0BIbrnni7uudVvdlrTYQozSxtpuu4sCX/LHmjecnB16/799v7FeRiaPiUqDPnKKyY+qaoW9NVt9XiX5d6gRYJXIcPJmo1kCjTNhX4Acykjhwf5x+abHtJbogukylyTMm7xAjlhH8qBIisn1nFCDp9VPMQW0p7tAdt1w/MhBNc4HwMD1pj7Eh+SlD84RaU6XfVI5waDmAvUayQR7x9w0DRAKKRjg8sNLWxtmnf5oINc99IxlRzF9zXnYa4haqgsv60kfH0+2Gvp8zDHzfRHTRISFNsmzpTuxNjaAYwI2oRvPgd1YbvwFqrkQeUMhqHhNM6Sx36O8RJrDCs0RbA11CvTcCGCDZ+FrdqhqM+h7l+D5fk4GflvMLpehioAkjVVV1mPk/KcgJooPU99b5aneD17oNgntLfMqLgn8pQEYXrVVl+zCDf891ie2SgM++FfmybmqY17y3lqHtcl9wFCObAYkJ1yX5izrcLXL06X9BxsBHzJvri6aqU5HMLSNP/esbzr8zssYQZOGqYiHkyZ8iITES0GEpGAw+Lv9ryC3hb3rkAhdq/A0s5BjFrpdF5Oe+3PUuK/CvUEusf785RInolzHv3FgtIo2fjlj310t6F6uheZjMhGAU1gRCnociL6vUwDNON2eLG8FTqKje8P/ubBwDTpTHxobIxT+WiycvKNbll0aOAgFiyz+6FAMnKS5FdeKwTQ7BPm2rA67NY1yNWWFgPPFrO8ITMfYpWYlS+OK6/ZUifS0S07P0UG+rpyR12/xTYMKrLBDy1m84yRsND2kJKLAP6EhX5rrO7xOsJLOL2T1/n05u13r5343Y5x43Lif3LoBFrLzcGetT0DZ0o2fWkPkjmeuB+5ZSXt1d/y+c657VBQ9UatSaK7FS9Plvkew+hueh8hgXDH34Wa3HuVIzU365EuchUsduW8o8O71TnVT42Y+/2odJTixYuNO52GEDFq5XFc7Y8SEcTRhKIwbesWutAoxNZ4UyFT5Pjp1E40RmulShXmEo7d/FE7x/0w+dzCcKdnISdLPSAW8FIyUOACl4kHJt5jr09urPSgNXJajd8Jwj5+jl/S8AfuxGCtjNFHZ4JZSM9+vH8R/uDyXksJPmSEmkn7Z1Zc5Ib8KUfB1MGalitREjgZEj7CloJBqQ11quk4AKRw7yneLsZb8PZy3DDmLTHd9CTAcrm7Gp34cQMJH34R3vU00LgkqX9ZmKn/11q9SrFw9kNINHjwBbk54sohSz6mGCl4SRQ8KxL89kBoOxV6GxXnJcHvOb3aCUmg4KzVISV01AF/GDoHjlHf1I+HiiPf3eXM9fpwWtocSUw0QvbFV4G4C9LyctDjME9LZzzCVjYqzqBmqWg4M7WVigffEfyB5mmxs+IGMlJdtxYsNQhWRdPQM1SAG0pks65EI6QMDhy4joCnbnsrOWOS1stscnzIzgrXAMzHzBTdIX/I9rj7YNnBqhZuw0y4fLNN8apJnjxmLaAYhIFM5MqwmQu01A9bt/9aY9lRabaraM9JIzMEGsL77tAFcBpEq2/jbY5Fi7gu9UGgNvknT9dq1vsUFcOuIqala8dZuq6fCe6MpVAacSkQDNJz3F4OLIxqhMf5hm3ZDHUVko9qRDkk8mbYpmCZOVV17vK9SWkV2o2kdwC0vuo9JN5ZIxj3aFd+bVwsJbE4wAD+5QAu1qKfxDINbZB4RXdGhI1MrZM+0kVsDDmgjSMSXnQqnbAcdXLIRkYFirxJ60Z0nQdVe11hiY1V46xKY311tWscUqOD5wGHlhqe+cO+LIu3ZLPdqx93AGP+xWlPzFwKptOGCxRloMUA5vnQhobkS6djjA6Nv5GDxOAJcOyn/afXuE4knxA1R//44MWHtGesgvv2YYOql/UZL4BKgCnpqId5aFZpY+49/JoP0O+GiMtpANEQzJlcSQv4QwiOHzW8oRy8MZbc6L58JkQ4LEVOiLn1FUE1m3RnkfPgoBbIPL4d25psEH+k2TLFsca/2QLmgiNE+Dd/JuDSd6vWkbsUF9Z3CKDWojevo812WPXi9+WM4TyA1oMLM33lWxqs5UqciEdL2ZuQMXwgS3Oo7kBIvNDycZlHCeEl3rB12h6Av4I8S9W6awDtANSX34OdpIbVjOopifZVgKEcLny+JNZrgeA2LCpUCwBjS9RNzs7D9hX0ti9kBYEjq8fjaIYwbG6wbB0citk0QQC+gIEwIkjE80CXd3JC7tKdZXXnbMfEiOpe7Bc6ljY334j5uiKwG/ahpGxRqFQJoXE2xh7GTNTz/YRJHi0QmlkNzY3NyjcnCRoCzQYdkJqM2RmNAQBwfODH7kAZjxUGZcCIfPXgS/nBots/3QoAuC0jMqndRBEGy90esIoWOi4L/P5RflfDCRrXvrWHDDyBsqQClmhG5z8Jb/n9X0rOApyuMJv9GH8RaMrP0tA83mLF++or4ZNjSOJLk4zRA19wKH0Qh6o+iq39vN+1N5bo1rlRalfbs1P+BYJrhCbG0fNuBJFragbJyuZNDxjhjgUZEt/RkHZEJ586cztRXLSlJBanVJonECOyHGv3O4tkHYIpJ/tY1UtryrD7FH8EFrhE3dLoEm3XtwwvLseDYVm9CW7kAO39tDRAsDwENsH58eC9i5Cj9jOObFbYvAQ1tylREzehvHeo0c2oHI0I9P35SGo5De7/GoxApB3xpe5P6y3Rq4GTGEn6XFFvP8g7VnDjMZfzdwfCLF3SrrnlzqZZDHa8OQagddpX+wA22sw0IfCxizQ0V6VwrGmR5663kaELztUP7HtGabsRijCFV886KoHdRfo6oiQTyovbbfKbhOrow6IY8lWQpcG78deN6m6uZUiCRO7e+MoQ9zYInlMDjTngniR/2lI1q3JXZUhCizyUMlP7LDorfkphriqZeD1FK+VedCbzrtAgLpGT3fkmc1MbhrZDesyQ1Lf6S5iLZVwgsilWKoP9IamHwHsd40mWtzVYkakqbcF+O0wRaFz2+tzRhlzHd+o9ALnLi3fDHbTabx3R4a/qMHkWHmnzNesrpT+mN2fq5uqLWav+oAZagyBK7UoejngBEP41I6Kcz6K5DkmUAOYQYtko2cwduRG1JwyQJ6cqY+MEJtUNR78HFT1cSI4ROGFyDYn8jVk8Qa7F1xZFyToiLlsr5K6FwgIAYVtL+W83vwB+S4jA1xcyr/ogHZQ3TPYeS6lEqaG35lkfSwqsy4jZp/g7bI15m7YvDJAtmG3Fnn2CGiuAbuzurwMX2I6m7TqoB9M5zK3HMqWSgqz8IoDmXroEWnPVGJHfm8PV15o33ESgaXeKstw4GGojNHtc8jg08W2yCO72j9cY0WVwEEXG8K98VuuyyCaaWIMiXCTY1AtchS+GLQyR8LBXWTl/ehZQWk0ZCfgbmEQTPwya1+RhnQeM8n2Noo+m7vpZsqDCqlEy3gN2d7EqdYfqoCuGwfkUHpqhRQKo3KPS5rc18uS5TKNd1+EUcVdZOsFNFShpXMPIoEUMbDbdVUVEGwrKr8H4MZe+Kaxo60d6+31MaHJZdMrAUJKAkkfMP3wb+ugXbC0uAsKCHjRv1+h5NptXwQ7MYMafX+VhobU6HKm3DmOYLmwjFqKgMapU5tQKY+m59fwqs/3QvBCdcEUKgsusuDA7MX4u8iiOeFhsnEUdAHtKWWGfaVw75+gduLu1nBQh3yIO+RCVC9mn24UerBIrHix6nL9CCHMLUlwipZ9xmVmAEkOedlGBiCSZMvPqPuGqtRnJalnpPwEgyEahGu6BkRf/+Mj4lm89cX+FhiP8XypKew2Sm854luk6dbkH6g91cpvaUbXBcHLD5dfXjfsKXLXwgQvZrihu6TRvL89USCg51RQMTrz3GRVjKov6OAaC/iPjJGhFYmO821yIDkRRT/agB1mqgOkG72Ju8RUBWJXJmxdJNC6ckGaM0PZbUw7GpPF14+jx+xwcrwy3ZoxKdNRENkhhkkLHzBDKdvj9yFEPFJM/i1Lxiq1Xi4HX7XlxwS7RtJGMH5PaGa/2IAn5P+xO6NlMeXSpOphvH2JKo7wpCIQZCOh1QOew9NtKzm6CQG6KSD/kwN6VyFczjVd3pDn4msMWvTAePPOFUeYUzwD/wXcUpowjIRexYAS4R1ya4pYbJFaHSwiY/IHG23n0QzriU4qfVQObM0CP3uoS2r1L4NfDhWi061J/S5W1g08zIE9fJ0V0/fcTv9ETVsWACpl76n2boeZQjNsTVuE1eospWifsKcouf8JigEo139H7KPbExWC0yYxLYmmensMYJfghDDw0RYxAlvUfVYVFZ0ZInU1vjlhI9D23fRllI//BtYTo1W+RDZbS5xk4iMIsM4HGtfUbJKMZ6x2wUJhnVfpEEy0farCDeEFB/ejTy5dp9ZGQ3gVVOAXjX4oDr4TFbanDzXtrFX3P9qk7uByRwXzTCDCVFbKW/AmCkeVl8xE1zAFm2aP9jzzZGrkPtwKNUUrarcT+4f0E3uMtV0/N/uwzxc8vA91Ibg4fM55vP4kOQMuuqq4baJ83Yi9aC8Bjw4eEDV6Gf7b1jZ0lJ7UGJvgosK0O7eeclYxs6LmF9e2idKJORmi55ur5BJMUTp6ZZQSQp73HINC28TWyT7nhws9dAW3x8HM/WS8D818Z6tPkws/3VwQk5kyjDZgs0wRgUUpfVeUaiiupETTti8l/TVy/JfMAHbtkHF3NUwYHPZ//6OonKL4Cq+4wbDmFZ/wXSzqO09jclgfoSVJlxLHexyekU6TuBhhh2XE0Xv3hd1ID3AuSttvN1K442jUeAHYm1b17pjiVaIRsCh8vypd7BoobV7ok+hB2eTxzhxdY48h/57u3CZFsmIHUw9Z0kqa+AzDXZ8eCZxZ6zA0M6Ng6UzHNO5qqUzoXMKbfkmNVT/O32nkOdAJhITifRpi124B0F5fRdCsYYUWWtiXtSHMar2xWtWilUOpP8RSsCyL5FTlYtw9Yy8GiEnWWBAxif+D+Fn8EeCQTh7TL6zjrXmtIrOnMWN0VEl5lmVihIl1K9VMVFhEz1hzaEXBAorqW1cCMt+f79nVwSXYkwruVqrIUR+z+t/Jnx3CdKKnnjsWnmyexldZLbt6xEmP+59gsrzRHvmSFyh3TZN+0twG84D4aH5KhAEqNMYMJ5cIVnbcGZV372nNflTzafvR5LHT2X4HTAlkqXaMmtXl+XTs4utpPNAJGvz0llKuBNVL0JdEcklNqzw2TqNNY3L29g7IaC7xbUZLnffBxMs5Eeq7k5QkqI1wyOhgevTBmAHyBh5ZM4D1lWg9Xtn/aMf3X8sDlol/OgvuFV4O6NJ1FO3MUQsZLNVuxr4lxzEzqaZFbWCZjLZ2LPef4YvQB4pOZwZKykRFzvf1ftEXeXTibERQFgxBrZwhUjTboQTvergNLt5naL/vaBVbik81y43jWKcYdWMTfRc6PF209SzM8Zq8CeciqP72Nen69Ep6RLPzSH1pCg9jd/N+gXX5ZRkuk7+2hBls06w/URdV5Q5PDAHt/yaZziYYARl0JNk1NVcnI0r9WQEjv5d21vFzQFBEUEn+wzzES9eidxd7/HEau5dDN5XQX6ZqwYpw1ooxnsYrYb58gXERwibhBPQC1sF8JcPpl0vGETC1MQTNepcZ/vOE9NncWCCP9n0TVtRpTJ0laG7/T5AiU6V4v31SoGLajKPK6wi42MvgJJxX2J2ZutMpeQMVGu2Z6rSBZVbTzBY+TH5d1edYkBfOjVuXLjtuPsHXUwYnjcEBt2f2+dyfIKRqS0Gjrdes5znKM5eNa6tiBpU0XMWSQebVdlnXjR/6p8App6h54qC/ZAT4RKB4ZcjUN/WlTN/vn3FsO1DZGyw5GfaY1yGvY0xMfW8sL78Q1MLYkuTquaYHFZEYjJw96c4xYZkUGA6oKZcNEagn3q8iFyXXvLOsN/zaR3lJqqXJQtayzh4xxLIBvSnENf74j1+ZM3NhijBxamlcabBq+NsFHC2DyFyL/uTg2gqtDiSbbC3dIHK/LXj4V7ERH7qgG5cWzPKMqsmp7FBxL1CFy2lWVHBJyeB0JlFbArX5dePcxWUQ8X/bI7A8Ydo8WH+JgKMTSTHqWXMgik05FztUxDqgyEIBZE4G+VGMMyWdTvlO2G39I0Fz4Q6bSzN6iBDfo7ewMOrp7G+g5d8VMmyjv60aHqL6OtHr42IGe1/reomtyj27ejG9tM3M/xcirGY++Bp6Kc9g/udbZKUrvD18e4S1dycawh5qwcvqRK9kripIZLHFCoo2jO18cmMIvXQNpYeDMnUguZ3gsA9sEQOFxrifvJccAAJL8aBXL3+N/bxJ0+NuW9r2pigWZtER2MzpYgRNEdfDwxU1A+7OQqlo/Wp0TNqR1o6XNR1rs97/UuKfBUN31pXPjuKNO/HVM3OcgA9EUD9xKrfXx31uY+aJj6Bb/d+hmQko+UJJ/GX1osEd2X3+d052JaJ5ppQu8ZEtI1WpJvZ2uU1OfQZyIXhkRfTyx0c0EVoqIBPStd0ZclOWSJVojZLCX7Zf7U8cvpXambCXNNtKIJ/z6Tk330G3ii73XxkNTPp5rO94ok6XC7JVBr+aj5+KY2RtHVTtnelJ123hITGYDwL6OP1EeV7SuFkG920ALT1VisTnJKIBdMpO4MfwfprDtaqRvm8G0+D2AgtNYyq6WOsAGC7Rkmz671Ulp3xscLUbKR2/jH3WzWId4asFvgEQ5hvfwjljUuNXww5vSpIVHufvR0jIIMAdbC/Tl9EM5weCiM2m/rB0oVkwWqliUQet6qYLaCiaNsldUVvJQT1BQRZzvE5byoK5Pb7yYuoOaV2G+oFI8RV+MVaCsE1XRiF49DLsQeK2i8J90QtTs33d/YAjP07d4SovGU+3QL/gAUu+b3Fogm2N5E2VhjBc2REg9+G30nG2Rk05EqR+Jq0jnVWBErgGybMWKVdugZAQmJ/PxWmZx7hLauE7dByS67zWoS9xRFlVlpghCt71BzKAiKkpBsseyweDpoV/pE0G7cuHJbhCT53QEOxp17Vc7wsVz+c2X2GvyunDlVNmJfxarecRoYeqUvMRQAczsF04mHxxPdfGyza906W+8FPElu7N+c4nSMziVBDyhZivMUwxfs5+yaVkBtmuEztTmE4Kq1EZL3EXZKDTX8YNSkfZp2g7BFZ6Y/Bd87RcS3l5NLna5ZZSJQb6VJEWfYetFwwaUYJj+qHL6YkLuh5lVICqyiUDiTvZ/RKp1ag/8CxURsSnGYi4KQUJX+Lv0/ZJgIvAvSeesSU1QRN/d4KMQ1niXYwJq1Mbhbh6/iGF9n1pUCNT3ZGifeBRQrFQ7PhpLO6V4P7wUZlHYMIXLxPRReHk+4GVMaWrfhqkn9PQLqyhBi+uoMA3LNZo4vE15Snv7/0mODSet1GeEj7KdgaCFvO/IcoTUEWcIg0zVTrH3HDn78g1W4G2+wmvRmNPymUah5CoZ44rkRD7dwSmRy9J8wWdOOPMwWtL6XGqiD9PbY69f15gkeDC1z6FYHiEONBZock2gZnVfWiz8hhpYfWZPNUBgDQX5C8u94Mojtu0lPBp7VzDmLfgt8n/nG6jzm0+oRai1+sPpmfUsJcF1QuBZufcE4efk7leWGhtHL9sAAxU7QzBaUFjlFDr8Kn7Bm0XgVI2nMskI+72KwVtoWfqXN6p48T2sck+ZCtcRFTSMS4+3yFrEstOIFSpcn2kYn5whZeljm+oaq6OiINOTV5oRFtEu+JNFSj+Us+WVW1v3oJHvxuaP/cmHCAjZJaMmug5e9pljYVtwpDN3Qcpvb3sKalbltV6ExFFnvpn9IzOKHfCDi0HeKUDifuEX77mi9j/xpZdpyiT+CktW6WNT7L+5JhM6OSmKF4V/6SPWW4UvfaRC9P1JvMxZ4INP/LOMtLCi9OYLnzppwxAT3zgpIS3gmqx5M+f8ZpQa389DfDqpEzKbCXpKKqllaGB+yn3ej/giZw+l7M4yGrW7rXdfXSP7CLw76gZTI9G4dXWC29zpYEHvWtnM6Uot7O17D51jgIn0CX9uOym0n0Y0Ap8W0IQenjkuMy1AO6juhKMEODqYKkNgyd2uS1X5dOSQRE6U9KXxZrftIghRZJaoaFbjSQG5L0I///34Q+dQXOEKqU6GtHei3wbOy+oN0cJhsBoO+1tJyBSyU+RQNw0XZt6q5GmuNhXpJOztukVBeAIzqh1eYgQ4D2paq6cU9fuM+d+x5qt0dNYZ9zwuFLE+MD/ZSalGYwvhEgGnmrF2yT/i4nZRGhdKM/kvLDbmfnKD7OIqz23ajpjMY9a6Kgf4+AWsg+/T8PFZh/Pc9914FtRUiwcUoHeBvzjeu3jck1eYpgXajXin3/wBjbtOXxQCGtaHISN4MCl6i5it9/QR+WVLKJmV38BRcceT3NxyqLzxcRuPnjpq3d/Np32ZBf7YnCY9RFbTTv6r2XGKsh145iydXX64F0IDrYSzQsYs+Sd+S8UDZpxQgxBWYh/ZokBXqRrKiIjPoZD39UXsW2jjFcdpS8BbKdxiznXHyo9fJAVbt+awFa//d6e1eE2fBwZx7sIiDpVwaMoIIoCqRgwY6lF+D9Txzyfwr35Hhk+JwSXlOF4GuVOVIo+568XiNRtNxHa+76IPY4aeGRBoo7S3VPW3cw/KQnqr9hgGxYjxWBQLiHtC3WKnzYCdFKxhpr0vCEJR+NZMnEh+L3ifK7C2tPRN44IPwT4xgS5IUU6GtXCvfjea1S8TZjr4LQc+N7tRFdQD3XaMXKUEel8bCMUdhZMC6Ack7tcy8NnXL6IuJoV3Pitx17Cs+0Sejlnzdo8EoIkHvdvptBoX2K8uXGueOOCUOgqFNafVgHlUtNiaCc6S4QBcwiDvOwzWBhG2gH9CMnR7i4GAGODx1hza2mvWoIOsJWrK5h7Uzx5s0bFuSoQ45U5o8ObazkC0U7x5kCwulfLF2MC5nZrQ7s87vLDGzl/+k2nY6zDVKfFn6aldomwfk2NXlVlrl9hSQN2FSwQU38JvNcfkXI5bKam2/boNizPalzX3SqIYMlTGeba0Vb2GZOQkviT4YP9IskdrfOUp7zTZelelf3vmV7yEJy1+dNuaAqPu09J3e9c7dS6CRLaNHqJRhQKw34oxUZ0Q/PJraru109uhGrQHRa479+H5+Dy4Kpl+nMk5x5CmlcEog2cHG2WxT2R0h+Cc87KBFDDAe9PS4m4uvECYU0V4gvxa7WEHtMTN7xUzWbNBG45CG/5rsAs6FX3NInZjbUVQsc2a8By/JtXEwu4JL0VAjNVdRkzxijLlcenrev1OQ6HDJt5ZtWbwi2PmhK3m8rG96S4bTLNZcZKv/8ecEY36Gsg3L0gdwbABxOD2QLjfqacr/A608f6SH/W/CXAxK3vT6czvui9UUwkt3eama59WMD7ia52cSA7QkCiZ7nQZAMZIY4MuExzgMVOc8qwKVT0eKIxyBZTlfdGDTb2ORzgblyQaJy3ZD7zNMDVQIZ5fDblrscXXQMxFplzvlp3uh5/FKgFnDXcFDKtp1mQDDQf2wCDBhJ/O3RvKET+t20UiftUGcN7vryzMnhYueTt+8U24VXD9jbxIG4j2XBvtgCkIYWVNociZFed8XnRaOdsWmHOdefxO538vKIDwm50PUj7miTreDXfxjfoKcNR+DWl762vmpelnhK5el37hn3S+Zl182MIrvPaTc5OxOymOhrbZbc5gAQLtub4u1l/04AJJbKA2SAaHYzq7WJ2C7LDiNUWn8RdNSCzlZb9xPzO/sasVqNK6yxRfgsxNUVK0xUGl06qfN3GEU2MWWqyoU6zi+USNJlYIRfY5vCVn4y6eQqlNjGAubUG+gQLS5mG4rtr5AcBc+LKlRkGEzRl0eS9zzo3FZS6bRxPGojX1L29zAs5FeNaFFp+wn3qC78kERO5eQTs3nbYk76hE/yDwzrJjSXJq9ueNDByYcnuSIsV4K+F7N6J+dNsrA5i7HodQwfErPe5E/LyB5rrwfkHvUBGH5DHKvnEL90Pht41thThg9Y3N0d/i3gEF6Q253Zg7Ec5AWcJ4m4a73m9yaSHRW2PG25luCnG/J+xFkwkAEwsOkabeaPcpzH45BrB0SuJQHlyJ7bDw0asgrzZox0Vp+3CvdMvMKO985S6fu/3/6kM/D+AyFL5R6xzYOefJweB1p4ePFeAZ4iaEdFSzvgiCo2XwS8Ada6pZgBBgxjfoHpoZW2HCq6XxfHkWjVDzy2HFa1q9hRE49NPnVl1gP7Ej5LiKJQrjjnWnC95WTudJPo0zViC1Ruw6DIuvdNuK//Ob4VvWkCcJ6FAIVJ3hqYvR1OWo2YQVu2Y/0yvVdQIhXWcgptMOAj39hvOpOW/AWAV33RgsfMnbT8Sv7NsZhrMHTzTr2e5naZhvahni0jaEA403FFrCXxk+uwpr0d1BIqDsXpfiY6lLw9q4bagZIn7YR4uH6OfMBurP6bncEvwg9XjOE9/ueZv/E/kbyKVJZ80uCd1v1QWXcqsuSVq1EuxIm1h5kIKjntgOElzRveoqnqU8ttNizHa/9ZU6oiwc44/AV5m8MtABjHu3RjDOQrTtlq3bsU9B6sgC31BvFNDnfmmbNRj4vBniy1BeWZoKKkVK09fcytoLRZPUU8bJRSvsHA2Be4V+EHHhGY6ejEnopAeyQRvA6ghIeokmPiAfXQFmQOU2HkmWfHMptH7E/jflh+iuyUePrpW4Djcc9rjDnjO1TYRe+oOM8QeFLHEkarzwUal+G1YFBPYwBnnHy5BMPLV9h1R8XgbY5SMmtnIDAJ+LQQ8toKFyYL738XakpacWRsXvVrzdM2dUYXz+bNc9Jpy1EZs/26Q7zEN7F8je8iOnJZDuDRTaKx2o9ONZ2F/+G96A0Pql3DU2CNnnvWUrezKw08Jln8f8HQBqsD8vcbNgu0PoRlY7AIhx7SFbsL82eiuaq5s+A+e2t/Ql73Fl3RjPNrJvibq+gQX85CvffzvbM8qGSs1BO7F6gP73sPLTNdWA5sx7uvqtVgVY82kb3qthFeZ3J9Gaap9PeVquTIFCGipaYvD7cEkgOgF5/vhL9yPUVqyq/KjIRwoIbotVgoBQUb7lrKYx0xtAZhKKApsPqBZMbV62AtOeiasB5G08gH6wRR/rLS+egNqBL1vrDSKpjsaVzRPOlyHWszXJhD4lwRxjvb5IUaq7j320yQ989WEtEfRhlFLkiyfW0yMitUMSnWWXvodI91HQa6kgBaaXnH0AlEd0mimJRx6nPmvl4VILJqs1/SxYCY5SJtICepDRXuvVVkQRb3hJTlHfIVMV/ptIbE6/FbN0ocmZAO+dZjlmLgqm4OLZQ5WO9YOvu5AspdTf/0+ix64VsnBBCc1W/Wpy/a97oFpak7Czue9RTlB7JTXHsRlfFFfBDVo2PY9Id8dUx76R47usXTfcMXLJeyNLTJMRON2lnr4YeRE1xdohukLiXR4lCt4AgySKRSp3m4ht09nGNeOqZZDESKlktrf1NGZ1uZLmvoHAmNDwjGpMz52ILz9ViIphwJkYWIOzc46rJnnuIqqv5UYoVvCCewhTYZwD6y7D1sDvIt2ADErMraCZEsZ/DEUglebqc4vKI/47CfjowKtLpaZyMW/UrPII6gJBAuywfm8zQ4uV/gpig2yynJyXNis/AezXboZWdgJnV5EkADh2mLaDZL4lGTk5AJuplv1AUYYAg3YImDMcXmXSTv9nuViRQpONLFC/ZdxWtUB24kdTCQsva3F/3IUnZZ89+MpuXqhAW/dhWMqet9u46yyRAyppU683dCUz2ML7E2jX3/aYkcW6MGQmda4IbVgfeZFNDbsQBWz3Iq/6kxZw/OZjCDn4LiFXZ3d0Ty+9CLf/YSLexZFWBe/Tn5h5WW5cUiky210kTAk1kRij3EY5Xp0Vt7UTImbp6pt/Mud9dbBJqneDzTS7ay4N/CR/1H0td6Tv+WHoZ3OzWo3xKElG26G1AKeH8G3VTJXIXwZMgU9Fc1FxS3zFFOqAL7klWxEWPx/eVS6Vj5ZsN2QvWclNjS3A70rXbl+z+AyB2qPCujf1aXQTnjTamjA0VBpFpQHc1O7dDmG9s/bYPnLf4dEAMi5J7cd2320OhhipsIT+LJKJU3M5FkAhPwOSnhYOrvnSTrfWulX+J4+XV4tw/FlavKjg+GnvQbZXevG/wdXFW7+AwaRkV4eBPuyTqiQ6U/gMxJSsiNGbFMymZyL6dMBWxKSml2heH8rJKb2dBf4YUK0wN3VZ8/gJzG6HRMSYTxQ1iaogVUG26BL462u/Vbacoeg0s2/fkWuStLj0y9XDabjzwd8KDREHXXK+XFWGrUzf4nIp92KPHJyH0hOr72KQAnogMh207As0f5oxjKhgTqlcS06L8g7yXeqU827l90ZCtnWQE5Agg8dxqtI/NH/+F+BtVTBou4otiToL0fWnHF9WVpbB6vCaLTyEEo7pSuVUCGO63u3gEbN2KUvEfhGjd8JH8PCAUjAeCLP6Ln1F6CpMrfVE1jD+VE3ECJMMGy8N3Qkg6unJtziMMPM/NKkTi4XezkCT8ZmJlVKva++H6hKKRAeA8k7DtrskrZs0pfJt8tHW2lJvTTu29Axv3da+j4AafbbqACVWqEbrDQlwaUccpQ6lpZiJriUJe1yMIRhJ6zv70SFc6lRvXn7h7kC0JyMJxx/aomlUkIrLt7RqCTVRwTawJW/GuU0HaDn3yx9UzGIT9uUOwsy2NHik5cpFnCSe1Qh/b8wdoe1oU3QAclGaq1FjXwc7NB1jxpMAKiFVPu2Vd2zlbmyKzZK43aldvz4fT3C6rWFYmDWJFhMW5lrVy6xkKyxLiBzgrLsSU92y4/EClhRWjqsI3PZo4p6fsqU7bDK7ouxTsJ2MEa39qPJ8Hl+xvXqeJe2+KTpTvwsK48rkw2LSEzj8M9TEtxA2fy0ARz1QhU0lWroeK5n8sA5HjcXeNrZF9B+hraTPZWqa0RC/C5yK2qi7MifWnlWsb0chGpOQ9NcwrrVNOsanswKUKpSqtZ2D99PWsp2ynk3jKq951lJVo4yWS6OZbhQd1Qg+ik2itphsTkVSjfmGQejzLZrTXUnGeJeusonfFWHecSbplw0ynto3DQFXhh41W2L1VewiLO/SsXCvQekYJHlAoTfGoaZmuS4LiSC1HuvnwPmHB0BgmieAbGe8u41KgIrD9SpeEjjlFac47RD09KMiqZFByDbqLfU7eMDS5o/xKx/eNpMIoyk10Of/v7u1RJ2NiFocaXjSABDdqmpFcWMqm5od4Fke7t41QnrpyGV64MA3KsnPJLR8njxPG6SCt3gG/B1IMz5Bkq5r4vFppMTDzqNhfzLEDqyJGnCQnOb5JYKnKdl0E3gPd3bImLEqukeFL4cACKII7GQRQyhZ80DDQGiNZ2YEmEknLiJuwN12EZ7iEEwH0q1Fy+Zvfq0lUiV2t3vjBPwGkM6DKWaw/sBBx8nVULm3sCMnBYgct0kIZWv6fQbsmAWTJlwNmajPQzgOEVEcDwBiw1zZLXxeK/1u96BOnndFt657AKlTPMMbfdSRAirPJxlo33Cne4hRSAs3077aghcImCoI8bo8ztn/0Mds+gOWSdOFPLfXp8/HFZlM7FG1JYF3hQ4AAlnel28faziRCnf0v5yN//kgZ6Wh2FNUcAUe7e0GdhWy2I5qSz9835VKLIeR2AhkFnLqhcqe+Qj7o3ZXzHs3Wiq42wF2psnX9D7naBMmqJA4+oyar6DzOHspcysfz/jU9+0Flk8JuQjG/+w5DfMMCtmrN1A9/XJNDj+hqO0oW1lNmV0cpWDuy/b+A3R0OexXcoyeEKDtZM/8igrFl2zpXwLYWd1tcGdctwqHlQagdB1disXZBK288O+hwIEBZgAr7O3g576XTVA7smM6w+dUWorf33p7d7Df7YWuHh2WINEb+uxkDubJ4zvveG5X0Z14jeEwXBKaQWvRGLUeqhtLf6vAy5gsXAZbVArZKPvtZLBmVpU1J2or5vVY/kmizUFYGckdHGbC+wliK7+YudAkHVwvC3W14TRdz8doRkVqgQFYY2QHHRR+dhL2cOFYRYgQdAuZx7kZZ358gyr3dAWpbWLUVtIEM98E9fjtR6tF0BkUWcvlzUgx9EYcmxsoxasy0Na5kJwjxbCw4sUp+7NhKIU2/Ns1zq4adWDbVPP6D9dJ18C6FWP69i1XlNAcufz0PG7bxLkzpuzhcvysWdtH6g5xUYneTmGIKb7FULI9GalR1YtU3L5Mxnn9D4gGCGG/o/DwUX+q0Na1cMrYPAT+a+VoPFKJxZQPYSakkiazht6LiyHU1NtZCBEl/8/OqreLb5+Pq6Z05IGB3bMIkRUdilwwhbqb3ErUm6RTD/IB1kBBf5c524spn4LjPH3vujFaDw0y4rJs4gY9KbCjlur5lo0MXBtbz9UNqCgHrJWIckYMpAw1/PMMvjI3OIIcpQ+S1+ZJFD7pKiVD2vYdS3+JFQ8k3LyuoJz0fx0bM06FLU3H/aSaF35vCxyGo53vc2L2SxTIo24NoX1rm2zgNi2zux5+MR+YUSpd/qpn4x+XW+PLrwJaoAn+hdd1/mLpHZ4iotcyK71X0WV3GN8OxtQWpvDls1fu7tF3IWN/QHswu1LVv+NTL2l+EWQ+BqIv2aDb73RCpwhRCh7OkfzmiHRLEy7cVM55BaOOdP3P/ADhUrhbpJr6i8OSJ22xpx5QIX3Qt3UoQk4ZBwXLj6iILlUSpo6f+678veFuYP9Dy0Sv+cmQMkqt5agWeox9tAeOhfHA+kLRtkGABpnEOebuoEeu8mgYRs64TYMvkN7XBO/oDZuc45enPr9HcAQwbJli1Pr2LRsi4s1eAQVJBJFliroenH0RGSj4My7J5TpxLTQeZMmEvLX8j5Z2sYNYHLPNdEwUsldap7eZCplOirHUiAytkM9JUsdDw/VxlnnOIU6wOFt4JScO1giGhC0XvxY2m3CJGxjNQteoU1PUhKk2wJH+IlfQv0OeJZcuhAh3LD3D6CnioKQyaPKdjwwtRKagHcOH1yfxrtdRbpUWwyYRVn4FgmeD0xayuAjZRwAqvB0QtpUuQ1eZZFzv2HdbWWdbJ4D6LNlvtbK988HIQBryqW8EqEIpSJlPV8KNR0tj6LSSHoBljEhD4XM5JF6OS0Ow1skDIDF79dfaKO9tOZjxHQSxnWw/Hn7Ll40jOrkmoP60d0IO0ySsSK8qIZoNie/UoT+u4v+VT0dKs1QqEHId5/Ha8LaoL1VpaYZuEx1mZtYZe20IVCuwt84QSHdn7pTkVdGgQ2AhzI7SQAkmSq4QpNbakVah5fDRVsjymirWNh3gz1aR+GSnUeJGLoRQYMH5ItGfls5QigpJx7YdYvKxM0ETRXe2f/sPtP1PyR73JmQB0xIcD0zgc+YENq+zkmbZdRBk/ykxwc9VCga7cvH9iX73a3hiuxC1hOy0+Wv15MoJsJuNtIW+9BGE6pOdkQuC+kCDZuvNCPYGIEfTvziAEyQwgNimmeFzhcm10kAVE9BOZQfBq3bxTm/aM4fy/dUqv3phfqeKY+GXHvzhqwOZOXl6C/Q2NBKhmj/P/1FWK+2a8g7LFLylJSFiSNe6sByooIRMsFYqBhFNcq47B7CrRcaVCEmOAo17aGcvWIA3h4YTri0M7CqqnB4relb1Hb1ljRB9Q+SD5NvPoiNch9RNRt2/Ib7ZHuSuSsEIyr5cizcJHzjp8Sg6CpVu8hX4IcXhkVzQCxiFVj1d5z7lZqH70MD1w020LHwu+6p4/qqnkMQyebw3ZKZiI1AHl/PO+PRZmm45G1OC3ats+eJquRPyFyXAW1g0hhTOmaqyQN2UVQGQlTmsZPH+sC1Jduwe6vnvgVXYKyCPC1AcVWkMJbul8vO7/fFe+Ym2AUdHPZeIXu6H3lOB5b96D+LkjY0u7Gd4Kn00iayGDN3nFg6aa7KjjInVN8Ty8OBMfVuCoFXeGCoDU1FVkk1M+D7u9oNbACPLJRIrXfQOLZwWDNldCbQdnZRZXJUrVWbfbImvTp3ngCnPhtpaNvx6/55FZyDhHpH/Pv+6xTTv7QY9ob5xY1riMmw3aoWdaocoUfCm616ztbHsLtw0XzLnpKo+u5Us/tOmGDbTGXzdfirYmSaMpAI2dxz+lia5g/uDsME3F1GS5eCUPzsFgc4ggVNTjoDoYLGLSQWrbhZOWYMKxfSU9o8IpKN176BLXjTpuQfaBWLw3PRqgcUZzrrrO7p3PW1cFBwV0/Lk96GnUbhX3Sui28jxKFxkEyLYHKOfPMCjjYgQuj5cXQKj6BBbWi/DqIGkdrk99F1tYt3hitLAb8RiFsrofg4haU9HsWBIgIFjm86qvIy4FvafI7l9IqsYVQwclTnfBJks/jHjUVFpXRsjvvLy5EEhlC0vtmPzCF9ymLgeb/zFhx+Tw0Z5lIWpMpstC/7keSPvpSS7G1np81Eu33xUz30VuDZewpmjbOo541JYy5HfDR7bKoTRmXZwabRfKJNFW/hPzUOpCS57c1dXH13nxkusLnYrTPOA6XVIuT+WGDggBjoJNsi+Fm3tUsg/rvBjVw0XgGJ8anAuqyINL6IH4xGW8+6U7zvPL4blI+r0UsUZs9f3w2Q16T+4YdgmoOlJIIgmi3Bw2LFsIfjfeFCr0dUaRRkA5vNOfyNvl0mKYbpfTCiZyRicEAwXezUaBrWEy8iF+Y665op5XH4tajtdRvkjMlh7ozzRz5ZsckpOwYxOm87LZ+deGGn5MGIet70Wv4wjn3nDVffHx1Pm93WTveUNkjBhPgw8iT66Dg/24aMgipleluc73A/wnim69pqUn+pWdCqiTVYuu6BcxBJ+AOl5uPWVNGB1UU9GDmewDgh4UJsM4sdWuNJ7eroaIXFc6fnmtvggHrg32PrLqUE1W2IawW3zuzbMxlIDafX6GgHi9PVis6w+p9wBlucUmW3wiLK9Pp9oitPKL1Rz7xR7+BSL3t4hOWCJ3+h3uOSv3m+WdZHcIMwjrpg4xMtxS+dg+uxgwhAMEp/ijy+JAxigInvTlS5aFbPDMbXeSoWEFH21VGyf31Uu38ddFUw6Hy4MuDubU3Fb030QwizDhGN+RljN2BkD24tYq/ViGJB1rdlwrjm9xH32GG8APACRup8xa/sg1OV+amyNESIyle6OQdKMwsHIoCVFg5k9f3txU6uokbpwFYNV36EBKwNNaH/MJsY5kZ3JkETVC/iXRGG8Tm0tZKVQZcRbjGbKN26b8YOs2SIx2GuOTY0l75vC9PigOGhE9eFufKfQ9H85yTGezQX/+0nTvXPTdsO/vchCTanrXoIfkc5DrYCYt3Pw76EyB8TpkAnFzHT8/4W+/PIjB8/I5fOxdcFuaAdycKqDBXXzBTiyS5tHHIkP0OJD4cOoSinj0qXq0FFkcpXnNfriuUP7gw8dxTPUCh54gw+/Ll1PEgyga9TEH7vrMq9gSRLcuA/Or0nacGn1+5q1jhxnbm+cJXJaWlVqrOGcCwE8w+vJuY+mWwIHZweQ9CpR6O1uI9sffGfQQTJrLH+0u9+AdLf09cRRrD2b0q5bY2QxPpre6zc3kHXLks9MnNPdav9L/nm3fvMzgMrd+Fc8+OjEbnIKNXuJ+MDbwZQE6taXR4r9cz74rV0RnZnt2IDRM8QTt/hvdFGvBQRgm+cliwLNfTKIp0+yd7+uwnxBcea4QlsPID9+HLj2DQiY57WIV1ptNzx8iFFdHIBpjQ8LMzf5iba82vbYhmHs8tkARFy61ISdmHlLarTCylEYz/iZF68VJ2YZENgnaDTuU2v2oc6nDySHnD+Nn3Nv4xe2zmYs+4sAhgqE5gDphlr66Kh6r2GVWDsBdzJpDoCTdIEF1YEJSvJHt0gFzUWizTnUAgpqQYh8E5pgcEgrFftudyW3v05mjJLUEYvS4ZjZMAZEkk7lHIp31AvcKlLMP/nwMClq+Rip6xa/uSKWcDE2DMAXtaRuTZNGcOSETYtHDIuWqdXixg9fpa2Ra3fOTV+bd/n3dkC2hCANljYyVqUhamZTLm1rEBgPieEZf2ZvgujI7+2c54R5ahhCLxyG8HkBzAiQ7ap7NFBRPj515KNhd5FvA2swRMHm5JWU5KiZ1LcdlD4DIHYJwIGLkmifrKM3ruL+lysbo9v9E7rbqHtCMAkxG5jEPETpEaYZGSRwjrFtvNsu3j+71mGN6jNgMfwG7XtCnDUmnOveHa41YV94Fps8FVmQfIov5B4z00XtjXrGcOKwwo4yxwBzqmib9ohBXKMhyl48Dugb6YrYfZ6FMZ3znxJGtYbhs4l4gKt6MHeZFT6HZp2844jbvWPyDdaY71dgx9qvcuK9Z902DdX0dlr11oB8ZByyxRW2zeZZz/JT39+ivRRDUiJyquIOVlakH3lHlb9NO+LwLnKqQ0BiEyRVPPDzTD83KEcDWy44AciR4A8nzNAmw8JWBMA4CFBnlj680vTLrYADUSdvT2P3QAtN/oMisWiPyiEHgpXg2hTN0o/81oXNmmziXDogxH5qOn9c8e02qTqgj/WrY0sESZ216AAP5MGzZy+dmqs7xADF6SoXjaasCdFF/XZYASjDhSq68pT49Kwhvziy9MILqda2oChj2GT0wQAcNStAoj2/5l7WKYGrCtYO+yZQWafcV6p7cpqeL2iAPiXtApndvx7eeN1ADKLrselwt+A6QZ9aHJm9MvfjFCsTasgrQkr8r7lONZe1Cu/ORvC7qpi9h15nN0dfB0cos988DVmOT20iQagvS3x6j7w3glGMHhrEJsCCxk93KSkekn8o6QcVgb9pvchDDzeYCcx5PJMax7EIwV98sMzAgvB8vAR8HDtu73b7dYq7/x6VxeiSQIkwVAkr8cBsbNfsrAyNCKlcT1/uPF7gxOYIQFh8BgNHqEvbl8YsK2RnRVlNBHVL1XxOfhq6aH4ascxGP/GDikqqcLILnVE/zdB2uy53XMQxdd+veVPu+H5amcKWWLrVxXiyWHuABWTJt0iMk36MbtPdf+3cg8kTKlHIe6HaBvHBYZ1RpQNWXJesYzVcmlOZuUTmpNkJIibGRQ1XqjcmgnNmaEXsrXBbGKxtiSf7XSdnFCH/JgcNknHJYsOBVlzn9Vca7lbxHZm11YDPOaEnztillk79YXHps4a8lgtNesBR6qnTMHBqrmEPPgZdabwZtRPZHIYQm/Hk0jyqvaqTI0i00UOqwsXbhtUF3cfd5OuHa7XV/EkrZ/4yHnBlxj9A6Aqy/CeeMjVbMMsY0m208RPaO1T2ssTyHeGg88tr7R0MhdzFTjpErA4kOwDXMxZGEkpXcwvcmhKgU0AJz5ybaHA7e/BRzpLqp1I+9wIclUZIZVaP4bexjioEbOCoJT5TUwjERB+6mlI7eWl5P22hAOFH1c209R7Y0aGURbmbGGg7o1QwvHk0PA0UHFgpZ4M5mTfZJpnNE1aMzhrleb0y1P9znpRhtCAhijIyilRvzlAqA1FSGxOjHwNfgDiba3QTd0CynOQuLJhQEjcZB2Vx+2QBAsFVIYsHe6Yfv7M/LOthInxp95w5T3RgJ0gD92tDWadWkMEy0ahw7rqYmwL2TSK54lk3axaIXp4qsNolr3ts4dUZIaIJs3q83c5PgjYqgwZKEZ/CW+4f8eqzJlQPQBE2DiFv063MXWVQCgwKOTNehElH3C2HORlDMAOGQW/EdV6yOODaoIJsrSNmuR5cV1K+vUzN1FbGeaWVxIKEGAZJgX1r3oKeUmzaTanswFTyHDKzdwgaETx89q5vy0d+AMdyA9rd9Jf6JXixqAtW+MXuyXGkTPDgVSBkhbamRCy3Z+OdKdCwRwdXhBZkKGnbmcCiIMpiR2YFvKx0uU7JpwHm1NZT/fk7WCs9Jr0AWOsssd/2b19TyBepp5UhVXB9F/B0awrBCEHxcB2qwAzsl90TdVBKj+w6ujuQDphIJTiDD0j+7ijocxXHEr8dXECyZ1PqwAAauwTmAnsMHa8q+x4VvqZJNqM7ji1f+yapdNVbNCVIGM+XZWPX0z9Jove5NG5xBffSJjNUyHpJ39ptQ+WFWisRpDrnos9t4NtZD1RkhL1Uh86fYjgMz/cgE3ntSkxNfls9OkYraeFtPNE7qXpcXv3ThqBjo4/9NzBDtgLPS7CaYAc33jI7jPnPkuLwW6OZ/UJS26t7IMNGqt8/lul2nQG5c4Reuek4Nl5wYAKBsnsvSIlOKH9gt2+cCtuJ2s84crbmUNv+d82YCyeRA9iMLRV6argoHYhGN/scgMNzD5iqK76SPMrj+DS3DBDgjE+SJO9DBrmWWdNEsCKCultpiUcYYAiBlyKdC7eOpZJtEZGQ2CwoWBbsLpXXxWT4IcSDBnLeF17F8n09uUsPiNHz4OUZ1NNHQavlCwCVHOW+tv8PNgUT7ypXAtfZqjn9tSCMhP7xObypwgeUbg3o6gqX0eb+5RWpLUWu+/HWAW2PntNVqbTT3NwCKN+bTPm8Um/qeAPq9GCBgt8UhZNXu8yEaUm+vWWe3AdrpjDk1nQ36CM/9Z1m9T3kOJ3oEhb/rv41x3XRGz5M9Ll9X/tZyyCH5aNcx1Oea16F63LxlkHCcUZ40Rv7ninz37bXj9c6QvBcwwZ4uc/w/vsz3MN6vm06O2pwsBdUCU8aTHeygxwMyXOHLLlHJMggZ3PGVTWvr9WDY4G+7eQWEBe90Z8LoufYelPU+TmtO3K8stXVoKK9nn7Mwl+QFODJv4OlyALWlk5yGQdk1iuwBF3o+i3P8Mbw+9wpj+eQf/PZvMhbq5rvVof9EGZ+gWG/9LZc5tV+l03tTnwryR2EQMXoNaOtpZr4FhSha2mD24xdl8DXxUNMj1k/fCoU9hC6Fl/z8oaoJXF1svMpVIEQrPkjo2IOwcJ9p3OC0nOB5qSir+LHVi9Awmjccizn/jYR4fOJumglz3foayySImGIaG0ExwNFAlwmSFKBU1QGptHYOMuRStZq2SO1xVjakUteiHTK7+NX3Ii0Hi3Tezif3ST2m9gz8YuekYcENwULvWF9vS/zc/0ot27KzkKRcNfSoPCtvPxR0unCMeqNSClDLR5dk9bwrY1TQysFNpBO5gA4ZNih4aLyMqRa5PiK75PQhvkX6rzSKULd0p9p/Fz/e8gP2dsFm8yJPjYXHv4JiS2hIRZ8C5UQOgqAZsTqkxxmDHQAji/T586CqROkPb4HgJfjzIe2Ep+2RMUspRQzYtseFettCL8aYHM9+CyWsv+v4O32JE15quidf3qh2g/6H23z6k5nQ04zO5i43Wk7xQzt2/TL4oDhlRrUuCcJDyV6JZA92j10Y4DJKESoc0VFsEFk+58v49Q/Yy7HuADBoIPGBuQn2A2yFFH/LHlCSnXLe8NzSEPyzWJXOjs7ItkI7hZCUVoG4Q/3qA7mxc0bHRPgh4YF66GjLwmcScBXLH+/iAOJFXQRptpu1VfueRz3X2QANIY11tBFb6p8VpCmI2UMhDE89opOb0n98piWsLHkZuj6+9T4iKWf26HelYe74Toor0LWi2ef1hUFr4mLjc2xmLRgQFkIg7hHV5etMLB+aVWc6h19NsCyiDCzxqfZf0BtqSDQdimAb3kwLUJzEY/yhBkvBwXPEweJEfwMtyuRouk/i7i2+S4liJbrzmrR72a2tQnXeMMlg5OskcMI5/D/3I0l6vIgNgc7Q27q6sNKvOr+rWtTA29RQvS3wJf8wEs0bhP0JaxtocoNAXx8X13/dU+g0kQx7NOxbQfoX29DhFnVbeihdqY4B0cvHI2P1OhLVxV7am07gy9NND7L3W6pd667TBm6dukW22miI68dvy3kxEPESdWftp7kJajTgSkcyp6Kp75oBp+fYMtK0M+zjgxxBX4BY8XL2WvvdAfd88TQ3Qu0yzuKmdXW6XAJiUleC2ZP2S3zXTGnbV/T3xpTJj0nw5VRRuXMAy1xlOI4YJ+mGp0WgPNSOmKco4kqvcQMGPU0YWS2xyqVI3PIgb3nKqC3lJrbSeRIjz3Kjrazl6wYpRVh6cQrJJT8P9xf32HuOqS54hN/eyCTRNHRf4J9WKhLkzDZ75bkrZTk3LHua9bw7XCsU7EhiRqNqslXozJi+zzgP6umDK7FWSdr5j5Bk8Wh5EHUiBfEw5K7iPBLp5d6RRJW11M5ZpqdeX/1S36X26z6xqwuLY+1GvA5UstiF1jKnUWyhgZnm1wI1hv11hGV1bIqd4tIt3foCuGVE0byEjKrlHlMMg4K4zf6/Ntscm5X81cTWAB5xjPkxhXnz8R+jgPdyu5UwGe0v+4IHS9acvWBF61Bp8UAuAfcbgW6I3DMdCTF3wj9PkLiuDxd3x2NVLBZMFLZGDczBnuQ723FAsdGBqgSvuc1OjNIO+ZOJTPXc5wEAkFuzxTEgunpbhl0FmAxZpG3YM5eljiHx/UgDSQhAO7Ar6HInR/XJf8xhRZ5TazQffe4JXpzbdpPBstZb4J+ZLS6TArMf/jr/WTeqlgTJL0QVMvATkxeqHXXrzgHFCnIX7NK5FSiby0uBS3Um5sUC3bfcNJWTwT+xb9UsMoXqMsVlGzt2DE4oJGXtKlC1DhRBB0E4EXHjlkCWu4X+bX0UN77DAH2nBdC23IRgcnrNPwkbNA+wo43GH5YXJ2BKEg2BVrd6GgueeuqwVgCei3BEtGTJDDoItIkA6M1SCKD8QLreSkyq0vVLwhfkESyU4VaZsz4iZo5oxWJH29D01eT+RyPnVyDsv5BzkFJxeEU+9WfuPCkJw2n8M05mXu3xxCbUpi2SZnOywhRKn8N5/+2DunWw2cJB8phsW9Tm1QT12gz81epSYjl7n+ZEmN+aNX4DTLNVJThRBXqNc36nc6NfvJSWP/BfAAU3YRN7Vu758tlorlFBIghbMbCDMkl1kd7ERY5JavnHhr1iyN/FF+bGlDJTnZG8dZ305dBwoIYRXunvetiQu+niIVOwQaugnfot7vv8BQoGxT+e+TYaMzVOh1HUMWrD7CJnqngPPLz+qey6lgKHF1eg/bwa9PQjhJ9JpV6WZ6TlpnupubKKRA/xVYdFqs1y8/Yj2VWh+RNxBa0zYoZRaWS0nE1mvBItvjP/fJJeh5csgbxm04k7AD4aySJ7EKibWzDoXRRDH/W+9qJEjDa3fdO1r0fa46mRANN6iD5n2RO3T7h0/pWxELBMK18DyoPnlEN28vtsRcFC+UATABXe+bszmQNZd0cktQwCvlj+eMTgohLYRtfFylK35PiphliZ1eDRttUJhlH76Qwt44UlHm2i9iDPNYagEEwRXJ5cWeplw88PjzOcwvWFT2Lr/liftCnDmi2hVmAJnrBjPQVuXzOhEEY6DWvZ72FDXsV2pz0vIEVVsSQGTzYiVpdoev8pPURBPyIp+cONQdv6iogre53S8vvzjm+L6HFhEiIJh9sXyvXO/+QvWoOKKqMYkKzoLl6TVM2+PnhU7BPVd1JJr8cQcXM+gGvw8iNPBDGg2n/VUibaFGLue9QMxZrHKgTApFI606llgnEv4gRXLADzfTFzy5imZ2kJ15Jj/eFHJ4G+3nEi23Gq0N+DW0YGr6vGqFcuAvH48jTjDno/T4LivpzGvv6BG/3hem9mk8NJeWBh5WNESP2HEbVdu0eNxgvjFzJjEKePDGIV1Byr+k4CJJw/ROpcLS62c9xKgf9cJmt3hGHrSOqowAh5KHHNENmM7tZ07ptXd6WnLiVfvCogUKEAL9zv4bnP1BjQIiRJuXQe7vm74Yf5B6xFeSyqAUNPqLVHQQA0tD53Sr5aXRPpV14XZ2t8Qt2MMn5TDs1HumvB8PosFZtostpW4p1y+n9mdXXkOdHGVvjNr55/laxEzepBUV724pLTd//HT7EuoRLf13xdbX+u/CRusSmglWETIE19qKynxMTH5EZe6kUzyxr8nNjHHThmMQyfdxYh3LkBD1Go8uDpK/iJTu7FWrfNOyLknnWPyoDT0o/ea76MLCNmYCdiKVQ0aLH59TQqhlmAp8LY62/ibg67MvTReFqrINcthAbQc+rNb3KazG9Gqu05GGcJl2spoC9Uo/rhthZfM+Uc7eDsBnBoJrmpFxgyJ4fDa0LXsHZ9Q1sBIqSlywJwE+FL7/QjiA84p4dr4gqLGUpWerdMnSQYNKTAR9uApRaPSJMniEAWMoPq2tgyAxMogtRbn1stv6cjsDGNl/Xp7u9zGOcy8yq0XlF+GWvfPSfVFc5IdurSMSguGs0PTHw9JKDyd5s6YcHIajF14VLB9RBFlfW7T1pRF/znKPXlTeizTXc/KruXQWQ13q94JgjvCUizc+hn6eggWV13iJYlLiccd3K2ezA4VG5iKAK0OQy1MjqwqiExODqO9NXqhSES51d5eS0HxBrCXkA8g9K3qijjhdN1YOuCZG9J3dT5sv9dDZuAsPykLsrkoB4iGAzBK5k82nWdmpN+MtjESPm4SmltDG0g/+p4niJR5yjYhoJdSi1MCd2Ce0CgQn+NkEfIKvigj8j199iO9C8yFQwdNosJkNBQ4vh3ELhoqQyb2e0xIojzWV5AgD06s6vtX5QCCQmIFMPJZgXoaEkAtNfvRwvD7kL8Z6h5IqIvqmDko3zoM0LOAOuUcToIKPwCKJgRMwCIgxjiPDQg+buR5VdtwRlh6hkpRWVM4pQqVLL/XCBEHN86yjZEvB0uZyo6ix4mH2w+PUyLBT4WDwlLTnhf+VfgDh9IPC4zJ3ihgvoy5ZUqYwOE6uQsAI0BkpPjSwFRnxQoRyDC3GHmkOhRJoa1GAZIZj2a+S72C3rmuQ0oXD8wyuhYUy5xp8uVYr+/ke5e2XuETsds9cRpVTXa2XwiijPYPT/fiVqandOlWZkbZrQ3ZdWP0teygPhacpi2v08dXiixeXZXu4Ipl0ZiXaWmbYOVAAwB+IVNH1aSx1UpfoImHg5lrBw3F5V1l1rkGYacKlS4lcTflfOZupBXUqyIRWloeHeiZ0h6eyFPkEFFPstWH0XxhfHA+YF+IbcteXEUrSkQO7407HZrDPOQe86+UH8ewEwYvLSWKzd/FZuywKFsM2zqHBgdcGLKoNUzgfANHPuwoeiHoxu1iE0njN3fWQaTDkr6+Zcm+p2ypRUDUjm/ifRLobV9SF2WLlXACegznOOkihz4BpI4yQWnE8lr3nhjwoua41nHv1TrsGjcAVSrqD/Mud9oUS6dCQ9mprognDoPVqNZvL5y+X+m3eQPI8wIh8pto2MHZVOwAIDDDe3cors56FTrreHolGPLjMXueqxOAvyAASR/KDyFPIEYuFt4X77uPfbgKeX5bIhvsynfQOlkvTULtTQyJjWHi2me2zVXpg0tcAx3S9X/4uLNLz20xbBrQpFOA7eoOpwxGdZ7oNSRSWmlexawKXfq/34CWCl178MUooe0T7pE+HYy+rgFi2bWz23bcE4mXtQO1HUK8WDmLaHLm0HwvfOPlCJglGgXxkqsxwaZe9icSr35hzq+75sdMquAke445h+yiTyBsE7JWYhBLVkHs8exbg2vRaolV9lMihgkCvH0w0TGogZWYs6Oa+lHEdVDc3MQ5WQjk1moFRLZKtakYKTH1v5bC4Qdlt8q6B15zfezcggWI/FtAeNLo1SVo03aH6jNX2l8JqHR6vk5rqCANk3qNRF9beGKzTMPAziSiXt2mA4HeHJddtjpOMM+NS6ZHUSUasDeGLEAJ38EVuH2MdRhN8DGEUdD8kWGWFdT+D+S4ELw9LfqBYBn1e8CKDX5oiDnwQP8vJR4XXthEG2YAGn+T8DHhkMpd5416aYM1Za5gheItww9+I7qLPzs6dGvBmQTn32TAMIO1/6HybckSODpGWSkAf3ZgyAu1bkNNypELQtw64x4Ug55USVs+lGeeVm7PYMvPk9emwrvT+i4bLlDfGqusmqN99dNIK2NYK+LdLIkagsixsQgXxZCKg0g/TwKOyH1f56DgkoxtGOmIFdVF7wDaPZhF+X83HGGogPwmlwg0ZdbGARM4XDxvLUMkS+Q5QYzON2O6zLQCkZli17TrdYvqwwTexSh547Kn223b10k8B8VMl18KgGlEVUiCj5V8C9C27v75ufraRrRel0bCcHgSXg4Tr801VjM0EnHKJnsEUotKZxuIV0Z959/3y5EGTlLDppXAdhnzZxBU2BBK2PVOWb2jV3/j4/Tn6MBLMFPZanUsFIw1ua6ke32bH0EgePbscelk+USFkagKTQBCrnMU4CewcLIRjNkZ65no1wwozthepbtuYfzbC4F2826V2aDnl2HiBWQ9YwZy2neTC0tSFRs1YpwVLGtMZVC0BYmeqJ7DitS2f/y6TiuC08a4Jj5cdGJUTjS+vvN5ZHPm9nkhiEIC2mZ8bGBmfZB+8g0cgiVji06lG8oulo0AoNUGvAPvcfZAuosd0zCztJ8JOysOmmoJX0xlqDm84vz/RGuLVCEDnGX2aNTKQYq+96hTnxKRBLO/bfxFJ4u1XvI6HsAk3Vw6UENMCrtmAGLyx5CseGXBC74lKmqQ3lpqKrgc6Fm85ZeEle7aUtHbH2g697ttxAYCFmSr+vl+/C31b30VtL/wPI3FNbwrvsqbdzF4W4FPMpxMIuKwHH3RMDNkHBed7OilFXHEvmAapMQgOi05YCoYBjQ4opJ6Vb2pZq6AzfxvanQO2lbviEZqE9WYfSpHsj/RGyqV7dzz0Pw8/ann4o3Kp52LT8HzoP+5YszbNHXMyiSMx9xopWq1/9a88IFzFxPtt2L9N69VQTS+hDHV6NUmnWIb8xhonRID1cSAAXFe3dfYouiCVA5h3NLq9Nw+OepLpR+6MEFmzOX3W0NXKcm/R8GUDBWLryZdZ6A1FUZWKJ5FpT2fTuzshQLdVb2TvtTVjum2RkXe8ElpIxh0BjhffPsYpWzQwSTRghG1lLQ0CKTi5VXkUB/c3vh4muueZxQT/eA3Dpq0VI8TlEJi/jehnx4/vBLmYNsX/qlyQ9dv7+8S6VaFtn+7af9sTlK384IH0jgCb7tDR9S6/Bo7PXYIJkyDQDxEQ0n76H9OU8LXvCUverso5UUj43xxmEYkGuEK9vMaILoLsTENJ5erT0KguTuqMB+NZkyrAW0PlXBM8i8PA/X/4MybTct24yi0SlMvk8lnu6/Yen50p7Ux3vSOpr02bFFauYk8njmY8p2Ud4S0Wv2yuR1bKxsmAIAr9myIdYRPxaZp2V0n26JgmH65uLtm6D62I6j1q0430V57dNaV/6F61mMGM4VEcg1N1B2jQbAWxzvyd5/mAoBbZvuXdfFzWL6uokcJWbYc/UTJajiGNmgJOS14eOiHknm2yHlg7UZZeFuuLMW5fceSc3ja2B/3inA3YZCnj/nvaq5xL8gjzRd66jqBnhfzSK8c8alb2WDwokvJxLGq3dYhdEMly78r8krvP5aOBV5nZ8OXCVwN058sO45HCYJE5lu3HxLZI/pLAlk2pqz3zstQzqn3NqAjtL0FtiSSHHQItzJOMQYGeDWMqa+QSmqIwORfBGTvs5Y9Zz/PgGLDg9SFmtwfW/OhSPRSQ+lzNZcEpQ4NvDJ+oREYbNqZADZOzf3hfoaXy7yCKDPsx+ZgTEFPXv6VJUmU2FEa9VMNk3LdcM8CpjDfQx0G6F1u3NQZPacaEHaIoz/Zcw62NYfn67VG7k82t1wuXZ/6sK8s17LWJ78ItqmW3e88UcDqA21kjvAlmKsbUYXMbUQ6FhA5NRU4pxovclTo/Wz7mYfDiOEdhPDWmupxbyFTlwK4HHS2MQmbgiphjVbjhX7poXUlCdUcZCmePHRNA6kNhFge2xMs5V1VTtzrzGVU3LY3zruFC/twWaVKm6lSvsoz6B0BF7mMCDzZhttOwjgdWVv8zTE3j4bWiRY6yNOrLBkkcZupqmZUTWw856tjnHFGGKLLvSXBh0bGRyr+hZtzzOErBbRpedcI9A73wLEkUhCZ8Ofy2l2XGa2lYAv7TWuWGJ+8tKEq+uBaRZ6QtzuYsazbaMD408+oKMzzZy/2jyMct379eZ3buHBqrMvitsWKgg00tuXf7bfE+pnh+PRMvFr/fgX1auv0l7XeSh4zGdO7uGb0cVXvC2JMLJeskOHk6FUgwTeCt9Bq7fJ19sSYEYaR966/NHtgik45P5sUbGUZ0Z5aThME+hwje31ZMRUAldQ5HwNsNG+UgIaJ9JyOynmOSy+yaD+Q+XqCHPhXAidTNwmU/EQzIYrCFEoh3uOFO8IFMqCqRnOv9uvO+zARyK+Yx0kx+9qTtKkQaqmWM2yQEb2XvFjYoZGVGIMLR068WCgucXJfYxOusroIkDZNDqCWiRBR4ItTSuw6h87Orkoy7lrgocY20k2+acRn9hu7/e/oDY66nGEiFwj8XIGaXKYsRthCus0oJ5ogPrfDApe6MeLpjM1PO7jXMpksk4ZoyldWMsndns8Ou6Lh5/xLxkc8Virpkqb8ZKeXfdBD30N9uEZj35jNIS/beRzM6EN/v+mZRIrCvO1SRdtb4jha/5n7Huoe0V651/rdj89G8cIX2vUjNrug/D5ta6hr8NfgQeV3TZ3e46ghK7WEubcXGS+Dil1asQzijvkEeqkA7DrEHyF+sGJb5dmmqMuVL+4TFBNJSZBuKgSa9Qp8/t8myiGGbIpWLpSBUTpdfFBrdvVooFDnFzhjuY02PZC3YflZ0XPFbiUa055XbJcgINA4A/E6beqlfs+fZsiK5B6WMdQcTmNQDaKRg+2aJ89QbBKRk9b/jEpmvr2o5WhR20E4P+RwN2U2xCVSzEt0bcJ7XJmnRg3Ip2GDebWJue2ggf4Q37BhfGXX1ne/HZlOIHee8otHhYfYNjNW/rmiLpKV3bz55aCzcOvLKnuzKkuJPyuAei8hg9i4B99MIMQG4hT6NxVCv1v9bYuclLQ8e7gotVUWq+ebJjNWFnAKglKRYkn9qsVDn6YYMRsVjp25Uf7ZJ9ZIHLeJSzJRwyKZ6/BT0XUe2Ki+JnmEPeL0jq50Fy3OfbuziX0Q95LypzWV3C9soRcr77vXrSnFIdk+5BtR2ALh41Y44Fs8Xzvc3FfXKH1GFcI37JATZrbN4NQb3nGDzNbbF2+iSfpwimsBg49xW5qKoW1fok68mpWvzUzGX1XqrrsmtcbkFIXwu7seNDZviVySY3fzoAalyLbwhrQKber10CLMwg0Df6LFtkrOL7GH9i7438t1GWa5mGomcp1VjzdebcIff952n+KAYax1OTRuONXBlhkctPQ3F2SMS7Cj763w5UMYlmwn1XhbPpKMo6Lwhw8/T5DD3uDK6DyGnwKq26KJtwd67H+c/V5GvYW7qslPYOnFSJ7FZM/C2ewSwCi6AlY/cRx51COYhMX4xgZtO9Bg+GY1qKHMSs8FvrEppksjYYuPwLpic8ZvHfPjcc+EQtLxGU4WSQnRxUhfdKJSPzJ3igBXLBS9M4OM3A7MUi0VlIhf1gDKsnsx/sht9RbXsoJtbGBFZ9D+oMJIRwrHUoFrNszuqokI3BglUWe1JUVG1rlfDwi5RpC8hjRYCbKqGKeTwH4oTLvoh3Ls/2BR2dfdYGf1X2mG3w0LQ5DRqI+DeWRGgMTYv2NEWul/LDN3MlFJXJZliixdL0Tu2Gjx1xjI7TQQMEwG28+rfW+MPwj7dTlsPK+4pamz6K3gbcMHQYA7h5RDooQGLwlqU9KUnBp+8jNhwUXn1XTIxYWr9wTlmWcvO2vn+4UfJzujgWNaLuZvBfxcfhnk6Ws6/kbbj1poTDYtZTDGBTstW4xofuEMCjZpKbwmJDKg7OeeLBOvhgAVFvJjsIIvUEkg9W3+5tuCq212yPl5XZALxDKb/HZSUGwHR3jZx30AsDhSrqdQu3I/5QxuGHUmavHoU6xc1NtXXo57pIfX2uvseQG1Ozi4ce0xwx2nUxAsVe7yB4A9i/A+xkZ8dUZn7jJ81Q6O4/xQnRunFZ4D354lpKhNguffGjfd+7YfBpCN0O218RzMXgQkkw7xOmTMbYJunCTwA7tmWfyVNawtGzWtilpDkDXMol9m8tnYPWKo/Q0PN7wpIiZ6GNo2eSj9uN8DRP5BI1KDa55sIexYqhjfiab/xAWpbJLZMc2QA/v6WQ303l8/rai2uHDGkGvODrpCxvRMz1R057OawvcI/2tzT7FOzZJa7Q/8lHgyv9rPy5YTXqNtkgGebgIFZQUGfAJL9GNIEwYLxim0uc2Mj4ga3wm2glV3Ax7dpTSACsIoW0Y/L+o1CgHF6eE/Q59V3FjEWDJPyb304TzhnAWDyfJ9ERbLwxsat9ZFB7ViNcawgxEHqsbvDm1tcnPPzywKzqi5N+AZfpSzgQaSJEDXmSPpOvaDK5RxG6PKEMNkEHJV5/8+9ib9m2PR9Ms+bkB250O/HL6feDE1ib8TUpPa5Rq0KyzRKMJtoE8hgEIANDvh8KKtkt1qLjFCD9gT9zKhdhTWul/98ITKIweGbEjSQmXkSNXKp2tyK+u9ypjTknjHYGeKQV53px23MtENicaPc0gvseb5gPc6ZSW14h3DXN8E9WezWRvzzuRyPKvZctVDprXQRy7Mn6Gz3F8J2RX+BMwQpnN/CP04EB01hoPbF79RACz7lD709hVvYvA9BarkIz+PmV8y/mw7+nGJ1r+OfNjz7x2C/XQZlTJ+eRL1+w+vwH3VE3hbSmLdjah3Dxiximn1DvcxTipTI4aZphnezDDqWG+rzlNsCn27UYuLtG0xF15MkfxwJaRu9gS0XZNNTgaiuPtEhIdQzlCOmtpbedVU3ZLIqD42PUIgSV4dLVAjucIySr/MI9uXZG774ra/O/x31wvbg2ch4dQ0W8CtV2YXtzI9TxFeNqsz1bYdet6czGLZ7A4BKYjFA+5RnZnwLSW2okrq036d6u6redKv/kPYpWC2FBhe8x7Eds4RNpLs2oMUp0nAC9jdWAwWnWZqKAXfAY7oRgWcueUG6di3qDzpXbPE5hhpnK/t61pQlGmQb4PC9ypR1RO7Rt8esJ5ZIIiOtfyUWJ8GkZ6sK2GyLe1MscKKnoRuGasFyvq/jD4YzacpTMPxbPqPV/sQjdgtrsKaFDcDdO7WOSgc/NO/Uqn+ypJ8eTUnN0Nyr2RmT4hob5b2brcgygUemq4+6+iHxPi/StFiPGR8fJnYq/s3CjkFg/ZfT2eOb1l/K0PK8qaGNLxhruP41kHu4+R6vWFv1Ddtc+QAxj52hRJ9tRZtTTHKS21HELHQ6lAakNEdSBp2iilpG5cc8K/lTDwzmPdzrUD2F21QHZsS8morxv8ogDNH5C8WYTBrwRMO+Jy4oTFy8mhLvvGKmzVXsffB60ohKVgJHtAoweljEdrvL4WKOZhMKg02dUN06kUiISkV/iprHmQ6Obz5ii34nQwjHVySpAKKNlgv1wKKWjoQPoI+Ry9rYrMU/GsuvfJB5gzZC3PHxf5lDjjBN3MKb5ezdmW+ut+ZqpeFRjqMkdo8kdh/EatsZeQ9H/qyK5yOe6qeVKbr/vcjrfjZA4sJLVmqAImltGXwflRHUObwlGE5yG21odGaDRjLfp2QTbfksYT6ubJc+PEWijarIj/UcADE5+u/28DgoqDjbDrDFjeBZkUTYMKlGpIETmsfek53jzsWQ57pRUOlBA9AsFl3qwP5WYQ2hBNgkDNEe2wa0v0thh2dOefFDhxoe9crP1PVGnoeNuTVrITZX4R9IN6lYoAxycxXM1zz9RatjyXOKC07LOgTzTQv05P82F83m7qYX9IjjnsRIoxlXXJCM2wM2FuAFzh+XQ7QPGz6r/J6PZFLnQfGYjsXHrxhHpdGvyTagBjIqdxF4FWZa+OFI6E4PB324ssaIFS3Z+FDx3MgMQnE2ZCUoQxadxcaqGM5S7jJ9kk2zX0a9bss7Xrz5BseDm8/blaCYYwiZoxttSDjqppXRgLiGa/IzQkYfwcM1GBj2NamDUs3SltkImXtTYYrWlRnRP4s8P2pcl5nwlTMm9bonnLFdo3F1PtUGCa5Fl803svkba7IQZDfzgz4p2eC1SUQP5Prwlbg6X/fZgWc9DVxotZrXxg197YpzBBJEHngV2TZXYEwZtNQkgz2TkgkKh5IAitXJtInvKQBelrBkiD+rfjwbnS4p30v9PYJnWQmCjJTLK6/0LjbGt9cMt0krseTS8XHGGsGDFlAI8nmm+KSr2tYdigAjZODHroyEntiwyvCKmMp9D1hy5GAUKgOXqqrlI4Z6oRUDmML3Q6/hrO9JZtyCIq6XeZ2+oCK7QoKb4o3WES1lT28m7H9z0cwp4gz6Lswk692+4GCDi7xtZRGTE5+988DJ9t05l2C4DLlhjceyM5DOXQ9fn9bIboTesEfh9VzWbA7zvvjjDn9hbBXng2D9EWR+D6gibrKUbQlLNQaxKD6kw+FjMP3thCjjt2cGWbtQQkJBjAVkkrYvecJ6VVWa2ySxMgfD+8Llu1ZyCL6gp2nyuG5Uzo1Y79sbcMslPDIvnhxDwLz4LTYYFM0g8tUoScH1WnrwYXN9tlqFzBdmSVanKgutn1+CIcI2Xzc0QeRq79l9kJdu6xv89ai+Vn674af48LJsQLiGZoGYNsfqld4dFGLBVnIfC9Ik5R5QL+tnel/0h+hCR3agFaWUkatvv68f8cp74HWGY5Oc6288teM74GbcW0e7VzzNmHNaWGpsHl5OLJVRJI2PtutLo9n4zfedjiZX9WhU1tSBtGYK6poaQT5ZTVP3imCjsl/21UEoyQprnXbNk/CZiEE272kiHSaCrD8uhwKSwG4/d3Zkh2NfSeSmxAlMQtIok4CSIHh1Pstp7wkBlu14X5p80Q1Dln/bkVX1Jd7G5bEyCT7+M5qJty/2xozxcwkJDme236M5bJLEcmbzuJbkUcfWbYYS6FeJ2slvuFsNdYNDVKkBt4Qw3jYppdQ7YPoK2tz9mfMO63Lz4gbTzOyiYh09jAwoZocV+s/qnzOTkRNCus6LFcDCyUHXG9tVIKtHE/n+DVYsdveqqMGUs704et8bDoelf3c7mlXc3MBgcfGOLr7kIJTvwyWf6RUBsvHPLFP6XtR2S72EOKAlZvRBGcynob3fpui3gXNSmm12ab4+H2swqTKG7DC7QZ6kNBBOuC2hfzsOvTiFwfgyn44OCU5uWoF9W5oTPVFQXW/mxv5xqBiOq6SdtrmEexGHVFYUK+X5Xxmj9jaEeZmYFL5OLkSvIlOps+EtUSDNEpFf1Sd7eUvy+SDvOvAl/LamjuEFmcbLBpBxUOrlKcGV06QCFPbEGEK7X0oAEtRSTK78oJR1JORxct+p/ZrdbtZD2ERanCFa7TULA1YYB2WWr67jHAoFmoGLA/2zuiiOXDsEqvmv78JI9HCtyrisl6UNntAn0ym9xH97TQExH119T5PyewFAO14W7eH+E3HNWzd8YC70Pl3HQEDugcdA/r/OIRKNNsmITTCRco70pyAZAf/HZZ6sX5NfYSVvwE5n2v4PsiPiS6xO1FT1Xw/eBhk3jc9r6bw7AGh7T2Jo2cLeiLFj17HZXAZUZxaw3VmGHDSEWELm9F5g1I1BwuWG386h4b3dKp/dJw2Lht1qc2HrX4hTV+1Zg7M0sSSAA0uxpEEz6Wq8o+UItOjaM3r7kuU3ZKPlxhvBIFphbnJ9KwcrQnDmvJpowutg8y52q398BthYWsjNGdDS5hFPOXie9PZo5Et35HkHWlcXGlKra0nngT/3U+aGhzJJenLU9xGIlntOSd2zomuh1XR/OgtodflSsvfOcXZbhwtIs2J1uZern7o/QVHAbK3PmVItYeQannELEyoSp64Fs+eno9RMTa2mJ4+BJfUBuo1nlF6ZZjA/ISBER0OOMdPGBN1hQ3IbU3P7WEkS+8rNBTdzDO87MaTL+6fPkPkLdXvJzBdkuHtgVrlYhYsCquv0VUyxcNh0F+pTirDp7HiXJZBlX+ULN9MAvldGpJs7bint0pnUUpuPFQBSuaTfD2tFHrjzLQQKFs+tH8o9NcZweedV7I5zn/Jb84l6lYEFp+1dzvEnnBa9lLlJ/5x57bb8JceONbk4XVPoz8crs9EaUkehG8n03eXb9Z9+oH0sjVZE74G6HctsBIRlMJyw5OATSx0bnAGFONsUu3V8lH3KXTRaRymXh6WL/pjt39+LoQ4Ddlgw4rt++tr61wI1DNtN2WFryEH0xSjdvc0NAmBQi6AtwOMu8zW1SoB5SNjlCY/FFyDOhfTE1XwKRN2DavBbGY9S5gY8tmLhSjJC1KafeKLAsJTR8vv4U+MkJqugXph6C3X9L5zfTxf2Q2++2NHsoZ3hwmGTXMCz+MIc65eVae89oqRcT7YJNDe9CuppbcIe5ev0FGbX3iswiVgJR4UAR+lZeO6y3j13UkK1u7NOWq6NPtDeHFWBVy/QQXVNcPo76naYSWORbxJzlwrf0es5RqaL9du1gPhr4gCijU32PwEjLqeo+m8tmGxytUcH9u/Pv062Ga1PVhHVzlTyYVtlRbuEcQGzZVYyuSriSCRVqQJdH5Jrng1CnMeMHWkBiJ0ZJkqhhlNNYzdSzDYNoC9HtZEP34BrfxUsBhfU5n4RYC0yvxfAmy2gw/VYiEecZ/beKLcf/Zr/O3a7rFcOM8ycCwmX8jCKJIVuD+9k8Y7i3gP1GI6t9G5CAvdcmvDPCgxZetwgzr5PYwFeEPEh+6lHBq3j5AglDdoduAwtWS531EXVeQwRWiREuemIUkf7xogTbLeHLYLsdtS7SuwsFkcospYt7i7KOD+cq0kjHuH41cA4OmZTgMlfJsU18m9doRk+myIAYZW4d+viCaTkNe6dEy5XfiCZp91KsDYmTWHbWUF2o8zv4792lJplFZ+vnuWbG+ObZBoOS3bbf2m/Dsu6bLSZ4r0YvaHOZOOAIATZ1p1yjw+isHhMyDXIAJEr9Pw0RArwwBKkaoeYVX/wTI3jSfSRMzeUnmKVVEByG6dkptA89bxXREyFKNlTkdaaTrf1Z7Hj5pTwjd6nzdMAPhRmR6QfkTd2MONmm13Z0lNK6sCe8s6P/Py0vCbr/9kQk5T7f7RXdQH56Ttx0ypkLVTJw+3IIkLwK5zXQjQINXsApQsIF0uB9Oz5UL+PsLNcThftPnmX9nktvkarjboUzGhBA2nD5o8WnKPP4G5PVsfZqczPgMrFYT31i/yAj6UT/6QsCgDOYULtBclEGoLhrPl+bi1i0QRLchi6aI6Agi7S1ql6/QVr1qXEttlz70VhwEKDBVQ0V09aoa4O+ZfMkXEHI4VMqnr+lAu47F9nTVi8G+fGPUyjxRrbSZxhBrsRAlj+pWfuJRTlAYU0zeH7/pAbBGhtIvnUJ2SxCAdEep65IQ00ckqlxiESt4F4yQQ+mFQkY9fi5IcvaHSPifwwPIdgha4DUZbjwCSJ+FATGslcnoLsG8KdYQS84iZMOsu7EaliPLtX70qznVc45K4vryzFF50xI6oHD1e7UBY+RV9hDYiusA0+sEWaS8D9V1qpfDbw6OE+DoCdSyLR7bvbsaVwaR/K67H7cnT/++abkZKhj+37ttLdDW0gigGqQQRkW9/q95M2l4Wjxq44jngH0iWUiJqYdP9G9dfOiFAKtzGTSXLCAdgkNTucvPTuWzALHRCsiFXDHRC6D9f+e7fLmP6RWjy+2OdgQoKJpwqIXWib5gSZPkk5kXiMqspoQSLkrYt/i2D15JSpXHo5+/Iu+ZMrqBNQHOrZlKXFrVQzzRz+xjX0FuUNVsnKwVj05PAYf+Xa7rrNQwtEpgwZp5lH3PruwCX9qC1HYTAvn9FYshm8aDrID1JC5bdAOkGVeaXc++ZlX47SyHu3Kg02wgNNCBkyI+4iQv0qq3CZemzquIWqYPUSZ1zO7M60R5ZnOlCyohB56oiT+QQKV3zIqPuHlUdLorp9B/ON7CBtnZmY/i4ppfCSCGZIeNf9sLHVQeWJJupqfjZgX4zVE0K+Y4W321r/Deb9RU2UF5pVy8cACGOM506kHWZ5HhNKHR3We+4/0RxbQBVYkr+73h/XIRSxBJyDobeplM5MZcpqByBGCnu3NMdvXC06d+fdwaZhoCqY+URAQYO1HXH0DcXAgNJE7XH+2bAK0y2jHGfneBAA7VTJI1xKmZeRNhKUHvyicDmiNf17fUqWdUb4I3UJfh2A0AKfxCDOw0Cxjf+tM0IKAePxYhxPdwrfEnlu1XnaV0hR2sFjKcsNrZ13lobwt2RdJm4BRehTDEUyi9MHxo2R5CQj2pD3E9OREqzF0uO+2xG/Y4yVSa4LVQ9hFgemIuKFtIHYk5n+bcUePgQGNeUNm4BL4B+lDb9uVm+Y6FUrTNzMDRog36AB7Ow4KoS2mRAjdZDOZXhoJOIMmJpb9Kp2ugOj5CKEZuTiRMNs+2ZQsPEk2fON+9knBIE5Su+5ohYU5SKbujO9UEVXalLvwxAY6LMhMw/MzV3wzq2SY+ydhvfpwkp5/3u8mi9KdF5UlzA0PF2gS1ZMDCPfBpdCIX925vVSAfflEeOy3+Yetbu9ml7nOrMrhbHCGm5vllKUx21nhRHhUkfLCetq/qTnshBE+sHUrjFVhK0Drcy/WooK9U9SgzXvhhd4Lje1rzgpLhM79Hmy43wnICJlNjx2OFr3NZdAgxx0LYrkdYAZMcLzZZGJwQAjUgyS/+vGquqXRoXSRsd5AYLANr19RNfm9OIdOWySwsCEe42DVUphCvf7uPhJTPMUrv3buGQcdBL5hCg1v/8fqEyNIKp9fnb7wZ6N26zLM2inUJrp9mlXuhQ2+CA/e/b6SBXVb5CPXPz/gV+MphRfc73snEvBcqQ4KBHjv5yIo7e6QDrwe4TjzeRMz3/NKT7L5Hmg1tdir2oJcnzUn5w07V3kSdgHWUoQDy9lvg/ArabvPWl6y8Geydr9YiwihMHvDzdOEP45Shqdn7NJKJGgsQHIFFpm9q2wU2AkuZ9dkgcz0rcSK8mcC7n2QqxPVJ4kaHDEZcmzO56KxqiNCqOO4pRlGTbYArxn/RTjUHT/orn/TqqweR88t6sQiiOnGCZqS7aVbpPBpCI5wGuAUnxasI9RvCDl9fSZk6B5VgYhNlkl6ivaOWKz7ZmW4Qzhq4vZzEdLCv9VXDUP9k/yTf3AEsvExevmNdLWQTFBiuJejvgmA8qPctV8JGjEWq29jVJKY+VVIxD6BTVh1OKpzAqj4+xpzMIdDD6WMcXCkGgmacChUSRrzx+N41ei2xoEgygFtVbFf9j+VTAi9SIz/Nplhfswa80XSB6WnAaXutEC+QZXw6uCXJjbzJmuZPjQ2addnx+fYdAlhEKyJQ33SkBMUeVazoThn7f4HV73ZcqDTlMw1A/5Pr3cb3h+Mtmxxv8iRcIjZjkqPcIO4nqYzEj0T5LQmoVffRJ6rN8xj90OumcLUc27iT582aVBuDI3Pwot0YSHeM81zQvppLChsJZekhV13i8NGzSIbVBJuBSs0JMzHaSvl6WK7T2QtPxWMyB1eivHtu1W8vfrcA+JaTSYnfDxL4mbUO8ZwpTOxR5qKMYvv3kJQkY/VS0A1KxJaVEKSXGZQWLStWLY898nvzb/O2kXHQc3dth0NH4LucokHODfjtVftqIdvefoKTOAb5qmla2lRN71NKelnDBkcmHVMls8lYKdFNPnULdDHqhUUqAwCRnwYtMPXlH21o+lHE9M1IBggl+TC7I2iVa1D7vtj/GO6UyIqfWrqoDU/MjDZ77fqeP6kZshQHch0qXWZIcow9Dak0FYpL/Iw6p+E4jJXYupWrF1ZmvKuyQluciV8lHcl0WN2P1VYzVTEfsbzT5iBOefHW7ZfkhBb9xI+HcHXY0tICN1SyCJMHqzeBmkx1znrJls49FWnjKV8CaAty4wEZUJW248feUsYYVBwNU80o515xTCnPRu7Gn5nMq/noIwZg46GzfSZGTutLYbfjyG2N6Cd1Blsd2nbhbJ9MPaBKSRqIF8ZOt/uWlmwCX7VIt+7gjfTMuooRKbPmX8eOrQtdypjJY1EeTatPJ4nQF7ahnAOOfnSCbKXFjLjM0jIlyk97wLQFgm3f7vdiBhE9Jn+Bm4F6vczWG9VM8ORFQYUYFKbOWptwO3jBAGWygP4r181N8ckfNsxpkaw12SwpJ5EwqBty/hosYpDNPTqullV/x71ebW45wudBXAouZI9UmTJ62SEn0baKdFd+hJQwd2j+i/E/U6XHzhsd3y1SLkS1+yR7dDx9hKjryVrm9B+QCR2YE8iQhiNUi/xBqJ7ylPOc65eaBxcw+58vZnYdRmTaKY3hbAXHODe1/Kr3OU0OQbejrHziMbzmF1M6g2krCHfJkgEw8eqVkyPiC6wV4Xo2NaaH7IIufSkulgpEfcBNMHllyetQAqolIDqis8v+HbgEbAaodW0qXAXygZsF9Ul7iauF0+Vwr6CXb6CTwYSpWerbkYVebzNtrsF5jxzlLdLg3rPNbhL278bI7E9m1QldpBnfENDnsarnsieI30ZHMnYvFk4W5WECCcVl6j0lQc3etveEg5ca7fCLC4phlk3jkwSAUKc+ofO1f3FEYXCp3Pg86cZPkc15M7KizFoIYUGwBJ9wSn59O/J9BI7ogVcCBITfz9k7gJAHz4DDVLk7dK+DlIT48xeMA0SvgwvC5UfMb0p0HXTRtXVAOlGa4FhtpHbK5uPHmxm6KKWJlGizmUhPE9cIQCFDkubQypq0ZTAlYbjasBiF1s0SInpbdyQg+Fj83iqC7kTA4JP+9m3bhZimrZAL9dvzTDZ/fVMZBMGqpvOSxEaam3EFBvUHR0Dy5brM4NAZvn260flzNKinb15LDp0YANgJAimyEBhUCTrRmSAw/aE9PFXvjznp4wXyqbJOSTBIZ8wa+YsIzv6bHi8Xk0asja2JGx/dr185Sa6rPTAuUnwr5SYe8u48nLX4bPSHTunkLchFmrL7M+4LHAlsD3Mh5l+zd6+d19omVtFO9Y4tM4pUzrHcMY+rHWpJ/o6T4tnPiEGWDZKfTX1J/4Z4A2YkjICSwfXkncXHu4udsJykwkdZlHoqtyUGdtXVG0oZkkFBVlDJDij6EEpYySNN7gFrNdD4uc5PTYXz+i1rNxJUtQZWsMLAUFrQHLPhzW3W1VX8/JXKywGg0eVEUPi63tsIGCWyRhQlY9+OiMIodwpUccE4HdMze+4Dz83zxq8X0M7LRCBhhPvvltiWPYynnN7ZCRIpuc++N8ekyBV9LDL1aKRJRROLnuSUV2YMYHry2K60st6KKC90OeIvnPzIYlGPBvCvB5zlIWLzhsFpkhXDRAVmxxzCCXdliKaEHAAOHjzK6sEmOrDrVbI8v5tjPaPt4sp2DWo2Bp5arz1dBNxvQwwC5sI/f8wH7KI1VkZnO1DVQk3go1YlvL2/KF+VykfhF9tiCyLDmHrYVnKP9+UipFupEHb4ngHwKXp4xqkzjJOCY9cPX5O45GkKteIONFUr06wV2w1UYIvlb30nsdsZs9kNmK0UnrP8eiHy3d2tKw5bhQE63q/PmGK/nbrQY7Iu6/WPY73bOlkD7AfuI+szo0fY1AAwPSzJjiuWZXX7oqkb5RM2S8atDplIrQ7FDhCoFIFpfrEVFwPdkPUPMAnU14bcuGCnUt0AICBvBFrQWKlvhn6ovPP3JsLiRkU8DKwndoAxGSAYhet3LPxl85wldNokxZ955iJ07bj1QcDAFJZrIWuTpvYRE+MqG+FoHxU9/00XYojQWLcXDyfwxeKrPJssZivGLvgRfGwZwCGn2wPwqkOnqcihl2M2LCpgzWkSEDcGxPc4Un9JsGN5PniOROSwWrqqFVOcCRgWXCdHXc9p22ccbawBp8RmF2ke1k3b5JLdniNBo4sWZuGiPHmZGc+WEM8u632hoelyBKSSIQbTJuPOa4lZs96kReIqeMd3S46M/kCXpOtey3PrEnc0di1AnOW39stO/6a11nZU1InWspLSqoA/OqWn6AM7Ax6b1/HBdYns65VthRNtCgAW+eDVWtdug9gsN6MPubeTcIkZr/e3HGUeX56ptYQmofgynOUV29Adia0DYO9gtFP3+JW4eDUL475U0LhgBujF9evieq9leJ1sK02uojD1BrX32lx2oMRNOGRftWgX43jmrXHiVS5YGKc4q2FCWLttt86qK7uS1YBbM+JgpOwlnJhwVfXzOxzjE/EIWqZhvD+EWJsoviYdRkXoE/c3WeHO282IZtpfuMht99HYQFr8Wj0Cl3JPt4EuGu+aB1bwv2Q7VJHbZZLu+5+IBRrgMRadr5eZDuQt+33DsOxtq1dIqpt7Z2eAtlS2Vvqma6VKqtb8+Hi0lnPLnnhF5XZ6OSzay+Xm2A+YM8mgyK4aIxylWpPuJJI+kRizQi+YqZcG+zGHKjT5EgNSRR5BTnI3tEFG1Z/slhIBnKZ10PiA+2kJhuflKXjLVusN9cQvRf+3mHok4y40KMmcrffw+4vr7fyYpOcRl0lL1WX/Qu7osGwkme7j3JyIwwUXw4ZqmErl6v7sX1U+/iP26BnHWgUIIRx5RkufyA41NuklzmOIxBME0pXS60vje1oqZBhmCdVaDjMMBEX14mUd2nvHkD9HNxuGEtBSRV9B6aRU6xnvMaIvvPigfJSgOQzfwBRN2VLSfzfcnBnglTzH+xeaGf8fmzOfZk0FZS/lvuRPfCh4eNbYVwQbELeo5K0hQM6l06qyYXjdqvnBMIUiPwxnFpeAbfyuGMQm7OU1PCDh87LjkPqMC+E5mZsBwAxKJ0sZ/1bRKNGg33QWu+QzckDLX2K5BolnaEHnNU0yqUTfNsTltIcmZIakecpOWC1CBnUw8ohjATVttyWhOnSF9NQ6C4AtvifsYjgdwSTF+myJ2wm88TCVO03TP8KuzGbG7a0EM8vsXnqzVb3vsxwgyX4hwV43M6AizfcwkK/985vtS9nKyVuoqSy/0jhnMe//vZYUZwDh2La0je0yAnkcnnUeEgR2yv79q8qQ1vRvTgWlan0xYx9JmgnGISvddbQbny986i1iaWbsJf8Da+I5dkCIZlJYmr8TxpsgBKGNia5bheUmwWhsqMK64rc3cE+WveViuXeR6sRqCX5f1+4QRLAKwUfKoV76qFhZrGM/bMFqeCdZdnkWoWxEqauwiyyuWWIO48iCWYzAvv1xFDPeFJe7PuBMURsYeTgvUhjrAKqtVYJm8A6MRbqF9nKHSuwhBswr4BGMoxaV7s/TllMioO14zjUuKybCH++OHHTBBElelFbkCaXRFSDjeKh07r+UFiI+XVDOlJBVUf6CO3dfPJIRlpuxDDUBqc9wzAKwU779QOVBcY0sNACDmKBwctWva7oAzdv5w91GM+HZRuYXxqN89H17GXbee1iBtF6zSVcYJVcqK0t0rQKYJ1Kkdd+P3MbG1/QAXk8io4EDVGyUy0oUrKSNDOsBzRXj37zRorjYZmFtmdlTsintc8T88PCmxwWzdeBp+jHnXKVG/6jplw19HxhH3sHtKOtAn/e5BSz42vpiCL3tiIjvNNWcNTKRg2lE8fClFAxFtiZksOo0frjlQ1NgX4nND3+10Jv/DGswp3/cwJSMVH23NM0CAOgWoLKwsjsItxukyCoC05xI/tybdww4wuFZ71XkiVKscYueGkp2mFmKTYT+tzslrrnuhtw055MZf351LeKgWjOI5lMu7EZjKc3PxvV6vDDdkOKBUWsRv+CsIMpCOHDzp1w5f618C/RnXdKldjMm9wVTm0EuTHurvIkf8bfk5XRX46Jv8eRUgzj3Zj81YwOzpZcMRvUeao82K8WCUSoNsglcAJHzosldlh4me8KwrVZZoUqUrprpHbHI/S3+NA3fczd44uA23iR5YgAC8WsGv/RMGnUBCs1ZWIM0X5c21E7NvtI1Ah93qOhYTvtzQQtwn5zEead3qODSG9Dfv9OHe0xFfHvRfEmyAZc0jLuf7LMIZk6lAxc2dGGWBVsWDBc9WbxVLV9u1nf98fwJn92krnXF0ivPu+qwUDy4pnGdICpqtudy6LFiAi5A72OXypgJNuRuKEtkRJ4AEHbDRMW4Wc+/IY5SKoVNejgMenvraQwrPtqU+I5u0Qamt+RpCjYrYptu+PEW6xU4RF9OC+STZijNoPiRaNUnwqo+l3QGkXsU893fUgTpYfcA5Ir4yPpl6CILnRXUjrJe81JRoNcZxK2gmG8H2+VfvFK68jTUguOaP0vibWOsBTU37vt1GLi9SvQy2WoNkRG0MmuEwFc/iT6xMU+tGN8/STCk8fWY/g9NNnbCXp9sDnOtItEJO8iKPew3peWTNB6UKyZonAACGJPBmEYDIm1gtpRk/XobhksW4eDXTJiPue4WKY94NsiAAX1VLoDyrJwa7pbAwG/BwaOZJ08pw2sm9VeEZzAMPYTjEJ8HDDDfKMBPDt6RGv2SFMMcqQg7WeRUm/2OydhOqE2kgk796XyhaECavJqatKnln3uk7BVO0vwgYnibl5aH4fKXAVjBXZOyWA5nM8vG2qR2OVgoh/CTZY2+XT4ZJjZGOAm85+A+8ObJ0YfvX+1IfswA1YC6ush9ArksqXlgsbRqMWftPu4c8I5szmtCU0en3epYaSoQeLPfV6ciiFNGT9muY0wK4USldY5/zRgk8mR4sXfuGtTsZ/lir1flMIJasQPBCL+H76SneXyZo6ShMmvOAXI9gLUJQA/91KiWzDymi5YtGrv8+qipZXGYNE+sTltJZfPj2I4PhLuYKLWSKlAAfMUP998kYnG2bOxF9QYjWHudeF9EwynaPq9o8kKkkBjr0HZy8rfCp54cdV9e3gKLBw+c9UcNempxjpYEX2t6fKjpmkmj1F78AG3QeF2Dju0EIdNfokL0S6w5eXkpPieBbFLfUqmp7qYcc1Hnp0aJEuid6W/+W+eV/kav/i3IgAasaM9A2HDKoKNp7cdGxEbATI7yc0Q8jkJ+sq+rIdyBKMPwgTEhcNQqPUHoHtJZXStjVo7Z5QBsRbacVzCuC1eTTA6d8VG3HxuF9OqkxHlUAgaUGd9sPsyG3FH0UBoNhmbZt0XppwUc+032NDFuoW1W9628Hg5CrSl4NRKeKMs05xWlDj9wKDQ7a+LxJRffeM9BTS5ZY18iuN28jvXkAHywf0uMdJgYp7eH0+Mjx8oQUhi1lk5xGy9LXOhNxHT10lGUofVbC5eQrL1Akt0Ip6hPOpPFDLbjwJ/15EfQkl7EztqwdK6fs3gfY+5sq7Rf666JFt4vu2B3Y7+MiIOr33mzIQVwNnFAlMFKyZ2dQg9G4BrWvieRZl9GTxOFy5rOr3oFm5Nb8Jd+H0fT3H2KbCCa4JFFu2pcusUOyGeZ5Fuw92vIGQCmp7mku4V19rTkvtkahhLW2miML3kOPrG8H4j4kIUZoP2kXYw3UxP7mLY0sWDC0vtmsz/+HQ2BYAfCUQDzkcvs50JshO7omhHeSOUOqtphhfYZ5giHwyJCL+Gl3OHoctsi0jM9s0YkwyYqH2wlz6CS90PedjTuG5pVDb8iqNvl8YzeL2FpfuhGJE31qMpIKhg9wRnFQwumhcjkQuGqzUeo6j5v2eMP82MKJd+Vwdbextr98l7cElP12cAn87G843WmOOWC4xQAa0JsBeK9fJyc4NSlifDpWzl0Jsya/J7tcU11z45AdC8xlW3t4y6ndcenQ9Kyy4migNHrP7XR04Z/r6zL/284BAGGF6UY09D8XlPDqsyMWyDN7q9U9uut9DgNZB+n2J4wU1pLX0nIkbJ2yiGoiAKUwIFqFSjHcMaKZVt80xsAqKgopnRgsLKeXsJQSbQTjB0PzlVkYEu38s0Er9GeBWK25Hdjc+v2Nonn5KyvbinGOHIaEDXbFe+5KYYLVWxltGtVOZcOpJ7P0A1K6G5ntf9Zkla55MzbMjevE/JL0MBO3f7TSW2wumkXuYbDefqUACwFXmUzhuFNgCbJJOOSc7uTMlgHcZ7owRZ0G5dJz7DDkwXDJGph1vYOm2K6C0d1NLuwkOc39mwq87m16smzboFiLQcijCM9CQ92H/qOl4I1cWqqKfYSB4eQh4/4r9OHhaXb22WCZP/2LlN17vu1hNBZuB83bAZJ0Dwzl2qNQZAMUB9Cv3m4ph4iedNhNpeakjwpWqlNDuKTCoiFhufqFyVomnpKyih/bVaCBnz9sP3jybUOugLbF8mPfdaCQP5lAURLiimv2DC/YJHPfp8qmshfKA+4XEGYUQRTdbVmebes5lHug7hjkvyOd1vvRFWUn9qsJFeFwbgxmQeGtx2AMUHWG4QF19mPSrI7as6Lgmbdw6i3xpFWvmWNAS6w8S91FDv86m5csbNx8zDVpnBLsNn4orLQfczRnavY9zOVCjLW3yZSBHvHQXnzCRhu9PcJuxV8c2h7aXvLL7AkzkqWZ8eM35lNaqjfNnVv3k6Z6Tjtgv5XsPvkGwyjHFVayRqzXTxjjUEocKUpnrWgcEgib6EhLndIYdQqXDxkTuHsD+UHduaBXogWGA9Td75JlKnBL/dfxPmd5nFla5uUWOUyhl15kXJlqr+IvavUXXu595v7yqMGidLQhOeANknf/YKQaNZOlCHLM44pq0EAZC+qhsCketYTcYXYrBOnqw80Yq8m9bWBSzq15trs3+k6s5a17CObEaFhEl7dlb26LO0f/2coNQF6hIgSLPaJjCIQE8gXnAyfCiP8k/6zSV5Vq3EIDTQ8FTO58I9sXe0STY+MERzAEK/QgO9u5ZA43F7tSIVFTgH4LrtzVZv8vyIJNfhLZGZi6NBcO3cgldA6WcHEq2cbOKNOfQ7Xn81J0tl2xCt/2y5o5f28ebalCqRMISW7zSctcW0uGbLo3h6sHOmWgE4WHptX5mpNqzSD/+HFrmi6eGZVB7/Y8qUOs2jiiprc2Yu3j9Bm29OqVakn70bjTZhq6j/AYOPlKvrmkNkGI3zYfpZsjU7FrSukLn2/+6XWKzZv+eniHzbSkIVipgZ/C7bKzzVICrqcRZ3EGHP2RoPJpJ2rJF2zqMSHGg209eGLR49OHVju7YrpFIyfwK06GsTXHsMDABLH82T5ZLwDR1T8yc2ejckmJ60WhTiAGfNQfpcCrZYSMCt2+6+4TF7M53bFCH+COLMDsEL3eK2ymuW41jzO66olcHGpNDKIwkwDujf1vG8cT/fChAe+zBwQwMgILk2cpjVBPJ0T68PFg0vPXFu6J0kPZ1qBeU/stcbVZmVtYY5LWcYddspZACgVPnBk8h2kaCtMVSstKAq3N4BOOiFp3bvhJ50pEm/w4UbsbFkvqTWXlw1X68dNDgzgJsnJlnkTYygFVn7/UXDvHfTGwRdEcPrjZap/0c36AXnVApK0vki1G7Ss3N3f+7/7TiwCjPeAKX9N7N3XIX7v/ZOqqV+KkG7nXbkw7f2sWI87h6gwYxVx8XFlRrAJbn8JVsD+dMu0jXbBCa75szkQ9bSkfZl2D3TI3EK8UjIzQHATnk0bFBsWD03HBFFIjtGCGVeHzrDVQmYw0WDDqv55wJwDbcBvI9km5DhZqYZyXdtSW4PEQZ08c0jjcfN1vkVM05aGh2arM0YMRmD/Wp5aGQQqmCnNE2zTpYWszYYEE7tELvKzg4vyN4T+aXS1ejW9I9Q1q8FLHb85sDINhXNoMeZBfUM50jRLhn1CdF/7CCa6ZsUY0jBnWLYVa1NXfB5+89WkSW5UIWk53dIDo9ySqd4oXAGj5tkLpEEj3bNKt65lg777H+9gTHkQRYKhMFwQIQu2E6mOqdy5VsOHfI4omLgxisW812VLuamEDTp4WAFV+XRgrUHKhN+RLmxpoWEqdvRO3AO2SH35xRjQC3fWhf8TlgEHCAFo18Nbv4yswjV8X5KIUmILIGtS4zopBe57d5awp4D46Sy6EWaMPIhZlLMq1ZOP5r3erSLeYicn83/MCYaGNdqnU7gnyZUB509ttSz35bq+43tm7ifsm8u/PYPAX3epv+xCsnaP+dnVkZOb0Pk1IwGJ9T3Fk8KUJ5sIPQAh3imS4Mwybdz6FGdYcAl3s0VoGBdJ9fpTxtJg+45zRO18L3O6RJoBRztboIoXmpnCrPzNLYJmP+wuvJQ+SpBAuf/lae73M0KghkTEHZ2zXupcJn9xqDmGcTJeoyxlA51ZT7AOw0PSdJeHYfdhrRvtfLcqHvjSwe5DJwsSvpHaI4ZrFwISKAkotPwc+xlU+GG8xTF7P62Gn/eJ6R3KnppA4yT2j+glzPufV/8vN8O4mNQPnJHf+fMydwYY0eToD7YxpSKLkgb7iLnjER8CMCYN3Y8oZFBKKjh8G5N6sfTcl9xngmt66tervbXspYeVjdLmjWd494f0CI4rKjNHuhTw3rHaimGo+ducXEuIjFd4G/n3PNExB3oiv+PiGg9KhMihC/R3EXWDZUj3sPnuNneOBhwoITRXr5F0RAWnNjz+Ukm44sAtrr72l0YMPDGqThznTf/YZkL2WK+tMF79Qo1TdxdgzM1uioLSBUY86Dlq7TJAFUfv2WKDrTIQx8lWKPgzy0Ah2elqsJuRzgH2dGZDNKgUUE3GdDeblYK/iCFe7fFk43ckmktpUzLOVWltej/uWwjAmxMOkA/IK5Uvwku0JVwCucntEq8AU1I9bLjrcy5tk1s5ITL+1uqab9Uwdmcdyn6WnD221+Nts02hgmvDnL7+drwMta36ub0GNTDzWCds1gWK6fJLUKC5iJkrSrZzvlJ/9jeFUSwAHoiq7D/yGFSm68JB5y/2mSc3DcnUfI6BbhxsTwQs7JwDymPc7dPIvC33WNGYxrDXvNMTgjuT7lKql6QNxnkPGeSCNihZg2fMKzXEdKSjyp8HwEL7Gh4uKIwFKGl8tRWCk7U34yt7v/NazLHVXpA3sgJeKBPWWmc3CD8RnxKPNDWzdCHf4gLiNth+zvHtTHBhCn/SMlTku6GH4/MKKHMItp1iT65wjxOpkoVGoN1JjC79fG9DqDcYSxHbH7QjsTFl05ZyotVcv049hOwpqEB7JZPQ2467nhOuPYbGaz5rO/kTaUE1sISM2vZJ4uq3fAemPWvUlypFWxLM1o4q8oEJwRX94c1wAo2iZWNf7PPenAeVZeiaog9ndBF1mS9vHqFUalCZFY84M8n1O0x33Ohz1AkK5PXaCaCLYiT/j6mVsmzRvxrD0H6zh3rQ0bCWKPJ2kUbVdXtcVn3Yzr9GGa4Tzo6gSwo3UeGxXaZCMFuHvVK9W/xHO+oymQWey/UfImb+2wx8lWbf/9tNUw1hQwFJe/Yd4i/L1hg46Blm4uFUmsLi1hjjnXqQYeaWsrcdlQgaoObaDX/CQK6jzS91tAWOFlnDf4fiH0AMEglC0u3MZn9K0zdLzstwcoPJc2ymSANHy2m0lvP6crWR61PTmi1bzyZLoigzgD6kM+0Cb4KjkJSk4Ka0wAukabcMCVr1/wbUgLwDU+sDVZWky629BqlhppRkCvSTOClhLyxG+s0+RPa46u0PIWNBobAh0dRDldT5IhswaJG/8vUjyYgEx8wrsWKfhJjJibOZ/CeVTal9SL8/Pd0kRDx/IuU1ZiW6NaaZnoRySiKyyMQR62KoPeJpLYiykaIOEKr7rRkwVKMl30VMTyHPYnq6mwB3nYXCRF89gTFC48w2ygkEou0dstiRUa+gN5ajrZ996Q2I3g/96sfVZzK/Dt13FmQBYVGf3FY79uu3pl3LliRm3vwQOmEawsPSaFO4Dmm6g6+0KzQVJy/BEZEejklIEGhlzV56FmqwukEhMH4GIbLmOSTIsIib1LvBo81xa67pOvQ5vFjdL0fyx25Bm8pgyfru4ni+eVtI9HkaozlazZQQysxvgSiiMCVgWCdjoP+0X/ULFil5jbLxvHXxf7FMTlO3vrCHNib6fyCp+hRokOb87AtdYcX3WzNITWj1QAWiOQbPGXGtkQ6MWHKI1pgvD+UiazN7VtnPF5Kns6BcE4WaEHW8cwYBieF4dPgXpB6XvaX49kBGFxk5QdZaxIIHLfQq95jedCDEtHKGlZvC0IMy139Wnahp39teOdmY/6mcfiLJxBm9h3cgZEgVIg0uVuI1dRKNSWLvMAagmLkLdqNqrWaNDsJKyO5JYX3OckLPf7LJCStCNuDnQesmSwXU2+7prPaNyeO9KyyyueHcVMb/KHb9k9A1IkGkdLlwaRtCix2ATv9kgWbQcdzRKEQTKjPN/dVp1RjOmv69J5NiPnUxPUamzEnm8PHVdvdB9UAzvQryUGgvKuIncO+T2HYBCFt/G4CicqiH/FQ5/7vtuCu+7RwIdyy0JqOPTeP14Tpcj6I5dUCFs86E9xLRP4ohS6JcM2DoYHHAEbyOyKc+7STS2zsE61EYIsYA8721ETYfDKGUME9AjmDau+AK4Ze9P8oxWwPgLfKmBn4KpTpYztte2kKF9XWD+3f7d2s7hhGH3tq67ag1A3jjhloJw+VajfkUV0qXdqqVStZgPTdMU3S1HLlahEavSJTBlPgFz4b12vJVZa5di1lyUCA8YWlOyQJxkodSdJ8QsM62lgAcOyKyseXtNZyvtj3wlYJ4vtkqpP3C1F/m+FtZeRXKN4ni0ovMIoYUA+2n8jDjnNCCcfuJUF3GLJOCiz56q5DMicePgq8jHpp8Up7QD74M4pZextnANSkJ4Xf/Y1TLwF0Ts9MuRHmH93K2jtcBEMsmEoRmhTLJWKw6xePeE4VtRCI1DUE5VqfzC9AONpsq3/4FtdM2io8wRg8/p9TOexOvFRxXAzIRCyh6u3TYc+NHxBoz8IWDg+rWCBKeQ1FIqHWcky23Nty8vmRixzrkzVa87YAfvVGO1p6ymKXvJ5LH9wjUdKN30OzGlbgzMlOThDQ9c9ajYrGXmZn8yguD8B1lfUeHAr626jErkIKxJ5UCVb+8UBl7Sv/2wLihrhTRRl2e1WYm86pvmaIqYdDEHdgAz/Z4XFJQ9Tv6wUQqcNbqtX42XRS59fsmqMod8WykUD8ulizpwqh2BGsUw1cqbPy7AYBQw+y5mW1YptJIPQPU0mliQMCRGlEwnIN3t3IZBq3nJdGK6PDprL0jDD6WJlG5xjISO/ORWhdhHeTMHmObmztNKq0q+TFxtcTuW36a5cfE0ZTDKiC3wvWLD3kKo6X5JD+paHH/xpVSwDGuaMGUXCdUBAjexsrZ3Pf2kGsX5pd97EWAY3r92/jmI7k9BdEhapTIBi7yBNFgeDNkyA614b2Os6BQc2Z56mPHIdhguzvSMMb2NKQOgDPCTslB67prVFF+9YmtFA8b9J5PcaqwgzHmfl/0HJcMnONV85YnAiXn81JErnDUN8DZuY0SUzHqgu3jX2vkJAIK0W80LlETu9yzEKTK0g39kTtRfnSP26kkYBTUu4RkJI8TyLn6L/AzV9yXcklirvHmeXa6D+slzDQPKtxAqqG26B8nWeO4tdqJW0X4ck2TN7+X7LS9eKp5MMt4dWPsT66roDMyrBTJt0+L8ckJK3QBEHP0SIcyKEty+k6KjbppSgTCmKgnsrxPR7j04nGgCdXHIyYCjiepj3LNQiiT2vUDowOTlU5QaC4s+/YTPT5ybOSBmD6fKbN7IFnzh3p9ragIEvM4ZAH3hAtLm0Uq12X0i1tKv/OpFXMnnaC72p39R2xgryI+yi5uQZRWY9qPNnKq/vr5ZyqHH2uR6HqRfidUOuhebOgCzHZfpLbXWylmlNCzfuJoU3zYFkv0Lq6wFVpZF6OjD6lTTvQ5tcGZwS1i9VXUxGFlhcvGLc1NMFHYBhrFmqv1ipxlAphijLhZeJRZqe8V2jXLue3XipdtYE28bXVnwHifm8a+Jl7tdG1ylDSacf4JKBqZ8+YpnJmsvMIwc39MttynsDgApQGFCMEkEEVBP4LQMHLgHYCSFC5RKMmvTpKzlcTb6jQNphkRYztqVDKFkMSktbHw8XBbYvjLzFMilYGlljxeyMB6X8MwO9fIoyKx8fcrILaCmTdsEWjTA+wO+2vOok+AOy1xGSkysRlVajnoAaC1RQ/famjKI5t09xue0lkGY2ks6NjiycOWitCYhW96o1tya/Junith4L4qiwg6jxa/NrumxdNhflZ66m/pFT6NCBCnOY+pJKmwqUXlUhc4tOKBMhURryaIAffpOXSbRkZXCNONDrz47fzaPB1sviTKE/LEHc/5/mNf04KWmrErK1CfATeuMqo+BupBYetUNW6W7X/aqYbemihF8yQCQcgaBGzZdpBURPGqTW9mUzDcwhMxjHsTHd5W2Sc9m5k2+zRJAJPP+Af9eofBBxyOI4tHsgJOKi/w+6iw00bcvCp/tBx+Cv+vk0TZYYr2weTKou/YJe1sbFxlD8f9gkuLqxP+O6x3CWB8gi7EjyEjYR2FA5jF+LsM1DW4xL/btkMsNU+UZw/h5PP3WXBuntgw4PssTZ3AU3OOSHZpL041Zn1TK/2AYTufW3OJLnpIWNoDsbSKvM0Ap0LUSYHSqXTiZZocnVWHRZC/9n2SVxGZnI/1lJetLhWfeERTC5DNOBkqxyPNkpsTR4MVSnOIztG0sA7NGOMkZ+1IxGC4+KEbIU2dyPQfs6RIzxAatuXOce3pod+4h4b7qrdYZcu+vpJvQrgNAnveIMM8anjCMz+uYPPI7GEJdiyeEHKnh2I+U+OLfJY0oGE7AoffmdjI06TZYrZdf7umx2kxLkycj01CCY7nSO5KOtkz2T/eBSklHvIRNLHoQ8x0dx9q0kwUrMdZRUo+oGlqNA4zmTq7l0yuMDcbKCZ5IQxwd8TpEP8dCYGoN6qYwywghkP+umlQSi2Q/IZu9yqM4QEJ/WNpEdqP70Nx+h02s+CPyYE9TNwxg+xRR/6BMbCFnsf0BsIR/KTV1a7i2j7S1ZhiBdqEUY81DWS2BBqcTnsagsIWBt4UZjfcmCQRv1JrdgR9Js5sqOuT4LS1IFP3PxrXX0CtemRBqktwpru0ZdjppaQmihxxyvi4E++mrGltBBQAoUNpY2fLJhOlMC2LxV4R3zkfntFqyVYP2PkNhhVyfy2Ihmap3dSkhas8VV1NdDstzDkkZY+X6qnCn3Or/25EgVwhBvId6z66LILFJI4guFOEBp4ntAm0uqr+RVriFLcftx789uI6sRsHCjmJfFQtQj8Dl0d/NFhARKmSBeVFU4KttL70jnCtzzbiUQW/UhFTnU+bOK2sqgKJ+YZ6PqGdJan27vfiSoUFS7eK4DRdnIbp5DKP62rv2bfjvCKVhTWhOKKhUQHD7beGKtaZsNhBnQXz7Uwoish5ucjPSt/wAOg6Ds2T4lHzQuI84RMrFufqdPqdS317FmmwN77oybjATdAkAdLeu+Mc7pqioJKf3hYpHbSlVJ79AI++4KhLKlmgn2Dlw65c7oU4MlOG8X362KeNTwIVAIAswkvhWoAZTQ5lQZWA7OVRtqO8b3DewdIWl2gFeqAvchUb/RFeTdqj0+QS4M6ESCU/VVNhVDVodnu5nw4mbzdC/W9PI88LX++3zO/lAao/Uobw+Ak2iM7Qwhk6nAQ02SwXLXy3DpJ0PkihCQFicxMbylc+EQHA77S3XH6DNledha9wpVEuy+/J4mks8Oxl/V7vfuZdHfbWuIN13b9wlwQInO8iww1JSrVKPTOdxRGJ03dxOFzpyMoTcBdStPIcY6HBds4aYKRFkmez+0sN9rnt2uHBzM2JIN+yvwSfqkKsQ8+vsp+NbD46jUR7ILo7zcmuXyKW6Hb2WrGBwg77W0tW0SVPMDa2GRS/Byj5ZpCtj5TLIaL51ZES2GCKD1m8KUtST+KMUqa6QfVI6Zrmyk6saLtHX1Yk568WWdzCZdM7yZ3mckxigqHnP48ijRvRZuMxPR1HZGWglPEGZuUt9yFwjpkZLPJ9zMxhxXZWwui3DDxvFv0jFPCViCsXIw9I25jRsXQJXFcwpCG3T0czt2OEeWH/Q/E/f2mAVtXFiYs3r2idRXAppPxJVv0H0ODksslfi/18QnX8QZoRj5Zd3MnS/sFC6WZZf1f2K8jCEsAWoBMUMacryFPA22qhTrlkoN2ugBf9vST0aSJqiBPWRqpwxPd02NB3qnpbq0+61lLa9K9d+dfbYt7sr2tB9gJJKrLRJpIRg7060iuyX0Ic+I/sOwFOQFybmgjZpRlW2mbKn3CPIu9TejAYFZ0+5T4gaAhczuQgqvjk/CKnyq+O7o4Ud/j0kpTA6ClNq4pB1O5guwtzUSfmBsv+N/m2BJXvr4zzX35fQj6XzKmmZhOoJn4xSv5M50ao2LEW1+XRdP7ia0Zrs2odGbUxJr1OmKwlMMHF007/YMuI08yvtzzD8UH/4/mN7NEcIdq+RKluOWh95Slagma39zINJcTeKToFh3Kw+XZgq2WMzhxuK7Ln0KHe3FmnxLOM+PCojmZgxXh0u+OLISnWLPrSYKWDs/auPhxR1XVx+UHnLIrCdg0OD2xDZp+MiceSnDqTTQImXK2qB/dPtNtvOVkj1FiA/9lPQrsRSuyxFRKo5ux6Il37uuE4qtgo5HqHg9gnZM70gLKSt4Mmi8FWV1gTk/DhQW6FEPsVnVAgF6Nu+EnkQXC7xbfQhe9jGF7UHsbe39YIinH+ycbPQ2ScaxnYBxeejM25QM5oIvOaTbw1jVMQgi+iRNYZkVvP41z/Y83h5gRxEc2fA/sT4kfMNrOaVFmwvXCq1xsSeBBRJOgeEBquNRrptnthIuPrtybyC0NCddr+uiTfc9mzYMeROivEm3IQewn5T9LRAt5sqT8MOct+wHZVtO91qyb3TqjFEXooz3Epd6jf2EFNMwb8Y1ikM5kghsdg5uWC1cl5zjuj0t6ZnA1LV/wNgrtFMhQ9IWQEpqvrqhgdVZTI1Fd/r+A7zoH/oAW6aHt6MjQEs2mWcxq15shKemNpYqzZOmz6ICOLg/xn2+N1gssV6kbWrOwQ7LB7aPvQV0zXLcPs7ujAlav3JnQyOJ+9F0PmouIxyGR5WwcB7FW8upg6al4kEVaulPEd3WhzaG0eUcaMn6Z3hj+tPDOSOmIVIZmksR/u9yXTLLn6AKfY5pFKkfcImZIxtetb11UxtO1KuJd0FQy3tV+2fbTxUk4bPO2hsNziY5fu1TPSGMj3pY6OldYlAYM3/UUkajgAuMQboJ49IckrY6+GsiKvTOVMBDBQmJ8156lt7zsbzRmCj2qDrVRtxfYkC2h/rp1aU3Ani+LCi90aSxaOUkNqvRwQ8z82xAQl7qosYJSEY/CNHF/hN0co9WgHsA7ojj4GRWeaBAVrigX5wMQ5vVA4kUTCcoV3bS9T/ODFmVAYrpaXvmZHvF1H8bDBkGFOkTUKVXj04v7WWT70hQW2JXncKD++1AaMOLSxVXd+7Pv3cd58BAurO0OaKcMhkt0SUd/lP78qMa8Nt2k9KlpfTIg9THUzYvK87lWmBxfGVQvjwd1580OO8QLPgRgAWhak+ewTEn2wy4ca0ZFVX6UgRp4lNAPjRTeaKq7CqFrpu/aMkYJMmHPP/cBPGoJBvbKgHjMePTtWZtbdXwhBCwDTfOfUIYKyXUMpCnr6qqb1O+sV5TMYfs/FtkmMotYdcI7y4IlhfdYgqLnRRpfoLW7neEi7g9Gm4p+9mMaNc6qPvDyLIkOc9gxFPkWRE6a5yNGjNmKpw/EYsb40k+n7JWiGBZSoaRKsKVxaNic/t8MSZyQj/zFuJ70eZ+4IOWPLzILP79wRh1UaVqaoHzB5vaVjCntcckJk9sWFL/1lK/KER7TH/fboBKdyMMHfjkwSxGqbpLPQOxq/IZDCZoHld+emGC9BTmtQjvZ/EVsIcGrKqK+PZjEL3aJCriNf8T2bdQs2T4qxnmlQmEDHhvLlXuUWoagSOsnV81ZdRSQnhOMbCnM71lKyEHBsmq+F+8WTNE/mUOYciSwAsFS/BjsEQ+uCQBH+4unzeTE2hwwcKvOl79yCAjNORYiRb/0YJrF7VumvKu1GtDbBujinRsojic3QmAJMOZEPVt7b5QKkBWpKM1OWqnJbgu7skLeOUEb4YMEvxNUTb7dltgZKnyuVLjCFlooyPjh9vFPhpRwiY+cqFqI8qkOHcLgVm3nAEpAQDkUwDHXKkp0y1qFWX1dMS1VG+4FQr8bXIy8wm4qUSDWpOOE8HHN6q6m6lrfiRJwz72L8vusdKZxKYapoByjYMjXmDTFPmFY46D6EdUdiHvlSxVNQn5eP9xNL8SaL2qNhguEjeR7svHyiZ79N2/C0gf7bzx7TtwFC0vrSaev4Y9Wo8pgVsPEvRrvCNl7vAAjPcmvI9bU71XyAzfdruCiJDcY9dwgugo1JxP4dg7iF5uB6qUNRj4Sw835D65Oj0HWFXMaK4MkUO5wIUSWzm2HwVEOjTH0enuhGIi6tjeB50aWGi3VHY+gGiZVX6GpEzofq+xbF/fUhgodL6EFLEjUrHqwraWJS5QtrX2sYDQ1paUuF3GEZzIduMpHzVIttlL6czufa0OvadXOmHtVO+bHbNew1R7WdkvvhEyJuFwB7oiNiClQ0uWBTYl6ST8hkAaTRYr8kUq4x/7PbrI/yNPxEFUKnkoSirjFq53idkLxeAbzstV+2XJoSMAdnI6w+izFBvjrbf0YfXHXrXU6U9Ls0K/Dn61Jw7Nt/fx8HF0c3Iot7qwzBxtOoSkZRZTuihpSbU/01rCSLgZq1yhR7SoSVrazYDL1DKnXLewYyQMiSRF+aTk9Ij53SJGA0IYRS7HSQOH22aK+iDbS6a3FRT/QHM+54bwO+6IYZ5JlIqwEGAHInjvUxqNfU6C8IqkXhRl/PpvA1gJYBN4PpAnN9SNwBgrL7oAS2iNTS5qo+Yi8hpV3d4J5+lwBuwMHzRpAzBp2hsGDv31sb3PyiQvXhyascoGhNNuZT8KQcb59p01/5eVa++GZYq2WymO7xKShJlwJZgAz2tubpA/3w+xKlchXweiDsva8I4nJal9XVtNvZJJtzFd0Squcoa6KlX3to1iS5RJO7VjBUngiwoWgyL3IMBh86fhvn8ZFa14e7f0ba4jBL8EndJCSkRh6OMqINY4zSDKgeOJetRmsay2IDgCSs0OPxzuz8TgfyhziydC898r4elgsmHJqmsicTfBDWErdHdj0ZavpHOO1VlPSjELN5u7ceWOEEPxsYlCFVhqsARU16kSDES89J4/rpPzjMExQBzTyofzTp0zI2SnpxPOjA/jrrpgjPABTcsmj4WvK7+Uzy4wYBmgiMQbNkoMaLM5w8xZqZ+r6WpFo/ebMSddpFyW6Dfn4xf+Yt1+dCC2XuMqA0gRkwLyj4MKPgoUUUKQDfa5eg33CfZu5pNyimK8V4z5CXQkqXVJ7dgRlWI+0LI1GljCVwAnvT37u1zhxd5ZXqKc6nHiAkxkT4KJ7PT9yOOTyqYGUbTfL1ftldDKbx3DazxyR060o5j8RygkIYhr4jbNZG77X8TSbnOIKiOOoRLl6iGdNR6I/2vYRvJbk+mgQTjq3PxgXbJA7Lksuf7PzBbRvxXAa+EWnx53aHXccT/uc87P68lG9Lmy9eQhVAQmIlRUNhaEBzbuHmqmGWpzKquKpUDepWuIrd/m4dgrGerdUKZe5Au3XXoEyVgv8tZakhM9ly0rlgirJdhlI69uoLhyruUer2dBkLMoYnCsmeQf4bRV6XB/rSCdAXbfL/H3/3LXIqAB9ssknTa96a9bVc91n3/LKSATTcLKl9hwOJxC80ZqwGRAL0P0yk0wDgEINUlgI/F022M0LL+0KJcSimhN2sWNBkHq8xQ6QpzjyDEHrltVZC0UtikCA1hxGu5Et5AbRxERiCu+9HdJ8zSYyr186Phe2meU7jk95MCwpQj2ZTRYObyTsLJ5eB3ALir4HJAUCSsEMNPRJRqskqGSlneZB4OlPpd8WhYgTrx8MJIbZQg2I6+vvzunp5dBAwu84F+RbjHUNQOhZqYAzaP19IB/gWCe8bJ1QPHZdr0czZRAGhymTMtAwosDwbQPbRmQAuN3yYyG7j8Q9KtYH638R4JsO2OP0sFRnjWPPjfFENX/dF2xpMY0oMMeCPieRxC+3WdHizBE8vh1ZbCu9FYNAlU9zwR27wN7YPDbqxpwR+ne/uBgPNyCBdKopVA213OhsPmJ87gDssY+YjYmiB13fmuUluGKPSiQsrNd//iJ5CxcG8crMT2DKGtbCYZ/TShftnnKfeFHUwP5RJG1YIb7RIOa4hTWi/wv+hHGgE++DdERdnQuB291rAU5OtotQLjhHGYBX8XxTTxqrveijP/kC5pTvjRL7z1NiOqnIPs/FHMRjrlx1trjDEOTXy4kHZ7r5D/cCrwT2qzfbWpdK7mDr/NKDoQQGBhiVnHqBRfBD0Gnfxgf583R1w/KaTqfhnfcwvo1GXkjxZ9WF4VNDg0D1FTdQA17qktkKaS6H8IKpd+o21cUTTxRWTbNjxunx/yFujAp3B+xLZZmdzZ2R3A6hQ5klwTlZlrTW/KqCN0vqbktZehZtNjYZbSj2abT11ySeAFHXVm59ZGXT3aHHO0k3oMDvYgmPMqRwWvyH7KIiI/LhQf777vVemrHc0BDUatgBC1padxV7RF31eU5+8cfIWans10f/N0K/LcKGHCPEIIGi0wq2XRjiLeq+PL5YTip763xEdcUVTurLQiwdmQmyaQfKQMI33bIVF2E/HOQHz+dih5+jfkxkQtDxkh9F+wBb1b0hyXALQ7YkXVOJ4r5zENcyThwDrvl9HFwfhGLq2TxLtlImZPi/In60lS+LclA8S9wjoJ4wfsbRHYdPbvxNgB4lcuwJJ/9sO9g18JS6m6RNrHhHPHtxS9gxPcoTmuHM1m+V7nFrHDC9SDBDVymNMQI03uPeKtesijk2iPhMMQAyECa4glsAMYMxHKkKqZYqqwf65cb7NERb7BMoxY4RKCtsiIe9Z+5IIYyK3uPAWv0wC+bvamTNvNjd3u7MKBrCRNhkus8Redy0gMsMHEIp1VEYHZzdYrL/7XDZdV9+TKEjelOERGHgHq0+5+Gf3LBNiHy6Z39FDLkfENX6+dZjpG0Dj899Y0uxXmg/c7u989IzjZhHzQXMMV0cuhAmdy2Fs7X9k8QzBnRZ+9iNyVL/2AWgBHUJ+vYkxYh1tZ7eNc3Y7bOs3WEei0YjDlVWxrZ4U5vupOZJ3CVS55wgAdx94giCJILpVan+30UVpmHH2DxY0q+CwFfGhEaY6JvhT6YyPDyzu2WaoEkAPPsZYIks2dTM8Ag2u7DziJsOIsqCrY5mDZiG2HGJa3hAzQTS7NpRN+/yiZ3UkeYkSO712NCguhITl0KqqfpM3vkgybthz4ihDqB8Rf7BE/0NcScxSmA4XRqVW0BwjgkynacHtIejysrqOH4UfQB4vJMBu0ouGZARK5x14zqixnuNb7b1dnvQ+jRbPIZDV34jeFpX54aTyRB0Cmo3pHegVskvMGp4hTbhb5Kul/Y4b5l7JRKVuA3RPjAiqsYADAsgnQqEkfEu7yzjXDFkLePPaUwmfxZ/fN1J5TG2YUWK0AX0WeZLz9RjRs4J6SdhK/8741PkGY/WE6Gi+DDQ/YnEI/fhDfn8lVVnncPJr7P+ZOETQIvdPpc2kuvRhBq5ucXLRPmNDQB+oVvQJ99iWifCkj5x/Sglp2dSaJuCmoa0MhvOdj5K5GNXgCS886HIhiF4qzIu68jgZzPrkjRftLi3fHgW8fRKO1yZ7QrmbSsLDDDyQrSfbWZKxsfDEKMoSJRCbahiz6Ezoa2iqyss8NZisrbGx3cpZ3RB2KPdk/qQ5nzoUiZLPyBdNS4eg3w4szbaLCxE3wNY2ZgK02lgKJ3OczFpDpwUbM19Gpoeqr/ZZ6L79aVFnryBizs+znmjY+TGF+kZi8T4ntnaEW46R9cIRH3asfYqVHyHfB9k/TrK2dB9IdK48JFPr9HE41Iv/8UoUVQbGLfEIoXHEJDLHYRaoCwmYeqnPLH967SWV3AzwzIpz4D8HgnceuVZgfKikcSkG3UndwpXeDB5Bk8G0eJair5hVwu5qTIRSbqoLfsv8tyZNAWIbFFh65JsHWoq7kkGbNz7lvvtcH+C/qH5YneY+2wGqiqDxyd/dUnYgAUqTRic/f/qBlhQHy2FOt2m6mlOm+n/mLfwsGhsnf613/Vv+4uPsCKBsdfOXwl5ZRUf8VZI3Q5xxPlbBoYXYPpKvdb9cZn292Fdp86qM7DZSObbHR+pV68vuXoKCTpQYuI5BFtkaWfQeo7l4DGMBM9rEAAOCFnHoHR+7zW+Tpvd2Kgrl2lflMVagyMJnFGLg3iXCDeTFp8idQcNFS9k7/y9Ateit8mpduIafzfWnH6Lgsq1i0RT8gbDs+AfIaxkdK0QXgXDZY6UgmmrhgW0hnjGY8tYTDZR8Ee5I7w8oLVTsXFXJwd/CXDvd1Mwy7aQ3ELuCUyIuIiXYTCKMKBzRjGvHQuD2nq4ShH5F+ioqO20Wov/4FN2H40UGzvDdicgDf8MpguerU2m2xr6ZsniTZYAtTBsNDaat2qZ+J4xWd5WocEb5RBXsSv69GZOmc4v6c1n83qlhMJY70zJhPouVjjaUHGODXpBn0sM3eTAV17vDVyF8AjJ0ntD4PGatfd2VhCH2JDqONmdaBfuWqM0E6U104Z0cwIZdyUsYMwQQvHEUK3IE3Z2+T4fAZTcNWFtULn6pxBvcbwUGtLbauSdh6d1pQlIH/JTqkrn8EBnxUyNuXZY1S+PFafKSnCCtWzS6tvrGXffprpwx7gK0/47ap6Q7LLhws73K+fNrzrjozlQjhHvGoDZVOqCMSsOWh0NxOUJjSjk0P068V+UlSe5/oBiXjWXBoFXC7NSx88XgJnaEFBPC2wTLeZrwmmFlGhHqOzjxfn1xc66QfOXYoCPG2xPnMwbCvjcq71e1Pln7nyuMWMqW9Lm+OgG0bE86VZ5sPz6xZ9qAHLFsV3LavZKE9BquqRSny9K3RMAAGu38bOd4ILqoAZLakVeRm2pINhuNgyX/amPnGcv03WT4m03+yhuL98i4l0u1z4WLXKNmG/tk9mtaL1BJgFb/UadEsiBWcJkqLHPnavh+G4vzZqO24Nznz47aWb/7AS9IBfkh1ZwTsEd+1mE5fpOKKebhlRqvmWHSKRMHDEbmUtdQu1qO9A70Skc0sctHPQedfzUiyEsyzPpKJ42gZuyxvl77p3SvALJkHPXA+74PZEFqrjIzfhEbTY0i438TjM3k64fmUCtvWWTKIsq8QNS5RUeAaEMWQ3vkn5QARm67B9s7Hu0Xp37n7vBr+Z/5IEDJsjtw4hQ3sSVkGltLhTVxcGzPXBUEQWDcRIb0qEs9CuTyrvp1pwB3mFiaq0g07akfmXWYs438C2Yvo+CDRm6qGQ8zAEsHVsc+NRd5eguAJUV+SQkLAg4BgEhFr4tR7kls8Skp+95u59oVrnI2SPza5ULmCHcuqkFaMPwrEHcg5lsIM6dDQFUaBkGZktIEjMgVBBMfP3nmhdNIOdridYlRL6bQtWmQlUxKr2hcFhdV4H0FRZMF7tofXwraX9SPoWHTT+NS0wktU9/cqDiDu6O3tWJlAj6eDnyAOmIyzyVWBJkzvzozqgi3t1j35EPbCiL0JwoJQ40WgaApK/GtxzOFtvnyHpJxz98CZqFCGqSsDzu1uQZT0wC2iDAXhGQQFxIppUIP5yZMdD7DkbXF0lCCMOiJ6MAX24Br9Bp737xQ27z79FjyPdgl63uetV8AutvL26rs6P578JtTFSBAwY6PAbgAxv6ZugSzZ72M8EoGxZRzN3DQJ7YfBCO/sTgK+MfASDsR+aRG5NWeQjL9ocMJMmep+lK3CJyMJ0ak6JmcvUlvLtpcvBWmRV5yg6vXlhOhnQLKdMISzs9I+dtVmfL/FORxDHv7H21WMzeH9wTVOgEXjZKnGeFXvby4Bhcg1fvsIvHlbmz4f6QYsXK8iQ3Tj7MpnImBHVis/+lxWm4Lt2xl11z7eizBB/3lYRxUDKhCLXGuKW/FgSwM+3f2nR/0DZ66EvcGG+hXGtzVeGFm2mwL3Hszl9wt1HYk8BAoQuflel89cLHu8mnWaZpVVOKn0LmlQmjmWQmo8nGAlh9uzxn26NV7O4prJZakYg93nmg4VnJbKlgFg2g+c0sZFlJShOeZyOORIxeO5jZFKP8SK2ugU02UnTBIbOH+nKk3uOJ1KbMpC4YSlKsEPiJthE1bJmLIjFBZMXV3wlqCPAXgdme2I4kzsGAZRVnEeKWxTDCHZdoxNNN5EC9P8Sp5zE6SE5zSncZjk2PTSkb4ljnlXV+7fdkp6BOou7POp4eRatpL+nauPoWx6Rv86QHylxMKJNbPnpgfrVRpl1FlUe6iJ/EJT4NBywepktIxQtl4Bqjp/g7NhmpSaRk0JuJfHR1o3o9/x748KtXnwqnt9VLZbKOYWaY0UVkOqsSzih8dvn4hq1jp9WUqiEhSffnyXysXBUOHdi/IDEKdwFU57W5rkBOk6dnQ7Y6FkfyQB8C9+k8I6//5wkh3i2maHCCqbd/VB3jc5cKroq9y/60KTJ1YPLTR9Qda1hg9XlsKtH/L6VoYDA8v3g6QR+BkD6lo9CknEaeFq5oY1sg58e1pf7jHVct1Pha1+HP1XlMQKvPh/vrJ7FUd0sLU74HnL0r1tTS0+Q4DBeWAISexMAGEy80k+mQclcSaWjIbFGzMQpI4/XL/pksmSSnfAooGyX9liI0myROS602uvZNxDmTZZIdQaac3mWWjVtrCI8Z5XVHn2aZ+EpCay6t624xBtHxVWvZxB1ZFmT1QDj2dfR3ztsk6VQy1aCmkgflJdJAHjgMB5o4wnj4k7iabA7GINesNMjzy3JLF/Zy0ZJeqPiB7o18Qq9G3gNpmP8iGCaCdF/J9nebOp9CijoVI+ZdNtWG8dlrJ/2FrfFUdV7C4n9h8dkhfvit6I9sPnsbXV0gSLbW+SlyJ6Oa14LcLQT2jAXBwXA63uOYJwC+tq7CA5tsH3kO9V/P4QTazNysbdLrHz6iuacuLqXzK6mqdLGKccAmXD6X1bM4lfDniM9uRqhJMpb15i5mwbKfWaXXL08Rf95ZZwU/J0iWDGz7ipJ4pHhfbFiH0Boew8axw28vAg7NVrm6xme64vCxFq4IilqS/nGfQVMM6aKeTrEhUmEIl7zESlaeGorB5dw8vbNMnWOlO5c930pCCFh1ju1QIEp6w7ASwfJUn7mv8W60+JAnY2IUMjuG3vtrPVXqJWSl+xaIxnCi47DmbRg06fBAD8q3a2rICbMREzCy6e7b+bNbxTFCnjDRxHHL2ysz2yLCwfjg7KN8TyN3slvAdUT+tcOefp01D/4cyq26Rvb4xIKAgHK7i6dgU2//L7weeabL/Cf257wsnZuUdkBrw7spNuIM7WA+yrbriUpMnj8Yjn/TCPYil0CCJ7yQlk223KpX9yJ79YB78C/aU9w8To9cROKZPCnJ7UtrvHLeyzeD+ytvUoWy/izrk3lHNsMV/pwNnHER15KCfxkT1fR5mwqveyZdzFlRBQ8zR/ShhsUQG8U+3tvJ64MNQCo+UaTGKpvKhxvzuqIaXnoRzQwylMjPjw0HE+KVR+/aQCPWQUv14Zp33bpj59BX2AnNWjBKnFLtWKMw0jjQay+/H0neMT5bJc3xuuc+fj4py7mwpH0ctXVxvTNSJ4CblD3msvkh2IUrHfpom53+sOodu6EsVoYemTRNfRxufR4nx0H3j+qb46Rb+VHaZMAxWXTKSrXdy3BDlLprg9Qfoag/gR+vSibVwNy/NHeGYOkLa25jm7ICs46a9aMPY9jRuxd9lFSl4IdGu4x8wFybS4beVtoc41By5lo5T8+dUbJX7kCVmefTZ1ctRB40+tDmfm0HZB5DRSHdiG9xdbM0idQo37SuFdOIW4nASaDaWEbJ9lpXjwd+BWFOizAJ559DolamQZm2uo0v9NKi+pNK/YtzU4l4IyNXSTfMxJUp4GnsnfHSERmcrScf18ZdZUTm9SzU7R3Cn+MGN+7ClY+wlergDiyVm/pzoRUrqwb37Pb/kTuzDJOHmHKqwJuoG7sag0Z8Z5DrOar3jiV4L96Cbvw3Sqmi4/7wxs2sVMVMGIpwwkXx69iKUbhPyEYOn1HLJpADxVBRt4IeztmrQk90N7jOljkqPoeYLdr9Zl15AJm1RLT5b/bEAc+RjmzvF1zNr/3fgiy3N9BN0qPNsMa66tGxUxzeh436Wb/z6qNW/0XWIVI1RBQFSW8pdkEtQJFAUrf1USbSwUGOwz5gmzg6p6rNvjXoRfS48LhCuVrkGwJoQ9ft/EPp2Nn7Gu2Ks5cWoTe3OgxXxa7295saBjLB+uHVU/e9JAp9Rd/4fg1ODuZC+dBtjmhsVz0b8JxkHPPpUS+p9/dMg9m00ZeM8Sj/U4pjjEgD3/PhY3gYXDMZACB+PwsUX+FC6Eg/rJv8RUmDsaURIy6vFFbAWgsp1fJds8VFXIWhYrRQ43wb0YpmGVGnjE8Rglg3f6ueb264f2cENYlZmyhrdsCzutOGcz/34LuRv7k9B84VlW278PCaQkY82ol1cjhBS5j7zZMewJmQDb13pbXrXeXAnStB/9+TygSoT6qnxitDCh2IAXgfDyaXX5bKAo9ESa2LqCIRz9I6YCyW3jkEuzu+Pw10l2CKREVQy9eCIO+6pl0iowx3tOm+bZkitECubLVHd4nYDjZRyweG1SAH9q5sAYko0crNlReV2V2bCpcKqGNzmIKnghYnerkBl1GxzgtS+ki1V23Ono5um2lIMb6+nR7ssSRK21rqAzm+HNzBOwVHRvtjJw7XtaY8HEwge/i4v6syrFKyg/AxR5kodk51AjLw+RdwdcPMryN31xtYmt/duQPcWVO1Zx0Vzi3TYx6yZ9qOx6toi149m8RPuHTo/bgX/abj0nKipDHH2pWzKfsCgB1Ek+G+gPZDCREIybi4X/IyKaSDWVNrUpCXgc7QX8vpk6AFVnmMGeQhoxwh1n7RPY8q/sWXbd7xTp89oChfY+N7yk+f3WbvHEVkCDeKrxh2dlgewJvgCjIt2mC2lpppJeLxuBYFTqcc2wvFCLG7VwenOhUH0aS4XPcNi3+6HzUTjNriVyfmTk72VT6t75WcA/gCMrNmr4f5NtYSUhcYrTJ42TiN+rKO/oyn45Ajb1DoXFJ90wZj8N5e79X4cxZCHUD0gHlLvQSasHbRPpl/lJc59KesAfGauTtyXfRqnvA5bZjkzYmdZ8OUxoTenjitBlTVUWkgs2t+0mw+0nmQGuUYolSxCL257OZWLFhJ/iCD7kZkHVHYZHZtH8FDXT+0+cJUWqJaWK61k8QReZ5tRODGiD/6mW50xSCvkENtUL8HRDrxGQFagTP8a9rdL9pl0ScCN6R761Bu3Xf+o6zaGGjONBT1qedl1HEOh9sCYzOeV0wb7bYNfF5t1T3CiuqFwX0DCPIhzrti6HsyA933m2tbQlOD0OyKRIk6zMrnsdte0bdw0/xYLZWavTHJZvyn98EQ9Tb0Ezu4WtvaFNdRFlgGKAFo/l1IAqacoTZieTEeAKGuF1e5S52tzRKpwyN7/f8WIr5wyBbH+XjYfrqIlMTiZGQlvyeYqBAaH8E4441voOoV0/Cg4XMULQDvS/SOE9oxTavBXfefGI7uHD1MCH7Fm4LkHwVUvp0GvZNyWsZm77We571NxoAgxDpa8oYMd0Wgn4v1SGQ2zx/KavuLtfATnk/UVGNSj7l70acLZTZYDGULkwlviVGznemmApvCzosYuPKrJTSZFvzXx6ew0D5Z1SfeDzHq+xJGcQmSaJex4srLT7gnYRHDv+uXeHIXrt7GDRmrd7odWh41uudYs1JzoxNBvKLbS/dx/ZRN03w99uQYLMoMgT4MobBXF86aVMMcEetBDy7CdCaI0/smiFqLvaCzlNsltCkygZV7K9Ch3ylq3aF0fBNDFGSWvUURf7j8US4u4Be9aSXSw8fgc4+S0MsAmYL59PFuYvP7vXF5OXkcbm2EUbxYADO+XCROVrsHyCB+CHO31ZsxpuQwph+jC7nmH+UBZURRDmls1ZHhmDYTIoD8zemGugh6e+U/xkbgJphhQrfhjNbVUPtdzXkDtInkm8v3jV8G0HIr2SsGl1JDfowlBv5eNFWI/ftS9lCH+tXmCXlgLwA8DYq9AtutRlLsBNyQidaUWtO0SxLuXt2O4vX6uD7PjUMtsUgUGPKkNIoBf7DS4ibmCKoOjLE6vnbdnHXPSXW1CoyRB90RwYDJaB2043LFItdpBKqepad51dMeDn4i2JJ/zKPsW1cuhvo4V7LQDw/UgkgTJ1RBrFaG4+CJ7Hj47y7Za8OvsgFPSXTr97IoTDpbOV+r3Mpt74oEK7LgrgTDDUAILJRNibRvA9O/b5Bl1UILrO0Et1ii+um3A1fNpg/4ayeJDbeARSnqfgjZOCg52eyaQnDpg8CfV//KEaCWbgRu0FzG/s0wG/rtzCg9p0Hf+wi05Z0fTrx5pK+FzBA5O+gxC2DAfKFBzDpDl7hR1ZRUi2y2SGwBxYTkfwX5McLzlxdYJcStgcu5SZYjCgU9XVqDe940zNJmDJMUB/+awMk6soqcVO32V8iUjJc5dkVI50dfo+JvHRlVLnPjHXQTZwNuEEptCZeMktdc566qsXao8S+FgeAlXXYGrgjRNfY7MIrsEZyZ+HD2THl99SbW6e/Y+6lv4bx67D9ISDg9HJhIW+BuFXV14gTt5BEnvFH59I5fKtaLljlns5vbnMAjC9k0q73SQQ8gp8GiRpeicXt70BpVN2bg8WaV0NnPqMULdcobRcHHhUXg1Lj3V0GZ+6jh90ciyuUdU5z0JWO0BT6KOPKL5yjkg6IUhbxbb1uJIJbSVMGRuJV1J1lWTW1wXQSSxfON0o+aWWAO0AEpd6Z8YcgB9mNaPsNSZPoqf5mklyOlfWTWPBOzOKMLJX6SrlDsc1AfqMQUU5xjApDUjMRADqOS0dzayEIpVp6lNLI0QrKhqquoMcg68e9WCZn6cPEeB8K2BEqdj891HJK9AylKjPEKLiRcQPbaok46zedlJ/pvLjkWx8AywObWJM1W0HU5p3gOm/QhwxRppoIs5KqHJDvURJ4Ch6ASrCjo64mOg1tM/AsdY0lClXXl09pyJmV5sK/gWudgIX8FLhjZyOt5eeajeYu67/gKq2/jGPXhqgKFrQSFDYffFHQoMg2YfmwDccW/jar/Rsz3MCr+44j8pCOgsbIgVWfAo7FZPzjPy07QBZqwBZv43/gLC7cFcLJ9c9I9LQmBsIK21iMu7J7+m19Eq074JX+zcvqhh8vtx1RkQj0+z38TFgRdkHIy92Kni6pIZAS6ef0hQKSZMAjXu2edpiXg3k/o7amgNjwsO7p2IEgGAiQGpjExjNTKWslsnhfS5rxNqS8q8gCT9LDmOlSs4IFXAcQEZXEyZgcD8B8ttth1CHpNmgjw8eh7ZeRgbQdrFO+KxJYmscazRYb3QNPKjhNmnyL4pv8637i98Tl0rR/DVhSvcpCC1OW6YD1Atyv/U8GIzvVD+kbgK/P9NEbNb26Z85gDcP2AoEQ6BL6C35bRnwLhMMlphfZo8AuvE7fbJtoLSJfKFGL1mzjoZxh09BM19QqvPHP3fzAyBTx1kNkSC2BeACyiysbOlh/nyVkPvknfCMwCJdWNuM9M/e1Z+93okV+5P24oFhKhoeWrLPcHp5OKpGbsMZh28A7XCZSh8C1mk0A/GXZYNdJVlG2e9jA+mu8klzXlAIV0Jmj4yLSCJpgwg74iM+1viVLzjV8NXfBacKbLYtcA69IuGo20X+3UdvLrknhR7ac1AY/pcPcnsEhExv1bNllnFrwHQUrsLAghZssecbJ1oYIA/mX+BeIQIrxMYC+v6sIacrsa8HYeVwi2+DD8CFmgO+tMVuPDItRfR5ktcfYJWutJZ4NeHdMOATIXvKACwUqsrcuT8jDySG/DpfXWzA8855yO5mxLoD8Z2UWxSyiD/Qa02DYgXstosW85tV9ig9q0y9OnsrMQebOrSEQ/36ULFXJrsboMNFzocxTEsnOkAv9tcV/S6TXFM5AIY7gnuTtwu3FKh+NK9JKBTZWapUI2NBVEUNi1inRFSJXNkzNblV7s4/HPwwVy0EEQm3mjvrRWCkxb2/1VUgoxL6SxiL27b6m2ieuo+2YitU2c183jBVzDUcUjpiioaTEmAR8Kt4R30DVp6k9v9g163COajD4QY6sMQnbWPwdKSIehvIJ7LGRkt8K4nZ+8oQ/EA17xTz86EWNXvQGpfPmq9wQDB+n1Z455i2+4R0z2HpPgjIG8uKmP46m0duTHxWNkuQDErsAnydG9izN26GUJcN2r1ezEOCL0GZS18EaTrmwcHAGVY7krZyTOtmzKDK279lLf7pgCCihNwZnfXqtbHB9QmJKs6M8x6uSCt6v62v2CFtvNYAUvS3/74AaUWPClymKTIF7aU5/yhMS5eYtqlaTJkZGJErw58mdVE5K/0gr25f5Nzpj8hLhz1kHs/aB3Zoua54SRlqU+QJctKtpM9GTo8jDSWOl2My3eEgoQl3F4x4KFT5vvI5piZGA9i9Y5fyBm7FF795ptlQSO+t4strn8KFhUi53GP5w2zMReqKA7U56IeM1IvPt/Y+tH5Ce/Xu3Q02S5G24AL21h+pxTPMnWka3KYS8IBOzVklzWGDoqWGt9hMPMV0tKtR56tsHkDn4Ssjg8Xreu3j8qA48oeSa+7lUVBQAv7i54Op0lGhphzn6DvuKBcfom8zptNh7ik9AUyK00ymeJET2L2rdo+D7GK9bSMc4QrTxVtbXKq5AsfMjly18j9zmxNauXx4WeaTDvBJRWJHOcEh7q93gNeGAUIo0FbpCLT8mMlkcUpA+a4sm/WE4kAptN2yRmb/BIlUnRKf4FR9x7OPO79IkOy7L7JqLyBLo19nXt5hNQFrr0ryVwDgNCssR5uuUYdmjjG3FqreoMtoNpimv0PZ89CtvTnDfY5VQlsvb6ApyEO/tALN35v58GRlbfLQc3l7f1t6nTNq4fo2VC2Q1KDKClNiWAMyqdIcLKJKlmsn+noyAOHneIvcC6TwtvoKpaHsM5vt/6Pkdik0YlQi1JPKk7CMDQsW277ytgaYhNt7twEat3KNrW/m5KRG/1+M5C7MZPuK0AlN1tcegK46+stlabxuJjUWA4gFfSjd+Nc+LUMOar/ahOzM5SPgJlkwlOlFGDmWKlzrsxoIXgSYceZWA7kjyvELVgA159LYHzrW9kvJWOHLQVavInIBTuPsnD7yx8vLA3+T61ZjwYJY7CD9tpAEisaUK4DflNjkEUMR6h48dEuYyd0QA7dd+tSSsa9J0nKNS3zTvwk9BO1WzmXAimRde5JE4wUArZk3Sc4gebdwilXgR9rcM5jZUTChd1J+gouAdC6WnhhRTUvHMfXFYhu0I8WPp3JJTc44uS8JVxsbE2KjDLNNimvZA8w0qQovWJ9TUdoUZLTHBDaspVZHDPOO1VWj4k0unrVvFD3YPHcbFYBjOl+keZQ7MLIwnpooj0Sa+eUnCD2KJZTX1RxFDyG1hKFjiVEAhjjpPsZbPIPRkOSB7NJH4xHWr1NVEjCh8cKM6HYRZeygZ6NC69xRjtC/y1IETmnZomETkDANKtpx1tOpJ77Gqx0RDqfqpJWmIyNRF5qiK1u4xoLKJ+JRx5PjaIoQUl3tAYpRaK2nj7bc5KtwNoyVnPtMj9ZoSMFOa0tF6VaA1dfLIE+G072PMaeGNZcBK0pL9xsiBQY1n/h4VHs2733cyzIs8S3/73rVJag6/zZ5g10EzGiHI9AgCDmA7g+AQnV31EL29ilSMvSDVAUxXxpvmlCv4qzuBuvKzTVwao8LJ2OPV34oy5dZkpeEoJV/yBM0Sa+TfbSDK1R0n9sNdDZWKuXjStvkM1tzeaXn3owz5M2ZGInLuYKc+pVI6YYFPzopP0IqdwYGAzMB4E/KkLUjXMwJMIFt5aZwmwV9XayFkkkMSlLx0yo8T237QODiAP2Cq2qJ6jlBdPUmokkgnikwKJ1nLkbBCZIH68rXcO6sPT5ofl4qqRGi1Mr0XJSL0j/YQ78gmDDC8CYwby5ILG55+/PLPWwoNIQ7+pbMYpm8w3y5mbrwSuOHryygJmq0L8dMfZHtuSXZebjzxIsEmvTmvHr4wlgjKngaso0+douc/mYlE20CReERAK6NPKMu3Ae0NDb2UXoxjBk50ADZdnh1EXUwTM5iluEUlwRGHOWHiDN/hzSlOb+PaU9EHOuHayAgiir04sshPybGDSWyLJM9tkIbuSxsMHBDraOpR+25x2cjWnWkn021Ppu4dEnS+AH++QCJ+t+0ccKcx+YsHco5HDDGtH24tMaYRCxfPp95kLOMnS7jpMUS5oMixjxCXOYZPwoNUVk68R5uLSFWgDWZQTk7QIHAq775xmhZU4v10XhioTzpv5DmCk9HA42KX9fjN1dTerbuFoP8GFjZ//z5aZ4rQiq0qtW8vO2smQE2+IJx51AzLQIUjLm129XiUl3r2fIp6ZSxjfTcONc8fqxU5wwehAZV4OwJz9AkAL5gOmTKzi9qG9OpMyo/gwuPLVxjvQ9DHLjOpJpSlH9FmLDr0pMTykGd8oiDLAALIXI+QwMXwKfNX2hO2HEZI+tgunZJuv3djqDnuKpGnY5D1MF/UcBu8zd7c5JbS2iUDyCePVsFvGexAnk3FCimnaNZalEoP5S0T5HfodsOi3p0uhYmscywsgFJWReen/v+rDrfRNuQsZWpiC3W2dGlT9uFql3h3IsyB6+lXy69USNquF8ZFqIIP+erJCS8ebnaDfWoPdaxvnBGtFQFsiDRZ4IS87ODE3QLka+efC9NmiIzpON6ume/m9z8JUiXwh0uC6mNPjLUdDuw0GUF+5hldGDt8WIVHzTIkZYqQRee2oKZjgURDaoBvCoZyoQSa8fCoiGdKm60HZx6v/+va5FC/Gy2wxvRkSzHNxl9TTx0+ReRsQeZKMVPhE6+xB5Y+TvFBZbiSm2oQ7XVXdRlSorbcVJFNML/drNYvDb5zcUOW75AFn46UoV8CZf01NJXRdSTLJLAuPj7B7O+9ZgEosU335S2nCLPV8KbC8AHVeEOufz1AVIjprvguOqknPJcED3C2Z2y7zk1SPtqGe06xpdLPnaPHA8WeHO7U1gB0ogp6cAZHiqNrlW8wcTEUTQX6xBm8wQEJ92ct058YkhpK7ki9eEkNJ56NvlvesJHrcCtbocJrUHciJvZfwPl5gnz3elhxj9zMhvq8D7jVLBKw5hmZ7sEz9tvviJwxdpoz0tk+f2go+gUQk7fgJ8MWWbrsaFRyxZQlU0cxICEVpnc9yHUlYVEg/dBIW0mezZl3KIlHazxoCagiZlr8JN5AEI/m2TCmHQsOoUbU4zkijeBAxEdmfZuRKQqlCNG5yT1EQg9yzx/Vfte+nWSzzWWljWIEtABrZZAlu7yW7dngUiKXtNRrC7EhblzpNIvsfyRwifFDTLhWxj0jujwxsjad0ryJEZKWfyT5Zva2NKC7/dP87W0YPl/EPNk1cdnxF3Z2WTLS8GejEm5hvGeC6rbBBidU2PJ7EpUl8UYkZ0SpBPNZZw9FBEpLHhkkiKBscP4sAkejPlYVmH0MEYUOCEnvwKSrSO8TzUhTO3sS1yWEP2xyPeFTkwTWRoc82YqHgD2RGwKQpWdjTHkEtmKuUeJHWy6ff2nfzxYlM3/TqiyN721+LNiR8K+X3ak+qJhsWJhDtv/Ock98TSaTOrOLGqXtROe5zvecJw8Gsv1T4rVFgrKKyLag9mjOdgfZ+4Ih3hQp2FN+dIEmq2Jc+EIS3z+91BG5nowWT6ZHW6Z+mm68IPOnspH8J0hNlvfnVM89MRz5cGNxXhBaADp4pjUuys7cBZc1ix7CgVa0COIRRzHZ/qJmWW/6lAi4EFgsL5DUSbJ1n+/JoTUq3FbGHNQDC2iAMvokfapPfqjgCdpqvohhdF5kXwzJwV5FqbQ6RIuv4+5CogqrBIBsqfyec7K/Yjgk0wnBbLM+Pg6o+Ra3iJLOMlNtYKaYjQL+/pgIcHDugAtt5mC6vdjE8bM9zKBWHZo8wgMAAYWftyRifSeAYG/h/AZpBpzUhxd3+Ht3D5dv/wAvt7ILjnsE6uL6Z3TcYo/7IKckfXM7XFoDnrvndSRdoAA4LbcehWvkBqGCZ74VCOBjEefRysc/5VuDqlk6iixpUCpQ9Ga/cVnTLP5V6XuL5xJVzESgYzRm1dG4cwRMfbIJug2jth7/4wHb68tLzLV/EuZArcgzDIeLR6adXCJzza9lspc2oV55C9v2rB2HmifNUi1C3k3/OImiUZNYRwxtRBCZnx+vUHgXPjxAxTeRR1r/4KNE18dgvaukpy6602IDZgMqIrzALEynWe3XTodeyHeLv+KJtzmGio1OftKPai4h5BL6/pOtpCemJrRGsAGy4OJJJ3VmMLuhGE8uAzwd+piZlWtOGBPoyPwUeQTCb+2pxtEjmi6bfwfOvr0NhwYeHPf4lZiKwRCy8paePJ0kllk1zuwyoe4ApGgTPcbAzOub9eUHH0t0VjMPahiy04JK1TMskoBG8mB0/8/UIVBxeVOWlBWSwBwnupwaOyDKpiBu5NaNvpSWduho6/wdJw/+c1bqThhfC/jylqKU6rB7S4bQoR54tR47bkmof9DLifGzsUtia7UzGuVUl0MdK9ksAvzhZ5nn2SEhzKoWFBC5572Yt2uBp02JMWkSGpM5pWQl0AhH4Fsi6WFnb6XV0ue3ztHDOLvaJ0adFKHU/jajvSZ49E4dMrMUd1PPA8bydfXdT2r7uEPmzreWaeq5HSeNkIXxQ3EFJBQyivjxGA97lZ4dcHcHPk4CqQTrwDhfoVKurxssaoOwR8D5lbvlMjI1sh3RVMhm4Yw2iNJ5X6li72ZCHj7Ym9WfKd18COOqXnU6CokK5FibqY2MNHII3hcpZSJiFEzUk0NUxXBzfhOdFbO8g0J+kqwxdExJZw1WIG/54rlZYUXNpbIltcrjDqAOZJjf4YbmhNphwBNVczgWjG7xMxsAZMHCrvbTexI9XiskKmLdykFB73+dDhptyhhfBlCNgjOOnQdi6bmg1R3AmLzDWL3cWCiYOCarjYQhH0jLlY/j87c3AgUfeK1tzmFTtjI6wFlVOobWtcGEiiI6xXezsEIlhvlexBAbzDNDXIC5sHaz32IkX77LdbV3jFwdN76WZNoV4BLpN6459qEE9Wlc7xVM3fVPYt+F62P8R5a0juBjAtWS5PexeWsf/NvftcfZ1LJMbElSsvFBwMeheIuA8872wDTV3wiqL4ZfBHH07qgSq1i9AwW0BbcouTt5QuRrqPex6rnPLWrLnuLcTwOQFDOMdIZ0+7qLTzLP32zS+dA+zqKpIwRiwrTzBCfA1ksAeYtPGWXTdZbZLRkXQnKnfUEtDWH98ZeKUfgkIYTeQ9kX4JG8suNNny3lnc64bpAXoks/CzJLphOMtZEiwJpqUHtMoHxYWWdznD+f6jbQo4HcOYIK0WN38lJYTW4s0rIAc+UKouhm//KKZIisoIod9NIlvZ7TeqO+XxLKgTn0F6HszmWNVuZpcHTTIuAe9hnuhWCY7FtCS8zLR35rUvQ18v8kUXqHRnKOPRFq3nY4mxSE7nfagcGiVQShEJnMPsMtUAvCsg8NQm51SlF50Z5IVtc0699YUZlLd7PxsnqobdcoQJmYMUDOFMD3GzyLhUNeBxIVO8BcXE37SfHNAW3zmUcVIts/jdrBJn4tNm6aqp5wuS06jIwjJiCsDIjTQ78mhlUW6nA/6EXScwwEE+uraTDzmCVOfRipLKWHkoQFiNiZgLGoPfI/Vhq/C95QHpoVm8roGYrpdFw7f1mGgez7tmx4iTLKqUnwmv3u8GkP/Qv9hn/1TOqHvA+E6L6ifBy6yaKQBajEpY6mWIpNzDQX++ULH5j6o3RQNk8spVXwG/m8lPVo1FHtHaZQ8INhdCgLMirMPn8v1s+pCkYulF5Fsaj5b3zPCxRnhjfzSTq9ugVecikqLL0rJio4XvQtuaWMj75v/qh9vER+bizqxvZxGtcqth2rxUIhEQZUg0b96NTXf5cYcfTXVt37Sv8wvzPfI+HTy+GZNoN9qvJbJjxqBmOWzy2DfHESgIvrQwcRJ99W/W44PWvA4JGbgIBaFIO3WwS2CUQkgGCaXgpoGLlNL/H8Wt7hg+xM8uqDfqESanObzisU46v+D6ZKMh6iiq8PqWtgWjJozHdTve6fZd++Nly0PLAFVDrWFdcftl3A9pJevgFItFIuX3J+LzXTA1joFlv5hqRA9iuxefgc5rUBtnecDl5KQaB/gDAWoB0wqWQ2zP08WlEx6rlk8GSacLUZ4Qi6sseACESOAiiPbUsVKFdi/cB6snl9EnRpEUb6ReG0a2IzIX5rIRIc3mL9dLD6zLAf+hoU1S3MBltUG+g9qWNWdnFvNvYgT16ESi/zvEHR83bfIkcPvQZwrjQrg4WbvrzdJ2zcQk/HH012cKK7Z/TmmEVF3N8sxKMj01jB+ghTh3xX4HxNE1XP556SUtr6JrWySM0De6o+up5S4AQAMjzjACIEg5pmFoxBa9o2GhxI7PURrCPv74v9nwNW13F8JvpHomYV5EbkWNZN676zRHFUvkThfnqahowPFUWVNLW+EIlgjIIwdhxnO91wDWs8TX4yU+Tpqj5pbzZl2C7vCeYS+L4Z5hy3hdQ8/ErZMKIOgwK50K3UnmdB9j/hmmICMX+RgWBF6r8kQsqfcbxlppcjK77Fhge3ElLjMdPY3itRjNZUW/Q2GdMuy02Doy6azZ8R/DxUqMkFuqBk/7FsRviik0KUypPtTeg0ARvcISeSsqATTr4t8pjGJw7eKJN6/w5VhhrRNRq1Yc1BBZuHMSX7cIpQcT32ZVK+T0RYDF6WLvU6ygWiy0MeBk3nDxP5Pf/pWLKe0t5m4qynqaIgg4kdnZ4rFNotpI/Y80OvilthcFVoCkGQJPGTebLFegkkPDDAKnk6/JKQyOV17OjvYdJjhT5BWXitBhh8JB8HuGtP7uAgTJrgSdMoYLVJLCD3zEWFHPdThHwxBpIyXTgD8iWyXqyrDd5WLBnynTyOGP/9cYYFs/BtBHdIUBjkFS/OuWcFreskOmGvlb5+flLb0WSIAEBQkDnwyVeQyi78bWHj13OKjun/URKg+fsyx0CGyYkd3CWCDTsSZEn15psf1x2dBSDAZiYEfwZlVTV95msHwesTzPsPPWByKoIDW157QnFYGG9L1UM1b/EJgyM+0PHVXoRRxeJDNsVcDUgEJFmtA+IDV65qrVlE9Lhm/mqDVDeiYqXnD3NQOrwbgiNLHhQVtWZDUhO3RedWcipfHBNZRq6BYMk4F3dvvzDIX0sJXE/ERCQqsJnFIl9QxZHPcQv0bONTA7y/xVKK3bDQtO2RWhZzWcQx7IsRR/vwJSpYMk/Fa2UKoDWh7wz1u684gtgGTlZgM3hqkwYyeFHItuO2BYrPHoTLV0FZUe0pRzVZAaSDzrwK9e8ckeOGn16a4f9N2GLqFoYNg23spry/QF8Kg1/cBvDJL6OPMKWFMA0ymWpmU6KjfiEgcnaxONi56maWkJLKrMc87aMUQHbR2qySynz+iaq7YNdawzFzhVAWjAyVpQD84O6YccuDSZfuqu9bJS3bdld0Vz3HKUwDZ+ZYwQa+cwW54Tmvtwx1UnClw9sxczfZgVUSaodjhVYqszhbusQMP/cOkpCr4JlXh75hcO91BnHVC1oW9cDfVz/NiLPlfusJWWaVmreXzPFBwW1VBQf0To+inbcZQhbDirv2IoUTRJr2jmVaUI+f3U8bRlf4CXQ1OKchSzE0LkFQAj5+NK/nP82A8sWDs3M37Ejw/WkscpIr7aIyH1NKEMvdSbQN/fN9bO/4qeIrpg5oFGLj34qXKtg+Fzppbu3qwwQ74mqQMCPBlhKLHT7u1IQStRf2vIDnPfKcz2Ah0FWo0KGURVONzuADX2jUz+yNAcR2dzm8Rv3kzr0buNhc7m6GsSPNFPb4/NMsF+cZP70HQAIgKy8GLV1Q2GCk3GOFLoU6RxWECLp7JN6IxN1osXTzxTwGrqkMZ0Uh2oKPP3aQGEQgNVKSBN0vljUeFwffBtMT9XQyXTGNcLRekMUKP6C7wI5neY/dpW1y85ZPSM9kfOIpNnDyJi47bS7Pi2wyuU5iPjEkivyz/ESVgVndkN7Igezt7NoRoB4Tn5WwPmKM5vvxFL4EuFhlHyjfjg/qEXNUGGmNbelgClbhn/6mYhwibztLtpK+vweb0/C5OyEcEzDsLiqWXIlJy4Q7PSrvVW6i+PVVfdhYKTeSKgf5r6Dwun+ZAaN36qZNs7/+yONo2HgPs/Bn3AfhVBM15wtFsSyLMX4RI84VPyEKnvkhjGXTy5WVE9sHBAXE+dueZwVGg9eBGlmjCpU1AmTgnN7zgE0+hb1ppMRuQcN9BGnfo6UXx2erCeTg4k7LjDgwg9fajVEEWSYf9BHinzKlZH5nwt2sdACAQgtT+kwszrkk7e98QZmS+vanZ+TxNjrnp4B5rnB1pebEvDkv8Ih2X9fRMGPiTImt2fwaHc68AzMX+bb+fsd4MQg6Q5A6/R2FMsoYAmxZPM4ON0QVHWwQpOQAXBm6mgLzzOPzJvMIO/isHxH+ki7yvCuVzwoIsR5KN7CF4HxTmqgHFRDyEkARyZYJXYbNELKb1biGfBSkdcHci0PQCGy7Q0BXUesfj3e0cBGL5lQXEh+ox/g4w3SIZdVdv6z7GsSLjQm3uQWuR0I+z6ONwHsQdT/+PrGrRJbFWMWzSgi/vpmsrG5SZFFqV5YwbnORDNrdoIuTE4g3COFJLaBeIZaiP6+sUoA12CO62wXoLN3vx3WgWcnJQFLuqw/+/0ZIgQic4TwJddcutBNm3/+UV+ZajV3G6fYOLjbJ07ni1I8wst3T1pcYqaJidbG2OyOQN7Fi5zJj40Xe7rT0pxH170A+M2c5ERgfutgL2vemHzFD3u94gAL7+LUJ1myeGJIOUqzLCmoVxDwttNq07oFLYnK0kwJCfBUJJkYXtznz1Gm41xd0fnLOMJpblFA3UPnPliXMK1FWW+GmwqQUJUn6JPSspKJNjcWYb1lfwUvtEls8G3SmUgOoiqBSw37au36sQNE+lSTHp8h66WrUYYLDXv4F4QxipwMdEHNWJgLPtAZdrGaLCf0279Z8vx18QT4YS7yUhCaZ1Y1uKowg4VG/bMAPk9DE3CHSk8upC7z1VggvrMVnHJZFIO2xJRMLoMS99KDdiWDNBafMkTKkmD2eZCatp5GwnSP6uEbUFjFDN85jwEVL4qonu3eJPadNEsfZc1Lbts6a1i9aXNmObMwxd9Z0KkJkKDhZnosfBk5wjPbwd6rIVIqtmj/QYwkA1B6CBMVTrIonO+TKnqJ/PHB2TsB0qsVorUjFbmVU05p86ogqDh5ZPjLdmLcOvmZtww+G8F7w8sFMsSkOuayb8htEB9T6I25eUQKd9crBhJyY3rD2bxGdSDgWWtPN6Qrr0VgJgNylUj8dzoPtri8cYYKQUnbDl8u6SRw0G09fu65Sa6XOaFqDWdC5Szc2fh0oWKP7gWkZ17ZggJeBl6AL0H/Gs8mGvpA5N2j7zaebsgr8TAHQQ2kvjrUhKoEWdQ+22xLV/yQCxTMrQrsyt3iLi+MxewuNO3LYMOqyXg4AzbnkkUskh0hWLfZ591cR+7waC891O8gQQLpjy8/PmYgjrP61kX5xSTc7e3IgFGln6j0oihiHBqKJQakBE60WlEu1LhKggE/xTlc6xBeiwVcDqTIdY228hOCi4RKAxj7q/+gcVdqO/Ot2dWs7QjqEfQDRNH06aTvoSRDCm9NEMBKR5//dpn8jdK81XJTyAjd6ReMdWlEmYUg6eNYwlUYnr1ei9ce19qURrJdPKlQNlMG+97iuepbTvDH0FD9c+XfbDADneHSV4Xw0njR3hkpIZhy+kZVvKarV+Dk56Rn2vnMgkbJ1xsDI9Z7vy3VDE9nlgw+10p+zvOjifrK8iWGgnpILzg0MhwmSk4o7/6i5Jc16QpoP5np2GWC6cRCpgW1N3DuAtb91zAcx5rdBOIR4JvaK0SwIpHN9llXRDnxFKIzU605tr1TGcnnUF6qvCZcY+lpxK6jhqKIVCiwRHDyHRNBO2uNZM6iD8CE/fEczc6PCyAiD36vqIEb5tFH0gXNFbg5LHgjGuwl8GiKNi3qzZmCrwqR0WAUJUlYwXrLImOkJnBbKtW5OjMYKGXKP0ausoJ2fdBtyicq5vWc+9dZR1hxqt5BybusjzkdyPhdkEcCkA2JHIyKh7SNroENO+1y8kTXeOLo/qixCPT8wum0Iujy5Jcvpcr7DsyuQ9WJ2k7Q+rPnldojSCfh9SFPhAT/UeZc82M7j/mRjqsrB1d8OSoJzl4neq/Ox42pcUuivIOTzI9Ty7dtGXTnpOaWBPvD7NswsCdanM1CZPUKbCFnTsW1mVa3/YGl45Wo9LRIKqEeoS2z88lFJmZIHGRdeaEgtfIBk6h+Hj4WWq6+4lfar68+Ow43dZrTDcBjO5izOiuwiJNOcGrG72v/SUpAqUhFie2JzQblVGS397szW18dgQpKzJ16YqOBNkvtbF/LK/Lp7ltzwMz0RGB6PyY7okAB6nqVeBUJvb0tVjEtaGJXfZw5PaBdJAh8X586wd3jYwI3PFWnv3Cdv8yxw2xBksI226a+OOdfl18AjBUN3ewubEAocDIGZ4NkIXsKlnz5dXg38xvYjCh8LhZJGgCOPitDonEYKV244bYNaXBwz0aE5hYNg+fi5GNIw+jZ2+3c6RqLYegf5sJM2B1Wnzr/cQy0PabiS36GR0Qac8+vBMxbR4tZH+oggl/w3yMBIj9Ce6zSTxAXtXZZxjakCrW+VC1mK18V26929/6QaJ3+9bpO1NQKtNMtrdhL88WdXVAC2g2L9RsKRMQfTN3NY/XK+VAEqiEnMIYAA/CzcOkllRQr2U/luF2Jfn0nOHomNQeVoGmyPLYtt1f1eOsl8W8rEMti8jG1kSpqujdQc7cL3/wiKTvc3xL9Mc8juEaNuMWCLrjruJaLXaM2/HmmOTjamIz1EH0vRrMOWbHV6VzNsRX3z12vD4VMb2CMOVppn+Wd9mly7BSSPTHo5QuzUoz5HJWnvr5RKyRGjfVTquEOytWYPlmzhgwoHxbpnPhS5sF5dOUIt7TJJ5TjgcQzl3QEl3gfFPgRgZ65lB7TrXn8njWQhPZj0HAlRnQ9bcxXz6rh/eYyWo8B4uUcFxAy6mCWQ/bvB5UVbJb45Q5n4UUr/W1/sU/Q5QahENeMRgiKx8ApURfNUjeYoSGyhuca5HjyfsHWz3xHsYd5aeH2+YHlknegYC1zwTg3PyiGdQpRoVuGptZe3AwKyhaVtvWcK27vz2Vznplj14BbjB3SOVIjNuZQLfNpIWA9/RuC6EEXUBio5Oa36F0fEc5AGH8p8L/WstFONIM3dLA2ZpA9rwVR/fxJlQ4sWY/TuIC+ZlgxhZM1os4rzM+bPZfc4htKZ/SmjFKqVF9M0ybh/a4z68LIiRAHeBBNqd6DUwrsbo9uO2vzSW8HZacOQxUBnIlvkIyDdeYyVPIu3VecTQU0Snji1HTNWbfSfbx9VZLsw16JmfgusHySKib8X2DEnPLjHE8KgKKBS/Qw96dhq81qB4XpXWfWzKX8FYarUTVOd2RPn4HwrgrRUJjSgsU2jmVXcsPWHKKvWEdXMgJQKcP1h4SMgDlUN3wGKu9mUho9ZHQ15Pc4q2SaDDcVjnNr2f+1GKd8uz2uw6Nz/pmphhA7DUvCPiyaf/HchaZbSDB6Q29U77UHB5PTMNL62SrJK9Q6NUjKJsHotSMM7uuL06+aqOdYApP+SB21cBveIZ711TdNu2CwTJ+9PpjPbpqvZ5RKI68hPPx3gTQkv9vNxpt/lMn2BJj3u6GHurIskhAHZKosuS0Lf6IX1lU5LlHmV1QAauOSW0juEmVx4q55LkWdtvMOTK7+h1rjXjYYk+ajs9Ho0Gxof6D15qqyQcqCQf6tfYONh6g+dBuObQyDieOMQcVRcTtRDUkrtS5tNGWArO+SGTbUT73tT14XFMIWjM9bwM7inLV9A5Eew56sqSgh4O3/3jVrV0pa99m3FSL3oIc/R9l/sSTsD5ozOrqQrv3UTUE3gAOpTPyF7S4Umg8E1pk2NDpkuRPZtL2PKIeI9QV4fSg6jQlJs6hUpR9eiYHZPbECGY6RRaow5JWQqRyyjVZ7aNeO2Ocln+2alXHLhKY4uKnPiP4ETsbIfts4uQCJw5IIBmdaeTpAIQJWPTJyGPeVjgZx7qA9PMR3nTQ54PTEA6OMTs7AV0o9csLFvJu02Q0D8FCfL+KCDVczZ94NFtec6EsVJCRf6LcMXhq9u9srF02oTj/2WnKYLCBfPznaXmqImm1STdbFnwPFnjiJ2AgW7ADNx9tRWR/Kd4/djVMFhA5Zy3h/+8Ebbd1SC+bSp+yIbEQvV62+kjkh8pxLtF7TrF4lU6bf/Ls+vdzdJ+t1FBUh0gb5TXBBlaHEqmvd+Jrmq+iXjxpoE9ORGALr68/ac0cgwg8Kbl0tCPujP97WiR1vupYvYQmMybfHYyye+ZyTZjwcYBoEaywq55YjHYTMYi17FM/mz9Za2msQtWqA2MU8XmMkhi3O1tu2jnB0QY0pBDBQ6wLzcKtwaaiaM3WxoWJI+Oyaaec80n9TSI/OulbDsl6FfHQf7OZF+8w25yLSLr0V2qTmkh6jkBfosSWv5p3DZ3niFPfDyTE2Ldkszf+V/1H6LlFdLlq1rsDL4sA4cCXbvA2e+eovswHbSL9s5DHG0KALk0TWMckonyPOf9BE4a7M7Wx4ABJ5vGMOIcemPXE4lN5BiXgD/0Yg2uWwFFDCeue+6jWj3qvK6qPVYhUOPT5t6AyW0anal45tWtbkJJ3vI9meZ+MryIjy49kfmdaZC9FXOXNYUQHqoI6bUFRzitesViJIiKE0crek9uIRugbtq1d2+BvtALTq/Xi6cY+pGME+Ms8By/AxtjV5IdLBWRydhY81fJeCnWntgbG6X2cjuxc3ddjVvVG6xtuF3UJRXia+WUody5CJyp8kM46uYySmsk171gduSBWc4k/HcxpqZfjqN4JNO9PZtDhkyUhDInz4GpxyNm9BoiD9EEIhDIjybmlYG7NxMELn3xYy+g2ngWet91KK8xgLVzxW6kfcaVbDNtXPd4jJ8qCQuh8a6ZWLR+9treJy2ncZm4Anr1iiPlhwPnm1JugRaGNZjvM+DPg00iqAahOD9pF5fGHOXcdZu/F7HhPVrs40CNV/mjserCD+1cIGojDxKQpVigN/Ljfi7Y8LhylP1x5qB60Kt1iigljKB6GShETyNZe8TEalMJY6YOSGobUiaZy8LXFqUhEkojVDpcuGTjRum+y/nrBoe1vP8xdmO6qYQM3nQvlhFdpTWJsUu+dFkiIYQQN29Yu60EGB4zP3k08QSIVCJqOYkR7kr29QbVshg9mnlm2MROlLBTvNsCaTcPEVbzArbuoTU1gplItEK2x0fYraNMfW+/H6XGM3NpqUlqzZTQODQFeVfyOfs58ByvnBmxNiVJpRt8Mb0QPSXNmqIRLvltiXMr3FK9bGGffTOSSOBH5F6C8rkpBrA+zD11Z1S20X2xowMiPKMwJUPZiznLv4xbH1p3bjGu4T1TMaG2TDLwYrBLEUWAnRTWywEYnu6err54/gFTCJAJ9wSOoR6xKP87xVBXF0ZeyNN/dIMs3H2pTB84DHc428IwM5IERrVNP1IyyU0qE0qgPTvH1vCGA3NJjB8HEwweElM4dhqU4IpmN5A4f4GdK9+yVKPS2ly5b3w1wTPP4HwdiXBkne/px/1a1zyBxA6aa5JJKdwZkXfAVgBEp7IjrX56csNfP/EQpbQSj1d0yeBak9zODuitgNi8FDD+vlwF70JQrYl/8xO5qB+OUNGAVK9+plE3gXqOtWehPPbnvbPaAepDdI49x757LRX9QuusDYvklv0+GDwXIqO5zrIgSXRr6U8BclFvoj+sR40i0UHtp6mqsNAyXOxu/1nAS6Jtq6sFnS9YMJmkaMCOAXmiNBa+iFzq5QvqUT0VTJ+Vv8jrHKm57sVjYc+dFYwfS+oGruOo1M6ywFowlJhoS/p9AjGKozZ3W+r9pEZ5BgAROVqZE4pQWcWlChAItqShZ+u2aY4Y8SepL4Bv8BJdVzS789lMqhEk4JnBv3J4FgDmfqcf1dTXwak+odu5Nb9daQA+gAz0o2JEPj84DEO5+n5X8q85g+uwD9Wom1Zn6cExF+aLBjCNRA4aUwnc/eJRFtUUjsbMN6LLCbVI0h0AzkrslxqjUdYjoAY14eg9VLm/yh2TSs/VDuIZOfe6dNQbU0ERUw++TDRh3cwCc0ItG1IMWYQMe1yE8O4hghFaJ2Cl26a7O3iAfqJ3W4aIyIpx7cQAX+bzYlDCTAjJNF9oF7omDy3BAzbNL/ezFZMGMea3T3wdfSr85ATYpt6baZqC+boXAllTHvDqCzmX1vvMs2rbUKSYAKlApIbGNvzSGXdWvEBR71agNNEhWMYdyH7sBqoB1AcniFhAc8K39m6c9hXYqTAPjnlnMeA3DGOVgr2m5MHVRq2CzwUO70lXwWg3RCxGqnkSSCECd3eosWH89z0+6ntfg7+VpQW8rYMImDarkEmYzua0p+sEq/UPdYvzKLrN+HWV5eTQWsyWDRIHCc7By1FGYxNYICj3jdE9A7Pvy5C3MIlUO2V3RY5J6bWu4LprL3LrxHydgM7Q4q1uDB9jQh1p+wT1wZti2ZO19TU1+PztWi2gdp3eWcXKGIracSIpK4LmhHSxWdt1KoyX0wIpAfVIdz+eulxeaMBoGRmgLUHApRp+BCS8NR5KNrFYXSirOe2AzUBSaygloVRhV0CrJyIiOiutUiIWMMZs/rq8XZPeUKyh6qTFhJcALbLlO7Peyde1JhtzN08lG9rPbgQG9Ob/Sw2NgHeBaJVuzWv0mE9c2hmnm0n4etTMtIi0gG7VcGIpSoE4FPCnQR5U8gIYXPJUZYMinlndLnioH5gKrlSCbMgeOB3R/sWiGVC7fDy+OoScNrjPCcRp+ve1kePHGC1LlMojqGO0q55xO6pC7TJo7cTEU403Pof70O59gI3WBRtUhnAREj6Owo7yNVu7r6VdrvLnHMTk+P2J2YDDfBBLU7K9P3uOowNAH23dSAWMO9oAQF3p3988gl5uzd5DT1icymYGVaMs9TBlN8R8Xm4oqLTMScVTayFQatZDqH+EHo69xc33fHcIEwU3IC34MvfunuN2S1EM3h4SNCRbVQtV3IplMOv6rdWwjcQUKF3dHHRxdcKrUNPt1F14SQZzQyLt86ha8usTmfTBUn31ByGMJ5RhHR1kbYtSVy6pgZm71T9xt6HG7qHTJNla0PxNyU86nvO5RBnWwW+I0uSKNUTjIgFC/7umq8JvEmQI2ybwnWoJH52Nqqd4XIY5mHg54/EJHdi4eNHExpNyXJHORkmxq1hpkNCwINbcrIFaplxn+P5DjFOEAn1sOAgO+e6VdUclisVjeGSX5ccLZz0T6GbhhPLp/8OodLHt9RKPxxvF7BU/fWcFkjn9ndPK+MOflZRaj+UNfmE4z8nlViuqLMTXuXE+uyIUjB5ct55Kn0SQJRzK/m+bCOdj2LYdiTf4h0nzrpN+lYhM4GwsLFOh8COHaJ47taqEAq/a6t+3fg7P3Hr9Sa9iTzLj4X0rwHED0OkFLkkKUR+Xgz9M1OHIoBnm6zL7JCK8AX02tlv4OzdlwWsLYffm3CNTHH01WJmoVKPOuJ0RT03muK0ajaBD7ybKYe+2Y2BYCg6r2Kh6URSx5RIh239mgkI8gKMAfcr59xqHjISeLyjUkHe5I4EQ2doZQc23ghUt1e9l8J+DNAGKUusplQrpCbRq+ZHxoddegrdg9yASvfnw/OZDAazftjUKSRdZPeD2yzcvcDcBYqnERizWzbGcLYjHNmEsifzaf0rgLfM0EveBMledl1a+5UMt7EgZAPyGTsUhx5qGadCMVOkk45MOAJHSiWMQbsnAVbTf5piEToC/ZVJgDIzZtMhOyGF87MU54Q1xoUgCUsuni41kvw4cA9w6RG+xTh59Ya2+pnIwHgtSFO0eeDJidxIkcBKppxJSoBp0bZ2LfagW4lxhwy5eN7aLQanqGEDroU+Gde5CSPYQR4hGgKUFAuYL5yqDT22Hf5sZXwcUx7lgPMlA5J3K2TasvriL7Ymt8/gsRcR1istV3i6Mkdv8Yjn3DwtqPCShyaC5vXz69NM3q9PJLacK5JsJE6TprM8H2MFunVAReXOQAthZAGEOvkCPfxiFJmwi4xTMMTKB0RcX2/FLZE4NJM02IQ2X4ZngDdyqP7Kmgkmd/vzK3a+fB4csHF0NziRw40AFy7LpvFX1asSAuGhXpdeWXOebLKFWXgIrVvvtoTXm1jqyp+sCX5fpCRGGjgoKBkT3wpY/WLOwqpyr3wwuHQpHXsFAtLY+p3Yn8I5IU0xZDRYbMiBe7HBVA+grn/1AaMcO0h5ZU7KDZdXe5xnpLooT8Goju1Q+jjb2qiIk5yGz93DFCQTz+kRhEoHjSid6FVI5iNXFSNLigfVOixvowZFSoiKNfSCzlcJ5YJ8CApmHoH0Wo8C8JxXIXhxAetSqlEvp8z9oPIRVWizGvaj1yFHh1qpMmwbDpb1P/niRDWfHY6OC24kmgxyAEWmGDHUkq19nKCxztfHgLo+F58NLDm23IRHiCEePI6cdbnErKSj2+7YW5ZUabzV2MmdM5QwABeqqp7lpEWubTMZhtmtrTAyPCYCHjnfKNHoCZXIp216qcPNmrNNlaVaB/ULEXkoqlQHGFvoDscWgtraShRNIgNGItqcq9mArmrj1DKhq+DXFnSDKZEu+/u5A57YXelCLoR2KmZDBdhXgRVphLW+QCTkd7TSJDQPV3G31LwZth3H9LgqFcExlYbLqdd9Q1iinHInAWyOinSYolen62qkNWl2Fo0wVwRQPaXyRO/a/gIdOvLQNprwe028ejzVjMFhbXm+32CJB+p2lKp9vGnXwYeuNfvMPzGUO0/calQYBWYNSBwyAkw1P2nU1LsUbPzlHkxYanrNd3d878QvljFyNwodiuUl/W05VDbI7su7PT954+VCB0rEYBaRvyFdnLwijmAESSkARLuBZHJ4acoWpPwR89HTF1fGHED3yZX8LkMbaZDqqpvZHhPaXVkteXr98IiAUrmnh55tSOFPcuZLX563w2JWiiqYoUwTIK7Z/VwWU6NsIBa+MzA1FjUuybhwa+4gD5xuKi8OM2M0xjDxFwRuduWIrSKE4ArxLnaF5jkBuTFkfAc37OR1jL8gFfmBUwuH+XK0Dpkg8oAT2psSmP4BT44an1GUx2hG2cUFW9TAaxPu/8anMkbhXaTCRTKK2+kV+tQOII/YKvz38f3CXwpJpPNRzzWum4wZtmeXZfhmvGjK+5VNmdf9+f5H3AB/Yi30Rn1VG8I68aV0nVVnYVW9YDlUrx7IfoycLtxqodKDhHES9jevff/MZzbKKFj4KUo0BxSW0gi4d1yT2v82267kHJGdnMqWsmbscQh4qghyqN/jSDtRoFj/nlEZ5lRKd9rNWZCmzNhJt74IQZnK5/D8e5JU7Pm37G9SMg+TZIqys1/IC/z1TSlb4wfxJ+i8wZZtHPhrE7frZQV7DcG24bkHxfUZ68RwB4sse5p2bNmp99E8wABubNJPwO0gX0lbyYxkmG8TPrng29e447VmL7khHpqpnLNMXuaF0LKYb3lvLZZqj7nyAN/FRdMHWXrkFg5CS1Z+YJkCLfYMcjhu9WS4qkn74E1ysyPXS9N7QdujlbkcQ9XJffkFT73Ug63W11ex6vZoQGGlg2y+HoEpF1AnMX6m7IR085/M9eXIMCuxZDC9v4iNTcP1236drJUAapQ6VDsyr4msOefJkzw35w9HKaEg2oIS8C2+qaDmwiDHjHu0NF+b2Il90juYm26Jm9Q+j5ucoD/SUpMQosOiyxD05Xai+RpO/ydQ1xavgeSpHWlmmvJJXY4yQ8WPzXyLb/wzeX+l0yvmVmoqvzOK220rcJSRPUAnH0HUk3oAk+jAZdcv9BdJAXmUQi3T0147p0azT5BQXhuB6AIk9oO4vxmEIL5XA3/FO5KtSWOljN7e/1aHka+5jbbd3ZkNJ91Vthx55J9v92Lmyj2+s9kjjUwdfdyUTsba5NY0kE015hqVOpESSN6yHutY+BuzpXHumBafRUSB/SlC3NyhdkxvSffxUbaL6vn7mlq9X+2TIXll49s3a4y8Ixx8SaZlrpbTROUj9zk3IvvyLGrw7y2K60IVl8H3GdkZLyzsa5u/gou9z25rpct5MSzsbPArzO6E4ZSREeSEqCLSWNBRgS6WZUIRjvDwbmvpHaDGGnwV+OVtCDXHURB9okfrLfPpyJywOjaZDUBcvXoBbBgmzBx/8/beiTXJr8rBtK3X8t+D9yglZTjMf0QmgHYs2EwolJrYDy4A/pQCYf8ZFPrsfNTuRQyyBufUsF0G4E7GySq3oUYPN0v5PFOgKndNowGkUAySgHfnEzujxivX/ulquqDXMzELCaiP33E4Stx0Ww1Ppjas2GNCxFSNlGvtvzY/cy2Z7xi8SFmK9UfK0m3Cu5F3YEt/0SvdzTiibaWO/zrucvtEs/hnM+p2cl/Ov53JpWMrPTCvfeNByBAheT8LUZX5wC22qyB3R2TJaOpK2cB+4VWYX5Cbck2ICk0vNiYmR+VjOuPrfEeWlUJGP0e4sAJNs257lr7ewlhkS5ihHnLaDcaA3S5DDhha+Fc9TO6tAl46licooUlHbQ2Q8IYqzp8Saqto79koiXPG2R/qWpA8Mz/vfLP1drik90UIZeV+nGGELpnTO0/krzXlnFzTF28cuheuEGcMsa9Q3+VgbmpsaOXS4EzByVIQiWO6gzNjAlSA+iMTOU+drFQSAAEL6gt8mv77pWS/gWu0EsqkZojYsYVYVz1RBKtZsdT/EXdsRsvJbcldK99HCaL5SLGzUWOwcyRlX7GO/z+umnmWukohKMdJaGWsaE/u0pr5baO9/LNbbme+EBlibRz4RXI4OE1djSdSM3gNPlj1e0j9C8iKZiaXllGKA2MxpGvjBKePo8ubrWx6+fG9ykAKoOeAkzh11W7G3yKWmNrh/bLGvOmYOBrEbNxu0fWzuenLbn1yfLjzgjwSL2my9docu6U+9ele4kmBSBBEwBjtIVynyUO6VT4nMydoPrp8P271i5PyOhddczO8Fua3DNLvMFnCDvZPmZCKn8u9ZqQIqp79WM7ZSW6hW9rRjYZBXg5rGYWQAnddG9HSdr8U5oFvRkfoYc5CLi7Aga75BX0AwqJGIzHCvFkjFMTS61VzgJTUvPrhpAymnzzAM5RqogYLZcebK+Jl1ftbd/yp4ulqyzRRjO97oF9y9ZZWqCbgOLcCI7o49hnpGFU/ybzvvK28aOLOk58tEcyfBK0/55Cb1z4fb/HX5DG8pnojVev3W1jCFTz0BRU3ckoWxD3pwObFXo9uN1sVYmSkNvpnvVwSvDaMyCsoh0utEpcpRVv0FcLQ515VpbM0qV0LrDV9LyR79q/wEVx0FXt00uJKSWscnnCgfoSMRnemn3t8/HYXxgvIcuZPXF6QLLpAh6Ft3dWel1+N5lrt0bBTA1RmANdDPW3rsZUYtRr+cqVA0f0KD7oPNFl/1cyvXIfGm+X/xHQYU8efjj6QDy6H5jftOEHLUTQTM7mB9yxM2zLm3coHLuJ1rgMjAuhX9FLU6j69e9Tz/YfNDR2NnzFuPLbhzagqstP+xkkEKoPOAUY11IdJwu80juG8SAOUD+w2Ls+XbqmQgsAXxBg+ZVhqQDrkK+ksEZpdncWS3GDHciswYQCHDbJvLvuhIF3avlCoMtBcbwbgC623FMDdizo0Glf4xBj+GCFhB1mi8qZ+tvbIMFYLXX4k4tdnua1DAJIdr9Lc3jo97V2Jl6UtwmjrOJx8cRNvpjCwpZK6kMpdCYqzYOllv+zvc6SRUXlEzvLbEDUnoDyp41OHtcrheobWGOeUw4j8e2zc9VHJLODQ25q3X2dFQekn3cHbi1ZEuhovAc/aIFLBZJKEf7wRNg01nugyKTN3oUZc3KFj8UWPsNzWSFJKZ1NY3ymKLcOVAauD48rhomfwlHJjJd3uNeKOCFkrcgcFk1H1IGvOWOvfG8jmERk4IMU6gCzVky9nr/a7l56vEBLu3dkoKPo/rYYg9WOgs6e30UrRNUCEtN2JoQbvMou9Bga+GVj2GO4YLTDL9VUlEITE+VcVlwTXY/JuWxwGrZVmwTHyE1+5Jbk/OM71gRELXCrQHmxRZgBnzvvzXlhvNJ4GUaf1P7wcGJSzsa+oqpsR4+U4RBF8zRKV0Wp5gJDp/bbbz0eCJgoFa4NsRyHNLt3TR6lx5wYnaWp+orlzDmDQ3VNOGCkX6RdtNZo0osJUKI6YUatw1Wzw4MR2kbQRz1DIFgjDyEXH9AIumTZps+WJsfrmdjcEl4l3Omjp/+71vIGlW5TFxd2G5y4SuiTvbCbeyPP8T4vmX80YHfI6Nu1akrWoNUQ9/+rs140oSF99C4IriB6n+qQr6/gaE1J+EiN3IFk89v9XROCKTMNTEIBs8KIBnZ+osqBsCaLhMnklPe0tQT4yJeL0yL8AhDyQduoLskWI3iGbSTy+mJbEsyQkFGKY0aFMB9C8hDhLQNQGtt4eeaYlJf4zxRphqAgwGYKrZjb1fG8pU5IxmAc2I4MZupzC71l3+VnM2pgH8PsKQkr9jUyiCgJ1PFhlu1EfYOhoYYxdfP/QiUYloNshwKwogyW+JGQgDJVfY8ZSdhbaNKmpeZmbado0DllhBZQb0FeJJePdtJjgE9X8Q2UH/4DQD9NKsMdmnMBGIDUCE9USqoN8xX4IzdF7TBVM4NXc6JasWBMMWwqne6gwzazrZCbMLC1kd9FYFNKW+3J4ckaWfZzMlxIP5SjE0Ixez3p/KEqsZxR7j4PBkK4JGZG6ZD7ctfmFnjUoJmO8EBQY9f/u4yDVeITXsqS8BPk3U+Rij/2V6VC8eixiSgY/iQ087hHRjXod/2WUrkjQ8p2BCT2PjISTcd+YM1W4WiSlt0tcGIgEHc0J73JZ21jkA3tkrRqL5zvIRKuP1iAeCKiHGIL1m6Jk1Z9PA+JqVKWy6vx108K0ItOBmOwJMreXoDiOYHGTecUgJOrS3GN2AGKD+XZvGS9XE1lUdAk6LuxluTcQgomscJS7SkwSv04ocA2L6tF2w+QPTu9YMPr4GU6ZOl3GXt7Nj0SjcHT/v9FTtx2YCMS0m5VgyXjyiQh7NDmun6oByMz+OZ7Evya0P0U9pXyWDlGJEqfm9oC2LpmjxXE95pVEm8yXS/gmYYoI9ovPCiYcg8klR48bh32lJge+RzfHmJJhObmyomm+fZ2j+fE53Jk/YUpEK3r2aXoc0n7Si5/r3hc0phm6Yu14/m+W++qwTiShjGpknXa4jzsNHpEhKQOxohbAZgGhT54psQN21hmlmYVzAv9b7mAio/TyDQhZfYHM0SS6CQ0NUmQMbiZs37EX/pFGW8tBq6Qa9ibpd71d30h8BXJneni3eWpjtedT402RIZ2ZLZBfdCIeFF6FCHdaW2aLGKbiRmZi6KS9uFL4KLZpf/zWy3ZeWx/AVrcS2S4nX3SvtFC7fWofcLih/Yy/RZ/ckF9vypqaiGDJoe7cSW5Cmj/nzSouWHCshUgA9AKpXopS+bkTRiX8E2CZ2P/4NwsyOxgbdhsW6FGqLPK1hCfxvcjkBrT9qSLVfukyk6j9lApwcEAfTV13jFmmGuVOHwUog0mhzlgF70iOtWY6UtUQXtUSBuJCx0o1Qg7coiw8RIgsNVygrW7HzylXlHDBAqBPwsyWmSyxhJ+772YOZLsWGunDsakh93ALdTJRGTiVoI7DbbHlkiUDcj3fU8oWvPSQBc23SL+fWvvm35ExGQTXzlEt+LrZAsaoFWntuGg8V5oJYbkcadNxI8GP8tHTppLQ8c7H5cRnpVlTVVIF7C96UvApFXVBeWLTgWgo/PURIAiWCxbdUGopK2b8AXihT6sPj+igTQSEsq3KMNfeQY6llyPZ5JBOscZPbUKnEhTuHz7rpmCW4yzfOLaHireZR2Xv1BDBd3d0roH3WXgOv2f9isNafUxNkUlFLTqpgQnQvZy5657Au0CDA2HrUs9vy6YOGJkCymZ09qbCDYADB/SSLua1BcPyk6iNozbDS9K05TKSVhHtCgo605dE57FgrtZ9xouQl1L3rvRfqVAOmP/c7qff7aqFAt80RiKLphFfsbqDvjeswPaY5TtA0sG5QMIOtfN1of/DkA5G14dEEzET+u7UvuUOxD8QIJJNXVSqMXaxst1Aa/xje6H05XnU7vklLdRMV28MyWQy+xPuCNCX5d4aIuddXeCkTy4BjozZxGpewmNBdxtg+eru0StHTdsA+pcsr18aOsiuxgopAQ5PHzCOZ1AGh3LDTyfZZ7JivxP351QA8PfvrydI4CuvoaK8SvtJGPfkkcBHHZaz3LabmgiCkBF5yPx7flEhNPFCZMTX1/0R0woGzmkNWEXm8mzgPwXMQ+prsaheTh1q8yYDPd0aRYJfWmrCUzGerkB3mni0eWYiXJxAfOGxFtQTNQAu5odykIuZCYoQ8jq0Mw44ISrKQgjcHuUZDuGlhhAHTzWmF++oF6m9klBgZ/QL8dL91MerjLXMJcv6Tm7B7gP1zXTDZqTNcWZlxa0nakJJE8eQR/YXMc2q5aQCMx92ygi4toDr9pFJRfUzvIxx/OPMaMgAx4A8IUENjeELWVcFnbOP5dYBnHUsgLvrS/wDupSCvVphEI47w/OWQAyrznMpzGQ1e5JLM7wJvARKvfmMqLmkwYeWwM8W8UXkyhU+jPBcLJtbBq0hzTqsC46YGv44vAibTCDF5Vgd5h7P+Ret624FMd8H0/QDo0qOzMH0Tht9MwGaybjGw4C4GrpZ5RQoT0VaHz+iJ9UusMutFhqzHzKA+sx3y6gRGSEqzhoiLt2nk/qEYKjpwvcwebGyNTTvwt9oQvQx5icObHIJPIp+ommrsy0iAFJXpCAbuL5Ft7q+QB23oNI/+sgrmcSXdf3BXQgAdlRlXZDSYmXCtwNJqSfg+bkzPClRLD+ALbZhr+19Vfnc1Nvd847cAYAUZQVkeQfmbbwM+EtmeJ1bvSTractpZsoaXwu8Kd2EMlHsicmRE5YlqmG2s+WwO39tu/PJP6AHFz9y8IAZJGVgyPAJwvj9o1KRuDktRlUJROvNgcme2u2FUIkbAf3jU5LnUeOwK2f3tmnzUPiKLoXHKPiKIgH5eHXn+5rrXx6OcAkZZbBg06ljMULD7uJ66jIdNG528PScYYS1Y8qdcdfnr02DzvF8kXcRQFviQS+3Y8rFwDvtcn2Fn5fFNHBTvaaL6LXwThX/m02gd5ph4fND6HmB1vqUmjA2Uw9lQEXtKcbiAfgsLfR3fTYmLZi6E/rErlpAyFsyG4mVitewqqvViUXm/hupoxsszPnTjPMfc3xgcFf8jkgq6Bp6dc8cvlLLD1r/8JFeEewCtozgo5HvTNNmd2zG02eziEf4EM0GonvaeV+e3geV0sl6IGXtkgg+HNHUVVCIOrq1MqOXeJBpUKHQEAagijWMwPKckQvmhH+7iBA7JDkyHvGMOHKhgcjI4IrEG6JZ4tihm2tr3RyPidOkGX3tyUJxR9bCe1SU0VYOpZuII3fKhumI+4U/LC1JpEDYqsFL72ttjdVz+H+SnqmSoBss6TJ0ZTScNL7Obm/YFG81Rqz0JWAez/dmKlLYJijXHHRsc2WiHAMKq2GFxkrDh0ORAtCOu4a3ZcQ2KHdfX482NcfrXpLDOKw5hH8mH2AdiLEWCsYrvsED1o40Lf4Y4F4/cTcupbJGUr3ts8ZLlkfh4lU5QkgatpDyU5lAjahf+GlXW7Q/r67LVQJnLBU52pEFWh4s9R3edxsAwAuYGkILzKsn+oGcF0+wDTkFBT6mDnRrpOvZ2+yNqW1tt6oG00TdI5w0lt+8h/dCLa5jdvB5PwrdUQg/ilnqaeXesyvloOiFpgQk4Kfv0Fp+n1KJdPxlqF9q1A2WbInVXR93hmsPs8g1DkLMbO12FmBDYo8BX9Ac8SzwWxmhr+M4vter/cEZZdbBtAEgO8+Bbg+4FflTohD7wVl9gA5SR/GSIkmRQ3/geK0WdYaKKT7JvDVccbM5pEUwBsZuaEQSVuaNiSv/wprqv7j7ApIdec0pUPKgLbdczNKpJwL2OhPn6XBFmLKasd/m7uzLs4NOkzLiln9NJ4oZX1U4ij7/lTUZbk2SIutERSbxQYLmvUM+njIJ1etPdX/hhg0slUCSKo//q0qXk4snrygO5Bem1AO37RcAHJogMWY7peuxPE28aoRQvE6a16CkJ38nYxTGj1yVFwGehOWxUtkqJedU2kGUURTyCXwfhzjIsLEOFPZc5NSVhnVUTSHT2CsGhOv1QTMtbaqEt10IVy0X+9l+u8ew5VtYeUI04XbYG/SEBqyokOjUpRrPgrsWhjpsiVN5rgL1S4DHPbn7Dz7l3Sguo8GdKBBtnZFXQ9QHgiR0Co8ZESvpKA936CUn8jkOo0FPbXyWVPp46dxWTDMfMMaIKoFhFC/iWsOP2nDrY+7l6lPROeI//DVacCFGA+646gAOl3aXulgeIm13uIxtz12KlpJkYnOqrJyqkOXyVChfY1jl4Cxp95ki5gQlIG1uR4J5VOrcJd/iY/LFpjX4OySFN2geHBJahphYcuRkgxwzAnuPFsZhXctl34BTOH9CxKZ6A69v4yJyJBVZmzVSAXaj9UHWbeT+WPHvPqD7X/tONFUXX/pkWURUseg8Ba4U0XRd6TU1lUqMJQf04aSKeGJ9QiZf8NXKDhzn9Q6PLWR5fNm0fhesCKXpani+5Wv6WnT9ZSpvteQ/7gqHbA/XXemwzKnLZJdxGZWpOUX9qNherfOg8l2NMi4ZDzG3IgC5o7vVgPUNgsJwdZkQlVgXpPTjchwppHlvUFMHCYp0hBLfg8NMUO9YlIze4rMqYqS+IrIQlF6IrJAex9vwu3e64z6Mk38hnFw/8KwpYj32Lh9zuCtUMjGYy7hhm7xNlRXyIwUr5jPG2O4iHfeJU3HfynwqH54AdJGDZWb4LHLzZSz2MMrXlNpi0GRCXVLHfRqHiPBT8RZaTAXm6GnvzblBS/h+IYzbcsgOb67NRcC/fw+gT5Xz075lGIo7BYAyGQbdHRU59TwDihBjYKynmhpWXnPF7ImXh9tAgY73KlKKMezNfkeA52ibIpW5/47dlYcfF3wCZHawglX5EqQI88wizSbSgKlBz9pl6g7ngmY0WeMklGAiofQ1jcSSjD+GRvViF3DVw8/KdPYlT1ihcHbaJi3eXFQ58A2ONEnvOi9aUg7dLcqsto0Ul8gBK2SaYovzzURUIYAwwtorSu4akuy5p1FGGSf0tYMMhWL9mXWWHed2QaBI70c2yHCJtVIH58y585yQaPF7KeVYp6yn/lJc0TSfHr7wC+4X52vxVERImhqjb4CKDa8JLoAnuup1fDcV2uWMcqtoWogjCCjBnKTw6kiQnBFMVmCLyGx29xIStUqkNem5BACq06ZYo3k9Iek8JEYyYfJ/qItcnSmThj69C0A6gNsy0hRdZWCeA6OYFWHUxIRXEniIcy7oNNEdhlPiod6vI2Nb4FSbRZ2F6pxCbNtaIwt6qPflZivPcCT73oUulEsnxvXUVMY3y4l8w7cA9cxpcxRY4Kg1Zy9sL44zX49w5kiKfV2jHVJ2VySaxn/G4Y0nYTYaGj9AhbJJQNeqi5pEdORs2FujE5nAFt1aieangFcJWUcB0uWHtn9DP03vGEpYfi66ixTkRKlgum34wjB6tJQuCDRYGi/+UxZ/CdrHBnvuUTLla+djsS2jbffVYipBY8z7yTxePIHWVJtIlm1L+pb4C8UR/T/eIXluRhyxjJLxUQUO40IotWBB6ySsq8ZOVBQrc5H7l7hxCi5U1cdxUH5P86kyNtNNrSymKmfHVanSvxS4c+MQEF0YbnvHll+gHZx8KXZn/T2QSawPhvVlhAS5ifVgNENKKEOB9pYZ8fQPe3cg96/WiYBW7nxRgKpOVr8QOmdvzS2T9yN/nHkdtDrmBGCvCOVoU22rLg4XG/PUAFrtoeL0+VuM23jo3lu+Cqu1k08ZdRzBeJm4S5toVz+S8LYuEMAKihHHyYVWPxZk+OxfBTvdLoWcpNW+3Ud7mWbS7s3SFvQqvARxCmi1fg0QWf91IYyhbahqcKg8Mms/1hRpGWK7FMJj2CIaNGZeGFSnSfJQBHtkvSErMs9/IeEBRgLJpQKr/xlmdOkMavjaWyryJEMA8wDrn4ez3iGeMy0inkwrDxCv3beaUjXwzNccagBr1eox2EOrULyQ0g99u7fcMpBiUhsgl/3WcjJEa7THpYHplbEThMW7RXmtuAu9QKlW7SuZ7VzSXkZUWjmoYQ4GIhstCvHBPfXPhrgLcnxtKTAwZxiD7zeGDL5YTrXRF6Ah2F2ERsDgJ1ajd4zeoX1BjcXJXivqTdGFvsp6biaFfM3zNKysBWrgc/DqPIG4pTnPSuyV2cipxFiN5Kc91THk7TQwmwN7owSbETiIdLktVV167evVkVwWCv1NPS//tLl7WDGHfeTbmS7zBYV8hX04HbXSi7YLHW+bzKrSzfZFOojaSKs+SOrvJ7Wsmdgt0tuaBclw+jfSaRLCH90mZ+sQiEMEmIdZ4/RS8KcxdoUffgAPqr7ERp4tFu4tI6mTv78VxgWTmEY6akpxOucvMAvgOzgXkK+GZlpUPaEKbULLszRHhCQOwNXGXA6mtxXbkm/mYkRZMv0p+u914Dx15BHdL8Z0dVj20l4RdF8V0LJQbB38wmd0K9lPbHmGCo2M4iCRUjDMMLzTJqk1nVQ46oCkhNq7U7NWA2XGemEk8JPg8jnmKnfXgGoOsFxuOKUx3Rc4hZwg306Lr0GYWYQVHowgSUnkTAatwFQ9Fy/YwTZ+Nx4nATwMzH+TMJ9IFlUU5nNbTgwWR+BMol6KYnxyRzZGaFG05TykU+R43D1HdsCCsmrChX0GnNp4XzSi05jS2yYakRtCuqgA0HSckxgNXImvBQbV4qXeNL9zx5XFt+LtbwzUJfAKBTa27DRvYwEVYuO/KPDqOOAlBuEkSG08mJ2iIkuhZbEJNq/K5aIa5aqwchpM6XrH784NPw0xp7IFxzMIW/AWAfKRPMDT+03LrRaM7Ha715YUfbHiIWHmURwnNp6PpBAOJCPfKms/HotAKWupwP3/iOENBlZBOUvTq3ertaeb0UUBqeqONXYbI+uWYD/vJhxEb7rHlxMU4iIjYwrdmMyAPgOYYL3mXPYnThVatWEy1viU1z/6Y837H9PplUoTwiRxQ4E+Y18zwWhkNDvqkk3XVToBzZ1mqIo7Pm4Hc08wb36cPeR2Cojob6IGhsGL2E9GpGDh9d6oYia/xXYItM5VH5zohetrOmWZzI6DGANKM1FChOmsLGMHJgkX6yIosPro+rCgGpKxl/6/tlMqrLTh8swp42l2Uw+uUQYnKeGeJ81GG6qHj5BVO8eRlTaqDYBAnqqH+CaI7cclSSLjEmrE73vok/tc/worfu2pLaL0JWrwQsN5u4JY/A7tsiCumirqHKc7e59Mxd4hDA6SZkWIi9FSPNy1tW9MLFRs2ksiON37t6+Ti5iRCdDP4EaPXN6eo7m0Z+DQMFNqH1LH1DEF8zHDwWjkk+YFVdqe/3rmdRCJT3NtV+0c7WHkWL47nXgBOe3XEeGgcuFZFMK/uHECRVfs2J1joxWiiUnf2CMVdfxzlLgOu0TxTuv8zX2GxnhTsJOfj//9clWsB0OqyALdsZaE0fjm1B3Fcp3reZqmsQv+6JXhhU4v/TGd7vatnxddCbgpOmdYmf97cb00+Od+DIXAzwyNgJ0AI3WzJPxqJO8WWljFIHQm7kUoqP5lcB9JkhP0ugMFqOD0myWG9/gasnjIJc7q/R4Crs8t8WZDf7oCdQOWYK80C7dXC3VdPgSdWn477wPqNSHF5lzn6blnzF44Dd2OfGtNrJsOPE6z1H4hWovRq/utRd+DYSizugC0IcFM155Mw9LE5U7H0Zrf2t2+DOJKLl2WkCDxrUT86tZ12in4ELfGlPaMZGMmSjvuvCJ1iNfoieGBqmJoT5ecN3k5Upk52K1tF9kptuoLp41rFBorG1mE8Xswmt4+jsW976+O4lwmttfbd+F9rku2dzxxztm4mdwYDT1OnXFiYq2QTLvHNUxDd2f7rkbZLXTJ0bl+lgDFvtj5Osd5FKklWiQFFHB4QzHjVhnmvcl2q+Sv48m8ZWBZdZjN8GiwKDPnPkAO9jw/r02vtneg6ys6sdCj6lm5s5PFIItr/rDw+HL/4CB5ItbTfxbtgezofXWRBQNJ4DCAb4nWd75ddBcza0b3GlpaqKFuz5+//NznxLLySaJ8hYJiCZMevcgIkgqsnnlddVj+mqrRHTgxD3+J/UkwKafHQle93ir+HEaGyoMYEn6xc4URv2TQX8GWl23wirIDjtxpHYtMTohMQGhQLvgfGP3ubta9lJtNRGyEK9AwI/vjiQnyhpWjJsI0C+NS/6T51Z68s5MWceoCgx5HzUFD4Geidjzn0wKU97KEzHhrZJTAllquaj5RqNVkJqkSFsLXLjkJ+5KEBaavJ4VGiwn1TeRe61gYDL7SUrVOwEzf4LLTWNwZE9/RXfkb+fpmLiAE0iXnFGRyGEO4v0iECY/5U96yvSHSb/6cO35ZzVFx+sCPfieUwVoQVGXl//jSA7+osmwdAbTaG7K75kNM/0xz2bvemv/zgP1nN3I2Rhm+GZyFdvnbJs/vfZE12oyHIHtpKKK4HVrRNvwtxp37THk401sRZBZXZVEpV/UU3ekpAvgf6ulC1FOFYvg6s/nHbee2/Is4ILrtX5l5jLjOT+qqlDmjd75WFcEvD4OqhCVF27/bZC8hOFNEyRGNobqGDqBhcmB4E6kogkl7Mu18vY8kLM094EA9GTdeBIhdAofeVSJCkz3J2vZ/+FdFH2/eltSezIIGckudNycwNl1r2rO4CQ9nmtJS6z+ibkpzRh600lt83BteP2aNf2J0kkE7DHVu6wSX3rqevej+SS0jeD4MiLKksEkZi1+dR81dq+n988uhrHoBO4ROstjVO4ypzW8mlyOJvXfw8CJnmBA0Dm6GqPRl4QIOoRcKzBSAB7rwmdW0DsNmXVy/efR6j2SHIjJcHL1btOj7PAiT8AZ/cC8RFA/x+MBsVfQRwQ9aKw2lFxlz3vFQxhaAVYh8aUM8FtSRl94KwjOwx+Qe4atcBXlIzwCwuFFPYG1DOcgcD8dMAbsgEcI+FyK+vtVtrobzoPROX8G2vGtlwocEJ3uapYgvmZu7sEr0lyUacxzHLtwZuhoWrUCA1d0tWSHRFrSW8N7+f1tLh+MPFji/3wiXfnPMhRQF+O8rc/znZMnxlv+zxZ1GGq6ZKAc7YvQzD0p7Zz9VMIWNSUFGNO8eP8P56essH2zIHuANc/+LyhmQxDIo8EKL1ffHgKslSd2NcZe9TnXSMxhDEuJxPnIeUW2H++qEBVLofkq9JHU8ajs6NK/gXh1B1MgtHt/uxdJrY2H8qCLUtP7U+Y+YLflsPFaONZBqM/WJJE235bw1T6m0E1sU1i//OCfX6cXcEroUoVSPocEwFpeuqWm6+usghdA2VleKHiVNjfpQCYdsxZktMQiKVWMqXGID1O8TVgGWtWMwRG9FamRAD3WF3WHgaOyQwrpVIm6HPLxCZmgRPirepM/4nruNqM0I4fNLqyogQLSFVkUEXN5SU9l8Mxy+UjnXtlbNdzHPCvTDnfZAjt45NQaBJKCoPuJD6Ecz/NUSmPXUIT4f3aSeGhubxmabD6iJ7zrs8U5ha3S0ZBDt6DewHa6EVLPiow7TC6AwLRC1iM2OH/XUXsz7Eh0MGN2V2dq8ndux7qmom1SyN+eaDIuxJ6c93K4ud486rbo9Wusb4YccWFW/wrHDuhFMtlvfU9oUecjiUs0heLKY8wij8ZqgA8d6sliIlupsmHGra20ki9MpdF9y/YOFX6vjUORuVuhZExZYoGbinTX05bRrBoNNGwuywJs6A8st5rAOy7o9xfiaw4hdABT8qoXEnGWOjdKVuhcq6bzTXkXPBCNyb81g/jPDIBIIUXganwuVzueZNuRYr6Bb0yhGG2VyecaEF+ENyi9FnxdFulw20Kz6z3IYUixNdoVkXHiHwNL+f3UCCZ69D+QmsT4e1ug7d6xa/Ti+l9laVu93KsIQHZuXrMLSLpiZc1Z4j6NkbqL35C9qFMU5AnxiiNcRcmhksCwcCTCRHIcDRHWdEe+h+EPD5KqLNSeBpZpdIEmbuEFFEodNs7itOq7QUoGi1g9MDaSYsAJpAxE4ziZtfyjfnYtAuJBl0K8UKGjtm+Ash3Fbsy8bes9JWzmrZCze6dGb919Fdxz3kpGXftsX73sSwn/QHs9PZFiUTZRbNbP+Qx8WshfTBKoIi92EO4ATy39lE8dQbdh2F2gSkrxvhwlPusQrITAfsYzRakC/yyBpAH7CRRLKHXkvzPDpjfqxcnyw2nGI4ZWKJXWRyzQoatW10BMMaYO1cuRDUhlkwLIkTy7ewaksbh6XK3FdXSgl9553e/qWJqqix2DO9+y6sb51PYEKaGlKeRed/+FmPKpEuGCzcJEHI47DFAEj5zA7WYHHXbPtgF7UH/PzCL04UtHMsOdQWyMWfNstu8DvdaeFIs20tywrQSwn6K0bnehmizxRVurFKmThz65yArwuQCASoApkIB2U6IdGbnM1+kN8y7pt4l8kKv2ojLKaMnxVYaIRfTsgvdrimtRrwc6VP/vu3vvTV/+s4SGZxlhf/Vwz44oYkCo8GLXJOh3E486fpwjEe8hq058ilUv48Cv6JdET3h4PaZElCPhkkSxp4qj9nfZ+uS7f2VpbOz1bIaC2+2WJmdKoMwQX2cTQbvP4vygadOpYXuktbPDljmAupPjibfxBk4uAElDMoXRMaH+jxDmO/9i6J8+17yXZt9S3KjYhqIdz4FFxy6jHtbYUZd/A/JmiN0mNyJlsmUG6n8sAKIWGqth2KxjUjthH+QPlzQ2jqwQRrJA2eZi3VQFX/b5g/TanXSvZAGwxjqk2Ys82fhM0IU0KYlS6QiLtSDoI8cuME7CnJP5rCsqKrwaftbOYEQG5+qpRgqHYIHOKqXglzA+I7Y5osdRWOUBe279EzF3pwrrHTwPclF/Fi/N4+Buw+wFdbo72bXEuo53of7mL1QKN2Hn1sp6L0pX8Asb7eVokKZ0EAwJYMWqyeBIyq5ZbjTik6zwHteYZq9iEZq085TDRIzZ3waatzMquA2opql+BtOWvgzQdbUM2Yd85JTWLO9Gw3QH3snoTqL1BY8WLinGLW4JET9rkCVRnQnnsLwaCzpkQZFiNMF6u9b8B280cHUVxWx+HE2eT1oREmliOPyb6Z7O4uBGXlWtZn+nAK4QLGsFeCqjr8b0LqfUerL3rPoDitDhLYioQGCITFhCsKXaybC4f2BZCh1r089m70uR5G5sQzN5+m7CJ3yeH+1RxwzSIaRfwI5dGtsAlpw3/98zUYgdPReZW6m+C90Drhdh+Np1eDHL8MWnshnQcvvzxTYU7ZUr5p3b66TIiF8TqkpzKRISAzF9tRdw4900n+F6HCkMVstjdUMag3OylpuP5aIJiZNmR1DnbRo6/R4C6GQOmuHnISHpx7GKIUjM/jJ7L/SPO8ztf8wR14ZauJdkOnvZ0wb5rMWCoKtJ0Mnk6rLFhc2FjAj8q1j/MFBGJen4hmtiiB95INxJoVOK6Y0ih9xVbAIv5ZGHu6u1fyFRigzmJ8aY/2B0WNwkI6aRsLWs8bYG/OTABFkhxUuLSRlCttqvm/hFa8iWkNt6+vqZjePjI5uqk+yCzPaVtzO4GxJhU4dy3bVC6vroZzqCCvcKiM7GcqgDfelAoCIbqJo03Mxx8LutkW/LD4CXmzwbX9pD6g2nXncL5Vm64r+Ld3VkKACWWchomFnId+RNCjkhr9gB0kSpRMxy3Hw8VD2/0x7bTPrhQweEvRijaARzvYqozGGFTgJ+Sywk4WGB6jAOmxoHzayUebMUhoKb/1z2jicWlN069IkkTJCWvAJEVEa7dn+a0x7z820hXE1Adzs+WtJfAfL81GneGIJlamTkYVY5V5WL+1Ydrt6l13qXfmSac/MNn67GeoliYOgXH4LLODvYw/d1qfII2C70sAeFOoDO8BVUXl63WySXny2TO6jVpzTyibD/Pt6IwOhw5tfX/CV0CYIlT9vn4qtG2FWXMrNu56q3I6YsFxSje5fcTUcvUwG2AOnwVfD5HI7+u/6IfJ5n/7Cu7CCnZF4vT7TumXCu94ZKT1VQCjsb8lMQlhnRaKyTiJZV/hTL7H3mtLoJinIsRv74zi2xBBvETcMJ0T365r8r1SeCKGj7LSLFeULG4s9KByYShxgIYKhoZETC1GtRQrOiSFzYjKKHNS/ybINLruJxbJ5Kyoz09X7oVY9buILd1iWhLmbX7fVlmlWWNLZwk5dGA/4AZHNAglK2FsEknETYn+o/rCJH0SdwCmMptz2AcnZJ2My47iWgedXRT7gARW3eqVPLMThj59S1GgB/xEBjRlOfgaAllBeAQbCd8wXATFdZKSvepB7bNG4xVOC8dg4rnx3A7BJ0SXdh0M7xC9d3b3+rx1Nlb3Eebh+PH5H5b53a782b+sSS8Cv1gvegoqUXsuM6tOG702AXAzvwUjRBoYGmNq0LIOXD2iLMCW4jDUw2zuY4pOqNe0bArh6b84PtVS6/fv9OGs7QedmUCHV68CpXRz3ex5D3+BwpHg2m6h+q2ZH3XsLog/H2ZnWnxGlYx7Uwpz5z+mD8UqYvXrTfltmrnE67/0OCwbmAJ6Fdl+5UITSpXdJJLEIANbu5FCtpXsdecJjnI8bNaudlYvSaJ73f6kx4GMTNK38XD1xsiI+19bxNR8q+KlbM6uS34ddh5DB3l82+3M4nU8j0aKvFpS3mI3kzc7hHUb8mL3FLDg+6WdgD2UevkE57X4dL+sKOiOe8XnlWboT8BGoYupVxs4Qf4J1Hi9zpBNjTHX9nkjhC2hSohWdjXNIApCSDxlTuMjzDpxnFRCpo1E20TYx/EjpWOJ4vAp/YOaTBMVP7ubg5n1fGG6Vu9aBV2TLN0lIXjaUJM/7UeDOJbBwO5UfEg6MHu3QQQkknLi1uK40i299fxMs4V4eGlyl0o4DaL94yAB78zujFgn0bFDcPHSzpWwfRMEom0bm1tob4oeyZzoHqVxJ+yX7fTmODX8r8NGHwdBnesNnhdpFqQDPhH6A+8glivJPv26C0F5Y0uvpQPP9JCqt2Rho/AIXHJ5JlxQI5Kw7gJK+WoW9AbyhnN5oup0ygmFT3mN1qGoyigQv7pqVZQYSBmWOiWxqTulEXWVueU7DxgitWzP4m2qD+LSaaBO6xga6pMau5IKR05bY6yLf4SfN4YkHkebd6i4MqYz7tXOoJg8bOieVJjUs+FN+F/K5aIHtxhsakaSnggLc+kmRYPrFRmcb204Rf7T64YJo17X+NYRQBlgVggUX65qv+VZqVfqcesnFK3G+MDb/Gmrf55wmvkYOkPXBA6k2ytYTZLHnZfUxPE/h8fWoE5d7wsJpzh9kc/7KM7Qa7UCqxMbAwPixPbmhRdbvFKsc+BRAnMmbflcco90+Agz/029wB+/git3rm9JwS2ZYgRQ4rEERwYoyf28wqAImH5tsDMZCMuupKBLIFj7TinK5diMdF1QTlhTu6Hn2Fj4O83prV1OYb1BILWQSHZQ/UEWLsQ01MQJXAYKpd4ixZFDGFwQVY4Hl61QrloJLi770GYVAnmNvjanF0ktLqsrWxlKXsu4f/fcoYhwPjRYdH+njtf+G/sEyMOwRxLgGKnf1OHhNdvbZBAlS8eNfhM6voKEVV7mDQWO6CohkUy42I7tTShGoBP/IXByAeSt0gRH0P8+VDF2NlxiUbbLleXoRV1p0qvwVPUW2Iex9W8kOkSfJUGneyeGtq5/CEXOxtTrX9es5+IbEtV0F6+EUu31H8w7/jKFOGY3x4cd9x1VSlEwJIhY9o8mZ3/7AsVC+rkwfPjUO+CZoz5tICDlDszEULqO+VpQRAuP/VOnQ3IFbrJEccl2VoCtuflGNmErLGfIgtWHCTz43YZnxYpQlymqumhDWUI2WTk27MT7kYDcPvFvwN/p8CBN5SmXaCwmMaWQ1q13J3MBh9zAQ4PXi3Y7IgdbybrFhlz70lymmuGvZlUpYWV5/x3JmcmrwPtB2gR1FMj6Ez3Q1aANC1w9QiSKPObnWfhe9SmuwbjnYHu4ly7MdgIfpAK9S1Cpb23sxKiNI5oHxlDBF6G+Vuy7h/TJM6XAh21vITAln5OI5SeRy1g3+7JDcDOCehhMkc7Dc6KCykowD4CRWMaRBbzJrpuwMkuNK3PXPB7pSOssmZ0Of/HB+KZMOYr2OY9D8qlpiU3jy8EibluMx1xND5qjL6y70X6vZkCDlBeobtw2simwSwkCQE7/PS9WB3ohM1tI35r5SX0u6S/Er63NZTOwZ15CxapUA1RDuZ8naD947Of7k8jP8Lu266MayKEdB8UwRXfcHy6UlU+dnb9sUsynJjthqRyXt0rHrAakQrCiHezHlfS4MtG0r0Zxg11yIPqq6UqeQkevA+6jYseVDk3vmOcsn/KDAqo4Q6wlgQdRLfzfsVeUYDwt/hWdZnIbszuR7xxF+QJYhWz5vnj8IbEacxyE/VrXCshfBpdTe9kuHJaekqb69HaSklqo3z7hgXWjDVNy8oIu8l+Ofe92DY01hHy1M0qn/p9T6IusfxE4u+twjxwEK6lNmco5sShQTFZ2mwSSuQH8xj72HYTg6zrfYZRFNBuAl6QQ619cLJnxwBdKSPaU5tKAmdryMIQkZJjQ9cZtMpXUFyRFz/dZWD09ZmYsn2qnESmDexk7ueoEG3HY2EwLyvwNQM9Z0Lu2EFeJV1Q0T0oY62FOpTPk6oSocF/mOEUcJjJNU/EodRXJVKKppBeCno8E3QyH3IxhbarrHm9wo7VDSXBWd9SD1/PqqHELc6wy/Gzt0Fyla8yOxiI5KE+vyDoIvpgFfV2pA03iDX1NfVkZtnQ2gG2zL7EAiRYQ4xXk2c1JXST7iWWiQqNWXetZ0wW8lm8m4uoLAGEwlQcf2fPSAHx5743R1Z6HvGc+uytOpxM/SSW3kgXmaauy3DgySMU4ZfOZoSOrCXGZaV9SR0AvKsVa+kKZDFVG5g0Nc8twcqmFFZ4j1y42wbOLnW9RTp8ehnBjUh0xaC0RmcvjVcAEQ0J3fzgapgaftqFLekrIMnWAavFg7v+ZHqaC1x2XHwK/N2usBSnO2Cp1SwIN/nkd7fjo56I5zmrkGcEcdbZxPP0U7iK81OxtEfvJwGUosEJdUI3UN/R27dZFokmBKaFzIiRuykh6JQ3I8b5u4pvuv2zC0LQWnxP96gxOuEiGo9ceQ66fARNt+OxQOy1FzUIZVelz+GjcP6iBZ6e0sAOv3SVZDY0nUqIEH1H8H1htVhH7VWUyxH1266dmvUYMzMMlCRwLXq95hrICxRCQrx7ccL9xRXkFGZTv0afLb87eKHrBo10ngxQNJ4ujdSQ7d5PSRqvrYvIOrI8EqtHMz/zJes4CEnGxrmoycSiHzR5TpONMLU//TBH9LKmHjy/7O1gHVOI/k1FZTiOjzWgcS9Lyz50QQqySHA1yPrPyWwcQSEwdv+Hhk9QyQkqeIFJpjDksovU4chEhPcGB9eYbgs2i+tZwUm9v2Ppy7/NnUx86s+R5Zjhx9OOpP4ncTtHfHvsnOQ1S0ccuUy+HTTexewJoKVBIMeEdHZ8pUFDOUhc+zkyqBSkDDIcr/E1OsXGTnTbZxnzQnnItU0JWL9ddiT0Gs2XMq254DQYR7RwAT/Fc2tTK3omKUrB4rZhn7mO4pdiglnOes2mGmPKzuIqZYzXLjGmmr7wO5Hp2WNahf8bD9f0Em9lTS66VJyvJww99Vo6kEHJmfN/5RLpFhd7F/XKwxIyKIjcwL6gJRCgEZpSaNmVp/0qwosIsNHFPTGxuKAkf0TZ709f+f/vY6sxxGUZfYzRgdd+OKAx/ixKmKQ/eBrd02FnMUhSW6ZFc6yd5+xhBJEZiCHq0nqLVHOAHmn2LTzeKkflSO3BdBLIkxmbxY/ffcYPyVE07dCSZSOsCdhy1yQxWs4BxBVC6rD06eQAQkfuaz7DpKmlHQoTlsKndpWvmzqKes0zuS9uMw66XcqeMq8CS67bxm+jV/GocA7O8FNFK1Buxu79TiIDTbPmo8jHEMKVE8qI3vGU8gEtj2n9TPCX+qGp+J3A2WdTJR5UHtF1X8qfmrwdcwtMgsEZ/cUVCS7mBwaP5sjnkPYlG0j/CAeshE1wpPwlSvGhHJUBkGJ6+znK7SVWiKpvUeYoQtoLwiS1so5jfHi1YXDqB6j1CRqWdbtEdWUXz5Gq1FHyXzag/2Px+z/LHasy4zgEOpfztWSrPVQzpIi/0jdhMrlfxbizCOdUbqt+EsIWuAooxfOkU9xULw3F4tJ1JO0urR4VogNSlmakSwqc4nmGrqwgRSEP8W9OiJ2PAPOm2W43NFa4L0B+rDuNopwpp1AGmaLTLVcULJ4dqqQz2s76YghKEzYWAO+ohjSKMi+OjiLdDT1TevzMDw87+M6KMTZ0iddhS45dis+GWZahVsS5fM97iL7RcaY5EqWI1tScKvCiNwJhgHt+5oofmyD2EZfLwXB4PqeHKuISubngNY1IY/DALsZhtZhsWvl/RsGYHWz1RQ7RAVFeJkE4g0xmCBCPWQ31B9VIq98j8drWXqWwaT3CBvfPWBQGM807BnErbBgcypIXLSn0Zs6LlbkDO3lbKtA9qv2x5THSBxwHc+/0rm+/MKaR2DOGOeNQz2QpSk8HiJ8nWj5xvLR0Uf+gNr8T+T5mKj0bTH+7pIPOfXYnu6sfQT0uHKQ1yIuVuUV0PGEoyRZBoZhYpZGWfufPRj13r1i8M3C/zSFOxO375VM2dV/1zc/xBWaM03VHn3yEoF+HzkETf1EqQIDVaeOWxozUJP572WWkhouYMLVNOb42ukfGK0PCUAuEiTnmTCCnDO1SbAxEW2c4/FmBnSAXnMPrMg+AyyJfJ32aZjkRcO0m8d7q4aKevlyWlX80DEAFEpaueb7e56auEMZs19efOaiCYj/YNfeyDc758ubb7moOKypjYZsgN+gpqzUG/UKkFI0VwikfoJ4AmKAQyruMV9ANImKh7hv60SApObG/x0Y1JO8erfN/+ay5HI5rPVpVoeeYchZx4foOL85dCtcVERUs7aojSrTU2GZbGL421ObUhqek6CfU2Hy++acXDNwlQN72r+OUEJOG0117FYrysBCVRs1wLJS+buYwqWprHY2G7sQ7rv2VUOiyYBHiLj3tFc73xKi+QTlDaDsJZpznKt7+F9mvZWfdIhSvr5/tRuwa9G2EM4JcfhIKF9ivHwzr8r7kcL55amu6katLWc2C3SlBLXSaZs5jpuK/EuMvrBKv5W29omCxvP0vQKpqtCGORGJ/LMurjcrQ5uwQk3xg+mWdpC77Z4bpNJvZNZXEvnpjPbZ8OxKBbVTBTre/CZVMqjJwn1MR3UbyUD2AV/RE1dsv0B392kXbDjph+ViQmgthYsnyUsQTVwIUwY/pwYneQgTQ6FtMbZWxynLiXY5xuCKnDn3ha4LtAZPWDrzTpTsFOW4b32F4FclV8EutBmA3i/SzOm23PWRf7BFMh0RfjCaGBrVrHi68K8tjnBa2rsiVC6sqASWcmzbLJtlnncS/wtHJwhzuMyU5S4xP+N6eVsOiF23L5sucQKcCu2uSRHA22KSdzk3H7SOu5ghaU3pOC1so+3X0NFDCfbfQL5aKVEZsSgxAH9ROEEPi8H4UpGQ9hNeOOH5YR/237JwCiGdVYjDMSgsrv1WMNS8l+wWtMTop86u81eo7yKcDsXK4px5WNPj2AFi/GtRTEwmFJp050Rmvp5jd+rGphUdPv2o7+reYmWPEPvRgThHSX1HTUAemazCuTc0ygduZh6nPPHqzk+soGcQfrfUpZgvXGrK2ZtFzmv+D5bt8pR97aorwqOqkh/p1Dd9DFZxId+dW9NtxnIhFl1Nxy8GTMDzrIe5E8p47xwoHOYfec0Mr6Z2qx56sYaJBvd7W/UTzLpvi8H0e4VVl3BUJpvftZ+zDCwbddGzcfdrQfMLLuPMJIQJ2MXnFsOcJ8aEzmo+1pKIuuBAY/Trx6k0VT4t2V2CmMjA6b8kJgwtUo8/hlw6veG4UL1HEv6ZhIotdahsH2AbyatAOZkCL2g0cyvubR5PHRcrilksDkuJx/fN3JZyq8YB+0RJ9WPmDKQajSJuEI5e6UgpSLXHIXURLzW2XF74pBZ6Z6HZnnSBqPIwaR37z/NvI7PXXJpGH/mB78lDpFAU2NDSq2gBS4wXdcELGpRQ4eJt1HH8OYTOzhIZsgN+3hNWowJzN+PXz0upJuP8Q8hsV06oJqm8/aZxNwT463Hg9Yvt5xtHRdE5Wkm+/k2vqqnTNyNJnHUZYc3mjLUSCfzPIEsdm8uAgDvtc10K5Zeg82ma0NggdGvKBkOIuM0R1aZM3XM//uXy+r/AYEhjpzyREVlYGxV+3czVrmI5/0qd+D82xWgGOsJ8eEkrZLaUiguLYyc30NkxIXn/it6JmGAjWqKJRNFxDvDnN7sw5iwErv8+Cr/br2Cm1FX1N1DPmz1qOwRXqcJlqvvp04+WGyN10pns5yF4gtYE3fsSEn1OSkqWXjqMwF1K3nVvGokiuAxBcyYOXnzucWfmuRnBTOfjABadv0QN3rwycO9K1NCCEsO9jhocI2G7GBfiX7uYjnAysPWO1dHn387F3MxZFX49sZLYqzVwqQjduPlfhD2Ml+npkzPTze9BCmYqKpM7Wzkekk/0L2FddLFlN1/LvCFlXFK3Ojpjm9RM/keyTpRc0Ygk9pq7cflsIZ0nxv72MIZZ/KAOpP708v0xwUIjS9SzxLJr+nhvAIamWdLssy9I89pQ1C6bQ/nCrIhKwi6cwdHC+MB8CZu4R9eGik/2dZafz1pN4xeYA8lBjOZx9GCnlgFn7P7R6YpnxqMrma/hsLdGDuUuVF8/lw/3wlVQo/mA6iBUcmnAg8kKHhN8X2FWyTAoFoI51f+Jo0O51uaSZoJzzfGT8DYF8MSUcYK9XQRwKjptbLc9yagppAmdKl886L0XZPJ7m+EFQyKYS8MYGFwizfiAvcH1W80No3yAbfKlB5KPI9gTtHc+fafaAIExRs6W+7yKp91aLBDoNghAsp5pjENqLqu8JYbX0mLPvTdYh5+ANwclf3SXeojmyyF+CZPR6wZLjEegn+qK9i0IxD3deS+t8SgAwDhFFF1xQvzHkTXj0k3mixnXicp9LDjwOkEm9MtIv+Z4+uvUrBEJIvcbLCijGdcTj4Y6ucWciUnHNDCqetPnwGl2b4luuuvWI7RQMAlff0Fg/tntqQGAR9VpdxaOqbLVXZziCAZV+JL6w30RodbtR6TjeYCaJtX0Pa1WgFqMuzBsd0wXXkG70ewXn5mPu7YwYUBkSHZOOau9SwIi4DsrBoZb+HNpgSROyj6jayRblDNfEyT9kXmz8P0gPYDfC2dC2xIDKOVkRuA5Y2uXRJ9K6tvC7rtr9GH9sqWHN2JmLqYSVWXi0ldgR4nVLp7/4rzkOjV47dY/jBmHlzgSqmEIebmR/JmR5Kt5CyqIaEVmrbCRvdpe2Ez2C50SwKCAbpG1jYRsXzsgOOGYljuekuA33TfhY93z2X6f0n+u51rZmEPGOZ/Q59onIgMLaKaNA0t/hLb49x2mtVErg9DmCl7eh3u35wdN3PRjVW06bH52in6yixJu8yuQy1vY4nXj+0ICz9kCz60sSVbplpxFj/VGtYWueXyt0nMN8NT2JMg9dsIMg3AJ/wx4Tc+vDo8mJ0d/mOryc360cR4P+H7d3XfjYPaH1vv1xlBF4yM7yjYajpunV1mrQ36s3TXhATlooqzxHlE0T/ZU7LqOP9u8UX7hqgt50D8s5JYi9YWOPoWW3Hq2YGhkGCAUbyQPQRGYLSWEqXy53AzWtf9Vpc8R4VP5b7TL0eBVGbGqdWUNwM/yGcw7QkkbFrUKc4Twee/0PciUhP71a2CP7V3NMXuHJQ3r5QrPS0z+qoTvz0vsqJhb49GVJnYvnZjY75hQYSOxaBPOtdXE2+noes5E4sirJ9+hNHAl6DebkDzeavIjVFFy5s2cXi+7UpoweZJXy71RxWyep9uojDpsXhdpeQdH/mHQPKUiVVG9gY7P3HJUom6PrO0JuywYF5V8sJSRcpJMN4ygo6v6G9AKxGqRfEkJoOpw6CVeUlvQtTyaL9ZFDvhMtpeaohBllpvPFUzeXX36u2NqCYsGb20CwFM3JgXhzRvWgRkikzvkDBThaqqNnMyXaprBAmHs290bdR5ptMuhVHJJaPRwPTGtxT5eFDzYoQBOy9NramCUW2tQCAU7SKG9tEAKtzo1TyjD/W+y4lkljap1Xeh/vFgaI0Bjh9EbK4zru853P8IILiLtfwTVENys8T0Rm5ESiuIvitxeEape0wxJS/V/k+cLU7+V3bxZs7G862gBnBOe7laQUuoQqS+420OA6dwvq6i8/MLMDfPyreuT6Gdv6+K4mz3RTRpXC+J21a0fuzgNEsAc0yIemltMG94vJF70yOklt8/IqLx95Nw08F45UaBs8s+qIB0yJ/+6oLimaLEFOv9m3YD512vhzXTAnuMZ2t27/d4GYP/NFCyIQYetaZnbHnGM2jLZqBYjAPDUV4zxPBgBLBae4Oc+d3ieJx+uNiS7GEhfU3JyrNMsDOS7Km7viT/3TvN/6btz0RXVlLZv8rrtuA1H9qmbPOXPvRU9xXOvrPpEmiFW+nCUpalPe5uGMkSLlUgRFs3UTpuyBXZpE8ACQlHd8fpr0RHcJxty3J1lkL5wEsuK9dqxD4Hv0ovEz9Ne+p8cENq5bOHke3xy8I1hcs6emTABZlDt5l65OUqTB9lLHSEVx41zJrhy7U2a5MykUAh+QvFoVwbQ/odMpkakkjQMgojmLg7ZtM7g9gmzFlZjOwo05uY/cTHWiFVmccW7GcZqXWMBzeTIh+rH7FNzXIe7TArcT05bk/wjD8b3kQFaFg+bWozEW1RKK8ZW4fktbHSH13qDB9waNPSyAZ6ryWTuJkhJg1WA9fCRY/OvAZtCvgb/fFLs4kRzMxNGgpRujuKkDhW7N2uv60kZ1dRBrhMqcHfM2dir2kTmUQ0/YO9Nq+GS5KkmKZ/apuGQYnOMz4FjORk1juAoG/SRKOC/3K84jQM73PLdCJwoOVzm6QUKlbOKk3sReWENYIclWaKSRFXsMAQNhWOez9P2KrV/q46ifJMcm+gm+oje9t0ypXsKYk8DFJNuIGCZ+AS/E1pPJFr6bh40zVQI0g6C0WkkXDh0H8Vo+dcmVmPfn4nBa7g2cSG5J9AW6wraDryG88v8pTMlxDU93TPQqB+13lIgJm0uydbnySHagnnQqUlJyzpOibjnBrZqPEbyU9IxGLgGp0QCYPCWHSDfsoJF8zAlqz6cPTOGmTF5cHjulthsJp6Mfe6QjGgUJ833bb1+7Cr0wqxzAiwC1I59hFtQeK2VnFA/Ps41UR6uzC+dVtbK0KaKBrPfCmw0NsQDaG3dNXmaaCfR0WbpOwKNBcOb0hAQC+varYsMoy8L1DPV7lghG1HFLysu/qqzLSWyobWOn58tv0uU6t26WkxrfSQ+oGadYCBf4NozQltMFEW7ZUyYMRWIHNZR0SORThzbw4KnRrtKc6TW1ChUCpz8nLZqzpID93FIdXhbh4CTg45Ysen8CLbeKzOX78M6skZySl0MACqvynenGV6tCz8o6fcJk7WnoxF5fsnZev7Z53KJYTps/+iMQoPxXZeA0d8XFrMk4Gxwuc8rtU909FpQlh9RqocLioE+EbisVI/4hizpw5FEI22qMS0ZC4ZB6WLsDwblDTgqjQgFuFRt+9ZDz4tI0lz8KRlpoBDoXLy2XyJB/IwiebxujUl1iMtVGhUtgn4FWJDDMkqgZm7sD+vo+/W/TVtfCQvk0JHgLt73DKDEtg7pv1ufzsFfJBPKJUrFdfUb1xhcdCXKT0ny+Inc6fwPn64i7VA/npDYN7ZdJYj5jeDWh8WyAJo1vk7f8/7/NOYBPVO8j1LqXXq+okXJ54bXAB9rwEAFPgnCOeqf1q405rydFAUv2LYKomkjAk/jmcp3xSShCc2YtrS99HiksNK46XWmatFx4iWbY6310WEsmjn8Z/mnvNujdEOBu0fFY9ILP1d6+3aZiPMOkVsXxyV0KmsIcn1Ow/gnWWAktvzb75cqSuE/xOpQKpcXPj/RJUPActnxhQpqI8IKouATQNmLWIxiOLATBLHQBrJnI+IsiTUeUYrD48YBwe4INnoND+KO+J0H0ogLu4G5zGPC4eJ8xk8TXat1VYhxNnM7J8z6vYF1cautGbhcEVZw9Ba4vxW78JIEFQIZiPMIzuALTES5ex/nU5pU1oXbZdeQsMtRM2NwmPxafVQKItHj//Eo7tzI3ruwb/QqmUWVwzY+qDbDOY190KzPcbV4lQHHQOG3Zdc4VlxhPW7VZiEEjL55R1U/zzXXT48XDrdkDLO34j7oZjVTzg+vIZLOnLDWZWXxCuzCXObYbt5qQKsg/yF4CCN2xENqpvXLdaexaoSvVfHwJ6laKBfPmZNk4aeViNn/ZPBc5yQJAQ+0ZzJlssi+lyZYnTvKpb+qQDdfvne5fqfR3ix7Tk0YLiF29G6aaemAPD953L1h1kQtoiU9uYt4beDMQ3fXQvz8Nkoh4cAq3tBdwlYqCZihlZba572NUvI6x5XGf2AZ9jeq+8D79WEaxEc6aY65ERmSbpj7VMX+2WUbGw/n54CE817ijLuJ1YvXQxSyQOWUvZcFKnxbQ48/44jqfQQUQWjc7/1jP0BKf0VSxgK5R9wtQVkLHMVrmxjhXA+ml5gWDJAXZ+qkXV7kHIBY53P7lh0yPw6wN9//c1naqrefNLXj/pVLtmeI7TJ2ejoaytjuHGZSOz5iSSZQgU39kTmI/N919g9RwPkNxZkLjB6fUTGkxDgCDw3/7KZkR5gibIPcwjaayIm4SUQPbVLDLl0cwcDRaRGjcqNBOOz4lkM2DWuB3JnIw0N6+vIJyOeCEb2gB91s2AarhsZKHmq4sn5PHaHvq79frB39ls25eiIIqa6o3P0Wo01sDLgY13dohuSVAF/2vho1azyq/MvzFOfZOyZQV4MiDnmobtHhs+Sq3l1TtFMo3Sv/c4HPmKrBcqvy5iVsY8bgtyxwjuRswjU9j7C7fvgJKin7ZUf0khgQNAJENFWoCfvuuJrrVBQ4w9lspuQHdLLU4Rz7ODTyyGmWtMLhKtpb5GO/zto6mHwQpxoc+FKWKdvDzdTn93GiPsfvuAL1SCGxA7hT1Lf5rsU8bb7Ne03ia41jVJty97qwq1jFcqdQT+oSgqwOW4nS7eSUMxwKJdftXwzyF6hlkPFKa1tqv41cCQ1JWvzJQedHfjziwLap+Cj3PNGNOSYQgj3LQnEoocAI9L3cSrr9wd/jxfIkUq283UE5UbDiQlyWNMWpVRSj8NF+A7Zvc8jSVJdnDvu3GdA4prxjmb7+6Af/EE7J7iaWWehY1Hw1fP3DNRQif5KzqqcLRmcJqIiL3EVyBQlpHMR4Cq5b/v3pQ5A2iA+zCDKLMsJrnw/knX5fnXTmsY09+6sqJdZO7ZFt/RdWROGy31HQ0vAel03N80UzOwc/fnjBOO/dcgvfbV0NySeo1siTr4F2mOI00OgkIys2XaqsKHuAAEgIC0MS5kiM2Wjh4hQ6EGbzJIPvFLslW0PncIxXlIgrtBnEa9R6Q8BI90EhsjFq2SRfzKwsE2X/y8oY2cGwW2PfVyBOwgedXF+m8N11aZtXArDgiYx9+ChDnsI9vdao55U6YeKsxsI7OAHJw3+QtzBjRp5J2PRlZkqOPa39otqI1H5tsl//ZaTwOGUX4TX5FsXfJ3YmPKGPT6saojHhfqC5y5sVgigehBvg712iUQnvpxyoz8mxUv9sTobJzscc5YsbHSqcSqk05P705KWr4MNKYcNV32MiVe4ZHZYF+vyQ6iFVRXGdPFiTIRFByBwdtYHDOSwU68h0qwZgM13q2dVyukd++FGW/Ov1WuX78XWi+P+Z0uWN7FUtAdyipqKzwMtYtqY2za8Cn6HD4LkyQ18IguqFmWxcw+LEzStpP7j81OhlcwiQ+JnrMiCloc3lgjvz7+Do9Xctr09lzRnJoc36iC57huK2yXz6dAewGNUgfrYrG/3LGHp5pJo5NntasjuO+eRFnMYaUGKoNyvxrRoV3q5HF/UtuKkIPhTxkCIchVTf3pLonDKFvjHEgqeHtlh/N4ucI8Nkl2E55z80V3YEbFvSpKaTaFmy2Zv4ZnqXUMeCIERauD7xUZnZkQNPMzLaPSANHU/p8vSNkse2/Grt9EZksDG0ztDzI7eIs4XaXzeR8tJmwJnSPIMEQKyxNduHltpeJtI4L56ppNwjDgw5Il7YHIdpySvQTQtaXgP5OraV4PILrj2h/j5BEW+3Um5eAUPvmK7z/NAFXS73gVSe2ckWQBJXCNO8/cRlpI1mvVptR3oJ6YGN2NDUHjCLDiJQ3yaTasC/+GUfPEb7nD9j6R1R18oUG8tANbh/Xxtz3IgjATDbVK2X6Qy5hqhRejxBUTxDoMASVsYP9rYuBGiw14QhFGjoGjmmqNCSKrGyOwTyXUT+wAedpWqdziR/s582jwK2VdpJ1qZfIfEeIsl5vYDdUyO+8Dre2FHzZ7bDtNgg0oBfvn2RRvLQT748HzOUw55kziDOVCIUfye/P5CRtBnpMIdOz1HiJN5LbYPy3K6Zsq0F28rdIqoFbCjB91Gg3LCvJjiObAsE9UeME1rMvRUO+qSyQfZ91fIj/pniqEPnkZlZhC4UXV+vLZFIuv7OvYBwo28LQHnvRZRlEvBtwBbcWLyuCKwKXYaffZzQDFyrQigEfm3mugaqKjI/V55WnMys0e6xevVSMzBqk6xbjJ+UPQvCQseUZWOUJnYf1gk/OxSMSCxJoMIE6/Irc57ODcNAR3Ep98F0ZfVwAukSi4uIbXWPUZv6mtsfQKIfdoBHpghLgsss4W396RYrsUf4ArJ0viUSu1g1436rf6IVJUNvfxvC5iTsu+jxXal84xY8X3Tc7N6undweqmDLd1lbLWlKYArbn4doCS/HWEOs9FxFFBRAqhvnOav3BXlOeoGP+OVU9Gh/Rgs1qTPIdAsuRQEDmoDj6XWm4aFSIGw0Wrz9dP27J+ezbwHs226lHUrGc9TuqGbIPuUxXzCFIPYpbGKzRntjqvBVcmLptWUaGG0WRwBmC966RwzPxGphb/K6GyM3FG/Qpd59nl6DNbhQs2+VIHmsaax0iniInHO6JsjaRLk2tBWN7pat35e3Px/A+HAnauLAwChN7z5mRQx4Udqfa7149aS5F3f2C30vyuiq1NaicdEPbzq+A4Zq4BIbybLzo0xXkJquD3uQ8OmCkhQsB7/Po+iXtetuBO7gfI7WraOrwhs0T0cqrOi0+22GS2Ji7hPD6b2zgJmxdJZ3LGtUtmLJdu/XxcM5YNmlVCqqfn8uDKmZkY98t5wJdWzE7jxb9qFP2UBvW3/nZY1Ir3Z0ZyTW9rRdaIj4EjWprruRjSIEaunn4dLWa0Q9Pn/xA+QeLCK3aqy7SJoUrt7wjRELKSs7Bt8r/huCV67WUP1gKxNXjM7sArUURp1QGryHB+TM7FAQiBYRPfzgoOP2RCsF/XKwbj9Q1TXrTLWXm9sMBzsaEvjT5p/vh6M3hEdi1V9a9lO7TWEmBynm9a9VHbWkCfCVLfTEUo0EaVkp9+ex9N/QqebXy+7bZPebrCj0sbH4EvjBBFilf66zNOcYuAOvC4szHYUKjl/OyIb2Am2jpU8rpLUuPWidTJt4lGI7jmXN38mrXroBl0Gw+N9rvskwKbSvFXEOxez69cWiqDPciaW+dgTtgDOsCaiHRvj5V7znjHeK7tbxZtYPJV6RiuG0C5t6XVd+/xEa3glbbKMS60GIyciDhxLt7G7lWXwZNx/dYEnFEJciJApxbe8PdJmJxQ5tw7+bCfwuGaxB8+bmwSlpGH5PHvXq2K4QuABnZmQwBvlQCJerP0fCqxPftmPN3AXxn4DQLi2L7xFiVdngPGCSYJpcfIEuHhR0JnasxYVRsPvLLdqJwemm6KhZltwK8nRBp8Sdcig9+9fxVWC5xouJH9cn2f8CUHgsCGJupzd1Zye8sf1mJGi/D4CS2j8nRYRHfgldinfOymRlXYQfBYKsTMQTEAc4QIZOxpB/lc2uQZuVpnb6vTXNHagdNFBdYVJri09GirCulw4Ej4rzQxv2Wmt9i/1YUDLaX8QT6e394fMPd2KVKNlAZaawThG5SFxT5Vvq7ZukwByfN3nc9fPPDNwiYExYRdDNQLbbXDuPkaWWSm2bYLrgSPXXaD48HgyIu8fu5DmV0lRMgkeRLwM2KProhkIFcJap87LRC1UpHL2HXOvbUlHS1+7zNW2FK1G8c5bmNvgO2YQSjq5JRCDBObZHwRqRJLvtO2Xl0e07ZNR2rGbvEbN7gt4zeZ/RMlwJXJvW9qok1i9nPVCqbOL6Ot0i4xew4dmqJb9tDiMbueZvnKcdKLYFxU0wvuWHGqU3daPgWNPSmRacnqZHiCiwWtLLB2u/LI+qnCZyXv9WyRCP3Z5Vi6fQj8LPIUpHuprQvmn14Sv30eBtNbZ9DGbdj68ksFfbrCg1Giz3HnZlKCUA05iT+DuDK82k3LbE4oAglXMoNAILLN+SBT4Wd6LcL53DtQUbiO9THEeHV+Hab1zeybJslS1ShX/O+dgNbAfqfPk5rzzqkknvYP6zPEwgZ/Po1YsKBV+em3c8qSfXHwJqNHh9l+3VejjQHqwc1KYNWMGIFROo8DtNtqIdMqYbBX2HkZ/jrkjDjO20xK0pJaDnK6U2YDs3uwpGkqUey+qQLTbcPK6QdSe4cxdVkzqb1PRzLhogwD9/Nlt/Elya6SKrY2+pjIPeTFUPCK4u3omDEciAGULTWTj1G2WgtC5tG0voAjvUst+/U8daWD2IDgz4nFHEPTR2Q9dKGYdf18M5KADvkyHRgWz59o5kHxRUPJz7VSuxwqBgoyO6aoa0YA2RilmfKPDhRf0ZsZyTJzhm4Oc2aMzV6+Osf61deFgjW2QPYllLheuTs0K/arQE5hrO3XzmxCbw9WkFksQ+sXY7A2QxIa5RIPji/ufRG2Bb9nyUvngEE5SbQz+kzrtCR4OhERlyWs/FAvDiIKZpcp7RwhNgfQxKgYG8DFbfJNiFv6HpTAerS6lobhE18jQ106MY5kX5MnCLt16dESopywfLVJCRK5x+M+x1EpYzHgttow8xig4jq0VO99aKyJVARujTN3/XfQQTrf4jtMmXQj8m9R1IkMDves3jsULa5rkxaCnUYkFNEkc+6Udg5s8/5jCyBNqo5HJmSl8+jVfVftPAkKAJ9OVW/y4WjtbkC1jApFzOHByGWlVtA/ZUgHgka6BD+mTaA35hmN2RPdAAJOgjFpIx3oZ0qgjaK3tiNQtbxZE/MSWd9j/rCcFQ218VGeARw85ayqaeeVJSh4ojEc+A3SIxPAq5cp0xd/D4OugeygaKIZRI7HjULEAozEcnKYyobaoM5jdmbTWgthKyUIxEAqGRghiubF3ZhY1xRSasQBI9/1espGTtbmt0H3hLiie8bBabwfwRMgfIaDKBf/S+EHu45r47+HbDWf+6R1N34dLefDQH9JZy42b8FJfjQTDBD/gaqudmfiDxlvdPRnvw+ZX5u416TQJ0vst4w+4bmo24uezeOHz49DR7LawKzUoWhtOZL5yhiqN7Hk/m1Ce6h7bqwDD1aZeQMsAObXbOE8q24hs7jftvuIybGUebBi8Yyu19c2+5cV+mj+p8DBl6jEfO2JJTv1sQHYJZDgXJHbb5HrzbkHWZw1XbJaCQQ9njeGKdv9bNNwhEKNGytuFC5COzlZa9Atet6ENtN2Ely8anIqSZyjvJIIK0PduLY/eu5rK/6ZwUkv7/kcm4/VXgPpdEe3yVpViGOOfd1JIJ5LzUCGU9SL5VyLunAbYp2XH+nikakaYGsejPkhhSTMrqTk+kepAWQFCP664vXxvLbftwj+H7OKsI7WnOd9pjBTpXS0D/sQ/NbHGTXEuHvgZjxucsYvQz7VZ8acCBbRpBNE8he5dU2+ZT4xoWJHQ92S24jrjNb9GNqk0knngmzA+IQvRkCX+Br6oMzh7jl6qxFxj5ua/ON8Sp0bIbHUCkyN04SQIxN5Bq8w6hb9d7R3dYvTFwtd1ug4UKRC4b2zczQZZ4sv0mNz2CMq9KrZFRAzuLm1vGLnghHh+bBAU5XHLERKtcqIQGH1Ohr/E0o0l07xJDNIqHhs/5RrcXv9ueIx5oBjIKaQ66vFk5E4ZrQ8rfFxiJ5usTOjA9Xe0FTk/W5RiOg1repZpXTzqIlfP/uTzTNvwt+TMQvA+u+DNS+zORa0deV+aGnAm07wtj1UE6ZJxvXz/YtZj7UobefF8i/7BO+kn7J8QmlbRk6ZCksxCWtVM/HFbYzPN5G6Ifb9rYFr8tHmMoYXTLZmqWJJIIolg9WFvtoeV/P+NobbB+XTs/k8O3rNisuw7IjqAVj3ghxtd5rLggy8K2MWreE8Iu/Aboogu8ut+3mHUSNrFDtrHRhOq1WT1VprT5ON4Kqr567hi6hlHozxkC5ZXZrLeFJpPxDHAuQ9LyT3cYcEbxVmj8o2z3fWJtC6zyiMihBUj+xCrqZh1h3IlLHvyIC5a/kWD0ALR/BhOsii2vHYddYHGeKYdAoORnBCzqKgs4UxkGxlDXDHuuKFD/Ro9ZVjhbd3Sta7xhbMvjasoYaYKEBmQopnlN6oQXGzlJ6IfX5nnecp7y9A4pl0gd+gWbB02WDtBJzvw68OJOFk0PtDKzPdajCOEBIUxSCx9G6qgNKHo8Mi1A7ovyCk2NHTe938P6mH1hK+DUs+yJ4qU7MGfNd41EpdbnuOr73ejnhIlQv+GIbEAkPwjQLGsymJXKb1kM4gNpPaUDuLnS5yDf+lMcM8G3FRnaG8jW/2KcXqKP/Q8ZpUtbpcKT/IZMWippTBSr6o2avBUgQZGzhqvqFuyDVA3X5fWpbzJJPq4SR639NDRPp+WhbmaGmucguxdI0F2wSPiWoO+FVx91oeVMJXl3EcgKpNqlDM7DI5pcbIt6DhjS360UpQieYXW47+HdOFshogYfFcx8vhpkID6DtchqXSeSO6J7vVl6y9VfyvoBA2lpVnAgzVyva55By6/YPlU8GecsixsM6OwYZ0if8lEGGCaStkEmLm8+bglz77S3kc2rsE/lFRvPQTSY9nyB/Y1U6IXQOIqhF4ImpX9ZyuzxgC9qp4crAe2UzNPOqJyn9lZw/42GZALpgWCtavI1TDgRw6lPHGM6bTJwXmgB7DV5U00a01J63f6bVHWbjU66/yQYJudVc3M+M0fn0+cPVhal4z1DWS0odAF3nd+tw3don+BMfL4cNCg+EMTQkjJvHgO0SMnizSE6TyE9kvOaXGQFJcULNhRBFrqvHBXMja/54gjRYCu8w/kQCwAm5JFYTKndVzkMfEovEYQKK8QIdq2cdlrcbogoZveMkKlT+TxYDU+vx62kc3IMuUT2rhFgl+7uCPYYCSEDsEtIrKsbvwRmqLLTXkbmoT0S7x0Brw2wXg7qokICSsDiGoATvpHjNFGpEnjNj2ZcIL5J6OWGzaAF6P0o2+DUNyJ5v9USINPk1daKfgOrRcFWLAOPZcLg+jwIY0sueP/KnKFC7SyXJ7Twaty7ApdPD90nKsiegVGcLltbi4mx1RtV6ddBrjc6593csAhsbte9BZNj9jdxy3Iy9WFwnOSAYda5tjPXiqHGu7i1OpfKjUBNND/s+ajXWuGjouoRC8U5LIxAKoKy+3pFbKi5iFiw6WXUZJ+jrW5yj0dh22dl0EzLSm5FsuGBeUDFW5D3hUD3rhBIM3CTIAqajxZIUskHHrMMFe1gO8m/UvdZSdY748bvQwYzNrSK8M4zRawXQ+3Bw5nO7dygOVR1tD30TsK2RzCLXJcX2guUEWgQ0CQz6x+0UXNCotVmKBeTfL7cjT6XuN/zO6j9HJ6rYbDhhAKdSfuP3JA0gF1RU5uEcm/QusTV+3Pp10b68a0ReKeyPgcDkDXMxmG5w+qHDmcuQFph4BTVEmpasI0UPOFNmftVknaZVa2IPWB0a6rrsElGTTmgN7/7hE10Ar+6so2B0o2ZCW5pvDlnm+u+7W6uyqlRgOw5fegzeV6AwLLkwuaiifIigKinfTPZmPCNXClm2BCsSy01VwjTRS1lDt2BdRkELlDH8oyaQsxAWW3Eo+IJJM01ic3i7RP+CRTHySrZ2VVoFIF9LL+1EZT7oFgYUzgVBRZhjAXSGkinfjTn9QE+4+3rD435th0BdyoBcayo+OxQvrTMFzZ0XpXUQQEgKAfqrIJqPLm5LDIsF4nsqRMs8iTbOgKDIUgmpnFocTZ9QtvYu80IOix+vbsb45/rfYN7Pjwbi4OusQNX5UO43gPflUdMninb+Sc0i1fPFdRuw9URuwUOwusqTB5Xgv7B5BH/TFKH7GNbZ2fN5j3C5DBzrON1lZsu1KY7t3yS/MJdBMCXg3fNz5jxQce4iYnweLpEZXds75ANbBG1VDM4WsqQT9T28HBredGirAF14W3vJItoTGukqvFIG57Pmj3Qn/u5vTfszIw9YyDyGU/EbJSonhS1xbkGdZf7utRu4000oPOa8g/oyD4VEuXPo5+sxckacnV8NgnksUqUwi9GTvgtJrveWDVUoXLzWfvK7aVy1tdrOc8P+gEGVUFYTI5vr8xqwzFECeIfFVnHT2IBglivVgPUDSIDKDHQLG/00pzxyEGUGc54sT20lQzxENPfzqVH3mm7N95ZOorCvDooTfVZuJHKESmxRPoA0SSbZuo73toOF3NKk+VX13cVnZF8H7u3Qoon0Ec0HwsKWKS0wjMk9APgZGMe1RCyebaHF4aa9OCX3xPOBlB/xGG6IR0cc7nbDDcCGARui26WJgqGz6zDNbgwHZbNWmX+2tbBVqVcZXf6OuqjMVPMzVeyX7HNCtK1dA15YVeAQASFaaSCj1EAlXvTSxuaoBABrtg7ZqiZLLaulNTkrgzAgt4MHApL+WGJ02TjNWLEUvm28NQmTTCgmyXc2hiCl0SxckXQX6yKU5NXuPox9CsI7kvuLnqfKx2j3jIclOZOlqJq9beZcyjloz1pcNnEr9jtT8KAWQTQFVZllBfGMzA3szsN6UWRVOS3fRjJcv+iyrHnkuktmJPf5SGI0hPA7Oot2gt5BSZTK7arUXGI3MPKx7H6B8hkM+68d6qaqNf5d1oY2/dMyY6C12ZtnhH650TG8rVP9wEWlvnharXKMopoK/h/kBdEHfymqv4oIpotLcPELP0EmAn8e9jle056lJdr0+zvmZBpRnrDrnXRO2lBYqQ30ZLc1L1GNDSU1dbUkaRRMTpEFle4me30TRyYVN8FzCOrGJM+NOAOCnjGsRAfzV/dEkvOJz59Or5BjdphQJF0ZNZQvCDthnwGnIO02oXUlhEtHzUbXHaPZi1qtIoLQ5wbyBhk4sLw+98Pk5sJNeQIODxoVOTXz/fkf9zFFgdd57F9kuBbgejqyvKaKOus/8eg0Ud7R5/2Yp4JaLLulK4u5C+Rr+sC1gKF5Ft2q3aLvKuUuU3s//jvCbaCAH6g5W1OmE4udUalf9gPdjclOXEQ3jYVj4UzyUTSVXO74ZoxGdvg2C6fdkWqVaNm66TBHD+qkKKl6m9a8iwNMs2ttZlgKU0bwDK02Q+0G23Vu3hjE/LjKBnSp/WDsDjJDkU6yLNTRX8pXvKQXKwWBHZWmGNJjKRP5JOXmeJxSA3Ks6TuruIA+RB09BuFf9+HLTXBfeKre1mMF2/aEVzBli+9wmQDAu0XYB3bhztY9N1yKXOYD1maVrkfCgn6NYsbJ3tB4ljTILaw8djSE7jecFGoSD/jeed6gUpdkjw2dm/uYIsRCOUs1dMtZk6Ewp8x3fwTpxfz3EIiVrB++0sJJBFWBQKNTLK2oCQkLJL/XhcoRHklbP16WDqUzKNms6olgjOYuDU9B4yS7COmjLM9gMPltAoKt5mB8WZSQjw8LVMq/P5/qW2EtT8XFSBq+nvlFFfTTYM8mFYSej0Mxb6QT/imiHnRA3Hl8cDEbypxOkZYsbwfkZS2r0meuMTXeVMMpeWp5eZNY5++Wrzr7XfxOx1Qfk2pGpY84EaG2iHk7z2KjMlZgSQ6tx+HgLVPjEfG5xuD7P7nFRXDneXUBxZEmHXC2+C86bWlanKJEB63/XqrqN7MrEFjz1n4ji26ezeYYKQPp3AitpsnbNdtRZAkyqzg3oLAAhiiJQLN3KQscNbrKAHHHJEou+ojNJLA6EKOL06gFt8krfsxuG0H3WLtXOuijc2BbJlCedlKKdlereHu4ILq1DE75yBIE3iQTHKllc6QwhF0VYV7vxfX8hKqyvS4LpqdLMWX1xiacReOQQCNJuv8z2jZrOlkAAsORakWGrVrxom8o3B0Tb/Mcr4XA2Ngjf7LBo00Lgq4YSbdcLz9IyfgZYAPiwudC/yjOc6hGqeeLDx/oARY+2wfvuR0QJeBNiejel8mxendReVJR8N9d7r72KXDBfsGZaCja6k7Z1EGHx4F9cydiXphb2xA7ndNdb8t9ICc7o0Ftd5utOC9FXOZZDAzLFdUyRrUkNwm/XTzw2PnsV62c01sxZ1oNc8ufKgik0B1jN3XrV1wmAl3diOSFr2ickyWddxps0pAmczAvZiNqm8Mh1BvpnxH/0Y723Cn6fPwLaHGYvFLgQ68IOPyStMrobkjO1eAr+FALn9g+1qFts6Rp/cyc+uQ4H1Y/nDUvJOoq4Lh6OkwFsSwph1A4gnWjT70FYwEtsTI+vn1N3uCrb1kY29ZGcF1nWWpQISTasZpPPKs2y/OcweCwRgs2UoKEnc4ulB3pYzgKQUpi/ilSsaQ3or4aR8NkKGhDejCQe786lbSXikErHa+VH6Z5t6YD6sL5lQdRcZlUlHORP4KdX5chwcDZ4yFieekasjKx3k8b/B2Ab8WZu1UsG6AaHiKANtaLderkAfsPMhhbiTu6AS/BVNq+3QuSNdhIcE057nubNlCgLgzA6kZpIKuat2MIYJ+5+adNaJQQzqiml7rBS0O4yolRipx3EjKMo4r8YZngDgGdlQzfmrc2OSnjQt16Z/+dCu14IpWfoNF3ZRLPUv4HHu5E5PCYkwK/e99ooWRkNCMaTt4j6AGHFVVQbLYy+aRylL/w8lhN04dqwiyjzG4MFxQMz0zfD1WQ4IrfRInXnLX0xBeCKrLOxxU+JPeDTsvDTypClmqMVqMh42Z86Xp4hhi4rI7Q/Z9Gc7Mhahlh4endv2W3njfrn2tQD1rw/BIJvifJHqqR5N2dE3QMs3KJrnDMArvDxUIEBvIEDapokn+sd6rfm4xAsbI67S+emIJW58iDFzV27L0POZxScTnH0HyPU45WEGniqJmyT80Gh6g39g1sEdXf7e4lYf28FJg7yRyYuoBczWW5j9CB4beh5d1KV2Ao9CMlYdewQPoJrJxe5MW9kZkf8hHPJjDiwVVFw0kNwGTtdDKMr3Sw+I+TbOH9CXKwMApVwVjI8YILxXPkQUnJStK2xIDM1FJXEARbO66me8I8GbkHwNgKJWizdfZ0K5OyTfw4bNvM2uRgCSjf9GL7VFRhS2AYm33B2Rn+zt936GKwGu3rNcGyFFuGcmbiQLZ13Bh9XnUobVCyAnebq0q4AgBQ51gD4A3w0D/6NwovuV/X7dhdO/jUH82SWZa12yzmyLQoRt+bIqz/k7HUxpZQfSh2K4UmBggzeG0KQhARlVQc3/mn9zvUbIeVC8bkcf6rhdhWC7arHAv631RSOsPFF+QgtyXYbWXgtogFifJj9I7Ac5fqjS6PtoCfopbd2md3G4X5N7/pCgf9GQ5B0Qbe+3RQvMjyzOP5wvJPMnCFp/dujq6mjVn2zDqESWPnJiW8+Aydcv1CyOwP15HUoZX5PsZ4nvKS6KQ7wLmenSCxSjescUXeDNB6xVtF+8n3BegtJU1CJgHqWUirz+c05lHRR6pJgln2ZLz1nSdpn2+kCWQRIb+qaUoSb+OJbjZxXQANKM9h+uSWko0u5vQhSILLXlcTQXYv9SZNpVt8PlYARwofau2F9QBZ2u+s/9cUgA3/I9foJUXWqqX1cjgo6BE4565x7S+KefBPut+KCdB2nRJ56XCAQaD9NTIL1xP6oMQc4Hsll+cHkOOIecuPHDdoWWUT8K2PKqZywIyShDEg7Fd/B02bc1hCDAopQpAdXjXJYUD+rFDQNwOpfd1C7Ly71RNT1/TnWHISo8B5hbnBnAbujnmLEWqis0xYtZYY9Uq5FLEJIF/MjWzJ94OCT7rx0cuWwnMLpVqmzIEQQ5xGKzvPlbWn6uA1P2xMB2cOI/wuoltHOs3f8wBc3TQue4hJs31abQUP3bPMtkrmUbFF1t0cavuLfuHCat+BOXd7STeSBhNIhCGUCgQ8KxeYBF1jxbyh2qbUZHNfC9LtqSshDaGmgs94dLgF9IWf4o9OUD4ElE9ekVRbR5q1bTu5y0PrtznNZ8VZUInc6Dff9dbIspT46SbSDN44+JTQ2GZlogl5cn/7nCtUlaJnq1lCITGgUn7Hl37iOJvg4t7j9SxyH/7kOUcNt5lgiVBpFnKUloVAFGlilV8cnIN8xkJ+m4oM3AffCpZaGpYHvZEbvGj+UC1j/hQ4wWQabnBGj6o9grlMmXsbuTMKU6sKskDhJCY8h750vVtaS3+JrJW0v978pm2KOPqJcbSW0PM1dk6/IqnE5wwctwH7JwKL8rdKxDrNliYnHU/kYUmGRtM9I6i5xhZhKKULJofB9+30txfiQfZGouAd3B76Dx+pCz6uysVwa9A4qP6wzOc3fWc8Pi7sZUr14HXtdCBlMOcEFA5idn522AOJPBW+GQAUd6s52dgh2II+9ziRlf0N4+nCs6fsizajr+mCsZ/ZMO4iNQShLebZnD6zBC/9IS9Qie5B6cwQmgMPIq0/l5tFrGvIcdMfqka/7RmcHRSW7Y+comfFRdFVmLR4KtG3iM4PsdlgJp7e3sNgS0jvJgW13HIK2MD1XmLfuzRautOaVRN5dpvb1/8tA+HCVBiS16WaQ1Dnz+Rw9xDC1OhVWr0BUC+s44POwE+TfUw42U5FcU6RSGtRG1MiGrW5KWonFPOP7+vZcBitkw/jN4X/km09J6slopq4z7exEwpqmcjYWFm0IB1zj5IOkbvX901TmUV0AnYUcn7iy8pQq1F6Yb7BedSHNcPhm+zSviwSVGk0TA0kG4a6HV7BaORE8Mfw3q3YvvGGIf8SoBLys34ZKxfHGITwrExn15muxIsZlw5TGHJ4npADuQ3nXp7YOVV60/hZXxBiez4nNQs0DrXeRbbnwLkxmUbksx+9OfY1Hz2apFTF2aPBYLIh8ijGTzP2w9YB6sp+CFSm3QULNnRAMifYWtykJKg+qW2dO45g4JVg+HjI3+ebYxjJ2XwXCgb1WiV6EzdptYWsiem0VgAnZSe4ELvDOKqKFZvG1Y+V26yU6Uo4Tbb+QYaFMm6AfgtGdmig6OzDPxfvXTnIHfDwwN7R+x1UgCdJ7o+1Jtnpey7fjBA1asr/xPwVoO185E+01VVXTRplCdvGZaC0qrw5/2wPrLBOkP5Ky3ZwG+1Eq2vTL67E+cOdIoNEP9Y9z6ZlpFWK7dJ2mGN7gtlNK+WycGkJVOrofI4q9gcVsrQrCkI0AK5JDE/dPA/uHFvx0awuXCSCdx3NWxlaPRfgUCCQWZdI3JkSjpufWk/Atcbdvb1T56HLEj/7OCp1FS7IopZwawsJf3K5nGaOCJrJZSoUoBzS8U0dPTKHcDQhANFig0YRFF/n0YhOP7r8w6WzVM15XLFn6LDQeuDnMYD4KjhVzMkFRzy8Q8dqZolpnSv8B0vaN0kbcQLvcdXLiyamGNtCw1NFlYjr/n6rp2UIzleHwuXTQlDWqt4TXr/a+/PL1u3Fyurap+CTpn9bDvvzkjnEauglTc6jVLDTdVlrjMLHPMkBsJIyAJc7vZy9me9MSPMxV4lWolEbpus0ObptN9ra3/PCm2Txi2NqXU6Da8fwEDTagEZOlTkrOrafPhKnlOGF1UhvZrO2ashXMcUr+CyIznBFBdkd4uSxJeTqh+0IJjEkq7IQV3bFQbdvZtEvdUVALOEFCQvgf5OLHFrOCu940NfIJWsKb/de0btajfKH0tY0B4cqiXt1c1awcaQD67vzw104VW57vY2jsjM1t2zNDNT1YIcqqE9BaiwBYe2jhr4bLWe532c7NYfVo6eBmK0C5z6qD6giOBEXcZRPPo3N26K9Un7Idg17BIZmlB9axe7Gke1hGdFD9U6St9VaSyBQpHPXJM7hbh/1z10oH4mvln6WnG/5ypx/5mHoSq5wb/0eEbLgDwQczjTUg3F8k2fv6cmUd47E4RhlH9HUQXLeIbM05ITy/MqHbJmQhD28dwcoBclRjg1Bs9wCCqQWJ066R+eCJ6RfShWQQCPuwyKEJhsD80ciDolfmtzZqNI8flLZ8Kp9yy8YySwy7enwrP6XWORXCs5dSmYsva1yIhfyTH34IaiZ6jJbfyrL2txVU+uEprZ6WXsKRKJOqIoJUwkuxiololYvR8ZU3KCOykZX2/wAoVPeq10GmZIE/B8+thAc5Q9/QKHSg92+A2mDjQQmRW5vv+iV+3HEZ5Au4rwkUhJM8XeSfl7Ok2YFvlDdh3jVg0uXgfYdY6Nd0kmwFOHF1IuxGV51mb0XY7rg0iZnS40dlC2rrBjmDXrnJmwavqrZHcO4H1yijF481KxAh1CKvwxsi3u9sBA0dNckCH/D8rX37fgJ9et/IyXBHSo+5ZK3MwjEstP2ZiPMoemLjk9UrarO+PAnCSvSeHlwzC3a9XYz/3XP1mpuYhEnAfvNoRryAbEMehy8Bs+2UAw2vtyAB22BIh8VBHo1DuXJBWTkaShrLgguwHK40GEC630kWtpVd7uXXJZUOM7P8Y7N+aI5gGTLRXaUDgJJdjj+rRoHV3yc+C48R2mqfxOq91Tjabzbx5LEyvkYQekRiwfD3Ws/mSg6XeXVvtAlMiTkjfDtLgxiMfBDVkL7g+TDLdEMv8jaXYBs5fAxHmAwwfU3xnXltuoiykamqCUzuwzqilq82P2mPPECr1jyWc8EkhOTTU3wIzs+5wyLy4QOdN9totmGy9Dk2s2c3ycs7HrE9eP5iqD9LhQKbjCZAVIaN8qtgwqiokIJ5EmGAcSXmm02tl6Fq4VpHG9K++MF+Bxn6gjQcWA4CVmzl/igBAkPKY8Pbu6n3jDEqq/bimkeHnuTvMiS5QedK6cdMw1s6JN03jzWZvoBsGQ1SzQwadYW6zBdYID7B4pHyAMcUo2IeOeGjyxGqK9rcgbkyMJ9pYV1OBVzv3cJd5g4Os0BMYcC17V1SVky1FUqRINfJj15bTOVXCZDFqmjdIaWSfAlSnLDl+001UNvkYSFv/bn1xpcwLNXKWZoOr6JDJ2ArV1ATutV6+F+3RbhGg/N8TyWd2bqCqIhI2ayON29NWEbpiOaODa9/YTPo1zeXIQYOnlqnDoePMWkY1jzvck0lw8v0c2Q1W38dJriuxkLXHtbT+peeUQCG6rxY0WOL945Bx87b4gv/7AT2uU6wSC0nJH+0r9fG0eOSM1NlCvMhLqefaQTbxRinr9bRa70dDuwcAkg5OAbozkVph2dXtusoF9Ha4EYkuXeRUCDYZdGY48ZsgSK1bBDu6lK0KJWGc6RD9QDkI6hHceuwJhyAuWDW2vKxFrtHhT002I3a98GhKsuf8xbdPtY55RSmZO2OHpvYopLuh8BIUtnNWiQeniK5ggpZmEVMdpsjXfmVfDMCYh6lGmzsRgAGjS0CpeIX2k1sG8KdHM/oI9ZeqN7y0P2Qev1T8MwTSFnjU17d1CN9ayjN9rxnhDHOsUa1EDPLgTOqURpa5ql/ANApQIPuvYgi3jhLE9R0FFgqRyxLzflSMHKFs6KIT1p/SHVM+KzNOHnMc/ocaHWREHOi12nwpmmFZx0haxOGQUKBFcVf92yy0bjLRHOQCcrSq/2umsUV/j0/cZLwPWa1sWnB6dJzrgUh9rsluwvAF3FmXwbS0qEOQ04l8nV59oIZWbhLoO7HhjgXUa+r352sa4t4af7m9SULaxWUx0xF1NCBt4kwU4VgAG6B94J/k+DRjMNpZ/QTpP+R2JMSuqkGZlFPfOmWkK3DzffuRCzqIfgySB5YrL0RfSQnRHiGsW5kMS1SjvzU5TzhSGkl3QXKQi+KVQf2ZMehj8FGj6tksia6uTTqM8t+FtwKlqpW1BBLcwVmqElVQovX08neNwdA8GuyFxwhnfKiVi12pmKxP6gdrJea502L6bVu2eKBFc84WUyGhtkBfYID24w9H/1RfE7NXKLx6gvFmpJyYnrgcDqZNN78PdqPk4BhfKp8W06A2j+vPZgePOywfHugP+HWnyQQCdWbbUXUQazBakTqvqdmQA2vBX1YacpYMc0sl5gtxq9DGG1iL2rYN6PmOYCryR0KhdscLVoF+e8v00tSVNJx4Frj+hXl5lWvo7DOWXl0LR6s0c3glKr9VSTrc5Ho64vGF0NYHZtN8VG0LsCwLF5JphA2k5mrc1oCB0WlNO0MfMGN14ZgS6pkapWBORA8jNIVW/mKRkyxT1qiwSxeEXnJ1w8ZwklL3kQrFOXQFcxuX6iRZfTlKOj1bRLYT9Qfs8+cU/61qwAgWUJ5OKsUDpoiHeJeyCqiXrR+yDpnC3RoCM0lfMU7DszxWddIOj6slfQIwQcjfn2HwwgqQLqi49x2DLsOz1djZTcYuwgsuMuOBb1gAV4vtnzoPmFJwcOobPA9wj1YEDkZM8MjXvTEUD144zlDOnyHNUHwL2oVci1GLR/oMxjng8Gd6+x5GMtBUX8OkMLajvAnQdphxgc5sU3kiK5TgjMEM8y9jlAbapywNO4SPQzKZlWGw3Pn9imIbtwczWHVL2EorLnxut5Vn/OYZPAfnv3BTpQm2Y4wB95s66SCXLzlI0H4Z1jJuQLNFIdq3eaVphLOSzC5Gy0XipE0o/6poVu+zqJoOLUaVMRaUCtu1OrzanuehW7fYqRSVWdF/5dFvIIBeKAml/gUm+98aF+4l+bJKiRCcrRkJ3Nbni0BYBJR14jxP++Inuf4+5vYBRwD3JHLfBtLAhu11a3OgpMa/60LfqbhoGUX7C0gxN4Q9VH+jYpyrUJNhzQ62yqvFv2tlhi03F2HGRDFWvtwK7VsOKwKYBtejD4yMFHxJUtYS0pQIjoR6b89dXkKTwJyMb/uyLvCbwTUPaPcZ4v1MBgPbTLe/qhrTXQ3TNsqwZXTpYWTkhkTVapgnpIVkWSZ9td7INFyU7VOUdPSshWnlH4QMQSNwJ2Xs2JCcluDQluhC5/k5rLO36Nu0Xvw3FnTLhn4evA+BPMgf0bPq2n6ncgua4fJyfJgrPN/9O2ptcf3d/TGIM4YvLb8561iS1KR4xXJdwCcjNM/7cOvKSPj8X4lP+qeTAdX936cWt98T9HdeqK5WWcdY0LQ89tQgj/Exy72DrkxH3ExKucq9zOIEBiwzisjMzImJwtlCn1InPcqWQ8bkMYzuaCt+iOwjVj0ncVMQUiH6GRU7071F43RcBsjdZjY1xYbPyzGfQVFZYRrVXr56yQzisq4E/A3GQz7nxeR1bimCcasExZ9ccymAd8LJxPOZgnryuzHWSe04t06xCwT2hR+ZlVzMaOWfDRHB1NVS9166jAzVvasQ7qAwLOJAZjV0fkgWcZQ8GbVoHVdhF2ZyW72tn/E/qoXdsz8ngzEdKtjmHqNSGasHz1I7jpIdtG6jUYp08go33JqQjuqi98ts1Cfq0nUYV9q/mWvY/BqCpbgAIna+faTzV0jjs4D8VSEmljKt8vjmwvW8cVOO22q3QpywIHQ83kEOkG6UjFtu6QcCg/B24tV6JLN4jvAnrvhI5b/Z9LrgQRAmeTfyoVHRxJhcM9WztvJy1dEPD4e0+ebiEWOH8UMAhOpkvATMB17LC7bGf4BU0LbvN0SqartBYmE771U+xSlVjIjuon9CCsIGXtXxfuPT1N5zINNK32NXlpu3t6eRHzT+1WZjuFdTtnDrFP64+XN3XgHcZkspaTY38mcXUATHRlofzN5I5gKLaVL0HCsBZXVUS+euy5IFKl0/p0QAOe6Kh5aQ/BDuaUCcOvbHO1X6yCnDnzJX1DEJ3sYk0jn5L+aHFr7sF/QGc5cpL1n55Rwhy7uctnhrXCVhKZGDOjRR7tKFeJW6J/x+KJE+BawmpJHVCEvV6JAz5kz4H89XCjs2CBxhhOgMKygks0isxo93vKAnZ4yq+gr/4TBwGWRzkPGjJ4/zNFiF3YGUFDuxcJW/7fHyC5edq9yxSNcFMXKNjcnfEIAQC/tUMfr8W8a3IIQmRFz9dxo40IuQSUvJxiS4CJtHBkWogHbi9nuxMzX5I+lyL39txTqcpa4eOEMoTtwpoYGoukQU08paWXeNpyh2TM298tQYzMLCMjulF+1HPH2qSOB+XV3xjdCXjlGOiBfq/E2eghowjXxBV8Ow1NR8SKgQNWfdzpW6sHiEp6GbzPBSJRX5klauWlYPqk4aZK4tvmQDHpjhTXwh+V7N1+jtTSKZe6a/hPvlOd+5evUMkOljXuCnbCyUpbDoHd8Gw89wt8o8D89o25FaMsOYvA1oquYDxhxr9HF09kKcjDqJqqvBPlkruOP2Jed04/hS/HR6oJyTerftukz1FNLgCmBbF4PDubEB5zBKfo0vih3uCkbJoiy4eM6M+tx7fSUcvMPc7MUotaWfRnHtWXDso1KwhPzcJ6YMAeVgL5JaBaT7MqbTL8xpIyeUbuJlv3VocX+C1eCWS0/Q0KTdgWOIj1pM1J1CTLhV/VLVcbednq9zeO08R+hAiduiQmk+Dr57jJGiULJxOpKLI25jp7kURkSi8huNDK9hySYuvqyTT5u03o/xw/Y89aaQpCLEQsIL7gHN6KGDmK0djVBAfN1cN4lsGRsgkajxaVn7c6YV8/mIBg632cxzVifMH/0v+dn5h3A0F4fUGwtB1VfWM9FwE5I/6dwneW8zQxhnpELkcHasCo8CgxKHauTd9WFewEvl3kQq+6JFIBO8gfmm0houedKmnkS+ohUJC6waIJ6a7s+Ad1qgFwr26AXxOA7Bximjni2IHFOOr+iAg5X6DWmqpVhd9JRdEEIU0BbJ1b0SV/EmC+yGWs0vcsaNfw10zxNiPeh6EJAPu2nl4hX+QrStxarABeEjDgphr2htEMPWKqFSTjcEYb1Yc6BNgRChQDnoFjJxa1zRqulBHQAgdOMgxiFqZZlcEq+MTxfEghpqcSF6MiudGJNCmvN07jO/E10EKhr+7+EKs7DfLWcvUvhAueuR8Bw2jcDOX/d+YgeddIpVbq0XzQSj6a/yodOla9X/p3j0kfPX3CnJ0HbYWIE/Yzz7OTU5pshWcGHdPtXMABpBvKUpddf5rQc7GVBp8UdiGmBVQRdOztziei8gLzZJXpRACQSN96jSq73chEgkXXb+lIXqlQCXc79lfx0zC+ADrwYNCkJ0Q7JoF2b7Ad2meOKyz7Jowt2Onm7pict0lFuiRzcRdFcuHOznVcjWKODrL83OXYMndthVwd+hwExng9BrDWjDSHuXEroaZX1dChYZGQoPys4t3R2ly9yzkRQCZ0TCq58c1SjgYdGxqoTWHgC7w0XJm/pJkK47PE6vCdwC43LxzD0XXIt9WwoMbEL5Wq5HBcrSi+/ZccRx+XTMuUvlNnt3R3l0RS0HI2D3eEUwrIpMw7UtJf5AyryWN+vdLxqb8pLhAQjursFkFz1SeXEsTtpRnVSQwJJybB5f52U4rCOnTUWJsPjWFIrd6vgIjtp7ZcNEF3DsTrbz5tQbMRMxPFKBNfNa+gGOtP9l9ohC8CXjEt1QmVF32b3plHJfm/MrM4AzTasZgo/rDd8x6hpMGc3qu9XR2fxwiVO3y3Ig3+mRN6bPZyexoJx70rA/AVPux8P9j9zDyTUqOBQRH7c5B2OH1mVl9KTeTPDTnbTRiGqO2ZAUUFkc4w1eiV9FXt2mHTqxeF8nxdc1dO9WXoOtO4/CaWbY8PQZfSp7CIYyqVbnbWAXMRl6BASKSpehy/81KAZ3/poMT3QxhGLrG1OuVoaBoo0b8sNKGrzyQaUrukKMqwknmKbEa3AGdke+KGlPLX40VRelziJ9H4Ov2yf//NDybBLeYjTSD5QWIn3MMRVr+UXYqlO+N8gW2BTHzOomKE7YCkHIO9A1Oxc095SOpo/4u99cRwYeP2D+3M1btHtDKxKYe7GSozLjahWtiqx5EYIV8/Kp+ebVFXP5YNyYnOjaF+c3R8jaNivbGJHT4K+cWqRTopKoo/hp5yCri0lmOgjbF8tq+TAQajPDyR/yrk21lKnVI7iUeGzwmlDWV+zCZeVG7elpnPxivbINFxgn1ld0QXn2zUHTeDHFSUNmuNQG6dKZm2gP/ZFqoW2T93D62/dwkJrlbT3Xby/4Py5kMn+n05vkYPRnlYdYApSijqaoj/rHIs5j2qMBFIFKl7eXlJlIroPLRohusXQJVzV+e/JMe0dxLMs9VEWvSkE4mMX5rWWTlabwGuC3p5u5FN2FjQcqQTRf4d+jl1XVWaHHKyPmx3ecASFGRL2GMt+KjBSucLEiWGaaSSBtouAiUoK1QQQMZ5x88kltHPqjSnOUK7W8vbdZThj7wtLp/QSEsWiX1wdSr2PCsJ/J6/gd9fwdIz4iZKe68YmmCq6FNcb5tAsWIxQXifnz0yfiAInmtsi3GYOhDhhj9cWHsvWj0kka3IyPMiLsBXDloJYKmBeAkEzNP6UiAdZhWaL5B4I6tWKFFDvJyTpUMSTW/7ZWPWVP7RqDwQklVAVzchAwoK56TmceV1SaAxgg/dOCOgU7iWrv0m3J0J7Oq5ulDclbbWEqO4LWKH4DRHqeqpVi7+FiuYtqXFshVvsuJgBGhJxxpZOoGjDDNvaj5vM1B42nWXgPN5+baWXz1yFkNfMEZ34HJMfmMegvM519DaJ7rzupqyqxp5BMyKHYYHy0t7a3AqgFo8eh1iVYy684wQuNYKUm50Ho6nEfwe8U3jUKB0rnny+rD01ONfnh9CvH29fTRst+n35gjESNwrrtCa9l51gnauUBuVqbVfRMpylO9pnNygFHNWYMwYq4uBEo7DrvVUeTBj46jvsprcLASGDyu4CVB7FbguxIGGoEfY/trMjz4+TCuxcBvGNja0ofhTiVtd5qfNkW5VXOwboqTb+YwnVO7LIotU05QPQttK0vCROyR9/CEybivkpQ1ZOVbMechbHAe6gbQh8/YXV5US8Mw4hz8Df/svQ9QGHGyuKnjGFXjHtFBXOZk14hhN5Pn4+1FDKoTNr4DQvsPf2q9cZ9SrSnG7onlfF1/IKefXn7CPNNcO913yvdcCYj5lQEOU+CrF/sL/1ufR8xDdj8RaLXujl8R6cpkXkY+JKBaZe6UeKohakAP+uQ042ohaNDaEHGmol9wK/hDAgt6Q47HTrwxZNmcpxkc/ru2W12HGJusOJ3ijKNPwlzajV9NV5TvBmRYy5C1ahd0XNw/Jhz13N2yONoSMg0v/cKYA5eoGQMebFxRvNnIiEihb0xcO/BMfdrglzXsvxDep2bgl68rGfYryDuK/IsvqNw0j/TNkdxe+o2Qm1BLDjanr45KOqUWNw7QOPE3vCp3+iS043haduqTl49e+4aUnjoEjzBYfp9X1Ue6po5iOvDMok2zLP/mZVbbapR9C80bIQWoHFZ1OzUpuFcQfBPCfFmuQaALBBu/aOuiTKMS7/B4E0WSFaqlY9lgYAWYIhR/gOHYdSSDwvcz43Ewucv0KTR4/WKcSUbY+DdO0IUm1r4SZK/DHxVlyeR6y9xS4iHZ4g+TiamV5y1SEVPi9FQrXiqwoIsizI/Eqchw2eun1d69Jn4AR3J7ddUhocQh85ybDpzxOEGXoE4kRgFC4uWgSOhp2aOONIbdX8mT9m/dGk+euwX3XPgoyhmNH/kb65+DsuneulDEfXpQaUoo/NyC0Nnw8dHJ0M7oaGqE7StrgUdm8ejMHoFrBNpdNWnVSaOL4Z3ON+Wzzwi0bYIDiZ75DgroAiNS2wz/ul9z+QoKCONqY/7WMRfy73NLzbZeHPWHAnWb2tXsMk5t250SIujGN/6hJHZVf1OnzeYpmIZz7IG3+SS3rJDLz+jvX2oRU24WDkITyzDCk/4/4swEpOYXVO51AhIRKvZukTfBDzgM8TKnwKUvC2JI9v9vNPGi//lA4G0AUk7FAvUdoSv6KHRl6FvEQ6ShZan5Fymdo9mJ8wy8nddiUiFyWzMTRfXRcCS09azcJ8FN5ilTX5pWpg82ZVKoRbpJ7P5hybrJDGbrX8Lb1gi3f43J8NOMPolw+wUi7boN+Vlm0FbdHTtktDRpWBgO5WF81esmBQ3ZiC4oJQdr9YBAPCLsKd8CyHslcJ8pert4An1WUX0jbfowiwDOc74jhfOyzK7MH+N6tDcDW3ZrL/ZO5iNSi3QxszqlujQ3LzTP+sa+Z303jo1VBSqr76e3z85dGLWod7esP6xVGtOJ26x2lVkOhP6K75Ded/vabPxzYkQK0KOeM3KFrc4CPrPZDMLxRcMrYKGMdeQ0WrOF+ReZ+mY9rYb0BpzW6PBWNVjx2g/V5vZEy4lwiMwttgEOIUYfO6K008c4LTI/NBOsXp+PQR0v7V7je5DkRLKpAIkj9sNpcY9YQv3CObIdsjw4PqygAv8wz5akVYsJVQdwxasA2KkbMJdtcgaFfuciPisFUip/CzgAS+cxwA7zxzF5QqvPJTPB9hoeq44Kbfibl+SKzIOO6gv/ITqLqgpR4/NGAwS567znWfDexGtXEHX67xwlsG8muSwZTC4tnn3+6BU1qw+x1AbbPi29DsVKxq65V3Jql0Si7URc1nkUwEU0n+Xq7oMnNYlcvIWiQSwWJk66cYqwi95f/1qVr87khwuQQrXn9tLnhKlDHlor0LsCpY1+O29jqfM0HHPwNUD9IBG8NcqJpCtR+LjS0473SjyfxT+ezQul02KA1lR7qskpvQ2jcxLw96JadtcHZBZk8yCC5EQIexF3F3ui2zVetHmHPvAMws0eCFAxjDkldRUXJgJf2hY6f2OhDHi9kl5hI/puCTN6JOjUoqTanVMbFYnqvPatt4hX2v+ZVNh0pqqXHU+KUS2xvyhLqbkBUVL0xi5eiCvdDbYkMp7Auhnojm6SIffWnUkft+uFC1k9Qf8Jb5wumykTpPLd95WttFD1oaL5C8b7E8yuW6h4a16yxcEnDVEGRXGAE80bJsHpuRbrYBHXr8y2DGjJ4jy9mvm1VFcj7kx3Yr4ksxwB5oeickJIIM/15EuzfrCkZdh1MWlI9kzUOs/TjPm8z2aqy5R7zCxJs7qwbXXOxn2VGj89HYLXmOpzlevNIbYtBeVrPD4ltO2NtIcl0zdxk2v2MgPYyB6rL2VtG6zHClcLeQbaXYWqYs4vX0X/eHHGt5ZLOV8GuodRBMIPVDAqFInNC9jZxq2LfODDnW+4myUtO+Zqx6j6WpbmgrkixG5Cf679mMPk1xmhKWj9/0OXzYIPE+zjem/9MP2m2v8MeO8hjcYgopL9gSx2Ssah1JVlALgr/hXT+LsA/rem1bANRZ7LVGQGlXpiXLJgEGXaheIA/C4t58tK27DHT8zz4hnXj1GonjZz7CmarRQCt79j2f8jQIwjDYCH192XNDQCc7Re7wXrQvQwZhXvSdns05cXffvB0t6DY94nbT/knFkliXGzZ9QllKDQ/lfisKlQRWYaKpyRE8Umttvtna/5RzmiMqbubq+YY1U0O5/7Lddk39yxDFuH4hYnTCj+59t5q+SE+j6hRPLjV/ArQq98J65S3jJldFUy4F71JJLRLm+PfOobXtwaDuafggIdZ5eVqu7pIT6zkU+rzZsigJFlIFh/CcP78hwunAjA6gcFGZ+uGxdvfU4E0kwZp19VGz7c6mvnBUoz5xtwGlebPmq0PfY+i0jDdNSz0m8TV8oZ1wM77N7T75FrUsK5lx9AbaBkcaexDwR/NgWDjZc2tRXyj2tEqkVu4RNfsukIBvj+Y3hpPksolaFpVUdAPAygro/6vO9AfO4uoKoNtvD5K5Gn4Zd3kpWVxwN3JiZtwspmxsibsQ6pX/A3CIWpfYoEI9BujDlKp/cIzdVWvGqmd4VLilKjYjEMEP0mp5lQYW+ijmNF9RcmWLuUb1lPMctDCPj8oyHkKzQXpnaXzjO50z+8jsGWIlOb+mk6nEIHSXoRM8MmsI1k/xe8grHgJUvsajSsaFvtve7AtC+UbZOmkrZW/qlFYM7VmLoob0iRvD2V8t4M8twNxXI74DuJdGI3e7aWCWUcB3BjfGMWqqZPsP3xmbjMdNLQSbzcAdAv/x53UvJcqyOpK177kFxpLFN0LosahZq97QWPzTcUSneEaDerdFOWNHVZT1A8L5dCq8j3IpRDjz9p5ZM6Ggaag8g2I8myaybSo49urTkj82YmYeVak9u12yfH1X3tzGA1/PgQEMX02bRySrjbb+3bLfbnFljEIz1+FaD1F0GfNC3Jf/ispXdXJ8cRjuL30YxQI/wRi4ioG8L/nyFNJ2JSVrl+xqEAaJM6KCk7Sf5jHKK0oyK9Ez31qj58Gduxm4rZe5h6voHgdNP2Zx5+neLOpvZdb91sDRtXpWxeF3mtosRPDb5MeMf5+ERd9qRkf0mrU3KBm8q3OSX0EVb6RneMfRMfjLaJNOquhn49+Ttza/bMNYYuq3suUxkO4eyNp+SsgVoPJbhtDns1e8FMXOjwnDtrzOVp9UuPxHH6bCXmhb2KsUJqV9uS7QraNkcMEKAaR8JCm/vM5D41fESm+Q1Jhz9GfZbnDeSoOpvz+bnN96b5sL6+7NiEXBTdArEfDb2qvLlT/f5ACxAU9ZSZJk/VIkFGUxL4HV9QbPiULZGdyAELKkVKjo7K4IE7l7mO4Fqo781JYZhWgvNRPgtoaaJmhnaZQLmTmESGZverGKDy0nvIxHZYy9M+/FPuiOjKrylugKzK+B2M69HAcuMjw5j9iD2iTAMNKp2rd7oVRWlRhiFAts+wrgtRGB/yRncrUWvgL+gnYDcuQPeJtUVLv/ANehQRNlvo59F80hXngWUYLS7ERrPYwBoEZbW34YmxvMI6vR82M74Zna5YpDS8EGlVzyLjnCrBUu9Ntv3pvpUQurv/FtAjNWRa1M+U4KQkgzk9xmV8Z3FvW5uMHZL37VLV0nj+035MYJxwUMup6cLOwE7fUt6S0fs081BD/TefpugTlSX8+Oi5vqtnQABqcQ3dD4Vhkslykz9P8VBCM0LwpzLZf66DkNe+FmgKgN/Bl0FpuaFHIpDoet7VBRn0DPp75T+PNokynyNqPRpD5++IC95g83u8lfm+8Ses+cST8Nr1ROhPvH3nJgtuGhiRWbEouFgmQvvrqU6cyEs0eMTmuyzUTRvWvUcGIref+6buqAl1QHvmaVeJuCcGxvoz8Z6ieiY+gpKFuUGMOxi5jheiOFhnIcHhhYDHQuH+JQ9vwcYaYHk4EfRdXngnkkdntz5NFoHoTipHBuB7dKzK3PRKeaCyvmvI3qpfO85mqNlIaa531Qv7S6kXB+tpDu+UfCVc59d4zP36ou9m9W5ngN36S2xr307GBN/ST1MC3aFdbuocqzTAJp+DhQEVFCpTdTIHMWhNsXaTG8QZXNZorZe3SlZQxsfwD9WycMCThV8iXdbuHvlRPV5elLBDswmAdIU9Oq0IOPuM0r5IlraFu66AQ5v7P070E10Nr23wCZMZBz0s6y9fuCuzTrKZxRVquEYYoyjVwJSU2fTY8QrhzAu64dobtk3hj50GaYNMwGKxQ7F6BmE3eaIJkbc2cyr79Bl/mBV4gihP10A79T7lvE43iTH7X+5xTZ5NUYnekBUsSZ1pwNkVHAmwRbew4w43HH66yTb4XIEbRKxqVKr82kBIWJx4RfP88oyNXhZWiX/6SFK71f39/BnLJCpOy/fWlqk6qSvYBSr9kc7hHTYhkulF24bfcJXdjw9yNC2eSjD+/2X9WQfInCE53dkIPv8gLjlqb7VHqxfB05Nlsn916Vs7zLPILP4VhEQsUzhdHl1fvF2jbAfMqJ7I3fhykvZ1Pjf1dWWjrSDQDsA1XoFcqZl4NAp/9MhdB2Mjf1YJkaeSvMKDH/pweXDly1H2tR/tUn4ezrqSFbHrOpfS99EPIJJalJOAe+FnhBSN2fL1Q5H2AW7QWkyXfC1/Y0HCwkRGMb0PXzW5mvuFzW6tzk3vfOWSAjzWmFfsna0JDjt1CF3wGPT3mBaIcxkvU7FQ4D0ggvlql8paNW+wPZVowitBf7ykcDWM+PH5WpzXscsTXi89gfS/DoEFvUJUXEuisKhCDpMD/9We17Px708ha3CFw3VpffQyFTmbTBTNLr137iIaqeiBWSiNcjhbCgOJq6cdrXNc3lHCWHGTg5CyhHpXwzbGpEwNw5siSIXaXTaz3HHL2XkxNazPdwYwY9zzrkM4XCucFN6AyvmuHKc1qZWnzGG+o2IwghLgcahquO7H6ZnU1BYoQGlRYR7GtYpqJIlGSeR0pt3lL8BPEdS5MlGGZtXcGTKs6aH96Ha8uN0SuNQ0YFhvn2ipaKiBaFyYZIEFtF3F8W3ukw41deLULrsn87Un4DXAe8DCXbHJ8NoYaCqE5R973deuULfXY06g5KxaUXjQfd+Gty0QX2C9OdAqeUbxhLZgN5svpgEMol3r0t7kOImUKsLf70SWTyIt2R1W843Ii2aRs+KafpMrC3YQ2O5B3Jun74wqu/ZaVMSme59zBB5kI+qI/CPvlx5yYE1tdSi+QCU49cSDgqbtYT9k4n6+oGzsx/NDFcfzYiJHdB/VAJ63Jeb9dCKUrZtfS2GfErlK6x+WWft8aYqtjsYDtNiu4e6LLZ55GGKwrYTvy+5H9grQPCHCTIBMuRrEraKj6CBMQ6CsTYg1qdqRPUv7aKfmvge84HkIfUFgJwkFRwRThUytsX6Fsb1fN+2mimAYTmeBA1zDNBd0tiyt3YhEl5zAsXAux/GnGWesj05uU6Jf+jlFcpnDXyFEHGRmpo7LxlfLitD6GkXZIdWLdV3INbNQNwmPQSs8rHfIjkR4np6BjtC3yQ2lnti8B5DCmYEj6qKfjDwQkziTGcJJNRuACWpmyZB5Dnfr/BqiV+Yeb9LRTP+2T943yJAmhm6Q4qbeIbWtqpp0SondxHexBFujT7ORy69egH1pviODsXftakz1L71fnI18J1yeVgAUtoqgj7rSXV6DDrcjsOZcfBZF8Kg3uvqbamc/EODPCctsLsOybXpp1Bcdetcg7pnH6xxWjpZPmhCaTeNxSkK3uRuPp78QSUla8n/QX1S03+UonkST5TQ/Z5XJALek6ishEKD8LRgOZGsppjn+xzKp2RNbghD4Ifhk+8hKsWtYT+ff5hPpf4hnyhqGmPf/k2dD5T53CeKYq9mzdSXAnLZX8sws7o2aqoPcV6899S+I0BEATTNf27qsYvz7VupFvV+GpdzBBHTl6nubFkf1nIniON5mgu0ReX4Ar2Nl0to6X8dBcjRP13sK0HiG17Sa7hFQSsX3arRByYyJdjMz7yRxvjo9GzNbtwmffBQoKEQWwBH4J8vo7G1LSlHwks9nwx5/usaNC0v7wZ4QhJMm5YcxfWTmULSrznBaCOZqW01AyjP5ouC4riLUO7IEsYcs7RnP3I6+/UwKs2IE6pbz7/9fd1BZSgz/AlQHzaiuEC7j5iN0eqOiag9/8l9WL7+PXXt0SpmJmrSELBIe4nVB/Fl21uK72CemnnXh85BMrXFbA3h19DsIln1je0Ds9LfMTDeo2v5j56qIuk/dMioG2/YCw0eurTVpFDyAdUMoWSf2RAfKxddlnoqP/eif0JUdB3750+fFwMuuUlu9Tvd3Np9pAGIF3xsPVdIKUg/q45UY09+o4iiEbg0/EJ2yV4di5YPazEUHrg8sQ/rS9dmcRI68aYlwFLmiTsjVxWBk3w9upEvAzSaeivlK3jfxi8yE43vgaA1QruZpyYRHc6svIc5eX7yoCa/RLIQC8maFjCFbSHZ4wD+7rzFiLoHt4RK062GJS6mBATSt7ST0VDm3FenYfEjYG5xc7j7BQ/9Q68io3JYkwq4KAQAZmXuBn89Y7v3Tp9kkwCHqUI9V+dfOfl3rf2zQr+GPiq5oel+L4dtIV9gdIQOaiiU3Mu5EVW11uHNuw6ZpiD1yi4QF+bMFLwDYX6aPIJLxPgf2/RzaJXW8e0Xh+UXbAOldXEGynjwFJCV0siolEsdCEo3r+t80FeAzbL3Ofz8gDkGGZXnaHVET32cYQn7bjeZkCYaf2vsbCjOd3HcwKoy+iDOOZfGVR0nQSpfDXYF5cGQqJHVBc355kmT3HmIHajLTDm7iKvnK4xwpolWTl5j2DXN3SjWo3XW2SQ/Ae631iTohrAOq/O66q8cjY+VfXHWOC7zO0WKqP1xU6EQd/MvVqCWalAHfYNpV7994ojo+axp9lWdLiD9ij2tX1BDm73ZSv4+iXkAQEKXG4Qygzc/nTeeT74L3ZPWaW62u37EIAlvqd9CLKHbW624swcaYWd3eRy1LqsPIRLwsT1T/5cHKBLmXaS/Fn2YEjAMjala1GQKJtUKwCvJDQKg3o/fR/Ib1vhck7qyGj05r6c48QdPWp6JkOdLI0hECwkrO9pG+roRMkqzN672UT/ZCeAd3Xz60k4WAQ2eWalsL9dVfVqMUcKEtAFAR1eiGuH7d9a/GTx68BQxw9dsFR/2j88iNVchB/yxl+ss+9eC5Tzh1RlcqSwnlapMUXB9gIWJMYBSz9XD+hx4LtflaRqLYZU+d3WUaEEM8IfZ3m0RM41Gxl6MXKUwo3YoLtu5ZSHcWZJs4WVu1IEA1xxORyqeAd8KMorIwOmwBzY4YpWOLGLdheneuikKzkJdBIiAtDTfxSM44l6hv+JsZVFODldn1htPYAZ9WJ6BFqIoSMNJ0CUbnO8zic2shOuTrvqjQu9EjNevwckGfo1NwVKMpkpBvGTgCtFL0p1gYu2rDa6rQ5JC1yI8bfpgGLZxjR+A0Nw8zK+ZyjYOIRH6VECWdNCH6sjch2LOUASTCWDbmQikJgstiu0530HZ0WQT9jrUFEaHijcS7tHbquv+K3d3r+LaUujav7eii4EIupUUNkUsHXy70TV59b/T+xzzRaZfLlAXZyuHY560bD5SgbjfjLVzkJ8A0YUd5TLmQ00RFKRyKMZp0mhojvbXwKwaNeyiQ6mEcX0tSku/hJhFSV6PiGAE02VAXlmTqwbeSicbRjsNq6G/cRp2quMtD8D9xK0oYJoZpGpS4G9uzl3Y18NAmE3LzIy98KfPJQ76oIYCNIc7ciO/AjdXbW8vCx5EbCHs3+8VRqzhDY2ymKmTB4GJ1D60FT6vLFdq2hieyT7ssyXxbrY0uV3WlSbeP+bwDyHYiarpGN+VZm10OEppZCon/1PSW7k3kLyR/1nyX4MQCThZ/2xCTzKSqcBnC/d2ck2vAVtvnEnrbeRtZmkccogb+b8x3ZxjfuyNoU0qFe6Y/1O6bBme3p80sq2QgA4zD1bdzqahoPUzFBnyINTAQYPxDXirvOrQgC+BfSrEvsbR3zmr9rBYkY6/lPUjeOo2/c+oz3RdCxr/1PJvCeLwYDCu8w0bqCsu0tzhSx5rFf1GqYMCvDb3gDrxXA8j86Mtcn3C8Wgc7zdUxP8Y7nN/bGhmxhI5Fw0TFlyzDA0SKKIJuw98ngvpTQEsFuO3T0+8io6F1oq+gMgz0wEoaJU6LFw5lhKesPewql1vA1l0ryBMWKSVVLQ5LOo0hV2VVfWLAIYB7uQqhERptapSd+NqXH6OqcDqKr0Yilx6aC374mC86ORZ2ZGrWjZow3YjNAejJC12ZqXWY0tzKji8QNMI2tKIuDQ6m780r7+jTbONwtjLk0Ma4NGfGFlHXsaQfuYUu2b/Z8+o5WPAGeUhNTXL8gCvtjqhDymrGtPP8veuTl/6qi0MsI5u9nIRFGSVwxuDaN4uOJCOUKmaOfCwq8y+dPUhtUz18O/uEObM9Om8oriTFAmA6oAhMKISgEU2CheQ0QdQ3j5nMmAQ8Q5UoYtseWCg5sMXNsJRCOSvbnCdd6I1Nh2dZ4XqcEv7jLsvbTOWBgywBqPPraonuRH/Mb8NWAZBKBBrGzT0fh4lB/4xUG8WfSeOiGq/q0m+CV8TO5jmLKhg5tm7PBUhy9xJxmWUvPrT5B//RzJpaf0RLdk9rj9i5K4Rod2PYAr5LMwGk9ztAcaN9RL/V6o+OLX5Bp/PFSoDpBczTAOcTI1qswtoa9DogfPwGXhkz2XvgQy0mUpxuntZPSxyciD4Pk/mhknUuLGvkuXv0VntTjIeySIItJ0bNnRf/4qDVbJFUnhicZ6bhtQ1lV/CHVyk76RjtS/3QW6s8dDaEh5f0uWzlpqG+TPOlmIBTo4fZYWqPErmmjqmQxroBcmmImaV5w1XJQeYACHfTrAGIT2GV+OgDXpkQtw7RUXMyb47P+R2STNYpkUip/fQDj1sm/m4mhu3BSi3sh3sc3IVLpJGPF6qf5bpCtYVFUwFD8oRYPYrQHpv+oqw/OhhtkDbVI9nbs5dIYBe4bpL37+i/r9oMGtNVmM1b4sVjX5JpTErARLLmZhIttxTUGx99QisUeRwkgZWImhNzxyWFi7qHvoRygQ90aCF4wypE3MJA39FiNwChVmF1SmvSWLr3rk9mMlX+UL4MBGM7wb8ZKhY/6J9E0Tv3gATh030Vtlqm6q+gWJocJwRBAb/6kVXxyxw1iLwfAUU8k8n6cqwQi69fzk2VQzgPgCaabGAsbxMHtosj6XCJ3bIxLFlhQdfxAMnbnLcFtQ56MIY1S5tFvK6hMhsx8gjgyXS6Oj7gWmg6P/jHt3TIjtwW72YvZXAJdNsQZrWghYGJsVC0M5Jw14YEfeX9X7a+o3UyVHM/Qn7nLIJxsgaeBMRY+SCctz5e7Lbl2lxxX/h+co2om87INX9JK56hIDLM7dsZVbfpHuEaobsTMNRG0KY3L1T7xx9vz+z/9BmBkPYEPKSfJAhWkVOBu7PhmdH/LCSE02vsWH7g8QO5CPITjItKCmqZlRNsA52OS0afk/rLENK/MywTB74aDsa3ek3voFt9Ojd+Zw3dVs+CBv56nEmrNmSdMIRyc21Qky5mOYoIv6MV6C04ELa+CHv1fFEREwY9vXColQNN7bJSRSSG6e5UM2eT0L7LBjOW4oYLhejPOCtv2hX/JD+sXZ3wMx5DEv1XGitGDEE+ieAKnKDsJxrQ4PfHtInYQNmG8vk545HSWv3cAPnuVku2j3f1viZW/cxaNjfJO8u8P5p6kQZc0lKeCSAPOHpTnLmr4jEo/1gpkqHYKy+xwMTI010IJlJ2wbe1oFnIdz1oAf/WDs0pVf7teHq9L3I9bNr50PVNrk8gSC55KpiAP1nStgNwxrU/cJtzdoatJZ0rVYg6Z859s0Gm8FaPfnc34VAXVGpggTYrZLUg8h3eU7vEK1el5M6mm35CkEYSP77vCJSyKcuDwnFEm3hkh/FCB/vsaCZf4+f5QYg7t6AwFWwy+7hSBFJkLSaX6mE4y/79UvyhGlxi8Lwavg6jeY/0HmHSY3jcW4//I6X8wc31aGd6nPIh1YzCcdUED7f4Heq+I+kOjXNjvPm2JDVSZL+ARoHMle9bjpOc/w5TdMhuMe9HNkYl7ggEXXZ1wfrdNQ5tvErYY33iEQMGCgWvZb/rlD4bxPBh3KnNMsMj8FiEf7N3laaGErksGwXc4aRNZrhSaRDiEU0d9rQbnJXx6AV0eAcdsaEOamR+f1FePi67iD70SxUQl5wLbyaiARUjwoEfAmFm6O53RC5FgfltKscG/jI9FD1xx8mISCUxFT4NXw7+et1G+olzYmrlGq/V/QRkjgB/3hFuKROxjQRF9jMdRLr00BMal6jfOj85o9cS+yTD/bNaBD1UeAhMSUUM3vtx3sQW72FnPwJ0RqCG8zMGNDYxWoNwIgehXArKzCJYJv+X5mcCzWC4ughChI7k+Pb41mjIlNPYnFqQQj7/kNn7ZgJpmCFOqM09xqlwmlJ90Ne3bdPC/DpR7b75NCuQ3viDItE/OPxrbaHNCeM3X8CRvozhv72XqRY2oAOrjcjnoVuzP6EtbIo8zDbjQIzXnfHkFDKb98PfXhoPu0w033+QgN174sGG2+7jybeXAsj2PB6fMd8JtuYGWoZTCTEG/HFfMKV8tNbmBcBFEvHXuDYXIDI/WJtwLbisMIx2IsMhN1Eeh1OqHBiel0zqh7bSUPxpQGLjdKL5cXXAkJld4ja6z/GtuPQH+OJg0iVWglf1JGWtQjMxyW7tDY71YhqQIAhRI5Sb8rkzDpqf1/o0VUq+LR9X9u9GhehZETw5C2YBY7d7h09/mdYJTgRxUSMDLGI7KrDqes/bMTRG6BYRoZ0pCrENsNvdZqyixp8aM1fYS4wBGVb8NQtNjGYJQN3OPQKG2LlNVxexZ2UmKFBq3OOHtCZvADfvcm6Rwc/xOv+dnV8gdslB7pMrXg75axhzFkrO+6RraTH+ikrPKBs114//BFPk8wqnumV49zkBLbJBHKrXZELXUW9RdC9r1JMkNWru0B5PrAIWW6bJM0MhHJjGzidnvO4LxNVKEUiEPzxyBkXTftUK7Nu6soM5lFB5gw3qTmt/uA+bf62YqE+QvesWbbuDbEqxhR7P+VAgIs1T0RaLUFVqEln1BNqHsIK7WMr0+03HjD7nWJI7crTqCMbVsOgKztHjcubHyDGDl/NR3RA/64BIDxA+wEiuHl4kPj7ryWQKg7IP6u5t2LdBMl5ltc4EoWHmImvaqX/qKxIL1ca1/peznW0YFXyuAQ5oiBDJIQj3jOj2SP8K2E2nrDT6P9kWfH1RJTbN2SjiY3g0ib2yWVGhTdaez7r+LymgbH0Hs/2KvlhXaVqcDc7WWoeLDUlBqAZCH0/zDlPvycdfxHyC3oMV0clPiyMlMfJJnHm7nEpKnriQiOOnDV1qNmxvbC6RV3V730y7AYQsQ5xOr8KTf/+IWrLBo9wCIyK9OgUlO6XltN8gLHov6mRRkaGmaQqRNXy27IcGo2GybhnFpI7ymFQRO8mlruWvJe3D9cLBmWWTwFD+LbIzvz3XCQrVXREfdKQxmcQVOU8Xw8o/4SUoVj80Nhv3NHmDpcHGtvvRhqjb2K2/5hGP/e7Zey/jtuRnZE8UiqhUDA7RXGR6EKu0rHoLMDyWOCD0Bcvw6EwC/1FxRRItuWJDU6PQ5hQo1RdIdM/Z/86yO0BqGc8qMjsRJketa2RXjKeZkbnvm/4wc/yyT75dIu3+d0SfJcDgAAcZwsKAxim/E9w8zy6UM+H8RFxzOk2GoQ2GunOOzUVVlZ9yE1AL8B0xBdJC1wDaLW/PWo0kiqW/AWRD5qZWrBgrKAegq36GJllFFozOafdnSavlTiYBxoDhnwKh2HfTrvR3SiehF4Mi9gGU9brdFn0t97LL3hui1aeCxKY02wCFxJ/tfdQa/1+bKrcTA8QY+wNgMQHTLhdVBqdSrjj0mlOKkKeZjE+Ltw1jcFqGqGzzU9AbGsqKxFk0WmEYoi5w08qfw0UUJmoY14emku4sqB2TJMRxLA5cSBbipToNxANezmHjxV1FK1ixZdh0PpDOgcRo1/6itZNY+QvGelh9NLi4uAQwQGJSm9F7fijKI3b81tit7l/4K83QTiWwzPp+GE1YKDX1342fR26jfUsMEf6OpGVIq+Ajc946Uf88O600/f9GQR6I8t2muK4hNbOmqt9A3ckBPsqnuuLX6wTrBrsgJnXnlxwMAK2bkUbOVNvA7AVptt3codzKOUUMRsfT+dRUa3xQYk4+4JcQ8W+3Fu4/gQji8c2gUWd4F9GanlqA7CUuRJC4rECmonIvUC2FRHH1ixAikfEz8TnMLvAmz4i2V89SFueqkl5CKm6PW3JYqh/8/cOyfUmRPA1zjAGHD2Vc6S3TqyZsN64s1OrRlTEOB5kuTNbNGJao+CuUCKffwSqQxSTtu5xwHhbrtsxGC715bGTgLdBLYxT4h3jpwtqYGCbX2LHYZe/tAN92cHm6sYugyU0NfBCMshYhocAcFAO+oZ8Xavjd+Jg57BnKjoERFcyVgvlUlF+/6VxF1oXd1FsV5U/OBCN2MxguqXKazYvlK6Mm/le6BZi/ZiM5cj/r5YI+9oxAfgkBdiq2uAOdNGhu1Irj2/Q/rlRjmaMcX0aYcbEHu4k6HWmi4LSFl79EN3dr+oS+FzVhQGlT6f/clSYgK11l/qbUFux/PZiZQtHtrUb62Eq7vCfLUeRXEwqMuVYxYhRVzN0gdi0rFYAjf9yJjJAF4fd/bWx8ETf35t97ftnbPbTVAhE28QWZNqAS9baDCIZ+jxWzdOCpkrYdDlW6arGsOwYwbN6c/+0j7ojmfIbtMiFvQLTGZmF6i+7fKm1kZz8HARpFRGi04VSKaTFu440rqDeXfbBdVgU7k8cq+SMlQMM2z3+pnFh2/fiDPmPf9xDZ/8DC5nO0qyvQYZS2b5mpfge6Bt8Vmm9hU69U8XJc715Og2WW081v9Jovnw2R/9MEAGJX40/+GmEUiDRSZbN4KA+2WVZyiMmxmPzkyLO2CgoVkBNY1oiT8xQKbawitG+b69D8TbXY8UrwFfptbggl7RgwJRgJq78zGBFu5PeQOpLHQZz1hGm3w27h9aAnmt8fMWIfYqJEtxT9tTwliCO2Nj6SP2ikhl9/DBVXmdg9CWU65iCe7VEmeQeAVkJKbxtUywqtn1XYdTpVx2Gh3uAf4B28QUM5H+HKG3rAx6HNu6YwAAbyxD83iNyTOoaQ1EOp6hnfmZeSwBTMZzkcgiHeLIPzI7H5RR9996KLtf58tkIv1U79PLL+99S3OwiGuw9NcBkTneE8BfkISt96A7PERXcjQYLcquvBzVbAJChbXAlRQsRPI0ho8bG7DBOICR2/9Wwk1HLZ1QOACdZV24EBdSPJcYrfMmhHuQV26GzdddjqqOtFKgXLz1eUixWYx2AuunVgDdHAskN/hiBPLkLFHRYM2IoK3T6lXnsX8z2D/wRzXhfhFygUqwh+b0L7Q9d9P/efZP44jcCB031Nc4DmT3BcrbbP1d7CPfW9cerSdR18MWPn8iNjstAuiCzRzouw3Qcuy7I/78A+WZZo92kYZq0T18A7t0ZJIUXNtKUtLmfupyZ3q7hVpO8w77kisIOmQhh6Bba5QihJCmKpFYlWL+QAdGwkOuK/Qjb4ITp3Haj1u2PqCHbG7+Hckgw5vxLdJzDLIf9rGRhhqCrdXsTSP2ElU6hYiVKJ1qV1XsoDMmROil6VnMRATMppmsthaGOWxyjNi8Uzw41QDaO1+Rg3oAvWFxzbSaNCk2XE1IcrbX6Zlg1OLJDrg7pOlTDNH+DCmWm/Gn1SDnivXHxMaKd/3j1UIDa05st1IVQJq9zyyKoc9JWyN8CrTb9QKVeBCnqaBNx+1Ikl9AD6KbCMeJ84CUkMZsyheYihQab7x/1FbJbEGFxXoRF15JxGstGBJI3DXcwaniDbXXGJOSQGaQtSjfXFWQewxoz9Tq/lvp0zpUcThq4/XIxK40NoIq7GF6HsrtcyGmS8CVLx+jnwglW/OBWBE2cm1StpBNXt23sMqpksljCQXA2kTv1aX6T6zdcWuWTIu3dnxiEfn8Jx33nb5KtY69g0A1xD/6aij4bmSIFgUfb2r3dYc8w9x7noXv/eVEPIWsCmoFJQInPBY4YnP9q8rsATZhPOMK9wmgOjTMA5zCiDgDRJ0+I3XNXV27y9PEIAO6bqPwBRVwSSQXVRHz+8kitl6fLEV0UlN4GB3gyISXgZpQzx4QD7NTyFDI5eTap1uXrnyWYV0G47IUSo7sRw1+9TqkT6Wo99AKjpDD8ngCc75cbMHaoBagIO1yghyXF0drE0LBH4+7/G7ciofFZ1z99afz7hH5E5YvhaenPmOiGLgRRzrskudI8+mvkSsq0ZqlwhOAT4I9WPH601a4w+i1g82jmrE2SwK41Hxfd5vYemFWbaZWswWjt+YqNZgPwV20Xut2Nk9mWZJeUrXBQototKqsaqQrK4401T2DckXHg5DLuYBXFbVrHCnU2//hYzYOODLCLWYpaSDA+y+M7JsOSAp1691kVoPJF7UZhU6EhCKhe6/yD3ILPARR2MavLzLafnZppvITEoOEBfyrSTO16E9EmMag1QBv94ELv9dSuT8ZolZh70C89hw0H7q0O3Xo8ut3DpHhsGuzK6Xjx7k5CKzfgVwAR1UiLL72FX7iOg4n12h1CClo9IM+pDP5q7YtLs8jjOqg78NIi8su/EG/IIrv5sCLz5zZVHFjSMZ3orRUIDGvvlSQ3jcbX/ngOaZC/IJXbwIbvhNKgxzkZMpxmNkAxVMJyFi54DsIzksGuJ4NoDsKiu2SIz1HP6Y93znZRLbiC3JHZlbz1rPZcPUw8hnb9P2RgFqoCVNOyywCpojGMQDR767VYMPqq1N7lxuIimvWb3uM0U6Mf7i6jvKMBAQ+AE6NnMozrYp6NqZLwxzXZU2wngY0RaWanQ9kxywOF38vNBPgaUHWjhY2YtAu57ymCEpPAc+i5rDVDqIFI1agJKhUeme+CLICSyHlI8gBVDvH6vxmtXMUPPorvg8NWSbhsswrDLms/fx8r2tfog0b0qUSgDS9fH5M8xbr3HeytCYXKIpTOfL14zKB709yEQe6CY0/QZMq3vrhIskDVVovjch9/C/NSzvfKzI3afR/R5ftHGBFHMECUHfiP8SVCYj+PZO+GV2pigvf4ycMCNGfxs5f/C++Xekz15eqm0N1zjQ4xz3/atLhr8n43hLjeiqLkFmf4m58dkErPxs87cRsAUJezj58FkRcGZhmjlth2IsLbosV79Ii8Zibi4S2KfHOE5MecteUWsnGHd5qsjtTsukG4jQomNwvcVJghv9oF98oMKDJnCQQgrQL1jE+z0E/TycuMxTGlyKKrsC5E55bZypgfHOf/2fxIwT7XCnBUsQXTQ4iYInQ4CWFB/dQ7Lt7f+qmGukDPx1AltI8+0ePyi2yCs4g0jfUeP/i9xgPubq1nI0HIIBnlQjWsQk8gmu77h/WPW8vtn3qIdVCq0lN+Ejsdtfwrppq3o6tkjzpJvlVeOXw1Bwe1CbIWKIFDKTPsYkbGVDVOF1gJygyFOf13B8S8ckl9vXzobVZ5FgnoAPEgRXcyFujMWE+wLQ59V3mzY9zDlKXdiIE5p9ObshFp4TqQIzaGVIGPzNwJOhh8+NTisnat6Hxj1ZnTRqP0mrmFenRIEmNjxlpoQWrB9gbBN8nal5giNuWlwyfTaT7/uvrfSM4AlrIyNEFe8gqxtCSH8GsTR+mfKmfBZeFtuWpiGUGpd30ozWFhoMCcIskEagZgOKROsVoZ3IfUk/gA94wu0ob4VRQ0Ex+zbkYUKKSSL1j0hwjhKIaSiob8lEF49c7lWP1r6Zx9nJ6rxqaF1fcJgVNxjsevQhTi4x/Q+1BJ+fdGk70mWcKdM3c/6RZSjmFkKjAI/PAo0soZXaS7kC/YrSX1cAZWziA8qkB2kcC3GH7OXkAIR8JvwsF6KE5owPZLVj9GxVDsHxMQNmfOpjLXolKGdRCH6j+CNnLkgnYKt4t3UNLK6s94H/aiXDYQUWPD2sf7v5qRWUSW3GkTXr+LSgrXqs7jGz4SMglb+JWx24BjRkyhXp6G0O15BgRFcUSZm8Bbqxr9RSUmrxuFZJNUQMIdd2MVafUITMs5T0A2ltjM47JAhhd1ARs8r4FQpNXSosEoNn3/nLdnJ4xu1P9rqOXeGsmwcfYig9G8IOBxPCnsGd7mWuD5i2g/r519DsEAVw6h7k2r/1CiSXx4jFfW20zSeCj+jcjap3EYyDwY8DRFoEyseX/EwFURiNY3+5IXRpr7Ia+DcaX5UhqcRSOpeC/9Sl3BCXnMLjm4mPWxizzwqlbjejBIvKau1SsaWS5X2yvZ02kObAuDW/7MCbUu9Y/mIS6AaVhjoJC7W/AujFWiG8GCb+MmSbAcHpKJ0lKSMfkkiED5YaM+bpgEEilUIo+DVM9EuJWlChDVrDQOd9q1IA8nSi1PNhBZJCgOFYDjYCKfbA2lDbERA4JyZ/b18VEwtPPUZjH15qZpoaOuCHLdOKKI4wgqO8+zpwF2+1HiS916GicBFcs7sdyZXe2uq5rNRvKTAs2IC/jd0ujep5Z8hVh9Z+aoTl5RY/ND4xt0fYWgDwXb6B5t/cXeJZiA6v97vlmE7MiZ43dbkRNJ9vQyYjXyoqYt/FhtOg6bQNaAS8H+pRsJTKfK1IJYsfbHuelQSgrFbBR/oBK7W4bAVU0PBC5FY+h2MTveoMdU2OPls7EtNiwAIKNAPvA4NShkLrkpyIaNnxndKiC59KfVIG8cv7i+YWQr5u+NIuFFARjl6D45Y3aLAJAuyBjSYh+WL+dq1WsIxs+KDxn3Bi3AU7yOuBH5Y2Taq2urT6fSJ9ervrkhSuajps1I/ZWD+u+W8KQPkTS0Bj5c0rJh4Kt/rh7nOenYv4twUlN5d6C9o6ahNazSD+SY1aRjQvgiJuxUq2TwaaDg0lek59VLh032SFpt0MREJKAcOq5wdBYp408kV7etRujynd0ji8bBlM7gfQq+5016E7Kf2UUt7L2tJ8Y6YU9S5B7ZxksML5Lqi3iXKVFr0lFJy/fRC+wSOtCjsNvkPeLm6/cuO0bKNJ4PO+pQZtsCMTc+CP/GoVvLR3L95HC61nlRo0KnIw/WpZZTHnodCxGET3JAbyq4gWZCxE2e7rAA/4yb24azk76F8fEtfo22cMaTLvuqWL/bFt23QyRsB8newWfRpY9WxlvaNf2LlTiAEa2wZdeACINxTMF1t0+Y2Qs5zXBcya9/5Qz4ajY6o2bslEG6yhrsZS5/eeFvTFZHrY8Pw6iCCNkZNnQrLV2o6Yn7OeuEl1M5p+b32jQ69z7khpnnjQzaITp+6DwEcXOLSC4ADCPCfIwoAptiaS5LQZtGGvRLoyraTWI6qSSyZR1bZkXH2GgzPc0hVTYirXe9MsOg5JqJrrbxXpehKZixMfhe6KKsKZBxRg9QCW9JZ+TCVJHjKrbn8Rf1zzIIbmuP82XYinVvZKH8HyuBjdWBdihmhvNY1hlLrn1kpwYSUsPdAhViTbGx8/0gy7ppqHzDrGxGYRMbUF9n9IDXrhEtwAGKXikHXhJ6PHfUYdLyanNNoZT/TrQZmuR53l4hHXp4y9utn1+o5C4y3Tp/t3CbXuJ8U/e+Z3giEmrZVx6y2jVijvunGCjMBh75pm18jMqhB0MMgOGllPvXcCJLNqx1/jQkApvpZaMdfSSQGNsPlKkGG7rgtLR/b0bm5obZXNYZPfaX7I39TN858pYLP+HZcZ0hZ7e8yGwNgV89Kh70jIwrvbDcBMMuHJtiCvc6Vg0SyouVRY4kXFEi7/FlYUE2DJGqtURE88fV82LREtRYbiag2LIsDzEqrgr6DMUrXawD3I/YygVS/7gIDWDdbUxPFwi+8aVM45NoQwq3PsM2dQH78k7ptop2IrIX25Ei+VQIHvbNYVW5/T6IiEpyAmMCctPW2JA+IIKbLdmcm1LDAytTEwIDyOVkVoSCw3XMkVB2yP/CJ9BElDd7aO7SfztxZsCXguhRFcePVWubtsJJPGEEP6CFnTKWKtW7yHlH3MoJSlm6Qkf2f0qlKjzI4aOdC+/924HFo01ujLB78se7ANcCrVZQ+z5W89Ug4/69F9TvUxjC6/C9KFblwMJm6HAbk8VNrYM8u6aBTm+W7xEP7t3OuyIsfJ5VCEh8Ldv7i2pjeuq6l0sydI4+YrrqAUEcumC+Fz1P/lvjpEup/iqhCEIRMf8ISdMwkphReN/RR3vkWkbr4F4knFCxvAIjQToD8Y8oBidXLUgjzUWEVQP9fWyk3HYnP87w/dXYxfzQAX7OuakfWRwSX1CZQlWHt5Hn3jk0uliaHiepLgCHAlQZwY0/4JgJ4+dRS2bwTo+SqZLntig3XAtsrz37OdChljRXEkSbml54LAA8XLewA/JHwPIoQ9lbhpQMdwj2mxq/wt/wDKjEHs5CYK/opkj1yCFsCRY35i8JKUDh9lGS8L0nLZuRVTMOCr2PO/ofH4UbHAsLQqSfvp8BLaVa5K7zZlxH3EP+dpKuJOnTAHg+jW7TJjAdUEZQ4HxFsvQKa8V9oz40nQXF76zOnahltadL87FA9/g3iNHjepIUwKfxNU+hgbdIDepditJTbdbRtJ3CBEkznKU8Y8p+5IE6bjarfjTTL/a8bN7zs6yXWkQm3zGggX443yq2VIyC6rHa8pdMiU1126NyboJzfWkSzT86Axih6xzJNxV8S6sdwkMJXoVNJBcTtPtXevFBDM2cPjFjJafI3Bqq7KogyDHvEZKhLKQcZvcajyqUIW79G93QspUYMLOW23wcT7sO1zrAMsMjgVcMUMI9s6XpW+q5AutDMvjz/aRYBucCY5OkHWIl3dR8YjwxZ3d/kNMCxUErtpl56NB5SzRL7qNlQE/JU/SlNmCCoAY6vcP5ZtOvAFSu4B7rE3u1vKnVqz/xXshdRNHQ02SzmWQfy8yaa44ovSfkn12+tZpRNOfgQ6bjpbG7qnJaA+rAoewYFDLI5bINqC2Y7pkJt1NkOPtUCkwGekdtPDOAG3vostEvKL8kOdyYZq26qnBKZ6g7yvW9lVZTeGvEywtA/02LO/wq11ve++deRkZWVE1Ic1PrsW/z5aoNAEDQAkSTfQsrdp+KkbRxst7tXbBawvVF0ACyV5p/D4X5Ckxm4tk2m5ZiJ340JBAXPYa8p8OJLaso+Jy1yWtRU2ZxLBsO/DzCo/QVAHs1MZT/snSoOT6TaOl1P583gFA6x5Uqs7+0SV4vB+4Rxk4hchUbq3sJj5jtPDXvAIUcDUwgAu+bp7m3aZhkkCiRfbsWPTKwFQPKdxY+o1PTfPvprCYh+x0UDABlJaOHmV639fsA0WetEHfk8wkul2qB8QCO60kvn06AAmUzlqycCkv95AFfBNtv3F/Iy5gdDLhPlBmvp/gizSIS0oCcycTEL17+opKW/hsSfsGz+Ait+1Rh8jmLvHtDsk9i7jacpnHLoxrswkGlOVcNauseZO9Xy9Yu9AqLDJp6W/DqKtt30YR9FiBguyt8Kw8tBn+iqxJo+HR7bw25QRvNEUSQapiMCaam/yrI/w5ObNnmV05vHMok1nhGHXVoio4em8Yy54dIgzCHY8zlUZeD91EYaL6SMfbYY0embkNv++sCxp5dvWfN+FYvhNiapokev5OadwP6bDWymjtY+bfpY3vXDSFRTHMj9JYfze9V9lJhhcP1LWgFo80vEW4t0Hy1/KtN5Dtt1XMoyA+qjwdP1hk4sVFsxXeWsnkmLzaD2NnWx0xgN3saR/eaj6VNDnUmI32uigurm9vtrkpknzgGdu8OideJ/1ZuxtjLT6RTm8BZiwR9LamyjLJ0mMKiFsRP9bWY4kuwzuAxnt6MU+uf6FWfBWJSmxBQIjtUftRfXFXQiAnWJ9q5t4GK5DEUwitkwUeXbFOXVKByJtx7Tk4BNwpqy0/OBLVF7WWQDow0hRqdctMrCTk1477NPmOgPkue3s/D69pRdxIEgEad0z2aTqBjqrmFRX+2kxHMtkyNOUh2JbgxYv9qEiZSeZOW8ZsIcLTjMUl1Ixe4ZdBXAuUx0Rc55zjBeBLLs8TwciTjq6nwz8H2hZdwEsM53FmmszHrqQkenHNFx7whQRmeUYBLGs10rVvd9snPtuBHM1+avBnSnv1i11iH5mioUXt65Z4QXvjEwvS/X8PaTRDlok41b5mzkUkWWr7eRS1YBHAEgmAyzyqAh+1+SdjG9u45mTnOO/j4uoKq3hADhT3i+LglEmdMGCNJu6SgXj79Ny4G3nlHtBAM5+bLagoaKsHUTqEzS2IwaynWKgHjBzAUpiK36Pso6635Zh2D4IcYI/17Ww/+iYKxzfSGdzRZY6jLUMmJFyMDEZA3RtSMUUls2Cfaasx8B/FwYzoEoShoi5T6L3RrPxkzoZJGilHlPy4aLp+Fpp6a/0dH441JTlpdarlgMUAXJxdTQD1FwWfJVYi37AUsg1NK/nJoGhBoKisv2xHBUkVeIGnK1Z956WMYoG9kp+JrJjQGDmrxVCx/w1hMD2Ws+4Y0etQoEokPhI1fGAx7rzS97/B/vxVE6mZrHwnQYvv2Wv8nQffn/StTyRMjdO3bh5OQFxq5LHAlGM8FmSZm+McXCMnZ+det2zTxjYF+7WQ3zz04Xm9ehjCPsXp251xevZ7ytZ5XOVRJ9GLjrgdSnJfOtNZEWj7JaWNOMX3Jx4Ho9pR2yrkMBjbC/degGusCTd5nr14crGrZyX68PMVaxlwCusgWg7IyoaRh3edXoyo9ThwFdEQXyqOcL6njBKz+HfoEW8HbLQEeTNJJdDohAVdN+OTcpR3udeVjtUJWiWRsfLeB1WF+iNMkVx7ranHh5EYACOkgBTGjO6QiYh4KwN8IAdltSTXCHKGIVafMOCVVVl5sIbRT533VXqBCZUmViggl0gZv42VyHtbSEmalJaxFB9KgzVpxW4lK2mFvi4FM8ae/TIccu4+rZFU6y2Lbek7Kp/Vme8WyVtI2aojN65f54U+2mdR+aHgT+XHbP8TaXXC476GNYK9VHm4y61ysRNblVg8/BRBfK1tFXEGNP1Q5+Ez/M79yl/VNOBEV+JRK0wGwKWs5tsjqgM6MYP6YTCsY2pClqcwWJHznN57vxQmJ0kHSVl5BNpLqtxop1/0lqx/lOe51fhGDv4DjmBVT1nTeQ5PS908O+wtDpKqBXeazzzAFMeHKDp3xIKyvXcLrBJsc8LOastPCt81u1rmzTFgcAcC8X/n71t3cEddrXAfof0USV/IyeCXsfQyegAi+CfqW0MgTsc8c1vFUbRGjYtQcg6IDvxzLrDyUHn2Kth7xM/631pxC3oUEj5TmTnAdiMF0uuk9DOA4I8vZPzHHzSbFztuPdWkN59yP7sv+PGeZH5VJ1J6ToszjlAMn0MvGwSZphGbVl4073zfD+G6xsNFMsqq+VLX1r2NOfYterCEyzY4A4DVecYWaNGQDg9Zj19zPGuZBpizlMRSp1MqPrUE/uuG/1ZeJ0bgWU8bpI8AnyTogBiqv1ThdTz7cG/shiI6lJ/NA+mMvylGONxKPC0h5/L4kavUDqMJt4ZZaqv1i0S/JMSgsMJjnJWvylK713j2kiFJjLUgGXG2OxZ+EuQC9WuCrmD2uprO2GNntApkWWug7pCj31fXzMEDXgdjp7KPaKroRLxttNpMKrAMulxsGnymIdTiU+NpIGP51xJvIhgIX2gSi/HkGJky43LDU+BLkH/Qtl6Z/xcHeHYjcrb5qhfuAjzclzr+aHAMbD+vqW2qdD0faocBkDEwuOF/RUyAntoh2O3Fue1MM4cS7sF2OuZ1kCmjxmPHJQwVTkP0QlTpKC9dfqqgtpUJeenNPZMe7kN4k63FmIlFqowgHoty8ZiefBIH7UCt+uFCWqrmLsR9M/oF+GO+DpUg/lsrwRbgGYHj0V7ZUR4q0dQ1BvRgWlt9hoN1slHMCjkDNkoPJHdvYu+MBhWz3l1Mcl+59kTpKyt8fO/MQdTN/gkUTI7SqoreLhwRh5ykvWTw4TRY1H7XoNbZmLtdTCK05zLiC53Oa++Sze6D/nobGyXnZac6DFSrBoZQYIfTD3nNIOdteqPGs9fPnXZ+njY27FR4nIwmgg5ddBQzqZ329lazsaFvapJHsRzTpMHe1Hw4iNYvsXQ/GwcOATNroWGmyyteN8jl5ROqqMrzZaurPXFJdjDdnGYwjCgsiUz07WJMsJ0sHk5hJRe7VLl44uTJUSCsZGX6RFyo8CcWVvl6ZHcw9ci1UqvGJJUTb7zYu0Io9vg4OBv1D4QxqKHcl3c9SQpbSWWQhtyy/1twpmF33D+YbHqIs8XtX70a4AIpx+jzR1KwTdmAWfZDShJh3+l6kN61Y4+3gzIep2/ZzhGH2yHN9Ok0/rvrfjrYBxppU/Zf8wpjEkH4xdTRGAqAW/yYQrSfSzVy1YJBC1Iy/YIkgd875JyHhb0yb9S26Bx6k+cM5F9QlA3Sjg3Ww/y/AsBnwsxTgGCNbCUULECVWSFTun/9nfdQ2zf46GTNED3amJoEPYiKBpr0AQeIYLjsqp1sGpCEeNXWajnBZLcWuLTbKSwFytKmw3NoQ5UsARRTHgdYo/gPeyTQZ7I2a9NV/G+GCd+3SIhtS/B38VX2cN3hinVnuBAmQVBB8NSRM1etfyEnNe144H2MsO5AkmgPEt3avgHKNJ0ksCLYPBtkt5tFR8NYX38eoXWzptvB4R4rLLjGqWLXxLoRvifK0dnacurD1y7iRJsQUcOtTHw5PsXIP5RKiqezW2yBTnw12uS4s4crWsrkKlfe9cgrUog3tXiFnhYJ03plN7y2qT869azv9D9V6CIo8TJEIPbC7rTKUrgECcylYDLcUZCZd3+/K5H2qNZvRcEAU95/flCGN4x0TaO/VGRucSWEeNZ2E5vmHM7WBUXZ8WT86efQRTRPC52DkFxp/jmgMkeSAUabDYR8B4VwR7LHWKVzGaLrL3uvrwQ68NZrZvfUzREXI9IMc9Wkjus5ED5teJuM/kRIKpx08T8aOlOsGZd6vulSqUWy5wSKE8BqV6Je9Vd+xX3k1iPEClrRW1OqqjpgYfMNyyYQR9nrHc0NNGzCx7iIZlDNa7nd+pjXyPbk/7o907EyrocjCwClUTrbpewTCOw+bP1YCb1WgSWYhpd1doECcoBi4PSlm/4so+wG7NkFFuHGUPn3bR/SCOyAYp9sRfuMoOS+2SVcuKVphiIqDg0CetXw1c5EPjN1y/s4zPUaGkV7q7X5Tm3bzBoNCKTwx1WgVxp+lVJUYQGzbIRQ/15bSX3YlzeuSEu62aPqtZjg0FbLjqkcWsZZEySl8TWtaDZB4rPjCAPctx9n6AkjX7Dwor9v398zt/9VRr7oUyd7WNLucW8MiLBjXpiyTvTyed3PF9b61WPiaZeB1Qrq2Wbjr4uiBJhYhHzkymRPsIvSCeacSA2KNzvhmQUekLd4C4/+Hm7OxrEjdICUGuTafYeR8abmZwZb7t769w7l6/EjfQ4TLMOTnyD95dt6AiOOghCexI5UEEoQ7xB0y0u5cHd7YZ1OtadgmUWDHeVB65IxuOak8OxcPBZvu5PW6wV0l6vAvnIFvCmNCxdB7Gq3Gu97EuN+KNPE7UuOtDiX/v9XZzb7A1NxLVu3HTfjGmxTRHd9yRcu5JUaGSnwP9ais6xudKkgxVCq4Ny2EQCxCJvwQxzS9c7dBuc51HLbciqenKW/tHFUHHCBhq6UnuJy7nwvnmILsVafWK2G0HBF9YDzVUGbiz4CNG0MRBQeVlytet2ybzeOB05iZ8R/nZaPhdUvA4gqcSJoW/i9cizoITwJltvMQGQCVuZ5xnGsOFBX7BtRFfxq/YIEv1CCBTdWsHwzfYVsqVIw+tcpVjEBMsZ70xs9whxtIBHdtIBB/HN/Mw02OszhvtqbJ02TjIIzGecsEKdyZufOh7+uuONE2Nn/wAW0/wX+UlV9TzHBMNBFCjOlIl7oteKKI16+9QPTVGcx6rCRYD3Jgm+URhKrpUGpbiR58ZcHiZLJnDDuFV0uaSewEmF9ZZ1WwEG5ZhA4ScKiTi50ma82dCqph9qlfvLT5PxXB7+NkjewYcYKQsy9TGGSrAXyERLQ5ku7tL1nvjKxvcxZf0fPJCmC2LYiJ9bSn9VL0EwYELW7M6Ezt/krJtofg+thH38HPpsTXgigYEzFgpPq0JhlYRa1raklsrAyTS69Z2A+L3j1uYUaPABRp5yaGIOd1xjGdtHB1cG8Ftsa6CtY9VvAsCn3WzW2vv2xyWcyGLzJUgTqkIvsAsLV5OYZ9tD7fvyPkyPtwzWOWGvf7c7X4L48wynbTX9roXWjFuHFG/Q3YKfvsKL1bWraVmty09or07CTIRugphBDPabjye6ys7qHGTr+Ta0wgusVZlnBrvgeNk/CI9iZiMKiVBDOgTqbkPh4Rsws/wNQPFg721PRCdgWp+w/8S62sruc7zTP+DUjYJBloBtIjwIMjY2OtlROYfhugJdl/rxRhStDCr9ekub9k7Vz9VCq36BfyYWANzM+Xlpn3OO6jvB/4olJIcGOq7NYuWrZ8icZt2wGN/CzIFLo7D0ogKjp4iwe+kPUECfwl35LsEwKKX4KJSzz25rnCOyvTTjrTzgowCcNGfJ+W/yONil+WmKLOyXWlD6l4F6ytRvm+re+S0S2OoxSWhYZHlkz2uCuQQEwJuLor7fnjHF+2405LOLTcHalth0l8rjDMc9d2RRmzF461EwcehwXPTXHDaGQBLQA7o6suJga1gIMt4BVsFLUBYuslgQjqExHJNi7cbXVh20kQY85LOPuaXuzz8q3aj1JPNg455b8PV57BkGG+BJVQMlLoAtR8n7Qy3/lX/nzo9RELx02Lww1tOwrYysEms6z868VegCEsTIecgKylkBPDF68i5v+4hsntKmGXexeaoA116oUI+4PewTlfs4buqlTEsco17ymLEx3Fze0tjrf5xGJIIp3DmJbthX21xiSA6CsB6GLPFzQBPKGqB/Z33exdAJmVjC7JsAXuAqw3ngYnFy6ArWr3rAqsuLx6oU6zW9pxGZzPeax0Dh5IKKYbKo6mmniUUHpaQXAlLz2h2z0ZnxXgI9TgDWcYlwuro5/Jt267KQYc2U7Z/5Tx72k70maP32a/6jEzkmniKx7f4y9UzWpuByF0WqYpYWi5tHnLni3Y9A+T10+xCPE5995chDtUoiZvFJIFMwZFcK77Arn0hyDUAKm0yF/bWnzeiVg6S15pT+lS1idmB4jK3rzsIFQqlCVmpyrLaUtqE4XxNW6wNMbIX/KCO0ySffStupxpn9ViIXRNBcCWaeSmGQYjJJj6YflysYKz7yFyHcnEc7ZnmDJvIud8NkWyQW5qOS6gzgpVpCIDSoisk7G7eTQIN8HOIEV10bKjF+CH8Auh5mc386h8GUxDeNrPpWrFYWhW3tCLODA8M5tSazUZK4BuhiLBTAXbEsGyyW2Nzr1m5mOHp6hQg62VqUAYLf41EBFFUYI5UMo2zHLebua/XWQ7rGnMXwUDjvmu48tdJqiiCVQUee9HNLdVuPpgUkDjep8gNncILwVZiW+mWt4E8O384CA6/brAVVYSSHs6c0tXcAfEjFW9orRyL//OkAYtYuoZ/j3lnrL42gbIGwZtYkD89OXQMk/qOsoL98VfYrI0WumaXKHcgszC68k3BsPoLkdkkJMAf27y98DEGm4NmUp+EbFt4DDYB3gTNNkZAF3ov0r+19/rTpDEBKO+l8pwlUIsnV06lXI5O29OVc8EQdb25+HMcaZJ5RDG+Z9JmKsVWP45bfVYrS4o+QxszgZx0H8TSEscqZgzHZjBV30rQSn09BCXczjmfgiaCACDAGdtT5Pg49ydbe4eYD26q5JynxyMujR7VWsMcYF85YT5Egbv7APNiOyyTdo4A9Zm2w64a5XqARZMsM8Sv65fyMEoRFDESPsSEQ8HPsLllfAvDCWp7rx2K19MVeUIKzoD1GvLT/uzNY8Y5M1EJ3fP8RFpK/Zx9rbib2RkQaE81s5jJAVNtbJWW6r6RA0EhdCIcLH+PThNiNEwxOommgyCBMkDaR57g52ZbqZFAe5nLA2Q7zrJHprXDssKLN+uRfljuWM9/dvTqhiPgIiCV9445IxRlBlyRBdIIP98bYCs0r2eivSuFnRB7LLQ3bi+Msoao+oSRC6AeL+ic+yBZzL03/HHvCNORrrxJsyJ+F+keuDJrCmqGvLt0ThZY/0Bs/a9HP/qvN83FoCLqt7N6QlnRaUSAL/UM08OjlRPWg3yzvG/NzC7AVP2fW+Eo6eGbtl8116sf4bXXZbw/jXP4/nfr710kIyJUlwZKaSvZUewoPg6TkkkHmn9a9AtdZOl+04pcbJJ8uplrfO7KqZL5C9ncFZQ5lA6oNxvpygo1jBa9j9BOk7ol1obO3EtW2YdRMpEWma6TOS9NjRPyLcxbAI6CyF1g7PWvc7mW1TWLFf+veaXGm9lE1ryiRLCJk1CzMmfv5CUxOHljCHfATbLa5B5U2V5fVIs+wMeRvfnTO0pHHJ3cr3VK6UsQ1gULbhiewWttQgU4tirB+49C9h8eB7Q8QecgrJ3WaxM87JCXHQ8QzF31l9yRYhMhBKKYF1BvXV2X5m9EClhCaxoPdwJ6u52qRUZ4dVYrgbuq2OZzoBbbum7n2C0/MdS8O4hPsPyJxyTaQe6fuTnvYuz9VTSaKWMZy+YwsApk7YSs9506ESuzE4mxdiGtl6XVMPhA4MKcSFKEa+P1k21muZkeWxaogIlkm6Zaxb3BbGYyl0TjEW/8ICoYxh8yMmq4Sv1Xiup46flMUst2V5y15tql4WXYO6I9fGWpDSagAQY3JFBs2kCdXgo22UoXqvC6M+tDQtvZ0YBEsLiWOtxx2xQHV119MnCTXQa+jHXKi0Jfe8o0G0cobGkpSIwdhRxNvj6Zl4QC3V66JW9eNwsGA5/i/PttJdlGE4cj1LjuxCRuXJ5HY6/0cN5qd+ZdyXnS7p4I9/Y6xHNkjCpxFHeOCfV8goe6VLRgYHGFsD4bQ9ogt2fyEKfhUqcKKjOgA4A2h3YGPH7DebA1dOZJkLS0DbdD2tdmgXDhxi5Vv+tEGn+p0w8pUYVY5tDHagnIkdBtR+xEydHZ5D7T17sF2ADSdH3LdXrIvalSUom3sK4jhEIdvQyCxPdEmF5hRn73YT8d6CogAmcTKBrZ8JV38BVlx+yJdNsrRT2+oauUntfiA0yuze2hgcu7xt7TcWD/WFUUkexvc/gzlB2h8smOugZu18ngodGeSOpHnIPXhyFX2tfwp94dU/jclbN0XKKOmjD59m+VqWDPxXrPnhzbmcVb7hFuNsRv6abat3xPA3SviqdpOwX9DtlbdbfRrCrlvd+uDbxlXkkV74yXXF551labNa2hN7uTv2nbonnogkfLvdIJBhFOeQ0GqvWFw6kKnJNPPIWMAZg0F3nulDsPFYDtsnajU37nE+IwZvhQvvCuuURTRzuq27t2BMu06NV26vZ+MbXNBhwk01fpNU5iX5yiGeFIRXuG9c/XrMayUa8Xu8lCdjd2PeksB0obGnyL7l/IgmUt98JZDrfxDjKzUEj9898SW9fCjLswQF+kvNArnBqOw3HjcXpledfLXRb8qfY7rDW+7tq1/MgXqjdtsoYKiZWcaI2kQqOPVOMwuanE48F/iV+OI1d0sl8KIRiKP5TBrjpXPHmfXfO9IcZwgB+WhyuR2Vitxp5jkokIlSCWSX48/dQJdYao7txB6uF6xMJKmNAd3fLa289M5Vch9hApc8pFupT6pcNgIFU6IzwL88H6H2LXqmtBR6kKIOqckSG4q/jrUubRamDpPY2jlF4i11meGSoDyKbSU93Dr8Jpn8w9+PcmsAbP3taApJM4biRloPPiV0GYbveV9VzCjZZwIsjZvjIWy2vquyFnkM1+v6XPFSCzh4MTrbCLqGLbCpeeDzj/7ULZne8IgEOgMxvx5rG5bjCveQ9XGf+hbfgJokOdg/Bvo8aGzvBaNrvGiX59MsId5Jln/Pzs5OJEYqMVSPDNxDaIi7KYHDpzzIVTks9PuqNSW++aIRaW7c47O6+aohKe66D46Ilj292Cw6OQmht/t7K0elqYW99fT2KNlAR2xzhu1qxBDT5aE1CzGphNSL12vZ95E7Jt34YnTc4hn4IKClxzsAEN1GXx8mEiLcA09Qpzs4p1ah1WlI7A02RyeiX+mhatJxFYw5kEnbc7lcZQEU1hbmO0dv1htZ98862Gw6gLUpRvnF4x7IO1A1h2ZuQ1l9lt+Gae5aa9swdUeWMoa++fjVvQJwrjnil2MDinDxHGiwMJrBvquz+Q2/l5UmmZ9li6LNUW6/6oSzGfYbHHyVYfs5jaEVrpQKU3owDT7sxQbM1jAimD+053tvTX2D5jigh7/F51Kt9ewnw7k2kKrIb2pgl3La+mJ1sHKU+XPlyh/9USRyks986xOUDJ4Anz9K9tEkNZd4nwCg98JFF8rU/Xpks40k25l7F+OVdk1a5gd0AkFKpueek2BbGDI2j6FiNiK5Np7+NItY4ByyoIn8A80BOEhG4RHMb9yL3eNdwz08pEX69OWM4Jf7A6KQu72AP6PTcLT8lwfgHw6mu7Rcl9TgNW8QeXayz/u9Nal1v+2AJygGTUlgaoq/RPy0GG3fg0SK+5rlpBtmKajjsMSU4gQWsHd7OHBsEcZsbRgYvu4FwwLw/75EukP0B/dSiESyqKsStJbPsDCfIDeyBon3HhIDdZggcQhAG/iHXyQlIPsR04JNUrcaBtdJz0u3RocW6kwed0bQKe16ZYJgzd1bgQR/WodJiQuprsXaRaymm/p9mWYX7bhL9U37ENcVDz3ExIhiAJXqDlYHP7nalmM1zkhpHFtr3AGes0UpTfEGF1Gw2GmWAcYPmljOY5YTxKUeAN++g+DvwzMbjkSUAch/bAFq2BcXZOlJXUvLeM6B4tkAIuR/2fnFFRylujnloO8Vvcrx6m1b4YTRV6ZxL9gzFM0GsMsXyEP8qTSvtlokiu1SA81TVgZ+p6lBpoCUFwKQCPLAN0coFbrTufy6hiIlMW2gqgmH0yMwQuCOMpl+IEjKtgX8qo+1F+nVBUWPkIX40MM1WMXpfsKXqaviM4YjXz3nRLhiEM9xF1JxCv3l3YTebssM6He4FS8pJ1UOcNA9tr+EY0h9xPjWiwIpeGtxup/wedL2l05noY6vVl7SEXmuyuqB3Z/+tCHbQsXcvqYAhlForyyzv+5sM+1wBO9lPg4ZBgBAJaq8Pxs3ciDelm2YGIKL9X1K8HWn6OQ4B1DJVMVyNZgW35QfmA//q++R6qRhz/dn0QO4GLDNvgUobEg2dT/OKMYCtsVpggyegTrgzRpEDITAc1xOayKFHpoTxJKqDwNeDqxkMRVb8g9rlCNow788SLkd0InMqqNwBTvOtT+A8RNP7Xz6hf2hGjhacSYZYFNPoi/Rtw40pPgDJFHet/AvpC/yMPmDYtwU80Vf9F8QrxEUByV+XScYUY0T9tfvvN2JPrnSE5dQ/LbdfuirckwZsZCy4RJlr+1ZDYqRnYSjmvGBPqoyobH4UogB0V8dyO+531LfKiqB08PgTjJj0uBz99mCWpjGxZFBcn68ler6BVx8vw+7rBjZmL4XLb+zse0/ycgjKyKJnaH6li4tI2rowKPhFHNWGYDXWIHDlQ/DywFcwnH2lvHHXfSQEUP2C5xS25kv/kgPX/kVG/Uv1Amhk0ImdLgDUBqX7MqseeRb/N/Ws10T0lmMuRo6UwruuRMYL0JW0MeT+2aHlp6HzFO/3YsImFtYx3n9GQa+ayUcqV7GCMFL07xoCSyGtLy9fkgNLfhnnyH2XnFAf5e+XsCXC8hM6h2n5/O3z3yjIHfocX1tbdlYUr1CxMsTb0/YXPrNPNuHREr47ZL7nsA89IMOAOby6Zhe0cs2Vq3Jo+ACAq34XqG40Z7738aIMJVl0b/FduwC1iXj83GUuAonURnMzqesWFAwFginXGo3fsNfv8dluIilecOXc8cCt7+tFTmzfrWaAt3MK5gfgIGcdY2tbq1VYQ+TJYRiYXUtYack0sf0TzV0eYzKEge5UAuUcxgtCP/06UFzHThGL0Z3YCOp2Ia5PsXSZK9FnIvxffxW40KQdCfPHqWWbgdCsTivUiEUffPZZIx/Z2cBJE35fWpTaiWHZI/JwRxXDECEHhyhfp7aiDwt93josIQVeyHUgdzXPBSWIIbZPhmwKASlVvSbEXQpBXoii/xdSRad4zB7QwqzAgq1C3tbAA4cyNQfVa3bHO86RV9e/8drMcyEfcFcAzJ1f5ir+p8E5TqevGjOaVnI6walssBoYdfsFi+oW8Ha6oI/3/C/YpeTg14A/6ywbUVJpxZEHJBxjmAc2ce7AbotNPqxx60SkaLpB3kN2qI3J+aO2fU0Ly84sWGZFH4dMTy2f4UTMSwOv+DJfM3xeRfHuNeX/9A0dOEVSBiK+vpYDrMeoyZRnE208INDk//Q022GET/uLl/15PrXU1+VoMKhZkE6dwkxbDYS2xwCK+F9vKGKgyNACA/u8Cufi0cfGKsmy3/GdEHhtwPqbY6hj8XVg+CtnxBPkQ3v6P3k3ig7h0w0svNEL3IzR0g38WaxSVXJVpRYdugd0uS/vgci77qE+VIB/16ASXGf7wUO/LKpxG2uRPt32xGXJUQEMCZlAGE7fi8porLgBhhBA0g+fDR5PsJoYtBadPFa53T1rHrEkEtE6EEWeTRYDlpSRINiQD+kca2sI9Gb+xb0Vp8H2JBuiato2jztEOXQW9zkSat3R2UyozB+evKPTipssM5svBUMyIahr6ZeLfChAh2T71nq+ZLFthU/VAxf7Q1kxjeFjY4eMnRDEGuqhzfkN3+/oEKu0MNZb6/lbMeybA4WBGDDpKEtRbqsYLTSJ0Q1R0j9suJGXsg591dvnTas8Zw4WVcQElM4SBuQ+PO3RggCYE2mZgsGAYKjdc0xpWt1ozHfTXAec8MjhN+35cXAfdRIVXSerEyB7cc0kkCesgTgFO2MGflSEu7yJxs0SJdN2HMgJ/r3bo9cnXEFLnpoVEyugG5g8+4BMqjjosmsRv6UDx14qksewQJULCVIwwSbFRY8p8BaPAuJaK+bWMlcMv8q6g6XjnQG6g9Qj+EV2eaqgzehgzZIr0VeEPE7PhwM9cfExmrenTp3YGSpoxe4ctcVyVqdap8skanlYSVDBLi+Vkr1wxDk7h3HQH5XA7yFSWiP/s1sd0gZ9Tvd1rCoNvkEACJsoxxl0yjcomsU2jtp7g8sm8Rj4l1OwX/nFT2I0JFuJBw14ZUjWg0JwmpU+6dkT7PXCbHiv9Bcm9RXwN5QgcNYUJhWTcyO+RqPuTc7za/iZPKCMVNYm/GSpS5D+4Uf2p7lqiS5KHsymvKniZbdXoNB47PIIrGRhPRzfn0DEz4spgxuVQRiWA0ihghDwolUIVg8fw7kvZ3oJ5lU0JAonZwUGnvSPyyRPiB130EBofONeIP9ZlI8vshL/e9sRPO5Hd9BHyUVONe6lJgbiG7CsrFMohhm28vgysOWASnC2yztq016U2SNu5ykKNswNkw0v8Xq5U8olq0F3glSsFd188Y6lmAwfKjAdMoSXiIp9t2e89jQnZu2JjN9ogw0rlyloxzvPthhz2dNg0OKzNRJx53HVCQ8ykBd5oSWdzL54P+t6coG/Y/fkDuslKGEFo4W5FL94f6Zfe1BHh4OJgrB3ZMj7rDCqS+se8+334WlDxb+u5otVt6yYQhMYgq6TrE92P2y1NtjcVQWTKU2b/8+e8+UOfZ7pSGuT0/uf3v1qm6mxuL3jCDAYGSsZYQVjOAodaOg0lMq/kY+xZwX3InjVP69kLku9D3sVyHEk8bYF1vUNRiM9qS/8T8uDgCpzgMYT4ZSfcdxo28u/9QYIlQDqr28waqmqwbhbV2ppYx1pazst+KYF78FTw87FoBG3B+xxoyMNHar6hX1psGDW0DllqyeSJRa0rwtrhr+0FHx30/C+UVWzHstUmTQydTLwXX+hyd7zOTcNXLmLYz4/BDFRfjQeEkR0gC+N4SmwS1nEMh4oZ9KvVAfVluMs9JiqKr+p6jmjhSE68cyMcBlps+XkJNmOUDp02L7P2uXOxHYhDChWGx9hDXBbzM3ieXuiPSW52EDKNJP0jVuFfhEkIBjrjr7/7OD25F/CT3shCpsrF8wo/lo9HfzlUVQ4OWCGlrsv15yA3mJcKeZdgZp1XaWiXpWF/ZZsbTywTV8N5sHkB9lBjiZk8VmMtwTPX8ILzL5YCiXzrJSyDfvkB68qlhLaY2vuq1k9DNZ8EYHGAGFOxxuIjPTJEHNvNiEBJhvKjBIQYDX4f+fqsQCzqpaG8twGFL6O62c2Bp+UyMvM33XNs7X/h81CJR7t6BqsPyQuKhp/+3wsW5vnQNWdmJZZt31G42NvFeSF4dCur61rYHDpE9sAYSTsLwY2gnJwUDz+CE21TwByNFo2yKxn5Vw2L9fSSqpZlZkTQRMnu+Xjttws7gusj+GHabG5zmJHNMtXtG/G8oqF16TbxFh6o5YgtmzCTVv+I0RIk5WZw2OO2eRHXBEnqkbpiJ3M0BJKk11Eo2VUbXM5r0fo1ER/qnNCGFMXs+RcZZLPhZtybuE9ac5fbph1EmEDaJ1ijRgW8gAfhfigZFhdlyc/iFq54xULj2ttt03X/sm+PpYbQSPS4M/MFXZ5S48FeXe1iDNc+D+JiAEf0ChN+OVukNEeaVtDojl/QPzs1O9sBvLwkR3rwPFJTILWst3XRW2aRH3BgrbVRItOB6FmpYppYb6wa2CqZeACAutQGawAte6Tj5pLkfjoLTFuzqBXLReOA7+k1n5aAzJz2uZQaE5TpaMhp2NMH2oXis0u6WbC2+mFXniFutzI2nvKR9KJrRO2Rx5umL0OLm3ZVb/RsvdpOkC3fCyZGPp4cjJf6h5IJnAXQ+0jAVwKdXuUX/ALvqSfa4YFNY4wF7qjh0hQkTZqe7nD5hbzIsGXY2LKEYt2fRB1hkVjCgdR/vnSH2cABQvF5Q4ykC5LMQLuKPHBUvvfjYjunK5/leASpARITv3xNNvdu+cLUhHrSlJqozXSsEbr1SvzUQbHO0hEgDCrF227750/oKvyQ+lkQ6D977lika7swOluYb8KwFMgtCuumG55IaFrqi7sLhHvrW3Sy5jYWelSqeIfZqwX7l8QwQSFypiW1n7UxYYEtZktndXUeXRqyfIj3T7R6PoWOR1n6hvHEieaJS23iEEYyAREn8KEqQoCMoiE6ehHWitSJRNbN7vk20HnG3WQfvZcZab8DMzp3+VUQDj0khsaikmd4jmy+pyeJeaeLATFqAfzs7VDe+8DWOoyVzhhBE8FDsMhVHDKWmLIulmaKVdzpgV+yPzjhyFAsqkJDU774Jpbhv/fROfYw/UPtaew43jmMEHhOAZVViQJRCj8QqsHD8mKtVZ6KKMPW5GmF6pPnNRBWT+d5+xEBzZFKE102kj7zAaPHc1caDc20k7mSGzM6O2ZZCIr7qFMlvgWJ4SB7FyN4CBG51CdOkv/ZZqwYddGny16OZvccUsTsa76wW4tBwuefv00rM4aKyUavE3OzkSfy0JILpjlO/dTKEJRy7YbsLizI/fTFkeeIIkw5MdIFCq7xTU53kXAeZ4bjoMm3fMnK7LCdh5zVZeQxOKaDhxLKIyuSFpx5DaoXl9ULYJPmzDAoklvPIhi4qpUt24gT+vnAmdPrcMyMfm+xrvFLyVHOeFNakVrjxpsDCwg9nr8O4sDm/KjShpucEyr5Q8WS3sADsi6KLL8Hj0JP5Y41EGK2vAFVNR6MF2lxruXS1/REfuLgpPg7yK5IPmniHaDPHgsAOtgasi0wEVlX37x02MbGzWeBAYl0du0DW/usK/V0HV1/BRpn2YHMBYbIFX58wnp+Zx/Rruzw+/GWthDuDIwBXYOPdblPNmR8oOS3+iawdWbIs1LdaszpUS/rjYboHHYCphJ50LS/3T3DfADR+xnGUIXbKa21tp+d259Fqfgada0eTUxW954bMIpCV+dkMxCgSDaVnn8hcAQYEMeqK26RLaNDpA9SjvueGoSBN3cyQm3JAfJzyvOq2RwE6BpBTNh819/WqX4AEvmt1DMBABG0FKvf0c1B6WurnGTQKd5tQ11AI0v+u750I1OJprOlUPl6meJGvWJLW1csRonxXgZ35qF1EmUI0+HtejuFRj2lR6INVSQ++kQ+I9sgMIlbpeFD3WATFZ3OVr3l1nXQ2YCqIhBUjmK9qyRXdduqAxHSTqlo6RVmCxzxsS+pCNQqaLfrtXcErjOKlg3nT2hx/af1JSoid6xQIekSdcbY1R2zYJocyNXx9fFEKTxXjQxLKBipQBbWcDxzCT0yGNx3sB3IsESfrHf6y2230dN/UVfADwRJlV3AIDWGtnLmTJS6WuJ+1ePHBbHRKhKKjg84hUiegraQzNUhzf+6rzXztOC29qKy74zPIDEnGdaTs+MTHEuLvWVpoLiyfoPStnrL85IK9+5jABZSbIJpM9RpwhO9UafVt7mVIHQ2vm6e1WrzHYSLen1JbGHKxQr8ThhqnXNifekJO7Rm62YqTl0K1gs/Sl1Jjmf6w2N3GEWVgZ7ABv8hZgpz/2jZh5/01Nyp8muujExpzcadyMW5fJbbkwBu0sz+Ba/ZDIvk8Y3SAcAnsLQbT+wIg7sc2RvFU3qdxhbijtDDpprK1TC0tAbxrp0vO2GN3YpzeVionE3CqEreOIswVVJN1nqGmn3Y7U+azdl31rWxAmGBQ/Y50ktFA1WEE5kFB8NlBMs9IhWqIEoheGwQoFgRUHFPqr4owz/jAYQeCWUKbIdVWr/49DImjtPiRNfRXc2z6GWtaOzrneo7uZA0A24PrwTendyS7bD+XPsoDzx968P6HfSvnJfRBIEs3ZoSUkFNSGLmlF53RMIvK9Zf7olWx3VJss73As92eXjBHayCzoOL3jkw4yQntTtnbWcg3rRfsdBmoz2SJJYfS7NdR3/A9jaW6KyCh6oXw5CPy8JLWxgMs7HVJeydZTLRy+91LtXAlefcbf0IkYtvO5WN6RS3eLGznug13jo/SHCpS6Y346+M65HdBpZJT/JJhpy/T/3v89vQ2KMeCrefNJhAyBp8S+VzD/z6HL0JgQl6FQognT8YzzdIelwMxF8eOSSL83cDYgjBx3x1XudT/0MuBv/4Y4fSm84GEeUd2tBOOJ3wlvbWTg3LLXqVL/iSQx87XTLAHIG566As5Qgf+6NutWqnxu65GZlPgwXgo/Aud2L9zZhSEawS0u9IWpGMMHsODGO4UJ6jBS+QK1A5tGlLi+o37TbR2pypvaEX8MIC02/gR8Z7SEYOjcvVav1zeFISsxbazYjQ4cguvZ5iYF+4Z0EvNbxATVtblVAY3pKbSOXtWXAcB0cphdFpnZZJ7/gPEMhaHuQwB8ufiJIGYeeijjzT434kEUyx1sJmf9jZiiL9mumUqU2gjfqfmo4Sffclpz9BN67RgUjbbTzxlo4nCReTfZBD0EjeMq7vu3IJwccM3wQByN25b3yW+kzQEzVsrTxfyOZt5KSvsHnEhMqZHNIKO/a2QYVubeKjhIP3YEjmHOV/hO4K9pmRC6BlPhTTLxWGUl77fPFTpBry4pCPH61+hbr/EWj0i+3lLb2ys+OFQG1uoAqVd3H4kem0jotLqpxGMHXvArDkM1zGtfRelSeDeb62f1CqXpNugMLs0t2wOGFTYmxzqrAX4wlViWh8OH8QN2lryv+lRlTFMNz9FpqGEVdnK0ztSMgPej1mbwDS1kr0YD/g182u3JChSealKFPltaU+1eS7XVknZdljd2xx8XVE/EqfOBexGnDT1iaQYArYVfv4uT8z9w9pV7+vbp41KcS5Z1P1cTvjPBB08+0WkWgECebiaknxtdYYD8aOGAkpqdjjBbzUjBSRuRp7RqV6hS6SypnJ5Ulz2h8KRryVUhT1iAJAKDhnsfRlAaxg1G0d2+0EcATlyHi+lv3B6RwW+8DbNMuwP4zBglKsGnbq0exjLOg4JcPhalQs456wWlQR0zrxuRJp3Dh94FBMKLe4RSm7MINB/CTfuSaO3QWhrNCvJQkq1D1i4x6H+nngd3JMvwYmmx3YCUrRc6yUOJy3eNfyGq9/omijiVyclmGi0SMmVPm6RUz6wU/IngdG66CE9hBtt/2WpIZEni2XeZf9VaMZVgVW9crBlYsC18P7K6qvxn+24/vHWbhee+Ben7U7YuNiZ/LJQyaFkUjYlJmZpKpCRCGsrW7OdF+K2ZAgWoBXfoy+hi/gntzheJjsbn9OukiDuR9XDAgI6vXuqGf91QoKuBg+f7r0+U0fjQ5dwzGlWwbNVJ5mh5rZcy+Jkp1SSKhCB78y6CKPs9FhsaitAW2MlrTaVSFhAtyVg8gXLG7PDn4gp3g8whF33Ojad3dYgkO77FTMw1rv36sodnvuvNFXfgbLMeUYPYnTY69BiaT03/RbbsmLt+tc4i6mR3jyx3eRtFhQGpht+Dt+3GEKh/aUXlX/NLJVBAIFuBwkzDtRO9hfm1/84ukquvv1HvnhmTfnMsxvbGbWRuqPFb5zMfdMU8l9xXIDuHABecdgqqUd0hWP5GtoPmABA/pv5OO1SMVrb/RZjXTFucAcXfi6LUVbwlrzyul3n5rsLVmKFDASuSDtj8Obllt0Q2lIEKA4W4J04ndZJlEwBnhzDrmvXVQ+jVzuUcAKcQKvf2uR4M3ka2TaLSJ+tpnwEPeJMM0WIx8JW2XoZ00iYwU8VwQDYAmIxtHXxaUMID22XStQX0pD/XXOmEIUqHH0i7K6TWWBLueBwg77FpwLudSqrSgexKwKJdmWfZpdH7d7nbqROCXd/TQVOZFU9kcedosdfAG6jHSBN9/BXSXzxka8ggKhorJqJgplisVOiqT1shVOEzrZVGiOhf4qPvQcEFXTUvCWkX6WokpsZD0zOokhrs+GI72O16fGVgpRjpHLzfcbCHBXYnLaEItxjKtDjYWXnoOHbfUgBnZ+Ips/Bq4mzCw7M2o4JVwLuDYGuW3z6gxSWhvu1m7gkfCxR9ROp2Sh/Dr9XHkR90jnOQpriH1FoZOdpFWGt/exyPzVdtqvmXWkywp6ykzA6CmzP7qn3mD4yxiz1ZS13oZRAOxNLoIRqfhbVK2BHARCHchihkMNxtkeu8D/zZppX4aU/tJ9Sb3WunjcndNc4Taze+5cxQ8ezDJUS3kzsYfVRPp7EGN8OBQB2dqqGCO5U+xemCvA0KD6cd/a8aY+ADMvEFObw7QW3UXQtx2SPu3U++sodfRZrOGvgAL9buyUOVlpaXnE/Sg9Q9l4cPRwpHTXUSs1MoFhgJq3jqZqXzxGkImuMgtk79b2OfLHs7Im3+XyeorInNPrwnlHXjSzhI8hOsj8KJ6pyxyh0apSeBZFxFO88Ux8eJtN+dEPCJY7+VOCBUlyftFQQ2rSWHsjrzqtKaYpjCrFof/UnS+UMA+B6KygQsUHVBVgx7RpF+83A2eJT3ptwr5XEpTbtjw3dAdeUtnbSLVS7SQGJcl2Ncs4WxDHHMR7TTRC/3h6LT2GzlIZv9RpHwkMmMaXGTdU3E8aE/AKDlTneVrrIZzyRfZXRMpEBfsSd7BSE+7oSp45yJVXjx3YoMoBPkQFV8NloQp1nFLgHhx2JSk3IvDt8pFBJiqHAlyacaPgBTIGNnV7XUoa3Ep5luLGR5UW9+Rc4pcCVE10x+zSfJGq2kldBBhcsusoA/CCX9OSfLGNG3Jlv5iFhZGV9SABl+qgfn4YKyHm+6pmmwl23nsOLRTBABVVCrVI0KIPyXpEbuE4zDHlwvWxGDb5o1cyZjimKjkUSaH7DgeRYArKbV2lyfuyfaKxQGKwrABSThu72ObmwajM88hryqEF2KwKbfa4mAb+wEWBP/hEQjAZIofFuGdSSaVXgP/kREmYiVwmOsqi5yIQWhxTXzePx6su+WfcbXrRCkMrP/WqFVUlGHDuehMiNMISRHoyj8lKKy7TCR49cFO7cilUm671BXY89Kp4SOPJamH0Wn6CFVGspRdAhZb6PGmAGrV836rvPDY16aMIrQHprxModJ4/kVi08B497eCmzNsdrzjrntKMXe5+V4FSD6t39MZPbQ6uNc6NZdX49g4cT9cOVFAahk3E9FU5CePJ8X7mfouRmcnp9dl8ogBHpEs5Khn769dQbWDLnNguscKMvwPajyHFEp0S4I/PhpVguF3Ogi96hU4LR+mm4f1Y8KbwpdmfW/XY3H3fjnpVQkdqBu9BNWPqDvUVBgQt74wrMqCMelp636pK1qlq9Wl4KmUJ1HA7Fsk3gBepcz0Vj5liHX5EkMn0yCAUz/jlnm8JpX/hdEAIuw9H900s77TZxfWcyiOIOu9Uie2uuYACBxxrRGMNQ52EaswsGx88L/8Vhap19wB5IFzBiMdThwXKp1rk1D84xlhmLotfR2h3lrmbkZojM/J5aYexyYeGYFXrmtHMA5KhBk0v05GK6xSx8PW8djNh+UJPEvEfUcQHBBUjLioLLi9lLymGklFcpnwoAE4grY95yNzeMuo1ofDnZ0ggeBOoVWIMrVYWCBVR9sofFbdTv4uRpJuOknihdoDVGFUPEqy2Aggk+X9aF+Y3Js0Y+QkNqnRZ+BIp0hveF6hWO1VrfEOX09xngHiHyVoj1akRmJ7zgx5DSWv4BCHTqnhAYauDboXi/aBk9iqU3AdDFk3aPdCq03BkuWmAa3Kk2ItHCyrBZMSd2AwMxZLtSzM2OIvlKwe0jxBcVxkHDaoo0OHdtGoK09scW/NDs6THhhAnHlqoKwNwZx5SWkei6Ih+EmpZCQg/BUwrsefEU7IQxlRaVGAG/pssU7BfGblPqTbak42AnP8b8qkHg0xhIQTbap7qAXYiWOBaMlT0w6OhH0mHx2GulFyf6V1+NZ3Ep1bglfahDIDggmQXf9l8Phr47PlBrZHcAvTKmuosdYEZiJB09pfzpg3+/w+X/bAjcZNDkp3lHMuUjgzuK038pOsHcZb35T2od3KNJY3xX0JvkW+dDplfsXLHnWgd+TsTLfAroy34IbXwBVITwIvPVoWQw0NDgqj9LSuksiapOcMRE7x3EMRVBGzx2X65+ckwc8zYakuwQG/+KNfg9QwRK2tM2yHFD05Sr5Asx7wREADREvZAI07VUJMHlZynCgpZPlLJsRjZArCw1OUA0f5KkJ4MLYTamoJ1GukULSI3EcLTqNFm+Czb2eoLzf6KXwMmB48Ls09mS1H2g76j7Q30BdXHz7tCF5doCoRjNyZi0O56eAOG3wUKSq8PdgMt1yOeTFictdhSl5srQ8GtuAILuTv5E1EnoHULbptFwCKEGR40g8lGX9ot4rmNZVuuvyrW9r58kK8smnhtZNcnTj0xNz7mqflomFsD3ACTlIkI0TwJTCsfwG1akvgkr7MPnOySHAP6ZRfO4GGzScFdZQ5ayofJPZZJKEBbD6UA0h9CzUbT/1Yjy8T7JGrdKE1TZIl4KEIAFv4twokPJ8feyBsCxOfVtvjacWROmt6k7YbQF6fd0sLfXJjz0+WaemKYAVbeWJc3QcAm3GSehdTfHZJyp55OtfYScLGpmTJi/h0LqBow7I4Rc572D2xmofhBmJR9rZN7AzaaHYv+1iCg6qgRM7b7lHjRXC+MCtclxLuyss0+pNxiCLHAsNeBM7rv6d5mcV1GbIh7ciFztvOAD5y3zbcrw+CBEqLr798hiYpr//pL7YhlllD9FIS4AiAgxTiNY7qbbSU3ucNlskHA4DnKatB8Lp1p9woyBrFG+IGYvJzAnD0f+IeHT2AVWRYHyH2AUzFUrdlxizJSq+oFZOLJ7ZzE8LHhiFFqGsiqSeF42oGrSw+vxxOauy6Oe6GtT26AxwlnvCDr992OrmibTmbCBQ9ZPWvwxSWrNocsT7aiJWOlmvCX7TW03aCk0BK97+EjTdMfQ7z2PM0CI8R6877I3QylsMK6snYgqY5IYqOeJawxZmTGrl+8wGrktBnXfpTPTL26cTBlaY/ilknwPD/30GUEWAPVI4xRg6fOU2OKeuqk3kScFcJW5mONeRtV43TawDY+X2XbcHEQXGJo8CTOJYWlbF31yaxWsnUF0UcVMkn0N/d9xG6VjB5fFm3dr/1iyHjl3vIbSCfpUw7s5bYXrva+xFQeO7s8KDIfxaGfPsQYlJ2+mFKcen73ljHAfcOsqLjeJPi7UFy3YAP1yMDCxQBiJMI/Phvyy4amhGWw6PZbueGJcerDEUJnv+rYbqaV9LiDb8buZRxATVzJBtOOb+MnH8p/jdrlFRyEeWMvgicO/udlGhnjireMoSYsbphUxHpmr7tJ3fAJ6u+16NFIAv6nobZ9Fnd2aIuSQjEr3I5LpLj2TzWpOxIbEiRIvWaIKax21cfF0kZ8v4E3SfHl9EnnmKCcAi66SIWZPeTy+zuvx6+TqaPDaq+pc4SAkQRkPyYzOlJyWF2x5QnNDkL2S4uR9MbUWlvhuuXWORART9K9QIu2pLtxPTnsya4RvlCIsOx07+3qAIlJKBL4Xn1MrW7kXebmzZMx1F4PYTa7Rip+KFGNwwZtNUX4MHNSHbyNxxyKmHHEVAY9FmiWs8f1CaJGjnEFgK5vnrd9z4MjMtme86H7IRe85Xz6cY7Or3jUTxODN1kXWxki566WNNUgUdsnse37tiuRIAANEMx5rR4xp5Csk5XvSHtOump2NehD0jfCyrh06GlXiWWWTJX4vqpx/v5ccSNh/h2YuBfrWqVRHN4fTKWsDvXcjCJb3pQEkhupS36ebY2qbJddecUH9YjGWBIe0SdDMjD/ZZsX3aJXJLqjE14QPad9aquT02WJ20n9LfmBktsRZNNLgGoKq2uphXAMYtMLS/aPWtmdBj/QtZgY+/3SZPZBD7kChuCXOugvrrP33JsHRa6vjxXh4oLLV9hA/p8oGg1ckpiyEqJWWdCrUib+qZj3G1A6lGNBH4jou70zHbEx+uEacJesTVXTWnWJb+JAJLCTNYgjQZ5MrBRXt0egjaFW0oGrh6AzRlvRU7iHTmG+XzsY5YCr/w7B0RwkfiTBCGq3DlgOMsjyc8EzaTMcDEIwQQI+iMXcJFk94wHQ1RP40vDKhK9a95GlLDrGm/vrfAGQgoOX94f5tJrFT9mHlJED0kvae5+ll8waUIlI6sf5QqtpeGodEc4HG8LDMfQs6r5EbkbaZJqrXYCvfnrR7f6WXW1Tt6XJn3HSoFXK4hayRLfahsiXpf9UAbXonqFYCCik4xd/loaEVt35DXhThPv98B9hrxYWZi2DQPlVdnynl5JNk8aII+BF3+08srK6b/1b8FQTCPkVK5YLozX2jLSR8B+f3bgFATiQ1sKg9Rb5sIe/OQw2LP7MEV4wEEOxrv/bT5oDreGQaL33Nu5IsedtSwOaKl+HN3g5bm4dpYb0Gh1P86NHsNOZY6r1hVOCTzTXQYRSkrFLdhFuEMPZCwUy9COXamg/C5GjooZ8FZD1Ja19VuwUOLqydVbcx+9Bnb4zLFwB1SaC5Crse5vqO2oH6iQBteieec2naBnrZUoXetWzPcefzrtUui+fbHTyHXFYif8hhsJJe83pl8Rs2gkhzQwqa/SYKmkNTbU8BMTAEwp6mNOVJVO/j5/SLHr3UvczFaZl6+DG9HtL/0jFPYfOVrgqkLC1HXJILdt3uzomY9i3OjigkGukaxFRzw/qRJhBmsfMLb922TxFhSZddxAtosT9nM47GMafuRGrMMEElEahm+jSmjWZtDrLZRE8d/qiLrOsfQNt9JvjiPqMMvV3xp+4bLfLIGgTBJ2PQEEOQirkhoN96ue4LccY23ndgWly7fwjKBQGD1fwh1xaJQ79qhKlUw31d5Ri41uqcYrXzTDLlz+2eXaEIDK6L9c+7Y2EBBEbZcm+Rb3YvHi3M8clsIsmIVy3GcmVxg6YOMufDpN7TBND7Y8gfMg3fOWQfsmNBf/dzkraZP33A+ZHZ8V8BRSv/pagWov6lqhJq0gXxdyO58wUVHbiTjks5dRJsKBFUd1l+CSlHfmLNHO86eKb8POxkGeMtK2gXNp0vVPcU9JOZjO20ox0gSTcbXd8F//XHMESUVpF/q1H4LtQr+utH9OLleAk3I5+bbOZpOLx6i9J54sE8P0vD4hihhT5aUGCzhSUeNsim2nC+6OYPwremo34Gi7T6EkdxdHwCXMf8nET/qLsp7kX3tSU6fmMCN9rxMK7JZNPPQYUEDiB9mcyJoX7sQvaV0IKx6iJ9Nv7n5gxWxEu1E58Gr9wsrS+lcFUx5WSEc1fynnLKVxp80+mXSKllCFhAjPOZEbnjF6bU2h/+LfZ+ngk82fM7hbC/7d+7J2dYNL5+1efvk96ujXr5PluZs7c1SQZshEzajd4ZoDTWwXYh2vl9tefjtsvtxAP8BYcnWcwg86sl8DlM/HxlqXfeGYi+qjuiki2ALMNpBmkfMavBhUaiHkEsS3o16SX7rLL5R4AtJrdS2laxEBbjHuqp8qFyFDBGXh3Gnyukx/pbLY626z6jpgzkqzQ67OC41bN55JZuUFgKFqPFFa6H+JLwncZ6rcZGXXaVvefSwuQJwk4gMoaR9NBV6mj/71VRgEUMueWfmqGumwRL8NxDiW4jlmY67z7YSn8V3UlJ5wWRer5xfeqES2NrPAoWoWmzP7YL5h2T9mZEB97LoBYPWmcVmhaK4y039rxZ70p/WcDau67QVw7cS5kB9g8mH0vzL42S7U8oTEW7C939drBN+/3ftavbCp58rmWXA4r4PI48zKqSWXYt+i11DLzTLc8q++JWmBu2RApf08eI+WznIOcsujMQha+SpO4FK4B50uIU9/2Xww8r7PZxzef2Og6DGw7KKnLOgb3vZYp/8ldwW4UB5vGfi7Gk8ofI+txIzkOw1PL/VW3ZwVSsCMS5g8AdU8zrkcY5Q1bor9AMOSiJFPrQr6Gp39MsMSfGGZBxC0URCW7jvx0D3rG0WM5CwTxr2/81bMgW7TJIQy7kZeP+30SXf17CjBys3gOVRDbvb6mg+TB8SN/tsOe6X23yNz1JySTxSJt5JcBJjf7VqSKHO9qgCQoloarYjTs8GuguMjiQv2ZNnzfSvg34wa2w+SSEXf7bLNicD3OKt8NNmO2QouvjRb1T8xm5VYWe5HZONapjnOv7ZULoihUAw8moEgFFtG3bY9ixQpFRjO9O3KlVk6ZdVvJJsFP8GqEO8TJL7K5b8YrPAjr2reGAdKYGOiS9lFyUs7CRCp8Y+wNwfZjj+zSEkNp2jxbxbpryTtuCMMieFRagYgrkiSV+qwAz8cEntYeRDII4SHPPy/V3HhN9odPCWQML6AyoC9pgJs9x57HwjXEMfhIT4hSYy8QMAZxo5xyH4wKuM/wyvkVhyAn1Cw+igXw2x+zpy6rTrJz7q7LivgoWCVwCNLoDaFQBAawiQ4Jq2B8jqYjBEpFYt017XmbuIsBTRS77X41JXToNy/N7+2HGon6H/Ov1Aa7QCT6t2tFyD3/Vkn8Q30S8FdL9ulIxYoCBulpurNRoME3qiYNDHyVmw5A28pjiPeuL7HfEEY0Di/r4HUK8zUW9Ctge0wedz6jiCgPp5WxELMaVa7wkFo39cwBPEXsxxbobLU8BYRXay+mLEe6AlewHeUraVB26Y+RrT1QzkppawZLzcU9eGFMHz3ebFOf1iQEHp19s11uBh2A415KYXW0brm0fydzBnGj2WGMT4ByIS/7rpFNnAxxi+qvQ/X1/x7bpvBTDzuH0THBLR1+0fq4vX9NLr5ysqEUENq7Wk18h8sDHirxJCJRaljrC0ZbEuCc8ACUmX4QTIgIjZTvzh/jinq21O8HPeNnDRrS8vb23Xk/vnMIHeClzICo2CLHAFyHOK9MBwO7EBkeDcWA+Rdk8O7V8imtu/SA0U6mmugk+FNeV6SHP56AeX2JSUo42WYsYs4yekDXInh7BA/2JD+WUKzIdfNuSQzdGUwywN0egVBXkIBLA0vB9YszWfV4w0Ar1omMXCJC9UhcjR72jTdIftfr0DOI+DqdVAtz0XUqtdJrjZg1ztTzWYwQ08mYclYwl/BFCbPxtIojLhHl5f21PJpaUIhRsY8X/o0M7mvjMhAjdZ+sbi4KyE+CJBcxIRGSgkILx4DYSzgGrwNCa03isCAp3yDgc+7pRHxNWofwFKXvjZBWGI/qUmx7z08Qt3thHik7ZrP37JbkMFK4rT4tNHMErJGr6xTKz/CazWT2RXuQygNLe4y90rJDYqzQXUrJnjXTN59eJoDs4tAPS5lim2D6dDbVR7M3SgwN5jF+y6WostzJ9zrItBSX0u0qPvTIeBA3uuH+XB9LWPJRxOwM09cQjnmu1Z33jj78NKF1Iq9OwJa+WZCd2EVZQ6IvQ7wMSG9QAaA6lYr3pCWe2EwIROB/eDn2E5gbhXviRcMleuZwQWAo0xCe355bO6mQGgHcbSYSvtTvZ01bDiUF+5Gc/0aMtVir+FK4uDMj9FGF9XhYf8TTLPyQrH/kqT1HYIQBzclp3/wdul54cWoph1NigYc5Q76PDH1mP5IZB/W0dWCS9tTC7+JFfO2e5AOEyCltCPkapqV4nzCbZYtwdoUpbXwsxB6h8MVms1zt0mI/fCoAJvckvUZmzoHWAPxVANIV2vcmSH623DOVOOt6gMaSjyelsJDtZCN/CbK8SKADXbAQtgi8155Pve5Nbfv8M1MzckoXgIGKOisb/UlsT6lXZpKRZuHX8BAKapsz+wx7QQ4aEoLVbdyl+LoWNgVLxzt+bLCaIJRTgnsONYJrqQiQsRalBrqc6Xw0NXxLALBHBnmc7V4sSwOvxOYg85BW/vuDz3b1Ts3jjMfERSVaZ1/CEbA+L7PklZwiNIhYnuau7IuJAZZd6wHoVwt54IyDIalrqcmxetQJE47JQXhMO+jM7cuRfbqYMrajZLZ8vaVV4HUcV6Z8GpWkhd3UtcgM8sON4d86YsCiX/OY51dgC6fIyY51iSIr86zn5yF2Rz1c88vXsxwXOdwT0LgOfmLOJP+OVf9LxxV5oP5FzEHdPvKbnOk9jD9CVI+xJ23/jV9GZiOlpF0wTkBa2yHaseOgSRMs5sFos+CvRconHYtXUCSv/8Q7r7TGhi8izvkNSJRENee1zmuRWDbQMkUTeb4CjslQlAkB1hC4yQ6M7x9VkW8jh2umBKcmppcNxU7lCKpAbmzPsZIavw1GciCF1GlAGT2HZt37J4LZdK0pblqOtYOgbvw0iB2cPzrMhjfkuBqmIIQEv7gCzRrD7ylNnq104+fxyVbuhSEXUCBYU4TINd3b8bXDhnUTtGo3JiFHjXcSICS8FkuQk2ji40g9jMgqBnapu1Dc0vJR25U19t6y2vs2zr82lFJRpJBDUToddBk+MxK576kOv2MILhFUjv+YFOGIp11QZiXkQF7ZxiXrr2fCPG+7Fvu/bDuzwmno0b80k/ZxydO8Oeb0nMZlah5J5EhBaOe2EiapdNKgckJJ7ku4SSqQfv8ZzWFGlzOYdPVWSPWDCaQxyUJ83n1oC/bba7MHjJY5PrJ76xNN+febnnTf2d7YyvW3G3QrLZBSeJvXy7vpgDcwbPuLdUmim2gY7Ec7VNC4fBDlMJuu91xtGdAdqbgLXmFxkQxFekhAkgwzzZDYG0LN8+4bkrAyUiZuxMesbxBlVgFpTuA5tf2ibi2dhKukxpxF/CU4g5A5u6cwLSSXpJo6iRTANBOVPd1da/rNpbnE+u8HJlt2c/b3o4yyhcOFv3tQgExftY+Bnk2lZhpEepA3Vxy832tLZf0e/iFip6PzMHTnGkEA6bu5Y6X8TdBiwy4yVtPDrOcoPxxlO0hrixVne2ZMAbTBX/gM3d8AiVVtezGSpY2Oym0a+NNWOvP6msuIOxkk4FXeRJ9ucDyNOexqfppg1kYWBbo35bNi8L2ZWXbTiMNWw5ObhpGGQUBFHrqpyEq0U8l7bsJY69ohWLOtFNUiWyQ9sb4TbrLVu8u+O0iNyBfx8WJsQiUtwNmOXkk/QDKJb/rLCK2/dMYWHHXa32qEFEH1Rw53FPe81/0c/Cu1mUB5sV7Aph8eme5DN4bAXdn9DA1IY44psB6zyr4KGZbmOiuusYbp+BMEJmgUaJKWGhsl/ExEEFFJ3czNzN0lU6PM0vkm1F3KngcD6l9EgbZFbiI3S1FmS6VdrlZ1LKk9w3ZrFz7KF/I1/yrhjRW38dEEAjUmoRQT2b6xJiKp1ceTg3N2HI81TeYMknC4bM84nhzTXIW7Ez/DSLefGvbdjPT3V+QPSFhoR/xvEw72CZc08RRoFdD243tEIMdHkZXG6/baTOoEOzo8VBaGY3A0OPSYJCqUVAu814QddrBJbCe3Rriykkhu4okT6KhbAFQmmeXd6O8mF3bvsv0N0aLRsbqscDlwIJzGGhbBe3EkHF4pqnKFUoWVeGl4XZDzkVLVykjOW3h2g6wZii8qOrFndINdziS/PpOOCM7aZz6hnY9YX+E8chvH4ooTJNm3n8SBfhaFJ1JitcSUyrAKfFqE3neik8BWavQdihoQB8ll6D6akVBR15Oo9bz4qZtI8wJeHnvpEdRO7wbZ5nmfihObo9dcdhqiJoAb8DWvBu6Sep2K3I7llgfdRnrLDvvJXE98BJcKEXfIb/iQO+i7yZWRQjjOs26W2ws9u/wI/XGgeJHyumEw37vhz+Ngm+K69h18DeM/iXvEozIxbY4T8Y4uMcXyi5QQLL6SHWUbfFDN7QsaiNuaLSmA06+KmkB+qzp9Zmm4XWjm1zIG1Oxwkz9a2mqUvr6Uk/i2qEtFZukKGuvaXK6x7Oc5St8LZqW5MJeMTazDN9ZjldB2SGluCglVbGMnCS8Qs6fOH/hNJCFtjaW8e3SfokDBmhCnYJUEUiWz+Shgny1wW4mpCHIOIjFBSCdaYnjOGLQFZGdI8le/B6zmYAsvCooUEmxJek1LQ7ZHDBzQBXZfSgtYkzRl2NJHdMNFdgvVugXtPEq+MnEsQfRy8uE5sB6QuZHrwvqc2vu04edIiXAoKsCWMqyVUl+ZKdJrntd8gHWtkDgeU+pqKG8zGj5rYprRx0G2XPgop3HQ72PXovkB22DZ90VxIN9CgpgLQyfWpjJXz/pEmAmH5D+q6aI46KQhjbAhcjhi8b/8Tlz0asUHFpeIqfWMc472yqJG4WqfOE+ECcRCZlzk+vsY8grzlCV1BMF6avTegim6xqbhj2cc0xVnLiJAY6/9drOoej5luk3PPzfEMTHK0SA7IXAfFYbr9sTIg4CuqN2JOI19nlVMINXrutKNN5/OEIlK0D1r73bHmyLjHaMuj6My9TDRMtdDnlcHnEvN8Q2kwN37jxBet3Hb8KR0VxyLqFPtVtcq6AZtWEYuH8yhcJRz+pwiX4pHJBNjY7a+nR2RlItVekr32FeHc/49QW4DSkMvhmWi0XX5UkbMtdvfR7cLY9I9pw44VGW44cxiAwPfyXeI9YKXMzC266PeOm6/RDwTSCohLQzW3LsRB8TSR6xfpDAqLi5nLXOCGScnTR8cdB2H9G30Tziatw2Tm5HYSZ3Ao69jK+rcY7gYK8t9uNPKPMDu4kE2KrixOP3ygWJlWaM9DKqe8YTRLQwhoGyIVqf8L6ZrHNmsv0vAOmPQyny4KGwyzXQ5842m4yCund1h1oii0TUYLM2/jD5Gt02YvQCeTuHHMlnURy45e187pP9WYQBwD0cBE/EPqA9d+JSzdGWoJnrJaxGG6lsk5SdlqV7aU3buTsxkJ2s7jIZyg0Kb6QFOeM8KSiKvMBStZ5PYbHr2m9pg0c1pGCIhkwMiNAwxey7gTmnkmNsXUuMUsanshUrE7WTeNqeMH2AMPSbLa1lZEEPZJ7Jvb8LBvCMjpu2d6jWsybaRTAOJNFS30IJCjBD3T5iNCMLrdEz84lycpoPGhysDw/Fa/liBYEcG/spWBwYd7hkHuZ28SIUBznkh1nIfKCLQLLejb+al7C3oVdFE06RUvUjd7le7vklf9BJzM6LMgJiE0KknaDZO21GoOFtA5fz+Skn9M9SOXqZztzrpJlxFiCvLwdpiE+M9exwR6gTbiim/nsKoR0dBb4OUaTyILCS5c8rSZh5H3zCWmC0HtBRyDyROMVA2Hxq3E2gGjxj/fznJNGNy5B45vTGgmsxOXmHOpsIMyvTayPV+HmarK2inJuDLbVLPbhkoRcjgZ5sYybqSJ/8vFuYeYTVOx3N+rDGVYuis7nMNjPU3pClBREKisvwK0GDnEnwbXwOKh0uESdTCANa8OCYJAbvPTHAzOfzkCaH3y4X/adZfH8k9ePX7WtKllxnygxMLC7CC0nYcj1Sp+9bk57Bp27hhrXNuRUKYuUZYymYgRXRdqTeAQL0pHqTgZQolETO/dEcUj8Y/xNZwzA5+0xndk2U+Xal/2R9NDrnDl8nJQy/qerafgsXMoryxKgjLuuaKTB2nRnjpMMFg4lFMvf7xl7sgCF6dmtqJV4V6oetW8ENWI1Q/l2Fwolgc3fA0C33QApfmMU/2ABz/VIvszTyJQCSF+8K0mLll7Pdse05imFQzQu4I2kSjdFymacZX7jDsRqGDs2+4TDEx5dRjztky8rEJQaHBJ/sVmXxvz3u00Lj6KgxPf844e8zJW0R3IPE08BJKIJvHvWIY/MW8yCCle2ju/A967PHVrvgykhBylirEjClMELHNPRO00nwj5MGWvptWk8VwSn4YpdX7Prbl/W5eQgJTnL/QUyyQYEcsU9M37YfP8ITH277cNSQcg6hZUukdT+JYZT6f5xqIs+VLexK+Sf0QHlQLGsVJvBPrb+WMjTHCbncAoqLIrVl1G39JWwviKQlAME7avSCib3ke97isVUgM95/Wixn2ff9RC55eZhuOP+eayYt9P5GldHGz2Y47OAqIABaz8qHvLfE515b0C0tQ7E2NXGK+s98X+/lee+yBTXjHAGVMfUo/IbhOdgzoKruDLtGtmv4hOTFS85JMUV2bGQgmZdSbAX6I+xVwObCoWHg0caXFMyb/P8PdXpVzahHKjFDFnW8954N1pX1eymp6B5WbEtZzE70HFr3IeE8Fv9VVvEsTwrIqSkvXOoGe9qhR6RNysDpL7k/q9iwGZlByFAKrc6uDxQjuQDU5njAXJ4DZ7sevD4N/uDb82xF93xoMCg5hnABi8ZFQ23aqkk743YSSwCLHg11KBb2haA+sQMLRQ8CTCBP+gXBjHbm9lczpe3hF2mUkISiImtwhhNPQ3uQRXjfg4oeHTrKo6s5dcqEywVJs+Ox9nCR93JuPPBn/rhWXi3ZMKc5O9kNil4t4wWbSH3z10xDB9tbX5ycMllxn93c/zPz8sn9EhV4ymEHhETHI3lVgSCjvxJjcEMf7XUEyNU4FQuMPV6bvVLCTHgZHAoC0672arQbaLUUceZ/oGQ5n7I+/hS/+WqDf5vxIEOjVRBRFF+NnS4cv2YXGYZkCtA+SIJ6vSr8RVoSt1VSVLiafqF/Fc9GSNa11aD/VNyD0W4WTHU7pT0qAw8CDPUMcfXqj/vbzXlPu7s/PW7rR9nbcpsFRBHgJa6vYcla4oV7aMflETQL5EPEFNe/Svl6HGDZBdLTagiuHm1uEggZtmG5wc5bbX1IZ+wRDdn5ZZ7v5JNbdNRjx2+12fewyOj3Txk/J71gNXe7xKgGhy8Qw8I4Ab0WzkNWmz6OHqLhp9681PKaxzOB/JTZDB/5DCJkq9Z0+ahLZDjvOWwNXymvTACaj6IVUFhPAyg0+dBp/03ry94yVYuGZPI3e0BAyXb5JnOtFC4rRUxyhwOn24iRUGSv39xgeE0jQeUhmodor5F91cjcQlNy27n/+6ATDFey/ap76VguWk+ygWAksZE1LoYJXbvANhUQI3WWBDUrIVimci0I8lLCyDQjUJ5uXxyOZ0iqpdlKlta3gAnbCvYrukn1EG5UKKHMmxmt61Tp1dDAqc5bW61fWgoxqJCannjMx5mH0VlqcgyxVZ2IbaRb1TQHPwldWQXL9DPc3ntJfRk+mnFiuX3lb8wGwJECjmBaWv9Zbow1gmyUZ1xtc1MNWi8x4AmyjB8Jo0taFZDJ/jCQfJ+MCMqkfysEtTmKFqlhjg+8VwV1+2bSV0DMmNugtJjjwgIV7ilOT8JAPTULJ3CP/9kDfxRiAJ/Utg+8geFBiD5cI4zLnLYleqogbuu24DjlX/eBFkdkJzukSM/s0b+C4ro7QZi1njNN0WZpbQ9k8RecwXQkHcS4KN9F6iUukh3PwADu2gFx2YW7+yQHjjLXCu+A1x/j6kaDbJk1RcGpZAumF8zfF9VBher1Vrtl2E3oH8T8erIuXHGAuRfTNyNxLyenHO5je+KWIAZZlY6Zqy7gGYWW4Wh3Ssp+Aooa+c2sDz7wPfzOVCPRpWGHEcqtZtpQSiYcFpDh5ZESlE9pRF+AlKGfltDUMh3P0S/75rgOXLHo0389anSn/8cltZovd5T9Sn0l2rFhPHCvWYkE2FiQLimoixm3jUW0H5xQcJIKoHmSBazFPTiULRMuYSWYy3r3wHTNRFqBF9gvI2WJ9s4dzCwrzQ0rvUUByt5SvXe5JYG/Oz9E+HB+m6zdp7X4bk7rzHZWoDkoRiW261G19SgqmHu/8wnQ19Mha5E9JErUJtIGy/YuD8KAXVTKqkYLgpbn53P/9I36OAlx5/wIJC8Txcx6LOOlAvgsYBEB+pt5m4LVQg86u5oc5VX3wVPll4tt/hPeRVzL3iv6qeGzzvye/mRODPAjP9ECGiQCGy6yLrol4nIbyp5clmepw3mXcAH0vVTeWTE7pD53sIREABgPbD4nDQoiOwtmfD2a9W5TG9aqfbDhdOhraBV5qHvJnr8/k9/j4tBx5elwvzS1lg1fTIYSWPuO6gmvYA/7cgETHuGbnVradwGk4Ys7sfx/iyZfI8Asytip+y6AydiWRdsCFQZPz2FjrnO18yJf9HJ7mk2QRmp7PT8p+VDuV52vlsWuwejDN+8ehC1XlRK15To4xJv5ssrRGB3aDbM1PWYhsfplKBgOVkVBEyAzGzScyDOiKb7VoNU58TFXVxIuSd50wSKiVcwBndNBb0h896oV5masRVGaQq3MCCRkHqCwQQI9unQRUk97yIPZQNT6Duapp/72wdb76Jdn4wV2G76Gu+ljfnRfxstbXmz3f7+GlEqa4YfcZGX3eNGSPhsIqmL2VSjKHp3RjSngIgmh8nyz+ocvxyvIxYNTRDR5bYaa1pCesgWTVMwUF1whSPx7dWu4I4AuLl1j6gC1vrgAIf42GTHThVsqMrtZ/xtwu2a8TCzhBbab2OcQAyoHHeKsx5ivj6nvWSgcujoEtb7vZiY+f2JE6u4b5GfHbDWzZ3s3JP1a7fVtiyV3fw9qd2gWqU12TJvro5Gz7pPJFIEj73rFka821AVFxsZUoIMYrsY1Ko+poQ/F959+8bmNSMkNEhTaNPwYzmIMyXoXU7kRAl5r9STUmpLwu4UUf/mKNrpq+ZRq/jLgSKGrQtmgkaTY4xOCHziGcBAX7Isfh3p1FPYStIiGA14g7PaUiCaklVDHjvYWNt/RqIhb5f7BDoY/sUJ8dddySOhGnCgc3hqmYRWqzhyE1Q1h/aSYrfMcShkvn4zWDIFNkT4xC/QQlYIMHPH2sxQMFYDJucRvCLW3dPL5TKcRxFUsXbp6k1EAT3AlwChHS/zQbfM5RK4I2xzlq/0qznDqQ8KzdbpzwZViCGtL3YUx4K09ft5a86ifa4qE3cutamN3FF3HGgYCAgZzUiXjISAsPnY5jEUFtel/1WVyQ6s96PN6kQXRbaK9S9N8wZ9Ypot746sJgLAquB3Bmip5xn0RgYjOpN6qr+IxYpn4xMjT/8SfHDy7rtKALhy0Qgqx9T33L9lHGJMTUY5l39/VVdtzKrwJ273k76jfh0ihTtPUzccO4FkuSIFr6MIATjQW5moaEiEo+iYJvQNf1yzdOh/wqTTMY5aM9rTcU3y+furvVLyd+qv9xUy+RBXr8FVrFsljbW4VCQ71TZwhhzPuXj58ewo25cRcMhrRpXCwyL5aLC4GqBtRXAuxDSyXJxP8nygIEPlAYxCFjNHGOb0aHD4MV+kzDoFEjTptCMbjuetkOJ+pJ4q7JvWBG8YAG+jYXnw/sNe2vskIBGzCIJnpHQYDsQMIMrIiITXtUGVv82yZCGLedFP/HbxPYwVK0RwYE7yq2MEU53ipGthxGbTwr6AlsZJb6CK5A/MCx4lx67bVSkgu8cNCAY67pqhaWFOpQUGQ5YWFyCDWRIlkEGB19MlBsAsGYMTuT4wQbKaIYibx9g4hmq3hr/hbspgr8SOU7VG1rtc1mVC/ZQ0kBZFKxrb4WtoNvQvDFguTctrPm/TxRcREZRfG0Q46ho/C28ZdF7k3y7CU67l/SLpzR8SKwHLXFhdkNfn7txjygfReSnjZNeYQxHx8j6uuetkUJY2wXyYvUBlI+9imcRGTQWZn9dKxlYxJQBpoC/n6xSaw+Jyr7lC5l6YHsMJBSfvDFKa1ioVDbQSVIBeitTj+G7xbnV37f1ZVjyhGHdnPGz1+zQ42MgIq56C73pp/E31ixzNvBiiYgNB4QK+PH279EeFh4c3b45VyVIWULoeaxYIi0OROz0bF5GxgOrm35e8ixkOE6zFFalDE0ubA5Z73KQFgAw4vre4RJusLVA/gvaex4VfYFW/pGd5MKt45VFzz2epG+AH4dnuVowdCVbBXCLWaJXq9h/+0r1TBPa+HJqCjXwo+ltZ/WPAI0xYgEKoO/WofXk/eZ2Heqzz2uqU57+VFMtlukyTrqtgMhCWoiCZIMJFxvv2mZWzRdOWffL+02mu/orte54HGlOGDVw5MMvcgQva6bq3ivqqkbcv1iJj079boTbH71Z6mA5mydIvMX16NII9ab1pIbtwKWDJGotIBknVTzCh8/KNWCQoxKDcOqxn8vKJulDoNbafIcS4RWemgI8PAlRC3cbv0fbcFvZr3YQ6RE/gz22VMEPs9lcaevtVUyRLKxncwPPcOLKs1KJC5VzSuqahzE6rc6Ozkg5GVMzlhgTY7UqZ+GBM4sh8jacEmeXsP6xMoPeVG921jv0krfMctYtGoOmIXQdiSy9BlZ4Tbg8Mbu7X5PU894goYcPRHbZi/ozu+TLt4Uo1NtXRfP+qmVCEHScm/t1TD6j7FNMY3vCKajKl8lnZSefPRv5zgd1ol+5ng8BzUCyDfUr5fGdhdQx/Nf/rfS2ub7KgTxx4D7D6tFpXN1zn9iz+gIkM1zUjgv7CFIir/Bs4Iyq57ZJysbGnhxAj043JS/bqXytNaA4TjGSGzLN3gsz6QHZkhQmhAX3srK89GrvCO2nbWrnbtXvkmxtkgnooEksmQcB4c0TVok19yQ9iUfQ3xBnJIKNTqt5OkweHUqCfuE/Dq6N0TWhq9R76j07SwZnGdRqsK6tFICf52VXtZ2L/cWHtkYYBOAeaoBrnUrjtLuM7SLUvmV3M5OUDKtMMPWyzsFb1ZT4YHm9dNfK2u9oXDLrEvsmE5mNJZcXBSK2p0kFWNug+pxg5P2qUJhxMoLkHbXFhhKr9QAxTHywFng1K0evmC1HYvY6MdaVtjCoWa1kg1+jUk2LDdrHDaUP+R205XhLzK+HQqFMd+edBnNyfjUYyuK14NYGmg8TYSlyoWoieiugHbmyIy5lvZMBGa/bJ8QeIiiBU6K0QYEOw2wAP0GQq2CVRE3uCGN00BdLVE/Ek54HTLZcXs1DFxfrd20GOqwSi2/RlAwK2pAsN6MIBGpVN9Mzcrh7zFGUVNAWXVcj3paW95ZJckHFrCcYtBi66d9SiiryqsHuHxLMSW/5MySOckB1veqojA1EXf8FG3kTaVxbJbUFnLLZ0N/g0rRX3E3vY1svn44UrbsJSiPYUoCsEIVOxir+R6C0QFnCJcHw/bP3qay0BaeI8G2TZwEgfkTltD6r3hVpaAKonm0PwRYzgYnqloeZcxN5uEf1l9mxRktmG/HutwLBJBhJ2oJf2q6NO++JDfMRYNFUoiKqrB3WYPNORC/UX9ZpiAUGNseby0B624pMMIpHmEXVzydIbtKXckv/7e1fSPXo9E9AWeM5eaFXv5vUcj5YU/uaNObs6FwYttv9ItveO2PeIV5BkXA72PQYw6rTB0oSjPat+qCzmkhmHWrcjnp6X4kd1JCwMJ/ivZ72s1DYBjdDUf0hbZ6HVLU9QH70WasC7Gho+skhZ2BalrMcATmB7OQ9rXDDGjdsSdFK6oMD1TkS8rCJogw1nQj5LQHwOap5Q85peYtNjAFVv4kU7BCuGYiK+97N/x30S5M6j/FZNKiynIc6eY0V+q6nfXoHrASHC8os6ScmytTl8d2isnX94vksU1+H5eNVCRZF1kor+90NnAJFhqqP84JHO2Hom5vdmX9mlxm9YVAFJdyRbMHO8uIcsSKNo8Jms+LHWlbjlBfhmkmtFZrWR7B/mbFewBiiQcUxG363+feX7O3O5v+D6w6RNhDcjAIUnhSRQgyeB1LsSU8LuWXKsfgJm0PFJHN4ttJ4gcllWchyAV4/IyKASbP5skzC49LjUH4cXuMQxqzIXSLNu1UowyiszOZnuhsYq4Sc26skjonNX0bfAkqwXe5QJHcPWUXThwFCec8j8rfg8fkNXPi06IWH3r290AZWV4QLIkV5Khd2KKd9/1qnMbaSx0SKv2FlzdhI3owxJK3MXd7GdAyQdR4KYYGP+NgrH39PCDATJXZe+/Ju8u8zm2QFPe0F/IplRxnDYjykyC+ymaK66GwQbXdce1JNqpp0MqdXtKCnlFIKR8paMJpvYF4uUfJcxgmhE02JEDseg4M5bE9HjNtj3ZuQtOTbh/SOoIV2vNE0Xmr+l+AlDClHxFQi9pSdK3Z9MgwmYZcwiT2aFTndxTPH/hUTBoonkYDvbg18DbMfbvCuhdYSDh4vtbIO+vM2wVMdI2cH2n0Nwv+pQCaA2tz+COe26WxHw7rln08p/2RSOYe4Qas/cDUHBSqPkoJfos16V8Dxbxjp4WTnH/k7xbpbL+9Tsq96Hbzf50IxFE7JcppVnOqVuLRSIFM39N3v4+Jxn/ip0dbIotsE10IwOT7xScmYkyB9Lxn1lqpKA4aYwWmF0RkzVwVr8RmgF3J3HfR2urzHdMEta0xUBuDCNYjrT8NU4dmEueL4h8oY6VzBiORo+Ogc4QRqnm5qD6vujy6kikhNEan7IiBw2KISgv/jcgz/QYR3MRaSJifr3QAUYEoJgES2Xv94wzsmnvDWc46/TFYKHS3Cm9GhOdJYJwU/07T1E+hCyp+aworjm2PiVUVJZGtSp5hy5ocLBgVoGgjvOPq1oVudhDiuUmbGG3DfsXkKDnQD4QTJDRO04M6oiGJvJkONMH95qa2CeAHFq04VgfXOkDe7zJzm67uriQDDy8FN8pJsOGGk5ZGMAu/d486mHOBl6ij/FEIKV59tTXgn8rkWawn3AoNqHY+m+vzvcmJw2MOhpeRwKdjjjPlWt/8hUZ3O8maCd1Y9+kAeZ7uzENyOIB1gkKDvYIXz5jWPqZyK5Xk2pNnNhhprMKzJ7CrMkJfFcqPE1g4jtOAJcLrsQNWTRPh6ZdwVlOEzwAC1gIHv8Q/tadbyuFW+adRrUrUwlbeVNpna1Cwkqn52G6sPSLUrkjUORz7rFI4Cuc6M4bnd+OKfsVkB86GElgcbtjJ5h/L2JSnp1x1Q1+shInHwvWJe3FVFNMdH8oI1X2wFxVGEUnmp0Ly9w5Xaxe/vXKCufK+CiNX0hJqhRZoX/6GPAH0Eu/HDRBBY7BgZGsYkai/GYWx+wdhIrDP8k2Lwj+pq9GiNgICuEzMNOSQjuqCzMngfbWPu+LmskEC0kyEoac8mNpPcj90guPnYgtgRRFMz/skSym0O7pjm1yOOpRbfNaRkbf0WKDM07+siMyNTp6/NFWIEMgQUp/YRV73JC3KsdENtsNB49tHVO/jzz8XguLatpX4GtGX5zC6iMKWppfrEt3e7Eo6XX0dkkGEXE15qngGEEw3/OZf2pEd0s0NhA+IS0If8M56LrHqedsWdZVYjaZR0LF88lgOYlk6ZRaK0sZDQaIOFk9+WIaFI+ulg74IDkcRnqRRAoBStJSS3pKdbmQ72kdH4eQJ8kj4FfaIrNXqCuWUruQYuDaEOat641I+t5BTP99otNzSO0IHV/nhqXu9kXKK2Hlwpi3lWyYK/09ZTMVFjQ3tGbD/zGciiAy7CJQux7x/KL+811/1HYty4nG7Zp+DNo2DfdMLHAEVI8cMqSUjY78ltgoH3lea9EGO8cB7boK2+DM80IBfXj93Ym/YIqbHTeuRXRgib6oUFVpoOToIz/ZHl6JUbdWq4yPGklqPpJuDDQO8IvoEFZSYy4mYrAqeMaPrIhMeaPc0vSSLr56p9ozJf8+ClwGcL/lkqQYYXBpln906LHsDUj9qL2OoA0XXADQesraVEjzdgi046Wnfr8ShYKXWaDqor9Mm5LwObiXnkNq01gedq76QjLB+OpR+6TyMEf1gwJKqtt907EefeFFnjdt/6h8bXRn9TQlm/iWvgGCfAjSLXMB1YCnJOPDpyWN8nBCYhSCGnfLw0h5ca57EYZBZ8eu4K/vY+GmAplaUGi6QRpNx9M7QZc2wqblkbG+qfK8g14Gdo8+5yV5YD02anlpjc0yYalaUMpCG0FG/bIvD3wU1Edi4EV8zpwXbTt9p1ajZ6HmGlwEwFP2M8FSeCzHwlNTJOATi3J0UzZObwNHMj+492zWsY28SETBywh6q6rVMwmSkA6ZnX8O0MW0qKuIPsSDitanXcB2C/7529Xjl2xw24FYM4pN1m0TwfYr3zz14uW6iQc6juQ9uOsEOINfOQ3RZgob7pNm0F6RPAyyFasmotuPabN2fivvxZr5+rAVjWYRSQXD0gJfIYltE24PM3fDeQ0/uCOEIIYUINGhMr6MHUPKXnvAK88tYCDyhVBQGroMHYs5vcqb9+682ArS/sYI9KIPqM9c7KqjB72JGUTproxeUYHNcP5BjzVRzW1ug06oOt0ckVw6qConjmHnvZuXyfd5u7rLDvIthVk5ySyF0ogIvYK8P5shgDd/nAv1yT16zWt0XHkPSPCTVfyOcwps6FUIy04xlFL6kK5gkPQ+gN/G0Iuv54nwkxB1pFRXVMTjLjKV6IVY2xNlWGFeE/kQB81YvIayS2BV+4XMwJZrPi1zx+WaIuLBHCPBYbkC+Eu2PSlfwzsveoIkN8akwXiSxgk4ZoYZL3/+JAjEGMT9BwbOE18Ui/EeEPZb4X7qa1J9Qd4r9fiRDH/YQfk8eXq4O5COJuSWhmmlBoden3Q75uGtbCbFxFU9CrT/sajxw7rgCqlNd6g+OrF/6Ewk3tI0tOm5vJ8Mmh1kFBDifulKBESSuu9wSmqXjUjfVad5aNOgPN9Qjm/abClKxbmLNia8A46/2D5EtES5fYxZh+rOqckEeukkDSB962CfGOtNy3parxGYpTQptjfpKWOW2e3ZciDhHFcHWzLGWpjeYGFtiFniDx2Kh19K3i9DxwU/cAdmct1RXk5Gevp65LzEZC66qHhoYP89DfzTVc1yUqyYTKswFv3TyMUoF+jYXY/i++mj9l8+mh2SirdzM1VNkoMqgqxdtYNoeg3mp6FL1NTmhioJV6TL7FO9BEDT9i1wzryZVa0WEvpWw/yk6xR/5xd4i+huqVye3iwfwNk/O1cipeAXhXFKsPR8v3gKSNTF4zMG1wwo4mhHbpPtzGZf51u4/sL6ijPJieH4saK1zboYoZufsKoqyVVgEiBaYwX7OxocoB1fdlsy9izh89U8ODZLA9EBM6osg3KgT4cva54EtablqpoLRfCtRSZ9TZCis9I8uaCRTuHBwinWSfjBH6NuaX0MbpI18muB6PhnXiUIHYvfIqB0jZg/RGBsOIr4hevZMBiY3wGu5EFzcKWYBgx/yCNS8h7OwFZk6yWAN8KWzKbZJYJDFDLQuJqOjCczCqAOemt9GL2UmofnmUSHn16Jad/Hg8SO9idiJ8HPiMyhtOc4Trf4th4JMejbTtyd5zT1FZL4Yf+0LQgV277QUok7pI5uy95xsorgCd59VAiTKfjoxnQABWy6LyKjC23j8B9FyYEwHg9dv3foDOYw4e5irGfGuJ4bdlp4OSKYjRtvbfZjFhmJXuU2p/jz4aIi7+BtA2NgeqGY6x4VdQ2dnNTfefGIqnDWs2AEE0NZUsKQjNlsUmO2WVudXiKn7qYJDH0HbThXGSRe5G7SjiIS+f/UVKzIux53dj19HM4NckhMPaO0JxfPGZCfmyG16ByQHPqNeZtOkyOK+UPvlfOw4SmwmUs1kmRWkFhXRd7s5bMsqCml7E1STIjpJsnJsOBJzFU+E30iv5p3N4A/dzafzyqbkCSclvO3H1zbI+O7shQa8fTRBV/BFkNWQCuc2Zto5zjoJuUIuh3iXtei4J+mEYf6yi8Kth+DMMPBYUKZA9fX48EXzYcssXiZN+1sY/gKoZkYvNO4ssrjGsb0Ahz3IlEpv4zfc0vL+GEI6r4HaIc1dEFG7qlRXn03sMaV0PHi135lmA9x6SBKz0pRa42X4s9hwQUbeOmqV4dci9g4Dffo08OlnyoFcVluGR4o9QEu6+8Z3IhRu7PT7gYr2nrw4wJEXPtShOEhAWIh957nmWq7eY36W4sKB3s0wdID6cATeOZSoG8VTGySY/p5Us67PyogSeAX3rH3vkR6y7BekPUasqV/EHIw2rbX9RdhYhEloS/0c+icM7rNfHIPd0xcbLiSLo1lvBofrKiFG5TyyLXLzQq8SP+R/FzRfsYAd2RXmYXxm0RUiQF3dvY86XTHBk5J9JAIlkPBSkJRnTu1/OpZcvyO446M06plW/2fOLQGGMy2BxdqF3aeyQn1sigIMKtqF6YPoOXJK80kGIlztaPhpWLkOHPbVtCQ2ME1wr23B/Qcf5wMYCtTONtCWaTDnI1j15IAOrXQyDcZMSAXMnXMkxCB2U3uVa6j7bPC1pZ6qZADqnb66O+oLKyUinyA7LMBx+M6vwkwdXN6noQeMpjoovdT+y1RbTxcKMb7wCVxzVbxv0D4EaPZsmqZBl8NEWb7MjeIGV/MuExEJNxdHDzJYlkmkDfmWrsk4aeeQ2TucBROVOuImBR9lc4AL/4cPU0hd1hHh16Z+SGNf4HSVVMse0v8MgTR7TL3z1S/tFkuWiyxoBfjm4ryNPj4kJpEbE5EiYZuy0PAdwTmz9vJBa2SWmP/1nL2CZ6hBH3QT69/XT8FqgFVLKp19b5Vwl44FGGB3HrBmwNYI2pB+1Zk2GPyqdUPjb0JeOfWgl4gsvaaupps2NqolU4lFl+nWPMyAhXFsVcuK5OwjvQoqWnG5j7fsO4TFNFoA5No1XNTlyGDBp8dHlpnanB3tMY+z5xlmm0yOnuuApdMFneVX12+0Bmapk94iRJp+FvTn6Ae3Lmi5AjUWdlyaYr+sMe+JVw3/JEiwuIDqyeadOG1YexmX3eJny9pGqbOmNJeGc6XjJK61ckcPhaQu6TsDiQz8MDK2h9fagPCpKzB6JAnxZCeOxMxXYz8dnoDyC1Ps4dMylBoEtGG7rj+gQTUq9RHi/m1ubbWLw16dJ8iCfSUgc8clni1G2K+iOkGpb5WZ4J1ZX+q3kEeDKRLlMv65eNuxElUhIsxvDOJ+UYBH8Znvx3Liao3TD8xJy1TV9YT4s1geovcwkLT0DglVvArJK0SnYzP332ENyDff6IsDM+w6B32CUa01gU4S/Dsx1WMD5V5JlNdsbzoUNJn8l0+DsPViaB0q2+4SmjJVr+jVXDHrYkTcsWzjzL7gG8ysV8CrH+emmDuDY24AeGwa7mFH7S9YHWaeSUgCsMchAMzjzPDfbJIfwZ0HoZ0a4IDq+rFQYOCksT0hJIpDsw1vcFApbpD3Vn8AmNyAQLtctAAcWPn0T7A6Z01NbvQ3Ows/7NZpk2jsxcld7MhIxWoiFtsnQhmXfAElN2+bpOl/dOVWQ7dNSExZgFjpXgwT740RU5LUAR7tB1y32wVOyWpJmFbDEoFs1MXvvKMIYTuvaKgM8xNMBtdG2JZkhA0PCjIFrNNETSRgMSBEFat4p9CbR8RPt/frLkbFrDqE3Truonwu5LYxcJEXfv8ILkMc9m+h9LB/Y/4kkuPPSlRlCLn+j9oQEppSh075SxB4SsjnnFKKbqC0RJjhxtxMo4MaIcxLXYO7ZnnEOoYP/92uGEV8Ssol9h0KgHYdLkaWQ648hoc65tkLn30+d3907yoeG7OWon5HAEEvYtSsoKq1qvMH7avYaN4/BncnC23Am8rSH0Pkc7rjAKbkcB9G9gJs6X+LwylLQ6eBErgBn3CxBgf4/0F3/dn0/QhQbXLmqwYCW88uVMWylAz2kUkl8wqD5BgEL7JblFCzf6rIChS390hDfj0AkiosCMo1cc9wPWipfxgDNCdA18hK5e/iniQXr+WuVMoLebinK8+sVUu+cR7TuKzynSjl6akT3mMQh7+igxnCE1fjLqnlNAcmYx1N/uCngZPleEWh+n9aLBZXa2xtMHyrK7dxrly6E9x5CI3hTmwo7eZxCBPoLjVOi8isU9enHRhDErUugKYZ3IpMkn7D6ttnlRAwMRJhTOkMrSUhxAO8M+zd1XrHO9F976VpqAGGvnWlv6PgQmlDe6SIcrCMn1IYk4RDqcDOaPe8jeIFBfuPyYQQnPMz034Pg0iIOtPYae00sy7P/vQB4zPSx6N8OkxFGr4p3uwMGIl6cWz9UXpKgyZgx9CeO28Ye0gpP7b1qnw2BxgQWgU4260WPas4GJawS06TFah6qtrKqitUIABF+8ITRlzTfN9HGkjQBTPToNLxmbuuk7z9zq5ttkJEnjv6WlRH5oh95AAuXeauWPrI309H7p+htIn5XmSeHJjmqiBCUPTMDI5PHLdDr4lH5BCSOT7hFN5tXvrqYbXMPRJ6MsXn5QF++vbe6Pdi+Wk8es2v5bsaau353P7RHEuFUdT/9OiNPwQBWVd4mrglO29gJYmggnlcI0Hq0f4n/x6oJS+VYHQ/wAMP5kfwoNPoJ4PCwPzLmi8fw8HQEdERhoh2YOKvl12NG5f0c18YzimX/o9oKJWEi3LSXl7FYq+kQ6Ze58JCBapIrviUbhoXTEj+HsIQ/LBipis8GkJxDQQYT9Ndbi1MHE0EifBvXBAVO4urFX/I3v70enw7g7EeBL/zMC4f8ExyHieMaiSNEzPI6h23ojaHA8tLr/Ln8AhT9fRRc//Jq8SQc4T7C9NS7BhZ6VLFyljGQuT1ft4VUv9Yd8zd0bCRG27I5/mYhG4BjyWOS6EpAXzAxKBsgld7g7JMTQJq4Slgd+vS6M0z9CTZS1MxniPe/IZu4Lc3R2Hi2CuRG4v0GOjrQgak2L2vo/b203nACtF0EIO8gUwXv7CpfkA+sJizXSDxQG8qFdDWKgP0XGxj6HC6K9nTcVczXT4xLHNpoFLjuV8OcI5t6GoVsOy840RZOW/FmsA+gLxVZXFK3fcZpg/a8Unhoox7nfKQyZ2YwgB0cUdkOgT1/HwaCix2jjBXgF1gVjt4N7LqxSgknVzH8t6RrWpswVRcXI0T6eGjAx8Sm4jzpe0t1vZtHCZXZwNqrNwoU6KXv2mzM5S7/4SZSr6Zw3WJy3+Oq720DD+vbrzbayWY2yKOQjdfxs4bnlyWAU06UNrhP+IEanm4b1IqXg7w214RBu8s+wqPqaH0EJrDjTpa7EnOIenh9T81NIK7AWbl621vx+7+jGhFCtUF1H7rxREQTlFMhk6AuTxEEd6yZ71aC1T8fYBWusEqmwrZ4GdX40nzxM50ajUdznM4Ycz7Cz//N7vDI7SvLNBKqJA0ZONA5HEpCjO1LLsdZz+23G6d82BjgQymHmXiMtdRtZTwZUjUlQyvWiAz+L+mwXO+Q6yw1gSGBN6AjiN0DLABtLHxqDjwlAnnEl18jwrMuozijk0UOY665oVWq9i5ez7qs67cYlBMOj3vn4tV7rNBVgheGeuVkNlwJ1LAJoAXDgYz87ssNl7HRqDlfKCC3bCIZHMCPEljU65qyZhFEfpdCGsM+6mRjpHEpac5gXitlKTVR2SD6GQHcOOUe45patbLIo1LlUEOU0JszxoUd7QzXe7t04Cql/BolAgFfOSw6eHtmxto5K87haFrqoTVuQ0lhJK7ru1oPN8gbwB9XJYnW25GVK7t9EdSmD4OxbCJjSa1GXnYc2fEYyfaqUcTT1HIoWmR+xHjZinlYCvft7Z6foB/d6KllumQnxXJhJCCbwnC/Bt8QGWfhwjTIF6yyyPoqXQbelLcvSmt+XHNM7/0DNjokSbmJyb7jBbdDHg+V9nffBN4w1j3ejrdCmb6oN5i5idnh+vWx+S1QRm9LzP3ZZrQ6GQjKDR6FRJlodbIyCJXcPqO4G+uRH//hll8D45qGCvisbqX/2HvZtbyh1mbjFOFO6p6iMlw2k5X6QQIts/db9c57+0ELRJo9+ctnIB6Dzs/4kXHd1w/2UoiMQcyqWAhU7zo+klU5gypvWKX1X6j85lmuRwYF7bvB8zj8qwdbo3Wr/mSzP6TgHIQ2noxlBotaUi9vNJKgQCk8FKSLE0+RRJPQrnN84fuUBXQKaP4Z5gtg2xBkP5MlnKMOXUHpxoNc7cbPjNEeJ9wyYTjZYy936qxym0GhEA28gpXh45s5gy8nZfmPNLTbRV3b8wZ6M2qInR95tW0MvuooYBvXR7/HK7oZdyF3RYJacZow6ltw36QxcrnF5nQ+r7qrHK3BW4CWo38dLXKgJzZSH/s/T0PO68yWVrhVZKbXh8sVlZp6mtLRdMowSPs6bBBx28D/r23VuOb47PCL+IuR66QX2fCaO1swbUcWRvzCzAqk3NtzFD/A8aXjLJGcd7s5oJD53fCipqP3mv0QRI68CAU9XE4df5rL8hKFsRRcKeGwfSZcDCMehYcN2VwwfYIO6Dfqp46HUvSI9XBnqHhTLlrsg1D7n8HcWJlSQCBp5V/AfNIj6gpzOeoM9sLy7TVrEwKRRi8YUrHh1pIAuCDsMC6TJsl3c3r2k0LAHUiF9JJ6+lbnJ+UAmb5wCmjWk/TW+cqkzKZF/dRu3wpMXRAUhC4Q3Z61AVcbDxY32FABZkGbwqZQA7enqkMiWkSiKpU5c1b110UTByeamb0JpsBunjG/+gDgIWwaOPQ7EwKvkZ5D7RBdz162t62Arx0yPmwf4mdXCQV+dxAWlWEF08YLfnS44QB+bFhU8VGrhTkyVDSmB3+Ezwd8HdzfX2JFsH+hJk0pxw/vIyD+LuOoEc7Qt+DMzN4/JQ62yXJH4gfvgjm2/yRpDhCmdnRGEu0mTzF5Q3+ds2kcCi/h0cwP+S8wAfh5KzrYNuX/24mEBbglp53N8mzhx0MuTaL+f+KZHV2QB0fiDQL3YuCNClWZlpYf+zJL0RozwlJyd545ODbEGf7YCkaIsQkJZ/C14gR/BqTssUf/JeWoO1cEs77SYCevyVZgi/jCI3NubYlcFwwp57Yp8wNNRZAD8F7MXCdaZWIccDTJ4mOz8RFOpdnGv3h9FjyMtKDSUf1apQtrOgkAZR85T+0ia54lg/kc5E+MqkU5DFKD6P4b6m6jZrqLk1Voi0JWm1jXEF++0zNLv3Q8lC0LOTkaGccQorop1z4VEFwl8hSnfm8I8FK7rASZjUg+xwnmaAO1jsbfyZ17ddBKm2QTjFMMpHXHPwWqScIXwU8R/xEqAxwVA7UUip+oLyae1NR4WbiLOIyaO7Vgt5/+UXl/TnMPAc8TVjHRjk7IwqXTB6gjKEY/pXaxvPOA9fOz+rK6az3PDfMIlPQDCyaMRH0p5W5U0YQyORLnvHcRm6I4mwYi138RoX/AGySCXNRkgPxK/Ie8eOLT1QIBBbr2cP5MDDOEiI26gSaNt+Wdi16pn79Y73KIIzu67kadXqLDWOObpp8oQJwFLpvaRQN4/yU0Zd9lN4cC/3YhVHxgzHAdV5cBDVeVUFS21oLOIp/Qxd4kzDUgiOQmh/Jkfr75cMo/oInwP6E70/iTdw5qgjMLkzvN7+yqrSX7ogM4l855tK9M86NOoPE2TUlmAsxX7pRS2a2kcQat2QfIAPtc4w9I5ObmeSD8pTzeQDa3dD/MpOldjdP6wbQo7rgkIMwPptl7h6qYzUdkzcrhj+MFGDJcAi68eRB7xWZ0ce3L7IF443DD+hTzQw4+MvwsflinWzMUzpmpECFOQaKU5ORxs8lUpuVewehgn5N3j4QfEcuUNFBHaITTKISDhONA0L0XnCw62YaNfZ2uH8w5JtfeVV70aR5je1MkLPWlbSbK3ZIM+S+G2pS9dsTAaUoJAvU7MdEV4mzCuDBerAte5qUj9G+uyVfWneQ+WKT9mRfZyTix3VR5iIGzXad/EVOQ1YeX+2gVigSsE4vlWw22lcZSvzHYeRZQmT4oK11Zt2nhM/m8+4KoSU7L82D5UxxH1hTNql9uBMasShkXK4Bla8yi75swjBlY3Rk7AA3zHebSqXAqhfMOueJbQCbEABuqSJ+yTPdMTBGx1n6hQsiWkWt1TNx8KElq8T49Bdbfqcjoh77kJBik6CtrHPT7XNLRmtCuleSTr2jLcM7SqUEobDgHUBcBuHSd6I+BMispmvhmceKSHucUOOovVe0VSIqPV/y2Hc4NWIIjYOHxQVzIQBmdIuvz69yoJhjhzXJdeEVYlN0cxp/z2rMmPGEz1sO1fa6kLXXjgjBarWN+BzWICSeTGhhLRvpQsrQANS0xRdMLgbfpDh1yJNF0rrcXTazDjRsceYa0i8G61hkav5TLKR+qCfxcSATe5WrEMAh32DoRlUIVtXvyl1R2ak+6NwwobhJR4Il166hKOTIzpmoGYc+pUZq+9DqDcl9Pv4tRqowIsbj4X43hrq5SFdIxgLftQBaHnKn/fHUYyVRceHF16GbFO+cymxYpgYvuK1k+B1g+AZfJCwwU0ZErZpksZXDdszN6JLOIJM0gJrMcTJJtH1aetLeWNtCjMEm0z7+jDPPkY/If795IHyCOk31QfeYK6scYnKtPCcPNtFi3Th600mri+nLBQlJo2cd3wk4ovUsMRk2wNJMGXrwrcpsqN1UnbGnZo5xP0y3hKiCNsnmmTIK6/VzyllS+9UzapAgeIk4vOlAGdcChUeFRF501oiGLLzh+Y4eqQZWrftq02YcKsTs5zDD0r5QgMScw+G3AIXlkk4+jx7fivL0vl2Ld5JvmcaTAofPRtz2Vl7jKnFVXjrd4zpZmO0rG5skNJa5GawCOTPyl3vaBqhkc6BIZrmF4jOdYR38me6HGatpm5n3UFT1fpOMuauoqBEg0tTxA2cuEncnGplM7rNrsBfaH850Kl2SYhnARCaFB/6pHt0Og0niHQbxUcJw23KB61j8tiiQiQvqHfMEHpZLJQvZW/ZC31qM42AdT8tCImThkju+fUUTjcKqETRpl4nPyKZriRt5lzj3PH1R7V2o56VL47Ta5rLjDGmbnx5Z7t8mDryt+r8xL0YMF3Vm2bEJXB9PFY/uOJK610jFeNbICBi0gL/kKY//D7QInE1KyIyMq8x6I5RmBy6E7fA8D94/QIpc/mz6Iou7IoJqCnrMw1qZLHhW1/rJjj7Jl5VMD/Uzt+JWSt/ja1thpwkNalLD+XXeKpJKbzI4VCFO9+rIOm+Xc7Gc6USSkom902S9j7rfw8ZcI+hB7ftF7MH+UXSDrIMyYegNQRqmXPKJDfuaE5FLBTdDcZeIjVIV8eHLEva4iH/tCQtHDLK+NIvQ242d+618kunwaLNqYFb0pCwi/TDOvR1V8slJG334ffeSJXH6DU6KMZLhBKnaJlsoDnk10Ifd7fyczpWbh07yC7Vw4zUO9SBwujaxReCtz37K0zVc/Du4ZB8URB+tqbmA5XrTo1HkiUPqVudAx9kaljijbvKI5KsUXW+HzGGAr3S5uJollwiIekKENyygYrKWurbJFYLrMw0Hff6XkR00jkGiLn2BE4/QMuf6Sk3s8r1hc/Eax/OFrKGa4E01pWXekpn86/DKXL9vpA6ZZL03/m/HHf0g0CaW9FYQXtKyw3lm2N1NPjDjbn7R7ypqbzXhoCPIfAWNz/FJbR4XF+9hxB8Ty94y0K+YMmtgvKvVOaABX0iDnY16Qi8ZzZ1vfKocpntHZAB1MrkVkqTsEEiIcDpbQGiybEpLWovOFgnllS39UurGV7KB9mOLYUj2YNNTZJ/CkiV1ELcy3vMhDqp+KY788FuYscfFo67PV1yYPUPNaHdqqhHRy8Blmr1tiJBD/2gOXXsU3sXXO5Y8ZSvq7+cGQoH10bZzIeClVXgWBir8uLK5oKhhZmWfUtfvw5cTOjonDR/CdpXNky77ewDAQXghgsa57orUXbaFderHUmgFEAx8V8LeBs/3e2nl8h0vdUq+RYdrP2jF3hmweGmXb2qK0wVyOSHn6COY6NI6Hga9y7DZkswW0YLaX7mwPqauljZ6WsiHnZ9HC13aSmS1UITnW08sE/xjp1aRZy8BG+463QdJCHef2goCkIkVDgRPOZV0Fu4IYdQ21PkGr+VPAyzYDawUat4ccvEnZWBQv2D93RVbTLemtZK5BD9pIozdEGp9HoAVvIrF7cPoW36cl7ogkWl9uAZO/7zbHvHIA4ym5i3jIk5papKEv3S0kEsj69fjOwWdyn3w7YDAw8m+S0wDY3pJXXwVJg8gf+gwp8GH4T9p1k2J9BkPTNxmKRZw00tTlFqb6U+N9F+de3aIy//pw8x1pu7iHnPMker4JbARjxVURqded0sl5cwjw/dUzZ9w8ugOLpMRc7uo3kHHDE0tDA1TxFL6tcT47nfbimxiCoicXpO6lpS1E8GX4o8nM8bILR71d0Eixl0yuQsWHjAePJv/EL8FU7FJc4QSxwb1bmixPwKnWbrFaZBW7ffGenpVdvr+vh/ik/HsNjEmruZydavm5QZ0CePN/UqZnSZU6wmPVVxCPtCNBsRFX79gf1W+792m6Vf4dSc2ay6f3mtmaRrjl9sajhfMN/tSKOe4xRB+/SzZsbBRl9yFXWAY1hBGRuvROeARwyAWVy0w28U7oSFZh1tSnAiXIctUVPskYWKdrcig52D7xmzNwlEeiK2UHutKEUChdnXLBn4k89Xb5ulqZwXwpQkvjGPfWGS30pexAGtfykwZXXfgQuJcHCtmzp2wo9Rum6BNFOzNhL2lhFotEUwlQUwMoMb0lfxyD7Lqc//l70R+h8R2TrL/ONt2v9CDFiWB7a104FXzEZuZ1mizKu9mj9DzOZbn/NEWwpAEByJREu7W3iXbBPACvkb3vv6XuXeuWdr+64fszZXjuUlKKpTeFCLrc2loVI0iPE2oXcKVbXi7T1ZWU2sxVXCtNyP7LecucJLxPwlcBjFz0Hwm5X9+6QcV/YSYYfpBWP9PWcnsI/gihgkwL68eYoYjH/4nZWWKxwPc28ehEwf9TgOksWLpbi6Mbxzq9EJd9qnZo2M3LhRIAkJ5PuGmnbJLRORrpxSSippsnOtdn3MI84Y2GQuA2HxqlqV0cDmsl3KOIbAVJNo1Yg/Zo75zQ7t5KCqCiwkKoGpVB/yzYl8dUx9qU34IGmXbzvHdwHX1iqxX0+oLyMcOCwrLW/SntQ/HTl2gUPLPibj1ReSJLXLL3FYwAlFbXJvRDSr3KJMW76lB5U4Gu1tR3lcSuRi7UERZocr4/Umz+VdcIt2ulU/Pd6IHxTRJNNrI3zTXWoDI43xio7ZRtkoYylv2gkP/xaQcBky0WwgNHtOAPW2HhdhvvXmbnlpNcM4Sqry8K1PoGqpNe0elBajCyrGYL7NEReOJYBxGwoIWriJ0KUC7BiiUV/t2ux+GI8ZFoR0XxF8OYTW4MWxgWjuT0JIYZI9YmGRY6io2/vkXH/D8897372VB1e9S5Lyv7FBFcvCPEKbznHreGOzeIRyiCVXY8/CGnqnHJhqYOFW2nasEaNoSzApptTFnzk1hIm28Sgo7KVusYufPV5mcJqNpOYP+VInHRhrn8gOVq57RYmphhjyihdchhWKJnxAIu+WB/ooC1x/YTb5cGLUcNYt5AqCQAgBbdkJ1bhCkBRhPVgWzpXtDdSYoVht5FcM3v4jhaxKDJSamKftmNadYwZxtpENlsVptXV43N2GmZ4JoMdgRoMiFlNfESbv71bvbLeBMai+q4sYO16in0hbBgX50wGHMRXZnrMflO18psLibhcfU9GRzCz5YCWQ8ryv9MkV96hxqsx+1AgArStPHKlgilxqUPp8qia5Dtx5osknEcvbtFuEtw8sqUxMmmexRcSLb/fr84CV5NQDnHzzMQlbarNyYJVnPOL6noZeCcUR209nCrS68cU4qh4Uw4TavN20RcaeDJ7vdtlvEDAhl1On4DjL4mCFjh0aaLfB2x3wQ98oB7E6N2Ou/osZRzuldib/gqnRfWE5a3Q7So3ptLxTqwVA1tRWGdRrsBeH6589uhVQ4lRHvTPo7SQm7SncAmZpPoKdncTigUfuE3h96NgWNetoOuWPO68VBunhvDW5Lj/PIPnNc+c6yklBRsn98Wd63a+1PnvmZLw5yMtta6ZAox4UkRCSRhjEvRwJUAQs/z7YtuFc9YfgnhUQZLAd0gxkNj2qV1GQ6Xp1YnTiQD6THJx0Nntmj9M5gnEVBrPGGmpitbpe/oI7pLikk//U05zxeQNVxtkVNQWadG+jCE4JNZVgFX9/T6DgjfyiJC/YleOcsdqjWl7RLNGuaPELE4KQeC4ob/dyStDLNU0PW0gbpUJTzoxpYIHWnoSZJ/ZMp4zhchLFPklRN2n3bl11CfJmceJL78RGYv0Iui4UGVRjpFtAPKN4/ewKemV2qiEwdl0LZNidhPp51b2bIr/aXAB62cSafDvvRKX6G2BslQVSGlDaQ/lIkrR1TIBDvvh/R4ErHMw2nZA86SAPbbmjoS9of+pfUpPI0yiWX9U3TqEhKIxFzwFX2ffkWOGKHdVMMyXMa8M3GakGFKIhEsqeoTvGLykuea3STYEl0nr2uEXqJU5UHhP6wU7myeLPnCdpYTK1rIz8/KmUxOm+9+Lxv6SkFg+7qBZ9X+BfxTVpS7DUdzo45Zj/6LfK9bHiFCsfGZYdYDlV/Ljdyiqi3QlAK1TV+zGT7dtxpqQWrGFf4GDUf52U2wRbQozvu+VFIBUUWMXxwms9fMBn5clGbR7Fy1FwzVYG473L+du86bK+hPfq+zxUDw3rim1tvt5zHFG1INoTVZ/muqZYk7tbe4BuDJqA9gCtOYqGWKgXzC2XPqGaF5e3odPMu4zQGZhs+XPU6UEs8kq+Eru0RwithfGnTs0BTGPE5YhISpEQhlrnB7KKIhZQToTZ/PSTxC0VzNALClbM76OyizuvPaoYny3J4KjmVUyjwFhggBzOa+bv12PwOSEIxf+bGNd4/WJFoWaxIrk+7kKV2TyRdyVUVKpzXINrIOJR/b01n4GPzq4Jik/AmqNvVjz4Fi0ikr9POXFz/IosSLGnygH9JwDh3iBo8AdrUUlBM0Pq9lDAvbh3OCw+g4GPRlXXq2Azcwln8yQ0pSvxW+iTJLy76BVvf/0vlVRyyxEccNBSvNVnyH6KdnhiS8VA/RS+AVSL237xqZCx2xoGH8C46IRP9Z4vbXEwYJG6SnIoSukVI4E4dcut/3+67gZcNn7dosXVviWOrL/Q83F4xKH956zEM/0K4XyZKe6SKabW412mt15L0SCtoM1xnAKX3wOlfI1Lsbx3LgoCcTmNpWFUmE7a+ZKohLWqUP4zvdAcylFHaXrDXThLTeqhcJi+0Y7U3MSWzu+5gQfIo33zHsEnxtfIgvPUfIIDvSS0w9w4PpW3ZBMsxB2QsMiUgcg9lokwXDVq8UBpiLArctLSYqTG4IzIMTPx0q5qhpvZMPw/UHYkGZib4nHSAOvDLaJc4ojfkdzmx58Q3tdXv79IFUwpMs7uCzhT8D2R2EMCwd3CU3BPWTdWxf0DsjoZcd+IRJbX47+vG/KT8VwcR2pz5lmmeFUdZ41DAlEH9tVFQ1jsc3sNCxbmpSpGTjHeI1bFGFVVQx6+yZzjumOHspOc9VBcwZiLpndwUYdxubItveOZGSZ+wpMajHKQ6HtGwWKEpUEstvRLfsK78Nq0OwK5woHWs+L14AZkHi+WkwopxS+idd5ryWYrB14jL+3erVz7mmc/3vCLBn6jopjvIjCmFmmmKDI0LqllhH74ROBQQSXnCL0upkUQhtWL3jS2svoRHIzt30qE4yXPib0IFmFukRjaS9tKPdG3wR+YRkDMHgpd5wNS3t/I1plPKyHJ/fSfQ7XbraeKDUOm4aw4SMgOuGMP6CGJDZTb51GYe3OewwfYeVAGNcd1rXFwPA/pfS04OWGxilteCQHeJhw9FDF6p0psCrmTMX/yqIrm02Hvl5Xkgp4qc2El2c35bWg3mK0rc3X7aIIlPF3W95u38R8+FCLrmjeA6CFFtFFdGUyJj0HIqvPiEeHOuCo9mLo4DQxTx1U0c09TW3erGPNmU4SLtkqETEasIfuCW1rJ1Uh5WfO2h0dZFWhIqRFKVjBlMEJeiL7sPdcysEGr43MOcdRZdjnHujf7+f2fbB8YQ398ncaPYZzV+DOsJ1iEGZ+NA+6cwBlCEIIkK1DDqpuPl1wTEthpzfyGaOQqTFZJQ9lMT99Huzl9bVAGDjQKe6xPmpWjpmQykpXBsDikwAesuSG8AnX8W0TVOAx817Z3DtXMIakMrzvdJbCC8D8JkBeSbLuSk6C1IxwTKTL2mtQy2pY2aMspKZZa9MYQmkGWpbBEwgnVAxZOnjVEPopI44guJ9L/dpHA760SiZ9bVdTgmZNIqoXBagBn2fVqgU0jVjprpBo62FejImfcQ5dh0T5WF9ZEb6Km8b5Wo5MdrRQ/zKSM6T25Okgt3zwEJiaLk4NEpShXFe4Yjm1NMVXFCjsynvePXu/qupddOLmsM/CsqweaAtp8OgFYgiM/DW82jT+9K9QqPFvfUIkmT4DVAVlyagPYAv5I+XwkZkn8GVQGBBsbKJi5hZHlOD0zujU5Hk26EPh4e6+o8nJc0dElJvkbgJeekUF1FcLCSs9AcBTNAepjlRwarrQm1siMQNtzPPR0dARhHe4CXfBG78c3w2JfUyDsqwAEkKRBJwr+b5E7NFG9tW+AXsXGQWEyUnGgcGOGEMYrH2N97jmevwDeVkrZN4r39c9QNp59LwqdcU+czqGkRjXj4TPOc1KYY56nH2Nh83O5IdAP5Hgg1+xTRL7Yg4efmZlWDXUcBnEE+0PA7O4AYki8FhT/s0Ql8aCRLkQAKAcIpcn8RCDL7WrtjTqkcIjrijXysY3+Zts/dOG+CEhQzXXJ98uua3f/T2yvD4T6vUeAkbK2fQdxYsvCuxa7j5AoVAOKlN7f5TKmQDzhlgF1mv6c32YPp6URRUV+GWWyXS3wcCYAS583IqNQJzyJ1LGrRFmnUGVOV2WtR/zIwtel/zywTqTgMqGYLnHjSnsVM0N4L8kUmqnYXAf9EqgxOvmLeNslyCSIECIYvdoiAi6iGtT3t88d3RrfT90Or+RJRsF6HnYBC/7fq0pHScXtgS1p7vCD0vulXIHj3fecLiAuOgdvAGGvrCIrIYq5BunUF4SVvoKAhGHj6oRMI7Cgxp4mts6QZcWgxpat/oLvmaJRJJQNQdpGT2aLwenscv1ft1d47YNWm0bmwI1d0TJXv/Q9+VfUprODi5itQb0luplE2fBtC8X6lWHGKzLQeKeXTqEGvAiWrxP4dV18gBeCGcmA3MEZZDjaUJMISl/xbftk8ztxeADKC/Kr7cwYVRQ1ldjelxXkBP0cHEBnlylI5fgiRxkMe2ANUET6W/a5YvyRXIzUF8ztlkWsvhjuYTOWDtEGE1NHqVrQfAUHJsWyjkrqopa2oSwKneUkm9zwrtkeaDyfdH57Ft6icxVuXEzV9c4eYBmsWmsamb/r3zk0bN2xm2LWCyQdkeXqh2/oRaUI1vCtkocudtX/MPNSM23xP6vpopV8SDvjf0CUBIcit3XlpyTuuqL022tlaDt2C6Dn7WQ/gLDjkjBzz129h5iPMgEFaNdDAdH99iSbX1eTxTi1MHOwIjcjlC3rhF+w/iGiGSs9jCbH9C4+twZpqhiicAeHmlKNlJPdg0MDoDQAWltL5oNhJW487/CgejtPYLoXT0Xtg/FRAX6FOlqgqbVE2vD5S3TiIVdCRlWVIKC34QiNEHfP64EPivOyqGIp8B2X01OGrWTOf2y4fm6dvqQNMAD3iOZnUvAiWgZ2Pdhbdf8v9r9i7vPo9+i7NIpmG7/JREwuIinRQCfxQ0t07zUXMYHV7nSxizTWkGwRL+2rv2L9tPZmF4ljjSOWc43t7BoHUXDkwWsufdHzD7xlO/YE6p2AhDRwNDz5O/QegK348JzscbETn6nPr0mDrgZ+8vbZuRtUWfF4edRGNjBYZT6Z/Ttl3+OZ6KdxY/VZC1kFz+i6yG9JwJFeuqvPOPXAlUNx1UgVuP6BH8TZw8BmOtELmf7ez865IXSM5HiTrdpG/28ix6rVv0p7p60C2jkk1QXkLIwov6hiapDPa8i/2Mtlr4T/qQ2azGP4CPfeXk6pRRsWjdBrm7Oo9ROCfot3PTeQw0oBTlYlx48ZuHDae6J4SU9RvAAPrFNwfVApFD4AbXrutFu5pAObEOurHOmiObccls3JvUhJpRruXxUX9uw+tiq17Kp6ssYtKMGpLmffsMaxvL2xDO8kaLKjEYoMj2XiuRyLmknSaDr2IO6uMHEJHPqYL6GULZA7//eCGiQ2NONUQuo/RJ4GuCNCAZRv1JiFdOx4KD2LMSB7TO+zIl3tJuxWY5fFO2+rUn2sz7t8n9rCunQfIbgXzHu7Aazce1exzCnIUIGnHc2F7aolzaZBR1XZTMCSA5BYKV9YUz6wl2nAMoYdMbNQ19T6sJKU7l5TXPZkVj8sbTAMdzmHY8fsd2kYbYMncffO476q0ji7l6OFvKu77GlSTNENLB22QINdYtTG852vEfuDLR9w3qlclZp+HQB5LCElOnMpF9AZE33tz1qxZBzDX/mz9LJt3AS3DwXkYmqnjqUh/U40jKBsiEYHihb9oPhAJrWj1ubvBQ4Z+VlneIRnhTrPVgWzzcJCo50IpKYW3Hx7P5lbFRTmFKA/GNK3uyZ/JKGPvAK7LmQyKJdM7hVBf02Kx9PyF3YO+zpMrEVUKF6vO8/LDF2RRuSscZW9N6IaEvyaGvibGaWjWqqvWOgZozyHhe+5sC9KXNIgqz7ovJQ2j3CrpkFvIiVcBr5UA4lOWcO/NmLi2dIFSJuzK8uWbgjNMha1NEFbWn4mimdILBPgRDsyaTfX9mzHiW8K/oic6DWIlOiHkDp0Y7MhSi3hvqjU6JLmN9peVsdCxQUXfHpU/zirSzz8l9zS4mXtXaAUHg7aVmYmFocNdBdp0u5ap+f4ux4ioXfuoUTEf8DmsQx2VkuNV917lSyO11y0GJPn7jCkdIOl3udZ4X5s3ehs0Zz4C90lSVfwB2PGWDJUAa+Q0ZYkYpSLz+qdHfNnBYfsHhNUfL2Dlg/AnKoeCyxAFhCuuke6EZk5DbX4XBoWyOWPoBqg+4sRHnKHwSR9fNyJelwWiZcQZqdg9F6qbZYQNBGomN6KbnllZx5GIsOYN9RnuApPN4L0Q6cYYROR6eFbEvKsdAlR9SxSQv2UzaUmwX35M18oVA4OA1Y51RNvO0+ahsR6EbrEMpUJfMvqYmiOrn+t0YGO6OM3+dWvkJcoRnssEi+dsUu/+pH8L0hD9pK5LY5QB6txBzxKb3ewa0is47IMYIZ67p+nu7NYYY7bjSraJyg8OKNWuroFha8TOO9eJdYb2mC2YCqcNceO3vMDD0eQ7lxi+V2nYveKt0rROzZw74OH8o/VN81oEnxFUEBnGQPgEPdOx/a8jXwGfgkbblr4QAIofO15aPKH8Gyo9whB7yd/B/UQyMFKh0Z04tttRSHaxayjjqulZh56pDz7c7zwhGJGMmnDknk4rLmVTjQIcbHtSYy0LBNlFf5KWPpbWer14BWIVyYD8kb5v+5fjpbkd0bDUnOdiD+beMJ9IZKqVbvDiIDpOGDZZax+8k6QxpW3HrjjgUwWfMo7osBW6pWTl9ko4r934/W76vj315xaY3qDeXSG5WKdQdXj2oZ37mR3J0XC4eHdIyPg15wbxbfPPgvOtmxR5h8ZLKkvnUqAbXBbIqMXH0A0WlyZYmo8gIgwberpgFA56hw5H69OZ4HYygNqW9HpREuGjyeBW5d1heP327qkbaNZwh2rH9g5idIQXsoCJUIy1xIoZFi0HBAwE3jO9/2qXYYHesgBYpa0SXjN+ovFSZNLVcjJ6MQjiKgNZUog3dsRL4n+HE4wU9/amvePE/5JSZsIl4FZ6+Aw0thKF1a28NnHJ1BIGOlouRm+PNnmqwmsgaOEbj1uK35KxUUf71ZVEhYLZearBebNg1uSlMabCWhJ9nmrTq8os6dUpdBasifiQaK3LOOxjagR4p3QqdXC7XcKBV4adTey6E8qjaZQSWKMWDXHjXfUpHH+hgTAnM4TXYW4wKllHvXdE2oK61ZZkNzh6yXbWMdkIrAWA4Kmp9AZjtY2toBpJqCHjHj94w4cPn5JUoT/TdGG7O4VJFJQ2XRYiebbF/cil29ka4W0qa6LkvgY+Jh/8oEZ1WWuOjk4Zwf1ztv+TgJt9N6DGlX7VMeodKChAKJv+RPPnA0ck8IwVAQFTDfjhjNPjsm+uIEKU870fdUUwp4MRZSEF09miH4UZDpRXFqv7eWB5PR7qTrTSUr8JKd0lNM7DclqgJaqS1VCKHWwL75v0TSfSR61MRZylYnxWm7FEIrnLtHzdZXLFPuEKfDrO5B3PF+tmnuYkTI3KcQc3zm1azV7ej71Z/YRm1cr1EemY1YTP/tA3AtAmZmioKRFZX/RlCUhwzvDJ5ZaC3v7IqfZE1JF0r7tSDR/IqV5HMspStiDvvec2QwZ8BemKq6IvACGbbVu/FxIWQCXqchAGFxgskyhAdsA2s73G3OXaXj1XDBo6eDjeAmnAk66hZzmd2wQbHAvvzg5OKIzSaLTNfD5jVuZ0g6ajVgTVerR14NcWdjmbmA7IPldzmC1nYxqsKLW5gJALmv++Vd/9SvuQSQ2rjkhdJLPmrHo+/JlnBT6/fyk3U2cEDi6Ykq3yWtwBIrvhxCBLnP3OScvIFCrraxYUlKFqyyhpOfwfxhfY4UlCXZa0rqpAig35KB6wAfab/R6YJSPCH1bRabHvJ9DgqsDr70urP8RRd4yZM6b1p1x131F2KJlTBYAOUTc3GQk0eIedeSQ5eer2lsS+U/7Iz9CUJtTz+yQpLAc3xi77hzdH47bYBSxkx0Nhozh75pYRmm58qmDnL5Irbzt4I57kssTiBoMP2zmvyiBJgz+afXV24UewDxBE+tno5tAh56Zm3f8pWfmYRr/v1tLviflbQT7wWWsb5dXKVd/7PAvWHDTvdyjQbypQGu0voew8De+OnWEjkMwocniwDwNA3Q45AzAO5YJJGx/iku7bbs81LK3XlgcOXaHKZObPEhhBwBniBlcpaE9D3lHJvFYiulumgKA99VFWlPbVOPOnpkQFIc//HfmqwZABxShFOJ9mzbDrXwqzvXml0vlfV06wTtuwfHdWHqR8Njh6B/xJJTlQhnbsZfQPbHcSM+87k2j/0l4isMZCJ6sLwuowRgeCIDbc2rfvYbbC4lkSZCtng68D2b82ajXTPx12ZKD9QZV9irBtUPnmlIvRxPfU//NRBzKrNhFft2dL1ZI7fVyBcEEZEIZQBAelHteHkdYk8q2zzPVQv8mA1JWCMOi1OnzPGsAkcpn4VmzXlk+DyXGxCM+wMNzAlg12ALqXI9NHBam0SSelO1NAgrLELaqNVkJtb+kiKEDxj/eKFGJnAvKnU7E+ZOSIMihLrg95c72z+FTQtObojAYlHf3/EpiZU9Oh9hHmY+1CgsyKQHnUoGHd251nGU56IhMboqybpfx3G866DV7iQ7a1tk1la+1iWWJ7KeJZkKmp/0cFYcbRAXZV8IA/bDNGu4G0A6BQcXQlVLpQiiuprjdsj6Q9p3eXNzCg3Gm8VU/8F1grtJ1/Y3B59KYzeVl8sH+rS6ZLHgxuj45RE44X0je5u+sxWOTh/6oMSfg9i7uNIF3lSLp4GGgjGtH+lAH9NRxYe81SdnAqS9ES6lXiXOdvPbzAWxc0b9cplbWillIc1zlpWBHutSU3OxSGwimeO24ZUjr7WYiDe/Y5LuWcZiMgKmghIAfWZymdEkFwnfFHlVA+JMxF+7yOVfhHR0ZiLBgm8+QZon9QhhwfT+1DGqrWyDTUYGmtwKaBu3pnVorxLzr9kTq+Z3cuGjxwQxOsE2r4oqHsf/FrPo8WkoerB6VYQjqskvDkckr/H+MUxlCMllUPlTv19VHT8R1X/sXkvcFTOd4wEA5DM7pTOGFFAVwZXsWGW6z04NowzCYEHZbpfdWMs4rPL198Vzg4IQAURC8zcRp682EblTORq7cY0+lZhRsCqRNB+rexz7ndz96GFHo4apAkrtjLw9sT2p0R89+0TYth82pIr0FgGYi4mQLLyYhApH4E+otk+doANBjvGU2P1BaYK43FN63l5Q6hmnTyps0ssSx4/JlXPsSxCkK7+IWEuL1lw8h/btRfOpsn6eIs1auNV2RGUNjWkMuFd93F4XgCaBCLblPV1Xh3hICXjwFrnVMpyWExtl+r9ZxLs14l+1EnjFDOpIQV1werS9dbavKe6slqyAb0dF+lRO9moV8jAxK+/cULlplFXYM+fmzXoJN+1calL4MulPwFGT2tMqC7WImORTgiKs0/NNy8Xg6V4gKcGMdflDU1d2QwXGqfWOIKKHzdwfPckUrXg9DZhzkX/V95MfipH/uotgkWMOK2TTUrnXtSEWQOe5Ms7asPyH7bpF0EnRyGUE5TPyYAv3yKcgWl261ka67uIuTk9YTAaxqOXhBpGomLTMgmzEoQ/jBmlaDlzE6vOfNmYnupVFIn5rTOc9weX7FrtLNrL5jc6NLvDIF3k4PjSnObcWEoLSng8aR+f/gWZmCO0Eb9ZgGw98ji6tQTSidyIm5hXCCM/UBcni47DmZJUNDYC9dUaQCx4de5WCSjkYsowswvAhqESgixSNx+3VnritHwdV1gDMuMn035r5OwD6jJqWb9kA7qI3Yo90EYb4S7edT74EhZ4IZQvgEdWgCUesr7L3tPv28PTtYKuM1u3JXRhXTGQoqtVbHjcdtpTE6n1TdftPujkXDLOLcwjnTYRBn4pRH3i2cdkOPrTvF1Ny5QlC3FjlBQQwfBssal+oa64pIPzk8yZhZmG3KCtxkhh3tQZQhAFyUIVvizqgO2J0MXKRIemQqUCUgWIkOwo3ZkRzQaayl3D84GwRrD9o9juVRskgp3LNcHg6WmTfB3vNS0FYZZjBl503onfdew+6jEgHAmWVN+n3jbNx7IA3paPvFIMS0aEasQryocA7v4sZhvnBnZr7QZPL6DrWegEMzieUNqbQigyKx3LyfYZLhP0vOuFP+7yJPuOEnHBT3fDAjQ/yw6CpqQ8V8jn5dlqUHqlTZNGAwhF7uJfJyvYHilWV3+7YqnSwmixgL59vvMJPBe/S9qeJTCYPodKn/H+9ZBA2SSei83u4SsdBzwPk+QuLl/7cB6ZkbKgZcBCLpAeWEj6R5S2WAOd0nd5kP7G1aNacEIzr1IAlJ6n+ffaOQ6ACJ7UAEy33fvPs46Wq4f231Obqvm4SHd6LrAM5WDVgvibtywTw+M+o0XGslbbVJ9bf87DE0N2NP52OBujGppKbh2VsCGyljWDDVTOoHpOnGKeIS94cmqUzcmNRvMu2vYJsZsPPn+pF3pEUdLPyuuiix2eXOeTi4kgbpY6aGEqfJZBfalm+c33ObFNPG/6eB6ObVg7yDbWojG8AmklbSZYW9wzQsUCYOdQfXJPiQNfiyCUo+BE/0tJDlp3wojP75qzAZG3fVU4xvv+fGo5wtWin61GmfD+hn8HjDNvTun8DPIbL09FanlIAxYZQ539Hzbt/UaIFMsxkqLqoU8c6siyWIU5J4av+CAyoUwikjZdUB03PP3ijL9C/l8qk37WUmIBl2L5xkGPuNuTcKFsCZC3AaI/Sni4VrsTmo//YUybTN0mYPVyH64PJLJ4He58Uoda5aOE+hKmcdxgVCEdrXjvdaELwfVoHoWrRUcIbzdKOkukQg9tNkjYhJE6o17OwG5jVHIqfKpfjcynINPmxMHZiowUwY6+moFY/In5Q6H2FjXKFikSxNe+hMGdsaNfI6RZgYKttrlZrBwBlFjKbkr1+wZ33bSF/xlJD+sIArfKKARfaSpkMElWo15OUSjlFq6OqbIvsdPPWC3QDt4g3QSkFIB+MrWe1pJoW66gR3D/kuwouspxpueKBTLhXo/wjuoif56twz02PmuS2pRVrILEDyinFWNY4UmwwlbmKdU3BdhBeKVS8D1ROqAlwGRFZjdRw9mAu9XTdAkga2P983Kn9H3juzYlR9ockRE08jVCAetz3Ii+2eSTm7rFVQzm7ATuj0ZBKkJoc9yNXBvCYaQ5rC2WEdosZDWTp70sklK9G7QFtf+fsyw+oWgV0LYdF2wptZE75FMURc2401F3+trnyZIWLw1fK21wgdggrmR46nkoD2BOPCSUg7OEJiRXnVWZSUohcninz4zG0/7vdEGGPkQleyQO5/hRa9wwxb6HR7JfrTgQnV0lyrFR2DWsCLSw6Xuoq66w4CjAvlCzZOikfW6Opv7HTQE3IcDB9zSKrFX2GMqwzL37X9ZeSmc0n4hGTDb9LDDi73lt3eqD0/tsvqej/fY0Il4uLKrUpL8w9MvUeiUzvYyMOyvvOv8/++5KRJD0wBC9DRwmd+TUStvfZNKfOfi9mGTaH3RQpQg4mButKzfK1U+T+xn9/V5fmoetvsJUO/+ANzxoeCebVov1lGFFJrVONYWhff7OBNq9vruL+tDNxGZlx/PiI7TDptsPpvoQsk7J72DHvQMHbIN/hOifMsQ9hHLJ8aT5zGRactVWQPuHzNdGXEDfLJngGexROuMikUTfi6p+bYO8Z3ZqWJi+CfaGODb3InYWBdqUcriUu+AGqxVPLlEDIi0rVCd5LJ7kDqY/DSXMIoiE/9D3Ghiz+05AZHBKP1iHNybdtckMa0Mgb3iT7p+sYHkXo20KsXkCGcJjmCpiO/a4RGyFFsQnS2MxwJbviorh8GoaaLKBj2TxOK7SSE2cKOsLhlUmhYcWg7vkCcWlETkU/vj7ivYNVj8i1ZIcmXERQwtecqxR9MD9NYwAYh+JTRv4WApb4/wi3uywfaEXj1MmPHKOTkZxL2+qTMrpdAdWamwMqfwBaVYNHw8wakkMZLaqQt8Aj67+iTiD3gLHfpsCcAsmvCHjZ8h//pes2FrLkj/EpA0BvxZwYKl0Xy54fwukBO0cO8T3gqJFPRWdy+TUgH+jS8cgFQCUSuiAEqGkCrqNxGZHHBxin6SKLqVsqYCZ9RacA1A8bs/5Abm3Lxs+qr7d48a+daP/rF/hTSu9fxVlXmkn5s5Ijcq10A4AWGuUMZ3MRc4vfsPIRLRFXI/JQ/6nz/jHBi72v4VppCR2Amv6hwav/b6KF/3I9Iw56xRkkN53ns23Dw8l+9ZyAquJFOvqSiFS2SRMqGMtkSpuXDdEq42cuBZ3KY6ATHpppHoFZxVs7Glo29t5lW0Hp1en2s/O8NzSYgt15U1SDvD1tTTM4rlG+eCuaeGW312hU7yTMH8ytht8+si8jAYPloqjaoWVfxRFgc/FT8Gq06/6t1tqoy2KETmdJdV73GIzhZ7UYjDpz74d6snLBp5PGpYzCQR2+B8eJ4UHT6f+t5K6CkhEr3LYidORGFDrDG0RAIiR7bSF7JYpIdyMZFuuJQ/mRrehKaScmhRAQve1KSk3aMfP6cK7R9iN9ItooCRd3n1YHiV6rsKNYbDVY0jSf3XojA5kHgRlRruAp8ECCGLu8z7Vf8rcJfCVk+zwARbakPHPot80JLs1CdNoY/diuwSLbu7bz1NLCCY4bZ6FReZZf1EdxevQVeZAnGUruHrrYnedS6CwfUTTUJVlX0rVeEQc6oO7wlTqzq/u9EVy2yEjzUK4frGJO0gNnv/K1IYftHs2bNuUivxRC7qv3OHGi3rnHx2/jpjWxqjdYmRkJUnJ8OZ5IF/8oc6aot5b/q9wxamkp5ueEINR1bX3Tn/mLjCK6sS646SHEguSdrXFeOEC97zblVQCJa5b/e6Up10WEqHJN4wt75mrn+tGIzSZdZ6vIsUHLDlyuwDnzRm1yjlGaIcCEm/pEs1VP3jUhmznotcupGTUnp6/n/by5vnvAo9EKc46KDHUTn2W6HxL45CtITh3/wu6P/kx78sBcBJH74NbLkAzt57CtWXDMCgnm+/pQjYT2HAmS8YmBnLqRn/4vvjUp2DLEsHBPGwnihev1KgEUftRllQRmL9vGDX/eBF7f+GrCPEBCIV/oEKVr7n+wklsQKvcoQZf1oWCYUImQBEQTxu60jIRJ1YzoCgmgw5TDH6D+4zDAuF5XP5FYuBAT/bymicGbxv54Trl3SCsgQJ5h7ME7Z3HRrCQvRM6dvdj6GsB/or2VO1+RiwO6qeeP5b1+soDwmJdPDotY4WVOQa34ui7uHT/4LaMNzZd4yd3j6L3QBPyf7LfRZKVnK3J6YpL8o9XY9a5Io6Jg2FRozxIBfn9ZqSpg+Fk7rTdt9JPkCwF/6WiSUTWcl28E4aF9CtU8vDJ5Ys/5LyWfGTInQTEWNxL1ulajsnSPeJUHwolWOeUxG0TuSYWTGbzkBpMVvChtEbYe5M0zINI8EC+ia2W+LFtXCkYuu5p0cki0l47AywAPNImblXfWJycKEnn3Dy68HEeHFt9mncE8KdeSCvx/VSg6QpLBDT2UMIGuUGPkvHrhusFVUJOhVDQ3KgPuTj+afVFf0Fi3JmzPAmE1QeJlePdD/6IflmFf6OOqDSHVH6d29z73XhmLrOQ42UTwZT30I9P5eTbL2Bn5xgC80pIfu0GVWg+I146u52PGnWDoTXvBca8UTbHiFwhjmJBgPU7Q/sSUyfm1cXUobKTDp2Cx/SmbrgwwJ4bE42vbP7/JWuPeY/aXACZwJapxI1qZ22jIFypTUAOf4dZVev/vm9a1Y3fuF2ihGKMIuL7N83YVYNCiGcgb5xLwveAzDaTAwZ5QxlgTYDfKofdcA5/Uva8zFkH24fRKo9v+MzIom5FEMKuuB9EayLTGeWLXRpIoK7Fu21YnY+54/apPahxpnXd/saA5CguKX2/+PA8zfNvSel2IGMeq0s5x+Fycnl4GNoq26XhxBRARkVPVCdUAaNZIiYhCjfbt730VqcQWuwYptBshxy1DtiReCZQAcatgKJ3RVdSwHZOYLAoyQUVFAQ4GQsfoJ3ZFTHhZVDT8EfwRwbFsB/XO59Q7KUU2Mvro8SjxfBXB4NQCDHWr1gXDHzI8XrkrPRK/fCCOqlJ2ESelYnpF4E5e2ohnFNIzW1X4UrdUlp1nWv4jwcdRREWPy1ZPgLuc5RKPjf9kywP+DoVytwhJBd+4t6suRC6LMEsEDU+lBJaoss42j7D+PugtqDAcsX8IpQjyfiLR0hPJ4D9cYYS9X70rSjLybsa6pQIf2KqZfCtGdCJtkt/B2reMcWeMWMiTHhJPkqiMnmFy+S7krQ75Lbs5MEm4NJQYlvLLZ+qzc8I3axIdsRJz5/X5+OdYHcN9SqmQvnBGhHByMo45qLHkt0fp89nZuqrBsv78wDz99TxWbbYVT1XdlR9BgPoRyoK6SyLKNF3grsGqXK+Mc3DUanCn68Tp3idB2hrh4ZJXX5CbR+r/ecUOiTvot+KDNeTDNNxYXXoYCoIx7sYMR4P8bKRfHdQclw9ohQGv72b0dMbq8jFECFHXKBmRNzBWPDRGneuEIlKUQ5CVQSDYwzeX6EKULD6v51LFtaEd6qogXP4qRVIK7VPNS2B7uSEkvJ5E8ySjZPPku5VxWNiRjCoBL54yA5fg+MQQJvKEyLAB/yoFYSvLZAIe4kvHl7LBgE+P3I4WlQ614oaZkh+5AfrDms2E07iaTsAk/Xe5jRNtCkJh6DHJQasalGv24twnvJt5qLD2p+iM8PRZqJxWf4Xbxn+guiuJ9oz2IAApsKeSreioui9R+O0OBreoJ6T9PJT4L31/OrAFDpfpLMFyfHEzKYDNU0dQsDadKK4B3UcYIn5Ij1k4Mg8txJZpskbz0r9gNhEu6yyGX3mzzEXPL2JEfPEJJci7JI7nID3GoBtizkWe4fUOTklZ/6G340+HoULwKTgaVKpdYIHnOBIUuaSzupl9hKUSnDTGT9tw6VPjxVJhh4nLV9ovr12n05n4mfONy1J6upAD3qOffWdZbreoA2Vp0WKuAskmbRnMcK8pYZ2RYN5OoP1e0wVaDdgbPPnjB5w8YooAn9JQmXJurrWer0bzIL5sECWhBPzNcgbCyB2QoSSiOPeX0aAGAuRSUBY6bwsbeokKUStMxbs4QnZ0TCKjAZdWZfGmGitnUh2BHLe6i02HWAijnh40pCFensVU63+66ocYS91Bmt0Ef8AuIo+7os62I1fQVcC+VEY0ZEYmFiMl31D28LqvNnnPutDqy4cQ92xSBSLUTYxkvVJN8s38YkD458RqP2Nq9ciJLWwI9DsmylyeFpMYmq4V5E5aU41w1/1csvFmWFkQJoxpBNDFTA3y52EkxV8GcRi2cjdxq8rArK9Q4b+czN0WzhnM0V5I//92DQJrZZlQ+VImLIDV8MfyE/KL8eV2r+pBUaBWuOXSnZXmu0JtLeyKJaiSwWVM2P3TzsUoDsWl6PzXhK5aKqxDwvhYexdHm+yV3J16zY0lWjHJn+3uBcBDX/G/6fSLgI+q1LvNFNZ+LfG7LcjapWk0v8DLEhFK9symOYhXDJ7fSi05OmbGfAnFbCuJrERtpuYxjGsdoURHi3yLO8HezomfWxhAQTHzxPaRRMpHEmpZ/zek3GH8hNzbNFeQxAD9409yupMtv8wBimcExNFwGSAMmlnucuKnO4B35KXLAjgoFoSYjT2i9SjHODvd/tgoiPWE6ddRZ9jHJm07hgj5ZkebvE3tmtbFIYtKqfWsu9GCQ3XgEu3B1bq9flwmy5PNF1Qyz4SQTbbMx0SIwzUbGHCwGGBxzc2l9e95u++wYWj5u5lfU5I64hlCvK/29J/KKw1Ho1+Kou5nQdELYjMDHekVCfHexMBFpIpYNz88f2w5x8w+9akChU9jlV7qgGBA5cqYbZn3yy7VFwJ0ulUzc9JoQmOIJP5r/nZxmu/Se2TiqgSYGm6aZ7CHBw90VhTIMs/AprDUmsg6wsZLHvxvK2fWsrYfm6xEnNOL+JVBffo9e8ngD1XOFiWa4cg1eoDhbq041No4FH2cCj2MQ355ynLYaDmyFTyj+wh1WO8T+8BNYuAA+FmGy217fiUQJxzvfFeQE1foSHbt2XHh/MKM7Xs5DJn1kjP2jVFgXpKyyFArC0JUeNJI86+KDQXpEVpMNkI2DEqAX4kpXx5RjXeVtlTqFqSNgEyqfplgixFhTiVXdPFmDxtzXs7f/B5EJpOY8dE9l5MDDE63IHbNhP3daY/7wWkTSYNB53eVK1encRqF/H7zpM/LFAmD+U/M1erVNnlE8HN59XgGwWomjFQnqK84len1ZX1ZdTNKfDU4B8VOD7uXLRxDLo9DUdZX8aiUFUcxTvwO6bynovJ3Um+gPvlmAwWLP09P/4OYTxgDUY4xvcnStDP8TJcyxJtVRHTh0PINlYii/HJ49VFsur7u+phXssbDZpFPJKPLvayXxPT5epdOF/QK3VSz7u1sL7+lrmHhpHJQbDw+YBUDmciaKemhD59jY4oJOgc+LARvm8rb0pJOY6jmi1cbGe7Idbl5mUFyLUKWJu08fETooIwh7EqOTGdSTFw20pYT24CplZbVueLOgVcJzegydaTpK5eCplIIfFU0dWBtU5H/4CGeruzCY/d88Nows3pk5bIpzNlWwHeQO7POnpI9EhKv3gKXTs7tOOK2BVlJdPkrm+jv65cQZYwMzf1Lf5zJ/Nx4GaVwo/d2T4Z67LAjfnjd1BF6Tq3rgofo26/GriGhjEUUMEKS4ONX/QVf9uLeBI2VZ62a+z7N9+kPoXFr0weVc0IowlJHA4HWYuAnClLmUR8TQZcMAo0zZWvcZX9H2w9scRff2QXIGC4FIzYry4Dw6DakcXD739nu3R1XDhqC9Jgdkxh3pGUFemUh9J3YOfS57uqs9W+oEo26DwYnm2Ng25wPCqfcWnDKdqm8cRmTa9azXWQ26NxOL+QxVJkEW2UOhiKhzRUeihAmszxeqNh/4PpX22HaQBFbP8e9FTyU+B8CXk7Pm2NoQGRVT98T+zcplCQGW6S0RtX6RexiY7VURPImNgL0rrNjQ3clnfxovzWWKQxp4WFnzNTtXcCQBEceucSQgg7NMYyfJl2DWPxe95cT5IuduVv6aCHz37QH6VDACv0edtf7GSy/FTGYWBgh0nxfM7XS3RsrtuAl4Xpj8iSPdmc33utKa+givYWY5b6O9iR2tZtLB8eQ/a45ooG8sSxSlq6sRFMxBx8KAcCfUbRlm3jTF42N5or1rkMr4f0TgAznQjvnmnSAnmqUWQVXRPzyGjQkyjS0DecMqb23aI4qPN76MEC6y2tiG9WrNczEDAkCDZFqRprbdWvbgInlNUre0zllGkVWqrcY5PfLHBPXa7dcgQjx4Y1WY1R6JRVmXx4A6DdMa7hE8O3XlyuBybpPEcTNeMMImzPzeTAXe6MtgEBEvSLLcJ2mnSw6dfy8ln/sF9uI7pcErdBTBH5BMu612Ad7b+xHTE4nS8+CfBh0DaUGZEcMtHsrpZ0oeCuoKUZPP7QTMplsIVDOBi3B5PLdEO4chwWArDiwYbydGDK+knLDz0UpT8Uys3b44hYCKa01CdWtdHRfEwH5urpJoVw7EvIUULsIWzwjVcQEK9+UKgdpfpYREuBzRG7XpiLN0+Glx9d29xSUlobOqZKmYvnr2cfz4Ep2myn4Zu/RPwCuINanzJRI2DS0qx4iTwCj5jNqLDw4ScyquIOMxX7sEsV8jY35RnUfxz+sgWywYwTCQ1We9ZMapTdWz7QaOHx/YSZKsYJPGcSd38B+bInHWttvcBHlg4ZPfLIMzFpItqbpbwHQoZnLDGlTz6VBZ0mm/c17tS9TdSBhg0fSIPK7M5zxohs91BRs6CNzEbJb1hWSmKkZYPAvPaQM/n7E5kxl528qqvaniaWy6kke5gwSbOgNYWHGgm2UlyPjiLudvqBake1kpjYl49I3djQeTiqM96G6jeU96otnMbH6DmqTIRtwOd1XDxglC0gJGkkLDi7eAehV8L8Et2lUr0gISJ/LGKvEBl7YYy9cvlcg8WH9tizkrXGDuoApvrMUQmmXCICWm0sdq0tZ8XzCZ+FrphdpOi0UThmI3X0ceJYvKUoH4FqR1Gr8WeDF/IYosO4f9jynvf5lMzg72cTXGa7DdGsVOqJLxTHEc0xoc9PLbfgYDqrBgSubYAe2FfkB+uzqX3xwLFC7GnrjZSUkHfxMprvyHWFqXbuIkZmQMN9EzMyr7ylVWk8PUJ0LM16cHrMncuDz3/klhT67k1s+3sNHsEe0/QW+FJggCW58vA7ZFwxYktlmJJWp/7dIoCuCFdfj1sEy9kUOP+Yen8e0qKuxU8R79mKcrn9seDS9mup2wXnt4FIcWDx5HoN8spUWt4+WVm4mJiELLXGJ08UvQkZnVsE4WWK3H6YDoHCnyo+klVu2321n5yEWh/AsvU5I1nC4jAx9bDINvk4sFBr6fOYfm7Yry0fRjDcFqyf6BvdDxpP5bLeCoAXq/1SX+UXb5IioTvIg+DUET309oww3GHKmslw5drXuzjTUSkrf+2yRDFe/nPmsXENw19Hs4oPNlJYGOJb10VLBAQfQHVV+P0xLNCwIcOVYW6B7zh0BRC+WEx9fiaU/CPINaf3baGW9dGrcdii3mr5Y8/+LJioMMHnGB8Y1op0zfpFYlmdFFvvYYdgDIKF4J3fRjZ/nhFaScsP/NRNwYMixPquM2wAwh/g9CcA/2bxg1koTNYCPpNb1KdaHf8sybN+i+YoKZOWrq1Qlwfvmuti0lB94UowV7YN/SqYfNxduFE8TXkmZ4rgDnL2I+1ZMwPFDpgToUS52jk+AtSOiEFvkoSXZbsS6NdtsoT/JpAv5cfRQLL/sY0NmX5O7nMw6d9X7H5p8Hpl0dYrUPb6gqI8HF+DMUGQhWXfjeMfdHnWlAtnfbUn+uT/gDrI5VYTOG/NjbCXxNHfKD1E4zt8NNtXH1SXsQUwRLIJ32Xhpzq8Hgy04c5QSU1c86a8UfQPI8g9xzmD9eSDAMdh8LPstPILfyRJq90Bisakr5vRJCyulHllDZ/7dUnYaDODWJVc41qMclfPSicXcJUnCOmmqSB5MZiMRIT+9zxqkLsnv/n41XGxce8LkjL5BYm8kPpuWRCEUl7+i2HqaPevpbtShT+q4orhRwde3SHVsES4MJ3f4+ABlFdU9t7czt7RYexiTKFJgYSLnZjzUi2klDxhSYHi/3g/mrcA4girkUjgp9mFqPzMOFfXgab2dYaS8Pe220ccgFfQuTuDr1L9Sjhq9Fcx+SEw3Ucc1stVwsL4LICpSw+3S+tKj//I30LL/CnyW/Kovy9pBsNCjX9sGJo0+MFlRz7BQv8v4c5T363sCrwfly0nzwV4fA7SGXTq81T9APaQtBXOG/dKFEYcrqkuezIJO7BuVAfrb3ejJH0gBZxY3DC6ZiX8FGiBj1WcMw518gXEsAnmGhm2eyd9tExJYaYXZJ3e8qSVBltZlT4Azqpb0uAkJrOCNNKminhTWFgatwPx3bliv8AjiV++WUFtIsCiNE3EcKgMfC1ghGuZwgmGdj1C9PHLK7HUn8hroE97FBXybjn67ZgSV/NnTioOIGESQMFPBLnVx4t36zCb4Rn48IV79KZNm/AY/sU7Tr8FRAKd2PbU5pHweNnlmBcFQIcp01zbzF7toSIidarRrTDchSmnj+51SSx/ay0S9fKT6uYnTbl1Rc0OGhMQJjq8lpnP2rzBfeYImo2r7JAuR3x003FI/XVtXGNS9d7t6oFOsgPSPU90IrykICkAkZfRuZHHkmFuG71SYIjmEsfDYf/gSkI5xu/rDB69WFTa2fgnHRDnXmZVXuWR4aGjEcKGzAnOwze2suWQ+lGCX4py8aJ4Mm7lezQdkBbA25BPO/qijxXwJD9x2FkARkP1PWXN0metRlTV7I5cZFmiapDfa4UtyTEkre/C1D8QbBkzT2dNlvaj6uJFFf9jP+/cBhKZ1sNbnu+HpzcwE72m+0uqnhRITGqpUPyR+mjaT7DuDtEQfjwIZhlSoCdEDpS8bpNsNSwizwHzOHMlc89Jm2OZ9nlXnNulwEvda3hLumsjmGBeSoFepWIg4FC8zlmAjJ08euuKhz/fScwDQrJ5Z96lKYnW/w0h5+BmiGpSoszjNe0qgLQ3PaL5KnQrGv1qXVgtM2mACUwlfzy/v7mBhxBFfO836q0vZ5m4f+EuR0wBdE5YZ1afxijtMxpe/vD+9zme+/yp//wqqMWA50fwGd2ViKul6dPsP0mwD40or53rBCt0LCy+sj+xbJrtagak0gzbHdr/bJ+M2A2W5Zy4Ly1fHrucG2dhERgNe9NNMCaXla8oqeT0CS57Q3JHdU6qgsMo97Eh/mpHavzepJdAzQ9xND/xZfP2Mm6eh6nNtSjMmdG4DYXHzHt6Hq9DmQKwWPIW9iVoOhQXMbc/t9+K4lEGWgt5mQU4lELNcncg2FevBuVKmC5c1fw6fCidi/PpmyTMCWuk0sFhnmThsxec7V5BCtwdJ8uaAfvaIrNCF+QLjQ7rIyofFWqYZzMROH8n9nWCfIUc6d3ElKXXcHtsY7NDA0nlAysPPEfuRnRqXEBoc5sU4oZn5Gn9PDunyJkTE5xnw7t/O63fBliRqv3fPPiELF2yRhZMYatZewVWnx22Ar5D6LzaX3KkegUOF8fvRmkLshJkpV9pGFwhMzA5eLLVQRg8XV1TXH4nII/6FcazpX7EyHeWoGnY++uP2MRC2WS7KcmyUCFMv4sbRK109AQQvOiSXWJ26LcWx48ASiwpsHWLL30bKzTVEcqnT8dFijulZUKMfDeZQeD9XqZffXyu4pBMe/ban4VXbBpmPOvkOPU53bj5Exk260AdX+UIhnt2jbaoZw5frCSFekSdHx7yc9iFblwwFflS//DVx8d1K03GyPhVClmId8afcsSBIgrJY1GKkA5JYQIqTqvJ+uCB/qUGZyO7el7oUAwVT+PwoKLk2gscKkwWA4rD1y2yirM+r0fCFlFXsERH1Mbzwi2Xnbyd9DezZyfPEdF7K8GEyO7xg1pVUCDubzWAy1m6jFvTQawQHQbaR5ktN1Ug6zaNOXHbN03b0YGUWGm1eLnaQcS6LZ3jpHy/DCOfX79PHOORovIlAPpJf2xSVlVPkdbHnp+B7HSrZimrQn9wearGDCn0arCAJPXIYNSNlsmWLrwt84IouYKOQh4qUN378age6AJlMVSbAwbfBMGaaDzMhU9Nq1l1S+YMNV0BCh94fSg3BYXeTwYIJXJFlFUG6J7sBVJtnlZsvuZiBvjG5XaQabFGJYTDNdvsQXlmVHDX6r6LounEroop6g4UIdT6tDV2av9X/WyJKcZlS1wZbmheO5URSv49lYTqZ3pEVHxbujFD2LL0IXI6hsZeOpZ/LHdOLHernJ3bfQZfKTYlA5+0MR/XXsGgENUF+KfhIjJCY55ldaYrvRu7G42CWUnYcD501RbW2/99gxWtg6SESv7HLSrJEjNFtSsDS0Eeidjlg4uA6kLCVWNDGyZkQu5ux+djOcwGFGfraRHr5VANWobYU2M+gm++Q0VqBPX17kzYmtiidOFXh1XRIil+AdmWpqsqcvLqw1TsQnIuFSCRWFOXGSSZlzCguogOAKSWWm/LaaNXUZg6Z9hWvZk2ArgTq+505Dpaa7ydviDY9tLmGWEcIqtZu1k5Mf5hYOk8XwFqImJaLSbmT6Jb5VZIl3MsA6cGxIKmcD8s5fhSBCqJ8BC1hbmOmBsqUDJPVktk1xn5SJ1GtzuZrRuEjvPeOrnMuN4ZowMTRj/MnNKJ5t1+/x9Z1S57S6E0S6BuNyhWWUavZElYexXZ+ZyBEiQAMD9QE1tLuYhUdgRD6QumKupQKainVRZH1s9PkVhaGg285Ogo4/Y1zl4eeTOVGblAHXefZcwdOQcHn8xmzWH/dWFoSnYGalGYwEtvZ9cXBze4hTwJEHhrMps+xMrM2NAtc2CRwXI37REDJbXn3M1KQMTpbpvmq1KUcsNViFNWZuMfkVq24NemyUz3FJfR5vwN9xAx1PXmw8ZsJVdty8BHJ3MjSYBQcsRUdr2W1xHJSwEOmFEsQLtOk4tysZ/VMhCIZwP1yBtcw6ilexbBW7FtVgXMoqFUB+qYnn3LSoMqYEev+czD9PGktZY0RwQ5ijTv+TzrLlwdCaxjQLKlPNZY7QhSRMu+0WsMDdHWlnJjnP7HLJn0jaLDKkV6fnT3bSqbT/lJs3zjXpl3ue0zVOK3b4EwApn1PpgRV0oobQt5Qb27jRKLT72Mu18MbWswn71Wz6+o6SpJRfnWpABXf+ko2i+on/4GzidyUpQF250no37ALeCpd48dYjgMdv8DSwvQbAAy6jzIGYbpbeFogzpUJTN3WTr6pMG01/9sMYVF2/jBHxmowzvnS14pYgOzPXX7++SPO0/gZWoREV7H7XIcJmXG4N4g+h0PYy+W0JE47b32ytCHVVKyx6hrtdcF9T7H2JVz/xrYy837cXdLesq7roXYJJY7mZ5NLWJBv6qlbb/x6ng+be1YKohcaWpBdRaut/X+RZWr6VnMBBOO401yqBtGVanVeJ3XRmBREGBNWtr9gzuk3+A4ekKamVxSMTtMxAcoEt7cNZPqyTqMkMLoDY+qsr6OQrpBku00JfIxVyypODYW6lv6i+8UbszadtU4Omsc2BKV95xaccAy4w8bhs268K5UzCVSzNO4L1wshRM3JsqH846NM8PkplHVutCRKEPqx3Dlz7p2g8GDqZh114a4Usdn0uZMbsU4+ayKiWJ7PlKv2S9b5Wm0ZrUOTl/w6RhESXaG/fyq2e8Y0/hoU9u8APA/RhZBsMk1axi7vdsuoS3eo0RgzkfovD3NVy21eBuVRl7uc7e+3uP+UvHH0CkKGEolLhDJtFQquSVg5YPvAPQkoyP7AYYdY4v6VXCuF9azocJw4wPreCcsI28vkNQWaspGO8BDUCumGMIaVy5X2TkT9FrB3yLz08vqQawF9NnAzXtrvA/4MAUi5OnJqpS5gcwPszimGT7H8kmAI3VcaRnAI6C6Sm1q2rUHiDm/w31zRthP2pIenf0C+VWfTt05PS/gnPkmiEWd5Vn1pwyN/4GUxukDVX0NFpVkuw9de8Pot5Nl2M8mt6cHb72UfYnsZ2r2+KuKEHwMGGoeb/Q567qhcxTuV0hxSXD8NwYbf9UVKlxQf3WjbCVUcSWn1cFAEfy4/MtOHit+ShOAXMnQY4iane4+3Dm5JcJ5uG50J5YXHpzk80hV2Yb/HZ3xTtb2I21xU6+SpA/dV6lHuAM4kHOGMoM6RDWWArk9jbykkAeO+iTSe8e54LOO46esc2E4JHQHb3HDz3cr9BbHlhhhI93K8f5ATsuAiZPA8Kj2zA6iWsv+e+0s18tXGPny9+QjNV+T9sYG/PYRu2vGObyo2xwQfV7HvFJykHF2WhQL/KA2j9Pw12WbfA3wJ0RPKzk48XAozYPcbyoZ+RPJjDAlRPcqpkSdbvghe78TS7xhAn32WKf0DscZ9My7ahsfspeLSvmxD5YVfDCxFuUKtPg/k4V3JWF/P4eSAcrSsLxjYAdfuJD0+rEdc4Tqn978tr7vHViB9PVsBr9UnVJ2GiHnxZzz1sxPVXzLrS2RQFLH3eeNSbSQ21zgNAzXLFGAg+gNJO70J+45XQb21/MtKjStq9sqrCJJx8skwaYWrFBjcH23D8hK6tf1QI4U9EnVoNIQuZehwlx1Bu6+CVZfeCmazrH7fFtrtf8NBXjHRBKoBHI5JrXlUMpo7i/85/LbwLw4u3P/L6et06okfpW6ExDQeZ6GWbxCUyj0WfITAWvX84YtjDZeCEMUoa/9gOB/0pk7oljFrr1OFABdSg4S767bpqassb6eJAAudP8GxtSqQ5TNDn/+Cj8bHxnrcWbKjOX3AT5sE3HUBtWJ/ymV7hE+qoI3jom4Nxe7vopi8yGe400Z3T20S+F8Mopt9ajmEc3e9Gfr6pmMy52WrpkBlqKz8xvPNr90UcxJAsHcPQ4cSUm1ZVAO58O8MoeWX4roIq8dxXOvFhg/HzXEgniZXiiUDCGTdNG3g3ksvqfmArfL8WRTdf1XkRrvxqIavdo0Zso8PZwgSfC2lP9TqFhdnIzV2QypADS1NgiCEqAe6hOp7KXmpjGyt324+OBXnVOAZlD+F62az4SJW5MiGGG6NwBGLAftDBFcYOWk3CY1DyH428xDGy0KRfDMX0dIHqpTtoh9Y9Vg/zhL7l83EtMUl0lIPfZP/Tq5t2Ij+Pe9naxCC7yqq8nRHwjA1Pz1CZTZifbtRs6HuV4UArnipVgf8L0Z34EF8J0aWsqstn3Cjon++2vLhHMqvIP5KIBQ+HIkSKa1cMfA3K/n8RIhMCZffO76P0H82UC1o0C2Nog3r8ooXGbmutHdfdBEtvVBzlCS8Rotkw4GOEVbEhzKgpMT4hPy45rWOO47OtuEWtXnhBLlrher6EVYrHTFfh8DSyyN7ZUS0rdPpBJ/zEm/u2iKLrX1/P5gWNJe7OjPt/h17Y6jYQ9tJvfEzPOTaGGrMOrZe1Jk+/HCcLExo28HV+2TX/QnN6b1YWtGQGoifpn2MNvTy6dCXKVdBXlsuNya9OcY6kBArg4Yf9ab9cMI5p7LPeVDb43fPUFQqhYRHFbHmCOq5eoyV6hO4hfkcvLdC0mlulwY00oTRsa3SY31GGbKfGXVmnoX6KHQ13UaEQXccC5ir69EMGbIlz+8C8auDZi91p2yFCnKUqxvIJ8cQDWixHFkOKC76C1VzItMCrxzDEZQbMI6Quz2P0jsi2PpOo/7Qkq6I2mr1aGhilsBxhw9tFT9i6GTxRd7AKeUiIRRmUOZFhietN9Is8iD4KfJ09Lr7QKi5j82wxRePu4FntRFIVRVGhXbcQhfMkXjO1D1ycdqomam3sGleiYDR3KJeYptSRQAWbfZgC9Tvc9V/5j6LU8i2zGzmzTpy+ck/4Z/6etdP51Ewuctr/Uk78srn5FNbBUL3fKb8vMchTcFq4tDCd+1xe06uEpL9cSseIXKi2Yy9h2bquz6rW0kCiMN3MCSyuuCdbz8cVlZtkQPLJmHZLUDsCY/kwEfXFfVO16jHmz5jx8icPxKZ1SwV1bhiDxtdk8w6Cd6n8tamY4/3hI/LxiNvklUSU9qBfvAIBDYAuHrQlgAQrFR1SVtfg6ro5pHu1xK//UnKpJVttGGRknEuqJsh8IXvKQM9JPFbgtBXlI1EONxoiZrFXxnVgbV0ki+4/JxPp1M2EDxJPeRngUBRYvPdVw9wy7VVmFATwrhxQ88aKFT2hZ0Q/WFsP2r+RYD4T4XT62LWTMK/c9yxehrxZKI2FRNT+JRcZ0UItN9waSqo9KB9QyWS6IDJWxccrJe1NUp4r6PYnnbtQc8746TRxzwKV1KV0hTllGOcHPk7aSG84yVtOLsS+ebJJnCRV+Viz1kTjZKdaiZE2jh3RzL3Qco3jRWtmv6vyVGikr/vQpJ7Osptf3NNzi11D9nzfHsMvPB08/P5mVmACRnZ4imIbflpbfE1iR0kP22cU69QJ/wKFoiThseJCD0KyUBS1atYYrVD2j6T60E7eSov7imS81pM8QHTZuKFj+c7ufoaym3+ARYyAAQGzgDSfm5fUFZrPWrY8YiLe+Uko4xqOMdbdy2HTyotEYlumoo8rOAxBSW1HE/x0UUqbHYR41ACeLfwW5fgtqt1nf1QCjUeVjbDlef++lMxB1jlX+1mhTmkfvShjyD2kKR5VQI14I9ImwPfysw7ef8H8uDkWQHbYh7OGcaMEqCllRctiPjG5PfOf3I64mwcczqVmgDEtWNCNR61T9OdrnxHdHnyr3J0DDP0kWfCVN6uuZ3sPPZMIO0QrJkFhwoUSW9Lc9ZNDhA7boU5UCLRQxh+5EdHHqFwYafAyy9dR8gRVoEDBfsTDJjcAPwbUVPwdXnj66BnO7GBon9mRKXVQs3yfqtSb5XD1DJtcwemwPaOKpkgBMjGXBqyviG0hmefwaApu6eUL/kCz7EIVGx30HZJRNi61re0b+Nj5kdXbl4P35Wmt3k9jKzqDdHxa9g9JH3okrW9Ntsd/geiFouxDQyHNu9+OlOG44SEikKO/XfIyZO8y4NeGogcwVQC0xQS+D9m4URKDulK8nuq7I85Jt+cA4vo9d6oW0tlx2vryzXtWWW68C8H5tIOek1Qq/82gpSw5wnAduIlZRGf0vQrTK5Rk3UQow6O2qaIPuTcOii5hSZtiZ3q/Vn6F2cWB9JkDyWBCylJ9j/rmJdX1StDgJiAxDnIN8J6q7y78XNBXhm4c3YUuU4EPz9yl9vxXhHRLrFhBNaPEgJw72SRVbm70ChkXPjBQWAl5xqv+FGuhHCkuBa82SjfYAZ/DKhAPdY8Qs1IhXrSYjNIjhb2KszgSneBU/d1cPFpqP2mSVVFHoenHMh6uKLH870t0UFwIwlFgQd+bynorLTiWjgBD44FTgu91XTDxfdc34yuSYkZONVSnvLg8j8+6Oh+S+iaT27t0DjYM1STENusXi/QOEvdIAnkcn2Az+K0f+GCvOcBpUfxDWakDXTCkemSCESWThf8BM+jM3xRMBY6l+oFDOf6N6Zn8QTyrI7sbQndVYn1RsHIPaR6exTSg3GQ+jhvH4bN4o686qAPSYp64Pfbkf3BL3GjzRj84kZJXvfZkZBo05KlTZW7f7fs5JrnXh1C1QF+Nci7boM3zAuQeflnGxwwJZLlSVfZkcV0lXg9Wbddwq5lwqj2o/KBle511y07TaUrYlV4jhEjnGFgGFgEn4XjoA62q+lrTPuPTnLaEqF68Rjf8p5xDIq7XcBNLnpGDr5TgPhnbsX9lWeR+darrRh05wSApe3xRJIxqqcxKIPUXNXKL+49TScp0mLSm4ZguDghp2nAFwSZdXE/vsGB6GKszVsR0vzOS7eQGjXL4cNBbgxdvSw19YUXzDnRCpmVJVqR72WEPIPsMi+uigNHRUz1j9ONE3xlyoFiTVszjml9468kvvHOgkOrMSYnA64h2eDOVFI9VIfzFk411TQsVE9y+yLiP+zRH1pQXhP5izVT4MNnfpnAkF4jchL+M/QmNkRmT7uEc+jfX6RoOPacG3z4WVoXoB2TSZ7rb1BGv+6NEJZ9ihDQQrSo8rtUTyIy6sFuUV275SD90tjGS8WKToCo7NDAzgZ4bKS4umMEFL2GNbBxx5Nx4IwLMxygXyR7TwysisbcEMAB1zuFo7o0hF+66hzF78VEHdeQPiYEhZaTuRDy/uuXKQ1+pGuDJHTkyZHa+tttBOfEBzlCwQuzcpwQIw8EYV+NrBksLQO1rdrEOQvEEMfhQ+MQVjZ25qY2e/CFGM5SOmY32AOMMKKQri2whNQtUeMfcNGtf72XAMVhUhnXO3aC5O5cmPIC9r7MaOOgrXpkFGrcOWyL5Y/rhVtu3mKNq4aLzBENdBpQtQ0Iu/YTBjeMjZ3dceFeAG/DynxSKO5wtSWPJfMW7LG8lksD1it4fz9hrVruH1URzmAOMVzAXuE60/UsP+0cDGKsngAJooxA5cJ30DcfUVkR/cj+kYw5R8Hdzz5S0v+XNqUxKVirNAT+CRYR9ympoh65DJDfOf5+XOr4UyVPYw3h70nySwCs3GFsT/tlTKk/XEF0WlyUk3iUeoi81v6d5gb2VTmxNZD+6BUUDORr0nxNsaGZI2a7RQALDlyoCGKV6INf0ZMa3nh7P2axDIphbMli+tUn6VxIFkxAAVvlx2UTytRCu2L5XhzSvf34RskQG4yDJC2FwbYp600w5HYwhjqk5WqjCjz9mmnwreiCtaxf2ICsesdBdKYnZ2ugmeILJTebLM2bzC9Lxsv4XXTPzPxcL2Gqg74LnjEAFKIcKGmuJmScCSOehkIiuqFrBhe8vaEtteojKB0EEoOoWv5gumrxLJA3MD09FcVTWDNHCVigg77Imhtj1Nvf+t7nwQPaLX/lIIOspi0pfuII/jtTdZAH0MmMb6HPidAJEZ60FdiSrCbGiZJhUL5yFO4dbjdH1SjE4L38tEGSV3YXK2grsgTEYtIphrnEkN3PESHkx3YzK0Df2mqvOYurj5woCKoNML5cS5kqQLXyV5X8jvv5Ljk3LVXyNlYgxDJyXhO83/gMuuOKRODZ0Np9nhYMOi8LK360P43VcEC+8dDfj2LqkStm5AEZu1N5SntYjBCLVwxVBl46V8x07ayCWCyP0zGtwnQqbvrdahABmtEcn8qeexlUbOZcBpJ6nyYB5Jmt2ZggL9H8HCFKrIkxn078uIIlXvf5o1D7CVgPTu/NbQH1zsPZbvalNuT0AlpSmyRpYRhJpjccZThobX+rhFTJ1mRjeJ15E3F7DRb01NebYMt3+clW0Eke7gmA/m802bMCCOrEw4thup0rYwhrLia4la8KHXjjgigqP03MZwww/XTcoMyeJ+HjaIWw6aQVCBSpdDz/AVZwndtM5thjqE6t4e4oi6nQ8LjOoSj2bHsiYOLFN05xXqw8xU39vT5vzKzT1yGbm+kLAqgdpX/4hI6Qtauem8Af3wu6HcmSOtRKVoX1sqIle/sWW6gqSWE+K5DQEPGHcZmzzpOjunHD819DG8ycYjOPHW+0HtYPE67wRDx3rd4aXK/22yQioJCRNLPEJUqbv8S2JZY8ZlfX4ICBgZQYqMYhmJ2lK0RE/nXMo40AbEx6kZY5fkAoAzTU5kxEKACAkqZfQDQdVQVWxpiPKiipeVeocHYXXWN+Pxng2htxp609h3xwqdl6bv1/uqNjZTzW1eA8IOANuZ4JVyDv16Inc9jC2kaZvSTaajpsHmMN3fOwpIB6xNE43H/Wxf0U20ggd4ifV4/GF7k8Slw+oD4A51Z1LtHLdRQzvj54wk3DdPuLeuNIiIm23sPa7l3E+OUXBGCdXN1u2lv1S3FKc+v3jgsN6FXYLcdrYYqCJparEpr0GeZZHWBq6/t4vYH0S6KCg9Mpw4GWqmOU+bEVVcBSlsd+pTFfoE8OqIxJJOh0yWD5QtArs55hFdIolwEVXN6fpgKiBRhECdhDORYCDs9fzOR2yxbvAY2928GFveEIysQDun4Bms/n3DjnlTciSmd6DhhiVufWpISuAgeqZnsB4cZ2Je0NNFanDJGKMaSAmgQ7ejITTFPf9d54aaPJxYeuOB3cPfUC/Amn1u8Tto8N+h962usgzaeTyvhEKyoIiGROO97X/sNlIK9lxYeSguNN+futzqZHbY//qlrfNItWuY+JH7+aA6cw78SpmokYypB2rAachleIUCf4OkQnTPXgOa5SxGv32LwC+oW1ps0blk9z4pK1NFLdVe1mXIuLvNQwPEFlQ1oBWUhkjRXpccoRyQ/bLGIFp1l3/GOd6RRw9CyLXAEvKI8wSlD6v5txFL/xD8wcp5ZBTeclmuDqpv6lZH79rwDUiQwWYpYFgAlSokFxzBKqJ6cJpQgiYL35iM9O/sCYhQWnw1K+AXygdaVNNap96ObZyvSxRR6zAFvEx+o6okJAJdL4B8XRqKPitp8DckPbaO2x3iu12qU2JP5ROTBS9SVqJ2flCx7IpIQm9CFuy2Ew61VUUDPE8RMKTeZcu4rUkqGB79A95tOVkjsvmMsF6uVwveM5Xqzo4wQebUPL8bPBho9OGfxlkUfudZvDFVpe/JFLh3pLSg95ThApNpMyQdXe5C8ekkxZ+/SOgIv8smU3GiMofOA78P8WYlY15fURtrk/NHNxCQiqr+/peYZO5VvJy+QjlVUn8r44KjmPbweP72x9fAXS8KoRFxgOqF7yf7lPxuDJkm+rMUyklVzcITKEOo4xDNpDiB7nXJmLUMcaqmpjWaD485rlwzDin9x2VZ9bW3QNOdaY1RxngVHUkI7HJTPwaQCFdFvIfqwM1R/ve2Lkp3MMz4pw1hyBSO/jW/n+0WPG3oucJ9cY4HxvtRvAhW0FP32WDFFtLMv643kK/2/mNdHim+ZK7Fvxyezlk1vRyW0+we8qEWKkIBLw9Uf4FvL8CptwY74s/zRuI0wJKK9nDuEIASYbLoPrKEoRrSG10yA4FjVjDzIVTSBuxRcJkbfU6DWkzTOhrIzHaUr7MYNs9c8RtGq0dwj1msyGaXdDfu3qawjMJV9ac7cEJb7XOEU5xo9WFy9Z/MG5BT8oCeslvOg82stRiv5jDi+U0Fkml2KEbsM28Twd11fbpvPX5jMVGRRJYuwGGV1ByON0kaHqDle304ySf0N5HsmDsAjp8jDYBY1KQZVyX59SaK+1jHk7sGsHSmevduLhqWEh/xr/cyi5TlVeZZUj/YkiuYofqPFYiwg+peq4qsbxE8lNEEKA1DBuj1qm65Ax+Z2Hxtq7EfnpA1VB21m3NYGVVp6acZoiOu9NsKV3KkduINECUYQtjYgRPCK/bHAjUSYi2gHH1S/wCENi0v2yPY2VbwT3HpM4cH+ck7ej8duyIWSCpo9fPqzaeb12egYqXHAOjF/9B3iL8NzFDdGBEqxtqvxr+uTcSPNUhBPnrwmgrcxhtk0rLRnfXpAYGAe174FB9vR9Wc+kxHtOeV/JXZJTMib9QK5xYMmiBwHkLi724AD3QBRFpMRFD9moxT00Gd4GIBpPIH9vKDt+hVtjRnoMJNmRowAXHhJ8mwhMzmF+ThbTirbiWodVfm+QgXzc4QciegKYdniijG5xkl/8h0dTrUAohq2ox6YO8SUoTyKnoqa6gxkMM/XNzNwnibBn0Yl7IN7TDnO9O0A2nYL/daT8puwrjIcBNnYZUiw4kXkBwBVoVYECA8SScW6r1T5zGRDd0+y7kOM7z912wBHyEmtKPgRu68D11spV2NywpJwrFFrdGdr5X19Nh1hiWTgW4BmUNfNTgiB1xxjqhPfIGa4U9JIy91xG3dlxb2fViCLnFWSnFJibnfCqPBxNYH5nXrJE5bur9SbybiWD3N23LIJgt2YefiJn7FRb85dvmuDuNgWea/D5/ugsTl/2Wd7ueWEZU/wn/zZvlWXaXNuzFCYFR00l1FPY0Nrs80xzA6NatEAQjSmvHFo2E2EDd8OEXojhxgdgL6Z/9QGpt3l6a2oGlcU0MCiKBxcov8Y1ON+JTuqb4DIu/YRbvyjHZ+dfpqKhMZS7lE4LkH4wPtjJ0LT+mfXnLVo8eeSNYWq0Qx451GkjVPEEisbdftLJzRkiTEzajaNuFM3SR0mrGJQ64WHZqtshbmb91Dz+zQHa4aGInIFWUX4FeJX0wKjGh961URjGH6up7oVQS6R7zI82uswzyyLUiC2LfZwGaaHFhKx9hbawq60ta6Q37Eugu3KEbRTqiBMyqxJ9w30LCrfOLS3fkr6ZbqGcLeTw3AuRNKoAPPu32Ujr8sHYeycu04DF1lIWNbtkPVfzdKw/x1FJ8ij9fpoRnU4D9eHG5jHemgoNaRqvHY6W/rIapmA7v7Ti5vCywJu6egTCA+MnacdCa4+3sL9VqbbjKA3rd6h+1ei9DGqRF3w+DlEZ7viQZ5DzralbUBiATngd7cb1/28eruo9w6ntk1AZqgaSHj8FHy59Gj9nMTAfj2uyv09QgxkvQ6m8QcXEd9/IburnZsqak6Y58gfuWpc0iIZ10rKPnjvGFQIn9N17WCQBjA4+BjUPFRFD3qtXfAe6nsmCpcvvmktiPNG4vb3P3cOy/fwxQaBOXu1Zq6BlPLHffK/wSPUdHlRvloehzggiBNZEgmN1zpu6QaffYJYxo2u5l3qpnYgyCSTxsLFK5Lh1icSyd5fcDLW2+swOJGB+f0zrWijOMLwdNoPXmtMEcCzfpSg8ULONigIGfF4UMhkbuJeKZdnb8013xfDBcBpM16oCqbgP+5jOl3Pe/BIFIlN8r3l+FrsirGApQ+OLMBWFDu6qECGhHSAhN+bRSjr4AspEKLcF7yyDKkZiimHmQJweWX/jmlnNR58YxTSWGhxOwGbiX1u9V3BD6ZPiq0CHcun3knELBM9ePfIo0OArNRQJawhv734Ph+8yWLMG+KuK/fgm++w6XOC+Vfayc0FunekHCfU0L/XnFZz+HBFjsh1Z22hqnT2UA9PZTsAc/hJ5Rb6GveODCLybEr447SP6tmQ2gld/aaFz/S698q0Zy7HIlZQKjDgDYcCscVaaoB9xDiRFSM/sPrpaxkbLA4aTtk6anyxrnAY+hgH6q6aeMyALf6xmGNZ4wm97tt9hMFI0Bzicy9Agez6hUSWE4f10AabsRi3Dqqjlny2Sc4HsmJxX1Rm3kmAmrMa0ccDuBGOYK6bNMPzF+4suQaxGqKOa1fVA+J8C9prCgNNaqTYNDhA6gpNILiTyHVOY1fY5UrLZDckPlR2SH3uXYASo0QX883LVbWntR37JHX3Pb1FaUrKEDTt2RGBg8Z2BjlEYGQbeUsZjkVHwtK7dM+ldgUvxsYeTaWiUFek4o81JcpWNWpk7Q2hAAE+f+oQtTlyBKqmG/T+TMud4WEcxikbSdTcwPjr0jUgAmcYb1jiMLFvRt9gcYFsGr6iWy1SX1P7Nb+WGwypBLTrH+7Y3HljFU80mYZ+tq1YNbXHYWitAQju5QT/kGErjhtEg9MdZjwFzn3agg+UYVcI6TxMwwGcd+FAF0QZtM3IfRnHG/PyB/YeVssIjpj2Timr7Ghvhikxd6DJuUz6QI5O70oeojLa2SrLyQMEde4dPYns3bJREXThu6kwsU9tZ9frKza67CETgW2g7RC7RBTYNdxwAZEUUJ8w1UEUTmQupDcwK1JbQIbSbHYJxycXATag0dKldGkZ+h4mj0SwqXyGkBmI/yBAmhQXdXZQ8X3ciOaZtTWXHEzzO9ATnxLylvzLRqD2iOYbw9tdHmKy1RrnoWlXo86rW+tiNAsIJWHQzDW80mu49/6gfobBUItrASUnKsp2A3Lh4udlCpMKJfsqjhhs7ulF/MU9njVAnK3mpRoXBWRlOpzqiUvAFykUNfTkK+u+85bMehEnZQnxpjfvyJiIcFq5Y2B8gpXd412zLI6+slPzFBTnMd2xLlBGIw60f36JXLHVLxlI1PnKPFR4rYEeEvssmvSWVuTeMPT2Rda4EkstjU8Wf7QswWugQDWQk9JZgDNDupFO12g8FwqusgR/UWsTKIt/XeAQQUi92rdf/1bo2KXtv2KvSBWxCSJ+5/T1d1CLZpniZhkcEDwWQ84Iwrzsv3Ln1qn+b0yQsF1NZKeFfWcWQvXyM7cFcuqOInViCnwhUCX7uyYrjZFxRfpssn4Auu8MZVNsEhDcft9Z6Zvw1MpyDB27kbe/7akhYi/DkkfN07iVumyfrJF6QyF9GrpbyqASu0CGEr7TKRNOdHDfuA3U7cq6dJde+OJG8XWm5tiSHH4vCWie5zbC6/wXGQfk5D+ad6iAvG6saBplDC3dotlI+6nlyCb9E0WtmqP+sVDsk6wlFz/APp9vByAYOBIOe4oHg4tIhQZhOqaQH9qW3rsFH9xEJ2B0emoqfrSnphzUiaz0gWiH2ilc8nmipRm9xujjktHbsFnm8baoM0999Y0LnpymqlglQi2iNUyNxfM9SKnO5s98ZBC/H4tah/Jd+5IFG6IojaLv3rwv8+wi6NgPE/sJiBvI6PKhqEVDCgcKj6GEbCeyUs526MgF3UKSiTJOEZ4rROEtGVtC2f5f1eLheHvy6zFdTBlPGgj+JUyk5B86Tg07Hswu0WdmByAx/0XsBDqfqXyV7Z8+jPXc6Byspqqkt7ppfiFP7d2Or8/9l/74g9nR9/bdGdD/xTvbuZZYDYunCaZrL/ad0ltIC9NeDdLyEC4PVsk/ZhSUO1SG84mYCAl/Hv4tGCL8wQLpu7MC3SMFRFO8poa5bTkn5W73V6KdCSecK8XF6fR4v6v8SIzUWnNrQeMb+CGoVZpLXuT8JSU4hf3mDA/AqdDh9jvev2m1Z/drHcEb87J72ngdkmW2CZ7oGKEWaD9G0VKOR8RZrNKfFyrMhYmyb/qQihL7uMdFk4ziut33wE4tPHpdRfz1e/vGBw9Sp9gDmkn0baPHAoQkjj+7o/ScvMVkfvplAbT6BgbFPs8XuHwR2/vknA7fyakgtABqZ6v1CAS4YdK2TN+OJ9V2fD1JohHxnWTZZ5+gB9ikC1Bh5mUNWKyPli8DsUHl8BZsvjs/G1ip6SC1Qu6delKuz3pI4tRFTzM9SQrgRM7pk9snjG0eOXtNU/7wujiyQYYhq2skvxQzVydgPv8DN8GkusOV9Ev6kXQIzPN/ovr/BKKEr4nbYN989bw1LvTOyNA0vj4gE1w/ScliIr2lyJgAsvIhMYxOqQwPeH5jZxvGSZa8QJIayJ+GSeB1aaiBfrRy9JJaRWLXviZRbT5+jiyzNCUvfepbSFI9QKN8CM+q4I8TThOsa/nWg10MHBABTyhMIPGy1KlhctGfpMBADHZUxaLrDRpWest1Nn3WoHyVzztMOh711toQhRKjFS6n2Xsx6F3KRc0plXjtI7G28tGXVi9l21TF9gt2qJ+0ZIT7mb0BbGfeQ0ZUf6ykqoDLbAKFPBMtON0qFkh85k6dsd8HwrJnEV5t2EpzXDsUk9IiW12pOW83AU5PmyBVWvAsDISvwgpQ9RkGITKxLf1UgwhowDDYA32JXegCjvwG18mHYHHsSTgSPH6zUFVQ0AWFr1ys4No9pUTvSA/wcvGweg/Ad/1Fjcc+GSzTg/hMI2+9VqHJMGq/TTm7WRPstXiS7TrP1ietar5MeIWsX+kgRdEQTbtGPV4exp6tKvEqXjQ5EKg2fS4xZRJSgycJrTqwEJduqRhNYCCfINZunYXsIkGZrf7PdDCqCAgq6Ft/pYvY1aIV1XrMoeSVVNG5zRrNeIoOKl63fxUTbVKLsKjHBCd1OMWRa0k4J49LLr2Nsn4rkZmInKuJvmkw781IQwWeloyVLhICZR43fRDqUFfIXYMJaLJypyZad1oYofZC5WJY1Pxn/Bp3U+TpTe4Dpy1QVhZQ+I7eQ8rB59ytqbCk5N/8ipEJ/GbmzqGpWVZpZoNt+Z2SdYCwrhpeeDwvaIKCHwG3T/1msiWp2jk+8FoOKbcguZ99U74U21St+/1W6uluoUHVtgNAyqIWpYOooPlWfjcYnGuShNX0Bt6RpCjchOsAV6kyt4/lleK9entngqx0hssdsFIERItX+QhYvU9rH4ccnFG+35nouxlt3oJC/P7KGoO5GXlyBTjEPe79nYnLQ1oWAugEfNhehNv+KT8+ZWcyk8m/ac9b0wZO5V/qjBP2MV9tmslJOTaxbEOUiDGph2LPkWJp+VNYNjQzZOceJPyrfVt/D/XuKr5OWkCmVPDL4HeA+1HPAECzb4J7vew4w9GQjvDrP9nnjkx4FgEogwTZljFO/hibCZ9wP2ZkbOB1VpgUCb/det3upxwYyCuy2swMj51C7Fy03AEfWTVKI8hzzupigCU+0VJsHYeQKCxHl3xCMhcut+MMp+XnZN04gERUC+1ek2IrZEpD4On5bfaW9R2qPkXmN2yYwzEH3xNPk/T0k8zSERW0LLiFVISf1EUnOi/vPtDYiuprzhLsWhgiOHlRQ74bk+IrKp2hhT+GBVq5H5hfIqkBBXUX+9iChVN1l8JB5BAJjlxGAlPgqoS9pGqb3Y4Mm7otcVuRnp7naN9EZHqXMlNAzlapgopUk4hWNR+pkBDODNy2rYum/DbmnYOV6GmIyuZ8Sr6TE2bBZzrwclxkbDuHO+31U6n3zgtE0pLWF+VJX6aEh4D9fNtoCJKrtsjlwdNK9haUjizKMRfnaTI3MlFItEfccFRWxaVPJW8maAOgkUcbZ9Q0AfQNGALxnxobNMZJUPsHXvPzDmxPCulfJvbmwS4R5la5YWWw/g0VwfefVOaSLIRA0CbSjQHdPlh0snvBclTKVAmpd9R32AigL8kiUIXUFd8tgtYrme+B7t0PSvMu+Hh/AIdgBMyoR8FWrrBDKrRqd+3mHqj2Sadgr/fH5G6f7WJ15ZeY9cZFqPbM70nKLVLhs7RTL7JG7+5uPv1W7YwCHoXczDjZ/C3tRwqQJw1vcEGyq90JuCmFM2VSy4KOEk+CgknyTcC9WZ3rAjfYIIM5E3K3dnFT4KKAPuFuMI36x5th58BE0jSU9gLGJEyynbBC6xNGmvh82iLEdeh65t7e+Lk/UXv2bDq7qhOuF8KGW2dayqSHwFgXMD9jrZsJm8ZGdgTZ1AWqo3snQxKTx09PRUeUbI90EHJMkYGqINEZAIyFES7/uaUyWqzM5RLSJUBrdpuPZODvXaplJ36hd9MEC7Iy+wlUtsrOrK1OaQldcsWkGzTw9Jg35LuD9Sp/CzMObngxupVLnzJhQMVTyCcL/u9SfQ9f+2YHewqvtRmiZlB3VuRmDT2QaCf1KZomJWHa7SJGrhFiJqlLl8wtKJOimf6oMvgWQi/Mc8/84kCLkg4mTVGtWKZ9zMpHRUdK8hjC3uEtPsGcGNr7dL4jTz3OFzFLIM2Awg53+LX+1E4dktMDhbT3h1CL6b5t2fGIn2yh5ittvKi3G4ocpuvO8GTOOrZA+7Q49CdN4j7zzs+DSq9dpGCb4WqfwunL08s3jGakqhTkgp/OpZjFDTke+8YBRcXubpD+xh5TWHvkDKbOl0X8VBGaEUB9M+rUrYrO1zL9Ex7kdex3g1iqVrQ9Y3r4d+6Yx9fvGMTRM/AMXuHzVjexRb3koAgxUqTLXSsEjbVn75kMclE9ZVe34pnazdzVJTCj73mYviYSw7PkS6nHuHxRRtsi/gKi8Ar1HL/AV2/GNtwu+FP7g5mJ4UKnGv4slHEk1Denys6CGAFJMY71nhEhzldo3bTkcKK8Sfy1Wmgc5+YRXCS5HPLmhp17oXFCO9kEOs4sKac+Gnm7xqoqrLe3zDnKB5rgHJW0ij1hFYln5DMDN+NymfsBG63GXWLBE+h6qpjoIi6cUqYaxwv6icFpFpeWHvMjHBLjXDhc5xGFzIe8ZSrr4v1jrMmxNT46BqXGFwdhXp/TDGWP6XQJpmLfASmxsiXyqkv11u2HFUeqK5gjLcSf8grsm++MNt7LVEJJF871r4kXY4xnBMg+MHykoyyQEurJVX9Z6b9hMGFlq37O0rbQA9Vayy0NrDOOf195K2jq2rIsyKHWw0z0nPV8Itvu6MBFxnvXpNkwNexlJimwBi2NQWCnc5a6+zGqaHM7znZVdXpJOufm1Qdb14FXkULDecHmRPHDrSPgBMJklx7x1hpPdiP9uA3ulvXTKJkJErwuH16BSDzzMkvGmqXeIk8vvNa2blDT6AyJ5RZ4Lts/gjK53yKgzxh8sywPe+uhJ5/H0yWQ1p1tgWZuh+2rDUx5XLzIct/gEjdH37+9+jlacFWq2Rm6UpSgojMy6CLbdV6RX8hZz4w3DZtZxtpMk3Yqoz3WO8cojR/Nh9hZUzg7y/9I8PlLnG1XiqzlDUDR/+DP9foULob8eK2aAfFZf+CCvyW0ArvIXvlJlBXuEucE8/1pCByjBjfVHmGi8j/KThV+Ljy1Eu3/cb+OtNsJ6KAX148G5ScZDh0y5Ln01PVu4uMcgz6T1T+MD+RL3XCJJH82qbUH9NuqBV2wDW5JcrvWL09YMKblHV/kBdF5GoNhtqAin+nv4G9eGU71jxR2Kw/heeR9Kk3h5NbGgw5wACq0EPlovJh2YcWTK7LSo+XWLqvopB0UhtxMD0HNdDfKHQS76leqOX4yLOirsPfZGmQvTw/9A/Vd+KGrbh5GqBwslG8L6TulDM64uj4dKdMKF3k4jGhrxaa11ZZPvk2jq2saqeyWJ9NnC2ZXeCfU7SmLQAbyvMUfqryh1i9YwgQi/fQIW+oUHwndYAgV0Z5yX/yTEoNYIbcDZRBExLAcWXuMWVNnfKbXe8g0OzQ7DF7ZvR5aSqpcUBbgf+f9mcoUN9dGJvs65g64RhGKO65bhnfXUun6eP8aPIwa+pNbCVbrcp0U7sBpXQiybXrbanjCRqJ+9s3shfUdHKpJYbRgXD+SUwoQKok653ZvuCERRu57OAFRkqgBySz0hD+Wi572WGEUn3vVT1Vu0aU2F1LZxJTt3qRxbGrXhLB8p0U7/ZAs4ErY3ku4zY568YSDcOXuoWs79MO8utXYK1D9DMM8uV3ZcfURxI5ayDX0fss3UHSabXRC+VBRpA/QTJququY6mlsQst+TAhUv7fFNTstTRYTNUBV+KlNUu82BjCFd0khjs9UFz9JY9b6YjidBfmbW0r8ZOyU4kKK0DW3iNff+HuRG4zsx/LxfPppxuPo+qO1+sF3Xtl0fuvf2n4cdanekutvIerZdsqwiG74o8xexjKJkkqPVXQMReLhh4jBCKCWrCtn15+kZ0KQZ2+ZmxmzwSQe+JZlZGyN7izVhvyrUWc1RR4fhpwYY1Cs0WQFG5bjzws8kYt6qpz9q0TplPKEpunpqq3YL8pWtqGv/Sc4c/2iVlhRV0WK6cBd7KFBq2uy5eJi1erIE9zsTQ82LIhAIb0IxaiD7Pa7kLvT+SCcSXjDamkcjZJWpavwKmmxOZBA9y7rsE51LpbS6A24ZoPhDog0p3hOgJaCaI3Oh0ewpANqHUmdHG5o+VxrzfVjtPbIoPrBaKw55AYrjxbLCJy8yU3wAS96oaigdyGKF3xgnPQK07UQbdMykvkBHfuvRr7SB9bK+jzf8qvxIp+klV56ghqnuH1vqyvKawKJoDM6gvZjq0oLme5FNqsv/ippUDaIHvJgrpVVXF8aHyyVN/Y8PtGEZRH7WJGOhUO92nKsqc23d0nQ6wfBRv44v7HZPHnAT5Hdn4gtdFc+LvYe/RstBPH8BsO8ZrvcoV87wZ++q39oD3ox6tropTiE3bB3SD8rgsqZmUQuVPfOTW6R31SfkERbNvyr54saiPPB0N1WExZXRqC9kajkQZjnvmqTL7S5jSHkNUmClCuGTgcht63KtdVF0FwitCR5khU1wOCJbMwTqeqq5AAwCaCMjrw+Rg5MX+r4AowJyB4fw/lef0Y59e9uo01w0RYoY5QXOsXTAeWyScJhmer39xVwOQx3McqEYx9UJHuIGqlRhnY7Fr6dCFFusrhBKBy5YXN4nDMq5P6mYTNfoTSH+q2Rf5OAx4NYc0S5LXaxLs1vXy2K+h8lbxQRz5UgR0/aaXTFGk0VCzpN8lr10c9j6wj8cRyZY8M2M0wlKR4HIdSJWpRyIimxuSiEoIQlhkxJslYYeqG/QXbE7O+77DG8gTNkjT80k/Rb1VYN8o1RsmGXTSJvBd4i4dR3OX6M3Iq22DQudEIeZlmkguIVsNvJkEgxQO5HEb4bwdWW7g/dPcsLl+YV1lw2dAkZAmo6wejsZT/7/9AnOvvoHFOoG2ZcW2m+uX4dZAEgBR/80fD8e9d8gWozSuxqkL61YPeItLOydmYOLzxZ5ZxgH9FEKwZKUKejqmTDE86cqATB0DSq2JzifhCUPFcav3/ymcaKEWm/8rIpKdiZEMkzEI0tV7d+3VNPDG5VHZID5yPFU4RuQZIBbiLOTSB1ga+ruBNGic9OcUSkWqADxcDFsWCOw9Np6wbUXi+Dqi9Qv2gZuKWlPAYNSTG4HdhMAF9ls9/q/3q4L/esP7t+flcT46EWK3KXYG4DxwQa67WRtPoC5WvRiqOovFwBJsP43adHVP51sqhBPPNv1FdawDdq4Mz5Pn9egJ8c10McyuyIbQu00G8mhuUjgYSozFGbeCN+daxIsqkt1PkKzquUf8kNlpB14UKSfOkNafEGGIdrdaGs2cb+QeOYkdFxieJ2yzB6O/tTLSIEefris0K118eD8HgDGD1dWFwhyakASmLlO32GdHWOltHh+TersQN14RvXeeUeFmaZNr8D1UQBmib0CHSUmPOe3l426Ze74icjd9thknwzQ/i5FS6PSUVdzKbRroDgKndiVzSrt5RIP14R3Bmfswr7w+1mVw5hOtjFaxwgqSNJsk28cSDu4gqBKAWXWLgACaE8BQbk7AC1/HesYA6xii51lpWsZStGS2h6xTqtpkALGnpS0yiR018AK7LJ3XyBLqAWPBAB2MWUDMRyGYhYOKZzY4Ns4+QzHMuKzZ41KqFP5ubGlOfYSQ/68BxeAicYJc0Nt5Q2Bz3ZIEE6TMSowC4JrbPkxNhAslf81nFy+4bDqPBLZjYxPK4ZAO/y9YZTO8F5ydoNvrmN3OHuQnvhyZ6GnLNZKz5MUfEkzQjiBhfHwwTp9fm8Q9eaGGF0Tx+BUZk5RhFpWJjrkv+4Up+OfyPq+5dokXwYYm98jV8GCniRiBayuA5TNxRLv6cLM1kiORR/86jRpPVIsfr6TyKh6Xa3n24I4IkZygydOxGpKkekmy2O3B5Cw4lLVXNBKNJvo/qX8A/T3mac4ubcIkf9Izozb4qeSQu02taTcsF1hZ8gHZyrKQu6yXkEl9aNitmDYTF7vtHL5EVUGwa4omsMOuF+VTF1zkGd6mJNw9/TjcG3Ohf7wKuxnEiTnprS3WSdIsw1Sgoz3iUiArvgiFqEvqjlE3MBk+keQejUMafeB2ZfbxVvo/e11ds/RyHtSx4+wU2DV9F8YGkP6mjVijgNjZr7Hc6Ice2ykjv6l8dO80tike3znRA7K0JmltW6Q7dP3AfdpKPb/Tv/QD9Ck6/JpObqxYGbPUMNs1d6XqtXQSv2h16GKwnFBnfjBFJK+Kq1knon3ig/waHnyYC4FkuVkXa7tGX0GejlkgZv3us5wxbTWaHoxClFnAuUh/4xW7UgCafS/9ZVB0rQvEuL8Hi/inAdwFoJdXMrI4OEH/1Cg1fpKtgJt3EbAgNR4mgiiB6I0nH03UsIKwWmgapFaOmpIrhV6Xq2zRzk7d9IrbfQNjaG3Q0G23itUUKzLCI8ypRWh8imA4qnEJY7WKazFAQ/DBjPTZnzjdDwVHRd31mxZpSRqGe3ERiZiSSxBRzQ3Da+54Wj/l9YEOlQpul+8ws6t5D+U84HLSBbjZVW8weYgi6Lw/Q7ZXRLXWD1Uz+SDLL3YSh5UFQd1R66MedbkF++NCAlKVA2tF74IQ1wa72ut5S2gh9zh7VX90vWmxbtCfR3Z9D7hYKIlYhq3M85ARD474FaeeSaGHSz3DsTW0/LGWbYxZzGUkSPLL1pjb5oYxmtWrEAa9sFyvTOoiXVURbZ1zb5vtbuWDPjO26BUIJ7Eg4JlZjEQx3DABdY86/o8qXZJ/uLCxG5WhneLakMWg7m8K+HavutNRSOd/aOoHqC0YjaRkIH7of5ODGGhGaZf0va9cq8CT6G7Np6SGtq4dHsDcHOnWqT3SkIqpZ+n7SoejLPzXcWSX3SSz7rpG7I6OSc9geqedxN8NZJBYCAaBpeCcpKUhENcQAmuSwNv98Dkh+Ns39NCNl8t1dRISRI8u6m6fgVfvHGQJilPeZaDhDhZRQq3LA+2j/PEBXUTu0Lp9MmNnuFoM80Ga3JDDdcp5a6ERiHm2v306G869lberH13MPHqt1rBcbUp7bEiTc+7ex6kImmu8JvvvZeOjQ7+6UZHEt45B8Hm74mJ3pm3+aQnIKOZPBi/Gy7R1yh8HRBUad0WB7MukwtwoYkRKMnZWQ75ybd8cb2SN7neM1dwsDMkoS9Dce+3L4ZpAodnrOkaXB6i58nNacVEGScJXbRXCRs5kt/GfQopHCSgzMCQzcVay3mpjHAJx7ACqG1FhsXTCgG4g1dI9rGY/Z/8gwdfZri9FrLp8HWFKjaLBSQz0OZZD3yAqUDx1VfoESWcf7sdlZDCHDf9dWBp/udFfOEyGiFhyg1cJdlsWIkD7WnF55QCTW/fvz9VpbbqRrKU3CnvSDxDsNFFg7HBuN+rxSBpMC91oik56QVuutEFyRyuEyPtxCSevHkeuhFFiVygG3jrIgzntR3JkIgn2/PUpztRXO/yIjc3G/IeGmvzKHZoXp43izm+ZV4qLkMD1TzmGo8Z2MxH2p4HYipG5XRUeHHDf6TvwIuTh+1vqSeFnnuMCJeU3klESIrYOUCqt+WU79XWLJoiGivXguk7RZJN3QDRD8EL+8btvPQZZYFX3joU1rdldsWsAtjcqS9QoDBQLL8aySnf3yJrf+akWs+LrcWFCQcyK2A2FJvXYGqq64NXbeWyeP19w/qoStBG0Zm2gb18TWLzJW9P0V6KOQwrB0aMNGQot5zKNwaxNSPYjY7gndIuhyFSwWKnAT9yi0vz0t5IBJK6rabdK9S1WhlbtSw7IPWbuVNMzqTWw3zNFWIk2f9xn994IBGpbNJ5MOX1BnKhaXJFPhOtPmtDCDSfY547VaPQ55UAv03EPW9zmEOTD4VD+c/b4r2ieqR28YmfTgNZKQTw0NxgyXWyjjc3MM0qaDOFqeQK7xkndYBWiZoXpgrNmUK530AnSfVvY6pcBFegE/sJFYKvRNNwHk/k8h35+/c8VXM7Cc/QkvPrOO+eTRoQ6U3/y3pYnNlg61Gyz26Z/+DFhzLyCy7VTXNKLWeJVrmFY+F/Ug9b6JOfCw63qciqASqskziev5Tu55qJXHRl4eOnp2BnIrRrrqLQ4/A0ktSndpG5TblA3j8FBBlPPNJhi1oFMfO4dv2Wu32R1Cq+bZ8Nq/aAwsmuNBt7SD2oHtTIdn5Wvada8W1DzTZ/bk/RTMrpKz5DqqNt+MrmXyLz7AnS8CrsL1J/wg0oaM/inu3XmCVZglHowvgYvdVYud3t+Zd1DYFJZdZ2akeUbd8/YAuqIQDRdt0+EkKJ3pjrgbTfRqhBhzSt6eyTwZmpMe5Z8tCDNXOfGQiol4D6KjuXsoXKWw8iNp2jXF0b7DX2MLvsaCLQrUEdjRkocrcMvKOfhviUFTeqvwFtveQd303yzt+V53HoUcNaUWsjk2cSLMVPCHnHd8qW/wQhklAliOij32vhnrUQ1O1ceOEUYam9kIZZJx7ncTBmiFhMlW78qMRdtx7BySY1Iz8rClHTPBncEBW0hRQLvh+zZB6dTiy6s5dXxEE1v/6CvktkmnVRQ6VEoQ3b0/A9CAk8s4BM7ctFvx8u5oOYTyndz0w0Aoo2+ZMqDI6oYTBNygZ7X66aWqWsg8869E1XJU4u+ka160q9SJ82h2UVg0IiOeb2DKOAnzvOGFBRCrxg97pH74V55c2RGU+62oxHhcoFUyGG5FWd8mx2QFiIBytUiLoXDifPJi8Wh8oe708DThwHHdsgtpkGvkfUH7V3yYcxjuB2LY9BPNEdcjWE0nIHeKBIjdVulXbLlgBLfOMAYpdqMg5c4sMG25ty+WFaZUcZxkERP+2B005DYG6Lr28WwdCN2uQyNMV8qZoWXfoZRfBtRZsH4jtAY8zuxLC1c5lERHo9b7nj6UTlHg8JNaOXGAsMH1p4fFeCZ4H0GC1mciEhGuy0DyjyQJ6HEiZb8xM8Iq1U5pXto1nHFsg+ZKrVrvaWH4+ZUXHsUSWognuVmI/86Y4PI92AqGPOv+0bNkHChBDeu+YWaNJ5OmlIZFQuREcOqlcnLEUAtN12dtb9lj076KmlTKGdk/lP/TwLi7nA+72x5t0Q84wxXrQsb9fuM7Xs0yVR9FR06p1eOFevW38qf4LfUQF1VLqjW2McV3LbHF8sbwX9WNuZFMkDTPMdsyxm/DAOQl/M3Ulo12Ss3416lXQpF+FBT1bn8rtj2CL7qA1o7k8TPYLhcVNYH8chLa7SlbTPRjmRZQ8vN7kwe3VbxU/7DW3ZZWvKPYnJWrSJ2NpGUk9px65z0+14mRIP8iRhVGt+bdm0czzTXCMTKvmi1704b/G3huEagfItXdVCj3V7E/il3LD4KZX7OzUbCQNrgFE0GXTrqLGDeXt51VWnuIJBgvfNeBmBQSfpPdCJVPZ7aXQGHVl1t6OlNbxLUZB8P/d29QPXLu3st4e40XH4/L/jU2r41eH0nvzogAvFHiSBnA2EdIsev24gyT7vQKavvJWIWFzRy2wlRw40LbJHEXjcdcLoMLspDZgRAEGgBd++aoRGwlXVx3Fkf49NdDfCI+Gl+7cwa1IbRaF1pM5S0QCi88WQEPIwL34ssDaIfo2Edv36a52EwZTZunfUotf3c+2pFTIXu/YP1Ha0pQQaE8uHXIrFoojkWorM7MjzDC2A7Ss7KgyG8Ey7s0VN6Klf5cd5Q6D6oXcdgFdbAXbj29gv17U/r0/jW1C7yEQh4OdCg0WywHIHav/7lvl3xP3AU4akSlJwULNuh9lyULyjyMjVQaR1L4sK7r6mSWJZFi5Nv3wOHxHs/SMoM/oR8uS28r9OWOWj0IO7/e3Q3B0euoyOAnGJpPujqqpHmrs/0pM6zLKjfO+k6gGojne3Wn/Qr7VPq1juotwjKAXFSv2qKC+gkCVou9xYI5W6FIt3S4E8QGO0ZY5y+uqXeAKvymf0gVbUmns/7DRFt7U/4HRNeRdwFw9djHt8Kl7DudE9nPL2dhbdNfuNp5OsDJhL8TXeHXa+trxxT042IPpFgGC/mm3oaf8hp7MgH5gDzOe3zcE+CCS1hnv1iujjP1PYBOTN1Zzm3jZUdUkta2ETTM8GFEXilvajakLW5L2cdrEQcBv2FfthLQb60XoC929XzlxMWJSnB4e99O4yUv77WR86L8rZ820IaXMRPFf+19Uo/zrokW/9P1nXkU4PmabgY3k2sZ//TnoGxLPNbILea+d/259qnKBnVUhnbHeI5mFEbBB/AaSQ1nmthSa8iaavXHypMENhzAeIZIaUXQ+z/N/1SmiZtmhvL/1Se4y/eb2XtYLcRWy719Mp6zq/iZAyrvlsLcTOUhsALg/N42B46enqplzG0agUk5v6qmTq4BPl7NgBJcyJ0buxN2nduai6VAUowrPQAF2dUuFuHnMqqmAvnA/M7o+HY0T7czcsAHobNLP1efPrDRvo7tqK8YKaAD9vvrBoie+KmaoBt/gVfYfPxla1cyIdXJNY57xoAtkrbdqq2r5AJtM0G2lg3QfDaZ95g5YSs0KLzLJAzWQdIyBCUFXvj8QrVJp5/Vuw/aKJyrNk3b14LbSwXbMbi765Jk79QIzTkw8WoFBgRxZ4hdIhiFqJfDnUjMsIzRx3rOGv50f88878CC7TncNVWHibclaiRsGbN4D6ZxcKgHgRcGikUQqx0ROHm1jy/ARsDvXbCpQtKoxppD9t86J8hLkzORaOeftHYP8jHDfNM3owJ5AkhpbMZ6QAK0bv45QcZlvmhLQRtE9bYVCtTYw+2BKQdpyxcGTXFdf5pbofdU1lKswcJ3n3oFbD7BSVZzCTzGy3BPgqWpjCZ9/s/CGC4HJocgvuT+gK6X9qcjjL4wVJtf+u9Ho/vD0hSElDRNyoS+/4FtJ1hRlqehnSEU5oQ16goHLtqbdKORIeFu0nNLqFtkZjvUpx8lnbM8rT9z941IKcKdjdgNC+/th5pBSZM9D/4FBnz7xODD9J+ps7xDEzITFegqyJBrMWVGnLIkFHV1rM50rWeie4DTCTVgLb1PnHgf1PfWbU2+6T/b6u2sKJ1Rqp5lq0TJHZ1M4zglhXfHAgnrg5fAgK9jwv4yskKKY6h0jjzv4Gg4vU5VgylMxihU1+4gAr5J/rV3uGk8nRMa7/FZ0MsHBm77rsog7KuPKi8zLYKyIUPPYSj37vHibJ88Ob9WufLJdNH/HDCHtYxwzSQscjbHNf7tnvvr0fYxJHCbiOJZpoR9QhRJk3MUnBvEz5JMjkLshsKWKXujqv/nMSslErbwLhzb+TyNst1lzm35wVB54UPV1IaTAZ3RDFmsz0eb3vvpwE+Eh0tUA7YInZ0CQdm8m0ZPLdLsEQaMJihxIjhVkqPBN+CDMuZqoQ0B2gR+a7+Y45o7RUZADHBwU3SgAS1Aw7F8NNYvQXdk95JlwFQq8JqlvUVyYmJLkEAdYSHSQ0hJueH4ks/Bg4nMTTEu/BY1FsQDzTUD83AxCwIzxAdQ+aSJ3hh0qilkuOJOcoYC3VLZ0DeufWMz8rtqrJQecWCgC2ih0gyrrlttxLfECSeNHSyiEMBaMBRnu3lP+ncUwxqJi35ifsjCJW+NzRxJ2VE1gZE1gBflnvlf4KSuFOHXdgBPj+3itAtaZfBC7fQHNGliPu16dtwfuNuQ/wqUq3Qp4rPA6dmHf88gW0cawmjedpYLoifFKWzXwVh13NjVEOLkbinNx0NLmA3Eyn2o3T7HKV3XUW+OmXHJGP82KAW7NwqWqUqctQ4Kji4ZsoIHU1m6H90YV1O2QdyLeGYbay7kaSN6OSmE3dUrhdwycudLPjvYivUKugnOvrtZO2tK1xaUCNnRaaUtOP2njMC1jJL3Dtm0nkDitxFJvWL0fRf+3ht10wxl821V99Wr2vYHCtdHsKmRF/YONS9NK7AZ/Y2suEbWKThtkfNlT0ojc7MMH0yuib50jtVYu30XvW7Xp3rRIaPVgzafYht1/T7XVrTgWtq6Nte4pa5X51cGUONnpFpimZLIst6AdPLHA28vomQu8cXHuV7tLhveCtw1j7rvoVZjbyDJkKQIqSfF7DBa6/ghtHfXQrnuba/GC3Ea11H6UsA/poJYVderq6uqPqJ8/D3C9XC85kzK90BaNJXZ70X2Jilx3pS9Qc8uomddRqj0HBwiauhDACyXtATzv6X021S9HDBh2EjBvodlnodqAOQaAJ7Hq2R26qBd8O5QFPd6vMbz6wwJ3dzO04mA/siM+x3BgvOFm8sOb86XovDOfXqBG23j6dJkwocGLK1aM0vWaZczZK03mD0/niKGIMqRYfqbjjngvyGGJx4ozCXYggKjUqkzlIznt5wLSt6Nz1W7PRWHjLzA21fStswQXclKJ1IOPjMMAMQAeRauUx0kK7Y7NcBOTDxDZe5KAxxuSXHmrxB0HZ60fe7Hwf8MrKrz8YwkrCAszitprjhmrblZKMwXcd0XPYUpDBnPqToT9w2JnVl0P9M345tx3Ym+JNHOaE6zSY/VJ3udFXCVmd/FyYsABI9iE10UMPmAlyZur5xPLsvI1Mzr6nVnyGUgF9M2aRX0Ee8jY0OhpqN1tAUUndxhFOd2YOIvyQvJOx8/CES/1qkFpjwybQQ1LjfRYGkoKCA8ePCj+G8HydGCneEGwVyj0HeG5lKtFvBTfMtx6XAY07H08pyu2rsI1lPwf95Wf7ulKHjoDmNrfDRXXa531KRWcb7kyTwf3JTvW9N4lLjNlhxNIaYiEVB/+m39OaG6waVBkv8d+P3khj45yqTpZMugEcacY6TcXarqe8Za2rIB+CinvPHd2m5CvNQHcKMB8N8uDOOulZcIg/vc01FkF5RYni/5b5ZsB5VG6n/5soSGsrmro/CVx34wbTSM2bMzx5giZgiTteiPLLyg810C+G+2hxd3W54/cL77mx0Q4as9T1m5PVVJaIzrBnP4PQb3iHyHRxcSfW7q+NW5osIvEeNTqcB2U6Hct2q0pjdumhcKhX/LJLlvc9fGanM9VwmaMT1z7Ku2LcIGvWBxvFTHkfPciKX/T9ApqrMb+nlqJa3I+kklbgNejBTlezNyhspKnipQty9qeJtdU/fHmjkx7B0PHUbOto0V20MQm21ziawMpVYEQ7RTsM24awEz/Wcla2ey46ygMf+Abb2SRevigC2M3+ownvxCMPhVa1rWGUU9VZGARc1Dm5x8LW1mn40r2xFPFP2PeQ7Ca4l+hnwtE31KE+NKx9v0qDaVHASmAHBA1O96JZAKl9YiNdSV856roeeE6q5MQSiMnWUP+FV33ErA+VpujW9jiVpHuNpyCVCqp6LFNsswc61pgRFTuMWYnCsvxG22kj7oh+qtziEDpQaifwNS126TBSmUpKbF6pjD/fWjmKdZwAzF3XKuKLk8WbUvYP3BuOZLxQqV1KQkTnBXG7nnliyAL5APPtJEjLR7MT6L99ao8UWgsWVi3KYLUCv9kbpzN0ds2QtEWqrFiW1Qc1F0qiX5GeM6KxigDxx1AE49DDB2R6KsT5FowFtwh1mF/qt8Zi+NSHVfKqEsD7VfiS92naBf5OIj/1mCg3ZUmztjq85A8OsBnHsvlpWYXj2qKZv+qgj8kypcF1pKHGi6kd5tG43jjpyH+zi8rWi0WPPru8AfBZEqJuSUalCkFD24tGjP2C/Au7Ea4HXrhMMnKikYzfA3tCbZDrNOvNkD0dnHqIuY9QxM6lcpzLC7MS+33aO9/GVF6hkbLncy09RB9syVOXC3Go8R8iUAIHhI4hI4khXTSfib4mA3RE0pQnByMR5NawXhEGKn6KvbvT6OyjyVU5jUgsddbf8hYjxkpu0o/kZ4/rZHzgNABdoWjUyad/4jfqtYs7tRW6C9JnWIzgcbwt6q+KuHgE6CPnYStTqPYHovcsmm7Bjthde0/lsoRC8nJbbsP7eQerI5+Yxc6y1iMcDmAHZWiffHX67f6fb46tndVOj/afVe2WA+okLD0lMVTQ/W46QmL7KzFS0xKzRAJoYUhU98i0ghYFc7BdjdTEZcm5s34GDhyuaQgj7Jj5FTlNgjQo6c8bnpAqeHgn8VyzpNVz3vEWegJANU3NNZ6Q4k4MTBhwYOmrU97IrShgUtwhR/ii4YNMLe1XLs3qbBtU0kZWhW11P/jxWVS+DkSPoS8p0/HNl9B8T05VKXaykobPjAtQd0t0qRvlzC64eQjHdyL6hX5VaheLUcwrtVL3eoMw1X/DHKZ+xlD5+ynh5+YjUUVJtRS4EfjBYj6BHzSlFX/8peHQWIXpPex4cZClypN4IuRnbylkFxDwJKO1FUA+FEt+xdqFmPSEyJ1WrjKxnBmRfhiVYuFnWuJATk5gPZnTVWLeKmlfyFwQz88z/buO6ZqR0B2iZOlljO76xtmg4AeBcBESQJv9fYpzKTSx3oMLMgxLcIoQ/aNKnUS1938MnKyB2vqy0UL3bFl7tvypF3O0pKSdO4JpWhyj2h+uGq7NRJgWvVZKoiFyPHYb3on04passhV1FXG8PsIUgqLFCETVGJfjCZ+8tc7eP/i5qjW9S8Z/M0RmeNGW7sUqsPhtaX2UHCm0Js/fYP+2dCrkJIOU/AbxAliq+7eO8TNNzxbAeA0T3aMce8a9G+pOiSybBeXZeDHXCdKYqw6TDX+Xhnb/j/EJmib2VtiXdW3Na1Mk3H3uTjQkKQ4jz251OlXrTx3nnENZnaVFr0OhXZztLSgl4ee+chOe/UdnqSTjKS2ZE6OG2X/q0okdDbifA1TxX972WqAN6EuJ6h5AIu58E2C5lQmHjpnFvwKhF6Y7rT459aluliOJpjxxroCJPsbo753elbCdu5PAep8zGUYvvTkuwYymoAG8JQhXuE0/NICMct5vHzrPki1hZL0xJvOFAxcWfIj556Ssd7N5vk9JqZnWEfk9JJxzOyRujEFIzrSvRIh4ZsZuls7BoCz0csEWrRC08XOnmxJGHbVqYx6HbBQsq0+slL7xexjp/w4JNC7d/eEcUjf+QGSbDN7CYqxbFnhL+QhkkzP+mVSVKUMttZBuJbU/IfJsnwHUUAo2MqAOOQnfcB6L8XwV1JTqBS1ThChqowD2a94weWzq8pLS4xtPsn/wmQJnQkfIXIMe7UJx95dFlLoIloF0qIF4dYJM0pQfDBwAN9royuTPt5F1uE5Jc84xeQTwTEGWzUlEdLf5pIOTfljR3ojvdq2erBrtoZDcqsn2nUGkKo0Mkda52lZhf+pq5mu2VHnZMHZFb0M5qOMtgJbRtP1VZePX2p5RFvEpRBKTMNt4yfEEa7ZXA9wpdPB9wQivEbbFxp50FgYsqqMZ2ySov71lK20oVed1qOdPISCY2FO5yYxDvDovyAErXhfH9EbZmaMF6K2xh2HpyTzpUkFrdNEIuKhxcU7QhRa2F2Y+0bFGRyEUPbh33EZwclPxV4/0NGbfPZTwyAGnh33M9TNXvjh5aC8K59qF/dAzy5YFfL0NXOXyZTgndbjtqnz9c3XO5BFlMTpb97gV2KHwYWC5DNEGe6h41IJcy/WFuDKLpEHMcb9DuXjgftVaKkW6RZ5LHF3ZrV5tY9IlBDVjFiWO6s8CYksinukADcxlLMAeyywMfRovoGez34P+U4R0sbQ6PoHPo4rRFEGKCb569bt+k9YPoO2M+03iHLlcQX4tIjjepO/l7luvgeGvIRT/EYAl3GPFV7bNhalnf7ggfy1BGj4Rn5ztDdQbZaH1hKgYQ7sa/6zEEg+v7I8scIPj9lwe2bt6uwn9mOnh75yAYiT6ZPoPOCbtcnbjdtbYHW4bz49DGHKwXC551uvNefjMKu22ylg153HMQQbTQoWQtNZyXmG1Gcfx+9vofvM0gWlWSpTozxuhbX9BbGbaEVPA3XX0G9A/CMhxYcXHqRtzO9yWPwDd5IRbTTfj1xHdQq6C8ZgXljZSZERTxzaUS0NA2bXBwG803QinLnO/dUlOQuKiR/8OtnTcmGnrBSK1W3lQyry+7XhOs6rjNQBjPqrvsPerX1qcyeMVmbjdDF9D0rm778SFc69SHqjG2MNTwsQkn/J7C7uDir1iHw8lo7a6dG33/p1eWUPSNUou/PPY/T2+BXLEUARByPheNhhOa50Hyxmfqd5W6bmSEIi09UGKgcVBEPILbLoy7lhNPnhniuJrl4/glhP5cxW5rnHV6JLjZ5ja1qNdsp4U0rLGWJ7ugmVGHQ6vVNk9g61l3DlleVUbB/LQgd0omLUJiHyQAApd/zsgZ/LpE25vzIhRunqFrR7C6lSa15e879nv0KBNgB/VLCsseuL6R/wGBfExKrrewJAweHXbZzQbMOBfNZWMsVAJ+M+n0N8mNnIAdJn3pywGaMu+XYQ3P+bTTaW+9udV997jIPPg1ly2EdkIF/wGQNcVkMnT1AbzaTUmSPjN/T2TWnnJLzqAtAxAFIJbr8S51TI/TxfwL+ahL0vSz1lZZrEI20G56XdKGrUFXph1PjDSNq6GfkMhhYzjRHl3U4G5MA8cIC0VYExx46ie1eXFvVa4SiEh9Ox6wmPsq2XGBld6/2SnwsoK2AHzgjQC2zAypG+t75VTFFd/obxeS+X0sofZcb1Jl2wcFBa+ERbXH5pci82gnPTOU1flbeDSRe1iwAQkrxAila+SiBfz7FRtfGppBWw2sJuMxqFgCaZZYf2DmhTBBEbQLP+nCrIXjaItQKxCyjtGoGgacNB3a36SZBuIyiR9FaQVUTCR+2W98vrLdeuUSWQu64MpgIK5bzBQP2mnseYRnoMWTgbkzTijWR0yGsZDJW3gycrVGrf4RZLHR7deKnOpudQzir5dQKu/01wev2ZnZApwke/CNinZNaPUR7xJvhqpMSHmJhw4WqX7lkShxQBr70EZXORvchC1iI3OPAYPPezBs4U1f71hAzld3dTMB+JbfxsFRs5TEdkBixj/potOGPo89OsmCsP4V5Bsrluib9dGbhPxf5HjGqothxtDeCJ/OZFWa/PatjC9Kgd+wIHNCzW7JV0JV2kjYSquQqoYWOvejQcX3eB8JRLDFyxPio8RcNfOpDO4WLDfC5C02TXLLT/fPBHjpO6BvJDK6z3kumnSJDNGBNZF44PP3daKTFzmKCTwXdOixdYA5d17ZYuARzrgFXpd/C6IyHFeYsxQ+taJTBvNkZQgya6wtDYJRVvuAyv1ODtnSo9qRJw2xRsIUjg4NcaB1j5VqwpcIU1/ipEwdAIgIndMejfQFr0g6Fc4pmA9fT4RHWzcfUa+xfTbsOE7KFJ48awwUwTis/OMdfS4B6vYHCvuI4lKWsZ8vNIUisPneq0zAmi9MD8Ge+xOcn5vpyxP8NiMnLNe00wZcmRNA1j6aMJgZtYsRPFcomsvpGcWscyDk4aw42ZrDTBbc23Hc9WaAF5TZlpXEs12AB3ivWUs7bPPoIZ4yn8F1IcSxnvaCggU3RXfrx1gA4BRd6wBlUGM45D7YKpcmoTUz7FqmTWF3HzFRuM5+cUob3ittHKY0M7RZYGC//SLOAi33125PZmpSV2szia2vP38dHbZ9FBkpJwHX9b69rw74oiaRANMNenWykQPD7dMsnf+4leTQvmUPm885zukXT8z22hn8kZQRCiMd+Vai2Xsfo2tW+O2cEF4vKOYIR81mYoqb597xgyReFAX7SaZYB6zahJXaT6jzKMgx7IYN9t3HoGZtR5oN8OH6y41biayllda341P6SOavzoT0QXBquBWsXrCPv1bgNxuSHSmDt21r1tTQqd4+aUUOmnRx2XQAaHlgZsrIRl/hsVb0/PndxzZQq1eGI0SXWdC+BB7fXjz7EQry1md03GAAWAK9c7p0N904gRwNCiQDWRUJgR/qsE5NhIOSpNSxHHNhNqrfugvbd0WJdWQ9sGkrZIIZixWcU/DSXvpQ6zbgoW7ehzvaWWxQpTe4sVU9dCeKtA62+MYVoXrkpgBkTwx7i3doeUOAYUnDtabxXnCWDmBETAwoXgIyp8n1kkHDb7FVMf4rvR1WQIOWbCAz6cKHxoLb6VZHN9bMC0raERZ5WUwb6MoFs/Yuk8gQj9GMsHh5dCI2VTyqiFnjkUIc/32P0FTaSw34KKrUz3/wn8TlU5k3RNmPZVLqEc1IMh1xqLQwbHuoQDAQYInFpDGLxcQ8FFmm4Qvvh6h9n+3g/LtBQZ02LL193mdIlVnMXQrrM8ZiMl1w3KQDyf5vvNT1VbQQJG+kHiiXAgwOkZBfT85iVZ8tdghycC49/E5AeCIn+0A2+9GTYzSPbZ6iZ39WH2GSIJ2v25iFwTNdV8LxCZZUcqZ7vVPY7uGbR0Pi++7tfg26n44veThzoHVs1wDpvPzb08Exdars2hCKqlhRSPvzAC981g1fJKWL0PA6HkiZpCNvU7ZXguWEWpetGBhjOMBP768meOe+930H/pK3hpMSvDUdw6mtKI2carRxgFc0lMfLc9ZG3s2lcVmI3hHjGoYI09NHkAZCYFGetQ/XMi3I2CWbArlgRbjBgqYjHzvqTeAEa2T2Me12vIseqUbHE67krC+15mXFwbwXHVYS7gm1ZPthhkXYhObPEX1y2bkUgxsVbf+1sZHHWkSJAl/pz+FgmxRTHykh5pH5N6zZ+wGPK69YPjGIWOb6zZekV1gdeyinQSRt9lF2kWonMjso+hEkElMSXsk2/SzlnIKNQ5qHik9XKWYUYv/g6TvBhEXPLTujh0qWDPGdofD8zqC8MAipkvX2N8Q0CpyiXmichffVUoi0vwOHmtfwXJ9gx91Wa3XbXvFusjj7OU914czBQmW7ywGsWIFzAqbK9m2HiPsqDbHXRnCKOob1vdnvLje1lG5Kqb+wgly9GpYxbKfUWxq3ET4cGsa3UiZDsb6FyJfdaVfmrrsi63UC/C3aZ264kdZpFnhxWRcbXX4bVQd3f6Zxn1/LV5Ocj0Dj15pyAXWPzZPfS4PhqzWsmbHYn2TRFAhydDo0GnOUL7JM+pI5oAJPNxZ9gXbf/zDvrxKrUGsJEZvOB8eohpRDLuD4QDo58jv0M8nHE7+X/udvZRQZetKljAQOk8uNtlPZGvybPqShthT11oc7qOoocENlcgtxhDZEMjtXyXos5/xH3k4SuqMRU4rzOIVnwFLXkB16u4ijpAVV8USiNrBdvNafrIE4h5xAu6ohbzj51cGo8v7n3nxdu5gn0ZpOwEftjPkEoSQ68HfhCaG3intgF/ms42KH56fxOYgh9Or6NNEmXY8ErivqSwJDYRoow7+bzovic8Xb6LN/HhNwV1N7/yEBXJQX7DHGqGJUjojJTr2gOQOW3+mDcfGoRd71QwHlyOSiuahGsNEa+5l1A4mZU9rMvFCvo/ISxPyp6uJQnPO8V5VPf8ROnImKnMXpnKIhf1Ex/H8u5It5/rcrrpJoqUpObSP9qhzTvuT3COagXmcHD1zz7gdGnkkfmcuQJV4nwlTn8WsYPV6WrItRV3AG+/J31G45oqUKLEK9vCkttmduFO10WszW+6yxPU+ciqFLbJAbCPRyYfKNiDgbIBmgIpyd15Imb/tqy0TaUTL7mGkN7QRmxpt/dq+1ljzUV3wCl+SC6kQJ/QPXskAQN3t+MMolNWf2xWnH8Y55VbLxKCTW9M0EeiXupCqOVLtmvmWUpV6UFWJAtZIeOj3diWMCEH/cy1Gv4wjv7lvOE0KyFDCm/mDowQM1vEjfazVhbkm7qesC9rzm9j7n+iOcw41NGNcHrMXCHs8sZbKqhlerg/EMuQNxPb5Fem6mPhBd8m89jSK2G4dvtEieSVVldDx8jAIEGrVb3hHCXVNXzlvDdRccdDH12R/wBTJZpZxi3uPHrjx5dqzN2IXUkp0/9s0/rgEQP0jtVcSeVAbydtt5WWg3fuWFnUly7eTM6SzjnqKdrGk2KqkIYSYKn/OdcfWYa1KfZwJ0pa+wl40OyRoM76z6UQGUNTp9ZKeM4DvluFV5m/Hh7q2mA65n5j9fP8tsryfcnqFgbdohWw2tB+mdge/S1TikALGqHt+YAQcDtEHtrpqnsVLDqh/XR7+hm+4JiYToQWJ3limQwitGwgHISjZPAc4qrUid4HTaoaaCBdimqoHqsupZHb0VXuH/1cRAiOLW+aZPKTZZ7wg3AIQ57dl55TZVyL92PqVQc5Y7JF8fSfgX4KYjjhxbNz2gmWRr3cUYkz40pYIJknRHsixQ7lzUk5LwRRjNPTnPq6CaXvzkQqrjThYRbgwVhWvueTWBUjXdDsahEnLgMhaW+BD9YHKNgxXD9omcce98H/ZTE39+TOZlKkj53CxIDOJiDjnJ8WeOAzFwSZTHNhEPfIX2sAMf3ZPrMZeawtzei/TWfomis5lPbhPQQ8Ban1rYkZEuiL+f6cbFyUWF4PxeAGCF2txzm3lRY0BZxf688A9XwBTIsq4UcTYWiYWTiqPkHszQcl29SQGWkZpB3dHnTX0zs6giMnDh2/CEbuwNpxeHJqTnkximYLDH/MhrjjBImAfPEHnfIiJ8Xz867DD8xfh5YnF1EU/1LfSlTcuBMLJnYrVPLEYFgZHOenq0AgBcVQZqf8Jy8k+G/3N3CtW/umkhWGVju9imlN3WOq+CT7dK7vJp8/j8Jv/qkTekrEXma3Qs6K1p4Urbr+2/kKA++xYQY9u0Rjam4usC4Jhw2XOB7DrVYYaLHiwZtVYJ7e2hjfJLKhwYDjcqz2DFtVaIpuXESWDRRKZELNkP1ktZbFlS+JL+OUUOGkJCCQ3z+VdvHPYnjBt41jIkojvmNCsBPrU1S+6CTb1JszWHWZz8W0EBuXMyVSxea3Zr7l0BhArq9pkb3rIUDvSu4yVkQ3us6omkiw+C3ZR8mOzzJ5SFKP4W7o54hM8cfRGOJAGDCFQkq1itKLOAcvagdCJdjHo8haMRvXGIHo3oKPOceyxggdXGEcBC20fFq66nfJg1qHQcD/s/hdEJDSBQzRMTDMt6UKDH7yRBJERokr+lE5yUDvgxCI4dUAmXwUf0BQK6K7b4KSDsS+SvhM7LAiE2rTQ9PPGYVpM0sjFdG42zQoSypC7E22kRBIc6Gw2WmCM4pUzLyesBDob7yfmXf9Y9Qfgt8zR5dg7mbwMtvM2pUaGb3mBBbtqHKG1IYO+fp/VMxHAljGfTi7M0bxT47cd5FAGXmKIbcv+zDnFiSd7zDpxPe6ypTDUVMhxXt6exbnxBCcVFjW3x9CgRKKkechLqumH29pDIKK1lDxvookowrppUD3tu3H3GVFFFfOU2gFDwIfoEgghVYb4H7gUuBYbxCKUrmSE7nK8wH2uNFmiOcmD5mpXCLh67j3r1Owaf4CLeKBMILM2F2vsc+MeKFLAJb5rgrgJVizZKuzjOCYTbxUDZ/DKmtkDDSGazzMEi2kG2vpezOf5a1A+9a81F8h9HbHmBKFqb7OLFMrngcRKObu6OoS049mBD1FKtrhTiQLsEqIo+5NicmqHTPxn9ml7WncVY+F+88RuHMqUBasAgfvjlgS0RiUnuW5gva3c04EqMLn2y8k0Sv0S5THeBwLLjhLoO8FEoJBNycEOvXykpMO7CvXNNV0yUhWbZ28paJZws00ETMbILnvaymJpKOaYXWE3oVHgsWwBBDhtxatEOsjzF3mRiasP++ZIsoBomNcZu4Nx1AScqcv+OAqdrkDHXQSvY69kzpr63KtTaWu+ORs7OwsYAhclQAQSnTl/o3+YqCSic+Nvz+Lc/Qjsd+SIKWSYXdwjLGxgv9vUF7HORG67LXNuj9gAUgno/+bj18IQkSWF2S0jYaVBJ9h0gUvHBFP1EHnPMLW3Im4wtpyMZgBVvRZEHMz9YBSlYjKdaL8XNaBB/EcuA4XPn/XgCMraVReDQT65fIwsEGtTRMH2Z5uB+vCGZ6VOgs1f8dyf8tbp0K63z9C7xcijF8mLccPUELQdAuQ18Va75SYmspYileSo37JvxYwsW0ou3wHOlftp5FGgwS+35XSr1OkjoUMDDzB7+2l/5qWLhZ+MNmJOkI1dZ8YmyJ21lsnzGesDbQlqX11P7RLawNFznAwf1jbF7PVwhjVSg7SenPAUZrVIHCZ2BrZ1v+nd+mY5LdOhH9/1p2A+FCu6YOpRViWVyF+TbPe0N58o7ggMCJV8wIACpNl9/H6lANHwhr7iMmgt6F9vHysacfg8w+eHgHFqgo9aF7KWBw9vbYxhA4Gj1yex9voZqgA7L+M0mLH8mCbAjPQki0R3YEEuWB7Ilm59srAeiMWLb4xNwDl2HWynUZLWLIk04Tn0EsFI0IY+uhunAb0cPbqhVLSG4mq6lJA29iI9yGXIAiL7XvYl4kGKBPjinq524Gnn7Czxo/SZbZgqiABTOxzeynujpXT3cN7njIQu77ISEgk3YLH2XCsnXIFqaQF7e6BicKx0FrFe30OPdr5RdVB+QUsHRKypYXHR5862YTaMdCvuRDK8uZIf1+TKyC6LWresdrGbUNY6nIkHfurorEsLIooxTuInx3Z1hW/bJXsJElyxzdSkNVNp1g/fUcFIMZ5crDPoyzi2LSxcPG2y0h9RVXQ9pHBwgCk0qcvcZwEYV2zFRvgDESf16ONiWr3lhRmlX+ijaxhI4D8s28exlYEnl1R8i4+WDJRgD3i+hRsKYuc5UJdS7gqpVqoElZY3heIYULPcbY1wJDNV2KPYUbWLJoyQGR2JulGbKzmIiNKgR1FpoIANW4gZv/gLPJH+JIy649op4DzKMqwVKeYnSGFAsut2Y+wedDYnzglUlQZpe3valC5lL7wLezy6YLA9oNm6IxzqLFZlZ6vjW4b/bamNr6yrBPeL1kwEyFfr+vomWFrOsd5K+ECE+Mr8kKbixzLH9ASbPEA2PYRIPvysyiWB8ZYL37ucit3X9QeL23+X7LVGt7D3uzScwzRK4CZ7Pwrk++FLc8vaOPZS0og9Nbt9+DHzhgPz0zl4CgzSqzmIGWj40wagLxVN6Q9z3tAkuL6n7kTiJGd8b3h75H3rWronltDhHvQMCjivefAV+wAOkJkwpUOKn0wNkgdDbB1HDBSQn3wZ/w9nmZStGQcUWGE0sy4vqB+dquxhxbuNIab4vyEtLUwqm4w79Sg3oIBub8iEjh3wV3cVaAnRKF/daL8xvnOM//Zegu/RQylq+oREo7v5XVRpTznZcn8f+9N+yYwnYOC4e2dohUnVajElaxOZuInH3uO7EVWXGpf4tts8BFoqNXITKRxV/G7/zbPgt+DDUFaocFIBf2RYOyNvvoQ3TZhOdGXZetxi6etdRLX7i46juipvflF+tWfrfgNkOMp2MlNpcQW/NI+Mn/oyQtKwd+dWG+AtjR0mwfqSCxBGFMG+9fQDLHMeaykbMyHe9rJrD98NV16m6Cbx43wi5Zssev+TXVnP9IJ9DS4eeNvYl5R2SAicch9mKodXnQ8ECn2+aAysYanldvFE3+np2xWuqnVMqWc7eZHhkCF+i6oBwel/45puUAWykjKGLJXfmzBEM0LVgZquB84DHg/Bz9JZG6BmFmFGKxdT0InZfEdYZ0YNRF7pasMXPmuGkWyCKyO91vu48bjb4QGjP9sapbo6x3agwBTctZ2gZHsQd97Dv76Rkj5NkJdRceGN6ay8aizDMobVwt9jSw0J6rwuEc3pgLkJiyoBuJHp01Bsr/zyL7BXe4NlqC9OXNnFMUkvkusq5H57/ntzrqn21g5L56he4APD2bUhpkTzJzv0w3ZFO8U6M5uuA7SVyT/gVzopa6YSjyYgBcc8OlqV1Hpu8sQEMGvojSeluxIkqBoFXUu7AeKimvjgHfF0bjC47b23NjYagRmlBGCE6rrfoBoHtjjMnLoPY2GYBsVqGAdTHy6K28/JRORhiMdQYfYzD4n/uR7hjeN2dI4be/joDjqSfHiL5W58ol+pgIU7JL/+NRETE19rbLj0Pze2AVELvQlGGzTeyAkpAtWWU3JuEr1/zdhpwxTbqBVCNso22PeWfxe1fzYZuiq/nVaaj/Y3wUmJG3r/3buvEV0m+0JP2Y3+08XwtVYmb++9ZV7N7lAdnrhSU4GGKnOgI4dxMr2DnhG+cdMflC9FyFHYSd7z00yN4DoiJljle3Ul3/Inzw/hRwbufM5z7kQx6qQ4XcmcYxLEuIb4Rjtz39Z7JU2X9VseaSjp8JzsFBMk5V0NFo5X9RIVBpPnqDPcd4xJALJdDBTt++qP57c5NzJE3XQymyGkeTkojF0e2WGiMzUcHhUWKrMqQCSK/rp6BZ+EwQJ2RPlal0AEY6RsTdU5zK3mtMnhTjHBRk5QfLlqQepKCHcMcfCXAES75DHg35VsR7wdfXxbTx/RVP9r7vVqYViMJO1q8qlDSftUcbMmR6K92XtxROGVZEmdx3Sa60aKzf1+LkC91G0COy2kTqIy/Cm3EEvS96e9l5YY7Jy4r4JcDUl1Hw/F/8CxPF/98AKXEE1gFXSh44CJILtSwycWa5vA/qqTHuX1zw2743bYUlaVFFf3pzAW+9oj3aFChhClGYr8OKgsHXD1pdAR+lE1klEPGuMzUKL5GE0XtfoDJjJQpoObBsoba3p1bwEFD7GdjdYzwFgp+ibqxtXDXpr6gb0fotgkHxHReUBfi8Q7W7quBFl2v1yVz8cREJtFM/sPAdb3NORxfVyOjgUuQEomm8K3ijp0VRwKj5BQ/oJwTdj2KzsBnHCJMCsuXwTaaTBnAC4sWmrzmKE3cCk5TQ/DXPiK6jOKd7OiDAu+RbeY80xDjK8OmksxbbLBasxdsmPIfJ2E/7JbJPzXmQnI8fp4rb3sCBlYNIShL0Z7Wo8ATPM/E1d/132BOGJDDYDjsEbpL78f9yrK7NJCHjJEaGIU2cXJ6xm1oieqbqZ8fL8VRwK31e6pLp7NZ4u9MUQMiS756e2SEmfGpyHbI4/Brbrqqqc/o04ZVoZoJe5aRbPICKjNtaxrnpqQjGk4oeKhIrblICFkvtlyQetdiOpFFFln1cRDo1rTTrtDwGWhVhA+3RgNNchsZlCQoegjTQ82fJg5ZyOINoHt4ybockGLdhU7hHLDdV8wmUkCGti9WdOVyCvhryBKG9vS0aEXwHat1nY97VCNhvQYoT2+w8nCK5y3UAg2JqZlZcJjAX93bgWChSpeEtJxUU5wXDx5hbMltbTyZKJHdxBxcibgB0LHPI6IuHk/yfiTCR/ppmvlSKRzPgKSIzt124IprQVriEzXSKJNL+5rj685g2PcGXS0+CiPBcLhl0ITIwGde+dREhRcw7sZUTTBG/Y8vj2BLlQUrgGSMdO0oxjkgVz+P3nHmolOQ59Bc4xF+0LGeTwoFeAPOd2h8NON9eUjUx4vIFwCfeREFbYs9J6Mgn8ZDuFNR7k39kw4dCxgUpizg1SsTX2feMIS389o03ZRDh25BNJVuiywTE9BszpVDkbEZBe9T4Ot1TyVt4CXkuVvtVVlG62Fy3aUw9Q1utqAKhjK1G7B8m35afcmm3PSRl0xVDWZoFBhXYCSVd1F2jZZRUPQfJQw6VHbo+zia3f6NMmXgsKl8MffFd/2aVhbMFlzelYAgdv45UM/DQTbNuowN956xxcM1EGBunEp8tSXUCt5iykBScwewnNe8iCZ+EyIJixgvuRJxCULChQrcfag4iKQU/kSpULdkLGkE9ND3WFoTdNGMmQqA/+IQ5WCpy0yju96oHr9eVW31tAbCRmOsGEXyhoScxqcjoIkeMR+CsJCYrqBk4u9btFzEX+DBRD4Pk+WPXLUAsK13r1X5KDLdAoYbpT9HJ+sjE6Y+IP7tx8kSTWFKA9TsZyk7LsedNGwpDYne3865XLehWzfPcZvtSPGdTI0SfbTKfw3jvr7oAmzXcOrhBAJIWwg2Kd6F26q7C/7/Uj+Il6u/FblVb164511Rgfogk7j1tkd562nNdMkrlj5AvVPRcmP2bv9z8NA5haDonWGFtfWIuJOQ6ZE0kOCdb2z/SZra3GEwRG0uc1pCZGS3cVzLgitm2andgGqsX+d3Mcv61QGTcZhvhvh9lupQp5Kwrs6Ulf+XHt31nlX2iqEffbLC/gqOY9nFjq2AA/qlF1m7bSmvLjDGm6HEnf515RoV6QRhBiuPkt//ZgjFDY5TSV7ShrAod2W93aKvfXLu540PtRsuVHa2MN8KuTuvoRZB0DJmpqfvKAfb0vmVGY7W1Aqrz7VcSjw0DA21GC5Fw1iO2PYzMVFhDncNntMg21lLIVSScAXCumfLYzLqyPwJmSC8kK9cG7C6PGzuYfQOwRGhDBtB6sMOYyy8cINDyn17ZDBIBaJGKaO0MLPgcsTIxDnQogxfy65Xkdy8qcnCJcz2ieO5ajIuszhMgfw+Amjyr5SvzvL2AhW+K4DPrQJSiRg/IF0TX6VyoA0PO/CA6FWAyBO5XpUmjNmI4TEf+d6cXv8/GB08TKGNRp+5SZ2DuHLvAEH8CmUVbQSNh01XQUdodAN8DD2WbPbNcsppzsHjvy3k+4kj8l0JR4cEbd1x9oXN5BLLMluiLB5AUkFr0Szd72eB7yp1Ezj0ubNMrhrWsKBNFRCKBGIm5BoaXrM4HDIcwZpRF9nUr8GXAz8z0DAQtorzxXug2V5dgF98op6UMOH+noYqw1M6VHHZNH3mIjkXk/qg2MCVkEHErFHHQpCQYSOaAcy/ykUEML0J1zwD+OsGfScK8yMadwQcbNT0h7B6KdsbMMdN55Vli/hD13oji4exVYpMwSaMSXct1ca7AnsHyyTO6rTvBS6aPGKOAUKV5CQ8f/2mwzCxOqTMkhFk87rbEpURt59kaqJR5P1OehJVKwNLnw+ehbCt5Q5E6yqV54Tl7Mxx3x58MFJHT2Pq/VoCNvCK/b58RiBZkRoTPS3JQdc2QH1gZXqcULRfZa1p8ddBu5zWumDLtG33mBku181gPTdJAUpCs3mcpDH/9Mr4RPdGbcwkRbQKeN4RgaRN0EG9lD0s0bsbcbkJ76wB1Cm2FATaUUEr/GfoXfuxsPBm36VDjaAGMIGAbaYdlzYawsBl9qHRUawsGQWiJA1vZKz37JIkvDUl2YbzliEW3hvbrGKCSTLb2ny2euLdso+ySrf7e8NG/ZyBUZoia7swdOFNzYzjtcAPGN1CsVgT4fodYcGq3nsIj5At/q9Je3kF5Eu4zzZXBOxewWDOGYt+Iufewocnk7eCF/CwXDKTcy6YgeU8dhAmDai2RnhKnQIuiGFZgRM8HW4QdzBL0Q+81dGBoGZg+vU3PdxWyXw1mJ28jpfucB7+qSNd5dhrq8pqAxcyd2s2axdmsJkekAamyBPCHL/r/VVHz0kDsZLDeC3+9IAZsSjTg892zHm8dKxQJcrbXLmBqrblAMhTserEN2n8zYZ6v55R2rsLbd+RRaKZeMb8ubN3GTwcuR1NKkzylwio2ZJ04j8Gxy7aOHmtm57+1L2z8qDQ8oJK3L8IYvbyc4biCD4+zAIqm6vwVNjpaMyJM5O+HGT24UmhwgNxubq9Eb0rDL+8alR65KoVXGobOw/B3PywH4Ksic40A2MQSJ5PxisU4jiHnOP9gjQk8A1SyHcsiX5V96luePcdQsC3RDsnBTgiXVo5u56CSwHYDJgE+ok3q3TDOpg7y8PhPvRBW7xFR8M4FCDuzKxeTujl5J0AM6vpKlcctHB2UbeK4JrGtskHTydMuG+qOa1i450NMRtUEQJgL1hSsXXfhNxU9Xaf72lQFohzvsFup0YyltxXPJsAgdzJib8F25T+IHcVyXJkt8C+Mwdp/aOGe8sFwm1Vs4sZeCwEQkCELxVPzdTfJK77/1fbBti2aEgqMdqeqVq6oiB3fiLO075OilXVw75UAYPdBDYkgd31iJ9cCfe/RVaFOZJE4NeX4emBGnp2ECa/EWElIz3e13abg4O0OK/INLVEk3L7wvD0RSo/KBjB5nWwhWD5kZhTsPg5SfvYC/vCEnRjkNpyNPzqaEgBEGDEea03PZ+ZsDc8OWhDryNT/LUC8c3ccuTebaxd5PUPKSBxvXDW2zgoXIa04GbkvhdK/x0YqI7MtYd02x3iShsWR9eOVUdjkJrN68fkRF+KhjbJHK5kXltEypDJ6TaSdJyofePPxR0d1U8U/eMHMjo7N2uvTMCp0PQczeIV9z9MAATTDd7544pR6EoCuqcvTD7GLbLa5rFR04V2aVZb++J/uU+cd3+exETM7NR78YLbDm4xsCqdWjPgXz9c6cUstaCgVIRWf2kg9t5acEayhqQLWrsCYL14pBEhhiY5rI5HsL9E+u9JFeC0pkwGBz+ZkhrmJmij0SJNrf27y0MlZ+OTySS0x2zxBEV67QJ5uGf9vDAGiXvmN6BToKl93fluxG6wCKn+9TwajsdHDw5SIgYrrMbT4JtYp9xijDH36+qrs82DxFU/f0IUFyDqmIlFMyknLRqIDCt039gTHoZ+4FyyHh1CbucH2R/gHmrPZZN0MwaDi+K3NeE4p3YlRiCxSAq/YJEMtqIQilsE58tP9npGMoRrk7ph2cn+p0ZtTtE7LwkE6ba2ccLxS1H4zRqGuxkeXW+JPSSscS77GHl1Z91D2bJXI/46wgCRLKuoov9SFysmbhDT3pfZ3KaQbG6Gic6JxWl0wzJUXx7DorurMYfgPg6PDxULiUfp8zjSERT7+81XlbCICx5L26v/9juuYMukSoz9znLjVBLD7TEqbq0A76GyfohuVg0icTy5mMHgs9aGvt+FRtA6WL50ObBC1CMrABviQX7F1EQOEHvXqPilebw6H9PVbgVrTlozd6VdsBTaZgqR4RjwPDMX9ce/Scjandu4SnwxNZeaJSja5ItmCRyLZ0M3yZcy/CTrfwq2P/B1oc9UEYc0rXZAFVEY/21mvosgaU962zy+x39v57qL6xjw4ot7Oj0R5cukYjIoIyeFXwFNzR6d+TkQT5jxt5OvbgKBg3qvuLj98wj17rbtKOrmqfk6w/u/C51gSu2U8vDJtgg6tEgf+H56aD7x/aEM1fhqMqFuKH5IiWIyO2PHdiO7dx9hjT7wAOCSYnE6PJhgr2LlAExiMz5WqN9roCe5/rWzpm/jITnALK+FoE+EluRtNK1hSrPJuldLtG7DJs4Ek7zITP0W+TV4J5aJyXSAEPK57inzJCzbG6KxjciyYjqd8Ku5nvbJuzjGScO+TqcGUQ2OMOaNOkB1jnvEIFxhzs+6VTchfYLp96YTMSopf8Ax4EuMuDJx+ot7qf+YpfAC2B+Zp2Ro/WokDGJZ4XAnHnzsACvJpchKLI9GNAqvIcyO9Zs7Ps5C8fPXADIrWAUWg/fwE5xNNKG8Yl3IYBagDjzT4SaQNDwAPgAoCLhCvCZy45q2Sjk3DUyQzNTm8sFw62jqOrypdzA0YLmLg/+DRfTleNkl4ir3sGFcKsAIE3zlqGdfVpzWDd1R9e7O1JflLTsO5wlRTjHIRg3N2Ck5LgbLsIoMkk5J1E3ES50V26sPlU6kQUpyv+pKQXyM4vTG+vWTsUNkPngIg3pbTMrdYHyTLne3ZsLEmDilZw1gXP7bKzSTmsyc+8mlMjCbSAe8kRwTxVUEGw9LntFXEKTBEoUWniPhXAy7qFN0SSM3iCfHEQ334efhGRTFPnsBHLGf1ziXuZN0tXa/gtaDeZjNdmzKAZsBpH2TqSgNgdKq0anbmoGnouW7ILH2fQ9dfs8oAdlHAxK4kMs742XWFk8mCZQWX432tpR0P1FmAq8zFSsQ63aCej6Hp7riyHcpIedcmAeRjmfAcpsrA+iu24UWKJok59QFUeeEDHTpWYexKK2ho+xiibJcmi9KuaLrUaQ7PyoZxxMxifMwS1YEsxgEoodk2lCB/twUoOSBtQW1CdV6zaup7QsXwzMQVyXQ3FWGz7yWbzJ1kdYF6Y1vp2JOXDUYBVVhUX+VeEcdn1QiTIw/17+Ego7a4uT6zU5PuN0K+4kJKXH3vnDUF5ICuF2pkOIPU5HOnXQxMSRSed6LjG6kcAsRD5JgZSsHKlk3INRxONfGzDKpDju0Q9cZzgNOOz1Z2oeEz9k/NeYBxOr4qPvfZXoi3h4xmJLYwA2vylviusLgkTRb1Com2+q0p/3sJkPph8dlNMrm+lWWz1NcQXMt43Lpnp8eP4u3vRonHIPr7M3S2tO9wTBKtRaFRzzzrgwHwMPpJJctnkiNEQf6UATRcthbtIJ0fxmyo00LM25QT1LDWN8J0d3m92+lXtOA5cdcZq0rY00J50qjsTRnvTd5cdxY0AQOO8Gm/alN4e/iNZPyw7AAcHQW/PTGQ0Rn0gTH2ciiskyBesEhCNbVkOtj01FD49x69b97uFc8/S8stF7XJv+XLnBKcO2zDQ16rXw/dmKyRS3vfzzMEFapY7VcPF0mA6CnwH4JdMY7ofgGRJBhVoDecP+S1WNGwQNx08QlEfK1o3inx+ykeLyDn8cm7yoZXjnZE042CN5TnFQr7uYpeRR2XaVM2yEQcZc4VRL8G/RcpXMI1Ix/BcSCGlyFrxRiX7jH/3zgZtKDgQQkxj2C5vq0cE5OicNoivqvw8DuLIqNPJSdWFY7MKpJhgD21C/lCKXwm6FX4PFZoetbdcxbDWqxTL+RTCaNrzy46hte1wVlFHSWdPCRai2Zs8CBBy3ElT+MCfZFYNfrH1+6tcbMS7X8/yKK5Bl0JFCylajrIZJU09bbVnLrfzzQ71xmfZ0qsjgDNcVsCJ/fT9lOM4j5v6D6WrQ2mkUAd5OoodCSObOQ69NNO5pRrR83KWbKmtSh4g/eTBZFBfIwX/rOxzjtkci6OjSGihlpKyBZ0+ZI5XU26x42rDdsqnXJJbvOOvypC+haETcqYxA0vt1c7KzkLswtZDQ0D62sCwhLqbuRuWxuMHVtsKMPbYqc+LwNIYTzyPaFd2wbUkCx4Y5mvHQPLo84RBHTGYYcp7zFlQwLVI0C/Bk5k1uljZ+qHFH3K7WqfNc5olSuHX7hdhL39WWAEyS5zNeI271soYuTBFO5hKbjxogt8ZDg2KyjNzDng2Y/ufjIQXz3ISCjS3n+z0ASHFNN0Qia+VwrSX25qhk7gOS0BqFk+roJtgO2kRmJ5GAYGZMW7Xj8UTSy9XDJEz3ccAHEjtqWIa4gN4Qh+jC6cqHX4dshkfIMK4MYP8rw4rMQbGdXqqLxd9Rf/1vw6k2ts4hBsz9qiK3mU9BnFNrc2UK9aeqXGnglJdgbDVe8NcYsrc7f5zaiY6eSvH8cKlRd6BmMBTEDdDq4uzCieTwGGm0O4o5wFHUhMlwBAaewvyKSaBTf6EtyihRmqyOq76eE79QDzbICLKRL6UIcrx94p8BD+jPMotFnK8cGR4HvOo9GruxanTSAXB5DQv/InQZwK3vYYjL7b+lNr/GjyCY5HgjZ27Aez4yGcy7d/LZwxeKpnEpKjDGBbMOCK8IEDH1EvmqcBLeNSKA9cOqRFjp31rvsqZJaUnn5Tf482d1rNy/Gcs31RmJuTxNJcVZ/RMnCPpzud/A2vUXo+e7ydyiIquvx7KBreGkiPRBnMMnvoq7ymbvzSzCDaMZI4XMmvGtVnbbsc+DJdhuEstDMkI5Ci7FZaWh0pYxJCVfavK5tBaD7Zg90sB8+Ylc3NqhQ5D1c5Kaki7RUrnd34HLclZ2PWY0/FeUvycj/7CQB+18+atGiyC2+eRdEFqKVvPpMbvMqahrgYIKPPWwIcgiPSn/He3IEB9gDdcSwkL9KualOglsSOGywpSxW9dW7tjZZUQkChInyQzN5VMWprW7IJVHgnVRSOwGuUS9ptL4I+t8JsE+EUXuQgHm9TGIjNZ1svuOLvkb/o7dLJOeu1h+fAGeiMgd/FXEPlJBHd46vxqSbZ61a1u8zT4yT4v2vjfd6AUyWA6pEOHmhDEzS4KcxC/H8/mm0lJldnhOfPAPgI6oN+rzGuPzM36IdQFSyP2dvWoHVo8R2m5vwqRYJptTTqt2P47W78W4PQ9Qtkzbw5hWKxG9HZ6IZ1smDtgBvpxGoupMmRvlYvcqIPYDz3smiMIY5EgOZ1qvwVio7y26HV73CG3ek7xH8ZH+5SBqEMq0nVCHhNoNKTnpYZfbguqgH8P3wkqg9cL2fkGNopUZqLS5bB9RdNt+x7cSeaP3a7TttNsKIsRiusX+6Ru7Lt6bQ1EcTXkhEuqvZK4MO/vPvd+OKQpDynKh39zVfxidS4Y0ay/aJCn6Ck+Dg3RBKanJ1R9vZtwhUTrMpx+XQzmsO31mYHyVeIuTbJEzS9qGx1xGnEo2syfbXi2LcV7RpAP09+98goBF7A8Ek7GghTPPJwpnpx8BgqcnSiIo2V1FvhBvFu9YgUtlSrHSqazBNESQRAgWvRp5WY29DxI59KmKIFdVPCkkkapmx6pjMj1T+fwHFfE0Isc3PBqTYVu/ge+7fh3DmVBFVhvE7/zgEbD25ltXDPPydHnCkAaBTgNuNAsyaBNqgLKkOx63sQx+Us6P+PcHlHIGvnSJASmYLD4mG80amLQqr710DX37fXuOb1NqgjwkRheEw9untXS/7/A5yIUqXNVpnkV6dDsVyoTKGJLBbIK9qF4wKmfyJAlMgsy33UGW+m4XUddbjAnHLAzZRFV/HmErYPjWKbSNFEg5aEUrb5AOIWtjYVJQQhZevHuw0rKzfaH8PBZ2vMfgWm0G+Zh181k9+l9jc7DPxOjWNk5huxUNsakAwlx9OsaF6Tm0eElVQzT5AwXp8CusGgaip2UcVei7EFPnYBaoCdjzof1suI/I1u/I9Ow90NX25/un1hX+o1IIUq/Ug3F9S6/rRUtjxIXIoUEyYXEBSd16pWcPhUouxbAfDFe0XO/C4p11XQXxYbTCA+P3q6KNzypz4CtlCFtvi3bsRu3rdQ6XMpNlr44dtc4cB24UEQMztFjLmSoiRbzc9kV363NqZB22qPMdmTqS/NIi/1txmOI6CmAWlXI7TfkYZ5AshUNRBKl8rl1pIeFY2NGqyYT2lTEDTxFNmYM3YR+9zkeHtsaS+MrWsgvOLaj5yGv580pQ1Zhplmp/ejPSQzWqD+9WzC0h1ojn/Z1qaoLNPWNA7EvA+3U3N+aJLBMzh+bhS5qvMIQm+B7Ff8nFXS7S5Q9MGpVp4otTbHQdr+mJbPv7EY6x0WtNTTV2mxi94gtdoh3wR/twgIHE8wdBawciB42odDLMo6gw/EbN/MIxI5DpoekaE6r88NkXufqKyJNKN5TAeeNQL6ljcBnMNT6+/TLeZ81ovrtH4XY/LklHfasdEar1p9hE6IdRkAFmeHXtGO+TmOobTmpjRueZC2PU8x97oJEThXe3H/OBN7GwVlyN+ouUQ3p6S3LVo0+8nYSZK2VuZAYvNNuskZecaqdpsJ+RW6j1UEq9kzfNXC9kTWVs7UB3EsKiT1jZ8a8rg75AxyClZJocRqP6BTFeMCmYFi6gRgDxGSrQ8r9firWpyTHJ8fDFz+4vZRRB/KawgHN/MzztxLqSECC43Yh7StugheHr4Q6V9zQ0mug6ltyNEOAaz/8jLHB5TNsh4zceSNaamhX94k59/ltriqh6YGDnTUN60vuF77t6x+ZZRaSiPJp0txK9GmJOYtw4kSrHz4zZ9vzQ8TXIWWgi12p5qyBqTjIjc30/OoADP9RJ8TA9DeA12C2Wj6P3leU6Q3bKxkaAyj7tlECTgcjwk89hB+YAGXaBoyX/iI2DOkwa/+AJMcy0wNazZf8dfFgjtoE3Q/Ow8Jp38b+3VJkR/BPzzT5G/80OWlCJUKbWPUXjv4HicThite68e+ECEulf96l+HCyNKQNiDNHZLxovJJiSrpdpsWONcRqy8q+iKgsm2ej8NRuE1z5aU8/M8ucsMoxSFvYbJiWXX9E9N7PpfFsaPcMaBhqvXlzktjKeochpuezZAhRWUvyxNTg3ZO63aNllc5fE7nCqyhT6U6+AgIEg7PQ26zaWEoOae5fc6XnNRz3gYuiZFcspd0MNv86rjiKtOtqbA2Q1BCLrlRLaZAfoEnKDB0Gi384tKwgInWwmDFEd8kuT4eO4/D1Q4hG3VwkMxyGIpKhaJV0deTsBKjE1M6FXRswktWHTDsdG0z3+LAcazYX1IfQYwC1Lnd4sMMG9Dxj8s715ns72taHIrOpVExeyNTBc7hEfNoC86Cv8A4xDyKjtxY9FVj615HYio7g9dtEqTtd6en9r492EBzK6gdWCQQ0AyrEI+vTsg70xMywrPTncEKx3HiMM/WfGx35QY7KscXZLrHpm5+H9kDFvO9/dfrm3I5Q4w5NTkwYV3l4wYfGvs+DQ6ZxZLR65nWM46o1D/oGGAdVReaegqqfhUGvbx1ntqvb9Hnp1fAOM/BpjhfMe4iCeVtMng7WM9ygtrSeLwO4YeKuXfK+9OdsWOHwvy6WOFWdTVg1W9dOchZ89VOaEeObLU8fLlKVCUmTY+CD3MMxd+nsQE5VE64E+ZwNWaCW/3FzfQdi4txZWGHMN9+QyJUJLhSYm2HQm0gKIavw83FUT4EsENCa1vjQhNhSwaOEJUUjN5dkr6ZgUMeZeDUeRmVtUivVgpHcz5lARgzy3IJlDO+0OaxZtTGIvqyCKwKlf2Ef6/Osc6AgTvW62kJSw7wUjMhC4z26eWaZl3AvhW4M3Vs3ZGNfJMwkd9F2SMqUzvDKzV3SK8Xc/YlPZEaIAnyzVqbv3omzPo2zTwvUkhwvmbHMCHcHlC/mMUJoXzx4aOUYyn+dsKAcO5wlJ0gJWK7tNFjCq2sKhG5PVFidS6OZbXUmcRBYUPsPdwUKfYRAxpSQYUVReM8GEM/+tSLa0DLO8GCBzINj253tcRrpqQLNfhiEqgS4lu5ZmpIC1KhqIftxs2w4nsig6mKyoPf/kZ191CFZfof3t7Wrnt9iLDqbBmG4qcIbwyMgy4JNCvqK63ctjV/xkPz+QDQc9eqZa+FD+SOOomC7gPgxvw7CwQyAULTW4t2d+oqqttWUBYj5ydhtqmSQxiareOtyBawP6/swdi83IYE9A97Vy5+Jm7EyvqxwPTXUwQYHL4EMlRaVueV/6czxr7mxPWMzn4Xs4ognAwBdhS18J2DHuoKxPAqZ4KJ3NYcv6r5FJAnHdQPjppvJr116JmruZaL3UJGzIs693Aa1NiB3hOOHrY3eZ3T3TPP9zcUCrB06z5bURSTeRSwQj2DTQpfE/PLZjROBeSfCG4OFhf16u0QcRwmQ1truISZmE1zkMs1yrxi0fEHkFt+HDHlLGJnG8fZZveV3acJVjjxlVbp5ALVKCW9eLTQuVBSyAYg3POLORekiYa0p7NOMTBfo97x/IOpm5NtAi7Yj2wIEcOvFesyRB567KDj2Wt/ZQ3FgsEVkqGspY2jchy9EPHRFuCg3Bn/wmaa//XzOhyRnPybRp3S5ulW/S9e72ZimZ5XgTOXzCF9vJD/HpfGnKQTAHsD8I9uVgY+rUz66xpf6xVN3HYKgvj+tgE8PLCqq4zq4QWofHH1Eq4KYrWQQRwnwfX9RCxW5BV8Rsd+u6ViOwC3G0gGjCfdjcJd0eQWxLL+BIcTz8lWO8Nih5xbzt1wUcchgB8DW0X2Kp3d0DGlh0wCdozopGMfGCowcqp5VYWquK3w9A6a6ceTJx1/ip6ajnjZWv6vvT+gN+GYZZiPHG3XoKL6qKPwkBvmbAS6kRX72E/0oxxMARH8IEGZlRl3xf98kCgliWgSr4xb8iSaESe/g5wn6xo/uNybDbfU1fwcH3dDZRshLuAp38oBgw3Q0fmPEDHhT/k5dyrVZlsqIBd7oDbtWnoPiSri/xi6aOymWmLhv70EMP3zTfBuGTvmLbCfVxBZ6AokSg5Pz9RB1dSw1wIr29jpQ5rZ9qDEohFlny7e4eYkxVJxDknYKayMRr9Y9yqF7acSCjQ6hxXBrwR0cl2xceFxFbnsunRI+9wLTX4I3auxu91LWS+DY0ja3bir9mxCdtuQlug7IovmYbmReI60t9aEN22PaX4uee1Bz79kea79XYn87IKhQ3bHUdHUaqY0f4mcxhOn99tXt3Cis+B4igqXugpcF4sJt1i0YxES4u4CuvndMYBzrVZbatpp/DRZ7hAkM7CKGzIGQjnyXv6urStTs/8rZ/bMk6beUbgtVJuE8fRnnLavhfX1mwJDyN/XuSnA6ywI8BmXeGoUmWYWmUeqYdrGD1VpMMykF3l9FXlLPd7YtgQC1PgBw53zgLP0T1Dl3WGf42MQM1ZI9xjuWrmgh14kOr2B3ytND02VNXYKD4SsHBxI8GqBfhWqsSf459CD7OydJNhOEDj+bcQk7bMfac5qNycp4ripg14dtPYiDprP/upSr20zvu8B5o1oxdDURHwTHbGkd2XdbgIBN0J3pDIsGO5M5LSIeduPoX9L8HelJ+lEnCuEd175poq6tXL1qvvt0FkVrwJucoZCV9aXLP4S4U1BXUJKN/tuNn3LrX6AVfwJPK2vB0bBrmDJo+SyBt+jZR157YYO5f+EPBR0LOz6n3ZoKNP+EbOKi7K+mCLe6egdEW0NsPP8uuoGUkXg4h5UeTILGAdyKxNk51uEHGk1+z70b+Uwl9oFY/s1q+KsFVFeTR2QHtlQTnXpWWT/1tDrWOM5yNl4J+DAY+w2qADsuYLcTi0/4wdZAJV1nNkcdJ0EKOujRTNYTugapDDJKZNOqUjwEDTFGAxxXE0T3WqxRNFc0zzMsoHEubK6Vfau+7L5GCbGambGDe38tABXEv3RjoSmeu6q/Teg5MZTG7z+QfkVEFMfE1W3mPKNnJJxCIvaABbL5wRaEiSy4VOWGibRga18fyV3oUOfAxowVJgGKJelx4dO9LkO5i5zxosDLtMXkIk04aw87PkgM6XBu7J55tKH+kAh5H9vP7MpEVTqkQ74RKUKU8NsXcfwk4ARK4zakE9gNpWrKowqrgjGMhDvtMK2xt8Jl0gA/nDMw/Z9wnuGpW3Uk05k9BJjsht6rOqm4oxfQTeGbdI0PGZd5unHnfvh6TRRepFOHQsEbRWbdeH0Mc8Irq5xOq88dky+pn6xbf53WWFN6JUW5lQLLhpH0nxpnfdyBcLTsg8MQm43AnLkV07ackft4mNvQcoVyyjx3E05GURkZ4AGa8n2qYdGwCUqHqM2s46CEWFuWS0EQS0Kab0TdcjPZZbAmiGAYNVohfAK5BTujQ2d+/+i6Kt5w7etaqniMpeqFQLhIE6eafWYN5tBeEAaUd0pVN0R8mVdkq4W9rwR+9EB1efJyHQDMVEvkzFvEN6pgTTRjCFSO+BOZXf+tK4bt8/omFa5LL0QeJCB2dpzzGePByWo7YVTeJu5fR2mtZBxEAq7NnLJxX83oUSBfJ0e+XlCzgRe9TGiXPiLR5QwVCtW6wcgDuPY1BvSwl8QZt+stl9wDyi+caVSQUi/O9yKOwL7ZTmYbiGmWmOiAaTaE0XVszv7Cc4/sBe8KWQYHkpJ/nhH/lBuZu2Ay876juGrkcg49EJOjF/ClJsHBMIOQp4wPkRlHS+S+CWHgBW4KPYs7wioZeYEuCqDxizffqfiAGMwVQGd7i5S+VeWf1iS2g28Ogj49VT3tVXJs7cydcIynK0+gsbZDukH97+dDhSP2LO/jJ92vi7L0MRPhpSAPjY//9AxDgpQka/P7YzmRzu2QSeY8aOTiBhzaoJX54STVvJ2ctgijkVTGYpm195slCAoipBwAM1iA3IYo+H63xegfJ+nNwHiHTqzmP/7I0o3BONiAXT7MjIX6Px2E37mcuTHcP2hr2aSbw36cCkKQa506QRdC5DzV8yL1ImDdHc0N7rCHYenJYSbQHkMjZF18NayFHNjcku9aZ/7wgSm58DyR1RLfX/d3gPXZDrduRDo2rby3Di7d2rrZD6WCRR1SVy3TmIcs/vr7Pa25SOQ7BG1KBWoj61Hi1u2yd1uxg/ZgTNYQP0U/aLhSmTxfB6wHYYwyLsKSGlScfa92tKr65gDl/KJwHAr3/cdqhOGAKNcrCUHYHvkrRJqfbKl7AzkVMhXdHDhnqUdl4MQRg/Slqvsw4GmavZ7jzLby1jpu3TDrr5jzL5ShHvBIAVIqcvVyxOvLPZTVq9rJC2nRPYKXiW+RPLDLpZp3rngd9pA5RChkdKF0O8bUXGequzCvXoFCWgB7yRIamuDyMo493yw1pS+HZpFn7AI4ALNXot0bIf2N2WgakmK7InnihWSXR7jLLBw/boObBvMsSTWXDhUmB9VGtYzqlVV2NfGfwuMHxrM0prX4bIr7qFsFNtXEyzAbslM+PYNQ4nQX+QzdKm+uE8sxEGSDmkLykHvpw4mM7oRKtB3s+/8VWyi+aNx+vr8s9joa1l5hctQNUd/to7+Tfj34wWBw9HC7oUsfA4xZKcEnYr4pj3EVfUenrqp4j1KhTGZEaKQZCA2VgSYgQyooCK6fV/aedPmZJ0U7wJMHG6G1c7226T8DWHXm29jSf4vbfANabld4k/QsiizMzDFK65hUxxJOViukNdWUlufEI4UnwslSgHLFCMxnM+twYGn8jaAqF/t7ps+DtDxl7AklCuMSYRjpnrmfxjWwrGZLl9P92TYA7NoH3Fw8zVWD+uKfyL981I9eJb/TdC2K6myF0upo/kZNHY25Qx2MyJKN7Q8YalcLPiWIS3AaNtuxW4k97ttX1YKAJCfd5ijTyMnD1Wz7VATVD2YhOpfAgIjZOPmWm5sqc2F5xrNUQf4kfExCMgSPwqXoe/E1JqhIxplUZBGFEhAmJsr61f6HRtkXX1L4c7ajeJlC8N7eLOOADhw03d3Nau3cbI5gCblTI/Bve1FhTbfY28yfTcwPlisTZSPpZQOgFnlTYQq2F3s2OG1js0ac7FlK7tyvOGSr7/9lSaCSK9X6fF+HQ/JLOYE5vqKVVLgcwKpjpA/FADzOHvMLsHo16d8z9qiATAv3YupoTfQtTMzZmQxB4VJRBLhYmZVfvCBcpp8pdSxGaTl0QG2kaSCExIF+thyhpBDS9QhydvpbjltR71nEbI6f9TD/WtIMxgG62MpoZ/53Nv0wBUYln6YyaZV6DxPha0LUpOwSCXL/P27FcfAapmrkdWgh/WeUNINxDfwHA6do08Y+RjMj/Jyt8pfI4mVo6W5TUoy2WSraW1T8yRcKKlge6qAmTZIavG2fzkUfXroDrvX3zBkmD/9oxOid3qXjhYEaDHzpCVZZIqwzd4v621oL7qIy0ZSSqgKPr6z9k2tUsl9GYt8x7coUtXoY692kuyYNUj3ER0HB7hRY/NvF5vELW5ElfmkeWF7c/Er43n7U7WFzYXKymBLMqpnlE2acgNfCuqvyMDeW1NuImnSzUDkfRE1EB/PJ9h2U0Iq9C2zZ5euZr9ctwjTddqN/AwvPOxxMJK706dxsMhzcIo0m62NHtixwa4+Vg944r0cp1AK/Tjhk57fFiwmsrB+wWkiznZSZvr8emeW3Xtl2WrNM6GboKc1b9gnTWY5eLvRMuw7aH4R6Qqb9rFA6vaQYVIDm27+bQln3g86jkEdmSB8B2xD8CLhNEpV36tYgJm01fOGMyRJ+xEzSKt9YFn7myIcBxWNucHWJZ8ABVXto7c04R5+QuO2GiBd42YFw+EQ0SRF2/wJZkA8wRp+zX3bK6miV2cR7byGV0EhftAreQXmzWFm47K0p9utmHFwPL23kWGkue3hibeGzvNzNx4yhlT5+kzDAZulBvp5ybQ6FvBDXLPxufE+eZkm28BJZZyF9jJ8p7IJqK6Rdf5OW7zP+8ceUXLWIZ4HJD0jOrGlBrwLZqII6p6tmEpttptB6LaDlkr9C7Sb20MK/lpJmQGx3mmLAsQd+OTNc65P4XTxPN4qss6HCApjZYVpgNgleSTLYYOeIUn8PCCLtmowKdMnAK5pUM1aYrgKZQMBP8q0pcQFqiTiJVphwwPQ/XQs4RA7/DvOgX5wIMkok5RpahsSJpoBXFUt5LzNtKMuyhne/RwIn2C/AC1YG/vf4MlZyMtgZSYiU35ZOU9x5pxJ/HmU1wIuiUP4uOxNrgSQGV0FqP/WDjhNm9eW4Hcndk/tY4quMs9mR0qqXwCVDZ/oLr8nkv06/Rv31QS9r+cN1TB2jKVJkIWYtuNNHadTanyd1A2FQZosDjdLrqiTK1OFK+xbhXcdvsmm06tI8i/tKdUCNKdN27anYsXC5idLBuk27MdhqWi9t8WDLFDqzyBxYZbuG07RNLWfbpp/uhfyMZK/JlVIGg+XkOcp9QugaM/FcfRorafdQHQNlMaD0Xbw78hkAFnrLuwTl3KqCRXNntsNIk7ifgqpCpYnxDqpt1H/w0yfH7fSNQGrTTcZU+Xzy84JrFcGC+kKhPDvnwVsEmeyyGCWfEWJG7fgJYNev6NnuJ9CHqkWxwh0Pxtzbj3Q8TSvh/C5b6zaudospetId+iFCo+tQFvOwckreI6VKfD7rxXbMpYLNIvQR390iG6aKRo4L27wPsywfhtzBoz1CqBjIp3m0w23jTTXQgNZsdQmUyZ4e33CSkQhjCZY46TG75oNpMZ0vvVRZLoP03chU+DHA+ycj7sekz6l6XvzxXOmzhtFc9u2j6WXR1waFKv9J3iZqRHE5aaQ+ZlTOjEu3h12hkJc0WwCwAk9T4nFlUMaWBX+MLmrK28xZikd9uiZ5CHYKwcWC7sVTiuiCsJ/gUHucjlHeNjVINa1GUZoixV+gamW+n0boad/rVjxUjnq/7/2PBf59aO4/Y/bo7Kmq9MltJi7ZU9NHYqO/h2XaeclOC3OD9h3nmKUyOxPNO1iiQP13gMALXm8BJfkc5YAA8qa8Ogl2lxqjW3dsghiv1VzcFsVGoqAoW+B1+5ooCSqFjtYt6DFK6I3IvQzeoKMiRYB9qlBNC35jNb+2gZKK+4TR8SALsrSpYizvhUhGWc4kskMaMuIqy6vhhMoprDkeD7D/tMlY0O+ElucIPXUXsCKL6U9sAt8j147dyAsIfAwfFLuv9htMb/ppwTgekgun9JjUZmDL2Jg2kFXdU9o9nV6ANAej9wX8I53EYa8Wz2cL1mgjjnIGlW3VGaksRqO1Q39otqAt5Fcl0joXlAs6NsHvroQ2Fp1ou9sfgUMPMonEjrE2+zKluYnKF/lkzgCAjsN3tVbxPEgQaVChOv8V0n7re1/mmyZFfTtssb+0nYr5iz1BsDC+85aSg5NgnwvR8s5KK9cRnK8hfQZGUQJiWH4E2+uxZmgQ+4wX4FgyMluysY0dEwJFPcV7Muby6WQ9OohxMpdwS8Ec+n6VICUazTTGWhMenATL3yqjaB6mbMN3KKD1ycLdLO5R6n6U3pZnLDEKojWWuNLjf9fHKxSTC5CoPVbpUuvH6Yq32A8cYJcV9edDkxhgFbbQk2saYUzuuhaxBqakkH52WFVfrj5kBHpGPL3n4YXap2Cze7jGUQ0Y0MOxGoicE2FNDN8R+8nkA2VOCg6ky7+gDxisG/uhohnFs2pLNYCCdh1lyvJai+AjkLo1gmroZNv3n1Id7qmoOZANlmKLHDQWJN1dlilALIirX9gUuEV777XrGfCAyE39lWZlyAmzFaZaouPyMvNWaqWTvBAJlPzKxbx0RudijHXI2u43/pv5gkfFLE5WO29oM77eH01gogKYFqum3OMjx1D7sZKalZ6qAbwxXNkYRhOd7pF2SZ5FpNK46C3Y3siIZjknNzEHAKJhZlJjzSJl7AwX72bqvIT0z1o3IYhTJBlcUyvPfsGJVoO6lbjpcSvz1d+FK9Q9tME8da/pQkPBvILDgMy4C6gNHbKEDioxv+sDcHKIMIAi/cyrVYHuOK+BVmL9Zk5w4y2WQiQhn1tGxaQRtUxd4BAsyYZur0VA96NNARwgxb4wLR6ubcPImXlsIRxUvJu+3g0SnNEUcaWsU6sqG4l/fH/z0g2zkMmaItdAZSZSUlAbcKZKEeSvC5Lg/nHH2lUz1pQkpMkRKlPYmPeGMC2lXidaRZO9ns9KlxHpo5t6HogaSYd2qR6l+bucdHmyxSkaAXbD/yLMJ0Lw7AfLtfVI8mH+agWcdEP38x95cEkxUOYLG3+YivGKcoK9UnzE4Z7jXAsg93PP63OkX4W4Hyuej1dNfsSvtP5haQZE0OJT4UowytO3gjPCWNY852giiJi5C8MCDHVRBrWgB9qJ1qgpM1JVbUKE1y7yglkKwzFvbCDD5IrXNhFFor3X8qCnTf27oAe7fpchcXTpdUs9J5ZNGd2Vpw41XXgiN/fwcT4irs0/cPg7vTNpvjawnKlCOo6Tt9NZgZsjgHy7V9L2lXXTVLwgp9SZcUX7nVDoTkjigHSstmX6/qxPvw8vW3dL77tF5aq+iqh9BKHILHZ5qIOe9OWHBFrx0zIhq7iRl7tqhiDazWDHwpS2fRerLYU4cMv1Dj7kVG2KJojie6TMpphJfWW+Qzgcz99Fa0gg5iEZQ3A+TwNq7Xjx+/ADZMgS1xapiBHH1/yJ6USuR+wMMuQHm69Smw7ZVlcVSYt6x99HzAbl4S5IwFIY1QHvCTamvxnJa6JTXZ3PNn6d5SAhBGAm8GoiVec2NCqe6wl+TG7AXmxs96M/1n/+tFOuVIOKeyJfQ9iZl6KaCq0pmNGgbLELyCXkl/SWRqnMrUzPXNt8WrrayP7OSxJyBIkBza/cqFOW773tpW+85gs/JljsgIhI8dYfn3VFI66kIyTrkxwwR75DLNldR6p3QQltdWhAIDxDAFPjY8yXLUcrqfJJ3K2ql8/fP597ZjxCj2rJG+2HaYcwKQCCPihD/L0ud7YfL856eoU8nWOjkJvHpVX0+uX7QkZKpRPoTV/gvaTSEB9LcfjnPQQ6OPU063fUHuo0/Cj4adSEtHt16/JfRr81J/b5RJRynXRoiEoUz/vD9v4QLId/Kzu5wfdERyu3vhBvVfu5hIysTs9kIw89132ik5Z46d1JX/u3bWzhTPBcaYgGX2rOu09LwHPfSdSZ1gPldR5TN7k7X6I1Hw48QYDv5jpAJ+4JUqGTBmC1D72AtdEX5QXEMNhNjHnnprE0uUuwaKZ/wNYYGqbQdXz4kvB7VD0rJguHBG4Dy0Ft5NzlANPDg21+T8ThpohkI4olV4l/LVhkYSmYoB0HKqKIphhAogggI315TgFZ9T6sPX5I5XXlJcXVefpnS9b6FYNAnny9tM8FraYNf520qGOjlSZ/12QZZoIViEsyZ+OA5vWdkOYpeMVtohAgTQQQ3zrP78y4a+AabXWofM5mS3Z3eZLzOWcx3NsC24cT4ayGvFppBHQyOSL2mkQQBpemrW9YBp7wkTFNQ8koH3thRZSRa4G1Uo++VN05Vr6Uk82vIisi2d8uCIXZKSqVJl++MmSnqXdXbAZDhcKbrxBkx5JhBct0SlATCEgx6DyxKMLo9Lpq6tva1fyYsXu94bctzf3SLSeNkqWptSbK4uq0EO0JbFFf/jc9e1fKB8k8lRsXgmj3bPMKOot/AyZDQ6EP8Xx4lV1fbMaWGLGo6oIypfnsKDfXPs0USYxqqneULmbEvdq/fP72sbdqR2jxQ67NBSjqu4wpGmj4PJ1Ub6XdAlLMJ9/0zm6I8oWNpULV3of3jf89phiAXkJLBCScojWscjYR1gjmAHGGt0ITYvXQsXAGc7GRANzWA1qvqxWPb6F2RUct7ohbNDkxrh+sF6rhmjmeJ8IUtd+f4qE+mwSteI0lfvVm4+cuC6sapnus3qbdyhTxrbxYbSIomXTQVQ38U6QSOkDbgvfYRS/WCugjzB+JRrY5t6vxZTcOCiDWJnslEkp5UqrFihBlh3Z8eOl3noNJDnCHkaFOJIlNTJIDYl43o+zHrwY7JjhC5kHqguz+KOh6Hfg/fv86HHkFeXk50eVOYlzfqLE7mA4YN25oeO/QdGQ6dcX1jAg6fNiPKM7X/4urGSZ8RUl5Jp0WZLPYRoTPcGGs3Q1bs4t1A2l5vaNayEu3hEk52HNFmdQOhqZQm0RrHOgw1lsTm92WpCJBey+OQnHMsHQrCHVQEudsIw+lkD586uOjdbMi9BZZfJ35V9ULUGkYTwI9LZVEI3r1kI+tOXtUa2sNyseSiPXh8pSejm5hDOssZ9VsRMg7m0/KRbEGeP0vVxMPb9xoaLWuJZf2Q5W1BtYlmGx9zabT0wX1ULfHHoz9CDEEmCI8HYbxz/GZE38mRhyNMhnvsZKN1SzyxCP/BIcP5EoMkwpDEF1E5ZZTEO0nphtlVPByEiNerJx5paFNGwiSDBeN53hwgClBis1KdIyE9KB09P0GzL9590SwPZfKbz32mobnEsvFiWYsqWfzn6NdVshSTqByEFZt4Um0Xx6RFIR2hSinXljhXOemlyWQ6iE6SmkenNVhmrLbH/Bfie7Uo4RyyZb/cYFJ8S/AzLGmjgFYyZCge9THePZSBX7KMYe/5psuT/J7pPCI9/azmOAOXTK/5JDXl9iSsfNWU98Cwb3m0xuirmAKFMOr5CTHjeS2ONQr+Ez25cWWXLNMCLyPs7XGB64waloSwZRj/39tTxmsavzVHCT5nYvVYWjqk9J6SbaUietzT85K8C9pHFp3s1VKV9VmpwgU7vg6p9D9rez3wt01FAJ+VY9xwVzcXEBUdmcd62nelCn9LSKA0oKL4zRPdeGn0KIuJu+uuEvhpSiSzXw3E2Qp2+9G5nv8X3JKAym2phqsux8n10deEztP6JRlUOuC2K3EmuKZJz+NW+xQ077nxky9SP2fy7IFLbmsHMJP3bz+KkGvN0dtS0w9GFgzFElUse1+4B1mHOAF9ZUBbXMBxoWAyVmXT+8Ic7QJWcOnekPEUIJlTojNWb1XJgtmJHgAU1OsueIqUx/GYI2PSGZgwBwIL/bENe8KqgcCkPCkMKrxxeht8CjWqbn70SV6QAsI1kfGYnSJL+eQ+7r4cXwpxwtzjpsCfv7V1FF3UgI9OMBQ5AlAFwG9UYmwzhGngBVWh+Rrxnxarc60mhYDl1EfSXQpm3c1DPzQKzZDUViYoSIMcTM7CV5Rdf5k5W2cz4TRRx6vD67mhRup63byKb6+/ZaTIRrZ8V18rP8DDypw6E/3GM+cSc5XcU3dNBg0aWYPicJdAbPQU5cCA5DwO2uIRSXylb6r6F9OuIeJDYs/e8LL4tbdjmBz0jlmkoObGMk6utAolh+AIVfqH1B2nE4FQHsr+mUG7Re4Zndqb9k+HjfUoGcTqIkO2XbclHGbAKiyx+/zrMjYkR4lmePCn9ZS0RV9PMOcBQ5sokEycw25gq1XmzdYhdySW+E6VPMh5rCCpOZj5BVNcOHXuBtHm2tPDp8q0fm8sy9RYZgVs7Ida9hwir5GldqGrwzQhvXG4O1KT2ii2uEnRjev1QE6g0RR+yGbIa/OaWlB8oKeLisrjnheBa3/Lf+KhI5bv3+wA3VWC3fh/E3QUJaCPkANC1ijrot0QNvdV4VnOqcYldyYEizl+01RGi0hrwbV8YUGWxfsKhjV1luFfKed7HS7VlLF/vExNccKLBcX4D46PfcncljJO47pHGzgrWjriCpDRpAOfkXXtBAlnIk2DBkbDnE7V+CiZqmVlCSlsQdeSoTk1N65wO6YSo4Lr2kBtS+fjdXFEC1LCGj4n2fHOqC3EFis06VcprS/xxvMnpj4YalO4X14RM3auOuqxthI3X9amBbkoO23az04zB7KcTdZtQGk9cjEX9okqrSdNJM1YpE97EjXX77mg/VeQxby/eQi6b9/PVoLHpYp1cVh61Ud+62ByfXy+9ISzIfiKXc4HcD+dp5Iq4tz42oA4u/23RaFaH3vgRiC1dde5QHrDReU0rsUPxQ7pQG8tIhw/zB6x5Yh2jLOfptLQgnBXv8vVO3bwBg0wYHca4cXeQ1LcKAQkEeDr+awzdUFQ70/ZumtsTik8DpWyfpOLCcxJBidLwHZ5QGRBp9rir4V8IaXDsGwH4V8mNXkEqoU+vjheYQ8/p+vLyEXw76AgV2b769ft7EZ2y34lveJTtBTv4JJ8zBaUMSraJYPRLY/mZpTSSDFwBCHF1mkkz6v/7Azc1RqCtoH1a+SP6CnsAqPsFSWI6MMkt7TQ5QvUuI1d/w/A6FLgM4bjX7/xJ8Nw0FtXtGrIQGlwKz2wqBwz8oSbU4B4t+18AUObQspBH/gYqCgQT9BjLCp6q7KSWglADCmeq/zVAGv9GxNxJyHKg6Qw3a3gxXHs9/jU3dWmNUROydZWUwg4WMPR+nBeZDTvUYMf5Ud3BtRTd7tWobjbN4OPfiXaOTWfDkYsMZaI4ZYA5bVjS55WJ5b7i+h+JzeUUrUKqJbc+tJXuS1JlSSl9Wlw9V6s9HRruQQPnu1b1GHpVrMnQULzJinvhQhC+Vjel6gRYaLVuCarNz/+nyPxunRsg1MVey8vf1EU8NFSwwRvTJWasIpgYftPF6c+Fm/F6YUT+uiGBSL7VgoJkYdrr/tpWvobcnuv3/p3R7CeyzbQ1M2p74zEDSuOPr5p/0h3eZ3T+8158vECJMknDE5UIokMuhIUk1GifyjldwDBrbd6U0tu3/LcKfCLCxcAy3RH3jj65ejx6PSFIZ+pGAe0+pHki4aac55iDMXsYKDlC69zs8Rh21Z+49XGg8nO38AaDLVy8rZRhiCEhGQd2xeiVUCN2ium6ela7pmGlQx3Tsa9OzX1lyg1p6Q3hS9iOki7HOjP5iAPHSnGZO8fFRS5rWQJ4Eag34sB77GBNgw04r1sDxkZXGasROWZb0pvWIWs4+t7PEblgErk7EL0BeX39CEYKWqQm1NtdvvpVYCRHZFOxD7YH/zbgTAyD6oqQLktAmgsRPMq/u2aegOFOeaHBfPnsfykUmZa4GeqVa0RQW0S+PYfQAveFZpEulu+ydgWVegX2WH2rom/M8xHDwa7LTVcKmTQy0BRN4MZJIkNylzWQAxl6MY6HcoTywsXX+0qE/aWbCciNNgctdmbwkh2j9oLvzx3lRqyH/Z3D1zeuC7qjIMQuYWNicup+ZSoQtzXzu930im6H7U2v2kKt9ODqUP/EPMaHKKRdHqMdfD+vIxx47xjKc/LTDF0b//e4G9cpeeA2U0Z5MIQKQ9gaLOfZsQq0rn2NtDQPgaMcy0TkoOlCagFAXBfIF0Klh1AEHeAhhjA5zZPYJmlJtecw4NQepPxyyOKyzJcSL4Ion4LtGvQDuvBjwfeicLcv1TECfsE36jHCtvIcoRNU6SK8XhqOUCtnyTKsV5+efMiYLilH96/pQGVuC7PZT76NkD3ICqKENSlNBdR7n59Jh97xf74N0qC2bBCxcgt2I2j3XQBn3ZQ9xoXrViMvXpBVnptf1vNGgfRLEnf7Pcdvb9iL6XRrMcoMO8Isr9UyGA3cYkZUQFIBzWULwWihFcwGM7GqkDOw1iP8ryy5wI8tmoBbLu7eOYoXvkj1I56g/q2TrpR4wF+uoUS4LQ3wbHOZLjG5xGy2M9AmbROWzscCQGkcMcgmbrwZJ56FVzmG/Jr9r488LkDrrxs5Yv0NFmPauZ3QHpg/gXQSm74EfX0jS5XBQfXbWZtPSSP2uW6FrybaQeJvtMUWxq9rLUQ7QsQglWpqA2zS64FZbrpKg15dz/ZQI8ofsLPjsD+29mlQWxk/n/tOEIGIr9jtS2cm0hllVjISkEvLo04nyYK/z8RZueilSyUviDxRrUJSCpuVfujJyOAY+agcFcFxlKxmGqL28KPHqBCAl2XGbyvEj2flIhHpVVPVW0vI8TRgPuCyGI8xqOwEWcOTSZE5l1X26e543bAfiuY1ZEuYzPmWFn0ZNVA2ZnM+E+Nd5//xNVtFFCd5k0Dq9euB/5K9fihDSFv8fs1r3Ok6Lg5BpndkJrcz6dT2gPr53LUMT7zbAu4ZaviJ5suhjc0P5/jwZzTtevrE7w4Q2kjOtc0PqrqAd4glyEgIrsIrocRzj45LKtaOr4KEVYygoMsIlWFSfaY8XsooynbrNhiMnBSdFC/ksM1MlXf3qOTrh2RA2wazvGOl5rbKBfUqGlJm3mZjm8XH88eJzSGNRSRbMkw0vmNNwcNJ2AHOKEkzLGJd5KlGEEYWwEchL9dGHJmVydmDjPvmDaZFn4kwPsBaIOHHSl+/R7ZfpRGm5RRfYVIFF7+RJJiqUUf3uXE+GmDn4+mOYNEY7KI3KHhBmElXc9RavUmE1cIn2S8TsyHZMthytGyLdZi2V++HS62Iq1NzDRZtozww57G3d6k5wxuuyFJBlm8egxqytL5EM51O/ssv7IQQft2DwXZZkZMWSYzJb3wQMzhHdH2LL+ejbJoq1uWjHmp0DMVJBAKmyI+u4QHYLrSfMly/yRisocTflw4UDttL/nGVlo1dsdDKK+x8xM5JqMpHTQQJr1RbnsOrfvwQ+5YZc/H03z21W9RdpcDZE+fwh6iIjEhKEdMGa1on2vE/MTaGnxUl+r8t/tV55xZEwdlVqcaGsIdQNv8ody8ZTg9405ZWTxNpGeSG1hWtuCn5zMlxPKtb0CvybbIhSLVzykoOKW8JLdagiU+jNtqd1lESMFe+xTZPdOHmXf9LPWMx67H1sGC36Z/YORsd1vlVZFcqxHhjPzf9/OtS7Akh2pEzL34PAcMCsf4fIDAVPwDLNuRf+UgmnWjdWNhtF0u30GG+k5I3oQywcW/VLh2KUsn3qFqBZzvk/DKAIOB5WkXveD3EfB6WW8rNf9XkbGZ5zzu2nlYx2OQd95fTt+/o7siXcAtfLMklzKAal24idzU4XcodFWEV73U9RFPKRnIFfuTQdFPcnKIDtiQQWI+shJ4OL2J1n2qBaV3CFDiEZVjyNK1x+k2QYLZjlxruRUWGE6kwXG9em0oPQuP0XCtNxxXnQyUCxMgYvDL/nz1LhWscuRQBAh4tpLJ2AB17sip/RAOAG9VjjubdbmdNgeSaMAPyMMwIb7RezpDcIQIemXLb1zQOIyiN3vJjlK7TodzmrdIHEJS4wtHFvB1mpWSZlhZTXJbViYrZ9nhAmMCQ+VbBqkLSMuYhYfKpwLdh5TmmhvfEPHy8Okn5lg/tXbD1CvuMmhfP+2fWxbXZfoDtsWvR3KYU5haEcPzk/asOnaODMnvLqKtYznPs6QkhamrJs/medxjgPv3xWMKtgkiO6IBvLVpPBSZBpi8J+prmo5rCb/LryHn6k4vG3kyBTpRzLrBerTvvOJpWeOKZhb9EAROBOxvqwCNNH7Gx/hBj5GFO6EsvZOv69tzLPVA4a0yGLAaQknI3r189MIa3aMZCCqSTXwBLXaKjlRjUq+wJ2wdjb9KAEqzQfl6qUd94gbIBcKuFA8d0/B6BaMo/uoqSmwxb6estikd2KYzp9IB5ZeSrnHZcwbnqOb7YuFeorZKPzitDr6l9uXR58FYDDjjLaRTf4W+M7YpBP2OEJ4vASAt3M6yodUDID1vwMAY8JwRux3byjzB6JIvLrwnSM59J2BtFVQSs0kH/8bAl8Ndmxt2wWr5wKOvPI5DPpv0q0WEfKvoL9iIMWbRAHTqeg7dslER/xZChc8bolXOj84CvjLzdRPADEFt6x8s2bqEnYFdqSeapPEGqIQ4CQKNeko16GIez3BXaFR8ehx8jgOaWwFKStIvfK3rhiwpFBUw/IVt8AQU/n3D6vkVH2/V8UuBC3l90YAZHSGJxda4UnCC2KfNR129tNN+4DMpWPIFIpLVV8QWDNwscY+PFLGKijE5ZSF91aw+KWx0qPktEln83GaPFQphanb738Ogx3rUa9P+j98JTdJ3YSFNjzS/yXOyo2Yf+iHabg7ki4ctif9EypJU/jR5G42uvfvgIgdPKn630SZcJygFsc4l4Ab41PX+zONIDKoLB7KG08ZlSlYLTZd144KjtPFqeFoycPh5OWFPVgD2L8uVWWoJ6RWf3zds+QOgIr9js6AXjrkVa+i0zN7zkXlYT4JieOTw6oU47DEEetbjsJc6nsSEZdQUymhYzuwFdZRLmOvCusvqEhme3Qd+avMMBmBpshEPcUuhc4SaZIYvVCtqQfYzzkS24xlCwubLNmN432sDKD57CAOR/9Ha56rLWyv9pc8CJzJ54gZKwvbywl1DPuKS3KZUy82Bcdj0904qKhVPQdlhExy2lhkPOWVCBhjO48IcAOT7naOmTPfC7EJXdnQ63wIyKnXj+wtLnAFxAODSMroEDGuwz7N9v4Nvgz4CzAXg5zHMXOI4eWj/A+dTZ8iMZr5Op49LG4pdospwrQx1eRwoYPoiEvfZYJ2e8KjgcsuK+Yy5gy5gIhN13npkSPFqnmkwBtoo8wY3zMp0a+01D0tF3GFSXR/Ua8ZI21YH5NC3mqgDInjzHCMDjX40YFxwyuoAC1IH8qZtJ996Vdc89iFPYZ2TEABa2NYgvYG+uKtrIcDpomw61VRdGa89/gz06oDuPho1FaVMQ3WwDpjNk32cpvWaBPZdAezxqyNvCey+BB3dMvYk9FVeinIyEJwSZjOdyk85j+L2p9Tv/+DkxtHAnro7xGMKEwuAk8Lqo+YPft1/rroPj7gu467Aq8shygyWZrjbh7YmLFHfD/4zlVlpKgN2Fp1DQCVL40mr81/pSgePlaokvN5C4JGfVX1VFMAJumxI/IeMvCjrRUzpiJiLDNIUk0nIT7weK9qO/xMYYc9wfElxjWIZcW+lXHZBI5Ypm8HhiV6r/Ct6HSjVYRXZM9dSOWcsw/5FbHUVs/Clicc64h25ilvjvrFrtcQZfwJcaxSg5KLEBtevJA+QEd+S/S8AiuqIzAn3wuJGzF/jyl8ahG8E36hmAoIMLd2fQpjMksRr4MtRO7mL4eUZKWJCJ97s4BMYQN82IIc3zojdHWlE2JsfiwOObJOZGpFQXqmvQ4P8hCtPJ3LfPtg6UEXdjXFKWr7PAzMX8/P+CyvoEY/D1IQWvOJDdiJIhGWaUR1+v+sWgVNfgVoZuYy5Mh8I9ypsj5or09Jybz9p/U9e30x4Mf59DbTlxPBB0EGGlas0NTNR3Xy0GxNaiHhIwGqF7J5dEJAabNSxwNtzyscb+Bt7PIewoJWs6Av0zF6hT8IMYJiuRzUQGvPD5bcVWqsVxYkBHZH1XzVxchHoSIhXzrP/nH1cunWtBIGVmPDqXsl1c8QZj7E0rzWjJo1MeC33IyNgXU8ehdmgJy7jrfLTuZ+v5ldG2fdRhEY6dlWVxyDCNParQL8NQiUyHEWnlDa6yls29Opi83Ryfw61OTH7mAWZSLW9qjDIChc4SXWELkhgrY2mV+CrTR2VYyLbsUfk3sHRkcqDcDQndDtoVxIc+LLsGB7fwCQXN/YxhQnt3ERWazewzhI+wxsBi/JYROGjXTUfLMuEMroFmy4MRHxM+roSlRos89C7r4AHnx8ax9SILV0LeaFGDT7BqBDoOXGABsYXQiJk5rQk+abbNR0yfFNBZjYtPaWml5zr50FuJLaP9QSpndfmMCqwycBA8Hab6mzL1qo1+R7Frx4RQtMyMaRxtZL1OzUgkY5xdbgKPX9Sg2U18aKDqq5UcdAwmM5S33TeMHTAMBjgXWVQ0cCwpispf7QqBp8z4FLj2UztDIHJ2pVD4Me0kPO/ozinxLlzlRwg5MYistZ5bGl0l+s2LGvdOhFfyCGnm5fj01NQw+giUJ/W46xix6xnW7q9gjvmN+0Zdq4mOZjn9jjayLEb7CtQ3JcWaXuDEqYk3u3gc5mGR4WujIbI4Hbio/u6wGWtcU4yC7EWoYXBQCNy6bHscLgqhGYmScdUjIhyWfVfzautARaMzf/NWGmHlZ7cOlMJu83R80rcJVJwEL52RXDpNmwA93w6YT91Wy30MC2EHf+E1306qe05xPIjogeOCvhL5QHx9HMr//NoTPKrrv/14kcymxPF0/11V9Yj58+nvnerm+AwjV+T3bYcA4hy8ynB5+BBeXNr7DOrupkhGWLBD4hX+8L6Rdhr7QBw45tJUJfwNOZpxkBleNNJb3Rnjt1pYLc+Qb16GAnBEbjLTaAvl3c1Sze6HGjBEbSTu+4oteY0iUYeacwQNNvzsrFuaPATreLalGBVDnSAxAuLWUoxQMjPHJYdQUM6zLokHQnMjUp0LH0esiAj3I/lqKUT74b/DvqjdpfIQVuuDpwBU/SqdfTHYuk5V57q8rbBCcCgzczYCxVk2W5Lz6bkJdFmIQjiO+coKDKN/83kI7q+WUGjWWFpHDGo2ulIJX0VX4HtGdx0hC8ShDdb2pI9mQetWXKCtrpAuVIc4PkrjflTta540OFsn2LNHwoyBj2jokMM85TT4fwIpfBWwUW0hT4A/jor6aamn72wpeK5z9uBqEf+x+iJD10/Ajb4/C3Vax5k5VFi3WjCp1I+uT+134EFPtpBjQj+cSWNCFz7f6v6HuZkWGROErsEaDa0Fvfrzxg8E7wQtE2qXte6b2/HsxpxZkA+LIAgP7uhQ239HDfjy5d/dudR344mDNVXJiwjCge3CVtze5hhc6PpwcubxsiWGneMKGfOtjoCQZ0EW179luriPH4VmlWQGVL2Yqqb95e5uP4eehNlgFn5zC/isWyspm90U/M2vRfFeSU+G5eoAl6361TyTcI9TBERhlAYeJkcHtcNCezkncKFmmvUl8cIFZQ16/vjeHSII0W6Uyee59vxm9OsYkXnIwDdQDyDkQB/aZ9fc7/VmBq8ZwfDU4KP2nudgLLNOpKl2iyb6T6+9kj8UrjnLl1qZeLRiDfPEg/bG/Szv+VlI6xWxJiRPbn5m7NGpnPGcXwoXrllqkNvkhdnFhXVwuaoK32PMriheg7l8ycRVqpDdc9zKy9zzM3z3+rh12i5LWhsh4pEtveKYu13vK2+81h/lVLMVfbjrzGLlYOlsfToilvQwvadhXjVxTcn7gxg4EGbhp/5qt7LsfFkw+1Ew45RiyRD6itZFSXrBw+i3xSMjXf6ra1JWH+Xz/WPPHiDoqCSkNxjQWv9RD9m6GBmtWzsGxy2Xd8XkNPf8u/lQzHbrCsw7xWsk3YlEpOiio6BGlvARbU8gYPE4/oeOYRDP8ikqb1xsBnwP7Ym0UPITkcTrdUd+f+jLEX5z273coY9vnF6Br6zF0qhAqYBXIs6HLkV3WjuNFRYkuau5K6p0MwvmJMRyZftuguyF9oGxz3J6waUbmIE5PDQn3lrm8/yOXPUy3L8pw7fx8EqWQXliQ1rHvy4NUFxVu6L91MW3f09vNwUtegDUdMD+1+IBVO95S4pJUDwmOxmNFdyqFYsWYQCv6A2FRWhZWxE20pLJ7HW1/lYiGjgzULR5h5s/CCPtdTD8ZODvROkof11/YY13lU1wy3HEZWV6df4wK/AKYAZ7oMgvkHK3zIixitP4LKKf/ajOil4ccyWw5oyOs3FioiWctQeD3zX6zk4CABgmjwdZVSfP3fNzPEHTgz8wZMlRqvv/LcAP4IK1voh+T1qr/G2n/wAC+XkXrlJfi6Lik8GXYB6CMc1YJ75SGDXbgh3CPvLUONFJkj0mf1fU4IgHZobyjbL56OgAndl2/izcZQdOjaCfhorEZrcokb0dMwpcHTbO186/jI9Vlt9/dBv5Wtd3Oz5PXvfrRshG/mIu5JqA9zhkLg73FC2WT8Lqn6M6IN4npondtJAQODclhy6qITuwIsDdnnvSO+9M4NFeGyo6XYSj3V2q5hb5ISJofWRYjYnV/0kGFiAdGAWFbAFWHHlPfLfs/IZvIVqIpOYH814O8E/bf1Lt78qjR64SUr+msttAGlMoVFfcGKPm2E0lFrEC4dDLIPFNL9RYsiD1F9u6YnDNcHzfTd4svt4eFEEkgFm8ZlSR+JqhC7sggXKgZUxinvyIGiQrD4Jb4LGcJJZ3/9rsEkqf5W7waD8VZkDDBu2gOWHTffL0Yqu9yJCj56qj3T9dK1Hev8klhHWYMxdWuMaYuPLMgJbQxcYl1N35FDLbfn6ah9YvhtnracgeV54o7E+No35MOdLhARYlMSdSYgBZU12BLkNTo2mDG6SVUkbxe5ZkHH/WiHjxeVsO/+6uuQhduYGauxp1AQohfPzHik7sDtgVWQvZizwajmuPxdEw+PGMTfVE1oWg97HV4zCFeeupyzcQsyUF9naLf3iEjzPfGVDyoHYTTwGeSoWAZii6penN1TZxZ5h26Tv3n1w+nuV99uWNHDgMcsTKGqiFagXe5KDPC3iEVDRjwW+N7+oGcLw8kIb2nISMMPEthWN1CquHaZ5Yk6F9dz36UVBLZSb5TAbVjTWRubWK+n9fPCH6hxGq47f/JA1Z2If+TGvAMDUSjpVAkmwNnUnAqfkOfD7NKzj7ceQiusZSwNJQ8PgoAbZrqMJsD1lnMIWUXMOB6pKk0Qru4SH/kqoZmhclKWhXnnsqH5YSinflpXzKKWYro5cxyfNOusVKK95WwkJXd/puyRx13+EqWwcW/S+g4jwHWkIvx0NOY4AsxLuY2W0dWLsJvhRxT6pgrqK4hXLEslFNRsXkOft1p9vTXbVrqjGbo1jnm90ndPz5NH9HytMEraa5lMbwP087Fd29xaRrX2kWH4qK7NyFntwEU34Z4Zk9A7B/XAcxpsb1C2ztgPdtdcsXubM6dV1Ps/w6bl40vmpWjAd+GD7gclokmWxsqXCwFPl9gi1h/hS62pgH2zt0cfwZOIA73H5xKId8apRed3OUsocDn12slb8XTrpmzEwCxImAid9lXMWyVYNPPz+FWtq4PFlJ6QsVuvq3LjKqmoF6bYx9sIGdt+ljVtzpKcTGPYcvDBWwVJ4ag09XZSQmLkUs48FaV/Avmar9WdRzWvr60jz6m9z7vUh3iGz1Vh/cacspo7dN1vqdOoGfnuXwJ52k3gVC9OyXsyqcSFNBo49TmFYhYAk+C7DRsOQiA6lbgzADNGf2DTnaozqvVPIzsmSDJAHD6EoEFKGiKqfFBgMgTUpKW9vu58/sn83Jd/ojw/FZFuE8q8k3cYklbXpLSSV2EgtDqiEb7WBzVp0uhKTADANg2KUxqcJ7RCfLtsPPv5rVDxAxFHxrIN40TZMiNAeyUSXUIjj2SR09VubaB+gDANVBvAvr5GMCZuAtyihl9FZ8TTAkMUe5CHIWL+389euY+bZaXDtpfxOSOiUfewDjpo8gk8rBpC9VKnuG3MTBpdg5u34cX/JYy4t4+azfKyRsG8MZjzipF+gBTjUOOGkZz5XYZV65xgY9TKOmDvavqW6lShn77/lxLRJACAp9yQJ/7OUwcL07GkG+Txd2WVCWdjPUEgatA9Nv9B0HDQcFyl59qB1PCJw1itswA+JNCDVQ9dLgCFsVH9csmlPlPqaYmAESfpEUyNhKJJW8zd0yFAlrM4jjACnaQY6SzLYdLjdwQwjyYU0stU6UGYzRJk/4eqanAl9muX5TMsGrvDNB6MU6DkPIaHvShZNgK3ifu8pra6VNjluv2s82Cqd2WrSN93TX7s2fqcgwqwnGT1UsFojUv2EoBdKPoDbAPIBug0ZTOdNHIOKh/mz3JhL1TIUJhMzTJuZ1RQZtxY5g+V5YyuRuiKnpzB5Ex1on+eh5HIHepiR6e254YtilOGZzSRwUZfn+h0WYA0Ir+On15CNaQDwTbJWtsac2kRwXNYiv/Nt9n7kfXr+zHZjURRnPyrlGVmo03+9LRJEdd3HuJCv4gu16R2DC4eJbGaYTgpE+XddXC0g544KCyGYgLceZtZaw3ws3wv8H+8bf2lU/ICKkwfuuMlC9GEV5BrnPYcO2f+cXJrghgMtH2PWQVR9cQeAddpFhswvXlWsdX8TGNkrCjInNgNMTUI+DoyAwtWUGrwJCaSaSUQU4HtetPQDRR1GiM2nfbzyZBJMZtXc/OSiAZzLP6n7hRNd1pxobZrDLf+QYcVJB4TLy33lOqwsRzuYjcJQa3PTErEinpqyKI4jr0AFjjsSvaEveiSmM7PCEFRijW0ve8dSOZpNihDMhYm83EBNgXvn2TghNGKj38AVc+BVf7RjUzBUSVfkWcGZj9YfC4ekGRJa9EX3I74HbKR8dtAz5lNepjtcUvyvpx0HjF4wueCQnorq9kG+E2KRBHHFvYVRGaZ3PqbNSNOMK1lycptPsVjUIOJMdr7+iWZ34sH0AXCgPkQ+1vCPwiMx1GhwejPMIb25V1S+2fW/X+uRh1DPgiVBKu9JbclgYfakqhQI2TV+cFRFWaIWR2DjVlhBdda0nksjWTs8iHzUI+G0Ri8IEY8txHGudv6u1U11UdokzMjL0CV+/QputQGQEFyC/iDkFv01nmcun68jtDYzW+zrqwUTVRdh+MENX1w5+mA8Xjw+U80SLnPlsKEAYiUhVjAxh5gN5zKOXFgOFUcG/jitio9qrjZC3Ti8ipM0R/N9mHMyFArx2K1aGnY4PRSOa9wPBbo9jUMUPIklvzxXyKrhtwB2IMcq3N4fQ04u3xOC5289o9qSlprIbMsY1SY5KbwylxCWOgQFhAfAS0KB52wZvPu5oZulo3NwkKHUjKknyQv27QU1VOXPNyQwwxLWMS7JK65BQ3oiHWer2CYX7ed1Js9T9TOINgyuWeZY5KaGVulXGBTrjA6c+fwrfOnAzWBbZG4uk7/X8u1bdh+Nq113EktwYyQ0oUWwbmOEu4KB1saHYV/GFcMkTkZp8zx7ymdlARTiEvQei6DYibt0FSVfkeJPfFz0XQsWk2J5Nkj1v7fLyAQNjnjZtl04CbnSv98h0j4N54I/t0OA+1a8ECKqjtzy/4EjA+k1hH3qe+UwyRc7kBL2DQD6Mw94ehDq5AAv/ZXrf9eV/iJrcWS4fhPu67vqr8MefEIDV6WMhPnXOMjPWCipKCMPJsbARcy+GjZ+fYrLpG6IQn5RkTUrNaIphVemPdv1Zx3VXRClNHhrv6Cb7k3U5WhHv+Pgno4+/VUBT8IvcS+ivSXLWCEC/6AmclkaYTsV/wWMae76xElqqlxs5icFQxrAsX4BKibC9T5YtxbggSyQq2l3Gd4YjnUSTZciYrS6ksA3+BCkEvsQXKU5VgifgO7KMNyCMxJ7H1ss1WUBEn+vEDBemBinWrxVACmLKQaH+2z/32BV0v5LmMdElM0kE5btfnCjtB32PEd8PH6GX2KaEQ0H8LyiVsRVpiZ3/QVtdSQAU8qfEvQF+VazDvhCRxlOOXjYh/DxMlphmICCASr8UPFJyVTlURCYZgF0Q268415Cqq+20nJkyduTOvAL2Hhs/HtRyOt3XycR7pP4fokxqRkPbibcZIypPG3V4zQ4KaonloQfwUFgAb/DRY1J7MWkjY4zDfXxX8bS/8C1TlKZ+kPh9RNE8RBwAyo9z2Rfmgb1ottw4rJ1LGTgZbzHgBEVyU4aJEFsjuExNVpPwVS0kEtqnQV/eQL53Duo1u5uo0nTFI4uH9X7WJGDdOPMZfD52TStV1o56BjZOcLEWtX3wEQz1YSQYj6gezAYd2m40ic/Bqnl3wKNF2EevDpQdXSXXlc3KuPDA7HtXizFm4V2fAFk64qUtInCvrroUfQsZi9NG0XELVRc6tjNrojmM/SUmFLCIer9tw8AvhBdRrw6gZHvlRS0fr6k4ZMsKu/ZvnqNn9VAjU8GXlOeR66OD9rLAMW6vXplxw4OYnG/VvZoL3Ih5bchvu/qdwp3/LotHFQGwByqO5lZqwu0M7ieP/MqvQNhD1zt2lxFSVw+Z96PRoY8PQ9LNTzbrOZlpvcJ8wYpuofLRU8FRCSSeqi1Bur3Zo8tLmogNP6lQO5w2MI6AhjXfqtYb/VY9WM3EqsXdu/STwgFavFF79tPVOhmrNPDoDV82DyQCMoPG73vXgTtSTwwr1tkRCa8PMWrxdzvQViYYKmZzOoE3lr2VPnaCAUdqcU7BGooaMfij9Szee88eekhC2T4w6W+ZCMerGT9qrPtud6ApEdWTvzvFM9AlXkm6ZbaTFT6Ks/BsIeZBNx426gYr83n99eNYzL2o9bWHYJ3RoqFzg8DUjB3UWDvSs49S0jqW40/3y0eS2cfIMglEDnVwdG4PRzMb2kVBNT5o7ARvXDpZwE7B82IHyIfKbXE+dFL3sF/SJ9dUy49wNlA6HBgnKtQQzKj10Yq/8o+zYtlMpMeApDbP+bnfD5Cn2uv//SAB856M6SfAyAQfrsIsunIdpLyBoeuqS9MmYImIoj0gCI6fmGeukzbJ5tFXKeX+m3gW69D5wTo+Y6NKyrOg1/5ycZINsGc2UrGbS+VGx7M9JNpoMsiHB3rCaElIfM1ejwuoIxKUZf9RcfuTv/Syz9adwyHKG3PdWQuZa6yOQdvXBSNi0+eqcsyMBmIYC0ExmeH3jq70xOqaBFzUFy1zYZT5MhjWUXlJQqello4nnaxqkk8XRw1FutBNtGocpa+zBKH8bhRsc5auWNhTyJkkoZ9QPSmCEbhsJ/mRDrwKcm1O8qm1eie3BciyEb8VaQyMtnIrXIaZdVDoCS28r3gdNGBnXY+BYD01XmzzNnPIFjrQU13oBkLidhC+LLW2uWNp7U9D1SJmOQrgH5CdB5O68G30gNNVbKjMF91blKX0P/iGUadcHK7bqqNiQ/DsO6Er0Ao0aokjSCbXgbmMX/aNjsreJUySlE6aeLwRyIVGdryALBvCRaHwzw4W0CSvP4GjOQfSXmvI7vADOFjhREhCsJq1kJOuPzPjXnME6bfec7mPvD1qIxeSvSKf777H2j3v0SO/5ctpd+k6EA+ZWTjkXOrkwlMQz+0yWaF7nJ193IIUnMKzKq0r9i118OyteW7+dnHissVGEudseVCwErP/qUqsmzPYgmRm+gt52wJ+wP/UnGkDwROccjd/7enImHQbQLMMoG6OtKfNCEuRO2L5MF3B6YvihhfOefE51MDT4zEo7oXi8hLjiRz+ngTAqPBYSipImWKxNGDqXaUADPkoXpDGTtM8E+lQf+tPz3VdeJiNm44FDfydmYbjGGJ3AIov97qb5tqLGGYOaXts7A4MgGFZYfdOVGB1F6aL2tiLtLO5h1nqGZHHAQr7fhf75XyxSJHeYldPxwBE4I2khBKXO/qFgQJ5ym4AJQ7Z+2q+yWjukE6pCp0L5H0W2+JKsMbM1Mx0Ov2+40tym6J9RKNpnXwsPreH/c13ww+PsROpXBhZnbEQ1AcRh5bq3EJromG7Br6RP3hLQEhmneUgxliK+7KPa63kdM8aRZL3NPKmcbQ4W3pWylKQzlHoPZgvRcIGC+3PrzjCi8Xxjc6hLVqExYRRMRJmKmTSNDFfYg3PR+QMQ8VWwk/gtUjODSu1Hy8AoNlRWPKFZ72IyiPbouhQrwWTXf4UVo4KNwWmlSoQ9JnDi9OcNU3gdekhLw0xXZD5Uw/eusafGdN0gEbl5dVja2uunubvAMnuu7i8uTuTa39jFz1tK4Fsg0QtWAYou29FqM4YU1kNgCv1Kb/Q1sLcq1hWUn/z32cd6Ys2+vQqRkFmN8NdJwNrM4tcXHIDnbW2DLorUlqsc5PJ0trmzU4W+PSYwE/h8y8scuEPko0yIoD+W7f3PjhweDMDdFj3FKBi393lKLnNtTEwx3Bf48nlR/kcdanhxFF4HsdpswxlDZ7ETxJvbcSZN+HVN8bp7H8MeBwKXvaJGzJhNx6btj28hiIscuoqY2Saj5nAb54wTYDprv6zTy3VZmBliaRCuOTiZx6jtR2QKcfVkO1Pvp+pNMG067WA+zkg07obxvFWawDJRyU4F2FWrP2Jsql/04J9nNZAOEKMjQIpKGAqd94M8HKqQ0G/9hE8D2KcRVrneAJA/G6OX9i74ZWmekOp5XmQjwnhwf0UnSUbAFS3QbpsyKznHio8/uWpdJPCXzfAIOTQLmPHULoD2j6ZNL+Zr9KTnKRqGAAHTaCFpFM899vDzy3UT17nffqxB1CdKBfPoRooHlugAwCyDbKEqyyYCG7QOiSjLD6pHPeqGWUt5SCY2fIjnJyc380HVvU9ctAwt/wbiWcKMxK150euEs7OBEDBtI8VFD7G0GdgRiEG7f22uUdg3XdwyUrfRRHMXS6kFYJUW0kivUHFTFiyeV3sOl31jafwqubLquUuec44DXkIB1nC9Ztk0q0P8WnRnmPo5Gs8/3aEhpBGv78IR/ipRpmWZxPQ8Had1UiDgF875qPPhfJ4sVrjk2RoOQw5+onqQlmFzrwdTHo3+O6POg4pYEplRXmHIwxeYxrgdmoSYfIzxcMXLBQKDPHr0pk9l6JVqxeHRIECEm0k3S1OipLMRpumnAYIrFf4YHBdRxtypuyTeVPFtC0Pgh43d30cvX+fqprQJ7tq4NRNqkApknArdQF8XMoYPTIgSA1xjhp2yFeXaQU52Pa2yWdrifDjeC7i4/pf0qjoPDqUcVuIfAuWy+ttL5bayeY5iLSrdRxcTPWcc4F+Mk77Uh/Qb24skPxFsmCY8WyRPF8e5IDx687t+ZLj59eTUBTzXsd8SQLZwJbA2IPA3Xz8jePtvRixTHT/Yq4gpWpWY+XooNFv7e4WNrpM0siym5LzXe0GFdSOXTmIk+ItVe2CoNM6mOihrsXT8CPMmlUld/LR/lI9BvSrobvMtOboS6hfZzyHc+efV03Ey1WPl3S8qVzVVM6X75thtYogkXU4e5IMfZKV9EC8QDj3vJzYmtssKKQRgMtGr5XiljZ/IeR3PEXKZqP0h/q/vnR9BqoVWxdyTXhQ9qPhb9h2xfUk0LllJ9f5EZ58lgnLGn9pNbdH2CEsWW8EO0veF5v/UKK7aqXOvpLH1eUN9r0uOKgMKX81rz6nCkbznYBFiw2sMuYool+LCQOLKAjKIJgfY85W0h3MHMSo4Qvi2HxWTWs7BkTmaim+Gonmk0S5CxhxTBGhixBQTAudKjRNGeVZLvrw7LfJz8uqLCEat0KzybMKrJMcnkuQiiIW/Wx//Juv++wwviKh8asRTzYRVkZXV3/ZxYYaKjxEh2522MJMt5JXJmESmLgLi3dIHuz+27DFtix7Qowa+fOv3qTdmpn1hTPbKbr5UIY3cc9cGauVFVieFuNFoF96QojE0ZWHScC5qlL/VeGRbRUJy9XrBtgRS4mex9MPuqu7+JazTDzrz9MWrSGa/KXtzQ2+67GE0JgSp11YoD5oAGRptjLujPg23IQYeKRqyUUaMqI6jRU2a75j5sU2/ViCYx9JKEMMIxiF/r38d/wn8QHzzkVLfhA8OTvq5YTaoCh5disYPrPWSiqTwmWtJfm8rX0/RfTU9KSY141C0GfIZx7q6fs91vaC+3wAvBuLLDfJC7DvBJbPwjTbL98T534/P+VuVtaycLpa2W69zgLa8dRldcSwGBF9nkqD5IG7vs5ghLn4Mz7m2ZuLrScLsTIhHK13PQRadgCL2VF/N4mj8euE592dizTPRb/mgCeYnnVxX3yCHJ8LBT+aYcFQjXhKwZplKtwoCOGShdfEk2fd8MlCv/EjspQOPKyVr2NO4D12RqMYemwqtQ2in+pLDnuUsRvL+zYRfrohx5IunorzyjrzDs/JtUz92Z8lAN00F4yYNxLqh9FJZQKZgCn5ytkRAvBkGyTnQUMDzPNHlvgC7DWeuNjtHJI9xKfWI1CDwXGjLGUxATH9RbqkGRrTngm+Pe/UTl3cADysSLSBxoamtKiBpP49wzLrmBo6C2LIagrwpOevPo3JdNB5M98iQ3Y9+zKfFV3ItBY0+Sg58PQ1ZF+VDSgJ6rVZo3pHs+HYLG8F4euDf/RNavYMGFp6j4O0aHAZf4DsFFWZjhYUMrFJfyS3yON7m3PotgDYOy5S3J6+6WTHIazbt75Qb4Ux+ham1u03D6zsShp3HrpUoBRl32v8EagBINGFp0yLSkWI3ArW/syK0A9XZ1wDi4p5BfZSBzlE4A/EPSNvh1mV01ZWow5sLeWKkTpTEC2Tvn6OWEmbhoZyXNrHuheLC2TX4EbLSMjIXdkYF9mN99GlZt0tIvNyrey+bn5+5tuDCazgdcA/D4WUB7U33UAfuzNswLmYdSLweKeBY/5li8gSbVYsqLA/A2scXPH/3XOWKTYcMGM0yB53aeNEBwCFPWILp6NIXhNKA6nxbGvRAUt0eLriGdNCyYuqZEXI1VH0QL1V/4RUa0eLjQu0+J7lFaSu/XN5kROvt3gSGpWgyzkM4YSztVIa8uLmZLfBCOu/rFEKgAt32n+CXITIPsFmyNUvXwRmemj0/S+qD9ac8/HjJjU3nOKA9NNZNlbEHyYkYUpd/xr0+ZjadRrZxhoVNRjh2axyr50gBzcJMaH7Y0ACNksa4A0os3kXb32yassxnAZF35ooOmxX90rlAosX4OJdXKe6OjJ3HyyXKMmfxjQ4hHMZhvxTAe+4/DiNXBKRbT1hj24Hj/CXJKhr9z3rO6K9S+XxWb6GwxTNX0nIt3MA4i1r5dUGwKM2W7GwxuhdvmIvP2ki3I0g2gs5gp6VFIMEPlr7dU2lTIg2BbWrli+9AnXrQQFlhvGKLvTDCh0LPhlYryuxLKv+nUP6zPjaTJN98+JWy/xrRhFi/z4EgAtJhx09ujBsPfahFseELl80hREjbqbpBeetsZepzHtye4V9CFhD59WAuyCDKg5o3FGWqQzOQW04xEKI45BUGdMwrHdOnL9+bqZGe/SYb//mNOc/mosTnc17xry/tZcZYG5Chrxh8Ewl1Q4w1xxHKjS9YBycueg5LHvDJoXnKsbKr+HdsE+7pRlpVI39kjZ18O03hM7pbxz4jXjVey6fFhYLzM66ZnMH3m+WPemH0jcQvgXK1stRM6gYCKxcp3AzngZg+XrFBGXLtILDBqk6Dtt1Zva4jIPgR31hJ98aFCHk5kp7Fwr27jbAnXbdDW0TfRVa2eZkQIgBj44BqAzEnTv0xsHPRt6Wec7ZFrUyPMnfJPIiSlD9Zxo7qe4lA5F1TweJb/eWrHYzxBN88FPsmzL4aN4bm/uiwmSkqRdOeo4OSHm5rXx9nWMStI/NTyCSAXvb3YNhLTOxjL4e6lH5hg/KcCE3M4jqDqd5AacLAcPA9IUapdTn6ZlX4IyW/AgMybOpQM4S9oftnyeLoLQCln/AEd0MiocrZ1RaCNlGSOjLMix2aIgcxpKGDLz9logVVRCkUFC8wTYBixZFKJiEuoIIwHlooFr76GyW3AhrA0IuMqpthI7f8PVdANQgFFLYzNSDiKuyHwriwNIrd/tea3ImfRVziAl9oAbF9FYrDkTle/Wd36GYHApYiwU+gukgT6hbTIpx255pF9+HuH/RgCblaQDagxLaohJGkBKJ69jn4BjsrWW9pYLu0tkYl8+E9L97fReqa+8yX/wmLNXtLoEL6FILInp50VYDoqm1txGXOzYU3KrZsjrS8tFuH+y+4v1Y9VYBEB5gZDpvR7oOhD9KhOF2baxPfGKjxNFlo8+Hw32kEePBGSPlnAKPrNM57xnmop8q13hrZ9l/B/pD/7DX47ipupLBxSb7KGQ5a/q+0YSz4LSTrlgd6boXRuHE8+Av+KxyxNlNZY4eXya6Juwb7f5kA1kXq23bIlxCPoCq7HihpN631s2RN8YaZtLBGDo7Fyt9pfBwC0Sw3J/PkRUvrwOfTTxTPsBjDLZ86RfmdgvUb4FDZpnaFa4U5kki/04TEYX2+PRWXK9fhHm12BduP+3w07FEuXP4zUPJGn4R7/32+dCQzkhfHD/uzmFY2OcjJeH/6cWCuKWPh1L/OTa4TLEFC+Uw/NDyhY6N5Y3RWfr9TN21V+5mExMVivPzYlFIKruqEojKT7IK7XI7jdTBjQtCkVn5Zuf8arLsHJMuJ7g2GRnukLEecjoqm0+wXIo5AS29gCUqY0oi95aqBt4tci7t7hcFs3jtxcZ6ik8n3nHTNDHDozXcvdkbk2W1LCjBvL4bb9iF3IeK44+amjxFYUncjgIlQxK2JnaDGS2NKwUTvkhn43+7WvYuzObPnjuB50AJIJ3BXUPy6/70jNRPFnrbtDA3VjWD9AYAdJdynygFowZrcpE7MIWy0e/5nSHwLKL1e+UKB+4x8HepTOBudFvVUtkXRi68g0z5WgVML+6wzzzFw2KzW+5wM44J1aYFS7pFVu2ex0D6A+88ChUgo0SegJupml3/W1nw5s/N7X4qCkWquKFOjRunOPj2EZw+FA2/DXfk/v5Fvxr3yYNJ0w210WJrQZD2zmslZpWfwok2dPTaFv0M3InFWgAnKzkLf50J1gMkv4OMeOwpSc+xm2o2kOkhvkScFegJPrRM0/AM8x+IToZRzPZ5ax9oY7dWGTl+b7BPyKY+kMtU0BU1Qqdw4teppU0vG3pN/1vdDveO4+wOmKJgFj7TJEL+hDwRVl+Ym9gqO1TNOZ2ocjToayjHuMe5dXP3nh+IxUPYwfVEeZsGvXNSzVpKFioLrkaucKi2rPSiEcTrM+Z+bZgwT0+rpS97JbQaPgLmCniM0BtY3v5dHhJXaq8aGot18MyC8BmEkj53d/sFINdETqwnDzEzCVa3m9d7HPvYQ+o7wYOYFVkZObqVdNWu7TmLVhlb1TwQM7g1wpLfQeKHTg62FUObjJpCwO3O1npY92tzYlPn6E63sDRf8zz7T9wjXLbPC9EYyPncpzKYL1JwEyhPX6lfl4Qq9YE2YZMIi+XDuVoXYhzyo/oBudxUTCrDRD+/ZkSAUlC35DMReue9smhTHcoGwDtiau47raJJ+/3bdSqh12r1JsUhaJRDo42UnCchpzX9qOv1NNx5dtM8Gkt/UZyPdN4+T5oyM78Jkue11PLpLk+W72kSLSjX78mTyyJuacbG0Mj8dh99MnnWdtGghtTLeobZRA232d2TiMA7KaQDEWwVvHpBxagqC6K2h5ABNLvQBjyVTARiTRZiA2K0j/vjQwrcRtm7bombxtWG/srhH1pL7+o89I5aEUZ4kZAZ6gFIvlZWdyTNpw5irip/j5Rsn9tduTZ9NsxldSd2smyaSxcVSPXpUQ8iLvcNueyj2GOa580tT38jQm9qEufHamABQpfL3ZU7VVSL4csD9GEydg/iqAhkqoMLfiLksbfImQgZZzKDP+WG9c5lznjHwNrsBhJcbJnBAtlDCw4VHxvV+6QX2j77TeqZ4UaqiddegoNpBAwvRRTVb5fkr67q1kaEO7Vcgm735r5NhS2p3Mpr5XNuN7lk/FqqQJbFnVPIOu7hKwtNe274Ttgv1nCWPDaYsNVdb94/4+Q5jIaOq2M1k1rWXD6CtaQ7PuprkN3ieH6t62+XS/4CR0gFd+1DxUrSXWceGytFIKXLxQ1NTVF3iX3QJA6zYsJaT+vgXOU5hn+Ay693ci9tPpX1/oIXJR5FukZ4gwAR5MmWEaMHPdUONclNn09kaeVZGvMkyO4ZTaGMl3VWwHs6fGrM4vvYFgDKxWnuyJHd3d8N2esvUsGZmFcTjJGY3z9DQASimjUN9O3XfSJ9uRnLOplxEv+paVhvrgf+GEaOSN8ERIxQu0EwcrtlYbZr5WVmboG0DW4sZfC1AvQnOaU2W19XRfKwGM9/oAY4KkVD5yAMB6+nfhML3nvzbWjoEzz7yYZEHGBNNA30giDB+NmKbO+nnBT4tYVt/rV6vsMFIRWs+m6xmagbm0+/mUi99Mj+dZOMAkQZwrRYuvMnvFr2o0MCs2aqi9pzc/85Jq0ZRSvvPEsoDLoDv8dBVCJUP9b+fJNs5/i6KpgYHUQCqhzDQmX19Io82Dlx/rJRbICyXzDSG++86vVFtB3tcNDUeWnD0hDXC3IJ46/qPkVniU73JYZIyAumAu6SuLNDc8yjHptc/rYW6HgBhTYPf6nLayT2A6zC8OZkmvtJkKxIJxnXCEAhqSoO87wvRjg1MoxkPmXiJRw2+42x7ncTHsoMqKHCFga1wMLrYbl4ZJPHG8EM097g1Lyy1r2KRLlBZAlvB+0ueoGoQIUKBdnMqIESusVIwuok2Cdp8BMkrPYjKMK/92LvV3P+UnAh3Ps2PEY0QFt6Ta60T3htW03z9zNJ3uQ75+nC7H+TZQp550i6q8HJUnkqO3mEae02xQrfaDQQZH2qmTt+DQ+yfipzyJ8Mo0jwa6mih5nQ9kpCltgC/2s6rgIS9jXmkpo2yhcGsHSfiimhRJfiFJsFyboXwj/ZLNNW8SwTlal0GQryN9jnVrew/aryoEASm2aDedaHNptaEKa3BGNhHP6hVvpClTUO+9Wov2M53bsa6oMuzgrxKrlqawgvOpbd9blEweuLL9oJsIAsoD7k8wJSijLmL/7zt+GiJt/+Kgt4hAWVXkAJ1J4rq7ls4SrYM1S/dtpGxn+sU+9XxixvUWo6ua7tXed+BYwXaH90B1s+BJr08kAUJILTpC8Uafmhl606IzOYq7xX3p8Ctrygi3d/ImQu5WnLxx7xzdHIgOSC1cMsfpzYQ2nCIF+70SBripiOpeSfJKXRv0LOdCFqe+LkITtCYK/Hz5VJcvzia+KVRbwSH2ORAhEJe/jXc19kY+n1nTKaJqO+35gpw6jYBmNRpdEA2Je+R1VEwBIcRyhVbGJwjY1I942WtgMvtYZaVG+eQzCN5YHME8ycqiBghKorvOTh/iQSUpomT/hZgRIPzOG8ygqi/KrfGtXE4QHvCY9VGAEkX4VRP/ymthPLDLj3aPahlbqDehhNnLwaiw/XHa69W458L4+C7ad0+SwfQgVuE3pRdI7xS9donXUMeDHjqgtPyx+kMj+SuosBaU/eIdwcUpfWRqo680JX5mo9CxCB9iKNp54nt4M/ar+nOJo766BrEurY8sn7z7rE30RUi6W26bss5OYMPG0vYdBjkVDG9p6E2tT5HAZkS4cIUG+Gi72fYzuiHBbbA6Ol64BquKHNSR9SkS84rXYQ9WFw0l4rYHtpHbtcNFI1JNU2u2OFjF1Ga3qBy37c1h+XrG2Tm7nuq6WoNuwoVTgbst6D5wTatJSABE0f3CTgLCKHbNL4B5w06pcv/J3Ci79aClh82NohwkJA0zphe0f1XvTx45px6hr0f4AVk67uXLBvi+jR2Xv7rOPM4ueRhBj+94VIm5/UkJ0b4FUJkfkvlqIho2stADJTI4H3VzQwI0wTYzImZjKSmjt0A1Ycs22vk6s+/zOb2k4XOo0hu5r13rwm18vqp2dSi1RmCTR1RXy+bWf/ScEs47HZYLrDC9oQBvriKy4yOqnwdS5AVI7SoIW7mPN5lILkTWlqBHfj5G6JgPI/Us1aNhBM0fEIz5UJtk/1Ud9Ju+ltbdOLY7OieQr4tq5zzFYj3f433sd4MqymJcMS3ws06hqyrCI3nZ09sTtg4UCHBLJZvvN/Da2jlXvz17eOpLIoU46LNyN0Szx+jyE2iqxDYJ3on8SazTDToafc25Ymp2v0iyt3SQ1eEDXlvzuqHOG5uyfzwPHKedo+G1Gg2xYfjJYHSyWRnlsXGPMdiQ15et0zRMwJ00ur9CAJmhcqHDD5G/Xehm4YUDsA52T2AR0pAACm66/8biNoUa2IYG6p43anPPLcHLM1RqfiLt1c6B6H3Z4h5dqo6eme/7WdKbtW8UJsWN/0mGV62iP3wx/tl63gDpqvciJSRwjnOyupmmByVsUYaAiS/0ExvcYPScoyqpxwu512iDpOTEs+4A9ikZ1rmNJha0+DHCfvAb+oiDXUxdfYMMFprIHXvyE+3CU19uDk3PVyL/sVoKZUS3DX1xXgiv5CHZUg+RGaf8KVIE1tu3VJtBNSZRaP+CvZR55zCNdstFXgLJ5ZVe+I64ANKqxwudFlHXvQ5dFEOQWZzFeUw+KVBnaj3EgHByoeLfPo6wECxwxvYnxDFG6GsF70nrNLuYYjZRDc9Oi2bcwU1adfr2kggIaAsw0BCjira7pVsnK47kFJ+Is1U3zcziM3VoXNa83M4wgtjYpFADM4hMEpzi9LZVH8EG8yYIzji5KnM++VUoCghyf3HbnZIiwjfcEMHMmqQFXsbKDODtHbNq/q14fjqF2smgtf/q2jaw7osQ+yE88yIrp5b1SnzVWI+cfK9Yw+U3F35olluCzXcvSYQk+f8mK+nnbftJ9wMDRa6yE621XYwbBx92z3KDhMedSq49xE/yT3iZFy6IA7iGcsFZGblLKZxSu3B+vxentSQnimJFG5YmLU3hYy2Jjj6TRh6PQNvQb6vnL+b/hfn39AeuXLQOouekSUzt0U6fKBv/L0MKO/cG9n1U4+TpiRUsGyPv9QDTo7l/XTQ3uiApT75ewxbLD3X4JMqPEXV+RgbVvzWGUKJ+G9NPe34hwd6WA21csDMeZ6gFmCvvi09H6f/JHVLlsl+VgTGf6myTKtobzrhhZAnHZ7sVPe435vGv+FKhzVbTtREzx1bSyOPoquhWrQdsGF5vE24TP9kT7dSmL34vndhurNtw0eaSRSfjN2K7QeQEyKQoJ8U1qrmt3A9Nfq2Cu3Z91JE4l2MmHvqBQh6ifYXQI/g8P4Hd9Jmj5DBMPCElKjDK4Pet0yq9uKNnE0oHW3G5RL1AT28tDmGxvydBmOIbdzS/aGUArcTcJqdRIXaUBXJuiDrqwhkh5PRx7fDND5zykS0w/k+v945zq5pW4Z6+Gphe6cM05YowvYfhVMR6vYADht0y9nsvaR/p/maxLB9TwYuPMm/hmiCQr4bQzYSQc2KSsRAOBA6co+bkmUX0oEG/Fdj4vRsQVEObOQTki0S7udRc/VkhgJbiVxuovcM7HJMwBG9xNuSxZdxPeg0twmdKDNvXgXgxhJIGYrs3VCcLBnJY1R3GoAxzUfUSzEPgnPdgPCjDPGxIOs4grQ7nZ4QqTCdus4g0sJgl+ZcveOYa3oecqcEViIPFTjNC+3iPDpYwB62PwlhY2J5V1qT7+LLJow7mKrgLMkOv6MVQkV2KFSd2YlMSzVGX7X/TEWlj6jxq1AC2Lr0AcXv1ECMAFADSlAeudSnbisZss+o+lkkAsmdj51yKKwb8NqTbSSzVou3Xm8tkX85wnvMA5lzeipjkoV7kBtX19tEr/8yDyqJHu5JtwhR6V3tq6KcIEHYxfU9nC97YjZcnyVjGSn7H1R3p4x4VnfA8wElqclcJL/9hupS60g5KUJaJa9leC3D9HY7YFso3nOFJsTGeavkxl2XJ2LyL6Lx+57BpuzKzYvFNNJp9ARzTdOY68wsQ5IZDgfs14CHd9Vf48POIm276bSYpzVetvQxS8HwiV/hQBXosOwApbQI1yyh9mH6184mYzgQ6kLMPM7jMHAwxt4o9pW1zBQXlYzOK4eLcrBcnv+m0GjItY1rSySiDrpg6KdBnAUpQV49zJ0orGdMWzP5ucdDOm76kI5SOOzBQof3BXVhxLOljMgDGr/hHGrvaV27E73TIM8r5z/m5PrQyboFvo93qIcRW3BDo2fnulSvWLLah7iPpT3d7PDw8VGoJBhqvabPps86g7AazE6UC63IeTfVQinlNh+L/X2MyNH8F0NV1QAbAUVHKaAeo8D6RmquNbfe4Ll+yh1aNXSMtwz53/1pcxFtHt8VjucOtUEAJnbyMpHCP+4pnmJnGGkMTja+jWSdTq5GaNuXk8vfRLRLfa279ZVU+s3Byb6Ofb6psGaTZpWiASVeT3YjrWnIFmjGK5p1NqJhLu/Xz/eyYgXSKsb/2lEPEpViOLcSApucAvBuKazfXD6rkdtUFOnKNlkupsNlRM4yj/d2jMLnVoa8YvGUdZpbUvSCtG3l6TMI2SgBEMs3KoTFPvxLuC/OIr3caMQzwwTgdLNlcoGB95r+Pg2gZgoweXoViNA0IfWvGAKOKV5wFjC3t8d25xkGCidohAt6P3GP951ScPQelhnj706bEXUSFpVbS0p9wbDbv0B3qRWOB/AfIB39gq8XublV0RdfIvq4At9QBXOgBju0teOP/31mNHWPzc/IyWD/GDCMPeP7wnIEHpMJR/haPGzfI8DdgUMkeY98Gty2ahzUD6d08bMqRerA/CIaZ+EuZyd26+Bup/0J3lfloKjHig96mXoZMYWPvkH2ZcH3dUkkFsfOUz4CEKIeI1ygf+p2cwBaDYlvm86JKvs0XvjG5riwQS0VKC8qxGqD3nPwoomyEAa0kYZKOslmyh8tWbCz3YlO50rh+PcivXxL+i1m/3WE+nBCkhLk9garal1ks4gk+c21vB5QkFBbo+j8L1cBJDpP1/Hpc5u/Mok1H6zr4err2KewTjBYgGBHjf8Vkm+fjdqu3rsUIBJ9FKgrHU4E69+aP0QPp7tWdZWxBLQGakkR9+t3qXhTrCla4QRNCvsdEY41jB4TpzYK3p2PPGmSUdwAwzi5lJ/ya/jZjUxCeHfr+ymB1q7vWUeX7Lbbnrxqgve/2pgsKeFfYE21BJi96nvVXX1m7ycnQRwFUVcIibGbFOscRVFzJyVy68HTHto93xoyAI8+shJuAM3QzOS+jwO4TKxX3JWRbGaGeKN2vsjtQdYzAvh2hxdkREac5t8XSDXCyqE2AjqqcF1Go0vvQsaDygZiQwFefGI+JxkZ6Sbat8imqlstzd50yzs1LTO3C7uWQ5AdmhAC1XebjvDA4XopKZgmVyVDciFraEYkJyHicD5mTX20hCUyGNMNKyXNLnjuTctlRE3WvU2LywINq5zHiVFUJ1YD/ACerJzFYIDFhlTLnpoNUci53bTXc2EyNkPcdj8f3xpU13G495s/F2+Y5T3IGDjrr6/Ae7CqPJntdzZWbqDwQzhwJl000+lQyA1gql5t1RRNupH66/iLyoGV7MALN0/58CDsBrP+zajgQjagdQ4CAUCppOT4F+elqWimrfw+L88rOihhclp9DIN9XsNMXcumBmdJ1C/xBVZ/o2oGK5SN7N8bk+bOWZbY2YuLRRfoPQMUGkuJd6qvBB2TRpCXi6UJ52mZfYHDdTkJ7RHtuWU+M28BNQOxf7g5iodZOV/MIe+Vj8PrFRDAOBxAixvzagKOpw53Em8EoTeQyX1srN+Eelw4+WQOhqzcohB4R26DhjLcA2jKwp5N3eRASB2rkFnYptUZ2DA/Rgsvy0xP1+8UJg2gwauCvoHKZ0JzMsLaJnY8dzIerPkX65vI+7AlMDuDAzVEr3n/5/snb2syjDaWjfFN07q+M4Vgq9VXC4C47jY2iniptqLTVc9/kq+fT7fhKGwJK9yl3ikxF893NSMrTvEbhCr5gaCoeV0Jj9VUGKwk9ORSXZ/5F0mpLC5WF5oPWmheK+mW+4pO5XOj7L/C2O+CyaEx9/0lSxjCzF7JcZitHvw1HvnPWqLcSFtIs8TD2MhIeMoB4tg6kWXMzfYcSOWa171+VHdN6L1xvRq0A7rHd7sctGljwxyvmOph3i39W/vEPkASRZHbKY3ZEA+FiWkNUwfpycO7WfwNtz4KhsPHakEriXV9sJvPTav45VB5+/uwj8QcyKLIDg8u9Z2kx0nSNRfu0QsbeuVp2jxGgBCquCU+stGdP/UJprwF/IyMC/fqveHzewMSfGTBSWIzFiBhrRf6afISjtbGJVQAdENU/tzUD+crP7db9L94gp7TiK3fpO6ii4IsihVwnYYBf4GMr275MZ7b8MmHs869cQ7h7MEFcHqvmTPfNSHuJAQ0iWi28cLGEfsbZvhVyezUjn38at12VMIunkfLjk8TJS8XNsJG03v2uhFwz+p2uvhWKJkeO84f0PrKGrEe7trOE1QruD81W9klbLMKNqrBbpyUqt4r7rKuKg4SUrPueRMp93FzBNvIP9eOu/LkUl2qhrorn8GkF5te91YICP6vUR8F3onY9q/99oFmMdfL5kYcaPN/+LA4LC34vm4IqYo6OU0c4kxxjC019CktMC8gJo3Nxp3XNgY60c4A9bfqtTLYExjMo3SQzvupGCkdMaVsVsFjRrkL2KnJCngnO6oaHlkaCMCRGHaUoITHO0oCqN5gZ7KdWXjOoQ5Wp+BmLiWpFVpllNT+39b6N9wMamEJa2JpufQNSIomexUrWFJs/cp2sr4rZ48EUpAMT9sJ4cnvtKAD8KgwEnb7pqDZGyDTaiLn0ar5DkT2cTb9AyZidx7XtOO8thoY5J8ipZR2DgqnUOwdwEDu4VoNW0OP4Oc18zY597qQfvJ/gfcfEcYQUNBCqm60dKS3Q7vWGd/aIYef+cGYQhDQ/DswxTrwTnDmT6JXrk7CtjTmtchAd2gP+eBXNKFV4Zzy3EbE+ZuDq1FWnVwOrlQDGkOxlVGLgoBr1Li6QVXMQbDtlXULqQMDsQa37wgM3AXZXy2PGz2A299ZghKTSUeFMWhYM6+arLcrhV56EIwCtk7ClfzkGhTCiMyX/5ociwNDcxFldRZH3hiWcEqwsLqo9vn8PC9K5o7gyaexx1aH0Kp68QaEiwb4Li6rcw4BHuPprMLf3sWfSFwWq6UjFbVAkpiHnh0VyfZ/4mcAZOmzkafZOofTKYH6iFwNNK2az11s1QaV5QiquJyo/egqyu+PK104UbcSSFiBzICt4E4vT982qQbBSZXY98nvmko5hN5GXIa/efTJ6qpKFqVDiCF8NsTc0JcaXK8zBgxIBCH+T3llHaS4xVZGa/Z4huSdxPGwqzJxb/XFL127aWvS64AN655FOdUPNM07GUtTQkb/D9BE447bEwwfHSM5erORaU0Z1HnEeUXrkwiEmKPLgJRoBr725pqsVfND2VJmn7pBNYFYMD8IM8GowiA7rRzrYsJp3rOWfOVBqlDaC3Ifa32HZAsqLA3i07dhAm7Btg7k9DxHp9ovjhvdxZtyqpp3vG3z6+05uUN9+5hp3EJvjSDDyKYSrqkBkkZtZVpL8ZV5UzaCBPzv9PGATz14iFYtphMdt2zd7Z700dBR+uOv1s5iIcACLBdjtObo4AMdrVyNZ/xFklJ+TviKNmYzDYb7pBSIHO9sEfX1pJq241JNkAihluXZEWkcaA4vQbX7+M+2fMkDbFDgRDSJCsfffin88hMKPd/XoaE4JoeIbHsB6stJYyJ7/UBAW8Z+h22Bs0Iq6WOu5E4I0XGdDeXXxxc+xpWS1FOj4FhN/gY7wQ9eJtMJAvFjBbpJBP9fs5XGzzhP5EI8ucf+Qw/oWyd/4sKz9BhYlMETCM2R/5qiSDpAT1mTb3YiJXv+ke7nxjvvnmzupeTkIvWrDoHIJcCkHGYVjSXzuB3a5BoeZycjj4IPYOb7yipr3eRhsDPbrJkGlJE70l/1TqUGgsDoz/8EAKyG4jwHYaSABYt9klBUu3he0S1cjm3tMA7+KMKhnIeWMkbSEnumUz8k6+bOimysbZnfFIAiAtSwQOiiKKuuPOG2GFE/itk3u3DKx+m6H84wAh5WZzAWE5gcQUucKeFebkeYMitDQqg1XIaLVaWlTZdDBMVeXnW+GFb6SFvm8+4221XTk2ap9onx8vJWoHPT/5CEQ69Wcl9y4V1ZT5yIkM/0NkB/3FRD+4KDtOnLjM6snAq+xdRnXU326RMFKg27YJw9DNP61O0Ew7JEOtB2jLeMeCc91T9w3uUngDr7lWrDtczrhwr77aAzWzXKBojlv9eRYc1p1Y4dn+2tUqX/J3ue/N1ZrB275fau9wEnb2hq2p79WdH+nVNQxHVHLS7STfCTPEpR6HA2MBq2DwTF6XrnbB8F0JsdSLsQschNK+6e3rhWBc83yo9BfFRevGCQ+Yl+Te+V+6mFy/yPphDuQvNW3tZIKkSqM6Uvro5njXO3FlACJrRFVklpqu6ospTCYFmyu6gak0DK20GzHfpGHeWmK2bZ8wE+sffdCQfl7kYFmckg7hovpQX93d5Jh+CmPcjs1kulAyToZDkRUPF3FNEWbY30NNNS2gbXpXmMzHQ2bTcDhRhYnwZ3dA9Ss0+nvmJvQKH3QQeMDkLMfVc/VaU61ogfLTkoGmTVGK6g2+VnbuWvmBO8M2RqkpjYKE0bVTfnewQsh4K29XxWWc+lZSqBDLteFgpwZneqRE6tgjACfkYykbzHcn9tI19X83bvPVsJVIkth9kJ7oG1QAIJ2MnP/r+LE+NBH65sD0eIywMoriV0ZtiqYp/b5Q22B/bqhahOW1e5VWP61DvwgJkdJQu/gvGMLh/CcGJIlNCrQ35ht5dv0tgn+X6LUXmK7ZhcaI5Q8z+uAFXrwFY1nr2FmfzdNo/l0MnlTVbo5/esrVyUrFQ/RXJNR9iqN4RCHK0jUKzt6U+kTijHsttiMqUHSC5giuLcWzXrS22SgQV+ipaWEaJcTVuxd0jF1X3AXxVWT2IRwN6gubxt15UDnV6x5D0qPD/Ky1PWJUEfoEZhKzBi9vMiJU9U9EMO/H5IQUNwRCbk7Cb3ZEMKPWw012g8FZHnRC+BtLZdxjzmocSn3K0gf9U0G0OdedO/+gEEhR0OKuBWSbbdvi6IvgQdMDMwk0k/CNMtBYgedorfYvjObbklvL92hUdh4ApRV2FOtXzrwdaM9VYJAQqLbGqZ/r4bs/ub4WrafbAMPx9dmB+ui/tNoPth7UeLFWhnVTXU+d1MWyqOdyuv1kOfXDgZ8lUf5n34vnNmKTPEcWg5chVdTzyxSW6UY94s/RJElPDfWSOrU1y+/nnY/MfHJQYIW3+XKzn8NsehcehAlbart0pxaL7dtm8mSDYb8H00tPjs96VhKMV92pkppWjBwXk73SkBpsteRHc00evvBMvm8lKFv9rW7FnasyG/OieForx3tVD3zyh7aR2wplxnRwOq1cl7fyJFDkaAGln3jCnT+wAMgLgvw3hJEFggc9yRNd6ByM4CThQ71ukSMfkyIEdoXe1FNpk6e68N7oD0/Mkls/bDi4g9BNz9kquFxTjscSVZz3ggUQ3pYSFFkdkXyvJ6vN9+s1ACQ2HNZzClwwIrGcDYn+tPGnO3Hulruv+Yozav68wSVKdCBh5Drxsxi/3ZgHhVPBOPtxNtDE/28+pEVbFA0AQMpWWanjDekrF5yoNVKepNbCJ4xj5OBiIpQsM1fhwdRE9I4LSEa5/cemXsBtJJZ+J1DG/lVGHznQgvZEkMC6IpQgin4QNvzp87/cnbbbjMh2fmlrNPeYnzuYypRVZBocTIVYJ7EPW4laNGSAlz295eJsYMshlrupKcJxx4nt+N32OQlWqsx8EYyvVzqb7emIlNdIPQDzqHiHBff8MQ3mZFnjozg3l230XMHfHNtr9ytustP0VPUq7AMGtqownxVU6OuEjYxrjZ1+RpTZkSuATp7WuH5mWTHlMzE4pka56PRax/IFn5ptq6hylawVjFY04lOazj/5goSXscjC5KRWiSzRD7WD1MahadawhvRv31H1mUzEv/PHgv4EeDxom703cpvmnuc0j4hNfl1lnYo3iNXpaOEHnrs9VmDToImA1TYni5T6eWAivrMyGYDJD3HZz9OGhyaW5a27GnM6ckn0MCpfZdVbjXyQRZEE9M5SAbmAFiKiOObK1SqpLu1w4scELYd4qsfGtWuqaQ2GankvONPukw/B2svZNqxbhPEJNHA7NI3jx1ccWVAl+QGVPupK8A5w5EwH30JOzWEgOvu7tlDvvJCYLC7kL+wB6GghNJRGDFXANLorTxRx7bidGae3uJy7poq6Qx3dyF8JFPOM+x+Jfpu61o+VfzbSR/Laoyo0GPeHiWRAq8cxTCLPu6TYycoE+12ZeHhfDxe/6U7Dm2SWNTezmUe3KJOZCct1BLVSDJlzyPnctmmkaEMGPOa9NuLpE0iLy7VzpUblJlKUXRa7CNLYUaLFX0u8zgFLdJ7h1Th2Wvnvv+iJp+jML7QwLSbsI7V/rlBGd2tUjUmM+Hi1xgKF2LGGthdn2XiAuli6DSV5uU3nnJN/CPCa9LmK6xZ6iL/S2GeBdtT8DSYasw1JghX8BW3dUJKuvy+B3CW0BUW2UFbQkj73JIIb0wZtHUEagUoE9vpOZvmLKy82qcTgQj4iZ4CRqKs2WKYuEC1fDT+LWomW6zcDv4UJ3i/5y8X+etPuO6fnz/Zkf4FrBlsXk7rDM7R6aziQD3uw8fEFLp/VUzixHE/WnSUKB1ITI+Z+5FubL1CgFDsOKO/8a2Eef+pkybNtGgJO53XHUncw1Xy8z6OrKjtXE10bVS31Iv5Gp647N5wtf3PirlYe7EJ7WmXi3lD3x+2m4Fh5aHokzwPdbnGBVL6p7YmepcrXXzEcnVO6qkzZN9MkcHYYQRCHA12nnjnfRvw8e6zHSJQ1QsmWawtKRTyNJ0XuFvOLyEaS6cokz5/6iNoImVn4ZXIKY67dYhK/z9x/3o5wBx6G0JGeoridCrtP0ifbwU7xb0hVbgJ+cAmTfyIDd3d3SK9/TzZCulBxLVUnugRTD0qVd9+vtLV6r0UCJkUbr37TNoMlWV+3IpVs+APb+6fC9dhF1OaV+dkBeEDU0Lb2YFJWoZt8mLvqFrFE2PE4cVEQWrOduL712FKUWbJAMvp/jCUgt+HuryhCYSVcp4aFBpRqZecMJGOCWRl3M1S7VbrwA9DbHUxYKqIfxGe2bu01KL2XSn4c1EVwIJqhfV1AMUYUIZplHw+VGQdOhQm12IXbGvcnWhRctMs8lYleZeitxSo/Yd9UT1OmVGn4oLeG9MOwcKME6TggICVHNoHgJVgtVvbfHx4WUFFGOND/DhZhBzN1rNx1oQsBfinfVa31xvs3dmCQ2rOJrB/sPf9AlUb0s1gsP76PkSwT48bpi8mXGcKc7kBix1GMGtqZe4WpQOJSQ6/GH1MHYKe39xpziBc/8PFbo2+YJnnEKzS4Oh3s4p/YnmM3AHo24F5cIjSVBXuQNxehGQRvpn00dA/1tzj9mS0pfr+fKpS9D1As+kqq8rtDlsglYNLGeRannMkuXmB66rQmzs7FnUhb4K7jlgLsfJPbsaXDK9dKKt81/b4M9EM0AJHuUoCVshDJmtqUMRyH6XTy2gepp/Q20RVFAVRVi/L+4mUGEapjp8GfbTMYAXe4rj8vPnzcOpjlBg9VNnv7igsaCk3xhl3o8xWjGLz+Hw2kF3p1d58kWuTUyAV2bzfJ1WBcCBx8CEUkhqmfUbyFnGcpQwPDYNDsV+Bd0/dV8VoRKmYyJXNh1yfTJ+2lYEB4xhGkW7Hmq1OQV4jCwjc4NOHVX2abqAZDfmtNbvRln4GfX/MYrcbI8WD79uUATZ5vkjsfykOgGJSCfjSjnw2Pz0E5ONGmcZaVGfNylR09zETRQQtoUvdwIrcN6303dGoxlQQKcvTVvoqUErdFcNqsasn/txxnjX3hIDp6GJBsiwMXmBapXuZO2UwmzRf0T4b7qlFFHzw3RI4nLIIcDmxcV8wu7PxXH+SUvMrdObB/U+EGSrK86w15q4JoFr71NYaL0IZ03Qkd0UxyiojLCKqml/2hcvOKZOosSCnIHtNLn3+C1Z542befH0zYbG54quvfSbKGc5pDGAd6q0DWQ7qgkKGXRoaEr2fnUS6ytWPx45R8Kfqh+giTu0v1YTW+MjOEj+bqh56apTYv7BBXedg9rRb1nFzfZ/kyMOuYVuO6mPSQYR/XGGPuDVyOT4xkL2wGoYZTGuy5hFqupJEwsTj+P70D65YnI43Kp08li4jxHQFTghdDoAZy8GC15df0Qwufv7XW6NYHTbDCXYta0Dcd2BRPXskrwAKE1i8HlrTG9zV+WlYkVtymWIjyFEdht6NNZAAHG9lSFonFOdEZ6tQKsQqq/uZq5MHrilG2iwtkqvuiqHPrBS1gqtSm+Ic+s0aueYDph7lwWL6UHjEpG85clhMqR986ij1G66J6hTp1Y7ZVLv/oprTHONsmnmUNdd6uUnAaPMPtb8cpj/nwODe2EuDx0Uf5yLQHK/RX60qDr65grPcYYrymFcgLJLP0ZZZpbn1AVRyV9TEoZ53v/0O0p/w1nWRdznrluMvGsDKfuK2N2K2TbOjQhe1v7R8jGI2sRez2UL9Z4VOmvaxQ0uAzxc2ozAUVLPB6G+Exo8onzZMDH6XaEDneHelIoALD4Rxrmzk9aObbU52zb+1tZPpG1TyDkX0YGfLikk+JzAgD1J7HeIjpSVzep10NX0dbrFua2XLPCbTG18jjlU93f4tmWpPwR3NR4/I4cKT5daIrmqIfjgwAHlOhY+Q2OmG+j5wL4XM6KjRIZP7WXnBW/8+rnQKcdDrWC6Rl7bJS9YOQiWqLuDfNJbCV/ZgMUmJrQLdLFfIBevhzmrAbyWg2mSS6clMYyYeD7MXLwnuBMo2+2QY3chn1NaZ2pzrJkioBb255VdnljtnelIQ4s5oXcTA+HTZVU5zRzeP3DJ8PABHb0WWnltS5qpADU4JItgJRancyEzWwo0aBGdqtGy1NYnKBD1vxNc68d0O1Mta4bmXYcC+qf7GTZ55SEXfdETctCsBZ8JDMJ+LI+O8LH4i3nxk7KOOk3cPeyzU7rfRemd9Rc9zkQmS11L8CBFaSy1QaCrAC9oGeNGAy2rLN6Adk0RfIR3jSotc3lni66362WDQPS89XgPzVR6703WYINPe2t25MJ2hxcTFQVrQ14m1Omt7qBiKdWFyQRHogEl1dSbiZpLxJrf0kOSSnHaCCpW/uW4SUWAtMN5T8XIkOJb7227QGpFbnfXXCmo2W4RGNsJfIRwhT2gVFEppafoJm+ZaMcPpWm0eui7ih+LZyM2HNYMIVIT+1iSLQ2doXlsXVenh1dBpqWZiOaoIM1yOlg6FpHO2A31wxMFxdPCY+AnXhrLj7ZUoK+esJ/vEZGfxb0FmfNtocIO8DYcYe/gt9lGMEytZsWUDr1LRMCzp6/chAw/AA9MR8K1Z/NjvG4I3UIdLmgXuv5G71sUI4EAWu0s8XNTD2rYTnEZBsYeDi0FF8J1Je+P9T6YQCr29wYOyNEmiC76svf+rGMsFEG5W3XdRJ3Xhh6ecROhp1JC1mVCJQ8zbHly2J9AcJdLazGCDVtpiJVK2H1Ln017cEoXTvJ1CgTjtSpibAqNpuBYRt0ERiojaXMGdyupejkIrz4VPYHdoinfPvH3mdBYUQHXyCXlmz6mLtP1Bg1iZT3jZjxG8hek+LAwO4dq1n9IC0K5NzZ295jNdyPKjawE+1OEvRGDuqU4SAJei/6Vy9iZFQHlk6+9t9aMm5/DBonxYW0ngOtUibWQ/gXIV7AtpUNgdRkbJLBu2DNpE2EbTCjGBiAolm0DyLPZXAcR8m2caTi09nI6z/kGxyTwkmHAhW+Rmkl8wugmgq5naZXtDD0JazHxwwwzwS2nl4Uo7QHi/2flyxIw4oIXC+NChZcSmF6RUd23UUBET/JSKlVuC7/M0V0ZtPKQj1iB5VotV8to3T/92y39zjumYE5qaMxWX7cE3CH0Mi2Hbt7/9eWGb/YhXF2C4KOchEEeqJeEPQ83yqcZ/fziV4Itgh0fmsWqNiFC/LvyrTrcz4xOF/hyG16ODbwYZixypT6cWzHipNWH3yaFhE8iwjYJaROYpN71iGyMsEdzVyDGwDS7cqeZBNYcGiPZX+I4MMhbvzkr7UfK/tdR652NJFXjLmYyGrAGZ4+F+et7RHJmAXWCcWR+mPIpBN+vWoLHsbbSj6zTEeebcfOBPoK4K+OGjKckdEIwwUuy3TDPFBitRkUvgRBgfvMWCGRqNaDB0AOrUzSHSxp8gunWJq/oh1R0F6zK50rGAhGngIvfR52CXmju6DU0DhPCHo1KbEyJziiSTtvFjfCkVglxoN7qmhChRPfRwyOUfEE3MA+moMcrcVln0lwLkP2+xb4zbRjvMDLDZOjBdxN7q+oa1yzQCs1JiZF2Qgwya3f/FXAPM421EdyPz6JX0TIez6VAjJJJj79u5MDMBzYnm84Rz/iAUrnAhBM5aPo+iNfcYO9mN4YooD9xnz+R+QgQzrOrezHn4nsStsZelIaoxH8sOz1GFIE+DIKKC3/zcIBdUVq8PIu8uCU1II/MK4DLaoopL5Nx2TxmCRvb/MtO1zgeOKJ8TckefZRpFgWZeWsotVT5130q9vAPwVPgmzJo3NVHRBehT7YA00UthsSN45Cipi2gAGfPJ2GpdQY/n77QiJdfQNp8OkvTgsn/nXoXJR3uZU5vad7Wa1Rv0ks4JWOb2k10GXl/q0g/8WIiReaoZacIF4CxOtQBtj68Byazhz+QaGqGKOYQHnCGEO9WNVqjJ9mJzzwW9KnQq7Xp4BCeuVCcAS28cujABJ5U1dIQvMJyX8BzgePyfQzc7mbbFaNNPJDGcjRKTXXdLhhrlmJxUQEGEz8hJQCETBQTbfjcZzE8ji0HV/yfiinSYInbzrvqByM4jNnDRrhkcljfmktRm9drMS61A/MNY1w4tOP8mK7rYNCuKH1HI5vH314GokRoz1/ncciCLwWlpnJNifduy97DCDCi7ywgIjy8rivSsSef7UY3vLBo/C+OWUISA1SkeAejSgVphCR/FkFYtHYEqtT2coWuUzutULX2jnd2LvAAP5IoJKGp6DlzS6DjXcn8DERoQO34DWyRZZWVt+uCRtYfIt8huIXYkuw5pk/QDhUDNhTZwUJGM5xqITz1Bu/vROFAFOjz00V4aWrwi5P+aUNY4QJDa3vIhCsiYgU07XkID3Qqs5IlzXbiPa2nIp7MNgsu+7OnHWiDZYoggfsxr20GbdN7MQT+7eFEYR3tPsy3+Jl9XvFLs9z9r6JWbrdmcE3pDcL0oCFq2Xq8aoWH/h/UJSb3jCW3brkVnvFU+X6wH6tqsunJ5fPTVP3hoLASWXO3/G5/+QTPOHzXWfy/JyFwTkfV06n65WS4pjbsaVVieMJStAVv2HlAhZ6pNXlkoC7hF/T2QBcuKpFPw+QSVSJgAgIu9sL/MWxOh+45HIcYVZAs10tQWeYI17hodhBlJ4v2zvtCTdllYEx4YWr+uq1TDKHEQ2vabNuMsYpTr1TgZLna4afYeC86kHnj5wfrNm/0YjTvKHBhr6sUjGJwpvYkYnwFclNnxtOUx1rCGis16Nu+1tfqHONvA1cKr3mPFN2asutGDTSnDehKBXS/N/3VkOJwzAzs7hJpVnjqgFnkxFwa2VWnxfcZJHk3WvC34m0Zkfyq523yv8DW5rv/PSbkNkZKJbDlFNVLsKUEXia8MXZT6Qa1hHuNi8zSBoITg+0mMET6FouiGhnI1ovoXSiE0JvjC0Ga0b0IHNEfbT1nMwX2y3dz0DZI6RpEU+Gjhcv3adD/fVbqswjEv/yb1FFEh2wU56HNRvXCuMPD5SXECoBwzwUA8u6fMiM3YX//FpuLn2s5tWkIu1fb4JEUw8GSCnpN4VKzdWJcFNZyoHw0W9otUCzWkm6YkXccBoonS18glDIl4fiSabPI73f7CC5sAmUVw//eavyXp6lLnKGctRpm0YYc8yc58bDzphgelZvmwJTHagFiybQUBHKQnAYw7vv/O6/fiTZK04IrwuqvC1v1OE6lYvDHrcSIi62OuEDCGjewPyJqFp2oPQooPWOrFr3i7fJDyht29hRSCIzGFTx3RJp7P8JJZ38ZDWCkO8flOGplU7DOiAI7XL9BdTIL4mNH1cA3ORfHoK2pAKLyz43NAgeIEwD73xQ4+KIsuaaRH/M5JMvVfizklaNBv2ifNKtbjpqMEi7uSySR0VKXguZm1Q7LxDsyaKhvl10EmRFqNjKuWgVX7dI0TEMHA9ajneR7q1JRKHxH96jqq046Jm9VktyBXWfdTAzOj8l3SYkBrjRDtwJLp093g8iUaqR53Ccn4TMm+zEe5WmYpg9BOa+lBsW5hTBpAPS9fvSREa8vwaFzmAcw0d7hZ10XOoloGbfp3WQwYzoPnobbohMCiifmpuCXH6WO12HNgU8e5SOjQb19Cf4RujJCs3Ta+kby/vU8Twp2ME71T9fz6suoRxbex/NcicB++52H6jblWPmjz5wO1QmMOF1QaffNp7s9u2brytTRTCRomYu5GOqf12Md92+BErb6Lzgoraqyg2xJbAdnlwuJ2Vj/LX0/FJEfx9E1B4m2m0JxXR+YSB1QLjNa27tPsmbp8UrlBq52+vXg/ouMeh7Upb3tnxUcV/xyVSuWJrkxXols10cgMJ11ZBIhoae0du4Kl3n7tMYFZB0YDjj/RUaD6reIs8SB3FZiiadJIm4HDIJbI54axocNt18D1I88ykANZ0cArhGYBgtdjudtoPLsW+0YaWXg1nTxR9teaWp6RfIMtIkbAhYV9xrHuUhoTjsQ13GkblVIfNGHlzINsEi0qPfbflnufCCkrYFpKxxmEF542XXdXyFbc3o+sA6kBaOXGWMb9YAJZigCkaW/8ms8F+2BXvLWO88oU5ccK3LgA1xvd2XqakGRNXCtWh8d86mbeaI9YYC/sPoEdORymE+uyE9fAUEfC9RjxPmMGE+iPtiLBIC1qX3ba83L2y6xQU5cQ3QE2cVYWIWgQQVjZo2jApaPYvLzlx8TbcK8GwGhRy1amV422wLKfElILaTWVV7InH7f3270Lcqp469fb41dl21FCmsX2hHygUioG9tD+B1camHUuRopsXECu1sym6c8UhyqXw7AAIp6rBoelgk6m8La2B3/qh5ghx6c5TufXJcf76rUyJXCGTH9BkikSDYKU3+z4fLiBLJry8zO+pnEzdbxIEzchLCQQtlDSU6NGQ9XAOb0dVkACfoDiQEJrQ3EmqSM4w+gCivFuqL5J5piqAwBrCzGoT1ikY+gWY5UF7P59dSdsW1uuvvT9qoglFmvMYvVpddEpxj+hUUYQE+DatCiW2rb9+c0DrID2KpIEnXTpFuHv0otiYG/Cd9EvimIHLRIEoVV2E+qExPnZCKBmWXYFLRpPRPLtf2jRmL4JduueFD80SmNYoTz3uGDc93V5hNl3sp3xX4WvhEvAOeRKranXCn8i4KbEP1cZgthXCLyaRMAiOg70pIKZhPNhjY5Xc0UifIL/dBAuxTqvtwhGbGrjxxxJgLonz7/nANEiHqJIXsp3LL1VgdCtlWvl6SNCWLR9BG6//0R1TkpxSOwbIoiBAgB/qlZG3DZlY0m+sh0oACY43PHux0m0pIDODq/I3aJDgOcZyN6ViJG8sZraNhkG3IpxUsYNyfiMiIqVFEHEGrybGDzi6bYK7xtXuVmZ7Z3j/RompmznXkdr3GpkOSFZOKgmyy9E2xMv5P5XSAIpJ/vtFDx4ExRabvNFIXlonVMsq5OlzrNEanSAsLa31fGUZ+ULCewf+BHwayJkK1yQC+Xqyolua+IhNNAZUXCZlI/3W8C+2h03IbuvjpWuBtYVqjOkY4LR45hhbr88MthffLSlfalVIfuNxi45kj/43zjVPR3lhEz560rCnu36lLeVVv7hkNcafpA2ewkwBWouaeHLx3MIe5gmSH/suZa5Kg3c8YWyuT/SkZKtxP/PmVCWZZBZMGf4Y+faQMXYJR/oV/TU1I/LwRHzT2rIdn+5E/lXiuHW7XN3gLcqrMUEdHVhxozevF6XsTlRLg7eVHylzDTEp2zdxKc3Q1yYfKjMWi4DWlkHoMOTb/S/SeLtXQuFPweHaFWgDSKGlQ3bUT+145xFmS9Ez+2LhRTSVuWuVvcyLnqdZ4Wo4SCoQ9hLfX3b4VnrmFDuNaOgI89xgvrarn7OBUuSc8e4Y55CBUowSxX7e6rYbey8g65Flf4R7/VrMxJCm31YzxZ0EKqYlnBCRK5rJPe8cEiuCgWklv0ElT730vPfH8+G2kaET1KdreIWhdeZ/Bur48AoNmSPqaRiajq+PV2em+SzqSSLuvh7SLy10wHNk8dDXIFydTxuqwa5WNnOGCJc/2l72CFsv1mMphcMPl7mBYSN7uumzrQqIy2qBFJpzv3mNMEg9ogwFlUsUtx09sFywUeU8m84kOYIQ2KzR7ncJhcGLj9qp0CTyvWeDu+rqPU+hls6+hmMEdDyqwLOyHh4S92TX+sh0GzPWDwMhLX2L4HKp/Q/825xDrq3lA/6zQDjCrnJ8IzdzaNd9q2InbTH5iLxfIqfRc2jiT4WZlpgdE6c06rUcTlh8NR+0czFbBHYIzv1dGehU1dE4KHlWdl07Z91lhBW4kvJAGwCWGbUDP9IIh7aR6KoPS35yEPXHOFByh7+TfOmxqSp+FXo9L06BV3/6QUgb0wURPFGahqYrzyYOCm1aWZdNSUr+5muEDgY4wWOUWOSjuJQTLSjIovK+Qqb8ohwl6xTzRxrUyuUpbRPokwVtFzU4WsmnMa9gztMBkLUg5JX4e82ibuDXvzem2nzuUsebW79a2zIMe2B63ubhWHLyMue8yyxvQ69+K1tdDptkB1zQCnsdohA3cZ+KLJdf7ZGOmQCmD/R9NDB/LRUOgn0140gqC7YApf5VCtHtu0ZKMKazJ8bY48btV9carvfm1WHz+ZtSrYoRcZ3Jg98FS5RJQdAH0syhYia2mJGPVcKDZx/eqfGg9rBc9mGC1xSpVgXtVJjf/IBJJ/ZViDzEO4zfikrp03wuLbacUq1nmW4mwLxuMkE4fUxh9pEhy4zCqPZcvLl6q8psZh+2UPpuv3xuIM476bmjIdacBNWUwcZH4twDbo9TMY5AAtUjTUDrhREaeJpvRMazAk4e6kcXGEQfZosd+xmDvrVDU8bozxqwc6jkpE9NajGtgUP+RQ8neDuFtRAJSbgiKBeI2ETFCXHjkO+m2Eoi0z7GRuOhALvk87wJSdxNPxOIVEB2z+oxGHYPsgUYdrdVxaBMu2g69Fx7HAwQZbNQFUaJPyYfwwo8b85OFVCdmrPfmp4AMou2FplhbT++BcRn0Xd4CScUuIP2Bm+SLS0m8eJMLMTt9OkBc0GCSWYQPPjmVB26YUM7uNngZc10MsFMxMlqR+BCUbaxKvgCamD7GIn3zL9FGOm44RJMhg9UOk4WcM+ca4rTFVjtbu5yTWayQhR3uh7KC2P9sDqIfPKQreKuhpmicBqkFdqU6EAe2a6Dl3PFrih8DodYd+9kiuMBvt2rbDIzpS4rFZBGU7ebEvZ7RUMiOseJjxSul5PrwVDRucDMK5Z5YLDfFZpoEmkxthnrT69bMQVXf3vVGuMkxmQFAJLLw6lJe/eiLI3O88GS4PQ9ORDjg54SqHr6/BfG6dyYvZlHznZBsevAcD7r453eGDLGPlUbgnMBOSauOKB+PQ4nfdHdgLqGjbcRJVfVEhbZKqtNfa3q10jpsIkaQh5mKoVOtKkgmsyElQAOTPVl/y8l2KgdEiTBt/0twmG+ua+SfNvF6Seuc83feiNdzubK2v25qPawxl2HSsbHu6/ojv7OkRMOUOuzAeC/ufh+xQv6yogoOY4D/5RMDmK/lrY/u45iSgNEUBZr5TXho+B4mCPDslglX/KIwZq5EO5DKOKiKcWJG2f/8yLQnFNo8jCch+W2lWhYCfgAmM7OGJyBO1Hrmk9YRgSNG6OjKjthNweGYrX3UhR13lNzmi5xq/TGSIIkhvKfqXqx81K2+fjXriUwnmajQ34wBp+B0OOHqAByNvqFaGeNPXCPfa7qmL9o4GkGn9QB1UnuFNAGkdLqg4zuAY0ktSXnOESf9iHesqwlRLHh0QJoCCfYZntPTF/hbLTYzHFqYPK7omrpvM3279LuDQPuKUo8TQx2gZJpXw9yprWPB0lxv5hbnGsJVQn/pm7hsuA63J2YtkebHxN8xnsDORCHTBtlBlnKQTjM3GQv+APQ3v3OHM1WWcUnFMyF/VwJX85L32lRnoqlmJ5/d0UU7KUx2o4xUgM10dzUHjGAYQFikNj+IUjmFrS9R4L5AYYZH2IEqOMtUjG8sZ8Y6z1sUrzAUmLrN52zXrixBKWptrAH0Xg5d+A5uhGtX8pblq8hUF4H1Y9kHZqk6PKof4yTItotQekAyeTzzNa787bye/Pk/cmEJYXlmORiNMQDfxaSaZz0YBxkCk991lr9w5ttZJ4h5tjaaeCeYcpexnWu2c9FEI9b4AUD0uKP7zobOvI/fAM5aNUM6vV53iRZMtewULOYArXxjPTq+CQAswY4xnmmvYdRggj9S/LtprePr5tT9zK92dAidukc+enBj5zmCR0jWjFF6Q28t7cL9QhEM2ctB3P4Vsa2afWtDnhghmWkF1YKRpGV/TMDVYRDl67STeBSC36h4tY+L0A4R/B65edjDT/M6T6mPvxalpoJuGsghVe39zq4o7KhaxypFwaYWQ3o903z3PXks6aGQTKt4v5o2Tk9/oECeoz0qQ/EY7cIsZkjZFBJxB10Rde5NJiMRYr8Mm4zIG6+GSK0daN/WgEAxG6K7AUUNMXrAGPhSXobYMOtCcGCLP039uyLZohRUysRwAeoZuap3ejIHGNDAfQMJD/VtJN48cHvKU26HMmQhMiL/Qk2HmxcFvYdPs0vDAKRh6B3T1cpeoqijYBzzphmG6X0DP7sKwBOJD3MDJFR+A6GXxsRDzkFDE6qmnolDzXZbUHarm4I4DcOI5xHuvqgFH8MkkQdDKqH/3L7XMDwARfrsvALePfNwfgBJxmmBL4gu5gZYxcURuyJU4t9qwJJP2vuN66YvtivmY7mC1GeV2js9hOAa6EqiLR/ez06mUyCtsYj9uaIrnqMUHcAMptHHu0HLEsD7dI80m72aC7hCi7ICxeGhRXW/VDts7QMKABDi3IvYSAFCVDuNJGF6SsFF+zJmtmgosxI6tvJnMC8Aj5KvIzjwyQ5S72WW3g+X94+bbyhdLngQdxWVS+C06dtDLRxZQp8l2DguXtfrH8E9U02f4hAJQMePWm/6LlLCO8PU9VKON7pUYc97txq1cATCmTJGo2KbaC7Xa0LJWGPZ5x+qn1qqofaXn9grqgFpmJ5VUeVGAgXjeXVZGylXWU0ekJc4aP0EVr5d3mAuILhaQOdiL49AOuiOwrekVDYnoC1YlQoLe01EaQUryXvEKnEqpdELGZYOF04Q19kTJrps/IKVcw5/GhPboZ0FilLev36zzzP2HtvZJy/XS5BQcpBlrdVd35l4ue54Zu8s9STGSlHBOriPfU6rSw4kFg8jfLhrr4d5znjEujl2C9p3a4v0bCFPDqqz/GvhM5+JF6fNiOHImOvvwJ/591Q+kfC5+YzHu6Ot3x4gobCieKO561WwZIvfgxeun6LdfX43TvjM3Z4GsvphRgDcOCzHYKsol+raL1K/F9Xdi2ij4nxI7GoOVnYT8Vgg1fvS9C9lDCs8tziGDCGi+HrZ6LS2VIE+MU/l9GVncrrtiYfhQgCdHouLN7J4zbGzpr8rYGAPnE2Py3uzhvtDsd8nkfpIa/MVk609Bpg9YJqqE3XMs5Df5nVYBMddxJxgOFVrFhMxMSw+6s/TvuCynrSzRYobYe2WrvwS50pCoTGrr4TGErKWVM7kwBF2Ue1k9x6O3GFlHcbm51W4kLSQAK+ZuudCS9uA+SiZdft3eLMq+jU4FojxmS9ouiFBzaL1QLMO5WgkQa1kAJcgd/lxS29xG9VklMjXkJAXe9GvM2aTzSqAqhsXD63IXuHugBfLAiXbIa9slociVuqj5wXLxyPmnqmGULr3/jDUqkRbF9wKP1WPc5N5uWbQnwVOQ9yurE/iy78VWq9GstVopG6vKQHqnrhgo4dSf6ozbFGnal8chb7Tvk+RbEYq2qITXEkH5fk2z3YWUA8ItoVEUZ/i2nebfr+OV9m2GXKhFvaYdd1AQavfNrnfDXRbswmvTYD4CQcCisOeBO6swEnAGxz2LNremQCPEGpqkejWGUPJIQu1qRRJnlXJNyqCq0QEs4PUtWRncKPM58Qkw0u2vcTs0uhU7dVzicGMbkuHnTZm5dxGvkis7ApQe29j4Wa5rH9fr/ri7nBwn+Z+GUiasHQGtOEPuCRJM6xopdALJpQ7J+3le2hBFLnqQiUZJF6RCO2K0UwUndXftA44kD0QEinEIqzpf9OqPoHR48jHJtAj/8cMC+K5iY0y27i40/3hJFRkYWAxkIhrQLjvDD50t8DQ7jgHLw7sSpUQjY8pUBuL5Jq+NA9ZyjUwk8krtSqnAWRf0BkrushNecrqmIpqdX1UkaI8kgFcn8h+iVi9FV9YJMOKTUufPZpRJ74RelcsQWiM12WTNPenxm5Bm/l5QzoM16DA1XZBP3aT5fhyfjFeOp7TWeG0bd8dpmkMWEtk0H5IMY866iOA4ereTdqoQh3Ro/uliUKV3t0SetsA2REIkgIYNcFY0+iChDkndc80vtS0a8o1CmGArZA2A/RBoRHYnj3YGUXcgvNaWx7Lvw3FhvC97GAxhXfXIQzVqSdSdjrWuYaY6O12BWhi2CClrbZ0va5XTpGdMP3Caq1TGcZG7J7OE78npd9ysLbJu+KIatktvbEsBrr3nxyYvZQV8XTh4UF0iMfIX9PJUHBNfxF/YG6crVXNeGxjeFzOtBIz37xkG1U9YHUHLXmEYGRL89G269nFzbwsJn7X47dYNV244OAeaFiTPx7pLsGOyoEAxeLBfirifFZ42g6XkgmG6stxX1UQVU9K5W/71txRQ8ulGZQWk9w/9Pq98ke7980VdW9+Tu9jLfvhrl8t4X5NZ64hbSMEdkXgrT34r9y6JtWFIdBzy1zSup1llr+PSc8Kv+mkLXP/MtQ4F8LpEIgUHAGBr1anYIEl3adiFu/bZWJuaKgAgh1ntyr17PfnpJ3I4xPs5lYzow6+YnQDxpNjWgcM9NdKgs9KK61ee0wH5dHAtxPh2irb9QYWL7OEOmZYUB01Ii+t2iJsNYoJGqmcOSS6TA8wwWG/vhara1qkzW4z7hDM1ZzOglFlVWePAsThlAu1Pgy5JTl+zh1/o/kzxJDGkBa3WqsRf5SOIqrYKTXLc93VTUrG+adFC1ZIdZN+2n4tSnowsHk47/qlKlHt8l8nE7ZoUyujDs65h7qYYm1T55xzUcA/PeynUUMmw7o1xGmU81Gk4HZirq2vF043djoGbOKVbsOTb7yXk9B+2dvjfeouO7z78LMmSw6ls+tZhFyT0nV/phwonl4Yglrpe6bKWXz3l0shX3i+6vWHpYhrTgnTxTq5HlbneXXQiB8GTSI635QImko9BOERNkBo+nro8XkVreLzHvaU9CnMk3g4X0suyq1/2Ly7aCBhCzs8n75hJDNLLX8R1AMCE4kK/kYMhRX7xKIUy2H9+mTeovZqh7DKTOj05YY+pc2INQmDQuLsAWrPXNHbTlC88Vul75pcQ/GdWLB32T6vaDDUQnYy/us+GXVVKMlWzdMZA2d206ef9KZhk1tFCpUEaXshiU3XizjNd+C5cUbi2IpOj5u3xkPFRHtDWV6FukW/Dsv0SpGHU6T5ctp/8S1ttj5NI4PpYjXCX5a00AJrjR2pIf8Zyf7//wCuFfehevRfidG1YoFjkEO8q8PHhYUfVodEL2Q6EBQM1tp7FI5+uZr4kBkBaEyAiw2iUXoBvAaFzadwByzdhGRqX+8kOfSlHvyb7lg3gSDAXpePc5aHZsQlLnineJi9Dv1b6ekLIGc7FegZNTolthfY4vbMahNXZpuQkS5DldDH7SRX9w4AUICQSfr5+fFa1el8GuCPbOgxgLnM1TfOQOpzpUtpgAP5GL4irF60qHGHYZF6QvI5+2FUawREQ+h3KKw3/c3oOBuXb1FMU9I5rGLriGKOaKSve4830mo+LnNa1MzykFiUfR2vqMjcR571Wwe2k4+fpJIzMbQuD6ol6w9UNU6SJ3ERlrYll+WolRu4yt0xQkQ1qvOpO6hvSa0cBx1tDpU5SMbr+DWncVmVX0JjbR4uhHEbxLJytfqulaGvS/hu6OkYRKrdDNNt/zx8U0UQEIXVbBFQLtfJBdf6Q2NWgFL0isuJTKGRhhHAyAMjN0hriC4QNc9E6QM+eVzdYtszHLXpau1mByUxL63HX11UtYfevR9L82iDqN3tqpQm3tHijo1U0zArWA4aI+ejB20Ph2IDFmck2M8gWoLeClye7lUFLtB3GTkYT82AUcRvc6BZ7hccy91dMkX1xxtHC9ArSaf3E5WWq7lIMiOUrZ5jiCTVAswya90cMNRtGRS9y6txTt8K+eUI2HKimyp9XqL2eJvw3Fq8rBljrgphiWgCThTkliFuFeOlAfzx45D26G9QMlleY1PkHvY1ht3Jqvfxm26lErHAONlyp9Re7FoQyEWcfKSM3A0Dv9+A3w96ghpnAFyuVVkOUZ3usww6ifPx+wt7la5w4ckSmGeiAyvbZxgz50pWxqASTCwlyKQoOwvv3ulqoErPEvlRkNf0z2vBp5U7nrOBWQbj+N8D5hU82ludcI2ONniSvo6T+WbNGikaG3uVc2SYBrkrVgLmtccXrUh2D18FqeIJclkosuIHKWzr7nCDj2Zhm/iGLajCTmuLBaXpjIKQxz+VrsA9ab4qbNaBp7eAN8K5NmdkG3Rvb0S4JQw1em8Kxl5TkaJBM2XkwrfMp2npLN+KaT/SmAOO8wL14BlUc4ZFAoNGaMI+2bJ50k5XBj8daa7kaIl724Oeasb+M8/Geo7+Ddnj/elUpzHxV8nYf8hvexfb/dxF+PcZ2CHjiH0bhlceqai4yeub9qFDKuqYx9gVwIpODpM9kty770swl2kH71HhlwywwJ86Hmr8wPO/ISPpAy+nU/rmhpVVijk5q+peAmuQf7kZ+0zpmGV3NMdQ4Sw2b14N7yEbOIaKxxrL8r9GPGQ3F9xmj3yOkC/69ko/4jQNN63xl8z3APs3H5Y7VvfpnCYuDWdTUc39Xd+1WLenzbYDhlbTJNCAAm1cB+cU8wgFOjo7qBs8oe1sQTIF/5fEfRroaMQopuO4q0baeWXusQXf5XZSH7nFDXa2HfM6khORfAxI7qHqjICEOu8pW0SBX413mVP5Uhjc6ZM4MlB7xi4fQHB2TxWlnr7bH2wI0ll4uTa9MLuUuob7BrEkRB0L+91J6gyhHGThAuyhPNO8HjjtzpmppMMGmXv62glt3hx/Pz4ENQFYLUQPxuiYxJXyEPQQ+t28T040ncFBKVleXkOUcoUaOo+/cU1/ONRO8PL1y3RBUyHhk4HKaYyZ5V0rHf+4Z4LlZ0K4RuW7Xr4XAxHTkdsK1UVuM/+yBTkjGOpUXABFdfck4qbpONS81bv1ishUAGG/GWb5PnQrlgxQT9aq6nlYU3LjzbdbTs2ukFdUOYZOHCFzOMStf9el8OuJ01ofNvAqdSa7b1fbWk0b71wLvrUwTlBR+eCD5SbtzyUSh2hpAQMDydVKV1nXtzLjb/s+INXSmiN9/EQvSGtEr+OXhG6TGB7mb3IXm4QZsJWlOhbvk5Us2/u+Ed1HpMzt7Kt9EryIRjM0G5by/vtKpODhKn/uEgkDqWSW3WkBDwOFrbEdrmJH1ynEiNTSkzcJjhBEjnSk5g5WaZ7k07+AplspgtVH3SB1cJwam5BX/7x71b4/OjlSlo83tahEropYDm7VUTnCmNnuDYuKPBfAoHJ2WEj5zSJViqOHBpqZqhxfgW6l4ukq6t1ka5bs6cyMMf9z71pEo3P5B7KnhY2gZWzIqHJ2urtYD38AYT5R5T4ytKSO4I3Jt5Z7yWfL/hwtwm83qiYu+gydd51FhRdtjhxUfUbmtyO7wavaYNNEY2MECu+CuhXKips+giJfu8OrK6FZxDuOa+MNcRc7RXOpByt8B9xMdrYJ9B/cNTZu4EBRrxxsDHa95gllNvPs3RzV3zVaxUqsqjkhNWLf8Zr1hvB5SgVmJ74YbyZScgY6PbRjxWS8VPWc1DO2Vvekl84p/0BQnokhRESe7JdK30l+mXt9WpAdpdIF8P3Ns67AHlRRHC3zE5LIqMqJTA1GTlOz48c3Ph0MCUs+FWfHVj3HH71Nsx030kTzaafpPUXVeSyGLoEZWvtC//PGGVWpPZeIjBaBvrDUtc5UIRlXpkS/XdAA8A2m9QhTektfyz41HewbB43dBVfcogQp3JZwxV6k/ypJ2cuxHDBgnydUcEiVbGWy4Blz3WXpQ/oRrJHojH1AXsdRJiW03EiPeYAkG4YCO6wkvl7aOkS2SCkO5S7INmgKQ8B27OhCVKcBxVg64HsP6OwiYbmswm4RgXpWRL/ClC5fkmjK6PGPN5RIaI+tw2B12olUB247UI9i6B1Wkjy80BdBYWZLGl+DS1XfsWCzqhIQXynSSwRT7qfEJ3TjCAsYavvT2kfslBf37AGoGxiIqHlrW9zdQIhjHnK7OeFllviKwZ82oNuzh/Tl4F0u8U7vVaSrBiwEuBJlxYvkokntueaq8Q33dvaFUz8HiQSBlDu72XPvziPwShQA1ohLxSKBBhdDBgn99cNmrXvY/ARPgrRNAWOm0usQSUfjzDSp7QJk1dDhOXqwqi+/QYTSqG3rPTWnlQwL1aWbujcNp5vnLna62PismhhH7lSLDVkCJZDoyrN1CCBfj6JyykDEKhQ/pHDzx6ULdwFVH7XyhLMI4z4iG9XV8TuPA8ETar988HAaRfAtBuUHX1zd4t0BlCGPDTMDLOp3cLkHKXHdaHg/Gl1bkcR0iPdJS7Swz5WhtqZmZ+k+KUO0Uj8Kpc5X9oOV0voR+A8Gfd4XalOgjMMYzWHE5KaE6Ozvhy0MGzsx2qjot1IvgNMdbqMhiNQeVTaYlP+v2bh1DlRhFXm8OFBR6qwpYlf/DLaWgAJ1EFMxc4Wg+1Sub+yhQOuphrBcEhWrIotAvIfJaMMHOP21RttvYnjU5ZnNaRntB/QsTOw89dJEMkECgZM+L0X34fPzxcpLIqps0SqVqeRm4q5mC3I5R/XYYBuHg5anFQwMXFCyrJxvM6rF7/wNaZ/QurIa3ffpkMJhsyvrO6Jx6EfjtrVulWdPajluqnhqD/yYcHg2Fv243JHsj9H8SWZgcmUK7AAKK5/LMC3nyXxu0A9gwMk4ARL7QLIopLl3qXqdiCIMiOKPMkkbobwP5GjT+6icDvyOYmja4W+pSQKH8WOwA5Yy8rssgmVONQuRBwHeCrqp7m2TFbuZlk4+YmWZWgjM2DfO2ACBQOFo1YE5nhdK/4r252vvUdvgHMUcS+rLN+96yhCoYz8yDtFkzzYeQotuDdHyyeKUV/ONHszBdSzMAGdaC+LZWgnCqy4MTNUQ+PspLXrr8Rc26CkgpRvlXTDLLawuuekBTW44W1lOxRL3mP2U2hstZuOBETwFi7FxBSDxRKBG5sr5Krb23Z8iv2rZYmJC2Q+v7fp+/COvU7ADh+MQ9+eTeCxB+BjS7LoAgOJ7A1WEu9YspvFx5g6TLxJuo5hAOC7sugN9MZUIdZoeqH+N7nU1mN9l747lOi+pgW/i1YGtRi3g6BFEwxwgjPwL4kbyK5K6H56Sve64NMqhUwSoha858seD7INuEy22fvodj10f9zyUPhjg+pvSXVEePwyW5nicaryHbIbBk6tksD7RLgAhDiKieMTZvj2AroS9+pv0xC2NWZx6/ZuXmQqJK/SJr90pEil6KSKsUunxkx+V4zL5mNhfqdGZ3u4XBpH++h/3Qv7F38eCB6UbU1pdIoeQkrAX8BHLxJ6+ZJb3oFgL8hNZaGl+br26kYBKUEncoD/jNL9yweVqRpPbE76G0KSPOmAatW3eWfBCixm2vv2BogJ9o5m88aO0rZEHf7swFLX/1fJ8O8w4Cjl8tkPXP4DSTi84SobWZAX8ctX+2Q21xFpaI+Tphbj76kwTeblm/OsrlX/wfOKBv1bAibHFzCu03zbiU9MHYqegLfCpwhmjtU8AIR4xm4vfw/+n5u4lfmEjU6CaIlqkYOdhtw7fYhHfKv3jiF1J7E7epAC0+cT8acda/2U++sUUjK+k1JAn3qZTC7CAaUJqegdCIgVPTeG0MXpgkg+Af+MdkkMSt9qQY4KOPqJq/fl+k3G5x2LQMrsHxd9AIlu+pmAmui4jSVCF3C7yrz5/QJW8oY8pS2Q02OpOhBf16kl/3j2Zzzie9EYUN6xHaHmuyBxfB6KNeX60tUybe/0WZR0t1XCSpsVWnmqJkela/WUXON8IoYzakb7iW1McJlNcChVLqF/ANe7JwdNSU5INAP8LJQGs0qr2yhSpBr3D48H7tdi4IrBM/KFiGH0N4WQPiur5ToC10hM3j32SzDR0oDWj5xEZmR1bBru+jx4oBX/gQuoYQoA+mRNKb9tp0MzYKp2+m7D/enLKjAO1m8fq3d/amWEaym+MSVAETJC+LokGxQUY1LX8o6EZR3MJZiEBXIaQTbKielS5beBkQKtXZberxnlguki5wLvPN9FU+xMEWF5wJ9kQDNQiKex3w3EhOXnoD8pR5R+kNwsH5gpLs7rGhnCWsyOSsG03KJXwrCtHuX8Ien8Mk6yBwZf4Zy0uo/OoWzjYmokRfClY74eoA4z5ETa2sL08fDY6EJwEcbHrrJURs3ot+UUGpscXKafoRMCr4SnKqmjV+K2T9V+kpX6rAan5ju0k5ENot3fuYr8QrNC9gen4A+0kb5b0EDEm+XXiLEu3SJZmjCow2VRDEohAqEHaPQ+jOH1BySHzKp70OFTDo5MRRmlvXaC95e0DizI9vO4UxExAL688PjJ5dkbs9h2PrBllWbMFHax6XYSA5nmopnSgrYTPmuBiFRQtzlHGlTa7ZAD9Z49b/uJk3jRw7ExFKPWFeY+2wdTs9wsJlBT0PlO+cctpEH6T6xvOmmlBjmoYTgVWMcVxlY0PQwpvUicI0ipXPS9J0fEGyVe+akb6s9Fu5oguuBPgtFwxMnATit+m5BsMvYioNNcRH9aQYwc5YcPmmzbhZ0TRMvWttsU+tWjfH67dSojRBPVdAPfBmehmQitUgw5MwjPV9k05cdA1zwZBXXwTZ7tK53nWSGr/wrw572ZDdOThe0ZSL+9NJFtTCmMYsbMtNgeqQ1QEaRTITxB57qS4J9wT/5ps4lhWTJ4MbdGj+mV/7CE+w4VcWrxsx2j2etKoqd/ZjPlzyjLFFCOeE6GSL4CYwg0x0CYK5CG51i6NiV3OQ4ygOVU6egLtoUduLw4SMYT1eHAx2/syC0IZ1WIW40PeOITLl9b1QZGOHSAwx086BvtvnNduNIrf2AH1IyqTshSXyR2Z9AwPanf3JtnwmVatUIIgX8KP57emOWPqJz2HvUpb78D28qxFSm4fBhwichzEC5Akl2CIOFNo8yNhjstV3tjFvBoCIBTy5VjKmHMInZGNAlpCku9QNvrcFSRslzPAstqT69E8ezCfX79iBGyrA0rzWlNuUHYEBA/oDUgihsFJCfI/+RlY1r5IdsLdsgul9PuI2huG1r19WQ5nOChV6MH0Tm0ZgrBeiJMO1eugDIS4dQtBkGeQSA6nPiDO2xW44yzug6Y0TeczUt/hTDLUnpXzgXDo392nm2BKrsdUt/yeAkeMy0BXAKqbzjPMti3LCBv4A3lNOwG8bCDVkPAhohjTWDFLMEeYNpYrQ+rwLyx0vcapQsjx19zU1r0AzeUSgzsbXJwNuGtJbudZltQfNOBqF5UAsR4jS23xZpZTJYWK9M+iuERQEiqywuV94+s+p7g0wkz8YNM8ts9xQjxYCEDoo9UCYaIUy78rDFPNxEduFpRPKwIae0g0c6jV3yfJ0T5Ne2ayUqmivGTjNqz5j2mXD9YwOaQhiEvIm0x6Bms6mzfQxFm3LqgH5mtw7WHTxp6ZPcoS0en5dOI68FR02mppMcmb7gnGFx7t2BlqwYzsKdPmwcpU2IdZsLJ8tm1AEt2X+1cgLoUYYT/4uewTKhMKawXTP2D7W8J0i8UAbSINziBerIdxHlWgwJSfaxL+UuqAr4Ipgr3oS4CXxWNwtYgviBldi+vEgsd/01BR2wM0NbfeMwGHLVGkxTYoUO89M6n2JmT/R7ASm0vXvT9kLve8hkh3q37Mvjl5dBgZN1CM0pTZmZ6QMbyXWyQuDs51UvuQGtR+njAIHD+FOReFsakfxZb6/vBwNQdMfKGNpwblQJcj/1+sONCnBhuf9st0LzK/obVn0GvEPImxXTdsXCulNKJWzsCzVjrhkLpqodL0MF/6npCDz1TbE209AaUKLYrS7Gt+68M0/Yn7hLtJLDyMrCSHgFHF/aoUmtebRCbZM/3E3oDG49646DSapqmd5Jd3bcmJmikPI4l/Z+Hb1rcVMmHUeEdoOUp6Cjltay+IBZfzhQdndfpWjo51lVrf2PFTzBxGi7iRCv3xDjagaUOsajk+WIum0Suh6mlylU82+em7et+eqhc1jZ06Ffl/O/rCeYZ6Q7b1QXJ+mP3uM32G+5q75y4XI45HJJB4p/SZfrx78PtdhlPHLSfT795YFU/xxodb8aoBHLrcfWdsOmQDxAiGpkispfo6Ofct3Tjwgf74M+zGYvYyO3Whcyz9rS07pKN5bYhFaTdHeboLVisP1klaCv7lnPwknBA6ik7zLPir1R6iU1vhU5Vj/99MMo51ssgeEfShFHMvokPeu4j9te2ibJVDNA9RiI+B3TsYn2vvnf4WQ0S1sSCEhu5LDtDiI7MOT/FRU7sB1/Sq/hBI8l9aGfwnNMYLvjQZ6Z0guJOY+pSociIV8iXpGg6MHCoffBpWdQQDdSAB+MH+0u9qlWgRoQ62mMGQPF2BvTTZqOkevMafLB9YRHKhFmhR8EL6pSt4nIIdC+wN3wueATve6kYkYDtlyPF5yVutV66aVDlc9Bv4AR0FAeEEf3FKcGgb1XEHP4dirCwJNo/5ATuPe86Owcus1omeshThxrVetFlR6RAR2tivpDks23GIu1CmcCt62sqFGgQV6e7LOPOFG/8uXnkcs574lDSb2KUkGlU/Yvclu481RFDR1BSm8aKq4uaqDyd6g3syxDKTJ28sp7bXbJAeZR6N10s26i5cwyQUinzRPK4n/bFn/VvC6QeQSY2iwI1bgNxbeWhBjQwIg7OVhEoEcvXkhDnIxp5Hq7Fj9TNcE4YNRvk21FR7xNnFWPYAATXf6F4rvA0D6Y1yznl0eFW9HowzEIjR3ix+7Uk6fQRafFL7vR5W6vlUoR5J/IuE5v8avrRN2tfh/gWSJhkb4/DYlhJJKVUAkPd+lUkhY3+H/8XRyY/bTfXGLRs5cOuyzP+lU2hxdUe9lVTHSpatn6M0J0OwZGAY1WM2EEjEXk3iooiPxciVygQ0pvZRslVyPMSr0SiBTIgHt4RPLDjYbvPs/PQuHctxs111+dp759dt7uHZp8Dcpl1EVtm2IzyOvcMh/uPOo+RYYx49r32apB9OEUq0ZgrS8/UtCV079v4UsRzWJCP8FO+bNMa6BcD9TaDtHpWrEptf7GQfPBqsddgxELefY0xADsqB81te5tF5fRYG7Sp0qXecUpxPvnQ550gNfDx992J/zKD7g5+PM1szTKugvNEmTTHlsL/tfcrTaasiOwwmJsmxhSaLJcmKhXXsbKeNkt92MzLm7m8i+mjZh02gSlg1uPZj7+QOABCxqbFIOzqk10/avaArvrCvpA7b6nOTbrppku2XAWjFIzQuw4IsVNv3fnOQY3cgKhJK0vMNSmQuQcnx/cBaYYLos5Xe3dwYj/cCf6TTI1pAmgAjTe4xIGAdMbTTEi8CwF6mkXnSBtNUMBch+6YcjsQYGJRe9feGb5IwqSx8eRTHcblc3bYd4328/rBGYyeHIrLC9Nq8ZGCFRJGPyVYWOklpTg7wHfrAxEOKgq1XYuPaA+khxfzQ7ebmu1lmynQXkucBz1wNnCr5CFuuMKeSK9g5p+4Gr25dRoqEPnmEmFY4dBrf++exOa2flqZBUvTU3gzUl1DsRgavsLnrU+DZFfjeUXhbKLu6GN1uYuaoYjShXJMEQNucoiFbz/MVos4XzFIbj74k5Skp/yLlB2uv/wC06Rul5D5dAMbqiB5zDu6MX8clrw66pqsORwPKIZqI7IKWNs/hRLGFBbQqR+k4nrDNNrzN7CETg2sPFTpCGx+AVKDiHmPd5sIcRwYQDWBz9zm0ZnCYdE4sw1uljSmaDPjFUhcxSUcqGqDAP124TU2DMhb3oF0WeaspwPahuFu1aJ2sS4Dou/rmcR1jy++NOINdHj1rs2Ct0Ej1wNOrSGtMFDjsxokllz1sHgSdJyvod5J2FgAorjDMeGzAIlEWItrichCgc9RAIFhzAGQWxLWAWTYQXzbJY7tnVBE8VEwaNuX/DGIgA76SrGbwfgEmw8bEGxQooK3sOR5NolExXg3y53vL2jFPpfK0konIIn6ug05xoeR216L2zjd/c7YUSCaYz8vJ3ub8lbJMpfTudrupduPyT/DmLal/P7xqK2p10+E0G3rAofQ8jVf03CP0GkRXnSqCyXA7SummVUf9/fl317/ZVXPc0IiULdYNODd0jO3TqzAK7ANp/9PlhUUVqiyVyYEGkNLgXWp2bVvxWHl+lT8cnQ3OKChGQX39slft3bXd09Z+yut/GpXhscksCoeLXfS1kZflA0gdQuJCmnjlhKGWWyrkUvzR8nZkkFbl3I2xuOlb5Kz0lU2aYIMSnL6jBe2FFS5tz1qeCZ7/Z9A9MWVwJaKQj9ljagMsptAKJrtkCR0XY3gDlCXYmAoOCsaWNSdeLmrs+xNGBLIRYcQN8cp1k/filjDfhgt43XrrUpJFIidbwqz9dcd2dmXV8ASXLzjWYZmNWPvKoZtuvy7vpZMc2C8DC6QuITf3n0+AwAN51VBM0gswWx4BUiER/VSzSxEb+T0rtFcov09ftrt06ESO7V2VPK4ta7Hoj1ZnTT4oLt+PJDaKTw7ta8gmzTgup3foVVhc7BwCtuJGgD5y8PQkMzMfYuGhOihAyt/+c9Qvk23P90B4N90YlPoeLOhBGVWg2AX3qKIC9C5XBDAeo6gGjTKPAyGyksMUNR9w9r0bScQaV1IJYZ4TcTUTqszzbHN+xDvWbv/xNC94pblNPdQdoW7YzngFwySO0nIXJRqWjoJ8eXGzPpQwLoGZqFH+19X1i3nYzsClMaQpQVX5FU6/sJ/ziw0JGvHW93FsPhZ7slQ+vMQqqpgMMuw6yzeYVSfQkgPAHTj20fl8P1KaWFnH4wZV5fAeUEwo4B+0ihxdKGPcqoqL6R6BpK7pPctihj4iYpEG9SJ3K0wvmxN0eoiofn5xLkvYLnEE9aOk0aL6dImMInlL6PwQ1THMihWtFRNKpL0ihatmRZUIzO0PsvQnTLP9sLwZDqDzWdGCrjAOI0Btpp//LiEBhkzOfiL56vPr7QCKnWqIfRmxSodI54vEzMSvRAroFzT5+j0sMM7QeWyNkDaSUceAXWmY2VK0j5x5p28LbVV/6EQ5d9pxTwUtiP+L1vFdiXH1XcCoM2wJKZLzVLTLMHYN+Q5uMK/fTyMlWOKaDy9MGotBQn2X4mjF44lb02hq4ItCJx6RvSdn+F37Nb6gaVTXvaidm+RgWI03eGNy0RCcL3EHHA8cFCxFX936dCGTuwm+RQSo+1nPYcwCW0PYQ2KJI3YBfvAFSPAyTEwN7BrfZjZ+9uejN8b/3Cen9xyI76R64RJxZpxWPXeujCx/mp/HV6dX58aCTMoxW+8+ayLj8BP+jmEtHRMyv+cynSejTv2mqZ1tArlO3EfGEbVofCQwgP+V7fEfIrHZUUV/9l8RVxR3Pi8x9vzCP0qatzT2ZjKl5GTNX5MZr084TukLta0Ei+4xWPmpXi4cHmrVyh/QBCEGakdXUJwT3tV5klBWSAw5Eiz/OY7cJ+XvueZ24m+mSTS1uczgfIPyBSQRk0CrRsNcV3JAPUc2MrxbF4ESTbCb0tpGlwrPoxqV2eDRcTKlOd/85KzOXTUaLp6fsf1qLWq8l8PZZDgvgRYDcmPhJ7d/KZ6q6H6x07RyjVH4wmY8eGn4QokGKXMERfQxJ8g3sNn+A/NCbGlWSkx8ud5fOcd8TrpoAutphSt0U0HDmxBuimBAVhy58o+9oWP/eg2tNfBpx+1kAVoh36CRyzIMnmK7uJmRn8mRGTSFsSRryxI4M3B20SStGPGHax646vV831U0SWAieKameTePFml1/0tAGhGI+/OxXB3j5DAjPvDDqVVeaoeVmHjZYSkCUkaOCBWylZkeGKN1cOQNaRtWTi+WRLzUDpagRGo7cNTa4pR8/QnW+byZreTBEFp79+3fWMZNwJGHyXJ6cAaVsBinnh1BhdSbxH9IMkbP3MXTUIQi+B1ZVfYdpa5V+Zf6ZIH7eyd8tOc33DTt3ykxrMuoAkFCt8pzNARuYKmw6NdDvhoevvoOxvdQVem51uaO4tn/gb8PUOJNBSwlEBuvjqCo3C2MRKhacfgR+hW84Lg1vj46UQnWc9THsnx80PQD4BPisnUmxTHmMX4Hv9hdqOU98DzaKjP1yyFzj3trUYRi+Vxpw0eT0TQyM4Uq7ylV4Lnrj0hsXVmhF9O2F20ucjxV+zu3/Ggw24Q2+DcV+U2ABA3Vac2kOvT3MBvhgxwWhxUtLSLd7af7cLogPxTVrv7cv0QIM3jeEu2GgGk++JSxKMfYsoUW9HVXarhxAOVIsqFx5CJZFDNwaNUDUKG+HU68/muwHHHMFaRETP/6vXC0QqfoJqJGC83gEoaYyMTB4HXtYxVSIsbZdpR04q0GWMIboIvcn3FjdEHLHY6urI8x1C0CXmw4srQftA8B3lH+hXCCZ6qnOr7iIbEltCFW58UKqDnYrkBHSXjEPfeXzm/XwyD77Te1yhGa3tw2V4vTnl8eF3im5AEdOMjyevq04GFeHms5Nxf9VavgZqU/79aJpejZoGyNO2oiA+yZKJ6Nw8GoUg02gevxcr3FRCTT9smYbSHXUOhF9a5uMGAqKAfnZGG/obXQi5vFkQFE1dWOC2LqLsMjkoAPaq4TZGoWlrtoy1bw20iyHK7K/66u0f+jl59Bom7rPvD2jq+UT+XHmkFxrsyGvuYJUfSISqWmWFGUzzDjcbpXD5KnVuE+t+tWiswkdQLYIY5KDK5DkrPw77Q1pvUiGGRMqDmv2EccqBdUyrl1zpeAcVycaXir0tVLJpFrA2keffvjP17ml6VPJ3ELMzBxHsSUP+zzDRKZUx3l0c0uT1S2i3ojfOfjiR+lgp4GgU3ZZZHda0QmOAz7ZK4S4NNc8xC8KAUmi/9IaI7sbsMh/pT5iLaHTACXT29fVRltrzwIfEQRfnFHCLtLXtS6a6iHdIcQmX0IybJQ/WXGil/LJ/UN+4XvrXNd4ot25sBo453Z9fu1mkFSvMp5A9RXOxPsxJFdDYuBdOPtQUu9BY+UDNx25YSr4PbRnqrnYL0Ae+Uqfc37FSi77NGmbda9CeDAnv4opQtuPngIS/VtdnEbfVXG878LEx/0N0oLuXQU2DcmHgrKvXX2+j/J6dalCCjNvSGg/fd/T1bMAnZXPouLe0FFr9jxAFktGifegvbUEnaRI3yhrzdrBihLJgui+vudp36M2LdavUh1upDnjpKSco9qVTQwhk9SxifXQZUDDCnth5Vk1wYcFRWxMMTSSdga1kVqsygxNKsA9jOtWJy4Jt4SP+jTaTWtCBBT9x/HCwwLn9Q0Ymi1gnTJvfZ3qB6vUKHr4nDAdjWFAwzcmkG/oPEo+Tm+kFusecMah/sxOrg/OV5mHPXqoOaZZ92nYl3HdoBLd67dJ3N85dDQI7WSuRuQK421TuC5sbm+UjUXUf0TAX6MurF+RQJkWrL0aq66hr2Zr/g3hOXwSxTFQ7q4qme9d9QNjg/Isx8w2a4/+Qes+GlUk4iEw/BB2ML1e2uqLBCo90kiL3gM5v/VomdIPlmyMT5M2VagUWO4JBE+ROrrraoG+2A/v5eMg8SJmnjFfvmLHxXJ43hp/i44Oci6aHBIahxusR8ZFpvMbGEIUiu0CtnDx5w6YawOd8wKXKS1sYgYveS07DgGu4S3w8/gBe08eucbuDGNPNzXBZIyhAnPfQQ5EaTvsjTucRzlMLdZJ/3cqJ7dg0uZRT1TE6n3A/uAFIwoGpAqvPnXwdXwNFSAiusUcTLtHxyVPouJiPpbbMaXm0KoAx++OSRd5KkbVZNAdipMq3++uVFjx0mfsdpmgFj97CY6QWJ0VfId+rdusRViUcfLya1C30+3pKqXZTB8bz/mLC/QleDpX4s+USwmelgwQGxRVYgGrTTw9Cg73KNC73bVoLkKvA8JCG0O8qX9Xfje3/6Tj3da4lnP+3hxrs0oCdxKu7tMPWHwNoSLDuz0e3t7NlSlP1Hw79IX18GTRGT+urYdZ9RefnxjX7ANEUiFAHNdnKqJdqR3RpQqJBuCwNWjX4tai47WIsEr+d2WXogPh3u/lT15TEiQ2S1Ep0wjmKkEu40nz3F/MhwA5Qdwg9y+qYbC4CV50uqHcUQuZdsq4wdwLMoFaSMTniyCxeJe4LCxms70PvQAt4OzIRl3f7tLOHlLN63c4Y3aYGZqdZAukEoZktoI4ekAsRAdtEERsLPiDWGpmCvtgwXK2QSYpScIf1s4bXJ3eKWPfh/8UmQl0F36mJNgDs7BrEkVZ+1/e3thrFg8M9hJFu2JmHGVMPg3xli/AAPIPG+TY3fWlst5g4AvJxfHhrsAckuaVoFaPmKSK6Sht42brYUg3s+EcwDSR7unF41hTtuPEe8RyJ+KkJOKYW7HxfY68WPCuODcsf2X6dz+PQx70ka9/fsjHgcPBSrS42bEaITxp6oBd/xusHelk4vxelZUTZrRxzGs/xB0c/2C0cRb1pEnBf8lPK6CD5gObROhn9n+SYWNtOiPlJrbOqsR3dwV9IVaQaDtWkni67mD1mgiF7/+gCY007VO0SmBXVC1nh8wt1+QAZ32C5Dvms2r1DJMJ4XkI5wKl1iOdrqSiY7lAtrzy63a6ltWTY8DM+T7gNHaTe9ql4vhLY9KDm4FO0mCKAQVyXFlipYHz58HHyhpZ6zS++1UycHlGOAfodXaDgVmNZptZ187z2rvbaIeIcuNQJXDcN5zJtJElu6NCsbadbDBngXuDo3hPONKkuK4AmVeTcXOLWDj20cWrmBT7KOrk7rx4bC9FbghT5IscVGVjyHPWwLKtSxMCmaxYAO6f07NEh9aRZCAMsvH2Rde/DiazOTQIZ2t6eAL77fGFqh4/+0SxkVeBT97K00m/qQKroxyRZunwySV5OzLzBnUqOlXA7vgNF4JD4tqKBX4r4Nkz+vAlbRxWcMnDYjM9DWrfsISx5msKom2MFLh7iBNrAPdb9rFcyEJvJkRgNpolbmcZq0cemGLEA3yMNT+mCzaj8Vx24nXIjKfraDp48t+oKiCiNkROgQxx/UUmsp0GmECdgrj2aZjSG5ahG6ThXJNhDPxyWdwnNJ8ScQBqJ6eWu5S+bVm6NmIZkMj+wib7xP0VBR7psQuNA7Rj2o94jd+SsTCi/HMbULdcOBEXRZRptCi4KTS55aCMx3V9pPVXv9wxcVAihY5vWu6oAR49IQfXMASNgjEVEYuDEh4etNSZEu65+CVCKiMzdkpuHMIUQ1kD7QTByPCkHXq35pc4pOMPV2NcKla+nVBzWF2XLGiPlfJyKRLMJ49vXiojT3bZOwJOrh6U9ysy+ZVVsFXGiB1zjUnodULKUtf/QvlGz0vwzZjnQCBDpeif0Xuou8jyyHxn3nToXfaUJPtpqlY10Rnx+l2D1Pho5kCXS1tOeBOB0x6eV0p1S9BMmr2fKsNKXFfVwqxhrbK2ptzAaUgYJsvbTSYFUZvYCwF1YPlyBx1005OGEnk9xsMSaKi2wPbE+/yWkzwyoqKBukuWTdiJS36qcUV2NqrGgugKu2sZsTeJTQxq5h47PG1/aX/CV7GglNCVDuHhPI+O0M9BgSlchmJduqlIfSdFxGvxzbFNZWybd2SQTBP3z02Eo2LpNkZcb8/CnOelc5lSR8HQFfFFUyneXyAE/kJzOja+UJojclyjxCRCixC3YxaII+BzqkS+gsJ0YpRqtiQ3+Hcoc5I0PmJ+961tVEytrsUsdn8bcf8SPHTERw9Ei/BOzl1RHWx6pJ8wUkTqEDystPRwi62OoRAfgB9vVSkd3XZ0f5z0366It+xe38zfn8mLqtzYxsyDlqYonN3HPb5iaUvcTkaxeyAxFkVYYlO+1DqR0JoURpJb5L70kQu5hr8ilR7LRlEkWvOK/BmFnFLOWETVQf2fUETm3SNvmbZr383yeAoEvnMnSMgvdTo7VARvUcRFJkWRNQXdTGFabjVHOtTCB77nVOpf/ziR9gaRHBXeoJaUbemHcm5TMDwJtti6QPNDeVM5KegbsXNOQCDUaY3/PWbtJ875zpLXLVvIsgyogI2AafQW8vpJKGZlu19Xy5dpeDfHWv6fTnrLs2GLDtfAYpaYdyW67f+XI5N9AM2uhiC5cNrYJXPA7bJsbZIt8yhsnOOVI9Dn7T/db/VmjUBJy4hKAogaXvuyaoZZcB9ZS5/y2MLszxIMwY8p7QIBDDKVkbLxhOeiZOZPF5+5jB5w2Tas/spPMILR7y2qHkJFqNvN5SR3h95HxhP4LmdyYhdUpUKj+wLaXMWgfl/OSbLaeUKZzgxZUa7ecClxpCGC4BWotZgErTETk2I5W+U80u2l1FjIUyEpV2Rp5mauofZIbaOO0P88iVZ/27lGH+ymGb1DFNVNXvw04D0V3Ytl0oKcCqLgrgw3No0hDgoHroLE2C0MSdpVNBTws+s0G0OQJTkMVNekn4Eq+jZAs0b1/bXjKwFru2KduTDOffJ/Us2mTcs8JZRxgVIIShHLNikml0F3Y6mW8W3/cDG+nviJ+lRj/em0IPJRoLgXk3cDE+pa3aXzcKB+q+1hg9JKEWvkVLNkvRGp/DOKxbZzqBTWQZyNJTWXP4/BHiN1A/wf3awqzo0lHvz7WpZOsK3KCeBnr5iu/BCoQmOP8HOH7bDgqTMGcDfjCJvHDfNDO06h2zX6WRpxfCOLp1MHJJ4X7y8+B7YQXa9Yr/z+OAzaJGr3/jgKXfuQooIPDlgTwQExm32daFe1cGFJ94IHBebJ1livbHq2fSlMVu0K6by/fYTnokGA1GdqfR9BaxstibF4cZWR+wFjm3csVODhFHY/RAX0HyG6KdgZP9RBv0cEXDLyF2xbMcWxv7ThMTLhCyazky3NTdYZQOZ9ZKo152Rg4HNEf0VdrpRtW1lSGVyGty2X5cdp7o3IeY9ZlmEbWXVXToM5X3C+uz3Ie1jg6+vX7XkxVgXbOhrXonh4MXlBLKg72NIlUziGfS1YuukirB9FqmNoDi4vQ61B651QmcAdUztsR/EOiY6N6D9ldsO/2qFdplTrBZkdAAfBqwMZWONICw2TY5LlL1k0L/LN0L+21gHAr3Whg/bdLJiM+cfdyPyXsJxsekm1fNYu88qSbegOro9h1o4+R4Tb+z/niAZK8+FwDb4KjQAK3keeXplLBIjCJpPuAXvs9RkUUGZNXqJgrqasfQvLF6DCul12gMsIXvjupNlowbht/54MFIpT/QjALb6Vkpmi4yKmQ5KcYTzMCR/q2Fd/OwtxW+AiDrqmlTKbsXjKb+e/sQ6QCB7RA9BMXQkIAXYoesIvmYMy884k4evsQLR0IRZR5siX1PE+8xVptDDsiH6YZcpAZAxWuxd6v94E3z8KQE+BVNqtaCPUAUm8gPVVqsQdi+Mp8XTEmMMK4RkFQEeudyfvXTVzqsgD0ghspgVDeejxGdjtRtTjrfoMtyWrf7oLNc0pV23t6HtbPccBMsi31sKdxLp17RWcLaKxk+6AtJNY9qwK9AiDVM+FUUgXd9hEl026DM5TA6PF1/lEBMwLmQ/3DMRQzaK9Et8sLxdRV9QzdkAF3P86KDJd/l2F/hkgjtjxYaKrK/wALXX3UPOTBpvpa0U29KwuOETgTKCsEiRk7DbXYyKNywIBKveTN8139vJYUAZo05qjc29ztaIhV6aHBXhDA8puZYS7lw5vBzAtrQr3bjl349Pe0V9HfGE7YhTc4i0lNd1J5OaZU/PZuTi+XXXrHdx6rVUD6PHOkP/RJhn8wn8Hwgw31ScJIc88wEVoz3l1ecVLzG65eJKMCqGpQ5ep1djcmK/6vgTfYiHo5MBPnGiujGqmcWlFnuqGbee2k/pf6Z7YnyAUNz3NoDxvsWXGNpRBComPjaS2Xt1OP5bNc8n6eNQ06H+eLhXVD1GHkBZz6sihjAmdrn1k8tmVSYc4LJ2GQDr8Mw2cfeQmPa+o9hSv/0KaO4ZgJQJ82Z8DurhaajbxBbRBN8WV05JtaShXVulqQPaoUnP7GUopYIg8dIsHP6lgvcYV+WuIjOyyLhBRPLKVrqqFY+MzXJhIGNh4nG0jY+qAPihCnwyZOr26H90KreVho0wLPCogtW0iYyfJbHpXmfLg3MWB+7WY5qdya5qeSVmjaQ1LWw9DdoTXfNrXh9hPutWGEpeAbu3BBGmwDvFsTVeUo9cVukHeKyiWbQLPZTJDueHPJiCo1+dkPQMBrGcbEZdVVhw7LBpZx9k4M+XSwCDNEg/t/mbSne37k4+myKPBRJR5cDSljHUHNUTNjkkGSJk0LIhxvvHvr3/qEyekPq2dWYPGFKTFXsM8/Er8gmf/53LlPggZaZFvHPSFuRC9uBOJGZxgjrUJVHTuyXnk2IbZpWgpm1dfEQWz8XMuCRaZZLrJ3qVeEr1UtbQ7pEAWGxo+QSPIBDbq1Mo1/Nvs1su5r56Dd0xRplbZQ48auTzilbqKcaA6HO5Ealh2Ryhwqh0nNDJbkrK4xhrSf2jtRg4HiQNUbZ69k+zguu8OBY6g7xFUzga9UMk7i8BLY7MlvawXtcWVXaDC2Bkm7wYZCnQdDZWwlhmlDE8HcPF8u38nvrk73ch7WSOBF7H43Ak2h0b3+M+dYM6nE/hzBw0bJ57BY1o6JctCvCUU+eIRGosgrcxZckNZHrvJzCuNGuqa5RD4t94Y5FW2ef9yB2Ita6/aDrrLavOJ8RyJqciQFzxh0WdoHLmSBn0+CrfbHJbDEFpb/66bUQ/UGx22DzTU6Ndbu5esKrATOs1+ND1Jalc1M/o0VKYKFObDZl4yOEFI43zFs+GLNb1AOMJj8YPvBtGaPMoPOLWWCg9kIzy8zcIr11yK2ap4F62jeozWNHTjc5OOFl50CMQwK7w1f4Rsl6mjJxZaVT8H262RtwQH5ba2qqT5jDM67I5Nop98aezqP8p5FlKk9N8czYT//yY80vCfnG6qzDAtGJ3unHv+rel2ESnrrm4z4PpLPWH3WpIzo/oMpk8sg8KEQhqi2/e9ub+HeL0zfQqwL+uAVk4ljr8KnxOG96mE78J/sH1PEvT8BfiWecUlBVluTfybZA3elh7htG3NmAlkrZEIWmfeLUD5JEPiH0nBeE9sEtn/8HJ3bs1qwGI0pYQSbSlkEjDfTAu2171SbfogS1r4xdNUfXxJn2uNfpr0ytsil4oF+A0yCVgcJpWprl+sSD2r9YhkXWOg0YvDcrfi4NlPIEI9PuPQaf8xk+RqU+qDGd0c+No3wuxPbYQRM+Ik95Q0KpoPQHtc+r4qdZflWT2b8LtTEzJS64ymk3CrJmcwhAsI1dT012+jNL/dmaRm+fuzJqsydn7B/mJqy6U9U5VZDdb5Z7I0Jjn+OArMgDxi/uHGlx8Oco+iTRmP3A/naFdc49pSET0A1btIRCEzu5mBPK8Vszaq0GvVI1ipMrh5yMwGCvDMk9nojTjJFdN1lB3BW2yj5dw6RgX0dlTqXXcm7LfbQzy3/J+jXk8RGURfW63dS1X+A0nZHMxiM+03BOgHH4BN7ZFXxMppxEPfW8V/2oZ1q+DXYGuqt5k+OwBHZY8EmR3lCMYEFxUhOLnxMmkNFwsyGBJFlB2qnlK9Vv+F4AxFvm23ceFKfURGg2emHJZqey5ZJUx205ghBnfegsvNwWUoTcW99S3KAxiO3jR63J27B34/m87f6naTk7jB0CVEQz5Fk2j9h+9c/u7d6Mt6sdW4PRk7HBC9JAFnLqWTwCPXffdEH5AJ5jHv8ACJ9UkPVHcoCxlb3uWazppCqzT2jqww6rcEiemncbpEEFE3AiqCE1vHvRhxt4udgjUiju+dEiy+BH7RIWs5qwb4R0WQhZhMkWQypLKvH1Wjhe6Jq1MK0BO4Uad65bVRPxS07BGU3D2cSvhalQ/MuaxD/RyG6J0uiRIR8fYpeQTj2v2OtlQeSpLgRECpJ/rcQRauPGBun1HaSz+M2yXtSHVH6EyNhyZSt17DYOQXzW6aTGlOml21Vs1KAqnIttbfF5VV3U15AvW5ZMP4tAnQIPGw0BN5N73RH05mtsP5Bn73MIJwtWj/OY1yh7tzdZB7WlIbfGRrfK0W3kW/xYOvNlrSA/iH6sG/pc6ulCvYbiyHSbV6kHYl9Oi5sP/rVMgElY80FEMoNKcDo/IDKjNwWdUf7wZquzJdhvXi8WVM8DdJCORq079jdYurKcc1vOxIXZz9uCewj8vudaPPsyDy6T4DAg0+/kNcM/46H0aFa5wSe5Bb728qIv1lI4X0wgmY6g+fdTFe4jWYghwkAWt8qYUP/XpsH9En67gZzNkJAYIkoc/irvi2ggl9ZbedMB/qoEc9cMHhGnF2+0+73uL8PHP9TbOD1v0BfQpw3lAqF0V7chGPO1XMKkXAfKAy6rFFC736q5GHvCI7LW8jj7KCWe0aVqmGi5w8PMDxcR4nF7Jr3bEN44lUNRBg9qFLenXur5Z/0wgzm0SfacAwJuillk9vq1KcHaiQXcczp8BUhtzre4apuVZXc1H1jYuzEOrMHXfdRyY5WkXGcWcRGSyBCff9HseWYn5Mcq+JHSQf3aRdq7UI3P8X/Xf3Wc9eDcHPBLHKLPK0wj4MIo3ZFETUQDBClavDUSYOa/JAqBVZ8TixfsqSNv5brzSsSoetTA9dOyxZfo30/XDtNW8/EDQ7vakD0BrCqeLMSicK+z016tamhjbzVRRWc8gfkpqgVN1fFJPbsbZCUj+iaEr5Pw/Kf1iwXbuTiRoLbgbKD/Oz7ni4MEgZVdVkp+zRl7ma1+tYAsM/98OiN1od5jsQcep8Bjel9OP2lMp7fKZh8A2jbMMTmoIt2iEzNi+gPCjFXTEeDRudMgYqsxG3rBsYVzDVCilZcf9kv2jP6Y9sg9vQyIHeYK8D8ptTWKBKlapl03pXZsJz/yM+0xDRqt8bs+1Cg0/qUXCCunPcFVz7wEQOaajzJWISZugTiu70dah+/r66yZK9HlIo/86hT7sE61NFMh7/U1qsgrtwKotX43j07sBXY1ipcZP4tpePJAWrkBtJXptt5ZVm4BUtloTml74JM8Q1h2i4p9dm0dYmEVBEvaYf84ST4PZKRgbUYs32UfUFJnRzAGCQ42lSpoIP0HdeGA2I19BsWtFyIzL95j9eyFUPQgUPRXcL/8bFjo+vC2G7PJQb2gnBLFYc1SRiwSNBz0TdXc76FcXntd2hia1eIEQrZpXWChkgPdJITZ6KWdv9VtPgGw4gEvGwcyeLLrLzh4Qd9iuhII2DDrHPJ6WbEaKEc0SAo6ZSY9iI+gWfJi9lQ1YlAqBgZYbIFimol+Aws+t2HS3Oc8fjKOBiulgeZqt3yPBTT/nGsTHxVcEnzTlVHsNf5TTxBqMzmL/u2rdpNvSmG2HcFzTWFqr3hhdHmGrpcwrXPlPLMx55lAj8hotEzeY6iKKxCL4tEORWkQWmPKZKLKp3QDpE3LLYdB2eW/Uv9R8zy9dUs1xIxAc4/WWOiew/wuwKurLg7cKtAYXTmYUgx5ffr4CasE5E6w4sR0CeWwHrYsZiJviDrm4HaGbkIqObLMiADUtpqig6V4rXCK6b7vN9jRj5qN8lfNXk0VSFn0+ED1MyEHY1HBVznh7cBrGUVfoPs4diAeLFzLbkiaZZkHgumVXhoIXz7hx8n0Oco+YNzDnYb/J5+H1Ip98i4vojpYmO8SoG4Z/ehXeC0Hi9DzUGnV84CqmXyzzNsN3gq0oWPQyBUBL3QA5xktolKMtmcbkfE5xrpArbR10jpVwBhrnENb7kSkwU5SKYYpKSVn+RcE0wkgCVp0BJoKNJ/sAeV/+W2/HO2InX+f9sFNBL/lBW/EjPdu4PsGztYg1qZqb4U+jGhTDKrbG+bpaqGhi7c+G/8U0790/Y6WQOBRvdp59wOIijc4A/NtsowYzdsaxZvw2yyfCsqfddPUlI1As0bzOsFZhNpBV4DBc4te4nT14SOGskMCtlXU/SP8iUKPn0ikd/6ft5B7KsTePOISSSS0S+wVKpTl/xYU4iMxsFJ/YS9ivAzE2IsweO0l6Z7JYCbIgimdMgGRyuLyf+61pnDeFEXlHu5PHo9VilRv3oXYZVF2FTWJdckZo5z5YQkLw1jDHqYmcLYBhMfpa9rN6eWH3pjoi7W+GRk/lz2U1Kq9S4JWkHmSuYHBuMl6KG5lO3Wohoj/jsvKnVYqcZmWjO2f5pDh+cydV8W43ZUgmOBK/i8trT7mOzzo+942o9aBPaF7zpQa8pTPpSfELJ+GqE9yLAh0oRcvZhslxssJlS/+AxmrrPnRb5K3jXkSvYpzmhlNYN+CfzuuQnBFIntpWHaNpMeqqxNYDOkmJX39nNtp1hgQH526xtYEnk8B1u8FgFUpfj4fV7SKywPal9FpJKfPVb74uykp+Adx9ff+cK75boDvEUPGlrOWKcMaEuA6o1I/ipzvoYxLSB0dlQGrtOgQzzdNSxCkab/V1QY+wtsEI0SNjgHxwDNMyBnwX3l9aady+481ETN6aa5jCao6F97tqdmJeDR/sGrs4SbIdaLVnpgYbsdA2gtgSXTd3Pxk5MzFP6fx1ZqVJIaxhoHAVWpmrPX9M0PPPTW29V5gD8FBg8XYwPvrOkdJp+4zjvdBiTSccjJP5U+/QpSGNESZo/ZMFP9HXkMZytbJKglv/KymYBwVbZDrkwrGRGZVlws54bODDDi36sHvOsu+CAp8KD4OOqKNsLzPRgfsQDQsUSETj9WrFE24ng9hSHlwRxYjWEOha8KdhSEsQzyCXxKVGkLXr8Io5pUz0KazV37oXo0MoeEGWO50MnOq4FiG9H0WdAtwbVjwEPqz07YSS3nFbStmgN1UNjFFIa1pYW2K4SXNzVSd/XDozNFvW9aTErquUqaIrsngciYlXZIGSWa+u+07Hh0AMo3vfrY1Nz0ZJ5ux10ph3aincESqcxdEsK6xRPznSOiAvByXyepuWlzSC2OaKFhcXFU9C0Sy7E3Z9JG84/LNVWS9Mi4M7f2itIpgKQ8GjNEsiBSjiEP9K/W/4XGVV4vjuonO1kbWe5g8A2y5hdrZxQPGnn8mVCvPhJwJ6rt1bmK3LfxCYSXIN4KK1PsQiABE+3z32o1wb2iIhrQFjpD9udYXvPGsZLOJKUU+MYZ/VpVwXz9MEjCwl+0y9+UnyJggta1o5LhOpCHQ55hDC8a5X1bPyTVYBWLQ5fV8s/ucXKFGlpORms4jfSqUFeEsKPZejFDdMCp96vZ+jcGiE4aXQ2hDBTqGMi9C32eXckhPFykWNZQ3KSdFwyToqJ95VyQVQKj6w4RkoATv8BsRnghQGi3q21hq3QlfsoffvxRzLO7ZSa6L+BSqd/XQ20MHgU3NM7e4SmzoH0CAiinRRmyJNoTTFjNHYkjPiSBzrntro2mqlKnIPAzZnkNJH/nVkLHRUdEdOCb9QQINXwtz0VIIIxTNcYBqrXijdjgoNOHgwVhONLH4Mm6OYh629nuAH//KERiA9Y3lk08X6QF+X4RoOtJk+35Xg0daqgaCaT9y9nTetChVsJbb4xiG3pHKjh2o4yDFHbdnAsjH2ycx/vk8vHsalzjNhs610q8P+gWd4ESLc8EdfbxmVM55m8HyE/e39IgK/B2MTd/1rKSFDCU/jiIJz3OZKQofv31ZjSK0U5H0PDdgwEN75xgDEBfzFAhgFUC3c6okztOv9GB1eKL1vFyQ1l9h51qm+TZ5j9SpusgKzyMcjGFXxATWxzaRW6LOHlcW3BaUDzZ7ffoj07jjFeIdx/jNd9E52F0lilAT3lee+emPTUugk4SrfGlrwkytc6v9eMcuEAQ823oJfgC9GjwQJWm0VJTluM+7zz7g9YUQlelRdsTwg0uzf207KtVKN2VWVIFTq1fJLblRh8GLpw9JjbtPeKVyujrMgWoxv8SeA0YDuINEVeXT/GuBcLObPSes4aZRYFo6JQ+xvk/AORkFrfo1oh+8jLSc9jfFGZiKUpfrCF6ykqnESMVfK1OIGNH/jFdYRN4ep8Nz1yHRbkzuoerR8zJviOXWqHaN3La1ZasjAR5vlgtJGXk1Mhwe6llTZfME4d9i6/n8WWag7Xh+FjKZ3BWYJtkcNn2iSpazL9PR5VBFHt63+zuzsRWxpGKC3WMy1WANjnTGAFLsFEPw4iSVg4PO+bomaQ9kjZ2AeGRjRcsmlvsy8seBf+lHlKjw5kj+u1vWQflT4l99DXZwW1WpqMp/KpbiN9XKnknl7uHVK3jQhUIRbvaFZ3It74ZlhacKeVWGn18cQuUYNlYyNeZXXzpznVxPIaNaDPUU0TrjqjJPcscQpD/QM2PfH3Pv3syNNAvFEBhV3zPLKxE2gVLTm6Rv+za0PwOOPBhYRTd+uPOe2DbLDRgFH/F6HPuJxPTOM9AM6Sr2pkUvXhVTt/+OSufY6HK+nUpA0sHCcmQMnKrDBPP799Cr+GnDrQWU5HwHXjNM1wfSX/JnqQQuxwcEwTUnt74KQ9EXVKdMXyv4CJELNYbaxkFaWswQSSgEQInJCdZCuI5YWQdsa9Xi4fSuuQiu2yLq5BZqoBgv5wGTvex5ceDZvJEx4rzik+KSzzc8Pso4J0jCBFUeKMyvKQssP+oh5yuwQs/bPmd8iTn7qxxhlpq8uXcXPcB5qcaarn68ORFuYXMz5d637Z0FZbUpx7gl3ITOI+Qrg5R+kg7w6WCnsdzhVx2TsZ+Hr/V9ZWAWgmDZOPbsxPmgRyopo6hhyAOeshY1V5H6/qSRdFfA5JEdQIhLyOz6pObomakTKEP4uAuuE89IbfWZlgT+qylndsEjG6Xgp7rJoRYXXh53gk9R98uxj9lN0sn+Waz2OW7Pb/K/y5ORkSh3b4x6w3DDHh1WN0jGVDe1Zg1R3MrA0uPd8wpu3d/zwPivksGgH++LlEHPSD1hzeA80jtrCEv5XkUwAvHyb2DBLYRzeRm/2Nt1NnTk1ZTP64TAO4H38q3cg4+nPyrNbSN3V94Wgmj2JmGZ9/qcCgfF4TPT5K5/NA+3fDWYXCUshmRdAmErKovOZ6Yi9GL8eTqJVOIK5vweZSr9E/4n4jQDolJ+wdmVK4Y4Xw45ODWZ55iXBb77LSQ2TgzaPmSFU/7y3cQRvw/8LBoeGgTiFyPHAlPQVySTZgpP4lZnvMIPgNEJXz4T3RHE9oxq89wF9Ld6urvSmdkt5xCnLDrYNlJLXsulQj8w4FJtuguMOklZs1T2Hr9kh0CHGpyhnVx4+LrIpoJ0Kr7lPWPofGENsfhR+5PZJnTcIXCGi1ezG3k34U6gjTyMLNV20GsdnHKkOfE428hAMfY13VzICMmlWD240xWNO5ngMD0PseKB4SSrJG37WtNHKAUj6JAcWZ14jgdQKkz595fcHe3dT7ymhVc3WPp22a6PBdmEkehtEwPyBk6I2usIL7Gllw4lt7wUUXM+UwZS2bu4BQVHqBMdbTnSW/fvP84zDGwamY07WpaoBYWJbgwzZs43UtzbTiVvdw2CMXnLnG6pQwxFwECiOrVZsLZrlh/bZXzL0nJ76cSPiJD++bVeb5/s+3k2nrG0juENr6q86vm7SMAlGliuOfbT98QMyOvKl/Dveof7t+0YKp3SkyWRAXdmACqrVMXNyA3KAlrh7qb4rAy23bj9/ZjBtAVIgG5A2ZoU3Y/p7FO51aVQZCbv0av2A78t6WMh8ukErQqp7GajINhSFBe02CVL4+5Q0PKp33C8foVr9pdzSHhI31JPywPjguo8j4sSMCFmvUaFH2Jq8Pg20CXZAWGgVLJKx9N158rPBWe9fdNS19MbmG7JILXD3FE1R3vhvwnWj50D6RcfgEPjyD6SEOsWo6g5/+wnQ/WFKE+t2XsRPvR1bhzr9K0JGaIvHnofopG5Wmb65pOE1oIhb3XGTVGUagt1H2feNM5mufmb7OF2KkPjW4sF6f3aCzcN8u/ZGrglL9W/XFmqyuTzYtTzPL85XvkTvsYveGZmeVbiCFuFmL4zpKMDfeqizsu+fibot4yT8rcaj6npYizFzl32xg6AMnm4zfUSQfSrjsELzmDwShfIVb5c18K9hQwu+h5EQbiMit7G1G5hfe/4d7TJY0YRhtdavBBjiRtcAU59WspYobBlthyq7EdU0VUcXMZrhlQbc3HGHlLqIX9H13bSItHYI7/Vjk8HM44JPtRCcBf0P9pI9l2/UqKlXUQK1fz4Rd/LhlzeRAXYnEq4O2bPQQTOp9mXsgUKUsih1W3flD8Ep4TC51HiQBo+W14NSeyDa9rL4d4YYED3D0Nlc7Mpu7Vw/R+XTNR2ecpxp1ljFMWGm3mdK2NUOGxInKtr2iDdYSUPUv+hwPAqM1xGMjN7HzV9o4N+2d4fS6pLJpYeHPzHntDdClXJTBgTsn9GOQLIDrsjsCV38mVPfUA4mNAUgi6/sxhBlftXNtYmMgc/SQnFIvz63wvOkFsG2dCOq7gOdgDjj7xrGoZbCmfhkFdIaaM0D6/xj96Si5SX4cEs8ABF4dmiRVcUeH8q95c/vejww5qUfncnVwnoqv90RyV3qDUU1TUnE3GYew23B/PDf7oYHJcLdprAOExfxz2Y4MLeaYYw10jFGpLlg40lZ/KLHGeG0fTBs4JBjUfev45Oerx6f0vjnhlXGRoY//+g6dWHEHvI1S4FtNmO/KDIlG63i4RefH9Cygv1GaDMSOIUljMMFT7ynSnKJ4nxMOxty8c438iTzFfVWMffGrH44ySSGbA3qJwQlHdLmL8TGUip3Y46WGsQkwcOlUY67GX2Swrwz/gTmQadYMF5ivWUjb1dzTjAMNMPBz3WcOySteRNDN+b3IIMA/BSQoWx7BGlySvHiVvxxpjoW9pU66c6hcuTYTQuyxwveJrS3aRago/j84SkIOtwcQhiQyoyhA8JTm7MnCOv/HeWnxAvT7cjd8I7NXzbdG0mDiL0ZOUl4Va7hQy9RhNfD9tXcC5SoJi72YGC4eq+fqOo9RO++JXx1LCjJoVCWyp3yvAP2Pnq214mdX7FlOXSLhLBXjue8qa66Q9u4rUG2ToJooYCGgWE4nKHZiY0I72HnxVj87OpvSMyLvLK3BelkommCDSYVQhxOi8x4/fZynvhBAIaEMLQiAjOjupBCG88t5EFPxa8s9EUfs5W7xoLS65GHBGndbgz6nIIGPhDE7guPzU6F0MJIb2BN6JZ+KyFXUcMhbdnoiVH0/sW3A7ETvLWew5oizKzO0PJEmcdX2RxjHvq7IcY9R6huo7ZAQ1gYy4p1UcyZM6fewwjq8xTwF4LC0hCJGhteQbjzNUcZTz7JSB69DJcy+6LNc2iBjcp+K9ADyLasAIjk9ouHeq+tHfK8EVlWmUxTMTFofxuGrEFeaIdrk1guywQZVT5VEeCNQQhTuQ5gt3H/jlUmjahGRbj1rZ0NtZdI58DyPrSeJCo3FtIvJ4suHhzttSeTl9VpTL6eY70gzsip5PBw/wDndzXCZUKTgrOcZFeAwVWTMArEwLNRRPSWKGWbDmeHgOYAu8MFQTrXWNhZDD6nVGhSXFGNDPY4LafuQNMKZnylnnSyZXNMyAF//vpsL/EfQiEvbn+6ojLdp6zIZMY8aTdzsv9K0cwmHScMIEY7+rQh6KSoknq+/Hhnq9w6C3fZQT/CDGexl8jRe7U6QK1zgfKu/abby9+snjWLZw317hvodFI4ZxjVSdnrUYokJnB8GarXawAbcRgGZcsLSi/0niIbw3TB2v8UvcEIsg3/XuUpFx++pRDWP7sruIe5KcknYCoiI0Fd+BOWmqGB8devyue2174dnT392T23Nf7paLf6g5N2u1JjZGsq5U3xQmbd8wXWo5x2duNYnBglApCY3TIlr1w0ogUkTUZDNbU2Iv8qVMZEXGktR6XNXD7vWqZ4JV2mmbragUu12vg1dSotSfgKeQ38VMoXKDCWE4lxkJPuAs80kmmO1DHeE/e65/XJYWsr586nMnvRKUmJd64lyeQvAAHp2/Cr/Cmyr6OfXVqNNCZRft7eZKO997Gq9umylikkzW050+2tdx6qOH5R4TaXJmF4o1tBtHIL87v7BbILNoVPmm/S+gwg7JmWb6lQEl6hLWglCkSU6jXY9Oh9abitRoIudWNFLJrWxIs/3VpENdYjuk+Khn3KK1zv4Ooh0IaZH4KFSz93uCTZSWJWzqLzUqmEf9uGPcJlVk2T/bSqtK8GBW6wRa0EAL3hWvoxeAWCElI0NUhFlXa7o1YK8FgEeJ4yg+x8IhFY2n5yXClyI4Y2N3klTaFt4QHjO/lr+RVswQ1x7BsOz6jRiZzHcSTGxZnkT0EFwFpGvC3SFdZz6Z7d7RsWXH78lYRzElLHLzHZex/Tb8wpHIhkN1GqWPLP6tbr3PRx4oqeje21jZDqXz5h7BhNHhIkRx+meuEp89rUBAS4A7iJPIyedWqtYrHpuH0rw2QoiA9LXf6oaJpcpGoduGuTOGX8T/a0XmcCiYxrHXpMEwaTrESLPjprNCVzFM0av9Eb6c/0qrEH1us0WDbUki8HoSrmq3//WkVVYA/9ZsxwA8eCKSOsX+fh2Fk2y9iXLJp6ETf3GBOgnNORrZ0Uyf8kPOGjthqK9r1HLpv0r0W+MCwx92WSAFRxOp+4q4OlkSUei/M7r/DD1yOu/jAZzSup5EXp//PqYIqZ+9KrZFMw5p7Vl48R48t9hoZ+tcGA22EJH3vP3U0dqmWhuABL6LO5eLQaHeklSJu7TXr+wcggSz4G5GxOtrsGNWQAsQfe3We/8OgjujD0+MlXCTg7gfOPOpaws5yTOF1c6/MhrnGFpmEppINKGu0UhFfVFEpTZsIiPN9nBhN7ECwvyOTnlZWRSwHhUaUhG7UBtlknPDnDNuDpt2dhuP5oWRc+LWbtWDz2gIqk1MC+5vIPI7ZzhHVX4pLW61F7pvRf/e5vwmbPcJXe57Rw+uV67bqaHpq89qCVqMpN6vQZQU4hO1IzaQtWk4W7/8nkGVLYtbsNi3wcRyiyZsZGXBiGe0q3aiVwBhSDW48EzfvElsyn0Cf8nu4Aq52C3CZA3DnvKsIL0CSP+HwGfklJhm2kIMwRvS9OHwww8iY+787RsO82/kAEwD8vrdY+T++T0Rghs3v6NXDD4txzTT6h1r/V+9HJxdIroO7VOftjquZXof4mJmTiBiQ7SBffUJcO+HlgfgSJaeRjVFH9KD+5OvKzehnAbEJjoz8o0CFwkt0qpu21v+oAZU73OOnwXgL6vMlrMKThsAQWaep8i4Is4gl17F1JNxa4Gk7+G3V0HJaQAhPz3ArTZmpPcxX4XQku7SyRpcdycSsmS7cEwHA5CwSxhHqlhWSlc2Ufs39kIGdaByOrco/LNJTjYvdwPWboc4pLBaGoVRgHoQOZM3H3F5zHFnR3ViLXbjMHyklLACh++5XWiOTF5UFQDyagjZipKNuayw+0/YnGzfSaf1NlPZnDzvKfq8o2v0tFnaKVKd8wuoDuEnq0JyvPflfGhhXaHsXFUkO7UepFFWon12ZtyCzjuZRRBE35oI5yz2+lugY0YLvRWSJUJnuXKLXnUMoXSmnTChzG9uPyxBitBQ+mVY0VhuolfIm4QcemgLJwLX1Ik9Grg0xs1k0bOXB3q675ne2KLncxsusnskvtSr6GWo3Q7JvoLO6D/MvQPdUu3SyXly6ksmIm+ZG4WS6rJp8oMRdFvokv+0FbHqZi+B5evPujx6GNDwvVRwhHGN0DhDLmLKbDRPD8MfcIe9Bhmwc+cLDNnRSze8weFhIRrGbpCn94pBcJgxQ3RfnTCTaPcIq6HDfzVWWBrtfwl5ZfxKdaT/CPqll2Zq5Fy2GslG+R08Tm9bvbhZHT5LaxioHxY6bedN3lxpg56igx3f6VbDT1pwEglre3fc0aHHXwXiDNe44ceVaG0eY/qQHrPTf27UlwXgdoUCS4OHW6i+wMiQLxZVbG4p1k6Dn3n95KuMT7VTR0fE6XZMtySYSOjjvQcUQUnQ+nMFT5ypvx7brcFFfTJNpLrTZPAkCk2nAN+t9f1ZCnfdCj+keMvP9NriOvpvBXk16UgZk4ZY1FeXHh9f0PRTGJdWcuQrFm72VZrqy1PLDjtL925H6LRVxeaUx7fmhq7tAcsUd3mdLIwa/vr85XGHQ7clRyyWhkYN+bmxzBdOCBmbm24KIXolFjt06NKeuTjfCfwvYtAXqBT15fty3WmFJXIBUu/fH3kVNrYXHWl8dgrLvmORvLpdGuFciNRyw1nQ+x5ZM/qA8Hw0L/66JUwJmvJoQvzE3Lh4FavP0MddgNZ1w9lTimsazkDcunuKVSI/a9nnjKT603h0oqzYvf4pcINR/IZW77SCWjoOLegLXPfgGxlRJM1BlD89flo4rOROjAHoGfbDeUOaKczvvbwOvgJdFh5jKrSncLSR6aAgMx+CYHqzDKZvb7yAWxL4c9AlvUxfD9QqQfMnxec02KUm9XI65TSY5m6GleMGHJoJQKAq5VNAxZfuOAzJ7Ctuq6e/Psb5rjJqNNb0b/UiBLXGGQjLx9k37zAMuwDOybVy9qXecVp3JOBgBBtvtgYUGf1DvdmQ8aOW6qapPncqdn4/Ool/FJPDYnstlQvn7CKrIkClx7kksfDGtDXVESUN8VVMmDW4temyOyPgcmdyOYQh5G5S3HCsXRs5LaQ4EmS1ndyervCG64LgKT2iU6IGh4h8VZwjj1FB0RfvfgVGNAQqL2oPzMI3VqCuUh52L9hV7N62KGeZq/ID1R1iMVKraNxEJWq8tnmrveLgq625NacDjSz84c33qLheGqZsKkVI2WPti4D5SeUyFY4ZXHOO9nLm9j3I1wMwwgqUe81K5nzbE8ShFoaKtKnxXKpuhrCFjhd4b6D5u6r958F20LZMwlf9M9JYjiT+fszDvXUTqT4HZ4dimclqqqwZznmqNphpxuK/ImRXj0qlJgZux4mlG+fkLlwo/9QrLrXpHVsjWUzxxIeGwLipIcB9bpfPRhOQaD/KxC/xfOEiwH0kMOISmaO/kJ2EktbGkd87jC0ecaYcMnIciKRfrpa81y0LSI7osYE/STOXg9Vk4FBtP8Q21UKohup2kpGKdCUEuA0bQ89YpIEHDz6S50VdIeqYxiptOoKMnyIMg1s6N8G5Jp2GNG6rOh74sWiu1mTRuT1oldACa8CuTRkHed4N02bbzJCSIyp7TDoyEz6MIFuXvbvfGeLp/yVTY17mVXMfLgeLKueXpNAdgCkqUMpD2I1QrfRNRWFa7VJOKxaBl7laA3VjhHpKgD3m9jFTptaCZvoFFZA3W1+XCb+9F+9RY4OUVvXqpJt3OGYNmOU3bztf1K6cK7B8zms+LUs3rIsvkgHlSO2xm9U/K0iWcqnmU7dQ8UGKjoZY5iZnZJ7i/L1QJ3jarqBPJAjBHmcSg0elLNIVh0RMJR/T1DS/o//z6SHDfqaY4c2rIt5smwQjOZdJzv50333LWEd+Nw6xMZMMeCd0sGU1tMKc2cckddBUfBygCQ43bJSrqnuILhk5fb7mYO18adRgdCDvcDa2fIihxYCSjDOmca+m0BBnpBZkB+pxkuUQJxZ1aoaSwZr3X8NQoKMFcg+5pYHzM9ZhYeuwp1S3Lf5KVg1TJZeyKIvUNVPnpFQ+yWWXSGPJWUCKO7brQ3IOVaNOW0oJUjpVCNG2BSbhv7JEH+OCCvzt3jUcCMWZJYAG1UDL8OsuHOdGTwrHefeZ9iX+v3r92mXuZXdTBoOt+tFOH6qch1N5pAOzjLYuUxTgfOh7vgA8G7J9e6b0PkEOvGYjv6qU+d0nJgB/GNGXijwcO8uA0FfkURkw18cEMFnN4sUClYP6X653L1vTKhkUUyRqsphGc4hCuNmEHWQ1tOgDvRjnv9G/g4jWALgrmBjb2NvFFoHgx8gxyi9gFsOXdHFN3A3o+V1VRetNpZ8Lv83jrnhZlwqEob6kPBhfxUP8vk4F68/7orJT9lLVu1ZDdZfP1YdSyA8jmR2iaksAo4upgo4ExJiEEKG5o5Z3SpNb1GguVNF3uIkAxsaD5KVwK6B1SFmPYUnDzKFTrW7jcEscw/TDKseiXzKpG1jpYpM6jo0mhyEbJaiOsz4KprM8fyZxB7WvlV9q0d19w1VmEjXNmX8nUSzbh5ytRr2t89ax/A4KPuyMmww/XrCvPxx3aqBvIcxhNI7vZQFCjHtp5LE9zo7l4A1Z4+yUncGpyqYLy4lOmIUEdbyM+tXTahNWlihPJXwSEI/7eT8qb7RwZe/qnZOUSz5fuG21i+EhsLz8FOkgRf3uF3Bf9IYSkbqWd3I7fzphDLLtuDcLGRxkauPIZ/PKSrEqCksxIJtE7e2z9ApudKrkuDddhh3Ccc7PvxtZgNTKOzTJ3M9xnUWndXHo6DCejA2jee7j/Kftv0pASrHxU/5IiGhhL79uwvQLVJpM/OGaYmfTvtmfm5lXHzgtjeFAxpVGqXl5sKPWHW1I2bPLm0/Ey/8SrVknN88EJI8f0opnklTSzilLNkzNm9GOHxtqm+4Z4I4v2i62N6JLUlz9HRMcaeIoiFz620EGUfOiNFZnBr6wgJ3Y0fR1EPCl+nHShafmQq2PeTRESOS9DgNFgn9g2Im//tHouvdPVOQeo/VuUWgcAH/d5+EXWszNr8+Ew1XabHS63C/VV/CcdZJk13VnYNlrXe/gZ/uiwXjeFg/M4GRasrxopWsFwwIIJcacONWJf5oER1uXK2IDbhlLKnGAtPkJWp5uCwDokMAsoOprS3brGD00eewTKq+utNHjqTACFjT0zihEcOF5PYWkc9/O6Jaa6eD70cqiFkIZoTpQnw+kyxHpw90E4D7SI+/UENNr/vg2tklpcwj7Z0egZYMK0Jio05FJPsjyNckUsWu/oyAqwZzVa5pD/KK7+zYLCowlHQR4Su74q+uVP4vKsRWTFIRY6U3LHqn/CXLDQg+n+GhrooPXVU40AuFOJxuwk2Cy43z4x5wvnnQrEgka0fHVVaXXL3oIgqs2KXg+RQWI0cCcuBP3mIs37E+OnkX6No5A/mEZu6qgLvk9pJmS/ItgFsIR/sLlCyL6JeYyFDUL7dcR/l3Oh5/Xx5/eQBotVbXCG/B96H+tf7iMDtjShYd4pS68fNvPb3rjEyZ4YCK5y6npavffIu4JCP5Eg0ToWTQlpGMeMUB5wM3igfY2PMzUVpXjO9hxyIexfU7zz/Lwcpxs8KOmdAGGFMaoVmERdDsbZy67Ps6p6BwoZNDRKNsNqT6cT+T2/oRZX8vbqzFlZ9u4wXQvzPjccmZyLVG9nkup3tSSErjsgXN1u/WILqAW8r9NdpzgcK9C7P/0iY/7Pi3YMYomJS4OonGt6Sa1/fTHW7H2MY+ts1w5zsj1Sk3UmdHgRbRXPzgig+grf85OgCGVZRXC5B0USt239vU5fsfF95bkzHgf/dpy+Aqkn9J2vYMqIJde4xVMeAspBLqVAD4/NICoYvepUWTmJbxE7tCs2sqXTrZF7/9Vxg7nmp6UvqdU/H/ShP8Mm/VXpA/+wbmjICSi3bWNYAQbdrU8CNJqW05Nlr64ovhlaEFoIL5+Vd9AvKlLeTgYUs+QMTUsOCwrIeMJqZX+J+SJ2N8QjObWRj1S03JK7gMiYQRVau5pq+SotnZjI9x7aooMKJZKw8SPLO6CjNds7Kgl14Eq5YF2tgeoQY0Sqv6av7OJN+cX2552xSi1txyQ5CMtfuSXz7EwoHg1/CYB4ERTZHs+BRwyL/mnjgCt8QR8l8l2ms/z/oMnX5Hn8IwFc0S6cw7rB954m3YzFWOj6y7Jnp+reTcGDpc6FHSLcnFunxcSDI8V9W8RBqpSGCRhubXZXhMhmqTmdA0BljN4T52Oj9FV1oWKaPZpxCIenudE2hGOO5ndCPWU3yZhVIaCacMaR38AS8jRqHERaGp6WCD8AdULuSpEojKRqPLkbQUMC+uiMRjL6n2dGsJSE10XufiYoreVo8SFHC5vD3Zn/TshJlqd/hOI+bg/2YVoLAUwk33GJdun2K+UBz/WEKh72paO2i9pA4U4T6E+fsKGKe9RTSnXiKem129SB/zkboDrMHcLsCB9753MTKRM4bzr6IsgHCFecIeGy6GmCE2MG4DVhZCwoN9bCHttbVFQKKXwhT1Hkg9fgZYDxiDFhfaodymGkwhv225lylM8xP2/g6TIfT86YMvHkK1dl3xUXc8GmisfixtlZBBr4rNUEZodEPMF6fHyKCbgDpiCAg6achTYhthTGtH+fJJ0ZtUWAGQVM7I6ATfrxfvrLjQTEufzrUe2GR38+81YlOK8d4n2XMFnJsUxuefI+ggMbk82ySeW0tMEOuzy4hOeOwCcltx8mlL/5NRvK4ys6TYJCcJD0Pl3BgkaPZPRl6Dw4NQELvcwlLLqWzuElBEaPbNlf33GIRB8mKKLxQdSd15Nx/Z6OXPyqVMAhN2bv4vqNXyw6IkRsVfm16f1qE/r0BFGpAuFChjpvgz6Vt39NrFrqbsw3TAq+PCnlMT/EYaNYcy+6hQo24aN3w3JFQ5nLTFa7jmr0YODflko/PaRG/wAsOko9RjpXR7mT3BwtiRbMf2w+WAiSCLw4qW1AGmmoWTOjeus/+vFn8gIQdqJzXOs/I/5cXVhw1M+jAfhfi8mRVPLjy+m9ioiJtDBl72/6t2TjV4AVH16wa2dzebGVjhp41LuatNgHoSdIm1lkh19Ozog0POVYZc0x3WKL7GPCMspscQmY/4lqnVvyhFzd1W5TSt3krPI2TYdTU0ZW8sDtMDlBcbMoHGcz7SJL9wrO/c+o5IG7bBWrsuCpnWsh6W1bdNVRuVMa2MCu8rGgwZbpFFvKNkwAtARD8QLzT+3JO5xSdggvj/goi90hpMIAHOPfUzJ2VQk8bxeDhhE4iX9sl8XGed4CuSVOINd8SkrVAbV2SSvOu1DJQDnEd4VYxPBR6mXkFFZd7gokqi3P6KY4c1Freu1HoSmdZpZFu/60aNZ/QEgFa6xaEfOkPUM9bjgRl8ImcVi1xuD7M+bGEcFSgFAbKraJUZnxEwDZYEz76Ka0yVbwWIjQWwe33PrxsyfKP1k9UAvjqLM6Or7vub14lDYo/rcHShstdGc3cDYPy+svUgfB7sgjo3Q2axNuuyIdQBr9x6ayJSkYCjAd/vhOBHoi+JYRE5PZ1PlZVuXZKMsnSkpSw8YEgLEHNeXwvpiT5QQuI9/wP1IxYgqm8YojeOCKMR9dvUXHDVI3wP1OJsXRlYgIcrmJEiqlxT1pxG0TRE2Mk5HmO4oP21xZtIh1G9g2AEPwgkRrAGfVFRIPlioJET6HYGLifrKYh9CCufQ7S2ws3mnuLSbnBCQY8LA4QFWnSh/E0MYTAzofWYsnlqFY+V+SrzoDvTYRz1ICin+l31ovHfba6ex/X8Z4lR0IDbh0ti87GRm3rpe8c50u5alGKV0GCuYCNGyGV+8vLSn4NG2IqEBjMlGdbXDk7Yoe+g7yTqGlNmvkxJtsf67/zmpb6Xd0e6ulaTyNSQpOQwWo5jTsGCn6idqI2uKcabBwMJGGZHfowK1UdG7vj1dJzrAhvKckZS4D0no2jVrUDCUpiIsxAm3p2U0kum1OeRGiKKaJPH2gTKHLzyymmPmPYBsxPTWWtK8HBXVsxqP+wxSYX+CCW6PMPKoHAjQV6Xk0q08xf4gVdtrzivh50n/63WPZQbeZjo4df/t9Ux6dBPG09QUeI+D1CUNIeh6DkTYuQmtU2K1tfdZixBpCqRMxwY5OBuXRAS0p1WtA82fqOCUCxsXTXjGviDGPY7j91yb4sB2wcFs0hQGR2xEwIbxwFfziVg0nlLr7CxV7KsvVjyj+hSLIdLmsnMT8kfDXB6ANLlOKnCANor7mnlmORf0UOQY/8zq+bhWDv8Wtx+R2r8a7HQbMlNDDjEozx9N0MxhgeG/PIaFnvLzfa/w3z1qQ3CQ3bg05G0eup0iyOPz4EZ6fuLGWnXoi7dYRlB8pqozPpYtRTj5xPb2vOVM3zIj7bub7xmqNWSCV/rbrIHtC36EAKtovKv4LLUOVNJgjUv9OVbn3uL0hFIAR/Z0BtTi1w+IESl5XFue+6bJPfHlD8SOCUjvtih8RVtspeaV657nc7qCH1vNVM3/8LMP8dXGuGLc60ddErcdGa5xigEFpDJPy42VfzpuhBOD1suQxVNrrXXbN2LHA9+JVkmgYHHlNJ4vtx9VRGDqKlcwP9zeJggeHKsRJDWsmO+/cWtsw8q1OJ0b1hO0vexeE4jfBlms+mpXkhx24DPjFkTx+9EAQqmcYx2P4tXVyEq7VMKLjxvQ2CtRn9NO3aiFe5FUOfx4v9DbM4VdWY5I5XMvLIH04ANZ5grfuBDd2hbrRDr5vgBCPKYnX6uomOX1lEkFmb+HjgiZ+j+HZce4+Hq39O+sIu2TxTkev11riKzjA1qqcF3tieZYpr6pSuI4kHH+O1G1TBRcNQDSQA2BkxV7RK5s4TkM54MRyy1Eye0j/hbqQ1I6vwxktdTI2RjS1gVRrMiK43AmSh+Q8kDfiW1kiGAJOPWNVcoJtGdb/yOI9a2/VVrb/DxHfUc0Ntk1tVLDGi6uuf2mQeetLeLslZ32n1m+MIFAynRWy6+Qb8GTaqYy+T9PMEwyRGMPWgQN0Lzz8lKIRvoj9qD6Nbe1ZyA6ZMcHvJhaDl8lhXDQWF1/yMwFSm0E446OGzB4xePmItI9Y4hAz66kuyVDM5C/qXbdy3SPUletC5hG/9uq/GlxibMVK66vV/4wOCRu1/rPSC3XpTCbbQ0UfvD6v4GFzNM5NWfo3h4JnPq/tujATTh0segOEdewM97puCI5flywLkJ+7vD6oGkLmeeczkNd80B55jMPZGEDeMOFxjGm56AsrGMjGhGQ0H/bQ52/JLGd7yMR7chP5l5NzvhDRbUEW+GhIY81uE5uMXHo9OqPYHF6Nbt36m8Jlct+3pu1QRRFgepzocAYls6S/AD1ElDyBSUasHVGj+VHAna0dAyYxDk8xMtAEbIjdFzYg4ZFq1uwDCPRup5YRXw72JUcIH9WpxW8WG+57F52AokwJ+XeL/mylVtchPtyZnCyXmcYmv6sKed7aWLyLwC/qn8MM/cQ0jnXnJ0wuFU++PQF/YzbPtElrLS/4C+pDsdoLlGFJAeZo1596Xk5v/s1DPCXjR2uUTlyHKsWsxlq7cmZpyEVYwJE2pLvv5yG5H39jPvJnT3lRHaSKmHuTzng3cxP+94RmVwq3yTtNSHenUO0HqscWJQwiI5TKtp5vexGW77vPW73wfLcvCcuaJgcqQhYoxSRB6/lsOSkV81gaiCFRLV3HnSY8h9XhJYRJr1WAubWjkYgY6hoiiGBAPDXKwHSMMO5FMHpq0rTZAVShgyKVPWYrMZj8HMrD+ZUNqhQaUlcr8c7x28nvGYbb7cL0N2soz00B5jmTfgaolE4VwTMzEugEBv++V1cxuYKkjJzpdWNnMnbcESJEBBso5UItxQ4xsVzPOtviJRBIyUPXWOq9c44yNQCx9vJ6OgZ+QQG1nmnqYxWu1WYIzY52s7CxRmEqqvAbs5Kis02H/d0fizw5zj8dpbRZQC9qyTtQyUmA3Kkmy7wxlNItnHtIu5no5GE5bgCPQwxx0ykmS7oI7vwyDVX75WIPeN7NHjEihLteg+NdtPGm5QPkMi44XetAuQoTZyHyUg8Vt2LRtNSeylB4/ji3BzFRe73HFq0nPASkWFmb13Jqao+D5gf4AuS7equ9OIi8bRMJQtURXVJitB3VRAyFhyt5jHMFuSheul9Ji14CzV5XzweCGPdb9KSzlFZVktdJgMeE6lX4mLxWuFqLY9CIK+EnCr9rZBgVnpJPx/UHXOsQmkI1+DE2jY9GADtU3uae0f2p2SBT2cOYOTzGy1ZMd45EVcLDc7VhldWkLLHWIq7py4Pify+uI6DC3Kd02cNuPFKS1UqoZECRhBjPYGdjXwYybUsJ/rcUyLzIFZNn0A2ipUKDzBrhihs9GpcMDG1EPCUf3EdhI3rIIY4uFoxwq/+PPTKT6mO2KZEYMTbjRQBy/Bifuy3DCXRFZFu7fNtHUF07fkz2fTxObBOT0xoBFb4bvM1yMqjfta6e1H16gGtIvaKPpT3FRU0Ggqq6QpCw25+PhfvfWw7xf2A8dTqJ3x7yIuGNNFz/Tu1jOmcJnOHrHTX4APRoGBlVq6lwEpVQUW37tFqVVkdMBs8OAC0Jy6lVFQRkR6HT62IUZXmh/jD7mUt9Z9FY8VGMO2UJmlqZoELuVYc6a/xu+OOSGytOpemWv2Jnr4SxjlcQ+NV1Nmmuy7GA8qAWVBSbThqbSPF7dIft5z5+2reKeBmHoBB+CmYgnXuXXSAtn8BA2fqIykJAG3gE+iRvIw5v8HnXVN/16TMsmwRUTnYbeJEJRxqN207CxDqcdfGm8H45D+3SPtraeWgWXc7wnK856Aq6SEiEgmR/eU8tJUxS4GbseTfBDaMbT/BjGQdj2hDscrPSeue+ewGWyIjANrFfQSeYKfZKs9k2/ecE04Q+K9BoZV1+UaryuPgb5rhHYtjL33vBr7jaoxkIwbpIPbYFZPIO5Zklhc9tk2OvrxsjcF06O7UqK1BvVxhjLm/PTo5HGz7JtWBJ19pBZkpi7d4ze038y1GOFPxXY57BMNqQSF8Luz+rFam+8ujkXvhAOd6ZiyWPrSHrO5YATx0T1o6D/eXe/kbZnV3WLcV/FGSEMWAHgdmufzQvUxirhrlGwkMiEVyGBIyiNfx4Oyh8sYoioQjsa3HaXGExBZbRfB0aGO4uT4W3VPTi7Q+j8Qrej7P9tqVBRIoM0hiL0PrsRdAMVohvT/RHFKRawArLKxajd6lxrsHkgIAnzBYsLPzQ9bGiWkvbEe0Y7kbGRO/qO959YBKlAOCBs+aLLtFv7n7pqFLpk0H4rweGOS58LzUzOruJ0K0eqfbNOcZ2ZI/kICNgWPM+gJH17gKsjaWbFHxJyv9OR+OcCVtHzBE1wZmt2aEIEKGTFuwJ1/nlDv0IEBlfANdXRwpYHwgzC1Lm1jlQA19Wc9ZCbJEDW/eIe/8EnLuNYNqEGjaF+Cup4YqeoNAGRDhImRN4zH8PvOiBDMqWlydNqGjDq1oR9EvmZ4TBFlQmqafmaRMqSSoS5b1olFlglJw0gIbZENeYBdDziWMzlPGf0zNpZw6pE9Kt4yjVZn2jjlY7UUhMpoSr+3OJKDZMxD/H9FFG5s0d7uBdfCja0hMZMkD800uAzQF5RR51iqsr5f/jees17suJSKyi9jpLIjCR+PtnOsHIjLdaIwCLacSxG006ymJFcxUxapkKI9OxE/FvM2AJ9ryUMqAdS5US9SGN2WYvObykU4Af5PrWvwXcyjXYOSXKMzib8KPXhb1fixPoNQflel4tA6qB6P2bnomyeRkO1L2paFjcB6GlU2UJLacJwE8LUPyYUXQpzT7l1uVmyDzR7B0q2f+WwAtpLd1Ad+EVWy04uNgsNd6JMloDYNXBWUAe5O0wFMwJIVD5oKpErp7pCyinBDKqnguLU7E36VdvqDMVdrjVl6bxOUqchwQuCKFVfi1lnw2Dumk4xpeN6fmUYTbKN3ocvpv0ieHn8hyHa5SwobHFfpulCN4rwrWnJxIXoIiqVT33k0zizYlo4EgLP90PLGEK5nKu6H8Md8JI1wmh7NIzNun8luomxuazkgFdSzrYeP7z52l9MMUjs/gt0jJxLQQ9WVvJOWSfxTG3F0ShQN9jZfNOU+RvtW/dKvnDnMQ4wGgjKlN61EZmzpNEajZYtYvIylF1lRSgKAob9YVhDaL3JMam70y0cbwdtpjdYMHAM+Y55NF/EYJ/D/bgGQ0rLKag+MTwNkURfWm0vQ2WS3PNjhuHpkGILfg2gdTeX0kOTvAIT+vfa7lOApuWpBXQgZyNnWy1Jl1xpphfq7JUdnnuPU+4G5tiWVe169Mc6CkjW/7IafMi1msQU3NvIqnWboHzfjU3RrGNkUpzOSPaKeSypCtVjnTr7ux6nZkRo8ZXWlWHul0vLdYbMOS9F5P5KiNDficDTv2hWLFPW5BmeR8GSREoPzFiYfyelEXFtP8sfqMlp8CkpLxPU4/uJ2flFxCmZycQbBVUybXlzexN6u9JaU2kNuWdk7keDPXh7VbsgbIq1m8nGT5CVDBGqfEtiio6R4QxE3TR24vw806zbIlNVr+uhOMLWhSHFBL4PXcSVb1YvNQah7ArfrMM4y1Gjpx+hY5HuNHVVcEB8Kh/BCynb94y9/wS1YY4n0KtEmTVAJBEH5ubCW3DJoOsSSbAfWU9ylRxpCpl/JTAhPqAqbGJ4K+BsE5UmpiX/x2YNVhGUnh/fNwC+QuXhGed8Wea/U5xcF9N7iDDf2ZATp0lEjo6WY3P2CzqNvcrNuHUdCdz7jLc3UdfN5N7nLAoDJ6QUbuBS5QTEPxOcgjTUBxpV5nYCMwKUsKw1ZujA1wrsXJIQhqWyYKZjlOzxSvaofyl6VXH3vyHuwOL3N6lF+C2NtMwbX7gxYbI5xAKRn139rxLITYMgj6xx4RVRyp1fZvFPPviCzzxtjmI4CEF1b0J6OgNRwIf3zxfemZ5GwKfhAwhUp19AuP0OLPnF5Zsz5gD4PNDcKrFHw/gP1Ntm7IlmLHZhdUF0PJyQEbzX+4m+7UBhnccfazX00I0mnbYL5hDeDYNGrGT0Qkb4OT/aSe559/xTrUkYednzuBUSjaaFUyCr5VRxwr9A2A3jjoV9qwVf9uszTLSKae7RjFZHNVRWFFIS3S3nL9vKU573r8cIhm2S8HnB26hybX3cy2eX8GFRVr0QGcNgHhEl4Zw354NBKxSPB2sUsqlE+KOm06F2BAAx3Ydr1Gz2jupEd6fkK/B64ITYZEW5qvhTfdo/wbl+tnOlivUm/ubo8RNfoYGnTjgP8QZ44NfXhoacfRE+m6FawtisgMib/p/HSBdtCG8rRotWKMKt+L56Cu2qcjZBeJMziWD8b72zVHgnt0vL4f0eIYGIqWf772VY0+NutgkGmSMlkdBiQ2aMCVi5Y4YAySJf3Q3p2zgxC7QWIxfbywnMGSY/nF1eF5BQ/QIdHDDMw7A0Lb2yMoaD+wijiamI4fo2/HlAemR1znmDgBxrwa1Yzt+MD0xuPVgWX8nN1kAtqha69L1GhcpViM2gNBpQIeNh4iB13OuRD5YeykfoPoKyL2opI6fL8KE5D59PqxUEUp1MTvTZ/GH3imk/hZXlIEOQSRDAFJMOSapngom+v+VCagf8XbXJ+lUSq6olZXgw6tVaBIrMpXHISucaWMPH5HKLuZtbRE/gh0jVxdImQN+p064Vbqvf9ODEcFjAS0marBFjSQQZmvuFRLTIHCUdurGIePW35EBg7qMlONDayCftVMlg+29g4s9NrGe3hdRDZuLKDp0HAmMrzs2e8UD1yBmA2VaD1XQy6n1Z5YbmogFGfpbRA3e1IT4mncKcPaHL3E5hf9k6sYtVvgv21JPW5AkI2zM345bfJRK3yxG41d6WLFukXSYhqCZfgCnyha9bedchg0gadI9jtrPdBAO+Uz3zqnCPedKTvI4HRUE7QbxAfkqXxTkP2WYyzC0YV1SVfKCJlgN3V8S+KAaWOuyeZZJRfWd/qFEshynV3BCXpcE/b5iLimypadc5jv21CE8xxH2o/9AGxEjnG/+vQP5+XjUaznC4b4gzISawht5ALWtIYB9i0M5kU9sR8cf2KV+gwLn7nrkGIDn2DCv+a1LkTcLFkKfnJo0F+1nP6dL3j0vyGSKbyotO9elKdkhMZlfhljDLXIGw2uaD5OV469XLUPL15tVF1IAD3C/cyEKpXMkybibDUarL9TEUYrOq6+k7YhaPt0dQE2zvImqB4erQOm8652c6enZZGhvzwPoI8CZwmohfLymKOPkpLYFx21fanXlwAXRWDW9AtHW4i5jThAJmIQKkQ+vklb0/zUg0rY7cjrUJ3YvNWym14FNpGTFjlJpavefEd9UwqbURD3iWJCo930qr0s/LeHU79GDTA7Uf10tl9whSNen7JNtH/MAhzXTVosLCHHuPobch40Ug1Jb2XS4sXWpqUy44lW1q8wA39vrOXRKXfnCdSe6yVTjHjL5n9nG79Nc7rhYWWYsF54fX8/efOH3lePIGuDTD6/hOyNbdki/n6a9IITk9JNtcwaCxsvLpcEaniFuyY+PHvvwSInq5i/vNC7ynWxiMCbMu/F48S8vck9t3ifsvx8dsb8BxdfDyOGnEBBqfEDSJwzXsrkS/xhpbm5SRMFsY1+FCEC20C78dLwgYObBSdgxHo57Cs1hibvPe2exS34ZT6ZSBriUub2mxFRD77k/hzaW0S85NGmyk4niKfhrdEA+taCP6eWSjYCZ0K606rpzzuB3Ks7rWNFhmlkge/nChHF/d/FXNycXsIZq4wRSbxj6dunBnO4IhGuE0UIGuEUdN4sr5KXdl+bBuQzlsOIFO/Xj7zHbwLsN1qpFkeQuHuDmyCqwu/cG8Pqq0I622DL+etK3T5HNFc8w5V/hmzYi3vGHS4G1Ra66iChZC/irfUbDFPSwfunNqhlMzjkLOzDUuBiurUz6hPFIgrm74/M5loE7/mKkm3A5QMXc/w4IydoOzfY2Kzetox0Vm2lG5LUSUduQVDSnvEGWbGgGouQys5eGnVdspnKWpqu+398pFEBu8DOzuetw272yZqa1skHFRfxsMcx9gSP+zlxOmnrhH00K1mGKVgU+yDVuGfUVyt8jqNflocfIlSi7Bqeyhrgcjxcffzh7D3pQPYypBhTrQSMAqJSYW/hQRwFpSMhej+KMigRex6ko2GI+oTOHQqpKGFSYxqfJi5IEOV9DhwqLzMLRlzXTtyaa1AOZxslLP8m+yTgXMytzT/BHU8ZJ7vw57ECgmxLr1xBdqFS6Pem1Z4bXZUBSTUQgTIH3mH932Qf2uV1kD4VbIPf16FqC/RJGyPMNP27DKAsqs3m5sOSiyko4+qUXhHe04B/1k3n3nO+mfsf5jFUa1yaTKW/RMuFzAH0kRXuxR+H5eit8q+6iEZD5dnkgu37HMoiYFoB3QfaxMh6EOW7AFC/ntP7tfJwIZRvwnn4aBzk7FJwqcbEDq113AZkt4tHvWy/jMSc5kMzwc1X5PmJhJMp+06gfCbPr8gcxot5Lng0tYibz4p2jY/QWKnPamso0PFrIlxXy3XJ7YD2t+bPqN11hyEWyxGcTJksIvpp0xwXmUx5DXRQWV6LG8zWSexPeNdNuWoDl/2slzWSPqalOyPWBRXYLmLDUFjaZcJ5OjD+kJlEpEnAib0X4H3bsgDJjmvTiLSDsFlWwJJ/dqxi3hvBX82xaL7Aawi/pu5OSZVXskLXJxGFmaEKIcdJcwPOuUcJAAdMdsA2pfccyEf1ilQsgrvqrkt+RV2nl3+WjBnE8+OKG/x096mBOr8E167AsP6twDK5ZjH9ugjObUxh8jwGCq0/mXUdK4UpTsomBp0nPw2N+jiRG7fHO4M0CwFNJyl046BOEpc7vhUMwS0AEnPduTon58FlyhEmVSlQwRJCCte7sSZfg71yNbVH+i6KzIxUTUUBcJnRrZQvrJvmc1te9pFiOnVpMVRBUFVa5v1zU4V5ECtg/XYW7x6jzHwWzQ1yrsyjKfqVq/vbfRhsERplvkDB6yxYR3eIHs9Wn2ISaVy/1MLGi72cSayj+EnWuYjDYbiSKZDurniqhB3bZsPX/zS+jM451ahslddvYs6eGkOMN77ejwKriO9eG2nxDsd39zn1Aq1bvufnqLGc5lSyhlRPLK8hCZTyMpm2kgZimTR49IGIoBwyAEe99RDq3hdKV1LA3XAeTCtjAI8/dsAu8SRPUrSuyTKxalYdv0+SAbifD3jhPDdFSOMLoWf3TpYQVrxKk0qgu3nIZZkEpJ0bXIhuoeXkd6nBMMKuzeE/pQZH8E/AtoGHVjI6HLHLIDonXNGL9Dx1IseKz8cmiU84qZESakMrNYzP/Lz6ZCiHvr8MEgjDRxkLTiY+2RKauBrZZEzYSfpRGmxLthCKqHg7CzuFyJcdnNFWi6QbQu7q+fwV2sPW0JeVL1qe6ov8nkkto7nhSZ9LjEGl2gMLRA0rfgS/oCoAAMcbNSul2yutXpcmNtNy/hXVKCMcNRLrPxiWHGVN/3l2teRjUebVTa1AERjL4PjBgMIkPYMK9cd8w2BrTIj/XzbyZsUCZBWcKlpS0bSyaaXQmIE2DTBhtadQAdAztwK0UcMhMO1SyaKNJQhnw+v7TkRKphPMdasYKrG4bzQMJ6PZ3wtQQQKxPVGt1nb5HSeg3jDuCXt2BLutRr8G5UyvPvUROipmlzEMaN14Lirjy2rB1D1qXSKAKGoB9kvLfBJaMbAeTyok3NvO6TtVeFnyuvfhu/N/DEvMelPw3Y88PHNPcltse9feT7cK6EuCYgbLhzXCPeS0lOGwWbxweNprFIxoqGgee+y9zNIqsl5Gh4DDXkTZb/G7VxyHcPBsvwNeQNbGpDyelqpSNKmpFpYK0Z6fhmb+dLzQ4QS1hYdzv2cErsIQzRJ+5xlw95jnsDDNPzsH7pvHSPFbhzoVO1J/2ZEaTZrAGwU+hH6YH2TgTrP+ChNLTa2UJFh7m84s4cnr9gPXYkdzTXZfpTOLZRoe4E2ytuccvZwE59gNxDz/1WzCxYJBQx9ymUqRl4eG26r/0u3uI5R25X2uNOGkjKXw6nwULj9ukJuWAjG2D39QY91qeS0ZSdjqS5b5kg3lFx53WhKTdp9X8mBWtenBuxpmRPF1takm9WxAYybv/BWe9Vgwji/ZTBJcihI3YKOFkOcu/ZYivqr7xwtAxqLTIAfeZhn+GNp4GVqzzhDyfHOisxOrxYpscFIBVXUHKCeHrgL757BnszrlvFF8LAL3E7+Qc+2+Ffl8F/nuWD8Pu9wnA2Sn+hHlqhzn9PveH8cp20me3KV3JiY1lkfXDeXiTTufHklWsLdzaxLM1u/Hb9GxMzStV/DVFOipaywgSyrLMWc8dtSEJf1OBKQSM/rnOAVgOxKU+eqAtozEy/dnpuoBmzVGhko5zj/ZyQolfPABUoFQ42tVOOP2IIG7ZN+SvSj9u28GdVuF2Nk0ODWitfXhOcdi/vIX5Nz9LiqCFzsmmqG+WenVpkld0EJqjoGPnEMIG+o0QDoLEoW8/RmqxWo/NSwd801ZNljpevYwkUcU+YpLK3J7eoFBiclJwDrwW8kbkLlvZCSo/TjfiyGsmmHsscqFlirL2Ej1rym6o7XX7zqXCThPdsAt+yofmksulTR77HRq68aaxLC0oD5pYl9KyXq5KpT8GOGIJak+zfgM/VnX+W3sYN1faswnYCtFsQa5Ymg55d8LbNMMN2R9xvayWTSLONJNV/a3rfO7MBBB1kxOwOlNr0Ef+A8J83Zo2grniMSAjEMQocyrtoFcl+aTnWuv/PPdKhd+OBYPB5VqrKbVO5QQkB2JHUYcIZFcIHjsk61Hsir8s/R8xBsjHqnHwhiO+f2oU0+wo1qD4xbrWUElPLJzTek2C+NMBKSkhq8OylKcmDtN4VJohWPv7HD4FHUmtvFsH4gl5YwPWUFeCuToBYz7EEOMkx34TqQYDqlvJ5OQ/Zj3a1RifybOkN8psO2j353l3DYoXIWxmIPhKYMxz4I2D2BPp0JH++ubNZjNsG9N9ilpJX2sVw2OhB0UVmkCNfK9hC1OSxp2AQBGhX6Nj6GLqcenrKDFlrG45XsFdNzBRLFkxqVqgKGPQW/K7GODXf+JmjaCvbIkSv2NrMPxbnQA/VASXiUCEVf6nJfnaBHBaGvnoeu0JG/j0MS9PW7/cd1WndQ5gyRFfiHllaLcSFaWYL03nK/ibeH+sGa/NJWtqn9JI5o0SPxeUoS8Yfoa/V8RBz4fJrTcgEOG7pkR4A26Pd7isTf6VwAuXxuaYb8NatgSH/WON1Nd0FIO8No2jT3UXeJnassckATfBJ+VTz9scAxrpmYE9fHPfvcqsXn2Ce2Wik33cPI+1sgIK9UhuIVGBlihSbnSNOCpqZw4gvWDjop5EC9fx5VMQ14rZMWcw+Dre1aF0I2kfiJGenTLS41jcOv5BHAYcw17N3qvW8PjiQ6R4AIMcJaahDTzJzE5gsdUPg03CfojUgE/VppASjIltx6hxWMv3TvHsGrnu+zs75kj3Pghir84E3ktmQ8mk0ge1ra+JTdA3khIo6HdgDJOs9h2cZhl9x41jFjcO8jTNJ6pjrDi7sCIlshqxKm0wnLeQpK0YyAo21pPqv1HsY5tUhJkijq7sPM2Y6v+jlb8EJDzgR268x+moxuIMzskk/FNEVt/9XofLo5OEQyuwRj8xTrW7TiuOF2/JHNQOFDfW17EezsQO5f20AJHzwTafbV0f4aXGkr401aHeCth2eoVF5Ov0T2geNxoi5GOi/BaIKqKIW3+6qTwk/QrQYia862dmEXHO1Lc2TUux/Um1EnAire8k/dWbl+lwpQhluHvf8qQ/hVHzeG/vJKsw7NwHTXcOrBVU9O5tBF0qqFgSAqMFmVWnd5oarPqc3asB9iZ20+rm4jo/mprVL5o9/NzbiP3pnlHRHv3evFSseQ1UfsOZXj9UONGeKrcqyhiunaNGc30XdOwvdsSxiaSAo+cdcCSPDTyNtfieP98WkmiqnK4mUlhsW4eapLqmaNw9HT3YzlvAxHyeX2Nep+1VwyjY20TuhDFX6uMNpfK5HRLVZQqVfB3U1uU2yMx8/IgSPxRK5Ate1hjfLU6yhaH4dOhDaVWbJFeq4J1VnLgic96Xbc6QfOHgpPPFzN8IPEgFfeAXP87k5pb2PJlGHbt4Ef6iMeuKSyloeRnPQj6lCxYovXrbZqxyfwVTLVPMaaTMUT13aa6kv/dbQT87WcEcVDTn0p2KIMrgL+j06uz9CStkvVNbU1sBuWysD3bASbgT1EuIxC5TsGFfSLAx0+EqH5SiKaXm4lzd3q/njahGSX0wx0dHBKuBcNlhRNRibpSzmvkOfrz/OJD/Os01nlbyOEaMB5ehT05/jKG9hA4VevGmPwUBfCEE2O6LQPFHV82Qk4Kl/ZByyNEbJYLWEY3jaoxsQgid40i0UKkLQoscU2K4UKYENfxsKl8YUC29JFz1Ty/IsBiGGMTLwQGIGB64s4iYSNaS2EHc2YZK+b+nkrdWQQKeodvhT0crCzDtd89KNzhWZyx0ZjhLSUxwLi0LMNfBIQ5owLJdYzaME5yEZa6C/+VkR8swvSB8fqA6FcKtrkHPRJHwuJd6NCMBx6PT+wt1Dgoaxh7ttJAJUnP/rf5SGmznSPhEp1tGfZPOi6LTcDN2mY6E810N1hrii7rirPXp2kexYYewHt3JVhEpiJ7gJJVE5l6KLu83O94JFa0lcv6Y5iXWabLTWJMXnsKrzuoFpbmPgWNccrg5MNZxHcOeg2IhhTjgHKOUDIax12YgKytSz+0NItNe1L4LaSJINAwvNw6iD+o4wqNeOrna+hXmMk9rLFX0SVxMSFs8lFQDQB93vsEmjLlp9W4tc37PLspf3OuT0Dz4xCUjwux1FAoq6ayGtBAlpCekxYjY3eTlsekW3HVDR+Y+owU61qevwYVOqIQo6y9wQho5T9GdvxBkc6YkpwGglJqo2A+xpuKqZaXM0fIE74UzJh+oEcPmckoYt/LCWHH88kvkIkWXB2xTin89GzJuQhYHIBSXxEaWilckaq/HRYJeu+/0JSe1paFrXWybXvBaw29vRIifVZzzD28NoHNcVj9XPIa/6GPPgU/xG2jFO81CJ30rPiIS/dvihXOXazwPjjASt4sm7fU75UPvEECmfG/YgtAfiadWxx/BYBkkDpbeeyHkMrWFq+JloEAONZ1C8eQzwafd/Y9MutmwndNofZ/Xvth6o22SoD+NnyGbX3X4yPtzWEcySIZW9NpOPIKToQWL8OvwzayyrnQWaquLv1TGIy32GcblsRDXe+f4Tvu1aaR43GkBXKWWBb7iHBal+mOk8t1ldaHbwHL/KZV39JyYZSP3v1ztvqz71KLBiU+g5R5oV5Apb/XIKuW/NL6fwEmepvMeRzAL5u7K8ZBYQj9zq5TVBqV1wlBDNbZYqXEKekaXQHEDt78Vs7VWzQdoDip5S+odGWb8ah2UtgrgFAyZWte0Tw/YD+OU/XqlQphqFHDzBJpih+joSneggp4za+NcfwEcv+EyvSVG/ecSSYSRH7cOyhGKgda/R0cHcxLdED48P3psxyR96e/0/q9ldj5i3QHo52CiMevpYSmXCLlq0Qq1z6hH71We3n7fQEUteB5p6qNFX5O0ksEXUdOGeZPsjmveY0bTGPk5XHSC5vQnPANsO4IYbKGIqd0CnI8eVJuzVDmI+K6+smTOBplB7VN1GXPRl7EtF6fHP3+RI2eiH7wVKEWzYqNAZ4Oj0JxxLEfiyyyZLi3HL2qL2BTsiPnaF2c9NQpR74CWIX/JoKTETE3XAxZFVycCjTRZVWNsdFx16HYAWX2AejhxukmJ8zpnY5BYufuvVKEn1J5IswsUlBoSV5RPRYQcegNSQkLKZQZlhybrx7K5MLjpnrovIKPhYcARuX0w5B4f6qVV/H6LMwCusXScZ5bug47J09hZ+PB0axwixVFnYh/a7oHHYm7T9SUfFw+77DqX2TgV9cMkdh9Nei5n6RiUduTbiuP4b3kUushsB4pWYstInv4avOc66kMxEAT9KH/19sKTWwMRc1f/ed2C2+WsTgIEiXYMcgz4Glp0LUXuUBT6WOf3OSUtdhm5n79YHnJhIdGdUU+iKF5E+rhv9NISgqlHMpRSPhOouOTSWFWbN98V8ixL6TieH+GDYqqKeE/GmU/0VhsWYvQZTrHWA1r4VOyY98LSLi3b1hvNuKl5yYghT4k2elpn/OkbcAMer+viu/Keko+Qih0QgvugBppIu3PPng/MSafiNe7/oj6ul3PI28KFcXgtJHwdSMTiaWipDeeFl+k6bXX5vMAKcvdNMSiOuPPgaWwjaOuLbN2baQCRLeXYKebIz5CefQgGPkwj9ILN7VeGmX9SljOYm1OE4fSPJx7GYvnj46pWQYaGgq1WsxrUfQWX8t6HRheQ9yiLszkaI5aBCCztVbVYd3kRmV7VvjJMapZpnGZdaTwPNQD++ZwEYqZ+etvRrleORP4x/u1pFsGf0x57duhvmw6liDhSNcV9tNsfGp8Hf8T5adcG/tOf7UanzsArgjds8Te3P0zCJO90IvZbjCzkl80J+rqJxW9A/reen3RDaJ6cVXhZRtkauTCFNhLUVxeuG+q578a2yNhZ7+HyIcYs1+glXFqzlHUBK12Gzg0383uYqCj5pdAEr1hfdSPbut3uDaLByPgfJHjl4wN5hMJZ5R45z02RPIZhrZFABEtUn14Jj8YaSdOSDNKX+Ms1Ml1PHxlqam1T5ThFGlQx7TAMGJXg7UqoVtQY4ZRkiKkYuJKsiFwkQKmHdfR2z8ZlhnSIXvejx9Z+2gzXKULzAGevDV4QfchqcJ3sYyr83ge5F+V6+Szu2JxEiLrULOLLjxRjb2SY3zHxyAktkI0/4vfKxACnlElvSSdCxHPm0BrmPaOkPG0ydZ8MhpOHRsea8y0KYj3gg6mjZyxZUYN0c/L9oH2Tf2vHhB/hCmpayoXQmZMBku286dH6hz3iZIAiwj7sTeFNW8FTLq9riHOMuUkChIvmDCO8QgAhxPiDXEQNOutNwojYcWF/WBUaMu0xk3QQvKRUK5UHH02lCybGmSAFH6AxYshvblhCTef5XIigIbdWXoq8kJb7GyrNFapbgin+u/PIaoxBaonuUd9+Q3D3+txZQwD8FjS9WI9BxGQgzQ3mN3Gbst7G0pC6bcNOKRQ9je8XYdYtrBSMGVFBnWJNtNgEJE8XgNSXvHGafUufT1V/br+zas7FOE3lDoaRHJZckCEDEt0vNVexO6ds/KuPizl33tzCc14hBfKegSrD8HK5Wav33eC85SxsBf8caykACZil269LyoC7Sud+DiU3CB8bLqKKk46ui5Ys85ukKyzpfnhyEWnMetP20lDdHa8/fqVNXbrIkhK/t+LS9uSg9P9GBDzKzJk8ueJM4aYF1ZOlSfF7I39MEpU2f9MMzdhFJA4KXFqRD3tD1J3kLyMkOtvM8456+7ti17CM4FKECh6MMba/DuWMx0SqWL+tv93mzBCfy68NARSdIPLDKjdqzdcMDCtnfy+XVMD6OQV0IdUT0UYzGnBTGRbzuQ3gJSKgm8CyhYgyRZfCyR6XqP7yUmCnii5zIV+8LaH9PI1s6WP7eZ6KT/8iIq/HzhZTwXWInjBKKuTQbm9RDkm5nphVhAYqZHC7w0ayA8WjMf+6Ak/f+xFnjN6spF53ay4N/6HfSaxPmdfHfUcEdivFlCbvViPD3azDuJYty2NLCSRhBIXxb1zQr6EGYbfDm0+fBR3t3AqyMUODz15zU8a6JcP95zjFySMt72v6DAxW0xYm/lCCcS+c0FimaBeWS3RScbPRogVZ+87lmBSHZmFeyrgCs7WTXc68927+AjktDjNbNp72bAOaLcy7MWXzigjh6lNToE7XZO3tQWE53BxT054uuB94HMBWUIo417bCP+hMjlr7ooJcvUUdCve7Fae1x2dvwJ6vCdf9NNfKKtLGKF4Bm/KtQovyitV+hEx/qFlb8ALnBkFbHsHnRaW33Pmhc57GNx2f7Eh9dUqvJUHtRdBL1en4P2Saxv0X0EphC1AAJlShnifZK1POCsNNIY7W82Hzf9BWKLGwN3R5M+HZGWSb7QmLE+3SXXNYSiP9hF9lgdKLksgjA4RKNzocLVchJPQ4GXCA9cONGEuwHrRMUnVvTmXjncu0VzwX9wmh6arU2zUqGWGee8lJY/bO/V4tHVNNXFAQpurqU5aNLJ4koeWps7jlll/udK/dWPi1+syh3qwYFy88HVKOsle7Z8ehzzVLII4XSMWlIyGLQYek9dn6s3UtgSuk09clm4H0t1cwsx64Z3LdYeZI6zDu8BLH/IY98y97SLYoVUJIu5724AZkUOmpsIUvMEji25YGtvOQ2H+nmuPgf9WxO2rwM6bwVvVYBKwY4dpC9G/tjuflDOi4SHMviEa8q0kZC86WfEoJqCruRekgaqFFT+uR5SVWBCV15sOTUul8XD6MyzNQTdCvZ98J0hiEES6NamuIDT7JBYlKDPbMzn9cSbCTyiEH5dmONu0mO7hxyDRYHwFCoNS4I9GiByDvPV/JXlon/RTROKweP8cz18gjl2jsT3aet6Gk170SOcBPUnz8jYfMVZMxCrNlZ4Yp1ht3LBLbCZsY1QRmRGHXVdGjJ854Dg9G3pam+ilHcwBPGha+SnM75imhFB77s5bDISPc22+C6aRixXbTUGY6nhx3krAqneAdMXrZX33NGw/sJUiG7Ynerb0l+2jCJeyHDoNDW2mBMTEOQONp7elPlQEAdZlJgMaJuxatitRy2hoOcUWSxEWIWKV/odmQqukMoBT22TCt2LoYP0bDq0kyylpwxQ20rHNGUzLFTzFCH2KoCboNLt8F5TtLLI/v1om87DMol18DbzkzAHHLIaKY5FUJ8PJeCLHBT3qlXydwXe8/SCuYaNhZ6pkuEPp8z3Vb7SXCb4nycpy063qLcFUUem3Lma3V/Odb/65h2SBNrch3+3ZFOA+vVrQH144qjqgg98idbxo0QpOSQBj1qF4R1MfZ25wS8d0DYaE2oDxLUHhEe6OuEHNqsyiuWSZcCRIWjqvhe27N9H4bcQzSgESrZJJsoANSHyV0NzMquZnBkBWWNDwHtqhUC9+yX9AUKqVET2WOkeTgBrkEawejVclBJq6mn2zT8OLw1ImOKQbubppYv4MVhkU83EAjJgr9axV0DL/lVzR9ZsvAaq1wIzH0X7r1CGMHEMm9UbltlPOnjsaf8f3vdgsZfJzTR2f3spNd9dtskgaSgsBAawNFcDyk2nQHhL9aCRHRTTPfUrvlQrmdXePOaev74vSP6LfY6gAybrkF7ObZnOwy/s8x5WX/8MigsGRSf9y/RA+agJCD1g6MwnyKTv0Wgsq6hepgKQnkN7MPUEZcK4LMPmXqq7sDHrhPEX3nHPPHAFxbqSw9g4H4ry6GEztPe6QK2i0WSs0qGYc8SgJlI/sN5PH6Yc1R25jijrwa1F0PiD3RDk2cV9hsJhDgYVrHdlqodzecqUuuk2nvo1egJ0W+7c+qnP4DhqsxL4b/xTbAzjDmD+0Z4/aQz2vVQISd2PtZnYW5fhrSQsvXD0VocoQpUE4Jfvv83IrU8A43wzz2aR+3c4T3+CoprCGwM1g1AOm2JflKjwvZq90i8pmuFyewqDRcMfGCPppfJmiVb3lNyq6XSqLBJ2hHu6AIZMvB01NEJgLT6NASg8uSf61YbcIZ8DhC0Ub35trmWl+r/YorKKszjWNdXTK2P1XZ0wWBFvX+JKcEu13Jw8pL+6fE8J+d5C2ho9JRaR9i0/LIZrUOyhNKhc/u/yNc3g5dlulrghEXwlRE8+rS4Sg6K/nY0u23L3VW99Cuyxy0PwX2Ia8zHBSfj53bLwkAuWpI9KVBmwYGmFwBWtm6MTWgeH6MHEBfwnzRTd+OFLVzofhnYxJ3QvDIJ1kB746aSSpE15XJ1lDYI3hBRBTxXeoeH2ftDOiZojUq1QEp3Q5p1euP+rJsmUk9uudo1Ta35ZIXsLKWJTMYMU/AJFtwYMofnMbbV25MBtrpqDYAITEuW+pYhjYypP4DAURyDz+e5xmZgftZEA7jKuVwSZWqC4NiiJcKlZ0MkTESa2AcvvVCYi8U9GNSdBMYBRpAz5MDqSPILPJ1ctomHWmm6geMzzCG4h/8rVTkRySHayfv8nZnJABWnIKHUycmuAEZ3ko3QlgUClRzEvwxA8YRE95JGM4lirc95qbcw+uppgaHCQPQdXiztdlsow3T/jqTY77UEldRJc/9+IOFC9a6NubHA/mMEBzvmXbFqI+XR+eoJh0w3PZcYtdKe3SrEAKgs9TqmJT34g01ZFFFvX4Iz93VjJqmA9LbNLJ0GV8LEK+6mWx7TMAJ4ujwM5IVXmfFdbKmJlTwyELJ8GTh/8O2Jvc75EGEF95CAsaewdy2cY0DoUehDlcAbR8d0ByM/tZiWHWkwtJAfZjetLurmAjZJIT48+WWtEfPKiXUxT5j9rXK93p9Q6t2aoTXvgJ+Q90kizxq/mx9IAZ3b4eAnplW3E4wllMK91NTQHuvO7yjuJsH4aJX88v/ogWjrzlzXk9IdZWeSGJPh7eriz9q7RPixZ1fDV59sJvv4eHR/AOaV1XvnReCEkJdM/908DTLhlSkmgUbfEV4dhdYN68JUPX0Wp9TqOlal399Gn5LxJXhzygWyNv9iufewE8aoxy1TkZKOtAPPP7HJhnlpGtH9hAAfWgv/cBSNxqfSBmyquPxBxxVyitH12oIuFPiSpfqiaaPrtQJNTpS5Cmm49c8+jGEyKnQ8qox9oXio38yOA1dqdLDQkG9miVCPBcdkXwxAKDh81lOjZbnvNHaOIgWWJPi4qjmf8zlnm5MHp5hyi73GrZCXsKSdx/VcF8+nHffxZmO9zdVIIPTzt9z0V2gbUhaPI0pwJEv8RW9w6qHK0gy/0qI+axsv0bqRte+MsS3VrzdNxXF/vOJjGbHwjk96bOMcPZmuSqtMAiH8MeRAXlzs00wUld0JubSKvfKYt3qkNUXchNf2FkMDytCLqDspovPIsHuZvgcQon2GR7gBe8EM7hXgAe6RMtvLOwJPe3cwsOHyJ25pvH7ZIJ1/7gosOgwdjKvr7v/DHLcwQLRyfEkS7OneFdsR3Rf1gzZF89VRAWI3mhRDAU2HPlaUzyBDVuQKJE5YStl/J44j2FQPRPPVwnYNF/lbwsoapZc2ZMCwAv4UAv1VFfKI11yUI470Yu1f2wJ/TwjQLbnzVnQcyfoVCOXE4M2nWATwR1EO/Lo2203Eo94scahVZnaSxK9QO9VydxwttkmjkmScQ1p7X4X8/YbYujXS7CQwN7zkFI8HAEIMQfgUDAiZ8AaNIqvFqExg/Do//9Tw+AlzgQoe8j0M5QZD3JJqgiPUSrg2mKhojOIvVk0Me40bMysgjXlHqUwK7AYfUXy/rvTIoO+KodOjXgX9R61x2TUEF8Hqhq0yjcYhaEAnw2kcr94/szcM3bED4zi2ittsYqRP94MCZQSwQgnrBfsJ+0qzdtfe6mulUBwWZ5Yl1UAEXbmkX3tBezUkUxyuSBOwuX2mD/5Wg8eGcD8+U5jMQ9SOygNt0Zd/3SKadrPLlfRo2sUuJQHFtINZ8oc+0eYyX+Y/0+7shO1lPjzCSp8+ECr9cSaVvFPkAgzZGwvybRt57e/isb7WBIPwxzXucUfjHSnLyIqKF9T9n0zNiPYqOdGT9guoZOQn7GSmphiEFdclv5RQ8YJywLI3zjSK70MSy7+a+SJ/zpmF/mxzKn3pB6qk3WLVC/sLScn0ynHpSMZd2ZsxYR3dDQaGuFPMeRKNc2wKkWvhh+SlvmvdxEZJwP8aGOFRE90gFemM5YbwCxfErjGnGPDrxLes1JnseKJJ3uBsfhbsX2rIhogEFijmC+NsYXQu1vqxnYPYLwxzSHkgMMYvy0+8aySmz7vbTHZjKB68yHgRCZ7pynwKr+Pk6H5v6ewncqa32EbGRRwyyj/xUj3ew0x7U7zRzA8a3MZ2VgE1ZL5pWEc+xocYMim3Xh6SuqAZjMKcU8IjCuyiACk8oMakVvfcTmaMTGKqDou1nPYaRkgWt4qLN0lljT6PZqjaKbKW9TQM6IPub4lOENMsB33TnLGQ0mZofzhOYrh+mcD+iOvWR15cGXDjgLaCTHaurCn6qR03Vm7aySsfKBQd5huTBkf0dk8HthAQrYgj4q/8ZdghaSqjMrVjoSpT67yok7IN0GpKrMKsiV4GHbKAY8x9THY6bzPSm23n5LS6oiZWGpX32eOYuiaiI9izJptx6Z03egACxs1nqCCM9cZ0H4reYl/Yl4lj+dKIQTx+bxjvtzoc8rkX1NlC/i+ruNjCrZ+OAj4uw3ejWQvbSEjQVOmnf5XnrBaVdlPDJ7fpvn8t17skJCqnAZyU+gb7ePkyCAVhR4xVKwSWM1HkJQYwEo5+2C6voL90O9fec/LLdwvuGQKHHynFD7wf/4JDJsFtTLJsazCmSe4yfHgpaAJocIQh4+wnEZzMhCcX54P6seDtneLiXZFwvA5czPhIMcYg6dCqQMWiQefq/tyxMt7pGJztSmTacAe4n5gsD/m23wl2fXwXqXfUirxQekzjxFOuZsnVOcIdY6eUxGAT7pWo46RmhZgaQZGcXQYrD0QpN5TUUd+niy+LLk2YDagZJOPr15qCIShoksnBTZ2o4kpc89f4uuSTgQKQam9EotcqzRQHXYPXhVcctFFCG/xD7Ae+x3yYmH6CkI4lLaIM0YauOrzccoxdRcvaIUQErtX3eVUE6jhDoKa+VQZDf26WXv6B1zwn4TF/iqxHeEJFNQtY4+4R+XOlzVpY7fbfbileKkk6fSXoK2wFgQn3S+oqG6381+wCPjH6ioH1u044jTiRT4jq4WjJE71J9HW2zSsx7JXfQ4VVPc3WOJi90KVqeoJpK3pwqNyInJO2GdPgaT47L1S204bENZNp/xZVDO8yOh1L7cDu82XaoxOze1zUXnZHjhvyUxVdsydw8jYl/p67ZM/wa7VM79BgAbwO2aqHi324Mcm+Ljv0ObOlDPzqqvH1fTNIX49YjMwSxAnWf2TPlqdmLQzmbWqa6OdU0sDrgHi2ONwTzx02ExxynyrhrzvkXeM2zRTVUferXVAvJ6xgJJbRCgQVpW06JRIFIDblS/6Ba9bW0QmS4QkgQRe/ansePJazhn6W2JdcxUM8G7zX7Dry1YKpHRgzKITzVIgV8jyZgC6aUnpsvSoR9Dg2uE/5Mw9NvFLpyTt6F1SVh/v+tbsHPZsV8sjQJ85aLd5k/bxa+fKgnSD7PEkoTOVXqcIICL9LIqzW3UV2XN5O3Ly8e/Xus4zCztAe8CbS4ZoGafN1HZPtEsT4bvIDfc84LuuEEmtJaZoXUORLV8KMc+8WIE8ZxC1CF4boPEeW9VXFiDoL+ACDpHe83egY16hlke7ihdB+elxsgOseVCqP/DXQSIS7Gkp9hlYqmVFjTcmBl+33fgfcY7m0rJ1Pc/TF9/mcjHlb3EkC1mk3oxehnyeu2xXbnd6pJbATmeDbkYewKjeibS4V7d2godaAPHxfSjLK9k0VL6MFzS6EEzRkceFLnTabSx4mZ5LuJQqFs6yGMUIg9yd+F5GIsio+jZnB/Vpsmvh5WUQW2hS1gDGTRv1f0+AbwnH0iLtCidp9lECCVR0cCFN82rD5STTcelJ9QPhkj4CROfkcugHOnp0hvHxChzURGWDx+FQbrZ6Z76p0zSD3sBdjUDqr1KJvUAYIirVmAsdHKxRJAxonp2eYlAkGy783nFlG0KdYvsGyPmdF1Q9ZizkBMucalg+g7KBLHWJ/S5Fls1G1dPfbYA2xFLZS4Pq6AEl/3ymtrWLHgw705f929VQCKZHK2UYqEvf4M7V1YASQd6bOZ7yOKRm0RET5UAnN2HNkROb9FCCXbOMC6SBBBWgmcHVFkK8Ng36oq2IaLKlBenteRRCjiQCs0uJsyjvUioLuML8jePMHgV/vPR/knC0ML7qpzhj7z9EfjgUw6MxGhidU3ryVAct0aIwGBzAHi+eMDnVO0sNaOxLgS2ac+4FPh6mpt+XZJb0SOkJSNAUwDy3FtIr5Ye05bHWlu3jYqTAArshNQtkJNzFyfmneUTh8QR00FFjAGumcal8Riyok8uZKwyygvPqnuB8OV7wddD+EGSWUD2eUF/3QUi8iRPR9hsxxCMnmobC2NAGP2H6JvsYBl5qOHwfgmRPlQXEJRlAI2HsN+xqUdB+IjAsNYs7xmCJKp2pQt5am0YA8IszXNPGl/A7yrVT/IJdnhobfh8/YHGT7dHYKwWvCbHIfpgNIaeESdbh5vwNKFlcFqbiCnRRK8gYW3t800jokBIr+z4rgiqGlLTB+gnKWdZomTrUO/erW2SHEGqXk4PZtY61J+seUtUtHr6dGDacWhFVwkgZosa2si3UUWAhNCYtgjN9VpNm8+5lAuGuHkDVDO9TEfvYE7pZ52B+iHnzD2XIKfjdieSyWmLNmhinrU9YwFq0+fAMICr8CFy1zn0sqOJpITEBTDyvACTS14lQh+vDtyz52zkDVc6mmLcQeaaWy+Qc9cYgko4cykDdR9mPv+UsBcjPU75qJOncNW3zAAvvgtigC24YPY7aX5wX07BfdmIDlMZ6sP0NEi9boG6MN5cXyaOPjSde7j8WVjpeEM8Ac99/m3kLLSZrHh1NEfjgJmvnbCY5++yLlnaWDEyCsIxyQX8U9KjckXxj8FCfqLmKoL6HD4UXzZKeH6OXH40rp2oKm6dtjqB3tvl2CkhknWOyZlt7BIcY8FdNTm88i2fde9rzMew3qOFZNXNSFqwOvXbw2l0ZNVK2xpCiUUKRyrVtZHeAp7aRI/mx4XFu02RGWU9go6Z44JIxtn2hIR2DRb7DDA46TEEsq1jvaC4YN94MU49MtJrFP252fBs2McvlAF5cFA0aAXHDOHhyDYMW+RPMTJRwxHJG5JZQKqSHHVUsoktOXImcLnfVCT8ISUpHycWzQ60K4MHEylxmSCJC1sopHYiZ1qdx70XTrbc+g+s1gCigQ+w+0em3zYX0I/DF03L3NpGRorjKGIhcaatt61Fs8dCxFqmDHXlH/sK3Itli9BGB4BHFuZx0mmD1dpsVmGJy0U4RjX2sI1RvHzIyIBZ17fH3sXu0xOWSBDTRgrxIZXoU89oISpQ71Isb2aAKVqui+v/2hgRcMqZRoiwvHKeHhp1YnspJLpegEmLzGKJY8DM4fVDLwaq5de0VjnPXkz/lGRvJ+MX3pKLjsKQndn+6/dgbX35tcnVvRWIJcFlZIIsIFionDdStJPBbhtcBYc4AF/bhIqOubIlo3QoDKdR2KB4tceoKGRROnng//z9HuyZXGU8/42jdRdr8VedlBRdkijAlh2GxK8bWEYTNbC2ZP+HK0r5BhREgab5HYoT7Hs6eMK89+0pfU/nC2SKjcOYKNl68OORNk3RYJ4WBVY3Fa7gwD3h1FJ39brqJBjQb1Vn4pk4LstomaZNPtHsZ4a81jGNP7vfwqmIo6XhhN3UqeVPhtNVsrGrWPMlJojStIXC0wqJfzMS6X/90cC1g9pvIbf3LwBhsPgYr9L6JXcGhgGelS2KAOjM8/Fyuv2Pqn9gzqNYDLd3G49F1490zh2E44nJp4dMsRRecBFO6CwvkMwPuDRtgAhzp6Uw3us78JCuUXznbFwPqzZKxR39KjsgrAdNcozo/ROxjZg21ACaCkCiHec575jsCwMXVWoSU0okiRvkw9R/5yPbYyhjCfA0RQwVfTw4xZ8SPA23hf4NW3DlyXWLG4TkUJ9QBuzZTa0ySdC41TmhbWeatAuwzPJGYayMzGu2RP/VgNJePrG27l6LMdlBK/g9hnZ94LsyjVo5Gd+OjnvS2h1Ayhcda3w7iR80HpnNEe0On3QDIKuBpvth1vjxfxA3X4/MhaZn67ZZZzwShLJwSw8e1BcKY+4hGsptlilbmcw6hw2YeXmR9e5y+Y5BOzNrfrGvzmigWeOoiHwL9+9z5Uc5E+l8fpN+gX9qIx6fBM3rBARYfuaKmp/z3o1uAqCBW3aaOZZsJvSqYGtHA2wX/+tsYSwAQWHXlN7lBiBiZvGfcBHctEHUH0Vw9P9OsWuDMsrDjL149p9Zgfk5rhsUi3UpFaWR07lQvQJF/EfQPJK3Jv0Vn47oCAbV6PlSKCy8dEbSLtE96KLoGP1ELEMHJq8BFQJz9BcutkY7Qfmw44aW2nczRu1hTtqZ6oCOnqTl05dWaZseDauXnrhRSrNJyh9GOXsHNGSESd2A2Cexns9ZDFFvVxp0jxZFBtQ0rQjcojLR78G+dD37lek9OL6W1paBom1vQorVyFkDVgR2vZWxU0yQgCnDM8nuxKFIsGJQS4PoKyjWsyNc5onhrCYjP4swIkduTjTA5iUgkcfp1eiwC93giNr9EVBVOF49e94CUWK5gJaj56lEvuuDSHMUD2+EgLX3/cpNNPdbkKmaqMZXa/c/kE7cgLU8T0XcR5CBvXZYfzFJ47vT2LEYGyyvAuEqeqkLDdnVJs83xqYt9pv0ViKADpHCF/MIAMnbCHkUSUdNpC3gj5oDgAnjyAimEBJOi4QwGekz57l9OdScTrR8X1BHLVRd7iE5INuH67sTyl6DSV5HSuoIBwwoI+aI4SSLrYHyhEVKZ22mvPUmZ8nIlJ2Z9n28B6YDXxZ+NoAIKzKlOYPFcgLihMxzx/M5VVE96w+TQOcoqBg8jbFXbUv5vpcLl8zvxBOi0d2oJlPbnYPOe17KvnE5bnFqQTQg7Ojt5WVj9jnap/5s56HjDoOMGeXH57qjJbAws6tzvpWwA3uAeR51Xl6kBEd8YGBVYZRC/a5l09DEEaSjuSSfD/ralf2AP9qxYVqlSUyKY7l3eP2GnMvPx0tIV0n5Wqwt99Ve4a18Tveggd9+xtU7CSH14MZbmRaerI86Ri8idMofF8jofsyAO/SbhLAjD8bxaoKV2mE2lUOXGnrxDvwUF+rHxlZZh5xZ0AMvia3g94TFCO+WB1JFY0YgrmEW0F94EJPcMRTguT4xK020ZhAHmaSeZVRghyRIrAIeqMkyjImUdy67JeW0d+CAgiWHySrGmuggA9cALUqMQIkH3FLYva/WC1YWdOze1usJkNDe6XpP4j2YLRWEP259sBEf5XN0ppLCvMA/arw0ONiYqamZtRkTRUfZZV1kU0XlMzPgil2cb5Auzr9m3Lx8ek/7CetcYPjDjZPDq6LjlqKYZDQ3bprS6xCH26AWPMfHS+mtxE4DESQXIBQz8nXPmqgq9gjM48wpgJYEc5kX3DM+ZtsNt3lBhKdjP6tB0m6tq9OUgNRhJal//bfHoZMohhI3NwF3Q3na9T5ilahUm4img5qc5b/Va7Gw1ygk1LgBHSHAuhT4fQ7TZmx11SHKNWRL1q4BEM9+lTJ6XhZdLthT9SvLRiJD+oSdjM9uBmsmM3c1y2M22ckAavILphzUJamlk4sjFp9Ak2dIaHXUTeynd91w8U+xKl+xPu4SPvStKjSy5fGCrt6txEupAFWBUFOu3dWgvLmKzr7+fOHWUvmldDH5OCtY0OFr89gC1UsHLzhFD6045V58i2sxuwwdojb1YcX0GG7rZoPCg6lSRE6dhwsm6S3vORiHBLNC++NUpc6Ta1t2LD0fmUlIM85+AP/dGNHusyW/cY1VWPdXO9cXbhy81v6Kl4DHCuhhjGXMWxtCkPHhchOKPM3QePhUYyk4r5ief/9Gd39QDIelStsAYhdApbMaoUmjGPihXrF8P2IQtkNULVRlMFMxJ6X9A0wY7Tz6a6P/E1uTVN/J00e73Mb0n3XvWk+4jp/AQ/Oenkw4p2v3yAYP41nC8P8OFce3QROO5jQSDDvPthRrQwmA0e//7JQzfg/SOP0SvofICGKYFcrJCfp0itexkspi36G7fgsSKxKf+Ku9kF343WzrFs23j28j9eGtwsrjicNDzaZueo4Snnl3xUcHghph4Hl4xWFXwCmo0CuLGs7n4G0F5Z3PHkJtmkwiH18rt6GMNV7fCYNEquuBxiVFvFTJV7e3BY7azdMzniXWDGpd/M2tuuMlQAr8GE5bRMkO81cvBrwg52Veph7OGOgsOB7MxN80VDaToNPNUh4MvL+YauCs3jJc5BbD+P8lFNV9anEXKShMMXUppWSIteHHS2RNdEmZKwObxJ2zXuZDr8boyqnubo9NtwsK95sOiR8UW5R9+DrcBzo6smKFGl22iFmhFyNk8CfEZyAF2+6yh4X21JEuoSaiJ1MwvVNXSwURwtIkQfWUuM+bVld3tGZa7vfVYhz7hBDqR5I2G2wwTtXSq9QghiieFX7vk+hGaOSEzMbP8mnQFyM2KJv+flTe4YuNFYthX+9mbDABgXWRbnWt4rz/cPOfUSLQ8sOHkZTlmTfvFenhPrgJzomqbuoKhZWKhUeWRtunIa/A+Xv8f+r7xb9NN9A766M4KappsO30odW/kQWgvP2ODOOdSC5GC2YpA3chZyzjQk56jlWQUVTRf3KcwzeqECTYLIQpfkGPXhVTvmOxRl/FOSdKYcjVyP17X3noE1LxZBj/okNgGXqCMZLlHjiwgi3twe4mHmRbvGuMCaJexDa1X7yPWGYALW1aO4nwYv9A1eLAsX3pRUc87xxj0l2CyVCKGnRjTIpY5K0rcpfNz84wyX0gP0331PqHq9cDMYk17I391L8HSBd+mxGC/Xu0M6L5Qymsd0ekpyoricbtC13xIII0Q7nzCBcHHg48VOjx0fES+mT+svwEQA7eAmf85c66kbpSbpXsOORVALAGpdgzUsW2sFlRGxa5qUh4M0+KyCNl9KPUFdAI0UY/I4p/QFYYazmXxgGbtn1wxStB/VoXA+y0Hy7rk4b4ovrnlOeIKFqVt0Jj/J/c+6iGR9+li5uVqVxe4iyr9ZKGzR+sGOAi/0XeXJRnhUs9UrOBrYWopKTNO9ulSziPpkMoufY4b0BxfKEJ6UfyOEW3bIPcIumqzsQT0b0EMGFeEa/fh/6b7ubmjAi9A/GeMlFw/KBvk1hs1UnQeNVgJ1cwI0gyB3bxOSKZdthnwplPUu3X4KpB7C5AHdqGaLkAhTAb9cHXvPqfyrlDd2jMi1gDD28KUDeSplMZh8McBcrlyGidp7AjG9QdOePlpKHfTq4AHgwmtUJLaTs/YrWkqZJqx5w+qe4oRgBcinBK2eUSsNpbh99D9Vdxw0XJRTDtCyp9pYQiRqjhoBSUcTsBZn9nzyMUoaPOoUzJ81Qvc+Aw3+cQd1yT3sMjf62Z2T0NVeswhlf9vi8Gu6J5euLoHJogmlHN/76TYoCGRLpI8N5M7ypACYpu65f8SWX4++NfXnyE7o9MVZ8xpXW7jsgdwtwXyGSYi4vpOshofUiE2IdpZjUJ07/znZybtUWumI6DL1JGBshO/l8QBUD7fT6JbG1zCRTYl/qCi89CEHAVh79or8bWJGzEQDTvChG3JMmKchu4s0gi9an1alzA9t+BTOaqwEwu5XUCxN0OsB082lO0ydGv909EcVOMpAtBEheTd9D80BOo17T23TSmUK4Fy8CWtsa81TlKoU6yvarDCy4dwBAeazaQNxjZ9YT+fCFSABw+jkpRokrSSybtoUUa2QL8qDnS5lHqIQyeq7yDmdM9f5557vA4JYzlrTZSshFw0xJjribtmxaxU8hXx/1Q6ncdu8u6UGaUJva4dJ9xeklQ03GY9Wzgq7/CblH/ZVK1Vh6bRA97paf9d2yNSjC90gEouHoAJ8NVD19L2fF1D4AQFPU9DoHxZJoajW0mV9DTMCd+KiFz3yM3i/RfLsbx4oBfNTDGbmWcBJZIUOwpm2k408rhBJgStXXJSFjCj6HcI+FyHUb2rT1bJdllKbINzwQn0mr5l5FIOGScV+7PDM5CIfNVVmODV0fxERDVsmPfM5atEh+1KjCnLZerbyzWbA7NU9BqlhpChXeOqvD//Qaddv67xV81lKVSzP233CEVQBxNwKE2oRmkhbQxlHKYyHGAoiih2jKr8wb5D6JX3QLSMppfM9EDui20+GBMcAqXw7VtxZXbEWCAVpaLogxS1L+1xtn8m8yqQRB+vjMYAb/zLYDn8Hib0Obqs6faLIacl54FtF+3phZZrOblCZImvNB8CWn+8RfWdmWlr1TClQgO52PAY06we5yn+dqqMoTi7MKMpsvqnyO8KHNC66KXOp0gWpPiJxFwkmKVnbATOe+WL4Ki2ZmDPv3IcrgPlMYpC4Qau2FYcF/hHsPaQRo9WEXecd3rVdhGyeaFIr7+CzQ61Ti7jwkwelHFMrH2ZIP8ho9MLu9RMZfcP7c5Mfm88aXTA2F33VE8DuXCBdaR8/9p1ErwLx3LXIOfbDlo1tAD+GGVB7eswL3o2rirJwo8Afu2tktklxSLgbexWig3X1PwK+XJy7uSkjDwhndXxrkZPJfPixbARbXRUXbrmlSFqWCqMeundaKcX/U6bfDzw79dGBL1xDFsPuQTElbdd5ahu1Y54UlbxkA+OTddxUoAhB6+U5+dOpq6+1o5RAPnWUDi2/d8cKQUxzg7dloUG5a2jON8LzG3Twc3u3R0f4xMcVVVpxsxgwlt7CgoqiC1xbyyYCn/vI6jJWMeveY5bQ4GXjjkzCgSb+kzS0iP0dvFTfBKJp7RQdaKGEcsZTJCh61Ot9CpOyoznC4kVRnHDDeLaZuY9bRD3PfQjKIPLYit5Bm2yAB7BGP7A5rGPX6jvlLs5qm7HyVRaxB1g/TrZA7bMN7bALLUKMaCe5lJKRl7Jij73HJ16kM+LbFdCFT6Nm6/VHNg38jewpn2EYVxEp34hFwjXzIqXXkgM3ymyVSXX/v/NII9LHJKWe2rcTojdy8X93JltAdytFlex2352kXdAU+4MqeLiQ5YJMktZwgsz/zVpaWyw0iwjvKE6NY+qludyeON3p4ldH3XcXTkQLEBJLTeOXa5XO5Qo+GTWvgQD9YjxniTntfFKrxRQ2YfP6sW8xBpuJLRLma8dz+X5K30VNNLT6OH0NP7WEJtMuSnyflr0n+krXSgywgss3aV5SfCqfJ8oEt2WwYoSMlXGw8UYvUWc3Lt2GvqDjFv9mW3cb1sDJfQsmJSNH5HT3zp5Wm1m9ayRPMy8iLuiassBHj6zJ3WCmgoMCHdAOSaGvnd6fAgH0azKlLMMm7nD/eJhAM8fQch+7g45nkxVEYjRkkRnntPSl/JofF9F4NfKtqOqeyOakP+OSBHWHC16JCpKB2SjXXn9Yk8lL6hiNopxzZkn34ZOOzkFO+yi26CIky1uqcEHOu6QQ8lWGryC2GJ10CIT+p6cHH9x/zKWmVTRKIMP5QEBs+NQSAMoJGkYwTOeTwMIDb+awRnO+qq6CyIC7Iz+4TiYT/JARffvdhElBDpa0k/KipNaiyiVBpmvpKVIHKlDU5vKXPrGoeDbFjAsy58PsujFgJxgrUFOsNI5uCmWkt//GBy7BGzh/ZqQ0AsrotM9n3MAmMcg5la3SvNBpi5MQi73jB+0mK2Tw58PC5vZhZXtOZoMlFMhkV/71yaYNnRKB0Pdp9UJgYtYyewPU18niSR/ETMBbB6uwFzgw3mx9bBpYoSHBo1VQG0V/nojOEB4GruDt8cCkOWyfCwwrXkGzOObhSUCg+GlyE+Cm5WLZ5EVVAzQ5fj2uQAIHUoRacHrQRdhfV5Uuqz2raepqjpCp6oKKiebs5HEsSI3OUWfCf8qIbwPkBQ/s6bvWHST43d+x4oYHweSb6NkKdoBux5xTBcbwTQcwk1wpp686BXYXhKbrpmQXRphd2Fu4uEsQoaald56yU9nScKfNf+77FSPze2NbzshX/AOZvPhMJHnHh4KUh6Iw7JbC270FLuR66NurajxvQXbby3fRglatDkL1S8eXCLEme8px1joDe30OKpfqa6buZts/ItiO9IVXVcvxkRUlWLeCzy6sV9sM8I8S7QwkXS+O09HT9qXBPiEHeVSxNyAo8AER1DD7t8Id9c7M/zqdEXNBsSN8fqWC4weYSCy/rJ0xq/oirANRgaZR1SIm4OuDOZxmcQ9uaKycMFmQ8hBNzWcA9HOGdWFzj2A7weOPkBLji5nkv2yseudeSOZ++I0yKfFU98EJe8a8HIjIn0lRZQ27QRvCqWoODwgQjQkJsCbmIk064rAjiGq87QFf3I8deyTlTy5gLyMT/tlFQ5LIMsgViVs2MC5dL8w7XQNYvsG33rqLIG4lVt76X3xRnXJDqN8jJ1VlNhmxdrFNzhONHhUDBgT5C3Ho+XaWe1bUWPv4yzkM7MQcdieLWnGgbxC33SfI1mc30SaHwU1tTVR/eNalUIu32jWBDhpVdFiXYt5lIG2ggs7MiwU6hJkQz4kvY019sWY8cxEx/tgM2yr98Hq9WEdx8KBuElJ1KRf/MakUwNeCtbTQAV4dgMPI+SiBiMFks/45Un8eM6qh1F2Bbi658etg95KtCmv3FUoFzn462V/sQT3mUU4VOUzJ+7Cm4EsgcwLikp7Bkw3WGUv8BrEWrLVc6Y4iSB0NIyj4wVe5407+G9hbneeQ24CRdWDkokdM+/UMaImbeievSORm9EACr3XbAfTNT9PNSXEyI7FNtdiHNKcwmtHn9CnabKF1c6GnmxlpORFLgzcS4IcuCAOzmfdYAPhyp++nNaLsW52jBtvoffFyxxLpDNnXGYDIzrWYuophIX85jcZB2q5c9CuwFTvJBttlYH4cdalYhua7F2rfaiO5QwsBruc7KrAwro5Zc3oya8RmI4vOqpURJfdohjQTLvoxSi6Cj7qRIzkLKtgV68G9YKgrmRw6yzmZBJ+XBBVxBPlF1uSGljeg1rmp0JGYpXM+L66Kf/XT3DADlllSKxn/pha5nAFGuZma5RWpfS2oh0VFsxu2QeWn8jexMgaN/qsSys4dVtbXOs1pgTWXcJV+k+IjAZRq+e6e9VICf74JbyzDcLozotJJ8ZveYqEI39F0V3HIqSFa+VdEW2aHlBOzKuLRILm5aja3pb98WekNb4TGxpHkmXXyJnlxDxVZi03X/v1eR1K2M4ODuRooJGeNluXyyMX0IRrchAsGnpg3TX6ZtLzbT3+pF6uSE945rT4/1Z6W6qQtPkeeMbIuP9XuFhaxL7GikRGQ80f9gLyW+SbTLvlxCHcU/YhEAzg8CpXlr66/R/HM1GHA+PgvtavAhY8YvILAbOoU6jl2+xQJhzK62MYAlEW21QMwBCbhuQFJ1aP+UuX3LvTG+Eyuzi2SpxTL4SHYi80YPlmaOh+ToATzPho0JohgdVjz+f7rohQq8LDQ3xGqCf7wQuMXY/nvhzQihaIOHKKtpwRZ9VpH1ABsGTGcr4vHJIKf7wXMMrfbEofNSYyHvS85u31qh7+lRSwavGgQJkDOHzw/HvfG/Gjo/Ot3unYDIpX73WkBOagVVpsUQGEwZ/NE5aW+ShKDg4rqM05TtcYCr9t7e4a8Qqtw7S2lKqLiFeT6jmPZZVIlAa5If+Fc528KVB6B117XG8t6BGr3hkJz8afrBdXH1WSci41mICWH5yK6AePG/oBAOo0ULv8RK2yF+ZSSDcgIm98gc6MVHN1hr4GudEjZxvHqIUHqmxlbjag6NEFnfefRsde9xBFooF5wPTDiugUG9u6Y4EUk++cQoDrW+16duQpUIiOZy08Jvh08w+eBcrNXVIuKw2bwwQRTrZG/Fj/CJN7QBR/PeC2+QvJWjNrdB66nqQ2ScgxMN76nOiv8eJM2O+i0xcpX2FdxsLmmEl2fQjU5QR6Ffez+uK9JghOychi3SvZ8PGBRxmvY6Q8uevYtbz/l4KRXQOa3+tcPYLoPeLXiOkQbk2JWjANhphnQWKlUih8mnBkazsRhbHiNTh+fBKVxE79zGGNPu+DG8e4pfr6ngroq6NCD1QkVLV2jb2twLqC2wol4juCUNcIDtyxTAfFNwsvpmc8zT7eZ4JyMnFNPBHuGXPeaIGBPIAfzkYzbNo0zozmCs9FGHkAaSCx1KfawaplDnc4yccI3DCX8Xwz4y9LhxGmr1Icso/0EdEbyWxUjoxiFrTMaSWcNYED9jnE+07r2tIaCS4kqSaftJZiiue+LYm5JfBfqgsx2UbYJz8BjFYA/UmnpHqRGcyZ8M/W5kttSpq3JnReuyq93asBfpau0i/SZn4KOjNMYAWtZOW7rQiHU6A/ukJ2OU51KZwpqu8G5Vkt2ZX9xw06beOsA9JiIaCzutWSMaZ+5GSkZjahd04lZ/u89F8Ae5hZ35/PSrnDdVH5+Ob6G07kcpfGdDZ+UHDdvTIQ+gw8m1ahlOeQ0MlOetazg/m7TcNi5mLunKAQxlGwDEIgNfmQM48A90tqoZM4QKgJmz4KoNbfX0p8ukSj4MKiwVqS9zkU79xYlG34FbOzfXgxKCeelA4N4qGLKsqB3knSoTdtq1VmDykrJXWH5JlevRnhrt0rVcbm1e67JxoHzEuzUIwSBlDbznbR69DJEIz03dmu+Zbkn2/zgyAcHJCqEhJn4QaAu/g7+BQH4KiUt72kJXj8DRn2lDmsMNGIBBqEixtI54UTHD/ZDWh2R/40j2ZoXHq1E+CTnu5oJq8TvX6p9ZB5SSXlisMYLhm0O9UDV9YJzYuzV39vxIXyqSAw7W7Aif1T/JYY5G9KiH02Hg8DWuai+FVolHIlfAwCFxzGmZgdr7GrXmctYaKKJKTpFENUpe3P2x1rrCPsj51M7BbMsl01eXDzoBRiS4Y2G6qB0z46qdAtYCL6FmuCim3ZbCieXbErKSldMakXaDyvEgYlEY6WV8GgGQI8YLCgEYYhds4T0yrc44eeRh5psZ8/Zd8WMhnAp1UXeBtLX2MmnPQiqNDM7aRCxvrYsm3PKQ7yxyH/2mIub5ABmx6Nh3zabH16igaNu7jLYKp7zSlyN3SbSLLVHxdKiwviYrp5Fvmexmbr4knynIRZGI5ZjO3se7h/8Up9VIXvHbLQZ97v42JAkdOBeR3qfaGONKA11I2OGmSEjUIBLz+quCnFT7ssRivM5L5bZqzTZ7vVchd3SVlIXRATJ0HN9VxmjXqeMqPaxsNzyvaZZIjgWNBcdQ31kL99mOJ/x+b6AE6vIcBHj+1StkoJF841u1DMbZ11Tn3aq7CMmF5bbDeMboj2QdZQ0kMN1164w3xJLhMYdjIoCQlSuwqYgO0JBVOWQBbDjfT7aQ9srllAGSfKUgWIPb6go50hAqb/uEDwtFmaOsky9+zCYKA+Cco42DChffSXdcOYdgTCpiii0tvmPzZMtRfvXaxtwAge8ETH1MML7VNNr2fgTGiPaGhyV1FHL8vuERKfsz6CO7MgwoincAofovFediQToSsKyLiHLDCnhu2KjJZO31tUzMaV7R2chr0bpZVBP1VhVj2zXXRsMJ4KU7SvNf5Bqiv6E1KU3btDReEKOzygWRJ2DUWKFeB9kl4Rd6GGl9/IwM8qP3h/JQhK+yndRQTm9g25L5NdMichwLyFQ8LKphTD9dls/FOuD14Ak4zrz8RraZisumVvdLOSXEaCoKHeyPT+515rQybLqqjuOc+fd+CigP6GAGomTOWmKg+DS+rJd5/Ddfi7A2N4ieURimRS1+kTRJ+WWmLwe20luLYQkrib4nSg+s5IibVjcwLxXSyAcPJausrbRZx611EuyZ92igvOgn6YqbSQZonCiH4JuWXi15Td26h6gg/5BHjEwx57zLV6letTHtHikZzpZoXNGa+p88Rp5nM8ys2IjGrhOflnqtTGUR6Bm0asZgUUnDUawLIlj6+F9TK2kuxKanuWh9WZzhuAqij/oq5zqVcHGUfuL9gX7hpAqaEGqyaKF9/LFyA0kAM+GZhy7q6G/s+ZEekWfOYdd3EI5zdmezL5Y+/6udTy9skP4JZlQJYSatV68rwJ6cDqFjkgdeB/q9ggY5x7WaXSOyOYSwhSjLxKK8yI9Q4w0BmfeIR04EPxxUqyDGJDu4U2vufkjxyBZKcqnfgJaIsZljRREphWi8V410Ib2Nq0Mle66ehwT/7OJXKxb/Uk46WUp6GxqtsIpRrcQKwpxdhwFX/m0ct4F/mgv1mdlEanPvBG2pK3c2cGJlaofz8bcBtWn+jNoxSHo8JhKp1fSH2ylEeq5yzdrm3o7jfMgsXm1K+Ldtz8ZG9KYWkYbkSpktDS0Rtv6DqpikwawyNnZB6qCFO4uEn5L+akW0SEEDS9Xt1CeGY0Bfdb23lRkWl0ohtQLC6tdKAnmRJhu+PbpxgUdPBWuAny57iL2rT5LctBH8ZNK7llvpTVGSrk0isTOblZpNmhG/2CKPo/c/vb4uUheZmiT0GFfxC1IfuXDw9yIuQos7VLWqKg74fNTyixh5DXYGgsYTfjQcEymOnUY8DaaHTTCibWBMgfkpEVuD2TPjW9BvsdBSiDOCKjIQqB65GrvxXKfZguG4eNdltIw6zDxBemQbonvsUrnPu5NzwnHoTKqMkEo9buvZT1NeAU5xmhimNdCyUnCELC78AVFfjY5VlOdmfnG9z1Zy8xXPXdIJpxpbBOj2ytgvs4mVoWWSgrHjKcFVDUTKDrFjr+CQLtUGHe6rUctQw2x+5caoJVJxeqN+49i06+meP9s25RyFA97SMDFgoJEEfCSj95kZXRcpZKmhMye7dtDf+u/kJm0C5318wwA7HU5PxuuZ4QhlnUC/D+klJo+jrLyZ0VvK7NMC/8jo+l/OfAv+baNIeTWj4eGa9mPtoGp3ExqRbHPZAuryLsM6CTvOXxyD35iDDeIPyJ4MY66NYu0EJKqU9rbeZ7FedKubdfvDUblJiIQK/bBqTSb+81AUtSnTZuS0MCNr3v7+XejU8tZQvHkqp7wSnnqef/Pd/GMZAwt09YaDoVvw2CAAmIbQvG8EmsrNxAIn3Sc72D0avewz/rgdY9+v5cyLWkQmAiwcfqOnm0IpCQLf4WvCPqeIIn7PqMjnraL64Zdolr88q7BneOOZLcRq0tea4z43gD1FBPHadDPDDfhkyGHlx706WGuPdJ08YWC4camxR/xYKdBCHl6clpS1PkAW57gBLKMGgpuGrEtGTttnkCV+PQBOyITDBVlYOMihajZ1KHbst4FEt6Y7R58MAAfiCAwpKNSrqtWlbUurl9+57dhcZPaialbLgWWuFmjZGB0vbhzzY88SzbCyfxz7no+Gk0hvYNZkeUN6K3qQ3jChe3/l3uWNesHo/a+SwYAtcdkywMePUupMhFnSadJsMJqhpRRHga+3ToH3tVi3byCKmbntgKV1Orqu700hONxVfIBPhnrPTKeEueDWIlQRnIDDlZjh9ePuF8gixxPxIBB0JPWGwFFaMtkJd+NwElsOJ39EaDEJHe23Rl2B8Pp1vrSN14bo6Zx2be4+Dgbucqyk8EHCyzUHuaAjsRIMZTbVBL5GBKfbx4QcXaI6LXYvIjo6zeeKjes/7fcWZznZVB7NIR55/0JqE1vprjyIA/3yIRP7Ires0oEIiDQpYyBE6qC+bzjF5SH7DZRWJ3dXQ317Qw06AggUbgogqiIez/qZi4p1BWp4DMGkhgADSK0MpoFEYYhfB81nA2/KLKDbwNOY5FOSZh9v+sLpfUQP3qDFwsOw5kM7SNz9eJ1/yfYzb3EIX6cMLGPVCizygBgf2wMl0oHfbkKFyL3pRwghm6o5/U4m4+Y/Vu3dzDi7PT7U7KsZiSSuUKJd/6hvk1L8QnqyHCM/gxOSNHFY30p2alMPdwrUHZLeohjdmgxdrF2wKt37zIaR93OvNpcFSkUk/8u18dNUlS3H8OQuVXhgQ7nDMU7fRRuwhQ2IfjIdXEhFVFfwLEAuaMuJjsqOLuzhDA2S2SetRJ39YPFb+dx1UMNbCtPJ3/hm12gCIU8It4CDcDiSwqMtwTGV7/wbWxXBYybl1srzzC99ml/wrLWHj5BaY/cs/tOtOzcwGYM71bIEP2EW/xWeK0zvyK8IeShxVkbCVWe7X4kvWIoxC7FtLQaSugdgEyMI3CGhvjiCb3S7Z3fkL5ij+eVeMa/j4v28TrUbW8FFXN7cNPidHFfQuksPwrmtPxUdtRaPm6dqQMG5DZXorMrE5HEszz1uYTxJ8O3FArLkbjNmqu6lfa8P9L4EtV8lwX5Fwy2FQJWNE8/A/A4cSIla0aREgwm+VWMcZXaN9g9J7OMO/3Xp9pVwzTHqSz1ufRpU4jr2hDf5+PddNMB+fQ2bApGNTVS2p/zwBWeSvLMtnWAwaMquDBSTi6gTI2/uSCIYWqhg6q925KBp3jgFCCjvkHVIKFCWOtgXrLucs97B5QGOzRzR377eAAWcAbx3HeR3tLOA6Y9O6l0FVpu5Bie3yA0NbXtzehCjPA0aSwcKVv3USFygWHN5UkdeAQg/DImPB/5tEu70B03fF8XNytqm82Erf46Ypl96myhnJKfk+YIML6ubLu92r8Bqm9EPe8xaxp5t9QehxJfbYnGyI+F507XVwfyxQhJGx1W1JhWjlLBQufZHMu9wZr5QAIOgaOdc9523LfZJANbR4PFC7w6HQIQRRHgkmtP7bhvKXhszQc/YDIEqZxQ4tj0k+/PwZFki1rmVdtuqsy/5G10Uxv1gdYwmXAAt8sKmXWWs2Xj2G1KByIp+wUVk2YZyC27SJt6zXrEH90faXOlX7yBnN/rLcs+Mh5vvrV3qA8O/qgmVETIxcjSWkRx48RclVQpPScVyw49oN3nAYC4GVhgF0VYhLPVUVwTJfnw06mf79qUtt7iFrxANC8XXKMOsDe10Vd5kk06N2NQyj6ugMniWuJbtJ3k7G5Idoufk+ykmD0LuwI2UvIa9RKy/oeVNTPEPzuqeR/O1unT6iFKy7zHswkVuCAeEcMa9nwZ+guf4A1rOLQs5xzEp/fnjIpx7OGZAgooMjakAZ0C51BlrjMfSwR3y6Ddb4XkBnV/uSvuKqtKrEY0Rip/9/q21cDT7kI1lqYSS43kHojHbS+gzCIoJlLh7lD3eRVJlnkmfhpOf8t6nHk8k7UIcBWMGlMVy3kWp/XIfx6wanHgtg62bEZhE9n24oCweBuohtPsq8Q/tV4mlz5oZ9VQRxXjmWaBuvpx+WRCKpfuWVAf0p6CFoJtSB+ii/sUW9f/mJvZvoC0SVCzEqr6b2QYh5smm3K92oQNG6iU9BTsiUzKftbdrFev4Y41yJnQU66bFPwROOb70Ivdw4t5krximU2AbaKqvAwRTbSr/gG88pYsnu99raj/T9+28K9rva9IGZMh9w4G3AC1FfVULflvHXg1c2pnrk7EWlbdfayXdJLcmEQ+uQksVVIqtUZZdS7logpiw2pKWwKMupttBj+TW6NrpSLOSgLt6kbz+0q1HzwRgfNbtyiLiEq8VE/vvT5+SUWQ/luaDKpKTUpkRYvO+S3FBQyySy+QoPvW8+dHVaxK+k1iRLyRNNffxxrTHMLCEG6nbPT2oIvypPsEQTQ0ulBJ1kqBeSYbf8yB1WJov0xAK4H57tjXyK8b7IIcY74l3oXy55nL/D5epLWwYIXaAwTSfDx4W8G4qrr3SC+I1KsDHq2XvYBqafhBKTL/sb03L9CW1ur36180cnvKS4G6IkBKAPr5CTWvlNukbVjIaJpc7giHQl928bzYbRLCPnHNZVwhvXMyIwUhC4A2BS2NYmJItQaCGnKOhrsPlIq+bB84Uu/TO+ByE8KobAoaMNrEY6vQgSXMxjckVIdheDa2YVBPfS/fRQU1az06ohnvub2h9SqMTK0QsHxTfjW2p+BG8W1cyPbHeoxueCuSaDCctN1wo4uxxiJ9ffqH1z4LngjpQtYA7/6lwH9JooEymvHgyQ4sRhMJnynW48t0lqV5l+Ia0Jz5Ie5aXSuFX8ecwUtKdXvXrmkbROKb6kxNl4vKwE1UAF1AHxLeDfFTXefZGDFuLHFVe43uSCR8kjdNheP8HPMrH2ztYWedKWk+1LDEh1Ztzc9KQS8R7IbKrzU2mH4sx2nbvPEAYLnbfJeZHO/yEQpGaPtUumKLsivzJfzm42xQIb+dalWCUJ+JjO0p5/mNjCNU95Wc0o6Df865jEOuMzSWza04Vk9r8xilpKsdZpnfm6/kO02hc5ZfTn4Qjs80yYrto57hNiSdgzq6VNUlL6sxhbfWtbjrs7IFPoI4ZbEya79sUrwJi28t0OlCNKAfbD+uagztu2upDOPkHuHHV0REu0fDMDXUmqYg7IYlVHfEfNXpv6w2aummga8LDYFpvg18j5ZeMb6eyRyf1T3mhq8B9va+sZ5ZXYKMvtWfj2UdF2PFdfAg/GgHx0J5nOvM2/gEgI1Ab9FGp1mJzIEB2nvGhO08pT+rVbsdr7298HnuuQO05bPttWGRk5LBCldbBHHR54PDcNWn5AFu7JUMnLQZOHCdjxWLpH71vWVVDg+RwNA3IR9wmSks+8vXM43UViKSOyCfm2HCYIM2+KMW22/OChJvITYu+okSZFBaBFwCQH0/hWFCr5V815DWGPKdHvCd7lFxo6eMYUj0IPwF9Uby6oEEahXaznwlI32Ok3ITeQPmLCQ1JoybtGLbJksb1elRMfTUkgb8pYJiqyERumS3D7UWa/phMEA5AgYqsglJCPfjkUJJrCwR46g3r1uPB/VZR+bEm0OrEP6RgbGjHojhgktKJr0y6pIqFyS39Oc6rq4X5qm/IpwVsJp2P1tP9athiF4gcC6Z3ceMURGuA7lc0J9AzhXREMwz6to60WVfGtt1rxL0tnsPryT10ZLuEIuMVvjGi4QqSO167Gk+SgSxJ3SDvQff1n7ollOaSom9A8ZyXPrII4pmZSLt74lLv+7L2mL7B8OzO7k0GF4NL1H6yz7RLim15lKYRQJGdeL2o1t9+Wmv/TSZH3uyNFJwOsBgUJcylpJqPZn3rJlAtj5obGpUS2enP182JAb15E0PkqVh2//E+5RsyRdvOSIewE7kIM7l93/XwC2T3+Df6SL1aWSuVAEO4t/xvoV3ZqhRTuCxGlMTafw9olZrY3BOcwhddauu2ALU7buVDH/U4aNJr11YoYXVOTJ2+/FaWODGpFBhkMbSeD1wYawqDVVJEOIobMNGqXju2jMfqSHumBSTGktq558oPgn/FIQuCBSq8Z0mTGitKvz+eCM60HTpnBw0akt1eqT0TuRrEUBd87O0TzyvjgkfYWXO5qUsDK2HyCAVmUTbKX23TMGMKv4HAHKyekZ8AwecVbxn71U7b5OQW0Y0z+cOAYRDThCdm7rb6wUyqRpGD8soVqg4Rq/Tr94lk5/Dwai2d3JvgSqrbrkYCKGl4G+qOQ4zeXJJ03ql5RlmT6yif3wzK8ZdwtHgQ0c+qOaoR5ITj5+DyR6Qv5jCaCV+dUGztxkx+iRc5g/tgS+keg7ioz3dPWsC2TCtzqMffyfpaGXz9/cS5roY5S2q9xWWwPLPjrB3HwKKs//GxYF6YSs3Y/dmQE94QSdevvW/ZknuBazV1vDU9gTZccCW66Jga5fMncepc/FOhmARgtEAHV0emePO0wX39wr5UUC40BCbccBXngWmLZCg0F/lVstE7vV53qDxSMQyQaC/N3gvsDnnECTt7F2bPP6UQLJzxIoLy+cLLmHBhzjUNIUo+XQ/wh1rg6C/+4mxZAps4r9bz+IkNhKoHcDyEhpzSjars136Zi541NKuJdPdXw+k7FMYj5qIDpMnUR1IvUbYanBQLCDhfEiOOcym4ZMAzjuw8+sBREqMtYwB1jkqO01pYORPlDtwNqNK7LN+5OzpI1A34ZhpDctAH3wU+PhwBptF23Jc7tLU5RfkfBAvrEe4Tv5hpDSJ+fHngkGhobaxeNuA+2Ge3uy90AqSzT2CbOVs/vt6kUR69/b/zB7d8MSFE7nkVxYAsz3J58ODB/KHR1yhwu7JplFqHQvR4kYuy2Li2hXbRts8hteSQZSAtVkKVk6HtSzDec6pr0YBsB1PRHqDnInEegmFn4urszVdg7UvaI+QIu6+Ng+Ik0wC5hr9lGUAb3WA1DUkzKZG4DHqJJCbehyZ/vu/poHkCsdfi4fz9zMrfhh32dBNL8Buc16ezI/biPbu95SFro+RiFG3kLWZoKquYXyJPlQDP9mOVM2BGeaAfEUXqLhLG7Es5emVrYf87CXXxCMQXzjaDwSoEjk+/1l6I2i2kkufzD5QYOJLLMfxWJ63TAk3UG0tkvyAFy48SZwrQQHSeqMAPQcS6QRO9WCSS0EeGLUsR5xt6nkvjLjxxrHHs9prIGRQ8SmSZLEsJgqaLAV3WPR1kc9sL8ox645TCt5uYWLd3IzyIkjluH6fxd0/3CbUt9QVcithiXy1s95Te0lZRY5ziyeG6s6lOqHLWmZILgIkHX25Nc11CstbVF4Aiov8Mk0BQERR6AF4K31sPjIpkZg9TDlzjmVYAlaQ010NQhBmhYEmKNur9qKRenyxYTgpczrUjIlx8j3QfhhO7uBS7mywJVPZJpCxTXvxb1bkUniD4tjX7sf8tdj6WajCfJd4+5t2fkgwOxJOskwd4Z/uftUhZDEgaeCZSc4FNqBb/AlGLmoozuvI1BKANBnHNft7ePUEHUDdgnR33fSdWZeXot5fdWNhq8xZU6llIVK7jBfh2VoHAEuVC7OWeyoOygIUoStz+DvEKjyGDd/tAFrEvWHFI/QulAVl8J9xUt8uvechZBIqcPtNIvUlBNX/4kxIJFg8HZ7dlSH0Wwrge4TaZ3qxeqbE+RPEAr3eTjFHZthsTbEkLQ0U/1L/5KUlAhb3pxW2u1j8WMW5CCwzAWgOppejdcOp5QTdYNycFlFBdHMJr8yaFkh8/yca9TkMGWShbPYexLMV/DSxwbN0LeMPS7IpXjkmu91Bv5JS8AnNnIs96OWQa4wDajYqGq5nNn1NgAh8TdlGibUFRziinkImiYYXRygVF0JjpDsc8SJ/rYcbZ6qCkYFW3bRMFBiMF6BTg9tjFvJx71BZwqF0PgBu9JLaKwotQFASlVJKPBF6OqbRtAnqHkoUeluLBA/tiDrBZNWW+8ciEn0TbOiYtN59iVQGZaNIBsuEwn4jGNplUzBJGKkZ3McZw3901T7pbW7WHJ7Yh+3gn0y82Mgw1752FAckqiDMo8oo4A1qySGiGi69GOGPw4A10rNQBgBc7946rlEVLDfroklJPBAqQl6DiIgkaAnh8KnWlpSj/W2h7wUvC6X/DI8wxGGOMPXq1UMvWietKRi6FaXHAF3F4f3hLmOCDzsmPbb8m+6UpFldWIOW9XhH4CjYKDx6DlwqDfaZ7g0e1ahqlhzoRNcOg8SD/tUFAg5shFFOieXdwPcEE5A/o0fPcJu2LAM4TwkME82l3gwG4ulzZFi5F8ch05M+1thppwz/Ptl05+URf5qqcnq0KxZjV9kOEN4buPHcDbXKzFlNnejg31VseoKQBjiY2h/N0VlzRaF3MtyA5lA8l0ritCyizcrgduFhrLL43CUCKJegpFA0XBC1TIgfZ02tO95WiP/IrtmLCvJZwf4Fy2zqQY2cfYDrdO394RCsb+EOlo3aVqH/kY2AIY/Co37QI0K0/rkBjCYNdm9jo3HIcJ/cwwX0S/kl1uhvY+dnOcHfunpb3C7kPqncFVOaDG99oiM6iG4CCGO0ySFh+YgaNQfWe3LXNYtteBsviNIaYgNnTEZ+bIEoPemIZ8s0Cim/qd5spuUhpD7ll9Kiy2jt6zQWd1OHQ5ZMShhm/fZrLWs4g0+F6KT0GiugbxaRnS3M5Bc/GCx/AFLiIkP0cuHBuam2dYRs5yDKXQDVsA4gzmB9uEBi+AbWIINIygJYp87oCwNwmbUXjOPzcTCmjtvmpMk1o6NvJVgF/GjMeK1MP5GZyxDP39Y0JgmJwA3L+sSL+Nd9SNcpq7KEXmTOq0lFh9Ox6IDwETXQ5puPmzo11KALIb6NDxWRNG4X3dQGlRDuQb67izKHX26WWFiOU2y/7RTPlnFHgiKBblYh4SfWMmvqr1Dv/kqeNKU73MlGnxL1LPJx7NgSXVxmp4/KFcDmKHPPfZ0aHwqLMYuBTwOaVS+wWXkaTrZshOLthdL0Jfbewfv3Fzb5pRYoE5bEtsq77DRbv8Ja8d3PtF+SrKIxWF3lIgqcxA7Mz/cjV26cBZQBtg6dx1D4ybSCvL9aWw5wx7uLq4mc33nkNn2qDZ2Wluf7gotpoRIx2simk5oa8yGZGa/cvJwY4aszJbAf9j/C6fsrlPjb2O2yfW5WneeWVrNkNWMnBTEjgGF79BfCF06HRMDXh3LwxV+jolUuOAA63+VzwnZzc3b96K3tdAVVCEiJHYv/aM/0+pA4oSpjYUcx0Df6u9qSkq0D9P+3qaCT/s8G0ydZo96yyQSe/kWxer421g/aP/DVGhsFdmFFGHk/jvsTVAcALsqBan3FhbdDkjJkNQ6LHPsV3CaP64pQvblDRW3+SyMYPDHXaeENDxqC3XvWGpd4DZGNaMZJ8102tdf7eB/37vrnrq9V6pqEZjXwQa2Yejgcjg8Mpxcdc2x7MO57HiX6pUSbUB0pos3kMsi661wJR/Aq+DVUOZcMD8brszDG2Bkl053sXwkVQm9BG02Ptmcq3ljthe0dfqYygjD/i9xeii9X3P0rlRqWSnBURBXN//Bzc8bUv55z2v4JAmGuGFDUfACxxl7OW5eVEc+zBFQYdNG+6rh/irIuMKGqTzQQdoIDhwX1pFIvvtkL88DZENNGU6ob5OW1UOMJd64/4IsfQ2YNqX2bPYyaBDVxKQPN9VZMb/YVJLsCUHLcNWplRR+YuLppZFfTlbMHKAZreHvRGPAk7GQER6J2a7NHC0JtH2dVqgx05Vi0xRZuF+mKOoXel00GkvKuHrFSJBvZFOQ8Hp7gzerrVggRKoSj7RperoARV78O4DhOEl4+Kamuvaa+i0U3nlrrlO7mNewVKlvwh+w3OUuAPcdmbQ8y58EnQk5yRNPBIinjNdvNFIANSYe/9JKy4kpaxMVCnHT64SN52vIkpU+nZ/JuVs6Dq+L2+vIC+ODmdrzQqrxf6RwQO/vVo2zRNivov4NhFZxs2U+qaszyxY4MlHJ50ggshMG7nSRG48FPu/Zq/Fb/Hl9mlsHIRwCanWifV865m50s9mjwLkx74H4zHhqZBz5L8gBSV7zEeArhcmX7uTB2pDG/hTWBSIl26wJiK3P701kuNGLOY/uH1SVt5BBDv1tZ4IdN7Baq8QxzWRXfTAN1ivgmLOv3mJtoG6gLYEx/plc1ftOvT7sHVBESmuoshdhJx5N1Ix/GOHdWlWAsAo8kppFAtb159NysCMHDcA/gMdDwfqGmqzc1k65pEzNsl2/pu+mbp1ouFqTOFhCwrZFy0R9qz9BWSBY1sbDcQYYtoEWWBLYoGV4q/rBZcNEbBgeilgXkq4wYZjYYzUPc0ohjNkaNdFnKjn/XQg+ZkHFhCGI7UEz/XVou9Izck8rRphyzBWfFDFmY6ZhY19Th9M8hyTLSSbVEK3qsbwvTHsto9L1A170+UkubnQHtJ9iCboiQZKdBeQKpcqvnhi1qmxfK6LhGtqV8T0E/kv+WWstXxFvS3qFPglTYiMFvZC+A69HdZFte8sOIQzZabEvrA6FPAhy0Z33wkdvBZWOfQYL2vmWYSU94ipffdgV1bXlGIFpYjr1zvbcLw2f8f8boOHGVv2AiPFz/chtQCKTlk79TxGsInu4lER75OUODOVDQwHeBgWQq8YvVjG/ehqJaU+AkvA0cjt58Q+cHOP4i/hp2jsv2QEL5rMWuJeJ++x8TrafZBRRJkiyWZ7kb/sF1qAnzla8ZvEetfx1/NiTkAJuKPFmXDH3nn3Sy217X2pdQeL/3wPLvN0u3i3DWUn0UN0Jo7kzW/i3vPhO+X6mMz5u5bCHsDpmo58mbJbUdMq9uVzzw4e/tvk7oEwjfqT1lh1pnpyulTc5EhZfZ9KXFsjZo97qX4cJpjAsFmv2HhXfaB2rVrbR3Piq/nAn07RcjOAqro0ESR+cjPESsJHqYxCRalcI00gYN52qvOfq0fy6hlIWnRb6wZ2Vr/ZMq65mv0NDhmGiXSdX3dVfIvKqdLKlVvHxNXQpDAGPx9fbcCcy3C9u82ejRbs28Ysz929vJHO/x0mpiB9JUurq4/hmeE3984BRmiQ4rELG2jBDXMBPQqF6my6+HxpvVgpO+8kAXkv76qbwtE0LGE+i3aUPinyPH7GFyJNtEZ8oTD3Xq5DHDety6oIWU46GInJ0daE/m7NHUI0ZkO8vdPL6cwayEPjC5MmuJaSD7bg3aOA/+dYS7D2S8bfQnW6iChsBnfCwK9yQZehg22U6dFcVWO2UbIo33hEXW2n3GRWxMzKlxkMuL0HvcMFvO0EQdrsZWAyJrOEqRBUmLL75lDgA+v3nnjS8EMu3FvcTFyvgm5O/ihdwSfdGV1juJFoOR7zq5+ukAwyCbpVrp6EEfVmx4DkiF3QohKxRdjJx3lSWWLehLzxzpFMwLpOkH6F9dMneown+2sgLWvFXsPgDKqBYicK+JaQVzJvwyVf5dB6qsciji1h9amz/+fPjzdQMd/YKxr69NTMUvzCS9CGmXzrYXaMAcy9gdkXsryve90ZF45da6IfvEdXa7REqrnXnOQON6PnS3L2XogO3+DGBpavSL9w+Per9fo+HoLqzei+J+5yVYFDx2EPYU7ZCblK6mgFp+9XIp0hD6UiLNYn4FcaREgjrZDBgDdV03LmZQwDmihlOPuxTmfM+Vom+ApJ8NLAZJFqxDJJ76le/Gz40FIeI+Gy6Iy0WaCblNhpwwgTBz8dqULD/slEIqXR4KDBvHdr/Wi1mBsbW0JiqBZfGBNvwQ7EDDWTM6n4ha/qBeQKIyuTKrRVtXX1e9ggvpR7NhYL/m9b7e4a+ihs9XFu9DPy4GpN5u+uRg8cf5aOXr0Vx68scpd9w3BjfC+e3PSnhDjUfZi/IELY3lz5BUZlCpEheaTHztNxlBeX7AGGQ0Ss5GLgl4ejyMwMocnwoT2z84V7Ravq3aRbNUTpluU7A0UGiWeCspPWNZKMh24ak4AeOw8ibouBTFDN2WNJUZbalO01ZYqDBy+93BhLfgiAhWXkHBIbQYJIWEpFHuNzCAdnNE5xG4fQZMNqd7JfHfkc11eOFBcBn03l7VfEP18XhlSj7uytYPh/lCuyJ7CSUITzvuqHinWQ2c14UPkHD5m8quTvSXdEbvj37UXPrG19dliozMxL15gx6X1J1sAvASQdYoaG73Ioe3VIK1PZJeelb3FmBeLkk/p3gNWguxDoGwW4pCVWXP/g1hl63rZ4Wsz9WsubYTYtXVL9BEPk/H4CxU54WvfY9scIG7Nhtcv2DC1d4OZiICwpeGPjQVKcLpAPZYuEAvwVXulT+UzRYn3D8sntEDrPCic+SGyiWPBS40HoCvajG6oldM3FUx3X3387YeF9AAS52ACJ84/7c7XWS+ipYL92k+1bRN0H89h8Cbfzi9HC8b+nLW9CrmkCiGXm3dt+mtO82DZEGsZsUQ+Le8IVk9K+520yS7wfSdbDWKmtKbhE9ESveH3d+NFwLpn1r/AZvplZ7gXtANDU1KNMFESsbqFH4+CFfnBCPGZfhe8GkK3GLO44lU4s4k2QdERdCq6qAyyYbaZEHTNsZ46C29rPKkSbspTn8Zde9zjAsXZH/C9cxqpMHFuB3VqCYlW4wjHNVdPHxWSFv6Q3ZCSdNJyPQ4NUnGaVHYvYMPeQGAQ+pmhJSuf5gD0Pfg3QgvhTb/qJmQIt501vjNf5ZGrrkUEHrPiPKX6TxBzxzA0s/pHuDIvPHfKfYB1ANUoHJ80O91PG3YRmDyIGRQ2OLwzTOZHUgICLOhTXhOFvAjk+RXI4yyCiWUF52PXqRYHSRAoyAxvqaE0qKFahTFGShmbgWo4xdPAKgaWaoIrb97nLsqYy++AAamGFISWn7O7VlEGqEBBbYe9VaRIP+r89dxQW9nuVtTH25Lr8KJCst7Z0qfvxKCPoaTT5cMEN34CeNjEGVEwd/o749Y8EflNPu3WTDjNSTKBF/yHdFirGeXa63jh15Ptj7+L8zEPnH2H5sYSJWj3DW7mySNkGFqogMzprTvFzXtrhSCtf6uqzPZ30HgPUQ7fYrLoTXW+Dj55R4v+cKli4bK56ToG8MP3aezJlsnivtOz/F3u/9L0QjwyEoihrcKCnWkaaL95o2DBgXMlrmkfVlF4VuBo3KikaANuOUOL5YuSs3lvJ443Nayi+e/UkkeBwl1XuoaPbaPrlRDtzsXgiyamSulgoAaLxpG5e9dn8nZsNpvd9yMz3rZiDtSd5tjcuOu5zaeUaaIM73ysTz+fRRYPu8h/JsdunetGMYU2lGxByg+LdomRXsl9+XjD3vQO3evG2v4e/+t6/NOqc+PrwOyu5Q2NPbzmU/Cl0JgFGBKEgA6IWuHexkdw/6LRBLYGN39lWDFN3QB2Og7jYR6PEZ4XqWtOPQSj4D+9hofKLZmacVnOOdkXfCWVLE30cEPdMKje/Nrz9NSQMuyP9Njs6DwqALavWzd5mN32GhtLGgF2dyd+oLhYd7m8KBbjCOByjhNh7WncJTHi4/vNjXls4ofIHwfmsz3oTz/4Y0L470+NM7ErvNCF4bhVNiu3ywODrt9SBMgub6p4M+XiccF3wVF44+a5QDOOyNuwy9i+OpY+Awue0vMzKzXMq9bIV3V9VNVlexDjr/QWm28TcxaJxtvdzWUZr3py8cpnk7vRat/NH/Hgj4nC7H6Ft5k+Ppp0ZsIqnjiaMd8WwLIMSshG2VkUxznPx9Yd7VHqAxUp5Cz817yyAtK5D71UPO5uZzDSV6qWPtNNiRW0YT3AFDIeK/MMHoZ4ywAnI1/Vc0k2QACrftoDEWMETajL70K68+XY9raoBBANTviZkw4MT+uLCmqEWbC+Ao1Qc4xs5kkFpoftRfe8qrBBKlrFkvlr5Zr984Ws9fz0YlIRoYj5PT5edOS2rjRkQds3cZHXeOIxFLAYNKXkoTuCEMIP4Q6uaH06/QEXHbe6Jyuax04XSFCx9KojJfcHUqU++ozIUpXymEtN1zMu8qDyAzdMt0ajbmEuz6Jy9vNHNFyQBCyZx6NPIICTotqi5aTpJloyugPCJ9FOPhanA79XFVHcGBIYcU5tH629p6OobCrBm0OhCrhuNkNbQRNu3BYdvQwYMX+9Y6IHBJRHRelj1ivsXOcAoVoB5pu1GwrS606SmuezgDflKfMAlnlpaAybzqK9apxfTPozKttpyKUBTAIwVb2OC7npIXxeR2Lf0Oz7tY5Y+YY+wMANl2kFCHuaUBv6n4Am3KgezBsXiqfQYQ3/tQN3UtU9FlMArxPnUd0P7Qa3ZIXP86vOTlccbtHwo0eHRRohaG463SSOm/PxPekIqlJmaZ6+UWkxbfsubvJ6S/Cr8biJ4xP1wiIF/UApp49oJ+ErAsPOpYWh4AiEy8ZSNIX0mgLS3wpzRaZByUcy74HfzbzTAjl2pM8sRtRhkoCG3AJZGnePaVHP7rSgrPY6Hc3LZMFIcqP/Bviu1swfM6O5aGCvjZyplz3Ag9kTI9NBe2ic9TR//zfy0Fx486O4ATPsF/P9CYP0QWBnZJwyQQe8JPAbaPwz5ZdIK/gtvgbGIUF1jI/WiplugjQvkgMb0xy40fc8sRDV3JdjJ/jVFO+MdLW1fM6P5FvBPNwV7Nmm4P0hGxYtMYiy42rSpsCSshcb04z7XsRLmuLYh01PquS0jyfg8VSxRM+GqSruML4eM8Lk2bbV4b5WEScjW5Arr68wk6OryAataW0K5IgIVybmk6qm1KwoHyF8T6/hJNjezbgBkurlNPAYKYnF9038EnrChy8uqfl5QBojYuHzdWRL374davOU8mW1PViU5hfFaIaHtyG8k0elSdgT9EAceP9PTnsgyabcOPH0rMoeV7xg2xTlfw3+vexbOdUN90xC90qYXjFcWi5JYjkD0vjk+CpMIBzIbCkMnFelSg/MS7JKbGOnP3UJhLmbw8FD5F8IWruEZFC7afo8/z5DvwnRNXOzEiKfZdthxBB/GY1PqHqiXdsab4euZ8Mq+hehI1scv7WbaBFGaNYJy+BGGbiBf3ynD5HW5J9+241ibmn6kyXwuPqmsJQDcMji+rhAokqEY4OQw/Ai/3Uj89GXusZmuOHCr9MJDXS1XTH6cTD0MrFf07HIw3/k7wyNIv2frvT1P0Pdm8SgIEhti10gINQBOXQ7/FS9Q3FvBZDwny/ExlAbs+k7OHszkCwLA2+aO3qFKJtYfh/wBLmxDtEk/OIAM6X4me7io6kOc00VAV+qxg90HYCwJW0IG9iULdAXeU19YTrFuYB8US4BifNUNJVQuTncHTvnO1oWkoILqM2SwA/KFXCB1ddsbW6JOzXSIeE3FLaF+1KqMhJORdiTMMoLeRptpLcPYmzwY0YG5rm6anqpoOj1ugr9m/OLollZVkYUs5gq/KipKf1JmSAeHdxs7kv/wMZ7lyblEd+X8FMZnlES2GyTrQzqktbfE3BxRCK7oLHhkW+ypSW9wEWCh9mYVSl93DzDPGL+hXeqPUCQeiQ451hX97Lg8AddCnLvWNjYK4nOi3EeWL7/Z5QCJ1P9SaXlrEw87lS8ydf3Rwgm76HXXpNESANPb2xK1ShzBUTJ0qe1yWyITpBClcsY67Gf6QGoBzv2zmHWE4GLmbhofhJKdEFBs4fR/H9vg+Sn/aoAXKkgSzDEDPLsUaHooFj9dkT61enRG6XNHYOB0orUnK4jczxMq9i+iCyqPMdsZ3ddbkNcTWzLn9vzu9AG6Pa4s2fU+GRhaY/SP8RyVlQNNDxWoutxZods8PA3Lki0/8l0QZb7Ab/j1azcVxnyrqc6EBBVpsGbn3MviHrjP/Br7RXBqGJwqLtszumzIiLjmFVCuNCoGjPHr44RsWmIJZJDBU7zgBnUPhtxy+vtcTc3MSOTf9FkUZxU5FShjRrSZDS7iop/61o7XYOp5t0zHXmeh/kaLXHeP2K69DaemmLnBa5b3x/2B5ExI7LWP7BBSMLEAiPvY15O4C2FY9JUlwf4cbT4TPgKac0QbPpZ6+degF11jxTdt4h+gEO1RAFvGtab5UH2Pnmma11JSqQiRsnL1Z74lr2tFthg4ISR/+auaZWWcqo3Oda8SOnDTVlQHMWEYaRm92D1uNW1vRcGNA7A+g8FfOLnawABm1tCf/6Xhk7zY5E935+xuaa7IscF6wAkwk0yLxI6o0pJKgAoYB5lJOsoo2bzKPYKlyBmc5ZJ5+dZmochy9MyiXaYAHjaqbxHBqZL9pGKjvjMNkciAuAhDG/gCcdXnl6lW3yDvD/xrtTs+XpmWD2JZlU62hgABgRD6xdM1CJXQ17IIj36AC2SbMnMTIVAjKHZ8X9UCMxzcZbv7DraIxrMD93rDcer9DtZvgrVhHacE+hUoHoydZcGC72krHhxdOgCeOO4t+IXsOQb1MDZavakekx16UpeA3tPNqHYtNXBF77bpUOVjwx+tEE91OEgG2s37fTaouiU5pho8KmN+aq2nBNskMLCMJqDe2R/n6PMXjCVUR1hBAssaUZNTfV5MhcZomWwn4tdVDYSct+2E6ee8QpBi0mIAwCS+bOCxNw++JLbyKN+VxNM3ZPBHfgxBN5KObu9lwn0hHO2l3fK5ssTMkBr5cC+gDshvwr9T9w095Tz8UeZtV/gmkgPiN6Fe24qYxPIcbqJXp//pKP3LavY5LyK1nm0ma5MTcZ18YQHwP/dZJVoskr5DUbVUlO1UM4/dJYaYo42eiVMJ91H/7GUxNQqJasrnomw1C6t4WJnkJOWcY4G98qN0o40KRHuygBNEL7Xq3Lh480R11UhIYsYTSSnu14sVVy+cxwARCNn7pell7fHXoX28sHWBbX/MqJHkwjxB5ncGTEMV1/VG/u4dJW0tjJjmR/ntqGZTBdQaFZ0z9x5pIss8L9PpKDuNsr362NJoGxHEzlXZzMectfL70FAS1iViaawkbU8i6Acu++Cfja1NKjaaA2O6WS79eDEyL5lAEvd5Xt8Ik1ut5ncyotbBMNM41odwZAhGG6ZmvuOxrSvE0G77yQJjLV9O2xU04xlVjkhdE3j2EL3vU4NaYwRu/F5BmgeJzd26cYTo2dcxduQYcVLy+qR5zePHYjHn52NMffDaYoD7BgxkPMuSL6D7Tn1DUiiDsbAO/yckCsy70V74p5LZdlAW7FVnKGtVtLR9sEIXZT46c0jOh0e8zwKa5gpubOhnskWUqbzHtK/eBwjTFPu6c8VssIHv+5E5iz6aawaTVNzwmgA0xTJPdpq4MPZmUOVxEesAigQPOM5BVBdotmuUifl3VboJ9kVeqivYczzLtRzDwDOj3WJKq+xhqGeMruwpJpTtRYla90Rpum/E37YolIbBT/DK6gVI2GOm8J6WyEyQ8WnUiwu0a2EH+agCYH9mJ2gMehzu9hIONx39LCQQN2z+AnPUXvZf+Q38Ar6Vx9wLsY03ETKmRYhCaUXjqKApv62l82fqSQYOFH9PZCNNK6wuNuZIDo2ZSKCFpsk9g8yDFOhFGqQiL8jTRamC8pGkxMJySpRrqbwVHGATK3eePv8Plxhb5OM3C3Q0ed2/34feDUcDWZjojZndD8z6XmAs+UWUiAI8Kmd2IZ38k8EEf2TFX8XkJmU+qh1/291yCoj6sfh65uJnzj/k9moI01UXiL0MU504vVn3fuPna0WwXRMpiw67psrYXFvrpKSntAP4D9HWJ2ZKJf6ioK7IcTAUh4Q4RWPxFNQVkbfqqF6IEYIB5+KEye3Rog+0LuOS7Qxl1mjgiJ3XI6/EqIBwvgmdA3s/w+b94MtarkEWK4MoixKcZAYqxNN/pAkWYAfizq7RBcxqOqwc5cMLB4KpD7kkzxvm5SIt/duPWHjqJQIUAC8CWKl8spxbwTeUCzldNjXFO668X1+iz6rUVhgqdLMCjK9UutC5vPkHREtNXZAOChhptATvcwftcdlNdwPPcGOUUif3HAtfwyXfECyvNFiMqUFop9dmqbi/ebE6jsj8IqARrIhDRWflg2G8iOxKT+JtLDlj3stTcSHWyPLATRXHUzEBryXYOlC6r6NZ5RAJ98IHbmUQZU/UvdlNEtGlma/6YSdukSKwq0qyF7GFJQgs6aDhDO9ZF0+Lb7wBSluHjRAs4yahSx7wzZO0ohoSdY6kVLZXO9K4mr+t3HcGt31Pc6dF0VlJBCtK/zOQJot/4QTMtYGkqJTBCxNDnKQyqiTbW5cxVLT4AoTu2gOSlaXWAmZOjx58tx1Q9gt9AqxqIMFQrbl3MJCW5c74b3m/ltPFOzczh0b4fe8AXoVVClSwIhK/o9bpabS61hjY1Du3XHIbyT3b/VbwmODuZiUBMPexk1H0kdEtcItRDS9SVQRFcL7ffZ/R5CU8yGknX9gx1aHdDTms5JPVgnBbj+mVOGbrhMYstFLOOXesmgXKlukefNFu3EPnRGI5nPy/YPbN2QqnCFfbKlzo9L+n8ZVOSXFceJFuxtFZPhiYI0as15d4A8+i2ln+3nsc/jgYXFTRvoGguUD4oVR40cxgWGwvedXgZGy8A55F3SGeNc+HuIgWZDjclJItUWw+o0OhulEUFH4ERFUk+9kwfSzTafVi+gX9rh/I8Ns99z/HUVDP+W/xjhiDZvw8Xp53ekPOZuSXv8TvCXaKFa88txSo5XWPcHmrl5ybchxxFkO1gnbduQQd750yVU9wUuVW4Z0B0X0fJ8oUllt9NLLUNv4yiAqEgEzAvpDQ0oE/DlkAkjg+YVz9W/njFuz90TbHtrQgpPJIvbiw0kdr/TeHzv9seo6Cb4xsS/pT6OwxPAU56oewDxDI2zsjq+9mV9wDLNT8icgDAUnZCiGcr7CNcVlvEgSCbL6OXmTLu6Sc394nXIjEnrVv+o6m4zd7kuC3tt9eGdo4tcgqpSdkmLVtmzDlRj607MqCvl1W1WzGuxHpGkDJAK+jF5581E9IINjYHzJhTXDg0PWni8S7SuQ54BbgjKk7BX71rcn8mXmFVKUneZRCtHyG9aP+vGM2vO982dCf5OnvhqeG0KBPq7wVnyGRGfCDQLQP1lRV419NYuI8lQegEv6r2/DdsiyziFaXYv9CzVcl0EmBSUDx5ZO4suHNU5GxyFEvzHjdWBjUjdQL6HfZvxCoapWoygBzK3gWqRcx6k0+XuJWas4p9Ha1nxgMzxm5YZaTCM84deYuW2s9zz3H5iD6gOMBxWut/bLHpWXhv3vu/bWRTalBh6efgv/OE8CKUwPgVCY9eYtAPuoZtP1r/mVRXj6YfEJjFfWVSR566yIf5tWHhNH9OpOHvrpaH/ZlBvARYncKIacf/8I9i5aIDdYoNqghMfdsS97bq78wKhY2aOh1V1uXiNkcPQmNxzRWDpIXlA6deUtTisHQuBdAV0swopfd1RfM7z2plsp/y3AIARgh969KXrr/1ECUHh18l0/tlchyLaAuV31rE2rPri78+M9l/X2u7xbN/fqmSgNjMDts81rgYzE7vHgb7sRpQC2qwgT9QzWXhbM9Y9zUWCW6uw5GCAERAJwy7opSTDxfkPK37QfoaMt5CWx/6hydIrH6FfbwO0iZIsuhTCpHhdQzpV3zkXW0hei4RpOOJ2StfrefOrE8ycZEXXafuXcbcs3rfxdzNQ0gVS1BnK1R6OY6+MqkpPJsBnOCoT7HCIG1+rZNO2OgV5DdTP5wybluC+KvW2uBcWa/RCVEkrczARLA3WFzLOTA4FeE1qW9laBgTsTWGhzczJiuPhVzNh5DN/vx0SHOmVyjPqeduAQto8XbR6JhwdeyaYFOHfD61yZGhu5psq5TuRzr9mBT3upj5iX6hABY43IxBRPs0BDZ30YmhAXFY4vckPjYOEcEfzSm6qbLmTSN+Hh83mRPLZW7ZuBnb400vYsacKZ4OTgseLIIhQhhvQ9vEq+3yhlXTwLlVoLddjadDsyxj7oR1ONc7AMPsPY+EY3gv3NHP0k6Ld0GoP1bpLpIRmnDvKl8jNcyiM+1tJy4NM4bqN86kLsdhIo+Y6siZhGEqtVcZEpBiViIJIhHn4wpindohXp0YdfA3BjU+0ria4v7n6oP0S1Ays1WNJyFRj1yC/u1AKg/ZLDM2viS+L97zKI5sod+1xoLB9WvyVWkh5ZRsEDtZg1dyp8FzRZZ00nxFz9rFm8Py28gac/ER08mwwW5uQ4TmlxkNTvrFYW6BYX5g70lwy09MsCTQel1W3PXYBUR/gHsklL1P9lmJn6M2Z0FQDWnQV8HG+hhO4HQHl6xLgJ6iznfl+JouAlilaGGk10ELw4pMxC98TW2TmuNnofyBGZxsHq6qo5vPbHup7uVoO0zsnBlDVQcc+H+rv+xV8rgnaMvjybvGn9Z4MpAJw3LQxWNq4NjJ9cXvJETpU9JoJbfw0vC+3MwrY1JBVgUoj6oAubDpdYrAk3yjXvmx2FQPDoJRitdx0PKuWDj0v4UeAxrE+UHktFPtAFKiIlgtsrZxnQzpD/X5ztQWOpCHsuRZ+7SWsZjFSdU/a09AE/fDJjUr/xIeQH+RCPluJwPX43z/bwga6l33VOsXGzQg6fvOWnqDhM41wb2QOrq3F96/MHS1cGmpjegrlFcuTEV4cK3d/6ijm+PeHVsqRw+o/TdUq38FvcfZMeXvIpD4SAQCSPVKEXPeHaz2zYUuvMYJ3jponEfzSTCzN7IPCjL+NzBKEndM7N9HnTgTuJDzdEcLVkMDk8TWmzSe6AIGp70y9h9fj6lla03Ub7U4L5a+Xa9llE7+bgB7LjJZUrO1e0PM0NRnp8TLWT/+7I7QbSG5ZqE0zThaum8pv/EZu7wAGwS2yVUQbmYe6FeKr65Y66RPj0boA8f2TxYFYKasHUUJ+rh2DgYaqqrBL3/9TTMhP0PaMmoQb7yi9HA+FxvY038b8oacAsFj82qIoCHZzq6NIkewRdAN3fYm5PFF2NNfCESCZ0NKO0C0OdeSLWcUIrfv0UMG0D7F+YazbIgtxpPmrYu3u+ufLroeldoGJN2Do8LaZGfASnAPcigPpP44pZrNlZMVMUCZOVuk+6rxYIYnTgiV8MLZbnYa2Nc3Z0VFsYNLKCI9uKFzwmymJ4faY7pXKEEMoejbmmfLT4OdAujlMQHFgNnnIk/SfToH+ra4xJVPF7V/n5TsJCZGg6hsWiAUbhHs/KVl3DaT5GbMEHISxrlbhF/RNCfKarjNixdZXvP5xrTFGXT3/EA55zefP2HIn40rajTFL6gCZwk1Aqy/XuBMZt08EnNOKQWA2J9/CRvrQTXhd5/RRwr+h41dnPbwevxOusfi5ayWVsZyW6WuIMJ59BN87uTCmVmI7yF/i8Ee14UtWUWmUC9tD1WlOi83dDnPkZc7vC/mwDyk9tBTF8YhUvCjMPNvjeA3ycj4mDfkkkHjpkHwkeX8lHcwL02lKNlttesCvC+4Vri2YEQjDOZ12s9eWF71Jh2NQffjezM4MFDJLfwx9U0atrbnNUEsFFRJrQV3rPBBwNFnW4R3cK+WWb5fslyt5RwDsPQH6iR774bx6x+80pQ4ukYvwMHhhhO8CRAcsbk6J+g+4v7xhtoOwkl7ASzdEidF211+6m0u9ecLUc8kKcfSsMvIit00MgOUGc2uZXhWvtNwFEBMmVuudzY21zxUy6La4cmQD5mhwUFZBC8gAT5gFDMMawaXai8X6ooQCzwWciFG5WBS8vldgPhiLq2jzzsOsgFGbEkxfhbJQ+sv2GyMd1/abUE/eYimvYHQLV8qQFrbHGAsowGdLNIKKwZ4U2+R7f9pu6OVau4bXodv6tNZgPY6XgNyNdwpZLeIeHzWF1SEyxInTDowaUlmAp1M8xeg7zMsT8t65wJPB/2KWtKiD5rzP8Uk9+Z3a5yQ5t/oqnO0HMVzZMDMFtOEODUtUmYhXU0AYOxphaCJQy5ooU7zEV9yJ/QbDnZB2CyuHM10K/AurKTmc6m6GXKYshqmtUnk33FxDD7z62SGzxKEH9T6pzlGXcYk4lMaS3OyvW9Xnqn/QobEcXDmIx5yIhNFICoKUjZgOdbfiE9uHcvmhsY7JT4THYu50AUy3U+wJziBfuMUNoDQxbU4wI1XlOoiKcZqsgetLeJ34Fi/p+8amhYhaXqlYq1ZRgbj3dgMTtQIyaaoGcXbdSRktqeINDJYMSeXFjlMoKzBqIb6OnPuM53Yz0EEBnUZeZQ+9HpLUxVXk3LKlNOzQs8B6GUcn701aAoqodnmU40707Gan/tqQPfqEochuEx8mt/qN5FpoGFf1pfSiKKPBhC2vzANGKCtlSB84e0K7LVOvScFdinE39jKiX0xHQHzLksoyBLwn4BrscWRhUQLDZb0XGskLe2As4QIslPQmG1h0AFM3hXV7e78VevbfjkOqVRtPsxZIWvqbf0NyCX59bXDZdvMQLkxQJ6AS9+fsbOEY5qOh68Lz8lkg4LAIaMYhIC0gwW53u+fn9vdjlEyst6rE2wbPeuBXzN48QQoUiCuYZMMKkhwcgwkLnpqPLZHfBihmFVbtWcQSrdKaqvtAaXdsI8hf1pNwyj/bKxD4ZsoyjzFhqvd0aMCG+BBMuUgqBOosBcOSLokl5GGuGy47YJlLucFP3N34TzDWlIjoz4GaluQ6hAPLo3pAoR7GjeATzAcpSRvSMjbiGTQxMP7NObJyGv9DGWxJB8bbQ+OeLSOmOPJ7SoTWVc4uYXQlCrspf4N9bbYVoTQDsa6OrK6JZP5ErLwIxx/4/KoywC29PseZV47RqEIOSEKf+IWbXO80MvsxiyiQop9rTMlE4chUV3RQxuUeGJZ03OesgbRckga++pvTgU/E3esAtZlXKEt9biaQO2kYyd0zH+0aEm7oh4zQ/7AIQLT1zVH5t2M/YraHgFR5tF3152rxpfusWCk78MT1V3cxNOcLGivefG4FiniT0XbYfmJMidQqvt4G4l/Kb76YXGE9aaLWUX5FIncCvqzC8H5UmmX5xUcsF6BWrZCQtA6XQaJVl9P4b884ZwB/b2/FI/Mo50UUh6LdV3jGQw174EZ1xhBdEY2YdmdDoDqT+mzRZuiLLx2jRvaAoOUqdAp8VTY6970Re/W2ZijvO5wIYbphu6vrSxBfuiwICSEQbFHSvbvr/tgCygwCV7J09Y+huWoxkt0NKDBXeNctPLCmpUyH4oNzm6WEg+Fhv3DAw93gbcdr7PIzI60zCHDN3PHEoRumJ0/h/T5IOW6zqepNLD3asN8HlRS7TtsRW9U/MK/lBvHfNoCjpx8ICaKUsCNhCUhZrksa/RFpa2awu1w1To/o+GQLSAfvIiowvi82EDI/SBmfCc3btwvruHCyNhqXI17NQx/FxiQJ1E1IerVkwgId+mY4Cz6Hy0H3YikthX+DVt5TMRzrrAngktOqJVq5PZoWAls2cDaUtx0Dx6oB1F3UvWu81ev01emL+ag09i4jmTGYQPQr7LMtPTed2f0Wzt6HEcCK4dt7NLk0XPFyOeezdQNCfUTqLZHN7Pv471vwbH1v0LD6F4LCkKqf6zD7jJ6WrvsF4e+vmztB+pSOThyMTOf1oYYflUnh8qujsv0JOzFH35mmE7JKT19WnClqGd3iJNGU8xiR5DNn0ud2xRr4YWPmwlljmEt7f7JCp7OHtpi5khkcPlvFBXCL6haqFSPXefIMEzmHGrvX+e6EP8+x6gxrE9r/J0ldywkC0bL4pYXiQScCfHmlxmFnW6CrVsvEMX2KKLgrFhXqRAyq9ZxxaFfGN4hjKtTZommHtKmT3lY3fYxp7iKdemTddhqKH+Kma9U6BnVC/Q9zqpnKEzM44Stustv9EdrmV7PPv8PHLvpsutOnuM7LTp1WpbipPq8ESZgKEpW0wCEGEKf0UUTZxzb6PYTpzvg43etSqAr80wXrHOt23AACwTxZRy4xtoXk4ynRrQn3EXKkbTZflMTSEHjiB+jzZ7BuZg54YYG/4cNe7xzkIy3BSH742EqigBd3xf+3n3m0H7GYnNlsj656mVYd/fPQRyPcoTOfLvffLddjSD8041GqneMaSg5sFXO1r+4bM2sEWmUBwA4IRSxJzNH1c0Qu1XGMwdmXO9cieytTYVRqfiEmr4BCkSr0rVeB87qbQCKMsjtbSCjXzMIPeyVGd5nb1RZNkna7j+lIwvdG2mK9upZaUXBwL4cUOtOr3s85HBq4EcCsIxIJEyMQfpNSXMtRkv/tONWjPubSXTKmGjBfuYFXalqwn1wHyR1qaH9vXAFjBI14vYvM8teHe74d2lMNVQRIwZBaOksO8D+GNr1YnsRGV5+XhLZoAOf2qMhIzdtqoKfc3ZAZTyrMCjh61fYXBB8sTdFXNZvlpxinvZ85tC45t7vY49LA07XkJlCUdlCxLjUg/7Q9+vYplKzvtpPAO3FVm8iqq5zKf2dnjIBwwdNDbAlPVaU21ZqL48Yr5vExIlXCw7WOLY33O0FRFfHXOYtw+xC/0WxKnpj/67ZNEmL5HqhbZTuHFnGYROF2TT5SMsfU60IV2t7lCOOdXg87NBFhA/oCxKKMgn8nQRTc5KIDXX9V3B27ObhgBnOiQQAK99m8mxrWa2QqA/BVUh2kHuyylcbhtcM/7lpAnwNTGtUd9vAFoX9B6tHhjf//5irfDK6kNR/OY+6JxADrJ4gpM6irn7fh9bjhsrkjBnMYboO2Zqj855wTT0vgeelYoBXygWfnnl34gvT8bJ/RJn2/WmtNYfE1BNaDGZpGzDyHVbnMloXNrxyFpgayTHnJeoK9YWbK9R0jow/vXbVCwbsImNoBXiOquojof98zqsaixaYPLVEKBN8VUekQesQJTqCQ9xpCFOjcGba7jMBlQp8mV38oM0vKMQKLNHz2egw537dFZY5Z0AvH1SCxYbr9+90PzqroKEhzk4OwZvEvBzW+k+lrHKNdwzAuKUshCySRPw7+uJ66/xv5wrxFiMJecz4sKulvip7TKj6ZxenQnQcqaw6qiR0WCT0OAZCbY+dLTLaB+OPnaAhcmpG9sTzARND0btnz1zhnyh+W5KM+h8mOGJVMAj2i6+iSPLrXXxBAZcqeEKBSozcsJiLVfvks4N6f5jJKBdTEaE2DLlkpJLVKtBwrXG7WFV/NuZYQE1Up6zyJ9Q/dXhVwymPFQiHi9w8bAFXv/AYBfsxEfA6+jtwJcKjm+ZhNUY513emYk26mTiupb/0fhZBMzOR76FgITQDB12rTSP+NWAR7ONgiU2t9Pgs/e6Lz7l8dNaExV3Od+hmuUycx9bMu0ysMpzTpQ1ZIeVtpw+BFQbw0rAwKtiTcTwRKgy3pX3b0pekvmOKrlO4YCCNnkm3jKP91lfF7lB6uZ7dminedLKCKV8pAeMbwYSKQJO8tD5ciMb1jStKGtoTm4mWy473gjJXQDpBpE2RgGjQmPBYCztraV4pJy/6GwWefapx43DuS0QAxXKNU9sKwDtmqj19tDBBpiMY7yG8mbvzd8Hbllydsu5FfhGexQCvR9Qmf15vC6LIZEs00zk9uX5tIOR6cuZ4o/bF1KylhVB702wx1Can3Ps66/HJB+VBHqU6y4z0ztkk/MJL3WEQvi+/MKFW/ASrJ1a/EeZTwFknk7c2B9S/HKX7AMV1qEj1nTSchKyn6gPrCuGbQMi45nQd2KVYF2YHmVAVyeM13fJKLiHvAHCHTROftcBd+MfFQM7xn6vXdKGFSalgkcGkJ0/TdZwpk60qoOP0MI5I+FjGl83iOcmPthw0Loquw5e2gg5MP0rfqqiDt1D5UCkaNkniCRrj9aHnf5FxyjEuQq+YI1k9xiRfFmQSLR4KHch5+LFO2H4xlYuxO6nUJ1WDuV9jnkJ6hffxc6mQ5CZpPA/YKuJSx4lkCUJKA1/fEnHiQ3CW6CTV7EunkOWXSy6f4lZQSxprHxeDbbYDrxjBfsuaq4ORX5lP2UBePKBnp1Jdwy9jqNP11jQ2UWY+BhaNMVGPXtgbbbm3S2h8Wk6N/Tf+uxaE/twulOC/EcmCpaE0XySSsaX9C9ysihpu628QyO4ZJ1fc4eBzgcZRzaMeMrOr83Q8lr9CVjBt21W0tazUs/5IXY6qPRbkOlYSV0z/6D2M7JcMOonbUhnYTMyandCUV3sqPW/foIAo//HPNqqMMvemCEnuQpHcrXP3hVtV6UExGZRHq7Q81/hRKak6Vdhma7ckNtpMW4vfPVsXfFmXBXBqBTLm45seDloRnh81O5/qQcaOiTBz3lByAzjmHXJhiLdhdPJqgtkaLoFu5pOw2iUbixpjM3k9ckLWgJOXFnigWVGMRAo01mRzq4j+mb7vudnxjNSCYuziWQcs7RKznNEXeNIzk0P1iWlwj1xEJxOYYftoz9jGHNvu0vqSAmSXPNPeqGFAMREm1Y8cmHrADhdC6hdW4llCm+4BqmgsaE/nDUAp0jTj7+dO33JfpFKtKowZY5r28eFWjLZQDLSKgOrdpNKjycQLHjoFMSHF52FRE15IEVXPDV2GkwRd4ds9Im0Ps66x89paYLzo5HmzrcGCF91aVFYxgwMG3t4CPCg6Nvk2SdS2DW+N2Jy5CVsuMpm1z16RtOnZtCWibQGXEXYphFGHxZctDGdEEoa+6HMl1FjBWAQFevM/D58GOE1Z7ROJxtRTZIPE8TqN8J+5fLVYAeh47VFOzHioIilDJdcl/4TTXSYaLm6kIdue9oOANjHnH96mh6Kc0NwKPht7k/E9IkSZCYY2PQUFifKFdwWkINMow97bGR4frMpEz78TRYJ4uidGy6dvD6uFZId+85I07u1XPP+pVeYM0Tm4ve3jhvnyoAaIDM6ZLIqO+RCiWqyIZhY6wlUHl0JxNQec7rsfsFn8Dn4Gc+AC5hYn0SgRbd8JU5Ga2gKzGxnsgCS8f/D0k66lPhKVtReDSDTGQnoWYZFJ94+BObaLuzrI4yOv4E5f50uFHye9vQFLj5oBzy82/djCwMuZ0mga+yBtPkFNU1s6oms5zYSQKp7vEfVaiCT1IHJCvi0EsZtNNfdbW0vISxfh96wXKYFdNBEiRfotli1mnpgzI6y/XIxAbADeVSnHdwwooC0FuF7JGpDy3XbAh3XOsRmrzLSXujoTL8SAB7MY8ri2M99n/GXSUItUtqxTv/loAXswAgCzgp52aX8/2OZLTco39RTb3YtMXhUgxj72kAGK7S3nMxxD+6j+NfHdERlRrnSYfr55TE2A3AxYLEO+giSxGuqv2jWoOz7WsKVJXYUTtE69t8FoX9LR2oGSqak+Y4E0k0SwgSrddRIV0ic9wfzsMug2VU/B2INuDKFOZrM2sKiTkd5l7YO9C04OPxKShJH50KqPAsMbMK4mJL3jQlfSVuKo6ocXlBYWgEzYw02d6xYRdPoDRUmyQPYHmcYHJgk1rT8eRE0w4GgOFCEdgVBZWgs401Z/RCirOqRbY3hZI9oTrM4c1rY5ARtD/Y5QDUrHX1zxok8T0oBSeYuI+7WfemV8rQ3vdF1kotmJqE3nFHfkiMPERMmXcngFCU/FZquKqOMkzTw0CEB6j0oStQktR6ne8suP/RCRkjjrAO4ehESODWc26HUXlRTvvUqqgTK9Op4bp3fzAQCukMKGGH1a5NbpJTRtg6/X+RuFHXz/e1rrkIxZ13Vi3eG3SgH03gq84wQei1XrRBDZ/MGtg1WOwSS80c/gBjo9tL6PKZxijo+3ShwqXOzI1wS5u0wJGvl612xI2L1NIMLJtNgf0pFJphnwFo8wwRMl0ej5W79NNFqbAKxr4CFRVfzWoSaZCqtzWyWWqv2gXMADlktBtH7aOlckXbOjf/OmPXH8U4PunEZ4rn+rbJzuuIT5YcBWgKhWk5VY7rHUEHyARl1WJ3dlfToKzMALjsT65ifRZSFTh4ZQv0SJaDXD6cFt3vYj88hfzevtJAveacyFIpoh9Owa1ljqit/4SMw8W7bEVqUzAVxhztWtt4EH/BEMLKeH9terxRXuZxqm+TSExf6ljIPcP0uieOKilExdW/ux30A9gTvCmahuLbeV4c1gUVsucjjohC6DmJccIT+Z9vkm42g3YJ/XS93wWmDrqcn+EEewpFLvAJ2JeGfAdcyzveAmwcC7h72U5niBj58BMpdjWEIB1AWHvOFO1SyIBpXb1prdYTIfBb+fyR7+zqmX22/Vl3O7PSK21tzd2YbqrEo5uk8kd46naGgp73KgBeRqFecaEuRyJurl/xl5nCZTpI+O3wlmm1pTk/lzAjSsAdQlec2KH9IzXH33ydPEQw0yUwb6YWKkh80F3lCddJ9oYl3hnpnXtLMVudXP8pMhhBJy/z3LJHtywiWIhg/OEruiorAtzZyYSv1ForwGnDKoav8EZHtOOpe4EgM7JYHWUnSWvUmb4bE1hPXljdYE0WRkwUG57wbYUvGefqTVdRQDnMfQrHGn3Jh5L6IQtCSCiFMAybAvR4PwZJOJgVyjwjEm9O6VhnaoH8DxXlpTX7zrE+QfjxbI49q6cK7etxEwtCUZ8Ytf9duXyz6BN4EmRVjetLZSat6xyLouibATkvWP1bmL0sV0x1PszfovZsCxmyTFB0KVnWBaSOjnq89qHCCE7fbWxCWS2P+8No6ak7dp+/pym/dntOPK/kiWiEL0CC/mjwM6gd/MqNW7KtT4z5RVrS1yWCsNingVJ6vTCpi5nbwHiEGI0APlUZLzNftIA7nLHVs4q0PkTs/TKZizPjCqFWqelitJ6H9PS6EVzhtkq0/wYwNnyYCku+EfpVIOKnVXeSBnuhdXft90ymtdAaVGpxOcJNYgTauiltEBqEbXlI/CpisMcKIU5gzBfOOSJkiRMfBo5ckxaH6aER+pdvky9xwg8EdJ3g4ODCnOnyWRwa7hVUE18Rx65MB02WbbnZqnSDMmTp2Y0jlc626f9A2VpuhTfeh6cAeF0hfhyU+XsczRmu0eXj9x1FcGh4GwxwQNZMMYcihAtoFeEdcBEQ1yl1xFBRyWkItOFd45ul6qbADO1HGf1IfdLeOvUmN7ZH9lVN9ehU0zROSTuuvZMhul72UXtIlF3XkMSHHzJM6153OwXctc0fhmyKfuCijLhd3XbC8mqOR/UBnZSvzZUbdQX2+JTaLcw8kZmblr1fVYqrbwdSqPcy7mTEFeBNL6g89QzDu4CKJU1wv/QVUEXC7wq/LJyDl8VO8RrDV9W1iYlKDVgWvvexEg9FhxruwK3yEVxBUuuSqzL7KLYNGVeSgcSG+wWnJFhBYRBWXA3qZCn3fGwzK1mC+di0iV7Wocxc4gwrHXn/E5K4JoMdwHDsp2/ZsAkEjA1LMnW8JDlNKI9Axb9/TuRg5uKFqEZpZnNdDfB8a6xObCu4ZGxDBl14I6YMLaOD/fz4QM/M/SJCFDChWGZm3w02+ArK4RZp76T4aT+KbOd4n03Vs+mkpinODqmAne/feTOWj90CQcMZC90iXpcMZs4QNqVD9SBB7f0otSLFebBsfPkgvPhhSrvXsmgE0N/W6R07X1RDncZP+KGJ9AfwhPzmGnkQIWw2PHfDSVm2LOgqQN1N2NWWw8qYgcBPVYER1T+63lgHwBk1lNARHc0jsf1xtNBwfCmW/aAwKPOaww3HUC58O/Nmufl7S9uJeqbKB6WP9mMHYvH2a6h76wf4D3Y2NFoNpQzrYkZWGE4t23H9SVeM6q1lncrDoIsgUGskz/8E+Wf8oZ1lA6/od0rnrHd90xwsywYV00ETMn5yyexIccJ+jA9rBXQAhgBUg/0NvbdrO6JEWJAYHy5BQFJl6Tmy9UC14QEo0JpZHE1W+yZKv4g8DOzuU9HejHP3Asini7287id7ueXYPP5OkQYymSpfa6c6NoLPotG3ucdYSGuOOMR57EBLSf4PCAd9F0AzvLUeIHCeGSPqjcZg5bAGP2K4vu0e4aNOwbbRqouR+CqTW9HeYgt3wkL8JQxFd98ocPpBmQy9DTTl5z4kjI9FLZvpMzhk7/7AXUrhYTgd/nmXkyKOTwm3K+fvtWuzRE56oahtrNaA/Eb5Moo9U6mUVylX9TUDNaRmceqWLEBhc0NJfATz7d+DSrohDj49kmNi5fPc7yyTj+CGY3kbQtU+YjTYy+TLSCPgxUc22BacitTfD8Km/Vo+XrHbhtzTmjll9ir2RD5zeW7Qi3yBFri9B0QXLI6Sq6Vm+h/cIcBFegvD1Lb3eJu9n+Ev7E1L1Cb6zwtlXmuY0XchSlNrF0hdKCz2kzpzJmrR5H0FlOwpgJNuYW+iB5Tj+Xsfhwz1738gOEdNQ/peUB2RtzD8K8oJRrzH1ya/SgUZ3SJIQ0a/7NF/Y4wygmGCAeWcQmtMx90sQg4EhViO3OUADmotQKI8fUU9ofSngvNuvvl4NwJbxG/mePCJnyqeJDMHB4SRtXWvd2TzUfDGsT87udWBtKLoy5dasKP6Sj/UIbFQnQ38JQVwiMfKd9srWZRZaWZCG8wp4FGbUuae4sVFi7tca9IIJ4Vl1Vvd8n+yI47UoHZNVmTszzS89d0EBTRy6JZ7Lf/Y2qOBlPBF4uOQ8OPoEybeQyZuy/eQiOSyTXnaL0l0qVGtDjPeP0QfhwdKOJwdJKUda5+wJ3pTWeES3b6Ibfx02H2gWrfUrAay3NztWBjtKrxhC8OH7Y/fAxbQTrzCGdLOeLhysANNnmah/uCOHBGu195d+YABEWvR/+NLRHA+RAGLaeHQ1A2XJdLnV5OyGy/k/gIMDoIESDwoCt+nMQE7gDAaFFagQvaqazl12gT93shwlzCCiwdbdUhOUjdXp+wuNAnrxJQ/Tlf6hadZhdev36seZRGy3r7b4/wSxduve0YORHhK9IzfJmrswOBsgDbdDfGbiyPEyPfwqQd5qJq/uhAuJju0X/GKq7mta/MqzIyYOBxoqix8YVgpoSp8lDUL2U6NEE4CNL02s/8B8hXxawwu2uOZft+EWRq2gCdcW9ykmx8kcxIZN4e35IztMNMHmbeHL0M85/U7QZNTLPB3qGn8MJ/NKU4pVsUMLWzhx5WuHNQMJuSvhrT+89DNNxKcjLzd6w9kNtVgHSkBCQV60+J6OteapEuz//m7oBBgfrlewqE/BxR4zx4vR8RDw37/d8s7WPV8HC7NGiwRcss0dcEkb4Silx26v0sI0bb0rfmDOdwUFV9Do1tSC8HdWJ+71ym4YUaFe0YsYGg//pb2iYQQyYRXZNEbFZTsJeDe6j+eCvdcpKrteiytD0vXDvUw56qC9W0y+EdE+46y+4EdTYI7fHLBPs+o/dXKYCUBJRHy5T1xTd2On0yw4dGEyw4vvCUKLnAZuXpPKTUR7lgKWNVbB2spR2Vi76FfTuqWKhQUV2P+tkVPXWSw8MKQ9fq5QEIRCT1eVHnPKOaIF0OIcI2EFpXDQqgnb0d3jLtgOrPkE873s12QEqYdOlFpZckmJr4Iyno2bocF3Cr3JEsz6FflZ6luwXh5TYmySL6yZ1qTVIDfG5Kx549XVpOs2zt/HAhk8O1xV3oCEEXRfNuZSghsGreSu8nM2OOue3k5RyDpDK7vAU3qE7VXlC8EAcqWXhslQHIHlf1OTThgdowJZXZM2oUBXH0J0a4CXXWzs4VC+EjjgmJZt0egMMs8mm9VOrs+pjhUDjJIVvKDxV6S86QdkmC2ukkbq41SsYA9dPf91pXzSVrkStyH1O7+WFqZO6hWqM4/LHeYJ85Lq9TArIuoY+QEAaPz9vhskwlr1MHHe0us+vBtTk250ySj/3SIhp618MHAL3eKX2FgyYXMDdbPgfxm9FbBlUd7VjNM1REp5mELqjFkiBs8HXRcdRByXP9K7m4C+h2wQUZdmdX0GlhCIYlf7lcHLSSKT3E40Pf49kbHpWfNRlaJ3XSBf/ez8ZwPUJH4KtpQpknAGMwMkM6HLURAgZoflz7OZqlHoWZgqQeq2/HQZsQ2Nl1zyiZa+lIu9KYEiESkBDrD3CMxvNZ3v6/3Y2wQVFBT7En6qBRAc+wzhSkpt8xYGIdpKx5KQCiLT4HJXZPtCC158rs2C04eJVJKDZ2FRxoadt3rplZvmeDP2f7mUNWo2Cp3tEJfnQvqnC99u9jiwj+Eu/ssNPgsZrxrSSE7xiiA/1iFnFk3Rce3KxgsL3h3J5vIi1j5DG1sWItyvs5ODE1N6E01oLmT2rhgRgDPl00QEqrT/7NBgdwqkkzMuagAuBwu/aBzj6D7jXv61Og1eCsIVmrgS2SbRJxgZJzzs9lAB17aXaooMWbIWFKZOE4yhDi50y9ho5q7Q4LLs3t106/UFyP+NCg7RxhKNr7iZVZEo8PzZaMqTd+Ogk+4OIdta4JFedzYoJVj/8veuNvhE8Te/lmNUJE8sRk6epvVcnLEuAWR+kK4gHh6AP4dpmNtId4VLRyergXdzpQ0bR3B2LG87040sz0izT0eGSgbHAunDSI9h+P0WMrPMmI55BRgNPwv2iwyFlkRlUjY4MKqz9x8N7ufmsI5ckKu2Y3qvDKavsrtYQ6C062y86173jd8O67orR1Y5Gc2skKqT/6HRUV0jFnXVjvkxWF2ducb3doyyl0TmYokYXECQ4BKOB6wTMlaqlAf5JRtBXrisxIvC2Ni5ykIaHEMLMuArcg4UQ8qTImuZfVMOet07QFqhcgzAhu2XVzCrgc8NziYwFT57y5zMKPX2mDm5rW+3m9CTG9NzMei0nMG6u96FfnjXm1dBcrNyxz6Sj01Te3s0YqXaYMLryY4VDPRLPS8iwi3j2hbO4T6hMlFYah8uRpJ34H+RYUVXhZdPopzAy18nNKgnrvFg3Sb6UCyb5s4j1FOCBmqgIYeVrlffxtmoe+4CoN0aNf1lRzyyFepPr0d8FDojn0HzYzkGrjuzjxa4inlfhG4rKgJtplzVmGUlt1p6wpdKzFMsQVbhVyV0AHJYiFPa5rkXuoM1nLORuqc/BJSpo7YVjDlLwyJ3ToXz8w8OK8cEnocvBEmeAnwlAAWTNRFIDWrFh/Oa2/mZzVIHlrq3W9vcBLzbW1GU5l+Txa7AlVFRFn4ldUDsOxjlfSSTsgmmZMNvuROXixJhwMy7LVMTpSIocjWwzhoSdZYa8Gvd5fmsaRCui97/WpWdwa5a1dcvUZ58POVuk7SqpP8BtKkwLP8QEAzAj5ffg2YIcNwW+RF+8wLnLcBdS1TIY7aNpHd2T3NZGsyAZKSP8pnzNEtTiZpYpYTh+eem5R/t8CXDUWnnmd7UWK09EOliTbfAX15RhdIAX4qP2mc8iumGr85S7Yge12Of1dgMGdZuEWMCdHqfTpuYfNG2DDerdsWQVB2iQxAftgfZqw9k5uIeUL4WtE7qDXaFY0J4/XDnyo2Ed/lY14nrCCIkMEGLsFYK7Okqf1jcYLMNceEW5Qf8lC3DXATsNeibe3PvxXuCuxM5Wn+zSSYuDiSdJujSzDqzOV2SUN8VvgO2g23vLzCZ7uhr58/o0rm7o7VT7IdmL8+fzlGE/DFhXOJJdg50xF0sqs/IdWSXT/90859QS3IlMbSkWxFlfDMYQDOfnSL8Bqzr4xrkF5rpuBIziTJH53MioS/hP9H3cgI6EvPBwN9hvwUML4RVSaTS3ayS5vLBLIDVsvYDf+3/i/VVyG3a+a/XbjtmLBaO24JK2E+Dv06jY7ES/+dfQLsViIm9Pp62tSZJPydCgUF8ftQlLPQmUMdYv45tRY8I/NeBSvXEMCOaRyn8qeaEqFbn4Ed2QnXo5N1ThWpRKygOmYwL4ZC7SOXpdAygrXBFsVseMjm8IS74hy0WM62MFoO9RIYuNhuBqlYDXk4gxIdvvqS2a3w5l5KxkBv10clRK5PtzWLWpFI98deyC/EF4Z4nOmWqjC8aeYsoBkA95hND07KaVyGtKxpiiOySQOsBxk76nh+4WiT3pkNCdFHDwPr3la60et/cyTsihpNNMl9z7iNMsiQ66FGOWshq18TC0BxzQbR46JWJOs2tCNwmntMeP5Lb20snD716sFdWF8JY628zB5GYtWG2mCbdNuAycZ9pR/9R22PSkPYxc+wB7zMcjtmHSskPvRaIEf6dELMysfFkoV/6ePTxqbYZKbHAF+2pJkvR0m/DM23exfhURGd1jy5BYChGUGib+MJkdSJK0/mxwA7Bu4HeFLgd9VxVSo5y/ve3DuC6UDjOIHTStRgCSssr084EghSihBdi0+EDIueDL1KKmirF4IW/hZZDxn5ADffQzvW4Aya13wu/0bNUw+rJRL0maC36lTVBnd6NwSR0wo/9RuX3hwGCe+OqLZfq7WLGsGVXiG1wElYwY+KVjRXx51Jo4HKWLL/pE64A6g8Fr5joR5rB1mU/Z6TZ7w4uA+5kSmBUxIOLUPhLS82UNqTiVusWzc3LIK0PojT4NlOf7+2GzsbOA3jSjEen7K4UFfvICcUNCIXyvF9Bw2N4ToNNiVYfZwR5qjDlgokEjQSe3rrOAUFfrCQsDCu3k0oCaPbD7bz/X24TAi0Ri+E63LP0cKxcql85SkJ+fG2obh+mx6UcZ5kJoEp5ixR0tLrEoR8WgWRUkMkkVshGRJ+G0m/9d52N+c46X8iGa3nmi5/Uq4QpCFUItnHBDy02fynm8QGVYpv/CxBpa37U8qW6gUUfmJz/A7iQ3/xhsCg7P3eUGEP87A/l0m2hduC3vPJf/3OuKvUiIXTgivTCSwHLTEd3NtuLhSBe4dI2agXN0GIpCg/BWVVyiZpa2wTwgPlBGu73ZY4wSBOoGdzB97carwC/yToa1051MkSRTAsMb9aFEX0pQT530XiMS7TNSD7n2ebrjbOU/9kfxxs19R2EAfaOlQeDDSHVhCJVTKO75ml0kiV7HfTbNEP04ijph3SPo07Bjbt0PPTdLrKSbU4v0mh2tCLdFhubUoYosGgmh0r8tSVneUcijQ/6daMIxwEpkMEIMYqOkDt8doBDCfe6uUICjHC3qa5E9sX6ezMb6+x8y7MQGVDKpdAYj4JuA/vYLOOo4AW0ZtHvlN22+jur3qsqc2QLSNQg9BN0YCF03V6j7Ur5UTo3WrB23hqO+3gaAyfpii0844dJESDnsz+iRSaBGQefSuQXMOtwsHnkRhMOJs1hCWtn+VeOSfrzFgvsAXJq7XXJN1SZSTgUquQhGsv73f7FEzPMGsTsymyct1Yjds1uFmqON7iaqLlPX3diSdWRwEciHN0bqgaKaeMZG3GyAOwvFKDfVIpxRsg9Ysa+vQFF2nqDYnE3/joe4mIODpJvxaJ5XdiSYmAPRbE+JAA9Ol61sPvkHxo/FWllZg5H3ObuxDQ5R7aH23FfFgpBVYAS7oSuxBC+QytZVwmMtzmNtsjhVDpkNf4jLIZiG7ia2Cdm8N3qPTl/Eaue2XvNrLtDW6POXwE8+ScnJGCICvpbVEbvtGqAGc2jsqt7d662ZmR/gM5lBj0HlkBE1k5Ym9Vnhq7k7dKklpkiUJh8ydZK9akCJfdlHXu8hh6nP9spbxl2zIihbnmSwC2WdtpiuSycOXuPOSa4tAqopbo546/Pjq6tp8DZFry2GV7kknfRan9P6mcN6x5nnXuYHDUOfhzlX7Hsz8h2gMaaN0gMB9Aa25Gn4uPvwVAdJrk5Zh9HAWFXqcWvsMyfp5vmDq0ONR6wkMglALRnCn5/ZlEKfp4m+s+xo+zJ8Y/97nIWSJGV0eSEpTUjVXFs+6ANEyYZQ+0f4N1ZNALXWGAI/lUPnRa6YOQ6y3lVabqZxaejj2RR2GiQzV7yw8mdGWp0M68apOYO/hzevvXrFRBwOfa9IatvyXKTme3+Wj4mac/CVwobJOROoMzlnF9eYif+isXGQeLFRuwxO0crcycYMwYAX2OMdCZ1Fv+gk5ZOToq4/f/kFgQXPKZ75+yIOyPBqB7cSUv1Uhh5g/5OUlh9zDuSAs++9mvjZNWkoXhX94dq88kKDuK9TbhcuqN1f8xlRptHTJ8Jbk7qtyAqeynf6wrmCKZQWcadxh5S3YhJAVTa95g0OxAV+sCQep3ag7yVVrr9x4Io+wBP57rvbDIVkH8B7kCLkzWBdcwo8jbrL9I3SDeYfDrIt34B2J+4CE4eZUVaQg1wNz6JxLURv6lqJR6KFrUKCHp0Qtap4eQCg0xHaNeJEavbPhH2DYsN/AQt7nPr3WrY9KhBwcoT8eJtneQRVbksGVVsUYJFvxylbTZTkad+zhnknMtmWsOWK2QwOt2IQ0zWvh7vtgf2bfeHXljbE39/XPTGWNTsL2rV3rpUXmcNlpBGeR5oQkvOnmFFdX/chBQ7g58OTnKnY1Vutm5ZslBefYMQEZ4ZK9OH+PwvBP7odj3cABqoxSuq4eveyKr+M5PoW1CsDV6KI0F2UZCahiYhYXhByhFUFmdQT3jf3n4ySrsZBlVcotJUXorP+twIgrhhhGrCy0INQVkYHWRh4NsuND6hsXHOcxzW8V3s/VrwTCGMU04tHqysujiL140OAxNDcadmaWazlZLS6UWrEB9Rq2wfAesauwMkgSh0DA2QoHbv7Bh5kJc7NYnWC9GqxwbHg/q+dwU0x4dHCtgf4KHlOLrJ+scLIRAjX+za1+9XStb5DW4pCQLjSc8f9mLR+sQYYy8JEFA05W9N6DcYuBwOBWmhbTvGMk25qmSyOO2jXYwSVqfe9fSkzhp6f4+b5RruthiMqeRFOzPqP0/k61U3oPNjvSlagbYZTnco/zGR07PGAFXQt0fi/EoRMUV+OxBa9RXE82YqVM1aQGAZUxXdvB4BGoL/b3kJ/n+3kCO7yd9YHJDCx6wNNRiRpBJnfd8ZFLla2OuE2DC7HSvBl5aHJrVbhRfJIRttW2RijLC+htFaYJoZzALhhzaJakbX6sL652bPQd8WsOBzROyKOjxjgiG0H4B1dPyS0jKNhSDfZHt4JYiVD10O70TVrKDLT704Yn0p09AkjLquuioaaQNfSDN+eyJibT3OEQmRnQBxqJX5hGXdTIxrOnnw8Oqd8Gsa4vwNrlUX5Hl8eADFfKZq31UGXDBzTmhRA7QgzviePHa8AXe4h6rrgpmU2MsxTfP6RFUjS0HO9NqM3cNmXqghlXqCf9POgkxJoJU+BSnl2eEpYcTUC9bj3FJAMC0EpSFoOrKknv9aApltAtO42uh13UI2ib/pI0S9Fuf64SPsNEbzK4hlwa4vo/iPtXihDCAcvgpL4zcC5mwjTevXbNFcKsjlSPTBBeUq6G/I5f3+QzDrbcKUFwuFYiG69ON+UA92r2i5YJCPwXQKaVUBmkcqeOGG8HD2z+0WGfGwurde74umCHCsgQbx4vQrR/x4T888Ry2WYgFmezirZAlDV3GYyguLMY3dJMKLKQwW8MH7vpLL1wV4y8Sm4c7VlFsBnf7VdMmg45GCgoelO5nmOu3vJoBYc217QZpRtjauyH83zsKDGazOxMpBoKAqb8HvOilhcsnnXdEULYFasAISBZpXPXsuHKXhY7fgfEWFsg0BrvNYmFyTBlUuMnp/FrMupH7V7sjXtgy49SS6bCDMps80xZjlZIJmPwJuk230vG9UtwLIhMOzl3vMo+uZEaMzISoJezE+P8zg3mHfuJJFphgMjmVL3jvhsJ8v6FR3UbNaNK0qkO12Xx8Q3SS4bf6DLPL1hCdPtvyZSNEyaJ/mJ5a4GHiwmEGm0gTqItscsLoulSKY8GL5e6K1jq9Z6B0wDgdxLh0pQGMJmrCEy0Hfi/hsi8LHGN3E9EUQ6R6z0YWpftKjoKWG4eKq7tHFjYf/uSP26FsUVBtAQPdDIF7i6JT+aeMgnUqNF9jTjhWOXb09stdtnSeMNPE4DMCO1Bj/BWj2sIpGDbf/sapWmMs8Z+RXjU2Ik9ZFa4mlgM1MUzwZyJCTwtpmVZAlp+ARNCFUHaQmi1j3ptFMxeugZE6oot0uTDBTaDPS5FcksCUyzgg0xpB4a2awzpb7pEOOrlbjbP0IranEyOcHImcCWoiFnyTjBfj8UCYmzdcQWvvdVzAzf6RJygpIMa9p4UTXTzg2qzZU4EJ04ohnPpshXNXptu1H2gCJkTcZIB56LCRi3oT/3g7O2KnHXPaokQQAGipsu0XHpD9eoDITsrhOOQJfBiuiYS+uNZd9DWOukDZUBxX3tc+IttaPRV+TzPmaSY1UI76YxGBQTif4sYapvUtm0a/9vCrv2Dg0RjBEt/S0IMVi28fZQuSMkizZHI7C5sGK3ui+5OUuL3D6TKX0sETRYBNfpT4RFVo5WG0eYnqya6O1/XSXyp8FtAhyDoAgLuxCF5TyKwZweYXVSk8+yxugzlfBOygoP+N0R83qJ/gajpcw2Oz6rQK264i8eWYTL4KSHTD7QoXegEjqmGXNJfR5LGseOzjJiGN//saUFvEAmszgTZT9OrKGvAXSmz9T2Az2bt7rAWygLIRrHCaOIG4DLwOwKRJ1q1tf7SIgdSj8w7VY15g31Y0J91cXW2n8fhj3GGjslppAy+t3EdToMeNJuh1jcV7OrdDwX0tQGM4kRawlUk92DW64QmpiNYWuDvJzQG6NbdbFGx13NNTmg1XN6/ad/pZo6BNOdAz/GmydZ5n8anwo42AqCGdUd4JHYwi8Jslzoh0v4iE320MJc1vMEQKYFUHx3kQmouBNQeq6MmeSDXYkObmWmWcwq52cbpMAu13uhL19Z7EyrgPjkXYUdaemIyETRmJema72DkhJ2RYjOhNDigHdNFj95OJRqoM1/awNQuQrExFWumBA8bF1HbYTXpWWsSx5uPchhpHyEXUNokp+3VYUIOptNKj/+TweApmnAe7bXt+gw0Ej1knAq90yW+mkvV38gnx18cRswxzqHc/BGxsH9nhK+7cmrRWXNGA/0/69ntoumYyh9LA5TOVBsonOUBruZgpAqHDDWuz/8oPZdtpz6WhrLiEhKB4OMF360FRJiRYy9CYmG+UfcllIOHeOVcIyYFV4pDFiaAAusYBpU9OLX3R54pawYS8yhNDOhiC3oevEQWRrHhfQRbaZYldYi0v2dw5cGElPzVJWQ0SZWykP31OeWqF7oFDFPRE43nL0wA1oi1GkFw5b3Iwo+egNFqQ9rMV9VCgqExB/o+BU2CXmQoqI7F1iLuiakWhKN6fNEUPLUBACavJrzipCpqn0dzUWfTG+05AKAnNBilgsk3JuxNyRHJ3uk0WN2RBHwFMLedDamN+1f+HiYpq8VYyrxpe8zBENRsh2u6oaLMLccP54UjTltJO9joNS/9JKhNyvxJpYyf19PPUSwBlBgUVRMvm9EgGG/PVRuTZ+kVU9V9rdWip3t2/AlFKmbUnnjOEwApE+ZWDqRC1LbDciO/J9rnPgSRhFNm2yPjufpUyJpLM+dlkj5Si1/5hlS3syRpGCLOinM3HcwzvQG5cGgfiMZ6gwokhumBo8QLVdZ1JW7W8J3BP5SQtMK5XxrGKbxCCAcB/DjemZov2i3IwKI8gjUASbHlYfyI42w3RIRleJpZHxh83k947qYImgWuPt/CbLsOKGiu0+VO/YFBAN6c5HOWRFTpgPTZyu1QyfHBQlAeC7By0bgxWzWfb2qUe1hjkQatP8Nky/Kb2ovb3zM/4TtyeD+qqYp6bo5zW8LBib8VCGirgN/EFtQny0qOGvbr+eJJyy+Im7ijxeqSEvkK5SW+Jdfvh9p6J54alNeLfBuGVjD01KrCruTIu+JJG9YKjZ4DqY4Ob1VSx8wTc8xBZy7k2cDcEWk5IXrnMaKbP81iK3b5B/CHYDfMIe3or8PnSeeS8Hccabe1Z6sGbliHYpWIc8G02WzNCcz4Ptpu9P31ZO4xygLeke8pZDESkuIaYGCqUX/lA0ztq0kMVO2fMsJHd+LbRIywzq9U5YMskXNprYQ4P9EhXpyCwZ5UCeN0BKK0fvEz13DJ4kWJBu5sTmzguAHyK38UpWMBsc+MEJpmtBw3yzxjAQ6rCv1wfkkOX64Z3t8hwpTue2mzyMwbLijY3P9xprBH9To1n3obrgt4v2xnwGHbMKMMTGMBtGqKnhFnvDqKy8YytB9813hBJZ3EXY1R6xrhppnuGJSnC6R3KWc47xQ3014YYyRn0uI7iLIZsOAh4xGZRyIn3yGaiK/RuiG/YUwBJNzVwGLMXtosuRK5SWMapb35ai6R0bA4KtcuJwWsHUQ1H+TpBeG5Oh9SS1zO1NnUGD9rhEwHdrXcTnEgARFTQfhZD47qXFD96blat1sC793Mcfq0wXT2myIWuVQc7qs7lntScYvZho+AR9t9srcBAu3qV5pR6gLCnjdvajM+FL29m3UnxIZYHhwdpDCJ+dVHJGeL1HgUr5+bxhz594531fcREQTvEI0hl9YjzEBsTL3C2zYx0t+X/Za3qoTVsG2m0wQRrRALXD0XDh6V/XGM9p7HsS4PRio9o0c28dtAtkVuyMarbhxTsduBqwGhBRe+wJ+NeyecyGc+oyY8RAKzOUBgZSoUuj+zC8RdnKgKNTr1ZXmCU1b13sHOvmYIBE5WjsjvwGPtxxKEo8HIPJk3NZmv0w6AwYm8Vr/mCCGV1ALfbOW+BNrgeTRlOlYZi5GcRflzGoHX1YtKYKBaxhsxI7qP4cBXVRH7k5IwdqGvIrbL0KQAW/AlAuOSgOMHGloYVVbtLNY5ueFrHF+VBLXpZfnKxxnnGTHVNmPhBIn0uNBMp7yd8InsBClcv2KAc5ilHcugaHCWyRGuZJL6oW8kGLgqMjkDwibe97XC+uTlST5AXGWcgUzgWfrD+tTSZJ21d8RjmL4oeqvM8vjyyvC2DU0QiIMWVZsmr0Iob/2xlJNAF7A9YQUPZhZS5vrItId2fbXieqnY8B6HR6m9onLWT47nhx2B2btGdIcw0k8cDm501zjcMHKNiaIX/VXFuG11k2yTgmI4myAc3hDVlYbsiJrFvI3ITRJbZ45L8xXHJglGuvLaZNVEtLcKopGlWHIo8J418RRPH9R6eBBNd/3+C19v/5hts7VbgPGzU/vwS2urjp/E3vJ1yIRjNXqKP3m0UjBUcmH9WTwp4RMsQTax7QuWNVTsevTi19Hzk+ILEbRL6kDjVZyK+c6QEFmukGcgwy0ENKfSk/JtDRoUZnPW2FWwV6AK14ji5CZwUwz1bCGJrNpEGUN9jeD3IOW6tn94jW7pkOfy7WvikNwpKaBJND+jURSF0/R6BBWDU5IFgxuXxnzsfOt7cBU0wfHrYgnBg71rqW+lxDhvRDURh/JOQ+2vtO/GBRodiTC2ZPQ4hG6Hfx8xkr4mIhFZR1szzSphysil4AkE+XfV+Qz47Cl8ptzGQ+N0k3NbYSP7YkP+10Q9KsdHWe3iS01tpWwSK3TLLwqOQcSnE05ZsThKdy/xbV5UVWp2M/PxcsZW/uO6mvbd1nZ56Y4nOo4i4TMg9QUh3ReUtI9HqVE/ch8GaWmhpMqHGsNTJ1zBCPCpRmFvgDZKj1TUbhIEHXFBVWORyfMnPJ7lmGKu7xPAbosoeJUtifJTH5i52CJJw4sO7Hxkd45Ov8MRXJFUDh1hphuvxm8dmBcu+gHgi9k5ZKSaMpfPE9WjH8xLffP0HaaZCajhN4P7cUuW5GZ/PSs5GrLodV6r4itDlKRI1bBGqjAmSSg//rF+E4OU0NJ/i/yHUpzXcCQ3kp4mt48IwvunGe9fNKY6HoDThmBTzNB2MHUXMgHSVkz8sHFuOSy2ltRX9nY0jNDTNcoIuc2EujM+7Fjlg/TsuvYth5H2ZTMRoDBxgweF0K4a9Hf7v7tGl4vnQwDrwnb+TPEY3Jyx30BAKkhMTHc2NaXNAQqZHoUerGyl/vIdEZu4xQJj6LP8mAzNuG9mr094xTJ0pVbUhDCWt/8uEZcJ2+0UBHZCtBdiA5tadUuEhmdLfVtoEJkYClz/c9rEAMFJP7PlJB1ncq1J10/4Sy6/gNyKCQScsyJj/MAncjkpongy1m32uoRE+YiW9/0FQfk/IwlhT9U+o6FIgtXARKoKM7IFzY9tk2RMOxMEcikLGMVKOLN8jhzP7ILHCCqeE9hwpB2MsLGaUuXkIuVM3nDnMQyBJsR5VDj0mjAs558IKMAndWD6IykpHNKbW2g4Z1Rw42UtIMELxlLow+04AuVpNZXngMZgj70NP3qsczvQkVwwrBR0kHk9iKtOtChYCL0Lo9L0DeZzJiqTWCq1OzrI+Ua3OO0O4xE+ZATUBr8Od7PZDI2W6HoxyHXVys4PWWQADUHHmo+D8fP2gOLzEZdOvXv1cxv1ZeuSHNMVeSQJMbBMST0bRqFFDonVx5c9lkqkvIGjr2TqMicTr8VXpvyxwg2WKWgEjjHgIBaC/GZGqslw8iH46IOUTZntZJQlUQesJIglNeGxmegzpm6Aiki0vVkNho0uyHbGwr+Wz3dGPVou6HalG9zfpfXCZlf/lpFhcpgKgUblzjxlqMF0Ux16HfetbI2JDH492FRSOtyipf8gkxuXAubdVez4Enxl+a/Z0max2POFthgSzNV0h0m5NO1uwCYfnN0pWI0kCddWxktL6VwfdFN0CMykwF5FS0UV5GDI7grfhbSJndokSTJuVvy81kcUdqqoVCJzJuAFFFDAtOAp+FPj5Hzgfv8OgjDmzxzYa8l1L+3u+zKEWgI2cnZbvQK+tL5EJq1gDOHSCHcdK1/lijAcW8GRt/qn9KA0fTfXKf3KST8u8Dr/4nUFMP6ddFoF2HEAhC8dUq8Ep0ZfsdiYjKiOgWfAuwEJvQ2WxJRAOeCqeJ3tapgzjR5HTJZcYy9oUCDAWZVkhaufgVqqItuUzINLyxI2STxH4Ks13Oh0xM01+Aceuq9W2IT5Vcmc1mrvuNzfZ0E60+wy0I7FqLRq4VU08nP9h4WyNbVggMPLONvU7HMAGw5Y/bpc8moGUABGbq4WtRZmG8XCR93ik7ApJAIqWEvthry/CeUrgtW6nenajJuGAnTdkODkVtMPVRj3g6HaXUuFCjIZeHzqkiUuJ4wDLvx7ldAHI9PIpS8A+tzIE8EF5FPy2edN52XvGPoy9kvtLpcKQKOVKaE22wQ6mqK0Us1bHwF+sbgnpY4Qlas5rGRu+Gdk13TJjI/Rv0kPhKnauazS1t9moX6vx0qLrjT+hLGbvnXNwKFlnSrrKBAvLNqRSdXl9jo16H6UkMFx3sJLu5bd4eCCSsm8QyeRJEpJ8YKD2zpODHIyEQRdNfbXA6QCSW93hJWtJk4rV7VQdmBwwT0llNd/ODMlBrk28uRgtihnRfBoYzZS7eMbKjPTdUXMSUOs/9Q5QX50B7dvaX+Tb7Lcr62RyZj0gIImvwKFqalQYcNgbNWej+wIBQbqahhAfGttxGK1s8RcCo3CEPfnCnfVz1lZDT+FEZnfNUOqPYDp12e1GyaNJVo7xeSiyVH1DKOllg06BT09ccUeAGWW1c2AlChxZn57Cl2XMbkX74VT37X7XvD5zocHoufcxzZs/6AJQo9VjpSztb+DEENTjNMnAjSwshw4IpdFP++FXtpheGntIhOll5vKDoPK8v2DuOt0dMRIWf6DDTG1hxtW9HtKYQptWGcWQXLLXWfuZUSJvu76O6O0pY4gQi8Cv27vbkYfVTfxXdy+aNj4MyMAEmN3Az76QTWVuM3GeBbtbNNywiiLcQAiSNmxg2hZ1o2HdWcp+SoK8c6nqMtrc0U2iAQTVPM99HyhqHYi9969SiBQouj7Bqx2hRDbf9j0iKJhF3zf+Osw9kEu//J73v9zHRQFjNzYN0tLVLv8vJZxFqSgxPnF7QThRkha21c8LaUsDwRnO61Zx2qURseRpGtTV5eTMu7snEDGD5YViKjfrOulfQkRS2FRUKBLv0r/tyA3Yf/EXP2d29ySevijsZmWVX2qFUVdzq225L4kZ+obzD/6Aavp6LN9GbiuOx99yvD/pKc6eTlZtWDUQn4s+dp7wijRsWLaLQyLboRX7e7ukmQC/OTXTgMCceMDJFw9pe/y3OzGKe5oFGm8Erre5acSt/43ZsfAEpnINlEKqEEV3v7VVl+wk5W4rMV0mRjbsJbufdLdFmOmHYqt+ui+OJ2m4R7IzgbPaoPomqMhz+SWlMpTL2kbuD19NRax/OsuoS1Rj7ZLxKg/QSDl9wNWq9vwmkuoyeIAnHcYQMozHkEtDVFm2Lg+d5I1rXJg/IjfYbRi17rwOZPVgjo3IeIAbZfXUKtNotKMnoTLFQHFJZpAjIT3jgHhLCvVO+DLQOqpqL79cl02X7bpbpips55SsgqydzyeH7X6/TzIQhEu6GF20Eh0g/cRfejB13REqfeBUI5YCoI2etpVIS7Zm583I87QXt3hpAlst39+qCdwDNf84BlSY4dBi9Rz591rWNVupIIb5Xae/ldIAp8UvZGFcx9QEoM9A4cYwERkZRwF1ugqMk4KpKhA5qm3ToiP7q/fUhuWtCOTWpFwvfWqA9ZzYe4vg7aeGDcRtTE2PeHwhfj43/crGoyybSOgrWtNFh2MWOFZDuOJfOD0u9wuMAkQr9UHciX7Hryc0SaXoN5tsk6PETAODNefBOKKAqX3v5iQPLzuEMVidJ1ShQD8RB5SjkWQotPGckkMDq7qBDCSoNbYVAcaV7SJoAnxeOVsdckfxApPdlmURsKEuvK9aTbor9oK1D2ox4ZUliG1pR0gCP6xAGsj4FSCN6yVmayyUVW+oh/9ZPNkU5bORBhXBFv9kXwfcY+MC0mHxE4XGwCTZPPQUOE7UUKFXAK4nJbUZiYxZ9+PbTIV/r/mnA0KTvreqrtf9PPDpXmLWksFgmrrpBlSHh0eGN9+EluzlUGnA0IOAJfV+EejGHk43yeDIE6oWbLml/GeiwM036FP3TThzjaXBTVYg9X4tlimgRh4plHBP/SNRlJFr7xCnmXo1VmffVhBBfZoTFiSpdKZ79Cm+Wd1XARqQ/sBLEs/zzKUq4ih0T+a7ZJVORpbGlTZkgSYfXSUKwuI+/WljPHkoTsC62v5yW43xHXIdKFGdfnIvUpwplZOFpe+cZOYhNqvaTgNZJnPGCoQrbNvrTr4Q+VUOBPPLO1Q+WTsES1BoDvSxedG8mxuMgZINRo7wzxCGWjI84AIVnmqjIVkAu5/AjEJKUC/wEU/krH5pD8w00M9b4Oqyq9eVqO3GwXxd+N+4fYay961jTpl8oEavKLJtLeqljiOF1lRsJmYwCesGtm4SIwCGqhkMoqGkGKYOHnXKgn/Iw/128wpnx8lABsbD0eJlqPKoPJ3aXjqP8lmIG/u6T2gOIXydDk4CkK5i3u+v39ImJqxFMKBicZFSw8Im6WeqNU/cntX51XVCXU975ss/T4+lxgoHFd4oZoiIwNOBFC2lMUcOvUD3nbPcs60J0anlmuxD0dTFGR3vHXb6XDBP3WKeaA0ScfyKN89Xli/eKis7zLePi0KSimHz86ky3jr4tOurFcwHDAlQIv+WF5Sv8L24xkKBxUQDsqEefAImZyLxzPilpDa0TLLt5LsKX38mWeHHuIifyWqmihES9+ShQ3QK9bciA7gVLUiHLsYdGVdRuVtJEARcSRoGm1uwOVUhLYv7xcqvXcsxCpwseHHThugaygB6/w+gfjxDof/PXlNE6dyLW5N11lZtCAetJYE2s7oEPQEL5zp71JtVJzjHMuvAv6LHEh7f33W4HTb6u1JrUBlcbNiZL7Zq3Yc2/o5kS05m33fYmAZ5Y/qjj8bkmDFd5zMl+boVsIjAUe2dMI8WGooDUPHgWvUBODd++1IYNvXf/3mfBWjvMxZcXeJEgGeTZBN+DY8MsjzYQk5/OEYA1U6d8zLV5FDpabGHeTT6myzmSBw4MyrHmsVLo4s/CNZ8uIQAsdN1T7EpNL3RLNDcU7IrAQdL/7EuSbGMOe4NXni9u/IXpbyW/jy9e0CSZG4Uy2OLyvcCFPV3uvbqROr68XV8N1mKZQGSVUzzsuEVdnBviqa9uHiwHnEpdw6pjAZbOfy2d/DIwUVoAzsc/UZt9HMaeHHy6wBmbXasgYLKCywlFeNV4SsDrbxZ//wup1r9JKCGciq1jZGX4F3JHMH1kuvWLKpAF6P3hLrBkmBKx4LD5DWv9HPyWX0r3oHRkts0fUq4zSc6ol0fe0RtWlFSkdisE5lRN7kSVm5NHBP/3i6MGBVjTJogiDpY0C1ZcVAL9NutGb6bnI1kRGV8TJifUNnl4YnO9zaEHf5R5QXWhl8hCe9oVO4h9af6yIyNQMEqa6mlxb00Q5LgOORYaN/GyK9vt1Y4BROEFZOqDvWk+RszA90ixl32K4wFP8DXff5mq+7mn/CM3kpJuWOlcNqLm9oShTT7SSwmPkiU7bcPaZIM3BLgtxVgBw8eXZ0C02z9UmsShCkz4+AUt/9Rk1Xl1XpO0arSDorFx4TTILWkyzMRDNE1iJcSufwmOmPp9UbmcqiELsyg5yT8lH5C05rdTB8EtuGkffakE5X2sh9eJpTQg3+lVyWgAK1HN0ot8YQI0Y0ojS35LN3vGSr00v5+8iv+knXg5azs/cJVmmk1RlkqOiKhRNrsRBwRf19XNpZWxVq83kxTAnOr+b2iGHqkOeBg3dZ9qBeCDdRWeQwXesPrOEMmAfnLuq7gyXGFlidVnK+c4QFH9fBffhP06JBlK8Rbs3ZzDenKtOZ7MU1104YXA9iMrnsIsvu/b+BQLrQ/vhJwQda9IQmYIApB245H5ADFtmOMJ/Ax6KtpIR4S8hu4bwCz3k3GJdrhl4clGJZkUCH+tj6P7l3i5HN2CwSbLa/2QtszA1LgiTh5HWdAnjrZtjgBlHP21HiHT5WSQiVdkzutCiJ2++fiiNOnt97lFxj4/YVuCeOm7W6pi4RgP3ChTLMiPf+DsV5UKFMThta+QKd5XNbV817Y65wANSSHZ5kTn2a9WXKb424mm261Y41roWbBsEo1LPG7KjimGDwNRacYt45Ekdj7tiGLPFYVsMS+2PT+6Q3jAQrMi0594B/p/texWbmEDL6ZEfNQrhWUn7T6GKyU8SAdQbDyyh4an9k5b9yVmbnrhZFmqdTEn1kfrhT4J4f6XE4CLWRsrTurvCoc6cFIHqN8Ns0+DLDH7ZXItiAVuI3rzARPQoNSeWMQvsPN+GwL/GWMF2IlhIW7ORVl2HGi4bFVDqFAmNoupcGEbu3EByNKpOUpzBf67gWWqZcCbhUH3L6WeffCt+B+T5pVHdt12GLisaWWzxntZ196Up3AUdiC7xea49bc3UWSDbm1tN0pE55pDiR4LBe1S5q70rqqbOvRNZ7Q7oHpjtgJLgJJdo53vtoKJ5OgkdP/mCamQvbF8UJEchekoFUR2paNH0rAXxtBwiwng8SmGo/fBBVDlQsE/z0OlaJH8q4UjWmcqqz6RCkqN7X+87QOZns/BBAAIgvbgfSeANqqCdcg0URdH49s5EB4QVKaNKQCiZiFRDS9FWQSLRtosTabsqAUDnmPtlD8w/8QRclaiFofApz4MNEL1QeP0cclWH6BRLf+IWygAeOsxcNI3FdxnkVXfZAuVieVUnKfEM8YlvI7i2Jsb81nv86vQ69o2SKTh9eYL8jQC5AOhCsbNBfUsAHFFZi53zZOJo7ghzhKRaL5BSqyr2VyJHJXDpZroqnpK9SkYIyG0+0XGUp+IM+0xER0JY1LU/9og9Qciyw6lCXuqPHZvE6uk+dCi70VY/isrERnfWnTKVmvKVOrDRGRWcWwHRGwr4pwWtPlm7ZA8M30qYPTzQpZuGZxTwtcpOZ4L+8eIG+QmGFHAErbIuYuIeaLHD7sAWaQYxkkSo/3m/8GlfeqmPUCxntp7NCimGjHxUFfQlRIPnjBl5X1UBm/bRKDIlsFmJFwemu/ByI9cSCOPVN8395tsCYB+oznvpPd5+G/pdO8d3I5VOZODVmTkp3gRbuKBDSyShGc3VFSrBzBMgmX6PuT+ZUdxSI4/s3DM2W7UyLPkeCqciQicOup/QHiZesanmzUs10gXZRN7+raKu6gaumpYngi/Xf6Cmp1MK4W4qxdZ3RUQZ9Ar6eKmMmqaHbeNZhUni+fxLGCpLT3AxBnCwk1Qhk00DF+zVlQiVgtHHNKil8Z+j+y6H4qgVSpSYSQYhQ3h6YRp+Q6ne5qPxRWSPhPoICuCFqhYULF3h1wOBLP2IdJ9117tLjdwAELr7b0c6T5N/GmW2mnp62NFUXPWYa43qDuMAvKCk33+M1TdllnUQv162BuBpDiN4it0qwgxYfNbHhcjyyCXCE4fkWi26ezfX9/uQ9TmrP+xns5ZJ7dxVrT1JDU1dvq0IIlNKe0IGjWYlsanl8dg++jUhyFiGCrhgKn/W2IG6j1Nt9YqnyOfnxjspqHKvJa2o5mfKNN+NVKh6khwIZUccAvTpHG2qMlbMdbLRJPme2aRXhkJTLuwLeWBzLtNaG3/gEP4eA8UAz9xOMUXC79YeXp7IwK97s0ySfI+AFKdqEIUx1raxuNvYdNukNARj9gXOgimT9QtFrffM3fspVh0HwSbgU7q2LATUEeN7FfqU4576XDbXEiNX5GqONXQiHUbxGacaKPnv1X8mCXf+7y9+aUN8buRzyRcD1bxmZuvD3zWs/7a7rPMnQaUk2DFf2u/A4m+0lt4OU6im7RCg3dYKfcVrqxwe342B5CUAoMAHJfbwBlfZk/bhAaF3QAo2B61LaHshylVs9W36UAMN7l4y3fcAZNeLDtIS/x4mk3Vxa6LvRxcx5tAweJ8T/zvWZ8Mbo0DoDm5PihTmpaueTTkhYxU41v1erYphV9bXpQ9U7EZABlUeDqAWgn1PEDRVQZ29h9L/ubqAHgNGd5UGz3Id50Nr6RiZ2zytX4tt0gdGbpMFBjXUm036PoU8aE80NehN4sJ6hmziPI0WcrHvWG03LiRS6g7/s2td1nhTni9OAXi1FapXhQbFERSftHgKss3znBW6xspIMmMZ6E/tG/B0duYp0o08XnF8LSzGqXuNz272HvPI1IOUEpi7CM7yq9G3wp/ci5IhvDNuSHXuxRDF/+0CyCGGdS92ELo9wSKWsFYZTHXZS5++uPskARwYRrwCCGXFZg+I48sqd7vmaqPS0qLxkEDkZ57SDDXMSgYCH/PUMMeH/dlC2JnnqiKoJ5Qn3tRi6p0vQJN3rnwuaPzkpWoxihke/kuIJKbyiOpwoIYTKF4oOkAGpqrLqe4l1vYYf+Xalp8iu4CTP9GuPEuajLvNpzf9f4iwY7wJiFPjOiFLeXEdouSv2/rLS7Mfxpy4tClCvnnCp/ka8Ry7BZq4QbeJvFnZo+KIhHa45nB18KN/YeFxfksMiXlj9Kg5P5hszBXvyxTFeFKe2I2W5ThI/gpYdEXChRxxXsHXFr6iYtpoHSP0+k4PiIQfHcB5fF5FLIXH9V9gB60dXOgiBF/1KJ8mTjCefKyRVrKd6Urv2TJpDO7WAsHbxUBpESMZy1wf/Exl579p2Q+0hTAetGjh/oEpB2KSkxBuAPI03bHNzyB+YUbzR3eR9pfEsMgGKEbCtddJOPZoZtlYk/kMQ5W7USOsNApqfinem+jrBHG0zi6dv2cIXhvQ6SKPv1QJGP9DFHsEMKuf13j6BnXQdgqx65uO1ACbMBgpxmdJlFPrv7qAAXFIMXkIfzpR8fRj/C1EwcA0o+hKUcF0iRxLzO1+zpKuxPWCMSi5ggEl+udMD9zEqmf5nbya5+tCwlZsgCUQ84xaZdsx3OeHNczci4XaH+52MyqORGU0rQDNx0sO8u7rI59AhOSDMpCjShF0iqppe5Uddw8IMQ6ljk15BEVulwxLLvpW1oTMHBQFwYCviCgEhFEWNF4Bk8zqW3vzQ9nVpnB5p3FrjoDEA1MKCKSXGlpOt+jgo2hNGrkdFaaUQtPavs39TvBdJh1g+8Vb0xOOGrCfE+DbRN5MPCyh0H5HWMTZvHWF5rI3rWgpy60wNGsX8hogC3jwS1wDXtf0BcJnnpHA8zTAb5/4Pn8ues0JNvkC4hTaL68wwrZmSrTZtIR4lREcGZcy321vDzy9c3GYCT18GmF2RcjPUhSueEc+M1alKOGalF0Yr30LWbXwF6jDPbwO0ObPu4TvoADv0qONWk3b0xijAqICgQYuJ6t8ytqsyTZ8nvE82yrSEoGfft+caprCd0jectMEnZusIWU040bbNlcHLkI/l0nB7EuBSCWLSw7H8ykEw0CSVpJnNGlPReBflctGQP3DrpzFv+3hnceBWG+dOg+dG97wjfkuwFwekT6avCzRUNZVNxlc6nXJCvRK9Llm2eoUFVUIBFdzWJal+gStwacr5ZNdCbVzbb30jN86QxpY1eXrDETEdq57HHsyX3eOWNl4dNfIVuh+V7hKrFpeGg5QhZuWV49z9pQ9W0RmL7+N9jcZwfvzuNdxZQfAubAi2QXlN/TIIZCVu9pmlAT9NMVLIV3hD3B1h5rZxxRAPhXU3ZCJPd9CWjTpybPYtASEQrFVPwuOoumn5EGwgZ8Zi0DI8E94Bc87ayJFk0Y+OZMrWw1Z5mzWQIvlrnWtEAnhI3v2942PkjSXiEE3bGC1zT/Th7Sn/jd8XFpplx0Jxb+gS673H3N2vdzJ05M3Pfc6hsU/7JI5o8VXaLZk/F0AeakSUgonuQT+NoQo6d4cfuogylY2gG5+JdLLg5KC//tjihG8rQXtxbTaXPb5JgvIXMo74liEuJwhqFUbSwQn8m9rbt0fNBPWGybjjnzpZexaY6qDxSa8bA4Gn98w0ONtvADhsulmevnOaU3v20vuwHgoGae1N9wDuGvOstSzQUp135vZaWiT+qYHVvVaMgjCfzCHKg5FFXZjhWMPS6kxDYPmo76HYEVv/p0793lD2O3WmxDPAF/Z6+lnkSa3ESM/YVWtpZvizKlQ5HLOhQ1ekrSCO4yrXnqCfMe2eZDq7hJI6QHp8TiX8KRqggZkg64Nep3QEC4YvjTBj80hxAjsezwEiOleI2gwgaehqhIkaJLExOK1WavbmPtK/o0n5fJtLyF9GDkGNh8ucDvy8ftHTq/USv1CxiMgMHshsaEo7ebjobj748kSlHtiLZQMXqmGPQpPi1A/eE7wL0cWyGqvtK4qTr9JEaTEjbTrMKOq0nDyD419uNduVEzVm5yoYGwBJ3Z2heujBm6CIk7V/0N/P7PU5N4MfAIIvrwWa3oeCQeRLrjC4ETX//UtqtAvjOROHs5zE9W1G0EW11YwO1DB97KL5jlbtqigKFnJmdlDkPJOknxqCYNKg6Xg3STUQhp6Jiqy/gxMZ83ixYEXogKHQYsNXFE7vQYaE3amu2DIbaKBFlczNd1zEh9MnW1u+MLHwiQ2fvDuK7UJ+88lDACVyXu5QiRVoOpUYDcE7MLossjvb5d1MiG3ZF0onAvKYiLHK5byMPGvUcL0GqT/O2Bc4Q9zFipZyqMnNaXgzUw20Kc8kJ7ITHJtdEEblGvQyoXarCdyCH3WBJ5GCSp8K22LOt/bnhQui3Ht406QtxNiucFIRt/xw0ho8StrHxjOETySpGvd2lmqhYxCXNGsvi/SSN1fwaL9dogcAxhorL4uYn8gG9vC1fJ61g7CL0mafAqh2gH7mZACAQrlSqV/eCCWCw6WRV3dA/lxwRRAFOYzpy+J+XaQM9Q+hL4p1WWJPPlkrqPieY4bd1+87ytY3OWRy3gBKsxayw5MAawWFqMn/DIM+obMOJ8FBYIR2RlcYsyb6RINkatSqk8Jv73PK3H2bJYgWpcN0VpVdyENnuhewXAtTgjUcwYrrUok11HcMbsfk7h9RL0e0/4VhXCk60xvUCtFR+v2i54bjHJWI55cWCcW+24rhMD7vsAP0P3Hz4WP2J8zs7h65YAAp27oTrBeQXX859kmRVmAwcCvPz2NkefrwINT7rDgH9pLj/X/Oc1VXjJZ+lkbG/pMIlVHF51ZNDAIrMjraMjGZgszLVfnO6To7x8wII+DqPhtxCUICtTRh5v3hjdYWG4wdJcnS1N4qq/ppjXEd8OSlKOQ+bDDvgyr4ZJ/RUWfi0rycNARGklhhvCphBY7+omxr6B2gyKgcEHEbybP8Wlef5AqVDsfvOcWO8TXAzX0UOx0L7FVYzU2PcSH/6Ck7DOj++jqVOKZ2fg8Oj9Yq3Ihd0KYuvkl3HuZiHSOZjxvT/NjPruSVB6ZwITdYxf9qtWfUtvyswbFoWH57w0LNNWWg1eHP85GmGVKS0Os4oIajgANRgPrUsfkMUkQH4mAm+KTZVI2b7/sxSrEtuyu1qwTbeDExV1gixzpjBzch8/X501ZCQRyeId1zNet3yYMM60q5TNje7oeKFucLKGpeUL2ll4QEhIIQ4u54SXxFfR2LO88B8Y6wEB5HcoLWzo/WyvZJIlg7ydHgnSxGxvLRy/BNZHy+2hxO2SOA4iBJ8xUNeDPefOFxSvASfNHCc8UBmz1GwGj8UU5+Q5nWcEiqEJeATZKTqgIKIbyRH7iAcioVRoEn6sZCwaAC/4SPel/iFBnNMxGWXSk3rahHCAqSAhijXKd0BPIsAD0pTUuplphVOLLfHQavmjU+zvj7fhUObntrvVBVmBuID4wGqgEWnJpOjay6ARziX/nkTgDGBPLKubDukSYr6CfnlVhEWnejkpLpLUx9knOuXIRzCdla6nf2EbYi39P0yvy0sXTKJmOOVjnkLwEeyIHeMEunKP/cmHWk/hgDBDuujYEZW25wj2aw4VzsHKz6K2epy+pvYPt+5kJZjr5E8AIiF8MhLw5EnokN6/IizrE7gjGuXUqQYfVesSPOF0q78oYnXgJdk4efZxlmBIejOa5ptJN109DV9ZPvw579GgP2HI+i7lZbXM8fAjkrdTCzujf+9Uj3XJ+jAC1vAwopeo21KmVFIAzMyPYJcdC8L7AP0WlxRzKspRiBfcFJa5Jhasoc/Th8BUniUPMk0awGUszOZGMJ+BEqo/lnzTt8uzGHKmeflOBEGgcO92MJAl3VTf+/p69fgN3Gm85ZzFo7uYx8L60b86LBTDGCl0mi61jAm8Fc0g0V4MUiX20S1lHNvE9jdfLpANrPDLd7LzvF6LtJSRU9FqmlC7VGEuwm7B2AmwOWwA0SzRzU+hHhKYAQ78+b8WmOyBbJ7+VQYGBImsMTvORooEnEDnaZ1vTHHwmhO7lcGiW1j1Nm4h2JXFLwKBx2tRwXQqczBeIhapGEvJk9K/CfuEYkNYNLh7gAgle17ysYoJNs5O0muYG8Y9AXR7RSKR+EVGRSB2aeT6HarNM39NvYhjIS7QnFxQtKTnjVVWVg4lvXfbwf44GrwkMso0eQ61qh+0FTjx4J8fMVkkDZxMt/fGKQ8u/ZvgaOL2QE1+78a3MMYVjAwe2TEZSp5z12fTKEOIgT1ynx3/adojz9UN5GZN0WyH8AMojwkCb2CEiaPvBIhL6PQ9jVELGH/jcjtciXgikneyhx6z2yiPs7FChBNv0H7xUEYG3WlS1wMnCnA/mhf7EuezPhOFxxVGgRBrcmGda0c+UHq84S/XgGtgjcf+4iiidYw2tMBgqtoNIOqsW8t8HSvamNMKXldHzUsJdevvSeaFK1Odrv0NDvHqkaqpbQ8jvvfouXy8yu4Rz/p2BqySE9Yf+hJUmVpSiDneaXwmvvOMcy8jD6mYw8jCh8UK6hpUQP6FLzTjXIk7jefk10CV/UgFAIGiOJcx+LZ98jCyxYubXu9Fyznh/gC/UwN+q/Dyfviv508kJEdo8C5NphpSQTpzVkGc9IeyuSY725aNu1MumSGlGAYfN6Jx+S1qGlTHd+aRLocyA8tDEpyLUQJKGSSsrTCHdn2pVojEca2RiNlszFvflOBwKv5faccpNRjOStKA/O+G66+M7rQ8T1mYuWUJuw7b8lxQFYkf40EEVAWyLfQfo/AwJiCIF2HMMiyTI/MPjZHHYDv1vfdIkWGI5ReGz0aA1oOT2j57jCDJm5it+CDV3DxDCALEbS17e8rwg+ql9cBPgiAay/kYraDhzpUv+4Ya7vkg6bQlwRARUPPNm1rPqsuHZ2TfaGJiCmPZa/VkiVLIbrWOPJy/622nkOiPJqMWCVBLy5eVg+rAUDAlAb2Iy2hCTvu8dq+mAIlOf+yW+Rk9dqhkHkFYGnyyKYdBAgueCWlon5ZC/Vfqku/g/pQsNTtDrXsxVldXUC3p3RsIs96P2sVkCBdMLS9+Muio04XbAbec1JY8fJb6Zt/W2oqzfqANr8VEjS4X2ySussqWc8OAeoNUwMCHL/3lqI3yaV3Zr41yalQX3MFlelIye9fl2iZLOllgN4pydHQkoQSiU9n1xwhhnrfugjTywqhGiJncv8yGDvhwYJ/NVR1nY+McLmOx2i+oUl0Bx5TAByivCnqLew9JoCFF52+k1eWRiQrEb9vbkNl88MoHEQNSbDyx3/BfEDVQqND8WJJvEAM3k6AsHrNOAe+EYjgehieQ/tYXR/xRJwbIxgKOghDzzlYNp6VtEB9T/veAcaMfpqL+atvv2xU3u6ptnmgfTvgGltIllY7enr43axzml2Fq25M+tQihM/dNvTFmc7cVSx9wUjx4nKpTscWSZMPrJuC+32Mc707OrH0yo/sx502cKdD5b35xkf1nSHzKE/Y2nThVSBQLg8GhMvI5/iTtf7Q+BPIUsSGx+K70VUOE7dou656hQ0EsM2dtNg+cRmGfOdgFEmY/Okho8I8FBngXm5y5x4XKGCXTobrHACVDOCFaz8aLTIZRwGaj7U7OXjlOuCDX5nhWhJMyin/N7ecVky0TnyNTHxKZbQIU6b+di5WTKVqeDBnZR/2agvvI/DGvDwOG/JMnMPWazzdnO9tv6o8tkQe1E+3L6G5ec7kct/hKQ+LanIwymxXMxWz3OgUnv92AZuIPIBtj30MBLLtoNn5NVrQzps3Ww/8kBe8xvJ1osoRG24EPKIE9Usg+qTgWdVjhrau7QkyslOB7ThiFAHEiRNBvvThBBF7Teg3NRfs4tic21rAjYNgyvjrvHsBSiOK+Po72/ylHFeG6S9MecbS9SXDOAjpvG1RGzOsDMQkd8JVD2o7gCXRIeC1PCJ6ARVJyXbdSMXputLx7UtF4rXAcGDZor9RLTlTS3J4r8dO1byom0FSMlp7MvmUbqsCsgTYNfNg3O8znItpHVON3rVNEggYTATF1VGLWc5u4wgC5BGe/U4sZClJd3j/IrWYtuP51Hafd622bhM3QiRhFrvpRs9e2QA2o7bzuE76UKgY2NDG7oN/ZAFx83FnbRgTY08VsPfL0J7Sd68rKbIZ0BmP/OqOycAT0jcxkxvZo1K9+7oG6+oPEJGKv4pqReJGDxiJqdOTHt1v2SPELOnSEQwTAVJCNoM34A+QDG6nAhHI41f4FQgO8604P2AGEcKLfYsUYnVoxb+GGyXuoVWDmDcAjrrszsA9V93pIA5DC3f92UnBl3QP0CDSoEuo8aO0be81jA903gRgnPxMcA1bGgzbI67vKRN4zRvCueiH5Bdjb8CTEt3Ac9761eIofr6pGfZURWs6DPcu4WOYOmBVBVyz1aatFLhad/kqN38pX70+50ECsvbRajM72V7iUIQwcS8ZUuwe+6RWbpXhvZlkPn5RPUct2ugOAxbBMOYN6j2ryCD/eJ8pdS5OCmMt7JoO2+CjekgHROLJwFkXdV4bAqZXdyY/oOqMDD0Q6J2bExZmwMX/sCw4H4sey5knFvjssR8aj9wXJl0fctT/LaNDNQ1+FIzDnRxty7rI+6izFkeWtxRX++d78wdmnGHifYq8XtRd+7Sa9DZgA7twSXILf2LWCgRTL5anw+n0OGvklgEMg64VZB9KM10FvTf8UWDZEvdYYIOQR2xbYCstMsqNKLzSkPWe7U9sAjgw4yXagApsoER11GJVdmiWKxsLJ+tmMl2LsXfS5ApGkpHSIFamNAtYIOenNDGgxIuVO9zokGVUiQilZulglkLxiohV+AdeMphVynsUNwKrTn++Y3zhxn/Ecs+gVJbSMBfxARDXpspCtm1hwOsDZDbXo3iRPdhhpAMbkInHLAzotFq7FgmRuZJPVCVQmB7htGXQ1M9GcLItU7e5g87fqzjiblBoNdM4q3H7iJs6yRrAd1k4trCTF5atmgz4vmf12k5U5fxEvh4IV/kgGsVzFsuk97GdM5mpNfN7YBZ/ynGD9vKG70Ub16BGcaBrK30cbUHFx2+FmNU7zppAd3vVpMv22+blHzdLJfU7IOka7A82H9yMS4ZzdZFQRiLZuHQorV0i3se68G2KMmFWmq4J9TqI+2uRQEGZomuF9glzEPNiCMOMp0OQ/g4FYYtraS1XSDD7WQ0ysT+cyvlx4+neZGijyve83O+ZGW4ET3LrG8TcsTlFopL/W2dTqV9wqwRweteAS5AAhQCsh1VTOIA0hBhCGOqQ7vv32PYFBoS1MFayLslLm8j3rSpCnbCjRvvcJ2Iw0U4o5QK/qI27Hdu8jThw09MNwBnBC7ZKdyw1NcnWLVheLg+EakApzGMIhQpriPRfhrK4z1jt9hQBfiC+CkSaFcVeAgrptO+fq9EfUeCqeYhabqSDEXZipuzaPPcp+lCP+Vl1rvcLbV/wkwk+VvNLa+pv57CbkFKWtpvERj89blYG1li/hGwHh3N8DtmrRyiNdiv/r9SZF55e+kZZln3Z/Ghm5XwUoJnmPAz4iPq7A59kj5cSFNLnh5eCksO90zSTI6k1xhc9fnNVD9KbiTh08PV1vrs5YnzhUp1qp33gjX5JcbCwl0GNbu07lTSBcXhnWOzWJDm6qkQ8tHyn0QytdymS7+lMnIUWybi/2yZACLo9Wlb/dEGJjkr/Orr4ErMMUZ0uuHD+5gTtnYB4/vu5TDV1Roa2OlIq6RL7m4dbhHHVMYCCVpc2fpcX6cVwLuzj8Gt2toUEWDUYyM5ldFxaCC8PQXO0JORPtKaNYQ2Rs35ExLNpxjvvT+G0skW4IWvKLtDo3jgk3zcQ9yFubfpkMMg9+NZl9sLYOfW5g/Fof4mYKZM8VvYILW73dvrlMFypl91kXWplnBCnWcbeVMsLaWZE1M5dZldDQzNh1biJXHcWmF2F7ZhA+nD97AD1o+PiaxFsx2u8ND47I/R30X7Tndkx6yWI7exmnQJ+Yjf08m9fw7m5c7ioC2ExyFj4PRoQj3EDE5VPfyM+3/ctFzzmG58P/2Ak29Fu/vy1Bc2ItB90WWOaSMv3oHcAqJgNoI+BXtQAktHbrChryR4/0TnZs+8paIAARXBaUWqSNdp1B001GJd6Nk0ZXqqwALg0QykjneeeZQqJkNU1OCAj9SLZZc0cuSOfpsh3CvaC3jf3QnVT+k5L5L9TNyYBpnda57rnmtcyEBZhM4ITWwG5lNmgtiZtlQ3KEoLE9eZUnUwFl3H/wCl+D9BZyZmain1S/G6MQc+7MaBb/bsITYn3b9dtTToMiV4ZQ3CITpaTGj/m38XZiAKz0dcVf9Sh0Czg4pI/3IhZj64/oPgOwVf92CdPVYMs0MDrP40vltKOG1ux6/sVkQnidI9Bt0/rlmNin424JVfFiriLrH6AXIvKpukjkwBpoeMVCvw2eruuCDmmUnn3+0JJMQFuCltXGulrrbWYVVdsX+msSDZpNtcKkiSa4MGaVNHU0mso+fbACvCjpIhKcyaa4UybAgZhxfBQXc05cGLcXQzpVHu4B5kmjuRFPsQyp3ve9VJT3JXStC+2M2TlrsM4B+H2u9dFaSadc0xFSrrJ0ywal/N9QZ4BWwLary6zZvgJApxE+Psh1GWPkpVHC07gq6qlqU2VPy5i5tNgC1ZcdPGI094G2dU00s3r5lidA8bpHZu9NlcWeFdLvWCIrtxRqCnXkSBZ/uHknt9L4XiMxpLERrZrq4UnbdbLdKwDDyZ8HHfNYqSjQT5ZbFoGyofYBQxgD6T8L1AClcnhuI/I9UQ1Ve0Q0l/NoaWlOyPiBCC4TRTZfEeGGotwXgc/ladg2ff0qzM5f0a6PRj77HPvtzI6LskyNVmJ9Aztg+GdTCHtvsxk1z0lwg1xsFT6cN/yKv/Mao6rWv7T4InY0JneUqIXKBPs0BqDJM7iDH2EtxhviQaW/XO8pcq8b2/W/jKo8/dNGNpTTUGGE6qEqJK5mRY1fUorTu0rRPTAW3sdl7MBcGvC3JeLpbtlxICtruof/6T/4X2vVU70yUxqXX4Aru0iG1WVgaDMQYLsfvM1mkHN+xw6gRRJxEsYiSt2zo7LwLtGIvkwsqW2aIzWBe0z5OWeB3EASZZyf0iRcyaidhkZGVd0L8TKcMN3aP/IH6BiavAVchhgQu8V4KL3E3E3FM5MmAj7WGAb307Iifpgr5C/4gkUczJ5P0tPHZ7KsEwQBWhJewzlj+gy+nF8L2/QxEWnl5Bl9xvLc28gZlpQ7U8POvDN33YclbxVW3p81XWjkC6gRpUd+O+YwUOv4eDH/smR6Kz5mG9RN5rVH9yAKAMjLr+3ZZY0QesGXHQ6OZg4bVUk8B2mXohecGhYa/ZQ3AB53LRPrJ1Mqc6+IYJ4Tl0cDo9NLwEYR05z17e90dyNgzuiaCOALZU/pvOQzFqIjuhFWIQ8iS0hus5pzjaP8LoHrjW+N1ORM2qi3+kOQZbj1zwHNCEvTKAcT+xIj/5jDQ/r4F8Unz5ZEcFQmvl4R7PScizrouTI5noO7ldNoozzL781I3Kt0ckc1qq+lMDL1iWQ4n0i/xj2tH6WYrJ+lKp/EDMVTdDIkNxupVXBw/NGzmfIKbWU6B1ynGAUfB/CUJKs2jdiZCjy1ERdPixuvXkpzEfdsIiR/TRA33VibD1d6YjFkc/MPZTitiF09k3Nx/6sUxt/3CIb8gpme9wM+t3S1IDIDUdB9mnkPoGfEGb32s+rlCILGPIj7LJr6/Jbd2149WF8FfDZtkU5uJ6PdAgnu5aNPPj8shqbxjOb55zEaoA8HMSbqcElDu3vXNlqFbBneJ3OGA+XDhhk2d/Jf/NYxP0oefPlD3TgS456qN4uy+v/9aT9TfW8RgfeBYoLKzV5x7bT+iynEyOEK2cQ7mkT8eJYHKaVjITq471B8EwEYaLrSoyqkwQKrEK8FKzL5w5W0oa9FaMjMIrioClxBNVU8Q5+eXfAmBTm15D1ka1X5JG2u6XqxyTVaM6U2wwi2zJKObykIecwYAIknSqxrxQ0kT8REWYZbpXAjSl15DZRneKWlPkCVX/oHFCKd0+2BA4a5jQm/MaedUc+SzeGijVMEop9jzjq9eXk8BjyrEbLMHE7fOfF8nmmEidT4mSCZsBoHmtGHSUVaV9Lo/jOyz0A3kLujGNXMwwvaqgw5IY4vKMQSYTolCW62XduvK+W5N/No3bVpgWZV/7RblIZjLOm65yp6cQj7eZUQRCQkD6VI0MlfS3tyHVkFGcAsPWYD6ldWt1VLHqee8wdEeiOjXyRXiCIfqFnGnhHu1S7aYuXeUz8mwX8xL8r46wG8Y8ootZvNIgChB0zj3LmICp1Jl9N0UYo0Jx/j7VnTfqWBJNZDnH2hH9Ivq+kuoR8UnR9wZ4aj3PAuwjQMrRxqHF7ctNbNfoJ5jaaXlcbX0Ig4MawlQQWWovmyDwvCnCaRHVvTjG3VcyXPdDOkABSnAH/74y6UGlpGz+856p4LvCeewhtaTJdnu/kdYpUU67fdV64KXjehl28qUnA4FkvHvzJ6O6wNXS0uAhLO8thenSyKuiiQE8Pll3OR8RGrYn7xe2pg8tAN3o+WGib85BXC138nRZLZDB6OmLxDt8PiiLNk5RNFBj2ddYQgOa8SzA0CMhz71lprwSgqsZ+xDtHUC5u1m/SsXE2lamqdIpYwYL7w5H3g95F3GDE4oOc2ft3nX/Fu0JNU/Qvqg7m2lnD8y2O9FaYgxyptS2B0A18dKWIHdWCohjkmpdgty1BBVqVcoZvm3GwhkMs8NVIk2Y3Da1u+ocMY/ISiKrZobPZt9xS0fEglu1Tu2M3HzmE9QxucgMEvh0bDLw8PXpZjM2sYX2E6BNrJZ737OlxsD4TxbTr0mINAUJnABVEZ22Jsahr7llAhqMXOgHEkI+jUD9NGgjY5zDWuQgzpTi5j7ajY9YKQyrvkVm1TOGSn8vWz488U5A7gwUB1VwfTPbhBAzwfCVftB3jIfyM56g0pwGrCiRE9N1/tP9bWQTWTmDjcgh/2OBXMu728VlOAi17/5MCcQiF0qtSGQoSaAUGoPsds6TNlUIOh9hoQOvQy6DRN87LVq1YQd06bimHhiaRFYxevTEDDWZfcsRbwQZDgLoCzrjw7ZqRq7mPkeh0M/sQCGMpoiuqLdfdfeFTtZtjB3bQQjD3648adyT5r5qTMPVkcI6qgiMykjycWCZcGAuduBmixxl92EhMQZrECgbwZvJI7Al78tb9d8jr+VODDKFev1L3KjfvGYdF29gkS2IdiLWBnLC+YdnQoXu98EX5PAZ1lZouVCat1THjwKLqm6t23VVzCYp2l50Da8Qo5P1PB6AU+CQIE181h6fckaTTopS8ac4MaOja9t+N30OSC/GLfnEgo9VMi/kWaXLNrF9akbxWiJzqRIJkW7QQRlEndh8iLH2kWL5KxXG378MZ6HqKtcv8wghM4dI3KxwvfHfYOxdI4tov3zYc0rDpRoMjZUwLaN5i9nvtU9bf29qNlgUmJmJWzgd3WuCveiKzlV+ci3BZRlF5ev5MuKmYjrQKB4QXIe28A/DpJJ19O/qCMOE0H99K+PdBHDkCZ8un7yOMG1WQI10dg2wCQE02A1eeNAOTlvjw3vJ4lEKO9KUcK7m1arwNTjuNUNAPRyWhGpOPwYO5Nkvc+Sg4hB1cYC6LNS95jSooYNNzqICeeHVcFAGdsLM0bOuocauFjyR/5Ce+Dv+ZvmZ3vNNCQuu9OqxUDAROaaqMUvsL6D9uFnuHcuFJ8JrGVylo2UCID8vSnHCrvMa+TqGmVzjtIkN/fAhj0j0r8mp87+koYVVus30132+6+zfem9iD6XjJdAR/sWRHLNhPdHw43exPJk4Rye652V3TnzHC0+mzVSPZIRVUkcA9Q3/fLGY/zUGKYQjpcYi+ZiAYZ5zbbG4Jm0lR2uufvP1nk2FrA6bEsWVTcdtlv5Edk7GkA/xQxcblE5Twokr3p+qm8FPj2LaxMkhIN4+GXqCEHqqWBF6pv0x8BfL/zmpa2Db8/0XkTS7PEO+ulTrWPUTGN4KUZcuWZVmv4xvo4k1408UMoNnjsV/pUvaXhPuM4KZvj4JoyCLW0P7/8cF8Mz5kPkwJLTlMY+Qk1q0TinbMHq3cI/eRLHzC7It2wUIvARB6W+7n+AdZV2EkkPpXvGPYoC53uTUMJN0IPop6qrJgIEcWAqaFdzCFyS8hgEc+fpx7FIBPn+Jkgv8cT3zaDXANQXyxG0vyxBm2WPLm8JdkltMzRjGf4WZoFYMw1cHHyLZVZZTNneQfX6U11JncoKGTR2f0Ft91FM04pWqzmupjIRwyWRyL1Jo5fndQcS84qa56nzQW6tm82TIKkAi3XaXlB0W0haAey1wfzto2NX2oszVnDCO9A1GZHYeigtt5/MFTWFgukUksWsctZw3lND9ODI0bXuP8IxoDSt5aqudstJeSQLzJYyPLd/TrGAib6OgpcrxL0od4C8Cu0X+kxoX83V2E9GRC+Txtb7PWnrdKtb4Xtw7aGvje495xHUBPRU7IAY/L17Ubhs4bVzqB8VqClFfdutVo42i29DVtzZkh85BFw3bNaH/coFTzg0BMhOjQuhbjZpd9HrAYtt2i3Hi0qAWbC2bQ58O0jCm7wX3M3evS8p3jOlOYgcZRsO07E2nHOTTIl4UhLt3sRSThNTekYDDHKcK7RirujC7TmtcQFSjfq/DfChe3kqn47SvslTqvSPfCtbWLK/xKeWCBiZ7Q7t303jbGu+MmrSLDr3iadYgoTs4bHzcJ1Bso53mDg4pslEqrQHbg1589RZO1bpAokq0R4e39aBELPzCIDNoxW0/rnkXSb2ZGKiBqBaqOb/mXHPspw2xbogCsDqvVHB9UR5FEYLnkG2uPPc/7IsN4P+RUTTOJrCGr3pwLl9oVZGF/+lizBE12aAwyjOOIBYWxmdhAP0KhNMS8iM7FGLE417tKtpX6CWYmgt9JZ6banIn25sIXj+nxNPRlHHzb79g/oWeBOwNb5kCXTcRiEsSOCEJP8bwMxacG+8pbRNhy1ZOSpjS4Gf0s1ro/fOcGchcdXqGUAug241HZOXfCc0zA/wu4rYaShEXLHXLknFuP548j54ca4A/8t6uSnoiOjScWjgIvas5vBfTwL/xss5L2STk83nGpfppJkn2JR7HRUNXr/SkRnTgbzKLcm0U9hk4vKRwHAw6PWm9lt8ZFSRrE6JKwfJPoJ0jcC+JVz/ysP3QNarFKYYvrqtuB6n3Z9jPRME3+5thZNwWNQpVHphmvxsT8w8WmbEUUfNKy4VxKO2N4YUVcTHf2WnN/AziIXrfMf9p4PAevYcBwcjHGcBlDozcmfriIQdkO5RsXZ/zpJZoDS/I4lgKuRqM4yU8yTrSoBJToyoGvj+3GxP9VGzGGI8Z3jdTlv73R/k5mM1sIKLW9ZT16q2ySPqphAOIldZ8DeTWBrVYQ9L2gkNcUdAlu/+md6oOX1+x92wmlStftKHx3wd1G1v7e+a00yX/dp+7QULx8gKqaRqKjcCke3b9AbAGWs6djUH9fKSYZenCDq/s6xODyfAip9Sdm0nAYSu7dpd7asTwPgJWphrO2kiRpB66rMcOB4V+vtZs3rqB30SmgMwOb25nBMwOACS43Jz9nJUZ2jHaTJGDTnNplhFcebA74LTy5aIhsAkO6/2tsRwMCOGCrOopGI6MfTUpnh3X7SH7riTW69C9TxbUoh5BGNSZh/xCv6XspGErmUULqtDKpM4QsVwCOapfqy1rRbC1E8xn1zB7tLTTdNod09IbDi1k6bjWqTFlXO34WACptHLHtPyFU68LkQ13y9EMNujKVHREhNnStYshZp5hDUXiuyoWwFhE8jGe9rvUxSX/UwWCxRS4J0r1JJoNkdMRDynKU4ZIy5N64V65D8hqNS2MWkDP7qYIWcKqjgRClD2UbBY6h9+HJ/NlL3HkqkIz7jVhnLoYw1Kaq9Q+j/OGZG+8u5DcvBtJZviuO5zYDBFKfGI8yA4/eLYPZ009XEG7gDvLwaMzQZzXWIz1H3r1DCXj4aZm9mOo9Mp7T7SUMAnN1Cc9xqZY/C8NLKF9l7TyL6BmWNLF3PtMnM6rRRuEPPhq3Fmdr4tfFfSsTZ7pg6cuY+ChjjY4EehdKYJDbArKTlCmn3Qb5D2EZ2bdDsDJRAV3VmLjJ94GgxeBR6aQagyZFky4jXfcM5hP7wD8j4eIc/TCmf6X/QQaXobj+yM8getCxh1s9tmBTtf6xWMdEaTpKhQcQodKZRML+4RWHCqX5lDY9yIjXAAVLcr2fJzMWNZk09hxI7Dvo7g5AOsUeA8z79GZ9Kq+DEx1uDtAUveY3vQMCAg65eYSVF/yQIqY83wf+3xfkIb69ns7i80/wWOekvRFmFQYbg4qydO4v7Nz9JHMKI87AkzOKNot6+k7e9prLg0rGjIQBeHO6qoLKLxmJtiHfq328rOURs9lAPrTiI/2daoMRdIi3zHXfGL+QrphMaJox2PcLchYU4/HK3B3Dr0DtUVqYL9SkSC7O99Mc4ZmFQnktgxn2NoNvd4NnxAaZBZEBL046wjY+snCn5DaOxUMG8nrXhUUhCKBt8gQyLM9lBWaCu8iCnU/d/tUUJZjfLgzz3cKGLNmy+voqni43ktgG32avI70c6FxJB/IzZlNMFjyMW9MOuW/d/pjOBTiniotZLpPw44pYt0G6G8wwHRnH3Bdu4NdhqJFN5wB1lO29QKy49SRMjRcNynfyVFJKSaV/Pyf98LSV40f5K8TCKqSkxCaBmPngl/NvIzmE6KNwhaw0CbTPC2OX9dqorHrwBx80qkTn9n108aFIN8U/clgZmenTIMdkzgX3PaDtj4dihTy64dggcbtnjxsThlccznnjIhvVxNOmYO2zmKfoAP7JyYZpdXLmQ3Ys0SFRmRjvctSAaw2zZftN7Fzb72biOat6khZfKwtA8qgUxHopfF3nORITyoAugc5Ha/wGBRTnitPz5s+yV/UGhy6anumIwxLP69ngBoFGg6KNVM3VTo4Q13+HqPFG3Njb/DWvLxdPLWUP1WKTq9RpsjucWJcySQq7SZU9WO8HgmCOROG03HBKzNreNJb5FMaXA1b/TJEgjsXs0WwH98yeTNqLXN/Al/C7kYTqsKuY+xFpGz3IYmvt7g5JktzeARlXcg1nlw9EF0KkxYVytJQanu2lo6/vpozA7F01GlIHbigds+V5q6vGliO9UjRFXdL6Yyfa1TqXQjZo8sCbp+sFHvRWlyOJBsZ5iAQMPzRBit3AM1ZLxkIUlIyygiYlQBZBu48P8tkRk5RwLHgIiLQuCPFZgMl5WDklwo3uEUv1avHNjeIZtOfis4MuAOb7cvSskj2gjp8MxB6fDJkA4HG9/8cO/MCPd/xNr4JjQIkJiCxMtbhgznOsp8+9ikXvZhJ1WzB30+UDphnJirR7tVCEnNWIuxDyYiQ54S7AEq7UfcA2Sn/ilI2kIi5t3T0JiO6bfrz8SEYUZzCXVnXcnfg5e6vz/uvRyxklhvW67ZFFMAWuqfircjfknHTY2tem+hsNOPOBlJTHEJrP80403pW5fF3WanWj+FDZCtbnZTQ4TcdQZYqsD0bQAKYGwwgUh+8lb1MrgxaTgdx61I8hD54YpUX2F2Xl1KJXB85yPRVeB8Obh0HRiHL2Vor7um7dusglIItWUl95DXkLPJm+qKkuW5GPlzwHRdZq6EzmqsN2PNrpsx7tT0wGLACDUYiiS9sAAq77+r6Hf8sQwsIHMzeTS0sjXatMOrjSTHNq51fK9HBgm/TsSZgvEXgButYxB8SAGo/8lmvumvr88AMsCYFBbZo9gDQTx0SaNQx1PZMcyzoXeENmhKkbze9o5eQ1vu9HI3XkGWUZAPizqPq2sgh/Ukt3MG7O43n6kayEuFpT/2pauNSTT5DW5uTAvyml/OGKgok5Aic8lgOpnGzxR3QoVKZIp37Q1V4KwhvQWmQZD5IFS5FLCAJwmkmiBYkWB4KSSBiulR4sk4UBp5ERC8zvR0H+kOltYdHHCpb5enjPQjUa+sBazQ3WM5I0K95Y5xyI4YcXxILBiKGEbgQuJaMRpMLfpfUKj2NGaQgGD8funxuvqO5Gub8j/8qlwqkFGqXdHlS1VeJsOHzPXbVv7J7iv7lRfIp0rUXHHzEE2ejOwLkjzKJ1G+b4iofIObzLwJaL6Ckpfj69ACLZvBWMVVA1cdBGxI/hK+OTNaxv5crT3+E5JpVvyA2XZQ3VqFyvo6uKZgrClTWUjeKBWdGJEm7iR4uLN8vEqI3vY5SWk11QBqWj7INdQjFogofUKlT/pksePXeNfwX/pQ2DR4qzPrafhf40DhJQIh8T2rvNUpfc5CvbpBQwbVR9g5MxpyCoA7bgOYqkpmGWgOOHet7IS/T0ik/zJjDB55GY6gaesUy0iDgNdEPAI75g8XgPhNMdcMHR71Um5RNiJK8P68Pp5Rs/WVf5nQKomWHhp8ZeEIhk3PoLWBV2Ot+ri75yZwiNFfXbGyPtMgvFa4OeIiqC9etbR6SUUAJjp0rSkCD9nJGj4+9DVoKNzmMDnBGPAWRPSNgD4BzTYzOF6AYkeFsqvlJyg+TkeH0KPEoJHOqvigxwVs1pz83xDBj1t6RJAxVOZP/Jan5vP/ZyNQH/PY37osIS0Jda3XOR0zRaovJOCS00kcm3ceQs4arY14frUrtgwinbeniRadUjQYLwH3hpeA/2pwwCcTDi0llM0UIgvemzeu/4s4VXvzeCIG60PFILrCDSa0/lsMQUvBhrig7X6FYVW/p+uGSEiDKiK8jA7ob4aaTRAOUDUEosI66wC6uMcLg5MalP2FsHeGTayyZiBxgALy5Ub/kZT9cFAXnDcK6vklRk28LIAgw4WjInQba02ISMhYAbgva/XJeT+caA5ojSP8KfcbxYP9CK48Z7+DVUHelga571ZwaBErMaav8X1kVFpDC40riD8Dl7nmPE3lWfVTAmk0aaHd/4w4DTEBgdK5Wrk0ar8jWnuGmLOC9Ni8ZxObgnsNoLPR4HdimgXBJu9nCT39buIqJZmYxYhwKMwhllVZylJENzypjtYhEqHyyQShV51nNgw9qfwR0Aybkyha7F+skXCwoiFssQWDxAZYQ0/o9Ezl/ozzVVPUg0cttWLnIjH0dI53oGqT90fFwR+qtg8Wp2u+RfzSSCFNh1nU5yktdDvh9YqtjZMRSxLIw2UhC79odPjfTLhB02Xc/ZF6xq2Ta2KFkz8TLFI1oKxOIsEoiZad3RPxtMNnQcO1vw2wlHUc8cG0NSgdYakQ4NpSp5I/PwZoKeKCP+jay8SDRj/KJjSeUwtUoXRw9BydlIUVp9rB51wzhs+7HIDejJSOxJ7RhtqsLA82mbjMYMWVu/V4I/JcyKI8l4swkL5+5qAmqmkC3A/oGIuiFb54e6GgvCGTzcVAxr+1fqDzYvTGLQXuSEhFBfPRT2qmXAePyayshhALbytos8DjJXwLxlsg6KH5oceBel4EMxxAzyFPGMcrEtE/TpF8H8MXFLn9fYJEiLDInMcsQXjYvEJyMQbO+S9JwIZxg6Hkz5HLCtKIw0OdSxTldj4Jb3zl6aE12ozGZVskSh7aJUUJtZ2XWG6uYb2Ar1hf+WstA2QOminIOASFxvYJKq4VrD18Ax6RJZK6l9WeA6BdK7rtMt3wTTk7LwQyrZq7Y2sAmDNLaFoXAqcB732aApzG9yrZ70WRx4JAXKhsB9xc4CwQ2PH4+qpoeWgGebsRNdFwGRu6WPNgxmWZOlRPH4aO7g+H+jZDMuns9lgVZ0pvCSZrren0sPkgnX8SgTHgGOEjpCTxg8dgIYRTj/EaG11ED3IzO6AvE+tpZwRdqTH+bOnWPJm0AWiMl4KoFXtJNpLDCn/DrJWmMYbaAvAryCech3Z4tTvlnCz3C+8h2+Sw6rIqu+IW1hO2JoejOQQEmM61yFk56+v7fi+JfkYjYDLYt9ZSoBmccaRwFy9hxOacQfUQxgFXwkfyo3Wwo+gcVLtWP/S8pb4Ed4BJZxg2wontyY0zLSh9584BRFQSlDr0yEB2Bl/O3GOFt9UBwomwftSFYOoWzUnZswWhJWQJSuxzxjT0GOQwWGupq6h+AhDv6YQABuHBwivwIChabtIUpGSHc4XT70YOX5wHekcwpDrr2ECk0A642we9uSjhVkZ9t1QQeHDmT3pCJOfUQTqNQzK+YFx5v+0uQL+qWizdWnddQNSklBN860gXLQyf/afE6/pcZ8XX6s5sb2hPXMfJUIWlHD917lpFur+swRfM4yWHZy40MzNbiPmLYNvPcuyp8EY1Tdv1fPyaIvIiGof8xlkoP4KXvgo1W3BXJLOf9ESoPZ1pBZzvIU2UNgMU86RYlD4tqQKgnmXmulzIjg8AQh9k+HnYwgzBqseCf1mg4jFAn3Mk0U2kZTL+E0NKAgZroNmhjs2t0AKyULooFreKwhI+C1PhEnTRgZjuVgj0VIp/kC7uX3F64gTzgWqHtaebV3wruEJEmJptYqJXvNPAZiZ/fk6LH1iD0v2BQI0vD6/CnUQx8YdF5ogwlS0fv7ZYfU/6mFbX2uK1tMiqWxmJhFF+rtQYW2pPM8P8ZpO8daPAEx4PaUOFJjiqxMnD/E61vfXI8vlIimU2E5dXZlP56N2p72lcC7yhifbIRyQKxSiaTaHtepDK8XrxA6KGbQlAEtIw82RelC1Q99GSYLk26vHC+wtovxtxcjDk48zYR7flAIfJn9sCHHo5Y03IKTb5CVO9dVH/IsOSz9E1TmM0xu2FYPsf1Xohx5gr7PndQEnTIqljgPz+W1gEZnRwbF0JWHdmbcTPB0qLp5OqyuGX+VKCVZ8Sjx9c6M0vyLcXhtBUDQ299DzW7+PCFl349lc0rslZQjd3O3U6pFTfHo7H0vVKn8wIBHRqqHZnnozacsoUZKTWeUVCSS7u+N6wT1ZxKkYOudETZUdkE3t4yzIW4TJwebxg+aUfwMjdxt2JrqS5BX0vTIcx9nM93ZQlqlKQuCXplFJJaKl8m1R9YVI3gmxN7KZolkSZegZIx9fCdDLcvnc//O3KtchE+NL+rhC2QCkXjNOsaQQhmQl/BCgUCOmXYI6JvbY2ZzKRb+E/NYC27nB9dQ0m0YTrjRdRglP5161xkfQ9GHXxE9px/NnENJDFaojqnHaeg3O9mfmihG3sLAR4TOwBIl78lt8Ka9gT66Cs4PGmsLU1lcTJOMgy12gr2b5DeYZbEddvvDmTwSXC4K+IVSDv/BzQZPMGtmiuIZzi9NpsP5GjDi+b0xn8ilqzrpqki0SD1iY/y2GdAL9uJspFKAxf5/Nlwswsr/pZVzFd7ma0Ky/hPww5uwyz8ULWDEkTQZbyL5fEqChX0i6TzuDCprT+u9smKLLRWBPkpSj3+8hDGA0kFpi9QFPGuK7/tIc1/sHr/Vbt9aZeiQEoU/0fHYJP/XSEPAWYT9jon37aPOFr8oYYTY9TnDt4NJHUFA75WvgwvBdStuSJ7lxnRYE4fLKzO8MCMYUDckCE0Hd+KOXCPOLYacoeT2QhUCwm9Rd0Rcnpue5AhWMCQvlmAKRnUCLLGoMaQitpb27HJIOp2WAt8kTV6LNbj1ozbbFrfaKxMsYQ9QVtHerAYVresCKyirV7kYU8plp10CJtc5ps0MnYbQc0JbB4vvFEAQSc9I9Xb/oDXLiMhXXGaM4ZzLZoVAOCWR73Efju0TdJ/s4gYl5ohff1MMk9bXNRt2sk84wamnussRotfyW/z3CwZqX7G/Eg4BRvoWeK+sruS4A7P1ouiZAq6cCy52+jD/x6BObM5Kgr5mYd8V6cwRVCqxNt62R9Bw+qu1g+CbEVpNzwSewFff5ZXRNT58bLMK2Zcj5N4hc8gL6BDhquJYBuQY1hXh6Qfy2iHFv56K1k3CXusPaPZxpVWKVRsFNvMMlU6c+g3sMAXA5ptvAKazaBdUAtWbbqtewM0KdAUfamSbyy3VJqEDRXzk+KTs+MSL7qC9Z8dkXEuX5qvm0RY3E2JvYland3VfARHC1RTnOQ9i7Sa6VU2Xh9yg9SvYw8uRvr7/CfnFMZ/wKhFi8gBBWhRvivtS5UMtEfG333QJrXUpDh7d5vplkAHnZmFqV71mHMcd8ljYIRhWz+YxnBQSIa+z2D+Y3ianYz1Tf0NrqPdC/i/aATe1olGjvcWpbewF4AA//vt7i09S2dWLJvC67pgcNChQ5mbG4KGtE2XiOHpWFpE9rB6CwBUSlQ27099O8ApwglPXmp42CouV2Sr7C+FR9GDkbAQF6AmmrmUT6F6jx+9sBkyZ5mr0fTryX00jJF4PrCsVO/MNvGMIZtH8sDXVlevesA6ccL2AebXmiH5kaEHmFPyZbLc0WvgZr/hir+GC5WY2WX5MkXcsO9qmmzRz+/MWjssk0AthB1YmT8dQWMU3kOHpuIM6FMr1d02iEA7qtMvlC40JIwq8OZTadNHjIwL4MS9YT2+jN541tx51LMdM8L7slNdIKnI0Rinmogi9sUnb/JbhbIACkYpNbnQIj0X+JWWZbZiLZZvFVNfRg7PhUcgiAXMZGPR4Mpla/mfemKnlHos+s/QDyiyyXbJqIgprmkbPDR88m9blcynjVP7heh0SVugi5vHhqhJGczrXXEDbwg4nNflFnsUpP3/Y/gFL8VIAhI7wHVLe+4ZqTQcIX6vFo7vd9byjzE54pZinm1zes6cIMH7ge/8mOi3D+Mgqvd6Ko0rR3Whp1a6TQ9hGSm8L/K99Gyvin+xUsO1mCiDaKkJj1kVt9xtOdAziJ6G5VpKx3pQpHh4OR/EUOm/xy7w4HVvL/9C8Zbjv9ZgUOnYaB4+G2ByvKdvAoovBdZGxw1sFToHq+r0LFgcUVdA0kJ11EWemTQELnlrT+2E4qCIV0nE3cOd6pL2k34GissglmqdB5/GTQSOu2uvxai4M3jc2kafsaIq6Lhd+2MLT4HrgS0+lem80HbQMpNFBBG68EmumDawMgrSNy0dyWW/TMh/7LnZo2j8gHfin0zW9RihiRNXy9nMtZIwEbA3jYli0hx0KiZWUQRVbL6C4FgVFdE3M+5Gcd28XaRSVs8Y7J28DfNNoJ9E4lT4ShCeFgnzAk29wiDMTqtwYwIovcWtPzaB8smL1VSf/LTTAXOSNYfe2aBdLh9KEkBw8nd3nrzzHAhnIOWkCEA98FUYFHvuH1hH0E48qeEGY7nhkE9EjShy/UrGSr+ZWISVe37D37JJlYhTxr+GbRvvSNk60nvamypiED++HxaD1ROMi8H/1it8JGiK7AZP4SP9DFWI/VKIl+CKKGFd6w/JbHWIIpZOXjWbJ2e7c1NL+VW2Bm4M8s6AAw76vATkCz3yk9YeS+3r0fw+8m5pTvKTcB8Y0C/7EY2cfrUE/9cpIcaUGhtqBy8M/nm6TgzKwxXiwkr6L0723EGTRAWisq2uktr3P80E4xQlNG2w5tKpWCsZIlN+l7iQ2EUm8NaP6kxNn+Oqph6j50Ad03crlVhD9QjW6sMMjc4O8AI0a7+A7x49lH8W0pXauVSsM6ADg3uUwS+6YLn7TDqGC8LIGCZeoW83ykFXHfPkMumDKVUvCmVidKBtM0+7L0dRv3HvEDe4q8KmT70k5Czj3TcPV2xecIQKB2GdDTPiBqbjOVqJRcJzFNfNx71nuVs9Q9I6c8TAf4wmAR7OHuuPKJ0AsJJxPEHF9agdZ1quTLczXDV0mh85VmTet3haHzpFoY43EEPw3Wbbu9LCcuyKFT28QgotkqS7POVB20GltQ4RBSWvQmI5Af94DhzbcPoijBHH+g62pUDqUczC2lW53qHGoE47QpM5d5efQ7dQVi2sI89+41Dr+BK0C+cBbCQ4v1qfJxhz1rwbYii4be3Nv50vIKFxxtw37R0Vfgfa0Z/Ejb8E+rrLLIAI8DgoCYFY4yEZJarR/Ohzjwc+LGy8/wV9/svWCZBBmqauPBsFdcSpWzvhRkupPRSH8R47mOL02Eqys4DMDI5+jROHW+uJwTQ19yqlBmVyvv516S9xwL6ipPruO4K/uJfOI/TuAyHkilHdYcAGSpRocKHmt1/mNmqcmNRFt11q44dKNzH8WdpFWkapPO2GetPRNehMrprWJwI2g5eze1p70+zJPRRpFj0cFhNRlkLX2L+K9Slqw7M6yCiPcHsDQoFgAdHqkzuWOaLgS1QhxHMli1NhLrikvCVC4EDYMsGUqbWsIC9Lw6Y6AM0uIujgtVpjFIv+3ZYcfWtUViz+Gu37rCD3/Kg/ZrpSt9qTqOZ/V6Iim54QMC3PNL+7UqLWXURKFXomNYl6d4rcaf3HBxXwzFzK4kIQi2VL/56kXl5ogQY3b49PeWSi+bwDAQ0jNp3/MfsFibNq6ve2xVnVGt5Xxm/Bpntcd7wMcBWnNc9HgsLsk2XkYoKS1xo3Qu8x7l526NPWnhiFPaROkVp2rHBLG2/QQqo3MWF1OL0r9jahEpvrLhqISUTTjZtSOiPvlffax1YULMDDjt2/A1Iml/U2zNzLIwkVyg5/JKhElLmiXYABAp4hkBRjuZRMAk7W+Sq4Uh0Ex9OZX2+Q76EQ2BA2tV+gcthkT4YVZ4QZWNnUxIP7acm14jSn0Z6waZ8DVO4vN7t0V24HYepI0ymqrNepAM3/0qA/xqcskSxA1OB2CYeOS3IsjmFhvGQPPs2GjYNeJya/2+yqJ/6wVzk9qdVHy8ip0gmcJmG+ALh+394FZSPt8WT4t16OyaRF3ekjzEF6LbwT0XAUr9QrxzEcCVMv6AVRZRsUlxMT0tGn33Z3Y2ozmTyZDeRtbso2Fzgw6GjqIVZ0/Ht6IokcptCZeMUUFuiufn05TQli/VU7mtZxeWn6Joe6YYckL5Z1tqwWnStUjoP6fmKcIC+IxP81I8tpLilgtXIaXBmhwIlbBnUUSu0qmg0yWZQCR/MbtRA4SJ5+/nDxg9+d6ISfDRILkyMKO5VrC50Ot8ZBepFGnNzAizemuMOgX8Xe8Dh9f56+yZ9FFgDQ2216GCVnsIlrib812bkFK2wyAkX7rJQwKT//uxGALARujWfIU4ime8HuZus1tLj4sONlqO2T6CBS2HHYQ1/Vkj8Q6ki3eQc1qu9LWuQZ24s0jY5cHfdLzPvDpq/5S8fPt7DE9OAAaAIqgq1RFD4sBo4wOrSlhOJcCggjRgE9KZ/ME6hVqF26kIvABbASVLipAjUyly4BOqMuWu9xu7SLRTzFJ+bhZdIlgl9ejugTNcVeOXfN2SGmKjSrPEFSEJkKrapY3IpSAiGWUUk8W3riFWKQaJtaOwtJlBXnJpZkLsk7WSp0uksPZXxhz/ZAukA5yvh47Wt1H+VnkJFoQz/KJRn06Qoh2j49hapZoqJqtgpXuJr4NgvJsZL4kJOyni9LUrEnrsAWQFAT+lKeX4fbEaOgxy1btSfbf0yN+qDpzWehArjF5CR5pWNoStj3Nfj39th5d1CyDcf/O+B2fb40nwzdo0SysadZDOkmNlntRJgykhT5xDeW8Oeu0VrDeHQGz7Z6MUOcejFvK6f0rFS/O1vXFldcH/NcmL1DplnjyKFnIXkJZnOogYeHYNVP5t/pekS+f8smkd2AeFh+rR+7OACrC8Al5SdvXA+rWAMdhCLrH4eL8fkHXk9Qs96pAFWLCurKH0Y0BDZDd6HuYUJnifgVTYW+6ZnfcsBAyZVIAVYWS0r/+3yZ6EJPxZZL7sFit3cEvZKkfDE94bPqBBvfdyHTFosUzndAlpPx/2BGn8XEAOgkRdBCH0JmdBn5ul7h+VKJGzb4CuyZ686jGZubG5ffDFJ15MXYOw4lIVyqkO214pPj3FFDXxN2K+EhJUrq0PqKqxXdyOrXXw7BK4UL+GHH0zDpDluwfCsEtqdJ6bwG9JaTS2g1ehQlFlAAxLc0tWxQXiljwIVa0EzsuPykO+l4Ogb9eNKN9MEaw3V0sw/ePHqSgfYn5yZjr4gd4r9h7YZzFoT3sR2EIkuDGAHYoA7pChu3G5E+Ps057v4B0ISv5tXheSpk7YDhUR4g3ysUSl+Zgjx4quBLYlZabHZPX2mO0CQwCkrqglxwC7PaZ1mF7dt9gRrscSfKt0aH+Y6KYJ7jrsFE8kl1wfcJwwPoa03gcDvJHxWX+a6OPofqAeLzIs2sOR1I8I3B4zv0C4q9rprfQBVOUmGQ7bvPAIOLDTN/jATdUeOXCTLDitPocwhI9ou71nFWBLZAYTESxj6VokcWCStztgSnYzN8ZGGnLp0Im2yRI0IbTmttKvYgDhgVYHAkdg8L566MMfmSmKnSQJDDBx3t9nFPLlCQf/DEbQ9em2Q5368NbHX2q2TI3CgAp3y3U/K4aOO6BarnTNfbmbUqZHrBuvDSdDfIR+MryOI5SLHdVgURlUum9ESWFNJI/kh5hPiII8DgkwnFq1is0nMF2acwvZVcBIDcwLk76JKQ3eob3UwG6If6gaBJRplemM2HyLSAbdbESUGpwEQqn5tG2g5Wrb4MSTozwhKSr0g4IjmocAvq8oXEFLzBTCDU04yHET7w4rkY3c1VHoLGsn/7IhwXGKO4kwJUYI/iCfrPTCevLuSvp7Fv94qkDqAtCQOHUOHqzh3/bqLvN1ZD8c6WpcTvjbSOi694XVIieBObUfbudoCOYuKOgtqSuYCm/3m1ZAxgGw9PAxHT5vNxqms1hRpveojgdI9cx6WHrFrARakUIRnYmThHg3HSOjkMWReCjXYwM1iX1daQaqxah44h/QlCiN1GwpH0iC3/eVvjxYIg/U52Nd2D3uDPc8WnMq3ao4ookMfUC+JgN9/EweWaQC7KECWJNXlHbXtv+pzS8yUs4FQ/E7m3ruG8tqG+/Huh6HId+VuEA5q745KwFQr1K3OcwdE5yNheNV1exPlN/yO3sUO7unmjxqPrqYlyYdldFRnhjRpDKCScobhkmanqc/ok8pXTvbe/FhJr91xdk/u+0U71SQ3ck9DZzIgvS1X9OqZYEbDT3qhjElbmiP8uYCG4r1tKeAJq9JeN4eLZ6q996DZzPtdzHJNWlBHAM0b0hphh/JrfovwK5FfXtE4pA8or/C8Mo9hhHs4bjPC74JOq4DY1aXi0qmoGrzLhpWtoNtIzqbUk+4ogVPd+qr5Kx2JsclnUADAnFGBEwMbX72WEfCy4Ndx9yoXZLGDzkOm6Y0RdW0s8aJGYehJCDVBYfXTlZKP1pr8YVUeu8RzH1hxDoSgdp0OL1RcAdWARDj6/T5+xjGLERBsI/XqrAEu8ZTm8r24eUmW6xkutcEqpGhCt+nR5Gt4z9miGkwbBaJGgGhkGHdfLzPBWszQKrU8lfimC2EZ2yn6P7taqM1BuDSrq/jjPEpaB0Jr1J/P9VYMUfpbLco5fnaRT+H7b5t116OcAL0DARPkFzjMIE0hauEx1b9zLfE4Kvq2N7BnN0dNUgxZ3JvQFRIqkm+X5KJH6ipp3tw1CtGm37dyOpdUUlUQFl5KGvtSNx4668BiJaT2MMHB74fbyFtDA3sB1SPavVOBSisyosfUPIa3p4jP8Vw0tzltRpLrAIR8mgqbjdJXG6zswSAvnHgFOhlOYHCP50yITJYANaRz4MRI9XY7Kkn1yhnrfMje9h9urPr4wnkrWLKAhZmcz7iKCSawC1NnPvlhHmoJAhIV23rjK2WqRKKOciK0NQw1/LmpqeML2z4KgG2KHplykyx6LJNnmEgBfo6bGjRwgUTzih8WLnpjQZty/gjIvo4TjoSMtueWKCvEDdEVINCtU2pEDWFJ/eyG3wsJivw0RyLLO3OCVMQv/Tr3UQ1RRu8ecbiVrNXwzZKt9Yza2FBfg1iTEnwOQzVWmx/Mu/z2i5kVtoCz6zKFHdpAkKQLPwLqNMMyJobW1m8gkSthtmx+n2sb9Z94veMfvyiv+l7K97X4qd5PddRqoZcxzozVnW8H+OacjX3cL3uVdLAwlUwxeYJpw4nAR5mKuky8emVIwn0Gq5za865u22bH7GX8GD4AZtMHeLXUBc+z4jizbIgIiy5SqGPmaTC9nRr+GBM0EgIRz6Dcv90BBl1VA29vqxvqN5eM7E8inIK7PGL91yDI5cUn+3JJMOHQkZ6uaMClQN+5mf9/C69SxBTW+gZhUNnlshMrlbu9kid1loqDd+w1FeNpgHvT0Im5qGjSGUI5MqZzBOXZJatq7eUkHFwtS4lS/yH4+J1hAiPULKQbn5/gJfGmcyMb8oQUSPYftP5kdRjlbq5L9xHghaGneTXDK8DaZdNxi3WqhZfEfUVMsG4ZmB0SZEdwUbu3Rd33HHYwEpfASFSYgUGLULWWQx9500bON3QLdma9QM7OJaIAnGddC5YxkT5+XsZowBQ0oZ6fRHgavNAxofkBLpiJvxcczWOSBxgRU3FAQ3kSGaFS9AndbQRNf6edNccPpupmRqRbYeCByg+xe+5KddlK28zjS3MQ6JrGboZz3mi7ei3m+ivc9wJWs0e8UP6u29W/p1PqGuXE6yDqMcNc4tdIVbgOba7Ipqq3/tZD4t70WmQFK38W5fm9mpImZmucR6lF9CZOaz6MqBnsMExwRbtkNAfwkDS/GmYbRHP3AjxeCdAd5YDHk8orgzQWo6saW9T6V/1KgvILVX+4xJIpIeoylqEJW+kBHq0aNMg5mfqJv77kv4jU5FjjXNQ7N90UJF6EMtX7RWukawphgtvwyPnh6BuXU9SNkKsKIGb8efp/kCeVTUhioys7npN8MrEun1s2jR0aWall5ORAdtq2PpBd8LlMGgBxa7TiuPamtMRFCtyy2QbZapsI5Twxj6KXO9rIR8J7YtaTLQ/oFkFo9wBZDUDSodm3No82le3rHSs0lEJY0ysacblMQyGYJCpxCmmOXSWzOoBW8eNsOtBC1CpF11dFBK/bHgsVHPUp/GXCrRdPV840DmHhAEAAitZPa98pPfqHQih/gQ22hzBsdN3RbYTMUPivDHdLFMyPxC2smRgRQsmtp9R1sUw6uk8RtLb41a4pFDVDHEcD06YEWpi8kGMhJvvJXnBGKQa1RhQLY6PjlIqaItsdHxtXpV5GFpk4YdLfYajPx2ofUTN3JX/hujcofnqFpuvecdAFclQ2F+Ewk2mmL44GhLa0nuUpUo/snnmg/j1GFryHG58EByTABfwcdnJHZgx08X8cgT9Wse7Xym8XZsI9AzKTErKTGxqafcowOzwNu5wu+Aai9+QYMf/NTG6vEyglI9rhU5pATcAjc8Y+wo+ik1HlrgWxQ6a1XjmuypwSxOMpelQ5ZaWRTfP8xcSjgauRnqOdkqUktBQuxygA0C2zN3TDUZXmvJcGP+Xd3V54h3pFofg8gnfg1ViCip5ZStvdyNGDdATaYm7/1CWOYSaWa+KG6XhPnUpdMGTDSERuJVYUoGp2scgowG4lSaSZiPgKI/CFoA6Ynvmrs1TVxp5HefRtzc5ef9+A8U6lKv6rWgi5AAMK4STZJqLXvIMrfyoz9gqNUdZtsC2rMiUR3AtBzrJwQVPfZp2+fUJxipGGJkwL5zNZvuFwfPRrG/Pux3e4AICTmtocNJ/o8UvZCroG5WGxJLxZbI0KQhFn9BKx65XzQNtettgfbJ6/3Pfx2c0jsGrSeZEVGtcI7BqY87KJ/fmmUMTBN8hzWN7TNGdJHnavFFYaJOWoq7Iric1WJoQATV6neeyoc475wdzjMP46mGxTgZTb7H5dehenU9k8XKbDLVxp9Gu8fxGzTfJRPhKBPdORN1XjFWEE/oNCE0TicEH8vwQ0C9W1RmNk0qk5Vf9BGNUdbSv111V3JYWybntTDdv/2/S+Nc29McW7XTu7kZC8WGbXB0YFMsXPpW0/g6g+5ut5CiBs+C6bQ0aMZeDnt5RnUkrPpqbY88uh6Lq4O7zDzmXtvV2EEd42BCorD2xtPbn19ipmIR3ghYnrndzXKbOU/McY1j/u1SgqO8ec31DSJoHdZgIkJ7Ki4I4QtUYlyHfyqoph0eTaxudpmIxBQ+5X7PBTKiPc6Yqi+j1EU15aZRGvvbgywUWXFG0C4UdVyRYR8TxZbkfPZTNLPkLCCVLIzdqtLIC8VTKLBhQ+w9OAMDDHsQqmhKWvXx6TzlL/Z5HNlhT8eMWJkgqOuBgNQZggW7NQ4jyre5XMsOEfi4z8jpGdStt2zabs/Gl3cA/i0Y2Xd07oyZM1KvejXOLU5vsflL6ml1gj0IQeV96+TWP6eJvgjchen+UaalYah2bearK2Qmiwb6QlHitWTkhrwmigKQX7d/z1J0QguIBR8TjUo27ObhCgSwXkv/NSy91vIt+UBzrltuJiqwFJfWJNWWYCrG/ZaRWRIgTNgJblmAGo992LIbgRdVgXiDEmd9ttlsNCTsfn95pp5sWkkxc1dJ5t6CN/uHcg3RrsTZuijbWGD1vA18hUCAW4vIYKUs30APh0e3MeQanZw4UO81bBZlrfbDk47ieOyIhF5CYYj/ymzcGkDAIiMzDZ5U3+zDthgsg9wlbypNkOgCEZn6A2wyylqBrHrrT04ApusIJ8UW82FvO4jb/n4b1BCNe619Pq8NkJ09UFgIKIG7eHM5mFK1VnLfN2AOp2JKTHM/9ueKTzth0haxyLXm+/rbQOISyrTZE+e8VmOreCGV57cZxPta8GWZhTceldQvV7W+WxTiwDHXoRYwI9a0OIEti07JwYR93PlBRySMDIpJ4BwEWnVM3KRbIBp/Rgmj3lxJvQ5my+e7WdatQGQYTxf4s9mmVpKndgGldKt+vnh1oKr5MzIgv0fBMIDIBV6s7dUyUnCf2CP4FooQtHprYwtWfUJFxSNqIwzfZ/X4CvCn5CYSTymfBe3FhfA+/eREVQfXuXMw3R30cjcxboQbymxdprDx3xuxuAWGvYa1R87Jq0sRAFipkFg6Sx4mooi3EXZYH3nWle+NuLiIyhp4uBUxF1O7P6hgtHzMchurt6OgsEH4wC6a0YD47ahp3JoaQ80/7oT8skdf0DB3287diAsVKFtk8bIut4lyRLLNq6qFS3XV1x70Zs/pvsriC/9Al3iLK825B2nISjt1bywD/gNN+TsTl4nrcPyVXZ356z25oDLnNgC4sjgH4SICe6ktCrX6zQ8yXbirFbVL+eYHa8u14TdArtI4Y7pwt+5+9JYyw1pLfzDFSaCPqaOV84wErhrWeq1O7gBFlZ5t/IMsQc97E1fqr9pwW9kK9KqyYSO3WZE8LEL5jbjIScGys0TiEMI182/CVqQewuP/8FYf9hVAJ93AmoaafxzewoOPjda/VDGRhhBvDaNUacrZDuOS20uW43qYoPLv+Z2s+MWaZM/fPDdudTuc8MHL3r7ZhRNuh3U5Jz61QZKtzNl+r1w9Pq+SSg8nWn7ekzi0h1KGyY8MySjtGN1z8StuTjEwJWvK11T84jDZUShtRpAfwMW4GvrBmz7MawDbZ2+/gJw2FCSv/P2+MoCYzvqOaSb32YHfoh0X58EN+Fy++bYbKKKCEXlz5IpWqQEHucCwM891XQdeFbTZY0ZD1yImujpZxdv5ewMSjG5qjH6rYkoXkUU1J2W/TGT4wNdAXKEvtBjZZxffGYArP7wD83dJ1FE6xu2G5V1dyaIuVL31LwDg3+ZxaVSOXb084SVclcWOZZY1WlbxI2vtaH3pEn4NDEPrO2a1z7zp8AcOpfwLOrXlDeuPN37NvqANdyzPAT8AjyYKrujEkrW4zvLjTme2diMnaKIvirHNs6ITSawSYVoQsVr0+jNZkmU0pMIdNeEVSvyinUL1RgKxnREHUTkLTx84nwoLANOF2CUs5owPiWotcAwIlr6nq3+qGi+QR7M2sDfW0EydOURIShSJy2RWTwKMzvlpdj90xyjbstPwU/1dKO8bWhoH5y9EGsD1XZSmmK3EDxb6CPsg5eao3Hn/WmaOaRoi42k6vbgSEJwwrq0qqwf5y+B5ReMRTT/2Z40sdmxJBKhtV6n6jRlZmgMNa28SwxaNYQCw4mqO8SWHMmUVnJ/6/169IM6ZrVTen0fMAqlAEOxqpT4PO08NRUqygZEgGrqHDwEaEmXeRAmvDg4P1KDmXgIyg/fyE6eCqX8MPHYxycVLm6hOaAxNm4NbvUaLLb3vggz1VDqiV4bDCK4BL51dKWmetooK5wwoSGLec/wFZnmMkWRhKiwMubvVAaIctsOiJHLjIGGI4lDR5aJ4PRwzDupBDmkOaMxRn01x5HQzagZ/vR9sH3aPeWFkiegG1Iid/Tg2LiBHjfYog6ZuWom0oos505IBkrMYsQc8ybUCIt/T5rzXIz2eKJSbfJhNbfDzAl1SfO4e2Bc+zlolVM8PfMudMPfPqNrQHHVT3sORiwAdxOgJGImekN0LpzPuZZKyRa0tCj7gMbwGLvNg+QWgAcx6O2HTq9kKLlPJmwBpBaO4mfDm8B0oLf8HYVhBAGwybHhOo2cmv0Qvz+NiN7xnXCe44Y/bDhQOAh60lWPCyCaKfNQo1qbW4nkH/z8cB8Pq/VZ9F9VD1RjRFimGDnp0Xu/kSg7saLxH0jynqrmD5K9CNCiCkI8mguf0cc+exTeec8U6Bxwh5X+C3bdic4vPA06wCfcKNtUpDFOogyemwfR5u9kSbDWudUbmoACvgMTariIPHhXAhMZB/CQepBKua/7Pk0/JUSRiRlPRD1NFTCFoqpdm3vLikgW2LECLX245pN2sRjwZn09dCssH0zmHRkrrvJvyQ0zEzDQdqAjkE04X5xPimhDj1u+j+12Wopfx0SkHSxlM9+CiSDA4e8Bc6khdaSAziohe7YiGpudp4L1epr9CEJxcAo2H4ghJfg/1I5Tr9ByY4Ed73Q6uMv3CIAHQcw5yDAG9bOf+vNUhBFwaNaIr8+eEHzUPIfULhMKGhiXoU6qE2Yuj9LzSscx/gbfSQSJOmbOdXoSZIi3tOBYFcF9nSivrlysDdXZD6zWDB/4jGkxxpo/NXiZbonAMX6eViSINtvqGboRoNSwohMoL/G60fm2xn8kd3HsVHADJMvulDifpUCDC+C4twOBFHx41u79YdKJysSd6f+EbHyYnzou5eDRYoadHaPlEV4gjMNSLsH5MtAmaO/7CqLJZ1GYiIPmhuWz0d4yOvuO5SK/u2n8liwjpAYGejPTYXMnQ2V7kmxKVEk47/DMUv1k/S5QUjFlP9AaCrmXTyRKIwzgX2qu4IDWC+k96tPFffOOO+xN0/PDSJN6/2nhemKXRSlFGKtr4eIJoznNtLPRwPw3+35LxP6tTRYhG/21ClTW/yULVOy9LRk+NrjI7nx++Bi1Gb0HSWqCMRdxYLLc6D/AxHkZJzNCHQZUCjQSZgjaUuLPA6PeCSHIh4r1QhsYMnso+pStUSr1XsYaPNAPFgc6fIZisggYj8ZSEa61Mxj9ZgZVDDnl1KRO1vYqX12qJCgl6Sw0K3eKwO8FR/UTRbvXlsQsHsl/ly83fEkCBngJ54cgTgpfg43Z6EEFoK08Kr9Kv5KRMHsU6zfIZn4mF384VIiISGiiEyduSIPvsPlhvtO7qzxsujAtQLa/dBi8NuPv0dRjCqozu3VU33z/mkjUlFc7sDkgn/19J/NLcveIDA/GSSvO3G//lURWsqhvHfAjDz5bGOKj+BnIPfXwtQXUwt+fbJGo8Pu3lql0kNt5L7bfK6MC3TqoZcK0HkDgnRDxLSeoGhqLQJfd7kwBsK/+Tv/4hlztHiKIiutwX08YNKVGlv2ZyYbG7hap4KdyMXTm4NN1ntqMELRuhjhTNkgVs1/uwGVFQgM9JkdR0MOqJ0H/U2tZ/+6pa+SPHvXb2iNihOz/yoTa2Vr/aMxaKfqAeZXTGg52s4xcOaC7oorp0CFyd2wH9CxUKyJAP5PLQKexKF29ARTEUY+Dd5HFWGt0/SbOF3lHlzxS69zbYJ5sdD95typMxrkYkBcDZ3MQS3CFUS0d3nk2XiOvnaPLalN10z4GspDGxEhgQ57LTNCb18FmoDf4HUIchHChNimqs0IYf/tcHBIzsHn0ta6zUjSi+7cvxgASrof4GWJyPUebGQLshxCD7lHfyu8FAVIuXPBrtIxv0zgV7u6YgETSQ68N/qwYfNpJgiqIMo8N8qaTXDtVavVf5zUbae+X7/VgncmvY7khareYYIAZwlaTPq1o6ZRzcyJSiWjHKXmaIfHcpi91bs2Au02tfGyw90rxoGF/PS2zc9YAvCMR5cxihkx40mZNtmg6GzvIZqlWkDfqeos1XXdiab001PWWyK4FFNr8tQUcYCnnJV2NX+5SEy+3K6BaYEqinGHa2C0u6cwPgxWg8bR263VDY5Sm8trIkP7MtuznTIR52Rl+hDrRwpjqKACkCAb0mJv+qNyAMhPlg7fDIfhsMeV4pO22uhudM8VvrlQv1iyaorBFkcLczj3CCErkKCDRq7ZWYncE+zYpbmIilwgLMFw40IqjBkZ1xb59NeivOVc59xbhUsk13UwRXpNThaIcLtrRa85vJyhbUVGtBrrtX5TSy6QtmIxAM7TBBbFEqfn6ZIl8S+YX4w7PrOiblTx/+yFs/Tn8R54PljW5zWg3es9yXPSSYtsQArPFeJ4VoznZuj0fg7evZQq4Djp/QABkjjDdeg5eayGzJ/n30bxFeNHFxi9pR9ZBVf2Y3FQKHp3UDhVpogXe2G652YhxlqK8hr/6V49HUxit3KkQKlqfSTyZ0PhCazYIAVO5s2OKahrPeOZa1q7iUIx7H7LTcM8U95S53NxsYobK2RqtsgXxqVz8V0M3rK4eaSkkV0sMq8CdramhA3GY7Zi0ITQZlRuuEEQZkTeBntAbDJu53Lb9u2SrXWZHz7NC11kqeJAf9JTeuV4By2wi72rI6d6IUTuMDIVaLogoN5gGXyLZu1Y5eHXgyLNNKr6VN9d9u+RAIK08MsAYIGwgYGKUMu2fk1NcKov120eBUaLWAojS/Ys0jBZsrHqHFSC+LmMAOJ4cgXyJuWjfddoEANkQbMSJnTn9uhXQJsTLrNO9ewVU6AruFOcEUA0kEpC8X52tVt3ze/VjrudZURnwFQ8QT+7mis5x0mSZG5DQ1oHDIUeYqVm85rLPNH8PWjk3YPvKK9Sog2Qy4yBJkzS/7qonj+/wQzladFQRDMwSLFlKWoBMk05GTJqTBrMdaXW3C0/2iAox082xlcqLp0z9laAOCPec6skwQZQSJG1rSfUyWjdrHnI3nRBcmUhJ+T+Z+1XX7gVwX5J/Ddmh6IML49+E3P7MDf1la4w2Opwva8Bp6yDHdvFFkqmWnedeOjmoDWOtU8CqRTjpa7Lr+aYGTk5nnhOc4ToZyTSUb9fMZSer+6lXN0X3p1qBKm3vbTAZR19TX40CiELLbeyC6dpHoZphTv6qIKiGxQnYSTW5mwGMvfOqVCbaFMW85RKqQXO4o+p3ql0VD2ZQo+M3dONsb8OpSGQJSh4vyZkqCXheSrkeoXSSptMr/FVPf/M5uGHjTEupga+laGCqy1w+xF7jjtN5/Bv/tknWSrb6IOUNQyfcu25l9xnBGGWfjK0Jw5+hg462WcqaByc0SRbgl7u4f+LcmxpoANCf1PaSPiCoaPoSEtrOEdB9Q9gJerWNZ6xLjHKRfy5T5ovpEkvn6o7AIU+TvDOjUZGmwLJiQNSZ04LsCuE0fp+tWSNVa5NRPOw7uPOwc0RbA+7bXGtnVKBnjFXOjSiymcLQPEAASnEgvnStyqxmTy3Ztw4WBsQBIWb8LMu4l45CZTsRO/eM+9vUP0s1bLpqxGRYsH6BEGUiMsQyuURUE1Rk9h9nO0TqlXCLcTo26ieXTbYqk73ZFttVGtkTGYUOeh1sLitkm23LAf+NuvAd92GLRerdIxQL9aeGSrlLVpVIJDhJaiUJcOZL639wig3WVYH5YeMIGvn5ubxtLLPd604hCw6uMv32W2SQOlE0FzS32IHXwP3LL8tymE+bJyfMPXF2eYsJAOmh0kL4vnsy6jZz6rjvAwB2k1QfcIO7EEII1tS407ETakK1dqA8CHwUh3MZT9rX7kuQF8zyXUZTsk49wc2FPEd41oq7Oy7WLvhatmdrsLEFO+EPrq6lVLhDcNh0OQoW2Q5FMEz8mlBK2RfdsQo9PDcJKmmRbQejEjNkzjSlxhOX3MJqAuxGxRoeWs8z//Hkzk62o24KCMPZwz9aa54xuFcjdTZr5JPtAiGSZiPlMBrUyczO5Ju78R+qr1NrWWe/Yq8PLRyLyS9uWxPqL9mcE1DUiIvrZEYaV0OHQwXglq95GHY7aj89hdUv1j46bw39RtcQKlVZxZ7jq0K4bQH0q6WUYDGkzk4dIYfoKjz9o4yaTtCDUEEPOwwhf5Ap+XsaW/jI31YsXCUzhOp8WCZ6Xdh/7GmJMXPqUTi4NlunS8OGNCpYH061DVdsLp8yMq2AbxNSAEYwzWmSvJu9HOb4OsRo8W01pyb+7sWijZU6J3ho7xmPh46vaJY5DomzzwikTUNzsCXU+LYECbBiweli51HRNpbRbQkuqbu/l0hi1F10o9d+3qIHZ35yds5Sgz/3SrAWxr18A/27cIDO6EDDFt9EJrMvFevDFjbO8eokDvQD+Hp6ukGwxhsAzzv5J+luOccOXgUiX9QTKJezHrYAQLUxFX721gDzHzpRHwt1BzIUhk77zlJoabZkeduYHGdiLJGtZKpL/dfTnnqtQRl8dtCQ8J5A8NKw5dOxmJkcBmMs/lyyVyG+Fu9W7D8+XN0BgS5+xfPUBEYO8KiiMGpI4wxzp9eMMt48D8qTpt3HFkVrzu+dIjWy1YV2oqTP5bg2TkDCdKtIZgi32MQUF+xe0zlI1jhGNrkUJpzJHP/11n2E6+pm6roNZd8brySLdfO0ELASrulIoI27sUVOGUyJFAqhpNyxudE4cC9MJB9+7LtN01SqtT2UXYOgR5cwKYpzBi+KVaLCKfK79xFnnojiYmUIZIiz6RYkADZwV+KO7QdEgQcpGOFHPHkMkMB2AiCURKmACaIL7P6p17QC5qRvwi3OFxcxBWGFszl2Ux2nezbjvhcbOLgHirBwFB/88oADHxdjZFKaZRjb8ZfX/uCDjkO3X2ZMulY0CnJCIO8vjDxNAq7gqhN3QiopLFoShf04PA3rndl9v5/qiRc+Xq2ZAYDv+BpfPeNUQGXUg5cRzsDTSyEj8E/+IJzU/sE7GklkODOOQyTwTOzjLZSWHNyQtM516Zsfx9sjWCtuxWmMtFSSSQg0Q7zApHVYsl5Lm83fvuO+T/8nfWPYzc9lWKLEkjJTPIdmVgUMyO5h0HOeTLIkBRS6ZsKh72qBI7HtaBbYkaeXYgAA7eiMahc8zaKrgdkDM0H40wPnRG+5M+Wdg8STUw/it2z7Y33IUaQDv+t9qex2AVcigrFTUEgqmRD2MLkVZ6XrM4Y/ay3uXs9vr998bwrqnXbxRyP+tgrmKbqGia1ne5pq1liSlXRRC2vr7dwXjAcYTB10giS0SnSsrUX3s7IB0Og3H/E2LB5+eNQqF61yoN1hO+SnUZBSpcAHq7mNxX53piK7zYEL7e7rR/fwGdRqq9rThkFm7k8gsnCItF5RMuJQehjj8bAlPpIc6Ubs30qcixPbcJTOlwXm191LWCvu+ilUsJr46Tv4Y3StMZWrpIyl0kY8/dGUFnd1z35amh9w74QEBy0gWSDDhUIFX8gx9XpJuUQKI9Ii60SnaAYyC6OQQIg6e1isdKBcLxPoyEdL2xYVhMu8soPSWFDQxl4TjHGtb1GoZlLLfMIEuXaQH/5z1S82ePhjNkkhCkMX+usxm1P+3kd0gl2w5VE7ChT6tCYcSZebdcvhujoCjzwO+s1YA1vmWbCYLvEnPNt0jt/xoF4XzmZto0l+Vy8jRpmGb4ZsMvCiII0z85Too7WXZDMtvSDHBEZ8rbLLmRhpxxnNuNniUCV9kR4UeYytQYWaYau4q85VE+qubJJogUc5s8bwKXO2+GJE7392S86Mm6isEFIphCSlGj0wqmg+Db22DVn19+kjX2JV/JEY80MRFFXuXQ+oKE9Zy87gHi8uoXxy1v6gZQvoO2YEOvUJ43jwxAsFSeHrfp/lRoUcgG8bxzDjiFmgoJTsCr+m3WxsE/kMk60RbHpQjMg8prl05luRm5OV68kojQ3vcGSC0huw4CmRaObevPr0Hmrdb6tHUB6oG7Om+TYNU1WS9BVDnhebPspDylk1Dcxb//h8F2XEKLcsd3NAmhyc9BvbjhqcB2qwEGl4C9T4ZZY3ReyzAqE5Y1eemLY9vtJXU4Pays3v9i2vDf8Uh4XIPBmUlTaN7LMvsa3muYYD8wHgmsz66ULkM8XQkDPMVMvdwXt/tnmDzrzoU9mC7gxHUAZAZvyIGvuO/LSey4IhpIem2udwqmkbnr/1m6YqZ8yTar0Ve0ugQBp2Cp4dP3/m9mS/I8ljJnfcQD+s3sErCY1sFHoe8OxhqIo9nOuuazO4S1ovDAJbA5qhsh0U0X0DDmEZscwkrmQIHwa0Jf2xQDXR+PpKgrHs2YtYau98H9fFbTolvGNlkEPrPlKhXiOOSnQFtHcQ9DsQ5w2K9vVKw+1nvqK2ug3z7GhxxnUWUS6Nn4mItDdI9nOIEPsdfw/nKRZeyvE1yeDGtYTW4qlABo7MkWe+krc94Ozh3jHm51jyQUvG6UwXB2Vm6qwTTC3cGLmT4vY+h2u2BvsVAfJtWNUXAZ97eLtZc+KxO/QyMvB6mLJdQBWr99m7Dr2Yb+Ut3kelrAMjsyBXRm00dDaWNt9yiAgzYROs+Wbg+Z+W9yj3FmZ56oQJLNQ5Z0Sf7Ja9PaMSBY7Kl+v7CPrsBbW/OX/RGNlcoDjAw359o/sXIPGmhBH3MrsJlQkO7PkLwg7hc4w0eVQRYdBYwVRJvcIG8suUjVFxI7OxVVBoRfL3Kzs+k5Ct4bij6XQWJ1wCLd0tmNWq/8JpKaEZs+rLttQvAuJycdXGgXmLdYhPOSLvMlh8525y/cv3GZOJlJN8Ci5VVfKK3w7xhbHH4N6CbSFCJ7wQ2dyxfca+t+thzioO2G8JGwI9BnXxcSL6xiOYiCGVbuFLt7OexApxpAlcOtl16EgzFooH7PDRYYMC5CHUgXxgg+w2cAttupMHHb9MOqIAPR4INZ4lRbuAaTkZTw9U1TCnkRjozh0k4wcKzEbIe719JpCbGu5AvKMqg3YH9LyYbKzyWFXMGXxihqnNds0NYhnPOJEnMu8kzCshDSSinACrl5uBpzGE5cZbmWr58d3MLCFdjTk/KW+UGwbTSfGLala35+RzbBsiCg34VZj/5Uci405YqTMnD+yUUH84AWnHZUJSx+g7gPZNwkqY+tAvGgikgdecNRG5q0fJKF8nftS0e2tEs0nRkmFE+YGpUxgXj7CURynzgWDVEWOIZOPK/DeppZhtxuzZG3e23zsdeOizlBb6bHnT1LbtiKXmvedYaYj+5ZSLN50KyVuLlRZ9pmrUQ2elpfLPZfJLj3vU/hVr/9oJJpoMi8/L4EZCvcx8WgwS8snvcvErFDhRkY+4Mp5pbFoli70NA0fMXma3hhrEd3VI81PDjmEsyq0o12WM2JkaNv8tegmC3QR+/oWtZtX3LHXqf4m1RMRUYDuIvDeixPefRwQqNWvVbrr4bH17r0ib/+h+67/F6qlWqapxb8HAsky2INiY2KNX5Z7j52aEeIbHRYMPNamXiLvXbdDOT+s0Jn/aOYPiGWmb/2qPh4SzcXkRQ/GPOh6XSJQO3/AKEfdnDz4oOE9qUW3KtBGT3yMJe5yDYzla4m98PHLZZOiVoN/+OqMSfLHHrnfD5B5zg4cbt0OBeLPGGzqRE/KBp63s2p6qWJvF6203T7NnSvwDXcec2kLdqbuU5UmG5O4/ZXBeja8azV3LZA+JOj8kZVW9qPyFxOpOWUa+YmKe+U6r4JbKOck8rZhXEfQwATrK0yTbvTgxyJ7LbnzxLx6SfYisXiN7xkck4wGz2U0a7WnIUcxrFkcAVd225KJIZCf1WiBMSYLirMyYg2JZwPtZG9QW8iiRv0oylc+Lqpq0TZR37SqMMi0DL9cs2hCjmNVGnhYngvBYFP9gljteVbFDccc/AI5bRFWw8t+gCRISsyIIPo4lCOk3UZuRzTssOZdqtH85TD1yu/37H553w1UNnIJYBksFil0V7LQbNnr+KQ97j0SzgoDaOTw5i0dnEDiZ0sGsljoIHa76YMKBRzUBFu9J0DCqcvS6OnLouiQIYhjarBAUYQSDDp82Kui0BWbWR3l6RCY5BEK3RiztSVKZ9c/5vnqjfxj1t8wn3dMGkcL6KrqWdvrEWKWB6mFrwEGXMA9x10+v64hZwbmhA1V5cpFa2Yljm81KZDkw6DhnYIwebHwJx//DRXIilPYsDfoF9Zyr1P5i/hFUaHNMR4QYVwKwSCGkAGVBWU9U2SJKW52a/psMPdiwOUySMixHoPG+IFilQ7YltOMBFRAqBuxozIdGn5k7oDxwuD/Vtb+dkf3X5Mz8XRqBVf3R6tp4Q8U0WOuyaDAaEfIs2I3DDudKgNzPyAMYbCKMGbdpNL2Xsjg27vZUc6q0nOCDfphkvhw8opSmLMRE2G60SMIEL2/F8u/AhRS306u3zTJApYjqA2fKNRkNRMA39o4FzoXUeV4bimEB0iNuGxdsW2xjVdhoB/CWo6KAUJZYXKpsJ7MRI5TsSJkEXJLr89Ur9f+QYpXSbHvqUb9w70rGv3zk6oytSBsttUPNtKAHEwJ3p+Mdy/Kcc8uweiKZB8cl/tMhlliQfogWI4QNuS2xDXBYZhloTl4/HMHnBxySdZd13k4GndsMwjWcc4xtFMooOgdIrgMTCmDWSDtoUzYMcy4ou1aFZZic4UthymQJYTEo8X90xI9KfI532k4+3Bxe0bDAMcijynsCIrGSTPKlGahZfQTp7Cu9RBevj9Vd04lctmxd7um+/0qqinULGyjBMuJa3VlS31GybDys1aM5b6bDC3bKPh1TV4g3HAAdQxnsJTt4vyh5bxwJkGrIqfO0xZrhvqb44pAvOnAUoAuDqZYsqW9LywmEjY2nlbvaEyRsY9cWH+r68XTG+pUAkdzDvhiTpR5j8iPoubJJHgg1D/JSy21xg3kBEiCd5IXURl2xj748vUgBZx1H/Ss+L47AhfVobjkst42JqxLxTPrmk4Wf2bPWq/ydor9GfeDTTyXSpJb+4Y9yDJEAFFzppRCH6Z6cU+8AS12GP/u1+PunjSBwn+Gfuq4uI2EIm+kOaQgC4KZLqiUNo3TOSZSUs9CbwE+r8pGL9rhb7qGBcQZztvKj99qf+vUu/Bo++ZyCk+ohwzZJWO9+ZIABj3gT5cigLXTrSnNbbiJZe+rC9MY7RQex00X6Kz7wJU0hSQJSkn3Mu8mfBVxP/Wj2CTYo36QymvciW82N3Rb47pnjewNan70c6EPEzBFZZ1hqEcDJBQS9SPDfPK26pjO7VvC9FBx4bHKi0fcz7EML/N3sFYsC4v+1UwsM/gVYjlTVcwA4FTO32zvkctAEW/R8izM5tvDafT7gIUcc1aTV4FCevlotxHNZFz07zGICD2n02yyjHmjvJiRO6M+pDHUwQTvkTtgWwEvCpJtF8dGhadcI7ZRFXnav4v1AAO9lwsyMn/GbG7S3c48uHf8fsdkOsVN6RefuLPJrkxuYORxVnyvR9E5YJIAsmPlgJqTjDcAyNZoxQTW3xmiI1RXR/axSVAnAaavCU7mYaGRImpXmyltbpNtRqzqB/NbeQXFFZsNx+7LLNBQ/ASHquG82WSR0AH7OmaA1NHt1yEYpX2SMgu1vnQUg5eJ8eiO+I982x6bCyISUoJHrSBwMUu/tPNXbJGx0IUWJITBR+tGJzX35c7W7/HyMXfk+/45gS9Xw1pebRGB129ppaVtcD3LCYtVQhOMn01B6iYlKTjhRxWHuUGTYY3Z0mZb2HK39mKi2Rs0PWiItx2FoB2TOs3E2jNiG5rqz4ZDEJWPuj/4QofIQvK87Xpkxdt9GS4szL8BqDY5W3O3DKVJrrD70sWZyg5qTsSig1tzpYrhAzHZQykkez27Vfa1aRqFAmYdNdstBo5Bz3REz1b8Yx+pxqH22y6qz+rATztxoqtZiJ2Kepy/6HdDBWjzwNqV6L5W20+T2JaOz4bTYq9vDO4vjrh1LrT/h7IeLHm1FjMvDn4YquRMpbv5OtqCJ67QSSIwps3gel3S4tmSi51qGSE9AZOku5541sagEZYBKSXoCtVpUWawAGGnWRLOwzQ3Kr/JlSHzfMx2odDnC58gvxUxTpRSr8hUFVv97uihsahsDhJZjzVKFI5TDFA+G3jV507IeVVQ8ZbSpbAUqMjh1U0V94nWaAtEIi9jdiOrrkayVNYfZUnND3spiSMib9338xfkL4fWNdIjc5Rc5PSrugymJsC4vYy9Yjm8jO7OHLDGah5TEhx33X/wyUswwU58dBAHnJTMf8hxG40PcYyJVntK3E2yWq+LDysT5rEup3X43yGp6P+HM/8RBceD9wrhHGxqIv6wvDR2hXPoT4NbclYpUPFf0x06G72Ik17JdmnjgO6cs/FoHMqmJ+i2Oc2peEypZiFb71J9BymCjNGhAJQqjiUkAHpfnjP+yAk0moIRGXyU2QgmlZAWZwwIm2xRL8STw7PCX3XSGPz0yuRoIMaWxAG8fLDo7pCYcrOSIAPZqtcD495IsDHjfSSHWJxOhJy73hEPvXDtl1FY+4pT2kt1h/AmnQZXyE7+EK38NIH+mJfe4eKPqf5nQm1EIJruMEaw3LzKd6tpTgpBQbA7TK2nkfQceEoS+bE/f2u/B+nA26MdIJBUko8C4tjzbE77BBV37rBaNsvMkCQjYrTB+LwW08pndTnK/dsfUwOF453jx5DY/f9zKJpmbargROwkvJTQuBv9tGcgzrdtPn9piPP69FvyeYLpzSICXabEUrbLvnqFe3iwSX+hPpGLhOMv1/b5WE6MoOyPd61Q/bOLWenSmz84ADEWm4ouhaykFCYAic93DwGXRDZu+sEevGKlsJcts3gseH34fngw9YoRMEkB0QhR6uKBrMBRFHoV0SfJOxG8Uy8j/OMPgySUE5RRoHD/OzaMIsPsFI3bytFNwTySJl+EcO2ba9YjWdrZVcmEORb3/2aIYZNE8NM6dnXHt4YWgtGnbttiXVRSza7ARCgMz/YoLbOH5Jx+OrBAdjV3s66JqsTaZuwRZaTxNSjIbVCbfkCyzDVaAxyz3t8cgbp0POU4X1tPAidL/TouxExyvdMtuV9W9AxWH0c27FTNXkf3jaDCxQXsgf9XD+KB0avl+h9zY/hkt7wHe7XhYZ5PnmvoMfdWoljIkFLeS6VcYWa6V9NCfLlFtYQs1aRdv42LRBWG+v9WQL9E1pqaTlTlAF6ukvUwLw1RBnUCiZD3YfBHbdXusOLVAON2UgT9uFu+FC2/9uNKVaULjTTfiI8sWv+HqD2dd2AXn/Z3m5y767vtm+Petc3TPNIDM3Lwn6ZsPUZPofC3osEmHPWq3+zWf7ipG5kT67DjWyU9ihWfAd8GGQVbSixk7dx/gDvv51+aOYNg64Z5OpyxCgxZAr497YJxaAnR28DjVNmrg+6H177qGv4Aq4JTcLDG3m1vDAIsHUgODx9agzAHKGvVHhOvNS7QZqkcVV5pKC0pckdPKTy0jEeATy0c6kY810IxIxVaf08VkgU4hMGE9HtBwrMQ4wv5Wuv2Hg49FbrAXow14MRa8hKdUpd6Seylzc7iavsOagNaT+4jE4j65FaOK3U41qU0XJZF3COADDfEfwxXYadUsZqb5IV+9ZnK1rFDxXHzQ243q1j/RqSZrzd6vlvrfpM39utT2A0SC3h5zOBdSe7nQnXVrhCvMOMJ0WPFramygk5hvjF2ub3BhfQL2mvfsAAusu+eq03/7wzC2BnvbIH+Fs9zoTjJ0uESduwnifAaqB2MEmWeKYFwo9XzlQYX46cCbge2KsRqBaDMpc6XUrrn2l2jyfipLZLxrDnrskHzt9WTvoA4Xtd13Vz6TIRZIGxfnKEDCy0TWfR+bIKLS3+P/HBd7tD7y3qO2pRERssHvdxKms29Dwe38u8NkyOdaHFxXhxGsGiaag/ltwNfwKupoooarDX1vwTsrMXHEn3+70/fu1TOPnXci1UJyIM5mEvRs0CTSuWARXvqCwlncnK+O9UQA2zH05oOb6y+py5rHlmlTJDGqd9Jfn2jz4frAHc3sAE1GTI0esA90oNI+yOLjTPHFcDF5psxQVgyMqsy6XMO09ULXRgpCLgRXRB3Rr3dv0cDCZt/vbX5P54xCsbytBo3Ox6XM8EnSITBaa42RRpqHGWscrhMbuKf1BOCy5LWrA9AkAaDJqFnmbYfRTrwVAl7+G1KhNsGmf847XKigc6HWqsmPrThcuWKpxWKHKnzN+sjbFfv8aE2M1d9n0yaDUA2bZ8wWwvU2FTBGFOEUbRzqNUndQ+jK4vDC/Dlq8C/cpi8jrMDYXI03zH2NiWLFzVYwdCCHLua3aFC4Z5HY5dP9zDtyLrZIqvic8bc91P0WuS0Neoz1stAtZUBrpSNzfFBXmckyVzskT/YQeQIM2cFFOaDgyaOgpUPrcKKi/Kqs50JHT6n6gK7iz5hELZCs66B4n1InRumZjbFWzYeUv1BmR5cfv2mRMIK98Lv3bobgkHWMlU8OFCkC8ME7v96ZZl9TnaBzZutH9H6FgwOrdBq8zF2NqQkG8/gq0tyQxKJXq/LlWAmbiCzwGWoBa/iHY4Ehq6yEqxuruel8TrMc1UHlo7mHvUO3H2z0XHpV3/fc6KIRaxAt1jXqnpqJW50MFvb80T14hzbtIloFEw0TGNBq5SZle1r8B+AXRMFmUekY8Y8BCi3zBsXJ6mZpQ1QiThlIlCGytKR06kac9VQAYpX5Wqi1hvaaz0Z3H4Dr44zcCDdp9QZsLxut9tqUIsAJ71Y5vo7oq2Qx2aF4vUm9bMGqGhR9SaEE0OhkOSJ07qm3Xqni9w5Jbks83L1EkjrFQiKNgsk1RkwHCiqmEcAMm8b2CEHouvhdb7X0DHUwn8vtndvdbb1XNy2zmnHFDj8Gs2NIu6LMD8Zj8xDwE1MZDyImvz7iwY5OYF8q88zJQCfzatb5k62Jp6wijlBkdeLDCFIMzhqj7M8HiKPjfvbzvcWsRUAfqlYCsmeN7GWjH2kbhjqwnfSrNka4Q4POlFw/DCFRfJGQK3b7ca2I1kQ6ZagMO+jfddmZZG9O15XRuORZEvYJMcFL11pUk9xB/JIKj6LpgtvXwvBCbvIQClbHd4EOx+Rm+BN0XKGOeVzsxMWhl7sMSzBKCFuuZ6Jsv4pU0fbMk3Ml7sOAfHPSyn8+WCbNbC0V0Z0ovWeaqSmOt2FrT1es79pRjRfN00Wb9GJGEFZ7T1p9MJHjiIv9JVCePD098Hc29GEsHro+R6UGa0m7/wTOH+pLswclW+JK3gbr/axtr5jhLgJg9N53FOUdDdJwJKqbgdC4xTC989fSgaVpzIl7qNNdlfotd3Sgm4ZB0Wd4P6C7CbHhrxS7V/JDEsMtFPjHLTRkDRGGaAuFgQ1X0XAe88SkRnh2fbG/lp/aka0aCcvC/ZcMXt3d4jf9iLaYu13fKb2WN32xNAPN5OE1mRSeFm3w3u9G6gZhNUzBFE9Tk/Q/Qj3ufriKx/5x+ZOtW9hNYsRtBqkbjywWOvPCaXxJL/FNAd2737oKZoZG2c0ER8zlfR02eaZG6FMQRTzHjD0xGrvaSolE/6M6+cTOfTPb8HRI9QLleecWS25jVd+kQq/AhJmFaXZsjfkxZbguDIIFV4bEPZ3ZqHh9Ok4jStDJL7lNruFim3utgnYVHKbUXEcYA9DdXLYC/NUrVPdsKbHGCoY/8HYxFo88KcmgjVRXOkEkNSVgILUFiKAdNCnV45ZcRqOw2fn4RUZwGwNAxKL4kDcv1bUW3joeTUKziJ/o9rOaE2h19CV5wux7UYyPh98jfzyBr/XjQEdykl9Ooh+PN/2aaOT4s2EKC5rHEi9tvJZbLoxDAdz2PMgpgL59GQndAOFFMsQQabC7m/XYzoHI4ZHpu/s4/Cifbu0hNb9ymCLi+EMennCYFKlb3TClEv0AtCyc6/YkHQP86e5TssIlp10fqLYw/xuGcXAPmHZmebQkR/FWQbK/NxCOK8jtQvd8q4DSxLg9SmZwy6gSISBKBvisQ1aF9DMtsr55tcaaAPiq7AXge4xwPgBsWZcvmrIcolnACcp8JKhKcebzB/cRcmkdsX65GH/AfkqcqaiBvlE6SLtap5A3rtrFi0A2aWTrV4qGqmj+uWc94yKN7JhrrCJkzDnmqbht6coycIGq6dDKRUEAPtBIUn8SobkAB0MIT8US9o3srJ/SfQnlHonL9GMg2A8U8P6To/txXUUvPiJOMs99wCVtBvsdVAGJRQjbrKJRqMvsCsy7V6AkYp38UFxdtK0CWSY61n6ryWPTFHqbbBtXUvBM2J75aNySwqoC2q0dAW6fNPZfWDx9X6dwwU8durikNR42WltlEb1kiImaFo14hD44q9/0XHchGNhjZ41vC+vc3ToiBZAS0M4kMYFPGJAfyutUX90Eje9DA7JmWmJk5H4ZY1DHWfyJiI0fNFHAqZ+4x263gGXyO3Zyfi0TWPmn0dzoIjgTl1XlrHtSrjxP0qfGk2QttHwebsloLBIATuY7ZW6XDG3btXBHpxnuD5CuLeoJgC3gUsIjbo0kFcwD12IpN5MiGOtU3cM0LPwJpF+kU4SuNgLr9dmZC8QdhgBXTjZKNjc38jqTAMJox/AamimFtUwX9DYzsKXYslnrxbUdXBkJ2exPTmbBX73j/PQF3CPMlHYduiX6eC2gQwJltlkCMi/99n75HP9KvcnjeosZvH6A3oh75ZKaaIC9y2kiN4+MTnA3RRMu9XhMEzv4UFnB4i6C3ecwOQIxPPXJwNpVvg1qlmM7ND592aOB4ANFHO+Gs6SA1OlB++3rFGdOs86yytp8sv+MLVs9zXsTHxNBczNLF4OzHsRfPs5sejgIiLbmRiOZCDjKwmABzzhqqysGS8DFa/SzAVXG+m7Hlt4C3ML8SzaHDrVtkhDfuq5B7f2MMcx2YL6hWXTiDteos1UDXRTerMA7WxinpympWhOzQ3rXU/OM3ksJu5B1n61eUvaNKXNz6YtH20oZTWn6NBtk9eLEsPbuDNBTQlqKnGnBXab9U2Bj1pUWPOm3RT5caA4RR3GZWYpMVXIZZWIR1wV6X+uCMtgal77ma9lkaBIOLEQCoLQNKR0xekZbn+CDCixRjRbd1wcdNA54VGTvLurm3RGAI5hzszzn4ugozi7oYNU85mYir+tinL96drH8rRMu8LfvtA1Dd8G90GGh8uy9CxQO/ag8vTA/JQp+sbVK6HkVjRdezZZbH3HWnIb0QLFagrwxIvsqMMwln3SuTdraKfqNSZIsJ/w+sZsX8qMIV6F4TUhGu/0y4h8WU1JiIW8KxThI47VxTwT6BKRolXVBiL4IG1CIknmC+ODMqZCIgcY7/A1x3SHYr6o09PvE0m9uQDeuyOMlkvYQR+OeJqKDILQp6uZS3JdM7wPxDL/8XxpIhw3FS/qEQCz8xyCbx2cJHUf0YFMrFVJzjm+QhW4wXvc5U0aO6hKPPH8KRiC2qqlFParj3IL7BEGd28uS+reJEEeFb/0bb77w63acHKjXpzFMdZvCCP9Qnz1eyLScc26eavGhk5OX6UJB6DjDCEvR4GNNasS3PiNFgZZ0XmwMooy/TvLYm86eyw6SLIGcfz15bV8EFzxgFxo2NmcehaNP0MoU3wTF01csAEFgbtJwGmDFYCLBTLvkkLW9fdgoDPWF6txoejIFru2Dd9egqORlnpqVZuMIpBXoLaZB8Izna8DDFFXP9xRvUHsOgGcUQiIPDDoOF1HCb8pezbq1/qHfipAKVJrJWeSO9Z2G3hyMQQpP11vWYUijnnMwNAjRN96xbiNUDRfHDvQTRUluSF6hwwOSG/d7rmZhY3A6MGLD3wn8jH4b8XcWXCM6CrlKKJxt6PY+74I2eAvAvx+JRYhqjsYYAC/u9X93HUw9HFgNcvMYyPLssveVjrSE6uswSzo8njxlCPdjn3Krkeq8pXo4fZKbvujmQ5IkbxdufEm0ijfFYmrI8OVjoTAu9yUynDOoRkQo5o6KEknSO5te+CAu4TXVzdG41gd2/cfD+WxX///HfYw5bsyjUuLM/K/7+8hcYsWOolBuO1cKNcpZ5SNvevblM14zF1oN42f4e07Sn3mBesuV9skVvHqgyFx3kz0hRn+vxVGNOGMPrkM62tKsYFsI4hCLwNX6XQLVgLc3qKeV/CRlHLcIQ2OwQ36eULuAoLjEqpzKLmTN30t+keE0ozL+f3d1Zb8fAZomBYm2Bg8Rl2uonk0n6yZ3+uGQF9AJtv+oq2K6evt6eN+2JBn5N7sZcjMn6mI6eyXpDn+QCRHVP9jkdhlHn7Drz97jZEH7EYhaKBlC+GmcowRBIJ1BQHiCXib/gqYvoziIeuxg1GBqXav0kTQQTexrBO4gkoUUHVzsOS9BG7Y513JnAshNmYJj2vjQFLZIQy1AmVZe+Xq/Fvlhpy0jkgX06eTHK8vSdWx3kgJcGuoqo9Uq4pQXyxun5bwVe7QeiIW8/Zlywk11Z/3/dy/zZ8zkyBEREBIgMYBrrvP+BW22kQAOjC8Y3k6jdqOHW5Z9dgPMHtmc8Q57T7raT8z3RXM/T14lUrSkYDPZz4qZX0WUuKL/vHFH59a/BSFXTFMuPFmxfo7BdehuQSmeZnL9DVC16cqwy27h1iOpHkAxeLXyD1qaMUL3nSCUKnJgzcnuh3lUUtoy/lPDykrFc68ZNsK5bwFGhN2qk6TtXwwvYnuqOLZfCbv6IikAp669baDST1kIS/HH1KUlzxvX2WGFdVwybO+RC5Uads1XZVRTWUv35RKp4Q2QExThvZI1dD3U3ARjp0qsyZphVcO7HvITQ31yJiZoTNazj+tXy2eaESVlFPZ2ySySLA2t+sKg5WSTqlwajHxP3Qhc5gziLXWf9zl1Y7xXy8p9epVhrAXI490DvLEb3znfD1VOtz6jmNU4rpfUqH2Qfyao56a7MhPQl5+hZuZ3NLu3HdschSCM3O+yWoM+1TjnaL6x1Wr9BBGR3ysqXK14KgrESSYU5yqG7iorVk6/oJ+ShVTTvhEmKJBd1dmhDjeCFoWjTphClaxQGQkaUigUuPijk4FnUYA5LGMWr8ZY4HPdRc4Fcfe2cY2g+6vh27QDffnzhhixQeVFSkM/C39W0cb96vCsYTcbdvj9YH39+gDpGVF98uRM1XBG0ml2at0aZe9loafoKQaC1Cydd5axoyizt5hth1w4o0PvBIvGnCTosVCTV0n5wPRfzgONEIJyiS4uIoRkx5bw6Kp/U4rQoZKBOH+eW/LNVOkA9qmIH+Jir9yQMFwa2w2yUe9zmLNtVmuGURpE2HoaE2KdTbcd3+H6TpiGWXLQCSorfDFpUPJNgZrbFDScB/a3Fp4fFbRnVQPajCLq0igDfDVMuZKQyP6Ul+6omoKRLunsSQS1IXaXreDVB4alXeRU4AW15jTyZoivZVE6y1yxmdw7mM/8e5yRxXEGajb9M5VL3pAxrB7oCdH0dB9mnGzBDI3fC/eBBogmS2QLkVwpAVPn0vFbgbqDXTGjMqEhasLdvSBB5zSEXrMP6hx8DQ+G5OgUu0RWWE/Ow3fttVOBmDqIXvHtw7ibxJf5MkHt8MqzgD6570vYWCQQi8DrP9z15jSX4Y034Tf8ZIBkvKUqxMM8sZdzti3M3EnX15Sv+7vcwNSZ13SGzM5zEFKWU8u3j0LTnh0YP2H9m4FTmRxFYrKeO5lQJphWncmkg0B/UIz0c4wYFpxGqu27PHjtAZ3VSllt5Pep5nuD5lvtJt8MaOrjpEmXVxpDWBYTlQlhzFEzYIz0V5/UcPOVGx9uXKBzHTA2lmEDD4OILmQWv6VWGYrY711g6u3e8qiX4rK/5tDxO5lq8n+DZBo6WW1rkTWYeOYTiVVIoUJM3boaPSBQQz//QS2561w3/xwEucNEJZS0KLtakquttWVx5Apwz5jS2r+jOKo7KfiJqN2wvIANsHpd4rd8OsYJuxcv5kEA94FDNq2o5uxzStLSEmPJuDiYguwwkr1KITJN3POSJwL3krkVVvVS8ZgrFrYn7xe6eVKeEYVR0CbaLiTYNmsufeCcupsgyFC9n9UbAsf/tV6Yd+SfAttQA81sITr3do/E5mOOgVaK+6Y82Qrwk8204zP/CPIQrORMRV9ZHs7LfWr+8/dylLDTXMItUV2IyJ7PHo/KZhSEFPCAHRvmTMDdYy+niJI4vFo6Sdgn08srdbPwNGdkGqe2rYOD3X5LIIqMytptw9ZBLp61NA3RMNh5tmvBfwFu+YnzVbKflsdVMLxo03CbSM+oYHJWjHHlENizsNjTUd07CxbZKwG+nq3322cguk9Tj5OiKMpQDOh7xNsMAErlGhblViMv0uSh6M7OHD9DFIdR8LPWrYkK7/OKITVHgTmOxGibpPZN3OlrvA+GYBZHvmzfaM4Bw8ISKeK7TbhRlPXfQC2iFNekc8HZ9oX/dteJSn6Yh/xP4Ji8MYpyBaEYHQfiALKgNtEH7C/+/v4Gd6hcLXsB0ytdP6dkV3XfH6cd1CKjNhR5JZlfZgqfMV5DB6PfdFl8B39rhYM8vt01i3wGkOkjz5tetVXE7bI7bg1O5brLDrXWM6gN3i/rN/UB3dr4Ar8Edn8IlreZxvTuXi/5q1ItKColBUkfjY79oVdKdnftLbnX82DRuTBw5Zry2M8g5HUfriMXOf7Azalg1zARoqrXDr1ksENLyVCOGp3iCofx9ttAD0xUm9oRjW61mSNwqqTZw9RUlsrMFm5dox/B/+Sfivx4bV+mA3n4mycrPySg3SdMt3paDCj0jjQ3rJcHO2ABTDCnwzavH16jg75z+fgRQK0qoOdIXlEBGq6xuMZ74mNIHqkJjW6UDO5Rbn0dpZFJRs7CdwmBkY4PGHDK6H433DPWoQv8YA1UgR6Mg0siHQ8+aKNqw2nQh9ugseijhxwdGp2kWg7iPsktq/84wOnxgjMidBW6sQGTe1A83MMEfGNobA+hsQxosapkyZfWnUrRH5Tbe824HBSxQDD3s8pyA14ndbe6YaQ9ozBDH3iaknt2LF7N14A27LRp7UamSoUhTO3HMHDw1h8LFgaE3g33GaYJaTsT055yiKbuHeOFpmuM/1sOPSzWu5XPgXDHbB0p8GKl02nnd6bl21Dfai20F4jOf8iH5nYEfI+ewXhzaedQbTA/DKHmxu4PC6ITHJEz5WrreIerg39Kph9BWNYCoPqBwCB6H4+smHyMTDL5vJbFRRslS0dC/fG5lDvtW542yxUSQHVd4ed507ylOVjNJgCRNN0SXOQPUk6EbRR3rmyo4T92Br0/V8/ASZb+fWAP6Z0/QqzdPlLcJ2LpNMvvMvt+2fKc77VwxJCo514idNkRPsYmjmhg1eRKxpVRvjhd90x6yj2wO4RXqp7COYAfL8djO6ygwxdZxXxvXdJyG9r0mbaqe+bnO2eWmS0kVFaefxsfa/vyJVWwShUipHAcmNEeBvI8f8nJ1hYIVVpE+9ckNfrlELkeNfPw9S/umFZ0j5ofRBiMiSF5BiLNtkLQr1NXjmvketmZbCrjt5SsQwdEjXy51Y/NzhZCDhE2PtgtYSzsjYXBK9e5rpG8Xel06lryNC/KKGoFJhKPrUUocr5d/U8DCYA5TN7ODT8VbttdqUfSmli6KmSWGkknS9MGTSXQ3II29EAeDIu/JhdRAl4o9u47kyK17le2bXPOHHSWyl2wNk3+ftInO55OL4E6fAf08zIyqznCgwPIp0YAUooQODoTJzEl5/DiJeWr77fSVYDGYYv5CuYYC9FJD0AbnnaqTS/tYoUSJvF3akaM2exCxOIVGshyXWDXAFgHtFzVcxbujUPBeJ5WyFwumd8q0ccSyYzCiJZe1gE88sS+XC6u0fCUyVGymu2IQOaXiBr5beUvsJOK6qhlBrYuwF3QO63v3iuFNLlYPTVvldVdLCR+2K6+K1iqJcRrwxib9Knl4TjJYR7jO+o/MkDZcq+4SNiCYcKlDRdQlab5yzT5qpEF13EYha5Lb27iZtqemNOd9yCW8fQKE6KHtEVUfJaYxBT3vDdBm88omJU8IIdYzFaQhunwMBZEDQ9DwmxvPovz4Mx51np9+tV5twWYRCw8n7rL6sA5cz3crB1nuZRHRwa3YGeJSz46GkmB59Q5Ic3zg1KHfNOI7Ayy0Ot3VkyAoc9tUMu8ud6Tt1khti4zNXlW+9TdYsfAC1aLDhDnKasahE/OAR7AHcRLRgew6vZFyeJeWk6JRB3E09G4XEk7Uvb3/LN/wfiuqA73d8bhMfznTq173WSpaDPujIsv4jLtJkfUEIPN1kTK09RjK2JGhIS9iRSUueIaR8kAVwJs2W5bHuZN1NaY9IEIPHmW6281PkAzbhTH/2VCWUqGT7yBUHDceIDxJD98mUMbmeotBxVHMMkbiFPKbVu8nAHc63fGudEY45wtDu0jbxqfEjM2HmWLsR/RH2ovKfJ6WrdpuyWv7atGf2T+rFnHgjXiJIIWBIR2fH8dkxYKl9dP8EeMspipaZfmzlh+LOngRZVJ7wSS2RoCpLQLNivrFIonNvntXNq6QIWzG9t3SPKQFGzQw7Ykqo9EDFPBOKZjScD3lTgkRNvzoKTQkZCce8OE8Nz+M50tHYyaGAaib6McvJXMFskLnQ74wAQyJ/jZ8TRFEA0teXD9o8rfRwRhGxjET6RUJYyh5nZeOmGGEJBm5XbmQ3jrWNIJZ11HUQQUs1PZiw0BLqzVENVVfEL66pzby9dAnUAw9MEkphdGov6/bkXuG3szmwZ56x/PZU2bIjKmrWDye1ZBGG28nVnIFiwj+FSMBfPta54p/tB+6syX1EsQDgsVkuHVcZ2NL3sxdjStp+V99zSfwXQsgNNKORvOJfFlW582X5rSamQs/NyPJ0ZBPKtXz1Y2ZSgfSS9JHOjKwiB8rYWvhxF49MyO4VpDJOw/BkH4cgtluCBG7m3wqf8FQ6le15v1sCzx/PUPhXpqm/HOsPa6BOp1l6SCej7xgMh673/zJ/YC9ZMdNsc4HNH/UbtFq716Umt8zDVCbTbtc8fV9jPWFu/eFBQ+U/zIDzgOtg9iyBnYPLfxI+1vRll9eU46nDjEvcVcU/THnVDgoy8FZgVYlDAW2Ejhs56tXR+bJcZs3hEgpyYistPG2iHDKTReCdo47P5rwnMjGFbzqygMrlrpZVi1EcRZiailw3mlfdzkinof59g7BGF21tmMpPeqJ+wGOecTxohnoimMVScK0JC6T8S+6JQ2cXaRcTGdxU7Z96wZ6vpK6T/be4ckljDjHqSBegAgUiNDwlCiLtV81paJcgOUn07ZZs4KStTOnl5oufDZFGxyBaq8/PRp6zjGbiKFx3SIuiXjS7q671AKl8VTu79mJTTEDG4GsK/lOfVF2mvpSsE+7W+3ACm2n7ijJjtrv+AD8vgM3V90+5OKTQEdQ8pr8G+o3r3yM/CSmxYtYNwZlY0eGNhT0OeiJWynjNR2QNW6KxPE/pVEqzJaQsLijffpTQmWBVuH+2BHamRgQoYNU3pxrBlyICkJCKfqJdNswRf87sxFeF2Rj8YnE8ZZr8oi61SwnZQyWaM+upM85Qv4vjJu9Oakk27IL5yvSucjmvPwGa/3b6q2MmmQW6SbamkZScEh+GPkNlTLcwjVDhqEgZsy/65rnkjI9ltB25GYGvZTVkj1cygR3YUXwjiby/mHCLbsOjRNimw/5lK39FyAviztaqejFaRTDxexRI/eTzqnwKoKny2hCHi1DunnM0dQudXR3JSKzsT2qh2lf64ndjlKUbH6fDP8+9RRIU8O11BmAoA+rs43DxHtOhLuXeSasku8TrhRFgTaSRUptxLKYgmJhVLnMys8z66syAUb6BxrdxmSHWcQu3RjkkDms7je/120XM0ZKavAVwFIdcO0W5BBg0R4FKKvl8GaMzI0R40GlFAmBhDOv0yvKDn3yxlo+qDtB1vz7RHHZvwsZWUTcWagVaXmh//GqpBEJlZmdkTEItoWWwS7rFoc9TykUok/GMTGd8G94h86UCrcfB4LBkx4LkTlMLFDKf1BvlT63s5GutI+B+lasYg2TjlsVOv1mQvIUmQ7QbWbzcfQFwHYQ+tlko2ZqvhM1Eq3VggBXRes22LEMSCnRGATEz3n7cC3A8pE58JnPa3SWYDExnVK94FdPcNI7vbpddWEHq/lOWZYvNAfL2+LMkrVOukUw80b6KtkJ+CfuSc+Mpkbyh6MmPvn0ipIEQ5POfcaXgBW+KLpZ0jA6SRxGLYfOQJ2sc8OJYyZCBEvd6tr3b9bepYhEEhC1zn/Y5NUQMCj+lR8NAWL/z6V91pewcyIXAnz1XTpcfREYxQlrvVnrThK4AMz5gTWX4iN3b+kmIA8n/bA3/Q1wFPsbKoGmmkInonzcKwt+7xpHcE0Ga3X2bi+hE2AhOdBPEyqeSNBjV6X6hIS/3BKjYRPQDckhDe2EozmcwYvD0+cggSv4uLFwdpCi5kDv62g+sM1MDRNjawrbcMsJcy50W8XLza9GIRwLbWOCjIsl9CajRv90gqd7nWhLIcjW4v/2qiZIP7yMqmdWd9OwVIZcv6ntIkrR7DPXvkJ8tJue2sLWXIFAyAabDzb6Ni/TCKqP4SmNeNU8ObWcOEUFdXc3Hvl99ICU5CRgLHrFdLl8xI7V36/vKgjlCdSrxX/bBvZs7AFHZDvsv5N3TccFn2+wyC1ofRHD80O63XT7IjNObIajgnRSIEvzcbqcs7vPWCQ3zz0PT1goPT/QY/PpvaV4/CF7sqak6kwecp0ROGkLPKyly+s/jw9VE0C2lgw6pkZBho2qub6AadQO1x2q4eXYJno6s7FXcT3jwjfAXDYRMrfAGbQEQl4/QMEucs7C0W01Df/LeMkgI9g6ZgswN6CDTt47m35KG8kniel957oDNRMTbKsk9bPibLPrzw6Q/W+1wf1MuPOfBi67bwf9CPP0hvarNMH6SKqK/l82SXroLIUZ7s+YR4Nc4wkYZwYlHgR6elz4i67w7lscwLTDvjFw8MVW56rA67za2M8NWhaRkBRTI6grg/w38dLLjnQy0FFcVMviU6Wu4+LwZVMnWhepn2onDIlwI7KdnKpHPmZwI0LaQjSa9ZKlJxgDjzoje1ka9VIFbnQBrA4sN0Ko6/BNQ8ezdorOXXbSoNNmkn4kPY0ZcGtO012hpFXGEWN0426OTeszg0e34ElqXcZm8IlprcMVERo3TKQ56KrFnjyLjH/nWZUeX45dW7MQ81jvgCJ/UHp0D4QTWmlhSlQxmw2YG4NnQFtUWSJRQ3bzSwXE+N5mHyiE5VzUx4fOhK5/CDLz0EoOBO5H/5a5OmfEnEaCaczA/dundePTlI3TLauixh7nmhn1zRG8uR+hmeGYFxAUPoOW0iT9/bu3RHpBnBEYLAGfOZv32uleI2P/XqgTDJ2KtSiEdN+w3i1odTwyLAU3AJUaiekZRhVB4CYsXqa1LmuSqJQL9UVRbvxCEMH08VVOpQJBfg/lVk5XnOtW99z4DoCJ85Wtj3BHzOL591AbhyKeenKmCjkBj1ytxwKYcv35wxDpZBvO+O1K5ru5BlynHifTD9h2YfMzyA40ftl1Gt8gQPl4bNICrMkmMRulrvtGMzTaZ1KlahVLLb2hcfksqfDJywfAPyZcMKVO/tCPxAioliRisa1uQrgo2sOyLWTBz6fLL8X8FpxzbltRm7SINOCfmnIobM52SYwNiMhhfKTWwE6j+ngiDYEudN/mfmsQxR7pPpfxub2yYv6gNjAlYRMM5U1w9tpR3Vqd8/++c573L6Mb5LBW+oBKu8GBT+zJea0ncal4WIzkbeh8r/O/WUvvV+9F8cJFXO1kWFtxV+8HrGiGLnPGooIC9Szj1BzOZ6AH9coAURAWtFd7vhJ3nwVVIX8fLAnSUBGj0JD9SpGvBaX9n3Vl3nkWNTe3iGLDHSEif9YuLYkT4S1LizxKzaeMGXIasTlwl257xcrOVIP+RhkvJCvZsSdbz7g8Xl7wfgj+vdf18Yhba5ukvPSfb1EZ61VjdFbtwu01QOtgUhqc3npDF4h5jvumyYCDX/95elYbQ/QlxVH/QiQvX8MhVaE6T+cfOq4HV1k5rzrCVrziCQreo2Kw4z+gdJT8KnLkNVFko/S5X7gqMcdTGQ31g2lJ4nPWP6ZB16d67mcBaSm2QpcM2FCebxDB2V5ACvxiC6VaHrt123ztfAh+GMS/9gpevX6eW0mvpA1Ff7Xp8e+HquVGESFdH32Cr604Dxr2xa2HKSNGAJOkLfKOmda10t+LqzHN1ds8TUBUSsQlfNhT6W+SVeaDJI5c1V5ZEIE6Wvc4vqiW9ryl8YQgvqp29C/V1qZpd31rKjLSvHDxwIu7kEPyL2/Yk7bW2Xr/Mqb+yIN28jW9oWTtfI6aPbUIDQJLtPcMAHkJnyUlRmoN8k1bgT2zOPI76Q1kS0pCBlnXfWx6d+rOaRK7LBAGo5ZZeDqc2KHQjf2UdxmiD7aG5eLymiWC4GthYzKfEdEfWz5o+zpn51HE0nJ2oKAeRzIlDAKR/pz+QS2WBZOnTRCabTvxaW63+gWvsiSHOvf3ZeZpqhl72LAufFGqip2Jw4XSuzYiQBOj16cSid9KFM1eZjxS7pOlTIBXMFKAKjF3SjI8rgk1UaLuuYXx6uw0VmzKOWIpxuNPZyd3TmuTkSyygfk20Vm8RUg+4JsMt3yNzY7hEVQMFvyKluuUrwzD2dwvt4CjKNqOUNnXFy2DRi8gxewNMPrJteCVX6+RZjkDixqczIHq7pXQ/iaQyZlVhD3NvO5vUA+cYUR1B4zAbH5QeNUx8k1X3EYwahOl8o1vbrZEhpQ61RMoLiHnQs42w2lF+SfpkRIRlYev6IZ8I+dqterphN2U/fBvEemMvH41OTM8mZiEbUw7GRBpMHpilqpuAl2aWDs6d90xCtaFOI3caYzLzlAfj3LnTTXA9EYIFqEws40Hy9bOxbLwTtcipn/fwSF1mfKgnBLx0CO/5r/qsFTvgH3fOgmE7rL/ky8ncIFelzzejovEk0LyYQ3xOAY3BN/GVMQWjPRH7hCT31ksa5SgWBexWkDBsrYhxkXAnetTsvMl7aY8jyzTPV5QPgFmpwHfzHm0NI9Yz+G14xmbm/E+2q+8LsKDBXOT3PlY+Ro9rbqLw6XgLASM+kCXgMWMgp3Yat/nBgHFscY7Kpgj2u95XFmfHl+9ru4F1EfNu3K4vPBl4m8Sv1/u0szLQRll4odjk26OTaa7z8q0l/9ZW5XCeI7ZIflD9dYjW/pGxaWfvdnEpYlAb+ENUpr19WbhSlKW1KUEWI3b1+toB/bGHo/SStuCmxeZHPCDbyo+R/gr40efuUm7FQvIBN6kSnFIzzIL59kQ7PO0/3wzuXPF+TUQsJAMtXWUZaVYY5MqebFcKkYONAvKVRVIRYlKfs0UfVQNFmUnF5kBmLfge+rKRdeVlvkee4drd+Iu7hr9wW15x2UpmP10nQMulewS5PvVq6K1o04B4SN9xT5dlw7IzLnivqhXe6HSvxH3CPxavVoSBY7UyUxnyEn92LpE6G05OPki0ca1YXHZbhBy6uVnztted3WCPLmhdWXGG4gaHc1/m5ocM6TygJGM8ft6vKqY1FJNj+mVQzA+4bAVTObZ16SAlyNsLc+OCRl3rXBPuE/69fbB0G5/J5CFy/IXXfYRPVr7GWILpf3sFUuLLVWUQTyCtHe3AoVgstADyqyYYfGQPlmT3XJTSv2rVcM0uerysxescW5uIXh7Nt3WYPlvljVaFe+6yPYYfjWATwQGyd3c2unKWZwL/3ZS/R+dHQFJFcd8g3C5SFcmSXQ3rvOegfj6GGehXY37MoBoXT5QyxIsAZJEhQbGJHkHCFikmpSxR8cMVOfyu2R9MrFyHUY0wbNYpQADADdIGj/zvC81oQY54eo3074s/icrel/IMirLIHYyUcZSekD0/X69XhYyW+v7ZnNNrOj5D6epryf7XAw8MY0azRTWvnQlskccBKxisx2mbwKrolZnTSKhqZO0FUWWeNbbUNIQTm1oeHjoWYkzpAlPxG0TiZlvgEeQgSBllc8lqLBNYbJxzL+wKQtS5UkV5FcxervlgwLXXZS1kcQEZlEMfUoTBVt4qTDisGIRsG+YC+86nMi5sGZG+6pEpM7jurHf8dnxPdzG6bj9feO8GFdkjcodx7aqF++F6vu8TTVRxEliCyi0OicRz5T6Qy8yMRVEeR+nE5+Xak+JmdxKtEHCJlj01hwgYUNF1fBJ0mwGMOckgr3zeYzt+fLnz/wzlabzglTWdYVvIXz9aI42oST4p0BDBIEA1LHrKTvuKun6Jjcms7oGJ+76IF6jKdDxpPTdK4dmwl9pZlwtv8ffzptjeScCsBS5X3UdekWU9HKPwycodtknBTtrzg+iNk6QmztGvUT5lwOzzbRe3IM+ubh0k4a0RZaxMtw6BzocZVyKGxDGMQ2afZGw3DmA+f/I4XfjdyPVde3aqDtY5pRD5LZqVVvo1ieCkuyd3wjr7x73HMw5M/jyHKxNFRImpPEgwpvy6DHsRyPVbrGfu2mMtTH+WKOq71HB40oNMCwRQLJbN+FrG0xEyKgnphzRmPWhVO6e42lhIdadmdNKssJEfErfGfaqH9+YlQOCJySY0ZWa+l08DTW5iBe09yo64YMUWm6rF++UQ7bMoqMlGpNZ2Lroi/03vL1J6FWu4hsErZXiJZt7UruZVXq8xLc+5cB9l4pAlnkafS+vFeBVecFMwd4/t6AO80qScCW1I81RXxrUBGijfLou2PREpsku+vg9CAABPa0OOLqjZgUd9y8Iiq3CPvTGzvNJpJyO85xGvZdwGzsotSIYakeCRsc5rVONB5Oy2T36epEJ5ZIJacvzVuuozK2BsDLAGxoxnx5wVtQ1c+ASAylWJlABhko5vIk9ZcwmXpBLx8LOqfC/ErV1qAccW/BSpStLlPfLHx7cMpN94QIFP164aT9TtIlNcBcuFeOeOqxVZBsAoV8ngQLaL3/X6dIr4aSpsl1Ovrd+9/eXgE97+4wWHu9JvBG++ceeY2b/ICkT2C9LsXfg4v/SnbCygSYf/4IIhOFLSErdINUjnNqtBAmzxfJLl/Ja0aqbdG8w07XSByVkMGWWGV1SZhHH8p8exaZxciRRv6779GgVsSOdsvYdtYN7Dc/K/xBXVElrOPipaRUCHB74xTzrNxzuizzpb6+AHxo9dz9kZbtTWyBBwbmGbTFI7EaT1GUSHKgeFimR7yJmAof/zVXTfkh2csCZ64R4G1sBkm93mGetOXWwYp7p48LOhSrz6ShCbpY5Z6XfJjq4yJlUAy/d+PmpwT+iBgT+35ed8cHx/B6HuqKNZ/NPdwW8BYJV5oMGwSZbEgtFlD2ZzN7Yd717gvn9quYROB0LN7hlP5NGeTo362o2lAJIpM0g+oET7eMLaX3+5MmQnkKZ/frbwOxQgFIs+XRsuMziCtrQjJdvCy92mdrMGHiSi5vxbTfQ4VZkVugN7J3Rikod35Hf8J4smHj/UHRsIm4wpj6La//fx9vK2w4Myvryg251e44y6RyoRGUrYu+gUhYh1uN5DSvuN1VdwaH6tcgc/JJfFnS6u7XivytawPeY3jsK6R7LSydej2AVA57dOIZkK72Z2k9/94CAevntm+/WCd9eaWCfh29DrhGhlqO3FTDHtKvbCgwEXjr7j+2kG6QjX2ypRW1+nGNxl0mb76V2us/026D0Vjp1uGHp7x/NOgEh8gRPg5Ae6RSYIU2wTQ4BF5zzt/kJAXiDLudpbeW2P69aPImZ+fFQjdWmRfi+DYHfucbeRYFxPAmMr6PGI0iHUphC//f/EqNVj9CuqnvqBVw6PkCbCwsecpIAphziIM3MiPNHZtZ+XuAztBJps4bJ4e3zyKaB/Q9cx5nn9EUEycigPOb+9eUDDonLn8A6TSYQq27xG3rPWQbVZddcKmHtMJxryMeYi6yKsYg4MZQVG44fMJLN7LLomtyknsASSIhOWu5nI5WW9KNoqNvqPXOroIsu3fp1qQZ8b9/ZNzUScgG8/RreEhqZ3NQtbnCV9w90hizgEhStiiO0nTITbKBx2vaObdfjD3wdZIcvRb5o+Lson552hj8eZA/C9GNd9biXePeadq9uHuhPydb62uhaFxrLH7PXYmG4S39Ne/Wo0KvlHeeXfwJOBwJ7WQwG92AWMCiwzHkAzl8Hwq93u208Iw9OgZrUbd8gPvwd6T9ymSmx7X/H7ObWe+/v74iFf6l6sloe060nXSt+nf+g4oPbS0D/AUk1pMj2LKprccvKxazSp/GyqimRE6m4PbogSR5+c2xFRVNQSCISTsmZqO+VQZIpvnxdHXlQvqpj3GvDrh4CBxwru8AnMgRSffOBnqpIkrrvd4q6UcQhgQA1JSPeJyblAvdJsZ8z5WMbLSUuKvLBR4H2DhvX0Svscd75vNAmG7EtZxNb+lFza8zIxhJ1e1SwtOjxJpBTsu8NO/e90vKMb4Zhz3jq4Keeoz3lKuVyDQ28qpbX1XAK0SnsiJDELlNWcdAw2lE0pwdVDQ3q+KQe2nUssVww+EY0TFzl4q83xqHGoSzcoT2Ig+dqiFu52TbFNr3BVCRG2ULVl68n4RAmvFZDPZNg2DV6UrYeid4NtdZnI0am/YFNXQEfL4cSdU25k+8RuwDHVKL7Wne80fQ13C/lB/wWsqFQMdtbZiysW4hPVZMHDbz3/I9bXap8AdiwuGDAyrx5LpvFSI0fTxtCai2zwmI76ljIsA+Xzy37t/Cj4GtjU7MrwS70M1quq8TSqajTrdOU42ADMu2nAAJxDdnQzECZVVxVWI58M/otyPYRIEsrlfZCfFR49g2G7pRimznXt062NxdN5u5jIwfVg8L6KGc7Uujpyc4pOn8iUNPriGDibxwFQGjn1341dlsaB9ZmjiA+TnoNfa50BEklQgLIJhvTXlNd7Nhd4faJP38fSnABo6ctKaFaQ59jYqXfErMgQoNUVWuyVy7SAqdRuGL6QfsYZ81n5Jv+cHJC+E9cCPbG5MxNc2aknhVq03/Ci7m4FBbi/w/FArwT35Oy49KLzqEM5DbWoqhNJGQzIPdp8WNuaaUoK038bZ7lljI0Uj93XCPfe0I5fY8ThPVP6btxjYh7ajF4B7sPQVt+rReOAcLEUM9ZiV4Mwj/bhM0xESGor9xP8lb86mvc4b1NTP1mzVcuM4jk7O1pMumGXwcO6fSx4BefwH3jXn5Rrtwf2L5/waLcM6Tl0+DsgDdL+6yr4bTCD0MQe3X9ZsAQgGw0OKX5DuQyzLHTxIrtfZvTrpfSNIKRy95m+gE5O73OPyaUkaJsNu543qAowAz0XO6G6B0XoJyfaSfF83YY+nnbg7sCgFjnRvBL0nqKyBlydouRHDawc+jKdW6Jl7ilX6ddw+6PBOGRJW1X+Q+5F5jUNZra3byvOS/ZcTqofSXBQSqINJvWUMqdNcB3rL6FMOUvGS0N2hoRGOSXE6uvTNrwUTNv1IC0ikcYc1QdWcDr6+lDlMOgKDGnRHFiii1jIyI6e2S5j/LSQWSUrTIjOULweuGr6h1CMdPpC3sAyiogjLYuuFUCnXGJQl8GXkmja4qajqikXF/tbjNCNskCiFKhbC5gq9XV3C87GEEu6mBpQJwnYch3NThBs04KoRbteDmGcUeRqhULpqbZf2xqamo6CnzLuGHyLCFU950oGgsboSbTuOb9ImDosTyPKcXSePjwC4SM/mfXkem4HEoODgA/qmO0ic6eGk9HIThwnu1C5mp4M40G62Jyf/x+4xrr2y23m2hNpNwD8o/y/85ZhJ8/y06Fvmebx57eTnTE7LTiNbbP4NGmCcCjfU7l2+4gNsU4DRdrJYqfzWJa0MgCEx3xFs/303fUNJDT+suNjz6Mz6z6qbNimJkcQ1piGBT9anLT2/TxdzI61tys0Zln25Q8MDcmu8VsUI8HIw86NQRsHja5lO36RiTJNCaXkY+HOe/krvLsgpZ0Pmry4YNrHS1j6NS83T6MIQHdkWhRhQiAmULOmQtHVti6+DqFH3c4bI6s8rguNAkblPEJtL68byfAR+7tMN1MV3nI4HjnaVevUcthQOr1CK2VubdDcTHaMYouYofcNRSPP6mZDgaChFJHnI5M5Y2COHD80JJsoVZhLa+RAwSi//+2vqe59cpjBiPR2e0bFf1wXOKC+sK9rI7FAqZwIcJHvxUNFgaePNMLh0S9mmEJqADwjkj62N/cMOtKfM6x2Xny1r7moHfoKzwb/jgjTiK/QLuS7aZtNGcjRWgKCWk+2HfIDl3y+HzMDjplIOhvWmkS/S2K6jTUJ7pLZ6ddJcWIgxDhAILgHHU6XURtNu7zlJO8KZDx5Lm/8I74d1VJAYhm++uMP4VIUVl0HB78LGnKWaBjn3UtfWfd4thlLJlJ+hC6NqdM231S6JC2XVtKxo80QHOq/mUoknN1kpvV8oHd6d3U6GntH5ixiaLhwUQuyUvH5wluRVJz3j1htCL+CpB1EH64ljxnphAFP5nmy/r+FPRUQGKm/a9r+lxJ6mC6ASq8qGslvQkRfQhu+xXERVbHNslcvWnbiGuAS/oO314vQZSstzxt0S9ReuvjjLkhndSiuO9Fd+BHsGfkXK80T3UbX7jo2klc+D8xaWK7KtfW5dKxff6QDDGGbd0kFjWyHjofvJUovfbrwk8zeLtP9qQOr8G4EDao9yrWwJ2S9Idqr3ezYHrsyf8W4UqajHapvUL8oRSYP8EOiQexXn6xStn6Q5iWYIrX30bmNDNwO5gBymy0Wx8u9aYvoi2S1Gaxa1tCuZNsxJCInAEX5HyL0U3oWT6LusaXfBWAqNDyBAfLUof0jEcXdWCCOZwtB44de67Vn5/p5u4/ELq2jOSru/b2y98Mdnrb9EjiOkeHSLIET+sC6W237076nCQR3sQ42LqQKuxw9HAHASxAgCimZqise0/veDvN+KxlV2/vQ4TVF6W/6JMwuJrUTY+uFOO+YWIvN7dwaGLoeQ8Txlpe3CEb/KeIX6gs05shMGULPhJw3HaAZGfM6D1mfjxKH/R49O+mfQIhKryAQJvhLWLMso6gbaqnu+bWtWtq2QWq1bjYpZWj3DlCXbC3sQ+UBe0PP/k6atocKz008lKKv2ImZapYlhRKhm5HSVP+EczdE383XEGnWH8OS2saEzmXBAjS6DJuUcS5+jc5+WmKZ8I3CeCErv5BokXKd43OvnSla5KOuuw2eu1JxU+Ex6jm9xxYTRtrwyq6pSopWE36FPrY52+wFI7qnXmVImO2RmJ2lOLr8/zIBwvfRZZ6LL8OvVMD+mSUMwhj9mWqCWm2Kotima7WJODHiMrv5qa8zC7FSmFZmzwa50Nm1nR3rF8psDqMDSzZOLo/HwFTPLIgmfvt8vlvQPvLzDSD+676IalAHjmVL/meoxn8KfbP/LsD0+GanyQueEKPJwCgZUVNYZwqWAOqfovqZYIsB3QIAyB5SXh3W+rf7aQIX62HjHuAESKh5Cu7Ul3WYiYSXOYXa0XyH+1hp4T/VBPgNOmakuP5MDmaKwElMYfIocJ4kypNxCMy06tqK/hk+yInDXUcwesIpoYmlQSq3rT/66tqWd0J+ZrfCwAkCWobWCkih/tVpB8FUJkkfD4xgLBrf0ou8VZhnaMqoqeaoDW05+Jd+fUxjfx0fkZsH/d8akzjBTa/XK08+zDpXESgb+1b73jhhSQaR3aE3BKilmdoKqOtycLjhtlc86k5dPhCWy4X0p4Q5IpxcySfGX1KhdkD0fceA6I1A1Hs60aHkh0ZwtMTF0WU9CPuaQYw1Q6twKW+oSVT9g1nNP1brD8ss23FEclNTMwoOh9qGQeEEOg5HsZO4BcihI1m5uBB7YFcJh3QWT8UW0+ptVEjLgPx27/vXxOzelZmPmik6aaPvM6P2j+oHlIX7ezLpO7KPjjf3wpYrCMB893RU9o7EwEUbNancWJeI2Z65Yu0QHH6Qz8DxrbI72RI4Q0ycYKPThUMbIIqDew3eWyIz7tmDdlMIvflZTXHr5vCrsqYHoEdGKKZsEvwhbdExN/jctukj1VvnYuiQaJJePJIdmJSnE0bvfSHRwAiEXcDus2xecjIyfsoeQm258eRjTPR1W8woN8523m2UOFz7J5By5RkkDwLP94y2DzIjaInbdk8VWby6cNKdX7zs19vh/jgFfdfoyH41ZhcFH3XKNfwrJ24N2gn6MR55WvZZsG4tSkjODqL/HCkWIfDQr7azMjjs2/qhijWbEKYnQzKZJV7vxcZCqX+qNz+ioASDL2HLYfUO4cXu3FXX4eicb9mprFyfb0MEHU5mUT9yvDMeJI33CjSnmnSVqM+sEwEgprW+YTQ/mMCKx4QOpaaNviR+LqHyeaIYEekbn1WyIrAgUZU8ou4mqgRz9cYSp1jZTY06Y/1aMrZqfuTKx6z0Av/SzrgEQBVtlFCmqPn4Cw4ve3n+TlH0IctK6LCu3kvJH0QpBEJme/5Lx2np7I1Al7NvLRp871tMkMCV1fY6MbrvFcx2xbCpeUkdzIPtlejiPma18bnviOm7WxhvcLEIEj04TTlWnnY8/v/7Jnvyg2lYfd0MXCaOySdsTH8mvZiTXUwgrK3VDmJmtKoZmM8EItyZkyA16cx3W8+ILKuYyEVBlT7yjQBZxFOaP7Q6DW5KCgKDyCkVQVNNAuJLy/kMeW30RnXZk2QervfYU4597ZWTK2w10OWxjqmgmPoBw4J276N4mH0p7zxakmiaSeNvNZMg2OqiXcGOs05MIk4plt4oUFv/Bi6OD41zBsFrItX703IOKX9r5iAxPMmDKY5J3EdnLHP2gwemk4vKCUfaHCB9znkQstPfIIt+vkNJZ3P8KQe0N61wjRlgaiaai+gQt0oSB1Q1gEv3Eylz7UPlV7hYzowKb8XmfNYamifv0+GO0OX5AmDvW3rOkRb7pN3yFcHuneh4M9JgqAhFybtAAmWrNeMhd5EvqGMyUHRsk8SkZGeWrHlm4GkElkA65AFhBDVQJxlNG5FPwmkpWadKvwr5J7EWzvl/Vlye8IuwIvgLc/bA6xVKqgONOxs++jv9G5lUgan4OqZkkQ2glAaJk7Feyz9jvfIitrAWNYEY89ALZRa70xDo8UXiYZ5CQPQn13h7MzhvToOUs3RdN/hMk90Li2jjl3VJj3njKEbnsZBFl42JV153fbcnPmCpc9l7wEycb8mcBQusZec2gAekiiECrBBknHHYK4s0/kYr3rzBqCA/95POYqpndd82apHTryllPKSkv/AH0AIzw6ZcMl82jxVrIQ2g3FDt8gpvf2s0aYrsbilPKw5rtf6ruCROtyjITYvV+XVO3aaFEY7zPxKejA0gMpV5TcUdoPBYOdmJgiuij0O76+US9CfvJJGegsPM04aN4dx1g3D0iX6NiNhCClYwKLFdhqjEaeMvSEzijeUAL5XikRwida0jMG5C7Pz/NZXI1GOzYt3K9R5RGTjOGGf5fip2LLn+kZ/lxipGcfhsn5MFD+VJODrx5bG3hHf3dAcBOmMxuZD9b04HIW7vgD8SuU/eXjh1pxusg24JzwVuMRlXoMFqQH68dRwpgqHvG9W+FwevrWJJDKjAoxuBz0yVANF01Nh41sFfYuci4REpYt/2n/CYH2IQ/NJ1TPr7CA6pdsD/x7up4h3P53aSUV8P1K1gcra5YdEbrOt8dwS6rRI77TG4j+3tX/JOjqci6wrwJWlqNYwobPZBlDbDciJTX0u75+CdKRku5hrP8WNh2rzXffMU4P1vKf53rYjt8DshE1kCNCkT7Xb8YalJCjpKkanWWGnud/r4TiLIle7gaQxeiVtPxa/2dos4b0BX0Q2nNWwxrATRtK45/DwsVOQv99XCsnKArgMOGtdad3NK2oKVqQBJUIXl01s1Dqcc4KrqupL81dKCwlLaC6ax0L64RY2jDYXxeqnM8sdxQhS7AIxmCQp1ju4bY7SJNzcOhZGyZ85QjA7YMn4zdC6ApdqFzBCKJAIET3IBzSgxDZo70TAINrVTWC2uO0AgxsJjDCmrScpniYkkfegYovZaIckus8UOV744Ea8wNfiVdM9SZrnTeltERTdWZ18zfewCezX6OEXTYgB3pbWhgDDe0Aj9mDqjE78HIpcSXY1ZdknpSEtW6ys9CrDuvGkaJD2bau1O5bk0P2poE0LxUBozWae0qDi0OOIuM8qJcDuXMekQZ1w0Jgx0SRLvOmhzfZ5OZ15RXZW8/2+pZBrlzOerTCW3sxYQEjQv4oXdkjIvX5J0XA3zfoT6ZN8/FXHmqlxJ+Z6kgxKL2KXDQcsaD6mfD7SZHjAfqIllY4ByAl8d19lO9vFsUJXGW9OOPoQDoKkwTwc1ZF/xJiWHfFBBePmSdSwBuYCZw/MxTTiERq+gtWatAsXbALM1L9MIhQfQlSTx+eGDCG6i4U3K34IxkGjYABNyd1ubAvbpkQUt0WoPMG9TpSrcITC2AyOHsM9mZ8HJAE/zJ7fHugaQHpJxdb2GZijlHzs0kWIt/0cAvAffiATDt82FVlK7lflmCW76x8avgrXN3uVf4jGjJQZFudK1bA4EiQUZNDh7q0pEbYru7L/OY6PPKPitiv3YMgCD6wgY/J8rYdZOx/HSuvQk8YnsMll336TAaA/kFkvWk+g+bdXbbmP97I3hu+VCqUOwvToWkxFNFmvi4r3+Xi7HOWpgRceX/f5OY8cRffey38aPl72yUZ8EIWRH0AzJnw9qWGi3eoJ3CiKEMWQL/Vm5CJvGgdU5PIjUYRgwoHNJ8wnwk24li0LIpbEz88HhEsLKd4JY8ELyYKVwdf7TBeSBctN6LEB8Z+7sEO1IIvsQ72aQ/guy9o4fu7OxFAFynFHFVD0fHszRMy6sZ8e0QxUsLfUZSQkB/fO3HUGCRXzpeU+ma1Od2KOTEP0t2Q7bitKagx7Q9PwCKXo6XWMBZbPleYjcRtIHRm/0TbSta0qnFbdmu1WtUdpZL/xK3bDDAoXLzY/RbZYClEogxMFH3siUHKtJYQ5uDXgMoZqUoYmOKJ1WDnCxrIxect1qcjA1763b56NgbsGUoT3R0db+OoopKfYN9gCcmhTu3chYs67VgBF0Ib0jY7/XJZjElBdoAumFzvHasaoTF+6+bQIuqcQE2xTHOsiUwvwpOm+PtJ7Lcsu3z/8WvW2fWKUUe5VvVhfAq80cngnz2RSHzEllcFPERkoo5jQMuNUdjG88xcbLNiyvpZx7jd/wodzYIb6/tpCEQC8mWibNlSa9FGwSTS6OPyY5VOKTgYdtlhmZ2BcgPi0lx0oTIT6v2hSa3j0XKaj689mVuQz0sJeXTi0iDooor0opN7HII6j6LowtaihqgFlolXhYo+IRoEG37YE+JKheyJI43CcX04j89M5L/HvUIUz+6kzeJ82ocC2z0o6qewAyK+gCAG5+wtQA48WrZBrvGvRXLYphN6e041c02tB59yrW46bOnQK4EuSyAJSoP0ZhkcF+ynBNeiCW8uxtc322+04MMvllkX3FzdXiyEPc0Yj00E5pDy7oXhO9xAk3mfTyO7Ki7L97ybvkp9suxFxTv1GXVB+2XkHYRM7NuTsu4Kr3r1chJINvEJVyrOzhTaH78+sd7To7pxAN41U5xqDT+/sTmwKRhuNKcekMfHEvhQbQtBYMVz1f59rxHfrGQZiq/teGNjAKANWqVOe6W7CaNjRJoUByx1cBL0+rcUI/U+cgrSn33uLlVN3W16YeVAzo/0/Nz7CQP1mGpzzCK4kSlPbQzHYHVyKoE4mHMs42idSuBmxkp0X/uEnV5/DB0LDxQ2EMYUS1KAFJ5lGdeVcJ59snxON8Zvjspnw52k+aQGR0gV+BatWL6qwzg6km26JvN15FFgQiJwBe5UI58VHVRBgWnrJdjLMYKlci2twrEl0is5XQCiFPtKBw0F3fe99BCviEFQeJW91Fsi6JDDpqC8pnVTvbt4G/IoRkljaQxGYYViOIdAB4SnNWgFyYYZWW809ZbKSXwqfz4I3d7R+AQLbnf9D1HF/FWoPTc/y3bGEsIdv9Ksh7YItAdEHBtAcfiBYRwOyK16hGrbBPiZkJePWGOm0Ar2Wj3QsAbpLaIn70QJ+908f2QwYa9oglptNVEu9vwSm+b+YT7WsXEB7RbxvuuZ5LgBBlS1B9d0nDY6aORXyloWErUy/PjsQ+4WWpUUB3krespbzVCqGguPX8ea8m7mlV1n0uyLDRoJSoqZsJ9DiX+12GV2of4Gwohzrd4UZdJgfSgc1Luwtw8xSZ2h68TJw88blry5j1CWXlCZ+SZBgxvM9cwoKVar1Vg94XQyXdn1cpjgt42PUwyDmZCrxsBWL4eimiz4wp9g2JGv+JOhAG7uLrL74Ax6vYZiI/bDpj5kZD9njoO027PVK+w0a0xo1TIgjV1O2WfKPim64x8TGEaE1leSnvoRzAghYgbsjjnZN5QrXYAKtWbFgtILPg4JpElkyW+lXRriOsteIUVOzhexRkgR/aZG/17a8EYX9Io8JNFDIRIziffwZhxRWmZOycj5FGnCpmV6ev6is8jc3TMgSByDKahdCZPMnhWQYvhuDaVT3/MVvg2t01zLBRQfLOuXN7xdMI6ybe0th5DdY5AmnVsET47qAPpcUxf6ApLEuXJl+0cUgKrT2CCAFCSy+trjlgaNZ4kIc0qiZiLA3KFHKykTqVZ7ACC0nsb9UrPLqlM7fh9HRqurY1H9OOelvBOZbRhvJBXQkNGKPRKMZPiKYcVzF0B3yWriqEqcf2bMPH2N6T9t1OVitRjkmhM7tWBssmS185V2HwSI1MSr7AJQ2PSlrExV+je6BehE5Fhe3my+UMT/MVQL6WQ0L/9GpfCK5jvutdjETDNGcNoo7kTtR2pkvcAL0R7Glfx++Okk8tHDOUBrxBRSomfBAnGWaCRwpntHeBbUkOgPtS2y195OIHGstavdcS32wjuh8Awduhe9tlPp2VM4XG9lkokytL2p5h9PyvfR5Byxc46jA8WKL9ALMceQ+huH8PzyW5frRAiN1I6vzr5A62UODPxUVZXJBBXmVI1iUvEi68FNuu+g3817hxpl5UoHR4lr2w9Mo6B8Jw2cv01scJoqWXnuTvXEsP7uXALwxHM/sEOV8jL25iF/LDLTpYkSK2quYny/hDvdaxauxC35hcFQT2/BhfJH4innnTqCvM40UX/REh1f8vJp4456JRV7VYuxiANF5M9JQk/UEntJ7gzS3bl+1Dzo0Z9qh6QOj3cqzrwkk4qpugZcji6+PG4rEFTAXjIdH7MwL1t/2heyNTUuwg8hVZ6Ol/kZwxCsXwJLTvw7PNdx6/23iFHBCd6hbQFCSHojMMvSj5b9sWLDKme50rioSVQoX4zOrJSA8/YDGuGdYHqsZlGX8sjqXYaZTAywU7XDqNzGzmV4Mu20hMjtU1cWTYLCxv1P0ffEPAUHRbZtDli78eouZHIojrqbqKl1aRtTWyWvjXaXPkWk59pVjiuzF3Nu3Jif5Je5xm7aRk1xqBWPYNkjIMVKjdIXU0byuR5gdkwafBtIBOpJrBlqdEt3bpYy3rhytftS9raLzN580G1eEt05jxnpsBeURFCH30Y8AWBVfcI8f/SFXeRHyfmmOd+zL0zmb5G273SVCzCf2hCOkUGzUU/e9CCloUcVepBZZCE8EV/jrNf12i3Ezmz6rl+SlbOFe8fyWjrlSnqrIT8sWncCFND3tLpK61AOtayrORH0unCYyH8W1t8CKb5dPWfBHCexR7vkDPBqPfJAViW2mZQkBHo6P6rUE/9vYr4bc4hp20abNCb8PE5Q5nyqIUgLY0NvEukn1a3yCb2kLZGNfakXOnLian1ZXDQ7cCi3KsaCOFriHT7Pxhf75gDtioNrk5zCJQOo9wjbTPYSsurpq+JIVSmYVvJdGp0Davg0Gx2MdVLn6KCnC8arc11CW5jpWRAOKM/twnY5cnzW5WeWCm9nCuc9wh2D8OeMxOKdfyPuUnxX3PokpvAlHW1G643OQC8tB7yS7HNpa+Bo36TWmNmNlmgLeSRShHU10Am99AM1itv0a5NZ20zUyDym9laMkZRYtSwPcuHBIrdXdKMNpesLa/DrsWXXGOkj33/6GxIr7kyd7CZLTw0tUSrkQeeVZjXBCPkyPQ5+90nnpJtDdkvK31EpPmmu3JjWe77oyrA/jtRRp/XvCeow+kNfWY6oH2M72cQV7q9wApLJwGZsN1dRFnGBNNTlwi9BQPnMkQVAHxTydJeZKNkwfGr14vOpt2DMih2DRFmKVvH0Zfqt+QkpknJwDNlBWEhqKi8AQLyUNeEdX8fRK1euuYuZWpaYwSlYHe2U1HDEX7sca3nY4H08ECDCbTodNEILqIxll2Z/USMZ8l4xcwpvtDPam5XHDMtBPxihTPK1WMp/hEtce6pgQ7xcZ3gRYAsxr5PGQ+7qI7KKozSnevRVHdi9T9CmE97PzeV7shc9ApGc91/ch3TqAL/k+Kb5JaJLuLiGU4AcpKmDs0Zy9AqpsiVMzBCyuwEKfn02XuPDLfsXvw0L57KeRlSb5cQN/d8S6Sj1OpEEOS6ssSQugzqfxR6Ue+cd+JTtwsad88FMI/CPjCDOtWmNneaEUZ2FASvnY1eWNp/7zj/4QfJs3cTWuNVApb2hNTN2CAtDb0BlmzCtm5j4i8YstfgB2k8HZ4PsrRKIDs1ORqmr45DXmpmvC9QejGKuN/bIV5BMfdZchNu8m4u7BjS9oLCs71D6HhiGGbZXI3vFUt3mNEZD0wWjfFmdLW7/oZXO1dv/PfCehbQORSGIWYLvhsSeuj3vAHGYsyXTN8RdCNJAvlI76BsilgRAOJNknaO1K5bnh07iNAWe/RX4R5hnmiLMunCJNuJX84dMmtqbOHjUKrxc1JmJYZ/a67DU4dFb4grxoItzsuUlQDl8/Fsw0SQWdZCcrnoKMjO/WVL7G/1YvlJlrMQ/Vee+GUV2QebtjWX+IUV6CSIyUMSJnVhdVxNRiFZvomni2udsT6Rci6vxRQ0vl2K5MnJReKb0RE68FqqTOuQPRfLFllrI4kePBHToTovnC0AL8lgryibs93RZfITOGmlM5DLK9iPfU3uPh5ttDNrCERRwIOj0jB5iKh0YgSlY1GFL/TRnt8pwI6R3TyObJEI34EDKaTCwoATkXndVEV6OwW3KiKDvN3XSpifgQTCqlzRowU+1LtMxd4zRjvbTWSilJ5YgTvX+MmgqHzk3CxkylIlKOAi1k9ZTlbjANhAlOTZdQFgdIISUMQzEGyxYRNJos7hnUiOLrtdNCFW2OnTBQUbhwlpjXap/UuE+0BjR7XQcS8TEzPVbtlxN/Bfu4LxC0Qvd9aiYEjmBfY7X5+l04CEbFbsnrRyA15Nmf/s8oS2sAlFESvrsy7uCsKGKiPDTB5kcZjuYHADPx87Du28jchGMFuns/yF2ujZ2zs6zE9P8EFXITMut72y/oK3E38z4XDwuncsST3OJJYhFgD5MQoqXfObTDnK84oQ4la3ZAMa7qUDMTYOOa+N3tZiJAzgv56YRjcXCOjiSI7iU/syQ85lt+FwYN0O+wJHwIZtDNzDwkIzxnwhCrLX0dNX9ipepp19wsNzHXJFbEWSlIz9mC0LpDB5jVW9WP5OGAqfWJY5eGPzN601w0BTirQY9/98eO8EeyIiPzWm4e7qiqP2MoFID6Ga+hE2H53V3eguFxujUsrqKs6u1MX12/J1PPAJyDxa5dAnqkLJshndxnA4mAAA8yj+DaJZssi1J3GthCGy1OXOeKgAmmUkNWlmi73jiMZHMey2oFm02oKFa1/ihZuWNqvxIkecaP6zyPLTtRQpaiE+sJjVZBPVCuROlgXE33JyDx+AKi97o95DMwDXxUNmuzBT+vfeAAMpE96vbiQfTTHhvmbYARGWPlf1Ce09ZM/CXtBOk82xWQkdyrxhdbzdXJ9wAxS3h3jcUlA1LwdOiej4fpMrMR7T0wschrNuQy4eM8Hl3SvNrK40gP4taH4ev42uLPt7Pef8IHN8g78UlD7Wcb/7+k3hagkCASjJH3Sm52KGzSOSHfA308qWVFBWe9p9R3VCI5VtweNWG1N30+KjEELVUIiEpXPFLCR525cp6HOWyqmGXq6AMoYIpW7c6t14xgHPhYIoZzScXLXc7werGsgsE5U0zBt6/Yi/Z9SagawYFbU4xZ5kXjSQnMqighzKBSovymebpsIGZMfLXZzhx28oy++XuhkPRXCJNrS5+8SWE41WG8EpV8AO4VW/MsePhGgVLVMGf5/JexgdZcXbKvZamtkfz7eVIpGFHMaDtTUmnVOfB67cJgZyapEh28q59+oxLRaMIy7MJ+/Cv6rnWCFsK5TvZlNAzGIaaYdVAZqCYp09QwgaJegvzAM2VG4oWHKoPQuaFJNHzCCwsslh/J8f1jMYTRSeZXKRiRATsyun9VSVZbrvUcGzu03TvWaP83DJRg9mU/maiaApaJLLlzDPYdUCIXMi4MyZDQQzZn509QZMqz/TqNZdFguKJQ+JPKdbsu5ZQcIQNAUhig7GhfX5dEn7pk9xy2ynShaKWRO4jWGOSM6Kt8+SB+KP97zZFy9cP0KfIfJblc4k3U8Vvzg97/yLvhc4NBMOncJzmSTj1IEYh4EWBqqSb94cc5l2GhGyjDygaDmTS9Xps1HaQH09u8A2bFgX4wibOFS/jyXO6T5Xg1gZl+PYs4IdmOiyoBCOt7bLfkdmuaFxMljTbWnJ8DQ6A5y7nDE3OsK4o+pcn36jsyQBpVD+whh8ODfwpnzshVwJ09EJUa1GxofbmAA2M4isB7yXaEtSi6ryz27I3TzIBSStpxGfqD1VHLqK3m+Lxy0g2Zxo23HNhE7N0UK8p2fCynr/MztLM/9L+q57aCTuJ5SzVJyg0+JIwkiUVGZe4LYqhFH3ZTJYr3pwGooRQC/XKhRw8EV8nT/wxWvqUlP0gVG04OKRuK8hR6zABPISSx4GA60W3PizKOwzOMyMyDnjozYt4z8miHqJetYgVybtcBC6OTUTCU2dVWug+Othg3CV5YVxlwrTRS29mqr+2OwbTHz1/HuXnLTdcXimhTqzV8Kpc2aDJgdRa1AhidybMpQeVCW8hJF4J31x6xX3DyH/mDYNQgm0Mc6zxJOKfLF/RLAyG95R6gnodxa8yhE+TYoj3FwhA9NQV4uwCDYrrNaJqc8fmrG8VcNWGMAjoBjdpStbGaRHNJ1KXgJFDau0O0Zw48AliVxbWl29K1021hzY2FK4Yr5S2IoSprClpo6PH0P6PtfQI4sVqqIji6f0JNDZYX0hOEvm+e4/aJ2NMFwJI/m8Fnc+E70jmyntaaFyp+P6+wxlYW/7F2C8FJw8olfbIbW01POa4T4JZEbOPua0/K8hMOdKWpDsbRs23Ok+gxk5dYVmXGUYcMkfn8aXZlXDnmw3rmiIwzx87oIcgWvFfb10YjXcZM9lp78s1dy7XLPqqmwPnUzpHxvIEOq9acYtppJh5ydzL9xKyhufkp9gi30GyfBCm/gAyC4awnK6cHGIAz4pkeaLoSLstk3oD5C28WrdMr156O+rdr8+tn+isC/qguaI2GbXIYgcfRq7BqlaUu05jmYEJznUfaUQ3UvPh8YuvnK96gyL9gi5zxeTbOFyoHxsk5zb0WFtSh101GnSTvmWhrrX+efphtA8PbHjx3tS7jQS4b15fOnWJJYWgqFJuvuLnbsC1pQ4RTn9VY0mbDotgD5dqTZArKRsk5xAJHa02Q8Rahx6RVAMIulTtKsipRTb1unb9tuWLu9tbg/QPlnNgVXAUHL8HU8KJZOR+9VbtVZZeguGXryAYc4f2wQWMZzx9Q4uy2Eb/bnM6k0AmlLqtBXdrl6A2VEyO/VOfrTcdLlXHj/45mQ48eLTdGx1dTrgx1v6N8Tr7EPw8lzDbCfQL7cqPK9YROw5yYzMGnYLHWqfkEkAffYlXgHxyrAg8vmDLyg3dfjhZzYHOgkcPqDpkrKz4l2/PLDnQJuZuXzyjm+yOO1d1sMSE1Pcpqvtgx1RVWhTNkfnBTvN/yPE9NcdPFtJLpmA5/37HjT2XRuqIo6jU6WFqL41F63c1UTXCX9KOaj0KkcWtjA3dngtga7xKyKnFy2jE38mbx1b4beDwpr6r1XX6Z1XbFA5Wkd9nd3sqpXDgbanS/uxo7zdgFp64EX9+4IEdrHyHPMY+OoT6PPdokrZKKrEKnjYAETeDTpO+QsG40QbeomxnfItJUaynYpdYcGlqIjQb0OlNdWJG8Z5JmT4wTGilN9MtmvnSgQZPkcse4xkTBOteOyFeEcUNyAqMkxUrT+mQ+/m0zDilrJx7NyQnEoAWat/YXwRAi6322iYVwLS9zUj7JC3T6Has5aBN/o/Vhx9xhknzgJbNjjGDZIZrqH1oQR3bj6Q7NJaR62UIltFevtmBbqnp+61N3miMJKkv3coSMVxUrSWH2bJ34ZVHm1B51pir0v/MIFa0hxWZfRAGUBmXyCSLg8hHwI0OKqBTOTYEEbB52QVWNHpzkPz3o+n4fwYaSRnoKVtcYQLbT4LicmGrW3MxXsy8TpUogqNNjF/coR/yxMBDbViV37IAb8lEepG4iR2hxIvHWqCmWItCo9eCWDNlc9D7coM5eMjV1yGq/B/4Ye/RVtwBW32ZWyKp8yHfY6Fj9YAFjsfGNdDyspHuKmUig4e7gpnNYZ9XFyfXSmrXkZmf1TQ/JqhI79uBrrySj/iZq2jXsJYy0Kr4MwopKqhuybeuUB94ISA87NnOFMiMA+3lhTbBSmIP0u7j9SrxB2ayTcb3hQjhE2i7SI/cIlzpFmUImcvbw7LT77Cvg6rQQdEtVQ/mtcTe5XOOb8FxZVfgVH5RzSbAuNq6OIvVvGM07YKKVJ3ROkfI7WJ5IfsDIg0CSlqRWyCKFA5euOvC26+NvdQ1NfIEpjSy+qFlgeJwMHrERCMmVs4zlFk629wzfVR7n78agDhS8mWtSvzvAS80seZ2ZcDpaatSGsPvCh6bj2Mzgc2th5yr2SQ5WF4iWah7oBVfsn7HXsH+msyAx7W/cpn+GqXe6CHlHnAXix405SlLjsLpGSBSEVVCPGQPvsZKDcuFlOxsAOg/dvbie22dGcoBgUs1o59YV/Wsx/Wm7pLF7IMNFD4JhVmGRLqOL9NEr74MhAbgLwfLnN1cz5oLeQhm7CBk+FokhVwTME5e03Y+fBHoyWCdrP0Lyosiqjbz23HxvUCwUzGUS1BLMra6tuWcUnD9dp9yu6zK8ZLdKRqi+x6C0uET4i6USIkZt/ZQfaon/vKKx9fDz2QeJbIjuPvKdr02sLgRyvPYl3VTbSm/C/8qhRpvJ7F0wHzFFjT+uzuanJt2xYEUHlPkQsoAMLzpt8+P7gQtg6otHXVhTNv3LNhwIgVylE2HxPcf8RtQcOTz4ubCnr0FldKNXhAUnYM5ZjRKWy6wJN/ZY535zoEgGgajXsV6Ioag9d82OvgULsjuuLFyqc1MBPbSVlBouHatYBaqEBpoVG1qYj5y/VdTqMsP8okWcwYie43dhauNyQc3BrKMkDavc7anmEFmQneBSv+48SkCgi2Bg+VOWepFynH6uHHvk1g885eFA0IDdUaekbCz90DoCwgctpCZPULfk+njvZBbgsVk1GTm84NYYipwJ6XXJRfnUq9p6O/MC6ks+NLQntykT+xQrN6cthKipntIPO0o3y9Ka3nZY3udDF2M0ofvJ4mUtYu7T8lRYrKPp5I6MRfnlHh056JqhxlRxtyMMSVp5b39BoSFYa7RXzP+NJRFJf8vZpiostJjTEQvNKvaoF/piLwhrs8ju9DCX14Tywg01/o0EIkqv9M+Uxpm4HXdVYz2E5CR4Z6zL0l1sWeJ/ow+ZUzPH9QOYAEwMrIFtLxfg3e+A8MsScuG0kB16mmTJfxJKw5LhVSKOZ4ft39KvWZUoF2xbXa/T+Zo5NpJh+a8kx0tbNLcfpYTUlKHWlzWUrnlgXVxdnaQjPDbMBH8WWW4h63Lfefw+2n6myotTOUdbBTHxUjJJ+R8fUkEY5/qqumYNDB+DuIIAatH66FolTvzxgmmseGFs48XmWMnJ4BFanoVMxmYLmV84E8wRZRpNKEqyF5BW/oR5FR7YpUTFmNsrJI5xT81wq3pMIdwNNHc0FhUgCb4nj3JTECtjIuqrUUKXkU2wf5+du1dvKLGHbsp5U5zvZjGK0Ww+g/xyRC7x6/oOyYp3vFuKm1XKo7qCvetdUCu2PAmEX45Lf58aH8snLGbqDrEe/YO4mrM6FRDvpKeqYdyR/TeGfBlrw15RJSiEv2xLm9uXqEZeuA2UqUNqPS/M9rYQA//YwK0Uub18SRxwRuGCIud+tg1xXkIcxqMr6tvn5RyxNty4oBxbzYczTNOjWJju+CIowJyCnLZprOraqLZSVaXDSbi8JzSrJWyfNdsmhdAUlVzrfpGGG2JmVVzgysEB3xLcWjuP7ryEoOdcbH8Y7r1sn+/ojcDGuB1/DpMaSBgjsZeYkEzo5UB1cvSo47YZV1bIqpo7gFWM4psdCKInbBbsl17pvdD1xPR20y+W4XOpX856060HGFbY+rbe0U8H0gnjobnaA7UJJuQAwDUlpqlFjYUuIpoFUO7YxsT2yppSSiLM6VY55WIXzWlqhuKw4IOGRfqaXiW/hv+DRd3qunQnpECurodYVptGmL/lydRVV4hRl1hrLIiQ4wq/Y3FtQBs5KVWCqEZqjCFvfFUGY+g0MqefgREQt3cI7LD8Fyy2aW0EncqlHlbO57ob8rxTR8FTKwL1j7IgFdyHBn35kah66H90JtfAJ3hUsi0wbdgyhpWRA+affR78BP/64JkgaUDH19JTpzY6trX93xCY32qXBHHiV0yUFODeiv8EZW5iPMkz+PrT1BDbQh1Qh2Lyab53tqODHgq3mgt0b5B4L6dqwux6aDW7lTceXwJrLRh6gYOQLNJ6/hpIgFsr6E9mhh5ROAYJM+vurNCI63n3jLNJvyqaXbYNvawTz7b+ZLmgWkP86sPARKqUg7Ho0rHZsAUZie/LpT7S2SMwIGm7HMbYg3QOH/NnaXq7pQlPQ1yfPM84rM1K/xJ4ry6Dfwr5gpGusu8e/B+pTAUHSAcqsciMzfA9SApTju7s+2HpBeuZbOZ72+MPqkoy88swZlg7XOWFgfvSKqQYp1U+gqZxO1uxQFiT2Ypz01cosFV+3T89R3tyKsaL47Pdks3H2SEjxlnd7FsC/0IruqDEpEvUuxlMd44ArBiAGhwnlrkvPKDTRb73qVfL7dQ6eMsFlHKdMmLL7xiaArKfZF4qhhz8bXlTj+s5iBb3fq3e6tCpIMqDcIO9FJMgqyEG90BXbMwrJDtq0mIEkua/li4IZclTrBcpadENqh/zgb7djWqyuetWmXkZA49R7zYsOvV/40EGNOJmToGDgtT4GMhPEmTD5NQNZS1F4QGPvGHea5eTn8ZHeAsNJdran0IUFaUr5IIf6a/kbHpSjHCH/Lf8Zwy64Au+ToOhbkQMFVFRGLo5UbDGp/dCNmC/oVXNhrwt9clMB2b13VM7i8dVWeuznZ04+wHsAKjE3TrFqVkqzSqtgbogJooqWYX7xji6ClOSPoZnnAUGAwrXVna3b5kgJ1KzYSXeLDjKnuelzF+4yrnUic4h1Dorl7WL4M7rujUrBFm2N9ssuRfhMe2QcMPSwdv6klNYE59phdQ6uW4BXhpL1iXNELgg3kWEm/y6+6IxPJ7y6EKI2f/OYzjrVc6bfz2M03/C1ID+pEz43JCND60SLNB+Zscm0YHm+RdWaGwHdrz0ixzWDPTLbj/KbQKRYR8X+mDKdu7GRObGx4+esN/W/LD/tHPjZohFCsEskLA5+wTSRnirfahxDpGar7TdxF3ga6S7qkH7DzBGb9JAVT89e34SOM6zjnQO3ik4U8fi52iVJintbQOb+B102G5rbbXH/ujIn8jZ9bPJ1+XZawh4AlE2HY5MEm4Ve2uA/URZqPhilcxkTpg+PPx2+UBeygL7JspAQzKqH4xAsOGF0gj/de0yJmluDbqw0/iJ95lGxuyRmHRfu5Wk1/p4WZ4Uxr5HaA4OBngYmHv/cXTlHJrF6Gg5rHoq6uX96rEYtBEGGioMMEQ6SOCdUXJjxYJvsF8kRF2HkTwh84JC8bCT4XRgJgxK15qoCs0sm56ey3IBm29j5BrZoBX3WbEnlS8mRMHQVJtDd/NsL7IgPmRyKAuHH7wDY2KW/1RbuXvOamIZRGWRr+fHbNfBUciwY/zVmM9kCUvjDi78GROTI1S/1vf1J5uscJ1/0o9TRRN4UHO5iVsHcfMY/w/lIg0rGQ3fRQ5rSpzvcCl9IP10iagSfi4rLe0kWhkaqxwJ+yvwoyjsCZytByelq4Tb6dVOH0zHwk/FUk3OO05Knb2fn5KvJzfPnvulq8hbJUxHk+ddRXWDSHUWocmasXuRPT+zaPBmfGFnzUl//u3HFEr1UHoYwhofcGu1uq4hg0AfppYU2F3A/oLu6qb6agndPNgWJdm/F2kP1Z7tejX9DrNbwdwOBh6f6wtzCZBJAdFd6GOVyqgK4lzCvieZfKONSqQwYy1ksiPuYGJuLIzsu2aidj0R+mAV89Zmby4tLi5zuGxpCkHeR8cfSFBuMJ/ZXcTMHJPcxCcoWkoUwoAjpy3Q7NdqX8JXVvDqnHRz9BF2Qh1IAV0f31jdT6XnUbpnwLvg5b8gBhhwAD8iSwH8BuQKPELNVtSOmB2rNt7V1SFIoXwZwIL0IAL8WEBb3/DbfwzMeguDGqgYhl9kh6l/GZehbmcvX5Ya0LYrurzyIXFjz/ypr5EbbsDix4frBpPS1jj1MUR4rtehXZcCr6B0CtXTcyMMNCuvpjpwd+Lamer84BIY7yxdWvO8X8cFewxnag4ZD6Pr82NviwO7jWqMs70vsKs3o20E06giQAGgdWvQeBohfYMw+lAgNlxtTV9lX7rynHe2J/CqughaTUlGjbDEWR0C9raS5iF6MjU/XoPG3U1HfCgGBV/cRM9ztLs1ZdlXiuSr8BjMs/cuI6RxPqSpm4LUywnHiOTdPOALNgZ/+zX8eTCOWt4XGYDDK8GOw8WYRLTUix4M7/Mry02xKbhBueCjxx9afD4LOea+pG4hbG3uj0yn/F8yz918Q1pHwOoSxORGZjphvalOa946BE6x2rZvCmySm27wEwRcNli8KiWxRqxquqbgZVYYFIkwtXR/n+n/EmwSgM5Z73N6c8r033aj/8bM+qw4GeTYpFDBnivTyHIy4b6P/1Kvi2BG+G24XNaG1PmDRJMOdn42YWy3rufshFIkVOxNQCvHARKULK8GJYm9HwN7Gi8DECApHCXfkC0t/beffiD7Up3jSfuJaL9yxFcx5pTLzm7/RSefw+eeze8XTc3lWmLoB06ZwlHE1CHk7dpwSqR+f5WGHKu27Yoj78GKNYNH/c5+aQwCgJ6ngjAsXT72XEdt0jNk9AeHqavJPGIOExVnCPWX/g4Y2zhe5Nlg3IpfVD9r0t3Ofe+r1D0KI+pwmkNsvNNxe3A5BqYm2BPXYU3PHRlpeSJra39k67ZiVP+H5sWhgwTJd1oOpzjREizv9W1z3cPiEPQTMYLSGM4YbmCIqFl2tp9FA4C6T4bUeaWovrf2+7e/EbHoYcUJMCAw35ISnYlRc2EATKorgwlbrIX2tqgZ5ImCIqys7Ekf7WI4C+0scEbTuMBhDcYM02qezJJJ4+zKrhpUvxoEdCRprV1WcZJJfM6OExf4wFiorMW0bnxjGeLJVvFUseb2E8oMAC9/w408q0s8HP9hYXscrPhpG5QtmGcSnX0BLEK4060Lkg+GR8uhodr79pzXKleeDIx3fcjo1rLa19RvwolrQxpdFEp3EFHadgkuvreTtRRsfr/xbth7Y+M673ycgeeisXwmNnk4LWJOyb9V3Tv9FkQblaEynvrkfwv++3r4dzxA4xHyDz3D5bXrUklBQvGZa68AjAbTV8JYBFbQ4MxmXi7t7IADf3fHnF/YnfdhYbCx5zPAZqzq5bAHhONR8WORAu0f+n4QoC+p7NC+Aj36dezHdzcS7LUVPJJAvrGwYnGfUJzyFoOdshMGhIBd9tNAiXdMCz+61hXWrWp+7VwRGBpfD3szHhR0GGx0kUPZi2y2TSWZN940KPXO3OkTQONYZhlgPJF/nz5EOzM4+TxKqHPqlX7UNrIBdM52PhlUiO4NrPrcZbgfW2mewbAUhVv5YDDFSGx6ZKfKs92se+vkjdqtMA8j8txPdXKvxfEBr+hU7IW8jpvq6i73FbHVP0kLYrybStD91NF0IsQxdjW/+Is8rJ9uMDG+Ad55vEsA6RApalqBwETtrhhlFhjr43qU1BJ1ig2kxYh/1x7lLaJaxraVhnP50wTpISUKuhKdSJehNtv2/VtZjhhIWeTjAC4GSUovjqIg9vde/ijFS6teU2cDYUpYMkfX5D74Rhh93Vx4V7HKwUOPnyvndz8qJt+gY+l79MQc8sEFmvLuimkAV3n7kBPqX7bt9eiNO+pS+E+VWASlZQbyeGPrO+DqLPVDssVpwEjyQwaFgNQRYMrGdxRvLOApqCvEwgWztClbsAfqaW9VJMLSLrLbTaYIhBddTBP2E9MTCdwwUvVKtXMFOWoEICp8fLMlCUOMPBkR5vzlnPH0gcUdL7W/IgFtM1foJyBWLTmKr2ADCPRFZZuuxVAe67xUI6e7g/NmdG9QYXl109HTbt1JlAm6KG+jSrBHPA2RbH3/qmgZoSakHMJvpAZ2LWhTdFWVB4oBAvuiizECjhhRl1/vXV0udB164OtSQAAA+jW2VDQ+LhZuIQWPyEhfjktVQEeZ1bkMAT1uSgGxfHoS/UvYpNcwB3hFlzLAgu7LAH5CyxPq3Gsue2XtUFBbQoi+LBJQoP2JK722lzTM03AlT9Kkxhm994rOa1u3rz1hPyA+EsGHrZOPEznoYCafhZTbZ5dHTf+6SzrAl7ho1s/+5Mo3WURsJoimJIMQMcctIn5vITKNfWKLjiNxk3YDAhiTvB0oKZ34tC7uwypaqhp5tcsxQ7b1eeszJ3Nnpic/L8TVRs9HbCN5jWWES70/cBsozUvxLMos4uen/qlKzbQqTFXN1LgLomFxazVcAcO3bd6eIaFcrIn+tmngx7KX9EJJ/8CnLHqOFCld/ZnZpC4njbYLm/VIYLow8wOqqYhmt82arL/eoGHGCAUm6MLL2cU+6RkdCU5fUslmynz1obTw6nc3kUD64vvfIZvAkH7Eydx5xYY7Gyz1biWnFDlP+y/s9tbN9/UTp/IKbQOxs3Ob/JJchHJlcR/ADsGaqJZJBmujJ99ECqcWjtnZeypkhGeiKKxFwhPaFeKPOoG2OyL0o5GSUZgGA5pbn/KJ1gtkf2IrImRPtQ/na9ymo9NqjeT8YvSl+5+GWZiH71NJdydyADeeQDGi6YUdgDsa4+n/TVkgfg3gjJdnsQWnJ06mJ3+LEfu8FwThVKEtSEWiA6CRBe3RJKjEdWt5QrdEljtyd1qs6RrmthiTZaVT4TJ0cf78NlKN0+meG7VzX32E/2DRWW/uTbDwFJHxe6Uw4Ca4mRXEdNkdyLiRUSIaMw9lZymuODkZMD4chZeSe5bLvErYBoyNmr/jt5+qWZKNuym7xMM4zvn+18wBNbxHLtncSmPwLSMcsV4uA/W4InE91YvQbISNV3EB3XTv6Fj4FEhSQpn7GlUHRf5Eetv4JdORR1dCeWfsr97/eGxzuLmF6gcpA30ixepB9nWwRHcvWYXjGwdyDSBCwPqzAyMVFx78nkVUyVSX5k7cy92KU1g2cT/zSA8z7i3+M7VW9nKzAtKS+vUxizY3fbxclcR98jzBFMvi6Hc47tfKHxJrsIMkAjF2ZKmZbkIP58ouyAjSUXAOwx9NFRgipA8rwbdoz3SDQqdat0Txcwv2G5ElLXt0/woiAyGgtxdAHzTq3AG9jgsrIONoyL10JwF9V/bZdXyFhkvHmvBiyGdO1bK4/Ord1EhsTYGecd0mL4pSydCe407aVru6g5IBWpANgOLL30jLwJcqpqZz6ivAvwmji7Z/IfVhZqs4sbV3fvDcW/ikuTW7KBnOvBLWCiuYpjDj1jKetJD/Flpxj62JF/ks75oF/y16upyAToslr80pbPpbJEoq/+sSL2t9FwZn3LlZooDr+wBoTVMUnG6yZ6R9zfLdharY6cyeX7nMjaOblcu2+xqWKammZ6VzaXl0E3k3DVhzvAjs+voYggARCvMoPFlYA3PFiwVpwsjUSZKdUjlNwQposUA/97KWyhm7nH6rHdsUj4YtESD4xAQhWk+tDuoxQ6Z/r4vtg9qcV9Oiuv9DXeSdrBr1Sv2fy12Hk7n+/ity69hACu+9HeRU3/zyDhHbJ5YymZJv1T9GFv+gcwOGYfA9G3zwZ4YKKFe7J2+2n6y0LIOANpUSUNhQeV3a8Nze5R2YEYwgCyi/auiB+/MxaMZxeQ2TiOFe2xY8is1c9pYAyjncqMJePTGOP1wfiAclP9++kP/wGdXLMhTvAivKW7aiGZvjbXO/Eek69YyF89r5PE2ucFzhXCip0/Rqn6madt0jdLpPUKWzkRizLlgUXvlC6B2UksIynobFU4zalYSHDt6AlFWrg6Cx9R+MS6p5NOZ5k4/jDXpqLODq3HuC/YwH424r8iUCg0anhO3TnpuC2IciTEPhD3/cj4GJa/1dAl+3VuOqeV1Blc8+5mZHnxYD/E9bh77dEj6i/NMcAqf32VEG7Dq0LCtRf7pa7kQqxGkrYmCxz3pBLJLOnfFktpFqgu1aub5xdL0b02/Sjdiy2+pnH/dofeSuEgTG/XzXFSUI5ZVE6J03SGbTMsmCnJvxa1Dt7nuIK67GKabYqtDaeAClQawsFss6HUUfUC4EFT/+kPZnYZqJAZm4qZbyBPk+HaCZ2/Mxo7JLqZ5FenTzk1GbvBnBCLmEKl0Krmd1SiR44FgmvzNkrWeoP+sWZW+qn9GtmSDooakfgb7bYAPIzqtfADQyWsNDS3ONeJdU2UwxnFQ9NfcD4qcQLWzSbN1KzJV17IRC4OOjey/8ufy34vyXBwGjjirfNY+0ubtCJV3i0eFOni/OHHlUM4iQJQGfSFkUZq0AsN0u/sJAu4yCEcYM8sFLITiiqmCusgF35WnhvOczm7qJ/HsDzZaypCLquX7B3hCrLNCzUtgcKRw+XQKIOfkYSgZ7k1TzEcoaxCl7G8CmZ+gztWZhaHFztir5u5wcFJ9RC1tPfmGeSydO76cjKJnQf7MH7PMNx2hWW7jIhaBc4XyBJL5lLqhvH3Uhs0Nftt4QyGuSutKJtgbpasfj+D4z78hYdvw4nM24e9C9DXhUllJSi4plYKGaOIMGTw53DaO57jj0Zk1Qu6SbvKaIBrdVcRrTYRNOWicPcLaE0RUMLHyEu3vr+CiDxquYgL6ftmrJRdjOr29ISD+dn24Iq8CB7JYdRe9zkcJkc5edT1gD00xMRTQ0MmvxWC469+xCsj8BewPGQWPec55NpXqvQ6G3l/xUXQWejOIxJX8oqaeGRYdEVBRaMKuyWr2X5d/dXmLZN6y4OsCgOVQveCjOWP8PoVWm4RupNVWEgNeIYucJpOhEkFaDyThO4gVQ1tCKnEJF1ASR9yjEDnct5TC5Wd5ocr9pa9dXY9dWQhL30NFO116SJz7v7JWuAIQHaORLtCUNFKPzYS0kkFFtr20hxunSHlyipIWhvsRFdaBn5MrbZCZnzV3LES6tUX4qfOmmnb+5fNK+78pLxriNIW7i3DgZLtqs06MC3KUEskVHDfvgUArRMCIielcnNYnuYY/QlCF8xFwFMjtOwCRJxnK88NLWOmFXo6Cxc6gI3tszkLLQnCEDw0JJAk9XPCJLgAKVrPGTLGteEE1smUKfTMd2W+q9LUzgRUmcFfORQBM32xmf7V87N0QGOY3yBxokXhLPnmlglh1+AemcSR9cUQTF9kpqiugGig+rFvGb5XJ2NWiWTyfddAyJ9EqVlmF0PjJGeuOgP0/rSwhTgNYHxnz60Zd31s62dbra7t3wi5lkMJkDKJ9/4O57r4Ou7yp7+cpUSoa5iMqhGj7v8lzhq8qyP5eGKgdkJz5ecIX2d2WP8z4nEGe9z2HE4Z+B4lByzrg+xmDLv1jOWzgBZNUJIhlpOlOrrCn31EJAk8rbQKjOyrF1NFef+oL/xRPRa+KfFma7rzVnoLQcOWJNMSfT8iio/w8lS5vPhqu7aq/+vIxkbWy1uA+kBbCyuP3HUbNx0pb7rT0rLP6qQl2etJyi94zXMclPu+awksls5ZnvwDqgGyToRhX6cU7vSLUpobgq5SYvHMQZlxK+BZDw6ZZpRwjjRmny04M9f3CiapFRITo2pTrm5zFspmlvJrUGp7iNk1w+cdJTNm/0DSsaRUNtioRCab6tVVaFO8keZho4fVHgoBsejd2vlJhOH2zweboVOdVIrjo5mM+SK05WfAikKhayJqBllkr7AvGIODfGjWRoJorDB/QPQnb/WWY7tqFFak/JNGnNKC0t3RNV0H1Iovw8z+6bvMZBdZBjaR1g4HBXDWGate+MHjYow1lcOdRIkdUF92F2UUTYsnee+OaNj/fF3x/vVFrBBzKftKHviaJz+qqW0eEh4JpmnpTaLzX3ShnqX21G8oCkf2tKWn+08s6IMAcR9OhtaNQloU4js6HFzaW3zoTqEo6R9wVZIO9CB3hH6RDQUGBM9jNmtDkG/YUGe7XR+t6BN1Wng9djGpnjfKD7OT+g+4YWmxN6gIc3TQDHQPprPSNOsI0ZsgQBcqyfft+ldhurzjhv4ycf8OnQm8mc6hhXtQyk5eoRxAPmu2uMC3zDsIlM/B4oun+nel1qr0Sptmm6iVSgc+nIJF+rM8ldEaG1/68m8lh0tc39i37xM+WJrmS0Egs+nBWkmQlEAsxEu7if5q4FXLKvj6vZdvyIFRHtTOhI3xNH9C7Sc4h+N0VodX17a+ulJrUD35i9rWhgFE6nxCOXW4XPfzo2nY8ZD5jxqno3ar3EoWXVPA/EdCNvrkxmZcryZLuuDKNuwxgXm/1QUltOTk5dqgMhv0BDU0ZQLfkfdKqTqD1tQ6sEW7Cht9IDfX8YX2I/DG1T/52EZXq3DaDZXxsQDlmVQOKqf1rFvAWtrFn2MJGGLrHpYyfmDTRzXN8nh7VtJMgWznMA5aePutS+Anp/vVBZrWJVkcWD/aYqfqhbiWx8n9gsjC4TikeIx4ufep8F6hJ1nO8sNc/r5WQcQ89VoliAHwB0DzGvq6qlwCeOGS5t5X4oQhYwvFCUm+9UOsHbsnT5s+p9x52AmRbsXSMJWhSR0v37oscQdVU8prlz/+DLCnAoOXKCDDMwugYpuBhFP6HgKqP330pEDILaY87MmCu0BishD0pHie78mMs//pkHeOmO6qTF5N7APcZuzXL5XT3R1o+Jjuad+T+QSkdPnsb2kX9wvn2i32zO/0CjQ4g9tW91z1P2vQsCPO1uzFVLl3rPp/TdOGBmTfS9J/0bZEaD0feGLcghPWHDpVV+pqOFzk+AZaGCC/lV0ug2JaqzUbv+4+vi3aCbilfzfd+CSzTosxH3l+tVD3WqeC9ZpxJJT0Cj2f7vxT6nnREmSVToUuvy9zci3wW8PCEOb3uuQE544NwMCCwLk0lsFTRZ/N6ym+7Mo2hn64qhx9It283bZPKLgp1cJvlPquUYgCURe4fFNID2AE/cGuw8P9EYL4ihU/gUkwIU+mb/t3Ca+Mg7+WTL2KxoIdnAJr3ElN7UcWIO8KPsueruW7AOZc1QcUV3fhdIM84s9QsZBwwlPrjK2FDWpy/jhBy+AlW8O/jYA2WhvwQtrhks6BzdPCIXABSQoVCLvVA4NCmKjk9PKCybOkYxrJEPEx2+YdugEg1YxCCq3M4uAs6CsmzSmgfP0inQdyT1EZG3Y+x39ajs1kaWY39Yy3r/yPh6dy1CLeaQ7LQJ5HgQvha1wIFPf3L0/sGxAoI3as+iw1we2yOdZ4GZQtGCK/T9PJUFUdcSDo4I8Zv4NrsaN2mMLkf1K0tn9+NJkpIICqmnviHtD/11XHNbznKp+sfr/P9+XFK3wJv9Z6I81eQKU3amFKpsj7trppt39lyL2mOmE188/4gjAiVD8pt/XVNwKZ7GbiByuCe/5gzd80nqYs+rlVzihu5Wy1UPWCUOW+8gyKfZXNd4xsEbhv2e1OhMVKnhhJKzf8O7NCu6w/mEqCxf7+ZVjuxtVijCT4U+5wjce5p79LG0kjE9qwDTtIHNblos4UVgUCxYqdKWldcLPBD0dBms20cGbtp1sGLoXsnuTtMtNjhZ4UO3q9UKCZFsCBkj/ldk+oOj2TghthvHy0QqL64An1ciJMCoPXegVrc9gWfjAb0UjbyYRj/drts08VYM7D8M79ffAU9vCfsyKKvVFxIgAIPIORo39wILyEkk5cFFjg4Pf4utuvESZLlvPqrVwWvDNnqWK9Rus6MFd5ZajjwD8TMNokZ881v3O0MF++7kvbycKoG4ePI5UIn4bZUzsGeS/EqlqccRrDytwOPvgudUV7N8LaI0E0MAjyPBUG0qwnRvbd74vNVhEg9iPQGU3LRR8aRZZPbGD/4QD54doOF6e31dt1b1SlDVPVIEmyiZl2CGVUcT3UTYR1uMScrb4/XYM6fLlEMpo2fJiSFNQ+/+GvqIAm8JB+bR9VYPYBHLyIM++EEa7PSsCD7Dn+5cb4SNP/rZ3g7wndhbCpZSxmOKebYKylzya1kdpMuZy0qi/aUIqBj9vSWnopzwdqtPAIp0RYqjWVS6emC1c3t+bmpR5yp/OWKG2ycwYRY7EIDx5hLC6okpAbn2+bCx8fQoEFa2CmphbjtxhbY6fJ0635iT4Fh0DXdcRrmdEzjRxnfmIJ23x4gDnl+mJpKcdcrCeSTFkCWtQtCWRgY9ozKYS2E3zzRfQw9p1MzdjXxpGoYaH4dGxAvefzWYNc6+/2/JiTOJ01VBAq+ttRt1ZPvTK9F4qBijK3ROtMa5Llq5RmsHHJ11otiKsaC47x5bxfABo3u0X3CI4E876rg0a4UonL+A6DvYVxLLUAag7QlqjIN67sT3PxqoA4WtIUAGJivayGHTLDwUA2uzOk15orLjtESsbcutmo1d7JGr3AbGM2OMFNlZKvEWOujL04XIqPCzIOflUiR2FHT/20F0srYlFvnXxOATrGEMUxtE7qKAuTMw0n/AzoJ1Q+BgitRo4QzoAVaUeWzYNFVVcBRCPlS+ce7JZ7gsMDA7kXI/23+IjzB44FTup9mY1uzh5/q9t0TdYyC64MQx5Z2/Ufqh5CvtoOsArdVTtXyvV3CjNC9uGIIWar28YSb9cUnrhUf6Qhl//3lccbdQ0cL8at+U7HEhV6bNsxa/Ok8mJaK416sQWg9YfD6IoBc67vlXTQIfXeCK2uT1FguSH2QYrXgifU7K4zhj4ZBmtBSErVldncI8V72UYo5p+sbROgOyM4IF/pgsrr3SHKRv66Df1MR8zhbrgWukDYazDDmqe0eStDlVrJEfSL4dn41en6V66gpykOVDsV9sdL/+cwMzfq+eHNhkYMqI30Yr1ky9A/TND6JQ8lpHEYrBCPZ/Z2glFwIpNeAhB+z+4rcpMMgMgEa0sNt4HTuJgj6KStd1lZRCHqkEZuvYC4B2pIvqbAr3XsUzJ6rXnA0vv7uWrhqHMHidNy+0OJCKYyrCptLvaaO5/DY7mYIXrbEqLYG8u9+Sqrlm56siqSX37z+PBpLKtoYCTYuzzyHoCLoXZBd6PbotlLJ8iX1ohhbG1ISFs0zkJtazmtjNcPuZrH6c2Ifefiy41TyvgHGMjagadjKmiI6l4LsQ6Cbm6kzR9iSY1LxnHqnhpCV5j+oWAN70A7eyMVfBPAkuVF5VgG7b6hXPrSzwAYJZMH1TfcWEDeDqI68Jr1FuAn+ow+gZfDlmdY7uFA8ym1s2/vtroua+nb73LR1V8wN+6HrleGrbueiCS08bEL3ixdzshYnKQL6HGih3r+VeupTWBCDEePJAxmlvVzVmqAisK0qj4Gw3Vl3c3ttrzcY+CgWacbNo5zuV7w1L6OCDIS+HBDc1MmFtMlvUX7bnsLutk+4oscpt3814KcHX2G3BilPcvOoKl3urXQLZc5Jm7DU2yRm9uR4lrcNZuLHP0SXG1js6MnLhtooDprklJQqW1XIMEVpIH2C8zKdcFRuvH4830n26aPTEOCyU9vjgDkArSzecd46BVmuRabstsJP2UNNV0B00Zy7Ji2vZNSySTjla02H4hsoSE+bRZXtPrjXQI/ZDy3CWkPNJpO4p0WnfwBRCUi1+0kIv8upkDKexF5dosG95UubIrbxZizBIkAXP63mLi9rXeXZ/4FZFza55JiFEkOErqYkwWC6pY7l/2egbclWE9uB0sFIVz2+d09H2M8T/LKtNMH3ulwO9/Kb287NPRWWPA5qq4zQ1x8MhWa66d/UYw084YWTm0wFg3+Hm0zPLVIDOY1WUe2Hns3hgBcj34bkouhsHNWo6CVr9tuEHu/jvETJZw9b/4t90oTsoHRAgJAcsK+va0XKWQSYCOXg1cHnlTaWPfsjIRWpUB7b/MErm8Lb7pNKqBCf/G5szO0WDN4xnNCKNYGyKxUmYll7LgcvlfspWNBmVLuQO1/e40TF7Hzrh0PJT1rVaFJ0sMGHPHgorcqwSPeVKMvXMN1ZJRdhUFMNd+aowI1xMY5t3Gy506v03RwM3SwmExG6BUCt33ebC00tGgsWdRpVjiw7UOUeGn94LEcGyyMNkPGe61Rm6m7jNLG4sQdcVHw76k6iM+hwN7NaY0YZTuT1Wq9lljWLU3LbxRtYwL/H8FOYgsuxL8qqbGot1ZEWAWpYkDYX027tcY0+NgjEDJULYb6qMih9ht2WwAdXjY1qmhY3DwjOZqv0N/6okhjMFBf8EP2eUsl3LQYnfQ2hHnrb/jta4QlIt3/G5hHsokKfyqT9knMBNkBGADL5jfxgNmUgnh0vTO1Ig36nu7gfNItwkeKZxYRczMQ8auG7C2y410LAkDeIs7E83u3mNmIRiFcshWphON6i0ennCArNhIRtPc9w6o+qSUOy6EvjzBla7oTF7UhWnidnIkIV//7Ia9IPgQj68gwWuXcJHPXgeOSwxEbVP+S37n2Jashm0GEsUfUoJyodroMOhBbjPl+gafMHtcVtVJ/9bN75LADNJ7N1DEN2wPnH2XrRNF+Kj+BhVFK6ttJ+E4c4EcY1M73qqCdf5F9kHGfwGL2LlOqaO5uSelAVBow39mprKMCzylaNfoHqKlypL6rtNeTo3pa5s8dN3pKBIL+nWI0aVdJk5N200xCUBdN5hOY0eCW+0Hjl4Mfkpk0p3waKxjkuD/0c3JPg5CKvxlHE9LeaYAgn+MHBpEBZUjJ8GJUgE/6cuLHXrlYEZ6D7OqDWrhG5Rikh6/NH+GX5JoIkpbE3RTNpt9XCQENXtrK7XcLVmEGNf7lonUilhMFOrDrYGQayhh8mYut6j92NTwGYeeefZs3tvk5zjtHUzoWfjb1ePSQ6j438uHkUwSoM7zRMAxU9TNyvxrQGzAQzblalUZcwJ7HDPCW3XUQGfT8LuOvfXh9r4eq/hoD//F77K4ScNilakTYph+P3UqM6foEdDe42GQUTHQKExp+jXdPQ3mlpzcQJh7tHGR7Vh8kBr7SRcFuY7uwndatuupJlNeXsndHdM/spwll1t3LVX4ZvpizGmdzfeFRSr1mJERE9FejJvfFxJsy9WpkWVV2dwha8CLdgfZr/bC3YwbvPv6L6dVEe3bPcvt83br+i41Eb/+43K/SVIyKWs1FLAWiqiu5lw+jcPUAON2kk2eudxOb80f1wsN7wwBiV9wK2z+nhUae8DlxGB1E8EeUB134Xk1wNIdGWGzI7ymuiKk/RXIwDibuvS3EqiWiyke7lYHlYFnoKoyxAceY4yju0NzR8gipt3CKFaLRnbGQgKiupEW22jEPDdcn9Ksnw4q2m1CO2+jITWgPvTLx3XB4KZqFq/DCimjJdIBx7viWuJaJgTBzZhDrXWUfmRE8xyuzbWFjUBNj8j0ecogPoCZk3/CIb4VZmENUCy9ljLGHxG67NPeG09SLdx2/zelqH3L0IKvQCPA2Vt8iuPX7rtq0KhBobajFLfn2S88yQuJghSNxhKoKCyppfFIw9ulva9CIdNC9s/6TEeQpqseuhk9YmM1QxsOsAB8fapcNs/lx+8Q7iTS9pRhwerwSKEaVXBDIk9xBKThQI5nb5zWB6q95TxCkD321ZjeIBpSvcAwbpTR/+gF3SXspnX6x37iH8BeN2IGA/+1raVsCCHAL34FlcdKuBRSTnaMg+EDuXmFh3YSn8XmBFlSTCGi1TL8z3qNdZQAqd72i+NmK/uWOrXrIOSDR6UGvg0EDDyNWDy2/tGoYPctfbxufAXPFjK2R3QwI9Wu0STw/urAH9dDuW7SChOY1F3tEBJmpfTvjXF7ipsx8ZvV3QuTf7YlLi+Xu0VpnkKDJG8cX+d3k523l7F+jxpTj5Dxx2GHQvKOH1Tkh1eacz66MwDn5mgjQC4dOgqXP8g7+ZDWq8AZlJ9YLGIyP2ivW4T6SYYpAKGg6nQyFlJgJB2md7Sl8ljYfLb2dDpNRS52V11QloE1M+C+AcyylQSGEz/T0bPdhiKIWTFEp5cq/86lFIaNIK3rJYHdLTN/iYaX8ScRpDy1YYj07l/l7ZBFQFn/9rCmNIVk5Mbw3zpQgeoBWrOYfFS9fAi8c0gI9PMCEoKoP/Avr5qEX1JvtWBUz0DByCU8oDO3VuAgtVR8r1NHTgNRvPLZZ6NfaF/kv0Qqo/1CrSUrrbAUM9N7t1CrU7hostO+JBrBXz8JP9PQDQcYqKtkZrDAwLXMbY0ZWukat8/Yg4tmMgdPoF4/aoWVe4N99ENWEs2Wr8KnRV1OL3NNpOrARX6fj8K8CEZ5ksk51heZ5KqZ7S9Pj/m79EnnqiOTLk+WuEGyhH4jPVKVVZvAFFK575umQ1Ll6F1uji6/gBdEUMNviKOPZY44nYC6IlaUya6XbgqEihAEe18mMLUmMiKzaxgrayJij4D8Y0rGFIyzHeb7yyFnlCsRSDoSJZZF+CKLD5Ay6BbPPtaoxf/j0ucphRurY4hmvBJVm9pl8KlyuDu5bv47sWTHDS8PZU9k9mSn+vVgLHl9o+SUoNaWlBibAML7ygUZZU/P9Q/qEXkf5rPjYlaCj8Z9ux+jE9VITkXl0VaWmTb7HRSWi6B8xaBOCVWZn0i0JOIgTxjwZtcsakS5qfDAkCE7PHXzGsXD1T9HLgC6B6Eb9Z5PLUqXy7nsNuGp0xPyZatCwA4agc6WH24qjqAvSk6uYSZGdkseWFJfyG1YIzV4yB3p6AHS34qZsCQ5b1mjSuDk0JrIu9x3Y8Vbf+QjLMP8OuXvz2y2pMhgnZreXmOLp350I8gg9ZO+wI5OsaRxqDhYQDwGpQP5297IpRkRUfyNF19oRCWRlsE4Nu4H5XFK/ZSI78wnN0d2o932kSuFFkm0J9PhtGjtAlv63FkmPtbcT0dtAjrGU1wg1aSoWCCrDCT2xFjHgGbeFBWimPm3y2h78m9rlZ7cmtIe5q/stMmY3jUf7FY6mX/eB1Pp2g0DvsePBkoxg0McZ8MBP2LfwQauemuzFf6wqjCeYx4Z9lSBGxqS+JGMcOyj+wKlzlspMaNm+c6w9d2XY+F2LLkCGkLyQb092Mgr+zv6ROI+XSq6NYjosbOITcE3Vcrm8/jAFaqtfMNnM5mh7YGKh2rFqvv/+4eDtGtxYEEmXncJT9O38271F2qEp7wsHWINbKwNSrWmXjDmQqK66mybR43JW5pZA6p4VUJJOB4SuIz1j79Zzzbil1dxSXdMhRLF5wnMUw8xy5Ic9f3TlkXx6R3Drenu0ntmxFc9gLjz1tyEoVwixhZgxTK5ZDm5ZxWOoS8qrqtTCxd6Ij3vXf1D/Vac1Jq2EP1ZBzenZJ7hCWEdl1yfJ0k+oMjHduQSveBNna8LRQWG8LsaN/d3dP2GhS8794jbInnkWZy+JC5DJBplAsZY/EXNzjvM5wblUat6w33eRC/tPLArlFIi1vjRptNj3aAUTkqCBqUAp7LHES5k2ODBi9NpGG+UmLfl3lZUQMUL7bVFMjWphJ6EYWPQBAb9z+/L7AZcQBhZCeP5xzPq78DmabNY/GksC99nMW2HbRusphBHYwWvIcY2WP/7fbojdGYt5022R/nrQuPuFNkLj8p+XrTBh/ejkXqfZ7I+fEG3wBfuV3txW7NwdxlSRL/LFh61q1fKCnLdcM+CaaoajDYHSYzn6n6hfRpP9jDOtf0mSzkpUUAkYM7zzrmw31f5Bg+AUSSpKu8LJdXqAb6eOWXhZRfyC4jcB54LAU23GDRrvu5+/Wbq8PHjB2UgofU1jjl+HTc75oSb0CIw4V3AUFBYoYTRYSs1EkzRjxKEu8LsO9nM5in8djrhsKcfmNkprtAeV/ajXnuG8OiUMEWIjS05t5UbSJZX/TGqrOtRxQhywT2N06rP0Tpk8A0nkhjAP98FbPnsfh2W5C6uVQ4kDVEX0XNdbdVvIbL3KEmputShhy2uf+FFjJVIV63zvUGqaJ2+dvOFrQG6zE6B4cgaYjX7XaqijGtDwQV67z4kRdSRTX4+O3Hj7m4UCzJ3tuXwFLg3hcC0I0a5L+sSVsssXqLgbQUmVTuza2oyeXh/L3duM7WkZVl/xuuNLn5+7K2SZsSRXT3bODoULTRrH3ab98R3FNS+OsZYI/m/9DEIX3RAcaimnR3Jx6AYGTXyBdpvS6gJCzU/iXscWCJchAP2qVHN0gyIesvZA7ujq0r5kczGXWu+IwD4OmljrGhfargiTJnkggEquZBnLC8NU3Itrs63c42DaPIVKuHy1loPx7HLdrvUSsYb5s6M9DL2cJNSoUnT6q+gN5bHvWBzMAszZ4GvIyWsTu56cArQbJDx5QEp50vPqaQO9elA73zIKK1RI33XbbJu6uT5pb5/rRBpM4iJTgwU/sQltUDEGWq7X8Sd3uSKf7I2H7/akM1wdQ/KklX4zJl1Q/8LVhIR6qfrksYtI8+a+Psd4njnDsZtkfb3F+/BstlqG4mBwT5yCvNAcZxyz/IA+aNNQrubDsD2Y0jEX2vct2jpUBkmGl1h+5NqJxg4pJcxUJnKPOXgWjO2LqphmWJtDil72fRvpPou/pANibVGecmkaEi51wZDEDP4303RDpCu7pkD6E6LYrIZJNekecfbfwJNPtcRtvfYeU/vBxRwn7ujl8ksyeKnFwrbs4H3guNVY2qYuKa9jOzIXgwWA3jBbC+vRj1M18lX30peUce7bxWLZUDg3b1uoHyqOcftU6F/6P0po7J4ATxgWDLhdxHtoJfi0BTDm0TropcCZqtYGZfrrGp9yuy7ABr2C1icPXqmA90v4PcCM03iBJPIKwSEy5b8mEDeV13EQpsydEY1Qk8gvPLzYr87kJ5pc8kN79AS8NnGPzxGzLILqoL/hdlfpj+V3z1vj7p7Be15KGdyMr/FrGKBtuwN/OFaVhEwOq8+6QtLUQQylh33/p9/PDuOYODxk+A4CbGCqLWzfwSSEouRfCwye0RBUwZTUc6CApxVS2frKjGJuB8a+ud3PRsNI9Nk7By+FY3v0ic4UK4VpUS1/ec96Xei+5PMkYbO1u4DWRjyhhRMWr/l4joY+BthTxnPwwhc1Lhm31QwyXWCZ+sp07Exi6qFa7/wnP1FyNVXV/ROahfp0bXs+Bwfb9uV99jHzFS4paXtHb9dKN7Ec3GB1aL+c82e7TK8jDsRgHBT4PKLx2h9Z/Uo6FmYv0mTCXluFYmm0tYjPoju9No7+sLaAvI6mv8YKYTzjyAgmHUXDJNysd8jnm9R7CrgLf+X9RCFRPm7SFJ1K7xWEEIGfoDE1VA6rNdUgEaEJDtSeN99k4KVjqZBACNAAb4s3bCU+W+sHGpoqbp7AFOENTELPhQXd1V+klFnqx5O8lkXOKL6AFZx1ExcvDBZYPDYhExv5MakA9t0UEA0LF+HkKIsPFE02lnu1Xv32bbeCrBIeqNSOpQ7djhz8TniT4I+t/2kfzbMse4X7Rdx4rPHZ4Jv0psHpbrm8ZGdwmYpSapxv7s1OjUVdJjwyluvMhEMaKN8LIcdWb6O29k/zzKOeEK7oaOdhGB9JVtKtDg9jviQdcUy1ZZHTElzNuoQFqzdgHnXBHB6dTQ2MOO8H11dSLf+Xfu1i2FInYi+6JhOhc3DPZaq44nKhHrXOMiIwzo6+x+y5BC8sdtlrG4+ap/lUrkR8WNsif+Rdg1bt7g1AixLmmh/M9CJoQ+8kGb2uOhEHP+N4q0F+wZ2vvdTllwGhawQph8OisNTv1gNLGD4MC+ssdzcNFupMj1h9gcd8aJIvX83IcFptesAll4fscclmolxI+eMEiMIfuFpqp4H3atmg7mKULrJSr09tw9vIDHEnI/9mBG6/h44mXLwG+u3bUZSdnEFyTMdfQVxVFrc9PBZBjGcvVN35IKzUpVb2EKlUoCmO8TU1BYQ1IfGmb7Oy2Qq/0EJObehGBYoPrZIUL5TaCg5eFWebK/lnDfHiOXQFpf35arVBc3YQXe80icOYNW1EzvXWlces7wuya39XLCdwkVcQPH7FHy2xEuZ1nxaLq5uiIviwkT7RCFg5dxVRlbVrKG+EKIbdts0XnOoxxi1gZRfSig5DPSLljNNLLYq1ztGWayJDI6CjuiOTUnCcZaHZyrhJGH+X74ItWlw7eWBHTnuSMIThoJMTPvmnteZbi9S3Q7VwvJLlPx172Dw9WCLssxp1cJQpsxjoogfIuKH4x2hswjDwxgbgrZzaOUfwpJ1o54PXuqG9tRN9UPC/ezznuVbrQvpNaem92aHRnOws0oUso1sG8ED2/Myunp1zSGo16zr9emqCitLMimn2hc4tALnKxDqw1+O7fp8cLSNi8/6b7tpJmdJkOlpy3jGxn6scH3SkOVZbr4Y+xscjEuEx1Kug47zd5uePClvt32cgEUNp60GDku9yiBu5UI221Dnh+CVVmG6GdUyjuCl3ZzvWjQK8aIUP5UQU5RcLMm1LS+rPcVp/h7VASNp3N3QhjDUVu2UNKYMS8d0LzTb7VGp7cOxB4efw1MQJRvPlyVPkryOkkFlOUod0hNysK92FLKfFaTV9LcxS1/RT2Jb1ThQbbEKEh8H6vhPzz+qvvhKzdpo/hE2G8tX0znst2HHWXfBMheBCt1rGEgicLwxPYLcmHYadTJD/4C6Vi7bwfwrOf0Gr6OKDVIcGjgwx2iwDchgzRgBQY93MZRWvGZGl+030I+b1wlBWbuom9O72MGMwUjIiBT1MRbRZzXwhm6RBNXONBXDD9XiryZoFC3g1A0SJvIr1y28nRA3i2+U+17cRobqk9SrzsB2ZC7/2zDm6xkDPz3mk40/WWq1XEb3uKn68UJ7W9fPMj1Ai83Q38eyDj1o8PlJTm+whl72Ov6NtXgqWZ7gmi49F3DJWi2W09kVP5YCNIzkO3Ps/3Q+Y1vSUj1svW/ynIRZPZiWP0PG3xyv8Se94qwmUf6icFUQe7fy/hPVikhEgcDyOpcX38NHsn0auFYJouYqK4otJQBgArNh3DZYIhjAosp7e0NqiHSEuLUMjzsmUsIGoRnYm1RzJPN0+g3jlAtDcgyCLrjCqBR00ivW2beI7ddYiot7mumW+1xO6WflnRgJX8JXriBvTUsKMg92mbrFInja8B+sVbZTKwy3oux+uk4FjIPWMIZxvxBSB8FSRwFNtsuUi6+GvU1+ZaZB/ng8lC8ZOJsVHLnOYsZQShLbUHKU7p06STqkaVfJPXG11Q+F/ytk+WkMVSDLAts6iG7JtbNFvVLptAxADEhKRepJiOIn2fsxVYGGUZDCwmY03DhcySpE/983hMCNhKfIybJudS2+M9D2jmjSTkoEHX+jZBO86RjsSKDL+UN8LVSRbOH5ojD1xE9rzFHeJXczo0tmcPufCbsU7O4kiJS+iZfHFnXdJkFfGn1zSKfa+lxh1oDU4jbMSGU8bPEKTuaN5tPuyxUmgQpDeMWzlVjCogKi36xoOLev0x7nDQsAv9C81an0cEwmQPFAOnb+QCILqEjJN+DvdQCrZB/r9ihULOhFlZtk5Rfilqpm8yn3QyTl9IkNGIR9Eb4f8Oby3lLv9x6K026zu194aeAeOf4tS2FpuFLy6gsV7LSUF2rAVIaSz98+sDth2k383lEzinVGR8DrNKDMi8kvKTk1muVTrtot+qE3BtYZbGqGcT3X+EAdIupKInIURm30otlP3TvkRuZevHvB7KDihiE+wDYiyF3qXv7Kp4JHr9z2saVa6hjWWeNj0PN0Kn/EYtRzkAUhtCowoEOfy1LJLoNKBQYl5MjjtiBez76cinFbjSOYgLGWL8QVt1DGnNv3UQ4VHQZLcn3zF5t5o9OjwdSX9jNpVXIxS6D2OjqOIMJ1AVSZV/aIlDsdOUVw4apSnLQP/fs33BBSElYYae/6x2BCof11mvGTjXB3SS114dV+/QXnZ9reV2s5/TZa12ZFZgvd8JbCHkXvCY53ZJUxOY39/30BtJKN+jPFVF/cH1hACQ261O79cNtjCyiXyCc/toG8JYsbyBKUO0eQCSAn1Pq78ilgxNYPao6WZwdnWUkvlPWFO1dprlbtp074xK+50NQE9LyKVLNd44B0cfXZfpWZ5Lpbz7IdoaEXEFNR7okdvudaee6E2d0vjOgw/rNvP/oATha5HB/kyrZOLkDEeRKqJLwf0hr65WyNBFlnf+qILLQtL3K9EN3a5zAcN4fA5Ctjfi5m6ab7MzX/PJdSjtSKL59DZU7r+RYRlaDeDhdnTm6V5BZXbuMCnEiZK85Q/t4sH3OTtJuEWoagNWs4c0aSXbnaHuBXqwb1IRv56iXUFmw70jWezsOAWFjQYaNlD3sY/nb38FCYMcxaYxGOnJDj6weicD2yqBeJvL3j49p0QVvPzflSMeOIUsiGgyOcvrdwsd3v1OdGZ6yLz45Hfx5xeuDx9y1/akF9Fj/YYkJz5eQNTUVpoI8Hv1EtuZVxo/SgOIVNyZGR64nndFdNP94A4BNXtH2qdijz2KsttB32Ay/GEuiaMIqhciyYd+a9WeaeJS7ZnDzPiAzvJTZNhAEdt5gWEfVxHi80k4RoCjwYPzZIu0biT1qo5pEsfeKxm3X+cDWDqGq1/WbPLWmaK+Q0+1WyNyafJzyadMgLOgjVXXvftaCTjnbXiZy0gVgYStcQidPefV+Mot8ga1YrO3IHTO6s0i8veExt6forFcAF/3688fQKOWLuAJKCMOMB6TKBlhkxh0Nl1UMSPGff6FVw+6jsjw7rPhKcyBk+2io4JYIECWgQLbiTRXS2Q1vEbEkzNAkXxHQhT/T0gFYIQWb4bQ60VB1oFf9I2d4LEjPf5w7M2qhbV8rrXZ6vN6wVOLRCQV+O92RdzPmHuJsVNVRxW5oBoMR+D1KpLps/RHcTjSOca4qZVdcFb6bcuBMys/C9mjs5Cyvhl7GN6jDwZy/XpSY3VgC7NVWLPWoMJCXgnWU2wFjkd/JUQu603zA++6mlJjHJCJ2ZO+mVYptRuqcPUtgUKzQVNCsbKXkZs4d5JbTj+OwiEbrxpcWkYOoy4tQUCN63JR9cXG9Fcnu18/USP3ivArYaPIKAbKyVf3hAAHvQDkABkIDYkGrgUaUgKTQifp+Rohi4GzElv7tBrRsMcVdugyKgRbaT2UEFVHvizBtJhwgY2jj16iDDGy6fUyFU/CVvORDlsDBEW0AweqEJF9yV8UH4zDmbGsazevoEgCb5P6arwe+6ZWXHeGNoIPU16Ynz9/gvSYt1UAA1Oiid7rQhAp6P9QUqCMqr0prVxfUJPcSPVzNx3D2/x2+bgJDq0X681Fqjm82GFA7iCdaascQHQHIXPkISrpvapDuF4e7L+DuorZRlQ0Jw4alnnnQ7OqF2ttKoZPBQzmvtykzA5dBRKj+4gpD9zwk0KVrvzPbAYkGwFY/GYomm2ArcF7KE5omecZRjI2mSjaIkwGxWXVS9fDqziI9ESkeBKHF21YFVlVWSPPhKfsYp29U2DyhLuGsEGWkmUOkzGVKPouHkyFc8VYNHWUDcTXI29UZirZCZiXH+ptU3yvq2JtbILKaY90ulj2L7mnPuk3qFhDGrD8V2B9Fd4VXJPDJrWW1C/+RLzQ9zN1EVrqEowbyCYSeiCYyxPFfPiA0OfPYQZmX+QNa/mn60BDbPKU6ZVZ3clpqrd6qpbUXkUe7+X8KWu7lxXiJHIWEFv1bMDCz01E0rZKslkBAcO5ul09glUsh54PRHNf1YqZVP4ItsLIHGnTaRnK/Zocs7AOeiO0TDSy3l99VChEmBysklQYDAJbDVYQ5UBFHtT5coGAHa7R4pS7s/a1nDXYwhPFj9h8Oe0TpyDFSzGEEjT8Ptyunqeg3XuRsz0oybxaS1UoHwL0NAVgOcMpM/3UDiLTrOIhD7AHb+W02jQhex6L/it5Wwv7e21lmmH3JnSSMuh03w7lYtqmWIErOn8aqhGcIJdDUvcKGE4ipjMirT/4eF/1MzAo82hI8BSLuxPymzTG5SIcc+kLPhuX2TID2VuxoDpl20TtPBRGnmLmi3P67NtnHYDLAh7dw5GLZmeKxjc93xbcTqNwrqZZF3Co4+dHhR+mXgBI2QZ/sDl5+VQFRT0vvdnj6WFJbzU84a0qPaeZkELBMXqmlUBDZF9M9WzfkMdIOYnsA7kP8MYfajxpv2FFcNEckPTjoydPTQyaIrhP1E/V4GWjZPATHlZcGgNzS16nPfQIwaMEZMYlH6cYaNAZ9XX6l66CzwxX3XtctYjHJyXjAx5AqaXK5wDC5law3hD65dcJDFt23LxlL9EW042aXIOGKSb1+r3QsfSMGSg+sL5f/2+kSQ2Ftv3Y84ky53idYiJD+sCQsP+1FEL8e7x7BdAP0DJnkkvKkv/nKINGtub73twtYES7P+MwwpgIFtPk4nDL1sqLikRsQa7KNhZvGDjqLK4u3WlDn4XVA5GtrW0nWTeEAWK/UhPlQ6ZqohRfGdimes6NtS2Ok28MAv8qS4CrC3pGPnAyvnic7LrEBlmj28u1hTVwPSJgX2AOuPdU1ntzaAv/rBWF03Hn5HFFTOk7g0UvP2Mt9Y9tEgbZd9gXZoMMB0HWhNlmQoYv74/84/oswpKSerAFsD7neWETYsNKIgNjx8AC07w2CaCYzI63QtZrMMz9toJs/Xv+s3Lvi3N5vUcaEZPwVlYoybDke7B9Ty2TCPn2DgAYS7ijUkJPpn4FnougAqQRTDTH47CMwdGaNg+XqNg/yDmq7Xwc1+CnmUUuEj5M8qacl1uq/pIA/moxObkuUMiVXaPcz/beVwas9xN5bOgSyQ1cS/rnnwykrrwhOYkntN77Ns6CNC5m8c1FcX9d/CUf/JRlzQuZl5f9Hgk8vaQ8VDroPfCxgxXtFzQ6Re4g0mcnis/HKRf01DWLUplHUawcpBaCOqmY1vZvfz0FiuAa4HBoycV8eJqRQsLzabNxCHS7yU1mORhRvQXdyW7wbWgHOGm6I90BbEXFmc+cuuxA9DN+BQWPyQgpKZYb0+wxDd3SfQfX7s9RYNzicVPxKpaAZCpOWWeFH1scO1DciaTDj7LDnJYq1J3yg4T447Wo8ETw5iP1xEDR6M6NczzzObZxVGw4NMygNa3ayBC6w3f8BQrZIBV5oFM8ktf04znaYUjNMjUEFSJfGwLatbu8LeLkJMxP0kAlSalwY5c/M7LQoDuBgwjdEs6c+xG3mTk7xAAKGfV+E9hmNCLrB7QPrhqrEPo74lyG5jAcU7QoyRWO9j25bg3YSQU1xEzszkXpcmd+H9SAjb4J5zoylIAJFUINFN8aQMkhirXST3Vse/HCmkYyhesPv8PR0LNLdFmetr1aQLTtmEMIb4UWAzG2n9LHpgPLUrGDxPw98IPH/m1X1S+Vg97oVyKqG9cB+I4hTil5Au5dqWVV0nbyptyWr1B8lCIl/5mAgqGubpFYCNMDDUHmNAcVaS8/WagcXMj2Pra+ulJaumfInZCc6a1F1lXX6mDqj9niGZY7zzqnJ1Nd9q1WsUZQ0k8iDXFBD118fRDCyLdLiuyHSp7+QHVM2NkSqcoJ9vCqBqGBK9Nemi0mTHC40IHgGM4ivPJ+2pl7eOk8uKuGA9dXJPegDhfFEjwNRyNJbFEGx/5nSQ/97npfmWvXWZED9s5bkZUhPMDPfntG1WH1NSR+ZiCbm9568fRM0JTHFRTaQ/uUpT2vekCOxnMg+RGISwNoZeVLmR/RkOWE6vJvh23OOVZ6pjIApk/RbQQU6kGcdKba7O37jQgavsOP5TBtCvlW0+oF3Fyrku8gR2qAgBZ5tanNlB+6mUWKUh0o5TI3j/TyvWuUD3Vnjd5mTaOGCLjlNtNginmyFcHEGrNgq64RIN0mgyvrGDuLYUdMXf1RbeApkEM+SR6T+yKagokEOaUBIID9Z/Gw+sKXUpWt7uUJOAS2egr+yGSem4Hs+DnSCWt72Gmq5kVfxgOmu2IyA89UzGct8+kECTYRVuv4Ls4Yt42TwOdodpl/Mhxvxdu4M7sLXSa5Skz2fsEPMkEwSvmsDkYaDogW+6Kb+b27ikN4HpAEH8FlVPvPhjNMaNbPd2yrDQb+6Ija0WRGkTLJIP+mG2UGvz0LNt8XEvqKWeA32jC27PfdxgEo7pwcGEShEOhkRFUF3uktJfTEcmOeeb9VOscVCyW0s+UdgAmIonfVsh7crYzDpNNx6svGriAxXs1k8/fLEXE3XZr5dz47lXSxJiBABonQhzhr9OaHcPieqSdcgVF2JV8buk2i90C0THgO6gcZvOkvQxtIHCPMDx0WIMULB9NsjFseWYkBL54EPGHqjaJ3tapsumdCg9TvEqg+bszOqFZjCkoAqOHl4jD5lDpkGD8kqDGjYnXuqbuFnQOwuc/J9LNcl5HQ8OSQ3209jK2H8peDm6MVekhNNJAY4lKwcG9t+/DbdCpiT+aL0mO0RvDjPbTSbDgXpV66qMKq+0q7eYYf3J3/xu64WWm2EOeWtj/rUSVhx44+upzN3QEi/jptd4tt5oWWdu+cOJEM1VKQvR2PtvhFAosbszzCt6wAaIPp2oTi7lArexFwd7MdG6Xuv443WzwPnlsIvMe8cFsxNujQQt+m0QDTudPxESZAxJkqJVvzwN8Vxw2VRqIuQv+9jdsMo43tm9WIkaJWGSSryZcaeHtUI3z9V0ZDczdnwOh34fpYXid3fTwt1aKSnok877Rpkk9IF7bQEsuZca0oiIYdJ/M2IlxlJnmqLeMeSnS5OJ2RoAOFONeoh94BdRvQ72RHQaxNAjs1ilEfyWkeF3+mDWEpgLeUVKfxADjHrZ7QmRIRu2V6UMqKIKTJwggcPiFLa0pdOwiHIK+mL0y2jTDP5ZMf3m+rN20n+TRdBMzAgsKQLfJHUD0Ra/cZ+ZwQ3XZyDsVwMT2/TgZ9/mu18FMEsSAgPUALtcQj8ou0HCPhRSSHeaKcnnt+pF/c5+stq4wSJg0hBdeuAyl/9X3Gzt2eepmj7Btd34Zp+ogWWLaVX1aDsty/3xrEwXgOGWX1A5XjWpn6E5upmU/S+IyLhQtIlejyDI6gN8DYdfvo9A7npN8udZOpmkvyLY8HyJblGm1+niz8OaiiXLXqObutLwOIQfiWI5N59W0oV75hGJnKYhJsGVrIpURbWz3Hf7+fodMxINzCe6mNiHM1MDutSmsvFcI2c/cNWggNI/Aj+EkaaRtPW41kXDEq7KymMUIT5nODOsUujErOVesR19AYbuevSxYptucBjooIod4X1CCMK1iea+XMrfVTO5zJhDGR5L/PFiyqboQpiYXF6Kp/b+Af+S9Q62uCcX3ZR7qgrXuOos4xzqudjb7TaWtaAXJs6se14QuFkd+Z00IzIAV+it8QCekF/vD/olTwleJAOsg6aoxtjJ/XsyhuAxTzMhneQiZpImo8KoIoT5PZuRVk8pXTIj9eSSRqE8DzMIyZccPG3AeEGfuhMHQgtOzvjPZHFxs1XHebMUh+agf5LscPO5FLa2cauVS4Vyhws8iX81cCiKwYHiXEJKAefOX2JLMk3JkNYfjyxxa9zCcqE1r3Kuh0ZGXe3QUlAZd/G2pdFmpVutnp4WPX8EFNj0EjQlqWWTLFG5TYaO/drZfYGm7R2cgVfO7p05Jvwu6FgwvgtyBSgEGHHV0zu6/dMyGC2v+jmjomN4+y3/WTucGc9b/9zQ34vXEJ8lqghZSwroofqlf/eFPZARIkv0eDdrUhc8HqKL3aL1cDoVeWkW0AnxVpNx24GthO47q4XUBl8LIPfZcJ5aHbayuEao5ulNer1zX4BYubYqqb320x0SuTfry6dEQIcNmlavmdmXs86Q7irjLtAmVyFBS+tPlKvNJ+C+mAp1ePywywYC2ch1PmwQTZIMBNKuDR+vRhEH7Cf3bwGrw/O2DONqPVXtcSL23/KTN31NEOxbnqrLzv0pRx9GQT/B5QG6G2LfQiUh8OCdSm0+72ZWYHWVhbm4wCT03Ze7HLQM90hXA/2AsmZc2x4yvr+WnGXOARLjwmdj7TRteAUhhdlV2c26k6r5b4LzY3bHJVTR39gJT0bgAJYFzlYVABRKZpxiG+pIbSXAo1FNUTuteiO5Um7D+1h+Ev0LSPFtKM/Eq50YWKUgpsOG6cvg7T4WKUNrKGi3zUH7kzILoE5zisI0klo7mLT+cJWHPHP2x5cFHBuYhwmYM9NYfgonvyTH4mZMsljDlkQ3V6k7gGsSoyRGWOtD/15b4Ktyp56IWeRmjczpOXcw3Ei77Y8vgcaPfw7Ki+XmfZXZE39JFV6QPyiVKfpp/ZOg7pMnmlNAJBF8aPeEhnZeAjXlV7PJwLIzSXRnmWHn2fxP/QP2Qj6MRNsGGS+NadwaBte0nukQJShbCgrq/MXkwhr+Z51z5fpMoW5aYMGj4SkgtcJTX5ZgwEksq5nLgkxHyOMSzDCZEe48JedjoP/2qCswaIIupEkGMYr4kmN5gY33KQ9UJmZf5EiSixDFuIkvW3EA5WTXwHCnp3UDHqLGKMgy/4XdJM1YyH+7/Vw2lB7zHuKoA+nSEGJedVB/wdd/3mYIjpQetmGCJ8iMN/ABKfKuyDnU+DhcSNLHNi+G05O4EJ3yUcPsc0RkReR+ziYVhnZ+eYMbajHgiPC00e03nMwPnzRIfxaXkgNRTf7xWEbzwMmWFSyXvPbZ46Ku9sewrR/g9sPqgpMSK/YsHe/s+hw44FmaIPS6IOgHsKlC+MUb6MK+6lzufJ1bqfRJvtv6n18ExOuX3ZbgXR5FN44GMSq/dD4DDVOf3USoa5RlhvsOEkbUIZGOklqq04O8vDnsP60YuYCY3QABO9J4hwB2kkHQSkRSmUUsVjAmVMH9cneQvLnYbfZcAY6rVKrkP/fRFaJjVnKXeg/uUxo8eA1UPnZHXuJxNn82YaHWkE4gTLv2q4uKNgULQHYPQH7dcm48AXuNt4fLD59xjKqxyQNDT9gTBQYWUjwas/XUno7VU+r/DhBrn/Fe6NgEfcP3r6tQxHHwIgRzlJrF+9AlVKintn+2GqzOEi9n1o9llVObDhwmraEomYaGv9LGdigPik3vJLnvo7/6wXq3gmzFANNt1NBWbYFSYHQuNi6soycKsXWZzckji46BfpAL/zgzAg+O8EYD4MoeZkDrBGIYaXMLy+oUrXYGTPGv0Fv3HzlUzriJmyzmsRbQm35F5wWOCGvXRCjoTMw1HS/lV/8fRf+944PU0Z3PYVpDauIUK8rXTl6ekEMMg0Y1YzFFAwr7O6ZJgg9jbd3L3DZsBTivWljGw2WT+H67cLRK+kcZBeKTEOc/aj1Pb/QcJDg/iOcdSwZ97wrX2eHlZ5RutoGDdIRXkG0C7bT/qhr+K2cZM0tzeW0fjH9ZHWp7mffR0Mz5XXOJNSw36Wqg+ec4XekSXoRFKepnZsX/6etUsmUw1x6tLlXsx1zrvQD8PUJSutN2SktRIYIgU2Hg8WmO0uvFs01YvvA3klZIfoME06wkp+L/vy9VgETzUsmH5WG/smLbItwtJriutu3W0ERDuSSWW491ANZyn6LEYKk4hqlqIb1dOxiFXvN/VQORb0nY8QohAdY2ht7QmTWd1oD+HqUAC9n51L+M8Pf5LAfSr8OlBVdb3bwO0pGhVcsIkJrax8tJfrbwClTWPFEo+wydOnSIcESqgyZtjqOFJ8bdxHeufCZjOrl9Vn90XIKqKDhc07AYMea0QsCGhieixgNNdI1iHtPMGDHtxGm5+HTr6afigvQ3eGjvVtu+FzILDDiD6Ks0HOy7hFPcUwdDCdOLTjzMeKWfFdz7MePTE2Mid8WFyUN/xtDtGKNGUv6KoK6KNlBJDlDhu5ZK3eHDmkoWmHRTsotwUoCrldpjUV3dtlMr/y8BQH8sHON6UyGDriO0jM+iDXnFMPSyCdkzEyLwnPQfljTP4zEFXLiFyVIxK6n3+WB7+ljfhsZix6AJb95MZZnbr/1Hl3Vy2kgL4zELoAEqOG9ILqb0WrI5ZAeg0WblOJ0MmaRCc+0B+9JAqgSC8xeoB2+/Sm2E6C421K9jxnK/wGwKA8OFeyGKMOYHyb6F16UnLL+cskWa8OpOC9hyc7cftOoViG9JnkwX17NhZ3cJGfmLJqFZ7r9hIx6kvqXiXUzVilN9WNb300r6gjfDdL/k2fKstBmCYBjT/fRICq5IcOsdQgPHD0zE7RHFgLU6eUPAty0i0WwOlzCE1qGkBNIM5vcl6XpPb9uX7goT66rYf6DVPaowpDyMuQQCOykIbp0I9YIzgg7eKX/mDevCfGfZEdleOAJRmWJg1RrCk8/UlN6rglMBulNvhQsVqTD0uRaFsoNryDrZ+OfMFfOCWtRtKnbjCGmALe7vmjwJO3tYEx9X/+w5VMKqgn78kYXcb3mmSV0q5HY5vxBU+kCzYXc7j2bnaLIsx5k0dBRjQ1AWXYEP5LbcD7Jje27/JFew1GqUxRHE7uv1oOWzgg4tQCiTcUEAfGSDe+T2tf4LJZKn6pUBS66wZ/lJUJAyGRIuQ17rcc3loh4yxLbaZ5Sy/j6piSUvh0MRgYjDeJnPMjo0/TQzob+1cVYDKnoURo9ahx/Nl3zX8ce5DeXsdLbhF/tsaimr1kMYQZ6mJbkg1EREz2hGGr5zd/3zgNRv1KBqvGX5tVRM9QEfIeGgbRhU0/kNee+83r1ErvbxoVUJSpUL/3T2yvyNwJJXIV8EEtBM5znBwpDJnPnQvXWF57PkADTyzZkO22Ge5mya0dXrXIYwYU9O5OsmSbcuRzqVh+ZOaX5MAWxNy1wwcN16jrT2aZG+tHyAG6N+LQyb01bXuf/15ICDCDKo4n5GEqo1AZ2TcEakJK2oRb7OjbEmKU+sm0bbDQ2nWZIYbqP6CO7WJWbOPiFQl5U68rbZFtK9qF7oApd26O2g4ZRzK9/QEBS7qX3zvWCZ1gEWlhX1YeITlfu3dngQU0hOho82H5P+tYv+WzvTrJBbmR0mHu1NCRasqXYWCKb9LKr19w91x51qAbI2wlo+s8Pox6PKcaCVxvLBJU3oRmpuQoM8fC4Likz82WRdyRpCDmKg7cE/w06FRIzB3R6u8QXKWbRW9YUli9YfefOReFlgHQtUGdYEdQBOXJoNyoNusVjGFmdbVDrZTvwK3gBsWgnBasPldqg1vW24BKVmBWGH6VDX9WLFVXb1R3N4iouzEwe3+9O3uwFoukY3DhmfizQxJlcRl0uUkn4ylcR22KgpNwoVhDGgq8IXI70cVka6cAhM1EJriUwV2uBvebnIcWjo+uL4VQUSxLkRBsKP6RT3K+z7ICGTZJR2S0pq2WMTVdq7lxmr4Z6XTZPUmkmVKxuWa6IzWlrUp6tgKirAR53YvFwktz9pxC6CtSc7W5Li4CiUN4rhY/UktbKVB74KE7p8eaWTzewbtpM5pDT3RsHcHbbfhQ7MffhCWRRbtqO4vuSVmvAxfxKOqrW+atJibtZePyp0iKuQDO2tVYbaG4gn/8XrvRRX7ck6lqiGhjaKwsRlF5NHxvzYEz8zaz3kBKYKgKQuLcB44xPdArOrotTV9T0naRbKQUFnq+uLGi/ShV4LGsFpDVT0OPeb7fH29sq+4q2iqPp10CofgLnpWxVuo/muV56j0VhDC5vgg5KiQOpdckRs5fKoVELK5BBMUbhhVUXoaVqeTAuvMinflNfHqOvXb5J9YbCH2M9QY1Q9FpJhen20zr1XUoM/uej1wMxSlLSv1DwT3z5zBrk807sqVxRBQKAgM6BDzk7rt4by/aqJYXOycLRhS2TvxHCu32cY9TXIt901/cqrBUHcyxezJ4kg7hczxPyEfT8ycXZDvAQoC8HN/B1L8BUrm0L+QyRiBMeXmymXVD6Xni/y3+5KVpW04C1IOQotIYAX0j8vMkFMNO+pZcQJ7lybXpLJXfmpLqTdnBTS5aXENogk+vCelA+pCyVTKURvEEiWjE1jibYYv8P2PKJWk0FJNzvi8k/eeae4Cqj4ibPbbvfksK7Qb/OfwM6OpiAH9RpG049E5ns/BMRUXuekfCx+3fKAMuYmMpsNHWAZJv46oAu75DYnXJBXuHPgNCiECKfJx6o73aYVqwX1ImemX1afsQS/tZyHiHo1ou/ARP2h4s5SR+UNHWj96Bex4wHTBbHV2v2JsgxsCe8zDYseQ/X3td9IENmdmCvYEuX4agNw1aZiunY0Wy26cv7vhKp0jAH4tebTIURpixgNwhoB4oZA8xMPI+abX7n+mF/LLCqZYtCiDK7//NRabGatijB81unfMaGFl6JamxVDHR2EszHKMsEV+hQlsMuez5l7YtewO2WnXO/U9KtJxEqYEKfB81s+uPGjUNHauzAU84+WspS4lrBduxasjZdTuzX7Stft7DGzhSQmnkNUEupzWStRbc693BULPkVSMtu3QTaepm+mCWV30hENlUyyLqbplPX8u4Dc2Fk/sYf42tTfjRl1Ub4DJaItKIb9gtc53GHTY9wO+67bodlERoEgqPOiI/UiHzY2NBfaPQwkVMYDjzJpJt6k5rjNT4B+y0WGfyJA4AYxNRC5ozCdU/wO60zDnzXriaMob85kDVvf4ABBOarCXPsa7CiANmYFfYnrswsm27xMMc2Ub201j5n8guxU2bBecviqbSYz3lYVfwu8qv7At/XSo7esfgvzQSwKc4VNZNynkMDZLBEqmN18JjnLieFT/EoTUmAyu57wPUYDpYeH0hA+YFo7Zbt/TLNzMI4v5wJ3ZBnP/GqUDh3JZOKbYD8ReAC56wlRXie+LyXEgD56dkWHkscdqM8YfRUCz+jY041fnVlPCJWRR1cjbvkvjVOL0NUnPrYXZFetRV/Bk6hOE5uoYRtjNQH59S4iWthJlIQKZD3nIdZFV7R4TYMJ67Rhny9knza/ybJiJblxDGNkcp9aVKTjIrM94Y2Gu9B0xCaHgDR+nsZfRaKTf5Iz7imEpHWQv/O987LPWCaGOZksgqi0rT2p77PrUp5WnXyBXEPARKZ7j9UUl//a3MZk+PpG6L5q4pYQa8XyUBPU3Zi6EpChFOnfMMTO30f/+54Qn4Z7vtcODlNjbdYuSkgLY+42T1uguwfRuDBEqXPe7ZTL569bQCoZD+p+bCjT+mRKxwdYEpK23hToBjxibVd3OFi8lTb7TPU7qbKZ7fmK2Ov4lfNUD758DH5WEpHpf/3k7pkCXhOhuex/A61fnRLvBPHxL5NKfSIoig9bR56DlxQgpbp5fvlg16bv2dBjSfmufIktT8tR9Sd54fqs4CYca8sYL5aycU+Rw26Pcu+Opjdidgc1RlQoL8xRxDYqskFpLvwMp1k1QnBiJyFx0nbIFP6WRiAqPMqtohegdYYCmTZYK9j5x6/vofO1DSsHc8qgryRw9SIv8CpXwq2S5/m3CCHN2ByIcJDaLEGw00NiI8Nc/GH8hHOOyyr+j1nY2t2mySg15vI26GNN2IdfT4qXv0GK/RPwqH9clfiMddvNNxwmYx9731MkE3e6DsdJoZPmxMW39iC4ScZlo8gJY4IJb5hg8jiB64HvXsOCzscOaQN/xTaDEvwuC+m37wRRmz7ByIpLdlSBNUiyoftTKZEfPMvcsTYTxSd4pSH471461/oEQBpbwZj+P+12VYSTYYWJ+9x3rSAr4GIYw0fU2bN80vw0TYcEpyd5uj4gfYqPQbQoEkQdoW8pU5T/J2xokRda+ObbEprBqVhm42o8IL4NYKjWhlAprMFYJlndGr/l03icF28BdZunN+Havq47tvTFRknP1HHnSQMc1fu+O2DsWABpXdeiL9pmugGcFY+Oy/TtvDxMqx6G21P786p2QOnmhHjF1I3yrLqk288610yjPfIbrfCmtej0+0QmCTEr7srOnin5TOE56UiR88SQDp4EvZkrrQArFRbMjpOc2TioR5QBIE5fW6zT8OxaYqBwNZBv1IQzqx/r1YojJlayD1qj1GjI2vb8SmI3JQ6KM9lcgyqvT29w1h30vsKY1wZGcPkoIMigJNNNRb/OynOToez5o8k87ANo6jTQ4GjKyHllcVZPC7fR5y0k6v4ebuVztlduzm+P8kjvWwtM6ghhd8SoK05HYt9rN9Ez2+CGBuFXpOvJ0zxgNuqgBxXQvzNwsdL3Q0McVYQ63dn45aEwsmRQ36HG5tiFcOaYmX5+jl2m+5yXy8RnQGNZUWH3M7z24iS0qREzywntOELcvms1W29/1g/HTnRTD0EcRap9y325oxvuw5oc0whX5T5T9Hmerx181r701YexCJnZPOukG0DGLZ7YcyZanVwyk3/vh1K/4b1JqYCSZMq9Mc3k12s88Y/LKTAThScRIaheELn91eL1c7qVK3sUOwPqJMvU9zzoBkFUIY38Nw5r+BwWAxfg1I9mm/d3EkjkytGIJwTaDSoz3aikH6T5n67RJ++pRDYgWsQojQX+J6cDPIi3sfgIXGSwvRuolePRXPnoVurxuZoRW6yuwgQqXbfEIX7/f5KtoAeemBrJTBXeS3CFbI09ROL7QcYX5fRJwHkI+hYfjVGXOVWGL7udPNzVAzhWutf+1cH5Auh8QC3+kEG74snxYisZVqU8OMBk9WntpmuZ1OnwaeuGdkVo0+lXWg6u2GLLDI8EtY7b9wuaox3d9XhHiHcE7BtHUgRJAehoXxZyAxah7MOM4tSbOpT0I4Hs/vKsTgMP1YtzncVAqVaEtA+o5gic/G/NwXBCMBnZSkxOsoiDireVcjEd9nLtH34ppJsOX4weZIR/4L37YFrm508RlsCUJOVxEH49XcCiPAH/lsdKH1stdo3xCVCmmEV1Gv6ctt5Hy1UZRVd4sx7MP9iaBbVguYWyuDNNETggfCm2iWXkNwWAKUfWAEgAeivY18XTOeMwbTm/LMzjUIhsS7qziYKf9th919x0mOakhS2JYCPj8XlFOkLEQWwCOKZE8eHKhUHolxY6yNExe5cx1fkF79xbPUUX+dfuLOwbu70MI3++CajlpsJW57v50apVtBeGcombZI3ejv0xmPqxrCQbR9uUaHqju78CeGmUrJlgXXH+qyHpzfEQfKvt1REM2uD4QkTjtg5CTJ8qWkwJfoJ0TadcMdFvKihYEfkG7XjYz5ZIEo2HAy1YHVKijzkoWYkEUafEq43GyXgOFeWeg7U4yOfqh7fOTBNXTjYk2PfKnrpfrnhI5DUwkvylX5luKvViJffON0QCd/mXxM5vGRBrJ+z7wgtghwz/EvIYAaBliYa+I+Ysqr6GNo3qDc75xogkEutJeUqtlNP95E5xiMKaPg/OwnQX1HVdw6YMdMutxMaa4JaezS9HSV/jXmGml51n/1e9QEjL2ZIIFVi6B7MpXzP5oYrhPMKO/Fu3p5bBO+Pwqf4SVeK9gt28V9tEdxu3CWc4QQ7Z2QDVMrGbw2UJCE7+6Wd4i+KNRiNXnBwXaMTqdQVCrGVtfTHbpDvmBhPx3h0pe3qLsMHEc1Hf/g2/B+7xBoCFHhzYSnH6dMEs/K5N28xgHsEKadkqJV2mC6CSnNybiHwlhUVVi+mMJ5b4Uc9OXbHlRPfK0Y9euZVX0/COyhijXm6wBv0h26xa1PZpLo641tNg1qQYgWG69WnwG5o8OAd9cIkej5O/xrZYqiX1IIoJ6jmlB1jpcesdacYfGWfsXXwCNAyqc2p3choERwAADxihIKiVE13BTrNt/FkGpLKbQnbUfZ1M40AUg0KuRStCFVwCzuJ1tiC5lkxD7qJoBsH3uZBRzTcew7MNQXMZfSQofjVXwL4mXlyuptC8eZfjo5m8ja4vVW2WxBVlRlgsilOemfGu1dMBZrmbsNix8ay9mNaR0ZoAv99M1GDO4TJpPTu1ixbjaYCgFXV16FTLgPAts4vk3fhl3iCf7ZukYlLe8/Sy8ts427sRjsKkSoovx68PKkZRg0cSz+WrlAJM8SzgmNnzmYamiyx1gHN6l86pqKnMR6HlZaGI7ICOGn/5uNx5L/UUPS6wXGzs/PPKtetygsfRSGNr5c8nmiaubFRfdrQUCbwV2bBJdYxZD/Qjoj1gYsmyPlSHYaGAyoxFMZNJOyAmoElndvqzTfB63wpJewAOzKn+71InxmO19fbrm3cg4ggo2+leSXdOetEvU9HqWlhIKOn73wEBnR0yVx0O39NMGu3aeJgLBLIrva9wxw8CLGnXU6UDouFplN9RCknDuFAlfkrZBGeZoqnxgL8RbdPVwL4l+BFEqF4vrV1DkzqaX2Cfjl951TJW5hSHF/o8zmjjP65h0VMssF0BEtkP0fPbuVUFXzTF1X6noJIn05aGXhE26PHNoYI0iTMrndf+TL9+V5V2n+KvknihvtGCQiK1Sxugnc2ljjIaNbGkXNBiLnl90jbcgyN3+fm9f+5TGK5b5UuTGTe//r6mM0mCCHr35MdWQ7eamz9t5qtrQ9NB7mRMWpKYPPFvlIWyGlg9yLASi2LhqmeN6ZqoNw8Xfjs3DoI/4Y2gYi/djUgfyJoYCtrwqODv/Qwn0caIZipTni6xwVcw9WeZps9dBFoiT70EVhf2m6f0AE8yinEGsQFFxEkLgGqHEEfaTNwfAgGJFDk7zu5uuSmflfz9feue3TuPqO8yJNU5SMBlKmLuuGMpQA3OByrE39uJMLjHdN8QMp9i14z2zpuq4SLV/xHgtTk2tUhF8B1Ik11LjT/O1UoOgl6N6tDw//06eIXU5gnhTgevoAFUK1GzLxZKx4gG348DKeo7PTE/C8BtjI0wlwZ9unbTFLj5bkpn/M4hYbDFwlG2bweswJ0SwUmC3RaCL1wbkejCnrRgY7XfpY2BrJ5odMiGQPOa5Byfx1fCZsBCdj9QkTqAckP6pw/X0OxfcU2RuxDU58Z1xjcpiffO1kqP6opYI8vGMUGZ6Khe50+PvWFCeose9WeIKD3YoT/wieiDHYXIqxn5malc1AtHbwY+7GrBdldrnYUpM3NuP7cUl2hlpQFr8Ltfjr85642n/KmbxBTcG+TLDZMs0HZJ/n/yXcKb1QOv2cgZuiDp0nHgcfB5EHuN06gxUYYFWaxesrSWIs9f8/b/Tj/yijU/PAD9ruvNcU34OSJHDrMGsUw/0RQxgdq8On6G8Vm2ZYuCM0t4fO3tvYM7G6SyrSSYR1s81DC2OZRaUycc/KAFM8nKbxMz8XkaRUgxge7+t9aCl81pjLWa2cU6N5vt/zYu46CORUWdLVm/SkpTVlb4w2upt72+GBH+eTxNdUAUlBM2sxBon3jgSBKq0sqLD+VRN0GFtRmCdLFfa2Ubc14cTMG1o5KNzI0fSXcAV5lm+7dD4EBEw78GOMGuLI/lmQvNUnxMh2dXiioYJhJSwEc5aohI7FEm1tzoRIlM6KyU0hMg6UL4sCZw69fF1Becn2omrpFwn9AyxNNq4oiTEi+EPSMnf1q9tUHqyv3JDEcW9JjvqdM7R0qAIQkzWKa5/42jWqFX9+MVHjMQIwYHaLfqklFvOitIJNmbSk3gm7epeWm7vJ+wQ7LUudy4iWcC1W/XoYbwhFTnn+ipn/z0oDb7DUTBap6o6YQqfJLqewCMa6EhisWfYEdj8XT7oUuomCu48iIq/8WH/Xek8AAL+JWsCOR6sLXYGcqh982V2FhoKbb1ToglvZJsj8AzhfWlSJOXrtYMgVlb847U+nYECpXeXnAR0T2EaLT4W+2llnfZzgus77ssiq+kcEaKwkt60XY1gJqJ56vaCBtRvYhCsFW6gkBISh8/kam7Dtmt4AnvFXCIvLvtIZPZGXgsQ9sPxLcoebLcjluESpk0q7i8HfPSmWZm3haUp7swO7MNPzV9P3kx4LcKdy8ieo+RoUPa7ZFA2NlyGNSXt/pjv4IEnaoSnf1kDnRnZVsj0d5WeRttGHnNqTCEQfWAxv9bG5GonBTIb9hbPqXgTsJmMZ0dxm2Cj5gpbouOvGckuIgxQPwszH1XvjkppKfY7YTsdh/S+9DHWlSUNAy6M+tTjfdsxO/WocWeFrPY05Fx0jkMtLgGb7u1RW+Nnz7WCq1dPhodVVrUKhBnsSw7SaKqhv5j2Yo6wUunOf4xljX2Sp7In6gOsMxnRA1DsTaavQgD9R1AmlliyZIK4vZnbZu998O9aHdHfQReVeTuj0GTZVB3cnXJ5GQuom6rtP3RByyfczRge+pWbW2a+I7WTKzUv9R7fzwBhkTNR/RjoUQR46ZYlPWs8C6/yLGbjEJ7yOVyyJRKNWXEHPjwy3F0eVHEWfJaF2Qo1+Thx/t8+n+nZpV9ll2DpCWxnBjGGS7nLLQp6JxqrXnFFZeaEbThehiYUbWo/ZHm8MT/e18lmmDFEcy+FTflUuGqUgB0oXHwOVU6IqvBQPiIvU8d6G4MIfIdjDYQGomQ9N/rFzQmj97ywnWYyZLPPza0m3d2Ilf2o9wXusFz4NLb3JpGalF1UhHzbnFX5+vt38SwapvsVjFmWslRttlaTW7ThjSN1QO8Ie16kzSa8P9kZQxJm7CW8UT1Ue8SL5XUfyPzzIypxnUc7fxgiABITtzaOE7U4EuAtRvRmCp2wm01eSLOM1BJ14au1rKWr8WjMjJWzuYxStpeTEyf+rvd0/0uofYKvHAlLWsDGo8XDkcJgq26ghzi2l5Vy31O2d6XM6JbULQNlNsjC1Kdg6RFnDbbCKlBonhh2u64vsiq18XCjdbH3uf5FGt5BhU6bWzHeJdItJ8S5P5AlbYwfVDB3BJcceWPkAKsa4yXcLgWuIlcwY7XtwXOin1WaKCaw4VvSIImtTuv1ifKePlcXNCV1Igt4XnZH61CoaC1Kvbv1BJuPlrqMBSSp9shwOiAVPfGodjBwcUEtIQPp/E6M+jjEFYWzVf1uFmcFY1Ms2TrGZhJX3fyGIXAF3YtD3iICIwSxWXtXbvtrlL6ur9AB7HTGQkpcQFPQy0QxbRnXbJalLgDOSWQPwrvd4md6hQhNa/pZWRZ8PXUwtYx9pAj5dx2kew85O1AA+IOpJl7qQT3hKI2d64H9ZWWLQKw7kMYWL4YOT7mGxWUlgieBu6YIoNyQxEXTjDb9RE4fpyFwfEMQaS1xhLEI+0VtBGcDtXSfSQKB8k5znYmY/T+wLHf4/oYZ4favNeUMHZhJ6htYwoyqcbB82sFJN9GLDJGC2XdVayfu/7tIqO5v8U9dp/QDbrzGoxfOGCvyk8hhgXx5MnG7UCiQlmzOvCDBQmfNrGn2GgeJFqu7KFMoiaLJdUPNWmkIsWhPPeglZ9aO9qX+Q5NZD0b7rThZZywsmOeiJJmlQhwwgzUFIdWf8PLSX2Oik1NqXRyovYR88CFS27S31TFo6Cs4RXZPfU7QhBg2CyeAEkpZZbv05TFE8xs5Qh5pbyUYglXMsPG4At7p1KsQ1/+x0OX79uYG5K25O59eu+496vued144qSUtgTshngYKT9VdH0Qzqad8755eSq7Vjx3zpZRxbeZlDcrlgXK2qisq11BrukT0E81UZX7Wcy7hR/EFLYCzBn+gjLQmsaRmWvwjv5OFsvVHn0FcnKbfZyuJXxzYSyDUKfcUPY4CrOis46ibDN/eezcKEjDNSeCRtF9crG1KZvE4ryV2DZRemrhMAB1Rreq4R0HUSpNZJEmKaTQMvdwUDwUNOlQQGciGdiLbNA/xvvm5jCKORXy4y3deTRXyFYwrKxe8vj498Gur6l80tZVpcmLHpfgJznS5PRaywGTk3Pxta/8pT25IfeQTtfZEe0aliUvHTOwxFiXust7gA9EbbNxUQX2TQxWDMFlWpbJJBI9KwpGPC6uNpznJp8bIsdBf29vRuoPf3WaCKpZWYG5DZCadGPXRPq31pnHRig5RKs62ZyWqlnPxefOWUCAaHZJNRwzxgT4G+TmIas8snGEISi2WAGaQKZiagTzHQniYUg6uhrLlZoF0/zH6gQ1O8SZwjrZDaJZJl6zOB9J9CScqe9UpXbAJbc1yl5ZxX1pXFnXfdRq7+s5Kw6tdgOsFNuaViYuSoeLLEqyJbaxppMTTLRCMDg2urrV79OSjYw6Ss3tqCuZYSLQiogYmh9ZP/1WYNUQ1w9+BVp5WMmhkMlqKEvm9Klv89cd7vWcvoVbmWIZAxrUO3JJDRq3teZhB2iPwMsf5a1wYcSWhp35HWfpbJSgSzMVrtStsAP2GXTm29x5y480a8D2C1IvY4i8PJAg0mQd4uUBY6xx2yBt2L9YL+8Xktj6xjHMq88wZg4C63FUJ1m8vEET8+iBrqTZhokSdM9GooTA3dXRAe1HnY+/wn9d0GqPrPOn/EMnBc7WPv9E9scb8+9xh3MxCHSLkAX9u7abmALzfRQbuuWeXMUrhLTTSvpxlj7+GLc37/5QRfb+xYCjglMM1GeTrAkJw0So0898TK7nfx+JSQvDKRTqCZzezh27cbkExAO+ku9hKSOhqZKoATaQaqxZdAGuY8dLUAQkQgjTGnz2UwdtdfDaTXhr41roBOGXMpddiRkiqCb/aHzNelsL7h+ZpCaPGJJh09+TC4vTe1IihlaoYL26/UipYu/bF1TkzYHqIe5lML0EOQWwK5o61gsKtxmNqNrqA6GbxEPWQzGzDSnB4ixR4nwBq28AUC942r8CYiQf5d0WK9WU4CvjTwLxva+00bLl1PsgI+zwd+Qb7pFsjofZ3/Rdgu/xlxUOnNu+uR9NhBLKFGCEqPj1oxbaT7YvO+XMKLahfBJlnQZy3yHj2TvfF+9scm10JfS+1IxMKwXZnbt84ZsjVlMPTTp9JnSxDe7dEnJVHjjLLybQy40C3wi5Mnl19nDdntqqzj2TYt040yAFASbbB25LIUAtcuE1tYM5w3S6IIS2PtJ/jvpejPKe/0FeqgEnGGcYBx0ULqFR+N9VaKNIl3rhWyaUD2oG/EqImnpwd4q7z+ytDrQQ4eksG5b6/jQvkxAG/mREQAFZ0jZpY0Stm5azQe7RTb/+51tgSOBCD2X2gaJ5MsGvqPeFOuEqBM8AiAYUBsHaY/MewGKzXOd7Tbf+AMTl8tDT6c1Jz9Jv3AzJ43JguNVblqxpu/LJWDYHzzwas7aAFfuo8fU20oG79WjelubwLfth7bkUjshJsvXQYwa7x5AwN5SzyiyBge0oOKrHI7n8wK6jMRrnuQvxpqz8SFALPhag+zryNTCWSkO2VNkoGJBUipo0HYfYKlxY6NZALcJylEljSsCSxO6VBu5PCHbv0v/SyYv/JXQNwTqZ4YvTqD0YnQ6k8nS/PQemwqjEosP/rgZ4aB3GTCue9Dj4ofrhMyda4X6DB2nJEOvgezknYoo0Oiqc1kitedU4vaNEp0/p293hZviR8pHBpL8ogD7DjkdHfoqkw660JZBBefGTl7ebg7cYg1uYtBYI5725hMZr2zTK8XCoYmmnOA5i8lhahdz7NlNAw8G/uUX3D3SkuueeDCTES1kahtbBcaFVi6VtBDl6GAMoED1oXFO3ygM4+DGUcWNoaNEdRKzwMiScnwGjKvUzOZbVwv697yITsGElhTpclWQP63N9UzE1aN05ZqUYwJoQLnRD8ALnLbKdxq8e/QGIgKW65SnwK9Zlc8cvPcImTCCmd5a1ufTGZZMnEzkybqhQFA8+H5o8wPG6sBT5SU4muk0Ms0rys/Mh1HYk6OtZnCtFE9SvtRF2zAOXpTRvsd84bQAN8UuwysZK65hPjSTSpuFMPZUmyQnMms/4PfDwACsxb8qIPYKVpRE23ujdYFiALlRGq8wxc//zZIuvuXM4PGuDcQao+bTIu4OTJp0XV7WLlhM+7poIR7K92Em+0P5Q2k9h9AU9ZKf9Jkp9bPi/J4VwGLVh5+nJDLTFvkaz2JQstsIRavwfLxLuI3ggM1RpxrxsomZod41c15rUUSjd4Bmxl7b3sESQFv6JeV+9R0pJ5ZIQJR2bNQ/RdApvzT8FRv7D82FoNZfUMiH2XgORW4qLUYv4CLqAaIjblVKINSKojH5YGgDiDXm9vRap2h5lZZ6NyCAR4IiXN1/qlc5Y5TlQ7T9d3XtWwjki1sjc3EpT+F0AvpH5ODczxKGr6KNdFRf7V/D7FraatgWsfrcOkDik9lwFjK9GWk0D02rypf1CGPseEBmcq16/pmaG3UjkWzr+kbhdnr75UWUvOg+1BGi2g0DmWGO0ztQqOYc0MOWH0tB8cFUk9rpex4Byobk6ozJFxse21wKc2WXZYcGCPIJar9SpNWKwNXuNIqNAoynxfa3+CcqlIeNAMgghkK+jjpexftiDuqpR6PtKbbnIXhLedYnbuO2ORf66NcdQSVKVW+vE1ykR7+ZC3KgMvI90C626aDiECnnlou4MU1Z0LF9uFGxVWqEDh9E46557ew0ipgttnpjHPKwcq2AdAfMm5LZ9HaWYVDTvtRZXxjD/h6YzscVzOjX2apmaCndBYT/WwrbkkK4Eke6ccCLw6Gi8i6i4tbvNWeIaP6g7+t7ixDRDqun3bEkNjO+tzEOGEGBOVxjzmgx9Q2LvxMUNSGcUht2Mr6lM5RmcOEwgXHFVcR06eC0ah7JGUOiopHupgGj9pnvLegSkeKk1HmoLSh1SSN8H2r8GuACshl4B4JhiJTKYpPq0dvAtiPYPwBQuwf1NkwGGLKVHgZei1KRhGa3KDxi9y8CaCxAceSUE3tfl8iSVglc4irhjNLttw80XS2Ajhv2Zzaxf0N33d2ECPXYV937i25qEABZiwGD4Tdhmt9+XNDmOiKMAkdJekQifFfXO5dO5JebOn/PEsb0XgulHTTYIjWJ6tc2darqp6tDPa3x6FTsXJ72a8bdcJlMvBp+nKz8saexbEGXJHAcq+v9ZKCazM+aiT5I2jRiyGZIHY6maCj0ouyfh37ZDCsrFhSVTO+KQUZMQ8FdqhG2hGUh8zSviGpuSkaIgT5AytaU5NfvpcIJNQn6BaB2KyXsaGdkGyEjNqhEQwq9tdKUcCqLHw7X8VXYCeX2A4eqjDUYUXSNmjM+iPtyhYK8sjQCSiVtmTE2Tunr/taXctcquXS3LOjZTZbeUHcsDOm9/PHnIgRrJAXZM4g40MqzDHhRQeTOVEWMIKrwv8PNbd16k6pB67KSBvIOaSx2qVLZY7ZIGtjROF+mALthVTDUhodlh4TGOW7CZ3YN+53/a3wDCz79SS0euAJ0zetf/KF5sLVBmy/PDfJTRjB1B8CXAKmuRQmYzcyM+Btg/e/+Hav57WfhSmCFZ7r753VVoWdU1FM53SamYuKwToH2lcT9FIWJdM4tVLWdbxON/C0+i2lQ4IOVu8BIr+taN5Ame+FseWo7Wujlgj5UW+9E/x/tOaxL5rFDUp4vo8y1Dgq4eq+2VFFxbnw75HtzB90tT9XsT3FLQ32h371NxBIEoChoDwqHuKK0NAQLlLI5Cj5AEDk2m2b3Fbs9sAzanlw+FY1wZGQn1gIoJLbQxegjFIkXL3lJIxQakkxmb627iajEvIZGgqeEta0QcbZ9vOh9oj/NGPnOc5AHBTTbXifb6rE5I0SPdLq90HsbRt8pWGzTmgaT+8mav2WWVjv/7VmClK/8/m19fQ1/b3lS4kJMLuQrjQCSWvpiZVNsAKl5AD166ou+PtXuxWPbrVOwtO0urFqsVf8QYysqdhk21Ifo2kHkwYdvxJcOxPcLG5QGXZYKmmWCNzDAgkQdbn7IUZRB4uYcqsFs7E0/BnLWIzhrqvR1W9KMNMKSj5v9Y3RoEztpGbWyPIcQHkv0fQb1SkEHOpxuDz3alKKjVP7X254Mip9wQmzrWGPHwEUA3a779pVhssPcs7vF8JUHx2DGUfh7eR6Zvtlnzfm+e8QJa9N3Y0N/Em15L8rg3CIANv+nB6YzucrxyBmz1OdOMiMi24CNxFyXu0c3WOA7/x8tgks1hKjlSoW+AcSx0flBVLjXo8PR8guGpjfKn7mepSTn2pSfOIywBuXTElc02t4Wib8JaVo3R5lSpQu3zll2ndP1Mg7VcYT7L2xCxrLOZJl4VY5OTF8sQ2KiTJfvBKn1Zam4CRjP7Qz7soRab8EIR16T/xjYnAAS5S0EpY1/IDdYf4p8z7jHC+0eBXJMLt3yY2hHUiG2qLjhOTzRZPwLBYr6+Dyer3xo86B6Vhodd2Ie0GtDPKbavdqeoqwRkSv/tECtBFB1XpbjgG6VItw6GQlQVuxIb8g/F4Bel6s8IjZR6XKbTb6GGDcVTmzc08x88Vi9UitcTTLZJ4Gd/NY5E8kg3RYiLPQ7Jsnw8YOlBvRkYcROwftRBA0jJj5CyuPVoJEVF/uYfuq/kHPuNq60YjGPITfRc1p3w8borpe/ggztzaQGuOrm8vfeXIwrILzgiM620/uXRmZk0izGXgusDebkC83CGMFP3b7XG1o5gU3AEHYqN/+sWLvcfaux8Ub0F/Ri8A5L6NSaWc4p+OB1tRi62/zeL9gYXNz68forhN8NfteRhC1UGX390Ug1kSfJxcn+lxPlGnsZqijVTzvHOVqyWMlRp56ZnC8IsoPst8+MoEGEmCK07aK1IMynp3uff590eWYljZ3GA0WQsY/sAgmfLGSWWxR9LTdeNheLKuXMQflKEfwvU1EDzYECaleplO8Ps55Mh0Kn7rzQ4HFMkAY5MC1HsvySSBDXIj9wizjCimQqzDJPVzzykHk+hjepR3zKlS7xGiJdOArHO1s9P7zvTJZGx1LiSOHwK6Mg5bJPfJXFaSqQbj1pcvyIhR3U3UK5/10AldNDWonB0AmAoJPxdwapsu4gp0RfUi0HnkngCQ+4IcoZlfUmSMbLPujKiALumR1l1S0igAas3jzqcTo2xfhehP3wfSpcwDz0GOiHVBNXa0cdMw2CwBAfTrX8/l9XZKSFw+mheBs2jgElGXRwwWuLm9xsrx2/JPCXDh2PiRYCNHfevO9A0exVVgjPSiePd5PGbQrRWCX5ge0hUPmH4cilHL9w8YYWRQrdC4L+ZoCv5AmO3d5bxGi5RL1xl6VwuIIhxMlobFrsCqDj+kLwx20NVuDADLkWpTb9cvWC4zN5cEOkvxp3Z3Pe/vGHELc+IvorJxC8lI5OgIvhfgkUB8ptxMLHwL+r3kT/1PmWBiqQJtMjc1U3eyPfr9aUtvGz7s44CfVFpXhXcay4etflxlYYVC7YToKh/fkYLb2P1MzPFR4kQmSTiQarJ73y4avzKwd4XMFZu9biimJgMH+8nG8kQKdfGtQoENbN+rgvCU00vckIEPXI6+ZPd1I3J91+Wba8mui6F80Ybj5CYK86sBh6QLX9cwWxVxEeNG8ULQOx5ub+AGAstin1gG0mYV/qgc4TBzqPp2ZxMwqXIisTUghZuZAyP7m3vOzodDXUnNXt2Tez3wxP88Bu/ohMJskq3j1g71f5415Dx4O4TVgtQ+aOanWHEEyVQNO6u5wAUQB6iQ/cckAtYfnigpn3fATMaMPg4KSe3cwtAfeniJJoVSULmaL9i5z7Z/9E114bRg/dYYDtzRItXMMybj03AYBnEhD3JLPNgIYOwBjSTMtQpyf8V9Hy4PfdCIq28u7X9fei3Y7YtbUM/uLfg5G8s00YILii/bznza8lP5RjsBxASH0uJeHhIr6CJb9DaqnEZLdr860FJgzuUkqPfSzyA7/hFjTxU+qFnePe2kWMnrKtLvegWErYNIiKF4VkVZOFs5TGgHbN+s/28mM0IZQDGciZejLxi61rG/ZC3l0ywmVMPv6TQrULg2BqlPp59RFbFNDYjzsvAPbkM5yIdGbGitB+/gE8C0LNBjj9aU5sUaftznsArU0HbDhD0Fjt0ilpURFGJJADzpH0pJeKY2103uBXZlQfyedZZ9iDY3MyJNvXXpyeCSx3GHnP0t52+2aRNm9RzkBsInnYFWwTsX57/NNgQoN7cIs45dF3ttzvsjm2euNuxoeZcsgqDCajb3rBIEn0+tD9G47WLC0d0c7v+7ra56iNihzJygouHeOmOIhfvBZfkzCfZUn4Hdi7AMTPHWcMYL9sU9P4f1EQxLj/IyMoXBXDY9nJASUTOOprHjOuQvzAZ5OxU/J4ukwleYGp4pVBoapFi0wtdHeR9l6Iz2PlG4quHkKUDntX/8Qzz1cbB++05WP+LHhVciIHQR9eWUK1azl+qUa2xLujZh7GZESMD7KhphD6nA2OBuPGQ9xv60xud8FU83Sjftiv18Zlm6v5dsiRUQKoB7GzlZV2G6RbCzMW5pXapozmlnBmdfk4gsmIOGjDQ/EuhCTHrxzDWIEj28eAnESfJJlnzkv0YaDkMdpfXfbzfa0ZSbB9M/1bXK7uLMBT8quIeUtrxUAEWOufflNakaiAbf4PgNGb5x7Yahevdl7TY4baKtcSfrTSL/ycvIww1XLWCLrvZPbTL+jI8es6C5BQoSvA4bR5WxBY43rNJoAMC0RheIt4KZLWazhfhXzMjJES0mDL6B/IBPKj9ZQ3ueB39xXHsxJqlZzuSaIsEvEI0/8s/HTBoSLbW7iZRGSWm9drRw+fFvlwljWk1ykZ1vQecgi4eeIcfh3TjDSKo8SKD6BkA9UAWDeqPaUoVzhk8K9yMShmLA/4d+JBtZWknLrBnR88g+4zElIQ7mbv9h6OrtHTKSn+fs7WaQfk2FDjxu0pctcuPzq97Eek0Szcucixb8gCpVBSWH+raYFJa/tDUH/c+NQg4mO2mGeBxqraUl06KtjX2u2mnGJjAORKspFoSuvHn3g0NgS0valCtLCpDSWvcWtXzNmWZlO0vd4IdSZMy8yLfYLM78tAVZL+Mcq9dDU7pCoGqBSGRaDChoxeYVRlaVuckGklhYKHqx0q0VTQAwZBFNx1upuSSCB4YPKx1uJ1P7zGvik9R2+dD8hgqpUb/3/zFNAhhC+TvVkDQ48wOsOhzE0jl9zfN2LoUIC2X9sdTcm0JAvzdtpxI29DkXnxNEN1p1T25UwFCHTLMYBjpt3f3XYlcCzW/vf8GsH+2Jj4TEiSQoL+AqMjc5HtRW0F9HC+agZZYg9PSmszBls1GEJ4l/xI6Aoiaa7z6QeGEzXt1ew0mGreXMOsGXwlpnkEqGEIXcXp9jQwMPlPApdlZ+oSWG6GDZquCWgJHLoLjCHjS10+rBH/ZtYm6m346paAQ3Ojb8CyS1z8LCJ58nHtM8KgfIOg5+6dyb/Wjp32qKTyVsDocUAhyxid2dQXLrbgjZMdZVqYJlAv8zP3bc32IMDfvfKO3DHsd5qpTegBLPNNhwQB9PJrKyUk/cl9+eLX9dxTcLbZjv7r/uGZSWWDL/99ysou1N4ENLd5zidHRm2CS1gKj3mK3UFwMRRHUBi2YtIteKTFSvBDCoHyQpyW7BygRnmLwX56GAelr6pGrFoVl0oCQN/YCAgb8XOjtaRbtKNYtDjd3EyYefgQM8ZjYBYGrexB5/C+aVZh4qDb1kVOkWE0oinFKEQSdaJxgVsvs9Q/JinyQilrGkfRqFwLKrYsIzTJQefCzIUkDDDHxx4LepJZ/G/PoBEwK1UJfR1VYtKHwPRL6dKNjheTc5/rT7B/vkEZQfWcQPZDxdiODS6EnBh8KF42184GLO8mcHmo+ZjUxW9fdw3F3+ALzUggspEirS7gzfonKt+NmdUJ57XmwjkdMouauK2jOU0ICg4OoPGcoHdUkztMkHyjaD3Z/EA1dXU2wwtMHNSJRdS1wFyREB5NneuYnYfZWoV8ZxlS66UcQTlCJklbCO+hTxUELnMNktx8FIxE77YBjqlh6R82jfc3eyL30/jg3ht6TSgHTaWsV9xyGZ/n1/wZDRdb2jCv9t30Znt+R5YblpgfNikpl+rOua3G7BKNVaXOOqdZVkLO4FiZDFFnHBRFIT+G5psxEnBImi5ZnNtes5+hZ/lq+wcVryNt22b1u7vNH+aPDqqLju4TBTDwpoiNMwTYLLsJGO47qWuD4r6LtS58OFP2wV+x1rXQ0vtxfbs4tGNqjSnAMPA1fHYuglApkcw4ZvIAZVNZugrXq8hJvn51Kg8exqd/nJp9i52ptRA2G4HT8ZdnNYkhhJe2NKaNVd5OT6nEMvHV0wPP/jRUjLEZoLNOkoRAT2FS9JcHijhXEo6+TjSvwdsrs40ZLUoFNgyG6ONN6bfyC8Z6Ecdc5WCVtm+UVosCwXLOAK5bm33fSkzldkGpUqfnlyYkHM89kuG9r/Xyrhx7uf7J6VPZ2rA/AfElARyYXLSJecWgCu2vvDiZzd6bqeYOT2SwtpEzsJivF4+ux47jH6gW0QVSbAqsZ66ek0kJY/1kF4Bgje+/lERWYKWSfhu7IhwLUT7kv+XL49MWu7uCnk1auqn9oVVfv3NvW5T7CscRlDmniiKwUIReYEdIz3dLA8DF2Rt+d5zXyVu1mAOFrGNWM+pR6KEtoK15E1k20MS8QLU2b17Mef5QaVVcu6+lwYP+YnRkMlgJ1A3gfhqkLMkqs5zuKM8WE3yl3uD1YinTgd7LS7nN3D74CuIfRcUgsQL5NdYBnygXw+FgUeChy6IOQxqLnfj+rjvuABfXnq5Q98BjoX4stdzS/Rn2gS7e95kXX/8zJYxIdSUhKZ0+Gs8O2gf5J4ngsPCv2iys9cs6xA7EYBQZ2oflfOkd5hYvfI4RcP2evwW7EdkcGLoBmNiVQ7zR7jdGD2bEBsAsF/uNV8HpeH5UCUBo8UKgrRuIyJAruGscHbaU7yOheL8nfVgh1XO8Jmk2oZ9fJh2bX1xJ9cJTRYRQBQstleqXpOk58eNSk5dt5ukaivlwBd4muJysKg5/0sYfb0cD21axm5FdhLiSlxDioDHSKdtpH+PkfBqgw9ofHs4hyleBiZKGsyvRBDoycVNa7FFyJOkAdNq4Bj2uVhoB0yjmOkCSnlphBXVMUXelSMtBXRwZU0eTWv8vDESw4MKq2eIVchxLG3WPUkcehcKL6ex1zFuve0Quj5aHjchJM32+drxs7hakSRJ7f2oNMWsX2zM1FuB9sR/AgufqNjAKBN0aGjrJ+akio5WZpRpgzT/cfMD/YKrCXy4X02Mpz4+LniLoqUPOKlPDQPEghKCwMfqSZzT3XxNc7APIxT+Zsu+EH2agBkst5mxCeUdSh2UzLxA1thePPhGn08nYkcYZUzyXUV/dZbkBLswc2aE9v6nQABXErEw/vSUKEZl8kQ6U41ntYpe3noHn2/kXGTM+WU3+FXY//yUff6Z5QMe4IYde8I5tcb3y/CGcvbJr2CplOyoechf91/TWamJf9R8fg263gvO9M6FKM3m8jzQbmdcDBAwcqbnVxoFFDMiMbRSupO4weeIDsnVFH9s/qeiYa+lz93xoEjacWCnWSLHaAJLr01AhvHLo+nh1k/HA1iFDrvVWCp4X5nD0LPmeXVp8KTwYwBuTjnRYZc5twgOi/Mcy4yVUElAYT+DrpzHh4mgv4JgTkkMSLPd6BveXyX7HekAXyr2rq9e+arZ8mtWxvlsn7px9r1u2FG/+3mp9UdofQD1y6O4NSlNnmNuFceffiBMaAC5xpLlNNtDno4NoTWxdDSNEULYBBqg/fuRpPr6WliVV43YYwwHP1g4vEZWfyw2/OFcbpuclnEJOlA0aW71JAXvllt9bCgNBWvY7yeJIWzwNX3+llkCSmvQQsor/rWnVixMQzIMoMOr3SgI1Ah7UobSAtAHavJm/svkcR8B+lLarv/s3Snr6DlhYEbePMk5lhk9kw8Dp4TH2b6smzaVL1YjG7znA7dwTs2clIPepNk+wccUtSBW/1lTCWdheEFW9NLj3b1xrI3cz3vQoTdLHPgMmkiZn5onRLwVsDd8TxSBa5+J5o2D8Vq6zWtNFURooJGN0xVFjBocKkvBrophpCXc1FlB+GRsgj4870M8TgH7bJfGOEIvihKPARHcRDpNpulMI7ndLWWtk3mQ0jazymzfxVkpwoxuTYlF29IFqEGi0mznCpcqd5+fBDuao+pUpU/srCtuEBvbTnpnh64U4tc9MV1zzIycLehxFne0M4jABp9fWN/8+XQ2r0PVLjh+emNDo4K2gTxo5hTnDPZ9KxKcXE1Qkq2qRTy+X2iusIaFdp5Ofat1RDzB7cYp9Yc80d7cqr4hqDYMFRrRVnQHG+gN13t16EwTinSoV1BiWufw5agpUGLc9vo6TC03jPYUeYPS9YbEpqhclBP4/2om3IvHicuzF/7018kq3la+0hsGXWXaUI0OQeowMFjC88iy8KBXNQCOA6RVhZJmgiUIaHRqvMypXtWFflip5qqw+C8E4WN/p8C3thqd9zxj87JImcAf9h8W6ZgDcLcRQXJUZCif4ZBjljum5vmMmA3Ho0BPuDkzp7R1kiosmnX5Hbaiqi9hC3rtMSyPZJdqBpXqDLFPCe5D3JQ6TZeatbtN6UBkzBa9dmIvY95Scj18QpG5HOsYqPgZTSFYtg4PGKKySP8LCLxtrhmBO2Tpq/9BDlQdtm2Hasw+l/Tw258i7kgifWjmF5kERbaZpF3qfBj7/6d5fBWHiOsmFetpIUPgTlWI4O/Kro9r6ykYygUHXbP1ATvCaczi1umpOQK5eeAtieTwcAGKPzcZwKCHV9fUzq4ezlg4fzJs089N4jH/i36gYwtge6x2NfLcevKNHNGu/Pg73BW440rG0tyfQPK/VijjH+CQ9vpahuM+VHVwzhLAfkbsbzQtmC9A1at5+gHXW3lTEbGFEnjVTZrukrPoowDeExWrUKx8jwkaKQiR4LhJvUIAHFcFIPw8HG4LVQnKZwtUUt8TEdxSp2h/vx+/rn//+Odbh0TutvUphn2fM6+nnfdoF6puIhsYYgfrxPv/tw2pnrk2eYn5Y320gdiii7yVCpRHqQV9NzxkIa5emG/TmkG6E9F739Qjq801cscWTr+8BRCiomzyJ6H+nB7F9MNYxbAPIzVJ/zKHDYoVi+wVEe8JaHnn8hebLOFzYt4h95eHipxsdDV+SO+b7BSPxXVtIEp7ZhIvZuzt5mrHmKhTAeTTMnWS8oGU0uYPWCfmnIMtNZapfGAn/gFg1JyXq2uWwqfeotCwz1RUhkQ7WLUCP6FcAlD5VPQKXN9ze5rIqFfYwc9XxerVHQscZ+3ihJ/GcLEBFPDxmClHHhLqSPyQbR+hG6EhuAAWn3C1ZNR/bB5HhWTYQ44w7uaKavj6emIk9X9yA9vx6/wcTUs/dCMhRkPP7p6rf6lESWFldWWcrIgeBV5DQYB3k3Nmz1ZI/snzqrthj9rSOUqT/PwnopMbStBB+80Ga5JrC3H0fxOmZj+kr8QTyeYjhf8uKmuQ/azp4e+FbEWOjAhc6SpwNkJ37DADBWIAifeBZMo8gv16w8LIZvOJEcJGWDM55dTdZZGiTHaFbmkUePbs9J+QyNorWfnZaxvxBZ07jQlGp/ky7JzSzJopCphFWJbZz0XKAX/MdXtZlutkY4UVy2dWq6Z4kn5fdGUrtVbKtKZOS27QCwGJ3XxDrDJ2s0Bfxj0yHIFlvSY1DTMBoSnmOaSqBRSW3rDrSP5BhxHWM0YjVKa0Fu4wMU/i1iWbNUcp8wjqOWocYOuPd20J95EHnWXCYPbLT5bng2Xh2TVy7QvhC1Bi88OpWt1GbsXWEpiulcKvmlQDPTtqdQkNQ4SZBmc+p4CjsXSlnIsOI0rjBhK+gvzCH1O6DVkY9yHKUVQbGjbmAPR2dsYPk3JJLcCxsQZVhjf8z/99SY6iS8qv9CRpO+Jkk8jZ0BJ472K1fhHBugGi7Fw+UDojpIBvcsE7sQ46GMkNVOweb7JQlRYr50WrptIkmH8BQgwDJetqBezOwq9sZMnrHma9L20657UZOg0TU8Wi5cT8dAzIYMAU2CEZuceFBcKSQ0jk5IcRyo+0rfisTBV3qa8b0lY7fSk4ORbB9/z30bPvYVYMEhqJ3LSp9axCXgpCnD0X0k+JmBR4CpeoKkhVPDAa9t3tGP/ZGd2bHVsLAPr2JyvsDimEBI1Xmsq5cjcdWONCCYz8QefkvZuyq+8wHvzOtz40VPIXaZVm9qaforA2rfiybCjPWWszd1n9LEMpXls0Y2epVWbqyL5dSeNon07SGqNLo/4N7wh8ZlwWRGStJFiQafKw7XV+tK3s9imNmf4x6Slp+DzZ2XD5aPoG2SEqSjI++N4g6u93n81VmLgTnsV2FtNU6NeW1licPoNAii7Z9HEGQE2gjj2Ij+8B5Dsu3fLVxDq2ouex1khtu00NzsNrSnliNOGRr5jXUaMn95n/L4IZhxR2ACIzlhlxglMcU2oDlaOAhEz6/fBZqq+CmCet0b3l0U/oXag0knHKlAcM2m0dDViijXb+2sQN5US87Dir9TrZctBNj1OftLeZhlKLlfTwmKfEGxbiHnBUHQ9RygZ3MhHnQv6oryTzv1lKkRsMALz12j1iXhJDxPgyMJK0dim48qM2JeaSkRWdHW+AWQN2KI+KXnJeSRLvBpYzQDkcRWWc9ImijpmuEKy0qQfpkUgkCpyX4pICYA2v/egbNfFsOB/ylkIUQvdKE9HE1l08VuA7MPc9BVdnvLGbA+0wnyGv0DkgdsK7D8KmGRxmfXqzz2KoCeth4gDD0P/XbeBvl1AE0N84gwOY9DJNB/C86SxUNHZyzFU8rPPyQZIW4lDpv3OdrWhkenPPqbLLgELr8SLrKu5XVrPPJPIRB/EkHM5uPcU9YXpxC1/fOn2WZVNVb1QHoWMVo/G5I+cqmB3jeCcdadHrFGjUYU4fsRlJrsq6/XDcIxOR79JAluE4LgpAMxUS/BLgEkZxJZ8zazrcodKmXfVM9m3te/yi5VWYXZ5aQph9inHvBjt6WBaNt3tBhF0artIDA4Qd/A6h/En2qiQ+o67QjqYBCNRvDajFpY4MPFcjLU8LchdKfSVdz/r1P0hCaPnjbZvRsWBcilS4Aoc/Hh9QnCt3vVsR3rnDMuS/yTtWKjdN9NFHisbqZhSLIEcyI9mnIG71HkLLHsYR0i7153zOXaxY7KrIdG4jeTAZlr+NR0T/rcerNII6xoT1KUoUPM4aqAFpuA771qTEv2NiuiFOvimnVo5XStooQ31xSJ4xxp2TwuMGUEUX8Qtwl5jzcq3aXd0FQmgGD2tr4fuWJFzUW5qKAkZbGbDVKmWnNeN14JEVOATFxkvTb7ejFBXavjLc8L6PbFvMkmZdVRDrPIjiRPZuJSNK1/d49Mk8SkF//S7q7K2q1Hli9XH3U1AEcyxclHuQPqeNrW+SMdxlRapjwgQvg2ruVdtdO6XCu8cT9aN6pFeh1sU1WQayR5BbIkhCN9iiN+S/opUhvwBTbJ7oCRP/g/C2wQ7FyMDy/DKqZJ/Ja69Moz0lR0LmKoWHbbb+ZuvE5ZwfObaf4AehlMI/t5LaEqQ8/H56lsEMeRgt1HgakmQwq08urTC5GsrNpqA+HaipWSRL1Muh3MoNlfBOo/8apVRE5BqKgpgAafT3o4OzsKY6FTpwgqPOcvBtkMJ2jXPUONh+Vo9b7mI3RJDnI4qdxNqlBf9fOTEHvnR2APMDhMkEFakCuoVkSi/pIjWujR5u0IJoOvwVAtePHw1+/0xxehiN++Ed+T/MmSLSSi9Bk4BKiGncjfg5KoTFjrehReD9X0f1zpU8D90A8COZNF/Hnr0E+uw2eQsqZyLH/2ciw7tyBlPsYfhY0wtz/p56qQd/kq6Nu+ET+3rsb30re2GNHBCmd+SHq2ymFtE7w57FqvC0PGId4iDHrtiHd5D4DdupQZzc02UA891tstByLeh6HNwEXNK1PGmYArvZKUnr9+1wowr852JhpYm2ukTBkWAVDzEoYfHGi+eO8RKQrZJwm8KmI6sHaQrr7xCgNSWFGcdAeTbw/o/oJNDCVwZvdpHhvK/NHXrxTNfybulidcDWCstI+YOqD/268KXJU640Qg4V1UWMwEEP9O8iQmEmH50W0/UdlPyiwLi2tQ85eQGY5gRLqIdAXEiFl836sE7x7q+j9yYaWKxYE4y9gB2FAYPIUYUoBrD059QbCZOJ+PLVm4VPjJGsPA77gxgnCUtYht+M69crGA9E8RPYrPj24KQ4Ok5yuZd/TXPQLKtgBJp0K71j5uN8LOeo5rkp3nO6hv0YZnph1nV2KYffM6/XLs5OtJxu/vBoumKCa1QxQYYEonN8UCrdSesiDLvHpgjzA7ITbo0VgUBm2NVpEK2Uu8jMsntEnwFq4FSI7k/OhhsXgnn2xPrSOH7N2eQ1IPJrWVK6OoGIEQGhjvL2GYw6kJbiB6VFwZfm051+x9ilDafSl6lgmF5BX6/nxsSZh198zqTO1D9eeQPyBvU6i355tFogY5WhdPrd00UtgEKBEDKDSLtrEDph3wNuCDeHuMnYsJ0GXaMAQEBjPl/EbPGTtxx9oL3uK+7YpZPkswv6d+ilVmqc1xESbiDAgZ8wj0YmHJxZM4IgSviLFukLLhktR0rCK4eVnEfhFZrS8hgQLEuAt+JUdQFUc5pnV8L3aSAVLcc0MHxwXxb9Ld5+c/8CtmXbqCpKSEDHIvuH04C2pdON9Eflto8aOagk47DkrN3znKTJ547jrBp5ozGxGAgYwKSUxV6RrtVe7QslexBNZF4LTluiSy3Uy8B5f0fop1NLQf6b5WXFymb3rXMN2H3NtRCWMR/0yP+A8QTCGKsvuKLUbq5ROfSLGmnqT0W57l587F15C+sjCERN7pUXpPHc3NFLtevzAxrrnYAw2l4AVtj4C11NbqmlapHCDyuxSdtWmSxPuap8j1XasXoufHxhhgoXTzk6bCeH3epcIb5w2BaLzQYBQS3X0SKlU/7aN44E0ziSG2bMnjHp/WeHedBKqWRx2WoSJm64ikM7SnSfsUNDA4V7jqSp84NaeEHQg2U14UjdLWk4SDpyoqGahG0S0VWkJs5E9Lz6FPQ7smZvvANExn1P/Kb+JI6KEyBxacUyfdC87iYh2G5PgLH/D2eUGdSmQUYgfdJkJmG4+OCzKQLDTdFPS7x4WOTHf/WrPbhp1QpGIetSxNaVRaYHJ+cqN4q90deCGAuxqVOzzds69PwTjAgikIEMz432c7Zrdbl47t74EM9roIT+1UWrurau97xRHG/hMCY7mzt2PV/v7Z97Fz30twODPpy2Atys5CgJ8GdNscHhzSdiF7dK8y8UDNZbL6vN9AGDHRy5HsLDBSyivEdOV9LXDdQ7qDN/qF31E4feZ1gBCH0t4h0wuWdFGGX+uwiaFbf0ketMCmQnDKOo6NrQnFzcgJetSLwlHVZNE/tgHKdyK6zO4A9WxKeN0vBsDXIS6tnltZo8qXsDEFKqm8fxOXfn9R5q1VQmQVYo7/h7LZCL0N5cGBemzZBHTTnbUvT6ewldD0OVebx/+kTrROGQj+O/FG/117lGYhFJA8f4o8Nns6EtILnVz6xdnL69zei/yxkh3R/c8eunJ3xnPR0txWcIDVXXsDEpx9jEc+Q5/1cen7MF4U473Nl27Inuy2nHb4GTXtnHKuZZmq/MGegOzdlWZ8bxSm5VI2MKN1vRZwkFEO22Ld/7S5aj9M4eEpNOj4M74zZBwGr6lx5W4+viBl6d6Zm2IsKVcHORITvyb/KxwJI/T9ssMyzbvWloXOBC+/8MH2FAdADYc52DaHlq0zlFqj44XPcsfTl6+Lgm6TH/vtky0AKI0Bc0OobWCghlMLcwDhBCl/9ntxiFNqWaMkKuVTdGswdfR9LTxdo3eJHQkwjybz+8J7p0AVVXCxWRDKLYcIs5f/IL/4KcDYRUNAruiH4iSUJM9o/6UpOaNMp0JgVMcUhi9+EJN443dyg57NufU5f1EqIU+LH8qdT4iVJdE4rD8DWG1fBxkfg3yRnkjXENcwAq8wiMhsc55kQ3IKAvS3rQlhrXX2d3fmJXTA423LUPsJhbAGdZ7RKyYkjj/p4UbwnQOT8+bY76zoC8Ovsfj+vBGEZeBTcH9bbHTwD3w9wslEX8WiVZvRZnWa+uMDUuo/vxrSqvAdLDKclb5RUtwlU2+ffn+PfJ2ZQldYyymqDoWzjnbPAGKkGJvLh1mIiJaCVxDLrSnaOr0ovYxeX/FEkK+r2SvXgrJoJZKuDoojWa41q9jw+htxfst+jCDFuIWlOrwwSOCO5XmJWbsRMjk+zG50x34BGjOa2k35ZJmfcLzn3HEodra2MwRQpnD7q4B+OkLDKF0q7aDm4OdFmYL+f4m2LDuB0zzUuk3uGKKEpEtilLlJSRAlM/ip4UUxSZYD9ay1nWUy6j+ePA0WA9UCadpyT9w2/UYapnUBSUcXRhz/Rro9pHoehmh6klY8WGXUwdQr00Kwis2OfNqOM3fWh1SwuaMJC5qRB7qysDUIVPD6AUa6SHwTQWFLo8VsyelgjzJKyAQ2wQHrHcxKt7m9maiaoSxt37qKT14EBdcNYjxWVb3rostMxo4ItX+pqau/+TtYuP6eDwEMpdg41zXydhADV7l9fRcb0/BMSY6opPofdGcz9w3UVV0S1qfGSpY0OMS/8fAktiwZbpA0zUeALAhL4hdK1NX6eLh34QsygbIK1wFUtaozHmu0mgNPQtDMgdEZItWlg1d5h0sFSva8gKokNa5ASjGSKsEbkrSzFqIR7iiNqhze39oi/5Mwa5/Py10ZTuVfPkboOZ3ycSdQF0WAfDWflcCQAmrjI9cIAsVCyGILSLcWHoG3ac1rsJLR92sRQz1/caTnOxmYPlK2S7RN0y6TTBlekMFMGAESmIRcHBoEP+1kx8bKTIMSo/Hl9fH4qUyLRXYwU2BX2WTYKRkKDOgraDO9SNb9sZFuOZvNA0rxrdHyHKVr1k+tkAfAj6Otk02C4NucAgpwb+RqJmpcN5jmoLSwyBO15WB6rmemO70x1K5v/aPi71ts6LobAe1302fE5QFEQXyDE3j7Y1qou5a45iXdgQdL4pOScKF1iOEBqsoWuFR6RAxyWHBcv674GcSN9KFDS++FHZN5IMKPx5iNUK8439ntB6wzF2Bxn+FEZ3hIOKwtr6EbVYnOS7HTlGezrBGNLSd8lHHeVBahsIelek5+NZlfpT0n81lxXbyaMTnqXiciA7TkzP9tU/mJZC0gWfm4xS6aTAlXGWg0yKLcDRfZyBwJQRjP/RCn67PgTAIMlpi9Tc6Ohw0P8L11aGOeC3o6sPpWRswdJao/3t72/k6XZpAFH6cSqqG+hunoGRfPWdN+ZP/BNAbslqHMBWZjc1qiXslgxSeSfkHuD4GWvD/+aFGse2zuYmLWwnBB+B1/k8N0TDjjBuwc1ev9AqJt2jhpGesfPilHvGaNY9Slvk0pWqI2t+49pU9Ve1jS+G01yJteBW0QyTwAlEgEm7k73gn9Fl4tad0chPtlOeS1C3g2hxERAmvwjhG+EXxVNtPCYvqkgkNWd8IzKD5CYd10/4SIrR0v+RcmtNbrAznpkT+mxzGUndehPJ7dKDZPa4UirOxc27Cm/QNLsp5ondoAQS0GfmTEg4QHdgJnL69I+ZeSHSGZFhoP9FMDlIIMo8uf7Fl1ksFVnZLpMtXnUYvf005bWWDKZNx27tPrdssx+A8cWQH307TRICQdxGBy16/qzkqIOUUDHCWUyvA5ppEHtrlNOzjpLGK46dCS+4tAoGgT8xtmsmVVDfR+LRAsNDWxm07i/vTUVESlgMk9t7Ui+5247kXsuZ+FkyJTc7+TYfn/WJ/RXCQILvSV224ira1cIw2GM2FRTEzNjWtukJGkBzKjXjyi70aeoCf67B/6iv1wrGjx8jwr5KtbudJlPbG+W158CigGK5DN5Wz49fgK9/UiD+ohTVwNNDlXI6gqhSo6zgsUJoFYOZQw0G14DrLI7CoRrhiHYW+vIHj+0zReh2WRpKTUOKUgLHlx8qPUCBgTVOuVdU77ay1klIcCbcQPtly/P9fUxNO8xSkdlAnPznZlaZYoNUXQXXcigr636mcLcrWPrryqQ2JnozHg+NsuafSMCSgeWL1DhgurzPnDITB4uIwS7cIFQNZBReVfB3qlwhKRhdrs8NkRtU6EQmcndaxlKs1zUH9n535SWQ2CJ03IbA4K3yYOHs5YA9z1fx/xvWHWhVCtNXu9YTMR8LMh/pkA1PkC91AlpVEgxCIv1CZReME+2oGp2V7Qd0UgRkSBhu/obaUUEgTXDRD7mf76UM0BfS4VPGVMWOlv4nf8VAR9qlrkQzRTapYVw+beFkLw1NYTYRtIeCaReLyQ3hrDrR7HMhvsp9lsuljFeK9w0od1FO/oUEwcVh+97UoL8d80hd2ZjG3OJCOmwNOVqCt5nXoPNxXIgVd/SSf7dF34yaKgXyJGrHCldn3Nk6yvmeETaQpYEC+rd9hjrgxEm/J1zwFWOdd3pWLYAA9srluwGeTID5yZ6DESlxLnk4rbUkvvCDXPRst7NeXNTARS5Ui+frV2iEpXmKTH+vE8YYGr0sPSPGQTLdqRq0WERySPNOUXnHv+LiXlVhTc/gq/z7sBcMZY5o0+fLn+jCNUJJaqHREcKa/AnoYinY+Oo3ltzmPMN1gnYKRzF68uMRl6EO2vc7+PmJo2vXmmKwpCKNyZk5LE1hz0CcrAE4gA4/T0jkax8g6P83coouzer5o5kCC7jd1NwSF6nrVcdS2bJEzJtaEFDcyqJLZDJBa5WayWJ+0aeHFdwu1peT6g+zv6FBoEHueZbmpYGKzuU1bdo8AL331m9YumC5gvFnFdcuuxh08Pqlm18NUBEOXFQImUS+pGK1f9qYvEVQPInWQMPkzqSaxueARxJcdR3ESlvkMvb4FeV6GX9eJoeQDoOz7OYfPMHzyLzLXh1TQOT0Yipf0kCqCNtiLb+IFQrjCiuDAs+Jel5pC5QrHqgg4UnDhCTXrPqj1EnXKJ9UqvHReO1sx1nDDXyp2KJTqzl6g2oU8ysCL/gkY4LTamx08c02HGM5E0YyUYgSOBs9lqi177kVJlQ6Xk2YAqmqbAnFhYLRp3wxXT4jGwtJV90J99KoXDhFjTd/2hBaOeh7S5dup7jP/qEg9D92jf6Q0HYXg0nUGHmTBoEzYE7cWt6nyE2sGRLDHWcGXUuAoAc3YlMxVMOJSJg7srDjrO+FX37ase8K0huVgteB3fIx1th1S6EzTdqbNCBGJsfrbQIKsx4V87t5jCC3KAjLFbu6waoloOqEPuV7TBbxiC30B0lUL/PpjHsjoBFkNiYBHMbCWmm+njX/Dppd2Y9U6Vcx+E9j61xY1IfJrpQ0h8HHqKgtvYZfuaQZ3sA9uMA9fbdGOJQCmlRk5Q6OiVKAlz/QIXgXAyfljFCkNc+n0mFySxRB0HkXLBJTztdt+U52JiAUUu7avrZAxyT9AKxRT/5keXbePHYSdnC75avDzuqjZto/SKzd3fIwfFYbPM6ClDpwKS2rs/w7E9uOUoyMt2doTgRGgEW0tGUsa4Cue2YrhdWxUvHp2/PHbDdVup8GfoN6tgrOLmcNivVFY7034ZciS/4/2zEZJbVYUNaIVtl3PFSUYvcFVkgOFxqteQXr3d9YjMYcvjFNHJlJkjkObuUK4fTeViOREekkKnUeoziJ2a1yM3MjtdUdzAK7FpmimdZcTY3yCxXBLaFQ9kOoL+jIULwOtRo4D+3VgNyviAogzGzWqkkSXCVyakEXZxdd3jF0z2D39PhT1KI10bTfPEgENbyJLQ1eU1YoF97Y2vCSNcdSurw+0qdv/nfDq20WbSdBazYvc5BHWhHugFE3VnIEFkqrmGsboKhKahEs9RkyRUW9Kn5bk3+pvXaJPBsnsi5Mkwq4nYw6Yz7W5kVsRCEVTsD+shmV0xnHcUbM08+fCFdzmPHwmYfLzz91+NxGaTUC3avxnZ3oNuENgwHlz2BvLKQ2nJmJFMxZO6ViMzcT0DfDtgh5Pj8mTeQCl3qkyVjWQcwD+oPnILZqZc3FWZhH3j+zH8Bb9Sue6O3oV9haoZM0rP0mHildQV/iSD6zd1PwsLEDYCN2Zy6aOUniUk6qCSEYT1oLJ9YI6K6VY7AMb+5vHR9tHRZcfRFumlqQydb+BOuFAcdxOQpTsKzKDQuZQINFS0K3UYTOd0j+weEJcSYV6LxrKdpgIwBvS8kcOhnHS2PIgBBrETyECs3q+a6b30kBh3+rqzMpc3VyXPMOvOXnr04rc7FfkXvaM/bxtzDXvtKtc1xf3Kd450+JxOMelrjYTUD/bpf0BfkT0B8hU4alRwicqNgeiXEGaIwoHMSDTVI6vnc4t4o9AhWM2j0A8sGKXeKeUR6LydXQF7GWHGrQyWnOKnatBzO0oofKGOKEgLgs4w12Tb1RBEsMui40ixB2gN54ThgOrRTfUrti3DkwnN7+d6Tm3XnxtkUvRPpLISUjvMnC3X2DQPaoXNNYq0znTJoN4//lvDaSkJsrxmaXALlqbiZUZcBM/Isq0mp7BZSpUN4k+TrFJvDzH99hcHvqgIwnVAra/8VC/ICce/qomCRXxTKsMuQsRkh90xAlQySsydDLWTlUi5tj/K0Zyd32fddmsTdZyUkkuLIPjVdhUXfhfF2X+5mVOwDM3+8ceZLsYYZ8qloc4+3vMRHLaKRU7rJwsNapkfaXYi3402hkDRKGg2H6ViSCH0xJb8CKyjQZJYGKqJi4WhN+AAe4biSfiO/YBmsqvwlx58+Aiefb4ulrf4ZN5gKlKUNKcZBscWXlB4MfgpVCOhGts+mDHWIErbgi9lC8NKYTY95YwNFkC5u+KGiQA1EQ3vV7Tqb5K6YYhO673re92s8A4TTHge9WEeGTK6DIIdk8gmH/5+j+9mKqRZvRUeHLpaeYyJDxDf6setWS1Pc+hIg2gpBHuZcydUBXLpRzPk81mEA768kbVN6B4gdiWPt3D03gjWhZKfnHpK0ginpIr7wBNmaJRv7lGbQQR5ZM9RFdG8y5JuEg2wEdvCk7WxCZn02r2wpqrrdw4VwdwZ/jMkTG8lT8oBnl9VwUykhvpyxJT2l4vNhMsQ8Nz5082vyf6keI75ejJfEh0tVW/YYBPzZQnsvubXxJjZQWIV+fy8OSjMkAod4Y6nfegqNlMiOulqFuv82hC9T+V4vBxH1uJMnqHfZTIePMoiG6iLhQmwyvIPKmlyo1+a54wKXeCKithEDf/uZv78FV35/RbRA4o2PlV6G4WfrfCLyLpGzdez+z8jib9vtW/Pns2jDH0jPGYhpYod1DeSelyQAcWk6gcA1aRFliWoqXGgYsjlpEHiTgQnPgw/wzNM7XFQmC4pB27+26zuGqaa7NxvlUGGHgrvh9mSFKTZoXtpvUHuitnps63Sjtl9Z97bW0MkExETKwBFkaiA8GQzFTaUvJABwLCC2R7ysL0zn5BcWe0LR+uX9nFOVM/aiVf9XRF/KaRWpM+F3e1+qKR/bg6Va0BbcAB3IpnF0rZHXkFgKR2SYb+ZrLvSy12RBJ8kzrRfQaYqtUO4Xu/jxqGKnH1L2h7hC+yHkLXwQBHGRRzX7fZMToFDH8WyH2CnovPdjCB2eTaEj1Z1SFW5BFDAgzZjYvDvfbJhebxd2x3N7tioQl5tnbfeDqKbfdro7kn1EFCeDeMTU5BT8VeXMMBxym5i89JlaWYOOlxNQ1De/jW9R46PpNJeMITrEFSDw3RsS+mmRynlq7x6J0bk90lNYiv8lEtDVWAfzahdDC3mpFvbfadoTl1yKhxmmgESLGp4Bw9XoWketRLbuaFEvoYp+l3GPaThVYgHHhY7VBwi5nhc9DsKsIehL/66RArXWkCStBOOu45xn3EpbuHnZQAxEUKQksEzBWmyOyEmACIS3+RlCVvkjeL+359lJdi5qqXlok01Y/+w0BIIj6B6ON3GZVO3GJqA6AvG9uISJFrOAj8HRU2Ls3eanZIi+dOQw5Vd+53fNhNY0X8ncEHOBcgnQwcQrw5NBGmluWMS4oF+pJr5B4pQ7Wg5u6OF/oMIJ7FnBZEo+ngCTT8pb/cwuSGe8dV4ZTQlfMYoGKKSQ/gjjrgHLlVwi1Ni3y0ARZIRkQ84jseVvcCXDeS2C1nvjfn/LIJf6vhL5vfgVniEzG2QQt8+u+9LRbvobm9JXLbaSDRvwIAU+OB6/sjW+9FOUPWpQnq6Xit1P7Vq6iXfgtdG7QZJ/fp0HscMrR3bY7zHPOUwxg8eKIQUtusD1UhdILI4iNxOsqAV1h2kZxMpiQvw4BSQkOeC34vE3YvdRUjsvE/fac8wgwVpQWfDSFPMa7NdUWrcBENFTUTeGvCSPuv4ZmSU+wbp/Y0+AwFLPNewlC2NtWylfbJmqT1R78KbwejUbF9p894R4tUzIiGTGYC5lSFFh0BnO1DP/R8XvLTAiG4xHfOJx7G/Wbe2d9vqH/eO2YLwLWw0/Io79UyK/+MkYPJzeqiUPuPvQn06MhEzDjU7jNWHG7tNrPs0HR8P58lHufNXUpd9WyNe4XedN4gLZrhWl3kWNnyLURduS6kJAbrOaGDKPDLaDCjpAVPiaIbg0JgPkNG7Ao3QNuCQnWlBHD4dx9rI4yCK01U8CbsG56ArlOW1Cgn6dPVletvGF8uZACc5JSvYXjDPZPtDRcg+dYyiD+Te3USP1kQWOe9IQaiRMdDHnPDzhkqkGtTtqoCqCc6jPOoGNy3EJY7O6E1uluZ3X/I3J6ply1kqvLcFqDZvm//oPA2NnWQeV8h2+oQw5cYQqcwxmLkKyMFu04DlfapfBBZOVqfvAStIGSFN6nSELl4fEiLM+/V9kUM0E/6X4yeiwNmjlAvLPGwlehAjYXjsY9KpDuzBbeR9bGIBzkmcrRqDah5cffR5jrF88ytFvX3kdkZ/Ac6bniBTCnS3JTnzA4Z+z53r0b9lVbYxW2EOLOxzEqCnAiBn64o6TRGwuYJwoQ+5nrphDXw349AvH9bF5tFWnwJF32hb4EF7IlGCy4cEcP4McaliFCiNxhqmApYuXMiR+QvNqNHj4uF/nVbCUvpP45xTGVT+lWw+oSBvpiglyDRxEeOAoQ7YflYaJmRkXSDAzLqtLCOyb+oim0SfEo+LQbVTxNG3U94eEAVqO0h1MkFPO3hKojjFvSVJumlPaTfd5wTd0L8k5pf0PLa2vVW8lWatRIX/q/uwwxIx1dZoMxdbVUqyUmFKdLkP/NVQp3wy3Hd7Kk6323nWhlrxxCcWtfZz36qOiQyYx2XU/yu6O6UlNBhinuzEjySyEYBgw2fgret8Pzg0CzexsF7ERgxpp9w4GZ5k2PQNvgML2Ncro+5RPIazubvGjHbERo0cBiHbHR7U0jUh95MCC53K7Us3xtlwomq/erCqqMkjS5wY6ocGt+uUYfpTs4/26Y7GSWoUIZ5Qe/2ER1aXNptw018/AaHo3eM5t8EdwiWqzh/0CSGanqc/kxMK/dElvMq2p+GIqiudKY9wgNnZizf3oyYKDcIIbQXvy5BuQRVx7FifDw+mUcMCvglUat3oOeuFopRgE8DcyOJEvuQ8uo+hDxA98qVCdsZUxVYfTilU7v86IH2W8VGTkMlngLFoVD0qmhaLamZIQBsVtr9mlCakWrAPdL9P9+AD1vwgM4zfTVOvCube0aDuavk5c/zrJQgycc2LHDA0c3EeeWc2baDcWqN0VGU6brIoz/bsDF7lYJOKIF3ioW6KEl7s5v/9fbTwYYwZY+z+H60+imCODhmwFCFsCdTwIbaySyzFczUpETUKa4Fzgy+f8S6Yp5pPGCTmKnbPLwmHAoF6oOcy2ZqrcWXSUuxNFxaH9/xuEK2ZCwMeBzhqUx0iSCTxBmT58ttPkh6IHegVSkO9qL4RBOKOGGapAPZN0M5fJEbBXQm60s2Tj731/wE9IRb2jdP/180pU/7C7XyTHcNGbHRlDOBRtkE/8YKnNzJnci+5FRvMIuGb4eZFu39xkpfm7sxFCD5AQgIC+1vqwiozLR3xeQepfZEewJz3TDM7wpw4TCL923fb2FoIyy3AAdJpJmgRFdU61r7MmP1v2qUst0k+Xq8Ne4XQYM7GLKmefxn7HUDEgz7XTw5EVzVOdBthHho7WNwGFOOOo8/U/1Cm4GlWBDC12v7EQC2bgTnu3OaI9qQttsugrH1Ig2NvSl4w+jp9fIBisOmwgVnmjTz2JakH5ZEB8X2jrq9Ze9sq7Ht8A5NXostd4ikfJtIKXd8wlNI/wEFFbZVkpDoe2ex/SRQ1rbR3qsy/waZ8nRtHnACeBNVhi49GxvgdmslCplEn36/DcGeMYdp+S52rWSU0C82hUdhEQfcQaCAsiEHglJ7ojyyH3tIUPHF8clpwKFx+c1IrnmMN9HdjmJwrnskrIsV7KdehB2ciiVNyyijy61vbqEYCnZ/9PXJJNkTCOJRR77GgHo5xE6ulTP+z7XZINqrX5qEdYAhQsxhfEy4Uldz9/01+2akk5cqo/UGPc+9Z4vciyWwaDgFdVhSnBES5smaj93AFsW1hMYFpV9RSB4arFlvtq2Dyjn6ex1Cq5Kpcmzqk2pNnFugivHEev8Ovk6oMU5nTwgc4wONy4b0novyurSSEcDcDD2sPST4iPXMYoAX+5XqNonsU08RF/+SNl12PsEjI+orYrf03iJE2d2DErehfRjc+47JeBgQ1ZjL6HXJl8m/bi+o95uB1/w86f5jgAV9U48P0mnxHggQOxOUYw3zZTTBCnivbZR52P28LFSLEHcJiFASVCgF/7YBG3Zcw/jrbNleuIvYkeWv18s6b1tGSPA0IXyWBwnl1I7KFZLP7taj7Nh2rjVUEfUO39q7PKLMlmDqsAn4PEDy1m3/cit6ChuxsVEdkL/4a5Wt3SxaCNegyAneArSR6mBKp9pon2SY8aPnJp1GARjbfFXUQ2lMnSNPjqDr83+6dkdMjh0wM+jEFaK88isIjoWlsbfqKwTu5AMzVCXeVQPoMd2p7hxzF2u4fUSAyRwarTyB9BEA5UGuiKJrjNuF8FIk/Af/ACJVj0Wwe2sUpYJD2urvnk9EgGkYqIZYUuW4U38ltHbx814vkWQzM8iwR3zadmGHanXN9grOoWP6O04SUZXkgIMR6QQGKeOqHu81tlDpJiB1UsLeQq0HOdzyfzx5pfCw7znAQF9xLvri2UwCnyPx7f/yRlPzNM2fcLrq9Fitb6hJcid46AdFSOMKoXultJUKVRABaXP2NA8QRPtGB0vMhb1+lCLMxwi09W6HYMiritsSK+El44+357ABDfCtViCqjen3TMCWAEYGeLQVSFDMG59ADMDA9UisK+IeshRiwAvv5tTYX5NWNkWlUcYVGMUE0lUtYI6Hb+lg+VVto7eyg7xND3sNtPX3n96LO4J34iaw5UbGvZZMsP0p/3CXP/oZd6m5gKEmMqxMpQ4kMgwrgooU9GWMn8+bczXqG4H2nXD/oe+pQXKI7eSgVXrbyvUEDgS/FbJ1b73DiE7srlpQDs4XxphAwR7RfWyrRUNsZo3jAhxEENjHDVSjdVj+hEMsrQM85cAaRoBT/XdY/ibhBJjAAoctsIZREoYvGVwMqQILmQSgA6F+VVpR/t+Lj2GiaJnwbyNVNirA1+KGQdKg5vtuJzX1Jb/Eq1Huja+focmpQFch7ScHie3DDRfP4OiEPCXgL6MCxazBqPiVr+fMsn0M/hoPBesCqo/dZEQlOKfqghdlV94H1/nELW5hn5DYLC5pzvRMSy2U6s2xdDmnQnBK/Lr178FfAOYVyY7j6k3UQ2t+wYxAzUzr/FPlPJuK+WOefeGv8WrqQckqFVI0QtCvVPJrUzXzvgB7v+EvZOguXHGV2UOPpIDk+jXhJMWLjO7+UfyBz6ivQDEmsNgNZr5kXoiyRAGXuCbUJDHlhNSWinXuuOh7WJus93LL+v2RoSZTfnGqlKuOFNmjHBO9qcEfwD1a5Ha1kVaV9IE7spTHpNTsfJTqCosfmsjFas0kGa+lho5fIGZmAo0e/psYqgY8MPEej0NxRw0QY5ExDvtfR92F3MXfP6QaCxy+xW2J30TOaAAfBoDwUYeWW/NJYeV27EJuNU4Gy0sMVdKWezKGD6DbisU15NIJvZl8dhk4nnFhjym9Z2xKQOYCDgeYw/L5+xoH7jGTJCir0f+PWA+v0pC9lYpIuFpSj4GKJwHghQ83ubSOeBWaeIOaDZ3BUEexVYhmATxnh3lJbB2ph1bl5hs46QEp3XpJp/k/+8lQYhNjpByKlykNgLRDAQI/NA9YZ56pE6Q20SmR2Fd5m5xsf8yMk9BWCVgBGpoOo4TWb/XOenUGiW5lQZqSuVRpbqtB1yy/Qer2MMnjYrhuTXjv4AJyQEJ+iVCbcT9u/52h1dUOeLPm9tqO8mJa9QmPrg3PYGExH3z3FhQKSNQ8mK8LC0A8C/aNIn5x+Hrv+o2q5XMMJ9iekTnb+8/iNNhvxty6DL8iSQcY4xxQsyZVb5Ifz4v6Q1GAZsozOZA9xSCfiBnKJnw+bQ9K/FXHU5ahe8/+SY04Y96XAs1iUjoGAGR4yUtI9911oFj3tpm9J2ZJzCv4+OsNZ+DdqVVB5FAGR24Tj6ijvCa/CA4pZludlN4QGhWT2Rsj1vbOUr06xrI4barJdaVjTMEfMLABFEGdRWuAxX1Es3sYFaoj5GDWwMKb0fNxnF0FWH/XRHhKZp7fGzLl/oQc4gffj0IqlQCZY1VQjJwmuKQMsmW1JOMavwqJLO059qbgYJ9tIY2rwYeBxe78DtGsSbRPLcZZRw6jgTb8nhOQzMHdLB7KOaorL06msVbk6KjdflVGa9f//EF6SXE5y2qLUEVtsCTXEhErMVrweWukaOUepfUrvnMJUjtc1Zb3EI08mAQ2OZ5Jyu/HbF9MnL+f5w3a262cDcLhVPvqpYlxAXWywAYqO6qOkXgNGc8trskyUEgDqYsjc9nahyTfE0JztNPa20SZloZVrKpKt/y43e5JXbk971ReanjDT8BRj3viopJQ2TCwbFWL8eP3N0sd7zFxntnq2HrDnLn2ID2HNMFE6gSR4tXeEqbxvskONtEGYe0b6hcdwF50snlyhcVIftepqPe+qJC3iJafSBlTl9E4UAsNIpejoRo1pwvifY7AvjUxkUJrGYG6hC+IUJdIlca8dh6461bZn07983EtOM4eehDalq0ctw4cqL+xJxOxg30Vzv7v3cNYnwbsoLWsK5D8KJAyFp0KU9TPbW3mP3twkXwJ4zWYlT6PA5kCrJ//OwJXLMV6Uv2uSoinB/frJFzToFIpjoUoxIDyFOOAIxpUpmWqZV+Ewx1vCs/FkhPhrHmtWufrIxWopsr1iDTJ7ABSzq7DJlpgF2ncA8PS4wA2di5keeVY7kRbmnK8KBR41wsy5fbO8Rrv6KQHTjNpzh1MPZT8jE0M6LkC7g+eJGQIU3jFf+7rzJ0oSc3EvEE2jh1cuT13fahv9FadCZL+8guuoVw1meBYSTy2sDdCc5FHoSp072iYssR2nKTeqQyxOk2G4D8RNLCZCKa0q3vq5tGuXuOMc85mV8B45V14kRm1CTbzXKhmVn53Kx9pA8VSFmUPpFWwjQbruKaIYd3DSjxoR0kIKmGGdqV/N095f6wDKbCOM83j0nSshjz9TvN8Ggsfk3GhQ6Z6XIR5UvrpPeainZrRshRCf4ax9qRdbo2NWCfJ1HUZ1JnjVf2VnmNmi7rI5Z5DdjPgR2KgT+8W4ELU+KAnhYP5KoyatppwNlS1jGVB2kqQcLCd2w3QOEoxaVHQ2a8mY7yyWBiqWpUQ7wNqjZok2RtcqvNCZs4b5ubcuxDHRdAnIBH/pcVXHyp75mDmKcq5eeNYvV26hIsng0k4iIpCpYxahk7NpWw46wme5gex4p4z6V6PFHynNJAeOD6dtf4F23cr+hGf91KCGLY5QHR0P8g9n2Y+SXgukFFf49VwnAeANZIDFg1fqhqYfbn3MHjApaMcRP7nTpn7DsT0gkG5ob2ydQQH1J3N/GoWDrsN1OtjhLvCHM5lHdx+4XYvfiX7fDO9TBj6VbxFpjcjZH8C+VgiWhVvRPEzcQDrG1HSsOGw7443JB8lzIRecm3iJqUQNMJxkJb4Fy6JqvnFnXD/0ASFeY9tB2KWRW4h015EpjYAAPiM9NGtK6TUBt+Yt6eEOFQaAvZo/WnTilqxRgWDx4LwRzhHvi0Q852zLOHk/0ZJP3NcWyk+hh8faX9crcQAX7QUM87FnM0bFQb4XpFvxadhMadsmNsApWiNlywuTISRIe3AdEVyHEuGiTCNBSFH/lEwwjka5NFZhWCde2As2aCea8o55LXGJyf8L4H25bo75AvE7798N/aE2ENRR80d/KYGKpHqgfBOAAV7rmNgWS0FHjwRi3F6LplT/JHfkq96+a/NSKsX41DB5RPctX04h557ezyG0Jdd+gUhBiSLC7VnI5VkRgPDyoKhEe2kYZu5iIyExZUwBASgeXTbGFQCOL8zK5iBXYP4J06NPYlVRpIkfk0ZbPjTrfqA1luzO1V9nK6Z25O4DA0hlQe1AM4z67VEoWrOqmlhD63N9lIkphotXYjr8nI+lkz+x17I+OFAcaLg1y7Ji7UhLQeJAvEmQLgk44573Al3O76VOzKdJ33syriWMkmEaHU6kPLHWaYuIg1jiMq7y54ub9Ux56jkr6zjCYWNL6hNX5vhnosHgScHLICcpMDWoOimpwk8OnxVkSD6gfHDLsUqTRuwHN9KC25VLFzlKDjzyrd0MIyze1znr8R5SYR5Nwim7CS5J42V0COaxfY/6HgHqpuW+yYPUUMKM2nX/cDFBMXHGW002nGBPJCVime7BZeDfQYG+TqoDjjeGAAFmvE+nRgyZrYQ99YAAMvjjIbjAXqM97IOr84mJ6jC+YfSuF1IrFA+AXuTmwfjL54+utPdkvecM7H80KgLmQYEliMhQu73Ss/x3ljLV8ttw1CVMZaywrnS8vMBlVHSvkUr+Nwhl4ItfKcsQ92CxjkcJp2nupN/ZETt6GAgddDt77MwCewTGu0fzXtiK8KIYHNNhxUm9R/LAt4DwGDMbsKU+tOU6G66mIQgfe4X9k52cmZg8Ut57SWCQsf6Uud9dgigjlT8/iPLxo2j1F7sBWRNu2MBlbxF5xNKHzu/sDKnnVaIFMPyUdvDeDQdhep8LGv8PfDImZnXNqXpbYbBEM0wYppMtf0XtPL8xX97VC/r2DzA4PgbxZq/1tnB5sdhqfA/04SCGpnlRKl6y3wPZgkvpRUA6CWlulYMPs4XlKPk88npVPqX7DBoN7Z25wKuHUN9qQ3LZKLREnl3fCuPINPulf6jozDmsiGBvjviEb0mCVh0HzRfxHWrvYZuLvEMeyjg4+PSPeODKWltoWQAr0WnzWxZSZMMN81zzX5saZIGQTdDxvyx+GR3NSZ82L1+Dc4xdwUtr96gQgPFCC1Ru2DeK7RZoqpb69XLdv/T9mhEiMsALJEqxi3Vp5t+CENW3uqZr67mxg/PV6elvdRCRHvkPyzIkqKEUB1odv31KVjxqyYdLXns0PcstMl82t2rY2aR2G5sHgBANDxZ/x5b9mpHS0ebIgdrja8Q8DfVyvd/9QTv7AiDIPmNNlcswBAgTm+06zK97BGNzWIACaDc6cPGcHHUhg0UAhG6slUNWc6DCGxxp1Kq/HR48Pl5JdETa+WGbjqAB3m4qncLMfeWl7fkJ3S4nB5eb/FH5mGAeetZbGnwFd6YE3vzfpoqwJZxpVRsFQOYlK4vUYVcN3/A2T5SDucHQeQl9dX37pi9VRsRODxTVN3U3VRNR17deoCF1JbyyGCSWS9l6Facy/Vwy80HRkHvvm6BpurByxmWwqhyC1M3XsqsTbrf9dNNp8HQonGqpnyOc1fKPgN5edOaQnO5SNkuKby5PdpMeNm28hi0cfVPbVCc7MXeV07uG9DAc9K9WunoVvxcs0U4XTia+9NOl3f2PO2tFiA6vKc0aCXZVF/VNEwCPnN7LMxuTl8WTUyOfh3jpbpbsBHCZYDUBprHUQbcA8kazrjrzc1Y2QJI7gJTjG7KHHQOPyFrD0gsNQDNa9PaeO7eP87WZTAtjxZDoM6MsOdlkm2QsfYi6lzniCxkZxn4lkOveNeBj0R1oWftyAmA/J4E4TjtAhfmcQIzuZ+JsWqPLd1R0Ej2dsdVgYFN98BxaUv6ywRDVtv/LT4PqJiRGa/e/uIWNzGot5EdSOUWLo/rHjunXu346YBBt7my8KWLTt1EI6Bggr4LRgpdQRpVBRyfRI6OuuOCM7ScC93ogI1TATzk2FO324DuhZerXIb6XbaIm17RXJvK2FxHBewYkpWa+D6YlVKV5UAcxU9qKM5w+T6BGjiRS6txcN2RR48pgRu4dTUq3z2Tj8Cvp9Fw0ZS191IK5Y02dqXYjVMP5SShQUI3kHbtopWY9+ih+bPTyzdxYTYyVptogkPRL/mHq/GKkkNJbtXz2wWijlyCeEfmhOsc0J71j6/gV8xjVqosEFdRNVyFZD2gVrEE8N0y3Maj3uYSAEhuKf36rTS/5UQiEHbDTxjnFRQiwEkIte/QyYaGL1q4qGff4ehhFA4Qrp17jcP8d0hceK85qrk7x14Wdkut57nZn3tPyFkHlnRpmmsaTG4cPnSnFOvH8E9+C6W0S5SaHxqAe8NNWswQ94iPbk60T4hCOCHVdTlDFfwji4mDIQC0Gw5xYsr+4ik7LQ/E0Rxw81ZH2tQWdSrcBp8S22i4TkUIu+m4QEgq2uOV12kv8FT95KIM9D3kflPZhDv8P30qLDD9zfDijyUXL2iMtOV6IYUZX5OSR96RkyZcrhuQdqcKKonl1JXeEq4vQPOMK5UYUjffLwW3NqaTRgHnntK3Cv2x4qwhK6WlaFy2akEdwJ/zfQgK1sj6A0ueFccsLeWfyXZO3X2oAbQGoPkeuL7fq47+Zgr1wHDG+bJ5n1LvYQ/SzNAdMBog1AwOjrOjuMNKCLNl8nPuD8El+qnsntGaS4epEsonqDvQ3vWO+o7tgcctF3bTMVVtGhM+cLl40VIAtCk5dY4PZfeyjHS6VZyISKWJNMuuJ6PG8iz09TOH3Kmrs7sjqPGXARuY54WVHrIJYrFpbV9ML0ICeo+HzwaNm+X+Z64eiyJsw/Rnlz+y8R8A9Teu3RcLoK2h4tkPUI2tasWQT7+eqHMm3XbRTw960tw3dpLmKO86SEFmerNOtofM0Mym53+E9NbkDzEiXx95W1eIVYElrfSRdHI4r140Y7OYxpuCIcBiBiAk+OnDIsuU73JSa7NeonmskOQMquVfHEEwhfAhQNdSbTbRfhbFIWtxioQ4DDg3WoquoGUmssM+TDnS9d8ofqfCgXH4K+FeP5iTUVG3mYoQPgT+kuO1GAL+g36ctwA1oz6oM4HK++BnNqOPe50ksVggf+F7eOhT5VkEKnJMrhq4pcatxELueNUUnRTFUusiz54X+TwwNeQk3AIqOa2KgAGl3na5lp/oRZBm4q2/lecv58/NU+XT+Mivcm0PFpPNwvaAASj8rK7zp58AgDEmh1x2igmlbzRuzaNJ+TjXqxKCGXOQyVX5raxQlsNAA8tbWatzgg/l6+JqFiQujmILOLx8DoZOVm+5mPBDLo6yvZrg0qeqVD2Fmd5qjWa0ccTBcWbJWEvyxSGL4FAb3diGwySFGW7lfn23BHvqpc9W6TdCtJBPyZZAi2YhXooB+iNv77Z7nUHEJPbM0uNlTwBkHTZ02rtL61rrL+aD4E53+Iy4DYKLgrX/wYYuUgH8xg757I632+oHNrb19S6/chaH2tXLeiXEW49DsQPpVJ3Mzzq7fut1AAego99sUt5zrWjRpkGtppVpNtghjuXIc04KNLGwDfDwyQjjGqDohQDcSzxjPIF6eiX5QXPeBYTH7XfKwWPXSKbYZFAKx9cuNW0EvKP5xAKJD5SuNwPLQ5ItuiCHnlJG+JOYpoE35TwjaYYFOVhX6dnwbUAyb/Fmlb9Pu9rpDHxqYrbCcpGIed/J8knKd6ZCXHpj5IcLd/hQ7sWZjhJcApYvcib7dkI62id6RkV79Skt3TgaqL6zvitIDpJt+pE7uRUkA8Gt+wUSa5RbnrvShpV9FKZdL9+t0zuQZgPo0mb9c+kHT2lzBmrOOjXQy1IaXmuAE+ttz73DBYsloWLvZ9nGkHV1Gd5WU2nMn+gisOIu8zMe/P0tyIwePafjaLhiU+jbp3eNuyd/z4B1P9I2glUbqllctwR2qCIt9gE59mhB1DC4lSsBVOMrQdd5IEpX+0vRjq//4a/TkwMTimMYuqY7aZimZnQXN61xTT9ta6SaF2M6QCkxIjKLSTnEHaQNPNhWBknCgQm3xounpcGVmhlDZjwu9c9w4nZM1XZx2KOPRf7iltd5zeXbDmd90+hQ+ymlkdyeHUgnMXNWS8S+5CFKYa9rXjObqeM9fqT36YZGc/6R9osM6XZ/cqjYXxT/oBA6q5PKKaqOE6s2fcIhB2tuKrAH2uUtJsXS5mt9EaR2MDBTrGkVJzDfJNMJbk6sB23GufTTF6PvT28tLLUKOSrdB0iiwbJuxz8ndSLDo9z2ixb3tsuaOhT3zIzXQ8ClsOatHZEIC66g8GcO1w6qGTmnn3jwYgJX5csTsSrOwxkyYGBBRJiUarFXhVfQkMNzpKbCPy2I2RKKRssUFBNjWxMLvooZEnBowfujgdMcrtGo7gOMMviRBzLtZHClCyTai9cyo5IfvDN+g1Pe9OO9JYGq4WAOxZp8YxFzm7Ma+opZHZf9EBW5MUztic0hsrwk387ZArbklo3zLY4wLYyWNmabCqDuYsG79bLuHXUs9OTGHgSUT20blcg9uOSqqkpa5GkqItojpARSgQLDOWgkCTXdPqnuh2fgY0pe/RKwhqpOFnNTE4+LgBnrA3+fHxYVgZL/ppUZwpQ6JZjnXzUdVSDvWZFPOhmiMR6fd6dNI9fCIJPm/Ic2nJtNtbE5dC40aNAnY/T0e7SqfSd2NLlhzOlawlzQTQGuMqLvCqoIZk8QulPPtsa2Nn+hVo/tZ44iRmaergNMfKS2edQarw5hCpBXaWPG0+8FmPz6MJ6HtP8lR1/4VB0bddopysTog/Jys26lduQe4IDDdnGwjiwLnQSJAKU8ZZN0XqS6RLHTViG2yGnpLuGxvZW1A5iNnPTmdwByp9tEq4huZXGkp3Vs/eXE9DlrrQ3BOIqmrgTo1uPbqLYWn0ufJLhFDV16e2S+P8GXQUQW5BP69H3HpdOK5/NXmLDksU/KqeK/g2bX+a5ZOHg31m4aXu/9KA9xVvmJzHNN+qqu8/7BPlm7kdVc2cRsHnr2u3JMyjMmOmDUrqO9emxXGUQZ759UhU8nlcrxfdEB/6nrt2Tl+C4qcVYuO5WOVk17S2yf4wx4PVApzFoo88aC6QcuFgDPecQ8Z7kW/k6b3Fwb8mm2OkWGNbOETGSNRI38bnTEkPcNiYsw9f853RCT2PeTXvHQPWGW4fbfL/YjuK8DtC/4Abkbrggrr2cdkU9N+DK6PSjXhmMIafnnPH3rvG902E2kOPBLl/SrpvqRxfLwCf8Vg7A4SOiHoatQiUL95Bd1ZUquCE01lmGNeZrJ7osSRls4UHjdGB6qCXr8fwaQ0yUg5fF1RxVJpdnGRapBBZGkLMzY9kMi8l5hgUlJWZv7HNkCaYzvTCF+055qkeV/fYii8WtKHU8/uedrge7bAhwKYdVkrqajXnRYVC8/w2sQF0caeL4grOBmaayIe00lmjmJVKFsf2yCRBsdlgVOG1OXhzIXudPU/899LATPjnpmXpUIJMsFBubpL9JRwQkQYDVT5MfmFpejLKaoUhyNG+ujHlDe/DaqaJ8xlorGfKTtB/Ijeo2O8iiHS9GSVSRneRECnwp2FBS5jh7fsx2kqSnjsKNN2ecfsJlCUGIxWj3DADYrmVYnaRK8XVpH5jIUSOmkxVT7roGP2u4t9c6YYabhFS3tYDPQiLHVQq6IfAuWLwBoTeLrJMZPN2073g/NSGEGmEfT26VbRQXitZIouyvL8tBygG0kjm9VXn1oWKwTXEAoDLRxmzS/2zc9oYZV5BW2HpeFaP/2f5RfE4XZBTQ+y8O3ElQBActsgZo4VD6exbXCtnnld2s4SR3LCA5cEDWLw98FdJsanhl1YSo13M/4qqgWBFyzwZijHKaufaT2Ttksvvhza0WO/0MV+oxDuL6FL9RVsdKPoLrmWDytr0RFgH4WUOjohWQ4KzkPDXyEYjf8bleg++ADrSaKBuJELMp/b/Aw7wZ5Mk2eeDEbu8tEz4Hg012nCwGdW0Emz3oszAHkE0yXBOrMOFl+1Hc6oZ4DNPVHAMctH00R9XKxK2mtJIvd9SETo5rXKVD0m+MhRhSOzIki0q/Zg8E6KwAYmE+1mYixEv7QmKuqxkylOinh/3zsbvgTqJ62rEBl18PXhN/HvbcVRvTsRl+oP2Bi7U3rxpxgpDch+g0BlNW2p0pVS1DhtxzwBo2RujEVetXEj0eLr4uXI6St/P0GlbjMOanoO8xravjWT0kyp7FJ9ZpfncxsgC6+jjhNu3KOJjSKLONDeAY+ZJT0scwu1L1jxkxDC/Y0EK+QstW+48C0uHROlq/bbkObQIvInXsUDPLinb4Vt1TpMlo+uSkoD0LG8gcIGjguqJS7rEEYtfn4rCfF3egBSt3XLVaJgB6EOsuQ/Ge4UsXUbJbtk+f1KXU1FbVOkeAB3cLJWY01q+oGuvc9JdAXPpiWK/iY4ajl2FyFE8eZ816UEd45O9uPpqmiywiLkxa8S6i9z4Qa81PJWYdf2ug3807gd9tTxiVns9TfaB0Q+ZaktRfLgsC/2UtVnTg9pQREaFYBMFPVa2zl9Ch4QXeS5qd8vcSvZR05a1+zHYc3g4wmgN+JOAiyCzW5AS5IoR34nXG8+YwqfEeeEfRJBKhRLNChhU7HplyR7QPubODNGxgRpKqJ0TQnNKXwJRcTZcFQsZB1bk5evCaEj4sQPErFgj06p98qkFXSfNA8mAde7ZDXIOY8Yhqv8MgnAniNI9ERdNUSX4rMOFa3YzaJk2d6wCqohjHRH1RR9hp87SmTtGsZ1fJp69Eu/no46HJ4zuKHkEkzKFB8SfX7L1L4HsJHeaUVqM6isJEeo9UCZC6A8vRp0dvd5ZCN37kaKtk4i3dHKlhtKD7FyuMnpk3idRdTAZ+aVJiY3B/1UbM2fU/MjMzgqQH4BvdAMyO7uNVz6ns93PlIUk4flAiffFkEeSJ4RSu2M+u5iqoWPZ8S8g3NsMVy5Fi5HZqgGTE5f8chqEZIPAyNG+Wnvcj/N4i7LQkNcIWQ8Z0RFnpK0eNt10UayqCpcrzBlwHWvKAkEVbQ36haQTx/kRjkha09+62AIBfZ9XtHxykToC33xjKVCnpLiWsS1T1yuWxfbyJpxVpv5SX+7WFAGmtbTsPbp+qtsVrR5WEF/pPk1mdxah4+pgt+HZwjH4BsTsWzIFaSGKhH5qwLc84MVOELmGdijnkog+1ZdWQ4KhpGZ3mC91manadpoVVHzBJiCOhlBCtUK1nWbx4+zI70+RePwcds3DBnhnC3o39WCPgrjKDWjaZvqfF2dwSWc1RRRXxWECdtWv00fcOgv0JyUJvnKk5lHSGAp0mRZWiNNYGkVRcyRQoLi6kVS2A+W/Gpy0PtXzBCLMEcpI9P8dkBPuanIJFSdMkmRn5lnLw1aS/q22erHIkN9R8zQmpvL4EbAYlR5prrxJqXpcto//GTVczg8Jgaf+shoNlDIyLMHYhqin8xI+VaHrjHQTSeLA78nkMC1kZt1TqoNIbXpD2FOAl6HsXIIe4DQspj3Ojv4PWPQVSJIEcU9XeRUsxbYPBicetcBDZ0DxYQ5QWhe6MLjmu/XxolnaHxeUqn4b3dMOR4gGfZJhTi+2HZLK+eGqQZJb7vIxX48Nz7KdxoWzpYzWAfFx+SAtZxoYA6vc5ZgkQwvQcsAaoYQrfIw+aXBtvXzBMlvZ8zAz7KNPWPC3X2+VQE0QxvKPCSlEIp33T6v0Svjds+q4E/IUHGr7wUQWqjJRF4dbDDORqt6BeBD2+UE1Fb+1ogalZR+X2N5sE4hazV85j0K14GyiL3OUB7lSAbzUnpmdXOfrxOdy4hCFhnQd0ogfvsItGaKlQ35ZmqhclLSkWEsnxGoRvy0FEJoaOk6LsdG8E8OFazxhd80KrraZyXnStQnxSuAeniTK/IKTht7mWusildG1KK3S/vbdo+S1DZmQ1e6mPEPRR46XhtqJfvlibJgE7x7xdUHe9+v77lBfILP7nvHXbSbA5VmlC6/sTgKKIXabohcESufocaF0kZIt/ve0l2HpQceRj+/ti4SB3avuNMKBeh+fWHtO7CWQxUCI6qMY7I/eaeXoGxeBRofm0XadQ3bSTCWcUKpgktOE7GhtQmSdjFBvNvTOt1DwCEHmJoG+ph+MunWzNLHbDS0l4kTyZ1NQ//oOrLBIupPh+OuDRebmsjpoG/4o0QUDgVC9COQd/FK8vPiszwAF/yNQ1czYOAM037xfnexRjzOtHNhb0UI96hw1eJUd6AVyvzc7Rp1VxB2cWoLHbXh5JQZWwWxu9alnceCQVt0fV6rIMJq7RKinXglCKBk2k2Oa/fwWlUB0cKJUvNGdeHxqY7CLXYRvzrnCe4D2IMPILbumAKD5FzdQb6DEl5nL067ZzR9z8QCQxFf6fIi6Y9QlEmKpR8k6hjvL+kEpxjU15U7ZWavJp/sJMDJuWu1c+IKo6nGeV5mMZTc9ttk7y1SlE/VyQAEKLygxmyJXtgnT5yyvg554+PXd1ytgZNxxl5nQyY1/2ncuDaLek3vTWEBLNEk5Dg+dK3mv4NV1TsztRkeG9UU+10Am2LN4gYLza5KJraY6Xh61uEbtC/EjQK78ONQSteVRqcdB/2MBYEkBcADXEbcIkhSpQM0CmkxaTPHHyrxlhMVR9UZEWC//w3xvrEdDNfXGNIybyIsZCPaLyNmmZI4JHhDD9Mx9w4oUnk9WIqA3ltcEvyeKywHS6Xshpka1Ky6N9acmutbKWJgTEpKIemUPYGxxcFa1/EuxkdCQwBW8frrWwXSrv/Dq8Cna9Fr0roRD7y8LFBuM2kJ8Vc+HpY/SZGQLOZmkHKqw6vCqlBgA54Gr0ZCn6g5YPvH0OUqS86yW8aX7nWB5+TuKtcWnhljSTjZDnm/32TAuUNAeJxRDAX8YXg1crrJr2eEUKGCurjzN++yuADen9IWhLFswJujs5Srd72IgzaO0YD8MqvMaIlibhIQx6g2RVaZOv6a7uRf/mgfav2DCO5wdKsHXgul5QG6oKjELP47CMfCsFnSHRnQaO9HJhzYB+547RuQgqT7oKXtRk92ECirscOzDjd79jtxXQljRlFXsCQhjmwvu+9rp7WL5Ms4ywvDpi9QCA6DDuyb+XgzfRCskNakV7Dr2frK91o2+SA/4/9jOyrzZ+6vapryt8sbfa6xPpqDGIiJ2R/xk2m7FxBYxfkEb1yaqiusLVqmJ8zOk6ddXrxhheFuJVOhd4KIZlhCuEVwQwRuNK6KCCHEwsTJGq12I/0ml+T0GpG+6QLHydPmv9jB8Znon2xWcN6EU1PiJgQ5hYIiYiR1Ygr/hxJfE6Fy8PEQEp1xdnzR5x/d/7YT+2qrdASoL3UQBZc7UfjydKqorKPAXxMm8EdrlE7kATSll6E32pd/3itSfd6xLK5t4rJ7mQA2YBPKhTVHf2ca51O9/kwdlD7esPc/1ZtJ+00nPcjPzqfL9fDs5Ff8FYuhZisNhBE1/nvt4pR9dZJCxs7y5wyvoYF8h61UroqFi+1nh/80pnBsZsm9nDwUWkUVnUHLsUTA3ZMII2bxXeDWjMvmxq1IrYNFsNWNelY9ehFI0cu030KXmtI+ZMwK0ntzlxAzJD5Ori3NBW59y++J2ClNlVthcrGXy2C0yfkbBCTJ/7UJt3jXofWjY69IcbyF8OSZnX3BFvOKb1vXWeRkwIXK2XaNnKyYEuEDSHbIeAjgJoEi+CVVNiS2d4tcn8xSMZnrWLDxiHroUmy0fi7LH3aF8bJL90ef7W+2ESMH0PndAs+UBPM1mpd4IEzK9+ikVWgxD+qANqoqdHkimGSe9BsQg4p4dLxOIgmDW9og+Y4deLe38RQJU55FMnNtC+ZvDc6MVARXudUQfjmEBO6jk7NmfP7QIX61leysiO/UjSNn6cYlsGBXUF2tOtfAwySu/EGyX6TI5nOS4bympTkHH5F4UKPGWYOv3ro9j2kKGwipfFDr4WNRk96QfjGGTOCUk7mjOXz9VKzPR01NseQXIviQraEEuzcXtYLdxd3XuIZFH4gyu4y9sFh8AVqOCUvEJFi8PXYLeYifaqVptqodM+/60R8tlHvbXnSG6IQrwN5u/jkVoqn2zNKCm0E3nChIYCBpPx/VFlZ2gYbHdhUGxgz/9qpWFJ7jXwl0UPH/LIBcW+Iln2a4iHUSnTbFlb5ATame0xsuZ2VxN9Qcerx4+76IMBoGL5hvp2QeXaaC49eTKI1snIOhekHx1Qak8gWO5Uftm4oaK+85h+wot4akE/vNIo44qoDltvydk8W/WKSSeXFlmWGnHzNJjaZNqe+0R7x6EE557DYUzaJBFLsxVzuPC5DtIya6Imh6Q+t4d1rkIqrXDh0SfKzY2xVphBDfS+M/kPVmpEm2qpDM2+4hNu68mOLPK4Nu39i/pWz5Mv+XbKeped3aXSqS+CT+uEQtobgb5utjyb93SwvxYYWaO4LtC7UbFs13c1Ww9+8LbNvfeWkIHo5ZaldW00Wh9uij/komUMvtbQ/6gwsFUedDtbu44xyU4BaBnLJXENxiHdLshkUMSZyo0yMwu5k7nhKgs7msYox4dcxrkkIXHlNHwaGuE8LdqALiDtm5EeUWWWcZPZZlZI5CCetXv9ASsDg5zvTmTsiemhDKB5YMCgsMoD8Y/Z6981geBPKRTGNzowSX0IDWVo3Mo2HXcAaVD/vZo8Bhn3kR47OvhepUcTGndG7Bn9dFJE4F2BUX0lMeNl+uphOyAUrUo0Qf+rgxWPp2emPlwseMd65b2hm0OsYC8mzseDHujphG9rZ0zMsXBL0N90g3dVKEu+aat97qqrTKoSjxc6bx0847Y11OshpZiSX7GleRgmGFW/qwQ/G6a84HPk8045iYLmwHkws7is1CpRvLI93/dnTXlR/v8XFWSjLhEj1YOa/yxvb5hmurRlw6beEPfncisVi6iWBO4K13YZLeEJYb7JQj6SZ8Dct60NsU3jWkTm08d6gjqEHPn4uzsby9vyfpcd6zrXylVqT9sHuMjH/+iuHMqy/Yw/mE37LsTRYFXLs1s7lITmWWVSKqlUnoYTsdytt06baHbHORTIC9sgBvTzvglqNfRbkwUq+n7N9Y671C3BWxTIMG7asP7lsiioM7DeUGIvh6/eq3biiOZsBz3FCu23YPUq5CHcAp4lqd2ziRE733DyuUbUCQZOL78Lc9XHz/m97JL2PYt58WNK13/AtSz9urxtZBVaeYY9wH2wu14W0Jzyq/1fYLnm9bIIuyO8ch3WM7P1giuhllBXMumg6AGp5VkpZ7aTgmqKxYqgqxKG3PyOvxlWsMlAIC4MhrImR0n4Z39pXxMwgjvairWhCRlwh1/Gh9AhMeb/DbyCIb7i3sh+s5T0W/YBB2rv/nxQePrH9m0OwS+9VntLd0ExffiI8tAd5vMqQax3899GkfhLb4mnOkvHDrQbNRjtjIYNitkePTSjg1dfU/kUgmtwPIk3V2lI/xGXPn0aec2wD4O129rSOvI0ZTWxzkBis9fu4+VTM9BrnoKyYRMMVmYRhs30g7DrBGqfB7E8YkB+Rqc4qTehErZvQR8tYh5Z7Fl8GY2SqfV67/ZDW3YLuhyffbGCeF09VFWX2cpg6+MsInN9/ISFDDCDSGqqJFtPeZDhBp5EwGTX0XKfnr5gyUm/STcCUii6F6yxcO1xaZdvho3PXJv9umFJbVvka4BgbTyga4U/xs6awc8EwCMlymVLhM1lR6+3kn4iwGMSTYSdQ4NuO4IrrKJZJCPPU0aQqX38ZRIJjOq53ueGHr/eYJIdtgmBXphwF4HLW13HyT5HzWLBcni/1Q32BEchnvgUxW/k5tFMmHE2afnfJgLax69ViyQiC+oAwnQFub54xjCRrGXHqXwb6uEcGAUU63oH2q0fa2Cv0n+nhUAUr8wTWk7PDttMouLtJ9T+34jPXabAlriJxycN5u+8ogsqAsZ0DleR9DS1PRgM39SujOyR8vhPxqfscFOxpxB5H0OAH7KwnIt2Yb4qBsmy/n1Xa58wYG3Sqs6usck6CUlL2aA8d1grKocVfcSdPk6nCAIWpGhLu4xS8V8M7E4PZ5Sgn1pXvirK+SVHeJ/5zH3a79IODZ3OUvppVFO2inUp4E8UR/mGLk2WlpHwCXKsN+acZG6/lhaL2AG6jA25jOapA2h15wosHXSrsN+YNKafyU2MKjBFhKNrLjuuVJ/WFoDIt9c3iG8l+myGLcJVno8CuU2tmgum5rYP8yMQUKpx0UHHBaYivg6+3uUSN45wkWvF1NDuJs7EWUL6V5UoX79vxDW0DpZEgXXvPzg1d1QmB2hjlL6k/wG+J903GshAamrUhSxDGpd6h7RvIulS7U4D3ezuK+4LcZaGK0HQPbGU6+CI8hrd75yeLfp/qGQTxffXBJ3+v1nlD5xps2JBBDut0icZrkvmMeNzj2HIwgpT0nO5fwsHO38Br1Fa2we2IxImy/EplxJw1jjBE9nSOwMWJ5yOmFAW09E/t+870FxrPAiqR/cZIzyz3BoVk5oaj6zgmTT7V36nN18IrHPXO2Rm9sZTdc1ZiwKVCuzzi2dVorP9we0/szlqDTsYtx45r1P08ym0nN2vMjnGN1699WMEodt/H5Npe039lF9YIXV0h4H3SPhdMfQ3mei+RjdZqq6zie5GteQFUusuk68IxaevB3Aq4DuhYctTIh0bb1F2cSMZkzx/S+aX/FU0E4Zu+tZO36MIhTfHegF7+1xQG1a3ZrYOdh7WGfAQzULGOL6zw5MClOiRqmkYOmMqehXvIUWzAB1uBLgZ6IWkUpq7uQ0aBFT4WUMfhO49QS/WnfXoByi1trLLAwL1JdtyBq/ZzqxLcDID6uhCx8jhPG5CHsGaFw7/cItPy78xCkrXvsJZ/xb5aaYnCvQYfxmXWpQQpeMTpHh/E33ZbQ2Skl36pwwtomrO5mcb6Sgsk2kP+upUjP3iw77ulcdgfFwb+ZwenG6MfFWhfWBYCDm4LEdXHnOyabXeW4z/uVByTpzRcoork4Z/PKH1YhM/nF+NA2wz3bsZLpaPFiHiwwcB4gQaZjUNa+BCIfyPKQjSw6DCf6sEgyA7tTS+t2oZiVsUga20ej98yNGLzaiaUx9kDJyTdPcp01c1iUWsxf0d/61rid5edSWRTz7fOuzY5BMfURX5ra9tOwGgKp6MWkUpRM8bT3fkyLAeCBhN4tuH7lz3zpfkatBwBwOSzkrTT+XkBsY1bAEW+lE+Xg/x5KxM0bfk2W/Q69Z1zOLUHotcXXmSpndCtOCbmkISDCCWeHU96dOa1qpb/TTDRCH8tnxabZwIN3hYQow9XWMF59tPvD3C7GuvMWr9i1MNpCq8vQEtUM55aCfPFSilPbDbtyQLjNpcv36YTKkNcPt+RoYsKjdsPepZ/5QkfAVY8CbZ+JW+rATphz8j0dhp5JKPZHUSKX+wq4vKyV+4VKbgoOktdzIC/qDPGw4BQNETeDHS7F54MmJRrSe2Iv+/4JXLiDA0BtR0n6GkSI1vcOdux52Lb57tbQ1ZE10C+OLuY7PFIXFaLzC7wcIUWGp4CaD2NU09+WtQSEacjXhmaGMXGxH8+2CjfPihnBpXtCPPnpUKCiCjRjz50kAG7Zsb3uNxmQxlQPgUnH6hgbi0yx/Z95KQEQyAtBBwQvTDVL1+PdwY+5TNtwXFwvDfMeNFh8ZW8QnxK7YjARbZ1v95B+Bd0cjBVaYvOhKEo93uXz3UeyvsWKRVB4SrK4CoNs71pv7i8UQj3r7xJt9UcFPFPfl5TQSYazlUceq77sPwEKcrjuo0DcB5yKmTagSQVzBBVgeVF9JWP8jFch7Q+wxSoMCZCIyf3tcg/+2jyyyb6waxMi4HeJkVIcHY6CPMZmyMSCDmXcO2H/kwzthizOhWx90sfMUo9CojOBqlpzRr8FOX59EKLLZbr5YDAnIUeDMZXUo2wk4thMCS6uH08SIxIihXCS1WAEmbow2JkrnuifyK3yZuUmTe+LNFKAevlN37zg4a/ERumqiM2ai2UwEvHg5O9SngiZ04/avrTzkpqnB+b3YE7e44mnuMqBQoeIK0Hp+bKJ4m9i4BLWF6bBizZt61cStBWpNeqqIfMC98ed/f8A8a6UutTCbeEZqlXR1nt4EcPxzU6dD7b6/3rWtYEdKHHjZ+40eNtDpWrb0N8t4oKlYjYxCN+vfUkc0t/A2W96+deQmCsUv5NvIAJy154ekE1Tzc0oP6/TWDm9XWlCRbPMMLgUS0ZhHO79Pk7KnCQt1P7z5B7zQL6BcFIrLuD5hBkoivCXct0adNfkwGtz444V6nAA4V5Xv0xaWyLSExkrfRGwVBlmwyrA0tMFPwdxLOczJZiCJE01VRKsdF5o8SX30kuvbNv+ovoLm1yepMc0xpRJ+XXaK1wOAEOyrxhxCObyQKKmQ7+EjpprJzQazqxZXnsz6PYDK+5MZ49trLjEbjufiXP4FsfRP0dIfKr7vnr2/f8op4JeD83D3GZ1/Wb9xCwBtCXAMLXLND0FIVa9aiRiif2q7cZe2siVpUmhBag81eo4v6m449vVwVP6W3/TREaKyb/gS+bF90PCrsaFlR+nT/EUN4AlewkZi2emCJ1Pyxlazty48kyz0ZWwjcLJa9MSlHKT3rtHPbJnijmtz5Ij9Pl83X6coNufVfyT5FEb2XIDnfaYscAQDhDJtrgJzz2znNFdp9lhqGq0+1AnoSZ7+2ERgAtgPoJBUVKJoQje5jWusJWy3e2q1Omidc68trHxWOGrogPvqxK9+BVpHOg8HFFUOophmw4dcfLaH0jG0cdKedDPqLdSfbha2Rw/GesZWpYVvN+jCap0fuMTlETE81QXGsKI7qOrsruujDpd8KHaMTGNJdq9v5o4E9Rrl5NlsSUD7mYIfIbzROMBcUcdkKA4trSs/tHMlfrCbzOu4G0i9A0gGN0Vv2GN/KAKEUTA+6Iud1dEOg/it4wetuauQATmP2mOEUqxuLM5u720r0o134YoTrAdnCzhJ/wswTflELOCYqleRjjlZFE/+wW7SvH5+8j/n0vGZEQrb+M8u+2G75vwMh6F6RXLyTc92IDsvmW5zY2Oe2pZ//OL44VD4IQ8lLGK47He5acF7kivbT80d3Kz+k1mrTXH8+ehQyaEedT2R0JMVFHbZXQIAXz9oQLpFniIKn+hJQGk8OP3b55U+pDL01ckmr18LIzxhDrRUnFKNb6GzRzS22by1a9RJ8aj4BaDLmTcF584/6QYMniO1nht5oRIsreYK2BUQ4bTrugtF0oGrACKlN1gbwmE1VdUZj0Nqq1/se8GoeZVxsHr8fj6BqiZlRE/PWXZxnQkGznY2BMBaGLNO9hJUkdDx5FOAEg15Q/sE5xHE8rMDqQbCrNN6k8zB1s7XOx1paWVzGyqAyhF2xVK4pqV0XuO/BBQ0Ae7kuIluYRrQ91Pm52AlhT9ZHwFTpj1iCu9VhNGSegZ5SX0EOjr17NFoK7rCPMCwpp00JHcrt5bg6RSYl3cjBB9YfQBzYrpPp7tiLPZCiMLrLwW4FVGnrLhfj7x61wtG2o046YDg1XdZTeDaEqfZd2GDt1LP0EGgf5x4b2JaHj/J8BQV52+ZMeI3vVPnhjKC/V655HEqNVR7mIufoHrCmGcA3oithNK8NmECb5gjwlvgY9axnKgb3Bz70r+ALPmYxahCZsKKvpFqZe1lUK2Rp9uqQ5J4pgFyfM17FIH1qT3p/f5yZyOMwBfcX9KcInX+2u/OO3ycRVWy02EWJX3ZUtBu4gxL28Ra4BVsjXBBkiyso3hRHIi6yUif1uFy/pqvKeuzjt7N09MtRwA6MSb2XsnNSkm09ngoR/Wqifdr1+8WM14+eY7AO5LJzRTJagbBpywRhgPMZ9SesrpWe+XIUo17KaThcvSZaqCNqfkPEoGXscKvhluDyEHUlp6frmjElIkBSz/Qui/k8z3CTx65l3uTlKfobmKxslit66TaIJVelwCoechcZJ85nBO6QrTjUKF/h7/OqxjsXybHljgu6UnnXQF6nlOMu8rOoeRmUfDc6GeNIqsV7HoeM/4dc1FDrC7cm0f9g3QLZmkFm+JjVztmi/ZSsOwftgQYS/mUx27rNJLDh6OdWQ+b9jVTRBDu+TpDG4xj8KdeUzJJsUsWphzcAnVTWJncyDeF+h+hSgVVoBMod/RK41G+sGDUegKqaz8NSGbI5Bsz7OBfANto0sBzrnq9o9BdXlSFglUrrpzCE/arsf31UgAZXUabxCsfuavDN6XpHDPxYkHQid7uCJRbrqPurZBpnqAm1ryaPRah89liIkmfDvUiADRWVaMO0qZgXHI6lycXmAjgAZ1BL2thZVi3IG4UVbJTicBubFM4okqGToCXZPfFekvZk97mTBLUWrNHx7ajUG7gy7GUIRc2z2puCj9GeueI88na40CzM+lKWm4cxzUk8yU20OhZnX+j++D7Lz1C6ErF7TzHjawak+riT5INCIdPKlOKX7Cl7mTDKHjdOlJAat3Afc+E29ec2gClRE3/k1Pq9s3Zej0OpC5L9oXhRhKizOuNqZyMZeyp6VSF5hqOXpPx7V9IncqCQ7y4oEAjtPrOOO5NLB2BkFA4BUZHvrDbxXO3vliwf5kb9KD3EgHQ7bAAdtf4uuzMRvXnIDAuwkA86FGyXNJNlDxE9rx2heJGbaYZXdjlywZcMLjXNJ4xiKA4Gd/gf4YrZjmO/7AGmk6+lCPeFIVUtFp3qN8ETvmObIWHOj2R1xR/JxxhdF1zKmNmvdMfV3HEVRiLyJy/SW0RHIasTSeZJjsQHQUN40yo7q+CR/+gpcOdBPmFHlQ7bp5Spl1tvmP4sdd5SKqIvI/zIyoiCFCzH64WdbO5ZjPKC04ZYWO6bx05F37TNU0GOWziOEXecBHGz9i+gAeLmh5zTJuJYnpRlmSH/l/KHv04mvZwaNH93kUDjQ0r12U95JROtqgeUMnb/sVEV8ixaJnXQGZYo4Fk626QtqkMoSwF04ZAu6yXeMbWmjLd5JCqvQz5lvgwc/ENkcxO25yj85Y6qTnTVAxZfuMb7xfcirMuiay5dmptiEBCNMtk3hukwUEQZQ3Ck8+pOWyrfdy6xmQ+DSJaGhpTKLn2iIK9DF5xUdlpDeVZq6N6QOd6B2WGedBTc06jUxR4q+V/Cx4Ca2RcR4QEb3IJVQx7gY9pnCEdOH3qSV8fkjCzu4yvmR3gkOb8o3VpCSreXWVzBj9CxQApF+zjdUUwk7jlzX1B7ob6UVCeJOIfha5o+kQmtUw2CeGuydlqET/JFDdkND/B1y+TNYiSUGG80jhF9llX7UkjXCudlAqN+TI3SkaDfGVVL/VgYZqdeQLQvuTdPmo5O9zKcIK/SeBz13HE2VaGiSbZlwA9evrDjNaVBXWSQ1LN6EF+ijt686Y2UbPqwd4ZpOGrsqdRsDlIjMXAbEZ8ONHbyM9nYK+JCFEr9oNHpl08kFSktj/vIwX6XfNc0+S6+dEMJGK3QMilHM7RvJP410SIwEE5z3c6oCYvw4ZP/nBrdmFZASOuQQpNe9fXeMLjYEUS9O/sWXfNtRX8oWQ0OAr8AeNDwoEe2HgqsDSI+/6lvwwZNtQfmCHMYME3TzSfMRMSNfopY5kkUb3o1AHgeG00R9y6E0MshlzZIfKqGVP6Qz7NOlN+TM0kZjC4BXM8SUpSm8E4JhVckjZ/tmyph4f6zVAs+R5vgunqJ4iX/E0CtI/QXIMmFhqreacwMhnVWdOUnG+b14HksUdc2EnHng0E1uDvpHSfEoX7exi9jMlh/HQLw9IAxNY7Q9aLQou0Zjg0N+SGiyA/JixBWvcesmDmNfsZsLP1zlNoIUnuIFWsNhmNrI0OTTQ10qCNw4adk2yzIjPwYdrlAn/UAWErDe55m/PtOgM0sd5Hm5nn2VVFfl88kGfS5+gUQYzXVr8S+58fyEbY04EAokTauz8kPbC8BMDhj09AFbTaxCAlcWuQxV8win54KsBGz7VyGE5HEUgsFMvj9fKt6q41nNJuZbynkXUr4aDYPMt+OVS0G1m0GdPeXuKT+5NmJUmba2BmAvMjqtOPldwCHGbuDgQiKGL7GJ3cXHjpJT+eBeJ+C+Dqq28JRCzYHqhUQK5zz2WFvJlJV9RdLtx+R8XkAa71GQ+Poi9AOvcY2mepGX5CM2HuvrNG7+k86Ug0G+WSJH90YIwoT74xWKkAnFmNYucPPhhEKimwLk3N9yFUdh6vOfBnL3WHP6n+rXh56SWDEL/Onx/ScPG7KcAj/LAwyOzjilmCfE5HmHz5VOv6IXHZOQ6oYjjrMgv8zOGEO/CAlazSSZPK2PhNrSc8UyatMxfzjVcjXCJ3kWgrlJ0tQHAF9woFHYL3UPIIerrY0SNSWYxzWPI+prNlbZjxmN9khHFfGx/iHLMAf+Ze568XbLykhgzbryEQLOixBqM4wqDrd4UArFr6FEoUc82ME+6zqBip2YKnW+hFbUQvflApipddDWMaK/sIJAODWRqxlR0iTxeJCISErFc92Zh/ZdbQ4J3YIVBgQ+f8cFNUDU7FV79eoQiOj1Kz6PbmqBzujBJMoar19sKAzfxSDmQzuU5gsHRGmxQhyZzuUUAavL4bUGVAdIuaPRkMFRb169zzss1ojyhJ+XPS9cFq2RIpMhVNHFNlWdeR+EEE5PE6URzEQCSOBrgIFKHn8tJlevRR8mqNDr/jYZduuIqBfIaKz8dDZ+t+UfVE+otE2DEct5W1oQ1LRjf6YWz5i6+DVDBiiCoXLtCyw2p0PCBvv30PsEjmn4MQ2b0yFz7wcI3NyZSXsaM3li56IwBia6SkSunZ+oUWKCJMSGYMEBgN2wPCx8sLQ/SRCTXH/32RaS/7Khpkru30JqVceKFb7oEoNLGBRhcN+5wantTPJvPn5owQGdH/fGYqbevyyxp1k057Kzp13jl+/qKrSWpB/GkU5PVnDboaUfK2zgYg5Mom8QCnHkWkIYjJuTaTlrT8TKwA3gab/D2fubhL4sLN/Ib0FTsrBnjTXey2uRPhQ3z12dWrUt6/uaeDTaMfqmHV90oYWfkW1brQVAiuXapKSSwKFTKw5TogJKzBlUjHxWk8voxNawcb9luoccM/ZvebseEEKLpaxl3Wiou3PdQnERVoYJPGsA0vOzXUYExzos4YgItasGXWJ9dtNo1KzVEJ2sZcohAN3dDcQePwCmp0bHyvsDiNy1mDeN13woW8pg/+u9zPx39NgGeHeLCnZRV1GuXwgYwvkVNS7vyq5uINFJ5m/gsvqbj228eIbd/zDEjfAH0+TiRlKRMDMeXr02M3A+Qsm8bRduytzVuXSoHVTgtSH5/6nXHRH/MU0Yng/JVKfNbzMErFJyCAegEedkRzhm+H58Z6JYYIBBvi4dTONr9vZILg75sQfCEI59l8U8yPhKS+x2gsgg2JABW3J/kvGHgEM1ARnCe0jam1mrUp2b7hwSUrOMeL6FKc9cF4Ofmqq8Z5N6D9eYVgza7vusQVLdvDtxAGKbsBmyacVnsThGbeVLV6mVAK6WzLGY+nSp9NAnUgvB0zyVtoyHwO8zgQhGH68uhTcBUO2Z1Pvcu0XDH2O/GbkQfm4IfuWKY2Ha3DJswTyqNYNtW1D063a4SnJBc8CzstVAA6PO0ZXNYcKu+gDnDRUd1eY+vShxPcOOlMwDJLHQ/1fC+V6T01B5B9+Ea00O/wHBrF2mmBrYhtWsZiqCY8nGzBSlPAL7e+NeQfTn9/zQW6R+yko0KUZkp2R9kG7AX3AaMFYCkcWcffjNPwj7cdiprYRFZCSC1k0ekj8ofmhnk7mp0bdgl11eKvatEivbCKlm9i37oFWGo3BDJZWAsCnpX6xKyvyRnooxb+X7PwzilVtWV4Vo3CPh2eJBKIQsbCucbF6tv6+bzqIQa6vlvmKrL83NFGHM6ilgZWALImnyI4He3/32KeqQ4f1rFlPRdiydBvK4giW/gcwEEKlhZC9KPnnsMXiBq5RWgSaS8jwJOxdoKKIbU/VqW8rxm57kw36MLQXyu4Y/JLiyQwiZ2v0b1C/8+85T1oi0gCUTXz93vayYhMLuTap4awlTgivGu4vuQrvr2fEbbKlmsK84eaLwP91LG3sDY4QgXfCYoE5ZbVLMJWpgmaczvGEPkRHwconaatjQWZinmOE1RZ5MYE939XNnnOVtAPkyhACElTlyvkH+HmobYxsEBfR60HL0IgSRe00rUAWTZe+OeZdrpW4/DcGNgN/Xwq3uri57qHY9Xj5S/GupjiuPq03pc6qf72kqnH5gflMxAcY2cNIu1LVUYyatfSATFGy6MxZ9h40qwKgnAGrcDiZOxxC/fgm7CNebwty8EtQXexwXjzXlMpjD0GvasI/YgNRbjZfSEuwYtR1a4mmp0qL3PNdad2eITYBVBwV5Lka3YPG+Eu5sxZAlG3TIR2j5D0p2hT3aioPrrykgJBEWc968EyUSKmQrqzpy+OD+OPnPtxCgM8DK/AOMgj6f7jWWtNlnph/bGdYECxuRbAFyrxzr8ARKsawjypsCqx3LxZRsKSmR8ewjkCX4Gxc89Vdjdr2CyFn2vw/CsiKHxNDoXViVsNRoD2Sb/IeMbZPFcBJfv+YOU/COsITrJT9xMH3Oie/0Wy0GU/6yyuYMp0N2bg6QXDA3/ls/KEQCabvEQyiQ1I3a5D1PJa9mJtsQtfvqE75CoBtHLl8ypEiIfQ/MbwqjG5W4TMw5EmlB9Of9v8PfLQo4d7ERTpz1uoO9CMfRIcA3vywfWRBKjxwpPjVemTJGHgryIUaKEUKFnVYZ6GsPYW44KpBmVMWsr5TUaOTRDNvHWsS2w8rkPD8uP78UurQAFizBFGjZ5lUyXYFJE2dk1cIRSWMtKW9SC/XDXLzQ6QF77v5jFNw6Lorlm/J8g2YSaDhDJAiTlSclSETBlKvgFOMu4Zde8/CzJZodv4cQHn46GF7sY1d9EDZ8KQzsSWirYG79t+gsB/3CSvZvcbYKwzJiCxXA977+gjHqeZFKzkqctjRP6CTtmTEUOWDZUpEQX0UDaJG4tdWHB4YsAClv/xQ7uohjrBEKcpFbGmijNDlk1Im9kuRJU47pIpSRkxyXTkXnyZ2WwwdiOLgjS1+U0wV2SsRULDf7FhNScEgkWWfJ6f1jZe1ecQ03765gdD/4nn3lC40PK3bxOVy5U8PXvc3Sh/SgZlPjZCSm6cKJW6Q7wtTCycXouUsJen0D/3O31xWmWwMWC+LFdjdyuj+zbw+J/iWuSuYb5EYOR+mQ/tsLZxFAMOBAy8rhYgOE2OoWwhB7825tbaZghJN9KkCvFQiovSYCypKe4mlOvuAGLhi60BJLetQPfEnxoxhczK5QdMgPpGko/tG0Ep0gWbmOFx5PSLTBOkbi14EW+cnuRVzgRtr8R5TbOYiWNTKUN6gnWTo4L4pKPAwo88m6AGeVNkLyho1VE5j7gVZEpRb24ogI9lfyzhNBCbBjcVr68q0YMSfUxR1zhbdM0jhoL/ecNmqq0/yaxhEqbIH35RtYqeY9iZGHvXTe2hEU5tvvtias60ZcEGE2PXNtQGqcM2iLbNb3zs3FD+htQj2HpNsCT3oXXyV9dDn4Uijrx6cOof+3GEI8Z/2MDPxIBkKNtptIBUG+LOgMfSmoRyfIBgMmRabOFpRSLN1Gz/9ORO7UDZWXUPClcnMy3X7IaawJW7gFGYZ7sCodRX/oWxzHhpSEIPth8p7qlmmGYoNIrY5raSoNMMVBp+Ux8lL7Ms0oVlfWvMStv9ciuOEBgZqTnHe4t2sYhhgBQx2Px/uDPGBVpWGeTFkV2c6YmOgr4Ne/SuJ0LlD2Frut7lmjUEJEnmSaVJX+YV+2OHus5XMjwtas7TA+Er6L7Mz9UI+Uy1sVj1hln+YQbETBBhIEMcFsqJzHdyUwxJyQmGivsVT7VpdiFGNEVQQEYLiU0RXJYfgmHBJSAXOAVyzv8AhZPapnzVDGEGkrY+yWpjae+KtNGGo6yNdX+8Zr8crTimqNu5mHWlV+fqqM/1snl7OkhtQQukAD0ORHvcRPKwdUtHX64Lh7gozBx86GlVhka+6Tby6iJmSJnrJoZ5plKJLRth3bsLh2ydB1poUqoB0Kwn4I9SCULhRuC7icOcEY3xxrRM6VhjBeXFuoryh9cSWeYerqNP4JBsg+kK2igXf7nS4hQNB9urIUx20kFexLprmI1DEIYnZuC5I3ODbKCm1x4Yu17E8A2wDxm5MfsddOaMW09SOCTfY/93Y46JPMjcQ/xF3ObujEKT6ProfI57xfi136xNWghj3OqtHMvBlZdK2Y20pP0j3nVEInX97ELvouvgTmMfaBrFU7cWxugoeIn+m3VB2rjLokDCff8dPugrpndWIt60sMy6jngMlqbecz0lvDx1ZjxIsS4bD0ZI30EzDPDkGp6sjdLTVSz5A9IBzIyRWFXBGn72cnayXhRZ28l49cjyGBONCIN4NKE+XF7xQH9Usb0VayWyWcJRMcM/XyZhjqSTjMKAH3GRdWOBCuPSm2Pro825lBa9/xaw2ubss1OjxtYoRnO3XIM/i9RdB3m+r6QE2eaN362jHAJcwc0Iu/VyfpPZXMuZPagzkMqXT3RLyBug+QKJGyo/H6r0ct29gbLzYrR9xaXiVXtnKB0pqyzI4IZ72y5ctfFN+YphxDIrCH6irjGjUgq59zmCNAvyRGiKJvRwxcugaKZhrCeVGstri5SsQH/4ayFDvyLq04ZrfoAXEBi3IxwrjvwYAI3Enc/pbioX0OH4ik3Q9R4MjNUAeJ84PkhFdIVq+3hbh0unXKThlswgJXLGundZx8ujUIpWgglt0jymVwSUc9vOdOXWdL7VFyXPmvS3rSp3feBhIhNRe57kszOamF4OdzepZj+ONAWRnqc+0zlyNbKnoLTP0F3/btPDkHxAmV9AYSu+VvJ9OnPHd5i8koo2QonEtPmyinDFsJypjhSZoEUxvd/kLXB2kdIPUQOwCz0YOli2fdr4Rj3/jqcdqh4Zc0V4tDWcsL4ow6MMzbwMDDUjI8i3akZ/irAv4SoKnMNvrTp3nfLu8RDi4hW4mTqcuaRCXZLch/+9W7XJsTCI/6rXBcwNShlhVKriF4BYR81Cf6JiFyRv7XzuvLC23lHudiAAqmCf5BwW1SibVnCLTpnYlIlXzFZdASXrtVeSFW7v7H0NxWYWVxKVqKLWyeOZmucJeS+HA6mtksRZCiafBjybgOtOkv6kL4BDopLOcKvIVzki+JDJnc/vO2gCeZUYq70nXhNzxYqreBm96jbvJR6M8Y+q4qeOfeQklK0GQ9EsEc51duXLIyKfBk/DM2C6AFduANJIh7ihkheUNhgx9gjoIW/nUnPsi7ecp897vVvpsCMgAV8/mtG7kIpBEAq/rIr62hTNzansKNT68jKsv62kucEZHgZ6UTqSVDl7J9ocfpeQBjOWuYUsMhcgzDSBvTdXMu+7HbBmFLtC4PeDabDESyia1kADSu2NW6WUaSkvEovvD0jOXQMIPppdMgvAx/B3CXaheJ/Kb3Qg9EPlYZCQXdr2ns46U36unoWsAvrLQAJII133YfQsrIsIWydYnx/ZFdiQ8HbMn/mE0652IXXZpYRo6gqM3YW19qsD1ZIYNxwuXHY4j8KJMguuDG5oep6wL4EVJkYOqt2JdDmgpBKLfv/L6iCX1ru3v4DJuMHaUZfkxM4ScFBkSgSmfSwU6s5Ha7UP+lcSUVEOsrMnmZ5no1xFwSYlHKXYsCA4vFE+S6VR3zlH1c2TCsVsAcU+pSc9tneWe81K/brghL/xRWqmxWcg4gFs6yHk+XhlQfYvB+P3siHsEwztscRDJwom87iHtCdn+pZ3eFhZaoYRyv1hTzgRtG65RJz66iDDdCv/fIrlo8tPWwgWGtz6Kpz40NMszfbbmc6mjdJqMh3R86u8YkLm/zHChbFtL0c2f57bwEDbu4Y2/vyCXWSAzKOjYuKy6/d+OJUzmY/aScj/F7y2haRYAEcRiYjppHKeIeuANtsY/lvlbXFMmCS2t7+ykxrHFFqa9oYGIMI+AsdBBZAZGYGBkP7mOe7qCK9O9qJoB0R3F35+5snDCIFCs6v35tu6f52EO1vCI0ibAk8khHMRO5mGbamupOK3vcvaBXRQ7edcEtluoDmXoH/sbXTw6vYSP3bhPzDKBCKkx1c3vgAyNAZXASBMaXME1u4y9d2xN987iDAr7QRRFq3/RzlULT6JmO3ki+74ShBlvtf8Luo/cqCnJmsgWMelfdJiG/e6mDd6JumzL78VH+gJ/si62eNDysl2z0d5N36hx1nMthAreZSVtgfvZLsEVe7wcEdKGKY2fBaDGzb+g4xx1Bs9zPyvGuMm+Njc1Z53ln0BrnL38uM2+P8meII8vbGIX0hzOfM9UY1bSzsdmPdGr9gBARxttxP0prVlWaLBdL8XRagqg3naO8L0TXkDOzBP09Q9jPLYMvi88mEKH5VhCMFSsQCCs8XA/TddJmspbU2BgLZ4BVb3TqN/zP1whdnibYCBAQ2FU8xAOnxkyic6d+UG6hEdv4XtH50BF2RMWGyqFZ4C8r1KcKHaGFUTy/bafx2fVzOLpymqP8yClmoFntxu1x9Kg+ED1xueXLnpsOy1/2Sx1/2nN4d6Hv1Q0SLm5tiC03fKbsS5qkj1ppFWbyNvTKU4d6m5QfJIb8BgnOA6JU2CFL+d7TDh8V6wfhD4lCSNw2mq3KYRPilK1UojhgprlUwl2wqHHjyo9kefV7QgQh8DH+0VzQpF7B5t8QiFIgOJUyIEZPadvK6EujQBAc+nh/pcyJ/VUgWqa7kK3HjSire/QRdC+KpcdR/gF/e6HkNG+ke9AOI9jmxxtfhsHBBPwiZrV9UKSCrY8BSRSLxpwpLSVDPpF8fr6JGHyoP4x8qREfp9Ail/DDXD7vwTZlFn/NqaFdWCtwvvBP0Smg3nlWOAUW5EzbmpVppcXGwrze7Q7eTbhU5Qh8p9wp+r4VpTlw4f1r+Crfp6tCVPNZNYG0xK/nH0SZ5T+3sC/hlifi30uvzcM45F5alirsXbrplPZRLs1eMc5eaH7dW8+QQ4of8ODN9+ACs0U5xmqxX4MsUDfyKrA9N2vgLKZ5Zr60yhcaYELSutrqwCrt71wJ8BsQ5U4Vrj/p9bVjVAteLVzOXJrTLvuxlkCr4SM2bqV85lW3ToWzbnzqG6+NS46lydHVgKFjfnQ9J7AL9bdDu9jMTaJSPNfzBROf/+iOc+xWVTwTkPeYWvE3aX+/OHMD12pFbQqNQ8TBw3ssEHyYyulXS01OMYSrQxqI8FDawJymb8C/5JvdOcr3fep00+Y5pOv50LPsozqwdpG1TbBcWlDlGMtLLnfwDYfuyaJRK5wD6wRX/VjAeiBhLlTV7entktv53lcnKJT+Koz+yPqUg+UNFpWv2cTumesaRDiz362PiH0FqcgfF0uk5E5qjq8lHR9IGoZIgAehTzBSQ/L7sTzwRORiigF0w4G7HiNC36wpgVhyUv0erokVV9exsmS0H52ZYHLeHuOxd7RDjjXEk2+ZJxCV8ce+VOIqOb43QKyQ/HOKPPyOwyhRL5DN94hUPcC2EW2LCtm6tod4xGk/ajV/jqOBJargQluPQdJKTM02sW5yHIxgd0W3EIH0cIHf3aiRQYAvQ8Arvi+AxoT0R+Sjdez6SvtcGX+5DQR518fsRyfq+9pfLxF3FtQOinHQzTB2mr9haGIhYA2A3SIbK4y8RIVLvcSPOUYGaEpGRgu+ELPpXEm3AqO0Nn0sgdt7iNy2IiL11dZCuECtRFTIjmSQSYPfvRxNfrcmZGdDx2N0aPXx0iZhyIIRoY3DUm5Y+vwJZk0z3jY9GB+xanVHJ36Fb5ntLNIU1hxGlt0sFkM5gJbeabrvXzyRfIfZzRsqYDlrDBcrSYOTt9z2eQ5Zbid/FBhGYKrAgm48u9WCgxdRawTi7hjxPykdxqnvIX1OJ497chxrfYhleDJ1OMgV9r8EtfApA1/QC/MIGjsapopret8EQO6bWl+aqhdeZEdjXmUk23wZwdC3QaYIWRrJrJPAO3qAYgC1yrL6NZt7M59CLFWR2eWAewvPYrPbdbHYRgTKUq3eTXjteETL7oprA04xmw0sTUrH7Tnt3PGh4Q/SHkwZldetPtyT03uHXTGjS9Y/+nUSHR4XM3I6nxuA3O4ALtVUXVmWbpX9DZnvm2dBkG3LR1CtXlVaU5i7/iPF9FAuCF+hfCeCacmDbUkvFYEr6S4xPuCCCcxNkn6uR0cLi3ulHhS7ZnVdKnad2fnfU1H6hkcpjxUQ2Oqs0mZQEDP+tgsqKBFj4OEeQ0y+SIka9+Kq2UwmZDYgUQEhjfHkWiy/y9wb/3WAQl4qDma9RMl+dpcw1/T9cfyEySZIaH2MOT+9BkqMFiI+EJ9z5awSQ9VMR0y+wiJ6CQ2mhBhClRcaq8IqB3Xk73OVXKg3gsBpqZne5bemeDFytbMx+kp+kCgMLTFi7CTlJZAPYUyIXi+1wefZiKYMDPf/iWJrJn7FZZ6dcuhmnhhrS9j1pZlPIa3q8J5oOC6/zoUVhdq+jzhEcycVSdJoXdGHrlOd5JAQBqvqhq3PKOsn8oQ8yTn2ldwRCsqFsob373QR6W6bt110vHtJL54ugi77gLg/Yn3F4RtHjpR2jJAtLJIhT4Pfd5cDpGWopgvjGiqxd/+cHQGaloq7m7fYzClqasm+N7N9ILAMC14SHYH3UU0uYHyzo6Dx5JEHFUdX3FZQyX/E03Gz7t3c5ipuLwMIJ9VwchaE0K5fIiQlqYIq+mz0yEPcy5v60RWnRUSMGc93PLnJTYz5Zt5BLDhzjlIy2DXIgsnVycg6CCkisv2UoSdv5YW4d0w3PxgcPH+IXKkZ0nDuVkI2KR/RdQdkobMXb55P6/8xlaO5YIlh7Srxek++fyAzg3+YIMV1RSfWzIM8d1zXzhADGeDNpKEEcoCmkqFdAkzdVvACdsMNDbTzRRVq/cgSehb6hdCzjBLpIoJRIksU+81zL0rpUcuzwT6m9juCJDSEicSmQeWR5bIduMPBGxDryy5aUp2GZL5JBVKs6bZH3wOXNKA04gOQsdiD0YuKva0brMNwbT+Ud4cqQxr3loXIDxRwuanIkJVT/Fj9fWoSnDttgh6cNmMsth0biukI8ken/Gb5GOvrIvpP7CQIw6+LFyQjBol6aVOXLy7XXjU2j5sz5fg+DxCeK+NqWDbcFc8Wm0LjjbE0ejZiXocytWlmgsoytYldfiaqQNLipS0Dwny0MxoU1i0H08a0M/jDwNyv09jBvPu4g+5y3KBbr7b0NP5xl+dwSWJl4XJn7qlMk/v+u66JWgGAwedJzBCeJn10WN2M73hHa+NVRV5u2zDwR/l/2Uhrwrt9xvY2P6aOS0nu7CG96UkqhQCmdO9th7/XXohVNBBDrPMLq4Uex1XFNKbD/JA5Ty+G07lGx6OWruk3UppHhY58vGbm4Bz2CK2OSFbuGHcV5JA6feqaxCcrTbrz8XLbstT4xNhUA3dDpWZdW/J5ROgJqIXinQrpw/0NoWPSRb49ZTFoUPdW3kdXnsk0ThtY2gsvhRFEfnX7wE9nO+W8av02i0ykUY+dlArsoMmhZrwg35JMV86xWmy/HmsZHpM8fk10iRu5ICHDqjnsI8DUO5DOUVycS+673kjekm4dhWfUvRFq+fz284kGKPGu6fqvBp4BwwzhtAuXnihLiRUWUKZAnv4z/SFWz6VgRv6+jJGkIFvDiuiMKzlzbmS7vdKYg6te+yPcFpj5V48kSc4x4zndyBsJuYf7AVCW7NVIUcdRMUpO/cYy+k3FXuuqoMIGSAbWMkjez6UuEixsL0Z13o5AHK3gO9RYNWhEBW5tGCu/+yBTd93g8RnexIQmWTk9pxG5AbFQwlURNTjwy8i25vOJMpuxOGlFkKcZieM0s4KvffxvA5eeZ9DyW3GD7I01RGuh9kfnLfd/bfmLRfhmp7/U1Y/Orh5KgdnU2u35gnntPdr89jdfgCSt/wv7fNLoG20Dm5KYbjFiVMhHGdJwiebxVZKjyVQDg/LZ8UZyst3OCgrmRM4KkSEOBHcmQ3FfbJ44nMG0s6NNkfoCfHMQw8VU89Ltwu0v8icAJlZKvj6wvhI2H3sONFvJZQq4SFadcrFi+fj7PpDCztuTXtrYUPUoLW9yCVh8LsQ9wD7RfK6w/i26lN9J7ZvUt5EuBKOy0P/Ne25cwOzbseSI0AEdY4OAPTs+yW0dqkaopOXpcfknK7XO3BhsNfQDIg9ZCsZTJUxboMzssxRhMF7iqlxyg1AXLbXmTJSyJNIeLjvH/66YzBfoQGcDkbpbPrl/6iFHTMWsXlOlXLdlVl17k6CvRexiLt9J16ehGDw6XO2rtq14UedpYiWEKrFk8xLw/CPkxzzktdKE8U/wtxv6TyGicPHO3h+30GqRcbU0NStp5LAD9NaLtkYU4Q5f2EQltqVRKkVj7Sfz0fgHmOEzT4xKyirSTJ4XuZQtxYDGsoaojWkXTH2wMjsxjDjauhUaMDlefzQqPQgdbNECPWo/VKAGq3EC78Kp9TaCNaYHHG3aigLYjf2iouh+LAWEy8IbTBN1YyzN+kEq5UrqPpSeuoWFLev3cBJKAE0YMPjlsQdm/TpvtqfYNtC73pKcdiYhUzXbrfoHCpTC3R7M3pcJayXePlm/cSV72AFQFJ1OrtUvsD8Q0dd/91srTOPlBqN9XJyuV3Gz7yZGIYBP0VDpSlHHMogq9fGX6Wdcz2H3q4GtCVa+aIL6WyGUU6+aqVUi4Ld/QkYGMGrlkxjRGQZNtBdSGySOnsTMdx5aDqEs1IJE1tKGr2qYrxzdJ0bFtxDR4rlY+4VNvpPWjhD+a2FWrjzh6vxDA7JA1G7txhuvLf+Sdn3S8zUDcXwhPU1sKIAE8qrnIwJ0XfKJ1NaedYr5tMRNWZ+YS4PLNfBDrEeh1vLVanffpQGXEQvtjYmHjJg9K6yEtbVcnMz87dfsqXaK9cTXz8GvfTDhWjPqwqn/luCqrE1kZfRygTrZowpDosJW9JglfRrq+9LSi7YCK+VKNXaS00kYoswR491bj+HJQWOqXgjGFgeNMpbgSeNNv19YaPZhU3rnQf+1DrpdGn1sod1tsgv5x2hGMyidkZrBzCA3F/SDYGz7TZjwbfOxDOCxbNGKUUdBlJmKpH5PQhftJwz2FkkMxYUuztoE0yC7GkZ5InoP/t20fS4KCYaG9jD/bCdS2oVbO9yiQQNUQUP23eBV/bWbcO2cBXgadIkT1PFDhxQur+m4x0b6jbrtZ6443jcBOzz4VExlupYq5dAd6NFMm1biGQ7+jCj2MFGGHhfttfrdcImqZA9hH4QfDUyj3xMDT1mJr7ILs6Y6hQxjYeyWKYQ1NU/QeL8p2VH4vUF1peeyA0Z/YUfNOHmzjtUgMbDLKH/QAfR4ip00EZBbzmGIWukKvIkdvKfx2t7pakSb7yYwZr9qUad6Al2NrIdlf7vZf5zNDWvfTVHjjHKxAbM4vIT981d6KlzdCvo7nG5PbThdccWCHUqoWOo8wbTKg+xWEwo7C/pMXuwhqWKZt8JKdCx9TpXaeXrIbJK+MNrVeWv05ZOd6Accb3Q60J33tNRN9YkYgZx/Irw7tPp0WtZh/V1fq5yAgPVeXsP9UCjdg3UnxesYDu3fiTIN+0Oy9tRNHsmGFQxjXUrmXnFI82g+6HoFDhA6dD7q/ZsPhNAIs3RGUk3cCQGz4AOgIJCUoMVOBHcWBhXm+UJRj63PQ1zMqGjBHtkPB6Yd7Ign5TujY4gz4jjroBtEosq7ZXNZDc34C8RbdIce7NNP8F7BSIoHKAEX9HEMlPq1P+Kyi1HtUtzCfHgqwX2WNWi2L9rfLBt8wpHDTQnCqZ2udu5hh8yW2oCOB+vh0YtSKNyXTjy7A83Raj1OY4qlA43GE4CTSA0Z9wqR9zpnmNXHtrQCpVYhYKa6AYvNWdLk6glubsUDMpR1ah1nE7MAnOnhbfAE6zDaiBm8VEK24supei1sRUjNAkw8GRd+ct6Hc6Rm5xDrkmkhU03nwh3VI8kyfnhU7cZ1MmKDphItYHBbPvP1PjHwdk1rJnn9zBZt/qLhvCw/DCotGiOyqbVC4BL5rqAu18xXgzjCv1HSTk/wPQnBoFDijuvr9ZJZ29N66zE2yuWKtPgL3V5gU3Ll9557jobB/lBF3NzR8yWvaPJ2LjSwImWtEkk3y3vRS+zI8jjWOHBUGmtaLGlescl094qh39ksm9z20sa9NkrUVW8XqpeSi8ztFM3EeB4g4qkBA9+NbGrbi8GAF1+wUJT9IZQ2NaPseO7EVNJn0SpDl3nRHGP/z+PitEzqFM5mhe2XIPhKUP2/SSLUvrXhXEoNhCZMVzZQR88psNlK+4X1Hk3QXXYkFUMLtW4et2adtcisI45g3C4dv6l5//lrEZ5GwCeC29r2B9N7eSqvgyxn2FRsQx8T9uxwwllTRKfnLHnsfN5jU4oM1/nBblOdeV9gPh9alHvxhgE3iwQpldkDCmD7Bgr2aOKzJUmLpTJMvSbotljlxpbTMAE6Owb2MiMxmDtP5nVlVhLJDyev10N2a9Zgz61TkNEOMIdB79Z+68do1nZi/LLephDPQOcIVgpbhcuLytus3ZPEG2R1J70AZmP7CLpio5MD9yGa0y1Rv30GAZhay/NoggS4as4haXJScjRrHpNg9n2LhEHaOIhlMdZBrrq+heAi5GopdcOGsC0H+6Y/68JOseSPSUCMgLF1brJTeCwolBIRVozDv1ydCAGiUQdRSkL2Zb1zg0TJd3jH+bl99TbHYrnCyHaarTItgdEqtEtLKgelJgsYOEjOs9Tj7Al5PCxUyAcEY3kZ9SPkC6wjVOrNLAYcfbGSj0nAEXH1djOfDiHGvW7VuSANlh9m+voDKHfIURlTDuke9OQn30sgZLKSbDILKO3RgiFsOiU+HZGMYT3uQjbqt3htgRAGM9Hda15SVmupanz/50N8IuwC1QU4CQ8NKIXmqqTRd1q5+mcIupjcqsfFB9p9zQ4GciqtKyB857DJ22iXXAuEfe458K4eYnksgCl4OtxoG6GUa69+Y5hghFtYHyZarG2V48wP7u2a7tly/IcYhBEB4keMBzAnV00RIEvlIagDifBwSxXRFk1ZZEqOK2IUUygpmZwqFIXQZc8nBkJ6vXpx7CMcGNSb9eQHty2a1VkZdKDywEfc9SLzWYF6xz4A0ZznwFhqU5FM/knpFRUAoKJ4hWaw8cgoFAqxxYBvtySDUOMXB3l9QlEV6o5KbMxdnVDj8Ouw3FpwfOcjGPnYHQ2OGML2hDG/6UBHVvNEM105ps0e2uJaNANJj5s2JFWnwG5q3DE/1kuII/2Aq3/b7/+CpfIzKO1AemYSO4TwdZiq9i70enMAr86Q3xMWImkL97YiOTH6ooDYuyyhTFs+rBkHuuWRgy2wMlU+/rM/Me6W/sGX3yNVhoVEikyD86COGcco23Vr9l3tmnO7nOeqWwT8HLCJOpy1gBciKE8adrUqPJdV3lBSOkOzOEaP3pUb9/mSF1YjcYXyHS/deliI4V53w7D46yooETCb0Y/7becBL2xzx3tW9WE70xegapl/vuTJ0zXlYd0H/HZU5L0TytU5sFVE1jtsZ0aEt8CMbZmHYzDs34q+eqOLYJr2xX5cNfEVHwQxib9W6TZWXthmjim3pGyhTA/wAvELLwl1HtUyIqMbfCc6V4LQLB9Y1EjuEHBzQPpteGGGz0Y5aAxFXI6Kb/bYnj2tsUMMdrTDDfyE9hdMHCPPw+gJKi6j8bXj2/XpAOGqdFhO3jJHbhXQUSDeY0LW1hVClNKouj8B4ljYqI/+MdjAGpJoW/j/gfkuvV9FPBScXpTXyaqWaDPaIVkzTnZJYN1XsXQ2GNpCydLkgnlXrS6tn268bBPi5FsWmKeJyhizyLHIs5BelO+o1Eo/0iux1qSAGeiY9+YMeN7Eh+f3qGwlh51q2j1NwQ6O4vnnSzXtg/k/G6zax3K8nK+y3dg1bo8W6mcvcdHSZVAwiqicDzjuf0CGZ8C6fmOw5NQMww46qJYj2FA3x3MdFrjTZqaiSrDUj1YGM4WSrvA0k+T+8MmIR/T8Pbw1ritv/HIWSJcxR7g9kQz4JrDA7+f8v28cCFSJ5hHJ8PeVaYO5P5f+P5spIXqHPF38LJXb80V8mVZ6FEZZaVEGuguqtJnuMNf3jhUP1W1VMK8MFTTiWS9dT0cSIRZT1c+Kaz6vuMD9C93U9/9vkKjJf7epDIAha/6rkingkvLlnxIvV8R1pCimbuStSsL2qfTVv3lwwmJ6YI7NhyZVG8li1a/PiEXykUPumDvnaaE5Vuz5i7QzEUvA6OlHmcjgDxQPFP/acMfWdTVHXRFMugT0lse1PUHiF0zOe3i//ddD37i155RAKf2Bh7hJ9di9kCjVs2IFBZw6gXPPyvR/xMCB9A/90ij26P13eQQurKmss8PGnO/N3Wr1ItU5oFxPDFNfNr6agWauxXuY99iXZac0/WAWV8zu5Guw6qzN+VjXQ/aleZ+PB6HmjYpywO2c41NByHNHmTrx2aIJB6bKGalDktpy6nej/FWAKrRgTGs5l14aqWEwCDlsrvDuj3upoiHZkkgsry8zZgBEBc1L6ZeXAc8KBOIr60Ku4QTQZqylt/8bQtbCE1jWuXUUanaiCdKhuMHUjQ1fa/wOCwxaxEcAimW8bIWT5CcaPdzQXb3Dvz8hqfwGtvluVuv99BcpZcX2l59VDalEhBiTqpka37zP1WsQdcXgYMuOi+rVPGhhQlvakG9AXQqvX3fI8mXvwEwucjXbeDXoH1gWCyWqlv+azpGVTTMz6kpuI7gzK2xdPs8WrJ8t1oEgSpi1fLi4sFbniHyy/1QfttLu8NtWZwUvuDBY5ANn93TEoUux7J+GNS1dm//NFXxP2RdfpgG9eYZsCOYxKY82Nm0j/8SlgL2ozw3EtWNMElB5eAKj71t8MQkMn+LX/+1NnNB72fNpBiC39PvHeAG/Ab00flWvcuqmzs1LHNh9ize5tUk4sTrc3WgPjo0NGL/hjQAhfocwHVguB+VzZ0tnQy9UOXvTzdkRib8QY1xH7hjd/Qyi+QwVUPQ3aLjlAoCJweTmSXpl8VdYLjbyAcmx2gZELhip5arD5Ldr36u71QMIMet0wXPXIBBd0hkFXO5WVS4Z56o9okJRNVCNfYda5GSUYWvg2MEjNKhJka5LgJLwbzidIJlaCjiTfCF/ocwITrQzBbeVdVJBWRFzqtRw1I5Y/efGpw0RBPdLcKKAN8fG99nBfhf2GHQYh3CIUx3kG4Llsm8Q8z9CjOT6TlucoVhcS7umDUbt3RQLBVeoa6vJaNA56Ys+21d9T1RSooZTCRxXEcER0hi070esLjCnmfEpNccB4xhc2qrTSV9CElwTO/OLR+2XdKtMnDfFMqUNTw1UYTXUTEqWK6s2Ka5rjn+LwnSGAMZXdf/ra3zrWdOB71/CM42o3tOrAG6u1JV5oBHPU5zc6su5ncDeANdVJD27QAylJoEkgJZQsegWKM9SZmEwY12/c9f1AGDj2oi0dTEr3pGJzujmP0FrSAlNQzZ7mMs82MwcmV5gKYEUoo8IhoiCj/mthUS6lN+xEwGkTA9nO+ByH9ugCSQy3C5f/XY+Lq0UQ0V5btKO+AVOItITNgQ56G0bAFgby4MjPw9ALNvt8iGnApbBgwgre/UafihVIxiqUVecQtNjlwpLvTS9oDW9VBwftAsVi0UO4dEVM6HbBtbN9Q6lLtzOBAeJjZJonv7o9Xf4g8KRHubD7p8NJGoK/BvsbLX9ZV9P7W565xnyt+g/o6x8D6+sO3p4llY4VMo221Z6xyTnjnDvXVbkVzOKrDapwA/8F9NcTH27u7GyXeFxVyFy1iS6/VEtHzNgiq0SNBALVy6BQEaJDI+OWfl7eGhFgcf3T0hT55ourC8NDSqMXEQBg8/Tar/lBfdWt699qs+MOjpsLmJScUNgCHswzozbR0rMCpYQBCfpNnQl//s4eRD1QviPgWQdXQamlH9k+kkFoabRnNJG9dBPlN5VAPrl6cnK9GXvdmnY8ZWcW0AUeNr9HoVEDlocIHhPmzPminXqeC6r8Adj3VtAK1gq341aBtltJ4C47cfFb/y+6A9/nnQilZpzOoHqxnePGIaI0lCzc4aKxjZM0Km9vfHXDJZfpasUvhFGXTAlJi4bN+YQR1a7iPcb8eWl4vZv/+45Ns9nF3LgEQj+1uDA6eUReI6dDqfaPmN0OMdwZxuzmXAo4t9JS2kLTeZEjoL8eYqxcgkmVRm58MJo7BV/VNJvcSVqW3exH+DK+Yinp0cIVkmL0QKmM/R64bKC+cwbnszjd+4E8bB3Z6w2SzMjJrnZ8xysYvBSjnHH1rF5joIm43O2jfwWqTXSkgAv96h7NnDtb2t/9+u2yNQJjUvjAWBOnVx881Ec9kTZlsPs3hzlf6sgdttvXbhzkIacDHyxTpfoFwSAIdcwpWp0Y4B4o/4XXKzU5l9vt0k4VNISGMf35KMCMbhCoCE7Mr6y5wy+T8GLlxaxV9NYEZTlhXBxrdhbZh77zBOkCsBYBQgxqc/YI3JzRqIXHzQpq8gtqQzb1tE423LP5OyGlFx+W+BX8I5sNiYsD3VVb0jo5H4LZm1m4FnXT5PB8nalWxvbIl5na09CETUvd9OG7lYXItHbfnpIHTW3676QoKLzyXJQTZrcnFg3OQDZxw5xSxV/LD5IrgjJr1Oi+gIILLe8VDM5E6dOXfDV5/C70P0f88Rrl4awTqaV7Gs5M7H/8icyRCQjQV58/ZVzzY74kdeqWX2NXcj8ArtW/fZ7CF2AV9CAu2mS1PLSe2pABSiWrMJtfZB+hp9g8kqIeWJNrRMYoSeUZWlYKKKJIpoVN01fA/yr5t7vfm45fESup9UZTQQZmiooSDIpKSC2nYykwQdGDziSeTAOAUb8oMRv5HhkNaL4Uf+55XoepVBPYMap37GKepWAurvWur8lwuEwxzSP2JgHxqqGGEcMUrKMzeSw5kBQ3DEbLXpnqFXSYreKz+Wo9nbmiWPybaVchomvWgWMBNzy/aJJcEmXUU+hHKx1/Jt0Swh5uEFPMNJXbXz8n4hq6IOhiGa+5hRUuFmqhlv9KxPcZVa+cQ+5TBRZo41KA594MxGZQBe1fIMFDQxVMqGCTq4y+2n44Apb/CFUDt/afdf/28LinYx6ylkKpjXxxKOtqCXxtqtGSEK7uQbr2Ohp4Zzev+CoyFlauFvTHxaNtB5Ev4AwE7XDMhHLSpQJ9EuN+W3U0MeawBqyDKhe34k2+9fhmbQ12t771qH0pcdFvbRv75SmF2TRReaO/yWCDS6ocYvX+MCw5jHPWX6ZjQyXHrCLAat64fXu8/O1q7nae8mQXM6PPKxMWKlo4wtMxVUKXLIsP4Sow0IJku/M3wS5NlH0CawHcyo9FQFrJj/LcLYieD7ebWjZvqJB6s6qz0nSFgVmYiSnauxqbJNkdIWz1lGqZpRQvxS7Fe0KFjCLoTeflj/4vKWk/BpeEPYTolt2B/REIRBh1ywF5Z9Bax64NlPtl9Q69KnzPd3GAJ0/4h1qiqwb3NRfZh0F8PQwtVLkCsCESbdKvWf01FzFMGEieaM1YPauYuf6MG/Jt52Gqcx3ygBUw2BoQgKOOZ/Z4KGlw6L/j+EeNMdYMlI+nV1xCH/gGmgVZ3uVnm5bxQW5i0pzINtQzu4Rk7rKAFAmRz5ETLQnp4Ce6+B6AvQ3D3J58xpDHzSBz5UPNWPV/ZrVtSiQfqOLI7D1GJEGLJkGuCE6SAO4GJKBdHfJKFrrzYOBRIVjKIq7996S8aF7XYVl+R4RUXq0EN04RROCrqSmHkaXhny4PudfrSo8FmK2WwG3SxaenCHe2v6fwoUDy/863EC6MSdlBEsDPGOCDnir+/2iyYsLkzkjANAzAWsPDv8td77LbAOQNFBEXcm0UMIMDFBIjRjg/AyIuskO2YGTDFxL9/7m2sF0+JmlIZsAx6DJdCYaFnBvkSwNbUfPLtaUL88iRFB6CcMquuCY4IkgHCNXO5IIpMtxpDhOqIYCgyHa0eAXhJ9nscO165BOojqo/JmsQacU34ioYdtMqBVRQ3niBh5iLICIMEs8PWI73+0Nhk9K8qdP0ka1XIPfAEdwLtCzaVsusoiMbCEvVBOyXT3cxNBDsCr01iSI/7vkjJEBZfqw98jRb2S1Vim3JzsMMvvcXaknJOVv46d3VS8r1sdjuxIySImX3GziwGaqZv1OlAsejjtVa3MwyMbqkbrZIKE0ggXml8Kk9KyU5YNJhEFYoAue3poBRKyAo9fCJqKZQQ09AjvaXX1br3gByCzaGlO5PL2TAirbnFNlVj+gl9TK3rwxcidXyqgLQ9lH4B4GX/tnfCkS6a6Ff5IeUouFK9aNEieTo8pO51EhqLgSR3L1TYFmfrQ6OXR0cpUwzsGo3NIfxUCt+7j9Y/UVF8i66ycEC3prSIpSI05QzaOI+sF9ZLutuY2UJcHL8CnbG4b5WPP5iB8Pcy+DSlFc7tEdWRrFx/e8W/ZySc443eXhGy3ebdl+MFrfq36RdYxBok5CwP0k9+YrqpZVJx6rwsHIeIsLCRZwwQB6rnaOty4eeIFBt3JQFQ8C4yx0MGhBdSSfJcCb3M1hPA9XBS9hBQikvHDQ9yEr7WxO8YzB4yhNrmYsSG3/JL0BiPm1T9UwyK6OwIg8Q+EVlhZ550YcwXtYw+wh8/TfSRpehAFQZPZM9k7bcnH4rwRsVkDMgheW/kMXNjkmb+do14oX8HIn4ABoPaM0fWcL1MNuXI3+m9tVk7hMSvHLO1SkAqBau5gnoAnjYBs7vqz7Ba7beuZHlmILR7pELMSTQA7YoIoynVkxBBNsLewHwO2osONfCdQFxLNtdG+qyP1EaxJeZBBjq6TuyBVKSlO6k31nlOISMHELsOi4XquQnJ0/sKppsX4kOSKUiaTeSoVhNTfZNhJcK8m4s3LdeRDm3z7g2Mk536xeK0EWdp21n1D34fLWilgXwzpKP0m2qm1PZ7JZ4jml+0byLYK1ZVdFY5mYf/6JOLVW2KDGtr/pry7xBtZ5cVyftL5PZ/6uCoENEsFhfzBjw7QV4VIEwHV4/6FPN3EDCtciOYgp/b0fLW0En2DzT/tiRYt6jld1eXIn+xys8eKnuKcf1jMAfNx2cERKLC4e7gh9W0/9zGerASx5Qzku9Xj7+cYPo4lxyadYJyFwZVwEx4pirMSJSRjEh3JzK/fCOjnRt7VB6QOunWyIkVU/BJedUCsfemm8ber7hUT7FbMYW5yL1t2dv3hefxsh3qrVIHKqjoY1uk/zMc6boGhaa6W5oLvUAFlXgEMU9OAhY/xcDPNVpfd7yWXe2MIsftZ0isM+iVIS3vC3L/8GkSgQeZglZn1raY02NFBcZMeuzlHwBFC5bnTG7Nh+F/QI0R71LBde44Whyu8HLkzaaGSTI8yWTRKAng4rHAxdxKvGCO85cOI7enWzz0udk1CGY80asP7Ec3CPaZtz66mUnPFnOM+KS5+LWAktkrwHMYAxKDx9gr6huoqHWLWq67XgBhopY406dE+iqRU86GVF7B7LrlnAaGoh/W8oxEsqAA5rZc9P52i2MdQnRw8BYJJCcc3qeaDzu0+CQaHkjbMwYLX5gpY5f82mYFAD6DhSGmGzAr2acSURiLhsMosKsf7smjgxtS1a27tmUTiW/ONaXnB3svyFSrc/GsaI/9UiTh63ogStIZ+uSCpNxFuCIoYB+uvND2Dw538J1ZSYYueiVo+Ef5HzjFB7BEGzVe0p+PLjYk/uoA2hE9Sb8YANUDAsm2MugUPoc80w3ArsNSdqTIz1K3Ro5u70WkchFmissuG4MxA8WZgcPtUx6qFZ9Mopfhjbp5a3AzW11cWYrK/YnnMBX7Bze9bw2IQ6rVQkCbfPOdCsfetWN3P9N17MMZRCKCZdE60EVnYn5nG333LKxPhmPUJ1EU2n8D5xdla79JaaDFPoCbIimDEIH85xAOV048ia6NMX6NbK/XnPD3k3P9Vug0TfPb8rY2mlmV4XAD2gexPZ0qXY4pmbxCt4BK9o/reJ07Hk8L97gTrPPU62iGAef361+mF4lV0CE+nPvfts320LS6ywZK3NULOGWxJ9VrilH06WSBrnHbS2uL3Ae9JVxYo5FSd1SNDfJqGnuxsCy2acHTKcycShLtqeoIVoo+EUKWlBL8iDxt8HZSA6d8cd/TGNmS5ZtxtwfRXBDlm9JyLId1qGKPgycayOZ9vKW8KVU0bdeTmqntUmIeJnMi/J1ysfWmaeUIE1Rtv+bRbeuEh1beyCMM9J3ZcDz3QrePpOk5nezn5uqAZ3TAGwkv2HEhjy0DG17rfe3SpnqGg0LZ90jNBUHmGWrDt1uYvyY5jnJ2bAW1YVwKOycQ5gasMtugJTBgpLm64N0AYp/GM/JErNRvazmjEnYaapm3DgGTGDw4rUMXj4fUn+ieMJHk17nIsdE5yAmjS/GIuR5JC4pm31Nv/CH61hX7NzZn0CUl9qeuxTnwKuR9Ex/nJuxxpKP39cv28h2I4rLlMpQxM/JSEZ8dVLqwfgt2brKKMfiSVTC/+XI7BFt483I/WbFVZs399bbjaYmax+mozklBYwjfnPODur3Dkh+uu2Be4EwaImuRWjA5IU2E1pJ2qZSimoK3TZg1lNdTrgI8efaQrYjsDIasJWJ8XMDV9M5SbO0sZY4Y7UPXN5E7S1vDYT23vbXGF0+rskBIdnoI0QITbYcXWgb303HR4a9wwJDNhxjkSeDQ6tWyHsLkaiwZv/CDbPpZuPS6RMzxsY9uMTX9mjuOB/JwcJ3OO6Uvg2TKNHpc7yLRGRfTefoI/7gUIrRCaoJp/ZZWasUQ8Z2wjWWFpfBt8gDX8ZUiP215sJjAwujD92nGMLgDFgwDbRYs2y7BNDayC/biFX7rJdkejHQHPPgk3pOqqebDV1jmYZ0qZq8BODNmL+5h0T0j2iuNxpVnKBjmV/anPvFctUnlqaYGUEb29aOEpllTTXwfDxuoeQi+5eGRmPjyP9a9jZRYwNmJZWJiBxwFKTn6mdFZpo0YlP4Ik2E1+P8gsQDrc5XPF1HnIH3XEkogrSXc5jI9yySn5IbSZu0+5uKRWwhe6/56JgaW6gcIWfIGM42f5BDdDQ6qrefR227ALDyjC1f1NaXZelER15SnQjfZKXi/0n0RfMvOYkTIo5hpiug8ULSE0Z/6EpYdV+sCKJKeaHrELryL7PM5DxEKZC8Ov+kL+Lm7s+NoX3VW/vV3KBCihUuhuJbYDIdHui6FAF7n0A7O1UFJB5dIrGH27L0AIUTlD8YolyArP7IIJBO8QKhbmS8+UfUMsFgLV/TpnxclGGn3+G8EnFM5W7eS+1FUikvC6yblRP0dGnZJAL2vhO9IW12IfcILhEZTV97qsPNcn0JERJ6exBq5Vu0O7tOuWdDpWXZ29jC1RE/k/55a5/d+wYXIunTpSBsDKIjbkcPqlkYWK2hEC9BXSkMbCwz4MevDCAMYwrKdcGzxyieLVHcIktrl0PSsJeV3OWA2+oPzYM2mAccDN+kuyUwGMdB8lFeegks9+BPa2PFg9CHygJYr5qgyyoDaJnNdNk9k60wdwVelHIDuoURDwtvoRJlmowS26vb6ZIrfj91uaBgMa53YSq0rzhRZqdIRTeudck4IgHqmBHMSDQ52vnDKGefPJ06ysXt1WIkkAq72I4eukbVwgRsMTlcBu5LApKpdHzMjsUperoGlOcZfK6RkIIvJHx74kCBJkDn67gYuNSJmh8tQ93zQTqqeXo9QaRxePmN2/r4SyCw5mDuuvXpazOHNa4ak68JO9LPPShGUkOH5ilJ9mFMc7ZOo8a6eSmziv0ZV+uA0OIZ6YixHmRtIpljyoAOH7fb9mNdUFjP57/CvJoyzv3YOa+VkzsZLhoKddSFmVq1aw+tEINqKppeiN5JfMJ5beEZX9y8oaVAnxuvwbO2PjSxySk5th8tYLkFNheiWDzSZctT03+bmfWBCN6Fkh0vMYYeLXlHLWWSe9fXxW9V4+KmkjFcbH20EVNOexM8n0vVSm/JdvM4eRABgkNOsy12CTUJlcOZTyfu8ZmR5WbRT1KYrtxuDQCvKr4DTOS43IY6ipEhPPPCozP5aW6X0mdN1HX/NdWzQD6psbmuctdBdXsbe4oH5qkpZd+5HPO6IGTL1XgMwUwyfAl2SgyKi/6/cfUPI8ZV4J8eAQ8TW9h50q6YIuK3FCES/ZltOBkfJpD0+amluZ2okxCA+qET6GsolCE3GJg4AQVW37NWgL3/PgwvWBBzRqbtSbrI7uKTmYRSPfjUzAsAyFdiSQcd1+B/3ghKLytTM4OyhnMyu3POcD3BWLLDuvh4N6CLfznIqWGpnSP+P/OmcSsfc+WTrnPhLGPRmtzWnXbdAq8dbSlb0G31++KHLUdyBHu1lgaKW+3TNxhOjgzi6TpF8vrHgYSlxWtvnTbByDN2e1YeBPlGAxB2PqeNm9fEUkDNzKQNukB2ltwN6BUkCuxhNojGE9pq0IvtIe5Yqg97JNv2cXC0hxLpPuUv1ky1euns8LsXNf+BC5T9DO9Ji1itNe66ZbAXnHfGCn7lTfwcPNkn9Xla6qZBdWB+ruxdnKyxudf3vd/jeR5r9EqWvOH3tM6G6EEZ826TNvqEJdTJMAdeYS1e/Td6SGOPMrX8oHlTi+qD6smFl/tn9xY2UmJWWJyW1mcNjDNEMPPuOvjVCZb15C1jJXTzQo3Ga+Gvc52fksa8U1FFYYiV74o08kUC2vqWipgjzaGQLVUjA8cgneCX90sfXnQh4j+6HFKZwJkF1oWwnSknVj4IO85dZn/i15dXTsNCerkzQ5onG94kfJVcgYIfDDQNhvI2m3ONih51DDhujOpzwKHjt6e8ZgM1apVwJvSKz6Jm+qkP61h6HB3ni2YfHaafZXaoR4mewOyQlXMn++FftDRKTZvP3jeM5mVo6pL+fuTmVuSDiaN5EDukgMyBB53032syZNLnT+oEZwo58dSZ5XTcI5LnZ8hjRVnOGwcqHZ/+YM/l3y8d7gfsFvMR627mJ/+QRNMT1eG+XZSKYZPmtj4SA//d416SjuwmCSCW7HkfcxKLL4I//msgyvvLl9KV8YROhcf5WiSfRGxrbO3QEGz7yCBL0pNv/zqjxhDGAMsLyc7RHHz+FKMb4qDv876TGfuR/Ngiej6M1ydsLpUKoXzvUJC3uXr9obkArvkbhoXcSQ21p0DnC8tSW+qwDWoSwH8m2TpbFDXU92FPi2FM2q/fkp1bvmhkp6LBme1Bj4UdTkteOcgm4qwcoL5jzaMMLqrGdKrAFymUH/RKDpHJW7127ulFLBF2NrUzgbyDDtHwd0NjPXT3+PO5fnTIP3vubnxpxB+dkaTmHtr6N46KqoBRI2m5vgaslKVeZw1VrdVzf6+2DjObvK0LoTYWDb1w3erskEirfknSKJGkSnEG8NNIgT5QXJIPmJlZH+IwM5bvK/Sg0GcpkTpqd1epHfLUPGIPh6nDD1W90xzIFywSsvOON2fBbP2+kJUosvKe79Mmk+hYbFK6+pqrneKv5abiB9qIgd6vYF48YHqUWh4n4MSpDpUgZQOEDHLNqA3N+Mnfmq1mODq97f+pbPYoKnOaDhwdksHh7kdfgYNka9E1T2I3cU5aPebZbrtfvfiad5B2YZOAlSCKEmJkN0uQBLOYcRrqCC3g8V3bTM3XybJd1CigSEMLQzTYINY+Qlixw9bUhjvCp0WuTxnRQH1B3i/s+YxwtYAvXRdVzTBNLT0j8lD38/4VNziAV92C+Bc6H9bzWgYpdfcFTLp/5oWVBNpZPJmCzFokCymtJBhiPumme04Y5+NaLDc7QePxQB+ugppAKPIE1/ZAMCZj3VvNc/LcjVP515Ij8G7H+GsMSflJrOhOB0TL1ObWQbJvaX9gb+BOcvSG9kcYHDUW7deo4LFwCxJXv5GekYMzZMq1EHRr4LPwUUIWK77HskVOOmEVAdeW8b3u7NPOK42aAptamwJMbUBLqbsEAwOGZnerUPW8ujGhGSt5XsAAPxzHblbPPScIj8BUD7fWvcbHZ14RJ+2+lpV1Q2U3bTlbYMQMOqVq+2j1KTKGRkN7WKQZlzSE94n4iw4STqIEsjvRyMAJYfS9unUrbiwrDDIJv3r7I/JuNbdQO6dbGsczxydGTDnvaXnKvU0ubdFIpoJjaQJGZ1Pl0jbY0HGWT5iUtHb0or+2JWggwTeJN7bhkY2+oD6/VRHms9+QQ3AvWdy2ad8+2uZkuHuvqgorVQ/gopxkpZCJpDgFo+6hKGN/ObhKkhU6lbVlud8BKidp9QMvNv6EYEnAjYGCE0ceGHtc9tLgJIrmrW7FL9C31783WB0Rroj2oK63ElXQLYN+0L57LhBWZEdKyGjHGY+I026Jxpq4oV0nWNrIhuI4oOw0Uo5AbUrYAdwxw6N6BOf9ZT228+sFiVIYEuxocndMvt6uKFa+V1pOtjWWdUuK7Wvgk7BRePbrs2i8DFPQ8Pd6dIRpXlFjrIJ/ePRyaCAawfvaIL2bmd01XL8JMXzqGQQr/CPEIg7ELIyCmjnKlOHHs3JcBlSRf7g0GSU6+x9nPkKKMYsY+fvRGGwWsaYwzQW4rklx20WysIaCAfmf9hV34tIKj59dMeJIfRlvJICHd7TcRBZeShGoy7BWoE7qzKtIzqs0Mynr4drvtT1qh/h1u4Hp5Ezhz12ASI5EdP/orT0EftGO3OLyH2uOZoWlf3gY8TtLMahTgnQ6F3wTOFmKAGrQUXrj4kOpU3GfhNj3LE1W9oeqL/wnrEN3hVV7q8qrqlsrDKWsSgCEsmwwi62hjBOLQ6AE4xIg3kOtYWdRRMQZkZm3WZsgfFEbrsS+2DfQGAgswB8ghMRLYXSUWHNvnkgYTAQok7U5Qcv5Yz/DE3R/V4P4A2l92D2PTl4xVBett99569ojLzfh4J23fZJMoNNRCvGTbWsdXugQgHy4IbkHRoVov2JP/qOePK9npH0CD9hAGJq6ya6FX+3GCzcq8tlBlR5GUx1xiGKjlY4JwYCZOEj6GY/WvTvYOcBQL5PBa9t+jCDtnkiRY333Ab67kad4thySgAmaTMfCboV4kA+xNDe/pbuqL0zSzqYumxPWUR+EBvVkMZHLlzPEnmpHThTMrJsVQZ35MgD2bB29+69AFBu1ju5A4sFCY/RtrDjtvEtMDNxb+i0C2wGlLVmqyHCx+ZXxA9gct3r6Sp8rcmXFmKpPAsPl5awJhlky12Mcuc8R9oxJeGpAYoiduSH9+1oMndH0WCByQK/PF8etLKAOefkdl9MaEX7prNu3GY6Y0059tpuMdxMpRzQtO7mhut4gZ1EchzRtLxERrSFPwrbh0l2k5Nx8e6XSOH/Gna0z5XKW3w7AX6M6rWUiCgo5YgePhIntpfxgv6bkgPd8lGcQTuLB5bm3J+kPQLZqcx8id9G0bFJXMBW8gtXmjrRANkqeNkST10doNfxo03pM29PcH/iavbDDySy2vh/J9Sx9+EEjEbInX7Lckq/bBGjxMaSKiocEqDLeJ0gUJuhDh9+5QOxuD+nBr/q1stQ5de3UJjlNUwJPRhdfjsDzlJdq+hXYyO4VVEL0vnpr7/FQY12suuzLk1cRSSH9h2TKcWTYTXxWtKemPyd7HMLDiRMa2WnqILZx8KpxuS8hnBokmHg4U2FcEUCZ5s1A71P06x7etru/vrv870eOebfeZusJU8V7G67yXTlbMSA0Eauu8RUreGanwoaehTWLzFDTBhYE61H0rPDmpYMZddJ+yczA3MoXu990DFEHPkiSY5qAVpnWtVnxwOsMBij2NAs+rODtglgkX2Sz3JBNs2n/Kpfcy42Mrt02No7TmVws1JxNauUT1n/TvTRbAPukwqOaPuuTu2nyeMJbsahk7snDJuTfep3dVFeFW3sAAdusVOSGqzc6x32pfG+j9y55wf5knaAazHW/apgHNl6BTNsxuqeZEEg7A540rfacTa9CqmameKhuXYRt3Awh8/+J0gK+q+5k4BoRFcrMBItpQwbaRd3at6/57qMwLvtBumG5at9m7qaurbivNLgEUbEZaOsMnDvjZQaL0uMQXzIFaECJE63HZXiYX7yPcj7L3cIUKYZ975qOpca2eeYaI20r5TuA1AEzP2pW5zQgfsUivHNGQ7RykdOx41UTW1tiUGaoPbilcta8rtt8PSe4tsBB3nAlCB1tOCn4KRNjvIi4CFUVAl/89TsdzwBeT4+fTY5inoX7BAPVNnwYlqduv24fAmf9UYqFlj5k2VQcHHq1wB1v2C+lAfmG7D2+PaH0oUPsx1uUWlO3k5LQSlJjXvCpgVeHlrbcYqzjSsVNu+I0TgCgW3NhdQ8MwHHJoV6oCXu39BnDAPX0rVo7nLCc7wxgouucJ1wjldalcqrWnjy4YoEjuW5ZwZZUUKB589YgFIa5jEPi4CfjIrpt0IeuV1eFKZsJkjPLPLEtlrCbz+aqk7ukzeR9kiAEmCjjOYbRdVD48K+n2x2mpoCjUwj0fxAV9Er3DOvmqwaOpwDL09dnqbXWOK+kDUcIiLhpAAdtQ63EKvMILlQd0aFpm2YCpQVAkZ/IHIHJnd6RUAEXI19gcX3Nw6q2TCZEx3+8uWiSausFjpXyqW2iG464twYu2Tq/fZbXFh5gDBpWq4a46j4qqIw8XB4b2BT1vB+BLlI/1uZAqRhn0W0NT1KPPjybJnC9qeJ+PO6TC8ckSGI659oN1nl9o+h8aj+MM1NcsCBKICTLlJDH6GDvTGhMeyFbMMlmkUIlzzig0L/Hf1ZvezgRGyTDUnhNupkCfl4Bx07aouXCJsi2pOSUqeVk9Nw7f96+yKE4CVl/Q4s7B3weQwnEWhu08ZmkhS1KZRtjrEDFUNqk3DOyzz9VVH20MmSLY2mFA0IazuuiFpKKGtLpaIzylSHdrJPr/sj3eJWardwOde9xAVpMnmkKcKePkwQ9AkHJwAmm+cagKj99QnriTMLwgdr/nCMWdyCMjzsW6F4Na2Ha8tMn1+AhXhztqYYiq8knxdCvR7cXBuZrvRU5aT2HU21yJ+KGvsqKew5zAML3mwmBH2byJdIaZnrCq/qyP0g1AbmAC3UrlIu8FO4sixpFQ6sB/DxW4Aao3xuvwtBroRYMxla9zyzuUCcxEtOPQQ0bOgitliRqp+LWtDN4J1Bl/IeMXgtSkXHH30IO+MUTiV16mRlfLKYjYRptoYZ38ftqE3FwkCHg1A3KHDIX7J9lDvipVsmQYs+LSv8veHuGyES2Qul2uOIRoqzDifD6eoG2AcbTTuBNRFlb3Rg8nah6VIQV34sGWdpRwF1Bf1wWQQbGnvLET+gRZ8PXAvoiHQGEOt+frTMXH9/hQkri3hbKc7Rs3G8YfE0lrZYOHkFyBmIHTnzYPEDqBdCgPey46h3F9ad/RV9pYg5XQTaqxSWSswf0AiLraUy7jxJoVsNu6f/P3YupzuHVTSq+DBEegnkApxuuH4U9lMCQpSAXw55YvbPD26XWudeeyNvKLYwjyvE1Zm2uBAV7xfrhl8FTZ1AM4jAJurKGwHC/B4C0Oc+ijEch8A7t73i9ZemEGLJMn0I9/GSJgeDyx/Qs8wWW5BgyiuVchVF7sTW4nwmsjbodpoAt1Y+I9Mwtfeq0T/8WuClmhRwnvATKDUQakL6cwTXI9WOoN3QiAS/BNxrisaG/HDW6wOimgYZFLSMMfhS6AkrA8A+xZnHhgquBp5UVISC93YX6AnaizeUMAjl9t9/tGO2RcbDHCwxQcs7lNND8vH1v2jfa6r1V3+mvBoaRv3kpl3CNu4L8xCkawsTZ1X94pMPpYOI9WLLq2nhnlN49dBezG79x2FGYhqQeYWpGq0XAo9HttRTY5ntbyA/lm5kmvnWkJivQ3AaV1Tz2i2gTLKmYVySvT5XJbBL8LWrbi6qMggMWpMfU7j0Aznrr40bO5QhM+dfiV0P0MDKy+45OI/KsByq04wEJTZ771l1cEsZbzOEskmq3tVyUWjeYITEyjWTLZUr9PmFa9fLWsIKOn/2iPUWFZrYZz5d7iPH5VEwNjG5vXW+/hvn7R47dB+Q0KwIcXS5cfGQDm+8xMz/MDO4dj65zFjc+7O5IzCiNcwaTpGJoShjzGn69lU9XgrCtcHb1qHDXyWDitWP4S+W4FDOoLqDx89I23GuutwKwwn1ZHjfldwnI+Bbt2JK88iXSkVF4u0rEDxEVSSqDlJx0ciJ8V3aV9szM+41aTSFf3HUQkzoDRBJ530HCjRaSrdAetPmQ6lS+yPSAtWuofiuWPlItQoMbykI9eZ9LXODruwTNGWo7tlTHo6Zqv13MCgIqtoI2EQtglrj3lVpn0pXSg2AUJwsBuaifAlKSIorQh844c43xGzdsJPfsBacJ5yz6phICvJGg7JW6z/4DldSZeSXp5xo+RrSslmlRmkZ1ZK7wPnSezsMChVMz2VNwPPugnZNbO4xO1ErY6JVw1ifCZJ6dyEUQWQVx+E6WCTxcDSYs54ALWdicRHQpIgpseRlREr4x3IhSKGwGt5xmpzBdg+9LyEZB9yelKM5KZ7o8LvxSd5ICKkK33EhqMyMVgymPro/qIZj1+7vNj6wN5lJ7kLST67j752WMyT+vajPrnaY59xoZduM5wDlWYEAJiCKT12JfAka62j7KPZV6DFn/dEfnXRDIetOubz5j07g29grgMtWFiJbFs+L70ygG0uK7HSq290pI7RurgkfiMAlo4SSoR8ygQimY5zDX1aZH4hGCcZr3u0eQPMLFnm3JgwtA5euHjxj8yToRuDWGWe0NVca3fOS8bnzuQW1Ak6XQ3WUjGqB6TxC0AIt5d/F3TlWv91OvVQIobAMtWyur9kjmMLsWoqhGH4W7no7xzs9Bc5ewFeqIvhQdox/n0EQxhddZ8d/DX/89JMgrg1mDpSVDFs9nqeIRhIk2vbSysLAVHrQXBB9Gs889woObs7FhZomIFgp/B5uxElLlT0m1mfLLHjYRJmrLkTT/x6vPU53pZIq0wJhLZ6W2zVqdrfXgJ+f7UW2phoeKBbHeLZ03X7yW5rLBb1NRKXRI9E8JNBMY8wDRxuPWmEc5A4JoJsXeSfZN03Yx8zwKbYJzxFQQKTGbGKqWYUOpc6AHvxm5QDXMRE8jKbfW3iz8Z/iKhDT2DAJQWBrzxtfr/jAcnXd7we6WG+UPPZEvjuw0wff7ZQSp/lPqFTY4aCH5jbNki0Ei4Yp6WO9oERrUAVeJ2l2h+xpnSBDVfTO6I5ymjer8TaAN6pqL1Z56NKz887F3lpKp46rgN+A2NR+iez0sX/fEZqFShg0bG1/XZQxbIdS72GTokH3F6XKfDhQDR/2UbF+Js6Zwxsr4cpuFLhfkunxPCpVG3R16NvrIMVxvThnmz5zF4yqKajf3yxtmHsjvyIqCDxDpMSOyBXRB1p7MGp2hL7dw8nRF6F/0+t/hx/m2HYZmP3lKGgJGJJ4w3zuBGucZsAHQZY7L+mBWv6Km8cnB5A7vIZRrBGx+rG6i977mfuC+E3GYvkxvjh+d/eAWH0ZhguXqiYXAvjiKAE1qHhvj2SbmTPsr8JX9rUNYShk/vCOt4wKHLPdfgEaACyPjgKIrPyBw1kyO7E/Ooo6DSLBZ6UpgU8x0O99Sq7DP7EFc2V8/jsuMa9GlXjO+hwt6LDK/+RC8UN3OptzAWUP8trr4I/n+CpQ3NQiCZtoBTKdy4QThiA9NvlHw//nTOMTxYxCMHFDYSQ++hRRfKelncAJyBC1VHHOWfT6+ADxKixl7Z3gu3fftiaRfZ9ZJKEF8dRLZrxf5njg8GEAZC7KWaOClHue/yoVcT6q19IiFxWmin9R/2OK0juopjhv4W/j1r4KRdEZhak/5eeKXmWMBdOIzoVk3McGOrX9FAHHbt17AQnUWdDrX9hpHd65QfOppUqesTG+nKJroocGLQMYMrs8/cH8rsr7cEQXPHnFrJXo/J7tuVCP5ASQF83ue6VoX/g0xda6O4RfhbIjtpyeZpiujAKA1fAiESjOwHR7smlxEJYnwHXE34j0ottetnxw13i6wSBqKC+fz+PjCETSXTUk6OZO3aUWbgnfvq+D7CENM+usUr9PwlHiZPgfV2S735rawZYUktcAy685wz+ZzgNQxQXgwYAvoYGzjCGngZQ2dlFpbucqAJH+5atJBeZZ1taT8yjBkdDRUblftOmw1ZOANtJd2IWvhGaPSRYYLkpw68dznw4LRtr88hYoV0nA0nOBEmFxY097IRNrTG+r714qr/KvLDX3kdsMiJ4klXI+qXw+frBEdcU5nY0fmyj8oCTTRR/bm06k7SjSilZqqGnDoxy+k7Dukgdkr5TcGsNTyuOetwSf1kC3j/9RawoKoMahxoA2msocfi8bqT6J4GoWJTgFIPPUS1FGuNxQz3udhri4opTrZcOfnwHIGI6Z03Xzvq0bheQlVn6wES6NumpQDr6T2JU/FswE60fG0qaRkQosV7IlAUOICTaEUOjXN5ClHPVki/kP6KDhLUiAI3qkx2esk2K8CROGXiIinFrylS1YRsEEbORAes0ArLu9Et5yd8svbrfd4PzjrPqNaZ9zWzND5sj97vRhrCNyMLZYfeb3vDvATUYxm290NQNqRQ8WR8LZzSKb2JrYw8mMsjskXUaZlBK8jBpEVA+wdriZiWQ7DCZhs29DJ+uDHVgtkL3Ga9GsSA2AkjPGh77pfX77hhQZuyUWG4X0VWd9BlfcOV/lacN+YPyrpoLydUNk2n2CnXwofEjeQVgMr5Y1f6RMX48+AExF2W5M51dV54FrOW9T35KmBuM4p0Uat7EExjwSfLXgI2t1WSKKmTEW48ZaxFPa42sWSYojXE0ELS24NXcRUpbp3mENX42eW7oq+Z6cTt0Bcq0qy6XITBERJBPYe2Z6SHPtkbRcHhUStqIJRmlD4Mso4TZ/eGfLHajL5Lkz6XCj0auvL4ecUSTqMYxPQAVb+fm4a61dkhoVNA2hvghQv3EjTKRU/jlro29tNwc++P7Xh9CTCdrEG/mzvuEI6VQIaQXqVp6SzSHa9xMyihp28RKn9JXT/T9RDN5XNfhY/BRuhaZZ6R/IrxUuqyY3VtLFYFZxJF2c0bTss419vXcQVXd5n+UJoLxc2Q80gx8IOSrkarM4ZBV2ySQ0VO96iWK066VNq++SFWJE1XscxEJrBmUAnMYApJavrQTi3SQb++M7DTsR33t/nQJKyMG6jklOB+FwR18fSkDw1fsdSP6gQes6PwoyHQYqq9MTFOzsdCBWDklgrn/2b2gSmiC5QV/vDfmocD74fH9h5abhZAKw5I+XCFH3ZCRqm5vstBP7UXK4r2soliCSdq/eIfP282r6dVXff7XEPNQ6jvmMuQFGt5IUEgP0u7BIYs7Noou+dPSAQLlHrLA+XBYgy37LDpod0UKX+d66dHKTdv0BszR/rkDZJ+YCsuQgkLXaCgcbPRVEOmucqsRqbZZEFTT/+/MPnkUHVXnRciXkjLs4iFfcVnTGNn94O5qJMctCSL3RpLkQJa/NkTdehp9E2/iC2f7rULgo6chBlKJrabgDEoMG9+oVLniooJxk5GUw3gs0M2AmDxkj1Kr6aPzUw5YrcBHKCsa1nc52h3QLNSLNvaLgZSElM6zcWhUBgSmzTPsLTH9KsO9Kn167/imcIZ4qPcQ6s6o+69MnP4i4kOX9xGUNoE8t3Ql4O2Uz9g7LAdEdjjqYUXRuFDuHnqrJZWuMDSZivr5ajDS7OCuYc5aosrKiTOtc9z1T104FQMURGezc2t3gdqrzJI5GBKVbYnyHhXRw9JE5iQkP7O5jUnK+mUgd1a5bhtriyDqedkEHf+9byvyZ8+GLujCnnVuleRFD3y/ZUsDuvfIUd38VqrwScHH2Pjr1hzYi5YPTxIhxRmsOzCKuyrDnlATicsxW8hS64IvgqWcDladdjS++OPw/uF2kQbxAzLWHk5mMrGj9Xg8NoBFSs3d78/1qC+4dBmABSpz0qyY2j1rKHeFHY9KZ9L7dfjt7yr7/srw/uRbI5H2GOEbzNmuEPo/A+QFjLL0yy4uP2J5J+Sc3PZyLdNI93uB14F8BIkvuX1LUtqs/n3pe3yyJYBHX7KJAJaZOsi+8/aPoEyaK5C/0OAvxZGYHhptjw2sVVSRu4WEN3mMoXDcupBDmwLERgnViQ3noLE4sEwOMX48E6aXW2SlaM9ScmoK46sQOsy7oj/FFqsWLlOPEYvZQy1BCLoeSmOp+McqmcXBdt+RGtDDKMABzD8s8aBLh+LWQ9GE8/MF3SDKm/4fmMcRz+JwJ1HJ2baImNw9pH758962e4Ra4gLjWZAM/7XLBipMW2NU+oXsew35YucLXNGA/NIsp948mpaPAVawjoVa+7EFZz6VUcDObBf9dQehALa4wTvr3yliXpMgMVmgQb/CtU/0vDoelkWpdCItQQ9IqHPq0fjMqCpz8oSthQnyXuozm4ODLuTcTn1bViEDjkl5wpUWfZCtV6HxKKPWgR0Mpo8TayrLELImGVGTXUBRPi68HRgb4SN5FC28hM2Hxjch9+inutjO+3WI0y1EdXEVw/nW9X92X05rjRsUpA8AAMkUoaaFjkiqMAGNQcsQWOKq60UUet+Sn9LG8BFL5NqJ3YlbijyvF3OVkRFLerbgKa8Wm8OH6+akWCIFPIRl79v+JZpIk4qHDbdnsbJuVyKxGDsvUwRStn/mhyJ/ypZQ8OXTBAAEcspxDBrxayZNxVlJqR5qLsyvdESTwuxqOzkm/DiEBYBlBzsKs62MyRvdeBHzcfYT6r3uyh5lX9Gf3nhOqam6O5zCr4oQW6OtGXj2EyguNuRJYw4lRGl3wCzUFApMQBjTzgfG+6j5iu7Kbm+hoycC+s0gxpga29lqRksUl9FLlRpmVjP6KCpd9bpZkScnub7bb8dcBGQle7+yMXZkBt4Ofy832bKzlrT0bKwzbxgFiB6pxuJalqSJJXWHJnbzIzZscFbmFWHyYV3g1SOL8D+QNUhk+bb1qgeFcLSnkFi/AQVwFQwkYwAJK87zO3x8X0sLvh3ZvWXG5RsEyYQY7EORW/8p6aozuOlwAr/6to1waqVRejVZlLpa1sJonEn/P+bHLes7BPt/Le5e63LnFR7dbdlwcLsvt19h5EsOk97JGOAXprLZ6LneyXQqYTuIw8FaBEeKDKPup++WUdJzM7IKeYKlgmlskAFE92Z4pVnrctCyxlvsLRwJa/3MHKkcnn37lmkUi8ALH/df68UTOngSZfc0vji+cBnbsK0pjsEnOAx/dfnwQR9pzGqWbBr95JYLx4c6TikLacN7u2YzkTj1KOXSaaf3aWw7jSkDQW4MUeqadt/O87U82PEqm3Z6Uali1leYZUvK7xEqYijQTg3F4L1oOCedS4D+wbW6GvbEjuYv8ITH72MjTvYqx6rOYKNkBTwF00oY1RDuf6yfCZSx64pHO4QoW0Y/sjMSaj4Ei9WQahTPBYGZEyPmikbtVkbleKjR/RuXqGpjNL9lEjl3uhnDX7p5bkFkM78XssKqyFFbsptcS0aJCowTVpHiITJRgf2ajIpv1lqBRPASP7YGwJLNRXEUU/VXah8eNhSxL9GVUbyX2gC3WUC53aS83Yq03TFgKa74PMsWKIghXPFVd8zY2zi8aIvItW038lwvh4YlNa9Nk5WxQIAhObVqiXnXxP2CL0B07rUEafGn+guLyDRcLM90Xxy6vRnFRk7MG2ge1tfFSYmYwkHbRew0dUC9KSQe+0U5EZBNDNFC+K2i5YXuTQHbkBmyXP0YC+UwQmDZ0XRQOCEycEEpVAWzz+KSPfgemYYHc3yYVnTMbslmEZ+LsBWGDTsgvHa8e0QWldilq1XRWKpAIGGKl7+XS9mBIMSMOI3ghZWLx6Bt+PIrOu8M337S849s4H1oaGatp7odhcU1jlUGaXzvdYC0HBoyIF+uFgAn5Bx0D/P7zpkgZsKBFqUA5SWppFcqj+Z76LEHPk8DNqAYM9jal0Gm/8sB8X+5Unt+wsQItkIquHhigGbXhvdBmDruqhZwabi5d04if2iaRlUTC0/f3bSWaYIqrP0/SsZe3NjHcXnT5zIr8rVCMUlZraDIbMWqKIx57KO2gv53HzZi5fyzdpKk/2k9w0VYugnrJAbax/dsNJ2Fpiu+K8DM123Cm3MzO/+iNycVNz+9lTQJJlP/lN4gbFto+3tklqABpo3TSX9Uexwee0EZhg8A2i7MTnZIiiYSwaq3Ti1ckLh6Rjk5sxJ0LS6saoBsXNC9m2R4poVWqrIuSoSK3H4P8MlXVJ4DkXge9R1wBqn9iUMlYNgHvTyoX2xI/+ikDngG1wlnCvjzzxxnZDokcqTyUrsMF+G5Zd/KfNN/raD9fUYgWb/k7zvet2FZq9WD6T+yuG/XsyWRvftw9SstmpA1yMYMNJOJDgowbTpf/GCO5jPg2G0vARMMpbF0pH0/6Z0BAGMaXcsXOi3H1iFuk3Dn368pc6MtwJOABNZJafZo4Og2nonOtrPtvt5ISYGymbRxGvypWXWzrfwBvX/c5H5n4PEvM0ev94jb+41n0raEkXrccHrq94w5NMythAlzZ+Njz9/gDQQqrZQ5q1rXEQ9IQ8YNqbICNf0bjMxUYIecrExig6je5718NAjMvUKMsz5hgW8t/Zya9o76716fW0MTTw5rF5IycGRWVC5PneLM09ZK12uuUD2S9Ez8O1q+C4MmR4xmp21Gx/2724BeWCwABJUFSp82YC0Ia62Xe8UqmVAIh8K1Sqz8TEE5NJtgjVlxxmA++51nrf/5C3hmdIl6rRq1a5yzWgYPYAV35SzJRn8RrqER6KOtBcC+LspLytWZySZtol+yuBHPXxg5XX6mD6p2CRxuzGitNyoTaoApseGza0xQzs8FOMPJxfIKWu1L+a5viIao6/pZb56WBzZXVV+qIsgz7bg1G1YcfmB8XfIixdznJDEWJ6gCskkBMjdETtbVjYurC5eLTQcJGgLkWdlz0aXfzEX60epByr/mOZFgyR5zTJ6VVsNN7depQKnRxjm3aMXO6ytIHJXpsWthBHCCNdv55BVGEO9N/Uz5giwOomEwSjWLhMguTdkzYBGRa640mtr1AT/puPQlqu8TYteAPLqPPGjuAmazJXNy8eh6N41tL7AuC/9bivxgCGfRh9lBUbCKMmP7JuahQUSJG81m7nItZc7p7MVrSPHBBzEU0z7kgRH5U1q5sPAYM8dDqWOT/HQuVqFMP2lguvCO0Z002dFta7Jn5FnT7dRdYFhgGC7N55h3tr9YUsejejqz4mCsm4Jnemz8I2Zj3lP6JhtCaO1dkwGWqLjgP0e33pnsaff5ZtMdWp4ZWBz+FxekCCFm4QGY053tzi/Fs+4yEbWT693rqocSEzTz8HSUW5Wp8IRx25seSWJg2Hy4k9tZajKWMBs7upCq7qhyKE4nmm9gDb8189J/PM2qtHFbUxoBlel/abdhJ2JuphaLAUQiqUD2y6PGZefmlBY91Uwis1wqhk4ib9APw/CT53Y6eIA9aqzjDNgKv4mpxN66UmXk+TeYCFhXg01nMs32Z5cBUrcMxgpjTEIjmmxKxIrslLQqdedEXOgA/M4YfVRkxJMLlwjfthOQoqKTTnefH0FAwCzwq1rNmJsJUj89nHxBEcQq9Wx4nxZZCOH+ZdUmqZ8nuCQ3usZoFQQ7y3uUZG48ceb3MFCEjMc+sfw41sXkK42GSWyXmt6X/PopevZdH9ZmXjfxxhM0RAt15mGVoZ879ppjZoHjPj/MkJfYgEJz8mRnlj7fp1cMbYzAzlKbla7GcNJDu3agw8kIJ1fU8DvbBOUFak3emGwijDy//u8e4V/PAUpwGIGeKtS3Yd/5wynCnfzFwtfhgP3yVNYtbAcCPBp/4wDOev4GTYhvt32S8JsRuqrjRY4ApONVmkUljJLps1Qnmi1ruJz7hqhdFfJK2s3JAWWcJLftVLyMcCWUI5XASLuc4mxkbeCR0MQLOeW6JRoyj8QHAIkCHYaZaCY8aLz9rz+0f7gIG5/w/5OvHdWFCZWpwJ80ERScR2SYambmbgyZgsDvZWBXgTyt+5sDiTh13w8OaRawUxuglUeEOI3nZARotiPmUDvOUnB9/IYWlLfe9w9jBKR+NIO+yw6FXKpVHupHCfKRrUOxSEUJOu0HWyvx+pQ4gd7CgkaYRjbi5bvtSRBfl7gN/5KqX5fHc04WxfRTQlG4tpyLF6Pkrj+YwmCAMHzZdC7V+1Xao5izSE5xfvHWLiAVfspYVzO/E5E27u7Hu3SVey0gvvp9W5Hn/pvDS4rKxzADK4RbQUrT2FEc6y0Ztuo+gh9hXdMLw8EDbhlREctUjpr6nxj9yqDQ4B1PKRTTXnOtE85x3Q3V+C1701PVFSE4F0n8KIK+2Ji2vQKsZr6fuL9YSBOlRY254BljwJyyAmOinR2d6OaSfOdQaP/jjrPQXpxBctTtVrVFYvXNUfKTQW37Zi6mK7VSBJV97KKlGTYwkPMeuUHAYQ+NAUG2Cpr+g3WPyfeV5pnReIYFY6Na+V1M6hk1+sMcOX97VUGtBCSPX1GDkXgCnP9T1/Gm+H0Rfz0kBdmzmVBfp0I94N1hRKBYS3I+eiFTKRYvtEUnEy2HJ5GH2+V0mFiIWWOe90yVjTOPuPxpR7CA5p67ti8satHgGUIjSnVqTBkmF8tJwe+xhqsJRj2fK1fTs4hH5FHQc/FqM1bUWaDNRiQ67DzX73Z8ymg8hLB6NUPkw7cgd+S6WM/yOjPCCJp767hoAnic37xbWrDmqnYYRMBMOzUV+A5HYXeEuAKCfGfeXdvrdomWkzPTBEwRYSViBPZ9PuXr4pp15m9a9Ow7I66wL6OHtZPPp5lb9mWL3saMnhZNFJEXeHKRqoC1SNfTb/kbRcmBaSY3yBZivFxtfcXXW6sZHXaJ3aLdcNrSrC+3R0la9VUJIF7EiqCeZO0kRtrQmPOaakFdhrw8FOijFh4/y+dsblX++h9NmBNLoopZbAv4gzrPtj79ASGBLqfJEf0wbXkjhuezOf2Eu9fmjnMZXliABjcYtmgBBf2nGCSwv4FWFkD3wGuSSWZUUNflLdlwSU89sDyuHma+aWkT8zjw2Be4BhXKqa+QlLUWquJ8kaz0xOiof10OtfD/i67i4oqrbSDLM0SobX66+KuYes1bMBdzRIiEIQ0/Ywwbd+RqiBmwsydHg2B8ewYnFKRTsp+lgu5RntDjw6WOr6gdOkMp3wa04xd38MMCzXjbXiuXMM9mDxh51I7LW9dANBXa3vjJVMXsl/HtX9Z8Hrbgamj4RYCsgr6jRqFvrhcl0ydHlrTS81+d8IqLYx1rh0fyU9XYPk5Ewhc9000ZtvwCZ7CwaW0jQ9QfpBPZ6ZwsRpmBRVZdpXXknPSlPqd33TvuRCVpEMuZoam/vILOieCRsGfVRksyKxiTHA4bpIcX7WTdT76pBMWIOOphPaxCjFF1o4qVamsBFFFEJOzKo5h9HCQO4mml4fI4owNpzJ3777IbZOap+paf6F811rMzJaGrLuKPzGHl7pBfWoT7TVkdmu+KbF3dVqQfrwWb0CbIzIFTtX5Z1d0EbZZoNCZEspojFuXAwOx98iBFPf0pi424xEjIuCMXOIQL3bvCBGqdbZAwm9mkLyif84mhnHedM3YRlkX7bJEcvlNdenA0JtF/B9xPcNFzLocCfEysfAHrxA2nZtNBX++MB/NSx60xgSXOxiIwdpX3QZ9Jm7dYQNJ+3CnXMoL3Gf9Co3UPre9xiUk7+q7TeJipmulGBjhAag0L2xc2JqupQ+O5l5LEkAJWDnKtkx66H/QQTtYmn8rdepBYz9tGnpLXo18QLN/xndJ5mgj589KdouAVgiA9Dq6Cfgh6Fcmg8fUZThBlhxu4krAMxnaUSgax5nnLxkGErESuF5TPLGzbQw0KgX75yHY1h1VzAoc3ofDCE80U/Vd8A0JO3tFfVEUxpkrneZAfsuBlWrdWGF98bxI1Lf84AvyGsxf3t7L9kG7jBvmBMdVQo/QGefiqIjU+KWs6+QYwFX2LUI7s85ZsLTVhmdptfxPoToUHPuvaO4TyaH5gv3eJbFaCmDvc7VO8zxSC76inCvM9XQLSKHLuOjupCvEDb4SW4E5rjnsKjkQ6sXR9zz5vF0QO3SVio23AX2MIxPa69CyxUnMT0QywxPxYNeOPLGwQJIZev72axR/Vf9XdhwXrMk7vUm6jXztLf+haFo1r5EhXjmF2Io8jFRpwJQMjvI/4s2wyNpGnuOwaig+bX+vBWik6cR6berGZqUCXcWKcgbU6Cek009UBaGIRnSuJv8xVzxnmDtP4VWUQlIQTj1oWBKpe5OOlmlw49Fw2O5RMApGX0jKQBU4nGIt7YAwFGBJuFgfqt5Q3j/WHhPgjm5/kYxRc+f8cBo6nFlZ/1Z9okHxRlFSPEgKhLX6qiS1TvDiZ7Ix4SNMyMNwr5/9FhGl1xtsJQNpRuSmr35ip3zSbKpHN1RxjFLcaUJgMecs59DLgnVY4CWxhKQVpDv9OTHM2Z7NrgH8Ufki7F6C1/OGys6JiCXChlKMbc9u8MU7H+RBFXKljLQRC3cfW9awZqqbGEnLtOmZcv2ZYtxJpic4fmIFUENyEGaKwZmJy70RnmcxCoXyJRJ5AQaqg+mqPiFs8y90RHh4DZgL3LMlPnImhkdryu8Mr7mg/6bATL+I3YhHH7qxbN7ZN71CA+NK7vhS7FjUUtdlmjZKLefSro9Ir5ryF4dDLxDFRkCLkYAmXkyRPe8+2dWQsPRJwA9JMgkjNhJPsqfbLjCU5etQy4QkmQTNJspefCeWTLpBkw/GNeya/yTSN2oYC0MB1wFbnNzdZzFBUH1P6hdZRho3NIFrxNytmcynnVkkvpIT3+8CmmgQy48pgHRPNsXAfM9qR72rR7gfhw3N/YrAJNAs8tukgcF770RT9r7sCqahuDheBiwHrHd+wIJY6ZttzwJx1PreO7k8wb1tooQ4gcqv85MX6/oMKjVC8U9CtmcEdroKLUFlGm1JXF1EXGzuVJusZycZmxxt9eUu9o21oxChSSBbVsuVJ2ZhzYMPyHMnlqa/YkqNHnik4ypnE8J2KtO61Kct/kWKkE5V/XQglQyPGK6DeVTdV9WkD/JHDgZfXTa4OTpCLTX11CGAxlcSNaHHQ0t2Fw1qPaWeenkaZ+VBhXGZzht+Rwx3kd+E111gKG1ni2lgXUNtN0xekw8wEgdp1DdX/kEcbe7RsXLASF/6CutpSoP3n4YO09W5jENMgTZ1oC2mzqywUp4UCsOGyJbJmkcNydOC2RXYqBJTXqsg526Ae5YqJmIsiiN0rVbWDnvMNZjA+33FeFdf3C1yZE7/vo/DAlIiVzJr+lvLbuISqOxXDxkdZiQzxC25wFMWYhV4l+J3gb1wGXp23fdhP9bT7c/pAO0y+ZOrJdhtOPgFZ6ZsLnDvz1myTMcgdsX3/jBdqz4o3CP/IaoWDX9oDK8Zt/pn7VTdkYxpyo08CnNwEPAfGxmumkjGHV1f1Xs6mQJYmh+r7/mVdH5eJOXz5CxRW7b8QQ2h53OCjHRuEpibRL1rS5lqKhnTxp/075y6URNtlAOwVY9kybRFFu03sYOKqcI324CEMFe2voF/00o5aoKZ0wAMgpXXvtOfIW6cb++Om/CSSa3x/CqZSMfHz8jOkn/SHUB4UbRyWx05bSSLln1HApcT1hLfp2DT+8AXywigMM5jSm6Y42vm6dcA3ewjD8QJWRipeKR4i9SRSaCJsA8048ZGqGQpl+AslkWlZbc0NWUK1aQyPyqJHPpihpviThp7vueuMRM8A5wAHiW0zgXmdLn+U1KXE7RjyM9KpsOLVriMfW3+f/zKNoUFsSUxAJ9rdHbdsy+s2kb3wx0lFdadaMQUkDIQ6Yohkc9Yu4y8fhUOXGynOGN1omyztOxACs8RG0o1d0ckuROY97WxapOVSsaXVMyO0qnTcqojrZBHrKqbWeOO8pLZSirjm//+vNrsHPoIW/97sOte/K3zJBOI4qe2hGhXBkjbVBxnnQD5G2SNwczpgzj6YKLSqaEtr/6fWyuG9I7hcf/Xy+Fj4rMuq/LECtVSCZzPb2AM56wU6xdhqASMrhDEaXd9iwWY0V3apORPC+eXNY3uXocEMUcKUytVKsufLqIxcaQZV4EQhadz8IBiDdUIW16/NU2hxhEu+3+ocNWQwjlBu7ezVdMxgLGKtG94dlc9XGaJDYnTCe9rl0JNy4rC/xoHFCIViqoR75RG4JAHI6674AyDcQBPc5UnbMGzGoVefRBeKqGmSrpAX1jufRdL3HqAM/e5lm2X2qs4GXAidjjsUQOPPNG/zPnbcJHdx6OFEQxMPKcVrBDV6mUAfahdcZ5QbuVwCNGcIYGOhsty46263af0S/nw9cltURDdu1z2wgztoty6282i0geXrocjigiNztV0b3lSbM+wJ7vgfIGEKFP8EPHmjUub2JcXzH8iv+D4o4ug/ulO2k7Abu+HASv/5hm9QU0NseB8NmOY6I5IM+fBK6zmqixMkdB4ofdMOHi2zn/anBP+0QcOeWhKIeAM0V6oJ5Ojc3DpfqQiLtrnj8V3LzXEgRbcOxmPuB5kuJXj34vzetuYk1+R1p7mB/75aH927op3rrF2Z3D0YWs7/8Dy7vlA7/Qiz0t++NkkOnprkI5+1lZcr6TR8hevbJ6xJL0oaltPZgi2ayzQUsoXtAA+ZJmCnPTNBrJtliQnUfPpwWDPZBJh/MQXuMKO+il1/7IxvqkqQCZEUPGOyVNIUHZ6Pnvy3KfRPqh7sa8pxk0Jbj3kSEhlKeBus1P28tb0NEePZweckB9UI06WfSGS2W048+xoqtPLAf6Ya2TAHBqDatDJ/PMxqfrMr1WO+KpPWoYAU1gULWjA+4U0G0h+X+bmUb0qs0OYHfzo22QN+bxQMKqhjpd7aorbFbj2zSLiruTE2RV4+/G93z1jpV8kKvoZKE4H+yrAMIH/m3i/iTZ5S5kZN8CXJ4uJURXXblpzjBNQ+LbrEhM2g/eU+kb1adh73J1eV4IoXQXMM2YNdkx5Hhc/Fsa6mFpqrlZ3aKZp+XLmf5ZvG35W1dwpaaR/GYFWevV0ntTogpw/4ayDKc9AJjpS5Rc/dhVovd5FZFs49g5kzIhNeNbFNTd63griVWw2maOJMaxZQ9nP9oKXoFf3O1oezaFrrHzYztSNycq6BgDLqX+sp1i4Jv0YA4ylK/517FTn+B62jOZlbe3wc6dJyojsh9+/tSsv/o9r6mmaf/on/gwwtTXmHWc5AT2A1OE12ahaLeHHZ+9HtniPkRQxkpGv97WS/+kcYMPOYU/2Qg9tjFFNRTWydRyLq2WlmhPU2V1/9bR8cpFuqb1xltGlzyqge/QggayOoTjV7COxw8ciLL8bORbv1+uFUZDmV8wEhV9mQOH2hf6iuMnKZU372vSinu+hM9bsfGsLMj+oGO8CWWEHDRPNonYZIR9QUilE3jJqn2Lc6IPK2Nsv3t1GLZbJxwdku3KVLH6C47QTrIN1jm2MeQzLcWiQWjt1bE2Q5CZ8GAm84dQNpZvm/b0u7P0LZfEjMPotJC4/WMpa2KIoxWq+JPB9k1QuY1fozKoJVbBb6nuWkVIZ/nWlp9bmYdjyded2Fl1+EoAYK564g4kf2786bWheFAb5KxGEvuem+jBNrPSsfw4AAuNf7Gt6L3qjGkW1rndQfMga4lc2zR6VK68pFjK0T2ymsqVVscdFDQhBhk1yS/ytHyreFE9Y4LZdxyWT7zI7MLQdp/mAQT2mjDpAezz7viHGN+2pLfZihaHUhEYrsFIyHS2DjAiyFjYDX61varM+JLxru+o8tj41c+dwhTrlEOUWX7MV8Ffo9UifLFfJXuySkNjQNPcUgdC3GlGlQ3Do9uxMrcvIYgiaFhkbjJhyxvEUtCpZC0BQ/5sPhu+O16tVDVLUWa48Nuzr4lesH2gCZcZQqNPNTLCosoqmjkMunjhsI6wA35iUH9IortfOZnwkF/8mlqKgjfRRaW4sncgXZnkvMvlNOOcQJRDpOd0E2eIqL9tAdHhRL3ZjSFpGwUnXwoGfiwRkXlCyIJT90mv3VudiSiSCe4AmD86nZCh53HwKRjQadRXs/WAneihPVD21nTR2Tg8x7+rYDgYtqW0TpRe5i1az3cSy0zlhek6Kw57psna+3/PGidIEUyF20KWdwdCywKjOvl0nv1mkmdZDjxO4vdLnIzs3muRWEKzKOpiNrOP5GoA9kQCRANrlsMeVH+HFNOUYIkcihITzc6quS2xurNMSICNVu2vnoRlVjf+skEpJxuIKxWLdQiE19X3Uc986B8z0RIGJAECvlVcaP1QLZ26Epeg2vdM+fEHAX2HhzCYpCsExE637WlxvEXavk98ON0gjBFgPaMFBCXQTgTNspg6POl8Buq+IaTyr7X9MVw8gb/INzqrnCPhZpnh4AO5q6HD4Gn5uQQTdXs18Z5QVCahEVs9RaPkwNJI/4EUcM/N6O6jqEft3wExjlvFB1tQ1IpQiZVO3boqwe2BEw0jfuhWi0eF4LyHWLS3lOb00c5SlYT55omYuDbrwZ10U7MhV52c6TZxActO6I47A5qg1xiOx9VObSJ5ImGVHdk/czBJpzbntikq/Hn/kdHJqgftumO2eyDaZxe43AS1SbVbggKAiS83Tdvt1EVyowM9C4BUtFpuK46cruZmnW9JxC58PHG3YvgZzi5ooBQkx/hDQ1dCq5YrhPyexfKRolpyzrtSeW7YR7arYkCmYDcbo/5z6Wd73B+7d2FVDwn+WXJYgWI3Bd9k/aUhZOhjzqXxYe/kY3mw7SeAEn8mdhZy7tdDji8KgcuiI18SkNbjKW79pPq7N7CrlU2nxFDnoZpvQNwOdnXRtHgPRnEjB6/0cQ3qezDGIVuhB2VviH3te8Lwvot4sEY9NWldHieTV/OCGAm2hl2teDIPNiOsIYRwoToFnYnIy92outzL3qsHXwGcL5hNsFHk/09X1dSI48IXzTHQJvSvta67T946RoPuHYHpR5yZMdU30173e3WxJFBW+Csl2fmeq2VORemKMMZ95VXqC/iO34Ou2W+slKvfTWRnPoacclDKOlgC8coZBYR5Hz+e+NRtWjjJ5CZThiLiGj8MJo6XMj2YznnLVCqOBvJXqut1KBlQHHB1mv04M9bofbMDuZG9AGIt5Jb6oa2gnZs/ibRvC5drqtoPEWWHAsmM+X+h4A+irD0TUiVk6Du/mMbZg8PQ69L2Iw/tPCuEh7zn1uwuH4AX5TAmcciI6mMNjPT/M2uSVqJvs75rlR6TLO1fXohYW23S3nNNCqa3/2r2GTmZ8Z6sW3awuI4+rLgf3bj8w4NL5Qv86OE8asJGd4+VcA76xzNu41stVJmx+UnKWJl8V90GZeeH4Pds2KPvcj9d1THZXm6J++W5uop0LZzPzWovHrUU0qryvPpje3WboPvbyRyyHy6CeNWo69H+O7krBlHvZTawQTvnqWlDd8pwJZVcqtQ0zZ+Tdd3AS+M4pcE3bvapG8EevZmHmZ+dvaFZB7kzlaVLY5yA4J1Nvb9QKcvXYnoYvvQQLU6AN6r82QCU87BuAUtlzH6Zg/OoYT+M9ZZYYS/rfsI/v4jFHrGEYOT4mQnjsBys1BXB8iIxczEexTxAbmplkIlTjOjf8XrEOHfrLD218YzU5QDOGW5AMa5hyrOxAv7ME7zVbuYRKaSPgP4XKT8O8CQi9d+0N7s4EDb9Oh7Y083rawK79l32UrXm9I97do5dfXxjU9/el7VBChqhW0gpsoU5VHhTU1HywO1GVd14iVgnDQmak34du3d6sPczQbAQo7NPMsJTpDWv1l+R0KYMhvF5tPyMmupVXS8t/x/aDG0WLyPtHu29qEkQVdNpkLA+yDk2PN/HZzxwD02laFauGt+v4TbCOv6BNnyKHq+gp82AhkLHJYEqMX9vhOp5AF80jueAQPU5YUvIXX28NkH39CHdaZpJIUpzgZ0SH9XWJQ2NI2AZ59iCa9OqI6/oCR9vOVDndX2tjOZjvC6HjExPiSU03FZI0muC7pWJPaDY0pYcx+as5DIDgCGJNgDY4tSVX2Z3Y+R87aqCOrzTUHxHq8ZGfdIJ9Izh5LuSaifKGidmQtRkMLpVI0befwgTY0fp7bCLt8YdQ/4PgNBATzrpw0xLj0dr46lg1a0ZXtuJLGUbQzutf8mtfk3zgmTvef+U+qYQzbJZJTDgzvIDgGs3k6pUoVrY/MB3w2pQtX/iC0dgxXKCiZS7OXBgiFJBeXX0kS1NHbw3H+BXNalw5tHtQ7+KlmhlyWLu7Jsam5rXRVtb+OuPn9dvLf7lQzxZ9YHCMVlGfPCom8f3HT3WMR6cNHgHg2w2JyX/JV4+Zc/mQRadBIeik2BTjWALpXf30M28AG1Vur06cIduyPnrCxDBqe0Z6SontlJ63aLGLIzmFuwzxuJt7kUgLXXOYYQe33dIDlGYqyoiOfLF2C/Az2Zet8ATdkJdR9krEf29HjBCnGBNKZ6C6OfwXeJdnxz+73Vjp/bpMDF1YTmTDmTYCWW6wv319A+86RIQ++DGwi/rVOhbfgKFvBRCZMsq7kBH+9Ylug41qhqtEzFUrTjeFeG7Clq7MJXtYNTlnugOwaIVlwCfIj+YhKplUIO+Wuf/Adq0AUMKCTpZbbjq0bfj7BEd4w2GV42whVQKsGddVGoXWi23if/3w+LK0LZNUpM3jqvc3UTz92f8bhNUibqFhdPmxeQt/hHm5q6tWhI+5ipl3NRhAFlsGD8HF6wS5p1czR6xR0Uuo3M70Jv9w0ns2k909MCUj7dTfG+HyhgPqmx2I+7+QrC//o18vvNgwmiHoNbFv3ecNzUfs6MtkE4EEf/75PoT7Rh3lMQ151EmcAvvHoKX0e0+YOm51YkYtUjqTmoEJDVT/HYzUh55zhdO3wXTkPs1T0UcQsAm4VGGvh4+cT21IBsMgT8bl8stX9gF8z0nt7TnBExXLAHRZc6gzKf5kA8YDt1r1UDeVpvhg+YOzmEOwPVN0xi+GtcVDkBckVUkr1ID1riqckc+21Qdejgy/fBgioAdL1vxm2yMqXMvUqLl/kIxOZFVpKqzOGsKdSt6pU0wMGp+BhHX0M1TAaXHWagAZ5iqNxKuvLbRFxmqBi7ZfAgkWroIOsFsx9kJnJCI7bYnyzXmAjktvnGEKmWGyiDba6xa7NC/mR/g7YAGC8ol9h8lf1Rz4qIk4rx68UIcHH5QV/4X/a8hEaVxuqE+DZBwxuZ8iIa1wkAVLL+bf1YodVlUC7j0pEYecjaQ2MahXISlR6O4muBaIVLqmc6RvnSZtU4ukII8nL7of0iGCkZ2cGO/67d2LkGyfGgrh78eyrpdnJLO0/SjB6+G/VZIDFxj3FqS9dPZp5xm1NAdDSoVLlFmLhW+4yCOXa1vxyulQ+RLLLKRw1/6fMYZtoYJ/0w7UHW68TmQgpAHWOvyZ3LpQN9jNQV8U//EzYk71ptIF3Yih1zYRA01SfjvVUjJ6hf8FXbC9aMHBL+3kbXdTVXcqnuIpTzn/xO3cy3cp+kpM/GSM0WmhMqXxzEr+iLi6uq2ARTD9jmNbUqOCF7JF43FZDjhovOu9Y30eFxLpCFZJrIxSBRjnPp1b400lQS+QpvEG1IDz+eBx4KZu2ZRFeTqZ6N0Q87EQfLBzaC/65MvjNBDU38pWYnQG4DWHNl8zJ1JrBXu03BoPmKC7tkwczBqKstOZHFVkIFdMPTPjGv381fQWK4sbJQxICEaBgR2mDVUNFgobrKTsdo1VGwt6SPkugFM5MPw3lKDdRjCaX6nqCWWsXmRCE5bSaeCpRDHz7I1Dk41e5MzE7Supq8PyyHPIHQMGhd/2ytUEyKw+E1922g6vnBkXLADsvKhLJhBm9LdaEHBp+K9of6yNAAYsyLK9yB2US1cIV/VF8NLo/2ALMtki1iBXBg/y755XZVnSt5gJDr6lkWL4VPCGC66q8OBfrwKjG621xX73KG1QQAFUCy5KTRVtw/XfeYT30fHljSTHc7aPo14lhhy/r+g+6pDm9hN1pEYjTrSHBghjQHNNc0xpXpxii1pf4wZL57H3R+vfqF31i4Z3Helrf9YBSVML8eE9SIvLMvnW8G8LEXiXNycyms+sRM9CArfPjjgNYDJYiBBO5BPmXEyD0i3KTxY5RcLc65DO6RwppWeKs0LpFJ00VaW1v3L9lwy5XWY+YvQITESR+6pjlJM5vwwKZI5npDpNarPyttoWt0L9NCfMOrK81inVoWGuVbNkUktPGAh5UokCPLxHuxgma75dCKA24BGqY6QlrJPgEfixqfjov2gOZkvQlMKdrbuJVlCfie72vvQWBAHOIwPv43rXEV+g5zmxM05F0OWblxMD9oOI7it3z5ayiAYIRi3XzSHvFM+9Lcb4Pj+b3LZuNvWcCKxCNfwn+ww3s6ZGaajzhiUm22t2piQVZkPQbKzeBxmi9NhV+pa+iwPOTvHFRhbwospra6OYTWezjhFpYyPGDKIWA8EtUta4hZW9yV84hv6oEtbJ1N2+w51Zr+FK3dWojiJ/5/vmuj1qlqDQc/2eZse0chFsLt53cVvEUeuRf/7CXgIKAaDH23LbWPPbngsi1E9RNZBuNTxuPDm4YgkclauP8S2TsdTZ7Q7129n6N254r/J4oVoE4O/MgpV80wSfhlBlF/uhTcHiG3DAm3AubSzHDKnx+mWcZ9zFgtiSOrqFQlkBbhEWPIuW6kNkkGf3ipdKxyqOUnqsYZ3GlXivEre7EXQBBxciaIuw+cfcKlG0TP/75THHYIMkcjLF5OJu4u+zoNVp7tgmZ44fCT7xTUTKxVAdzchFBAhmq6jlXt1hkpzZvWxmnTdKa8s2XnkKNpYMhxD7C2pjGaBmanYyjUONb/c19QnsftEl3UIRte3NVFefX1GDdzxwu7CAivy4LOBF4gAKyf8F8N8behOuiXLxs/zthIFVAkDSFjjRpVr5i9tlz2BSTnAJ48Ld8gzAgXTqZnxxYVUh7bbQaXlKcOpcdjw+0A775fkSSQZ9+en3+aE0gVbRmUn7jeNv8CHHJXtLwdg/XllnvbhAnTQ5zCB5C12mDEoGbkbvs755mKnEBjnJxv69bYn91KP4YuyDFe8stWaymgKO9st7KegacRGOSw6ZwoEZpLcZ9DcA65qzvpf/DktwfABgqIcnDMsqlDKo6Qsa7EWkqEnCJY1nevvhMQAA2PLpsWRXgBWFVzTeniYOgr2mqHWH0q6KKXO4YNrAkuIw2luyTJV+5ImXtmEyuR0dp+qYQ5rUuSQky9AffjZeAYkBUDrDuaBlU7zK45tZd+NkPZbQ+Sb/vYDgl5ZBSexGcrsHjX8ni4f1Eh0cEZDeggcGf4dmyyqPXgN15bn1HEgAxfpfC5LDGwsP8YAJ6nZZEROC05qAWtnL0CzyS6chXsSC1jap8G76dcfUdPambQ07Eg/yMmA8zfdu8SWhldY/p7mY1VSns3eCf3f804ODRFaDIzZlSVc6ea05d86vZNZmj4lyOhkOi1HiXbC+PaXoWDoy66kJrqwFtJS2CF9FaiTrbKA4IPYcCcJiwTRGySvprrrIh+XlpgcPgPCfOcNiVH9fiqoIItZWLChHotg1HGeHRSy3oeGTjQd/shD7MnS78iM/ouhjQRJxZihFYrd/yH8Yij4ySMSPC+v2Jed/daQVtmldX0lpFZEjMhePy/zcjfUDpmqV5Iz+igYZim1VWXoEiDQB2fVTvXey91qzHs+eSLvAAwuuYp1Jj2RUmb6ULN3aeo+XtSidE5dxMAgEsI/f4nje3eugBfZOprdkno4HM331qXaNTEH4fCZDDXFAhOGpVZmoKocvUBMmn2Wt/6afLWgwsIdtTwng4McjN7CsPJsYsH/aooH7ncyIj3OCX6OpIhZCn1xrHX86ibiwdpsPbxgkPGWSyEsN4AwIhWcnSRlbJTC0wBqWjNVb+UtzzsPmVTjB+3N0v3C3pWAEQfC9hP3PdHMw59XNdtpxZ/pTT8Kb7bwDh+dmpozGnX8bGRtdTPifsWfH9ZMudg3YPKs6yVQd7MXMtsZTcAHqkrGm6gGfuyh2Tj55hUaeQYcfnmPbLYfINZseyoBBXpz4Mspq0dGcoRVy6HrceqGnVe5hbnxok+FefsLiZT1e1LejqH3x+rVhPq79OLdPa9jQ+woH0HTs6a2avmNdn2eZc1FoQ0qRZPiSvxIFF9gh+6VUcNcWNw707fBntoAmUvilrvmlSoZxMjU4UU38Yit7fNjo9E97bnM4xpveL8dmizFIVmCApMh9Xye0LqsBIRRxUMxRfCe9D9yiMXM28A2uKg5XbacCiHaIH6gzV9eGXC9oP52i3LsF5yXLd5W01vHkJ51SxWFwfnRC8v2ycST1ScCslokTA8aFexNoVwRRCSGk+FZydR7geKV+grNchMjX0iuLxlqNgYMVBv5BdcxDLGvKef8WjyUFLCr6Xkv4mYwLujj421jGpkk/l96tFZN1WS27bvhNvwfRPpeCI85w2D3/PSXTbwQKXKbJmx9g666SswFLB2MXCQfSNBSdCPsLTpwYn/+oViRmNljkGaxIvFvNULtEwaUU9ayPiICHhBjnU5DWeZvevFa4W8+LhbHnaGYFl1Lu40qIzKL/7D5zk0upi/y5tm35MM42lE/z1+wCIoL4D6D7xbJu23fFWuV/fHZHyQReqrSe6qdw3ffEP8QHGmeZO7FfV+1AeKmE8uX7B+O8ORshsavFneqsh0h8wZaXUyocfDoTQ4TKakVvHrWyk9ZkWefLKq4W34OthgiEcBuJSzLDsXBgkmWupNEQdsScaxIt9lKZooszKqRPYBZ8z+MwnzbePWXVqrG96hUCGZG1ZfqviON0B3Bkh1W7cW3SE92XWY9iK7QUI87A9GDkEVnLHcbkB6inUjnEz0B7I58GX3S2DI/4DQApmOzmW8k23NLBoaBY4MqqNMIbpMJ3ASnY0ylio2gI9nCGrwqylaPdbIxl+uuYdMtysu1q3EkzsH0pADDMt7FcZfP5flOoZ/fjbsu7NdTuHNq/Zf7WPrSUKiLi0FDEeliGKGVg6S8zSTf3DgeudH00ISthRxKFmnA/7WveNa5PLgMFIhWqKl7O/1Bv98xK+SuqWBrlHI5h6w2lS69Nz088KhX7rgkoP9aqqAs8VYGcy75HZbB33/pX2Kje11RMpyRwaM3T1ekRW+L1EHrlFiob0V8Np1k/kHaiuVKWWyTCa7bNbWoRRUjjGSGiECtY12A0ky1c8EiZjsTtpvOX30cupLJvu2L5GkysUtB0wyo38fXW7CqeoTDUkc95y2ZD4JNA24sNRIwvm9RVTzv5+u/RRpDACyIhLw39pQZLmnuhj6RP4p8qvR8ruPdBDRERs2SONuW0cz0T3yBNjKuYXH5Yz4vDU1dbCWUZuWoh3hony34PLiH3HKL95u14kpVVemMBwexaY7aKf4DJ2v+8g6HJ/ivTIyqiD82duFGD9MhxpfSCPuwVx1Nkn2tCKs6wqcdJy0OPdMN46foTakhZztik8FIpBonSg3aHQTGlrCxw8Nhg5RgEosbFn9EMUYWt3peV/ZqzcIawb5QoTBSyzquv9y4FE7SRGH71+kOI9Dq7kQkZfvhKjM7xpbs97DNj527Ozy0PyaVryPHqN9r2SgCd43uwPOPNBXjvQxTwuIK5cI77h3aXxbhwVHIwJLRm0ilf7MxGOAgBlf3lZxKRCzG3gT2VE1VnP0fHrrx2kWO8wnpOYjCkPqZOaA8yTcY7CMpYZr4FX9Fhsh2s/bDQG5rX7ufm+ai3BZht2AmUkIm+/wC4JIdwxr149qn8/8Qaawm57sc0BpHxnXnPCKiGKvLLacU1GCUsjanjUzmRl7EUS0RcNa9TaU3XFJorQZEEvkpbnVGJIP6FDDi8/HmJf56yfZVZMJH1wNCx0MEAr28j2DZkiucdJwt+7fLpJpb/62sHE8xxfwzQAaedMfx764E7YNcmalSXSvIHkW5vYlBv87SaqbizhxXXikfI5AmJFVbF7RIF1/F+THF5Idbldn5JUYtirxHEWl34FHdl8CFhyeSkiBs/DXfg8RHVSHMtNLX0ziomABZfrKZXbUBv55c5auErsKEKiTl/+L7VN44zIU7DOKDPsZcqImCHBNjLpZIcCFlqwoo4DLTRosSIdXX8nJ7zj/O04/0RswI68NR97SgO8PPLamsdNzGQdLXW8JJm1ZqNedybCttmLtCox3T5/3tQmhYviQrHqb6zLaNR9KHvVFXij5UwQUBDYvbi39rL2b3TQhIcKrTJ54RhO6FgT19hK93qnfCYm/11MxXES7brDrwlSML8qaKi2N7DO7xnZWJfo8A+PE6aa0mERZLeLHfHZ0CqbMUPyMhPU8+oEQLk6y22l1HoVT8aBO7GNMsqs65sGmQfsAiiEgpmapJsiYBABh+LHFnoyGTdGD+sY8h2H4eG57PWethGLe0BNLxBSQGlg3Msiy2clN70Yzx+BR/TZsvvfEW2pjkRB6xVYebnM65BLu4WJtsL3Yb5yQdRs35CNSW4ZARvRIArE7XNwC9HFhvV0Q63yOL6A5vqVIAEAHlKycyoYIX2OfN5/cZj1X1ZNwBVTsyrOXshRbHhPSbmEbdh2NVp6uKNyFBBz6nDC/NXIytFoItMV1y8cs/jlRepae+V95z4vBtg5MAhe1ntx9UpytUSJwxlXTVShwjALGozkuAXJDzmiC3psDWk+rivL7a8Zky8w+2wT4AKwYoMlBonerAYXMQaUxzx/9gIVHHVttwDG+JlWDhIQ4LzXWegv/GiuMXFS8JgaMhsNpYGcNCMTKyi7kPYkJmoSvDmbldlvkzsrZJPwjmW1dS3ay/s5ApdOmZ0myoSQ/AfiFQZ+y1wzXSa9hvHeUtAj+cjVc9RtQ1VxmgrYwX821FyCjqh9eO+b2y7RYkF25yaODzrIWsgyc9aL7oCBo53zbxAYo+tCawc+SBH0cyj9ZfJ2MYRAC6QBfaMBXPpjeCUIYSERyw4p+4yFf+dL7vyvdndsAJJiVIsRYt3OMCwaZ0XIYaxt1RhA/dYfdWc5lwIRp1EN1l0vwkKSg6Ih9SoccxGQFUOzSffYW/M2Syj07oFNK41Wm2L53fBH21oEq9OJDEpLKB+gTAnJxNnP9Eg+SzSaPnY8s0Lu4OMgPZO1xRVnw+AmCrm6hr4GqEwiRmh8kqvL7CWsherPhwpXacbmKqIwe8izrQImUsLVHnT90gWNP3PmKeAXgB8lqNnK4ix5xvK/ybYxZdxFVEPE8bORITd4jgF0CVWsQHJfSOUjctWccxvtcls2GO2t7/2UGmTTpzRNLDVfkIRnSR9jh7Mt9pjwz2Mx/16zo9tmIucrS8pZ9NqZtiCH9iQf1zdX7ArqnhUUSPICFXp7O8wRPeOeKLRFKfgWAsoZBm6wl+doMu3mHNkodTIiY3BWAOdl9sjIrTubDEULYDOJqNvMMLYGVbs1aChhrp+AK0bC7pN2qRb5onkoX3uYDsgnGcIjC2msWAm19NTmBoF49rSnu9K3dAZDo5Cy/l8k5aWVFVjrFOVU9KcVCfbpjPjzcamch/RhhQmZDpvdSpVQg3TyLmM2Q1UsqCSR0ds/OFVnVhcSmnPbtHTCKfndAG8SONp/LOaMqu48xA7wrhhvUeXwT4SV3A/pGGmzfzR/iOR4xMRxz/94fvZo5mgit3eWHhIBWUusuVOZ7hYRykkwPemqwPIqruw5Lb/SAD13WEgihM/1OniiYfERwsy4mYELafUVOGsFdRQY2kBnjTVpffFdOa1YAGAy96PuodDye1XRljM5sVVlf48sD2InAVZ8WYpBxYBr1ug9wAlzyt9eAvWc9fdl6lnU1g4E+ayX2SuMc7e8RZrLAUM/0gkq2HFmtsFp6Vhvc9tLoBKgcBdqTPcOCL8fnLLQerOoSCrgwEKfNzyzkL8OjXkxSuqKLfPumgI8vzuoAScFI+/GvV+Coc/xceNl0m/vGX1XDMFgVCsfZf44XCC25hUtzVR8ibUuQoSG0Z6sVgfggBqOZUnECpSnScUV+5uvApMxqv0FDVzWoDqrMHID8uV8MRPO9z+pJEqC7hWFrrunKeSHTtsax6c0vqFAlRzP0b2jMKut3poGHu1i3GqGwuBDpcM8uKW7plLw33HAFe6B/+Ld/sCeDeyAe20x6QTPjqHnDtd2FSxlud/l9UcIcWWnm5AHD84k/CrB6v7hnFvYJial/qezQZP8hnaPTcE9X3+gDOfRjHScdmfRURyN5uMPCxntSzFHStLdEEP/Kq/+DYuecP46Af28CFa+XtDk08Ge+wT+HZeRx7KJ0GDvKoWx7/FU3A3i4Y+0+HwIncAftJ5F/6JqHas5KRufckz/HiVXsUiRNOWzKp3uUWJGPsSlMGAFgliBuohTPI7qZmC2HbEcA+ILnHw+D163usTCjSX7glEgA555+1awQrzuXSOrE6khCj4t5yFjdF91HDEeZykq5+3QPqJhnRZpeDlPgxgtiF9we1peO33ZzAifhcnXtBJa95S0o51JrjlW/utxknOAR7N9N7O8uM1c0kK7AtQk6j5o65oUCQCIg8GNONHhSJHowTYisgkJLQhAtwy4jwgOLQ23FqrRVg/55MBqOX7J72EZmkt8DJwsgrNQ3mgoauBxDInpZ9ZoMbUbSRAbC/yUiDfbi9RTSgbv3N2ipOu8zQyw4mXFx8+Wu27m2mGcAjJgAd5muQECAMuK7n0+tyF7WFAIyxJRZN5sm1TpKagfFXb/wLUdFmZuJ31kWTRMmy5PIrL1fTFTHWUTv6bim+soETygwCsmIE0IRg3RFgVSBE+Ou3+AhCzZD+rmYBPJ+8BVn6Q9NJiY32hgW4vxM/aCrF9nhGkJSpgK132zs3muWcxgqmMqJTemYT6Cfs88kFgronrdj2VdFH5LtvNChb8f4APACmgj5otYBtoQiHd/jXSDB2MlZ/QiXrGmPq2KZPRWRYCdE4ni0HUQU58NDaoEQ1uoZd1dv4VJihuXKfkpUBIwGYnLWHKzFlywmwTzC1Qee995/AUCR2/fQmyYdLq4cAJamBB3JnzwjOsSDEujxgS76EDc1zXgqgVaY3UwhtIGbEbl8+yGAMhIE5sBX6c4ewWECNywlbTyDysA45xulUUzQs/NF1F5iszcwYjgBSdgkR8jcaGL89HMyyEGsXJBBq9gH0nQlEVX1br7BozA3n0LZjk6++0z8m1HiM8HcoC/IkOCQrbp0sEXtNCXKrMZiJ/sfxsp+0QHMyWTgrlWR4b0pKcHcjcnHiKTNfwWprFOGGgjaZgbwAFMhZfPi2hZxfgeCeG6xjgr7welPPusTPelUlvdMT3+iUQpXKxOzGfR4BfuCDYjWdHKX0vNyrs9CrOBRMVOswf0RZFe63jzfkDAph5+1autE1f4medN3I2efcYmqSAfiSq8Zfmx82MNsiE+mwHkev2Jav+TId0aWMSn2ryN8xihaz/TIt3btKMmDf/v/g2R/LUSlJb4clUGV5F+h0vGW1myJfm9YstR+IswY9nG7I3aiKa+JkhaAOP49KIie17wT7l3ULdyq6AkFRm4qkLG3TV0uZmm53gXoxT/B8KSirKQv7T4ZM1YUz7KIAsQ/hKccEZLv0ovI067OnkBQ4QF/Jf63Srlu9D8A9gM9gwshqBXmWmn/ZUVoGzVB0LJDWQw6TEZwNLddXW0f7sAwcnLjF00NkQJjqLI8fYAIkghTSZK4xWKPBAY2a0VB6ZWtq15g4CjCZy6dHuivmljh/77/xbNKAT/wm/G1MVBYYbQ67dBEv9EXmKDDo1gYd0w3Y5gJThkYQHRJ4Jm9TGHsxLqNFhiOq5RzbULPjXKnOXQDtFbX6+GGOyQXmxTV14edzt/yOIB36ondygaveA9WM7r5wpsnjRbpbXwa9Aczj37k7NmFr6CNMpCY0LRmsnE3642pUHF0zUMzf1RAn7qbwarJbiZcyaXxDgqTI7q+z3nhH217cqC8ITEvGSYGvGwUdE6OET+SwhMFbL3MnyR5QFLptcOp5aGQHxL/BmQLfb1kdyxEP8+u8t1vdNofHMzculcJduTorUowpHzb9QT5CSBXv/i+fZWZXO0UWFpnOWzTk9FFeK88KFQ4/LRVycxlRVZmvjmNzEcaJTk+FVzejR9YP6oBM0xDaOiBKUgHcUDCLf9BKl2E2xns2OR1jbKpc8BLd7EkmDTLOG0+T14xuO2Ii+qm5qkWEK3pOCPMoPx/KXktCGoZt+q4i6mRCHlmjtIbw1lqMcDmXQCjOfbG7Ud7si622QhxApFaqngUdwm8rhRSrBXxTaq/8QGwO5J1ufwMrq4KHQ9tWGfd0Y0BWAijN+swoqWPMGieVP/IMzCJuVIlHA4JaKFURT7fVGLXjIhD8uTv2R1/YRPYzjdH2slDwt3z1nO8AzVSPNJhpgy9svtlFHpTuRz0xquVTrR9TqOWCtZfjCEtleLGJfv06c1M85F99dNmB4V1Gh7GqcSbHLEsPRCGcnjNz8hMMieOAVClhKUx0PHMRO5F7h6E/XOu2ak15feBKGrjTiBOo1FHLjM1SbZoQ0LX2GojeZVskIANbIqkLwkNcFnvelei9vvfvGmYoHEmBi7juSkYyd6dI4w+Ia9mNSGog0s+Hf232VlsgiOFDKKhWxNj0UMQUfbyq7JtiU6mHc3yIfBREAdzrIvDUQ7hzuJQ9LRmGOMlGQchYpDhQCbI/lKSqxp38WlFLsct356EWei7ZAhP6QejNsen8w/yEYksU8Gf5CUC6stXZYqR+wgWPxYEPjjYgwD8SNeT1AKPMBd5OZe8at0a348m8RzGhzpgwA2OIWhlC7fw31bseNzj9cyttOidwONdP2PEbgzGraf6nLSCouw2uf26Wvcy3gULySvcu8uOir9NQcXL6xOz0/2xnHiq9UiVsyIHAVt871eXpsHSsgjV2X8IWrc3nUTbv5UzAAaULQYkhbokSI+RdlBIMGsKi7yxDmzvCNHNUhIy2vvR2gYg3tLKuTrI46fKGcJywzB9T5KZ04P7pameFjvzzaRAzLsnW6PjCZafIlqEh27zuYT0tdCG/ryoG8gHKj3D+jlk2dvnwcYtR1Q+aPPgJeaiLfgD6jVljeAsoWwlADMoTuzb0A1SUutEhAqybiJs81NAVmJVkFa9NeErvNJDHQYIorV+FypuI5LLZvHvGcOJt9W0se6UD+ippn/dZOGp3PWw/dy5ohIui1rQiiJDwVq2JiH7esFC2vg4eQunmaZE/7kL62kJ8+iVjhS75P+x1t4aCJJ4YbuthsxsIs4/13Td1iORRVI+uQbeEj8vADTMLHS47RsBEbHdw7xFhwzQyuypdvmmut4bcEiN/Uib6wTn4BgKCeJ2NgZ0Bo43G5aF3rPcrBELfnYOGkj6Lq5pjwt+Z2BGvzVuwXeTkkS223+zo5kySw9FTy0hgqDFfQIkzkXn46JtLSuCz5RMLrNvy9Btmuba+OtJTmeysPHbNHTfstloyweu+LAIKGp2PUyZsJBOeqLdeq3aRGEFCj/uTfDGRgtA9i3Nou014opG47MJ4uAWZMt91ApxNn7vMSbxVI65Dp0QOFZ2Bh7EfZmJypb4bAOFDsOkKnQwcFKIu3/pR5CYjfPfKf7YjebNOLFsNg1/sWKVcbsoC0pwcd15X0ztfyZXoUWoXqlqUb11EaD3ijvUStOii0JcYCPWjWXS1NDwyzSXweXFDnthJv9ewQJ5q+JtKUcUREX3HDKkyOvyOg6l97321DlXOB44ZWxSv6Z2+3i7NsRsRMZwvbhrU6WG97MEqEgJM6OMu7cflceN54khq/AamcD7kogITc20qR4sd12/Gq+52d5R2gSCk7KiGXWOuKJRfPgNZVRI6/BFYWZCqfaR8YH4x8Z7g57/869SE0j4kNi26lmz4D/2qRpTx2H03FgznLon6YwC9jbEH8HWdxmJZLnpOqJGHdzWn1DZva6cKiR80BYFtjPIpRexORM6P5qBP04AyTzuajdU5tyBWx+2+ptcNokVX4EQuV8UeDL25YJRoW/jjazuZ89cjujIYnY0KUsOLHPASEnGFo6cbVDlVvNBgp0a06cIVkWdleQDULk6pn5BrZ2YIT5RjAFBJa2NnXhTt2J7UwfaiIhXvD0tSyYVpdtyAwXDF+8ntssRGLd20PEF0gcw+6Iir2/d4hvzYrjCuTtDKgqmG3meOXSIKdF98gqugZ0ytLCVJRWBKkwJZMs97V5SAxQd4APmomsf8j+QwwFkGM88fMlxn2+tdbAHpk2fNFarSPzriW4GNnjXS+jdiGxxd7j22zmaLKKFOXvctKrl7IWxwXDv6YjTXg3ZJVtqKLpl3YwgxTIIWrpBAU1bS6+uoVDsXiIK1onLIbMxnHd1Ykgyr252Eeh6HQyPYcSnEXW2/h1Rm4z2GoStrvZHRUglcr/HAoiFGEXnaTvBaB64J/e+s3YV91rPg7VaPm3pRj5wmiAniAe50iejoYeKcRG4W82zgvJj/cxM5yL+GoG0ifEWS1YkmTxu3tlWo+BpCYLXxq1aR1Z4g4/73wb+VWvDU+zrrJs65EhVUJWeWm7SSOrYXnB9XIyMzJAjRH3ko3PQcXkvxs8tHti3zC7qxmc9qgJJGSiprWgk2MJpEKOaTveNr9SilkwizneRcfILCznUyMcXKtfTICOSPgoeaKLKccmbbHWSkwMAW61R0TxgdU3Ogp72RYSvJDPB2R9QB8mMEVFK8qxtX/MPJZBcM+JZeOYcEzBqkbf60unGlXDGldDAkS07M9zBEQGX2+KtLj9i3gm9YCcSsXPh2xUkuVeKLMnhljEm/+awLolQg/jMe8mp/2OIXOquIFXA00GmlB56o/PdIwzjRQ4GHgM0hxM5qgA68A9LE2jBiC/ycuY6xcRRk2uSSCdG4PsyQxyt/T9cGi9T2rxim1z86IOn5Zhr1RZcthDj4JlUfpvuH3BTuaTbZL3SL3+2YsU664k3GYl6+TOOxlRe4Kd8Oem9uvuy2Uv84C/ABBa/Lepadi7/kgnJh0neyqCSMtNUfZJw1SVRzPorzYLy0W5hGfreEWbnEyG6rnR+B0ZjsoP9PBqdecaWJZ1BrP/gGXc13wzEm0boi+quMmrOko2UzWiftRcQxuhJiko4tfiAsjUO/EZSV61WHTQ8TwdU4ey/CZ8j9SQtefxDKjELBA2PMFNIpsHNFLMGHZukcQFtDogbYRzUmCryIRjbhAT/bTiJ5VnMuYHrZgGPXfuW3S6Y1O5jjpH4tUeUn7iysgLgr573gNJlOHwzN16nRb+bIlbVxx8lA/K+D8T6+Ws+bbMlMpaYUEi+58SFCoBEFzT3rufT37PRhM41xWrXZoRlSRxfTxicXuNcYGAQUVJgXI/MFwOyk54zCillbv1Vm48dNXQfIy8jH13nd+fwdoNnPLF72tU7ns/CBt02WJjUdDs6hc02FhU8CfTqfXlE8ogye+7HN2hOaDQrrQY9E8yU7abDw6D76RTsn6z5VmS/FyrFK9XXjTzeY6fMOygkhVwDv2KtcZ55aavKW/+Z3xfYApe1bbltZlfptLK7RmEW+aGWwSBiF8ijFCxxQcvcT85d8ExrFDUNZgsoeLHrOn3/BmQkzwiDb/XqjVjVxj1DiHVl/Fvw/9QS5zSFX2uLCfDNMn3AO5hmZ1H5pZ/4Kkcb4bHw90RSz8lxqjHKsD/fsPbaN7U11tA/Vm8BSEmYsnzgcgBJ3nLO5piMALP21lOTTViEO3ur/nHu0xC01gWt49RgJ4znP6hfcm6Jr/87q08+oUGASjasF97UBxJit8Z1fDBVyv4b9ei9mxb6qjy2iVWPU2chLrzn4YdPNPfbEI6ZfIJt0eX8xWNvUmmkxR15SO27v8Vm+V44GRf4y+i2kA/yc7/CBKbRJCPq1RCFMa5UnjDLJLBSsFMpQ0kaOL6/PVtWbTH86eTPFW2n7cQ+ciYafllaNou40EnFt8t1xfMyViHqMhudiq2KJkRdBdenrqATc6V4e9NZhOAWP08UMjy/2M7TI/V+KP/wkR51pWh8bXS4RzEG7zXI98/YIIjPvrWeFtc7+42bFic8Kap79TUIOgWMstPsExgp4RiRWLDsP/z7MZn0rxpNpAtMgyAF6YihHbCtXHCMOpFz7g2x8HKgk/3MvVd1kEb/BOSneH0T25X8I8uql03Xc5SenyE3064B85r+G8KWWqjscGJ1v0ZjNAmNywFAMgNXBA/Vn0aLoKyN57Krr7NNNOMIQfLlt4sMxXnGdnVgqAzo8KAkIYtleipVnERr16/fi7WxM9VvF+l09OOeK52TzOXpC3xXpWfP03N+zDnyN46M9kWYbpFopC37Yp6VJkSEb6aWIVFTMmC1Oll04GlwJ2wC1r83OmyUzpNLH9RCo+kWc29ZDeT94N/XafDioxm2cM8Ox2glLfPydyt5kFGesFo7UKoiG9bCvRJPp5olsMqFqTpvRLncllpcHv6mEwAPFF+qrsWlTGd7BzgfD9aD/IObkUidxJ8RjK9rCDVszX2MIuj+XtXL47yvtwwGgb4keL6Wf3/Nu88w/2bmSkx9VYKMMaLqXoOs/baUt7ecR0kvcJUbQeCPuNgX2v5n+8j7lO2Rh2Z9uyBxyuQ97Dq50Lc/LpLQSqE78d5nv4ZPWEXJIdLNdXyZwWevHiV28nurtpYXk1VRfzcaA8XyYLMrQbhSPo36XG8HJWTw4Lph+sTOqfAF03y6bFLN50OL0vtorZe/xupVOyxjDmEfQs2I/NYC0OTDwH7SqHnk9Q4obeqX1oh7FAcCmkiVt0lbKxgNRF31bmbt31sCEj2nB9tFwaaev8QmKQbLB/7MsHrpwKquucuEZawqN5wvgMXxm5JAKqluXjmt9ho774Zx5FkOigCZzIdULnGfwcZ4nZuZC1zp1nlBuYFFxOxaJ88/oYHTSDeyuAvXLIy8cJbYfOBRt65LTqmApj7H5ML1d9MUtUr2RmsliI4hjihMMSsjoL9mVg/MJKf0s89o+C4nPINltKcA8BildGUknlj990bDBjUaW4Hjq3Nw/1p8oPnimqETJ7X+WcITbTx84Fu/+02QcYZw7L2pKlVVxIDZv2RKsYF7xIbBXKZ3jno1ycC9m1l7lYfGwbuW6rUOMpT8ZFc4iWl+xvZRwm7tjc3pjlUv1pw9cFeDPHizAu16nvW4erODVtf+eXuxdIZFYjlX54xg4ZRD8XVw8LJ4/0bxTVcVpjurfC2QbswKV2euQVQlKQIUowcVB9i02Pe+8jxz/AgcExkd5Lxc3sqXmhlqTbhDrGnzoLHhlnUTLOKdrqexX+Gj0CEbpqQNp0Lm9qBTC19Uc4LBWVpYnvTDGhYEobJg2i155k0Rg/B63CxPKf+j3NZZHiJdoz0nsoR0V+nfn8Yk2k6XyiCQymCChBrNZoLUsq7zhnugEluY3lFqryhzGeGKJUAfmr1Uf3TOXc9N4LZKQnJV8WgSkN4cgJ+KlrkJEnTZG0v1M8wXAyopcKLIAZdiUSt1KwczTDUhkFYA+18LpYXUZVSMP5+D36OSUdbrm2IzYK5hkpEgrlYq00i5hF7u09WAeKCzwfGrcuKJmLyHio12j3fSyeVWS3DW2Rb/BTwSAF6c7xmpG9loPAzRz9hMf5vqjnMcadP8ik9/uqOHqLL7tcscAz2NFGNCo4tIvvY8oqOR8FWBJb5I35jXocS4UAt4nJNuhb6zBrcRcUTK8t38oBYudIcybpCVONa+OgS0b38qmdu8lWmmiGUaYoZyEcLRAAn8qDWqeMWgJ/bXorlOwcATENJ3NKUudCkVS9rs0qLOwGbOC6IrADF9RFieZRojfGXlZhXbbTE78PnEinagR7bNMFcYMFkbakHmvqUOxlMA+wYSnus+2I+cN/2KmRrJwZD3Cfl/iDRlSfR47YWyPDG+GuETVjaEPVEqBmVwR7DmR8YFKLaGkpvFjK7WVqI2MaNx6BHwzTRYZHjwtDrIHLw0iL+o1skREYgK7lf2YiuHqbOMqWL53QFN+mBuTrmdJfBZE4JL8KQj505a9QrG6DrlvKfAjleg8hODPRSkxBijs2BGeq2By1GLOinm1xHw0JlI5QUWPb0ASR7z5CXPX++Fdp94rBbbDQk/ErJg6dDXi+NAnfLVAK1qkxUj5LhF5blrntelzvr7UK843Fl5X8IcM3fOFS0bNt0YrBFjLoQQm+zpOarme6x6JYT1e3lvgQ0lGLnO5ixYtWfWA4JdeSiTH4o+Yj7MMz99BdkOMGFYgekYiOsl/s9rFqyRXZkM5RHw4BbshWVcdsvLpGLCpP/W6WJyKcZwZQqyWdM4DJxgmlCGIxnJX1CN+ey0GzroGSeHO/o4+RBZTQVzDybRFiIJuVARGDtaklPdO599CX4iPhP8aSVYMpJVjitH/hrG/2qezax+MYAohl6xVfos0GWWRPmBDoJqr1xZ5et5aQQFpHMSam+ogWYFmq+toGdvkz+H4A8OK/o9GL8cC0e0299wUcNayzpvVejkD0EGBa29omD+SFTt9ioKKy82fJqo5eMhQbs/WmTKoyTHVw8sQQozIGv3KItqpfYud44k6lBHFm0ma/S8mgy+gPfD6zAvUDCLAgxhyP3nN2Tu0rmUcTQow/86SFDo8I9+/hqBlxpB6njBHoiWJpJ3BCQktw40xQhdD9ZiVphY0mmXO9DS62+Jx66AKZTbhYK1U7zVmzFCEQKLzhTvzijErHfaNH79bou81jbdUjiexXLxHLbywa8NcQHeClb5NDuwZGM8GjWEUEmENQ46owBMvEXdAeYROPQ06Rac/JnZCjZncwAde3/ZdIas81PUoskJ6Lnt3hmPqVJ2R7yGRRwpoiFt7XLmOvZCUtvtXgbcXZT2vQzdgaTXunfoGdz4sB7wihDSqhACM1ZPTbQWXI9v8QnZee1UwUJDpG4jPtyf/aZTOFBvkRiNiw2s2gPhIS+0oUuM+FrNGhvvFUfj+0WjJitB2KwTmiQL/PflzLHmbWakHYCXExtcQ97U49o9Lu7QMMSDzkavqyCXnytJXKsMvOmYFTCuPJyhTM4Gs+HaQoEMd2YyujjdH7oUCd4xas27gZ0uXkbf66C465C2CeUD8w5qLZLCkn8l17jE5WnS/Y/Kuf5ndjOEVo8uL5kFlHnsDQPiO55nfb98ZQgtJnc13YfhNB5qoxpwJqBGk7lzggYO9OLXTSlvRcNdWLNHQdn60pPGOG5zLkRJeQDIp4OvqoC9Rat8N3E+zC2zeWvYq57yqxpVG3taUSPWngdarZ/hI+lyLHoGvAZ8cSrd+LOqzk6eOUsmn+gRPnNjT5ZxMQqbwJOVW6zp+107A5Oo3K+zrJ4Dc07hhY0tNaZopoS/nwWJdlecsyYpzZlVGDfDy9we8yUzCgP91UNBq+jXMU34+YWuMomSUkQVfW8C6/A6o7rcnKctsErTkq2KDoiyeZYywxyTft1W9DrxeR4lHO8Bs4d/WJQ2x1sjRrip/R03kuO5GeD8CMzgdLrWE4Gezw2GBTxAUTdkHU8yk+4MPbQIDuKp8qPKrzxIc1a/iNtQfvI/bx4YBVeFpt9Vq3Rgpz/gUo5ODTTfFNdhavFNlHcLaSAJ9T5ghKPpHn+NOJxNyxedaFPEZi5+oqFi6bdmV02nPRl76YIVsOtyao3TSVzamE02XukR5KcwxxV6Btxi6fZjhhMNLxzKL6VEklK6g/8SXCzK8gVce2w2qKbjjKQmeJja1ks1sIEKbxa1JJozL7xOZOPe8VJxaLSdIUI9OnWrKCsWEd6gOtFXH9Xfsf5hd6ZKrsAaeWp51KmDfAnDM09nkT2z4bp0Pa9WoqgpIAcqZe5fMn57vfJufzGelPnDIXgWS28X2fUl05In2QxiFKpUE4xaXEcdvyaG3NRM7wp9B45Uy1nebthHRIAIRXfP+mgkBXuEDfJ206pjVPL1wKEtObzM6UZ9FRFPlPW5oq3k2iiQ/lYch2pUl2N4S8ABOG7Tu5iGrZWezbo1AYN5axYpE6ephEl3BpeTWyoFtJBrEnbHfZ136mbJh72Diis5qNDtCEZL5/U/K0O6MP8qLlT9gdZdc1stUIb81HDM+4IUdVQj/s/zpuYmPYTeC2Zm6ckBRyFvlZlzs3LaPSrEQElX6u/5B6LfWuWmYNDbMUxEDMrMkXdt00GxHUKs5CfRzzGkKWd3dtQCRwENgH79DKs5PJojhqQgjwrgm4EYgW2qYC7NebazVHrnxtVJdlA2eVKUZR2akkWJ8oX0LJPdyJj0hPNMAhWVlAfSvvbWjW5OEGaeiKWdbZBD+KhBrGsaS3Z7dogrCl5sKFTpnGhFELcFlIj6M1lP7jyfx8pUKravgrx4g432g3BK4x8Z3YOc4AyMCWozcvMcCCcsXsvlQRuhktQJI+NKw2ozqCb7/sfPXXdvIwMtQLBRFMk3ylAXAUevohPKa7aaB7raQ25QlAotJDgrJjHTepVHa/RHPXp2YFMR2thtBwAf+847f7pvlA/aKSFK7dOc2o0fOvarR+fSJmDl5ifncjRkTfz4J6dmuE8C8DgSLSz9+WDYBxyZPSvf3Y5eUimSlqAxllJCZ2FtNG4khLJIEa+MtoPg44y0OZD4HH0UYqpY8X3QSgXmRGxykrTD/3lGYqAapeZD0TDyppWiwj0eEtR74XGilaMSG19+8piltncbLktJ+tjz4h9P4BcQRQ8tJoIZ4sC6doxIC57dmlIxjevedVaA7AbocCjgA4ytcnYhBHcjsdXWGI3GS+rfuAp2xgie5kHoHNj/SEYUWYQeTGRnIpxG+O273lmmcNluEhKfbbdScG58zW3xTXJbQswrB7GvWVkynB8xwPntFPxzM+pnxLAf3fP+0HD6RaGSEN7n9eFDx5OpeMun6y4vOLf62iQoX3y17+r/2l2euDp+r/4YJBG12VEj71kzYWU9EV5LwlV2ISfIzQJZbAI881Nhq6c9A0FWomdrf6tNrtFs6GaI5Zdxcd6l7FrWxy0Lr36J8tvY0bEJmXetoze49yW1DzUQ/AM9AIZx36T/wUuIBV/Zg3d6fFPnuU4dhgYmet/W4q6t152J5dVC9O8hBtVkQBwo/rgUpBptnnOrCY1LVtOgtnP+klS9WN6CJlTKMuVlANLRZYli5+Sob4RvmQ7ZS7omFZMMa4AC5vOZhaPybzSmS/hMmHyyb/uBpXRnW2YsFpHSPf5ZUbB+qpd9ZpthgfMv+ZeXYyN+QPL0P6D94nBahtyrTQmP/Eao0OSC5YvR7v/1aP41ca8PHqGDdlVwgfcnMl3sN0pCOBySMXMVGn60NA+XGszfXmsfAK4FCDzqwu+ObAjEUbJxnrQ/o0VQ116HPx53dSL7Ce7R9shoQryZx3DGwfJRvTGN5BMRlf1cofnt9X1gyW9zKQ8YzeXiVVya+LMo5YKfb3bMzjYd9OUwQdxhcFcbaAvTHCtmPSf1UEeiIEWUDjqbPeZZeDXunWEyWxROyCw+5XhM4mSTXU6u0o/HWS7lJDnwN4R4H0TQOVtbe7lUb8NXz2elZL8iiyixy36+Idjc8/wjQF5Ful3Mkxs6lJLnbn2BmQ21eS5Du8VuZ7Rxu+OcFQRB4H+nspKAPUkShdmioixoj1k5/exy+lxZLhu0q788mZ68NVvzPWWoUNFjLwPYXnnna6p5JVq2dkjIiF9t2luiB/k2PTCns7Oz6N0YMvl4DhHP2A15HaxYCcH8CA8X2Ah61YAf5xLv0tbtHTeeAm72TQYHpWdHPqhlXbw3X8TorhMuWqING8/Sb8N2bHpCgtlWdQsUHna+tF6GFunFFXmTfN3s2q/sGPy3LYsIz6xvsDSL7vIaTqvKgqdDdl0IKbVL3r79MzcoOvFEkDfe3hiMp7hwoCDIeC4VuXmen+fwjBb9FxXmF3krx5bm3Cl9wW8bBfsN6oGX75aL8Da0BPyn+HwAnDA+W/myqz2TCf0hlh59IXSx9oJ5qm2s+e2JoS5bS1nw9poLZmRFfslIZNQFF/IqCOubiwNxd1MKzV3rIcM1jSn8uRPvhH/kok6hIUwqXRyw6dtTc+EMTkfOCyB2u6cD1EkUFCgoes44+HUyx7xJc/c6XoWMLECMJFhK3pMSui4KB1h1zM5R4ZUR+10jDjx3pe1pH8sPDxDDjusyAYdIQIuxp2+9q9NCA2SRFqPs28/RWZd3YkWk4a0mmdhDgHxR7tiZw/DjrnFMXZR4y8XWhRaaqrCTCbKo7wYeSERw+79CYBepSWhuevP7nyW4KBo4wF6JC87FUnKes06y1VPW9ntPROESlO1GEhmrTAuncpN34P9i+wFytVLdiT1jreGJGqSbJ/yJwJ3JktMGJFd3twSEHHe6nv3ZlZjB1MUg/cMDLp1fRN5iNKr7fVHPDHX+02qsxPj0ZiKyKPoX1ECD+szp9UUz0QpeEVr96KjtQaMCp+u3cXjOWvsOjjRhv44B2MfolL+5ChHfZ5yROF3F819OdAQKMXKk6KhrhhMeXza+/65ZjjTQphxzE/wO53SPk6q4k5RhQAStr3ZcNphek2E0E4zxMRfIXpY25d1Qkl/clJAj45aZTugwK9HuALRk84hO+rNikcItwFfD0RjI8WX6/cL5IsxydacKCzsMuRS+tGaH6IQs54EN70JDY3u7yr4BXzNK/PjW9nvbw5oCaRUxeJKMNDuEikKIhU4g5GVGomwoW8oz7r3QZgwn3t5IOXriEalBXZ7KRIjRFc6uG/tTrwFZYACixRc2rqyi7Qfo1sFFTp/7FONDefgfVJhnsZ8QB8McuA3Co2UpMIEFVxXAdwZ0EqvYY2nwxhNV+eVRCA87Co8/Nv0aXIjvT0gm9fQS0BCz5fkvgAcAo/ijAfYpc504ZsiTwO0EDozTAeeJgVR/7brTJQFnJVkUof6jsX0PUK+YPFZ3HyOupGS4DufGH9v+l6H9NoCgHeGaWOpX77hd9DMOZulYrKBcEyEJyTjE8B7AIhuAwLzcbLDHz4FAWnNXX4y026Q49IQIJGbnOfAQ72S5iSdEWq6+L4vk8X6ymnKLWRO+kMjkOQ0mhwknER6fBi5lVlriPX2ue3BF1gOpeVW5aapAf0y2AOcH40v4OdC9O5geExAopJ994870z+f5NOX3D8Pxf7MaVgr4vE1fEvrrxBTt8r7wVtGpmD82u6yeS1mzyf8eR8p7M/M2eLpXsmPKSRpYmVk961/Kfm+ZqaCV+BKtScDz9B1vxdQFKVpMaObOzZUvnq1aV4NEqVBnTZkbv6hS9M8mA/75JiOZQ3cdQVWhVQ66pZOUhfWhBxkuJa4sYIQ/OjmnjaVPDhFkFe3JKuTJ/rO58Wb3PbdP36l6y34bpHFEB31dg3U9UTYwi+2kqrRuDOOzHzHyOvFPwUnoME0NlHtuCuuCmLWVAG/SIWxWVUVV6CYyxKbn8SPD4/pTWeQwZC3fcieRtGdV7erw/QNqGpxHaiZnaeqNNgNsi8nxVWi5eoYMNlP4EMd+VkpG6+UZC/51Om9kesxqxtKUp9Q3vyGTQdLXmprGJnHKqwPKCD144L1Fwylk9Zww+YaIgvxddePdtnDt0HGZ9/aBgCLcbkr6WtQOmrKskq9e4mUx7viaynN8nfmLCpfSbsyBBn0uueejEH8yMwWGw6LBwGpxfVxO3pWP3Viyg56G4eFhBEbsEBLs7s8/gIk+JT89EHwNVqT9weAlOt4dDOtMR6KmIg3AS6/G1x+HZP1sWmzrScfKyY88ntg5i0/ukNBa8rMVPwLlRNkRwXPznle35HUN6izTYbBiB+FIZgcLrkOE68C1uol8FJtD6cIAEZYpSJxpGGmgB1hphtzkeMOzGY6IpY1hHVVzf2DRshhSlThJ9zL7A5nalfR5AE9hX4tOqp1YvjWAOmsS++Qf5RCGVOQwlB3pKlj7UckL14sg0Y7D8WTAVNpeQiM101N+38Ngaog3qRO/RphU2sNkjUSHkzmS5ftQvLDiyPMT8nyIBSf0kt12l/A2MRs99h1U2I7CQRh1SgSV8cvtVe6tVzIms7M8s/pyfFoGMEHwCW+aua8SqTwXvzfIYX4r4kSTZIdvvHKgKZ++YhpiuXMhFt2ND4BtNtz5oXrGcFI7/hYcm1gEx1Uu3+LPe5HhCk70gIn2/MVQXnQjVaYZj9EoZK5o6vcKyPFdC2+RSOhWImI1dVAVMhCVb43+41tqlET90X3tZ0kzD/0c1ABbc0HnzCVmTpXAPgrYjUU6EmSW66QVTQUzgIdIIL+JmATC5Rh0MOF5xM3cbNcT6CCcxQJOug1Velc5KkV43sSsWgPd8fTFLAe5pkUUC+v0jqy4zc3HH/8rqYGxDbxbmf3kl5bRmoSsEEzjN1TuQanRkFP8O8z+bWK/cADbAhnr5eW/yI5IZsYkgJM096a1QH7n/gE0mtZsFr7Q4gfhM9qj+CHtvFMvwALH42C9ElZEuNWd9SGKRK25s5lGyjHjRoswh0gaG4hxT5kigCPdd450jxmY+uSzQEdHIFp17fzCZ5NEM+w8KwifODDbPWRXnM1V08EJMf5YlyvIT35l10kQWlBolySjFgQY44WqpKdnXEwuvnIonyhzdSdrBeQXSdgqXUxrOEWpWpjfKz1BdWhrRGaU0tvRb8ooQ3fCoSWoZzzSVUAOsEgtkW/U4hBa5Fesge3zedkUFd+DV1FuXoTTUQAVsi1mWcZk7/Aa+MCx+WNTAAdyUhsoCF83NOfbDF7hS1C4iylcMpwgW+CPrJxoWP7ZJT2/CQpwGV74Ohbfq2DqvdUwt0cfdujjsb78TX2X3xc4ULmZRiXn6RE/FoDjKgOM=
\ No newline at end of file diff --git a/acts/tests/google/power/tel/lab/temp/Anritsu_SIM_cell_config3.wnscp b/acts/tests/google/power/tel/lab/temp/Anritsu_SIM_cell_config3.wnscp new file mode 100644 index 0000000000..ef7cbb264d --- /dev/null +++ b/acts/tests/google/power/tel/lab/temp/Anritsu_SIM_cell_config3.wnscp @@ -0,0 +1 @@ +fO6p4ZnmlusNdwDTxCoF5Lv2d+AD3iaQJtEFqV1nMCwtZuwc+Fl2+Re9li5IIIzXX+pr7sHZS4VbQ1Lr2pdzym1oSpgDX+hNupKPYeHeSm7XD3SWHrrItblSSov2CYB+CIufTDn4S2/qVYgBsjQBszZ6CWNqCZc0xl3RePS6Lib6i4xAXaCkX3msLVIC4V5+BJl6MifxHr3NTUxFW8m+nsgnqed5cU7+yFLGF9iCTtVi0vvmTB6HEfyYPLaOXEsxiFOIkUejjpRcSd74bsOyIWV/9zEm1IR/1Dwb1M94Wg6veLbFhiq8I//9RmYJAnsMHPHncbWMoQ8Be01yxvveq9j+nnQs9k3uBOGIaVfeucWmTuRB+4+rV2TQ6zyKK6dcYQG+pjY/Gt4zWDSShwm4S1s8sAer9NWPaECqFATD8pXETAtBY6+WRsIPMD+1XZHxOO5MuvZBmwgrhkjTcVfLanoOa4FCa/oO4OhEwUJl4xRUZHn07Dh5fTKKLf3tCntNAONnkXyNyl97bJT1Hf3XXmGOQ7j1rcUx4BIFbR8Hm4C0o4cgVUPhK6XOnwJgB6oosmVdGwvDn3lD9AJrDVw3U7dcy0lIX22+362eYARY+6AVZzW3FqAuzHgpX9pDTYnnTkW9BQqxh+4kcps2eBtuodgwP/+VLY2IHWlmHI1NuRV34jtQG2xNBfBpYKC8fQq+mUyK+kfphZOpFrNfZmGzRb7V4DT7W0qD2Hje6D6iGaD8LqVKJwIcQMLyqtBcHvBpCdrXpb+pMVAAyFJIn02TOmZGBG0K4x4MM1mDZOFC+sAsNHZOYK57qiNXYOrwhPwpXJzD04qzXh85DGNcPGVBZu94AvI5rGXLkJLIEDbSG3OhOPu4MF1qybHqPEEZKEC1dCMW+rr9Vv+iFJ11lK/3U2Axc/uvEs2rQnhiIcYQWilSZPcv1afBCQ6oZEJ9u5ib/Kpx8+hSRJ2FDm8Kn8F3bNxEXd9f85jZAolsFHr2RnyjGGOSQiosEP0nzCIqD3jlKt5XcmDN0pfr9ML5wTMvzfIWdfNcaZbopbDah5JxctZp0aPZskhth1mwHJX8ndOaq0Fdaa5ry+aA4l7ao6rB81Jb0/HxDvVzEPA7UIk/3IYeJsmwTijfUyr9TlDnC/l/DPj9ItM4dU6sVD9BhAJnw3GB4TsKKpDsRLYStaGIrNC01vtCD5kYaid9YMaedspYn6e0fRICioJCEwkLE8z0vpiNRogpEhIVmKwlSN52hQ0soaqCaefU5rtqzLhokBPO2Wm8VQkzivC/3rpAmZQtVgg9sL9YpUPHBEsx4KknUGB1MHcGtH7Se8vONnDqHsR6Cy03VqxErbNj3dcOQPGgbqopG5cBJqiSU8LQ7+9zF2HZIgs5GjyZ1V17EhE7t2vbJvMjEA5Elelqe3u2gB7Hvb7C59zPmuww1jikIqdxX8jz/Qa93V46KejB1t4PUpyywfHleP3eL4+cdpO/16VCzxeGVZt8bIkd4nToY3REYG22bZYT55ycqpudiE5S15QDMLwjpPAYszAyd3ock51ZU4+Zwu9gREMlQb9rC9Vp45AXCG1jqjP/mxhhGMf+fl4cjFfM3ky7D70KWW3BuVfZrVM2/T/KW8dcde/ybYyBLyxmLLc71itVsO0MTUyqoB77uNXp5vqOth9fRs3v/f9WHkQgCfBstBj/ZtZPdcGoFNQeu6xJFw/yNa0NcHdd9sKTJlkEOcfaN1UwK5MmXXonUtDjdNkxIVugvh5/YOKtMv3xPL6C9TTIUhREbYWspNCHyyi1pk4pq0vQZ5kxYc1M5mFPShkSwT8AlMUas7nq0RKWkOTXHZkT8G+eurKZHxges7ryJ/XuO8scpl3N7PS2aApbB1kSg1BQG/b8+j5FN2YzNSJGhkBkoTUSLihGxQ8M1Y+8B46g2h3iGaqBWaRCdwxfcGqviF+6XEogJMoSLEhl3ye04mJGH2na+k5GlbxkOdFor7hphtNxN1CC34p//SxEYbY6iXEJzo5JXYd0fPfKZJ9CocYRAR7gSosnxsPQ/dte6JMeefKObs9DqJ3a58/rsRDSeXEEAPNrdjvzwIUs3vJIsQyxwuhwP0Q7ojH8z4mrOTyzvOEfw7TVNIy/TDk+D1eZkVSb53Brbj6juom9IgoaM77DacBeBLLjC0xczXpG8C2EO4RF1bTJARd8WaMI2fKzooAbhXonqkZ/Z4EdkFuy2K0LIFGxsC5c0kaHloGMxX0buJ0RS43VvYFWZON+h9iCns8FSp9ae+BNLzvVNotf+39ycM/8iarJ/msnC42crjhcWd0gKcqDgNJqBwdKhxnDgDdwLg/riwAKN/YnPv/8fyIqgzP7jIl6a2CBVd4eZpgd5MEqvswdXs8tG7dYI/oRSIxZJ+Okm2+y8wcaLKGV02/YWUJmyIcAsmO6HiwMlyqUH5MgPFpSBYckKLovbpWHzyFhSiua4IVcPdb5yfGUEMMlKShOMisgXzA7v29qZQAkTK/GSDE9Ew7e/6kQb4jpdNjeIZJN4knPXeEWQ+rsUjoXmsMIR00sO/PgBj1bMJrKilUun9QYLP6ETp28OlHqUbm+OUH7p2EW56CBEY8Dkyk2AEB9msmhCp2Yj7rQroZwF5jIxR9wGVJcUsWdhIbNfij07CceLLE5afbyv/S4xFrihYzkPfN5VHYtxExBTF/pTq7EBYcOX1qFsUGrvncW/rQrNhxqaGeeL8Pfv1iexqs4wwpr3vw3rt06wtgWzCSiaKk/mmwe1KQW69+1y6kGkoWAeksDLRuE7ZkjIyiYa0OYxle9bT78Nk6oQMl63oYXUT/CSIOQbCw7QJfvHzNbV0tZyWgy7UfEAhM8uQgLlrLcXdLSYD/6URNxEPLg+jj4TZqSlak/dNrY9M7hng23fCozAiDRYUSyzwwkS7C9ekt4rD+PIhBPQpGkZEyGhSRo6lXtBi/5ewiapwd443ZRj9NRtS19M9FS7zuKhVW8S8sLI2gLLJ0BTBXShK6V2kmmtTaPHMy6YFrYNgaeUl5ViMUketzTdDKY6wu1oT5fUze0Pg1Py01xyZXaAOzfPPhEBiW29vbf1K2OVfF/8xPVY2GLrHBlPlKaMXdkbFe+gjDx+WrBatYOlvZdWJRrVP1v0VTPX32ejc9S6Oc/1IwreSpM6UAEFb4P0ZhWDjxeEBynrLQeaaHdv3T8DFA81z0Lts4uYgEBgMYb29HhHcq2/+E0XxqHdN2RrzD3ihDbKg6aSYO/u72O3BpwLgwpEdyfUvqylu8/cB3ny5X4I3TemTR1F5oqWRwPLkjr3XQ+F2kqa1liKcemYDl3WhfO5eTM+w7c5P+WS+mDvMGu+ZrQgENZF2DJROnks1eyPe1kjA33YPrMGVRPH4Mtf8c/sMxd6t4SPJ1zhOmj3BkuRM7U2EBP+8ooBk+ln4yA5dqR6Xz2td2JwgQsZm46hBup51yekC77cOGJqvUT5EQCQRoLIbCCFNTcNeJx/+TiKocHercD1//PNfDdxTKvgooBy0vrZXI0EmihtW/BAqBESnWHmQdV7x0i840aBmG555HbyzYyH+Onrf0ZeBkWhk6HMK5v/WIy7/I64JGPmGKTE1n+OtK8a3u19fQKv91JOPdnDusq2ZadE7FwVekqI4eBed2HUWLLVRgWO6vd34lr9SjZPk+XhuK2PolLrw3iRN2AZAnnLG9OYTrQGS/iRr7Fw778mdjniEj/cn29fTlMGU59bKUlERjwYySnr3cw1O01wfpoTuPIgwwIn2G5X2zAENy2IgHfKom8+8HadScM6vQBh6EqJP/wziBIQ+w1DiCSCINzn2Kk/tA/urtEEn517qUXtiRPWw9HFmgoNTUJzMIU/HJq6vKzPTyaNF1eoubw29vo0+y5n/aDn0RUpPxYbNHgBhu8qxCXzb/x3qAksfcdClSwNBJd7uI8bi1gvHGs+HdEB61QJ6keTE5aXdXmquhhHMLiFFJRa+WP6HgQjf9rF/OSFZwk7WIa01F129k0YXfT1vEVsc2SamEc5gRC/iLxb4F1qF9xSOYEDSVBaJ2AGqfglaAJFEKpcAJv6a0tSoFK5ELG85yD9EXTWbQDub6I9RHKrAkl2i4sz3DAmv3A0R2/gDYWpdPPYiU02ilownhyHSl9KIDXOI6oB7WSiudwJXsJVsekCrfEcs2v99l5VL347ZPW8y6tv6Mh3kU5G8ugchQVoD/5tVbs5HW4PZfiE21Q2sDsG3gWHvOddOBEB6C4y7ITJqz2T3TcO/rFHGj4Q/vttwig9pzj5r1P4SSl8hnEBS0CsmCOVpHSn3iawrrDty0nqkvkFPcvwfC8JsL4ab1rgqqvnCHdkhxnZpCLPCZOVQWhP69DNFaWXEdCDRoR3ZPBpqs5A4hSrHXhExZCfIObQhCnuAbgzyI7jURaq7toAhtpjMPArUItfj+RByLfUwLIusBZIFhtFkfqM5bwj1ZwsrMUagJR9wZI1ncu8aWqB7JaUg9UkDgYdy6qT3Nq2dXKtQjJKwJeV+mXqR0u6ZJgyzVJCnfDhDBEj0uImVZG66njTjdbrgI10IvwfChsc/+0O3b6lp+Pq4ZP3oUCqRXeVf1F6d/XA6AesI2/e6aiqR25NsoyZdEuSqM7iPL+yYxNwGzKxP59CI+7cgsCANsFxqOKQGa9B4eZXlzN1k4BcxXGuh9Mx1GiS30Y9vx3z7anHdjEZaodKL3ry89CrCpXiS2wWp1MsKRZHS8op97x287wHqXgIjt6rdTZoDV7pioiLKtUj08eIx2nU4ZTqfBSeXNPvB8EqsaPlbU7AwI7MeQ7K6+zpfb2WWSXWqji91PYD9vMkjaYigMoCSPqlw+6deoTkjg8+sA2PL2nvi0an5NU0ANEXgT9mxa0gw2vM/D7l2rEzY1xh5WwCT138WzNERUYgDlg+elsWYNZmLZkYv6Zz4Xsq61sH24f5SSzO0isi/RFhC5/YJQyDuFAiCup2qpdVdPJrIjKH6HnbvKD8FqpGF1Hp1yUH8N8QkeDm0IK1bLwHAdPasBHWqUMEfKacr0CiodeP9Hz7oJpyLylsUzJCzg5dymS5Ux2ps8SL8SdFrnAR8FIFD01i4H/UM1tti/HGR6loMhA4Efo8wqnmQrct9X8JkOWhOcAw7Sp5j1UYwo919D4tKeRc+19rL4hBnt7WfE66QssXOKNUv3YCy40hZgKjoL+UF0Se9sL5zsJcLgKoMwum3epRzQUhZq6u+C+cPmdSwUN7svq5f8xpHXBvP6K8lGzVcq7HgCRHsz79vZksYW8gjNytuuolIY3DkASncWz1aMdjBwIdBK45zXLoqUZ4tq4M00iV2of2orf2VByaKzx39dRnbN/fhXJVQWhW+KMttH/E8MMzDs7jZ/L8rZGVr79R6xVvx59WQXIa4p5jf721cbwRY+W0v4cJd+PvCUDc1wZNb6eCsV1J8qW1WYciC4rd6xZ9oUIZAeR26wjJc5wLsVdG+/XOihKC3F55Bzr82u5qQYzNiQ7TDCJySTUXxDYh6ZgYD6wdmJ2RlS3bjtC0+aVXxLt7Zm6Ax5ngELuJPvplnIrrd+8QoW/djmUwxM2jL6lDnqzxjP9N3wTWGckULsr68u3UJRWLGstrbJ7Lj0sz99bVzJixXYrohmuTJmYOIzft3WUbp7huURcn7Mko6zw4ZqEN4r3DiEWowwP03VFROpEDWr90sS8ZrUbPgKXUMMjGqQ1Yd/20Z/HC23hSZGLosi2Rty+v3GxNxJZ8P9mEiEOhjZw2TdT/r3ltqI3eSI11y791KHxZxJWAWe+R52iL8pPqJJz8g4FdKR8jrAwisa5+N7tI05w7anoWzhlUlBPBzP6VBG7YbbZ/JLkd0UhMuzfvTMKLXohkN0RzNhjbmUxAI6KP1FCK2EPUKdrAnZcYTm1QdZ1HIk8MS9VwuCLOGMZ11UJnaYLpg3pZLVwBRcRt2o67zwe6QtPoM13NlleSHLPDeHkpinzUQlKrWyCd6wLvPogbnFJzca1soiTF1CFpKILcrCN4fMmRte1ZR9TWP1BjcnYbRUiMc2b8nG5we46bdKuwaw+sadkyqnh/VCsGWMFxJ0HgO+ce+yRTOKfDTGE02p4gTdrRwK6hYkmcZig/c3xK4PMkztkiA32qOYk3Sbax/6ezVITtVqL0Svvr+zWhZ71ph0+lYoKXdfgXcd6Ysy6aNjiQxDrP75FPXOjaYq92NYPtIvCHcoSY+H7e3TWQCZiKzWnM0pqSB+5Ty5LXDNO1TYAJXPUlfyMnCTJ1Y7ZrNCp8zl3cWvNC6U1nflhN0MWc+Eq2lmyZK4Zj9N+PTm6khwx1g6EBXLghZuPvNm3xUq/f1YclKQMy1vOAz7B4ZuxHqjwnQ+BP4HXKz0IvPjiVDmyQSpOrMM7GMtRkP8jqugXxiqol5P/FF7uo7eigcl4IQKH0Azw8cx5lZP9E9WnERQUGJklIEl5oSaYoiDupKceXo+NRfV34omfKu9LIKMMKcYV2JV+ryECrj+n62vbSVXGZFZTCIJdX39kgGL+fJ7Qv97Hj4NMMgTjSRgWHSqisVyfhWCZCzx7YS9gowvKGI3KV6IDgvuBnWQ/pI/zClPoIPU93gsEP1vCrpD5rqo5s+0MXXj3GNPAIGuhcfH95n522bsMjeitzxsMgPKLZC0+ik/gLgBJhxwzEkaov7utPsqs2XfAwYkHgODx3iM8xEbXx/yWqxzrkTGtp56GEtawLoiNwO7SqeJ2S4x0vctG7BEoNVA5pzl0QR3XGrnLe6vAQt5omskiBzqZGC38w+tt2ykw+dKJA/WtQngFXSQiSo9Jk1JkLmE1Lb6FHDS2nyTB/7LLFtB50njH8cQ8fXMD37eeLTKsDUQ+iFpq39S4iEjFMAqa6NN/4WzC77DhI+n3ouQGOziToU6iWghU2LaAsE9Kf5zB4af5ev5s1rvERlmodAuQDLVjeURRh557L8GbE/NN1Bj1cOzVZxaiXdVJClMbNOoQHskub0pmzBYpwiZlLS3Qc+boH/n3HMnAS2bmcdotApswmR1j9ZhWUo0HFaqzBeo5nFp6euL5SS0tLPCOH+daJT1oejCFcSdVjK+gm3q3SuD2Smd+Hrl8ISti6TGZGCo+fma27souSNzHlz6YMIrdWUwAXoEldAKtpW5vJiCM7+NCT61EiWqc9jIs/5jPa4VIW8DLJlwDcwCc/KwVt7st25g5Rq2wpCRdVhhyyYiomIyYfy0HX+75AaQH1wsVU7q2fLslgPxSrk+9cgm9XIH84Khwq2RIb0RZDRuQ3JUTzqbINGsXcn6onf4th8XcpSOJ/Eyuc2rd1qYa4xXfw7+oR8guEuAPy0fRVu6RWRKAZfiFfj5dw+IOaQctHEOI8bv9wIIWNoCQ95kWxgVdWXGDJ8Rh2UJwpItaPQvlOEHlPWp67vdzlVvPvUiRRTr63cBHVD29eYQ3TRV/8Vh7FUOn+swakib+yrIk1UnjPgsheHz8Lry5jyhgdd2oMi07clRwGsVMotI9j7RIUn4S+VEoW/fHRi+fJ3UY3P5uNAs8g/Pr0EsDqTOVpWOCGMEU9kJHRCWp0jFZ9VKfeqirjsMDdfat7ZXSXTV0OPQt2rP9wfj57DukxZMtfqPqXsfaPGQwVkpL1BWNwlb346yDFlYaSsulVAJQny70IcVfJf7tWxzcAapxanUc9k968QGUfuaBzfO+QztGVVAVMEVWyW+aUBK/CTKcgRhIZwjMQ4ljO6dudPDbCrfXzXTTEOKqUUxJV1dlxFKRNqzs+DicNHKR0r1IS/r8jlwEwyoKfYPT5QqsljiI0pB/D0HEExzPou6b/KsemLNCfrwXECGSwZBxrPsp9DAiIabgqMRPWWGsM79x47Px/+P0xsQztvTSK8u80dMQqZUX3KbDkeuWdRW73O5jRJNr6aHl+ThT6WbV2hyvCoQF6xh+QFSFaDm8JTfn3yJjek5DZ2rp5f6PObxLKDYCFj2Vwa27OCd4HU4NohZ63he3V9e4Z5ZyH0k8Df3BLs1IWOrie9SqrpMiWdKZsB1ho4vPPA48hN2qlkfn5RPW1wNH9wzsKr4qhLaULOK5aogAXWElfsaiH/3HhWjodKMHRwqakydVcKBMwmu4Z5S5zlebN6wsFEqlPROxv9f4v2qdkgByiLcdgbEI4OnAoTRdquGEXgmBtgBJjf0vMnwnLsfKoK6FWT9Luah15XfbkbkAHfrhPRNmga6IEHHnodvDYqcU7huE+a6u133321s6n88oEKBtE2f2UDnTyyMD5saDH+occQA2Nr6f3TwL30R9KH6CwHWUHcYG8tWBBC963JSm58LD4Kf2PAlpO2I2l+P6FwoBWGpq8HJladHp0qQbFjHSq0JieOKkcWIabeEJDaqgeMmZ77ixH2Q7iGWKaH5b5oBcHqKAidOSaPgltQaWrgQS7Fzu4poYqA2s4A82ZVN0AYbBk+T2CXbxTIEzPxsE2hZPr/8S8F7JYm0LHYKp4hD8kAy50LcNPMdvvji8Gt+EXzUUZVK9M5d7NPrz/KthJQcqcW792XiT8jINOPjwV8JHPPNwdtI32qIFJQJU7vRrGNfyEcrK++HvUTqhX6gHyWrtBvfTC+N5OvuIGq8sOA9VqFWl0SM09gOMJXtyjq7LeyAe1AST/+tg0G1Z35WpIxRgqKKWabkhPNJHr6uE4oTV/TlRwmHWkubi7PEu/ZS2B+7jjgP56RxfPUyiCgYsN3E+6gXfPoTzbJWnyzlY8dmlzQu2MssZNA6n8A+IfVXvm5dVL+rNG5cC4BWCVaP5YzOGga1hzKIZ4ZaDzWMIGoe7CrkhYlGaRPfQ/PCNWtCIU6f35V/sBXbl6f0hmFHzn3b2rZju24oSe6jdtBdNz0iAD93x+/ou9I3jGL7chbscaxnaumG+mQ27xTWJANd531TpItx6C1eXqlt5E0KYZi+/MnhMuc5FSD5P/CSePsPUscLj9WiSJ9YFdhbjDce82eqz9Fa01uQi16CGd7uNQWus+iaIkQmZawzG77xnj6zTiiRZ2np/jZgnvHWrtobHdIajWv+2gzbYp6pcpQtKD43Rv/q1poxAlMwzOtgHtZtkk9yVFOvyF5Qc8X4+rXv4VrkAAW6/h0qsgfHfT3YkjUFIVol6Ckvv5XvZKHvhjCeOGtHG4mGyXx0UH2EVaiXLR5TW6DKgxcUzU0mBJYOmFezsGLbBZB2qtiphSE7cD/z8flXf4KSCav2Xo5J/YrvG24F6FGq69Nymt05+FaX1A4n0dYsmeMAa9PD8fnFnW8dKl+max4sTHVLoxOoHWYOceun8xrkNR9cgdV6iRsk/f2zi8scXMfmkJ60IR/9s1+SemALmUP30vly9SD5zAC8+lnHrEBU4zu9LBlrJ+yBn1IoJ4sg9KGH4UxhvHHQTLmwvfwhvBJGBDVw14MIJPtIf7TfIrcoe38wZtH+PieCv8uAV4inFxVoWFgA9dbUUoMw5IihsMFCsk+KupfIc57+UOkE+d+pSvupFZNaK11ksGI7PV9SxgU2IjXCyWVCVDXyZb8Mj6yPJz/Ner9Hnh3Vw2+6lNKIN1opMFYiaKZA2gvKOVkc8WppAVvtoUITv9Bo598Krj1B9ENR0vd23xWOBdCpR5T4e625D5oQeuqxPkyIvXQgzJPlALMx3KnD7QniCo0XE8tRO83ufOhKQIH/qroppjvz1BWc2dRlhrnxLNFoUVHn0posuaDyROwyEoi1wD2+o4FTUxwtcaar0hShNGvxQqaEHmiddYEUSlASNoe5s8kmfoyCPt7ZavmwpDuDNeqtRgOIJgSTIAA0W1yZHPtNMZpFY8vXzBlmIrgmfN/cwLg1KIhxCFXk9WkvSaceTKxh5ZG+w65L+QfQmwzgbn4lf1K3PbY+gDET20qQTszQUzGndWusszSp0tBS+2WwroIuE2YUr07GwbnGk3epb/F3QGYaQ+yCLJvoq+g0ME0ObXj5rsWLxXEfYg1DPSUFINorvwWOC8L+ZLHIYVYbiw20wfGv4myDSvLGNM9D6tNZyKCgwiKntvjk2a6ZX+3lTCOWxhLkV48wHeBiKd8vyGKmH7vyqQRQ+fg603Gkoa9XoGtH+WQkcbXYK3Hm1TeciVj5eGjrKTQenLX5cI1RbOF199s41gCWbniFAUATCTfKOUr97U8GpNXiOTK7r6Y3PvDs/DAGBErmOV/m7CdGDa8Ilyf/9Vwc2gpQIEnuNBDVs7UXCe2GNCFC40xc6eqZr7kEHtqerKNHeH0tPEUwI8mEFiHNZTSoZe/obsJddwIz4gfOic0ogzSahMhKNFilks7K1jjHO3tqk1uR0FAZTY0nrIXyNODfHSBFYRlzsSa5OdwzU4srYF8vKYZ2vQmOoBWMkKI6jtiLVAcMBvhIjI2tAXWLgtt+i+1odfkjDB6kwka7BwAB0uIS2gumJao5lvWDnncUm0/CEWog2XVkzBU1pgnhG4cExiZggkfRKcP2qBk5YEikTXHQ3x4YF57WQKRSus1kRjjLSLgC+e5/7gR+ibFxIPV3LVPtxHulirmW3qnggingXofaysamMLj2SnD2X/5pf6gMlbiurtpTn+0t8oc7HfIK5vgGBdw8pKAo+96ZK76sW/t2nw1Urbokd1T6N1QwN9WDLZ4qMchy6YJfhKa2PGl90YyanFuvMwsvTZaq+TBrbwujs6Hie4T+EHH9fx4fCaEWPuAdAcX4L9T5PYpKC/r6jGiNP6aSdcse/su0gkhXz6s8DbcPf1gpeWhbULKxyu89NTQPXlaoS7TeV7R3/Di/P3aQ0nNOcnPENzfNWpGDT527YJgZ/u4RhVREXOufYWZ+bHVSnlINi/k+w/LQdypwUuw1KOZM8N5Wju1kKfDVCqk5IWSQlX/XtoEz834Hf8jKalxzssk78e3qyZflHfOxZged98b9k5ZV29/LOCVEKk9YbT4piCP9eAiN+FVoP7lLRuorgjyyMCKgDcfx37AepQ4DG33DA2nZcZVHEygwwhadSOvovEX5ZaxihqkrmTCRuvN8DX7dt/YIXJkKnPIFhaYvZ9XFWi/rxmsas1IfK/jYNsXBqCKbvy3/WHmxn6mt8U8rDYlRCPLOAcLPIx55g+KkV283yQh27BztH2HLUf0WLK7rZvdkbacJCC/RTWZy4P9/iiXslDyOCvfRAsm2DIXd3kRkBrEhkXdugPnbdXt0jA/Grp3UGlgQ/g6qgKM1VW1ERYfky1IokpTVIWyb5QZetK89A/Z95mDbR6rtshAxJtdY0Zdx7K4mVUVT37DSFCXgMNgsFHz/qeLTrELbFmFx3dvft/psjs954rWSlnQIfXRXVOhMM++OMFOTat06rZxFHgDT1a3RZoq8Gu0/pPvLkt3WTLtxQKRE620WaSVZCeWUpjf+QYNMmxf68aqUteXY6f8ncCz30S1Ue8Y+3nPpDXgoH5REMQhUJA7uQdYGU/6IJlKNtBcV0HnP7h/zxq5FlO3Exe/FwSoPvG20OWysG/kS+xo90g6fWdr3tubeg2ixi/xZWlHj6a+2XvrqiLNn0bHmAh5wSZ6bAvwB9TBgoKVRRQuR4e28KmD/36dtIJp6NMfHQZaLdVFYcl3LUjyoGGbKdA+gDsVZCN71mapeFWLSHNECcYjLMtSuzGh5jFSZ6cUSHqSHg0Rg7ejKXgdhCwbBAT4I+KJhaPhBurTqqNgDSPAb7wsuHL6NJU7B/MIaKYxRV79D+q0l9y6K12hBIHgwDyVfQOSNcep1R8Tta3lhYirys3v506leW9hhirIQZ82NhSVcz4ErBUgdTz9lkPf1+BhmutI7MIHrDousEYzU9S94504ppsjF92QVg4CtshPMDjUkI+dZ8KXuaiZpzeHquq1JRwL1/TIcOhlx4WIb8brIKWgAXEDa3xyWZ3wYYV6B7cr6t9cyj+Wyo4G1KHEkbQgOyezk6vIy2L5FrimJtQn8ZPvSjG08OtP1Eb1BrPaQu3lVhymz29zzwAB/wZ+q8qNP050v1T0AlzTInfQSjWPbod6LgCdTRmZU8JGjxPcFZYynzy3DSwAXkOKGQm9kWikb//sn0qK9PECwD5wOAnwgiNKh5Pd+rPcSEIPiDAGTZuDu5Ggvr6G79eZtpUb/sOSErsmwt+fEWYhLVYLZsniVgsLF+Ue+N3bw9bw43kYFHZUkjLu9Q79Ro5wf9K6Bmi3yE+R+y9gXDdQQ2tjMtnPMqUJZehSf3n86oJU2schUErs0wH74/8CvycVRoC7Z/jlmcowgkCs2gs+AhN/tHLYMaoBYa/UhEW82RjA1gX2G1K6+vQcaMxfkiOnkGDmpPVc8UYXpuBarWIGvI/CZDf2Ccb6TYU2iCL8pQdIUObLgqNiHWkg8IJRh8gYQEeGIyFZ2Igqg53PzDqEiYSoqSNEthdo9NU+IKq2IGEnO1GLTCleW0W0/PZf+zW0qwSN08gDBnqq34y/9QPZRYic6zWC4KKFsaSzFW0uRYKO2BGhqZP14L/9gQAV//gnsD77uBnQ1f/Rpu12bLQi+xJHUMHR4Or8aNKSELvuAhHk9ET/aQVPNlaglqh+fqiJcsMrs1wSJDpoGlWgjxQp6zmrDR4VGhf6GRuNS9n1FeLXmC7T8Al8nejLBEBopX5/KY7I0uhJHRVgSR+VxjPEB6LIoG2rAilJlXKNz9ARkGqSFm21DGK10NT7bXXPnbvE1XKA4AiqdQvcH2Eioz6XBioAZOPJPP4W3H5Os+RvaS+1SjnDUj4MniR0T2OGi5bWSSZVYbb20kURyB7DjRHbqdgt9JEZVSEB1CMWIhsS6HVsufJMA7ZQ5UCK6PpzRojsrhkCxdeHRETMcL5p1oJAkb+wUxhv/Xs5f56/fXMvC8wh3xiZJ9E90/nLBFvQxbDYr5r+vCTVPxEwJo7UWKoWWvVD/5d1WG8RqJBrhAquSeE+rZ5w/YJt9NnxuDek0QVM9CKWmnrbD+YSUGHnkA3ULoVHKkkoVgaPVHwOVJDvcDFt7UQb9oEveasc3Qfamm1AQWQKjzTZrcyUD5g9GvrNofkddYXK2vwKcNFEXEoUKxonaOaXyiHRPpS+OfMWOO9iuVtpds9B5NO65fOfR1wSMcHhHD48f8bkC9cGJ8hHAYMUlNhf+crZ7nCQGCtI6vhsILvmGnCjEIJ8T3b8ADCJJ5j5WXHyY4gNY6VwfxXG7+89dHKHaWwD5zMbe1I7Lh7Dss8nb/UOumaHR7230au1ZI3MAPXWh1grxfN0vxSpqse5DflolQt37tcscagXLGQqb/0PvlL4GDH8V9JwiX0DLY1IHKODRpWiNPWWMINF7gd0de3QI285ZflsWgsONQDnndXlcnlU8TPbt659t+/gVD2o7MjPShobG0M3BoFU18LfKvfR/gtK7IBunAoyecLPf80hzSh07y6u8qByLkS6aSXUM5dMeUPHiKmGNFI5nkHlNJACTJIyFXutbqkPBzeRPggNJdRCAyz9VvqgQ5BW3aRB/xUqHvDe9fGSgR1eIBIkcoWGWr0J25ebFgJHNOGGiNcstfi49SnqxGZDJLnfb2jGh7b+gRmRTRtTfp6DaDxEH1voSVlk/fzGFRGVHnn8hhgIphtuRX51Nm0mTUVc+5Z/HNOfctWq/RjEXmag73tLR/MT7DEL94APssl1CPbUySLHIf5020ywzuXp8hD5uikmt/PgfZF+pmFDaUE2I6lbb99Ot7jeHG/Bxm8VAdyoalod/OTrEcIXcUUpMRF/YczulQlD08J1WZy4+5XWFTRksOxT5JnXAhbYx0JQmU+cUjhdTLwHVNy3ie3aMSvXyfs0x2GkuWI0aSFaX8N2Kfs25PdCfVJWQIt2smc97FuE/wjXf6PSYgO942aXC5zYTO0HzA+JDiVQ4ujaEmigx+LHOP/gtETyA0AKotzdGzJHVW9szl18zAWmrEwyNXmvmTWNJEZWqqu1Dj44i7WUeCY24hPS+T7VlJYMpljCutb+TRbT5pyHva4wnKm8LF0WH6fjUtFSc6ZoL5ew/NNi8cXK4Yt4SVI3gQTC4T2kU2yQ/vwksPW1BUAWfHXKVw0rdl7ax5Qgss/NL5m+J5J/75ztH/grU7QvM7xfQnovQ4xQdpsSQaiHNTb9WnFy7zxXnwQQ2A7YT7OsFHjoVFCPjUTciNjIywjE+i72pDnNSsVHg2hISazzI6SqLeQsu+ynLFWv6bkXxEiEk8DotKGs8QFPa8TK9fMskn61hmZf5HER58VqOclbiRzYGBCVHx74g8eC9IAN3e8HX6o9O1ul8CYdBT6mAlzCTOrUBSkH5HWbC1nC1K29W7cNt2s0nSuHxHjs977Es5ANlhxQzB1nbYdmVPRQ80m4XDhOkNbDzhRH9S45Z2PQqilemuP/y+GDGnQPXC04UFzEmJrVAE1rPpvbB1/os/tGNMuohj4EwHz6mWs8V6aSfaE3noukCoNb66invaLjeUzJ2XczjsUF/dgCBx0A2OkH/6ZF5mfRhOGVHayEi7UfQVnG5UPGKo6u8S+gyLOUxf9b+e9NTTzXeZbrcHxXKzRdJ5VOIM1PT6hiMBelzQddfS0DqbYOgyIW2CKV6pn/3gPpxjU1qudVVcnOkb8tfiMINxooc5jjasQy2nzG+E3u7LxclMPGeWaEHQR9EtzYTbsgtH6Y/qVX5sD/D9alcj+nXsePfxYjI3/Pw0DuDuuCrfV+kUpi5Om51VSwixhhL+noBBdCcvxN6zZUosXANE9gbNkVkVG3t/WmMZI+vp2Rnkq0fo6pK9HrXnSdn+/IWYzw2jFWQYPFrhk4GkYIJb9DNeOaAHv4yXy1TqnVdiqpnI0iCfvd4v+okEN4BwG1wfcYu28sRyUisi31QLjU9y+q1HpKOykKJpzcivnt09oAHs/q2546OWdWQmwJks6x/azjVXWmSoE3Go9XUoNavFvIIoRdHw4by8q58bGBgXHlJVlcd1v7orqQntgn5ZEYoq9LOFBf9IeCyGLF5hOyfRYEEnPFs9VecdMV870SgQhuhqOPi3pDHds1iojHlxrHtUTxkUxT5PvXL0uVqn62sxRTdLZhmBH2abEAGP/RehOdBGdKc1pN5ohbOQXMKVNn0ElmF4q5eOvwhyPtxsfk5tDXv0D/1Sdm0/9L+gkEleQLCkwb+jzckyW0PY+QKqLyhyjaOu3KIIIX7JDLM0SvrP/ykvmbhPdmMji378NSkh5RzvmPp1wAgh2vuGHnbqvBfJbeErhSI3IC8FaTiHQAC29kINSbLgVjetcYo8DAa4g1KT55B5BUuXA87ZCu2jYxxvDtRGU5EAWwHJQQnJBFPgSq5cR2d0i0bxVzEYvYqBfUpEj2urOHSKbOOKnibT+Z17d7+hwA1q60KVz/Cl8/Z0NffmCch2Ts9l3Oe/FGZpcrl3u0IpptYzPR3JnbiBqPeImnAG5GaQgkeDt3SMY+RoSVVh33RsjaMicjSjPEvIbHatcqff7PIyCxHGPf3ycg2cMlEwQSArhpeBNaDc5nl27aXlNVgIneOYU+6jn3d3Xb0cio5EeCe8crgIuSfdGErcsDUUioqDSplxCwElrl1AV+30qxnQv0ztn3ds/4uJLNQWsBtQ4OjdzLlewMXI0XPQA1PyZog9vZlCaGKzSvqI90Vkuj6HSrZRajsxakO/SPaNoazNY3j9q6wEEAcC5A/8eZEasmqru2OppC544Agq8jOhGEIjl1D6M8jLLMnMVjVEh7ffv7Iz/zlf5Xr6fDZdyEEmTHuBiGvUFnlvygA5Q0sU3aFKXTrx00ghmmJNdfSEuyT7YceU3SB7VUZdYd8gb6w4xaTchZvIzMS+zeY22rYW952IyTX8Y+DW7qyoarCBv3AxSn2rXBlL4wR/dV+Ok8m6kSdCXexDyyB0Acv5iW+NrWMQI6fAYXeJIBuC92XiinlBLyaHAz9+YBpnSjSnmHt7PevjJ4n1mdXyx77ltLNIx2J6ss7QqnQUy0u0BPUUXrA1SJXFAHT5rkoOxcn03OnDwumO9TZUfcEvzoAbsNXkFSyzvjBk7slhez1YOJ1BTyHRQd1P4q3hAX8dcW71wSA4TAfXQo+gUbHWUvS/ShWJ34FLwYGHsmZoISKGVzbf0jqgrqfUUHr/Scw1Qf/GV5JHtcp1yM6teNKrOrg5Zu8l9nkz/He4dt3KsiU3B/MaJtEBMHgT32d3hT4pTlKHN/wuCCW5ghZmXjTCtORVVkkra0Vob45q9jAsgb7AFw6wReOJMtS+XuBQACt5knO15VlXaJl6q67NYUCPLlevEoloyzvCoOkSQlDwaye1MRi0ekSFvhCuAYTKeyRywEAWtqaCi16ier3JfJQTvSxigKGMO+NV4fI4ZPZTb25YCuOmU9N+92v8Fc4tpB8jJsYPvsY/8WyCuQ2wHJRLhzrk2074PjJjEV6lLfrvntmKSMtiG+o/JkhAl/kBSXfu0SjzMQfgk6s0ISPP9ajUW2AXaC5l7KBih4+8gpgQEbTCE8S/g83JrhtMGjtgXZp24IhnIsNjwLx02CiMI/51Bs0L/QhypHspPmymbSE4PGQgfLtHP0It1ZBAzFWclPmvrw1IcdV32oLuUukZUYzhEwpedn93wvGGpGpQlvv2Q0RUm6HnoVkSjw9HLlOvaQ+9h1G0CzyeX1aciFMwuXLbQ2xo+c7VA4dKEANo1UNWjVHEoe8KT5R8h7FJpFBzYmUXb4NtHOwRXu0T2VD8qtKMEbESzZJXx2IxFn0+GFewd/gmKwFBulUtWhfyqya8wLth7xjmdDtBHl2apFzeofI2bheqTu4LWeQQfNUSmHnQlSjxFR+Vv+0OTJ5Px6S6RfBn7IoxgN9qiM5qoiB7gV0BvNZBS5EmS1MHYs8ZOZIfVHC7P4gAB652x5DUU0DAyOQ6ulHSkatoVoxlxVAnVXEWsH+o7FXod44PORhsEBbXmWanm0LC383zG1WOcno4InZ859vow8sOUvs/d5CDfmohBcI1yydT8XgRNEedxT8UFmQRf584bZFSiHDLf/anQi+5GKGotDMzv3Q8BRI7GERJWtEmatQC6v5b3EVkp3qOa/Bh4P/2GBmdbfOiWTb9Qwfe9gNNDM5tZ+7NJ1d6Uszy3dTo2rny7Ep6c4ELULU3tv/Pmytin75peWZG/OLW8Au8mjiFiCnP9uqZ2JN6Zuc0p/xnOnY5xnIyDoS/36PsAP/3dbaLJ4ovtKHEyRTd1pYx5NmdQq1CKKad7Cor3wa0NZ0e2Lr/BN7wJZlTNH+yK1HH6OG9qctrNZXxGKlkGAEqunJo2ZWsRshqDAL91C+H4NtmRxyTR2vzn5r2z7OY/qRvWmfgqskA5lUgooFK3skoy7YZAmrVR73Kbp3qufRgrNbcAEQ9hBCoT34cVt734lZaTvXrcRJvmaoeF/brAaViT+RVGOyr4iJnKjYU2zeQxnr/wjQwo0ibD8iprNB6cooaipQ7tFaaXvNhFen3fsAbNtmqHLq3g5Ak0EkYRQgQCo1oe5k3BzfuGlkEyzEQQNEX0je1xNvAVNM7Z9+u+FfuklEhTu+94dhIMBQ7cHOHCl+n70D3pQTMFkz9fxMBYlcZOVC1do55ykQ5I0ZuK/obP4C9LG5zZtLpn5I29SE4G26MDjwqNU9fMF+GNdK1wiO5+XOFopiNpl/zYiWAZqSwJpttnq1mjpd273vR90Wl5iPOQJPp/Gdb1SKCIkrThqDsRitzojyhZOjfSakhwsC200u1k62jF6mpvUHaLjCcyehXJcc+0fqQLsO7XkhBPGY2pphrZQuKRAavcszxDDyq74cd+wsmZLLelnDRFAskBmGCdJGQoClr782bAyL6kTnHJo6I3QWQBgjn9TkhT6Wi3v6caXhpTJT9koDvR+Knsfuq9OKyfxjk5KOhBCjqJ19xXKv/GXdHBztsdlabBpyGzM1aMWgEsbGF184c527qgXMt0kyuf8lawMWDkirJF9PEO+HWHMgkMjUm5hrxZDUsPRlKkpL3Spx4QmHnLYRkN3wjcpQAh5j2uz94vOT6r5+ASoQkJHfORd0izmhPHG8rCsAVI3lzTtllGcfEeAC3A9sUO61Bxl34UPZXpN4ifVOzh/cxF2RpJBdTzzM+xPFtV5z4VR+4Vfz6+aFtH6FnLFD91BFesf+GrDSn+ZjOJLIkqiv+LveDyOH0yHkTSiD2YASSLzcNm6dTi7Z2enh906xhF+dI/C5DJ8dUrtng4e6afQc0BnM0JB+Zo3+5pzh+T/7rFamY7k9scws8YIdnjTd+JuNN2iMDhh8OCIUP8jI4n+C6U7aP6M3vRFyizjC3kbumoCxQWG8b/1roDs+9LevX94gT8C6mq4ebpPXjOWWsq4M2yRdt4IUU93i98mAzfNWrap/zrSJNNQPsFUsj3OQ0jtNEKRyneS/6Rflci9D9LEIjf3b/wM+ieyD8mOlGN+VCjo46gdxdiN+LFdBqmrfnWvAmvzX7FrRAqpr78gcGN7T+Uvxjm+ZGDea4dFEUlK3IjJqaHEgGAg/bDWf1LC0gu9pK8Zrm5GJycPKJgjd4IWNlt+Mse/bsw5BTdk3exSg9IbkVLRmFH+eTfEUuYUptPGE+wn4jpO439Oh2puvZypmQG3pR2V1lAziS2IF0w2mJ2m2wTAgfPxGXfqMlCO4Yz4VLTEzRGhSujfhr7vm250Q5B4LmAvKLlqbdu+J0k2vp/2tnG2yv2Q6go3xskE2esR1q5I419Ppq6UADPHyxUGaMTQuKQbbp0F1GvvD1lFZSw3GzpfgUU6pFOyjxNEvYkxfBna9lCv2SnXOAf/JfCSyWUmkSr7R0uXTmWdg8UO5gQs1VAzcstbcTmvsuZ3iKM8RItG5mX8UlcA3gRl91lCz8W/1vRo7syLZNv1rRHX/qM9LcWTlhc84OVHmSUdR505xOY6vAFhJx6qxBrSJM0rmn0BNCdsBEJpA7m5jK2IrtS73t6RhrHPA/+8egFLW6aBBLwLZGB+Y2l0l2aU+KHbeJ8/mR+zk1fjo09kBudMuErkaQEO/M+fM5QPXrNGrI0/tIjVF1wrfHZF4cGHAG4vLHeESNdak7PnESGACHsVzwvvubMZ0ptrECjVka8KOdfgJequ7F+n65WFobB0jQfkZCpM/6BhfcYCvVG+NkZTgrZGe82N+gVr2hGkN77d1qFjGFkr1s9EPZLR36sZ56GCvn3CL2KNwKtzvzmU9lPdCqlfh1ExfWh13fOJTT/uxdEWUeRT8T+gom94Pj+TH2SE+H0yOwW0vvN4FVoU6eLCPDhcurfENDD2eeG9Rrb82tWGy3pAWXLSw6D2b2iil6Hv9A+TK6xXh/k/EU7Dmh9JooiLxAw8tmSMedmrEO28fvY8rPTS/2u0FbvrM9sMBWDi9msai7PDd4NnsHJ7ZxwpCruEWs+Ih10ivuqO2Ayx4YrX0I2PU+ruWHwwyply6+S1qAgC0Se4SVfaXOupTR1nur9WNzXXgW/+Rc2VksrENJKeWrHd1Yg99GMfkj6LvHZsDatJWleZIZBHl/LRo+O2MR1iRpQLjnpX4pk7v1Y077b063H+QOEKVrfwENVyrPyOuQWdNxUz6UnG2SIW42aB0IiPNnRXqEy2WnBE0WACztUAhcEOMy+IG5luEh05x551y19tis4QXnHIu8WQDtmZIjme8Y8kwrolLkX34Z5LtrYX6uNFaFJiNYhhqYWbzTIVQkKNFd1QYuHBX8rs7aTCrKwGV1Boysn58plBfEc6c4sn4G49eg8S9snTql/mKp5vdhF0t1Xc5aDw4S2roRKbpQ+MoOS/MpHd1Z7wv5xngCdVg1uhwzrVO7IHVE2lnI5mNrnjFH5W5AZEBz3PIXqdKHYSQknSOYqLmZUYtuFuusIb7U6UryqVPZ/ezV1AqxZzKiP/IFd8v1KyK+qRi35rBvFXmPlf58vZycuSvVS95UUKaYj0eK/EXT9Pf9l9CJUSGXHjIrujb5DRwEujWaU0h9dsUxTOp10WgpIbABIeUgbobdM9jsVTDAG9hSWbmg+K7GhHXqcG9Fov2KCdp5mOd5L/ge/b1kGhKP4ZDqsaVmbGXxGsmUbZauBSfbT6g/qPJItd5Q3VED8TQHS6dJK/P8VSxJm3vRFMD1xXrA1d7Mq1Uz5gwszNEY3vt+G52ibA5ZMiaNVDIUio1hlmeOOSBavWd3lr2205E43axo0njINy+7v7ssjxUytEVpbU5X/KW3B1d3xmWWyScQ57CZf2C5vY+hPHUqR4NC1ogY0D6h1gKmPwac/RFUMpm5GbXAaUHIWFKE1tbvhWRoPF1zHGr/feP0o2ndqof18zKgqh19rnUovFVb1AcsPNTZAMWY7KVO0zfHYzYVIhaDW3kXUj9g8WiD41CZdK4oqY9aVYh/4oFzcAmYjq35hDo+OXYVRAdZJMbdi0k7xguwlcVkNZ/PIOIcjDK8WLsWiPJGSAExq42XnOXhqOvSWolJlmOMkb4bXCmdtwK833YzqmbJKFrT1rJTc4GR82DhU346oxL2icIZ62wvN4gTXOhVzbcZRIps4PmoqI3nFSa5BFbzGIe4iN0UUCkNNoQ2pyBvFK0HktkQ8UTvzaRVh08U1fMl5T6g74jSy8YBRPUoF4ZCVSSn4OBPhZLOrvu7Hp1dgJiUOc6LoCa153p1I3TySiFG5phDRCnuZHoCh/kHjq8tryah8U/MbJ5uhItsUzmU/DsDMt7qAHRf7RMpby/DW9w6ATzSoURRCCIX72ZQKtHQDgIOq9NlXJC1p7Tw0CbOo54UI5mcBjhFtpVRLgNUJTtP9c8oggopmDlZF716/4FHSQQcAKjwvAo2TwtV4wmR1MAf/5FXco0UkaZbKlkFK/K+8r5H8w+chz/FVqlrHghJR4/ORotn1szpqw1+eW1DIY7QJekUtGyp2i3KBIuPwej4N9NtyT8L+vDwR/xP7UjTg/Njuz6dAHOToRlx0OFDUDuQf03HH7cX7Wt8PmNBeidZ4mRhKGEpmuijVILYJ+bD6YF+PWiTEUUrYTfUbrlKjsFKY6sAh2//aXB0puCeonkoEmTdd8PixVQdA7xd1gWtBdWLhz8PAoXhqPlihX/M2ZZJas0P8URYgX4ibBy31E+pFiFYGFvbDNDpAkyjXVhIIL2xUjMKmvCzGWHQp+o0J4qsVRp3U1qZlKPtaDbmkLR/t6nwyBPec5DAV/j9ZkPxfTKylSfMmG56SgzCSsrFNCR62SWrsIiPDcSBEfxpBLV6iF+DDyqzbKg42060ZfOEivUJBtoI6PdHfFwIO7O2JKVZRKBsbuv4D01debD2vEKdgnLBmGe4PMyiAEHaqjtsf4jZMLlVwXYu6c+8JpDxY5nnrvq1lISGsc84boCBYPaDknotRPiszv9Ava+xjjdnAEV++jt39ERjgWZmNdf6tOGS+WkZmWtAVFAVhvr2p17o2QuRbY5A6/gHwQJPTk+cHWu6RKqY8UDSW69/RpQyHf3LSshFTWN3AwwYEEdaHtyH9DN16gJs9Sya8ZYXsrBHvWkBl5WyqZk9HmpL5Hkmq7cehJ0LGfuDNCuo0gFNh7UfADzjRaA+ST4Z1Mg8aWpHHzKXMsTWYGJTDrALtNjcz1frQStlbTOdKHxtAKJYkp7enM3PS7fvO3QXTaaPaDFdSw+TWF94GeA8NigcPhVZ4lBhHZTcsrXN/c0oVtrroguA3G63M5gMo18s+thrxzcQnr9mN2NvHPJ6g8M9dBBu6F6oRDI2Tp8hP5lu+Z67ACo1eUrvHkQv0BF/2qP3e2oCwncpYX9M/HllVUjV2P6dYK5TBNywQX2TfMZkLmnI8pbK6vlopCppZBk4EHbo5vLAzX8lW9v19E2Ic32DXGzBxtVH9cpU5wM2MMSFatuqzqc+iwiMgTknNzF0ig4Zlxl5o+2C6CaAgZgCi0VfDBcnxQZdo9YLYtsFDWuAtznvfec03Xsg4L0fvihT7oSx8y6hKRg6AK9DwzHFPn7cegjuTcPcz8z3RMkNbbD/VkRxxZYNq+6z0XP/nXEb8+INSucaRW1ffA3p16LE8t6C9ACVL+Xnke4/SdeoytTuE2Evnpa5Rm1kRPRSdDDLa0SUxSveLqe0qVcTfpKYpV6r9S409+epdTk7HHZ35KqTn1+ca4qANyGKQM/JWDZOh1/VD5gRu2gJxedbP84ucMiew1b2FvcVWT6OPQ07mAp3+vnc3nOL3rGvKJdAY9IRgV3YDpxRfB8lm8ksf/ic+JzD6uPu7n+diTSN3Hmpt6YLyCcAIb1xhgajmK/jGlIEQOjSIHlSM72XfIZ3iiZZQMVHouAr9HSS5lGBbd/QJcXEysnjpdo96OAmF2dDB3+oiG6Uh9kgc+2bHS1b4nwJV13tQ92BktZOhxkKVh/zHg330Y6IhoXV0EgLvvt+elnXou2YEx2sas9eHlZGvzrJfI7fGQ2AcxHqEIqWDYHj4gl3E94hbWafBX3lE3BClm1m1GYLZFyH8tLW9hjogr5Y5ObJu4SJHEJhQk9Io6Zc0XrcgLHpTyAvF4U3F+q93bNfCq0qXMOjmIZTAkvyTcmRsvpLvuz6/kUuUqaBhWC5BKBVB+PYJJjo+XSbQVbGY1HoZw5wzO4xOpTreC6AAy3VZJFzUmQDZfwFJ+wb8WYpmCbVf/U6H8pQfu49uFwqe8522a5YljOPQybjj18cqiQT1MxaCRKZVAZ/ATBFeeaRiSimcMq/5YwlA9kQQgO+IKqSrkcvcsDbznus1HCk7b1B3xHYCrsHGO7wibvmWB7UgXiaIf4EYhMJ3G2605eVZXyZUD1VHRdLaE6p3rMh4PBMTv2l01KiiaA/pvCCvlPoyeeXSSeJTCAAXIRJ7hkZdMiAZIC3ohvywc/UcvRYw+wpSWFA+K71VrYEcKL35haIYjdxzcehjR5jGTvMj17NRCxv9i/mniMPKlr3WpI0JNwIqP80D4Rxh2N5SbxgjrpFtayakRa7M7MfqmhblNF9t4wIZsHqKj2dKOxnfxO3d12ZAPjOtd6P5BRGDMcNMLD1aJcRKmDfU2vAcbGj4/I7KlGUBB2ZlvDKXV8wRx4jcpyHObY1ZpK8GgC45k5hA9/dUsYClAxhq1cHhKyUXjwrkaGK+PA3851qtCoBN7akwkC7PI6U6bTI7O1DcnV29yY5oKYKSQAmNuNvwnKeD7qXwQrusPBtIKovy4yo6PM5nwtvaXgkunaou3V0wswEI+vSQWugi1rX4+nB0xFf2ic7E7LtGvj+zS9E0vJizMD6U27KLdgh4LbSe6IiJponSCEhJYRNdWhsXeA+CBcJRR1ZWfRuGmhXJMxAootsN2x4FcU680TVO2e9PNGz03f0oBf0cxg4bdhywBmwcDewWNahFUl78O5dJdZrbzVphpQSwTqX3iGlEQOEht9KGw0xErhD3fC6hdbsCE4qbSM9P0buhm53vjQND0ERxIsZ8m7hnp2wPUuJRvar/sCspODCCDOq8TS5YAEaaDhM/CC5xgvPNYzbUc9aXyWSckmASj+GCTM+Pyw1Owpyv/N9xQvWk+N6eK5y1ltWOtxXH1QwJ+sPAtIsq4IH7iWWv8kzAjTYSy+J6aW7BuUe0D5xq7/w0upTmo4qf0Qvk/X1qMuZkUmJecplwPjg4liXGaZgBjNxukokfzjoZJjOCYOTxKU959puOaYOqg0hWx14iWsjh0kXkzhSOS3o7xMD1QdMkpLLVZYtIp6UvrrIZ0v8+Kc3C5e3XUPZQPpxKheFG3bAOHf65RrfQ0W6PSaOZkvCZt2PXWKZO4++fzuckrpEUZUQx0fNErXZHNE4QhDrbUWGO8qBiZSlXX+PDbhaIaJeUF4p1yvwZ2uTBVv54Zb1tGrmbkVpiOvuqHD8UaryqQzxJM3+G0qTW00UXh1gNwDDTnPoDChNAR/OvxF0GcHbo5YItqnzvO9EGADGu80AfgsDfof8nQPkxkZIT2otXOnhnnhyLvYQRYKkUzvF95O2/FKRBE+jM0f7AA/GN2WUTvzYwobsSM6POONZ8qXH/8StOog7uKd1kzBBeB+RJOHYFVvKFTh736vw3g8kemzpLSjtINUh2OctDmq6z7U24cicX7DD8Vn3JR9/xpVcDD12vkiKhb68fK/WE1G3o9tBOzd2nm79NokeUCwdwchl7QyFhetNG3SB+9OvyOTaMMePFkmDvgZI8/DBiDbQAY95QKoYiobXiJQGWB/owIEJNinBpRQMHCGUfg9g/2QFs+fRxh2WzRTon2Hro5CCC+lcGPqwQ8etvlzxlqppTUhuwMzXVOwNaKI+NMx3I1zg39FpfvE7A1WI7Yx3gCvqewudqCVfizJFRaf1rlNxOGn6VNkwE1KCdwuT/3RWE5ySHynZTcUzLwdXZ20F9M7me/YYg27yQbtCc1N4jFYe76bHUyqj/cC19cA1gKoC+mfgcsLE/Buuq4YSKVkITsLywJuxYx0VQ4OgxzyumHaD/QW3iMnMOp+adQ9tkVd4s/Q7CG0Uo+0S5t5dqxtJHgKBD1Kv9UJJp1L8mYk3Ys0xLirRBbBS/C9tJ7VNqac2Mjmg+PapGk52p/LCmf5ntpKV7s0dPdzXzsRE0CTT3IIlYVtmOB2MLXBlNeLYxKJooqAl3itYTU2nMXmNuLE4SvkfL8rUj4MLZU17a7iZ1YpelCn8GTIOsvHKSvtHHwZhgV5Zkx1tsxbFlId3jNZ1/urD4A/ZC9+ib7ik9qlRRKReCcaHDsbRrPJ3nbHl5cT9+tT9tSks98G3Wjyu9jOgXYp912VnzsZZNmJZm0aXhaG8Ge2lqDtW5GkWYsJOlwDeukNjxkvoU2mBqIIsa7TgbxJUAPYLslrn8twoHiMBhZM2raxHZtiRgPqhRUb+kXFlSy5e26B7aGD//iHkEd0bilKrLJ6onb4IBDxrFhYAFiFRCu3rYK+LeVomAu7w0o0+hQUvcG2m5hrziiXCcGthnMQ2989C81uCwrw42He16hnNPm7Ta/B09M5/ONiwDDqNyk4zDhfBlLaIZFYtgjy73o057fqD4V8q4uIGzeHK1jOJf5Hxy1yWKaMBCAvSP+BthZKfXIlL5/usACu0/OIVevIUEaAsOAxY+o1aFeUnwbfsWbV+/2goQvy3/beak692+XzR0qvG4A2zeuPwPx93TlgB4rB7/l3MDxI+O0BBUprrJw/uzjQff6X8aBoJeqhWBU0G/qnM4Q32kNPUM+e2Ar7MKkMq65g0L4Vy2Bb2gilQR7gy3pw1NMc8yUIrHY1elu9uXxUqWgwu64Bg0iP/Hh6d0FRoCoWVP+0gHeEgmCJMAepMYLB36QcmU8AHyg8NpQgOp3vCmboEG0JKITDK7OIZpblbo67U8lubQ0OySuu9LCXp4OBQUCux15bpWt1WB60MNMl+ZGRJaULuBDsWUlchv6dig5MwHnQ0diYH0GP/hLrLibyFSdhVo78N1jwvss5xAMInrk+Bq17HpIUZyghewLD1/cVF/q04j98aa8QBvpZiuwjjVOzLe/Ljdt2oDIqwh7iZMVGKXmavgsi4GRxfs6Di0pPKe+ecOY4Q/IwTAQf0IidsomGASId2Qfc3aG8Ipha9pSgqe43FDzFxbLg7WrNJHFpQRtpAhr/1TEe+QLw4hiPp+Z1HgbbLIA2ay2CBz5S8YpiWr1o8/jevRq7Mn4pF7FY73NAPto2j/dpqo8H3nC21dUpG/G5Q86QHnJTu6C5bYbLhXsf0bFwXypi2E85TIOveEwDD1LMlNgGB6k6UyH1SkCSR6Ofe6x5+83HViTcZnrH37zgTO23WVTu6V8vzPESHb5JRJgeK8tF8ONrEhnBqYoBuAp4OYSSG88jQHBmKhcjR6CTm6+HgzF+fNEZR1SyUD/ELVlYrDtaCSAUHiK6F80x5YPs8UrR2otxhpuaiOy+puBn4odOTz2eCOT0CZIhMbegWBQF5/DA7k7n8as0KrIRy0eHXv9U9BPUZku2aaFVZvrdswhqYWplTGCIS+fpYBB/AgzyBbitxWU6wCiEvOsOMKiKXVnT8jp2jQBbmvDPeYDCkT9OSDfxFUIbEbJvHtjsCIEEQN9gnnvxkZMly86FvacPxcWXqDFL6/MhoRxxso5HmkjfQf4wKep2UY7QLPg5fos6poUkMKt/Os7BoSbqxu18N5qYALjRjrcSnnn43QRL9lguJdwgxzjrSiX4XnbisVjMn8P/1ya+TuqOhoMP12KwtiQnzhSFuCouncsFA9uWcqNlOqyHr56g3ddt8J/RaYCBnZp+oAOzIIkn3+jHevKfvfZU4Ja87Af2T2XM1mstQayCPyBWGd/jfIzw2KRVrdH/HPTgnkKvCtz6v1oqIRIx+3L83y+buAGh8mLs0WB0upi9ab7wo9TqBthbNFr/b9//gdcSt9CuKBM2I4GvCnL9iX5cLvWXL78anbUIbaqfq7pdMx4J1xomYlK0A2Fjh5jrMCE/8hd01DvesYHv0JWFiqHpr2h6WdEg9CVfbnjiPGAmtYrLXWp2E8D68zOkgapYDmZKcazHETj3Jl7RxD42BuKYOjcKvLL6ZXnorv6GgIxw1hd1hWYIhc95ROyl+W7lo8RCh0Cu4iVVCfoqKyhAmOqQrjggC4Ebvk591FiUQYf7vMDD+QmizvRZaMzJEeyTJqx5y7m5y3bv6s4TyPF3wcINyBDVWIQ2Xd7nIzuNV7tt++Ts9WYiUZKLCaz9nt/jlQlPXL6s8FGsXtq7ARRuRn4eKlMfSYQJLw88BLre8AGh/DaIovxTSajoVC60frUUyR9EoE7+KHNoNm24RXcnVS+a5W17X+uaD8SmtKAtEC43KwINrEDa12yOkYBOwHzW/BBvBq1nTENp3hoccTOn6WJZX7rDIlSrtKO05xqIo6JqSpxBaAig1QAZruEYdLdjJKanZ39yYEa/DamgqcmhnNEzu/5uzQQK0fHe0uA8VTHDBtN4JThJb6bUg5XWUFfYyJOa+cVquDrU9W4pC8zBwYnJwvV7YPEq+g304nseaLrgWufbTcRJCQkJey4/DutDOClu1jnAtoetGVn5TA5tyhISzXDft7ON0nZfKOaOBKQTrLklmQGBSnOYCmhGy7BfHDY14dQ5eHeZ+XylrFEyG/PdjbYpKIMPWZDrgE9WOrmtpa0VkjhDPNp7pKq2KAxLRmfYt00gmEgbNqTLLbutGEa4wlJytOibQsTrXsTzad0Rw5KUR5Xq7dprElfYzgnhDEZfbQE5tzum/i8QN82GbFj+TcCWrvKSm7vGAHweUHVYhgfdhSI08oWQDyIVi74VK94kDPxeSedMbEVXExhFqmy8PVtDyitZraPJKp5TA5noEXfGWX0fD3spRQkM2Ub6FL1rkebIdcaZyEsN0bABskjzWxqVdjkBYcGQ6QD95OjYelXjN7086jOv5S6KePiKXG2uQF968g1hs+VsduKuvs3syWVheSqAL59vaHvE+25aBOd3NughN4dins5Cd/yNspybAdzxGQmds1orrdaMbrMBrutxLCkJkDVdaIxA1vQbl2cchnvuF1xwezaDUmcuYMYBO739SVNle9JaLjooBsik36IEEl3OKP5fLP8YJGdNCWPu4a8mRkXjc5W5i3e8m06O6pjUMOsyS829vsjwzrNC/ImbLe7vz3aEkLXQiIkAmIcH7zU+LxfMYkEruH+1u/qryD2NP0lTiQY1cAN9RKC705BMFqlqzSw7wQ9xkkv37EBZesFYwFMHDLgTLj545f+fGCyw8EINkUph1BC6BWVwaC9kaoVppi/hmiSyiG8AVUrRPDmg75JXT5OK5Gzx3H0LgTsR1/hwFnrNSGScpJMBevOsK+MKsZXlpCSu4Bds3OenVFOot2D6KBGZIr+tF6xNJQrL82IXjx5KZj9DZtUyvvrcXn1DROe/cPIhX7Z9d3osoqJbhhF+YekZ/w5vC22dc0y+5l0eP1oxoAdTTHQDosLsXme2QMiGt1wvpKITxWGiZmehqIRwR3xg2DgEFIPDqqqSVad+bUk6emDre11PPGOtJa+k6RKOCYZzALXngJYDPpQxYity6wGqiMUXfZVplqwa14ujwO6CqErPNgBwF8exZk0qyuQqN8PY2sL70Kxlngl8SXJ2hjiQktKjpw2kaZgkozfU5EcBQkK87ue9Pqa4aJMYNPnRyNHWdmHUAn9FTzt7Wugzes7rV7mOeuPowB2eZt0lqwXoJhnzuaKYxOtN34YJcFV7wapjFMt9OGzl2qBCZRciZ/dpi6v0Q+qF2MiFl1YLw03dK7vpboUeIdizcYURFsJf0xvAHn9RlT5YeQ25u6yNxzl9n1lnSwOJr2dWyQMBhsBH+0oWmcmXb+ZJHs62mvQIohXja6SkjBpWcB7KMKWt6nRt4utTQOC/1WlJ1GUSG82SyTo2XEolSvxoGqvxKN+Ku83pA9fzZw53ksTaNvQ5V5c+E8P49M3zBgmRp0xQySjedj04lFAK9IIxN3+mqDU3FRHistRcoZBjvhKEYHCtY51eYzuX1TXGwI7Pw98wfQfov7tSpZQJnCu3PeR3XU3Q0x+Tq8Ui265wSgrKPQP3Ptx+25TbBGMCX2TIHMUbUD8dygmmSHz7+KMIM4A86KGT84y5ON7/NkkZg3iySL2uF4CEsZeqYmrOPrVwjZvOC/moquwa+HnJJNjoagHrRJkZvmj/59Um9xIPd6PhxMqRZyP+CXN+P5jffZu+CD6rd9YKSacvNZbkU22rfOgb0j3Z2YFAAlHQFKeprgwVgGSySuh61NQGwQu+ToFKV5gMNjDssP1unqNPPoAcoCzbxVjCxXCxoszFht0fHNNfZ3adPc/7pErXFK1M9BTRLHeQiTg7hr4tiBVv0Nsw/sbQ8Pr6e+l4GhMd9avfH1IMcGLHVFuebHPrijoaf0jmA/LTgsEB92cv0dYBjvxmg3oKN2gjmu+yx2q00bDf0JHzRGSKJf4Jh1dR0e0tihBbuH0AkEXa0LM/ibvTo8SZKgyatcH/UgXEOe++lFIDWjCRRulWHdd2m+rmw194YAxHHRN7FAytH2yzUI1EdI59r30RWHlZ1ihIBnldXcB2EGyzumUayq9YaBb66MrxCNVI+1hu6vkhoaiMZlswk0124dnuR9lC1DtfuTUuuI9Ljb9rEe8U4biSnhhnY7Slh4mYk8BtcKlAIOtdrbj85NUxesXJO0zMxGS7vh/1aOHnfy+D86XWtLi4rZWikvpHp7y6xdcojLgnnGRWw2xxQ+qCbfTnBrhl+JRjlk9qk/X9PRmkMmUTWXxD0CKrTVHWuIM96rPz2pT3PZUzjCHkD2X4LjsfUZS7ocoasz4Im3+uYlMXhi9JqXYJC1pDKkACr8vk79lOe2Td5yNM3lnBnQUyqOmACH20pS3vYG3RfkS34SsEMdKurxHf9Sgpu9ely/Y2YmSp91iLtPAY3XdmdzVBEwuISBHbGBX8JHSPpiKAbKGeztfTBlfBKi++JDdMFg2CQY6italxgyUJNgvM3wrzsLtTizUmgGhETiZv34jXVlDfQQSa4NOtVWPdOwfTaCgPIhLI+TvIIyGdi1GkrdUbnAy+YmMCBFaZBb6+kN73/J0vj8vbtvGDTeaPfWtp9t0kPIq2Olb6+5kQLTuhjHx8doTKSbnRH5+TBBsV5U7T2cy+3lhN4w+vlf3mKChxJd/osBxq3MCAqrVeYJlXsrzIEWLqI+2sqTaLnEa7bkQJvnLax99okeqLhR4gJYJZ+thP66P2BnB5czqxSUaVW8Do0dYe+vUAZ5urXJkxNClnTp/Qx6LAL7qVYCtWu6R1fivcN7LjoGYnLJdfxq1OazJb0LTk8vfAf6ptNTiG2nGKChV6nnVwuxxlgT1K90+9+DZFOgKAzVX+QdTYNaonJsaKLCCT77gUf/UPYAnZjIjLZoiygygaDWA3dI57TvEmndzXGKH07C3ab7Cl7ToSJCr6sc+Pe1XmorEFpTi7O8DT1eJeRbBhfJr8CEXRaX8WNSmxCQOmI7AZg4KWmzDfSAyZgu65/TDjHWSh3ZitdxzcV1n+by9szT6b2Sst7+Jb/bEt0CSOsJuWBn0lsKo0EALcf3ymVlSGcCWMNhTX8VDy/CbMogdQlKTt9WEOdk1IEHu0ZAF3cbcjoK8km2Gz7jGWFXGzXU8MZGfMgM5GwPqGeKgnqaE5By/aH/JlipLw8LuVsLYRRsdmmVReZN9SgMVpJiJ9iVAFLRjh70nWVwNDF/+pBj55S22CSGVKIDRN3SqDUba3oPFFQWFLcuE4CwLwWfC8sEnTndisqGkCusP9ivrm225TDBb3cnXBOiXCmK3sphu/Hx66oFUkw6hlwFfivtwe6H963yKOR1QaOHb8p7hSvm1dkT9fFq/sro7htSpMoppshm8Zl2T8D1e9VJapb8Y4MbU2s0gwSgX5Jvn7JAop4cPomOVamfICD6TqKqO1TsX0lyumfahTbGISb1qIakmSchmjqQHpqraFbwiDge3B06GhnNEoqVTWPVVQXeVqw8imL6TrUYUuTZe9jc02hIoR6mkpKamoD98QyTRJzdei+RRNoLjZUas5mYiK4GMfDFKtAWtZqsi9R6zEZ7QfLbigv5aVOeUbNv9zU0oSTSZgK1HlflfxVUT7jZHT6BePECoM9060yK6/fVOiyJU4yY1Vp1eb6ZS1jska4sLPQJSpd4GY6U/gPlkBrWFr2DAnigpv2cYCELYv+D00rPdO1OUjCD11aqjJQoF260JHZigycJA6kzJRfACuw37GG7jk+MIH5zMaf6MluF7BJZ4243L4AQTydf7hVBbhlTiuFEz0juymdTyIdEFT4yRUUg/ChIDjxP8dPTKqKRTyLehhAoK3RekSWX1bnQWioCUYknpy2OU3uFVSd7FijrBCMGuFLseMRLKAMa7lp5bLvat9jhW6xBcN+f8mrO7w5eutYNnpmV+lRTDn3ilGbB07aJLJ7G2T+/qs00gW2ejpJx2j03YcXgLYrCLhxeu7ayaAK85pooqxKlKF+RBwuSbOJkxS2o9ok+rPz3XjQ8BH+RDmRrBgeDnp8PJsuS2InQy2SkgizMC/RMbu0peKC/EFVoMbjInU+N54nxRh6DjLFzXjJn3N5GYf1PCzvAQgt11x9doSmjVGxg0gl2AQAe8JUU/X7xYwEVmrG/rKPYhBJyzWOLe8GqUaC3UiGOVGRovxlPr+62mRLignW4XQ9dFaGnqO9EYB/brZPIp2g/xoT4pwJCagJGyuQQk9yedfMuehwH2qJ/GZGZn2SRT3TGH2r+pugTzSX+8gP7qGnZ4w/cTMQwwXWQxLoJfv3IWfdwKKgpb+73uaSzz8CLfhTLiVfaxUsJhAqhGqoC/XBsbUEgL+Dap4q2ZqVuRFVWwP+T3JKhoOLuXaRkI5D3O2hp6+ubxbYDP2l2XiQZBwCnHw+jmIFeP2LdUWnEFMJUlEmeJb3Cv2L7iMuwoCVa7BMXncz70bS/yPzPWI3PcnjXdw5lr+SkfFGtITOXJ007Ek2P95tQeiJyxWI42hZ7fl+Dsoa3cxhJLE0sZEdKcx3VIZtrz4V7OxwzafdItA2SNUYDn3RnVSc3/Sf92jPiqlUaPOMvOVzGeTP7ZOc5Rn/Y/dp9hidjjw1BnAcjrx4ecmm75zEg22sYBxPgDGoXbWM1v0tmxPTRfzLVeSbadsPA/Ts1SO5wnf1q+QChl3jJQNZ+QRS7MN6QrRrovL3VF4uv2dxKN6aZEgWrSt5MPUsvZd4/JjJr51FlrjNkhyXLDKPfAFghhQtnWfRix6nt9hQho/3qRWI3oxSpjxFX2KnGdp4GCksdZpRMR7MNnrQMHchpBPstcUxIZJgE2RjJXQmDv6+p2sLFIx69qWUxXEGzR5+6VAoK7QNxh9T1RzrrqkWsF+YtquBf//sZZdTcHlhFvgfBJpRxC7Y5mcj/4ak+OMAO225gybuA5EwylIfQq7oo2/NE/3qGeFpAd6NN+tlSinpEIkcQmOp/yJCtdGMiH3LOqhgvrMWRK+cfncxETzFT0iIp9+WxM6s0glffPGaQFeOhT6gmekwFEhDZWR0TloSdFnCPHST+KNy3cTzVb0LZzlyphcmT6nlAe+eYr7TQ6vzz1WeQr7vzQvzd9Tk4D302x7tOE4MFZJdf0i+z76nu9lJjQ1vtSXXhpM56RQHNy6zYit/4IW5+ONe8XiPxYvRB7TkBV3mCX/4A6AobChaPQmgVQHtUiNp/WtDIXhMgrD4sX7um+OP3b5e4Eb5T5eIVBPEABqK4KAxiZ0WWH4gKrA/PLx9WsmvCCOi7QU1up/bnv5wxUOsx3bplYCagSA4uNDh/AbS0tflsIRUmmqASCq9RBj9OCDE0y58lxc2CNXRc68LyxzWu3kTjw1zaXWmRomdmXOZPyLmSYrlgU/mRFsSBbYE0R55ROJ92vnO5lQ2J32uWuOw/QUAvUrS68Es+S2VYPL/hagvZI3GwElZnwkTW7xwfh/3YtuHAdmAp8WkFVcryoE6mAzugHjiFl4ZK5R0o19Or+TApdpT9Qmx5SvbIlC1rpVJn1DLfuiQJj3XLwkb5FuKbLb2vjoiatNzV1uw3kCVnYL5d/cRjAKwfEknpIRsTGqtQteU296lEhz59gqpUnKAvloPAPNiFWP3onEVYYEWL+WXh25A9F/SOefQ6RKmmHsXYUn/OJfoUE3D06eyCh+Ir4t9mlke9quMpIUBeU4s0YK3T6li52DgSZM+w5SNbEX3U2gtMxSXf6Ga+8rCOnURZQhxsgPeqirtcNnhFI7shaNR5YhU8B6wZQAWpo+vFaml411ShmGLqLkNEDzvnhld8X+5pDpEJqfyZFv54GhE+J8cGF8EBNkPK7os9Z7r90OV1LREn/wy18AvM1JZxf9ozxdCGUmzFDqWWkzATbr8f6c6ZXMDOwBJx7Hf8sHgRduIlGzdfTbfaPEP9vAttXHrn5UtKaEl2RiPrvEh7mCXkh0PuWvhH2evyDXGnJ+LtE68i2FhXaAZtLxZ7Mft3YXiSmW6dzaXyNedvsqxrNbMm62k9dt7rCupyH5itx7cNJ57pp5DY3YHEVU3wZ6YjQEgq4KoqabePBn1TXJeERS8ZyOT0D5TcMpxLQfnXo1cu2UnJd1PuQAW9rbg54HpayXk2hg0V71EeXCTacn3ZKf4Hp2UI1kvKVR2GDl2YxdqbP6SJsxpdEC0lsenHboLkRCIU663LnCtEOEioAN5GCceLr/neUVNrm0fEroDPx2fHMfuZBB06ZVCI3tugaOB6FHyoGJZ5xim2QuccIpZ00QGF2yUkAqgYN4EhIX118QG8WSsUtd0PDj3YdkgJY0NilfGjOk3N/UiEgwlBnfrC+3Oiz143pIrjLOuMM8W+DspPDuXOmmPQWL3AsC13Ebrm7TadhVAPdj49hWE7NUM8ZD8aWJNjbrNC2GR+fhjpJMY4a7ZEBgu1LAPmNpbYe/2jLIubp5D4+OGW1bu9UBuItcupnP6iaZsaoxzTkFNsDr2BukdTbc5h8OpqVL4ifvF2qqgl4Yu0Av7mfhZClZUOgPikXRp7Uz5keu37x3FLT8ncYuALdu0slAjcgAJYxZmhwBZuFF0hKoniBJ3zred/F2YTSIsaPJpoHO9B+31H/iIE/vOssOxiwAMGILsBo96znfGi9ySmgc1tLmM4oG9096rrw9QCb8crwq+Vcz1RgVaXzT4WUzcfHbYIelxdfxi7KqIYikjkJj0PR2I3WeCbBNJINpXmgSZ9AMrjJ2NNjV6UDmuQ9pWqwXKGY4vcs6HHprKeCKI+yIyGT83in87/xwWiy8z4rxdoICU3nC7RucZy656cD23giApqc+achmRMO865KyL4hSUnmpSkudzBx3bXvgtvEI3RqDZ5Zyl4XPft9qT3S63IPcUml6TexOc+f+Wqmw8uC1uGvu8UWXYbT6NR2SXsdkE4726tTDIYAN5nCw+fqhQYGswu+uaYAu7n3rY92T7ZUX2n6j+Xdhc/Ts/I9JVvqHgTeE85Yo35BU2URg3B4czESrXbISUVlYu3yIguUDiMkZkqIyOq+TpWI6NsjatFDxVgZqVb98wwbZniJvtIljKA7nPFNsQ7Bfo0cUsyxAkuO/3BTmqmFojJ7n3yGCeLNw9vd9oDpXkSn8NlzA5qKJjVD11O5F9MYCTVaTyB0xWhB6zRY+5PrdG/rVG0Mt94asJrABUQYGXVc7i5sYXuv2rUQmlSmoSyK4mKACR2KZeTvkht+IfPfL0QYrQm5jaPGL2BDyuBERI1s59zSX4l1mV0RM/DnhH70qf+0j2k8vUwNwfXaKPogsvoUYy5DkXkJsdL1twQQsFtid5NwR7FVAkfxI/Lr5inekM2ikTJ8lC2eaAbL8x2IIRWSJDdSiDWDgnPTDKpHiSx9Ir91+kfMeQ8yU/28+68Xz35t4lkgv7wtIS9jskRYk5/tMRc1nz6Pw8PRDGLOM9ikpuhPT/AvUvioS1omSG42JcJLA6fO78eSHbTA/niwLVdas96OkdRyVMFoHg24qBUpOyx48n3weWokupxacF2Rt2N3PrSlB1Zawo5gAPg29NGqjAgatcgFe9o2eC7W9FqTgJYV/uxPIp8NnidwDbaYWdQxX9Enjy4Sw7mJPTrsfI9T+UwtmD1SvOKSaKOoL4ObqzY3x2SqIsZMlj2uZuVSPEKfNF97RfGoEiD0oQUMNMZJ8FGjkBBfDn6l3MQhZPP/VYc34/KcOSF9p0qr3O0ONWY82GX6nvFwJRmKyVc1wJWfNPqMBense0neXa3EiNAfJRzR8qO3juY1MsnmEavROomMug5XkNwXuduuuY0EYWiHe5qCmPFghjb3Nrio6lnfILVTSPAGVnmWN0F5s+DUNXK6rHTCr6zfQYbLYwAAFHpTjghyytJuDTi7a/os8uNXjJgaE/SmkDoyb9t8HYgA0QDS8yq/o9LizZbnR9G+qoaXZFyg4dQ3olsivSrOdO9Gwr0OpQq4pLna0nQF+IRFGeeNNbj2FcnyhQnaddg/blY0UNfcZv3HFJ8+xSvgmtH7ZaTOhE0D0jQr84jTxJwWzIc0Q8omEuDcRS94PmT1r7nU2B0C0YLp0DtVdDM9gQ9+vGWBS2I1RRTV/lIPU01me2es3xhbEObxqk+4Q9hvMzK2o+pyU+jXrzssd1P2XORWOF+szMNzKCPvDq+XP2GKybb7fq4yFCCtLJg3nqDk6WUzUcQa7368/nLo/3PA2FpMpYxOoYlzhAjrjw1HoOpKilp/I3cNem4+NwASQfCmqNFaEUTZeFoxRGnWA61aexEMX6NWWtrjb25DANHGBfuRTHjJQWXz4DfQbg8VZIcqZ1aKbghpMN6K+89eNjf/q2mQnh6qWXjPOD83ZN1e6pErNWZM2OAA4jks//UqP7Ilo/jJ02PFUTZce42oYyiL3PJvDMjwssvhXGEZr7ArgtPFxpi6j2rQAMvFnoFHzkw5+6+GtpVCymjtLvT+oKNt6W94tZnqZyDEy5wDGQFh1j00psuCH4hRv7DwIQG+rx3rgURkyvjmMoFCuz+O/GmYrVXfcGrV6NfRohG0sugMeNyhncj/0PCpdiYnHYS1RAENmnGM+Q/nS2A3IC8U1PP3QedTc7cs3cmfEZSknY6YPLjLkPBy3FZtFhHtZMXP/sT7u7PzrElNqN+KdpnmeZlbZnA5rwR/pq+WSqt8m2wBzKoTIPEoIYXKKmxB0Ls6CdrmXYu4aj6inofqNxIpTNUZHl86kjXu/TLs3Qbp68ff5RWlrjmFjhgYHI9/ML8Xf9ZtsbnQmamqVMSo+20Ge/pG6dEzWScRdll51MVfpXVPY9lSSR0NgYiCttAW1Z5rAs5ddr0dSwuWT08+y6KyQ3eKJDKVadpt0J1aBIdspQmSviZxA1qRqyYjBu1av7yRK62onIOoToFGm6UQh9CoPrQK8WEDq70NvgF6HZx3ofKY1agJ6HQKwGE3LzjCFwbVE3REfPXiVMnX3QWGKRpFEkx5zZYGi2jZtP96ykVZ/KjWPdJytwhKSo66/a356dMxmSsbG9uJYxueVxFvWOTJvWmRzseT/aYHiYk+67hyd1V9HmiobQFnv4Ms4gxfHIsUdOyKFA/yQmlGVSDWyFIdXEZsDboKJzO12UAUbQ1WZgGde6N8bjT9chLlnoWd/kAwffksxJYsSPl+m3N0ivBjMBn19uWcO8Kaes+fnkC3wXjIt5gzBM5Xz5bXWG9kytxlWraqYyKMhtz87n9blscYs7B1DRldWavAKDOgf5MaOdww35dzuHqBGYYI0eR2ksZL1rXNneXMim0KytPQAGyY6tNqKCUYtJgAjK2mlox/ftrwpKNRPCQJ4CEttzu1HnpEvq6RdcuA1meWifUClQauj4Q3FtIuB24pljvbrEc+cZaRlRF7j0vdIrkt+jXfKWrGFPB9ei7+YGIvDD5/YFC+QI5l9gWumNwMNmJOINWxpKlSJRB8AqtJNcvsLSCUiGYLRm5NY6d/oGn8qSaJDn8tBsojgTEJ0Upr1Sl7+G6XzNdZwuvIeQxy0JldcwgzjakQ6AGhxT+5CO1NZ0ZT3STuplwFZYlHDMOldMKXxpjg157LhsuNU9PGsa6vRH5KsanHAukADizQYLhis85FC2Yo3MLsjUKVzcI7e6uq3iK2zfilzeNUhoEuojlBwgIdFDyJOn9iw8rgiYmbrzZ+OlXcnVJzzKGy71loQseftkp7Hy84j9DMMSa+OrVqyLJgI6qMajWmShZfrl6SNCvHjaiuzgUBSNqfeIiYIQsxOq6DXRLJauUA7yI7bE8+mKi3Gn+k3yN2DVBchf1ME2bLydvdvaxWE6jRzUkVdPtcwYt+sWdXXjmW2ECvzvKSsuGpsf8fz3E2JO3/BET9DOHVSJPY76yQjexaUV/4Fjxb+oqSBdm11vNak2b8p/xfSD+exYesILlbKnKm1NeyDoktFR3X1FdYCyLKHiHPeXNApjWmLN8v2T18thiZWT1tRuuEN6rsaWYhh8JxYfv1a10VCGQLCyMy7hx/xyeFPRC9Zj63csKlJxnX4pGw1agovDvi8WKUqx9ks70lgfP03hlcWNb+sgWt+xK1oMKZVaGUch0xjPZtI5oYR2r0HlBPJy9L02DE44vBdzNHIDVvuMNWD+MQeVzYj7efMOrzVRDLyKXPaEr5JJgndImtz00LhPiToVve7xnQnlzunjKVEAh8bI+8bGZlwr/wqbKUqCdk5V7VUp6n7lwtz3l5+gg7tBheFT6r1U7/i5AHJjashc4eiNDchjpvXX0jG55E+pQMjgSQucPZrRnorusCUDNUPL3Nts7pXagZo2UDsztQxtO9t5u1EvxtLJmkX6NuvnYY0PjgdoR1TbyeChej9v1KNrVafcXYerLTwRtkMI0bUWepJOYD+Gbpo49I+AyCwXNLEn4tHFRNFAIKhlnQ+lOsgbANXDyT7CqDXLvDLXxqNHyh3i1p4CKB35ouFt6rbMbbymWxlhhTiApa/JHdaXTSXGZhmipQLdCoVZ8N7OQvtqlVfF8t7Z4LO+S3GjnlDrHc34CYOl2/Ws1HoVfWsFhhsPbTGmRczYdheemR55qt7pLbhe7Vju00wXL7Mh3DH7Iu1sMB4aY3P5IcJ6hOsycc1Aa+lcAbSKFfe9tWV+D/WlDjk10LXnEiFtZI3oSpZiVX8dFEwspeLbyp3XaOHJcZQarRoswwOunoNO42znlZOWa80wTPyPkOyLC5Jz81jWDaWVGKY1GLNopevjt1v1e+61HXc1DHPGZBuDY3aL4W3CScAdD5iAoYNXlInIQR9NbqWqA5a3GWXLp7qWkrq1nyc6ZAFJKPx0+i78nkgp8mE5m6dexZ3rWDni3182xVSga9GZRrAiwEjQHftJ7mOH96t/2Bk49ic8s+QMuyEmpFEdke7pAZHQvJOpzue4AB5a7WG00tdrEAUVdHiB9TEiQr8ZPZ4AzhqXQ0fMQlbccvzRvr/GiNDam9P0pha1FSM//padghVqhqR3U0Hitsz94GoZwvkloztD6xd4D5GMOTuYUGpVDBkn7hhH/UET36Obc6umskntsSbhNIB2wFX86nA41skihjVBh4dnGuS0PbJ1WhCx1OF7oHDGjY7SzHdlV695eZpADMoOrVro5bPDqlhVX63UDFpUq/uE1Vq7ldrnrARxFuW6/38nV8QjT1AoCRYK2OTpqOPMuY+fayAWU/AFC1aTFPnLcT1bm8aAsqCXT/yYZK42H/GmpLlTI1opB4t2zSQ8FElubUijqsue0VWAMJEGbOmDQ8x4nvJhuwMmiLCscPWk2PFP0t+491skhKbjf9j7sEjlNinctcnnH9PcI542oqX9XR9MHO6jjXHgLxY7+KtkoZTUB4M4OEW/l+N/LlYmz41e9sCfqQArOrk+8qZhGd8by+c4F/0bDdwVf44aVAstDUA83IhLFRk0KFe9acQQ6ve0j+a6V8GLrChcQtxWZM37+JSYMGSaIIhV/zMRPa0A6EhSUX8tzgiPQxU0ybUUUvx4phKQogQoncDh2C8yRRj3KtASrN1te2TmarQ+HdFDjETKghaYdygnjbEd5c9lYkAvK+mZ8tckFula0uT0hmEZJK/nnVjy+MOqPv3hZCxpNXXlHPrY2KdfhQiFr9wj+JG9lrdvnYkFjv5yFGfVyz/+6v18LNkb9WaeKwjgUvh0rwDFrYa0cOy/acEnZohSNRPIW1AhOMNet0+LLPupIcCPixcPg1bb3UPAMugSY8QqNc2gZGHHiFPIkl1iXP8+ouEsFGlQXaFdISKqNjw7Xv8ZUn3uWzogDdvVeA/f8EY8zkp97OfbJZd9wwE8SmOUD0RTILLfDfiY9BD2Mj+h2gT20EGK7EP9HVJSyqZb7gjug9nvc9PKmFRP3zMdXk+lIrDpcLqP4VG3yNDUEMOUJYozILvjvjK+v8QReIX/vb5cDbrNwMCLHkaTfla29ofLHm1b4q0suhta7UJV2vyOkv9HXqpNoty3yE6tup4HvJy0Ws1jlvc3ozVrk/lrpbrm09rNxGZ9CLEJpSsq2WnhbFrhzomZi27iH2symOVNDv9ADo1C/jDX55DlsLuVT5Bcav4mSvikebOXxyAOMD4bYdK10BFV+jyRANJ3URnygZ2SN0qEpwHDDNhR4mA4Fmam72vIMixOhjRiXgwlXNZWK2bRGHaLJoyFPsydUO2LbC6PtquFsXnH9bygVUOH4Qo+pKxwM/GmJfbuea3LZnoAgqV6Zp+Qj3BgcRhHFOqGOeX6dujAnNQ9mF1kCYNLGSqoPMgo/+5wqUB19ZZ9rR74CFNR1XFcRLxqoPs0oOR9RuUGCa2R8NfqQxMt0Aq9j6VUFCjfSFicaDU7FDHjtDWI2IxG/vBvb14bCIkAmvLqJU+zSKl2DhSgN1mGYjobhwrIoKoYav+3mlxdHj/4qh9HH0sA4lnR6DmoJp4NYUNXmuj7uw2rlVTzNn6khgZahXzREm+VTbzj/lD4Q3TKWWGc2PHQsBW6rr6xY0aN2/LY5l4EdKJhQ9jtGIX8S605MSoyxUcrJtpa73amZVesYWg/jGMdTRlX8/tanI7jovvn4+ClHenN636QUXyrXt+JmJnsXP0vyqu6StSjdJsinnmJtnrWdWlYUl5ZAnxQ1KKzw7zNxop6drig7otJJJvaaiPg4tsXDzd2bj0AWQRLRMOk1s0wVzNNo3T9YAzwTcYJdrZh1DHA+pvSqDjw7jQMagFALwjMEMVwSEh2eSh2QuYk/AxEZm6pZEEbsMxsYQC1V3v0mlJ00BcXLGtE6xvq9QQPLtD92fpi1BfG6ZWNtkMbRWA60mY4U8CIyNaAVP7wJJr2b6ITgz4ZaP5/LDK2g5cj+F0qTTKLHVCbQJ4lno9abjGeL7QzpGwUrwfTRhf06ISd5J6XBJW5gve3dL698nLeWSztfoTaz5UUpmShLSIkoGmuQXUqsffKOiyqRKmjZuMgw/UJmutDsRvayeG2g/3zWSw4c4jitOUMVlmi7yBxlF+ltPxUyggo77lTduBpXfxkZh6SZipIZB+NYX+jPxXRicaTAPLH4nTCX1csxdJ28wyzPQcBJUAouZduBie40rIPZIM0bm/mtQMSaLbh/v3R7QANZTLkzE9UUewPbA1Ei8YIVogXeOD3oncV/y4zvF+NfpI8H8ajEelceAkHUcQzaVSgFVIkjF/jD4zcDWaI/rpwUkVwJwq9lnBrWB0+zUAS6tKRANGBzYb0Ypg2S7Sa/AoZoEShR+OtiMGZz2cezTx8mVvL09xOevJJ4BRIwK0e3XKS2AUOFsHRzStnV8ebhMI1y4BpjTscreeu10n083ZPZxxQXRoZqMI2iR6ojFGPBzOtrHyAZxT5n6JRHq12KJJy9A0BbtEyBIfmxRagTEt2aobUeCzso9460pzGWR51yzokM8erNdf+Wegz9hq5a3CJ0k/kB/FKrjJH82DkYfyIuy7ciZRpcnxzTd+8k8mk9gcWhrwJVXdFuCoJSdA+1mCL9sUFZT/6gxCTgvdzmFJvkqfdPriQyVroKP6O8hAfY6ioPWulV1r+5k/YMwBPl0XLvVSPhUi/xRLVVWe9VoQtdMD1Lmf+sK4dSw8nvWz0VDHqza0sP7MDIwoEjTMLjh6d5mFQzjsfea7sNm2Bg5tZdpTzcS3cGOS2s79A+HdMoO7VIs43KJmTL62IeVdmbB4N2k5reAltGipe9Kr49EeRtasqeRQBv9fbOJCzvToTLn0CPCiHv8lUPT49BNgaiWPQXHc0dxJAoXXRGIvOJ62ELW6JZLO4pkTvEYHmsYxvG892UL8DbFQf5S0DXnCAiNQ/YEzkTJYoQoATbU22zCbt7RQ0fuqqks43YvauLVWyLiEgcLnx2eQ7AeHoCr3my3dHUBQZKn9ILYttUPNtJJatklFdT5/hVx4ta8abjs8FVlDfiGEPne0Qzed0EaLfLRHRtpzs4NmL7sQ19wa5jMbm4/zONjVMDJEvaO2EphLAl/Dy8Vk8Vm7Yjj5uiA3wE2EpTPxWez8kmnaurNwIlsuNNMwsRTdgyUgh01Ieelg39IeBNt8RCkg7C7eSwcbr1Gu9woxJuAKPmjPFWvhztQCs/ZeXVCZWpxFMLCqrSdWkg53uswiR+qL9Lc6LdhJ6AtzzMYQhCQkLl3BDUz12qWy6I459whLeoC01/R0VJEvUguX9qqdSIEn4WyrNKP0oOx9Rwx72apgvEMyxrxW0Asg3rgJHo1ksEdRNxzDsGUbsHlOGnaikG+uASPCm+vBMcvI1Qov5+hdrpld1SxLIR5cLRTMIZOFRHGJo+uqyc7rF+dD5Tec5+9Guv3AdMukHohAVqtQOaATwHtTwmCztnMIRUGT8/WrS/FiIArRim4YUpawI1kFEAjA7k44GL9iscP4y2dPjQquXOwbucTaGl2Le30ved5WiMgWnBO1L85nBiYEwtum/7khCAyp7fXVom3yYF9tAJR5QVBllgyO7IoT729xsXC17980Z845L9gHnej7DAkk4H5R5IVkvh9N4BvE7vgjHI6P/6NirVeWGju0fTYmoZaJsfUMBKDGnt2beC+lM8z8ugYJNk/7XsvVQ0diBNhOBbv2+ivMWhk2hbnYE2h7UfDubfrUvtPlGJTnjyk/VNHmBpGRwCbr/4h5tZiJLuASXmdOnmfppTdrsZYKOkeBhWkzP0t5nvTCXVQK808rHW6Gcvqbtj4mew7ErRYzAOFOs4aSluAMDDEEnrHhk3xfyAjeNzEMxlkiatOYZvoXlFpG/FbrwrOCX9m5AXiorMXSRdv32dURMRz1Qg9is4Z6Ef2mK4DfZx2i7d22QImiluzMUskyr+sLShvVEFZ1guljfbkGSrav1Ml/dStEGrErklU/rfXZI5+s4Rsujc3T2ArZYI3UB6qtlcLGjg8wosv9QDxdmTCo1EiRGmVRKgJ5tlXli62SzzVqdCVPWQm6FdvCGikGrQDkOyM6lGxo00wPSlMRgNCmCNEy98qRIwb+ZvRTcL5IBai8LgD6Kd7h1B5iNYbmA6NUM8vkQxeqB5MZ5KXnh1ZF1ouxkJOnMJpOBrUGfZ0otdeu88LQtE3QJqF0hePQziv44YVGqLUbUBJA/VZ+FuWObyUjGRC8qfwsw/yhsUQJkO65H9XOiae+XO5+pmYhTszIjHt1KRxGvQjxNCrOhl+IsFhRQYhpW6gHel9gDxGc2RvWl66Bc6wYB7uHoEr4133bFRRFTKZsMem9xEV7P+yU25KAr7S2jMqoP8pL51KKae6j2B7imIQZ0bdmB4QjvNXSDvVopGLEflbtJS+fIeK1+B0Q0384yh8EwW2z9wsnJpphbBNfZqcOhK+Ja8OEiUGlH+J7lXn9nQ3w1vhSww77bgs2tWRUc4kfDgV2VgbxSaf6o2t58K0d0VWet+dH1X7B4n5mGVkWOskKgLFp8rghVpxALYM+yM37O3/qiQAaJuKBMyJ5x+HfEtvMmGP9aX8aq+5MvjkijyHsP79DdSVJy8oPgygFn+3Rj07RbFqusDjKedxezva65ZaX13z8kf6E8DK1x+4k7enrQxEVdNSuYs5PqD8ySZICjbhkqoHW2K6GtGONlGylyuvKc/JDvK21Kh8cVMuLjlTQA0kZ32jdbLKOMlRfyei0UoaFpkthhv26WQYSXwhUBn6auluqFsYUg6p8F17me7Nh+7/SzGJ5uRBsYaXsGPXAWpE4s35F4B/TANEbZXSgPOy4qsK58k9WaVn008JJWY+F3h60/ifwqs8qrTb50SmW2EEGHSxF6OAxCyJqhJV02rkbXNkZF45K1eA98AhR/ouAnWTXiInhBnFxPzRbmDftXlyfxKe4syGn/wiN1V+qZ/ZAi324B8px+BEvraoFlvoPYexGkkxhypp5aA3xeDm8lxEMoFbca3K88D3BOu+sMrjjZF+SIJ/6ZQq734y/FU4JSCXPIMSbJRPj28cgOFRhfz1SHwwdTKlJBr1bHLPOl7c7cWNFv6J/l2yFRFlagyE1DCJEVrky3YFhat+cMJRbX6bNzV6RkpyuIqwrtoNG3zbj/xKZdZXYPEeHyz2SZTYNlxbUV1ki93qtcMy2GMEb8Su8BeezUyZ02P2H4BlyfmemIogHKUnU8xUNhKt9hee569WHRGYzmOzu8cdbqoXaH0PWLwAy26CuUi6Q6w7ItDeOyB4unDmUDlP0nZrYaHo0XLwmHcWH3A3d+0p8aZsXQ9dkfWbFMJ13V5LN6fvQExZcMKubzp6r4ZWn966dt0/Kmlj6HqT1C0PeUADgwJ6aUUofKjpPlo4FA0mrN5b/NFJAeqiWXWw1Eb9swxAEXOsPfdrCOfoaYuCtDJ7EToNTa/Oqodu1amtjd39U/L2oqVKZ/eV1u+MKi9TOGMgsngEHM8YkrTvBskpxow1qxpE8wlKxQE8qcH5d5dtXnkg2J+h8TOdWNch8kEWlJKMZqURom8THQhwI2CPO6Lr2yHuVraUcq6pHH4GMb33A16CV/IrSYLiVlCDI0SCKcxCR0OPxOGPK9e4D4XFnVqB30q5PG4KdxsOzcOr2cdkh822h5sqXLXwG5Br5TeMoOrWRZVdMZt8b4pux90GzHBytW6a3SL6xD71pJS1R1iQyEkF4sokKaDc2MF6U6KbHVKAqad2j1kUDwE1mQ6dmSstlMQhYXeH7Fr5qzr1SKwQyj8bTowSkJKpwaDMhz4x3AXte9C8ZjyRICNs+B1vnOJE/OS5mdm0raJYqhs+LTNmc/HnPVa9Xte36bFhcCz1u6UPnHG37Ff6Ez+K7qEUTAjElgErxDWGgqZFEggTv9oJ8dId55vvgI0CaUXoA8q42kvSf2sMrJzrHNM4yCELW/O35NTPkNgGbj+dQhTC6/7Kw6cW5M7bptK7ggoS9YOKXWmnCjNeobONXCohz9ELC7ytSIKuPy+8/wcXuiaJZ/WzwY5ONOclMmOXm7owq19ymcsek7rQWUfmNwfVzEjpdrkLDw5swcX0lo3H1rp/unN9epce3P//XwsLzNU5RpnNJNXPZnAUb6q6Qh0zBVClmQs/BriDXDQLUPNxp/qa8cdJFTnChoo/D+oVB5ww0WzlxJhw1SgpXshx2d9SYnAZJ1PsEjnRpxYtm1z7uCZhZlw3iKnm94gK0GdQbGmgsX8uovxIlBHnusbVXIGJ9kpLx1TD3VFUndaEFT3NRq6CAcbtBwWc4AlnQJhu0F1ceRpDvZI2eVRzOK//5IpP1DUHCRk+Y3PQS936XJX/1N9OH8ukT/yILsBT16bw9DKAnAQxAujiFkdwv6T95Xm22Zmq55A3YY/F1ZlgNJ8INrzM2f0FJarm9zPmSHjUGfVIH0anlLkk/bmsAWkBg6Va9DECDzjN7k3g5uO5x5+S/vZSIo7ksFJl8Vg4RQDnA0z47LaYVMpbBIU2qUqDt87aqElTs4Rd8dFdtuUqFnrX+4OHGtjWlz/k+HYwL3Er5Z4pDHuNtGM3meJ19BFxLYHB6OYVAsGv1miuM2B2dPAODWNfquGNfzXwfg2l61Ck6+zGrkNyvT6x/OGRS2+b2VrgSHHlEHRURWCGRtw5gZATzy+dUvLsI9Ty3/NOA5/JlILHByJv0mPuiPHeK1uTukwmc5OxOFtDfF4xqUZ57kpyRsHjDr2xfVDCYJjz6oDn8jcBPR/BX9QjhYj/BGtZ82uX4iOwIznlVxponCAkb2tqjG/BR4qM2oS1Y0MZWaFLrs+moGUwunhhPmPyMcIyPQ+jYUJRBQq/KI8YxGTmj6pVjluZRbZjb0bPzCoGEKPEEyMDf+0lxczEFO/cYnGVAUS1ywqOvO4iPdIauiAF5gQa1JUfsSAGVQiQWPTVEWFdCW5sNcpwvN9C4PQuhIl6KBz/5zuTIdBb1Y/Dc2epoqaTp2ybWGWc05BTn56wugRkQ51fVzSn/qDbs4vpHQP5tZwkv5poR5CMPXoTivXGlo++tBRUHzuPCFFp9R8BjR2uv/8dDpFydqAswVMSmlElzVqgZwrr589aRZEE7590AoTgKJk+Y4/ricWXD7m72JIl4xGOVI+D1LmoTYlGd5zF58EZKSjFtEPX5qp5M4BR19EdOkqMrNUo3BsV8NdmJ1DdafbHjJAwqTy3T4w3FkuN+4UVofILZ2B7AtyNRcMRaL0a69vX9UxAc9eLtrp2fG06aBCpOEJg+1MrvFzDDx/a7UHyDHQr4b9+IAZFxMDpNBueTtiiHNg8H1W3OCJ0S8N7EhMdK7Vc8cq88z0MQ0KTRQfB//XF9O8pio1oMqSX1ZrELdn5VeUObFNPnqFgk+m23Exjq8GQ7L3CmpJM09LR1R/pzrJm3u4zFtx8Ged+1/nT/i6e7Dbr4HlqZ6ThxWOiqk0MCs+D1z6riG0zoeNbQ+1FcZqURiRfe/vsSdBxeBUmdQ7mY8UpTzieAGKg8Gs/xRtVEGX6SMWTF6A6bzUO03+cJB2hazCQXIA4IKf4pyapvOCW/gM7+E86RT5LXOfo56rvLK3he0zNOyXTl+tUMLpxXE7l4DzNMwZjzVt/6fyua5o9Nzi+Z2YsuBeInWXUo/jb5f1gC5DNhbYaoj0CE7tFTgMGd2M6UlifVIP6erpi5z6HRKaFq6N4rrnduxZTpUeIryFQflVmNpG0xVjX0rQ5pFm++fToM700sIakg99QSVTmQ9aKs0++3NjachL10/9BjvlD/P3lXkDmfaGAUOaPokNsrmpYHTZ98A/hJVjqpm0yd8t84/pZ3u99BKCQc46GDx+TgQxDXP/qz1AJZ1CaziyV2AM+H97AbsP6nd97SjF4uLtlDlA97qDa23ZRgtGU9/2mMgTGXV5Ae0dpAR/QpLolo9qzt/GxbJcPLJRYfyE4fCMOADg8wfvAX7VCySZf2qLDsoAz+2m1ygoYC27f4AyNJ1PNfidtzwQBUSjMVBZ0tLo6WVXAlloOxvQ5tFCx7IBw/ioT2qnedVEcgYFniuhKKO3cg6dnkyXot/gzb3fXInvxLp63m4FprXSF5SkKvy2uZGnO6IqLF7enEP9159uSgqOHU/FVsddf92PQQ0r+qC2a0uB/a5+VZvm4Pde+LJc8gZWeVVdJ3PTbUxtWYG4aMMRvgCxxE0BBmf+E/IxMtjXH9IF2Lloa/APv1JRmXssb1VlsF92773Kfqk+VUlkpJSP6bwJf1/Sgz04f2AtHSlmUlJVUAG7hlTC1bxxiLX6Wxl8YNvOP84JMUVCr1Kjf9MbaPNVQRKbyxRyb961sLTgxX+BSJYYLGn5rj8dGt9BiNNB3+uU/F0Ddfy7ESe0YGh03RfwznTvbOg/TtMB1mMlXSimYYGLc4jf7Qlm64vVxPB1EsH11KSk1WPfeoj6BxJkmi2jyJxumisoamOp0+Oj561x2DpRyYXaETqaDBSq0yjpigv5+wP8cu8y0zXqusQN2MbNln3ekgS0+S0uh6iXkB+O2ID5xHS9/1gR/g4VW4aUPHBDbIkfDRI4gsZZk9hgixogJ8LySEempzrMK7geuA6grA3C8iiq098GcCBkV+a9eVN83bnJ/tN1maQ/vHMDSExsEJA11R5Tr9tt57sAJ3QX/AiNZN/SuttuljORF8GGvAiqZL/oOm1n7DCjLZOHRY5lnKynHrvUIN3eUKzJNdEBrcUd3yGY0jWQtILadbV7RWbWVW0YHG9tLshrnPxHzEaev+7r8nfZY59xHqdO4Tk3i45TiUT5zjZc3llDBFC+Kfv/DT2Q+6mo8SAkPRJTNZcJKjdL52fSAKQk/rFgNPvxSbgW4ByT4Gnl1gHzWS0r4f+75Wu9ird8URxfUHUSnibeciRTN12ouQWvaTj2aySlPe9ItWJLMqrAk612+zFUhtVvMKvBrGEB5bm+vJmqrA1FRRA+mxC27bchFBjH0qnnW9+Z8oYdHT81upAPKGnvmSVRzZ2+4nj6IJIE2TjKo9Oy90MKrwclM9Sk0SEnMWXMLuxPTBKTlaqOXXg3Zfp7J2Mr8YAIOrmD+wMWDJKENPNqVPh2buxw0t9elEAHPTrGhsw09yv+FVjxRklyhPn4Q6iMrxvPMoZy68C78hyITyF6U0P4IBOFWIVo+iG+F07r3TO00sLm8AOMwdYq2z09itiWZ2RjOU3a3wZd2Ghmp90TRnDIKf/1x1j1h3++I1+unt5zA4+5oStaylz6KllLy/GMUEHrwShi+bGY8EMRsTi4ijX05382Qwr12dpLE9mFoZRfnJp7LtHvTFuklhZDUV/aq8Y5wRbLvEXBq33IMQzVeC2jnETvNsJvuDw61nLl8B8qeM3JVvYtnY8FB7H80ul80zwbtjNNId41QtlmtA8BOkTsuXmbXOBgjSPqLwll+wPM0rYrRyqTDHnpDzJU0mowq6j6aIOG1U9SLPE+CRHyz+IPAMq5QxAhebLFOVwUSKiS4OBuCaC3IMJllB1Fiyy4v05pZtwLgSJ+AW8QiOHJrqxJIkDZcpwzZdiotxiCfYDFnYVpfsYC6OAg+QMCekgoGtg3KsLWZsuJS7BzV6oyZMaUXJMR5mTuYeHQ7+wiBaHY9NtDnGihThqiJDKWREoPQCWGwSZtpmo+rr+gxdT4zbqQWqG98VhVQSHl1Rc6NPaunjYiknH8RSU6B8XyMw7RyPDmChaukDigxCvuGoAP2Cw3Giee6uXHrOdLVCoWR53H/QDz9m+NUsDazHveFBlFur0wBVeic4k7bBbdKNWpQEHbWG09enZnkmLme/Ztqck1OFUp00AtVfQQPRqUaNUe/V9hGz1qTbC93YSCVYapZPnwB1cm1DpeUMPGMR8vf7/W+4BEFlHptABWfym0OYv+GEvVJA80ZRnPbtJgKMeO8lLmBqZlGoSo09PVpu/FhIv2KWrhnAJNmoNzWadQnvRYeMeMGva64CMsz1gkQlAAL+RIFcrT9NSLdLA5ZdZFR0AgbFZd3eGe+WYq3PlUJ152tEbJWaLtJvM0OYgaRDIga8sSR9n4O0S74OOS6VNkobEbAYvQG4+ovOhP7K84+ASG5qX1LzXz2OcLNR8XTS8w819LlAr++lcJvcVO6Brg6MOuBgRuw4jJzsOsOPxji3hT6qp+pzKQwTyIVeUao9sX8bacVew5YfNdtydxsOzQWmKpNMM9HLltgU+ZN5pVT1lHQP3V2BH+B9NMkwP2Il5GI/cN/LnXpUfHDUN8aeazixTWQDva5eUS8J6IaSdg/v+Se49BMkmeo3S9sqeRuIFZzEoRFhwxiqlqTLol4g3IkTZm8H/xOJz6RLpbgzp78viLgavHBrfTRTGVeUj0yKJwuoBAeTiC/mK4Ys9fQ7OoaSDy+NDJ2cF8Y9XFU7HLm/DWs5ARp2oxeBPS3wqE/w0KNc8624vH+a/i3d/bz3lL1KOY8lSoIssH0pWDf6Go0wM3aX5tEIrLliDftj+p3ne2F7smTO0Pj5NQvusbLAMq7LOSkfoPVD44MeZ72poBuJiCbikPfXia07iUfu7clolv4X36gjdd2JP97lEd3jOX3RywRAS3PYjjgxl5bXY0RefnmTnXiG1DvKdTujXTWgqatg7cb7CX/oiM7yshsXJdfBDYOwwogkAX9pAli1BhaXrWJR+KogtKq+7ItkQI97lpf/SArzbCQaftMZ4GJ9na2cy7DAQVU7BeED/ptTm4+tMG5FC+LJA52dCNe+OsroC9YCTGIcoh9vSSzgbo/dNwBTNMXvxL4UQqXKbkLaMvxSaXS20d0sNo5RvF8oAAc6EMGQrxhuQpdGKOZchvr3WaGh/wK6nZrjd7uyXDMkyuynrrVVBfeP1TAEagyLSuqJ936LxTOP8w4kCAvQUv6x8Uiriq+ZH6KxUxiDmWjK6WjEm7lFZzFWfvgSb/+LHqqojkibR06fGL2y7cTLKImyMqEWmY91N6a4ailEC7nyVR/EB2PIqX918yerdQB+3I6UhQ9Nq55KN2RnqRKI/8H7GD2MTy/pDEPB5IWmXawdMtpzhTM9wL3+S4FgjbrvvFKysa3HuxuSowz65MWLwHicYRYTB9jZ5gG6R/suZquYDNacBMHfhAk4LB5KfI+D7J4eFp3eMWQbay1mf03EuMUAY/c1vnVphozrBbdJiBn4cYE3ek9ZDqPTsmrKckpx+JFfsNoODr7M7O4HM3c5j3cvI1sxxUW6xJl22raCwvz9J4iCwJO+OsNDAgzX/vfnH7JqyYqBA9Qu6bqGJVDyEO4mNZbJ/Q24qGQ2iQuIqsLraFW/viPqbtp3IFZw+kCCP4TFeg0gO1oYVQZARfbgxNdW9OwmpvEt+mdH0thX+M6mmmAVNtas/5bOzIiQX9h4DTG34tqPQ4nzLUc30QqrR5Yiuuhd7gI1d0klF4ENe/jV5dNPYC0oJfL3UPzlQ0ock4WJADp2vVVnKIsdi4tjvawBKAFy+Wy8Dqk9kKicclypWKLeEQyQem/KjvITkuicZfVod4ygISbB7QgqenSXuC+z3jdox/JKOaaCDAqK+f0xFIICZ/t3abr+ktSyb5BRPScaSf3IVfmiOW1SZDugrR+uH7YhCt6BnMJuO+PG24G7x30+ONHlHZh+E9B11/byzrExebpA+aM3Tk/fRG31aPFRri9YD1J2LVcXWqjfJDIiuhCx7cFr+Osdavi+udg+heaLA5AKqlKjZyf9Kk9lGM70y5BcN1yQWGQ4aOalHXsGZVnkAJGINXV7Ilqkn/1ay2KR1Pq0Vpm/rvl9kCGuv6S/dtqoCUIgYdjU1DQMjoxBPj9t86nmusqpFZrCFekQeF1Na9hHgT5V0CtNReq2UTZcHY3z1LLLLWGRmpNm08ZEHxlXMWHvZytebpx1ZHLaay73i8aMDLrtTSoSTD/5muIFJh3kUx6dJ6t7/drtdCnw2zcalffbJcW4mOBAqEieipaTCKsuJkirDHJ6hyY9gO1OH4Fz2ghCr9c5Ukw4RrQaTtjy7VovIM6nMWs8/lxRno6gIPXLbEuHlXXOZaitLbvuGbf3fUdDR9hHw7TXCVCgLHnC21dRO+nFDXuLTdQW7pL7uBYqzvgpKCaKsVHRl1VTzcbOcDw0cybJ6QcJNmA5PuPVWD7/nR3XZHsXUI5wMzP+Vt6H7GJQu7cLbWjkVpNH/2BAneOEjppVhA4DTpfp/Q9mMkriUMcmAZilkX9dXtnBpXInzU4gnAN2r+naKhE+LRicEM2jv9rbE4DCIC8C4m4YHbfrrYqHD39kQBL6DT5qllxj89FQULS/Pt57lO/RkHEOcY41LqbuFsl9LCU9AC898kaaKKQWh/gw/WWGfFVa6sI2tizJjGzLuoS2telcEg2ooBYu7sipKGFqFww6Rb8iSLcTVzKtKih7r8vy8mMz6DSNlamzpdRy+rTLW/KiGXajsqljJGMsJZCRG9JMs3CzD8gGHRyjM+mxUwZHfWazjvonO7cRn6rO7bIhzZajhkgIw0ENFqx0MeloLC1gSro7IIzJ18u4EWs3BAVEMaaZSkvt61U8UKoT8eLtaBamAvtswQQ+l+N+618CFAqqKV7ubXPpxQfTFWouhbrhkCZagLjO29cqU+nzH5z85HBPBYXT1p/on35D9wEDLsxhBvJ8bQRMNqMg7wjTnjjCcrXY/eHeXEt0s+7JEAemqmvf+A+v7GcwS6GJJQyWsIONLH4/ZWJ88NxB/4SoCvsxVqdIAMPm522gB3tyQYZflvNQiNfapjRzi/dGgrt231d2d2I2sNUtNnRUr07pYUPQWHzQK82BImIQJy8LRJtrzs3OMdudQ1eCvls2yiF+O6sSE8IALF5ykMx91K6haS7vjlBomxpd33HYZ2YuH4yz3GAKo76m3eU4YnLVc9vwMUJ2Fncg9VXRUxpLQ6Fk3TMe83jaFF2gU8ly50H8UwlzGQFGSO8jdia4xHTxSKYfml6utgzEzaIk71pJ7yWfMAi3NOaaVzkoLBfdtlVeyq7xoXeHCwGMSMDECZBCVbhwn/5PgsXts34w//zGAjNxEl1S6fzZeVow1aTpLQroKr8E0Sv5iSJ/hEdPK7UJkxegoDxBcTEfsEtQKfcrHpJ2jbEKDwaiu9sUF67s2CoiEki9h6woAQQmA6N3bepdvFqkp02Uwd8xckef+tPBtWrXneTX6iA0Ybmi09Knf3oI4JKSSbipN/WU75ZHoFwc5+glWeq9hCLqwVanJTN5DAADdK/ps22v17lwMY196/f6nZROn//QZVCrhW9QHlxZAzpGG96rzXbSzKiZr+oJ95kHx8Uxo1OwcFCvk7/tK8VlGtyFlr9OwIcY8KIT5W05hWtKunEyCd1S5ZTSQzDZMtnKmPVzfLq7NH52dEi47S/KvSyvHoUXZCO5B60RZqoSmScYzuvf2u0YaqvvrNrrdZkdW62gUs43YxA/gKNmLc4cbqDh6hklLTm8rJ8VFGtFE6FU0CgDW4foUUD99A/7SyRYq9+Co9SPF2DRcqV3/gXkQgmslt6T9voKq5yU0btJNfsWdwtBZB4mjeuD7nAeLsKoN8epMRU1G5+ek1f2dirGOdX9pPTDad1DgHeVI0l19i4Rk23QtGJ1Hrtr3mQ229Xih6Cosuk/tshgqDovg90fchSJYnNFW6wmcqPeNjkOA8rIWh3wRWJxGNB0EuBFjTFNSatXtZ7cSW9OFcKk0Xkc1aw6W7JTomDj7FuqRkt8CbkNmSMl+CVA/9kPmP2PEy3l7aP84jWblPJ4wclipRdI0TbWXA0VK25y5iBpddaQmmoTLER4q2zZosa7NQmUx0lgoNjiMJX3mkMPFSnCGdtEzarIVnoQl1I1lJnLKZTO01HAVCTRHDUOId4tYyWvihPzVUv2Pvu2aGrqP6jjiH/f+1vkrggGAo515v4fMgIr4qeFSiF07eLkyUsWkWEcwWrSJ4ZQnDuZxz25gBTZqdX0Nn0vl3MsPQjiHF1uMzFKiPGek1iLoGDA6KvQtA/7GgqTeFBUgpHDN9dDGF2v0lylYiz2McOZDuDdJWxmNf/ufSQQzHCWj70T+CoGRYjxEbiTjKyhpu2jCoYFuNwQxaY+5j73yGb0PhEx31wkBOhdA+eadZTGjNiZJRL4dQw/EW8/bI7BHaIXsMGaulI6LqJHVOYyqB5HyCXRQw+wj4zQUkWs9QMHYrhpjBZzs1RcxGy1am6fo9/QmOp1whcwA5djLek7qfdkuKHHRn1E59cjQ2xVqZKYSTwHMh9UgA14hafRfyY9+yJQGsOlIlBLQSHKz0lIJZx20+wDc5qjmG2nhx468eG/9bUzse5LEaM1xWwhDC+BM9/+UdsH9aotRR8bnUP9DQScssdL+46nmciOwtGZcQW1q3nigf/4O511wLioPV1b/P7e2lmCK/Gnmv/R41tbxiY1yEl3fBHgNuRY4MF5AVETehcfEfKXv2emXyqf22oOZ2416l+Ek1W+vkeM3g09RCew2Ixzv+a8pdjru/0efeTJzHuKo29SOMOril9rxjdWIGErFRERp2mqR6ffkHhmwiZ5Qri9fZZaIL3a4mb6CC9v1JKampAUdtUufja6lzDCx/tlVkSbbBadrihKSRQrPoLAZk7ezpBQqnx5+SvPUOeOoigfYNpnQBMmAu41YM5ZGJgpr0ubCNNV+lynidmTfQuqGb/ZNG7dDJP25MZZKZwXWW6MSFveDAw/wg4g4qWk30eWXeB67Uy9W2u9a/MaX7/d/T44+WH2xTPHUkcv7i0MwQGZz/UYWsaeWW62lndpeiguGFPwMYgvCySRkDuIvDUw591hFNUaKjIrVaS/izYacbPzpn+Wc7tc5bHuOsBFAE4/e6ieJhqJJjwnyAsZ9FeMyL7zmeBGt4RG3VwezWaI2wUJtdUGrzRM6h9IcdvhQ3uBMYV8fYSQg2KKB3Of7xP8CwxWO5Q+QwSfEFFW15Ox5nT+wIbdIX62CP2HAmePL4POINJr1PXIe/+ujvT/9EcL8SD0PhYueYrgyJT86rZVeIXinRJe1h7aR4IlQO9xOItJXhmxdxzg51AIyi1pPQEXhglNp0b4iCeuRtVlvVXXhuHfchE5TZzjz4kr39klPaGDXHRgN99N7W7FJK3BpmVgzuS8kXIA4sT7WuOwsMbmaZbYKbJyQ5eP/Uj9c92hXEQ7US7Cpy7pHihSB76K88sKcPZB+6zH6jB5ZkEimAcBXdmWox0rhNKUPGY2MdxUze2jQ5VLDO2GaP75s49cq7wYo7mFvjWWl9ILo9EeT7Q+aGiGhb59ZaB8mrihEQ3SgNUyM6StugGCNNRaWrB3k13E9HWI0rTPbDTEPwjjvvfVHSOHBhuF3pfhgSV3c5vlHw6KkGSyB00oTcGRa2th1nuqp5FSeOJsjsU2REzB7fx9L8v/EaZ4CbPq3+uMmqUuvqxgmF4z8K6ci0ClJkYEXYcoBI2qvQk0Uvu93o4syUeY+snxqHFWi3VBtIqRkqa4ERYepjsQ5IimrW4tyfpa+j6ZKzKawmL1KldRPkQn0FAkBYL8X4z4Q5K5XWiR4PLIA0DEqQd56ys3mFxFeGL39vrJzhHblv/F/PFgC1LYWH6yaKHz1ZL274RdY+krQnJ78vTa0ywy+hgsu+tfP7FQCfmS4Ys5m7EQRocw4y4s6T/FkAum7yko7Y7lS+NrpF1rKIjjCbDkzdqKUk2tKS/539qcUUhT0E0YnO4hScgoJLqeBrBnYvDHK2WztKUjYEWQyqcyghVin1LTc3UTptsxEgs+zMRi9huPgq6JcQZrMlhR4NiNDE49+cvQoHkBbHtZyHOeHUrLMA1cf68rSIrgYWCZTnc0x4MfOYCBzOXUZbI1SM3h5u8Vm8jhatnQSAkpW39I6ZBmgsfgzaEURh6HRsB7eGl81K7NvYfmmhuQFXBRUfhK/b2mlCHMV8iRlja4y6AJQSeBaOr9YHafdSHTGZGUiDAQh87hcatjGALrJ4CGnn81i8ZuIcV4Eo19199VldIBqpcGP50+DAlI+5EGzBKGBQOtqyBd430ONqEd8Ti6yUIoRh1kJcjmnKczkzELUNE/kkzxjbqBIozsKY7WFaWlx8kflyl03K87Pv8UlT15eieOQeZHBshOW0bnTJcW/erPbf765x1nR1vhVquiAENfzwhCwnk/bPFMXRUHgZ9DTCl6E+TJfHquvmJ55hkLuskVhhQdrdFs1wPbGq+LdJKvnLjt0vZEqpXzyjWS6VF2GlUxFNJophBEQFq+lzcjb54W5SsIgEObwcMSF1korZdpLeRYyugQ3QomRVcnXmwFmqaEtJBPcl3mHTkLn/wfnK12hQjfisUiCF3cy3uZJY6jJEYnJHfYcIjQ3Fdqyg9OqGbSLzx357t2rDcJHGMDPxFJKIHh33E7sxeDpjDMjgT75W0L0d3qOwA/77+clYd29RsQ8lm4vmXfIyEFakFlMFqti5BivqF3IwFflMo05KkpyttYirwHEFIVEmbJc0x6ZSHdpU6Df6Y0G74p5cYNXYu9cjil8Ldp6gGZdSfVQk8ANHB/d0UeXLvjPssXqzW4gYDgO1tDHeAt6hOYJmfUZVEr9qeeLfj1Nl+i6HGiF5R7AherRwi8UjYx0793zDFiuScy/8Y4HANLqbntwEqFosOISJE/ZfrRh2kLwmFSYGT++KTUIDnpD8zvCK80ViYYoGphbYp2d19rykSjFWDroGlC7YmB/Ch99wvFUBteRVgTqM+aO/gTLogdgegKZ/YDA4GSoBMXJ4MI15MH3nVU793PdlLt8Zly5jbl3sFwSFnA9PpNuX5IvOXq/DQY79FWLxjecpOXKpxPmci7GXlJDBzx4swVYJcuK4IlFd9E57I0cIOjdN1gTJDrlL3fsZpVpQ+jUZT4wQce/zP98+yMC0JE+/Rt55WjIwW0oaUOJCjpZLhjhJc7fx+JpO5A+BaV/9sojuXXlumtHO6JV6zslD/x+m6Kq8L1x4H2YnpiiQtvgxmdKtB2gjjxbaxgldQqYBFPWNO1JsJxhgrTlmzzgcy1RVyGSprYWEtcv/p//ZBDfEKNPfsmjnmV7Zi95SjH7zPZKJIqOo6XmryAiadzb7/S62GWwXeZErU5bgRx1+evZSsdQMzOYszi64WCS9tqXof+wPNmK5RI/upwcm8bgkh8ndW+clKUhaEN4a90Q994QswAqgsprM655TtFtghxCrluUIc0TGt6L5U7LL+5Bi5zTFWiOS32+iuiFqGIFNReqQ3WbjNHeHFGEGWqSryLP+Dia0SpxxeQgTi4teJ/o8XOqhqjSxhz/GCpPInYuym0jQYIjUEsxrrqiGCsuz9qilUgVstHSCYEcR+St/7J0H/LByzAKVegie5t/BMnlHgSPF7MeOOVGHij7R/3m5iPEEZ32QDttIOIuGofUXWbbdDhtEF+75bZfAYGgrvkSdAEny0GsSqkPpFBpt+JyZK783pMeSDpZivpC4M1LsNG3Ca5guSC6FnZRwD18xzqB/ieTAge5hDIj0US1mDhMOFHw0bbLu2XEqC/2t5tEYydSQ5Z+//8IBTEITUSYbdQZjtFGxWhbuQi5ywhd/8CUfNBCvOczv+ni0pgpqPlrTgKCrPENEMzLNvQUJbTOob3DvmNTZDlhi/6Oc8AiWF1DsYePh9SHeyrdtbycdiHXtH9j3Tp81bz556hdeoKe3qcL+xyYL8LW5F0T+vJvsm/mJgQivvKEKvNkGi+3GLBOTVmL9RhSq6f88ZQQGvikTIDKBqXe1LGqQ8q4SzOnxwbxYcbiJ5ipWD0wijBc9eCtjQZYEHnat1skc5u6ch8JfIa8TSvPWTTlbbOrJ1V3eKXkSTXUvw2GfbtVtaDOveiLzqb5838Jvdmju7oNafHdx5BG/eJmIaBAfIFnjOs3Hb+Drc5/pXP51BpvJvd67uCZZfdxtRs37HQhGtaUgduQvV2K5Yf/LLs0RwYC1Nfyis73ZCnw7ryQBw7hXcivnx1flSo5vq5ersU8zg6JdYUkCOo8bGKtXMViXLCdxuxBv5xSD4U/ypJicQoTD1G4T2uoKHHltANNWehXQEdjYMzPVXBq7gZ5SWM51DnijyaIyoVlyjezwxT6JoGfqlo8KZlwcEbRWAAusP7XHLTiSASkKjYJkvOx5CsOfWIF9thbWpg1LyVGdY7vhJu7PBM4ARa+a2aJHJVujJpyST/wgQoGRH2Xv3dDLeEj0FBBsLNiQdm5wXLZ5JnkS94HrU5Uk1bDPCpxEU0Pfnrjv2sA8g7O+FicnJYv3AazoS5kb4nqwSskJ2pOnUTHULa/BKs/xmim6aslFAnxJ97sNt6LJvoeAW1O9Gt0deu0Yh1UYtioYJkXN4+3Tg9iWfJJpaNZF7GGPpaNFfAmjg9V2uXrOwxd6XlMIL2BwrrgHK/Lc5VShz5fmR8WgW3PvMeK/dnIP7KYoYyb0tYTElVw+biLGPk/BwpugcS442vGNPdSg0K/y0NroyulgcXnAlHi5YtBWZcnX41CTpCcCyJ/0XgFRo1UxADpFoUu7brnduPB/57ZG7TDTMxXQ1wA5wNsXR8v6iqf6+q1BDWp6+2puLIbKP7iyDnf7lX8bju98R91bgJj+IFKHWjR/dLDEmZS7hTrf0sbr+jXMJ37obuNJ0n3pF+pI8j4U1HB1OIRCp2vzIzG2hehMpWdOZHaKaN1L3XkIWmAG0aawCgLfdpxkijf7dhtiRjiNBlJT2LHWi5FtIqMA4KhOFFjGwG80R7K23kYmwUVioSAdKiEpkRbLKWLu8h/N9bOKxLyWOoW6FR1XmMu4m/oCCjL8wuq7I1JBuuvd49tRgG6CCd9jSFHrI3FJw6Qc+aUhNkiDzNwUSlNhZT0ycj0/lpf7LdgpC0WsldcPJoPUBqkvpBdLRPsw8dcKzzkwR6XF60YRg0dqbLwxa1e++CJMxOy93+C6Sf/ID0TvYoBSHravTmfey5McEzBmYQvJfNwDGaLhYJvwYXIXGE+48v9B9mI+n325jF7Ym+17Tent/w2kwFRXLo/HwYE+jNY04iBegurRvZO6YY/u4X2LJWLOeGfnlgFqwPh1QB90lsOHd+j6AjHueUfQaPW2PCMpZQjGF/K6uVR/VR0Fur/7O2eBR5aZkg0qQjBAP0+wyALyUCThSugLBMv0XwVka0AhGPuxTw6UbiTzzGeiOepUmY0pxL/yWjZjadjsByB6SAlCvN+aMtNPhpZpebtzWqTYTg9VBodP2tPEhenjrG6ULRQv2lMm38e1ZmfoPQOuhPSZoUYw2qOjLniKU2gEcxZ1SjwqoRkcB3kPidaZcIx5N/RoosAxrnisXoENRQ6wE+6UvRRKLLt869x2Jf6bfvDOffEdqTZWhWrk49cjpgf9dGizQyUC3UE5TcAYYeOSpOPulE78s3dADkJO0h+QpQ4bKh9a0MYMN9Bv4/2AWC5rlDBRx4lpmfHetxD9zBDqRX7XI7m7V1JskhR9vy+aL6TITb740cXFtLm78x1QGr+X7gDJyVx/MMF6MhAqDm0MbpVrOFmIjUjCzzVycbSZkw5KV/QT1NeKeoqDQf+wGXJgych7091ogd/6VO99ky1i/Pl2HUEmBxvN/dyZDhSrWkhovEWcB0MiQf/A6lvYt9uNHyfSera88dXJM9XtJf0e6gK+IhQXJ394Q8asC39ORQJAIMTKI7HMhC+K2nGBAo3z7I6SsEOmSS83AHNxJnkRnh73gGWAz7A+twVku/dcrYIvtn9teY6TiwDdLZcsmOccwNAfubsd6J/vraG2H+qmA7zMgkX2qEVS1CZxJ32RZGiBJ3NsCpJft/5cn65xw4QBELTA7rsrz6/2fa4TMiSADICakNTYCIoWfIX6nWgG/r8yU4mVzpUDHjnvv4hfQOf4XkSdhJLuv7u1v2gvvQhmsnmJL2g0aORNRSSy82nM4sdP8WFGCQf46WZbKJSOxof/LmNlkndgp2NM7vHXQquPzUTutpSzjscdQBPg6Hfufu/MKyiPscVZHbSfsvIkQa/oOXrUtUB6PKz0CN9Ggys7bTnuPZFIcyJ9InvVlNVX1Oc39LB3Zql1c7/MPSw0HBSdzyU+PMZGQ+L4eihoHuB2df+pqJQPiPPYgRfj5umHhtxFDB+qAvNcM9Nt5ejZ+J2lAxh55ktDLdgz+Kp+z/VZtsBJBeP+XEYEc2Djt+cxbyolcIQEuITYV5lbtGl8e7/QohIOqFqVYls4ZPC86oRxZgav3G+RsoVv6LaWZId3z2cu6RDilkOqut2xoQW1Q1YzOzBX0XcI14Kifl5xfQgwwcVNgdfTd2oZAxF9fygPhFnse8dWgmx9av3lziLpJ+7NFnn7gJgO/IJ310cJWX539T65PN0J8RST0qnENCbaAhbaRZ2d7qHXZi5KTP8ux69GsOiJ4lslG47hXwsHWCNo6jXBn2KbdWW1Elmdtyc91JPngh9rvEewTZBmaQOQhlCHRVs9twBywBLyq2Kmx1sQewhTvfHdDFg7P08HGpUiZUqjNRzr5B022cFuzkJ3VKwZ4WU0Xgt/lS7bUH8lRQV1tR9igLFt7g1+Hot8w3HhbMIGq2uTaxpMmFfqVmz2K2ZqFHX0IeSPJXKc9V80y1luuf8px+9NtW55iz/DOSwxUXSb0liGPjXi4dNdSXJROCvcmJv5xANHaYJmL4CTgO2Kr9i5j5L4a7yK176p5zrHqo2S603a68/BTCImTwj2ojjhe7dnc//MrkQilMG/EMWd5BszQIB8TaTMrNmO9AHb1K7oQVvrgxa/wWCSP0FrZl9Xs68HAGlPaB8QzSIGjNgDXUO+RXBTXPCSrITRy0R/mmbutjpScyg8iaoLATKeCpm0txpEIi3YS7/xty6Fd0cHR7LPoeFk2h6WD/BGbRrFLwurPiDLBgA8C+Tphav2ODAIAr7OB71TUCejj4kfBcgpB2m+1TcU50oUHpO4brEJZReG+fFUDkBnmjE8gk6f3Z7FCxwTPrJcUnEKiXn27hZIm0Yys3d8eDtuRifxLH2DoE0AfMPU2xqPdVMEaYC4zrVxBNjHvtwGmEdtnQEaABW1eVlewDt/xohLQvi/17GQctzFPP8/hWFRt7c97vXyYvuq46NcpbUBXKoS8HqmNBlBXw8x6FpgkMT1WxLuAu3pMw/5B83KxyZRY9wyGGZ3qpnkxAplodHUNb+WWGwXcQm+LKhJeNQVQFcC50r5EV/7q1oLC/NBprtCVu5W1XP8xRQkS/Hy4BtJ/v20/q0GO1OgQILZv0t4yPNgMor9cfGKzvmYwI5GRjvBrYEstN6wYqzPzGzMheg0AqROMj/TJsKeeH3c1WXVFaN69a/+vsJYcig3noNxv9PXDZnjZsboq4XgF4XtNmMKXDMvO4+pjovyOleOuPn+3Xky3QRKZdTl3U4ZfA7TynocvcZbrz4LZsBkOlUbJGXcLrloo/a+4MVtx8n2IaI1VHY2c0bhFPbPMKbhA0PCOh0xaoxdsjWE6kXTmr6nzpCI7uzKWiTI6VXvteDmqcsj2rfO7zpCUUijtmdDMAWn9UQsveECLejxxxJS3bSHulOnMrjXnLz5nTGB+VDXxk0PGrTuAQxyIwHijdCSgUDt9AJ57NY6yTdpN1xLJ9n58GZw5WPn2RrXz1qP+LUaGQeGI227njFHIJTqVFLzvbSkKZIl4kYTslbjcnnijejeDmyvoa70+Pb8+ghPdNVFkiZGWscQjoLKyLbSafEnVhX8/gCnA44zRZ2qQ1uRE35VJSVV0pzbo+KTu65B5lKlkGqNqQklQk9kTSav26WAz7mVBaicD0N/blacdOnuH2IO2Rb0VeZ6zag4FydJ9/0pZIP3eeBLKsvowAs3HMcQxZV3kBqTl/jBOIgHMlSJy2+TlkToKlDTm7/j+JZKocOPAAbetmAFI7zPhnie7ELxWvF1lyAYbtyoJyt0f1RYKKZa/WzFNa3KcegJIpgmbnnlCmu2YN6kdU39H8N06jzRAXb6zhhHohwlDUAppSnOdhOj2yZFdrik9pPN9nu8Mjx7fWDYos/RQKIi5QqdhsS7U0aXsI2oKl+OwIB/C3SMPEbNpSo0gjEq+G8zPwCEFXQ5A4a4J1r7VJvdoyQo9Tg3kMDtkPF6ipREgn8aYZ9FT8+Zfgkb3sVKlICc5XP0ca+SN+55PfyEOCWTVxoKD6YUt1Dd8Abxz1yFCJQTx/320X4pZI+b4S/HXT+/FUSH/RA94zjOaCFzZC2R0DZ2UmUSsYmTjgVl/0QbPuyIEn9N0MzdioQJc1HffSNSk70hrYCUWQQHPORNp9ZY1Sm9crU936qBGen6VV53+9b7tp3/HU3ogI5UYII2b+y7HJHVyV1+CzhX2iobO++zJgrciQ8VZ6Ied4bO5ksauul4Slb6mH/k+0rs3eyu9lKtwohOVvQNq+2wNwAtoE7kSt3dgSilJAC2Zp0gAp6eJJgcl2t4EEsBgwV7xwWW8tXjI8ZBAW96uH8GBFDLi09igq6C5eqxcMH8Ks+LaeaJ4zeCCXX18AvWxjy+naiKrV00EY1nJ2/1xLEmcHrZt6uI29wTBo8vMIsJKHiDSePw0qtQDWD33ntW9cjOy4ZosXnaI9l3Yt04C9o5tjCc9jla3CozxQWMeeKP4l298WMH9LxeRCAjIB7FO9g//NU9rh0bFordyVh318ekaSmWDKi1iQ4onXHCYXy6gYvfPNTrMPRQuNSgNHOsBdQIeL79DpKmGhngr+VlBtOznlh4DwUueSvyfo+Np7U+hY4vaG8d+g7pH1h1MlZMTZrysqKDkCg83cDTRKS7yMFL5crSk/yMsY4hZl8LFQVRrbNYPB8wOK2c6ujfnOcBj72YJFjXgWaU7l3EOSVzOsGIF8BZ/DwfL+iD0cOYdoCFAtuaGD8B1Ct+Lz06C/dZ2ESoHbOKtE4RSLBWKJ8OVlck0cvM2i+dTs5rtMQm9LzYfn/l9Yqh4/0ASoiABkefMvQzMiIVCXDBnfze84++lgQAd4amMipN8nSmgRf7U2fsQY5FrXESj0gCzUuxVU44T8Snw1PfwHT1xtkY4WpQH9ccA8spS5C6lLY8keyw2zplNe3SlCEqxxyUPcxr91FmaGMoe2fL30s/v6Wj9e6Th2Xi12hwnnLM03klSn3/HnQGBb8B5Y5CDFjz44dTdPeSjKXt+NYZzQpWaaLcerIkIT42GFtTeblbmwGrOOLHT0yb2JjFZKC8uOCKTtA/Y6YNP/aDqL8a9bXiVAlHiCHghQSvHsO5UyhXDbl/0s+HR6Qu+5hzkkZjN/ENIyra4OeZG0moMmnHUkEM6W/ZH7PL6E8+t2oTA0zFuwjhZbuJJ6/dF3kbuQFWHj3mE7fIWv+pPiLUlMSTTPlzcN9Hwq5K4xCYHVAvHfzbuKytB/uUtcZ5sUCIki+O/MhXDNYAhWpuQU5qmynRAxffiPDjz3yc2TDqwICQAMIqlZF6oIHCdTbojiM0pTCtAQ5jqEBTHY6zXfn6BMz42l8fMWGWVzAj9U2xGUVzr23s/CoQiLo0OQu78ha87RB5709SxrOu46Ob8qk9y7YGqTAzGkPs86bstLvzF19azMKTHCxyPSXdOLnhdRMBqW3DPGAtrD3BM6PpRTN7Gb5BZOzFo+6GYsH29pCynCn9p87tYOmYQTi+x6nLg6yI+2KCHT7TS4hXXK7xNyjM55bNIoUHijjDzGZZFJOrUsktI16yZrDttEMcyBYhkwdWlWy/iQszAcWetPZ7XWRhB6BgBHR0M9d456+lbqZ9zew4edKCL/y/2EWtQdKnxHmcvgrTVoP4Mvx5AvQUu6GuZPJnROZ2DxByjRjeJxwRsKlATScF6rVPy4Bu+X3aHcx/hAL57U8qgqHeyF9Wk7Vb7byTRgiyP7dOxO70R7L1lzS5XO43HN+FXbM1dXriOQcZZHq4svbaqHISXGFf/0cKqGYV5sh+jkAulnvbbd9gafHymPHLmHx1y8cntUUqWFYm119sOeW50ReEv3lVkDBr2SD4EpNTr38aliOzC0AQBzB53rTC6zgKbfzc/PwgXx2a8IQwdazChca7XZNfccZER7otktXiOGEFlRbd0GxGG3SXpOj0iwvJEAvLzqn0fwPMDd8QK6Qjd1ygI4Kc6Vwc98hTMjghNSnYMijRo1LrCxrC4I5PKrLv1htqEgV29bNAvp+GogLpIEe0vtJcc33wA5Rs/CWDsEEXSlebmixCOstfSPorvve738c6s1hk19HVDLqvapzTqs0pOQDOXGvXrH6J/tVOGF2Cd1lYJIWOOVjFJu1+7cYnPGno3Y26aVTX3uaBiwpmP3f5PFLKh7Hzu3WWVtXtnnq8dFujJGTXYJwponAkurusHnFeTTwr4YB2g9XwUosD489FaYicA8Jaj9HpMoNIgZaICzI0ZK/SIftr0Yr/Y7LObXoPDArGmmswdNSDO7k93KJsr6LWVnCudRyOVasQz5yWKtDik3fvVyBuMbVdwwtsis4znUWJjBFvgi9yXErciUeSUHx/ePWlecEDjUKQrBZEyB/SWb49I7dFGzrLHMGjUGmUDoVvMLV0TITCmeMQIbAkaMUAFrPAYD/97TDtaaeKh5OfR8V7B43LrbdIkk8W1KL7oE728UakFTuRNzEyBbiZB1kKz9Zrr2oMmR1aWUCKAM+fJnZp+Cd5no0g2/0R/rWsA13wqjMEkGkkDhXumLNYVBnO5VYagsqaOFUrdkzLq4pEeVXbq862ydjLfZrovWTUW2mKv2R1wGGqjTTXmrMYzAMYko0dtyQaBUoq5E0IW3DXOqv1BQi1UcI5Y74d6h3eYmfSP13ECCTARxn7sxjSkvOhyciDR2XY3WBiN2MbafbC8nhKvFDbs6QHloLrdPl2GPmsmXRF8KqMbuY7W3wRuyI9Wyer2hpA/Wjlr+50Nn4lxA/drqpQ7/hB1uLLGXKHky4XT1Pxi/72KEPUoLjcsc7A4PxI0y3ogYaXl+GxuM6AysQfxVRfvM47TK5IDE+08jNJiJJLvN3AzaxDO/iyt61/c8GeCvVpEhBnW2Ld0idGsORWkmPgm3bmbhCOHwydUvZwvw4Me3xiNe2ql8h5Py8NvwGgxGt3kW+7vRKlKU9XCLo+8JmSeFJjoOhzldu9Y0B654wQH+hOmZwF3/nb9JJeIjFfWO7oBkrpmd3V+xZ8C6RDHWDvTKXco+sosBlmZeaL6t0nbdv1fRg3iayOrw2AM7Jch4Smg+rcSTX6SFVcGlFrS5mtHr7cZOJ7idqmBlkYyjq5djkXk3u7K1cmv1URVs4mM/bZNWMofpd1dI1AaiI+ZvDnGUMvwRH20rB+OPFtmH51LlsDt9g5sC7YHMxtkC3f3Uy5QVmTDHeitW4kLBA2Ou1wjsm7+LOOUfM5Sc0qRIu5AVNGYC/lEKRNMycol13pwJxLdMjfZyU3GMxEplv/Njk4l6brlR6+JXNiXddZkhzqbpkGiCYPsHbe6yXkDzYBj/iZ6DvzeeauChCpEaz01loFQ1TOg9SLu9cNJDe7SrvPaZYqaZ6l/rD4ATt0BFf9gwhuuwhCCLUWmbnl2UjGMK0XJcbSa5JdWdJh6movmz/aaq/uQoW7aOd4iWrbyDzCrJyZkI00hxzecPn//FN4hG7XVRnC4mzIipccs5oj+Lt3+/F3XyB9sKfMJPeiWN6oh6Rn9AhqgraMJxgOqBfnShBq7pWMYU0Ve0nQuqb/ntchms1FJME4JYeM1uAll2MfkkZ8RGmSaeXnqL3eXo8KA5otT4hJJPOMlaPr69n4v0xrLEQqhrXNXNR9BWeMB4wSSwn5yGuxZfqq9f+gIXhQwo4I8V0h87+JXJzOjF0/GZJAX0ma9fFVHxaPaz0R1rUEQ/IgNdPRwWnh49hQE/wmzHFlEfdgtqTaCa7uDWVmL5v9LzNWWxRr7PyDpYnWmvN2iJ0fTyeKI8rG65wRvT6Xx+1s6ECGxfspfZbX3SQwrudVvaSdjNwCojFIpuE4NPyHsn7SmCJrxPpSSSESWDvzaggLtgEcZo381behe6k2XopBTqWNoBUr8devvSmlmm53EquAz4TVxwAU2xXsnEf22mmGYuTTR0CU4ZEl78Un+VfDNoAlai4N5z09is2/BQKQC+U3vUDeqc8m8jsouxffXHCvdL6FFS+5ld6niTjroXd1Kb+3a6pLeYwvNXcvqA54kv710ko4iqNdVtnyxRE74P2mhnItLEEprqaN8dRrw7KNLQWEHIYC0B8hDMCeK3k7DhhtkkNT/GAF+gpxgp4LJxY3aiAfk5nBBfC+utuFQ35xhtq4rRotWrBotzgg0JfhAc4oxWGoBY9/Rz/dD7S20RgL7kM8JvtKyomVzl35foxW1fM6fVat439kH9kTwmGW6TuXrUgFUphUVc3sz+pGBNjtcGxYxlJw4QPEksXRFF2CIN7oYGCR5apSInuxcV3xJYp3f0J6teSdYN0FG1GM7yIzXiinDeRbSEH2ZlIBpz4U+X7Lm/TXwb3UuS1CoUSKM/VYQp26WfVsxVTERrDuhIBJL0NILKWCzwQJJ9U8bDz7M+MdcZcmIL7mnBs5qL+HF9FruxoLjxwwTYy6xaBkOyfjstmsOJA6U5Vwj7mEdDbUvdKgt/lHl0OOKR5vYIDowvrN5AqRb9u7Rgew5r59bTDXz24xfAcUK54RlxAFdF49SRmOROHcfFaDVFTVpIHmxhr3f3rImcJ4R7MhfgZdOyG2FNcFeLkEbzZGEkxPwFErjO1GPK+R1iFUMTHfR0cdd966P2cM8Ri1W0ozwgX0xVkRrSFdM4H//8V9z2wKojA3+Z6pgM9BOoP1RVwa9f+D7VEP6vrd7jTR023xi4HLWLAjMWRwIUnczXmrTUNOIitQxtwD4lG9qxo9pcbhok4bhLTkZTXIqUEXlrpo3pv1nBXsyebP8zZyirgxwJBK/tEb/zLRN3XJnUuEQS/FTmgcxPkPDp08A3nUzZOJo36AI0v+0ojkVjRqbaLd0vExnMe7fL3NtK1EG2SNh4yhRKbSethbqgT18cWE5UiL+DWtpydMFON6sEAUTl0GT2WRN9xWEbfN2Aqba9jLQkge5S7uILWqDoEL1TKn9lS8+VKXoarv5mdP41bceiHtdA+sNwkbvkmKs+2i7Hb6UegHcembklGQSb2HECmVvo9BzBgeZp8yVlybjadCx9JDUvAvIvtC0T9Id/wGXI88yeMPJvTLADNghEGU7FkhA8V42wwQdERRGgCdvMKSMQhcMHryDOmGnFMJSzsHbrFoSIsxavHS3CikeodS5lm4EZL0MF/8PLI6scilIhO27/QsaOFVcnpxEx2xH01Ggi6FbkEjcy/qZKNTw/z/UZqWj9SE4A4vZXoFEZiZLcpzSnPKgYlT8OT1c4kp/2uZgi2Bgzp4KEv0W/7lyu+OLYj/4A7yAEDxCMvaq6rVifugkHE1R489xrJYdrH9INt1OMMp/qHpc/WusqXfD9t32rJdlblE16tTRz22FtdVaA+s1JpG6GxyxTCxRkQQqhacOS6nWoKTvvZTLLcjQ2bl4m5z6O1wOaHLVngEqHAMxfeCuaFWw0AmnrqiWzFECB0XUFbsArxzQvwLbY1+r9/kseKxC1nwgNMeCOYLfErOglsQ7PXDSINNsGVgpvqviV/ImL4JalSHNLCrDCyiBtDMtuWU26fu/GoAmivQIGrL70sd38yygT9xTLmwufrnfZYZXH+j5VeTS0OCr5FxpvFUWeQNQiubVlWS8nM6+9nFOkFswwHhbaOFWYbNaeXcHMn1iKrqZETE2c+lgsXIi9T/HqdXC2UAx62hIaeHcUbiIbjSrO1UZrd7G9xKS8KCF9JkbZH0kMB4ESDMJmQriCD0sDixbxIn/Cmu4JaCOMwyJ5dcTaFPHdS+xD/GpnnSpdkD0MWEYMDo3igrRUp1eIKyqtCuJVYd8/nAc6tAkGqXCkyrR1podIDcsnCfaheF2CUFEF1IQQcYJVskEaipEuvNwd1wk6Ku/qEAX/I+aHsm4TVpHw1Pfa5Cpgxd1SMkFaHozdxkVGvIpYcVnWoEX+WJDxaLPXFp05STIELcPrMvWu0Dmf+CXP49sITGfGJAoMwiCTpDHd3HdKv/kgzE5dD02c+bcVFICNbZSTwkcxPNyC47ZIWAntty9GjIG06GzKFMNRaytPS32oeG22IBufO8NoAmaSInYGT+yxKBxICs3V/V8eZHGXGSfWmdr+WJXkIOrxHBqz0b+4YaOl9l1DrRTGvi+QECleAwEvsQ+A4pLgF4nWg3mXDL/WakvDJJU7fu8aWP7G9wJFaVBMT7r9Nuxp3LpcUTFh/I2jK9lWMvdEd5r68hf2PVC9JSGTbbTK04I+G0lz12mk8FBEu34r3iWpH8c2LLhTKPMECj3L98mAXy45AQxsqlxvyEDn5Og4UdRIksmHXKMWO1UKBHBdHWv+ZUbGS2w/B5pTerSiPyeZFivXsP6r4401z3EXbT0VooZDuyfG23uqn+svnGL4ruFq9By6dM0PRJ+oGcLHeG+mKQXuoVAR6Fy0jFUUrnlzK+l7ynMEDvScCe+/ZkF1vJtSISByPqr4mmIrlxzSEcVUzG0szXb2vJXpi96B4NeWTDIizHie468j4G9X4HZiKr9dRkHe8mk63cPSV83UZlhc3OdOWc7Pv5IX9IxQ/0QgsnBXSaThkCDyHH7c9PoUlUk68dLfPD2Rwt3XbP1Kx4tB8JezLqzgK5Br1pKqztBaOC9NGoIta3eQE1GQEkf51umpAbSKCKdwJyOJltE/m/KW6mD8mhlv3NsUAISi2tTKiVDDgSrkmB6Mqhl9raXp/mJSDOWzx/KcPwESRm+QXgCTi89b+cvDQURh5uaujZG1+gjTQ5JjupMsGp0bx0YazSv6MpGx24mFGYDfVi4E9gKuYp2dRoJkNwKNHh8fQ1mIN0EpOrFcTp249UA8OV53Nx3KrNT7CilJL+OQl1nwiGJME8atPgEO4rxNFEbGuwIFQiXJ23PR7T0vVl14t8fBtOi8blkZRH3hPD3TRW5c9j1bGKYSD1Hqh+HIfp0ntXGCLkVEmdSL5tL5VI+3pMnxTGf6VCfz6NcSD7yrne+nhUjMBX6DFN/yKtVs4pWhi7+S272mMMq2LdegRewge9B9142GI3pmguWVvgtsl8NNEAeKmQ6erNYmOSUDP1PcploS8kPS1N87csEhd506la/zgm3pO0H62VvQzV3DZljLijHqszsIUSFFspl+HuWAa2jHwO4aGKkZ0YWS4CpsF3wBFwHYF8elGehFI+asuJR2JzQwFu7QIw8U+N3TnUnKx5OC3l2UGCuDvlQCipNLTqbrKWNpnQc6mcbyuW+/IgObVWJOQiJIpblkM6pgKeACyyDtLhqJfh7zLpusIjwA5M3MJaZaHFpiyShR9mBRpms2jCZXyLOedUQJMqzy0BIf+jtX35mNWYABr8oKuVYYGv79CIRvuGFBDsWhIiMIQiBYl/o2tIq93bGz4Q7s98YgBUa5TIS/ml9Qe7zgwFMdeZ7GN2lkSIay/1yAuN/pRGHa6tXdlBhNLTg8JFvk2Gt26QR3lOutKmW3yMj73wGzgWHJEmYz/Rykq3Pm9Zhf9C7Dp6CN8YRu9SR9Jj4z1Gy/Kmgv2DlYaK9XEGorEhi7HH85tJ+qu35IBK516pJUKiOO1ejt205C7XTk4FgCfPMJxNy7N2NBBtMZPWgrovL7sOGhBFLOjKwOR+Qn3H4ezJEgTHeDTixHPovLzhB2rM4kjcahCGv6iu5PWCRd/ltxF0kGOVMCOUl1H5PC/F4LUwlv6wsBExRRSKgWnpCES8hSjmf6qFhar2EOkFLISVXpdr6NGxby1Rako0Ez8sSS3t4xIB1tDPYcpQpAOm64JPA2rYCE78QqxFePz8yJMPYbQoNxq+yyeh4JGv1DIXdnBVHBzb1ZH2PxEqadHXc6zZCxiepQvyHqb3HFiNK0ABn/whimBBqGAJyOwNP0n9b40AkE4kgS3yENhNDwb2fn3/LKEgYJydRZtLy3VLQ1e8Z0Oco898UOQyc982lflMKSi1BxFwDP8j/rF3AgDl4l3FMt4RYVkpvSTCOXZKeNMLCBClXvFPGjdCkFt7qsBRHj/OD6PnmLYB/RpZNPfM0MEiZZoTUF79xHtGyxjD8rnWCYUauIarFkqteaIgP5z+XrM7TH+Vui9IZ9HuJdy5WoQy4wgku7hSW+WOmsI+9BF1mHrNZS3c64khFrvGZ1YJSbohuHC6h36klxY+AUV11w0++ohlxJoOESNZxTlshcjqf/1z7ctjUSDx7uERwtPs4GxLkrDwbgdbgE54bK4NVIp0RU2vmKrgZdNJyliPk3w3FxL0kqC6g+avyzHvzWfCXDtVlF2VXF99UzccnxNd+Xfj47ovEfRAvvqyQSo7z1KuLKvbYVgfE0/uRCeO9xCKJsVoH41YFuFMy/6RhJRLF9yV8CHAaagLNCwWPmFE8DTtgVw4BzRS8+VfslnLo1+EvXvaTL6r9fm+4k/cX1wI6mVSBiMF8cf5NTlzO4FAlGChaElZozAm50V7FQ6YHyxXjG6qDSEixAyF5EnZRzbvTZzT+ExRrBpareQZ/rP4fCBU07omgj5eEvCbBbdrRKAZuJ+gVaIQQPHjDp4nNu/v76xrlJLikLbarMCqu5mSfOj6GoVM45nPsYn4OZMh5EdyG2T5N48f4VnjiN1IV77qLuRMuURuGwwSVjsOdX1iX7nGedoT0veAXC50luC4c6TXFh8Iwfqf65Gfhu0vo4lOpATWlqsfiZ3mYS21REIvFCU+Iy7CPED9Nmrpp3afut23+pE+/E/SuamhlOrlH93GTr4bIzGkfibFlvOoIaFRhv60GI3aoonyDLQtQJD9XZGLKBi6Moh9RW+CIjlmuCFFgMccUT2meXK139lVDVjGnxUFFG1/rpIBX8kN0wuqy4c1DqbImVVz7Vy5dNsO9SXlCgNsftbpT7nymRaFWj5juDHYnug/wCgA9/QOhRsjaCuJ1Ukg7FkaF5cvN2zx5Q+e2cGLXYSJR3IAJuHQ+yv9Cd3ClfTRCxIfS06QpCZWaqqom+PoOzbTbG1wR84sKnuMtY/LH+7Y9BwatZ0qO/R7LTCH5PhT3iEddh5NMg+OpCZmF0wGghY8dCBN4AghbncgmHLT0xcwKJ9ImrjWQJ2ujM4BlXVOROcP3mJBVKa49/9nBpKvKupbw4z4EPf58JYn0fWO6bSao9G76DLmMwF4JCiiiLNZEnqIXKs2ni8BgLis2+B13bFlLX3+7OF8d16DGCE82YDdaT8i9y0fw5yfUZXKyJckUcebNaFxP1JgvU1dvg+Wohne9WfuQrllfGFU7rhHLnOsk60T5mOgxl6fu6VzFPOKoVabwlB/w31JI+IzC9xa+MUOJug5m0JFy3DJqrmp3ldT5qrJklTtOtd8GgPL3doVGdxaBe4g3S+fg0N2fSS5TYnhXR1VUN4k0u6eX5Q/pQsKjNNsVEKTvk7l5PjCcT4k7PKjETgpQNYji7ClK1A4jc2kqwiGbvTHVHVmUIOfzsFGvP2fcIRzFtKdlrzKzeku4xGuL/CgTz0DnUmuypjSwRZSSGB5W/FbBZDBJ0WnD82J7PBt5xmZZY6MfSNAPkAV46SBzRRoBySQk5YEp6H7u4hnk+50aAA90EPmYjxoPh1MjiLCy7laxZHRjX/Bkx8dLklrg1U6qZXkxkDV0QTFw98Xm/Pr9fxrhdMV5dTKeVph1yz/kj7NvikJhsZSytyLsPKhqfRtah+5zRFwMVKsFo/ixMevYjlMhIsMAFuzYdcWze8o414UhKRCTSoyQPY4coPq7lV4ljU7WRjosmTXEt72H9NOXNYiszi5V7EBWqnjMxuVT6ycmQdrKo6R0dgBUxAe+rRGL8cRxGODvQifPStNx6sh73XgZzd6dvR8vEFPr8zjUFwjXEk9ZGNQq3EFRa+ldAUp4aZoeaYcZ5wzr+bpfD9J/JAbmYddP9/W7625UjpIZjMhGVZKOfvx1PJP3D7OBKx45Mbgq5wf59jfe3jHGRHSYzWDUi71WxKH6xTCjW0lf7GUfxQ3R4lvMJ9Y219QUU9g//1oEYd0ba13rPxzJ9Gco8tneipN73eGQg7RD9Hh7cGB6Zgt9SOsvtKF9rr1fLmBELsUVCsYJNiS1tyqI8tpjWf0Veifgh3Ds+/RvpYIURpTBdItEq+GhWF4ZmSXbbt1X0e61qznofrJYqESVvU//um+3ENkRK4K9lJDOMO6FJ6TIEHMdSDufxn0WAU5bZ4eyZy55ASttlr3WKUnM8/NJAjgTZB1qKMuFeTf0gsxa2J8uDm6FKS9iR/Op7LJJhan0E/mSRMpXnQ3q68yyXIfHfPXuedg/SX+hL/8RREmqhkxXypPt4fTpc9MVJCy3LooY8Xsn/LIx2jW8M/7qM9X0JxrzSm4xkkPq+XnoGaXvfWzi0XQ3Y25xXidkp85H2WbHjxLEv+YcNn4zcPp+gXi6RIpe0mS7qtZIt/37A7huAZZL9Upv8It1T+GWt+1yXhigJR7SA0n7kf7jwzxO0PN4cLPoMziI3I3kxetkUuZhECvgTBTLskOq1mI6rs2cMAwoOWxIpiWGv4F3ZrlVu0HD2vTkKUzym6YfiQzqIRLTDdBx9J0R9LtaRMw+gu9iPNBH9rkQ+NSDBiif4AwgNavarsXtevI/E6feuXLYpShx/kEpfk6Ndt6daDAAiNwYpvtnPa4vA+7DYNBoDC8aqc1MvAVdT4ldzm/xpeqakeNkfUmyueLoptYrAdFH7B3J1Fep2IKpwZLM3lHET11WmB8vpie/3SgJSzz2wa8e1ZLz0GYjgCpR76+rxyuof07e/mkzRvUwugKOlsMsxj3tFRTuXS0pryE3wvg2A9ioeU7uIjGHFGvHz8BJJ7vnOJXDLIhp35MnJVTzwoV5ciBpXtHepY3i70Bv+LI8ERJGTue/zkACbX+UA2uALBaZoprzd/RBubhvB84aV2jAQ/phaf5UGZeXaIrS5zrQL5ZxGw19sjDm5JhN0Fnas9VejOYsCVBDSeNbIdmVBSdvrebOSDllzzVpE9ih80VC3rEc+j59+E0xuextBfSijZapvXZty+ZlLcI8lFZN4zp4BIfqfpwZjcE5EhyX8uVB6wG9+vps8zH4nor/9tgEBourxvUVhsSufkjJ5BZOShOuqVaTTBHeUiIdEPWO9wCoIUrCS9Iem8LcDzCocMjwYSlcuCbqHWh76XBiha9PjAmA2oa8BMo2s3RdThVQ3MnLsldmtw713e9iSL14ErRyQNcdTeJY8dDabj5XWy+A7Xg8nO55f+8cmIBUco95Mz3SJEabSO/3xRfCOBFp+15HC3/HbR0AO+xLhYnaa7VBriyExlIxOQ6J2mw/BSplWZheqD/ZXyjWOUtUtDYk4l3XtodQW3DrJ3DAcxJDFnX+NAFVfUSjjBsSe24Q7B7IWoYl5K1vfg/oW+ZAudcihCyKjdpgUT5zbBQi9Z+0Pd0UtwNKBPew6rv7pjQkOm6+CrhWQ9vQOfjAAl77mhZeKayaZDAi+ydruAl+mKU30guHYVb4MhKo33Hu52hmfez+ClbnGH2Ytog2Z4KMkngZjGhJtIuQLkKmavNmdfeBKLst0zH8kWvN8OcyE7UzcwRH2y8UaizxmLwFldJqutYSdfMIu9wdfVKybzEMTcQcL+vGZVylp4E5MIR7k/P+0OyIxAVhJqSMZHmBVYwomZ0AlaAsGTNJaPs1h1AimCYPNEMQuOFJOLykqAeLjWPd2LyWWRNtZ/cb8J/9y3HW8kPFh0sovzLKNftfrGsd9dG+LNh0lszwMZNeVZhRu69khbaH5u2akHlBQc+oPyCt3QmkmOGM+MoqZjQgSlFUZ94wUiOGipnkFimG0UhZxpO4ert56qE0SOo+ux+E8wIp94RsydP4BezI6wY4cKBvHDLkIEWQ8dkJFwpIOyDJFiKX/al/zWC80uVQUIteuPOPRgdviiKOKYtoLAvtPMJg2bhaGerfjo9YnjT8hHNIQqI1+2U735w0UXLe2yYT21YbKNuoP3LRtw9H1SEDDvu7Vsosjzj+3rBfgQ2L2gZEST49v+crxcYNkdMnpoxoGV31h8Z0Q8dEHIBBKBhXJacorG36cx/jR5idaBeLPq1NdAc7C+0uWtPENncfYpqol5pnzTg86eSmpfY9lx7JytIFpSGTPUREmWQ5AXP+xLQcZFG428L/CGG9JNBlYdNjpmlDtDn6BI23XUl699Zr8HxxBSGyazodAq/wnBHIPRjvuMmQrNFfB+n4QRdpo5f/6DfWlrfcKwpvnFeQ0Duht8ly1uZzIYm9dsGcfVO1/upt04aXYGRBmCpLxOyYn0zhQgd4b/25A5Nhw0PqtexiE/FlIjzhYOQr7RxTzlH0pPTaBBo2uhKT0sCqog2oJosCNtCofs22uAVdCzsAJTZx/HovfTU7YzgN4cuI1j4z+FF4O0wqvbfGLz5Zx8eOSz2m1emwqNtpW4xCTLhZxZ3iSRpu29gOCToYFO3UrhhAc+33+OfrRLl+lzjmtAkTQrPg8F+VD/b+Lzg01E8S9wY8yFD4AKMue5WZy+C3ISA+H6fOfLIX476aoogQpAxAw+1JAzcuJIFlJjnq9BVYK2AdisuFghXSOT4aeUtjeerInK5rRFrTq8AtxjCx44V1YfAXxWntJmZNcQf2S50x3b+n2CFDecgzy92sfOI8J/Iv3MwY+mKnT+qtOWfhJ0fU/sdmazCYrZCnNv2zejHkJVa0iZyCSLgcTlgdCIDub6NUf+opcYKnZgw17FHtl/ocXjf6AN0qIOhQhdC7yJQCaBQ5MkhinVSwGXbQurE0QVyg5W/hkSEsnB1Q/x0eAHHp0bEMtqnFJdH7adsZX7Hj8jefIxb2LptG4tvuCbB3FHh4xUrtoPC15QYALq+vpTDn6/J4A7U2tWgkrfCA1K1fq4U+WXhz69dmXtHSdijvWKB81jRP8Efg1rZbiYwRv2kvvqAJnOvlmPVjTpmQeF/YGIJBgpGGobL0bTNdMRQyB6cEUalynr4y3SmJFcmtUaEt1kHzuvhFKF+/uN1e+NmhN+4O8g0E7/KnY3oGnsCUktsGNfql6pDcG8h9xoVe8iHMOIE0XmqP0NfTkWTqIzEoOgt9A8WqcZniZ4dUq8bYgKmOR7TC+BO+CDqDjO4WOO9n0FogBpPiug9xKBgHjc6zNP4p3YQ/+CdLiSCdfo6ejUiMEv80Xt3AZjH3+6ClXKv+qzyTP3nCnw4KXP/GZn2U7/ImHtupKqmYGWCEZqw3eXMq6gJppVc+Fh2PLsYDf9/78QAXJ1I/1YFjQ0cMlGe85oJrWmlkR8px4dsnBIcusDSOHI5nE39J69cT0TtVw5JTIE4FJBOZPuFo6HfK4ipXBFizTXXrK27EBZDh0T22M+AJNoPbhFEwyg29h6N+Pv9wRTEejTo5oMvBxQc9tEyywQvp60IaJIVmu05/ydBK2CHd7fQkWsKfVQyDOlLQWB+ldwBkfWQ+Py9ttQLU82GiN7NE7zPxu7xEIdh/rtHyvE/6zBsPzCA2zNx2h1S2As2E941D2LGhta/Nm6k4cn+wYTbuVSA++jYU6VFkTUFnfk7awzgrA+/KVo967MamIF5+pCGxN9Rw2i2/u3piwVaiRCqySTSpgKPUiDyFLpLUUbJ2yoDqtfSiKwJ09KIW6Br52ILjW6Yf6HsqQBJgJPgRrH3X6WUf2xViYAM296zsZgjooXkkcd4E1eQVTXYTaqIVkhry99j8biHURuWqKM//jD42R4TOghQDPdqvDNXXlVmCGNDIbJd0JSy3FawRdTpOesbDs3aXotNTvWm7GKyuSW1AnS8K9NFEBcJQGviQpXarMBTfxvjUf8kea/WtDfbgN+z05ct9zapbep+JgVexxtDaClSWVLBJjxhntV0uNFgdGazbneBTmYqsSnZLP4CdSZsrmtOXD10ssOPCZLpANsSqQP5AwZCgf/CADkS1sABBSAfL+/HM8uvN8JpvtOD7TP/VwyGVBImjLOxmDzMY1d0pEjYLlL7ihiI1eDvKedcCoaGgF6p6959O2JrWlXUcm/6eTjrxqV/Zb9NvX0I5AD/tEPUz5684pw7nowQxVWPGC6/fd7mWlgOCGR/3MUyL2tnS3PyTbPkrDX8g34zoYpVTsCnLaUeWPGFe/ZX23b37rGHEVO3C6mJ3tonP1ptmA8rccqv7FtoCS87ruZnLFXqUL+HsDigMpuIUlzJXZZp1LZk1jqq+qvXwVv94ieBFcNF0FKcbGkewIdkZwO0DLTUnredZyRWfaLjkhTcncjJ4XvmJhT6+ePO/jWC6CI95eI2886nXJdTFGyXD1GD1wsUN7j44LqngTGYpSxoiwTVM4sYeZadLlQ7c8n+xS/SJjoKQ7cqV5k/420Ac37RZahb21IMIuMUHB5nltrWtxOtxyE4eU/Skc7NvZpSetaLo1ALQ9ZnOfk19iOJhDb+xmrwq0bF/DrCBBOmk/ntzk2xJX8P1svqaNPew71D2NkIE2xymLD4bfJ//h0XPnvVNY9/MqMS4XhorycwCqiaJv4dKo3DjgENMCRfShN5N5ZWevRY/id9MO2R4jP2sPOfaCD6fOwNW0D/PHkL8gnZVctrjvBgFBZeCuzWEzFylOdx23wUpixQzTpqqX5InXgcanabiH5Fr3iL+xX29EcgGl4z6c3tYOEJkRxR/MH/uF5POmzABsrV5BbR0nr1usZ0R0z4AfEJHxGRhXsBSAo1bdnf7myhw5YQ0/2gkEDCMkjuXTcNEads2oUv0AImp+nSax3RvqiQakacumvBDuW/N9JQFE78NEDqLBxFw2/JL4ydIksRGnxug7cRzCZKZN5Sr0lMVolXHzI3qRjl2j8xYKAfz5ALFH/ARmVcrT9Z5K72ik5QkocBGKzd93nswjWTqRajQrrhHpOE++O9/usWY9pkGaIaQQqZXNqILZvycJ6RirM9SbLOr42+3sxOtfd+px9Rfdve1CQkKq/P4msR3iT3/4wm9s1Gk9CdRMZH2Rk71oX2JJCuqs550nqaQYeagK63qgiWLJH5LXahW05oGw4Cv7o1/JrU6JFnStMwseGFFYZQda4XFw32VjkRZTmSMpitS7OwXIQp5k0M2ra5+lCvaDEz8iQvuH09jikg0kkRNReeznQKZMyN9tHp7TEmiQf1zUiMYKzoDy8aRbpJAXonbymK17j6nTgtG2azQMfjUHclg0ET0s1aqZuPNzItMCopaw747XIIBXYOCVIN6Z8TvEnHnY1y8Pp2lV9looJqCCZ4U2NdABcL75StLtX3aH9nFLoJelYrJjIxVu5JgKOrrUWFRpVsuTeAxn/mX+4X98stki8cgly7D3nfYyMn5HEA/fzdo8pePwkwVScoINrXB/mQ+tKcGEUcI6sujW09rR6nhtDMVSOO0zClEy2jTnTzkiO/Jb8xG74WH+SbVpOXY+qJfm3zcVwnNa+2h4mexNEULkxMFKwZmWJcwLQxK/rb9tkQWMGev9PWGQ1TZS0/ieWTQtX4UDqE41oBIBX0asjWT8VCnuSpTcRHZzEJOjKC1zrEW8gpK7ZMoONM65lghzXikg1+ambW1vsSet7mZlanqTYMzWDgm6DeqTMo8xD2xfOrTCp3tkNpvjuaQYj70kKnAiGwIi55t9R0zkxdAKPadLn8RKPIAC9qhtqssmaoZGxDrhFeabIBqqkUbaGRF7bWYbzmO9BoCL34KhIa6s0vLtS6P/jjBNk9LN8MHWPlHE3ykWZHJmb7J33b7pFPPmxGiKCURJoNtWuryujp8mzRWWxR+dTiUajxThoAdEpjy3GfHlW9mYnwNyYuhmZpO+YfOPhf2w9AfKQpebkpWHdlQppkGLVVTYsl5V8fg2khQp25nv2wgQ549mRsL/vRABLJSlrHPU9Qz6LxUQJOV3X/ChMFH8DGDpvd/DrgRp1Mxo/dpvZrUKiga/Rz/c0yol21s7oPv5ecCaIM14faAjC6mz+4uIPr4Vc7fDed/30Pv7JaLYRT6zAOybYUz7LmHUSc2oNZgREu5rS/Cw5BhAH4FA50Ip08n/Twg+lpqupl5xMO5hGwiS7iWOcQUQqNhhB02ukkh7FKLymPbf+4P4Gx9rx5LuPTMLIhEXsfY9vro42OEnuStumYzRB5YNesv65LTE/lyr6B8HTdFbwWRvBwMexclUEV7RntcidRnK5yW47fira/LBqvMROHXJNkkGaRIoVhT4RE2EJs9tI+c4ivi5FFBOWraqFGDOP4hmnlL7FQaHy5l2LA89es894zrP7Jj/xuNJiccu/WD2PpAYVzhNALRH40B0lsNvPfKyLdOaCAshbimjLcBBvuye0kVfxzlAW+fDQjbmX0tHBg5xEoKXsc76PFadb1/70c8bW5yFAoFtDl6lfgsWhvD+yUbLxwh9mPEKVT5RPEdB6Nb2/aYjcv+YyP3fVYnzMJMjR+57dECcq76cINRDQ6wLKcJxHO2kQuk7HFQbD2xDN4fKUCjJLvRxthmyZ1yZHRuAH/IvBqS2TrsAbYVSQqjWZxjSIqDLzfSXvRDE2EVhbdOBS5dZ2fK/zBghRgdEdYjyVrbiXbrwDRJkAaMG2kyin1wdWayYQTPWQ2T//rCqMrf69lXPl0tacINLy31fFBiXV5ySx94lVXYQT5koqfl/GYCbQBrSkQoVMWZI86CNln3NrkqBoCKeibyFw4azqIoNnHpDLzvfjdrxNAPgwuvvTBBmEm8SFaR03wmsnha+/J5Ju6Mpi8LG4n68WwT184XyORpkCJci9itUkELrtVLhfNpnWKN4lw050PEyc6oJ6TwWojgcwhDkVWEPHYfxMB0MCNGOUbrdYY1MgfxA40HpqCNzTus3l9J/bcQUINvF6vHs/GkeTTdzlEVWi5nYhbQTj57LGpsBdNHPXfC7TRhSluGhICGi2Ub7kfYxTvL7/AOu5IyOAlQWkV66HuoDlCdjzU5g6xGAJia+UIlS+3lcnawRC3VqfzNze4FAe1Q1kzDu60aJdV6VMn6rv2tpbG8ijIcjDWeduXIsZkMn5rF/7iKqqn9+/S+ud0b3ju5/v2m4oQkMwWT5ic5lBcfapJ/DVeC1N/I74cnXNIafV7V0C8YpFYn0jIRxS6UzZC3PwRntD1MsbdaYQS1/7CBRZvWoCzZ27PfuMZwwjpGqGL7J8R4gfodwRCcwtu/fK8a8iQWgkj4RgZSEmQ44p5PzkwW4ZGDd2ZisfnvRHeESW9H9Y9ZpbG1cNegDTCAdH5Gf4dvaPNwitAgrIFoDUhmPFS2rxipopeFnJ3T+o3VM/sB5I7FQdCv4oWi94N/EVzZkTQ6Jx5V1NznQkSJuE7TdZ+Iuh6eEVlJKMiO+d2DynkPO8k0a06RtKy33cDeDsc5zRQROGRr0IuHV98oPMX0rN4qwdyW5uTcOB7c3iLeKy04ydr3AaiDRJ5YzUvFx+FjJw+zCk3TC7ErgPs9DU2eyEzhZSfhQr7nuFawA1EOWyGhcUd/n6SRdU2h66wO4Wb4xvO22jLxRL7J/G0ipOa674rzBuyyVTQdEf15xHie1xOVM/xR52NDbYQBGIckaxaJnJDpJEeJOrhwGvA2cllCcBsRUdmEp9r33eOQw07N2dDB2Vtb9wtnjkdmdSDQsNHDn67FX56OIq8Z0wYUlPoRGv4isbvhnH9B8hmqIST8lZCcZMnf+GRo/Mx5CKhhrC7AtOXnxJ2uHbmhpU+eB2l14VW9a7NtlkwCVZjx/1IC3muNMHIipBVPC90m1tmwaz+V0Tp1q/QNa8iPJb6auLxC3mQ177+x23M5lxOj6R1oUArBJ32irl76RQfQ9w7MGltAr3CuORqyYgMQx0gqdGGOTnUgMYpFP4StlMiGIDSz9t/ZBAEom1GdLm0MkMRoK4MyyyQKZsgeglX2VMYsJJgt5bwoiriAid0ZAsL5YRJw38XabqGagCvMgIp3bK1Duu+lMXv4Yw0F+9sToSPKEcxKzuwuU/CK9efj7zJVjc+me9u2wpyB5g7s96AwX5wpqzyFkueITK3qf6PbglLqjfKrwZgtQL0NvSesZ3q+UkQP8uMBC0f7+rq2z7mYPdhivy3mRBhtu3LI4ZRIwDBcwNQgIGMqgMEZu3ilJvdi79s+SzZj5tfknuNzvZnt0FXsY0f/6F2OC5KO6sW6GykN6cG/gHAfPlv26nl4I0gnz9DLzIU8HkSIY/i39a2dDahhztALjI60eLd2OIEcDjVkO5W7UaPKptNeTVdIrGkI+zvgCINVtzi30L/rEVjEQHSvb+7nqzDRTU4keBzKx5SdbvJvloJBT1/4Adw53N7t7sV4Zqid7bx/OlMWQoQJZ02R67XTdZ7vpjXWKn6fK64gR4uXV1Dr2xQi6HDePXqaO2c/r4CBkWI4kVmHGcJEmNVDTYJVtYXWK3fmyr/eNgHGmGvvR3bArU2i7MQBAKvo/BMlzpabJI4fnEeW1YxLO56A1JUgJBxOmTMqGw/hgdyT8g15yysQYlAHJx2PcMZW1YKREY+9VmeYGf7pF06PHMPKfmcnJyTQ/RR94eaSam8FzV59aLjUnVxcKT82LnobhzTp17We5NSfUVv0LybCMnkhnyDaRx6ZqkBkxzeGad9/9m0Khz0zkgZzC9hWd3vftelhyz6T/xeoXoEtHihLEy4I+PhelwM3pLE4+Nxw9k62BaYIY8oqQ0aFp3UX9fWcQtLOUVGUAo210DuUvmpWoLo93tv2S4OW0nnJPGC5ghVSco5m0u9rqKHOfJxfru2+GvzXYQq+oHZg/fYiaWKdk0qHNUECUfrTkYXZQAaWHcwFt4c72WbUWb7k5b91hnF1avumHy6DyxyfO4ubauIK8F8m+RKWVob+DIPlbaqGLKheqm07gDXOUDCXAZUOIt+jMyGgo+3I99C/+KAvg11ecqXKfEAlEkWrxSwqyw1WKlgIuu8FdgGtmE07vcg/dxrTwwcTvw/wH5ov3fq1nb4SD33SQdGAeXyjXZlkPNB8j5aHBgQHrAy+/NtdtO+8FYxCn+JclrfGOQP5e4B/2/Rlu2zr3EdttBKu+M+xrVeONMcN6AA8/J9n08HnSshsNpr0w7IXyYhWwic0Dy2U7+tZPtCYs65kMOUGtJM+DMJy7ocDQXdr0aKaKAyDmJDoMFkoNoX9q8OplKEe6kNZxmeeIcYoLPJQ2CZc6wFMLxoMR0u7YhJCnvztc57BO3MlbbiooeLZ85lql/5DIbMgwOqjad0PFrWQzto0cu8JSEstkuOYR0oCGFEQjCmI1vX7o8Oa7qd4//qjFgdeMkSuvnIz0tsr4couOvDxi5WU9Se5r1+J3o+R+ERlM26hKmOrgXGgsrHXJ1IVgShlpNYF9CBFjzfgbSbbblw3sXoFDQigsE/4TNsZC4rk5YoVH1Xm3b4naxroFAqnt8mh4wpObUJDlu0kN7SfgA/OyHWzxaFCQOP3QkQR2Pr1KihoLUJs4emYvGfZF7zntKb0XZeuSA96Unoh8Wzj/9WthNdXixo12DOekXol/uE1cUxeTjI7R8dh7gjUbzEGze+J7fAIkZ5Svk/FlylZ7wN//R48Yv7Nn12xWjvwpKFweFSxtHGMorh9b5hTn364kpiRpz/CF+hqZjjqiUYRgqmSZRrNIF32wUDG7dwftk6XAspsDiIkElLFE+fHJuk0WfWFdm5b+Bq5yLNoQv3jYMJ7EYOrhW0qZct1M5zyuqKEepKXTbXyOgRkPWMv/SLlfm2Gepm3gT9+0t791QYm5mMqsI3cx/Kk4XfRpxvABHXFG/pe5zdxZHUbJKa5KrtCp0Td5WUMBhzroMsWfkXZC8B201rZcmPJYSm63y2I4EAJ0ZvKBFxR3eByKFOk7r6jwwJFqXLssnkjEglO4hsbrlFj6rKiXuilkLk9Be6yk8pWtoIW+1MeJD2x1uAkQghRkq0SMQG4ORa0FrRL6JS1MGl5sYIaqFuoh6SO31Yv8gPToANx7khulYpH2elWXPjiHdYSd/uDpl8PEWIqZ0AMIA5iE8XSqyu0STaLpSefBsTHaNR1ryjWk/BH7POros3cTi6AdlZHFuHwykm17lNPs4VcAAzC0ZzW7rwq51HC0V0WOX4DmoBevtpyB11rNBxiVchqRpAENKGN/C5mFj+UFSsSwRqNjbnnO785q3idQlePnn4qZ2HMnZX/DTvNzZgw+9r7CIGHPwxit62E/FcMHFWkIYSw4x36ccrmVsumyPqnALNq3qJMjO1zb7sVLnH4DDWpOfythC2oIQA/3mGwndl380SKhVfsedlCvATInUknFww56xUbk8wxIDBj7a4k/O9xjkGSKtnxpuj9TZjG+aHXdBOr1SwPp4ZAmR/30ImAzf8bEynT7aI8lHXabx7iOPBlZJ8t2EBTxAGHlUYDMMbQ9JEacGaey7/4Hp0c/kF4t/+YR+WOHUO9oKDG5ppfXc5PDHFnQkoMFGc8UPawd6IK2kWftRdknOLoo0096KHfXcr9LVdNeTn2QzpBcpLX81rJqO7OfFCwPmzSCtGrlst6us+5RNICOHZ4ZBIB2B1aMTLT5O17/+HHUvXVG5ut03AlVCcCTy7tuf3MiPzgZDJolPGqm89/2chXlBlMbSscqnG7xSu7WETwdAzHdYLcpet3bS3DKF27nLBz/vjj/87xBerLI6HSgicG9Of0IU2apEXvR3JQzo34OPtJodJj7X07ZE41qwbAGCGeh7rDGS5jKUyZmuA+jLYYYtL/PBDrP8LbjgSP6p5oW3LbvDgKpbCWk7IFP8s24GOTLu8G9tsMB62xDQy2NEGf6tH5Cr5ec+xtJlaXTcfcL1duO4hOs/yAF1w4VDQQhnEt2zmocDN7V1WwrEla5o/nTTUvsUloPl0nqaoz3EibTEkNhYkWKhVd6wbSFNp2cY0KAxUHw9jH8JCnBxYFzRT5HVGz/pUJ5SXyR09UfBs4T80Yl+EbGypo8DNtfFvY6wD5yFN387AonMcr5yTgndW+xEWKIhnSZabVUL4vurY+gOk1Nq5DR3cgO155DmTxEHuRrb3SZL4zO0GjgfXYNL8eRjXBS/zQf+XFe3khcm1VIo7xxGaG37qgxJP2o4v4e8sg5v76oFMaoS0+rq83dNJOQmsHcaPOyU42tZMzD+xc93jUXJl0xajYVa1iaLhYG3hbHaagcsXO9owd/MQmJvteNSHVQPTb0zOthKyWXUL5s52frD0la9E5ORMwc7ug7GRtkp2DLuIIQxYORu61nCqlmFDqRHGIiXcI1QIY0Hmo7N0HepADyHqPCBGBD5VyaYTFQo297inI2zTzWXPRvNijV/FJG6IOnSL6O4Zik7EzROxI0f1KJKVeiera9tBxQV1n0pebGUJjuMYNebf+7kCsTfLnYDtk3S0X4x3kMpilh3iVXI0HRGmb+40O08w4hqBHLxyVi1be3rov6DRTM5+mJEIEsWceBtTSDxfKzsj7wAiuQCrf5JWzlyp83NTCTlOaU3Er6SavYSgooFyvGBTzE5Wp+zpVxUHuzlJMIXKFdkG2ZxVUa7L35okiWLYakxHSu4FqL90dEE1UDbs87avjqPF+lSZyS9BLtNshMfBE5Vd2lO2eLV6c9hKUWTJJg1CDDyktGx+UITAywX1Nd00bAO68uadE9aw7w1eSPwdA7PV/uCV28dyIm6FwRN6LfiZenHvuLvx7Eb8o+T1kYnI3+iKAJJh61qlM6haqHpMrr9aHBgZtCMnMpuihhwrJqfKOdWb/wqfA1ymlo0FJCw7lagJXbp2m8/8KvL/eykJmr6elimJdJXs40GC3Vgiqhl2Cm0Zp/xJbMVhkmZfG0EyNzVDneJe2x+THWCmO/OrYXCnOBMxwYklo7OJFzkJGXBSU/EoU5etDRDIK5Hin74bGm5DvSurG2BLv4ap0ZkWqL2R3gzV8j/Dh8KtG0DUZwW046F3PsQ+x4mZFT7k2OCXzbhcVoUJ3vcrBAYDn+kjOXHi2UbfUryP7VvbsJpZicgXBWDBplka8bzuIlRSrMp9XPRU8on5FcGzCvu0J7Wb/av12XbiJjxU1uKnLC6/GOf//Bdil8fc5237m79SUEYtSedh+Sejv5JAZ3NLZdVpXiEVxH/he/kORM0uIAegEnocBd0Mhe6LIon4fFKtFhR5RqFoFjhKBxWA65fu+PqNvPWgjMpNq21buVKO86wvFDLcMpCAgR8Mtz4tMc4BccqKCs6cGSq6hTVDr1Y7v9intkdSHgH1Hpj1y8z4KMiqFYKV2KCdzi75PyEvVjBfEiOyRenloVr7vGSitiNsF43ZRVe4GkgbG4/+z6CkcjbMebViE6ATf8LSSUrQoHDF2it2Kd1THv4SWQIAjvYykHxV8rY2S9iNwy37j+84L2Fa0sLTgjELzhi2Mr1ZgcAnbC/sBNmRmFSGOnXU8wtFewGT9vHDsqe7SzABEmZHVrSejTs1hU+oS+IMqknD5PyHGsT6Af6I3hMe+DgQmNpqyvjy7sNVEkmEc/Hj4QDJ+3TIbcJi8/IjUp5zIxz1my9lF+FGANRpcscJEEMcHeTfTjzSrD4WMUFRGxdvaFBN0W2/iKwd9gqSV0qxR5ncEF0ekqbKnIVOoMDHsToIQdYkSE5g3jwTMx+yLkQcSzG0+lfQQ0EqoOqSCRpfoYLf3jAhJPpNhjEq21f3asuUW0ot3125aR2mRfA2cwxAeSVOzPPx4QMdFtPL4mw8yD+QUJtmc4ijJI6mAE+6yiDvxskzMMXAQXMqzcnO/ziMXDARMJrEIPMTSzNK27Rs1+2AzBdFOvkT+DQiXsZnHG6pu8bnNKTLiAL6OOr2HIhJBrB5DXBl/tmDZeb8suGbPjA3G7TbnTEXw5y0rTSYfjqWW437cs2d4vheE84B5N65y+eG9TOYfpHIvcVaP6zqNRtVOnJ304HTR1Siyu6UGrK78XTlv2FzcCE0cIIPdZ4sJB9FhnhaGIYkhIEkw1GBNs2HDKJ1RXAlzcJ6Z5xpEbyotmZlOnMcZBzAypCXjqlXAkwmSV20US/lAgtdnVkSdweQ+cueLeoIurZ2fgzTRBeQbMbT9zLqfmNqj9iielGLQ//h/d5A0LKzW9s2Uk1nmXaD1+AkhP/VYk3jNqjwciiRWJmXKGi3h/Wue0vnanYJZVU92iZXovzkOm8gFYG1Mi1XiL60lRzudIc/859hGlvO/gF2r1uRy3132ezbHK1JSnGAdPmvrBnrJcwC9+3AEqr8Z/esefQdEPZGcThvS7gYXV3vKPaJBXNGtDvTF1df9HisLd6XcPZlTab1lwY6jY7+xvECFo0GenmIgqCyset3I5e7P2oohhMfYMRRZfewXZsTKKXDNNP5Qr/N5RWmznfHq1rPXRDLou/Q6Zu2L7JAlKXTnPWwwCBqsupIcBSMMfzuuyrdubfBJh0zLBGyys5usZkCY4v2h/q3AmR/W8NOkJbRRGJA/zcBUNURDcR/sXOktMDhaiqkMrodv1bRzApUHErSona05yNDEmTHnEVi3lWls+x3DtxVTY9eXDhPBlJPlJ3yJ+OAADOsllzLdBa3m25PYAkYZ1Yxhq3Q/AXzeKn722u9ptVZmOO2j9K2sBmhziszptXYQDUa5kvVEYdQVToIa6ctPQqWfOjJ36GVIdH8Vjm94VVIrBcvl1JQ9GJNCnkDgn+XTtTnMz97QAsT8pM4aUCM5pR0ZgCathnSaG6BvAT2d+6KluE4uJLE59JUDd8mCYMLy/xH5RPKF8gHJ8/cWOS9rbL1zREDhvr1844bLbl9AvgcCkvwf60PJn+cQceYe/DlYzlXDQeHNbX9rNhb+s4NsgI0be5KoOSArWsVsenqVzWS0Z7t7J8JpfTwGETZZj/7qEfLCF7HmONSlOGqxNtAxWxBgXQbqmj3NZq7K0lLvlP1GIyb5TUA2P9XZXAcSrp2iFHa+1WNOj2WuzypG7DGV8bLmzRQ6qqKbIw8hFqEdvfI7Tn/iW5W7j3FJyh9EhAqhVKdqtfBztEDi5V2FyQMfefG00hnRYdE16BaXLwAeWyXIqv+oojDAzkI/CtA0ueIKrdAUCgLAzWwSmz3PPYv8Mm8LKNBLSoXSjeMfOJZmLoO6FMW5CtFH1TQRUcsvgGB18c58c/Eb01XqV48pPuZMhoTfUkgG7h9B7oQoUgScGSfojl3tXJcQI1vJo+Y+OzTW1TBBnPoDBLBSVq93nmWx2S7vMpGLeUSyRYgE2EUp2mj9f5iVUJgvAuNt8XER044b0XxszI8OXJaD+dOmz6a+HpVrumwGMahc5Vu9PgMADIU3BLosDmBOE0YPHky5eTlp1u+ZUMINlSQ+8VvgvLTdOIsn9zjOGYpNYFR6Jcbv99SHVAeojlUrtb+79ghzd+4rsrn6jpZZG2zcrcvhkBIfbJD2TEc72TDHMxn6aueP1T+1LcJAZvBHTnrQnNedpJV34FZeEum5LqRTCRKcC42lAn+/Obym2yqAExujkFYWU5AWAg5j0iV1NFFnbc8puaQTSw2xCJhmQL9c8sM8Tos4BdRtqsLnbdOqekOP+Xqbn+qlS072Qi57xXyYdE7Fi/9ZPTiNWJq5/zEDCTQoigcdHgvzdxLShBZTY82buQh3HjMDV9/lArpbF4JJlaaS8KYHLNI2nqEgdCHaipLb38OnA6UUg+yRbv6rzV2gWVYW8LMJiUbNCiZWoNiZpoEaya7m7mzFX0qjdFNy9YYnIizWwOEM7tUWxm828Z5Mvsow+K/EnlAQ92rM2iQwXnEtxPZ+BV8TEFa22xN5SOb5hkDkzkYcKBMlj3lqkVNL0YM9+2MXl6P+7W/1kTnTXjnmKTPL7iC2NeImUN+rtbKV4vqE7dEovZweJ5h82xbVWjXu6bf5bCvPyQjpqHPmIi4Aqr7LA+2AeVFg94/LbnlVHnQFnHa1iN3pggbv+eTpjB7wqm0ySdib+A7aREmDWiiJRxzSnIrzvJ3F1Nc1SdZMRLsgVFpuuYcaOGwXPwY2gRus0RwdS/YxsR7R644VS4DZ5uhAjcSduJrLTkcBk3YiR69Z5qORoxMbKyTVUplZRBTxUQExNSKe/gZxrn9kwTpq5Go6E+MkV8YxSA73lzprK5s8XsaJcY75u4ixtC7XMCZPHPLwMLnsfNCoGK6ux2s1IafVdP0ElC3ehNrNzNipoj6AflE+2mjrr8OtmVNttm29xoLKHbqtAnOiOMnhEAC3LJGMRtnsnbE8/c4ztKwx85JxawDP7wGM3vqYa9Sh+80tv4Tj431dIfbMozoqooHcq2rHpknvuZVeG3McvThAFEmNNhZykeFTkOBGc6fbKlICyQk3eIS99ESBb/jsBJEP5bJ+XiU0XZ2L1x9RC5Jyd+H4v5HbTHYs85uxoj7wU0CD887zqSUzHA1L/2CNA8q0woEJDdyLfEFE79cD0uxkGUEjQ75pU066Rug7GZ4Cg88AKHJPpwJ/Gdqynu4RCLodl2MS80yPeRWqsASe0gAARToPUhGTqB2R3x0wfWGxYLYzYwHYyJlJwRUW07H6xPquudWnf8eFdj2clMfwW96dqG9l+iIlawoo2DOhG6JOd7gdNZS6MJKXG8m0M85jAcabaqxjmzUZBy02hb4YtNiQOxF5Nh643DWTKd6dImggwIhfVCETnJ0i3pjskQoMH+RKqGXR17a8ET3z4sNt8s6aep/Ea9H3qoBs2OIMcSx56pBO+bE+P+r7fcvnIq0eHAoysd1+8Mj9xm73XkOAcoXYBEDqCoiyI8I4nPt7ss1T8r00n/2w2p0QpLQDmzCEcKRKkjUtQyfs9brLNpXIUqeDoC+3aUrTDU/nEafw96/4dpZHXLXB5YDkoyTBW19w6wFntnNBGzdPy+tPSgRxKslC6iXwxKkHLU40k9oGOEkG8PXdd77j0F5/Ye2x2qAMXMZ+bJOHXGqs7tSeyvxOEAaB2q12cQnyGxktPRpYN57kOL35jSTgSpuEIMlxmS1q0CGMruDvSakQaEBatHkLQXDVw55kYV+2wGK1S/vS1BaIN8Y/Lq8+0iRmfqYaQnGto5liw7H/DUJut/7wHqJOrlEtniTcQunNP1k5EszZ3F1VXcvH/9FZ9Nr0pYShSegEu1SUgjDu174xr+43bnOb9fQoWo6UoP4MXK+3Es6x8clnaXcwwhugi8h6Dij5QWDGTXjz+CCxXEOns00BsoP5MmOYUhE79XNgcehvrliZSSXMV0h5ArIvnGkP4g7S8/LO50N7QDcGwk+5YrLiTJ8QD7LCafmXWlQijYyxXcXkurqC/YNJdhR3uAVb7N1QHYpD10rdvskLGcIEXUrSXfJUHJeADHUVBY0c17NeKdcYaZp942x1VxpZkUvwfXwtP/HoBoc2t+RCWWV/QJMo3BN9fR73ga6v9roUAz3EpVwQq+JIBrjoRamSvCz0FQ50uBZxtn8p999CSCgXSkoXdj+XAbN33uJOxhPyuxiV19kEUhYn2flNfClFtCApK6qmyTB/MFg4LaZyd/nGFqfTWAJaDkhvJPc+PWHVSr1M4HAlA02IMjwuBBDHinoSCrzNxqK7CpBijvXDq+Q0iZCQGbzggG4/MpopFvwpslWN/kX3s2NbZwju/1f0t4gOfeQXerZw9Bh6AbjBjnR1wA2YkadF+hy1zuwvWD3RQp8N+j6YzKuWXEx2Dx6zZri1gouqp8QqdJEV5SWbZbGUCHFGwHrjogwxg5VSctCWblR7sz1vyoKgUWQ2zHR3G8Adw9wvhPCFNZptSr3iA8qNjpoCEek8G+dMdnpghI3VAURzHhbcPNje5v52ntIhqACptftCqvdLoBgFA8vYzhTSflkuq2cst56QzY5oG6JJEGf7pZy7vBT5DPR71WXUTMO5gvQoSbaojei1ODU70DuKMTRMsnjDy72fvK4QvevuuM802AUtuT+rfA/kYpxixL52skrmF1OD7ONR7Rj5i2xnfuTEESTdpFyUuiLf/Sq0CVLPnAgHHwxswx3ClP3Ndc25hJ9UwKsmqboRDEM/Qz9/8wX1r2kM1BJ0Fv6m+8a3rJ+GRu3BwILhXkVjdRpccwzNej3iUBMY73oUA21+WhCRZDv2TYKzxJ+BDTDGEbn/tpwK2WEE4lrBfpM3m+mExks3c0zltJg7SstHitq2YnrZSyDxUpJoi9xLoW71BwryAipTx2DmEuPHBp/7NOtNbpuGs+UqCmc6+KX9knvXQfGdfg0qC12kRUZjY+fwzHw2opCOBtoTDvtxU6wVppIVyjqFv7I3/ETvhex47s0ee2X7YhStR2d49fHwszlTqCzLn0fiZq7as7lUqF6WnG1SCrYTVP3TC1NQhyYM46DkKn8Nduu3L4Hclj6JvUyUIwMWkvTI2XtHu5CAPTV0LXrhzsauxnJIcSAJ+yBvGJOYci9VZYKIigY9lDpzODVksmmiOZ6tKaZgfLbzYj6E8CjefYapN2QU26KBDVPUdQqcuLKFpBOBo5ctXLpr24c4NhJZytJijXh/KrZ+nEanbwOxJY6SXvOQ8reQH/DDpzrX0Q6vl6tp6uYTV8pvgQTBIFZln+BLos7o4shFa/8wSA/z/IHULc7dB7c8lqHbWPaTWN7mOsXOCGxPoqo6VC5lnts4tKXAsWWkx26FnZS0ho9FywPDL/dJMuKx2VHSPsK15jC1SRBfNrOJUeFkQ3FKe5JdWtnS/CJzz69dpGCG4HhJRo7/VNDTm75yhNVPn0lLg7BwLuhMjNQl4R2BO7mAzHVqfTICO914wMqr9AjwceV0a9MnVthEGjvzRIac97+glVX6r46JutskM4hw3dfmd2HFD1hVnf9ISioopflukeqcVSmVjWps5j5R1gEsgQwJK+c+LbMYoyt+lWEMvkkAwE+w49so+brloNXLuy3v7S/S/8PCUBjopxPvfnT8wqV9gdrOUmcc7ptvgfDnkeJ8NCTRQHBerb8oGopPVP8cbLY0CYo+vQtmRJfFA+6XxpRsRS5FGOEzHPzfeqWeWRs9Y09SPxwzGK/b2vKfBYNgq5xsl9KD5iTB9yt15SivVPgONU9CJSMMilLQGOMwCn/U1s3fBRtULK5kxBIoVnAjhWa2xBPkfV5+Mt0JXvHsCMZrAD6HsY39fOcnh9CAt5sHRR43sRsa09GsnEPORNtAVvQNUW9MPou5haq+j6cWKOu/OiQMVO2//G56tYa15hVK2P2k1QntwMEP1Glggp6MxrR65TAG8isSYcRAIpJmg8GMwg7KvmjMgtLEGWWfQtKEOJeSIk1nzK1mWtixx914dcw1T4Py9IN58EGfTpgwhruJV2vbIpcdsXE//OEKJjuiVkMGzNPeukd7ZiOpFELorr/OqpQCPIpFyIL4QHXPkDFmDYt8a9Na4BssvOQ6z9Qv4XZGOE7RhlX4qNrfoM6xhGnPx4gvnxmMIegYO3WPdmdz1o1cz2/d+fm541+g+zUfH/UwkFglv1yMZAA3fxST6tCmz5tuvc0hr9azV0IMFDDDgRyGnMgTlyWrMq6BpdClGQJzoDq4IzYZ3WSgi6qtfE88XFsPg0NxNHTBGpGevZT8aACudVzzkboz9xHDm0kqcArb5L3RC/du3dtDAmX7iNnSUuUHHTGq4hLXcWoAWZRlkhU/dKj5euvIK+uEOkqrwu+1nerjNXG1Oalai+0ldS+wkfXDkqWZeF7syNkT2q+FShWVreQ/y27Kimiv6l1pTejsFQYlvxeJ99bCKfL0xdaMd6PqQWF1UlBYJG1KF2vh0Kr7udOp/s5P79o081ZngBMJd6yUymFbe6je08yATQ6TKKOsLElDGrCJqkPpvA42mE/06y+x2n3MefYHt66w5nhFvINmhAC08I7cppoF2atsxJ9VZ6hctMM7QvRO/dvOT4yeQPbrPaYB3GlPJEURTXldRsDShna9nQZl+2oONyqLbD46lLpB1neQGxqB90XEc9FT3tkYmZPPt5Tiz09mmH0JSsJ0GO3bPLUgzVDRyVVIkHbmCYpTHmeh6xfOxkwjAUfMJABCPgTzVS1C5A3KYGMHX1ZUs57uDrLc9H5zqstYrW8Mg9v/8MthCVy3BDBBIDR9cqGiMDXK0qKV2AfwoU350bMaBfC8KhYkAhlCRbGZ/Jn5lUsdH68mwGH/lluGA9qCWb0FkmtVO0+XfsGrHfHw7e+X+o7miuupvL2q8M0sb4mvIq5g282/xlXnQmThSICLzFJ7VvYcn6Gdw0cxafk+gAvt0fg4JYo4XhaNptBC9H7GYkOjLcUKy2IuIaMR81fVCI42yHUKgFyWvGCGb31LfzqPMHjUaiPOKWu/YIXiP77DWH5RZDAFXqgQEIz10lSbWPDzE2xUPncuMhf/VRCHMAnPNGKEI6XPszRJjHKBGGghDkFkA++crIVFOLZghmTO6w2gi+LviWOsNbHogZqSsebn0Ru0yoBrJD/VU5YIk4t09Tmq2cGakZa+9WtnAZriHQJNUU1+KVW2wZlck+4oqHer0FNoZALZsmXR+DQd2YT3E0YX3mDjMF8CvtafEPNevmNpLx8Rh9ksCqny8ilmYrfQGC416VscowjJoRjffrQ8Zlb8KqZND9ZCZorhVVymj5O6Uvd4BwFWzyP0SEIxTHb9DG9GWjJyEpkV1utr0baF4r2/+0vUVFkYgP/amAqkfpImYTBH8bD0hKj2/Kk58H0zvCHTqSG8vCLW6pn1tt16FJOyfr9aW47y1FYPAJY+5f9oinEnMkmJSQsJqDsNt9g40K/1iKKj7hV824Asemn0eDbUNyj2XrLHX5fvqSOmbS33iAVqYgMTl8+RqOP9k5BX/aKuFv3cEHjdrbDEgIum3wdnhAmu6wzM88fPX1xNCpLmf4cnOPZrLIhFmd/mu6DZjvAp35QIrQO5vibqxcaCjNqne3VUDdhMV8cXgoB6mAHYYjPfdz802aVJPEpIEp5NEdsohCAd7DZGLh8t3DhX1eWEp4Q1BgmBsusL4tL02w5Lea3+fx3n2p50wM4eJ+8k8yWNhvA7m6Snm/z6D2jv+OjHESjDmFBkIYJXCHvmsr3mBD3wR0H+QKC+c1e06k0Qr+OWOnH6HinF8WEWNV0yBNWKLDTJ+xWtDAHQw7nVQaOHGKDnGfO11uqQU/5kZMOcd6UeRejjH3ns6LOnRv2U+J6cfM4sr7LHDH5PbK9ddTaNMQabgJDQOu5ifm2cGDICxV3SoTbaGli/IHDLfXxdiWnMp+0SiOQ/GA38673KK0YEipRsAJMZVJ2zIYTWM5e7g+EkS4cpls68fF/Rt1ft0vnEsMyFEK8Lc/M1/7OhliajXTw3r5/edQH8Fd6F6shJuRKIqF5JLbQcAJTqkOJrv61k8sC+uKIL+dVDwtx09gqZIvgdpHAiBwlmfFk0C2C+xuVs51sOA0SLu4L5zjp1ijhd7RjqXtP8nhWpVqF99SKc7rdhKJOb1Uq2wRgWT8HKfNIGzAQ6yo4alobzj2vkcWHEYvrP1O3uz8vR8rQ/0X4JkSH/iAhKCzxtolrNCsKwenb+EzVNji0mTJE/P0SsD9EWM4i1+/OylXH1RZV3vf5pwssJKaD413nPNLHfcH5RwjLO4XbnQ2QwBHSp6WLhL6nR+Qa3s0AqpKX3Ex39z7muw0A8APszfg1h3SDPjm59nnamou5iZn5YusKDNwUmIhLA1pEYdH3uOezl2k/s20tEVHInjQyruHOvQ306U48Rs+GDIlNQtKByQdKcx26BdlOlY1glgc7FbXrzFgJTrrhhf+RVccdJfk4H5dMWSZeVGmdYPmMzP73Nbw2K+8RvhMBYOpQCCmaoBz4u2mlKsExdIQJa5qFTEQx0Azi9eDrRzFXjd5/14lTFEst8cW7npTSOLPS83rWOUDwpojGMngfYGKAQTOM4hiAt0zZwGF+A0E4BtgFDLe2zvzJOyWsCPe6YszvJBGh0ZfyPMBHBxi9qfQgoUqPa1+COXECLa1lng7N/fAWQ3HmpyloTbt0vOvCBEaMdOktWEVFfV/zDYfR7EMZQzG3q5C41ER+gHkkXGtSd+eNNe7WsNSMOpikZFom7F6EF9yNCTEukcZhRBgqLJydFZH8ZK/iTf3iWqtBQ0+8ov4a/mZ2IYlAU+WxthSMKqxI8oGWDJS0tbHqc2tXRQdfdhxh5ZnkBT7pts2GA5Nuy2r6tp8AgNzNVF0BUeRjAF75fT4movGiPr+zAf5ufisl/hF2IJE08GuFTKPpsAGeZ90olyGenBhUlXzNxJspg9QTMPCUX7+3Ufkv24HLVjaYwHeTH6KVH1cwhdEFI6I7UIMoRfkYLj8Dxzmp6sqmxqmTOZovsVnVBUCiFRfJ5WiGjZ1XsJ3FHlxRC3vAfBHKWKy/OHwdIVKdLy2b6gkqeBQS1wL4scc8K/+hGkTVm1ANptNTvDyKxVM2CvN7V6hKjp4JTh8MV11PG16jzdkDYF3f8ksqcof3bPDOhqZoxtw7paj8PgKEuZTC35yPx+Qoqb5CIswoiwX81ffWs4yxho2GdMFfgkjnybNk5ISSvRGMAMmzjr5UrjvWPZ6dR2YpyXFL2TB8z01qlqS8Rgw7T1Z84sRpCCrt6Vx8YR6h0KJuOY3YNtZ4tngYJ1o6JZbk/FfFaXeQoLZFTotXws9XfJn4QWZXVPbB+Al82rQt78XYMIW6Xk6mk3ijpVgtnitw7aVv8PFhuY+K4RW+czHvSCth1r9+hYAzRq0yn+J0h15psfKk/gUImQMDJBLKhXHaWDrMsW3ql7b4+oyAWSXeAHAf3fyiOrTCcUwDrjLgzSSQWLuE6HTvSXe5eaT7/t2t2mCpKRYvN/yvqb8MYe7cCE+aS3Xl0lMzzk96DNyO7jZc//KzMp3UQIMP7YXa0+tT0CrOa2WxyCGVYFZp7c0SNqOWAh/DXNQiragLzWRBUQ3bxogCSoCSXPzzVcq1StskUQmUElLXaTO4krvpUano2YeFSyQQs2xp+ldDgp4ZA0pW5XXSn2PxvmOadGKDUzl7phUdQI6fESbC8rv7KYOhO/33zZg7/SAHaHU5UNIcBxNvCtw+jgdsne+oJklsK0yCmc7K8iMglzYm0Ez57t3w+M55cqJiJXs5TxUJ2/sfljNnNUuYWxkzVHfN6j0sK/BOkkRSRO7WtlHHem0dY6MGhvh/tqbSYr429iwxJe0/kkLbTZFzfHuEeKUo8SwzxowdfXypgf03kJtLAsMfqFRpAn11jnZi6f80E5A3VdmG+w3f9lXA4BLYBvRnhurEYJQo4OSKQDIXsK70fsNtiUIWJKROogE11Xcl5l5XitqHpWbDeXkMnD4e1CX205fd060+uFgC8sThk86COIPV33ZhoqslYcYmF8i4WVv7BFlKztT46r815wVMhm8SootvE2zHV0bNGKI4nH2f5W5GVbIvL2QjOPER+i8GErY9fhtRDi5D4vM3mW8npMnKNGRklz+8+WtqRpnCtqaiVVIJAb984OO//ul6b5bBMISqiqHByqO3zRomOecYynK7mK1qEq6hhL50N2y0Ajhd+BealVQCFaEUNf1DqEEU9LZHFNG0FW7Rs9FVhscyv3UpEh6L3QVBhuBr5X+HByS+2avbIpHzpWs+AQdwaoKq3Ko9sUwcPH1zwQ9B/LlTFe5QCxuT4QZwrYwkhVQX85aMp3+v1AWomXxfsVAVkKWo6CvQ71XfHdXNBPTfO5XKdwTSgSijeATtIhWAlwVzUOzmgXiHqCBptBwH65pNyZqQieKf6YqAKTtB3IsY0RZBX4sFxHaIDDgWQBjPYkRcUnpyYNBEtVd9Fvrx+9wAEpIoBoM+t9boOEpDSaazzGZfQhvp/jconsDcZT/lx7ZUzTVDna8NInVmTFO1JrCjyszsoMCDVZQ/+Rm+SJRobhAD1LEvNMJBmbTymcmAuEv9dRaGowkHfh6RNnmniI3xhpw58ol2EsCkfy9mgDYPisexqmi2IA/00HVeV4zjx8r2LK9E5UORilRHySdm890+SuCOxRKXL45UlvwDponZSsAdrShIx2tARW5u5zbTb6+xBJ+cMEUpCZvxZyiuwFn33TWFlqQWjjD+ZcXJ2xuTiZJwIqchViUjv/piLDD3YH/SY28HU5rR/P2N27epziO5QFcvZ1rZSk8gISVnOSXVB8stoBm63SuJTPr7DTtJ6RjPPQ77md0ZW2TDPSFlNqTXDDYjh89S/ZYxq9PWbY+eenIMcL2uxMysh1yLZuCBB8Y4rzYSJiGJzVqLqg/fm6kSkF/89FTJC3oEIo+feq9UUDKaZ5j6+g0uEHMmflG/QRCnBgqUtoU3y0zqR080y1bc2yyPqjk4OvxzXN5ridUCPHmEZSMMzdbJajPIng9YSD1NOz47tgGLTvo/eZenDLYsrc5JQv74nteDgURpPOJFPMAKBeYz63YjBvnmp/qtkCIsT7bLZAHdN421bHjvbU4WL+Lq7F56mDT9VBygwSDe+a8TVBnOioi5KWu8qVaYss2/SHcwJPTtMCQBziVhvd715UBhHrBqc5GsffxAuaqALi7kpDwsu54WzJ5bxOJGsQhvlw5+8IB+7YqvPtkIGUasN7RYrmwABzWkZcn3qq3QTR2Y+HyeT51TYClJYAmOiaVlgx8k2ZDthUb00MGXZlBH9Ed3U23mR3KffShv8X/A2xvXdIwkGbq/SYeBVvTJmC94JinSTBR70VNAELO0Pv1kAwBF/ksPb4ICTHbkhIX/9feFxH4Pw3DZJ0u+EfxqzvbwoWCvhaBvdX5aP9KN2vv9F2ot0WpqT30/I5vBarn9+9zc/rjqLv00eCuti+ZCDSgIRkSQt9KrnEzVuhit/7yOk2f17aIjLO0itkY3PUe+UmkqJug/aOcYJeRmwbtZNOo9CZEK//PSxJlPELx+HhwVWoan0pgE1XjpCTfy+GkODkJDJFjwDBnKg0e6YCqz8YUD4KWNRKKwEaZrEYce6X2T6hILMF0OGE6bU7Ahi2lIis8RuLq2bzX7Y9LmMp9GXPRIwB7Z+zY4XWuFwpMwPR4QUIOtkPJcgnEkDQTstiyZEk6aaJN9ic6dsiDC/CxAyBJq0ZVuBB8sZ490HjzyhBi1Pi7RL2wlahtLqI9VPetV8Ew8ZwfzlqEQbkDg+YtOLcTTiuy0Pdl8qzH7sgWyKXKrdJ1h7ZKgMgMbfM+OyyMdZdlVlGU+9U99t6YKczQknQRl+GAKKIYqJQsoTP8Dx0ID5ecsHua4ZWEngAven8uUcDZkydGqwSprbw6hCY3DfrP9bQUExdOc54vHlrIbQSSBV2ubOs9BliGbyZUjzlZ2lctL+Orp8IDGSD08cpptZu/bqJe4dpKh6xOcB/OYzIfdryt3pLjYUQ0PON8XGblL2UECiPLo9IuqvhcfmZzjaGhdSH4adZVl20MX/gV/YyJhEKm62MKv90dcO9VVgmEXt1SnxZQXhhQyrGkf04CIV1cjIh+B7sk5oZIG5k5aNzGBOaFpnpUZNJeyafi3ltrSeo/VXlBXct2e9DwKDnDq03h4ekMyuTbS8RQseRnCfI02jLq6KPR3RSzUcNaP5XUgffp0/IxBO0OhLZN8J3ZzDgmfFvH84XpoScCsLvGu6pTPdNDuaacCNhHWAFdP1f3SlNVJOJrM74dePFAL9rYc915ypKxhlknV72vT+/YEobyS5kojv874uIgN4PLvwLoJ/ra+8WvsLTIenoRmRsu7Q/aR5uYgjNquzpsFHxkEI8Z2z9jdGD7SLKA1rYXNtImOzZz3nbiHJ6tYn0BdjNnbE7Gu3d8pmEo+7nMyZKC+d50ZqZuNxZzHdE/sBvbSzZjLtdEwJxj4IFKUed1oa8HcXYUGNAAuV7ibHBImVQSQ3Q2PoXMXAuqbZrgxDOLmio+tvbuhYEQUBNB8A5lwNJWvF95Vy28d5Yc9pq+0BX9V3myZdvEFsg94TjPkkXBQSG4OtTIyRYArPWyJ9F/HDkFHJ/FPaOzm8PNUMy2OkQh6D7Uq57YbA9vcZ+eTWJmkYnMchqE3E2Mxikzmoz1vSeSEFWZjEAsrQ69euaT7rtO47Yfv+m0ZYF9Q8Ln2WuqccgDjcImDGBKEyWvr4cgOgusl97ueITri62Gd3pbGZeatlmkPMTIPoQEMoZmMtNeKyak9bw4xS0nbimp3pqsCcNV4DxH9TObmRuosUzoY1Q5QTK5HsBTd2HhrQ+M37JVrXlG2nL9tH773LqFKulX6UuKVhzb0RP2xhwI5xqn71eQlp5bvPK/mDsVygIrL9rj1IrxAD1WZAJGiL5VD4xOUx3O16dKEyHe5jRchCYYvjRrRaG3sawPA33u+0BhAzDZaUXUsYLCo8TgmyGBIW93a+Jg2aby+ICEjaBrU715gGr7QlOO5LGLV+QOMZSB+QUIehraqUkGiZLnVGyE7bkaYPc8245kQnj9pB7+skfQlm76TS89yB4W8Em6d8oImMuLlhHvvbWYQeyKV5zW7/LxO9WIxiRNXIe8zQzU1HI8aDNoQaX/1LK2guFh3C3tz+Hs2FHs1Zlv10Zq+c4sluhGcgsjWYGmRYO3oD8lVrbbiWnacBzjxHsHwsYS3rMXjG5o4yBv4P0Ir/KJKKUR12sMjiHT6b63KLJwYaF0OAJlUyCZ1Akqv4IkQ/xVK4nnTYJYNLuzTqLvnC+frvB24ho3t3TTeVoikouBRLmDe2BVQeJ918SS0+mxa86amH/PMvZD8mUHAYorhrWo84s/2g8cor8Cso/xs9zxKp9vcc4sOF9VJa2UCwuIYC/k7Ou5tWlvNIikeEREQZB2hMf+xHxwQwPYGSjoTSZMaUKD1UKvRB4gZ9HfA9sOP3vK2qEfBUbNgIgtKPqYQ0fJqnrHdi13QDq7FEP0q8S7QTA5pkEwh98kUkcu7GGli6OrSojAxX3qB0Eyw+LVEkTyyXPMFLWbkT9uHdXIg884RssOHrI5xYhRYkKm7C8OyEJ/v0A4OqRZ456gYlLpbwbC6rOu/YXF+FOs7x/KPt3bDZri1PWHLr0jpptM4bHBTPFYPujssTxMgF8w/zwf72Lg0+4wM9IgkcV3KDBlmAprYh1+9CJJvjRwPitFARDLbCAOx+Pe7nK9BN1h4qz807F31b4dj1NEZv1YCA8yS2/sBqjaU14Ic5O3fWTc732THLRsUFJ46TccBBTEI/n52nloXvr3WmvI7uNcjIlnWnSFoMvD1TZ2X1MX0mr4j2neyw5DWgOowoVrSmjrEZZvpG6NB2wc0NV2nCIQBtmAt84uMfW7m5123xFKojYLsFaeIlbiENuAPfTsSdOfFomubOz279nJe/YdTXkbwvcuLcfEsE7bMibE0mdnCY5SDB5ahCCOB9WhbSaKNKUE/vzBF4ZTWu7T9SUaYxJg3XNUnL8diX34eCOiX7vVMwZqJV36tn6VrPmVOZAJinr1fiGycQAJC83SdupkL/AvAAbzV7iF1iVx+HCsmNY/TUazwXjyz1sItVDfU/kmUHWUXfNmDDvhU1/61d5x/cVlOYr1fLwCDR8demKs19FUIchyvViXrmaiF+GxYd2T8Qoc71s/8RQWxr4dwGj4i5LmOwIgTt6uDfvcfrnxLVlZIFvql1JzlP+Kye5CBHC6NkhiG+VfqWg+WmruIm4oQb8UunME3oA3R4h6VDJiFJmKXppxwWvYjnJidSw0pf3wNC7Bnq8J4lQfD5Toe35va8vUODt18UX9G8egLDlQ65cPfXruYx1Li+WimyDXON+kuafMkcSIUe9t8Q8dmxbsS1PgrmxFbVpAOPe4XsmGGEEg87TGAA6fl6YPrDpLo10Jx2yn5oaZjEuS59mfZhmrK9RAs6IUu4GCiZrw0Dm8xOyFOoqAGFTePgkvlxW3Kk4IuectxeuS//AsVncPW8wzZ+Kc12485Fpj1zDPZyERknf1hXDxDQkJZ9P/u/Z6LvjhQkVYtIQ+jws0wDFI+YzkVh86ZWij7QGbmOaabRtFEmFlo/2cHP9RqukiS4lxNxx8BIwGwxa0W/8XmpdEa7x0kCYGOyjYIEUYYIFKXD256dVhcd59Z9NiCVCDGTl6YQ5JG6rw66U0hU0yRXVXfMUu+ggSP3WmI2kreu13q0ye7Tx3R9ZybOHACEUFAAfO/dkkkc567Qs5eK4ksGxSOGNagxHtOoJnFXiGRErmfogLulR+1Jo5X1wTOEMBArkm5wWQ4PLaW9CBg2UYVBxQp7pQFeymN8KF5YX+LI9xwCw7JQnn2Wf+IiRufRp+IAfxI2yz7hd+hPYCz2blTfqXs2ou2vnMRRDajDqChOD2zVOcfH6ULKzwvpYrGPx8Dm2vFPzHuLxofuawe6yYXjNDFNQ/aoS4wlhq+3Qx/45pAxDWdrYbn+4aTzlfkBgQaIxHvMhCIw2c7nZDBvGnfrg+GBiiqmqtp2pOm6c7/w5IMPbSF+6vN+5deWWTH5PRYG4s1p7fFIkj9iUlcgkY5yM+UfIF6IBcO/1Ho5NgcZxQHtv9jU1Fu1MZ4y/ZZ6wbCJN0y4WfbifgcmEz+I6iWKBI9ip+0pbyy631zdvnHLRIgev8e5rqc1ptqDaPBxh9QWxataGjqfT+hEz5M/RhNYJDpQayL5d8FH3jh6xHm1E/cLF9NJid61YYdEdX8Q68HJwA3BTpFeZGMWQmn/FSsYPFi77MxdAxprM6P+RdJ/BuKMt+JS2qcW9HRlhk5ZIMG97pWiNN0y1b3qeNOxil9gjRmc3g8fPqkF86cmoAhbomOMCCin1LA+2mCR/lu7oSWpm7ncL9mNzUb8J+wa86XEbA07QoOsvc9A5TNRQnw/ShvGZZwnmPOAlu31/cmAFOZ1Oc9I577Wm7GzT/P4Vc/RrSmvEqGtkhqRGQ9vHKvXgxsPy4+Z2jYQwSbxU2oduR+FeNz4SihDi7NNVXN1UxGEpbAyw2a+evMtFtBfkre7R3PyslpPq2zdKzIvzuj2CScGsnMfcIbt10XiQ21uPwXLW29md5dN1qf0TvBh1063WpUuCW7wlSPHtmwnPNWjehLfUrEVnlbde3axlEGnZYDZQxSJHQtcS2tku0WpZNMYnJjlO8sJZfd4C9h6Y9UHhO5Mj2YkjKn3vD+nNuS2yarfFmUI5dpE5DPMDQqQute7tVYFWQ//Wf6auJE9+ILThTWZhYSH4+AU6LZrVeNexlrUWBR/HO+pHpB4GcX/xhjfdV+eKqvktp6rxwzzaFJsJzSQFmRO5adMCHShxQmw6LPuHcqhVBG1Nbyxnyhi4HI2OqdthtqxOWeuHMwI5+S9/0g3VUHXoo4Y7B0IOMGMICE1Vqjx9Ea0bHziDABuzGxDkwSsbXX+0MB33C4Eoq6tboBCJlvz4+/Pa9WurLLjgg3P2LhvYXMdoR1uZmxDpaUAF90EJYAajJ7eNx4W5Nw17tZTCpayH4XehopkVvhxfPJLiveM++WlL1XqVg38HAS9k8lSj0cWe6SAdZ4UqL+SemyYuw8jg5nD2jf/C/ze+VfecMLZgwUyEGNMS4hdUBJ15uspdxYZ/ugPytfPm5S/uaNfPEOrjURAWCf2U4vlIokvLH7NYScf9qA5NUcFmaCQ/H0NjzplwAsUX9qDm89nLOLaKXgOdSuMuoPAjoiW+7zpzNq4OqdkLzZTnC1demNhpBhyYVwVbyr5qFM+B4TuyDswdMu3l4zCCBd0LMn8S4PA4wcv6UI8EareKEQ2p3HG14whTaSnawFXha5IzfYKqYtki6hO287/oHhLDblArz13oTUsjeCqdluPbwE7OSF3vq7R9X7S0V+folb2UafZGIgjzKc7fI0+RX6laj4uvc06t6KaBt5Bsclgv2u26hhySeu/aqo+x3N7+tneXl7F1Ym1ueFnD6Eq6sEo0lqcTyvc2HWs3TCcN9oeuCpuqRxrVPd+LkiG69uKaKwKIkeo0B0Nx24NZsxBXBA75ZS2KdRfd6nONR9c+pVF3ZuLSmDRU1Pb1of02/vlT/C5f5CqDTfw6Qy4QU0CA3m3xZ/sD655PhEPLGnjWMdAJMg05rN6J1qJAo+RpvnAQ0Hld9j45ZQ+rElwkxd32CbB7t9qPqCxfiMuBGdO/YmybBhccmoOm6cQgFnHSgeJgzVRsezang7fY4wkBiPzEx6Kkez5lXKGN5ELhNRsaoTR9KcZV96teespwe0xqw+gO0KRiWr7u8WdmTEDHHEkn2JoogzaJs1MloflvZUl1y8Cgg/eC4w5NmvBn3okxbiU3blnpuXUv2YL9vQ73toV4XenC8eyhd9C/q820rQ/dZp57GbMAskT6sqECWZddOQq2B4iGLwbwdXlXrgPh4ng3vp/amAsB93C+8d+nyc1/8PjIdnt2wIlT3ijKHdqkY8cbvl4QJIA7SVFvuhU2FB2eCvlfHzIWCbIRRzeHNZTodWivUma/wDY13hxZeAiHqM3NRHETDrSdOwHjy6uCvsG1Wse3DMde5poV/P5+KOroaIpYGjekxKQgni//YJTxeMM5J2e+vd2/DPC98lE0owzjL3DVWeI6VZIkjxZpPRMXI2oOkttM4lU7etQtGQ+AweY9OOeRZXC1efcsuNetUeRPUBwUFIQLQnG6EhJ/3iDwzxmp9wL07NJrFSAFkyv7uVWxF7aymC/MFI+WybYlQDjTfZk5UkGarPIvbOnclIfjMhyjKoKHL0P1CxR/THuH3rNguVfRipiVPl8y0YFrjIWE6ypWHSWjJaDJsfydGmtTt3DUz10FvrVxf0T8Wk1obHu15as5QVXrdVF9YgHrLMT7Dx6P7f2ZwPS/ODSC5mOY4QZbpg5pa9J5WHzEaNt8vkeCA4Ih0IoxCAIulOf9bqPtd11rkceooprw7a+u00faNOM51dBP9Mxb1vr13QKpYHaQcsebSLwxSNymoIp9KewN2ghyJrSjL5ZWzPxl9XjQ00QH4kW8+zmZR13LHVakC+wLza78O5kC6UPA1e87uCqUf8U2L8x12bZVjJKg9biHT0Y2VQUjzgY6IbBuQldmH5JLENgKqRjYsKEMb4seUT+R1ahydYEp7pfxITUZMK5TY27HGjikdQY6z2zm5CHASZ00kLLhsPMaHtRbyzEvF3TXL/J0gXQFCn66+pFL8pFXCr/NAjZoPkyxx9pVuXP4kUtJbcEaJumJUehZTNr5+M3cLwfX4b3Ci6/sanGf94/cZVknBl6hjQl+A4aMLV+oE4j9kEeIR2GJdMj8r6bXUEK/YKrPGijQWEifU1gLx0GTH0FXtO55lcajFC0Z3dKgIwlm08/nGHTGEz3D/e+aft7Kd7qzopdWQqa250+M7jwPDmBZFV880nDQJBNca0QslnH3/xUzrEeDG0cAyErvZZJuYxy+ya14l9nT/qmCeOsLytdv7XpL72OTQGtwqKUdtwThGVtbEPvWmBz5ie4ZQKnyjtelxlyzI88BU+W2WFte2pk9pIMDA1wEbEqPPxVurzEQxgQTVcEfF34QvHUT3Ue8MBDSuCvmKBGoF+lO5odg5LLBrABapCLwZ+sGDwNiCSzQvCrWTLDjDIlr7RV8bPljxNbeMkwNO+i3Fm8KXYoyWVCn5fB7ViW3WaIskW2kjgqetx73bvyeicKBHJMRQCiS/uJx0Jz8L5w5w/ptkDQmWuByNk+65/2q+rNCJOmOlsHVMRfO5zhcXVlumzBfM8534yms084/i4B3gSEX5zdELP62EK4aTUdKC6KNW3YKVlk4DjHS4WGCO6qHR59PmHEpBmVMUijaWAOfivBec+9gxPTRxk8xJTGGPkRaXMFnltEEx7vtk6PfaFhQW50lzfUMc+whbQt3OF6yotNk0jM9w5daC8f0njZmeS0yHhzFWEiDoko4EwPiJhoj32oVepNS8RlSX5rTctnYvsXzvwolwSKXi1a5Twoxu81+Ukij2MKljpreDeRARsqrgihV+WKPiLHp8/fiduYPlnf6baAz7HOMkvhCtgRkNc9I9ThES3uZ32NgsQG4QAvuIPFJCPjoRtcGW54ySpWNxXLPkcm9KH5bEMM5YbW3fp5mtlIPUMHJBR+4dD09ZQORXQ6aXZeIoqGiLFghbNHf4xFS561Dzc5GL3L4/ZoK+JO6mMC8EwokDFh3T/ePtczhs7gAqvKAmAsG83e8p5IVdrfCFD8E5kNwJX68qWwuri87Psh2qcpkQxVgjeV09m3dukymDL8KCUWVPMeIiezB4z8yP+4jkzmh9EaOZX3X6mEW7TrgfEwMnTDvuBsVn3w2/LAiAC4XjNlRfVlUKcn7UKFTdEi9y+ADlR4V1/rbRdGt5oV89h/sG1ZVvQI+qSbSARodDX8e0FgaE1acEa0drhlckVNB7uNzh2+2ClPQE3Mm1Ft4/zZoQ/7e8QtrwxBu2Dchie1z50qb5SK71SbILxXoZY1oZYHX4rW70SSGPsgQ10xrvYBL++uGpH0oacY6EmkuHqDVXRTiIcsKmWa1HsAtkKgbTaJz+Q4zLu0U4r5Eqcv5ozxiedP3Q17AP4BGaPHYQSnFDvkUcSVWJUBjuT+GVoo9t/XkVFyY0Ox3Qa5M59tOAKUfb8dmvh0iDbzsUMAPEMQ1mJ72hsqfDFihbzxHscGkCT7ghCS2DLVUQsx+F/5rLoxLmAA7OcdQtCANBOmspvoMJM27ilUEp20qWG/MZrsItRCep2kUuO1o2w29+cJEt50EQnKDr/UQqQckyEcOoUTrHZXpxTnshhOCnXNoUdMe9ik17bi7UI9tXXUad1pYGoNl6jhiRXdWudnwRFlAAs6lkH+5isuulVtm3bV4kKnKVEW/JQg/bFQcswBFpEQoXdMsspsM93m+JUXxyUm4DWlJXHTmBuTNSXGK+7MX0RSG+HSUqAwFwoAyKxh21fIh/KhrWHYscUG5oirNyBgzQ2I1SuG59AaINgeFo24GuJuaWI8jepKTRxEyE7n1gnIGwufNn7FWwFOtCSAEBr4A5BU/r7sGC9B3+HC6v2LOCzj2FHPun1HlOPS7CPszj5z7ng3vJziVTRK6/90pXgGsa/AHALCp6PV+eWMXbC454q2U2Spsk33URRV4/J0Q1e+wFyswxoDPcmdGD0bMbNwc6fcVPhjk/oXEHz5v4L2NDkfLuJLQaB5orNolx70F+YPfPTfe7J2QjxUWf3ft4KiW+nyQQBYmNRnDMJxTCe5EJfTKEFnRhZQOydlSuHW/ivrozfC/gvPQN74fmEmlkNOFYjpMhZFHUW+JmxSxz6g8+vXrCbKjLzWnDS31F3bXaWJravtr5QpNQUeBKw+XlagU9UtXQPAvwLNrVwM8ENHxjlwAfm9Mq7Niij2BUqW+t1ttB0niXIcH8gELjXavS9pEusF6diFpKzTmn8S69KPf6acx4DZYSVHiQqKYeW4Evb5PTKgmlPr7FpjQa775u9b+OyFrTKyfTt4dW9FXiwdjSEYPpcVLlGwkEyZDOm5K5sxEAIaeS/2oujfFl92iL9lAoIcclZZDrNmTGcuxQhnXX3W6gjX6TdQhZ+ZAF/rxmEKETwiqAGGRaap5/R9A5Dvn7iQWPWeALk+sA3eCpdpE/uC5VlQ+cmPF6TLdNKarubQRNitXaItLzBX7933+qzW3iqwoRiWXG+5NuQs2KCd1NlusdZkQZgi0ckHris4j+dwFIqJu2gyeiwF5uoPvLY6dMmUor2w0KrFK+NOQst/Q/eOPLu5dd8qk4hgxukgiFoLXfpqHH/0ANC+bU9pcLaAxo7RI3CVSwTm2nmmfNHaVjINpAjUIUVSylyWtU2egIEeKIFH29OMq1nNk5eD0HQDO7F2SG5XSdU7WlfzxUTmsNvvVeH66WOYwr/51YaVFL11E2CtNLbMH3TxUOpGMSldK3+zpSJNTTLYIhkIjhkh+Du00SD15/XmZtQ/o3SzFE12+k9njd6Gnrhqy/dD1e9ZSIgNNCTfR8p2NiT76D2Z3J+gAxHYHeIXefyi2Qg3hnRu836JpkufypMlxbOBy7pUehknsadQ/fIL+qly6xsi78NP52YKfNXPmOYeYANZy9W5bFJy0lkpGGvss8iYH9ybdIBT1tvDYOYBb0OKI316ljPK2VfUGMd8kKdNHHln5i+lwzsXhI9raEZtYNyqfqFHUYpK3JGSerOPGF66oLEMEBEq0R0U7/3BLUi4/81X07Hnt/e3ESlt6DNFVO039+7cdJB2B+DBbzAIxMCh5oDNYLy0rj2c0OX54SlYWfHHmveZ436Y23Am8/GI7xSAd43YzJQeWSt3/nd+3jrvbSWvWAj4VSrQ5dWIbpILNqF7Gm+p4WBP+XxyoBmGV2kJ3UX0OZXcgN+/PRbz998CC6J8458e6QseMOebujiuajsdyVAaArnAS7QRqDPn8RL++9vGtAxLD2RrL9JEUZETU4bNgVse8yV977EWccoHsMxuIxUZkqJSGiwW7V9ww9gOZK4xAMoadkM52LpSua8gVK3NKfZhPjdEMOc/ZMvVlu3bwbGEGcXbxV68e18TrWD+mnvBIAYSuGUwXl/LMe9Rhfc1S6UbVXupvJ8NdtxyWinNQ0hVTsk7hzDBPyQB3CdQRN1ELr9wAtHJcxUgylgif9ZiaP+NofLSRI1v6ljo0cBibugB/jh3FKIsCpoj5WVc8m3bgZNDZyCb0863+apF+E5H/oz7tyM2m1A6AqEyAJLccxhlVtcuogK+m0Z/VXaxxPZVIcuQGNQE/aUhAwYQICpeamU+tiKcElFLE9p8JL7kzqnpv5JMI2fU8yz90k1vU4snqOqhuVmejpV+RgiqVU3WrMvq1gQHrPf2kAGyc8UgOKdn8ISbF6ZjtBI3VtPQc1BBxxvQXHzl5E8wSxosg3kdElEQpwiRh4WFYqR18e6Wx3RPLQUcUDxqmOhSOMsZ23K70iXCfr/aKLPvdLkqaRFWwRxZ4WHqLo5iTJQagseXk+9bZLMPAXZI6Cu1vgJ1PZfk0mvxC3bSgygtKWLB3t/W+0KE9xG+tHw2pJ0Uvynma4+Y6Uiv5jhiR20Zl7n1yvKpFjF+4dFUMGLKvLXGEb956yl6FSp3twkbK5ibMayn1j5v89+wwUgYXup/vcz74UTa1iuJQQYl/v+HihkdJ8AIn7LoR3mGivvwt5VMD+WWNAu8TRdEugZhfQMphtyGWFoeWsZr/0Rw0s0xeY3zp4RtmN6gcCuEHLoiB54NqZa9BHw9lDckwGlFCITvJg3+gg3g8TX78l5dXppkppYg2VK6+ICnovOAijFA9OjZEdqUzu60n68WoAmSvmWtMintz0+ti+xrDMQgBzEglz4FEON+vMO9bw+YbS1BMiBi5ytxtftQVViTQBc7iQkW7nsYVEct/tDUkTeq8YIDeOTbwMvCEovFNwuNTErTrDOBooFDRqvZtWad9ZHlz4Qj7Oqt9qq9/Dja5+i8AKC+PM9Ed9TEq5NGDSBtHENkBvofb2up5+8UWxRLN24WjZLukzq/bqe3FSQjzh6kMR5hCapw0Of7bjSRgX0BVxVRWWl+w8zBZG+h6/aqJ/ABd2UoltCSiyunxTjfV/xKhlUbEY0cR5Kc25G5qZnvjm4q+qBLQzm9AXM3EwWlKEcSktS8Rv4SQX1pfjUKPpfFmYNwllcSlVq01dA9V4x7MXIQLx/12tKWRKbIqo0edkbne1bGbz+HNo+Uhuwqyo5alxAla8DdpzFMKJ4fJ87DKD5m9CFchwDQRpzqpmAfKRTwL3QmEx8Q1SOuASP+QW/sTcEK3kmhjj8Kkc4LPERlL6c1mWW1Y+4ShSbuq6xJLyteg9i0V0HnX17mO42RNVAQ/bo+ROvoGZ/yHhTutxGLlYINFaFmtKpoQO4oxxLMl1wJ44x31QcYUiptFN779vPvVENFQEJTAWG9nzlusUh7gvkntHwx9X9gjI7OJTpvtJsk50jQtyQXJg7EaqfQ/XQ5Q2GQW5ZvblKCdg8+F/e1fNCxPyRUXUmpq7+Go7nys1JUIrf3t/VvNGleBsAG1UJtUU4z20mUST9dIxfoITHp68Vstmj4s7erFY0XatgMbyzcfXbIgIOJvneIVued14GC67hJqZJxcB3mD+AnaT2CUQThO/jFdmSrtQX2IyShrdO5pPeV0idxs+zZCaAcGPA3hYZjy+IRlflDDf5ju4x8O918rPj/9RhpTCxQiZWpOGEvyAiubB+QxWQL/yCjToQq596pZl95OZgCSmbNsCb8PPCETOm39OrH2FDLbrUbthPUT/WIrHFQ9X5piSkASR2d99mJr1XfRLMUft0wdeGD31OZKSlVTEfNtdjqR3jUcSFbjEQOypcflnWWJq5OGLhlaRKtxCfFNVLh31nuv3oNbbSg4AIPGjOaq7lvtx6pBkv+pT62z/WqUPGfOXNRCMhO1qmFrkjG1uBNp8X93S1swFX25qnjk866BtuZTSETTySJof7Yq/iknzLgAlycE5qwYp/EoAOwcGOL2jRanrIHG/Z91BRzvPt7oH1+fgCnixfm0QT6/Cjz5YJ3YeMTZ6Oq94z1giXYFFm5O67nm/WOdVbgk3yQQ77ZGqVW71/VpQL8YamJCB8NIdOMwlzzqrd9y85HYhUMGsioGmMluKN7aro6BfN/wSmR9AKxpNnGEf1Y4qXTwkAd4LzRQB+zS8rpz9yp3U4IfjC5f3Wqs82iAz1UV6jwGpBUyuD0tf/YM2/JCLNoXZcYItWkAO/nd4LbYCBH2uDPubC3wzobA4nWsEw+wWm8KBDjX2NE6Ya9hH1kaRErqGpsNQWh66UnXOu47aWN0xyUeT0CKPGhmBuT3YniuII4IBWVApi9yoHnjRNaDJXCBRzPMFDGH1W/EAoZLGs6cIZXE5VnoExWriEuCbjAQkTo86eny4ZeQk11+OCaO76zIRGSiEqe4018b3nTFUVb5yNfOdz2AaxyEJQLOA++f7VgfFB/6jSEG0iDG0ManskSuBFU7k68tN2eUfnq7V0qaKXoE2/lucel8TLuf+czxNMNd0Ar01A/ugAGxXAOYCJuGXOqC4u7Nsq6d2nMR6ACH9/J7wLnBSPXr0j5RFTqDeiQjPFXw7dPgvUDCzYcYDaJFlQv6vsSiY+aVL9+vU+6agvDxwQKLGBWtuuJMWCJPV3owUL2Kzc9EFGOWzii8wiPEZYrZWcxSI0ohjNtKSo8hanJ95M47zA2BoVea178Aa110iuMIvBOk16IawMOvL/D/XKZHV91940m+Ql6RNZDLJ2aVt0sBkUzvc8I0nP3QTA/yaKB7F3vZaisN4oWN5qmrCluXS4MTN49UattYKIw3Fh9ukLyJAtbsiiuuSXPGsDU7XLv3D581HrZwZ7V7ohBkgUR0o3/EYecdP+0R1/cOvjEbWpBryQZIl0XYO4eJwxpv+I/sjYUydIhlHoZBenuXP753iZGrL209itua5G7Hjhypqr/1PLWYQiq9A+MOXSRi/vZi3ilc/iATczCw+YB/pqDd0rS3iP3dKoE7ZUO8HTqk+XRyW1ZPbw2pViRlfxlg4q5leUSC/dnqe9DBFjfGga1lD2PrZCsd8wxKNZcjZnNw0+akhJaYQKqWLWFo9WoDEqm3REBXCSVf05l99272cqLE+0gyDDZc6cxg/3PJIRpnUysPwg+bQmRblfBS0Q2FyWHybczQvy7ArbfZ/EHVR0lsi4K7FoZXwv6SNkWyxXHVjTtCsNoawjTbbuTaMzM/hNPzP7H2goLjBcFukr7TIi8eAECzRzqGaafXwQ4DnvIwnj8/exb0ehr03CEovcMYQzHm28jY+U0uRanWLUsAglybDtLEeJVI/rx7rWCaEQZfhA74yG2Fnf9Ok5TtmSHzd8/3U4yRHwQjNpZ1r/23aL23Otx3hx4QkKS2wjS2uTTKwTarEasxOt7v71KcUG0xXPA/M/q6GBnCLPuSTR0YlcLespPISSuWZ96QCtEHSxWKsncv6JJeNxlcnp/+pPNGy31hFGmTsE4XB09K9+1kzRyRAMmHjlTpMe7d68SyuWXns+Pe75nPYe4rbhOXesM75iL5YL5ZiI0KPGcF9L3x79lC2yO2h7mWt3xMHvcB0nkVdGC7M86475YsATizkQm1r82X1Hpu4WFKO4HAr8AwgnH8gGXS+SK7HnwpYh3ZYzLiYXv7pexipvq/r1BtwkQwtkbpWvH/QrhRcpTMYGb/gmV7Jt4rYGLv0MnVc881LVSB4AugqSRnjpCf6/kFV+LetO+rCrdZUrLrAeeKcMrMQqxnEOo9ZsWXJZ6g61fipM/j1O++S5oZpGmP3QZOV42q2B+4r2850KS1C677bidqblpqNNhVGrNM4C5wETs39gQOXsvm2gukcLMYNH1ZpRcp4Q6Kw5DAPo5KfBd5tk9ttm3jqRc/PARsRIsEH2rvMe2RfQN9+Vp86ZvaCpfKxgMY+b0ag6oPMvmA8YBYL+6q7kXBBonYaTWqOWSD9/HixCW2zxOuFXS5WFzFs9spaXG/GjYZDbDyEfkS+Em77S4S6OoDDP8mVBbeY50tDVn8KhzXazMO3Ar+Npg+P9zJuqo/vfogFvlzZQVXCwlbbVvvsAAg1e4NzCNXFZWU/felN4Gr/7aNGOz4QHuDLHEg+SQlIQWZ1RWYhEYpInubG0kjpYkuGcZtsPb5doGezfpMmBwsOnJPkdgkXVKFRPTeP2XMKJ4Asp7Zk7gD+FOiAZwsPs8Zu4zeRym3brrGlAt7MUV72Qvfqv/P2YP7dU2tfI6TZvMkB0e64P3OwRrdN091KTZEZWJtxD67bLz5ZChSjqmmS0tAzi230/7+ML7wAfUhzfNz/qaGyLH50NiCSJPkwxpZ4mKx9t7att2mvuAGiQrb9Ed1CHsoFhE4Ajx//6pK8dwyRPDNg/2YEfFNcGGTVP5Jp+tSku4Z7i9hEZnkS+VuwHItalQR1Ay97h8NEBzlniT2cZWYQ/el5cBICPgRIu544viJ2qyCxDceFvNqakOVyDl0apY81aPgVKyQY7ZJhunBhyfSDfPWzlwL33KUx5XSRJl1xikg812IbQaKfzkIct3SEwl4lZq9empHo+wOI37hfRktU+R06kVKEjqtwFqgtLskFkmtABJybXaiDy2E8uk9Lzxaqsoi7Av+/rtw1wSqMNcwW765f/8hUdzfigRIsQXXPOLTQcBqmzVl5ag4mUFgqk+5BOypFi2eM79jfi99gWLprU4rf43/8mTBwjbJA1ytPVUwaE/WV+ucp4YfqBSoNjI6iQVd1nsh16/XwI44ZwQw2eR827IK6ub0UFlmzD8BELM+2Zzk7q/AI+AL6hLkeIsQFnjK5lgTaCBRXOKx67EGHFCRjyPAY4o+nt0+OZfmFM7yzHCRq59w4G8P1T+Y+Brp6wPLWC0OUoQvHcAoOGcSUnYjoGhL+ja4VbhBy1RRZYCFhxugiu+akbHVMot3lWZ7oHK/YGVkhw3jZ3rUNHlXEb7jHTbRtN/ztAeA6jcJ9Pd2exOjFObW1NW68yu47akTDDAbvWUAhQp23q8AWIbnkUGfMDQOyZdtQjQeAGk+p7F4n5XSbEly8pjy3Q3wEuyTdhP9o7A3qpz+2QL/T0nDgSWEMnznNx9alTFRjVSeTNn90JDJYPg/ShSFGzKUCzjKrDpCn5hR2Look95g5Kr/ruBm83wsXmysNelIC53dohD+skl8gzcF30V9MUQkDdPoanWoAH4MnNlRMiaQ+W7EKLJ13DqICTT3LedpCCuXIgXz6EdV939NAkpKnHqFfQSY7UucubuqOii5o2VBruMEq/W57pc4etg65chu1IZoq93OMfknPnWIrRAqrTnfwa8noEVq40yY/AtCk5Xf6Z/hKsox4TEloQa5H6f9ehvjAtsIovsiRVB/+2XBSaxnDySfvv4QK5Elj0ztkbAd8ahkdC3689htLkuTG6WkiqphFcTaHWeCMjv+YFWUC45QlF+OVTAQ6c7ocq6h3M5kZuZy8QZqSmCqyHiXsNLdEu789c18akHfmNqND5uCvBfjhIa34GqMn5iQVEtqdMso4yYXDMiEs5ooo6Ar0zDsBom5/qzTQxLr8HXFo7AzGCwKltQ5U0BpYA55l9Z/OlC74WTPB20TVtMRQRmq35eK+6ohDbP5aUHjtsfo11w5ZfYblWvVQkuPT3zOoT6M9kWf49Q/wSTxG2BmMT9L1e7FcI6ajeYWLJpqW6ONk8d+wjdjA/bXQ/HYPFS153wEG+i45LWUrsdOMCa4KvTeTsEbN4K0t6xbSlxjuMAfeOwanj+0h555egxoXtZi9f6CuEgW7Eeu6qkXVWcvEVTlxmwUhF0ckHT7tmZAdduFkCDkj7BkWmtV2HedLxH3pDWzMYXfE1wT23VRE/mjPfeuJ7UQD45YCt5715soIwXBixfobPgbEWC37ymYx5pMuGT5GAmKCeRiNx+dTHUQ+TIGSAGXUH1rKUmvF9KXKwlVW9Cq0oKuz+FORft3D6/7dwLdrRXTNlZtmKFx+oHHWEbM0Q8S+00/oLZ6D7dQmFgscyKu6kYmbT8H3jUAswLKn4TCxG8aOgn9QK9PasPYGfZW/SxHIR5UHq2p8gC+/39yyi0VBTyTavpeu9/0+TNXOA5WbCKRNeWEF7mIxYXFjGyhY93al+Za2+CFednV+39RNuxcgf2YpxqjHmF5rXOBvhzdaHYfu6jlRQLKeYVtSIVFfOUX0WyjFc54MrgB/+uWQv/dTtLzbbZG91eamCTXOLeBFaU8An3ZEVOuWWg1xc217Y1JxzKJoWU51PZR28giOVxKdPrlf5KjpOuySklZz5GxhLh396gZ1jB3+CDDN7RuPdlszWHYvujLPh+F4DrN6XX6nG/73KR4l2SrX2pn0hbcA8dJdnJbZdn51PtbYP3y69FZi+iR7FItHfxHDirtVI7wwpZUgIUHtAY+7JLcgRRXIiMrmcgfM337WKgJMDvo7XO4cD+UAbD6fg5JbH90Jbfyy29NG6RtRxBHPtHhMyR1VWsL3UI04dtXQhdYvHnn9o2adns7ztQXPXHx7O2LSfWO4Y9w4dFcpQA601NS1y9dZdN/Jg9Ql2MJkZ5dGBvk9cH3a4FkxzFInmTR9yCcmzdtZdx3iNnZUzWdWvIHVfB7GyOm7KkM8BOduYla7I6ODVX00slxvmXdbb8HHXUF/keEXiNk0OuZtDIBs3zDuZ/HjwAlRBRNqVS/6l/mgoMwNLE8Vhm8ZqzX5gYXIWmPhnETFNXc4sMjFrdmIPDC6/q/WSqAWeAcnF1+tD3q1abR8OP6k47gE630md/zGC3wewwSgXrIujUHp5m8q2mWOENLbwbCGZ4dP3h60wje/Ua0y8qWMvh+0+PggMvGxPCoxZWoP3dJ6PmDDSQx+4QeMvWXh3q9Hfbe4FRYbzrgqlqavGbN97ltCiW6BWBt7bM9UydxbWN4QHW2TG59eRibaOg0TipFgWFYD9ODGD9ZbA3ooNs/U9YCrgSmPu69sL3eIYF51ubpBxA9svcgOKXppJndX6dHgyVJXPHq58jCWYjcOuClg0InhUR2wWZpwCHRd6DU89Tgz9Y846RPo3sSRUJNSn3vR/2tQ8dwQt+gc4Dy/DF12j6lSpkb9e5SC3rh05itgpmnzsA+uraa0R68A0K2liruZaFAS0Vo/8tXeCUNxbukfwFFreBH1FhJtB+gTpb6JIx6GOVTxi8DSvWwATYm6TPvGYH4GvG3cXDdZCC1ZoGOy/fdEOs8B8WBRIwhDkhMmRjpmTDtM4dGbjMJwgfMH6jawVATBLFkTfjgpLd6dXudEXkLRrUwKwR175ukmD9UfzUYxFiLUcda1ClS8hka6b1qOQrNYYvz2yZad0NFrMIiBchGNRzGRN98U85GpdPXZH3F77TJbO9GzV45/N7lPvnFLt8AVtmXR5bAYjWzY3v3Xuyli3fLnl9HXB1y5agkGrfAt+TK62epMwqYrBgCtyolFAX/mXwb22lfu2u+vKmySLnSwM5u5RNjxk1TI1+sEhb4zPi/DRyuDqopEu5/vJ2gVGoGCKvbimRfopPOTBMlM5K8iByXz80k68C/ZLAdy1svzDIIb+V3Qn8GEwuYnxrG2gTScgBJ7VEnz6GM6z4U6wLy4DVxMfdkaZx9HiNyDsbLYi3lhbKOAPWpoUv/oSID39/gPWpDHFB0pHPBR+sT0F7OUqm2gWhociJxDeRSI4knLPdPRlZnTvKcbCROBCox1q0E1aSAUoOdV+kzZYk7BmXz6n1C+kCVA3M0iBlKRWZhLJqn3B6q3Vg3Mki+x95xgoV7nE3Z9YluwTnOE6iruZFmRv/TXp8mmkfWDAGRuvaK+nZsQXCwxbBPqSzt6zlsytOmJKm888SBSI6BZ7OXTsXo6w2Lt+d5yvFS1I5AY9CUJPw96r3hheiYP9KJUGE37gSXvAMItaTdZfBtEgvPCgyI5iFQAAtATPZJCUiGl/7A0Sei0IjO5HaMQzPc7PJTgU2Pmq3iSvcp1QBA7Pa6l/uYpUsB/2Qg7jsGY+1MVXwLA91pnmy3mYN6mKCFaTmT3okY1Rar3Ob97e1Ry1TUlpdq4gl0/QARSytw1cJQl8WzVpl0Aycbz6arndA3et0GhQL3MW2Q4+Iy0GCi8j+/PvAo84w+PHYLP32anXEAJNsR3QRErDsDOAJG2vTz3ruSsYdR//Dd13WY6bLpLmp2X8SDcs2td0g4C29rQvofw6Jad4g3+wFs9siI0tGg5ai1gc+7oOzYU4jAr1PBAc6+uIpeejbBtMawjiCUwwZuFd7tOq3s/l4baMvs6BzwpdnoO7f4vYxd14XospRDdFqikniBdKWAmHiO3TM8mTttwnDq849vQN10+XwrQ6/dm+dY34oYEvs61Eh2Yej7tcCaVhdeCZAiLZjMekGtWYCg1i0ZjnXPXZmt61pdIeJ072yqUR5Gb4heZZ0uzXf7k8kQ5n0EOPeLn7J8yQx+sjAgiKFtgU7M6T2wr1HiHw+Z5a49lbvt0bbXEF0Px7srPRWF7qZ1OJkylxwDBThk2FFyQf+eAtA17a4qR4xeFeWcxbCkGu6yqxSwt4ClDWjK1SRNm2sMFoPkRUwpumabR6wKTFjTgZi3vXNIrbZRxkol9Qi2phYyze7hzqKbr5bNAYoNuxr8MnPEZOQk4uqQkZEYizPqCWkOjkt5252Dq3pRXUG4IYp0Bxr8m0dgl8CRd1+Z6cQfGqJpVgODBDiQCDWpPKKDlKLkW7ghxltxB0Y7jeMCeTCwlvQMWmndx3E3hDb/Hv9RwYDsRrAGYLI2o9c4br9X6BlbaEdfmsfoQ4yPsVJ48cmjQGue78J1omyMj23w3YUC9m902t+0aGI0cCovyRzlj9dT1QM63KpluwBoceF+qL3LVkZYfis8FgFglFVH2Etm9dtvFAWakcpzoVCQxzuU2JX2yFSnUywi0fdRaIzMfKLvDyxqKBdRyeqaYv/bYbgameVug86ZQ0+at53BnV5hvCJzSFig2FX+wncZZe2m9SZuxxSXJcWYlMAY9Qi9WwruZ+Wh5qffcvzor0TGivJt2KZZToggM5OckQZenyPnLsD3uSEnAu9aGgff7AhXtJP5e+HWUj1pi/a6RGN7lfipK4slKe0lr/6ZiKmar4GEGm6zSNa6hgnvsp7Wcyui05R17RLA5QgstuaOIaNiNzerDwQJJmiDM/bTQ4jGlLV8mrOcYlWrcRPKg2LAH9fL+MZifrtaN9t+kJf2xiMK5bOOXT3ZvlBJq2109UkW1dniy5dAWz0aKAkR2ULeN3W/5sYCd500361UqXnj7SGJ+mF+/Qqy5F4/iYAcInEp4eE2RsU4CvrmhZmJceqNFp69VmCKOr7mviN1D9S0cIhiGncTAcSAOK7FcY64zlmikzbE+exnYvoQ7jDpwVPeHaT/8zt5+lF07mRDFjvqFYKEjwzYZ54fqZ60qEKJPjON1+2hjs7JuAxTqdc+M4SUFIwrfG/qJbrG6fjCQNWaQTOjmn5nSyfBUWPakigdZn/uWkY7nGTJIMo+FVeFiDQVXDt3TxW3+3k+jCj67QzAZ3Im3qWGthdrI5MAkSgeeadrX4wVsqoZAbrpv/ZJ56OQG/+vVb92req580Z3P1dtIlwuUjMpivutdIxYMXvUXvd0oUrdYPUDlTqLIivXPKzJtm+LkoFI+Y+Ln1qpo78SyAVD47BKyklNpHPMlLuAEmBj3Y8rAfHNnIUyjBrA9/3cVADJKITviGszeNuDXoFgFggnLhZHZ0sjnMGZuR5iSoX5FkwuV1GfYQIw+gFmPK9bTdpuCYI1i07aQYmSpWNaGIK2olGsyZ933m0nINzraG9aMi9OupxnzNfxeqZAZW+mEhGHGFewT/D/FAUF4Uhpn174w7YvrYer+4RfUC1eGtWNtaUsq/Df0ISx9yvGoQ4Qo0z9QvcaiTwUDx8CjwoH2H3sKGJOQiu90Z/y10uE9hUbr8qirze928IHjIKC4ffx1+OLjQeKEy68DAqSxr28FS/6uiM9aGJ83w2yBwBYLOBHhAT/Gu2o1DLlIfnGIzFyR8SJtQebWEluNjXX0zN7vyoE+h9OEI0OKR6UV+qcZ7+TmlDIat310U43nbdfn6KkObRtEMEPZ3xuV45M3HhM9pFlmnK9ORa7W8vi3whAi7awa8yKlv42uIfPDwUBCDWOB8c09J6SkDKToX46rKH3e7WO2HtloUO9XVoH6NjSEAe+doo1j227YvJAiUkeG6vQGiYLBOrmtw+oNF5FUIDg+LIW17ZbNn2afk1VF/HsnY/AxHaxJmMksHrAg/xLRIsP+ijL5zQmGgYK7q9S6Fs8V71tfQNYIkxU/yhnGasYEIvgMujjolPySEbkgX2gBoKkpNvHsztdq/BW5LsH0q7cLX1jscY2veiZ1i3+9Pc+GsF6AoFyAyXKgQikbM9YxEuhGpyjdlbul7qsULoZqsSq1MLpS8QuFtthuxvUBNRKX+M7kvZeUpXpGQqaOD3QmDcKHThmR+9rwmcDeWv4Z0ThUIN6pd3ete2Puv4719NGqZrrwtAs+pE3oPBoKntsNOG+kWZdSQbcvD15vKv/Z8CzB3jLijNpQuZHcLcCJ9ZeN5JwSo/Imix5Iy3kzMAzMvF2bSrg+5+xa8gFfL//dCl6xKYM5slCPr1IJz1TnLVzt7z9llvk8nurNSlhgp1lTwznNUhphSJmvyFzUdPuStIf8lvHH4RK7J8BW8bSqvOrJeKngunUNlceu8ZX6qd3E+aUj1vThX57pwKgrMk0pPdxZMjx//tTHqInHFuwm/Ohw/8lwgAJhc7V99uqzsNaAQlIWVBudco6OY+z3hjLeG/Wacc80GftBBjnNV7BZ+N7oq4lxJrrmEa0zd54FFU1rZ4f8NsrmXiinLyrzXqFw+AIyuYcsnyjopZjykwdzOglsfkmTCsVcR8kzFxRVPLzyrQqnw1ArecHCHlyg8KTLmnl830zMebdo/6i9k8jQka+lm+D9cmanTARIrKN+9/LtxkiDgQG5FndREm3J0s7B2W5nBJLBFFavXzWKYIc8TOEENKINnsAvYhrzNye1gL0nnQ/mbKBR5Mboi9V80P+xxh8etdX9pjUA1STBusqp4XcBM5JDQ4BNfpkq8DO/cVqZs/ybBtj1PM1c/SBSNiJBS7siZQziUZX17gvd6M7NM8Z4EdwjjUYtHaKKlqTiZZpNLdqEEITkIdseu9Xe2RgLg3jk7Y7kL3FE+gEnMljptsHCyGOYA2u/hb1oFmx0eCAn8jNt4OjF4K63+MOVKkf2Tbo3WHDzYiqQhwA+k6Hhb4VbyKQmn3jc99mM/igx26+3qMsEdfWtsRvJuvozzJwk8jKxl5DYGzsLgIlirlN1DdKlaoGS9kWoksWmjTEaQw9azHnkBPLilyI2NN+eFA51wGUp9SKqmtTSj7uqGARmoxXdDWWjoXDBPRhLMf9MsbkQLyW7+iuqbbQh6pJ5BqChtp6zGiKI7hbo5bjPOsv9HWwP/K+ro/S61DMKrsIhbqDomLD+zjYw/gfkwtxNP+FEzC2WVYaHCp3MBECFObBL1bTG4ng7RbXZf+X1cci6QH2HNBCtmqp1d+cFLe0lmLV/DTIXK9nuI787JHXl6oh1MCWBVm2KjkOh82RiZxpiS2Axb5IMv1fMoeFghIC7N8aeH+NODOp0P8MGtANAtKjPK0AiFog6wfsECanbOWe9QeOQuDAOT6TRnqlVrg58JmVhMAY7pYofjS/eb+xELLDHCen40d0G2SOl4yMh4xp8eose04VrjdKJTCVnhnqdiK69VjaSv3S8HuhstPnGVS5omPjLmXzOj7UXX02UL9AGXhEseEC/BYWh2mZTsCeClxnl4OfgFc22XsQGYivWhgSkwmkDw3Cwnrv41zMJRUsnFHwMHsBkK1OtEvc4Rg6PTISuXO+vatH+pRGyFvO1riI9iU4A0OCp5i1C0ODa6lYGWRO/7b+M8Y7grGHD4KTjVNF6MdUVpgVz9hB0G17eIc5G+qtc7gpMRQ2EyGmKDhyBQzVMxme7B95YuA+/XGNbmn8u/rTtiV0Eq3W7EkiCkRggwctti6npWsyyWnWIxK9t2CpFOahKWkMl+QPtwFS/eOW4UzIQYSWbGqWonbxeFdgaGj3H4cQEGZZLtP6iLG4+O8PqP+7JT/Klyl/zL+MtXA5BbWneZ2OWc5fsjfDcfmA70d0k7nuu0CFAYdpRdy+CXi3BGbnTbKHjxm2DdtjGRzIaZ7OlyrpEGGm0FrjeuWH4msFKjqPxN3gVtCzGZ3t1JzlHvycDYJCF+VUTYdiOXL5zjfRLWAnst1Ou4wNcFHGTAwMWC2FTapczcbWD74iD3c2ICGsCX9QP0UEE5Cp+Hr7yFmYxixFk+2X28EO/C0Vpvl7K436qNmwyCDcYN7USZz8uFJ82scRY46w5ML6kJ5TZuORXxC3F6VC7RQXUItAmy/0LrTASkimj40zB7mBw23gOMbQTMxRCpbmq/4CZmxV8Rcbm3ZFYHgTH9FYP61qznhb7tfUThNNGUPoF20jlnQVpv30s5TsKa0YDJIm4tw15UM+NeAPpxeUd5EZiki0cjPtYdsv3bNEhNHmVDufrQUo8bq6dv8fb3cP6mjwCcOPoMwIHPdAx8fie49DqONoqpe6HQwtFyfSPlRaCP+Mrsg18F41gR8dF/CFI2pGwzTMuhiejWpVOigbgDjIHbK8vakNUs1ldEozHuxESDfY3x+S6xNtHD3SQtI7gDxg9jt09in+Ldzi6dVUNsWdOdOamzhiYVB7btbwffKD1c2yIRcpzv3Uggc0+MSssesdOrIOZCTxIB3OdFHaxhYhkHSup0Yc9G6zAAw0eu1oywPgg3eM2VQYr2D9jFM2I4/OKrJn6SmNVJhbC6y7zcrtWjnT5RODmljupXBVVwgTRqa8fB2h/8Pxnue5mCmj55fWDcRSnQDVMJ7GZzJiQMOTTsZyDxyl7H4jbfq3aA63eVTp7JdLhzL83kY4JfvmcdL9MdbPO0XqOdRSY00Ek33z1LtktetzDrnL+Mq38ARALpiYKF6Qb9iBCRIzGDEvQKkhsEMxLwXTBlO6nJX9VW/im5hc/9/mIQraftFBxk7g8gHghFyyF68KjzMpuqYcj9KVvkTF59WB/+QVJM8Sceh8Yy5QPc72QY3AJAUoZj8PnBIf39nXhgHk38YL0w7q+yoWFViZfij4egyWC2O4Vhy4FS/y6hh+idI9VsnReirpkGNE6kkDOUKwRqaB9FrZP9/hM6TqpxOmjNacehA1L9Djce6stoGW5lmwr7UHv91U0R+ndQvIfjr52NnPdL9QabBnMvaN+8HsgCMOSnDm7TLU1FyWfHuR6M1nNQ5j/g2R6A4+cx0WXvOZF31cjhQAI6O5sAV4R8L8L/ifqvMWJ1qMcTOuekbfrO1YG5WnR9SsEVod783pAC+Zvsq87DoeWKA8vyfpvAc/0THLQDyGQkGFAux7WcO+l8zt1M65tajubIY8YofOjm5qwnPPs3g4+8viEGadfbL9+OHvEKxG2QZqa3u8/339ukgBpfiJQQX8gnHEbIVTehC7bwT2yv9L/Fb4sM+Qi3begmqhzFmvCobPbhdkwQWfnltkB8WPz2PjCM+JEBycJ4nWata+uHQN63TxBaMVHjCTIsL5zNuHLLIBxEmFHWMgSKu6IF9H3+FaI2Q5im1U0+METr+vvlsE/r5Ck11jXeVeH+w2X3nRfbrApKQzmGQuHcolHTzNYk0K2ffT5VVOM9sIKFlLCKDhaVLBrUEiOJ4ebFS8SViinPOlQLs5YSkBNXZUj/aqPujrWjns/asX8vX/x8noMP4uDBXNGJaTfaB443CiSFfYkAiNxD98nSuwIxddkEu438d0cbSS+56BwJYYbTVuXYuMwdx/q+/9VDlEJ8AFJcN3hEBEpEldLEzNvPcNMe95mzZ0m0zULQUYi+AvhFYyDjOooSogmq5nfEgvl48ii5Fwvmm6HlK6oX79cGMv7gaB0+kztw6zSPZ+kq7huSEmrSpOJ8bHnhmNq0eb4cAow6SZnxC1wCueya7QKZ9SsZZoyhYm4C/I+GzEu4RNJFbPjtmCBpoSQRkdsxN5sd/yNiTS85sZnUUb857y/vlApBoq74zDwn6xpijMpL4gs1FUi8Roj9MHrlvmiSoaEDsSdAidBY/HurgJSdsQ78ucNRQUDpTkOx5C8w+kRZJFBU6tgD59LEtyLF/bIu47hzErVVdi+tFXUas/g6NQqcOlZ36dFkSSr7uNBY4R5vlr+BJh27z+hWXHP0JgxT2A+SP0/YdgHJz9VgC/bpv0ld6Ew+VoRfrZUTAgIczHEDRI6rFRc3MZOp47sIM9DwUJb0ksgj8WXg7Djjs2aLWQ5graT57R41sdvIZo+DFIKSEgJLfHdCIKjG6elSLOWz2j95sdzDdSYmRJ8XDWKsG6QsYRo4SIUTd572HFRa86sv2wBqcx+W1ykJlFUsUjYwGSPE3S0FyelRFuSMtvAQ55nHQPyqwdZOMDVfSy/k0CAN/ZFZQMEyLj4NcrLjQ7CEd2yh4vWHCUZNU9dBLC4gGkgz6QrMZtDhYRVhV99YlqrcJpC9hY+ZKW3uqOsbEhVYJkiK1/LCaWxBfVnuKlt8H3ItZ4L6CbtJYU3DDUR1HkMidP36ySxN5IlQaVRmfI4aBq0v9mmFbHVKw2yrTUMMJK/0H6iwPiqwKXo7u8TWKMqvYIlc5WL3JE/VHUJsK5FT3jiO+LQ40UxFV6EPQ5Ai9+RvwoPrTuGG9dVsWp8wRFpmk0zvFTs0lLGxsjBMrnPWe56ThhJJ6MQq8y/dV/YZ7v1Ar1Ybrcbxe6KqRN2wEKXXhEVrdEvPRrec7TpeAYKX/KuXlqL2VrzCqOKuETNJLuEJOqcMI5eonUhONsTNwcVU5zbqGZDcHz78j7gEd59EKd2wGZKWjKxzdPgPF7dlMYFtZhgs6rA3b0Y+xPkRsgJPQsoCa7TjgLtCpcc+AzeQtqVWua4c7x8bYI4VsRrPk4ZQrrccU7RDCzXY0qjHdAeYJwAXgVTc+jKfRjO9t4zwS/R1bRVCh3irFdbTKCAzi2oFVVOUJ6Gd/ZnqEQfROUPLJi+JMxg8gGi+bKWbzb6xYSdFpk8jzHXeTeZrWcNJRY/55mT3OueiGmlPnZTkZtlzoIqA30jXf487t0tePWo6j03LpV2AsCiTKGv2TV/MP1i8RMtuRVotvEyLBrlVYMKkchdk8mjqnLoJtEHB4aSOV5PLkN88ZfvLoftfmzjjvDZI+fCKxGk00jIgv8+AdkdX+CJ5iYf2t7LkoUmL6WkDQGdcLhPe/qdedi3eSqME6bVNa2ebvlx/habTIDvHN2arM0vQifrfpheCCsGpnhMw8zAlEPzuGRQrAdavH+5HDWOmYsV4f3X6qE6RIAETVsL89frzAWr4UxNMtyL7LR4aX3Wg0pxv6Enr0qmq/je0eDuJjTyik9arPbKr6eooqSiOCi3zLUfhxGkZeZCxeG+4Rywla/JblVdBO1+qoFrHhevamMDGIEBoZuPOZYlr2ugtHTUZZPN24vTyvadmXfzW2OBGyiRvJqjatQ3XaJAguPNhVea4GFnQegnGbtAWesPreAaYt8K86H+C0OW4Ts9Diu/pJQULcB70YH/5GEIBWXqBp4xSOpfBhhmMJE6TtSteOEQgLdzozFAmbsKbK+Ym2jupgSFp9UIHDPzC2Hulx/ScsWIoZlK+8HFbKZirSyuDoyfUUBL9uKKOasARQIhlTwl5Gr6Qq2xqM7SlEvzS66ENfvrIrlBAI87TUl97MgRbhrCSYu0B1V2QVw7OL05RPMBXLahyDjA5Ly7x8TI1cbKWUJ5RHWRmBmTL64Ok69pbCzoeaWk1jRHOdAmfBBz+vjz8Px+ghdLGSyQIq/cpU38dNmx7F17OuvD4Oqo/fA1ae8fjXwfYhLepoL+20pGlTCrE/LXeRZpAVbueyZIsfPF1gEcLa826+Ynf64qvEE3J2offQhTgD3T/vQw0zu+fIF8nNc6ZAdELNEPtgnNkRPicWqsIPX6ZyxoHyOm4WyRNHFqFsmKZFW7fqsnyIoHTOh6P2YAIkPR/0HASFURqcvLIWXgTcwG+epW3G9iqQgaza7/1LaGg7CTmno6A1/t82/KTWZ/isktxSawJaYjVHDb2eXXuwqliVKHQ7AImAqagF91ViFOZg6DhP/kEJf8m6f2iX+C6tYcKvY+i2n9vUdmsuGS78Ra2nCBi8+CQA4jodnnKwTI0H640/T18uqekeR/hbKwbHWhUNtogUbaY8NDOKjzTAxHM7A0LpigMjGUD4M8+j8yfzbrZO14FaLj5uh4tg0B/PgruHN0bMwpt7YMgR6pXy6a0s7awXQ/sIEq1c8C0yphbRIBTxYExtX2ENemzpUjUSlEZ1yYikieHPgurUChiyJC/orT9bSwHiOHStqKTQlYdyXmt+ChvG6auDcHLp0OBrhHsR/IGPKm2RZuRw+xt7JvPiE145EY9nsP+qSlotlUCCoR7EyT29aYw48nHoHgp4LAoZ7a69Fskf2CpNFk5wj8kpmYJlltLh5j5dgWFeIAotbI5ycKFffz3v+5F4TJBGKZihsI33PKAaXwTgaQbkW0w4ecmQKcHpZ67/DmOmd7QrpFNIB+EKSXUh9rjSp7Q/LSwbdRtfJOQa+BZfw7p7VTGuBTBjf/2IPsip4QdV4++vkcZrjRYH2X2sxBtvajXETCqyIpw8BSZL3gX73i4FBLPduV3+e9xh9GR8XmlRM0rvAnzZ4YVs72ljBhSSrxtqDU9e5QM1Pd9pfdr0dylKlZwHGgdDVlsIZOnQdbCVPlJQPJ+mgyEf2BZoa/AZtRoWhn5UrXEzx20mBxH4VILvd7hQeS7GA+fLHtmU6MIdAzlGPuUScv2LPx0oXqy/aEDZPzkjMjSgWvPMg3IJkcTDI5ycW4HZaRUZVpMntulTTIUJjJRtmlyr4uLbIZq61tZ6/LmzlrCr2P4Xx773iKHGPDwWVOM9ce6tr0hBlhKhIbJFyRUHvDDEYaqYlpOXaPHxJ+3PMxn4W0T1ohrNuoxjY7jOtVD0wbGQKy2KC+SrXx++dn0s49/YzSnlUr86g1/aPdlXAEXFGzfwb4bbVYZBR4xFrxA087nQgUaM9GgYfmf1LGuUTS/p59Gkaz0P/2qm7G2e+0yy/vLmf7QkaSsSXqdsiDYNJauV224ViS+Xm1qzb5K2dNWLZbqDXxTQf7XzscwSW+VPb6Tyfla1RepOkb16Zy3Er0P0dpcSY4Xjct0ApWH+jOk414aNOFAkrR4WorWBys1Q+8JSg1+Z4W+CGK3ocEKMSDKdfSceoVuSX4+y0vkR1B4MMukPx0ufLS+fS9oDd78FhZyWE0GVgjTr5VoHA6rM/zdNX3DI32vCtacd1myh0evqj+ZVpa8j+5XrlMZ7i15w4FG54AA+XsNWDEf4oeWJOCNnjAann9r2sq9mFkENekVzdxosD85Sz13dvZTDDWFPNpwlWjZTACCn3DoyppMc+dGiDUlnjCydSTk6ERw5rKNQhpUu9X+4zSTeATVYGEzVwHZmolclqS00z3rOpLt7DCjfVZOjJ2EKityigprCwPwZ1BkD7dH7UA7GCkA3ZCqPa6QXdgMY2XdkLy+YlygGrUyLIf3W4NbQTELY78MUezYS3+cn4kAw+VbApbtR+vaIVJLkn12xoNMDUqB+wME9tXV60BTL6hxl0vzT2Ylik5F5lbTe9fYOt7wWqwB0ai5sGmT6y3fkMS/qY5YqsdIgwa7SLbdLSbqe27Kk3CykEEpLkfHyeBDNoS/ost0DY8apWNv3oQWydndYIvltHdMMeZqMk28z5iBcmXhuIoERF84kBfiX3IZ0Qf+3e9wkx9mwPo5XSh5vxA4SyuLEcafcsKvprLmkn1AniaSqIM2f5/hwWicRfj2dCCAGFFXmyvpnf+js2sU0KSy6n7CNoAT5t+aWHswKEHY+dndgeQ0e+K60E6v2bG8cJi76QFd2q+aRLbb/3oQmPHZBexcD9whtDElMPd6/iliEqI07XSIlsU8oQgnfqOHNd4oryaZbfj2SjTQV4EI4Hkbff2Q0wBP8wj0P6PzoDvLTJbd1Pu31i5n5KPFnzWpVBmCMxYTM0npWS3+LgxqzQSBYbH1fI4Z/x3Izbwamjx654eKAyz67vFguTygch0IPhvqSZi79Ht4msfWpMbJE2ddZig3GVm+MuuVHYSPEXHMlwx+wMXaCiuG0B1EV4zHiT83AoZvk0Vsa9uNLKA1dTEpG735TPWFaa3cp5x3z4VnRe2dF2g0dumTrrCHq4b5mKDMwoU3moLsGcSMq/n6A9wuFhC8pGnyOuHa+eopLUwn8SpKg9oZ5o85HkqgypsWHRBLEHCO/tu612sAUgkFtLXmFd1OY6abY38FeGJEORu8TTtpbn/4npXgYqVD8QRccE++wk8WQzH2aPSyvb85WHPSOzDIs4BTXRzwGiwi7lvSb+pcz3l17i6+oNRNwiQDgyrg22tVbXc0153ONd5GbARLYtVDxBSjImfN7k3Qvj/9ExFIQIX0pkXo1UdJZmjzuxc2yzkNT08mQZW4jEeGq2cFyt6iJ+9ZrH9l4EdyrIy6DxNSAjrwPAq4MARpaevfkiTCb1HUgzuu1gPHFLwOSViGFgmVF1V1bPI7mpFR6WQ1okNlhGxxm0h4G34E5T6cGt1nBWYi/zg1Bf2473MCacxz1v70d8p8UymPT2mIOo+r86EjJ1gZpkvKakvXtkp54Kb+o5z9PEH3tmBx7gMPu7S755yv4G8nrdQRsgwwN9SSB8dCHh5ZVwY4pklu0WC+hmRlIXXAP+NzRJSmB26WSf0FNF7O0MGp0iLduMkfqxhkmZzA4R5hWuIcFXlldaH83zYBr7xiMxQdpwkQu+4I5FxCKi6SUOtnI9bTYgFsXOAARAF2M459Y8dVIu4/gtEX93TKy39BF8JnmilSyRmgERd2oEf+o74y9m8iMo+oC+QjpUFDJSvwcXLGRp0iXrmC/pM9KxiQArQd2qWg2EqpUTGfjX/8qogjgoZVAHusbgIXtW3TTj6gMtXVJIcDc2yw0guosHk+EmtfbLzB85669Fsl3vJ6BS+tPbTKBs0tFF9Ob+FQNHV4n5Z71c/qy+6UT+fpYl6XJ1gV7OIwBFA+Hng6YhaDDRg4PpuA7fpAQuPKGV6Pa4zbh/FXNNHY/Fyo7XmjQiIimLfl4C9hF3m1n1BZm5UMufT9nTQJj4lICu7Ns+8SoS9StrL655YEkLlG4XYORRF1jsEFLaYvgRIGtVihbSpHRXR/+4Pr+iopofO4wtv3z9vYq2wLmx8nIqdG547AsTrjH3Vs6b0F0LVSuppdGbaU8tSWlwItRUln7Fd3wkgkhAWABJjBrsbDrQyWzfvyztXXrB0Hsu+6FGtUlPC8pG5E183RH4+zgu/vjdYA9VVYJro5kh71mtp1DtxMOyOWXLSIPFzBX+wWyDPTgvp29fcOlOnQvGOHWr6zvoJV+u3mYEmYS5GiqSuaujoay+Y5qAdSw4zwPyum7vA9mHxgeez/NMHsxGdZSIjhXCT6n0qcy1GL84SZlh55gLqERMXt78MZBv+TB36PKTnbDU87HO1WKppCoBxq5aFAbzxFEkic4Avlq7o8Ywrow/bMSu6qDR2x/DFJ+ovSP6grlvgLTCgEZEoEwZYGglIYbDRc7FPBt4zz7qaxGn96TSB47+1II7VbDmRwvvZhFk86Zn2iMfasMnItAR3WzvbMcJYbhgzj7CwG20SNaA2UE2Q0T2Tr7BC/ISY7G+FhUFZiiyh1uMhVTqrdmpfrVz8N3ueJbD8EUxgXq7eFND2quA5qPdRdg3KiZFaqw523mES5jimoaseDA283me8bN/R9gA/HQTEa0Zrw53Wa6FlbvLWrF8CHui8xJH5lV8SchDauKGTyW1uwQa2YSKqRo/xE31mM6GgC5T1Sh/+7ccBoWV4eTwysa8yKX5+TP1eaaQUtz3Tuidqi/HYUEPzNAv2O/olZ98ZZ5TLTTJ7Idj2YWcuxY2cZNvBWTZe4/5vnhjUnutOlVHfQyWIud90a6pybG9dEwSNJrD1/HYdFyjt5K3LyguCvYo9ZyVg9zp+RIsQKNK9JP4EVbxZkTmduUgi2bZ31XzGhka1yOkM87YCC7MN8N74ETc9O34AdeNh1GOFp9/YyfpUozmWRDVh2XIL/NVhXueeHRaDd/b4fmqwwk/3UCb6nV+FX+XCN8y0zWWyIrhYrdMFXZVxDWihQoSD9G4HX/GPj6isxY4CbAG4XPc+Dh4vGB+RQ/yJw2Pf1lPUqTMxUnOAvFgoA/Dh7wq3d9VFE7o6vBb5MAWzGN1www1SusqhVKiWQjexZOWVMnPpBChBS4Ms9A3S0zOOYW120ARv0l6udUI8JcqqlhYeA9VWbdr58dgpnnOgZ4iS0WlFDQ9maFs+6yJfbbp/mrVkTXJ/H70rnDO5XQCKndy0/pyx1Hn0JNBR14EahiLTIZycuHS2m2Nn7ZDpLx66jT5tOucAqU2a9pGW5iLzjSSmNxKVlrk864zRDEn1oYp2Wyo3I+wJlnEWk/OGSYyEI1zzUPN71KSGgmuJ/0FBhscgs9wCgHT2T9NAO/b2yVSy+NsxO/H+qHRPRKSbJ+Q2tCYPWLEq2efAjRwNo9IU9fNYYdPpQG/eNBAzsDb/aQaGGobb/rpkVPocY/MNig4/rFd1DZWAmoaUxwg+TPv+jS5fO2P+itPJchLB5nEivj52CJc2VyWJ83u5RSaBmz2w1axQsJUSqS6DqIOQBB3SxHs45v/D2wWby5UdWDbT0sbHbcdSZtq84oqBiEfRZf+A/xAu77nXH+3SNQR16XkDOfmH6dgOYqlrsni6C/xthtX8L9rLepGtjrfkESm/+TwkT1aIxljPzdflkknkdwGEVuTZ2P5vn7axgn6kXVEaaxUvSTUqKYkxsbqDEhydq27c65yfLMJNq8i84V6hq8un4HbBz64l8V0hBdKbuZXFRafkpYNc3EQMQHOOu2wLZZ/QUefb0UPpN8PWGMTQgks0BHsx15DJH5aUqmy7/hJHwNRSjshC/7mncinS7ruEpLmBOPJ3Pblf1x9K58mcGwuQdJPaSTUBH3UvuD6/cDrQu6Ht3TajMoreTJkwlLPeky1wM9kGPEir1S8RJt0cj3Hs+WZ5jnZL3CmwCY4dQRfMSCPcs1PPdLhPj68NNgglUxQgCssXQ9200Evju1mCKxRq0T8uULP9Jx4zIE0vOwQ2uuvQAy80zs4/bnGHYPeHxngFUpbVezTVoD3550f2i8eHDrx/ixABjvAA/lYMpxc3R+jHEIFuWDCDmUxoEkfVSbvfB6tXdUepvK86RwPwxsnsDHQ5O2eZLoyfI1uzSFjEQBD7y6P1YtVnBTPzB8UctTjNAi/Ih3WaJO4Nm5/JkdA0TOSFq3/IUMJG1OOPK+aa/T1cWyS7sxtoaLvqGc2j81TjLeCffyznz+V3UgNtr1SCzqNb2V8npuYxVF0dUjqVRwDfCneIgfL4rAIwXycA1xoUlSiUdr46/WXvcKgfHWJMbhGg8LoGQ6Bu0Mf5ROz6wMPexTIXoiug47smAiWLSvmbiFeQBSt6eL8JlmLJL94wIBdIxwH4Ik3z645GdbbOSdiFg2ubG+YLeHSCZJDneSc7UeVqv9w/B7x0H+i9uAmV+TpNTMdSQPe+ZJPvHb8ooS3W19yU58JqNlsLlDmW5Yad+NiD9L9PtHjuBpgfecCelBSKbCM2wornrlTSm3fl9Lcg70A985GUJOCOQXrLSyJUhMZtjuEiLVPY0rqusPTqBBP1jxH4w7D64nMDtolGqMO8mDueKC2KW1fpkS6D/k8/pRfAGD8Kw56nB9a9Dtn3GN+IbwNKzoS3zz1ZL67lWMlyB8DrxDgpkkgBWNqs8lcFKrMtk+l7vTg6tnk2IiJvOoOW6bwchm9BKtfTxRk+bIgqMd7JU9cTlyc4APkmG2v07cXXuT+DDhDqpz7aERIfjZM24rG2qexQMEsK9Cj1ezBhKtvUdJWtxNCzOjw+i7j6BHm5BreQe+VX9EO1WE5+Q2h9CaiFnNWiK9W17tb6Z4dF5YNFrUBZHRVmCeVdFerrxa6dDJKKq37kgTJ+k+6HrM4rZ+55mKTetp2e9oNmMjs9qNBBiuvRRWC8GMsSVj/WrbD5tJcg0EFDvYCXMes4dQnQE4kG6oywdIBQFtWrzT9P/itAiA65R6U/bXgd4xmBBdLbTQwq9bvOns1JNkNXR9xps5Po8n1Mj9PDn5AKcI2rYUbnVxvfr1zb4JBMNS7sJOOpu49LDRJ1cSCCCZwMswzES7RWGDfosSSfnTl3+hNeM4CS+6MW544RBIgZpR2g7U7ZWIxAU+P1cDgL1N6Z4/juiqkTehNianZHbRh45WzyO5XTa5f4l1pd6HPW+IGUeqwi3gOXj6XNefh/f3prcAM5jOSEVYTVaDLQvp7ffAp6jNPwUQqHQ+0vYEV1q0kviSqKcavfjUz6U2Tx66d4qgY+PNVCf8QvUvP69uCRMwXCMke17wl76i271/JDe10b8vVsMTX0DGt/5+6YxxyCpZtTr5nHm8vLuwLIJsxPj17NzeC8PsoDU/BzoQR+6wGQNX21IT27Dm8gDsW4xJt6pHjnzKdIk2UlTTvOIMbDt2uhWppunscnugfTHV5CsxcidFRCv8urrVKfdi8h0/jQcQwIss2kZ8iJDhKyfeRzBIhbHixP27VYUNvOYyBPkp3Y3Dv0hGJB9io99I5L/kswi0p85aqBpTLOP+IWTzWkRwz5NUMvYHNTQR1IUcOD1Ypm6026Ge5wFw5Lvd+9nROUjdJpRs/8s5yQxvOroK9w3mE7lsHcxv2u6sHLL7/dnCMloJLpdrKudr6Yd+5z1EMBuU3bppOg61vOU7iZ8ZiD5pmZ6gu89EKmNI9vHM0PvmOkXPZk7ob+csEBx179QZfqjT28lQTpOVQkOCL0VMm9nGhFA2ooW3QNgn4uG/zjwlJT9iJhdL54jBMf8gQzQrUPWw9AhE7LDjeZYJXMA/ViTbM9CPbXTNrJ/Jy8wzT4iT5XeMWugapfinYzN54vUM8M3oW40eoqdckzPVRKfEYGWeTdQgy1B/c5u8TcqVU54/FVKx5ltcQJ7MbxjSlJDTjgvHvrMfO8I8UlkrUkOsk5u+6551l+nMwmVaL6aHBJvPib53jrT5HQX4JEWU88jjQEGDxUUI5otTMyEerjd/HzfM6uLx5qGKdgKTKVfpYYb2JbfxLoc2iARUa3tIoOwONgFz5Xr3tDt9qELRVjthwYigB5gOJWXxkA0BdW42+1g2WasaqmWM7CM9IfA7dfQfPolco4DXSN87QvU2Kb0grVgf7dHnohRDp2Ka9hfRKIQZRPijAYmtY/3R5IBTRaCFAh7D58w+pktqo9nWK+bGT2748QcN/zoaFDZgH+W0D8aUKiifSfd/JtAcZwDUlPqQWHxWCf/nOQSPeCoobqUf0/x5ux3X/zw7lIz/zpU3cSvvEO4OYsiWf84g5pCfLPfCxCCeDAuQH1XhBUscZE1fS4nxCs3pcou5oitv7h10rtU7Z6pjr/mb1n7gyepRaTewMAHAX/JIuIkQlS+fmP/p+zu9YH8sv3KRIVyWTQxDj89gDM759ijq7LiQvG79UtKoFP5JnLtpVjRzL3U3HtgoOIkpVwmwcSrNbdvIZnTz8J358q6Nsj69zwBZ8ahelisJGSqOdBCXptK0abCOHFEsdY4IRu3qny6nglcRX5eMa2kXvJQ8qRHJASv9qbaueFQ1TteWIbSMA0r6GCd366r7vLWlaacNy2XvJZWC/8qLMpy9RsEu78aeegFbD8Gv4hPB7r+cYC3iqQI6wA6Xom9YIJzKm4xxDYuUESHcLEXa7d2UUuUq/0aiK5/Rt0i2ZnXIeKV6fDEoj+pWhwYJK3N8bTcm4iWJhppwWT2AZol+2igq8ke1TszjZiKEeODsloGQQLTG2q3OuDusRS34k1T447XXLtor38oSk3shUlmSjUOqfz2l6KaLQxwno9U9z1/uLbm+1efHLH/DzhDC7jW9pb+wKvX8tboRt98v7r5MN8N53Hz2iEgXY7Th01K8lKLx9ZQTvKvlTqqubaNuEfj7KSrQae6+Bynp/VjUlfL6W2KC2LsHPRzoQkp37X7oQIGChNF8hc8ifyF6Ie0rB8kGk7VyJ4BZTPxqxNTMjNh/G2AQxfXS+9ztLjWGSD7zKjg02qiON3HuKFAAXA95LyBXo4q5TTfU9WyLG/J06yZ/KKlKHL/ui2QNgXLvt7KqpHMGGBiSZ/7cxRJiK2HAULDQAXSLqxBHup68EvgZq9+3b1n+zqW+VvNGr6PRKoAjhPJuhO1cZmsL8rOjb5DhKKJnLb5Nl5Pl453sAkNUcyc+c8GCJfQfPOcdPQ/KvD8gPrvj6bEx0xCct4kLOhha5ikuSvrAeB2beG1d7FO6Zzik4RQRL7EQhibvFu7K7xSWMaol8aX/9CzJ7sdQ26enpRdwgCv+ZytFMvF/i9B65r3YHhdzJgZlvSFo/Bq9rI4gpWRJQfW6qkUQvZRm66NEra3eIYlXPKLueyKgJ0I34bi+cu45bpIPu0C3gMTUt2pA4b+Sj0td4fcBK3NOTPl/G3C9r8vM84OV8JqrMyISA+R2PRCs4sA4gE6S7YXSG3IY3deizrhj22nXkiOeAC8W8ynDPWeR2uIhrzXXAb8TOXcXFg4fERxypKYoqvU+2q91dSxvJDbz+sNNc7l0xLMjragh2tLTFT+RqQWtj5SsdLZtpPMijZXe3IW0WWAeSksJ/x7hsNPZLalCzs9mYdI0TsiJx+Xc/YaMlNkb+PpxA343slWQX+F475/y6jaOMpoDmDYO6men3vK8HrFRxUGqiO7URecCk3QaxOwSKw8Xx6La7ASXEPd511BqrtSt+XXuPgVYYsy9sFMO4U1r8oa5paBB2r10QlXjzYZuwdAgCJ/uVYBhFLKXm4Bsx/idRDlTWQyBw1xLFGpu3eV5u+fqqGHHM0DLLD8mDzzCB3NUddiDcySZHyhBJRC2Y7HcHNjntxljLM2u+D5r4Af727xKfGxkkv9bU8+RLL41HOTemTzl9CrBStw9ZQ86m4OH4+mZusNmofTLl/UYVIxCKUQH2w5tbmKubZTyJ42URy8OoL4KYZWIyQQzTpLiEkr5zUG1yaUejJpikigLe4O1NgqM0P32JptsdBAG0ZUVSsX6KVpE0hhI/SNtdWJYjTfCGUnScARViHHRSBWcAupeR1VF8tBPDhnUcxi4jtgb7FQ4eY7+EDS73lPBX6rhodCeb9KXAz/kqRXCTH9lwTsi4bx8Xumu6aZTIjAsXBMDMlM1tub5OmsGdbzqnitrep6mGGECPtBsQKdlKOVjOI3j5BkBjowrOhAuSvhYDwUO1P1F4dg4iAWJ2gajgckPOklycqMs+GdUvSkwB/0vzY3CnZ6+pQ2v+NIuebhh/ppvqeir6//e8FDVkGBwNyFhDmgQC/dTcs2YKq+yuQ/VQE1oXuFKhGuAcfkC1uLVRN/ceZe7i2pciiCmtQVBJUg3HBXP+8Vt5ykiJ6Om04O/2uQW9sGkgWGCdQL1BlwfW1s5t6+wYQaoRP6cXRn1e1UVoatNOXC1n11aQqCarRO2P1Ch/hRLv9DrYQw1xr7gZC2YaBFMLoD/jtOnf5uG8PIVt8gHNjsSI0g6o+Y+iFJjBgdByXCsSXx0v3AP/q5DIms9tVK1z4hs4bhaQehyePcGOdI5oj1PXkj7aNFkr5vN6sQirXt7RwM7+Djkmo61topfXYH83LOq8d+EEnynvHyWYX/wqK1ZGKt5cN8BYJ169YLd4wfYAPtzGyuMTuHYJPrdn4vv8zbYaHIEAjxfub9cZ4GWF2mgBpYp34l/wgrEfNyM7MRKNQNgvSb38nYG+NQ6iUhG2yB/vBMlsciD5qAkk98KcB+oPlxFpx9RVqos4JQkUJ4GHKz6I/lg0TewHHREqoCYeO7LvdYosCJ3ZiRHkD7rHSjYk8Ped7ZPClNKYvvqooVKPc5V1zmmHQ7BwkftePb+tNYCYknx8Gnp+ijcHQs7/npSovEq5rYOK46JdhBm3l/fYWlzsnHlfGFtL1dzG1Xp7dx7NQV+kYknh6HI750aj83QS0Kz93sP4ngjJW6UP7MbBce8QozERJCAvJAt2KSdOkNCrP0W7fbCYnRRvZVgLDY0fQPrptcAQXGA2KBsXDsgvqHUL38LBzc1a28JK0C/eMtCMTZ/Is3MtRidMuHOCX5A9C7hTIqJjrFwuRWg842Ay7lhibgEXtIm2GKVN6Lnir+sscwtuU01fV5l1B/brCqo3d5vjMZbOx4hvkfnZMI1SN5nr3b2aauyjJK2M1xY3WJejWAhCbe+J+0V4jZ2uz1Mn1jLjXDv9suEPkJ98uJRoGDOVFcBAzqBP/Y0izPNUy5e8aqhVr3k5rsw8sIIF3k/Fz6ehowKFj0CBKjvxiIPFo0STzdHh2VXyV+b76e+QGVDjxKMyCHK6Avsjhwj1pWc+iNo+tjuanfyKr0uMP6W8AAnurhIBRFb5xzDeCXFiODR+S4ydSub+X3lf2aF8R2s5pIy4ISgNw7W47FIr02UGxMtIaJRxOUxz4MmOn71n2ZypbeWIFuRQpMXbx97qWQl5rW1Deej+9HeevHicybLFhBEZSZLAaoqLJDTJnQtdAxrTjZ6vA/gepR0Fex+dBoPIJNstuRvaFUM+rFDvOQYxTzCG3BslchAULum7EfX7fMo/hqyzYc4H0FVREvLBV76lopRglk2V+Ep+fPEVgarV18SOgRbvYlyO6lW/oXO3fCU2AD/uaQ0+YpW06TImCixtO/Q7mBe/iYwr3TZKp+gY+EO1Jt412s1F0rlm2i5IrwR5QviZIr66XioxmpGM2B/r4XSeZ0rpL2vE3GKL9HJ4Eldqth6l5TF61tTdjF7cimufTKOSUydpT5RTRaZAVoFysIvEiDDsWeY92VcjiFN/21BtQmbRRp/gJ/AGEHiRAv6ZaA+RynlyN6L4obHwvoz4zfzGBOJZVOGnJD4VywgcfDaLg+xNee1zEn3/F/lxXYhVFAvuCGjUqf4tqRh0THSolcfs5g5W7QFkZatbghVmjKmEJKaQ0hcRcTJMItKEOwwA0NenhFXoHQ/JOxOPP7ZofdNFHM5MyIQC78nzIM0Z/qWEK4iqRDAoQlLh9SX1pLOaZ2rTR9XhTNtf+Wg7ZmOOnOPr/Lo9V2OIK6JAVLoEFJkWg8puruP4VDmdzTVIsb4CbGBj7/60nTYSfJr2uHaangsIL7kPUpFymgDsjfLynVD/s0/ixHRvZOFH1ApLhOKOjck0iUSW19dOMTLPJLoi3KlsFjjvpaO/g2SkpB0gcb9UTB5BnywrkUh2XWgY04D/g86BiPWQi2RDKYrCcG8T6AigxEaU7YxnD59hjn+vWvji2umo8cryA3a8dVE8Ngs1pKoUeBAbWQehOfJ8uUNwA+U9L2gYErc3p/T9pui2RmbSpEO6R55DpRBEEWKvwpjQFa/ykEJ30lE6fKo/NQa17dsYnKLOOOiLoZ/mWrXFX/avfPCjZym8oaoTJoI2mN1PyczfKuHxdgmb22DjspbQT4U2PHNIot9VBae2Z5EwVvhbNGsAntBQ8+jL9SH6adbfXz8BZ2s7tNOBoxcvKvoQccFjhrZdyb8DzN1Uq/t74xT3myUeRLEmEMvOA4O/amN0dXvcdEhFxoQ79Pe/obX9LH4RparRuxPExW0zY7ejEBcgUocCBn5KoLXVni3x+yfhIEkcIKkV1KnGr+VZznrbYOkkT2hZlTjZvxSAn5QPqvRJxJOr0ym2cfX/7q5huh87V7EZlPTw9cG/Gt2QICAxXB+1+wEJVY+8FnE3LM+lhnZjtSvi/IDwFPvIdPw9beQHa7BoEz+092yOs7sVocX1XUGb8elXe5KilnIrpCYk64LueCnUCkYm8/1Cl5BOKmOlP2s94TRmR1aL9/Kqg+kg/OQMeCwPveLjMvlsnEJ3zjbg/KggC2mq/alafGvVJIvHOhmh1jSsSk4JeIjJtTVvuTCmCrgsiuwb73DzIjsk7MJTS7vMxEpmLzSBw6ZkK2LGOIQxwwKZkuDviVtCo6qWnPdZs2jJn//ESU/I1oIIEC1GIJE/1+zGyvoSBs38AtTelznWfuMiDFKPJ79sr94lW1LboJdexrDthCWS6bgIhGLpua8qC51qyO2fNgkmJIPIUxRkg542syOX0ALZhd5ZswFzxDVnBOyJPIZrr3+4Sj80NhBOwXgXLKDP8SKiv+df1pERthIgg1tiRVdcl7GuvkUwVw5LpKJJ8t2a5AKJB0HmrAw6zZMR1l93MuAtTM0hDakZCpBsCUapKSdSNPRnt+QXp8LvmKihQnt/2eN7OFv0h3AV0RcuSlZpcaLvgdLscDJMuT+X4C+UzpbO7hi+roI648k6LwwvIpcv19szcR4BP/dOtPNv6JKWS/jjfEC5xv1uxWlxfctTxY5qTh9tzTRwvTeUvtGOZ2QIE2ge5pv65KdilBzpv+Jj5rzQlCEW+7m43DOM/ZJrJas+//yMpfeMxw37Wo2iRa88+JVa0+6FLbe+V47KFT7T1TCEe1xAg0QAo00BiMKfgOAd8Jh9zgQ4W0DE+cVRbi3M/UNcZ7Cqhj1N5o+kxyl3dwdGIxR90xGf3uN9VBS+JFvcA8wDytP6ChWyf28CGGTF3LHIRuQso16mKzt4ccETnPaQf5QMQSNPAGJ4vvKvGIckegsAb/I0rH9CNra/alNcyGX7tDMtyFf1H8xcl2ZyywPmXIbrBC/Cs7KLp0/7qbyTffaukWBDaatQDjgqge3+tjvVQMDFzkdX6iJQMkn/Wf3DMAJOU8LFohqGwL2ioaptKIlK1S3IP2rh2xaWtTo4jzk7q6NqKADOToactFV46hKgUqMvHRcQFz12sK3yrIm652kz0+3jS1R6vVipROmRj8hKBkhWzKDG5JRsSRiRnOdcwqiSOhpcRn3zeLtq7a2ya6/g9iq76TuELC14iolauMdTkcm8+65ZxVB/Lc3ol1RaUuBzIyijVy2rABswGHgLqX+nMpaEq/U08ycAdNV9GEqmgZqa5CuqgjrOsxf3TqYPo0AMfQ88BWS5A+N9jdbE1ifd3lWWHrwZRp1W5e+ne/ZcxH5pU6XljCjAts4kfUl7iVyumf3KLjG4zIe+JjRt9O3jEXlRLzHYd3u8p5USM1DrDgzNFmcEoAoKIAircGbvHNqHUrJbh448Y5z6dPiLHxB8jRyOWM/QsBhYo0qLTD7qsz1U8aeCsXwRHqscMhXZWekg6zG7Bzi+k/0An8a/lL6qSvCeJ6wFarV0zI0WMERWT+wJPBO12zpUCKFu7B41j0be4LHCNGZniEaQq9Y08T13nczJpSjNqdrzKFiCtmOAwGscwSZikqLgxqNi3a0yFvkzoC8DlJpeVlUQ7d29nYBQpOZBMmmqRUpECMdijd6MFOg3P0wDeSJsjE9+KlEPh8XcI5AeSlv5Fxh+hllMaf2cx4MdyYrEbXGMB61OHW6O228xUgmH+MLXRZ48l2DhDIZvDrYyMZTSNLCbCV0kZ5J26dGcdY3xyq+yYzqsijVoUahbnKGaO0qQyYCe3Wgw5aXraOchCMk1q938X36Hd2oJbyi/6ejCPq0IAl8EvPpbEbqZA4ulw55jDhqy8WlyAy8igFI9oOs/85eptht3NGPsIQC2g798L04MRYn88QoAba9MQgxIt17t6S2dIvnhkmjAZGwaKmksarm0otYutodZZYR+fTEBfQnKPGF/l4li4COMfhUm8iWWuNhOz47Ls2e34WrtI9C9NDti2gRcUS0LIdwaUXy89CO/iqgYHDSyiQlHxEzc8ZYBwDXogh7VHPi7Co1xVpb9mYxQIHVn4j8NYGa7x8ZYrPVxI5eHandGmTIutMGu9sFLU9b0zUWy/ka5YdL3UOCms1tYfCLdpjwWQ8cASGO8fjvosZf5LRJ4g+1jOXyr7udvozcwwHirXcdTj/KDp0WfCEG4duTU5TKBthITIapprxAMbDyLWZlP+tcp834iH0/tDfBmmCTask/qu9CLbz8OMJEzFgf2ftMF78r1VFeF79EvBL3BEsYBlO4iFuBLTaHH97k1gwrM/DrkKWJ4kcCt8jaO3sm62QjJG2zTDjuvJaEAXdyO21eryedX7m08SRJz4TpspAorM7Z3DKFIQI0hbjakr7ZE2Vg9afr1QPn+60gqBp40wcYQRh2GFj5C6mPO9Lx0zoSWcl8f0B2ahzN41wWPwPqjP7RGAE5FRJ7vEX7fF00Ihk2Z6ccPWrxTMdKNem5BH5j8xKb1gFbJPpGkVWt18EYKYmmB6ms85G9mp0CdWqIjLkYKOlYDmPaeRnGBRFhbWSJbvQs6q9Wu0Bm3vWNxsV4uxrL0oDnSl+n5Arhrdg5PoAcUCLB+DC9PfxXHldRX1CChCYEuykM+padpZDZAc0sOg2nV9lv+hjVxiEyCpizzkiGrGQtI5j1rByx2lZ0OnSsiriKdFLdL4gcSk6j+S8JCEjl+GTDhi+ZV3kGi2yl+f9n3T0EML7o+tiNnF8rIQerrfqCyV82/it3ocJGDBjiDReOI2fE6m9SMA+eOms3038EqZClrgiJfQtJqKbLePW8N59vByJjpp/0jMBWEzQ0slCJx4d/p4zudcRCG7DBkQpwCSjH6IIh4mr/rBUf5tn74Up52nl7IQDg9XbtkOYaKIkkEQ7eTUDKfak+3+wi3dn71fW4oblDm6aka+1Cv2duiOKFc10+KfvD1w7PbCs0JyECE+FODAlLifqcQb1KptmBNxP00TUgdbgjuZqfoXh9F/Hk0yPoCjKA62gZuTMVqMuIAb2Heu96Ez+I9Z3ZJHj/8aZmKUY8QMOrWS1n0mMNyTWlsokl3slLCihjVwR0iduhZphKSnPNM2Hzux5UzpcQ6b69bjo9ugQAM/NapSi7mQ+Mg10oTNSN30GUPU63cM+86LGyG6QhIg1VQd271s2tgC+nX/VMJbtCAhZCt8G4EBfMWP+wj/4/aDzXBPnohK8RCyVWl7JynpyJqrpbnvTE0NwOSOyBDsW41906ttZurrQT08p4izXPltuM1LKbecA5d1nmEu6dRmjnKpjzL1FwkRf4kvlyko6BbRjIPP1xU8BO5B5NVGvcQafh4LojG6ylN3StISt2iudeDOP5StlqGeqmGhi+8byDkW3mFqfMg/YtBnII06yolcqCBR1P9joZShWRv07+UXVXY9f2HCEZnChp2NPoRacGmfXE8br65Fe9tXmPxzN4UbRghNnyQsy4lYbBAFdEfEbdCYhUvkY8xs4BSYDbSxIIeaVMt/Qs4na594zKxuzBqDiVY2SsYedK+SL6txiYMSCq6KD4d/zWg9QUVfYJaiLz44i+nPRM68Rbd/1rMPific6T3W4vY8xiSEQA3siTB0fOW2DgPeRdM4YAS+n3FoQeLD/DUQQ4Ycx5o5btU12udcnubM0IDGklISMZQAoOSYXZGdkDa3g1MTkVWaVi+QHPdaqONvMbUVP9CUa12YVmLJTd20udDO+JZyUpjyh/7+Y8r2VQGEGuUytPzhE9ID4fJ1WROhURb3SB8Edh+fAxW/xOqc7irKpseerqlVIu9d+c8I7wDEJMCLf9x9NTap/jSdlr/XrPUVkKX/TFmElqNjK5BNT3Z35Fy2hIqCIg47DI5vwej3l0knaI5OiPnUQZqqQQndZA5COxXPO9CpdQVK1GjoFY4aXbXyYw7DC/heJeVDg5L8woya0i/ir/xd7NciKxGcIg+t1c0cLNYs7WzrI7nfqDsOagtEoJR0ud/Qt/u8PpDfDhqb6vHHft4b6RhV7prFaqTdxuwjD7ckK1MBFXeoYfJa2TNaCNV1WHZLrUTSHrnHOsJf8+XBDLbHx+MgXxc7X0lzHVcUhL597RQ7C0BwpT27c9LtvO2hcnzeGKxXoqM/rZLMVMyjfYfbzYunrnsBtqtTpKItjZ2MYxi/MNdpz7KAlbYRF9w3tZnTdM05pCulz/jAVRgjwXMN5ryr7pnmVxQQJSQgQBCykUThBDXo2OCM2dCyWU8ARWE1/+W0+lFUjeIip76UAIjvJu5HTaXxzk1cFu/vJD+srCgK/aoMmPBLPjCS4WVye9K+iV+4cyRljGHGFrECmXLbRnrHfl//v+IXpW6kiPPRgG5dy6smWAKkHpgPC6gn8MtDFczVN2eIdVMy4HBfeUrWdgpRYM/M68dIM7IJfnENW/39WY/gikFPT/3JM38tV7POLxMH8NgmPYPHmZlhn2iPlWdFoAVA81ZpaLp3lbT6AAXXnx4qq+ivGlnwXBxqH73oELnbAvDORFaTGgBs2PpJHeo1/dykga05lzczoLo4hmeLXJCUH4f4ghRUJfQjr7Kq7C+j3nHawUEP8hAmLnCO5ap9RTTsxO9P50ypmxxqPqf8kLig95gYqJz+7t0Aow+f2cujESS2ftdRCfopf48bpOLSrGRicCTbGnL99WOhQfdPypCHsxbwNHk4WKu3KGZ+pKNwzwKuLTAqcz9UYNFXZs6AkfnCVb+/rZ/5VYAH+8Jm6jB+xFjFZyliIIiAZzICr/IGoKU5rhD4y64VSyhakX7BNWkdtBpmg8z8GpRm75CVPW+p3vxS+XM2x0RW5/9vnf15ASIbfWbIxV5ULpeMfqEHQOC+B9fzg7Zmt60N1aruXQleYTeORZu1zPlcCBfuddwHVwbzHN83DcIOydXnDBLMPzmt4ghKhgK872FzrYMO8SWMKQnVr0/yfX/7pFdpxDXtdVkf2FxBShYN9mu6pieBfpwklCOheSoKDmHB+74Jrf45ngJlkIZHl06uLPQSDsAEvNf6qJWG55zJW+tjHJ+0homM+hQtavyrajJ6AkjIved2/OeT8b+ejJDZBWITlzyrMhs2ftzN03fD0rN/XyX2veSJtqTinDkyqwFh7KwG6ZNZPQttZht+UDOQrDVpOCHPXOGZszTlBIqyTG8hiyRRF+UQ3edMGAIgdRSxeWD/8NUrqjyBotTno6DCiSdcP7yU85b1Mw9H17bezIhqwByBrWI/vD4y5zE6k/j4vqHcEikn7PmMOBx3BnejaZdy8dmqsGIxUHAuRyuL4Ma8YRu09Y423MfNFSzhRqpo5IdSP7ucphh4t7FbNiU947RQB3Yw8oTOqF64LWLMJ0+9RE08kJCR8cr6EQMY25ahhw7XyIAbm2Unql1Uyne2NQLEGW/y38sWUtZ0pcCBax7Ku46Agk/RNJNrYF6kLDb4RGWcO55cYNcw7OS9eEal455OX2pj0Rh8Vkmz/02L8xAlg6L/lvNfTt78BlF1zFarg8DpANpwfWaNrDsZd7sQPQtJqPGonm/2gCXqK2ipeP9hAwSJvfeZbn0M3f/4S51GuiREJTu36H5weOjVCf/lTsyh7BiOVaZM4tVy+LqUDlSg6rXR73yw9nKZ1gCnTb2N41wUBMJGwXCNOXWwX8EcJKvpCCmpHxoysk8wfLUu6riXI0M/VexSw9Z+5OAp0KibvkFRZw20UXsc7icp0M64R2PIon5nruVw83FlxXe/8nAmgZNCP8nOtsqmmIak6+iORzOqtMF/7tll0Zta5jBbmZbglN2RfGMSAlzTcPEUYoRcjFUHJUrryqAjFFav/jzwn3SR/wy3aeT733uwshZrs9jQanpFW9urQqpKXK16bCME+1BVcSSe3GlmIOo4GdIDdVezLtbES/koo7eCBYh2gKyzSjNFj1lHg+u15Xc4QvBKiHdJo8iTHyoN2xK00pIUtiPzM46j/uvFjEtFAU3Q8FsK3wQlkLlkZqWwkXwgXqBku4W3HipVeQ+jKU6dj5cocHduVvBSRpf2Z/qEaTA+Epn/B+jbS3HIsu8WLOTBBtzC3PCFBlXT9W2tYZqFmau+yakvhl1DRSr3glV3m94egq3QL6UJpjGJmFQTAWIzibwnZrkM+C0JVKi7/40QgIpO6ZRQHLY/nmjVQH8mg2Y0eGggSqcyIQzojyPzz5wVTmPezLEeU9EmDpRkwM6rQZYCiP3edbiRHytp/EkbImhCMAWq+5y8VWl38YljzqXw5jXcZv1O/2IgMSZPCUh2u8ZLyjJmXRlXkcefMWSrsU9KbGjXNOm+h0JRtbNqrmdB1q6JJVoYWHX/OwJNb0Dz9w41r5Q/PLKp/yczeg9ae7DfHA9KrGksOHnKtromg2+rvXlcH0YEVwwndZquHH8ymhKxXcJXYfG9Ewm05TSa5YBIeaEIxH5WF6NjGza5Emd6Ou83bWvZjpYTc/ltxr8rdoq4VAIjxo5MYAwkB7PqskOyerB/zMNZkkehGVsyPL/PlMVGtM16Zk/VBfRureHIaJ9W8S7CY42C0c7m5xmirVzp95cqVNJukidfgJUYJrX8ljotugKdU4Lt/DyaZNjP6OnRzAVXVRlem9VZC5HE3HHOL7r4+MuZhV+ejyCm7+3dydvRW//gvddeshKn4VVGfkZAczBtLtX6HmNz3UvY13HlpOhyCSiKRhZhOWE9c5Fnr6P8Dejr+6M6r4A7hu0mjoCLQujnTLRPf0hMjqsnr9CC3eLHY9PlBiCDgCbk6yVyu+AZ0yTXZOwIGAku8qxeKFzcEYeAfCWTueXKuzcSbWdC1KfRF/34rIquQPMmOrZzyhunskuKF8VAc8IqjAMdv0KwJ6I6d8hKvF/92DUa5s3o4enAvioiSby2wy37o1SUWRM0+APayckuLnN9KbaM3JFy1gPhFZiJxcHWMLcKKCO5ynTC13OQByWzFICBQHI8Tn6LNvSdcy7UUb4zvR3XwDtTIug19NssrOBNJR1AUOc3Lr5hz48lHjuQnLP/d3KMEQGOFe3GQqFHB00nvA0bppntGb+oGG2Mt+QCbGKNJ716g2GypY/GYb7zP8jaKsAL6BdUfis7b2tKm3iQz8oZgZ824021uwa8lJpcnrsBZU5S1yqMX1DjthSnA3RTeMsT0Prw3dpz4DZXWd5ftrTNtjfge17U/qssigtfWZDcHn2Ek7pyPZwY/NshUPWh4QBg41u9h3DZJWfrpuiMUB1CmSEi5f3002jrUg2VXm5tAC23s1PpDzm575G5DUSX7VCKxbsYQkPGCCEt/I3FQiw7wlyBPI4FRrjHJq6+/yJSe4sOidflB77tPxMAxN7/bURGj05mIQwo2UC3+sGgy8k2CXxYMA9MPa5WMb+1/NVt38vltWFhXAxzbxbKemVWvQYgADmHcSZDVGej2onOFjaKuWw0X/8Jd4Z6+bC1KG96ck9i49VbIy+yr5es0Hd/5timbf/ArtbveVSnrmTx0soMrTqDShBL/vCvBxnMslwKMwm3+G5xvd57HrhPPxfPyGzvjteQPQ6fDQsMJH25zaxfCnGImGrgWI9URju6fy5mzEoen+I2/LQwKof7WiihLjfp9z0m6ZM9x7KkGAcea1a9iEE4SM+qWAj2Y90wlFus7JEFsuXMCcxeixqiSKOY31WEK/g2gkty4vGM+CzAv9GAj/auqr/n94OssA3JnG1xrDnos8O9BCVxQf23aYZER6TgVBUQL60dH4WK6clUNnFiyC5J34Zmu/uVDpNcY8IZmpDSSuGL7WWEFxc9hQakAqew3BEb6DvHcj4d60e65papTLPF2qpg6JrQhMTuOSSMMebZVJa2pDheLaTZULzy4FWGrqrDovhWqhpOE1Gap7LZ27yYsf2wV0VQwb88bDfQxo1ZIifd1SLonwfP2cgGDFltwn3zgSkRcb+kaYvBhG5TLyFO1i+XqpZcqe+iOQmoKAOGKQv5niWoXZxWsOm7cz4O5VsB0DT2F3j9ld8RWECx5qHYN+L7nuJISmt1Hazg9RW3j45VeAqOmdSlVIhBvLtxBc++Cb2EmNNT548l2wCBgHObW1IJJCyZ6PoG9I4MMnWN9hTM8ujwx/omQ6IdF9nhGX1viaqdzBTOlUFblLBBhiLKw+B3wdDEcX9luzESXRjZ8YkKuBbEVcM/fl4nPpEy0/q3CiKz8umZF6TYNhII4sl30SXgzpFCn7+BDW+vqW5Y9X98ymNL9A6yTgCQUvKLXpSYz8yPMwqNZaDAWCIoD9vXa9RWPp6Jrfa3Bjw5a4/1m9r5PckVX5lJAvYKLUUCwWX+bQeGKeYkuZrnhKH3wjG7As9P0hHKL6A5Zv0xKP+EKvUdfoJDkJCZFuOsAX7ZGk7IEtX0UpY+HwZD3BjilC6jQET+knJm+CuQconU+MNrq+0A3eGQUGi4OfCi3oBTCtpOAZy+Idx0JMqgiYFA9MI4TwdmCgnEGVrhsy4y4Nv9fCUtuBJsP+ZpN3esqFFSwtRP9jUaV2kzO79vRcqt+QX53CxjDlVbWGNSP+VV1rYEIB291gxZMB3T/b4lIEv5LAsrqx+n1E3wwcIAEYbx0eG0BSwECmV96yHTN3Rm0ocXnxZEauvdE1CpHNdvI0Tte15q9/Vg25WURZ30tMCpw//4Ee1RITqutBcopLRkAF9SKKLgt049Pvkb0Hm02QImo6a/Smnwp4zfxXcxDDZIxFPCMSYhzYZ8mc1Hjrpv2NAmemNB4HPCZqV+V6bCWAfkePHL+nJseWJoo+3F2EiAS9oWHWoYJFS2IgXiu9hu4r6c26qP4w+2u7p3x97leBReWB90xiB5Hvga8AFj+5ZIB4IIwbtFavS6cjJtNbkeAkPqDG3YpByGsn+KIo8uUWuiY3rXc58t12g6lKkjTjMa0g5Rwyr2BYaKXkLakxjWGibBCS9Roy5Pb78wsl3XpvwUyqFmlUH8DhHwd/6ihJhz5AZHqO1L3wLrgoI39XXr5AnlBGSRTyw8ALjzfAMmqZBdhM2kOseBFbHhdqA9nfjLYasCG5cGFSdtJGntSj/bjJIjAlvBM5erMQbC3hXzsWqcvND1uiv9+xkXZ0MtVK11cie8gBmynbcc9gZKQKxzxRWYsD8yIBTlq3VBxcxXkYPENzZowJTf21Uqvv2hHcp9ke8OKLP3/pzoT3OkOLOIojmdDykkyy8tMpqCD9h37HnOEJBrXUJhvSssxz22dgVGhauEnJYZkapnNFevCyMQdWHVQ3Gzd9zJqY/++6GfM9dAoYhu0CDsrzJhtvUeENbb5A3sB9c/N3q8OlWlgRVIlBXOc5ETeM1ygQq5redUCLdtMMzSwfYR1gG/9A0Zm9JsPN4v2nZldlJQN9wKFEBLznPQhZRQOqD3b7cl/qV3x3n5LYnfO4ZlkKu36DniSHL3ifh6zzsScepTlJs+AjrG5PFVHpZQRoISJaY4oCjF7ikFwCl+QEKV3SD3OwNjoITxSXySwfpssjPhdy5CxE6FbT9GxIINX0ZHB8iO7WxO0nP4bi3XdKn58FbHWgWNY8EZx20g+OnA73jhan16AphdFXjO8OmdmdbqY3lDiyHWwG2lQMUeUGKCOJKnn6p+nD8bWbDBXxZXTOQMxD6l31ItOdrVbuCKUV94emCBrUIjdBJ9oSHAWeWMmMbn6OsIXhGfX99TkmIq0zoLBduY8wr9xR8xFNQoMfBoShkAwYOEQZzBRST5iZadDVji6Cr9knDvx0z6BsrpQXZIBgHMJDhpLj910WZxN+7m9AFStLx/r8LY9e9EVHwPaA2Jp2/A3k61RcjWGg2cC4tnAX3PCR4w+irNQeBCBRJyCfqosJuSt2OV59MKc6lENuGyHmCtXzDyydRB398prfciSdXnakiImBwrwrDkmNqREnuLkwCbrrT3FiWQI0Jev+b/Or35AE+X/7mEMX1QPerTELXBSu/j0i2cBw6BV6knMvnIsBsUIFrk23pzWxsyRDiTCuSA57B/66pHKNv2FFANuNDKDq3csHluN22VRbFQrEyQmFRNV/pUJSGuf4gx+VHNcl0qYTWypQcjIcXowUVwP1NBTSvnAxgbIiiCchPENR5MD/npgcy2plRV38iwC0LHBGqvIT8iFeflssYJP/UTO9Hcfv+GhYfm34uy8m7m+AQAD+ds+sZo+P6h74so4HQ41wI3hpOYYj73CeAtlA2Y+Fqz1ebZEWh4hHeRA7yr8+ZhPwRFemFqtIANqOGqtDOanEdo6xhISstleKog2wfVguyUsDF3rC0tQlT4arAjNXbo5JjpEVqzA73jh+sfL1uWFP/oSGv+n0oqGKWUbJ2Hk44mLWkMJ/2NoZt5qCBP/DSYXQJj+cuOesH8ZXY26eoDqhHACXxMG0m3ligpbPiuHD9uw+BPSayUc5O2Tg8DreeVDPBpaRZldRJBC8IkwV6LC/fYkVHAmUZkrbnsi/0sJrv8onmJ6zXcyBjZPB2waXk0Tk6Spyuf9rtlo4jrxMR7F4cOJHlX4QAQ5ZDhbAghla/1WOEnrgkbi8oi1Kfdz2H6UzXFey/9GL6dziCLiOBcALkrnj8JWCaNAOym5TLICgxHWtz9t+y0Gk1Mhmeezwygc6urlA/cTKNIBeMj3bEuRaBwZ9NQBbuv7+BQMDF6UxVkq9mniIujeOhVXoCW+X0loaBFRrSdKs5dwLBshErZFXm/p87yQ0z48hy1ek77X49SWpy6ZgbR42YujKd4bYxebLy4d3N4oo/247wjWFN9AUX/UyYtQXK697RvSDoW7vjGqdTpqT3xDERkiCBrttp/wDkXB5CmGVgdIfyU7RrQSbPnsLf9vs1Ukni+xuJDG61HVCwflaE2cY+PfN+Xayqzd3EfjJIdf3NnTMtpTZVlKHDXV4PmjIo3TCBGSQwGC+R6IoLVr/Aw7RfSO9UA5qVyGE80pssGQzjE14mfhdRIGW0u9XXn+RPJVdStMSJh5D+x+ctR8FOPXFRhOyBSDjQW5xcAi6unl0b4M/+6/Pm3qKxWcwvwCHGvrEn0J9Q4g9vlFB6UkBSeqrSbdTtEBaMB8FW5kkCkSouxEzqjiMejuDtzc/v5Dl1G73KLYNROtJwGzdCi9MJO8aWYpXpQuL9ukrMbmRUI8WSAukiEtK++qkNL/0NW8W22awsVxsa9tiJyyVYHjU00rG21Bas9lgO2MPiV0UEDZPv5isYUPEfWMJO4qCczQx2S6ln7TJGOrAwhPUajWU6gOF7ZxQGxksUktAMjG5B5DGRaMsQ3DhUgSfPydV32bOEI3emXyza1MWTZ20N3eSHHNCXmas3QgA9BZ6x3v6iB80X2ueCyazFSpVeGx8Ss9rejZMsezZZ3nkucOoLEA4Mrvr27fHTFWh0L2iRbWPOyw6MCNt+/BYQ+U49dD/01BGfOgjnwnCFJ8L15Se6PcK3MRFb5cYJ2rlY3nszcNG3zXe25UOS41yW8LL4JWtVaygmSluUPEcegSdeVeXIYUGcB8fmHaMm00GHZeSinRUZUV4hukbVgSuao6Y50Rr6JKlPTaFJS7n2MYw7sYRC3OtLAM1s7M5sf41tx28pYtqRYLFqNImcZRMFdjMS2tLUeCgqEHWbqcf2YCnG8k+WtjSOk3nwReRchO6JHIO3GsZuJIau3g4mGGeL7AaiuFC1W6EHucw+KrIMRlTz4Zeg4vWhZxlKZP5vShNvaF5DbTOvGpr/vTs/QRW3N/H48gdgUHGmIAiu3O5dWSDTuize6c8z8JB/hRzbpmamjxMXx3gXuJL6azxTzJy7SXbcaW0Ab+EvxCoYrRf+ogi7a4yl1a+G0CGYfgcoRP398vzHOhgga6InQg17NSEEACe/JmVr9OwVefCukDzfhiaquE2+XhtScqE0abnYx+rJ4HoNAzraGa4zUqw3CdaU6y7YrKC81BUvTLKhE+9zWamywrNCJ+Ff6qbBGSgd7GnloaGrVtJ1UxrTVIfh6SEIcqJrbV576RpOOxi2MSBkpY38yJ2hOgTSUkv0ENqSK8wz5MnrIdxUffvPNP+Pm5sHCBbR7FX+CCU2uGMpCLGQlYiaottLqMsG9ZugUiiwjwbPCafGVML2QnMYNmg9qpdIdtWCXU6uySrNkViwV4wr3GBG5AE3vpTSt5ebu8ME4hVoCmg0cPcYwcsej1xT4QkRoFffhp7GntngHfeAQnAbbzkbcmM1glVqCRPVFVPaiEgljb5kS0flwRho/xEPYJwvF4iqzl2OiSBqqbjCHjZD6XTSdJ9P7HcPT0WOKdM/Z2pZnbY5iFgtXdvfGk1/QmU69hvfGOaddqE0rd1PsuK0Ji4xEnSMW/pnKNVkLfc0XUI1pfSsmITmk/YR01Y+Yc9yKLYpojDAo3ZbODow3ZUj+cMvD39Qb9SMRBMR0OWnadx9oPhFRNnHcJLfiNLv1w6Y/DAEbAz5F0OSCBZnUd2ZFrdDq9E7FYzTmZw0CH/kBy1K9F8LbMILSOqO0bty3UsZ7FutrNDyUcBDsd1Xooc3rLang6ni+ZKNJoNAym5DeC35LsyHuxdoCan6VMjDByqMetSvyPtwrWc1qM47FUWEgFwNs5W32bYypSqlt/Qs5bfKiNe74I/N+cR2H6c5BiRtwA5nqC57BnSXG0T9tozD5+XAGRtcJsluwcBSOGOlI8eYAplPlEQwO/jSgp/LmiK/snqiNQUznWx5znVaXRCSvIE2n90At/ztDM5QgBFJBoYzG6aWQ0nVIQuOXHYQceKGyXbAieJcGgkGAN1ZOu1IXhgUxJmH9Eu1a8ggaA6Gl5St9CqltsMBRSAVGsIgTrdgcbdrya1Pg7AVvFiEzHd++HPD+LXhMJoXm6r2ZD8ET4rIKE537MUIPv1sY5262W3g90xI9qt2g5vtEHZZhz/aN06IVEadi4F9trutWtX5VzvAoFiIvkKc4pMIrkpi8VE/OM5+nWm4KFD22pJrN/w8RfwE9jOsf/bK8HBBWsd5Ute4dLxLFN8AQZ23ZQ4E/MB/+pEgS2kzVdrAevzqrFaz9XbK3tXds3+tG/GxYkWRyqYjturXEFM0uYTkJQcdc2BcHOHQH02z3MgB6msOG/QdaxF9rQaT/XbFQiu7u3BdBjLtfGCc2cqYnwqemZNTo6AidfaI7KMDtUxt/qzKX9uFqebn3UaydxvR2M3F+Smm/fVUWGFibXimAwLjPmBmyVzJliKLe767cikqlo/Akfuds+zkXAFiCEftuS4B/iMV90MCDcGrerRNRBfN4inaVg3FhI78OhRg2K08cTPLv6LHvAeQgDy0Nq/IV5hGPHejY1DBbzSz9M32M4abIrspUIDbg1QAOkzr06f3npxXkJdyIYuTvHZNas81/2YSqPt6SEZNXa8WgiS4VCdBeMl1KtnEnYxEGWk4+nUMhzaCR5bZt0aEkUf7kXSdTo++Y2LaKFt/8vDPlappzrBRiWGDZskPwElzdMaoTCaIcZVqm5ej2JTII2bzj/9Yx+AqEiAL/NHpcuVrmwqbApuBLPeNoYd85vXIpxKvk+VBwhSjAXnhvPHKh5q4bxgaopnZgEenic7RYjiPQB0yZg5/cuUTRRrb/8yX7X7YDd4F+owmkO0QGVjWEY3H0Q/Y15f+/86HnObmvBawf9ceAEEZuK0BNISy6DQxTk++4WFVrvyyhE7jzXzwNdm23ooH32ZbZfL1r33DPPY4sGXWNeT7TqclBJ7fF+lqUJzbrXaRjGiQuu/jCLXRKccxaB7Dz27E0Gh0eNeiR4eJLvv6mIzAU5T0h8ayjGvHE3FoQ9s5/dugstUQuyn2glIDyDELu0KGGrcqKd5WFMrLklU3kDUhuPLfLlpG4Ypw4VMKKkrbECa7cPrnleINjZY1AQVuPI2JhsKB8fXFk880j2499g+Ow/wa2SD56bfyQ9fNr+yrSVvzsD5AXnR/7iCqhDnTApAYux0GtpRjx5/Ilzrw6FBadoDbBvFWruEbgPwCxgyEyrp38nKtQwMrtbeBJ3VnuksE1wM7T+VW2O1Wq1nAG98dyb+EsGGkjnd8SsKwkft3PPXo1cHLRshEMt/t0aVL8fZ/7qC4wuqjxdvsO8ZJkqFMFXVQ8adA0lQhhE3Lu1ix4m933edqvpvJH2gKxuoeBOyQ9Z3dOMlk35Z2vrBdRoZ5r2QAtfVDxv4AXWJDuI5R4Dpcx6MZ97d7r1Ik4LHQwgt6c8kF+ndjE2ME2SMT5+dKFWq4b7zkkkRRpBK2yA+lMnJhVHK1eEa+B9CFzuPRr2XZIwFlFlhGhTqaA3alrYXKstv75sEiyobrya4dByJ931A6LAH9Xptqb6tfTWG21q3qDZeQW+OOg0gxKPOXUNFUYv3BiIHO+elXJDbOMgpSA+5iMLd1Zq76929Hb0ET1aKz2U66j27RvMVdrBP47z5vY9SVch0gh8YxAgSkyHVO09pC587dq+0lrDOnu8jLgkmiAEAs8OZy4I68YeRpQeP29RXe1QMVKoyX5JjCtu9cdf1oSSP8KSIufDDZ4fOn/S4ZuGE7NmIphip45nl8+6Cq7ySBdYPWzAzLwYpn/IxEQWXtyLyverg96yocqwU3C1OA5+0Vi5z2aSIw62ZjMIcBJ0q0ArnYqOUXkJvUkNOJEKaBEAd7PJnqDs4PZZwfTqof5WH+yt91s1pLnyg9uLbmmjbw3wCD8UTP40xn9MqCf6/97EbY8GcP13tjXS3fNk0weYc8hed2JTcQI7sljYCEhfccRYzBkUSzZFQRf+nsV6ue+eNFJdpvFfbGu8MAVATZYdp+0KhCHkXosXmEh8if3ScXdSwMmQjYAbM9HJVwylLUC7D2HGAXxe2NzHi6T/JyuXHtDS2PtHyrWhv6WDU58od7k6LU/acAmqtqPSGVTD0JcVtuP8wQB3ATbPIGKs3SJFIu6OCXUYRbBlKh218251Uvjq06a8p8Swrt092N/1vgIxSylmGKKqwtamc9xZfT9w+rPfZSlLtaX+tIjDuL9/27cZu1VnOIDI/B1S81OeojgNU8UST3YYLHs4TxA+YmBMRsooMaOILDzAzntfdBDe0upBebvxEB/7VAaXC/74kwUos+QIdGyJtg/AEr3+OP7T+yUICPmbEo04tC0kgHf7joEuaXdnO0mDwE1ORecda9UpHtkRi4J6ntScX/YnN03/dAZqabLYTYlBNQFLdoiHrS9rJXRSE/KOYOb2InllFXOxPYULTUdVvKyT5vZYvYlQr7Q5dLL6yHJ0gzyJ2m/8jK55JhNJhU1wgSOJQhZOnZ87IV89knowAdQVsSqopcMV70PoAShq4RLNkqHo7hzJldxv6ouDvH+74n/T9IruDWbH0q65Ff8SeDvHPj4sD5HSMxFA55+9HEcq9/DnCNPhbzAU2wa5me5fatcg8Y9DxeSA8QAmTQVbmQCuQaMcvINHhTrW7a9pGiOTgjCNI8BxVfLT1Aam4MYy6hyizyzruBNm76saPvxszMKXQ8obqMEIzBJJ/b1GSlpu2b/lbnnGX/FiEzItyjV4F4pId+URBGYKL8Hd0dgT/zPPLztRm+j7bejHdDyqqgBG459FxvTy6TRgnzMfxqKpQwbrfVhu1L44ltayD0xEyf5iHE0R0L5WbMjUYyEpMW0JZZyu1gk81NO3uMv0o5vt5Aed5E3xCN69IIMJKkblJRmDLbvwoAnHLB80DN6UFXQCqjvLXmQwy4lP1sGQTA81HVVRBrxMeCeo6wId07MryePNTiWofdAHbX+1yhpwIHvowGzAkolSQkqTFqEfzIYKZAUb5JzcURBl/yYCJz9GSDsOO91yJQ4kopuP43iuAip4Pby/KiT2hskwlGbvtdtBznDdzGSW+YGtrEj4Iges+BBTydCA1mm7v7NATkD2esKOvzDqHlTPcOoZa3ew76ImXEKmZpRpOIxdNl2ocsZcsf/ymEbp44fX+d1aNB/Nyh780mCr/Li/onuy8eE62GdH2B3qmiuZJhTmR5Ak3Hu/7pBvpKgxqAIZ2UkEFuj00BGwej6D6I+7mHvfvOQq5ggFo2XxuVro1kQtC45OvD5JYKMdShmdsNTVlyhs91ga/CzvEQfB/ao08YiEJyoLyQsY+mrdp+G65qazKt35eJnpUVMlM+5iGgEBfN5rJsVumDoI6gmor9oMb904rh+1BloFq899xF7+GrBgKXvcvQNbhQ8BG9TxsTZFBJrlgtDlwbQUfGIvq0wVOYR6pZL4Og66xyETF1YdOU6nNY293DySPEt7VMMxTGk9ED1nG8daVvxutkoTh9BHTu+G/S9V1zAdymHBJ+FOvM9Zn5OCt8U4BUf2gttvmHAtqGYzuh2sgwewuB8ryLQwZIGXufA0CkqDjdlQrisvY+iYlGx++NsAm7cj/pD1m21FtmKjyQByIHO3eijXa9SsfYB3qHVYhTYIc7Metfp0yh7YsaMcxnTpjgEHWKFte9RTFEKWRD1SVYbfPkz05raswsDoSPNXpy9Y8//Ox+ZeRGaJJcF8DYGQGCmBO4ihTtBqiAWaq0BBmBIkS20Qr/icbjh3nRfv3nLf2VfbvJKzavKIo51vYLsAIkU1ZndXVFngYJabCzczPrHm+sZ08LxAoVKtGeeUHc1rlPdRurV5mXaxDDXg9/vyWpiEvnjzcG1B77Smc5sM+MS/XjTHhmgZ+XCEd2BnCl7t41hT2DlJODriinDGYFR1q6j5oFct+KhtKpN//hhRq4ME1Xffa3eCc8t3fxCPxLI4uMj6iEFej+jRCLtNYwMv1z6Mfc6X2ZqYL9e+8xK+TPcFJ/oxrmowq2wEKdN8ONhkVKWM9ecVJrWCm8u8VuTwxsX7B463B5OiHjRLEnydGEOvJnd4PSH130s1koOCxOcWCBafIMoNfkqhr8CTYNnKTxHX1YfPJh/BomllNWk+SNrSz9S/ymzt4wjFYIhPgj9aPBePyW9FdEqhoydoVstG9TTrqEBmHF8lteYbwmclGY3C3N1zLlWf7gzZts3DtpCI36Zu8+aXLjT26A0H47ZQDHpGkMGtKXe0wSwGLBDv8eMaraCbCoUPE526c3LB3yi9wrBnNeMjOK1KBBprv5Fb1fKiz/JtkWlCsNDuWW2tR/eGUSkBtzOX6MgbEuwa0qMbqy6FojKRTwRWHFNAdrLT8d7wUeTbt8K781dn8m/1LEEpnjKO3D9TE6KpIinOin6N23LolwpPSqPylcEp7ceXt1MpcHtfhh414RYN61ZewEJ+mik8gyAb7/KRIOaT70/qD9oLE7F1l36H02l51i65/Xezxt6rBkzWpvlq5iSj2humP+Wd6xmpIN2gE6hEQT2U08KkDj0ktKHq7gNhARoj23S9laDGLWyIKzhSYKIB13KPXVUZr10PsEdBX5ev/Wh3iCT5dRH9v8d111vR0AWQ5GZyDLHvHsPVvu/hHC6Q++ECPEd567zgbPhia0KPGPsO27/Fs7K6Pk7ci73CFIYwQm9HbjIkMFBpPQWzvYIG/M2KYOEqPMyIogJVOtwFenDmsFYEolkk1XM8/FARJRrolzU4vz8VqRLmsKH8dP1QCw966EYhtJp1WKMFrWx1mW1yHqzC6IqgmYLCcTpXolGus+E8UCadeC1tBVhMbc2u4X3RkojfeTbKmRoqNeiPWJtWCsoGOr7ijCX6doAwCerMZfAKHht0MQtCqXLZyeS1OEZ/b/G3tYk6tZZdv/26Q2xBeEicHgFP/elpc0lheThAJ2unVJ0HX6lfMBAquzvgcKie9dGgKozBJhNLNa6F9ZEYNLWFwjPt2NpQP/w7oDVErWtJpUcgEUOQ/2CZBcXloH/86J+MANvyyHN+NycmArcoSmwhxbLDPq/b1jwNw7TFAaHHkahDm0o5cXeagS93QDR4wp7Ef+mBc3N5nf4ah4kpOjTMd6bXZf+Vfkguffoiph8g7UCKKOx0yJfsga7fNySfvdNDM3UUsAAIKZ99Rs0ISmYfKfoPkWag9j5bUu7X1MmAdQ/RhRDQvxoVpyddzX2/Cki0+XJGwInNryEZWVxp1NBobVHAFWnTzVhjn1IiH0fb2MXWR78EacdKqt5LWFAL062hzWDR651xZnsizn80tQVnM03w7OiDiofjVGsncHsogz6MXJpy3Emx2AkiLW8w6c1+8u0ISh8hc5jfSg85+ekUp2UMY+Sc4bPRRc0yRmm8q2MjjAXJgn0NMoXaU/et2QPQtYibAEj5CXR2qj4piV6uT5geui46V+3jvyQf3uonJpqIfMJPR07VxrP0+RBrjjSUp5xHUJLUzTkXnC998AkCGuoKN2zE+T0p12WN9fli8TOfWS/lJ8H/AYTo6G6AiSVVbTd42TXeQRjfvJhpxJAHAOkWY52npDGIdZXBoJr/t3+Nn4tbt3/TuxSwn7xWcUpnAYlCPtNk8sXo5i8muUDZlg6xPgnIQ9yKh3RRfa8f8RI10fkatXz9h9PHmgeDqhIoUrHJ32I5/5MgJzemaF9iRCPuANpbztlBHmM4vCLlQ5lhMItKRl4A9kKHasJKnNBrddwUDYgNEA76IBHh3Av/qYUxqpyOBDxSGimiD9mU6a1MXftGBVX4tcNY+46eeDEuW78Xv1h+hogegNbTXmOD4J1YQlof8QfSt8TfNVHnHmKUOS6+fqqHaEL7ORf1OTalHvaxpvywDymVkYQTolICEEch3Iri/hsrarRxQkSxw4i+Cni/Trkbg0DXv178/SyQNdq4TTXUm2lwTzBLAqH/Q2OFW+WWoybEAd46SJ6G1I9kMmdgTV1xk9l8aHSkoR1d4lMZdq2UraYSazN/ctmwz/QqTaBMzgHaErZ5rBGZgdHTcSROugI39bdcTDVSE8ZYe0Wa8n/0jYcmuPV3FIZN8Rfx5KX+p52GY/1QYV812BY9On1OrBWrMM7BBLpYnb1CAoXsCB6ZGHSGaWl1GK7hf5so05sA94eHqOPmJOGqhyYCoDfezAASEJSns8YvSUwSEw5dvsDK/mcgl9nCDdVT2VC/+0QKb8fN7EhNJV2SxYUlcar6NHge3wE6pfcMNMx1bqvepu0wO9fNKuykoug2+bBAHDWM3jCkdZsd/IDUV+yZJOqblnb76vGEdnpZ1BR11OjXamPUTtP+8eqFWQKb82C3w+/0hXhQeiiLwMj+vQ66Qsi9vAPmKx3bxPYCig4gIqdqLS/0LjZ32mLRlCiAAXpK2B6F+OmJ+xPlyfQdfs6IeKEkw+YmZSXXzlEsUHO108FoveA42NjWXvjFapIj9lNLV6/oGrPAtSclRS6XEEBDcofKkmCeEggqs6iZ7KWfrQKGXWvM/L1WZIgbE3vVuyJ+8swkdjULcF4aBdMakk+cT4pmEtXXudapgawcgjiy82ow3bZWdLotUNdXDzgDxwom2lmDkvl40O60IkTxIcgF9RQ6QLqaivPei8bzH5BKaY+bVrn1j8ljcIE1I6Dfjuzsm7Yk00DZWN0FX/WOrImvVMCgo9wn6dAkSo70Hsb8EkemvIJ9jcuqvH6R2GKUZe3NaKs2mbBRSOhivkukqZqgPb/kX+G24WNgkE1ckpghVCLHlN6r73To6z+RNPOJOSRf5AlLKtiIrYsxr+QPgs8BqvwZCPwQpYMrQ2rficVR+HfUJnbiPj/RuVQYblBA8TrYoHVv7muEx66Ea47ItDUygB/slHPS9X7Ah1xYJe8DpACR0oGza1poXtGlewbl+UmWYOi9uXknZC9fYA6J1xibef/d49oMhZ3XRVSRkWB8TQBDjUaZAY92ObMicXvoXtpLJd0z999HTPAvlGJhIX9AvsxQMJhTRlcnMmr1hJooAoxobJgXhPDfFkBUdVz4wZ8Kvn47oVBeun/Ej9bV8f9WKthomtd1qKD9LNT6RykHlonqwQ0FAAqswInQgo0sGhNavCBhKMyTxWg36rypgvg3X6DBOarnPID/MXnijhpwpzBD+vpwekFUOmnKb/GP89KnZ8770YMvqGcWFfXEebVsV9Ksh4Vmm7Nu/6fJhdHgh0Pxu7PDalF41fKBermkxHAOYac7bYr2fMSL0/js+zfNZNQSoPCxs31XA/yRxJkGIU3BIGrk5336f345nCJ++hJ86eBe0N83KtKn/TjNNLe1X8qs3nYCapU3aMMjoecEhxXm6ezJFYHHnHK/IqK1IzVqTd/gpCVgYmxjPty/HedB+FJE0TKf2jtb0cMvgtoT8WkGk8En2IKS+2L6JDJsFyngggxqKhvOwutfMEM7pTt2j3omWyMfgWF8Yiziw3f5R3XwRf5zJhFow03ZCu7dDHvBIkIjhacuPflgwYVoQWhCRs1SZBnaN2SJ2zr6acL011st1U4f+E2WNk07wnlWBhibPN4x4GrD3WcPqYu3pcs99xRKTLbafE3iIpks7mTThwa77DltW606Hm0cSJFVc59qVnmhHcgcg4TUHHwKW22Xol5APighPV8NSrAj71R+BAPZwCz0rpMaZEBuNZ4Fi23TBVSTm79PEb3zQWpjP6we+ag2r9OaDaRKtas62/jLh+GEO/e1GBfYOp0gG8FNgIo8I6vC77lkY/D6vtoYhcZsN7gpYReJhNHvirVKJKhxsTRhBNwJnCQUKC89AtDxmPOZL5+2a5VPZuzCNnzgxZOn80x1valxOmDgbCKJva9TEZEgUE9WtEq1NY1TFp+BCBS03qp1RidIXUNbi12rQDU3jTYteFSLgLAor7DLUDN7hLT2XBow6bPiyLdbjB+n0GOUz2uLS6ZWGbhfCt6D+1pVOShWKWC408irYfjqAsXSAxQ9+Wmd5sczsqtkCEtuTw955EXFGxO95nmgUgi3yWZtBxVMm2C2HGbwhFakChJ35Q1DzddBpkVa5g0T3E0MSJ6K+5y+cVbOd1YEZF2XczdSRqvzhJnSsLb5++YDafXQn/6VUv9vIBYgZ+8tl4vNgslMcLBEoGsVwGstl8FAaVRsyfOx/ubVlRFcb9Iv6wO7ELZvGAC4Nq+qXLu/Yq0YRHuX0WU+UlkhFnMIqJwegUksDCo5PlYITUoi8m7PDFd0umS6eWmu4g63oiDUaLFb880pwB/2SHvqGqInD3VgvDeMPvkNayHto2uqYkJ9KToVtuLWyzCncFAyTszvZaXZV6AXDK7VM2bXjHkBS+bpK4y1hw8+wEBZqma6s7g1t71YrapNWSZbtPusFlmYcmXea6ldrPR4B//abN7G75n5lbSRYfLXL6zO5ZQs8z+PnlFszJ/IDkEZxM4n5PlXMhCzGHuwujMNsuqbxVJpna+7rQPmOWXXChaorlF6xntidNEkduW3PsDp6FSV1izZKEyI3xfgk/kuBk5QPWKTCdc73Bfkb0WlBAkontl+4B3toHYJsnR9RcqluUSeGYjAc0ykj+93mMS2iSHsSzVV/CTJYB9Ru4XBOSHTdtZPgQZvOh+hDa7/I9aoTqhbp886OMr4koJk5TP0NyfkLZWAsMfjimSSvbQR5EwbG9k2d4z30GnE2l/WLkSvBOvdvuPy3PX8xqQxOWbLV7Q85tYJwPdLuCZqBsBqBhyopkQlcAynFuUoPoD/Eld6Gyg6fNxQnsHQVEAUnWS+KM9dVhw8KoNF566yVnUooP99KNjgoN7VqPdw7z9wO21UrWeQ1fKeTB23nRFHBAYNKnteoRd4DWxc4rH2c34Nsi/3nMprh1nsX3lVN5x7dUz4cxyW7h/90o+UVaXaw5M7IhBzjK5t+/w+xaYzGFT7U8CwVzElyOG3xxBp9UCqpivwrpAOJeGAAQHlxVkZxAN/+mXTRLbY+UzaTI5p0af7s9q9y4PYd6CEeyHtr7S3fN0Xk641V1L3b3cRuQRLSvvJlyR+GkopcG3Fr779u5vNha5Yi70RHPIF7+Az+5+0q74CfSw8KexDpzV1RvVVQBsSps0Vu7jb6srBzRJcmu/1RMeWXS/H3EsyN0F0LNidj/2i56YWwm40hAJLDYpsYuEJH4Fq+qheDxky5W7bMvYF9ytXw1BUeRFghqY+nWNpvB1g4zFtZO8sf0N7azbEMuHpWcq2ig8HW6rlzF2Fxd8C+f+MZ6dy382ch/oH/t1pMz/ljtOjQtqgY/IQVjbwc7ECEGraFm+wfohlEMJsSveePKQ4Q9522BYE35nIAJsqarEfn+Ki0B4f1kXsgs8samAlDXjqE9o6gCX1+39z50ZXNwnO/PS98DG8nxjIIll479jT6tvQq+870WWB5ZoYRGYcTaYr8hWsfovj2fNRJq9Dw3TqYPXAlVT553ncUUQ2BVNKWFjwqnmXeCWGAX0mXn2OfHXFvdACt1rq5rohCXZsa4Rulzh3rr4ITQDnHNT6kaY2xps/SCkKH211rSt2jQ+znd18tgolWGu5A0i55PdoL5LG9NQ3+/5HrAzIHgS/hv9G3pgznNCeZGdcVyQ1Tzi2zayAZqY9SWtMVjLnQG3LTKw97K8z/a+z8szN0jbmPIdSp0F/2NVebWezpLcrWjjUY5AKjzoo16y78uarYzeqAOQDPElxNJs8IZ0rItEuY8fNIs+SdXX3VYf+Gbav9bTq0f1blANEYxTkmW+v8KDSjP9fkSQoiokUa97wrMLiQTvTw45RCqshAJiXYrRFkfazgL8zZrR6G/8icY4eGVGFzA06ykRC8JC1cCTcxO2rp2VBO1Fb8w42Yu6xriS9zUQeysz1tnFekTD0JFR0hMsH/R/yRrEpAx4bAhRbxuU3J8sLrgQC9VYOdp6Qg5wKbgafgliTG8S1lhtWw/8veM52nGsi8zOIjsKRjIt/s3QBz132LGXBngPo0fmIHqpPOrhkaaTuK/wJyGRYH8J4iYa0D5enSy7GOzgfRCKFfOHdzAYL3/42w0wvr1eW5tX2jT8FBVvMiM98IWdpbHDBjFmqvDU476OUiILpv4iSAkwPgJmxZELKQPizyRMvLP3rR1evguy1OecCAIwvvtikX1O3Gapl/5g4rC5TEgf/G7Q3kOdzdBZPsTjseNLxPY69oJwzA7C4Ud/B7SQM86u56ylCXS3prQwPXLzw0TrDV1UUTDP2jM112UDVaAm7RoQanxGEG54OcHuwZbzys865ioAYnE5vOIZLmZ7c/HeDTKc6ma1Qwwks/Rru3TG16GDjhfAwMYDBtuUKY9gXZoaPGm/Okl88XRdXz5xph6F2pH4SywnZTzfkvF+aPPdYXrtSvpezrAGsov42EDBRNbCgfWYFqdUC6Guq9nrrKdW5+3KeXdf3+ac9ab3Kw1aU/uIQRypsVYomnHMvXEXtbtvdfHuaQ5XtMeD5392YsR6ik6qSDJtMulXqdPjJ7KGMQWeJa+r5olYNRtuaRYjj5FUbJNUMcvYA1831leqV7wAwJT0DNf+vVxJpMKxdZHM/aYr5XQQspv4O12+PhBiFXfTmtTnecPB61ozLSIvx+H0nPq1NCJMevGxUWGJneLS1YVV+gZLWHd/O3ds8lX3NAGq2Cued5p/cctlZffJLtGelSmzhbZPBmhSWpje1bcQ69d1tGJuiN29O1W93OX1dJGpfsoaroVLdSfyzFN8nXPhW3g56WrwjdCaETQYHInS9VjVUchUueypL0uYyRQKxNjcR4cQq3MoGWNy0eOYo1sIV2xRYhhmNWCYAPjXf+f7SQf6a8xg1DpkNQacP6b3y/x3YsaeYDn8cox7yjGKy6OQ9fYrgQ+P5eQAlzxmDRqNPB6YsuO2RisohZynBDm/bu4Tb0lB8vGV4wD86WqXMQDT19Gm0Db2SAcESWCvkP1QHibBURGBH3N2+5Ocpsi5MCGv8ypz659LkZXVn6g4WsNDlytrQrK5d6/YkMIFBH36XAs03D4Qj+wC1pvikh6GRWxTbPxw3PwT/6LH01AJUj4Q4OLHFpTkmRa8QxGh1ELst3pAObZiZ1tqNdfQViCix1p6tBTtDXE1EAv6IHrhJ1Yclt9kLbdGRx8C7hkEE1fiZ7VlswGKBKql+whGcqq1k5g9sf52iG3FO8O6yMHMA7xh3Br4DzOxr7p1jakdKsdgOgXpycjBdd4cbIsPeefiyLRIUDmkR7rSvkbVarESJ3haZ33PdPnoTqfOuTBc3hLHGRQ7DhtL0C3t8KiyLXxXnupNhDpxNDIuAKb1ty7of8vR6KXqCA0d/b7ZY4Ed1ZY2VggivztM9vO/nK8uqB0dIR6b1opm7InSt4JnIOyAZqJWtrs6Q3UnereIm7MgLgWlWO8Wy7QvnGeOAk8TFexUJOHDBfBcGz9bK4MpzF1Nozcy9s5TvlB1WRESTXIIYLpewhd1OrE1KyVjKbGFxuqefqDrH3pEZ6gcthKJRbVeLzG4cpudUm/YgMWQmMXbpa8LYyYJcpF4SoVPiWJzauC+jQ4WnKpkzmiBU2hIEqUBJMIxwGEdlGRk9ZaeexWM1MgkMxpwBNYkZdA06NorO3ZhTMxmmE2QKwG/cXvZfExpxhymF5fUnvSq5+z/3ut9LQJ+F9GRylCFFljhvRjzvf+2aiZEt3NQGPAYKUYjJvVEdW7M5G3RqPaoCm3L+OddHagHVoS7C2q2qzEkmdNbCYMdFfTAK01CWHf1b/+x8yNFvXruLpGtZEsqSgzDu86frH6AVEsKbCyAwNmbUUXC3z7cjvAFsagipK1q79LrkGEaftHi4cCQQ7gny8PakUPuxtyNt10JdbTkYY09u203YzFjL1iDWa5zIOQ+rYYbGg8+hlymlW3p7o9NbW+JAWwi9Zxs1NMVkDeMPuu4XkvVqcZvsgKiFG054/qe1f6UwIYHOo9deEaExyayE0M+ieKjrZLTQeiFvBJ75N7wJdpvpFivAsZmF6EV0a2qnAE9JzpKDDMkK5xU2ICjx7RtCQwuqumf7ilFSEOaqTukKFe/73JK2422UtFfF2iNVytrwTmIp/4sorU26vnVf9omn1Oc3Zjx2HiwCO/KBl6WfIfygJWCC7Br7Xu3W2lRDRvi4yt+WKNhiIBqOv7tTa39mBqwZ/OV1G7muuIireDIrUJh6SMVQFNdOIVxQY8dHJqnzGkTLdI1+frl7VKFkjZkW1QkvVwbmxVhQShDLNCR9gRLuLBdTfvnGurFoBvqFweUL+dpNeYWyLqOuuI7hQ7SmklpATSgzM82Xk3JEkMG37A6e4k4gvR5X62TpmvJeShfPN+qLkHg2WKedkwmf4+vMhLdim52ydscEsTuNkUd6Obec+LTbvjiF/soQWfEz/uTUKsjmkzv4z5QjHxSA59qJeXrWn6rsEptNnVy9ZJfmmM5yyy/J43FSEpUHZnuXHYrJXe6Nc6s29bU4EAJjbvtTfi41SwOTOaWRbyS6b1WXgG8Deopsw+xzvGFgfCZLmjC2kbkZ1MsTzoctD9vIODg+AwH3b8Zm1IuqrEB3WA2u/Bq5IzBlTziJUkYXESId2w6hEe4S9nkSff23ghUJVmxkj/dlksrlj3hIw0QJ8CEWfqRowC7Hg1ARms55zwYKMzX8PTsRtI3Wp66zc16nAJ36pSRolm81dZzftC7QN/apXOFh0ezsxY855dNgZFR1yojqKTboFLbCqj4i9YrqjebdmIhzSClJHuz9RcoIWQzaf8aHTebf8xM928/XvE6SJxJanr1IQ2tjQwNSpxOIAFJX3MgyQDkWnEsvHsUEWtOmsleyiTKIRzxbqEEZXk3bPJpfJR46AkmYana2TUJepBmBUGUbxKI86jFYukb8WKRiDkle1OcfpMU2aApUUQv6iXckcUejVlg5yZl1JnhRdj+6dIzy3mOQPGvap3/vl3boi8IBc7jGO4m+Jt22KrboiGi+R7MzE8jJAyjUdylJH8/MX+5QkfJG5WWTOCJ7KGI1aj9bUK9iTf/CWrvr6N171OK5FgZZWlooYcM6kpXaJFAQ0yQlnVx6IvUE6lkDyR87kYqLbwCSMX7s5UJmadCyT2yMRhsieLjki/gsgUz+RBpaOVZUgi/IW38az/QaSX3t0HErlvDZlw2bPK5UzJi55jBSrdoYTESFO4f/JWb1iFhEgDG0umjYQn3WrlQ50vnPcG5mJQVQYidOytuDgwvD+GBzXIiypypUIhMLJWnL2YvXCJByE3vup7ZpUE/T/eQoq8kKQ+vdq8YYW3U350r/MfAeSFLKu/ydBXsjxKZ614YLKXe28x2yaWWTCuNd5bEt/VAfObaKpfwgIiiVTQAZzDZ9WUZE5rlB48aaN0Ocl4PqsIYeYMSu0eD9S1Je12bYvJNizA57CWn48Be9zIY77NlGE0XaJ4b5GTUf2f+fZa68O8Qjdo89NQcjM8CwcfZQQ3LO/0KjwQa3GCX79aC/jvH9VWH6htRiw2C0H8lGCwvK8gXJqn2mblK1Rwie9y6zTGTbsJiqPX1/zeZz1kgm9jLJER/ceFu8hxZC/BysZ0PyJpk6DZAaYJDmLmhu4RWh0DWS9HMTKfENiVFY3SjezJxrNOaLAsc7cAcNCcCmNQcGjS6Yi5Nkz7tAZWA6gbv29YdJ7Ofn7GkO/h/9sjnJDX2rLNBntiVANYU9pnYCffXqw4kuvjlk8mebw2013kPqKkk8HbtCLIc4aID5LRTbTWlEh2FanweJ5UpyU7AF8VCnFlzD3gPYojjSNYcgt+PzKEuzT6xIWgOBnt1FwnN4XamEVf8kyDCv8kuTHqmftD+GS34BzrNrAOaAPs20pf83uY5kyptm0v5YgkxWn4Z3kl8ewGNAD9y4fZtIdDf2Ni8x5gtliUAsYVnWuFTxdigIC1Z3UPlbof/LhN8FNGB4LJjJqz2VTDzIc14x8OeFBycikmgjp968Su3i6VKUuL/GnNdJCANpLIZ1VeVcUvchmJBVYsePvBcD0XjOFeFt6XdwoVwL/Bq3PegVHir0qyBkCXMdow+hec48Qg1Ry1/c8i85BtgWoz6tgTBcI5Ouc0ogBbRwMCc5WSGAvx0PKadlnYw3299g+CgZhLesh/uy3IIeQ2Bj/SjosH3iC0mwvlzXarLddH7tqwjrmvX22/cx2vq0c+4iQyo4MRX0MhgB/+vJFn8rg+RzxYm2YocO5P/blturuIcxDh45cF2PuWmqqKPR86o2iiePMDFNZJubyjwKGkZlDhd/AJESFAX5i7il6SecoaoYut1itxbtD9sMDpeDmpD2vjHSOjtbYvI+H3tMaNXWTLZBi3aDf+Ix1Nl64JEuH/TDFhXSy06busEwQqwIpj9tpI1MhKsn3xaNX1pZLM2AI0AeBqQhgI1iD+SAUiqwGgjxADasK/2tlZoK8fzQZF50q+Qh7nChiJ5rpQGDqNz1yYo8fjZC2bfV4OtCnVmiiYKAUSWWruldgkbXMMOqtTVBhGUFRJkI2iUSvb2XyndjcojwWX3ZxaIElgKN7ZB7lEeiYXN6dr+vKajr1GWDDZI5zKk0tu0XrlToB+k+r5LAQT95D/PgkME8y+9oVAB6PXwx0jiUhmewscIX9/S2FSEgdbzEEtNn5gJ3sVNtor6MdulIsRphcBri9fLRWXL+ULODaecqDQHiqWoRTJtIMbk8dhaibAf/VD9WW+EmV2zYitXGhQQJibInhxzYZ+Het5RUATqYpb5TaCCM8JD2Lo8iZ/0Ijkl7RonCax9ls7pUIqn6Ho9cBXWCh/6xkn5P7ac/LDMRNci0qe9+D+E07Dop7xNCMRiY6kbonHfDGkdEYEbiJLYh1ZyrFrsToPqjCB6H9DzNDPOhyytqc4xPj2p1nUWPDGEy+MQlHkKHK19Y9PVS7hnDvsM77YQ7EfLDTxHNiTg2vf5LnkgKONvOOjXdRJj9w8lcK1ivKqKcAuCAk+DsTvPHgmrq/yeWsj3dV9vrloaHHNjeQaZmA5WInNkTA6O6EyBQIOcLwi3YGZOeNEUMyxFCrqTajMpaegIfHR1/sv1siQXgshVlVvXtfuxxggs0wQyZ84SJaebX7HyzD2PNnYfaY1uwNKBG/0ehGKEgjsTRhPI2ZP1eIJyOnkfSIy+nKUIVlcowYvvWdXi0rzeyBXSnu/YW7RPJYCygn0BH0t74QV8FHU/Q15J1gMlPvb41sVdxF0xH7AvNiHnbR9PFhTd5Lsj6yPweo16g3XlPtvhQOt+8ynVJg6jwOZdLaBUrCKVtFFErA8787EMUjGN1MoZEv67n5PyYGbP/toM314LUm+9t0Z7pJXHmx+z3R7rrny1QuQIr+Vi/ctfKf9Y+NgT+jy4q5lIcLcuhj8BLBNL+6TNbNrYS/nRDzx66Mo6EzLTg1ebyTO73V0oualk7it1PyKFXDmyukvlNk0S3zO5ee6R4bRiG9PstmGeRlOlYnAQbB6uuG+6ENJBNeRnm6xX6tDnWmhjH/8rWv43lAIlin1CBC9lncNO4PoTpCgNFd4QeU/MAKTYQUgooG/IwYoQ+HJwF5FCIPm7AZ58ZBCVnY4V2+zbj8G2dd8Qxu8l0vhrvfYXGIEZy6iXjHnzOqStRJTQKCTY41pY3pxpgC8x9IOy05hs3+4IQJ5Rl/rm7nf7jUv3jwZGCMwXTAb20+DDL3rMVMi2+nliEiXLgEk8hyY0ZhBbUSBlJJN1jTTtjpYtGfoh8IWbg5+EY1T1N5GEtNk/UT+njaE6gt4pCoQ+TDaUB+tfOv2qTpkNhUG9Ljmp3eU1ZJzpGJQSVCPapbduHLb9DTi4LdOcmFdUQcMIA8PEYNPqIe3SX7bwwULTHvn1LLxNXd9MV8D3ait9//dUXRpbM8xl1JQBZsAaKofjjDXsyUIiQGjSxHcJNDi0FwNEuG33tBYmlYuPnnuyIOmVFNiBthiL5110eWVItksF0H71FNbQ5R58K69pHeDqpTn4zpogwDjX5vbRjDN9t8eX0+m/DZ472WSj99Q5goMLNObb1nlleQ7Fit/9l9RpKtwqs/nTxzdKGOAAjwCoI31FVPgsQomf6eTpLLUnIbQdmAbc6s7GgOGlwREYKTlsnk7zydaZQw3h/bTJePNV+APdpPR4zCU4OlzKI6L35YGh69ie131022wuja/7Ldlk0vf3oO4m+HuGemV8otdqge1MLxR53OrclIp4J/XLUdqjNPNAkYmjeCgKWefSyD52ck5yg2tMZcZeVgdiaOIgHmxycbBOd4/gyuq0aUIFMyLKvX7uFzrjc9Bu6DSK8G52yNiVGgZx7QGQ2wu0ly03tg42gYN9uo6lV8lMDtP9paozLIsZQenLGi6CfZ4nnZr7cSuNyBcYchbZP6wt1VDkCPui+qTGihJ4fWr9qe4reMzk/JClOGDUbdZGRhVHNE/3jAR6ScdQihrdyqc5+7FNKvkRwH+gSzEhBL3smPZX/2RPhM3ICZLlN26IUx82X6HuaIxp3tUwvPXXwaLBETAGCsjekpueJXYaXqB+DKhMq5TvNy+6SkugRs5QBKQPyPTve2c8zWlz79vsZ4ieX1IW4kerHAyvo1rh0MjJH9IolRJe5a5/gi0aiqdqaqCnrEA6xY1gGv5UZSq7w7llp03m9/naVbEt819MrKroq4yno+3oTPhCub4tSemv/0A1tQm85C02W2EBOBsnx2YTy4yNtq1ePa7TFtV3GTEkVwYrRnoS7pZrMcPWw1RANgzshCF59P1P+ef9vQ/SfGEIn46FMMKzelLtf7/BBxnA7hVhMkwZSRAFscS5oHwC0me5BvHiCAvdju8dque4J2ls4NhIAc0bPyw6LOhD/lvoNQFUNRs/dtzhIXPNxUSv/kXiFFk+voBALyELwZGME0/kNzcHk5slAKddbPIxrvPR6JM0Rva5uqNHzsQKRAjRRHY0YOBPzDtdKKBFXPip9zPi0NIEOItL6hukb6WEBkB/XWUvg0KxwhcCiAQLsrcGUiZ/Kipci0paUNGnfows4MfaeWFB4biFOdc9kKf4w/NR9Q7aHnPiLRtIUNmyJQHnITQ7ByeYQTLSbuwiuzQNf2zvRJ+vn9HtaoX8Sr9AlwHu3dsLNAJzYbAhdQLeRvyMSQZbdyZWQ2JLyT9tRRD4GHIPAZP9YlmfWBDI9y5bCFzQhd9Jw4o5zB/bq3gs2VRFWVsaDwy+jccLLy3wmltRheSQXkg5+zUtUmkBR/4EjBAFDydC9EgEYkZB4ZKf/NoU2Lqcc1hwJW0paLqvgNnmpUqnJ2AHpafS10izzX2hQbUKqZZWTcWyUmUWLt/XgdisFMaKX3PBGDq83CBrVKph8Xg9UIe9/hqZtswf/4GJ3Qc92Pu5pSboFigamkDWy3K/ILFsp2VZpCQePe5ZLXp0Kd0FGZveaF4LXlv1b7ASjgck7cDWt/fgU1WREt0WbsObRWAPk5ruA/jcSG98e/QUuy2m+OwApJOK0D5CI3dAue3iX/jYBBfauvd0rdhwjJkMI7oIJ8KSbk7YFCdbCSu+boybscV1pJjh4tdJ0uIZvgI5bz+g1kuw6IqaXL6tJ2+W1q5ZVzBRfQ/bi7UecyJYWHMa9jp+QMDZ99alFTf10BaDBWljiBIqrm15KudDTH8tPnnrnrYqxcpEiBR47uwrBWoDNu/rz/Zp5EnbAc48ZJ0s/gY98TKMUfdZD2yszMAVopJz91JKTEYJPMiyXOPOUHrr0d5allluB68y1zLim/P+UzNt2v1Fb1XDiXHxzgjWz+z259/hU3r3TtE020TQi36nFh0Ao79Q+ysSsX32QdgaC/SqZUxgRbKW4az8ncbjdf74quzz1LmrcqQaaTDPPsJ9Bzr7DsVh4TwNJB6oRHy+0hLAu471mhgQUMJtQRvhHXBrPwhAzDH3IsQ+76oq8TcBsSd7qHnUPXkLjBSy24ZzpM/MTGrUE+7a/JFUuY9EbzmU3xDttGaiqQz68bng98CCR1+uXe2/nbIHODjkLgfeL4BstmbM8tzbiVRs5jvYbktimx2nHVX41fO25xURhJyyWAOmyNjJdZFJ+ufbGgxMFp8wh9U4LnEJA3pgolD5BCHsoFKP1Y7mkuCmZAhTN8CswaeK01lv/0CQLq0+tm+WWCKpOtBrCtpRjeTxpkraE4Dqg1rsoKSj6YDQZoWdbt5KUZ0CKnUoiV/fpWORUIZmE1jiTvKGM53seGkF/Jr6snLhmEKAFd+MWK7pOXSpwSyc9H+YBcJP+F5nyL93oGLpg7s336lJj95SFI6i2PQfESFHClKX4j0vHbR1hy14eOO1R0UDIG5/kOQHccZZbVgTxBiI5ERMpmu3Dxte2i5yOzHRWs9gfLmZV+bVGBMIoyAEOgyorJPuT9SU2orFumLia3sfRzqEOfyWJkvkXWEvQ4UX+uUtOWlWtCA4FvG26zTzZOoFxiLCvLF0Oe2wVM/LIeDCP9m5zPclXeVxYknPQeesRKv8jGlWDnl0HkmSYKFVF60OmUhIQ2FrZxxzEU89NALmKjdWX4kVk7kN8vghm7l99QcfOVAgSpOq/yzQ4QRuQFHFnwrdLY0rOwJ5hFgwIRQ+q8xr1MZJrMoq08b1bFjaUj9PKK8CYuhakPHtuHFnXsyJ6OlfyJpI7rcTO6MJ3xKDXhYzrcWPGE0qm/n2G7t+Qv88VNVW3Fy2vV5uI+OrCSGMzorA4weVajqPa5vNVZvftAM+kWxtAWI1RJRtpylK01RDixefBQJ6VSLrfHSy+vHqasYxto+QW+3J/IRo+e5Ix7UObYGV72Rhq+wG/ad4/QE9PbUlYyDGj0ZddZzDNDwj6ZA1JIBybTYgmuAywUEfGXkIk73xrK7+M2Vh0G4JOgdqgR52gS+64XOTRkUzSM+ZlRycNUFPE4bA0UzsIdimDIY34XjPaf89E0wXEkOiAKYFEYa98wy40Wxm/wAVX00IFJWeJmBDnXfGeNTxBIwVkkoMYPRa7/b0K9mHciiPzAiry8144BzvNT0je/MfYoeYBVTFyUoNAOErQasLFZbp+kklBLWHG6eDIs+08Cz3zO58HZ15q/hrjkWdFIjej5POoWKvgk8Sa53Tv6yn2b/SxN1rVy8S9HvQW00/4xMa8TmzmmJrKFytBciJngaoDX2M6m1U2BxdU1mCQAqrqmjemnh0UJTtVyMYFs0+N9e23ql2qqMVtUb6Sj17Fh/ESkXX5XeQ5/ANPUfE/0XZbvEYI5YhfgyepR9RKGLKk9iQsurAlBK5PP1fV/Hfauf1YmkK1NyQKrcAC7w2UCCvx9ch0YLa8G0+ifJfNG58e0Rzg0yyiKLT2awhXkU6+K2qYtHO06vXl+y9GJZJ81HsjDx+chyqs6h67DYXvzfaSdpWzV7wnHFuEao+IjYEgoA0lgcCPO2V50GthhUn/hqi22dXvFsqfAAz+ph07oh0fyMuhAxZfdExzM+jqK4CKK3+NqxUwGsokvK7nJ2HV0o4OY5E+HJenF3S2VEuUPXdYcAF0WzkiWyH5T+Gha6DmeU9kT/DzuxeOESvkUE4HhF3+mwK6zD5dlm4bGrlql64xS8zU33gkVfGBLVamIGuolMQZ+cv3NyUOu5PPIv4mV3Fe8POqrpefpzM8ZbXB3oI4BZUxbDMNOm4vfN8StYZoGJOraWGhuke1WY4ThyqV6WkQPKf+0vE9FsK2DF1CeMYhTl9WRbqbq/Sv+xvw9qaz51hIX7KhEZzwwRIhcLBY2b+VbDU/K1NHlDXRnMafpzWSv7wK2Tuo0EyAsiav2ZBM3QxwrEYekMRLbC/efBtKVDjl5V2OYKNXgx5knN7xoOEMMmXHdpAC8+UNFsACDuT+TOmUxjKzQG3CkK9pTSgGxgDoz4ngow19p9CPJBnEXatISS6kjY17s4oFHgFIQis6h6kbQQ69rLQ+jBU1ZwgOWCI72IKYiXAn+Ybxb+Yy5hZhryJ5TvFkta0oCz6EJecxT5+XX4P0xsECTKPBtiC5URgTuywtiLlo8br8IdgYvuq6QL0vnckIREDCobRog6dnovc6rYlqLL8As6wKcR4UVaDE8zaHkA7EAN9dogxTAZ7txeLJ6E6nV6wrmb0laFD3HoSi66cZK+9HYmwxLzcIqonZjoMcjHbGkEDyAlz45TvGojAp7M0kQD9NL3sikYTFSBAB/O9Gghag+AXP0CXrdmUiVN/yQNhp8SoiNciqO3YPnhhpmXZ/ULpLoCRz4qFyN7OkTmWOeu+pkS3SjYMyfnMtLd0rd/VqH9L6pXIfE9EhE3EJkeBjxpiOUmQ94IVN01HoCOHguIQYcZwea+ZNrsUp3y0w1VowpFJLsUn/XrO5errDJulew9D9GyMtGOOfwA61+r/yTJwXytXlWuaT9b8yVkCGYhyXlELy+1T8w4nmkNoO+Tm0DH5nSEFt5uqjxAJLWO3Ij2iM23BIQxC6pImbJvrTVh+V9g5l/btmMLwbA2M5CbBGOJznXFZZgvrFs8fIxJTmz7e+9v464lhzvN7bg71wJFx5X7fRU/2Sa7Cu1etb81fOoLM+zDFHMSmaX1dwvFNXf8f55c9ThGf2cjjTuAegOBojD5mwzPY4jiNrOTiZmj8qGQEOEod1Um/qrtRBlHJ7Jh4sfO6TPUmWnjIlo6AyTDB/tLXVUUa+LZ3Fj+fN1VM1HiASskq+FGWYk0nUDaHeJZYaodWBFWw90oLRoLCnhTqAtsjn1vA9KCCNrdKWl8FJSA97EUUKUFdAeieOROY2Iw4ATgELbnMW3027tMsJV5QTqNv8oDUug1udj9udgiS7wLYXq//E9hFci6FrRFvhSjE/8bsDfCP6ysoE9Z44ELAKA8TmuRZ4WRsmRvO7BpOfmfY4CrY5MbT3TfooNZjul5lhWsQM+X32x0sbtJAwSxA/CsFrwB1sJj/1atzx1HMecfWpiN2T98AKf1EXrSyck/CFOdsJnfo+tdhmNYNd6Qwd74tx8z2jxRryH8pO6AGtyGIb38ozVoxuCDHMpu4ZHPd8jvGHaNSQECdzrjFA6df15qSxqY+ueg9TVRNIaZ1hth9kypN7stWUqjcjrI2MPsBFSemK6kfM8zQQ1HtldTUg3r1krHfp0XKYksJhJ8yUtPMQQavR6fE2oLrQ9emv0fV+jNmK9VYNOH5SlmZ2EJ2SoJlAaJq0oH6gaWUiXKCFvDalbWwhbOx8/AqeoGzLPnBBC0DJn6YwaSf6mJ4kWA71t1PdX/hPnswH/nB6h0hYvqRVmxsL8giF+cCRIngn6qO8EDXlGk5V9rwozGMrVOHl0qhur35o/HqY8Wgaq/SRIV09Vfdr5tKBKFJuede9VQnDndtHVp73IO3e8C9qQt/VaeepGxSL+oeQEB+DYHgYkN4c7IgOHeOs0+xXHvjVRpkPENcfB7UtPa0hmysUTCfeL70I6+sSal6AInKIaXDkyT7LqprpVCnK38qQSed3sBGRLbtcxLUBzIeVFsyRUfxWamd8YCTaOkSlHkZaT5Z72oOLf87tlDWhhHNWtuyaQn4Iexqjiwib2oZ89KUG//KKwCYfpmhCa+FNcamv/wqJ+ZR3b3hk6KUo/usPyUHTddFOhG0tLXDyUQIUbvIUCUTEEBRZ1VSTsAs+Q7FkFS/3zn3SIGr+Jdtfn9U6QSkexWxVp31COdmxRBCnEr/Z8Fb0PPeh0go+OuBKgR8BBK6LFwyP/TRJcQwgfQEHDeLjeOkLuB5qCvYIKmiS25KSoT8c6+wS4ai8XsmFRyPnva0kaK3JrMbFS0m6G5iL+RjnxGD59FjiVXTZL4OuhcGJQquXDUlCobf4c7PcBbSgb8D0uyKog5Pn7r0ndZPOHyicNFS6PCB1QSu1/qkaVjfNouPrWu3iPaSNz6O4z1qskaSvQvPZx66ZwXZXDKCWzuY/Eal3BE+FKifD3CRSDDqtTqg4TWHw+D/Pz9wCOmRUlZZVjfob0cDW5JJ7TE5xHEmRnKjY89QVkGQ2L9RLhejIVQPd8Nao+McUeJlrnsgdnGO45hq3yhnyxBcljcKvwLbavzf73HYLD2NBhlnQbaE8l78e69qYlaQ/7EwDRXeAhKSOoedNpgmMxctXShSawX4O2yMcndk3pHMdaPNdTwJFzk+eUu6LEBw0oU9GcyRNwZO/eiLES1eK1Zn6eY2hw/+KDFiR/h5IAJx3W+37AQ/IVYRu+kd0u/i9QT0QyXGZLUyYkl9TmuhZ+ODwIEDubc+p0qYvwaIZXk3547Igk/lOXRdkVqezaBEUjONZ19Xj7HyVp7cIFyGoEMcge5EsGitXl9h4q8o277ACmwidnLd+cBM4GBaONjZpOeviVNmxozo9iUsDCj7NPyxFIB3JUl4cRm21zTuiWs0hoEJSApIjQuR8tlKM3rkHSHiwPFkptmlwrVpwPpxAmvCvMyM3MtCDHH2/IAn0RqZucUpFmo221I3EkYCYYD9ZaHc++gv+8S0btOxgQo717PEkYewxFZhVY7fnbnDOMiseN6uPgA1cMjxfIeM6tHTZKumXlRVOJjCTJ8hrzeDMCzcId7SqbuMWtNc/SgQWHQRkM1hVckc2U7B4t0LlNKc5JN78Ov5QzE5786UgQu3Tw7suUqN4MWntnG5hpzuLZuCNyz1Og800WvmlYMheUVkE22R/yL3fW5NUksw4JDQmm7XL7qElO7TR+TLsuDbS+j/14BF4EF2FphC8qN19tfEiCkGwqzLt0CF2o3DgOkwIECj3n4WlvRjq2dmyfNB17kK4zhZ7oMPKmJLgN+WwArtZmWMhAFfI7mS7YIhr2mSKfP1u0EhbgHysrhrvR2ShIDoJ0Fi+zUsR163JII8gvfdZXIibFwH5nE+YRVQ9+uDuoLhoGAqUg4il7mrD56dVgbAcuzs3ZlkHwRdtmlVKiP7MPS8cglszwfThHT8XpnE/daZoCmZ9XJQOgSXoz0L0xfTjTn9QGV9hgjQjCmlWM8Qo1l2pJ55j4XPAMk1PvHFXjVXghWUUYcV2BxByvw0OSat+iWHCHbg572XPrbcoFq1bFPsDk6BQ6P2j5DKEKAF7IOrky83XnZz8V/PJugFudRUPtl0e/12HojeWaF4KpdVB86w1ubAJc6ye5lTh+D+VZN7N44x9RwFERW+ccoNROEUavDP6PtPPq++OaxNevWAa57eaJofZMLNTM/RaSD3VMBJzvUE8NplSNYeFn4rQbkSlLi/3VHPAO2ZReQxgjpn97rmk493G7sZv2wtNMM15s8pOgsaL+lcfSfXyqGUS8bRg9Ulc3j1dtZah3BfkjnQLKuboaaRA8kGB473xdRV0nCTA30aiOlaqBVWAom+YXnYUd5XZraX53E7S7hsfY5jBEER47XG7FPPJ/YUAoeLLYrmdsxPvfCwpCYtM19WaeBQ37XJ4habmWVzZUXVFIlVhett9HMZeSIgJ8HXNP/qVPllPHN6EoPx5527Xa9aR0RYuGI0TmCcejmWzG4o5Xtvc52qT/nbs99O8BaQ48bGrssNRtRVEMCPY9tNQYK/3r3JeEF+Z4YCdwLuOyPjECNZIzyCKX/Zw+mggkRBhglko149h01tHD6T2dy4U2gnMeepEIRzsImBMVD/Sz33J+FIucDSalMYg9sHTXVk4PsA5HIQZVuPsfSXgGaheLdvDZlMtqIgrJA5LIvEuhUUbBNP8OYmTGwa5umyidOv6OG/GSBAbdYPgDjztnyj5+CWY+78oFOPnF+MHmvMx/4MYiIrQGH83LGvGtOq42jxdjiJAd3krVqwo4YsTMtaWUI55K4neaK+Q/DotsHRqrArlAOMFEAlU1ObnhdFrPmBBHzhAjL97MB9ZdtKEN8v6IG4vqLe2KDoGCUjUWIyQbhYA5piwZZVqmA16uVFJLTTat/9O/Nun3+IGk8Z1wanbqrDfiPOWFYHmTpId/dCmtfsm3z3vl8OtoeP7pYaGLLmVwHCLarg7xBVZkiyuU6BLTkKATzIYsUyObTo5IKKn5A5a56RY6uknbO839bzVoL6Tn+G+LH7r6kg5guD1j+owZiwy9djY4REJJCBMz4LPc9BdItz/2EPgqxE4BU4ge4/o5hmXbTZ1vMYWh12zxIvpEO/Oe2q6j3xr+vzrRyOjXEndCOAvh7ySmV5XhW5TZDe6U5LUFfmH2niUCwqG5qPAddURpaM+j82b70GmwvN/oQ9pg7Xi3XO23J7KpoCrbTbFZ0VBOUKRtX+xv1k/3bgeAa6KCE2z+RvleCr2TrU6faOgWX15VziD8tiyzq6UbnPZuSrYaOSBWO74iv2UsA8IzSfQjGSUucpJD4+CeyqOVnsv+VQwFobja6UwZKIRRmr3OaUMTXt+dETYGaIB9OzUXnqYj6pSFxfMlrdIVxk9EzBfyDOIJrGPmLiWLpaQpQvftqsVS+tWxGm5ZIgZ9+w0tnB0f9X868pYsnZ8mKva3u2NyfoX3zTb1MOLF9XxPGkmmlQdhMMDdFRogtGwrrpuD72skiIR78WZM5N1PxPKqO4bMuTuBvsLZ9EpG2Gprz4HXhPpD4lTc0rregJThUVERqqzsQaV8HKLDe1iIseorrxPq/UNYjCiMtf24qjB18qQ5zGg6UR5R+25FOkhzW0Hr7DM8VaT8zIZU2JGj8bWyQ2Dwg/QMkGTMWQydryveo4EOpBDVMQr+U1LqrVlQeqaFRTQodthZJtGXWKxlhM7zNWxI6mUkbTfKie6ODfQ9TEQ9boLtF6JRxIDvSr7yhplsuJvkQS14BdtVp5ZCy6tOjasI31gEeDKz7zKyD57NmroNEEFspZjE2YsErUNumxWHsMRtHLO1Rc5pSLfSZiilPwHdlDCOdnutIgZnsKXRS5J5+UMwNI6PG/2AS2F8LlROUGFGcWzd+aqvw98KqaVtOyO58srXkxk2l68lY/2kUP5jEbxygysq3STSSy1/v2E2+o+lUOQpD1GuwIxLNXaVP60SOqqowbi3w016FDTUIQOMHR8RTKMcKVci5usXMbFIY0GsiVfn0xdAJZgQu3b9nVSupmiw3BLqN24EsnQ7nS5HysTAHKABPbzK3TAujhc8mbwIjiTKk7NqbT0V+Fe8sMxcthtRO76vQnakzSJ3yv3wGskk/Ue7gY3WwPDikY1hva7c0SoW62N/TJkFs3SzUuXfT1iTDNsm84/f5BH9yQBkxRYjrGD9AP2rhd3Ui+b1cXhdTIH/CBxwcq7wlMAwNQyWnwbzT6lIOglksFJiRJO5X7DMV6eSJsAT+ww/U2MhpYiO7o97IB2Jm+cgMl1+B0Gj23u7xz1ugZoawB9S7qkTxdJGep7+5lpNtq9r71r6SUW9YWtfrodsXQLyxffc9jJLZ4tVJPgKeJ4cPvmajNw5B6paj7Hm8A9gZ8WoyZdphEiHq3Mk9TuDjwpys8EtDFRvj77LlU8unvE11NqZo+2ENnX+aQhGjWX3aD82zD+xNnBFJDVew+afZlYcGVqneunXf04dN372xDVhkT2ahYkSMU9tnCE2eYC6OmXu8KL8V0bXXR8TdQCA5jhn93ARNpizEK44QRZhg7v397sgUruz3yrzu5qT8OcU4YHtVpwdIA3lQmBQuzlwy4tT8I+oGueSsG3eq3JIv9BQeBWVwrFwhz/Xm39NPKnN/yMq5v6EGuR1ZfmM+AJZnhap/OY+GlIqtafHUbS7xKg9QskvB4goNpaZk2aNAV3fk9SUc3pwzPOo5SvnlJI0D8HFAP3bfdj/mfYxrZdHi2xhT5Ymh+L3SbWnKRDN5vNvmdaJtSzpqq4Eq3HlTMTjtejM1Bs3GMNiZDIgbTzYXnFP2TBESjAoIzuCHxh55xlFmGMU3qZuEb37chjwG5e46M6rgZr4GBjjY8Biy2tRpeeL2djfBz6d5SVG7Tyh4QTFZiO91un3EldFplHlxIb4BmeyAPRE7Ap6SO3hjU/RjrOHo7ADyMIaHGXroR+/vHhRY8XgknAwVkMw1nU9GID39HqcOVIhQi4fMjLbRDFbX50eUa/VPCps8A8Sxt3k0rgA89xSaSWxwF9EepVo4E/PxtXOUozLeFrDGObjHtgjyoQ6UY4yzGDJ6oaAG3mK9t+3ZFaygeKAAZy5mVnrjzJR6pNnTc9yj0hH1kfwqkRGnah7n9wZgHfwZ7iY5VHZEGJDFb5Bfn93TITYwPVcGREDKdTDfTw85tIDBRQO2s8Kpno1mUIP0rC30OtJGyHXR/Gnc3+7/hZgs7zH/aP8YNilUy3sznsClpvvOcY6JumCMP5LItQfIXomhvSKkonj908jueXX8H4O5AyP8oCDSaWptgPvCcPCYFbyKstyqBQvGozVQwWr2qm3HKVFlScM4U6A9tvtZeJN7IUf52VauL4fTj3LWVu/a9oHMgOsMeMlTOJ+d0Nv0A4qzWk9S/hXkEYogopwlFQs7UA7Wn5w7X4Wqaq8oH4i241sECrh/9cfJBAcZqKB5VCGzuFeNByY9FiqePRNuparYfUurC4dWHCXK2WpVd8sWS4KmM+nK9LLfJssutYdoQ4szuzJldbTtrTejW454PertCFDGOiBseD2gjONBZL8bZWBGW2M1KyDGb/7eFycXwcTyH5bcUCodBILrWGrMqVVYOJ2ShQn7dveNezHxvvU4pzN/Kg/p1jLjWMC6iHZEiRPE/3GAGgynxSW+4rtpXZR4owqNITcLw4no3DrFdQKQdoI03NHfgRlZeVBymzKR3ClX+PWHSSyIO6m+FBWYvGjMyoUXn/+5wl1s7vSQ9joyAU8FkZ8sRhcAuljQ7hEPLhSC1gljcRIHSkG9jNnI2rrSOOIjd/h9FXb2l2ScN7K6CzRVtF7AyT10blUeR1ZguYtuF7voPTvtZhgaXM5fl49PORdkU+DrydGrD4rTwjEdBGr41x7Xc5u6Mt8t+vNvjCZD6tlTPBc1vO/c1cbeHm4UTAg8b8eLUPt3cOWo3ykDExg22fNBsx/N+9qIm3JzJdQpzJf7qncG4uMvC3NAwACpaYakktV0dJVIZo2zFVuwzKaIpSKx5KccYitUYK9F+j/Kl3dj1GToITzAs3wDObC+4ZgQP1e2X2wlLlNjU9YDRq5WhRAqXD0L53bi7cvwfBE17i8q11gVhLw9kYBRS3uUwHs0bXcPA3I/KHYfotSKw+a/zrqTUFLTRkCDhi3E+lBvcY+eeyiX/LxR9IdsxxnICRSe1HR9fW+pnpREk3c4RvVUIXDn4qoaL/rWmYPHWyMAkW+iaYJpqfOFwAaL6OmVYvOpW9wqZcM0wJlQGJVz6pd0uILe+YBHUePc+RDWPMaLBuwmhRQ8WQgvGeQskOK57szKxFw/GJBJmj8RAT9WjHpkoR73ss89RRfmZrX0SnLOqtZqYwo3/fmmbinRbzqX3EWr9Id9+1gHFhXA76HmoD/FIZzGq5UZ/4GZgPYIx+LDqUJ+dzJbioY7uz3mF+vtokfZqlLG/McchyWWhQImG+w6LVLhV/AUwPIfLFLpHfA595jKdVTS2/ErfLDjKaNc7isZrDJH2CyGv3/bsU7hudWNRs33vK7nJYhA58Bf/2tWurFLzLDcVHTlflM0dN9QZGTSGIEA9M8Qcg1xoDqhQfUX3qWvgNwB/6E5J9zbZn5CHfAeXKVD9m7cFVU0ILj8RZJPAxHENjPt2xPHp4Ujh1usn/KfxxM7hm6Wl2FN0CU7tAtwsp6Tr5Ii4VvwL6diONjLCSSGjk+a8YecEW1RAA2rpn9b6YpxQF9PjcUkttsoo3nMlM4CvGK2yyNmPt5+IevAFT/GKZ8OGsiUi17au2plLT9XfTCOpGVyfyJdK0rY4Fbqt8MKz0GEFQ8D4xricVJMZkvfe9PbDME/7UbNDNYibv0AHrwD2iNgqNQYYrX4zxioJSAmhkdQjYzElqLn6opg7wcFeE7tXnFh9N5id5os/QEm7zai/r3lKnfJyqm4LaMgAA2qjbGCkdK7Iwz/ajacrvcJ/IePpPJ/5maX0DK0hcKyD47jYfpXBLXapok8POjpMGWpSSLnGFeXgwGaNnkI5oS2S+WsO9/DRmoAOTbVFeiGIYaPzJAW0dKgj/i9ozwoSigcvFDu54AfAoifci3lbGIHwvgcGBl8M6FZNLCDX2PQNQVsi8T7/gOVfCAGMyUvDX0Y3VwJp2/p1n1XpAfS2OzXTNU735ARqb6JDRtFpTThAJRBjakhUrF+NuyH+hWx6yexIwDrPCqFkx3EIYXwTeDnFLKOldS4MWoyRzH/zQ3HvjlLlj1dLLRtvfrlmKFuLs3HWJDVjZa4r7ZZHb0kFepB8fsM+JQG7KAUBLU+nlhrDFOH5lJg/14PCx4OfQ1GxQQWQDXUREG53/kX3U1L8UxJqbDgI7hJaeEc60eH5ifNZcwRctkUgC2QqCnwbMBzqMc7RLa7gptstfVV1Yjh2Ai8tvB6u9V3SZb2bb9c/V5+X7fHkQ9YpKRboZlQuiQrf/ExVr+Lh+Nju0+r5/c7uO8HvJKPQJdrBtKnie/sW1HYL58I10BlyCsO5FrwzvrGqBmK0LQozmejSfVxDrfmk9oSwNTdl8tzbdCR3JmyaXaCm2ZsJy9oVO32CZQIgqXhRrKcmucJ2Ag2fsHFHmAcol7JZCwkOCLRI1Fd28yL8UZydYxZD/aOsmYGvJFjCoTzYbL9UJHdbYiqW2m8c6adr41wkz+hthTjsn8mvC2tMFIiKNojjtORsLxsbv2beZw8RMXc/VwkscGF7wj0evZwIXwIBPre1Dkh+32LFxKOUTKFXkwMGX01IBfV7cMLD+ysX64+OZ5qlTCT232QQVfewvqaus10uLmwzxRsQUZwIzHkRRgdr7cld9PIIbYKrYlzMK0xq54XAe9Liof0cjtzBKVtlbZFf4lij1y0k5EpHYMAXVBWJ4wkyb2HHm6voSRu7ifnZxzWmQ4CVUgklPcwdSvWNoWGVTRImSDQUx0fXUZ0xMSv6jMOrcutgY7lvBhEYhKtmu2hfyBwpXU0NojBIvaZ3yj0U9tvVXPMFxXG1sh6N/LFM32Jta++7OsXTiOGyhlEZ5FQMla2+JiLtKQOk2UY7dqyy5/BKf3NBpDbGjBOPh+IV4NHLrGkwUXDgYNEu4AS/SL5nuzpQoDAYUrD+KfRU3dSsxXqyjhzIDKudp6Ebyr/eoZPZsm/iu5X25NO6DBesPzo43XZEE/A3/oM3Fomg4GCBxinSTYi3RSC1QD6L+ui2eQuUWibhT8hcesa2Pdbs64bDXrWhaItNupjnj5k7x7m8tycqxhBPxDZktNsbBFPLhbE3RbH/AUeLsghhmMxlTGnWeCTSOlv8GOHgDcL7Kn+ce+xEGGmJYgggQ0RWy6irv+qzzsf8zJZVT8mtOxW2Dig7NUoxsB+BCgCbR2gaq9/7SHsWgvz5N2lN6/j5Ar2b00/6DgBv1oIeS7L2lgZbq/AB+rySnDw/YGZwm4OelAITUaHh1WrB8GfS5MuLaGLvcfIfxY3lhINYS7Vu+BcNBctR3YJYOIq0d1YDc/4pKTOj/Yr/YNImc5CNokS12Y7KwNYzESDSYM0/XDkzQwdUg8n0zhZzcLoNS7poY9wBiSdu/xXOtDR9DlMX9uWVnQpytdPbWf3q+tnddexE6uoiAJkaawuF0ikonlgHZAPu6Z7X6q5UFku65wYnNBZmpc1TrELX0hXA8Tby0qBJ9k/67/S3QmYEl9FgTxhOYbNaa51LONEynax+f5tIOwtOsIEtpKcRD7AsebvZTP2rj0QuFxSEh7G9rGhkRpFZal1mJJsh6FuRMB3hjhecwjgPYu0hr4hE05tJx02dmPrAIYg8YED7o/xQXY1zh7AY3JFSCKQ8QwD/tc33vQFRKG6r4Ui5tY9/YtfV0Gf7+BQDM5Ikywh8KL9KcHHqf9QoXNKDqR7atsNebImY/JP09oX6ARUBugaZbcGqV7VphA6JnSLYYdzCBPftrrW5Fu2+5IYFP01G9sV0/a3MzQgk+hzDo4GdYSCs0tTEzq681Pt3zMCNnbif/mOK/Ecy+Efug1CM4sU2ta2oAG7EJtrrSeI3o0vQAG1+o8lB1i1rue5pZvt03Kz+ZzR7Yb1Dswfv8ecmJ4W0aonYQeWhDE8Uyv2Wbeouuo/Za+7hlC5SAdUoukBj4wDZr17uwH/jmARKdQ/UNt1f1z314qaGFWY5I1DdkvG1autCJZ3DIyz1JjeJB2oR37XgsCWQrYV2ddGI/YyuS011b5GDrWbYaHnt6NOQ69LoAW7aZZM6lM2td9wRnZEt/thR+rD4FAMrMHPxiHyh4Pm8UCsdBF3aGXvbO8QgpiBgQd9iIxPpLRsvdTrPzmgKUgm3QG/INDNwEVwD3fWxHKbMU8gHi7OaCFy0DKlAEhwFp3+ZfHgQEiX0v7v7mWJtREHAQGN34YsjuTF0QUndqryQjQ/TUsZOOx4lF2a6T2dMSoWQ8pEBRNhqcOF/z71qk2WcDjAzrKDP0mr7BFPDiDAgdDKBQJAbsOgFkF2Zx9cP2FGpYMHpsTyXG3AkHjS8O47xQSjT24n5RZTaRPUWJZhgCbRdzvkhsySPBCmbS+YGBewdX6sPSTphxwjDn5Oj3iJXaPQzB24wIGyY4hWBu/ca+US/6fCGy4X51wQxnp+o97J94/3uHh+btjsVgouPKnrB7ZhxO/vWUEitCy3vUvi85XCjwPnz8ku2urUIO5lnn3/kOfxQAV+JOlItwlBoPLZGHM9dfN4snzcqka2C91dqhkVDV/EI0hirWSuHYueI499hzh+l01ghkCwZGx+hxu9W+RvcOpEizh6r82qEGsz5aIkCX4Yh9VQZK303C5OFcTLLbfvyQCa28xdu3DiRxYl1iGtW5+z4IrvGbh8mZBsPzO0YgYkBHZ5OnQgAdMSICm+B8wwuwx2aqJwTF5uhl/9Bb6gtyZGl1Wc35eWILB9GcmqPlGJb+1BW4xsrOqk2FUNeJSmplLCkPWnlBonLWt8XnzquOI/n7xO9Z9PaJb1YNFs02kBlL5JJVS/ZlsW0/j4lLTvZQhHxsIHsBKktcRzPDfKWDSolGIMZPCwU2DWD1GCYzEU48krY4XLr0uqvQ+rFPYhcks8rtAoc+3GFw7r9qDhR05Iw4v3DcfBuT8CI8Y0Eu5XPxrs26BkqVKyWiSo3SWsaRCwI3L4xwu3+qB3CACdX1XU4pUxlCpesF1LzSrdB6UxRBK09BBaU4WDPwT+hzPaFnMsjxVSTgSI5mOaq8qKva4RBw/tpZRsn3YKz1eQ99AzsMay7WpPw+EGFJ+p2+JPsaa93q2CWpFrA/vCFxL/ALrunlAg/qMrOQxtPxNL2k0QRwNVFAhI5FxW6pOWxWAw1omhGWs/1eOT8LzWN2qO8LAwGzMWqGXpVZRG/kLMpPAiCoH2WRZG16qg8IXREUoUbKCw/5/HutInQPoIz4538XxkQvizdJ+QEaEXQqQU90uDEnHUvSecil5XQ1v7AwPpV/Kc/Y7j8fmiCL8Unt0q3IwKj7uTI6wNvHexunQ1pz/ha4hl8zy2MGDb1PCDxjBEr2O9GJ7nnEqhPmYAKvk5pLc1Ks9xI+IPFRCNflNFGCZKh4ttgjp4KKxXQtzyZ8lNQQClKJ42+b2YS/BVtnO+E8ummfEBqFyGRGj+ZRj7kaT1XCQA3FngcRpyXzkfGWM7RRZglUOOy+d0YEm7Fyu50ENBi19rdJBZ0NWZyo6SHmVCFON6ytgTUEDGuWwRxRB09LS/pUHhPDfUyc+Y6OfhX7E+td1amSZ+escOgv94ik43F5AZouPzABl3kzDfl5bK4/7MJctSfPwCFAxUQavebcwU4FirCfoHdOSNi/o32gaoJi8xhE5DvoaXwf7ncRgdMV7AEytUOR4zJtiEU97PLxsC+oXAsepLuImN9zIZ17w3u7xn/TzwuuoQEknqjij27oGrhvDeA1JKobpyifO/DE6IULvEoX25p8QO6rTQgvcxngxh2ofT582i5amAjv89zrpmpxBpDqwM0ipjViPNbq2dEPUFf4o/0oOkk8AXTEEOiIkHJRw5w6XHna+fOmYt342LkUV+wywe9PLxLdRdJOp1tBfzLEd19psOPLKujHmWWHQceqxjzM2XPVyPXU5tgsi5I4HhPIPtKt8FWVDPb28jeL21fi3OXcshj/i0zgVXLcAWafn1IZ9acz1DZdQHpZFDk78zMNnBwBRZMvhSWqRR7Ubvmo6Z82hVNStRx8rsvYd8KL1jx9cw/+/wO1U8VhJ7hPDC02FWaWKVso28WuZX+ukmyr6PuF0feRcRE0kwgjuMqiiAdNsPXCQYcd0Ik1g+aogAypWHT2Z5QI8Rrd48MEUMTFhXsOgHPFzicubFYjPkP5OJ5/orJl9X5MJgccIbYKS0+kLB0I1UFtG5hh9Wf0NCLwtOB5lcGvIcz5N3M2R9ZPwzQemT9s71doTEOYV+VAXyXDQvkbdbCoMvefmlwccqkVhFZ42TsTDBdXjEsOhCD9xraAvEw8tEyZy2whAyQCaAguEQQruD8qIix3lb8vlmKjfjSsofnGQcd3Tyu/FFMElLyUpQpkcl4F/eVqdgO0rU0cInGlixtkIW7KkYvVlZGeceEXRq+TmZjdyxmjCuoD/oQ6HxE02JAi+pmi9VwQr0vU/hd5qxoegVirtnhOWaJwpl0B7FZz94/0T+UQfVfEuLdeMGBrZun09UgT8oaRuaxqr6VvQPHMCsH0SxnyZm8aHhRBpIuCJdKaHyOuEeVM8k0HRcblRfpK7hJ4r18mpXWdx0ujbwHpz8kx92vTBePa5FhMh5k6Skl+Wm6mqUM4+FZCiyi4gg/HMz4clsKkxLFlL/6AcUAmlHl/oaY+W3uWD/JfwJmsQTimtyErH4bhZ+NEAzAxewc3XDIhcWQX8Sv0zRKm/vCv5TxzK0agGW0MtDqPoDhGmhGjRle6g6QtzKhx7lu9nW/W2hvPOFt9ImrajHzN0aN86y9Okau6kctZFRu8JPc5M7VhKQbmqK4dtaoPw/V+FOHYNcEbkWi3nKtvnD7/CV7N2bZktPG/HnrIamvykyIdZusZJeuiyvfkaupa/JrvRhMbaDuFZl0wtulQ7sPJh84mAJv7eJ2B6/0OQrTgpBG67JQnR8mTJEAy79WxMnoPRuf9QWvK9eeB08erogF8Rf8c5D8fyHQoNWtIVqshunwlUQw6K5CJvaNdM+XAJ8SZFaeWwDrStTJlmtH9Qo3cOkVzjwoTH4uMMs0J8irmIox5m3IMfKMIVscryRjjpsC0kodxV5BOvmM+tYDtw9BUbUi+xaYkv6/RthveL09r4if1Yyg2tVn3rtQ5lWaHj1lBLigKBE6l0k+42w6HAGntl9Uxf8+GF/+boq+byLwCaEjBWqXxUORpQkXXAA4d3nk00Ca78mG3d4sMZFf1vp4OozgYwxI5vAU1LP4I5DHg5l8GC9/oYM0Rfo9eRfPf0cevCc9Om/YtYg9RwIL1s/PvfTk6u2GKkZWcoePHyJz6DHj8dlYBgYkP+UozThawKEThqEcUju+U4ZefhKE+NhBGyi+EHWBg3ysU5qszpmKTueVdXkmv18XJvYPq2XSCp1Y1ABppOP5jegnn7ZtzeIzKkwq320UvAU2K6XT1tNT+TFiK76/TDs8SDsttfXBtQQxZSi4LveHyIzcCxT/gkqsrt8LQd2I5F13mm/opWGdtflhi8nOOPZluJRFpwIhZZTZeSn5g2nZcVnJnsc3DoeiBN1S/HjHx9K5/VSzg9G566DRdVZMd2E11YEn4CVEJHGcF7jYBBNWuvtenYB2EwRcMQSRFPU1oUatApFEZYpqAkoaCwW7w2rSfDDL5DMu/kbPOGf6dRKN33MDss2V9ZlA6qRYs3/jm0D7YLwWhBCWj7zhwPQqE4l6wEmI+iwMlAXF6tgUqYB5vEhMZVPTH05Ama/r0TTm5s2+/E0WdM4DbhXdYWqAgUvnLheIXHaL82DFAIMlW4PNP8W0ZFLFYRgpN59yqIE28ZEM3xXA3+VP9zAjKeX3rXgjMod/kkOQoH/71QxG78BZX0kzQTm2mnhopj+ZiEjPnae4NZCyMuP7biQ6WJGjP2mjMm/XdrMPjZMJoPYAwJbMCyHzRWfD8JjO/+4nxNfeXwOuZu6LYTwcsmdZ49/YBLaW4pmcmuscLwkb5mbieTOy6mPw6FFOfCFO4nHBlAGsV/M62pr9bWtR5PX9QrflFO3O1gqN7dI0JiqqKrqC37Nr+roNQ0+o59qJ/MUQHoEk1V0C1i0tOMq+lDkLQ5ozTPIgY6cs77CqXaCl869xR5FdHNvHkcGrq7U8z0Xlpn1cjoQRd4O7VabISph9Gckb3kfFLzsmF73rH+9dFKK1ffA61SiAqxN3dCep2GkPStyrVUWN1qHCcDQ3E0/4lK47iL6hbqJtA18nfonHOl/LYBfTP6VzLoSLavmsniUy5NsMANs6mnAOfy9BHae+D4yqTCZ7NPf9Jtm/0Ct+UgMsUJ3LXv/UVQ2vhjIuCGHrGLZylRSYtylG7S9o4U4Ti+8d6uag0ngKcXXSGp/FlUoOwoeWBdQtr3kfy8JdViK1lnBMrU9l0of0k1HmlfL08qoSlrS7NBubHlaNkXs2OeBgT0cq0w2qEhOLxRnmM1uwF0Ytrft0EBMGdKCxJPU2tOgtAzpx+PsmAaFBFTnhBxYz/UH04ig4zXsViqTlxyUwitTf8Jr6RsSlqmte/YzCfpiFzcUwrb3jgeOYExZonDmqaXwOui3k6kgVTDeo7DdgTcpBa4Wr3dDluBQ+/fn1yjnqN6Hpx8OqZvIKrAI49A9caeGYzEoKmZ36RxYqWjGPATHK5wY7UMcT9YeEnMUHzS0+72F1YD/j48LtfoS5DT+Cq76rXyWA5VqtUaIdvByoX3im9rhPv1cAHA0EBTJdb29NfsQL+Ij0kKJpgQ+0K6JQvY0H54sSK5zSOIoyYoORwgZw+dnWFE2M2EjRNlHxcpwUKbFIZYmebPm8Aa8NlwsBHu7BZjXqUusB5ljZhzrbYTMRN5A83PoTHoAg/dox61Iz3KGDgMvFxgW7/9IgGgWYk6uhnyWD9/KGs/TnNKhIv2gH+6lqu+G1o9oIY/G/0Z4m85byTEUnODqLSuiiT/jLBUiSLXOPukoOqtQWMRFkT3DBQ2b+jPXSCAiIdnPqig2mFj4poa5mWyxdcrxmBqwSvJ+1PLzAolHweHuamcq0pLS48zFP8jGa4fLNm6TmU4aDQ7v91nzfPM2JXx5lK9rsJpxq7I31suuLx52r/jJb5aMxivKcooiVcTzgIZxy3pd5p5HrmGRjQqFd8fzyK1iP14I3/+afjWnc+WFBnz7P9G4ro2CNr2wimyrv6aw3iayW9zZGK6m1RiVVBWUKOvoOyAQbY9aLfsqOuzTNjw2Z84nAnzFroILTNle2m7BgVmN1WHB0hHlKIJNjPiT4DVrGwDgLzfbFvgprG9YNm22N6j84Rga6k3p7g84+nb/c4GykF6b6yW1ZH6IDADWTkVTmWhSWgr2nb38IBakKBG+w8GBN7Y38RVvGsfZ+caZmacKV0Q1enoaGCCeg+ym4eWsELHoqWq+dqu+JXAUbtPg2Z/WB5T+RFgqrLF4stPnuC7+EqSXyETu3HUMPKbNchl4GY0zFBQOkAjcbI4wzQFJEOS088f+bvk6tsR8na88ArP3SJUszo5pZYrRKEtI9z5Xqtp2ewncHftgZnVN1G39k9goiaZvbPb1YD5874DQj44pF/FbmtnpKdfJ226QLp9QLrlyn6ztFpyNa0JVcFUqGRyJqEb0eDY9VRWobc+OI5byZWWAkwriABKgJ3tMm046NntQ63OSLmVl8bSNuDAGajtf8ylNISp7iJit+h9gxSB7zhD9wksuxW3Yf4qwF5/nDn7eLgCGn/2NAHQxS8sIuQMiwB3Wf4Sr0iFVVjgwxo7XAl7/4xMe2m1jH+6rt5d8OlqGUSy+ODJqN7XpKshgJwGbbNOezpJwA37CNEhJYgks4P+z8XOeuLMsK5kbXuB5NMrLOVEB4ov4DJwAzk8EaJ9RPqIaeE1HRRbKtAJa87P0LA3PvzTd/Zsvf1evhabJCAN812Yfkn8nyuNpe2B91zyO4c51ol8VQnhQJ1dMNWk53By4za+hNvo00szgP9GPNJIxcUWva8LkeKmbx3RN7x6+ocL1KiB5HSVLruvnWTAoprtG09rrK53VUOUGISvrzuWePah95gSPZcBb2byKafhn8iT2H7F34jSUO56+fQ+edJhS92L5dFNN64N+HsjHcTmpxZAxjutYm8X7FqqTULVQaD5RTmJT0vqFE3cMxHjUjUXLs2cucILOVNt6/Cyr/7IxNDlhFxO/jrAB6Mgzl1V1c6Oweww1jxLEJVGrXLjT5srkX6T2EHy+SsbtIr/+oNBvk8pgvNgOP7iJjLM33XQS8v6l7E1t71L2X66PxbRMya3Afx9ds8C+Dt+k+wamMaJqbblHDCFdpfpA/TEOVtRsEvH20ZhfMngeGGEyDYeyCBvFDqRhOFqwVvViHcWnBT4gmwWnIr4PyySWQ6xRpy6+UqUeeM3DxQYe4Q+bT2Eak8uIiCREM6h7f7cxPPWzbPLVBMPCEkteWJ1qOcpqg7Afm14hd2qeDVTvs03ZgPyU0Xzi7JqHKanxqqknDgFKFrzDeu4RUeMP8FCMEeeDMtAQcpvYcDW87ij9qhYOoP/hiPQ/1NVlOeH5C+BhwTN+VbDelnNtk4qi67NwgWnj/OFJ2unGs4iaiImRWElaprq3zhpf2X1wly4H+SSEj+Wyhqdv2D1kfV8NpcV4tabn9u/Ucc+5E/zJbhbhKUqY+ZLLGoomWxixQN1Uias/eEHm8uxwg4e5whr7hdVRPiYzMXwdZt5iXJ8buwvQH5GnBK7/C/ORQr/EfGCIH2l95dntsuBAwQTKhzSmv7OoDYLXVzOUSIrPaNTLZwKFvDJr/1pFBJtZtD3nVp9a8TKnJxyr+XFNcjvVuVvurJJAqZjv1bEq9P9qGy88893iyLfEYr8S0Gr6H7BxecrdZJ/y1sfjZF98xS4kurWBmWokHJYkExM3vq/pWtNwKKWdYcUSPtQK5UuO7+8KsUJTvzYpw8Ub4jH61ozhRvJI6+7LKrS94Ue7LCF/Njjn4mob7RmIopBWMFK+bCNuGqWBom8Qv4uT/51deTpDYZfUEeMsKl4cyXxx0pQkDiXebdpkPrb7nZx2ARAKOquGaiReaE6QE81sP1xyWZldvdiSYFO3w+XWMt18k6We6ljXDLjI2aDUwSgWomCj/15i3Afbjy1TgB5jIeYuKzE+krJVpbfFKtx42o0qPvNmB+ohVvmzDau+fj4NRQM7FS+9bNgpmIKWsw/UnEwOognFsahSPHD0tR/kd8LJhBsblt5yYlxXbqn4cLc5P9dQbkeuFbWky5eiTzx7WKIVRgrWFGqi9Z5nLCjCdIDWq6JuyRUIIiL40sfcMyjmBh2Lyi5VQ3RL1kCFuCDI0N2CM5ze2tG+ue7S0Uk72BQMTmFaKNXXXaDEFcFcPWaikkg6twBf3qHOQ4JteC8o+dHtGZQOswTBds3UmHpySAlqgM6MRGr0k81s4eT063oG4hSZ8yL6r63y1ErkMUVJZTWA6nHXD/NYUvti2fwQ2VyLQ13g2dQxkUUrvUn+urqEQC6cA9B3JAHNz9jVx+ZM3ly868srofVCnEbdpR2xIGgDd3oohHCXCJQeXo7cIN6vi6Zv9fXZbZSedIT5ybhnc3AIr75WqME12DJHkq0n8XCCUYLFpJO9E2mZwljvu8MhavTwI9vbZEKe/NLQa0tXgoELxfdLtJp7/KGwxjdrrZWtbMJwTkFG44TZPVPiBsjNzwb4XA9O6VSU4Gn2rZtM1Ztu+/Cf89AHk2LKgMJ8xqujn7Zdez88FtMKPTCFie+P4r29JFIwy+CevCb5gZxVUs2eg8ikNJqp/m/XuKfJ5CYkJPQgEe69Pygm9HuMZnvuR+bBVy1rSnILN9YbFjYV6TjKLQhGVmJidzPIHcAd76ku3WZBOZBbiFo2V2DnzYrTtkuUpJr8G9dIWxCzspG86+5cIGmv6MAwUyBY1DtWchu3Q1pTNkeieE09cYOlZemhArrcEJPh62wByqiPj/6xAxYu9+riftjySFELmNExI6azxgr4OidpXdiZ+6QlGjnO+q1HyXyi2dn1KIYldjLbyY479ZyBl3kjEeDNEd53l/UAFNFgnDJ20QhugrHSwXztdOis7QG9PsUH42qMPoq3msG5Rqj11CuEfB9nyAhBN8QjLstQDANnkA/JjwdWSkBAILhdNteyCtX11henkAV8zWjO2/6sDWB+rF0Sa4KEZU5r6Ay7Alz/lscQkoLW5866lG3w6lQNoGRMEYTh/NgZVZDEb5pM7UkFtwtropB8irghfkMD27ZRjlix7eU3wv70/XPHYy181RLb7GernLIjeGNiAm4Bw//4TLiryWY1/CjywiJ3+OnfrFLWecHzb5ITGpHf7i5Jor2EDDp+8bJeFe0ZPoKBaoI91O9hXOFoBFCKSlfbYigeHQjA7GcaVTUPYrbcm4RrGc6A7CU4IjOuBL0mxdG/yXAVEenXm0Qi7DdoI8r33ygow68PtvG3FT41oqYVcB1aqgMpEcxSJ77Msuqy5QGxBqLa9CU4p2ANEEmlODDLrivpNLLHt2+xDBpiVv5fBxatsZ5VxaQsf7csbiSyFehzdTz4vjLqm9fJiEcAp1CHde/le2gK2erpgWSHddGCAFbHBf5VuD9IZgeRp9FnZChhzHcmyh8UXJpJLz7Ui29HKdl63h2W//oHrL8gCUosezyeQHyMwgHTnMWxRJEiFdKDZLPPhQFeIavvrlSt25Ob1d/hBFKU9X6jp9K0y4hQU9hkhgqrij8XzvGiSOAMwGb0igTHFxHzSWZwmIqD9MvXiUVm9VX0+3QojT7A5579GWKoru62kW8sDtszhItkDskvqZ6+KVgQnN9uABz5DkAjYscPRjkQ/Kalcvack4SPcVQ3BKfpM+BKOJT7Sc7kCu+6R/Em01adYe3/+PDsZY9n3D4VMkC9p82Y23bUweJXCd4Oqfi3CMHTEipMiw26lbFGlrPB8MTY88eY2oMMZ6mtq7btAmF3HR9VzDhvIrhkQpXx9eE2EMX+0e53UgqoTr67cCrmGiAme1J6OaYC2IU+vmsnfH2oWT6QrNBRB9vIPEfVR1ci1i3kXqzGexw0Wf+ndFJ9NRmSk3SqCKMafDCcqkBjNzaOsrcg78K8R2UrYLH6iFxB6/2sDBb0tBpbN0+nYJej1tc8Jiop7nnamGGYr3xTTDWla998WNF3hg6xfB+aWpoU8VE1kyAlEFmPhCBjVYmDw2tnn1x/ar0Mlq1PGTZwikOXbWTJjOAf7Prt/QHYLVO9yoJdx3q1hxcyUGiLj2VrCgSIcbQKWxjuQ5VkGZZvAFbMdo9jTAJITFb7NiniiViJHF2jcSmdrAfVDloVp7LOkAqULzkC2jWlJuMZ+ar8IjfXJuyxbytJ80HCJSZFZaM1t5e4JD7ybLBE8U09OUqdL3Ov9mRSEUDgKfGGbnAuuPL4nqZwvZ2lYOKCSL3kjw2E/rS+P+tQ4PFXByr8AZN7d/6QYaAm1Z3QQUj/QPUSQdarKWu72ntdTtsyjhUVmarwXsurfog08cY0cfzVIuz5okUuC8dJC7coK4iPooxH17QsOItEfeavfxJ5Qsji39hS+bw5IzqxbDX/E837AIvQt9lm4XRGBiUAOGaK9iHxPj+TOtwvGYCREMgAxwTJfFbs1w2l3GOpc9aNJ0FsOkOCYMEhbNQaEOgSyXUts21mqSgA+W/ygxgRg+PQ4mRybAGBFzf5nTkdAFAZrtl2s4l52BbE8cKiDgIrQ45DfSCTnlrD4WFuKg3EWAar2cCBDS2ILz2wrCCMY3/tgMFZwQO7nUdntOkSTQZIP/JjQ6Fepr18owQ6h2V1jX3y/FL98s9t9nPfA04sjZ0JlrRtOVZwtW7nz1UhmswhnX3a9nVbx+vxBlbcWrmRE+TWRnj2NbTqEfgJDnmuVF3iH0XOM7ibxBKvbcpCvkehQxHbnFzClNMTZOhZM2PQXjy9ukpdTeEtgsGCZBtQO0IMOuIzVlIFQ9dkk9pOFVVNwLZruiIhbAP0gPu33yeNww/kAHwK8hfPSW5WInPgZYdnmBefDzoOuzDvaJIX8/sVsbSjdXcABUHG2IA006re9xG9xNWWpULMdNI9Ds1oSmZedh9rIFp2fzRYs4U6N7vlTJ9qWD6yUWHm8NW4RoQwI2IobK8VBmt417SYme70zPatat8PW4iFEdqQCtSzrZAmvdzeRtl/DpI+c47SBoqniHNP8ADf9Z1sKGkty2qZ9kq8OcwQaMg6IxJT7lQZ6g/siyaBW69DHrLnweH1lmTaSSLT+4N4I3sr6catI2JUDt4DIr5h5TsQOeyvO4btopp50TvkeLZsRYwyVl/6HlEnW0A+khKR4Y8UPb+zB2Y9sBeyFHHHD8I/GWhcGkocrgaSz8TwW844XlEiptZFLgGe0/yflDG4rwkTFKUMO56XVAxgifkfiBQtdLyXDXfs0xZTG5y2nMbPZxU9mSX63QYh6oUckW/hO8j+psHEQaWP+V7CqwfPu0kfArD/P8CbhGSNnjo4/aQdRWwJk4ir2j0lZp36ER5i03LAN3NhmirmeEJ66YfvPP4B0xdzx3/9eTIhtMTH8lwXuoEijAtZyMmKQDuBaBfpIhbbFjpw6a+m8hwV78YBLrljJoXKY0kRKVlzIAiQxuq1TDrlSbf7mf/CvZdmaqSYTbutY2m1uKiOHC2SW47e/XWKgU6Mwj+rfjaq70kKBKO9ucpXT8wG1x+Xth3T60T1b/BMBDfNWqOQTj6x+E38EbgCIFDB6OMYnaanORgLwLemLO9zyHyvFMkEvQd/naT9JDJVfkM+Sxml/zRaKdd6L5UWh3tqqESltD81Rc9y2CnVay0QI62MpFJrqCEXDNeVU//HQA1FAoXuL6RoLGxjuJddq7b9yBpePSwncILLC4ZxpEQn3YH4UNsyGaueaHskRYdJ/fzh5QmmcWr+76GFIwV+x3+APnF35rFW/1qRmDBRNHDYa0+wsv6PbkU9zrApSQhpzJd57yr/PmTN6X55zx+lHfA/bpGG7WdTeaAVBP8jtuFt3mdZNY+aKY1SdBKM5pkObC4z/ChNobZyuRJjLgZ2Lk8FSZfySJR9D/u2/TDgprhfxvC1IAILJA6xzTvxiXCDbITJFcIsOfJvvt61oUv2q+jZPcGKw7g041VG2640CfhN1y5P3Tko0+i70jEBEq5eUKjB6/pzN4WRqk262BZ9FApQByFxuT+i+ykNulyploDW73204fVdHR6N8Zvx+BuNdya08juPMikPh6U9uvCgmXMMHDxssuuG7jHHPFTtvO4GMP4aJWqpe/dP6IOk9dbR+JaDDYgsY2TOpodHyoKNUysj3P5Z+PICrHbCdf4qJ+RdW7upyC7cJ94qwvMQasF7t9cLt8QB//1Wdvte80m77Ex9A7sYf8205u2rbdqKb1wnNrpqT2FgfBMw5THxbef95VviyU00OqoAtARZNKdfoY3+X9SRZqVjPMUAAw3wfWz7Nzw1oX5RQmxyMl31fOtHTjFMh+Nfs36rw6psTNasCeTG3u2HZQDq8ovEoXystW7l7X/XlJmdz8ebPAHHjHsOR1fF0Rb68JnbD3EiDnnD9oZJLK+r6liWyHqKHTNwOufUfO7NtZZ6ig9l0eV07VRKDM489EUsLjlPjHS6yz30P3VM/ynay8m7MCFMrWe7/5SFqY58whokMM0Zt7w9fBc5ydVBoTUraHanaX5PaCad2sKrThgZS/5D6nV4vSn340ULxNix7+yCVndX2SjYkCKXHI9bPpNcNfegdISBDufOBxxJBLhHRckxIreTFXW0yhEkx7LsUvW8RWen2dvqfy5cfiggaRCtXoQcKNx711wXQH9aldqnZ5aDd+gVQA1LxPqg8pUeopzQzzq5ouHjfV/9lw7jgyyZ00VeWRcl+sAef42fnz2PW22ddoTcUxQrtIspRZLxJyqw0kqo4jPKGvVUYpgX4lYtNYGV9F92NovpHgBfau5S62KKv6qZsJ47mzoYABq9i2l8id3xaub1RSoI+09OFMrXJRXp1gpzLTg5Y2Fh64zZ0Eu3As+WqedJ6O1d9QfKiRfPTP933M0WJoZFvCukhh9TIxR0qHQzFX/CWTllt8hmN9YDjHMrlZUjM/XLbqJOFcYk1gRVGwrPqY1iMNbllFoVy0Gi0fX3Oi5AZONP8r45z6Ei0GwEWA/Rt8Gfq4aDCsc+rUd72kXW4UcNivbDmxdqSKORahiwDz3A2GbMfTgF7RImKgnrfS0uPCIwpdYwMHBGARHM95XyCAkwOUcbaxiotY8gK1wwLhdfbrO+zY95s8nnz7qIdoAeMwZp5g9nIScM7Xko9OyTt2XqRXVikbJx0LxsoP9TYX4E4Vdct6ZpMR2zL0Loqspe4UqNLYIA6c6LlISfEOkx9jOZ0Y7IsaVqtmsIzZoYkgm6Iinm5EnQeJ5uHI2gzO/QXTXjfEGREhx+xs7eWX0yZ9P3qdT63cj2BKUstfod+rNvPMaQiZQAIpIvVkOZNKC3Mpl4JvgH5pLge9bj5/bRb1EDIdCfj6An/R3jzuUJq2xohhOAvYYujJNAfnOMjjlLcJW/xDoiMCAfarzkMoS8B4pUvBcadmDKjiTOkBVgJF2nuljaN/VbUpP39bkpfjMqMBErZ+kT1tfeBsMHOTFRDBQt3cOphiXCjI968to+ymUHZYPyhZixBPktFeRT1WtT+T2L/FxPLQ9jtG+/JhZEs4mVz1red2mHPLM7ofPcSApxf6LIRfo6a+If0EURLzV6YuFW9jTnVm2pMycOtGjBatuhh+Onz2jkTKseWOr9mPGEeySHungcycZjlUGf/4vBGKbzCemgOtAW9HHlHhkUAo7zNRvgP9SyQDl5XWzOiWgzyc/ZfBBTpJLmr5c/uRD3usdN+32le5PaOa+pRxmcsyPwj77BDDBOO5ETqRBoRAto7n8ETt10kO/LQLIf+aUC2fiOfnm9jPoDrTnKDunNo5o7+cPU5Ij3etIhdq3FAFChu8W8XHlIhmQXDYIjPhRYocnqC96EGLT+X2emXELhd5zNYlGR/6M1tJdVCkwSfDdKn561M+LhliI8mnXOcTQzSnaBNd7IiiCHZLpcH7RffHixQKkz6jOSFgNWOtvcr6Sxqc9v5FM7SeCyVex9h3cS9dozM/0PnfaLjxG172ullxUaa5oCW/mhvOPDdbNKAUJpCKM0x94ukMGGQDpWi5erZdGPFnhvfojp877F6flyvOpk+ZVXJ5qeFzSIeYPpRzxqv6AejJuMull6t7J/ts/ByMGLr2asziGZSi8Fj/n2KrJSvfEqxobPIFS7FQW6GgVG4XVi0LXbgo3xNiIj4q4KzyreCQHyPAhWza99MA2juHsPiR1pcBP07Xs54CnVfC0smOmPn2hXQg4244gphvW8EGy25QLNLiMin2v49jBUVS7B1lnbIesruja6juiJZY6xsmg13gekP6b4JjssSKSJLEfkh+kR4R0GX0JsgT9z/6rWMyUoBcy+A0gyKD+9ujcO/ZoclsX17ONMHw7Fhk5UmOQXpeu6WLx9SiyCWBMN05iKDy+luAspKMVjujsxH/xztO1Z15XfVUrENZmMOozqtckg4mBbf9ayLP9y+V4wsJFOHxGfjNdUG/YHUNa3kFH7z9ip/T3Odl5x0creyKPPs9EbtAYxb5n7GkX0HNxBe0sCV9cm/CD1t/GfydjXb1w38gdECrcoR5lzG+gWfWyyVhqRxjRF+BEQcO5idx4myp/MJoTJ9sej6YJ/kWh0RkyaQKpHeVGsV0hmiTxDYoM8cWUZ3aMcgkKfi15YsU9Zj2MqH0XsnHwcNbRZ/iJgEsWdeoGWniI4tyriMvvH1r2zhmhO9Xucr1KbJD1kbjVGa4HJZb+IYcOir2jOcapCmnwKdQYAhUOFvR/FAEdvhUXRG6j/oqDHIcpj4l4Z3VyWhgd/MUFd7wlS83xczgDQTq6NzOPkDSOMJq2MykddUQ/luvWktyQcIJQzMz0lDPDQiizz84SWPAYTzVFkAGY8QV5BdfCG+miX9CjxcmyiokXvKM07RQPzSYLwBG8jGnGOsh2IwCpRDAD72W2+nChm8OAyxkySfFxMCA65Se2KXxb2dF2tX8+2eVgnDXDW0UbJBy1LckjEns6BMlsfNKPaX5dtjAnMAu30WpCTx9KFo6ORGREtDT2aa8uZ9uYzTiJKsvv5oZXGjW9oj7s93ZRNHRbOv2xcww5w8uMXOYDws4Us41l5CSkIL0lDgtaEFi5gyUSAmr6Kh5vsKa4TkmXyge59BHiG+UmiUae48DvVHP/UyuDU6lAkQ2aGyNERU4befQVxcfwMYsAPn3K/uEaKn8n7QalnLPOD1egqpcGzbaJxckUASjT+J3tPQ11wGDq/Ft5rYvFGq3Cg9zxSxP4cHR0dRCOAE9lqZPx7QyKnXVWKDsvQdvYrz8d9gFktPZ7lp3QkK7Pbrt7RcA28gkcBADnf3UNIHGF0SFgm1p7OrHv/vhX5Q3Iqw8KXo7DErDhfDKGPZyLVykH2Xr79s83orxlZXe/HeO1AmYqe5aeAmvo8hvYiph8ZJ9KG6jzpo4/1IeAcwmnpjAhpIHR5wL18sH5uHA6cuex7BRSegjW8smRWChsPpGMg+Wc1li+gPtYIrJCgPPVzE+my25MZVLRfSpIX2KGYNyAkyzfSfXqtPdXGHshnLvwwrgxnKRev6fpfZaRcLn7JATHsz3UOROvflxOEktbVbNtqQGH3X3+gAgAOqAv55dXqju+8EeC4lUfObHI8DzZhTnbcWuWtO5WldVCSRnYH1jMINIlp08/vdLHsO78JFGcBsOU/UvEL4pHmJ1+TQStDggHLTscoGk55Gli2w9yd1WqYgR/+we0aZAS1p4vzp/ZBGm0qp35vguWPr0MNUNHdnaB3iRfSU7Sx4QhccudZiRVEmATUY+C+t5Da3TyhIDgTxm9/nvmMdKA/ATKhHhsrtGFxTOHdlwVoRp9d+nio+h0HpnhxNyuDjh3rVWy3KXB7sInROrHbtRKwioEMTEDmtlXc7YnSzXZN6oBBKtkWc//+O8Xgc6AULFf5cdFvuHqXsMuhq3Gp3BI7PAX7DNQvAE7B9SEpntdkcBzKkR0SMEJ4Y9zs0eXMLXSDBf9W0BzjbLRk37ImTi5evtfOSGbIFkypA17lg7huEGeokaHVhFjMJ7w04fCozmvISrPRhyj3arvsEAEwoTDwprPntZX25fBdS1zqYB9CvP0niBAAslkiOhTI2Qhz5vYkLlhvT5XrSWAzRdhgmOc5sOX/7gr6/viMlQI6yLfX6UW0hzAXccLMdq1vW0jPqanqhkfTMBDvZxbq06e4D2avM/0lics/dSJ1Mbg3Zf4LVc6W/Ouu9sjEsPnNvhYz7TlOUOdU6W/XDE3KoufOkCPYNDaUzChoUnWDd9TPsGvEoOB6xMbGpzej39yFpDj40xcUqWBEhSAh7u1ekuYGRB2aaOv4pjiAj8Af6xILIUeoyDC4J5/KxB5Sw9jQJkPnHRIWulPYCxrmEGT5gzNbCoxEPfvWi1cNIxlUupUssW6LEUhGmtvECli8ZBKxKfEurS8MChqtC2sPufacTF15brUNJ1lSbckOqJ4/N2Aofu03GHaqeRbphuJN1/QTCMAsKH1NaA6/0UrGQbzO61DHgMxdpRNH0d7NOHD6bgTwSJaBQG5yeE5KMEBKPjFAW7CPI2cLiKRb8LIKYHACALsKoJJQ8K6ocsn1YUTlBaUswl2qDG817m13sPeZda3kMBPVn4Ghl7tp7D97DhNPTcOLic5rN4YRULol9APVJHS8rY7uUtkatoOWSTO2c+lwtuZVGEiiD+6iNrfN3jbuiS7lphOWoemCXCADpqY6W7QT58zBfiOYTadRG3i0V5llWtLN/XHYEXqokXFGadd3aeWtTYxvkYlUMWvBXKN0qZ6LjdC6GDb7ANzjMN27hC0wBqpain6J7ZSCMEyUN9aOuGEo8rrLakpwCLTyjKODulqDSCoKdlnRiGt5yO2Dp5FRnAfuzSRoIRHmdyJRh4PpJ5dxQudaZb24UAP2y7MC6A28IQBVcwAFmx1PQQxpJivXlNQHLnGat7fSS6sNKinJuSFSxAdTk0SywlCjAj7e8h4O1Z7j3NydvHA4AwtIRVFAt1nz0l+U7QPqcbLlUbM3oe6Vnxf7dpBlALgvBC5GZZxKCv3f0YB0SIvZtQ6vmfqyTjve6VY+Zlv3hiF1PPaRS9xCmWlprDu54Qiqe84+VPx5Bpj20QdfvM07RQJJf18rYmFT7rt2Q/RueKwIqmN6RLjQaIDboVJvjJw8q2TmtAkOqY+eFcwNAUEgeim90LiOGqkPP7OfnRKkzpTWTQp1y+gGBOs0obwaRANjsov0180mPU2eSvh2gY445xJ4ttmpZ4VH9v9GfFCa5fJ9udhhACEZqM2SBBPfYOzh4DCP+B2g4udFeakDwQl0t8ZhqeCJpCixWJnTUz8eISDRoJpHB8rkylbrgfHYaABA5OkYIju5v5iglyUpVztNmIS0z09694J8ICTL0b7QSCJCqbFUZc43KZsxaVII6iJwa+jNbPZxMmvE1heY0IDoIyfhznRyGTlw72FIt2smz1PmCLYIsF8uiHyakRy9y5Cy/wtWIZ8YB227hPgN+gWOLRbgLRIB2jZkqECaNWNQltyA4YFr6J4x22XDi3g6dey+S8P5d2ZxuZetxKSWuRchSnBPNgJl41TtHNi8ycCwWBTsxmuZU+ZrZJwiqs1A4aeWwLkjIXF/UtmuyP6yul7Nl23MT5skqy7RK1PmEEwEjgM8ZvlxJfQGIUuKgLEy1ZWeRvpVNNYCkj0Ddck8atcoeFZ7+Ur0Po6AHnnZ4WS3RAEO9Rhn0NwjSDuz82yKYmKCGXqIdX9TUHHDmcQbYd4Vxs0yXPNs9X1h8PpRZO4k7PAJ6rndHemjQIY4JYPeRQ0b7HVK3+RB+1O6nz7o3+lFTldGH1VAgCBck4CM5fbO9A88rcRgF6vPNtb1JEVyleDb46Sg0HIFCicDZLjPopskrS+Qjd10d9x9jYl6NBebotHIALu8/yAqUK65nVIwP3d1TctDFuYKyV8VnLdERP4qsmr/kkemGU3mEWmaP9J0qMwVsy/l+hUyw4xwSSKI/Lvs4k7sdCze8ndAe47u68SvPVF2JJDFGa90ayhtoVzn3zqEg1kFclS1kam25ncHI67gJsZekLcG8564Jf+XWQ7GuTT6cwPsQCHyoeYnSERvW3O0J6It4xsfeTfpRKhqfdPFz1/klMN7MYOXUDotlTlfjinnpJge6SrvW6mglqZ2ag/YNo5ufMRIodOCcW+J6rAmtSXRZ+2QympQ0CpMD67m2UQ6GEKUYhMn0v8ZiMWcOW5kTXsdg6TKHqELBC+FKFed4nlGclNInTTnRmrU8yY6uP+C6TVoJndwb4DBc9UQ0X32sWwwN6qhY0ICcwqkPJzaf+W8FLpyOOodRZsXXp3IvW7pSmTMCakqFdvKnDRrYYLW36H13osBoPfCAIL4Xmnx4tiggIFqKSJ8LmPPkOl30Pnf6NPmBMgjsx7pMk1hwnmVPF/4NVbBSLQa0Lblz+12BhPcNJHBoIzVwaF2exqreVPvkeBBWSPLXoe2AzHnMOY8un4bm4vGYAWlxM16pvbNaZezVKNvZ83t7ob2joXKPOpz4dBrLXU7u71RfajDOKHKRJV921cIY/oht+7tdTCpRo6hnsCabD9cox143vriUojjzFYjAVCZ6bbLHtfiuHJIwN05cYfkLbjNp06dgeie7sSok6Lz2qiutRiIcmO9aoJbdQW6DaNFWYXDvWDcDenoIFRNj6El0lsLkEu3MEjNE0woUHZzmBvFKB2+k++UFVHUP1rPVa0UpeoLVldsQ9JpyliBPRdm+qw4aZLPfFwMUWW1In/B+Tqte0WKtvhaiGdLfWWKnZlwm0lX+VASz6t9WrNxEASM5JqBaYiTgyEdEvK3PLrSSGl3YYwjSfAyWfoXPomSTZn3kdLlVSQpjWmfP2p5/mV44OC2vfSRjMK3PIY5L7MRmW+Jw0Hf4wQeCoSVhSLwLUjf3r6DYDoV4rvy3qrVlXXl+0zxj/E5n/MRkkFqh0cfhIKpE71k1Wkte0YBJZsNK5xpTFzMpCETwrUi6vRnt72R21A4KE6K/XuBw/aF2DQm+X+g+SWFHmFUfoYSFEu3atR6UOU8BD8ztRoI+v+eH6WdJ1ie8nTCeb1FsUqoziq81Xdel+SV+SXFx8H/snSwHfMwBZipz+J+tGLhpmk0etb76O7uPaX5gvPm/g8b+E0putcHhlOxe1vzVq9+Yg/qu0BG44tIUOFvRQmJorW/Ov9rzy80pyxnnSSLJpILmy5nH9SZbc1DmmMko4xHKsYyNfwNhThCsIa8a4rEsnkGNfv+sXa2P7nTVlaSZNqPcUbDSEw8WjyG/28FZQRUqB3y01jfGQCNvrdTFfE7aYqbURwfUmM6yWB2TX7cT+MxNaTo/MBEEYsmd4T6+6rx0QLJI7QX6+wZP6XsCOy1lm1DdVy3zgLBLbRKOAUPMm5VMYsb+k8PnV8brtD8HC7chLJWM/TDF4Q4UGtSPh9Qa814+ICeh//zVG18A6R/FctcJXWlORL5759ZzPHsmopdGUqCAF/PNB2n6AUoSI3JBmt/kDWghsKyTUCn8OZBRhJKEpdeK3hVkiNxp07qhLT/nmWDnj/vOXzR2kfvEclnTAn3Qz66SSui63cYCXdnUh+Q3IlruTieKBpuSpOVR6e4A7m6nvEAMZqjQyo5W/jsealuk2CW6hjUzk7aBE/woHRkmZYb0Op38JRvTke3BMEIMxzXJs5KriMkKL9Ns1BJRYWsW5GH/vREhJJ0Ego9Sn6pex54tz87/w9X3FCjBvfdNsuXKL0thGko2S8ZwOFtYSRIKgvejW1tlDuYDrE75J5yrxmxGkovOvSconfx7mXf18uzQizD9rvWsNOozAPBjBEXL3BVDFwuxi7NmGknHKSChbzAi1s1a6RJkqDtNG1+ZqhlYr8ygA/NxMIt0OX1Y18+i8wQkDPnbquHnzVidCxcY68vorFeyWIV4uyPIW2m+4c1Q/oV4mD0WpG7P7pW7tBx/QbC5KkNxx3bauqusUzTNrrT4azkKVYyZLlAw7cXaOEONHBC5QlO3EltTNJaKDomdEuSNK2tK5KDC8pXhWj/L8P0eGSZljWLcY8jIyGAc3ldZ7vtoXtzA1VDvGjzrZLJ81scpW6Jok6Mt5VISILsTZtiPWMHwU2lHVE9AfN00HXLV8R/FytvPaqq7RCgH+7yITxy+ly2S8y3k3ahR16XmTb6pCsVLP9XOL/xJiYuFhROK4s1CpfcvOp/TRCCc8LKlQYtsWhxOp6kZR5T/rSsyDsqRQh55e32v8kvQ0QmxKwZ8E2XYL1kXV1xyV4mYkhaGttMD8+5M+Iiz67P+FQ6cfVnfieRAwyKp0/1KbR34NFnKDC5oCyvrNHTqAex9RTBh/DsZjpWY8bmPk5OIP3MwpYs0PprqDncLxFXbI+jMZt+kS2Nn/BPl8Nu/uPGEacEVFGDY5otmKrt79kf4Uj93ZURkfv91ijyGgmwgAdm31detC+nmHaIYvk2LgEZ7ARFXpPKew+c7XK+ZdkiDHkWgkPhlcC5PruWc1A1xDhTrB4n12K9LFWWAQD9vDOXqFsJqRgIp4aGGR0MUVLdwcUov8mJuBW4Lu/9iSzBz31jTTNaA+RyiZyyAik2IZzc4XAiQkzpwoyRw5TcOBGMNHvDkCgGBJmvRlrH7wEmN3emHkfyhOe0s9OQgwfBkTa8H3rhEYvyTCnmTc00DHf6T2hIMkyndFGWaU+mutWNTrzjwCe0ELBp0hYhhanvAyEn34XXo5lT20p/JRFP88JmtKNtlRdB/G20nA452DsNP7PK11WJ2PHoBqCRVBZ1J/9widCOqKQd0QEjSSSRi0YYnC2BUVYK/Y1uLtr1BAS7NcVoVwf5EU9hG846IEH7WMI9TMz/MRMw795JoXayUccYVG9kTS1IMQ42WAxJmu21BZvhgWOYsdgsovK/5qsgD/ZCYoRJTYy2ngYW2KJvsrjhmwFvv3ew6puqHitBKZ0FoP+LvPSpDaaipK3Bua4o0nBK4rIOqpXrhx6SAVaQh4F1DB5ww2wN6NXEuAMKEJZRdbx5AkOC5CfEVi8s4Gj6xl9LMQoShOLsaEc1GG7ENRr2io5qkmwxYLDBhR27UWeBHTjrY/OTvvEPQvozTqG/aUcbdn13Iz7QlONycShyO2E9+ZaQ/QxXlTBuMIE+xgHoDmUNedjHTNA9F0HqHXfhdpfgQFFY9F1yFIX043dR4ZvzNL22x1SVR7VgzIzRWQeg1EJZweuni+kuyBFMNnkhYUmaTEJT+WNNt2yTd2jrE7CkEKEeJoq4hMWA3/JAXHM9Kmuhjqx+dywe0aNuDma0g6Kr1HVsFssVt60So52hyFag/FtRRKZEQuvJtxDI8QHNZc6kf09TLdw0OzOMEfXbH/lumhv/7fwFPS/2sekrQqJiWQV1qq06hxAMePhjfBbIlK0Lx0ZF7G4+zH+v6Uc6as/bsIsBsKkmCtktlCo9+1n6JE+FFnxSbbAWpJpoF2+s9teuOROVoWCU2lZvBpfMQTVbdrrXvwVTIGiDXPBHBt6DTg9reD8x+jqBYT1jiU6Lh6yjbVbhqaypjvYyulOtVhJwQ34on8PcFsOlhAFzyVZaqVpjf4YaWTk0dibbeh1VmwPNrTCLqnhUMsrFatXEQfaZmtNuaA5zR+vdmXWEPeIKAn/1C9QPzgEpUAwtVfbuA2C1N05mCxSnc6VGHo9+sR61YQD6oicNfxsKY0+1cF8b/pzwKbQucaCKWWiis1Mmfns7kD9pcFvHNquh7iCqP5KLHv9krbo/5k2+AxnwoX24e1oYkmy/Qi744rsII/upjjjVzujpkSdBNlD2+yZw2Me8qIzdGXe/plnHrxhouC0MiEULF+p/EP2CkxObxDsxw4k+bpF5raCcuRTZn1OP6CQD6HE5RWINoQ1kpZzEZewydRYlephAufK/M3q2xa/9L3HdsNpgbltt9Ghl7P8MqketrU10Kwz56SM+YYiRbx2KvQ9oT6LLk5Afl8ADS3ZViq/8+Q2gYOA0WHczNGj1N954HRyFC6pK+rTC7cgfLHDk+tLHjxozINYGRFcrCoS6pLktaAK2E2ky7HH6L9keeIVzeZWPE8mYSIfriNXQA1JeHndae+xLTqW1VKHePQa+PH2iRc0oZNyC3w4e/dvjxRdCTCx4mTTlA3TUWRcgC/qxwZrsBS154ENl201uIAPOx7qIYEE2dNu6iSLcuU9PoaXqquVWslK291l9tTDiYgKiFnfEgc9h03w+FN+EAjNNPYHdGm/duwohP3b8s0uOQnlIXR3qAtoFbdTCMqhQusNtDvwYOfdh3PZmZnfCgWN04meZWROcKDAqwvOB67GEsGST2GGuxb/oAdo46SIIifl/NydpT7RcygT4JXYPqK7TW6Q0WApmCNR/0CbejCZ2l76y11y4pDRCgkb64ytR4SY8V6juOr7ULMxdm1stm6k+c9MwR47GxdNGG+9x3eEKfP0oc3RRCs+2AUni6KoSqWepNt9BbLHNuG0W9lkOFA4Qt998o8SKCyV5w0zFLLOEwkvNRZdw2rPQy4gvxnOPwCnL6Z9AfSIUbxYWv4krC1y1penVXL2I6Vkfc6cJ32klIFebmGISh+iAayDydyi2IdnxfIf6ywqIhw+ny8YtG4O6k64apUdfP6BTYJlSgR/QCkE57xP+WrV76XwS6nIju1TBQ9Iqp/LpZ7umYYzsWz22X/UDkm61iDoN3VD16I41jlHy0Yo0Zti5fw7herPjVG/sgqZ4mUeCpKdY8RZrM0QGMkOkZlffxR/fxflvtkraCf99/HRHsGcWBwm4zK4knO0sxGsHOUDeB+HILLCVgPf4hlSafdRGfocl5sqD6XrQGBTOvIaZN7ZtQYmGSt46YwKSCnhtMY2kddiha1IEUFIdxIvEjiQ/wvhW6OFkvdfHkad/3dAFbTf8oeVhyqNQNDKgtj4lFHk7U+ZuLQg+37U+SCYS+TSEyMvKV3mREk39jpHXEMr5hCmxUxqflPZN+WcsLfmgD1FVlYNv1xgyu3/6CoAHsDxQCfGs1dIpx94bdaqKcnGbqmRAAzfhwi4DqyhGXJBQ19WqT15GJSb6zRzutY0SxLjp2wyWsESSSQ9hoYmelj63btOb5vMijLDFu2ZMY24uCTnwIgrQlZjXLnR2qwCGYKCfKGyaNw1NVkKDqYYcGtNHLXGsnV4bOdxX/9dSL+iSZuxPy8UONWc8OhvjqlzrExDNwEO2M/f3kaE+AmsrksogdRJZZua/Rasola17om1O0N6I3pStGkrKMZ+OWtCXMyzulo2PUs41QGlrcEBiij8/pu4ds289man7HJ/AUorWpMKWGG1jWbSS9pQKVSI41ugv87fV7M2LayvebBP5YN1PUo0Dct0X82faVEuZK5Shd815yw2h37g6Xvz5ZhBSMAu99jKfk+D2+oYR3Rpo5rT7h8tgQChs6Y6QSERpsYjmLBg4b2cuTj149FcjP+BM5eC/pL5B9YxLLywKWcr8uH9362RLGIoB/d9NiB8D/sw/X35f/tTM7tJJCP5yIyLcPjytWgHuvNKQ4lAu0B/pW55FBGrWuUprYt7gwBMQeIpEBh+0KpmOQ1jmfbeo5jLZB0A5bHvKSIJmtgwl0+kCi4d4FOVh5piBdqyxao4VWaZjs2kd35/H21nsWY9fXbVqH9cH/o962pCU7OLTYRhM207+8Muov5KOsr4ncFBhcD5d0BEC8uvRaVBy4FUjjMh2i+SVa6R0pj8cdfU7prcr71ziNBiaMartYerA7fCxw4iSqFDaQdDlzAaa5XgCCm74QaQeO/1aOLVaZqmYReYqaSAfmekd3Ax3HGyVetknA/q8CM+/yxHMuLH67980cVB0l9TAzlOTMG2I5/mh7RkO+gV0I0DhTslmZWAWE50xOztqiDNMfYTZPzHHWalsOlTiUjzpi3TkCKdwG5cLyN2XeGBSgZUgfYbD5ULpWIYlJU/alCo6JC8fmoK3XHbormY2kP73sTRlvlXIrVnClxU5HOJ8DR1HDJUz9cbLKB4/6augrmwmdLCb0fuKXgQrV5RhRIYZThbVqVzrMyywLQRYsSJo8pnIKXgsZzjeQ4kpEAIAyM6MAIhw2agJwQ65i1upQCtEFBkXQvZWBXqI94gdVKr1ZwPP1IRi7H0Xn34zxVvMJwntwuCmjwjfYpcx2Y7DAkw4T/PK3Lyao9CuMZCLKvtd7f9YGUQ7X1KpgQY7/rFBAs46tT+th+svDpp1proFF8YS0zMlbNg+q3qHmlkHgA/69hFvMEbeuoedA3VvKC5UgsvitLFdvdMGoEJtocJ/bQ4gKueHS5L9Sk9WqyWANwq3i5B7DxxtDLKCA5hpSYFze6raPNI0YU/AqjrZYAX6pFpvgjJv7O2GcJ/E3AHFvH3gdK6w9Rbx3vFAP1wgPE1+3TJ0Pf8qMnrouANQpG9yjP9eT33lmYBsqNaZxoX+gd7mNWkWGqZBU/5MbNTv/apQrlDoIILGUnL6x4EGFYhvOqAT1dmymUQUDCO0jCnhcgipjUENObiTVVY3xUif8gmS5OjZGqZIVFVx2qrrFLz+Q8aG/Tn+llgpy0irsW0rHtgP97ghX0dhP4OS4YZgFWf5vAepLg4srkJUdCU7NrRIilXCFcjBMRYkXh2sN3Lns+Kv6xpUyWMXVMqG1CgI5Q6YihoyfZzq+KocKGuycZAG4Ld0dL2H4Jr7HWn/u68iiR3Fu+hMEs7lxv7kg9EVPXZAKdW882/RPag+u7gJlwwGQ1QpwgsegPxEV9mhlEvdkkAaW+pdBL+AY3OBBikgPJ3TDwEdmiqdidMbl7mAfgRujl6QwPuai/+dlKZCBwR+/oIeize3ZUs9yt2GXtUyJrb2m2+OLL2aMBwLQkdjrUfEjN+Vo4zVmeFqtbIk7QJcdrAuzxR65qYJjPK69J9KuJV2kZuGN7UFHE0S9ejyQEHblfbgE9rwS2ydrPIxutxa60O4koZ+0vuVTgG7IPt+dLbjf/Xij4j3Nj2wtqadt00ljgs/sSc+IkQJwnSzKp4jTwSyuK18hBk5q2AjNwnBiyj8g5D3mcO52XVIxzkB0OWJl7hYpcg8x8WbbChbeG1bgKTead5vXAHJfXPn6rux2tMbOrp+cj7vGhM/vrprfEb67FbATyQ31nstnHWKIiW9AImKwdQVA3GMygq821D4Clv0wBtmu2Q9q9SekDUX/00v/cdlvLrGxdTTD5aBAKr1DSSzAKxLMJEYqj5/eEyppyYxBKdHENYRca3Xl3++Ig8BT1wEwc+Aa2YEIdxLcPJP6my94cASn/8YSYmZgWx+Oq1Nt/ZH2/J8ya/STXy8mLd+8es9czzhQVfBzlFNKBvFfiNN0pM0lQHqWPJWhCd+uLLG67UQQQXzCN9lJ4i7TFpq7CmTX+tpGzs+GYYAnAjjazm81buMX8/j1VZcyQIl0UmeFuQkHfTx0/qM4QIMX3aSz1eSLXr35BIxHkPEU2xdRLVfvLT7GAnCjXdaIDkIO7xgmLL1VYh1OEjBvYapkz2X/k/U25mAk6qGsurhvJXsiNyeBNeYg4bkzaY6jjVSzr+8ZupBVn37sBjIsQQHIctBa2Me1U1oSguCjZ5dJ68zIOjbRmMqHjwPxgtvh9bkX22tStFFlTiWcAjL4So6sBs/h+0AlDvEeL0eqQb9U3eNELua222zrrGPrqptU6yshjgkGqBfwdZ68OsN530YAaF+qj9V5VgY4WFxyQkv9Quci4N9bLt5HE/l41iM9RtjI4jFLZ3dL17Hq5SDu4HbN7QQgxu7j0Dx+3xqlekAzdfLNBdv8vYGOAZiHmyWKw3VmHJ2PCMQGF6UGB2kSbXxPQFUpiOlAhJ+esKR9Hv0a0fI+wJaNTKQlGKbT2m11zfvLxrcwgUuoqAiXGknBHwCWXB7c+1kBB2EKB2H/9MCrEA0JdrPsr26ishRk6yQzgJ8MRDkwudJLWbssgzdz32KiF4loNL8NR9AF5OpKI259SW34P9uwfKsJ2oWVAtrOLTOe3QKgk6YhK6sbT1V5luwQckyVtH1Bw8WhYcuI2BPk21A8DpacDF6/Me4V3mIPW7hhF1bNazAKuzTK+15mKUBBEKOo4NYayn72yXZehrl2udCQJbDoAw6MXVjSZ9Xv/zQMji885YrJBTlQFW06/ZhGZIPKNsZFa6Rk0T2zmd8L8OExNF31oj3Y7XDVcvpWWLim/T/xAiqgMGhBRtLxTpWZ+/uoU1zUamtOIN4x+HFGvRi70pBvDtpUZRlDh7YehIg0/NodCmLwLKvlSP1xnDuTeajUJDV9iqzHqQlagQ1ElZeKPCs1HCBIa7+0G8tEpEFgoXxctIquCo2I/aiRPqa98TZD5Eei7R5CZzfCPipZDJbUb/QGsWdxs6E/gIv3YQrYImV/KMyeO3BuinHBsK1LLVvOo2HUFryFnJXWvHJ+6N8+mH9nZIp8B491oJN5uYhxPgoHT7kruHmMgCtVVO3lOK8eUrvEL2xhMMRM9utlyBqNOmPHBsdNLxwhWV1xAmsDV3+qrI/BbV8zFu4RMsTAWmVgXF2BKKQ8hay58QcRMWdovegNS5ysQ9lEbzQMl3CTHViD/V64l9ri01IJgxEC+E1j2LdgQ/UfjLOd2zDS+sHMIsuyTW3t61Oqn72f2E9O3EoEu7/NtqqlRcuuniDHusmShwWD7CY3Hrh/BjpBEUmkWIIiB+3/gqBqWZszaJ0/eSObWcJOI7878Uo7YJ6eOu4wuwbWuTjd7TjBMY8s3olCtO734Ef4mKtAChInxvVY+fomQg5uTDDpiH/3BGZVWZC/fjxnAPbWpBIuSqz9rl20lfsXZpSZgTAPtme2wHX8aS8lXZrokS0zT9cd6lbqDZ+Cup25+1UW6UYcdHVxjYEHDKemQ8XkkAh6GiHe7uYt0I7R25WS2ICmKgulHMOn0PnrAu6UZzkQ7/CvmBeKGtwQh2sa3GX/2TDSAvcmanADf3tBs7O8eJn81VuS54CfJcVAFJJO3o9VnOZdR2aBGXQZoBAyLJEgIFv79fZjEqme8lzYnnaD/rKGBPsuURbbzrEjjk9WkTUAAQ9+SKtrGW+NC3nK2ipwtnp5/ymLDtdY61yNVumkb9iMCvMoYVizGLMG8k/rXolgdXL/XsFiSQNXEe0kj8TR+4ynfQPD1Nr5Ies+swu+hIiPbtT9O1wBEOBflEbYYuk71Wx4ivDBR17w1mnAev5aocy8DXsyo5N5Ta0A4pLQdlE7mI2mTT53eBb+gXc6NyHZ/uqXkUKzM1x5T4oE+fwXbx3IKaIVj1YsxZBqYqu/Vw/Xe0NicbjvRoILmyaurAUbWqapNJFQObBfDOC05Q+2b3bLBXmA5flQFgpRDdMX5mGBNNm48EFs6p/s8crDbH9tkF9o7mVsiaVOp52t9oUbi4h94aRYumgYjtKMrYwy6LO8oGpEbYZ9P8zYise9sGejy6snxlTpM36bE1QWNhG9G5sl4cj+rrogCnie5SDYJNgb2f0eYsZkM+vzHkkD4rYSpwfE8PChZD1X5YDwblvtALnixuIxlah21b/fLhCd69zmazrFndmvGN4QKIn+Km2OuRC4Lqnf8Fpf0cox7Zyrgcu7gXwzhrA6NvIcMn/1hn0H7nsfmL1XPnDvURAQM51FoMEsAV87wTr7Ip7ltXUMCm+DGcZy2LFL7Qi+GCiicQHGDPW5SdNcjTuekbQGXpWAFrW6VHi8u1X2exmkHQyDTxNYBEl3309RBrMIKI856xmoeGH506FcxJLukq1HidvA81ob3gBx3dU+FAhs64zv67C7TUJhpQEIfGz/sbaLeMUKZYXrkDXD+C+l19rfZQtztHzKZvqLE99dlzDHYguRoOyrfrPEeLnIEBMNSTvYhchn12OA+dTnem8k5abvJuiueH+oXHgiiTSCoNLbeObOdEqCd5EO01F6i6VBjqhwVXpLXVSho8xbMFpmGHl+3dnNNGIjBj63qN1uZW+f8fNmBgApM/oXCSD8O/CCY6ZCphzcWRE3P2k5MWtfKUAT6fEhqovOLg9G2x0wcTvtg1lw8OHIxOpm5amhrtl2kAZMiTuAmHL/Tepbvf/Die6Oqn4WHIuTkONiwhaNAclYp3AQvlSb9bQdxkVIWIIjcjhWeWCmQRWFgo0+9mdyl6Pu1MrnLIxVVNE44hcw7E+iCnxemyqdoTgxNS7u9UMtcErtwYi2kAAAMovjhOOtoPtiWLQoaijoBqYBJtny2yKCalvnndEbm+hCOsqCxkNB1/VkOvheL1Osf39JWKkjLN/hmH253jBAyE8kXQqCrHzmPETmrXeLi6chRwEngzab0cg54bBwjgoabReLE1wvbqabv5whJBXWLMyUd4gK6xe4YxWe6+tesWXJ95gtnxAzJF5JNkgdMg++R16PY/1CmVvN6ewf6jrJs6zJztruKlx7KOTVXEYhlXGSRkSjT+sra18IWNLLvdFU6EKha80Mk0nDrCR0iBgnOIXnzwiGxhSXIzJg0NB4vIhwTCIYJ8KMWZGp1ReZiEvG8hWBfTQfsVrZEhkO0XJ/bdLDy79mUQW5uoRLiol7syEEbFI8QMyBu/s2JZnZF/PKu31FpdIcSag7TnzdlHlyM4B7TfqCtAzjK6Xr7P8U2udBdlaMxiiE50KpBgaT9FOcwFykiNZKH5YRnSF+ndpZm+WdAib7IpQ0lfsn1f4ApO42c6vxAtO/2vNMdlqeyw8ehu49Ib57I7ifoPaBpwftdUS4aSKcJoYJd1ELCEKbNvRdkq5fPMy2v6Kj8CQb/3IC4Wl2fglU8u6EnwBF9cnd5cVaH4pVcJcKDSFSim1r8DXOZFat7j17NHZOxkux3rnbg52dz27Be0t05n/Dopw+gHUlHu9YddXtw4vexLiJ14vccne/lG6GlWGsJNK48NA/b4SUSMXQ3VcBb+Qh5FqvFPihSltK5ngkfB7s/UdB7YF3/2/HS5qrSWSK7FVf8S/nxvZURWZqv/Og2crJ9tjfIGONr+Vnx+yBeFPUG3/rNp47HUJzVzHI9kGrXEpU4jQCf7C5UaLG8cFEkvWBg0o9EZ+hoNiK0mU4SIaisu/25GmP2p1SRNKnsF2RLz6ij+fhoM4oLBx4ZproVOkWHSp6oJ5yyoDzPt8K3BG2oe8Q7YHn8SXc9Y+0Dm6jpu797X3lEFzh+GAqqGgwOFSNS91uQBNRwfszxWj9cqVRkM/U5oZYs2GDXXNCm15vHVIKU0SXcwnEb0lXu7Jmgm13ScDW4hop/GZ/UFqNIfGHj/9eRpXv9U0QQjzyp8/s4ZiIAJp0kVRKDvoi0dGbtR5r9nwm7MfSqKBV6kIFat0KfCHypxt6fcgLV3cKQgf68ZeecUmSxuEepjUbZU/m3sLJdjUaeMPbHzd6omH33dUe+Kr73eIndYx0/yiiKjnrtL7HBvlGEzoe4MHjT21zVWMucjGX+Y8CvLy9D46tfTHTq6dmDVSnIqksS14gPEDQstohTTdTKX+C/zNg+3TSjJy0XA5Gg7nJLspv+/15PeuARDmAym7kujSasrtZQyDAzB/fsPVaCR738IS0r32ZEZ9JjG1tQ/95jjM2HN2qCCxjplD0Bdf3MbSXXb5q15KzQjfD5Srz6dxDmXyxHJO4DAlp1hINxI++2oqCwB0+uaVYGaUt8mIdXJ+/PXEUo/YGcdoHmxzw/D9QbUoR71nqzdVlfSDx6QYNGd0Nh7ymMRkcdnbvIqRtCRWLyM767USJ3KkHO1ktvK1ywuEVnT8348Ufq64U8ixUdVjrxlenRBCcuK7IRuKkonRpbx2FZfbwZabRHm1KsjaLOSkB8LS68lcVzMN7KKyH4LKs8GR2ydPINzj+7ZZFBAZzBPnjAApv5epreghdGsr5Aoyb8pKOBL8oaUNIIIb8vVX6pb/u2NGFqEWRvWHSWKCC2ynX0SF2R8tx/aaEuDVQ0uAkJuio7hhIID1/isJZHyGc+N0eLY2BzukSb3DOebPEvQchyljXZ9heromPu29yDh6UFKxboKcaX5mRiZJMNkZhXiLeH4aAQuRaJKmcpHJT7prY51v0PFKRjS3/0PDwRA3XDIdN6aqX4Ha69r8E3cJQY33r0fwEyqxNJwis/Nl4yQWfC3OK4Z2P5o+fLvCYpo9GhczU2+wbriDv9MuePNBjLTKmYJtPbFTGg5nEgR+N4gvTx9PYl9dmG8fhrXU9Pj7kDEBNjeV5mKJK2J2h3UBknEmMLKYZ1ToUNnDU8/6xM6t81eqKzOgtjUeLIa3F2PFG4H+4hmVLc8xrTwdqanUtxk8KSh+2DIo5vSJJpL9ydselyZ6xgPWg9mDa+9nfpj+K5NSr7QcMR4AG9w/5ynAuDQltqm2TuVuMY2FQIe25HKaSCDLj7HRFd7P54EH5Su7YGbl9YQNoLw1i73xudij0HqHCQ0fSMn5rJgXqO3RwrSxyhztaVSSv2Zc8NsudDP7Wsz8yqDu13oemRKNKXb8OqHlhLSGSsuz24r1sE3zkBSi8yRyjrOePjcVGijMSegsLY2yS0dx/v4FqF21hWHBGm+sc8dcP7fXYBvRRqdYwRhL5gZjBCIv6YcS5qDqT2N4he42WBiAc3vbsWZ3MyJ5WTFykUh/RmsnzHmd5VCjShJh+ck2iNzV309OmuzTsKtC43EEun3N+MKvh78+nwELqYOXU5cY+jwJRnkVBK0fgz8r8gXZJVO4WzNE+flP7UfVVUH6QDstbWl2/SLaBD6DQd4/I3uFh3y8uT4LzuUNrgfw0tY+P9+LkwyVBJTS5vl0S9uebaItehKzrmQ+/bgFLfhfvsOUf/GKdHrh4eHTDZ5qqjS7/+MvwJjHC71TEz6/WM6Wm30Fo61lDq5zfLOFdn5V9wdQ5URQ2ePBSbNWj0lv2v3gGPdasvALwccOStc7PQ3NJU5ytcQOSiZ0CRETkZEGDUMN1doYjhhN1NVQ1FQJtSAjsIY53uyOEzjuuIqej7SPQ6yW0aDU2Ikt2qgp4u014T65ooZ+x+Cu81RyAi3Vs+udPqZQvJ3NJ7WP2O031ZySffjEilsSeQswFEVNoeSl2Woc7PC1UHqLhRLOmQBztsae2BbNT5o8dGLcl8kY2CRh0lBa5lWjmJg09CJlxyEDEH4GiYXZXVBqOp3cI1ntP16sKdu2UisjWoVKlLxx/ooM2K2o15PwyAjZDaKjVeiVa7wvLZQM0+MOS7ClYyK2XuXXLioioqsFa6jdiOohsuG4TWhrWbRfqQrBIV9N7fUDMCen7F5EaEByORTxU7GDEbbLrQzVyGUIauTryHLdU474pswAbJx1itrsiZSpgT0DiD4snY4KhrIsBL7vb3l+ZS4jPQkTaU3Ym2oWOS/190d/KU5tFedsxNv6LLo4cSCxEiwViOtYUiN11b6AT9kHJI8TmIiT/D9JxTXLyEmVbBXxmrFtVeZOva2zp5nNc0CsYtsD4uT/fJzFzW/I3Ctp8L/Nf127pAUyPkkEl2HfuBJW5dQLvlECU6hdoydoWPDuzt2GeHlEAU5LSnoXPPKO7pBPbCEWq6sPMMCeXraOeackq2t4XIIgM+J6IIXhXN1IC177fQClqlKAhttVleuyZ8iVOpVNz+ymNtYouoI8A6tvZArmI1TbiwuoQFS5a1NjuN5dnveA83p6iwzQIhk4onWfxXA6kGkDl8Sb8AKETwqS7Du2zH7KqkIV9+vWCwU4i1JH1vumMpGKr8YCAFJbdkT82s3MscArxvuhtlba4bj7RwFRUKgBjZstfdfNMcENByH1+8hGou86XeNX6CryNnqlFcvtCUmVh6LLmg8cd2l+uTd5e0hgbFv7TMXbv7lrd/FLDSuM0vPPqWeXDnHJBE5bGyvFqsDneFvN3JtQNWE6xIrJRb9QkAC7N4X/zzgFnM3Z3L7DQRcHj+bK3u59Vf3ll9JhPr3mmhaciHwv1++YrQ8dpQEqaK1ou/hDAMuAak0aU4LSbeuIn/TtfSEzEuQFVywwcCo2AtEzJdKRquBCxdC/diLSUyJlIGN8qeI6oj/mkJIMfAhbPmrHh4Vi3ESHk8jrc01/Cb+q2qSgdK6rIqf5qwq2GxLYNUYm1PN6bp9miOnI+PBCl75qeT1MCExX5+d5fghlwUaGApF+mb9WCnDDaXLweSFiFyzfqIk6j5EKSzGVoey8WCtidwZ6+sQQg7NTdDPoXOEvSqNoHyxTuyfXSSDdj3mRwijV0KePLiIPIRD5M6qzUQD2EtUiMP0yrpSO20eQrtZtP6R314/PByxzqKLh+02IwDaE/u5vvT7+Ou4lOA/OZTKqL36436A7XC+Q3EcV4UBRnRlU6VQiFiRZKw2LEnaXtxzqTsXz/hz2PW8NoIyjKVhnM6T6A8SxRWDpZhsyWPRQTAPmEL+jJ1yqemDhgFeDG7qguRg6+i21omXBl97wWaAFRa9TdkWlzbv+Y5bP39jI+bVtIkbE9HjSE/lHxlu2TrEayBuvWQHHnd6LFNUBTkleb1B12xY9+TvTTieVYr0kg+qFyAhlPLd+OOVvTu7uYo+IZH0XpJtkuEhIPy2r7R+gNATKYtLbwNViCn08fY183/+PA2n63LAUfSJtfEcUBm2NIgmJKGKAzIjpgrt9tMyPamJJxUB3JyOBrlFqTTKJNI/kFF7ome4JSBEj2OAYnbryyvyCgY9pCoFjntyO/enn5bQqk5dd7kLzZkzFLtIYpToodsqMNFb+ZLCSwyY8WEzGO1EelxjSOQzVLqu7nUtsRPZ/p3hbmBwLJoxndnwpRqqMvJew/Gowu0VRHoQSexIbio/7FjXL4oJzkoKrQ+QODj2RScwGNwzYfOvNSekzNn46i6eSmpbjuK2xI9g+laEQ40Ueylx3U2Sf4Xl3NEkOXa1rAeEHZu1uvxfDRW3+3xCBdKn4AO97j1ZuY+PHzvcNDTlmmoDJxpnSXvM9UPyryFyFDqsVbXYqGJqqJKNuX1yN3s4nzXyy3JpuMC1rNN7hPXlC4NB6aTAoAZf0eQRZmRy4k2aI85nByaDNF0SAZiBwrZMzKDDkGMvP4enN5qOvYb7ZmaEcwqbhKS3R+c+dSDGOhMTCS6fsHLc16Wa0+9TOMxSdt79WJtdRJxPYNN59390GIK8VuPLmNHVEIFdiws2GhPnPP3q01QSpyPA3wqqVBoElG7QTv7E4wmLqayqh9fJBY2uwlDNUthURfJeZAN4qc02uwL0lJ+89S+ZmfUVuuWxvF0ZIcCrUujf+qlqAv7seh+5/1IavoyUct3fTBPVrYd67WUfhJoOFsVqgVsL/4oVE1xNUdkd2BoBKn8nHF81UjnzgM22PoLmC17vmc3L9eLZryChHH8Vki9OgCFWPT7ynJpVOlwe3EmW5Fk4h7EBnHgp814AaGPGbbl7W3f/C/yojx19ynUOqcLQPUGE8ZVNl7xqj1P+KBwjyF89GEuWZCpcJHHJFACxfrH/ixeEIuIpcm7rx47rf8lgVSSZ5BMA7Igjj6CYnjFG4vxmaLTO87KUw9892OQrMm0+F6oNhe3xkr8ItdDa9hvvWwuoE09F3na+lmv5k4AUYl2pxaYXAfmCaLvKWXCZ9yOKBwK0h6JDP+LFnWcGhvBf9hChtsVBnpCFXq997v3puY+k+x1x080QWE8tP5EKzy40NcAz45oCU8CaRsQErQ5i5B346kZFAWWUvWB9Cq+y42iylWbhoiTIhVsW5liqvJGmHRIXgocq53SB0AG13e9V+OnLnwsNLsGIeOT1HMNPV8M8w7610u6NllbMFG6h5iPL9RvHaAEnbF8mB1ZD0z9Ep1iUdgesr7uCe0zEmZN5pFIrZIItyP2M79KIUAN+X0J1u2Evpp7yfuxDprstka+4uwTSW67VeLF6AJ5Cu/fAetUC/H+B6SUWhypBeFOumrgMC3raN4FhRiCLgx5QO2bRuyU7BECE9kLfvxZcn3oYm/Z66wRbuGENUlpt9YROUZy9B1KAxtoS+hf0/evi8dezBXHDSfyQKUQzsRmlDOoEdqJqcm/6t1wX66GQG4DOVRp8s7eGklgpBaFGm+pQ/96euBnN7EcfGuofZCJ+Rtlz545Y1c657WEJdhl8IhMVXkw38E3rP0zzcefhZqEPWKXJeVvBFybckwyO7j6/e7BmYOqh9yhod/w4rTxuAoY/n7bmsNyBxIjK03XI0n/luJPf5xI3Sljyqm4EFapp35WOqE2wLiQ1XOVG3pDZauYzaFxb8Egw5dIMddZmwf/pcGUR9ucvKw5LwPoST6UfBMetY47rH1Eil08LqXDwHf4M6MnVi5VmEYSIORMYKe9QUXiawnLkVSVBUvRi44JD4XkNZ2l5aNfvzqCUaSU/rztcgTlGVozAkm++fkgt201t5bKdfpTCjomwmhPbisUyvo21BUTF8TkyWlCXBTX13jEdln2Xpkt8TreuGyRfZNU4KrOqXCxt5tkxliXef8EETqGPKqpp+fy0u2sPMSVzmrm9c6JHYI2g1C/ZbG0Hnv5eB6pxPbKv+F/HS8AViY/LdKImIIenygpYvNQ90rvY8QXopBIMC19MKJgXCfNQ+Nnb2YXVXRVYvV8qSLDnzptVnnv8fH+pE9u9zDHXWNrCWMGr6uu0LF7zUMJbmtCloJdTBevvwVybnWtY1KelpkzC4vIWvo6qYW+B0DidmEVGYNziKm7V8VJLAVJequiWXfzH8A/964mBUcaCHklJ7JwE1AFjJg1WKHXniB7oiZZuPeYve5GjhPZcxhHAwBaWHp6LwB/zU+OfEtTdSFb29Ru4LZhfQEApWVcvSCGw6XNH3aXv4sGoirYPoXNWDfdYt/VRRx0ADYzcZtITgIkXfaMvjAAkedZKXMdnDX7W7hYLdy450O8joIlcvOVpWQMCtC9QU2MrPd65nUqd3iVggyhNX4LcMAkfeKww2oplH+Dk5ds9LNMahrjk9ylKDAi9BgasqcnJCv4qSoTmOpUWr9q/4rsmpnhcPE3edTqHky2uyGl8wCtCUTbuGZiM/UJLQi9x4W7OTTUWshgPV1i7JlZ7CVMTUAKy+T0gcBoXPiPpbUWHjFLqyCHK8CuowD1dDf/Am7W+MsbxBfowY6MZX8loyMMmHP/LDlMvvwm9X4qRdx4l5e8kF38rkBrDzzDEj3F9xPm1ukSf5l5p5U5sKJB7h8FLsai0oQZusIpbECNSAVa6TWTlszIlTjLKLQoSOLoUsZFr3+MuKm4ZbzkzDtBJOhcHaDgVbNXziMX2LItVEv4u8yasDex/8h3gFYoFbXAhVF8vh/1p7PKMmhtimA88yfY8JIUh90PVgQlVvnWHi9cBqv+Vhd4tMamy+Q2PPo7LUDjsRN+ZevlaPrXWC4+eiOhIzVk0JUxPeaHQ/lywFgA2qSzEqJrxfc8IMTaxXzstjWML6Lfl0dI0PVCucFfJjW+HmbfLSc2vEWvC0+DIKLGekQRk7qJQ7LoCv5o3DC3F1+7JyHujaNOAe86HTgizFnZVRN0V5Hs5TUNWhj0FKv50edh6I4oGlNuVvZ9gBs1BvdM9EMcUzwH1UPBsuQr5mR/WXKosBDm/XwsAWc5V58AHrhojvAEb/0cBDy8797G34PwoxFMPAa87bWY+6JMvURikw7Ll7oQMMDMDnBx+A6XqZGfRtmJXNkfNDV8KGbNKegcG2FwcPa/tTaS+U1zpvM+8V8ig+std5bLWFe27Qi9LOQtodm/22u5uq0wSINk/9HyUM+o7yKp4vUynt3uMpx14zXiyfprlbdL8jgIRLuMvVM7F47bTizCVkPO6Ezkr8APzmZV346wcku1jOIBkgjt99O8/jQS33Smr6ju1dHW8bHtyLdh1ouxnDm9KNnmdGzy4kc+43bIHsuGndVU7UAK+ZUaY8VQLezvTqomtCY0fGiShY9nQOJASTOltCjFHd4oHwzYdaPACG+hzoVUAIACGSrvRga1R4YUsmfrfGfux7WfX7hX48yDP2WwSmgn1lB401VxmQCV71G3zgPAkf07k7Tnst9Knr0Pef2VqmLmw5ljjvFPkc+6J9CTfgSL3ChJlrEhDy1cKPBsEOiVfKXOGiG2SmI2Gkw/KLgubxwN3/N+XcwmXUAhfgq7P5JhxbwooM5MbffzbiKQvgcLphkU8g4W5oSAyRnqsBOMVmg0D+WNLpkyd0QC2o27upec+xCLGnAdXKAfd0SKIpAgnPmFngtbdzlcfXazN14iz3RWuLG/xg67lsFFIHRwzqZZhnWY7s6o9qsXODhToAaKNmGEkvSNEWbsqc7rfL903awXkK4/DIgvd9VnCzNXc9q1bBLQstOusTVG16dv3Qn9u5+6DQ+PBP8m4t/T31nVWnnAWMOcPMOfSysacpvPEJJalLvLDPgCC75Y0SSg+goyMIBB38JvWvhINgT7hMzZFnqa8a9RmI9SGTiZpPCB0iHWSHJZijvYWwj5mMw+dtwDZwfR97zrkGsAcZ77BOLjXBm7FdDMxJLpAGiTCpAxvt42d9uuS4+IopBjCVka9kYLeQr87gUfQvhKe9cgGosGTtU2m+wcipiO85IvGMaTosA1YIel/+c+HxIhxpBRCt8eJop0wgRaEd7E2JNToh95cMcVG3S+2mTtdCAT/q2Tr4/fDpPIHUgci2tf1CtD/jDj5TS95MKYr7ykm0RlkcLjK8nV95jstja2WYkshEyfnpaUOf1Zo15zJf3gq7CuzTV3bKW5+p7NCYEky91UyqEhPpblGmvdXvNLOu0cLkVV2KyRRtAcrYQoO2/kbH1Cy2S6UfAFvZ64UhmYUfcs/q1gIItZdE3/gwho1mfvQCN8qVxzd8GDFMtlcNAs0EJYs+lB3ecQYBrgF9AlUEwxO+2maaCK4Q+D6u+hDhTbvWw0DtLnTBrE8zvrubbIPF4ny0Zkvr147KY1N62gaN9w0AG03+3s/cEDPpus0nHUl5NGwsugwf60P7Xn+cVcNbvlQmYPbq1n4t3LNv17yMpeKd9MHj6Sv47byxcmg0WTFdbMzZUHYcIPfWeoi2QT3Ggeh2ZeZ1rzPpQmbP2iYT1ilwwH+3loKbC3EfXh4pl5mpApPtOQfBkxKOnJrek3lA3dgKi2CHg1yIWjoXZcCQPZrU9kN1Y20FfZh6vHE5OugPh6K+zkwHIc41PiK1HKABabUtpXn3H/+qGa80qSz5crvseUO3fXBysvqpCS68a73hbqwjt9eKYmD1VKZT6vG7+Yyvj0P/SVClHszQk1mKXWiPlZnbCrUaSoJrx/zzJA2kLW/8p1tipJ+eFXfuK8y+aEL3GT9EH/78BulE+sD00HNB0NTjd55IAJFkmyg2Ly1lPUpsxelQNdmV9zEwVih+tUdcBsLkKLdcyV5E9b84rArkZ54xvP/11CzabEJYNfH+FWKuJkibr//nn106rSW+f7K9EEhUdfgOGIgPK8LNPfYie3Up3FKjPMSKt88Un8gUp1be0vbmvrTd5EHUvhe60dcPj5wq/dLlGldWWG4+gISwxG7YvkfB+y6Jemt8Q8YwbKv+7kBMJn1/8fxPiYFk0poT3zLd/Zf7wWD3O4cwoYrqLHIJ60ajrulOYYl2k1LcHNEc+mRlTt/6BZNpGxtVMX60FiLOcZzleEQuFxTJaCVXQ74rxmchoJLT66KiAkZf47NYGVBWEJxbLDpc2zFNxeEgKuhtlaM+A7O3tRH/o6QBqtswrtT9NZNEu20ytRcSYV5IL4sI6cye7w7gaWEufHGgVBHToaTom6JveEHTVs/9YKd09LYXXKACnz8v+nhUr1x8tXFMRF0y77X9CY9I0gQP+DqtUoM9Oplhfo1Vj9kVaMEEdZ9JIepyxYPZb2YDujsc7faLJWoo1gVM2KYkE5LYiFS3RPghriITBeZ3crvaJl+A9phM4/fFTOuvl3acdJc5o8jB0N7flyIw/q1BCBOU161n4M2hnsOm5S4fc9O+KSnqVGuxzXysKg/Y55vZMocKArEK9dd3bT7dVZMxqe6dWF3JDArZhc3jTVY9zmZGmGMbchK5MmTTvJSVaJ+O+Dh+gkLxKsBW0F/3Tw+ogl8QxSWL7eS4qd4xKkb6M7/p3XEoIjmLbCaJYgCXLJ2yJ+BpcA5t4011ZzZX4t+x438hGmq9Ae6kU9XLEfwWOZeOoANxd9CrF6UmOcsB2LmS74XwtBX7ja0qfBtjpi1KF3dfvtJZIWyF1lViBcgBqhDZNF38yx16xxzVfFRPUDcEPRVsyY+BMZeAdt/dc3FmMTM+sDyzLhTZUWBIW5c0a9DuNN8zDjkZj62DRth5O0GadTzP6R7KHHOiDWIOopc37U52hLftjslEBfINERGMEZbtdIzCUD7+DwhVq28aLKdEPzHhJwDoPo550P5jzwGNh6StUfJoZRNO5Vfen9kvLGz45Gi22bhcHFP6EfL/XBHvTGMneFxWqZpRwks7M87CCqRxzvClfYnMpkaWk2qKtGfFIR3Zumm6synu4riFYKHEDcs3CZjvqXZSHps9vuNHMzN/8ow557J/lcksiI/P+P9N+3kh3lWqn8WUSrJ22f71Rph/CwzbT9unr8vcvNQvpTQ/ZVaekJA+o9JJl2xn9NflKTKAUDAjpPlo93CYJbz19vroS827gcRkXhMZlx+TkWAKEqE7Q8l2CFxK8Zjd9mcdp+7YgAognEDHvIVNThK+R1bKp8rjwslG3MRyqbnHk57kKUIs5SIrt6hDFaKRRfdf4tpAyDCZwuH9Ff3jCjgbB/n6aAvKbUH088V/z5JltccN45mO20i3IMwYskEBBR7WStOTVA5SxhZBJW8GJrLngD0IlW4mBsNg7xfMi2axaDWjfOGECMdi812LRY98+Up853BI6LVALf+ZeOaBkTp63caoXodVyM6a0hTd82wR5yr4fhr4kGOFyFrwHmzY6cFX3lXquVxVbL5CSDJMSdluqJEw9ZAfYuZzrUULqnvmJWLgHpcLfBgCNO8rOpSGjwl8u7IBJhEcMuvyReWECrcnmGwyDiPW3K8lEjuqPDB5WkhE4FOWIrfQKPyiQYHhD5ryB9Y+WgJdJaBrD9VAM779Yn79vYViRC9GP1mS9cDfUWYvr1gsdygHf4AaVZ3evy2ymigwyqxJWJ/j26KdObnEjB+WPe1i6OHMPrc5s/9tW6ajDLWxY0ZRXYkkSze4VNFepsQ1LbuVDnwb4drIEj1nb+ryuvGFyV5p3cd1xBKXoMtbLcoDLy9wIVhtnp9fhN6s2verKOXwuwz1sYIrL6e0+czyAjRRSwgishmdaN9b10K70CYZgQVHXq5W35i25tNAmMVU1A0zlyaiK2hMrT23vjrwI+LQmHz69yrCB9s8im0noGpCFi5Z3VpD1pweQuclecT46/RtrlJvHRHlBfjD957scFx9rKzFcAi7TgI6Xbe/wiQjePVRbjHUHzZ/5bGX+O2sT0LWpZHZgzFTCIYnQOwWfSBE5qGAA6YOE3z5ktOuy+ik88Ilt20s7b4zzr2E2KkAydazHEVh/k/69GlBZZShiM2H756355YqUwA9YcahSWGLaXSItbZBK/pPILWibqMXx17Bb6/R3JbikGZ3mWwYXTh+rICy6Hza/ICFI2F7VYBoPROECt5/7F3UjrvQXFAUcVVxjm3kdMsJvFcWZrWD2Voomy030aRUmkwnGqF6+4Wrm8fAM9UwUVQH04UGJEFrcPbRunxtGotY/4dGegmnEhrblgYCPDvJrtaGDvUEJ+KWGn7FnKekNh8Lz2NmePsjwPsmZg2fqupwveYJDjxJNP/3rFpWNg/laLfup6xQoDG2ie1XUxt2gQdGeqxPb/ib/LQcCnvx7cHPcKcUhp4eyCOF/pxGYTF1lhYf5kzoLR0N1o6+sJl6lmOOTWluQCR8Xx33q/BnOs4CRpPfzNMOs50XDA4Tw2zi0t3g8czHRfvGN59bQX5zCucMCqYOC8Ocitm7hQIzmblUPi4fdRRqkPPK2U9exm6ElpRkHlCmXAc3T1P2g47qu+mpj5A8fxWzOZfOi5/w0OyjB35/1so9xNAbVQfGtIMVTv7so3cosEq0f8lIZW5fKth44bMRhLzvMxmkQ7Y9iFGkofRTSOeO/5WlB43Y75knL0lw7ZaCfyGhG25M8BcqEprcmqdn/rAWELlmNTRJKEQ9VCNn9PvfvfzeFGwYaCUbBS7OIp0l/4Oes/w8QSNBXiH9PvS2YhdkUZ+6bhydmU5eLFE8xKUFvBZ5VvVEIAr7L+5ZwFD1Oy5PwwR41h7iPZ/Tgr47lgE3H+SBi9bHNLCc7Ff0tC6C8HJZ4obCdFj0UBgi5Ci5J7ppKrCWG+nFeyq5BQm5RalrF/ViDvHuBIV72MqSzZm/A3NnNKiKeNOFGVyNPITYaOjcAMlf4WKKVze6n+HsVJJ1sCZZGQqo5td3cKdvJ/M0/D3+S9nonJ5naSqnaSmOA7tgcHSLhhsUjASQa8PX7AB+VuHQEok2IYqo/CTAMLPgJe5//WMuhu8LdPDcQY2z1Zh/pspTWqkR+oJ0zTqWUCNoFSTuEeymvB2a6KzskdR3AfNjxCDpKDA5+GDHqtwc71llpGFlax0MPiPv0qgxhBT8uSWLImNfh65cnrojaXanbIps3A3VeQb1BeziRFpDt1DUnOakojty7kJzKm+7+hLj4XN+DEUQ7THQ9n1K7A7ksNYGX5l3UFEDJgyQgwUsOvFijZR5CqZmz8dHGHjfEas21bS3tzLoigw8S6AR2M8mv/YDwvouCy/BSvnO1mzlCH2IfEPvU5ECAGIoRgDjONky3cUFpurAgBtJwk+Z5sPm31gOM2HLKKMZMrMrfxx4nWhfEi1dpobLNnFleVgVAmFqo7emVpV9eQyJ9vPoRxj+Hb2heLlqrkBHLryIExk+FD7c52maKjrNjLukNIAWGQH+/Q8IewAslXgqXuf8c+gRHYtf/99KEmphsYL5hiX0GSLU1v6911C9TKNi9DOQNBahjfbq6xA+ehDXafIZvdqm9ZlQYNRekv2BNCplxiR6c/Yldn4ZlMTsSX8nqqDIj8HzSO2RRMcmPmPw7LnZ5pSeL8ZaflAUtpn0PHVuGGopaPQ5iEFSHLewLT+vWFHDN0TR4HOysazev5INfkQaRFCEKZSWXneHzYAVakIqNjoHaDI0X/7RpwumKu0wduiMeZioWhG/LJBHp7VZIaQ5mKim1zeNHeAoba532kMXIV97zIt8r9BdO8ZTZeo4RhTTadzqHBSZpBn4ymWn2f771GKnJOY0wtfszk9G8p/M3EWzdjL9BpuDgjwLdPyYX85pRFnAjaDJFNMgYywjW0ijfq+eKw1HSPW/Oqn5OJceMhbuYpi3MCIpsJLwXhaLqHIRiRRAByVYAd9aW28W1qcyy0MrxcWUWU0M5Xk2PwQkx1UaL+NQ+gLxNN6NXWiX+zEzRJHi3Fdy/RdGZJrX6g4SxNNg5cyNhhLRDUbi2FRtUtQLlz2ZlqiSaVo5QkFXCco8KXcc/4sy3iWBn+Gc9+liPMnXMCAPoh3DzF7R+ZVnpjwZbaJZCK4NHlGjLMEWj4WAqeyG8R9Oh3Hej/khkepygSoKQ90hqdzLcVCiUkS9l8i8jp4EPZIF3c/dAmVXhxGfz4is0cLeYJtiDZc3ZSmHYhAfyDE02IXwHWSe/1fp0Su4REKvwkNP/VI8QSrmNfLPuAtQcxnbbQDejfvYiGrV6LPvDgOEq+V+UhRLq5VFGs4Vr5WXBe/lOlp7hTS/8dC8FoVfdKF5+JtkZ54mD16KVY4hE4fyQCCau5Yi4PDOhefd59mY8BiSvDyeBIZms8yy21Fmy44QZrWyJufwpKB1N9wi+YiKqej4s6FCCjsIfWtKSEKiR57Ivdy0qW42j2YVfC3Qb/xQsdKLfGfz2+AhbMi8TT2UejyJ2iue2rHSe0oheW5bqWpXOoJ1H8iDLJfDlAWdDW2wBlTrgJnVLDqdFA7E+F5D7I38wcmnJtAjW7pMLr/5i9qv4y2ShQrKxOsxDjreM5ZK5warbj5MOVZzS4jYg93l4cKir2SJbgpT3k/s7ospfcF1Gmc0kmu0bppfQ02AMLZrC+KzeJt/H8QW/u2JuIclH+qPgVvA/GCYNfrANABAJnPehRJ1rTWU35OvW/e/CkWIhaoJSdriLJIAc8+3N1N8TuyZEXcxhrz/9W5SFfz8z4eqiiGnqfNsuVqaQyq8XsTa3wH63yTEQtcKuHS9VA5ZMe1v7seZleU2z/+74sGniwzSUxtoLJpbnrMtqgelsS70bf+QuQVhayCTOREFJ+5Eja4uO5ZFO3eV9Svn61Wkojx2KaBX1mg/zQsytLxxSgt0cX/GXHFL1XRL/6yCfLzMV6eWBw+pJU6FgkWy3UGIfy6FGAWt0bsTMEZA+RnWpf8Wb+GUVy4112zjmn3Kus91+h3Mq6QBkSwW4Ud6jzshscLUxAFCDzycGQacvhh7YrKVFGFrkNpJfAkrUgbuNPghlOX7mdHiit3TQ7qPXtGg8p9EsE5InOwvMUTkjmtKXiLZuPCQCgDSZ/yzKI7NedpA41HUGCq7N1lsfqFLOHxawBeIcc6vfp0uuQuX90g+tONQXAsUcFNsEBLiHTkmICUEeiUL4oQgIRtpmbUJyCuw0H18fCyRFu62TE6JKOcNgyt72L5kAd3XCuwMajNpdvG5O+4YqvPfwL0Z0XP5hgVLO/rEr9UYeIH0yckhzscuouqTM+f9+J2ttr/FHZahHuaZwi7Nqueng4ssNWakWq/TQhSsm7W8JIV7InBqCZViV1D0mQXFVOnyzImV7sTamW7osdH/SV/qZ1/FPG9xwncIMowEpsyuOwoMVMRBTMh86Gs3q1uK/VlqArIa4+kjBfT8/6zL8yVF23J1/h7lLr/lfiHZF8P3cadLJCkfQX/UHilYEoht34ZJZ3vaQmwDvCjHsPdbt2QNTELSyoNvGBukJj1u3Nuv6IFpDbHxH6r11OFlpfktOmMOQ6ENmpDYlx31wOJ7o34w9A0HNtnnmnvgpBK7OOc4v/7TpLZxu6TgG+plYn26d1NSykqVS2wFk+6frqWYsEXXI2SayswWsLB3xPM/r4H7vGVjw5x7KrMLCfxqjV30FCeMWWwaXuhTOD8IqCs99PVsiMmMHOl1a4yWoo30vGswD0Xlxf7QXz8AvdDtZdeVy5PgvuZ0UdpIlEaoR6QY2oCakhZi8dXNfuU+kQFHxSR7cxtbd8GGMRitKshlliB66b38e2xnbgdyxvCPh58+KeO/Wk2l537nUJiwH/NY564k1zhn9385aZbb2eBrTZuW8jwlMU3W1WUlG8iswbv/aCxHo96RSwKncBQKtbciQs1V7rte9+kxs9pIVI4VlS0o1AB3h1YrsV7GuaVMhjFN+J1Wq3GZhcSXNJ7qruTZgHEY7a1bJAk69gtPGdNaUbjfPi0tFbI/ebuKCDGPkC/4tDlh+prX3vLQDx0K9KIvh0GteBz9xwKbtGRq0eiqr0JbhTtrxJuySd8ydUuSa/iLMOzeTK0Eozgspu10zpCRW0vDkEmcu6HHaLjYGY7mSXg5NMYHiUb6dDVh0LS2lzIfF3QowaEybkQdUfVORoB3iGZcK0cBUuAmd1ZPiMTNc2UKuKQF7ULF1vdyTJwEi6sHA/i9QBQOIvocJY/MA4ZvTh8WjLU0sTxFsiI3eKhGSbdqvLD4VSgnT+Auvs9ndjw2iGyxt5JlE0b7YUuecNENhhhyTR75GpbHxgkKh2wdxusn4686pqLMwLfUhnMDtc0o6KU2xpk/oeHI8XYNmjilG9KWoePkPTffk7tP0jTcQACrnxVcevPw+7efRLAB0Th7zPmJQqwwZowKFGvM5cVsvf/caveo24CRS68Wh0gi8Q/UDpGJ7E7XLrunVT7d3ovztIHWNDFlj6tIhbVtsuvF+5xIZMaOh9VE1xvgVZGM1oLtUkug5syKJKihlXPnojFLyiGN5rSosOeWm7v3dB8o60WNahYU2e4ApHIGpV339RJa/wLYXwl7+nk441CU3ecArSsGpjpvIxSycaedD9/YXwgNaWdffF22y6VVaPyZ35OisLc6g1a+dhRTrh3IjQ1XfkdqQCRVRazavvKhThlDwL+AxTZ7SFfsiIeXRnur/UPnoxHGSYpCo4/Z7yGVdkGhf89Yit8RvRN68IiWMBJjl+Q3R7CTdTheVxQ9oCl24ExCttQ69GKjdJ8vgIfKONndRBjIaFaFI3WtQl2GAKcvDk/4PLam3N28UZgrKYTkbma5k5Eno+97+Fsg9GPgqhtpltmvpPUIZD1A41QwZ0kL07KMjFOE0ZnTvK0VGoPvkr/37BdF+GtNTmxs5hzTk4CzlaF5C6A/3WraG/ngYNc9k4I6Os+Rl6po4cqrqZpwsi14WgeGpBfP4oCzYm/cEsAqQrjqR0dfozBqvjr0DmngjK1cvAyvIVOKTZTZEvC8Jh24K7pySmW39WyW5AbBc1m26B26sYyiMPeTB3UKHEWLRaR5PeYtSI09a9TnN3jdGbE8dsURmj4VizdErMLsQikdHH4N8QsvT7B8FvnPt53TEA/7g8ZSbPLAgF3z/dW4n6ipC+P5faS6UUi+CwCr+eOBO7qgKHocVhlMZ14jbHT9Q0LyVak11SWgPOJEJHLyKydI+0/5ROSbbCnlY1pdbphJf5k4PDfS+YgB+u0bpdfE7JComuHO8JFzEhJtyLdoYEO/JhO43hPyMNc4Zshx1XtD/HH4kXC7vsVQLWlHxT15IzBLb0DY3AaK3NaPMLXrwXVJKus97t/dIcnusuFIatkXirijgjBkZtk4+87xv4xredOZZrhedwvUwXfOifqvai/SXSi4kdCfccIng7nqD/MfaWZ/xot3+/cK1PnMOfT9Ipb9dmZ/mnqwzMgffPuE8EbQoQ3rIMZojIWMl8E+K+QBlTl3nynL4RTwGVhLOVTVNPe+pbuIxnuvktbR/Aq9VrUtTLccXa9ttzuaq93TOd1HcUW5g0qZtTucvn0nbjnZnGQ0Wz//VtnIHvMeaI/5dbVF3UzhR6No+azwBEaXuYGZ6uEFzYVqxIlaqaFVGrBxTCiUIIk6vn8+NL5I6QjIGW5/LEupqPPOrhtRN8d0RZcloVSiJNl+YMKNZSFq8RLfO7Me/irGryZjZHRRP3nJNZtHnTZ35JGbzdRmA7IMz95Y7MTYDg79b6COf7qGvKVMudCeKKopfoYNyp7jb4P/99Cy3S3lj7IdMtiF/kvkvbiBdGa/it55tPIl/+g+ijFYA74Wt/emPoUv9A8xo4Ri7bFlK3TfrbaIUKRrhwt+xEvFMN+R5G/zVPYUGyDrcW+rpan8hrJKZ4jnbyFREXwnEvWyuQNqbuqUS/xqj8YrAXjSxnWvmBklpvKYWi/Vw/dCIXqjd4jcD4uUSSvF0+yqQpD7XiShjUPMlmr6B17ofq4ng+O8TDGFPHMEVl+QAeGlRMUwWD8fLpl9SDqs9GPYPNiKf67XzQwX7VdVQ4kK6xB6G2J4L+sfE9BIN/uqz0XUR2QVQlKlrJlSyQDV46Fd8IYCjhPcRZqRkhFkqH03ZdnvkEikXPMOwc9iNZMFEA6QIeheQiusfVhB5VJmIPXvCIILREuRe8bL61pNZ6YSb32wXej6xhFmulAj+821aFD9zcMh86OrgfVT9AjAixsp4ptNb0QEUMHY4KvEjJ3MkDt0rvzpF3BV6Q/4cfSwmaNqLp0spoE52BCtQdym4MHMtDByBmXg/wGTgymazg/6AZ1MYtRiA0hOLr5XnkvXMey8r2h6FxtVk66l9viFptUv4o8m2EMWodj3ayW4GH6iOyrhuG47XrU8IaTToZKINSiIju6v3HHgBCoTun0dt5oZUBYrTBU9jRjGZ+seJRPJDo2NK5rmDs/9SVauj33NwdstixVM2YnICSwk8zF0dIlBn9laZNkPmlPibxFmPCes78T89RSupTRJYmgHQUXQEfzD0J6lB1NXMfO/602jY3fAAF0HMbPskHgD9KSgmPiSJD0prpblska7/PP0Dcd9TGqYoD7jqSMJfVw55Yo05xijylJG/0ebXZwAj3+H5RQMTgX78hD21tgLsv6xELQ1E0O3FkmzUrE+hM/KXVBr4Eb08asdP5DyqfK9fKB9CW+iavTXIrlnChmdzHJA6GnLbPd4jfPLBxA5eX6a1wBp/AghYF7c8ON49tOLqkvuYAGGuui9UkLPbxU4Cx3JN2c4jGoQSBKekuTdecQS65EJgDov2tDu41MTekpR7kauNGsBelTOgWbv+6tDAxLmQmybkrWM/6C6x6Kb4VG+0prXy0OQ383+sWgRuKu8JbMdhL9g4daM31hOLdZp/ZRU1SLIToHHU5xbo75V3jwxa2kbu/VumUiftkfIzrqmw00ji/0d0cdjPgqteDGGa40q7D7u2bkYMsjqo6lschhFBz1In1eSAQ3E5qSaA8a+1XPJTo8S0nHeY9VRCCb83lMEQa7AHH3VpxQhZlws5xd1VgUPys7mEJZ/TslRxoEekkx8BP77Cs3mN+z4qNDJ3rHNxfulCcuNmQtVKkvHyCErDJc9oIl2uB/SkBUbeLwwHsIIzPIsFKk0Hs4eMQ5qVS3S8yoO1aym5v5MW9lspyl+07R57ipjU1tCpgk6uJLH988DZwG5ZpU4zKSCqweyadR58aJTSSozEEk99MlRIa1SDSlxrbqwsKwmtw/RynWKXhEWoK4DnO0/G0NOltwMLH+VCZ6cFAv4g3BTo4KOOJXlJ/2Koy/8BjI2F4n/4PmxVYXdweikGj0XgUYKtztNWSfN0P5bw1ynNouFmwvwksgNyOfqZkDpV2vRdgkujLYITAdDRRdrGmRHiT3rNbOMV2VpvMJ4rJUKAK6Rgrrw7njYoBSDxQ0sq1I0f7vl/CNIYSS1lJ4TjNIIU4f8ffe78sHG7uqo3hO7GR3EREQrz99pLZ2QYgzyyKpsiUwo/t9D00+8D7XsNd4Rq7v2Lf7QL5mS+r1R5LctkUOMq6l8eZhiFSM1mixeu20zCdDKt8VXrJDycfQssLYM8wKVgqYkM4yfu8XObVQL6MinM35VqftmgblgCo2TuaMqqOl9nla5RdKDEPMQOFB3mXPgrX6BZPm4NAnjAaCVcWo7aOnuMdNmhatrHing2s9r6WUnlCScn0M+s4RVw3yJEl6L0xepFJk2Rq6kvJlmuSBdS662FR9Y8WrM/ST+yBSF2J9eyeCt6BL/lvLUcIxAsUXW6OWuI40X3M71lZJAhpEFNzCpYTObkHGA34vf5EczPsRZ2SHDtEW25TlcBJJj5Q5RA1bOQK1oH/moeFk/r/sFzToRIwcjyCOU2femVkCwZpbCb5BXyZyaBerxCjqBdQyIAXJS9JObk52h1taIADyzFOmNCYMAAdpQ+yLgY593vRPXCNlp8bEhDT8SF4niceWC4oisM1p+9jvBd7CZz2TGXYhussSApLGzCzsQk0b3cNcxOxJ3tM66wvhUM91AT0MebMC1PTGw3WrPqghCiH9YI+t4StZCidCE4ri+aBdpSlMz5Gj1zZXGm2wYUVv2MFRN7XqI0qARjaxvT3dmCOP/dxI7XQddYNomWBCbn/MvYUmIUQ+gHSIVnjfc6tTNFefz5uXRm9cvcPG3uiYlLERCCZ7OHRcYPXWtckL4WWEopSzlRqJOpMqj5UwU6OElD8gqtF6ZybW64YhD92p0CIeDCqV9j4PXIH0d9PlcUM4xQA0hU/+XCV9lABzvQjHv8H6bvdY1jWZl7XbdMiVZCeffg+3BrMvaBtAu2TjfsIqEjCdK4+60yJPwhVafB31J83n3WcxIzX5/FqZM5Bgpyy4/kBLE/zpSMBfpqvV/md9xFQnDbilN0je9qoi4+BLjqPbaFUN4uH5ax8gJVJ4wEMBVWsgQ2tnKv9xxd4c87frF43dwUf+mv067Vd7dE6S7OQBd3YVzopsk7de8VBNxFL0JdKvBjdB5ZtUX4tTR46qmURxWtE/HE3qxIvVh6TW8utm9RK6ES1RQTgduzFuvpSb+VpT+yuAgkqfQJszEE6D/MxJdHAKw/b5JdkQhoBf06OuBXgjlroNJOxgBc5HxvgKTiJV97YoyHAdIhe1jR3SufrQ2fdNCtsLmksC2uOipKVCQHemtZXUwjMLA663zPEyRiUfIiEptCSQw/Ex0MSk7GfUaAF+uIPUhsS4LxlQ1HSlovtN6O/b+Pz6Qo60jbhWToF8nRsg/yz/gZyEkhujSqrBqHxAa31FZUkLWud5PGiHt2sIESu9ZuCzASvItPyHXmhuH9VrES62ATyLH38OM00osV4PRUFn20X0BD1wggYff3FXxqGYZDatiOaTP64z7hQvSiYZ/m0AJyg0E66O3lr6aLYXMBTjNnI3YDUbHvUYTs3q9zAh41+JcAuonKE+GW9ThZ8PcYilGkVLYqeKnk21qN9yuMpt0HYGUh2+nfZg4hiIZ8cwA4+cz5XmvM/BkXE3LAeedOXgyrhoxI89951+xGf3XRgJWAkV67pPwsqg/PVRTS7AQZ3ONclTwcpmo5eN3BiF9/nt5RNscT4hcsTpWGcF0STS3yCkt5gT1px8+B0KoaJSy6z9QiM8yrhbl+8M4BoqRYZBZAoynOx3wb16h9ufsoLQWhtInbDfdN4NR5A8cHVhpT5J2B1S1iYJAK+afsH7+y04Mx/RfNITkI3cmkDpOObz1CsPiAVEo3qvIojGDZ9M1uSg9xaEGx7R0Eq4JJ0vt5Dm/VxF69cxTjWdP88yBGLt9oL25PEeNlIPcE5IQBT0elco8FAksBboYAQS/XId7+g3K3J0Ry6yim3baaNzbOVbrfKf7V0fJFRdXN+rUVZCS8dmcYG6k/1qXkH8PR0LnINzSj+fyiSUqUCsQOryYCj/DI+V6XM7Zf/jRceXf4GIb/asA+ug6vMW2I0UDCEDv6QVVCI82YUAchm5M7kjc9AvEYI19c17tzqvQU6dZ8ii5wvtAyMWu1/0yuqySI7DfH+NOSrnynLh8OyMOjfEg4y78ycNEm+gs/TH3DlAEz+LCLCzxwp4T8gYjV57dlsoWtWj63BCkzmJjvw4sf/DZA+w6Kko3/2UFUWlDkwnQTCUmkRwGArME0RgUYsRlrVdT1Ag28MHOJTv/2zEG101oZ+UiCNo6dkQIrumTIfeg7uJvzQPD3DoVBOP/Cf/fvAulGIIuyuOQ/IuN0FLdaMEfxYpR9x503r/FplrgvzszrZmr8+/bA8QPknSizt/UhUwKqxxKIwq/LVA9k2Z96N5xGJNRLUEjU6J6T6gQd0ED5ToRSpZWgLKZk9X9V4Df1hd5bYbPaev65mAFlT6HSleRcScirz9NdgDvJdiBsFMJD6dkwW5ldgiqTLDlgZkmOnYWLk/K2sbtCBv7rbAtfb2Zp2QOUjx6f7RqvarzpCipaLo0qaQ+Sd2GEJIMWtiSbeEWrRDZV/kmijjJfiaqy3sN8xI/LRNeKhYfQxs8gVDNcGAwyi6DSxMltuSUpTNJbIiRg2ysZOsCv0RKD007VaykfKzrrrr0pZzRw7yZqf9d2ewkaCfR4Ghj3YUH3ORsL1Ld0jKp1s0KNRZXVs6FzynzOmhChNE3yEbmjGY0VrW7sLPRPNPq7xlQRVX2KF1q4Rah/mpX5w6x4ch5ANhDNiBOyY1bCFkcHkMvMsWqp0TatZq0W55CkKC0Y/vnalwlqStlhtfIjTn9EkHCX5MnHiSXfixUaoHF7+4QdEh8qNg6rvM/tUu5craR0Y/O3cT0h0f3IjVJ1i/X7oTtq+XR8SklKWx+TZjYwFtuOuNwvEbxVvdInCCaSi72613o4XdUzgUpf/5WK4FfDMMiq/DhY3GaVyg/W4VpHS0CsmiFMcFsKl5w7LTl5wv4YgdXKzbiYBx4+1dnZshzIQN92V2gF3YLBrz9Qypoyvo2IuBJr4noejBPo4PytBbeQlZ6My/1qtUyZEnZJVqfKpioA7X66x22fr3i5tpplhFUopK5hhsMHxGLjC+grAthc6bkPBKySDy+2TX9pBRIPwLTvooI+bOYbxj14uSgsny+eY4FqCLim8F4BNYBnk7m09/9/MyBv1GGqX8wNdOkGh4KiT4a3fvT0A04UWggpDWNSKhyXN8XQ7HRs9sI4u9tUleljqBIIsuIG1CQE8pS8t1sO2ktTHz6voYgrqeisD1RB1zImdQAQSvUpsf/Jg9iGXT8oeapbXqtbE5I7jaTFQhGj3RttMe2hhcKdPeuQMUqBN6aKN79WE6UnL5b9Z/YhCtG5ahdtQy4eTFjUWLCsUJhitHHv5SOA81YfYuyFtwLLsvFHXBBhBzRL8zhr8Aw9mjwlAsG+YV5Vg9JckjTY+I9VaaQf0LSmk7qIYwCWrHJJjxNqdHDMRi0lluBoQwOFKVH8og78kQTiz7Jaer28CeORxcDfMNrlHphNm6viva5O0vU3rVC9lZJVWZSbe5P24s+OYnSieh0ka9UewNHNfUHSwq+CWYa5KpNQtihjCWlawoQkmAvz7rGVNdM1gN8u9XY37BHQv7eH4xqxrpH2I2dApoEVbREyUJAy2EGAba18as5cTu4SV3cESSn80zs41fSyG+ySj75yPn0o+ejDEpxU0rUkji7waSvxiqlI62uwi5bc/nZYUNomH37scKgwhzS8zKK5d/p2j/WeZyAjDOyPMKPsUvncNYJ3KjAmMFewAfqkzFycC9FSfV3AL+gcUvyCSNbBXFqhq/m9BpPdDaRIq7o0hZbW4BSRbYJrB5DxBqAfDPTp4eluuSIBIygmfER54mMgA/kVY7A1ghIEZ+rDUDGm+WuzcQEnpIsJA/2aBcbOMPO6eqE0Ap3unsIO7D+q701ZxK1xBvKIrArVgNwCZiJfJREDMHtNXfLOfW4Xk0+1iOFzrTw8XPgwEomW/TAIhmmtdTreiaxDIKgn9V3Ua3zAnn3UnPnlNGy2I+sMqfXZRxejK6h6jhegfzOfk1/GWrGbLCH1dCgK3tmDSdpQi90SLwfXMSevS+2nEU1GNKUmonWVlAf0EfUlMvINdHqYB4b/e92KB1WRJ7iuB2Wi2sVYarp3BivmC5ACyP0W4D/gwDIssKxkPJDMKvRmqTM5toIlXVv94MTxNcMdi0j7M7XBctcJd+UKGh34LyWqEXC10SxA5Pi4SPtr54WPD4hYmeQw8FQS8HvyXfknY3B6oOjlu46FZHjaNC9wya9ztcFS93BbR5Ev2DVaos/TXw0m/dmIHyxnDY43cKUxMYyaO87r0wyyEm5jVaOZjDOimrz4GQozVbNO27uRBjWyD1XKF3Lc181b5YGcaMww23cGis7Y3lsib/ZxRiZ7PquEeI6SlAAKenjsquyl4Gh2XF5y3CgwI1hLJBxWLL+BkMPprDkBGZivDoVF0pPaetmo/6Kd1+4QkHkWlArcE6Wtdo7DJha0bK1utCpBCtSq2rNQhz0fHSJaOqttw05/E/qvE2ACIDI/hWJUFIOCRCVdzGfLJlifpimd5m3goCWajt3UUqNgOziOgW+3gqNBw5wKiwjWoAJ92HsdV/kDsmaQ7zyXIM3/O10mU6jJzZo8orXPemtFDYly+sNmh31gwpvMojs05MCjyyaXhX7HpVd8tainAiGMyYlHvzS/kqbiglhf2pnIZDG14WowGcukaVggpw66o3d9fW8eDWcrxFv62nkEawct2f1kbPiMTFrG69rP71RiRslrZVRQZZGEkqjBXgVG8FnAvl5A1ZzjQWviY2QDWJKLLNNe/Pb6z9V8cQOI0sCLPf6nBuxe3unfO4w2By5J2S1rgzQJe3IeaXAYo93BswlmXmc1WC9XA3k0+jhA4tyEYPXPlzO61fThZNCKIBImJJzF+u+B9v4qj3Juv+kbfmwbbzbTh6LXTmwWqo4hw3fbsKzkJPq4DCmW/rOzee8j/slBC0WenhOze3VnhwReQKi8kDoImdXb0u6Z7HqWd9pnRKzUVt8+OKxAM5qlahKGWi8hBE7j7QP7LFhu+U/CwCX/4ohjvQgrPoMoI3URtHC/SbdsSGW+nM0ONyKx8kFAqinmOSzOMjzUvppebJrYzRhl1ciqL4laAjO+yKUefk4NDyFmpEiv8D1zeJB5mc3u6C25SlFgeA/1nG5Rbepi9Nj/ogCxcsTtnctdUhPNcDcrJOxQ+BtrArqImSQWvvnd1YilPMm3vFm2UkGBHK2TafEtcCru4nudne+kvH+X8RJ0yNI2b76Gc2T1ZQ0higi7ETaCi+AJWzAoBeSFW/UvXYoEw9mMXPppk3Zr2B7khHH+sdZvidZMxPx4ckb9BnGq7gVnv20es/Lt9ru8tbsr5EeVMPsnqbdzCrBiX3+R8TX62gXXlBm0HQvObwbvA2eRJUsam5KZf/pXTP2gpIX9jrvaxJhmg9elEMw2AWzI2Ke4RmK5RpOWPtl8UKfKE3h8J+OJmqlf0S8odLqOXAoVSIIndnC+t6vvmxKj8Wof5wDSWE2vK5vHT056sbZ/tfkxphiOmIh0PqtAF7PCDNpneHVakpRFOhn7/73uV6cCCF/WiB9jNe543SJqX3NfJkAnBOMEPWuZlKYzc0IBC3pnucXKL6SQceAv+TwE75b9iUGYFouNJtz2zYV1gj5nOveOj8WKKciNa4CvWhu6gXR93K9KwpK7xuEAfDzIlGv0BDKBDRpsYzin6/FjCFStHv97MQYYuFARxkyT3sRk2nlRGhRCq51oLSQ85f25V86kBRxorBjnNskWSMGbvk20RtVJInxAnD3xLplT4EWZcsAuTFjIqNproWYey5k1gPaLBjnaKcRdVYbsJo22BjEs+nsGBgbl20N25WW6Z5YXYdpnDEmMRcVeR44b6iwmN9SobOkxPkmt0bcZg9Zp9LBnH3N3GoS8PfCmeeEi8t64lT0WQe9I0iAvZ0XPU5xoKNQDCjTIY9p9iOUXL/O/So+WOz90AdOZEP10Sj7iOVGmcrZHKet84Er1xthKnuw/V6uCvehabbTRhsuz+wxZ+xDHbKvI8fyac5vgshsZdgzEpfy5nV5ln0G8uk58Fcbq/y6UG4c4qHIG+sg/QfOG+VzcJSI7XB00DSLWIXbzGMfo4JtkV2vCQR85YUEEbIfVI8zE9T+2ntzmwwldLGryxINlBj/aujAYIIyY58rdBaClape+UVk1CJPnNYNF5zwzznXLuHKYdP9F5WWPcptNodx0GLEibOGg2EZ8hTMQPrSHS2dT+V4Lu+IwcyyPN/mYe88Ndx+BlYh7mdbcZ0aUdfkFB8XUlagftMHEgQDEX/fwISoD/VkC7LDwNyo2oBKhK1BNx5G/bR+Hqs+5rAtrSwnOJKJKinHMRl00XZO5EvfK5e8EcZWhBWhKOwldeWOWBdszj7+SVU17nH3pgJGIwstwaWEk1yKdAc0iWcZVKPYuqfJz0w4xxlzDu5JR8xKWSwp++AiF2HwBdR9pOBeS7SZ6a3hFgkvgevfjL5tCcDUaEM8hlFAmM2y61JWEdPBa5ZFOZVa6D/htlLKvCIR/TK9xw1sYRI1Wtelxf33Tbn4Y0qITvHXyMJm/yLlfl5EC2/j25SWE9jj34l3AP/ND8zXEK4gQ+o6yvI/ufIgLbrHbi8W7YClR7bY+IbHUDdrVBv9FS0UzEFtFA6FLfPTwHvwSIhQRXf/dqfIh3GQo4KFrIMAUKAwDcrXzl0tiu4bux2j8WiWjf3Sv0Uk1VY5txu4TyjxEJDSrqh74wl1A5pKryfaeIDKiDIloeghA+fyIob6UVG6JGcFkUdYuNBWGKRwsvjRpwcZ87uv+TuElfh0bHrjtPsSAf4c0cU96N9akf/wfEi/t5DYxBE40TF9lUTDuSamr7UhjlGNWLN1Kfg8Xwz1RiQrKgbbA4bFWfCM16rKx7VSbwg3fO2CNrfS6WqajmQfX5hTqZt3pONmRQ5gzcghIwXUWmK73O7gnlYBVmT9lp4rLj9u5FzAw+7vRste4wIVdmGrPuHCsjppIniLH87Fc9Tf4D6Q4lRSBKb+rbnGYwQmY+ks9HbOyBFG5bMxMBCbVM0+Li3j71kJB7AMC1fMWHXJTKMMiGggpJ4QSyyknf1A/WgCB65Ge6jMv7Nm7EKIEPx6VR/2tUn+zoPr6ZWWxM4zlvJq89KPzFQaIqZ6NVJd+83O93KqBzfGnzG3Rxf6XvVTfAm9HUWP4GNLDEeN6RvwbLCo11r7/vXw0VDil+B4iw7yIX0hLwUVygZIrgxC1dYuBZ7oPTD+8vHUhu+ToqPpqlGGjQnd5H4wsI29XhSamw09oiuY1rWfo1R8N4IxDqEtxsabKsFwm5sdMAXcR5t9ZogOzrf+xXqFM0kTp/DqtPaSZWtR8JMJrguThbNcdzHaOHCKjAOhVnKlLfUtwngImjioZLqR1M/+buAXSIT9TQPXXJcuScFJEzaGZLGIrxcc/RhOkXfRv/Gv6yBohTkmfEhYAREmZ/5vC9SflKEtMNJZXVJuWa9zPLZWiUaTjRm2WK2NQrAacT5vwkk559jnHKJrlvbLujYlF2qZhklaLkhIaNLOOUIfyYzFEC+HFDHpHDc8l9HMNF1wIcEErAhiT7+g8YhVoOfTDRfbjWHUK20cG7Ay8crUCJrQB1WrTcdrE+ZfiQsfRIp5xmcO8rwxkR78/b19RdIXyT79PvwwmWj5JoH2pngwVp9c2uEJKqkVFIj89zxq6Nio0I7zgicRtJ9Ro7IxmRORufpJimHi3CaBvFRu/iUo/9qKwi61vnZ3PKCwm94zwsbTw9xBgw89HLhNNZj6vMdKi2jFkX7OT3iHKWHlWP/MKVD6ottXYJB7v2EB8op6RP4TLoCuLmWDe8+vqrfzPZc2XJX60odZcqeCbMdUQnU/PEkdY88jmA7h7yUzc8zzl1o6UMWM7FrW5AWjTkizfNGwutZN86/ilG3n5szYSwX069Ro5gIB/0PpbYJrr7ULidQ+3eRa3KKhp8Lly/CzpIyxTLzvhU4wya70tkddXEsqjs5CMN+9mw0npNhHnFt8i3nm+eFBMKL5dx17wZxCkY1vFlF93EuWMddHV7R2my3nVUs97ibIo48RvVXMBanCgpEMIg/aXJST3ca7jA6w4QIM4tYLIFNuj7gLEnV8614vQaW0WVc8yBEXYrZjUUgFjI9rx0/KNar4qN0J13SJJYlW1yr7sF7VdvZr69IQ5R3lMbFCkZh7WvL0ugw82BlFz6YJRaUifJeZrT6XWrimLAvedfNRVaZmA2eVfOHDRl+uPKalZf1MCsMRugwbEz/lW+yX2/6lO98wyjjQd8xgASZCgk6U0GM+Tmuhz6bO74lutJwvQYyYHpTcCqx7OEXBFBDtsp6sqIyCJkpobuh1IXPm1C4vs9B9EoZLOsQekcJMey4IIFj0r630zyVMbuZhRGe/vrECiy32vlq9/yJrrpcj8APqJvZsybKcO5YJjVxfoa2W4kl4mnykoy988SfbCjCOg6yPqMBUU2aWKYeNiESOmBip+ZrMpoATVmGBy4hFdqMNf5/MtSWeSM1fga9By0YELk6w2r4v4JyGqWheP+qjACld0TZh1WSsJppzARExgQCp3caLohulEjSc8769NTY6unLHVqe5zOYZk4XNz+z2P81qReVSgMW1oxonQFw8Dt+TKL1yzCF8+JyoxIb09v3+A0YkYzfyrstLCfFbFoKn3tjxFa5uoubzyCZBcipzspQOmDZPHfhOkiP4nNtXu0sR+q6906OTaOFSphQ3QljXWdyxo8Pf3H/yMjHodhJb9xH8U6ERsVFj7xwADJ31O48HHpmJZbw30gqRiaIdG80di65LuZPs5DpTlTb+omykFkeE3eHpjPal1YQqew/aCadvalN9npiCn8/ZUvCwRHxHuyp+Iypq6qC5d9objnv/1bxRkXQZal9zf5Kp6bqr9QNAeZBYh5UIqSg2mlTMzdXOlgUsYSQyXX8+5TvfBtxrzqT7Wak0gEny6DPZkgU2mzujGFn6sXLLhrhjLLydKmVks7pxhPN7O8hfVjm6DvOy2p3YiMGwyFY9NY82NUXdPiqOpCdaW5M6FnlSMMsCpALnwVelkBzaYCHawX7yuG8YxDuvKO7bxFUJjd53Do9vs+N5RQybIs9VN7JAbKGggqaK/XpXU8wNuWCKB3Gy7/Ouh9qz1yhiRJscAiTxCCUjm86WHShudyvmMoPOJgbvfw/ksmwFKNiKigmzA9njT8FnMUqDMwEOhV3D0P6SXdqyr+iLiYhNA0XDYVeFSTH9sNwZkqOcDhnOLHH2y5nE1CVNVvYUBGYrnH1HzNsifW/KyBVSmAnVwQbbwSI7OZ1oHohZHTnnKRCqHiiOeYcmBIWsfpJtOGPf1PklNpYscf0tI7Hg5UGY/WwLeSWUs0Czv24CGsu1Ykw25Ev9Y3CczeGzO6PuQL6yAW1hk/lczw6dEGY1VDY69DV8tzzMfg4QGgip2vpaJ7tTZshb9BjuqMHNS9WweCkbobM5ZeTyftI48+arWP/X0UdcuSrdgju4FtiTMS92yGFUU6KIcmG/X0Ds2MOBCrQOGqCa1ykW3I8KpRehvcaDy86BAB2JweBfuY7jl7lyHLWC/vxkd79kZWd65c5mMkS6Xx7IYubuCUET6GU8q+6khOTpDXp477UqERY4+RLpVCFZFLQG+MEVqaBst6UKbMh+jtntEzK9tak3YQoyn38RYTGJlo3GDhvQFGXC4d3uF09rLYcwj4/zCA8F59ZtL8s60wBokbtVRAJPD7KXi0IeGe/i3Jhd1tZuEVaRniypDHCxnaADLT8qkmL+AWfCINY0P+W/P6DNY+OhXF0nUiWsWYl4+TV4IYiqsMgdlPqmhcySz+qZbJU6uqNX1MEfKOraaHOMET0HEAuaBBOI5pHyOuIkUrTlQO9CdAYYOxdhgBksE5Y4mct/Eornne6B3ayIyF++ZOJpsuMXaEOEdAgZrUxIrt+Sbgg/ATNAN6QgwodaBwP23Fz9tx+xEHsBnGTiFFs6KjI+958Ol2y62fP9SOq0l7Rxo3T91dxXk+lp06RWmdGOmlnrMHUqpjc1dTHyWMIRH/lu7xZPcmWdKwx+5Hmopkp7S0wKDLCK0VdeYE/BXQmCMust4Q3rfg4/2SrutaY8GYIYcXzY2JV8vFyvJSp0WyqJ8T8xys9mqFTOSX2mema6DbBdZiWeRwXak44km0RaMZuzdqgLxq9IXSWFWtXVH7NFE4YXZdLdeLa3AIJMpFZ5uz5hke4yyjvcRNMfWyoEjaYHWQoz9Tkjbd2HCEYJQ/1taXujuhkcPNYIw01oJuccNqn1JEFlpQJGc2YQwT9Tx5jN0FqPDhwNYPaihg/smGUKreCkVKjHhcbbBmdZ3km9QpbpKTVJ2UccPObNB15KktUBtv6fGEtefztHmNMedhcqUsPzFYbitrHH7gVxw/X31WMtOeg4IdR7fQXyMsqnvoHyj41Pv+6jyaSfV9642zIspjTtbmeN4ksaEYU+nDpnrA0cMr+Keu+zq3mkKC1kpKuRnX+oBdc9GFyvuPAyA6xTfUIaaOIN3Hhaf2qvdy/1zbLehK+SfEw2zR7Bm9lWcdRDlZWB5LZA9CK8pE8XNR8nvsrr9YBLa6Ed33FrBs5AY34QSedpfMkxhepMbk+juSpcAqC4bffZd5GqCYNupb04RJIPmHNSo8ZQUHGMZqppBmH61Ovtb8Y9UEmh0tGQ7raSiM2iBaTl56iCUc3/wdiHZOwofx4xc2xvjT6v4EhE2Ry7Ho2Uav/8viwPXtLfMPcKn4fqBYAzRd/4xBdcNxW+xkZtQWHEmOdzW01BhvVu9APTSpDFFKQpSMiKG6+IPh19qQN/PTaP63TyQFpMkQqzINm/viz8Wg9tmoa6xHjVOt3f6CeX+x3/YreQHRSKTiLNm35XGRYmXvNgkGFHxqrrkf4bc+2tCQX9Nhq3oxW22FF3RgNkrzMoR3ZFWJYu5857F2e2c5NjBxCWCwE0cW0ZFu3E87aFg1bslJ9QYM0QBJ4l4ECGkZyEK7exf/rH5ATGMoYfMrOOtUZU7/VJWdlw5QYr/45p3NVt5p+nJ9wwTs7Z9W5EcUgfCRyRAxL0l6XJPDm0WDzNnenhNMO53dXqYToBbK4uMZVxJ/8Y5d1SfEfdpa7c4nsAKoTGQGZVWVOauyuCmrmdL2yTn9iBkXSRRuOkVwuNJUykzt+HMXmdiGeXNVOjk2LVO/yt96TfYq0YnyngILQpFlKlMqHL13UmjVBz+RV6VoVO/XaieBnFp/2AzkNb6+YW+jA1vo0yS0AleVVJBW7p1qMnS8ZGtzdgOg6vViOmVTuwUVeTtNHTtRzBssfhag1m9fExPKb+xuUsd/TQqL0VXNA/cOsb0b+XgMb7J70ZXQ1M1TBoaaeMQosAYF/75AZhsbOFPp8A3naplAQtig5PUnfvkxnHchV4wsTbeQ2P4E2gy1+M7qrvsWWnnLJaN//m3OSKzm1lWxduzr6O1LapX5cXfL3MRYrRdHQIXU7EbcUjtEB0KEFsxk/26cKbgk7q3Q08ennnIkyK33K/HyfX2M23t4yuhg8COFIl5FdGZFiJNjekfV8RoELzKj/Numl2xeI7qpoBF/pR4RQIr1uW4OVrPGdQPZtzWXzQmeGekVgqMUamITqyLje4O4w/ov0CegHQXrYs2DUSvP8xt4JcCQCCrtshxO7TZhrkN7fNPXMNaPIFgvU9FEWjzUjgUt/fsYkbwIFNZIKEyvS9CK8Wq2F/tzFrbqpcEhDr/opoOdZUGPigtHllaMRmt4lNbpCRj2ZU8uzzrGvQZ12yIxZZ8oB6IkBc/0i5wVd41XAZMKRvi0uvfc1QYwIM/GnPEELU4qW1kG4Upe+wmehozPbbJnmSdx94vs7ql46pEQpUhMYXTE0VBhSP/AmTjoX+p81g3HfRB2kBjpnxDL4SkfL34SZkmYfCg0qseiZE89emH1YpOaiXXDaBmDdKXfEEwM5RE1MJsoB0Iu6+LOjHzGeZYxVn+TehO/y2M9/Ka05DR6ETuiSckoR6yPLdmEFC+LYUDw4pKCA+TRjJDdYllM9Em6K7vVqrvirV+lcVLhSvWr7Eu87EXsGrjwVIh238tONf2Vdp8ef7oELXphZIBNiE9uwSXZJL5d3xEh8pTbjRicR2OQZ81lTMfdKhs/sE0WW1az0afONGtV0L90JcH/A0kRGNkCkH6bnY2xHH/LOcr2TcWDDg3rfOJodvT22SmJSIQZrZkGFGmbEW/BIdR0cR8dXukwIbVm8HCwRAq5C7eRK1ZwcZnsy0lVCH+upil7oPf6rBcY697NKfT1wiwkh4LpsUVmJEUFpsfSmktXH+ZZU/1doZNkg9czwn06j213/RoKCAowYy9wRYPvxjvMs3WH/NBsirrr7qKOCxqk1F90UQqCogvuE3Eqy/jknTiHB9aYT0W8XXrZFVlx2MgJCImm8Fuonu/Q3/KPT6fBsD/QIsFUQfkkSiyNrXi7pGz0wJ7+SDED3JBKfBji2G1TDWyiLfiRxqPC7uo+EVSx/tbadIRyErgECVkHwMmtC/TUtRM2S5jIEY/Bfh7za9pEdNHDRdKdhvlpRvG1WxfAoAgdTAAuI+8vfuOaSz9fAjhTclORD2oBJ7McErbzsh430ae3ByJALqAWS1rS+VTiBXLI+F3M0O5l8X+NCh5pPjzXnx0d2fe+FUZPNd5NO3wuIxO/jqbVFsfsEGL1H2teji+czV9vkYn+cGliHAc60tZ8J4EbCoNLZeWsuv053igZZArF0pzMqh5sFZ04o6eAqqqxKMc6V/dVrCMfC/Gh6l2lODA2ZRgEceUP+wqr9cFNy5d6TaOrTHkFfqFYeb2k6UkIvDLhzJcCIvm0v5uAFn73gr1zzmCrmhlu55S0IW1aPGeL/Vqdsn62jlCaao/MBpTRLNC2+/DZkpK75HGm55QMfANwFGFMS0NIuI1wDUJKRBHZwBI72OuseZJIfvamk/1sS1kz2bET0tOuqgjdgQgr/RBSJodOhnoHpIVS9oNthgfKzhRdn542CYJ4Reu/4CO1l3aLrwnE+dwnRrW/4mVVbW/6Z4XDFchFFEr/x1wQdgW28Mp3F2eAH5shUEHYb8GWuRXGo6jqK0WcOip++B8pzOCIiiAh36icgw8UfYoFGa0WkJK6o5meCt52yl5Di98GdPLLQAecaYSFWmyBRezXpgXJjc0/3CTm4pPBpBYVMIor+zoIrGK9YUKGtyVVWEZfWrjRf+HKCwX0NoSTjW8c39eWwdzMqEnClgaJSamRBDkJYyeP/cIaYCGdZj6DRj38sIg1LBYn9uP4wFV1mOybHNQUOmYc1Fh/VHdLIoIZxWwaWLGoQ9487mJRdU0qmoLE/gk66uVQempHtsHI9m+d8T6AariFS9wCnYww4VRc+jArgHmf22DPtOW46GXHXN0ZLzG7BoDOaWTWSIyOUDdWIm/3nQ0mEId63HGJrf6mZ5eh96+iD8Un0ekAwv6mky729QAe5IHl8YQ5oMbov87IkhRO+BySeiWCMgQgG9FtAeAna+gMeL4NvcJB73wyuBoYzuq8f1X6v7A8Bz1fYcv8IZuqqLLHfjxHbFK000HO3ZcDSSQmBEnJV/BTFqj72S+o4PRS8Up2DJTtIOXYAQQxY+CqjCQwlhz6lE5dN8lHhoHaEdZqExX94hyffjWIMr1gMAWE+eVkJM4uQYmrO9dAeM3jc5CxN6Bzto/KpCc25p3qvnUh/oPX8vzi4I40orfCdK1dVjzmExsOx5S8298aEBCw996MSutjajIic8wY+7eTr/Y2K3geAp2Pft23hQVby5PqDwvecFL8AlnA7rGCRm+9jIAtMA9kcLMYw9lNXhkjsFPOH65LycBK+eXBdt1ROFCQL5GDOqLs9rmiZsY8tHPIzfvXHtEKg2VsWRH/3mOZEAzDcSePjPNxTko3ldp7e31woFN9e/MAoYDUtPMoNVgvHpoxxqZGHjsg94tUU4U1XynXP9xOLFDE0iHgVT/uXvnOjocbwjLz3WSxF2zYevYW9+ZdL+Je0oLjkyJr88DicekI3G8sAw6rY4hiANQVryRh4AmP1XujoedpCM3fIuVXH1g0K5/pGY2BjRTwVd07W9vJanIftfkTPvkxAme/h4L5VlAj+yPphzvCSnV8NY02c6FcZt1P8PYlXsV8AEjcZAtigzXcrYpSdcZlvKxqUJ8OiYJtYs0CQQmlU5LginCAexLvzJqiB3UAWeTOXLF48GvMaC2B+4k4Wz0qXQ14yxLlJf/MkuKp1iqz7cLvn/mk3K9ItspmihpB1T1+pinrOZhbg04PW+v4gafx7IqXymh96JrzCgVbyP26ntHtIzk/iJNs+oIbfglZVi2WTqgtpa6FT2sQ0OiMF/W/X02LMWu4Ux3fKvAemiuh2RmX9ONSaM4VlViiF8htTd7OcfEP/YNlATDt+ZmP4Oegp8ArRsOw+B1PhLdOCwAgGPAg9dizzhCX5zZfed+FPsnC3Bpm+A/Hv9q9e2DPaxYFJszH5hdbcRBBmxRYNFNfEu7JTNmUOhoL0vbbQNhRb/0JQsc+vPcDjX+ltZ3/1tn6DtsTGbiWI33YUeRIA1BB0kMpdECtiN6s8LGiH8vb0WAXal79mdgASv+oPiUpyyyMNq2p9EKZPk1J1RZOkHGgAwvT4QGLMrT4YSqh9rE82Wow7cLvlckTKF9egfgstF3JiKIcaCjSkA+SqysG09VCXMJrEIHHYiyO/mRIlZlGwVgGJeRrUKme4Gh/Q+/AMhl28Zjqg/H4iv/av1vcJKLLdHlxOE8O4qxZoRtVx5aX9r1Ek25f6yk2Z9Rr/HrnjLeH/da6aRgoy8cqkVYkXyZxt8vgVlXVaT2RaL1ASKptD6CnlDwgbiK5hU2kB8eIfcyFO8/pTGm9ph1OM9ZraBiHX7sqGsqCkrLvXlG53B6GIYYiapMnIX71eKVJJ3QP8vnIBz/4M9JNPwd04UbqO9LIMReNTFSGIhX9nKkkZpGMAyL3vmpj/fxhBq6HkN56Rnll+t5eCKhEbs92vbAnnGd1rKc6qBabVMwLhxhJFYpm6wPRmXhWL04EwI6bjkCYLYtiVWIX2opPX3xMTwA+Qo0VGuyzCMLVQE99sT561JvklU/icgcU94bRL8DA/EFzjGiH0kLcU4tdiXA9uGam7+JZIrSYxZJEY6zh49v8VUgLqi3df/eLu9pOTBHEYCO3i1Bg6zqMzbsmGP8rbi2HqeH90CLHKWm3O8E+nG0IcENLJpbExt6tfVk1axNU9abiGG9oRulIcxzoO6I7ZCqVAOTqKg1iWOuXx+r6w37dQ3O08qwUPbe6l49zRZypORJIf3NRVStqefnS6udf/stYqWMLqEqxv18g9dg4vYIdGdy6jhkVs/2AYhDJqOonmJ9YR0/kdQGLxup1OL4NnyyZJT0YoQoxdVNbpIBx352fkcXhdNB4+V6n8txVuSj0R0pduxDHXeHNrZ7sjox/p8PSSQjSHnYh7SiznAtX+wuvyvtVBiRVVoJ1dSRDcHQvBZwx2/KatICZZdHl1XY5mN/IgVuUUtqmRN9pR4GPs+MxWj57/QSuhI0rJljVlQY+N7bwhutDFuzOvh3evMpnko3nyXt80rrna9I+f6FH2wt2WDjowFT+oUpMiqU7cMwMc7rw4VJdLspxumWcBkX09gi+rOlGtpw8q2MIeiBYhnxfWKbMBmaZACSV9sc5dZYOU9BVKF6jVgk9UrgA70xFj1082eJ33o1n/Wn2ywNsnQvol+eBbyik5r/+HE4wVrQ5Gw2BxgXZYMlCiVw92Npu4FjbDzqaqWrtm/l35aK09chhY06KF4SesI6RwxoG4HcDyrhKy9VWk+wYKqWVVACxJCQ3KgT7pkRyXV1Ay+3+Jp//w2aNRABEwXv5oCrrZJjfY5GyNCw4ePU7VjqerqrjnRy5Zqtne8Vd+CH9HkibFFoVVtd21fDYm0S658WvKX7kCHKGBDr5Zu5AGWTyvYP+syf9jmsHtu/cwNju29Q64mnsNtDbCNvOQBTzyIKXXdCWOjvm+gsoQRr78DecAtzRrYLCZwFKQMmBfqQponjiVjggqt+8rHgX1Arzb0MUQX/vEo2GqxaXTOtLeVJB4TJYe7mPJ/wZSANPChIX34EY6CCjop8QZwFPArAYYtLXm6TYr9qktcx7WRTnXZsoP3kgUGZ2f3QhpcmCIoOJL7pZYVXJ/fY9xjHAcsXrDQTbBriWz2PsJbGK5mXStKFy3ByhWamc3G7BL2GMCq1USktyIZIZ8AWIjMrZQXCgoakWns/z6c7EE/TyrDTMrx181OroPQd5mroCh34DxmCU2Wx1j74kxCuvB38ehGR2E/f2R7H+vjx3Ku7q/ty3HmPxk/J4xOdanl9BJLbBObQQNifwNhvCNfqbQCoDQvnAIMI88rGYYBl1cfO9dfPwqpu9xlvlN8pFG0MRafDWw8C2qX0eDXSdkTXh8DZGA/bUA9PJJ+Gvi1p0B9LEs1MbluyrTyVQCZMlV/yf1JbO3+tGYy5Th7fSRCerX3JE8iyEQiAvwkJH7gHb1XIE7cTM3G9UvG7zJ/52bXKvVEDH3FMj5u5QeissvDclFMP/BWOC1fSdV60yAvKJ9HUTl0dgjl4kUYDielFnOdeftlA/oZ7v9HbK5l3NBXQWUFdWxJJAnoT9VOKKwuDCThwwEBB5bFtBx2f2PdayYi+W7CemUsp/tiKDx4FZq57kiYu2eSzEax0kW1FmZgdQS62649gndvggGlA17fxbOKHt4mmzzIwIdcNeB7CNB16HJDWIJ5R/yHmCARyW62PeNs+xqLredH13Obz5i1t5+MrOeiD654E78abmCjkszRZM1md32eUeEtUJ2vyY2aUNKHw9gq98t6eL7xXWVqrGJx+zX5Z6HV02k787Newyr7glolcPyfJq2VVPf7NdWEZPd9ai3CD3Vpken/HfFu6VKXRChy3LsuJ1HlKeHNfdSeF4+F68dOejX8uLK+XNCEttq4HEbZiWpMKP9bkYO+p49ljMH0VROQT19FlIxl5doVyVUcEDwE0C4OWminvzqjrh/FysZlfAXpd4CatyEmK1z5fHexM51kO0WpM2m7ruYKfc2jpc9r1gp807JzWqf92Usf3CcmClfcMc1Zl/gT+ikwgkqGUJkE+iJphJN0Vxf4Smkqz0/+bBI99DoqmuEO8qduCc1iLEV1ESB1BI7CpeObIN9lX3F2dWjGXebwMHInuQvU7zTQ3z0h82bL+WXHyrWaxVIYb6YyyRs6INcPHFMeFIy7hYne6UZoUArpKWktL0Qc7zyEvWKadTJ6xqbaabXdtGWjmHdBp1PPQGGOC+UjCHULcpJWjgPtOjDAqA55OcbrzyMv+VBwcTYWmbztK2+0sFurF9I2NPiF5Undmmy/wizVSqJeU537ckHf7Fmk73I+rUenLKnLpx9mPEKi/fVMqT5cUWfIA9UgvWhk16giPaGoRbkbdEPoeuEndr0PIn10sbn5BD7YfKDxyBb+hTwytjiNrIzSmZCYTp5pUR2+d0NorHh+YOqySJZZGBkBpnT+mGBell1HqJwLciKn/jvSySJcGB1/4Nrv11js77bXIE7YqW+Pz6p5K2p4A9s9Zllvj9fDh8/lw8WUPq4R2U5cENkFqAGFBcpdZWMVu3SBu5QgngtnshhHHsfldkaoAfzKhsLMYaT0jx5tsZfoTe3IvikTkvwHtrBaMkMZkg5CttB110EGlT1rXwi8W9XDbbR7lqYpB4rC2wNY7VeawQhvBNxvVPxs+qEO3vbSiK6W2zaNcFiqStgXqT8uf7gPZbxpBw3Jv7fyt00dEBuPEa8oi0pwqZaGhNFEm0M+4KYuC7xcHzLkeNL3LCxNHVFhtQTTcvP3nak0oZbbWag63K3tZigKzIsuX0oKIVlFhqNTIZBH+qK0iA3C82Vqg85GOBbV85qcLDFUnZ/qVyfSA4b+odoNsGdpPzp8LYyUF5mIJTRLcOGY55XFbhtl4Fgs5v+JRKJzJIl6Je6nWvhnMYzJuGuPuygFMzznPr5mMSlqGLHAAlmqqhntYB6ny+CMnm+wLtkUOMQhMcP1ywMgTeWj1f3U2jqxiJSzpHcqrpzHg7X2QHVQoOQqE8keGDC7a/sWBOaBRW6uM+2LK2Iq/TErGA1XDRWH2ttImEB8RINDlMvhaRcb13r5Lng6N4I7dq0XGg6FuZBeL4bXD6eIrI4Lv+Damk+cvji67KnT8IGUJi+qhUoqtUNOXsaFr77PkzCvg3UYuhqCFS0oZrtTf15XZSfCc/ofiWgM6/lnqhyojs9bRjGiSSmL17NyU8dFF1tRIBOQWrSX3sPS08rlTSoCt4rEyVdZosE5z25y/uaGoLzSG3L1YOfvxw1TIoOoPp8m6M1bHWjkpeqHjBlcB4+3lxQtdDfx17nFdUQZUqdwYqHUOZ1//4hJARB71F6dDqgHKG1IxAsQFGo0M8z54IUFBMLtKZj/V2uPnOBXYu599ChVMCqhJuS2mk8FvQO07ue2PRW4vrtwx52wTbaB+BsAtBi8q/ksW5EKGkxYotmEXWPVU7kQJMQ588yyTHz5ItcKB0rZ2QLi0K7M3goBWddzpYWDMvEnSG6n4Hv2XqaPuM8E5vtCVDYi971RxwpJuD6nRUuzRYkLsSiiNgqYbN7i+hJC+EIR1P/wD7F3DqFKkxHYALVfdOt16bM9Qh3i2JJp7JXljsX/twY23XzHNthdfln0ZkhocqutEALWyd1ZBEBNONAbr/+cNsJvbsujiefg7IHearPPmFJMyhGG6U1iftVtXIhu2gdbvVty+MsKkKrI2yTpQnDnZEpGezmHF/4bHbNLcgaA1e97eMW3yV/u1PNztQnaAW29ycvzPc24UKlbB7JuHJqoLl53OPTi7YP07GKV8Aw/MKeE2zBQbGVSc5ioElwO3nKfUeJAh6YszXyAQxIGnORtm+R0CJ/XVOY9/nEVB+aeUnbridHLHeFG91x9gXr6kaCzYbbHqxp+geKEIKS324RPq9vVkEhG1oyRZKbhPBFq+7jdXcakKrWiD0YHVgQz9d87+s29TDg83HKqHnzyU9jFdstAHLon/byGCLYE9S8FIZKExziUWyUBvT92YSf9IISnomrlv9Ls+bDUNYZwNrW3Pw9SCtku3E4LqF2SHCmRHtAM97w1F8Vuwyi6eothoE8X95C8Bubq56f9ghG+rO4NE523O61zWEdg7g2adm2IFYKDCQ4m8zdHH+waC+ba12sukrym+LloCW9b218CtnfULlVt2eond2boEJJk3hW+afZGDApgv72Lm4+ueXEvnygrB1HeNJMXqlot6MKkmbV0MtQMAjwpFOEELwE0eARYc0y5nD5W3+vWvRqJ0rGuvKJFnqEp677adGw5yM04JX35ql4ZFh/vTnKklOvO0cLr8gPBl1T/mB49z6dO2+c5QWVa6ziSUyQ6rxT+RycNHB0Ib91SWT6lFprKW86rgvuiJb6Wv4lNCpbw8fw/Yerjcd1+v3hkAAoG7W/voyLlnTzgiQLu/mOeLK0ThrEjNBUPsjMfBuXq2Zh+X5Xi2yEacAEXBjp9hFMIwtYUWl6SUO5LW5T0bh5IFl3VP8gYaZ7nso3Q+JJ4ZLqpLS/ez70WzdGoZLoi8euEZ5ozuGSyreBuBkIbIeI/dg6uzVIQhAWWjI32OLCy0eCP6NM5E99XqSBNG9lStLgAPL5I3edajF97IGzlLQjKoWDwlOBqwnbl7JWkqcx62iET7FMvDVUDX7ic4pUwL4JZRhLCcWrb/aut6BMUBjgeVmPHsqbO8XzP2yndqNtW38cP7S6Bi7neP+Xc6flc5q+kXdIsOsEt8CWdqOJkDb0KjKnr85jQ6PqmPdGSrVjlnlKGtP4EiwOZ2B1Nerb2sUH5pM17gJBbilbw5kTeKXM1YDIL/K4oGWf9X6DCKa2nOb8a5tfg3ibpOEkp3u0WN0J9bKvz3crsWptYHZHkE08zI0hOOcIuILcJns+52DcOMAe42Z8ZwWpBi765y0t7+PCWfQ/zDUieITEaq051qphuWHcdhACYD8jiNeAwXGm3ZXeXRjsu3+rjnHr2xd7HmiPIZ/jibx5pmYtWzjckrV48/pw0sDuiD9yNEVPqSicl9Py8SYwqWz5GeB6L20aY+mc99GfFKEDBpvGZSSSC4UgzfPgAcidykdNbX+eaJZaVP8klviBHJWRYSq2GMi9xvri+3Wm/ZUcTqnowL9rM6ZOHcRDZcW3hFlFwdcNQsZwgW0PXF06xT/hKT7HNDRvcVpxT/rknFEiM5X/BTx3IHHogR2518y0ELnf8trVXtbzzJ1FFpwfgE554RkYY/GG/N4vM8RwS/yrQBFz92aHGxOpVFxH/8nsMBMGJ0Rh4bUA5fgTSPmGQwghmxqMSE6QnTwqG+ulFkFmJ7c9JW12Q44gsQMF/zZB4gIN9MZfXDQ6zx91TRD4jyj5PWzPkPl8VE3DDyhEu9qY7iQCTKXnQ9Jw/BIF7wG6zjdzQC2YGBKAp17aOEM4NbiTQECA7Dbg7oGm7caR6EKyZh5YC8pXkqCdGhMXRJCwtf2CXRL8iCC98W2o4uKGDYA8OXO5XmwGP7I0X9lH3TQcUix8zxQjDqiipxTssi9t2Mz/yu2BvXiOTQn7Go0XqR0Xumu6MihouQCSVTWHH22aiaItN2c9VI3nqJD/xWdo7P9IL+7BkWilyKrGR5+uTCEHfpBh4pfBXr3XI00u/tyDOXIzNSMrPJsx3LBRHLML5MOfZId/Un+Kgk3LWp/DnxQHT/DanAt7PLRM/M8xB5sZkexuiJ2oVJt/+1bp2602ir8y4GcgUiRq6htC76GL3otJpcccfeTfVT7k2h0Yvu8Caf81tvr5wVLK1gmw3aAf3cXeuO/WKM2p14g6boYUh1qyPPb/Z9nvKr8yUKRldOdqsIFaRcvk57dIeI72NiUKW3qg3exrBBuEzmk2JjJZ4V/BT9V7bgAjK97f6RYLS/d8JL7OvLH+QvWl4qm1XX5s+CIpp+/MFZmNkvo3aLfRVdSJrfcWyYM+j4/FAKAL9W5rnf5b5vBtPaz9udyAabHkY3TUdzh4Q30aBnfpLaqHi6SzdIB6Hm7ojWih6fn+1PLVYASRwRw7BPi1PIiLicED1ixfUPubFZsTWATgTwi5T8FA0/XcNrxmX8FOV6nyuZ81S9Udvkm/IT5njnUQjeutTwQ5GTTdOrdeEByQeSUJ1y/kUnZK4F+w3MCfsU3/RMD9LdalwINlPiYFRxD6PHz/Nju6OWqHOOUSvMdrq3XB207HqF94Yhi3eSwLkDf2/0uV+yZL1Ptbi3Sixw1YgToF87074wB11KeKl7MUG61UQGmKUM4PBlnL2QIZF0zKGPpGAq6WozH3xrwbTlsXhlmel0TI7JqZm14T5Ca6n7iad70qZKBNW8uxL2XOwGZoxX+yjzWmh6YWx7iSgQZuh8SHEwRWy6gpkwijk3EJesQrJEw4JHHlzaCw2Pv4MMh68r0eys8fqyn5Pq2uM+sXLQE/+jFn/m395NKy4nYPtSPwHXhYkGN18psHb+VpZT99UyCfQgrsFGCOlzgRcLhl1UvP7j7auqYDsYDctRkuxHNLHIh4ggVilY9f/YxwFLK9gRIqtdP8771dQU8h8HkOi6xyJfdWni3b+jZ2yEIpUcgfT3tHFwiOOp0mb9j4l1zsk6rlElVWGBUwtleaq9X3qUB+BEgSxwA9obn6UYguWIPerBtajWOcP7CaOhPAcBzcSspDo2qb13W8+6eXfo9CQAX80lkD8H+bby619h+YMBvoRfCBygU85Sg54wiP9kwTcuFXBe56caiw/5NpXywEAxGBw7NDqkCiMaDd1xihHRXrQqZRVrmqCPPMqb4WZ0oTz2DtjLcbSHxVpqCyev/uysv74R1S6w83Br1jBM5PhOYRFU/JnbF3ZbP2kl+t5+TTzPTuRZNUpMJ9je8quq4gQSYc3HcJ1XZDzXX6Ss/3URbQBYCsDrzLczvet6uukMtHKXQwWGk0tzvzD2THrkZRKOL1YUo+fO1OaMRgk9/zIlib6mx8tSMm9kFb/TQXXu/ZkOVBk+Uq+i0sLioNc9hMEIQUZ2f6goMfudJ+wQF20RP491sjAXPDQdNCKHk6feetUpNcinYKiWLohUnWoaTWJcDSrQHx44IZOrnXA9Dv5zDcO6A+97zJ/nYJgOilOHgt/TSGilOGDdMHdqov7qTlxyEfyJ69L+8seUzv6U6QS/95lw8RZbE9zEzHr20FQ1VQwqa3vX5aUBjO7ZocZX6ke21MLp+t8IW708l0sHxWHuDft6absZvjU7+rKq+MMJF1c7EmHPPYJOClI7F4nEFx6W+VOnrckVMhzaCw235WPy9roi/4/EDO8rtOp6sNdpv9+DGS1piqOuseIAqaY4jq0HcLeTa5ai1bQIPBFa0fBF1jYEstUj9vOjA/jiv24BMQb7Ge8xAYwz+WBtUqZBSm6IdBxZPbOyl773mI6fDuUlIlomAJ8xQbPQhY5Jwyr57sd1+en4/9XwT4CBp10bUtcju/fjwWMjaz0cJ8d4jJE2kk1islMBnwjOtnifkMdpsykK3b4ibBX9Lz7EYqJ6nj19IUf+CVCoMv8bA2N5lgi5MbfBQAhcgAZ6CFvS3NPTGIpfoGMQGE4eJRoFg8s9h3bqWpMVG5hzTaIuYC7Nq2yMjZ4WE+wVyMO/T80hJdepxTWDv14ww6YGado3HSBgdyTuHu4tJXh6hgd2vjmv5gZqPp6yOF/X3J42drJlgFUtd79ERMEybKzZN2SbmHyzXY7D7vTq0RQi519/ROGp9cgC/MzYjT+oKFkBhNfBCgSDmQDRSpLuRXYb1mf/ksSJPA/xGQ04b+lb2+nVbuQ3yNNRJCdpRVwvX+fyja+CTNbu0QrNYTGq2P3NBWZXxFCG+6Du1t37ZO61GKQC4kMkEJOXEKV+K9C2G6GdgllebzPAMQozosV09bMaWqxrKLM4IRludZabRvbMZpoK5PBVJ3MV5kAWY6Ik9EilB1SPDrVrExTeWISRl5Knx9ce5VeOzqmKGsg0QG6hEw9/Kn2mewy5U30rqkwM/KPCeRTzEw9JAxMEB/vizW+k9p/a5wfx9jYMmcegzuFKa4KvajnWhoe4QaIsjpgzYF84lrSkQ1kzGvq9cWbwiTz3djZsQZ3egHkQbfGCc76RAqTq1CF+dSppf5SR3Z505ok0y3+iJ3PVLjpp5RA+ndC6NyaV65i4oXk5RISv6XwzktmYy7kR3P31vV5uHI7iupDrQH/7u7QPscsxQCmG6f+mqE5YdwBJT/NM5uOL3ff3wS1kiFvZMd3eALhY0xZ11EZNmQuSRQX75/MjkksJc62SdLiB/7FNkOjfua97TgDd0LJQG9IgUHqqbCRdV3fB8mF8kuWAk5ei2nrjdAIqQ2qfYlX0oIg5rt9CmeQH2TpobRUqRiy/qxeku1L/G9SC0imgFXHgkfoqoRE962IAqEkr7oo3s4CPdqBjFWDpyRVWYohebzhvsD2sc8akhL6L4OEoHZiS2giDorZgcYerqbjwJH8LYjfoKjnywxCanlwBloOO6f9pil779bD4rtBrTZpATsjJgrUrT9zN4sEC0tOkczrj0VW7NxkPVFkZQPQNrlClQQ8aQYUzTejGoNfCAoqQguTXBxWeVgwAZcdTlLt/lyFN6t8VOwZcKQcImERK32Z7UGUNIjiqdvTZUlNuYC1qHPem7EdTsZxNMj/g4cNRfekbBLRWW8zLTQxtrwJ3FQTfOptEDIfGeaFVL29zlvOYGAgQVgz+1z6RUUvhXntgeX+13gI+kFEAbiCOAKKNMe7JE6SFbvBNMtxDIIUTDwRXVbWEOm10S5R+Rs/LZBab3uNx4IUcbFNeqQZKpAMVy3bNhsXXZMbGlraQMfzm55gCanqIFtURjNj6ODLxt+4dp4h1D4Kik+vHU4WHRZRXqofAdSifB5LLNcnm0/9ttsX6n/ZIhCsLOD4cUpHIuxvQfjxX6av434HWXiypo+aDAxH1pK+O2ffZBrY37yMzNOxQPm6UXF7RonsEOuRpII+/2N46PU5fwYW50gAH6I0sGE5TACr6fYG4tRoUbou1ZGNo0yjFEC9MfOlLfJZ+HRb804/8RSqmcy8df6zZE9SxljtvzYwvKxtaHlSPnRdPeFi3fw8zFtT50CBEsmfjCSsgNNospirz1TjmAjzP0chlsZgUIQ5OuZGzQyCjHph6gMaDdWXXtcKFlHlYjft8bRr+5lITWa3pO1Wcot8KFsbbSoHI5K0drr6bKTR04kiXMD4eJcCq0TesIfIvybPyJTC9g/NBCSjZBtk8ezIdlpQkgQS38s7nScFxfcqiD/LKCNHZV6ZYpRbtUm4dk++honHjm3WN2WAw/hItC0FkbqEhNl6m4OfIZcoY403qz0cf55HugHi/YZGZC3WUb/RgkC7hnBa8IhzfwjHNJB1512ZWqURk8j7M+bH9A38PekYT93b/JuKRFJFqZFtuD51TuKeMfRGdNhS3jztgGDxw9lQ9krkt8jj5Q8oYbOc3uLFlAP64SrtuTuYoLJYuJbafzqvRt8UtFp3Y70csimNOlb12x5rWsixeAOZ20stOJveds8jtOPu43rLg5gGO0Vl9GAfEb1CYHW77DVKk22Z2a/LokoM8JifCUw47AYKxzOs6Yvw/XHL3hREW2Ivy+Xx60xt08HqwbWRlBN1NEr4YE25z8cCeFBZ6xbfyOJENXgw8RaJwRaVxNXNyvxl92ac/As0j4w48PSayAXkH35N+eJuG8zuL0yCEJWiad/yc3WsujGNrK4pWukPm85BQqn4RUJMpFcC3vFho/EI5m5+dEuFyBmp5cZBMEo1U8838/jFdngUWd+/naNFxQJUVdOoweEWNH5o/7RCIn2+WJBa3iqiwC/GDRHk9dznNUGmSw596oANglAZiNDugn7eSJiCWgWQ9jfXdPMnJKxUdhUJ+ZHsnjMywQ9XNT+OmUtzg/F3v55XR0GpZiHzKnu3H+JR0yIJXGjMPms5tWgm3SLoDxo9RX8a3c/JhbPB8tk7pC9enwVwUetkhbEybnb7YI8SA/Gh2OxRyTz1tP+EbTkqJor1J8vtrVPrsk5x4rAF1MuMlTmivISKEbtVwIDy4PFRovGP8VtavO50qJ8inhNrPKM1yBC9elieWxSqu/hpEYGxLlr4ul+6/yLdJRyyojML9YQTH+DjWauXciLNTirKGOOPW5cp7Q3I0UA8M1P1rHuQeXbMULc4haWhSA0ZBGD23/79g9dQ9/peyyoZB4Gn30gI8qnSLKj5jrrmZBAc3iXyNC0lsf6deRaSD5+XrBndEkaThpp50SgHB6LPwGxT4DjCu+q0VxdSipzvMQDJQoynhLwaE2cWj12zwFt+ZKfFicVrdQdFrwNm6sc+YkYdxC8A2Manlvgei6kQ9gErpDQvxw33BmfdcxDDF9gyAByaw4Bs3FWSNh5aMP1tXDplDaJ2FVwQNjXrbU16J+U5FLNtgGSe4dVWdaNWSmuXcCIGv08LN/xhE9p+3iMSYK2PryGwffA0hlki71jAc0lY2vwLp4IEJWSjzK+bFVUwhP9moznhICGp7OfwBBZ4kagC5AVT8AEDaYVkPdjYYkl6tsC3O6Vv6lzkzMkhK2kj4ORQ02Mm7N3gtjqEg8ca+oHKJ1P72kI2ZRBGJ9PPnU5xKEn4WZ1adYtNV97JQqo30vXkOe6CMw2Ho0t5f0EA32B0LiV0q8m5S4hq8gWOb/2iajtRRQTy4snQpojAjzlxLY/aS9q72Ou/Xo5w4ZPfGdBfwt/7kpNK0IFV/aXP8p3IKmZMXwn1UfcilagBoI9behjxkxynt9DUsyszCFoeTFql+Km2TTVVjxw6FAWuNom/A6fTBZWohUyFjjkgbWrIPPF77Sc6/iY6+6IoygUXYOannxKpN+WPDcj0LxsQ/HODss0S8pPPfOMbRMx05pgzrEH1ogI3DFBQ/tw2vzjaRwwxa5WxVS56zDfoQ8oAi3JFgUa1w7YfS/7O8cYZfnFxF9FWFJpv6srWnyjnaMUJPROTizudF5b4mtnNPROkCLLU71EaM1K1NGkAv7VKv+lOBSz3DzzkJ057yAebzZn8JSWhV7KnpWCqtMyJy63EzFEWPoNb1zcwPOnWykFzwxtUyRAZPrt3q/+XB1YeA//U5zVXpBp0k6GalYEPen4swATkLvCwFbo2tN+nZFLvvhw1rE/K4FcvxwjibxgUgM4wSnTPs9m3nTfMg4SH9M71X1t2KIdVnkrPE+3PIIEkEwU02t/mvwP+2ioP0vAigLJLEYBVEVKIeKp8bTm0YLF4ssV3dzw7nSOMprPi5miGCtDQntDRFTiTkbrcJVjAIq4LgqCFNWxRL58l6SIrj28d3+fDUCHA2o+KL75CNj1sV/c3D4fg/rreS5CNkydgGkeU5LGL6Ej7DhBs2nw99V6rBb+pXi3LxG2TbHdP/VeDm3R8lOTNPihrjz+4FeW2EgjO9yWmIaJycQrrarrCJdIwCsmnpqhnPqHgxDRzp/sm6/RWGEKda0BJD/PLF890zh47b7lp4n73Efc2FkRJULFqTqVFgxPilj0qdcr1PLXJz6NJJ60je8VG1Fs5IL6+6qiAlC3GzMiVjlWdX840oCmnG8IjyHPYHUEY0IbJBAfG8zI636yw3FX8P9jdCDHCCHbufa2d4Js8hzRo6o3qtydl9SXEpA1BMBLiCEZuCE4BvtU/2PqxviOVSsx9O7mk8Q6uhfGhMiMvo/hdEPNhKzQhB1ZLwKr4veawspj2aIs+Hjn6DG0NMYDO9kSnqFHb1PBJBXf0oT9Xj0ruHUdTrCOGmh4dYFwjxehNYMQz5tasNhtY1Wk0uUfJg1eF98JqaQXkROf8KMAe3SDrFYS7NLos7ffIT+kidB1UE+3e/Kv0saKxVuba9pcktiodIzGcgplIxCcumeY8lVALce7ns8QM3hq/DI3N3Y6Pp3gKXyB+SAA3K/UecJO4prTjlXxDXI6ux4LmMZqa/q5NX9/9RzEAJNoUhHwdwN2nN9D/xvxf+u065S6dP4ka59gREkNz74GNsUCEI17Q3nLF1BIHWvhWEDz74CWKrdpQAAjAxGGNaxR4BFwV/85CvovfurC8/8aWKp4Kl87Jxk5qk/lX8MqS7vL6UFniBl/AP1qPuMzaTJuO/SZ+GQByogC+/P1MV9BmjNcyVLk7hbDxdgHM8tB1SRf41Gu3T03FlUBCZ37qBjNmg7x2BBlzjhrWyMG1ZRGnutxxuUMAM1CFxHzN/XLLzOX19bPaEX/Bz/iBngaJhKE5LdKoIUX0WX/NzQvYH69m1sNB37zzqCuYqbt7Ez0NGRSo7Z+VIeDbA7Z7m6QQsojS4tIIYn1Q+OX8/EzyTY3h01uESsQjVAKWO8GucJQMzWgCxHo82yjdW2kYiZb1f/Ez/6A1SFHtamrfyV+MYNDbKxe5TZpWkC4xIN28VdW4DXBgDWqQf2poeKF77tK2O7jnablmaRdHGmILLwIa5BnpqhMJTSWYdLUTqFALKXcPG3NPuk+R5T82Xge6fcSTc8JiX5eioJAIRsibYQ/wKObYsZHCDxGV0gHpQ61DakVNiWy8dloh01eNRopAapMDI7t/1jkznE+nvRaA32egSG5fXBqcsBXF2c02lMeuxMpIgqJMiSb95ZisvRVakwLDdCTmkV6OFBllKC5sIJmKB8q46PzdzzLNdvwx5NrI2d5Z7rkuLXAXB2IXYk+ipLHXKw/X+tbEFzpBK7cgXEnuEfYKDTp7ayrI3ZF6JxQWFc5Mo6gJGnBdUIJKMjKyTq/7KlQmr5Bel09nVO2JQN4wwFaEtA1uv1SpU7BJYuFKdw1hmkgSj0wDJ78VHsPAk6PjObv7mkA6y26jsb4AnsmiTz1unZ8sFL2U4xtX2xX6Dyq0j9Eb0PdQRQGhlsSWMxoO3GrIeBVGCcMyvcy8quwHUMEfGiji8FPhnN5nV/+glINoG4nFa38G/HGrm3XddgGBatK8sLv0VnAyPuYMf6RjVOF2tsWrbXfmVizrTSMJh03xhfW9/nJhxMvKYngujCkl2JkWrQv0q3ibddTsgT82+5IbfY2JR8mkIUxN5YX/Tlf3zgUj+bFoDDK0NjWshv3gtgNoY6R5bMYONI98+7zwU+Uhxy1htoGB5cZ/GkUd5GdHZJllrIWIOA5rTKvBu5P/2qFxOJTWAN46C58Wl1042icPxDsvBjREEOIfpvsHWQSjj/dy7ESgISqzuJpBrLvXwFWL8I5M8IIXPSFwZxz76+xH42olKD5Bk9aIjRMcB3R4HqGGIoIxpGpDbIUniKCOZnQuPQDDE7MbbcWFScP2BdVyJ/LZgkThdZcLjrDVeRFg31M/z49SLQcwTMksSUP4fD6KLZliMgeSJXvkwHPFZGr9e2/2a9cT4NrPvm4/rvfXFweXUW5bs589kwddkzl5ecNyeKBCmSveXxWb9nu8rierDC+COVBFW6eNeLny0rYweseWChHSfQqibTU9cCb2OcL5TXTfY8K3uAb+G2XM6OMfFPSiGkNxbTAyFEu/ikRhCm2XQLOJEMV825uGqLSMlFnsF2HHQdMItOPeN6j4/BB/SIU4hlpv4chJdYv3DfSrDS+LTJq9RmJb75nhGyzfEADhDLaIE0lECxB9KVPd9yN2Q5o9h+8avV2hzf8ABTXds9JeYTT3j3w3pniwmHjO33dcmv4wXwPNyhwdJe6Dz/6S1b53Oi3zSwl7Uwb6+mJ8UGVqUW7VxKob49r0JfVYD+R5IwULzuQak5fLtoPD+k2GaINtA3RERh+z5mIWw2hMrQQYdT72MEPcMdXums6cXsmDlau9X47a0+ZdYTuYpullANC2oDDKgWYg+GJocCo+MOfqki4yzl/66lgf79dvk7zERHq7ybWUvOje8/GEXK6uZUOpGtFJ2wkmgq8nRieQJ4rSY3qg9WENjV/BUPIn6pXPJaI1disICjWwFy+GTuyvw9eMP7K0NgS41aJoPgKxr4nGwZwU1axDWIaMO/t9D2kTcqGobQRBfa5/hM92lx0m3Xf1+C1VZ8gCDPPcpZPrPiSrEGkiwH43lZa/yQiNY7yoZLEYSGVZxOwDq4JNkt1nnuBg2xwv9WeKLD7mtBG+f/ogX+44+wCzxB9BkEMS+tyVM670xgNwq52Rb6NvhGZ2r9D0RiH2/+bw9mfWr8i9d3ROQMDRq1GtvpFD+EDI7dBfo+EhiLVNP/aSyYl9xOFxAR8bpQLkWsxrQE8S8lywCLaaQT6Ols/v2LSKgxY/05q6HWyPKUZw5H7+dlHw7top0ZZUcR3IOzwEMsh6GshYTKQIMqiVf3RZAl632qjrZkBrnZSq1942Icna2mQIeIleglgCYBK2VRQjxsSUZL8824n3B8iW/ac0JI2NFmL2CNonGo3RKmk1x4mxb8ZTeIbTA7hrVJC71wIxmy1jhW1IZRhz1efkAt0WJGZ1rvwPep+a5GLJth0ZyXSaSnnA69XzQIr6xHlzX0AXK4SdMWn8suY4DK5EfYWhbUZUrL490v4RjeSieAo9WXykD4yEGz17pzLy8wSeNQ4tlXxc6ByYqMwFf1RqiwfFgS817rCEE0qbwMD06f6V2e0hJQGp6/7SikbwwF4mQoyztlDOvh4Is70n6Eh95UOXkxBXM7u0zO/ifzq+Mr31s1jcmDXoAuFF5qGWA2jqYKyxYd3kZjSGA9uDSeUKJvl285Fp7Qh2IYTxB3yThuth8B6mwL+JrR4b2WHodvbNSh/OVOMtGwmgievkGdglPvy5EE9rrPlOrCw9XUMgER7jMgO32jjU2mlKrBxar8w7UUuWln/GpxOyuZUM6TR2EUSaHPz2DxSVkiAeJ8kr5AzYtXcWunZXEYFbYacIPSVOZ0hmv3ZEeCXNBn3CE7niz83U841qz5YTcqe6Vpl0Sr/PBpKFkiAfkpRtK51ho9enM0XCUfplj1BnRHdS+TUvx88ZOLlxy2gHyp6EtPuGSd7sUvlS9/w+OptlCbxlBapc/szcAnR8dcCvR+QcJBfCE1pAtH6wP38PIxqjc4QWMKNTennxYGr+XgoGqjo8TFaqZztgLd+sDRccr2A0aB8sgpQe69CtWkCL3mlq0iq4/ek040tPEk4eAap1tA6ZYtr1NGuqYF4e+3WE6yh1+JDRV+Y8D015Tvo4ihmFhkQYgD1lKEVtSUY0/y+zXVeInDbm5oDc3zUiOEHWqqXdGvLum1RVK6QQxKfDTM4DzgwEDNyZVMt7Mb5Fj3q9nUZLW6v3SXtydCsLc3jY8MV3wsMUDyGNr5i5Dj4Sz0AfRIL1CP5FF0VE8ocT6uyKdrZrLvJyzkkn9NnWtH3kxFPiVFcqR6rLopndogzIyLlqac6+tVZS4Dv1tQQsWeL+QStaRYENnOcuIiiwShX4SLK1yUMEOCCwW+yyABv6paixqyPlBNuNODjitLORcCt7NU04aPk42DfRs0leU1nvR4AJmyThMXvCEYSmUHyZ4IqGZzRXeifr49znWnhZBHJFcEjJh5/5WDISjR2oB1RQtDEt5OJdLOZ2noNl+LyCAmbrRQmbTvLyDXu6fjPRPMr8bvSTNg7iXLmcqACtUVoa5ThvhdXQvkt+Q1/shSBb3b/5xLt0RtE8xgtLIo+udmrbbipyG3D6NIJAiRQTYNBaUxmhkvO0b6LbudAidjoLtzK7/oAvM7xd3d5hYZmXJ2RrvOlSo96xFCbit0HOmZcyv7e7+TgK/kfMyudVlAEgoPwgjDV2MLGaLStRTSn6Z7GKZjgO+OLBGIJ4AybPYMul6H2+2BhbRuIeSfxjZJGPNnWbljK7n3A9swRvv2Sf0Q3LPf+y4j3XCD9jO+yLy/4ccjVUwdYgquQaJonCLSRfORat2AJC0s8zPYPTYWPqa+1QMeolw2eaXjBicWKZNDk6dXgeLPvhsIIVAJwPGPEqUYEQXrtJ/9+xagSKGZ51IMDHJv+ySPnQtpprl7GYR/agzPsiDc9JbEPm8uMau66Zz+q9TrSXMvpHJSczxQVCgQUZjpZ/Yji4g/GMuVXQVTfycvtyJ8jjC/6tsaVgbBXeYWgp5LzUZIU4rXyLbvjn261RH4ARb5dwj7jzruPQN8acXw1rLmFqIFsuP+XGPzj6XW3gOz1MQIPftC+3z0/kWd8aU8WnQcj379qa6h0+sHFNGCI6LcUYew4afTw/WRLp4eowX7z9o/w3lzQNZIsrw6vRe8pwQm0KCSmNEbwYhoR0TJv3t71NTTb5FPN70jN6db18bS5Qvckq63PfjuQixrRQlYIatCOI52p+Ov9K37vDgNIZbfT2ZvUsIwKHYJB4zAtC1Wk826ZnfT4ywTOGvzkWiZUVCp5CGxwy+3nNHlaKIwdmS6VrA892Z4odU+TugCRcNQDvzNDDu+Il47zkSigq5TQ9DsKQ70rpZwSuKgdc4M9ayRxnq5opaJgXTDMnPzCxvV6cDQBqzDjmJw6s5HWGEUm2mEirJTZ/BJ0A3xDZU/M22gMbhHmSnge/jGV1q2MonplNskGyI2RshYejtu5OOPq/TT23dDHCZAf1swWsLcdsoVD1p/FmQuxrlv85IqsIi4o3x1C5RLBfTqIFf7QmY+xhXsxjnAvxaRoYrVC432IkgEt0ayuqYXpk3XhmA3tpCd48r7puIyMT7WoBeS+LuGxkYLNTBAdlr7TfKvVkQQUEasmkHF1zIJGhnTXvMdI+HtzHFpkfnERETb8KZt20z73HbkDyfs0vtfw2iBnPimRIYDLoKuIEjJaqJCPUXL6/5sMKUoI/rX6uu0B60HwN5dCAFhllPjF1x+I2aGl/3EkTV9b7NZ3vIEELGLpteqrkzp0VOgtDxrLDd0K3gzcwywsOGbfC06jxVmkidCeavbuRcUtqpVPv6YdSSWMobGp5oy2JjHeEm8xgjEUAixBA63Xf1CfEI33aE1dD8amuW+42jGayxzdu0zSA19sNS/nN+emBRKXPm1GrEdJEcuZtjG3CFqPOflLMnJ+sflm9HXysiZHpqAlSFNEjlsZoCxcVM8SV7W9w3K4H2mMk1GAEqCJSgUvhfZJ+spPLXbKhMHfAuH0WDlNzNlF5y61CU+PmQuMHiEdI5X24Rxx6ChyGK7vLTJML0hlzYIlwtnx20+xPcUXqBHND1NQ5vkm58vQEgLELfxNhD0wiLYsFElALlfaRIoiKZkHmf9YSblf+QHPKebuw3jlJayTZ6F7dUIdMCcCgWOrQmW56vZ8OPWO7Vh/AkjWoMX03ovHeyyJv9HDJRR86MrLyqcWzx2/0VHEe+KkxdEhVPRcTAYO2MB2L2Mudh3CRRSXxoQjh1wEwqMHirSYFWyKiOv5wB9+B6uEzdDfNmT9b3Cw9PuaHMKTqchY1kQKd5nFveD4wnA2KX44Dtt3QQtrqVcW4gnFa3qF4bEQZm6Z1sJ6Vghz09tyPjgZCvzdZDXhMr65qoSY6ftsaTqURBqOJWG9tWKgKHtVLJKfXHj5mogw6WVJRxHDyDYynJlhOuV5EZQjs5W14kvBJ/cNTgsKR8aRneWPI8jN1n03LTS9/bpWLJutTU9ITGiN4PP0CHVwlqQkFcG4ubQyf3MP6KAYJYJoIHxrkb+ZP2OPkFltvywrFZXyDJYJn2af9eW4GOKzGqrsP48A8TVr4CY3hGy62l945W0gqF1JEXxellvZm7iKmV4MjhhhNbmMwoOLnYWdHk3f8jXc1760eww2ocUEgVJjLFGnIiyhOuh2Gsz9oJjD1vLfcYfJZmb91jY01JPNiC2q7HZRfS7IwdEtWq3Icqva4qsD7r2DyYd7pKD3ZTv0VrB3s2YSrlqJwOqSMxbPpYeDGfc7XPxSVJzUxAcmM9UmcrLzVh6MKbdXz4xXeqIHWC/YxRJ/F1cxsrQ6Am2v8mvkGJ5vblMEEFCm4+Dr6Aj3t4gU/pgP2scf1CP+uIzMTmDIEYqgU02jooOt5BzN6J87Gpe2Qbyz7keGxZoxqL+juH9+DrUuAT9iR67bkIc/EU8Wh1MpQHBzfgTcTUQavZbV+T4xAE04z4FDfHCyyzbMziwZdYNVRsS65VOHBlXHkNGezwYUSh7o8Ccp1t14FvsIF35hgWDAIVTVf3ZCx71VyNfuooMBq0DvnXzIXYHGgEL2HhmLHGCN0L3uIbrxe6aJkbXJJG3K+TRYAauuz7h/4vQQ3G6hYDGvLU21BAvl5Ds9iMXTp1uyoTtqmWv9yDd+XXsl79QUF6LWvGETcgEPLgyZwWSpPvMWa+hpx/6cRVvONO+N/IUfQu/WjLsG3sgCuLU20RMva+L2Q7Q4PtaI406apQoHrUJMTeL5qJZZ/biaYNoAupf3iTayaB83T+1oOSaQx/qpTjxupuZ8bGrFbyjeI1NdF7esL/KCzqkRCD928CH6tANxmE1SQs2cCckG8oYL3CSQLMihfiPS3pAp+xZBY4r0P/eDq0LkT0bwcMXCJO8sF/jq+SGJz85eFPWSVivg1NClwXjyaxOQ/TFEQ1D5OtV1dAXpvDbgh9vw1vBg35Oa1MEwHUiptOLOnq2XWd2CF4pPnSA6Yg+5qQotViSccCSg1g65s9FXs/vGJlKVi8w+NLntQnrh4m6p06ARITTUghuw0E3+u0Y/2XwsvrggD5a2aKY8ZzKJxL3HUsIpe1E99NZkybOgcYanZnDKrfizm66VtcPurk7WMcO2q1qbr1+BPd8gBLwaXLrkrWOGmGfb1OreayLwcQb8TdFckksJ10rX8O1duQd3AT7j+QgKKwKBcAqUG/etiajjo0k1Yk9uEIsqiam5KIVkrCsoJGBH4ESiMyDVb3bCXkW3T3kXBU2rm0T5J5GPDj4SY7TxjrR1ktjR2neTT0kLCsJ0pzX9xmt3BeAT1U1zqOGmri+/A2uOLg1LEmFIcmojT7MxGmLzvK5QEsySPJzPiRayD+nKETYLAM7GuF0QVvZRVCycrINqzsCDS4IucZF5oGCsbzU5vzJYRpTswkVJT4jr2jrVHVhYeycNWA0Q9Btuyc4kGUL2N+O34IlsOsgeCZ6lKjshDFKcsf6uaGpaoh0aE+Y88fILwlPqI4bNdjB5SpQz6Ioz2n6r+t9Gc+O6cY5rg4czlnHYsxEumuRYqIa2FDr91SRO0CizuemmqqX8eRIMWMiH5dkG5JLjVWlBn7ELbFyhkmMyIeO5NbUSDc7D4P2ZVWNkJxBKpDS4PwIrrdcCTdnUtyzRWNZtY6KjDnI/edTi5dURD435t59b0CvpsETnjzOTYgwv3OrV8HSEZQiZ+on6AbANjZkYCMpXFQLxkl4ULS47rep8J7UayrWgQIJoUy84WXhRGoCgixlBN4VxzISahBJ+IwQZYld9pvkx/lFwGo+YLRPclMbfKQPpdMviHqh4ZoWMfrDqr9S19hc3bRoWD6LwPkBET51GwyLyAEdSaERdxeaJB+/ttI/a93ZqkGMadezkW8nRKmtrZbAI8U1HfoK5eIxe41pELJKEOfw17Sz2GMbvQ7Y9lcFDwPDD8Wi9yUpU0wcqHTtPWJUxXuQFQv/VOHM9PCp6Gknpequz0g/UvI/2DicOCkvPaJdTLmLHX53DIXtdJ4ASu7J/w3kDZUUAhd0gzGEWLjr6SzvI3lnws1rt6h5rUqfNBjh7LO1QvEgI2HByi/0sXxxltkoFUemugNy8hYIXz8Nj89ljQtdYS5b5IObv2A8xdzF0HVt7j6KYRa3mkcRA2w1xaXRz4Nn5vWJt+TNeujusXDi9eVs6s1Xkac0JzsDfSV+AZdrd1CkiT/VUM9aKcsnR6H8LPZ/KoqrVcAzM/hXCxlVgw1F7S0/yVPFlHp2/KZ9a6c3qpA1OOqvYuK9lzS867dg1LeVhmg1PIKx+ary+GWdSpHp8tlN1Me0Etdq2uEHk43fK1oQEFYk5u3ldoZqfoUuB73zJbQLxh9JegmFQjzOqbJyBpgzbYJeX1Pf0ug60Hy0UVl6KTTV4XSDGbCXCNhDA+KTPCq02IrrCdaAI6gHWCltnXW5xoV34WkTxUTmfxTuB9YKSiaDGf45vwiDIX5Zj+z/eGuE2bnjXV8tJiKtCcOo6SJeOJz3nl9XLJ+2JInd2Iq/muAigTMVOjgAyFSVZBA5GCaZJjt9aIjvRmbdYqXb63o3Bpvc5Ezp024Oek+jGVvIgOk1g9z6SatJQUYE1WRQMqkLMENfTTGT0vOxGD7VjD5g4kvSQWMcQoM60BCDb/W5b4eAgCloh5hUYjzlV/lQJQ5vB7Oe6l4doBE0IENEcu2AsX4jY2GB+xG6AYp/6p0x6/mxh6Xx3eAuwzRgv0dB4yNSziQAuQV+2oISxWRMhH/LwudP4eDl3tJQhx0L1nnXJXTOHEz9QZjCvXbJ+RO24YtvUnOLsP5KCRD6/asi00a/xQxAsKRCVMRnBautZokiTGsMu/JhwOzne8OyRclySkvek/PC0/4uZPsRY8UA1fctoTn0tgFNQQRso3G9GHaQmaJMZm0YtELQecwHgveyYNJ2xvuUw2cymATVkLwVH9PO3znNe61qU6XHAo75PZGDsFIrtzf9RiU4UIo2J+ci8bdiKhb3/TJb4tBbk36a9tUsRxGxC6t2pEE7K4BRwMIxuHv5UllpvC8DjBzJpcntgfYKmyhtckgku5FbsJDmgLN41ZCARnSEECnhuxKGwaSFVR3Osq3TUlBrFlrZ0OvrW6XOWFcHih+t/lhMqnYb0DftLhKmXAyGeypfjQZl7gNBvq8iTy7unajHTR922M2uPDRjIrBYoSA5xQSs3u3kad35jqDcFbK+5GH1QLoBYrZcLOP43opDNMWLGj/fpMyPkvkCEYohaqvcePqJbwXuNlFvQwHP6wtnIzoLq2yqnlVU7/aRlqChAXS1z3hYahTCXyq251e7MPWxvdgPL/hEtva3VVuwsR6hyYxTqWJ5Z0Av2TWGbly1mLZcZe1WeG/WEqOhQF4fUMCc3yLbj05/CX5QQX2gE56NNN8o0vznEJTdqjVlc3R0iKv/z6hQ1fDy1Ks1YDy5lPSX6thmPVmSWZ2BVJJGPKIX931RpbPTZPkvuGP9V7NvRamrdRyqZIDyU/QWMWfNQJX1ASjjMVs+jFx/D/+dkPnOAUHuEwb3Y3cLDZYZEuFqjZmBnQb5mwpUFIa0IYkvm3UAURIkJeEVU+RC1h7N7JVVNgvNaAiyBRItsLAaKzj27TrHqy/l8XIu749N1lqg1oB8N/FQC7zi82qmkWNanCDiQhVwOFBtXHKWPeV4AdXgz8CsXaquzUYjSw/FJ24MPjXVLKcM69VdATN8yDEyEjq2TRAHbMxugV0Y9wuzjOsAvTl3vyDmdDfaFdoDjp2ZXRgxZ3vLv8ha3aT4ra/0yKWUQJVobRx7uoPXHPhj0h4ezgZKADCG/BAMuzNTm6FOsIdacMRQmgbaOwgybQGCWNoaSLhxOcWFh6TFKgXe5f+uHxiVL1nKBaKI1ALHXw07cCRIhHWBfZuUJPRWw4PuASSfMKGQEWe7wvMGRd9E3Xkr4XOlhbK+MC9AQZ1a9KVnkLG9/yLijr2UdRa2r9lTJ6LmIJkD3BBvAhhGUCzaRNSpVkqpdBoRKB89rCILgwB8XGjenFQ435V2C+RDd4vxmsBHTFX999rVVxE1i9KZOtU38UloXfGn6eh9d8zIiwEBwxM+VkWhc9T99tZ4jPLmc3PjosRTy0YynVH27pkOFZY7g2rZ148MGoyHRpF5Y8A14BKkChLCeSwYPU4ck558kM2f4a58l78e3dRLMQBBH0M4chhLtqiUMWQLhKAqBgUzCaJtJTj3FuuqMjGl8VCQC36xNK17gAVgBTt+prUTrXbAi/rOoKUF90g0OLn/rjqjMzEego+CQi2UehUxtqvIrsfuJk8JnSOARwt5ie3U7QMULXXxXC4DROcy4a1+NcTDYLIqfzcIposbFJnlOqsq9aj5mvP8gFReWGf1a8MPqU8oqGqTwrBuIjWaDzOuLEhgIbKdyLfL2bckVaVlPDSFHxpJszM5TZ3wq1BlRD5vN1x3tJCPpU5mCaj0ltqFiUhjqY86LHe3BOF4dqxaKRRguVLy2kKtzQMiOghWxsiWWZ9bfdGM10D6asblo/4hTIxkaJgsm8SBgNvQqT4rRiz5i0sI/tGBLBMV2es32eM1nvRkYEGpkxj8bFB+L2MqXPEb2nuiRiyUY8PhFTFlQpKSJnDIUXCvE/acJUd6LVbrxR9NCQ0WKd/F/d++nbZh/6QvsEI+OL7OuZegj3AHgq8FLPz7jMhG8ujhnk7S5uEwIiaqyeQ7POGEZRo5eFGk/dAdOw/tizFj7z35erkGmJZiJrPjunmLIbt+QrEa+i+CPLgVAAjfDV6wb0m+WyYsvQOii50m+27+NopINymydg0hiPBhouKC5Mwmdj4viT7EUrI4wpTsAAM16/UZCAmQQu/5LyBXjLA9wgQycs0wZ5znzDbKGK9dcbXSzn7DTzuTYeXBmyTJt8MX0duILplhKCBTNO/kgxv1TIp9uQUqbkBI6+t6VB6CYqry9mX95Hvx75QzVnRrGZ3b4DXXX70W+9oSZ3MOlremK7n+a/pBPgrVx+S6FNa9pXKUWwqktodvqbeyMIvyHe1kRngcQTuZDGA1ZEqctpFGClhmCLwWJwkxFVPW3fqYS5HCY8YGojFU0JcwO7M1hS2lH6KE9Hc3WzBWQOfRcHO0/+JX9sFBd186qEjNrbUKZs+ZiOxEIZjtqRh7+c0APNxjjrDukXUGZSn96JOdpJayOzdeVP3K16X9q/m78abF+lSQ3up2lFxIU64a/o14M9EBOoEFrNgL9ZzeU26I/inwII0U+NBNH+OSKmXAq2i/yhtBV9KnHCcHneE0hmvuLanCIO5AiL4xIONnluVaOE2CSh2Gvz2A1TjBeB17vDnpu0Qop7nPEPimDPsrOm33DNpgme5DmDp542ZEourHWknuEPMmMkujx9rafPlAO5dN4swrecFaAF3sseThX0yo0HqgmyRCJCT5/NOX57KRqu1R+zkwlZAE+5HYz8MpDsnaaDQpdr/Zp3S7O7GbAAsICGymjW94+uv95l5HMjEAPT1Wd3IVJFtjP5js06vdyulME7USoE04avTtKL9pSlPRrMp5BlAkv0S5YO7lkC6HIfa9zAC1ICqsKsTX+S2WIFVE9d37k19QUpGKRz2OZlYZoBBZhFkFmd+GP9mEqehqZgZyLNiUbTb6AD8LX32Vz14GB/Tw5UgVL71ReNJ7lcxylpKH34XhGX3DI1I6wbC1ZerZIk7CKxFleMsUB/dj+4BSs0z6dTvl1GlTgy8jJiSj/pY1AW2wE7yZ09vKdfF6nkZQb9FCR7JtsuhY6IQZjhGChoPLnSFqtliiG3ds2EfD4Y4nqJdQ8dtvglSHU3brupcCJaJM2e7zBD1lUI07QFsG94q9Q0FfvjbcqJHof1zbLWz0re7Fq3reY3/PpCUQuA1FuPeOaNtGByL+67b447B8tstE/cKwoI6x9fFnKgvWdFhRd1OLjAP5NxSVyOL+3dQjZLUIX6DIgOAqjZkwH6b26LEa+mc9qBoUGbhSaeH39YdWtkb1CoebSMQzz/+UdMTgEanSm19wfAfwi5JskWhg5J22a/RIZgHU6st9J4gLEydIiyhR1dpGMK3L2+qSSMqUtNt/7I3GOze0ANB9ZjOhtCA1TDk6VpCjlWUWTvSaNgprFQhD29Q7ax4KnTmnW7hNqt5lTvpIHbHmVlkmrpSDSc1Rs1dzyV8zVrG6AeP+XQCeJfN2EpveDaojye/FAVqfROhXXoi3IgQoRj6fGILdFr2YqEY1RUllkFUUxs4sRlrjMhqIdojsgTYEl6gBbMGNubyWhzVFC7/U+FJLpGvjLgHozOl6vD/48uSnwImQB9g2bRgVT+HQaMEBBBPcoL6hH73a+vP5HMCkGt8ekQ5nPLcJWYwPcmp7luMR4HFrLQMIPrIJVRapjgPefsCDq9Fy6uL7aoTQb0RnMntEO6ERm2AMsSnGZpH9U87rwLEVYEkUcsHrv5krhJms5d3AKJJJCZDCLqhaE4mJ+9euKIoDihqjxc9bkL5/HxyU85T01yj3c5b6B7duhAzgSd7tfvB3KjoAx/oMoDWh+eX/xzLCKA3lt/cAoJrRZf5GoCXKSUgpRjXztlH4/UXkLPXz4FMznOM1RzHd1TO57faZNcqe/eNyjRsjOPlh0NjBNB9ly5bEqpHxhPawSWqDLpdcvs5tGmjWiEI7qxrB1utgMQ/Mr2dncUuL3L0n8pNB8nyKMdw1d7HZ78rIgFaCFqIsFctPYIdsDl6mxDCAytfDk6GgfxGPUmRWhiIFI+vpLlpB4MFHoBA3//HilDUZSEd5Y1vora1dgOCgFsWniGSjkV/wjrkaxAFGBEqRu7XISNvf4WTh9pa6KEu55f0h1aQm9OmdwNdymQofKoDrklAk7zS02R4hsOulK5buWBxnUBh5qcRD8g4eVl2VW1yN7F3GGeNWsTg7JR0vvac8sRWS1sTlKSh6208etjSFJCTGOPYXz61sK1+Zgk41++C6jXJCXK+F2vQIaekwhEUEEJ0GFA/rlp6iQ05Iv3Jr+5ppUAEZYZ/e6gt9+X0nnTIHxQBjAV2ZvQb7v0NBNfkaOlZe0eJQtDrZre3m4N3Yrxg4BvQNArzy1pLBN/ggQrC+Lw+efVAWgmBh3Zjj6/RNzopJwznufgC5/2NV+pbCwhoIM+1v+zBil4HsG0YBxXunSj5uQuM8ZkDqVcWhnLQBF7LN384fJPfTSI3jhCgaVE7BBsNh5LvQPGcOK1F65Z2nbicpuvP7QDTCJGU+cbBNUeHquY6ITaf9baXXKLwwVmZqlN3NOW43sOYU5BxUmMNOL3TI0ZHA6uV8XTDBR3xRtjOZI74yGEENZY2z5bsaNH/RpxYXUsgrfgHxB8abBWCRxDUADuNZ8WWd2dPVGsJF1GXiwCGpDW/gKZxyzvHMiCMm7k1nMBH2casqyVxbWhwcXj1wKwZ/7kfwTvjvCL9/o7mcUst+C6DqNChW3eymjo6A4BIt3wOYBJvS9BwLz/BanGw9sa3JZzciLG31kpWwiqLL0Sihn0Aa3VYgSmqzAItul1RvmMD3gHiNBpS4jQ2oY7j59tL2Lrv6DLnM8X8jncayhX2SvvmiVEc1X2eR1UaK3WhgCRoD0VASFPbv0aEQUh5IFD6rsVMRoyYkrMBbEQK0jmyBWHZDmk30Y/PMPIx4+oeIads2gdiSM2fqeFcu0kQIiUunEwPpRSXkAsvIMrSkhVHbGuBS00yLJ2Pc7+UxAy0PxGC7N7RAWQB3sRSqzjMkLNOCq7CW+JwnmmJ58R7g5R34rYhp5hSyz62L8FUQSPP8aWPdpld5ptNMQ7Dww5968SVKyrpOJbhpnhrh4oguJlAq/jFYZTpgvpe5a5SDTtP+bYLrswldFUboNJkLBFIfPjzy4VForcH+KXo0PYYeBGweHqtTr2tDccJhXHfo6zL7RufeFfBUztRpnkV6CnrZ7K+MoDbGf2bkDprIxOem7J6UJwhbe9bUn3gAt3PV9kGRbzIxGObE/6hC7ze05G1hhmCLSFSemrR89QVqOk9fFLpktqEdwK45r3B3Nv/YE/qqLirW3mbVEn7GHJ3j/NT/P57+giW/WkXumkBzGCau6nwsqcWAA3Az3sUj4dHwEUbGelfaUQrAIteGzIFpw7P9M93CHGQE+MSaFIoqbGQfNL+M6CfxDOwzkL4zJ8RL93BEuLeNdrWWG+6Y1A9ChJZfCfZtWwXTNAi9p0lFjNkqqC+5fFiXu60JgcrFen5/LQuZAClUsq6PuGuSp7es4E2+h7Ly2ZlNJrpu9Kf8rSB5vI0F4YjS1CR3ndX72/h5s0+Ui2Jru2Zy3jCvU9WngacAuG1gnKhf+9zidlkB1E20s5JCN3JXtR4g14SQPZazdUBRA8Z3yKAXzDQ07oMAXY2eDgMvSyke+7R3geZGqJyUJ7NIUCrsJ0G2r5C0HpLJtlDCEjpFOe3yCGMjR/ZEsrHeFgk3bQ3GCof1XXjILXyi9hsHKir6x4AhTFvvVa/tjWlN8kjUS9tHv9LjfEbvLd104gpO1fq+fr4L1v48fbCbRQVMXpIhTQlH1tfHBXsYB7oUbLkymSgaDs8i3djfgtFid9tuaNKzKGefpcu9fdnaJUgzOhpFeYoQVzWib2RH/Gy7WKt57X4eks5ewrwNCaHHHPg6OCBWKBwssS6MgZt9iBG7nnfdAzDkWHmM555Aew1PoeNSGcqpXUplkPtE3mHEp4LebTmCiM75LtKqQ1tv7SPCYdk17Qq0iWykwEEK8aUu3QWdbq3nf5WjOx2RSX790YTCQS7XHaLRi6x+LWF17ROcD5UcuvMpXCEqX6R7VR4AeILLSlDL5ABXJSRqn+l4I3TvZOuXDyWfx/imToNmDvE/r/ePN7xtv+LrFyZCrV3kJxSzXQ6Q6+3CAoo7Yy+bUeLD/pjCYIi68Hga991FepC1L90mM+7mVlasEywqIERfSPUuDjoyHD5pGIPzC/80FAR0iSHxOqh1jcZ2xVFR8K4xv2dBL3YJmHVaudgz4iZ9wgIbWUO0jD1+QZqM5MrhfaIL2EdEGOsiz28CW9AMqox2yCgzCu8Ng455DQjKA/WbgPC2ZZ1Q2l8Vm2gGkjjydJCxx66ATiAXByA7wVfeaC9s3uoe2SFyVjCPL5aZuedqGOJj6BnNfb+ybs7OnI6lbyaDLDDbWaHOWmVV6m/DqA9QlHJyYa/87nyc3+u6L8y2JQruHmvh/WX/Z0GxwLDSfD8XX65V0AUoBYkyLc2AiSo2S6FMdWRlBGeKg6KuFfjXoO9w5koHXyau0DWeq/N9XHZOCptQpbSyi9RcLRyQGuxZlnZnGbAG9G4sSKKevIt5AWd8lydU7drcKb0a0Z94xw8WLSvRy9twkwybXMOYrerFY+5l1r9GGAyIyp5KKIwXwZctpfrJhztkXMjL56HDMtsaGVPi7w04etfnFkhsXKiMzRX9+XXUEWtx11fRgDq381ID9CLd/4ADFXfn1WSlkF3pvKYBXjQVhYxZH60nEMJgNPWgLRczwmLYZrTytodaO7VquGUURFImtpYvLgKEXi4nW1yHSISSsfbZz3/jFtMoWpgULFCJsP87NzFozHBcGyaoLPF7Ruxk26UEHqaPVVRj6b2fM73D2iSJAyPtTxCIFWHermRgyJ5T6mZ+twJGoLJmAg/RaRu0Yz64WM4vW2WB5KI7TH/WtFdGbDxRDYcX3b4tt3S8nFANbgJs//qJLTqwPovXjJaSONkm765MapyxSbfvagfAI9DFSjzf32JLlEHrfsXz4T40pW36qQKYxmcJJQV3fLMgTr3w/OFSvJA6x9mQTCiqUp8PZWVts4yMlm9CweqGsYh3988vuJVKvVqJqqszTM6o2Dkbve4SDMritmxsl7CVfFULB6K8+/uSH8LIJf8/JRaykCO8gY7xCt3WqizdXz0htcS9bcGxdEz8VwTQgOD3WWDyiHifoTbOTMJt+GHmZBY8zAowsxd9U8OPboDsKGDB3QN6Ezxg3tipa3hBwQN1ulkREF45T+HC2hg7v5aYJHed9fwlGvssrO4zm1YV+OrnIjFNcGdkiyb6lcExkICJJPS/KvlvGgc0fxAuQnnAj+D0SUvdpMyrbUFP1OsyhjlhDCgyChAmwYPb5dCp5KsFiGzzJlGTW25zHXGhu4JGMc60bOWteGjS25o8tK0gPUzZkprf6qSxvHvsFx69VuQj7rH/sWOdG0SiENEMgUnEuMhxmPP3+GwG19vcVmutJWZf83HDQAiqxqtEgzejsMG3WAN/Hk5EO5+1td+1AuTReQdrGajBWlPyNijfbltX3KvZHLZl2mTwoNRda9Qe0grnfvvl4T6JM8pREBv4fqPHcvhzJNjY/PGyL04dixv+o5t2GDwQrYsOdBnoPFHLZvfqTvw8t7bG0gYV/fA7ZkoHBJAh4jSXXBKxLPAEkzsL9mpHOqCmgiS5zg8+TPOFFXtRCU5OyBHz830beDpVef+2RjEtCmQivcHZ3yjoXpJkVpXN6M8dl93q8+XMtatXF2Y8/YOt1pse2Vx+NuritTcRhNAPMkPLP8s+qBgS+Rm3HbbhMRdKeX0x2/e5m+j1pfiPZMgkSPQmAskQmA1ou6iOUGgclKNA2NK9fYzLMNtroBqin8M1G3cBYRlQ/T/gpTBewr77P5l+f+8qyWOm6zGJ6B6FnOVYPlf9I/+Wj/jpD9h7XHpCXWk/1+Lp+EcRjxvEbqe7EScqy/xgonFaZP7gZtAirtpDZRy8/0uiACqBqazta0rb5RY3ktD1/EuZqgrvWB6nLrUSnnIQAoy2NvpP1Z/gQqxXiWcSdsjs0j0UxoEV2DkS9P2MLgXv9iyGYbRdRPqpmLpizZF2pv2ahx3lNzkhndVhWuhEHHR+kP43+PlU050lQsXdUAYjyERwPIbvy9sh9UgtVeV2fmf/2eRQZM2RmCfWotmLsILgPK8pourte0HvXBi0hcDQ8nOke8WcgP3Zr7JeuZUUTaJIHcRoQ6LOKAiVW32ThotVTBuUXquaDYetWDfeCqCI1FCSvtgtfsCD1tmDm8FqyKwmbxDrHjpp+heDOdcQUK7e6ZF/hFmZSUip3jTZcNfE6fqye3KJurQ19w0ubyjNn76e1jovJRncZ8Yf8nRiWu8UGQUWJTV+CeHSQK8PmP3XR4fh9pRca5JHgiVami14LExRp5oD2rlNK4MJBBfyM/xyk2Vm/tUnmlZ53qjL31R7Hb/neeVaKNblG2s8gYdx+xhNWK2Dkj09jLB3has4+RRcvUrTx/Imff+MtWmdBT6SRxNdeX6wquegtg/r6xLxkRirrGn8FGWDAhAPrz96WO+56geTE1//Okz2+sNsv2bgK1XNyNeakuI6t2nconYg0Rw0wldj5j3vhjXizksZVJgO87c6YTIkRerX2U2wECWPurXh76+Ag8k7RO6jDmnTv4rVFelJoNZZxy28t2DvP/Qnwjt4krNJirWB0xMWE7fKwT7AoqYLVMBg4eSGOSVewc76GIcpUOcC79z20CbhkS0dxfpcVbdLRoBXOSMZEwn9CS4ZPKHTz/jeWtoNSMgk/EuoItvEyJ2LsDj3rclZqR9/MNvDOQtb5RFZfJiMmohiHl6y6IU74BQ2E0KSq3+3L8HfawSNIgL1grPKVyakRsmTSw9YqxA3+P8CNSZWD0D7kHG4J97TD6He2BWFZHX0roZVgryPqQvKX9QNLeA4FJHVFaVkml3jvDsPBwftUpaDE+CM02tC0rhfxVpMlEfrO6m8PwFa7yp/ufplYbImYGsldZCm7/QFeyLtx3LDE0t/dL4fZ8VBMF6b1FdDvJUsiWUn3RES6t4qUsfQ5kdY1j8UjMYrcgK8wFL6TMkzHqJJowo/3kWQTfuVcPciZZaa3KwNtSQehlHojTNzVB0nlqpIZqLZExNJh453dII0uhiiy8dWexwZ/AmKhBbc8C+rptPyMg2k4IpJLPL0Kx531NN6VT+wnaynp+wjFWILrcwc2XZ8Fla8tpZ4mx90SYkzNLBF9IPnkzIWd0EH5c54Dx/seG3Tux1ow+Yn8u99ccMniHaSOQSKvqDjcqKelFbg+ooVhAfsy1MZof7675+XXbNWHcIm5qPq7Mnk1tdytRIJeQ8vs1IbN0AHCLOMODlfgkqtJeiqmrN+pjljnXBYQCIPJegTq26z5wGI9oQmuV9CCgOZFYHc30E3qmGopcpQCLQa8g6DswzPs7HXX/xUR2rhAVPdj225zqTnYMQvcmlDpU63TYEneDaTlXeUA3d6/MDqptC1kNog+GQ9Ucz1fyUaWPhTOZQc5bDJsSY/aWudKIWUBCu/wk/g1QabICJaLMbVLwu4Hzwj94MTOU8V/FA9z8DX5Q+Pso845BQLnKQ4aF5FB0ZWNi1XtoEVZnXF/UhuE80DfEBSwn8q3WwkyPF7HgECFSUSlcGCMlZ/ETakEr6/1Io3FWb3rB7YeB5Q9xFNjzk7P6qsEAHePa8IZnla/do9NNNL5Sxh4ZHx+gTK5+PcfwjYNdFhW00BXdPAKw9xHhYJbcrcRfmMeUiQ+4UD91HSktfNfr/9fT776uXk8+7NDVjA7gs+QYYF3MvRGlslJrucl3eAtrrGWWQIxTLTqWEoYV84OoIOcruCoeHj7OrXh9HDBfxhSvUMrAndRaasfd0+Xszl6Tqnv2pY4Z6W5l59gNXMLeZUv+ow1tYFTBFAYRM/OJOrov3AT6qJIjIBh4KSPAuub1eZXwY3FrxJOliT9NCkpasbjViAtXRIyUSqTG9IiMWzKZkN0QjP6yB6Ure1+N36BKMA0IqlPqit7VUKWoD6lACSTSlGmwpPmHC1PgR3XHk1HK4+IJVBv7AqpoNX1xnE2OVAHj4lMtkv4EOjtuhAhw6dA3MCD/2nX8wBlm+/ChgxQb231HXHljPmnei3Mn03Jhqn/o+d53lSxn8E+fVTFubXE0/H0ozmAKRYLkEcd0oyHYebzed6kC4btZagLfPji6TfHslxhSj5m/TP8n/eD83287mhbj741duDjP9aPyfOQRwYnWDDDYzpNqlSKQh7EOaHzGGNLg9h/IkG1udR8EpDOCgzQShpPd/kw6Ob567ihwuCyL1mXMvfImSPohJT7npPXs7xaMlpKUaKoSvOxrhl58PLxu4cdNnOpSJVx8BS7tcjywITuVTey8kJ18tz9OHOdXgp3uspyGAqBPKAseArGs5LEChx9ayc6FQoX/eRN7zSNw55Y8uvM5yntTIECRzRL1CQ5HuHEi978XGuGIBsCTJk59dgUSeqAoiCbnjhst9+eCZW+Uc30+RUYtouB2jjscRFjUONskX3NTDhf7eLnMfIFtwXygMMYPP/HVguzdUjYRZjcrqBNqicFeANC7jScv8MRuGQ2ZQvNfVIpTRAw2b5hNV5+qdneVgin112C+dWgwzKpVinITP/uV6R+JBzv3mWOFliG0ET4Aow74oE9gcNt6+3ITEWGxxPlg8XjWe4sCxZVp3tEB1dbMLjSWXrd15zyKnEeYhge8M6bdvZKmrzhk9YIrzT3o+Wseohg4hLtcuW35AY/ykkySB4Q14reR4T1sLJE7m0uvLFhAhnjWpC0OxZvvaW+PwJmSEfDMfad4eRXMO7lITXr2bs3E8tZ1Qn1mljEswGuBhItUvj03TwSstuq6cylv8jvmbpkxuHBiybEubC4+3QiW5IcIvzikUha+kVEB9DIsUkmtmhwSdLf0NBpsjXCNb0m7ae19O61q7MqYO/XV7463NsA5H+NsvIRTHBcriO2XHYx73274/W8/Wd22uX2Qa2Htr65uulTtYP407SmFm+ITLtgCxlu3YBmn9o7aBJbXi/5h3rNMMoTexMDWESpaIg/oJL1dM2BpCL9viRIGakknWfKcQmjckm4wYMqGDdpvc/m6I/5PNh5kbTRpehGUYVZRUkRSJgaXjzGNRlZTxvfWPSvde/ta1FEjtlKdlfnqJKyMxlj98DcwILkIYjJzokrpK5yHe7L7kaWlBNVzpU8cCuRmqOcItD6sD3z3lSDs6waWzVmQbGAHDrp32BnNMwvZqsactknRZM6KiHLBx7znbcfkn3i8TtrGN5rAqOkSmQEB7YkWu3QVZDdha+3SZTAS6UsLkH09yBZFb/jMABIa8YmzlsOoKMBkLqGlOSqBTVg9nIRfVe5gKA9Up/d3Z41JA30sxGZuVGCcDB/4huVfKr/FQR1Vca1ZuREcikP38E9hNhQceHLh9OHR1HYeX2Hf80NqG9KQO9yavmwK8H9jCJVhhb9bI+MMVDGI3Io5ZGrTcsPRpsGH+GYH4GmBvOeNmzh0/nYKWGO/FYb8tTnQMVnDiGLk14hLLPfbNmHQWIlISFkqkxF2lKlF03T92CmeKWf9blfUY6ONacUuaoZHG8o+2ikMDwpcGfErFUALNdQgPH1/U1NQUpO9cMLzBKK6JD7Nj6XGdTcYUlfpQc2s/zM1rb7s6jUP7dYlrfuJJlIyGgEBfTIXkwn+L51O2+fN9yI8m/rY7oEMMBsK1In332HZnQZy7HLRYTHwiViw1x4SPvQgN0aUE8C/nsB8BScQdY61NKmdbrzMMQ573Xiv2fm+CMQzGHNDWwK2A7FhRv4bFu4kRLUVYaJ+SVkR8S6VFkY4J5DP4uK/iJYvWHIkm1XdAa124rN/X7fcXO5IGNi2b3a4XL9tWLSUrjUyOAvihw3gN26RiSB5v3R9iGY7gK6tsg94BhnMhZ4Sb/vk6qMDtt8xDDwiEzRHzgXSu/9MmxLBuyg5Zbyoru5dD2Lm0gwLwgzHHGrTH5XPW20QaNC7dI6tfcc/V4YH8VziMGHgAu8fCGbbbENVpArImPd510M2tb4KDXnUnJnBYuE8jzQsrn70h2uc3cU+thEG5K6QFy3NLeBpUh7kyxXNdRp1kqDgxhJzT+gh1VB1xSxKVCPZkV2pk0aaoN5nfTlQ//wU22fVlW5UeFmP0Yy2DCWDmdluaF/OvjXkmTrcYQoMACmw3yGz4m291Qnf/QZlR8msf42GSSW+vwU1GuIpVTYXUCjuTmksz7PFXXiwV0nzTSwdHnsh77eq5MJd3NW03AgQh1kQAUi1qS46xjvN1+BdBOJXRS/GQwd0pzUmhYmISMYVqvfz/FMBjQyGEbSvC5N600TQd3exabJ8PE5+3konNptRp2muV+2OPpcvqG6WVBfUQYYEnVhmucJoaSRriaIXOi66NhGTyIpo+WKXVzyhYRDAxZHQ8YC5Ts/99KcoG5ZXKvNdRU3UpRtwC+FSnBzTZ5kxI2VQhb7q4hfxZQbHM4nvAGOPA3X9ZYUAncJv8dwMdj7exNfGT2VnLTwrBJCxPuiwaDXEHSYYt+mBk32xNBL6uJycbeDx7FEQ8nl3xM3XqjiauQHWTTOm923Yy+brQpLQoAlbAugZ3r4IAVejiJrECGlKzJ3mxp+pjUHWCSpELv7A9sKvw6/FKBJAx37C2oZ0xB6IyoCJwRCd50T4KwPI9fMsr+T7RlJB8kabNr5eipLWYAooK2Hxw01tvprMrc49hhDkwR6YGN+9fmTa1n4zgXH6PT/9M/2UDLVNw8BIGx3+tVaUfeEU3XSE2SqunMWjDXVEzNRQ8Dscbt5nIyGo7/9QsC6vZrTIFDIEFEs6nXQJzMPBYWs63w4C1bksdRfgYLoSR3ts6s5m1MLA/r44EoCCkC0E3rlfSSWCSkOZxP72CD4GabFvi5To7ZJcqDYapmwHcXd86wZ0GEsb8hefG0w659yJU/bt+Z7fi9XdDFxZuVAMDf4WKoPGlTKsdQiZZtaamVC9hwZTJtYB7KPgzw9XwzQCwlGk5JCEziEOT8Hox/Fxyn4wpDsguFQoSvhLPZhXBXv0d+2rmmmwop0UBbvKwfFIXhfliYVxvUhh4yXVr8T0gP/lQRrs6KJrFlhJpNVWZPuX5R0iUWKdEmrs3xTnatEfuecTrCuucVVqB+dJpNM49g+eyRZwawNtm86AGHROKEVU6SRRKAHuBZ5WlMOXJXLnCkpoiMQkigQ2MoX7Pa8vPMrZo7cDJu72e/xVdO0KZyy/fOr4bNRDP84h4D8F8c8/gdxTnEMM6qWZSMZT8z8GX+BkOBq5Ms5A52dTEarA0ZqneWiVLx+nEyx9d8RzdAFy1sZASchJmwTz2FDVswSjfuaQ/HfNKhg/sp+0cM1xQMtosW6FrOb1UgNvCX+/Baf2s7ar436fHm80DzykGoMwIQ89W0voyzcBZ4FGn5f/F7osu7hRvBpAYJ8zzsV6G+nTPyLox1Oh1j2dlTGeM2KnHi3g0L3BVJf8nuLcEiiqe9zzb/1AIoSYdc7rQa2Z5IfiqbiZ10y9hyxvJkskmO0BVWQeNXs+SGoQ0gSWOiwXn9aRSK/cga64/VDIskv/01KnZ2qZFjEd5Yxg/7X0X3O0L5x44q0wLWPDI6RYjgMWySDorRtrgRHmojcs8j4ADsfAHQxem+6yHZWoqJt1lCneT0LIPY3Ca6LftAxGC3MeLyxDGEXNvkKf7O/7XmjzSBnl28oosX0vtiy9OuzwSBaBkPTpeqxU8tdfONHRsW2O8H/TfBp57LhC8C468ynPQUhGkePXk+hF6uykLX1xeFtyyaN32sG4ip3Fqr24fjR7gjMixtprEyGy9xIUVApTtk25AUQy0puxKLdI8xEiWx1l7Mzz1spPgGRJd1qjs47ba62Z5jqqwX3FHy1bCKYZrSV8rvoOWdiIZj5u5EohSVKOm7n3mm8K3KFbP8LOv9td7L1eH6OCbz3ojXvl1WMOXylmjtjdj2ZxLZ0tzvDWrhes5cLWskYLK7kAsrQyNoodzzUOXXjnCZBJFVpnU5YhGxGrwrCISrt3fxoqj1pb1UVjdzpKLDefGsH7eGVjGsRh2s/XRKHZ83IgSO55Hgga/r8viEMm/WmwiZ04nwmGfXA0kI99Se9gdKx6rqaeSVP1PyjygWFK3r7JXWbaJfDg/NegW1sADHGgq6HA1nIZeBKl6iml8wriYdWv850Br5Z53yA6pYSAQIDJPIaTmAhnCph6n0oVJIw2QcEWha3q0kNYgsTCi8vweXgmw8mYAbirY/0QRnbHh4lwYQM8VxEktztHwzoNgcgJcqZP2Z/+Z/Id+W02QVaugylA0800NrRzBpQVXMOCTvoDY8DYPNGZqDoSNP+rdSZhXtK727N5Yk5y9krnHo5S/tAPoJ+0B5qZJg90DcdowuxqF9HBjAJviiZyTJijySlYVBgtPBxgB2p65NTzVatjIyi9JzN8RxOVRR2jipagOXyo5zWmJ90WqT98PHhwzkJLcy5empwj7p5nCjfgXbi8z+zLkhUDutDqXCL3YIqLkAi1AjBmgxGohtFDsy9dlliow4lgzNyZRWDwnRqZGl9s08l9Np9TKOhz1AkLTT/96ED7XSdN5mkW+0TeKEeBjKSQnwANUGzfQtVPt2NfeeQQCXldGB1emIBpvw+8y9hOCN9t8elkHLjTmJTn0MtPrRmpn8olwGzEzsAoN7/mh+WcCzWkNO8GLCAUToZGZ06HOixtUl+fhYWzJBZHBfVxZ2gNCvxH/QRMqqZrhU/hTI83hOfeXqHGXIgdTtMWdPY/vteX5mP+rQsjw1uVUuf711DrPgVRwNlLnWr16cCl+sf2V3AJYImo6tPhWAxMLaUv8yJYvkCOgWUmYKHw/dGRBVJMsvlr6fDb7UFCZoLn8v+UHpbQfNXuWNBfTeCf4Kcw5D0JGQUHw8k3vD/XUgN8NZQitvx9hOgjDDI7LB0teYIy5Lh+29l/cnnwdxDJ0eJf6WtFj1OeVOzPpk1yRyItoYTCFt4G7TIlPrEv//wRPOrX3S02sl8RneYOsz7QjGKn1w+6kBt4bQwg7+WFeIhKdBmbhvi12lwHy6VVcgIn0Wve6jyICjbUw7lxcpM/5rCjC4NEQbOlg7Fk2fCAlJB3Gr2VOn90fwX6iQeFMBG9+FfvXmntTiJhS8TnNVbtBLNin4bEh9GipTgpgw14coolYw0RK6Nn+Qa1flG6YAyV41EktlL/1qEqxGMlm9s5lW552qVyf8ives5SKDby8a8bdykD8vuIa1w3T5Aj60fJJzPGAFmaV+um8RFQHO9u87FvL3xnGaFWcFpPp5z9UOyyexOFFlrC6HJJPWtsFdWS8+/RGopPkBesB2HMZvEkF0SbNaflEx6Ylf3SpWv686kTBg8bcwYKdmbx5pqdQKPiqfcwN9VnWbqxLS4O++lUt0vsyERk+gaiiC1lSZ8oh7fRSnbvadoLnybxBJyiRTa3kRrq6erie3OkHJeHz0cUzHfQzDj+zJUrsZHqJDgdeycwnGC2KlOaPH/FQEqarOGdM2a0+zRVfXgPeCwuDJAo8Tv5ELatVpZiTccE3eUk0Q6RgeN4SDhNjH4t4ycPCJolCF63rgqfKxHPvDhJlIIn9g+4HSS4gn8TH4333OOUxOeBYYOVcf+U8P6dgIkWrGm23hfbk20V7Nb1H/aO3v8zz8ft41ppAEQmf7uJIEduBQj6cf7xsnyAaSjKuQ/K5rMZ6oHjcbKfidWSMi2KIPaMoyap6TCMSZEwj/P6SDRIoKOSdbSXYWjhck6gy1T8bfG5si/2jU5NeVxezVK1jNvwb3TfazW7JoxQnwH1MpH9DBLRJ6J3LbouTQfqQnjPmw2SMxyxBzVndXj2VmomPh97MhhNugg12X4N0YeNI1SbYuUoXfycv5EStFEKKC6BrtiJ25VnH/Yi26TBJG84fdT9hD9szkDwcFgf98QdG0aEe9k7CC4X8FxdZojyyt4Q5sTlQ8H9lNa/Nz1D6Yl7dUMf28G44VehnuMPkSvfwSciUngYZ/qEuLb/Km/9OfRCUW5e6D+HTqmcSbfvwe3qq7fiRHgQ322gaSK7HT6FXJni1TkQS5+3DrVqpvhIulryK8M+S2LRaRLPzhj5ThQzvpHYs5Y+VqOn4MLSWUDKfMluUdl8Z7pTJJZnZVjW7a39XMYPQe5tzqQSGuQf8VR8M8eva6IhU3kHaKnCuehnM13k+rUSD6+k/3AwJ4FxCgE4s/Ri+y1BChMi8KHY/PbU77LEnuei2anWsmwYUmD1dWpbIxmYNheBtzEwwCOt1Parb7W8e1koov81rS/Z0mucAhpyxttJXJgRbqZb/UcjoN8rmOWwdvkoH0p7SWzo4Ob0THO7S7FcTIjRdmOgVyoeeOzAOUEmxywOybYlBRP2hPn+rE2z3p80syEgPCofvFMz9rGOyz0uTq/POugRL8rxCxbuMAbf3ab09m95KrOj5fhCBchyNAeXwbJ+FlpnmRGTN6yUMuplBkvl5YQui/F+pL7Az8VhtAGXWo9qrA9ogFZ0BYxwJJ7FpGARVd3hwhYXLXHIJKP0Uj7Snc5F8A68fRI2A/63d/RTjEotr8QXzoAtMbj615l+uh8QunXrHCLF21CmdkH8aMyJI0Je/jPiwQ3t/qRh5QjjTrPzqX6B9SoG1n0m6pJ0Bjhx05jZVTDrTib4VJiOWWPuc+1awfHaP9hssqwrO0sbwKWsJG5AbsiZ6GEA962fxjQxl67+oxrshXvjwFWXCtZ9w6QibHv1WJiPpPxT0jOhTLZEbmtG9iPc5TnpRuwOseWsrVaipCZcAAlYHyC5ckZnxjzGga2PGEDHB5fOsewi7bzDGslhGvMAPA6MYzbl3ivgLtHVZfiyb2zhXPPtEMe/soTu+hrYz+1eS6K+kMwUc40ECBW1RYtbOeOPp6HygD3WFlD1EM4Fuefgptw6Ofm2Oe4U1Sff57nqqATlm22vdcgDmQNxkcCyrglD5JGikwcE1teom7xxFEa45eK9nIfAnPuzd3YMQrRIr4SpILHfW7W12JgIQRW2ANpZdNegWCh2FwyCt4+iLNWWu9jxmQhhOLQS8/QlcwK8pOkVIZZBYWls07go/xwm/yadCgKSZ/rjvzbbYnn3HMsTe7rzEGX12JbPfnnkCMFLbTsdero77T8ZxFCYB16MPloJApL1ww1sA8LdkzCNMgNIvid/8jsNFzDNBFp1voHLBQFaoA6p5d26HdW0IahuOSh2+/maUyBEm2PHVBT+tZoV+4LWTbQJajIS0zc1dMOnjCo/lqwJ2Iv3/YagSTTtcjts2DMLlz2UZxJKLvwqkHSw01pSl6NVSu1lNZr7IbNZDgc+TkuXIMzYnsRpPAxfDQblfnZqxVai2woGEzwtiYGqw5w9Fcc0JIj3KzyJVOVxOipcrIxFiOwMAbS+A3Vs/C+YYyEIfZgVxvsXT0nEhoCX4XynHr/wcSfR1Bafe5Vrlhk8tZ+N4DQXmvO/Quew+TNRhO/4yCUqypMM3DIf35HrsoyYP2gdMUHw6lcVuWlBb6ylXQhI67EyWoIFhD0d9X0tpGiE7p1y1x/xsJRAIZxIDhPpjlbWAjwuPdVtrryaEQnbpmWAMR8vuxZrgyla/JNT/kT21xCYb3ls3abl3fX9yrjg67yp65/bze0a6DK/HXXck+t1fafT+y1svOHqsK/8eUWZdBrdJYfS2lCFMygWHMzwvESLyX8FO0xJBJ8sTshYIiWW3TYWRFhgtHzjQ9cgjV6fOQKuNOZbQ9llwm1/EwMVN0+TnbtyvuIHUZ+rklIqXqK/r4Sv10Na+s4/boNuN9y+m4tMqZE8RAEkrllZ5WWKN3d0Jov1xgNNYlWyuonJSVpUsy5gSlvfsFnzsFzqgj/du2dVmFceGwY1HZQyTAFakPgFPjsXV+1wv76GoRfm7lyJRu/yJ37lfacSyveDpUnSnVnW85qmVsUDI++8GjCA1hQS7Vr1AogfQVWswo15HwAMNP+c0Fj2pl0uCZt1FRjfPpxEcgFuBxUP9uFiUZUr/dxF6YXwck6GyVvjKMkJC0IHu3jKV0US+ysdaulW18/UgihC3ICwY1l3jC3R8ag1tJUPR1c4v13ynAOUKMEjdfZecngo85jomRI7RSAomc29ifAugny6/Jue23UACy5Xom4Jb867pFbeSDt/kpeWVVaB30EdfoEXTk4whDadS5lNJc9wjI9/trfbL8tAPvrOdkfhXkxRAOIK+EX6zA1v5Q9iVq5OVkc/KexGzy2p+YnlYD8i/rlqmh/5UcAixoyTm3t1o+GzZ1RNgTJqiH3C+OIGTVs09tYwaJphWmD+AJb4G+NVRCsHlImZaFmumxaBr1BSal/RNvg8MbId5UjHuIozBShqAs3d48IyGte9jwuw1OkgRCm+71WGC1Fu+ct3v9awWOzML8aYnwBY5udfjHfkqWnvqfvxI680oGszNh7GTI1mTL3eb581hdmsF/FGs86fD/yyCOgbwtWzvnrf1vSHRKf6TMttZMMG06syA5ZCYf9iTSeNv33uX4p8Tj1t3oH2ADZsxCwPZz5cDdxpsjfqDYtDCxcxxRrdqzqCW4EwVzD6ryC4izkra72XtgwLjLLgzfbVGhCM/bS87p1KjU6HMdLNoxF92AJreZllNjB/wHlYMee6LqeUiAUR9YUEFhYpQi6y5CxImESL8dHQ64ZJAR9eFZfBJpeOyEqcKL36qRguAq8Qlf5PGSI8y6Z0igrOXR3398759TntDRPiUnO4LJRUTvMsJHGCvaPcSpHkgzg8VeEpjqP4WhqYW2XJr6JK8xQYmAhv4BTCW7jsi5XzF1cj65bPDdv+qAhsDOZjxNrx4rjxb3+mBzAwEcJw5qMMiXvVw1bOluDZR8pQstDDEF85inPuz1e1XYMRKLy6k8XL2Cwosz4IOTSVE6whF+eFdTlfB69oBD0BYE7ExTazjno6VSEUDlIfo5RapWMrj98I1VxkJ92nf36i0kCiZAOVH/midkhi31jgsgs6RpgsaLZsP8aghq1CKFENCyDDg4XlGb+tdo/nazM0z/WnUo9OMg3Uh4E7Ub4RoSZ9VCAsTDPXf6cERBJ0kl2HwKbcft/B4dRSbSDvgpbEtTCzbyqZ99q2D3aeM5UlG+Rsq5xTAG01DOS5nsTFOaUyTXUNwj2kVKTMizhPgiqxciYY94eswCmWNiYIT50bb6rJ/n1J5hyK/miulWiCzGqYp7ANkbs5LfP7JhfgqhB7dhehIWYrCFRpDFqKzqieXgkfm6KCxjQad2vRDd964YutCLSN40fOt4ort45Mgeq2lUH7yJ71bqz0V6+sxawXQCmnrIQjeoquyma6FH7iWSES6fUiblGdPVvD07mVEXJW0QTlqJ1dz56t1UNVrLxERkQMVs63auKeWEBPVmKcaL2JRfWAB5Xa/QZb/D0frGOBwhemDFAM1qUla5atidXPTB13qwrcZ109v6+Vbv/H1aBGBukjhJcHuQqx1bHHsCBbu/hDpIs1/GfMAczwOkLCH36a8Xv2AcdXKZ1yBf4nfpWSi3xPIbVqM9wnInxb8JRPDotaIyZ+nq34yges9NryWpQYXFCWs5F2Uyxws4mLea928qg0N12vzGfrAH4XmGifv6tLXOrSyjfzHg/Xbe+l8bF4/n8aZMTVLeg82WWzvS8vEidjorRrnGvl4r3/QYrwqnQOROWgF3MXCMw7GsbukwHzYid2d91Ds5Vpje8ElJdG1Ei3HXDOaOvVBtUtFcg00D7bjPNuBFePyTQATbgRKg4OlviWFo0kF5DW6HHEVHYGEyi4ok2UwkGVKEX3BSfzqbeGE4Ib8r7/O5tQVkxAARy8RV3RSv0tG9T3I3LLLKNyj6QrjE7qB43aZT42UdkqLWx+lc5AI3xNjpDksqa1xfixrv06iOYHSoBnf8xHx0thVE1iayrn8pMPCe9M7rXuSgSBGWSWmY7KDjNP8nx/14T9yLgpEQpFwLPYMAiOaxUbYuxOhVVaDjjJNXZdwxZlRqiOLEllimUgYMoM/JCDKiYfWD3glxvlWqZm3QeuVO6RqI0FHhxGWMKZXjI5WYBLCJpGsAMDW+84vmPDAsY9uamgzB64yDYFNoukLPEJZ4yBK11f3Zf5Q/jBK2G7vnHSdnpd4kdnsK4nja8KUHLeIVj5atTMtPX1b9TZSP14UrnZK2+zdCyL2ulKPRwLlKhNDXdTkEbqPgceiAZk1am/Af4TS9JkUhFQAbx28g8Brs9WHOUb6+jihwQcqf1zGvVyXPhoZau/Bl637F6kKcn+5rU2VtQPTtG+u3R+vKaFlNvDWdSa1qHRUdNOAc8TDAp9rCwAIJ72nppb0xU6smJqI3XtWkgVdE87S0TJQBXGbLuBZc0iPg+o9tqnRt0+TbVJJKY5dVEHwR5wanFjOtRaIBMEgToJHrJL646oIs0JLrDGj8UPXElgL9Ku56ws65Zj1N5USU9WV/1cmeqINl0q75yQ/FWqNGcGIwLNZ9R5ar1L3lVhDA9R9jt9MslisS00nLGlrWzfCTU3T6PqiVQK2JrnOKbAb1xI1zXg1+eWtRh5QcI6+6tSdqI0t9TzJmZngEWh20ovqeJ8NArDrkTdzlz4f2P1psS/6Ac2jT8D87p/misaoi7FbbqqxUmKMuA2jho1kxINQOtXg7edTusRgd3XLqfvrDndPdzZN69YzTozleszxLCuP1BSb5bdif7YHIFNSFGYImMpHXHO1mC7eoRJ6zMxV3ZhAsR6r2AI9M5kY9XROTVSFhsIeYvxUkqxvXqtgbWqSU3lk4Jc8RZp8kVd6FYGgUhIkLljyyfPp3hkkIEoKgGQFXYtlYEkhannbSpy2PmsVx6df/tZ9lypGdTjT5BtTcXPyH7SbmqJHRwLVUod7MKPiNfgz8boXBw/c7mLNNn50P2UK+DyPOy69ebweKZHauO5SJVqZP1uoooCfZDpnoicmIufSqVXdFXOM53u6lAmSJomRFDhyWCP38OcQoY0LcqesZVVgubRD/UK73MB3wmH1fo5R/QlzR1+XR8km73LFyzYKli4/rkCeO1kDaIQs2RIEBWQv/gaIilPp7QusMHBbXy9/1f6KibC7K7M3IAbP74YrHYpYOvP1z0QFDquJD0M+eL9S7PS+TnTWl62CpOCGj8rCgN17GQACYJe4i9tV18++MzlHj82KABodjBS2hTYfaMiCIZmOdZJDrjxbQA+VSA4/i/OyEyLLc/yDPtO3zQinwLNIwQlPIvk/T+VX0LapAOe4/4K0ujejvzhqzvSq97o7v5uTHAM0YKcQPFuiV/fF7HoLx0+jpYBtO/tOMv7lfxtOb9qiBBmFJSPOTpQWC0uVG4rgwJ/TvQPWuO08gKrRX0Vd07E0NnoSya8RMV41NbhEtisZ3G6Eh3SRAN6ZZPUhNJGKowMhp3I3dx8zvGb3uWTs+KJi3diJJaghmo1chHxKyiywuh4ENV3OeKokVWwNLiXP6MiFkEkRyPp2fHO89yFTtn9XkBFKICXx8zi8nU48bwBZ2TB8t5N8JmGxmn48cXLdASbQlJILF35+2UZ9Y3RVVZGsFknzBzfj8wptfnfXz6HMkDbUSE45HWC6ALUGokBSOwh6bMWUkx0tmc8x4f5/iXayzuPfX40p0l0GDOsyB5WM2K945vzsnwHCIX+gkRmeqeUr1r82mX81tDs18HUBNKZDnCDewgyzLTsWH+1XWEDyC3XX1meKudCJOu/Nde5TDPOna0mFpYZ98GYx+hzePZF82OOcdnahK/I44D7puNovB0LdR+wweNcosyTdayXdYU9XYR9APFcfxAAYVB2dQ2VfpgGaDwurd3uo80TQDja/Gd2go1fF+kY2D28lU28HZhOAugqLVlw0NUNSFVu0wEH8KB3Cx7LOwHQH2Hm+uQ2ELkBNFM6KGygem7emFgb4oaSA1g+zPtVUPWYsnbrwACo0FNa16by41GKx/OtjG1k1Et8VTQ2wo6QZL/2Y61IRsy8zeKPuKUZqAKusz7agtmlgkvaNmwHhIGtfDtqj3g33Nmc048VWAdKcwT1cRB46jankq/1siSc2JzH+MDNTU7Yw/BHtEmByYXpROPP5mOqgHP+ls5RewRdncMqgvFgXAz8Zc6Avo38CPAzXZHH+hNUnNiSXOyoa6AxAsNhly5sLBh2RIZjFdDvKhycudzpUYYMrV+Yo2o5Re6EpJUvDGT1O/NeVeBEuWkl66p/OPp8K2kBHd2lt+oHKPbAO7DjjJjzv2xtbc7tr5FSLsw0GXxUnGWlMBn9wnpG88WvNDM66a2ZeDu8Vl4fE296ItSNTX9pZ3bNo77RcrnIw4D+10wUf4Kww5xgIl83/PnWZ3OMNCmxiOjflRbkAgnsTa50V0YvXNLGgE/aK0Swos8ohbGHu2Va0ZCo9qO4kFq6Ytmpzs85O33r8r57JJ2ZDKcFEPGJZWyScLy+2AWKPRyvb+pgfaNdRQLAlUEUhRGIJyvxNbyw+9bMBDa23yrCE6EQi3iNtxhl0QJ00/iB0GTJWjm7cYMpz1pUKtjSMMyp0sY6TDCFj7giQwkOs4hj4jH0tIrRYkkQoaAc4MJ4uQaLXFM//Hhnn6+0gLXyLriAVmj+dPfHGEn19Egw+2NqT4wdOFuv2x27/kAc/sfVoTsrCvCXNrlmwJrMPEcjl+v5BuAgF/Fw3LqqX/hSgpBRQVb8bvB0c8V4pAGlnk2hsnlwoqPgh/VRcOGNhFfvk+akv1Wo1d+NQLunIHAwqxjL4RT5MlnnkZcAJRdBloKOyLHiMaZLcuWhhjas+UqUdqB61A2m3ifxVMDYgWCGNOAY56+H11b2z32nOJjGWDuE2811diOQdHCJOfaryLLYqRrDh6/EF62EO628ci7CMoz0OJchGDBk+k2POBtfOs/vbZDx6/bZ95Na3CjRjLFfhx0cZg4cK1TgWgv5G97HklvK7dA4siPcdAlb3N6u91isqmMc/RhaOFsez8/nYMAKxOZjSuVHUpzeTjV5p4n6twa3a/hwX46dOCIVwljf29h77O84gV9c+RbtvWDV+36wrcCUgnnl+bKa+CbQ54mKVx4kGKyfsSO3FbHN5Vf2rBuY/3PfhRvpHvto33xCzaaSyDOvcQ8jJo4EoLbIVHZWCztMA8gHIS3Jwc3tA+Ci8+kxCfORmf8HOUtaPOugrHz/KYaz8dfrbUtnW+SGSKOGXH3Hmp+O/27V2bdMXwVRxPcm72uUIjItVqJC8IrGecDpqN1Cp5yOvvSYO/a7efN6+7DYeaNFUyXqofueTPLronMVqsgQeCmPjq3qR+43tourYzeJNcnar+TtfvbtaaDQAPKMkaJaFlTMFICeMJUKLPv5bHsrHpx6PveTRUKnGqHcEELhULUQ5xbUnRLfA94rI8N9OeorvxdY1fGYqKoJVKE0Yu/lbkyPpSL8+K1/1Dpex4AbORLVtOEqHyqerAzhlUYHQEjiTej75QqbHIv3ENgChmbFissUa6HJ+SyugywqtBTFvdy55A3p3GRMdO6ZyPzYCRKH+E5YAazhapThK+uh2NUps0XCvj6EoIKjGakQ8s2LemWKBU6hS7xM1bl3P1rx/fIvpeeSbiYLEktC7m9SdE25u2LExFEo9aQLoAUyBsaz1CU616uDD4ORg2ILxBRQ4oWXgN1hj8KZt2gZlVTauqg/36/uLDGU0nb3CHFn53IBoB+UUOME7RL+58padOnRPAcENbn6PwL6wxzeFNDDOaBhcVO7Zre2sNdCj/Ex2WvDqlQQ2zXJl1fiK1yw6pRtHyZIVVvxsJedUu1bykL2qQw51fJcH+B6kAX+uo08mDAvp86EisGSHgqNlxaQlHx5FEkBTfdnYOAgMOR5Fbrv72p+DQwcVqkPZKeFt2TDLGyw6CisVirRkWEaytHo+CEhP8/u9+A6YCs38VzVa/unwWJiQd6Iza95Q16w4fgFxHUFujrZ1xx3v1UoORecXWEDgchL7Xlj9K52Qik+FLU6huFRWR+1sdHmGVOq+NOzW015yPmpLzeVzyd15KL4VwyWtcfxo9nNvgQrrgIDR0zplvO+eUo1jD5rGsDCehIDPKL/EPB4yzi5FQUfIDzVbF8O+zyKv8e+MBYyxquabf5dUFWsOVawpPgncdpDqmUuL0UHyjiyhopZcnRdPR/Oc0YGgYyW9UrqNjPUbPODCY2VGmTzt9kg5J35hrvRIX60LEwTAl3QAHOSivkZA/viXBccPyRTu+i32nvU1qGwyZXaFYzAEs2HsTl/A+se3pxe2X0M9P7tJZFl9ch2HvZCNKWyW7Kx4KpgVuAECo8Mjxjgi3pDDUM9kFialLv7K/p23yCPDQmknKHuWb70mqVS+MJgQF3K/3aUiqBDo4rA8K/p/EWEUwc786o9Hc5LPJtybBtIwF5+CaP0DQB3tMqgEzZ/383/uDgOr1aOhfrnzkOY6c5iSHPZL+8yAYtMsghASo32acsMakN69DkjsxGeS0pJEmyI56xMKlEokYANMNOh56eKGusd1ZNei/g++Nnrg/zN6h1KHw0DbkkqaYdQDeiy2CPyTHvblorVJDKSoYZvFQtvjZcf+sAOB3GKeWHx6gUsJuA21jFg9vY8aYXd39t+9QyjNXkGy6JDBb7TRO8o1LgmjRmxtVA0+cglMCPp5TMIFzbd4UHLz6ngXgAi/mwAgJixXOZeQ0c1DrLEReG6b1x7taAJ+lvOxlsHFc9RB0cb88dLbsO0NcDh4v/eU70KpqdmibccrBmLpZRP+SlDWUq1D2h69c7YFbblMSNEEcnea6IPrfVYtkmp7AAREILeiac7OY/kz6WOuzHpwc099MlzFtZrG65pfS8JTZknvtAQ1Z2Up1PsdzKG7k53wfw/1avDJX8WedTHJ5JAYLyTb41fRsJG3qyQKGPUC3YHDRTzmFBBItodggAjV9L7ELUMBF/Cf6JKuarGk7Jy55yRKmET54LieiyBW0Rz1xeHg3PjIcdo1N/mSDnWjcH3EOb+OWQeTWO+U3DGmAAgh2VjRN8mtG2vZAAwO/mk6IhS2uQG6JEq1XwixReeIad/THD4qrFJZS0bCfHx0dP55ityoQIidjY8ujRJNQIK0KD4cl10U5t4ATJR1pk5Y90yvK+QS7rdoTq+GJ7gf7Ih8q1Z+mGUDPp8kiGzUqK5+7ZvOmMfMnjz5LO0JFKKKRmv4U7nfRyeVqv3KBEntOmSqEUUIvfwq18Ol3SuNcz6GvsGnb0dSzMlGYSQ9wTfp52Wa7KytOMY8wRNhe1147ZvHUomRb0nKmmVW/l1Cbq+qSWkaQzOmuCKBoPVNpslaOZwrpDmunjzvXDQygBub5XBwMflfPkBM4ttebqkduOU3Rth29J9taVSs7qZ62PFCRLRHAe8+e+qY2rPRBee0/0xujDQ5sx0TTnuXagiYMsSVKby5cG2jqcI8QsWea0FEj0pAdgka4kMhYMPQ8YkRhRcJEOANpPRNgr9nh6lNoH8NXEv/905NnbX25Swww9mNPv+WQ/Pq1KEBo57atiDq0kY60yx9FO/b40tACDCpljCUU/BvtLYl6rnZgj3eW1tBFAPQsIw967fk6Kp57ZDmOElqfxD0TjJ1cce5ne9FAqbW9ylMgGuFyEe60egVUs6eBMGo0QxuUzYYu4IIYnIJXrelKWXOmcrr278ES4ihGlNRj4bFGNE+SePQZcYbvSNyhc9Z0ryhqjOO1+9w3VgacCyDb0CbCxhjsK4wrDOttCW2FjxuHbya/y+q59x8k3lDtGzxyPG4Q9kR1uGVgY1uNeHKzgbmkdOvwelbQhd2r6qYjQdAQ05RhmEOKUESxw9R+1V0wbIOKXRMW6KfmIFFasfpn8QY/nx/bozROVLefEh7HwC5tsc74cAX43hQukQD6/GVhmK0npj+Hj4FrD6PfE+kKDTtzG2VDBUbE+XP3wH9JHNLaeEVSIPNEBhLPclX4734fUbRW0w86N/5NQwdPX5Eya3Ynm/kCBwGKbpgyM/EWy66QB2Ztb7ZO74Imo4b6szPBlMXigKoiy/HTvF2DzTCSNG/wA97w4/sn/aO31bjs4Ir4+cgqIA9ay53vNJMUDkKWj4Ob7png9ZfVYAxuhLBnYiVjRiv+cEpDg2fE12OYV1EphaODQdJ1Xvq/lq06JZ+mXKTKqFNzs2LLiZQ2gektEJTBgNUPVB3tag+F1uXhz2fz00S/+/03yy7GgJf9E1fWncnEtTd8iFbEIG+mU11htvY4Rez7OIqORejc+QBnvO23Ykvy1rmFMnIcCA4UR8vdre4mhzEL2lp2C+6/viQffvJ9rmZsjtff3JVUNHGxcptOCYaz2U4zsy+lxwv7IP+cXgK7h/KX5/5TRBmAXOkHUnDSw6DpDQj+PWBd9shcgR8fFdZurJVntvrQpvryNgGhtEQof853fqlfNrhp8H1RlOGLBNy703BQyy5JKHwPM55VzEe/QhDNtrJkwDnFVvHdX3L/65GDIJaZQ6LDRafOwYj0Y4kdSVpxaqklgcpoJVfkvt0z65yxZhtyH77MQ6kHAHeB0Yf2wAt8GcgsN8siY4ndM7Xbgl8E4y1KioORC+rZLBZggV0SJQu+S37r4wMXnClAcGnkq9SJqn4EYCqRnXS5s2JoFdJ+NzFBEzQ9LyzCWSPpO/AJY2KBPLKvjh2kyM7jQegBR/xx/8YcLWtTQUthZgEi7PqoCr3x9sNWmrKyjq1Ko4S5FRgL5+7pVhvrbk/bOw3voI2hf/19nVEO3JLOuDQmmHS1dovf53gNuRl3YMY38ooUTl4w4+f5TT317WTp5z/XQbc0Ki02yflxjVPtTmBTWdU3P83zph1HvbbrV6YU5iyXZmG7WlYxKw6MEh1nVKmtKC5eJC7YUJXnEMpvIjXReh7dggv4MeW/7R7eNL8TKWobMvdEDL/k5G4K3HGO3b2HaEei/OG9ymd5ef4VNB3TsgnL0duHi1x14IV092FnMedBQ38q0TbWVQ3Sn2Ey1s7pg17ND2356NP92/rwAlM4AsNzx2c1iL0PdMcTVZV53okSfbfLZe7gEEuxqmMjhUU3PdG9tNzhAf0zwAWbt1nGEE3wNttIIyeOX7dbUVsqGDEACxKf/INDcKG3wDZu5+NF9VQpURwex7TZ5pESBV+ZPQaT7bVKDSvExkYbcngQEoPz3SiA5hpJaVIJ9H/sVsVcHjTA/nBq3m8OcEEEfusx8LAsY5MjrcdxKdsO5vu16TntZgaDj67bBt436guOrJr7gW45lKpVKLJggzfntMADMmHzz3JCOOWw3CeM6iq1nbUfFuKBE7BVsn7KQ+tkoAjh1M3wbjJu0OwzOEh5OshHFa+ou4LWaK6KILLSmPQaIra6Pc7kbwR7SFsewWj3l0UBGmdvL8FRbjtJDa3SpR3swbUqlsQnjCr1Ae1BYLchG5tGn/QhivuPI/4JUz3gRP6bY5FE68aB2iu5a3H+whSLYhBGFMxnB68j2VqLTO5uRsK4Pt12VDmc3WshdAiYww10BWx9UD5Jk8R96lqHmlWbxEsw33u28wnrgEww/VWVvKp4V5FjLJbOV/w01DJV6YwuvDic6NkrXniC5hX/fs6QWO1HfGNHKZNlnB6bVZv9bU/49UiH3ug1YBkg2l+vTsRBPWRIXn+YYvTFPYbPXRBqzf6sKiNHGsRsov+GO6Zgc8vpFoJzjS3nQL6zING81LnO41+Kd6zl0czKca6NXpuDiyMs4pCRjc4uXuncqFC7bjjc+o4YzNULFHh9cE1XhXg1X60RJ7tY/qdIytJJUfnitHvFcUcmfisX954X828LRrO2g/9gmm7qTjNTAZqC65vr2i7fUUU05ntLUl9jGxoSJMiPc8xyiVkzLAiMb/qhZM2c68FRxX8aaORh5esUfVq7RIEtOU93MjbSV2+1FM0zIJELsbs5SO/yh+iC+vp4vOJqgJGiv+D5fpRubvJXgk+HLG+yH1BFP/1fqJfkF1/0u5M93bFrVnYnmT/2SvgSl9Ysi+giIZEossHMSw0Jv5YE3WPNvk7fA+gd0tyyE5GcgfmodKveT7iE+P9RU4c+mb0gu06+ciw7M4HeASwQ37dBX0JSQh5FHJJojycNnE/yt0MPxZ+WOrSgs6HP6HKyG+LiYZxR0gPv25J1fHvwKuwdTpnpbI0+JEJ1sBYKDkl67Z9ysF4rFEGO63SI3X0F8fMt7p9h55mKGxAAJcfsx7CA8WFOxY1B+r7mNlj/sJUm/kQJugYiXsTgFUw3WTsz0DlbKi1HeNvW/PG/2wgpgxTZ/DiDAa/AYbBBZ10mG1iyOmCwkNkkCd6AJ1UZ0fW9hmB5ZFQBN+n88f6jiSeTMtfKjE4qev+lxrXoorHtu+IlbmGeQwe5N7RmtTprKjmFOo0GELBMS6WYr9rxYN6t5PPoEPZmGNE+jBd5VGAn3wrNAQwVzfL3XpSZ1AA2tLq3FJxVKHJKtPLLGmgBOjmBdeVlSueR5H1vtKCJFbQp9UXNNynkgxNtQyCp0jvcLL6TAWsXsqWx0VS9I0YER4fAsTxVMKzZujH+PMYtMOH1o1d40WF7+M/C9bFBn1i0DK8Rs8Zojw8VnQnBNR65I99KTJH++oTposYbijB4LTekB0ewiZgUIjV+cQ78YWHxzTPibCOYJQSKmiNOJsdOo2xJ8lYOpY6/J9wGMDapYenD2qQZBrQ+27vjOf+6/uYPFgpfTNx42xxnhuMCzSlbF6DxcSk67JbPGDJQPXWCU7X9/uFHt6ffoAKCzrR0XyUhq8m7OIjM2sedherHNEN3I6KC8g3qQsScz3skGlih+/pNKjBkHvGlch8bgoEG4mtnOnO2w9jD9kqhaO0+HArMridmlb6KfsKz7es6hv8bNW37MJtRba413tmtyg0NAbawLxg1vZ8tbe68lWM/vnCvBSx7cfaWiwFYpMEJ93aDGxj957iBAPyj89cAYWJfKgnorGlRVfwCeCvVPy7axL3YKDPNj4djU5k7iLZxALDViGPcXC88SmrK/3CiVmsFybnEKdcdwPKsmde4UAoVFWioEBTCqxwsvjHIh9CRXOQoQrmtKeZsGUR6Q/J6l0wYC9PeQ6z3fR35fsMs8HQRo4FTEJnhuJk/pW6kdjGwwnzJ1xmGt7nzSOAUlGtn/0xDdJgB3UW/oTekX14sUkCh4rCzmpNqLAorvi1vyX5TD0OXPlEuJHTyMgv/2RTJXq5+gm6jsgUaF5icRZodl51hIhmx0A35xdE2t1wVSMljG1DVMMX44mXvbtLpoeHsmPkEhmYiWp6NO+DXdDo5q4olVg/omwk8O687C8gEFh48uqwV9Jq2HBtrCKslMpGaf8qkntrfaaSy99jC7Zc/7cMhU12guWVTgTnRsPfzgliCCy8rJeMCnzixfzOHZ5H5oR2HK3H4bd23J0esLAiimOgQI5wwbel+jJ1eW3V+X2byhl3D6htmrIqrl5VltQCokn+R1A9ZDoTNp2UJuZDbMXE6vcmG3JyZyfHl1acMr9uyVQ1NP02t4/FtONisB1JJkFV96myag3dma22tb/E5t17rdFNhV4FSufGZboYAgnBaCjYCompwoTOOf3E0Qvy+YMnAjI6oq1H4SGC/uqRTNZLMi4qCt/DzXtH7H4CajU9AFgxBfoNKV9y+jn7FDuZ/ig1RaW27SU0uuvQpmXfEyIX6MPBx3TfOOVrVcWTUFXhQ13kpZnQolfaoXLzFL0EaqrDD9NyRFxOU8+gkwJI85bgaprOQhd6RiTJLb6i+IJV7fz1D7kz+/rSWuvjVlY0q/smbmYnCcxdFXB8pUCkWrEU4MLQDWOOfwr41zS6hfEGVIH/982oLGh4wrh13tld/O0kXqsY2PE2pumqtf4O9Szefb8zNtg+cv2mXqXIVLR8Rt6haEjDU2SWD40eyJ5PMg9JkmS0UWLU2EcnWp5eKn4emDT2QI057S4OY+G50Wt2wM5xDIFUyFzaSZk+DBCn6s0+/A8b+JYKygTozDuYryEO5gn+lfrQuXs/ksn/gVEL5k2+Ppsjo5E4PRTm3c24nTu8CDOlwML6er8s2TuP9p0x9lO7ic0MJvOajSn2A4m2Ka6EN55jJzzWY9iad1XyQzrBGM3OwP22V5k+dzpyDAc2B9M9ikgkkys6WaVYYGntvFCeg/YIz1KM6mPgZoXA+3bIti7v/RYbA0G2eTiQB3YwFBq2vdc0eRyxgL3Gn7CtOu+rTMUNDvd9wHTsTSJhI8nVPpzlJlbFEAUm8hxQo/E+pga6xE4M/Ie4x0BEv6SIXE3kRSt1H1Pm/5cJtz4ZeVr+SyzTUlkbD74byCCRAMY3IrhlXDPwn0taI2n00VrHvtGik1bURfdkvtlcCW7x33nz9IelQf9Wh7Cxs3rv+w2+RDv0VgZnkuwoo0aHV3Lru/2cLZu+/G0mHdZSPnb1z5MML05U1T6sVs1RRqkf/qAwkvPoLYyiodcZEqnkJxVaLKfDdvS9nZPo9c3gJTRgyhmaSkH51nef2LGkOmHerpMb8FPdi6/+jCjc5vICSITKjC+0bapj0d5l/nInQVZqhLP6bNX9qwK3uQaGY+GCwtpL6xAXsUrbegSsyiUm7RTJ1kRT5p7d2u/XCP78sb67j6LXwvWtZ6gH0Ch5CHBWqt1PNgAv9HmGagulMybP6rUfZUiXR+CYg8yQOsjNCkerOimhfwW9f6fhLKIwfxuJaplRgUDLhbon+AMlxdZw1EzR2a/D7iFQm7IcdrSDdAe2V8sPDXRsSMvISDPRzgBGO0H9ObFg/mE5joYHrPFTup7VUBIDZD7rULevEFARdJHiebU9db7EZz4zmimedDjy6cViuz84cQ4uoPcyTCGm6PV6Yk4gIIaHM0LHKMb21wXjLBDJJZ7KQLVXLRq+FiMFReiqanDa7+6oA8WRmmn1782dVso3ToYn/BCT/zY//dxNukXQ7bfsp4Hq0SwzJ//TkOCLNMg0Usal+R1XgTkrhXsTx5LGKu67Cl8WxT0/J0e+WlGaPPWmAA5kZNqaobWZ6GA7LlytdU91xiadv82eoLqsFgZ3tN4o56e4GkNecA9Cf0LtH8KZlSoooemaKmI5cCl4ps3s7owcl33Rfm1sgpARAJdp9e0qhiK/bQknOFfc/z5gxK5x3yHthnTbP0jU+XiMU8YcERW12Ls8AEJBoMVxXCrc2dmSBUxbDhrCANtB88rJwYs2nwGaCauZ9HVrBTHA09s0pWvbGHaPZGZGwP+LUoe7dex1jZzT6gXCmSw/7CK0jL0+B2X7kA9xM254EEaDMdniVr547uOGnyJ/aG+jZn1qeBUd4I54h+ojv5UOzqonNgy4Rk1t8I7V2B92Fy4tyBpdn5zw2+2pY4bjRGUgo9B8rY/jZ4eun8jMlYeFtAz3A67wKxBZhkP9BIt4enxpzVvIqkzWXCNlXH4KYr5BCAxPXpp+fDuOQLIT33vd0mY8y2CO3FjVt17akfeBwkDTHe9eyxj3HDLSd61OtKgrQ+BoL+rvx1fnF3WJ0u7DoX2q9v/v/c+j93NX3dXdfMAM2f5nRPUhNWjjALBdbcA/H16t6jJjUwZyw8ilNglGxkRMQxBq9VLshSDFE7TaKR3xQaty6m8HJJyRd16fh9EUF0nqrQFuccgltfmvjk27mWfbee3mmrh54grPZ4OYTDJXwhlMB6FGqQq2aA1nKfqh45Zv036fais10U8PGaUVL1uGiWDypnUEkH9ip8CRkZzydcWU+tywgPYSTzTrasFacbqarKPefmui2ieWvUmKdibTH4HWv9FAzT7HONEnPrYvBPKf6sMa0vLHPM1Ea2DR6Oj6l41wH73RAMNQxKklnuEmLVf8jvZgsf/iZjsfrYMP0Y+zuf7zJ5UW+BxgIv08EKAHBQlcomH2bYQ6H0PO5TaNudUKZUPwJwqXm5pwZYTCr/LJH6qp0q8ce1WvWsqq2yNeI0PghlqhaMnrV380ZFqekgovSnRLI3vdWSoEIthIHF058wizfusT8QvsLIf9ARNhPbgMbCm+blAWwyH2RvLiyCdPuKCdKiy19OyogkQX2QoLkNs1X42swMnqGWlEyDwixiQACocPbpXd5JxbTu+vBXd4mQcCOIYsn7doPmIVqMariN6C4/H6Yay3u+9EBFoG3kHsYBMYC998JAg115mjiKrzuo/Gic1mpp0CV/+K4LfigAZ1rkFRofl8zbLtVGXgfVUlfJ4m8Kr/YlP9hSa+fCt+X0Ku8CqnrOb5V8yNppBU23HmFZ6o0pcaDrU2d4s7PV6PU371f0hlN7UhdM8b2vugGq881VfjunhI4gcYeayvAhrvJYDMrl1t9D3IP9g5dfe4SR/S4mdp870EV+2HKrIy4cPjNxaRPcWL/HQLqnu8lzgIjpV9ynb2vn8yXbnWwn21uozA5K0P0pDgJhiAeOunJqsx/wXKEhujuaFLCVPjc2BUCiTFyYzo3bCSg4SAkE1zeU7MfK9QfFWA/2E/6V2hCLUl7iJUYxQsWiC36tlbgZ5/2dp6Pyf62zIi2CZqdftSzsgeIfneP2yuL9tDLv96C/SxevIehd2mgRuFdZcp89PVpipcymfRSCPEo3GEFbOUyLcIBFbY4Pdm8o0eJ0po1ngRyeTOsO8gYxbPsZsjXNY4Lzk/frUaLTxIln/jmTL5OQw1rAFF4kUMGW8TWL3vWUB22NIZt7zucCvyrRplkHqx38wyT1Kj5tTfEkTY89lb4WT6DmKejclnAvzxmHkEoaCxo+3yHAfi+X7nPD2YWvrsMwtk8diF/AniiIVAb76pt/7dB9iB0nuCTuSuaFbg5CTQzGOQfHq7Ds6SdSl5wUUSBX6HW6rALgwt4AJy+RtYiSgtHOE7YKoEOdu9Iw89GPGoG1iJxZHxj32vGucd1S0jx/byYGlGwe7m6E7qYes9KziwLInbHL5ieqX8qqBJoSBM0Qd1uZNUNfxSKvu3EtkGMGd8mpgbUKXMEnOsaCEaneagK1H6EFhKaLc2lj18XPck8Plv3g7YH5odtCXcho+ammHwbXnXjYWSfgOjHxDUF3YFXtZ4fHq44EsI0f0CPWhQsjF62PqU2ZwIk2M/VV/MfEsp4s5toFhX8p0/prMvjsPlwn2fHW2wctJcmcf0/fiyW64M09nAI4sPNyoDCSMQVhr6/xUzGHNDi+8dXg4TmS27oyo12m291ZWXDmICdJQNmfq5/OkH/8bnlZi8a3K5GYEXbCv5ep3yHwfxXTgvFf2agCrkB0LdcUCLHfDuQYU1HiJhwshqh1zD8wx1B/uYu/c4Nytjgy2v1FW951N6u9gRVsSIzeI7gYfoXg7+dk6NzkuNwUxwuOuas6G1hud5xwR3iNxNX4aDQJHSHpAiRPAdFk5wzAuzC6YG/VLRLjhCSaKkIcCLMg/VXknnpfzAdIIjwIZCWZmBHi1uvNZ7i7/ED+vfgaexkcNbmPwfiDmbUROjb/MKtz+Zwp8eXv4r8r2jPoQLQ49ZIe9GgN1QBtGdT2VUR8hgul3/4qJzjvFyYC0uRNqex3Z6/e4HcdVdXok0L7e6T+wOThp7GBcytMUyS2U+cn0O28cFuDjfHzihbWVbIoC13V/vCRqSSIexVJdNoR4wEAiOpPpLiHVpygTBPWVlnQITW2o53rQmpufdLRiB5y8v1YkmxBF4xa6oWdBiOSxDnpIgErQbFFXYhgj6VQke56L9johsH4KKrHgLUCjVSW6mp7FpbAOtJtJBFluevW2ukDcybD3nZmSyBZV3W7S/7abDu+5/qsszKNAExwOh09UppcgcSGABxv60xyzP1iW87iYAYKVCAkkw5h6hWFWrz0jK7zuVkHuJOhFNy1IVnG9WHK+/pwIH0AM6E2yDZjLQihMo8OzhzzhlCsGMhuclNCzc0MY0pRRZA81XQq+ppc9IKwJ79VzPNVtBCvTJL8ibxQKD7QeeQJOlrFpZBpUZqC/CGBmNo/WN/Ie0o1U6Z6JPDmhPUkSp6vzwbZKTdliRm4JTU1sAmdNZT1HGzJarjBSfJjur4WXyXa79OoK/4M83AyoWNkA8RpA6yyKGyRbYxBvl4AFNT0uxiG4Ajsnlw6Wb1w/E2PYNIKGmIKPDOcWGCbQciXLLEg1CLrO9l2+VW6I3BRKiUIuW/kf3mzk10ASc6OP046iqqKqd//Ih5trLUbzTIYg4IRAvFor5389Ub/F2mB+UtDxeEIIx1Rb78mPj1I+VaKs7OpcB+uWld1CYTNp96b0AzDyguhAIv7nxjxv+ZuivZrYonjF4Y3BwVQVfhZy99CXsnvt13K66+RDZueybWJ3p/mo8SzHH8th846Q1tx0AkBxaHXO+e1EJdsI2A8fcmZngjnV+ESwovnwDIJTdA2E6H93m0ODpOBw3bYnhGv7Wgus2oNxtDlunFddcd9RS5J2T/w0DJBK6rlI2YjtfIJFm3Tyv+P7y7MOA6xA22SnyNDPpTm1P/2CNo3aA9FxjyRUM7xNOXn/8mzdfUnvYcr86EQ0CDmzlERPKpwuoTrBUMfv0d36UkutLuoK1Xhom4oexdK2ruxdjsd3zKDjfUYlWPXt5fI50ly2SB7VMWvcZquAhrYWAeUus8KAm/DxLyXPZw/UG4jihg8yIIPVanhh9cLS0kx2eGZKu6FfPjAR8/5xRsz1befGr1uY5fX3UCW4nQIgKpt081EdlafliHPsxTa1u80+XUYV9hL+30qz2W7wp2nXbG/Cq8QQVC0YxT2O3pQomoz6XZMNOyqDmY/f46Ps/GaJPHVWTlFd8Gvgy3UxUk7RWgnHrCs+sQ5y1oHhAY736icwT35oKcrcuOMzpCAu6F4HaS4HMhOJrZ0hxj7zO9gGmhygSY4z4+lGGqIPHTWxr2sLY8Da5IwIhKeBBohmU/q5+IiBHJ/FAao+lj9mvt04IyMKV/2jiTLkolfxbbhXQ0XWySqWFcMWoCIw3OyZ/UQLWfJGC8uA2riiIL4/bg0KL6bpWGujeLzLhIS7sNR7v3ANL9kW2mhHvChDd4mUHvziRJBVrDlDwxjf2R21DUrVy7Fl+bVJ47uQJn74UPHxnFKkyjyHg3J/Ve/Bis/c06yj5zghR1OPmL6Ye/ZrETVVaTnvlUEELPVeSVpNvl62VfKGG7/VI64qg84RJ27gg78o/9oN/i6hm89uoGgTZchpcTCvwB6oAls7IkOAYmw0oikMU5rIcQ43NkVj+xcHjjvezZT5sruFXMq3re1BeRGH+lfRR7eX8tCAw7HpQxbSBR3KxpCEmI/oF63YEyRB9CsrKFe4V5z785uSo+AhLLYqVhfClxhBulHfW2o4BIDNIxrAnkYIqNtYCB2lpdcCAxvAgIFdVUxgJS7DcsNNTh9waoOPITAMdNl6VouuN7X09Av15TSE1cCRiEdZWUJgSuPtv1hoLDOaIQLWo4wav8TWflbj1J7uoQB8rTwjiRbHmcZXuK4nOhCPBA8RPT2AJRohEBO7R53JLBHcD4JOxcPemUNQ7wuQy5AJ4MllEA+4fxcnGdgg6LbStS8haBxokLkXWwICVAh/0AWuuCVz+HcpWMK/mxZf+alC40KWraNbE88GXTgBzTKwaXv5UCVtA1F52NK5U9Q41uTugH9VUA+RG4TZ4fg5iTLW09KK1vsiUKiSqtgHot+UnNe8SAAWgQppy4sUjWXE5f7HsrpAhfzDuiSfAj9AZ0AKY4M1t9phWsZWMlRAmGGP0JRFkzRwY6NaGimq7Q4m5sDoAge9Iek2jceHQ9/Pl3UHSMeWguhDHbGkh1A26wIAJq1u2WlY+DagMTtmgckJLf4qLU7ZFcnCM84/PZE3c5fJtuPGWiGMxxWzaxG4UM1i226exQDJh1MxFzWkHwLPvr/Af3N1HdnUJcUE5CjTxsuGUAru50S291vZSMLLHUgGH7aSZm9AHrS1r3cPv6ljsDXZ6sCAkREsNxmXwKSwSu374S6DLz2yDme3yry7erFwMKyh1hy0B5sNEZs7Ig8Msobq0Wbv7piHOrPI1GVdfnxYv2WzmACM4x0fSIkXIXKBKdMuwN9cLSvAbHwgtZ2e5CUzFBYc1gg/sPjk7R4eZyns/jl5CUvka1YAYdp6fm5OHs9Ew9uoGj7Cu2CHgS86qnC9mD8D3yfV/8IkioTxcgCEdKNxhp/zYG5v29OJfHS3OXe9/UQafRHbYx/OqDEocoLRJnGbisE1fXbIxysGOWkJfCM052P0kAuIox+8grGXGvd33Kmn2jgS4gqHZJDOuT9K65q51sHpDzPWGtzLFYbLXG5NzvrRTZcW4/HWlXfAO1Q3c+NnDMJ+UTF/LXpw+Gs3pMH0TgQxDEOWA6LnVKQTepnoUzYk5fuSlCYkahOyK4jiOqvtKqnX94YPCixXBwoS/1JAc0/L/zEQBtzoRSc7iBxZvvaYZA/NugTw8farKoval9zfTomOgZlhqOkCnSDcL6qCrDdGmrNIWloxF7KgU/iJwr2GY1glXt5FBaTBw1RyPHYJ8mNsKZXtLxfJpbt766Yr7pTxEJwJtnLMlmHJ4NudKkPtm68VNsS0VQ7u3tn4EUM67EFNRy7/2NdDwSsEWhTV3xw4HHg6WZN8KiATMgvo+2LjhNnKzCMaGJ/xEvai9ZGETbgX2mZK3AcPMeQH93tJiXEFVtpiK5QXSWlXMc898JfCD6+m8k98tWZY4ccKZkStRulivKk6qNzVZeDQwgcXSPY7KD3tSYK1ncN5/dM5/Q6HFTpZ3TTTvGCo7b6FNF4KByVnFqqnftO7BBUZVBHV8sOBPYpKM9m+3l6eGDUs+NBGygc2/XpaDP3MePKD02qLkH39QXdW/yvkuZ2jgSGCO0m/PN2QaI+26YQaMq7XITSCMypxTpncOxVcSIZiHb/QmyUK7plwAtOzhWnOLHSvRnnnL8wMwehqbTJ6zVTXNlTd5eNyrE1JuxJmoLRaLF/Fn0HTd81ZhG941jaGfyjXVi1VxBKFWbJv7G1zxhytExYo81d8nx+EfUnsBmfHnmfrRtf91AFxaIpCP0tA7ZFVAP5ZWOaB6uEDKwbpTg3f2YFbGKQYKl3GEv+lO/SuyQ7gviYK7P7ixxkZ3JSTqKDwwQI+tAIDZY51+u4MwXUoaYI93mpPh4KlH4qRfVFXQ5G7ZbhS4aJGgno2I/evH0wF/9XXQBvS5ULDsYZOQiVPSq2lDqCvSpsL/AYe3ZFG0zHhZAk2eBEVxyvZTKk15Cj8Az7U94zx1FXXT6HiaPKtfLuGx2nCUfsu6sKZKNdqUVVrl4aNhOxFGW6sqrF2hxx14sYuUpHn4nJTaLBa+96W0UOfvLdOFSyEkc2Vwf2Ctxeuxcut2jh/n2gDT9A06T3a/UJBh0a1J+BGXOiF2PUHBg3IlJBmHRrc3AUJBYZqPRY+iUVmTPF47iFLhJmLz4EySKTXkAQnzK5WSimTfszLJl0UEpnDD95QPJyalzxTroS3WbWM5coog04Mxqb36tX5+nd7T9Ym7Lb6Ua90+60avTcoinUfy99oa6rSc29mMMOT2dxrQtJPO0iwWUhahrmB9TocIAGc6LMrXiy62IgCoLVnllT9w4SQYB71eRp62Mj8QOVWcsKTz156Y1AifViMD6GCGXWbXvn5aHLwzYart5p7/WRkroNvMN+vjkq4Cl4S5f2UOIBz0hYmVOuPZ0vKyp9HSNb/wqlLvpBeHhtPU0pYbbr8ucTmkR7K/YEqoK7ZWkRB09vnBdZFWBtF9cuCD7buvIADrBVssedxLnURv3E6cyUDysK6kg61ZUTZsAspBiPJRPj8t/xRk5OACtX320PSEzwr8O8hDXH9Qsvz7NPa+0wnvMiLKgwtayN+vEUgA27xaMq+XXEBWiO5iZg5vbUJlMOrMuKP/v9UFtMeyXLX789WkR8dX84qdMwARpvnHZ7RliJ7XK9T+brT8DKgLfB5XX+EbFJ7YqfmmWjllm6ofcanDI3S32WrlMsoljmGD34Vq4fyFO6ip2lPluomcvib+YXFBunRfV/MrfrVc1vLG2c9o7NmZVXwo0hDelIGuvZpeRJakluDtvic3mEWf6hC/qHW2uyHaEzkGtT4reZ4QdWMfESwUTxWP9jkiSRLoFsmMQVPdYLfVvbsqFGps1hacObFAFbuLBD/+iLiyuS9LXDboKSjPl5Y/DPo8ipwL2p6jfC11XKGYpukf6hZ+3JQLT+vomBwzTNVvmXibQ4oQjiVO9fjOnVzfGAonxXGnoYfFzVvtkOXirCI00XWfiUDLiFaWapdswJfqJuuiMj+CQrYokLmQGGJPqBd/qa6k6Nt3W839RIegiJF4LKc5sD18t7z3rN1dm0dnEoCUpDI/Z4VFz4CUxGRg1//Zpoh0knY5wZ0NTCounJcSm/1U5BgKizzUXcNe+s+ljFjMVuPwO5aay24mcr7rnzuK9sqSS/eamkBA51w+OEuNvxNfBKTA6MZWtEf6I6Q2Ywfw/K/wWL8etQUwBBRymuBQI1IW7e2D+8XXQcQLqHlpolsm73Rtx7d7pNj4cRBIQHtvpgiPE+W5yeCU6QXzfQHU6wGzWqV0m3wYJ3BaSBVVTuw6PQ1M+JMxjYBP9XgI2OAm9XgXJQkP/TV4B/gpzAJhgirMYliveWA0Or8eazTTL5S/FXJmr9Cn/DatY+TS2sJKWy7rFSeFLsKOrwUTpy4FwG+dY2L7o2TZZmyAWOzRLgGXXeIy5j7QFS1+tMCUyPpuWIyQCAnnGgJIkf4PlP5hLafdQn3Jh3jxLwtjVPE6zq5fMzABOB+SOd5OhrYKBzQwaZEZBSC7AjjcJTmh90bYDOFytyHxMbEt+wh6GWaI1rBADVAYpv4JIerYBWqPylmzvqtML1NKd1Ekr27kAJ04lkGBfwntqX8JuKm0thXNlJwfmSIQ7UfoiBEnO86btrPeGfaipWhh8B6eMtS2BfPtVXWCJvVmvXlRW0JyPuZVDD/dXr2NYm3Wxc+mJvwUIUqFudu605QmV99FVn7BXKPL8cSqpiePI3IuUcN3DmBWNs9Juy+W96vrPbLNP9pDsVqbNs1xd7Z2i1K+PcykBFPr4rSm89X2hWKBoIQ1WV1S1CF0vJUYzM9dh0ms/rpnyZfeFG2mvqvaOSASOOMPWbmqyArGGwo+KY9qVChkgOdOK3/aYzsGj7RzykaII2q3zGSsIvzdaA2HAOhYlP4D/jVTzMPyrcHR+Gn1gN2c/VJ2UsDF65SJa45eN8EW0x328biIxGm5QPkH4EvF2wBL6Mm7VR9nTnFO8B3h5MFOvTT0h487cVEQOTq3IEFkhKo7o4xIv0NeF5wYHedQtHSk1a4BivM/R9tju0SAr1Yakw6Zy8T7AlKYIlPx7umA7p/GGIxm6m7VSfv77pGf9tOdBUQEHtQCKKQ33/rHWJJinKVC1XX0w2EEgz9kHwN3iTSGaTmRlprXwjT/0H52TqJfSjT+uyDGjFhAPunxnXbQMvcblpSEyXPyjGrhmtoDMXGOqAEXd5TRJZwY+e37p8tdQcCBhfxt8NwZWQf87g42uQjbkH42/37/TBPxrOf23hEGsrlNh+CapeYVOGIPEINFAJWfBsA5Rv84BqVCjhCYiflx8sSRUC1r4iXfMajIdAy1c7977wujj5UsEQWspNsPdjo0zO2OhydIZgACd36K0x8hKxj+RQ+1pZMamswlPz+NdSp0dTtSNPglE8pZ5ODupVbg1e7Qur4jwkvgle6T3AnkX2EJXtwafbqUE55lz3fibS2c9PWEII80Icai/knbd+vrx0l1cM64Q3jbbJLCrnJZhGiMShORY70Yr0an3q8KTl60rRE4INoR0AfAmMZnwk5BbiV0iYKdTi7W1ms6YUX+V9rlwzMehF1zOte214hlf2fFHZTBJfGgrNVAjDb5H4CWqcLScQysAvHx8F12Mlow+3wD4dR+TYOgQq2rKeE3pjs99UumvVbwBo4sPJ5j0yEfi5pAIe9MRykBRgYlgKJ+ARA/0yJTTOXyS/DUdHkMELUDgAVyGuEGktIHQlitFPKCC0VdUBLUZEFybo19i3UNCNkCJXJOnSqJEtiMrYmkzq0P3lVitGECYAhOCSOWzYvPtdidjVu8Qmk285wkuMiMWzYdBEaSdI2qPN3DRn03eJVxS7PGpOuHOg8399+zHoYwFSaZqrKBZd17KcSO024k0VEpo/o8BlJd8w7hyqSyGtMhp7vbiKetcTx59PWGuQKmAZlG3s8CGqHi90zjLwIxhLcZ+158RfOaVJjWqRyZbHmR0eJlR4n7JFenS2ZSBZTR1DJHizh3UnE9ySYhiU/+f7QRDu1LRZ8FRGLnfLHP/Ru2xU38vzetjDo3W20+aGOt+HK2/e+ag4BT+Xd6JOkRPRpW5fhCwqpcsC+uSeHOv3jMwvxu8Whve5SZG9vKe/7dcXmFXVOge2Hr8LJ4Mq6qJKTmMtCSDWHKLZMpJxs65+AvbeLLL6Uny5s7k8vzK5lQ/1LabdWDfYYkJwURx+fsBn3v6ccAxAK1woZxbj6qPRSJ/SQoJ20Er+JRz8hERlnYYqUECm//qYCGemumRayqtvxuekA3v56EOfgz9s1mdBkpTLGFBmOKXqwRee0maunEIS+SQ+n75YF5IdfR58lSyJphBo859ibK9KnFhb1jW/S5I9WDyLEGgqh1qX6n3r+YC8uy82SIh3CJ96oXLgnbU8hLACe5+iRUfX41VfZNamMr1O1hztXGHo6g6cozdLotM1zWGY5Uwv4Pb0E0U6hYzFSlYa6gZNlXxGgX3rCepztt64KDBjmGYCC0Th80nEiJ3db/HxLrwKBYR1hxCzm8lH4UakeA9UQeffW11x/ihsX+EcgU4sMOhjqeTa+3SINYK+wjozZ9YZ0VEwywRPJERNkL78ISgeNXxfaEFfUvB1cUz1XAXZ7rPU3Czb4LzD9Q+2MzHEDiB/eZINZ7ZUYMJ2allPtFX6CVNudMhtfQFf1Zs+bI3Wk5MNk8FrwDRYgJr6ghm9p4LwlT36jWBnJuuCO3r1PU2XyQQmnHYp6oMomm7pkUYiBpUNUHrJTMunjwY/Xu0ek29F15JM6+tMfQ9Im93Rp3It+WXu9G/AB17UjUR+aNB9bAqcoPKCqGkZYFLOOxUTdMZDF/y4rGuFWPJTL1pBvkWJhG5C8Nm02el7ckw8I1TTj3csAAOWPAuEiqvqKSoCZlcOcnoIn6CRQecadBC6eB4Wnp0z315szKmbIfmTGmsTAyhXk3AWJ47+e8erOM1WVZyW76nL+EPEgP/baoZgiJIZOV3QSBLS86iCGYaWBWR1oZg5xIwBLtTNFu3yW165xjRihF3Wze9bSn3kwUgaI1wPsd9NDqkEhAgCRUgSuKr5v0p0keFJ22ySjW0STX0r5HCDE4JUG/EjdbB1eH7rjI5dkxSciALo+kSs0dbhRqORGLUK8B7qGwYYEFB61WVS2oTqMxnEibZHeNPKzGGO1Vd6Zf/uAfAkiHyq6JGOYa/5kM1Jki6QNjJWNmnDyyCfTlkAnXxaHZ1cWjfFwe37/5VwMOnqvhTQmzBSpzqrrc9OFSTg87YvrXrv5GuKyiyrAJLxCB25aQl6qwv5jjeDpx0weM3a86RNXY4x21BNxJgYVsf4iNntP5CAi9YHNLxNwyFWJ8UCcTlcxfImBf5WNfpA51beNn19Nv//5P9Hc2T1N0xcoj3DtZArCYNldmlH5gQV0WhkliDKTif+SO41UwM9329aCyCyfnCxiWOBDq25UlcSnuYZCLnnWlL51aXMjUv9+uLWbWzD6XR1ltLsDA8agClOBQ50QCuksATleohBkws2V9IWPGDhcm0JXJhy3XZQUTL9Vi5os0J+p9QDnV8+6+ht9U5nqUVNP4OppeH1zhVl9PIshcQ2jpAKNbzJ3JTYnu7O1t+btU+OB0xaLTIFTfe1rz0yjjV7qKM1dzxbK7rT0ILyaXaVsNcK5ApR+wCCoZansgDx6IpSZvKCOQndQVjQVEZbR7JuJz2SrUY3MW6dWCy4AZfVnWymcZE0w/mJZxxIGLFCnxGi0H2o9KLIzFvowEQ3Q0vnDbWQWiwXNz5V7W0w5AEMyOpscDuMOOSgWUr5AM0oZyPaqrItLOxTnzHcHE/iqqHh18OfG/FkY4gF7cxoN9fM7nL7KohvkOBZqIey56XHSu1bc08+xQ6cDD0V7q8ZzNFqyiaWNC91eUSzrlPeIcy/m9R14taERy5q7eI2RTSg/WHmV81DSlZjV6B9AkY1JuyWuUpNOtqP1SAh5Rrk/uh4yYjEQX57i9crMKcPldL4XvU2Rfa17ckBs8+jDwOC2NjliRbyQK0/PZyaGYFAHxqUyZZ83Y1TWotEl3MJ+IhvgkLhyS/nG7PIDAIeqZyObBW0bD+FeZ1UPOixrresxo3Ok3NvlxsmTPh7zh5GtSbhgk7KrjFhC7HsFjaq4dIm8XuBUUDI6clsrgUJSPUq7baoVePCY/ZhCJCmkoYH79JRLS7hVpMCWS1o1IT/psuS7LLsFImC+PuBEYTAW9PtH8W0PMu2zEcGTghtkaZLsnQOC1lv5T/HMbcetjciqKfXqkMFTc/g1/VTNgfDpEshSWZzuvvWfuDp5zoczsEqvzWUWgqoIM0uTJNiNk96UFz9NnTyfBwTNr3kb94EHxwLrp3yXwBkrg/TbxWPaLgoZc2R8LssqNtJtWkRcdOjBwPnfuKsPq1E60wBUOxDjLIR4he0ID8P0Nf3yHfq6OFhDOxHQF8po3SpeC3YynYXhvGxIhZjlzcvmdC2PB8u0NaCOmgIpE5tQF+u0ZWxmSFv2V/kqP/Xc2IewPOX4KPPOt4wQk20sD6q+b7UJVWg/Vfm1sChyRtHyjhAF04C5EBR0meDmYVoCHQnHEUnynLrHJVJrhF1qzSB9fNOqzo0bv/I00uCnSIUX67ZYhfVhDHmKhivF5WxLVp+86yCkPwBuR4JZCSEXwDv25ZZgPR67Z4+wQ42tjxQToE8/8ZgkX15lIteLzws9j4FrhG35umAw1Xng3h3/AxWptZGsOrWxhJTv++OvRy+6Kj0fkGTJHfyiqHi1acNlEkd6xHuRiVzbsSvIcEO/vqKWbnSNUHeEwl0xBwBFcYOcCZ2W9zrtpfykOqXwsO9jdV/o7F8yDLfgGHS8H+wS/gT18zEje1pGANKhZ9nQoReiMyT3Ife/HB1r8JMA1fvfbh2xX36v/XgMb99g77cVCHep0XS13qoRZGLwGU42ezNG/+JHyk8NtT53+rfuMfB0UaQH2Umk3MB/NqsjDIqWnCGbaXbiklrws7X8Mjw8M86+WWgZAeg+vAgiAMku0GPyuweuJ7JkzRfeF81a8YZa559aSQRlMK1fXQyTIMh+z3L72pgAhhuOVAQ2DnLMXNopEtUtoqHh9vbpvyoHfCfT3TZo0368M/y7L+Ns4qpL2c7uLFPbunInoOt8pW0itdENmuadRxm/lkI3H93KOX3OrK7F4++9YXxYT0j4N33MogyqofKluBCR8BZGzCznXhPDyUNfi9JzG3o07AkGqjHpu57BlckXbyhuJtae/4YGLWiNrsU/b7HiYvoDosU1x9B5x0gStqHjeeeZsa+4lEJiM+IbnlRTOuPrGcjRE/ATHsKJztNJAbt1qOhAaZM321WIMi6cuzM5Wvf0TCkDlqzNEtbDfa6vYNia/s/WhAylo4Y1PnVtgeJ8OWm87rORNqrS3yUj3PqYRmKbxe5PitcF9D3q8mX826CQSwEWg2htYDeLDfO1jCIs2PiN7uYC6tp+h4rhBdCDWquqIIt52oUhxctVoOEJgIT0z07WJcyr41FoxhbrfQCyxXCyl+RH8gmp5BySpB8AFJWj3Sf7IHOan2cOwKIjMa2emxPbOsQHdpKfE2C8axAm1K3SDZDtxyX3wFCGX7k2MfkTZxK6qh/sSmxjMXyUvmCeOLPIZPbyJVMoeih6b5/H6fimX0p2B6Sr/47Neihl4MchM6AcNwv6bZBB/TkuKrizbTqC7dY4X2FzviVrR46KPZHRitAEgyl3/AhMZBgpp1NMkoXgCIYJ6kWCMLjFOrtoP/XJQZ+7IiQCatwElNqdPpwMArD08RCC6kjR31RZG0oq++mlDfw6EY7XqTDkVa9Ixt7GDjHwZCloYsNBIDCeGcSMObE7UA/8PclRd/EH1ILqMnd3GkWmEaRdjb1kM1AZGtzbs22DK8dZq2d8asRIvH1XtrXQBZzk3jqP6p9gmWnZtH+QHRAl5rHxZKvDbLoqz48/r79MxLooPLXaz4zNVSsZ3/W5t04Bw+NLOZP4SYuh6vlKla6LC4PfgS67dbrvS2cMhJbD1bZKESpqS85yqn4cp+LvS3taUFKjv5vr/dUNK+L1lpVDOCCbDpThazeiu5eNbyF/XgT8ui4MCX2SO0Ivf5snNaGLOHo7VV8DKMwgfP8Ivwp0lFQaRYo/Hin7dXBOp/yB5bIku9eN+BqOxKEPoAjO6RyFJiukc8Xyo5I55kkHyveOGBQ51ejqZHJpmKJpFqmoKfwy6aGpsY6chuz1WJw8cH/IB8voJ7OgDwDtjiTObN5UVZySm1Ykmm+eB9cdCAg2mqAngyZ1ApAuP1R/HDrvjyTpOMy6SO2fr1Pp3p7fQeXE0N63VfEHtctJmIUP0DE8YX1iV69pFyFnakC1LBSuGwlrjI0pHuxmPz7Uy1vSD1n1/eqDcP/Zl2zKLbZ72iAaIaOu8RmfGU+Y4IgAIvle50980dp7oFYc76W7ThSeqA/CITzlrc7+D652h+3459F0qCcEsEhsbELXIzHTODsc3KCIFRHwc+kqeY5zJv0GssqS8+/lbmzQlozAfAoTrrLX9x7CpLWJMfO1SpgXqlHJlSRePlXqDnijxnYzafDqPLm6M21WTdTV7PPVTjAkbHzbNgGy7VLkrmWK5a0rHqr2YnGMvk4ouPsNhoNZmRO28oVqrNgDEEy69CIrOKdrbT+UMZ6W9M0JAnP3DGz4qrmu0upCA/BkmoiJLXszavxWN1YWIzGnrenYSNsPEqEgFJTsu7Qw5N1+9ssuxHWezAVo7SpKCglDqVe5ZO89u8pmIH+7z0NZ6kXzQ1KlCQFBHv/1/lRp1eDpRIqhIhjKXSEsHAaUIFqGeRNMdAaTZm9Rp2VPRq4yQMB2uG98nOC8Rpf5upvaFk0TdiyejW6OCdEyDWwjFjw8+PVD5toT7UN3u33chZb7gkVMJTQHo8PQA/phsw0gHImO5CFuDQmPDVGnfv1rOMvpKFcf9jS49d3t3pDkZ9AS6/HbW/wlpF7qnPfdIHPvLBscARJu+kLleLQSwPbc8VvvusARyUE5H21EXL/TQ63Kn7NWk8cYnXuUWK5yC8WGDkQihP3mBUMucOII7X6mtz9v+QCrCjpFQDadyCkJnLXX+M2h7gZ7Z6A+UMkjj6yDMWifXls7mxWCu9bJu6hP2yq+DjEo3seCvCRwfBLcuEog/RRs+wDXWbCcR/H306L94eSmJMhzNbY6V6fPrhfH2QrJ1raMwBfkHlFwc+GNpfa1OCBuupAV1t7NNtK11Hosu3Bra+DExp7cvdrmhYDKfg32EdufS3DK+TjgDQq8t5SETAtGuFa92ohfLqaqIJYXNgKMh6zpkKrXmJQNujnkB9wFcXS7Xk0ZQRJMPWoMpmbflEh9WND6VD6O0jVWxP14tWceVXE20DnUUkTAngfJGdISzOG/veJORPOfiwBrWBrXUPZ0jioRHwkd4yDTKy/wIWaNvBmMUKldgsAPCCbmSRk6GmupxEAmYCCYjivZoCn7g15tt7hGq0X8FbKLrzmhoSTDNV6N2ozf9T5IC8G0skscFGYX7CCJ2GGvuelysw+dEupu/3BoMD1j6XIEBVJVF+9tk6e46d8owvopSPI7nfgTZsg+a8awt8wjB7FiXOPmVpovR0OVJcfDveOzXNUnhr9dC5dL2e52xFqkSr7hK9v1ZMDnhuYj2NkImCvtPbIdoFSpsXO8SywQQgjoSjk9QCEq9BxfsxKRoLPBmGobnAU3xQCyOszjcDBKuvbTvtiYIDigL1qNP2eOuzyUfqhfhZc7u4vXhTQw7PrLONxOsXBp8STjmzWAkhunfvPQox7M6jGZWg5o/0WNIsG5oKjyL6hMuKR1+cwfJOT+5e8x1sYhXjcDt5dN4A7Bc79Zl7JGAISFtveMC/xsXGdpQIFYy0fSvrhF1GxNrmSUT3xxqjM8MaWEP4jjyGQJ6TASIpwlDN6X8XaSQizpJY5B7GZTaEiLG7uoWoIZnmK2e4kC6pcFs81pisgmz8hoAArZIss3hGjUHxX2mpSfMFVNjApalI2y9uX97zxffEVLS+I540K1SGAxEYvSB5S52E4Edt208jk4MOE4YlF0AsNivrTMtD0/F2eV5fxXiPwyzYGVxIVN6qo6dFQuMtEUy+elRI7A7r4C3wrKwa5LpsioxgfwC/wsWYwfweBLfogC0TLzDtELBebWuzn3M+lxjpwq/IrDcCSGeEXDIDGsTg+rE1Vt6BQBIt9+Oyk5x3+0SwDmSkcn9jHLvmVjGuLMbtgKidTG6meFDzuAhZIpkHyO3QIRDCv9tMNf01LX0Lhrwbp9iXzK6eC+UAhiCKO7vvS8cImJNBdVf/e2qLkqVf8yPqmzpU45VEWW0e1R5wMB23rfGaXAHN+k4a5qihHcCtZkI+SbMReBt7c2KOSDWOXs0uhEMg/cziC+adEBa5dJmg/Io991K3rw7299sPd+XMoBmjwXbaO5YLHZ7pzswZOl2FGEMzcyVFJTy0K9fyOENYZyB+pypfnFiBlklHgIigR0/YBDj6T9MIPPe0lD+DmznxSARiSZN1WazZR3jQOFzDzHrh07rsFkkMA9V7isyntPSm2rMeY02ZfVMjBq/+e4booIyBYhOwvhGFyMlBjMzKsZPuArkuB8vzXGVb4NQ01XX/TqkVcfQzrt2egnAkJPnaN1ajcguVOTjQNevwwt6/NB5qQbxjBCUVVPY+PWepJEhnjHU0XGUZF3DVh93o+ZBUPxtmVBgmyBaVthAtIcBkXjS479BrQBnqjghabnb0m7Ee8oJrEfyEgtuQktCnsabTVQBsZqGBCUyaBslM7ryNXLvaRJDvU/ZTgmgYY3UxzlH1ze+b4bpELQW7myHNWzQYX/bgE+of2uZCoBWGFVyamhn9iayXA6YZ975JQoogbd1KDcKdvdR+G8l1AX2YSTzgdFgfR4HZ/njz73ZKh6Bmot5FQxr0uK+Yh8WgjJQlTcVJq2EGCCNXg2pi5o/UsmGdExJQDm4husHopFHllCXcNuRYjSJXmUkONS99RlryA/MCyNqmyUjMcZ6qdlw5569DTblUg+yFykY/IW0iq0rlnrwLzSiOCt5RjZp8Z/Whm34Y0xYqnb0QZoGGcrC+8UdOHO/S9dmDC2ehvsuI1pZGtSCy6QidUaZXf56dT6AZxgc92Vu6DnMInUjXU32WJPo0sgruddN9nf0ZiLW+4FHXh0CxvR35j9jkTwRQ9SUpIrkCXJnZc7OM3Mpl14Iy7CXMBpCOHXI8eiMEixx7xkNRsNwg4iP7YNZ8OhfAhXMN4/B2xKPCalFUyC9yhQptjHsE4nF/N0+iJ1o39RYH238D2EoVNxU/1O7mt7xKkPlLdFKUSHpfME586Q/PISzPle8NUtC8te0skIwTotr7/+K81cG0Jb5RMM2DxrBIKuQ2ZNN96xss5Q9OHX88yCAjP3D2cHB/ZrqV/jJt0+Gu6+pVH6aDMpuB+cglbjFG2HeBBy5MDOXTzSNQvtDV2Fi4ioyc1YHG6wId+CmigIedUhcV9QCpC/rlWnDtrE+IW3yWaLk3IxlF8xyq9gKcbz3WBmLBWZUHmf76YFrnEqtWoHGqh7RpjWhqoRzlCZo8j6SYiJyRBghuEUDBHnV7qE2R9EbtCFV8+XGLkkDyBKDBZ2UNp/y+eQv8dmWDjVbAO1uuc8qrxtP4pewj7N+4gpl2jOtVlqHu9AnFcM8UCNi11URYE/mrnR3eDFveGSAiQOy45wOsPEs+53hLpb0nLfs5VTNmfwkF3IgkdRBOvnEfO6RjCyODLv5dOx7LU0lkeg/PSyiM2O7KVkZermExvKTCa1qZvKljYyS1Vvp734h3OPDlynVzoSrIoOd8vVPvXwwjzvrPLhxlwl/pAB9mEykJRfrAwErTui2dvH4DHnPZNPMfdqpXxpjJP4OQ6p1qedNe4G8G/3p2o0tXUFuUVUeM7OtMzT/tvx3fSRRNOtKvQAUYjo8BoygIup1ml62u7W4/FNk1PXkLYyhPofa6zJ8CsOoz9XoRxK+xssZDXemZGEZL/CA2RKy9BKv8G6yyXyqVBvqGFCCcVx5kiXza2cyII6ioYGC7x0E/htHpDenHOn4ulwq7GnKqZ/2P9PXzmgKJFpM9ppr+4TikVrBIqfPx2op0Y9W9cP+Ix6Mtjh/K89KLPyvNHTVY3jHhglNOiFnenci4FCa+mamwDgl3kdO+d8Eaz+8RSztJAF3uQpFbM3xuh5vQoiJhJDKL2EnY6UXYcqrF/cuPahwyAQ4q58xaeBwdZP1qIbgxnt2COTJYVcGbHVWFjRRhWVaZq2p2re7K3E+0Va2+CFPqkPMoTkMt2nVTA105efLbincpUUgD5wpZev8mEQHm+oBUZ0dMyLSD3hObsjD1KwCgCT02kzo/4ft/H+GmdPBtHsYBKZ0jzbTAAB2LPi9TStpitaCrJY9q17fFfLPV4CYZcBpeB1C4QF0aeGGx3+HBn0GcmS4ck7MJJnKrZgew50MQWhs9JuBMOTbP8s3erIqnR4r2ixvbSvv8PiBJZT8al1ymX+D2jW4kfzrgfdWtHk7rMM6IppyNV3NlMW44vLO6QtrhG8Trp1gReL/w426f3vEYGeX8lFMjv7RNfgH6/vyOtvO1JbneFLgLKU9jMn1UpM7+bR1y0fFgkk8JvHNjw81gqN2woIa1n3ke1k5E8vj6DAgPko1owyehhhyaAH0hDAOna29T7gKo2ykZAqDQRxTTUMnkYU6NBUzW8F5Sb8V85AWzbgygJPX2FY+XuG92nrIeM/QW9T818cAxzpNHs1hVtas6t2ugtEd4nrFaDJVdlWH527JGDvtbAhNDpqbdoULGemuBZL9LlvdtSLF1pbd0rH9mDPkt3rtOorzhlisFT8gvF57J8kC/ei6bGiN7oIo6SNYqmY2mJSFTKwj6Ej5eMvGwdh/S1hej4jofs9zT1A1jP+XLuAr2Q1Fwf0H5oO9fgUmEHXzDg09Kq9fYaiURqrMAJvE9X5LoeXeMxIJyP5xSeQxCiZnc15ysw7h9EUN4D07GJCU21GbfGqtRFr7t9smSyBIpPaupu1J8WfjYqaMUE0asOeRMF+iIpggPYWvlwIpr1U4cUUjW38FJhXU44hOVEG+WZeQkkvdLXYCEzKs3IPFwLkelT5W5ckFHUEVDIoNT/tN3YhMSO+s2BVgzvp98b9zoL7afQXMLshEE6AdcbJtjBX6SEcjOnFIHh6etQYBmsOXsbdHQaxDl4ZTaC3oieH7NSMx1EuoQ4qgA5jZhNS9yvQg0gfcJQ34Or837csKDkGsoAfdBb4ULauB4rqPutYlZbUvQ3BYepF2Q+opq2Gi7B+oTrN3sytJI/GLTou0uygd7u5yRB99/NfATani04l/j8HONJEk7OXTSJrB6c4almjWhueff8p2RduavyMXFHt9ymS4GHicoUrlCXwFjVwgY1psUuqJVwdBMO5kYRryXEraY2tTJ5Pt1iaToj/mvRZsFe1ox+B3pYtayuVgjwuHBsAXbH8qFMSzpOhD6rOC0atq9JtX2/jCKCfr9njboHCavjzwyeTG6QSdSj3X2TFHCArIDl/3vqX3X0rLGa7AUPbMEG7or0Ejfx8JRcQHj6WwYT30U7Kz7PwOalGO3TKCAiAsv+fn5bYuFXX1xDy9wde4e+X3LfaNtXKsAYcSGeMwOn8rJlMQrYxwAIZPKZSvouE1HX2CYvHemZLgje87rMHemDKWcig1bvVh31x1GNkOyU3ZvEWAA4Q1ik7AqoUKV7xoO3npo064otXqvFpVcLUFXIw3FKarBkXEZaUaEPgbiTOjsvXiR5j/1Tm9PXelgDoobtqUBm8ChEusrMppOJX+XhlqlgNO6UZEGRXnuuAnQX187Wa07rC0Zhj6YphIIzf8zN5jh6yDXmS74qFDoBNKmu8fzP3YL2kVuVV4OswY3E1i0qVyEwXEm/gkFDjzxeJpSV6KvQy6DXs1Shv8ChQU+QHnBL+vPp9yfvVH7gHk777o0NPYNnIshpdrQ6MXAnkwvwqF0zgKzmdZy9fgJH5kPXYA7Ki8O2PmLG2Wb4/mZELp7AwND7lt7c6w5yuotRa4WeZd0FsumvvO0pquSKtf5TW+n4gA8H5mN7c4+ABVaBkyzgtgHPAuymVMYPoCSPzkIVQW848eqKRsQH6e4LPAlna3zFdh3pX3mck383GknMmgmhjQrC45Xh5zBRzOYuRtrK3FJac29Iz4QXeT4yyvxmujbIA21sPYKet/ipueLdNSlcni0jK/lhkEpqn2rPcXife5VONR/EBfQumrVvg5cbsFpE+5gf5wgN+hoFlsbzjJHC3h+aDgotdCi7tRezWA24QzqpQjydjZy8kug+U9iAGbbWyXURnntdNWaDe2L6vbLSAoHugL0lhXS8ScIRirJHdUv5r5e9hdH8++uNKswM+VrfOJdro0WI1q58GkMLyObcja+qApNCibaCpKXJMpJmBxRxG/2GMcV4epo4Zuq2Z0vtr6gMyVhS5qhpZZHn0zlYJhHfaBMSPt3aOGA7QvoZJvm1AslaZ3caXyUy+O+08ERgnKqxM52yanFTP9inzyI8GIgg/+2SbIk8htPKh7BHjHqqh+UJXlC1iAwm7ERz1Cj/N49sYISZFlXGSNvmXAS3JDx6gD/xwmkyXGCtx2KsLH9Ew36u+sjzbxcxNS9JblqtgZ8fFLxugBUvWhWgc3/H7HgBzpeIqaOkTf+0CL3iP4URNYg7zKlM6EUy+Qq0iceSqTte/GRV87PCswfvZpIfHlBRZmCpW3JOEUezkFzp4QCga/9RtXTzwce75EHKxm2GOREzNm3TN+iKqvocTij2XyEeG1Wi32pnTwr2fSZbyQBvpW5JM5aDyBFtwkN54Oz+E5pBRsSzmL3jUKfnRyNtfEgMWEBpi+gSPr0CEv/RoTkCfZMQTJZPCqUjn7dgyve8AfzMcJMfuBxgGZYyI9Ci3U7k5hXIJdYk9giZd1MZhda9Wqz4hraxQJkb5XVRztBFMtdWF5rotWAF7PqkT7KsLxIgwBDUwv/Fspg+c4gYKWSqj42VHvVJ5A52s+J8Pd+K19HypDcILFe/KLBdSCjMU1l7arhyDV+EO570hbF3rUfhtWP+Zr782Gabi+fi5ih2Q2iC425n4jpA8FWGAevS6iVLKjgSo/KWSyWdiqxJyRGvDiEbm0lbuSUOZaRl2lu2rqsJM1SJhR8T78b8HfG42UcQq+Rz7st4qoRFZ94XyGSZ+2a/EbOTZmmsKQmxYJt6cnhGXuh5Exm4aZz2aIjhFjcozpyk1lEcyIVYcM5TrQwATNYHRGRPh976lojkYwxzA2DstdWLfYTQytEydwQ5n6EH8nc30nBJPuT2X67ULhxa9hu8Tu+S4mXJH2rfR+geDlXzGF+RrOP8r1OWrf2bgyPDS9csnSaAJQuUJGEs/BT8PDAOKzw8JsU3bIjHTDAFSeXj+iVxIGZL8dxncIism7ovMtpBqCmvti+l5JoVKKHlmoNHDthm3j75F3+NGrxsr8zL1NuxOiD3G/eMMpU2hhwp3dnqAtEPxEO4Ke41tEptR/n4wUtdrwxuzxel7l2CFBJBYWx12E1dke/Tx7VmgT3Wrfy0asRPkLHrI3WNeWWcTa6LrfxmHozFFdjyeONxA8Lh8nblabQsJRiBxSXnsBWxmNRvuoSMkjarWDEyMTg5ix90ebSY+p1wnkC9V7TZmWNjLlNZohGJSByVeC8EfiS6u12wSJcMikRTHJHZgsahLyybZhE+NTbmKBe1YN9EfKrpABlX/AVlP7k3TXeMfZ8bugeXv/iAfjyFT1pjd9eikzs9XwlXVPXZ/PVQsGOM4yyWidu4RKVfpzK9uhGEAu4+AApB612OrU3zIg1qY06Q/AKEjXV3nY+INci9w75RU6i6ROSkBRD9sNCAVBJUOCJ65lxq+jcGIFlXXOxSlQITF8bML3HdQ1yz1WnMgw11zrXthmBUeCJhey4JceviT5wt9iWRc+wz+t1xGJi0gXlWpKfXnMLJOZHeg3KL5ur/yL1Ohfl1fYfAdLY1DkeaIPY4A1HOZRKhOLZbauTjS1IrLCFPYstKztG558MFut6WB8G92kDvsqMAhmdMKEyxwg6Sd/DfmUkO4aqPdx3X169UZoAGSJK6NGxfwGvn5xtbMLCxtAQmBs5nik9TT3VrEsvqg2dbZmwOXYD15NYsyua8eEj7T2mS1wUZ5IdU77DuBDuzFH0O4awP1bBeADF2yfAM3/oB7fvLxpdBE/MpGw6D2W3k3dA8WSLfDWHwRIFcDePSkgo5V5qWfgG/Q3lHxhDhb+/SI8XhedbWKpgM2c9pMv7Y/d74Qf/CDn8WxHdSki1iFNdMM8M3pUDAs1Xv9PxSNCGNJR3bYDsfD/7DBmox2TQqIdlM1Iw0s47wzVXcmBt5VmMeE5KEcvBfQyBcykPvcIp+dMd9vQjjcGZZAMCJSRSMmmcu8MiCAcJP8osg3IKfsGK4rSwq/r6DjEo6l6D1JXsQuuGowMfj0mvTc/czYkcyWy4UlQWCRSANttzf+LcZnL//EFbuviWptRT/8vn+e5/vDgjepPOBoqYMWrf+ekxrsu2nfhHnzgakucuf8tnbc3TXNSrPh03MqrYJi+jrHWiXOqjPDAUdJXsM/PhwEzSmBQDm8BxVIByBLM4abi8Nl4mM9gQNvAtIUZQfETQdSYJg40PR3W3TYFzSD1RAcnBMFUd2+pw4u/G2ZkHPEhK6B2z9ghoT8CWo1pKn6UPtxJqBBVrIbRV9HtHKFKBYxtHhVX/TlRXSzU49lXU+SOrlWzhB9lHELkuCU5l3jY0p03+jZB9cOFLHd0RkJYXcHMOltGU8Gsv5TUWyDg/oJQFIhczbcUXI5PaGP9nAvq6JqTd5FGWRZTXhCdT/rYGTYRUM8S8UNoM2ydRsNrOEHktcgCsqBcHPIT+JCAcsn8qeXipufBMvN8qs2UpPI4wueuai2x0qPlBHKbNe56sAl8WU3Uy69n7mHQ6Bh0OBKqWjsLHxNutzLGycb3kU6CRrKbrShmpKfWit+rid78X9CaF2cELd/thsblubqyzkY2Mzt/IqUQYg4LRRSfvnvNwVEoPHL2D4v7OCPd+8a547yXo2EbYP0Cta4fNGIWOHpIRcY6dUdtSXbPTJBUM8aar2X0OXro/IsrDDmM00c1Iq4z3LmArj9da9fqehGGd8U4JEwfW/qWGTucc5fxsHug28Vsw0jdIeeMQ9Hp9WU3LYTbsrSX/3e8skMJXOF27MiLPTQin/qRjljNNi3GVYwnBcnmzml3/3iXJn8hr32HVa1xPQUKXOrBDPO7kIMNc/Y+4MWbFkySPTDju9y+qQ5taj2AEuPYZQURO1BOsGDd78k9iw8RH12i8+OL0aWF1eT0JbC0Uf7VJE5rJN3icKraAXSJ4qD3IiU9aEshO5WvJSBsfWQWtaTVI+rnx5/IIpFblQ1zvgO+F8izL0dFRQMPzLV4TxB0CzbgHyHVTByAwwSGuZn7YGdjr5c0ZpWb89yp20pg2WY4ZyN6BAIiCIQwXZlQZteH9mMoFpYSn8xYj/rMVMAs7z7SntiKQt2y2y/jqdw1WvlOIF7NpLzr1TSfk+Wvl2iaTJSomACRDe1VhQcZXTWbeJ4IC6Q2vpQb2CrcWXjCaKK5vXdFLNn7g9Mm9X7KnfqEBhfGu3ny7tYHR6mK7bNl6Rwu6htGtfm/6morn8lLxz3XBklUWUwuK6TlBmA2tvNRsb+aozubn/xmPQ3s0zEAhBTLHrIzLdKFMW+YO08jsU8i24X8FFfAYzjOkmyeMd/WPqdRNxIeSnSwhBq0aNy12Db/k29zLVsgE96J8gID1J5dLpC7m7ijYvux5Eq1ZgmzmfvvX6d+n9AUaoZ4/VZPqftgAKzBvx4ORymLORxO+aq2Bjn/n0roYI5pcYlCOd4ikrQGi6yRvILLm01/WYKlmmiYcnSBhg8WldT1TYO5KpJHwP2iIhS9/tDhNthZK0ikDRovMnu0HBqQQ0WQb5N6uOTk1CBK+WVOL4/EGyHsjI9Tfe5GRMh3eW803eGVS+Pni8nZXe1tmfRMBKk+I9gP8DtBv7O20aXkGR3a5ok7EwC0UohRLtTFejjIsXekXI5cWCJzrE7VcEkyhIRiKTIcdbHSDOXzFHFaLOLmzuUVu4RqlD5cXCNd+CcRY3vzrk8ZTwZmOLjB/UsV2ZTjrFhZGZATW93PHu6wUlXf+2ot/9mAoxDl5CwHJSIpC7Ik94VplFFLzEFOYi2onTjcqCUx39vpWzWHCUStoxZpT7smS7U/FYxc7+THCuDjDLNZA9ButC8TgNKYqZND8GCzxn9GxvEd7U4lXeyp3EVnQkZE4j4jApmN+05/Fmwdb6ShUMxCfDeME2MiPs/RpgetW+QvNzlXi7DXvqVp3RlQrGQI8LopnapO5VjwQUXgcwQ62/F/QC662U82CXf8vI9ZOfJtNFSp44pfGAFDQpVCxQOHrMc38Pzb6I/sMFKqL48qNutj2A0q9fr+3a6I48PnDKIAu0zZf+rqgU4u89LIxAsSidVsm35xJZ8LgOo/8DLABLPaRJeimoLfkORvN8Q3+hlyoqwigL49kXFCYprp6d+1+GM0a1/GHhXFqRhLf6dNTTdaYKj2qDYRidhzx5pGW5vu/TcGo5IV1T29f11CL3VDHcTQBvW2GeP1FCPmXiV2CVqZr4M2xTrcg8xNqd0Z0Fb2C+xFFhtJLRflq9r4cPE4Hzo1htObA/WlaVg0KkfmhcG/yQ2LLit8axT8XWBfmyLiA/bMyTJWuNJy2bS6dQNXIVpifqJsLymdwRfh68f+ZCcvPe95Hr86Dq/f22/wTrnZcTDqVY5hLxtsXboBy2wxWB2GtYpDcYYlh+8oGukx48qLQcgo7r7SWZFnwOH7xvvmucglF6Y9GVJUvgV1z6Ujgrt5ktPZ8kXFa0wjJzBihwa5XsLFRhiij37e/RDj/4VAgHqcFsp4l8OTd88QqE49I+FJrzTtFca03Zb8nKhOtDd3zYOz/4PyA/XyCMvH1Njf0wn5l0j9r6p8ZxwMyqtwxnB4eItknOeIdT6RVkTdkOO30zWG8r072Cbno57grpb49iUrUfcGCGVGKC1wTRSSWlw5Kzz7uXT6M05CAwRZVGdI5sWXxWAzSErVbiFDvJFXo+Cyk5e9HkWSAqHSkdhzlZ9YdCEeNrcsbazszp6JmrA2DalwlIneV93aqGfWPjBLX9xsVDWuOCRAUP3DEsMrWm0+SnTNTnMD19JZrEPuScj8hfPndKLAarwDa7B35vos4e2+U+VRGXqxAMyGmt6ka5GGSiW2f/vVJxtSW0MphXh52Smj+p0WMZrcuqN4ZfFC4bsT+iM6RQF8uobpXSfgYPkB4WJ4v34TNictSm9Mdxz9YcKvzEj98mrDPNPu6hVaRFBEchoBSE9obcegdxid/o0mSz/JsDNUXL/C8tCV7elBkwB+qYyaRssVPq8y7FtDq+JncPWHTgErNn05lXrwS9Wl8yFqLKcHe7JL6yBmMC8Go6kol8A7/XGEnEgFeJIjx9dXpw4Gf1FNBk+bRdQGmpAWmlc+bP0Wmdvi8rxXxStmsCQncNOL1vH89XmjVwgI5JTRJzHpJZtOwb3PxhXeQnlDJWxFOWeEIaIzkIWden2tgSDvZvfiSYqjB7XhwagZqHNMGVPpNpER8AXQG2bRj3TPP3DQMLM0KRG5HxpP79T4ypOJe6Gnh6ga2S7hQ5yR9KBzl01l/XN1Nk5S65o/XNfsvc5cS75bnnGYg1sLygW4BuuLKvadEf2wf7PqGfp94cDbElPFPXwABXCCIeHv00l5pLvzVzXbMF1Q3bB6VGlpTGHAwaZFBbPVoIvHOwQommmwWryZ13m0Aeap97DlQWNdaFTTcbWDtHeD6mvecf2iTu3rbsWJ0TEGe3oNl738AD8sYoEognXqCvI7p9DrBCl8WPVK3sO3fABIMQt03uzI68yLS5MXVxR67MoFz7wLReyPA3BOopfMfOYgaRx9w7k4gh+c6pSX2FCnXnPfilA+yZiuromDUThkf7rShI8Bq6K1257e+S0K7wfR4vzp0PBQI2yHAR4b0I7w2/RgvlNlR7K3OV2YhEaWerKXVNlzdA471AndDFWQ4yWdiFuFmUZNC07mYKfzz2iKwmv38f3jBIvs92podYfpXhRrYbPVHva9r3/0WIE3GFTqq0dCOK86yjHz7nDFBC4pCGOLZtPa4/qrzFFp0aEZqPeC2yT/7x0g4yUwGWYHMrEqigYCQt3W4Jsfi3W5I+qrqhqV4XZw+/Gy/JyQkuHUv0JKXzG4g19NUGHOeLrMHyZi723oCmWTYgxp0AG81/NDba0H5ope8VRyJmzZY4/6SX17ZED7jiYAAunULWBIt9P1NBLzVpOE4W61CY/GT/z9kZLcVxkLfV5d8OrWJBMtfGgMgWZD6jzTmac3QQKmiG2NXMBe/QcIp3JKT6THjkk8ZkLXvKXvYPXiXiHoxZpWAra68g4VIveeYLmj+9k1dX0Glm8jh/8H7URvpJsxBSqTQmpmnnJ0XHkjp21zS8lMOlb7rZs6qBF3GD8opk8yhWKG4VrcolEQvljOTOZnwn9Enu5zPIfZ7A+15k4UaC6qKhWPcDbbr3mfezWgvTnVTro3eks5f2bNOXcxy3P4khg2UZSZDbXB9vPtcjkG6JsLhyD7nj0zIfGSxAU7NCuRS0GiSQUGZP755Jb+0WLg8Z8sXjvaxp2xKyOco/K4Voi1MUkX0tEMWbfsi08hYiZrY5b3eoH+0DfjBChvpxWG4oE3lx5pq75ne2bqfPyxl4oIK4dFFPnW0MmfwqzmDO0dcNCs9Mi1Hkf4L6Ikuq3LkocC4vA7EJbi046ucLOPJKaynopsov57BwYC0Tho4GAVxxdcIu1qWWlH37qlNumWZYiC2kmsMwFDPB3mx8CvnBDzv8LcJ4wKrmKhfv3sa8ofdlANw83hNkbHUMlYX/jIOJP3oyvKy/r/4kN5Us/ljwqPXdaaxTGui91IbRnSIfMxQJLh42IQ+zkog0UScZlJHEl1EDoJ6ZkVG1Qh2FPQBmg8UwVjCqZzFMTcmDIaeNBOxfHjHumYCOEDfwLOaZJGTE7R0t2jyIS/lpns9LB02cQ3IdU3U2TG72Soz49VoUtf2NUDHphWXKBu0+SHn3HUplaVDnOqx6D36K4Rh7GcMrZrQ+4mUTWt8uinQTwxxBB2VsfvhHpaPtx+4epuR8Jgr9RVxQsPzoz1i84xVzjsoFwX8uVyqczBTncVcJ8z1Upr2KWGq/GjAuK5zCD8/D+zocBfaqMwJU8pypa5edc2qJOvHUNDuVZFoMf8H3orpxOHybX8mFuIR3q76EiSkXV8s3F8xTzjSdNNOZt4IXRXjOhx1MsuSDeakfpCeReSCJzHk7aQPyUWim8tLq4Cu6+VINCkYvyc0YbkijpOTuZK9PHQX902X4qJ4nN32HcgMrWtfUVDqQZKLSfzxz72e5n3yz4ANmBkXFLtLou9SNexIkPkw3znIqd0Vmf3jQU+D55+1waaw+uLg4grtI6mrEcRYfGrl22t7oIcC0YEfkUfHpo3zBOgXHyIpA/S1L3VVnTRHpuQ/30VIGIhpFh7JS5fVg8Pk7cRrE02EUL9z1AvrmuUT44RcI3DGTD8yWTxseIfLlvdhHvjo4TW4yFApmEopMC4P5ErFkknQPGMFwa+S5Xox2KOjr+2U+NpW63NjFkQTrsKuiizP4WGMgJF9fRkOLrg/Q0qLUH5UygLLqe0N/GXZUiShbJAYj9Ie11lXOOjKZBplv3dmpgIaDSR3t4M8OcGLE33gXvMAfB2fN9DYABrxSxy0iLW3Gg2+X/OiL+x5/SGMM5jDVYKQnLXGvpYd06yBAwrFwldRmdxxGjkDbsKzV2UGSKFb6QHFsA4u/Au4/5Id5fcl6haOlkeKmzn1GoizGkQ98OrvtHhRMyanZjNGFNFA84UX89MToOSiMZi3XgQwm302txo9kvqxhd24mDvcwvcK3XamPNr1MZQC+mP2rC63jMJBSPiaBDQhrxDFdhddr1bgQ3OemZejtr+TZIy4XVvBZDXyBNKCZ2XQC6mND5kMf68ZkUGhP67jI9XMNoHbZbe6zMNDSXYfZXnfMPrkbvYU1n0DLamVSOwbgY0adUpVRSBGdBlmiHWnJikF3Pyv5KL0abW1h14To9+paIteF2/d24+hROzASMIWqWd8Kd4+qwvoy1gZKoK3RYRVe6hgrfE4XJYs2GRnZiXrpZO1JQLw/sXA8powNootJALmWulpiNlOsVlUymwiSHAWPo7caJgsS4LjInRt56INHCLmQpFuHGmuZ0kVBZCuEh09oTASdOQTfHG5kRQIDC3kD9sAVXOFAe7s1yIOGOv6nCZlCvd39K1kx//Xl5no6BcPfmFeiWL0JmMpumj7CSSRiTgJv4XVR3CHANoUWfpOlCO70VwB/Nh1ZvR8Mi8TPiWFWUeOojdH3I5y/R1DY7kQ/y6xpYkhrHSHEfcpRrcJTZynJtGh4Nw5hWPkunaFt0m/O3ojmXFayfgO/5/FRteFOaLcHnzHRWOXDZh6Lj2L6kfENnQTyZkyIiWvThdtrMguB7y1Gur819HFhuRTSdOfJcvpxboKFVH65td765PCZdaDDDPWtnV3/wgkXyQotxpqTIMJfvyVjKH/cyaV7X3U8MSei0qrqp26wmaVJfvHMF7TKuuf0QFopisAFoXBh5MVh3R4dpDQUmMwCRK3Vrj1mVeT1EVYKkPf+DhgrPubY6OA9+BKPlrNTG+T5qb5xluS3ELqak5yr6tSsERL+OYYn/4czOtakKUPm0kVp8Bhl9bZx/1shkfTDoupurzAdhklyBuMTYOZw6uVh7o8gCD0MgAgiWMWPdTzhWdbC3D4Tsk00dgVJSVLaXmZHWZsY5Ha5ev42sbhNkCHJmx3MbXhimQnm8NuWZka/Ym73ATgbpu57evDDqtQikvRL/5tSk9ctCfqmb1hD3pRZ4CuBhCnOAxKYQUkMEcz6Ybq8/RyklI/kWjrqqTKkAp6Bo0n+V+m1RRRDGaIN06vvdT/vET3yLBixurQJG2xX3ddNxPr60TG+/FO9R//M2+bdJEpbK8RmKlPndJiQMV8b14btKNVteUb4gD7CTC/y1CEV/LEmMHKfdRpya5wzdhzV64kgQJI5tAeiST2ddq42HvfLWJxFra0MO95aA4lnbTvlqcXDIklGcJSrp3QVpRi4LPFEiTyFkWCvA/E9hQX+QQYbgFCoGcLjhzeq1f9l7i5Bmx5ZsIHd/QRCYVR70dgAPP7Af9EO4hGSoM01KnfzDRQmmaXj4L6cEUVX1ez8FGJwM7ffTFE2bS0vjnMWj+qnLJsEQajL7++vJi9jo5Drf5a99KwK3zlYBsKd+T6FBsq24tdS60Z0JSNGmyII6oLOCT4qQGIXfgo4TTZtCX0QBnRbgM1vDy8BQbasCVgIw/xnKdxf+XQEOlnUBetb6oMYyIvXH2Nf6+FfyWdH0RxoOXOnSdQDO9tEl/B5HyXBTteBeOB71lwMCyR2D1nlCVfv4nbVf3QD2xRKNX5PJXnNX+Ob25WoIO7x7LL3CM8RMM+pfE/wZXgin19Xhq5Hq9vsRwMQgncRTHs83Iwu3p6dxuWZy31ZNhscCs3TegaqIIQ9BzJMNMJdQsZZZIrmY6hZQ/ZT5+BpRxcLotfGCRmCDpqktnRFb/bwiYayX8LukIAxzJivw8++ud1CRHj2NeuaFNWeprj/wDZ67v/kxft/yilfwxa0iOSFFl/Pp5tcbzg2V/8cvIfWfCALfQhY8lfDerHoKUF/nEUnKb6HpFbkYveIyWvxUYLilPZlG8UPTv407eSDnJR48FhQgDo7qhj3kgHOa3Be7fqAqyEMMdcSrTFcp6ZhvqUIVJ3T4uyGeABI8n8eoX5w0A/RtNuUgsXhVHGkcFHus88Z+3vjFxTJnecaacUmkU9Wy5ii/aJjRLczKbHU+a67WOU+GkcwvLbZdanvVbrGUF05TGU80gjLN7ZavfqAIYuR5RBEpJWVrMKK6Kaeb02KBsmsVgLE61wwl0EhDFG92n50DU1kS0+02xxeCv8h8lmuaPTMq+DaeEYgbc5F2qZJlYgHqymOtN1tU4T2UxKwXmBgSm1ZxwtlOKWbnOg1p8x3s//VQmbDhGFFMrFRFVAb84k0h5jVyHMZHp3OfAmrLMIYtu2Zl8YZ55jwA5F6H10MIhrKELYjnlNvEWP8X221Ounvqa/ePk8v6aGvrawg+aL4xGHQ2TmSZNTawUT6rkHO+r6XuoKz/A+SzPagdf+u3M/Oka0+BHNZLi6I4/GoQQ2Q/mgjSSGWbBSMqREKFDlmofF+Mu53MusFyE4pcU8744fmSbSu+fY6dtzdYTAlUf0P0AcM5qjuHgSdg23JVB3dO5XXsIgmCTUD5FzsBLAXY6QEsHe6unC2NQdd9sk3jOUgdjfRf3Bl8L2/Aqz+6UDCNCpvJGl9bRo5+1Mb3Cb4JOcUqB186LgS5s0S0WaJY2yzX2rGzNFRs8rRvXFGw8R+pjUaFbi4sc9dO5jqNFVfZ4re6rPp4A89eQHEag80UOlVykp3rnFV8q/FmOM4/Sw0PLTGtU0cfJXJy6++e4PQOJVws6lTypeehyO/4yd4u35rmZLqHvsqdv/NHCeIvDV0NUMebcD+2VLClhsetd+KLMSBxcpKuf83fmBkJwOWVgvvM/2kPiExmyrwc2StssQ4I+XCvF23YHgvwqEjXoJuTyJQN9kRCubNyjpizigcxoUElF8U0PwcDh2nKepQsTkZbx2iEZAPsPnamsj9AAZo0lHvJVc1gH/N4KMm71QrrtJbVZIa7/fYxYFQtfqVoxROEouZQjaf24sEuOKRs3m7/LNzwtM3eCjz6U5hxkQxA5IU/IAdbMQ+QHt8KNdOtf1y2I6cBriziolk1zejftHG+4/Pji201KTz6kpllArCapeHBpct1OtD+0k3opMqz9bPQsGKMt5JN+jumXnv5vkBvabVyXCKyqpKPa+KVgQzS8sXjAgSqngk+dI7CX2nzjSLcTsuctyVJjS6jS5ZPcXndeuzPFm8mdEU34vDjSPpYiJqBsiLMiEsDwyn5sxMn84GPFYHw51i0vga3vIRTYFOJ3WSOb5LtFTB1tcKn/AWnzE5NvGAGoWu2KVykWIbVen8fcnRgj0j28D2AZnDWtCuNw2nW2O/bO7sSKdfZR81ixONUnXh1AUA9w9sH3tVhspy0XYVuxttVDvo99L7L53c7sFouSmqZCbBduQieh1CGIxyjSxM7f4JuAxUeVqncGVwRV9SD8b6iDjFAkeJ+UE99FMcVe/Lgzg8Ewbjrh1x/A16dTCt2POb6/XqjtOPf079IH71S7EFqy7QS2gLUGtoSZpVDm44HOuxgFYyHfyXm0Jg9Ijr9sXA3maPAyy6D9jgyieSaMcyLav/Y8QiuvSZgmQhif6nzYRMG9+WnVhfibV3iGuiLJEKzDE7rwtyyRLbLj9OvKMRa2lqVcC69jXWUy5sZDUXuZcMeUBsPZt8M/drh4AoRw/hL3Ccdi0p9QNrwTGB1TM7w7s8j0Nj+uR71emfaIXzTGsKoHC/GibtHvzkHo23h2m/hH0+e+oNX7QFicG7gQYlM+09NIh8zojovdzpD9h0vV/0qVzPx9KRequOVPdLNRATtNlcmawWL497lmFhwkH6BH+At1YL68NJeHQ9ztG13IQRz8VZ8s8D85aHTsuzjzAjvcGJSvoqE5U4rm/WU9am6Nu0dAvvtAQ1HhFdqyHL1UyVnwzKbIh+p7sDMOf5koM2LhwUT4RKnfhXzuEbZRM50GCE+l73E1bjDA/1NQ3x9hHiXErXIvv3qVIOmhd0kNulRjfsPBLeqNPdgZTWnv4NIV07oZ83yXgiui/XK3FxyHTfVh/PZt2JcbsNfdGSgS3o3OOI5Idbyr8riqRQ2WesWdl30mJsWwqphT/7eO+j4r70uZWHivHZIn5sANkVYWwidcTRs9mA/8W1FikeoEFtBfFprdwHCDDXxnYrYmd1kESNLXHqgVwFDwKl/V8gKnkZIbrlrXa52fHm2Nm7UvRxFSMThmd8Tq4miu8CLqTkqGkdf9vzDeTfG3ZnOJdLm6AXlr896DdnM40jl6JVL5+9ENOmrWMF4nPMeW3wSGT0R0B4oW8EUhRMfvflwzwnjitojcHu8IEauBssvXRqwUXyjAFyu03b1A6F4kL4h3Bf88rJeKJgHSRAj+4L+CMEt9oaotQijcxQmzFzWe1w3+x1hhBd9Q6i9fKSu65xlFoGbaTqnSpNfNCQF4hcLoWhlebzjYwVEEZj3DTZv4VCRfzBNgwhXSpwDI0K+nWtVrT+Cx4Tmuw3XZTiDKzCKD/sE/j4IAUHNIf6X35EjTpJpcfByQpSAmlOw8FIucwKFekmSCpI27PnfxirDtiQ2PYeVt6/QARBCxJ84eY0kKZWfEM9tMJ8NWl48uoadCj9mvsTjHvdHBdMQ6u3GqXc5/BtUy+YU9DQwQhK0uKxJaMh0AoSuROS086Vw3Mv5kO6Tl1Due/qRDPFzDp+aHwyW4CJ7K46z+UAunnabL/lQ9zlU/W5FmqRHNduwo5T38h7HBoigGT9S3/hi2sLysu/nIneOd8WwmMFxrB3pv/tcRkbnauKnMI01HUnng1AqQ8ynkeGMqnEc3CGww95g44Dgns3lSmqVea4aIsiNXQi3+qeiDeALifdZJuMhtqIQjb7Fqlk6XgUfTs4WGmffr9UVGJ6vPFX6j2zZp6btLoYBhihw3UlMIRDQdR62V8ZySk18SrY1vZenk4v0AHxlpYkVtRyX47ycTuWN4YScwOmXUUb3z0/oqs1yMy7hU+KI6q5eaAXWEdiZrPx0Ceue8QAcFL4wyNYAICP4/zGKLPDpiuMQbNFoIsPvKtMMcrT2jtLb20xDuAyERsU4/583muJ3iL1njRxkbR5eEgnQqjY/Va1pMvpJU40AohQ4Cvy1x699h8S0f694PdEfinPeVy0JMe1k+ezd1kHlK7JxjJUHBtllu0NtzRinaxMVza9WMV9JjVIg0RpzyO1TRvkxOypmx57KFh2oFW6LECyXP81H/1TdcEXGed+ZkX+7GaSnOVlwnmBF9W6j7E/LaYUV4wx1XWJ+MTdYljlt0oSnY3AiYMDb4GDCmrC6oXPuwTv/2p+F7EUMLXZPXmBJjwBP5Q0pvJ5WtPN5xRp9ScCK96CjPcBTxrFn6xUyc3b9dLrnMKZHFUMhwK3J29P+t3ODxXzzmawJ+wgT7ddkO1nswuYH6geoCODzRalPaVZca5WXSYLq02TpwEsha7rVeXYSIyJzmLIZywu1Z50r4S7XrxG7GlESbconFW5dVvZ1GQF5pctW8sGn3KMjBX7icjlrc7DRUqOHuW2RBqdK3J/cZbP77Qhg9gBJH3X7+872p48P7KFYs4/JxqSpvNV1LWuqvwgH2SvJITapKqjNfzJKP2g890HuTUZF4N8ZeHI+Pz30yh+eb1FABTRwa47V/T8TXF40VfyA+IQGP6lw6QVVC0scpeqVpNw6lxIDn2YIHFdnoMbKENvD2rXyxPb244PBmZsPkseYx4HnNe5o1JCGNFgU79zoTXEc8z2gn6QCkLnXfDqtV7gP8MPK1FsfUHytA/Obf9ZRlo49AZe4WBWnvmhUTLesGdT40OHqMiGHfdFmhCDFdfVTzP92vmugxq8gfon1Lh2KCTgsEBuCFyygjmBTBvtnZVUC0G1wuKcLJqssfvCc8/lMyCs0QfL8iMzYauOgqxMvE9mPX2O+LNxraCvyvAdHdxmibVQ8pqRt6zemiy3PvZ8IvZE+B6q58pBsL6i2HVwoxZFwxrUugLUIsXziBteuI07WtXkcjHtXOLiIMNCRh0Z2Pxis8/JcqnEdDHtkap+3jar57O1RckuqVycN7tsRI0Qxs7AxZ4z69r/wT7l3I6DIJF3emvnnlwDdHvUcvrmF6VhVrEmX5iqVBd6xI4J3dkHbyYPGdpkV3JHr8WiJQ8zaUEOuf6+M5fPqY9DehSz7mHs4sdgAyupk5tmw6cNx0nrG/Bed6tpSvzlvmcQcMuOMZRDuFMLjRu/0KJo+V+/D1EvpjUTAFdva/YaKS/rCmUGALO5oC+RyT7Ghmz4hgZgChh7sh13iKpiCUvDUl5g5xr9U9G74+O/b+GKgVyJEuX/62EfBKkYiSymtr/cVs321MumRyD8lPUBfXffzE5Ztvg0eb/2Zf7zwpjSe5HvzUD+PBIPsksf5tDPfD9QqmFPmmYRUs+H0MtTF8Yj0lN/2NBtEytkiFXaqMApoCbXTwkv3xGNXFFspWXu2xoOGunNx5HFf8dgswRUG9rOBRzqhyjKe3Bvz8HSU3Tz09WB52PhBCeZCJ/mU/3K1i//DcPqMVyc1xBaR+zgDFntL/MU/Ddz6VBfrVLLcj3rAPoFlr5bpLEtvMg4D4d1fcF/xYTzcq3OkiReoD6djlvakfNK/v+pl513CgKHvVtWkDHH5R8rvm1PfpQBDdXjLjT8ntzGF7R6Xe06KANwpCYWFRddHDSGWy2ivjRZj80punXoVNqb2MkGYGvuN9SonZNZikWwrKdkSpiCaVAjZM46ZHz31P6OeS+xDc2/ABfIWEG0ffkzR3RnNb2aIeoTpC4UaegrCqyVX67R4KQBQuJlTQBkPCdPKGy6l5PoHnjLMxxaNV3dn0VQlZUxEoTBMYkB9SHGwu+zUmWj11wVKh51D9uH8lCcDJS8SPKqR+MOk5Arl/qQooKaen/FA1ERDtG/MJZiMmeGcq4TFDZCVWuZ9HqJZb7bGVXcXVSN1tIA6Ejge8yuRrYjw5a1bn5gzKXe1n08lnRB7wztyrBc69YI7pBpBvPgYmUhha8zawIoRGh/0Weq574Bt966S6otAc6j2JE7hN5W0xkGmZLOvGmDnwaoQ1zdeSFoEGLWOSNhAtLqvPedb5oOmm4GlD6CiJWMS5RCYST1RUSi88ch7tUivwNOPWGyGZq/xeX1XXFwvnAb4OQhVgw9riJlNFqoaZqwsIJ1OkvxZeNq4XpiGC4KsnbWzzgVDGxVN942BHkCadhPH0vAUr59n9JScjvBvXfhBdXyQrKwLXLmOyBZMxWUBzSXHhcTr4q7LgFCekxxRvKSI8TXl8E2+d8oz7DjAmPjltxA1gJhxm50/BzrBesL5Qge49+lrw/EmJFfmgY0cuEoLec/DP9vypFAEPQNx8DVkZeOsX2hD7Cxt2jb/ztjt3uexQHnQNJ087TWPiIHR6ftox3l/3Fwg0cWFJVPjy9wwI7SgBEnNgrwsMAFep0N4z8SyjOx58jxCu1X0Ps75fqoCghzeUevnhFRFNH8uI2gsTHREKovzjBLt+tpdUXqEwt+GEXlMbJs0DZN6o4XTCdXlYN2otOjrekYm0LcR7jX/Pcu1xrGJnVPpxLALtijXkSBHcuk6HSmDzIfhUqzJd8mLeqi+i+U+EYvpxO2LpO6Cn1zKCFCQ9gvWs+ic9rDSsecbR8qccfTcjv3oFGrPAj35jZ3SoeqarRj0Cf/lI+D1TBdxqCBtuyExhp10LutdxSM7rpExSK37QFUSHr2DaOnZPWlaHIbo6KIVLGWe+6YMCpaF3jl2RH2q9eDJCbsEWQWWwXGAlCOIA6iaX/L8XXxtkSzFiYQyewIQ/JICU290zbWTylWy4SfBOWaIGMUT0CTUQIEgqvb8yQ86XOyzGc/qBbbr74RlWCIJPx5IJ3ToxSFVTsv82ZwvS+cDVQv84VG70m4WUz7aBPix7GEJwhka9lrswjUgVFHm3B4f/XtztYTciq/lySE96leXmhOigmFOb2YmDA9lp15v93ulQXFka9zfGxyTbKMdhpnX9Oey8mKjvpnr4Eji60FXvCzNnbGs/VEAzjugYz0K5f3IZO7etY6F1FyQ7/PoFUjVCkLU9vmhzruWxH2WRAPlYlAfXGnK/1hw4EFh5efdQMugl3JYIkEi/mM0Sd+bMPt3lqlFTTSo+KT2qmvObt52GmD6wAU3C4b/9KC5g9cqXqHt/hevBbh8AxZgeq9qpSUkas59R6Mv0cUcUoxSNJh3GOPz7sz8OmvZ0oZyU+5DSak4DlIkWp2mLstu+P84fFqwOCE8VCs9pYgdjIazAs+0VKyEhAZ086pmJ8m0AZJNDzABkB9mviwW1mPLw4ZT2zAd6qNeqiiUDOPuHr6AroIsfNr7HsD7EW7M4JtyuPWC9IBUt3kD4Dgn8Hc1G+bkGzQNx8+YRardL3HeMeqDpZkZdG4gO2Wj7U7SR/I3NkX6/WXN8LR3dAwTdeKndUB6XYBYJj3a3PwGpP0hnnEUpcAGwJUXMDawhooywrG9g0dLwBwYfC7mWzdA6oBDSG6tT8BUuFyORvIAP/TmZXSYz3FBTKTWBE2LZGakUblK0t7E/CL2eYogoOEWhZJnrcHWHtsCrgncznrY34ke6N5j3Qx6KSndP2tLUiS+3DfgB8GiTb9Q8eim6v2X9WUGXkCiB8Vye2HPz5NWrHdxhjzgJU8NLNRdZaltxyLDKwg/n4GZE11t+OiY1lIhnOyK16QkbfCvbitFe6uFD63iipYg7xzmuqD/b4W8+BDDpLOKgR8X6yvaIaOduCOjavZ9cvG5U6ohnUZuZlQmK75CRFvb3Lkue0vfpWPRoXkEDUW4yu+JAFMAtUPNdmZY6soH5/Zu4b2am/wqiUkAM/8FS/4XpZ5DWEsoxakFmH3gwTOzBbD/ppCDpk0k+k2ZAqTbTm17XXId19WXZ4W5PRAei3s5LXoDW9KB6YUU95WiA1iaj58Yhw9nP9S7vhoxwBg+9wged6q8igrnrgppE0B6TOoudZfhTKPV27G8Yn5WPodInhnefqECLNsmHHIapDPTraox5nXjfbplchPTd3GBoInF+ulfUqZ/18DsuK9J/X1GSSYX3zBY7hI3YZonHO+NpIijyn7dKj77sFvD7CNGEXCp/J6/x5YxdiFGWLmpxLyV33TpnmNxtXytHL8igk3kQpasB47FSLwVIlzODhCgINkNs45pQC3Ezn/eSaggKEGAQ+uqVSF7kytfTYllF0hr/iEgx6/CCPm0HxUBZJ0ivPQIdQt3ge6MnPiTyNT5p0fmeVGkDPVwbC9rct4uxEOywCbs1v1clG39RjM5Ip1EXKAZ882ABZV+U0ouLXcZDRsEWTxXl9US4QiGWWN8ZShuwDkVBE3152NGh5TFdiA7Y3X1aFSGpCmIRtvRoBayO+DsRbgjtS5nFrJbIDM0PsqTPf1f4wIFywUnT4QVVQpg+yqo3DJnmgAFY3JnxcEc0S0MMHlgjlNrj8+VFYf6r6G3+xpEk+EFYns65m52sSS22Xj1ZHldGgwYj30ssDFIEvFN4u384unRhbl/cElKaMlMyP5tnmxvUSJLjjuw2IKCXFiRsK0ge7WPJDLvrUtJ310B10xeHnkz5UFyVfNhEnakI/Jzoy28LL/TtsOjv9VWEnTS1VfHZAdKG36K0EFI0ty7Xlk/sarzWs/G7U5URF/Wmyz9Fm3WFVBgJPnoa7kYwkh2BnZUcBp02eJ3Q+RcfjQHblxKPvShKf1TN0tcpl5arNcO5R1Ug+Xk7VxHDKvzphCa/j+R52AiPUsI5jdz8m12BtcdPSOFIFyIfr05MDcMx647hmgjLssM4gtVFu9stur+EGGxrpHwcxGIsXd1u5RG5/z+Tzif5NM2d12MkdDf5I50EGvDsWdNI/voTEAUrGNcKlCy0afoDyfr75JDL/c7jHI0Dmx5ObDGron0FAU45a2Ym4wS8YShPFsC1CCAgFPzb0YMo4RYWwVAdt8KN36YBoNjJZydw6Cupdmkwh7aoE2CnA2jwlu7TwIfZ2s6muw9lvRox72MuZyEbsdBMYVqphL1erELK99sQAPav7bm7AsqzXCZeHTq7mq6fjgVqoAQS7KK2PXxtQwdZqMwiKgum+9v7S+RiVg0Cl/pjkz/ZgE1Ml9nCtGQubVBj1W2yP2rLWcIpA07MUJuCh7IGz0t2M0xRSl7rsZt12zpru5WPd6RF7f2bepurSX3nES63iPgrvWQbmCfvZckGpfPr9d+XrrEpu093aLEkZYgb+Q+z2+ejvcfNYMGp7nxhAKgxNzItxntZTVM1wVJAHjUUzm9s4UT+Y1emgXVyTlH61V3z3cy3JUgQZ52K5O4lOYwJSOLwBkqhhiEvnMGwG5HaISqx1HoiGtdhy77JWDz4n+pbx6vxsZBP7OmZ9eATYLwIMKevaTfL0/wHr2Kwy2M5QVDITBfHKqDEzBmkCQtE1NFoOI/sIM3HtdF13lmhZAKopgU4tBLF8F2Yp+2+im+BB8+kL/VJl1u6W/jSEB9VRSKHs8RzVrCae6VV8VjmitNRspXppLRN4MWNDdvlqpvzZ7W1M2ZlLJ0WWHxDvAy/QSaUMyGcS2o7wecQpjznQuviau56diyRscGpIgEhzs4cslJBKL1ml1lXvt/LtiHyDgNujjZEvxABCuymxR8Lz0D6GRwAXc9myWOnKTired9A9O92/IQQV98rCxQtG20lRYcApDQwSbA0AnNiAaNJ+erZ8YrVH5XZLP6CJZoYqILu2+5/xii8JeK53nVtaJAhK0bQ/ezVXRESOemAZnmBd2IOsfA5R8RAPzD2ZyRoi4qR4k6Scgrf90TkZ6sWgt71oNTEV2wr4TtYOnCXqfJsNAICU8yjxf5cy0r9vl+cfB06E/Z+gskiBJVKCE0Ub9zhQ3vgIlaNNk/naQ5u54mZgSbqVQnWicNvrrFc+Sd1Y0FsAfmDAyj3PnvVeGmafmw/OKSxZiZs6AkbIqfSFr5TmOcJbE1Qr1IzmbpT67RdYD0euqoeu0R6KRq5AHhmOqmeALN+cCyNAMRpL9JQkGEbhxZW+6tl3k/jjbcuqq9IVrAM2IBzgEChVQml72a5QbRX3AvsZzoD+X51bxNj5u8uGBRGWQvQRwS4+h0iKipW85oFRtLOvgwlB7+1k2kvIsI3npbI+6sacnP4z16E/8XPrZ3PqXCHsUTVG0XrIrYwSMyuG0A1NfMVDk5ou18uTK6tCD2zHH32zG/GSmpa0lO/vHmurDPJtDRcMGyFJMUGCDBSPIgiUE6jh/TSRRx6gwESBqeixOKo6ke3fodE/2P8krSxkRpXLjwjoSs0GYNSIi7p0mONuo+YYWKPeHAQ5jN+dEzKf7ewmFz0wUZV+5LP94kGsYMBWkk23i6W3DoSDdGiNmmXuBXn3XdnFoSCOMyk4r+L9TEIw5ZlbNm2/VvuW/DUSpMMnMU9JswwG8aFYFSdGDWIsZCgNP6JosftfjCTonEwDGVqt9/9vRPeViKJXgdLPBEgHRwX6whVBHj01oj8zIi5nWAetx/Sf3Pok8lDSmpYREDDTcD3nXYhlcUfIE+bR3qFINZC2gOSI3IZR0WoBcu7PaJyAKpDtvp1vKS59vmKUiV/QOyZzA92qMLe5owkoREdeDQcU4ZmcJ3r+B25LJrjm1gZYL+U28ObG2SbSLFczMGX8wHxauwDDO5Ngalis40yZtVRC41HW3mpOmlz69GYylIR/9DlEpW2jTcEZcPEwtdPBuJomrVYlkjFZKwpM1jqjLjvsVkT2B2X032I7ydDzrWMhpAB38MDUFh01AvKEt2p8aRYDee/RZNbcbfLXFIOE2+hWsIhxAIjbNw5NNoJyybGNPsl+KFbytuH9MY6DYPzVVpKYyTuasrDZNJb+tNU/xYcVI1xXysRBX61EsBbQaycMnO92/gt2RaBD4FSVk98teMBainFVu7ZMKgOfjsDwKTYgTdkh9mdD+7MDsm1AWnmRIvQGsgs6M2hMmlqhfNt4ghPq9grm8uuYKQoQfsT/SDSh9c1QRi34HVJYLumM/GyUgXopupJlRLOIw54CWRGTBjh7IDvRe1Ep/kW3bihidoQTJBeYSPSWYxbevMA3g3Qapgyy0d7n3lpRFaz0NYSBtmPT6N1INLqm2Vp2+2Nnc5uyj1YEyAKxRWVxva+Cm5gcgAukhXaJUcN3eFILdTxr0HhWcjN3zLrn75LHOYLMEao7YRSyrLUF1cPl1Ip1BKAaNE4QI9keqZL4MT6TRFi3IipZl4Ag78k/h+vfolF2ATPdgG7YvLnLrJORWN/WB301N0/jRifgkz0CJ8y5/bQ14bq+q+9vh3d4AKEklxBiWym8Ixjhp0avOZT0JSD5QbPPoesXkeEgwUFOheCJ0yaCzKEvXKQ087IqRQKU6f1X+1vR+pFOjNsBGk1vCiNyck4PxX3Dwxl1XO5D79P/NuvUF/eISTA2X3US/DpOBqnGEm8WfLL+MZPrJrbmpAKZwA5xDNv4HB7+l1F5C1vvQQPBncVfKItTKixnNQLdeqkj5jr9SbbjXYI2jZOBIaqmWH36w23+nGmPafNpfI5tbXpXX9PTj/dZfL2mmJ2RxNG2Tlh5g29G5CNC4721HC5GEFifJ983eqJjyazctVcjWkJox5pA1osxpE+0xneMS/bUJ6nRASWkZLfJQj8Un0gQSZ0MUW0/kCUQIWcmpumJHbPmkpjGEuIJLG1yqyXg4CSvnfVVg5j4TA/uXppcOvscUt8RGv4g4DvurVTUP/wp2crWTyCk1E8PMkzQf2FXiVthfFq2GIoyh4b4e67VNpdtKMHzZelBUjDIgdES7VYIdxQlRqAnTgUlk/RdUUQkRO36JGrzzFAlI8n5agWd2tm4xzXSe3qNql2gl+7sQJ0D6vePCyhnPJliBOXw7t24T66LwS/kg1/lqfQHc7yfo144AE1ao5MgNe1g4B2BJ+aHPxsscy+rSFRLxVWhYYJH/RpaYy1CVMa99SmdXd2U8hdDjaiIL+TXZse2oOy0pwvrFyb8CkmrugA/IwwIuNZxPQaZ3CXahqHRjWUmb1wIjIsH3JFzPSiqFW/jGiU63FyOF06H3UK1kHRvewBACSJUkAklyLPrSE2S6tVxRkgPJEhCLpTqxdvi7cHIhAREc208gq1VizN7eMSUEqklIFNUJq/QQKJ3DpNBXSMGwgT3Bukcsz/qymIQyNyDbMC0fC1M+GrZwh+rdT1qHaX80yTckfZE7+jGxQxzmjWrO6vO8tNpllpJVUIBnAPdUQQ9WwYrYCoJ/dy3G0yGOB3r+FzlPIIwGw9obzV8Uh5WK6tRuwopHcOL3DZyfSehCKZW/JI8TjSoESs3MZPPpH9DruqKDDbyi6IT0JwAzdIoX26NY+RMtu939jn9pCZh4lKl5LRQbjo4zg9GUrRfjTMlsCf47vKS+1LChq81occYnUBSGd1+3rfsPG2VpnA4DieYRyeR+4FsxzTAbXU8qfkYhJggpjwgy/XTZTSVKYiWIhmlAcRq9/D+HRFZqFVjH6Tx2hk/aPco8QkElGxu93rPmQ3+iMNHvOcrTdsns/wCI2/SYSgXAgQi2EqKcYVBrO5vwwM8tjVOz1BeUYYu2iW+oRXOggfh9qohlZFSeNliL4vP0ZEg7ey/7F+r6NWs3AQr86UIvyNo4V3o7GG618yUQN+EdPCQFpFKCSJ05M7Ed0V7ezqQ6Jay1oDWLkvzxPSV/Se7r2Pvd7SR9oOyGG3qbg3L50T5FTiBuV53DrZ5/RCD5HNDBRO5pC2f7UtJehhN4jn70kx+yZXbNdR7jd1bejjz4gIiF1pD+5Naq7WmIODj4BHlaRHfoAci70Blcwb7/GHNvlihvZPsfko3FoLYj09hmuQ6hjN+qhCYPgJQF2vxoZs1y494YincIR9ouKP5nDsKSr86cX/U807JPmQ7wJk13B7fRDkecudL4RMq2SOnqPRBDQNYx7HIajUMnGlkooNntgEHNwsoOF41CK/syAqQvYOzAqjbA6t/7//YkukjJwDFEh3gqcvzSR6VLEgvjYA4Y/ZHMnLeIj4gAlcUriGHPbrU4eRepKRCSAELBWUB2RxWiWqE8J25wL500NpK8xp/16YctmGhrXSjauI/bY7jwJseUqEbfhQTT7+Xzi5SxHWocBgAsX9yJZjHUzd2/RZwPUIDIiEJKJvttVGpPZsauYw90jbi/Y26x0VBZPg+o/PDNcJNuQHFb6z/bK4OMabE57Xow1f5RXg4J/vXyIEhXZuBrwWuVxJ6WwLog0xBwn4wsZKwoDDhlYTTHbI+JVVwz6t4MFDBocNiWgOpB7z7x9EpI3/zsLbPm44tHsxfG9JsbrSva7TuR9bknjImpN6l0PbMdtmeXMgCr8Zk6zTSTv4fnfmJCjumhgA4SEg+J9jDLvnQVPd244AlN3Crl3H4gRI/bps9MS7jLsHfT3ISBxj3+9UMw+m/+ME2zxaLJofOkBwHEcSbeJWr4tYYLUpC6fEuyujkOPzmui1naQaWY1TUUOin1amu2qanzkFzRUbYzvLrQf+TBUGiJGVvRMESxij6b33mQoqS8nXEix7to+i/TY5R+4LyuBy2fJfJfxiOGFoZo5pbRvy3z+Ux6uS8Bhla0b0Ahw/H1m1rpwa1dXWbYuBCp2yBryUo7Gd8EFvuLAFrIhjgmbY2GE/geaKpsgl4vACIQeJFU9qotxoNEsMMJyUG6USYElzj2nXL1pXHH5dSYHKr9aFkYzOL268XIdAzmFzv472g31qFacWAoIQ219hZq5O+n+0Hnq0wt9/Fpk7HZAe78Upe2kipjKZBI9o8LHlBntF8N0H6qeiFtJeMs9VXrRnEKsg7gQD8tcT2bdKv8eOukVDmMYgC+rMqtvREk7YcVzEC7e9WDfDV1gPOPpVRdjrJO3CU49D08237bcRZQQRUNPzjk7aHp+1F5XnHYF98b/gvu1Kg1gDa81VpUJXu5qM8eyfhYBR6TUMMBgzw5Y2a16F5eH6KmdqbvbgUy7ciYmOHtQEBIisBfSueFyHWB3Dg4XTgS/bWtyff6z9Qav09CFiLkWjZPbchk4XOyijIgcfvrYD95exW4kX01LTLSFwcELeD15QcvjsgEJOFBoaOXbujYgnU/i8F7ckaMqeLccN0aCFxAOWvIZP7EQNMbGvmjfvBsIrU80fLIbTWYisDzLZ8Jq2bBj5TVtuwh48oLOtGDTCiRQ3If4kVB5k7XZcMgJqNS0fVx6ziMZZVUriJfjTKxD871NXQrJ2TUs4Z5TU+7e7owvtyX5IEl1e35EOQJq9m8BqyLFykqC2LuhOjNZ0u58ZIxqBB5l/xzy2rlJIuJ79rcKFPScqiKi75z+p95osdX/2nvHXEWRgT8JNVlXj8q0yv1R6KxoEr/EW5wZVvr2ff9DI5n9ZkY02VpZWWP9rMnA99QJuuGVe2Cqb442bVhoff9oVIdIVFh7H7FbOdz2eRpO+1CxWxguV83PKudhsVY51qRtLlAx3USUxVZ/B4wIxxphuM51SftUtN5ic4l1B0VCraB6k8fUlhPa0sYcr2gh2Vh1UUYCsIO/qCSJ5IyWboY7/6BFSdx/b6EN1GC5oHcfJQpzodoqeH3opg7eHyCk2439WRGQEKKJhNZfFSJwOAupzeeqggEKmb/aLtpJg9FKDIaIYkWmhO1+cBf7qMS4ddORpXplZKWqHyfXjMfeTDg96i/hWZiORewlPl7ukQQv4LKHrMc+O++lIWMmM974VN/ZC3lj1ZnbJjuphBfbHq6Velg1YFExKUPZ4QYSwUC6sjTWsEJWNIfeaJ8PzS7uDoRcAgkkOmpsJWYKfKJk4EuipCURkJJSeEiujTmTyMliEanidtWjBgj7qXsMMGO3u+Nds+GpgqiFGQVF+6oO52+vpt8cAOEafdtHfPY60U31jgL3Kkax5c5d07MR4Oj3+XIvil3Xe6JG9tl8CcOOLwPGp5wQOedt8t20YuHDQZNtdAVhlUa2QDncc6rRF2y7UvIo/1OpLzGNOKPKaj6sYAMhMgKoL/4F7wGXO2a1fRuyPISp0/2B4hQv4NGR+WLgV2Xy6gyqx+6QxltZAHnWBc/N7/rEAIaO73esIL7zN5DUIhcxDNygH3jg78KtJBAXsRQPCqIZYbi48a7oveLz2sa/wkF9zmdsq4/QQJJtiVNaUq5GGrhNGJ9eIygfzDDU/ZzW6M7V2VDN0whQgEcug+/Yc1NTm5T9yyqfQBAbb8a0GPyxKMGlldwBwWrUAEOqOHkc4KBqVCjV/FfShZQbt7/RdNz6BILZIOFe0fxhZtmCJlEY+FIxCL2YjQ8T3Lky72/3WrcoBudAzqPq9GkkgdoS41JrfvQ7329aDTBl+qRn07kTbKecauon3kIGaGIIVYIbqyAMir79wQsuOBLvw3GctgfVuuQH6LGtgEni/DZnl/8kQ1QS1phbA1OOkOEl4hYC6pfpVHllX7pd2EoLTFZpKjE9iAAoyhVzVKuM/7vSRXsFpHrk232bx2gv9TKP1zdl+p4wlKomUFyVCq7wwAkEee9ABfMR6WnLvSelzV9T/XfWtgIKLW66+btFalTYuF00zeYEXxZ/Uy65nN3dLLMxc8aNQeAGm7kNmSTQQXmc4eySRK3PgXK7MWUCNdoBbgjNNzZ3bEf0T46PayvTnxCt5vO4vJWG/kZbDNTFUrYEEYARejoBAzkHulYNSB5tK/pcMmxeREsxVNhGqWc62NZvu3pzSDurGr+C/3D3LPl8RUHots8gQpIpNioueHpxxqoQRhNv78MDBo9+WI2738xF4wiUG+QgzONyG9D7Cs5eqhda350jtarkAC5wnmMpOO4p4TDdDc7Yj7RuqdhrmEBCX00seenlKGsE35XNZgk5EFjO3izzzNQfe8b0ga1SYohiPl53RsXslGg0LTIgnO4VzBrSTuRr8nz+gargXsKyvhMbn1sDtaWMSB/m52Q94PBGU1FbejERYxy5AKF1GcP8oESJw04/feA8390cSa7VdJurknt1Nv2qr71LBUIm8HK+AlgzlOH/7zmjxRw9aWzdDPyiPRLZ3UtWbTBGuUKEscVKTh0nqwpwPdvO8iDv0C0L8pkDI930xZ5RFhMtoKGctew7nht2tYPlQXcrTwQsDno0Q8oSfuxSHi+I4bjHhYwAFig7UGjJPQbsZyfLVmxNr3imrDpEasZShRU0CjG+Vzg+WeG4BKb5ecpZCbXB4sI7Wd52qFbZnWwK+2EwRvX6ScJwIC8J40TFDxU6Rm/+PoOcdQ1MyT8aPv7/LCduoaSiZAqaNpwLuJwjYk8DQgz0AEGF7CEiivJAt5CA/Il5gEYolBv73HQTloIAbGVu2sz8EC45WiPxzFPpYCPrx68erxscFUGCo/naduX3JG2n16gn54NIJFf6umuzjML5lCoNbKEXbbtzE/rx8O3Nihn5hghwHLbDBIUFo9y2nLM3YiZwTQnrMH9XSXFYKpqizD2UHIh0P7b0jXOnomiZ/gmTnxjdsfMhGjbxSCAzDfFyv2mXnbVpYPl/0wwt0IzUH/jKrIynMl9VJZlm19atGdxrC2eF7mIfHA+DJSjZZBdGjX8X2EKA4Va4k+C503calt+zkEfEs7LiTyzSzkZPB5FBmRV897TLB8Yd38BmmtivfDcMPLx7hRI1sBZUvhPKG7hF48+TmYh6yg0Pc+YP1W7xVS0Rgy6O9SAUWDnMyk/1NbGLrTfUWYCW/WjwGPEqFi0XStH8bSQZTBdZeokL0/0Z3q1q/wQuy5M4g+XXBYAh2mcH+oS1r1ClATiJ2IkM/vDodrwadcq0KJ8fYyAsrxhe4zlDVZGidkCnBLU+TeN7JP8VCudIlgSXWJYMcac14lIuWuqyC5utdLjm89QwWU5EexBUFcAlJmfG7nm5eeL43EUfddlexLJumkd2UX3fnRuulYFGBS79jyJH11gQEKDIPwez5/VwbeoGrXWBxpxRLMQSXf5e/kc6zjdu0OOFbw54m0QWf7PjmZuaHfTwCGRQAyWCZzAe3Ah+95s9sSKWQQGnH3umjiTT/hHs72Sd3/1vyMqipyI2mCL+Lfg1gMJxC58e44QxA7WyRgrpHE8rbW8+FCFO9aJ2s+DkshcvJX0tfdJ6fsPFcujF2RgSDvBFIRCZAEsPRvIqiIVPQp9nLId57kc5mDBXuyfyTZgzunlsQ/kOderOWM84A97eITOx95+whtlAas3QbbmnXpWRqKf7jEeFKQXO9aIo9nZKShv1eCp93cjVHX99MuPBAHU0N+qjnnl91m6/7/pZ4CcZbATZKjRpa4FZmm4X0Zk7e1CsKJ4V/e5/E+9arBBgTudCQGIk78djLcAdXImAQoQWr1piko9d+Hc9TzzNxas/lqNvrif2WNnNbrtSJya5VNDOiACaBBBFqEt7emUnMCAc+dsp8QPY5pr2Ir4f04V/0xKIlsVadIGpj62+pDVv22blb9QKqm7xg8Y8FDgzH+NR2D0g2HpY0NDPDhrYy1ab0gRuc24aS7WtzcW83icVZpTjeoumqGWIOxPEsRQpX8C3ShaqLt7nSXRaG+yTZHH1+GdQfOIFAjXKSwJChpxlSINuCKBb9wxiPM/5wd/I6Gd7VeNx8YJBcLEGPRP15XNBvKNeaovcJAUz/Pdsyw5nrlpZlIgWJ7/F1RmcAJB7TWYNRf9nk5+2p6vP98ubIALfycz3PXhyWbzqFGaSgN0JoljJbzO4hvzikPteOJkTCC1fe1uI+n6MrH+fCnVpnm6ATr288kAUpP38ORO/Gkf9xR3Q8KBYB2Ro5lKwNnVH0UDGVmWwo8MiM/ZWVhQ9bQ7vpTTg9TndKW45jFK7SqHQx1XNUL5upRoK+QNEBeV2ZcyVzBZbHQSc0jRIU9ePSjw1syeXxTZCQGrSoaX+v2J0xR+KUkAj9lNfjBfuoVZ2h2VbpXj7hthKKtB2hVfvJmu8u2n7KxwIfsi/CG9RgE1Kczh3+FvBgD59X0n9uDeY4H2uiaSIDm/1fer70BqhwpbeQk5VlmqhNqJyBQYRbzOBsEtMtwHjNgGZtZ8/T+D5JTgRVEy7Ohpgc7EDd+t6W07y3B+cCrv1qUf7jogSdtrGQ90Js+eY+iDGE5n4Ksm4/pGa/XXAgmquaU9/+2/qLMqIJOa4AqmIqIldgWpV0m2MTUGMlRDJAQfQFEuQ08bT4Q31Y1qeFvjJRfY4+E1N7+6kqVz5unzQ7cJruhGKYCZ12Jd14zgF030/XRXCh+TdB87zfq5eEfGq1mSX/iGPmHxwMFaswvSuOiK+d/DXTJcqWBQpdx8i87rsx0NMHpN9YSYYx/4tePPlmeRpbhOwhO8wXKs4uqgaU+NUsh0kqxvbM2hI9ED6Xgg8aYQPExBUVCXAomZ35X8usCX7kRPAgPyxifRjG7Nif1pmXUbzM6+7oQcUMm05PRJF3DTKWVlLK+n5G5ln3eijftT4AyeULZmjtpGKr6yu/Biaw1P4bz+MVX4bF2eWtWsYen9/pqk/rgVVE425mMvxrddF8fAwnN7cVa8LNaLp3I4P6r3CuqnK+zQBYqpXJoAoGL45svx6j5NMTSBhWakLHefTL0MNsL1Du5jXrPv1boMdOiL4tjP1tn6EqkM0GECj7NeFhFW9hx3a4fE+4SthVVRN5SqADvFn4sgzoDnFiwsoMgM4amVcNMkoUI9CNIxglCseUPkeT8USzHZMDeZzkoZlfXrVWCs/xNqJDwBm4NLkAR51imFQCVvWdIM4RR07S+lFnoHxVir6Dw5UX63kutjLSVGRkumqdAjAyh1yd6xBu+b2+SBESFvrI/hddoHrjVfabkZzhARNKZu/kVw1d+oVoEXgM9E4ztsd6ufvZxCjznLu1VsA9f9DVr1q1IbL3xOHH+hTZCJugnv4Si7vuTU63YLASIS5mN6tTimSfOUyUCX8UXOiuXvpMv2De8CYaQL4VXOwxYWxk04CKQMFUwvRdyZCXkI4QQAYoSD1Txc85RTQgWKdCmQHJBYRdqPkU1fZ8XO7qvkvafVWdo+dJesN3/glzRJtrQi0Fm02g4+OqXtykZmbdF1ZMDIw0+Qf10+7qYv3Kz4rceH7ccs2u1YUDL4VcBz2P1h2dzEz9ejLO7X6fP74hMViU6nxjBcaFHXIwSkXpE/EEkPBkEbsIJqEPxJXKt7v7rESxbxiuS3/XNA0xmKURKgiPS8fbniqva82eEwiZ/72kzjWHrC9VS2M3QjbgeVMewp0hv9oCrfsk6/HBdiaM2WNETFboffkOdLyPPqJqUUtjxCmf4ak/Z8dMEzFt6fum6WOu7e8vIXmhj3nuIPeiNqqIP5dO36GiuSRSULBMeStRxY4f3VAbCkhtPaDw51ESnoTLgwL4cjtfwm0P1nc/CkZYVufNg85+AeJhtPc8LmDP+3D3tl0OhdgqT/zmm9eGywW/6swZ1No7uU2TFO/QNBKMNzpF8Q1iCbdC5iyaCnk7dKqErwtL5X9furvXc1SN81nKyf9UyZ4aOfo5lJW2hvk9KasVNQoazr6iEdUcVuUTCnOzHa5wFDgbOP3acdc2SAJhHebvm1Xny0nSaWIximSsFijYLfgR9EaQhZMdP23vDxwBXk0CmWl+rdb8W+MAn4A8LN24+4vi6aERw6eWpt2yiH1+o9V1fpRpkiObhwIe5Txufn1CVnNZSTXC1Xw2pL+VMg1rAh8lJPN3AYKSJBQHzSb8xpeXiw4t5etMGrZr+JK2V8fjesTigWS/qGSLSKhC/3u4nPX9wKNpSseTuNcJ1tNzovVsXcnPqJhHLW2Vh4MIPkbo5zGXZ/9pbI+bJfG7sxy896y369FX3YRQgYuyGZ8idvTvB1N2CXL/S5QEMbgwG9FpZ1PT7Z1zffi9gP82YI1kA4WDvkGBPr5hc7iRN0wWZG5v7DKb3IDQJTX4SLD+kEQc9rOXkoFe2T0z5iMGdAjFZ6kq/mV+xEcGMCXlfwJclLcRIegU0tFv0sKbnykEg/3Nn7mgDUyoe86N+4dzzG0AIFQufxnOuUwgQTS1MtimxoG0d/9xrev21tgdcjRd4rV/PvcTFtCIWbSzRoxTrPf6j7dLs7dF0yCOMm2ZKj7BKIN4KaGJ95hTh7fdZTaWmfkqga83csAh9P8HHLzdo5hglTozEbxBT+GrJkETyYc1xD2Ezo3xXlmn8UUYK1VHZd98UTaqvSJNov0u3eX6of2WLB/zEd4QR4wybiq/F6Quq7ZY6rGZL1tRCRYVre4YuYjy1Yw6VJifTib8WY8YEfABGLD64zwfFubkFhBWKtrldO/sGZa8kdz2elJyo5wZVEvHmBOnN2efGKc9ToX+c1SCKgg7orp6iBOafo9UDwMfhz065oFM14x93ezJfPg9V2ZhJGbaGhqV/hXH+Q40o0rtOMZ/+So8ctpb4jDRnrSNZD09PKjsIfWOe2O2c7hbm1zdkWKly1pj9MBfsvqJPBpP9a5A5UReKyaNXwTq7waauMFAS5lHG2V1Wv/OOqCZvzNCNB2e0COsSBbcgnbEh7zTGQfrD13MIuIWl1Z6ew2zjfiSVSKh8EWra+cz3VNiv0lXoI2yjn3G3C5CeqQkDxP4xheuOnYl0o5J+aC2AUGhM+BvOseUG7sKq6yV0e7OYYINDQqQhkgI8E869ii0/3bVAKTOTEl6g9NXViOERW4B9aweWprz3aI+RsudacNDDn1+28plnWgXytkRRo6gwcS8xDH/nW5Bk7rNnlFCcqIvyYAClHOop/nwUyPCa0RhM6nsKQRGjDyiAm98gYXuaqK1eTnIydGPhjdP0f3sM2JgprLi+RZQEvoRhYJv6p1nxSr/yDR3X2YUHPvM2ROhYyR9IKOm19BHvQez55KHOiWjESi/W6AH5dPVKRKPOAmAvNHSZkRqxNQiuaxPGJAUzDwu3SVTlRP+lSbr0tiPtWEP0mX/cVLwGDOfNgjNhHuQvf7mNw9gDgz5EXS6hJw6F/u+J2Aj4P7D773LhBOUArI9pnN7wr4mi6ICky1rN//5sZ0/0ponA3BmIzCVZiEXyU0OuwQXbji9u+lpSJWPRi0ALABzNh13BnVq5DCD9MXR4g+HrN4U3N0bKyg2bKxOOplGUCqXvjlAqov024pQ0NSpytPi2T/5GqlD+hZDtRuLP44D7559YxbgyrOK9dEpD0bDcFq1Br1Jg9zSsZLMMWpUukrp3Nl5+KAi2A0jnUiyrS0NPe1w/bg3rl1L8Rn5CrY8+zFvY/GJwVhnZh4DWxs6ik+Rj16kxkdrRI8p9VMi4NLHtETnmLPf3PvpxcDcVlec/AEeofZFF9Uj7RKjbniAlQwDGu10hcn3QDnDkkwDy7t1+hBhHi7ix73rTSpBIsjnkcQ/TAQJZVeDCdHGgkBfwErp1ezQzvNBq6LX1EGdWs9HMNIgVmnuxEWLaR5kdi7HzmNPR9LkRuDVJ9cvRasrCpCpT668XHouSTfc9RQUVVW/TPk2yzdAD5hLCeCG/gMngxsYdMZGWvu8S2hJXGMAbzRTa3DIFefQhMjYJLp2MVYznF3EwHci7/n/yuIMv/0w34SJSMORxsLQtDBolt2rVkQ7S6+pqFNFu6vUDQqMuPIRfj/ABvdWFKOLynFx4UEmYEzxAtuc8avMBR1hFn9WTUM4u0s2ltJiZDSQs0cZkTUSM9HC0Ugkv9S98dcJxEihSJ4BMHMZzN/5d768vIm7BeRlV4v9EeJyZW2amUIBWCivj5MgBmJLzvyLHN07cxX4q+H+yzTeJyVXr06Qsvpjvz2sEQiXVHNUBrKTwrjdE+5zkXup3YIXSABJoMq/4RRcpLMDQ3jT7XbE971ADFn4wVtNyqtBSDJKsfXqYtYuzxlQ+sojFfY8lHcjCHcGYb+m+LEspVkTfwjcYnQDcrb3i7VYl2nKeHyIVBsyK1TAPkyo6u4fPcGYsrHMsgdCNj8UhnZnO1oEpjXjcguXwPse8okWi0vnQVMa9i3gnWIV49NgKZYVDcNEUjc+GNTye/qEwkdFocnPlHlgmEJVOfvjb/6T6PBu/bNbv4GLniU01FeFoEek0+htWsLxg44k/PrKJ4Ui9dcEH8w0eU4d8hPNsB+HbnwgBZIkBOeqMq82nRbEVzY5WAu3v5HkWijP0bi+24mhHdW+R3pT9Z4RplywyMtslnB6iltwDKVKvwdJ/CFybgBgXyRgWKziLVBmUqHFmVIyLTAd6GxKc/PV0OwGWlISL6Et/mFps3jmv00v5oN1qnCf0wXEbVrlwy4Qfmr6D/5B2+14R4tTVxVZ1kmQCdqd/yfg7/8S0rEqURykijFJbk9+7Cg/dY/NRZ2n2GOkrWLg3u83a1RMHMQPJW0STanFSCt4UTZKNqQwNsQa2Pc5I9NfRB+ChWs0CIdUMEHen5ZAsdX87vf29CPLxH6+pA2cg/8QxFup+UQQl+A3EqlfUOwsrt5zGjkZdBf+jK72CVf5gv9S9/r3e6cGa7ypCWvDXUIi/WtKIvZy/+UchRWaEqEjNbXHcr3oIMF+/uVYZHbZ2JLRdRJAnvl0eRDms5votA+B56ZxtkmY3WIBhDmL5ItuoMrf2dnFHa+x60pjHsJU5WS/rzlk2whapKuQhnuyWYvuMWTSbXAIaATFcWTaaHBH1q5eKmhEecfySCLlCv4rj17f50ghQ3L4ixUbZ5TBtFjslMYmlNgIQYLzmCyfLLFJjSj4+8nFRK5xgFn1VP68nC/9O2Ro9U54T+NI8D2LuO/ksTmZhEh5HFw1ow5nRjinG5oaU++owRUNmZ8IGaP5DgBf6nDt9FeYCisggZaS1uOEhnrFk/Xy8wSXNtbl798CWeEYRzCBa4i+bQgg7a8PztRdDnPVZmHN0/3QlHhLnVdUxu2OGj+oZVLs0VC0tP6sdjGcWNLFNSKaHGO3rs05B3LaaGGaLyJtdkhReppQy37mf5pLRk0cC+KiR/aVgX6RC/z+MRdYhSKuX8VtjzWRQxp8xLSpKfFqMBYX+ue0BvhlnJPUxoIC5GegMg34tSa7Dpr1Xmh5fllUdYOyKBUP3VrS8zGJgCy+xjmyocHHGANcNcrvrYRmi0kOAzfchHz4SKShRZUJ/E9esLSLTUMdJeOHFwx3K8yFi+OUcpjQVsJc7GL873cqQQRevzgNSLhHtChj1Nj9ZDdgVDfIhtOPK8rOd38aD8LoFbmFcQNGSRMEApvT143QXQ3L7gOP8ZWSlYWscxACZt94kIr1NT3494IkHJn4HNd3ylsL4eBWFa09cgSL8gMglZj0AOMYm6eegr1P0/C/lMrWpK/QQiQLxPjjksNN2vIEjUuF9cgmdxpSl+/gVx93kFmUpQhKm+BYHxAT35tZm0RI8fK9qoGwe9+CHC9kS2LmNpXUS34bJxwNlsGzHR5Bnc3V+gMjAliPubJlK+EUVMYTE/UlzMcYQsM2fLPdZB+vf9OQ0QITLFFy6YW7f5TD6kMeRLCSz9GVIy0mSuURl/BAJmkDhkBtsAD15fbIiiclOl1uhZU6vmJ11SLBK25SuauJ57bNUcL3vSbx3IXFwvHM7SCjlN7uCepvLm2MbP0GwSJ7HVWb/mApi6SY7n9oP5ivS/CAoUT2y9pdUqq6A/6RbWaJIzURXHWOPPa4hWf5RyQMMRE4+gmIcapzYUH8pw06dhsuakV2yelKv+ATYYAZYEdJQjLUKYXvh9tLt11Lji+s60yWH2fmWWQaq4MHW21u1A/is+jJGk8DiI/3cBoWVicpCO8YHLPbOkgr+Mh9aaG7jf5wfw60Hddc5vxTyjPOFybjynSsOgY+W6miWUniuaa+4KT3Wl/v8H2ZZn+eFLEoCxkbzcS9KnmOc0UDjA4PvC9+QwzJ2KBba72es8XVtoL3B1c2PS8jADNcrVY2LLNfBQ5s7lvHFZ1IqXIe9O223JvOIfEPNb+K4DGj3usPDlcVeeYMMwblL3CnKpNrSlFiYUMvNYlPa5iFDjgRjk7J01zc9Kl/OjHwMP3sf/BuKJf7EjurUbCg4m6sglvxLRxyxfWALW2SDi5Ra3iG2D51wTtajW+BB81A6aZmVAc3TSfzU78dyne8fHHF661NRIsUOCLhTHQs4eJfe6EmIb+pbCk3OcNiUFE37SUC9LLoBaoGeiqq0EtomJ3pF0poO+rAjR1CUeg0a1bkLajqfUlOPMkzRGbzClqoNojjyCdPxaVjb/lE3fuzMbvXGAnuHwUcI3PhYCWClZPordqMwmBSB8Jhvl13jO3rwkaO+tC4ykPsUVygdlTqr2A/iRg5NhxYesee6WQlC+eYI6APjoayf/xVo/vIf6k/ntdJBb1gdEKkhTwYIy3QpDVmd0nWjAyJYTgq8C8eponJ6CYRt5UzEkwlkKsL6A8nbT1IN+Z3la8NtH94O1p8wAP9swbV7RC/uai1fB2bpaie5+WBbUGL/jsiIwKaARiLZRCA+LwIW9mFPY4beO3XONgyJJvWfgRMmOkls84uSQezloP2wfsTZfFr1ortylZIL2OTlSNScnIpzc3DxEU5w8FM85xozoBzPXaIicF5l8uOe/MplxEz2CHdQx2Mgvplz3PcMHbm+s2GJ5mawNKBz4hw6C0DSW+eRKKxA8PBkiFGL9MU+Nt25Qv+1NjGoE5g+vQYGISGv3lCV4VYEtJRS1MDfflR4La4DfGkdr38IZw3UlhurW2ruH7X4X5L6tlx7fQHg0KiDOvqefm+S0ABYK//wDV7MxO3ApgxRQJtI6gPhgtQDCJYh5VwVXPMIBGvtZwG+PRFUhA2NhKAXBCJV2+dPYuKZovRIVBAF4D2EsM9VbM5UJ8SeLm88EEpzi6rTQA3au/t90MTQq8GvmCk5rjgeCgkX7HIlxysFhSbudBXt3hGsANwv6ZGlG4jJ8utDeAxUxdy11cq5fBLz2ThG+FhU5B4MKa0EhrbLOXgrXTX5UHWvl33iKFUb8cYhOcCjPyqwRSgwOM9hPBHMIggqjnIxaDJ3ENk5GuNkYJoIadi7erloyoppV+9dHNX8W9YscNa4nc+UmkOimGlY6aSJzd/baStavaXVQX3YCs9BbmMMdWtP/El5B1X25a0J2ewFOY0hssiWWUma/AdA0VM3s1RYnqO2ElcqKuYU/lJQepOlzs2aVuwEamge9ouotVWBYrGSNVQQOeQkUFp4444TGjXEcsIX2jf4VLOz9Zl4UQh7PGyictlpmu89g4L/OmTrR6E/pDLnW2at9jMYkXvidt9hsLu8CZ+XHggWQH0BYmPuZJkQB+zBGbgTW9LKLYyYVkiLFRzI99PHt+sRXZHL/iJqtexX7lwUYynWX4uW1g/TnTmaM3auI2ssxCWnJMUeXZConLUB9OrddNG3ioe55vOVbSo/56IpWXhwOlphOL5svz/mg/qctPszhPSQAaEezhx/YcQzKQWcXpO+2hkyeP+zQLY3XgBbvoo9+By6QyzjLA2f67HHvvCRYdsBDwCUgIivn/qLMRy9s0j5WRmtuz++MPFn+Dy6Nw8xercCtdoPm5/7SUz34CtptzSC+MGksQBZjTzI/THUbFMNblj2NuFyUXwSa/pYVQwj2W+/QCV3BcFF4Svf0GI/EntM8SB2c13/ot9W1rNJZ4XQpbwX++AsUnPv3SMN/bgAzyBBm50KgppMloU1j7QWbviUaX0BJqdqzITuF7pTdVS2h10GNgTS61VouHYPQhq67hebpqDj651n0gWqDVw+W7JTJHAY3bWWwm15NNox99h/CuCEYKakFbOJoVGZcM1HSh9zNE0F4+ucERmG00zttmVkk6+EoRfKzVuz/GHERXx022XT6MLyKeG2jqJ2dYbn2O4qQbmiqOjYRK9OadWj/0Wq6SeW/i+5p6hhLKeHfx2SVTQGD3J7fXkFhlJif+IIBr3whGTzfLFj9oQTgFk+szccI10oNK6WCdLkCG5X5VewxAbtDbpaWU0TgXpNSknrncfqybatY462gARwaGO/BDi6SsxRzb3tfdi4fyLS1eymObBq2o6qbTNmbXgVPFDLdOsaios9Q/G+mDRnwNfUlwf98iFJ6mr4I9LEBRgAH3gCA57sSQwE7tHspKYgp6PFZ/0wEfRgZ0ZfJpYNRoU9WqwkUIcsR4IwFhwwc3kZH7pf3ovhLcgT0ie4WarmwNPe4AWLYkKZngNrcKZRTXFkr0BwEwcbNgls9MbTQxFkZugouZfKLiXvQM9m2RdR3LP6DwG+hCtEIGt8hnQiStqnIZCVET3RrBIakRzKvpRc29hNp0m+7fRmxzBbwup2WeUgb+ze+GzOsBVWHh0CJJLZ36fhhPi9PkkolGzVrI7TwnJFIrpzfvf5EaMwb6ib7jiFRitCTstALiHhvCTFmF2odZZRBoPLeWt7qPECP8vbuUUNYfsP3giUScEWOosxVJdMsl5AUqI9PlRuh+Gm8vaJ35Rvnh3AGpn10uM0rgF9KtWOZpTMlvh4yxnqpHTJwnIV2x/Mh/mj4JhTecTv3+CvkGQLEbTUv/kHDKYjRa8gSNewAAZIHV9lf92EPk+iW32lKNogi9AeuY98pKszj/9kndjRTSqjEknSIgUzCzLYR4hOzlsZbjwtfwxHv/rkYEoENP4LfUIU5blWZj22KuXzHtThyXSL+Edfk/YSTMgKs9LpJBmNLChV0meYxFSj4QAitj49IsOobVfr9ANcZEmuiNj6qyyVB1mFLqCmYIjOLPFHFNKP00ObWlGwa0dl8zgGCkk/M+IdP27gXzHyWs6AKGXzY/pmsbxaOXiKZ1Z53kou0l/GwmBGV4h1rvxoGFAZuAPODwMobQWILu8Nv7Ca8msvlwQKXtPl34alb+aPf2uuuXC1F9S0BQXBPtumOsvXGO7ExTWjMU4k13/kxOspRL4j0aN/agU1wSUWVim8JzhcYHMjTKzZbql3F4ypZqyoECJf6RnCMlOXq/ZgKPKjZwMj+hAA91aV/E3JjYCXbdfWbhaP3c9V9qj0/nfhVeV5bkd5j4nQZfCuMOTLK4bUghQfb5AmDv/Z9dNLOsWe3+DecTk6E/5OvYoWEEA8OB7cv0PZKEBYBACavEhzd0DLGORpawkqz66iPyrym5mofN6TQ4gxQxMJT6z8Mn2Ca2OeCUDWgtiXfTc7gKOi5cKTSOy8j9sjOSUnHZZyYJC/6c0MXohSa4ojsC0zFD/SprsjK6Ak+iqofr3BiSCi3HaYdk1q/0EU61v+3EgQTFnLxoGScIe8v/aUJn1Be3zKi4qkipsTVhgAUVye3rtrAZOzPOcCoCNvfdyNrM7OPlOU6sxL8QSzICO9BxUpNZNO4c/9A44zhFQzQuiYu0PyVlObAFbw2NL4TwAEPjEJ9zcsRNao2xMt+GJHlBLqLnS8x4BEIEdKOlfLY1tTmayGjKks51R/WcwN/9PXOKTy7t8r+kyVhjn4NEXxjh/pU1D+Fj8DP2CsRTxF5Y4QhcktnKB27XG2YMCfT4UfTCyqpoJIq8JRWD4S4QPibKsssHEL01pbgNPBJT6+bqCtF8kkuAtIX+KH4Ei7fftUL15tbnaDAeOR8AL2onRMKmnajlLyp+hxULF82vSEVhEdkr7igCfdmaHjkKUXCyZ+yDKdNY2RizuQscD145OvrT3f10YqosUU4jjt/so3zKY6RXWgc2xZATyklnCzRhic6xfTbloqFIyi7Jo74klPTI/OceTUTfl4XYeYi+G481KtXJm2RmPf3Npg8kEMJet09BpAFtY52HJiCTgY4HMpX25WwvD6GOVSNQ+C0DpNrwHLZ3sPPJzD2s11VevjZHT2tJ8LFYnvfDIWYG1dnk3844cZQy6w9CCIOcXCpKias6nciWQJzSq/45VscgKV2Rq9mcgbvpmYlJPHwZpoEnNosfQoIepP7f3eYM6hwtvf8BnVNxwAvjL0YvRfr/pMMkC8Odn+gp4rpbS+amoi81eGC8WHJ2xb6XVfZv4lE3idYqvpevWVz9UHkw/8TKj8na4sCX1YEfNU0Mye9DydIGmhJ2XnpRJCyN+uXF+GyqQD+HChXKZQQV5yKKLE9fbLJyLqzE9HkMrp3167Jx1wdhVxjv7TjqpcHPMkqdzNPSchWTXJWkBOwWaAJZtsTA5PEXljJ/2/GTUKTWfQn7eAtT2OCO6YwUBaB75FfuSrmwWBGY0xw/PR6gUoX6LMZQh/n6uGn3WqCJbT1qqpLSwzzLvZVCW8XAq30CFZS9AQIa2mPgdXcE/vkxswROWVnaznccZRqMrPlRnn0RafdPatik6Db31a4WhyQPamQa2/ataIOpzTSbLjXKwZ69Jbyaslh6Vpq0AOAUhTC/UfpL/w3RcfrKxaXbXOnCDp6p6ZR/LZfwthEPfl5d+3QMOhEbgvg3IL5q9abMAB0s8vHGdYGt5z7HI7aX8EO7ikFltU39iHTJ4ZZw3xybKt7W85Twja+OUy85nUtoWoGuAUQeD8LMsreG5rWG7kiJP128cK7tpfuacA0fJzeJXJUY+PyBwcevFYnaCy0miHrUU2zbIr5IHmhGXT8UoKK5UjA0xeeIbERrSA7lZmjV2knODS/C5chMUpb6IY2aiQ6NL4k6hVW6meWnBle6KeZbHQsZyUL/MvQ9sYqOb3+ogBON1BQUOvPtRLHdgQ8lOK7AXNBxuUtXAIVbkHxI8Mf/HiZ747gSBGn9TFY70cxC3lkGnTmwnr3whvyyHJWb3bSxAT1/nX4BxOy4RSFuopLsAe4n+ujnkM7RmHezWmDnx61tJD2n3YAtXIa6GfRz5IKVYsS/qZaAJDj7eA7iGvCdZI0smiPW9CqnP4zW1tnRbM4iXGf5iJCjyRSyiW0AzQ1zbOBzWdovGOsuQhsa8JYiDW4A/gEGHEGUS9lGAqXtlPkpYTQUX5JNJh8AMxU5+fnCW8b5iT0T+a+W6boojSkEoVT6feicWllCgxbjcOxm+6Y/pdxixUd5mqvr8NzhuQdRuWaVTiaTWZaYYh0ioo66ntRvQRgXWNhXXz7t71l1+7O0BL8J2mvBf0LpAnxrlgH6mG8LrI6ihXsBTwDeFoWPFl9vIVxJrKUbrKU+nTC3gY0l3PT8rPvCjNPMl3B/BtSwrf/ajmt09rn3lv90MvIkF8BGWQhEEyo+ELThm5z1CowkA1iuMGEJA795OcygFGMq1vkPYjPf3yi9OQqlpq4U4vD0osr1Qw3A3OH6EE/Vnj00YPtWwvDBQDKCjZW9q4Qhsr3s0ZpcUDI6fxRoxM/Vvlo+rDKTAz2tSvi+2lbGBGyr2W8Jwv+47EZm+EmMd4p7wElf+PYbkkNabchOYJoMMLG/t2q5rOwBkNjnxAmRGmdlCYud1M6kOIjp6BGZW72dEEaEkzFjJjfk3fWzoDX4Fu6tx3FF3zxPMmpFBSPAIBQaiUnJ0wrt/kXbvNW7pRe91DnKvghHb+OVeiKSbo27M8QBD8Lb9mgH9CIhvTCq7dTWEYoAGhBJAyFf9gmQQ53I+KeSWps3HAhqFUmoNwUZqtdlXpPW3AIymqmEfnTNkf7knHY2GZwqwOUIyARz0wxstBySr081hBgyYHmve096GfiH5DTNDKMIz6h/TWwOZkTnosPYmQ6gFNazcaqlyIo3E9ZPIkEvLORhK/g+3f9qiDez3xwZUaHUBUBo5Mh0EGD+5MegjsGcBPGTHzdb6lGtTO5CDQXOYIZYtucnVZbhz7lYqms4ZG1VtaaUid3hDW4WCNpaXJINoiFDjY1//9qS4AVqRPs4VAuo4qI+KgNPjk/+YASBmGO/UCaP+WC0uba6sPWTJ0p/wAtGIbkoiEflbyTXh5qtP255wu8m9T8iEEEZUBK4sxaiF8PTBr1cZZgIB1Xll0qwyuoX17rCTgkDKZbPLEzoHBBkd24+mdE7USaOuoealxI2JAwNbERjt+Qe9tJy25tnu+kVqIBtou707foqlLaEQ0Ytx3P6y8fYHVRWb3ohr6xVy/D5FspduTke1SQFyxXF1mu2bVj3FswVplSGwJOk2KzTkSdLiY84dsybt51Cz4pIIz0LFexBPqI6QwAtOWg4oqL0sefiA98licSr5Ev56lQ50YkR9y+I5GF87x3KqDxwxB1ZJTgtxXslCWo4rTetDxEA8yZ/uaIA0AZJQ8S8RN9LVLTZzUa4TbbXhQTKaw2Q/1+wztwTY5jcySjNGf/0zP1YgRDOWTvpGSTA9rC2OdkX+VHRBa2Bx185nb2nCMGJSWfkJ8XWc523Zq7fTS0XaY8qszYh4qZIQA07K4W10tiBPn5qxf5hHc1qA8Y3LjnHFTNyFBxLJ2TrqzMu1eVi+s7lLqhEk4p4ZkktGVsokBZa8ffayan4+zbf5t9IZFA1UYJmiHCZdB0Sr3530/21SD3AD6fzy97aKL0E1dSoS6kEzLsdEUQ48nAYNcuEyjiO1b7D10u+H3XP5YEa4llRSNusmeFFGRG4ttKcq+E+RbNt5Tc+Ghvt3ms5fufzbnDQjDQ+fWVUHFX+I3Y8rJ26tzxgboFALj5n42OSJdLIQiB1azrO4YxGxTVa1gfFAAu/5XG5RN3g7hGUWAfrzvrMvY+UNt2aAVAgexu0xJBQuf8Bsw4USFgo7Iyrv+J+1EreLNH0zD2SbW/dHBFdyjLiTYvYI4a5jmmX+zVnMGXe7hVStdEAYN1DWo1OwGTQUDjEVcp9mmqColwHi0EUC4lawKCommyvEwVmdm9gtwVpT8wuumeWht+wa+rzwo6hG0Y/tCnHQTBED5mh8FEape0OJIiLSfLlMbFxJe4MIwzME8zjk3iGaVZCnutZotvqFkOu7XwjQHTu34JmbmbQ7IgmCVZFP1bR5QlGWREeOCPrHQod7K9GvHfwuYVxK7mCQOmIYLtEFChA0A5VzKpSAkZVVUVRBVF6LgAeSqaQnnfnALnTusjEzOBLXBM0c6bwg2uT5lan4ohRkOgqv/GoIJG/3/y1oN1qDj+GCxll+grm/hCFkCpfE8sBk0KvMBhd5+npfqd9D7cNmFiaskbQ1Q1/5AgL1iGcqwX0UwpnTut969ypvrdk5fd0mEqWKYt1HCfwblEx27WT9ZIZDfPG/V0SFdqc3h2guVEKfZfPW9fMVYJuk6ivUyJvLTzrSOmEiyuu2w5rNhAgR5UlkDOJzHh/a879urKmEyxZ64eqRcr2UMNrRFpTjIDYNwVA51RcoWuUgtvrcTWVv+5Ok38T4BVcxgNUiETJPVIaWDYnOUMsQZwJKGPCk9s+xh9+RodihNKjvT/Hj2Ygr2oWAPYw1WHS0oWcStXQkynPKMLrUo2dMnkS4bx/brHJw6IMH+oQchcrA+v8GnNZO34B/egz0oZWsRr7GUvNr+aoVdX6y+FSxDqs5HJkkciKPnI53QHGRV8Bo/UW9/xjinCwSRYeB24In6uZ2cp9YqfmwHgBa1rjfeXVi2DHLe0IRk4J2ala+thMLGSaeTyspF9Nikfk02xMjVbWTkl4oCdagrCc3NnKqqEfed4iaeumRHC1UFlLE+bRQV8kszB3SRr1WpgjZDBQKGgMmuN110Sz8azcYl03JWfU95TvW0McPE7sJqCA30WL3GYS2zFD1mXd0BCJIxPH3SZMIulxcR/H+C8n4MDrWA6iaALQ5HrXyGGf2LaJQihHGqfqdiomTQj4w6BFJbAT+/XuYWzm0iDAYgjhMpPJbgAJuBjRVp8cqCYJ/4JplHgcjkV4mgawUB7tGsK5qnpSbe3MNh+V9sY/7YGTxe+1w8CccMdT2TX+VnFDooCa8ETMrROcqtWdSb57PlgVQOl+oyIfUu2OtSNzDKhI0xxyPxY3DqkjqzKKrj2d2akcs1SARGtz0mIg9ikaREkNs51tGzhmddetTRnE9pUBwG9NQsPEEQ4r7maitdopI8haRHv6uxJXZkHK5zaS9A6iIf04BF9m4YsFNBD3Vh++G11tjA5AixvtkJkD91IUuPyBNjwTJbVsibbhoplQiREN0NWsz9F2ELE1ssL//1bZ+z3TZoaAZG5Duro4gIk1aUy3wCYkwigeYm4qG9WCxeKxtnPapttG8u8h8CfC5/zbYJpTqEf8CX31cWU9WDnJCSQXJf8abKcxgZ0yfiChw7ya7QHJqiAHzqm2yMyw0Qk2RgZlOyoBUeQpoHDP+Or8X+oPO31id+iGLDApkm0a/h67PrS1V9vW0n6LqaHbNXYvv8gl3KO+MwInzwi3Sqm+KWMGPOZSNeaaS/4kavXoO00nceExJ9wRPW8TwRCsdRah7Y1xVn5mxUXc9U3MxRMsHtcCB3x8GrzqCB6IffqopCuOcGozMqO4dYywHckBkKDXQaLqqQUToWRZhLnrqJs1rsTOS/0AGwjSQMBu372NVXIEGYgIYtpGtIHZhH49BmqA3yc/8naIF6w022yei739QOeSQxTorO3aMOAYKCsYpkDSILFPyMYdNDsOdwmSVBAm7a3l7dILBH325l/gpufWvP8Q4swqABXbalNa+xADLwQxg9qBIxFov9Oiue1A36RrICVh0mXgZ8X+gSa4tPKmwQZFSkI1wzfcAfHkZUASzvzx4qQ55riyKaHa6SV8TINq5t+qDTL5NpFXRKZG9k2MqM+R9b+aAOivGF1IN3hVqG7NewbsGbpaCb76zxwFxTAfXoGLA1/o1EqsI3h8+vtQvU5wsukU8PgIGj8xAn8CgxPrIWKPQ0u2XbvnYiNgEeYhSb9vl4edHK8UZyr+UygJqwzIhTD5lu3ptI1KBTV6zT/1wBrXkepJQSBj4auTk3E09LvcoQ2nmrZSVhRnaQsbFpnCgZx6wElbPBPatsSKXtbMeaoo0p8WLcpAVxZGzLeGn/GDTnahPAfYEksZu5ytQl0HgKABkNRgHSwQupvN1pQlaiJRQHRhe0sm5ZmJOkXldQV2fB9YvH6VxiYbJHGAdFetR8XpIbk01/5RRQXsxIuUJys2jm2/sLU3CvPz/YEjooVW7EErWLEe5FOFJimUSm74CYZgS/cG58kztoh8MFAyJkxbabk+VniLgdMPhQU98bGXnUeWUgILTeddqP31HhDuzAVPDuoql3hNS/0FtDUDTppbLe3ewf0xLsyz3IXkKgGt/TShwKALGXXoZuAAWy/W5hOyWcKZIYs6cPcwBrKb31cqZtwrrZT5SXbjUDV592nnirAgAqioj5tCsFNX5twe+lLjiLZJEf1temjrmAujU2W0QxfFcrXejSkbk3jvRtZG7PrfiZ0gBc/sc753jIyD6EdvQ75LsFfDYuF53OL5c21gb2QdHvriMNnNj4kLjv8DPqHfXe9eIfGdpXhxuGH2CB7kjvHFuOrAAlgY3XyTNzJn3eHPTdYf6yC8omz+uEsUUT6rv5+18MsEzNBIPrMVJ+rDzj0gvMbxPSRHA+e9ukFNw0lPx2Lo2VOOyAE9kPvqd82MpiDaOB/000bQHFulPH43x5XMYg6BP4na+5KAY/HiGpNDLDTPyuwAdQkmj5EQbWchCpkhrPKeB42EfRbUTDjSlJ5LVWPgw2r4rxTM7ngsq8PQbAGboaAFgbJ9BqXF7udHoqu2Z84t+MOncbDVUeN8qKXLRknzhcHVpM2I9Hk5QTXFAXv49buzMCtRBbrQwqtdE2HJU7TjE4Rs7i0hM0AynnWwO8FawemLvJ+1KZuZwhEeff+sRZ4DdSuyjjbGv/GrzikuX/ijdqs8ahPJNPmhnwoVQi7m3gNXMTSpPG4VK2GCrxxkUKCpT1f6jd3sJAxW+M8fqiv93a3JJ7bToX96xtWbq8zHtpVhL6ECSGTAQ9lhqgjszTt57slcrOUSqsqWp4NmN7/7FyccP6/GVpUVC5CE4rFtkZnt7DxF0H2Rt9I8ANBVj7RdwFKKUR4A7yXgBZN6iugeDQp8bzr6m+Mad9g8T8x+nOeIKv3aefE4w9Kv0gnDrguVtf3wGjVBy1e9DwBCa4xINwYpoC7MQTU8Wz6w3oCJxtx3yWFUptlTXl3difP/dEaYZWfXuUtrYizCkltGp/VGpFqu2OFuIWfRc+7GpLK2Ct5qgvZz7aeTCfzf33e9+carAOYk9tju2PQ4pCxoZyNYnHv9dDSBGQmJ/kLv81zVfO/L9871MH621/CldvGHLMBa1XJMJvfWNeeE2eOHbrx3Sp1zcvG7GpbkzT21pxL2L3Le1o+6G52QsSQaWQj27ua4S0waI2EDuV3uRsCEH00/c68hsX/nW/hZw7DzBEZwBZ6JNREcciWHvs2WYoqh2tWgQzaYc6yVIh2AgxYpp1HHutm+Wsr52uHTLmz9gez2qqHk4QRuPlBPJjPAgU4wcCDV4IJsPxnnPhbNfggk8ihKT5TLq7+Kv29aDV/WtDKjt2mfruyi4eeHlZOd+RmMY/I24+lJVRBCpMRIUoHhmuSEf9q+cs2vAcXGdIlUKa5x0Dgk2Mr7/keBuxw9T7yR8oqpHvajQ6gWf6l64CH5RpQTT9Ks1gP7osUCIMr5BHhAEFEIBDzLxugxatCiZJGCBStL/+Zbi0HlRQpNJAZmmRmvNQy18SBawQL5tfIabsjdT09I9Edr7UbD2RZSgeE9RAeqs2oTz+6VyYaAbx8iEkNJXjoP2HAvacjJRXDHT1kdRT/nc3ixeGAVcFJEfpceJkz81J13IplnVfEVdn582+xDJTWB9OyVgFyf1terGDHEKheh9kJQrZwZtDFot6JN6B97ZrZkwikiZgPaH/rgglsBRLp1rdqXNL3h+RLpQotAN00mlV1iE1r8KsqqV34I4VRBh/2++VGQURwrHli7MpXR13JXs8i9vHUpPfq75l3QYkEUUArmjY6EGuVDZVjhZhNTMxdQj+rNf0PhAX4HLs48/2H1J62alNlw8afGd+KwHZ6VMtwaIoizB6CoHthjZ5qH025jQpTE83PmNtknZBhuiFBXantf1RUnvfvi0QK5xGOreu7mJPJDbVSbe5BxvBxoYw+suhxrtKIyeaU2xvUtiJyDAQvzo2klMDihOhagQ1ykQ5rAd+n+VPPp55twAylf91OtUzTioWyV0AzG8mUXeRjEyr35Tw31EC9Z0aOAH6j0AsVcJEyGT2Rgpch1d9ez95EL/imAh0GjYmSfmEDoX6QnQWdwUNfv7J3pCn1lUF+SwTVEmjWh4LPSCk0dOiJOCHXh4ExJ1vOGKHLzHAEKs91+/0/IH8Wee0JNv5Bc3SQHzJ5ks8VPMnqwRHlX17Nqtzvxp2OHL1rLBu5GqFumG2lLs0HwJfGVHfJhokLKa6osswA7LvtRhJthmRcFJW6qBQg2nBZXmQVB9dG3Mzwv4mKl50zApfPlAR7dOK3/dgWCM5NsCBXSzwP0qSpXRiKrEhv6dCa+1MAwVTYNRAbFm+hJRaUHUjmlcZnwQCejN4TsdTxJAgBWp837/pe4/ig2YXSLN0vohTaoQ2rCStxy9N26/uxnqyFM0CYB3ytpl2pjcILQDOOdq84Z/Qc4PnATo9mCFVfIq/JE5n4eMArqMG4cg3zPJM2H2p5z/rfx+T2PDKxNlULZi/Jee1fxPU6KXYpja8Qpk3ZI9GZjKhSb97/lWORn24kEaq4nUsUFyABCQSG5uteGsIQtVZF4M5VbjGiP/gbUWd2gxda1Y9tcZAkK6voVC+4jfAGo2Pnx/VE4Y7a+EwdzUP8b3c0zlbg6Roi2qC48R56ezeZcwcbZRveICLSXmlpi0zODE9adYT0yKfBCXlz10+wpfkFnBTr5iuWMn6xe3dcJj82ZDgj7VtVNfpd8XB1uHGAF27X5U90V9CBTtAnGkzqFumKB7eTEJGQ7FSLHJ/2onjwH8hEKdhXY6xI7OnsTNLKHzcedzb9F9X3hFug5SBb1ZQ3Xmc12nWY88ayORAnbpW+6ZYlB75iHYERfwAW18zzLTheUOM0NYjd3wbPsABw7b5Smo3tydfFDKTBJXu+F0CuwnYAtRNz1lzVMFYKZMXPAkrj4cEQ0yCfyGOy1zs2WM+lnWTcQrGX1HyKlq2xwnCif1Q1Aze6uqplz/1Rp5n9XzbSGaW70x+joqPYsa6p7QcL/+I/l3kTJV5+UbeTXBMMIMrKmj6URm3wSk0X/PBIBmjdHTlTekQERQZPMkHkST9IoY294G9TNiQObt/fwyLrXaFLzHGWhcuX6NlUWFolbum+50mI/TlfF8jgkZXQjujqHKCGWC6IR9xW+LUg6+eDIeHK9NSgr+RN6XKRzdhX6V08FUwDesvImOrC0Rk5oujNNkM3JpnE7rYiA1d0D6fWyCc2iKBJOZsiGhXfEp9Jpw3JImUvYg6hAgDTi+6ch2bdvZfLsfEMrNSF5/nLdbnJ3NSa2N2s7n3bcmL4wvrLp18Nx4WbO27zkH7nu3Zt9wTvIc61/g/Y4CrsSBzIMuSEboA+LGJW1ITPZbmlvfmd4ht/kOPiUGk2Gal12DXUJwmX8g0aiKIuIk0YQRB/JMRNjeWVunTUjcBJYbGjrgOEkJ1S9jnjGPLerK4MXKoiEQyJ/+HaWZX5KeSjAA9gPo7V/RGg9NX5CDqG3cP75/4rPmTA8b/HgJP/9Kj/+KiVpwlh0UHQcuRMdRTypqUI23TjMkmIVqOX5E/U9MzEWo92Ee+QS04GUDk8yMv/1V3UyXqVXhvD1wY470IACD4hqfynoa3PkLxerfnqu7LJ+tRXwMilyj1djy+j0TcX90BpWwdXhszTrMyX8fxqkB0uvBreG3injqleVd9o/XzXLSNdqOK2WQKTHBWOiuXgh6+GSj7eeFwBzaBnynWCjCSAouID1Tn2tCsIW+wqp30KiaqNDtHzyCtNAns1fEflcYSKwqqK4CWdLb/M+pmq363wZCnzhkXUa5Ju/xV48PXmDOvuY8eLk40fCmg1UsYKnoiK9B4/VgHVXwGHZ/xFUI9VOgDOqkl98uFmPRdS9CINTiJDxwURPSM8twORof4z8NKu/A4Kp1QGwDMiWMCTL1HN6PwT+8QT4IVWjG9DiV0XbTSnuWCAKPU+JLLGdSnQSyyAkBwkp89NEnJQGz1nOgiLujzlCDfdbUthW/jKtEVFh1R6rm7h1OgZNnzHvTbWEd46VTfq5jkybcWX6dKUi4AVKjvR0wAcxMK0gq9tCJRuMq1JFZJrLM6hKf/Yx3w4DLYPJXVp7hrFQCatizD6S1IuqaR/qozpB/T+ajWLz7eTMVCUgFy1Sktq5bAOsl0Rnqz1xH2VI3NWYg86rkp0xLMKIp9h13g3r3wRv0oxWWemDi8JUqB53sEOqu8+HYo5n9/Bkp7UpdwCJX4ek5+f+gcRWPUc2XT9rvIqoOYHxvU8spIDpaRjEjdZ57aIFKLQ4hnv8VFCYxWwS63ESQ7o9Iie/zhzVJD+p0MuEhcSEqcYYuCW3xXTadB/z/T5RPZKmYBgaFiQhrr8C99p4LKes07pil7ItNQ4abgX/Q0UkJ9rRxsm1re1C4g3gp0VpeVxFl2r65iOyUx4KkDM4MPbv/Ncs16tXdZ0nAza4tfQfkPOvluIIwcpHd5jKDVk6tSysvoJ6WsRohIzPyq6vLr4r4WyiNp1VoXbGlYLnffdNR7KVoqsY8p0eOhydIjB9kkYgeVxPLYtddBqHz/dbFzlpSNsZx7sBffM5vm2fWHP6CMs9I7e5AyBzsNMz6lghEyggE+Pua/t2rhmL5PnwgrJt/oJ511ycIOSirnPitN0c3PlSrBtjBTH6AlTmwgeaaOseYPYYc0Ytq3ArLZQVE2puu3PgkKQi97iMcArObxl2pciOCNMmGFmAXBnq/B88m/P0j83J/vTOfKwMyLMuP6bjyICYYaeQxQ2hkpoxLMMAmv2tmXFsDuRmGow9EpUlk2CMH8kuMTsDnv+usORzNgntX482hMHswkV2ogPSdxhwWf7tZ8wzVcR9KLZeeluHTpNixRwW3LOnjMM7Zu52LfpcAAi0444Wnn56N2M/gOQ9Y7rDtRwL8RZ3a2UiOTQvNrxjS3Rcxj+y0H6GyBNDNiCQCekA5LQ+v4w+MopOUW3D475WOVu9OMxH0mbDY1poZIKvRodvY53DtZhGjKKEVIc4Vr8+oOJ4+OXJMkScBSvLUERrZJzCAh+HraNqxizDbN0831BhwY/PtXg2o//rsa/SzYrX4hb/WldP3gZkv9u75y5U4116iHVRV3QU1RKspQ022ziuOEzbBzcGtmT1VPIowfF8gg800w+UxC+AYNKKGAIpGCb+F8xHFGwy/69VPrwrc70S8zJNHcdxIPA2nVMTU87gl4wn15xU9K9mnbnBGDLm46v4yQ/BEE7l7unPBhUobIsDQq//JR37nhayd26XdVk+q8kIHNTstIwdwVwBSnRtQ1ZbfxmDwjPNQsqxrZtYRoCLYxdWKmrwp6+IBwjHQBhdkhxyXF9861+7pL48IRSFJBNrDp6ECzEjniPlrm3/13iRXyTn8IjZkqH0LDKRTTt7GZd9xYYuzqp9UWDRHrBX0TJ8SaKdVEmBVcrPdSUYiWflx4UD31BotR/KRqhw5QfUZidEnZaZgb8zyg4qIa9IRpwsNcgK+X/SvqhfVQRRamXbligQyWq4QA/M3i0MEHgwy7Tw6lihZdTtFEnmDtHWoJlqrjyRN9UHfSose7GTKOi2qnub9WWU+3iKKs7z2vBlulJeB6Rf8Aco7mVRz6ygZfwKx3PAv8wHe3PS7b6jHIQMh91s0XakxjQQiOIZmwKaFytNRT+vV157ETA4hw8ItgQWOfZ87PwPXonm11fjZO4x6KeNit3BRzQvB6GNdWFbL7NfeOGeTxrWsXnMt5j7vhCIhIwhQm/Dzya6uEQXlZpyjdTEiQsqNst4q+HWuTsQGSjt8CN0dOHL818hrymQbtIJbYfw5lK6k4ZJzVtIvf5fgyjlGeWcWy09Opk0+SXq3AKd6+EPbnngfWMk48ir0Iap5dVOkoqJKDyg+RMI53wPJZ2SdJGeq3d4laJq7B1WsVmvvh0oYOcmAQ3sdbK4sWlTVit4cnu/RFjPAVcscR2EE1SikPViGDtU1W/x4FjWgtJYNf21wlYpA0Ng0TlbKRvr4WSvQpwniAqNzo4iQehOro5egOQlb1qH0v6/cL/kPdZbSD9zfKiFBJNixQMBh7A5VeY9MEXvj7fM8euPj4ASY442HpTK20vMWLKSDNtCjq/DZvukUaesf+LMwQiE/+fMGkOKCMR8m6C5DcPgeGvtZ4kGQV7zBhMIZasLYxxoiGip5IoTWmLrOEz+CsYz40RBZVQYIiA8sBebPAqXBNpN2kgl8sAVmVPGUUbc3iaZ1p7krr5gwYE3fNg6Z5WRNcCdexZtAiMJqISxYcF2NinHEB/e9Zi43t2faBHdpfFZIUMHkeemvh7G1ZPtzUIIybuHqfgLU6En0j5qPvbPXGuoUj+5L9fC1/F8axddAyVD34PgSo2m9Lt95j1WAu5h5Gt1VHcemG4Kbn6iEP1P9bWB/Xer0vJlEPykvpaWXzWWCr6qAE6UKB2ESixv4tMP4IamYmS7ruCocDG72EpsmjbvbA6qaapECcNIqtuomqY9D+uneA1HT+bCvUffahTQwzAyrnnqT7EYPXLwvnv56Z/HYBc54dm8zZVZfloI/jCcHtCfMTT9lHLIoeRZ89qhcypI/e4EynAIG53ga/jFfuhkuj9Qxg18fHMRfuluWK8saFWpg7/LfhxBVLLdD/XwEEIzT+t3YJ4zgSEbMz1sWhURm8JVSTmUa4i6ZmS5CNfRo40jBsAJ+hb6uHRYXz8WZHW2D7xVPM+ltPhtjc8VM9kiSBVANBK8FhtC3VjASwYEcoLEkA9Tv+lSdaqdr5dsbjdUcDzbJ94wVI4w3kwg4Un5Tggm/DMkyw3N+szatYbIYoMA00FrTq3QiPBMwSph5Iy3UElZ1bkfP2DDn49TuKQBcPGXbop0ymIHmL1Md0UOrqzVs7UKF5suB/7JTIdl4pjAFrCt2jN3im/w6Wm5P4mTiOkHwTQ3VsIcQH/l9G9B7NaGHt3ku1BXloRDJ83Wa3GhCN3Skz2GJ456kFNN3z2e9WmqbU2aJto+4PlCWlyFYNkbWPzS431EpLdz/JOToK1qh5f2MkKbp1oSdhBaYh8xym3q9DGFfKC4WRYf0C5sqXGUzONgdl9asLvEoV7ZBSIjHx3uu8bDK99y/vLlvDpHNYNXrllH6mZXjYoi0GoYRFibUBtdJjNNQhoRWcIaA5vka5lc4Nn/tf+n9sTDqVOWRJNOFLVXYwfOxKpoGtK5pZOmZWOcIkzMS/GFvX9ebYWbHZwVkP3ZSNuGNh0wiqrDlrG4KXMG5FFMeTH6UIk2KVzwwVz77n9NUEbydt50AC7KIQZ7cZYMPshiNnBVo3EZdPt7OQs7UYKb90s8tG+2XIGEDmxRNELps3eAzfwz00ENO71lRhZqJOK/o3W1aojKBshkYybzXhtYjahKW5rMCt6eWm30AJksnNknsztqLmIHL5sOTWsvpjrkAVtdfAkwxj8H3i4u9x0XAlj735iFsacCXU94P4sZ8gjynjErubL+kPd1Uh/QL6/FZibOBJqkjUNXs+zh8S+AFZi0z5+BcQ4fudmZ1ywv1F5BkZgWVZFmz8v1yobJfWUECXBrKMX4NfnLygJhtwFl7lJrv0WPDrOPbrEJNvTgfVkAlDA0jiMdDrl2JBiTSKrvI3a1iy0dictj8Zn0AZBDSb2LL4ZMp5y0nHuyE/keOZZv4FO5NGXvD5AgLgFQwbktXavt7k18bqExS4gTg3cL6d9IRVpmrMGgJazPzHf0D4xwKqjt3rYsA/WjCwbVD7P6EC+Fc4LgDGIOMqG82HCMnPAbG03WHQYdsYKvJ9iVLJ8i6heI9Ae3MXM7wc7Lb5upRzoOVKiKz4//q9on49god+p5+JA1YQIkX2/LK3WqFU5B24LHAurAbTh2YGamO8rVvRP5e9x8xUvHmLxCGmQ9IoKKZa17+FkPSiLn6vpK1pU11K4xM140yke1y0b97DCX9rtX2o0oXpu7lPbPE6G5rvnxZJBmfXgcNFmgVAA5AHz8JzshGyuQKXOzORs7z2S/GXBllWbQFNA4iZvVgJEm2R5zeu3fCl2oZ46+Ee0YU0dKnZhnYQLAq23FSwhoxMDBMF9uBr8yAcwp5XIwNt9oVUejiNSC8EpuMJ3ZdbtQsv4QWWuLP/ROcBk95H2CGDFeTNfw2vmR23WmdnN0NnqotpdfdzBL3nckTXhdW6RyjD6zwRKHB3yZPZ1FDlkvylKPPzS6AHZaOVv1JeT81ezH7n446gmvWSLzWid9GDEQ4MS+3o4Xkggi4q6bOFJ4a8ni5R6vrBl1JvZU85woa45o6upK9HFhXYZ0XdXRQA+eK2BB/mROCTrpWjyNkE3l2bBXxitjloFHvN0vbfijFj4hvUFg1MYkucrxAl8l/fvu4IcGfxbWr+T7DbvFBnVObngzBLqqjOv1rvZhhIpo9YK0wVJ1cPZXgKoqwYTWikSbHiF1p+gk1lyCOGebGrKxq1t7u1byfT8uGwsB3lpqKi2jCmoDQcwNNQn+i6qnKN/NkUvqyNe+CaxiKshXZWqjHpp+QNOqlTiiMfxpAnv7oCgtxFYiJcWfzX5pwv3VIzKL5lnxZyzihWJ1ntZJR4JRcAv0dASE7hCQvEbZCnw6uuwNxXMLgr0hEt4KCB72H6UQY7xzHUH+pDTB2DAIeETmkj71xi/QVeZkYimI9BwYUA9z1uCs9J+vXqLwlDIAsxwugykCN15T1EejT6ezIuoU1mWm/Sz1M0udANEgdTVU69S6jqS+U7dowbDGt3cSbGdIabYE1KLOGaTAOR80pIIVD6mhfqeSGQ8C9H4i3ljO8rV8ko0syQs6uvOAA8XnCzz/NKVHMUQmeBIRbxQAvBcmfbgDR1PMJ/vPhDQyF6O/OyOlZAf5XcSw3lpK92lDYDl8O4+e9u/J8IjVckq2bu89HQ3Xb0Rm+PQN7MfwCTsMjPUJq6pSFCE9EcfzQgBk1eMYWpL+SMCCCy5h56h5rlQY+42iyDcMqh1WWQl9Chw4LZShqrAqK+Njzje08khcqR3spnogXzUbbVmgC5L8gxWP6ULDE7iYu02LMXwJzTOubaWuEAewJKP6dZEovnLw80kUDsUO/D8FvNHUWUpZ7VYN/lqYplYvzN9LEECQXGXh0WmEV51QSPwRYGwV9vc1YPMtiE/Et2uHABS4xafMvfRXoJ+EOCB5+zFedUVCPb8IO6SEqysV/mJ7jagdp1qCQVhyCbVNGNEnKzFGnPRNmi7ZmjoGcRz3L9r64Qv8lJL7FcD33g7jGrrcgvIUduS0sked2bJRKO2B4S8LPUXXuEIk1ycGDjmq571d6/cKnmWS/yVie0aTtbgFyJW+CcBYOnJHVUi/LJnwpR++0sVjwEevsLKPDWqfraWtvZPveI/X0/iBww20hCtZfqb4ZuFwjcjoSpa2xWetXQQ6zdT6JoDEZi9kYMdV2voGHjFdv1QeENJR8yQgnN/Q4IitcxZ07h6EZVrxvKDYgbZ20iRaK9w4Jttotu2TPxfSdgOidCQPmNj0rwJWetURPenAIT0F7eDgJX1ObN6wR+qWVKZk/b5V4o8voshp5jx5vruWbwhesqTHBgy1PuJlKoRXJWWh07HpIbibf53oT9bwylG505ofF0hhLal8kpDGINWOgQJaUrxRQeZrCeX/lPXNfI5rpRaIBAf18VrRkhdukksJZkKRozgKnwkC9QWQGVzIFzNNHOrBpmG23QsETxHA9TujF0Y3gLoFq+1aPI8Z9il0Wu/nXCZfTnrfflQhQTr5R09AISmg/11DaMPppq5drcKGE6Yik5PZclYxEPWhDTaARW8PgQMRcpFbfNSN0UOXg1lIa3ZMDrUgYg3/Yz+R5nEpgasL54YdaJimFobRuIgVglFDwMlylsq9zXIYlrmj1MtYzWPJhVAi71ugR9zEUSdxNqfvZEQsKUnvL7Ww1ZP/0OkDNHf9ch5A0oLtutVt/qrrLfgeQmuypZDdU6tWZeEP15/1/A6Vq6QOXiAh1FbJEP2PidzBBM0AnI7VmLqSgWPXhFiwMAerL1nj2Uk5NlvNjmLMEnO2pJMg+iPHBYaW7N/VD3ikWhtLYUvjvCiiw9sVfDP57on2fICs9tvX9wKJ5s9AZyJkMh7Ce2bLcaehRNHLdxswvgQv3kjzyUNoIAPEiEu9iA321y0ovmLLrVoGyQAsaLWlfsRI5x/xf2c803vljZVBGS7Y55WeTUt+Z4EcaHtJqvysGfoVuPAsoQn8Myx8NEBnXbLqhzyPnMNfVLmOkE93sk+uniZeTM+PezfJj0p/eF9qXDghExZyEyRyAbG/76j/VMWWLv589t+qdcKC0HPmwc0LzxQyFZ+8SsU7+cHM+DKdDeo7rvS88PKHVV8FeseL1mhFtuAufagQXxJF3Ruh9TpMlOQ5YQJftFGodExMgyw3bqOINAEeJaZRKcf6DeUSUQWcJ3V0Iej1fcv3MSLAibALIlBuMqbAjODApsXEZ5Eaw3wdzCj5FvvwOvIGlvBHaANE8bTNf3uZaPxapGiCY2PHwS/R8KdRS3Za0ebCwlFbaK8vxzI0FR3L341FESmGiH4vZAjHNb/gsagAn4X43dx3Zy8gfrDGGR6jf7L6ec7ITmJ1oPE9pJ0bNnSHl6XUX6uY2S+OutaOB0T1EmPsU786k21hZZApsrfLkhPY0mrsHYua4QEgZyQ6TC4zrGGMz1PytoByOsMr5rEp9ZYrD1l74DUQ8f11R4CWSGPOWfT8k5Wx5TwsblNFFVualBAm34GjUW8Z90w3EuOI8udWWeHKvZ/NaLm6/f5agyMOLxniGI9Eve/ta+aibJTMeAH+osY7MkxtejFncPFHfABgMYdvi0+opdG3euZJCng6ThimaHv35VCaWlAHqE+hbNEs0Xx12TzbkjbZgi+v0OkxGYTxIf2EfCwXhGQFX76U4e5vh6HLwMOrz5rEtnNFqd6pF/DXV/VSBLdEgLZSdjvHKXawg5DUDIYSyJ5QcFyFJYJM8yLIzi26X3uLy1ZER+TQuEgHSncg//5qjwxDky7O3Xy0xyQWYrET7QG/CJtGoVEJuW9hJZ/K5xD23If8RJfldVX3klkUt3CEPCh1dS8GD7VTfAer4c+zLS8PR3VYjkeew0g3Vbxjs5mJuPAd5RgUxfGCSPkBLmOCl09lKLbE5WCHBPcoZ8swlc2igAiDh6jfVDgF3/FPH7UI+P4vN7QRn+3inbNIvbzE5rnFgyM7C+i6O3IP1F8RPiYkBhXMABnYslxJbIakXQre0hNcVdNhze2fYSEXZAQibC3WRlMgzuM0Juhu4U70tHV5OBpT+wM4ErIfTLYaJoZcriR1/So8Pwl30nXALZB+OO32L+yrOkWnbpQnuViBTthPdN3d6DUkYzJ6huHVgLUDjH0qBIkL7cE3hR2ujoLNlo1nC5YxOCaZUaPUde4HpfxVzWt6FsnlKTD5jfU87d5DW7jG0dHHelcSETOlbpEVMMW7gEhCH6Q2Nz/CLSETsDqgNjfir7yKH+i6nUwoIBPH5kIpCz+Vh6Riu5z1XtztZcN+Pgq9y6g1Rey7o8uE2JezNbLyykaPsRKVib6cIeloe9jqK+qB4Rd1eByjtTKF44WTOjdv0Fz5cZLHokFsH+GRTo807iKTVqlIIGRuT63WPZoG0ZUMWhH/I993FdNMZvld1qNxBPVYTLk931sdGszsOD4OW3lesQKgOmmYKjT0yRwvDrMqZSva0qSjDBxPrZ+jH4aTv9fUFyW3nhh2rAOgL8AC1/s3Khh6hk+FvDiLnAxsIzb1FyPLhH3rtz8ckARXZQBx3hUvwS2+CtpvJo6iiPUjsdAI/BvuTr8wZvUUlqwrSUndIzT4O7wB4y3Ukl8WVUZM30OT9JF5qmgCxA9i4L8iGbMRc+tZFH8NTJrYW1EraUc3hOwqM+xN83xAQBoMbpqjQGEBOHqa9P0YxJ3rlt2W1SDKJgMcpxV51PmUVq0vI5gn8vIeSdZJJTVOCrN0jS8l8/+/usIy1LnKKGc3e+BYvwaeEHBGAWZGqOenI7INfhxUSQy1N7L4dGE5AtMaqFH1VzL4QjHXj5KKxBz5FuRH4z0VLNtsRLvJUFfK49qW96db2kAGkcyh2JGJ4+bo2f3B7jx69bKzi6pID4FuYdAyRa1DGoeK1bL1wW0DZ+EXRrOsy7Y9jpYbcWkFtmHzM1cy413Umhpf1qSGLkYk1C9qIch50cEEm9L/VeUlEYvnUApAHeUsdtJB4U/lzLnRTRLJFtNMQYUzjNqFxJsAL9ImNHFH1Gdhcm9s4/QwFtVu8x+JktG1Qhi00cScnGcTYsXldk2ZSc5XIjI/tTxTeLICryB3kXU2lNUCrObtJhhtCGZ3/AO73pV94iL3envYxxzaoxQq0VNbpFO6uF+JJzpGYbtMgT4/bHiOMtfmE5Z/4KMoPfy5tI2wl3Izx2zjtnpB7AL6pDWRj/Drpzl+lOa8v3Pn3lkdG7PIBF/48E5IOrNRDggLwUeOg3Sz7W2UsBy/KbyWkQVSZ9lcl8QEBsxcreizyKrvs7J+vtiC+7tnK46vXdO4i1/qawK6/MsTr17K57lHXIyESQLRIpP12/aJHQixX49nD4rPSp7+tNkUR9hC64HhWa3ZOPIpAX30S+GkDfV1sjTFE5y+4SMXk4nUhWZ/EPrugttTW7NwJ3nsYwYUlURftGo7XO9LQO1x55ZoqcoQDeqhhrVY8ScA35G1dTGNXlFrkE/YWBZSH6FlSEEp/q8d4UOP2iUcapY81Jsblea01r+jzMjWZ9ksrrjW9fpccwcE6kPsp9AEWt+pHfLWJBvxXAULlk6P+Pxn0y039/ueX28evKpetTp1LI7y2lcmXWdc2fOtmEI5KKGiVFxEPucJRZzhy9639UOkwGdXd6BYUaT06xhG7NCqAw6vkpk31eT4iOm/s52KI5DcGyB+LPApCXmYGCLCy9a9rCvSR/qg/Jxw6Lkpa9jNgC1dqCjNI1abgw8pCBExHQaJp52jiZSC/3lsZfM87wYPPvZzToB4QU6nJCFSYbSIAXxcu1Uyy4h9I8ZG307aTvxRMbDve9o+HE+A+zS9rIhsxLo7E9devc/Tr6HjSn3qEBufaPvZG/djUGCvr3Gg75vhe2jRdWObb+lYF0FIAmoRILhQfI1wtCMFlW0iW/GNvx20+BxDnWQTKr+ZTetWxGGgaLeksqj9hVznlMQ/DB5gAt6niphTXGeKe/QTiqB2thmIR6+iO0uTHOeFM9XAnzJSQl1wNKwRA5uHqiqQfwjeNScye4pmgtiQvU66BkMg78aqfyOUJ6qwc9rk501y+ySLjqwT3P5gj4VofcO/A7/UF+JlC8jKjiOVwJF1smhbZQjLLfjnxT4+0nzgZB2O9oTtU04TO5d95WjW6OEFUwPSCsKheS4fnx85+ECPr5ktwEzoS9bREVQD9sWCmVzst0D4d13c9SZ3poji4CtyWaFKBpE8jamRgzpPdtp/8mH+dAyLz3iBegPMB5jLxYPsySXL2JiasjskKrkcnnUGwEUYM1HykVEwALE2+qQLBR7eqBCpO/fQectwJ0G+9Rlitdtq3Or+hH+9fzIEkQY9q2NA8U0Cd6IZczr8Foix0ZZfj4n1PtFTIPWK55lLU3A/TRJ8igkipZjmyyYeIWG0nNfkCLMDhm37fJqfRwGgS2Sg8Gws8vxVcfR/OhKin5x0Pdce4mx5DOtzlY0vQ9/SQu7zIcY81xB6pON2r1meNfBX0oHDzVcuYGK6qf8fAR+MBPwarU9jNXxI8T9V1Z+tr0lAbrHuQf0vohD9VD7u2uYHpTc7gZuw6e+0Hfrn1u2FEXmwdUDz+tqr8KLVnfnD6/E2f1I4CBndT8M8NWwSWFYl13jHz2+/C5y5GKhdXMk+miHOOl3rkQcfVyApXXV/TFwZ2Wic1ffTlPj4q7IyayvshTaiXo6B84tjjVylE0b9J1/0kiYVKv2WYq08fOG2u3ikxfB6tAC9Khdy6wq8f6gpXncdrML683Pg7tACEoCVV4gCIeiJ2SV+/jhDbEWCN50IaoH4O9KHr0w1PYOKP0AMEVwLzNc4wXkxeG6ON2F1HaJRLjTHNcBqyC8nbm/amgviNsw+zd27yIugsLPT6iEA+gB98yV6wMWE2cu2+Atc68a/rIfnaBkmkgKNV4kgXmgXWoAOv+sNqGU8xe14Acv2Q48vyz8trWyoD31Ytay365/WUvbpUqLwNSQ/0Yz+WsBN4sIEm/2YqB11s9tPloYfqeHqHx0a5GdEKNCWKcELpoaIx81MTgZklNQwrxBdAbGIqgh9Pteh98ZxyZjh5mYXQLWJ7C7qQAeUGk8KvfPbbBOv1XygbIWvYwZB9Hw+Y4qNsPs0WfEdGwucoylaq+r1V+ekTLR/GTthxFhvOYraPFsTnW4eI9UJuIWT+RmAMwt0DTsIVkL/0mMapUIpzqIHKJw14XrDYTPgzY49KV78Bp7DlF87pDmxwMPOpdYeOEzk5R5ybnXz6cv2U1ldv/JPQtLmqsB9ci3gFJIwBttny1kUsxXfYVRGj+Lb8lR/6sK8QkQfBHmdvK/xEnk+SSAA2TLHu8svDjxsNp4bsz2LcLpNG4PQ/m7uUHoCWLm0O6iH7KBtjjID6aRGJIladnHoIJZ+R7qRkW9BmmJevchZsy6uK30yyS+4aCE1sACb1TovDOX8NSndv7dQOP4gMqaR/Jb/qmZUPNEZG9Q7/RwHn5gJDDJjhVJhccQrAfzOkyuH18PzlrHxl45xhzo32Gf1vrP0YrQpgy/D68ru64sGIqiUv7H4/hqmbZs+F+MhZnOQGTOH1x3s2WEzT3W+KenxMwPeDTI5HZzNiZpcvViuHVH6dhUCQDilt4TK4qUjDjKyHwW3IUp1BpdZQXL4IL+oKBukOqrcjTFnp2FEF/SedsTI0QOl3DZTGl5/kJE2Tr3Ijs1xxc597YYrgybqnUsDQvVg92UiWQojdMN6ToRU0WLNkPCYr3itehkmIa97q8XOzPpCpN4XjZvMNaFvA+U4K8sad47t8Nss6619TvtmktjiBum6/OPVHGP+/0n48QAF1D19HktrjaCZfPzT5Bb5ifLaIbFHarMe6S8oMMBWmpPkzc/W3Z/PGU2T3XlVVheU2TH1uR9+e5scUHji/0MOzCt0J9Thb89siPaYQqT8dqM7FsLMCR2ylkUsGIB3hOP/CazkMyD/wP0Ni989jBh23ZCgT/1qt3jZBCo2f/IoODZKj/68CYND9q7qhppu3S19EKN+foZAT6zWic4mshhEIISzNpghabt0+iN4bxAOzTJFSSTB7/o5eKltjtI6mmzQXAVfSHXIpgZCISkoXdYTaeLOuvxy59xviiOhT7AThrHCH0zjcLYBlF3Upw2YqRRUK3baCcU8utj4NaIvqw1N335K5IFpNxsnHWKLYc8JCr0iZXrLf/yd64ZnGuWDUbNy+2WdBwKeEsOsKN2cRzA0jQAajeh6thYOxgpIOF9aleU5Xnl5DgU2QhP72WZ3LcyDCQpfpn1iW0stAwbWNz0UGE0Q2PkQNsI2CgQhwelrFRh6aKEIbfYVWevNWSDwDa7aekbW401veeRCRzrxmmb71nfDusrjPfeZjyupJtBdaf1TCDdTXHSjWTJXcJFaG7BNo3DLEWTmyVt7uVAVIlPWTg7/jjCMCCN71bQOek+kZ8X9ti5JEHAxUzCiWye8Zf5ddZpC5LiIkLuaBMJbWjZ+5/iB2+7riY9UdmYa10NUUUFlyP3npVHrR5la5QW+tF/VRARDxxf9fRph9+Qz4SMq7t4AVKNb0evVlwMZMul4G9KZK1ZtPY1ZmyoR0vnO5VB1xPBLypKm2rESdmMS1sZje6BRFtxptsfQnjmk9eQjMZYu9YcE4Edp1WuplunSUktvn7g/jIV8d4RXTEnksuWycLsBO03adezADZOuKULJGgHZ+k0oPgruHTgwrakcz6WqTsp7bYDlljBoPrAN40+4mohNiMn8B19/nBZB32UaKkU5I82Zds0MTFqu8JhJriJ9QipVqCS+Nhv8frm+Wky9sWFhG4kK//u2xnjwQxQW7a7qUp4qsV/aF4W6NuSwBNeC56tdJjbxPEMWsRM56An1VQ0bbRZkvSh7LawCbNh77dYoTsUmswXcGc/ycMnhyiiM1RFppbEkaWISU/IReGj+3iPl/WTVzr3pseMPRILVYFBbiSv053HWHQtt/DO2oJp2+CwDSvD87enGTQT1JK0uPA++VeiDVmWgY7EKs1Ci/tmgVAH93E8LHScQgjTJvMjymwcjCXKl1bbDtbCUavF6MxdwSjO4iDc+udW4uAT/TKgco+qHCR1igKN9uomOW9AEOcDXVgzuDHB91+4X76eG1hOMNzGAFjBioMnXb82hgbByWdy0VlrVfcWtpBlXSU1zjsoz0d0nrtCPnUEpO27590BsivU5YQiTbvcL+ElYchI9KmhTeMlWIA41cs1PQhEeKR9XF0U7iQ4NYNn7XsM1raBFd+mfG0LyOhLYJawicvCPem7KwBjenZ4UflqHDrJuZaEE5vwsJvmv46fGEGX37nMfsSYCFqgcXclGepLwU5fTOzAdwHRImALrho1PopuaYJZdtPLFyxU8DSXin9A29OVeZ8A9LtpDKuFWBRbgClizx90gojB0uzgl+vyYVwVnBXcl/bCzuGluMUh6EwgGXurHJeUXy/7t+7mweQBXlps6HlXjQCZcF0sxaiGT8sZ/jNH7XKFIopJH71d4S/9RABdrdz7mq1P6biMBfXGHwa/+Vdn5HlMoxdQuv8xg6Xm1s7S6Gzg7pJZHf2EcuaENBft2t1s5aDOIGuv9Sbo2f9tTg2vdK0EFpohQVbcTKoqFX8NBHNU0gOI9WIyMXHzSr/7vrooByIywRgaaWcfO3uwhjzxAXd9vLa4OCv0mP4Hpa7pRYHfrwSmo3u+cqB8QnA0WzIsXc/pP3c37qXWyanOEBIzIL3/Cr2aa5483YJO4JkgKF7PbWRPz/HOxUsmYZ4iqASdTa+BNf7SoCKcPpJbosfMuaik2thK4OUChnlYyBFnKFMRk1fif+ivECNjyZJJKXZZZGApY4BkXLXMDPiRaaDFiwnLAkAEp43AlqqEpLrnQAo6mo7yQ9Kg/tT2DD+FAmbcXhvx0849mfnBWK9ZTsf/XHYhYxx35HNSwTS6HR8TuBRYIeqwPAhNYMTwj9yDtJdggSey5979lu3c/SPcD7igg9k+FVhXg1RNyUUiuX50EAUez8JVmFU5oUxhassNnBHYEYqghji70jSayO/4Gl5a/09ooiVrN6z6PoQLM6ncMwJgIt/TbGXrzU9WvXArEa5XRQChMLDAmJcyc5AYZj42Qb68MFePcsIKAnKbkl8vRIuvsq//Xe2kgHtSG/Xqbpwcgpgl56egdD2+FxCW7QKjCFBLPgkItPKlNrYOUXQzVK/1N4W3/0nCualvI2Qo1JaGIWS3fHGX+l5Z+nEBRaqvx42POfL52E3pG7p2iLsdhZhJgHUp8MqjQpZhai/DxU0u++/MaPso6+l2yXMmp2kwAxEzKbYe+1cEmVp+ck4VVX/AJhaR8wRvsT4d0gaDSuZk4OTxHsBCpJ7CKpvXPj5xIFH2Kz40gi3Tb9daR96AYwtW44jrXmF0R2cKfFI9xz8qI72u2Xug495prjv2+g2tYW5vcks2Nhe9nmkArOaF7mdXVJJPr1oPMwn4ed/H8tzq1O2+BNAzMBAV8FxI3P4Xu7nra3S2145egbizZb+z7s8wVtUt23obCmkOnlNVDym7OKzMcHL/G8JzwrujqLuqBTgWJUnuoYXDEf2Gu3Yo1LeFyY3Tg/lQj65K7D4bsBtv1A6z1AdBjUQrYAwJonEyIYEjbo+Ov/pd8tMgHTBzGa0BAw8hL7btrAV1xV5qY71HB2DT0ilzsddrdu+q2OdntUK4bkXtEMG1f7v6WbMOncqHvernWOXc/BjbxvNtas3zIjgqMS0t500Xpkq8RrCbXD75SLlNJ/W6N+MFuWLRsULW3DX+0N/h8H8XYoypo01q26tgsKfLsMIBCGN8/ZPuAgCYQ+cIlk9yFZ/VW9baoO6FxnKC7ISiJ5QytWKSAGjQ6zpaRAeIeritRcigJZcol6Kt/qu2Z6+oN/L8Bnu19m/bcPpelF+L8XZKa0maFLWVMbfpsazXuKDtdj4AmsRZuR7wjLMDCgcVf9gjzmV6DJBUnyJwhfEaFA+6rtY7PadN7Y5ecYYC3IDPUzlYqmbQVoAAF4mmLSrXNz+ZuaO0xWaslx2Es7qy0sJjwSgrOj8XEvM+kNOCpBsYQJYnYkfnWda9gFHG8hA/hQeUcKWDTCKXid5Di8O7odeuuE++vxgs7TwLwxQrKTjxRtM9XYeFqCyx12C3JkqBoCMBtTSm6kl/9o6Cxp0F9+ct2zFgIx2YfCQHWLVA2aybg+6CQ624at0igNBCyFOujjEZRFnnCkcY7iWjZu2Ut9JZmM3+EfrY7PZ1LEzEP1xb1P6UeHiey+aLLUBs08QsjkvMh6G1T/le6xmEM/xOW2LXJtWjYNqcp58D2ThEDE8skAY8Jhl51Bbqsumw9D6ZmhA9QBeTq6zKhXOBOVTbk3m/VdNfmRTRUAQDZ5HYskjbrGE/CvWgt9E+U0MFdAVBogJqO3UCSptXVdmsbDX48BSECSRiZWj8wM0rgr2P8ubYdq/89mNkMq9YWC8vXIrTZYhc+TSZmd2k1MDr65hmx8s7VdcYQ/rPJK/Ui+W4o6zIdxZ6PbYYzzdXcEdLm/F5lLdzTlc6pLIEKpMw/BMLT+yViilq5l6GJCqIoQTDcPBZbjMrMU5JiSQRvxmUPch1DhQEJJFRh+ppCl7Z7HKcjDaiSVjyuB4MP34DFGINU02/CUiwRbGsI30NYjuzleZdzytbCvE4InDzuunMtuZiUDqcDJ9RiVvYHB3DanQ8MrsX/Rx0cth0Bu9YasAA1g2ZJumtMROR8I5ZNvFl5GdwDNcQVnZAffhDWCS2KmqWMN4teF+gds9WBdN/YrMbXvO7R0M7h226229+Nopjr2c653pe1V8xPSfEKkWzbxS42G9csrEOv0/yZ5rw82uCjnJ1UaXYCe1UMWv41DsuiqqNQqUiHJZwVKMjvVhlcOYf4ff7u6zQ17R3rsH/63VcrePJRPIX7PDFuCM1SvSluHCjozET4lvHu2bWOX0PkqQzPKmPSoAXRk46qJH2byKNK5FxAUV/JANJWnt5RGn+hs8T62Zch87DORjQV7yhFv1CsqAhG6gPCbqZj0WUWkFaueWtMuevypnpSb4LzDxoUefHDQ/86m5oQ4EQuS4RyfHSrqcnXdMypF0IwZc6GPEOemPOlkAPi+YY3JYCp470lrjkMafIyVfZu43BqDg0GGclhJP69Lh4D6RrV1vZLVMIPfllwN62n8Fgcli/2L3Wu+/0VP95joDDcVKY3abELwpweI37m8Fft5RjhEeaR7c+RSFBdCOTSLaq07yN0oNPZGjO6mBeQUEhCiCltnuF0r0DzTqJ7/HvLGDvKoXAAbVpqEj8yWnMBxOUTrXZjkPorSyuonCI+iecY/VePqmWFCBP1LQKuaF+MkDlLereIo1Lhgz9X4ommCpKUCzbHVmqJMhCBUMcgFgXs+ohB42Bs3TWk1fLDRynXLXLSNsoSk24NCfBGIhtbjTh+nC5J0G6dov39W0PXvnVy697dYeUdc1jngNp0VA4jbQ0jDrzLeiLfdMS4M3iyAItE7/KE1EuOhOiBEbWWS4XlUEzsdwTjjE1GkzT4GrGNbzG4FrpmKAY/NxXKZfjUqcwpQClIciaYPqz5yXplQ3rbTcx9SMi0CPzbL5+FBDJi1vVYQ74GOAxsGQ5pAVsJDnDQDGIvHcDD2HS1rYWxTwCUfrg1JzrRSX1fyObxM5xXwRZtZsbEY4/zEsmWY/syXqX2io9XJ1MqhGi9CpAcXJG5+ulDpfegByGbs8ZtQ4AM9MOylBX3N+LTSBMfBQlXdBlW4OViiFE40stXXGpbXkKs5uJhp7BstRpTsWsrIAG9pjHBniOzPjTAR3ss8o5asnXsUzv/RaNnbVQ0+cFxoaIXHnN3Zi7CIdYEt1OgwGZaHmJUzBdAFPnZrBx9EaLVhEM268jkaZAZmjqiuOJcafKaVJ4uFcTqtBcJRLu+wBdB+LB6ZYopcbfEPbH0bIsySFZqgwEq9nwUu/oMfF/2zUOeCay5GoA/lNQ/9dbvZ1tdHYf0ZGrKiwZlJ8UeZtFuEpPykIW3wHuAV/kTEZ11wr1cM1Sbu92ISIGbcwc7vRDfJLZt1mQhcFUkF41ClDLal1FCfOJ/zFof2v2J55iPZNVTyjNAyjp7EtxrVmDclPbXfv/0z1GBSbA0w9KgC8GlUvJsu29LvtUrbQnpEqq96GVNjnfjGxDCyuCvATMrwTMSs4hQ/9PhjO7LGOhGSKN3XAVy57KM5ZH3mvcvOjEFmSY4zwNEAGd8ySpu68rA0bKjbSpY0Qei5rfeHrLg64MP9SIpkSO5kjC+wYIgR0Krbp/JWTOfyf81xF3DKRV/dGC6+A4R/A9JHNL5YPiK/+FZ2xCyfNaUIQTGlxE9/d0mPDptBoZU3ryUV+TFHGNT5K/fPh+8B9arAHI6TZ/UUWoVNaT2d0pwmWtT2dqklM4WUwDzFPxNjp7XWQ5Z8ywCIc/g8mzhv2Go3ldVmxwhTgye8GfEQmJYbJ1Z6l7MRoLAvIKSLJPW7/0XcqxA1lXBVc94ZZXdsAwIjajDkoqJVjlWt9/Pj304Sr0JgxJMW6JJpy1NwmaDdDRy46AytTWTjFKt2DQKbxTLly7ViBC7aYG2mF35YZJASRZR1DVVrVBAf4ZRSWJq3r0FzbbVGCFgP+OlF+U5amY8wBgq5ZfTW9WJ/OA+LRea0gX0kUmNpSGEnX7c0w6FT0tKZAh4uNxc8K8WNWvUwEW12KSY+rtONJQquN5nx5FMmMc5X55ag8mGTkaYT53DGq74INk9vJMROLPlLZxPx894ddbapnFip/R/pg9n91+Sh8MNgkcFbScbGqJoQ/Wh/vR4u91wqlGvjtVAmFTbjUGWeRnflLF4vn/1Lo0v/W8k1Q6ebkJBlLPJzknzH5TD/RrsIezlCNMVONVJZAlG13a7K8o1n29kPUPLplecD9GxswTC0VvxgU1VGc+4xcJxjaFxhsBE5OGdPWZw9faY6VSrWlZ5uh7KsSPqRSgBaDOrwkajgvTuebnFmATZZHA0zqrjdt5yu71uxSyf8C+XaV/QzqTc/ekQ66NgZP1sWYd0tTtx+B+evgxswOYJpdeFCajS+qTKWrTjypPzovsCCXC3di01cR3jWRaVuUpXtfCYNHDTf26UJZDljQ9o4oR2zxlaibVwGVa1zfKvZe4cnIXvZUlks6UPtz4EmwiPmsltJJBeJ8QhzVAfsaNv+udlH5OecPxKXYRbCgswzE5V4pzqm8l8lrDVC5F1Xxap4lkZEVP98wPlRNBUkWDejZ62vQyBsYa0kDcQlvhxZk6ZWWiXI/WWZjQQ/cGrwD3tn5X2vGjwaXyIgHJLADdSpFFf4MYOVcliVdpoFnTmMqxSYbAqoRYuGM0zNE9IBhdcIIF3MFkKNnaVjrpOrWt9rVoMJr7uP/NXM2gzMJJZamNmv3jdSkysecG+DOl+J//1j/4ugIVpyJS3GN4gebQxGzFLJwo9kl7YzkFBGg1I812c4zE25Zw0uInAl00SdXBhE7eQdCrIYCxrQ6BP3PWZh5LUUr/Wku/gpmTJD023OBcdFo19A33z8mW6jzteU9gbszuXqn8y/CBt1ljWh8FmIvVfiVn0U+9RlQu62za7e0AFMf5Zi6PFVeHmMuAeIAl82EvPSxoX83Q+Kkpg/kNJi4TgJGG/QQbeDJQc2ApNy9GS9sx1OcBYDdG0CZOSzeEmQSSQiWtTch639fi+k22my4Ve71m7IgMSIrNbNaC7SPHd+9LkEy9+CC6lvKHJfxhR1rpOlTrMzv/dV9v9Slc0G4o2LFk8pWaF3D7pAjdJSlQT2xjpUcr5twv/hwTyc1zhWVLvRh3ndxj/lORn0EgBRS8M6mlkpi14JVxdrDHGy/2ABvC6SOaz39IBerzATnQW5o1gqOzuHL5q10ARUmCWMECH74Gs0euP/nMiCUDEA/NQJupCKNe1q8ifO3CxS4jgDfN4WP0zPYyGudU776iRgChJHAEtUhWTVJ0YThjoCAl5567ERUFaxerkash+ZwWm854SoYt+5/qq5bIrI94B+40hT2QI0xroBS4P4RvvWQLV06DIOtWEq+6e2Ep1ry4NRDFuUQYENO6vEJH+8RXzQhJp9w/luAGxudeLuPrR88+TAEWdjQ8WoEWJ0OALN0xyGeDj6oZ0UvqVq/BwtpPApAgdzJN+yfbG224KXXKRb59NGVtxmfen+Ko8s8MYViGdeBaMfFZFv+Xs9W6fYzI+GjJE1+sTwS5nSETqGSG03e796t5rsKuUx7oTKss+FF7L5d2AbMnEfRwL5X96fr9qy2jaXNDE7seF9BNsJ9UtNmeYVBlb9xt1RQFnhRIx1e37Oi+SI8vXeWV0niALqhCE8nsBNWONa4kIamEMJ2HVB0cMS50AGQpXyS3kaXkDkkDOcgUBJC227Hy3A3TEgNxkNgKYus8/UE6MeUxwHI9mfcoukAFyCR2gkj82MqWIvEUw7au3gQuqrMD0h1vjXuTGtsq/AsahGhCT91iED8cs8Amyw3wxRqNnXqpyA4SdOa+Dopor4i3kGwZjiRZA2qpY+XvDcSYCH1gw6qUQWYbF+u5RY9DKhyAr2vuyv32BejrZ9JaUv687MFk15nqXokNHRwG02idwZQavQabSN8X6DYVjDHp25fAmAy5WoKyKfCZkqufIzZEtJZGuH1rDLrNkFoFBXYT+MYGd1sQhAxHJlaromixSK2IMpY/z0Cu3IWd0p55xsdBOQgV0Al4mu+I1G3qGgM9UacSyZjdGUcA5Odl9KqFAoCXrEmwDZzGAL9F6taSNbjzT1D1vrZMm/80vEzRgJnXXmhkXteLMAlGpD/QR8mHBmDv8YfZfxPJsFEzk9QpEOWaljYTaBDPorpNwGNkI+IkWVK5sFbsPeAEdpWl7iF3WXgtP1cXeu4+ON0LqPyss1uobmKG/7HEojY0WIqwgHYz/T18BfnYjIjoHxeLWqmmlUrtBjsa+uablVT1tezIKpCZmAXxCvdF1vgwcRNIR8rP5XjUtX9rqAf3CG5bbzWwF80ZnhyDTQ0L3b6XRJeA19P2Z+hOV/beH9IcYy3fnwBBU/NwDEtY0HAOOWORGqWPJxCm4p3C/g/EPe2rE6BW6PJIx/N+3zHmfe9V/rZgg3sY0Mm0QK+WCXl/I72hodl57NlVkAcBgFX9+wUAPpYpl3rCIR3gUCc3pJZ5ZXDlbH7UQ3xFMEfL9rC2w86lFyLCPj60z6O1iyqZjwtx1DCQD7AlwaESs+SsF30IsHp19OAsHrJwqx/mhJKJiZwpscEUAbZGiz+pep3bOmQuUHLOg/8iDDJK7S1BMNbC2mzxzJVDPzR9ENdjZaMjdouTeLwx1i1BN55D78tyH6cfZyp8e0q2E70D6lxQMkJnqvx1TMwMpo2GP6ZnObw4YBPeD6ETO+zSFy63Stnqf0B2pN/s+jQQditR0Jeonh7QvtUePLT2uJjDgfIxcJ6V6N/qetFjYWiTofHkkKBYceA5g8dMqTQ0aGJwiHsJ9B21M2l6A8nVlfw3k06ek/GuEYYJ//3eBmLsuI+bWqwy8sufGU+Ce1ZMI8rn5R/12Mt3mmGm1u2e00+rhB85sOv14Se9jISypUM1Fj0vEJvay3+eFlvZp2PCkZT6NfOcF5fJFeCtKi4LGKsPvUrjBEXNv0KVBISAUWAGx54umEFirxbT1IntSoMwU3Q17dUEekQv1jWjMfN222DZHEu6YlGkYJUZPNaDiXSHZgcN7tDXBzYaLwSn7SCcpBYm8+We2HjGdWVY+7XeX6iDXtQaQwnWTB55G/GDCHEez16hyC+cG7x+Uu3GdEzBUnj5hvJWCiN3i5lPsdMT5MJUQNzmEA7tgANksVcDdvsqH4b+N3CSYeFphTXkUpxKtWgnzYBMpy/18qa0xykiT9nkEd9NtuMhNasr80mTBda5ognt5mjoNfax8UTSDdv4p9u3rvv286tOPVqfnnRTfcyMoDseKmXovT9di64cduo7PDfxqRM876M1fMqDmCaIgDiHyLI768aKf38iHWBXHIK/qW4Sz/7zYjiFzrYdWgon3pGMSskKlGVDyWoerfx3N59KeSUpJtqckly3Mi8eRdOoV3KOiOiBkUqvL8QZp8ED0eXvuIJOTP6D51ENl/EsLElfUaRKCW+wYz7NVijYK4aS1mVY3o3cWQnoJL+UlHY7fN3NOq5xKhAIIsmTEYp/Thrk5Fi5zDiabCOPuc6EmzFA4yGVE2QANqxSBpneC9/GaZBrXTP0LeN5zr+lkeg2o4hw8P24q4Ro7PCNmTgtK8b2i+GbmkpKApVue6FT84h6jN2urpy2abfd9Fvw8etDIKb/4z3dAOIVhJmANNqvANWju4Ko0d5H7JlCi/dIKGAzt1j0RqlkT3qNAS5fotVgtIqa1SQGdCmp2uG7GhjP5v+DnWHrbVsS2Wuse5Yv5kTnHAEVPSgFegeSpEPYzaAeU9Zgyxao7hQYL1fv6+lnc+wJTS8bCeg4QOo+8kZxAc06oFf7dJqWzYQWHfzdCZaB0gcLrXAkcHF4nguSXka+x1xkQs48T6ThaYxIveSiBKsjSHqnzvClpC1mC+RgkHhGs6cZSUw9Kxv645kiHDsr9F9XmSOSQ8ItS9Mtf+ZmXWzHZr5UhlBG9Eh/e6W7ncUzu67eO7UQTo5BotZYsYGkI1885ehRGkk8ULlh8ImhreRO8wPZSboLDEWvJQLKXAvo4iAwqoXWEikRNqdzeG7bFwNjS62Hhf1SOwbIz1EAyr+6wTOKq9PzAwKxW9N7+PgDjpuVo5uhvVJi7dOO6PMEAUVzuoQQK3a/IS5CDAQ5rZSwzWlG79CwBouJMWya0gxZoRSd7FnBrlieTBQ+EkVUiH1G8Axp6XFNEvBVROV5qDw24uWJo6iLnXwF3MaxMpQ7L9ryXk5+N42Jwg/Y+WXGEo0YMMF6Vt/TxPkLGBN1nP4r/ixtwc6AfBxksDFbru7mVyIL6BjPx0cImz/Rn4E8JGAsSOW44OC6HcXd3OAE1jxW1J6lqLZI3tOkOSpQRUmXY8c1sUmN/PH08QgOkLTWsNUE/IfVgneUhitqTHTaAOIEbyd4hwwDJKpf9pNqYOWenlH8pe/W4SPkSawW5QKh1xc1GPuUydFf58WC87xIls0kJDA8hVYKBzKOFQ7NDgXlRTZ8iXGxjrqccF3XJr5C1O2EvHvgGN1t9nl0CmnJMfidVkNd5Ee9deN1kwraJCrZnxQDATsTBVgOx4BXbh+dROxy9tVujK7usdnh/O7q86jMJXawalPYi+rCLlJdAAD3vvYHNIqvWkvOmYehWeg2CTjn4sywD2qXFx6TzjJLD55diHhvemUNdrHR/T0duN97RlP/W07WMKv/mZ/g0ODHbk5cCVObPhvh9hf3tL9Z0DDzDBhjjGudD2An5tIrm1A3Kf+5Mi7lDdi1vPwyEiGMKHFQWa19aZ26HXrWGPrfVmSqEIvoqrx2z8k1c+ZlJCSXeiuT6imtBuBFXsqABAmnEgrFhCciqaHBAWU8pxy2PWr8a23lcAj+znAhBMJdKoan7OHzg8kdGkEjDpAS+m8y40hbOvtq0Lf8UCMWG8zlUxDb63V0YM71rIlNI676EcV+lNjLYQhBu455BMB99/e6P02MzM7LR5Vq6XMPyvERtMQtxJZpTz3CDho+Jnlgx5LfwPpeIzlanAj7Otb3JJnwLOdcbWKXxSyvm1gglhPh1h2F/szz4lkkWIB7fQOIdCM8KBgRDCgsEZimwL3bzJ7sjo5w6l7/ZYfFD21l4cqYbKQ7DVaBjJAuoQPp7cGe4D4jguh1oai1WhRG4G9wiTmkKCWgk1uShfD8hrFyI7Y5PXsGpJlHmMYwwGWKPSbxPIIMdc2xvz1aYAvZK92BEf9u7kho86Os3CYOtN+KAwcBUgW0k/zuUlPDojsPW4nDRamJ0bcGsyQ5H4H+rhO7YVXVrttUFtZq7ALr73C89duwuHVr8jKSv5URTiN9HfLqPIXXEOuFmU/ZmZZrvBo1lzWQPlaALFPa0Mjc9GK+3C1Skh7Lqz6uYud4ibKF614uGXsMtb4ykUnJlaBO3Ajg4qObNeoXdqVC+AX97vbqJJchPdlwGnrx+d7trbSUux/vQajoaYlTAUSG0W1Fkh0E99mJ1beoRE6aeCel58fA6HxzRzOHDaMLLUp9iAMhD+6PezqXadxIzbkk7b8eWTw2vG/vMTIGqPMeSjxLwwKGVVCxY5JNhFnFiXiTYMtER36LY+1wDxy4g0vl3J/PDjvWz0BA/lj1uWeFMu/2ur5hh5MNxwmqv0I0TzGaJY7ByL431rP+7kNqMOSwBXQ8SkrPfNyqxRGMawNgLCH9mXauTI6F69OTTlxs58VGD4YOGCeNTX9xB2G+GodVJtWc1iMe/xVTcp+KsHUaqn9243ewcZ0VO5CpFlUg8whfth/a1CF/2IZrdR9We3Sx1KghkRLfQwCDWri19HY40wiQcYf4glqa0sACbLcs08Nj/DMRo5mevqetIY1RqWGcCkh5b6yUG0pMM7lFiSFex2IIAvK+3vyGv/UmPK0i340WsMZRXecAs8REFitDwhxeaI0SJfp/OlonrzHTRj/3hGZVKIfHGoeY9OHxhf5+GMUS5K2/jYj71PKw7fNX1U2I+jBacLNJY3MnQfQ4P9vT8KYpnOLtD3oZYLsGPoXxQ+oHL3yZiRH4PEQcrL8p+dUpjTVUXagM2IdpsYPjghW9d0mkKKF6QYIDStql580pQLTojEVdKR3H9g/mIBrKrYzTNnlV0sqwtmqrARGl7dCePO5jaKP7u5PPT4uoVGooIsnlGsP0CizMR/abIVPIk7USDCWv/7eu0P7wB4BOSiMWi8BwODVXC6qbLtR6zugqd7uFLEM8QVENq4DOxh9t+wWHfuq88OvSzN8JuzglMj4dVCsv/q7Ruf5kS2auKxmAHRgt2tCiCqPIjbVb9dKXrCyzlBg8chIiGGmaOfw6JgdcToMKrvAi9ybmq2rqspzXBhzRYG3jx5WSEnHO03PgcTFM2oNGTaCUzTigJszgyyaG2NX8ldfmeKM+9bhvmnuGruvZaZh+avxOy9Dbm6NXz2m4Haq4Qnqfo7uiN8T46JpDPbj6VI3tVaw9hOxWoGS8icKyPrtebOXaiJcAzgdJo7zWNAfd2H2zge7vm0PlCsKeX5dhEkYw5ufiXY2UTnebcrmfK+wO1Kwu2kjIZJUKePmm2mLyHv7MFyj9ORrGYOHo8vW1WB3i6fI4ngKPTQF3LAdYt1QAQyksrs1A+e8pH7LuLDRUVLz6YhZnjk9NXQWrK3mw1R6AFGc5fe8/TUuFYOovEc4EJW7aIXgcIUU6PiZ8qddkrP4R+otSY93WSXLGVmDwZxM+woiglVIfuFse/DwNqYu1IT0PDrFACw6RDCOEk/2n3UXSPveYx52EThkvk2vod4VA3xtXQp+oie2t4ZsIOMM2/oPEcyoDTpzBB8+A2rXDGXeSyZ9BVzlWit9v/1pQsjV4c/WjjKX8o0X/ImnSCilbStEkobyN0bGlODjzsmKYidT7FLZVLFa81EeC78d3xpaeJ2BKQGgG2mK67luew0pX3JMHFmuCj1VF5L4hcgvUIsKsPiNL6donOzrJ76VrBFc/xzbb3BtryS0rjoZlIhf/oaK7UEgLxZTUQyRbG+OmuLfKdyAwSIPmLXNHDOITfXWMUj595JReuB2hcjW8Qx3DXsTxrwzhhMKrvkjWpnrOxSHsAfBQTULSSuhyJxI8oQ+mOjEd7eQfQurQu7jkVBrxfadiIImt5bnCVAnDxZBsFa5gK+plDib+NK8G+wJyecgxnJwNOHyZmaCcGjWL+FKzRsTXS3SxqFK162+6Pbv0PECMT9ncuY4xQqxBKHFp3620ShJJF3rhHdMD4xpPqQ5azgrnc4mGxlTE6vaYzq+X8t6pcY6D+5PKWuRP28Qn0WBu7EfgYT0aC4H7P5oOW9SD1J2HcCh6gpXRteVvccT1/3cR7HdAzpASmK08oL1Ru2V9/ghea29W8kKuhWoepgkSQkZ10b1oigZkhUGnl943rFZeZNl3R8Lv8DBOzKoRPtkK/PnhPtjswfGD74c342C8VziSnMCB1n+yOzl9tbpjztbQB8536KsgZf+CXIpoE5dHkt9p3HGWfJIjeoGv3EkKqfmgIR3t7YisZ967nmQ3bpaG4DKp8Mzva3svzr/p/phEavr9kZSFRhZTlCljrohYygH+VoeGj05Ueffa1eYEa/NjHlfzgsxBpbs6mtRvcZIXDSOULagC/KGQ8/wLKIefw8YEoI4JlTQD8borr5REL+5MdPtrMPURuZBw+KB1zuEOPznSBYwwAbUjGG1lWDsiLBbR/nunmCrL4NwO4ifcdVSL2sUMBaUAnozpx6dr0sqGaBlaijuI9OPCllk4nYnaQYxSd7VHKmZtcee/yj8Y/G5/Kt2LF07AYZ+PO8Und1KWGpQwvpE5FTvritBaNZKlGgpjzBFXlRQAWOgODTCQCOCgnyfHxtopTd0J8ubZUxMSUWVYMhZa/x2qTB+DRsRAaO5azCsb7x7LK01I1bE2UK0N5RkBy+MA8KdHCHrSlGwb4Lj5qguxk+I1Kys3cY66bjY0mhKt2A+z+3/JDafwBosQ8qKjqf270eWraxjXotkXJCmayx0ESUxglbN3QkiCEMEqWvXN7HxqXfKwex8ImP1QsJl5NllF9C3zWAsXAgs3Z398exUDOqFo4MFa+jvpjx0R4Jm2YRaY4txBI9WxF5yeklGCrOFh0+txV3tx81MrxQGkdzB3pziwiPKQSCMLpFDCpFEuY5RbSwekTOQoWBG7nU+EUinKnjh7vXFDSskfPrA9ZhP6jeJ6xqh9vegLMXogdYS6rr4ADIoEswwq9GQBNLPo2hK3U2fPW5ibW+G5mAh10bXipM4o7Yfi0JeOeuGvhHZJGg2+tmtyQ3v1mmRHVQiwIOqayFM8o9u01JL9bf4DzLZyWnBu+AG/VyKEmJQCfh34jUFCR59pWequqnOQgsqgyv/Idh9xa5QiRa4c43kxpevX2t9tXrZrEEsFMXND81/xIBm0wE6iM1KxjD4Itv568SDOmQakaD4XW20eMr+ILqdBRUCvkmZVcWnNm+MEayRKldzt7w9+YQ75rkU79vEtku8It5s6sGAP1SqH73rn54NHGqjE5uEtnyNANyZHMabahzb8amX3GX/OJ143/30rwvMtZMMbH0lRxmT743hfbOu2Sgh/867QstwfjqPiGimpg6HUPMO8jh+7zvhxPRSW25XvkrzGOwSW42qPd4XU0XV21HH6dfI6ba2ZnXH/C/8G7ialYVyCo882kTlKg+PAEhxo+ONKoHUO1hC/9eH3Y0GuKUC2H5HhePgEE7sV2lfAuWrrV8U9cf5sHPsWjH7sJf9bPeaIlyh7ASFXBTacrfXKRixHilyDuaBIJk+y2dtX6KNUm4y6iDsF8TWeKKc0HMT9fDuI1HoAzlp1MMjfkE1OoNgbmINYgWPtJkzdr1zVFql1PKKRtcoPIh8d4TyOLkgQV+YsSvVgQQkChOQls5touRPx0WpxXiSoMeziOCCqEDdawmCtNpAKMTZ3CfBbbFCsRXC47gv7vGiDmT3h7SLXiXNon6HVK3oly55zvHN31/qS/Id8BDQpbFT8/21k9WAY4zEZxXNCvIjeXz6DPUnROV9905ul2Xq8qEmfdfwYQ331KxRQEAGtQISIXvzdjWKXunzc6L6C01UjapCaebJuXTlQQPXfXfitCe+xJ8a5Ddvaa2iktWbO9Grn5oSfargjdPoH86DU5Y2Fb3OPaZN6oGgske/ch4taeTtCjUOgg+N+wor4RVXsKqjwj9jfJCfCIAnMiKCpo1RfFWasUJYCc2qfR9inSwxxOUDOUd3sZSvDkaaz5Sd5gyFcbkKI3RGQ+bZYs5QxfVhZ9oVC6w4xet2StY1PkSQmiqu60a+gkTSvVWOjBeZY3+E8vulE73DbKtepWZva+WhxTU/QY64prZ5FnoO6APl82bEZJIcPdEpM35w6/csOLiIaT62d4CMkAY3S0LYarEl8488LeU1WN2uBJThDvsUFBewQq/7ZtuVglI2ZNnQzhXJRs33WPjTnKe3F5HrpvqurTfT2Qctpm0+1/J82K8AFJ737Vm8iBFndRqDPxlaTIcWKx0P+BbWryERlFg/pfo8AAn60Pum4XO1vxqun6zAkdtjchYIIei4vXuiL1z1pUDe/zamBxhLKb3FZPtmphOt1BGvEbROStbMzzp4Nm8+a2AN0iFX5izh74T37SVCP7lgTRTQeliYvMMyhjBDInJ9+RYJOvaliP627qs+RvjsXD1kK4lS6u7ptjdwIgsEFqZVdewbZvdE8ZrlyI7lyZIjxP82QghW1qqyQkdSdcXg+W4SvLI1FD1pNnpCHGUDWIO7E/JQjJahxNIASR4QMvbyYa4VzXuhBTIOLdfLK2dtgfqbZsuXUDs2tKJnNsJIeKIZhMuC7P8vpYpJuipru3hqT3jfTIn6ycXAePI0RYCr2OUcaTsZkCl9eWrrT4r/TaRHPr8OUpVM9Sxz21xUjWvPi+jnkJFHAy7vz6DeEWv3YsPUsK1Xpj3eNRXeMuzM2K69YsCa+ZyJCl/VVTzTssG8sAw1N9BpYCRe0Bdn9PByxaw12ENt/fE2palfibUr1H0FbwI5yO5cm7BUEy0pa/4XiNRDfiIWR+c4pNfXmdef1jIgq/pCqZoP4jSdEBgIM2O6qEK1NQMM7OyyoVF/oM5psOuSGCf0BUeHtPvQgocl/PctZGCImMVbNXa4ci1NYMyDCjMmJJZprmIiiARlgwuA3Ges3EdfTjt2xknKatYPj0IZlvBqvqYuxxps2vB9SWcvTb66EA87cXvigJsFFPWD4zxHEEvkQhB2Ip9/7wyJdUBw6SzIQroqU9gezliZCVQjHzwxXzLvaVkttVkGkd8/7PXwZ++XApYCVWUgev0WgSkHUJaBJyja0puOIQBSACGtpY2JqVOLuZGHo3jRnXnXNw+Iaidgq8TjaOB6SC0HRwC6OrHwd6XbnbV5hyW6OEZ3M1zAL8vIvMVYHJyjzHbfqcm2ShTznqgQabVcE5+9XfhypqR6XjXoDW1yey3SpzEZyy+uofi3MXxpbfQHBuX9B17dFLWmm/4Nezvg8ujPun8mJWNYb4jomnaVSCcVbThwgli4kKyNNq68W8AnGkbMu4X7uj8/1jUOMMT+8927Aet2mhnBkTJP6R6S6AiCo3n0jHQ7aW2RfTNQCmV/LtdIKBRSlpDNmCRIsKMQ2ITaOY7LaOt1bsfSsuNWL6jdtE2Mm+PThzgPDUj3jq7BvPDpdRRWc+7yAu6A7uH/804EI3HfrGZh0Jhr39JovD+60Ni9XrjM+kT69DQViER4Rfa/U9x/0AGrR+QpX225PLfmFy/JGBD+101LaWbwKEHztHa/BlH8JQE7oNHGa/LyRHm9lFb5XaM4f9uI4glgAEAJNCIgYzi4A0zSj5yXXUPzD7iN22TVz7qn8HkV3OQROjM6bZKa/p6KqLy1vMi9lYCdh+e82TIw15AHGPP0nrE34lo+/1DRrMCqPt6SXZlMW7rkCSB/optLVjevz80q7kFIffzAR8zWddmi45KSQl4EXAgjnsHmCDAfxz8kC0cXTtVW47lLSygUjMy+JxyYfA/t4hCn1Rduo9yhxmlo14vAFqQFTKz8CsmtcwECcG3dJBj5qyri31I+ezusqgEVSO09eaSGvn6iz/lS/KV3q5zpDVijCNw0cJjBz/3yQ3KI6K4+2Xc1CQ09eF3MBwZuzGiWgDOL/crsFwMKfo+uZxy967DSpOmw56ZbXb5h/lp2HqAi98UoBoM71M1nRA/8h/kgULABxQdzYSg22zDqJNRl/4GU2QdevqhAB4NzRJfLEd1jP4ZhBA0p7IOjw8lgSS7dUgCD9BHutwOawrwB3q0RY0BLtVL33Mq9AGu9/j4PGZ4uSwWluewno/6jJ9u2Sr+TvL1Xs8+Zr12jdPG9xmPQeLmsvwE/9VWlFNHk3M9WzwFy6yloUQXR7Jk8yv7r244QKjzTlICxhZHKi6tDp50JnvwYDCczICPOOPhFBnCtH96SBVSlmcK7MIktjYykuPXT3rgTViPIM5Y3wUC6WSxiYxxdAm7AH7EH2slQz7ZC5U+qTlXCeQyhy7O5/Jg61fxlBbHV9iTzaph1I4lIzHll/xqZ9/ZRhwCAVn2EpyhhqP63lpS0QV1gU7v+iTGtjrC8FkAcQ4+g9UKuZYrkXvh/OdwppbGdv4NfHWXClf0gHOEdsfp47l2ujd++vU7itdw23sDw+m+T8ZuIbxj9bGa6h2KZ9OJJTte07pwpo7YpPHVyJeCApRuyfUqg18buWh0JK5l3+s4D3w5+2tSOb2PSRiiu3abOqwQshjywQRnBm3LaPPLOih30QE2lg1mlLIRQo48GUb4sj1KbfKzXgcoNv54zpkOwTOHgtBo8vQexHtBoVII8u9i58sBqsElHI+mzhLKfoMwdGX3kkmv/VKUlNp694PwWBNJ0pH7mdRYPeOOsLL41HsCw/BlrhD/JPHAVjLcttTNgIhXsaL8FoKJuCz9u4SSD8NlumRKNPHAnKNl9ef4EhzUPr9lktIqjBNxW0A+pPY02Nj3+6CXv93xWJKRNARl6GFWQxNPHtzftg38RcF+0fP5H3GtBA27mzH3rCf2xTMeRq6J9ehheNZQ7M0lM6GX7E7v50ZdviG0Ozb4mUI6WHaitVUnSf82u+/5zwnpKT9wQ3Ih1s6Yk52Db1sGUDC+0v4j1Aai8/M4dJuCprxvsbxxAK8Yk+te+LyBnLUb16TUsap001xrKqDXlQ3nyEU35SLTvMU8ChfEoqypAS8N7TqagLzPk66hGYK4Q9tTZ9yqBZtmE5CF+GxNUEZr1LSWzpDIgo/4zJx2N3olXT8gAw5kNzbtLV6LvFUjiv2qVRE7aFMroTo8e9ihMilrel0obU972/qf4UUtkpyb+XtJ7I1961OLXCVQQDjNOwH7uEp9YBugbnUffdOqSsXlGKjt/HuU88TNKEqBEBlU7B4EE1IwWS0O3977Lzus3HvK/B2DrHxSxpPBeQ2T/cQvI6kc5DmsWmm5p09SPkysrGdUkrYeBHtuTPXmED8U00zKweu1kCkD/SYe6RvqavsoRkawcJ3wISEaM6nOMLmpgbS02/jPArvZy2DrjCxBDVAiQpKY6fFyC3agrJIRMo1n4eWGZHb0tscW/3UbYSJTY7RqwR0FWVyySK2j5nx6w6nOvq3sdrdVuBd0M8e58WMh/IJqkR9GiwSsiAirelwvliKWvYW5oQqeJly8Z75QX0Qi2814YRSTFpJvXkAuQ9cR+U3C7vE8zaRL04HTS3TIqc4DWpbAqN2L9OtKpFlleasGW1JEw4we3g9EQoAYON+KYv7uE8EDqUZE3IrMsqCmFUwd8aAneo5ymBaiHydD+XwW1GqfqOWo88pca5DQ25LwxSxgIFuoFBUEpdK+12Xy3Ih1NyaIsC25SER0HokqAyQ3PP3pzqA3NhvPoo7r531vCAoOoc8mKV/amp1tIsc3lF758g0K723or4j9R7yqe//okR4H1ilIlY+u2qDjKPeLeaTJRfq1PUA5htj58PHjRw5UgTz/DixeEikMuRdd8SrbmktiunLQuwiKsp22xYbRrrCj/BYAIrrIvSSQfwD/LuRMP23trttE0B5J6NRjSz32CxMNcSstANw7eJu4jySeHSMPLB490jP0HbrzoCApR8a7Oxg6YhMN9QfdJ4/F9IMZbs0SZSZVlCO/46BU7ihGBAnHjnV3xnd8EraT+L/HPTwGYjapq+sIk+oDtmIaHh0DVV14gj7K6VapN8ChiN/fWylgeL1eBU/NfA0rfRUCLrizF0OEA0E7xZFSZB+PdoCml2FMBh02V8Rlfo+UQ5zO98nkWgeUAHVS7Xn2ODIL+imtTXZv7xDjrHH5RHvzfts9V8F7sX2ShRZ8w3sAMr/PXz9o60yZLPiQPQuQC90FTxIOhbXH+K08jQeXbl6GeMJLc4NXmYjefganAYNHVHYOKNgC2u0nqHbuOpj2GejQaKKTtudcyPyaiPp40Q0sFYl/EWQ//VO+E9HEeP8nH62/wk9lgoZaF3KwDZkWBqdDKLVLOXCVNuxN4whqM3YCH7/bhqp03XBaTm6HlqKDD9C6ha2Oc6JgT0rdvZTECkkKdZbkMBjXsFZO0uZAO3dx2JItB9pHRiD32kcrYU5J+QHNyZzpzefsrDY4e2hWSYEgDYSKo81/1y/hU8Vgj5rLDnk7D6OKCGNOZxxgqAEu3qHCuGc2f/96cU5L/08cf+y8dfVks9uztz9+7cQR4dV7Gfoj84wvWTxRPt1tc6EViToZ1WibXFfbHGj8QhH7ZrDMwP+jYKTofJxTtn2Mgo4+P8DlrXMLjEb5vWyZsXwTvlch7qKLpKLb+ZlAspgC7mLJeggLB+ZR4WGZMyua40HkscwyoCZzqUUWP/CW2UkwWFcH+pQXldH7yvv7QGmDQULsA2hMTPiXRv2pzgMGZ9tMSvhcTHEoUAG8Dhu55YIWvdOJVEqXPzhy/qMP0OqlUqv8wS5X57mdI7a9UhwENWAyCijSatJHHnxMY+MOEqYIadE0yzoLnJ/QI597J8fZplSM+7ZvOTDd0Tvv7eND3hEWrSNjkJPdAaJUTh0p3wi1AoDnIM64/iFWt3EwAeHSyQ7vedAFHjYy9TwYYRUvZmh+U3v70ghOjOLYWJaUW8k/sL794rRM7h7gLBUi5xnLAZr1/Z2S7xUBoGzugvkDY0ASOBYnZ7jiFObcwbNy5HCC+yloXgm9WAud5q4tIwbrTPKL2EYbd0AJy/GIdHkNYZH+4UdE9xOeTsURdwXdcA7HZlaNryO0Hs9DiNjFNPmBE1q/VU24Nu56hsSW6njMhhmfbCFiCCYqrFZTlZaI/QVK/BILBZC4Z3tnnWUKSYKQxoLZQsW8OzQuOqb3hMn8aCuK7ykYPWYUHKpsjKR1ZnN/6YiafoBtKeb+qOHoHqrHs608s6yhgJUlHVEX+t3UXWTMoYudikfLiW6F4QLlNDqGS91KfttyykFHRzXzGoIprw450V4c33MfUeRECjBEOFwuz6lkwHIshrAYACweC3drQpzKHsQPmbm/O6S8HhG1jqMva8hj0iDVLaIRMdxhPmf1LoP/Ssfe0iAPpXglbF1zf98CgUVQRFuRVFpTROJn2SgOZgpWNXlIsZaTUABCfm6Z9uhGOvrB4wDKsHA9HeINN6I/4O86l+dlDpdvEuT2euJ2B5IjH2NkFLL3qnL4KreOhvSRgB5VTO8CsET+0x8/cPDHm2jaNdJAx1VYJcE8ZHoRPmxFEeUKUlXwQhWmUmUWcIwPHwZeJxy/o9QHpChs4ha2gl2Tk5n2v66tAHv31LJ74zvzdoTRe0DkWJxuMZ4Unp1OfhG+oSbp8r9nBf2tO20n094rDUoyUL6DrKbWRZUYnLf6g1T7zkVLNqJDxubN+fji+S1PbKJMcNZuL4/E82pIznANQrC242sZ2H5oXLBNy8pIw9lB7iZiy6fySjgf0CdR8jBxNc+qmGwftZpa2AjGX0xirCM1FPPQ7U+cL+JKYEdObfUFlB9XGgD5mdQpDVKP1pV3xLjwnZCTJS4YwviQAiHdSgByo0WiH0+Yfw8KNqLz/qVesYjgm93EHtA8ctqs4U1r52T2QWPYSiElucJZFH5KKzH2OKdpuJneYCwk21rU66KJkYEAy7hd/65sFUymQf2zegnkkuN98EpldtDI6m2+vmeuYwGv8fhUagNM+0c1mx2TsZ+EdHkO66aI3zOhFXsURoQYJ6/IzcUyGYk7aSY9VW1sDIxACW/fdqhH1KKQQzZbVuKUi6lHfCKUdw9GatDbwk9FySO47z/BhKksMnjvch2577VsM30zR1BGiop7MRgQcjfD2em6ErJUiwUrM2CnafoL7XjxdgvWedjbBjzaiK8cnvnPhUlsI/uWkzqFIJjXi6VAz3b2VBgOacMzchtysOcPzani4DG5LfnfLGLDkvah01P0kaN5zNxVAJ2ypcNmkUqF1q7Eb80p1dNQRBVn90SI0M8w/ORbPGF4JNnZWNoKj4DDMNGhPwntKcBcmKsCGzoFn8Ff89RmSJBg0YqpOU/Yhd+fatKkzh6DH5k81ICj16eANTwyQ/+/KC3cP3+jNIUT0kTmmp0CEtw9BXT8YXwPZkc/tQLAgOUIxSm42cm8c2i3OnIFoYRGCs9plCp4lQ187wGzBnTdIyPO4dI4p+tbNj/o020V0MsNu/MeTDBA03hyOtKQhASh+2cq0W/33UGUX1ahv3U4zD0yrHK8Maz4Dc0jz5qEypIT011U+gXczCcHAZrGvuOU3wmHKoMjInTvptPBjaY7S0VCLo5TAUjwXVHgictkEtUM9cSHXml5wI1PJ9eBBrPPJWyuQEfOr2nX7PR90DGV/7L1cE5in1NYnEsZi0qb9U6nQVWb9pP0L67+9vKN81DVmsOwx5P9A8GrIYNLPI0yAHap1fDcXkJJD+Dur2me8g01Uy30TJz9gH8XwLWaZ4ReDSfGLSK47LSZn+Y72acxTQA3Afj1mR12an1M9K1HNw6IVmXBSuQrIAb3ShWivZK20R6Ng8qn77RN425p5UZOgi7259ty2sST11LFJK2TvizWW2SSlK2RleqWAR3heQ7dq/Ptibob+xcTkXKg7cnjEkmOt6cjbohs+9eFFpPXJ1lj+6oUmjDHz8fUVYXwJi6FWimcwWZJMH/92hXg0QsOp7LA23vB/LPVp9Zc4xT1Q6PRv4sLzJ4K4VTe1oSDchjVeo3PTCzGx4SQmdATCifTivp04JaGUBZuMM4N9v5zICpmaB5+UtOFLy4AY014LiYvBiYoU75fkG4iuIKIjF6l8tRKXm7KJNlETUuSjuMEbCd4/C0i7+0fgT25NWXtTUG/34LwGNA8zSnd4ZYX97fUmhX6LrmYNMtabxn8GlXtBl9zSPPsDmhIlxw/kOmwIM0QgwJ7tqnBGI1DxLkrwi7dloIun45yeXHyXpG0ABq0HPNakL0U381PQ/mJ5yKUUQd2C5Dvfm6m1+03bzq4fYHGCSpkEPfWb0PS9u+nsObXyixagFyXg/KC+ufOmoUeKlKpzJJlWfhYL6rkdJnicNPcnwU5aQSR+2CN0OHgRTEL3j6Ls7qExo0M19L6EPW8XXJ3Zl/a51srbBTl8YdloBrIBaz4FaDh2VSwCyUpkvphZpN3KftHwJSJggaDJqRHviRRGNAgBQF2klOE2cI8x4M/xskZ5OLgFKSv/YAgceXxTdF03wQCgipO8Ncw1t75dd/hp2Sl1dgTLs9BdEXwrseb7UD4uNIMFkCHgdCMuuqqZLTmcbAT82FDIUFT7bessWbAi0FP+hNwAz6Aq3o4O1s+W6HyZcyq4WnqKX7AKj1zH62/91/TxapMiu1qPhomZaJld+OlQxInZDs1P3kwfi+dP5iAs/asgVR0OSitFbSctfOENIFmeYeTEQNUeiEE4KcwoFa9kPX9bn4QH4XHL6aOe5QfpQ6yvnNJxcJRqs/oggPrUBeMxiT/5LIGl7uKjnEVOQPnI/rJzn7/hui5mFJ0OGHNRv4V0KDd0xIUOXRdh6xd/1fVXmXAUSAZLAc34L4Fp7XW95nfXDua5AICHbwce3p0TTAxr5avvtBQdc7uBrVNY1t4u++4It0HvOD2DPOgaPXarLa7j97e2lFBO1JVoaoUBbVC6ZdLbSsUleZ3gNDT0VIL65SYlFl6IH71PwYzwS3emxYw3591sWR68x8Y4z4DrbESCg6P0qxYirFSVjCxTtDRje51Gpw0CGPB9kABFnHnNJxKzOyDvNCZZpah8O/cPz63Z5xtHH0suAVm9du0qAjd1n3/i4g7jepTlrJchQ7NKypBW6pbAjx0BtL50yZ7ukPi4ys38J1augGtfQlXwTCkvO2eZiksbfivN72ZuMrPZkDbsKoxC492JlaiBodlrEban2v1FD/zBZYvbBYzp/M12C1Qx7w7kBrepFw/F5VALWfWP2fdRuE605dBw+mz/asb1d36pyrBF0qrLqGwt6qo+ce8NTLWMfAYsQIh5kxvUu5VB+E45jV/mKiOF/DN3bAduE8snMuvZiVefSIBomsSENfy3JPFdR63+CenIKIwdrF7d2SFdUzr1qUQfY0UWelOj3y4xwsGsAdIkV2boP/ezWKvwKe6bNDWS2TdKsHC8g+oCYoklwTHTvy6cwe3PPOSjbBM3PnVh7vl6joUcgzeifWnfi2go44lC8ePacQeHysCq1Ncw2gem2Zbnab8BMwda8GOotAFfpK0v/CIAdCPQ4PD1sbSw1OnDBaJRQbp0y7uypoXHRw5mFEGAd8E5ur8P2+Bidq0YwVZERLBUqFnnUquekTjFtNMxW8Enm5aVuIcTR+ePeHELFf/L2GCymo+Q+6SOaHWsWwMNVVRkxmAQFAo8GMfknWiJxQhdNh3TVEjKzQEQCQeE4ENnd+G1Hm4PXNmhqhaYmelRC/uE5I46p7oMge2ezytmEUMRrSFaAeFkCn9tnbafdmFx1sJw5Y8oIrqwSZPpWj3MN7IqjxlV8o8ioabchGpm2LNlKGM2DkSzxIYBR4PFN/7eGZ7qgXDyjvO2Tj7WZ2l4GuWJrUTE5rMPE0JGo+O//j6mgWLtkHA4QM9YqYHLMU/8RIUDxiTk95ZGrINp8VMai8xwJmLTx+QyS0FmWljCrOL1AGXUrLtqGQ+vISJ/wagUkrrCfJwU5csRqlt+36P9WMb3dRnZzJMvohTfez9AwSbQT89sF1lozsAJBkNRevnOrt4zSyaHr63oN9skCJ5HXIhL33ugI6+7b7sYzdjZaOPD0ZcXGnVbxeljSRaR6i/OAsENRWK7ghN65bcKxJfGhFZWzSxqiT+XeQ2zQNR+bjl6WWqYwPOi4AQHJijqg/ADnxC1fl+j5+UxF0TlTnI1EtKL9yJQEAYlVz0H/9VnqWEZXHCd+ik0tK5RK+wHDp6J4cMQOGAqap7QW8zIaUy7KXiezlysmcM7uFgFN1wEEpQ0N/x1H1NQPb7XCGW4uYMCp0RKvZGt8FBsrK1m8IhnkKxrCYUsFtIUoLHPsGV0b9l5gck900Z5JMMGIPYRq2V6YpA+Y/oS8e6dhvX0e4klfD5QN9mmAxBhItS4Mr0k04N5OvXECHZ4LIgS7S5UlI0mae/PWRXjtyWIGyAE2KGWi3ZNdzKDYpy1enDidRf24L6NkbGBT0wzvOmNXWnlBRCsOpNCd5gnO3SMZUMxZyHN1o9090HQal27QDPPOlmcz7pa48aXtfBC2nNtHfsjfpnUVAo9m4i8l1KO1tHfbA2Ez1Y0sGfAWn38CKEGUsg8vaDxPm6wkKhHQT4O49zidDUf0qg4AmVZQV2RSq8I5zh4Lz2/3ZzmXJNQj55HsoySsvaNxtOUr2WJohI/z1X0iw4STUqCjm9ojlHLZgy+EhAUfpgUbACe7ehf6aYcrzcMjpeS6e9/yEr2cT75VXB98u51ksqz8KPR2ysxMi3b/lfMWZ0IApVKG2Szr4A8unXFaCF8JrCc/qLw+KBajeRVAABJjro7fHyNsHyIpiN8H1+XH1y5rYhiz++DNqG0Ce31DLa8uZmwHMgINjoHWnaZhWcauc5oCzzreveMKQaibZhCrCk5US+UZHeuogCyUa3mx2SH4sZymTrYnWl9DG8YNC7iRCPd5HaH15fXWWH6wB6DTN0K4IbQZ21eGqjdrfgzVVdHqsPuw6AdOtQBRb3Qfq+hIxdExUKOnfWAji3qx9TM9GIWHchyohdnVgm1Ch5/uvL2fZsg95IW7o2lPqr6gxHb5x7TwUimkjFcCk+E56qTVPpxOD2N6ul5jvzrxWPWF/+oXc0mm1GxMBEq6QqJinQ5dyQDCyH1QyXhZ6o6FRQ5C0n0rO6m2CIU9lYLHnJvyf7a1FvhZiQiqIifDXCXq177Gyv9W+TFDUxplb7umvy5YVAJsUo4iQS4ToxB84RxyCmy3yAaht+DqLiYnyNLKGiV4id2YZPFuMXrmDyZtMJ4Q23N9xMjY62ogNszDqDKJlec+6rf+k5EonFyHfmuZho/3mbz00WFbRWX2f9dPIZHEYzrmIv2Oht0SRkWTO8dZQqk3f7Kvq33Yxa3RkMhwaNZ+TLYN5rFTs42DjVCNn/eaNLcrzhITvbsrvHm5aFQdatKsiMWGyIIgQ3kL8rTSEJ7XWKemgmlE/jzkz2E8xarnLnG2LQAQBLYyTTQ6Q1NVpbbwyhBUf9mEK9grRj87DzkrYRTV0F1gGRUYvf8vsa36gkdhWVHVUP3l0gg2Mi9d7N1Qdf79M+0wYg4OD7xad3jGuiMvNj7cP4ES8Cqzh7KH8zCK1btPnAmpqYtd4YSMdKRpk4mZmKFiCkdLgZXSxuxrLnLci1vyPlgc/jyR3vKw49/S/j0oAgSxSwfdzmxUSUOeeouS2rlPcO6NQYEqmXuQcPlgQlupbCqbLMFgvStnOc2gw6wqTyh5+4XyN+Qf9LZxDY2wJswbVWt+tmxJQKWGA6SyHBFGc9+nlsz8TLNudTOpgLwir0WN0hRvDxKG55sduz06zWdhs32XoZ4DNgvxNjEkb0DCd3qEjryGl0YBkG1eFUSNc198NT87ZBtplQ+xw+OAO4PEHDye3/Kxtij73CdCWFtplISrJfJYP39RubJgytS8vWjyUEg5Hx//ULIz5BBftxViXEqi2cjsl4yF/YbmLsr6r1uqP47ufuALCByRWc71HYMhh7Kx4gA0ltdVsUCBF5jMlFmXgcNk2lzjdNuS77LZbEDiPeR3lRTZZ49yRhJpIeJyCk1IS3gr7xof0HpqqkfIpPhVqOFGvFWyyse9vyq9j7sgb298ushHx2qVn/qAScTJRYo0467YCaIyS0lKUNvXg8Ae2ad+DyDOX+7YCkC5DvhleHfVp4h2T7olYTF0d3y65hU3wOgO4tJsLpCcGSoUfVcv4cAy/u9bloq1EiO4Sh6wovvJNJSBv/+5SVubxG8bY9PrXRUDwoPvcjgE/T0d9WoTldFBc16ZCLuLcco5qFqQuqFQsrT43Q1i9bMJF5qk4FC67kt9nqriug+0rsm0OJsF59RALFB90KW96zPfKqFQrNJj1wamN9hdRfiRBkloRBpnuSHCBJ7GyfCq39+oB9tV3bFhgsgo80q2+x3WSDCSTL7D7yJRCx1nlfL4Tn7l2crVBt72ncx7BgI5TDIbz9gz8owIzAVZpKHUD+pQ444BgN0tGOIL8lgc2eUOkomWIXBCQVl5vEPxnPjS5cCEBK1jKmyRmfBlzEfm/1LSrTpEfF5TvIDpp4pxlPPn/hAO/n27XnibSdL9Gg7i8aJTquHe9slo1e5FEplh05tIxrPNfyCva1Ds2aK8VUfLvXS6OL4O8Oer7J3tREc5vjt/LQ4r1IY6XrTKi1OSTmZO9t8e9e6oWdP0ToFGGFR9MPb0Ufeethj5tZ2asa1jF/gd5/GqP4bD2wncqaWwTxedEykXiX0gQtMu2sN3Du/FgzSaeJsd2jSDOcny2etvenxO+EEkM/nO6l/gPW2kdTqqOO2eEIkTkMUwpk+I0PQ2cs72ycg29BSM+G+8Uo5Lez4fVIRE3MxmF8DuplxQUqvDaBznM3VmOxWNfoDYlKu12kYOrTt/VmulZ7lWz3cvnjuUEpjQ56Vaw17yMEXNLXVTChg02DU97+wtx3BvaYrPC5rIQdEoH76Kx3sX78/xc+yDnL8E66eN3IFbCcave9j5IRRRqKMVl0QhPmUdVs77QBT9E6nrnYHnF2+whlxHYqeBdt5At1iaJ0Jq2PIWkd+NtxPRMs8RvQtxJJjlte9UPWGNQq2pVTYtbC+xdAwrERVvt5lwPg3Ujt2EQNRrWeJTJ8HUq7Y+Y9xbUB1xi1oH7nTymmwjQSR51JyOsy0qIeDpOE14zOKMkHM+uvQrnDo6cykaWSEu1Hz3qEanTG36DabujIA2IO6EW+czU92jiG/IDyIgxbHOuwc9D2KKSwBd6I8kub3vfuU/NFI61jmSiWZQIyRtDTUiEi7xbYnRB4PI7nSjrz+C7aOVmlMAt0F6ffVqHrpSdRMMAv1FoQj8ig9WQOAlPj7awqNWZKsPIQTDB3amIFL7FV6GV9oZvuZUEqqtU4ez1DrllT+R/bnH9NjqJKkGTRtBspENJa9WABgHU76pIIlf8rR5aUNXR4DJexDepWw4ZSgocWda+dy+M+hIZT2gANEdYZSSlgIsRhqYVLziGxCmBmgdGd/CDIBVoaDpowy5w60CY/inILq/UW9Yxf7P2o/3N9oFx48lNcRuztDG1N/fS2Jb72Hb3KV44BOMsG1i+cwnVuK2Ln30ueCcJCudvloe3OMMIB18scG+caR/YtYR6WZgkIapXn9KTdsrORkFLer2th8XPrpRQPWZDxkwVgUt+F++1oYtVdApuVUi1jaUKMt/dsYhxlz8m6X3culawafB9TxKVSQPnFV6xzf/EfMy5lCLgCV8FmdGuBG3mxpYxranS5vsDtg9uFJCEBb2MNc+r1dJpduyU5aO7TRr9IAQ7zGR2GANamMnJQcDA6eSRr5i9KyfVlVZq+cPgqmjj2j11rIr3vcDRZp4fdogfr2bIlnxWtd1FFANcgF4IPAo0SXwEcalw+tYVeJOEXo9OTb2gVxiX8DKF9B48oRzH8oi3rSPZ2u4A92SbK/NrqDnBiE2VRG92dmHDtIEyLiMwKhjU3QQOBYkdJTEo0AQcFZYNyOW7mx7GcorzdTwtrnEqsOe/z7zdizOO5kJ7qGOvPKdE8DPqd0Z5lThYbMlynCg3Mk4963OvexYUXIVI5AZrDO4dwzO+dgbhYssq7aj4IWBpkd60LTK+gAf/pFLnNEm3gAZAmemgdUrgND8MtTmrdFk+PBuBaAIu5In2BiOuduRNRhA/tXE52cSHyfgIQjR3NFYtxhlEFxzfQFY8gMU2RO/EHIiyj/Woaw/czrfum4lwnmAILWm7Bn3El7QkjQ2qZ5NkZRtL/yt3Vh7D4RHoNkfgyIJSpQliz5GwGKue7kiBjdh91i1+D9yxfJPqDfe9QGfjXpx+qyMVaRXxww0bj0V0X6RFjvB/z0PnPX0Dx2KwJpVMrQROZhCcM4va2bVj0qf9bW0fy9LJ6E+S0Y9KZDj5GyUEIhDBEP0WOQEWg4i1/zwjCXSSgjW9NidlhwErj9HconmVhXcxHnKuujJUVlnPSIhaU/zGFEe7VBEH0TJO8mD9ys5PoJBZicdhHmVs6R9fRndDSsx0fqsQuvMj9OesXESdUpqpFSuR6+o/kUZ8G6aKYaDccw3Efzlq/jVSmi0e/dRXZGZxSg4C22vw6DtCw+EL2Ph80zK5TAH1pC/NvY8LkTnTEdeyaugs0ppqVlFagdqcOW0SXghOVM/fgDE7RyHtRISfUeqIv2xFLE+0U2aoemDproF66fjsq/BHwLMQxzHogy6DR0LCUnC8tGbXDk7d8Dmh9BYr/jvLe18P7iZtDg3FQZD1bRZdW4wQkvnzkD+Wrql61CGq8/i4HT6BVN5AG6HG+I14NVgRZPCPgRmZp1YoOV/6kSM9EcrVA/bMRwC58QmwKVeebEmdIdbd1wnvj/C7OrizZ73d1SPHA5PYANuS2RVWmtokUDuen2m6rC+83dfl5hXIkhDREl/1tACEPXfTPH8R+OmZxVgy3QyKwA+FHRcv7hRy9vqnEXYcU7r2Jd9MmoQq8eX7/6Cr+IUcsVYXwfXDdiagyNxoEsLj/uXiY4xoCKovlxdSPegRuPlAg2Zjr+i5lkkT7N7oycLHPSv79fLFpsrzPNZaFtIaTBvJVKsjerR1jTDeJWMfUECrKlrvQybfndVipDMD+NQ3p+p1mZAJKuA9P16vqWHe5AfjXt/Am5aoYxTX+Ur3HBcvGZk42rpa3SSN0gEMUyH6u+kZwVImpoKzlqo2RHE31t3FNkXcfgOEIGlwdCG5/GEaX82ctSTCcTNx0qfpinMEbiLwm1aDwQdeMMLc6Hs35e/EdJWi5f53p9NoRaBWpx3pIFmha9dP0BE8ftJ0Kv6O2hQGCoN97dxfH6Zrjgb2cSX/Fg2cAHIdxHu57biRvctufRz5YBqeHo0Ly0yHcLj/1YvfbrrVP13VsNASvweIhZZlzSIKrO1xcePut1Iw51+r7VCNU68JuSnrNU4o7PVqNV4ktLOnvs2TtEAGFKsxF4MNW4BX2K+bZ+nq4hoJnf9a36RAckw9EP1QyIZXxPdfvJ6n4OiO7HFqLmQIXgHpD65QypZ/cd1CwI+8xBjr+OgpW4/nEfa0NN8WD/ZTbsoCun+LrnxEzpaysQp1/vq26tqgGckNi+fhcHk90raLiUHscFT8hY8PTCb/dtAJN/Y8nAD3/w8aosIuVmxVLhgWQ1dqrmUAF7dVxQK0AAVNWxn0vXnQcPdD7YI/Si1OI6jDttYtI2Wt/8lDmbDEQDtZZ7zkaDA5rbio/sKuZ6DgxKi6hf6Dj6d25y8TAJO1/5OErbMD8VH4VEyIrIkkYLsI3KnRWOmcaUSrxue35T88curA3fSxkvXqg7gD7Z1acdkXyTxl77vTQjavQnzwBhnbcQY7DvncDk4EW951gjloG993vSlzX/Trueeg4SK/jGmobeOBgOTA9iM4twtyWbSGUfWdneCLHV7kMU/sR9owYEJEfYYrjrtP7qDrzNLogeiqmSH29uDQWictjgM1WlGjP0pfmLurr0L7CkBTBXgUW1RAw7RoHSAz0/IWxQ6yrjFeLkjYtxehDruiGlmfjUjtj+2Nx/f+xcSxI9G8rUgSmPDIp76p3cKFz/tIwrn5m88y9QpTDaqqVc64XLH6yEW7X6lA02aLNGZPCVo/7OnTwD/4llD2Pmq91YirhKlm7Xe55otghCCJoIrTrzPzq5s2pdqmZ+sk5LqayKNYj9ye+URWPrOWjKmPl0y6Lqqc6wPJ2NzicaLMtT+O887Gk4qlBJftRDDu1tlSwCTAFA/9V8rqY1b5MOApqwHla7odYzL6WwrpUMDqx/Qw/kZx6o06Iq15Fh6+zv9+cFpP+RYFcvvG+rA6MiODqmjX/BCbD8/f6WCW3mBoOICMnABRzNe2w+KS8K8zSVb03mTFVkAF35fw19s1X9Oej3mSQxqqybUui1R1FdVRU6VZdkA48h359y29KcX9Iv4xK/rmYMIDnMSnakUsdJ5uHHVk+42AIxFUkxYF231iAiBp6rSQnNx6KqoGwVBgG4xdxARGpqK+/GoBFyyOf1JVWRVB4jovEX0wpwngEOksFdVbbVCsYxdmRUFCiRNUtXGfNSYnKzXWIWGIYUuoIGz/V46eRxvloLdQ+OXlp8HD76t+oc5pg+jgx36hDkXmZWwykL66Hrffg/ydXeLhtYZyXTjh8zHH4/8EKFBMoJ/kOPXnBgyq1gK8EwdTCNcwJ1GKubYf6eGDP/IPmFoDBuc1aZ/iaq2Vez4TegrLRX593J21VOL2EIB8mdDnQcMj4WqxxYj3P5CfXNmU3MYLCl/mH0LK9KOVGqh3jyn6uYEuiSFbnocI3kDU3i/4Xpilzt/2lPyj1/ZNyF1neoJnzXFyTqkGRIKDxtqi2L4JYC0MV1g0kmB87D3JbhdAk+aCaaTrXzh+37UWcfBGqsPuLAo3h3HDP6zx8riEgC3L2W162y2jhlIriyJ6/XQk9Z/98+8uzv/9WCGZ96GYwTQZrt8+6S8DaFalUdYk4gVIg0TjIZIUyRdFin0Ey5uZ8I3TCDHIyynJney/W98cfv8EJX0v74fbFKVSfx3a5JzfyjcIBQIhTaDDbUDcs60itoOnXR/d6tsdb3afQVQ/FCx4XAZw/hNvB8WXcXcwGh92PsSdBHHHg1rN2V14zt3oRXnCN/GPe1ZhfphDcjmuDQoHfnWIw/hQKpALPjdvnOC3wofYjJJixSjG+FJQvbrr76q7eJcw/iMxhCj5M930urHNgaWfxjJdmiijLIdbQcrz/TT3lxkPyS/+NsJL76XkkAP1MXA3BCfky1P4NPYhdJuP/iAbP+AhdjitR6uMJMTInyyuv8Pv4qtGSn5uF34iZbf2o7pZYbcykQfxxNehCf1WMOrlzstTvQ3dD0JhXM6pbh6xTnf4Px/5wjLohC+zo6LiB6ZUDEuz0Wmi5c/JEP9TpnvBOVP7STYnzu2Rq8b4+3zePy1uRfe32aKsi6VKCg7/pgXPQR4hKANym5SXbpn7bQyRmUmlixd68M66k/gv0BLhvN5hc+3oZf8CNPCFjuOpxal/VuJFOwhCbKnypf1M/OnB5hboPF/U6qgwPbHFgyG9B7MprN4V2ZJ+1ISrUIsxmj00sODVL9iqrV/zLUC1L2gLovaKrL/OwwJRFyJJ6WHehxy/I9VEOaJ+Z1UL3rMd4JmikQq4CxOyHxHUAzMK5tZixgno3cdI55mHhsT0mWUrEF9OeTLJzoRoLXasCHgGJzknJsumdUqonCyGzE24nsDQqEioTJuJd2fXmP50jmcjsL3XMQPZsUruHCcMy30KWP4fu1N0FSDaNkJb2kH5WTdhWXYBPMJOm7sAv5An1nwWTj/IbDnsAQszpDQljy+Sr6W4Doc9/1uGrUw1TtzMDirEjER6Xn49gxsAI/hssH9BLYUVUK/BkVdRdpm9cN3yPM88xF/vq16VGmd+PdiB5OnufAQl2S4Gn3msa3826whLJ6wKGd4nTLY8wzQP1cxdOX77Io4Us+CDWeVv5/U8Q1f2bnK936o+QG41DFsMXfuLDvPmh7Ej5DKumy/s+xJnj8jZ9Y3tGZVqLFg4s/KYzTsMT9iPvI3uzFosaoRb++p6m9uKi20mKVtSOO0C4ajtKpMggOVds9r/gB/Wl1JjzakBgigWCQrFWnEjTOhPYwpbo4COvZhvr4jDtX97t8uRH+rvJyTaqIH8dY75oKEyH0gEEi17ZJhD58/vgHYCfrUXBqj32wkl0NS4VbBiUOr8ytBUK9k48wXyc+FJVmofjclXKRGg89nboBDMlDQJ4W1SEUIKXiT3zJMKUIPVQ7hky32YeWKHn2ya0cOw0kfrLxy87L3b21JNxJ/PERhx6JbpKLyaQUEGLOTgw3r0Mk5RNibABl1ajsIkrPXlZwORLyCRKdGi1esyPYysekOYemW7S+vl6twvlmZ91MEa6NJlyqeuhaye7TZann+oSk5lmajYMxd2UO8Iexf26+7fxrV9t/RtqsSBnE4ywaghXwGG5Da5x93TUeDZ/j/Z1bLsx0DzDR0ni8P+xjKn2lS1OvIG4mwyrF9WD0GNYPxn5TDwLBAifMgFLglLuDj2sczZHoYpWn7jvfQYhzZlBOe3k5CS6kIk/pOQULLt+aILYeWI0WgEjC/vWbyJVgtD67E7h0ng1U6TKWhjIqafiZOPSiVa5j2ff1AnjLKcygwQRS9rR7uAMpLd6xFtPxBlcW0qeTOF5yUVbYdhACFgFhxaX5CW7ITmuIWMq/Ws9j7/BXSjzD2Eazwbvif3Yi3zxCCLbnpmQf/Jq34RYlVyWPsfQ7uXQhWQe368FVFg2TnjMOYSqdgcyHnJ2Cu3hJKYT9nlq2YJA5w/G6JXv0PQAUefLuGAzt43LfBJcbBPrgykk6MtdcI7mGN48MBf/A43zxRhoyfCTDUdrtTrJ9IGRGIz99LYDlBWSre2T3mtbVmryFf917PT0EyeigqsgGZLaNiFdFv0hOzRDMyFeK+mduTwaLEbvbFWoAduWN42Hmveo45o8oPUpQJkh9i94Wl+Emj1JU++2Y0/GFy/AhMc97n5oCb++OMohKK1L+Wjf5SqpbLqL5Yppo2YaDmL4ZUn3dKr6dNgHuWKhcrjTAMkpzkEi80QbhztvKveLYE4Pf76qoSxa1R4wD0+H1IVVHvMR1sugW9unt8dR7U5LJ4ZBK6Dm+C84WkGyxxOuxvtoM89VX4BjaN9HgdY7/jbpyn1njNNkw68u4Wq29KdXxeqPw9ttgSVOOS88lMWeJF5Vpgx7Om53H/FcP/kyHzEYi9FFPznMl3WSY7Qc+/s+f4AX6x/92eZK5W9fzQCBjH4734qrvQ5UNP2qQnbqIpo+Hs3JQhUElZpHX4RyFEGfdkIgctFebbzDKtZZj+on9Y/kThneE9SP+Y+LaoRGtrnvZ3TwcgBChaQv7NQEXP+Ym6yLOoBAMoNhJCL9z0PAWl0+QJXE7PzLCfqiDHGzghhDndcMza50sFqueuilRZUFqz3Y5YOn2V7ijtUUD7r6ENr9kEIggfa2xGwaE5eNyE8ufK45l+gDm9ysIT1VQSq7WN20rF6wUFs57a4biXJrkzhws6NNSXRJJHqUIMY/mdEC2ikOdsQ0PTTosoxR60BkI5Smialt/b+ZpbpA1SHppRzS5cmZkOSnSpctT5iiHaIepaaGKwb7T0XkdimhXb1Az1r5HCvmXK6CHRfQeHGlkjB9JQUPz2NF1OTclaITh04Xpwo+octfh247DolUxYKuj+wgNllDvGb1SInvxz1wHvU0CEc39qzELCpPRPZM3e74mSvfoN/JA2hw7wITVrBk3Fzy6DAl9pKSkANxMMnjpxNfRfNqdxG2fuUsYN6Pd4si/OSZA/47yF7UY+83DbTczS0kSS5E4xMtdJqmAw14tuZIgvgLnuXZoaDMgjxCy0jCxO2jVMezvQ9OrdWnWR78PbIK1qn/WCK8k8a1jCita3tjGSXQDOsjHVn/r+dSfOCsTDIGCGXgqh/WZZ5OfaXd/a1myXtA6ZbtnlHqeFmu2+9VjucRnnFp8SSY8ZyoYUxHEo9vXJiUtAJhAXGZbwtzq+yUIYXRkx0v75+X8UgznLNaSPZ99Xle40pXUHvRJ7yGpLntbyhaHIRmdC82Ow3uJYdpYi7L/zAKQ+aT4LRk2aVBYoCli5exxQ3a01rr37kgnLiu+RELNe0YzkTH+jeCSMFnxQbHoJBH5fN+3IktyMNtgOj4aHkzHaDJqXaunwBLkzb9lCb5e4YYyRKFYX+wg5XIQDKe/aGv/TA/oxdr+iTW0hfPJJeY6BFiM+N1OTHpD+j0QMCVga+WEW9INcVqjXFJ3HNPvklb2+REsyK6w3Qvb1cdVyKgBrEcBSPWPKmEy0Xder7Fxy0y+CcI/vPDa3lGQ4tFsOtFLvPtc0QcYS6T7V/O+nKnDLi66W4cuh1Mk0DsqNbh9+rOMTAnBlXks78Wl++BD8XJTsoF1lpDfCLrPKIYG6sLpc1dfXShtYsKVRJIcVtAdxuCQ4Zwtzc4kibQhqRHFs68r/1E5jVbo7WjpiEbiP4MvfwPSIU8Z0rifnFzSkSH55Huqfg50GJhzerjFZvH01gwvg0zvHh3bpCiVK4jRcBieECVaQ2kUuPA30aN3vhnnboQ/EoIeuu9HsOdNsbSOm1qRFeqFpoU1LOBKr9dtI8H107LcIiwsYYHn2PLliDcomRW418/OD1aGCPKa//GB39rl38+9v/qeknfiLhz5clGTVnEDS16Dn+4Y5Eqe2MRmvqhJO6tkogihHnSI27EiJw2SszbrZfsJebYsU0n6imFJ1oORaUW8lABSp//cLXUjwxZXz7mQ6QVTjsSoXiVMTL94KYunKHDLxD4cCN2PohmLOjWVByywAY9XC3/6O/69CX6NGtYFrs/AlRVnHfBPWGzvo/JjbqIJIC8phJFhDT1VK1+skuno2rj/i7cOr7lxQay5KZDmMnaObprIFMwxzCXPbvwGdEBZfkxMwwsLfGhNVFHlWJ684qJdqQ0Vg22RvfUYYUTXlKSo/jMQ7JSZ5yuXEimvFMeRIIoocioYApbdhXYGgGmILp5IO1yjqO2iHR9OaSLISqGmbz9i++dOisF2ugaDKujaCsDnEKzJDFhdSiwomBqfOJ+v0X0dt6diC/ddm37pApGxgMHVlMt2Ltk7L4Q2lL9m+4gKZcvgNtpbKAph6GhVNAshiUAqyKwHtX+DuuizkqOqOsWJfLD/UcRo3gvjbFG3ZZYK22Wgy2mpkLPNn7nQNhc1m+VH3QymHmoGiuwCUm7lfIk/fwuyltOATyVDktEnlM45CWyd1IiHs04oXr1auLUxxEVEUlAD1uzcTgWvTI5ovnSRxT8rmbm12mn2M0X28IXkgYPVbrbPU7j7DkdM3xIaZDtykMvsjgBROZyLJ4XzaO4rlomZeJToUG9qJ0/GBCZ/KJU6f7aCurQK70QnlTff9RLHAtGvBq0ulVZVnSGgKyeurOO2SQlqX9ZA/EvHFNNcnhWY+XkkiwezWI3DMjeoCy24zyudfS/Ri70gCtxWPi67ARShvxoudT50VNIPWY6vt3lbgHonvzZMlNp/53gHICY+5uIgSpmAUUsjdqKEKuReLhv4H/xuUejUTVQhvynIPOGwdGyYkBk5OUmSm9eQn9gLJfdjceWrqMqwukUXN98fegHsa3k5gDD8QKvuVAUuLAc7vILS1zUSxKGBVtjQHkZXXxlPjBMsGuRcu3Iq7dsvz7TXsH4b/MwaeT5ewX67czyDkmaQrH9Llz3yp9/otZ++r4sm2Y/fHUwW1abDILptSrbDYr8q6mM5+KaG8cVW8ZscZV6J6/OTAcTVdot0hgbxlG+ejTtvaVnX7VP9nTs0hf1tM3QDcAC6UlW4EX7DLj1C87FSswYjpOyUKSQ5ljADOQqYqNZgmIzbti5Au+2bCX1GTNAmt0KlyseOkeExnKTLqNnB+yEWID5f7PnW8vu7OjoImM9fgTbVymw+P5ZwXMkkAp0pKPrFQw34+3C9qI0Kdv0H8bwF3V+NP9WpOm6pqrKP+JY86KyHoL8lFy8Buv7K8rUyRc8bwUqDfQysBhtMzF4knapky/Huq62xL4S0QbUUEciOEivObjVlS2ewly6znJYwhahxT0VkicXFH0pXpzn1ETWvy3xwca/RiXMxy4xBEBZt790TlTd40qLU3OgcdX1XjC7F2uKuZLd5o47RslJj/h+nrMCarTNFdTxswHDQHy2OXEmUjsgewJhuW4q9O2H/jiy6epzJW3o5sjwvcmfcFQVMii3mfx6TU6L05Xts0jc+f5R8/9BMsJUJrJaKOUmL8KjTYInkzRdwPJrUNqzicrUjbAzzwm5WYNUncsOjQ+FE0zlRlXPuGDBL2X3hFx97wa1GKFedJKc+VkTnNJj97HAQiaaPBK0oTsf3d0L8ODsUD3LTyfRJbRFebeyId+SJPUmVfPIarfxbHqMjBJD+3Mae5sLlpg9PXpUORjK4bghcq1EgTlHvQKlEM9ULJuRSb7Stlrt2m/0glutFWntY/C6ABhSnN86UJh1TB1wc5743Sc3pzOuUDdJO3xsA63RGQKgCd3ZQAAHPsvX/MpV08nPfd8zp9xQxX5Qvd3FqtNjSeBKegA8ZVAkMW/sP9hd6Fqq0bdHpbMfVgFHnAYeOEdBw376DzpcjteVNxkCuQUN1koOmbiSeMikncLEA/kU+rSx74J3ZNBSyY4E/QvSWh3q/bg2QFas50Zx6T5mq+v3hwRuXVTQBq/Hw/+yptmIj+7s3uIMJofHVzgErsv/fCkJyj4wyTpofxowwhzK1Y6ULoNnf5gHxa3Yj1x25mxZSL9mkOS8cQsqBNGLCQfiJCqMMjMUXzRYErZf2nTMXnfazzbyWoNPcXjXwVU8upOY4m6D9r2mKPRoWal9hbEhSChtQNHOoceCD19zdI9217g8tR0Gr+WUikyaPM1z+jhgNFbGx6RVRKoxlSpD42kj8Rf+xVlndOw7X/MY3VF1mUmUTuPEzhoiOjAFl398dLqQjsMhm87dSQIEny7461JZdBR4F0t2c4ljIzT6Xl8XSRBBfI1KVAUH3iz7F9K2YY8DmpSaKbYtZ4/6V4WATi0y/3TrU5MXTU/XJ51geVn/bAUyUtCevtPBHP7KbIVwTM7ECEeR5a8A+11y84AhhFQwxITO/kUsjPZpAw4VI0DVdgjJKEoGtm/NUP2M8H7oAtbkqOnNGJL0yRAsPWbdOD7UYKR74QJimUpWB7ChiERQZHApSy4nLs3mLUDH5tYKRToZn2vFxqHG9lUZvqkRG55/kypx4qIx+7juW/MBM0AOVR7T4eUq+TOLtFGedZchCilsXpQpVxrKKl6pjAVVIA5GrFAXwhdnL39EZmQ7I4gY9vz7A2sKZiR1Wkb5WndvoaHC5ndGevEIuTE0ZWq4uTZ0WYLDQb56kheCKhGksyflobLhNwoOj3VOfV2gzJH7sZ6AEIJbrEsRcFz5la6rXZQQnOuZ4tNH0BTymuraotdZ+HiBvw8hpJBwVjtIek+13oadd474Ojii0t3Ez+9IHFnnC6FUDOr34DZSLLnzoAtG+5zUNRM265SfkKMntl2IA4Cx7eZC1azOhEmN9+HmQbLxtLemS2khaUDSrMctjkqZXiHrS3aGfeCM7rVrVDSfDZ//Po6Uf1QUMn1/6OLpCqy5HovV3Cn2edgM7rD0wWxZbMy9tmDV0BFxHGURgpKi6CsuzK+IHUxYXg9IaGvng6C6YUuRSbpigUGF6MnUWswHNV1q4QbG1YWPdU0OhTAWeupc+Bu6dWPwP7uS+6Hn8/AnLhsry4pSer4Ys/6eyQn04L5gUP1V8BBG/+04U6Vuw3oLBv0ZmpUr97PkOD7V13vJs+1qQxNU99HrLThpZtKf2SUqnD8Wkk2NoILGwpX0/2VSme/a5BfXazTVOMEEcU3vlhXcjOkxRkGzKDUMvacaraV/ebqTDJHIaNgYfPpac2ucxIkJtNIcoXn4sIXxcXoXXj0VejAa5+oAIEVlLcRHBN9d75/fpMm219t+pQefTs2OlInCLXilEGXU+KNz/z2TGKnI/K2JZ9/kuLVGSHeuXS8gmUPg12g9zvnEtWWkcKIwvsJIFfx3J6+dOLFi/SJxziC5+Gz38sPVnSDTAwDQJykHIjMr4cuPsnSlWA/joHQRVMlvvpEf6EbA2wCK+/85YfhGRLfyVxHSrOUe/Y8hO8v8US3aKTxZr2a0LkFBg6MCLQ33Kxp80hFb5l4bKtBzuklAYi0gWPBsZNlxWRHuCWz5WDsoU+as29U4WOTSt3IxzNeBw/S9ywPlCeVxSDT8Xsd3/IoUCtSGMzdfV3FApJQOj1YwiqMxhooGwO5/gpbJqR7ZWIlykDHkcl7vULIZYVFxT5x931jcM7rWGLJhXwvKmw9YPCkuQalqt/eSz6W03iITXAmROd4WdcClM6qVFsLA87wKeTPyIy1B+Si1Xt+ldmBNpWvAXS60ncLxeQeje7LL1zauziQLxfvbC8EypWojfvCPACHwlHxYib2VeEWkEpknbs/GEVl5Oc1paOHy2ITxIjv6eqfMNn+6gWgOG8Eow6cnzozB19y902+5DMG8GzrS3j7DFWA2DDhHl6cDSQxMdnRusrUQwirtMqrRmuHq2ciu4l6DhpWZjnEf26fEJjEBgtJG2/Q1vMkojTC0ybt2bHBPruogE8Fn0HZAm6RfxT0XTPd7wbDVZI73aCNma7IwgiatkJwfOOK3VSb4R27XWs+vQnXlGkDayHvQj9md0rtjZae0wMC2/hRu+672pdOUXvrJ3qKaYTle0yQ5LSqFUha4OtP4Ez6qVKApTrQiark4QU/Fj0HRKESrZgHdG3j+u5oFFRKiPDtTrxD8wtQNvHdXLPuFTR/JoKruxOnZpupIJwh/g2k1CWOHv7gduwRwvfv1FKjWJQn4cv0hnRHLulWzC5QBdpDar+qF3zaeWhZMl/XXMZm0B3FgDMwGGoLcc8paJvdmb0yBfKoWJaH31MBoZdRDD79/SCbnxlM71ogbRNU8en/6LkGza6MPtCMZeelujdOjvJGmygtyA6ftTL4AKI9gfFrCJs8gplc7f6SDt3xCZ6gBFzNmLvIxuh5/jyAhpP2z3815Yn1uofYfVlgJQ9+au0xizLiNnX0xTLKLBldyFmK3tzccdv9vHnR0ZwMjRGytK4sVRYR9WsbZy+AsketMBKsmWXtJnoAvhX0My2P0UuT1L6t72CMm69y0uqZiSAOIt/qiqRTdl//uRHnoOSeKUyMdGRizpDDEb5NciKzV0wZheGHmkH24vDpSv9f81HgQzQUHwGRGCQhCd4f1EAa4bZjTs/XXoHINpxHCKZAnOus8C+9q+QZOxE3ehEws9TTdCIDiM6HNkVobb23kkZbGSkI4hl6O5qnQKpYKjN5VaZCYsEpshl8Ugb+nyENwx1Bw1q5Ffh53pxtrhXRKFcTdmrCuFIKD8/AOTPoR/jaTSGIE6WsWmcYXY3EoNs7kCDfG7D/baG5okfi7nBy9H3yuRGPJPwAA5ZNHUlFNNlRHk8ngsV8xxSjYQvEgy3Hfjj2vMESt3uxvtOl7OxpAJbahT1tPV98ScXhftR3AwYZ0Evg35vLJUSfXSbE7PTsus9QETJwq5FP+10q3ZlBLZC/nHECG58A6xIG/mcGMiREYwiL4tRin9i7m7deWakNtwFXmyv77IKux1ffvE1skg4Hjjwd7mP37v6xPWb0sRR9eldmAXy6DJHagC7uH5wy1CSX00dD5tBV+GqdvjQZoc8Pj0jVFZ5uCFi7kyA3JHt1az72Eo7UnZAYbz5t5G4o5Z9vD35iLa5HPNwlx2IcW8f7hJ+0ANjd0a8atzEeOP0iLEKjNacigpHGsrK9OGP67liyhv6IPmO0FFomcSVab6uoelMVaD8SHEKyKK3jW6DkzFsTr0Wetdp1CVrYZKeHh4NyW67ueVXEvLRwazEz3okJXAiuAKYZgKsmeSjubVBNpMP3KQE/uxMMttSVjZ8Kn0qon2e1+AG+z8uGWUPTY7m8nHF5D6yd0nJ6pnAFSTybXhdR8g0rTubxqlNsUgYnPDOpeifRTzUg3wB6fbnpGYsVX8olV4pnEkVnEwdwuz3LEouNScg/O/OTfYkPcqtPriIUqa/te+/LG9DmVL3FlKdmbUeJ7jG0LME0HmEF6ispkSrWvVN4G0XA3cmvi9M5teMmyKOwr8D33ibG6BtMtFy8wxBKPcxZvafCligCXrEqfZGKfxtHfP2jXpzAUvCB7ZcGxrHxeTukJsdRSUoCM9uCtstActtytHGNEV2fmAln/SxJt96/6t/CVJnEt2rCpIq07SV9ap+3Twbj3r+cfDW7XH/LJbvu51jdJB5kP7TxJNZr7GPXW+js2fa0FKmn70oHBMLmRqpCzsZrj+MzlUDm0MhuQYEyT2dmFj++8t/sb0nAD0GtM1MienjydlFeeF7GBCFIh5UgHONwMgFXBZFYTBGDjUodJAClp7nlKkq4Fn67G3IO3viWENy0/Qiic0GYlYh7geiCUZNTxyEoxhXcC2hTB5WNa9j7Kg7ojGZ53ph1N7/o1lBZnvDH8pjBmDsfHFjEjoe8MNsQ5GjNHHGXG59F3wUx3jtj4EExGC5L+FK8djeND7F4Mg3n14TDTdsgEMh1LQy1dXpSDM3HjSZyd9K2pZ0D+FD7rJ/saDl31lDLk5lw0SRTebHgQRDYvmZl1uh0lMiW5W/oW1vCmCNp+PRkYNsM1VfxAxraEXcUkA4DbWIWWZTR+jKNwhOnPw5Y9BU6bubNKmu+Le7+iDgRkVC4YuUZLNQuOmvVylcxc9ELcn5p7Pa+argWdsuKhkLzfaBPfh3TjimWRuOfV2D7xYWXC+ucl8iQGYDg7xkzrMKVflpdFBFezDhIQi4ute94H0EXtv6wHd9NSupbTnfDEote6xCnnSSmQ6n3VJiR+YahPX3KNhzelUjCbAkmSji1zcP9DFhvxChADdHiLX/476tTntOalbLfL+vUKzMzz0QUvF5EVtQDiLIDS1sAgfcTZMCYItw/qlTMn89IIV8/ovjuhi8RX347boXjkKT4xqHi/FmsJ3wAfysVHC6MqfplpJI9RxenopNkmeYU54xPNSMPpRrPecgsQmXujZpkbYr/2jfdMxIQjWNFwcDh6CXVdYz0WaMKqC25Ex2y5gwWRC9h1xBkOEqykymUDd9xktytQ44zOAlpP3Wm4pWYQTgh7jfdMfrAAo+MBC0XjxAI5PgTLTTC90nCfSKVRMXXtmkxxO0yPiI2y4vS5nZXQsEifZ9Ko0PaWcK8RE0vJyUf5TbDpxL735feJq7FqJejLvxiRwexQZDfWwSvrnd8x7WNK3emnzx1ZolTcB/FPj25wmZX6qOIBSxlF5RVnFW/Tn9MWjV362jXkDJsSEk5vMqOtIS45YfnemoobNnpzrFFZESYgmivRsX+jI16+7I7lJVBa3xOHKR90BKkwNh678iRjFliq0C3wq5a/NwuiayTM/Zp2wALsTCzHG/7UsZq9NVKvntTUnUBgnOvvfRVAA/XQ7fYT51Tz6TaW4dw5G9tOOxfYR4omJ+8I9aLIa9DGOByZNj84ZsiQdbj7abAzquM+uFWv6LlRwnCk+F1OLIBzi54gqyzMHqznzdqth3ki3X8/lC30Jay0V9/fk03ZwEupoz/ZyHmmfbAKuc+ya71UTHUViq3uPsGCQUZjcIXaILenzoUDrtec4YAzdTRaN7nwPBwormVI4OblDwFyB80CQFCBh9YMYF8ZqsY5NtEu/vkDvkZd/pqOrbWaeSzLgU9rivjGxCgmuW51Sk2DK9f8J8Qv3Q3uS17aznodwDOdvWNrTEapgIPLFoNxlGSSez0wJl00636PfzYfHMG9E/fC7ZadCLIhktVA3uiCvSWq5JAFEdQcoKbOfX3jWBLdUMgggHajPZ1X8z129Boc8ePNG7TIq4zO59owLlasKgFQF1UAuJSzyh5EFA+6xK2Vppn+owO0Q0hWRK99ok/bW9pl7UmZZh7iXoaRxq2rs6/XOIkXIpk08m0slYf6kVwosQsJZZXG1kSiS9ymauaG9xL/39ktJ+P91wXkvQ/cBSLEWYdq1sc+IVpomAufTgAcnXfZ8sGyHPvHjMCGy87ZgbkPjKnmguXrqtXbrI0weK0zBLes96nR7tSchNBssBgAt8+9d68KeBVxYMVDW5odNmjVFm/NNRBEdkrVnFckGpM7GR+d4SvhVmQywFU/HpK7MTzFgHSt9Un/24YmSg50rr/vOgmi3jHGrlY5/2JLBn3tmxx6I0vH7RzL0zAr5CPmHOZGSYg3ZUSBKQX+wdX1GTyk8RlwyoDC0hB7Xx96EJbhuFWLaEL1BH/axN7bH6w3rxiD4Y9JBPGPbhhMynu5wNnGlYnT4Qy49JgDz7Lm935QQg5qpS06WUZp4sSPI1T0SYWffToXOe/eMk+BCg9UIbjJoh7N5lsB0tGR+4cnllEgj+ne/8ZMIZlUICFBexuzfmMmnPE/8Bt22wF9Q6q6f+kavvmZXGj1RLuhOIB8Dpf/UJ9BLubK4tPHmo3ueMZbtXu/YD+a8sdM3Kvsov4ccHWc8TTODjcyDrUmTd2kwY4eHZuWs340Q+mtqqV7+8ZFoG5ZonnK17lLeE9Jwl8QkUronuv2Ms2P3xWcUOxxy/FUlEqr0YcHXHDReISXCa1rogFNwtqjliCmrdeaHNrNY1mzO1CM9viH1lpvYMCq5vGEbNSA3QugkT4ZiIdxg89t4VLsfdOFKNnG+9xg1fXIdUZOFQjEmKGBD3rUIhBibh+B1yNMz9Z6NuL9ViY9mXY79FgES+BjQCwV9ln/gW/hdoPz3v+dtIQqWVLQ5QOBj/rPW568SkemSrKj2hX+zHCj9bHLfmJZCs1FniShy6ZD0KQK1zUu0gBZgiGB6dZPvY7GvnPdQ0NJQwXiu9vrrXk5ujKFhRqRsLYC4B4EBYwvOcjWJZS36Bm9+/bTderq6RWWmd9oJXIagMV9dHVMtFXeQUYL2j9BXl8+5ailnT83BWq1VMigDY0NAXyECQcXkYkomZJ/Vzj7umVhdfho09XUyHHvc1Un15kTjKHZDYwCz8wx519dC2eGOJOPt7df4241qO632i+4a0kV/kFlLNb0rV2LXRf+42CErgbfNzMAtmf4gjSUZQbhQSLPpaa2bT7EATX0bS5wI1Wx+qK78D+Rt7s52xIvSlXPfPBMrcB7MpfHkBwiC5fFKfxYmgHPdUElolPdr82RYNQEmOv3qqyT/koORD3Gn2DAhlUe9zIHPxK/MqPJJC0JKdMH2RvoAOpGTXXMt0wdoE+mz3gv7CtVADRPKKOWhSqZm3d+W+WC7C0p+1eXR/oQuAYSrrMKOCwnd8UgMEkqhhM9HmD+z7TFa11eNTKrS+T0/1Ly4fT/18KLUqK5reGW+BRWye2DQZpXYOzTF4RSgXnGCnVU8ntWpu4S86LwNnEElQ7rqWwBdPXViEpPh4LHCSXgrPHMTY7nCYnBm9kL6Qwg7VLlzAivDVDRexaQrOEV9MPP8LMja3eYtcyEtFH1/8q79PVDl1Gfk/oblxvJzL5BAk6VUfeJnw2nMUE95NvuHB9PLqeGR2r4SoNUL0s8O1oAi1VI0BT91bPBW0uh5+jx+Fvah7KoQ55flIqdlXr6k1Bg6DtzjvGW6EX14y7nsY77Gc6y/z7z6kcPlhO0sQ8+JCYT7bknUak2l0Lc8RYxallX2LwC/ugom6eeRcHYiXIb46Q+oE3Q5ayyM8uKz1JXIZ/7Xt31c94uiEbwKDmhpk0NWTjoLjLfvdg9trnTAl6a8tqZj2DjGG6q4GH9v9js0xnz79mMqyl17qzTsAKoxupOyppocsnaX4Dxnz8Dm1MVHDpbixjUdS6JMbXkioi++xEyqFoLgWUXiTqtOV/exUPKaEZATovMye7sstDa0JkfmXdKMi0b31kFWvMHfxVO58aiGwufDxwCQS7Y1ZLZotUhuzMZ7MFodSGbMcbQU1j1IeIpdYhx+MnRumiYetepXo3LzvpDs+LKdmEV9J8ysBNB1Q4vChQWowI9HUBGfgIcrVB0JkGXZ6vMz85Gd135VSLQx1X1XEDdITeEpVhxF2hWJqUZivoCrm14u15kQpTucfLdap5Ve+IePVg9aw+DAGB2JubiS2SY4J4dJSNzYA1HLZtH29HdIarVKHIq2b2q8J7ALpNAt9T1n8rWKIZPoul6XEJbmFx2gkLfMJnzD1D4oJp5EumJAVvaiNCoz0mr8szcVdoX8hzV+8/GFh6Gox7H7mC2ersVxhFPwqDneXjdofQUml3f5ZSG8cKnbdTdGAk6Cndir5xj/gtckk9dRa61qhWeTAfekyTvs/S+cKGbTbpl5wR+GNKiJHvZk/05wdKLidHM3/1kyF+4ugHqZQc4gQmnsuhCNlP4r56tFGENfz4Bfzycz7ceKEMMsdRVlWIiStvcqeNdVdGTxIn1l5uIYLkLLfu0I5DLgiiYZ+LY6cl7rwRdTo3aG3sWUkp0TXBHx/qgySCi4jPySMYJ28HeuZ63qUHHpgJzWbbaN/K6LI2IIFUtSYCi2t8nqkDDmVug5f5YqkHH5MZEu+tHyAuBAQTdwq/o+fhYk0pEWmyyqqjHZB6rk65+hGtLsq8ULjWdN8A4D79fU9La4dAWDbpNzHYwVL0tShVX0j+5CEKTLeGTELcoMAmWqkWLmjh3kJm4jjxnQMXOjhs4DELS1sM5BfJ9I6GybzWglZFxFaXcqB7gJEFrPJAiHF+3DaP+u4GbdzKEABFV+UQvFwDr7lfqEEAejjBaCob2fhZmPgYt5WSryl8qp7rsjgJXXi43kcb4mhTPRJzrMh8vFckOSNb75LFsTBgDwzz441CRNeh448wWZE4UyrUk1gA6z4QjmHmi5DhlbSPwoUY6Bk3Qxm2jRQdhO9pWF38OLRRQH3Qc0H5BhEYZyQbh0ir6ROH2wm7fOxMQwCNcaWwGy1Xalhet7ovfqo9c+IPbXAa27K//L29tXeJ5/RKRKqlD6P33IaOGoTW8oqM2rsJ5BPmNLl7PXqnbrtb28ga2b9Hk5q20FomLt8/eC8jTAJHijjumyIIjTDiKEdid+dxvE1uovE09+mz2g+uBiVeNvrWQn0hZw5DCu8vzkVmJtyor16gnLZGMSKfcQEE8N64CXREb/4IbwyIRw/yz5/bItBSBT2yPqzOJK+jrAkltqRyHbEHOCevfMdE/DaGQaeWtFe+oRMHK5HrktUI72Ru3nv2wqw7xyKpW19bE9igzyqqUABYTlu+RncVJnSUURpVrxHuwhFSkNQhIwJYsdGnokzAwPdBXeo2aXb5hUyPctx+WDbn4AfoqqAUd9FulM/PAvL1+V/HQbrXgI1Lp177nuXE83J50qauPC7Caqq6KQ3PDTgYXZs94vCXbdtKngLlit+JYAkFqXTfSbaKzlhmagoPg0lY5yBb03h278c9YeDxO0tcKLqT6XxjOMUp6barrVrTtWC4yVVVK//APbVxD/NcczS0cogTSFgSHwUrqWwwoYeMiyEuYao4/LkubxCrE20zfl7SWHfqcjOgopT7mfB1z2dI+PYvX/MXpixDLFC0+oOplwKDveXGjfp6SscjJvH5ghSIFfdng9nURRKXtrGnSn4xVjwYuZslH233yS+EzeuTW5GSCSTe9hNuMCAw60tRNqb9te4PPKvlkBis1ItPWQ0T/5EJCDRYVn36FilC2T+iPqhNo2hJjBuCKETKcvd8lc8E053b8uac9OZdrBuRULpIUDIg5e/8iObVLaV4D+GL5HcTghaMG7+B6Wc7KtM1g4ltl2dNraH9EuD698v1N7vRMmfdgtLO/zWxpMoolWvH+WOXSu1eADcoolOcBu32BNpvUZE3bwaQkbzK39QkvpeyejYNHNjNypHfmcPXdEfd+WgkBspELkJntUkzz8XROR0CWQfR7GtE10GALMIAXXpWVet+A7mxKDh5UaXkId+ZKyHfutPQmOolBL3QqBJQ5zJCV8mytfsIFi5nHYvuWcC8zb/1lvLCxpIrB2PVxU0TmbaRXwdwi8le21fdn62ALBebNbhim/EAjob8jAe0o1CQLdmFePVsfpuJ3mx4gSiv5wA8TRSGLMZ6rBCSaP3so0/CpucsTnaYsq8JBo/Nsah2TsnV99dqh58+ZzXqA6Kzd2O01XihhafkBSUhQwLWltwnKjJMHB3IQZgQhdwizwuHF5UkPlACFe0W/2lc/dlIZGvjRulf7oag/h1J8klR+50rxLQN3TOL9XKB0Seh+xA4TGELSIsvYshDHnCUL/WSglCvqoJXdhJM56QOTHXz1Q4toiYsop/MJ26xx54LiU0NZ6ezJF6oXf2IE6h7yvJ8P+Khmp2LsUSwayc76EU1NfWiupNx8ox1TFS1SA4MwyCjD1FE005mw7kR9YKh5+U0VWRGQwGtJxjW0ffob4eWCzBTJF1USJ61sjmt4axqPJRH1KxE6qMsaizGp5LEvR4IfsxJe6Ge6/Z6s/2cybWw3jb3kk2aGGtz/EpskbrDIMKoTlmAetkOsqdhHNf5Prd2Dpf7nM92hmF+yWJNQK0Zc0rm0M8eQZRUWUF6H8qqYqo09KgF/VVLDJOETnFafYHJNP6CAeHHYXna3G8ZiOPtnSJp0SvzAwJ4KtcoKUtyNC3uDWrqpQUTLIxoJH2R6Pv+vWakhcivkCGC0k9/hiaJ3lbro9/DaUanXlW/twiR38vxgsVGbeBLK2AyPvWH7IsNP+8iKQGJvGeWXazzyp4tA/SsmUgO86zpjYwOhiTP7dY7YSTF8a0y8xAkLZPkUY3cXGgQ+vJAyexeBzssZpiaWeC48YQPag1P+c4LG/xCXkCLhdogA0wd85Ork2I9uueo485tMsbtXGlVfKpsbY282x5rA8V0PbOrTJGtPaJHo/5uCe9JgSEI+CCvsOcVqpo3fA2BfnWV5kY3hUUuyDQ4A9T9kYOu2DjLKyXuP8xgK7Zw7DjTY1g+AIxRi/48ccSIJWtd2Tsu3A84iMXMQst6MstVE2qG8LgvGayc2rqVY99oynEJMuLFcsFDg3ZGdwbdKON/6jhcO663xhcgbvYAGMvpO/zStSgq/uO7HsXBbnr2ttiuWG3ZLMQgIN84/Db26q663FkoDW7Y6sGyRfbeqPNSpVMpAgOuduIn48avZtwzf94k5+3EijMdgIIbIdDWVnbCT3COwYPdpWD+x04UTyDA9jlqpQMyS3QbSfYhymvLfpc7EB0kLQbjeygafuXOSGvjtz4JwvOK1ntAePnS8msZ1Ekh+DgGNe7rxmSQcKpTlD8A2D5lfZ4EugEpBhblRGgaeBqrdhdn1tTQFAzrIbaRhrHjwToqbi+YB6cXlkoNy6iX99XXKRGTh/qsvfo1ZnO4nnDDmDgFnOaz3v89iDlcAY6vpvquiP6bs7CCjxf7DthIIkGJO0QpbaGBDWH+Sy5goOti1OAo+5T1s0cjCOGn2Ge5qw8wP8ilZaRMDfy12tjpfKudy/SENvRFpbjcL4xibznnobgxu6YpodUN+vRtcoptfiYCUB1bw+9eFMEJfGNPYXy1lnSlSfOeRZKgSGl6FalzQ2Awx3xFG1jsZNjIe6s6G7sldLxhHH9DZnCZGxuQc4mKZ/3dq4t22u6R7+vzlv64t86rOKmyZHtcVH+zmYrkNvW8jXRSwuOU/WCBrp4JxHKUMbYyB0hJuU7jn26uIpFLivt0g0pB9KYG55kR555ClYKozLbTg7oDGGC5PJ4q7i0K9PuHj191TaXE5kiUuABCy7x9N2sNWtkPNzmbMBGQDo5yJr4U9ddyZhcOZNILA7M/Qgb4/Qvma+uX/RFrAKUSTgxZWJr0j6VT9Cnv8PBLcddxzPgQPmlvtSSJcapGR6i0pRH3ox2HcomAKU3eVlxQUVIqjexcBDTilzvmVsasoFGnNbJoOB30w1KbRO/qbRDiMnG3yx0xB4M99vekMSEPJ0NFhAgdDm0zJTP6FI/CpezBCOyZ2ql2YDAywd564p9/s7RR4qDT/zotdWTsSBkDwgCzlilbIiE49betnyRW9oc2ZamoLrcKWEnZUa3TFQWsdl6BFG6QVK0J+P4BHVyOOhuqCMT0ZFq3eynmujcVsNVE6eDW19P5j2FWmFq1eMAIxIsTRm0l0QqfTetK94GAWltQ+rxpYMUvMF0f/mkyvXXbiqpRGaKvvmd92RXkKvvw8UuikXSHMXO7lPpfEgBbd+SygRwNbEJCjPQTM1SH8FFE7cXYet3PT+fMnq7p6y+b1jyMySevLPOxpvWSPtMiRWedT6oiNt/3ZkSH/W5mWWsQhNjWIFQCs3nbGxya+1KYwG/HdVdV6kB0zN9iaJR6yjJYZb90mi2kYKhx/Pg4AgR+X0z6jmR48qjgdI0QYXqbmfMS4jWTOFv2cQ7UPW/Hqcx1nONnJvrU+8Ujo05pDGXfbSSK/YA4zKokYMCXi1SLb8dqnG8gW2FI9IJ863ORWbsoaIvUcWr+KBn0qnvbnlDrmSHw1V5jZKJU6p/2Q1sbEXVTYKvOsumrImefCQdhucc+T9EH7EuyJw/H/tL0VFHIvUAJ59shXYZ4GDQ/BwUT/13DRkelhurTpGyO18UPZ+3XMJUeELeMhqjK4jKpMKaDg3mvZb+aL2omYltWkyuU9xAg3Fl6woA83fMhKYJqYSz5W9q+zVPEX6IzYExLFO0k0pFi7RONezRUmuTcOYcPm1JivXQwGT51qegwkCoueWr5LOV+gKVop7Co8Ow4nLPDOAMUZJnN58J/QsDl9c1HHefvrOhi81tWLkF0ld3EN9bcIMWKZjEuEDXzZVJMdPnJbRhCN2omuTAGaM+AiTE0qNe2fsi08LAVL55W+Ioa5PtcR72SJpmyJMexuExT83VFJwt46ayIM/yMZGV1eM7PFWN9NgMjCri/fillVkhokK3UmkG48opUpG6F7BUDzR0O4tvUjM9X6WesoQzwa4oyvIHtl4eVzMR+Inot8YuRP6/MUSwriJTifNfUQFUGuSkwAoK82nEU5bmhqbJf1RFHuYrfZ/Jq/JHGyCXvFSNVUL/csbAE7jtF9ncP6AJuZhdeOquyjVgzYgqSMeyL2OO5xElHw3hxyC2Pob2cH5h2pwglMUkhH1XRv1e/QbcoOglFZGUd+reo7GQM2dcWP9W7TYedzVgSVYfEZyjVwW1/7ZH3KOhqRE55brt0VPCpU/Igx9pETwDjA6Ek7RGwekMAmqcqEJFxDfMBP/mcj3yrPBpc8bvBVTGoIHZt1gg63gQUqyPQ5ytnf2V3HNG1tJNT1oYhuHqaLpqz4kF1Md0bOzTp3N3jTa7PMpVEzna+iCXoX+VOOYTP9i45QxMXmCGP3ZCvAJGtV5oAb0tsdX0yuPHqZ6wOmRBw51q/rnkIFYt61j1SPr5CQql0pSAfPfpYtpjWW7RK60fzhNhvNnXwKR781oFsOwtucBhYwAafSehc9Nd1IcrHsRmW90fJaPJL/5sYzkuDZbMSIp9oDu7nv2HegcCn4lfanCRTc8606Vzo0McfaDxKNRu/xrqiuXrNHKdmMYTC2PtQK5dI3u6FSZXXB4gP4fOCOFFN2ruO+6DC92eHoTZ8fALkg6N9uwvrHpHcBOTGB3Zqh0iDCTbVjzWC6ttwhuZAJEeMLUuQKFkSX3j4U7BTdEumKJnTQwgwgdvOlxM2Wge91NrfM4XdrsewUZcbYYciDDww38SbTuFiWGNdEzB4+PXhN0jx2mDRPfflS0tHF/MdyMFmR/sU+aS8y5cfD65FhoTpRsNwiqzh6kAgI6Rl1jaEg1u95oI65uEB61gfUi5W/R82uh/cxlMi6calQELf/FrKfkoRW/UOaMXK4jnyYL3qplAuFnu5a7YR2KUOtZVzP0fwYGOBtljye1VT+KbJ2FQwNzxfDS1LBWJLPsbjjc3XSCwEFQBkQALB2vQL3QQrjgvTysMwXfpfkIxPWcklrePVzwE4Zz7KTdgb6zkhF3tfF8OBcU96Ea/XWBKPQksr240cSLHVi1sBYKyouSuseRhYrB7VZONA1GU9imOZ7EuDIBvLTuns8H6wG8bg6ISoxdMhNjwKxgJaySAT1lDlCKbBVKL3LTpk5Pd8fPkz3HfnkX9v++qlyWUAxMC+G3Xl4q+HyvLgD/yGcGQb4gEJXhDVJD6J0TqiEKi6zNq9JQBD+jJAxZrA2Wt6oxw3pJh6zTc4miCxwn/PTow6EIfoz9NjDVx88EU8ZMYgfCWN1Rkjw+1623IquW5J3nnS2/vtAR7rYWa0YbXsswyxFWmTA+BEkrxEdCXjvqzfqMrc2TMwDPkm87qcYkvTLjWxUvK5CXOC4aN3tH5/HRiC9n7k+mL5alyV4Ww26Dtx3tJfpX/cQ5T5WHXPqKYt6ibfkEn0uzIZlTx2jXoRhaUUCdFfw8GPN8wbbi/JVJLiuhEhIFOzNijTGGnpXUD2gGH5sIYjpp2Q7XmH3jyvDwJUqxOqpqWWIPvZqgDetn9P6+Q7oSkJ0K15ZS4ts/8/23gtPK4Sbhaf28lvKlZ/D3CmU5XdCpdbA85ZMPoLjnrJ4PB6en4sjREcB1Lu5bUb6/rv2DLfvg78fmZHhjNDBcekqfF6q7LKqstO5M6QdcyeMARvPpPhCuMEOwYRXPMvcHG8+8Fe1unPjgYl5Qa2hb2JitWCkNrUfP+VjpGlJUCMqdWY48bBFjbS4kmPNV8WIgS1jFV4lINa3Hc1b8ZUmz0gvEGbsQK3BeWETqx6K/uJv+8zOtxI8DYsQEW27rkHYcHuNDTQL9EXTKjBzCKEWX0qS5n966v4o9ft0MCnPnjKrbD3vnVU5/LTQA4Wo30dWC1Anb7LFHuQ660aBvWy50G5PwDMhP/HMj7Fb28Pp7gN7LgAPB3NpnwW6osHyTlF5U2u8yunhIgPN9wLyRSPxcPSdHvhBw1rzB7p457v0xZsDldTxkNqA29sh7Gkrj+pXMQoC+UzQwObQxUdv0Mm0stkPvfhHbEJByBrBcvEdZ/EaVrROMbYnfpLpuWd5/di3hgbQQ2/HxzCfMYrzgoptVEFwGvFDZ/5M6dOCACemEM019ur8q7J8ZgcfK96HwHtLEJB6fIQ9fhRZ4aOpQ+bcw8YUAUxhDqUIOVuX4AHT0eXsWb+c8HLRNGveG1OyRaEfKYF9CeI9DgyX4K/bpozDYaMR2cctzia69o/rwmr8DEVjd0jnh4aCTGl2qJzm63jp+/TdXLEVQgQF5Mb5T/zwXprkLxO7FRGxfHz0JzXJgTegAie/wuODkzpE6t+yOil1vB5HQmk04UPU5E1II1eAMTS75z+khG6zfZm42CZ03PW76teOs9JGDdIrjH6Rdrm37L1wR+mEcKX9k4gDC42CNeJVkhCg9ajabX6UCoiWegJWedgAPJ6HJ8ulud4OiWMYKLd6e02eDynKNwmI9f3JgfEMVHU9j9s7AgVcYU9YnMLWQbaPuR2sFYVw3GU9UhTZk/ap3WRbvBE8IKQRtBnRI+rTo49LTEash+po8EsNqBHZGPvKQ/wu7hYTrMfnPyA8uhVEj4791aH/MVRmIbgTtGzmG8ZzUiVHsQil90XaqNbRR2HU0ENeITDDCxHye531DedrAsUOXci98boH366QQ23UcnVe6fNxkAx/SkEpYK9K/A5KLcmYO6NbJ5J8dQP5Ykx5MiYqKKB+/WL/dV0HThexsQptaGbMrcwZaLjVwrVhRyIJ84UyAwzD1EYtOVlEPfy+iceMNcY0KD+AsFZokJpAG+3Gqg7GR52LpeRMvEwKRHUsg2uhxS7DhmUOpw70UbSFj72YceD8r8tfZmCqR26vMy6ymttoyCUrp/XzKYuQX8AA3NMIZn4qtOOUVHgW7Kf+63fxamzAWs7iJFG52Jn8HnlzGm+v9VV7rMhDMwFGexIH+85gCu+90vCVKzmjh6fnnZ/e0nxFlG8l4y4WVo6nAsGrSgjYBaDcJdC8xNcZEc0/0PWF5CyiYPHx7RuKLGJvaYmO5WLcAX35B+uS7/qrE+jYR9TVDbU4aU/h7nj6Cq1SHKWfqwu7LoReqkkU7We0FIqc9GyGRqJB+Q4jv/h5EPUQc1RkmHUbbMyHjEC8tPcKPDXzyeukAmIiZ80U7/1rFEsxDfSgjfYM2iHjp26l7CXtNHJpsm03dX4rlO2sDlailG7py3dQWKc6m1EN0LvFR2F3A8Yk8MJCteSZOvL7hSAzNydGJ+1J65N+5O5jQqj2TA4v8T24OqYJOwzYB45GFmUn6uEE3YTGiP1MrBxb6VMqtkqOhk4KGQYmMpv7F9X0dp2Uy29dWnihHSvO6lMpw/BLp2EAp3fUFn2TgFB66nbP7kTRGlf6isKisNswrE0j6fW2/QZtcLwRjHvftAn1VH6d96KJg6eINL+OHYzv4vvdTRS7hb/1iTIEizVNOAnYBLNxKxmsvwiS3QAwouiAFU+8u80xX/BBQjMOYqp34xKcmHQ3ZEptvs+Fnfwpt8audvj+NSV6UGAKAxuHzYft1IjB85kAgMLpdnGk0OQd5trK7kVa3nsS8R8+uDOsYTdEHhwzO7RsIzU6BLuXwr6+AXM2mDPiFrynemeysqekayh+ZlQAH3S5/kk/scFQmPy1PjxNjlxS1jGtlslJj877hMU/q6fnIHF42JU7O/CAXOXXdd3LQP1EwxP9ycg9YHUmLE+8EUKH6falY6KETeFoXagVUO4AXxis4dn4VK+QI3tc83t27oT1kahUIVWIP5N6gAQpFTANz7cMofpxVtv1fd60omNhP2c8OGHhPgQgYwCYzsgrDxyaXyRrvhrjoKw1K9ygx1CF8h2HM7DzzxFj4c8RwcO0bdgHDtfDTHXGFewZYrL4WLzrgImUClxirgob0GcoSUy6Yf6UzGy81qU4OXJ0aXHTi+hyfERCQWsnkcVsyJD8Gt9qUjAAzgsrdG8PYVbhzkw65a/vRhmgvaimdnVXK9sU1Fr4GF1VMlDfKD4Vu/OcygOuVOd01iTi8JAXu6CnfXGB+ShFKlfm0pgyLvotZwgcHJWMpc3glLrNEDZfpT2ZktjggUW7syHUEM9Gc2VWO77EO+Atbs/GJqgFJ0AwVo1lESeyjcRUlIh4/Gpmdnnc0i2AEXZwBzEI7ycFEZEeqhqdg0OLS6WWlOeyRKTRTJ+Zpwp9E1XhothCjIT1csqJc8ShnuF6ZfNShbpM50OMDPfL8jAGVYq2o9T21BShjVeZYnyqNu9rWfu8egKbP1MUQDN3+Ht7U79lxkcMYRpJPFvzbYB0GMPOQRDKoMz3/bW85OIxghF7VmhGWgHC9KOQzD81QP+VOMHeFm4YScTgDduNG6a8fiHFW/cQEyk9Sf2UrVjnf0mqhCRKnq/dT9e0gCwqnV1/71oNo+S6hbnsEJDejD+FM+tS6ENJpoqYAiOcyyGB4/gdYNOKpXdrRKod4grfMAPASdtZmN3eD2rfUuDk07o5JMYjcGHFr2qkMcoz4iGBGiuI5+FyMKVaBjV1kAqkPAdb3rVHWbXmoibGRrvPfCstn/jID330mpOAIxRlMnQb+GSZ/N/MKUalj3y2GBXTvKTYof7fEDmVpqKDj6VOC0EQvAFJS58Xo/BqzTR1TUpSZxETVXhwiI4DOdZw4FU3RJuT362xO2Za2mfD0xffYByDoKuHLdw/wgyOI9fJSLdg0Uke0SWwMT50INVowhRm6N/mSIOhJJUu//bM470M9oo6HHrmICwtBD95Cr4hz6/MjaGQROcXSKWoybnmPoxz1+8Kg0hZjni13gYTkqFQPbuIlmp6fSOC7fJfJRNe1n2un0sMe8nbSUWiXYNP2g9GgMUKjazCSCtgKE53Y1HvWtwJiPGBnOlfEjKjum7StJXQB2P+d8ZHMkruEnWBCZWGnUE3rAtjchq6HC6spHJ2gsWnR6cb5FvVyj69RChBuKHc0QkGK9YGY9LTu5i8w+A2qImH0D6ujfwpfupPzJaoEczwwaDfMed7STlezYNCXqIn0oKN1zdecpCzeIX3n5NJscvBjn+e3qAXXFQv2vFntq8aWGDdiYSUqxlIGiO6T7jG0Qlx9wbVyNpgMg8ZdJjcc0bbVeSv4YzvQRRKc8QHfYBJCpuRSSmbPwMqdfOQDVP2JdaLxcPE/tBrdY8mIZQVvJlygB59nBFmtJszJP4o1fa3nNHyWT5VcFScKXl+F1QhQdT9V/KH1HXR43YEpvMqXNp7TbV8LNF4ghoAiqjXDHuzBGh3LhyIVR8SJ5GGroXNtU8dWTjDRmrUCCIhueK7ywbu78lLIpnk+ol6x/pclQ3e0xxE/TtrAX4oi1u0db9/jPfd+jnrB1UDu0+bXWnL3TpMCwPQxlolh0qPDc/NJ7RzqwQS4heJj9JadVoItPmoBvWv3rG+ZpU4G89XF/WnLzbfLjzi2QjF6ukM7CsZ77aTOMWN3eNiPGAuQEzqQaXw60wyFjuql3fIrMrWNcgl9GXduxPbqyVzEosD/gSKXHFr1mzu+Bejk6ovvd+XV1eeseUE76bq6IHbkDOnA32d4g44LSIGgBXYjvlcY5QOn2gH0wreFVbxF8YA/T+LTzw6EKhwNb9n53Vo2Umh2eiyfW5hM96cpuPaKNgMoFOp1MFeExnw4n908Ry/hg+Kt22AzgvkpMjAm4wWKhxazVnw3FoZETS6x9wlCRvbvMYbJjA4IcUhgDif6EeWLmAMUK9j3qKxwpLBZidCWQJDnqmOIegzMcLgZHWG/HJfrQV06lBl9vektU3E0QqMPzoCsa7xxas90rpSDihSoE6NtV9sf/qF85JfXsysGdEA/M6Sms0gUImO6tW5CUOhRVMYD4UEj7m2WZfF3nIoty8mC74IMiatjNYpadzJCpB9hLdGsYwWKIU+wUQ5PUtrq5TFIyudmJGk+2PyGlVpLhFiPuQQH8pqY2Qb3Wtm+B9gUAr3DSHMcsNqBNwKdtGflh3SFyzis6+FGad6AfyLbtqK+Ph0xWVFdjExO77NBZXnKMiCMzPIkRVI1PSeXbyG+NyUjBg00Q7TZkvHfR/rcK2ZEEWa/U8Lqoi0MxLzttJ5X7Ib2P+RqdaZUdWFbDaWZgxke6oMWzJZt0ncnh0qFEvKG2Uj9hRiMVFMfPuDdT3CldjM97jKh1VqsnftxP1c7fGzQJXpT1jHKh5wU1NUU6jxZcpWblmBSuL3sorGpGWwJ6vn0PdQ+YGhcOD696E0nN+5Dkz1lSjn23yyK2HbXo3lvB7MyJ9q2WLvURhLKji5OKaZrUY48/aMlASg/KCpqIvejJWsswknh3bFtPTvitOt/fVX0sN09l2mUVtRkElav44wl91eFmtBLtbatk1/Crk9A7GiGV0hdv0QEyzVZdE4ZxqQSMQZ0/4cH81f+l2BVkGfs9YrAPuQ0Y7T5rCkjLOg7rWBzwYAo6dsGRwIRQ6Jb3ffVTTW+rcVqsGIdnROF8DwFJI/q70/S1kaC2NutrHp3jIYPzF8to6HAe6mW5pjxxE3O0HUjWYj4srOiggdZc/Q+YkZ07YeNHNKamflwe6DiS5zDiUci9cnlRRBvN5DadeW0xj+s6AH+3E+dIGzAhAv0UGffYSe2BUEzxn6hR7hOSkhC19N88YJ3Uzilx+GU6UBEEWkVqEWPo5j53dtV5dhnqPMGK7l/hI85bUuhiGJhjbOckvT60ugsIS3owZyX6Izz1vkeXgSKki0txm2gK9d+amCBSNnRFhUMXvu8vyc9VsJdykPXgNQJualfmesMwqqnA67+hCtGaVM70OpxdHooCSmT9ZDQVA6YTxwQwR2urHN5YLeZSfqlH4a7uU6E3DF1KGZsWUn6zaIljI8ld69PJIUrgMBGXyTq0Gs3xuPLSjzF0OlLo1WoAgnPNj3HxdnQ4UK9gZqweyNhJlnN50ptq6mGSxXtX5/ZT8XSVHxM61PwQbeV6Hk0f97X2JvD/pt/SlR2vEuwpYpCMTpfsvPeVc5UOxlSVEtICqNAW3brWEGqR6D1NrzF7BydFlWeOL50XfjbUlv+q205wqxv40lV18EHF3iZvcmlOIsxeIOnQNOqmkYuAqutyihQBCN+BAMuRGMqm1ouEVda6IH6LclQvm+U1/51tYnAbPSAhQtYvsRd7ZD9EY4PqrOtc33Scp2QZQUTWIl7zy7Tgq1Mk52O1fE2UmeRtPFTpYlORCVHHSUFVbI1kx1nKYrbngP7dT8QM8YqViJuFu7S+UcKfKJmHFaQT2L2CyjGvdkXnXJEfLNCSkdkmF76lHG4FwFHc7Fa6zBRQ9dtnCSxR1gJsPFflBCJdofJbooDaPq8I8VS55vITghpfAjButEb6u3BtykYjmM+TrSTeyHHKDQMpqCbvHIVIi/9IkytjNlF2PIARuMWH//jqR9w3Bq5ERgsdpYkXgqJS6QGDtFXqLB4JCQPBpL/pb+f+qSkFk4v4756WNCAF1p8sqyIoknqTnsFmPmBuEEkaeHWbUB2zRcOKkvT3txiFaqCPfSA7/vjEM0X1BqiszB2IyKMAv+MzdOAKCvXWP473uhKLh/5Te1b8N6asWAoGffvtnvh3s8U85pjvUSgybMTz0I5iqShi1ZGxzaE8P74j+QqH7XIV3c/TwXKqhyO5PX47d4N4VU2TUFyDBBq26u8fClZGB+62Cg3QjcG9TlMrxYyX+IUkkmihm6k6QiuJuESotHQSyayOp8R4WEwDy/lRvofrWuKupmleAl+AgDzAzTjEuNhHNVc7lwKRE80ONqQmASnj47MdjnVd5u6uTV2LE39b2VhJ6hXdx90HLMkURuE4D8c8F5xowhVNWUufguxJdpZttS54G12JFjWq4YOa9TqSWmFMRKrrgbFBHVirahggqIfFYzYojrmVgVUMn3Ja5wEAtLCdpboIBmWp+YmdkEXzaWv1APmSbP3jmulo/wYREK8yq6ISYO418+cOvav7S7Bo5tccwtkyJRTy9FybGsnVzNkMsFuBWQiQbg4TP1XA2yZIdonet8JJZpxBklzXqZrN1D5SERytJtVHfD89/hDaJE0LZxsWSNVunuFd5deH7sTy6GSSZA2Cao3XaeHn9YcYWaOL5MU79HSa0rMAns3AthkkfjcfDUrWJIFvExcHIUNHUBxpxfxYXGcENKW9ozXj/e4w7YZPBuBqM/Is/YCajvuki54pgKIQNFeEXngxNAb0jZT9FOuBNsP1w6QkiZWswCDK0sEplSP7UGwiDG6b0jT1ViKRBc1kD0gJ1HFL5JppJBgSClMEm3a0G50y3K/eI+rzE0Vg6PpP9GC/2Y75kIfdK6Sgopxsy5QFmOIUDG2I6MB7MXylBZsdWusTXgGcZuxfFUI1h5EcLnX89kR6w6P41Qyi11lEvAqL6RpiVyoOClZW/+MGJCqlrR5mF6uzMuCQOq00ulnTx3Rk23TAqmGHhzNdEWVzkv+yIvw/mbTMS0smQ+RkHFTYWer1Pvh1Ql6hUFD6BHS1+pRE7Au8wXAONK/gcu4/ptvXhesa2kvzjU/vHPwzB9vFCuOGrjr/Gqqfa1W6xaSyuExBX+TQHLVOljsmbEtS+COShe3eod3LMTlV0UhFYOjmS+A1VX9u2Zi6fuY1dWSmqNEwZymMqhu14Q3c+X2GpQtXmgLal6+wVzTNbMyWrgjqF7wxhNDapVszsJpyJCTLEEQ73kQcQy/zs9yEWu7sG6WuYgv6wp/E9bP6QacxmbZi4RctP40wpbqeB2Nvzql4Mh5HubDff6ilcPxt/+i9vLfun+7uOD0OyxCAyuw/c7K+Hkplua6E8ujy+jnacvni3JVlx4c8aOcGJfcO7xT7CfLY9msOk36dzXDdjc0F1m5H58kElmh213jGTW7v7rCHheaaiDrY/kapAkMjADX1xQTh4K+Mv3VfWa8f5Fu5WY6fqIfijabB9AuMSHLQU+lWi0v3RoTUtbd19FbiNALY8EHAQ2XXm6tbmCFkFanPfPDFn3bj+NB1qszY55U7ENqsGlqxT6WgE5dqXJ7tVEesMIB3LJWYtQDlRGVAbdcAO+Wt3KPmS8UdLw1+nyMHqah8tyN0dyh/pIvVsAI81UxJGp4s4352SRmQZu9pz2zMQi7I5hnzxLRJfZvttZInoT4Tbkj/nogO+VleD80em52WNR3jfog34s6zAee0fbB6Of5+O+A/L1zLgqvVdhA6jSqKnb99vThmQAIXBbfDyQ5gfqH1rQA8pDW3ATGpV1TyY16fTGASCt62rEnk2Kkm30G4sSRKfYFIXpm3R3tBxA5R5IJ9qcOKS0U8AptmlmSKFuhGRtdgsTTQKBOWw5VDgJkw5QRU61R2En/BxuLWvIQNqSApY5COjgrkew2piX2LpwRoz52osQPokW0AF4Ubz6+yAdu9QTsPPaTLQ5/WzI1B2hR3N8Be26+hCg7Jn4pP8xCg3JH4vB4NJb3K10QtYOqOoribxEr0mzKYD97Aaovg+i6v+HFxnk7ds3aUScOZv5YGLNDhDD/GtWa91s3FKjcf7e1o+xFs2mQcc8hU8lna199jT5Lev+rOQDBbPv7FjdD+2pfPcAuse4kmgGfEYKWE7C0VDaXrAfZDobAqYNdjAXryfyAKWKqfE3Gd3qdoAvEIqTD50S3+qR6KSo4ZxGr4lfWVhx5nbdqezxHRFwRgoWJwPHpFKR9nlRtPJ19D7DpT2il1hsrug+SEEAFIW871WVZazPuvlcgl6jXo8Hv16Z2X+VJYIMooU8A62+6/GQbXATya4eypNuMtTSais6wv1jTNXLRXPwr2rNvP8JdZOWyneFCNZFwAydWQPWL7DKecLMaGrsV+4e253ZQpq/IlcMOwjhK/3dKrrDCmiaU6Da2PX2lidxj/kxxvorVXNXNpQMJeLJauMiHP8KjIDc0sFPGLIPd0tcj46xx3MTAXrJpREx59XqOGh20GE8R6zkOcyCWh7X8qsfUfs/qRAX3e5Xwo4irC9NRwUGZng0FfQ46nhx23RxrmsHSYnn3SY++PUA8s4KOfI0V4VxaVHQgk3fvaTWTfkyvVisCGEOYFMHTxtYbSL8y7rC6+qGSnnlV42U5ahWaL7eBF/vkaEaERfdXc+GP9ah8/l5UFbhQGDByq0zalPn/2GkN8M7Mz1JkHoYzHCEIFrfWUXgYav18glY8YfGDFd5WFA+uuJC3VB393sbbRwQHrNEOX3jZ8kd8Mu0BlfraGJFGF8fJNgcPMZY8Vc5bWB5+ocGCRogzgbRQu+yZlF9A9OPtDyZatxOsb7V7k+DPiRP84Fpk5YG81KsnGHNAwjJ7miZd/5Id+vrrFyDl7rTdXtIo+hojOHVWTXw/DrNYpVpLWWnPnWvc298HobFGZ4E4Bfme5cLD4suX3YeVAILNI048JUEmSWe2M/5If0xz8L4uddKdYQJq+LUGn2JEsJsbKPacscl8ON7znfh1lsfRFySLfShm8rzR69ocyw1AoANx4nWNOy5HoUGkE+aCwXDkHN9L86NzHyun2tSZHBY+Z9ot5fc1X7BU2hP8Frrk5eozZW5akIzxNlGRGZqpd5u83nc+cLfHBIoIoiSiFunn0bVNwn5r4FHPW3EP9NlvtUT4JuXdYYM8BPYG1oCFvIrxesZxGFTZMuI1+q19Yow3foQrFw+2j+bLBC6cvpJB3t8e/pfOrxz/HDzOhGKjeQIpFbu8eyNvbkqtLLrOeGPV5ot/cyCfFyem0BcKSKSMqIW7I0vIKQNEoEdMOh+nD1X1GI4NbhabrIamlWb/2Mi8fQwATOeNFARvngeaoCwT0CrBWlrqqwV6kPSVw/XOGKuIiw5Yb8irp7tFtBU6gC52gDHAQ7XtpjnSgiERA39HcIBiAhoZZQWUIrcEim9D2mgu6c1oXE6D4k2cTi0OOI+6/SFz1BG/mGZ6kEIjUVQQoIL68iEJgqVQG+dFo00MzjZMiRpLN7UgyioXaLs+BA8HXHfZoFt/ucGMDnVnnInr1ex4gueCVRp1tnQqkEdD4AqbGE8675xXZ6LwasAdGggz0q7tYkuvQlfwWRmTdsXhT+jzcIWnyuZblCt+0JTXKPnK8Of1eA8u3vlP1Q5sGayQTuRa2RAsgqsuN38kBEPmiR7MbZJe9IwvUErKJeZurXrkuRtWwnIs9BCWieaEu/SgI489t17WO2w7HAYoFIu1YU5tZiHU/h7udkYWSLKNafA08aMVwG7QShhQUMchxaun7r+tQr0AuNbqg2xqY2BCGEDxs0QgE53fJ3Qk1oop9BqhXlJR2ux3D61Drzl+GbEKUtGlr9dk/kLsj/8QVTfwT3OYx5mHSfSgpjbYtTDJOYGZP68EpvKX1c9vfYbitG7BAcolu/QIU8QlonuQ+jKNJMRjtnNWL98GRIEm2xl8oaRx/5E7tABVSaDtHd6cgaWJl+xQ8jpIHykEtQg8Nx03JEgihAPfpxexxt8AUbmI80CKn4yGXSj6dXN+fQyVJYJsNoNHdMGQWZ0ImoI34vHnIW9HkTwyAZ68rPIvtD6S1dgLz+73QuxDGJY6iL6fQIHcDT4OoYoYoSpXl73FP+NbUyP3mpUW4+OO7B21yiJEfGiUFkIE343XmDcq4oTEFoXyuBxhk0CkAxVZKNDDlzU2G9vugvhmeSB26QNc2evTOzbfKvy+g3vxfr9294I5Xd5Z4/iv2TnSmgqW8543IT+5Rz6I6MMOCkDaqwzbrO/th3hN38pffFrtg+A20FlT1moAQBMgTF89r3U0kMjfSrtBBbZ5jMWPvTmAF15467OEp9vXshm5S6NRPaDTVkwi0GXznRwdph89/q6irKGFxaDWNoxzPXkcZ00HVhRLK7v4sBtegNnMzcl8G/rLweFhKd3G/SiRC+BflwQDxja0grIkyNwVnfEE8nNQq6+MkQPziPMjExGYwngKdhTLQyRStYz7Mge9jjDm1hAAapoteklGwk/NDX7Vh+skPcfvalnO7p6jKU/7jewXcc4xQU+Qn0xs3lgU40piahqFCtRM9opZIHWM/lNrMK02UQqEd7VPYnXyHBio0pKiS77C6WqFkCEmboK5bWRNBhS532rZTUTHi7ywvQIlKHqqZaskzIlP1kYwzT0UmbZPqFRg4pZCPq14tQDwNyxVnnOR/pqnp/8wmnUJsSew3ytdtzA38IInvL4zLS/tdGcrUV3Ik4yqGmCFFtkhG+E2Wz2KmssXEK4QczJZi/2dGxAhLyjjj5DZy5+AQuW47VJ7NkmFxP+6RTjZnEqrXAam9IvpDfA3ajND5dybCeAXbYk3KHBrxOfZ05gIGLQdqVr7f3ZTvTvQs0QfN5bPSu79MtzZs5RvGatltBH4PzGpXfZWMJfxsL9BnDYkdkwTpZtbDTurhaHGmBv3VJwY9LPlU7j8F0x5ro2Cbt0asIJ6xmj3x/qnFgsufDeIBs/kdid1qWi2WL3JplQXL/hlusrD0nGfAMhsfip37YymXLU0uO2eM9gbL67Izb3JzveM6z1/6MNpyr5rYVuupRHnxevMCbzjIWIEufw0w7sXUFrHLYpawZNgCFasvRF2LY7H3nQrdgx9FkVBr3hdlELRJpBPU6kBkf2095F1mmDM6CSCK3DgJxTAfHmF/lwkYKrz8gIlay1zcHA9uFII+WwBgRCeF7VNEqv6/tXWD5o9roGZoVJYrsyEfJ0d5+YMxlxi2mYeD9TfPVWwXYh7w/SOyeB4pvCT3eIg+7MKzQLhnyi5pyG+U7hYo0ZyUVEkFjlD8A43E41hcXmKSUBX99dYDm9xDomSpnNWETa4dWXwNWcG+jq+8AE32nFtISW1gc+jmXh3LOEpCYcwTV4v2ec/j0p/n4WlYwxpOAIeVYbClYuYK47l6P0Nij65XPBmx9a6ci4VDPIl6+MdvuUtQ8M8Fi+GhGB0vTBiqgVA4P2Cmsi3DXzMiSCVV++w8eurI0zFq24ESW7s0WPkAqFwD3pEJGBi6V8YgzCmHA/k7Y/LU2YOt6NXmxtP24keqJo6Icl6ARtYAu06qDATUA6lQVMTVn8tYWGDkrQcl0QgI0MD54NZta3YiwHusiLEhZgQdAk3t9SMt2JnI6suWJVfrJgRCDqG7PVn2APgHUv3eMcZ/DHnUqb438b6lWng/LVUMmSe61zZ80hT9+iWu6bEBGwp17xZJJx//O2MNU+XalhlOjbKLUS//oZI3+ynkSW61N8Bz+XHPu7bQceGFX74UbPHQfpJ4WZHQWv8FHo+R4w3/rcGZMjj0cj4fJrZXKDmmFQhrj8iQUfFik55y6UN3Jz/j+AfgIvbVI4XkUGhYAm/H7blg7PKoDQ56wY+qgGGKRww4ialW70UkVhHRnLH8NQ2UZwM/FkKc/27t6KKjaU/KwBoH0THozQtXUdikMRgqPDKbebTn9FM64L2YLsK5dJOwrzZ7Yxa+woYs8h6e6gazas7XEjJ6aBOpYu6v0TmsKnsgIN1OKB4YZ6oQNwKgpWhBhG8ozjmfn3QPtU+8DRKLqdRop4ZGOyObNOp/lIFgZpmsE5bucY8EXhQ0ESeCJdne5pJG4DDiCgHyovChainNIsSWDM47Ifj0srBC3UvQF8vhcY5cOK6DcHDQjoDZ81x7sRxk+UJUQXVM4E5JJGPoSHYxqwyfX2G5EZGrjSWxfxtGGMWqsaofBLLS4AWScRF7YWhla9yKKJxH3s880Ahl28TM7UeUiJLQz4wA0OPNrVGXxzd8R66zVpqRTldZO+NZOTPr+RXVOqYXuhp2+m42ezmNLY02b57+Ad03uG9bElLaUixcBjyxV9j77+E4UxycE/rVbjlU1oUDXdqc/cUkNHezQFiwgYByqpQC6vLvVCM4RTmY46Upmugub3dTNUAOMsgO9/MieGVDEZVX/3hGl75AFy/yoRJT1Aui6iav2fAXkfriq/SCtTPcgcFkuCup6j4iBDItDIZlaiojlehlyJYs48m1wYcqNDLKn9+PkPyn5UE1LgQDitgLGdSKWTFk4qR9U5akEttqQJcYOg5oenPm8uIMBSU3mALvp0NQCbskmlgxooe6PP3xX0GYeH9/JifFyuBAoeavuqrSjjdMrJwEVF3QVo64FIFGCRSBi5wnNNK6e4WqJ41LKrB6/pMy1hENtmN+j5HRPf8KmOufbLzMSiPvuLz/D9qjtCXCMRcoXaLGiYooUGOi+O82aEFoU8RoHWtlYIFp0ZSa30NIL+Nza0thU9a1k7jcvC/JFYJ2apbpnsWzV3oJ+wVTN07/nDu6XWv+kbIOlu4IeZSsg2zM8V7BrKdAybDSigmtIHrB8lFFLQQ1QGrBnYuCR6I/ebwqxqG3bFRppndqYHX+8FYKQ5rzmHiCakZf5f2hCyvDW1xhJssvtXmieb7CwZjcyIQNHiw9+fk6UQdh4nOZHLFdzm6w9upT9dBEbI3rCWlcpC+KuVdTKbkdsvQfpSc4IlHrdcb+GEaR8LSbVTy4h323WTdOkPzEdGMgohOOqpBDxdZsKGMFAG2VYZtDkopRw9Vp3k/FeDGkOlxggDXI1iNFP5q3zodgOn2qsiicE5xGH2Hr9FtMULnH0E14Y6/jl2uYJgUITaQ8OtlLYo+hV+G5lvkOM/Zam54NwH6pO+417+hWzc3u9pyiTrxUhs8HfjvSajs3hI+XUX7TU9RU3Ws9LtuC311bZa/MdEY/9t0It3PRTNyKWEAmKpNubZbXN/JpHdCDBdpSCNPJHQllsqCjvmQyULIUZEkPAeTQmmT891Qdrcbj2lq6bPoPw2aPyIIUrOvmGwoFodHAORr8in0GRpxL1uWJNVY/qoRpcjvzGVg2k7ZdIrwy3nyP8vscfru6IN95aBTsITwBbfJpLLP+O9LybolIzLH+X1gWb6lzZaeitYWtAU/9ACPZKDv9Q1PUIoFkrClyBEBYFCnLVqVjYrluzEHxYxohJJEqRQ6NVcdipZlebwpZiB97qKrlmM0lACw0F6rkk7FaCrYtRbEWjMmM++pWrmnMObq7N2giHH0J/f2rvjexSRO9U6SRwem3J3/YAqNRyF0ycn9mqobjx9tcC4JFHir2gbnnUwzzfz/Yu9wwnFa09f8HZ8IKaDi3mL3XaZu1kw32z/ryvZPz1BOh4RjoLduzgAwGpxxMPaLY6w5xRbZTUpBGgCoxfwu8LldvhpCF3dwFQAl6x4AWezqd3SsMyKfQerwW3y2tjO8aYFwh8uBp8qgZngfQQ4LLnN6coQ8kj0bR0+GWq2II0tVszJMSBifJUt4rtoDBqctBY7TH4FfecGF+cmLB0rJ2ACn4YjBRbRZxcAL8ldE98YJqbF6r1rNTskiabp1BWsqyGI/ZgCcj2xjZELOR5pUtKfexBJ9mxu/2eVa43quf9J58Tz0NwWNVEMYJxZt1O+5AuTRQzkErVZyQs80n3NC1K+rZLgVp5LX94YmeIzLtg1Rp8ZixGidJH3pZuUbQEEL1r8G1tGJzQni/rzkRt2MtnyhCUeU8SYGGmlgfQqHTtK4z4kPvG5dVvPKRqNzKp+OQCTaCVfdcevA/T7e9qGT+MEizmSrC2B3rCljn0ZLy8E4CpIkxkFRzXV5sk9CEv2bXKtW2O2DFysWVkdoxAQjvCS58Pp5AgUAJXhhTLbB66Nj+3laXjUKsDrk41d9oISu1YyPjVsSsFLcF0Q5YfGFmM/KwScXSJwlNRr69NsaeDknJY+a85t6IVKACUY48KkyWWsV1l4zOIcL/G3MVFCUZfwD7S8c5LZs3h5Bp1pejRT3Q32R4ERuseqnMovFizLmMYBdFbXp3FfxNZpxoDaK0bT++dxLvvxRb7SRVgsWtbCBxV4UM+e3Wu2TEX04maugHFKyhzGH5sykrg05J1rZ49NK8sGVCxNKLQUl9ddG/9er4c2TTSV+ot4QpufYwxMq3m+5s4Pv02ACN8pZQSIn/CwmGAPTxSGW9n+Ai/bar8OomWBHv82AFWmavIvwmC5FakvKjYW76zrUBAAtkOeYKELYAbPD5CepY5ZLjPQAtl1ldC/PQn0wpl6ifV1LpDxgehcqRaV1Sv0ufVrsFDxoJ9VMTiF4A4RCg0BB1GoTMURZ49kEjyWxnjVqgtS3BRaA7REMPXqOVnorzdixx0ISpEcczb721UmvWn/b8fElBw7detX0Z5jX7dpXiN49Nzxs4+QuIHjqA+zfI7fmDAsax9O1wc1i25Y8xqw2hNkMgLuSMiwSISPFGKQRkC95yVrkFY5v0HjjfYakVJNxrKI4Xhzq3W6hD0fXRxerAv7MesMl9AYtgpYGPxz9+gO3QUrlEqPgNGgXADEyPnKZtA2PHgR7CRBkwWikbnxkzrkL65GXlpz3OuaMMwWkLTkZjXXehgRplsb4dwm86+t5GtVkn6EECanU3QtjoZtjampzJ+YngXGpT3XVG3YFw957ovqXKKx0qGQ5TKaxsP4CcxhLgT9UqrIuvfa0JFw6rUME1V58DVtugEs80Q38xR9mrYbLREACjWEg9s+VoBSmQu+IIXQkpxj28GsHmoUgyhB8rbyt6nf2jAk5dcfK3EKka+pbd8/IJeHSQgQqpn/9ap2GsyxUQckkcTayFhDxqV4ndfpi27GIjGOl9WeqLldPvcPufecd7IK/LkgzUm4+l95xTZr5snnwiP7fUoyiwQquN7xFzI23IJ700Ho5+uLVk68zFai5C2SWgruXmU0c2Kn3WdTseP/wSh4vNn/N8AHBpDkxxxlM5KEgRrdZLMUQhxtVvokOz/UiL0FKGribE47SA+EoaUb83VDL6XKBeStFwATkxbBl5vryg+XQmgxikv1AOZfkbc2VhEt/jvXKQ1h9+KLOGSrw0ROgL09aa5GonRfoaL83x6NdhaZJSPeZU7DdxJdLIzlcL2EOhtan6rVygpSA/P795I4QlFmdyvQZxhPr3NrpD79vz166AO5J6tzKXTcHLshVS5BdexkVo9pMAMxxwPCbGS6+lIQrkbx+z8DdobcRdR/ikLO14PQCq/5uUMj+8I2fUG8RqbI2+rwbvaKssqvOnQu6Sm8rqo2vfKdw2xmI1pBYuMKV9E075bR6W7YXDV9giK8Mi7sbxC0QdPUCMx5QP0/WNXyDAStqPVLN/XQu7SLGKBIWT9JmMK73RC8rrG7/FEUdOb59JpMYbV1RKdDHht5eDVlrlSS/8JHK5c1S2coQazWx8ibesTKzESrCMJKwEUjPI/NQbuKlnsIA67bE29d7vv52CCi3Ruvj0zb2ISmlDG8ie+20MSRBPbJ5I+7hZAbe7z2kybfIczfarmTCVjY+Cxa+VAc2e1hWSVlg6nVvMNUOsMCmo44EK4FUqUsA3cDlXCik+JC3zMYsCNX3JlvBCxuJ3l3BS9g1R7i0CLPBQ4BHsezBRZ8vRr6wQVPVAPnLdlyACARPFRQWG6ZGaWHsFiqXeCL2XpnsxFdvaLhql0ZCsBma4hTeGfrb3maoDFeGVnBEtgOZnyQ7nBIaq97XiQ+FN3JB8iur2iQYr8YeTdxIfZdZ49ZZa4eryiq47S1J2keduri1JqLDt6j/ctZ1xemK511Aw6DRcowpVzKc1Ndn4BJ8Pnjn9yw3ToBMqoaFiK4Cbn0gDc6zodMulJhQvR7yYsyN3NhDuKotDRvqJhXgWvjojZ4BtbGm0M9TLQedNga8WASIDyZ4BkawB4lYhOFEGjgMThW7YnCCYnGMJzZBrFx/XbsnZBupodSNsvalT4LEARSZIa6OdnFRK9fZa4CNSSBIBo+gXa4/oTKpO6CodnmqFaofmP7FOQZ60sWGeDZU4JnclifDOKQPUtN5FI3uqPXUorPRuPIbys48hFTA+SGzLj8fBN8pRAfDL427omFHrj+3jgaQkB3QGKxhFZFo3bbsj5PLiYE3toOAyBOp8WPIutRFKxVvVR9BG6punAKrKAn436TqVtMA/rgDCZFKutv1vTmqxnFf2mqKlxIybhBOlcQ7kp+j2Xy2MVNhFnWCyCMmqeTN4GWGR6/Pxf/mUfls3WTbXYGKoDDE9s/mgiZRWBBmytCvEMOCtFI/KDLL+yEigyD6ynGWVPcxR/TKPl1RA0uebZw3Bi9dZajP/Z7kRqTgQFedEwCpfbIxWScXwywPhMjvwbOY1PnHSjOF/0x6QDtTidnMnOCsxefaGGALw8P9Ck9kKBwXyxHuzlJoeWUQRE1lOP94rCRw44FC8/0vQpEgh5byaoU52BasBmD2pD4NJkHWTyOcQkxmhe7Us0sDY35HFOsCSBGX5Wcu8uCC2EZ7UqpmDRqZlnTUu5a2mE2BNKD6DrPP5gxezhN3jZXEAkm60H0dMZMwhBd5EQVrCtSG+cQRGqefsrCANzAndRHl/xX2EU+VqKkwGGLlmBSEqEtc2762/m6JxPbwfW1BKlhph81rP7TMJuhF+sghMDKtf+AjDhuELbt7InLMldR+P9KSaxRvGrKlOkxecql1/jyOgr2PagHDeXYxTNU0G8wL2tNmvHxH2/fjGhp/+g7GzXRfo+pe73BO/uTbrkMAJEENG2PlHkbBKsf8s0kFNHATKgpxpi1M5RfFO2NOUBmAKjWvvSOv43rZOdTFSsKP/i+e7tX+49S3bdovtRkIw+/uy7gK1aiaBecNMV2sNnaCaf9wuxqJhC4x0p+jvdsKWlpiwZ2M/nZ7iY69cmQzPO7uRiTdOSmtw0jfjbVn2S99JbSdq987iEpiMZM2YYyYM80RZk6s1hPgoN93gr3Cd2L5DCxvIm5ZLbnrBayCmFPIst73BxO8lJOQjB5iLKI2TTOwSdClRpwnIj1gkKffxS4pzCBB92K0Vy9h8zrQSk+wVKMorez1ZKYVNw2aZLJILW7y/ZBViOcen4m6+/S3K5/YfpsmZoK5wPGa8aGZFEIZ4nFEhCRnvJqK96EdZXPmHZxPByTQisd+71tM8l2TRm1NEqyleQ0SR8Fk2SZ94HlMN0EGmbJItI6CF6sPULN0ynIchjX03F5Fd+aseUtRkJ5dhVCIZO/uzh7npZG4ZCjwmdgBKPxCX8kayDX7UT2BtMAJs5Q/CfeDN4Gf2wQsT6nKbjp9uvndtxIRILkLVY+zNHuEEJGDPCtjny0HxB6ZCcCZEY05E6g1W80f9OO8XkAsqLc/DsY/jgRj81vUsPD5390UzUOMUFZBnVTNfkaKx6LwpvsU7vtJl0t4VBr3ECMNgDKgOzrDJHc/YPOVu2mH9Yu3x8u2pGMzEXr/LDB+ZNA8LK41XQhWIj6g//Sl5uPdd0EJ0vj3J4vxYVYm6CtTewLO6yoLT2Egs/ZPgpYGygmYWxNacL4cZeHNCP6b9wgGCcP6Tmc7CKruDXDrkxFQmkbRwicVBVQdeRpHNOCzrDj5nobXVtgqpW/sk/tOppA36ah0SjV2LYdGtwfSZ52TvtkEAgjcC1bjM/CUImBzaMyxEMDFJHNStmwhjWfHjhtZK9SFEhlwLKfnMFYuBBmrcyBhkz9I/32szEOgh0qbbOmL9+PG4pZkHpJW8s8IeJ//B57UCutYML27Gb1TAFI4Vfy9+GCcEkvIigtosCSb+qxdlnf7y05wM6HJmHY/SrADWqEryJsJWqVWaH0ZKHNC2khGyS/JUseG8sQh5tO9Bkf303JVb433pOUBB6YrtcVNbLVd0mjhmZ8RALHmfgCtGzvBOyHihJKjL3N14/8gN6GORJrptCn2G8s5MJ6RaL86KQYqUwLlfrbzlFiToC/gajSd5mWZzUyU+34Sd4D5Nea10XwQQ7TM4HhHluNYQ6jtNI4oG6wrtE/5B8FgJt+Jh6lZxfj3jcss6KP2He09mJOrxcXb3UEagK+0onbYO/wyQCgaNfe3Z0kLGh7kMNiE90NaRZCsO5JkNexWtbYH4uXJzFqbQcGfCme3JDgwRbkJbCJd9KgxfjnFIHAX1VhL5Vp5JQ3kOUBsiv1ZLlMfxWJfCweH80f7hVmAsyHEdMUeFkRX67mv2MzELEmeBmHBj6eZOqVfqSFSqm06clRkj658jYcwEuOUo65ymSiFQeuk38262NApQZI921WidkMVoOfBbD18l03eWsL9RbxIgtV8H1NgzQkHG7/2BbaDVDRQmeVr1qTqFlnvzM39ceoMX+azbSKeLuL5jYIlDnPez/lbC7AVyHlstX/acLabsUUzl3u4LKZlJkcxfqDIIC4wSiUk4rjRQjQBfP7OyGEXNfPGU/9bWDvDcaWh7RXjHf2b6KssFpJ/Z5d5Ox1nCEG/mep4b4aKeoF2EbV4iF1Br2bR1iHYbPhb7APtbIkp586Gkt86Brv5OjYs/Vi5JJnDpKZVi9P7mlz8wjya5b8NmQrN7K0u5ZV0J4AiL2/3w9ZAkLGEVV4M4uTDmFtxjLy3WcGTVJdHJcjRu5sDbmjfMXACpKbJRLf0vhS0Xln+dMHxrWLxmVixnOlWcF8mkoZfNqAwl2a5ECylDLrL7vxUqzEf/uhq4gKqwCoJJj/eGW0BzkX0T3KU9zvPTd8MVu2CYMyjlnW+W2rjL9iSmQAc/yHpXRBgH2M78Nn4OWh/mx/b4hdtEjn9Tv/loUdTkScPLmPu4Jz5S6zu+C5ppkW1W59F+iQwflbnD+ttiLdzdV5fNi46LJP/gHZJGl1oRGFy8Whon9rocFovg2UWND7ij6DcS6nT+tkz7McJa0EuHGg9+fh8rhx5hZhS7mYCRUxmZClL/yU1iYAo8E6H2tAqWVPNK1gkzHvtMGX3f4PtBEyQ3Q/yw9dkSgAir+wBrkiM03DoC8gtM/cIS1oJc9IQw0VQZ0eSxdkfqoal5Prs9XEXJ9wDNUo7xfV/uo9G+GFz8uFWrBbuMWclpxAgmkk0jWCc+IQfGMUGy9tPWqtYkWn7IZ6uIb9j8rK64xGjcqB1/xuJNXWbGmuc4xwogqbUHS1m5fJHlGYxzNnLQvjYMNkNkI9Vz9OwJIs9vEdmLnv/X51e9Vk1rwmXaIr5Lgih0Z6Z6VsmAUToQSddeyclDY6J23flH8+ITA+Q0Rl7tZXdbEahIjqVwER9ECAh07xfOXipmVzCbutwx2D4co9ce04i/4wByvwjqk8doKbd01oKPr6zqmUK3ctYa1BEyjh4qW5S2wIzoU4v2HudoJZbgr5Z+SIWGA3Qlm0OgnwEktRZFEczM1fGmVT2VwV6UjxU46l6lFbStkL5YHrucE9FVzSdtIu9Sw2lJ/dS3rqyHc7vGrxPCcSxqWF+ywlQ7VXErfu0k1NyEHW+akQpbCXQZM6VtWFDQXoNYlKg2c5S03N+yAhyPvXSl/m/1A9G51SemvdgFXg2KmN54dWELNFK+nx5YefuNHmtxV5JdtWohG8LyerusZME86i2WOQ8BXQg26uFwzEqTRIlwpWy/nPDYqO66naTZ/9WV7ogJgG9b+S3OLr7coegJRcIBmovSiT8rdA5vOM7DNINOHZtzfmEkc2YMPOlYTD65eij+9IncP8kDKslEBxNQCsfuD9ULPBL1aUP2j1rsJ0HkAJB9/O/Px2+8CTd7DM8It3oL9jRHNR+vWHcKOgzMGebeDX48F5a97q1cAXUVlbTBNOj8Q3DzPrRLJg7EoXWTSZlagsOpXZEgeyKjNB+0pXg2OCjN3lElRN7q1zxFs9NTTT+bTEAv2j3yR5x+B5G1DxV1Foe2njO/vpnGcitl/mloEgzQGLaRZwjZZzab1zvvo0ZB8oEunuco/XB/60GRxFQxuC/73++ib5Fj7AEZUbcvsGQrL6xReUn7zI0UHqD7bXbffKmqd8TmZahUBsER+3lhC1gBi6oIML96UpFh63rKIXPTPAhzIMTn93Hje61swkfDlP+YGXTgapxfnD4sva7bGL03kbB8jkG0rq5ZEMvQ5XmMEnix+mwLNqPvlSPTs7aSwtaDnsMqZ7ZEy89mWE7LpthSYjQhQ1tkoKa7+ht5u7ldq6r5W7R0992sFly76wHE+j7vaYCocknx2W5kdh+7n2g3EB+81mmhFLK0LaY3FMU67DaQVpWofQOaBF3b8JOYD/Ip4y9eS2SnbMV58QZdRqjQRBUPr+JldHEiwR+ifAy4PLClmYzehswrh+jSjocadxLUlAFNRq/OMMLuEQoihH9/l5Zdt4qjWXIsO6mQg/jvZpjB/23q6zId2JTjKPT8YtVfmVU+oI0Gzf+evuetr63Tn7cr2P1vYZeaJkC1TNyA/14KI5yv831DMQFU35DyxWlqgulGVl4d8IobRv+3ThX33WVFmcjoJd2q7l3PzxxzwWSFoTDm2QqTiaGuu5iqIIVNM895vy74nac+TYM+sj/zl57LJfZc+34TSwumpa5x2lEwiiG4mqb8HCp1PSRbCQgCJLXLPJ4h43JDSAzyr33Dro6alct7iaUDOZhfSu0uDJr1MMyu5e7v7oe1b0Q/ut8ozmwlMosrjk3B0TIhg6qB2TidYAX0wttsZu1muxJrEpdqM3JZj6qtVtsc+GQxwekls2zSu35MBzr8ejtlEOpV/JQOGCvOxWBO9kivG16AY9Vd8oAwydu4r4isdID1pH/cR4SC1OOgtnm2Gnlo3IegUDVlpbSBFYC/5VDdCdCf+VSjK99DueuJmRsLZ/AbpwJzhpKjzMRd7MOz9AjN8RVnXfidrs0a8UZrpDc2wuh69HYvaLSz8DUC8RoMvpY5E5swmDO8Utl98I8+WLS36RndhI33CvoAy5bsKru7/efRZhGx8rlGi1U8rwYCJMhWQbGBaAoeP9FbX88OYTGUubiUwd89ejvm/uyPuak4fqKKAF91OR6u0aj5fVwFaSKwfKvqWfoxnJPrBpaWPzxiUGEnDf/xvoN/Gwwidl/xThLsWRZYaVfvPyaf8KxZl05l9VzCeAhyVcOEwJ+kbupRTdvhTm7bosGWDurmGAhuw8Luxk3A30AqhhWoudWDmTIshayFX/jNttbXjKsCbZa+VOkfSM8GCAKueXbGgsnekWkTmp/+mkYXuY/XHEcZVoQMy6Po9/sJUJtJL36btUFxI4iDijKUlDLT9N4qY0cZrgNAOvYeW1Aw5D8aCgQzlLEG6msaWP2Poj7PYuIJPI/5/aYj1J8aJecksgJH7Tn+23i6MC+zAr+1bK/cXZNYviK/Gr97U3MXYjkIDEIJuFk07ZIDSwG6oExLsllAyFNMYkBocPVFJFsLZ2NQiSHyIgxxUGzJzuuuZUmPeDQIb1IHKl2cJc8ls083gx85bzS7wqDj7JhN/MusyR7hfTTGXXZIHy9mnNaXqofAqMxfp+nUCGHcjh340ZBDsL0s5n7Vvu9HmiKegJn7Ld2N4VV9fU1FoKbBG+dJJ94prnAXCb+42W1/fjLuA1GGmp9RQfeGvaSLYmLij1NHU4bzaaf5YD6eSm4GeBskFSnIVsxNZbKFPsxj7oBv1Py5R4XASOXoNUPtKaP+Odsn+3nkVcibbQoUfecTFZBtXGfDmV8x7+WKuuNO32hINHuYWuE948V56UAsklgfT/9DRrAlwl/ZdQTBEz7EOtGhM4vR42Td7GMjx6Uhg9tEk+GtqnvPbZZ2QV/LQTbID+EVvuPFiHYRE9xscprRzKl3eG+psLjqqLhqTN9JzcYEvDJ8Umr/WUXLoPHsauDQi3TeyZTgAjZ2Cyi2g//fGVtrLG/rYIm3wmIIyzUohYVEPs9dMsoD4joG3j4bafbODJpX9gWN8JfMqIZ2VUmfplT5LPEMEJC0Vhwpr95WHQ1rUXotky2VLZzsLs+LZDA3jENaea3jhasLPtzb2zo3fqgnNYhwpUoDqWQYuuXqM3HRJWFD/G5VN0XKsBE4kzu5lDAceuv+TEBC5kDhmnKn5/QBo6je8NfbP6XlAmzHhOtArsmO6+JKJWHMcu8ZvOYrDR345GObIMYOI3iptXVatT4Zs5+HyzgLUHXJ3WPA2CK1j4O0TOn53kKLD/bJScmyDgTla1jA99v9aH+5wmzwUm/n6AZN1Eo/i9EWlZHOOaeDghWjgXYObup+JLkJ0/k2twdOK/Nb1JNmLxREYD8sHy2lKcAFAnJlY/BBkXx2IdSyeykrRHidWv2Ozu6MYdgBOuPrW2/I2Nl71o5IEjmdSbIpmKkcODVBMkeyJ03isDGjoGrW2RzkD9mxPTYXRiYEPlrrycSzYUTMZ6OO47e+GveijwogGyvYUvpxQyQP4Gk84mor5UnFhBP4RbAk7F0wVZe7XYJjlJPZi7HV7fMQ0AvZtGJMJfoHj+sB9z1jq38CRz+YL8uHfOecpPpNNZ7gXk1J1UuwKU+a55Gmj1Q7MHJYUe5hJaKRS5D6/Hqw1nDG3iVKRvm7+bBhp27i3/jEmACKj8YhQ/G9flyWK+GEiMbdy6crnk6SPkv4GTzwvxCmTSEExqqKnY3/UZ/yJOXu3nE8+vk1YerSDkRWnMT/m4ebILJx5xMQZBNgkl2A/s5srRHp9WDJbzsupiMoDF7lTd3mGn6L5F9Jr07yd2xEGcp9AZRjsJup4JHaPTgZOHUR7VnnL4asAseOVhoyrcsC0t4vDIbDHaDsBJaM8tgZFH4dk/rQVNkYHlTqZJp0toc58oH+tUwPaZzTrEjjU6TmYkBemQBbRk1Ld1ewLM59eoyagbyFwAGLL8WzwTLHUkqliKSO8XKpbrC5vgZJH6MMEsY6o4w9PeTtBiI7iHJNa/R2SkDu03W+5vVCSFWxvDydWKojrWBhr6eJ63cclXRRk5qmfeuyVAnEaCgDb5z4agmShYhu8MhhuuNbV6xONKhtPgGj7B/Ot+uXxtNr95BWyyeJa7HOWncDLWbd1P4WXj8satPOA+CkX6yQl4vFaxb6lzd2CAb8xsyCfUkdW5KJo7lnpoPwLDp+eTsb9ARdFFtesaGrfr9Tv7cdyZKHARK9A5Gg2jiBn1LX1DPG7mb/Yc4WJpbk5gJR4YNrM4K3TaOgkBNqTUsNNqELuA0DE+PRgM2+b6ICxPrRGjgt0kT4hevgBw2zBMnnKkrAOxa5yjMpS1SfRp1JxCxGRe0LwBnB26DrXqAERF4Rw+pUwQY75ARjSpdgRDp5ETjwauWoxgc/Ptm0JAk50DNGVVUOgr5u724yRapCrX0Aht/SI3C3rP0Z8xwHkxp1EMGyrz4bI/IehvZfKQldTw00vyvGH+w12kWhZOLOEHH91L+5WyrTcHLP2tOokP9IlYfTB8UlueExBmN/LFE0fAk6ww5JBM/pHrs55RkjReifDoY7mL0dsgyf2GNOOs+Ay8Ayyn4TLu/BfE8aq/yDi+Qccqpybb/ZjHIAFicCxD20RpOx9GCP5DY1aOOy5QoQHrKBM5J8UldQLToqD4hY4lUeTnJQNFJoGH83sg7ESs7obj0xhsOy5JZRIbK/5MCA8jpGeE1YP8ldUcwqsm+4VMwMes1v3Zvw0Lz5Vy+YUUC5BnM2JROMUo3wNSPpNLgX808j6h5WWb2MxwxW95D/4KMoa1Jbqsk1n9CWpZpFUItKc8ZAxeqr7RRdgSOaYwVNzYoJjxD2tYnrNoSDlh+lkJW4TJnrxoY9Vw8Kq9UTb5xNEHqL8RJ++a6ZHZjKIM+7hX72Cdq/A0kAnlUbvM+E2cEmq2Vtj0+C4e4vaZKn2M4MukvrR+k9rx1paFmpt+bAbfgWJIZkEZqgtc61b7tOgRAQ/EH2VgeiHh4+DoK41oPzbCNxiuKiAZpgqlvR/AMMSxYYK1cy5BZ0snDNcKSwsbIGWLGbDtYV/y4APXOPLCaepYUtBjy++qD+MkHH16Z5xWOTe7KDtEf3BSh8gWnMn8SYPjzsL7pofmNAC5jVhNhmPyvBJ5Gaii9SZ3eu1q/G1TK/gNajEM0to1U459DjT/NsHmZnyMSjQhfUPoQ3FEBN8oxReVlRh7VWDJEJxWuV90+0zx8CjNg3+c0X2V8SwwOlpcTvVqM/Vk2gQcWeVyEUqUHXWYHhLEsWEIMFXSnS037NLd3rGukbALsYPxNn1QdmVHSh6zwLZKeK0vSM+9pQqJahPL+RXx2/VOOh9w7i89rBjUPvkAcsI3XqsZfHJ38HZxVUNuKBgnWbL7Tw5LxBKaqsVQf79OhHRNroGpXg8pCdlQ74Rpw9iBwNG3hnl3GPWEzdPaiD1EM7jQUKJ7citMRz6DtCQLbPE/2wlxDDBhN4V0TTGQl5L8QdWgMYSbQWZ99yU7l/QtbUldRU3SKpqae+6C34DO84ljYx9PORRBGDqxovC4GMoTyN6bx1LkkogbspFK+XN0YnqfTXZXVUM5lu4EhmRuoyL7AqGtenR+FfKzEsGW2uv1vxTxfLsQN0dKDpsJ7V5ia+LBLRy0Cc9kntIZN839PhLq9hv/bmJZ5qD/650wBDWFqPEJeQZlTQjfFZZhDughMq5t1wP8vPZWWHYWfUm2y47qq9QdGNoPEr4OJLsizpISNah/8wZtU8pVb2XGjl4i0QgzTo4ijnUTfIeutxk+OjinkryLsr5rLPmBTtkMaHBpPexKaEYcagbHs+bk54lK0Pms+Ow3afZDFkiH4GY9W3B4hZXZ+617GWGR8Z/rvpV4LS0xMDFs3hQtwl5SV6PaltTQ4mlsXppYGtAwCP+hBM4HcAMo1hjRdywK533HvzuoOxS1cm3IBRhHfIh80SzJ8UVSEWNEm84srarC4I8gICNHghfOgrFcwvw1ikip7Flzge2DzO4mnYiamXg1stG94xf4GmzuwPZpqHu4hy2id+3ZHAALV/ZyTTz0xpUYhRmcR3DDkGe/thqv1NubizoSxpD9xfA2w7epBJvYpWurUisYRVG5YatL5jZdXuvDlwP/G3A4c5JvJSHuEpWgM48tJCBlD8MPK2i8x6x5PRx/ZGRb2u1GR/qVirnWHoj9cj/d5gwI3khwB3gfGfMKmzIB4Rb7rewOFsLryAR3jH1j4watQbYAe32FQKJbjlzWAHzjZM7EGm6WcOOkorFpR7L6yWS7YbvBoKLtc62ayao104h/Ygswzv9+r4SE1umAJIfI+Q/3iE6LgGfkxdhhReygN+zrGBw12nxgLNhItWYrSN3b8Bwxn/VEJSJNsKSFxt4oHLjx8SDFHFav3fqppfmSQDYcWSthKIUNpHGR1Hhk/+OKSxfIywMZH4bp2axTpl36iUr+t+bUK+liUZrZ6Jox6BhOhYBCQZB6HI0jQwW/hz5bO/f7ZjXa0soWPBlYOG7fzUIJsGyX1YKNkHviYRphR5lWDOhuuHn0gIc8j+LWNrJHjLnQcsXU/0hNbg3KRiuTqh+lZ0GTFjJ4cqu2GFxXQef9TnNE9UcxkqDSYC3jjc6fI+c1MR0wjr/1EqzBf+gkizYH/N7iI3MD3bUxeF3mjmSRG1fBfz/Lx55TjC+0Dqtk1LpM9Himmc7t0OFCukh/YsSeQIxLD8y0aMHmLvTs0xgb1LWB1HpMKqokXJANaZtNg6DBYdQ8zQjlfdX/ZxZRTK3TmroMaLULc/6GTBq7Ug9+sjkiPAtrJ1gFYboaULE7+LRerTeCGsjNG3kZDuc8B//mcVxzXlwGNlrftPWCJD9Ff7gn6nsHAZvhyXeF/ocBP359OadMwIR+6MDMLZCl2gFH7XcZzdxIXx/vLwHgSj6VgyU3XA8nVxlroWmg9zywtxBbbgbkaviao8cfnYZhf6Udfa2SnwLfyKpWAwgdTsKxAJLdHBmO/s544ZZ/CppbmNhb9poAEgJzd+9oXrsd6y5QiDcDoHcB4yNehsH0sV4SHXlXStVcW3Xbb+O+2cvmV6+ts/sYfAQl/uVImzO6miXSpsspRmGo+HBbzyM+KyegAv2faSPoL6cYAK3KBfW4DmsqmKODirANpaxGXJofFFmDZ7sonKFz0n1i7fq8kvhAEe086oAj9Wa5qKzK2F4jAa71/J4mA/mIEOvmVjJl8AIx/w4Rs4c0FFT6rT84ip5aZpj2dfWF3utcWH8vNtACoeewQ2X8GuNlOvUSVWlmeWRJjBBSHGpcssse8auolIK7/G+RufHKfabKi46qkRGaXlc7dtvI8NpSzcH90ngYUUv0qEPD8GCiSYGSThZLPRZJVrvcD2zed5drJ9COFxqGDB4PH2Qt/7fO+UaKyUT2MhkOieo/9bwuOhoIZQIMJUKQIRvF8qIrfYMJxKij5gqcw99azpH/b1BwWS2UaT1/3oh04pmL723vQwE31GA9NfwUiwwvOZ1x01Fpzmd9bV2rS08TSiB94q8zkRklVHrxjCh7GSKbF0Xji1jv7d2MlHmu04oh3N7Z90maTrKQJI9iFj3X3oue5kpikCFNUZDzZE7RpHwgC4s1fKInKHLutXIcEX3/VnM94ubfU2zyyCYfrfIKUScn37JiefLVvKcCIQjqBzYhgwA0GFwcakBZQ1CSt7dDFKNoRzucgsn3E6NwfVDapKR6aaMvQu80GjTUs7o9fdmBuGKzfGfaMyFERGJFndacETc0n1gq+0MQMtcd8raYgv27qoD+6BXrmLeHtXd2Uxa/yA4PGyeGDbmJO5VJFDYR0qAYMBBxwEtDQEtLoQaSHZIALtVHue2yqImtuGGHPriEfqF99mwkmLXXolkVzw9yUZWH3dzFMw5Ej7k9g5dJj48FSPI4p1R91hKDVAcf4+jkOMzKjpH753gheee1WJboU3FzaDakQFyrmA9NVc6+u8P+OEZ++7MSDyaTm27y63LmRg5NZFiWdtiVcZKrYkN1H1hhSLPSMScAeEXxw/OZeRH+CNADOToRCmIfPHcscTSK7bq0VfB1xS830dApgIK/ZzgtD5PDZesm+P5q4mWkGANEOsAZwYVQJg6t6eHFema85vKNCkkuymXt7ZSaOjkYmLyTqNFPIKR3hiqh+pkm6IHlLPpL3fFw+s/VBhOa/dHZasyGUlTN/19JtsCnphYPHgBwKQzkQ6Q0P+t85dU21qN652OtJKI2keqvyKInPCDXKekciwajcyzUIymMQVAK9jeRoKceqELCsbyrNR+zsS8q33YZKjoHdz8N8NTmP18yuo12n0H6gQA0Xf5fLGAzVHens6NsvOevWMTTZ7sv7kEPFqFG4K4q67h+VlJGgHR9W9JbTZQ5rZllqDn4/DsngiMnzePPag2r8OmyAn0lt60dslcfAE0sRYubkVeasTz37wvv6RGgsPeDTyw/z7cLMEExz0hofI720nXO+2qYmaWb7u/zVg7PQH9OGdkn5Jh2nrRqtinStJu8uM+W/Dr5rr8wgTbLeKiDKctGZkObcYl5sX5SzBTs/H0KseWs2hglMfknXKpcbxbDYN3/WtQMpiJ39wpnMBnaw3Z6ZNdRZAkhgPEyOwUujIWTX9pXlmq2FYhm9Cb6Y9UZqwnLw6W5eMzfL8wZuFLBNJFKuEwQ7B4/l8X6nzDltQqT5o7+E4IwaQfPbxBWdmOHznAPx6DFSB8V3OpKLiCgu+h5XpQGpCpjOfgHo6wKWsv33QrIXzNHJCcZVZLaWATWiAwQDn8hyj//lUWPi9Mde7tpatr83efRwIxCvVUL55FJiKEFIe6XKdwMp4UfWoqhbgK4Hz024Y6VGLYtcLdiaqfgj6DW9e3AwZhrLlRwtNa4s/gitE5ssgm+CZ6qL4QRKprhvpnupc0uZbdUhMa3zeaPEKpXzdAl5QQXhQqcst/LKa5Dakg5SPGgSZ6NmrH51HMsZ/ejCEgFF25VKvSYpRSiXLpn3fzo25OxR40YBuE02+2r5cmaAuSlJ+E697L8RLTxdxFfTTISKUFMMx10RdTmQmxEzcR5eZI6d4sIbAVQSaPrlc+qiYUMhlIbP6swWmIG1GQNIhX1twC0Pf9ZCpCTOsDUdSCQr1rKB0cgn5kQ6i0mn7EjzXvYNnB5AcfatbMhIcrluk3Fzub5d6FmHQYRDFqn31gK0nx27IxPyKo2C3gHvgJikAKlehSbQk+l5jyaz2RlV5008RFooTPdFqC9DhAnsXHs5K2/OCCBuz44IUZTcQwnM9z8hu5IDg5Cw35kkwxDbj9v+SXS8qX4FC8q53DOMBCLRsxfetb48LlsdrhG2qJOEC9bFvjlIvWpfeX24zrORQi+eyfsQ9zhuhf5JIlBmDiZbzOkSdvdaG9RV5OneYfDnX6hN2Bs6R7Vefq65u43Tj5BMqTjjRRGsok6PiEvZdMWcDtq8VWQXUzxRZ6sHYdpCb5keXTMzwRRK9M3488D4tJ3cLl19WXVOoWvAvTUdlkg+zRXS8wSaWVHnOUFEeyZenYsu7mTUu5gxFfQ688E23Az/EBt0K+3IF79kBXO+8uyqVIfaOzP/w4tkT8wHlDq4UhkNYmw16ddWv4rI33pSy/J+RktMRO451gS67v7oz5Pffo29lndt7LmWRFUOwVLsJ1tRCE4Iposx7q6O4UikijSRoOhQygXKBR/DuMLY78Wjg0RKty8flGnuqF9zt3pEyy1lzcwg7wWThce6+DJrih+xHOmxLBERA0WBrK07R3RuOG/fzo9UBflllOYJUNffphqMQh7lpmFILgWw5AbVajbprvanUUDa66LYRtag30VOT9EEuUTXVx/yRzDZTEJRpsn6VEH9e2vxkk08mmGLdCDJGZ/rJHqmJXlOIeZFx8BfsdZnexQ8joDv2A8AFajZ1hAKBItI0jPQqy1H5tehprYR1jwdKlm2G4HIRSQujpgISF54m2qNO8S6rnWMDtpvPC2zwZCCZytrsYA5XEh7VoNAffeR6WDBWfWnWLtwqfKcgOklDLGAogpwbB72DA2GUw3odAnxoth0ZG73Qk5X48dWNuT88BGAN0nbTd6dwvDWNlPoN6dg8AY0vraQryaoaR0yrZBZZ+/apChVG0DIfJ9FS7ahp5iy+KT3C0LkdTc7F2Y4lkmEA5FaM5hzwW5ekX3yYPyc1NMFIlG856pTsx+J8t0sF+kq7sHzRkrL+KXLv2ua2HiHV+/79qzjl+Z7ux2VZC1OJHbjof2oZMlGsrdR9MAXk6U7jNw9hW+yrnBHTTlrpmbX+StWr2rmPfz8oumtAgj8n5SoJhU4q9fhibM1gTEHvNEDqXrC9d9ue1Ap/oubBH6Kf+nHL0LY8QsDyV0j7B2ei6pdnUO68sVBuZ+4nl+psuxDKbh2byEZMEH/oQaS9LiTBcq9xJM+je80l+UcXrVHUVkORIu5A1gh3PfMklr/d1n2/DeumLAZeR9TfWk71GOPLoXNUjeDUpKdMkxBOT4qEKt8H+LJ6kYl6iFRJct4D3sOqLLuvswBEqiQsTRe+VICqvkpkfF4ErbBTam25MGN+rTYtZAyQB942KYI/uXTuDUBjKshZU+kBKt9F8/dhT7eEFO6snjAewnXIQqyWbcqehXV7E7KHIymrIRXrQ0b31fEj0VhWsKr9wpWn3tHxZ2xfIdydjGABA1LGX8TIFowDb0kwKZAn+Bh5YDIBkH4YbrVyBpiDr758dcjeFOIqJgvHT0RIBLaL9YLYzfc61uPmvMK7pFWzMg45j955eZm2OYUr7gIXC+eQ4F0y8A2ixYVjCdxjrOgJq0jjkihrwc1PBGyCLULHF6bUBI1FclDXrhNyF5mZ9nu/t4cwFzk4CCC33GuKsgi1jENJND1wbIZOxiVmwuq0sbKGQm5+nnAG765XI6lA0aN3LHjTrdyfQ0avNXz9TLnELOnsbze6xjvnLE2iocCgbmR2/9gQRFnSJ4jZ6Iew+EUMzsbLp6dMsgXMtbEFvvdNAfbtgkUe/CbQJS9fOks+ZKgtCYbwGRnlp6QpsZgfvWngIbkd7n2OnIqKUIfpgXa73FMzsFchFkSdRO0XfViR75SugFqRzIE4xsZLVywavRKRe+1yje1Hwv46wkY1APBOb+lLIaiCnjlGhRhcOjiV2azxS99I3nQkiwVMvtG8z6AYI3V3oBpLtA9GPaPUAYKmX1wmk25g1JMjBpbef4Ql//hEtKf5SsarinQUnR3rKAp9MqEMguDlzCqwkuLlO7U10uugmpvj5Y2X2FQvFPZU5m+HSewkeO5JX1b+y5LHldvwVOGgS/79U9CpbR66IFiZKE0lTkBrAN6KF+0NM35emFqg7MhivUyWVz5lwQ2Rb0Nvwhcm6olhPTgV/6aTR4VFPw7E1OKH0Z9U4PO100Z9ynNbqABlkNlLJCxmEjyYtQDtlVR07Oe2qcoXFLPhCXghzJD54AtIS6bAUlxeVlv6m/mYwd9fTX196ytSPfL1ofXAiuOpWQ9xBfmlAuYPzmx++qz+HZTdadyY5Rloyzy1In+SeIuw1ymPYPKMmrdBpocFLnYFgWhrSjP3HvZncFNAcE9LPm8q0NiBn3KjQrHyAEKbRxvJDcOX44DbCzMs6r8r/K+LR5Pi1fKVX5k2yAlA5W3HmX66HKg33heQsGOlKTm09P3qXpy2BQlwKzGTb1VYlZR2pSunjR8yxHz+IrS94AoTKIVfKpI9w5ABSbuLl19EAFOenOt4Grb5KjdmnI3EJZK1RNNhWAWxhJkiqQnaBfQ57V0lfbQx8/r+bUOuaSUIpKva50iHD0xP3uQcT0/fEBCrII3igoE71J3kmWhWQ5pM2xnMfZyM1zBnRf0rw6fQ/THlYmMlEsKqAOMQB6Rrt7LDj9OzMW7363uvvjpQNq7+o8+6osyUDSu2UUVHTMzeBQ0wmw9xLah8uMkqAXvbyHnxZ48pqvTWVxnOoPdIEO0ws4Ll9v+9hsf6gvYCfnmzEuWMQPxyZLUZiZ1OZg+KwgkYHOKHXwB2Z5ZzVv6bBgg2oQV8zGzOJ7XJlE2FlcUTsqDKbqbs0wTUQ5au2G4j+ywJMqvgIW4GipK4hx4mdmHx1GbK/c+k4Gx0Hl06/7CbO6YYc5Oe56MMnY+MObgA5bpnDuIfpHXE3LWM2Pjt1mHv8Pmy2Jn1n2dfM0CHL1N3XpC1MxsFOPEu5FFZN+b10+JpK8VZF4ptDln7QAu5Ju1iYsHvfcn3itzXcgUvcrxdZxMr6YVn/kdRJBhIY4kFQbN/GOkeUaOCiXMFv+BD8HdfOyrFLslC4Lf2BJiBDzENhM8d/SH5UGrZwcEIgt6aV6RdpiTxks9E9NdaQjgjD5ejfub7/W2o/kFulisI+wp99FhM2YdEbFuzptiaDdcw8pxuCbmNjLSVoYERst0MyB9pdaafIVTs3ToqZd6PKoMYbKJfHD0gXuGCs9e6EOrpfx7Nf5rF8stiHnyArX/809feoF8LY60lzvt6W7QJQklzo7WqwMu3Hlh0sGUQ7r6u6HGyyKQ0Sj1UDijX5rVYaEF3b6Kvi+E5FVWUVTa7jbp4UId4ZHJDSbonwqaZjAKRqmOndWCk9X38v3vzMpNqBFHuKXKl+CVvGpnq934/7quRPE3BsAz1OEXYRVyGwvLxC2765XIiMdsJTWRsFM+pzPcRIMeh5v5yhUIIVP71F2mdF1RU3xPXKKZUSaCNNUpteA2XiXY/8XpmGtZPH+sVrqSapnN5e2b+saks0zwu/iI2fAv8gZIFPBjAdy53r68BJyIEbMZkTzg+fl5DWHHmn4quI7jidN7ZIGmuoQ355kmFmX2NB46EsDlj2qGYeh6rYOtkhfek+HNT7bjjwrBIAYtB4fqOEQIiTHl8Us/e9pfuIHa0zZU5T73VEFinAO/OwVOpyGbPvusgrvwnwgQhdWxDcZk3EeWOj0WoqIcDbGYHVMSeZF/CiqB6VDuvoey03zwVTZCML24N3waKjnNrEcq2RDTBAoH8ShWOpNHULchdrUnlyVdYuHuKygfRti+df3HgocBzFO1EQlv0tXOT7rpo5RfHh/R9tKhfJNotQ/UlvazuOOeRpontarcb/B70j6Y6k1kBbcO93lQFrbpGZAP+w2U179daYmoWkITbHS/yRpl+G1hxvNsxbJd+xSvM3sGY8iJtuO7KT6Z3xLGt45gkYDr5tHlCKs/ss7TLp8ejUXPEPedZxGTiQwQoXizJqS2o46q/SEpuW15s8XYlhTE2FF0sgf6TULf5+QzUqF9yNNDG4VIHJ4f3txXlLRsa2I+B4FWBrpPmyJgsBMl9WX8j0WiRJBfPaSOMnZGNxBvDqpduF881iJ3eEQpkex2DUkyf8rMB62PkApAt9pUeSL5DvVI/OoTIMAJp7aZXZb+ESNKuWsBpOt9ti1fsFy1uVScz7U7JJ0MAq0EUe1dUj7eHuI9eMBSJZliVGr9YWAO0z0G0R1VEWCHviCh+I6apQZFJoqj+vfVI71NMdqdj8hk9j49DsPikRcKof5Z0qCOulA/YThiyGOql4+yPoHgd7YrNIft46GFAsEIbRP40anJcq9904vc1Dqc0atA8UnRzq+Z8Znn88FjgVWU2Teq3RuYNkSLFiGowPrPo1qdkcIgewmWdp8aLcePzBf6Yrlh5U97xRHVLwYKd8KUabohHrwK5dSk0xQVnp8KA9mIhXOqEmwzfq9ZlIRDkSXNSZheP+ScwqvA9htfsgluy0fyTHQvyQFedtjwBwq/xLuDdtdYBzYPVvEj432t9ft6Bfz6O/vcdvGFll98TgidW8D2SqB5Q68SP13QFcrApXz4Cr3Xyl72iccvXOvb0NQQRThCADmmouyndyvhd5PXuP42ns9M+nMOlksfkmCWLFoIdqn/nlt8Co5B1gQkgy3AY3m6VnAXdiM3h1/8OPUTByT8Ok2OgVOpui6mtzwwWz7XZd09jaEyF19FH4vRtRKK3ODUw02oaOMhsx6m6hFlWOjkxTkdCJfNUEvo7xJeGW8RxG3smaTjUQO94Tagxz4Y0gzDo8XPDPmHxUuaDmwn0llSRhtO4NMd5oh4fdnORERC8FG3oj9XLKn9dlFRONFcnTeiC5AvG5HiPcIPE5pQROXBkbrEmqu8h7D5S+rkmysC8xkU0k7lReD2btfVa+y4sqg7KeznNYithCbolhjr6beLCcUN+l46c7P4vwp8bRChJdcDCikWc3A/deqfAUaKDX+K0cn5TtV8QIGb0EQoYzKtERiDwKwfazeG07O9rB/xBoOGIPsz3WH3wdADIZv7SGPAut+8zNyN+F2VVWRudQqFx4Pnodv0hIQ+U+GIq6fUXskg0jwqR6DKfxYtDhF+OpvRnDH45Pxx8QhaEcN4irI67RZMjgTQARf96HwsktGD8wY9SYyZeUrpQGhPFuTA4sFHx56uE6yMvJPp4KZomU1BotkUOgu52Fay8Bviagpi7iN2mGGGMhKmlm1fcPcuTxKZYoK3HEtDi7XLYkP/FnPuZ393B/twVBuyDdIdgps6J8bx4bKkTKmAUL2Nrs3LeDNOp05q1c4RsTsg3f+5DAp+2BUOqsx+lQlotiHQfrPMkKzQNkfKhIuHbsBIM9g/yOUNUTRL7zzKGxAiw9cQHcfP2AeV9465d3tLSmVl47LxMbYXDFE18+vE6S18+f7GJVBizNu8m6OdYFWaAjji1Ee2CiSLbkZpuzZerCxbWbUMw3pJdc9N1gvgnfF8JJSeFMGehpuK0aHioo1xff11tLodKgxr4haIuLknwbV1bjfLUxbQ91QfuZIVthWdkDbMrOOo0i+IY3RKPfZt6wLdpom+6gz/wY8GcKnoTJKLDbbDNcfVt8DH1hzdJz3cXrenVa62c/opxHv8Y1pDd88F1xgSqHi2bl0wWMY8/j0P5YI8ve7FLNa8xg9rMYIwqpNbf/0ZOpcGOeybSzKOjPywQYrdZwuWGw5TIqYk+uTA0TW1o9uMuvaMRqnc2QGquih/5sjjDB968Ute7vVb3xzZVMJ9tiFQHbyx4Auv7PDCPpBMHiTGybpYevcG39fgYLY6e7oFlMbCM0u6MZArRXGDgKbDSnnGFNCrWzfsJ//lSEymT2WX2gpXTIZs/oP10xFl1Di+AoLaWZjBtmZMjlPRjgf5d7c44stC6dEuVNKB/a67NbPl5V091fnLWP3Z1uOhj057D03K0QwBRCgjBrspdzo9al5AZvnQ28G6IvmfLJKCNZjjlZUyUuLdmj/Tu8oIkk4QWE8qvO5gQiQYqjr3Yz+mz7P64TaBNXuUkpsdPiInjuRkZnNyQFVmiWwclb4/fDFDnDD931KTjk41IHjfJyd1b/briULWewnUPbYMiaIciSNTG6hBFDwT0VMrsu746QVSFklJP+bliWWa3N7wbeE/rwSoyKtzuQagZIRPdPLd126/QuBCLhNGd+0tqbj1g6D6HJXycJu89FViq356+CuQuDYGZwDPapuC+dIkezt3b/O6yXxcJMsPb3a173mVe3ttMWG5198weziXk4nsCCC/+5GQHZDMmSg/NlmCKgXuYDjYzIAUfRodSIOVM+j3jN2mu+zNJRw1nidPC7gLZACEzil+BJ0CafAqvm8gqpObgSxHdA84380ZzT47rcyVP1mQDOWwqU3+pYAHDBVUyTngHgNI9L0BnF+Nt5M2inQveIL9NRQVl7r81+jUzwzVvdF0c9iDfW1R2DlFwC8LP2ex/kPsBUlYOC1Oh99dLw+Ej+yMPKfIzqoJjle9jiMd/Kf2RSDP+9nll0QYpBW/PJTmAuluXYheCBEZ24EGB2fmYWjfwrGQGl9zgH4Nttyet/V5hkpvfl5hRCggAdLFruvzA6bXC/zeT1lGQGd8ByujdsApy+uerN9ahaRrVQRWBS2MSYMr8pGXGrfJ/oxK4Him5Ce2vlCcxXBKPs5zmK8VRmZRa+OG2819nhfgunkSyoy3xsYyA5P2QwWGybSE0Gb/33rlVjNDJqkGmHngGfpRO+oVv2Vg4EnwVplZ46vf8u59y6YVxyr1MAY05rvjK7UZoLXckzp/7RghmhK0pRBrx4B50KHjUouVuSamdW7/4kYT8xYW2xwWRvkM7nZ3K7LQSb0PIk6VnvLnjoY/liDFnsdyA7Ovwgk333qlKI34Yt8bEkjY+kXmy5Z0lWjUuAzluKQEnmW8tIU9HPLiykWRo1kGe369FYPHF7tWgxrj5nsup9iEDIkFYY2mkWslfBMROAMVoDuf+INM0iUESMScHFkQYk61KH9LFlY0qWbXqe6qNickbKKHxUiSexi8Iyqr91/SomH160gcLDLh+7vrU8ZOb4EOLuND+eddaSk8N4S7OtDa+UDZsbKv30LQT6E/XwWGQkAvR6xEAk49kPakP0T2+4OTJjv3FMsY+iQLk2vOL5LIc5Oe0NODWVZy/kjwFBCgXXpYOaxKrrdysDDzoIMKin0WhYb6ynqJ/QlcvDrbRsVzoSj3iCP3+u6RGbkx/rf3prsjaht9fTkubQSg6kVwZ9/pakYVnGZ8dBI4z+11ZUfpy3AdD8w1IeXZj7xkTGSa6/XEFUxeSrpf3698CUtYThMnGgWsbLlKEOUalep5k9kcoW5cLjrPayUJt4dcQC65TJF2i3sHkFZd0JrmKPGcPhpN0L17RcU0luvNLgFNkRIQydOR9haUDN/LSeVfuxMKZE3SnvdIM/VA2gpnY5WFU06+KL/hCThliFrbRr3RrIIGk/uqkJZ/7CCD6uJr3dmo1OaXKJ3mTQb8drFoAsKglfnJADZiMOwkVQWqZ9QM2poRYscnmNUq/uwM2K/lIDpLKApXAL+dwoc+iRJT5fRzaMBbrQDi8hbPLICn9pWlWMn+VJzDbY6c6BkDqflJv4YlxDzXt4WIponHop+gSr5Lxqul/rOvQ0oH8FfVnmUjYjLtZFjNvxpMEf+nnPWsFmcEz+l7N60DY+0lAY005BVC1D9ns8h0C6oC8GGiQl0gGOgqXekGEd1Q57Rm9GDWY0ocoXmUI9iR5OvveCbHCYQf2aaSpZzvJc2tU2PlSxwEpMkNg/TVCP19TWpGY41GJIxqJVf+9Mw3T7p3YrVoZL+0lVyYNYsnS1z6x1Wa6OzqNlD2NKybAGoeVYP0kxsz5NprbRQqtP++4FXtQYz7xBG0/j0K1KclGwDlDaUjfzBUjxE7j+MzEitRpWXvT98AwDfuvGn1O/zTf2TLKEsFKZgxkBYqPvBirSEGEK/jA0dwzuPa7eA4aoxoHIEjKVDSB6JpsuuTXvR+y4zAoUfs28w66HiEHGpL5u5/S1LAX5TQQvRoBrRAp+Z0srqM6+dVEEBfPbfFk4taMPPDnRAMF9xwuR2zOh5tQCaFD1goI2Ot/WMtYc9t/wO/v7HDN+9/aIUq1hTNsJSGuZHR2FvY1zuT2Hc3EOnKmt+MZ+MUXy1wbQh0zOwJrpajSMWnv9GNJqbrU7p1nXwtBXKQuFnlVY+mG3cyHKe78mh0S9JKqFv60R3dOClLyDzj7Y3oBAcOPtvJpiGSTVN0ntnOl5mj1aPYTpJ1fafTID9X5oKDiht/5kabmOT97Wrdpu4wQ4A5HNSrOWMbUcdgNWqHimPCN37Nbb5WyOke6JQYhAgIb4KsfL9UbcQl+rALVCtgG4lilmCecqiJX7om+0fAsOLMMFM6vKeqM/IJhxhnrCsXyhFd5arDnn8cNZSMvi/X/9aatuZjzWShB4eyxy8xGc5HqvgfbEYs22hSSup3y+j1P+PN1MHo6j7vjDMDF6nxXEVkwNv7hrGVDKMvpUb/TrCVveaJ2jMgzZg1UWjL69g9YuuEqeVmMTksaz7MLGbbrN1A/2dY33fBlowzCRPoxxagor+r0bQc0o44DXLIp7O8237bQZVypNSO6mfezlbIqnc9xxdFb60lW7twkmuBQMnHgbjSjHRzXJzrdzPEtCm6H3yW7otMkkLsJjD3oYChRN2UDxHewcuIKrCFbGdCCj+N60XAJyo2ioFlq0JSMAOcV5TlyuCSdypcZ6iycLMZRB/IWymCZOlwSekNEkrEA6jqM+nLOQWKd/Th4sgV4MCYVX0MTuvVHd9foHuoy9HGbb2dbVIb0AWmBB72huMH6IuWcNc0V9ajxYCU8nE/MUrBW95eBWniQckWvCSO674NDDcgcIEI25BCnwFQwN8Ll5ltTxWsiVdqzm8GEmhtQ3n9+8AkIMaxejqobgkOKnpQd15VIAx5WZGrPKU4DT2KBJD7rR5VrClTRCOG0d0rdHd0JsRIzRB1qMRJnFItI9tqMtOuNbCWz0qJ2Y8vUSLlD0Nk68NuBf5f82IOdmwT3w1y9RNUNI5Zn1vtOOYEfTCtKolf1BIHW5fgd54Jv10vMV1BMfX9lmpKUzddEpMsSbWtpHLhJfcT5Ulqm4rAoJqe+u/jISerYCKafbEw64pEK3Zmv34kZ7z2K42/UCFfOeq9UaLFuLMyro0REyOqNznJpw3McyT7zHZDK9BdukcugGPJHEJY8z1PjPLpL46ZGV2SAEVZFlFL1+xS87T+vLR5INyhKRXjEKaA61a5inHiaR5QJaEg/g8f4hoIVV9SYIzwV6JBtPUfcENPjdhUl9tpEd5bk9HdiOhPGh+7GPF4rSH8xq64GtFVjspfA62Qo//6FUABYGfNvWUKdEBaynM3WvrgOuZQEfZ2dAkWW7mDSK3FhY7mHlm9BfNYPHgOATLYP3p6b8sOTOiT03ZKGUxOuItYd2Q67lX9QSjLUv94pmkNDD+r8MbMwzR9ubvg4e/ADQrsUPtFmsd1+z++/J8PCdsL/x0jh612jYbZx2nOctPjcY0Ub2oCS+SmZll1LnjUvGd/CRXui+QfM+3t5Pez4x1PVDXBzwZpEIP1D1wTxhW+l3KaoX5v4u1hPiZxZ+OLBUuaioujpxT7me/v3uMaE/rIyei3x/eK3cZ52fAWcKZzagB+agQI1DsmezkN4Mrr66JXEZIWcs8ybfPHdCOD/ThoabOVrGoJdy6eRmDq+tx8FcmKK72vHHFySu3D6RO2VnSxrLoltl7bfUwq1AHr0CTBBh9WE2KTTUmrZVJtjjWf9joDkiFPaP498wqDDEnQAGzi9RcI5Xxk8u4akEY6S5xFeeCJ96Zyv97PBPhx4dFSosmgnYrSS3rkf2KEZ2Ga0SMGSzcJs0lbFA+U7k7en09h0JWDSlzFdkjxF+O+zWaEi5Oo7azKKKAEAVxyqn8cTy8sI2M0fbY+kon7YLJCEoQWU4fevrihzVct/aDHKUGKnsYvIeiS8jdslLb9z6rQVySb7lHYr/A3Hd4hg1Ar7/fcyyrfXmI/k049najSp7WIIrTLeFUZDseXu/QEIEzdDnwh5WhTasBXNOYp7dKoEfSev7+kV9CtebXDIe3h8AMpjXsoEw+7fS/QvH+SQ71iL1465ht1qNZ1JF5eGZuPWKPwTigJ4epXLSWTkFxePRsFaQRePzHtKSt7iUe5wlzg7bHXdyk0Yaj34Q/fu5O5FsLocTYtCOzrhdECKXFZz8MD3ZGG3MWiVgETptr5WS0FIAEc4rB0/qpe/CuEHJpeozG12wKDDcF9ij/q5hUA98yuRWuWS6agRvYQMaQ4bcVoZMBY4CYEBxXEreT5q5WuTrbvvduq4gHNNFHOnrLGZ2mImUpdiPjEB36bI6njJnanJ0K3qvoW5hvqmiao439sT8wzdnx0tbTT6yQ+TiBvLeqLc5ttnQfp0f1PHLVOETTR6mBBRfPooQ12ZxJjJyNwmqbCpJVGLqzllw9wvvHPGcT6IHDfPaRCXBQc482S8DAJaMt/YqOPmJCb9QlqvhYju+xfN04RtPj8Nkck1jxAVzQ3Aw+2GDX5SZ1vBahdREniBmSASXxUI4rdugdK5K5lkMlXMi2/a8XEDp/G5VvfxFFeIdOYMuoqoLl1VO4BAe2c8GeAhvY+gme5sATCtWQ5PEI3BPypcBO07pDzzQWj7xV/yJ6I+kfY5JW3fRDo/X0C8r7R5PX1AH2xv+ZfygEkwrkgYBzsFMBkW2AoZmJfCJ+NV9Fjcj1aT+FkHynmoK9pzxfoF70zYeNgEd+v5/ooKGLQlr715qp/X1KJbjG4wMKxeO9D8DFTZ9/6T5H5Il5bNK08DMs3NRLQKuvzRIAjpX+1a6B9CHed3W1lXEH0jcO65yatvDTsSSC6745TooZfD9LF9SrK7H3vnQd2rhtW8+6FZtS2jh1BhVTBwUynuEhwtiBS3q6lJW0sH8s0qmVohxHIxWq8BNWjK8cSv/vbfYjqp4fpQoBjh4EPdx1bn/8yx50VAP1aY1WQ6AwcBBzkP5pOMxMIn7+TCndsmsDXj4znDESu8f3FIx7lT46E4Uejii+qz2mRL5bWNxn2ETFlK0tLueK931TOf53bFVA5ekJNUerRDOxiPxIJ3noT/VJfycoG0G2TEilKxK/g17G0PxYcrMlx4SC+6oxOGYlSYhdZ6zBd4bvz3DTPtVSP6TPbUEChxiFsd/S1/VjKIBKKqhM+pTORJmPi4LFk0lD3SeEPhUraMnlOjGxtGRUQ8UW6428Uh4E4utVKNN8VXqc6DAE5iEQvA/qONenBAyiMQ01eakdJPQqu6CbiYJPa3UIRd14OfGNUJGaL3IEh7TwXOV+FrwZBOrkuMwPBewoAFK0KyTDqDqNLoumtpPTLVhXxOVxHZQonvJ7x3PCGDNpLeLVuXr4igSAZ6reSFQOMHEGfYWya3qcFjG68oFpKUt9P5bJlSOIgDaiPrrFe3LA7r3wtGVvl4A75hSP4Tbg2uuIfQ4kWx+yTExHQLgEnfL9zy47H52MPFy8NSEOtfmj206nqNuxX7bUiHoqNB1o5cmkLHpzTq5V75MNr86tOThM3yrnznpW8nus7HG83FTv+SsHgM2xUgfsxjFUAuRUdukYqv6PxcpIQf5dU3tYWZUsAeccajjy8Gtz057yBF2LGi9ez4N6Pb5n2DJTVbGP+oI53fvztLSy1badAuVtLNSsBfIXhPRAZQzgck0uOqNPqmxzp7n8yx5jeKH/qJ9D3K1YypFppRcuXXUI5c8MZx86lSercGSX+n2/m9hfQ3iuygnYk85+AIGKT/kQg00UzqCv7Unom9g1qC+w0/y2+YftSb58vQzIqTVRSC+DgNYCQHMrWrveNyM75tCBGKF9hfukm4HMxQtDKBNcsFqZ8J8eU9A1Jseu9hd5qFKTak5qZjuCEgAengD2qQr3XkjP6qfm5sQlglegbuGpwiiu3ftU0L7zw9zlRxtlFervSeu3SpTXfps96OLilOOOVYO2lRmkT/+fICEOrR31AiH38qhfwTIwgXL+b4TSjbCqek39VTL7jLM9bQ76tY60fAhu4Gyd/ODlMbfOtOiJrTdXtCnLIfeaVdv43HvlmPH0NX0PUvL8JeMqE8P59lI5J6y+WZwivBS8kWJ0UpgbmQO5XxJmR9CVUflHClDNVdPxz1R88hDgCBxBI3aBQXSff/HsdP46xPG1QKxRHkWR/ScWwdnriPlYvy8Yij3izNjFHXqlojkOqd2x0VIWZtyqmCuFN7he2SYmhRMdctDgMio6Nu/phGOl+n3znDoQCTvP9xwPelqhCngVmKlpYxMwBEUsbxZkgeBqAtHNa8Ci6T4aO9v1VuBGy79k5ESlMiaLQDU0Gp92xGKsq9ngSiHND8IZgFzMSu+37agOJX8F4WlZRi/UoUw5pRN1s2t5lBJZSug/VDxvsCyxejVu3XHCPIUU/jc0bQ6AyZtSxX0t/7yXgNEKtT688l5FIKclFXTkLsVr7IC613IleljQdX6vLzBd6+BosTkPF4EmixhlGre57MF8UeKJGf1CW94hse50RwxPxsBiO2Rt3/ND74tkePi0Jvru7unrO6/40P/8yoC2nMXUZ8tON15zjSHgu3hY5UGAWr/ZJvNDKTtYX570VOLg933/VcBhhi2eZY/Hg97bsrjLMKTTS8mliH2q3v2qavXWQO05ycyd3TStUO9Wmiw0jCrnAkig/BMjYnHK9yQiiFrhEti2vFSN0QoNQLFWDCVFEFOteogl4ZGSo7I/ErESzg7WJR0SsWUyt7yiCVVY9LHJKWulQfhdK4s0gWpdWeXTZ9VefdD5KamZRcC5j1goVgea5ZaXMwz1EG96/NENMHYsS24rtaHSBik/xnkXGlvsMBQjHvurU0NauffPxfViVcXoKVMqeGatq7x3aJBHEIO/qUCtWIdO2lz/KZoKB/KYoaEeVLXkYObgeHD0OhcFu+K/j+S3VVtS/P9H9CSeBu3H3f7tq5Nb5qVhH6CwlDaECNYwPYlMvwodg9KAeKexGAjwDtyaaYkqLjhBBz9x0Iub5BwJS3ij9/tY90Syp3uqJXHnCC+38hsftBW4ADJg30Ybng2cXcZbFBYGdA/0EboNlNzowVHWeirCfCkhoA8u9E3NTPBCrmiP3+PuBROBXqZiLYy6IwT1/WeTdEn0G+zM4gahQG4reQjtP2ynOAeFXftCm2LslUSz4ynZlUL1qpDtQ0KgRY0LFmKCxenzATesOTK19di0xVJZ8OTRgEoufV72lohJd8O2+E6KFiOmmdZ63T4ou3t7QArI3JwNbsjX8+JY26zTZGb0jZe9rCUSZTKwhUWjrV7uvHdyq+2kZYYdMWNwJJT/o5kn4OGbc84z7XxjXiXXOwZx3mnojtj5YMpDG1shm9ORJbdana7/MSgDX3AFkEAQGpDZuQiygv+WB+B0Tjp7jy00oNjkwYbzF33IZTFZdpCoPwvHQxg9mUM9x5iN4iIyIPok6Hscuk4AIJ/bFDTnYVOzNRR7tAdlU4ecPEG74I+L+j9uW2UWo9/Ni/3n8R+oud88/q+LUWJIzdMRY9rsLJ8RjDlliNgW7mvU809TSpU/dc5PNODh7svbQNwp8Y/MM+zRFnvX5YIf3eAxFDY80vqyTDCBmgjXjLPCTeVBBDmUmAaAOKpmPS4OueKcL9EiOfIQq7EKt5c0lw9fmnIPCqZJjHqHGwbN65px9I1RJ2eNr+zALYF6ivOhxWHhCGi/teRAZtnKXZHpizrMvO9FGFliec/qEX3To8cWQ3ZfV7F21Oi+W2+OuUtc3m1Wa5gLlNjL7rt3sgpRPuhkogOkPcQssWfN5ua0ECT+02gutkAvPFfGrFKzK8xPkP/OFgTMvnt1+tURwP+m1CFmHqqFZLR9zakKYXHtXB9WCcr7VO66kVc7G8QJ9m1LNVmIUuhX254kqYI5Z9t6OjQnhAnPZuqQdEvUJNBY9EL7UielVcEy/7ZfWolUBgQtNHo9uII3ShI00XuFspHdIGCg1WhUAPIH/UTuEmqVaaKiOzDsTptqFXGsnqMqD05QakmM4XywmOxY/uNMWyElzQVrSsaA0fIjid/JDYYgUl8FqP6JMVOLwJsCgJ7LdC7KZcpPPWhuGrFzrNYt0tCDyK82azglracsuhromgg+qpe+JxOdm2lvrWnQc5XwVqjgTKlSw9EZDhnjPMAEQciBqCKy0wZG0e7OeLIL7pCIjjAYl68qqIIoDFQmHWuQm0s6B9N5yKdzKiFu0ivk/tLHrbsefPE78scxjBuhMNKYLB71Qp80gA4d9N0fPMKio/4kLclbMoq5l0xfuSxGCY0yXezNIu7wLQ2PKZwQTRTZPfm7iws3t9IYPQzLQbGBeq/0wGw+97tR78bS9BW/hfk9EVDDpbci1B1kKZ0R0WAz9t0oMMMchC9sM2VmgLqFH6MxEEdNTw9cr+/IG6nyXv0wzwRA9nQ00dLJ3V8aAECDWNyCRBZdYIWcvjVgjsoNWh5/my5l7cBUK5mgZxMiT57CmuHii/PwL/4ed/iIJjwsTcliF/UJZZrL/7ZhSN/0BU954ekiMhlUYhaq+sSC1n4mNj5ZsjyUf/fOkYLYZ4HVmbgWM8eyZVL6R4oaWaDc/RAzGSdi7QVVovKfKp2aT2t0kQW00wPVbhRACaa532hnlFUMmsbeRgnXcowY/A3DLyHCmAO8bF3ZKH51YSS3zlDuTU9Y4X7rT+Ax/aIwyZSTeIRGeZ/t0cddxWnFAPGrchNBynIXPUvTp5e6lxTuMPRkguk9jnq4Ih7ariVkgN4T2rygK9cx6jdK/xgNVVcQC0rKoJB3ilap8qaJlAundwmzpYe30e9AKCjjlCEas96SQNgrBzE7CDPpKDXS0Cn6XuI/XsuxsTFYcLCfc9K7OHRtiEzPG2U/TZMWFDKbE369SA9oIyzPXwLuSdkNgAadfFe6Q1dA+0Ki+uTuMuwVyYctuLWnXnY73ecOa4KEW1uoNyFMl7GEHJyab1ATO5VycmOqJfFkthNXFFR2SlvJbPOKvVbB9spy7RFahZ22Fn26Yx4cI73k20dOjVFVsgHpdZNVXgzrSWPAng/bfDuj5Bc+CjHoUmDN25jzuq32NGbfaH6D8hVxVtNo7dv08Jl0K9fjFCHlMdbbg8o9fn6acb7vwiW/StShtz/oCr2KGSdCxv3OX1om6DcwpGwphwGcL81rUedObEvtjKkoUrvut7XWqK/aiHd81ek6uw9FJb7rPTiUulRU4iWDrS6lKs4kq0dY5BQSTx6/xfxTEM3jvftzt54tV5nIc5YxEs74UoKjYdlQ9FWrPeb5qLCc+VvehU+gVuhwgcyJ2Tj4rHyxlnmX/8cXdbGmMw9o0VLmbVukb3Jd9M5F/kNHTeqLMboddWAF2M44V+HgxhPwNuw77b04ovzp6ndafFL7W04C92jZYBkVNRG2ub+u4gqNf8a9Wai0sITgI0hhSqvH/Ygarzz0zuUCgfoq7iqxX/HzJ78Uo/4H4kKZOvG1JMurLEgmJ5CirvVNtvf6VvYs/dH4miS1RdVJhqiEJ3hW1HZoijZ9Ooianuihbe1rROFuxQKQ+FJ3imqaDAJSVw0tZSoH52MEOAxXo6vuteFf7VvXG02OYcpcPGK9ciesMgHFLCHzI1tl1giSiRju48A39F83cfo6YP3nQiBIcNC1drWWkWdvEfKp7HLf6iKojiEreXHtzVLDoC+l5CgYKxzR5uO+xvMTbzd5YB7JHVX3KQo6OEkiTB3AubrXxAtUg7y4k/NdScBdhDlKaQhmGeBjllBOP6K8hfy/fk4Qy0JxmuoP5zRLRQCsMkxaaNv5RdjiWumoGaiZIbuCU/5Yl88JSHpYGYeXnB6QqcfV73O0uHXmi9HNnxGM1LrzR9xwsXMz6GqjOEmI3MAz07dVYN/byX+Y5ZwF9k9FWLovxsDogOSvbQsLi3X+3T9K+qnY0rO4KT5MZm600axeFsi7aHpyT1uJfeMuX5yDecUXI18owN6HgekncMAmC6RChn6h51EB8zLoyv9LntGthG3Qy6BCfRezeftuP5D41FUGv8AdfJy0B2cYZEKQnlr8bfBfRGEf57pjg1WGPfZteQZRL8sVVlfTBosgqlCly5Aai8vMFf+heS5teyZpfU9xc6+IGflgt+LhsBGWRRa3AoYLlTh89Le6W93L8I2JtCcn//4LmBk0pjGksmxvM25bKs7gTsDeqpFIqll/l0pu3vdU1TiMeLg6LhLtVN18OQtidxZ271BlxD2ZMlaBDbRMdEiLnNDRr4kvLyNZsp9WCqAWvcPC/lvWaOSpRm2+C1d268MqUvGt/IrGF9xD0ohdV5fRxwas/W4crv7gfrghNmCueqNKZH0jr31Xdlo/bwfBRCtFoxirS1omz2zCSdxLdB57/t8CHm0r6Yd7Pds2o94nvxn/CsknuPvTCsT5w4T8aYBIcFkhU0dtZbh3mJWccl87oqgbbVoVLFY+Aa3oLxSlkUcJj+7izaspOrBYUsVsWV8FIHlvuBcOkPiwfu3I9ad8iBiwZ9Ow03dUJ/YErJiK23HThS2R1gqWAXuUeLAxKrxlDoU12DBDDncrXPKLFhuOcN087OAX9T2d5SNYW6exPYBiO37tTPzgR+elPxAYQylRP/2FiKrWrnuDL1ESkK5K6ZBqHfdXhEBrkPBW2nk1pZQVsTOnRaBwXDvVDSD3RyIKg7n3b8Gs0vwOAizEASKXqKFAaXs/x7WGUWUiFrCc9+OIQa0UJRnKfYCEyHNYjtgJrOJrEf1+CY7gsoM8w8BhZjACbYaKDcmZR1p/iiNtladKNYzEY8fDUK1LAmSlYPfhe0XwHZpF/2PgNVLfqYLdy+G838BhBHl/6DpIkbD/mITijPd0sd1FSeTrPVUhmaPam3FCUdHh22wspDzzkN6903Z8zgCo8lPmBFZbamOqBpgs0khNO0Cs6MEQVanG8X7k7LldKrCvw0NcU5C7dan/Iw56kBInC9lDOltZ7rj/wsQiH3tc9jRPBfYX+Ujt8HuZ+lcwiInch48DBvb5nXi6gz9KV/B45qzIIL2FhnKswCV36UkYBVAoWZTWn5pZ545uK1lMsRd41+T05hH0FJf0zA23sWqBYSnijuwpDLv0VyxeRF1OkWPUZcPLwgD4+WamRIQfV5X/0age+s21fcDt2iYX1gKB9neMf+XhVPNiaPWy6e2n8/zwRmzC2saop655odYD5AQihxXSJOU26z6FWmrnVGhHQZCg304SrYDddUJD0D8Ybe20H9BFsi2zdcwQfgWmRa//mRD+s2jI6yzrkuGUHwttzuCW+KMWYYO/R2gxdXLSH6cJEK2jjLA82OlAb1exdU5UEkRu0OHpDAt7F3ijhttws3PyvmIKzNj1Yr7UKpCGxROViXLfknsidYRLqQc86+JnxxhhaWE529DVF1H8R3s/ILB1t8JlL/M53XlYR/tOJ6M8uzgCONM7IZMvCYHWKdyCDp/5xQz0qX7fuYNuC/bT2pE3OW2XaMguLj+IpSwhvlENCL3PaiHY5kY7ReARm9sLk7J1jK26GvGAZTrBqKECE6Wso+LFXCil0Fv28085H38/Phnf62ihvoG/vA5by0yatyof/H+TGI9VwDTVQyE2W/2SvEHRvaQQx/RZdQGNJ22Y4gdGDm844de0Dti4Ex8TnNFG7yeS9EJ1QIRy/c4CqD92iwMPSE+Yo0IWG4c0xWozQ2s8T9uyB5h29qS7ySXJue6gQHX4RqJyqu3we8+b3EXZSNYxuFM0gL/SRHOUY1/1R7GBhnNSDKRip9fyn3QhEVhtVMgHAM5Gtfz5bPNvvDJVPx4TVuGFTNCpVqpIsR55M4NM3qKnVajYBHyD3cMuQEYv4QstWQJTUSf5Ml2dxKt3CG9p0u5KajxZXvaA5peS2EIShyD6gdSWk8yU42WDwdewR7wgMTOAQHBoCoMR41FBObCqbvdXnsa/L6H6wK4jMPmGIdZ3EURN2QLW9hCgC1/YeRm/lg1+NToYIzAUv1m7gPv9hH0YFdiqw4lpFRZ+dCM5udGHrP0T6BS3Ofx0bIz3y1xXcLr5lmdjrfTO3I5UHcHzIpz7jk7RBAi9CeEwAKCAoskCIRXmKot9SPj3qtfUTcvdyEG+OQfxaID/D3ElnASQ5ctPOmjLgmaRu1saXrkhtw3yb1STIu/exsekybADjvXZ+0IP9SM7KflrNU3WIRnWq1WHC5AxV50IEpMiteMCS7wQqe0E++jmFGHiRRm7IpJu2957joDopZlnCNnhbF6yGwanoaE1QzCNarAuubUfdXnKq4NTtDx+Zu5Dm5JFReSFHpx0ntFULlNvU123FVJnXedSqZtzxHFk6WN1VpmApXK903hU74pxjjZaG6qqZxc84znTk6fdgnoBPrNiYX12wa9bZgwQM39KFho5s1/RvJL+YmzlvFPt8Pm8L3PNn49K5mF8tyopZP0BvSHAmzitxKVnf/oTf+yPRDmR/6rCn92+TNh4SHPHeOfSlAXT+7gsw9s5EgEM70BTohWNRw/xnOxdJGnpeuw+f4KLXe0nNKhSPNbEm3fD5WlW/LtZmkvfxwli2fkVv25Xv3QYHFnNSltYf/XlvdIn7HwGQx8IQu34XaQDWRJeVbvJ6O++AinJfDyFFBCSljDppYZGA2MXxXrM0eRYF8dlDGJ0ODa5xlv1t1R12VbtPnK3FbFds8pRem7fCjGGkMteSlMQQFJKt1LP7Ut6tpSscOYu63Tfz+q//sQnHZSf91AJM47j5x2nOIDY7B3S5vhvdn2XX2NVC2WwzV0h1ltxRcB52tS/f9Ok+MBEGeDXe3/3Wekbgebv/aBERKRmOHArLCh3cHISVtBp5z72yf+Mnl0ETmm1vRA2BAi/IviiNpgs2DITS+Jf1OFQDdMpKdQMnDtdzXwhFjhiDHZ3taAP0Z8oRFxjisfMj43bVu+k50Lx3hE2tBmSO1A6HNBKaWWXXb2RmNqeHVcxdMLWywujB+f3+iXx2OeTup8kLStf6WL06yTb9QxEwIEKKKmgDPdrGelfcjirtnKeF6lc7m1Drx/z7KjLeehbR5C2TfTP3lyaz6zqgClfIk1pYJCKDT9Cbb2lkG3fv74U/xHUOMzXpGGMKylvF/CPcYQSDxWlkHdbJteFG27bjNu6Nqq7dMgoY2PJR/xbKxTu85PvWfk8iQsKWTuheJeHpmh+Fg0x4rhKHzH0xYrLMxlrC/FPcXplR8PZy8TOTViXo5x6ldnPndMOyA3LkKOGMNRkKANRxy4fEYDATuZcir/wR3hlqmYvzn0reMTH6UPrwNrzx/h4WICLo5JE3cfhDyq98NQErw97oS58jtKO7+dCn958D9CA6+1ZgvSI1sEDNvzgmGmpJYj2z1V3VNhGzpL/LeYwJopZkyO66IhhPJ6t/rg3pvv9pVIFon02r8CJfkH0NmsyXEICMPqDwuH7aE4nV5I1PRYHlkZNQD0yrwH+ZT7DbcV7nAG3ljTo1OZ2WvHsMIcRGUw0+7jf+h2YxBiC/COQZoCeq2m5dqmMEZ8VAPm+yy1TJon5jUKxW9VLHOnxtWpVEKCRmjiV9TT7BtHAPSz9xoo5JkKMHkkcFXcgu8BhohH6lYKz65tE9SL0Ah81XpgQph/42eiYpNWpXu0iOhTThm2boL2l58Df0gd550A2tWdOjiWL8ZdoQTMmxg+iIn0CTl+eExgibiEnX/OzHOLNdjUSX4udSjF4YZYShJw1gdzovsiAPzJ+RrJKiWxaEWJcQFCXSsXFC4kvZAcewOxuB8ZC0PuVeH5XaFFOP2x7AA5hq6cl21aYKJpvpu8LnKjfGwzQLwVSpbRSRBfHeNGh2Rmnqoe5DC0vTUFk4BzaU1Nemc+3YROwadW4XrBMYXNYMNfkqTYWx3en2QBkg73bIBEjnfQ1PrhOuFnwA82szrRbslMxpiJ9qGLF00PQXXsCv3biF5/ezku/ENv8dI/XY6d4HhnoQZ00WVdfKLX5hBo6g5zgxbBKxLINJcjxMFG9uDcsV9H1f/ARm1tO00EfoCIzygxercTAWNLXKfYl7TpUgsgL36LwHbmZgImOZwWatHfiiQwJXDSMxCxvtYTG9ScCdAz9vqc7hhrdwBpSngaTzHeOgczdqCJuK5KbtjIruMOTsGf2KLbisom+Pv3lXOgyhio+zFuIwDW0f/kNDlCqqiPY/vfVybso1DUQ87bZOJGo5lTWkuF9vjRNwRAi0p8P5YiKYDRlQ4LfHmJe4IvEJg845AcnXIjdCp7TKFFlTGcQre5BJKdwFx0qlWHSDfV9SX/fHjKo6KRN8hlD3jdC0MjVpiJYie0lrFKm2mADdY5FdRaapaikEL7rOWt+drM+RGjIQBz289eghQ7pedL3NbNt0LArwnTGO2mMY49pWO6vEirElVFDQcnTti5UUwlNoXyWNq9osRgbNd5Z1opAFvPx2Gs95QgbGLRNKyZJXf1/kFxGazj4LKnIHly2pil5bUhPvZFhydrcFLPF6FLetoTraPFC2JVIvcGA7Ci0R26woNspWEwaCHBsBT27RApzLcHD7jt8XXpS/Zq58U9HXvFERSdiax2k51NUDpcKJ5JF8jClNQ0eTf6gfEnJopTVAGW3JxOGsWRJq+akpHVGgEZf0/pHp6zWftSrM+iqGkrCgDI+y0wUjq+i6Xu6lfYmxDuhhpgk1x7DzqCWSE6fuwV80J/iUaezn/kL+wzZ4JS3jg16c4nw3DBB/tiEHNOH8tH/UiWM1TiEVmvmHYUPKoBu7BhkBtCSRkKHPAlU7K2rwY3npdZ7FQjVtia+rNP7NsdLhQH8LA1R0B2GWhOF/OjWURgnFq37hdoEHvZ7ipf5TUnsdIfzXYv4mRMDGTCUd6ZHuUgpCOtHJs25GFLynocMyzBkjJTmJANVkMJ//EwNc6op+1BlYhfuD3BDQig+lCWuIwStkN4+T+pKeYU2mRpYSUYHKzERLljTko3kjyrdhEl4Cnonc4v/ItpN9rAyS1907fO1GtrgIdthsD4XZwHRA7PJhLIxgot+i+SrYQsQJ3OkiU8PIIHtoldB6t8G/tzkNkdMa1FP5d5P8sj8xJeWbDALi9FrKOxA6WYarlbrL5Mn2ouFY0YelLADvV+RGWu504PAy1OK4X9hJ36n2mQqvaXtzRDjscd/BsLnjMfUJyIBWV64dLPGj8CLE52AjfEL7N0fhMQDBNmN888sAGKCLLYrI0u++1wUNz79sHs46DVXsMM25n5RaZHX/UjsrMfyuPldF+IN99z6q9IWg5tG8LelMP5Y9LCpd4cTb53lu0KTzk88aKdjHt20war4J27Ia0cZvo3JoM3zNrI7R8mt6I4TvpqUtB/qZAGU3jhlUbB7R+fdfdLiU5C3AN7OPhaovmIzmxgsPlb7hlrD9i+wfjTUt61/Qbh4DzlZNk3I/X+lkOlnf6m0lqZK4l0MMbxUja4MNeS/D5cUZPDTM4A0dXQnAx7ewj+uhS0+iwfYYDaa4o4T/r8WEidm4QVALohSpktrYVIe/dsByGPOIqES4Va0gdL3ebxHpcy59UpYxQbGwj17iFpMHDY9I7VkYPDy/XAVBYCuv/LGA/lZMRjRMuCuz5+O8JmxlWx0/BF5g5uNZ7xc/6iT8+LhufQJwRtprwkKQTaUlKwmwgWXXkQye5q/j7rXfi87qpralIzRfBPgqqN9Zgm5L+deRiTsxeV4lLr77E6sNUtgeuGMZhTDGXGPs1yieI9aTJF+hsCR26qZGt10Otq1YTm5sFWeCEA2MC1A3dbhoEtTzN7Qdg5i7qbjFmwk6TOab5GsYhwzIE3/9Ucjb6z2hH5yzLTNpU1JDVyLDUNwukSOfQ0BXuPd4F2GlnHfQYND9HwfJtu5o60FtGkAn1SG8aZiz0SrU8xZihPXohS/igx38UrZOYC6gyo8SX6pLT73euVBYvU4U2lq1/V8+WXirwZAWYl5yzW6I4oE6NdQuntqIOfI5tHUJctIhb5AKC/WquxAUtCXQqLwSHTTsFBOVJlNcOydt1+9GITPLNSQptyGjU3vb+WuiDS0LPxLjJmGWu6kVu+TkMjO1AQZ0l5OYMmxCz/cr1kw8H1h3e3ShuemRYbNJ5lFA6omBjKlk4MzIQ4Ck22uWqwQXu0CPzN91VidYKQLwGt3OwxMKOxXuf3T0qVvJz5TJ/tplPcgeMwLCTZUwFtu+miYbMxwyJhoijbZY/byj4m4NwREqAVgwWmwFAk0dTgIDKW5DZfZikRpPMihdcNv5b42egpvcAKMSGsWzYtzyl2FV8uWE3WRD3NVUwCkyDKv3r3iFzIyPSBfQB27EHAZdUZah5yWZnYQxsssXxDNfFN9YV/BH1EQhCRPah0qDcd844HUKrGYiN0c3FrUOgdQmSIix41C9j9f8dKMmc9ygKBC/RwiXCuFklzRE281izYhgqfW1pFKi5oocDTe/rUDCqXHiCOigbEV6ro3/j6xraFYsmn82Fm3otp2o64pgJFhl6ay5lThgprFuN28rfGLXSCR96hSR7WmzhPJAKvs15WPcnehCb8BAFd7vVnzqrIzNgCln+TbJ4Z3HG2xrzJOP95JIVVFJd3BZGBfB/sE976So1mvXBskFOLdvoFS9W5tzSbWDJ02DO3i2RlqGAJFuHuzuEHmnyqPaijG5HdBOuOgLiPHj1vFa4KRdxt2LK4QeNdeMEu6rIf4VPhAGsBM1qIsGwn+nqu53z5o2yru2RQD9AyBwSYhyLURef371l5yjGQ3mIXuY08u56vaZh8O9rEnF1lV56UZecfXw9XlyM3mDfkMmexOr27Sygmeosiml8c48WiL5mr1dHNZw2uZlZdsKDynavWr0iDuDnEXvIYp/MvxeVQTsJSXCnn+AEUcasMigSnyA1+idrlelRdZpwQdq73KQh3kBy0Leyo3G9Xpsk7MmTdMR//QvIWRV1IGQVX97RiqpBJ8I/kSH9tuW4Go47BxjWz/iuuDwACNPqakwSxPXOQITU/dRNEXZomHVQHqeYhRKwqFZh03r6c0n17hemjmY+aB8zE+pNe7LgD6ldViJ7qqttyV42T7k9L6MxtdDmVqoPIFE6NOQixv/HpgQ5J4sQLz7Inm6AyNVcaZ3FM2XfQ+MpWJgrdLWObvWDWlnOzCDjl0bcX1cXRfAbpj+1w2jJ9/qc73G4elUG+1TqNWaXmQEgFwj+RmYdQK3qFFBC3aAwLc6cucgixw4kd90k7wU9lM77NFnu1uFDJ9fIQSOuDmwJRAb58SjWdzs2hR7AZkVdQncddcCVSdHwMlOMBXrTO/mvOQJHu/NDgi1zlFF2yNcdR1sHRPzsLFWHVic3wt53sW40id9NtnvlaL1o85WGD+dP1UmGXx6AHLSrUBG3N/u+pCzytxTzFZcqMctvRDJz9/EupUK0I90GUKFLPYGPIrmV17345DYMHgv/EEmsj0w2i2AE/Dj5YEJCyk++mjbdoxLXVmUPkh5Znp/ewTfWTMxg6IgI1Dxo9rUDOw9OxJU5h0CoGe0DYVGg8QWlqEAs2+kNCzGNZLlwE1N0kfhlP32jxe3djr/ojMp/9sDkGty1m7YIymwclurk9dn6Q2o8VePNYE/DGjBianPhQ1gf+Qj5jguZZ0QQjbt3DbuML7e4liLLK0E9cTAGkPQk1OgUWdl9d5jsjMiXa4JkGAHVXJy2qDt8O58Q0f6axxYiA2Ubh/m3sSuP2HwSVvh3pa3E3W64U36egT7nySFa8YTflh3ZK4ktmSwOcrDOarQk2LQl/w9BoCUdiStgt/rZEQn4OyriT4p46VX8VuDiBJQ6r0UTTdX8Trjbs1Xcsiy7mGUG8sHx80jXAaKdPYqz2/5THO/uWJXdZ83DdTROINDfDfMe71qDZyfKSlwmM+11KJCndas5uoqwECFyYtb6IrgF0NaJD2JoWEeYQHZLa7NEWTfPwuBzAniy2RvnMyMj5Q4hxmxSbHgVYkSe6GCodu4wMkw7P+X/uR1MqnZu/xJlg3QxTj165jrfwqMAj9nT4T8A3uggZGAPRG7AcDDeHpQj/sqJoITftKGevu0LFks/LbGDBhFdKy/W49ua0tBo/DU8MqqKLbtJWYCNTsGRAnMckKxMNJ1Uwk1qM3gcZuWZfP5zBVr5YZJsT5PoPcIErIPK3+4cecjD7LtwEOVJtefcSk58Z43x0hJ9uy0GgUBBHsFKf+3E5WmGXuUw/YqyHhK0RWMy7tSg2y2bLfndUdL5oeFgEr3Y/k2b9xlVn4x/z4KNIrqkBoyMSTjc1GWK9vRxg8/op1RD01PQKiSZHF+l+sHrUmFgFe4DdSAVG4XaC4IqnMxNAGli/e7u7c7bcoOPEvAQjQvR1M/5v7z6F5j9SJCoudCHysv2132Zd0eCq3MD7q2vccUYqLDOpsL5R6uiuEPPdU8gFSCy2ntEuBVuq22zPf+bLuxSUb0VYVd2hMzHw/qp0fhqHDb67DWt9vb4Ii+siy89dPCDGpr4vlX1Mr3pQtr2mnBDeHpjdu4mmWBnrqODjSXqUvHmIvpVgmJMKAgVAM7FmsJtqKYUIkBTJdJNaa1R2HtXbTy0RESiNP7HI5qIa7gvyTnoLUOrJf/SQLryNTsi5AL03S3o0YTJF+MnXHCpTmwG7P5+i+tLU5MMOxeWdA2Lv3V0BvpkK2gKJp+cAQQhv+61dQCgL+QkwM1uxS/F96pX1VnKvs9rmX6OH/Mr7eeIovkakv9bKDf1jWLYjOi2fMV6iSy2ALmktWS6Mc9mkOMq81lcgzJy4mYepA6VfGjV1sJ/IY+yOeB+nKHtp3NSKaPNUtIqIso/fUs1eHgEYsEc3DaRQV/cgfMc2cY3BWWzx0FfUmkzjUObOtWFlrDOOk18XXNQbeMzdkFOV6x9+cJnpqVMQ9GUGhnLCeBRb6ZskHxrLs0VzgpEhRvBCGqiuu9IB02fvuPUQPZOLV+hc9ir8xO0mGcPSkUu4QZGvsrErcsR+7V0Sg58qiVpllOxFNcb+DtbUj5UzMzHj9QB5fvii/o8UMt7uZoIkz7ZvId2VaXY6sH/iEbXUwrDl+hv98qhRbHrmJKW4rUt1SiDSjjenhc1N73E9ydwm5q6OIzCB5Gw9j5Gu/lYZAaXnu5o1FJxmQ0slBBAiGvqoxvZ4pNVTOEb4igT7kkAKi/wxxm87sGP+fnoTtO5Y/RobOPAaIyyKTeYj9jSIrmj9GI8mWQPyIWEl+IuSyFq9IYVXQnwoWfqAZJ7ilFYeUYcuBm08p6MkqZ1QsA1I2xN8DEypiwFGEHbgYL/FDpBZLBnzIBbGycj0wjGBGWismZvdJFuwmKlS0ZJLog5uFPZQ3rhp3o5cp1nFMBS3ByddBxSOVbOM1WsoKHyXb6tZUQ0WIVFurDkkYtHTlxhipSOXb4acoLD3cXzSzhhi3Vm0egl2iALXQy2OStUaWpNejb+fNY5WCtGUNR1pjsB7bLrgNoFgNg1urLf9vshjn/3NSR9rcNgVXm+a5W0baLsiSmLQtERT3HciCZadBaIFqR+n7pIDO5DpLeSQcVxyTyJhvQnRLiAouExuKJtBalZjVYx0DUw0OXfR1YuOHrt7XsGX3Qd4wt2NULKU7x4NQUkzStQPxSaDiDbEdV+reqNDLe5S9g6ThYpmaEUbpc2Rj2OZ/ZgKWfl2TxmsCjBFIRYEgLCpTdNauLGZ6GKZ3zh/Owf3owxMfTxGPDm2SIY5HAjDXVm2fLIssQOLbBMAKL4N6C0+Bju+uSj7BiG7XlRsgELQRHyvu2BL/5iWCtSyiX++cXCfNB8zJYw05me2u4HTHNO1QE30f41NjTPI1G3/js+tN8a+hVlN+PA9GgOCPrFIGaPmE2JGPcX2KDfxiEM+BXwG5Q54OMJqshmDwxazOgROm55gSWwf9Q1c4GNV/oe+Q6QitqmxuQUIvISuEQ5FXchKEMMeaUi2FxEDXMnll8N9cdhipfb1l5EF7A5bvhz3zpE8aHGY7v9VXqr+us1WBTIYKRDeieFuQApreVQnChLAJ8cP93iw6nKdZ7VuSZKkcu4esxaYyBIXya0xCwnHRuYlIDHxfIilFRaZmdH+bw7B66UAcvNmZJBUUJfuy3hO8nUvnkaPYJnP4UFEXc5X6jt6HuaeGhmRxoR1E63jz1oYw1CVdf0+PoIbwCDCAxn+TF0bCtA/QxBUO/BPkjL8G9GXm8X6ZZ5F95I5g1Cw6lO1G0RYWpAEy1NIeWv6fnYZlAAnzv2SuRDdI2Ab9yqgvPLgmW9vRDMHKZp0viHrwObbqh3il/wNX6k5MKXleCT6GjkEjmJyZx6huWptCHIvldX9JZWEFHnSEOXwJ+a585Gs/lKRPoxbyzMyNVip2NDe8Nm46H3nUmfdKKwTpPx/5SLnhuzgKe4gD1PDmpU7hjd31G5DYpEumYmt3JNRT3CoDKBE+hC2fvN51Fuhu0c5wYzVWBHRPCCGGmypi00XRq28BR4b7UG47WquoraPFYSr3wHXpfo5NKUK0q/VCumrdN2eq5m9Kef9RAUZKJeMjgywAgrp0qWFVcsROSPNWSoSZqli0i/vI2ncwxqCJzntoWVFWwcAiO+Lkiz1IaF5l7Dmzf6hJ3GijhHj4WvNU0mEhhepTKIzYDtqnDzZIm5VKZi5vbTP5JHDqjPGvAF4MiaZxPDiuWR4pqWRbhPtiWi8pFNdCEvpyx1ChHqC4V17HDkg9kzDHh0BEAdnMpEbx0uuMle5mJHUcrctkoNnnHg8fCDT4G/kouvg7LT/J9oqbmNI1Mgp8GRHamoO5W0ccn9C1MbJqvKAABTFWf4epTI83k0lNu4lXPDZUEHEaedStzWng0CDJXGqvVjWiP5MmAGMm1ozEJyUSgoQMYmdyaECtfQmDwZdfMmAZRwVnai2woFbmopAdmouPNH5is8jmfUI9ik+8/IsJL2r8OCHmA763gNxzIGcXXDu7AU2xsGlBb9KwFcLDeLgm2wCifhQjuouC927L8uuf2YqJ2GkTFrid8w3SuLABlwqy5VBTQE+lsFU6AminnJs7QfjQ6dSV1FyeFbKD2b/HWECKaoZ+QKNP7bd8CJDa9OoN6uJr+8zr4gZdEWNQU11aAc/sRk7mchetqHC+7qEN93crnFgoQO7lwkL6RciprysWitjH3l/SSEUhfLgyR/NZFUisHx+VqueD4Hd3XNMkgBJTeK5P10GNr7azFasUGp4TxvEjVXRR3IHA0hRgvTp0PXbrns+1ikLk7gRRI15i59EFT6FtI/dqaFm0eByA++Gk32DMLIKsDQIdyFy0b+hVt4SS0BxFKl3ibiwbqtgtH0SJvzawwFiMjjhU7E0DTc1ga+LnipRBXP9yWhibo372Z3W+VdDidgpkh4jN7G/VKRZ3EiGpQjcGwampDKHyZsGo+jujttkS16Xj1+0DzixE9lve8k14IOAlYSrwXwkiojLsHB5HzERxIuGoB59lcbJcg61qVG/8aczQC0isu9HTGnI92eQS0TfFUkt5ZryvWO5ZJcaAI8VScFqGby7udDgGuzsxV7Qxm52MG2PSUFDPFAS9CsYg0QAfIsV18BHUYhUbOCinCJ7sHCgQcaQdHDwE0aVz/qAzuBDPC1k+CmVrj3oLlM3IURuCnJpdy6WTfB/h9LjX2hUPZ3bMToddrof0uJM8zEpzQWoWA9Q/lAdTNOTxPZ7WE2vyXuiRMK4T91wy+n7ZyEr5e9KZY3kSbibo8pXOZKenRzViL6G5vLCkl1I5HqqLrJubIpKi5ujNska36SKRY84VFJK34dscyAuWtkEM1gCzQwAnK5dPj7XW7qJ8dr7h4jry/CDvtbMt6yuOTPXmqd9VNRrL8D07StdD3jGK42ZQp3SY08zpZwg6cpRAS6KtwUvK28A7YCUNkfDAGlxgotAwvH8Gzszy0XXxcr3jHtoiXQULzhpp9Ko+qPgy/ezGHWGhRL9uc+1GO6mbaqSV4vQYu//fm/mB4IARqDgmJkx7yqFE35j0VSuwe5paD/J+rEgcBWWA1KODlvdbhqiiUw0Snx2IEaC6pCD2pjl9Jc7YdZd/MiNix/dD9YrS83OMaN+CXgO1fj8GK3OMgonRZSx9Cd+/Qc2rg17tzokFBDEuTyZzis1LUcGUC/s91UE6lq70UOqq3ahcE+c4MFqkUAZmKYqipUO3WIai8gvBQWQ1Z6J/VkMrpZEo4oRxKNxlfTvJknHg5vC1OVBPJl34mb470EhIrPKHzssFyVBj70oOBGlZ1K2CkY/n2/EdC5Mtit5YZLyyqcW9OucnhS/233v62d96Ur53tu3UyVhIOVlR6F7xJidk2uWerfXQF21DsrjqxpbCzwptHa0xMDHMMN9+ipI8HG20MjLqQP1Uo2pb5b3tEWjNThQ8s91cP9Cty/Mf9GWRrEbhFm94iUpH+dIVO42zZ7SZneN34GQFOAysyFfsc28C59fpLa8RWjc7yG8hLnH9QXKjxMRRZMLyZQZX99DFt2UTF21tP2UMpf3bTUK6/5e37pwhWdii5BEofLSoIzwVvRr6Fx6oDtmVWMA6+6dMklGrXPKbGSw4wB4mxQjOX3KJXkVCN6tm9VTpcheLE5AoBypob33jOnEQ6EfkTlfRhGogiH2XnPvKhIMBsLTscnhahgxZ37kGI6F84jutGyCPY/5ekQqNclf7mAByQZJc5XKD/vGr1uqQTwNNdIHoE/WrBdW2SxQNF+I1YdwfJuNmahspEPxciiCTjwr5llYlwRNHtuU/099wT2GHX0zRDcY1oQjjomT62rrqPybvYBtIUGS2w/2pdvBeGczdGBtT2zyLg22T492fSDI6GftBvOspTQSIsmjMPpDewltikh6sBRwm+jA+XizfBS0qURPJ2HjniXmPdQ9cys6+kCKap63B96rnN5Wxx3DAMjp6iwyJaKSlfXrFLAdIN1QPDlGfTzF18y2TNxQR4m99zk37TOW/AosX9NBcDY1WoaC1mZSauomMPQrmWuxa5npo1oTmjFcYD9yibI+xXQSCDmeuvlMDhuU4uRE/YEfrpLNcMKjccFd55isrky+FYXHktBLZmKal3azYkigNSx/NiRsC29E+LyCnx8uSnUV6UKtsS+o93gwRDgfyeXFL3Z3Uk5xAvdEts/5Ujx0GTZOxkTn6uF4VLJ+cTcxY2iEi5A7Rux7HF0l1K7LaIydF+P5IxFeypYIyz9L3/7MuTJnZFou+Qc73GGoWcFlXJ+QpHGgwsL7kmeYVTFwS2LjFqrcL3i1Y6JRAixGL59l+vsbA+mXb+1T0pz2PZOr61r7+N5Ndi16dU8gNrb1cxLaXn+Elml8feZXxXlUzh/zE1C7J9OCqfPvutHbOkF+un4Kfdfx+n2Q4LX7GJTyp2xsBbpTEBN++rEaUZeDquMVEamFtwM45xWLefnliQw2zW/9XXDvoFZR0V4fMlNhsNWPKFjWpyq+Oglwi1zEVInUQEOcA3ZwLaEHoaPK3ar0O81LLbly+O6CdjXX57MSFbpy2rB6v/HiiULDvgdAslULyZ74qLNi2TNK1Zw/MjT4C+zAkoZd5hcadYtwhIMUXc1ikvRoVHRVYJRFQSVyb05XlmmF+yB9O7HmZoqDUQIWGle6FZIC+0qxN2kFtD9WDf4715wiUW0/IysYQvXdIx+w/ygwrtc0xkvelZ6ueQUjeEOMM+M18FdsBoUmYQdO7iFkzxBtrB3vBTk6FaVboazZLD7RxNLWgkckTp0Cilkaf20wJAqlh3qNu/jqs8JnN/zOhgV/Y02sVfzgBXXHYrwc6B0EZPB4uXd4NSdoP0ulD0yPL5h096KWUuFG57YZP/eQT3Ct/qfB4jo4AdrY/5vKKxbK/tZCiUF0pYeVbFfMwyANi/QtR6D4qIJNL8xDYNJFUxF85tTL4jCH2/zXfgjNGr+Uk5OVMZZcfFe/NNkctuolday7UZt6TXbdXuQ+Eeh/Qm8CUeoj8xoB1ig2Vrv0mAj5q58qBWol/J1jeUrnSvA6/4E+NtxhzvoDVw8o29QfFpzGUPEqOHWdqM+i8pP/DM3qxhNg+aX1+tseonrRhshPdFcYhEHUEYzUsytklD9T2yV6OsLBw0mzAWyv+6WMjOxXail+/ncOnpCNEidrfEgM2gdcJqq4WFaxHfMLErxgHnIz56EQx53uMskE+KfVjQvhVxpuhVF2rxym65l/EDvoXRLNsUwBEHDZ2hMQDzxQAwy7smS+ERUK0oMNrouPvy1EzqNdjrCvz66cgXSMfxADxEKwTMppK8SG45N0S6tGLjZXB6JACk6F9P1nqn8LSc403El/Orn9OON20vov+8E8KWJ17Hee1x8j1X3M7LxyPwuv27QkWvFu9aIqKRJJAOeiMTspm3uldVVpDPtwD768hi5AkvkBDELdMzzR9c/a1Bed1wsTnT3hsu6fUZrVQ+pw+Z65Qb6+5EPZHoKd7WOxsGo9uLBKtD7BOosfH+PJqa5VsqQEUUZUbrwKzpg69WT3IBFHU4yuBIhDh6KXAjvMYfqR107m1GY5ckAH3sJ1Nq52Q2WnGqFNGOYhCIZXYJPbchHfbX2T86Z/cyiNLTfxlYOJqjjKqqZTrxTDXOFIwz2tsXgbaiK4rvs7NN7UU2EcqdePa8De1iHOOvTa3HxqHaZKGJUq0ZiwAUfLdoqqQMHuZZRHGZiEyKhyWtpAzu8YcMHrTDqBHpydepZqXRpHxI/EfUeh3CCWtvF7jUj6CzHrDtsTNfTkKeemdgGGkj9XmIyHmZknycBByr+yXLASORwvctg14KVXKVy/En/EEg8Z22rGG0pl8mimQr+nunwsELwfL0l5fKSDVabBqv+SGSKMBrm/n5RGQ/Bl6LODeUMDhmoLMvmIO40nUeY8kxpL97z+DK9byC1PqXO66juEx0sCEGPd5b82/0njrS0x+t2VA7xTbbprsv/aT+tXdcumMlEy9pMQqS0D8C3b7e3smBztg8flON9DP+EBaViBqQZTJGcq8UXlslp/tJn2u2EU2A1TsuS9hppf6TGx3zvcUrUKUXT5Nio3huJ3jty9swXUYlrhZDaCF4woWA70+974HHUTgHszbXjtg5pOxjpNufIx8pdzXIawG2LdulRR5zbV1zDoSN6t6CfZBamexrjevMvIuZVaMmpwMAxGcOQsQf55UMmRP2/DPHgpVKIdVScn6mWfmKTOHD9pTvDKGOx4nPV7OhGfjCnG4fU6DSk+94S45ucWRLAZZdMr5kvbnU7HYT5RNvVZYSYJQO/GnszLnFl/3gR75q66/eEf7gqwEt+bIVLfAscxAZvWPPKF5OGBpmrywHVoXE4S6acfxVrftYwS4kLB9NjaT5B7p181KcKYS7mOu17vDIXa/bfxqG1JCGoYfiEg6q7vegOwYOe9qGiWKF9YEibhDkhq+Xf2j0SuJoavmUnlRVFoVBsvf9cUcIrZSMLeU69iUQmCKaIH1lBFMm3bIps1QDBZA5R1BPZMBKSssAQn6O8NG5Q1guxxF8OaxYfzbUXE6fW18Tnp7PW26ivvm71MVT+Rgledutn97qe8kbHlTPt9QTEEKDj6GKKlwN5Me1mZZ5ITdK8b6wactGM/qJ1kkeXHEHdJ4RjGu1K0r1WVwUSOYmZMrxRkKZKNzwiIRJ4Y7fWzRINPgAaKe7+v2AL2B+5xeIlZgyu6coNPuyNymTfm68UdKhCLR50ZSQVVLeG3EmkWavp3VC8BsmARladgIfgBGOlwAMyT5I0VaAONPWIw+2pP+bFnqJSExbdkC2Z1Mk0R0fApb64VcYnXezPoDnKQp1MwFG0OIhfTzN6JcS8pBxPKOWxJtCqJnB2RG71VlFonYF5XIjBr2ZLwO1hkDth9GUt0cGABUjMr99D3STJVaz6gsKGcXEHsoM4g13SJs4xkw4IR0s7aZer+OKhQtPSI2BldXFxv2daYhSRT/UHZb9UXWJ5ttb1wr5L3f5mZuXflBFQuVpomyoijOssFn8b8is2eW+ha0LjNbHhCJIalEA8D7SNHYiYixTcJIn6uOD4K6vKweglTg344oWfY22jnA61lxDBt5XAgqcdSygze5oFYkZ8f7Xq48fG7KGz6/XWaynCWeb/5yThndi1GUEN5sX2sXyLHtIcFhMXs8inyMVToEHs6l5nznpvwejZ+vb0S+fFQCaLNOjlMpWQpXjEaGCSAtHDnX/6+PnzkbCK6LakmDPKuetn0LEc2SdsWCm3IaEj5V3APMqeJmco7RZUK+a9btFOD4Ol/jm5ZhINGiwYwyQHHiGYsuHrL5DpBrjedeIPrDpS5eHrZ/EVVXqrzotVtoNax7Ioh7sGFOAUSeq4JmqRxy8JsI6Ay//XIa0A+l1chVrfRWwBtZNZpqo5jWBrUT7ZXNv9xXMJCxkEofFz1Kz/7toK61bfCTw6Y9kBevdZMEge+0CtQF5bUftWJFDQCSb+mRYHUwqbASEi3W7QR3VpuSKjnV8fBfkSrxYAeQL551lmtqhmqsfCuajB/BTjk6noTJV16bR90qTNGW1q0XZcZcPbJ/DbRvRLNI3vPxo97ItIXgmtWFJLs+pl4CJ7UO+f3SVW1D8zPObubnIIha7jC8VU3nfnEmEYDMa8md8pjoxZYcCaoOmCm9N8aJrKDmev0z9fV7usEmzOtLtZMvgKh5Zr5FmJHx/K09Q/o85PGQTTB+A5O47WveLwSwVDwdAgbfX2uof9iEXK+LT1fdrTTPwIAzb0X/AeNbciBTJJmBbD/Bqd03rg2B/NMKOLFCvNMil84ZXhvxSECP6yEfOjANR6PZ7dpbrNLShlI/o1Nfjn1neV42lhu+VwI/vcWx+MlnDvc9j5ltPChkGp40dFjQoMSnTgTfzyKU5dU1mLmCihIuJvNmqymFeyVg93hQblRK53jUrSJ1OzaZe84HBfbfnadEumVL3A/YBtBmOofKl1nISz9Te/SxbbVr8/qixRAyMYkDOvHrNPJIrJNLzTPDkUiU11ImzvH/jtYDGfEJGQ5jwDIqjLGNnWT1F5EzHFVPQCxovDboEccqY5pCVqQ18tJg8JAK5qDZV0Ltfd3cnswHATPwLxbhusNVYSOBO4HQJqsjPtnopnMejWBDjypvTJgMvBhqWodR3ABjxPY4TOJK/S21mxZC9mx7ZXMcsI9gHZAEhM1Rvpw6fdUixHz1vAkCgFv4t++C/SQN8JGM5BgM8tAzrbXqM88KusRyzdFZGfg/woe+4VKLWSglxhKFln9Meidpj692xckSlFW5cr3izEoXevXqdjTLU89TViTotq01xEEhh0QmNMfQb2Fron15ATbFKPhnT91yaEeMWAVJ1rZs+5gEJVeFFR+E2qrPndFG2uIRJn+Di3fuIUxMQnrEW0lODXRoiCaSwIGg4DKnEsh+r8qR3u6GDR8ITI2gWLbBUYFKmfUAFoe4mNEG1fIxJN0Vmhtm3j4ZcoVuPUavnumMjMY2/7/sjPhZJ60lTLHPxTOS6TOKJJpRdxy6esJ60Wt+ctuffx8UHQKmLc1uyYLGisN8uJogCxeGw7JUOzzE+8xI4CaomiEOtRZAuU7MHTe4fztBOe3Gwbr9Cxar+1BvWjDwaNftH2urmTNKZthlcODT1gMwzSCd66NIrJN5rQqwWGa9gFX8hMsXtOrkIVplIovzgnR5kEGrlLtlx84TjMfQfC92UHDQozD8rEFuJmR/XA6eR2oNfk8TyqBT5g6Gcv3mc1DiF1SeBnPCwD32R24K/+bVBlUxBhSzlev1ZOBteXNajttB867zT69BeVjFj5EifzA2Kj3VYehA8bYSxSaR8OE2spjoVbo34NiUw3xhAtalnj9WZrauyhHS/F8Do33HNn5KdweqOykSZ27kLooJlfgcnpM7ELrf6vqAXLuTAyOq7ucwl2x9GoN5luBO46MBmoIAGdz0jbXQMTaRxeCZRF1K7I8fq0vvWuEk15IF1SJ8bsLuNObt3d4l7JHMv+QiXeLQG+/OaAlPWtBe5+TnLsTv/ZnxXaxARrUHHEnRJ5rMOjFqH6bgXwacOR+S4kjEcd3cdrCRJ7dkY84Ug5pCXL8mgEKywg3O/4uEWJTOmvyA4Dq5JFjqof6pO9npLq4rrxN8R3Qj/gvXuWifs8niMRFZ+MpAsBcIIf+/46j1amIpzHFVOx2q38+wcAEEFnoVdOxyVwtxAesbL/KWS6cqKR5oHsa+oJVuKdyrSB8Vto+hf2ZUYYvBDop5kLGE0KpOaPCbsnb/51nDgN96i/84vzmsTVOueIfZVZhqFczSxsQW3g4OW7diCzv6/orClVhWLdDVyLeC/wrjurtQtRPIoKEw00X4ebkBg1R/gP5Iphes6ocpNLPnxoddMrkH5YdAZ/j77mmtlrUZ4nfSy4SM9EteZa40lHl3l8/Vx/rWVat+mQjop+ysteiw+ShoiwHUNaKPxcIaWZgZSZtUG6Z9JdHftMyN7lUpb2PV5lHm6W2CmqKVKertZ+Z+SBS9JnS93iXB5NSqY1U4Eb3ZOEQQ6RDuz4E1nrBpB1+iTSM7doV8h+Qhc5/0p+MuYrT+JQBPRV/gUEC/mK60GShMVKO8TSLqyJmp966ITSZTiZSGmKZb+JSiSthbtc8Mu7p2YQmrhsI1hoUqjSSON4Jc545loTL05naG1cotO+dJpVYVwJ6Bpvu6NZVdTP8aMYZ5IWWFvpKhFNkCWXqCPSXCd8jjp4Ik5wnGGqJ2RI3oOvo5+P7rsCIWCOp0UZtI3yNQmwfLaYXpxFDy25oA50L6J+qYTOgJTg+E4Ifr4cSQ4SOuQILkGz9N75P/hrtrq3DX4+hwtbHs+4hkP+ZImvf5PxBmvaD5qxLgyZ6vjViJ04i5p3sUgMpANr/HnZYwl7lod+7AyHD4+TQ8WFQ2k0jSkSuJxIrZLuuMSUipJ32YoqEDTLTewO9knzmT6P31tEDQLLP36AQyVkrTELV5leOaSJZunZGL54p2Z+GVhgyt7Phe795h5KbbYH+boD/79c8mRLz7M4ZbJ9G7/xT2lkD2lBZkG/7kA/HYMTCCMcJQz0oBL/z3xYFaCk0SQJUEtrEvX+g8AyTyOJaaeiRVYdgYg0+py7NCdVkXXnPFdUTlsl/cSFfkU/a3eTFe7JoIKJwwjm0cwElRYab+G17lwE5iF6E97Y3Q1hufbv8fNlJGp7sEaj/9gkZ+d1QYlPSUD+0ntoYcx65vHGmcFvduNLGMQCRJA47KoPEOPqgwUoLmyEFnRhjutW11gN3lJrspzuJj4I/X5DiPaWQAwkR3/4l0cH5Bws0NsU3d+IkG97Y9Gg/NU2mehfDmDNRDurek3eR+8YRx4KjchnHXwnGRGFFz8iqoGpmemzzvAhTolmdyyxQOtsUhH1WGDf7h+aP0TH4wUg/krtvX0XwFDW3aeROOlJJdpBaazEzaioCOGFQUD9s5z+pF5wzV4qMt6F8A9cv+2YlEMABggMcfcG16Vy7P2c5/x60fzZVAD3jYGUvPGlcVV+9H+mhMhqCRQIEeiI68tTNU0ixO7KJpYOlPz1yKyzvRJ6ThpYoBoIQ1+fqQmlm9jchiI7o1UkVm/u5dh+kSbMCapA/yzDzIGsAncNE/WXeGHA13jkeqIqWhBVrxyVQxWfSyp0H3vAhz/+WUhEJ3j2bsNQQuFksCO7bmEO1V6U46UB3kJ3AbQIDW8y5pIZsz9r1pzbE7D38Jq9fnJ9EU3gN7cXe2Y8qVr9nVv98xvYUqdYwX4CZLFydhmrLD1KSl4bKpuTRUib0CrKlnWWQFApxKhaUzYcykNg4fH0YvbfZ3rdObAmi02OLT6s9DB8Qs6QCFFMiUXw9XFrKlr5szyNpKaC9d4jpWwDOAKrigduIgRdxPvcIEkYb48ZQ2G7aDjpFokZ5o4tuSD7TnviBzvHnm+qm+1qZ4G1XvHqnImmHW2MngFHKOZe88EU3xi+Ch4sx897/+qUXm71UkdxiLjvSWLCk1+T4a9py/FB+p6rA3/fzBYpBZYnWANXAOnH8xLPvpAQHScESliEeNv4UAeoq40Y34eC3DTUqLb3sOG1ZfBHJUT+/AJmF+WJcx4oxyBOb6Jc/m9CJ0L0wkekJ06uhWaz4wB1ZQ+IglgrGvJApEQAmsReh5wwIBHTtXpOkW4UDXi4fxH377MNR31NrupuEIWdD3X3Exx2Q6LbGaDOnODeXwAIWQKtq2lho1UqKhUVoT3wmDVZ/AaOZ1jubJ+GwPJetrpe1D6UwXdr3ckJUuNkYnTBbUSYQe21UoYhTZl3hJpyT7FTqM2QFzvBCMOkwgTVtVuTu7mPPcAyVYbXc8uzl5mXuvJidzosZu8SBPy4rXAWfDqpe7c5DJHMtk/lpQuYEw0eYCoWhtc7hItGbwdoiLzGpmZAKPTEeUQyM+6TaGwijXsPhbpF/cPTPa8yVqwboIys6gBxmssqwAoce5mGzqyqxn4YBlWPTN3ZgKjHEWBir9XkbWSIA3zqbc9M/11bVePVPr4MOr/+u9FYpp1pcwxSW6AJbe4MN6708Y8Hv4v2lvNOve2Z5ONDGtuPNBmBn0b/yMiqM9bg6hJPCSYG6b8vD+wCb+k8APEze6kFtTZxVyG8eiSzvPjQhaEQDCUzWVAmFtAACkAr8Mg0dG3dQLqns+IpezSLLS0U80P+8+sxX2YtCJ6cC8Oj3/fLeBVh/kPugD7z2kQzSG6zqTZOXOIU9UjfsVjm8N5EvG5RW0eqIdP6RToweTUIUVoFLYEWXHyWaO7sW7w06bHg0AGOKya1020MWdHYgpkfaU/rCak0RJs8htC0rSmCrWXdEF27Vls30q/NuuJhB5/ffhRk2nIcNMkN/BUbXNfldQSpGRxsarp9jCSZua9EoqHYlROSbsHemdtDVJVjZ1dJBpJS9xjN1fUBGNuqI/q0nwbsHFNW2fz5UwUKE8ukBagqHG55YbAZx2NFujrUwE9vf53Em6FWf6Na3jY0JixeJ62W5DrOy56EGe0RQHTw4xSl0pQzp2zo36ymobowkj9XOxADOy5tGitiFifMLWn2mJCJLhW5HgpPO1J8mYn5c2XvHlTDrOU2VcyXHnKD8PAUKyXnXWSVbO7OUzLPj2YOTB24GBF3j8hX/ykO8YQRyH3vGNOsNl3Na2lpQ+2a7ij/QhCbIXys158ry+IhlzQBz554xC56h/sXldeg7iPcufPO5D3MKmcPeaHB3W+DTvas75HIhukyygdf6v99msjR3q5Yj5GrdOUFUW7uOSFenrCVjnvUqlMm3B7CAX8Wuw7vUy/ob5kZTaZQ+jNelFZ7cMLcvcmpZGjtroazKC/l8Gn8n26NZkawzi0vbDtAIVuyA94RQSBm+DGMPeRwoBZzbe7eMwOm7kJfSk3n7rkkxsKmrNS+L14IX84VDC/uTll7Cu2EMbU6fl1Lo4FRkt0bLmXR/5xEqgW3nimvAejFMupZNJ1xchK9Ve/in7bUJ8VKaHukOa7TW3TmQph9FaxhOEdDIBk1TsOTDXmiduUWDDZKQar6PJ1lLX+V4gbleLzkA7QxZFWvF1PG1cMTXv1rJJIyCrjZ1cqyfwvFsl3IzNbE7qAEtN4TAFkuv8chMTlf0ClEcj5TLyySNB/CzBNY7wXyPAxMtQGMVyZjqnZRUGiIPZYRm4sc7VbUTOYCb0CwPP6CdxdalBzdqfyIHDDvYxI4CLdgihE6DOdLCLheQ30R9gwmxsKMdUap1tT0XO8YdUZyo7o32ffhtNJYxCJyGkIq3ehbOyF//ynHo6VoMP+s/VBBWJmYIFN63HZFwplcm0O5Xa1LzVqw+Z4i9EhL3nke7LGzlNDtzSizox13dchqvGhmt72pORdOPkRvFwbMR5tMg5rYQWtu9UqMJzlIEKY+DQM79ZIlgxOvW0mtcIW0sheWhB8Fbk7wKRcdinWEdbM1d6Maj6pGdcjohwCpXBZgoecsR0iFRtr/J8t0vcBUCpZY1qAJ57gnz3y//hYDG1TQ7VLNfljtHOthZlnWxHyYkYVLR7cCzWn7CHrMy+R/A9eszjGqzL8B7ghqjWRUC8nw4XrKUMM7C7d+2jW6CvkSB4F+0WNKVVN+Ws8yvjTBMEMZZkaDRCbwmYU0hnFlMtGue8ZTDRObKbJ2YDSynjoyVPM+uFxyHwifIfc70U+qW3tbR+1NzgWmrt5pBxiND/srRpjQI5rPsiM/P6t09TtW9uE0dYwM1zbEmzQdsQdLG5MzhE8fhEmbW+zXwJYwBfBJYbnQ3AzDAXR9g1MJXcqE9k7kDpKwS/i3G+aD4euT1jxjcGq+tsBx7hkXFYRrRKKyZWzGfebFXswjhxhkPY0YMCoWeMqepZ3unlhoR3fV/TR+nZ9G+GPbYsXzAVTHVI1Bfznkh0rSmvAQWhNvlDy6rUVmI+3Z4oErLZWIkYrb3ft9EkTeHOZsnMpoD1+x8HoaP3VyDAYmHrbZ60Z8z0yPN8HlfcKbJD+/dwCPjtKaV4HVaRy0P4QEM1j1mHANuwLuc1ix8bjfOVQ1iBCqxVCQ7x61Al7ZTYyeaG1bjcE2awYKwH6ihBl3vpXxO5jIBlrpYfykmLdPS/7oOqiD/YeePFZ24pg8+fzC2WTN0k0HcHOO4WnfpPizHLVU4NtC+18jeg/Xzp+MXg476vB8Pww7/KskjC9lYA6tARPbeZF18/YVYVC+ptVWKt5Ec9DaHKqA0ybfYS+CCFxGS5h/CpznwsUA/8XPgUp+SEd2G1RPsbHAv5zUxLMAKJL6xNoLWc11XbtzD62YJib1yWsAD5NMDlisvSCeT8aVrUfnmdS/fct+RwkFI7CGoMysDndrCELJpQjtBsU2+q6UIZj1a1WfRPRWdKwNIv7QEwIeTpdlqowwtapdHnTEz1zj/haBY+/+hG4SNlcKfgGugMQ/i77guH63UxUfvEdvbUx3SoLR8C37LDrU3+X9XuV56b4g5yEgLaUfxbi/NpEt3nBLgKZOhXsc7Ya7LBNAaQCpgs8RvWpmOQ9Qutnf+sW39lXZLoluORD48r9raZXFjRvVDTUaA8YgstdGdCbSZfE/F1l4elV0nQ9fXQhuR8oCQlpR3IVgn8hKaVoKJ0yb8kbICC9WF2sAxx/quPNgwkH7ug6STB4jZntubRBQ41nnXj2sr1nQPfUbiHGnqKdJVV60nfhQ3OPoNnnsVfTxNFi4tFr46EyMVMdA1PZeq/qx2+6dJW16khyCX6vuIe1gOXFgVlnOfwnxXoZkRGttSSUuxhYI2nnbhVPugDAtIPUcSXOiZIrcQUIux0s8k9DTNqot06CMOCMPuJXEGQEHUm+Nj4uBDP26WJpYwIvmCkLjPC/VxG6H7SkDd8ZfIqjU/tJ9nZdaVo2+fWhXZHjlhZGVXjWG93n2HhHaIol1lmAIY1jLvLJbicHbomUvnGiB/kl2BFQcDszRhN8vxIZc7UFoe0td8oQsenUSyC0xKAMlHX3g8VkulHCUmCP9oRb/rGgGbiVQs5yNheDYx2gGILEdztm4U3vnMRGFUz6DuyAC+64Jq6KNNGmHcqCzC1wtP7ZUUWEJLet1w1zytQ8bMmf5bl1aT6obC88vF8p42tQQZxNefHieHNWOcFfXRbz2SnhQdmOQdomLgXD8E0RYRymP4Car2M2qq6mzHs9Z1rTNmCHGlQeEtFAVgCIpZFFVDtupOpmUIrZ460FbGBu247I3dzsGkL+h/cp1llyJMYDY+Ft2+TB3Awio7ii2j1eSgoxzq2ACeViENGNvBJyVhuZ040IZyVnmBrc+brdABBuyrL471dK1crpGdq8hwwg7nre5GN0jIQMp0egscgHGI0fVOXpO6nGzcY9tRoF8CVog4JtJYMDPgiSuyi7c2w3zTkmucInjXc3QjQNtWo8jho896BDyTzt4X+DvrVJ4VUePgBVdeAgTPneLnwLLyx36yoEXOiPrpgeA0sG1aw5fIypL4/A2L10IVKiRYoduCNifF8y4DePF2Gy2G57cRCMmRyh19MweKvW74NDGE6FB5L8el8JQvDY1PHAYzaPIyGlOVpBaK/sQ499ZCINDF5XsdazgynP5+ZNygzuQKCUOLUl1ule9+EyANx2bE+NOavGdfh23WOG5mRcWlLIPwHKpc+59Hs7qhQuWogiqHGVXuOAo1j/rY1Rwa1V4fgNLT4QGKrjFTmk4mU5lUVV5L7Btt07Fh/NeyMJIS2I3bTEE9oXYXNu28zaS8lZpmFu7j0AgA+LWCO0f4j5JVW4820FYsTGzdXDaqhvs0whnCy5RRsVXHijbbfiaAqeyCLKdte/HhSI9DfAPv1TN44NOzINZbR8DQbs+yVW/RcCX9eIaYMwDZTdmb4nl85hA3CStPkSbh3x5StNaQhz04x7LR868i7qosXzbDKr1+LqzE4JYvNeN+c5UZBdnFOFrsao3Eot/V2LVruR1Oo+KV1TjUMnQUXp60APEuAU4iom0aA/iBEXt2OJkPnaIchKzRXAyP6mkzKM8rmJbaMJnY9JyG4kGy6kIdYCGLloDI6lrdIvQHIthfM5VYdJ0Dd6xY1yhWFqgafjJhtIx2egWqGpA6pH4dkAWQG4slp97F3PVrF6WIdofm0p2d5oNL5TGiCTrooZAxfGjP4A/8ndmtsX9LNSbAcJMz8QvNIeh3jku80DyCRTr1Xp990CRKcgPiblEx29uRgUCUtggk9dWZyPyXc95H7vw0l0DAYP1JyA9r5FfvZZRGRPkBgvsyYGjwzbloy0ub275ZTPKGnTp5+6zDRJ45CwmwnmWeiMPExmPU4cWVcSHRWrdsWIR1LC5h8Z1SRB/CBIq2vnPr1dbAPctKxSBVNP6Jg57IvUkWrRzJhKqWXW47g8wYUUoAK7DvqqpHpKdFs8qOcHVhdNG7AiLVy4YblINqttLEC5JWW8zuuW2PGypWrbLK4YdlOZfQOcipaBuQL7V/T0Kxs6a6ZejGb+QePSEvHJgJJAbHn7sVO5LZEwHB8gXyz/+Sj4+eyENkVHHthWVpCM0D9FYYJ3hcz/0x38UUVH+Fk0D+tnTAEOLqJqE74/H5oiaRrlo70omuKC4PEL1c/kLV8qrcNouAd1UEJy/XjbSR2XlqPSbgvKPNyfYuKHlXgXeF+HKHINWb9My6mvzOjIaFQ9zVcptXQHoHMzZxzI7N24lDPjmXm2Trsu0gJ4Gcntotfidwmk6C/bYC2nmMxclFRNtdKwViQovLipHUt/PzJSC2hjMC0J5sgyh7AWDv0VX8ehA4lyf8kt4Vppyn6utf4ilpbbekp2mZRzqqI1B3ardaSRCs/o9zT/pxfBkSxAKLQ8bVyLql8GHqe8AUkLbbUNvYxQtJTUc3/WAEqvvakumYDjr4rsFTzgA6LecIj9tF1ZmgkxWFjTb6sYtacx40TfCz1qn+BRI0wDnYCSAmVlLXiYj8CxLfe6VjzD+jV/u1QhOMrzk91fZu9toXHre0bS40ZbJdm4YzS3w30ZcLLa6jdJeHy0Rz4NVUjn2wWq0Z4HPdBqvbBIbaRQtONrw4VFKUFeGMAWCHb7g9m5fD+8tD8fPQ37IVF3U5ckaNgdJ6r5daZkITAc6u82MSrU4uREyFdNfcbmz3tyxwNEOlnHga29gBqI37V0uiGAGfklVFt+IOl/Nt0OxY9R9jSQfjJIFr/GLeNDEXgNLrVdDkJL+ZFQlfXGW6z1iTiqQO9ENlDLt3OvuA40ti4RTKsu1N0ZVvpA/kClfAcrb/KEbZesqWH7xO2YHQcg+JBVJevgTMV/1cmU3SnEhEFVML05044khfggB24lCLU+tSQTydg+5NmbLwz1lsA6jUciw9+3tgfjYuXnRmThO0t5G5L+LmeAxJ1X3KXJlCqrqCJYq+W3cIpCVS+p70/cpYjDdBNr0ArlVvHg43wKappz3pLr+lcDb2/UYInnU/JmlQ0YgZS9Yi43ZspcZkVu7G/3caO88c9A3E6fE3IOyz89+xFGnGjHmCpU4ugTg2FasgZsUjyWWylxY9DX0oALBl+QkR5o4qT9DxKAUPid4RG1dNzmU+loP7ik+aHIDMfoM4HOgqaKznKrXJdWDojbpWdtPbcunIR2wxEWgDAcrSuauIaQ+LER9mXgIxKa7mCBptji65cLUd1UKw1O0WFSkJHwgxY+KC/OU+EIU3oddosWcWC/4RyACib0FPEek0TJXjpzTPZXqb8lAWcplLMD0L4+RblfNnlxGRVs2vbHJjHUFolAQfyzpvvEeOjGYSV9kA+jkgzDXr7wgvBBlgCHu8x/JxuTP2dVn5m22O4RPYBRoM0ctV/itWhWpkLP3kQI4JyBv8i7jq0LsHsIRpDeyKn/aSwna6gUqz/KmbJHyXn0l0Qwcp5a6RR51spjLRM3KEt6UpKud+RfL2zCIjX3G47CtGeaxkrily+mCWe0pkwoE1jlhb4I4rBgZwssqc9Ox8SKwBPDeGZDRCf++ZwGbryagXyhipG2irSmvmRbyoYtJJxqE98kr2okzQbZzfZxcDveyRkXXzOhKZ5jAY+J02bldTgg9N9zhTAIt/vbMw5TkPn4dMmvtG72gZCfOgJ88h7fw498VF+uqCyhhx6MNVnMyGVxKmnpyh0D88SU1B5fU+xg5LueW/o2jUK2+ncV701WCEhBGndfiKXSlRPY00N7ARer+mKuApYDlOgRQgV0MiHbLl/TvqLo+U0Di+w1a3FmneJvncPLUsrDkekqFHEkDcDgX3U83t9NmfpRZ2IBHcsxvVZ4mQRO2mYsFDBMd0+IWs5olIG6KN3djCPLiGZVLHqiZGaGsqQWOYwh9lz9oLO2URigYptg1JqA8GMe/vyThKDbO1Lr4okXhUs1ewOtDOfQlNQikUORQr5RbKPFNVjlKf6Cy5YrOU/J1UaB/XTeQTmYJrRCQPtBu0/fm/f7HaliWhYl1k7IHBzO6nTrwc67voUzcXuFsw1AluQKxpPBLBRChh+dLENaC9pDqjo4zTrFhQ6eKIyy1JKyqgt6udUuG3IH7Q/2W3wHdj+hWsjmR0OKlvTjtY6Mhg7Wv+jCj8YgngvDl6IluRp/pwFjNBRuTXno47Sm+w7/jWlxYDxBULYms/qJ5hwLcI5hAL+MdIw7IaYubRBHkfTKEY99OrSlLCy8A5Rka/ttJfIsLsd76yOj95HZCAY6v50JcS3zk+NMRSYgvbwBBJeygjroqF9yY5Xj5cpUyltRGIxfYuihEqVzEEzwc4p0V84Ht7ckSmgnJPHzffw95OU8JWpxw74I/OT49ljfLwT83DJ8cSpU/XEeJX7VNE/tdg3YrfH5IA57OaepJ4XgSvK74jnV9oYNtLDqNAw+glrS1mIUicN/j7Oyqbdq0HmDmrrd44JBVEqHaHtu6FnGesRd4lXQBzsGuncp4QdsVk/3H9/AUHPDPk7BRwV2s75zTkbBZY6SUJ5xh5m9f3fYP2A6JAOZdJ3r4TVPq7Rqge/lklMmFzJBJ7frLPFpz5vtYqYTTQ34YqfqFJR2TbwIrMU9ANceGubpYGnLwmbyywAiO/ngsfRWDrXtb1JjS1M7c0Aktv29NgPV7PPcchG+htm/73YA35LnQDBZONsP/fGvbsskSWmFYgryuLR2vp0e7TfPxlwljnnWKevUSLH3HxHQbIUBq+2+MBrHs3vxzqzSkOnWmMqbfvRVbdjA9+bYXlIvitnknelm2dl90MZeLFDpWb+x9v5SQEAwBZbCTkHo1aehIo5WgEcsnyhIYCxXyA2C24Iu5CBmKJ2FTfRqo8ge2lIrXhbHnvvV2c893xVsvBZqbu1/8nO5WOEm5C01RXAKJtnFv4feOKF5+8XVFBEBMnmAn/Lny0Y/97TnVs287u4JkhvQf5uEQq3+diTSiC7oww8DJJhWrRJaUprMa3bhMT1YfUfFGe//uz0vD3G62qwVksezBUKqHzvjipVMAxE75urvlvcEI5l2/e43AvIUjhwDcFerAyZNb98tQyj76u+BcTu/3SZAhpmU6Z/qljTHof+1IQbfye/H5r7ZAvfwH5PqyKnKD7InhYM5qUGk3/iiP6FWQ3aaIllULj2wzAJWQIn0hoVCRKcs4aFm8cUI1YFl3YCQ2IcIwS1T7JbUEZ3YThQt3feCTFnPn8UJy2bGcTxVmGlzG5zFsgj038Oc4U+/eMXS42bpHUCM77RWcAbTpxv9JSZ8XqMOcdJ0M7R/x0sjMKyM8hnGdvXAjcBbZ2zFWDmHSlTM3PKHzyQbalFAGbqxAD5KIlNTlmDOQA5TsADCkTStxEGSd9o/pCWG1xeOYQMQ1PHQ0v9BUUCoYlvHpBbsl4OONGK6EpBbwqH5Lc0YcHvQtGnMKV3AhQ/D3eAiEAJdcRdOCxkXzLOAnGCg3INNGhb4N0iR26ssGSVOa+D1ZgQie9fEBbuWIju4DlVJ61eIhJvOlfuFPL7LpavcUxXM3heQPkZPHUTtKDQF8WmRen0+ruG0A9pFf8TO5TxLs7hZAe43cndKnE8xYyFyPFmpzckL36IqTgTbKTyK43gUwEO+eEXsEhMqS1TYDjMiEycurCujYbktj6wWa/TefUw5VXQ8xk0aYcT/GyB0pKVdIoXDp2Wo25rGjL0kPOWfbtmFnvHI3rc4YrM7zNtbnbON3yCL488Ecl+jiOQFJyxKWnmqvXpCqVI5Ld8Kj/rlktiobCgB7BesI6vKXxFDI0MJZZ5F5rBGR/M2dsV0hH978Z2y9kH9dl+d9r7VeTur+qVH27FupM5dI96WrFyV9UyEtlbEGWfkrhzfWxpO+jVBC0nju6eskqBZ/yhGwcKEhl/a/yh82+T5OGZn7MkhEibXQrZH7oc83uCHGs8hucJZJogf9lZWl2tkY6JosnrDqbOqasuQSK9r2AnvATDwiDOR03KQCOMYRLj6uFdagwdXSUIqVx9lu3XmmHe3/DVBg41ZOZJ0rRphoe06TU8hVCnT5CxNisTJTWqIXSJgMxQKC0IPMNgeQ7YcvF6hhbqrhn9z+z41Q+6PTyUnu5AcAr/q+LF5qM1fLlGqnpd15wmjBZQ/jmsCPsup/bB42B3YHPAYb8ry/SslBa/qfzkd/CgHpeWCCG9kzbyZCy8Ylgme/mz9egB4Z1Y51mWJl2PM8HjBK92fgHjmLM5nYXcIgmV3XlJ/zyFSkftois43aF5v3xcRwcNEZJbna+iJHcLp53bDoHy6t3ojE8lVwWX7IwstrNEmILLHjTLspYn+inbjn0arGkV0k/ZK82BLQolNHzHiH92pQeOpIsZYAb7SxpxQQnymSC8sw8EQQPQoH97W4Njlj2vxUgUqLrSquvRANXVR4y2VdUXmaaFgQzQsiUvNWsSL/8A6LXRHxm/kq0lbU+mq9sAMX2XfiWlIFIZqF1i4Oh0fFIPeY2Va4a0KK1hELVRJNZ/TEkXjnGjsYpTTizZ/vh/ZAn7jxoKr4KYgdpPF82Txv0TK18KZPgHkCPzLThyRUdx0LOcKhsBTrZ5IXgleU41ruRDJfNkft9miZxVPgGq5uBAn2A2tpwrb9Udq+UZ8JgUgunQ6tVXM9bochS0IYOPHjMbGk1xkfyQH4iil8wRzhoqJZjteCelsutVBdU5si6TAMgXdzMwsEcvvZS9rohvylLqyxsC3duc95eqOL6UWGYiC0BHT6HmfeLDifyv/+3gxD3ACjj57Xa8EpRiiW8uPmksawC9SPJeg8PKGqKLf2NWC558OzMI1/ruz3m942YNFZcRmwoB+ZQunXET6P9dbhQs//F7cdFbOf/A6MWuhwhP04reHoqNN7eJKDMNqa1mydj1s94MwftJzva9pvxtmRKnN2c68RJNmZq8TdeWT9CUKrCpQcf0+eOTbrv0HA6IbEsdWC++PxXSCYvLf0BsOjTMOT402CozNGVy7URo9zEuAWp4VyRk/T9DXDQGKG+VHYamszO2vE86BJZyoCaLDUGWKaj4YTrnq91iDkMd6E2V9g0q7yieiz8caQzH+f7iYa8kABjK6jCOsSsOGQrZP/+yM9yRuqqqG8mTmDK0gdeoHHPXq8GmX649+D0KLYm9xJUOb/4RZBqF/lLEUxKUUfC0Tb9uxtheEy6a/K87b8n8pcwXvxE5vYugYJCHiYrSrgqZJSj90M+kjiylcMSwBNrwaanL9jaaH0gDKq27X1FdCgQCbVSzKERkAud/rXZGVXcvlJltqvxKYxe3uCXVKmtPcwpL4S/KcSFJVypDlpI8WhNczsV75cjCZdPKqmYsv/6qpTRhSrL8BC7hW+CeenfEH1Ye+mKjPInZWwRoOjzGjiAxlVAZzHQwamSh1QPFb2x0pzp8OiqyJBMTXErd7l8Alby22f3j8g3q5ZUC6iVY0n5e7vHldOGbJcjmV2x71Zq+r8EGQ+MoVYZw3ZxQ84RB88w/UB9rtJunQPUFaDku3UElo41eoINfgCYWs0prwvRR5dYle9jzaaL/0B6aC4eg2DOFNVNFzQ0Eal4GNpUZjtTEPn0/2ptRqrzcXPzR+O9DaFITWgrPvEdHbGFD2W6W5eluXYmB+i1gHiMEgLcLcBjeAndVZ7oX7K7GPJTvS/ZNCOhbsJIXjpdvn/3yGKcX9LgWFDAuw4k2x/69RwqPcUYfVSkpH8pw7giVGvHWmOwd/meeBgWFUz2TO0D3cu0I/t6FMDMgSbpaFryybCMDaiLj79a748gc3SqaAUo2vCwe1sGY2QZeGrFgcLY6gEzQ+7iI2s1OoRqCxs1nITl0BXkCsAOgVbHu2wq6Wx564OOivGOCKCtTE1hXcGnWp1PMsbiLFz8D0Z2lotOPLFdBNBWx7zZhyS6NiNd7j8AXSpVjsP1uPz4tuRWREJ5mmdHXU+Txrcf0iNDWyekJG38FDGng44XR49FLwFGQcALeCf/u4/10OeNNT6vScTAFODOVJfQY+ibc9SWQhhC/9yg2Sfblm5a96cKvkGKonEjDe4MB3dR4bzA/n7sn1qt5xwgnlTRwghFRBffaV5AUNrR93uhn9alP4xElQzhiozko8RDDCjJCRX9eb1hflmTQQJLEr0z8IB81Fozm7CQwM/c+w6d26S7P0w7jxd/bLfr6G+EcFAgD2pyGru19GiphE4PmFumhsGbB3R4yHsNSJRxkYEroNuI1DjNoxgAXInbYYdkXHETVy7ClvCXuFqdDroLQTUv1ZuZHJ/rwqML9oKuoIrBIkEX4U5Xlm2Tysz8bkJfGVGyUIaI+paAk+RnFPfdRlSINvUbX+ZjrGvl5fc5XVuU6VVcyQdd69ySDlvzyqVFE5JxxZYKsEKdENpT6j0yVwUVum2Cf/8roL1tHgDsEzaR1UwtAt1ugyZP+FvVQP2Amx8rPLK9ErelP1azml7a44QZ8QAAZHVfTPlZKXM7kC/9+EXB0mfye3bi43/lKhEErCjNgOan1W3w/WbzBI4nBXucQnkomZXzU97e7zrSJLeQb7HmfWZi6YTMib2edBzayxBeN/vICfYk4vxaIbU7e3/lVMMylpz1dANaFCvetpG6nf9LMVIixnUNj5m1lRU5D34n402lEXl+bh9ecToVWqZQ0KYyzXZEStL7gzNY2Gk5/2xN+GsTBVxjVyHsjDXYOQTdMgijZOMSS6HM/mTGJHSxMzFVFdHeOAQHdZiqLesGIVneu8c30GT3qMm8piDOmbJ3pu0OxALS3HdrOSzAc1DPEa52I9PFF/GBnUSxmjxQbCMVu+WN60t+QnLv6en9Ut1UzW92MS81u9Dpjsg69CXjc101kcARQ8tenyxty0uCyfsuFE8c0FvjVAJpMQTt+ddlzUwNV8SAT4OCKi5P4zrrzcdNQAvcwUnxesCIFo3GpFovXDbxvbs35CnsNlmFV+MPIPgWJ5zD64lKeE+ly4dkc6Vsb10KWFPfI9E/eX/b0xbOuNg4P8VOeMU0JFNmvBhXQde4R0b6FdJPM2aWlo6MQ/v7Wuy430ns7vHNeG7uLN/PcUZnNftyb6IxaMqRv3q88T6s6uDWJvaPT8uZBLVSZH0r+Vp90xc72xaXFSNotXZW5ZVoDuHnFtA61WUqfZJpy5eMrfMHtrIxbm9BjTFjLAYc7AJCMoIpII6uy7s+lE/sN1shTk8p1+PHSUKR/iKMDDGerYnzEwTqCks8pOfE9+OAbbe7fgk3A/M64HN1fCuDp0Vt+q2SecQ9myert86CHlUyZXqymsNKMmiBbICZKWgmWWEE0omD46V9WlkbvF4buZf+IjuNeQUE93vnZytI9RYCnnSgvBGzxDf6EY7/E9IXv5A7/nSuskt7RVXoreo47CC7w9DG5VZPmOM1eCFMbFz+4ezgNAY2GM8nbjJY4aa91uB3cOpPV5ztHtGJ7fZmO9orr/m6H8nUayAmeRKhINIeFSs5u+h1W11X1+gjS+wpioi0mvxWed3wB/XljocsHjHgcl9jJLvnkHsD26LNUEL/ri+zBDMoyP07ohKSfEm76FSEUZf9z7/WFsqyYjhks0OKR1rVI7IuG6dTu11zAhsNt9JwhMHP8UftWrSxDm5sOhq/EpwnNv6Y/gpqrSdKyDLUs9RcD2pD1CJSxml2q4yQGW9YijxHtYXcK7QoT5rmKlSHcHutFFNpDNQCC7ejYddC5S9/6mzCpwoLCZBultViWlC+5fi6C/+GDVjpIw8dOT0meKM+CnH3e4KXMC1THooGxLnErBsmZqUlzEtkD9AVygLFZa7StSsV5lDEmIkzKyAgzipaK/S6D+5TdBPHBa6PIHTq3iEVeGdJOe4j1D9ew0FUwHLtbkXNN2x/V4E8GtGE91Uu0vq10ZOp2RBiXw3fSw4fBrGKXau/4i98eftNS3AdV0hxawsuInUnd8XA55zscMGTE7cJjYhKLDcg+etmSrtVbylYKy6YL1p6cbpIbOB0xY7HC3o+2VHgfgd2cGFUmAQ4+k8f6YssI7OutjMFKR2Ex4oTxSEYQ5bZG3wAhJHZS/RLGxpiLD77YaOTKkwMp7ZQK3f1yVG0Q0XpxUKpGU76dfAAgPxtpAmHuGmEYc8LVDbx6ZTd0pQTwTceMB9HVvmyva0E3XT1vRvGMGfjXJDDk4Ra03G8zRSCOPHl5pXheysBnPt+cdZtP9UWxaUZWHoUN5QcOUTohHMg/4vV7M7lU9qcGjFtsrxuY4fN/cFzXU5whUs519ARcTb2cMbEAHdIofzKXlzYSSqQbDsY++KeMV9Ykwj9IwfQKRD5QDRizOqIWo39vbH4lAIfQR3TxO1q/mmxypJcIsHKOXliNyN/rZVn/s0e+7gwlh40pZJ3OacoUcYvAbzgeG9cvXt8SkAxpHhW5xBc1+wfRXmtMLvwhkyYfvtLDrbDSCJPoKP4/K4ysCmeg7HB4X/QTVp19wzdu0xHTmLp5GvY/qc4EPdYkE2LiqCN2854MFm42zVksh6u9GLrrckrb+JGpE0gkxmVosXJd3VqAg2yk0MOFv97AaiPHpdDvOCgIzWMRs/kvwBwEYvGclXLcGtVbgJtI+aikNEEBY19hpzJfBD3URVgG2/vfEcnQ9FZqQv/KKr49MkzIxBagmyadrmKspqRoYR3t9fmnNzzq2yEN0CVfVHq7+iJOMi6CBfLdCBZwkrhBIsAt/8rXrqceI6rFIsJQe20NZqZgdq9zYatxO0TPTNIjp6NjqXvTLnnLy1f1z4WJ4OkdjWCOA4AR/1qfkxFwbs+67i809vWSmd6yO6lD+CrgG8cid6wl/GInUvuIUvJLkteRBofJXaW+4nYFsJ+JQdHKXjKP/6DIycdFoQrkdRsKG3lB5laMpQ2x//QjZZAdupG31xbhcnpjjZVbjBE5wTEI1dLJ6iukaASv5+tUB6YTHRYStvzpU96VkrCmgbP1ALd3iei6UTHLYqhmkuK11SJPChcs1i1Af7eOf5CYtGHn9Z6Q3rJ6MyIxMHLGt3ZHZ27k3LvNBZ/YGEsylGVUuJg+Kg4A/Ik7SyIAJ2v38/wUFpbE8eoh1rRPG2PxTkVC3GzYrg3dsC04H75k3oSFcZcV4aDYd02T4I0oRiusjye+Z2X0psdYwX7LsmCVgNIKFwPMS5QueJB67xba+Ac7+9j/2mv6WQKGCKJiwrp2BF41k/H5aSbDsm/YOZ5RQUn6pEAH5Y6NW2B5EvOuLO4pv0NluOOYaHZmiECKcNhwvshe8j3q+ZtoJBcfgXt7RI1/grjgRU4/DflQEvPxAb5os+HRHiJp8D8wa6Y8zH6uc9NIo4waOJpd6hDNa+EBvivq4O8RFJF0dm3d2qJni4Lj/ujPgL0DsdyvnWp2j3bj66Ngm3Od8xrXaI09LIb4UMHyr/wGXbSHdUfzdX0x3a2yM9qW5Bi37pnvbpZnIi59b4TTNvOQv8q2TcfqjC2Z5BiQxwU+7ky625fZVVxs4kDUwA4XyG7QX+JGjksxw6vs3ZNH4M00uaOCI7CBfeve4jNBRBIj+Vifpz0rlEpfSijxN7Jih5TDy5GT3WsJdLmi7SUcZ7QHPcP0byYp72BNgPYx+ijBP7gEhS08mECa6Jje5PZWD2jQpooqIkpwL3z9OEI3hnBKDYXFoFG412N6LyRb0PiDgIXXEpJHbv8jJJ25tZk4FMZIk/94G7RhcYDEDp64nHK2qS7lpRjo3Ik8FTCW78+0KMpSIfklr1BcD9e7W9x3KR/ZopkjuxXv8lg3KU6FD4aPLRDWjST11TrKMPsGZOl984h5+yXK9+j5BowwNTIc9es06st+jIYteycrvq+aXrBT2/GeZoh8MqCpZ+AZGZs2eg0qCCNxm+/HizQYtqJlWPoYSIjQTUhmaLl3babWY/hnXLPR9CQO+7jpAxpQLXiEgrWUrBIxV3ROFsBC7PLLQ6s0dtewZrN13TvdHnM4oLrDvPEBEMQx97NQp3vV+14dIR+mjdk/KoM9A8Rat6SR9ObKyx7u8J2bB6CKP3fy3C6drn8K5y7HfWgOgQZiXo01DON3e0Ws/ntuJOakeXPaStIiTFereSmZvgFxBr5vmXGb1MyBJQVxuSEOo9hctVfDshMojxpp1wt9n5lQ/wr3bitGIb/6nyoB/2Mn1DP+8vveSxA4qDBDZcuKG42lvyxEtbl4GAE2XOHphimMdLbKshmQHj7dxWoTEdLckKhFfB58SxAYYL3OPYTwWh7a9LWbxKOlADG439K4ZxZDjRqlaG76TYQIsbgy+twaus5RzZsfBk4skeqWvsqCEkPUsbMUNK5s60oS+OUmeLQ3zSjzddpXZOK03BmyxHWDsUzwS68bHtZdL3URBQE/l+0BsHiYicFDWszVQ5C6JP0HFnRhyGTa67E1sBc14lKpde/sZjZcHbUERSFMnK0R0Eo2C1JFDv72wy/GqXKar2Z13af+zHlS9H2kIgC+tkeu8lBXan1p4qkmMu42pIJnUucAgAD+sNyuSvVQZB4/vKTk0He9SN6WCdochyP0ALTBUxnWqWQNy6m9XKQJgM1e/ZPNjfPSIGeB0/yEEG4FMfyxS+R8tJ810Nqns7IwSpQaJDe129GRCsnp5aVllTpBN1pcA7DWJhQckb7dtHCpCapSpczpWX0iJdsTLJwNVGO+wrvdTaiz6RbH7WDuOs3NcuEGLery4JKSIMnXFoQqBCTG5Atx/u1f5bnmBftZm10RldaI39VtSAiByOiKFvUoHcQkfNDSzKFIDgdNFUJ4ZXw1TVXftmaZlykxDvVGsHTCuy8X2ZyAgvXNQQeCbnFl6J2P38W04q3UlSDz2ElYw4/5GdDjCIeB+V0fxSsiDEVeJBXilpxnyVFeeszMnwRcz1wm8gWY8XrgE32J99aaeZ1sKD8F7V70SqnZr+NjXsTNHYwtk3fTLRiSzFNJx6DC9Ec3KlQhb/Ypqxgtz/LACSBuowHR8KrniM9mBNTycV5yWkrAapU2v8pxmUvIg7rn54HcYbCFCCaWLnRKxvdlHiSQ2Rc+VqN+VT6NRznNlGyK1wMx/vEgTfgGNUD/ehBClGd6tDXKVu30RoQqbXQxvYSBOVjbGL3gODYkeJ76WzZWCGXu8GW/Zkhy/GKusSjYMHIJV2Cfvv+VtX1KPh72X1YihuT0UWYvzDNrCnWRq+yitumdPhaDKj6ovMbUpALpBNQHXosZo1B7vOmn2A2Rj5ysKHo5u6XUCy1cdCvTPIloW/L987oyWmhoi/dPoi4vnN9SRLuApO6ylCT+XWcQhRJ2Ivt9G2i13F50wgoShnQ77AErpWT9fuFoTLt+h3cJg5ZBxiV5UuugZTmbGvvjOdKvhdMTLf2T2J3SJJOMgovJIS4TbxwzuHrmwWgqHJNNv39izHwX/rO+YGZVrRjAtQ6rogcOzguVc9sNhB4lSwuxMQQxtiQ3o7bFv8Z+sufAt5/CiHj3yFFhuaCgm40rHjUJCcKe2mS+MoARZ7SHsHFQL63uffggrgyD8HX1JzT0Lf3dfVOKJNyZr4dNHIpgiHcMFHn3Is9RCkkh5L6fiXkEdBP/bZcTdvpTtjfc5i0LeEWdvSGNXIK3wXNTA/KucjyOVDFyQVCzG6hYy0LSnPrjq5VJ4c8AEnT6nMajj14NMyNO/XKlLQo0TPflje/wQVf6qORc8iq6T53QX4UqpzOEU3eG+K5jjIe8Oc/8iVpm8ksnf0uoLEDqqMCMld3MJpqSPibroMh/r6mLTDlToL7qXoBJZLbaWl7032L60fzaIba2iMwsh/hS0Z7SzahU2+4xIZKDuXpIGq99EzCSnJdgwHuEG0S3W+l57ESOZY4qzaxdL3wfHV1r03y5hPmFtt8j/Tlw9i4Yz1keMsJswkXlLjIzS+igA/r1Rw1HuZXeK4JDgHAUcAlgPO1bC8ffDHevRL4jXvCEpQOQ5+2M39dBDtcH/if1ddQolf3av/hgWw29LwrWWGhJdSF9LhxUjs6DWzrL4H2E7qgu7pzn1h4l4Zl2QGVg8CzrC74e3PAED5RPnH6tDGRrO0LynLlHbURmLC+0o4OdrwP+P9e5r20Hyd/oa0IgFRTpbDwebHOnl/mbiuTl8b9AIHWB2t3/a/yspjqkRubjGFbufFEngNF2rNlUZSbMscm54iebEUW4KprA8Kx32ygCWV+acDQdP4i4kBoIttTCZYnyUGWYmUFKuFNvg+INAy3TQSxtWhwUvo9EoKeO0Yua1yRgzpaNlh1RzREtmhPHpYZOqjnIrmSgj93pUyzR3I1HegoyLrDEIVWa2gAF1VJwx2xj6GjJwStxz/J3ZCciANiTJE0g5pdP3WPHHMxx5XqgAsG5F7602V6G+M9vYCfzf5sdZOxLwKAdsWd780KsrzyUZBdqkOHOMrkZYd1K1lesKmDP9LX7dJ7TNubPzfkUSzGq/ZmaDfMOk0UcQJezcfNKQLgLZ//u+9Oose3WtPsO0WVSrpL6LDZXB2iV35HVtcGU3x+DMyhyU9W4Uwj3PBs6j2VuBlziE5PZYwk3YuikgsDgjjrypSP+C9Jfs/PxZXd6EqYL7ARa0pIKUHYl/ujJFVHbT65JIfjEdV98L5bN1lN3p/XOkFaxAsoFuRwlrej8h2d7zWYOzKb/xfTdrRED2/DSH2VqTzjw8UWpr2ZI+/k/Oa6RUrTfld2BA7hmJRhRQRhAXs/u8harDZF6UlcTzyD4P6BjjkCMhqiAo17Ajg7JvTueNBh25ZpBCsipgJ3xYFFsiHjF1SgSPDkyZo1Xg2KySz8MU6A7NTUP1s2fUig6MB1im//K35Wj1XBTUMUqFXNH9z0iceKrNFIRFU6TxZE2r+L0BvyzYEuWlfnnuY+mEWCLpcRPZK098XEZV1Y3uAyif4czIqUnOtgZ+umcHn4KDqXO/IyYC52ittJdGlTbWmNw/J242E4CxSp92JkmC14/UXwg50ECqJp903vrsyzMz/CH0WVHHyfMDhDmHWuqnVXhB0wxdE7rR9DQI8+808/tIvrWbUcnZzWf5GRyDQh+nPJTkubqbVywmTF79hz4Px8DrmAIGnAI5LjOMGdgPNCgJkluo2+VUwRJcAmumPqNmQ3iGZWTfm0tXSR0y6oTIvdHg7ao1wGSLMOsHad0cqfJXaIx5anufV9mLSg0/EFwSi1QRoRInSVslnmoChGKvYTIBintwFaV3bOAtcyTToww8ZM27y7v/tuq0EMMD/eJIJNh1tmyjVk4z+JLbsNIh7WNgsBUe0UfAGdi1gfiUT28aGSHB2ytkcXE+Bw09UYyJix/AjNkzadDN49FJuFLSTss0yjy/0+edVZ19Apw60GPASUCvKjgx+/X167FdD4ASbIui5cF2BZcfhVSOHqNlv+dDmGKFMQmnBU+7AxJEuwHAc5wKJEb6N4jxaNGjTpJDSVWFfWaiF5bGHL5wAyK7RfBNwg3m6gH48UYCE4qtSkaTrhp0t3S0J6NCCzFmJRlB6DnW5mVJERwQBqqkNm/AF2s9P6Pk693Y5xX+SdGE28oxR373ceT1RkEcP5Mgghm1SS3wzx6p0owOX/KFV+AGVq1Jr9Zxdahr5AZmuTUK7h7MsUW4QE5lvvHn517C5ckOVQ0R2/EHsQz7Afb4N6yK9gEe4HNuJ9MNh5y5uaxHTjw8zk4kaQYQbWu++ZTWVKGCdKS+PbE3EaGOuN7ISod18x8Q2g5FKq9BhYQ4QLY2tZxpSXyP/uxP83zEVmtAAFo5yK7hklQaQKZAoE4qLrtT/n27t9dUk2KpZXzuVQTuPPO1bP8GmmZo54O0tvQtvcEfP3tmSNdX8ybTg+yhJz3ZI0J9zfVE8N97nqFm0aNq89vwuxD8AdPWnMZ1HrOtd2ZTiGv6xT5luT7ZtHU/Y9RwltE+BIeE8pPpo3ovjseku/Gkuwfjhzwt0TnWITjimbCOM9A3vnYkr7LlTQ8wNYhGEKVJ4Rca+cJ1odG3sji5q7BTO7hDRPgAjItshjpUcWhwnk6ubdLf8WewRa1ETCbG+q4hUjc0tZIpUOc///Ji/+qjcg2T1j6qU7tmoIzMlQ7am973dsOVGuL6/vJp6IxOuwI3xiqrFI9zv3eZmk6m4jZEXz3eg6m+q4FkQK8Itc8MWHYj3IHS7hOtvDro8gZjxRTIMN0PLcXKv9nDa0Vgd+4DZDMJTdnCLxmrTnMreD1Tp0OMOI4uqsNNlkQMmuLS2i/3MqnQQwqKJSx1Ld8y4H1mUMt73NFRrqn1vJNpRQpLVKBMS2iPGpWL2s9sGix2MANKaKof8PfWcXCL7e3y+acCBrB33IBX8lwuPQCIEp7oMD6RnlUzSU21qM5ECf1G1r3tI9ny54MoTrMhGyfGo/aLUEkdRwLKOas9HXTUweV8q8AOM+g7365E7R+0J93Q1oufeG5nAqf83yjBwIdj+2w1wesewau5MSYo/BBbhKXO1Q3nNOJLxVic1AtMymz+auhnkgpC/aCkqmmko5I0h69p84yTEsn7LDzANgluWgrgEGxfKX4Dh0DnN8YGYpWAB8AQhCMpdwuha09CCJWEvK8IRpg5XHOSbDbeneVLKaMvBLw+/Dhjp8VXEif1OsNbVswgiWPgyK7Ug7+KcHOGMn1up2qbsD33gyE8jWPnDRGOazTHeZT0GbqZS6mmFi5edHfX+hpQWrsP3WSnKf2CD7DjAm7bAS6F5sdBe27r+PBFac9a4RfXZCZbfeqApRcuRxROvPzmV8xilvVEzbSTB+w1ecdcv19BW+mgVDMH2HX82YuonWoNUS4hFLCk6uYgvAJllils2svnmMTfTz/18SxWHXU6lZIFezlNr10jJm4hb+n2pxUi1l9e6PrQjz+dhqZdG/sjvE2tu+Q1F+4U0ZVMIJjeBlAGYaPYfAIsaBUaGW8UrSqSi86n4Nu2hD3clfVLHS5WEE9ddca4WlTSHZMqzmWSSIelqr1aZ2WPUyrFQ+uijlH1MaL258DeuFEWitLNlUmdFkqzkIpN7nBreGG+O+T1DOzVQ290HZmScSqer/WIpr1XlDoEM0hDHPdLakc/oLtCWhJlIL5beOgh5RiNdZCeqVrg6b57O1DDKelfaaewHGAhcfHeqUko0DR99QI/oZAvXznhDvw6oFBjYTOOrjnIMUhg7ubozXb1LiunOGdlj0vK+nfMi61jB8YEur6WgeUbd3KA1LPq9C3sru8WuQZc68imOwxKz93yw1juglG3IHfY0fhLKsj+ccE5TcGWBEclEXPQBmfxdCPINBfBYhyWFHhSS423XF8/Od28UK41eL0nFl+bGordivqGaY687wsosfM3oZW+g9zIckZFo8Y2/hDCdyP4j0Pa4/T66JKBXpYBWj1XwRk80vjLNcOBtwKD3n4aO3RmEi7uNcFDl/3+rIqkcoonO3GPEyrZBHEyl7qfswRLnSagwVYQAIFZePmAX9J8ZO1GlOwLcE1f+XdRgZCDbnrZJbP+oygrwNmQRln9Wli4LV01wtjuhh0u0nYpTHHPYyB5EvVOXNyiXXc2WzUKWIzWdlqbLuQcz2NsdaR8Krlj8Cccs835o3g+u2G2gUVb+JItLrc6Mdmb+QSZI+6ne7qehywKPfYSx3cUBPa+CDyQctPcdDNpJNbxScag2RU+OGL0kHeVu+uI6UdyOQrGBgCHjCKLrRuKZ0OjVp5xhdj8rxZhRb5TWMFC2h2m5oqcJ/xmqiLshv6TEsNfYb+dmi68/SQKKmtoQE0ceXDKQWO/h0+X2SSqLPVlIxf8VhV+cRQuP8u5FRezy/RAMBdrGMnAnAwrIHElMOSn+R+6Wv4Lz/ilfkOeJ6NX4F5VAWBRt4lBFqAxCLIkyXHDO9hnf82XxC0OEQdUGD6F/nCUiT1oMbcJIre1ev/80E2wuTaVZpmsTopFLRen023hXjec3S0ubMoBTTfVjAceVm6/UusSKwQbnJObLfHGP6e1UYV8cp8QjGfHkBqEyoQn+9vLFNQBzrxU4DzLh8kc9hy1yYAAT8Jy+YcTbap5mutVe/B8SFzaYYI2wh7D3WwOfqHU339f+uEoEoK9eIC27H61deMfwTt+E4rmUSFnIqZn46SPFsnMV9OqSme0qi7dnf9bb3imM2PbJo+M/L4C3MsWcg/P1j5FfY14h7GyPV2vv2a46gpPb9/D2Q6W1n1hTQJkjIar2gbF2sEYbWLDSkclaUfaqqs1EJMTiWBz3EGrSEFEwOwbS0yYnJeVLQ3+kBpJ2pw9SDA7GO9/NQM7mFr/X8duhZroVp/pwmMzxWeSkOq8uS7FAcip31IeK3c2UDkOT9cHt6Wy0DO/W6+bvjoE7zYgKNdmvoq1TSIesDZM5yCsiLWAjALj3f/l4p9oLom/v3KUlYER/2yqmbkocF+5XaUneObklJLzm+ykSItGk19xMeHvCXTgsD27yrBLnCIXgOJd1vIC53XHf3W8WUULf98ExFLOUYcHMjo7evLPEBvmRoL9wP2uWYWck9phyi8WwsTvZwgKNYKiMXSobqoOS0aG3qQ19GMakroHeB8MibLcgThURMBPwxPDaWDmd1Mz3x/oyTM7UnaJmzOvz+lH4epiHQdt5Mdw/ENdfk+XIPI5akq2OUy20KltAHLfnqOC81Okj42IURic1TjTyz5pcXTk9Fbu8jMlhYJrbDQr90I0TT0e9Olo8B0+I5gWMOzTY4ZruvRnczmRHo5QQ4r5b1ZK2iV7BrsFEvW6s/QDOOxFZ7kxvL/MVJGbYhgWcjBl+0gcg9KJP8ReUr0Rx5CEb36nlqyWicbMeVzrhJqE4G8FNj6R0s6nlOkO4CumQCkTaWBbc123TXhP+g4+rKGYO7cG02K2lfNN2UIX0+2wlMGU1FtjEB8afc1oPXK5Y261w+ZimUfHBbvovalCuCJRxlh/S/AsU+zy+g9Bj5wbUnpaZfZtQa2UtM985yhSro06+zIaB1B36UoilSfPMkHVH0Ul3+ftG7Z8perrow8hlVqaovXu2JAQOZOuRAohgE+n2gF1Dd//5rX7RbGXg+29DwkVxr15Xed1MHpVA8unUwrurLQWxomvd75XzLtdN//TDFQlgakmIwcwctM5xz6DENnM7dMVLwLwTdob4I60w632rk19vJTK36axNbNC/DuOywOTUPs25fYL/UAexmqFS21J9pOFeIcqd0/6J4Sl9mFRkQt2yVfJseWfzNoBXIgRbr/Ol0/PIORuFd79mRQbjHrlMRwt0ov9Afb51ajOQ6KN94xcjSE21Pdh6XgjyT/I7Xf4LSGiJ2ulJPks5k2aIrIb7JzCcpb0dPwb0QGpDvo/3+cZUthr8imHp/HsgtR4QPIbpjNZrZ0gQgRNo6htw8lfqhAJa9ZNIGF6koNqaLWukZFHXtJDjjd3WpofzFYatL9gsh7bjFwYO5+xeGetkefGFLSNt99S+eUbOQ9It0SxWO6xIOKIrhxSzJVOHnDSYmDTFBq1ylT1/9CztfrZmu6Ma1vBR+w1MIzSGIzztlkd+S5dkS91tZZiEwO0j/0tjgkUJUP/KX9iYILTsuCOPCTOystPGGAEMvNYnzsIirUaMrWlzno0pi+BfVBRYpXgq8GxXvaSd2V1WKYq8/08frGNUm2W2hI9NfI0XxDy3YHx6YEM+JaCacYT77JKX4MpoC1MZMxpL/DTdp3Vj3zXnyGRf0M1PMprk9kK6Pd8pga9FgWiDafHVUKuRUGX/fTQZ/Q57b1nUaAPF1picBKfx5kE+DXPs3EEJTIF7rAzogdgau4xYZ5bTj7SJkP57yfh9GycN9IgjCGptd8b7atO2SoMlyVDwRuUG6X81vUAXpj7KkfAoVYCi7gVaJrmMMBFACJAFVYjEBYtAJF5lgKd+4bg3qEyTsDo/DQcezOMk+8jovu3T5TUVTqVyGnbSLPBSY8M6jymtpjR7E1+HfHy5VdJammf31cOViLG3mKSzlAclCqS5ZGb95EVH1kP/gcGJdkVP1w5kwmpJRZeyODLDSp9Y294FG3CbSfiyVETrsF2JMJcDIk//bCf9Urc5SM6IFEMt8epfZCSKB6Ge+jFRnAZe1aP5rldV4j6M9QuNGHqn3zrCBvGivrYvaR7H8Y+O1vXfRUD7RG8lb1Hdpf9nftnC0B1IJdiy5sE4radqlhjySEz9onx0++j9kJN2Y8X7JbmHhjdXKGMvT+Q/EDD/Y6zT2a816vCPAc9p4cPzhjB+Q2PZ5dq7ATQjqeZbQtZAsCEItk78UEFPql8zEjRxz0kxlO68QXyoZvTz4WYemKJZXczLrCvTe525GUr0xz3hS2PJRrKrNBjWzkCDnIQ3PyVX1vRItrQqKnI59jggqVSPuL8JIk6QZPTjNxFkvIxAaWSIpx6BF7X4CgtTGyCCK1E3IaLWA/I/5Heo6TlcSegn35E66gTkMWLxF+MmaPHG4ZVCdRaiEVWa1epzix+jo/33/pryTCquxV1YgoGyVWBT18FV3mCg5JsH2/zPucx1H72agBlGokP2H4gluEv7QyYXhobJp/HWdwsnmjJIksyK3D046cdXuzdSJUrW+r6ymYomNWWGP/znhpf2jzAUL0GEJrZm9r9mOWz0Y+UyneqSMEgap61pJl8PIuN1iR9/4+SGssXV1kK2vgc/qz8/xSYcx0apdIekolmouiaCZtdgAo5sn24aksZeB59gMTtvKK6d4iPi7A2KEFElSio2cTia4+vMZjxhWYKlFLCoUXK5R0GKcHriCdFwntLBqgLRSxfd4VdZwa95GORoq74ur0iRdNkClCu6RDdJY0llXwkufcLsBeXzEftiCMKDc6R+z7YQ8vFqvqt3U5ySpzw0lRtFc24xBc/r+zaere0e45LNk0xgdK1KrHizJYP9Y1sVPJ07l9MGwKwlpdbuEO8c7ZP2iVU47HuIbwQaWiDgotoMlnVDP5Qn2YKy2nl6VIG7Hw2UZ/wHwyYyStrmlxe8iGh1G5bd8KGrfmRP9Sn+H6gRHPx6Mmq8bKNSLbLEhXKFBNvRc2zGqv1RGgcGaidiKayHn+luKAEZtHCVmWbL1lT0xrSZUwW48WatOCcvgSPgRydXxKVIJ8CuvU74svqdyZ4OIprYJJyCLToyV/GulITn5GwATD4oVP+QsNj9RXf6ZUgvQg++hruHCSGSdlKr0lFs8zFXQUQ5NfNNUs0+jo2nD2yu/XbdOVpF/U+ymHh6PesXSSCHW8qcr2JAzHYGs1qB9GPaELJwwcpqYm4NNmb7mW7LWc5dPb/xfyd0C+IN1W3CGEsRUiyQs2c0QDkq+tXEWnvYFDxyeNz1EWvzX4eKcPQU6t58Gl+wsblrbvhALWzC00Ow9yhWZyEdTXFvxbfqT88QLNDjvdvXN/NZ8p6BwJchE5EYG0oeO68iK74GxcqfHnC3Ooz5TSso10YzxXsVH95/j8l3ZuMm4rqoILUewg2/oagMgzojvSG3gFSwdioJj8ygcypEKjhXSFWflIliJE1XZjkZeuVwZ6TJkssJ+0VlnJ5HMT8BsyDxFTCE3S71QnLpJnbXfLnvMfwXe1TW92HG6VCAcHvb1jnOC24zft6oAwBgUmmu0UkTBChRfpOvYBjzhMNOJpRCx7JaKnk4cLK7ndeZQs7jh71qzyta2yeO1PaC8xfMXz07vSANKHk8YpQW3eaTRvethwRIS4sUY3l+pYpcG5TIzUUZwe7TM66knuRrHiZaczvwY0XOfy+EpWH0YGU7YML8OASX3f8zIGDV/NqMS2zyUW6z46azaC6m+cHzLpcUUHIc8dUdf6TeUlmkAyUaqT3PcBSTbSdMYGmlFrsUZGSo0rZ2MBLGVFPy7Yog7FHURQW9XVwe6+IIj+l3ioRJYsJFMWMRx07QhjxO/+WmGSSQjCV73bLoWFeWyn9C2eeZkOJzVfX4f0x1ESVhiCbq8fia3+W9vwGFQpc9yI7sAijfFy6sXMP4tv5F2DTdgEAwOVklrY4nM9s6wwO72XIv9ZjciD7n0POei6/RNGXZe8UuQgcM8dZoeRYLYwaaeiW4dez/Iz7Tohh64SDMEqdJ7RaxR7LUMSheUEIminNs2ECFXhuvvYQEXLGuskmBWx9Fi0yIV3aRVnPic2hQJdoAzJEgZQ8DpPpgya/OtN5ZRpUzXsQEdP8u3h1yu0UBiPVsmM7OYb7nxNBsPvBasaZHD/PMA1L73SP9eBootPI1cAiA+m1pKaHXp6w86fl+BgOrnkj3svytHdU3O9vmLhzPzwnl6G5ytRixA/KMhZFzR4/AvpftgvRYKu1fvCV6f7NWZIFAHfAwyu3K5ZPsYDntzmErJmvsvgdOZ6V1ALoNkUxgGaInrkDRl96YGy2LTUoLqf2TD1zVGyonhEnObfJgcaQo5GHZ40IknGaX1Stxf1AZhPtgpcXcreedf9po6JX2R8nTWR9fS9wbzuoNR3ElNuRgK+6+fRk4zvhSa1qZA1V+S2lnFAlg8k0NF+A5n6jzb/vbjXZiJo+2E52y9CHR4BVroErwPsaZNVsRFBDE5lGdap2blz5f7GTgI6R9xqk1KFNYemaE8m89S7GgnMzkUvEXukbM0Tl7qKGR9XpiVWOtL0A4gQt81ce1/onp3PwcW69TiyEe9zfavYmzrt0uLhSqfzDpIfRz+oNMs0F9lnAPQmdHFMipE/EpBN/yg1tSSv5zcvrdEuCN0vE/A7E1eIFyhoPtGaBOfFlUMqH4r+SUwlc9k8u+40FPZFyaEgdoVIUnjvb+XodiLLjXvu/C6GFjNd5UuwOtj21VRRwecRV/UvfzsO4JujzzxTDWVf4+AV7eROUrME52T3DoKRC3K1FM2qxRMAosbi55fFWIm7bjyaR0j3VGYOS7ddRZqQ6JzmmngMbjYYjNyKscuDAW9B2okZfBgQND2Jj0EewHCG2rjsmyAjHnFn/Z0XdO3IAJj31yoLeegveBFk+ZCe8JxELL7QClsYlGy8gkbObJa2h+d0pDGQw5MCl0f6DahmU358dm6EL2UoF//Bll6Aao9iDYELkLySOZnADZiSaa3NrE9DVtLmQH+chXEwfFtT6Uk1o4Im0t63YJjxmxXXjBRVVpGbm8d6TjFrdxh2epYbMWvIvS/jRcnVTKkUqmLFxL1o/zp77vvPfREkwcfSKOV4J6raJacpZ2kpA7oX6QVLHdf9QXTUby0c6Yy+VVxoz5sdZyiIyoW97PCLHcr1gvND1k/hVXEMeBO+eRDElceuvCGXRTToAyrOZKvMezS1Es0caxQrOX0T09JN3PZaXAbESMGNODea2IA6EsoYfup/fMMv6RSKcUXg0E1krnU4uucwahue83bU0P2+eLBLRHh2075Bc7cbckvXnxTOhZ/9eYGcBRrUSNpjr+Q2/0Q6NOueXFNdd/SYAnXOLzZU4+eH2DH2CEF2YAQw2tCqqnKDcMSl1Uls4PhTpYbNI8hegYBNvFScxS65UNptQRvOeoE3WaREnnhnnUtUlmGkO46eocZvEZTuYENUoRALQOCGdSXJQ/JeGDIZyg0NGz3SwVMJ+lR3jVZAogbPdgftuTTiDIiFQiwIEwVJx8HV+UGc6+68fzgpax5awTI9l8lKOrjKNVQQZYiR4O4V09cB+UqUtjaPR2kWIuWvmQrG/C3HwipglFAJ0xu4A08Qlmo5sVoIU9YVvAJ5QQX7exexIy5oMBjDS2O43OLmrGIHk5RAGBzTGf9czt3AVIFZMggXQQCijPLjdxCgbntqEhHUW/h7LZz82ClCWJVY2BLA9nJbJWYK/JN0VZxf1dukgA86p4qBRG1tXv4GXt0v2YY5236nsplq4o6F1TSKD7dMxFUXh1+bwoJCYPiCBrFRF8yiqTG5CygrEdZoxBBRuKySrNcHx7XJhNsC54FYTVkN0aWVndUG07awhkwr7iNLM8X8KXITl+DD4+UXcnAh6MuUqjFP2xInoNJqDEM+lKVAjTtchvVokSCjjbK8dk9ptSEHaB6m5qJd3i5HVK0Jxl5KJS3mhyN1dKvGMcsYeewbpLqwtk1dGiG7//husXjiJxEaC7dwdNHwr4cMEuo1EeuUwngp91NVe3y0faNMlehhSIuwnfgj985wEDVlD8T3vRddtxcapEcent3k1m3pGvsX+5YaVkRjh+7v75qrAnaSK96Q9L7U4XQul07TpwdKVx3usWEbdT3p9g7RM+LTuONkE1uCpY3FRmmDFcn+Ub8NGy+Snp47Hrl/UXdbSKiKpkXQEZeyAWVTWNs3Ba60t84wfgeXEYIUdO2MU6p3fMsPhffwbvZR2cn7pVN1mQPV54cW1CyTUKwZLH1Jd4Kjyrj5FMOTjzBG6p4rd7vqVCg+3d9+UVI4h0YTizauj6gRb5DzOVF47s3STcA4hRq8yAlMMPIrKa5pTLoO+ZMbPTmGrQdiYi1q7J31jgy4C3/vQeE4Cbiv7SmQzJGAMeauEXEWCEOQLwdBxRynI80p6SgKffQ+NEFvXausxZcFgXDtRnrQ6dth/KAF5W0KLflzUA8YQn2FJRqU3bBFwFkJ7DvzyKA8brHVuXWE3E3PdTP8cizzcNVKuiFRE23d2GeNfCOhNuQgKA0r+lVB7zQBTNfmlWbYZ9POuQmSMjv368vNDxKs2XXINtKSQsln0YtCXi41uhdTygcwDwqiI0HyX30fRuNEyQOl6BY2narK9ge1uRARQkOXy9AMcmYU2vILtCp+LWW3z2VmJYI7zKLcq7TitYIIXXGukqxI9fAUSk2GtJFwCjVGqjb8vUwUOXTnPS/UnvHx/9cL3UsLBjaiQzqZOGfsYg6K4udHQyvpLjt47mquWUsBHQ08u3eE3NEvy44suoDvVabjCGcCvxDbPWhexFOSN36g1JdxauvV8JTxILZphnQXNL6XTXwMT8AGq1tFo29BUkMnFXWsiCoZSFMJHux9ZJHnRloOZRZsGBUioZjAwhjb4Z8gWkHeYUY8NyhzZVS98M50Kpgk3ttmdpBJaDIYDSpyqBSh46mS4oPeXIZ5qTzApuFza883AqDBzxdBXGNysP5pUL0fr/C1bVoPEj+Iwi4GNt/EvUHZmcKeqJ4jZHODqIkq85TyznCQfAYruIa15inSFIntlJhl/2LDtCnFf0gNTctpyE52IrI8AYG98RuQZesNNc+t0mkh2x8qJLtMsNAiMdAv+4KNnU1V5bS3+yqg+EqdECpLKna6K0AFd6Th8/JnInxOXWldse4zCesohbcYCchEk8jUja/hc+NtL3RqqlyJS7phu0GBQAH2yA0mkMyqT9FQVw1Oa8l1PEJWg0AmFr36HBB/jwxJnddZWcFUsmRPvGursiIYNCHbg0JRYZR6loykFZCByA7ErFrnmYJafYg47OoL1sWz1oqNKYgB1bt0Nc4gF3ijH4dTClZAbIVzeo2mzESjp4JxV0JnnLbKOydAGSRtN7J7BZ0hYbQ6WOI/5Ud9lbHM8P8AqzerHondhaD7baVWE2+iD898FOfjgRVKTDfsNh8BbL9rkM4s7qPLe43dcFzpRBTQ3FrLnO70JItT5/jH2JOaTdJTF7PcAnbPJF25SEhBabZCZ4brg6d64Ouy79PqcWny2ivKWL6QUTjTmf+gqxtgAJvDD3DoN5dRLRSDQS5SCUBBWRR6hKiIneRGtnmo13g/tpxjXLpIM469faRH9xbEqJDF8R9QTFFNa6ebWjUm2f0hJWFfML9ZChN68XQZ+aqQbcGmoFbvLkGwTgEG1rNa0UGFiqClPJhjL+VUa90F2hxA/OJCLl1A4ALQdVzeFZVjCQ4md2Tc37tO6/IxKkoZYMJ4GT9kSZJ+PTFonqB8/FVh9RwZNmBmEj+QqjZLyyYSp11p8n7yWDZUtyfYVswWsIkYKH8hr3BgqQx8tThaidawDDOnfMz2D19r5qmlLrbKSNCXx7MKNeOlxV08dWXLftdw8FZVve0bV0x6qKxjsrXb952YczymCS1C5wpywdzpu+axNJ6qqA2Ykt8MrF5nydtW78Yo2nOmWCQkBPmDNjVoOrPng/GOO/SpjsKM6hRHZClGLt6/1PFlzzWZ9jnIjP4X75+Vu3+XOTM10C2oUZZItuRzpCEM1HManQfXrvz/FsBbSAgQyIbHlxjg+G5rhgfEQauA9RjPTy7MOcVJyi2sqjOBTcAEDlgFqlt2eq1Dr/C2+Er9msqOJTr1WGkzZVrb51d9SY62odBy3EiLvYgZzaAk66/0u1u4OSgR0kde24oE7QsP8vwHQwWusILbAM9wrRO7h1Zjv/y6DnE2OAEuN3QjryhKP3vfjCKu0tIlEK3GTTJVKofQJ8VBK1rNkuPIg/Wdi/FB8gcFOsc8RBebwx23DMVaAgLJnjur28lEzu4wqnouQwAoX0laZelVdwtTHq3I6Sf3s124CwRJ0wf4tT/NtvzmZVn3mLovRlBOhpdc8EAODsr41fkeuRx/D8S/zojD3rAfZ4dwcscBSVKYJQ+9JvBi/3NQR+5Qkv1jAvhFUIIwksPXu45VOviuUvmX9tSFwlnoye/hAWDgF7X1/ECwwesFi6rzictHa1qBItafFXK12TqZb+JSzKaMQ8KnhXpOg3mT9AZj0aylYMgWu321FvTHM+4wBgxM6qTkzsGCSARWQrA/e1DiJQFBXJP3A0yTBe/Y6EUfgGeLjjFbY8xWO/igBwbRE487pkf08RTzjeZeN4bm3oOYqk/gzbmBTebkpmGN7J1MmQBeqfXK/wEQ8zqFFSSwUoFgLe/BkeUku4XbljeKzACGcsHS7KaVqF9qiTgjxuhic7aeVvaphuV5x5U+YITnMffQQ6+AKM0wi7pjF9l0jUaHuYHwpMTgltHUFuhZiB235ZhP9rvfo+MafJvSsACLu9WctUvlXoTgwDlhx02WGraFPwQxVcc7tuidDDwlpmZ4VlAtHxzw3aBG25LVoxUSJXRjTtUOOQIz/vUZ9FgaX8kisef4iH5xIadGGK//HUeMBQf15cxhIrbdTX785qaIKj9KphsEBOmuffN83L9RIAyxB5ZygnwDDfsrC0e1qtt7TqLyDMJddDeYpWJ5aNC/iQHHwVJLH3VagdWmqvK0iqWDEDNm86xhGmrgoCmcObqVkcQpLhzPwxydHWziWTKiTIotx3YfxaJFr87CU6LepHCdiaxUOw08XcuDa2eNjEGNAbuCT55nhxBi/9lz2JzctgVBMjAaLUJR7w03ta8/ADJe9W/kQiNF2Nzq9nkfODhSYWC2ZYZTRI3pJb+ToWwi7PWhA08SaYRPoUNiJDZceCElLR5qvKjfz8nUndUSGuiYqE40PFku8bC6L8FkCEz5OMs6NuvZLs85YLei6utwGfZsZDWJ2Oh2Fi6Ct0l/276j5oEwEPB2657om8u8GUrotGx4qZKUC2N1bDAoQEPkykdgVit35VND/5QCkxGY3HQITKC3E5RriRWhKemsEqol9vjDD2OqotnsGICal/VL1+6Q20dM5EuXDmdtmQXY3+zwxK/QwIc3ZqYaOgN3h4E6fD9W4NZR/2PO63V/V8gXVy1qKeyHmjNIJ9qQ8l+/GXtNT8J2K+YXD3fhdnYQ1+pb9438fQ3z/ZHCr0SUYYPwqUBl06rpVX41d20I4rp07iraq9BV9oXfF44LvzwgjWLKnVqOFf4LfDAvR6mSml5Siw5TLKwCF1jCyikXkCEso+azN9n14KDjPu9MERqdJh/XHnsfX0Y5SrUY7cDzKSS16TlhfHskiS1xlIC1wZXpNXp161FjIJhjnCb5kBLZopBDMKMX5iHDOEY+lrND9sFJssAHF6/1IOBVwOkKrJLqaPuBX6ZYq4c8m7xCxFbZV8czFCoHxoYFrRfZEdXK58AZH57WpGX02fcj2LOL5NLuvlOqiNnCD/IiEHHItAeOZq4NeQlDE90Rqbm+hG7iocZh0/2pFfxY0vTTGNyLfY3V8fplRlSc118Ub9RD+j2EbqSdl7ic+APfd6PC02Oou3s6HvPmaLVVNsUtbU8zfsVhu3D6XBfmd6wrghMvRl1usos02Og93OpgqzcvY2u4RD4+JOIamGSj9aTfe4I7gh4OSMbm0mX/9r0hpY7eDn3GHh6NSktyD//Ejufyb9dmE2N8FUTVIXrFMOxdYyOSmkopq2+V/4IDy0YKJSxFScPpcKMCZH79gdgLVKmpEKvhbKV4YLnHh6+PtgXSaWg8lZiL8a3Yd8Z8Cnl4ZC1GLuOzK0LoCzhT1IvFky2TymKzCBskOxndO4eU/mtnaCsgHc1/zUru6ECYs3MFwOeasXSP8qLtSEr8KxLJvddgTNZXKuUQ/59pAFhWru5HcXxUP6i/wr796HH6TQYBroGxkyGSDTvL/tBd0BmLtekKKfzPObmfIiDGbSy9jP6jvxMW8763jCcBU2+elum33HJo/QLFzlhDtLGagIuo0KIAxD13w0XfVDkfYzgdVt4g9w+rmBsmCcqkuFTcn8vbVnnvvRTSyavSfwpTjrfnj6Ucd/lBPIWx6/4hOOZTJLUqg8TE1RMK7odBYjz7GM2lUWSLniGZg9+BiP3XCSDoOZS2ccU1LsYv+SBdzTeRLfaHFEvs4VYAhDw3ODfCP5vHVnYbd+C30YmC60XI1JPNyN0VK9D2A5OZQYm2TVU2Gy8ZrGYm9fcPtu9VhFvC7bevz1SdKUnsPl5vXO/rWnizQBB2Q8/TEj1wjMfqfkYL7EizJxzXs2fGJ0tNHrd8a33ZC/3HYNPy6QxDnM3St+4t1GCB5oRR6WyTdeG30zSifJq+pAfZyqXwT1b7zCgSEABlq1Z5ed58BvI8cJkcpq59wZ7qI58aiVvmcGcuH48/P6vkPsvARkX1fA3yQ5imasiL2cc4ZQDH7gr2esWNHxTFBQC23KAfDFSor3tLERVz2cAQ0RPf9lE+xLiJtYyacjb9QgpwbhQdYmTjulrjPa9tvxUhHnctMkeBxv9oYYhgTihBkdZm2zW2RlC/JXFqBAuO79WXUIFMn46aPSgGM3gYayxHCryqFSpfApxNqtbzM65XV+T4u/6YpUn2KheyyeRLg/9+sepN0ryEZs46xTO5wFvKHXN9Nrc0TKU0VXQPu+U06YCoVdwRfPihStpMIHqzC6OsRyOZXix6FAzgvIfLDt4mSrBEO3pPTwKf5n+X757JYwq55YYly67ib8KPW2/kAOQXjo7y04UeZ5XyvjoUwjnPWIRc4pIPLDAvRMbs4SkIazoLBy2w3fuDkY+yWO7VuHxTzmNXrmzXsPxmn8LgT0lImylEYsbe65R1bPgTarpxSonwgmz3Q4ZV6DFIPXx9XxOmFSwKY8EuaqfVNrmU0y1b0/+Xv8qOxS7pHmSm4j4vK8PPBDlXqhwMEGZWPOi1xpH0OwT0FCDxtZu4su2ew8Ei2dT21whml/cZP62+YRzPX4++bZ/0P1P6vhbXX6RQi5T4uF7OULNP7xfBPyUvYNDCeW4Krw15lGmtqHpMbHJHyd0X+YZG+FEUf1gZ/y/pYN1AUinIZZBFftYAqrG9x3+hwWA5NsErlN51Uh+gi1MEoE5np8GTsu6gklPZPY6hwF3C73RZCNy0h7hNpgVGzZYxRYJ8MDlGVta/r73ag82JhJiSb109+YP6rlL+mSSKXBP7wOaH7C5StuD3ruURxkbCgyWKU9zITU+Qpl31PV9oCvqG5Vk7lW5rQhYBsJpl6wMFTQ+peDoU+Dbk3/rHcac0IyfgkjDgi0YYIrUYZTfF5IfN3H1IGMyIsYu8Xq82Vl0HsYJYcGBNjMeSszWB1H4V+rY98az+77dMM+SYaAiwHjfH0TiInA6g9jgZMIvpvlKOfg4o2teT1q6Mqd/kbjIP9jzY6iTvTKA9cwKqXVl8aOhN14Ip2YcMI1ajgLanF/ZrNV+VOA1/LYRuvTlHFBzxsPiX1gxj9YoLDYTUTa1u2uf/c8IngVA56SiqYs/7yvvY3LS8FhCg0iQzQ43FgfriDdXBOGHXayJvx35wbdRKoZpwgLksp2iX5sqU89TnbOhgdknPEtkfck1O5ynk7RJT3NkhUK9tNtcP2kRmVV6SrDbWNylMr3gHG2hjq0zp+0OXXSwrwydqBJTM9S/3IyRhK6/w0vouc+os4vkMwV5h1cxw4uY3AdmeoLCts2nDn/efI7q5RRz9aAA6ixWH84Tqthec7URQQyELLqZrlRJl53Eg+XPLI2ogR5YY7v9XPY+TwozSQ3yK/jS4V8m3y+bg0aebHIubIAn9Dujn0VSPHgrUAdNykkV+6pHE5D8JR9n6ZyFnq6rV6Hzbo6YkxeazLpaJZ1jakYJCxSxAcqUXghXg86fFad2hcUvsdmejJLpxRFxsUY22Nb1pMEMGgOevQQiURFw+rn8WttPIUvBpDvVnljiTiGbon6gTKzoHtfqhQefo2mCtGSrqwxbf+BmyUr0rcl3d16zb3kOg2+O8rct49FayxKlYP/vcF+UKZPll3fVdWbQaaQ0AqxwNrgxCtAUzre4p00WEA1x/wsfGIMV3W2EEiw86eefxWDf+HQdjmX5YLIzTXAGkkm3bmXAeWfQxCszT2TaBwIngEOnWy+pLnaUIDM9GzBZ+akVub7anmUFbXtjscYpDkxynOoQFLQRoL8awAVY4p/5weFCPnRnnEeKlFubxOg0MkNrOd/EMDn5Oz5AwbV9MJJ8oIDcovpUlqzdlNtYM5uW5Oc2hlL5jLrv6i83XrSDZ/xUSNijmlLj3DWWhrIQBPvXxgjwQkJbRNYZMv8wktiItGRPdGrdxSJSOh4BETKhvhZzsLw9OWd8018Ep1/LDYFud6RmP+yd3ch8zwEERRsG+JwVNsI+kBUN2UMpTnFU9j4uli4sfaw4v7tkNXzFYn6iNgijZij6Ey7fPZQW+WdrKh4xw9MIgq6Lk6cboFTXbk96PnwAIjDH/eTUN52jjIVTujOkSpra2jbXmOA8e8Q1Wrprp8R0odTWtzfTFaUM48nSPmLApM+TdXjfp0gJxkOjghXI1HKFki42YcdJ4JXSVq/+iuuoVWA4p28JemZda+VzbchNcCD8WDG1B6R7WcNXuAdGfcJ7KklRTLaDSdRulIgk1NrwBTckG7OWFR49vhmE6v9EABPQ0qjFgIb1vZQ+YR5tQWI6YT49jlGF1Jt2kIxbAh+cW9PrIAcrgbm4cXnSWzG0rFbBBArI/xanWrqTJokzoOwCkk6iFdeyRZZNklsH/i1/VXGg/ZbA6wTqESITPkWGLTP+47iOAxy8o/lXmeZ+U1fhmHafOx491Cn7VLpShN2RS7Nz8JarkUlAW8qHnlbgkhFFjR88JpBGBPhB2vaMZwe0szrAZEtmM17HMMbl6M9cDBe+dqWJJNK5TYhMWtDlk8yp1p6I4FbHCaagoVv2t3zmDgCpmAbSAid64IWPPhfRWmYE6ndeBEZsNxx5GKYzGUHNFWNZXLjUBMtKNdtGfnjnOHbAVFiS2cUZ4I6NsPOELPGcRxnBj+qtz8JT+q1INeYyrd/m6dDcpsIdBnOTsa/Zy609LvhdwPslGMZxYhxyr6mP3n5k/i0M/p7o7RmWpfOPWPkdzXQd348ouNFKf9FOB6BC1SD4FrvT7vjicSd/P4leJby0UFn6iE9OQyUfvQA7LiCUOaBuryhIuYFqCXyFSMvMsiVfWG95EqPlAbJWFngZqjvBFY61TYKFQzFLbKH5HEomh3ECCrqNO1b48L65JNpAPFFVS35g/OSVx2Y6YOZ1Qjkl1Wj5fv7JvYxntTQ5XnaiOUSxQXp+W1VnRwezAiwxwELBZjSlBD7gnwVqR3PHFy1XS87R3oijqVgx8DQW28LFMWxolWA0/6juXDBt1oU+r2s9BRxDMjjxbaqXC0ybZxcP+ZIzXQhn8Kpfw53UOXl0QNfdnMDNPeMHmeyef0luuA3J2Gz60PFzSKe2lW7pdJ+eqqsFY+izGev4m0RNdlxY93sdpStLcw3E/jJHEdcYm8NePXtP6D+ZuD2POcZBPVyHJsbN1jrnMxXQidPsodypwauvQd8DbJ9OI5SC/ORmOyTQiV2irc8JNp7V4S16N/PmOllUf8Srbkvhf6ZoSd/P4b9FMVjAFY/YPE8G9JkiUR6TJRwpSR/XQwqfTWQc0xlZb8ynAU3TXF7P3FXV6IhMC+Z8YwDfFJBzFhRqWZevHizQpI9xJstwLPqvO9MN0ITLXQWbnUIrvvYo3sULNZpw6YpWxedYP5FfVlwnvhr/y9uCWn1nlH2JqFZHpWOzU98tW/GQdQtkYD0oVwHECkEu4lPmXMuhZnNjw7vbEVEWgww7wvV0iO6m7PVEnanYlpFX4lUohfxWHIbu+8IIhwfoXSIP3Ndp7lEb2y3Y+O4QTBNPs8BS0+Dpj2kQiCdKaBo5eQgd3TQroVprJimUWwlkwXLYAkqduXMlU4ONQxzIs5X9pAyduS0BOywvJNNwEyC7mz4IxDDF30hMyomCkgG+2/LqqvT4eAvtRxJbbk6/lrOeSwJ5QtjMNxePaVDtqV4RWKMXZFjuv46bnbdsXw+VA2LZfReMrly2XSb2UX2OFOXl7pD+zFJDpaSrRL4rbf3U8xdvtxUBGbtrjOcVOIqoXDZfewXC507LI2D0Z+eOjoj0UTmvXmBsbk6wRHxPIyKpS4soHzBsu76NQlemSW7bK+ECoAvgwXicaqibyLqmZ/K0l4h//sQOrRGrVwOaGSZvd2XHV8jj44YPsFVn8OEv+jigpN5toPQnlAOxUJkbRd8xzsIXm5WymUIX8tFsaN5nIVvxhhUqTeAJ8FIJD+fQUi1qaQpJng3bK4MtldTQxDn7t/kmLVj3+HRuxQzguF2lPtJbx8CMCOv/jWsWM+RBC+5uX7T02YBFLgqCgTuUK8Xqze0db0y3ZLDnnkiM4FCetK86PC0UR0j/tGAax020nJW/rQdysEyAnxYXjsQTgac4nw/KuZ5FicqdNX6a0dH/Yl2Z6j2F+0iPjyMqJdDaTSd1X+Ohe2NMAoWc5VUEYR2n5JEaTHS2dqy5ma+z0pVeQjScd8LN7WpxbdyXh4J4mmMyqCq0JSHMapAcH6PJbKFsPa99wRUmBIYOboa8vXMSvJbmHOGHYn23367elakrr0I5t59RgpBJdP8L6YTK+1aReiG1nljw59I1CHRVg5up55TJnGciTk01pCohQFVFD55dbSm+/YCb8vAxKwN1E+aI+Silt8qwgBN2gXBrbwUzJG2jIaMRMTnGsLGnZe9XVWXtLwJvd3iJJueuVVflJZqwkMvkZCarnOnhHKgloNbCBKXYy/CWQ9G6GwFkcxQHl6v+ZOV0TNwPEWNvxZeTOpw81kY+hPvXqNhnhzO9I7eWFhjSh1oIDGdn2VqEK7Jdaau+CWV9R1tUPPo+1eiyci2fTa24ZXzZMXcVYRxfjARTLmppN+NACDHLOr5cPvTT+ac88IiCoS1lqZg8PWLZj1tHlctsAq4NvdSM7S3ilzb3q5FkJhB6i2tbgITJWAfVe4A+WxOgQ4+hxwyjGUWxzWBUbtV26r3RARY97G78zyHl2uVjX2E+0fC8VEpqB5zrCVG9zNCEBf0fvjzur7gc9gpvncl0nIhoKm5Rpri29nFmCNjpZbr31Icttxel4G2cZ/zeLEQbxYCguigYJh6cZAwtBjsIdh7v95KTugwq3R9IMapJ5y2KmcFid1M2dhO77TQd/S/5O+IPy/h5C1wqH/JX9Uw64GLjxnAS4oSJFHoFatGQT3RjGukPQxXLAYdtTJhPILwm3TX78rhZnBowU8dIi06faocAbybZuHm4iWC8NpDFP2RpdbmXmbRrFkjn+hHiTYhr5/4fSWTw479wk1jI02Dm/EnUJlq0QNF2hWK2g144uz7BEYjcGOeJ6mQoMNqxb3uFNQL71RyJGL/zmq+Vu72Vz850ZUqb4WErqkpDOE1UTvSOLz8Fy7u08oDFqC0126EwfT3hFFc6ZSFKxNiAwVRTWRi8Y1EAWzOoM/a05c+a0m/GCsMJLH/fcsDGv7XAiNfdp39TeZrsLfYWqwU3G2GVftlPhBeB64pAh/uQhYHIrwj7qe/EQrSrboY2lNwoJuX1KnSCEBS4QTQd7Xh+HXpscIQ89entEcz/SoxWhkjuEPE3nUKt7GUWIfUXA8oGzrv9zWMcMvGZch5UyPUZPb5JdaCta96bCLIomVPv/OwYZ84pGaYo4QwKAB/E+HjcXhPi26+0n0gOIafgIkgGYBRoM2t/02LrcynqjpO3dRYItqhBPsxZQmmAOqcW7O5YOK5m+CyUgCD9LZJGlqYbynOK1pJClwyvPHZLB1eUbSSOfwR4tBmzEUOX5S6M8ZpEGMcKKMlL1o9epgFsnNgquTkvuv/b1GJOOCakrUr/6zIflKkz34RStRsdVEFqIm4Z71Q27JuudvCXxaRvWQ9/ZVaB8yYTImpKzeTUIfnrUg+6dN2hrfE/1iwjVkEp27heLGO/7fMPi1QHGwg5BjJXz/tR3qG3LDDPRDmKiM7anNqkreQj9C3AnC37IIH/hGGGal+uvrcbh5pKXwEkr7eRxccSDzJurnz35v2QEhRfHLosEyRHftQzquEK6sBCLS/nAJGg9AepEIbeSSDVwSUMr+mwWB3c5YI56fzJMIGI2cOSAQboYFW9McZCLSVs+Z0APxI056zZjwLpuWuLs2b713safPTLz3YFnIAvPDT8TWhj8qx+sc8mNijx+mkmv1kEsatMjLCLjC1oym7o3txia1NxfkWEa6mH/IEeZBTlkVaP/kglg01Qqg4pINrDTs0T1OyFsFGVlu+CqjLz4nnw1bywZpArDKddSb6TEr/6Dp6llt6xMom5rYpcF949gR3zmBP3wZop09MhjePdumMxHSQYTw833r+DNxcqYOKORM+K7z7kxi/5iXRj6sNCS8f71OaXbzHZPTgdyzIWDS2rFDW/5XP66H1mfVUyug1aa/oC4T8yWSZAGeJXH1P2xl8FGlO4Qcr2h+EMJ4bRHWHzsPqmc3YcW6z/3aX8iBUTBYgBIZl4Lw7tNrztpkaQWZdi18psgf8KuU0y+H/zCUJn+qED7CPvY6XtbQVc5f5iPO5/Rnx2kSEGlv9MGmNzvtRTzYZCBlpX7sDKiIGUrjJYxqEaG6l6eb8uWLXU/bbcS4b7NbRT9lLdMTHU07ZnBXULCd17UPQCOXiuxvNUQ6JyaQlaEW9WOMy3MvmZY5fPRy8NEEFNIA2by2kp0/MMRNT/jLIvrjCY8MXDDAT9DG9RhJRBiWDjjNMSFSmDEEJV83S788IH4PvVk85A3TMCmFrRYWrp15GPeuaXPy+y9kst8RhP8GtFQx2S5ketoYn70pKuY1a0IJKMw8+yZ6AJixMLVm6oUxV9+XluVZM1waHlSRwF9l8i5FkB1leafXabhKudbxKTIZDJb9rmWabtqOdxTw2uWmFFbfWrDIJp3wv/C3Xo9Kc1rCTpOSSIgK2+YK0Xlqm8ASOeAT78zTNDwd4dYIOyZZ+TZQhQ3cW2Bqf5w9+oLNbLs+d7hcduZebA/Osi0T27D7WNcmhcIdeG5UIuK0Ti83qga3sKfzrTqBALKySok6IGp2zY1xAoJSnmyfJ9h7/JzD7lZHs5dXMV4w/aEVVxf/bzxQQfSUXMQ9vtXwSgYn3qJvL7M3JqiMFlwJ6cJAyOn21y7QDxy3xt00H5fX7rrrSyBrAuC3333DR7zNNOi+WughAzzkzcQB7q1xCs1sqPWmxGfByiGDA+e+Xm9bZ/ocVDlllgGVBnrL0MWgzYDaWtdy2sJtj0GWWCsRRruaXD1aZF9K/QK0+ts5KbZQO4jk07fJ/uMrYMa0bM2QfYVKUk1UREAbm7oW+z4KsKiQxepBx7B/N/zqifHDYW+MrW72SC6PmxHM/evq0HBvyA5Ocm3+Aiton23FzrDRaZkCOBpEqD6e5h1M0o0WbkGG5VQ47EkKEiMGjHOgHDFCSnKlBYLiQaQup7lcQomvUwrr/Y4SnjIrE8/uGTGvBFAGBgGb1wmBD7Kw8J4jz2nJr0+YYQUE5lCb5ntwJNl2kSQieorA34JFM0m1lLWNX3s+OV7lcvlL+uChkaf0+Bc0pC6Brugu/pP/S4Pg19LrprpiUnyx7OYN9GkXirr2JQs5V+LaPTT618qP7v2E3Zxl6SOqsYX8WJDduavRZpxX+YjVJ7CGVvGOUou7FnmrMGR1+7jDxJy0fwAS0eNy6heWEUg3mEI5NvbXyKQh5M+blWtV3RSyHXvkaAe7pxKhT6vR9tHA7w0PT49YqOGOUPQ1JkNygSbSA9MVMSMiV9ils+ObPz0LXXoIwo/g3WvHcMW031BObfhiiQ2v9NmVJfpJ+ajgDYQU3KMkYWz0XucxyKtDie58puujmZYyOitlUl+eXukx8a3btOpoIxodMjZiNopTukACIxJigh6N1JpaMBcFUYevlXz94qqwV3sRtwm5Yp/Ty99wowrLomK1ucRH9jCG/9wOX7UJVxdt32fAL421FT1PIryxmUsMujxKyoEDaW32iKym4V9P9Cmxxw8q6lIm9vZHqW2Y9X5EnCceLB+JHwGiWVoCdjF+81lgr+L/9/fTWaKTQrET1cw55ySwFACaJ96TeU1odq3mJNmImLxWWFNSSyyjHObizUIZuqi3uZ1zQWPTj+YMJWyLAXxwsLcb8R4mU3wfCrjA5ci/KRIMAhjs7qGIjWCgsysCQF2iujeAuZw3X9rgSR76oH4iPZzPgKVn/p7/py+dAh/6+Acd70cwpBglblKtVfgzV+RsNzWq343wMM0k0LBSxWNGLzuczYfT+RLxsBJpN/jMy6o/ifXNSGSmXg8ci59FA2p6kU6YUBYu9mnnLiWasRDHQYHWUA+JhI0GvcVgodSscfGiM0bwO5pmDQnBhWSk9crg5zGByGAt51twFNqqdNHZtBbkWCmnmpocULF9vu4ooiNBFgiY9gr+BrEAoz7D5ZoM6sYdHK8ms1UFy8sjmiCGsIn9hsfMyeMIRC/E6U0uk+ThS+xfyw/bAuhdowwZ7wcsxBqN7POdQHnPq4TAiP7cz7y6Ag/qwZCQWDuqzpCFTQqq2ZGATCnXlkru0vp39KnQ6UOCRN6tqG7dUu8i4CaUOTrcLKxEZHJIAItUx8XUtflkm61PDLvLqtTpl/g0mAgBhVw0t0fsYT24ouR5k4j7cDGuGbQuz+NHqUb3hHbBhppk/2GRavqheKxopRdta1XNhO7kTXgJ4MmsPQclDH9N991iapj543lD+Gw4Z5fzEjnh+h4BJ4vu75YSvHljMhybV0kFwiOdks18MFPjXsl/uOVzos0Eg7YhFYhVU+oRU6whv+ZTi/WKnpSUOMvA8FV/T6xXH1shC31O0I5ou3UvYSwzLNgS9mVQi6YpGNu3NWKZTiB2ZspD6u4VYHUlhjmQlW+FmANqbXcALROeaLq17e1fjrCjw3qNJbBkCvFKLbMRrBJrwL1gFS+JGjLdYBrjAsASiihH7+x4UdgB4RZ48QykhCuwAmw4HbbyXyhugoZTOAI0GPrYAUrrydiMp9xzj1XiKYCH3HIZdNrbHyulyh0cNJOmpRbe8ivr189vs3a8i1w1/tH2YgDuzEjkZWLN8/CA5KhmDgiT/clUPthscHXDdbdnKOVlwH5ovI0YYBbIn38Zd9J2FhWid505yz733qFCbRZ6/r/+fxXVPWUYuIBTxzWQ6QgSCmO1jhA0yXYifKYlUW/mZKNEAxWc7iegm5Z2NXkuFwG4wdgYmr5FVq3M7hMLh9bxdEGTD6jYYe/nQAsqPwO4kW8am+ei/NsZIFDS7Lw2MTW1nb+afPTVu/eGqdPh2wjoU6wXa+h1/OYGGyzBp8P6VdL9F+9Lc/yd9Pv0B7O2iaMKTvj7KI3sSCmC99FQ2p9hvc2Ng9ZnEZT/WVI/ltq30S1EAe3dRqaiYMbt4w0r94+Kba4XxM0UkJtSX0hYnniVNjIwFUAUVdAkCBuTELs6jnUzdttkvHAErJRAVGtGDXcZs0AZ2TZ7saMkboaK9AMeUsDZ0waACKblUKZht4GdreTMroc61OIt6YeGRucjmBUPVdxsRwuoZpGq/6oTxnyQY3bP2f3DuZyP3lJdHjJnQuegN6A1nTabzISkGB0kMTH1B7NuVRPJa/NO13zhEbboizVivpV5HV1KlRWtArwKyT22Vsj4Qimw7Ej0AuNZJs6jgnI7bdrX2nzaHJpBzJWrS7j5/N6P3RaixkTTaAvaoNT0fVEfsYqRe15jBmMmUvALi4A7R/kYkUTtfG6bUT4En+Dg8JKMSpV1Xb36gAKn0z5Z74D4FA72obcZUbE+ZH7CEiKEmM+0ijGlb14yqcHFxGnhpEXnydBguWnxxBqzvVHgKL4vsHViuEG+qZK/xQVIgkj5eSDW+YWMoOTOyEW/5dA/TY0n1RGWMaUG2f9Idl1iZqKIkLbPvtggv68KfQnFFDK4c+vuGEWNbj7QjMOGyHnVEEcas1+jNpvIVbc8Y/VcHJ/PQHO/+z3PDzlzrI47Sb5jsUqmVVrfxRmOQnwfpI3DvzwHXy0cRjQXtcoDpnZYRLB8tq19l7LrQDzzxFbdC1ncmzZPT/eO+WcM2Hu0qlkBQ3lOKxLSKzmu70JaWTQn2Z1lHYuKTZoWMWOIcK3AvjZQn32HPep45aH2jgs7ae/VzJH2uB5srYpdcAxprtl/h6XzZMLVZxOrr9vKWAJ3+lHnfHuA6LtTKJLEtr6tNO51ixzCc+HWHlaqmrVUgW4to8VJDQ06bb8snXFW+Cy/iZk9UfwjQoA7HS1DacFwLT66Hrh9r99IrXrMtcvbRWi6v//bLoxjSonm03KQJ4usR1dwQ53TRbTAaiK2qas1Qlk2cR74j/XcHrRBCjtGXoP65E3OTDcbvUcEVtr2vn+Vtl/kme20BMmdfrgp0W+VxuFcP16Q8lVO6O4soqjCMnzsuMOB1K9A93f40Rz/3DwqHyOKvhIYXOveoUPt5XwPlW9EUlBa5XlQDXU6Hp4sM+JQR7yi8i7nmlaonLFXspa/rAbkd3+fhva4drA0h3s3GLD9phAlqb27deKmQugNaAg3Pzdy+6Yf7zotU9ASlQEFJuKTXnw7hPn/XInxZhMOHk5T02Lnb/PIIz2SRq2dM0tAcwjs0OJG9l9guFJ2GwBkXjuDT+Jr4qoEmRt+05ksQ6rHtUttokSAsN2aCt6cFkahHXO/gh4Wq0Y+I/akkMrEMK9aPvkVnK45MPirQx6Fu+6ht4nE/dcfrPO7x0vIU2UIfcnihLRtMo8jh5DHK5Obtq47y3gHz5S5SBwz+mW0d51hCTtgVP/+qcMMGiu9UrCB0AG3lL9yde7XEPy0f8XJANYguVhB9YJKNF8RON4D11KDOWb2g/0aPq6YpdXfL4uxtYatgbASnSucZS4YORQTAumYXNXSzZVI/Nf2sXj+YTtpHVonGEIkzf6mbl7P/cVsX34aOAKnBD0/HJhGf6CotEnekeMYsG4Virmv2Ivw6/WmxfvIm/m1rfuuO9ZR+6vmfEK2Y9lrWtE6jUQ1Cik3PhnD+HiFzbKsS1LB4GXIvyWi8dACbbawAoyySZEZ00YCU+K4/WeWVYPUC5shcvkomfK6q9sgkExzQudhgxFepCZ4WvFhB9K+lq222FL+3Ixdl7pwpLHWAzyfJfa/QY4PdmFlawpl/6woaKFzBPkakfFanpmOJiO6eaVjCsgggwX1rCXsf5xBdZ/aOldNx6dg13Cwu2e9cIuAwoj6WT1LIcUL3xoeJE+Clph0BwCJCM9WRfF21Yd9lRWaM4jj56ztDdtRFh0MLjMgx0V5b1lIUdSeqsWkA6PsYEDbSOGT4fGnt+cqkItpwSdDM2GRVhTLR38FX8pUW2YAA7deOe0AkXy5oN6uOUazhsgrkhQs0/K5k/tql13iLJpJMFhN++JFIY+bCUOFYMA8ZvMf0r0T2lec83W24srT3cFiLu+9JexQvEGelQvus5+5P9tU2tzaWlqwOGQs5iHL/lEFl3c2C8f6svODo9RFubbR7hX9H6omEbdHo25Wz8Vf9ZTeQAXJ9O0YJn0xhjjcN7NeFatzhnPZxHBHJGtx1Q+3OqaUIoWTlqLMf859fMnrlnpzXREJ6RC0rjwVRrsdkj5+98p8NzUFrlxHwt3M52myKI6uks8Pgow1jfzWL880DnjN5TMPwx6HNAmzh7KsSVJ18RnYS0HzfL5VTD95xLRTyftfh6UNzRrv75L8ff1/b/QAsa7LWFPxEXk3QTHT6sjDiJE6PNysgLIjD3W7SAMdnL8TEBMTk9RvIksfE0YU4B5s/lztsgENHREj78KQcSLVQuYiYmb97swRBTG+Itrx2sfrEJsQgFStFXgbivNfrvlv50o3zDK1Z0R3SV98V9MGqG0l31Xc23lHOpHX8DHT1xA1bALL4peHum95n0pHwQ8ygixhj4Suy/Kjf+wYMv/53mSGBIbQgYDeXNzdmVYjVW/4HrHHKXop3pdOdTQHMLbsLjnOuOk9lkUBI/QOMOvLikHX2joEf0Thj4Cey5apLtKKx8IQXOlLYRvwjBMSbrVeUMx3zi+Bh/YeT0PckiYsjmAJqgd1khiZlsfb0tbffiD6TtPGJLe30eJbja+27UDHE9f4uP1rfB8ILEif6Sc7Weu32Zohm8ITzrUOOb5RHUjeWPxcDIuymWyQEcE5xsJZlAbgBCbbhjmUJJHuSv7qFEJc1T6Ocy1pDK6Vq82dbzap8APCaAGNxq5i75qQtLrLbH5FZRK5vY88PpOlxf+uNzyc1+oPzAs4LFXRRN7k519MNsNy7x5iY3epCRZKW/MESX48COarnfNdtyVIrfNxkATWtWR3ruvL+iPIgeh6JFXVIDNx8qILgdchLYXQAJlBW7pw7jjjQoVF5PgAedVg3EolAzqTSPoP2qpIism4BUF4f1p2HGvwh2Tm9jh5brO/IA7QhONfJ5+EgE/X1hTxu2fX7c2eZUtPWPWpbq/EM/VMEus/Yl3Zu4K7nFdlGrEg630V/bHS9rn2WsuZRsv5e/obSx6HnFTf7dpRSiOylwhPBYJdv3hS0vZWg5m5AH7H9HIbVpuCTV4nSWkrNbS5Qr9U5TIiVQuhfLvd+Cs0/nXofUEU8Ha9T9vQhN6x/7ERbsftzqBRV8XM+PD1jQvz9JAge4CozIh+MHtsJ6hmN5jCVUUEM3Ld8ccvDfLFrDpu9fXciDIe78Whk7ck93Ni11jjVhIS06368arbt3mQXgUE1uHzilXPNKzFYZ2Fx+1s6smKzBLQXxopxCJTlUWQXYnMzb+LzwnUgHYkNeVMf3UbqdkcDPu7TUq5IBlnC3bOcoCWVEWdOw7y7HMUeiMYbKOdGIof9x4vD7ceUrEl/YbQZpk8MDaZ9dm3HpTN10MmYQLPks0VM8SoEXHKu8KwrFPUtxcINL0b8zTnz9HPLirs8eoMlNrd4K5kanNoqfa1up4uqpexmCCPLjwFmIG2yLy/aCaT4PD8xy3mJM43SjSSL2oau6MHCcTdf98rtsf2ClffzvIYGGGFfHcPlux4nl660MTUQE747v8ic63G7ZWuXh/xulZpBJenGgLFfIUtm3MjreI3HyD3yHIapDuO0914+KKX1b6Iqvl1OCGnc1/h0L3k9I3R6G8Hvvy/ZMM/3RPadTRTBhd6iLTjwbARtEAXO+biNG3ZbhKepCyZ2CyQmUY4vu3OBz3cSXlMPYwXfLjYA6Dk8iJOQLPBDpxbr3C+7PUnjCcq6qe++mtLmQJqsoHLKQj44PvDOsjJ8eN2i1j6KUpdzXtvgoh2OVnnoWhBelp7qVG73rMlXSf3UvGVx6Cep05XhDF4moeJWb17Ie3RXVmovaldbCSUO8RMZ9+AzKLAh4yLzAL2brBSpx10TjIZ+Bq/NtYe8rD71DOm/q1mzy16sI4ghXZ1J5CpMWp3S4L7mjragnCt2KcdSRbqtsRr/0AEGPlxI99OiDcUx4hCLi0GakrG2IBkAt9tbn14kpBUdWoaDjR+O8nv69t79lys3ToD/gHpDW+oJboLBnBYcaXEq60KyNidFux+E2I520fwR3dMvv8zyO1P7tfubxgY2mi/w2EKpKRgVwpzHu9y/rA89z1szg9wC0sSeP25vwkLAydrRu86mbj42CssYViSNsscnuvd/J1tAYsxwytIAp91nF0bsfwDyMY6WXMu1VwbC1T9M4mxwdE8aC/v37ejCP7SrV3bQ/Db6pTx6SyJ9sIH43cevbby1eIxUYIbg9/RhiEU6f2wv30TsF6XbNeFpRkrCXDCednABmVwdJc5JninVkRH4QL4XpFLish9rOuBiCmHSekCQAihMPx65ZP1MgMYI5ZkV+D25kjha7i0boV7OL6cQmjYxAeZ0mAWce39+BPSW6FCgi/06vLa7muULHIMboqjvPtjJm8gTM605aRxjl6MGW//DXUtZfU0fjpHYGObcUtva4ScUQ/WarP3FaQbo2K+krUn5UMPFuTCDnBA7e4ffQzXzYnZKLgPByvKYMK7PEcl8380NVgGtbkKcBcUKTBCdx4dopOEQYJ36JGf5OHkplZk8wU7pgpEpYdYM+VXky32HCP1YalSLfd/cVPbTpXx16LxO4ii3kAqhXKkGDKg6XseVlgQDBSyvi+8N8Q+Pp7S7HrSRdF9X6mt2ZwYzOjUzlYaKO6Wl5OT204Wj9+aLBJF1nMdP0QK8pz4DFP926f1EYfWNGQ7FSf+a3p/9+OXJK2bZOSdIDyUeXgpcDV7+cUq8q2mbLWAoIGLqrh/m3g/dxfls7BBSc6jfoFyqkulZWHxy+kCzjzSnBRCPVhe/QF9FinX2puILEu5LKOLIv7BwLGh+v4JNFlfdBI8LQ5Lqa89xBGM5NwPapHUhlkX7uTM//tZM4iDoRNe6w0/R7wYLBdcq9XnMo5BhfNoPsRHVkZY4aI2qK7QhApcZg/+MsMdu1rTQuvNVlcMBdpG1BKE0zlZlGihW9RUqabhRcnZf4vR7mEUGjc8bbhHGsSn4+UzV8N+r5614kBbHeXmlxjHCguPHg6QqTVAIwgqKvCdRwgqhkg2Z1pS8rivSE3rkd953pH2ZOVk6Ld+2byEcQchWkwF8HKZaisqDo6vbRsvgjrUmw932nii0zcib6CU7j5q6mqoCK8mHEi/b2Bf9tgEqI+AAdjdp1xgbq/dGJYVgIiVaOtc3oa9wfJk5mHUdG8yr6g0PfhwK8S0Xf/wLge22I0KpNN+wPY7QJULJJGOBUhdb57NBagelMx+m/fdzfqqd9s58gqSg04uw4xAlEqD7HCF5wI+wq9QLv8mcs4FQImuINwUIIMYjABeIvscgbQIlngBDpSJPfy/nz+jCkvDD7ywYPn81q7HTmyEZrAwqagi6HWGz9dhmO41qi5W1Q/k7AwC5xKNycudc8+T9OqiWM10FZlOWCkSIC506njfTF1wYwS8WBkGPtI3IOTu02eLarEhju6B5WTpJPvtfwg4HNjxzxc5PHtWJeCDYz2ufJR1eO2zFQ1H83qpTJRQJ1W7R1AyKo3l+bKb3WvpOlPtTFgOFiJDNIoCN0OSgnAxKaliOWGIjlPYmD9ymj9Qh4gLtspF9+FURlNd0IASjQB2bOg9nEa0/VlSkN3+K6JQV0aQRFLp+j+GNz0QUntu+QK0PySrnQ82xLbCyMTokUBlHI13Dy1H2ZDBsyktuSDErcqomQuxMlqyQKoC6hEZRxBBbsFc8qCVH2hWoUoLeSoyv2KtRtnYWa/hLes2J6hc/aD2BFOhpKanUclt7h7UcmUY9t/d97ua5tjWfjngiUM0wV2RSRS8hJPfB/G0n1ynmeJdvNJ4V7ByU0/YmACgZhtu7Npd6u5McCFqt881LHWX/ie3SHz0BgkiXJTHeilEMoM1sTckxrVR6vPQS+ezQghMVODZSEQ5W+Vb0Mp/HwNq5QSpiFj97pQVqYXniLqAWFnX9ngvZWJ0EWuJkRSY15D3/XIuD6V84CEakf1gLdtKnIuFL3rbB/de2S9D2MqLM2canXX6ucmf4qv0NBU7HS9mHCOXjTOJbQQ34lzkWOqsrbvR6qYGISWYL7YNRJ2rheDr8Y5RI5pTBlXTRLosBo8A8Iga66mMkd6Ws/PhByI3fVF74ld656MvOlKHpAJmzy1bIJAQWbV/EWXZiDIiv5G5fUSvlb0szy8HaySN0CZkrtC1MWuhk0FeYDO3lO5PXUINfs79K8eHJ8KK/CmI1Qc0pNaWf5DzjT+l+Hw6H7qZmTFsL2ksWUlNFxwPgkE6AwTg2Z0RaZpeC9cK4l/2I704BVtsIhpP25okIHvxp16wrl1LLEkYDwIp3p2US68h1N1KhHrjzy2sQV+5wkaYSwGoaQxdS0BK/1Dd+xWQOQiDZAPFFxdHXosQ7zJtJHQe1ax9yJhADdy88RGSNJcAOPoJVAOtxYx9GgbvGoXaTKK5uTIQzLeZeWsHv1Iva2cHPj79wYVFR9x/CZ4qDLA4nKKCYNJNuDOJGjPQUo7R9oIm4YpmcgDT1YRdSTUaN3wdZKUqUMyiGS+c52Wlxyxmw9kuke3RYiytVts5aJIQLz/Hd+etEyDosFbLueLm7P3nZgYKCbrRoIH6bC13VLx4/RxSqiMEkfBPmT5FLPWyCu9M7NNTkv2ygLLYHGVRv2fhs+12ysuf2gtUXR3lUNtMc1JSnuFv4iXqY+o1LiolEVjg/By76qFAGOR6OkYrOD0Vs+TDLFvLME6Cs9VkFuXa6JKH26UegxWmf2nyy++GwTrpLtHNcK//4UpSqwXhT2FuUz/SSlLkVHlWRwRuNb11+PMlFY6i7tmX9Js20f/MH8VDDilkF6AE0xNQRDV9RTeCkdpK+l3ZuAb6fNmXtr+IOXGLvcYMTWmr7Tb0mWzrEDz4s4hxHgWEg+UIw4Cx5ImpYM+NlImFz66RUkkIwoQ7me45f6Rgb8ov9ck0mENFSqkQP+/6zTx+sXHzRdJkj5XgBe2miV2jjnkNghQf+C5cGUOZqsZdLYObGQWeCDX8c1yZezjX7kAuCcBA7hUwluqH2+mfp1as7Rzuens69jRuBrOQ82Prr18rtWJUWoGWzwIE+62lZYMDFIOTrfRxUZdGQM0ccOPADcTP5bF8zgFGHdsOMytqmAg2o8CI5sX7dj/1ielD//O3UNzCp0zd+X1O6uJ6AH3pAHbJzCtbLxlBXxiXHuvx//AUML9sqbIsUosUJOdu76K+6SFGCAQSXQ3T5YwG/nEoUTp2gqCWEI4wp3YXZYlFcuwxAvs/tTUOZ1bX2xr6kcNPAjX63byyRIBKJdKEomvIl4oy1hYys1F1ZhpZ63mKE03oQuamcjjzJE9Nv2gRCMLTmafLIuXefUuGROn6IaKqPd5qcufcnMm0D1CQHyyClW7aAjQPlvmcBZFab42KOWfvJjdbb/3Eg/AGZMy5IwTi0Gp0a5DyjZMKInYfA/5bfAdqD82bBVG2aE3sFRcZAXsHtZmZwxBDV3ZDICL6vZDnsvs7kW2Wa4uPgemPh5QP16jH3Z42SQll88v6AdfPsv8Iex19D5YDekD+Mt0Li8pvHpQ214ce/CEC4tXUlsgfZZl1S2fqzBb8NZz9r/W+ZqfnD2XUrZfprHPKGSuJ+jNksZnnGwBOuPTKEyLUspIj6R8zeOjn20KXCgRnpwVYEKK+5anRs43JJocAtqCu7gPJU2toqfvO7HDu/UwR1fk1U+cVd4NQHnwAA02pYD10XyPHQden2WaYkkeIwZhL8Or3sv9Iu0JA3SRNJBZc3zJJv660d86zFLO0o6VBKhVgg6HREDzmkc8zeAYoUJdHOSS+LaAS4uX/PdWIW8FyaNqPzwvS7BkC1qdRy+gQmiTWWyjhSu17sh2hQCmPBAO6BCDW6n8MaKpj/oEw4q4A0oO+rp1vXnzjRADZJpCJR6/H2V/27GUrH2YRas1eF0qGZJZ/5bQv4/Y4FNdMlk/AqT+X7GYz+USugY07XMTcPWKZAUvsqiOs6Dt5HBAyidXApvrgNJGVxcNiLSzMdIkU/GYCjcpLXdNSMu37SnSIVJTjdUku3AGWLyCWGDRANZLjDjq+5Q6pm9WGadU/k00fKIsnFuYGIi3HTIlw0jXv1Kmb4cQ8XsqsJsX5XWVjfrG7h0I21L6FrfYFCyUWNNIfpxhNS/RhInKmeijJt5XkxTW6H4iy+FK/SBs26aowS0yCq83NtbLFpgW0+u1vHjMV5wTkUSoufHkIYGBxJlpSH8ERdxWgMYMUpAZfQNcBL24UHwNPY8OeRgszWnQ9ySu2q0AH6XSd7ju821o3zsZxop9ENg9lZq6S1dYsc5zwCpMZIkLROKLxLY5TrI5JEAoyvTzRD2hlYZWWYRrBo95Y+yXUuX4GGZ8GTyN06Xq+9AMsRyALAepHES4uOcIRvFL4W4J+8SdZgILkqv1Kq0i3md1R9hps/8b3ifOmbOTYm7cX90mblUh+KYIISWHfS98b0hoULyS4wdJCaJEjEUrslbvPPrIq6to9w9VMKupElB79aww++tDFYTbiyG3J0s1dZgH6PiA6tP6Ktnz9mqlZNCU6Uc06E24mcAOtG2DkQ/EJoyBIBK6wDqRMAFX+PpwenfLz6bZ5w8zU5bnd05ZIJbR54En+HeiNv8dNrMUWzny8w1AnuK3BWnM+kfKrQDqRUAs5fBIZTu4UL3fmamkaNG0Bl9hZrSg6FMg6z0yBV3coIhMarDKEDPMCEx0R1D/vxGvigfs90L6i5up5XA997nlbjkkdFriErjcPTU7INEkvWWYLH/KMi9EtdcWsqV/EQG7oZ1riHf75I2V4GfFeW7DWBG6BKxohmFFVypOk4gEblpcSOqHILxCI7n+FqsivAv5HO4F6l+9AtR6291JfVhYUoERWy4BicuDLvVP0aB1TRgeYs/5P1gQI8qdwhVr8JXUwD/J1BCrIgS0e4gSyOAaFBgmhESQrVEeNTfYCiuWZrgyJjDaapM1i8UsBDHoGH+SZX70vRXZd7Ic/KXvtwNNsE0ETIJFrQ6v3o7TvhQ6797mmvPsuAAmDmGDz4xRIMdl1RWeWsKJ31UlvgX/qIWfBSAjvuk+rfLoWKyV93Rr9pxMMHBRg6QqM6F3R4jfuPWKWFWnEVEw41Cmp8iGnh4nLgyKml3k05YBXutSf5casBgBoo2OFLGQk9mITfDpZmVoimfI4oA/WAl2y/9+9SiKgUnCopjY8tTrLtmwFhtKLGm45Q4u92ZfU1Akj+iOgV1GIlPbdJ7PrQcbHFLVJwHGDicE/GF8pfbXthL5+ZNTx8t2ycvfTze2zuXZ8H5ELs43IEleNX9FmMlSdsvrb4LUNb0xjh/4UUZQo2TUS1jWp3r8gUbrJGFFMomYUY5MVBkvBlXmxs+6wpIks8XnSDkRufoseyh3yCYlTNfdDW2Notm3hLW/GEbbPF9MV72PhBq9f/zNCSV9fKJW4NGFQCDMP7F0eaEeT1N8qwgq7OFrZH0JPMC+vNW4eY9DYLnBKZc2Imrlx2oVkW/lujYLOjHMLvXBJ2maQUlin7VCYHEaOnZ2Yhe2D3Ga3FloAH9CLu5SD2roBGc9KncMTnzzvTbyqA9a5LM78mMjMZ0zFTKbFos2+N8pqQqzaaqEaJr0KJ+cYHp3LviBjpPRw5uzaK/RaOjo8h/pJXiIXGZ2XuHvBTmSLrR73DTuml6qiHAtS81+w56E2XatOvbxumWHS63r5L1DF7TdzMO6jAKYry1I3Y1KGt3cEOdkS8HILtwrs61ZTIR5oz1oMnGKpgHS8V9aiYuEhA3agj5dM2VSpZYSzIdonRuIPrSYh4eqeLIY/GyRGI6PaRyt35uNWDoPTwHf2DNRYzQoMVQIAD9TzZK4vy6FtwZXqcR16KkBRgiVscMj/R1y/OUlU5JDlYVgVVZsvyyNrsU5iudB1AmhL50zxOIJfjxwNNiJxvXPCn+/OrBalBD+qOAGMaT7eLNN3r7BxeFhrj3KN5w+i+8NS6VGu4yFHw4hgN6x8GqSUH1anL2e4rhVsRCiD0ne/qwQJMyAS7PnxMusFuQRLj8yLubX3kvGfSLZLGS4xGJTOOuBTkBe4AGXcC6X9EjM/xlH3EyjPPuLlIU57qI/K5D97cpKFuR3SBk9nPqqkYHY9uuNOmxrBDDmzZheCy2jmehboPrQz+IZDsDsR9SiJPvmvj8vD1GyTFHMia5cmbcHnL51AOqmAH5xyCSj6d4za7uQmVTkbMRRf2s1c2JW8H7HtneSk54UFv3cGJjtoyz0Y0CVUoLXkt0UaRBDQXoMJHvjo4BUCTwckYXaIvowjn3zSrx+564+Y1sKuSC1BwjoqUpC9oCO4MeN1ZOl7runQ+gOdyOSP/B8nri9R0EJa6JPx6QUgNMhOw5NHN87mpo5i7lOBdPl69m7skHGl2nmUsJhUkd+s0ULThhOqnvWxg2xjoXw/s25Nyk7riiNwWkYbiytaMu5StgBTaUYGD/+xLFlZVusqw3ICPYSVyaKPS8NoLNdS6B3NdfgQuUg9koEL22nT0K4HQZeWEEMWAVsOKH87TIEeQeYsdH7mbwwMXjBlHIub88PG70etyiPNNhOSBmV8xLYJIojCOju0mrWCTnb37lvcda9UFWKf/FXI7x+xkwRIA+Ivs9MuImoapmuJassVegSwDr2+Ds9S0UeGwcV8ipTNPJpWv/YdLt+KWWci1Cd8cHKYtbI68Fh1lJJEXpeMQiGxB4gkXD9+nIaEXJVwFmxcQF+c1zcgO79Tvs4sM4TuB2Lug2xo7EzgVdHIh87sso/B/ld5TJmvDM9HJuCjYZH+FYq0+iOueivBf2kvgzwCJpAfT8jOJqyXKr3HN7FAZfJ8Z6IRNhpKpPDFPf0kPz0SQ/8UpNa1TvloTUBxJGr0CGlMi8HuC1CVk+x3FWdpqgVn2HpK2yOM9eOf08Pem0wV2c5bjflR6nS/mlCRXVzFT6rflGrkYJeIgKVJBHhyA0dW5UQma1n7Cppb0CAE/9Q3Wz5YLyw8i197zUiBVCLhTscBLU3UtSPqME1lqioTdWXGOMvYjK/Fyr4zgt9NakzR+ANZMvqqccyJ3vWQNCdy4rinS47a0E1aR4ru/aXObpQijVWpl3czI8nys9vJVcWZ8um5U5ouLl5w7Tz6jlBYakXkFlqdoqcWk4kQJ6UaO0cP3t1JhbY7Voxd+ejqdjIAXRP/WKmhHIq5lKOLTOWQedEgUEWcOthbqopsDSvJhUex7aICtpIkki/ip6WrnMvOV/lji6nXr2XR3/vE9dte+9g/iMRCYU/eqk607Y52REkwqSQSJx5b4XVU+xKqx/Gp5WICzfBcC3etn2IsYK4HkhOsWH7fqdpN1tBSYRS33KJwzaVm0HPsn1QzOzn/WyDwqWjKIPchOtW9F+oPlzq21vFfNSlgyhtAV/EjJcKvpjNTvg3URaBUnToCOW15xx5UBT/o7FS53aN9vvcudpF+1/e4JOUqutKLGNGw7W0jX2xeArQaMTcWW21+hA1cbcOKi/M98rN4MJiWOg7Hl40KlDSIxxUYFpNMrJTcPEDc+/ZooYjWQcyoWFNdNqEvVkLTnILp+iLtKApIDdNhOqJdq/FiD3FYiKOdBfk6oOYMueUzg6aqahaKO2+9gszQuTM7H5K7rDYeAmI6Mzc9ciq/TWtOvqgU3QbHqJUeyiEs1Z6Zx9nSGOuP2ja/62Zw7EtILzxWHTuiHbHnUozdntX/IdLkkAy7FNLarhmyWBc78DlfUh+sallv4qxonL/1GDe0ixW8ADuXfnvzBaECG70qhe1dzH0qi1fMtGpYsQqUo/xBIlwldxiDEZQ/UB6p9uMAq9wagvtJr40OomVXqywC0VCJ7vZ0YRU7vSkSVJBci8iIIDWjCTFUYIM8TVIrBZI27cz4X+yQKGq17XkgtlDjMU8ydcEDNlBvNz4LgolbPMKk+BNcjuvkbBw3vHXVvf1z90jBmLD6lYTZ9u3EEUElJ1OQQzPofXzXTdUAutdCC/F0Y6UVBFaA8KfW3lbo1B4WpBU1KQR4J5LbAb5iCOF0yNOMByc+2GJOIJb2zVKhVWHnSmzMAfqzR5Um4/AtUq3psDBAfk4K3JFGFCdr481986tgHURKcoZWTQ4W4/fMWp3PmYApiRTFdwfYvz3+AIIbQjWeYvebPDT552Tdt/J59k8MBTm8U/z62NWq4n31ej97mkK4oieyzSHfE3lJRHfbWPWfltalGjpAxFqoudEv8oNLg15HKXwhUUI601vz5qHQatl9Rl+RB3rOFTRdizjOXj7ex+5g6vPKv97T12GechCMxIjnkOZptJJ2/47Rv0X2vlzYVrOBBt+YRtj1FOZHj0rikta47ix8tO555Q+HFbS5n0vs+IkihrtS8qlEVa0dFMoRjRMUZEprGJZfudL3TauNVsFzIJ5fZzpEtuvRFrJIyrQ0ADdSf7wg/b1G99z0WYL/dQM2BxFjCtkU8j8kxwpxvcY2X9bw3H+U4fdZy5dM30WCR07eWc0Sdzh+giMUBFswz76eMRj1CI5cx9eiXc07huZ3tKeNxK7bYPGx0d3N3zQTGKuAENPXv+qcsRuP7mb0FxNOWP3SQGmm9Y8vpEt2wY4Tpa7wWH3sQgFnPFgvXO6pSFrV5ybCLZDfoq3qd682ZndL0jDeeL5zod5oz1uiQkgY5aPx9Dmgu0RiiVn9IEtx23D+YpA/lbGy1pf7oamRbdbJjoTSAHbFOdIoAxoWrlo+GRt6UtgbBWk4p3FZCGvkgKnM3Z4Ls/sQM7tsYpT9MNtjJSczLysOJOcgdlEhudpQZEoOX5QU19OdHHGe99j/dGo5KwCJE08LHHu7ZpxIjLZfwuhzJsUf/ItraAsqagvFUnBDTAdo5oDx8vlq7mtVk/xwO126f6BOVgm1SFtbJzGaWzK7IalIbW8o7Jj99gbvV0pPlyjwd+Wn8Rbs0AKcou6/ti2coCJKhPeiYBrNpuC6z0XKzFJ/KJ4syW4HPkyOrSV/4+Hnh9D6fzYcz6oeGtbRuoa2OGRlNt+RTyH7g5Bqqx4uCHDq8rKvBxRj843X/aJ3y/rQuaC5FoqnL1rBx6y/W5oD+yMowmD9siwZMNC2ynNeDrcCZvCZ5qswgtFj3lyKRtif9KpOe9G8agV0qburWRECm8kgZJSNpFv3MSBB/pQp2sFE7pzKs0leDnjwPTKHo6rS5ImBWWcxTGhnbQ/7F7mJHXtuCbIElG7KE8CMvdcHT3ewpEheaKuExzDxVbdUH0LC9AiXhHGxQD++ynwGULpLgZdCl9OQLm+jJQU1hqkLB/sHYZxfcvj0gRsr7/0SnW4it4eGUXz1Xexse7t8zQPmiW3xVaMwzZ7g4G1a7GKjGF92c/kswBZXLQiWMd6gZmKf461KU0qTK/k1gkX/hiHA7DWK3UkDM1BT1h9QSY64Vu05DViI/Uo8GzMhjDGiIgGYvmmrUmUEGrzcIImpNni4zz0FSvI0UXlEkci4bCFJj1/DFYSIcBzqz4qamjXFxHOnxn3L8cJ09NvF0aFCGLyd3oc6fBKKdh/g0VJExrLCy1ehFDrlQQ56afjjw2YRbJuXl3ZQtIHUIPBHijQoOlROGmoDryrNV+DnNFwmOS1uRWtXV4PMK9mEzx61nKEFzTztW50JA02XCWy3gjKz/mWsUSfO3LI71TWVEXzACcQelizMqoxJFjbTXRG5gKFc5vxE3hU0kVGKwmJ0YNKU1mgD+E1zYEOPJbjQf55AXhMZMEcsiIUujBrmhluwNoTtCo/u/yUSSSdBrTyqxwz2ijAoZBg6xM6toRB5IVCHoBC6dMylXgmJEVyZreSAV84A91fYgVmHhInn2pORMejSn+XxRkIBDI7A/WxlliMBAFzrXPRo8fSKX+ifV672Lx7JNX14oZhfjJsOFL9akLiXEtYak6zMoaxxntV21w8utoSLwyczGSRVLhhH8hRIsdYO/JNrcT7yRe1L0EmM9NjKlYBHlF7OTcT/J4RE6zXZ/w+8EgtDMvH5qShLdAX/Tl+37I6B24SHHVCBkWyi/jja4FLNwdSM2Ic+/HQ51/pW4NQZuLJqiZ0otjDEUnRDy9sgfdJ4bFuGI2BR7iY96LFkwLDQtAiFVs0pvFDtVzMeYNyMcLr8mutJlLvXQhq4LKayYeVQ77wy3XGLEupWW3v4PykTKliJnyKb6vs5i0wPrboiUrk/q6KkkPWA8g6ldGD3tGfp0qru0goxGU7snTuWpYGk4B1obPKtE5bOWW/WvtFDv+Siypn6Q6fdMeS6bzmw9yDRoxg+wS6Ri/k0UN8PrTyiCCcahCQHttbHipEWWPIoMDnTpxrLKNyDU1AupeJaTbhcnG901wiyj0v9u3hTzGYG6CLTtYHgSpjaJN4aDoewHyBbn+Z8r4qNEn7VbGCyXQiDFb2olFgzJNkVEimcVm2ntMscbOHYYZuuYnN3w0+mjVe0FeyDfPmQ+5fMZlYvRHSIICP9TvzUCGLDnjN3fZ84ZQZ1VOogFe6BAs9TahxJzvCQwlkq7EyGSOM8ULzVFyyVUqIuHwmXWjaE3vksVWNtCV3l+gxgO0qwCcea3K6DeLWroYJJfQtJDOu7q1m401vkBjx3gfiAOK8YzTIgEHLPMIgBZVvCddmIitQFpORWpVOmyWFeeTeD/OF/tmKqI/5P6DQsysHw7ScOUs0cSImWINLTH76Y6rWMybxUjGBkfezTC4uK1qP9VYQdxLLdylnpw0EpuqerHN/j5eX7IdUGcJqSg9seBVgRJiYQJDZ1fiW/OKiuamVVZX+zq9iARCEDlSwyvfphdGrfpwVdn1udGaD148JOYCEIXPPff3wsrY2shV2Dilp9yzbqjLcvA8rN3xYRfFkWQPDGLBkmR9FCon173RXb2JyrCheAbQERLuxAvo3M64OnPqiL7+W9en3SMbBG9tQhj+HLRBYjLljHYu7J8UANKnoPyQjhzOka3PaY4Setg30Eg0cejAbE5MpE0QjcSlvMCctqeJZDDOkDrc4POW5AmlscCoISXDzV5dRG4OrDBVbLGeOwlgZ2VKKRk7vT7RjEUiW2+HpQr1u8ZmZv4r+p1TL+A/Sn+Bwzls/Jh4F27UmPnq0SCH/RlFO6l13bMQ9+NtmWLKYhKwGu0xGWs1klEYYh8YEMyOHk38OUpA18uDBL1o57bJEbOI0m9AbtXkwl396p00YOa1n2vDMZ3OV7/cTYAAhRa1Gac3qaTdu/s0O5iv11A2JAtUthNmJqmjRtS8IzC5S7FlilMXaDbNc2QTeCtWePNJsZYQ42AHYMufat59pyPmcadGQOPs3olIUPD0km3TMIzbaxiqLe1MS20lwoR2tEnbgBPNwklEeIxOH3/TOUNYgb21HXdK/KpdX/uFOmXUOsyzd7u2Zl1b7bDBpHdrPkRhyyr7LIogBGmenFzDlSrfUMAEMM5cQl8XcjmjyotGTCXsr/SWFtg2j57h5YvBzJVGH43wxITj1A5uwyPdImoyr9SrY1NFddQLplXt1Vw3Wf7gEeHbgcm6VLwwV+lsrwUqsJDhVBPCs6JQTzjFGWnFiPDwXHi+nw9q3bLAJTvyVvUJcF1qPHJbRivZ11QgxZiF6Ve60PH5AfJdHzSfY2XmnXqnpOQmlso7H2zcRViRIg7r2p1sftoIMar2YqKdB98nMJRXHZqDWXDUzqJlhQ1Ct3j7S8qkn2eg8TZVh8d+xucJ7Q1yQQPkQQ+JRyYsHZTN5UA33+2D9BtUIg0yKat8DhGQ43dLWMkjlV0ZK+O5WuzWn73eqAOUpQcQtWnf76KtWlcejh/p4EDGtxvmn4HKLzuMrpRdFa7WR+QyMvDT2aTv5/VC9ytL0hli4G963JV4ymPHLdpmWh5NDpwQfdmO92XvQoDAel1a1X0YdCqd8hxQ5qedgwpmB5RBjdmzod+AxtOKColJJ7m/PHpzvBTi9cg2UU6QJEc2Tvocih9gI77KIgmoLxY6wHez91irBBB7ZY+2SdwqbSFVRwkmMJFui888a4bhvDm1c7Svv0BKg+8454I6cFC/B7NlPln6U4yT1g8yfXv+E2qlLb5U75qgZTxgDkQ++fs574vHngD/6gjofnZ75O8Tu/y4nryKy3RURhG9oU9jjeZkUJCa51m8EUVeykWUu9WxhrSIwv+YrT97wwXU+K4Y82JZuica9PPEdgtZzXsEXA85o3XWyCp1JKz63gZgDIhyMANYJAv/Ztb3xSQUth69yADuAknmdl6bl8xIsdAEQKjqNxjjGDMZd71MkePiw/2D7xcz4BQyDzAOwiH09NdqeflM1ji87UhVMHPyBoL/9UL8ZFEzcAjBG76TVc50+chrbe8f3/sjHPW/9rN47h7/BwFD2HZ+MCfoShMi2/SsWuMD/vzs9V04ftQOhRQCp1YNeZEOnJGkPXrjInSo53xGdfV+f1ZnMneXEXGJebMLGG7cHBB29GVNIumSOi5Ky3aEnqr9di5+KnXpZr208HqcFRWQzCg+hZESCypvrIt58+jLwyLOEsWA/MKMWAdgMbV7TO6tGH3oD9g6mXvXfJTI3jbE+4KWfvl16qetB5I0/JrLLQQvqIZZLTDrHbH0IqiXnd7/NmDOJfD0wAFexVz1sL1z7MtUViHdEDp6EsS6UI1mn7mxgJrylIA5HI+oV5bmmg1bRxLmK9As07hGYtWs+H23pxUDk1FHP7ihtaQJJFQCMYFMfylcRMTghsozD5mc1QFd9P4b+5uiPJDHr50h8vHLGCP+ZKFZ5fU6zLUtfIAnQj/s/r/uUi0pzVAh5EfEahCP3IruJwtStcQwmpJxJPThliF/Qy/Ea5+J7SOWlWHwjUim4TJqyghaV4XAXFAtPh/PiDnek5aaGamUpxfkPGuYHfh/F+feEpZH6oMit2+BrBfCs04LjrIq1srwtBL7IHB4SrraBRpJfhCraHn61dwrXC9gQCwL/bk+AwqgBq0RpF+uIrODG0W8u/Edw2LkbLqOKiL/AJRetkwQZvlyIixCdQCQGZCABF7eKaQe0AdvRz7j+hE9v8WytrVdUMhVQyRULMxFxgjkd6H/KsmYXtjKGqXSqh7tGzxHCpAyXMgfKIvDgxIdhcc4jdryAftCv2VgS129GfJD564tAKE338lP1wEO69jqAvZfd+65pDkW8PEGE6ZnvUkE86IOnnkIAfPbzlQMBvDQLrembE10kkUV7NW9VSWLI2aFOGCcSmcEB6pwGLrh3X68bqqSTkERqHMCYavdSkAb+V6TEOnIaUIe80CUFjbF7HIfKfMSuq/ZqqHvHRxSE0kJKEHjfTwoA6L6M3hFVLUV4gZCcTR1VODxXGCHkl2ONLoB2qAW4ubGhCU60ZU4rVorlQYSSf3KehObNqi3K0r4PMpeDdyN7HR+/Tz+AscIz67dX2D+bm5vQCiXHF6NAWnfsHqyCI8qNFngIDkiHiKFmT5P8swXnATfuhXEg6LRCrh5paJzwVz9EOLbz1I7hak3z/zXY5U0rMDLY2veZZeOmvi2KH7PntW3xFfyoIgMMXFF8u8Wgaxr52qC58YSt3HfLTKvyViyT0tJR1KcD/z2sPghF7JPTP9XZHzz4erCMY2fQ3IlCeO6A9zEJtWkWTQYzwM2OtbpUFrMnw1eRdXxiTaJQYRVESozlhxlHLe7C3eL6zFaMgqE4qTLc1qyfCXOILTvgdRMDJ0ySzhYsZA9HEimRMk2cNMxVncKNlVz5QwhjZe+d8jSkb3S3i8Ndy9Y+Sxt9209DX4mBwkhbDCQIkaSMnE2L8vhw44SHH53EGdX5xcR+btlLp6Fme6vCc3ogGErb1WW1H+Tb/HMAKn1QMierp3gEI2N53++WY3H8Cok/2YCpkcFQruNWTbThrFDVn/ljIb59yLH8HxkzO4Lv0a/Mx4yLOTgQOGKr5uAlXmk6GwFp3ejwa52qQWEB9RUQQSxDjf0b7PAF/4jTm50iscoQ51f40NjoM8/0sYOO6nDsRTRVye6HiibTQUtqgoR7Nor4xIuhGNLWKiEt8Q11mNn5qgDzqpMNT5SM39ytKoxXan0O4raD7CiIRPJyhn49EQwTmDyhymEEg5IBSaj10EvSxCIwp2XmL26F/0XzV15e1h6KFs4BiBYlVkZQ6NJpOMSW/UqS0Nk6FAnWUtd4uZDWVD4ZRuXu2wA3Zkqzex/fjTUxnnruDRjA8mxDV04KkIC2WaW/N7xkDYkVDrqE34gpadCuCuJI4GpFbYnhbLxllt9PRrAtOh2N22VkbyrVGNa64GJBw4yLcAlEGeQDxxQ7/eKbUZtWmOWWlEiK7bKcYBD9FRzAM/32yaVbcY75q/o41ugSVPGt0SvCMs9Sg/mOAqSmFN9kUcwnD9kXFdRKkutOLzX7Q5VEk71V3tu7oe4l0kOiqILstJy7NbTY3vJ16XG+6p6+EpT8XxEfUMLqBoALNmRiGD7uXTMVQ1Z6PMZAdqIQNLmj7oBi2D5AeTqGdSyU6eoXuFSQHJaICi2xqR52sRSYjif2/ioAYOm76+O961DXW416oRidpB6r7X8s3OoRBfoRWuajAO8ID3vo1qJRJRFEvqTjoqvePR7JODeMPN0SmB/NKANkcB3OWLhUfB5WRBTaSUiQKYpbgU6TLgEwAnXI0N/ffvMAXhqmaFIJ8xoDAA75Liu9ReO97dpmc7NCzBHVaTK22tCwn6SRW8FipRedf6/lEY0SPehGGa9ApuP8IJUB8C3u71yyeURwkLpY6rZ6B0/olpZgh+WDQc3qHQbeDN85YTEBG0jUUrN3PrCSjKCIC6TuaNWTCp6t52nmxVr2i3pZNzdKyjO3pfsV12Svmtb5hT3YBsIr48gxnRN6fTPpuwfX8L+5s/WS8a1Nu337McCud524sC78h1etFB1lkS7XBHn0wH0V+QmkRxRAPIcA7kjw9lLfAWqtkoolYEhgMMiXIrmJTiBIs63H3Dp//dD81acsGGEZM74xYg0CVevCfva7/KhYwXuSJJTITP5Ipq4lKfMzVuDW8S3mV+hBM2gGJ/RItFHo4GXIRgl4GfPsuSKrNY9pHK0MjMVPXABPk+VD2c/bAhkP2nRecTh3pR+EWQ0/8vo6tr8a/TRWsUVT7mEUSUu0VQXp1NSwfC9eOGZECVwHY5zV6TbhyAoRBh20XtfxHOxI+3+GENtD3dn/8TNJt/oT2QwkPN+sF8nUFYjFbtLHEmyt6N/0Mf/DdiMilN5d+jBJdhym9PIr6EG/58Vc/PKA0kDYcw3OWrxIZI1cWXofBHAFZMa6Lmbt2BzDoufiLHmNIqyJ6G23nwdvQHdNnGhe2WY9GxHs+R0AXAYJhg1QYF5Nx9k9PrGnILQzK7g3HBxCKU9fhoAot68Ii/bMYoXh12L/mOG07OX6Ce9ngCzWAHQz+6Euo51CxYwEV3EzfoaAUBdV2fRhDXJw2UwdZWf6q6h7ZOTP1hn+DRtpiLb0NK/Z12mCZ23gfqBS964YHXBJxzH/QBG+oJOF6qnzYTcmuHU2YeSf4R7hGpNq4LJy2+wjg3MBoOSwxlqW4vhHZxeygqmKaZ0lF6pjhum6eHDwQ7EHHSrgw+KQUAo7xP3ctTkhiBQCxvXPu5eu1hSf1yMxGDgpQprlvjeF/0/XSLFTHvANbs17wlDKlgmAlUzI7XylnJ3UamH6KLB2e/yrxXpN40iyzVQEmsrTkE8c/74wFY1j3TrzdcNfFObwAhs6fiE9l0jhDLXvA7dqmpGAZ/z0I+2hhkZBKpEKpBxpwm2w30nfQECnYoJi1SI9pz8JmEytV0G2nMqlF1fqO1osJvDbVBRr9198+40SU2v2S9osDwr4iXIjNyY2SCHy7Zgv7Vtn6e5cy80awd8L2X/kaGYm8qWoBWfvyZDwTvX1go2KDbrlUv/Yi/1gMxB2G1TvkvkcKUGI3H5TZwJ6Z4Z8Syv3/XXtHdnqxQ+uQiJwIgsLayOSCg9c1MWQzBxVmg1JOB3or397IxPG2u1YnA5B5pZcJMItNQV/X3qpzWiont3pl5H2V4nQT4Oxdkti9embQxa3LpjPe5++OTt+Rj95Ap3zhixCaaaa76cA0Pn5RmGG6MddcbFaubUZCOTxeDEuOF8rTfHKxqJcF/SELYO5J14TVSQTML622rZ5Bcb30GPWFy+KDYFsf9tep0CkMtRKJmzncERbrI4REJ2FOqxjuuW44deomKxgyPO/wOIkfSOFPh+sHqVkmdAxdTDcBz+i4XzhIi7rmqqF08B0i0e+DiMuaNWFlq4y3Pw5Zfx1TuNRHAuSMdK4OjgTXTwqSvKTfpC7eMIQhhvy1+EFAw53bCfBcs6JolwDOVjcJiggYXAWYe00F15rDes6EwCoMf674d5n2f0VrEbzTW2LECzzrZkeioszAeI7U5YSIyZfzhInttnwO0alIpUYrPjvI+wGqgl9XOH2GHD8ouHrHsVoR6I9a74JLmBRmyy/uID/6eLK8iY67e/NfY3Mn39cj0TgMDCMk2uMXz3OxRyPR6ou15ekxbiRS55QyOaLBnE9VajTkwfmDr2PU7ttlrh1H9+33cEfzSH5XHAPS9gaxl1AnaXtrPgoTaVC1KBBhUcBWox/n9bC6mEQMAyfxOk4xXoSZzgUHbKAyqluVMrXAnBKJ2exi0FUMpovrxwgmFTe3iJghkM4cYUsNnKk5d7wPB5DIxR+/8REikPBGyjPr2PMtb6gIAqZp0mKnjFJ12RmMZ/t4FwxZY++lbd8k9gWiozyNqj+jhCcRAXJmZ+j4xYJS76rZqbkLm/NtyUeJu25URyK4YFEnMRyXXxhy2My5Bj+rQg+z8vcjfso63WjXDOswMT3U+JoR2j3hw5NISdojfGvZeM+bwphiB9KOOYwGm3/+WVGKI4rbUYFM1I1d5qkn8SR46Kl1ZyuYkW5Tgoh7tbuWMOZxJR5Cqtp5LtfNLpR5aYTGKTvyTtjNNs66N/LSGPIqV4bwuDwx7QXiMFh8Tk4hV+fvczaMRm6ZULqvO2bGRFWz7svkoPgWCzlI1UzEDA5t+2+bZfX3TCxcBOehBdbX03UrU5PdAr2/VteuPiFU3UGfkM5AsWlm/IpkXE/j0d5ghc5VR4lVxUpimXOyJq5gIbWm9d6xPcRwVcIzLmdKCgIWIPaWvyv8I4iQJYbBLcKvSnzWvOvUrYweuE3H8E/BD4lZc6MFsvFwW8BSYhCmUD5a4V5D4nsgH/X4aa2gpq0UI3f1s481WeI46blaqVS+JiI6AnC8lKzzfbMVvLfY/GepWGNJC/RVeHASl2eJC/XCyXV+RX01FbtxxIVR5ReW6iJphywQ11x3yoM22O16ZJsFzx0vFFyocWZPM5OV4W1OpLxtGtTJW6iNBIlOI0G8fdRyDielpUUwBcrszFDFNarnV3yyxfg+xbYWiJhlB0Amt57yrWInRKkMYizMwarOhKLoXnH0Lh8hplyAg/0aUnexlrANXJyWgfxFiGJ7MvOkKHPFamHyDCQeQjeXwwDozA16slxet9J+YBrHaT/RRVpjqD8OWAVsCZtkQuzDSoGOghb8xDECSDTVaNar2brbQqcrVzfcP5wBzWjYvvCJC1/T3hvU2TuMLAC5VlYZouZzesAU4W3doBDnc5Lm/KPtp0TKbvKLCehnnvwyUb1Dl3qSyJlJaWrGnsnm9RcKAktsgAfSN1bWjEmxPdXQNfqmKu6BFynrwIwHv7rKbhKMg53L3BNfhR64+C2YM0feabA7H89MY1csJD9L2Ko7ch7g23YCs7jIHgSygd16zQiHO9Hr0Qe4CGcSFd7zx4++rS9HhMKuESKI7cqJitm3R/BWniRpsbEijZK7iyE4Y0/h6BrRJq12pYgI1fW7zdDLj0sXsNlcWm5DaonNXeTgm2dAgn5YTp7cQHGjfQ+OfeNGIfVc+sGmtaAf29cC2NL39TuHt3MZwYlU0HrhOwls3fofMwbbAp+4ZyBJ5OR//+IiiKMVIiVNuJIeLoim/Gjl5xmhB2CvH7osGXh7rbIUkfYXsiA/HG/K9SQq6gFbupNCpfYjsIs5XiCT3NIPJQp+o/zS0rOrH4Qna1Ghq8y+Y35ZRtpwb/t1Jq6UEL3U4861wlQ2YGsg3bO4GFLbr1/AAKRnUdUXDNJDLyAbV29oniVqa9lmRYys+pkUCXfZLKELq/+Kl9CcuqEGy0pP0btU7FOq/OpgGcY6OPIqx8+7//tR/HXAsEMGr4OSSMXZaL/708784hPf7yM0T2wWPvN4y6aktSC+7O8O7BS0GEbjf4/IQUT5bWtbkGDumOhzPPbrL0TrqU0bkJFt3y5tIpEfOnzrp3Fz+r1gv9FesM/vNvllh6LL+aLjI20w9nnz33LuiYKKSSiH4DWTAEADsZTljk0Pqk4oGgsaA/S5nEJ8OKtcNhfDgZZ+Uc6q8XHFXztz95vxQLL/SVaH1f4ByRIUAkMoGeZxo7qjtvPNoQxp1faVs27xQnxBu7uo5B2ZIAyqpOMrWZC16kDIs0Raf4+D6N04jhgCIvZXitthajRcFxAK5oisJDDo1jIoDPVSWglrsCkexah5brSf/NRaDq8w/QzhT1EwPzreA3FscUswDPChqGGJya/X/bqeYvm+0h7ZioQUUwWsPmgC1LFhfanNAVKRiKS8khPx4w6NG3ajUOZ3kNEq9+hyNcBeJrs/U/9ow/oiCNUH1Zdh5l7zdwswNrqtMSLcbkAMVaehmZdz3MiTqmaq/ah/WX0EwV7JiNocC6SkLQQBJsKbVrThA7rFLB3bBUwfHQzQE3rNAzkAtxzBd+4hW8RUxRnifHkNwemQNohRx/545JiafArZWWTrUNBvTaTS2cQ/Iv/BHJW7HeCZ6QJMX84fDehfHsFvP87OGGnRcGdea1AcSTlVqxCYpz08bzOTI5pPgrZMHnpZpq4uQODlDPKAtDtfNdWFLBGCuysAIseF7vinBuTDMN2oJ51xH9dMJWJgh+BIL5xBJqggPZgqeiH+zHVXufZlRV4UGErh8J1hvwUafsDE+KBnK6gkcal++t2TJsgNpjPlJzdDH+Onwgs8BdL+EdNfisZy5VvjRyoySIebpij8l5FnQeEYvQLB4dA+MDWtdU5myPEmkwZxZKQdoxVsDe8Zg5u6M4kSBMa6X2NpmUxVZ47wIqrBdgP24ISZ9AGrER5U1UN16bAlZ3RhOj4UY6vaDSXETUxTB27vG5iTWTLEgZwTAr/N0pWZNZCWEP5izgkkITGow9NE6NQjwgKB557DWy2IxtFiedwrWZbYzA8zsKpELGiWzXZ2ePQrRuJEgtLhYLCHTYErHoLKojAxYAdfSojXplWfhs7okzxhLO94GrTjz02oxZ2sbP+TF/Zp+k63ZSYkevpUadaHyZLcsi1ZEQ/7LnGSHBXq189DV6cm+8lRbU5SN3cboR1JKNFQAvdH5noVX5TFfcg33fHSLR3G1Xm+kEK9zeJzEPjTRSxvn3UJgrk3fALJ+jLUoWMjjo85ClVOIF15t+NxgFefoL2Ppgfn1TUs6YurUTB3IrwnGyB7g0TFaYi1+xnxiy2TfF4+e1UIHbL3CXaB5FL4hbKlPPj9bu7KaseTfKuxZTGqRf1Pt1vycAa6r0NP+eP3+wQx8qAbbHf07MghIBuF3OYwOdobxi7gt9jaSVJDnHrASu4bSxX6a4ohkVmNDbzaIenBs1iEdLwAv1ulWddkSWgRE8VpCQANXpSlzaFDSlp3NerFh/egFIw6qaVTiXc/vNUM4UpRRP+9Srz7pKDaPk23ddPDsO05Kxx9+RYLkYvlawcwPnT9ijI9uFnY0dHzR3Ga8euwpBK8+witQRYAtMKt4aCqifgjor7ZzOGnmDc6Dh1CEBdhOFTbo6tABkF2vh3hPFAu5EeZiYcXdmgPgjQdYa0s1eFPhRQVVfzrQmiZuSE/ZeryDlYyGeVeeqP/4hJrSh9+iF7DbPvqtLsN6dWBD9Xc3j1dM8/0TI71xMEkfNVw8wpEZyPeCMIKLn/++9c9bgKpf/WhbCZsDmQhd4HWMLPH1WU0o+y7GsUO2KGSHE+3i+DY7S1nW+qudWw1yxQY3pCI/xj9UJxESoyRtrwLbDazgSBdgeaa1MWJM7o0lgnNo6fTfv+y1013FG+sfUPyYQM1H9SSe56tKlyMUWAmKgMffoTuxehpkWnb+qBXVQihpRwdjSFH788HptIJ4NLNGCFyxXkv4fAwq1K3mUcRjXfualZU2joZPgVYZOQ+e+NgIp3RJrvvN7jkC6yodhDgEFSDxPQxLHaDeP+Th+sYhQnR+0o/Zt8sZNjlFTDRUOrqlRjjLcLmEkOGr9awmea5sciqm5eth656eq4WGm237LH2LHv7Pux31BA/1LHRS7mMsg/9l9aKjUhnTzyRrrh3RyoKFUsr5IloK9hZHFgq9kS2o2QPQLuaqraUiNfKBwy6lxUqiRvyoLzgN11dQ7kzpEWcHzB2KACgU7su4BxH6MQkecC9xGFOcjsfU29UZntlrG4cuwPx0Gjb+C1IpYPzJRaMykXXDb/ONx6rSxSaABu6FwqxLHVBuZ/DZjE5RT+d4URRu6L9ZRbtWtEL7CRIsUM718YGEwGpWFsyDUrdnj5TpoWcd9Eh4vyYzUvRSE4//ZA2rcV9Qkpi2us35IVrE+/J/F9r2KTnC76Zdk+LINVKrPHWrYZiD7qriwQ0HMt6DdRb3R4yYPJEg2EPj87zMgiwDyI6FHU7qNBRiqxhLKrF1TMqqMGgJ28lcL7CmMmhVj0xCNbl1YbMpisCvrEUfuAjQIlIMKWFaIAwq77mcjdnt26ppZVu8ZSB81AxgjuPfhmftnvZ51M2gs2cJK0xQ9iJLod/rOVIqErIQpNlU3e95uJhSMwDTSq+/CYCik3RY0IIHosSbTSCRW0oXbJCzZyx3vRsofNdnqLrPy21KkC9mNIgFH51AEZwmfUeKEsClAmedEmWR8kX/PtD6CQijMo11iAU7SrJUooGbp8Dq7wevpqP7RgXKfXHx1wRrT4vpxRjBCZxkzOOoafxM/di9Sr9hPd+y3b8RcQbZrYbZ4ZDwpvPl/0H0TP9STYvVttjEOrEDFNkjJ/cGNcz3dFK/ImQP/Sckv5XkArYV/96bwaQWy415Ef3QXd7KmAvDJM/iA2E16U9a+vN0l3lC/Py8DBVsUB5MthZpOV1S6wVwLsgffh2Miw8v52K0GBmo53eW8hOg7vW1ELbysUyjyUbLBCWq6UVWU9MVmqmT5mhT75FUtR6OPJVDmlwr/mg/4+hHZbuAKeKGE8gGTBMJvXuxUi9I+iiFgqmY0/YWyOxC5mU7K+ACr8FnhqpJP4onoYGSJXsuNckKnp1/EIjmMWi3RSK4eeW49GuIt2TOUPtqwGRtD9jox1kpZTqcdIPn52cS7379MKMMnjQ9lLhKyyHqBORoSkK/RAIcrEzc3gfCnABZqgSzlYJnEE90S4UlL8HG6alxoMV5gF2VjIZ8K52HgIdVV7cSEjT0jI9naQ5ke3KOMhTVgCFy3VMhQA+pVWlhkRBfO5U1CtisU67gYWHm7OYP2kdC7v2kAdejpjAL0fJHAtFlbRxQluYz8F8WcnkBcI6w69jLC6jPSNcJINEAdQR8fkonXWNQFkxPIKNv2jtaIBTw1fVMLMxg7SpO0Q+MFzrJl/4eob1CP1ZyPWJjdtRRnt0G5tMC1Mkd76PffxRBJCAGJrbG8+68QCbDt1oZsCRHlETpm77IodIluObqJX+7cDCrlZEr2dZ47irwl8kvMAqnTdTjN/x08t7hyIzRXt+BubctMZXHj9OKUUThNKBK6wGXk/bW79YRoUWxKI4mDzoHQ3fqrccg1OGWkztqGgdGJYq9jzwDsgabKhakLp7rCLLBmAbzajOi5xnIMeKjBR0D6OMsZcNjcyoekpzpakblvObAEChcAlmvquvEzhwGmMh3GU5oCc0uEhyTHtZrwUsk3w1LOsvNmKo9+HuCXznjSScNI3WoMntbz4C+5+Kl/fc7JtH8RGnD6KhkQt4bQ4jDh0ss+kpqZGmnRZtSZj9dGDG9qs+Uz7szrMRaO+Yc2S2xHphgRtup5HgEePDaArCu/DgJNuWRnENdsZtpkb9cdDtQuquS1SS/bGu68UCD/skXNr6LpPTARWZJCqODR2J7ZlDxBbrO4y2PnVB+Vq92V2+MnUTVrCTXItKwhglTZ5YWAFyT2NGzCNbEQSyH85kUBUkQHJs8+93wjPl+VuEl8m45uPbewGXoX2qKqoK4gBEpn5oT2/QM4MnpCNxvw5k19//ObRfBjUnidaO/m6dURR8Luyf3u21FOp57EuZGAZkbEtBKvMHVLqpBoAqP8lvBGhBnKrjn/9qaQeoHv7Fqkhz9ZYT0WHduPdpp9fuLW5+ykercXkIajv/td+aTczx6GBnxOqgs+H+8tBFs//O+w3ElGehDWNiFO5NDYphN6XlvC56fyTPRzIwuQLyhCuFmMsVQysUL3eexaQDDtkIOr5HNfy4zpCy9UrfntbvEdS1e7iOCIzmokhOlIsSbLuDhOgoAaYOT/7qR1Crscvx3iZKX5QmqTrwq8+5P9TFEVMgzkx6VZnXifF5cK4iG1TwT7Lz1fKGfZqXMWtKUo7QtLyC0vLne5sMn/2RNmwHt4G9uETmtpMTfFAjHZDrPoNvr7+E4vrU3gyIcJ70FJucgfIIsywdfrFGU+2fT1ru+O6ncr0OzRPmQNZ4SlK9cXndOpU2pUc6S/XcH2aU7SlW33hdWCK1iySjXbhnyNLW2RNehBff3/Fb3m3Fd5Vkrf0soFFKNPOzMH2sEUawXrRJ2lx/Er7gWD1bO3dFUeNBY3RthRRcYxDAug9mhFcHTVO9yiMj/JXMDW15qWff/19pLQqsgi01WRWR2/zdBWfc6PDSxb9CrFvI2IZFv2rJC4eanyVov6BFWiVv7pTUeY3F+vdJMcAOJe+QF0PVjsLqlupwbjeny7E8/zmV9cuxKlz9cXU1Oo87zVoR9SLI2q2KNYSsJGMpjXJUhceJpLWwXaJEaNnEgYA6ajxD7tseqLRCJ7hFARFyE+wa3psGu2BLJGS736KIbM39hY/XrhahIWLyFYvjSwb7V6YaVothT3ykNVelPFFyWeTEukRE5mHV3/euJK5uD631WJHy9rf/KhAhb5TFYVi/cTsfPrfYs+vJmn+tDgQ1SpiPCpV50Jzd+uZxPMQ8fuStrY/bs+KtNx96HhExsQIlNimPB/dXIoVZNBirNWDqCRS0RIfgLgnVNbVkZfCgxfN4KPqDvMeD0qzuIlLTKRQK/OahHMt017lPKNGMJeGi8r7bpT4GWBrXqEjHmKTVis9rITBVxaxvORUVZQSKDPTwXsMmL1js8RSE78rF7BOi3SUN49RXcSqx2JjLTj8PNjhhuzb2f/Pa3wt1OIFmhko2Hx68QYqUV74zofZ/0bAdNKF44ummuqgEJhxL6gLCIxk+a8BJfdnHOuogtnk+ssnD2uiIqn6zUPWT0WI381oKUQ0mQIGU9I5zZ8YTltm5atbhajrmbv8pguqrZf0MrTJoa0S1hUozc9PliCGNxET/i1L1mjKp1zW0Iu3DQZH+zDnJAIN8yWw07/JXRtE8XDzz6KdHQxrptAGbrdIE6qpSxP3WmSNImNR71ZPniixqmdJNh++aD2lA04s+TRuuIhZyYhsMBJ8mI4S8Vr7FCwFQREQ3tbhXu+fTfbU5nIabXX09mP8GycF1A3iVvzfvza4zVzLsocgg+Aw5DmZPU1wYFuoUH4y2Zg8BjoD/RDJGzyCLFL2XZXglblwgPuSu0wM+0fFJ5ZvQoAYPN81U+U8APOyMjz+9jEWZn1OxPARI6RbNk48pMPMVGLbgf+Vbuhcm0XijFNnQb94vnD6OKU0XNguf6hb9SwC8TvLqux+sUNPyRReATGAZOArbxMsc1sYb7a4W/DgrIPVi1lABE5tc3M2AlP3vXJM4LGbmUZyDl82iky3wNZhzb2G9MMr46f2KM9Q2XfypCKeXoO7WmHSDscNvzTDDqU1EtEzkzjlW3gBt+8uC/+LWj1zKy8wut+bgYN5G3mOrk12eekAvUcSk3VRmhhCD4ZI7J65dvmgHL3mDpfiLI3nCFRBsmKJRUr80+vZw+oxIejsA54mmbs9IaOrI2S9I6d9wqZYE15UMfNkQ9LUDvTmRpgqvO8lmZxLh+b0CZk1Px+e2I2VjoU3MFEtIocZloQKbUph7NDSmZy4O73KBMmOdMYTjhTdIJzuVz+9qT9YeZEXxXGA9+8J8KhWHHYailHXy2Lu+UwdvyYWXcikrscllpSDCRvFw4ezbSS32nxm2zBVQ/ysfiR17aLXMRwos3KZ6PgMYGzPxm/SWisVS45gMY/feAQjKdtKuDEjNwJkCr2C27oJivuqG+0/ewLvpgeXqmuN8asvI4otrq4oAofeSadxw1gGTcPsRKi6m5StxVk5ivFyN6uQXygJnMyU78kT+wGxFYvO6VM5wjqA2uvi2dZYmLH35qlSfHnp6lxSf+rGiR4jLvjVO2QfWxM/3xhaC8PL+K1fHjiyH+UNHC2ACPsCFkBjJz+838T9s4rXmM1Ugfmj0Q6kOrl7zj2g5DBTFVembB5QqGNpMcM0U4ijDGA9M6RR2vsw+8S6tz6lsXGyNoCgGHG4LajUmO3875VhZcqSTtYhRmoqaU+bC80FdrCwzYsJy7/sVOVPxsPNhl+lSfNHKG+rpkC5t8KIHLcnCY/InRStuUyb3DpAojvOjdlbDAuKUreWSh8KKxayCh0OYg047mzquwV2nUWLy3VMe6HyXj6Ljxw9xj+blSfgguneXTnGQ+t1H/Et3OmZUZn2c693qGUKhQqo09YE8tR9RceJxhNBzlK+Uw3qXIK7uF17CFK6uXM8Yl7U5MH3Ju6FlsgStWPYzR40gFe9WGTqjesdevtIPlnIeRsAjc4SgH1Or86UCe1/GRsq69vU/u3/j2/+70EPMPfyaVpV04GwuqEJA8uTOmCoPWZK+82sTZeITBLUxHFFAW6A9QIXZxP0yg8ByS11OMS0Glos6s62o9wMgWkqvGEVm5LrsPuSWt1bre6SO+CWjhfFB6vUWPzwnOpo/cNyn2hf++p5XCZ/JnquBAMlAaPOyEtQJ7CKuD3DZlzddoELQy27JMHN9iCKDuy24OCW9B/LArUMH4QifQfvASHtCrj08vlRegGNOYdPy1rK+sHiSvqH3qbTyt7bbkhofMhPr9j1nDsRAvUrExlBWuxZARyefFxChPWHYuuUAit+0M3B6/6JBK8PudvTew6XrFoiNK0LwKfJFs+vagjRh5HiCCB2WTsGR5pOxjcZJQ3Dvc5GzHI964Xs302lY3IooGgnFPdKypb/SnxRN7bSaETcL3NBB71Q8z2WOUE9IZrw1+TgLT+tRS2HtILQD4uHIfxx1WLBNVPUozGwK6rr6WJYYSV3aQZDE6QRcR6RivHgsK1L0RHwgj8/wRbFJl2LAHXIY+pc56VXRx/1Um6Vu/FaK0OFUPt5tI7DZ1B7TKoEfHSNNr8gl2KcMq4wrMSpIPXPmSRSgfNIZbkTtQOdyyCwT1ns/U/EwEocRXhFJgBYxln97JxPZv1g8uvOURbvbf4nPCK9l4Mg5g5uUk0Vt0jJ3pos5X6bpxZAiKstvxlJkx8y8gjvvVKBoOYW9JpxkUnhcvB/Q8nWQs0uQRTCOvSi2IYxAJ+anfd3hshHv/eLp7Rdo1sRbW1yLwrwwcjggvC9G778wHB6KJOYZwjSunU5oPwnuExuOA9dBtIVN5Kf98jcID6MqxvkOfkby6cjahU/HZ+WXh6xxLAnt4z6HBVSK9XqD1hThMDDV7SrFjxf2Kmu6jNq3OGkOlsvJX5QrMSCplrQvoXwlNuqItPqUuaFqsh5Q1+I2A1b7ya+4z/veAMdbyCRn0AD8lxNA4f3vnc/dPTeqZIRR5PCFaAYxYZ6oaXsXh/JEQT9V26vfok12pDdHTeztsJMeeJzEXfFfvPvTLHuLbQPooWe3/CY08kQxOHu+9SnvR0elteN3j11mnG+0WP23mx+OV7RYdr6Q7d5jbsnRIU2isqfJ94TWZgnB+HxfDeGW2hdYhX+EqcIdvw+xyGg089YPRiBlRHWRk88j9SVG4JK739bFgpCAUgnA78YAPFdJbU3ZsfHqcDnHpALcR3+I5fU7Xvt1OiJQsVRxanCpgbcKgp04xCTVIK3r86yiIobUUtPjhZBqEhtlA73aXotIzyzi3TsgpzQufXo2sVRNj8kYMzflVSPuweZ2dY/8vlDPcWi8UEa1uBZFDNDo1SplFYsStLkyvKmnFo1drlNDKzZR68DI4HnRzhbTtJuVPpGZnAlRht5z0IT6K8fEin8jiHCmBayyNrn+rt0gsSrmSrBiBjYx5Vd09Io6slHD/+SCMM+CXm/ukMauBHIQy2rR8mpcyt1kggyazoiFl6+fuSYmY5DjlpO9j9YrpLZ+j/PrCfRj/RrUbo4P2BdP3NSBN50BU0nzBnqrNCVzL2aZKYPn1hwb3UNQxL45KW1RIGA/x7RplibWlzEGEYMpulR0lwGWPjQ9PjDjLPHpqDX0cSG2+CE4bIVsl6pj1BTcyOWlE8oqNamFimUCwMB+ZdwMd/Rulp1aCIskaJJ5vwpByaTWgFGY3a5VgmwgiJanmn/E0cIttU3L26FQECnkV9daMFBQwFacGnLFU8XGoy+ajxEVdz4P9wiWuXRRdOwtV4fLGfVvxUf9OMmI8Ys/mpqYPuY86w8ph4LZ/H+gjOVunLXWglizfwD8oFJwE//P2nD8TXEWyT8RzCb8JEzOEPK+zNxARrhYDURFi1WBRwbOicEIMJfFfvRyHV+0IJQdoRCSwo2k2nhuLbNV3JA16rL+IfCv1HDPIlgUyrvAtGXO6Jepgt13DEtQT87peK1vYeBU8nBnA2nxx936s3MhATsYjaHtoQ1zWbhB2b/LnRsNWQPKbmQnqF62b1x+KG383kQvzvMI2QuRjqM2+ji09S9QRLq47oFei8kXn/ppZB0xrE2L8FUhPTO2HnR5F1WT0XN+f/gbpgUskXH9HKyucAm/pWqbW3rtFL5nXu5rRvfoHW8/j3FHEDn7cDa7drnHBQCiMWv7ZgacxvZ7FAlig9tjqGrv4AYQHTr5mULwKUDuEnTK9NBmovW3Fdsp/mpvufE3JHzNvkkkE3h0/32CMBaaitRtKFWzWRtkgszfwjopBpO2zW9X587SSTUmhQr+7vCgKj+ktbv+hs3gvehioW0xNQ7MEP9eyg75Luxph+xNKp7tphWicdMSJR0GiK5gH2rQcsHbXuEtwuGrqRaajo5gMFhSYdeNE9Pe2tPOq41OancUMB5ELGGmmJLEbCODKnG9oMPys3Gv51YvP4DdBTPO7Va58rUxoJO7EZ1lKBa+7d4Rpbzeg74YB0XB8eXCmnAHrWDW/mG/Xcum8g8J29j/tOD37L6q3amn7mOLAhSZznNGoct8ACSN/AvudQQC3xll+7l1hg0y2EUQIpUm4kcZ1Tz7bVlrB50JanPj91vGFqCzVsKTQ2MrnuJ+ybhuvfMCDsD5oSjXC975AGGsZptsWlG7jnZ0X/lOP0s2+VBZ2YaoxYmLWrP1QfSQ4XHvC9IERoS4XNjbdWS0gPcwdJPRcQmswRvKfspk1zQrKhhZ6LI4u1Pipv5fMirPfp9o9IEkEhSd7oL4O+sZEAF6HPCX/KF2zURnDTvLZ8hs7hM8cb0xlp48QKGZ0SWSvb4H9/tHgArXqWXOuAhG9yzGJsk6IgVxn7Zg5L+PpMItu8b5+A1oWNcplWjJ7cR4UQPYjOE3vVeBgle2tyEQM4eFXitEUDNnh8x/5H9DzybJOu5U8Te0xCLIqGMY84/s2Fj+YO8k6QelLEl+/srDsDlr6AoyO6M2AooBscPQj0ohmKjLfnnucT/UvFhVyFxJcfhQSRlZMNSgWQyEsMP5Cz4y31hFSpmGKDPiGvkoGho+z8SqlbmWFl4Qf59fFZDklvR1ebnSX8sA9y8tjZlaPn6VqkkiRdDOE3OkVUS7zw7y+Tff/oCZgNbWZPKIx2LaKkJWhXEn7MSt1t178L2SWQ2163uuocSORJjwj1HYXRja8PHPmGwLf4Cs3lsRwSiImXB38hTVzsvxIDb3wpDqsgfaMvMxdfVTfeRpmxnx92WmUQgiJv6lyil6sKndSJe+FGeRw2brcn1Zln4MO2R2sSZPzvHiLxpQsLdanHzDxv2tblsx1bVLW+RPKOXqcUKt1/0psaT/jQky4kqGtIO0JOlRn0bni7JPMMmJhgE7cpxKLd3TOOuTo99SX0XRmo+nWWKlG5IAlXLQbUt/h4b+UVCecwZVLudrdsn+SbRO2sLNFjwps/Vosw/YpjNZAfHa70qMHLXRDsLWtgQPAMc07fs/ezBBooYKtqT1a/9H2ixF4/8U0ZuUqDW3oAIfdbLjYFLefdy8BVRHhrbdKmxcVLfTc0qrovew0nZ8arOfgselTdXu7QicRxCmTF8Fd9VPZ1+J2BpbgRZbbmkkFTtdfxuhoDZJUrGeQXrl8d+4CdMxtYPNjMedlBZJtX8HFnl6vdw+bcJt8hVabnR/dbyfzFei9gqxJYzR8L1a5+fNgjkSyPSj/RqgZkWsgft9a7f0rWR6kPvWqzdiGZvgvmY2w7g2N5TIvlO4lvDo6hTmQQZNfeZpSRPRG98FrZiJTGAoVJcGOYaMJ0BEuo8CRdKXvrwbxnKEF0DPVVhEvDgsk0hD0hQ1wfOmE1V+SDnm4suuF4av57rDDNTwvjeSHFFfYfg8ScxPR+qvLt4L/R7L060U6Q5Y1UkNmgV/m4EXwuAFBiNVzypp3cvk9n/wFk6b95VjK6kL3A05a7tOSUCL1UyhgtYMw7sHi2lQ3BWlwzM2CK4hCiIymJUIVW6SGKx0e4/COqNovXXh1jCw32jS3VBM0SV22n+EzfsjNMwSenAWO5MpZ3YyTa/S3xtqG0TpjfPSrQ+IRnNnpI07EjW1HLi187zu5Qj27RxYXPrxzvwTOqveiBRFOoBwxRN8z7mz4uIQzZkhleXT/i/k9cH0HJkBL70Ft2YFghlvB4jCsVt+AQgv9PKralOOr6IGsgEKooHBHEz5XSaJ1YSQIW+TJKItTNRsE01dvHJkY/VjLeRIC4DDakt4Md4j0gZhVETnpH/gYbAHPdZOti0A+Shiwa/XyqZoQXRj67BoAUU+b347Mzo5VZYEtf+S95fFam/haO5mGgV+p29s8L+66XsYai6JEj9VnzkIYXQeg2BEp3rV7/3dK0Sn9WmRO91rUKm0v57QjK4AiyecRRc+x74Y9m9DoE1vO5trO5IpKtg5dQU9WuCL0hHkeqVRNQ7tSBgabD+/EdnTdzqF29VZs7S7+3D7eVY0XEz10XCWel8r4/UCnJDyFt3DWR/RLUAgLHJw3tPxrxB080XXszfqb8VsYM2jf5zdQhm3zzA7l4gLwLx3w5wd++/Lxy4EjGVDfyZ5qwgU43ZoSlS1BJzafjAobTX+ASEMlKx45XCOeMXIp7ALqwGEf8Oxu0odn6AjMWicMD+PCRm2uLSBGoOhHrx9Izvcl/SqOHs3aOizAifnZLH7DmIq3RDV1DSPsm9fRsK64utyIJT8bJ0cfUoe5lDGdbIHRJKDcjm9UtQ1ViIvVtJ5z7k6fgfH3k276JZDYqTFxzF4NNhmMT7tX9NDDeG5lLZKRhsAP/30/gbjeYx9zpLJ8XxzoPsNqMMS2hszxUABQqx01fNOAi0hzO1DijB+TJ6nsswUrawK8mrDFWSdCmilvTCzavDDsLgHuNLsIh7pQfr+jniPfk0DNCP4FvxOFJtyW3LGx1XbOfTfFFis5QYNCHgG5auaG4svhtx5XccFj+KetE+MyiMduTeh74EWd4VwKBQnj/Cbl5F1DgtCAR1K+kmgQIyNQLmIbW6HuuFeiVefuw5inbRJooYjRrS6cI4ID/bfg4p0Pu9ECYr5ANMDJ1y4xMJldA+FffVeEqjYKmsSUirQm/htA4YlDsFZeK3Gk9d856HGFX439rcNjkupLbqEy25SJXLiQ7koTD/CQX5+m4+nmYN+bzDUnVznITdVroiMDY2W/H/fPT+tSMS3hO48xSLwrXze6LNN2reCOHR2RMC0QV+3H5jG1lXvhKSr9tOuP/wLR/0QCqo6SyVONz9CQU/8txLJIBQN15nlUdFxiDfoMiwSRsWC8WH9c/IuO535xwvngM9CCGFfYagoV9/XSwerZw/xwjmCTnsdwMIQE7RWobpN/t/pmFb99v0ztZKQri+pPWp6xyBHno+qPs9Zn8r1buhw0JSzz3OLZt7bgSsE22FkVd6sQbJNdufzrFu+5UhXyKV33+yy0gQ3orHx7ywGNNYFvn1boQN+fsdkrPC/6+RQWHPFayPhuC6I4zPykHHZtS/NpeR9ysIU8Jw3NAOu1+XslmthWLpoDmZQWqGFZcovHGNVzb0iPOsiXTTY+UhVx2ewMIHsl5WfUZ1CgflErYVJjyKs/llIhsgafTFd0kvlHAAKawrGSLtDUu8iA27HSPmxW2IVcHepAlBuLmVwLFBVZjTns0Znqmbq76bffYtygJ69S5pV1C1jgv4XhK5oMzb7N79C3D5NYXijCjqTDgC/Ck+KeFQOarC7TiGMdOoVAj19mA0WxdyJYE+/juwhn/GL6npZVaczRtcrLlpKIE1mr/hkFyd5WvYs3gJKWHzdsfaj06L8+/qXEjtBhx+swlTD7+YmLiid0rnW0W/83RDibCCGDaZ7xfV1Wu385FHNRK9Gu61INQN2VtvcNkOe15BATzv5xX6PoAXSwG+oqsvxqesiEf61QN1VX7xEGr5KMo8X5wgtJH4kD7kFUWsqGkg3ljuYsqtgWrQzuF3sHuTIVCC8RuXHxzMJfuEyrumPMqUrDLePAzsu1W67aUTpjM6M13Rx146YbZyQsYREre8P7OvWt3CBPUAkqnNMOqs1lNk9FwlVdO6p4MOCZ6j56k4gf51BC2sDBPEd7psBCzBLH0uEkbTd71ayEITGMPzxQsYMtd9rHP+a9Y3zo7EqoSj3BMc3SSRRthp26/+Na+irLYFUjfoKrltNp7TIE5V4imythV+E9Qb2ttVI+0JYHjrUP1o7EkKUK7RUeLpRk1cKmxYu3u8icUifqB1sTykE4FSDGXrnHTuVJlMXjhmUITOn05zElZWIXpU3C1axLB3usBCrF2tpY48YXABbNKjGBNZyJsMldKLH+45MzEqMirAysEMeMQrwN+UK7pFHrMM7pNk1pnYpN6KsqNaZhz2InJ5AQ8PnVZ0jgbJgxPJp9Od/XsaW7mDn3iKXgRhxJ1lWSNSM2yjPMs8DssS5QruZGvG0NwAGMM/rC8Z467bAHevbmnk0wPs2Qo3D1/Bjs4O9+6YdKIJhV/41JK/h6VshK5ej/hcLOK5Jm27hKjixRKaDJSdCutvllvr8epppdllD0k91L1oLc91qDztLZSHMLO9/RWJfdcWwUJGxIKZE68FP1g1WyRZJGN7T7+7g9qJZ2SayA8zNHf3ZXxogNpSH4tveqRbXJHxw9Jo3szBoRd/6Sqb8R3egqknqcqgWOP/RfpWTv3khhDBuOpXmqKbbwyqdDoLMZeKAmIxu7PEZ61aytERxK7WA1eW4OBOEWB3ipQh9SFfUGiNUV5y7DzBCkE/aD6mI749/GCqHPyPKyjMc2nyyxV1+E5o/ClBx5XDbGRWe3ySQJsYW/vUlSRxmNwSqQtlfQjV8GM2b+DB20SJEt+4BQjzY3KH64AwWUfGCKG3COggQAV6HmCS7MO7EX9GSN2VO1DteiZjzxQ3waPfpR8hxNmPQOwVU7Ml98roSw2VbbDa78MaE5NcuTi0iNAhT96GViunyoQ7hmdEnBUfNAZlkJrpGIZCdz86JTDikLNGiNoC1QDOfVAbMDuQ0JL/1MU8S5mJzD3HHaPO0dQbr5lztE4VAY7GFwNUepNGkLMdibe3GNWguZfi5Q6dKJohhLb+v8CmC0NMCphyk0iqtLw/mQefbeVmLVekzWMa2xX2aJNFN3iCLAvpid7uUym8irFPsUDnnQA7lX3UyJPtFmYdWvNBv+UTQpTi8gG4VWud1/zd20juMPUBN7rXieRjJMV1huMTxLU6E4UaaNs7XArP0jMmGnP3+2StMKhhN692GqbjUTNT0snsWEgyDV7oArFJIX8ogvbjuSIRszA2fx9oH4CFCs8yCOCd8q5kcP62CIQ01ECq9LM0K7GC7+Hl+Ot/LZ8gx+bRgC2kC2tiMbVhLi/KQ77PVrAFbHu0GE0F3ps8h3qXnoVoqxKY4rm8JT8+693kH5aDprsUTIux64TvJwbn06nLI/VLnjdTxnjQ1zY6pnAcbWgMICj6bjP4yrxiMDpc3kQrQGPdRS1+itOE6+jdJdTrhLy+24xx+GthXUKr9fURNb1OHEqeXj7mH4G6P7ZmxYJazIDS1S+QE6gT/Y3wdTIqbVf6VcA6QLyoA7Gd4ULmAH6cMnsX/gOR7Fz7XkQ9/hDo+ojwVKta9aXzTcC0AqKaSCDWjZu/YKpusfwk0DoElujZgHg3p7XcikUrpUhxSQnK4qWfKJImL3AsexoI/320+JLD/gL9O61xk52fcUy8yK1PFlNzWqBKxhx2eKW+fqkCvDno2bPBBL15qpVfbW9mp8LftJtqEiKq44YKZVXGephHxrucwOb6FRlITUV1Y3Hs309lIaG2GoH/ug8NZGkOE8ZyMKfFvguHS/iEpE/RnzlpKwKvHoUrP1lIidDsaYkzXUkkoP3HhgJg3zWEX1+wPnqWreiiW61rEZFoaxM/23lU2KdfNi/g6Bfx4Lz4V/8VTKxNxz7mTyagRQeINXZBkMII65m0spk2UHGupeYdvY9qgiVSRcZO2u9zor+hRRkGyzqFj7/LkjwGblO4rfL0fpZPBsbgqoWeTPQzGSNZj6c2O/HeWxtzYmejxjBVqDS+Fhod/l0KbaiTTGTm+77Add8CTy5KdmVIJvhYdPevenCej/JuwbrFqc2o8ghYAGYEjaZezS244PUMQeck8bSTZf/j4/EB84tdggZjd2/wq+N9DDulChi9EHQV/fRbdwrGDRmsEe1ICeK9Va+R0h7E94mIigrnhIPf1qLoIEYR78cdGhAouK71fkWs0Hf6IB9Fsta2lkfqeZVQOp3Fdo1qChICD2/R0qzUa3W2Iwq3dzs+nbz+f7cvvd8xnNWvLGi7lAz5HCiEDv4LI80cR31i758Syu2dZZHWsFsq2RYu6Df0RtYOuqiUqfupIJ1gHX8rSxI6thiV8M3HVbTI5X8ta39IoMZdTgwFGPfZSY1r7Fvey/AFyXFPsBky1YnNrys/33khaKFQBzigAWpGouDXeWhu06oRx4nL9Cc/YwJsOpZPCKxx959MKR44hIFzDkkO/rDQ6s8vPuJS7n50pEXRjOHfCJj6h+2BcK3A0018aG0Rkvp3q61Xq6rEuwUc1b0ofW5V2trPxroBAhUzsjngyZOewR2v7gGqWS3eczUtoU3lEprm5x8wu5JXqO7iAyKqMztEnWqx18MXGxvtZUqL/+QExSbJvEkYsZqTjUCS8B/JMnOEQJ88ljbHci+nXqdZ0vgMd5ZtCTSS58Dk+ktj8Uf9VQx8r7ZNLRWgVajTvxNbbGpZn+CT+EezaYEkX/YWhgh+wNwrHr4KFpNpIjCaV448VM5cG7LyVTU0DMoFOl9xDg2pN4xikkYP/OWBuBTABoetAhIG2vThRfI70iw0MZUJX2uhHU2Ueoj2JuaPlpGF+pTeN9cvtdztTdxlTjl2YqG4G2rivzarw3sjzoYdD6l8cxOb9PoJNe6J+foR5BUTzXYv7Y3lAwC6UNn3bHGDY//EYhsEWZuAtjkYFzRrmrSa2hg/d0M39xZW7VUvUqW48PxyJEPPj9c2hgjeaw6uncTRWTIk23d2+JrK6mPvhO3mtdPfLKyI/symw3ODBjUoK6N3Yj2Exe46CnMOuUOsn9UXzp00JNhXT281VuLk/pKgjCkB9LDCAgizxJ0I8cANq9VjRyLMCAV+iNqgfow/w6k49EplP+Erao5JMayekZZYRLTe6UyHrA3JY0Ej/Jr/49IsqIMtZqsq7CqxdDnAAJjbfUpTsT6Kw5wweS3wm4tjGmaL06Ohu11RLq39RdgBnGbW1OGkXSmn8ykKhB69+Vj3jCMkvR3e5agei93+jR7BImoxJEaaH5fzEbgQkylutm/CGFr0S3N0Eyjo2cH7485S7QRIypCdK3ZUZTRVodIh8hC96xDRC/rc1PN6OcWA0iJQviIS7sqgtyFyoK7LjypBR87c2/SJRjVmTDko8r6py0WG2iD0ajDBKRW1cYG8ZORYcY/w4I6XLqZwny4g1lATY/u5PZKeEuQqT9E9802NWCsM9UOi94Z/MPOGlZSCLllTIAzO8oS2yrD9CYDiKLd6c18K1fhUe12+28FxLpzjamOQHyWfR8lFOOuDg35iaWJYvJV9B03eehE+kWc12cfwVaveuhW0Et0rp6V3Fh6OgDlmG0e3nXHSzJ4VdHTVC7lBh+Bj0nYkhSL0kncs667p8heuv1KtdXx+TzcNgIPcZOQ0TdelIp39xvg+qXGmUNeld7t1sXIuk8skiNGM5O7x/RqNOXgQByJaCv7Rfbnvlv2NNS5+OdXTAD3J8609tE0zZr+e7GXMou4OhM/j5Rn6AOAvGcVrMwp7qJ3zsZLc1AVcjq3mIEUyw2znSr3U8gRZskHR5GIRv3X0oULIZQWQmk9cP/m7JQKfBVB92gyXSvHClDkwwmWQKRvk4C3ZI5tbNDs20yh/Ccj+uR4TbUJ+GM5GzDm5IoO19mTflaFokVPXwBT5mhyyQEJ2PLsLI+lAj47wC3fItbFYIcHm8QxTNdZIGJeaRBkOzo2w8Du7nqa4N9bc9LKpR2mMWYoOudkiXrVsYjh4IrYU/sQrRti8unKUXpVYHRlqy14aiXv5NGAQ7Mru92PsxHpyUVhiAEtIclIdNcX3VQv/hXVUZ14zyGgZAI/HF1CFXnTqcSFLGCtg55u+pVdZexSjjHZ/TpIhImIezQqJGRJqUpk0vQuU9K5a7O4oNKxbrSpLqqdFKu5GmQTFIqC9naUlvW9+yZe6zdH1V6ccUQAduaqR3Fv/iYvJUIGbQpbNa6lMmldt0Gt2upo88IXmKL5+ZB9HK/4BisVUEh5LGfsdsPV033km/0jM6BtYZxJ+jKPBSOEsPE9C7/U7IS97daPy1F0rTi763A1YH13KEcgrPA30Z15jnwIOdjxkhw/PXKSjIiPpHYIJIwuJT4MbA91pFjlE8LBxAg/2YXXpp1NClxD7rRi5KwAy5wdReundLXAldGvHWJZUBRh49Otq1xTmG7rj9uC4fblPh3L0sGX1Qpwud2xEYZwfMU7ebEOSL+Ojtl/kbUDU3yuhEXqf6l4a19xTKiZb23Ar6/s43I7BlRmc+4tOQc6G9ObaoTj5vKI+KcnN9dc6kz21Vis9VX05kp2l+wSSgAVQoNduyxFMSbrtc9eEf3rSDF1f0h9J4gCPHlotiMsUCyM2wgVEjZbe+cB4WE7tCSgfApARI2oKGEyH6ZiTP7ZsYjCZuMHDJ4A4lvrl2mDnhJFlIb5RObZqJEjAUCf8m6VR9LrNbRgtRNsiAS2i8f3By5se3eqwr8ynUoTpdeKw5BYq4UmIg10uPvNV0D/tdsg5E8fJazuf7EuvVYaE4DcQuEzvK+HaiUJ/GAbfbIdWHDVpYADqwTNfwbanFs6LEA3dZDPS4rimGHVhc90tlSFoiuFcgoEAgX19tq0reiZtoH87DOyf2znDYK4mEaIfQjflWXx4Xs0oUwnKnsSho1SKKGqP2B18z83GHl65GEgDU9J+9d3I7E9nrx0t7vznba940H2DFoTCOr9tbtbmjeqfvYgxHshDCnQo1aS1eFtUv9uTyLOaOvBGhDo0cKybp9lF70Kyc7m57VTqJvEP+7+XlsMoIdEerQTtZlovpfd4x1/JujmIBXUYlefagZRALKuBoRO1T83hh4VifX0Pjgdo7oa3b1U2DIC5/59VELq1GKFeIkMLro+Gs/UojI4hj0N1ttER1DlMtJdqmdbiSlN6StlRwNgQTSHsQzlcv2NoQsHlWe90tdusev0LlKX3LXRAp1HnMl+6PAx/unsEnJQ/o6fcnCar1Iet6Qss8vqzNy8sVc76xc9vc+5loAzhDRVXxnhMptzSmdrctVuoiYFLGJ+gGM1fkFtGCq1LRCjZ3wZHY2/r8D9DwQO/Zmzncwpxn2jXVj3NluJi17tpyM3jruxNqeFM7X17g/ukuLrsQFg+vzNVar/8/j3s+NYnzT4gx1ISUD3RJoIqgBXJRul2DEx6UK59nOypUz0cHdtffjcgo2gWDFnFuCZjntSpxqEzxsi6zfZxtFkgA4i2zdIr0b/Shd99w9yQMeY8LZye2Cc+wp523FY61fb6XxxmTBJ17vdgWXbv/UwGwS/L65neZl3NPglkbcfPUbYBPkg8LXYliRdI4eKh9v1dOS7fzgdkc1iB6OJKKL1pk+LXZmnq0HPISYEH8JF27JX/skZljkpzz5uvx/Mj7pAMlBJ9oERxhhizWXjH02GCGgYHa+m5cNRNV8PD8/7TSsiW30/G4C2+d4fDI9y4ELYpWyOPqviFRlwmy1cwnXux5az9maAW+csXDbaAkpBGkp8a9+MIghu6O/yJReJGr9qtePAZ7NZSoGB1ZAiK1+NUik9dljql096CTSiTs988W47/YVm4bEHXwlhEwwTuoenkEMIfD9kTqXDSOPtd7qpzTN+rggxtlj+eCGY4Q6MY3QVUqbLXQRYn4jrM69aN2fDRvN7gV7wpCGYyjzLdRqdzVjBhuZhKegxKQw4TLR1sYtXnEWE1pMCS0I5SznuFk8ympjBH3HCLiy7wyCIOWtDLAiUtp+fHSaYHFgs6lnRo4+Dyms0v72ED5wJ/Pww8xnkhWiFCtbNKtAaxN1LK8n2V1TlNC/08Vm1RkgYuZJwQx1y5zlaOVYtPdkHJSw+6ZGPUWkBle/x43Dy5p036FVmqLUtGHsuVkKAi4JjeNo+TFhtWuMYM6WJK00myeZ45EgDPwROaA1C4Q9ZJgnn9gicVhSgjH/KpApHdgokCo00vh+HIJ2dKDlYP2iiVRVBY4NsOn8old3PaT6bw3lZaC4z9i0BOP4heFHTX+SRG5yiqy3mxetvgsjKHeObI6iKMzxAdf928F7+Ab5VFudGcpKXMyUEero3EH+fZ0ntPeCm+yQNoMj6YiaLemjniGlhJSTdIioAoM2n6r0i/P2nn3qfiZBq/GiiQb7xyRHr97WZrnqYBgCJpPcFMF60c8GePvchklVUxQntcA3fOlAKMYl7rfBW0MuEhb+Pa59StGMPfDjC9cdMAoZ6L5VhCEcLq+h0S8MjfmBHuNg7OwimZS/p9wfYD1vgJd5kMHGykZ2ZvbjDqPxwfrjtaK2BP2tjvucwjIeQsaScM0/dV+BPiPs0RyAbRytb1ibHGhBhs4m4Vl6ofYoBVc3Mnc0JVofaqwVDf8rsHSpf4z6mnK1KCm6tMU3atMjeO0rY+WOdqlEnyk5UCPaOjj+L1ZyBikS/DGasUunE/I3Tm40y/PPkB49GB510xHv5xTZyP5NySgM6hTdb2DCwebMl6inOUPTyOe5sNFtMp2EOX2c61gZzW/Ij2X1/kOqqQs6Tel529j/8IGbfWo9Dc1c5ykFwx2bU+0Ihxv/4gXRfpFz1aS7HYgvekG3BbU1vp5vCf7HSbdRlNHeOiDTGpjM6OnWcdH2HTHstBF0ZhcgLeWZaPoqf0caTczYS34fJSTK0xLmkHSeC/Rpw3ljcxcxZQgngkeJNtJ20T5eNDeJL/JT4yqSo7EpU9I2+YzfzrsLsTxLYLoaCre57rTtZ3FAk7N9p50RSfa0Kk9Km1Qrgj00gkvtbWBgOY47UZageLfD4Mtuc51KUULWFVUp1itIuk0tWFquqi1As5qsLap9s/h9WZhJmP1jIrNbHJvVimacO/IBBZXnEUFCjc0dkR66zQlE1u9vtcQyyfWl28aI6SmdSbp+aeJRzBuFWDaiVQPbIlHd7TCZUfxZxU/TSmjlUP8uZ0bFIaLTXyfCghVFFkxJ8/2O2UOshDRMXufrp6gtwxzI3vYfFh/J0HYaYXQMLD/tioWu/j6qL6oAnE7rsz2G/Ngi4841SPaC30XaQ1vYnmZoThbbGBPc0+iZS52gz0soRMACt0TZbFT80dF1CBF87XUvyZg4d4q7S+h8FKXa7nBp9TThHFxeIQXmi1F9O8gFxsYUgAczswNzRxmsih2II22B6KqyVhc42lFIE8KNC6eDDnWUSbHcfQg3i+TchIEGkdx+TGYXbmWE/+c/ywzwEZm+xGNMVyxe7rD9un0iHEEBMVFv8b4ghQMWHIah2A9XUL1K4Fb+g7+MS1NWDfBIh8o9pU1lBQWGEm3DPtHUbqqsRgmOgQv4UgeB42c56qR1a+TSQb42fz9uibKOzEtpOjM8nnnxYz1GM2ltwl8dihmIWZg3/Ev95OBPZosWrzPWpuF4gaj6cshq1LL2sCt46rqmpqw5LDlXPlu6KF07u9ZpNIa7wVSdJCOxMakasKe30brq0NAsREICoAcDKW957S88FxpTt8z8cKT/EmjdCcqlmLd33Hd4hq4MjjxwnId6eyiZ2JXs6qCOsi3yaurU0ACQnYeKTfJ66SoT3sbfVoZhiZdzwIbg7N0U6Jmg1M/K3d9PctpQCH8mDSgrw+rEYnQ2Lt3ey3atnrR4TYWH6yUMdCHb1SPr79eMdMJF+31bW/c8Qv1uIlZvnsA11dFUByM7nRmG1E7aZ7CE9/YHgXFMJBaE84gMfXJagIsznvKygCv9NtTxJRvs0ejLYEx21Vfu8Kv9goCdmpodDHTydSJP6cauv/u/FJ24MWBJVMC4KoVV1w11Ob4OqMZ6wN2MJs4rcGZFJxW2JgAWZta/CEtiefrfE0j3ZJyrs7gOCe76m5NlsO4biGRctjx9cOqjPEvdcUyHcqFJgtdOG3l6viCfKFiiqqfyJfySSooynQastT3Px9fYO+e5IAPx8gcNvKMXiaefHWusXGSragUtfXsVjULgBNYciM39yKcE7sXvCBHcVqpuek6kO4yeGVOvRfV99LYpbPVlwfsYX9RD1ofiyC9CX1SCOuZJcuoxIw+yK1vAnjTXDlcBNaiwrbZZID+3Rbl/4NCrOkdhEuOB2AfLl56yPx7EXtZsB9PfZo78wt/scbDcCgupIZVPQi6HXfV/Yq57tDk/AsUc04Cncdjh81K4JrfaaCoqJGkF2mTsPx2sQMUWQlQ8IRnXYaNVsXYQNzQU7gM5f3264NaZNQ+SYB/z2RdkufZwyvnAnAI+JcL1tHZf3AHZDFhqrBccRYtsy3VjBCJIc82XCRQoNuMw0SO9QNJ0h4+CIcKkQ2zJgiVmQQAWsJ/NbgO3f5BIUK/59foNzmkO524xRT1HAKQ6N+XSy7hx9+tB3Mrr3RsN/6Ji1yaTweXUHiv4rr14IHvluX5JECQ4PIx+2pFhnI5AYQpHLnd9XaxdgdVU1tsE8Np9hhzN6c6WCW92g6wu+q2vdgcxJiwbVjTg73eB3AFPaE2ufDXUOIynXqC8UCoG6b51fNxyvB6m37UepmL4+79nTl9cgydy5tXHSEWiyYExURgb3VOOCQMLpCWraeL3wA4b9FHDv8n3ev2G3FYcZONncVBHfsvpO40fe9srdO2rDa9S/cIqdtalMLXpX6jz/2PKYhdh5tVn6rdSrAl81fJk7TJdJkFGmHGXEfwrURfAm+uTM/AkGjbyO8i1NcfPwkVZrMEd8fVtxvvQDpaPwiKJY/JOf5me2NkqcEF9vPbjxAJURH2yOSNXlwOwl0uoKZ8EEelad9Pv8yt2gSWrrTuvSZAgcgNPpz0poKlUnUW2gUY0lABmUba5iyqWqiZKFrwZSjkg/RTcltS/ODxVThDos+3JYjoAKzOAAAoo16dGSpLZrUc3Qov77lxjl8pRnF3IxLFeClv0NKBQUAing3T2vSv/GqaavU9iOKspaNjkMG7ddDCkXsloCHnmj7ZruPmPz9sPjtG7EtbZe2xEARwuS4StI/hn+1h6Rwl9NOM9ALAUBa1J+4WBSpTwqFf6jepeSz5xDBo2MFKDTC1YQxmVo8Jg/pmTN3k2mn7Z3pbGaRJ+H27zscIczuL4DtjY3HCRWgfgXR0nGB4QUuNon2kMVIyykfSBq19MsR7qH7dVJiTnCf/9+ymUTkBuD4g7uJR7qXKJ8DQF4uT5KRF/nsTxR888A1ztPOfJw0SNA9qMCn1NW9w9vqJJaaUua1z0fjywtDjUBlNGZOVU65E0RjLOzNCCGzvI90lRjFKCWB8YtA7XqthJ3JQReKzKgu778DoY4WGJusZUjsRkzC4F5j+7YnqRRAEXLrlY+9nnN4A13IInJZywyy2diAa/wykIrCAF8f9na54LXOGOwRN63ATB6PGuKVhpL621erhPt+6UyaZZNuDiSPdGopc54AkvAT3qO7l11Lj1i1EFDdg+9RgimDJsGKRh3WM3cWrKR52oTsZRJqS9u+7J0taAxClBV2trk5d7QYdCQF9CvYaFoUU7JTO7n6talc/tkHoCnodRQP1RHPLlpJewtRBpOpjj+FHLN8VJmMuIT/enQJhkHjWgYEHk2eJOw4q/upb3LnSwo/k9e3nzsP+iZRBU3Yy/o6E7Xk9x5GY8Z/7T/e0JrfG47nUUwgDNmGP8kxhIgGp9YOxhnYtJKug+lWP5Pmhio4GTtdhyNtv4ukRAJSmYS036EkbxFvAA0L2e8rNJzijJ+z3F8HC76R5G7AnM1t9hHCl9XyH6qLYoR+wagm8jucmjxCQ0QuJ30nVvhPKhkVs8zX6ZC5a4yoG5QAbDSjDLCRXzpMEBjr/CUg6RdR5TMFGa8f3Zlfe+xDTkFgoAJxZ1jjse8xrt8aAIe5kIZEKTF5bnp8DlDapT/s8RcAguYiRMi0jZOExuxpuoEJ9/whe8ozaSbLforN5nlV9fMIcSnAiR9+0s9pyTPNx7DyenqdyFzetsXYsk3nW/13PoF19sCaUlv33B38zMKtmV8W+PELOCWiB4jM+7iJU8ij1OOTy7lb94iahpt7HAmrkq+UBqvlUZ1f2Th1DwtHtrLTHfOApYK2ugp61RKDXW2CqGZpQHQY3zWUaMHRks/rIkhRelUeBIFZ6Tvhsexe56A0Gy7dp9LTNqSmUV29ZJ5fR8WS25Fjah5PVtfkA0j+Tgr6CTa28hMDSLm3WhyqAtod15B6HgRlDeylQQzgphZyqm5UqQ+YjzzRvJtGR8g1Kvl8ik1uadQKqdtb5PGrBwpX8Lk0lahAWWL+CZWsaMDigfHmzf5tIC7M+MD3hhE80ce+GyOwpakE+iW5fI2gnM/hhvnpVatsz541o1dTCIK1WynJFj3Hq4NloCBwrWhV0MjT572B3ls3+ulqP0VP5oaI5BZWKD++f2WfzcL6MrGpqYT00cHL2by0smWuqKUL7KgA80AXYj4w4RPkoBAe+a3SdQ5YayY8uHAIx28GiY68d/H1BBozBbxJu4K+1XH5hPWz0dHQjc5lF1uteEzZGBqKVeg92tZ4IfKslR4HJ5ALHLn47+PSl0IDOyRcSPDZeilJRpiFAoMW0/JIafVYGxnXTLoO3PTOc+kFl/TcL4N5XVTIUAlfs6a6C7yUEBeUV/DAMQCXV8dTU2lPNxj3FsVwUIUiFAXfhDRZnVCIjB/1qHthRLDcdVHLx6jBo3Qa5TvTG4mmLWt1ElaKRD3VAp8qyPNXYg1kKEhDgvw16vC7Vfe3tVDh0hou17L9LodXrQ/O43xpoCR2G/Z2ofXC/qVLcgMZMlUGlE5ykm/9zDiJD4BH5JZ0dy9cJ3zHR9/vvhzfHAKq0tmPanUItlBr0vUOfiVmXQ0C/NI/B4ACS7s84TNu4Wm7skSmJ6a1oTG7JSTMcpaBRCkPHRYWaFI+4OLyv/bXyVQsHkXzOx/HPScuoEqmmAKMHdmgkMMt2yzX3Tt4apwHt8QC+PV66ZAz0w0DdJdTTywKXewgXp67TYvpXrFlp+LMi4rbFyQEVEo0utQy1vlKZqyOCxHSv/WXe5Sjck36xS7ZrZ52ojI5V8OhuVC6LUbiYCz//TS/AMC907Jk7+kKtkKpH6xm4+GN3EqrEeMZqig0eNkJF8QhPqUtPmo/6tu0i5MrxhTzNHwZt15kymDZQRTfGpvvUFcGv/Ib1tPRnyRXlCBhavQ1aEeqvSxdaE4uEGTimck9jyO46V8UI3VsUey1y1kH5yHzOPQUXiFLHUFCkZIaB0HH79ZnHPzPbp1JwvvYYO4DYyzFwhG1Anymtv7Fxf5ESbP/3TD7047sjhfns3LLiXTd2XAkXF1PVcs8kWKDWejf8C8iM16NNLMTrN3R49lDqMv0yziklsFEH4H2m+3sbs3zO5g/CAbQ7iKD0xZNVT71kc9zlZuhf8Og/at0t12uokG+LCrm2TD0oLSlUMQAB7KkrJS5S796Mk3+Z4m9+uFCikd+VREQgTY3VsenNZkS5Dps6TjVfzfjcXMiLOewfdIKN4UqD9Ft2gmHTl8io82q7omC4jLc180UYKO1Fuf5BgmcR6vOzc3j26oNx/j/DA+jLwuTNBwqvpHGi44lZQRYPj0lPNKxhPeT970h518rJyCqlU00+lXkQcQyfvqgcgchj9S1GI5pxFfHhLBzOIvcJcifcmgUI3f6XcXOEA1rYbVE+Kbvnw7Yvm7H6zjzobtIO0oXJyFWHBk4NbS2QPiJJjwVftijNZzA9q0xujxY9YL0us3aQXcgbVMjfK2hfW7cyh1LPU5cl2p1z9kKAA2A/j/RAWUrD8BEH7yOpmhCXiJDi+gO+DkbGjjeW/03isusiSA1VMUqdVgiQaT8jfbeu9l7iFv/hAmBXYnFktTVxX/Cr3D0S2wwVJD9yqCnl1zNfu2emwikXhafc3knEOf2fyNM4w4dnBsYXmbhr2fzph06kESgexvSyLHDyTWpcvfxqzwG+eng3iyDJmtq0paWME/R/RqV5Q/NV411KWubfdkxMC1Wv/Si5nDgYS7SzYoXNT5YAP0vrb3jouV8/uKdoubmfvUd9C3+EqndO+cQs87yNnz/w64nuQq0ewHaxYENhLHDv44zCSRCM7YMdMOOpSp2uA0fUFSHiE4YDooWZWIwvd9GF1x5kVyJfyKy3b+ewJQE57b9Zyyeyw5ooFCXSkrGOPyTGF0SqR8Qz12+Vye1lTFc7elRnjhE4RmDqlGmtTR66Y50RknHU1AvdZiZZBpqNRIh3qXt4k366RfgF8CSyfookpyQvc8nyrB8OM5vuupuNUNN/tAZEEef/XtTc7BS8G2mbuv0KuHnLP1mb8wxRf+SU7wwKNvimtlWhZD8Ey2bAW5F3jjE84m7OF1LojaJYeWykCUrb54WYllcAZ5V0Et4dRKDKQtLvIWK9rEh9/OC0IJi23uQoM8fgcSJIZe7jtzNdQrjEMEQ34kWoaVyQ4dA9va2wIE5XpdPLQMvBC9rEu0BNSpLoyKDbx8QcHpuaJnKrVfLsJUL1aX5IxkMUyJPMh9j6ZgO4PzK0f46oOvcfH0zK03WEHMyoWUk9gVbZ6OimH2Fnf+p5JQpNgoY2WkNIDSyQExMswA2slkxI/zDp8CGeVAxV5OEo+64lXXJVGY0DQw9fuQwAjMyL3CluFRcwvJIT4XCvPmOMCtxdnF5KpqTDj40lIhuJH0/BvOnt9AM+oTA08sCNhbdju8MCYUxqIV9buS+jRoOaDOGMxT/xBI2tpE5InQGk8C4DL1gJ3LJAvVK1i018ynkLodwdrqH2G2B9yhkU+darbi2F9yArPP+tmee27g650z+WeODqaoCNOGFlrphhAqvo6XApTDlI5BC1pJ6CdTHFDNOycJ6V9ltqNBl8QZ09TRpKafWvxqmj3ImunXajXyo57IVGoq0VKePZFIRYu9++YfwFjZQJsZAZgFeFKOBkgBa/0F5H5OxzSCr3VPROk2fHEtPOglVL++lus2/Suj68MNpf6cu3lkwuCulslmYfBDeMX12UEZqJ7dUf2e3d6c6LOeDq0UCPmCNc5vKFaf0D2TJdDPsJm34ToTf5egi5bws3c0a7maMq4Hv6GtuJ3zoF3RMEVhlKE6cK05Dbl6cg9CDycAfzm+AAq2Gi6ETAWpMMimuVv4Zv92b9BH00csFk2audj9Mxe7WqElkZxyWX6UZD9XQpc8g/2CunEuBG4fML7i3VbO2fAQP/QAIPkfJi2iDV9ga5a3+IQjslucgeYtF/BZ+SbW28A+yH/MPsoqZ6nTz591hk0Zwe0rFY1yhK7ku+ckhCXBlB672lBE5zK4Tesy30hhnfBEg1f8WJJKBIxRFJoLSJGF/cg93b4+M0deKcG2ZEAw5Oq9t+aHNBI7k4BhRr48a5P2FJH6LRrto9dMCaaUM14BfwPHVtGgjJ1SCzzN4D3PO0IfIUh2Blek6kCb9oW2gNXJeWEhDjXLn1f5l15LoueC7hRemQOjKoM5Fg2xDqNc8j/H3jM9edLo3TWE5FpdFnCs6eWpopwPKASZxqwEfhoZpypo6ukia26UWeIs/v57ry9KNUoyobSs1jFDtE9c3YhqlasMfmESzJUpEeXytxbGIUbE2l00ALlUAv+aPFzFvz5dxibtdX+LRPgjv0Zpw2YDAZHKiNY+bPeZWn6+9iG9XGE8vf/71jlJqFk11HUvXq/QeRCXtJP42bkHV27NnSZemvhbOmWCd/6NrBVrlJJ6PCqgLIIJ7o5B+YTV28Oe5/6ATYzjEwfT2V3vDQV4ZV09BnV7Kun5D6847GvQ0IjziOh2VAOeMJdPtHUNreWdZOXGBa/erroi3CE5uaNE5LQTfOJ4NJkurjjcXgRU+i2ctGYt8N6k4byU+JsoDrjvXmIQ1mLVL718DvRvNaaTKcHF2Ow6QO5sU4z3Xqlm1byft/R+dgt8+qqS4MsyqW7cqdW0qQdNUsKDWEIGaKczBd2F8mY+5EQMFMHz7EflbNC4XAsm/M2T9cVe9RQ6++0W22B51ggOb75wgV2Ej2PIvtbnQo6qXpkpx6/L+HyTYbRCayeBw2OfaFuzpb8tZsRw7cIWYaucMyyRDFy2Z0qHM9aO0SkiNdpcjNCTNkQSMqlQj8AKzsE7S2HDKjPoNovMMWFBEzzmYWMjsioPyohjBHVcoCVDHWqDqL5/+rwkAhfcnNySia4ri/4XM2irYlISXXjttcjS774Y2kzZP+byYcAc52HjonBToWqKRPz1AW7jBANawah157Qji6++etaPMBPeN3StqWcXoA8d5ErDRMfHwBw0/9MHHR5qBcZtq1/FNs0m0R5GP19GDsmfGXY0vKA4HQluMFcoJTSc3woAdUzmVce3ZvHzkr3RL4okJ6GcL9FwERAfIH8uUdn8m8eMfIaXOhV3+lPeIKt1e1fB8MzhmJ/XS90q5fZCCxQHXoquTptcBYNUWZBxZt1wIHgyQfayuzlJBvlRWAqZJxfIq66Zef1Emfil7N4WGXUgNIqoPnJjJgOGbMTQ72Kjygsu1oXfqzuWl6iAjkb5eCTFWu9RBFBKcol28oLlGcrN7cR6tdICmJx7t5HvD9i59mWpUZlGlLhFjl4qWjxyyg+77XySuGwdFnndLPfRBLiQFP22dIqwT3bLFCF2onTtQULP/NFyqLORcabyL95s770/90po1BcpOPReoWYQAd9v9S4v3wVyr/I5T/oY87WS7IBc3Lq5QlNCd0wlP7uJWWBpiv/ra6/RHIhHZnRro+oFnYcHY4Z1UeOEPcxfZT5wvM0cykWUsScEFg+XiWJIzHxosyXutj3ymAxHiUbq2lCAw25Rf6tVuq/XJPmca3P1WOAkHIlHkBOkDi728QVVPNLSS+P2d4GkpolKdMSPfeFHD2FKVFhR1SZdgp1oGbWvOsYoe5CeFCsEYxpAlHY0f8CxaZ99KZks1Pc/2YhsMKu9CI0pAH7MC+wZ3Onk/Epx1gxqUSG6EbRo4aOSCHa3tvCWxRcaRA5ikLAerrHcfxiYnHMiu383AY7EIPcS4FaAJnUV731MrmerPQ0s5QpXt5sVvJa9WW2dp18xb5KByVtw1xr3GHTofrHGF2uA+pOU/uuug1/HfSvTIYlDMumldiNGb7FbArmDdczKo+RXRRxt6J4lKUCFhZL7CpQ3O4qk74s+64GJIOhwnnVjMZkJ3ZwP4UNMHsS3rB+f3ZIq532GsbRxzIbKR/BWXVWtRIPj10uoD+868FiHor7CLJCc0EhGnpv41PCs6Ci+LsogBhQYZvOeiVf1GqB8b2AngnFc9JOJOJVZ2JirtWNN4toJdo9hQTxoMfvxjqb/hPpelVRIs7l2ht9sPDZO1ecB3BaLGnB3Y7d6OkgiBEwrff7BG76ZQF72gsHm+gUuNzORVlqOl/uw7FCRlZwaFN+dzVfW4ALAzSYJblFSB9RFDokT8Ag34DzPlk1MrbQyh50dGi1C+GtSKOZfz9b6uT1s1FfYXFhjyTtyBS3+NL1f97gGxEE/TRfUH5tPIbfbhHwhuIrlbHqjjdsUWsEevB9ZAtXmQoHWBWqW8Cln2FvZQyhS2B9T/RBkOiqQUlHzJukMpXJguQoefG5cn1CCh43JZMGKyDk1T6S0WUJavw8oV/YUJFz8bUoZ7ADZYCU6IBEiao+VmJ4tQLL7iEXGNkStbkmGhNFLPrToEU0nXWh2JtNn/Nv23/Jm2EcDnO52o2c3t6VVQmhr77TBaYnATz/5wMj+n/kqrO7gzH27vQmZFDosLm03clXc+xsFox5I7IcSGu8pZKisPi4WrRx0VzHiByC3VF8LO32i2t4rfvE7vsQ26W4VcNiOPOPYDq1pPCF9QMp2uAfMQRbfurPonGpOSs2k+Ol89SCwzC8FZctk832lO/xciMrF6p9tWTnLniczS7D0iqPMwral63OcvGlMWo0Wxu66v3Z6gk8ow2e1ryFsgTiv2BGQkMcSw1yr8VJdtpNSnzq2bbV9b6gHdfLEV7dOB/qRS175piMwIMHGfCB/NgxjGYBO3j8vSEjuFP6B++rk5ouqfiZdd4Y4VudsWSwGwBrCTPsTJud9sYa8NKbe455cIHLE3y1F/E62Zb2MAZ6+6Nuf71/FY2xJeoKw8yq45rZiLsH18iNtx8D6UPDLA+tQljPygeqmqJkr9AVONCLBkzF2qt697dR27a88vKprMpca9jt/lHB1aHxFwpGruES/faCgxX/mH3FoJvQKulWNjXVIfGMjRW0ZUY+B+vFJI0u1rAQcCPg5SOqrjNtGk6BbldvIYwhdhmxr4crtvzNl4QLLuFEoCsm3KJSct8Ktfuw7RvNyk9jX+34W/YPozvICCZHEqT/EEkND3DjuwDa8q5fzWRRQQS12/Diphql9gKHc6b9Kr/l7CD1xPWC8CtjCTpdfSPiVUFi9J6M086EGoO8y5LMXN9VPvsAf7x9GpGiFLb9/im9gy+xuGSHzEVqUbpaMcMkFKcwGaJGvoEiq0mKDisiMT4MWHjG3pEEJ2XvfLHLex7KFtBWR+IG8bdP2uynszj3q4Hb/Mlo2x6J8RUsAOkhSIzsfXyy9dzLbkMS6VRtTVx+iPgJ/0QdNR3KtizDUdzYTqRO1/JfkeXJLrZSh81T1xkBfLcSeFapTIHUR6ANlGqmQcs0P8WwTaFusm+yAnYX63J+LtasgnpLkHxCK6vtOEZQX9+zOIgwV1IVljEcXogitjxuf+gGE3M4l1Ut3odPukLd1D1ZXKhC9XFMqNOMSohgqQZNBkWMH3PpNi58uHDe8kxEe8hPn8PSmw210ivvNI+84ru8t0IvNKVqL/QJR7EF+0Wd3EbQX+LZyNxeV3Oxtkt6lb/Qac/K7uj0pFKJ0dRjfPRH7xJHYkOrKWzD6NkGjTB+Qhb8IFvwc6+f+lfn46QikI0pmUPD+Xu9YkwCIr0QOlC6mrlyKduJ6ZVHq6Hrrn5w2oT+ljbuuVZOCfjdnA9ymqdh+WLijJc0s6esLrCneegCnWmwVyk6GC68+r4hJsiB2rLc2cJ/wGbb6eGNo+FH6nKQEZcAahXrMhTh/tVxYdEQEKE+fiTre+S/w3l3u6PNRkMie9UQ4Z4dedLAcUXGybFwiX0kHmTYrq0Eo6SfODVzOi1L4WYSMeIvysmPlzFQqRnE70HN9fninDOsZKEeVh+c/JEvUmq4jtUIUYMHxHSBBxFHTV/PEr8zFLphWqwsA4MseOo6gng6nkOvG402OeujQ3S8FcAdc5rk/yZbfjr1GcqGGiiccSmA3CjQpN58ZR2/7ajM9exGTSK+RAZ3zgJGrkF2u6MbG8OtcowEOYdUVwXEcaS+JV8Vn+q8V38rh0PPHAD+p+87PSQwDsVH3FAJIrZC7pdMhD1/e3IHFTISIh7WHsafJLXgvYyNcG81IL65pxNW0K42TRq7WLZ75rKe1xtdc1J9HGijJA9Y4VQEBL1T+of0a0PTaM47UNoV2PeUIleCdbOqGIaHtU+NgrTZjav62Myis+vjZk0/OqOL8QxM52bnZY7SyhaNiblUI5DAXM0vxfbWOMmlnW2qDfr2iUnB2gsbP27gHG4gCdyIDiDx9oMtJjsXRiLZwsiP8jYLJ4BDYxYDSYJ4XyuKyFOi9z18Z9d8RSH7Qg+TNWTDy0m2wdHrWVJUOyVtZfoCLnpqgD4UpFX96qNJBkYCvuEa06B/ONFb7LOTrhd2wvvb9fFhNX1PksriKqMcZTmBxFdMFpTlktH+WWOfbZ0Mo1v6PrZ11PbNvAHt/Kzae8iYxg7Zv1rRt+qTA7jdWg06d1o3FF+qbIn4wGflhTTcbS7UddI3mXboFnhPFmCuC2cQvLqMFeYpY9aYu0r3Wq8AXdh/gbomUYC/3SgKxfzWsDg//rRQ+2iDJicEcjhltknFjW6M8g5wyaGkm/iD/aiCWwBPPNpPKuoT/cXyhdRt83cf8HVbdz1gQzW7QLgORFn7aQKGANCKk8BWEEX//hYlSlEZ2MflCaAsjDekaCdDy4LB466yjdcg6ooFcJTOdayO8xwNGWvQ59hug47r+hTE/Qb7SZ7OXtpkoNDNplNnpd3svuR7GJdfC9T0aDApt57mpUt6rk+HXDnmyVYzjjw6liArfAqwptqivjbrRuIKGjIauVYak3tIPGRg+5P+eZpR7WdYK+SiPFpGN3a/c+Ltj2Jdtd5/tOT6Fi9ls03hwEesgg4BV6BbIxaBaY0ccRksQZRE4v06dihkxtJa8bgk2nPQ7pPKRQup0SWJZXGH1AgVklN5WEchWElyRU/l7y4x+rCFeTzJxN7GXdcSlAz+WW7huYgP4t8SRvTAeQE0+FzXrOJwCaXfSjUWyxZh/iWqPah3KNSav/15jXRdTQodmpZsZNgKcC7ivKea4nfhLynsD7LeNpZER1BnzoooA8IqhA4JW6Neid7c2LQ9Ky2GxqPxLQp/aXVVsef7JFmUwy8oz8bc9HExLzIOvQwPkreYfzexK9+us95BpjWXHd2ckvKj88iuqdjI01bHY1Z0xiIQ7jiiq/9A7h7BiAbTMKxxx4oXDgpaGLAd/w3PGEk9n/VDt2wseyf8AC2Zdn+YpsG3WNYDL9s6qn+77aKn03G1zBf3NWmCH6/U27XF3nUKnWKWMGgGI2Wgmkunz06DAtYn6STRSLJ5IVWf6KVhuvTkcSlxs5bno5bZ6BURu8X8lQ1w4Ti7raI1blmXH4uXX0miFW3G5sHE3Lv4BQkUBbeu7c/bur4V1rguZ7iLUYM2Zx4hHnR08IhP/vz6/XgNquOT2abGv9Xm4ynomAaMV9AVhs79kNnTP76NUqBpzShL108bhS4PqATcwswkdzvSJBKaUciHi1YQ+9c2BPaeHY7n/V+3Q3Fc8LSbakI/DsO9JchuBdX8lu4voE51YW3ysrJrivfL+z8WergmNiottYZow1EmTvVemGjCOefGRbJH8hPdvtufvjI/K9hLSQ360l9/xZA6UZCGdp8HXL7xXN4zad1tEvM41nMuccrj2OmWxiOhhRm0JoG6NOmN2P0M7J6qvf+PLrNqK3zpq+OV/ws7E0pXRt9u5ojX7mFfZgNM7rnHZFq0Px17LqVDVHZcnexDHVdtypEgDwOU026QHdoOJ+Yhx2S/ncX1N7/Nhki0beAIa0GynbdXhDBGKwoBPPR20tIIQBZT/H37SqDwCPP9MooRz8e/RLdDKJ1HBxEHC+nlfCN06PmWsItbnaV8AHyCkDjuge3sUUC33tAnykFt5S+KosEP7dTIA1Gjp7GTaVkPwxv9OMZN8amimNQWEjXOEjlJkD6A4NpJKq7Dhi5XNd7XgvxOBprxvqCzZ/iFmkyhxfxQb608v6Q7FJfgAqnRWY8GDx6TH++UWZrU2Tu7lz4+xXBM27IJnCksEP2guIHAX+GImDNYsNSoWW/8K5Fej7RIx6wOU4vReIWnSitWAzL/3mfchZMHWPJcCJhpe7PMuC7dq+dpSQcIPkr8+jUVUe48zUgDrIC1lzbVwkj8WOyj5FvYwK+BhdP79+N6XpumsloYG2B71HHyzHwwTVpAmlDmMayHgcviMXjjaGUsCrsYfOUvm5obCakIl8akSgloQN4tVhQ5DL35xyzVioblLlsau8IGUpuTmEUsAqVfkBshMqg+mZQsRvqohSBp2oV7J8AGy+zD/mhbo4RTmzWDmjgnGLZFomEKcO0IL5WYqisHriEnCD1/j6t2odzepT+YSwpgwuxJa+L/xI5p8QG/HQy9l3FnA3mCYTPeAWT5rB08gsmtoGmn4WmkIP4PbuSIRncX98oEITTvGKQlkxE4RBVTIZs53tL058RlCOx9WSFSZEBOJnMu8eXbn6LoqnbEJO22K2aDM7tAi76mLkGlImjeMDEEitjFoV3bWhoZxvJ4EgIAPcNyh+a08+77fU68QQ0njtJNiRcK8UVMv5MADZ45tvHgpPa6jDBZj8V4OlRVhhsKBv/kvxNdV8ejBa7/2US1dsT4lcur99QgTJKSaUH3BI/LityvKoxa/Q0NgzBBV8HEs1PjrRZZfGprPmpg+GtUSJCaUSG5pETioxhPnUzaP7RQHVo8rxaCIZr941/f21Xddt5dJULe5rYQPNHXh7aU4huvsT5bZoyyjGx1Mx4QB83OFwCIpVfrNgmTTWa0wXO+zkbblWA66N75sgk2y0jsYwkG3eL29TyIdLhd4SMxFphuQ18dAz7EDphXhi6brEorKhw8s21uE8oOgAW0HVUhEtIeDs6dz9jjM0SQy5k+UWO2Dq6Gi10MCXhKNpzsJjGZLqDVtQ6Thltr2NG2eJWyZKDbsIdc9Xe1ojGrhGnbK6/BSHmi2PtNqk7YtOnTAmxsLfFDFVZG14Zn+9h358kjsxmxPS4wOBR+oi7gsU/4mzIQ1jKRPgqeF5n3BwCwhO8cmPPAVwcl0D9PKH9R1pkgdyIQO42e7Eusi/Ib56QfgYVbCVeCX1N0Z0TMbfEAHVH4LNGDL1uNo0J31aoAa701y8iC74pSg3QHjy5A8dVs7eP85PEB3PSv6tTBmfFQ7t4WOYtBsABTAPq0XCGPLzj4BX2cWKUVF3CShMkaipOa7nDhoSTj0al8ReyqIefo4ywBJU1OJKAXj3zR4vevOGZjvsrKFpHcu5KUNR7mLVv8YhGwzzauSgttO4CuPtcEj/QaTLKjyYEMUIGjBEWo05LcMe5DgiNm4ncNj2M/nDz4FJTqr9YyEHWMEjGZtzptz0B0JgrpwdhWbmJ7cmeWMgbwDVZzm8tSHemeJ/ePMDErIb1q8h6/AUIscP8hSLBCn7qmvKXf7tRpM6SKdJONmp5hJv2Sl4FzFpyR4dmJ+ei4QFA60QgQMpnlYZ29UwllBk/KRHUPSKfFbelpOdt0OykFipJOvevSuFhZAtKcZ7HugFI+p6DFvonZYyAmWlAm1SV0EtnzZNw0mj9Vrf0gkD5YaoGgoiFJIxygbV4KKUVgO2Q1IhqXXkfX532Z4e1Gz899oD1DaB90FxHvyBZyg+g+HlLNA5l1f6JE2Pe+AUn6iJTPgFVt3d5Y4rkamIl1frUKyfvVQW0qRvZQfHTeWAoxS+qxUjqyDiTXhsGpVMKd7dzQM4ntAS370H20P4hfLSTRaXMkqqMIQk105u2EJB5cwHh9x4GgtSc+JVfTO0T7aH1JLFc21quxeQJJpLThIR3vcl/Ma6avYXaE/GdQKBUntNCn5cOTdUdjpr7Y9Z1PKrVksC2KMCoqCFmKj6ZpSbMuYorf1yTiOkqE8TR5ImQ+YNmswat9ky8F4OSdeTbFRlOdoAxDtklnXeUnhNgw1IyR/EfuSAEFegDMqVwVMGEwBRVstgfykRxVRfumU3G8jQaxbSHXcCoGsdc5vLDtDtBPwDNKgMIdMsqAiXtNp0bmuYA1TSh25bstuJu0/D3QeFJDLi1vwTqDbf2eW+pDnJYal5PNHyFfxAp748nXD8E2lTY1u+HJojqnYqJ1Q8E75TdARXUjiQRhOuX6FUV7u/2TLZheveq6OcCIa5tZe73Vrd4Q+Ufg4gRgJJ8H4a7DxRSpWe3yOP55IXvQtiH4N3f4zFrcnOrW5UubTjbQubrBtC8S1ndjMs4mA99oTxE1aAePHv5wg39FOUjakqoQ622oHppzBL94/bmRCPG2FHDx9tNNXxJ5ybdzfJS5u6ZL1Bqwp35by0gcGvfoNvvCA/FUrRTfsgkOBuiKaywJga+V1tJLtsy+WAaQflXHmgL0iX7su/5fX+CejrdYBGddJMck9YSZdZhWM6KpSSF27BunVTKZkkxbunmgbRDuRSoQuNSHSC5aTUa+CWSK9JRVkW5DwRWMyqKzSabUeF5Co70C100/oMpUXFVcGDmLekwMvWWjxI2MgXDgSQRqOJXeL9yq9YdOjvQOZY0hdzYb5N+d1C72iWCA0Bq+J6GfdSQj3HN8u9JMje+bcFS4K/hzk4lPN3LgkpHU5b6PTAZ/iE8eNI5BvOoCP4gKgYrd7eHvpEghmVlzqUUMfz+XuA0DATKKR9GAUm2+Zgj7q0TQzmXAQ9ZLDTbNId5XEDTuOu6mIqlb5rXEpxuPbgZbkolSH7dITEhslPprMo8RskxMGXjVRVvGDRQ8TFh3XSk6ag4DD+T9EH82/Kvt+oamCsxzNinCFLb7fKbLREKiXevgkYY4AT9C21PETf+wQ0qLgw67J2qSvGs2BGa8OlE/RFeKJqmfERu+gjrvYU7dbltflhR1vgfP55fFN0hTfd6khRDHxPQlOkUpPPMvMBVLO6t7Zl56uCEeuSxForzwPmynoxtBNjoDs7UPHLQM4XiUnfV5skTjsQ8cSe9suK44+5HR5W+3dsD/urkeQC202ZGphxZN7yYS64G0eZqNEK8vBYkSV0rDBXOKpLYmxj3owL0HWLKJ3pLqqKTQUBTKVUDn3ga1L2Mbc8T+PCQFtCvTCtzxVRSSUPqo4frnWyz6ZqYs2RtKL+AooPeQrWHpUBTz4FW3P1lG65hpM8a/OppgRDqptbIAAt3PTUpaD/11NgQ5XozHv77mI6J+z2f2lhUOPX8g2Hzv2Pf0NUC8/tLScVeCOFg7PE5qQl25gX9V8qvn5m3f+YgRDj+WdXG/2zxvmh3JXsh5rANKfOXLHuTLYWJ05vKLJXG6TU1qUwHmoGdbwMB2GllWePXNXMpNcAEQxPegNh6+uGW/OHHxFqaeo6oDzHHQCz1wyGJoQaAw9eFl/dnokTG3znb8yjHJ6KERmE9v3xyQ/0hjGhv+GlTLlNDI0Z0TLf4c7BJJ68G0cpOm2Il/Lnjm1zfIFO7596wcT3NDk6zy7YNNmgxEEg2IQf5mcVSmXcmlmh8DVrzeAxxMsx/AgO70CuP02m4kQk7kyooz2eBLHYaZ2sGPrJ40Ik1YL5ZR3qttMTcnLK/tzIZc+rYBzgOtBiQG4vwb4aXdc/W3FLaOvPUZ7EE1ngX7hBquc06NHkSGTvIAztXT3IN0qtjvOT30TLy3rF+M8rh30Lp2pRjRkpoOUhRNlLvt4M56K1onNkPMYFWWwiATPKfBtqdiBYASMJ09XKdbJQLfyffeCeXZ+A/Jw8yUuZQQ0O6BHU9svoYxujisSp4QYwg6G4fnfQbSz0h1W0OzAl/3sYbNxqS71VSVRX3dzM95RgWlC6oLNYWxwSGJ8USGZcYR4d0RrfjU1rrzjbH5EZ33d+l2lZZAOoKJtMnkPafoJxkBXR3PsWxZT5aQcQBb7ss9kSRBMckSiSR+6GK5gQNLe/Fo3J+/y8zc+jPZT3diuwNyQi5seo9DZofS9Yril8e5HqB5G3c8K2MhLvTb3qhtNdtUO3znoNlWjh9GFQhUmYuUjONgUt7Y8qEYbUTJDwjRv4bPYTybQQQulqjyR7bthX5H0FmNu+Ub29tHE1QZ7izCQVjiVRkIZ0Y+sCvGuQU2FAq/F7jku81YwNACpL+dGXlOuhiGXqgSU21BnRHit64dkossYxLnB57cdeuijQ7RLfF66m3M1aCHx4GsHDxhLjcBrGh4eCOLxmKakTJ/IkfmOCtdxtUys8lPZf7GPlSPEGK5Gg2dg+NqHZd+Ds/zH1lP97AYOQWQ4kTcoNgwvR67FjwnnO+c48jOkyoHevqsHNkeCnsfsNo6oRbDjPBDz5bYflIJ23x96mXf5Gz6geYG5vY4L6CYPoyYl6Pokf8SEQOFdYzP37D6aqhqxBHr3G8DCP8PusDdr9xFL1Z+5MqqYrNWl6soXCX+xAH2aU78YEnMlZAS2iseYhOfEuXAHp/I3R0YxCYiANoBhsNUz68qTEBIONUWaaScvxlbpKrM8XE62s5nMCQRHqElBTL4cgCjC/3XBgIw7QZxiB4uqshtrfD/+X2wvDLM9g1pUb99WSzYvZ5ws5K5qNDFUInfvQhJUfK7ZLW3oDS97IYOS1o0fcSxIPwRbWkYHRDbW0lfydP2XVywHBpsQ1Shp0wmdKojf7wdhuXSeP0WNXYleNB116F8FiGd/yAsvE1NMaagV6pAPZOG6MbIi/+UX59wl88HTXRsBZ3c/DdQNyvSTbWKyb8z7i9iT38wItQvif3VTPuEUHdDFmsRMdeUrTdkT/zYoBggaVc9qhIQGXqIct5izqxK9542+fCZXeOT1+vz0VAV3yML3e73EXoaC3SMlp1BTjCNEz45EJguJwC0vDB0kCkgOcbv8wEd4cxwesOUTXkIoAx9ieOzm27buxm28Zi7gupQnzn6pXv8sEsM7a67TnJDSVmBqAaWaPu2+4R1s2Olj9T9eQOW01ZSdixccU0whybbbyhWm7AmAR/eJ60HgXdh+SByEuzGLD06xRB5VSrVikj9SRAUN3WafY/ohQNH/OqFK9Ieauwddb/gL6cxC8YpI51ED1dBnthksvL1En6jvAnOT5tUMzb79kY4RhonSs0jLbvJKT4qFRld35iVYtF/idlelyoGYs229r/U/bEsXH/jZ9jxa/szTSppGHCDjgvxSdYE0A51/LMujvv6gSnxoEwaRfupK/cWHqsVb34JmbsVg5xMvIKy1qo7fR4TGNv8Q0cCtisNVAecBpKEsh3FiOJT11F1hW0IYY9mDT3ZSnqrOP2LgG+DCSQI6dAy6wy+tAQPG0LeP5m8EUNRx/9AFTGz/LRxj/pMkuTAK8WT11swOKYYnipUhkMq7PXfM+ppnl4AQIdQG+gg0MVlKGHbR9kouET6Fx+ygQKdLqqptY+yK0VK3zeECfUj/KqOqvO/ux8B59Ff6crsruQAmHRHIfCu7k7GdwZkJblwzFtISPRsmT5X/eO+6UBaZQdWKoyAXl+RGvCnCcMXIjLIKCf5hxO9tE51fardXdAHIDJ0zUOh5MpzsobT6YBvDWWR0H1RJKHnjG4scG1GK0w8iOvkESZThwf5pI7SPYWzGaXShU8jAYVyDY39b2+XSqYJJ8HA2YSNbYN2MXnrD4my979+ntlpUNe4juhB9tkgQDjmPUc+8OnwLqh0qc17qvmeo2TPqtgJhMxSarTNGqyIvc9pkmVUY03sSlF8lUF7ovI0FVjkQrIFtscCp7Q+gcddiQtlPGNbu8gB2i3CdEst6pL/SRadkg9sCNScY8+TBswH++dBUY9NF3djKbQvQrCvhdvsD3wuihvYyOUlWL2xdpNnceAm1lCtvuwu1OqbsOG65erf9li2OU61Vr6xt8kau0jJB8JqJTBfJkbJWbofq86i7YHl8ZuN0Zwov0N8YOvGMny3Qp7sY+XNSCSUrp+hHC2KxW07xBOd1E/BWJnBbAQuyVvy+xNehg+IbCWyNvNF7QcNDBu+s/TIhQ56ige+MJkbMgtXteidWC1U7q2+4NWaNAKCeEPMBr4B3BPyHkcuXs/cdB2HLUJ8kMxxmeO+Ti8LdF0zDQirWjfOnZ9tAW/kf5RRCBPNlJHC5XUulLNfI+3d6aC9tAI5kXO9gSTjwoekfwyAFrotE36UgMxkXseTiRwTn9P5XYHay8SYKxkRjsclm3SjPefNMmhQRT1BCkc1oXCdSP0mtGmcF0kQ9v0tJCjEg0g2DZFLR4TQpmb+E21Gsp2Fzr+qblnePO3pskrencNo3LFZidKzf0Nohi+2Xlx/wz783r8MTov8Xx4IW6glj+Vtnx6lxWOlP4oNFJSqbSV0to85LtR5rLZsgvQ8q/MRh7RxfVr4Ve+VYgyABuKeFnCdmQKMUkVts9YdsO6MbA5SO4YNtpBIBE8ir65f64CM3c3iyrv0V67/Pnx6vkoW/0s8Qv+BjAcRS8+k4C4RuoMJp6UaDTZHbMI48gxeMs+R4toowhponRzQwyh0PaRToqf4HlLNuno4gT3HcfDahm6iJHfqC/UssaojcZoffdHNd0YF6Je3eEXhEeNcFEp9IvigtOkcwpJk5XaYAz2oh7Cg/VkP6fU+y1r/ZsJoZQ1U7Cs51FAohfTRrVJ9QJ3nRxP13opTSCrhnSuIFxQSKUFHzwcQL4xLlxsR6R6oMTXieerbEm5A07gjC1h0/qaRIeYRp0wvW2rNs/HjfKi1z9/Zy6U7koPeUdzFbWb1INXT2dBEhXvkTDlaPoZruOwm6MwBpZOwBJPPMTmAfEoEGTBzBz1k9imlybABsKW6MTrrsHZ9LiLP26flSg9ZQy/NpVFLGdyCiD0rL5S0LuH5fFQpyqTyU6m/HYP0hITPDDDD3qJp7aZRzrZeeZPFfiC3blX2STBW+relsc3R0VfhQNgeX7VOMosykEFFtK3lwk+Ni8+T4MfDpltzUkBD7e1U3zQVEVji4Q5ZJ1jU8EI70TtyK5/npWbhuZNd+9eigNK0KE4Z4mzhUymdq1JjE0V0Ay/tqoO+vr+B1h/9bWgkzNR6GG5fuyswSMK5jWX6s9I9gzQiMzGlzv9VmABV4kJbbpUhyrK7Z/k2O9UmAHVUikdxsVqOvcUiFAWBwkAjpiYS+B7aGz/rIi7YKGFMApCZ8TzVBCZ1WtWlrj3AzvJNuxDecn4RA5W31U0CVL1AhOg4c1XTYk5ZZZnfESKJ33KfFNniNuqV252OvF+kt3NcUc2qD63OHHshaph2omzRybRRmSFKNF0OgZJVofDe4u/O6DeS1pRwMYsVLFfg648kvCz7dwckWwgrn1fDO5pn7lxZQXOB7kIuEjz8pWZRGBotnDxbUgKoo4+Mag7z5FXvUrjDNOe6j3W2ZZie5Rc9RgU+3fO8Oj99k6vcZ2zGwaxVsZkFJhHrIHkRaDUJz/BhoK5TZP2dqYIX7r6yF5ImDS+hQLA7vqh0eOyDLiCUA+DpIX5I8x912QDnV1DqFqUUUfjCY5+Jlx+VTyWAxzDxhICEw8NqYeofoTK8l+xx3iaKXow31LcrWhHGy1jN4p2dNQ8M8Hyfgpy3l4CtEIzgnybPMt8sQIUHnORpgeJixEYtAo5HD5F1GRXDTej0rRFnu9ejxn/6LzIGgHX6nA7jnqt5X5P3z5vKS3J38sX6NfaOzhQ2kXboBkmX9m9AxP47f7W3YuUzmNj4i2MmPmUBt91a+7899lGaJ7V9EF6Ir0mT3GivhBgruT99v+HCvJf6nz3P8/DU5/f5vFj8GHNdW67Q345QjkfC+SKC8tgZeyRgGTACe8o8/zjY4e8/2Qamip4LY2k56ofuN/w5ZVKEauem/h2CCNDUBBshgDRT/oNI95QL8orhX7FphuUpMc/h4jWTBW3ewAcJrWvZUs9oLqyA3GMSdU6KSZFwre6iWV2Pu8cg6EE1xT7VsZdtI9izHH2GWtDRBnoajLNlkcZUikQUfNS19XXY1xFCA06hNr8rVuW9TMckhPG+J4WmtI86Sctjc5aBIp5/n2ktJv+nx8fzaS83YGqEedbtnTdIAjocM/+swM1lhjw3N3hnwSb55E2Dy360nwYzTH7mBRvfHUS4m0ulIvh90t6b1mBGo4VodGai1dukMo6GJcugi3RTlI8GoPDuzvcbAE+WCKHWm9D7WeJNpbnhbiXuI9rVAG2jsIMG3Cp7oKRpouXKnzxqG1P80MHKJ8Qclg/PhUAmbfNXd4KEc14wmPUKWRE/39XwssKvwgY14d3Q6t7ChwKMflagZsYZOnKUI1FEVkpDHrbEoUpsA0Z7v1Lh5IGvRSyCS7cchPiPYr1EgJ/lJq9Vyh2hJ3qRP5fW2LJzFUeIazvsWfs1HSPpTa9QKyb2tqIk+8IkLa9PLWKg3URHKv/A9CAFv+835sHpXiQGVd6qr5wn6zQtTCiXFD55L7rQEc8h0dOVMUwtWvanHtd0gF3gis0zPnRtqGmh2Bowr0KzwsXWWJP6Tpv+44xIVeTrTmobJlFe7+Y8ivkIT/leZt9hyAKZ5fBVaJ0aFvTMGfWx1RP035e/1Fsqbi+Dsb25j8IYVvdqKiAmPh20tITxBY53u/bx4hqv3UnVNvnO1kR8sxrxeZKMnKhfKDuzS6BokfR4ybgv0W+xHMCg1la7LcAUft4Nt1irW19u/XG4CAZxEq8lgD4xperMPMsh9WEejOZyGLRaTcccAp1SRWmp9+to13rN8H4popVVKz6LtSzaYQ0RvIPWHKXWm2haNovtmiXkCfPCJea1i216pjX1K7Z5YYDVb2n0nwcJSADAQhP/TggSrS4B9jR2LXQLt6um2cMoJ++BLHwUZYfhYV1BxGg8n91pvp0yuEE9PNpB/Jh0iZAGySCPMn+6WR+xL3Hp5ogOs36XZEZjl+hibZ3H6JCnGAB+DTByYvo0f5jgQY/nq++Ua50FYz5KB9VJG7oTKASTLjybtmGAtFU1q8iil/Drp7NJdcUywBkA9k3x12qE9+SY2E8yD0PLDwyy5/Y3fIcXTK47PzR29ZeynzZ2rbPy04SSQWE91N7c1I6AjAejV6o0y7PMsLv39COkgjwqGbjLE6+EByhWBB5xqdqO8yihqEvQq+/MPJbUrs+ibGryrWqop0CHbRoqocte/hxVbGqmdXaKsvSx/ZojMzMo6sRy8a+yN8BRjs5H/N6LCQsZfKWgYVPPqHO7F0YR255xNl686H64ubu6zQVehw33u5/BxS8KfXoDW/WFPZsLb5nHBnWlfYiFYd/XHs+vo8vaCvHHQtZvqUBmW8HbmdIar7vt9Fpr26OCrsE/e7KdYwZT3xyG482kiVO4HSSwIj0r9L7Zpbsf+GtZvhCGbUL8Q270gnCgGIFbbbChpiMMRDwk6KJ5CohXo5Vd76oABdyoHCSNK30XveVqSiEUh2biuVq6SyinF3pjwYr1TjofH6BOTKFfHedA08PNdR/rHPv0RXqiau9mKbQcDIf59hPwWvWcz72vPSDfguqee+lNfGYET2iFy50fiwjCs2Zex0m+0VH7dThZ2J2bG6Qc1nE7z2qjoJYGVFxr8ocmxqIG1EgpTLjfPduJ9vgjTwpnyF/GNc1isv+dvwMZi+eduOP4YtSS4G17xI9sf0p/7jC9LI5cVMVmuej8TXg7uw/Xalht4s9Pl+rQyJUW2b+lRZT7Cf7y8YY6yRQGKX1YLC41pONz3Jjh+eirTH3coIcNGrM1P+dIGpZRdWb3W3GNW86du8HU1cCKpkxbEuu6UpW4CXw3FivA5noty7IJbxmxyx8vlHbdGYKPqhsE76Ff0FwDbzz9jZGFW/d/0+2ejpOFqelVuG6NMS56h3IITQwW3FCWfAAZVVKB1PXeAPLvWIIYcDniEOrmK0t9m5l9B4ZWFCZGxML5i//eyyQP1coz9H/5GTZF0y2UvNKLryIu/FZ3bSVqV7DwVtSUicICdZ/3sc04tbWiYMqdzNWixDnPGjVgEz+G9YqyipphnW9d5VOUnkLKFo2mvqCM0SfYJcQ+zSoNau9qMrvlUY8bWu7ez+2sO7Tb9ulAueBRvEyrJUKCWoldxsc3qqOii++TXH7v5UupW+l/Rry3NNp6FHSOy+Kf5iJHRN7hGCAHcOXS0rkbJFWdTBgT7g6nN9nPfWIyZPqj/mBcHZPcag5BiIrsrCWSLhEZAaifH3LNazIJLTyKSWOMlHyhpPUCU3Y5qTI6FGKnn3UyPR4Ey3G9wSC5fY+hqBVTY3z29gKLJAvK6xTKAl+q2lqfjDq4PJBcJPW7q9kbh5H0Qr7s3C8gWn0nrzwxvLyjP1jg1LixubERb6+7Vp4hbheRwCOqVKRLhy5jF6rUBteKqxuj+dXWeClkuEXyvD8u9XRowlV+PiEp32ABhP9vIx1P62jNUre3XlRnm1WeP/CyzB1uSre0scYmeP+cnX2L1YMEAzzDZQcLJ1j2LLEy1nD9312Sn0NbvTtUABOvZIUASavBiDglAWilFwnyKsZVmfZo6dlyv8FjjwsOznhLxkh7pKVEft9bE5UysKG3OxijA7103pjKDs3H4hwQKmmncGzg+zwehB4sDTnezfFE6Sbd8U65hkXGTRgJN/6LUmrzLb0MdcD1siqN1ZrM2OxcAwDX/v+BfNVe6furgfO2/qhFMPtLjBhbQTXn6EUpjz2E0M2U5MGQszxxYVgPNAuAxBI8t1kVSy+QaVjeq40Oxg9OsR0ljoOVqRso2P+MTCkOcKYgtc3zscmgEDsFmmHfNBvpgMbjN0GcgB/nai5PtuwDHtbyrgPyplT6DNHp+IxUqzDbki9LudTg4spDPsc2Gh8UL/avVUqVKmxOHVdUd6CQYrnXPzA5E9NgyspsmSAMydjim5ghHhNmREA0GMegWzFEVNSxY96pdEw+DEmd6GvwUkC8xBfs2vPDO2s756teLf+5DU++WtgXzBcPnFvxBs/nJCsMuM6S6yqdFiHXa78s4j02vQX90m53+ve3n0XfabqW2VvXK/JevMtWjXug5m9mKfgHy9pdPGN0PKslB2esouBYjJ2QnDXhkoCwL5eTWlOJm3xK1ApvsQjXI+KJfH9F/5PFvs8wSQurz/H54/BA4896UJHxBThmGJQHZlEMZDFahbkyJtX6ICV43EJHTDoaB2CqwNBP3ROzWt3XWYmBtypbLGctGWu/nyAAhJO5fGf6demXHkJa6+0OOqIFcwH85w8jzwQPkxQOxu+4t9sHtDQTO/S61XM3lI+hFL4nhzPO1r+mFldWtgbvYZkOe+goACmKMV1rbzU2X4jfra63ltLhIUIAODI/DgpB4m25/SO8iGY46CVFhr/UAiQv1IrOwOVag7DrZ+pZYSQm+zQhhVwr2JxmWU56XEOdim1QB4S1Z1X5oM7imNqC+HgH4FvDZsBLfqw1A8hYooeqdIYSNfQu18o7LeC1P8izhTCka9TaGD7o0KOfySFMtNKlJt2HKi0wGvrd9e8ElFYfWLAo4ii6x94ZLmHcAtVSPOL0gdWwp71ZWOTJcfeyecCDoVpkZlt/1llsCvlUZYpA2ezsAUJ13IajIe/rEYwQ0dtcdiE5RkIMcanMToZeRM8nx1YJpKv9ccFxfZNE5jXLb+zO+UWAi0Yjfq3Sx6jw+Q+/RotRdxa0KcZgal8yZcmRAVszUS3sURsd2dY3pOKM4mb3AbaSMLCcBxkl048z0aD5PkJalITvzxjyZvC9zn1nXFGPQeBiid4x1mysFodu+gXtNqkP2tJkgfVO1a1XxXMNzaJhjSi5rKdecQy/VwWR2Pp2SL5ff0ZuBqkSZZ2htOj7ghqU3rtze836XYD/M/S46dgtTp/4g7uv/xIbxmCqhS4lgqrHWw6FTi6PlCkVTpHItoHV9AqfDM60xM6n4kjpeFCDCbA/pA1dZl52zBSe1Cuc6v1l7SpqW/A7hPGKPyodZ3YIFPOXPIpwWgMzZgOYueHahOeHUE7+MAkAus4O8MMcRq6iiaZtZ9+T8qlO/xGUJWhhVdHUMn/JUAhSZDesnGGJJlIDQrEk61a70cnOy9lSVFpX+1i2J7pNST0eXJxiT6RBeBzt0nj5AJvokVepjgnhLGYIJatba++jAWbYMn+FD1/2of9CVf56LzO4wFaqUOrpTmRaGsVmyhmsnUQ6Pv69cfelasJWUrPPRHn0I/MNASidIp4wAHD2Pj8cI0M3hDAOmGeKLOuUAMIIF8DmZw4HnyOJheEGKpIRXxyvAzbZYE75pxsEixgagfGOI1LmSms07MnbFUFcnnYxEQvU14m1I+zItNGM6DbUdOgnLokezuxmiQxk5zfmxrPXr9Wv+xblfVeZ0jgmfgTB4zzYGgPEtqzP8pi4dk+sZ5ZuYuBwbtu9f19ErT/SJdTBBhZKKYYq9aUABS3Kf2UUDWZH+f1lLZzN/SUSL3+ZQSaUnw51fZYWRttbQvbKyxol49MeLegCQmShDKWicvMwK3PrYJNXjTYH8M1XJAjQzKOkmsS4FdK1J0SelwlHdFAMn41c1NUC29AUa0hlHcmpvFXsK7HbAvef3muTLafktwTyfWDF3Pogdo9pOmigMblDd9PeHUOKOuHGkPZ/htX49cOiSAX6pvy6+RjMLo8Y2PCQB6KG+p5U5fA05k7+wkT3ZpS0v2H8Tg6Rg26jL/ZvvaVlPny0FMSTXtYAFlJdhZEx/zQmM4mEtJF4XD2F2moL8qz4M9CuLkEBnCb2omW2P+Zm4RePqkmfWJIRbcTAcd1pN8V0d4h4j6ew0umYzf5+B72gLOmqx+hRGL3HTu50DUG8VHqUQtwJz8tfJ/Ip7+rLsVjlPyB7SXHM+zeqsifycr2s2Cvz2gAHyrwr3hy+P6ovDl7TRdJJhJLp6b+6UbR7xvE66gqgfQ3uhcQE79RqhlYpVnzIhz6tMLzh8CBA6/h3Bko/Pm6ynmLQzaWPqMSBKOR94qiaV+vEON9LJqvdl/20KlNEDCzy5nBmZ/nylALpR7tfiGMLyyoW/y/5PkvRaHdBv58Fb8iEfUkR87rdZJAyqJwfCYRCrv9rpQBLkIBQ62ACNsfL9lxRNNlTd215NoagJ10Q/72YrSj/bpQl2xFinwlm5B2GSv6cSoQ6e2Skeh850PKlToFeLtdwBqeKz9+2HzSiR+tBBg0ZS+Jc+VlkbFiV3/RkTnUPml5aE7iizrcyc/fn6sv+0h1kpe/u+o6rWhDuTJYSuEk9jgm+ywNNrybpa51tfFQ7eQDuizfyI7wkWaumQYm/xZdKmeKFuqOi0zmbxN/095tT0tXaUKRbEChOjOKmnqZoo0Ztmr9LlB6LO1E20Y5vqPPDXx6kj+iXoWzOjLICMuoVZ1ns+gRSmdCwsdlIf71gukdhl6FeVdkMXcmLPOFbKVv0JsYYMBGcMsEq3UFJQU+3lt3/SYtFGlKB+dA+5fvrJ3HemPrPlARsC9bNa2pmbnrNau2vjAoSIUSXiB4+BclZpMcIpkrPJgaj1N1AsgBlcophrRlzJrQq08HaiW0y9G/afb/91i0g3N00burYT3zeEYLQZingVasQ9FUS+bH4bZXMyZZ3jRghB2Dqsfs5DgJcGdCFhe+JsPWRAME0nu8bG4jxgZbYWoN3WxFGdCIJ1GHeNsB7qVbLL/ewmNE1rUWvHkhsebaDD0/OOO9Ok4AE/O0uXbwcnBKTygGtb4MzgUZ6Q/U1WzWvW+x6Gr46b/FsrzBtTQJuSB86OTcjY2tjG6xUW5Q+Qf7qAz3n0VhtjbA0nCShu3aXtqg7IMWxarXpxCXz+jyhz5XvV3s8I/gkeMeY5aAvBcyEg9TzYw0JW8Bm4F1SLm5TwgVU7VSI10j3jUM1i5WFwz4nyE8A4fD29E4nvxTQ8HKBRlhb8JCMvrig59MBXtGHeSfWSbBqADmGg2ET6JCEpM0K3N4nYdYYZLwaN31KbtYt/wqle2lNw+Q0AsdvI7g+N0NjzSqwP5Ed2SHxoGaXvy3vl5Yai0Lo2JlO1ynDL3dM4FVciOcfwYLh3GI4vJO8Eq90p2UNpJfYdrkgzSH4k6u6mf63yEy0bXsv3WNlOxYcm7TpZ7osYW7xl8YJzgBuzpAxvpSlPzaTtGkyKCeUKQQJBiXGA9NXSNhDshwWjRuvAaZzkTHI3sf3nLw97x3LlOce8TpHXz5sW4Nc3nbfjwU67VSZmLnsOFCdm65wQLi2ZGpzp1R8rJdrPOIqfTCz6tfiqZn0IVfB2AhPqAL3ftamIBN6ejzbkaS6U6j6EydoiMC9ZFEXPySwj/VI1R48Cs08vGjyLASvMzT2MR9htlQD6jGksDZPsyRpANkBoqIJJ8ONjNtbsCjmo/4pqZHhtr3rod9oHNXTD9NkMSeYyt3jk7LqgD4BHU0pXGfdX7c8l9l5YBLntqMG3S4Rcq4Ez/fwG5PAc9KWV/+jf75TVqzgo/x7n7punao+mGc63lvbxwLbp962SEKr3bvmlqTFGo16Kv2vTfHmAOZR6Nxwt/nnMGlCQVtrLDliT8dHHwrV27ExEnGL0q4qlT+se4WMRePkxbVozXX2ScRM/u1KWx83NaLxWHOlwXhzEmh40VF+NszLPz0weAhovPbz763c3WvDZS30/J+xjvEtJ7q1Ad06MNNgExTo3/anGWJaplpZH0KYiXHbKZK0eUv0gb2JOxy5G077gNKtzXjbsQndZhMjsnHUazh/5E0MVM8RBWcjWfmK3+xqPamRHD0SijvH4S2N3vBv7/9tWg5+P+QzX0nLYsvg57DRVMpSubQlVIfdTAEuHttXJIRNzo6/50AwprYB5Nh95sJHNgGLjRAIvrpw8IN+u4+Gg7KQmMxMCO3AM9OIpoiG5sfHzp+alCXiCkKSzQpZp0LbFmbWAyPjGdHtK5MVn6QBpT1vIbDi2ZBZYqKDG662ffq4MKpOfR/vP622zhVU3pReaBWJwBZ0w/XyKjklgLUsdi1ViBiuJc4YabGDLhuiMYjTGvIMqFxHkFbdVXLutkcnT8Zv5I8UyoNb7Ma08ipCcX+1jHsADe19hHTgalnRckaQProjcttGsxiD4OGDVY0TI8nNpltrZV0mQpqBvqsZo8Ls4hz09qoMjY38ssJzHGDl6+WRQfzMl2jkn3eswWvng/0QlXH7NNOltuqlBJ3mc1wWfKDNqkXNTrpucPtAnpN9OdsB3zKIkcqcZc8bMv1UCuNrxEnYXYx6grKULbVq0QX3Rz6l6aQhfuk+HUGxueGnmO4VTkRksn3Hg3Roe0P/Iv/GUwAmhZ663X6MUPAKGUfmGlmfvZvISHMBHv78JL5O5hydpXlrvguA+kdbnJHI5eBL02HiQ+GPJCtshFHxdcuNK/mH0cg96hUVDJkrYAEIQ9llrHLqBcojqDK30ZDjG5ev4CfaJrilaqtBk+2M3t7z8H4cpnET1SCgCV+OU7uZbcD+iHPcxr9beDai0OVLo8N74qYR8xJf5KkroRMEBs1Ian7fJWjIiTLtRJ0jS75qOfkTt4qP9j9TkzP9/zwjwLYNOx1cMQqroBkrogiazknceB2Tjgl8FOAaXIkztuXu5F7fkAloC6vQh6mzbx3tAlMVCNAok8N6ONPYy7Jdo/vTd2hHqJ0pnNYsYbpPXU9EepJzY/HwuwcpYI7Zzd0fh/qmXsrBg89/DUyQgWfF6o2KTN3I1NNoL+ZsS21J380Xdbt9UKKvMW42OKPlspXMqoGAXVa0fCTFqG5VT1hm//r4Y9lHMSEVZTjApM4sOCkvGit3dl6yPCLDZ4IfMQB1DStuLJkHnmBkkkPmtKhQW1Mww/5n48m7dNBeOCK4D3yslGa40fzzdxccN7GIOulbGomgYLJzS2baMKlNoqcySmrv9J/Xuogv7Ke57WJ89PB5lpHfp9tcPXmC4yGvl+axfCUNcF7EJZdzpwsKmNlErRiSEMksACPomL+kus5HgnQSJYaNjEhzhKL24Y9B567yAeFhXrfFkMhqBa62uBefh/QcplJaIOeziDqfMoH7MM+BlxZ92Jp1sK4rr5QmFGaalLXxDDcNr8gjQL3ljM2Nule67/1YFxcQAw8FNNy7+YwaCxSs9ADW5nIT67NZRUiONlNFkTlgsLX4qz4iRFjebkN3oiOQSka1INF+ZkkBHqkoFcTkgLW7RcFSRySPKm4L5KqcL0quI1kAPi5VeNimcbEczR/2mAmD2eAR7I2WH2KZKVIMzmthR+Dkyox3JMlWl6/JItHio/TMJuQnOoYtezarTVZp9v+1qIJbLsls/Gm5AaLdCSdaImsG9o4xkXTD+87sO5joenaJkogFIQ1BBGTZ5t5wK5FnSECmXrGaYCQ/WS9+0LRzu5eW/fQp9tZexBrrLhbemF27Yq2crgg3gWjqMZtI8iOATd3A6xdzrzJaFAcYIHV4LPDMNZOBV0nf+i4CMp6gmMXlX1Xuk9ITbjj8/1dwVqWG7zES21hckM1Xkg64pXuPMkQ9GAi8LwQ5/wj79dGaAKavLWcb9IW4OZvVoGMAQztKyK0YOr/X5+vzaX8D7Y9nHup5bANXoTBPjHb2dx8rhjsCrXVaGW4X4LAS2vnu2woLWfo+vBEEhsohqg4KYv076FmuSJaTU9L9/NQAhvyvOZoJMw/T8IOszRRzYKQOom9R6BMU2NtZSkgkt3D+Vzoh0kHOWidwFH7C45qUL1iFxzURetAcf7HEmF1bwHRIj92Sl1o+Uc9b7XVk1fD8oZTzd/PuCd6gGZHT8d0/xgI0wNr6nSqxpPFtiACsbkJpR+LVqzbFKAOMBINbZsV91OHWnkLhQdaZZZy4V1AKD1FrB+tccly7TrowZc811muBx+n9FsWZdtE2z3FeeXG/veQC/kSCYUEDfotElCAwxUV2RBR7kzCCZTuzm76PuZ9OUzGgHQhil8JIcumDzhO1HQlZ05+8mkulFKhCb+/k2AgTaKpQlmWAhSQ2Ql1nbkiTXA2rAplNk0bi8a4nS7NmBdwEDZspCbVvfLefxEUK0CPCp2VHsbuqMrvzD49k7Lz8gh7xKRRuMO6Q/s4EI7yVqZ8ldT9Fue7wi40hAP7LZqb5glXguizccThCk42lpIIl1htijDVERIl/EbyKvJIC68lGAEcvDHEgb4/5OE7lQk2bQZHGsxfkAARuJ9Ax4rydzDifRJBxcivtQzhuA5bMY89wzSxG1NmVts2qTdMcXPYsMmBa/kWpk6kAphOvzVxCq9o1ydDDBL3wMabpuad56Frs9W5sHtEj31IOQKeEm48XEsAY6yfynMH5d+wQnIyj+0RhY7QXZEKctQU9XeNS3TkWLGrkrvcVUF5hHqaO5Jm4MHaI3znlb7pUsIH1rIwPqMJm3MZjAs4BVXI0Z8cpo71/vxZvRegAEGWC23HcQWXfGzulEqpKnOTAhklcaE2Jd4sAFlocwHeWeCowu4HCDzZy6WzbJuBUK7sxVgQ9++DCjYmhzVg6CoNTYo/TKIrozWGFEMbGxaeqLeysnl6AWCRZ3ksm4DVTNApLCeF8+056HrL8rrLZjpp3Uwc/eyCGPm2RHF+gPLFJwcRRZSbiIu6QyA+ImE3jkU+emTMPVwOCsuI9TBuh0hOmX43xHEhv58kvMjzaTeKVo7auf4zRD54LTDxVT9AaM0ioHGFA2UIBmjPHnevikFMCSTjBw/ElxJf8okFfzrAztBhklmaQ7xW2FgpY2sYy41aAOXi+6BGvuDkxdPhuf7nGgMp1zd/cDwZ4gvAzmLAEwS8RqtIAQ+uG4WfLno4/1uC68qhhKwFPCBBwo4nLpaBBuANCSI4QLDWAiD4jYLenOAdzoe7gpBv0dqGKwv+GjhwR/FXVcC1hEVK+/IXEgHJnToXhTUo6pa35ukClUny6ZcIF3F04IzxY69f6rUILBDLrl4fq9j0fmroTVwAmge66tg66OvdpGzq5POWJtdNjuQEbVacKGZ2OcEmJ6eRPrJ/XDKxbNXYI4lx+u3FQqGyZ8uBbl/h79jNGQyvK9Q2zbSUUunWS1z80Fb3poLWWyA6GM3NVMyboEqlzqCWAsfRCJaIKruvyeusTNGd+YWRrhPrNnWjCjWjkk4M1E+n6y9Ka1xftONE4e1z8KXHWld924HN9PG+xq9m6e1sgASakD5hkS0dZQqiB5z5GcjM9ommAeG6P8wDtnObp6uG/k70d4cpProMYis9Hq429yLYHjqSxWkjC4VelYrXQ0zGH0aviKCEHsKZ08IZ2OC1u6pCmnVTije5hgdmHmXnWEZuLbesXhJ7VI7o85Ensoyf8icrDv30/m/y+nOio98lCjoYLENGbxDUakmuXtrxf6AOq2gTFAXrHRrZLaJIbFzEiHwxH6cS/T1YPfhXcWLpGj85VwPNntGvqBN3lTgg08kcR8hcZoF3aycyYZugt6eFUlde6oULJE+12+TNNODAjSS7e/3tgNmnRs6AngfEKT6lvdUVTS5/La0m9t5zFwli8cTP2N60QaGLYp1KWHCvHQRd5O5R8iP19Ss67B3VobMxFhAA+Kci753Gs8vXz3dB5iIgmSjE7p7p0iIlOhJYZVZ/lk5dtqNYuW/KmCimaNuOgQjl6L/L1z7pNhY+FHI/zsZZ6f1dlpxOlCWqzhMjv9jK9JQixI/JK90tUeEJ2hL5HMPQuh06eFZMuf5aM01rTD6bSRhk2RbxNQcmdaI8U15hATkMs/vTS88f2EjKowxmmuqlcFNMJCgyq01v8hsZKCJIQwXJr3UPqk+yXCeJFpBdeyKBDbzhx7t0QI97TFQfPKEzrfnrz1u+4dLwpuuCH6Ke+9xNGfOtADBfc/Wubupy0JiJYv/y31mK6o6lTnhSb7hwy2GOZTNJvIAaRHaBOeiXPeMOrTAbqGqRtU3F8mJiwvSgUWIhTkHxO28Yys482W+fFsYYDgmqcfsBPoi5bv3zgFB+ZSFQdipQuS5XL7WHsWO2OJ2tx46WWgKVkXJlD5N5nYJFrrvd7jzR5JzukIAyBw7gSFXgwaIyDkslKosB8xivQUzfGoXFbNEXH9MqY0TjR0vy+G3JRt1xp055Z3VR5Cw8sXKwLOn/evZpKwjGVLBXsQCt+7uqjcGfJlRAAhPitn2AvkbPMxv7hKCUmAkslfD6gCjWlOhpa5g9RO5MdW8TuP1+88S3rnBc1Rape9bVK36EfAanTpowIm01JTJOvkiliorK44GuZ2wZVOA1kV3uq7dXeIS4i9csRnFPajq6T24dOLX877xJT3mXkLv0/T0cKweg6ppz6fsJ6BXlGH2OBlYRAujTRmOD7iFRLtjOigxafRlWLi+zB3frGCoKfvFsiWez8HSEVcbkWeu2WvWaMTF9JexTAwn193paMtKB9f9qYWnYF/DslCwmxbn4/UAfDV+pNrpOnwMJEmu38q3GMYgpe9ZrdYYTEgAlPGuPR4gIsI1AV8MWTsUCuhUzzJ0c4mGEy9NtKxEnOJx48IQpAOZEjV/Ws+UPq97OZdwqdSCR9XOfUryXRUIrNWadxYQyWWk/dY39Iu+0V0XRDzoChQdBZOZmlq+PObNL64FA79BINCExlkpXiNNKT/65FZJR4Oz16rxyJmrPz4bHkSY4sGY91ejUeV8fqptN6HPDp4e1m4j7rKSzeA1R+Va51gZ+Uvk/aPfS+YXc2AlaEDa1/ubFg+lDgrBIV7fVVLUnVQ1ssTjSndLpsvWVEvlsiBWBSpgtkGK0Yz3QYjynYO2pH/SdD8RrpmXdvvBJOfSQqcTj4MbYR4vVxy7gNRP5c3Aj/9SDGJD1vLtw7OsPF9VPGjqzU5t3dpbgfseFeCaxHVjR6N5Jl7hrvggheOGDUNKQ5tGCfvBsrIgsR2WWwKv0Y5/m8np1/CKw4LJTbchabONV8NfY/wmyrpBW+k3gCaVlhS+z+YJpMXD84FPk14sKkYgId9TDpgDrPiGcmRQLocYXChX4M+HlhBfG+RQReWbyKuCzKIVWD00/3yn2lRJCyjFGAtA42sTUOksescxsI8K/NlOPESNz47TUPXl36SnUfwujdnnJuBvHnbAMsT+KN3W14Ki47zZjQeIhTbvKiTGPNXWhHt9NK/cIRVEf4+NpqheMrYCPswWu4bruEvfcStdyxBPUUlZ8Zx/OHBY6KNgWMScdPGr+fMHKbaybbs62CD3HuPAVbMl8Rr8UNiQJDSx8cDemUhXq5P9y61vXB5G+/Bni2C25VCRosf+2yvTjXMOxw8jNF0B2LKu0o2oDARJGbe6RdHOv4YAMLWooitRvf0PBLSB5lapOd9r51Zl6mEYIL5OtmZ0Ae+NcgP1sdibLqUfponKrvEdb9E4qYluvE89xMFSY0/nfF3WEQDjV4TmegMAMZg8k5OGYATnzI+MUUZC8XZLFSUB3ia/tt9O8EWT0LA98yMLHTZJL+DUV4yL4DKw4aODpaJ6RfJO2RyecsoCe+g7Swf/RB5TPgTANeWV7S2NWpFwU4T9dvoPy+lRUMNh/2zCzc2fZN65NuojjUUlFWj6EZJ7zKjfSLtC+oY77IL4/Fb9cL53PBA93JkTnQu9Kq3TcWD7viYuPQpvVu3cz+bixr24RALmNx6d72f1a8zzO6mrr96dDgbGFKXz0Lk0rbbQLbhiy0KZmIuYHRzTMTbvXjcEBBR632SocEjKw/amaXCL//jgmSwKTRyAjOcwDg/gz8YjL47r23WqLiGcw+eUEuGYqZ0kzne+PlfyQD8BA5bfJ47Gda0+4SWyOiquPUgUnWIaJ1jyIdKFDtnF4OSbeqnES22ouEXfNqM6I2P9K/I3vYpGVVlbPxwo7FDs0PDTSkCHjuwaufrgXpN7YUFThy/jn3cxBRP450xDnh2tXpefBImF+V2EV8h1twHZAtRAJatQqmTuVBMfr0l7FUhZr0Vs5NuDPlTsFjmEFB+NBVxPDPLRkMAAd898KAucFPRxkzpMu/nbRB5PJ3yZ0N+78Zhhp7s93L0MrH7VXiyU8BqNEHOFJyG5ZWRxDWi6Qa09SAWEZoL7lovIdoANyjmT1AzYsOYgyU5P58yr8kf7YWbxdVpOz7YVFjkjT/8EJxvPgfmXxMK8+kJbs4VDYxh438s3Jc32GQGezED/ObKD9R5Nbf7DuZViEQMi3cbsklgL1em7CbMC0c2jcD3gwj1hUsm5T+Gbyr1Q/1CIW+uTJY3zkohdYpbqUGCU+O9eufEsHvD6rmAdNjNbAV0KIjGVzHSZSK/p9CSLqiRvuqp5GOAlUOs0jRe4KUlxogL1ozYaoJcDvYeHpCb9VPv5nR7N19y3JzCETRtfvvJxU45u3LP8Xwpn//EcZMkl/YiTAzGq7ZyU7r4cjhtPDqlKEquwyPM/kx9VzhFfAzIssn7DauVXDJVfRjpmI7JcLVnBC3Ywv+PpaOFeeVgO/2ZBif8JnG6WeHXKVqeeJYb05bMOCd/39Pj11gslTN9qfL1p0U0EKTGgeCH0iP8Sb8DL5iihmanh03w8g+3OkKh5zfKMcjnvd8T81NjNLxF2iybeR+RxvnQ9A0ifAd7a9rM2rgNWYTVB9S5m9PBX4u+uskpbOKOGqtzQFGQTU2qS/LTVbnSke1tUdrW5zClzDvjWmYNH0vsr1bs/eduHwdgMl9MZSar+va9Grmua18c6+RimulOS+toudTlJ/zYYn+GO3BQinTqyfZbxrBgNletKcFV8GK5SOvWGI+IX0/9fufBHrO57CEmzPyS5J2NPI9l3RgsiNr1wVMFouqQaIrPT+3ffcOXnXGMKo8djRykGwBsw3Gh7wTCKQQWgCUU/CN5OeiceYtBrlnSih4T/aRnC8IpJLn4BPofipdb/DUKP9IaJqF/XfXtTSBQUp3Zz0yZkHSbuZQDrVuheREOQth3QRStgaJg+8ambnpLU48w6Wdtqh8YXblyDCHtsg8wLsCSDiWT28CGniJj8w9YV8b93Q2cjRetRTM5O5L8tOuoq4Y+TErroVRbQnWMzEPZ29ixamB9hwks8jsTfFQRQR9w5fXsaZ25jt6GTs+65Aiefsvy/TCM0j6N9eZrbqwYBwn4KgZLdTR7c8HqHiVsMMQ1pMmne+8fQMNQfn+Op008V3m6d5P7X8ScDK65vqHUhCVQtp71Q4WPpHjxrRKHdEAG+P/X0BxZWGSNZNBa/SmJCCpiZ55wlpH//YUuwB6EIheOe17y5ViG0ESspdJAs4pQR1l0NZwNBKd663yFLr3qqr+HP6j5T00nhRd8AiQbKG0wtgavIa5jpHBh1qCdQQI6do71rkrO73uZsVnIfQ+444T+tIAi20GVNKdcEK9G2muujevQuVyblZEwn8BFkJ4dMcLXtZzZcCNOMuI76DEfEbNuGMzeafHBq3XWXW78SHEFQFVcVcWXlOSZh+4W0ZlXnbRD/z+4kkt/KS+izvGRWrRDwbdKnWvZjxnILAcBbmV6LHt5fReoCZhBLMSgu2UUAPLR6PLd5Jps+JO168ozFYvyf7bY8dN3zbtEjfNgU4yKDhr0u9UKl6GBtQ/ngx0n1o8WI1C2oJdXyF056qTor6GIFM10FVtOB/XfkHp72BJ987PlTN59q4AJDdK7KWVtFdd70kcLo/h8idLnSpEmW7Xkrs+XG9maPrInj1+JgYEnO01HuXjkNvzJ8YQLXlr8EhjMv0yO1tHJ1u4p2yQp2A+L128QpOjXz6t8GsSKcIoGf67FlHEO4qwnE46ALZGjHOkyLkjvXp1X/71er3KTzpCLti4y4Ix10vgqPp8PPCosZ8xZS+EnEjehmA+m0uE8Uw2JapPLsHyE/SD+7q/Vdcv88DbXTc3t2NOs83p0EVzPG8pP7dnFDuzEvKWCaScMxsuG/JgKUaXGDSvfD2TH6C6tj5C0SA/ih6YgFpHYDkQGXTTUkE8ykg3In0Nlfmy47W6l/MKYRNXcmV9cABiki3z2NaWJfgrbNCL5AY5VLOLGC9dumKhMe7cIiss7CN12RIy7H9BvDBYD54XNWbnKO4FRNuwBsoIsVMbu0s09rArur5ayGLgKYfqqQYhOcQt4bQFzRhSKNRaRG8tWx5tcYU/wifsNQjWOlvqFt9qbtoF90ND/gpuobmYXGKOl6wUKQe7KAMuZiJPCA8zOhHzZBp9+wUT/uIdkDRQeBcSzxdwv+wXnr1QpqBSRhwSGfbci4bcM1tMe0pwU31cxgKlGQt697ra8SA2ICFBSqGbrP5HezLquPBXipU2ekxmGhYiG3+VplPveKJwEmm3pue2g4E8ZewwVpOEo/PPm0N5G+v02j1tCvwYo/4LXeECW2vLjxQKmgd9GgqgjJPF+i9yBXH1yMyXbTggOf+9LqyVbqIUWOTvjzIgYzu8onxv/C+t+/O85GkdQD4eADlid3lSDegj0BbSmzyS/mQj55L7gubT3KUtwNW+1G8glT5vqLHS4o2IRwI3Tav+E4DKE/3Kya9ccmiFJ2+S/Jl2SVJIX8E/Jj8BzzXUsYwfNFdPPy1MzBepnlKbDZaBak9uutoYaa7vI68OiQ0cvoLV9xnRJJ/19xgaF+gG3aIIawby7MEMB4neNXbWnpbn7mkolGE46qofijiOvRiXBqIXonAvF6D4+mKnA10Ye4rQFb2uxYfYunlannltlXijKlXtQBud7UPceSoLcoapHeMdE2cJkBRmpOm6I9FoZdcPc7Q2OZL69oF2vNvC5NduC7anNwRamy0bA2O0o0HDboa/Wno8IbHE+jPZ1LqzQIXs86eQSlRpNCQDAqfmV7WD5rQzoOUr/3TmLaFEekNPiFxXuV2S06IhQXc9f3f8KCyhzHb0NkTjROwqzNnpF1LuvnWO0sRRkeSv6qOlkfbp3l8+/+yXDFLigBHYJbPXnoAIvEtXlWto0vES0PCnKo5dthPgcreRwk5I3UQVzxeNmGW+F8zPH090AY97RYYGeagyD0c/aRIBxgh98gkYPAOntBBwvKm+z2znQ6SaUSps7PUU7F0WQPDvUI1m0xBRDSBXp20GvCMhEbYRigvu0hrClj0yCr51eSh8Hl4hzaqhPDET1EtwvYWLCA0LtG5wFjHHJzRI1LgovHMZ3ShkQSTb1JvxIIrZEK5JimtPHDJc3s4pQhbie0gNtlVc4cmYkoPSmgB0JBgzs19DDzi4ed5aZoGSyhqYQYJXdNi/0sZaEnPr3dgPcSF58djXLSyvDNUjRhPeT1GUoHUIZEeXpI1s873rhib6ivbwbw0ciyIWE5+c8iyqvDu4tU9bwKLFa0QQBu2i2fLzgMg4aeewir3cYDwF7oW/JBF5SrJkXGQPPQvlrrgoBl5GNXBE8wlxAiYS+vyibpvSWJoAaThvVvTnZHcud0aRf2m8pzFv0VQPWFaiATcsZKR3KW+JyqxvqmZmo8HjQI1NfLeNIKCt/rEhMR0b67/WjI6YsIZtj3euVOKcJxkysICp7mMNjvkIMRMH5I4cgzWEMkWy3dko81JMKLwnvqHrZ9CKsrrap7hH8z1Et6gUQwr38cPAzvc4uO/S6svvEVQvQhvtqVavIvleOn2bxohqSqsKdasa1ZrP+uXyHuc+IjtTJ9ckavKsOpcvb33uzMXigClgXI9pF/ledz2vJyA8fxS4T4nfa1Y8b7qRzcm/RG4Jc1t9PwQSiyQl0JWgFNqFZ0492X/Mvf8NCy6yOCqB7h6W5zdMY/mN69XmNXFDAEMsOr//l4rcgZn1Smof8HTtU0bOkbD+SNFBJd/W7qbiyxLvUIQfRx6pHD+IhWL+qCmYgA5VZZp9RDhIkUGHx/MLbZCzIKpEDvyWjrVQ+Ef/E2dsKq6weGdWxJyHFv6B7DbxvkOcacKW8ZCD/rhvQsKpkcee6xhO+r4t9NZk3+5pOLgTrj2AV1kQNjo619q9Ia62d8EBVNaHnoyC72h5Tin5VaCFVS2Y7DYQl4dhEClmAr/CRlRaEuhgH4PkdyMIzZQCu+2gteujevvxazYf3aSHnY41G2PMaNzL/eS5QJ9Us3Iro7TjMfLNN2RpGk2+y80AiqeDuybkZKM687SjI4hrk/5s9FQlI1vNMFfJt39RsWz+h5H8qJplqVT/FNs2e4+PO4Y+JME9ltEqEv4e76SEOsDpkcPv7FLiD6nrs+L3p0GS7nqpUl6r6qQfWnyTl1VWrgvAgBiY2OOx3Zd81UBKUNbkuaBwku2r4eTwzgRJo0mQfewfkVUPTb/74KHHfl3wg84Z5JOpGwKazX7CdkXMc1iTXM8jvZWOBy6CzqXJPJto9FdYHF3fl5m+6Mrh6EHF52ueqB/SeBa5jlxYDTHxb77ghskYV2TMwHxeajFvCtcRXSrrBcgDN3wz3voHS6CPu3IsankOd4tmqnrGO46A8FxXxDnh8c/IVKNWz8el4te60kIGJoMYWlmLznJOucVGMjBtNmUd4cjTuUAr78+x6VEv6mNS4Tz/APo8AHA4W9x13e3DyVlCYtC6ygzR/yHFtFZNtHrFm1zXg0PJkoh4XwCHb2cF1Z/cbFGfkwNH8Fqt39aiqw9u5MNBsE2SuPlOUoez/VET8EqdqIsbx1eGzI9YadoCvhDb/SNt6Va41MqfkKwASRhZcP3/9PBVOSPaVGnod40qztxBDq9OiSAm3Ae4HCUHk4Lttwf1FxzjtSthE4HvbWJHdTrGAwvRLLetNa4O782cLxZ3l9CQ3RFKLNvDHBdh52au5TjhEt26XXy7cbe38Ptmb1nnAta6agjiGOByVMEls7yX/2MgPnBznk5ascorYyZeoGrS48pegJC7NYLdhecCrBYgK86tVZjyjleXeOyiVEogw+JfaFK7IhOvhoKoyJzPLgFfujogtT2Ej3Su6LURW9tPZW6j9RhfDgYl3CqCf8DF4lkTgyijLzfcKQrx+SawmAWPO2sAWw0kX9SoO+ilzQp/h1sIjRB6AZoa4ufmSvFEUD3soNtHL8uUND36bcf61W8cak9H26t3tcYpSqdj50LpKx2zZxdoKMHVsbdz0w57kTpmMPyuMLq0znW7pvf3s7tAIY8wLc7E+z9zwx1Bc+G4jwuo9cC9NCJxyNt9EQj51sIbcv2ZDLwj3dWSD3fRZZiCvhZNz0T8tDh2Nmblqaxp5Sbl9JmHRkatK/Ma05zoLN4zhKM15RHgaKSy8hBmsxhYuhJWzeMzhhTQqMI55+IRrosJHAc3CchaNMqxIYhdM3y//SJPd3D1kY36zdfFuX6ik9eON7W+te32Uop/3cpP9aLa+6FzjNXK03q3mwiPgruq6VeiL32CUUwUuALKf9uv+P2Kn7huI2xGJGR2NtnsYpmazTyWY/pIkdeeiMpCm6zMKIJ3Kuhxp8kgy14J/cu268Mvr2lXWU1MLPxfGPNyNo5aUqkyBmS55YJJ6i5ot/nZHBGoZlstyMeUMK97ZImh2COLfcG3s8QoVg6eQNy6e97rDRlxr5rRsmjPwRurKa/Ah4pyirR29mX77GZlfgJTuo0cPnjm5jzSzClZun01V/9ZFxzBzqIFtpAqsxUT4ng+ybilWpjNNHXo1kl+U05CQxElD3+LKhdau9YZAO4GDkj0ACkZEea6oEHsZ94Ih4TB0Nt9MFjrZ0NBvHAqZQkB7mLI9k/Y4C6fQ7EbhjHGKO/pBqKi8jCX+nqsjiTUw1ftuCkIvUKnl87luQZwmndPh/KnSYmspkdIXSlybfAbCus4FimvBG7r1JuR7+HYChGqM+QnVeEurBAO8Lq3zRyCkLRl0MNV+A2vk7ka3Zvk4s/fLbVyl9x7+zmTRsKWscCoOigqh3NzW45stfeH6qZG/g27Y5sv4ZChDDrJO+JHpUSARzPW1H1zDml/2DfELjCazXMCNT3fGAI4iqrOcHbGQypg8APjtU9IaoUAztstjNMlTvk+y/41KATG2nzIPJ5OX+dD5uCdXOuPAoALXfSYb4z8nvqPgzNUWNZaKcqHqUlyMcDTK37l5s/eWbdp9hK1EI/Oy8vzfAxG7OOO2URUYwuXXYOQV1BE0mCo3Xn+j3O4M51twLn/6wX5mv3GlzTM8UYrJ030j7PCRn9ujgfI2yLGjF/Lh4vGVbLFlowYVE8oG0EuT/ofFnSLF5X9a65LEuCtarrGhIZYjut+RP+hl3uN7M0QwaTyojh2LF81OSkAr7Ur1YYby02ChI6spEi5WtArU6g86r8UokyFPi27gCKWn2BUYie9wRks9nZCav5rCoYAaw8Nze0yUySoCNRBjmh3LWoN+L4/u8taLIuZdGsyKyJPytvol2ql+y1wxvawdiqnhXjM6tFO4WNrJQGJqPxN2mYff1n/BdhNrKdWGgeeevQD9V4lA7O7P95g5QBLTgaFQgYr2i5zvlctjRhCG9w59bvkYcFtSh8m6zkyh74AJwuW4EIxp3FoFCBB7cfPmc+dV8zt6oewPRhXgNfYhOhpMqaf/POyc43zw22KJShZGn2+QurC/VL6pkpSavwol9Y+2/pD9/mz9BAiVszaQmhBfUUM1CsHKZ/flk89UXe0jj0sd0nwSUn2YMpmDXnbXixDC81tpO4SKImTPga46/dKWgmfc+bIxLqQ9z0zkbLUGc2z0vsR39DdmvFAdWW0UKs+hK0FUMIwH9o+TQfZuogIbTDEh51MQM3vm/DpDQQXFATmf3d8eyPkKbHfOD1bzJ1OVY7m2UDsyIRBYNbKrIGdasY9CTi1ceTL2jMxwZ7yDK0pgkJgGje3go1w5+ezItrp961JX69ClPh9CgIPvWNhxmxp1iSQKwl5dni9MRd5kPGKseHpWySvPDOmFud4Yvhz/ofP/VZR1klgL7YsFZSAsBKv71se4w0pmqgncRjqKqjDRV9gT3hiC5g+nP6LYvO2acN1a6Emj8sppIGmPZ6HlAezV9YrFN3/NuhLdfcHSRxAch1NNfICdshidEpXfWJ4yaBiija2Gp/flnrLOpg2u8PD6Oywhnb4alqWE40PnQG3ijiRsDIeTVYmf8DR5j8fvJOQERRCpzKfrB1QFzFLtYUPUypGWELW7LLpT/8mC+nNiqcvupgFczNwJ9447ZefV5V4m4F/dxtu8MhWcBYB8B85QEXa4KlgO9EW+r6lmwW+tpNfOILurcKYGRiPqwguB+KALJCFS2aq0xZyVS1OrLxElXXfC7iNOU33mHh2hrRyc0bRXPJ93Z5S7EZ/sxpClQ+CGfHkmjQOwh0UqTzrPLtb/APR6NLB5528mRnMdaFRyWNRD0hnmNuorM7XDmpIjcra6PiC+XCepRJAWlRmPiWrrHxUuqQfSaLDhKZPEst5C2NTKt7ERCMTKsJPr2o3RdVfz3zpW7qdS+cBKSJWiIu5ZV3btkxGFO8Q17ohAp7WEl2Fwj4ZSqmCxV9t+WFtQ1wT01GydmR2VDgXDZioev2HAyUKvDNSBML5AP6I4FpmtzoSPBmx8uvimFmML/ctiNZSXox5Ti94FUiWBydt4v9mJrEkhXwUpd1wxnX1fvMe7777Epik9lDtGFCgG2t8hztm2d4941tTsOce4fy6kgDi0aRTzmpOOuFGU4v5rZXA8gA0M2GZ3OpwzPOLcAI3bbT5IIG1NXiOL1KKlnjY9Mo4FX2NZRSoPlEu+qDNPaiwZkEXsspjD5s/PcjwWlTsWMUCvHDH/jWHRQ2oPQIDOd1QelaqdSgt7qDuBv+fg5zRlrhhLA9OALwItFK4udpKypC9ZwuuqNQpAY8TRAPHvLINurC3QhkUbLWLjGun8LiF3ldhzq4NatK3pwxDEqNg+FpIpZxvx0WaFPjfEMdwxh9dEmZU7nPIxuBzv12Y2XNrawIJooeCVnz0xpvd2peANGjPFKNnflQKNiLBWPwyO9TvxFFJzdZvy1Kg9PCSk0ggvrFdWSKuMJpr26CG6devXL1o1/9ta8DDkdi2w3ak3nNs/weIJxO+WYEYyZXXha56+0xiba68JZr1Lm7IqNzGGpm+LPC+fCQjagEjyM2roaM0lElTtYotaxDSHmg6EEydlXqfFDpcCqsw5jQ2yg7cq9N3X6uusx1f1Ncs1aswe+5TCHopAp2yQN7GP2oiFHH/n1WrXub05QRRTbniijHUOSsu20hKqY6JrXToHTsECuCVcrI4/4ud6DyxwYjMawI3gs1DvFBFA855YGJPZRUdtntur5UgTNbxLNtf8INmNFO5ox2nQTnI6n5CtasAmpCe7TNaSkH1ykt3BWXHje07Qt3xvlr2lHoqteGF27HBYwfscZdupQ4/DO073mU/W1gp7gDKA54xvZS0E4eyr7yatGVzJM2J1v8bJo2bmsrvLx4okHIc8FoW4gk6lD/3D0M2Vcd4zXcqI14yU0QVl2mfIquzjkr66q+B/HK3RGU9asrglnR/kTkbC6sVfnH00K52/gLqWl4z64LB1ImT8bchP5QiDq0HuIOXOoUvou/Ma+W68kwDyNuhhaPIG/3BfIlv+iYRx8gojSBoPchAq9oy8qGYDA5KGoXZZS5WD45qs6dsNwXMciO5yaFogo/KTgixQ4S0v5SJpfk3qkTHJBdDdLKPHTlJhhyNo/GnSC2cyG4Pv27hymuRO0iuZujf8y+YLw+zbZzOWa94mZmKxeARe0tnkvqafwxcmU/aOS7woOv9nbBIYoQIyPB9XMLhMDEVHhElu8WsFLBcsV+wSEqFG8pwYqO9PoWESVCwA9RCo4qCUo0iHJquz6gQuLruNHtQ09d3jmtaG5teuDiGkq8mbewH5sOmd1AZ9eiryObKAO29wKbStV3v85z9iYGIQZhi920uDmWCobjU13ja1fvVy8240QpQPh25cWwyMHWWn7FMEppWmqMweDAYEzozYnmXrsQCftV6TNqkC3k/z78VLFV73K8xPWAX15fBSWi5g7VALSXDylTrtJdsiSrJYbx6pMec84vb9szw8LRajJi5WfR11VgR573FbzlOZofB3kzWQyaXDhfOWRkeqjUb+qQZhEQ0GVqagWdC6Vd41Z8eDp8WyjCqw3tn40zammBOVPy2S9j7hhwzFLlIhGiHAVh2eQk6JzGJnTBiZlMi5aR6XIvQ/cWaTe5/GcjDQlQk63GOF0SlrE/MbKBpFkh43fkCTJp/1DbNRvu6XDECqIZau2DULvpUlAhUSusQlD+XoBG2vXPMVol2mz+RA1w5cvXB/nAKwO4zB1vc3xpEohxl3ySbO6N70V1+0jgWZVma34jK7/c6OCXoKaLrf+mao0WNyVZxJtD5N6xHgxd39CclN9iqpaf9EtobM25eyGQU3Q2Cy+976teG5S9aDaK3nzaL+Lt8oBKLWYCiOOHMtnJFqWR34A7Hq1thOa+11hceUXEEt0dqGqyg6fMvCF9tCfqdtoVX6iCYd5qZbI9dBac7/GmIMR3YfWwEE+1JkP5YaBWpQtRQFukTta2eKm6NIAKXMZvH4Cyn3c33cbT/WLdVDcwC/Cjd8gkb26bmrH7SqiNcJqhCeCkFXFUregxvWm/+HsNvjNDM8+Hd/Ng0ldu5/VyjKRUHHYihsccjCf5O5359DPVdOKXMaKwd+JYetjjSq1tPHwdO7D/U/iAaC6prtG/JDEmEfQHQXPR9OyiXOwG58Vo6JkZS8xDD/vJAHy1Bx0UEIGxunu+xiShel5h4iY5DTPdrEqIQr/ZtdgzgZY+D+z/GSQKgAIsUjYJolAmp7c1Nvco2f62QPj7DBbV9rjKXiXd3/ydYXti8A2X637WACiTMaXhpsStx7hdwHznQhlfxLNaGZjHchLGlvbp2gDUnxj6+JRgzL/1Hb3hUWpV9fc1FPt5V752xj7yef0Vy6r6bzJExNt1AQumrHCwkKtNtNHull3doBVQVVALbgFBOU9gK8eFjFO/vmeUU1vd8dhExHR5y5nx4/pe/eJhQS7oAG3lcKpBg4TaPqudil/WWMrOzq+vMQ65LlIM7WhJLC85WgLG0EnRxM2JRDXal7Sp0QmpWUF+bH/hafChXZAmQxU9POYd5nJgjkMpz3bbPXkCsaGfH+fHDoSp0FcHfF2k4sNrfFjnvkZ/AlBCHmEr/5XA/Ip6DCu3H1ZLf97sEOajl8t4uEPWHS4sZ4/4WSki/1hzVOXjGWf4gJsMcIZWMYSDiA+jOPNE08oFUYhVVUEZ1uaTEP8roX1pIUo8OuolpPBLqyXeBFVIJQEwq/XPIDE9phfov3TN9dtLY1APAdBGAFIffBlKfpFU06fwsiSI6vO55aXw1rnNkyplOEXUotU00UykgwwD2yeuQ1bMya7fYZ3wNPTvFWd1aFLTVbhNP7unmq5lVDN58WBJ3xpcvMp1hbYDEVcxCOHV1bjLBGY4OUt+0RYnKAz0JghUCT4pvGcFGQ9x7Dd/kvkni0cTIbpEv4+GedfQ5d9q8SykbaTCnTL6kiGg2YV+Ock7P6TEdpv8fNQid1UR3P3BrSb5L/rCUtIphCF6nxYzzp31rtIPRyG1A+bxGO0tl6bhGKpvN6OFIXYcF7XKgrl+t8qbmdoIZb/BHG+7Ho/UGlMMACpB1esCmZBfkSgbIU5vNcRqj1xDrCcb3RZZeZbq/PnF3GmTUE7LGA9+WHDdDFwoXjpdfWlin0QGp7uelXDxqQiuY5wzo8q8UTHSTvDo0ehjsVOpB9zofWHYc8KPpcyh2527dAZNymwubqJwbmkwhM0S9xcLcRrVsX1Mi8JOcXsv4UCPOKR+JMhudtoueQDKI/CGd4v8nNcKtU/xVc9KXHSeVSzrfSR36cqGamlPXxkxAumKx95DjEzytQOpAeZpXjWQZgzOzwiUHtULhNetSM6WkQ6ZAE8EO7YYGuS4Y1LHXJwD4J+I+8Hc4yTyZsMsablNXeZg4vnASnljWQEkT+F8w2ikAoqS/6gdReXWrqN7riJay/68qa9RcGcaOrmJfdQ7thQeHSGivx1CSYT0ZXWR3gLM9HHxpSMUtc88tTLtmqY1bY1cif0u3i0sUR7f+xEGAEuppaY83YgVN0F9ajVxuIWpw2acpkKmhSBoAGpmjCx+kzimxvlN8IN2ExunmBm5mjt4rSJn19Fuuh503uFz21w8oIb/+sfbisGl3EpKbksRnIvgz13Cxiz8J6N7MbHsmIgJtIhez7J3T6VnieM06jrs2qCwAsx/7tTlBCLX+nzw1WhQ2F1kZhtIJA541jnY7+2m6jlYLegnzEYNTCrUyhCh030Oz/jFrfRMzWwdq2HnAwB+zvbU8Y9LvIeeopJUkd9Ztw6+5rleYh1VsLQhnDnf+em/d+PUCYJ8LJnhuYm+i/oGLH2Y5OlZxP5gL3U6vAuOuTCHvyIdOxqSASWZ2V+vaAuvwNJyf8Lq5ykaYnk7OsKmTgQvpo4We67uTlJNINamWo7hjHhqEHXKoP8LnWrgV6o4rAVLwQY0Xj29/iewOCe3YUWWtWb4e+hFmP+m4mqQuqNrctsWwZYgfOPercQ3ZrrewivR14GPFT9p+ZORxvECiq16ewxgxbkV4iAFyDuJh4ojS9e4R/1tJTZQZiKn1QWY9JgWvY9HmNvgB8fjQNHYfXgxaHzEXe+2yUTPGfnkifFnn1Q46iPuXABbzVCWVQRHkBg22eWrU+DjCJML7kcW9K42vhTbsGzZZQczK7Rz8JNBXmDR3He11SrapEL8IViNol1alPstlP3tDI0H4UzBObeNsdq31d0eAgLOlZbKe53q/BakgCBrzV5Y051lPYQTw81R4gtb2uJpY6LgET00+s22ejs2rUsAUpybO6We3PWfoPfocbPiaAmDf4uUV4/lyAA5ASVN5tUp0FY3sPz8JKk86q2DTdm4DRZ9J584o042rGp2WQgx6PIypZY4WRhbB/4HkV+Yk3wrOMqE04wwS9ROkiFU512jzdRCZthrua8R52dxmDsOGvSnRAvw4foCKswBRcXwcqKQtsi5OwdBghYpTZs5d2PhlD9aAdCm7nQbwwtqogSzbo1N4UU0Uur7yD/8e5gqDLcAMi+z/M2uSLacJxc6ih7+A6MLxJWTrhDfSmnqkN9V4fPy0x2hbMQhkoEJzC+0lU31JpZHNv0KozdeUIdTMpgnHK+pgKxPgUiyDYDM8JD21KPA79l23Ygh3s3FkG6VcfQ6DxPB6/tTwYtbiY0n9XUobOk8xBqpbkyN6wNQ4oKgP7FqSJl6XGUJVF4mN7LFtyclPEj/zOBOgcTkDvzzwXZwN+IoY/7enOaPYQlTiZBOFMBxKIQbT5JwBuA/PIoAC3UXjhNLnAPrItXE//0+jhV7aS4sbraSfH+Bt+Qf9nJvh3jZYmZBr3kCgnfyPdyJSfRfK689vsPa6Wz+cHeSJxPOq/1ReFqeV8VG1bcY7Y8TKTGF//Pn9rJCs3YTt8JdUbg999M+uE/NgDnH1xG1IovZLwb3s9ck3mVk8KKVtG/eXkj5DpGUsBSAUElEY5OML5HHbzObqGRvJCqes8/1R6txTTY7hyaorhxatx02uu308DasFc1EHcWvDyAzM0vJwO6laVjPysQfek7ZEPE2qcJJa1m1sEyBQDkr3ntlPhOzVWWKsIGGl4DLryPtw+Y4WCwGOgIG0i6YMIPRUuzNst9K1ktvTc2fmxMUDY6miyxJnc/qCLB4P3w1n0xaOZOmH2+FF55rE/Vl9M05x/FLfraqVrtBNLFB5ggdzwkrbpAXfFOj9DMdkJhPvnIqdN4BFfl+XbUlNTRfly4ITEsF52L0AYFUUMxvYGTod7Z9ANbasUj8e1jQWXRhoeBYZcKb9821c+3t/Md+sOyfAQ3G4LrDBqwg50/+Pn+ZzCI5VShsVkD235XkIrJBuGMAQmQL4L7Wo8+u8zBjgBaTcNOw9mAvdXnzyqR7Clm6LSqDQYNW8dsbXTgpkXR1fccsLYPnxq6OLlf0dJDb/D1OZXp+eCTv5YeQfM7UPYczaxDQqR7V4xfRgddjwnQn0UbwhFS1HA+LoPFU29sJudRDf/nFzB4svlFp6Af1RV7daWQXO2yLVyiBqSGfeR/XCSECK2RE4I/Y61tbzEfud/ONKkDbMCSvpHMKqvO0EbP+8/RaR2EGfIuZMztye1gWKYPTJsDMH0niB9wh2t7GmgOUMzGjpjZ92jD2ByDOlWHOIJttt5axM26UYD4FkSyEr5adg8DLmlsWuhG/cV1B81FfLgY2B7iNl1DOcNghVKZcsify5q4SzcrVjl31USQQAzvQCT9xnQMs24PrWdO8UaTlQMRhmTv1tWrCP2GZOOIuvKvW3i7p+84jUT+dtIBGBORHpG2d/efDA0pP5WELxiKAhfEL4eKIjz3c3S0cK+LPg1X+LGqcdD8+JKEG+ckqX26rTU9P6vpfMnk0q9WaGPtpvJe0n5J48hBZxLt4W9g5JA8FKfe3VvYzokX4+beH2+MnjGoQ2YCMt/0AMQiUJmbALtJQxZfAAtQzemtsH2KNAhduiM/ENrOhrzcO6HS/LQXHzBzQvDzgaoP6OOuXlphp7Pb+mlEeKtWFRBPbh/+iXpGky8+CHxDqqac/IUfJb8/slkIazj37Z2z6R4Dc6I8Gss9tOfGWkznLbek86r3nv2Nd8tkz+rPEjnKIRZ8RA5j7Vc2aVkcpYGeHRgifLV4bHg0VnReMQA9SI3RtduYBu42ahPXaat/PBzDa6ktT8Q6U/9TZcNrkwRogIGzOffnVGmZ0Yh2Un1veXaewMHOkgA5s2OgbVohIU2Vq95Pk4hsUOn+SRzGf2myt8UOxVf9kPFHLXafTfxmX9z2eQXOfS9EoFby4joVgiHlGb67Yg3qotAoDhEXST/MPk6OqRQDBA/WLOMS0ZA+Okpt6UuH1bRuw3/Sm9XRwfaM5LhezJQ9accwBaQ99cdu2DFBQsw+YvR/7FycwvcJ9MsgYw6NtTMzrf3FLSj4ozumwFEH2UeqwkhNUSqDduS1Ur2XNHSDhIZCmJ5iek7P0ZEGJhdIJT2Qntoaj5cpg1cOkX11+TKLZ4tBP23LYe6AZPRFYl9C9UPDvC2GMMW+/UHoK4ZLzB9AjTCxy5VJvFRk5kW2ZWb2cITdG/zHotLhl6QDY7dy6j/9w+Gqm7Z7qATuKDbo0IKoaH4MzBOOFI38vvlsFam2AoYoCZQzSU58zanL8c/ZJnOkPNlsgszJQqUZWiwLYLIWFK/TyQjZXvTpuXlmCK4xHA6Pjwcea8nq8G5sgAQ7Pb/qVSFBBw4/tg1CsrGtT8Z00nK0trAV2syxERQ3AWs6u54Lwu8ejhmaH86Vq+DfFZUgRSL5OwW3WYKuMKnujgJ44LcfakmU9bQC8jf4qifVga+O575SvL+wqzJZr95uAmguOwYEaQovULdIZIYFvsEajGNJ2xUljhkbpWV+GwgtgGxxANFWZywiNhVM67ib8BK9MRigvlnSnLgmuFAxUpPa8dKYrAE4jnDRmjlaBjpUBNXVhEQZ+YK/62/FZAMmrTYYA4yxCM72VYwF0UuO26FMGyyiC3NBWp3kTvVXHldcCryY270+T3zhXu2e/zlTo96xLsU2LX7AGToS/QS0XQxVG5EDlBf1wjqdvPXNAk/CnEJNs7bDgKXIaJvDfEV2FipqgC+6L4TUeM72Lo6uxbxZ6VseZxjc54GEf9DalQTkyhUg2HsGsATRXeK47F3mFUShfoeqzwSIVjzNYLCk12iccQcqgxZNPCC0ICXCTL8M/nl6oOFOKbMDYHP8x9mL69ybN2uxLYO3uMAWFfxSxOkIJpMahhw9x12bNVt/WaZXNjlYNQgwGzA81amyBBbLF44qbbnVgoxeeTg5jvuYr4ErQa7K74tOAuT+woAUg2n4S4sWBHHW5Be8o8DqwJKSkL321kdAvucDmwPW5mvWRxQBa0OEY9lJC/jgLVgzf5y3VzIDkxBcFEW3B1mPmndwMBehA/VGKTAU4ozcRmlffqCPRKbDp5oyD7A2/O/MMDAJYBmSi2fvgF1Btph6jHFxnL24vP+SnJaOv0x/J4Ug2nSvBO5VRWL8CT63CpfpnkNp7D7ZddAMdBZYhHtXz1hRsMz2oNc5pEXm89iS232wF3YSc7FuMmVpsIWkbWbr67Payptlb0XezcqIo6d1fLvpreGFhacYy2NrSwq6mBvNs2Gj6KvfSGuJ31aDbLRNGi5RysCvCXcA+sY9NejhXeFLZbStEenFagsUOfhkPOiZelyC4H5VwjDgRJYM3VU4Taky878gP4x1mfGx2AuWIG2tVqWVWuSKwkKPcBHSsw2gkUme0EON0VUPF8Qa6VJsKEYQiEpOJuEE2qshzy9Sj5WaPfY1ykhjCSaTTp8vRt/eroepfw2/MJsfi9DeuvgsKe4hsBkWeiF0FSjdPKfo0/Z63QxkrJlHbThfDuB5ZXf3GsKm0SSziIwnRK2YIPeUUEuvd+VJ94+8emAeRPjoS4yZzhCe7lkQQUKcqEOHZK7pmnrf46qHaySbU/5F/nIi6DpvCYz/w3Bg9ZPlTEM2LqVmurNFWrMx4EIxkqnKohtsNcLXJE+niWR530tAviNifvY6uQe3vwROiZZxOAhrjddXK87MXeUwGCKw5HOofkF+ytDk2nlsr0BwS3zZZryj4Lv8FMndGhfo+UNyCVdbUcOAFWb2eRgu84bCmFHF88MEoA/5VTgrjITg+0GukfRfSI1HARoSJxPoOdvlxxKZlcc1ZpAOG5t7ZO1ZFgyCn5XdcqHQOxDkX+eI+O3o4+CcmATlJ5ZbuUKltjGrZXmCSqcPN60q3WioPUYey+gcr9gLDw06BnNpXo/nUn8RkHAT7y6WHt0UDzD9ppW/S+VfJAOV20ADvsFn9JVUjTS8MLgTeLT9bC7gAstd1X8MFrCJmWRGxkj0zgSYruoaCYGg17IDJInHBZ9qOX3tAZ5Em6KP8n8pdS+sNyHlsVRuBy2plqGdCdGd3/kBSXSGEYR7QCJiIiH4H6T5EeYvKYSvn3YErNQL3FpglmkB5mY8GHD9G6+7pD6FJL4y4Qa0PSMNJlz8b/KzZokBg2U8vKzymJKwexQBtDB6A8zUUWpObSk8HPf/saU7JPnLMSlenRFaOiBPJqvAc2lBn/N9/DsTwyfzLb0/S+ocHOmtiNoPjz9mTKR2U/Nrcp5dcpB6L+k7VlpkZv6P0LL0FT7EgoqTZWTl5NFbxKx0GkRXGemioVaxLjrpBY3kNhJZuto8Iwjer1sfOLyyPrFitnIwwqC3tmIzc31XU5FC6lNFol5MHU3ZQjazuRv81KpA41LCYwwxDHAIDH2xgYrwvv5F2LFN9dtEOQd2V0lHJOumgoh+2Z9Iorchu3Uzj9/g3ADt9pHs79yhs6DAXIrJI6aEjXo9znOp7U+nYiq92dRDCSIOhR76GPn8h3TUhUBdo/vPAJ8eDr7nBvl6PnddSGYYQMuFrDz1CrGLPYdLa0jLa56pgtAS0Jxi6SlL7NKPvm2HC7T3QmTuT0MGZbMfj4j28UQm8Oj9GnyjLifoHBcQCOwr8DEA4oGap9CK7yYUBzueMX6kPk/dP3gNxFSBV5uA6eZLzkMS0J6FFohHguGvBbFQmiApTlhybXR/i25vKS976XZzINGJC3ke/fEB0ZiNoEFKpLxZQrCUv14xBMeSkTqgBXY85usTpFSA3PhGbLKktYSvr6tAW8TddqVmuqTGkugDPDIzOq04/dl1P9RUjQGkMaftG7B67xgixgve4pmfiKG/BBFUDmxFRvaeHC9UyhmhrUltYwdzdu3PgIR7OGXG922bE+TMKOB3jvIO/+lUA/RX9pejbeIKnUaMq+w4TJwfyWGHH5uGo0apYVgpaxQ17VWIrIC3AirjQCN898xI4VeHehBNrNIOW4Xsyhuqhf8jOvBey6iMF1C24r20/7VntXLzR/HiFgqz8yKmuqPduR2JRj4Pn95qdHAw4h+p9w4BbNVnNXlPY7/jB/TDgpd9fT8pxlXokqtPWHd4EV+lVcyMrhpzKiRhMCbLwn903aN8CExl+VCizJ+TaPtg2smSRx5nI35yn7js74fCF26hgFgO6L3uCzLuZLHu0sNtRn5yltWQgPLaeptmrCohN7x1ukmHPob3LA+JDupAGlNwGkq2uefcX5ZDEr26HeP+cBBZlDnuHBzdOjfhH40QQxn2Hvex2QfHGTctFOJlcGdhCmdQSmDO9pziIJ27gKB+SXpAtKME0SWA2mPBu14KRNX0p8VJKZYKb72spUtEtNIeT4IVB3LMXmsUuhfeug1RgPt+sg4eWKdhLmbIpunLWu+pzKRH8EqTfR54+GnXwM2XO8MxOM+OQOcFv+2vMriuzY7ue+8BjyoUyhxrK6lewd5R0GR4KKOPDgrndQ6LT/Yc25z7OznAMRdn3qbn6TcOo5Eo+LYOay3/T5U5DPPBdOI3dnxMLZ3NMssD3uzYIlDCx5oxraRV6grG4bqDv5oBqpuAYvZlsowPSgibv2+paL8twbQY8UnpXSOJy3DuaS5ihsoU93WpaKTOGi9bvbiWVvZzLcS5CRS4YpOZXEUZ0HAb19lMshEQOabcGlvxJ+L7EINSV3aS1/hSI6dFvuQhDmnDTOZJHjTICE4Heq9YIXk7VBjs41fE4B5cji61ycO7pV7LJ/ReOC9icfTTL6Ujb5+cNiOU7+8B1mFq0kHEIy78nQqYbGZ2Sto9v13RW1NOGtocML62g/8srhVBXZ7pnTrZ6yj6lJWvpi6bS7hk/32S/jy4VmQf6U0XA7G8LTbjS2CYOy7k/CKIXn4oLjZu5eE+dNBP9kYX5VCjwmegGcsa9UPLtOY+T6X3TCc56NpEXxMv2bQeGJxY9p6m7raq6bhH1KVGFtj4QnjDQ93l85uGesQbfIFs0YpTwmLI9Xicdoiq4pNnUEyop6MjNXTKU4Me/3+6Q9tpQPDUHNEeNifnQx2j8qNYj8RCnb37Rz9WKCSpjOOc1dMiQ5NGMIyGObCyxBVYb7aCsC4k5dur7jVjIupLXif2mGLOZtQaqRZvlK0TvQ1E7boZzg6D/ns+bbkPQLqkgopX93JgRb8LsF1cqw6lJ4OdUJxtgm76+SfsWhqqpco4CgvQcHzvYNhYSJRuEpucxk/MHJDBB5qrqmrIGAWVh+RQI8ChE6/eXnPDj4aoOj4Gl/KhUz57S+va7xdi4AhfC3vxFd5dDAUH4LvWDDN2E28KDUl1CBxGqPeBDCkiqqiGBwmeaAHcPgyMytuVpX7JN9AfMbkzPJ9gTYz8ehKPmPIVwHxjA6xa1Wt24bYVMSa7yrZDAVhnIvLbxng0vzOGfeG1U5eCZXlgi74vngg/aRL28UHRcCT/Z2MIKisCoCXSfpyl+Tq7pg/gzOIOhenLfQ9nb1poBiAUywDUcD/5j6bqfhOwq1qxKczvTglLsufKuADOLGxYqScScb8cpJlToU9xZ/qbZ4ntwo5ECiICsNXLzn8zdNw7dnt747NPTlLQKFbfXcr0N+I7EeNM1P0BU/B1Tx/2T9a2n3o0xLEfMTNpLhKIk4oORJSSq27pTEgbzzsBGqUuYf9q0URDUTBvkj+YzE8FXPqu90ELE/ogLhoEmM6OF0//fuC0GdSiMYxFLyyn5Ef56Laze6rScS5uTMchhZceAQwtgOz2zEQFGvhU+uxkPZwtKrr6vbOgbzPaDgz+bnBXd2EXh7+oiF9JVdpauqIV3KGcfg1z4skcagILMFFS3lbPjkqCW/ralqM2r99R8ZpgrmNvEmvAYruGZvwAkVHFp52KZagXvnkcb6BxFVeNbet7ligE4J4F0mi8BdaH+X5rzH35i1Y6CVrkFLHFjNLBnQFTtvy5lRGcrLT9fgUoSr8zKl69FuIALejTKxkW2nCxMM9w8DxHL/l7tT1lFLB2siCP2v1SZyrifctUGWyAlMLp9cUH3bM/tfno2SxwBFhKwWcpo6lOxi8INF5gTaCzYmq9qDUa9QEoLMV5r8d/B57h8Z0m5K/HMxIQyQqZa5JO907FPA4Z6KuqSrhThqurNgX0E5ce0MJKm+tTqTkd4EJSOZnJzAZkmcGYIUBfAem9tzKHh0/BzBR9UdU1MKn3tiuJRR9ciQ3lCZeIG/jaeCg4m9w9gExlZYIQ3Z1eRef4Mots/8G/nMX7gnPWz7xLtqKkJooU8mTsr25KXByP3i1bYwVGFNO82fy9csDXce5wQYd+uTyygJL7EKZYljj4FenZMCH2S1I4nA5dp/LBq1JTChIs2BDtOs+CRaaQL0K/rydmRIsZxqJdoO3KXYd08ZPXcOPfsn4XUd5wJlBqZ4OzSyPSfbLdtDaY384oqUkiy2NnM5mKOhzKRXywZFJNB2L5i2pvbxUOBx4ATWiJoIXH5S9odBeeeiVgDZd/YVaRACgOFRe/FzD1l2CriHPIjBsJ8HNp7NoWRZsm1dxpobq5yPsQi7DcxFw6TBRs6kMHcaOqLbb7OWnf3ssnF7poL3ZIs3r/lYac4/PAFnQpvlwfv9TMIMgKTZStPN8u6Tdo225igraOPZFoptODS8+P+u+t9J265Nv5EacE9upsg4Vd+DT3iMwxcxe+oabAIjPsZ28u1mz9u46/MqXxkGvY65NO/sEaFnjQL5wklUjpsr8WNpuNiKQjNgjOFumNX/5USOPiU6vaLO7do/wsSM++o5UnWkzyCtXi1iu3pO/FCI/Q06r0yAHjU2nFmmbLAtV3y6VleJ++xj9Jpx6tVPnAvRrD5uNCb5Y7iiZesvkQTGwB2SSyW2FnqnOBmzNuaMeueM2RIM5YxcQA0+FO0SIpVCmKs0t06AC63NVGEag5PtUna8rnMMlIEH9K+DZjPTogblfAYT7fzToNk0r1kIBt4vSYH2Y/a1uYusEbJHTNz0mNkWjWuAS6h2WoxkHhe24693MZaZP0w9uM+mdVu6eEjOVVDJzC+adgCuoC7N/LoNeEvITV4fFtbGurTDu7q4R9rCaJ/9hHIVk3uZUMd7IMJl56+XvK029n1qtAWlUvcROUaVThfXJtSDDKiHDODs7dpTAANKXyIPzEwfxX8U/K7Z1H/XqRxFAIBVoBTsscD+4QG7c4pxAuxDxdcL/MmDWUaWsTAMuqiHSW5qNAI5lYQQO3ozXkuNnmlhALGS1FwZKCg3YXgOPLLcd4seuUV9gaT1wOCrhmfWKFYFOHZcXPjqeZ5SqcLFg0tWK+FlW2ENq9PQxLf4bMicZNm2wqutwcRT/oPSZcbThUGhmixH9Hu0st78cC6Tx/aaI7hmDnBWdTVCHAJ5EIDYDpMcuTmV/fLdVDU4UIxLTfC9YFalQ98DdU7DjhdYQC5cXz8O3rMekNbe6VKG23MJCnywTLAjT6qg2YDXy/Iy/xY8LaGKhI6DRMMGRiHlf20ex3fYD2zdnyixeaQh6yASrmJ2FbOIIe/lHu2ty/x3EFCeL/0us5BY8wRB0r7ab5tUMbk4s8kz32xdjtfdijSFCApktzX6zGV4BU8IwTF3tDEdCr69oaS77RDAn/aKOqWZPrSlN/AeUSKizfFX3WndDgFnY14glmrVmCTcuEwdJZoxJsA6BauIcIV25utipGJG+t8PA1uWKP9dDUSMZjf4ML0umwGZkX/klZE15klXGR6P0ovSBzDdgNybyTVIdMO1Ftgnonq6zPL5w8Fx9tbc4GjlY7QzM5euj7nP9bxM8o3rrZSm3UOA8m1M9VPbMWRZv6Ctj0ZLHPXZnagaBGcogOsT4mdk8TFmPI5aCAPZOtvAMcu7C9JgCLv9YWMlqw5TnHHyoVgo5ogapFTF6G10EwFUzLyULtFWQh6VFI5mKpNP3fiEggaZwMPxOh7rwVa4VvybqGSa0BtRFbaBEGjIIVX6iB+zFvCFT8s3iN2qteBDCcrM4IWvrgTkxea/4jHPbften4Yuj6I9ncLWPac7jRscLFv4VDmHTZnykcRToVXDAh/WnUT+wKKPmG+0/mjubIYYD1HWzi07mUjhWjL0vMqjhc6D68gQ/k//BVxl8hL3/8d4LajF0nt+9xSFKa73FotBUpNJwQ1HEV2Nnnv7ipsx7au/w31tNyM2QSB9e7Jvqzqi1AHySe7Ffa63Pfb7fRrMHNdGI7SPwblza1r5Mq3RxFsMFzzLpl6i3ZTNl5xOF3DUv3cELYuVwo4CtM2HsKWpb44wj4U581DcI5Iaq1OlQf2ZofA8yj0Se87ZeovDzWIhsfaWUqkwp0z6M0yZD9sWLp0R/27fSuoWWGuC2WlEF3W6nhmElLrE5UM9+Z8cQp54FhfbbJ5w9jwe4OGL3BThnLLboE9gDNbsUd1mo1Wx9SqOgR4Vr8+MSk6ItvHgT8hHK/bDFikb5oJp5N20lNgPBqr6ctX90Ssff+3z/pWZ9if+aFUgwlajOaAXiNUDOQY7bZEAFtBjlB1iq/bgfjPT883vUzUzoudx6TMjl55YiUHFDKBYz551/3GJrCP48jcOBJCF2YaVF3SuWFjhnHUVIZ1nrtdUMFBQSYSohwwvzvXVbekc9v8iuEbCqxysphtvFkK0VY9n79YREoRGIDEFw+Jl2162wGeEJluOxbTXvjIU1tu5QtYpJ/06gXdgZ6c507lGPXgqXgDekAW3WLplaiss/N3/XqyH3D43/jPgHd+G9+LoyU37kVwLwx+gUcL2PlDm1p41af7AUL+cdWjA/oMYszBEPsoK3DqklHjP4d5Vk2NjCMft5V0AQAD3uiaGsbvNGKJALQrjfAR2nha1mbQy5v9CvNEYns028U5YXE9VCOSludXETVzhFjT7qrUhCvZ/CKYTre/wwqTb7ACH3/KT/Q+4XLonkVbi59MZXkAYiIz2ow9XnZH8AcflMiZ7s5gcSM8FJiJBSxNMpkauUTLrVdr3xAVtoex0A4rA2+sjtTczCq2jWAgAXJGICzNwCwUUqlL+0cGKzUIUGEPbAxOiZNG6BwfMb5ndTQU6s2hjmaLQXWm+ahS1bBkpyKUeNFLC9sKgcInFR5SxJwS0JgRT8Vl1yQm0bytDiuDAuXiSJ6P2UlP//JnP81XnCFIMtfPF1rARZHOA6mA0jTfoYH5OWB4T+K733ifoJ6fn/JWv3Y4xMuTpWl5s8Nk0EZ/neYCau7Nkat8luMHw+rq30H5droklcbMRuN/663MZARQUIMgOfiFeMt2sYOyKcFYw+So3ayt75VEdNNbLUqVa9jX9Rey/ibSypF5ivw0Z9E3ciMGzfQnU9cyI7oJu07PJUvgge97Bk8qfy19FaaVmUq5P5a5wDZBCgO2b8ZLjhD7zTcmA5rPCvRBGh/N7aotA98RXxyZZZsv1SAbvZIKVwwUugRkLX72sKSVRj2REXQqIubZWPr1aSncMaT65GntozoPonKWt32zJAmhk8C5cwIFtRJDf1nXFwO4Nq73Mdi91sVdi9dtCseeTP+55eAkuhsisvZOsO5y37yGJLn9RkkeYaFa3TaDN6pbxIgIHNS/iqsNZ/mRcIj4OHLxpwar6nEtXe/KfDmVJjLr8pzB/BP+Gnnhycc065J148wpcIdgVTxMJ1POzzcxTBUs/l4F5TggQVf/gjlvwOkTeIBECydO5naS+3MZm/wVJvk/c/P15OkyZuXgZYHhc/nv5wTsXAOCUx6B4SOScIbTpbXGtVlyWRa9rlSA8+I23qGB4aRYVl8BWdbprDG5aJqVvs8HoPJ3g4RfYDomoQljKKsFjlZlqZRiAAifqsEq8q8O1hlImt3vgPkz5nKll28z36ftfXnXHQL7HTGzioqAJVmLRAeV+8/3i3WPD6yANSz29I6nQTEJu6GjKS/steLb0uP4yjAjLMlkyeX7Ja2d5lgfJIv90z4t4sgHDBFQp45iKiWz+zc5uQUaHRCIpLN8C/waOWTijfmgqka6Sx6liL0yKFW7QAcFF73Sbfa5ZcINHuluC9QWO7zOzk7F3EG6ZeLCruHk3LhR7Rbl5xhd1RsQYV0pcTJoqLTsu7iOvaRCFIRT50+RQ+LaZXha/OSLQmCQtbaS74KDMNzsfD9Okekx7GZ6x8eup1ZknMlyRFSqdWOhYMWft3+sN6wzgC0ZCaDL8LiV8kzPQGe4P31P+NDEgidt0VTlsUOUINuQrYJPx5cizdfYpL0U/5XjFitYoiikLhhttv3mJ+ssV03j3COMdv79NAEg44l/6f8z/UKTRq0lmeDI2FZFsJbv0X+DHsLcE4jULuDrBlYyE9tujkAjpSj5cUj5ldNZWpt4pf9ZtodCDtEtQfr2y+xnpiPQWkOouf2gDU7dblOhCjwVYeS+Mf5hek5EyxRS9kITF44rnEj/l7GDpketiGG3o5UtvFtIWwGgQ9PsUCRLlvWgYFf/1pilwHCym5og021/yl2XHn9ek4ZHCsI9Oj3XDKpUNlJHf6q+DFYlWkPq5SyiJwPyREPbPljKMtf1RljFkf8MqgbEdiWb/3undD3hcn6L8ou3yRiSFej+uevBQ3SRxU0Ieom8djqXqeV4qdmXtf6u7hOSCthu3LtTW9UASfgaFsEX9fugUV0iYXI6+cM98ebngby7Zjd/851F1ZhjT5S/iPu4ERgbuVn6A9VHgr/obyo9oqXjDZ6o4+07+mV4VlZZTT74HHZCZimA2rbVrum7iTDRNgL5hwaXYPbNp579sIfqmzyF3hKn0BteyWSDuqRFHf8sp5LWBTxAhdlOKCNnRsPRVqnuodFkOZBW7YQFPxa78Om+0qu0o6XS6FnK8mCJqIbPQFVntXZkwew4dmjYxeTsu3DhIrcDOVCXfZeuj7GONvgofIVgCZY7dT2TOnE9FnKmyHfPX0SF+cobfnwCU9zTbsi/UhAd9JKXRWHbAvMKzqmz0BZ+v8DZ3RuG4naiG/OlLzv48uyUBJKPn4FlbHepJHCS1e29nFnmrnPmOePdzNGhgupzATVs9VqguAb9Xm3mFDqtW7ZPHu1GF41qs/0a5/HRD1n8yLm+pfIqxsGoYuwVY1oxZQvCc3DCLXfDx0mwKpaVYJIVZmiOwpgU15688l+yhaPe+TyfbHaAAnH9m97qe6YQFyPFdA72AX2/Yr5BsKKDPkeBrkwFLPvYbHBWe583SBhYRAKwDhQ03QphU3Koq0GYkHuh5O9YLKcKJhv3dylcTpaIfudmaz0nVlwvom3+VidKeSBquOoK+85EkZuIUG28uLnLYPysPAvVGUmRdK6ZEK9p6VOPzKYdth9h3L8i0XLXvImNmrkW7o0Uv5KduV+FhYmp2MFA4pD9Tg3VotTW/MTyxf3F5j/JrnXd8PN+LvuMEg6pFaYW3scACz41XmNdxOnZ7qDpQt4yTifAg5rSjRdVdhX7HwhOJyuyPFq4ebcnX0jkMBA7COezdSLNMpB18KzERNaMFhX70fTd5qmTihyKEIToHzm0X3HVCMfyW8l1P5XIVgYr/UlYrL0F+8GgZBVxhSuMMH6x2uO2MdCpCDyXdNtFU197xCPTANs9u9Yb+7BNioHZc7EyfwOgO7hcOOwJRWYEO/0AWpytf7UtJLf1sui5DQTYVx6HIBGPDTvdnyeX5YsFP28oHI3AIDpow8WLLokFeXnxtYASRBDqkEM0ss0KOqlXlCmGiATfTkQAlPYCXJbHA/i/+eBxWw5LjYrJaSpkCNEKGUqfEaedQSRplyubtqG86pTbixiUrN6XK4BZpYBneAjfGRzmP8FFh3X+NVJm8mfsNhuJlmdtHUOEtaGrZFJAMlxlItboPhPSDRQ4uw0sfx8M2TagZlXpkkKiJOn2TWKa2RflbuxX4CKk2qsWr25O1jXP8vCBC/bx6fRIvhbko6praCDXDdoLzRvKO1A0nUfzK345WhxHwVblPjLpJgdvoziB9PL7jfdgmsaIBJdJ4OqzwznMVWfD9sPQjmy9y2wY41OEjlMU/sDR+osgNsp9+s6OFUJ1cwRLOVNFu45IG4ptF2icYwqnSnE5JUMvt4L9t+Jry+Le2mMiBjRO+skOQc+CmH7vhnJZUNBGcdN7evLXu07b7dwYH5B170/bbzQ3UxFMNceS02A0l7UYayQnpOTrS+Cwdfx8FjzTopSXEZKgIprjAoGDnNP1vKoM4W1dIxdGRlPl0n1CziO5+j6VG9PwKR6Pvqvllb90XElk/LnJ5jY8ZJd/HmOPf3fXLAd2qoTeeDwqwbKFUPwZi7T1UiW2jMM+iQeKwA8XSDWUG4Gkx6Xb2U3XFrwwsCHElLVT+mK1CmpnI8gABB0KQ2/22Il8UEdbNpDFrC4GFKIbXiQp0XrkJr/3wwfWhddoFHbg+ZCcP5MSBorgF6M5wdIImKvsrxI2mC6M3wjo0lLNgyGRPu+FsuV6PDivAIxfjIIffldIlxCMNpAaq5P2JQ+NYAekTlBhe4r5KHYNZpchRK5qHg7VHgbie22FjdXvzqZeSk/Awcc0onVMx7swUg773ZF5q/z81XFJ5fM7+vVNIa9cRLlUZJqLI/FB5lLskUfhLiMsOL++C5lGbz+ZrGikD1u/UbvhmIKU+byYXXvEu19J/0yxvbKDY0Ni1yA4DBcqul6oOsG11p008b19hCHV2fB9UqjV5AOeZ4aRZMRbt1A3NeS2v/fHRSE5ExyLVuqHNZYYlrjLZwQre8qCkqZ9PgMKbhYdE+sZ/0mmKmB9TyXRL58rtN9VZWwCZs6fMFc69rjvaSX6otdwxefKG3RLrY/mGbK3N/k2E9YhUygks1rXgUGyjOSYt1AQFn6k1iK1EWH+Tol431lnyaWnyfRyJO4ql/YRrPug7rMTLISdYyRtugT/71W2bo0oZXfvlcSX1DcgPdv854065Hfel2AedJ8iQZ6uDXnrd6qlMYColddcGWFKAlcSHUnjCxZtgxNnRtJ3YKSG78H+bCgfpcIcFVF0GDYHY4jTcQq+i7+cjsEtIwE9X/+hbPb3hnug+YT1Ps5BITF+O/Kte7URTWKKT1QfZxY4m0MTKkQrWC+cNhJw7y9kDMEAFt3OKnYcg7FlEe6rR7zxhZPSSHgmx2fImV6MRd+8vtgVpRRSJwYzvInZdp8OuxGIUzoqGr6Fu01C6wf3gaY2KJYU8ytBPi2M71dDnZaAC6uNTn8SPhPgrB3GugF/euHn+OXjAQRYnAYuXIup1+/FtT+dPpMEwZ1NYI0QzBmujM+GVPBceaGHXvAAjSH8IdxL/1e54ZizCD7i2gKlzKC3ja8dfxM/R1uOXiJx7FciBBr+A3UOT4oq8TnFs2TDNYIi7UWVKoF19eK/1jgDgm5iaNj325xl4Qi7DR0VobMSYAHJVEIFZDOELsZc1qPGnm1AaaRYZ566OStQ1rUe6OTn0kBzpL4t5x5YiUN/uN6NwgNH8ayP9iozmBG2Aq0IxluvNHUhlXU4waYBXd4uJ88cg6bMYc1FDDw3Iohneva3TV4pwTxTDfe9FuwnBE96BYnru6hHrfNdmkJhDpLcFNEt5QlDP/9V9vk9YjH/llcBPqfVpPZQhxGKvB8dyRE1iOO23EWpwXmiqENhGBEEea+ou+nPI0CSUCOtCuvcS+wXdLAOrH63aJd6pn2FOOnboox9MYEr9HBWMo/+ajzVIk9pDzb8ga/7ZbBXRzLzUJ4OT+8etg0x+9rkD1MYZrZBXveie1JnpC0ILodCPckukPjeQK/4cn692anLj/m4YC46/tpcJtSgl0uF3GXy+YiFa0buNK9vGlqQCQdG3+31cgfT3b7vBe1EN/oAFgYbd17bJ+SwU4o1xlLudcg9brmLuthaBdcZgd7RnMpSfp4zKTUk6ZWrWwZTFK4DvQ390dHER/0x3I62olAMVMlqdstQEy1zNpgISa7ONcDnWDGU1UAneGynbiC3r0E/hJjiJJea47Kn9yljpmGnTQJ2YYbR9Nsn3yWiMTgPxP6GRxAVOTUrhX5oC9p7WXfakos3/1+fEsBH6g3uJ1FV/U2bp/MucmVLM2859PRJ7n3Q8Ngl/lyEYG1/v7l1pKpf/fDGVVDyB8uruwzgWyHTIFyxf5uZ3X1a7gayiKrVY3XB8XnGRE63yYq+7nDHmZSy/H0yjyQa4Bz7JEaug8nX4Z9lbDY/uYjX4I1UdROCrkftxr0RTfe7G7w18pv5eKEHTFxHD6bGA7eATPAFfZU7bVaiATJ7DlbPBAiS9HlNguF42v7HnN1kELusO05Ts7hPdz4uoCOU6r5MHXg8WXVwlGTHWqVw6G3iIvQ/OVnihlCwdKuAPrpNOFmWGlj39CGGmV3Rg6eFz6m1M7B/yohatJ5phldasqbeS1kn/7aWC9JRp/Ok6Zoy9wxITybMhebFazjZcVSvRf8DUBknQBMcQYzvB4qQ+C5Jvd3zbHZOSG1QehRiKbLzmzMC6LT8uTwVPS+4sbIlL/IudGGScxKbx8e3uOtqtjE560AV8kkFetXrfnhy3PcNLPiKvC9sYsPCz6e+JYeom4XXIf5xqFEW9yFRYFHp2dEDeAQiqVUjPK2T/iQSP8vWi3HMN2F2zl5ujHh7RdgZ+80PyqF3PfW0lBaYGU8ygrylrUnSfx+FWfBUv/7DHRjMoQpOegkdMqZjd4T7CP8tzTcHhSdZAxQtHKOQcJvOA1jbMUFiUGTZa9tywhMb6KDB3KrvtRTmuT/lF8aDe7+bznPahqnbdNLyyaR0uKseIfUgQL+AtNdGNoJDb4pmdJo0xW8OSz6+KnFmqfB+3cDzCg2qYhTaP3fFM1erWQZHwjim6VltaOritmPOK+HsPu5D3dLEfIRoVEM7Pgdnw45HBmqVHyZZBWcQHubIhwsOfadBZuO9v2C7HpHRwS6P8PveO83JwI1YRoA2P88Zhu0bTk2dgnYFiHymNcAAID23nb0T7RbqdTlkNAMac/DgbIwzNJxjhiorJupkvFIA89aUiaYfVAkUB1/L5Iypifb5r2ciGMOip3PGNJ2qnjKGFmTBD9BRb6+MXmMu6ej+YtOTzrNzzwMESdZn6mXkCDjTvNEw8R6DfX9l7bkAHqVvvFkUU+me0pWqsNIQ1HlpnDzyhmOC73LpffodD2SfpFy9wdv5TzLaFmLvr2JoeEIerXO/FtWumTZePcR1aFdNatmw3+3ELR+B19MArc8DxSMgnOHSZk3HL52q3lpuQtVoyqlOag2RR8wbumLKfM08RhE6Kzdd64oF/i5CxYur/mbCQOomWXijUaSp600Ha7GghJX0dD8IABmdEYwAH3WMUUH7SS63zx8Lonn5wbSkbVolRYtiuLrP3scE7rJZkX3nI9/vMNxuWEwIVeJstjtLerA+v1u840M1v93OPHkJWCcZ70mU5tHA8QAMnTBKUKaOltBB5KsGHzPo2/NafnQ2C6NYZtLfeaBgKM1OdKO8pHMS+VvTLFd16LSp4QWoC7TOJy5k0qb84hwIe246OWgo35H8GGWKfIM0nYaNw/rcDvGvWBvaiVgZT53KTcKyY9ga+ou58iiPtBj6zwVOqV5aiB6yEh9TpbBOF3MfH2zJYTvUdeUrRle2RgV0xgfyXZcZftLjS8Ab0ozs/OpTseWnJg5tSuddk8ZHv2U3tAIV+yNygWGV/j51YrWJcCqgvituuZ42OsE5/pI2D+dsaed5sIO/5cXK79qgVS3VdTlTAqqwsjEVEKaouMc1SdFXU4XyDCLkhqIKkvRCQFdq50iRiHq01Akis/9r1B6TxaFcxaRGpP9p76qjyKoQQkL4P3uJwSt3LwOktpR7mf5dvyBTgFkP+UBhUnmvyDlml/ofNTgJoP+3V7L0UteAReCkssG2/7DuWr+oYlQHztQm9oF53sfI1i2Igz9wM2XyoAXdH1uvNiNrEa5KEQa4N3/RphlzICIlCP+Mt0rQEU35CrryL/8QpCYn6Q9Af89KCRyzoO82f2XtoQG/AF+0HV0L/L8ymfEylMkfd99QqyXpV3/AOjIAzI2X50w/KoTA88YNLbVfYSXlICnn5GwXo0TJ2qCzn8vZ8+aYhIyNGYWlAxP64mnVm3whFsTOxK6TVDMuPZoMjW+dG731sWu9h2QrC2IEe5caDFSZL+J3PHjIpysTs6X4Grf4SC+gJhufnCZFirNjUTQKCRGN2A5iw7jYtlA1QI9hxVM909pPw8dyL7VltBZFlJ/VzFIdmQlOIK/vKaBp7Qov4vvYvuiIsFaLbUsV0yWW0SZw7rF25pFIZKCwEw24NEfbcHXpI3URjdDftGZ6h+FESVxODR+bQe82Gw5JvcJ6Kc783VDEsPpmJgyRpCQmY7XcG0lO+1ATylZ5870Ot9w6KHpIOM+tBVsVe/QRF54H7fp9wsSdyDrQQ3rGXOsPoTIYyfmXGfg6jnxXI7TxvcqbFtmNoyDEgAVPOFYt1jeJiw/CQRAfKDhNRR3qEDSMCd5e+CX3d7z5qgB6GYHnElX3aLQOKiFZSsqj9vWXMMA34f5l6YY5j+P6iIJoDk02ApLnm8xqCNHNx1QrewvqsuV2d7de6GAMHLvT/5aw/X1Oe0/MPNtnD9kcf0pp+TB6luzcG4t15m6ET4MHPweqzsAtIOU8nSuLp5sSzG9zkfhKTR+KH6eHAxjX1xnSwNnVv7jyxwXK11uN0LYsZWdZpNOf6EbmMkVgUhtex4W+TH7Nc5m6eEteelyjmQmtLUZ366DzNYrE4DxvYmF1lC0o+2OQ/TKRzbHzjT0FTnSbhtgYhBksM5Ka5M9wIxNujxG8d9VGmZM6CnRu0M6BPcpuZ1ks+l4Ew4lEmzEIKeWiof+EqPBjUq5SUWLrWGUK8ShJyjhG2by7KnMwBrYAhtZF51/dPL3X/FIBmbXgkp/fTEq9Xez7t3I4UN2I19sJn4KAx75yeQ/0hVV88x92Pqd5Ztufds03gRsCm7yoftqJP1+quAeTbeWmuRgWm6NFquWAvOR6vfJZcN8I/hcaSqo7xFxDL+yOFkfrIslimqVBgLA5r2Ab+q6hyzbar1dTZFJfqBeS2E13YuGAMXFOsLWq322queHlW/GvndIU994j/uksMyt1DggLlPM4aKgab0qfoUTwsEmQeo1/94uI/rTlRXczLm4RGdVeNkAyx5UForI16v31EftWw3ntQ3SJBT9RpXGiy6M808EHbSKKR1tdWELgs4+x1DlR8oNJKcN9EZOBwhbE1hzsKgAkghlKzzDOq4ZOnIU+j7AFLWl3+KM9VgwwIPgia5dM2Z2drzcS/eI5y36eFB07mPZ/aJ+9LHyW9gypj6wK3CX2U6T+4h1bFADruYZVtL78onUSAH227EEno77Vh6Q31tnfQFdlMbbis4VRCJ6joENBuWQVp4Z7burbicvvRI2h4hQmT+x42GFNO2OKEwoZrHrNYtngoqZGYk/clTPJMpPara3clszlmf/J46PWJpq3RX2z2g5eARDebLWVD4FAM+kAQF39gJDMwiJUzp6xGJlG+0fEAhVJcnnNY1OLH0fECq76tC8Gz/MZ4GIVUKUGGCjGFeQS/PeuI2s9eRUvjgX+OQzQLE8898oCVgUN45jyiG0EYdA2V92x+26v1eKpMjdb1pOrIkmEaY6qDHaAVKOxE3UWfXpJny/eBG8sIPAyGLCwGQNr4Xi0CWLdU1slP2tDElQtNtZyewdfT7l+Sp5qKMcIc33qCkhl/ztaUkLbIG/WkUG7+JQbWrhf6QbNfhj+h4ZTNKEyN5PVhVMpaV8HeqYeh0iGg31BEiQKe5OsJuz/kU1X5gqKHRQK/AOmktTKn1RMSbLA5TGcNpfpFdBNu2jJkDbasyc9sfUOhLCAg8rada2shc9nynvkJE2BNc2Z6rg4eEGg+sYCr33dpnWZiv9Orq8wCkyunhAaV4TwnFwy203QXCwO0bfrcW6D1ZTHMPsdUYxC9M0IVfcKSE1r/dryziDw+B8RYfWUb6I9KjavTbx0RYyXi7aEgHgNyGOQ7ALYzsoMfIlns/LhPnWLg/lYmX9Q7fTVK0EfQD88Ak5czXuB4jM0By4w/RigG1VzonYGZPGkfINIAYkX+v9ryccKWrPXJCnFjo7JwVP/+swM62F+kkxgmARE5MjZ8dBhyN41jG0XNY4N9cRIVy/p6DTES483Ee1vgmE6mVjuj1RrIt7ZD2jtoXwb4GHv8a0DMmTvRUXr0rhTKb1CSznxqR4BIb9Kpd0gySkGIVdov0HmU4a1SEmxrqEknjq3yGvHMk/8SYI0yoWYfjMGyyauWdppAA55SHsKgjyPV9ijgGHWapyYtw9uPOZRZ1KYEUHm7ekJkaaI4yu+I9fqjZZg2xhtzukD9PqmhoGm8C5Xc6cCnbHMc/AecrPEBR/YF6Uo98+I+h8JIYQo50xfKlc6HRH4lQOVZZ86da/ovSQ1US/NwnoJEwM22umpBN8fY2KRE2TFjK7hdYym8HOMj/+1WLx1mGyZ4NnBZ/ENpjkotXlTtmt6wupyB/iuKk7RiF/64HH1fA0ZAgGVx6amY4RY2OcFuqICL6inX5XM1q855bNXzlsVYWiyNDRKrqFUHvY/vU3zsiHfhVW3aIwdvLUwrhibelucKZlyKPhLWSPH89XOI48uaFmEXozwgtYtI2HHqWgVJ5BJQklLZPvRqEunQEu+hxmxjpormlS4NOYl83xqeHzt9PCAptJ3ETQ3y3Dz7g7EtxxDxAT2f4T3DFXffvahs7jA9e2haUoeFe+ncF3qnWXkRpkifOu/8XlqCeqAcxYnQzTswNixTw3UBynWAFtwrJgagPjQFJWwtGwhkE9LqD7KwtxQbvUaVcUO3M0CyTwF0WDoKi8SuJ1UUD6BmPdwgNHoeJo0JV1ARoDvC5k4ROe0MkhLPAuMGaWSztzIg6m5LvyDjSn2ul4CHUCWMppEbo0Tl0IaYkI7/uv2Sm56sQXUDUuhU0Lw4dilk6p1/Oss0iu0gVhgmhNU9ZvLaG3qZ6q1tDtps1Fdevbo3L2BNlhABOKgbq2ikDiWhAiVt/VWygvaObTosqsy8Vu5Zd+wPDDL+v9foBdTcdFBiSrF2E96OA2PgmZJkQmftvfI1RPFWf2kB/dq0Sf6x5eAsdzJqxOw1tDKQaa1e/7nPh+o01Q+SjS9nrXmFeEnaYjpldGb+KCQTZEFeJeB2dvQ3sZpPIv3zJFLeAYGbvv/N0YNUYtcbkHlEgqlc9fVcG5x2nrlV+JR1w41VLGmLCtBh+7DvOCTpDQj8ZLtg9bevw5U1G75i9vvvOX1cyiUPdEwnPXoWG+Qae/cIBwl3GwfLmzaJkev/TCFk25rm9chte85sVNwdxOu0OT1ExEzaAUBp5VGUb9Qk/fUMrpioVUpZggyN8sS68HEpQ+J809qWFUVDJ0+5jJa7O/Rj1cbv5VXo/h7vyxMBkBpuW0lK5RNBS6CTKJpDs1j+s7GVaeFYN+1SodZNc3LphmDoXS7czq31pywfBpKPLNSl331gBWqKhrJGIYLWpmdCyHh7piYfNM2m0qaQf0Rleds2hivBq9x6QUWz23/GuIi7hFPauVwESknq8olgBe6pVbm3VbbOygKgaNUmHMFVrgF5nll6T/GcMqvfK/43Uwhk4W/81vnAmsMdCibby/C9ug6hAabZBsyFkOTRKJcQjYcSWOX4gwp+HoZBXbL2gcZZCKWPMNek/xyO5BZNtuTTDFK7+GR74hhTHf9vXgvrfKXzW4ZglDGJj8VkJRZuZeGaEeb0M1QkVpyu3fJ1Hz8B4OtZMm9GQhE/qAltWDJsNapqb0LfVqrPPTIq5XBBUKl082EBycyiQucQL8k9Gcj7/ofI6ZxZPGMOcuRQzT004pfGeP06LNTAOrKwDZFEcPY9LEYOShEuubnd56Tc9HR3iWCJipflGgYA7iKNtauu14ofOYuQsdI8jWRldAqmWROgD//OIvk+jBTFinQ6xsLQjghD31Mzk4FQE2YYoZRvUjaqUENGfl2lbO9KyNF+8XR4CTs+oDan0Rg42pV9DMF4PC7BD0qz4LKPY5qB0oS5Kc7aDleiaHe7JR4TBIajK3VaHUbEQM7mk02GlMGccZEJL0kshM3P8XIteLuH6lat6COKzqXT5bywHShZKoEJUVCTAtqZCKgZuiAWE3pnnvX93ns0H5WjyiCFkdyTIqijnpL0dD4wTlHb5NvhF14rbRbJX7VUhKIOYANovJzgTOLd6aZFWQGgtyaMDqMpdA8KMXlr7lorpHm1k9/XYvTCl2PKUKBIzr7Tl6y9Yex3J9qWJe2ZvNbJ6KbEvQB6QHQ5FNaeLwT3xkHXB9zE7Srk9WZZlEsv0X9NHCYpwN/U7QlKwrQzgXOWv7u8zGxl5/HQxtYJGqqWoT4wmXXCENtCIQc2kTTkkX3qOxLCJX6rVmcPE8Ph5UCw//SrxcQikOAPFFQjnWZyZtp+nTG4LbBDlrjq2vzwKGjcgtVHBQqQFZ5ILpQjR9bQNbsZwgwEknDRTcXdmUEXPVS2MbcJI3cmoHCvgk/f0nn1++tUb2NFvyrhS1F6VVrvjVp70Yy8DU2wCYgeEEoDaO2T6N0zsgDgmAJf4RmULoL/bZgO1fGTLkvZgsQdMlDiVzzFZY2nhGgZA3Br2DGKQqthDV8T3oixUr8BTJs9tGQupshfxaulBNELe6hRJNjcO3dCP9vswYUTK4TZ26HDihpmFNJyNj+GbbGBAif1YEgQ/5QVIpZmgzdq96EGR4Zdfd3DRpRQv58qDDFP25AWmF7xBY0MCET/WG5Au+tJJfkikMW25NfdcqlpKDPVl8ienawTwtU//X6jgdAesolfkDkxOKOW80iJTh+PDvdJ+M5b4nDhrZ68Bp5fehFscXDrIy8gfdD/TZtsn9mIgWDVZDXzi/8bCiPXB3yu9O+gNePeTFsTvVIrYDwv8djPkhY6qfKddfseuPLORuSwk8/dTnmGv570cMnLShNKMDqqgzhZCrUGeIaL9ce80MRjLqmzMn4Ul4tyqn/Y5oagTsyHMFUnHdNagLmGmFm9ULole1rBoAZgvLsyaaz9u5kpfFqllZpQmERgC6hnctIWPr+zO1EoBeJrBW/qinc3jrXd6koHqWgwLBns8zWoAHTx0e0fjw8kqjnsrQFyGhzuz2KKwktr1OSzXaWIbE2puJTy39b/8hjFFcJpJ4DWyjNgTyj8KAOIlFIFFAd9vqwB+Tbq3tLhTM+DZ2mDupDptY/ZKDPUUPbID1DrJCXLcrHm2gtcxBUslX6dQLmBtceFt0PxUDvedtnUVbuYu+MvcuyRTFbmjRuu86kFAwn5kQd8LUEr1PuN671tpz+ymvy/OXeAsnmUCa0S0QX7DcwIq6a5A1y0RJKydGq1Rl7zWPBzYxB3AKSGnFtsttUrYVAJpF/KajjqOfNRPu5wdpnyysecZuYyz5pHP9wP8K/yh/MCFghBcNaJU0qzn1Lny4J0D2Ss27c5g2ocWMXG/VQFEnZ9bXO/erW+zRyHxkSVxDUDk1mi+uV60zPrQnX5ecr1YD0a5VLSEQBmdzzwBw2J0RTMueM9patWDG8vGbEQsLjBgcBtHHXLaeptUc9HdFfTmwYdw6xfxYvFWUSi7mPwIN+6KW2bKCKsRClo5IhR/jg8fCD2lMaKEp2rpSaNzbjId3tffAGzSSi8yOaIv3EV4xoxzNn0kbwJO9Wer9vtHTWF8UfYsj5oreXQE9Z3PszP/sd5Yf0VXW27mka/4Xl8OAQ5E7MpzIVyB3DP7Lq2tAJmoy7KYhaaR6mU4vmoRPdlTP8LEglvegosGROD64mD6/nehXUZocYPpj6mKkgEblWos98OBkGcBd1mxVLSXS+CXZV4S999V9TYD15+bzTYN5FRgzAG/epa6pgpyZn17B9JvNUhbqESd2tepDLH/ojB7/OAELENx96dEVmu9ndCW1W1Ch/pB5erp+tVvgMq8AFEsoe3GG6gPcEGZCDatfyiL+4UUl1CF2dorU5tEE2gCcS3nkrbA0dYdjOXc/iSinGPcP+/sMkL+vyhBODw6cSM60kX4CyEt8eRcl8yhu1RtVfig8gnZYlB3ip5yt830UxobU9QcEDdSDI+m/0/tN9IpxGWS/BPWrwMe5ziyDvU1o8EBySY+GIGTkN5CIE9k0xHpmqjotZwinH4HCecRFOR8Rpz90Bu1bxAE7fzRu4zxnAWhrJW4QJLZRbLrcBFCnIMGPc6lEO7uo8sUdAfOiRg4MAn3eEVp8F9wbvoDd9Ceom6Rkyxhf1vjGxKstb8Pd2Af1G3Rwc6+qBOm5cVcNEVWe5b+YCgwHU8Vy7Xr+/S4sjbRoG6r9aYosqYMtzSs2wfCw76KprB99dTrObOHGYx9oSodfd2gSoXF665AjCid9TFMW29d9jgWV+kNG++bYFIUtjHGT5hIWDNQi7L8Um6etfaKMkmHmX5Kkq2JE1mcAN9yjzPAMwHolOnhpTRR2iP7bp+SrehTVGPCl9bCq6OGIk+z2um12G/Rfk5z/Tj5lso4F+FvOrM62Kqec4lsgDEpY5K09xlHSJwtqBSrarGkWuvLJsPuDZN3L2xDTuutAUNQiSW7AKUVC445WFhUK8GToEhH5XUiZLSbMBrmu0f7FebKeKJgp5uDELMYW/s+WBtfryQWHOnTaf3/b4pStiiNn4v6ij/DZs0JRlafVf6oaHYzZr95gI+SdgegcFe0Onu86zCIDN4PQXOKyaW/1pXw9Jg400AgKgOCFhWDKRmRKYI6KryeXZjdOb0Qfo8uGYmUB90WpL7aaW4BXXtZPNgaMbIFPDaH63IdtDk8basGSf0nNKw2CCX8avZG7XLCMqna/cIS8Acm4qYXn5GqI+hRFaJkY4ZaKRv9PQMOsXfe7FiYzcvecqbQcyq9ZlCOHYGHeeTrmnVGnIcjVegQKldhHSl4TUodCMsZJAeT780LsSne2Eqt0oeRVEcOgQHxoRb1mDkO7MKBtrjf0Qx20PlzI15CbD4kyHM5almTjY6suQMDlYSY43uXzp/eMLb35XW7gWMhPjAn27h7fZBhYpNzF9IN+qe9/lChmc2jpJV6S0aIwf/sotHMgL9YaXjPmV1jyPzvEbDOns3+Ar2oQi6T6sWVqSA1r5FogM713G+2zyMh/Dbi/A0fjIQWEHF502Qzkbaw25CSXosbd9TQI3RtkOIuWqebGWTDL/pBS8ZZR6a7RaimyOXwTIYY9LQTdm/xB0QAIedc1Dz/6of7DOUR9iDPSra7LkNhKDqLRQLj9Ywybp//dDY34wBpJq9kwA0Klt/v+Fo2EGqahZl4yELOpAOGdQhrmrVcK6vsqCGdd0cTNJIXZFFwuE1g9wmpqvXhMxkhfDafCwY4iI0FIa2qPTT047R8wu44oyjB9JdtJS/2qNxqLvaQ9h/XS62ycFGEJWUgrvFMnKY9iLt4YQ/emQ9RnNjLbD5uJGgRRhl0PnihXKLhjn1YaL8CjJb8OX1dJunPtJ9BTo10Ln64Th0NRA1XTx4Fq0cFp3jrY1vxSQP587uLv/6CEbvNDBlEqKVP4y9979aRa15bNt9fGuYxMtLjPTUvHIVsZdc9yrh+YJX7FCOfqB5weXwCYC3xMm0mbHRVgsz6oIqNjhWlGmg2E73SeN6Jg3mkFnPoOHpoHd665yAMHL+qWUo5U9BAB/yIfdPpsQnHj/cX/c3IhHEJGPXxDbw+PEAAEOhQXefDBBBhanPk7KJgyXXkmE+VtAzLoa0IXCU9REKZDGOuk7I+QUGDTAWc7cu0z5WA6doisJB7g2yENOY3BLjFXSsrtL+mGLwmfikSRHJ+vKJK8BO+4wNYLi8VHdroDD0aUMWUOtn3Mz/Wr9EUDwGoWQd7METqAS/Kj797Iwl79WN3g/pghRCwkY1sj4KafG5o9T4vofKwX5xtm/VRKP5Px8VgcYZzuJZuKd+mZKiRwaKiLPcs1GQkdUwdLvQ0XY0/7gW6k5d1R8pIMDHQvvV10Ocq4xEWOzRj24+gUb1RBeqQ5EFei0gBIW+AmEMczaF8To7KYzuxntxczwq0itR4z48J4M41RxJIk1cajnD3VOkBBMF45cOf3PyYUiq0OGZ8LH/61g3lDKOiWuIbvIcB1H45WwFCGGW+eiPXF4BJy5M1LDC4eFK037eaWPwylRk9+E9hfmf2ADnSUyWsSuzE6gSSqHfvvjmmat/Ce2oMeBWyft7/+j44ZK0d/lHrBwAHQM4fiCkbeCLRbE492MGs8HlgYGueSoZd2eT43RGKp7Y95KUjPGQV9B7E5PZdE3Y8bBPHUjDBhiInBhlTXs1eGhfPIATgRJCqueQ0sraqf+oiWP/kdlj/2BfVB/GIjgIKxcAPSO/yMGqXak3d08xDgtckPS/eMRA3P1pIib/teMhT9Ygi5Uk6Ed1f8HbNCfuWJ9QNPZKrl6qnozS8hCqMwhMkSPWbucXxGeXV8LcX6TySbEPaDxuIAbWafVXeooWwScdkw5Ukjd5/GhOtjAzk21qDzT9IS8wQe+QD1kC0X2vn9IIGWoSEu2F1+Gfr0cOhQ2UMDA1TgYPwhjEazaFaFXLwp9M/JJfpE0YoiXGiTn8FYvyyHDrG6fjMF4ckf+n+k9S6xpqYGKGmyxrC2tEPsomgyjfkrOvfojJu99hvY15TPytzu0Of7WxXxRMEGtnf88+hlwL7T7ip4SbutR2IhpmpkvRyp5aDoUMyOKUVSM+4j15tTbbMu612jLWmMpzzF0tlZahMOPLW+BcfwuzW3EyHt58UP9dLio4o9QRrbdzEiBPkBTI5ojS/ep0KkBIprK+h+YI4qZl747xq7JX24LI+lfiYVKOG2zdsCl0j9rSvYjKkX/f/gwyPq77afoiAc9ivcElw5j4vPxiFiIh9OBjb9KKmg4IkdqWpIMI3np75jXbDYw9Ij6eNjqmeBoiZE6ukh2pfdWHeoBay0K1NpRuyy4+P+c0K35dS06Ezg7DWtp69j22FRpo+r4cTqkRavuVvgioZnP9UGXzWq/uoBNIv8cPrP50Hvi+CwW+wBytPOHwo+gITuaJqjC3QN5PLGiAel7j2m+NaqOoIdrxkMl0Tk8rgF8Ug9qDhTfBQYLvG6nvuXZR1JLthw6BvJiBhmZDm2TireLgfos2e6eGcGfC+2bWA695lv6/p1DqGEyk1QLyzmZ03Fbr6hJaADadWz1k15C6i5qAy6EaH1VYupskwanyLoF72dOH8wyyNCUlFfPK8awbWxrv1zwsEWVMCX2kzlTSIAzwGokzHNvlMS3dLKVLv9G+MOJBcsIgWgWZDdFTmODAJzsbIZRvEaTHhlzSORkwhBPXshuynA4rR32SnY/UjyYHSOi7y8CfqeIiQvSNqNNZ6Lz/cHokl/k6EWrV1leUwdzRD5TCKks5IOrsgH6XIduNPiSp3dFCUIwReN/QRxbxHGC8r05CS+qWGcI2691Q8SLDUyt5dyV00FFsvWdSrgwx0Qp1ZcUTXd81o49f6LTf/EgfFOXrEruOr8/HEUejtQPpAcZzoIsSwga6AeyNx0JI1AuYw14q20UIVWRV3eZUdjSTjoyALjzaBUAhsTOhIqGTNlmKbLLkOZmL5UypaEt99hSMwCnnRKslYsTvjXeo0zamfYDtkphtprVRGQFc7XeMjJlh5s3M7i9Uc2JF6GmItpyxD14G0mGq3AY7VPinGH6Nf50Ka5pLNRa9BLnce+SWWTZa0cmFh1H1sI9YuFfyP22HQ6fhmrZqoTpdaXgNoAWjX22M3axkGttAKmfjE1VMC54ER+H4NqFQoHTokHGm1YCD0kTVfQIOcUekbrp0NalbURb2uGPRHX6k/grET6spK0lRuTOw1YxR1ZzCxIrYpWATMlnoD7GAKLjWU2mOAYtHKYu6bZM4hr+My1rMr8WeyUwOe15pWVCtmjG2hs0EzwUXDAEAcnXwLvIRcRdb3HZcbeQjFsc370vhAqmY0vqvxN2EcCMUe3opFxYYLA8IHGYUhX0P79ih8bjxqJMBbY/KGgf06gHm5UgEVLvzUdZ7QPpo+pcybYeEfESgh4hgenxjk/BOKVmdDVQeiW8WlNOtZUaLKuM8WCPfYiYiFU5/XhouJ/zUnMJcKIRKPVLPkI/KASaTJJTkq07rIcsG8lT8r2cp7+adTv/ZF2fdTp/TK/LJFOsgJfLdomevBVU9dJfgrB6Czk7wA/HpRodHQBRYYm7TrN8XWVDjOupVDvhlZ6ck4qkHUs3M4UKuFjrlEhy6qrApPAe0WT0l4u7iRMUgwDkUIa6b0u44/CpgMr++rxQSs5GKax/4UAmQSGUdEc2BTkVbjZpieD46UYcnL8WIUdMAGwwgxNot9fkVj1kdIMrwZWzhbrMbCjPJHAFlg86s7X+LJYGvKaKuwiH3R7yKRDb96KvMVyJd1iimtQ+w2aIdqVaH1+bbN6tKVA7IdffY8NgOTbjHg2DpgoG3NjodPnUsPqDvA2A2jOelMgKz/Ey0ZNDaPNgmIlsOCT6yBBk+/hmYQNMj9kP4XcSjmhmEe/Dn5+Mqgp/Jibcg9pQv9/YqRaBL3bmBOSSm+xuV5f0VlHMkuX6X5ybBIxWIexjawaIk7owDLY0ms3fxRBrcSPYaKqq9mf0KmlmjwPInSfM5TdzOdHeMM2HtSjBqEwLYnz5wrCB1TCqdjOcXRItAV+9x74/LupAU9P9F5wiNvwx/lm/JlL1aqKBsLIBquk3sWp9XUC3Ty0vXIV3pX5hrspjSjBWLqsmt8reM+Q83lYtg0KQsN+2UmwV2lpS35FtVBVNqZVfCktjDBLzjViAa+KP4ejr1GdHAK0r4jE5DXCBhNAuq9OC6bp5W6BsqHnlFh7nh/6VByUgQ6KgOBzcaZ+tznqx61m/sfgLLPYXoKpQIFedz1HkZlRK/Luvd7PH6YxEXesx6ydmLfr9tjoYgEl8MHOty0t+UoVs5EMVTm3VFaV5jvELObll/FuX9TonVrnkw0b4myG5soL3504wtnJnUfcLpUmS53tNOy9SVUDnULzUKymY9y9eFHzGN7aaFo2hFI/WBLiZqtJEtBsubtXBJb8I5uNB6zHC5GaH6NqPQ3QjS2ow3JuN49Q0fk3DpRMoNaD8PAB6ljsW8WzVsZhWvhwFryYiTzsWR26f2JFnbKa4P3Q8XpTey3m4t/odG1UnAzBnB1UJKZ38iIAgMhEUSBe9DZLCDLQA47K9Qlu3QJSSwwzMycn0iWrkH6Iw+IKK5bYw32qFgmWedjUX54IU51key+QcCQql2m2t+woDaXiFrsZ7lHcpn4d6+bCFP3DtwP6jW5UzT5K9zDQ021swLa5rr3vxTjfSVFGVvRfWxny5cve+LLJt3Cokn6+pLFo4BdGcFIzqBtNDxWhV23FkeLarXYv+ftOxLU9n5lmE/anhoFouFTlbGZ1zRtimE0/D6A43R2eJ/eyf/Y9M9GI9p7E4k+ZbAoeSlVJymZLK41TOuognfPvOfYoCvUiZ3C68MwDGkobIMXnp2m4t3bcJlTX11vnWocWZ046149gO33KsgYSKdzTk+Z19SvAffKlzQKWPLI7sNGxuIm7Brvam/dLfwo4CC5zt5n2K+xPWLS/mv5J0ecJeGnZwvGHbpuQqbEhB5LJgyDWJj1sR0rf3/IOyKXfIGj+Gy/Zl+nD8/xqwyHbI0qDhzobSicTfXNyeojY7EXXLM2LBNd3pFeNO2ES/igXfkY4+EhXHn8wy64sjEKZmfNQTeVhpbWsAXjutW972pPDdHX7I4zPYisDNlLuKV8ay/uFpYtZyAsty+tr+DPBb+sUhmvzIfTzikErKw99iFpzi9hA87h/YJT8WKOwCuA4ixEr+zGdm1n30KutAWiozaQB74t2cm4OD0QRiWq4HTleLJ7+dtV+WnU4QRf/eM36mIMo/P22ighauUm0J5phXIZzTfVTuSLcwhKMVdzrTa+iCzS7z6PSDFgA1Vg42CFgHVIxuW4Zu9P6Z2/wRqfxbEW/jUndhYr+k1kGR53xMfxqTldjPuuNzmyCKcESjXVxJi+sMFi2QXXdJ3yzLlhX+sLcheS7RY+rT7Xu86Fi54L2AZRupUasIsK09Lb2mpcxgBEbr6HHTKTNPdkfP9uYOqU8TU1uurs9lgPUmjV/d/XI4mHI1IBJUQ90oXk+rKxunTESY1KPHzXyWCo8lLTZrAlGkwqfs4VrJbRgBsdC9DytQzm/bcnDCm5WBLZqUdNN09xV5n9dzHD64nLG7IJ/ibprDG03YRR4QH9Gyen4B2LyoA5W3dV0hK8R+Qt6le66qESl4eMn1oGC9ra/IFhBhNpbfpUaHyJ0TidRoGnk2nJvfLDf7gSxBaHm6DrBDmCsN2xt0HwDW7nt5NlHOEXC94OP2OfUsG4Cpp9s9CbP4K7V8tJPzW2FJAmZ/egs8HR0fp5ef7yTb1hlIF1lBDLcSTtBx2iQtH/LIIDl5b7iwbuyNPkGG0QrYi7uFVeUPeIGfVWhQEg4UYBbiP0tXU6FMSwwmc+nD9Idip9EqzemD+uycwM9QyafQlGn3aBNvZSu6qkAqtokN1qkcjB/hSoqQkyKvv+AOyepxUxaFTLKw85ypPX1PvOxBhe85dq2r2kKv8R1vuf+uMvHvnlfTWrr+nlmaQK9R6IBK45y0DGgRvvWb5XQ4KkSLBlxTg3YhUW6vrVxNpcqS4ezlX1zk0950m+2xW4GNfE2KsKyTFmetfkRhj3MRRKhkEfh5bqwStKIbC18Q6oIekQe0oSqQt7aLY9146UMI0gvrm6JFSvTUPcmnJdAvC8t0qoOPZ2wH5epbwC7vSDfxgfIRxbVwGzmlMs2A9usdPPul+C8pF6yCXKum/wo10PLw4VEkvBGxmmgE6jBo6C+IXb/Lq6YmkDThiJFt+bnzD4ZaNoGcd0v7BvjidAmYagTbCBaoqLbOIRFlve3XMAqOuNF/8Em37/CbSNTUV91qlfJ0un3npdhAuHcEaE8wmb1PXSpnAlRzM2XDhplcSANF5wKZCOnVsyZDD+ygia/9yOVUWRKVzyhp9KLqx6lnRaIEvVhDKE/DGmVHDD/gpXjOySIQ4+OY/8aE4SzmovVp2wVhVsOQUaHYYq4ZpMA5Afn9xU9MZHL9c8Zx14kVArYvKSoR+pCQDFWYo2ohyQseivGtGTcZxdCfAIRj4eY2t/bf3ke83TW+dWzvPueXZPOJsRfto2UaoG1KaguahcjYY/Cr0FmmIlGO6GKvUFtSA2uhpP2lcXyvPekWvQRULNdiuDGY8ipIXwdwic1rroLheK6CIu61ws9/SbepjKgf6UqX51Z2cYtJ32LRCKA0HHYocEa9Lt6zpkTYe9bZzH+Su2WpJvR4J27xBqKMNiVnqX8yTljmbR9HkP3Wd//rDX6BdVFPSd19DBkIWzNQTg5J8IbeDvk8inz/4Du63P7LtjbKYuYEi+d+wVmpsDxpRSELcF63yhwJwdvFrGNMqSAeye+12s95gRnbm6W7nH3AC/2Tb5E87CU/G524fwtZMDBwxd8YLZ7C4b1p6816Wj7gjthnJzWG/VX+QR41e5XSdTgTB2qrFu0tNeIDDzdpsQNcKlH45hErZPrO0chejflllgjjaTqTpBTSpIb/fZ55eut6Rv1uZQl3vwFt/gK2HNC5aanUnrW1eKfevVkoF/YjBoThj5pmbiyBH1SmY8Ps/ADg8YBz82HzQJ0VY/6nCmIezGTUEacqIB596PqHos+4LOWFDOS3u6RzWG3J/T1Y3YGlmK9vz24rhpgOpRAS82TbaLMYalMJfGlCob8SkGOJHRVziH4OiTV//psgENyuCR/EaxQMjBf3kYxdO38ADHdlButp0Z+d5uMk3OjHbsjTvRN/Adux0iQvs+JVMy8QIKDi7DWETEpJ1eh4RIy6ASqGEYMQXJ6jY23aRNWsml7FLpatcuJZs1w3Gd/ubeChi877R0rNyzGwKUxUC1a2Cu9f8rAgNSprvfcol2i3fTYg9iu+Se8K5aUxctKnbOpKfh4N9aofzMP2jE7H1GAdrrjXmroxhspejjpvTxXnqDm8RRGktk7arIlLUMiJ4IZtAQSfnZIA8YA0zlmiTsoRo8fNVR0sQwqu4Q90XbFrNiKaAcvVzP2+1WNJF+Y4DqGxqPi35KQrYpVKRc6pJxUxpUeZTTrcL5xFSonvWqtizelC9NyqmHPzW2UbP0NFKHxKAOoNOwPHiqLiVZgwlymGSbcjZpwPn9rjC11bvuWVawWSw+rHZmP8yCgvPNSDiVuQ9wj6UxKcmZ6TVmXwPw5ktAeJMFBdNf3MvFS2cAWzixJZcoLmn8mruV3UhK1b7prIdd4wE23Y5n6hent6CMZC7ibrlisPdYHqvPeC48mTCUKVgw9CtCrUL/hVrWIlKNpg5u1tz2AO75m//sav3NYomNDeZQ/m42nsCx8ALcyKu+fvg2f+8dLjDu9L1hMvJ5XsPmA1WWweyE3klyGYeQ6ze6QIntfMCrSQDzTLWYlbvO3dOgdqxrHX1X8pGrxOt55dTOtj7xo6CuIiNOSh54d3A2v/a/Da8/0hq2wruBnkDj/SVSupsveQvbVmo2tNfIJaQtrLqCsfnMC2DdXRqOCK6dsUkqtEdxpUyezlairEFzOlpe3UMZlsQbANhwOQxemUP+IgQh27L+MDYVOyy56PzF6wnuy4uVCG2z/SKA3YYQzYAtM4iv8u+4jmIJY0AoyOcfMJUKt/6h27R439S/Yql/NIA3Lhg1+//mpPxIugq9Ddc5eNj5DU/GtTzfPE5TpFldw/U6K9gDdh/pZRqFUPFuY2f9juquDt9BLoYIIWTGPwC+02aKOYD3B2FjZrYXXoJkgam0zYjPzF8lt9ulm9uzk6L6ucU9kFEe+Yxjsv6gwU2z++rmcmJSx+hQgYjasBC+be7/T6MsvCnjOat1Je5Y3sppReVVqzEXTAlaYb/ciR+3CrSG7X3ei5tlhfIrVHhEOnbVWCwOSqThVVYXFz2XgIVkI1d+c3o/7q8FW47Bbk3NZnLx63+8fumM1Rl6LrkaMsungHPbzuGTpcD4BEzq+i2pHIuNGfaBBJyEVuoLH3kRjBf1k/BV7rMHEECeG/zY1CLVydWBgb1Af9a3e1qAUMLTjxM3TgTuAtaRxriW08FZ/diPnKQgFYN7dXgYKO7n42pM9x1JA7PnNmX1WXtnUoyxO0XIdm/13zAk7MWKV5UJX+JXu3kumOcPtPAOVTyaezGL/QLHzMkjEYXBj+hz3A/v2dgUuykafYAbToaiSvZIcrFiCu2Of9m8SFxvVqNfK+y1T2XEK9UgB7Yla0eimv4ADXJVNUb26zCbeitpADZ6WCutfS9pVaCIouv6cmwv9vTU7KURkCrkSYQD/Y2hTBua3ElqJNAcwzrRBXvikf7TGjzSxydt7tGZLvBGZGwGRO0g0Gi8VDflgmeZpEZHSKVHE9ElRhsvn4MG2lv15bhrK3V0U8OVuQJUr7nN8NJz2hPhTO3XClW5NgQC9M7Opk8o/Uka7UKjrRGmVwsLGRVxlmSNfW8ub00kr7eJiQJoxWv96Nmlhm4CguiyYR4gq67OSws5FVabillZ5TNQjOd8Or9bveTeuTU43wxtYtPKN9y4KuGvQIUqrcq8niDlJ8OPevNDII7HnKEup/0bHCgD+LF3+ccKLmJw8jZ+5J1ia76UoRjfal4XCAcDL/DA9kb8XOLhPbpLzSTJdZ6C/HuWIR9nGV5ATPlWVPiUoIV4xAJ5E0Oy8lhXUkGa011r9s/AP3H1svIZAAwmxNrAiwxEbT4uhZ/ZuMJdBa17aDobPOMAGa2RN/OtT6vvO2MjacmgDDcZTqs2lKqv0o4YQ2lntI795rb3lU35HfhrRFDjdlzoGVVWWO87FcNyND1sQektQ3BNIpRk2MQLYO79VjHw2ejrfA+VT3+e4/omvlyVjKYqt5O/WVPc22n6oLEvyR3Uxd8/RpdsnZs310t/TECZ4IB0M7Ki/7AqT9v9Egy6APsLAQillC6d6BnHg5PqGpyZVLv92DNoUaf8/LBefLw+mJKN9Ve6IcuMu0H4sAV4g+j2ZutIKuM26V5qdx0XOz6FOSHztOSHULuHFy2oiF+Ipd3deif6QLg5Wtzb3SZ+qLu/fAPQX/z2Yz0BA9cWBMKpuqXIgUWihAy7yd5R38+Gzo4h4d9+KIKu1CUsRZUdS/RXyiwOCrinTJHZwEWSRV2hl2JeflzSa/c3uSQA5YWUzr37kX7QnHepJrc5l8NiUH36TZ5Xp3blGjj7okzR/6wLAqU9DnesMZCAkqXapTnB5X6RFChw1tbK3DUcC7NgsEeWJgt2gS9l2fh+zB+A+4l8zqMtknehFvijo+9IaKKSpGqH2MeEmL9BMwtIJV7MZ4rC27SO3QobPW5Z30FBBpEG9w4TPARTKFbW5++tczhiRRvl+VNe6nbM3gjjICNqkVD+BjHQDyfSnm8fwrhop8NeH5f4wmeCc4WWUG0M2XDsKANliuuPp5d73MsTF73NET9q/5DHxzwvhq9h6L4WDa04pNEGmWFvEWRtlX9ucaqO6J1+ut0GYSsCfRtJpfcInNztg+ndf4HL97WqeBgcjC3iKTJ/ERMHXeoXC7hJlAQA/GZDczcuV/CZ78PpLze51rTi7Iay7Ok6dA/h/zO29mgl85GtPhPUlo5/B59UEHQCJzjO9niG/GIQDGgPTvA6XngVBdbBqtPmhyDH23U1Omyy9a8h58ydu2U/sTDaPgnuCnjYnhZJRnmdmTRhWDvZM817jtEDv4zuZgac2MIMxY0LEdPWweEOcs0s2C7rV9dJwOW4L2qxeL/c0UoDQ7siec9Wtt6wNuFKhH/DuVa8aAbj3rxgtCdCxYa4lZUVJjY722OvvdeVUZ+YxLKyuIR510SCnj+Oory9mpbYl5v4SkagWg5Ke+dCXe07XHnpXb62FJwLVisuXJWSzdQKgZvhMRhd4XXP/YE3RF9cUWQXHkk/f33kIomfisSpH/OVt5QZeXt39e/zXkEF7ti8DxQteOQBLVDhoK23GIp1EivaelTFr5ZHqzcDRpvVBtYbdk9Fliwlj4zDw6BA3M6FCoPhmR+mNHgGYrID/h0aunSE2b4XdZ5xHdtbhklP0y4TcFaon7iqaO5no9gWKBJr9nZ2AmMfaKfAh1YuidEv78PzAMFVH074IiGbXCWDktStiudtidqJhHVd1G9ay9Ht3YaNuAGqwVp4QCCJmaBQ/nOVLXiKEwUMVGxPP4fdn2VwD3aFqg1EJny0uzvMBVGYl8y4g5rmKcktz2myf2gldHd4nylvZq1v0ctQcM1iIpVxeiFNUkwUc7u4bpc8kz14w3dB+Ks+ROFMkiiA12Zyx3hlHywW/UtJzUFh2Zn0YDf3MRm2C1NxBzU0mSBKi8P2oqhS0hlB5kksD5uiReKA+IbqIsnHsjgWJotCHTfZ3a5DIDLuxYNMZb0EBq3uygXIlCiPuONouG82DYnRi3o+OAjXx1o7cGOy0+5ab8tSajhWlt8WM1ZnnUNOXITAqR2wF31udBmJNjVI0ZF5C+c3uT6Feqdqs6weCB79DZ7IcEGtPgPFt8eDts9IkAOGeZNEonLU8RAPnmR5Yzp/V/vlwdl5NLQ21mz+nD2wXtXm+59/bz/TgC/H7PaZsOwgdjVC/TtamYKHhIWBIZATXMLdG+X2RDTPFNgM+te2I3BnfFfEmDdPXy/J5k8Xn9bAzI9sNwKcMqAbAxtNUwRGhCAnWd/eKNNFFbRBi0XLT8W2NBNX/2SY57eTfvtOBfB/GaFlNS+O0sYQAYTE85R1O0ZIEB8T95wAVaiHZpdQyx101BZKafeWHlKqREIj+AW0JOdjUTISwlhB+MnwKz8mqQZEt+RJg70yHeW+p/vEa3tlBkCKjeJmyervayCCScYke6bn9O/wnUxcnbQeSTjmeRMKM5wspABdsrePQx8w+D+hGA6e2kq20LU7HNKal4uEpdH4zEO3lcdTRuLB9TzHKAVJcSfTQv5mKy18nFv0rmA8+lY9iKSV5V5cATdJkMHFD1yqqswJUxZhWIz22CKavCngojhWjUMqQ1IhRMUZ3yk9ASheyEfM+br9ZfaJoAzNQHEuUemYTXtIKRlOgK3XDc4q+3bSoD/VK6QIwS++PqM++d9e5KXZhmlqtUPVt2eZlcB4QIRApijLbP5ORtkbx3ml6Wrf7y5P0zhAmFHGBxa8rkZ9LAKa844rHpyCL9pj9ahm0eI7MhaWUpf9MpL/t7C0K4lcz8M19G6V5D1yIYn9IIMW5L5D3+e8P+K52V6FJTLSbaXM47kvokNQbFzqdkWm8D2CMsc4kMck+gez8227CECHGZ1KUuaDfj+NwSPrNtWA4IbaFzZTUAAhb3OPqb3WUrWfR9bEqVaiB4wSBfySHUjaTEbo2uDbG1mW2JRAhmM4pKXjN7wczyk4rAs4lQNQkDHvhdxUyc3Rk5cEvmUda494esg4I3Df1lMtrYxsU1LkOb+NU+nPo2N/Q8CUjLusM/NZEXEkFPhtZluw/6hey2Fcipb3Bx/yYiVuB9icjfJwmGBaq4b77UFXlZIFojcNPNHIWm6LpTo6yCPkLtupIux6RGKLnR4efbXvOCs2e6deAhdKnRJFgv27ZhAVqWtdwwoFP47OY/6FqBc/dnajhq4bwsCZQXDFBMgHnOibzwjrvjcqxf8FM2nX4srwv458yGl94WpY/8YVOk5oNU1yrY/EHkJtGKyhAwpr4EPwKIup8Uu6FEuktpqyP9UHXKqzF/utnCZF/Sl5OjBy1ipz+Qv3XzbYvPwa+0N4cvs2t1KVPdr8Qtnib9om8dk7L/VeonaA59NkOQE3QJRQ9QwqJzL+9sMHA/bNCyuXFHzW3L2kLkhlQl29RouIjL0SewiDbpDHARaNvQ9nbdSS8mP5/wUY/3smgPAc6RWI9OlQVDBla0Fy2XjnRlVIwcqU3mc8GHebHqz346DttLaxEzTjKN05Zy2L4BtLN7gZVwTnubZNmgNGmqG5NmH0pHv6MfszDrV2YJivMCP/MS/BTpVC8KJl5VA7H1G8iJLiT4dqazoJTsFNowyfrX140LW1vRStZ8d+lhputhHw1pjL08tIvYG+yq+LkCY5McnQpED7EEVPJhwrOJ+GiuMU0LPR0DpFSwZU/IqjqmGUwFsMNw78NWl6vvOaQIQlms2MO1ZCG86cbdPviEGFwY1CoXSQsDVCnAT2xFCZsxijCiyrORVTmxOkDK5wz9TUPg5NUPDrsSYM9oXOBIXHsFXo6QfNIENADbBhFQdjOW/M8vr7a0wziujaeS6OCkAyYGTzXjKMRCaCiepYl8iRcV7dXvgEKxSrpPCbCncLbag3cFrLi6+NziuAHJmMGA1Jdq5WEsxpH4W3xlR7OWqWgtjaowwkMJR9CkX6yiO790zo7DUE9krQd3KJQiNhpR34P9mk0ZVDMTgG0y6KxP/HzHxyFf4Pap4kWoZCRqY5JiY/JRE2rGYXIbWAsbylXiDC03LgMOFqxXO3DuLHeFVkVIfYH6Y7c5jGgzk2lfclaY06GkcmmP3cVcGzOUS1AMbx66oORsxZ6VTKHsOava1vhGDLLxx5V7ydbdVRpGzd1rA8i80qgXxcd/KnW0gvP/K8Gm8m2lByuUKnjJcjLP6aES7LobLdKOKYK2M2i5jA6iE4sF75FORX1YnWGq4NASbXhGMQ76Zq/kuOnPzeMdCAULo/LUyEYlkG3NZw/WlQCVYWvQJLfVBh1amFJRnUA3DZWW76FbCzba0y1odsdVaWZpk1Bhj5uDAaUsZaEluqBPxmGLHoYdn4mpTbJy8p4Va9KeBh+wTfJI5Es4GRX5E+3hibmHf4RQPjQcpUk7xf6lzBYMR/z7051bqOQyYdydiq1pkEyOH4SI8f1d4VmypoxnTqFjka3UEDb56JPO0Cp19Aeacmwp7oJZHmtUOudN8+ki17ODZT9T/uZyLIdRBiwTQy3Nh2gpEJs1JHskfk/VElrqh5xPlJcX56daljJYViajuCiZLkrEe3UACJ7n4ohGTOwbQlsye5NTzgT+LR9VSlS5FU8/EMzlBYUkaYIFwxYo1/TldQv3fRD409+Ls+MHhdHleVwH9xWHcJxc0Vj5x3F0Xwh3Wi5HWM3iTnkTb/9Op6EzTqV+BgBoC2E5lCkXM2OmmYfs3V9iU2gzQNFkgmTRpLxLpvOVRJevgd5XW7xCKxeoCz9ljR2b1k7hGqVVyKWvUNMLsWoY+4vq1VMwDsLL483rO4TuIUmZTU81fldWbUmVWq+TxGIvK2sXzJS9bLzDuP8qKpdBbotqhAUYT8ZrKa/ncxtgC0a08kiZGO8jH2Ixz0+mambUvs7eJ9tJ/t40TnQblnFLSdm1Kfe1mK/JJRS9LdWJqYLrbzBLzL2iZAo3jIpC3eFB2m4tyb3Qvoaz5hfGAd/rD+50WBbGP5mMOB2w8cSOcmS3Qa42KzVRcSBnyr299CTx6ufR8UW24gCALEyoRwcxay0ne5+nPeFxWOJ4epuKhiLchzJ1GelQOtM689o7Eg/q/ghpwgHYH0NnWPZpR5eiM5ghiLu250F/qJz9RvE1/q3Jf1Q9dRBNg8SwggTxD+PveNbPbg5dtlJt4toRXuvhp8hRvzbF9EkMZwaty6ZhikF7TutohJ6n3x/WiQySI9P3Eg4GxqBskzCRftb/CbrvqEEOz2D9Ha+92m+7eEfangjakCkaapIFccbI6Mj+MbS3m+dNa11AEuFCKQHPan0nzeF+GuorAqCJAqMewjBeQbSsQMxHKRqr+O0wmFegU7B7JM7nZaOJgjg2FJ+k2L6J6Rpp2m3IgeRTwz4oXWVuZpzx0SlvzWPCslXhQJ+HqOQ37RX1TWYQJPUFcjFLaAaTdHKvXt9UkjoOFL/P0SzvV8K1z+Qm5kZG1JhNyeTJMHVPRS9sZLFKptBz064j7bZAdPoR9WJ6dikBQmyNjnAFgVZp2709ZD1vwdlDCe7WcxzYm++uhyERrp4n9oh7n6TRCUbxaevD+h//GjLPQG9RAeGNLhmT7WzUzY09IjJ+gSUoBvSvtEXVk5QcNmuPUeOMFHHNuVystUkJ9LIafAj6z7Klk8NPrxFksFx9ghcFk7v/LH6H1hzsS5/w57sMfAObaLv65NcrG5up18hSO9BTN5Nex2bpHG0LuSsqR5TSb28gWlBmFFUqmevfOYVeVlSGRTfpxvuZQ5mpcSHYDr+D+41G0VBu9BncOqqMhrI+8m+pAayhXPq+p4zmG8wATjHbALhO8cbtvdXZcaeNc96XjgGocPrXAEgICLpaLGnclXU13eOUOFUjwtV/JveuuUCilO53qbjs2ZGE0zij1sbhq+9JpsbuvapGj2PaGF+UPhFspbxowgy5gLEOw5GYgWEDN3vWJy+XELq+ubYBWcAd2ZJ23RpaQGJ2tOFcf8og1sfG/+S5w+DBR8vCi/BdSNLQFDIV8bZF+XLo/URQ88ASLqoIAy0lWmU/pGPmLt0pR+OLbKIIyejlMqcfYE+ZU5YUn9A+SZGcW8mgEus5EfMPZGtqx3Sh2vuzGyuyG0E5Pk40s6XL/lPitZ0aFuDB85X4tImapCQngYIEwzcdQey0srW9TgphS1O7jXcs0cVqxrLZDNtHut5LadGwZEkQbhlAk3xigBH6FrkDWUsQe5vnk75nl3CkwMp6/UZTR7zmKhi3YIGqBwP6e6t+KakITtiXlzzhAumXjtjtrECo9KS8t4SJwaeg+KWwSbFeo9UzTLsGKz9SrWDxwzLvpWHFKFGV8IAdlActvXKvoIZDlfAxd/3/gUD11sbj9MfzGgIQqaeSw3TlXxEhHTtiQGcC/FwQDAuVuD4WIzJvUsbQhNTLlWTHn3dCl8i/juQb7t7dwMhEzozu0qO4N2zJwHBLsa3fq8JdOB4KoIlcarfi1IYB3FHPaCkVrhUiC5gqL/wPwPpX4ieQNI0OH1LaWttoRfw6xlJGUmXpfwZrljx5ba2WyKdkmXZ/STMiHGJnptC4gDUjizI2SD8jgekwAi3s06yHlqoEs+GIjcuWjrqGYS4SD7OXojTcFhYca5Btt8Bad/4yNyEpyHKIhJD1w2NA659d8C/CiovqzbPVhGakUJmNqN94YZ5qMTaBtH6pxHdb3/z0Lf+6NhlNzHlOZ5xY0nMWgL2TGOdKbCQCVddB+z8P5cAS4sb2WcZ1msnwNf6KWfSrC1jzNJBhZ/QCXKXUpR3z8ibbt3KS605kBe1gr7lze3hek75BxyklyiBTr+6qn3DvL1Z6GTl+uE1aTIlhp7FejGTiqVd2nZaTaX3ScHsQHFGtA1LB/ry227V0jzkP9hLm6ETx+8QSkyItSqwNGNZGM73coPQ4HNJ9A2LPaoZIWp8hC6xU0xcpRj4is/8adI27cM6Kh+I9j55iqCgslvYM+6tTMURhTQF0m6Kq8tgswfaNneI6TDtMzWqkd/ZcDMTye3gBWxMQOcIKu1w3ESEfjUeWfcZMASAF/JM1WDrQP0Lsp6FCXapYc3custmd5ie9kA0Jmy7orAkbtr95+4dpERoDnScZePQoJSTAxoiA9aNwFUyMtq8WbjXwyb51Ie9XhcBeWqEbD7MZ5Abmfg3LnAquYZgd8xEmQdgWxGckI+7r2PVVv6ktf+Kh1Pg9v9xSK17gASPMWTrG6/P38eAUqiF1INKQyEbcTQEeuiy9VJIz9d5IBJs56MegKoXlnRgmJMlROS4NLqBjJsAP8CXN22hnvwX7dnBAMyACsqXmP6oQc1g1opq5pxSTIjDRybn9PoUfOqdUy3WjFOU4r4HkBKsJ9d7G67PLo0ThRMR+Mx4mcL/GCCY1UTKc5/4Jj4EgGaWBTWXVI+aYHaFRRcGll0IPfi67z9Lne6uUhiL5AGOM7YQJGpJJbpj05GR9SyQSGH9YQx8i1UBnmMKGRM/VxCnJXCzjRrdEgZiv+bkWq6EdB8I/yPwAtxdM+VCso7fLxCO5uqE4h2Z9E4kq3U8Dkyqes6871O0q3NLe7bweZhjrCaCKo5SwAK/DbdFWKqmS3afBnEXk4G7Kqf+e81UIPBd8r2pPCa6TfW8UQ9L6QhYxBAE5+RuM9KJQEvjZbol2rqZOI2W3PEI6a0K3iCKpx2G0B/xTw07C9XAFL3ruBDcN0Rc0TkLbmaC149sn/hN+E7mt2NkUDN2POfrYu3egqFU6Ak7bDUL5oWyOqHH5e1HIh+lO2bUPRnGyZTEbK67f5cSIu34ryVsZzu2thBNWLNoOqgUth2YxR9baE4Yj79U1UV4h2bFv2KU6CVUlSt7oG/GgK+tVrX1qxd2GHYpcqfBVTMFoKBhsRsHfV83JiG0eziepxrbkzxRSGbSqytCQzY9eBWHDEF5KuQHcnXCwzQhRn3hfD3lojOQityazLokX4/TSafVsj8K2sk3nc9Z7nAIFHBKG7tuorY+L2M/Fxf0WW71WnH69UfBHMZQr7GjYKhFRrBH/xG9jhO5Lp1sc5gbcNxrUebOHfwg4dkiO4uBPJuKDN0EzmONnFkmTF2PVIhAWqeoaiG4MldmEGdhAgyQH4s+qRxD9fNYZxZkmmKSvc1kYTUIbHp4VHWMMezSHi0YfFNXj8wsmUfQO1zBF1MNesW6XUqGzxdZVBErW220/V5kfgFBNkjEmqoTVO/opX+Pxscsqr6KvhJvUBI0h6l0trWqTcz8RqlZ6CtUw5utNZzrbz5bkBW22qaSo2NxkGLywQddT3a+4DiYi0yaTq+s/qwrA48VQuKbhG5wTLeor7VnFIpuUQjrL9772juGpm8oS3X89vefKJo4JA4+Bw56OCV9xjda8eQTGuLm8r8DFI4b37Ohgu9U1R9On+pOSG0uwThyu0v90FnHfoe3RSEarMOXxi8AiRFLZ/j6kT9nqFwekgNY4zbVlyd822ArviCo0oDbZAC99DeKuYL0gQDZXMjob61qV+jlINTaPMCPsM3vbS+A3TUYKZEwjXBFgmMN0q8oNsX6EsioWiXo958fTXfgWJsJtLiKCxWQsOfZUGXZQ5ZNgu2dMkgR7UgoQwP9uPk7DfCJ9Gnpj2/357SSknLX+PoFpmEsXDSvAWhp7fR5hRY13spTaFHvorNznz7D5i751BT2Mq02by9Vs0AIK4sN+eb7n6KzGAE9JynmslOqpCeYdRwLR8nGA5mkr9J8yy0WsbcWX2ObyXLGJBWKg+35NvA/Vrf33Fc/JjZSX53TyldzKT1C9hh4j3Sz47AYQz6hlcQrxVkxQDhVOofXu7hebC8wwvz/aAWSLOSvN4+1Jekhaf/GFHbPJKZRM/DhoEnLzacJKRe91yzFQIn0bB6Jr/Ek/zGX5jZZOilUipeJIwH1oHeWjCEpQBtSoBZR86+WoydmerEF6CqCvBDsfko+LRsizUPFz+tE3zyXmf1ezuy4Z6vVBbAgG4GzrxiAy43up0acClLx9wTH3T1WGRWQMOLMtSIAwnvzPZZY6zybgUps7w5obLb4lIvGOLEAOYpkpr/cyWCgOCMyRRdwoJzHQdviZbJ9ngDPz++em9z7RT73MWT34N95RZdxPMcVOKeRYyYYBRfS4Hwmbx+Ky8AFabCTF1DAwiQl+plejMZ0b92oEQUDlif2GMNIvDmt3u7JyPeKHBescaAaAToFyIZEj2pT5/nTpxBevsIrGSs6FsLaoNu3vBZa+Lfh2X1WOkItM0DNHenhNacZIA+OpGUhuJY8RzppOzWOkjnxew5NvNf4u4ZLAN+LOSbRqu9wS93KGVh5kU2PD+iX8N90PrgcBydnZdVqzDUg3FXquA0ec+UJS7ZevtuQ167qkJjH9EtLNk+hzstNiP/PX3qIzHREVjiDW6GXhnok85x2SStwTgiNg0QD+QgQbINlblDkgxFievt1MSN/2KdN6iWyyjy5lSWJVR//hi136B6rclvv/AkgxEafxPxpNG30hAXiOr4c9cIeP3S2KW6/42kfuZENV+c+s4bE1+tGiqx1PUuk84ScG9DY9LOfV5dzcK5Xrwl6Ck+y2Eacc9fsxk87AtX3poi0ocyjtRfUqdfRK8vY0s2eOyGcPlvs3P7JI2PrE+8mrkWd+acFa5kPAWOnOz15NPuf0lRhCBpOoN5QyiPA1lJotrgiouhjLeq6m8uoyOAMU7jGhypNNvQQGQqyDFYgZwmLngcplxSn9lupezTLzvWEQm++GFuKItntLBnq8s6765KAToxcfNN3Y9JUgbZJvDqVh2hOHlIEf/ds/u4GiOitYuNvknZr8C7D71mOkGdncry2EhO7lgBiUc0g/N2haQdTxhGeSCHARsxtgdg0wYECA70+9nnf/zahnfH7a3UFZk78l1v5rLG8K8446bvTaze8RBqVZfrj5lggsIB+kUQ0vYCN4NOJtzJB2rsf57YEGy8Qcy0iWu+m28BeCo9FVf/wy71jdQlDGVtVqtamJyekx48yZemMilv8p+9cnJSDgrFJku1MtMl/98dzw/6tYo7h8rhrcLVH1SoLzSDEaFedDOhX8QLfM7ofKke5NyKnzYYNE+dC7C3n1X99Wj5HVsdzVmrMIINUrXqun0Jadgi3Zzt/YKz+hGWt1efv75vrUm7tfRZG10TI1cPQ7lBpMQt607m/kAnqIpPkNXDbFnqWQfjoFrwi6bQqZTRWHirro2mfgGSs5oMcsPh5X4lLvDofLgK6yNmzm84sYcuJuS26hdLTZppSWtSs26bX9u8G6ByotWx7YWV0uDjRI5XRVPmjPebxBvIlBke9oQhaI6buiURva9kkp26PvsYHfMyG1VT9dIy5JKobmdONoD5OAH2a66jXla2MybyiMnhAaFcEK5p74GqT4EoAdjbjG2Oou6Aqi9Bvn6JyPxWAg0yZrbzQc01WFssfMmW2wRIYxV6rLpdPfOInPHvSdcFlHwxvI6AiXe0mAR2Z4wcDFfyuc+hBu5piBDlSXE92PzJdWyE00ZnDiYkPrhPX/Njnn0bjLFcmUvoEnMGxWk6zgL12fBPpz9mbB38dkpzVxxljjq39BmYUsm98WYBUIYw3yqxPN4MQRLt1WLmypC8HsbkUjb60S5rBKePxsoDzNJSWCk+f7QWWqmQGNjOBz6hpuXqRZqPfwPyPWginJoTMs8+D0QzMikdckI9xG6OhTbJrWLQvTH4wzU3848exhkqez7cdJhiee3fZilINzYAzTfRO9ESw9aiz4/Wm6dVFpy8s0nNuWiem6nnx5ECq1e3mDZ6shL98XH/T5qV29ToWvgjtFBPXJkesSl2fzGGy7hF5J1BB66UwpI6L9lDX2ukJe8jigC6p6lJVoVDeavlN+bu94vvJA6pSaEPaZVpoWKlDZen3w2YmbA3nk2V+6uip2+ZlTOH6n/ioUXX3c540XXA/Pb1uEzF+ihDnDumeEL6gPIvu+qOkwDaHt43Tf8qHH1lfvC0Dten/Njb2ZygwvVs5sCGnecwtkkpS+Ha16L4ve25zzDtxCinUueriYHMnT/X+WOSwqr6A2UFvlxrtD2/mBmEDUvcgivL8hqz9swoD7NGMpGiRqbxe+mDqbT+Zl8/M1nrv34wu+kRm6gdwusxBorcDfTaYR6apkkP3HiM2IeohhUrntBEm7Moj7oP8xS9KX4Xfubqg/2O3MlmcN8HyIGNGzAUDHJltkDQeUKPa1nsCenZQGltA+ujtX22wnToPa3HUP3+e71mmD8gMyS5Ig7iXuV5hBlZEZA/jfHaX8UtOgg1QsGWvr7nnzEm7DlGS4m5UYhgPXcG/lNntL1mO9mVPQi1CXikKmkec6PzDw/rVRchwfUd2wOMFSJhrlCbjgLKOzsg/OphJvWjLYcLeoEA8ZquDCqKbDFwSGGJrOfmJ2Mrudt8UkXtNXvffQIoR/kudtXjs8qgC8sTVTWE/NCaCkT2ZjD2ILqqeVUi8MA78A2CNlhQjLtLquY7fNsii12XV7Ecl4+t9by5EX7A88eLzYKyTR+Vt6yaJ0v+QeqpdbD6HZFNKfYSg8RyGa39cedpjSenNjWb45N+Eiqyln7Jauuo3Pae0XtJd0Rk1QYOyvajRhl4yXvDFuM0Q68mEsijMeYLBNlvxadGLOHe2NPLSH0TaOGgA3vdL8rh6OtJMYBpqHdksECB4pYs/1w17V4enDOsnFZIbNxZcboHRxG9OB2/UL3OH2jXFeEYpxkVKXClJYXC9kpqG0YpwBDqgQtoDWA2oEBlYudmvRKvFnASTiW6RQXaPGZwX+VXL8ijnfVCdWrYYkIhC634eLK6n2vf20OIxCO4rG7auefJzoMItEkDt2voiMz54njbDM827RMTr1gv8Tk9eKHVCMRPLvw650+B6bQ5MreMeSaMtM7FXbxvUnnu4Bcw2dXR3ehutBApwPDJ8x/koTPxgAHLnsOIsG1hTuqkRVuSO9GKCO4WnnXclT3ri0gDGPdm5GpNtQiBiZGd9BaOlKSpv9OGxdWNeYxINFhaTVjOQbfByVqYtAlzw7g/bp5QNfpOQiKY77xmEypcbp/QKTm57fQtolN0PnoVY+bGSYrIq0k1bTATacqZ0rZS145f18IxpXlaD7VMHtIjSGiKwN9vpKngOgIoZf5o7FtKbWwkKuJ4+AHn/DrAFCDaKpwokZWFv+zuw8u35FRF+gjlUG21iLPhYwlggtfLWdfdV3ZSTxyIO6FUG5RFfrh2vjIdW2/IXkbgEfP584us53fJe++H3TZHhCAi2ARzAKJr/fYpsga0wQ2gYXtzaOLU4VFLEhC19mCQ/tmvalDWuJv4hw60a6LLd5sDasQLJ2/uB51sDU9LYg8+SZsdlW4Ua3zvRKkhJbCIAi5rGOhqfHsFKNsyuIN+qyP/UoDvvqN904j+ZBUcQEw0VOq4j9UB5bQ30xSf99XtDi+Xjnq1WMNmZXGmApfHpF2u4+GZEJkKv3uuUSuH9zA1T/dRhcpIhI2Dt0c2RCpjf1oKvLmMVFBRA8MoLJVCWTP/57PzQ0vFqpQ7dZ+1G84PVjgBGYXOaIJ4XlOCDIvcx4iZtoLBYg8L7HraoCOla9nuDdeJ12tGU1Gnyh79SL4SsqFiplJjRR4pY+9Xnm/aJT8HAZWIkZzUnAD4yOZY2ts9EivqBcuvT8U58RaCGQEaInU4zMv9DKt8CU0oqN58KHtP17WJxuyo6zlj9RIBUcj9f54cDUxN8OQg2cOeKmOcxnpqaPqFbgE/Ajm15Ypa0fF6Tp9cxFksSoAI4qe08dJYb4z68ArFQ+ykBIConpqN99B1RGZglZZNKLx8fi/rveZ02mo1VIc/oKUUg20ssdm0aA0oHZuagY16M80Imc12NPHf9r/gLnt2TOtzDy8onVrA0sB3QKOAVWBxJFDwOKv418AIVZIZUimAfq4dVj3VH2Dr6qege4hNeNNKefj1lK7N0GHYEUnY4cN6Mu3DmEejRU55vhJzOH/xbbl8RKOe0lZzK3qubme5GeHfpDzXi/Dp0sh23gl79oiQG1KFXFcTKpaeRJeFHUmJCaxWQ7dnHd2rt9/Cu6conNLsRbWnKCP5WUCihbXYLKIvhj6sJ/zat2cizkcP18Manwz5jGL0KCQK1e+jo9Yxp0ddXESa70uwStQlXZf5JVY6y+FuC1oEg5K/sg8uCXew2+76PMB073nYXHO9bGNxIgVuTUcQhw4PC48Ao+FWH0sfxruvPmIcC3mAxxfvBuG4vIF5K263ACxe7ZUQ3RthAsZNfmCsfXxo4zb1YUHdT5FtPdrri5FA+7xQm6p7crXjPt1jzpuN+IVdiFBYhfILazgQM2MwcXMysLfPqvOgiF8ajfP5J6F0hcSUTNjBBW4hc2N+Dqv1lUxd+zJNPm6noyGqUH48UZTeXS1IbuK7e6d8Th3Io3xAPyi7oZVq/T6N7/PsIoeBnHBqKaIEMbqcplL9J+MHxZe9CTnvDR6Yu8xW7yV1XaSEDNjXVGZJAiu4TYkVwblmte081j+8kXVvLFka1yURqDlDd+YsbRmG0BG+2MWJJ91yGQsGJXrRdqobY7WN5vSZ9RcErooPoRRPg7xHWlp3jCOmlqZIPH5tXQDtTrOCOKbuh+MMEd0a7gHIDXS3z7TvVwbIf0X2tOQYq0tXON/TgjLlaFYuj9V5urickrCZEeMIWIjcOjDpBEbs5q00J4eCFYUqLDhBstxH+L5aEf5C/lDCDFpU4tM81Uv0dTRzInoH+gNqBLzoaOFyucX+YtLTfYWgPnSMjWAPa3JMdzINs3ckCwk3vWcdvOraPhtbQyHWRZqpAEo19QglRbNQfbD7VanhlON/gO6gTwPQS4FfrMjUUsBfpjit2NMqAwAp8lRTYilMPH1OZpEOn9M0UZ2kQjI14pM+pjr+uBwJtWomH2tGC5le7Fh6sLIFpEqpGxREDCWYJ6j2EUJf87qoeXEvZWYDKKSClDL+TdAQl0Xt8wQNXV6xFShdPS5bbPWzBcCAYUJyGBj8WmPs3wpbcbseB/Vu4qm/pa6pXDGxe1AvbN+7wzLeWUrAuQbmXRV/P0I8uJrNyp95puVYe64zTsynqLsg2771vuKEPu0AVrv3o4hNdrsonmAHKw/SvF0JwmCel8HBULKpA4UMgtMxH8uYlfbKjWLiiUwynoajFn3pun5WaVfOnpAla0z2BqX6Fhr+qMyh9rIeUD5r9Hy3R5afkk7Cgc4ZyrWi6klNN5rkclnwLfDAzN1DlwIAIIzFXhmPxkHN/MkT86VDobGDn6oqMjoT7cIwY5Gcr8CLBbnYAmIdRc4YZem8UU1vUuK+nHaJ4dZhH+8OxwSJop0+vgVLE/wVZihcuHPkJc5TMFB2xHf7fFaq4+bl8Mb+GfvISb3hPj7Jt4xJsuoFRb990DReESLkPZkK2Sd/INap2fcu6fgD+sBTAr9byq8vAsTRObXChWA4PT9NPUuW3RR+kGPsIk+RM9uLPhHc4VfrFFjJMp/yKaa6puFFC5DqQahyqEfdlGEeQ9NDQ3uSM0fudzcaEwJ5jz7721+rwdRsg0CudoRQu8nSjBbQnoV50jYfGA1neNeblH1Jxh9ACgzg597CG7wRMJmZCgCNpkxX4sQXR0y9ffk2Zlna5Mnqk0xQbj83Ck/Op4QApo5szf/MtdaWj1P9fI51YskTP3rOdxFeXZvjjacmHZh0bNgrZHQHxF69YrpEkw9Bj53iopLiuwUUV7a/ZcQsmXZoGrW13jMlxzOYM8F9owStwRktv7QzXAaJK8zf4DX3SEBjaQFBLQ2dkw4xzsLAzR1vn64OTNkUAwlARu9una/iaiYDV8kikAD2GoNGPqw+4vZuZbDp/ieCDd0GJ/1WKkaVRxU9M5ufaW87+RWUjV60dkjLBwNCE/IrFd+VaYQ96Pi8VoUgR43bmTO5Xrj1xZNsGuowD+d08CCRdBpQq5fsZHY2My9O75wu2rrVCXp3j+Uf2F9bCy4iwYYH333TWh5t1xO0g+Ow1EuJexJNBFYqokc6veUD810ZMmHUMC3dwT1FCBG59y4tgQ8o3Rvt3kIo+mda0AZSAAAMoM/W342keyoxUSiCXLzAg5mJquLAPQ3tsJLIOL1x49xoGvq8h3uGKyK95XqbEn8skW02bjcssK/yqokFd69J482sBKpfOOQKhh0qMB0aMDNqqIpX/9t0EazTY1ucHXJngIQv03HkerhJPut3rTcsR2rgmDnlLKAwtPZnPFsJ/Lswu04Y1EVjxEmixYawrciPWKH/Ohri6+mUTdKX8hpi4MKSCRldQyethe+LMGCeTngW/3+TGRMlu0K2NI6MWxESuattaUQbFSSevOdRWRzPMD7G6WpmuFRWdSm99IDn4rGb226vbTQlHiAfsJXxn17ci52l5P9ph2tP61Kw16lRy3mUJ/0vY1cMKeyjsszuS7eUOabhWTAy4s4OnU/hAz2accqxpY5j7GUZWcsRMT76lvXvtyjlABfqhp/yHEi0XqOXtZ94RJOyi0dV2c6/hlHGkyyifWEfrctOq18ChSCstNjD5udd/ITX0KDehH7oFE4QCLCig+M0NHIBWNOg+FjdZdvkc4sPLsmW3mglYolzbovRV7X/QUhJuWWUXapXh6ON5FYtMjoh+JDsXZkpCpCcu3fGLIxBhxTUj6zG939u8BOLXUjHFtKMnmGkHqvtQ8TVPLmiLUKVpaN0hDzgQO6lb12E/370U3nT9mUC3PvOUlAwB/tZ0qG716w9cxIPU1FwmE0HWMBFY/QEbAML439L+O+kzCn0ObX9HkaLlMX9/upeUSgEMI5B+18MaQNKnq8g00DfyHQ8BSUsp+6non4Ao1DtywJsDNft9MR2fz0H++rEMupKJthtN18imQPWIVSq9L7HhkWF8miVxu8IChiUdgMiEM7GruaS0aCHIVoc2VreHp/8sjbxDTI7aNOS4j71ZW3qabmGSX7G221HH7zZaovgK4qrQr5E/XLwgWltbREtzW9t0wg5j2tX65Q77SJiFAjQbcoa1M4uZ7ko32oYGZnZA7rF+Zab05rt222sQL+8Pa+H8ovKXYmyJ/DRnVpT5erJr33Hc3cg3yoBtcN8DW2L9xG3gAXvGMJrajhK3jabknVFEnDG9iKAVV9wR+TytstmD6vXTn/Q3pVm5Ngleyqc8DYxBUweqFrXLfRTX+s4nKu5nnTvddO5yIBKFTkvJF02f6N+pcaCTqnIcihaWDn8V238lfkK2ZuOQMobbzgTxQp4FA6JJurKAnEZsR6mq1JNmt4gfSGEEyYVew0vZpy7fUXRlRvUGHXDeVzHA+w9b/KbewBvH5cfqeaBFn5GV4lr2vPPb59RuUFF+kiaKImKs5CdSOrkxJxxKY5425JcgiCWePnqJPLggbAjaZTOC2p+ZYossBlZuxD3A9mpz5b1kmrYcEi1X9w+oWEi8WIqsm+L37lwEarLQgiETDtEiXesOSvqsJ78lMkfVXyehTiJkuXgjRv7+o5mfc65QIpOfm9HY1bcucflGWT/UxPcSVOKsvIqKb2227Qk2qA81PS+9fxcLJAL1Qj9FOoxGA2APxBj3d1bqljIerI++hH5+jjNj82FwJFWejIpLBLQhqhrO1uSZ2P4tmL06r5nU6W4SoEFyaxPJN0H5m/fCH6uIsm88OFnQssRql3AJxzWJEonq58DlXsneJts0RLivI5JEjPRLTG6/gOkbAvMdHBgmdXxZ09ZKU7+pgUdxG22SufB2cf6QplHMsltla5t4TOfTpQlG/AyXuUg3pu6MiMvV4O6Ww9dRrH9HmbGFBh4uye5VAYz7JpUKimpY1pXuZhnw+xMhabJHDNVCg4hsR4dvn8nPdnJB5M3eJpaZHABNhZD9mNAtvIQXcHO9zpO7WwM3v+J0UDVFuNPh2dFb5Ggc4Ro2Hml5Y1SNiGlGvbXeh/oGPt5dj79d4M+CRkJxwMVuL7rqmDvDDKciKpFrqHrTJ4zUq2AA/4T3s77+0PAfNo6QaI2wvM7dSReAoIzME3SJidmKol04UJir5vMZ7baE/sCv0dc3VdC/o3Fgle3YWrxbVAg89wAKKjiOUEEkSKX1X4NtMyrYQGxwT48cHkEcwxrU8CkKgK068L4hGa3DNUf1QNrKNtMALQhu0lB/wZ55J/KM5AJPXtUDxkCRY2KM3EI0pWQdYQiZYglX0ufKeC4gUucz4fkEivpSWdtON+/NMysfCJaV+QeKiFzztylSaErFTejxyvfNLBAnzpdm596dFFvIJdWQ7HNcWW/DJKNWpRAQzMyKjPXhppuIhCUE6YBCu16LxplPJcNZx6n4XBReDgeZ/A+ThEh3aAA61woPxh2BI1w6Dy0/3+Dzb9wmoaRh+SPmm6PyStOaKuMSEz+xvprf8Vu3col/Gjc4VNSVpunGoi/XVRru8qItXlufUTTW7s+LA3nhh2m1DoRapS9cw2nH5GkDEUOOGLdIqc5b5ZNnu7BNKO6aNpLRQAdWn2RcpXdwaLt+Jc1KpofM0cNtE9xA3Y/9E19FepXpRfvTc+1eddeExT7YUo4CRbKWDOE2tUVHKvWzv+0qumOPMNnPDB3jE0HV8BGZ0zCFZmt//BqRLZsyOCLKupm4HAi2kIhWSWdhcC2BcFfGO4AkCB78p+E5bEhjiBrQ1ldo5KUfsAvgTjx8NrD5Li9uKdqdY3l61xneCxq3bFoHuMvrAeNworBUbUOHnjAqJiAURqIG8JQmz01Mu2/SApSDDvBc88BdrPadia6vAoi9GZVM/0h5ADPWuPtHTYBVKKXGP/05Hfdjam4XYh/uNQd1xUrba5j4pJIh7wx9qIqllBxRA1/ljRZ+xCClCkD7+t7cWgeb03yvyH1RVQLATwI34htMqQ19Ujo2rehUFfr2VuIx3Nwe/3uiv2BSc1wHAlpeYHvi6B+ZHGlqYJonAL4NwaZJT/SoQvKde4z+ECxXweXk5oZIcn9waGWANfCn9R/Jwdm899T7p1a84ZoGfztBTofeoRevLg48PRnjKtgMcWG7qsX/KNDUP+h0LKo4NhA6YaC9BLKcjb+nxd1o8uqvDw/LtscZuwHCPRTx+qJIUTzG/NrV1eHEfi8ipAu8xSG1NhQe+0ZcisHciCXQfIwxLWnX+kCZjwh+VMZAl9dM3g588MJhW78MdeIkqNdqQaOu/AZvn5XP/OsyEz8BhNYY+dQsUVhWWdGSrzc8xs+8xtw7wy91RqrBTl36uRfkqKIMuy/8ZBNA4oEW577xryHEEZ1Dvov6aQVaDzkdftQHHayjzVMkUNJfq+Uo3F/m1ayEHsSi+5R6Ay/3a6upybZj6+8M/PxE3rPm1zimSUYZu/gvybff3RkTue9EYVeqQnxyIy9CfBMn5lX3tmQCX94zb0Y3wVQ5gOd3ce8RV5bRVPu4zoE5MIkTcKOwEjT0flZCk49wopcVI7c4ineXZR0WDuUA07VeHORYzEc88e80Xrf8ls0XbtRJcVB3L6nUQ4E6qtCKgFoAsNmwj7+j/h76Ocbenbpzwze7zmr8iEpo159bNL+tcAytFPjfX15H1xyws3FgIcvJ7W0VE5CaWiD67N3+xjTdjVhM+BV0Kkcn2fUAXgBcpBgQlDZILcAHFbn6+fRjybHK3MdXwG8+g929EDwcGpyL/gKezwnqhMprzr0EQJSDEVW73cDy0dGTZZoDAFjTK+bYJfsXBEzcqhOqokJz33mLJLudb56aqrbmwHR9f9CaDs3WdTEnxPAqU9VhBi1j/4U0rDulf28z+FEUxcJ8sOwScKHbSnV4VZprlG8MDDtiz+InN7TriM4nimOl1AgCYB6T9XKxhVTYZ2zKGmvRMQeQBAkwnirCfip6ZirQndzEy7D8ohrhVZpX7E+CMD5sDnPrvdsMznC65X53aK7aU7BmIqwSPgcE1ZSoPv1TsAeuDo9t8x53py2SRbjUAfwr3UqwOm7no22HgVxDS1qsLVf6Eej9AQWu0umHcsuExDFvVc8uSKatmJbbAO/2ET9ZJR05xvjz+ivLCINoBR++ZBqQBcFdn6ss1W1Q5IoBtv5siPxuCCBxvp4r57TgeoDh+RfnWLOSzgGPBHE9KtCTpmk9YoilLShnhKEGSacbLfLpCBgzWesqfHUrYFaIXUb6xMQQttjaw/eAduagNZUUHnHVByLYOOs9XGOzDACwZdhgSSofxesIoGDo5keTLK0LgQzxP58sgxZqlUwq/5zexskLeYw0SPmZePLiUiWc8IFlF70OasEtYU7XyU4oFNiwEEROt85B3TtXDsrky6k9mXjhnHqCkoxh39u+H4fa5Za4lKNQsQPaUOnejUszHVXj61foG9nnzJauZYUx0pdnS8H7noEpecUsQoXFv00Dn6m6fEjR9Ta8+RvjAl7rfc3RTQittfxzWQmmIViCh8V6fYIiZVbm7OnkEHDweGdxYZY8bS6jBYJdco5cIEVM/aT06CjiInfyFh9lsOBRbg1juvs0sJOziA9Ti07uareGIe5FZLXJS2JvutwO3ps6JIxAnkl2f2YFIHpOUdpPLbmJxKPw2TUm+2x27LCGsoOHtouZ/nKma7h26rE2pgxcxw/qcdTiMt/Isdi+ZGno1vEY2BI0iOZPDkyuDcjrZhp5bRojKCVMMFybvfzaeuSWKwfgYA2NKuwZSuhayOSOQSra3lmnFptKexka4QCYN4t4mT7udRfBH33TjagxFPj27AbKC5RQ7qyiG5MnJUULyrgskHm/eI9iH5xtEwSw3IEi7rFZXiitMdgGxJhRyEZihaieAGvch1J5mAEwCBw4g9g8NqgUGZA+WueSPPREXS5XQ3602/pOfRtg2zi4Cn6a/XUypoZ2ykfgetBDhEV/4WCZEvjSDosXRUz08avhC2g8PHsXBUa8CLJ3oAdheSQpaT3md9jrNd55s584FXWkpT1NrZHQAMn9rAgBQK5fJwhsdeT/88B472cswvagkfYwND8D/oOd0FpAe4L91sqXsKULDM5koZXIwXz2LpibwAs0wAH3gvfQwEPlqywI/2/F2FMJBlJEl2CsfNWv81wIgMRxa1jc8NRvSTk4Wpmu6+oIjKSYqEysDJe+9UmHnj8Xw/sWPNVi011KHmhBlTOefXcYvq1+ZcFqm8ESS4TVco8ybcAxLFltqVkP9YKHojYrwfZEMPiP5yBWzYMgJW4Tvn2qbMmIfOtgGRBVKmOyOtuHbaiBf7Im3ZnobkXjsklxMzJwp8D7vjSz4mjDLz//j6shNi99QNQNsR1JzZenagg2TpK2wi6g8DWmZdi9ObH/ckBDWhNGW/2LgiHkQPhyr3u/8UQvV9tEgwOneQ3rQ0eTW3nJNadge3pwkF+SDai39AJ86Sbw2Ybu9n8bW5qUeNVnY6KF1MeJ3iP/WjOya6FP5nV+gtWx799YUNL+ummYeb5sQnUinFTdBhQCG1IyaDWcAYE0MGHojOwQuTm/dClVmLP4j5aooKlvBKOVIp/9KMDUuBkUorwUBpCNd06tLcBxkKWcLvue90RNqsLw/9Af5Oz+lHmxLXmriDuGuMnxQHjSj0InjHR7jmQRO9Iaed9XtYT71zH95epSZWFxsfP165SGsW3fwlcahjP7kl+VxGgkvgsQOZar/s8VwYQd93qDMlamq8KyJJNFgEXL9wwgdYczV4Jg9biDRR5YYXoZ2dp5IStpiffY0z0tma3JZQTTsacOZ2QlNorHgwAwLfeVJATaEor4q5EQMnFRa6oSmU8Z+mPH7jr8w80ng5JBReWrvZFGPy+x7cB7qjijttVz5FpjXIXoRwoeCRFvtahjxgD8wmCJVz/22Yi0wDmMF21H+fJaniq0MnQw3tY4PX/BdCYQ0VZnnzItckKcckNOfes+sLFPNeSOQS1a/1r6FY2T8h7af5iQz3Z636hr/s6br44Y8EDy9ZTQhZJjZmsXpMdTRpsm+1zLNfCKWs1Y1D7Mw2UIyMWtUfAQ/VbCLc1a9NNuE8Qb+SyjuSa10TZ4UIaw8H5/yjyOIFt5oNoaA9ON33xzWgKxVYLZJJpyYqbCSDKbr1/jeGyw/XBT705gOhattcVhRrqaExXkwbK5qTgVmhXcS0FM4s4OHraHYQiJQUdxVM7S09/rwe5FbEVaRkjmeIR4vgLqsQKKiFvNf4ef0wlgZqQv9oxpHIE+Cp5b0vHkxHkc6qNaCWTj9tcD9k3Z5k26NwrQ4hc7cMHD0eCn6H/4gH7WBhvIqTmKHJb1vWhr+vk6La5wTR4qoE1lGv2ODZ2T+R7mXhDxZJYPIDroBij89w2SfPLSLH7a9M2aFcDL7TnF1vhenmTDueRwhb+fjf6XJBe8/cTv/XdUN69JrDYRgbCdL4IehDmpCu3CKAlmmLCM6ktHQF6HOh1gHgOC0Hi8SS6UPk91NLb+Q/Vg4Y0exT7w0jN7lbCq1sfnM6RRwopjkcyu3TtSVP6tYQ/eSPKwFhMduiSaCMAOHN5bhx1EzaCmDgF7gJ+LuVqfa2GMpS+BrGEHbADjHZY30enIDIrN7A4f/0zp8jFv6tzJS7Vq0TS7M2DaF1hKhonjNBBR4mpQyzBSQfA0cvhkMbYg+fPfSbmc54Nr0Txp1U+N4QOTVlrxaSc0EIWbswM68BCPgx677QNRKiJgsnpT5BL2GD/YkwX8fNMc+2/WDvMoij3N6C1C5LFdMP6I7lCyptp+9727qUMYU3x0ENcjAexRoclUefRaElLh8rsvKr8iqXmANvuSozwWfmFcq9H3F37hMkQeAYRhYKDsbE3P3CJKLTevHzNC463/bAA10SetNHEQaYkqIJ99hIRlPFO+a9wgpBfYZsHFsoKYHU3DMYQuFFGK+YXBxq0MaJmxAw58jpO+L9O33Pb2xau7wxFXL03uNfLMbaG4tf/SESMrDYdQKlHofPXwgwvvTitIlBxg5YL9yOx++cgSbjPaRV6XmQt1HZliPmnmd/yAGkCtWi7PRLAYAuRx6RCmYlepnLmXPt5qVTGsjI0XMjdbV72dvnI1EPp5WK3B3+NOaWxsnDF5fuHqkdD1Pr1+1yMzAeMvSpetUYJUj4Bxu5Vz/xoFAblTCyvtucg4Vc60Do3qUYX1pj7J5EnG/gKqxPPWN5GoyyopZJxRXrFHzH3jE6S9odb3HmoKN9wUk9j1z8OeGjCSiLSDbqYogEJVJZrIzauxW6tGTaTib7UDxFMIDlqfXAYM8/k8IQQhJIz0iH7b8N1O7i80lA2bXbqwvqwsV6Zjwlk0bOlb9p0XLE/hnCGWcsl8W7Bx8tR/JvQKW1LBLRC1XPl/FVUJ3Szk9nCc1an5C+UNzs0blQ+HuC6dR3gif8p0g15g/d1xACC3D1mM+3iKooNaHV9xXndxb1uPYDfb1giYX/Jm4lRNsjEPGcYTX6LVSI3ezaTNoGhwxGmSmCBL40C5KIYcnp2pTrh24PnsaxqyGnsUmLzM2qQdK8dowUSBM4R1GY5uHooe+FzwOFhdELY4uVhyANEmlJppyTyyUXolOLmd28uZDjnpoKCc2jtdPSStQqgdP8pIHR2WLQ557ezOB0joCbmHif7gve7s84ULxHmEBMuXzyaXykfICIeYaJLD85+6oOH76J6u4xTfzvbPyU+fnCH54/mWPeEXPp06japY7oP8RYF9nYIQZ77JIvZf9hMsj/vQpx+R7yEK/yGzpQ9ruwQ1qPhCCqZk2FSL+1wBIKKT4tDx1c05whw+wUqzDvB6gJvIFWvakZsMZh8lhXVFdu/HkPS2Z8yFmyoItc65Q5DlncZ1bTMB9Ano66NK+qxHu+1y2P6zObz+1a1Q64z9nWaxyV1xPD3yMFMdGRdkZOzMmjlTYaNqyikX48Tx1TTxbxJ7E/58S7FT/GNVkWLQYJVH9H8NBx8J165MH9GNb74eci7qg37fEbvnpcpkWu1+DIdQ7SNpNKuLv6iQPxmZIjE9pv8Ya/+dzqEVrkkjuU6n3OY8/i/f8mcH/MUwDrYPCWOyO+zJA98JLOZkL4XeXz3+7Lf5AC0cUoiOLqPf1s48H2pXJ/0niCWWuhAO5sDKtx47M/aIH6ITNTclXM2QxI2Ji8IHROyi4a9EQgN9fOlwLsiFHnvY7yuH1m+jhuRjAZiCggAumv0bZozy8wem0Kx2/1y/Y/KTFapWx0oBCW1ptvFSgzlRP3JAUIEg7ZjljJkPKafvoX/uDf832E1vZO9pm4gY3R242sZIRaihSKG4brimq0Evpe4s7776xNIEfxNAG3nddLx379j69qyIWLM9rl+5e1IRN9MncrNhfDCBFIwbG307QwUimN4LBUAXErlBQAikyoAznJk5BU4HbIYCH6WQLaLHEB27haybyKqzYvZSi7dxtGtoHx5QwVIMWegLYvgTMJ3+nEJA0sdmW6knYQlfAuzTsUvOIhRQ2UWVMosXUiQW5ufYa9ek7LvXu/MMchWnBcQj3m96oF12EFqyoDp0qztMlg8XH5vX9k2/F7TmEnDiBc1qfpPHF37Ftj5cTaINJ9wSi4au0AUJ9709IdB0bSDJ/x50kFqbn3N4PzhT3mTw9gJkaV9jXKeoycB5n2sZmSG7bzbS7IxAObFnKqhqYRjnO4cVHu2nBubg01AJZsYL9Rqkmajm1F2TnxdPHceD2NfdDAtRHGU9C+xkMPcLG/+EkF/qSRSnIy6TjUD7wysRzoyPviv0728z2JrLaLKv4LxSUB/mFSp4MrTqjOVUqtTBt0m82IWDmBoV9xgFhSwMX1CKX+9uI1zaZ9h2jQCGXASSdCL9AcMewujCR5DM5dFYMBWv6qnw+HJMKuFWnIpig6Eg4RVcwF+2o3OR9GGlP57DaKp9CHhYC57ZfV3nffKjDRV2DkEokoYp+JJd5ayZsb4TYOL0RU2eub9JrFZzGcWtEjj8qZB3fnyXYko+kxehgIJpp/ncvcUHSZbqu7VMsIcrW3ZVxlJEiULWB67/y8VEJ/q5nvRTklhVmWbPB0KvFyYk5FMobF9HAyUivuhG0w/1lhFEOL5YEYootHqnjLr00jQ1edlqBonCretPH1Aqv+6339gK5rFbaZ71xdO3h29geCQHzuGj/lYzW5btxZNi8ij4TuFd0DbCNoogyOEEzwfav0GgGqeObdQO7GnIGSsN2m/gFc5ssTeBZiRHdT/ejGlu7tI46CB+5JO3k6zcPlyoRT7HFlOnYiKTLEOPY24jNhHGWJIK/2DBMyqMrUMzo5JzSfqsgcHIORHs5tg/8irIYgduHMWGkIThIFLNxcgPOeldupwRrT9xfy94N09650vxqU3hYNYlOfiRizAM0gAaHZyvepZkEFZJ+M+c9mOxzLdgt7hjqT4lafzVik834ayBvEmmgu+ulr0wqDGSdq2cEFKyGj3uTKDgzmZ6P4KbEONaGsCv8cxTPbAdFhxuacDMmq9Pcy5ZBVAI9A14bpuNi11nEsxsnOY1GOT78/L09KDh2f7IXrfZO2DP9E/COhwfFLkatvwMfJqrKyEZ9xiKbeqSFUcvs8AXBIXmm/xAIAOjbZRhW3S4s2t8P6CizJ1nuqi6OG/4zQTg+HGlIDOumiGQkUBaxA0cGRkvZP09BEEQsadJFkHkltx3JqKhafkIFdnEYRnjNQgacRfY8pbN18Fd/hwmzv65cuLvNeDRIRb8pqWVFXrMV2MIMymPt/1DBdNgNCUAOETIIsZO0Dcy+o+QFO+Yux2hCRh7uLKEJGhsh8BGt2Ss1AUTgrkTKx1nobl6dCuiYfK89xkr6ALkf/tSJBTyPcvooVpBeFsgvBEsk4ivSqkPy35Q7RsdoUU9aXw72kpJroAMrKl02Rd/ZqzXfLtdbwDd6Y7eNwTKj5B5iAtsLh7C27EQmXR4fDL5ETK7swkq+4OqoMHxHnUX3TEOuUi1K1voIHk/EUuRIYKZqo+uB6R26ODfACl8SdLXhqn65rpgWBNbbKKV13JGbi1MaKvOBquI+PgDNf/WNClC3KQSfWS7A1UIPjp1lFSsaLb7y1+ZjIiUxhl+H6NyQebXJufIaXACFJSKuP5/h5+9ARXq0265q8B18DPbs+3lU7zT85xda+37egpsX8I2BYDqQItoysI6NieV+Cxw5HptC0ttf3fsLt9Sz0cSrBLKUY92kFIQgKNj8sKlzHyEI69Kby0RhexrrcYHh9Unkj4SuUDYelYmWIrZvUGQUG+TRMyuu7h9qPrGdCdXk3QFcZGfxv4N6otobC/sGyCYmtu3IoTqVwV+nGFgQ1ZlzbgGwrkSUU1N2v1H/0dhL1lUAzd7XuYrngmYDfkVdJzuaKM8Ax08WerAEv0oVP6GNJwuyCNcElxC3YrFNdorZn2r8L7FUKs/cHaMYPx7vOra2qME7DNXLSUyCJntwO7xl/SImQpUkzM/h8un2Vz/C+vIZKuJvR/tCr/qCFLjKEFpnu4hyqWf9hBAVotP2m+tdyWGHf7MI5Q13W/XSW1OHSCmIOXOJ0PZgJJ1An9YlAjsxF1UU1uHZA4vwYGfao8cvxQNcryz+gBBXqM+O975nY1gx/ctJmu1Sy+UoxSQRpaDF/rBRGpEsGnTpvrJ7tF0o+/8mXfNfvsQM72yvEt1y//5DN71SgGNdx+YdU9efFlFjS4x2jejNyMH84b2XbSjgFJ75ss0+XvjEmecjfmFzDkkt1Y/eII/29qY2DlzuvN28DHFxWbLmzovhu4oS+Jx/Wap1wVEzlHS4ecF4y8fs1vvgxSyU4bWB9dlzLhOSUmC4Aw1Lyb0LVe1fnfqPdpawlUYwrOdXgfshK8KgUTUvVyz+G6bIuuXrZK89MDRdki0f1IxbG87yweTlcCsxfd1yulpRemPeJXijvDmMSkJ8rZQQbCEGm68CJL1mccylXMcLRGB8bs7ldN68nfthcF7szXI1sG6aDsDlI+J8Bl0MJRB/7U5cG2jbyovfwcc8LAlQPLzKA5SQXHMkBGdk5gy0z0lfZmerl10CL+QR2WOItbfHpGamR5p6BEozuS3csQHupqO3blgMNzQ2vxWhFqe0P7XqQ765fjEkR6SkcBvnOPtLGVdEerfe/8XnZH7hNX0tiy88nXCtVYYXbosn5JyGY4ZGsWemODxKEWTvCcCHMVBWIluYVEDStAIenvrYfTKu84diYinNFds4rOf6YFihmYGzOgOG/nZAXH0Se3sgOuBBHM5M5NH0QjpAaM/DA3fXP5D/yg7mbBVZbJojZvRN1O9ZchWA9fU5WL7ytQdIh34BaDrev7/bV7UX76xFDGHaPCBU79J/APJWLIx2HREwXsYGg4ZTqo3MIqJ6SeVGGl9IptkM7Pb5baBpHiGtEixaf+/wzxhdOlHf0FhC7btyw01kEN5g0RNEc5O5qt0MMCiLiS2pSE9NazmhVcFj90VMqLKCIjJA7aGiO2Ak6uehe3wJnyZdknxoN9RwP6wORORWAN0Eol6eRC7ZFksUNx9btIX2CzaJatrDZwUfSB6pbgohYrkOhuxBJ6Pk47paHw/bnC6wyQf6N9J9u/S2KqtD4oeEj2XddEUS1PRLU2eVGK40F+886z1IAa8wso/bfm+R9/sOLTlMzktc3Yc/IFdmogM4UGiM6mjFFk4Lm8Iavj/QKzXgfpZicr1jCGkL2RLTzfAe7iX7WfYHjbg3VYLN+3OjUeMmsK3LOBi7Jj0AWEWJ0Uzs3roKAuZi/4WYYuyattAR+ruHiwxu6qGSSfn8KIi1x+Yi1sdwJgNbbL+YJngViNV/XJbrdPf5htA/FS4+JeORUW37RheVTpKJzC4rVH/TsdZtOcDiqpIe05VJwliFPurSWaC8YAX/WIdktXHDt6DimQmePHJoX9G4yXLe3+qa8hUQ4MVOFPRzelNR3PKVSx/lsiuIkCV53i5VDb2x2GAQ0nuSTHqchfd/K6qfACNyYJ4Dl7SrnaJSLFwR7GkIT/AEP3qF6tdgLFxKtT/yyyFwAglXME/byfNNLa7l2zJDdHQVSSVLSNTzvuIUgxSe3LH4GrwXC5uQ9v9CUYGE2HPnzI5zNJJlqx9T9z4jSKn8aMVx3UsKqfXkb55zgHcpJ85/9ZjxusAUOLKNGpjHfCUktAlGMNP+kLJnmDD4rsXD0rJU3yRFT5jpoh8gVYNT2fhhQcCv0VKfs5oCijUQC9d+3jGyvVNGnOopehxZKiy9fFjWZO+SlurtBDTDGnOJRescU+h6+1LMPFtDQMjiBpR9e0hcc35Q28qMj7WZW5pnp4hRJIBK0s1gdvkd15qu2Ih7MBgnXVn+bhFuY8DcWUyChnUcNTYVkgeeUKvQQK6fbEjbaOLFPPwvhuLkx3pD68j+dj/bihsvJPzBxuAmQ2ZmuCCkaluG9o/7v/JUYMK11UvkeRPfncgb05F1/9jtqIabkUsQe/rMscNCye0o/v7JiHrhoS0QvwKFeUahTIUW9CFBfKWU/Mp71yBJKoQYp28z27OQ/Nrw63FzWi7DIJuFO8vKZuPCEAc5nH0F/D5gxwiR3vMX8dfF3E9wiH4n4If6k9wKVQVOqfy39u/NWgPmKcMMkA4X5AP4CeI9FT4g9j/tacjIcSi5dBFrIiy8SJ2aP41nycATz9YVyPjyjAZfVQVHEseCJS7i7nrNvOLk/cZB6zYTfeB6C+LUzhw6PMYfWzbsAaacH7Fox6mrs/NjROhE7NWGIS7+uuL90aFHK/DScub+8x1u6CIpQKARdAFawDY4jxk6pDBha3f9Tt1dM7fz3ceICe9GUO26073h91VKpjPmvRhcFrKD1ggK5f4NTwGNbcCAi7e1Eeqe9PncCqPok2JCDyprmcWT5iw0Hj7DlptmcKWuCz3po7MIuKhpyrbuZBQCj8ypHSKj/H/0gd85SrEQRcbXejDyWgijk3prbhu1SN1tzKEVGfrMdPmyUHq8FGcJx4XcRz8DelIGtrJZHBMXAXcf7i8zDaEs2UgFMLJ0ZzzTuKFQnJh/gxIdoln3aESyLsq4WbMFFcmi7xWmgVDSF1js+v7B/qMFtqAvi2OSRzrbJrApjPjK3QzjNF3m7DSrNC88p/rNNAHjFhshYboyrM8Zy/hTRPEbbQRj6b6Km3zOygvT5xlNM8uBOEFOa0B8tCl9hrW3lzRN8lSe3yA8c5Yi2KoEOdREQIWDsxewgMyFfXVo2GsExP2uN3POF+J62ajAS98RF/GCsVoIq4XgoQMFAAF0VZu/AwefgzZSC3g+VUWKwgX6n4V9tlnG23YWcdjbcabJAuticCDHZCOGTpQ6K5PH+5AmFYrle8eW+r+618dPoPmbdwVEb/914nywVaesFXV1NRlnR7Qp9yFu8bpTcBgsyLQrY3q61Pb9jqDlzQqUB1kwmkwNEi+JVvCl0DZwtTlxcxJM9O/JpHq4NqB1YtBJcqCfHg85KRB0R9DGaI45XicE5wyhdUcaRI5H6DD9x8x72697xDyTnHmIDu8iBHjObdhtreVIKvwhROgAsckeYPZ9nwES/VUxnOSuDkkIoMtMHusKPdRCDVGGEz6AyWGDMHX8gsBUMaToIaKseAZvACGgFF7u+iVHLyUhH5/kXG+o4E+oo4vhk/6GD7MkrueP8ESHL+qlfQ1R4vvtvx7DLcre3o77JLTpEcIOhkR+WqfQXy+4hwU0eVB8wulFNRfz4o+wYt9wOrwygeQIiyFCNfw0NiWsZZO6z+0bTXV/xP2OH29ekPECEZ+TI6cXfZJsE8NF2f/+eVsNmJH8wOKVIm+OiLGSuL8DA3RNJYeR0yrps6F8SdZtw8U30c0k5bmLz6Yrir9gVXIUU+Yq98Xkuzv+q2PvpNjWdywBUfXyOyCzBc6T/ZgoPFs1l0J350NgFEVrcTpLbIFND0NfK+2Qm5gV9bDYKYu6pN3aaIerfSpAfp9/uDXIrKKNjDO5bvMkMh2pXVP2U2f5ZWZaVgC2muuwaBGurygZ+30UlwWDjb7iLrujwwOwqsLwUNvXL9cQAgqapxuwjvICDMMyCL8fkRpzentaMiy7O2qwjfCIFXQXmsb/jF9EozBbz9PudaZJz9wkuX4p8nKfvr8rgnngwFQAYHVk/jWFaYOoAPg7QcI14cnB5/k7OAJ1Tk3Dkmkn1VPgLk96oD93L5ltNftmZUsUfW0p6ImPs/81z+hGm+6Yvbp00hF4K4pKm7q7e+c2efwL/k3s08YiWhDa2MMefM5JiaQ9P7eAzaVB+t07BwAT6z6iePrIOeDWEZLuJTmf8O/zxPk8F/mJqppCY154sHp4RT5eBg3F+LIJw3QH96M7yLZBNuMwlvWoJYXLGYLIyh7Jn2ZLFn6C1A3PMOIqxAv62Fxz6+WUKkpsYAeOKah9Qlur7D9j6aVprJq30FnGbYEmS1YdAgWHZZBwcxZP1To0phrtdhWhC5F+vm6I3aEg29adwqoiPxBwDYV4f/tqh5cAAd3xtD0pjjTnIsn3rAYX4kaPb8gEGOnEyj/xawVVVgG/NZI18JWxBGy+MFgeFO8rrzWKwtJYzcJao7U6OQNVNXw4l/4zncxOtqGMEU+tveCVfGxc7ho+TdCNcHQBClxHp7IsjgEfed2eLW37A0WLEKac7TaJhv53OUrZIJm7FG+HfUpGWsLqm1KDoBVkltct4bRO/0o5rOyLB8Ku9p9mXO6YeLJ51VCY2xgSXNq7iegHohQABzybyDMYLxzCxyxPbyjMSPdB8/hDA5BcJH1sOSvjVuWnnqGnU0srA9cNt/cL5o3T5zW5oSTsYegVIHnwhJKbUmxHFeIuC3Rfh/3I+odaAkY7+6iFlnZXcp1d6iF4ueflgsskyNGQ80+Py3VMgMsfX/Ti2wiPiu0UFgOOZNXh+AGRktIPPhNotSY4jia/9SF3j/AN9Qijj3KjR7SPDPj/Av+FpNHPiQXq2/TQ8lVVSBlZmiB1EZcg6eKJFG4PL52nz0HytluuXUzpQdGZJdaa1TmHAutVA5XNZ9p0wsjZudaTPRpRDFQWDvAc6HpMbljpHUCperiQFRAmuD+aHlT2mVQjJ3sIRNHqj/NthiJQv+orIdIcw3DlZml9J/sDmi5+DdwkSXUg9j8l6ShIFqHRFMkILOeRwKeVh++cuMCELSMAJdFO2uJB8l8a2uWheL2+bRI+IDZIOuHhMEJqW2y67xSjHkNPdunz9BjW8KipI2dmHd6SrVanpfFjnQiEmfiT10e9ByUjcVGEXcdD9Sq4dP+nUC1SNBSwAVlfH6CNyE6txfPH4zVpogw0k/5BU1uBP/6koldR/AcjWjNWfJoxu35Knea7V8d+Ca8UNkPBNGAaD9quglk6ROCNGWA7znljtnypXj3ZopVKHw0WsNI3SVZFNIHah0sq2DdTnUG6y8HZfaPnKnEKZqQrC5CNM70WNtY6BnZCEn9RuTLEAzy2541VOeLbCwZ0T8OC7xcYCqNRbWepJu/hl9Ad8xcz26rz8IIQro260qnHzR+fAj/CL0KeBJYLbqEvtHuSClVwLFI/TiFtfeTXqHERzmpBVs1lwaQcQH+23IqWnWtSjg3oBTLzeVKPJSB764oUCW/n9900T0UFdUPeAd8R+Rf1XGlNrt5EJ8bU9xzPffro0isg26/tD4LrGNeE10ZPH3mEu0a2iuwuXNf3Nob7ZzfWSqsjdsC73Fs9Q+11B+SwkGnLxO2ZcMyk+jGFG00y0ZWtCxrUGa6mjthBt0R2QvXEma+eh3J0thEEIAgffbYaKSOWpVnp99Nw7wMS5kMqFepbC92P2Pg5EU1YFAR0fG5826ObIz4S3X3tZuGgl4tlUqIvf7nyinfpriFlDRwMpTFA7B/1OdPEVGUsDI5svo0CVZrKYJmilFBV8l5TIGaJLWitEuNEn4aXrp04vpekixq2Zsh0YQ28yIE/5FBDsXOcOEwsoOjNi5Lj2IOonAKtt1kHLneGKj5p07mkYFMcYBWwi+s1DiRJosn76jD8DE8g9fICjfRqH8aidb6A5uqM6n6JibhX+dIZDRmIv4Hj8eKVF3K5l7OD9H7VQfYQCaFCmoWInGxiOCGYIoMuOEAFy0PTquK+9i3d5tCWQXT0hjMDQ9zWvWnNQDpgzTXmnQSDOF4MirMl8nQFUE4JO/+rn1D72AeHpMxKAlylcVMMvMEqbVK2Jt3I9yds9kZIkOna67Q1jJ19zxZAex3soZw+vpJVdMX/6sLsJ1wsYmGkY89SH+W4tz5rgW76z8HIjvEORuQh0GMjq363JTJw6c0cJ/Q8ThyHmM2+y3D7SAc6xiVmi54GEYo0BbxuQDlke7j7qjWPpNH//prkt7MKSSJVbvb8hIxRyyPvQNwTOqTjfufYU7MVCDwfY2Lv3Cyw9JWDKKg1cxIyCuwVlGt3QDK1Z2rkQsGVXK7VIxlyXhVJ8O5047HdYaj66VneHJNd/hz/kUFyYJoAR5SczIrGtNHr4WWcwGNZwWRrzbrkeFvXrE7NhkdCXtLLaz6zzkeG9C12R733CS5O/ADNCGLWWFrhuCmKHcp+mO/GRvjD/I1KHWlSP+9QEn0F2z6XbHQUsitFMtvECieTkw+fRwPoPy9QZmmNKVSpA15rbG6zwkURMvLGYdXn16wqIq6DYlDveWVNAPyWD1jQRDccLEhxuteoFx5ZVBCmZ6+NL4Do82P/aEAl0FAyiumY3iWRXLeFjlkDAqTyPFpYYfMzRd8AKTUidLfF+/SF2tlGcTy7wcSj2FOjjPVfHEkEol8so8IF6KsvtunWSkz9v7OlUXT4yF2STz6Fki40BcNPCYdXp4+cBw6RnMk0wZLBQQMxrbgcDZSgJFjL29El82xz5/Vr+0HCkqeBuuI1Gqr1CF5r/8WGRP2O+EgUICxMCLXT19aklhW0Vj04+H4o7zpAobDJDcx/W+fKhT6A81SEnemJ59ZwtafbPIHIBfSa0H/A59cYfE3QDiFaZhy6T33BG4U9TlzX4yQD3nfa7+FOJxoTDFLnJ4mi38BN4EWAVhYNubbUq2FeX3Ut2At8vBfsJIMY8Aj2hEeX0sugBUk2U5edxmjl1/n85qq81NhimVAaiK1p5MBcXzWgH842mptzEy7LuJtHk/AN9PSr0LMY05blGRkuJI9i83zpOdtXo3oRWOKzUjJLSdIlU8IpkLEkCQbCZcAR1Fz9Rcd+jKX4CzDuYfCgZ9FlQWkPR/yy4KtRpxMZvY/1QX/J3Bvbw1bG5UKwnm6ql6H+T8TP9G+dVSOfhJPyIGZLwsKlip8zQYLwm1pQWwkKVJGd3u7/+szMnFbA5egmDcie2Dt643jg8jMgZgpGybg3XFu4WVeoJvv7g40ibqAzdGI20Mqwy2S39/6fXclh66i+Ke5ad2QtEwiKpAIK36ba1XrstqUz0b12+Dyi/sMDkEHC/ynO8UHLwWyOIi7Q+AnCBH9RvCdQf3BenU42uiFl2SoP5FvFH240e49k3UuyYBbTCvXGdABGZ1UL0fXHPq5O7FHVOavbfE8uAuJPkTmZsliY4vDm/imGD5wCH+hE6o/SrBrMRFEFG+fRmUqQV5jumFRihUBDk9KBfad2djBqt/5JqVWVNpG4eLcnu2n0eFg/KnRkGju8Hbm19tggO3jx6jmU1eiu2v/AN+xfmUX3FOC9k9aLEzsMZliC1d+E4nK9PXSWYKe955gWjavxklq9sSg4kkqDmR+TDcK95CJ0viRR6LmnNq09CR0oU2Kte47oLzrX65zcd/ZjDeemIrvdHSNLflO2NA4Cs2uSZHBd9FXyk1WvxBzNY331a2CiVQJgfNkhBovdF2WXqux1qGQr61COW/zv1NL3DZJkMWhccn8O83Hklmrd0No1hOguJTr5T57TbNcPlDgyXlKRWmLjUtlv1pRbJJNYnO2iRmKJW610xJVm/k8zrK48U1i45FnZcwxOhqTDCFF3zqR5B3kh9jHjq/Acc4VmUhKDr7Sa2rDe1vOoMspEndvL1UqqOQ+PsX6kaJ3ZubYIBrnegSUprFwcdORU+A2G+0aHyquHuegysX0jG8tnf11k4vzLZ73P6gL42cP6auZuQCE708dIvHECyaad7ullJnoO0gzHQ6I+Y5C9grBLx3Js5v8U1p3kM+pehwoIlFjpUfq55Fh1O8bmQxURQPtOThyYNlC7rwQk+3Lr3d/dOzGjCeLYId9rXuVRsjT7vcK3mAOgEF/g0e8I8hkFtiTYkVE+54DCexXIOn5ibzPARNLGwfGPC7xc372EuHW516+YxwprSNFIYck7ePI9yjA77uktbR1Q4rOSieFeq4yo4jQyMNjl2WV444V5pwO0LSNeK/4RSbnzHhqKkm6lsOJu0JGNG8Pe/oDKtuJ7uREvTpPAOgXBx0TIzqig+q2fcC+Zdp6GAt7V+h5fQf4c7WFRy3vXzFxmjrsOK0O3pC8IFMEQBDrKuwxuMtyBCOinUp5ikyrAln8VpZwG2/b0dmQC4YMS6FBZtCqt1cY9c1ZZFViZRjkvRT9MwhArFs//oznMri5C3c4cwKic+m4C5t5vLGiAx3d4O0dQVHf9wIflSJs7T1VTe9ojw+jKC+k09XEBG3Dgt0SsXLBAJuvOLb6mqmDFLwpFgBW4RG4nTwXbOJHUXPLHZC1jmRnDaL/1TAxCSt9UwkTGD9gNrBmtyZtPZoqje+ZqIfJr8Wqabiay5sKNHFQTdreKxmUX6nvNJzU/GkRGVa33wNSqJ37yt+khO7gry79VNhZwiEoWjf1lig3E1OEQPU07XZu4GUd7sQb9bawM8iHqi3y92Ydmx2KPMLFE8ppeCz/fMlOTnHeGer88wJUBrBFDBq52sG3zPL9GPugLaC6utmmtMW337GHndu8MZylnKMbU+WCyP2aW9LgTfdhNVzceKF5dYZTALNWeq8+S/z2otCCAedNPaJ2oJMM7lmMFLEkAnbdV+ERaOczHysg7lo1nqncmnz6iVo7IKKQYQN43j+59dShl0a2033JnNZG0PwT97IOj78gwWuoYsychApARFaN2Qitcu8pVaHfRYUWTtorBEv1S6BLGr6MGcOeluwvMNERok1QJ7Gvqkv2oGA8cDJ3IGDKW5w66JjnQgDwDHo+EV9YNphkpfDEMGvEeVqemDYJMrum8gOasOPQCkLxFK4ixSHwRWElUJOwJJLlMRn5ocqVNzS3aicyz8uAndX/eUkqPhSw2hQtdS+9Bk6zpSob5cv1Z3F3q5nZweLifP7lFQcZEuiLWry3wr12rpcJ3m1zdMEPTogZyA3GzkNYqnRquwVRj15pfg0S1CMPJ9XrFjd8Cr3RiD7bVkRefvYnCxrtsrEANRV5ePnIj5Gfui6makLlIhl/Wt61djRxFZzGIdAmNiS4jujjRZQbE8n/X35VCU+o9mJtViD9l5RizRW8mgtK7/J4R/42SrkqcvaHfzrVaDHl0c6Ibu/0j74/I4R1Kv3gYouohJdRV0SSLJUpcBjIGfZMGb9uCWW7PP2cnqNTIkroD2ZIL1yUgPwpmOwGZxfXhMD15FlBVwjIxyPEMqFTPGBoyIBd5uTR/PR1K4wMPaNZKwNapojqn0HagQngVBbD9ido4EiWvmd9HkCJS5wwumPNOkOpyaMa57YTZ8MJ5ACNR8DKOW2YvOCmB2Yeuq3MDa0UT5h58VkCFr1bRAwMtp+/N10CEggjm/XfaKhKGWeZVlpsfSTsMRurz7KBB8gcriMF7vBh64BoM14oSjCXnVUOywItdYypTHWbkquEqWiY83BeuS+TRpBmwKhf+oBPMl2rs5b/2HPPOAjl7HGk/P0h2EHSNm4sYLKiqN1mXqkccY7ZL9W/6GKCbBo1cTHR0+4qXTKV9vNO8pNs0f6MfwFFYWDMiH+NGuLO29mOUXJzG0aTV3dLl+aiuoXybTdKAPh6GbQu1g0jHkv0WAYyCZ/ettFZhAaGuOlRDBYLGjBptgA99/2/8mmmyfE7D9+mRGPNTuIipkRHuXHF2E20UdizX3NhigCFfNbUIBfiBoA+RsgFbsmnzLwWKS9TgiN6xHPx2lQbveQqMA8U2z86bb47VG//hEqtkKl6Vz+yzr6fG7ZT1E5pRJPdtV8Cv3pLgc+tNnDxkQX0PnmnkGH7/Zji/AvzxHOooNI7c03aBDqvi8hX2VBZ7OQOrp4NXhLUs+KEeXFbDEuiayAaSaZPjLVAGcKY6d1XTx/CBJ/ksiv77UUNLCR6uLnJef91Nmi0fNVRTgcqz+bmrGbQ7CScAYaDEHAez+aPDXernw7gqKO3A2KGKKYqX8/zJ4nLoCHTG7M6wwfRhXg+Km6y4AzMyTQYop7M/3aoQIa0WrQ99bEGdC4hCNl5TvtvIKyaJSP8gIQdvUtjK100ezxk7vWHfJGt05RXhHTh2fgpX1skgwHWkVDc65+zMmhYyx7K6jXZaHCZZEFkUEPVKfzVhZGunpAKFYcL1afH2PhBBrkWEs8aq3HxiAaBhU3DySt6BkbDJ8gLZCTMX0dTbG1s8695GPwNmPaUBjl7Cyqf7UzNm60ilHejprvi8YTmuqcRwlXDOGgSUlwJRQYM4sMiKJEi8a2ugxli0bkaE12kenTOFvIZohVGIFFpMd3JPlwYo9vzf6t9SIfXDd19iGGONklGdmtysdwXfYxuJRVgZrw6WuFH/5XACpf1eVqMicA4a5F21x3SMladmyG2u0F5BdjW8kHy7bpDQ9bOHpTsSSEmRKV+Y8yZp6mhcVsW3AUOx3UH5HGbc4yzxk6UznLX7RrsOww1CuyIL55a2FLhZSnusaYwAhSQqR0F0p5uTVo5r1fXITihpuIAo/nOWVDL3W3qk+qPIkrBCZwb+JcWT9k/G7MLuUR6GTTkuvccH4i2IRlICZmCAeUO0sFuCL1+3BXFf82U7b0Yul4DO6VUBK2ZSELZfXVpwtIQyw2/13Q18O9h2k5K9pL5B4G+I6Jv3+UIWMg8bV92Q1lv7x5G5txGYynXU2IRZ50eikQwQeAa8eZl1xwp2FgG7yXwp6pN+76Hrn4zaZ7So3StlaAYhbWq9ttLYlYXqDwUq7AZBq5Ygqv8fVoc3nDJA5tsaiC5oabX2I4xZTzb9h+CAcoEotPC0zkfilquKaAbHoaXIXBvOofhqVS7faJ5rY099w6EHlJ7UVBlQdJ5SijwnCrQPK2DkrNKojgIG43ezw+/xLmYZRFtUxxLdI6RzpqmsHC8I2XuDxL/lNJk9C20ypnMQh8uFZVdTvp3Mo26yjGeIiOjhmh2eyK+e5xr5ZrNDMjtSkExC2Nd5Wx1uUuaWmHUjy1UXYVACbMU11hbua2XpbhCa+AHrB5cWl/CAgNH8Kz6cVQJO9TwInSlhYttMMQ5JYnkSsk1n46volP9Roq6k1VdT5Go5677C6Wq71sO14bOmKGsFbzkL1RqF8l9VIMD7IXIIA6inU3hRP/+KALIgVqJVExyJuqitdek1TdcF2e+Gf3ewyCridTM1FOEjhQ4hxWZi46APS4lEsZdzGxvycDqfYyL6k6Z30tR5gRxvZjYN+HkADocF9mttgvwrCicEoZiwYV2QciCZVfYypo7A2UD1938iGRV3HeoZOgLA07+TnEGRCrspQ76eGKHHIMOgLSTwziTWCuW9794+UgcAUxNq/9hPiyxI9D8D7W6MLhApeXdDG06FdetJf+fWS9Vnl3jJMYYJc2/NRX4zdnTNqS0NPAcF5qFzrhOK3nM3Efv7Su+4ezl0f5UTsK8Di1dnpoHYpkq9vzJoyDdtHmgCMtmA2eris2PoJ9RucyH4+l+XtFTfJgHEvi/jlkbJBoiF6TT7EfCp/N13e/4+b6oNOViLA60aXitXRtjL51aioEzbpHjky6dDjyLf9AxESZdBqkF8i/WuLLyqpZKzp5oeSWRX8ORuApg472fHnyFg8+bS/3uQzeBEo2NyegR3C4HWY8GdqmEslGQD3La6atyltEJx+tnDeiJ7BW9uJ6NIJJDn6KjefI1n3zdN13c8jO9shHF22EsU+7lnwGtIQJ/GfrWSJ5/c1PPyDM/sHWMn21YcQCyVgdqPEWC4A/kqrVqLUfoGY1Q1F8vlBU4cnfG8XvjuY2GE90QaikeJscLAWQD1NXEVCkmILMLHL6Hnna2aGCqZQcE2DVAn6O8X6ln7MrhNfSmSORCNquVc+jupgCcFX0M/J8Qg1EiD1D+fEjfce54XLa4SbhoBPaTaEP9/pSPGLXYSWAXe6ZOg1n+YNwOw18n8j03XJfV1Rk8fCheEZjOtuJOp0GmNyCJONITcOCKdq770GLQHgtMk1TZaSthr+6c7A2se757mRWRS5+oZ74KS9MuH8ajDTaed/2MRpw2zoAVG3+Vd5/3T1JutqnhxV7i9oxe2MgPKpGy6Aa/bXXG3HE8o5k82PUounM4bmwjy418jvDRKRzLFbe6Orao22pNZwLT/9XAn1ZGN7GtFwHjaVWrWBm9v6jC3ONx6hIPaapSKsY/NbcYwQwuSev+wyTFQAj4gO1k4vioTGcogkZIb7OnTpyi49zhHtq0QlKikTlNoNdZwI0ew7QG3OAROfJUD3Zhx7BOEmks5WsDrMsIvJV/co+cQCoFnRjyyVeEgGArjqz1snDcJ2YpHxwuZnaATxGN2s/dkKvOlTZVeWDpuCIK1y4h3uDNUWVKjKne18WxWqq7RwW7aVgX4jMliHU8n7ATJuZXRDERObCfYqds/JA+y0YnCpcD8n1VyaGeNGxM9gXyDo/pMQDnzEobpTBcDwSn75KxJurV9cYbLkes8+1rBAZ8OISIk7watVz+vfPckADzWBSy/EbMF6Z+bHUZxPug5Dbksle1+W6/7Xv/kE2kN4QbutEXj6+fKIgVe5FOZ0B+Z/U3V8U4fzLR9myrab6J4wHyV7dNeUUxqSEjqurU57anpUhargC3jr78RTAbnKd5uEt2Jp+OKVc4Jo25HPfD8+/gOj8jOFQcyryNp2L7aBrzzGJiJGF20NJDMPmZiJ3QoWpuXxWAX0a5FzQdwBEXfS5MyTmbHMEiWBfInosE+i2KVqqC7HUpXREea4oJzbSPy3dq63rcqHEsHMKQhZpXOl0XFtfNK4RgxMRaVflpAMrmotdi98td/WifRXC4rHWxkI+lUKx3bFo2vA4s+//aj2kMWX5s25xpgOJagCMezXQ1kCOntmYaKTGE/jdjsIGhuTFrMn1Dt/+YoCg4zFClK5lAjOwOKi8R9PjCjmqiiYdyzjRSxgZfbf+tdte5yzaQqUj2+7fYRIVNnY/FuR5q4oNnopHuJfYyUjIkayzbc+61lExgLIHd2w/d0hchPcU5T6jRgTa0hjkQk6X9e6cHHcyDTq0eSWmf92qbi5KcOnlQEWFNSv0SBkj/RXGKNiMDARNZnSp66uWMaIKNb8AjjsbAH9D7xg7e8t5lmxD9m4lpXgfTKFiXKeeGkORXId+rbX8pduIEDD8l/jYIutygD+dM8vpbPxBX/dxHKNfQHo8Uc8jGft8y6WB64KyhqTowFsKafFBNi/DKPP01AKuZofVo9q0MIWgNXj/eWcErlEImFTNnU3e5XvPyvFpNCAguFzXzyWSTSnTiq0iimFDBWy+yhDuGIRZSUkI2fGm6w98dx8Hpcy+NXwRwMITjveBSc4MCn8Om0at4SQOGQx4x8AUJeTE16KZzEfqcah/1Ba18iyNH9ualFndbac+dOO8OIKE5Rp7CN1jivxfcPMsIfKTbTpi7klVkiMJJZxKQLAUge5GTzfn20SOb/qbpnxNE/xsdpjHj4xDMdoj3J6BuQnCoHrTz0NgR8qxdEMyn3zhgrPPejR8/iXFCPcKnTn8ndUq9FG8DcLNDaRj83CIXpSVo2k4j3zk6GOaW/IcLYgBjRJPDMFlTGEMYz7bVqp5d00WvExfrpgCrGWIenIq7vjmsaVpan7KXs2/wKno70F7KcjnbYxZvpHSh9pedUb7tDxKPK3ZzjHdlXcXZsv7Zl5Q9izw3jBSYJky2Q8cB2UYSzvVpXF0GdQaZpcLWPn9akqU9IWNTEkUCtnQ5IU6beqWZPaaZ6UNeIRj/uF6PPkx63jfne4+ByFD09uQ9ByTTCul4wkwuVmJu9nl33nTUEMdhRDEfuquEpip2A601Y6BDhwiEluj6PAQfx2sVaaXZO+gIsZEdvUcIdWeQrL5OPnv4bjJRcSO1LJQdae5W8p6rhotDtJzQsRsPRZSo+YwymWLqZsMrRr8LoORweKa1StA0cHy/pGTIT+fu7h+0rVeMaDvelDy42yipPdCwp95W08XUgWYTaWmB1JO/GCdt/tzBDt7tiCKzxP1zOtRVGTFiuzEABQVVFNpJQZX+429CQGb32TzdXinjj0lEkLFF3kPuNwgowOj9OC8nM3cGm7zN6DOXh2MjJ8I67UpNlLT2TIb1pt7VreLYgXNO2WAhqyofBU1po61nM0++/AsCxDfYpZnimTpffuqzBwqn18PPp6/n0jhAQG++dILKPsjEOYkf9A7rDzOAJzGS0Lp9m0bJbZgXpedkx60wYbaDvzQEDUrixapViap9PFWZxltIDIH0FXmwjLhr0Yp1boufmwTbPj2avPM9CkjlN5eTnzasmOm0SabWCICqO6eblu64QqUv4uo70bjZSbwuzeZ22FR4CYc0pXMfdr7SLPku2wXF8rrxPfZoCWETCbPuCJslo4Q2IxkfdfOZHxAUxZDXnUgnR8v1nCh2C0FjBuUu5iLMQdoZtPIWsZE2K5gtRtNlGZ5TroQpyIVy20UHdAD+MZWUaWLLHu/AlRmVImULJK7KLqWcUadVk1+B1W5g0CnJTBcRyDyTxHpNeXHKECWUKQiNyIRIyDFVKgK/2rlIWjQ5A5Yzt8OqPGJegAEsHsOp2zJHLgsWLX0osiUSTF4SlTJt3Th3Waqdos2QxC5SKWV5yIIbtrVyMHqzz562gOHRtEAJN+oqh+LNLveYBWe+JAJCD6haRfOcI5tDFe4H5o4ECFyA/mYaDSI4leSeZFwSnXbVnGoOtz1cWroFpMYSWLaDyX5GAlUmcow2huQS4UGMkFPGCe7bePAAtBVAABd+uaIeP0x/FczEHvXwV8f1VzKCCJN0fl3lf/UnD2U+1FKa7ZdvU4Q32FPsBj7K87/FqD+kQAYR6i4qJVoe30HbvZm4xmxvJ+jBQntEJBLCiOFB/bgUjCbyBQLxy/DWS9nMu/hz57m7BkSuhpxZNkts1vM4dwLcyFp4d98ixLs10DldWJ5hKRVj2rDFAaeXt0m5hjjh6+ZrV+WSxnofH25PlmSRVZ/xtADYsxQcG/D95GKHP8++9EyXawumh7TEpY/wvkm7kUiVCgm9uB2st5OW8PyhrIt1Kmtoa6Qu+5KiWNkLzdmNhJR5ww821mkz/Yd4wKeYKhwGo8Xd/y0lTCeRnrJs957ku+AsvpQPfvXN04N567zYTJE54GBXMAQ/pKbtE92PLZTCMFRi96lpvO+SF97wzvUuy+ynZKN88gLYq9zs465tigqxYEvDDfhtXtroKnryIYi5qqe+dSE6kKTuhzWHpeu16ZF/LN6bVi0Uq7rUgta6EUxx59Z2FagtMWz+XB3ZJVUXG9hAmjYuTLvI0d0jIoH9hU0fE84UaPzqNZmcHcKNvVGfCVOuTCC7v9Xxv5TT0scGpG5KTaNClJMGVIHzSJ5H/FbGDDC2OWwQHTsyeG4hw9Xvky+8yDIusrHuAxNvxWYviLI1KX5JJzEsxC7CUnR5J2B4RZqyMNm+9Ae60+mC8NQ8BZHXjVaoCwxudwM0IOPLx+/BDFxI2+zKxfPjiOeac/x1vfsaqUJ3EKNCH1QbW6+O+GTlwu3zKv+nHCXwKxetXPyHbyc0OjM/CDcKR7bRfgvN+H8UnzwAoANS+O0LU8loTTOwdpKEKvEUtvH6WWm0v6Ei1Q4DEWcK2JHkPXb/02ltc00iCaQklyahrf8bFpQiomFhpBsVYEDXec2bGMjpLFY1L3PWjOXJRmVAC1/69JuoYrkXnMt3PAJL6NCHShnU7n6hioCFncWSs/xuFVHx5kK600rO2R66JT6XJaA1V34cOW4NbCsCEgP/ogbB+P2s8Xvh6uoqPg4QUBpR5aqgo6nGOzRAjFBjGHgEK4V2n0mhpGIVLw2ZdAW9GsvVzPsfWK8TyexYss5JKo6qppN0Pw0I5To8FCh0QDoup/qIrrx67OTz/qrtA72Y2yTm2ou+0pfl8l8DAZJ5eNcfXCsSFxqIXtYFsWgsmTZ3+8KvYC9RpL5pXedJhxf5c4xFzKygoWAm7WA5DpzGMAWFCFxVhVdlUF2ffGIawUDVxeFofBvCqFhyV3Jz/uHIRE3CsfMQccv8yVVR6RTXvQY5ixKouVMp06s8/GnFyslSs0/gfgOBkwhxG6JcCF0q9Jtsdsy+3wPD7O77RRKdyFF1nPiw+U2WJu7/DOUIIN0Bwj0iA4L/fXfNrLPjGDDQ5pJn9zxQrbwFPsCtViG6t600VWnpYj/zug6Q9OQ2sDvpe6GN1uln3IVwfISO9tygRFGha0gPbnsGuzVF7aKuZD1dl34s/90nhsVkIGU0BLHd51IhUP9dYMVdMesbvEMWRkwXdTK8eMgy8i79+tiJSbojfKWxdyO5uPR6FHoUKCx/cZTdoySITuYTnZcNnX85QbF80AjMWDwZXnnYQDK13daRl2RKb/Hkz+i05y5xhlY293xCNoi6vys1IMuGuNfa6YwLD8Q7lo6VxjmJSik7QRT6sOzdI8i2eeVGZi+rLW3fEsV/l0TaoWUOBuGjl32Bk3VHT2W4OPEWDx7srhIjVPFHeL45XfQKQwRCBDIUDRjid21v9+nr39uYMOgIgKsval5w/pUDUXi/56VcR8zTkHQ4w8VGuj2cFrG0MgJUW3ewppogGEg8a4QBoa/M3fImkZtylGUwDmqM+aML1bZc00VsgUlTXmfZFe27p499tpT4lmEPJDKCMLX3FQfZ5nqpukJKL/csmujoMZhpB0D2w3zWK9VIrQx4y5FBRQGgwjE+6A+F+UwRHBAlVSKwf2LvA0EuFs25HD4/NvM97NoX7H39pZ7tb5/6+ErFRvEPH4nvYlP8HgT6fmPptdQP6UdMzWSAWOeQscWMxFqyYD+OJ1iMXeGdyylfqCzRB4nUxhzDMEVDRBO5vKmisXC1E+EomOrxMoBIlyMa0Wj4KNX+bq62sDS8pOkGlgkQpB5JcuRoVXwifsXT7UoWS3clyL+aS6sKpOP2eIuCu9hFsy1xeDv/cwLYzG59f8S1Y5uN8NDky2x9QMRxCqH/NZ1iDDJAmVe1X3GuccqeL88ns7IpPReRy84S2TivJMYFARJFNaIYwRbEg8uEEZeM1TB3PY/GRDP4SpT0Oppy3RMdTDovWFNWzyEXNx337cEwZaJvCtsQ8e6hKpzmemvaGILNvgGTewtEk1WEqXVDHLFVzVkrQTgdICkibZUac+g5S6XNez61yfrE3KmG4GKb8DRRTyvXyMe822nfq5deeHr+g8rOzJLuGqJxADJoru7a/LcO86REWhGEMIvmXFLSbDdRyKBiXYrxG1m7ygRm1xEAw43GdZVFeH6Qfdl0Y1ky+sPcEGtYUrydR3OY8cxm6cKWTuygfd+mWoU/iBoT8o0/vOKw5LFhZ50ccKvA6u5Jrqf6GbykzqtKPibrx8R/YxUyLmBzfCv/O+PeQ24Tcr+Qfvhvzi/0JKg6W7VmoBRyuOunvPvVwOqjkB9bQ/7gFod7sKOR/B+6yt85mf03SQB2ha1ggbKFiQMvp3Y2oikuFKK6/ke+g5HNQ6mGXUybEjtKbKFfUv8bjneWmAmnQdvkbWuJe/3JElhQlM8thbwbc1wZcOF1kHxb9xyLgWvYS730gGqX/Jk5XThDHX5r7G6n3xG/yOocU6s+DPxub5TfC5eJf0yPoec84P6yhd1hc8J0IeUoCLLTjkPcwgSf1J41evw+sHwnjLdci6CeuY4oJ4BsRwy3lW4t3ZY5hJe+JyZRfp2VCljAR0SOr3nvLSfSTAcE3c95ER8gTIPJ8vj88vxaysi77baCFNUI+uZmNQWt5vVRzUMHQRianexiGFF0vP7qoVT/5JuPpIqCnyt0/puod0lJOACJxIsejazYenOKbdnVrntWEDiWDeB4GLbay4MMNq9gLu0aEFfbzA1n2MWA5S81ISyX7b5Pybz4/ts/7koJfncj4fXCY3z/9aNcWjlbClY9yvBYtmhK8QPogKfgMUjnFH+e8uyB4go7+147hVOOl/d3W2X19/4m2X8uqmoUhkl+rFYG+fVYvdQfO6MQHdh6N0WxqmInlgOmEZzA3Iwd43y6fYX5Za5Ioq6AiKg6z1pSwtBQJKHv+VRJC8Dm6VbVTij820hxQk9CDPTlR20iBPqCnXusjNQMcqN5ef4/fFg0Yg2h1qibLpfkxEMVIdi6qzOC5N5RloWZHZghbT1wDXD4I69GVnNltcEofnGb3c4hblDlyoG7t4nkbFYMWBk7uWUpU9GzeiZMK2VpxgEag7hXHCITIFs4yV5n8D0Qv2HejYasAx0ozdp5EoQD0wTmEPpe0zUjozS4l0f9Tu+IomLRlECPDF2UwEkeZd/sYV6ujEYolNR9QP71Y/jQ1rnk3xv34A+oySzRMI0VNRpa5AFrO+LBZIlom+aR9BC/irsPwvF7+oGQhmna69io+6pMByj7SypLBWHqW93z+68dRdOR5uFQMKd9U3XOIIyop2h2xVDx2NL6ziw89o1tSlFfMlPhUYjcErDyauWNmUFwv7W3ouwj4oerWqkMmsSxv9j9hkeefHzFu7X3u9UicILX8m6PO9fb4nxAI3oAbTCzK09Rs3D+MJeyCHLhVVBaxNkoDJafYWMVFGdmwM3d7QHQe2v82UdiDDO2aiT1Vf+1ghvctFxxdaOJW8dR3w2ikn+Nn0yIrenXKReVy0hrZJczj0eyI6V8FQX9wQYDnIrOKUDRVnwiach53hi+PFIBr6M2xvjIVT1S2H7EuRaCNLnEhVJLR4PfSCaUBQAgs9n8v/79IJGSGYblTahmvpHJE7nDoFCm6htriofApo3Bh+hK1CwnLzmmX3nc3CeDpVbCXE/7Fhy+r0J/wK0scCJuOQXPWJwCp5Z1OpKuHCB3cRLrrbEG1fJ0A65/ArBgBmBTXvFkzsauspfSDc29FjfPHs7nCj6VqAWgkJ51aruTJPFYPSae8WF9FEy0sMvazJDPU0Z7hNHVL9jg0m2/OCDzhufr5oAmgtLGIoSJWm2ATUzxxMjYk3FJT1HkJaZDmKsXG93FR8zG8nghWbWFJxFlr3lB1LfPerTHAdmCyWcsLzyO60DYcAptES/zGIB5PqWA67cDF9vyai01jNdaDMAkPYCEKfXlq70aP6a7LaFhxSw5migyGG3zb/PppKBIwOGSu7jVwghpr0qI1j6+I7sFlsFNsLEXLRmShDK5Xg0yTmPvPZ0deQvGOUqPx1/+eI2Bx9BfZyile+KZ1yHzDz8c0oZu1nqEjh1MM8+Wt0n1OLKWbcYBeEhPcCcdYdKFtFur57AhoP8x9R9nx25TpQL509pSTy2KB+Ln/iKPMOV922m3LUMWcd/tIu+qDkRAegR8JYyq4go2yzXLD69gT/NgXplpBxyESwLxo/i4FNjFJGBqif/Oe1zuvu7BWLlAf/lBqcFv/TysGdHA0I2LutIa76+Ze6YecXH1vdkcWxb+hkbz4ZN4Y2kAta0bnpb3toSRMai7eaid3acYCPffb1+kPUY94olhqYOICB/s7AQG2okuEdye8SRDv21d/KkPltTCxVtmBq1HiSshXpaO3gmz8EYZlXBNTX0nQVPMUK8FFvZTLWjhY7XH+Rq38dZK3X5oE7fcjD1r9V9pXx9SiLArq8z0lK/YGVvOyi+n75nbfLM4hLgruKwgD+P+Hn42hyAUtfGGk644/dXzPVWjq5VOIKyIC/4bZXLZbQCiFS37cOO90lgWkwMPSA1HOL6q/QxZqa/EUmJ4Qi1ezbG7rgbfel1EGerrZNmyzwVUVg8DgZdYLAIyYmf8Yg2S9F/x6p5OwZbRDg2I/hFPThoGaJmpxAO9sYhGjRoFOHZOGuNIjyCGFO/79HYXSoJXZ7w/m/DHMe9mb/KfEida+MlcrNOoVQKR211ecJFMqLMCC9diU2CzzVwk5/rBeVAoedlsMQuGILIHUWfYeSHpYVNbxgfBiMk0f6uL5STcxtRUe9iQ0lXQMCAomnLP49sM/fmbizOd3a5aDS9lmDZG5SmqjXlZOdOZpjV+S+LFyQAQvI9/9mgEnq9JQnihIIpSS1sQfP4GzmwXKWZtxGTTnnoCkQwCOlW7FAhk6ekcZHernuKQi/w7kPFbP6y/2L7pHDgpKTH2qyHTqZfJR1ct/of391cIzDrBPgeca4H22Op0EHTn7Cn8GoqZ+/CyuqDlRCsCa2yK+anww/rmvXK8n0xWQp2m0WC5zo18EhdyvIi5odoOVAZk48DqkyTeL14TNAXj++pyYR2tbDSN4zP44hyEBl83cUHqu90/JuLQW8qV+QGE10wzJb+GTVthQGpMR32ex6tEK7PiV6zOoZ+psCLNHT6ZdZ1d5F066Rf5iJOH4JWs3rlmfgLWI1q37w9trkRHagyLqDIlET1POkDjbM+2IhFVdvWT9ug3eVuFwf+qZBaISbLj4yRxKpIinuXC68xwFpAIo1Diekz5UoQgwiDfmHsFoFW4aYyF1/Z+JGewuvi1s3wvVckVOkM6BL/3O3UxgQ5DbF/RV/JJU3B85nSaRq9Ccx1v70xCeYX1wYO0pqUEmNERbXeOsuwBP2xBYoV0FwyID6PgfIcO/gpwLkx4Ayr+VX1Tw+LBjKSQnNF03po+EQwDc27oo0THoxrM7/+9oKf26apFHdngGd5br/piHZIvdCzAgU2iF87Pz5jdkyvcAgSlxJfQJRye8PbINoiCoxv93ExzIsJiBSxoAoIM75Pt+GTpzYw+0XIr+iI4fjXQymV6STIvVFLpdngfv2fgHMKb7k3JJSLbUXABagyC5elY80IwKz1NTA/FIEjA7+AUEPnw+sIbcdnoatUD61ZVdj7PFzUb2Hb06CrBz+J2/MxW/SDfcE0n5bKO4K7RgjdTSg1of2hMZbpWTdSnJbRuGCfdbo05ZaOwfBfZPgnVAps8ljXUS4dr5UJe6W7GdZLdTZFA66KQk7v4YfW4OQevlIscEw8Ytm+1gK5gQoJDjq0j1mkt8BFLEOHJLLzMIArindyQQfb402JSNRe/w+/cWSUxhlTAFDcoUgU896F5rcKIEYsrz25MraDdTZLhQM1io4CK07GFcyXW/8MmYmKxdNb5meCEvsnduAtsEYOyXbqsNSzm6xGSk7XFfw93EMXRx5ciDR11NMQO3xuZELNVZACAHKDCCZKaxEWG9ousr4DK/XegSm0oh6Hg4OC9uOkZDTBN9NTP3bFbTM+bMCOluPCVSVaf7gxJhru9LuQFNwXC/hj4cuhJMa7TR8Dk8KPEMiKCiiHoihJk+nDP6smbo9NxtKQ6GwcF8PUYm+YqQAWM/EbU/3W35wV3qfMagxj76wfcHAN5JGudZmNJ0J6PdIGdPRLV5rD1KaEdfZ79RbuEQwHAjuybbMK/WBVO+Ax0XL98Ei6NlvS/ObLwNxEd1CQybHl9EdHmz4TSHZ8w9RzCWweOGvxq78ZejyDVc/ebEDX6gRljf1nINPF9lc42UjC6ACGY8sZin5yZp9jvZpgO3hLlIp2Qzx3DUS9JbsW2UBEQotdnbNe/BaqdDd3JvfLa8Ba8mCisYEou4zjkSOAuPWQEgZWGq+86I3G1oewn21/R+jM41too/8lrhwvUYDID81vTzAr+FsV9CBG4fCPFaQVElVxyvW/jIxDc8WLDvgYxAkPYyfBdK3s7T/dRrk0ZnlyvltM6CYnm97jwtxTmHZQKtIGBEsJc08nVzugzf/RjeCwwYX52GCviUZpesuuv4vvsWTJh/5sL+RE40DUxMuHKUfXXreaAxUPABgU7wsHwa5RgErqhKwsbd6EJ70c+Q6zLvRWrZx5dXcrrlyYIbQWu3J65LtlS+buI1Cp2k3C/GY6Fa4kTHMtI9lg5k6hhDayIXvR6yB4GlwttDd54ZJsxDwyZu7zZM9sJ5FaMt9GiVK727EBsqMHNGFsEbM0pNtCd7s//lY60Tpwlal2bCHwlVlIIxqSw3jcmfnKmM1aOV4CayVW7qhgBiVlI+jne2CixS5GIZ4TM42XqocJOvlP3phX/7ODoDFDczUrSDa12Vm1EauRDRuf9bUY4U0A6gbpP2bl+iySXi3drZ1RWHMf0Cw30noptofZ7ePnDJ8ajU9W0gmwFQKQa5RwEJ8xb+CzqpB+eALoOdU80moJcOIt+bZyKJsjSU0RDPYipwllAs/1t6NC5N9bDuFFeyFsNhgb0kTBuZNnZs3sVyvuaAuR1y/5vNcCXXR9hbSjKDYJx8uRdfzFRi2lpCGW0VlaIjptHYh+qegHFhQSS/YLF0WLjTxKciNMszMy877C0/LF7Opc8xHp6soJc0PiQr6Eyh+uXzbzh4Grkh1C/mdQ6tVMyay9fKZRYc8EcBm2ExqM4ZCy2sEziitCxtoAFNvS4qX529s5ZbHZ3+wZ40+VqszuIbgKtmC9B7jUSiId3MlJ59E2fJxLbCBKHeHG1oRy+daTZWL5ZnDpKnmsrnKDDDMqjf2doA5kL898OjpSYODQULdwy8G8Am8tIHGkolnOixbcXHIvq4VVCS/r0D9WFLK1mGaoW9Ui6pxp1x5HZBRLGHLGEBmgJ7khFfLJqZGgO7C8HpooSMbIoqME9fYZ3Su0e6VKO63gD1eGlSlxmcoNqILfRpAB9K5sRKRlhZgZKcsfQYVJdhSFpABzNcAK3peVdWtgJSepQaDUywMFJ1tjwUPgQeAHGVhbY3397syQGVoLEZP0GpKUUIrgPwpNBTnvE1cd54mZiC+dYlkn0p52PpDpuXZSJ1lenxk3+vUFUeCnx4XGrLcbgTnoKXePjwbCnU5QN5VyoktAhUiEg8NNYmvgSAALVY3DM5CBEx55QO99xpknTnkC1o9mvJkoEFGEo+BCNBUUN2lL4Egilv8PR5WzhILO9H74MjgwtG9DM3zXWDIuFUafYm4hGKoChexUKQZNLpNWpkzjyKpykIEhhXEUGld2HrfpXt01cOkmVo9mv2bHov6ubk53xgooedPEcJDrK4uNygvC0rSm87ydi5LD/bEWF3MCb+6CCT+2hvhm5oD6bZCqiFGjZqlh4jS3bVX4qYE+jwCRpTmY0NLX0AxJwoYvtFt5nMZqgnNz834kNoHbuj5Nmy0LFr51zb55/Up3U3cRRQwuNoW/thz86C1/2sdo9rvQxORFhHMzPeGXzeOuVedpfayhnpkw2lVYvQxnQnGBSl0QK4MQYD3JJP934B2Z4v/Q74/FG5gVHEZlpBD+Dtm5g/JBbpRrlN/LXz6dCMbo1VdyeN9jIZOlQ1YIXaPK4swDUK433ly2QKGQ05XR4EAXSPtG+rw1X302aOHAn2+uyJxCXbbZap9NUSTGe1rrIlu9HUW8BfbnIYz682rJ1I62n1M4Hcg6VNac58NA/4mh6Gtua6NEmwYfBBEtHkNe4HmND8QxIENUYlMezsLor7WN2pahAEFXlSklTealBkuwyFCh4uXMeQ7mgra3B3Gw69s201n5TQM3NxKjh2sfVfcT9u5qX2yzU0kQNfr4CM5V7EYKzsZ32YsjbJxZSRQAqx4sGQtxj6k/00S1Vq0k9V2WnC55L2ughhQ00naAEmEMxeRiHpsTwmK/o/XOHBqBIdy1W48fjV0P6Mryv5dhg8M9ECQTEgjwAfUOEVXtH80HMWRW9IBIVBKZhwK3MWNjiirRtxyT5rXKWvctz55UT+hk1/0BQAbYrVTBvOAfB9zBsOkYNjdmnvFvKeepOY1SZqsW9Hr5mqL7l/cunucFUG6Rrieb/yQ8C9YCsQTEGdKuqv1xK82kY6WGPPfS+IctPZ4pU4VKEXSQfut2D9c1FOfap1VfjjQdwG1JAni0WF5vnok2l+bjZiDEfXrqeFXsWAEbzYuVN6WkUc9MHGYdTjjzsa9aSD1bgkYbQgpVjkAKi4KI1KxPvD46aK0XSeoUt0ySLxpRlxBL54YS+j35jmpum/sTZpO9hbsu05TqCvbpDZ4UrmTxTxyplSceeAazecfhnS62vDJSZtpoR3lcDpykn3bhYtUkVaBuf3tN+RMR22rq/Uu99Zz5TUp9oa6Ix84yNWSx91Xmd3u81scXIL88dBo+bNOHVV8F1NM7f7dmAMetlIUCiyIMUzb6Ho5U/8+8Z4r9qdCQ9crDHdPgvuq5UZYENbTOGNTX/9lW7jAgqmsIhxaRNitQodoNM9/UtAlToK7adg0gSQNqrDe7WVknLCrZQoTHLSVBddfDJpbCVltos/uZMRLchLJUMq7uigGLage8IAlIzbmM4IdwjbM81gNZFZTjaZ9MZ4tgwMNwVNk9r5GLhah/gUy2j3SNvjyjgD1Yc/zBo5/St66JDuSIil0+tdN2jySXNdjiLCsB3d2wpBym44gvFOXG+HlwcMAZG25/uVS2SkBB74lo5xeqoa6qDU0DqiDYPuJ1HSwctXsEk+WREp/Z6VZmYDZ5nQmJGh9DpT4anPwBZ8UUoUpcvNi2Cnmkiwt7iPsm6X0FVSMmOMazYmEoIMMDiOTh3ySxvqh97gnIzsQqqaoPCR4BN6yltgbh+2sTSi3anoNOv2ErTlOQZronzxnc2W0ac74W30SfCh+y4Jv+fqPUrBB3tTBEsXNgpTqgm6/LoWeTmzn1+1OOvMprPLrm57XI77xAdCeEAxiqriQa3TRYFOJQHqEYWBY6wtLrL3QCxKE3ehHpBSx5OLfQtoHCzXMQtjex+HcX0X+6r9qrcZ3Wt1e7FVbLHd6s3nwwBue+qvcgI8yw3KW0ZcVpGjszdIC6or8mtYc/lSHM0t72H8B7KB1tGfAJZgALoUXsUKdTcIzulCIBZFJx7/ev/fViYejVgTaSH82nTeLOpUmBWy1leqjT/XENsmpMP2+sOzN7BUWy1yYpmfu4AoA3DhyWRm15HTFtAM/9NJbv7fy/h0nJF632a+/9zVJNxyrgv/lMW1Wr+m6zzOlvZc0v+NUakZFVi2M2x9vlHBr3lXPJvq7B27Yq5V1sZrH3QAyCIdo5Dmy0tvAwa4Ax7nwpHMwnQeMp2vCYRCZpIYQUBwD+7CTEWfCwVbg70861bdV6UuhPPMsmIFuxwfJ1sIYro8eyvu495WMpF9LYix7sKXtDVGiLTdzZEDwDmDOYrijj7X6up8guwmeZXfcdHBkxzlb4dDR1TSYZ6DKSi0nhwvs78pAwDhLcKqiDBHwkP604aNsPL+yMR9rjifqqixWgNUzFQbUKcFxFOLUnrVU3dx4iF8JPk2xNcznVDV35Vq1HXZkibNThSepz++1jImP+xC42YoLO670fY1UtLNY7Lqt8rI0PJmpYG3qyJay/GZhLtQ95VG9/hs5NW6n+drIwxmGu0sbQqGFpHCPFTZJ3ziWClGqRVWdmvCJgdBqpE2CdJaZfBiIw0XM+7JpkEq6OzUahlTlKF8er5usVpEI6mqLaSoMTlj9Z8Z+yJqvypa729Blk4QToEpGTAcXtOdnaYvGWixO/0BMaDfTQEBKHpLUK1qib+esqhgAqawAgsJBu0JhQ/uYCKu77XkAOIyI8aKqNcMUZCLmJiQmrALJn0k2o1kIYXno0RlCjF1/KcLWccndsEyWSfKKw2R9D46iBJ4cHt2qZ7rRuHxWNvKuem2RrqE3Xtbilp25+Lq+L9RpFNv9K56XDn3YYk1aGK52pUFbPkmvnRSGaZOXIc5LbMhyXkKexEAKPdiavBb7qaXVtaW9T/ZaBAYHdI0v4q4l3M8FNMB0MXbQ3+dWwDDeU9DWLztWHcmkTcUdIRV7bhTU67wk7Zh3WqBhe4xowjMRVo5PgQsPqahkBqBfuoB3mUSYf3udv3ucbPBAF3Qv9Hi0PS+j0CRC6O3bGNxMaPFKwATqDPE/95wDEvllwkYLtCzK2KbHxfEK0NJaMxtFpHaCzaWTpLK8FO5m8J6GM11gXcJ7ezfKNshGHDuaV+fGfwjC6FwnK6XIpFugPwX247pvDGZMXe2XgJB4By1RLLVzVrHkULSQ92SxQ/+RsiJlaRhNrbLhvLOPxeFUag688PC9h4KEBHk/et+xlPsWK2/b85nEDkxRKscGVq0PFJL49cInqhzPpJZqt0BqXKUmKD0x93LyKZBo1fEEAD5mQJ45/6gu9AGxbFMJEFSKKXGa+MBYqnjGp9aqQr9WrVtbkqT4MKdukPZmuYZKidHdIhnERZwGdu4Tz77vuu1FpWmxbBNq8fFoLH2v/rj9khYGvZzc4fd3Wx4C400LgSVZzKRVDkMV6sVKmqwMgor8vGBnU6D5b/mmW7xC2KnT7yKseradNpo1NIH+UEkZmOhk2r4vPxilXVaVE3nli6y9P28+zPnJWrmBRWTkiT64tjKxYSjGzx6+zjY7sj5BTD06Wrnsr3c63Y4rYhXB73S0PdYp8gefFOL0mBsSN+v6z98/chtXTqEFk9i8qaFFMtjJrgfJRYc+NwEC7ty0iMRdku+yuOLH8leAIbiv2yd3ictp0jlVRPUnN2dJy1s5dXYpJDBdFGq+FPoCV8fzWnu4R1LHQqIDrqbXqrNpo+5N0Wya+6QMjDE0D5FMDOD2MGQpnw4B42LTeogtfSrHWHO2uRQh5XYHbDpetn5wkZYXBbgX0fJtPaRGXZglpfRvWJB6L6v3RxMOQpBes29OWxzZbgOqMGwmwnR6Gm7dJ5CldWpsZNdGQ1/c2xLfjhQ3f5gPuQQHI9it99NsE8w9et6a32gQLDEcNK13ka1zvxg2pG4Fip/SfGkEUenvQekdNJ7AmKboQpWFBl5yeKY5T03LD85mDoHiVIitL2Z0N9x8D+zmLDxzAY/ewrfHL7hyW+hUiCyM5lv1T5OEx8SBfztxgYbehkldBAWx7UmzyGnVntNDY72PpnEanY5FyRWDsr1cB/fm7uvp8RYXQOZUgrtn5F1F9htTs7NtWrNhcEOFARXNKp37eyuUvh1jhIXJPe0x31gr+zJuBF+xAj1IuFqWuBh1kIPfbEXheJULiyKnHrGqwoDPQ5qbo/Gw/VVWy4BZRAy/I4sbAGZLwZ7YEPiqQbWJFzz30QVjaOEYEZce6u7yr2J0tKu6EMIqmGStyX0mHzc2Qe5maWco5zfmqOA32Sk6c3zTGEpOpkQLs7hrGwwHOXVfVFe0ZW29sMjT4MQnFkSfhuh5NQi2wxIK6ZuGNIA0PyysSqobe3x6qrdWkXbjeRUoY5FSInjxksxhicqJAgAGcg3fF8lA7vPI4lmbnVwM0tYNP0s8TQDdpsTiU+em84+bsSt1fpvu3nBqyrKSleEJXDjm12cysBMeFhEi70J7LQB3MswpHsTZxfSMi9bhw5pGesS1TsE0fei0JkjVbb1K5UT11LsBa17aEWIr0mSUKWZhBmXPJwZWqPp+UYivMGw4Vo+GZ9TNCHH84/DLhjKGV249mMGDOgn8e9ZcaNWuGhR1eCSEDc+mklS6W3Q2fTwDU5IdSAy0Mg0Hil7H7MFVxGKbyyrCvymFNnku9n+1ZwWkHOfP+jwe1an41K+e5/Y9l8QR7v3PgAiFC2QpR3ZOsWJo8doElImJ8BIBXpqBrKM8Y65biYP5nvjiHM+5NWdvW84tn9Re3ykMNH/Z/+QCI15X1pUV2nMBpV2s0tVLrEMWlOJ+CLTvNXbAKyZtVzuBRlOj9Apf0Pp4RXXpuGrAmQjc1YljE1nyjoVQmiQyR9h8ZEIkXJQu4Z8U/5ahMeR+bi6N0jqNz7FAQIGxe3B8BmPSyEZ4D4FlyFa2GrR3y1bDoc88xIy0qy5qicc3cFmD7D4WI1jsOwJSqev/HTejuaSw+aO9phgBdEz48/yUQqU4+ActN0GK8qeiy/Ox6h1jNrIP185a2L6Xk4NID3mlCzzkg3cDiLjYLqOafR/bSi/61PfudS0TkyDCkUvfuBXmq4l82axiDCdX9itW6Ie+lwkJnpcAnMoP6Uy2C3yALYqD1RrZ5FZdVYMDgkixExC7JGnAStIWOvOHrVsrBePW72+nzz6qNf/km+VsaL0BUvzHkbgpRmydhgIhSQAoPjqJu5sgBQivtOFRgq8DB3B+/VksDtHuxl3vz3zbMlEiyUFpxeIB/bah6/e0YhPVi/5+Ifi0gh1qwCztHiLngl2SQuSp8YWxivPK8qRAougfZPpBltFDb7GgVlYz2CrHMvgkgag0QyjtwEO6KcLDE3jmzPjK1cfIKigr/mN/oKwgfH6MZnEsQGDFKTcmx5Wx6f9qfMLCFJztzpJ9++dJVrxnzD0IBGYPUrfLF/PK/oqKgHvVu4lavZ3V+XHIU9C49jorfdhX4OX6iKFCn8fDyBf6tFIM8Xa4n2Nx0u0PJ8LR+Y743AAa+z+x1Pxyi3CgP/3fj9UiHCkiF7Xf7k74DCmtYYylYqugE/RolEFQCbuNNTfzyOxKswhSQc19+mji7Ezq+z1lKazBs2c40pUtVnlCsHc3ug5qkODHGlkOb+z62yUfyooO6mqSWFePtpHgGmWhk2mswSDu6sXYG2w8A02SdHwCGqpoiUct+WvzT4hAdnXJMXYFeByzGU/3b/XjrTGTb/XLbXk1ohJfrfgN/8ik6dN1+ri3nIV+Wy/LSqf9hBwJHNH63qpaZiBNndTZQLZbuObjnFzCEfqxgqkg541TRfgaF3Xsr6pnO7yxklOwEhu9njERgDohDqIDtvOS0LvcHp8NsiqXcnEz4ytRYn/WcECxB+9SY1qBPpuAeEUpWcZEYIYX7jzG0os/i0E0ZE4c9m976QoNlyfE8djYEHudBL6oOu9drI/RWZeq4SySvQ93QDfu0/qiU93COMeUPnikaG8fR0sqNj+sGP5/dX2Wx7nOmm24UrvPWXcuI4CwRKRPuzpNX4ZHERCJcZ0YrPGMV9uynh0/Cvf3NOtqmTDLFg1BaUUh1exyRJEu+6zCHV3rR4wSxowZfa+6KK+iqn4nXA1rwKDEZiUhFwAQRN8IDcWcwu6T6Of4QD3s7fAPZCyqbzEhVsQ1OiNQsA9L1bqsd++QjhRLi19FaIrbk9WZzMNvGnA7wCfmyvXH8nplwUvCVjYkqui1vkw/0VsS60WSeIVLxbSGZ1cqacxxhZJrB6an6r3Q0fWAVb/jruwB5jW6LI8zXiqT6KM608nxjVPTVKx8whSRnQtagy2SxPQCqfwyJb7IZwdoWu+uoJv5QnX8po8Put/jdlVpKB/arHMSWBUtr1pQ1mjx4x7VQxbvzfH0Ix4+ht1TEtbT3FDvvwkCWNtW+k6yS9M/5Tj7U7pNdysIlB8lTv0aCE/Lfh7oDfHhN66mAP914NVw04BEUYs82BHStUuHuZYLoV2XTzB3Lo84BsL/ZRTkME8w8J13Gvqk47sOXrE2aTLjJ/RpUkU/Vc4mwBTW4UoxwmBslRknqUJXv42adlvOD6mDkd3kAI9E7qnUDWimYhAtLxc7u1dKj1SUHgFerPfpjYYkNwp2pqNsn6cAIm3AttljCP047idVLsAavUpHS06tp0iypwmWD3Ux8dlMhdKkN8mczzwjmrKD6UutJcWw253JqbCLggaFdgR94Ur8bKHp6bmnImjY6X/S5je/9G73i+NZOiiMm8iDxFqbD8Yj9Tyqj2gOG5RXGO3eqiyPyTK8JEiKA6YaeMNGE4u1ZlAabN9B58uM4/MVCodHgHWHrzSxYmj55kQBuw7PhbOf/RxHpGrCv+20j8D6GsPPYa+OYz1Bg6MdK5nm5ih0rq78kWbvI/KmONAYV/FFkHsI0UZWr7VKDfL4Te4szbVqsrZ779MeM6U+X9KwLGeqR8PFjo44C9Re7iQTL6j+Fqys7PgPSk2sWoV+1TgwfGzrBjyr0Qik1lThMxiMI1gKlx50MAahBGiYnEtmOXm523YDaONrDXNVmWyfc10p6IJlhPQyU7gXLPdV8W+wdnD0cEZ6x5pjAqNI5ohH6One3mkbs2rc7YauzRUN6d5Bz3R9b3X3gK9KhMo6o2K/FNo6SqBFH0wAh+TDkVLv2dMREjOntMboETgpdCzdTHjmkGLKh7mF/XBIV0Q6AlREWBQaJMZJTAK05s/HHZFKCnFyBLtFHS3KyyrFiy+kItGSq6rBvhmh6E5ZkQpOwMZEBTn8OMClAI/ICWNAvBxSVyEl0SkNjNbOHK+Fx1aVF5sREBh+UiZCKAeXY5a/OJqlufU2FZ56LhymF/PSQfrRXvg8nmy09NhgCH2VtHh+ckBNSMCps7kSmIAroi3zbHt8TR3Y3Bu4m/ePDSVlhCFAKC9xsNg/3EA5jrkSk+N09Ky4DDvfhdxVXa/89+vT3MG/MqzaAtq4gwQnMfhrRtEJpGUTDK9e92EcIUYo2bdLdCHa8BxYXfK05R5KKpzcHtRXa+8zeirBnWiY1Pe5bl5XgNsd8PgL1dTzVnsv0zrbzekrATwkObcHRrDBHaPHQ+G7wS7rksEfTaDynoz5kIN7S51MVhiMq/J8fnNBAcriRycpenv++BvRf1PE+gaw+nsTNa3JoOBwvVNSIivMsAfsrCDt1I2a0axYBKiWqnINrNY5z7cebaelP8wLi5i/Uf8DNIf9bTPQdOH6q2uFp1iofC+2F95+EkgWTn4V5RxuMc6jK5nTwjTh0+6mEzeP1RwSFV1imdQ4KRbF0KOlHTE1gj7YlPutRfDhu57upl5LYPo+uXU//D0L3d3O76EYmMNs4/CEMKdJ8lr7IXp9RX1S6PND02YMfJcCU7GWd1ta9XEogHQpBUMNiK5r9DPyrOTg1R1Dc9op1LybgL8gsipGv0ecPECRpFnfUTkzFtxOCIElkh8Wp+Rjh00UTYTiB+wPAPEI7DYhHOxlomZ/otsbhYVDcp21YNTlqZhFmnb+IpUTUPApaRd3vPOD5uye/BNNqSll0B9l1tNjWOVPShCIUSPRRfN8W61QtoBfdtbqYFONIl7LjJ/AjzbWpCRxzlRb4MU0UtnhY3KKlSLeDtf+43kyIpG3zCFx7bVodGFsBA6obRxyx4zD7/oAZ4JVdvqqm0xdnP8C5fn/I7qkfXdvkxJ9OleJWRK+c07VMFz7q4ZpzL8cOrQz+9ZI9pQM8bqomqNVeIpSx77h8ojTydQ+M2eDUYh6bszMglWu1T4/khcxMVIicznTAV5ongEjMYttn/K33bSowbWRMtZgNALRmyhAYS5zVY5HcCtsLuS09KAPQtA+owb7XUrYUQYPom7fPjIqK1mUHZgAG8fEFnLVwPJXNsooj0hB2T7HXGMvTFnsX38KPdwKHQkWho8S9GTjYVUEcC7m5G4tvOppjO273pAgoQ2FQ7qknktoU+m9JU1Ny/CEi9o3kRKRl3kzFhjhKMlFjXErQQTnpCRKtBf0NrjMnMVmU2Fgf7tQEEpnDRxcRHb1OBv2jeeK0Oun0AeeIwnsvdSAK7t6D7u4ck4p8cV2GMHQdzNrOrOtojgnPpD+SoxeumIln8jQFxEo9H6iu7HzbJ7TisW2lzFx0wrJaO6C+7R7jgF1fkPfiL54TVK5w/DVHypxEpePoOlWxBqH1SABQyCzRn78GW+/HEe/+0xdZR2LDxxEY+2rm1u+rpINsVNOjr8Ig7oq7As1uqlGlZFeCdbBwO5CuAYr2AA+UXZ+vsRVI5Frpsb/mROWZjsdCdYD294UjPMKGDzktIiFwHOaYdyLXp877Bzbwu4DRx59XdjspBXpvZ1FyYUifv1GO6XNDxVdnkVRK09qeOY01bjfZv1j7BFzpDU5Wgz+oBIUbJt/D1YHSIjLE13j/82WwUugdZC4OEWSSkh2rxfKv6pasygvWYBZIodKSjYzwKyHpAFwnmd5R/4rYlEzrITyXEBMUwNuwbAgq29trc89c63Flc2jsQvSGngnUy2mX81OLF8xuSg+pEm+Vlyg64bD0gfh3T+bEXA1pp6qhcVFBV3QeR7AfOdDPqgwY7INWk6FadDS4iKhN4kH265WtPAER7C3jbPIb1THybQi1gv5WikI04ZdioK7H0dX+P37E4VeqtAYOw3x/7gb9ttXQ3z2mYvXruK0Rr6b6wIh9p88FDdzrX6TGfPslFvS9xF1eCH8yZ1JIYBj0lgWZIwlRs3Lck997H+K/CfQu6IJNSUWtuN8QeY9pKmj55z3TLJC9IWYF9rFl5sum3fJi/Bf/bOQmxTf0gjDIXXXo1O8W1hlmhr01SNDz/H5KwoFggjSZMNya3N7amrxTMDa+ObBFbOjJDumGcsuGxcgI8hrIaLnhXTH8c69pE2xn99KzqO/K6EGP2SySOjE9OLq1guXiXw1Ks9IWfpLtlltaE2ATSJoY4yk3cqnGJoqPKE4dcYU6S8FnhWd3CLEbjQR0Iiio6YMlUGaUhD3OTdt3XJW2eSVJnq+ZNEOpi1MSQQeQ9ctWQyqh4LZ4ZBe1aR2eZKprKr1ZAjcr61TYElX9xVr59OxcozJRTCQPVuTCHRJPr3mFu7zYplsyQQDyI6Opt7ctYwhKcv+lsj4PGzwAz/yxxCxYIg/+wExlzz5faarxTg1Vy8eobU0g71l9F3aHxt0dgC438SLN7aUvliv0z4DvyRpZ+1gykGxbzcDNcXpENFo43IdY4/NgPjC1fhbCwJejDYcHdl/4MNZiX+pC1x+ZIOLvFRXozS2lhSROdE3NM5ku2TC0UMBvkJ4bVlikhHjvBDwSckx7qwlfHwzBFmr3p7MyOq2ksCUfzimYwC4WVOxheBn1dNUD0zMCiw2lB1po7l+gBy9e5zlXCudFSTeR4nBm7/LkP6KseODeT8shGzs8Est9JnRpqenS8wqBzHDIDZIrEU3UPxYKVjlFxA6q6MfjiG18sJBssIkvnenO22S8oHnjIzJxbG8P9qVQs1EUZsLeeJjwaP2sUeDZZNIbNW32kwz1MpYS/QrVOoFyT/h3XVfaKn2cMrC/Y478BAQjRWdDpFIxWbb0Pm2FrJnohnyFn/hRb1U4Eub3PzN4RDXeYzTuar9+xXR8iRl72HYzIFvgIOVRf3dgUH+v10rzOmVYBEkyENdB9+enNBkZLbl62AqMeDml801nstiOawAlZDCStwGkipya2z7L8RIMZDLXbJG4crLx5VEPm3DPwqQpmXf8nkI5usr7VbeC93R8838qRDGurPP/duqwJcZh1aKYNQV/os09FL2fxFGBiWtwFBAKF116xC+2EJ6QEQ5NInZtR6VKfCO3aTSBrxGDBfFqlLYBMfW0d4nqIU1VhNnqTrL8WbGb1liEkFjZS3vudevbSxVvVTIH6MnXdESCb2aHJrjSZhO8PHwD1TpAsYlRxyxEGx2tTh9/sFytDiTGb/bbkb32U+Z+03NEdYTPsGQY75Tp96WjveNxeNnAGYxvTYfWVDKUGmqQJK6PrXQte8dLxUQfSE1OGwzRc9kDb+ckN4QJvQPhSh/DBBhc7G1eb5wESW+zfDDyhm44GTp/86Z6E5AC+JozaXSo4U9taVfQB90nRlhD4HPnrzV9/KFACBOSQfDcfXXyP+xZcafQHwbhVBayWxhEI7gu4FpFh3CplGuDakQZAo55FYN1cyK62XIB6x2zdfWKTr4yK44GDaiqGg5whAT5r8AZ3kN6XmYSEk+YeGz76ge2aLhA+pTAO05HDpekdJ08Mvq2qqO+H8TrAURuqa9CdsrNGqbI9WjVZZvY+zYZYrZT+C/pWhkA7ooKMZygGrZnAKRFXfyWSGrKaEOAKulDmtRS/Zam0fvSz/qggWzQJIdaIrAbOoPGD/1V2/kLvoQsJ8SckP0t4LdQ/F4NjiTWlQ0wQ/Sdx95LxOMn9tjc+P6Qbt3Kk+Gz18VDsPvEZTZ4bu6ArpKr9rsSLvFRg2b90Oh+9iTDkeyYH0TiXzI6S5c5YTQkX/th+2VyAue5PuPpKQlxpTnpZPQ64bHWIRy8bXmVxyhsS7C7HV3CeowodmyS08scWYcyCH9vsIeGVRz7KNklfzKh/tktRZaW9ThW+acHjTZG3YlJo49DjMByeCLai6dDpGsC4k8D5hx4m+nDTuBUIH6nb/nP5aM8L2qCqH54xaG2k2iTQrfZZEbTPpFWRPlnK2sI4jZXan6Ww9HNbhP0pQxG+6dxzmgVhL9Ga2IfnGbkDpM5HcPtvP6ijLb2lsMJ5khp/6zVfCZZzB8XnYm+DpLQqTmcR9KsFwKuagQtxQJ9fsqQ7HauYt+HmvyfAd4U6+0Uu38Wixo3EEESLRQd391f+djOm0wbYlBgtq+64K/K0SlFvqHmYpeUy6USspDESuNqHTRa57Wn9OtjfeIsAgltkJUTFUPasG0RMj43khaFMZxo9aZKasijk1Jt7MUwmztGVtCbxRWYshKm8cNbB44NJxPIQbsYZvZnuXwMwY4bZvzmrGH5A15UdtRRKU4N8Q/zk39rrZPuvECEc5LBCkaAnJG7vfyf9qEjqkUL4aQekV+8EySDo+u20D9sV8G45NSpwWmEf3noDUNmI/OYti079kC1VZFAFxWHCauCjKx/nrVOW+qM0nT5WZhJJX2rgZ4FT4jS03/STlKWTakgkCmOLaoMCf+SjSkS/OhPF+pjXPok0RO0pxFfut7yeKy+BFekmv1d5aI9nFGNYI/UYvU/stxLhamMCtIMpAjpw0HEm0dVXqFEiCZqfUZZsNBBK5EjYG/ezU/q/oMQ6L2uyQEG1gyUIgw+Yi8JaYXbthuZJhKEuRTlb0QOL9zbS8v9ZyMICq8cl/sLRXwIt/rQx4WAliyj4zbalhVS/di/+npZHyA8R28gKHNKM1ybqFFfmpUqPP3qhQr33yexuBtg014AKlKWJblgg5Rl3oVw3Uh2NFndmb/Rlto0bLD1H66soAgKLTYaNxYhfcE23qvLplru5o9dVPgsJspEVxCR90u+R5tJ90oqe5Adn6nXGVP73Qk9aL9aKNMgC0ZS3PVTXAN1gIFWfTpxRGQNsijJUvy2wvgxvPtV/UeIFmMx3umJBUk2KcOwh8/ZTJWGUPE1TIVpZKVmQdMrCDegiZ6Zb0Z9r5xPio7t1ieTRT5uia4N0ZeHhsiCFi3I1nbPAtV8yQlSe4GdD7e0pvuzcxwj4joqu2pI3Esh7G4ST5hb2YmCfripBTwCQ895U4vQovwfPbWik93Wo+k8U3PZGHKLA63stY1qpE1i3uGB1k844GzXbDUrcjhemZb0FfHOlfgfJ9NSSZ8+SZxnWACSWEinYnrJ+I7hk24PsxfDrbmnETBFB6Nh7ouYJ/rR1XrWuCkfhgYEBpsUjf+KJZfekNKi3tZRAUCzkffe8mOOVRZ+NYC+mTwghV8Q9HEEWKFaxiSsA3PjwJGrPYSXjRcLLNzJ/hATWbXmJblOwPBH4P1LdAZK4jmJ9PVIMaZSeuEcMcMbjCoJK/whpMFxgEV7kWOJqhfM2M+iYXjj4v+UVi86dicJFruN84xXgHAGIlkezJDlzkwbSto0VeuKTmkQm+lQOo81FO6xzdAwvaFGdfozTc4GQLPlWBlsc4JlbUb5tlXsy7d2APd764ce6CuMtbJREn218NsElWlKlT83ar8wAtmwv3w3HN05jmxkSR62oHxDJZaFrhQl+oNa9uB5HqCwNZgV3SfVWUGvrT+q5FVg0nhUOqVpY8SQ/efaHOxCZwmQ9b3Ajcm6HVrODGJrW4sz5VmkYwiJQlYkGo2KUXBzCXYrllk2kJ3Zt/lLdfI6xVToEsLRqSM4rzxCpseWlc8npu2199HbUjOjr0JgQaMw0JImfEvyOwXO/wCyfUQYSwlTAeb531ILAl6q0fB5jjtHUAFEXLzI0HSTXCe5te2gkS3OjSrnbVQNqqeERRdl8q0aspddp9pfmPu0LRqP3vLfqMT0BW//6oSf9OZq7IYzVbfZ+SRjitYGGQNwvPf7N36y2YQ10ehDGxcjECF/PAK8v3OzXxHewy6bhvHXMxQTt3AsDzgHf4IKcniEfy1vkLGDGpiZ/rBCNFJGm48OSksbcPnILh2tNdr0/I3CfGcGG1vsCV05c1YHvvwTwh0FLC48AbOAJfLMR1OvRCFglQBJPUGEYFXJDlTh4/IAZQam1vrYXO5imr4TJLTdqU2DdcQSfk0bHSmPxszOvEsjt+4d7gcP0x+y8yE0Eir+Jw4UAGdobsefRCYLTktKq1Icmevtizu644oPpl6nTslr2wCdrGnsdlpDIIqsL1e1VAo+AOs0Ae+mcrT/FMhOOcGcYfgC+DaepZysu0KJRTXAz71CCoUvjvz3d2XFE5EqPk827Xn7CDXgMzHSwTWw6zmsDgWnBvuy4cSQZv/LvgC0uWxCLw1qr8mhagbfKMuGE1SiGE2Frbmjr/s2PtyV5wDGGh2ZcdAFT6CdrZz5EhqV8hjDp/sxvQ9ZMgx4m/HoCac+5dCcU4L9WG0o3UuA4IcDLt+eoVrvxGtyd7qGntkbR52olcoTdA3zXPa2Y9Vgc+bVG7ltFFASvVQsnifhgdlrfRmnDHrHcOCorM/ZzS4qX7Z38HJGU00n2Z9/VS9XHv48pP1TJowtFNuiiuyCBe8tAGjuA6G2jUNs2Jseu74PRkswtT52wbmbpTj+IK2PK7tzoyCuvKKyaC1Z/RSXn59gJARcMFEzSeHuFxEuodiI4DGjBurMbeE6fX2J635+U0czO6GtCJCt8yG6wCgoGcfvlulnsPHKMqnOByBPBwLC5bAV/fDcf/gq6mOcu8o/lh1RG5THE084byVFDl6zI49HShTO+c5r+UIELZ1EC1KJ6fdR2kK+D3Ukn1l+LyW0hZhDAHdTkQsyqXYZj4wH2BFyrNuzjhe0wdLpyk4b753MLN9d+MHz0ZOsxBjHbpW35Z5RhfdCbnMqbUQkpDzI3rZ5TBFaCatwvnuX/ReicCeZam9nnZUy3Y8jmDCvF/cBA89MQn5B5ZVfmNBPPgm1nH95R3zQXMkkw6p5nalEQFCM73Mt03JSALQFn2zppGloqg6PETCDMFR4VC7NhYBLWwMT3x3pahrB29ImtZ+bbylB2valYsLkZFaYKIWXAn9z4bNKw/0o1WZBjkCYde4BcAZtyZ9+jmXKSYLQXmpoLKbrKGVVtfjfrPB/O6PF7NGWgXSAc+z1Ygd39SNr2IFK8OYkBtXBOEq4kzAeIll59Xh3r/w3zuUHcSChxtQCqTFQi1tmBEOWBDmdM+dUmjzJCZnZ7LKh0m6VlDJURfoM7YT0N/Rt9PocCtlnfiy6jQU/OI3qVn/lCQ6Uboefb3fnNIxLW9LJ5n5ff0+swZMDysbGGNYvAkdx9J/JUcmPlj+41Nrw7/58TXEuoHovBaRixPRQ66i8jCtAmblaFMTvfHkB4PTDcrSLO9+xY50LE5+nwU7s/DsxgGxYgrKSaPf/ilrCdb773xgQDl5syZBVJCEh2hU0+xniYuIPgbbDQPX6MqpWWwTOLBYmGsF2T+gYx4BqmxO/VPcO01rVgwR3J0qal+AuJyaO2gYM/yACxczhKAAbYvGv2tiAaTRqGn1ol1oaYalz1wY7TLFbpB628mzrm8pr0poCpHxGG+n6nWqiwTFxpJl7qUpZ8G6NqCD66HwV8v/bZrI1Ed5y9NbwFZPLAY0fWNOAyBGBLuO3Oxp7+J1imeKnrFAXdmdRXVKCxlzkVsNFalQ3/IoS0/9oPt37kQqHnk3CPWThaL5lg5Q7U47fB3o7SLcC8tzpBglcJ6HnjMZSSzOO8bMaEeA2ejTfDX+MjRg2S6TcR8gx4cO0977xu05wr2aaDIP1+j0QyoAzQR4QFiNSaWmVBC5yFbTW2jJeGVbsaV8p6Zcq0q0ZGE4Q3qru7enhODOhZ803+ApPhcawljT/JIu6Qr1MFtaV+3B0GJvFU2ujfOg+yRYYPZDu7Y9swnOC3x5rPsUIFCqRzEiWCPv39AUxlrMECqa6cLUh/tIREBwhxqalpS7lKMTl+Tui6vOIr8A56iplcsV6IOm4rGu3DCe8k8KcwHBd3dT+szUsELrd5ZRuxugJQjuwYbud14iFg+PGkoEBE6Le5vFlImf1PgtnwJYOILx4bFa1fxdIIrBzI85n9vHxfvYxfMprHSD/EfzGlgCizKBMf7Bzoz9pZYTeKAotDi29zCV8sd+liUb+rINUu3+G/7DyIUX1akU6iTJCZ8DDGhV+If9zvJa5dqCamkVLhfVISe1poWcusXLu4yWV+bGxPJ8Bn8QeBMSfX6tkH4SvxfhNS8u/NOD3wR2l/CnnHMfyrYmYmjMsNwA11JpTNjrJFIINDDs3X0PhrxpGiNy4XO8BN4VPoH/CHeZDHDX6B34qNWMULPxH9jzHolijk7gro6WaPTTm6FYX5OoXeyVLg0gKSj4PXaaXYHFY50NgckfqZR1dIA4dQ6BS9QCZiF42FpxUXGDiuJLnLU+Eg+Q6sEbZupSvS/ed88ZoeYXgyPDGi4z/l02h9ExLE6EeFwu/Ixv8DhK2WEtACpzKVwbaVeDNnrcqJFaFPJWRyz5WKk+O5PwEd2BhJp+mR1YXSPYl7FjrPg+JPhd3SsaUoKjSjf44C4s997kFklIWtgfnV4LIa7oE9D2Dl5MyIbsKf9cTSJOfuMoMmEPGUPlxy4Ue0uSFAsSndz0hi5ejOgrgNOyTb82mYh4HaEwW78xqykThtno2RmSfUxdpHdl9SVWfeGWwSg0GMaTOj3DqaSXl9Adlk3MXVw3cu52kphlTlabQAzd6gZpofMyCkXL4VcI44wPSVQy/ZQ5BGUG/4+gCK8BNw4mH71F+i4SPDTcAb8537nzbRBOiPDqvESidlvVc9SuGwaFPPYjrrfyh9vug0Q2dFbXH7DAJNoOLOo2dTq9IGds+dA06Pr8z7V/k9JnbH4W0duQ7Gdy0+r7wfbLUl7AnN6ejawZzMDJwbYlXZ2Y0SCK87yBsx+jSd/Ze6tQaFL9zIAgjz1h6dvtDKWaCYShRwFLNUT5TOffJil04qi1PF2Z6RwvTaxin6QtOC1BUXFIAAWG65U0YD8cmUhTW+LSyubL+hCB++i858oh1LuycAxyci7Q1c6hIB0KI0865XOS5oDOqqijJTUore0Gx8MYqdhMbzXjfG9aAB45/S2WGaYHQ8YQ3ClVqnfulYfrq8BVuUkUJHLjLxUZXNu76ETrIHzTEOM+BzhWY/o09ARkK14PW2PnvaTqM0onwUuXJNEvglxlIoXquo0/hbxMiP1SHap2PIoY6n2R8mb+yShPaf9su6TcIqSPvxCfw5Nv9Kde+mlC3tXqb+1urobNpWZ3MB4Wu9Q4mtNNH4H5fqj7ONaR4w1ql3xdhClSkl48oCcbc1gJGzTZ6CyMwficEgrbnIKwyV7SswOqEV92nM4EugQzPo7RMp1kONpvnTRY8g7TeFiBoNS/G7JoFrWDg1WYsrdjH7+PViPEc5Dd6v9b7CLZKMNndjt++aKtq51xEHX/0wysuGjGXkoRGoW7Uyw9fN0vI2lFCRb2411tqvsP6tCEypuukbN8fpOzmGcKTln8LTTRCNvUZq1WpJO6Xo4WgU0SV43kLS3Rtq0uKvQ6wwNmDSxSyXSi6DeyINvCQkQwXDEFZvFSTkv43Tn9ufNtfX5kuLqsv68DIffSHNtEc1xuUBXj2dB2acL1H4gYbWy80YeBdHB32Cx8jnC8axwqOwek93z+a56L4DmMPKM8SVsJ2p4oHa+mBV5jDlU/wWJmKXtEdj9GRQylXJ+WgBfMAxxRu8n+8glC+iJK+3apDU+D3SytVFLKdzmNtq9DYrZQzvDQeOUwBnVvH3tfbtrbN7XClluAe17ZC1Q0LVf3sgLWQ0HrnuGe5ZPbXghym30AVKKGzxCIILZ6EqOca3rA25eXDfzo+IPow76SMlwNBwQS3+1vQOH+oCOVEJet2UZv8IB9wXRKgYDbF6VQT1mV1vXPuaUvBXroCq4ZfL8PBDUrv72uLU/mdSG6hYjpbC2xzb0uFEYP3QwX/wHCsR6bzKFaQ3Hm/efSVEXd77Fwtzl3IyJhATc8wSoCI9Mr4OhLYlP60UX7eprsXOmk58QU6tDFGhB0Gk34LKR9s2DOyKMGoihOwWgsIUp7AeiBCAPqhaosqqMN5q553Wghz0F2i7eHrl/ZMlwUALIGwS/vzm4Zu9pDJVwkQB9S5jMbufP+VzV/n9H5jGmz+bSVcke2Xp5WK1vykuX8+GX96KUcFKF0t4j0WlvHE+PBWeaSl4Yjn5WtJkkxXusmglfqn7v8QtpqDNwT5M5ruP8tIc/nfd8ebFOwwiBwkq9WQ8E+8TB8jLTapNTSalAOuXqSSDH+1qCiNcGEuBEvrO+YTt0tjYCjX+BHCldRlKKAfld9Ls+2yABXvXbqiBZ+UlOIcHvR0Bko4KM3LWaROt8NAyJfHwwaP3srBHfsZHNJw64DB3zwok4MvKUWcaopaE70ZeSjq+IEta6TD/Xuvcp3NZ6EWWhLYzW4cCIaYk0TLEjYA/BxWfvToQcspais6CTPmjd4eY94g/xUJgY5hKhrNddkHshED0pb1crEl9KSu3Fu06qI5cgNED7moMDchnzKxA68hHrEYD/yriuA63QqplkxeoV9F2UsJSc+4YCoGBuKpKa5W/5RgUYrXBkBrQyTtTZWeHopJCYAAak6XVyk57iYGlq9cERHTFllns4EKwimPQ/Wpa/oE9u+XJHvuhNRo0PxjxpPvFCeHv/wELDMYIkIp2f5duv/OysAOTlt4H/rSZlmBFQ5VNudAfZ+GooFoChxbgGmcVGOecGbz5hF2EdmYDKthrqzMuLxUSgWoAgippm2hCE1I3tFufNrXap9kZlgtn6gmFwxWudfY4DL06zIEA5tim7/dPyRfCtO43v01tbQdpYBwFCZPovCMU5Y7CJiG3Uw63HM44ZsOpzAQ07xq4mgTxDZ+ca3WaNpOFusu9m9ilRuhojgWklAiySYZW90D4XxHnu+k3GYa69VNyBeUN0DlHAjleu6SzmTCb3YS0+xfSS1ZFSvt+/nHlbN8Q9VDpuPpg1U0MhGtmsSvZYIOUbmBM4rJz8c1Bho18AawEwAv2qmc8WLECWJo2e06bhD3t4+14tk3l0XRKJ3a9BvHIxIbLhNnoZUU1l8S9VqpV1SW/oCP0EWvv49en9Sq2WpVMjF2xV2oG4JuhLshde8riszcypJWNDViXQKKLv7XQeduxcNKP840WgVawLS9fDe3+wDY4QOTyZju5pQIupZeqYuiACyewfOiroFGnlU6vock2qSWRMIcjIgHnigeN0Pj068hVXOYsFP+NbnuoOtQtTWg3YF/dS4aafNt2imgUlMm1IL9bPfvN2SOFNA5a2eyzEetusMsUBY9afI/6wR+Bh/w7UwwdAHsDzudOh009AtAKoqcLTlh1HTiGSaogKNhr3u2zJu03BS61tdT5G6dFwMU7BrkLeK0E2EZyOCmK3K0Eb+D5xviTlRJvuepL8MrnzWOiCd8ctBt4lMR9m/H7WgyV2CNi/vusuoyvx2D8+nOCctLgvteY/9g84IKIeliXqldEAps120AFzVlQDsJFlaSKlZoY8EwjlXqgeG8pMJ+fylBXJtd1gP/9lXtMKcHySbPezA412MSM+0fCa1Wb/LOGm4ZoLFZV8OTFEDkM3NWdRWHnu6f8cccH36y9i1+473Fuj6v0z7rdsTNtaDeH7jgCDaVJLZzBgKxVnhHKZRa4269DgbNYqgw/uMNXRPvp337L4JooIzkSFL2u/NMs6qSeNY79Jw4+F2+1NIPcMb4c/INQmYaQw+k5G3Eig9A3YtcCFJkrSf3l0djCw334Z6CFyCaA3TSEp7wAud04r+s8+G1cnstMUVg0G6uOLSKtMLVqV5EXvCq2GLbkMJNbexfyvhJABbfJxPB+5wlnaPaGXQUfdy+RaI5xZr/WFM3iQDYxhvLukuosMY8FNKW7Z3SOOnYyHgEwN8i2rZslx+7DBaNnPtoXso2Hl2DgfNkDK6PtqaoToS+9BcDjjWIeCaJzc6qe06XRfT+WXCBIuXGCNzse3Va/+4EUCq+g/V7Qa88LYrOZ6qot9L69s6T6Gim1WsG15EXePOIsBu8g3dzChnqE/g0gKgGqkc0Aa8qkkixtAgpy/x21tb6vnde71/FPqGlvjfYH+aHzopaGsozR6Ie/FfaMCaZ629XGBEZbypvf9PbptCWSQoUMqPF6LuXSkZdh3XFQyvbnl/f/UjpGDyH3Hp0xyeYR6vbFrVypWrtYaCeQAU4Pta+DXlXDcZBu0m5mwpT3frqyNlV6OR/OtEjAmX9Wf+MU8+MOEM71/aAxHgt7IwWFAFLNI6u2W0A1e5FHE6uaZ111bDFFB/15rI1lv4Y9kmhatWTLZPsEAARQqWiAw1ZfLkNKSieUamJvYZ2TX4soyNKZ97ffvqp89Y+8wsEdnKbS2v+KS2gNCDCU1JqeyddJ94XS1/OYv0A0YboJT3MJG4QelUeiqcU/k+CzkEKhGr9pcOUps1c5QDix6FQAugutQ1DTqOTd5vYG6Cm+GythDN7k0YhVtq+yVJ9jVjQtrs8JHtxZhkr/gFY/TJS5PgnFtQHY0AzWxhT8KHlAA9no13gtpgNSs6NXtJUo+LOwZ5U52zJgs2K+GS7w6JYXa2LD0kibb2Uu5wZdiKhn0H/KNFyCqjaT8Q0pfaQLqhMKlvnis8BZn9xURguyCfet82hA+7BMtNqulFc/LalL1eDQpBJmrK9V4J24IcLbElAnfrlLvCgEtPsg5XhQR2EzqEv11exHIQ9L8Gm66hM2jehPWCFh+LQbusuC5itzoyTPB9uUw3rR5fRs5ITLol3Nn0P+Nua4MiC17H6Ec2vXFX+QtcnbMGu2rqXWfzqDmxNcE391TJqIJOo3hCSygWf3Zf16Y8+f/x8EpJfYNAEaPmlv8E6dfT6R/eigvzkQHKk761mqPZR4AxXsRQGb3ivckfMr3iFuTPFg0GnlcthnxyqhRUyklEVMwisMQE7jZhZRMFcIqOIsl3a1uEfJs+l3nktwz5Prz7mrjD5hJphj5+kxsRSdT7LuroZxol7vqSK9o+4RXUI900UPS6IXwaOKlqDOmNRCi/WKf6Ycg+TgkXnsqZGJXfT67m6of+pHzGTjqiPdroNc9PywegYHqcYPgjXr4byHLU3YB7oDLLm24sOlqOfl++yjKl5SXWZlilnYo4Gmku8O5LLms0syZME6Lgad1tYm43pkw/6Q0JRzS4c91E5KoEEqskmrHpvSEr7NKw2zm7+0bCIG7+LcFb92lt5mIBWf3DmKaPU7TydHAXSESMwyOQQBFgYUou26SWmAu55VmLNZyUTq+CXmDudxswT9fcuAFUcWg6txGTOULfnilkj/xlbCqC033cKporG3PtwKYW4EOpIET4+UTbmZcogrXPLOTdpSxc4JeupNbTr4I5rEMRhpSZzvnX2IcAxfUU2jePZJ+i+Sevw8qj90l8Hs1npdMOcr7XeQyCCBmUUDsLChJZjILivrMZxVrgxhyZU4HGYA7PiKteFDAMhh0rZWhshPl3EomQJViluTIFh1Xxl4eZbNBJqeyjZay0G39U/6poGWzlPZlGkqNSQQj/2Lo756vae9s1PI8krBMDW583xUB3g2VNt0iVaKF/Nz+/goJi371WslWWqlkIEEO7MUyHReOLvMtTbYPhsg1iSBVlXBiSgd/+oTEHs4eeJ3g+J5Lz0rhyLNjS1pck0MgTugC8CBpRrkoqZVZDxLTdN1mDqHoAHMMZNsAQ5v4jo9L2Eol2Qa0hOCSZTEI8cg0kFRDAFw3G9FJRTN9mRMrzr+G165wtF/xSxD7+Z0+ZhGI32UIO50pZWmn0Q7bvckv8kJo84at/lUqEArywtrbDrEYilL2ilD2/Z/pki4+p4wojhPEpwFrEFMo287PDB+P/Zun8ekmiStoRxCpWRiMVQ2wKkdyAhmP+w2FyfbAz1rOoBC4cTd7moX/lz60WRG2adSVPIGq8fRRu8U1iFWRzvH0rEd4mpzI5OiZkQgRk/8dYu1h5BIXTaOpm88eA/8UaUzz2NUxx28o9G6l0zxGSjIzeToc/fgdDZTXboeVOzmNfjM2YQVX29XawgmhgQXxlsjWqx1q2NoaKaYBlNc8fDD77cab4Ze7+wXa+fKk/B487z2AKXUxqEn1JkLCAfLnthVdVmnK1qvSu5uMrAL0Vc5fkEz4FF9xLXa1Hw/I239MmOxFiIbaToTKSoNFQVyo+jZsVr5jkg8bSzJ30jT+EgSeh7LZ5WDfT0dcD4W4R/OlKXi7az/GV5rRCkUb8S/LWr9wtFV8sVapU/GcQsrghh11lLw4zM3uvVD0GmH/7FQY7WwqDKVgA7ZLZpS22GQc8WlI5jYDpWGyr3t27NIYrDrDQRdj4FVa8gsYVF5nI3U3hOvSu1ynw0/EasFA4RA9ua2TX+y3tMNZCxn7nYL59fHFGSTW6jWq3xW33hYKh3WKGLdxGh3M2b8VCF+t1qJRlwkTyMpfV6Cz6kEH70WmBXj0j/oD8P0uiGBTBFjfZrrf009WWaTSZWb831vWBRxXKwa32abaq6N6bGAGxot80c1bh5vWSYubq2RI6RCSwR5vKUF/cmsyM4o87DLh2DOHzeERuXW3n02jkc13zfGADGVDzYiLmRV/4D/EBMnRbNI+stO/n1Ii3ltBYPI3isk2WA+jZ/iINQrfoaKw6UhV/ZxHVNqpZlflME7QzkxoocT0hkPL11VxjpMROCtZyzrfN5ByHgNXu10qCNArHC1UrOo/ND5qGQlfnc4vhAEneo7a/smOa8lkID8aHNjFLBh7ZEKZAW/eMOVuA1bgGbb3kMLxhCtiWPyzkCO/nidjVSkalF3+mgNMWiZumS1b4A5OVBc/iFneP7AdwftcVo87lVphqfEx/ODbE0nQJF8i3xGqv6nzs4cuWn8ZXLGnARnWBEigtC9vVa+uqCbFqCcrvCRtirMPGUXT1m1zsDBtUZ5cViXVGyvRlTGTiowudMvQoI8W7D5oO+tfZYFBrpDv3orygrPNKsWiK+swpBQ7Aet2SR1G0046AjzwCTvsIicBSkMW5MU8fgLJmVYAjeuFYImJuIiNjogtgRYdeuwWzEaNjKGY7m72X2/E9eV9bn5AlI5O/yolCo7R+mBrRg7Hj1bQNT6ajfvswso8Iip78awRMaBv6jK4sJSPt0PHyrm+TYoVvKug+tMbUFHK/V4JNH/6BGQFOeul6K+dA/WpD3xAeQb5nZAfmj0s22lk5R5bHi0qoskMi+dRTO4HEqkrso7w7fE9rTzGc6Lgwv3tKE1PkwHeAajZt4acJwrIv1Dd9LA+1lZVXIUk50CIHkJiptmo9udvIFVIJI6omag3B1LlzHE3VprlHA55tCjK0AxnrPgn+1b02RIQVrrEVhErItKbNgB38kh0mBxKCFeeYGCc393Ze6HqtRoRYYPzjZYbeDPAVYlwUffq0/X6j7SqaSJ9/B2ja++7cFPhKfu/khKb3m8DLDj+c3ZqMAyiw277f0vPuHhuK6xURy61iZNSnCFKdu2byQnPOn5sMBHni0ut47/8RB60K5aKAWZ+RDNGfILNchWirAF6dgChdWfDlhB0pn9LztQrjXwBLjnMOAGVRjIxpyovCegQq7lHQ6s+cclVRzBpvqAPQv3eWw8WDRX9VcUwEr7JCqmMk0UMSL4GTmSqLM03QaRIaZ9lOB5nOWrT50lRpzP0atiW3JjYMeeBaysFKEKKMrWWArzr7UyRZxL3cvsbfPcLUOqKP9+uk5vKXfMNQPVGC76PfB6VGdyTtNrDWkxpGSDTz0sBAqzR3x9lsLjBXA1tZ0I7+OXCr9tbKRSdOmDqHQX4pGl8xBd6yZ9TwMe/g790u/lA28iVtPqsAI4xjIbfa5DCFScL7NsyOZ7LWUnyjIUwfAAv+Hms9sWVhz9jlDDrHVnxdQBVgjfPMfe2uk26uB9hxx96pa2Ekj9cCTIWkXV/7Cdnes+7Gvl9oeTvT1Yx0X2SIOjkYRuBSH+8/QRIh61N0EGxWksNos3cJD6gBouDf7NnPyO1Lgv+aZhPa2A/Z2gGKZPCiCOsK03Wxy6dRlastily5E1hcOH+LPBu/URLNFs1ACEkqaN5CLvaU1ZgiPY67Pf6vET+CJO+cr6rT2N37itOD/5jzIKReBupnY08sFmGL2cmOCxutqOLqDd1vlTUWjYgjVZnKlxZ1Nqw/PadF+aR46NSmpk/N7C/BELcvNDnYJkF0HVnhRy6VzM7zEbN5RTIM2N+cfB6YLvrjVJlydHAHgDScCCd7lqynVk3ie0Bn6Ve++pnqShfFl7QmJnTfDBegMTgaFGU+Dz1vTAk+LC2GwChvUGi2u7fCk6LVZNc0CjUnSxNFPHwS5Ar/lc3R9WSDiKJPXfowALRKpiLxju0xsd05kx4OdAdItV2lgVIpKwa7++vdkUUxJcA/qXYJlbMr2IWkH1Ogza+3PqcDchq/ai64MOUdfVmruPqPUFA8QeUTSA1eIzRndChRvjfXJNkEi9mAnUqWvXE7sXFpdfsy8PT2WCtuOU8ZqU+AzziRfaupiPUAmgxC/Ss66iAnF36yToLhagZsgwxwjjK2T3gcSD+e7R8iKe/MePrrqkdGy9CDUQ/7NqZe3eOtKzaYmmDKfTq8NvVmfsMzO4pAi/wmAK5fuJB+zfQ5v/uBAYD9nNZQXHM8SVJK5L/V6qk1djUuDOtqUq5GRDUnahnG1NUFdrqder4/WtVf2A90TsOySlaKasXnE72lE7b8HtCy3SirvNY7aznfYWGDF68Dt3tUWZb95z4eUBUdk/zDluDj+i4ye7x7cjrNAotoVwhKzKvhNk69jav/tAZ2BoMDSpWrmGU+PFkwOHw4Ko2eGAciyhPgI1jrGWTnsUnKcyJiYkIt694VXAZgUQ+7y49FKiYAW7pgvzCqRLIPJ1A8Cc57dUR3N6T4mHaoWITvWDMWyIyRUGG2qbLSZyiDh7hhwvX0+HrS46CtW+j3eIaRud7TEKGSaaSgIwmDt59NHsaBrc0QSjqtk80lF6CWN0HiTC8Ls+XKhMWRQ3lQE2Rbc44U1G6pBNONhlW7Jl+hvqewFySlZvY4PsCgldZawhks52lJTDV0OdMJ88I7IJz5WdUShS3HZTeLeLvv/nb9Ry4CuP4WnLvijuwgscSb6FIlpRIHIDg8MqWsaWny7lK6l6idTaXEE+ZD3eD/vnvpH2qs1lZxeFNrY8cUywK9MdkvfX4vCArJOdy9VI4T6RWfluSjwHsZar2KLZ3UGItigR2N6uUIPVzEGVJt2471C4q9kcZvw1YAmfTBf5u/eO8L73s5IpsowB/voDsis91e87dH7znLmtIYGFq/dGCGCrGdUj4x7bbUQmwP6qTG/YKVMRA5nE980udQYe3U/6O+2wH7kdJLlKYdQA/pBMIGBo870Vzs6UVSaLWO4y3ZSvKruNNmu3PMzvLJv6gVhO1C26zyOPer/d47w7WhxzRAHxxFVrEDEE0wTw4ucJtHUyi9XvwHrSJgCcbDNLdMi/j53V3kuM1UhJ5SJv5XZoUWyfI+MqcSHW4Ogplp9islnFfS/yGkabktB3n2+KG3RKDTUAQQbJaeuNXH7pcy9Qx9VEBSm6vgMCjIEf8yEZ/xJYiiwQrFYc5qI/KNCmQbJ+n1QRWfX7aynzP4GKQTycLZFmi6w0ZXWIhKGBIo+w8OJICH64l3OyaVMTWpRfv6L0MEufuNaIrPRW782LjSHH9ZiH2VmP8dZWfjHnlbid67cmLK8CCyBpyiopWO2ZkhPS6oe9GcvnaD/MlGi7ywEpwS4V4WNernZRXrrIQT7wop3jIDAyGbCHeKvgAxJygpYyJmzJpXI0kSR+/6xmQ4QCiS96Li4A+GuijsyHKM03UyrIvoHYoAkFssx73t9+aKysXDAH+Bp7N/W5E/ZGJhDP8QlD3wad7rl54qUkgEUcJhQiHlIqiQcw/c9a4L+H6vskieYMiNe8CzDaQy8pvqvXgxgwLcyR/3qcg4Ld/K78qziQYGCQ9/hrc+uWcrXG3Ji1+1vbfp3u8N0pu9ZiOkpIsCpYu2Q0zD8GoC+V7qarZ3trO2UietchWgpkKhbe0TBAdf63zWS213Kz4k6i0mFhu2lcK1DAb4LzRD+H0r7lPcwU4XhYyIuS2z33fyU88h/6f+M4nSYgcIJyTiWsl2mUx5xY47OsHmb8Y1lGyPGeeeMEkkhOa5an08ipEH9B1CCGtOIHIqYQxlutNdzIbpo2I7jRNKUhDSDBeWzXiDlmSUJLSp5zmPi6+as3rYob7rTam9FZVAOLMwXH/3Di+JjvU51IziMyBJt/2Mxe7KpQrIY1D3hG4pzeCqUiWvFiO9bETtEArQYbD7Wr8bgiIBz4dIT96QE/UH4knyD1/KCk4fps/JR4iDaT1wuucfD4uiz/OoMXpUHN/xrL33NVS68S4zQZyu2qJIk5gMVBtGjFMjp7oGS82CfuQiM3Z6IYMizZyCEFD3yWRFC1hAYQdBW0xKJF7OoXpWsjO2QppiliH1/JStA5g6Bl9zZCoKMGfoTGRJ0s81NcuHRhfR/O63yLpujD71kXCfK9DNx2lXeT9ufZc8OWeYLyAHcJmkU4jFIMZFzKzC+smZBXbFRw2jF7RvhmNy6fjjXjuVHLBWSASwvdept4uurwEoM2zvLtTp8DWUK2RyWzHKxdB0o7eXP5DuBwH+eKD+6DESrrvmav5wJjJmw2A57N99LASioGtEqf+XaFXkFJqlyNsuEQQyG9bjyFdEGCOUaEoYEL4ylWzjywA2tK0l746b2jKjZFYclCnraqB+dxlvfxzcuJyjzYUV7bw+C1peYqnmojK68gvvTrKWyppx9Or2vCRhA0UZcCdRf/L9YYxAFElehiAb8Ig0XAf9ArhRtSC/UMAFHghva/1Gx0IGiAV4/GW4KqRuzsxPlUZOPO5DJvODtd0fDVDR7qPJC8M++fvbfDFVksqlQVnq0Uq9UukQVOrN95PQzd5rHstAfbiLwN8vSms2ubJcQxA1oM0HM44Rp1IUgrhhXnz1VnJqjZQFdS/rLTSzqu2bXybj5nZxwwZeKYIXLorJ6/qdH1HgIUseZVO/p7QEjh0g0vHAIC2tkVaXWqHORI00H8Hm3VWHifewkuLUYbKukKgtAE2R4wTr/typfjXbvd7u9ZhhQvcZU5q5LsWY5n6nJP962uyr9+AotetnsQ/2ZP22ITah94sImgscQvPF1OBEOjsx6L3+vITx6Ukd9fjJvikjaHlDAyvxzUh+B7QcTBbYqXzUDGmWiQKyaEuQA7ZyMVVkNE6BJMuMPKOTxacR8l1+Kl90MQrQG8fnE7IOd42MKQ9hSHcmiYdrxw7MmYoNwcemDl4cVO+N2fm1HN87a+XGx5z/UMN4s49lehvilpLu9JsTfVVBDsYlMEcpWaPptIthf8yM66WgaOv2rdlcpetnGLl8k0u9GvEXOO0eXcdlm5dBZYniR7mVU6C/jpeIGG7aOrGXvpYlBsw/EWeeawB7/p/KkIEE/Eb+C0dRpuXzCYQPEravfuoLthMIVw+qvqvL6qNV1St8oKJYk0i4qgv1PGINmX2Vz/Vq+5j0doMDvV8ncwnXsOTIA2GKJZ07NerWIgDorMTS6IM3NXjgtQGdGsiAkExNHEjLL56f8m+Dfrnd/NOnKvLz5qBX/MBdWAz7I5oBrKUKr3rJGk6bebJtE8Z+Q+v2iABEF81bSJbTTVMQpZwKKpZkYi4U76NuRn1Gn7nAkVJIPsu9B2WtVEpvKHh5L0C81G9YzD3saB3H+zRUvbpgqZZCygXZGffuafZjnV1qXh7v2xUAtkEopwb28e/CXhXvWRaoqdj0WOqHXArqdVRtJkzNOL1O6jZi4YzLRpeaAc9GxfNPpD5jBooxmEUKEc1vVZE6FihSWDP9G89HfS1IUDjq835wVWAmbTKRJI0oTBCCjMCy86ILtbnCFqMSyAIm1rEX0kaDhssjNDY7JomcNBwbip0N6h1kCY91Dd1Em7XT4sJ2qEkfToVmc4LLKFiDTKdxv16E+K2JmiBTz7ufg/X0l0nMUbbuOjpjtMfTm2uGGS8htdTJR1Gdo2Nzhfar7YDd6yNqgByJCphoBQK5qPZWRIScsSpl25ujsr6WB5dMeGt6j2i9Ie97VmcEWhDrDLUdqV2UsjPg9h/BmhyUxF6EDp1l/qcanZGOXmnY9xn0pXwpd3K3E3jzV9qDI5LC6TG2I77I6x6yuaPd5wdd/PylPO2ArxbVsRPinht2Wwt+3W5b3rTDtWL0YGbrswI0Xw803/6Qn502JhWbzQyk99ZSIoLLXAFHvIxvZ5sl0QnROMX5RKEy7u1ftr/o91SGEPtbCdqlIuvG7t+7m/v7MvEzVWGbNHQpVEY3QRgg9q0nBxQ/XY8Low+K58YvuTPhEfDb0Eh5gHZWpCH02vu2VlZumOKNdwJQ94A1W/WpG5xsuDTg8drhPx/keM5f2NxD6BqF2S9f3TSDDi6KlNnc6jRWsirWnr35Fqa4m6w80TrGReADIvKTOqyjjmizS3BkGMa89liQWv84u19RtJ6au/0fiW20sT1+Jdpzw3fMvi9vQ9RGhrYhX9y/DptbQoXFd1PvcimZ3BFmePzOX5t9GID1uYf53kBesUV+HNXfH54RFTFfFK5PHnkcp3WahLqSit3xQIZ2K3JKJRNB/ruu8uFpj85MCI1fsWAuxNq4ntaHXCcbB761R2isTHwyxB+RmyalF0GOSB4NbWj9ytP37QzQ9Bgpni64CV9nnaqsgHpe8vK4UW72h6V2pyZQhNulnzzwfxmjFDJveD9DqUU9VH0zb6jEK0rxNCDy94Z9DVo2lAsybdTJjGSf6h05VgWKc+MMdx0hiVxkiSg94EeTE2Z11efdWrVsZB3r0XbsAqflNSjoqjhdkOrEppIgAR15+6tT93UyIBLuzVUG/SZW0rO6TrSDZ1+N1n81JFDJWXBFiKAZLSAjo1Rfin7RwvwdAMRGuKGAfNU4XLCvhwpwrTCL1O2FK6Te1PNduvu5NSL6YNX2QNIg5Irl+XGJ3Ewi03OAVWaNVR6EgEUIPxVdHYMijGhwM3Q4jOGWbdli1qecL1U9Konregd5188Gba10r8gdPCxNvluz9KNZcn36KDCTfzYJdCKq5/Rsdutel/pcYW4LMKq05GFtGeYCS9pLyAunZg3P+6uYHQEMiJUSYlATO2wjXdI7gx5dbRpuOj+Me77Dsw+qExuCt0MFg/5wVZYZwQlPbSULI/U6OGjTjVzmzBlGePqn0pjnxX6GcXOLcP71yy+uo1sbbTkNWRfnaCPq3y6n0pSTQthi2QWjiXerYzF8N8rm4lg+SAcZUWJP1US+O5Pb3oFWMzAemftwHtRSfxHuxjqGWoK48Oq7E/R21C9YO9+UtzV4U9QEeKZS/Ubah+6xM75gzfwErk77GZtWFroqJeUCoeVg9YsCwZ7IM8WZ93RrIQZwmyJftANJbKf+yjceCDLb4vexvN9WCRJCcV3TH/GYN//Vqppa+QWQ234cZ0TyEB42Z7nBf7943ymNGE6T4f2LIwlyWOf8irca//9AnpG4xbahAnqmf3Zu84sWBPKXApEH5c28L6NJrPVfDa5WdoY0m1BLClUXHyjF+3agR0JazaFZQjxvJ5YR7wHJaaMH8mTCkCKti8AmnpFDPWnIVGEV4uMvX2pqgYg7PzIYTRUenk8jSlwkZpvV0Fw9kc+2BbWKgSajRbSDKlu2SztukQJk4R3sPij3qTFu8YJn4yVXDgFIPmQsDMjTfN961GzwwPgkaezUyZS2yFu4YmOr0T1Acjxnr89PU7AzpGTLwBswSlppO+ZZKPA1jBHYUspsV0jwgFfW4Cd0BvodcX5hVdp+KzLZdVAsLpw4Vm6sVqBlmm2giKd7qZ1Owhrg7CDCL2frn8QF5tcyXPPJ05BxPPjPQK2RLPT+KUF030Y2L8BLx4bAyh9azKyLhYy8btYyX9HB/h26VsNAiPASlg9BMRCfyHT+QbM2FTzAC3SncgQH1OXcNdbDjZsT4mBZv26OKUpYjyuMTpRrZmYCgmnCxEA1ffLNCon95JlpxMGcB+Blb+tyUd+wLpwMZVxBB6EVmnE+OX8LiPnYHhu/1dzLLBRgcqMlUkhzRO5axEbqGX0mkqgdR6b3hYRh45Kctad5n9h+1hCZlqzS+xEStUchTb+hP5T6C2S5HVol/GAWlpcrCREzMz2BJdd+7MvOCyrAPavTxXmUT8pxF3gV6ay4ODjuqorX51CYiIS027ZR6CdkeqxKygWC02Pt9E6AJ858DuTTaz+5lgMcn7wFzP/NduNakyYKHE4CxaEPXLjZQSKWLLdPnuUPrn8UHTk7opd8Uu9dFvu8Ct0dDOxQazmnUJzIogfi3uug9jCd0r0UvosfPzipQXylAxij2WZCVVJJQLiuYS98HBqLRgx+Cs/xgWRtRpkgULTSLQVFTmTFYc8tyij+y60AyYnlLH9/Qo0Xyswdqp0V2VgnBkgjwAVXkEf8zQMYQ6waDB6Oi7pFOuqpcwa8wQNs5QzKqHE9sd48w/hQj+hMCnj051HhJamwcBzF+lQCf9x89iJ7VIElbMiJcaczJcPp0IBWRe5TlfLRn4oKT2daixxXW2DpjvGYW/zERJxHju9jO9in6AUJL/g9zV/EHkGEVKF9MqwPMpQnN0eT2fgdmsEp1iZwS5jrV4knp64wXAz83FV1m7ZOE6iI6EMWI6uCoWINNrDSLSQO6YdnjgRh2+9MS6APy59ZJ/xCle1pbdKxTafxLRGCfwXEpUXLV1Obn2IIieTIgDgNUPrO4VIS9FTW+vD57FXOCDOiKKzwlfQRqm743Z/xUbINjGwmREgLwVECdW8eClA+5tWAhSYP8JEyxwYQCukFfcNyy/IcPCUUIQT6bShvMcbpei6OlU4JpnSGf/U4bMNFfb7RYHG0ZGUdOgoe/VGGO9NLFGhFnif9njL8tAd5ICFQ4/ardh6zj9TgFrfLx1D9CdFeT9S3vyndGLJNocgeNPS6FW4A+38i58ezp9MWFYahHudoPPlFjm7zp1/tI9H0Fem17X0ImA83UCL2mEm/J57d3j7LXuRBs6sgpQbSSyJhFd/0/aDeS26si8dTRfXV2giQFYfeuLV4vFXenbgauNvR4rslTX7fnK+oKq9xSoIo+2k3PNJcP4W2rPjyM+Kj6GykyLLOrBKmmrEMBmylGLHhI6IFrfVjA+8IvM1/oczWFSQ91Cn+z3BBH0hXk7amEcbpYFqsS9TPyCJRZk6LPitghbRdlLqoyh5nBvWd2vkQ5C8OV2jVdEoKV5XaUNSgDVqZMshD4bIBaKt+xFcDL2Qm8JRslj6pxsfrebkeOiB7/g/VeEdpcT53EtjMRaK7+orFOB5qlHo6sixQlHx4hD1iX7OJNhh7A+ytbVIRVrmL6JpPEqAWadYJ7A3llJOFWJBwX/+PamDDk1WWrUKasyh4DlItqOmRyy9lLgYvbr5yWxR0d+L+bJDoNwEU4/nc/+mLOG0UJOEzfmlLiIiOZHpPWnoQjxcodpfQy8GRArCxiSj9WAFqITQ6M/2YyaVcCyvo4ss82L8wa/Ed7FyH0pEt9TGBhIXUdta5JJ66I5aFUqTsEUE6pwjlwl8LJAxM5LW5DLgkdQNHbdv9ALvMT2AUw5v0Ugw0DHNPMJNG4FgLXqppk4EF5sCS1WirVEDpudl+GcpWkTo7jyOXQGjnTK+XvTguLEJiPqwKV0WhbK01ktYn33ITL8KwarqW07mLIANX+UslxyGsBHXwSs1fNwJ5AnpA1uJNlV3OM+T9JJKkF09u46ejS5qlXvr4/nB0/o5Lx2siLN6/p+eQ7xmCWKJ4bTgtyF+qa3Hzaw25ZYvF+TVwHxi4vTbYKfdRn4/KR9dkq5AEIztCWsWTOtjblZZNfdGQBQb16pYk6Hqf1n7w/rGnfIQL0W0bK0fsWHJEr0dxHAPfkRahZzqL4YUMWyR7KJC5Sz1fmpG1Gm44Uv2Dk0aD5B583gt4KR0Zr1oy2VJcImiBLKeZPuhb+jvTXBkFO+wAmXJanosRHf0gaVxPSZUwGp3UhsI/4AwYdwFd/KD9sT+vhiuja7dBiZtuq9WYSk4GbVzWPRejcRn0tEBR73Lay31On17qaKBcacSXi1UjJds8j9sa8DuR9s/VbW8GBYsYbFTBeG/YevzBNvaTquH4hlpGr9CIe8tNXfbav0GbrBbuNQ3TjYjNAIjtpPXACv54Wuh9e2lHzQxu/UEbBhBppWVvl4OOpQROFAcuhx9QFSj6AjmUomkEHBXSKQk7XnC3mzyyNdpQjnTz+C0e0cgLHKnBidl2wpHW48KDButtgzFFAqQiGdio2Hu3TOZ5+omjWn+0uzVtOrHLx9FYfCVBRcxMuxADyDJzOHZgaSkq7Va+iL3hX1xwhhi9afy7e8d1cdQrwyubfsHaTJf3X9f2+Fxk+xmmVxbYksE1vTNtGX6EmwXtcPk5RWIAJ9rqBwj2jHc0R+7e5VfhBcDJQZ/3fxYH1pDQZcvpxTW4ce/hLrnp6icT870HP7UPuv0fe6SkgcUwC04PCe6MfikuRFO1Mb5Z/oCa+Unec7AfnJRVXuN94ZItshpkj0OQbBgnjzp97rS+VxPhhrpAs4R+wAgV5y6QL0GTBbXDHp56NmXdVl0XKhzI4kzEL+ya21Xs6p9Pyof8gzk2nkbytNfpnhkj904dCiIupCIsHaynzwGEltgIUJjM3J6NwnQ3Exn3DxFHB5Nlc4cq9Cd3TF1XvfWDDA5Yj8dn6xCOg1FzMovSbPVekZvuUQe7FLTX/e9+yecRO7EkJD8URhaONzrAWemLdV0/ydxes+0zl7JQOYYyHHcuTgISfnxPjEwY/dkwP6pk+0eUW1qmmDVJ6qxiIS7kfUWo2T6lSzKVqlL/jowHEaz5EAxMUUChzTkgTFiVBpaxZ8980qHN2edUGyvq6SJ0ckP4ZfVTQhu6M83TwXL+ZDPXbKQOADrsNxp/E9moD3oIJFAG17bgAp2Ril3wNopN9suIJAc4ASYmVrx953dWtJEbzMYQjXjVGnhAq1C2CLT+ED0eHfRF6QQWbE7Yj20qi3Ny5oWeFNp3T62c06uYivMjP/hhp/5kOkcRAiSn2r3gsGoxk9W5YMSJxC0IfsGr5JPoEV0vaS5+4zrIELTaWAmgHq4BsjrbEVAVAtPn4Bu1s2cZbOsxC6dPtY3EGNWoXwGERCDY/Pi2Mya2VrhYooo2rIFPJ4byldraG+1a+lrhOEtcqSZlV5WjD7qplzJFA+QljgQZM1WP6w28uXHE/gQw6dSaWE7jByozQw4wAcg+eA/PSskRURvKVfgbSB62xNuP7d1Ie91e2YTY6wneaZ0NKXC7pEAKrCD+NS/V/DekrnYxeXDmh/07Jb3efPxZ9pNu6jjyscittfGEzma3lqlk/M8ZXL4JXAMxKbHTupgeC7e3OZ0wByEFL4j5FvMQdQfEqbxPu9OWWPI/Sg0NWgdtKCit6O/n1ytpRTr99ipXaL3HsdNhqsAaj6WXyVJOzJZbVehtousHhLq+x9oEJ1sktXO6A9oxNFz5QrJp5OFNC1hAVl1AZcNat4RY8KoU4WPRlHOfF9GBoVqEgYa0XIwIkrm9VP9tnMtSt1D7st6kwYSN/+RJtYqWFE4ZvuTyKIo8CE7bwpe2NxAy7/saBhoD+2KPGBvBqKjR96/fCi4IdJPXwRBRCXD3H1WhOHNqxvcM2SR33amF9ypAgGiHJa7WBbVmGiSrWP1BfGNl1YvONlmprTnlQc199H9J/WnJZUsF3Jj2sbeMmJKDk9F1ZD+wPFxi1tYQj49xILFG83UPLIjwIM9oLOsoz7XeWb9JDtOhENGA4RS8QxwYitmWaNjPpC7vjbJ4cST1AnqDwvPx/NvoMoRM3ETj8P/o8tECO9aSaD1C3zqelwE57/X3srIDE6XwjVd3X+jT7x6YnxflM70GalhSr3eCSByhnfs/1a1pC5Ef7u1tSWbA2NfeuS2JM/NPogDqXNAxcnGarYsFn4dHIdDqLR+zFgmTcDRpAAdtwGsvtbsU02g/REMMBTT+0P70+31j0Y/UkXuPDgA0Lp4qGE+8xUieZvlCOb/bB+CBZu2AfTHbIz2N5/Bafv7HKM3uyuoFn9BbLJzIYRjVCdQ4/YHQpeFukGt3M5SzNQcPVEZCK9kgLRe9R+6Y1CHw7qeShh6593HV0U+YxWcRdTzyfOf9y4qZ8bXFXPh6VFK65OfwzaslGcgflGZAEfv703c3TKtmz206A3umJqkHukyBJuVvQv1KHNONnlysrSJ0vllBme6nBdtr8ffLkcSPjXtfPgQjI7Z/bAT1luhuv4GflzJwzU+kGWcon7kPVP3T9H9PA7zYnPbc9db5NAlWmzDaJJVOTt+RrcCJDKLuqPswofds0v3oV2txJ/HgapvvVfWxEzv0aOKy6+pNxdp076EpmTxFApDiO/punRnwhCwfMoku+6v1IZHy35UYgt7f5laeaFLNz/dBw/c/e1+0M/B6hb73Idyu+BdQ1YPfJvO4+SMOZkLUSoxsnIQApKzlUF4QgJLM5s3LiV6RTNeOIOgReojarAr27uwZdww8EBqaZYKOCRZL9qJ83iq0kSLdGcMNlAHbPUh5zAY839H27AAsY8vPVe+MNj2kx2CyV97Mjt8/cYu4S8/xutUmHPjIjBhPpsTgb8vKpIrsJMzpkbMn3He7DZKXT2PpM3YPanqb0MrD0G3u+89eUCjYOhd/jO1E9f8XLb1Al+xOwD6hRV+TiFkai8OywrF1Dew2fLXH0iXGAutWSZeF1WTQMS/o6C+nua6tcCleSQ2wVW+PTMHASVMzrTnSAqLOwp3HI4jDH6UGS3R68uTzbB4sLZILlURhYvsjRmlyqNp+6JxoH2gnIHt0wMrAzBHwlxFe4dt6l/PRm48dkKVOwSsI10APDxgCBl94zAnaMVGi7a2eFpFixc+cb1eimY1B2XiEVoStFvhJtHRFl+hCAi+iJifEntsWterqV+yO0aw1e1qdpGZV+KcYEhzZq7oknDCLVxkaa6I42/BGfI4j8OHHLjc3izAokA57GxQgaojqVq251TXDJzqw4Uqtg64lLHWplrlq+Vw7D3WzBaiXoRNJDZjETx2Tva0ZoeTfL+YI6heNzF63ON9dQgdZtKComW6aEQoS3X+iP6mdUA0zdS8SXXlM7Qjfgokk5GJbqFEGTEOsze+B9uHP88Ane7X9evObVdJw1IR845VMAZHblRqLJ5dzj/VfHdBPChKQ09BtDygrn4zftEwEg0WATdBvaYT0Of1YFxLJgBw6ey/aJXmxsbGiPrpJnwRJBKGMGfvVB+jUJSomq81OEh+VE3FWuLZeIe85IVurqfQzY62Vf//xg4zM5fGvJpy6uWm4YvGdhKa8arVr4kmjit3CybaNMQnj150MdHQ0sLDpYQMSN/3jeoo0iKbhQqyeBL0U/X2wx9tnitk3+zrusz0iwOVFzAeMTtmkZJyln5poplAOMxtqMsKGlOz32LxSTBQToAAs2yPV2/7pHxB9kC4sSYiJGWaceTqk8sv5iO6ldIRNgf9Pe7LpqIzfcwQBZoN+1S3HF4NBD/WQBMv4YI35pcaW7BbgrlNhe60CN2WuZaYKiOnPzXC6K75es9MiSLnjKK5L+Kb/8M6t+PU1JAhpr56TjRZ3icgJfd4CfkrSmEO3eX5dz1kMsbdwqq7NxQnA3cuAw/momNqQLqz9y3de1NUiySZ8AiFDzuZ9cdZLcyoy6TYU7Q9sZSDihZTqNJZhAWzKqBGfarlCbCBstQ0S3BWBpMXzazlOrn5MgjZG3Z/0EbYLqqeqbnrWhTrvuBRMl8xtoEYTUESnqrRWxy8QAM5RdjptcB62o9Hrek+7ypJM5IjwMUT+ay8EedHBUdM5eFI98HcW6dHU+UeHumU/idcxbmOGkyikJuf/bWmxFcLeNfS8LmTifMeRdmzrlzU+t2B3XVWjsnPRTwOv341fDwCQ5i9ftQf8yQR+a5QjnRGU1cL5xwZWjlT1c8EJFmtUysNa0w1CX3KbB4VBE/qChvjQ0+pe4I2QmKWCb/hmUXoXCaPOGtgPvZQbhzjwpUUaiiPs1/Rgagbyj7wmGUeu9pQga5tBEZ3TNfNSx4HtuNlEFR9bcRjbYfdQfMK7jQvMWrO4MfZe3edimBRjpz5XjqYpllyrY28nHnNzWV5kMt42rhJjcwN8dN/UyyZ00NlPXAJuLA25sa4wP/1auajW7Z/lMLscyQ6/vXdX90GdQBwtaj+d/+dGGYiCIW0qrvDTXkj6qa0r3N8AMpmfCwdNBqQZ5YfxAxrXpq/WB5uUJH9pXvz9VWe3mu6fXOzFHbe5UvZPz4iu6v5d0MUQyznq3EdQFMf1m0US8bCRXdhQIr7r9jcCdFZmADoG4BXw65uQT9LgqJzhxuPMX1KOnE4UXXM2ZgZLJP/icPyt4YKmEeV9vbfOGa2fR2MbaLAjd8EWJF9NWpxhBNLz2vZtZGOGX3xM++fcmjkgJ3+jfhlEoWUIO4HXJgt5kAx/CkiZbtHz9g6cwJjGyQRi5twBwhY1aSA2HeIezHADc1c03OMXiA2EFuqqA884cAOUclf/mFWydS3yc8qKcP127L/lTWGrNVH6y5nApgmGO0cUB00JPXCa/TGA4xapW7CQCOVwWCuSAX3rxxD/iJWgIBbuilLQ/CNEj3cwtX5XQMv1Djhygp4ZXOrYm2Xim5YY9ntcLNs+p8GkzvtZZeo9W/cpIkKebvoGy+mCTt4fqt/zty+WzZiU+eSRGm/eXiftxpU/xPzWAaMpU5LQKqb6ys/49OrXMY9TSjz1BzNra3O/FwKa68OfoPmQjDiEkVvpjWlgxdgoou8bB6yfi3/JxfgjuKsRaGyZQ51reLIBzFjoxThvrpdZiTPMXETdadZfIO7V4aGUAFwKUhzwdkSwMmJO6bDCM16TEYHT9wAVDmRG3xlzEdwv+1+pG9qqnT1lb8cUdexJQUcdNcZ1oog6NUmeM6hhdw3jO7vC300Yym0OfaWge1v9OLQOEVZikW25MT/y7qRlP8Ov+sqZytc7mRHEl1Vwy9pTf3poW1FlcUrFh0BCtiU7Xh8L8bCuOlxZCwznCmqasMoxKyMtKTOsJzW1FTdYrQdDxCkYyPP+7JwHJK2u8zQ9kRABEmWLfFDSLy6F9SQDC5QtIMLt3AMvuFbEMpV/DJryirNYD8Bswte31+WW5uyKk1k6qOdfgO4/I/AEY5dARAXrGlITFm11wO+c+lEdB0LCjkgf/oMjQCMTVzrYGwx43uP67H4QUfCnNAjTzXx+b8QE8/2fIrhym8Rom0TDhvSZDQW+FOYi1sEvGPqXfD6uo5DFbi189eXSH5hBfKu8HRW0pIAy+E4o5P9A3WyaAS4uzPh2tF50um6HZtmM3thz+5jl3dOBs9vSVamB0xX/qdvA5TGVbev0MExjAXQTZuELtvfnMDM9nNnF296RJ11jQ3Ir/V/3+6cXkvdqbG1Oooj4hyV2ZXOSd/ci2WP2BTo1EeB7ijnQIKa0mHY1j5hJOu3itfp/fvw6UJkx+GkbmGMjjr7BbhIN3BDtWGn9ZWnKTF1MigMivGQylNuQrsOwQE3kx9x7QwUyN/Bu4EgEurOBHBnunsHA17mjDoFnFs7YxHMLCegnjxiuA+SEwKnkh9JYQYsSGCnEbIMjW7CWL6X7Su3TUKwZDMg5SB0a5NJ7utHUxRYgVwuE9Go79ExuoucewemTSJD3NxcyA9VfbxuS6oNaUJtlQyMHMJor58pL27BeZ8CgBQDIGTf/iR/UGI+9FPmmKHAZuc4DWVyjqQYN+gYv10lSBbyM0xDKN+RWlh0SrIr1EAeDitBLVb1EsE/SyeAfN01FvI/IGKcYmHiroQiz3sYzrDMcuZ/eTtNbKHfASFfNLJTd/qp2NEqW6PFO55s0hkAw5LOQ9LV81EWHfTSQNqcrMJ83Ea3IXo4Qv8XX0ijjssBTZSxuw3+Hj3EXprjTsz5X0n+GeZ77prDYsllur/wNID5rlflQWIpchUr5cU3f4fTyP6AZnyM4RxsObVAphMNHnH48YYbpoRv0B9tY0VICAcZSJy9MadThH1a4remcwDB0zhj/Z20CiObsfSBqtd7ASPrH3mAClz8gIiACWCZOhHDHiN39cjn3x2MyMYmLWxWtNAsFrN/LDYK7m5WdgMVvP9tdpY5Z5co3aP8Dz/4I9ObK8ctkoa3u5gAXBwS1i0AJgr0ZALjH1lCgJbWUf+7QZ3UY5UEEIZD5gO8+KpBhET9C6GhqAPO9v1Yg8J0qPky+yxeoJbO0wfxQpJ3FEZJZrya5ilSf/K5zsH2tnXwN4LjPMW0KvM7dn3x49v6V6D19HGq1Oz6a68jxDjE4GjWpP6msXLSMrZIjTnzIKNWuJCJcc3awX69P9LIGVCuTwVVsApVfKN+WHuIMiYgDqeMa+ebt1j7A3zezaDDQGAnYHXsmGgYdVqXzg/bd3BPkHLnHcvLlEGJ9X0F3kYcFb9X3WJAWa9MJcDHDv4r+/zdrHYYoYkqlmAJrpSILgsxmN8TICO8j8Feiu9bKYzu0BFxU0oOfhskZibEp0vnQR08ak2vwEWEmzWnp9NYXWLd3hYch14/SyFpm5EWWGHMo0W6xqbEjVT8pXGEYq7WgTZzLeaOCod07lhlyS4f/RyxVq1RL3/FHV2yOkYPCuOwZT0ANT3XcQuLR3R27b/Fgdvs7NlffXQ/JqD0GSOdpIxUpjd267a8H424933+X86f2tWSkimirN+z7opDl7JPFYwQno3dwWkj0ag4gmamBlkUtLPOrpXcy7giA/wRT8c5wX1vAcFk0JzHKBb9hFmC9PuBMAPQRkQTOanO+YIEoY/KCIALZ6aOXky7GvsCPog2M57iFIqUxYWws0rqsp1Ru5mESYE/rbvW02p2NxZeGhV06H/Gq33QNvb5ZBIJxP4ZhwQbb1fUphXe91BfC+YG2Pj+Zqm+XMAXHYfBnd2/4YanF85ZJJEsdeyyW39/CRiCf847vs4u0lvyNFgvGxOLbxnMWQnde4MGcWIsg9rk7sqkkAGo51cxdu3Ek4SVJrzw2qYVGmPouUm5qOeuRbacgT6fR6in9KWH/So2BVvCJXp9fxU+8kK0Y14dut4q4WEoCArWtYMM+Du0MUyxxSkuvaYLZg5Q9N2o62LlVl4yaJ0tqkwDcPKc35d4oo56Jkhgm3nOSwOGM7TPEQgFrWHOWfB3NcOFArHcMsLQJVdr2shDFWN5z4y878ei7zHi/3nFJ0uR71PGE68ui/EHMznOOX8V0Wvaev3MX8xLIgo5ItgaVmz3dTx9BIMuNqTZ4a6lrcaT0y+a+7XcBvhM6HaAVcyo9C+lDzWxfmLtQ2L+dPG6qKADXMrmbfpKfumcAGM5uIheiNeCIPlI6+2N5qhSNLvJB7lLaqta4SPQNZc0W6b8EAfluk1rSf3T3AajBLeUJE/0fnn4lc0SXS9JNU0uF0sZvtkOmRerwx9STnAMxTYc7QnCTPG16NRavMxl4y0MmE3HrI3NFoMKkTMwHzqMRkRH2SwEL+10AWyaafg4N9mvfeuwLPKAvv4J4rWvaxHBMcH5tWX7AIiUwDfjWqTvcNOYmSmFJrDru9dSVTqHdn8Ju/qQCcPlbI2vW6bTN3nP+Z2Ap8uUX2iiGIfFT8pplCPzORka+0QYuhjXnD7+KO7O5p1AB4bkCGOMPef+8mlskK+2aigr2WBAkUbGz9P7fIaPZgJ3EwxKET56AiLmdEgPq6lN0IhlwQZICicaeK7KplhiszdRuuqoSDjn2HcZe97TRLQAgGusmfe6QTiZ5nPwCKe1V9KWqQRb5JMzktDjlwmGv9C2u57EDCWY4ojbKsBupoWlEfrESVR9BXGWI9KNCFWwYkhMXlZZ/qowZe6ul4ujgS5qW5OqAQWQyLv8+QxZJpmODWKROJ9XsQm1NVsX4KJiFlH8MZp/ZzVDqkuNavKGiqLakcpG5DORoad20iHPaLGRiriIpFsBP2eZhCpESk7/Ux0H8J278Eierh+cmr9d9PNLkZmPfqT99WTso8qGVObMriNNEvY9fvphecHoV0Zn1qBqyF4OVPzCdkoRfUvgSrSTcpx0yvXzyWhSSHnT48mk3HRsUIiPYAVR7UhakyJjO+Cb4sQU3T8gdU/f9LQUvP6k/0Yej8nKu/bG4QzIAFHyvQsb8f4dP1logPY5PqHCoBhvZAX30VeHan60AvNV4J55W7r99dFgH+h/SQ1Ns8PB2Rlq24nIDisVepAq3i0YhJ9APcKO9Ef69kuGTBBP63SGEvptVhuXjY2QZMuLKyY316c+0RxBfg5+78a3rA+a2pVKHp9yI7C7SLkeeh4R4aeLCISJbeFVE/C1lbigDEImZLBqNzERztFLwzAycLdYUE+NtpooFfhlyGqeAF5+WXHdJe2uNA9emm7s6GlRaQQ1/M7VlAmNw/mOi20zaslhMSgHuGdZEjFQxwSzPNMQhrKE2raiVMUNXU+jI1+ZEJcPhs/h4AMyEHjFu5UCwUf6aZgVspYW8FRiMSFdzolL/Ul5TuBYo3biqRqjyPDr3xYMKsBEXunUK21Yq1ZGVsHJm3BeVhMS0NFT8sW4P4JrtKdCcc6neDh83VE58PMLz8S2Wpkt+TnObTu2Mowl0q5AjmWg07tLmVB9dFhAtAlzle1ZCEm9vJ+Jv3pIAtE1tDkBD9VjiEVyMcfShcwYKYlpIHygorZSC3YzUn7DArsa25U3Ri9SUdN/hLsD7Su9U0iOqVApqvCkWfufSs8ZIfEd9/YAi18DJuGyCEtee+tT9DahfCqZdFqErowp5yT2nnGsCyHNrWEuLvr5RLHwY131j0PqOiIMfn2WvjjlAPvI/TiMyGBKTlhYhQ55V2Jdc06fcThIXwp5z3j3IBzaquUBLSkmK00l5nAOvWHWili302t56VU42veL1S7Gm4iahplAq26mQhQJZbzX4sEnVyzvTemVQ/8qEZCw5ZY6BJdiF4/AhyrV6yuAR1y7AkNyNZproYtAERfsSTTR6hozTsOl1ljXXCRZ87yPxvCbyGJSHREwdHNQLgz0uRmhqmJd/DI00e16WTLGOymr68sNas3sOuDAD5toFLjPGaOXt1sBY3U6bVr3KkX3opyWeXOxGsKne1d9l4bXCs3PqwO+iLt09eQILCF11GEZoMWBpTO9k7ft6fYGvObj3rGI9BvF+xUrN2uivgRJt1RATYL4jSrCj3UJ5dQADV+0a2X0MDzBb/AcoXy+r/mmljL3f/0Ot5TV4VrsAo2CBCwZcF8BWNqM1QX3ahX/ZAnal7XAiCq+ITKUXuTh9Uvin/sauonkt+FlkpAkjdWvxf12uy9WXi6ffO0aYHOsVqzgYfRdFd+5R8JDt2BoFypDNIw8mUNg5HA2Sbqd9at8Q1MinGsiAXtbd6Y1QN1f3jlSzdKNZd4KjOcPm8wvrUjbjR41ADGhDHHdMoHNiSRYQFbZvBpGYp2OOhd8V983pWiK7FCeqz153odSWQA8Lkz4GVXO4Z2RsJRCYiFuz2tgWxzuyChj6ZVgmPD42T5Za5T0MHHMRMDQVmpTdCUVo+OgFMwtHIuh2qCp5tsMoAX7LXPfqbX4DgX6/Fbo3oxuYuQUUgax7L2weaLYszFnEbak/m93uoL+TowbOvB0u9KXJYSF+FzO5dp55h/921S30r5W0xFdaWVktAPNypPRxsY7ShfiosycI4sETqj/QhgqY79qCeT5U+l0PhjWZ6znTL0mjBlXqKMWft8WkkeJKQtbY2S/TAE0sD6sbM1j2fj2UdgvoXe6UOecQMqVEzXR52gyPWMSuRsMm0WOkpPKC6Y5kko6+4S4AJfDgdh9Ffh7J9BzUnRMDsWOvdG/QSXfBVClqE6befnnDsaDchvBidmcXRrJGZh6rOU08kVuf8T7QDLLUjd2Iajq3hySthJz4pAuGo43JUPhLPpLS1s1I5135QdmTfE3guXvIvOTVxkI44tjitA+RRebrjlqCioW3NXcZoJiT9qEF345WiwLQ8Y340e8ECHl72yOrIotVraVSjHaL8XDrs2sCenDBLs6b2DZB3vSGq7V/VHzBSZ8BeNkeG4KkzfZkcMNXH3i6AWWsx0UnIqnL6Irm2uAO+DUZhbK4jFlQjiscwkQe/9TJkzLx70thA8yObia90RFwkdawxPmqgGPPHhx+sG+NpOa7ooohQyqvDNyZ2adjLEsgU0rIDa75YG6ycmf38e48ZLXWSP9EvhdNRMsaYwLi4kN9d03p+3Sq2SGjsz+x1m/SYK55oIWaKFJ5h/Ktc3DkDAMY684aJcuLgjeVkzWS+11AttLvdy9it3rJA8nyeu/l97ikQchA6QwK1vyugBv+SJgogzee6v3mr4CKZ2hybVtnWUg2eyK/eCnLfy5pkIaHR2wx5kr6KMBIDib0rhg6l1pJ/NugWnKgyXJxrdGvVR/hpIQttrpOLY0E/N2l63r/kJ5ATqA1LorsQQ8/TUEQOEW7EpA7TsFrtmRW88LElsrbYBOQeOItbP+t5mxAf6uWZffI35NPn8usIH/Gjlro2EaSDxuVYeHL4SisxcgEK1esvQCDgQye3Q+THfG1cB7HzUrj/a10TuFAkz6NB9a6ZfCB8YGAxoT37IslDYtRA+X+rXcOmNwRQUdkGALRod57zsCVhwIIWBx3Fzrcbajqh/TGUOLXNx01L8zEZ+eW04bA1RZE2Jcfvo6FHAynTImKe2BM7C1r6SDsbF0asZ2vGTZ41kj45bk+DX6guYwXDk3XhioZhcd75hgv82eIt1KJ7KzEr0mLQ9Q9GVk9TLydu6m1jVon0iqGcnS9dNV9aOLd62cHiGW/awZbxYt6sNG3ZLc5Fvt/P8TWrheOnhpEKD8qEcZ3lJXbQ4Mw7cSrmb1NaGyp3tB3mlw0EofpEVJZdfmrGX6oWdiCG/AX+TdjWEr7d1s4LjhCvCfLyPgfGlh5AITxI9f1QWX5Ar1xokET9C3E5bP5v9nCTitNuZQj0p5gugAONYrh46iRIVoRO17nFK3YeTW/STXsIxIxylvYFc0E8WELYkl4zCuaVoEvnq92fn9s2b4vhQmNFW9NwwWy2n/9IHmlmw7f0sPS86Wm8yxJWYKVFn4crrO4ndUCIE47YvwccMp6ic+SIuYmdBsM3TJ39CpBYo25GLfd1JCTJMLNG2BwKwzw9UboFWrQKOVrLJlwwJZsxR186kGtuZArHD24m/1gjlSQBU4LeEdPFBVli6KQuhTJQ9PbNUFta2NPqkfj+ZPF+i47X/YADpNbns16jvkIak1ipzkpk+7eqHm8H7pQceqjNIGrScMJmbmKMrNYSGPjDCoEAjX2VX6cgyUz5PJzE1HsJvdZQT7OcFaXXhv4uMzqmcnJ7TCBM61CusZaXpktNwjahrV+AqVRcWYx/DXPXsCME2rAw1e3uNuHoSY+IyqILZZXNm0ED/pit7a6aB0G2UaLY/atcarHsDGhuyJ9CNbt+QeEZPxEtkwvTHg1hqkDRgcD5vP9ZCEeDCyg0QAof6C8VvJvb2OPPeDksv+kM33/ObtGeZM0aPNBzFbIzQHObsSkViI1tB5pIF4UWl1bsrRYsN9/Ta0jMe7WlBzPFxhfSwj6lsUtziZuyqreKQEX1ouHvYVMDaOTpLa9XOP0Lr0XzklhN1usj8uB2Gx+wrNUusvWQe3Dk0+dx/XNAxJ+EoltvrjkG3Ndby5X1hkK7MPAaCG53Ye4mwW0TvzmzNqnowOis74rv27ibAC9hKsTsyj7Zv/l3FnjaXk2LpIRZsDbpx61VJUzHC3mgsZoGdYVJnvVsYtm0oGGn2trk5WUHD19DQY/rFZKawMbEhzG4/+w2Y+9+gLSgqFV2aTeppkTQcAp4zlNRkPGhpyZ3DjZmybPr/hKEUcnZ5XD6JW0RPTD07Y1YOOHmKVLOkaesqyVMuUsGbvt2+FOh36nZ1zTZP+JTWO8atr9rIpDLhhnoQ2u6RxOD9u/JUDXuMMX7M1kTQUGtUQH1s/JmttVW+U3EH0sYda3BL0dgxYlYMEU5JsL66uF4l2wwu4alHA2jmEZVJGBcZ6JxicotbDzo+ntzwDlkKiB98g9MChnagOdDGVx+3h0POj5cj+Bmubff4YAXt3GpsPU7dXVagY9qKq54kIqxELRvkoCgiry2+fC6PfoRjaDc6SzGuuJL1c+LYkVZZzZ/sYS8EHpRVQrwxvE2xXmdHuFamHRzzDXwepbxu9RBuz2zPUN/wBfYMPECIMpjPDLs/EcrTAJwz8kr3bOFGkyLAZ2QJqS2ks6116Q2uu+HY7ifDPulG+1bE1+31/UoLwJ9DVH0S1gtcsnR8jgsvogeutIpfkdu7rwNC9yYZ4ZdmA3cComsTn9uvZ21BCtTcvjnjU874426UKaydwCNWdFsyq63V/6bOgZERH090bVRMpeRLr5Nhi4o6FSIkrxheXTzduipwsEbxXiCiGAhlFoQa8u9wFzVTouX8+4f7s3vY9aEpudz7f9yTOKAW+wU2boXrkmCAJ0BC6g7ion7kVqnGU6FJcl5kSGDnoad5nwQ1RoRvka7MeMuNZKkRayPGBH4BzUMkTeiTP2o3wwtb1OE4WU6ltGUFcdfZDgDAXhx/LyemxmqeDaPf30A47pJxS43nqdNhWt/0EXkj+QDx2+4Knpzv+aO3wYxvTl1I9OpL747nRIpxl6UMLpbr/jv7y7TQyr2oDtutOwzzmuKub+dHPlpH5cpjAU2H0ZDeIjNNbwwc3DKsja4nan3/AyPWqTpadkWxPSgzAOQbUKUyIxfzZC6DVgD/H/q9db1QHtfcrB9FCPG6VmT6GJM5QC2u4b5nh+5zUGdIlBYJkFBbmi2FUAjfEbbAvgMfRljbBog1YhajL2rQqvIiDiw68fRWYCeJixSa6uZKXwlnNYAAZWmsYgBE3us16jSBngdUReNeii3CJInvLrfCUt1Ep8B298SNMkt4gUgL413xWp5qE5nmKVCew911N8nhj2G6O8D1zRLgxUtZCzMvFrf4cv188WvGosVzWR85rJHlbcTyD7w83Stuhf49RxqTtUHZqHotA02orok3goYLr6A26lYVF/Rui6DdBYb+fN8sAx1ATwocbDXWQ/qBp0rQ0hk3oCw0y6WCY0WrzpuSwsUCiQfe+wQkoontL7+oIkxvocq3VxriwQBq7LY1u1CdmuIybShJMuvZiowhZdQI6UWfupijpnyOwqPufV/Wi0QB//JlkO2LSjYlvY2wpLf3EKpejUbHji8FLaxHP/HbhcPST5NhkTfkl6t7YE37aDZmz75D8yMyRSVGrrxWJth4XOQCU/unllRXByUaSO3V75aFLgOahjIAQBC4bi32bWTSLLkqvexb0nRmCfFNLC+DSoJ6IYG0wO/aAdzVTDmNO3GLzZrTGHAKlDanqXXrzMhqQzLya+xFyDageXrBKb38b3YmepXVKkf2eisTxlIVNkP+jnXp8pvYVm1L2g8JwkTUzzSumsxkCDonbieI3rBw8igMgsWwvebacHr7Wqu1AigRlQIe9ovS44gi63OD7cMSffx5YRux7ascoOkqkhcgmLoUROHwau3WE9BDPxB2JqOfzrWcWjaHkuiF8JnzTXMmlouylFG9RIyH//BznLSdfxon66ecyQmsmpUsl6T+GkXjt5Gdt/rZeXYZCG4K4qkHjWrvC9u8GqzkvfckhyojSJLyIn/zGvVsgOMWXcl+V3bJFjQHqJn9WD4qgRYN8eqtN4FbmcBrv6DzDTgbgI57yUTuj7J9dKkwXpyu/NhVyrfS8dYr//e9ZrFEVTb+rSrAiPz4IJLinEgK4VB7D0XB7sj1PzFB6C/jPZ62eVnL2KFLEj+Pmt2/akIJqabsIaykQyFtx6K5jCMao7J0Uuw1QJUWNyWKmLeRYHTzmoWtFeqF9cwOJoNmUcPbZNxe8XsCvL17B1lAZUrNO25C0wqG1HmGa5n/4zhS6BMabSjsTtiZIDmt5N2hKbRMEztelwL7UtvUOT0tBULhlfC14w5pKYVW/cpnUevUfE1fb7lSiaoAP3AxvDuGRBMNKFJ/0bQf5AlB+zZH5UBV8LsJgmxFHkkbAF/PTFi4aHMuYPWswIEVGkQZnbDHfKG8vqSxVU2QKhmGrFbh4Oe4uo6ehUrCY/sMZ+VrjDOK5/IUPiaR1SaFvpG0WC6rlHX7TXhE/eTRFg/NVh/Xr7Re6zvhaOx1lQszXrZ1tnllC30BqKSvuBoPBZFHN5A1MI/eiymyETzE3pT1wIR7syABAwdezMLkVPLxXrcloEgabZF1Ni7ZoR2dSVO24QVDA4RNgaJ9xYfZAtpCq6KD3VlQJmGMfAZGhnizfepDPB4m/C+kw6I7bJsgNmaWFgI3AOMd1ZStC9SD0kgVN1dPf+eTERUoZQU7rpwJ48Gu6dryPWLbAY03SmOHzbR5Cq8STeSXjoL70Pz13FdnFAhzaU1N+W2PI86OzDQmkc2ptN7pfUuGO3AcKAVVzNiMOP4HuqJ7k2Kmb48gdBSKwb00NPx7Uk2lxQZjmUpd/xk9owuuwYadvdFsE/EOLN/thKTny6SLeCSwLqCUxKI8PvqNSl9toc0i6yoBcHsyAauQHBVqcMIFP+XvyT6VtLtt+enfWJz837O+ooTJY9C/c2QqvaZJ9/q5jhbBdlBPKUmz70kDuOOV1HIrCdR+ayW9VvnGoZzPr5lSLXZ2RzoBNkQwvVXBDn5HRunu94lGhcCueOMXkASLRplLseVuePt83iZVmwkfWbbmkp0aVEel0hwc/nQIt6WUoinJKGWr0KB2ni6s9eoXlRLen+0L6rOLjQN9ISC4Qoe0CgCWiSJSJui3+QfOnVMcM/F7vyIc8JUwnElG9WuOP5WfSmm9ojHc/FUiBlL98bOju+KdZvcX8+uKS6Xz7rp4kv9TOxB78D4fl+2JWoDGop3ivBh0xhnSz6CyO1BntPuxyge3ns1z8S2nLdGet3y3c3xnQx8gp4tAEDSZ2H0304chAmbEaB9w5HiAW0Im0gbo5zXcU/n3RQnKCcnyepVKezXs8oLOIUK/vL2YIryaYgE+Wcl5TdkdBa0Ob9ixNAtkN4wvlZdGmpiY8/18XseCHINB8rdrrtmvSYGI2eln9oK9sQHyPe//pogqlV7XDYV5/blTpW+iDkFYlLwF3Wc6f0nUB6pigLFeZCf/6W5UH9cTAb15Hf9bfJFw6v86PjTNRAAooJb/BUiDT+PpxBXgMwARGtde4cf1tV/mEcliWv2fBfRfKg5zLQ1k6sXxpxIkuRPNcVUqJ4e/ZHkUtmpRbLGJ2knFOib73xBgXPe/HPK/fNkoG+qykhyeaJAgvdd+aQRws4E4dSgSPy/zfWI1nTgPUCxwU8aaoZGBdd2ip2GKE19yXjp2IVb/a7VeerglmgtMDMwZk3ovM9X7xOPTXql7GhFZB0G0EHKrMBI4wn+rvFpZmMOMEA1m6w21Bq6UHv81VwIjwMV+ledBhFNU/PFFVfhHknkmBX38erk6VDhDlA/MIQ0DGg9lnPKcI0jqnWsjOE376SFDFWI47jz5fRUM34djHdWE28V4/ACvvuYxrBxWMbrUR7b3MpWX/X5gx7/Mcq1LwYiAsow+zxvpY/fzjum7lNmsgrzlLPpdei8d712mEr1hK5BXJ44V+4rUlCjmBM5sxOIJ5IxskuJa3VBtngnkAMmgoReOzdNUOu8Zf0FlK5LICl66KH+O0jarvCFDNLwEguT3LEYBTCf3ITlXPBbu0IauYrrMwZJ/Gf9ON3ouQ94I0C9bVtlzSiu/BvIfhAn2P0bRZ2/txiI6FVNl5eUT+676p3KEczGCCEVSGO4izAPgeujmdTK7NN5PUds4KRw1EiN4HDK5VdqDDTyH2HVivsKRbbxNhAlVaVe9Bp5pfUrUZcRTuVKE8HMnJ2SvlwY59H2eNyg3MVpZuSU/OzrBSBbfxkpXr3b1KQn5jjoFG6rMkVdWPRVq34ArtcV630ixpAVdZpPRI+e81ODq15b+u5VXKYrbD+BhdMMxQs7IXY7dCyKY4/HJytZayQDbF0zWvZcG7wpMpNqAU+NxxTyTavlCExzov9Dy5Nm3E5pH0KI5Sp8p8y9ugGe0G95Sh0lzupyAeIr1/SaJ9xip/+mhUjDcuG/Uhvp42+POtFPbUMqV4VDsd96PaxRHkjfxS1tVyqnP6xnRLiS6kk39TPkSYbw7506yUKm5kkfspFDUeZTSWvp5iUvzQ2eo2+JitLWOTzmi7/H8NGFbhaT4kgen8p7p4BlVtmosOGjEnxBEe/2JMq1fU0DUauawYLxfrDKY4ct0qPiyZ2ueJUz/A7Y5MZWcufZi22xbN36ys6Wkw6DhChDFbu4H4vXbD45LOElyeT+YZmz423BWnzd1n0l8htMEqCyvyhICiCYV9CvZ7/YkB+eYB5WZgzrYM1yXlklNvpVgKNNLPhz4hQtdbOSVYJu+/1umGzoLAmbEs5QkkLVY456bRVneBUvGO3wbxAHvSdCgV6EedVfIKFqYKs0KBwIUnJ4RzDfJRmMWztaNPnewJom0y5ZyIXhgq40879UVYxCNq0r46WGtEag2SaTwW/ALWha5NGS64fWc8Y8zrBSTfh2jjFQ0NNqDmY4s85KHlwQ8u83y/Dp/trJxZ/3Hu4Wvklq5GyjrkbpjoqWqvk3n8sf2oYfg5c8tnHe/VUwSvaMKlisZhUuvaaFEyWDiwNe3eiyYOegKHg18I/f2Y1cl3L59SGQ3/WEmqGpnU/sGqYoOEtLFb6rJ2prqefXuFaIWCH7p7iN0WuQZL13R7GRsWKeiN2nVb6eu4AWbRpNIq5h7Vtc77gnYRHHeUMvpLTZMk4Ozp9Gac/6e0nCeNd60gSyMuSu1VZ5Kn6wcQ4Wg7U2NCI2cOJ/te5pj/FcYzrczbZaMGGJR0PpQn9UIYzmSJs0B7thZKfjaIAz6OHIpWe7A4q9S4ofB2xYC+dwI+/3eiWOfmjEKBWvFcizHk2vrzYR88KVQlUAulIxFZIBoVbfCRk/TGRC4Rp1l9g8Hlf//8SrgmnhbojKwPgwRP4EkU2GECiXUMfMiI9U5KPtjZOEc5Ejce0+diSp+tMpWD2sul6GtHP6q+G7m6URrqmd5irfVxRvbbMrYjtWmWyvKrHb5ehPf6OsPEHqXqVI87iNAymfnhpwL5AKaepYLMpK8wz61SBI3ozSHUSvN5SxbsmY3nHQOMlUQlAdKLz/XHoicOORL6dTnXzSjPoBI8Eiu3WCIyPBZvhg31VpTJ/skD6l0mumcoMKE31jsfm34vTDgCGxTof6h+FFD9CtMsvSItSG2bNkdEc6Q/2Ny2i331Dhq4b3tKdyRfYH7r07d33wr1M8DoJEMp+kXVIYkkamoauj3ujkYP6s1wI1s9AEqmhP8FnBsOqG0cqvv1+bJ8KTluF8uSg7LXK6n0OrEMNLvkuk4gCIqz+Az55mH7oEBYHcRv8Y9Dhj2OQ/8cYNzk0FsX9v4BGNqSaTxXDlio8ZXBp+RbHDVA+vz2bg//wdS0Ca/xiP/gFHeXcmmcnRXz7eJw7EDS8j+ktqcBrE56UqJ6T8NF41x8+m4lYyOtyjMw+u9kB1dgMleFiPtxH3GQ3vBczSm/oGcu9aO/uVpNoIeEaKiojZJ4Twdpu9uJMKKJiUqJ/WcwPW2FW5h/dSvk/84iD9fQRTNPiAxEKV5+HU7pg0s4LBxD2LxCkrf6PFurosbcgdr9j0MBrRY6XB7L5b4ooGEpjIVVDjd2qguvL775L+SKzGEOuFBwEYYGh3ZORB4h4khhdla+qH3rjtEfHpaecNSH6I7tiCu5/i3mC+Xa9Za8VrdRiZhlRitbEbxBRAIkDblKwmRPseD+JO4W6suACJ1Fq5ZIAO3Rh8k5RKIjtnKhENUn3cG/+o+0G7Bdv/iAxyy9UX3VCAhmua8hgdWL7pc64mBu1+U1dAv87A2emzZnlA5i8VNKZ3bRoRQqDk6tk4OrYxZsESK3OxsdS3Ph+bfKzhxZ23YFjURsLD4p4X7rFUH7PyXDxwbGjOsZHNnZP/FQY8sx+fiwM2b6bMWxbnVH0xpK5bYtO/ntH3wiAA/DG+DP97luTcv5L3WPtHKKOeYi8wi9pXpbCqzAoVE2miS8JVre9SrlKrX2RnUrVLHJ6KHrucXYjZLRLmVuJHdEZ+oqNhqN7bztIYL1oGiqZC4KQn96K8kii5NO9kcdDzZ6qymLORg449o4emM52ed5LFM3+GyDMECqjq6PJuyxUHTsngfzyVgDjAWnxUpSaL7sMPQH4ChcABLhrPP/yWKC3kKB6VZQ0+6RaWzDGuv2GoQNxkdFjva4isPTG2hkqfo8HifDNIWH7y0+QNZXLmDAeP2OZ5GrEYdOyhw9rFfH9MkQRDmEZipV2HHkpd7Xu68AoOmFrnWw+HBLwauQuIm4snKYgLDzFa+fXQt6pM9bTfNQ9mIREWsqpmXFYttQtbFYIuCXvbS624AcfzJHeHbaxIJ4TtwPdoLyFOVptjQIe3s+1h1cK3qxr5ODmYVxgnDbiYR/4EVSPJ+6k/526a0CusFJFxfyicPyw0iV+ekk+xH0G+bKcVGbg4SHtBQE1PXUmlt3b1oyjfx59vVJXN16QZ3jWjV3qpj6Gp295qfDPpqzzdR5LhAEGCJT9fr/36EZbVFtOORafg2c0rD3IADb4yqW35XrfwV+YSxWzGjY8oP1XhUhGVhxx+xUoS0YH2ftyqQBY4ff4lHYjZtd2dL9jjvN4Ir1QlImkZ2OKVhvw9pdCyMu8vYSoV6NRR0KO8nijuRTuB+H7+qfHf39nlZCyPjWa5Jojr7j8anN4P8EdABVNxWIb5mNW+UNd4NpgDxTs1Adq0SQ4eRU/EXHmV8RxCL9ninYZgG0iKVdAEkDfUUi68NZqFOH0kst3UEU1hzuMNtN040jMSqqivW6cJOBgwOLzSjZqX94WbT7sLzk6f1EP6PPARyWxrliyddbPg48ngqY6d5XIyRbToJVQ//zsbqJ34jqvqEmo3LIa09G1XWUhmR6Y1U3CIfHONiRfgZTscga/+p5o02FPKzlvSbKjDiuH1xp1TYqFR4Lg7L0xBeqvp5JonQhNqUvZtc2tj1Qr7GCHJYfTboXn5Hpkm6rFsUoa7xj8dyybPHbz5bJRAlRCa+fDM8fsTyXnb7TjBEISmahvVwl8HnKY/ey34Y1zcmjLrEcMZ5+rO5sKD9eeEh/PX9XT12FLEwRHYrtC9AKZJIU9laoUZYlEmFGzIYcOTHWP1l9Ehw3Oi/pWK4IVUJNZCoiVB6tKBSEVsT3YrbMJO+lyUjcuW6jGkXZwlsLT3XCgkDK8nL33dPSv1noo7DzDvEXL4m2k+PnWzwaiyxMc0OaqoznzrgbaYwj930VQNXypW4fEDn/avMjk0BEyTR9WgrFpqRS70UnbWXaNQkApwwGFVUX5xRQei2B7P5DDo6gLBDGBIQrJazdYyePNn7cvoF1AGopsKvPue6tPTcbq0WZkNnIGCSo0N26Z0iOdgxj2OaTceBaacb4uYaeFUefedvD2kVMzhYferI2LmGNqn41pV7dvTteTXfODcDtWGNh8lCYQA/S1ZxL7yBqV3bkkHZmCs8Tg3JlV13WejeV8O2L/BOiR+79D0+tZR96zXrd9EYaJgWLZCEjT9H8YAgkDe25r5IbTvELxv/ImiuX/wtrJiBOljJxs1Vlk3A265soN7iBWVk0TsG9SAm91S0SdMHgXETPnQaqt2l1Rp7c8935GaUZVJdJgpji4Azc4YXKxU5AEpQu0zqdRcYGvSVjGIHla3OjX9ZnCUZ2bQCnbq89NRkncVY1RhdVGLOkxR3j/NeXXf1zy6htXVAJveGjSpnjIl5Z+HE1eHvLXVUXpmMjmEmhaIqvJUJL87ayavoLIasNa5IEqv/qBHXkAL7atI0Efo+kklcsoriOZt7y00BjbCS7CFU1uasPMBFNfCPMigrl3C7DQgXDOKLhbaaF9CAp/aStAE1Suoar8nNrfNnPvRsODu2riRFaa9s1b8lg2RIj4bQhek4IYUZYkwXcSk8b2+loaw3qDp4y5h/RU5XFdv0+0AR/qOKAEMyhcXPrfHTK1utSBLWYl8Misj+f7+c0rKI7j5Y+Tl38h67Jy5KU0eyD3OX58s4NrnzctmFQdSJXlbc9wFCe2A0lC0Ox5A8UDS7FXHg2p1Ks7Kt3U9+ZzQG07YlEUgmhYeOtvsRVQ28p9LbqTL5Sxc+KTbn8SQ8T4ONL7Krfs+0EgUJv2hflGCdYvFGCT4V1oSGzOsXU0i4lrm/BDB9MCBWRoC3IuPH3MdjUs0Ubo8dAGYo4IZPJ7pWdQ4raPQWT85c6IARtxO4SR01xW9Qhpo1LRlw9BoinTLmzn5PD+MzcYskvO5g9r5cnYjm8ymy5nWxTLhWZTp/TRrQAd0Stp5KJQdVhrpQq3yL7aldm4/2NdjvviIb2Mbsy/iw/QnP92xL1+Iy/veLUhScysVENQ3ycFV6Htkdvmm8UU4MxNEiLzQgiqCZqdUvgzYEMuPzbQg/P/cK+nAJVMmJI6G+ZlJWN5WLIkbiW2pfrTJosR6VfACl2D9sIoNUW6J8FPWZ5eTzV0rxZaK8uZZwNsqq6VuaNQ+I1XuhQu/gcwIwaej6zMq31zIgH4QEKYGoe7YhlUEEIwBAdjNE7J39FvlstlQhiasQS1drA8M9Ps8TNrUijv7+FHvQ28n/SZcC9MXIc4F65l6F/QnsPGTkQbl2mnTslrAUEDqol/tm7fYLPfcOxKXcg6WShgTk5nZi3jF4pk8UirrI7g4zb10D/ijsI89k3sbEq2Rhc69gS98S6TScHOt3OGThaMY2O+G6sdQpjU8mbmDQ4zBeqLBf/NBczYl8HZ8suc7nZOkUDiCRmpU8uXcTnEKccFQDlYPlomXZJ0Sh4zRrt+ZufynbXGaSi0syytAGJyfkmR6a0gxLoEdHZ4SxbmRT6+GzbsPZFiN0zfkZIH2HCrSbX1/1YWKvX/VOeykwzCjLgFNOGwg2Vlmxo130PuQjJM3ER2IvhRRnuqUhe/nBI5vJkNf7Req0d5ipxC5lcYMHNbni+rjmBjoAFHPgSutFLAO2EXYf1drqcfqJWALG4mZ972PUmyc1kiX50JQVegeLyG5HgLqg+i6TpWLxJW4Qz61jx2jV9bRrzB/7LdsW1tc066mEaEsmH3VmFpk9blV5v4Jz7UNvMp2ILcwUEn3wnJfkBOKSdptOVD0ABPPApWnlcbS/bLhY7fteiSBGzjsj4v203IX/IewSDXa54aRluqzxyPPTUy801/ESaMMCM+5ZlgYFE+qBlLXS7g+6jRZIQaAmiH0UfIrxO0c+lJz+DtwLHSs8WfE9O8TjFrIEOjqEJ2MWHd2p3W0eB8E/hBwULq/b1/06SGucmx5r9KWW0YY0iwl7U5f+oznZrXI9mW05PEO8Ki/3wERTZz3J7FyQgf5OyUymdO8n1RWsRVGKSssT29DRg7vy2Jku0Aavk8wPFpSwFKks8o1A+mI2KCfQ7iq+4Uk1bgC7ZI52/NSpbC3HgAAZTJzENfP1TD6XDrnf2DXahUKtCkJ2LT/LMCU9SZBbtMymORmx1RlYxuzH9MR2gr3gT7UZ9Ry75yPvkzZWr4RL5UMlLdYGj35LwCuay73GxPf+HgRF6LXI4Ft2tL2/9cMxUdTDaSqVqb5cB2m5UgT8UuvYkuEwdrZZtmVYmdd/od3u7xQPuu1pzbqeQJ2VpYLms4juDZl6eL4rJCjkU0uitaHZJ4w4ITzwMiWryXn0luFqXwNyQk8sFzJfDszGodSd+UNEHoDSxgox5lUMAterSFZkLwx2yihPbICtfZxPD2GIAIjrHrNDgjnS/w1JB2iGuarlwE0Ty0RxDLF9nP/UBFwTY7KdxOPiRltynmW3UaM+GEymxhmEEy8jciVDg8tMowUicjom+hKhBqxPs9KNI0ux5hprYPDhB5uxT5lxZWwCHkZY+Mcm2h1jlEbuxPxN+fqn9gayZy9/+oCgdT1deebqH9TQchw2/+AGxjxXt/f5izb8jPlR38HQb4MqfaPOjrW3ub15eC06a7u6QDd0cNwS44QHumLQcmIQIjHGVpca+rQzx3YPNVLUcVUXlM1X/hSndVGN++D2GCt7MxcP9uXMFUIWxWMklllOmHlEr19xFrqvAmEfAle/iBeWmNbbksZpzz9CmlByYKxPOVMjFJSWovJDPa/CXe8efXPcLPzyokZbe34EmP6wJfg61HLoMgw6sjP+BVP8nInruJaapfdm1m+0UIdjxcS4V51vbFsXZKXLpIFzu/DzHAi2Q3S62nqY1OL9tw9bweAr6ghf/lPyg1221e8eXcD+c4qy1EagyimES5zw90LBo+ors9KW6fmC3oCb4+cuVb3pMato1QppCG3nPjCVrF2ukwlSi4uoUvouQw5dQ/z6drHshe0smBXP3SyL92BDOj4m9gB9VPUeV/u7d020iAOdjl4saYJgVulqL6NpViragITCVkpCfMKTPkrrQph7m6lGzVskTNBDYJl0A9DnLPFgiCaBvGP2zuDppqbtmHb8yYglaHttrchOw6CwVkyhv3vtsOZcVGOAQaIEeTsjTL38xeE0s5lwHoWdhuLClTP+ozF+CmBJA9kuSmssqQ5GDNm+rKhvYl44jGrC5zouEWLaDgiXqDb6GuUgWhuM+ybkAdO02OvR2CfXxhWETdOl2PBll3EN3Q6nXb2DW1L1tZH8JsuAvunCX8bUuJu97HPVrCq2TR+CYABwaXKd+zl9XqEav0V+dCAX9CHQmNtxK2LpqeNIji0DwxasNg8NQhiV7V3zRh46oevNo4jAFpdjFC6DNZbISwMWWI/dGTg9VdfJtxQ+GWkLyg8YskayDmk5Mrsx9ct77UnyCy4szJFwx6u2Ppnll6IyQmQ6ofuOGqSwBrgDPRxyzWOmG5wdgvHKu2HBeoZJ6jc6ALRgvsMdez7jKFTUb94xcYG6773qvbjuB1R/zAgy/7AYkgDHJZnao4KdMMBc252saELtIO6yg9bvEv9Wmqe3ZL63MMbRVxQHy6+Zfshmtf7CzntkqfmB5K/iHOFUiykRvuQddD8lnhmilKogG3kH7zCIhsWWXftHcWgK0aGlYsJk9RnOuuKbW1EMgL1AGf1yQlTszjh7+46OcmhufHd5MVsjuXbUcJKRfufVHpRDaWt0gveGc7qPLuhaC7BiMSoJARwDXJpt7RZBJN7wjO0iU8vYaRvomy8AqxxpnOSuPW9o7t825UXV5fYXIj3BJ2wJMdYiJFzgZHUhFxoiObKsoErCO0yCcRhEpsoxyzFUOulo6hy4An4KaZTuusGAnN0pZiJqKQtv5DFHx3xtiIjgxTLnuP2TUtTPSt3II6SsSE3Hqsg7+KTBFqPSBB9d6jWk+/EtSCcbynsXu2O8OkJ1HQQE1P1VSO2smWXxrtYgs6yiK4B/aqwJgZKxdDfg8wStESejI2oZk8Lep30L09O4U9myYaCOZM1HA5SmoJacJcLvMensyghY9/KMYeh9+y43i/VV8D0fZ4kacs2bHF7UtrTj5Jy4WtfBacl1aQREZMWX5nAdJZwj2iUiDZ94IU2ssQ1EIee16PjD3MrK7ROCWirlscHNEAoZKBdSU3R6GD04iKVan7R8/BgtCZyptMQJx1EU4tUwIhFa0f9p/6FRV1Nl53KHrXt8tVBzkgcD9Do1onj9QUmaM4ba5pHg9RYgIc7XWYG1Ft7FDmhREDtgneJfpLbYkEeJjFhsbOTdaOOKdn0NUpGppewDIZQAw2IB8D6mZAwufqAsH8I7flZY4aLmP2DgGM2if6iiVnM12M9BgliaflYyXIb40e8AbazGi7nnQQn29XoItsyZlvpsNbgv+jCNLm7n046zNQbL9r6WfJOKcyVefWa4IPKj+Lw5ZDrJcBGnM8YvHmiOXRLeXgdx2nk3anNKRXBumyTddLkHOBzKe0X7+LXeuUp6a4bv8u5rIZmNWkRtev0+0ojrnoJ+Z4BQbkJUWB6LKaQSRdbbK1zLugR8lb2L0rY+/rjZW1j2aJca+3XspHOcvmSUa5gZt6oUiciSwdcNvs6FfQqEsOTwCiHUfv6K2JTlFX3668BOh8EcrdhGwiYKgJFfVz4yTtCCP8lN0/EDfAjt8ElmheGCnUrqNmnuESZWQXURG3wESmyJhO1mRo5mDbSpDNPx8pOyf2bMQoscbZ965kdrf2PFQGyCtwZuQdDQEn9HkEv+5jiJKKq3vuVyivT0daF/l7V6leRjpsC30sh236gNg0OjzapBx+CvEaZ7PM1OfGnGmygFa0ToERJaBDAZhKJmfjaOxF1auf6R+4GirNiS2tEhgt4N//YvdYSkO80GB598C6PV31NZDp/bRSV1IE4DcCR7r88Bs4X3qZyxcCRRo1hVBaBd7iCXFfzPe4tkheFrO5KGdV8D19SJM2d061K75U6UBxgCDqoQq/isqPxyF4ubvvjknbD26JIK9teUdNthCnTkGfr8Ah/H3fr9DE9BQg/UNvQ2huOio0PvKaLK7GMckQvrpoV3YUk07W+F4Jbo32s9mF9+o8zpF35d0SS2csIrHWRmr6HnAriUS6jeEmY+P0/mA9RfJZTCUczXnCbkgls+13nvGU02ZSNEteyoLzqnP0UQ5BNozgROEPKrJsBbNi+hxKNkYzf8UreU17M/VeO+Bdyh8b/zd57R6xbAfzNptuT2WX0h94CWnQMFnLo8NFqRePbUyrypoFZWemWWMcfzX3B1z/r057A22rYFiaxnqPk4RrGBaAHRS1iVQohYgWfKNJaWeNuIaHGuEAu06AQj8OdfP7oKVPgTlRco2GqVS11V+WP9eDr7VQ37RJ1CyvvhbBtzGpANuPM7eZFr7c2WM/pEIp1HCQqV/rO2FjFGHCpLTn8H3xgIchWkrPOSTx99hnFKOo8M6cV/kmjqkWmU38j/5abTHjyH/vrpBEZYv0/uX36vywtSMgyHGyrhBCDlzOER3HH9CefaYoeahj62+6DoCa1cVSaaqMjpPugTCauj5/KCSl6ngaRkHMVEwUcmG7zWIbWBdndV3pGYT+PAxllKBIqPVD6sEfYIwi4ltz3POHkL7b9aFjVpskEFq4ttXFJ4HamwL/AHRDnJ91LiQ306ZfulXognkFHEK+IUHhSCnD97+tgFJpL24IYvNzFsU+6aIv68GOP2iDhnpJjdRGtUNepkGWQD97J5ZiGfN9iyVdI4ITIOVLVJ2P6XjgrHAbByXq7TSloglKW4Vn1ShQUErV3xma5kMCavdjNQBVva8NPqgPDK3Fu1fUaXMGpgmHPstugAMS/FJ0FsZMJZB7iH5rvG52+KFwacgCAiMCjOH5mw70vbA5hDdS/Vv6eSDP020VqEtcXe7NXhiP9TY7YsNxTRKObVa+lnACGut/xvO80zbGbifpgqJCGktV3apQhmxe680KKC6MAi/RThXWoM2QNfoUzHTnZ88j+YQ4FFG/CCOfrc1ANjdaeAOjjEEav63749OujcaCnE7Kw3KScEf9AGYpktwuTA3+atf8bNBuADKzP2lVbXxJuN7ti6TIUKtEWTL0VTzJF29/gxQOEIEKw5YW1JrSj/SOf1GebiHsgi+aFhcVDH35RgkGcYww/gFks4nH+lpm08b3JY+TMmDMUBRBmHJaK+M1PCexiuausuIMgKLRcsiysTTzBKPGu/y5QLn8fO8Ea4iyQvPWr1C/XK0RFXAonw26JLx56ssX9PyXHTponZ157FD5bXe3/wqDHWu9mA2MI3kwuB+e859MSLjm7gKFZizVr4Wj0WbPt/x6LY69ZJmToOwUypihd/SAXQq6GcCKA2lY+8VTUfPxw0COIHd0flKL8ITiExBQDdcSgDzCmMHXye1QIasnGYD0tgEGTuBhKsZOw2OQCnoUnMc6+wZRsfVgd016N+NZRfiOK9KUYWCi5qXqFzj3gU0dz7iPwzFRgBklD1Qbye4gnN+e8nzbMYZyiGfKHJO8Iwo2D0yvbR7b1FYYhHC/e/3TMVGhGJJ4ktTve63zJZ1EcH/C7LxNgCA56AvN8DomVFV27tqxp/CGmSRSZTMg7Op3AgxXT35x1kT/Dm9N2aT0yP/Np54PHw+sZtEPLATs05Hx3pr4M8vfM2ojvB4BNtnAAOFsrlVeFlflSAtJ3wx38YNUcoM8wOdWG6WjdPsTwireKUb3/mUqjLe3V3fuRLz9dgHXQofX2hCkNG+mfipNAvTerJqwCWkEwzp67NwEJ1nWQ0vdHbsGbaM3CF/QuMg8JFSeyiLpDekFCBLUosDHZHu+9X0/oCcWxXSD2v8K5nFZVOt0AWlNDX0UC6M3SW8/IQejKG582AhQr6yTdCOsAJAZFhsN7z8VjFq0tBD2hu7HniIw7/hA8PwxbS3do3/YNsXniI1Uk2e7btuY1wYyeUJWgYi8vDRjhXRf7F6jqD0W3cU8yn0idzPD3AqW8uqFyQ0YtH9F+BXifBXpPwlqj5cJfF1nE+OXB9liIn8ruH0AM3AeWMebPgleP+Q+eMYhldgSkKeBP3wnU3ESUBYyyMpcqGexWGvyAqOCouQm5c9GaMh+OP1kHtErTKzz0F4fCt+ov2yKEd7Ip4IGo7SL8PZ8MereBMKb+5qYW4UeK65PhpfAviQlnOY8bxfmVsbOvb5F/lGdfECZf2H5oGthoOOWaJOF6fAYN/veaNX/TBVoN9dnioc6CyoneiAJPcbAfcuQHh4xO3gOXJrVsqRt9h7sD/MjSSP8EnFTNZjMpao4yd2yVkexDp6MdCNvlOwNZ5iyZCkR+8JLElhliAt5bOgbyxcVpux09ErHCt9qaE43JvNb2NwKbR6qAbY3LUTZTHJeK/yW/mIib4ABsP3JC0CJxb8I0KZ5j1OyjaNLu+MgHlprfvksPBqxJPGP9A3gUhSQDNceacW5gc864hQZIs9Sm1MOL8G+5LBlLuDZ028iv4joNWMYh7QMaebhKTll5tlxPi0fGEd2MCOO95mhVt88w/f1HEwgtnBxCFm7AspbNVmQe7gV/O4e1PtnlW27JAz0oI/CtoN/94+1bGp2QdyEpTzyxWfCYqI5uE+xZm9MOpLAf2CiF2SyTeqQYu0V9ZTQGvK8wTTaGKtycuGXo+EQ5ZYxHcY3/ft3hm6nnImSRGjRYhyVfHV4RPH8ug4O7DdQN4C07QIk8t590Qbvgr64PsOlIcD/kFW6RNUk1I4o7g8UfGpA0+4O+hQqHHVbW3Vam/imDZLMTALoTGDHnIp6Rs2jy/i9WOH/i/t3qI3N7H6nRNsIS4/GdhxRSq2C2RsrAjc0i96JF1cMifSmn9xBUn4h3Io7eav3U/g0luXhm3X/KUkBL5QIzMbfE9c7xqYuU+ymwMxUZkCnOImn3Ftkw2GC9DNWf0x3fRfrTNvwK1eXJU8uDEwA4f+yCz3s5dAffxIwgpKwXKBmFBOfjz+nFYgBQc0kdiI8KfwNuQSMHB7K9TpujsT+A36DjRbAL2mpJmlgsPnWLK/ST4I5BBDId1tXlrZ3fYAq0vs2nMFASwVJQmqqHWSR2v6YwNXopvCiWYzwphoLkx1M4+fPMLpT05PmOQ/GtG3+CX81CiCWYh9nDVJIBnkAjmKvP9mnEmnZLKfHi9R/4ZyoySAlrz4yDE/+YQjORNgPU+CwLR5MCWiB5WwLcekkICPvu4V1pKCK0AOxgX2P5zwf/DZLxrLmRZ0cbo90G71bqWBR4HNSLOXT/CTekmi9M5avrB+7k5JqWkLZjaoOQpeez1fKM2IZDXO+RpOTDKfVxO+LI2FBJh2aFdLiBxMHM32WetYepci7M5yFvPIY+jZG3w32HzgexqJcOW6swle3oydJbD3wrFT8/srAAs/vIMQ77DNHhVIdsGKlyXZdXjOaYO55EgUa0oXpPYIMNWARVw79Aoor40WR8GIZfTs0ONC0FNvXSut+fGBPG2GWGwTTonWog7RL4an4bOgwXJL13x0cr71wd6kBzkpUTDCukJXmpd6ynhfoppdQd0uOQmEyrcMJywpzJ7b+8vZA043MDvNUdZKEwEhwfBnfKCVX+2fOAd5+KFdVacFTvmfkwZjreFFY+Wmlo3jEdCktEnSO5EQ0c5EF2BJ4MPMydhNkU5eMAanFEgrASQZsstrOlKMo6lzdaWjwmecfuSCflgx53jRsXy1LlcPxYLYGaB0Nhn2V2q3MKBzJSMMG+GgI08tG+3jQpfhnksEj3/poY1nyyzMychjBQxfj3bgdeM9QkuFpQhOnEkoNbZvuy/8sDh8/GGbYKTL3/PE1aTFHTJ7hkPqSi32MErv2GVmc+qo7Lv7KpzrKjBLSxWMbopBchj8xHQrGtLtEnhQZUQwUWaoIu7AL3/bDqpeVZiS2ZtGgWrvuFgSludbFWIFZk9vwaiSny40hfdZSwuNx5xcf0dNWtpbxyEwlCrvAAdFLBqkqOqHjuwQifFfU/LSchUHKIZoe/n2p4b0Qn+zpIRwRYIOaQZ1hbdAURWdx4nzx8G7Ow2wNTiZMUPQcSLy5Pu/hfkRLhXmiD2h+I+CV0uevVl4OHsQb9mkqfy37dpZgJbb8oawH24bbuZhE5IgTrhh11Dwz1qg7MhgVQn5x5ymeOKh8Fn6OuPIBpZ/PNYH0IRf/DFn8KxFODnyLTLL1bj+C5h8JvZckqsFxsJjHtxUvuIkd2z5nRkF0TROKa9kmAUd4vFxWFHksxal+REBvDutFFQkVK9FvOo5PQeKVZfOP9OTZSPYlJgn+gUjkBB1aMbt46z7Wr0AqO+sdHbrvqWaZeQZbalYPtQ/Z6QssmodorrHtdbNik4Zx2tShfek/FNobOtb9IBy38zVzq6LX9XFbC5BmafTSrHcaA7SV4y64oK7bJTtBnaZEJMRUGif+2ejUaVSfoC+orbFceMewBbie689ztMKvp3IaHA4psUbDNcs9oPyQrEPCLioff54D+GPzUZD4mA0IXQz1gbq0sntWToH+Qq4/TDUXMXD9xntVIH58lQ7fQbfp4RVWzenV6zPfLDalfEUR0rPWp369iZgHCTLYXOw59mrAXHBk6UNZLVmbgMAVs5AgR2Dsv/uTbJAwEsdJOYPHnbZZjSfULwVVa/zbZQ5/1CQ14cCBWtWEZh+WxBdpmdxZFx4PdsZbU6QjkT4i0O2DWPyrLdBqlD6Tsk4JqXqDen2LdyS/0nyz49t2qKN/Ne4yLXSLJ3nabDXIRPX7BL7R/wdtuwVgS3y1T5GnCoSvlzXgM+eEVTjsD2xd6DC4bfohdGIdm/OpdhfSOpl/QQZgNyjgv54vjFq7jd32JbNpLj/nPmz5uqYgR7p4qMkUbxaIr7yMlY87/Fp645yIA7zyLZy/8Qux7k8TYGt4yEp+eLED/ZV6hTMWVEFgnt4VBeWvlbqJMS+91xP+LTXXwu8gmfRItkdBHZ4XFjp5Vi9g/objCTE5I72F9rXeJWX1chWBrVEJfdTsjFH9cge9Gt3fkj8KLs9I4YEsfkyRpCWPb7x2tqtfPu36Po4h3VOX+gWDnMXuaIjNUHemayFknOfLjn5be0b9v089mxM9G5NuUiogFi2QyJbvtkUkW1D0v3PV2UGoAfkwwsuQKzkFjdJXdltrNaphxrZydBqhybPveSqJFei5Mvo+U0M8JAju13ODjevBnjmctx1OfeMUqtM1y2DAJPz3CYofRWOQ4EYDRfs8m9jWIeDks7YBuehHqlMUlkjUSpVv2oMWdDT3VWnGE/YzyhQDNA1JLKsgWltcwhfEpsjVw9XavtVBZAzNWU8OKZyR9kdma5NOK7GfRvs1kBA0/d23k8BYBl4m1L7uzGFE/hxfYpdf/1PH/q3sTqsoFIGMRaWCbWLthtgHtKaEpi0IoDYrJSk4BsdMmGT64Mw+y1M1PEHydYYhgdCS8/CB7Yxikd5ihVZcmtkjPF/sVVFLnlAAU2QS9Ai7lk0lUCoIP+jAu3XBXIr4IcEdqirQsWKPn+PpdelhobIdLfEdctVuIr0hCY3S08ijG/47IHDFGd69lMeWpZAUOhfQPOcGU0tJT2yvP64h0QusfuRMJQ0jTyGucZjb/iG0vVplBzEZja1I0saDHBTWADIaVL8QSPYrmv7NWMDXS/oV6K6AbQ+G7mCc9m5gRW9yLTwC4JmKHeFpjF3nL6R5SPJtrJIiBtBfcOI36eN9i5/3VJkunHRJFObFwzl+6YKkhrxLCU7joGUk4nxwoSVzUUUjSPmxo4I3mbXFkqCrfEo2IojQXNmJKrflZVK3IxO/zwXj5pthiw9dAYXMwRn+Y5XHoAoGcBBroGJylmyqaFkun2zSjUr/OEV9p4KD+LFU6YM9yP6MINSO6R8aZc339hAl/z4q6WpIySBkrmhfrUiKh7smfHeZV93pPokjlZrD8DaypK8tojtRZfljyIFmM3k3dfd7vzZnS8JkMtIF9DJe+QvrXFEv9p3pwM5KWTkNJqVOiNWzLFR8C3fmQyJPYzDwg4Bx0f+PW6tTl/Sd6yxz6/g2D3vbOEEHTDprn0LV+23gdbKiW61rE09OuPi+uFFTWI5+QiCVwh89VDQchBBIxyYhvPEtSJsFtlmKxwlSt5xJNmJIAXi8rLYZlLMOc3jrZQFso/ocmHDUCBf7QTi6OHaja5fQTHIx4S1u2SgVFL/FWZHUYVU/najN7EkeVnyp9Csb2xuH1OwLoNJcreF6ZZlVI1AhIF84lG/NgveH5jf30OSdeziSdd+u7/JdKYFskcjVSLmQdCJSgdp4m1aLkIAc0YkgGdQaUtJkbpEB/uKSUpNLnawFDSgmavnUi98f97PADSZOKqov5emxEfmUuP/uSKJLLCBNllIQ/AwVkcVZg8rnkKsJIjlXP21UIJPZZwlSBkHy9holUjgCwYHKvVJ+Fv5+o8BzGuSLw0QbqeWCZ8KJRH+k+UW/WQ+tnGqJkQdaNC0kSQ587nt6ufFQ5vQI9GS+ZoyHsqsa3aoDYZ+le5bsVS/Vh98TKoXhgPNBdFyDXgc6gwK+spwWitCvP4xIbCC7DsmrSUvOFTGzBRF1GC7wRAw4YTGZ2SksNPdcCoo9vfXQhyxAjPx9eoKaG8eq4f4gi1vcFPcMnRyPhTbdSqjrf0THPi4glXe7qHYuo4RmbgUyc3hmrWpkT0g5l2diXMzUYhKAiSjb4Hp45s8dftSqMjswYyCva2uA7tCt8YMu6KvO8XS7HnM8f3jE4ymvATVimHt2wRARbg2GJ4MbjaSrn8f6OItpLXzpDAtAxB+iPiVq1P2CLmLPqG035FSvCcblNZ5EXaWyZpIRZMYaKDs2GcMoZt1JL8uqLz31RDTCBBlVMLu3MaIvXLlcK5R4pRAxOFkfJF1GAVVj+miICSqFGMLZWfI1Dg58qWET9itzRO2I84P3pmvrkJ4ifGECESogoF7qdBTqBavPizT+N5U6eRtyAvnQRsu9aHtf+xOMrYBcmKm75Ads43R2IjG6GcU8X+mp6P04gUBBBK72oVqYLp31ZrJDk9Mctb94WBT35Pjn6U9elvCCT+KK2qWpS5JaZeXiwSLrzqqPFytRszSFD0kjZ/PWvyuzgv1AZBpq6Kmj5SXUAHhci9ubqMpHLZECsQhVb5x72k31dmgqqnXNstbC08m1Dzlq/Bsi05K5EdJnv0crgRvNXmphmBHiT5lAFrSvHsggsnk32LVnEuxGi98PqjC6QHQ6KkKMxtU1T1AlgfLBGmUkV2Q2l6AOOtbd8BUvX1jJea1zhklJyZw3tvTwn9qdpmNlCEQU+gdPKoerB7Fg7hAq1/AGP8RYu7z/DeNIEfL7rPpQ1OqmG7/kjKPBbfve+UKHCJmuoUjnC7A5XK9sZmlDWOO9U5eIpSIANlXnurvP8Wwd98DAiHjYHMxd65Y4qFnadoPG+gV2KnIGGeaF9T2j2GCQK6AifSe8IXXPiT1bkGpv3/xIGzraD1Pcs8MHWKXGgU9QcNpoo+Iv6JZUp00U2S13AjV2WPZV7YltccbgY9TSIAuBSydTMQ4Z4L7H0H6Tyc2iWRlMSrZI7/Vzf1WooNHmprqF110UWmMhRA68+oXgDpXv7nM+n7olerBaQ5hY7tDbQRkEc7FYPGy/4ko5iy4yilzUYlpWxJb2slDCJiFhnLgEPTD5Nsz4L3kuSFu0YfEVrwfuphpd7sYzwbsXdHbeTEsG9vk1TC48igvBOrp/Vb0Ci/3LdmGkQItcd6UFMfpz423bAhmEyiV00awDjBPivvOinOko6jVcHw+drsWmuY3wogB9fWxuv1uS9SF1AGu4CT3XliKHMoJIdw/FN71Fq6auv2DTaoJhG3aaeBhWEps4XD3SoQ+PfQ/BRr3kuMwiCjak0EExSnaXUYSmS41k8N2y/26nSqOlAdM7CpASAEKzJUvQoo6+0A7fdFeOxMWnXGS8fHJKXEGWBzsJ2oUwGAmXrzXw5kG6EUKo6kta66X9tsqZUB/S6BGWRpPhjHkY6UU6itl0FLWthj3ovRx96tszYCnTFdg6HN1SvvazU+8zQmcd+QWajjjhYL5iB/2e9agmra302n2TyQI8A+En7m6ffiJIX1wZLGSIpNviet8lBU9AqBJNF5dKMD1FDUJ54bpZTToxsqI7a+03WALTxNdlK20sPUPGghRMD+qyscC069DObo7FSwUxVuT8DOsLj8+wQEod25dZoKTjExKAzrcqOckoaGGR0/ZmJ227Pe/NaocgkMLBm5NGv5QvPBRiCMMowZbLzWWzhwc23PcrU8xEKBvlyuxKKXnmJTt8VzlS7d8PRpk6yJElb5MgStaxbUHWL4qOoSUUm99I4o7goVlg//K2b/+clpD2SE/ZiuRjY+AMGUGXoWqxb+rdtZWD5KvVbiRiVQxi/1l7X9lujdUVDiHLPW3hL4/P/TL8WijPWP6i6rDuF82NL3owkxilORTKHVLYE3DY289ZATVd54S6u3dj1NnB/dZHx4mBf4IwBnlNBpYEJROA/5XLVYOJdwUoP2z0fwjLPak/XvTomjiO+oS2KHKNNHtEXOoK8bEq//frKs4E2ehVHzkbZVXmmgIWrGToIqEWUMwENgOri8nPxZFFZn6vyLiZZF70hWgwZvmE6Cx35ULgcsSbPrn94vic2v6gUcCpY4bYsNdwvRnEYx7oG6CrF86wZlzJCu8DK4JhXymWW3ZCCi5MjkedO54LJMSTDk9TLCN8ZyuslcFWsF1CrOtCo+JNob2CkL1y2Babc1h9ey42xVGDtE+QUsFE4IhY5U4LNwHINjXRaVKRtAZjqNYbFTJ8tYDGxZPi3ihqef8Shqs8J5spD+8Eo3uvvo/ysQaqcaF4qNEHdFs7PXPwH2/j+r7P7yHs5Zsdic3DMXK5TrZ4X4mH0DYu3S5LsQvu1DSSLdUzxVpHIZxEY2OdTleWpyLDvB3xi4CrKBHcGzY7z6VCCqfOxzltJXElg6TlvI41gl/wX1i09+G8Et7NI0RqRFLAhHNgAMp0SEr3gtVh/gVS2Gu16omghhSYBuhGj1qaAsziJWnGfDALPSiVBbyxNpB2Zt04ujXFXYr4hfhHqj0VKP5XnbYUuCHq5QF1Md6xIDIt3vQDAwlL61tOjuUQQlOXSibXHbbl/amHa1q2RB2YL0OC5/J1fL0FjnjGoYMIbGCZvEYr0PL2/cDBk7kLati667yaGI/kxeDQBKRA6Y4yTtjj/fbpa5FDnppW7je7tYc7yiKFa8liU3m3FPXeCChZq6UgNwUqdxFwa8Wrodad3DrvzIjyhH5zBL464L6OoHwjmvASvWWt8WxRrFAl6tYG8ReRYwzZUVxZu2l5np41FeTcZ1ipfr5Ln3Msl6JfybnJqK7N5hw39/iTuWQ/zXL8W4S8L36pGoeqwUWWEHBuBJRk7oLAA6ffk+V9pHdwpEWpV4ObV2O4fUbaGGksOfeMzV9KrPJkZt7ExIgrPINeLCwIIYzOjSaPh8GCpBKeL0VfFh1K8B1qjGXY+73iiVXyvloPv8/3/1AfWh/bfTaEvE1vXvv3bcAVbWZnZVjCP/9C7o4M2tydbCfd8oFuQ9Wn8rkMn2Ouuo30QUW3xkghYYUnnLa6FS4jkHyYw9RLjZOg2p48zuujAKu3IQfKgHiW8/vRFG7gaKCU0Vhcyw59brTkSdWuTVi8mBIgzAtSna+xZDf0DW9R4789yXoFIbZQ681biRPFFClk7qbwhEzJXrAphX1dr7b21JsbisUxU9KuyBV0sNJAYjSenl9WOzyZCViHbr2ih6iSeAmeP4lXFxhlmu+xzWRqkWFX4Tt8gHwfYrFF6uz2+m/rkbsHcZJy6CwR6NXi2PZ34LPweHzYxOFVhC14k2JVHLOfqHD1Yg280N2jrzH8Q6DDcnWtSl2i5HmiYw4vZ+TRYJCS68yv6Vb4TGhGKerPfi5hwk19E69a09tmeroLiXn5EJ/HBQBMt+vktzbmPIyVnucQigtKw0GNMIiABH9tHq8bQWdMkZg+UCIFI5++cX591A8f4gkQ6p7spnE5coQgZkheKwD/qVJdhYVI27NUV3j1pEzYB8r3D3DaA7B2s9I5cJ6nyz188RBFXdMs5B+lERL/sRkga9ztdMV+Ml2/8e9gIGS0x4heQllY+VxtqnU+NgHDxH21zv9wZkaF8Hz2cmNV0+mpBpKmfWthnBfFfzbJDueG8IsaHpt/V+1H5vPpMKmQyOgjNFg9SL8rDlNZT/5ajZY9zfWUHbD6GRkiSVBA1XRgyV4djHxt0JifjfAMD9wnSQJoinGsvqp3d1L6I0Roa5helHkIZQS3HSRVmD20wdzP4MyWXnGH5IgJNVxi+2/217RtBB2YquyNMMwoVNC/trCMUKmWYZdzAGh6cPSRSKRgwIMJOfKmyKYq2wGxVVMisuPrNInVfp10Ha0tcyjmnL7z3qYt3fRJCiEYvNWjMxasWNrNhAxAJEPeItXUDc4aEYKDG7z0bI8xnuUztWdr5x2dLW4FzHpO/pqea7wqBpb4WNx9j6jC/zgO7Vf+5UH5/dZIyTWcBl/uQLHlBFs29+ay0Ghsnn4ju5e+dH2+9uWTotSh1onluJqS7vgMLih7Cb78lL0q79pLqkBY8ivdOQ/DmAFkqj3YtGjPeXvP7ZE6VhYtrHIlfuZDba3Aww7xXAIiYkGY6a6YvpZvjtV/PRIJQcmUj58MOotdgV/QEmk44C6PpQkoNZ2pZMSAGGQkRBfK5gaphctswTd6NV5NbXz7Tf02RhFRFHwnkjTbmx/pflEgNlk6txk4CLbMlKBPy2CP+xQem+44tSkiYyvtzGqsid+cvmVV7vUVG7UI9lYrGzRkVE3I9CtGidraJeH6NPLWu4IkwxdJYxdUp3aLFqE1Oc4LdByfihMBPsEotSj4ij/7J6s6F1FgxYucMTAZ2tvVT2p8CdCKbECSqoa44UPMbn3AYkUur3Cq/EDuKhXuH9KclIk7+ZfqDEKP1k1NaC3wLA65nizpnpjSXZtw80cA8VMYwFeJpCcLGHYlmRNI6acGgXO8GUTF3QPzZ/qKsBK/8aEr+CRliRhQtKVAH5VeXbdQq6SGG/uWBonYtPQsNGrVz1yH2fhpyMNKqtgv9iGnTlnVNGkqmZiCIqVUIy7yOHiLWWaRXIKSMxzspmOp+4rue8kgF6xQk2dzXuUyA4D5g6S+aNV3ZVwv1OFUPunBwO9zKZZG8irX2PF36IO1v6tq4lU4LcNvVaZfYXdwro8VoQBuLzI5Z36vdcX5DhTkXDrRxRxypzeje3GK3USz5oAK0EcOJppMk1MWGqeCW5d0YXcuo0jdbkJZKInqzEMgGw1YlTAG3mKhDqQxL8/YRZZmvqy/G4zPWiJRsBd6pvTkln2ugEFcXxavoOQ3sKWs59kU/iMnsQcTK4ATx9pxWh3T2B0FWn/D5f2qXCVvMkU1d+V8Ve20yg3WuKYFQHfCMku956qGeyYJFjM6g/+gZjzBrq5kKwUMZt/vtzQswvSzy7eVIx0DAkkMLsSHDRK1LMaKcZgC1dG7/+Sbv6jtftHNr6TyJE+zKTOHA0bzrQvm1gFTShP6f0CzREGbW0Hm6WmyACxwab78gJkzp75hwVpu8Za9GmsGp2GDL3bvlD2GdoHvH8UyCJ3sh7UjuPKdDPqCfo6sMLEhH8vPqyDQgFoyzpH+oFNMBcunJXmGmxpYAlLFMnRD7VDdi8debq/WuxrJzmX0QJ1lo7sMyjFNjQ9iveI9mAs1zNdqDLz5ruB+1cr+tbaHZJheZhC8irbWV9CbrHVY2gBt7kI2xbKWNoIYfXTmPdiE4RRWIdVtGc9UGClgjT5XSqoSnRVvbwuMROj4ypdJzCWi2LWa/VA3c7AlBcaGgythi229B4fQqYY+nhYLuyA8erHseL9uvATqkhx/60PczcClIeLL5CvxfkqCeAPzEEOCqc7XZAgw62r9ugm+9L3vs8XG6XoY/Ok9ZzgUWjNhRIb10F1XiwTqeQGY1Ads1hXXiUu99jd7EjTstj0wF1eYJE3FiPA9XganP+RgzprbvgCA8FsP3YaR6JtwdFAkpTFf0CfUFm9SiNRDMmsdiSDos5YB1mrYCb4rW2ni9HdjsqHAOTTu/zf9+FaNhFJm2ehw5sqsRNLLmQ+i1kWfc1x9dysdc8dBzrSI5ZBT0wQPc92mm7tfJf78Wl3YxnL2z0rGoOV09M2G38z7S+U26e+PDa6DlK5goxLXEjQFPtkjocZTTmLEtYxHMZBA7UYjNR4bs4NlgF3hQt27uhKudAAtT8BXl840MN+UAUp/GDtrA7VQN7r0DOZ4Zr05pDItbEeC+ZCBIZ+8ChJAisoJZcIm/eD0LreD5flqbahrLYuC78XR7jriBux/x9GEr1FDlGMRspHU9KiPS4nMFsfkUapuf1+HD1umAxibD7lS5shMur90OH96uGwNWKdRMavVBCvcT362MLBXGf/lTVY6+7hq+AkEb+aS+0Zh3ZbAJgBF7Q9Oe3ohhtnV11d6bcXAx13eJ4RSvfMwgz1Z1aixIzxdQOB7xqH2BEj1loj1A5jRrhT9Y6dw6y02kI2+m/YZ7a3m5bl1kulCnmMi8mAcykfZwUB0+rnuVyeDc+fLdKwAwEiWYFJXMPijdwv+yphZSfwKd/pyNs0ukyvtAHhh0v69p/kHNYB3jatz6IzsbubL9Yzcfo9tk/dJDZKKROPbtqBjtGxDgXWPyvr7iXiZdMLmhYkWc/VsBpyvkCtYIhZm65aAtr7Una1xqMkjCBgWmoddfD3Ho1nrGesvLrazE7Kbx81TJLDR+FEiyMD/o9iusiijx7gzsQ1ySVMN40eVMFH5eXeUzJwUEJzYHSB8Bg7oE7Gc7QE7y5zJDarAInfDSqWmwNvu8yVRoMqXqBiDZoP3tZ5JFmXgzxzCsY3LeEe0sPA2nTxDaSImIXE9zay1NQTD+spVsE+ljDQRKYlXdFBeUHyt7OrmNrfWC8qWfdC46kq9TawS1uLrmVJW2LuFVEoIx8NUTDZe8KZuWuwFoxHORpw6vtWsAZctP+GIoV6ndmJFal4OBGQrVvW5ifF+4R04l1Kp/gntpYqk2UFViO4tnd5q0kax9NMTHmq0RldGLXOaDzARv7am2ue3MEw+EQkffBR4t+Vr9LCyuGNWw/0tL/j4QY5kHe4YeHYDKYWvOoB/XJDEmHcUNhK6e9+Y2ARcVqD35Kf7fdAG59Il/KIOwLEDktkwn5LZco+t2n9Lq35IxgdaqSXmiHLu+vHG5Fv7uZ5P2bqM+tiOMgxikbFJS7HOkYwpj+63UoPdpUsL8cF04Cz4dfLn1qHfndR17QPchgrWvCCyJq4NcIyaPWe/gEkd4NOoj4EXN88ZG8Z44zkmI6Aikh5rmP1GOlTodZWZvjGu6q4JlVO1qKqGKmRedpE1bQyGJm7lKvrf/wUR97m3BwT01JSx+CeSz53IJJDjDXNqahPSYvgHoICuxi5X01JGY9xaomQrlobELQtehF1f+Dk96Nin56jSO59mbENUlUavXvZ9PGODEBCOJWF5F9NBogJfrvBQ5my2EmRiRYm06qRS9YR+ypgbi04jyXngdScV13J40aFarL6gM07hW1sfhOtTyE7fKC98l2NGKFKvttRZho4QjnzqnwjELjPmkQziWq/hha0WY6qlFcZDknxonfWev1bB4+iIzbD0wInbXn8Ol3Op3St8SUWeNpGfYXhxigHtWWiNqsnkPsCL6ya9GnL+Xj/CqqKfZx2JAvRuH9/tWuKFASeDC5EJiz6OIA0Xl/itVy1k7qg3cEqDU6RpiC/ehp+UiDYH7OaavyECyCmN24IENcPd18QUNnLFIOxQsbBBwvd4oV+ZhQuvjmrvG2NfVcM3pY8Ow8fOXDpY2sKxL9MhO24nI/mgFOySdu2TxzThXYeJDpV7kCzkgQ+XhNBqWYja8VPRv4ngF3EGmgkaM1T85LcHpunDqXQVmpKPDvVJnaI9TZfsrZ22oNl39/GS/iFW8rxMKZJio0Av7a3Rk6kRJknXUTy3Nd6Lsmv7/YGv/Q1eXf2nTWzVsc5ZKTVflKONvX2rdrtt6T2Dsb7yB7EKPWN3/qEQWNDqrxqMeQ205NDjAdcjJiZv5Y3zCMCsn6TGizXhT2TYNnxf7/Gt2mNSCyo6n2ehcqfMhmRBJFxKH1NopuGePV5EV9vmUGMlgwWlcfO4be8mY9N5oiK1RkrUjeVjCUpuat1r49ZO3OJiGWfC+CwBBZE0f3ptVfacRoP51T63VxeQgcNV19j35q/NESfHO8zLQQdW6xtLQAMfkW21EGv21WPvezWcAosxf8KqSzUNuquPmK103gREZ8nqGLoYX6JMZ9i8Ba5XSmSkCwR+ERg+cdFKq+7OPGFJAiFEjiqNgVM3NDJWZZVVmhQrdYr8k2172kZzcS3bHKDXF4lyNlhSG2G7+X3D0WpbEanUEjipy3BJqMcVCVtP18IvzQrbcVmyS43rt4HgwLROVGjAGsQEIkumyykNvo1VYpmaQfEtmfE7URwd8SHZnpPzXhGsJ5cgMup+wBCVbZKz4jPthK8+8mpqAHouNHmTvqYlrH4IPiq7M7n+qeUS3+5HnrNSlU1y2Oc/+7xEdvzSJucy93W+bY+c0NCnWmvhY0zlbnoF46Sk/rWQE4Q+6vSTjjVxnLZqtPQqGhbtbqqC7RPUUnUJBn7F1Wvg64WmQSwuQzkD+qW7KFEZHXN6eiRyAUiiriXHE1MmgU+Y3vVYI6OJ9Dzes20MD7eoTRGniWPHQC8YDJ+2JRZLaBUfKrcImK3SAwfr+dbuemRlWHXs10Ov0vckbphS1yMV6I4TVFEx3lstkLJ0U66O7xayUutGK2soULaYF8t8qPFC9trVPKjzw2s9XbJcDU0aiBqjC1lcx4BCRmdzITAG92pfBPpCAe3KS24fRrgfdmjoHowkEHFufI3eNRufaW/y8pd6P3mFc/ukjZbJcBYdHQJFA1s0b9w63BpMjZ/YGvVFiDsTuBIs5Wcu2cwPuM91Bmx3IAj0lslT2q2OHesmrfGLAjtThkvdhpwuAYN8Q/7N4fBKFefYtPZRcMucReFVmXULMl1KOvHCaA5JYtaoqpbicq/SnAGHMivO9mAq+BJgqLd4a9gPufz8hXLMTTK12i78uvSvcuh1nDBQ2EwNT5AmjhZoXKbtg3DZLTS7C+Awj7oXC9IiVl/J1NyBB6os1Y5wWebYDiXPRg3/sL30f5ALVkjGOAfQpj6TtAlPxFtm7Q/ap1tE6x+tHWbxyWEv1DursNsM5vnfyNluG23tTYCWHDi+ereP2Rt8gAaVcblgzRjtQ43sC7lGAhYw/9EBCk79lVXEIsuH0eKy/53E8VVA1M5b1SNNPW8gGL2hsmzzPKgpfhjYMjF2jri6EfLar9lsy++5zwECyEo2d3pbJt3ItjLC/w0R+zdlAI9AiaqwsFGa1v0BlfGHvxbRrQtuLRoO31lvYXlCVhxsY9k4iaEASV74Npd7i+0TdmKlvqyFZ03aoX86N7UsGC45cDnZyJ7pek1vOdeCmHRBA8uqyHE6GxGKWE5UX3eFiCXsz3lFtVf1V19bTAszI/X8Uw7jkTe9nK4nN0E6X/dm8SOYAfLuDNsRnibC6KEmrKRwVeKnqhB4qZKf/Xv4ZqocVFuSrXksNIckO47OnlHnoWK1eLh6+QDfuT1BBU6mc9fXNxlLDyQGmzCUETeCPqdmVzXuRQgExIqBP7a7bpvZLOaX+euByCkkG/My7Lh4LQYi4QJtyNhwCbQwea4ualzt+khx8ObJ7VrcIAjIm2XhpdUCX3axrMiUFELeZnGyinpRY3VuEKCUiTdgMg+wKYA3IXM9ADY9dvO3yiIKrgd7EnlwtSsFickVGJ0h5FGqeTaQ5azXcoIt9BM4ivzZZVA83R5Xko2YLe4urZjZqhjKpapTv/LPnO2+Hdm9vuLApdZUh85R0eCnAoB5jMJE9aErUdMs17BLQPwZd9T1i+4bahWSPjXa9+scdsdAgQFrhltyS7mk+9DnSqzasLxtpy6ZvP4Irp6Ecp1ywthCI2byerTnYow+7W6mr7MOQqr9mswOHGasA5GNGUMEpNG0DoaZNNRGCxjFK1tdi7v8HjrP9jLkaY1ckyVc6bRiYTSspbJkgemBUrP+TK2tROeI8bqJUqBkmG2s+IOHn0PBHCrIueEQ/SJhUmGSKiJ8xqC77BoEGyh7p1S7yRGkMvj6xjiR4jb+0QVKB8JDepB1k8zpe0VSUN+VU4vZDtzG9z4iNy6xs+ZYg4iKxaO1L5ACBwWgrbsc9wCsQP90zQA2+YwQpIF4w/gMKOw4rULsFakwkjOvcDePytLxDhf9rh0Ii6Sy04/BewYX6WhYYWqktf87BQeQ/Tb8K1UfF/DG9zR4TONRUpUT3t6CZexEWxRVvfiAH3hUKAe8iqYCUhdeHpaEIcOGVKek3TnUkPAjq/SgTGrZs0mHPz08OniD4fxlMQgRWj0HrfClnynBTOapORe8obRIO3TsZaDsXNZ2IR2B8Vgiechgo2F6Sg/AxROZLv0qVBdh/T9ZaslUFRsgub7qdZAr3XJhMjq8iv2oD34X0IMytdDaRiJRyRJoOdQu6TrPKuwlY3HtkDGhN6JIguEM4CPzXG+aTqP2a5EWolx82OCf3VPkMfn/SNLmXFrs323PhzAPndG/ZAYIf7+8izKoQjukmu+VoREdDPGFYe1dluW6ZjJjOieLihGJXkgsva62l9iAPBpB8/gacxGrTgR78MtJ0JaRV7FMUoeOgklQSD+DxffTwhGn0nh1hJx7xQhZlwWpctJt3T8FOY8v7gPDNIrwrEYgoi9XnJR5iMyR8OkIXkrIFnqHKXxQJK4VtWhNV1LVQSqLr6Uj6nua3jjXLrBnrJL/d/JRPakMWl6FvJxg4O5xJPLG8I3vvcqFkp45uXdOlZQo2f+N38ua43Z5oPkVs1cTEiHQvOJT3uizefVfWm9jWqVNwrnewmzHIhdXxnbjscOHqU0EIy0f9OtJAPiuP7dPVRU5s+PF91j2Yyv6tmxWVmOOIn4KLzBGD65tZIpmLi7igOfRs3JhoSquYSxdnsh6fklpJqgEz0+7iuLVXWY6Qu/71tDHKmo47yx+6C3SDAEIBsbmrjZvKWCvPAKbfiQu/nLbgge8athXyi9nK7+vUY8GvOP8E1Oe+pTposEfK2tCpfwSjGwtfORddIbSvwwKa54pk3E9Fx7Ougtqu1XmH7bxF81Amxaqp+fsDzNST554UON6RQFajKHlmpmpmrph6h4gBkIKN0tDbDOWMkhhrqgoUWXPJfqnXtlNZ5A1WMFcsmYupnjtV+v6Ozl8SFyCmxq5NoJ9wtjLb5AocfeQ2hSTWazYsdY15IYcGBreZrPkJXi/ihlN5vPwI4KBUme38zk1UFlPNSR7MPSlU3fbzCXBZAJFz0kCWpF3R4AtvlOfWo8v8F7oVmQVbZb9i8uuxQTLTh473OMWCMpU4psVqLVQFInD9EXl54iSlaJn0X96ei/E4M0kc63F0gpoT6/tA4NVHlXjLYEuqujOukMb/psFDrbYuyI1AGGkkigXqto+1IOJb/nmMHcKf2TsFhK1/ZeOaR2XmRr+VznBX5F0g3hoG4zG80aJrTyN614AevLApU2tsJKriKHkYTrfm1ddVp5vl6l030KGaL8BcVnLnvf0dt0I41Mn3IQDQI5E9w90htfLBKFsh6oTz1bY/sdTd9MQ53TT2Im1abYU7yiY0D03jxVhH+eY92MPQwxbHbC/dMBgBBViPBi2pgy+85RK1R1cTORCP5FVLUPhW/5eOEDrGrpqEodkzyfYAz38nxsGrHQO661SNeHGsVnQ7UFf5FzQhpJ8j7xV8NHjs305xfgu5/xun6FvP0qgtn63Nah5tyZbUwj7IO1kJqTL5PXNRjpBE/dravmmN/0Ii+KA/PFjNnyyLODibvVs+KWOfwFLMhgMzQrV8ZZYCoXGHA+Jk8HnOQiDp/JrIWowCQeTQTQanaz04MHqNEzqeXy4BNmhm2d8rzEzb1UTYr4PnnwDTSRRegrl5Qkd+OI6hCGPRezm2jXxFI8uRBgIqXRqtzVEq5+16PVEP0AJR+t1zhkvagpAdfvbqnJ+lee2Fw30O7ovET2lh8GuYPYnlY1rpXOSkesuZwR+LYEPLZTPlvou4yfT7yMnJwOeiXrr0wuJVcSVAfMGLpwymCm5vF3msMO3KJ6SuX+h3djIwh0X1zQFIBuUqagCaSSbvluziS/Rak4/iM1xRwsr4Pzsts5XGkGIlN6p5NTY0ccJQT7FPFTArS7I0PZIKuPjI5XHPDIdqz/eg/TUqTHl24H7GDir5LQl1NIbrkMyRl9y/GJA6bxAH5XHgtO8L+KM/Fdt/RArZNUx4Ku4QEvBG1wJI7oq3KoDuIQjjzOmzgc333a3JfDjkvJj1Yet/MC9fNDGDoifcGPS9pdpZEpC1ekxXIhJMj9kR2/MM4snpTmOr55/Yzx3Q7JLkGRmBngFbxCNTm0DRTQIVm50SNJgJ1DfSx4k+OpmLLIc5ZXiJlfS8TXElvwDL9WG52baZiePyB4gq6DuFvOquGtF+wH3DA6erE/o0aFXT/7FgeAZ6l+0lYjxmxppIPyqbJQOEuchqC/8Ig0RjQRIkeOE//79XJgX7EpR3WJtdkpCi/NYrNMNG0YmsjHjRj28gOgLMZCQqiHzGaV2/seHHgWBv+a02Zacqs/mXhQ6Wc74a05eDXiynmZyG7f1IcSCg+qDzyrkDfLEzNTOpqjRUehJK/c81Ccgf8uSg+8x9SnlFSXRt5zgqVwzoVHLxqOIiGtk39owy6HsgUweDhgRRBeFac3IT27kZ3szkYODyYG2+AXbqD5PdonvT1XabcrntLYhoEVAyD4ZtYfQIPGmoT4shXq3Dw/yIzW0cuF3uwjp/S5vWzNcVKOl3GH4NHH8nc45MoNT1A9E3lz2bLcEwDtJmKeajg4c+9hcpii5izPweCIPmnid2WUPwJH+QuspCI8ZH94SmXJZJP1lmBejm9a3PG2PIZHxKLoAiHRCzeGPl58AD3+qsyVMOqWOjH1naDE9fJRQoF9kCvSuWdP85IR9JzzxPuPb6AnQf9DuB+pOgxsGWws4WYaGpIlEwIhci32+jHm6FXWIhaPjNm4ZSJqemab1rxTaBmnaEq7wMpnpUe8/COE/CNAJNNCSPqxGlTDf0NN/WYrPh/oWfnuJVxTZC8YYL6UE30wRjtWiNacNzUB6sF3ZFoSXYkB8UpnR2jScbPkAHhsE5GAb5W2Dm9U5dR3HdDPRDHUdJGeANk8ckctd8YVXghO3UxD3WWQkKTRS4g4BdAqA8JEPiQ7IpR2LrkP1kg5QBhQOeREIkIpIYr6W/FNLtCu1KnGl8Cek6pRelxv45YryYFlDSXHXtp8xXXV1lUIAJu2zA73/GeRRuFg+F8suZrSJdvz2truXWgqUlp1MY9E7ePCFGegUD3Zw58o5IRf9zkcq/FaFUga88zDIY5LzV+E7Wg+RZavgs3ELW1jQh12k04uQLObVwVqyfYRne44cS5h++Xno823V14D5sSxnfU18Bp1Cuy4/vK9kYswpQJVMUq1gCq1tVBrr5uBUyD6JL/SFdwBpKk+YZ1PVCxRHa4ih2V1jmbrZ27d8epxBwCaog6nbazNn/Q3JBz8ci0ofPzKoy8l6dOwMz0n/l5zCFCxudjBPtuBlN+Mw8u2D86WdFIEhakmZZBx7cHjm2eMliEetuo3v5g0egjKYJYl2RlUDzGp0fcmUA6es15ZdBzAexcki2EAhYmaUhBlSHAdRw/1+UJAK8FYvYLf4CA9hxoz5579BpHUd/0RobvL27Ru3HIwk0QZlU8AbLoDRfrN35zVsTibWtt4scOB1izVidgzHvrG75Uf0TeCgfY7AUbmSfnByuPlMQqrTqYJ2qGtqiHQvNpc6xsZre5O5AIlguhWZqm6291/nUpSAzjNsz0VkKAjE1/RLdru1085hWWJRhNQDZ2i1f2EF5FeL3ltukaQQXYIzfYhzjS+qg2F3oCwcbLPamJniFygfqEjdEXUkrfFC52Fii2beknXjc7tbgpDp0YmfLKQG41wnO+d0fhyIVMA/yPxmwwrp48oVvJLTynRauXkH1VPIO4GcxlUDQJwxU4dt6y+1BWxvEG2A6J/BfM4lqmT9g5cwqrg1mWKWcjscAUGOan7jf7qpKSJLtxHyLEuSqvzKTqLMTCEa8flpLGsoAwVGeJCZJfbEy3kCFx2ejlFKgi9XVUh86HXaBUONdrcwXujXz48O4Yk++EJvJ2CvEKAuqexHFphMs0w+meSwKgQEwZonEVGFeqq2Ym8lBEX+IJsd8rOvJmYWbjgKDFaP9hmm4gUz+oKr212v3tj2fPj81eIHsxtSJt/TX1WYWquQvHKTr54cWUcmOz78MgZTBGXmoy5ezG7AWcuxbhIxBmDl011FXaElMe7GHgB2uVeWzYA0IW4iiFrdMZh/kTkS9Rm1NoBNBg1YE1U23HJz8b/Wsiu1dqShFqncOqxl4VeH+5IUBiXZr/wxQ0omFX5X0Y0EV/tTsqoIDu+jkxee4Di//5O3BB8nmq574A5a4yMK6EVpFC7yH6kkXqkyAS1Bxdg1QobE9InKbCRoeNBwzm28fTqQshsA2mUHIN+udE7ydxSBk6mg68vh3qLjvl69/hX+3RYxn5qX5HlFQBy7nuBR9wt/HBKkVX9nNPZFqwl1mPjRY2/8zzUJG+TItn2mRnTI/+AkzmnRfn8suz/2N1t31k4/FiT1mowJcgc4hOoXk4Nflcqip9sQzbfS7MvZLUoW0v47jszxp5jPxpyxTD0CSfSluscv5VrkQatvFVVypaOHNrC5DjBPlYCUf2lKfQ1tDqOdolod2DVxHGlZ7VJLDgyryCvwkw1LjLCTDQiuGU989n1A5TDkyDSEO6whjRmMuBou3X34l1vmtCp0euq8jhOAD5y2GXjB2IqNdS0L/tuSu2JVdR0s0Kvx/MPbm9OIi2Adv5MG+dxzkcJT7tN873ox8B+ah7/Twqyfy8fKsZYbCShqPptf9qQ/+4aDKeHtB8wgnYiv64tmS5y0zyhu7FR0XtCBv9Y4ymM1BMBkGQL6Sr1nNB6ITNbR8AAvIw5pVrLfffo3XDsZufwUwNoNAgO55QlwiIJZzFZBeUmq0gbOgkjw/syj70f488ht+AkJC5YRjlSPhDSB/lgYMA/sPY+TkyS0HIXY0PYtxI1NBFm1ZNMkuNtqkhriKvnWNJgaj3BYX7VvIeHAlxiMwAhwqe5Cg5wBTNTXgJgXJJtgKBPvlKFyDNfQL0xxbIEIPnhlKi6itINfdZuU+cjB2/5zpe63SOjLwkRRXxzMOp1GI6ymnk1kzXxx9cAi/8tcEpGo+JIDancIseGEKQvRQ6yDjVYeq2lywGoWHE4crNWD3U04nxDSjOw988JfwWC/lh4ND+YLGEVQFeOtSDtkmKhPayUVoX47M4Re25mS4fbSGlJtf9RE8/bgi0XR29sAMsooeVIsSzWyalrK7Hb0BK2vgDvPXXXJL0nD9+uTFDJymPW1JkOteuWRGHBueGIYn/MoBhEUE9WR9oXDU4JlqMCI5edgevenQWDsovmhhrQcyYRHiVSkXMtaXuzn/ECuRPNO97fSM9F+7pNRRgYkDUuHAUCi0OLPx4sI7IiNLlZKwcLSnCVF7VVFQGOdR6o1K0g7eORZAYYiSxBOn0vq3YK6sL5cy/Zgxj+LPoRzRkvAuMKSfeZLKg1GKcYooDd+1Y368u/JcqwS821XSoTem7+Rw5jDh1ITOte17eMb9QYCLOIlxhA/6HBorxHKbNsGoZFoQKMti3jmeXAiP2UTH1EM6499DD/Le6mrAEkUutWkKO669o5PNIv9d57uq3kdVtN7jth/iLMFFACfMLpAEq8FQpVPlOOijeTvgsWIYFvB+nMjgXZmNtqH1WaqDsQf1OFb3WItgQnUuAE8nV+KclCLqrkV/1RS7DDlOmOkI/bYwBqqc+H2hwNmwAQPefqRRdiDDt5otc3qJDQELt5Pq8fQkhgE+KxmW87DgclSOf4dXKaPMl+yxFAZvrlRLTPKoNwJiCfno1nmBuxCD6uzMjfBsmkYnGnQYhBfPo4iRJuYHDaefCff5/gmZnOnE7Pnd57+9WKE4lz0X6/fw7ZGtR9rD8cHH8ODAxS/ZGPvAePn5+UCOIchIxQGX5b9LZLlNZHqgdOUFZzsFjmpG95C9pW4z5AOGGS351QIYgWrB2PFUCL4VXH0oQ4+OewGTOpo+NkHopO4BKCQ/ui2YO0M47jPmb8DatBEzI5DX05syTRazGCjknelaMQNKuzKTpNGFX/K1Xb2XXszbTPTfq4ADUKojJvUkxCyvf3VxcpOlZknwWzVKEfkeMI66n+ErvJvHBhjoadD6qiTmgKIXft8A+hR0l09CB1R+TYmr9qEW3ufaAu1mPObu/5BMsBLL5EUso5hhJj4giY5hsQ/dXW2kpPXjv0wonkn5jpn6oJG9yeAPx1N5Ssu0dcEoBmYtPpFbH5Ue8Qba4um1VdfXoaYQ/zjaXwI4IJ3oUCmd/wk7n581qzZLU42RwbGB+ptBurY5Zry/1L6OoLGFBU/06a5uzfs9kahilIiHtW2wEu8tjx2scpPOQ/4DgH0SEq2njc6iECrxxCWpvIjr9KKJ0YDspm+D7jBgYefgYT6Hqh8eBI9dEpZnexITueILw42va7hqIGEEm5uJKWPaeTx1RzvFpCnpNA08v4xuN1qxwI5qMHeajNmcPlKHmwHxS2WYhrHt96y3lkGnSy3x42ba1ozqUlnALDESNRF8iKa3bmoZXkkkArke3H5s6VvwHnJ47tUsOe+eUuVNaJ9GxkJ3eiGhr9rbTD6DpoP753kg4IkcjZTE4o49LeQQ0qDsVr6ZbtEjkj2i3ez/LE68yGy0eDP+iuMg4Z7EfyJqQECBrplwoFqIll0QbkulkIWx5rSA8nQzFX1lmtpfZP/tpYI/nk80DcLRSKQMdhRpR9PKyDyUZPHUXpL/Kx2YDLxbymOhCCj0qnPb1IUHn9HMgqb04lukuUSi9vUm7YSqXb2619qlvt8hkNWyajVUbaNRW6TGBYhsl7BTb3+2IdPmUgUnubvb9IkrJ3/2vetH+6fQBqiAUzDsPFDbjDVqg33rVFNZqkxpbF3xsxIF1PtdFAJOZrYuxbpAnSX6cKqbgXC1UtLd3+zqYutVhqVuwjIL74Vtowbg+dUUF1FUiwAyff00W2Wjezkg2eDsRuEunh3nWHauZDuVqAz0G8RloaLSPWNEup5L6djGhbGjrGhQKvkC01u1rp5gNLME+vfptS/XeezywaT1P+iU3Mo7TNc4U3s57tthmr5iMLj4lorxTIxDqe/ZxmC3KxU7m26ztSPrENe0xWVek9CRbuGJm1H1otpdkOtVXwEJiEIvgeSnaIFTG/prGitOg3PxE+MC/OgXtQfRdi+JUa04Dfg8Aj22zYJxGL7MmecfpTNXDmJKIM9xvm1hguK1yrCVsAdGYUeaEB7qonLdwRPPAD4fYk4xXmfcbKgPC86R0LAUGhp7ef+CxjMTkRWwhqJV+QbBt+EwuJ3vzorvrhdLyJFumDZxE+4xPd8ZZHrHbQhblthSRQZXUuKPfd43zztWEkMb7u0QB37/781TPvM1p3ka+8YWag35fmqHJvDMzk+DHhTx49R1Mmh/J/wateFsPUT51rlc1c1jtQ362c9En5YL7lAE50icsnDwhOvtoM5QO7+EVNSC73qEjn/sBx2fJgIHu4fZ0EktRnYClTmTQ5NDhoBsBDKLdHDTtZfLaddIr9Pe4RbOJiE4rdD7t0b3EJwyCjk8JeJGGGF6g7LVdlt1+o1KUYYZg1q/zF2OX89UzLtHKKZor+7+LV8S4seAQGg3+0HaOj8Gf6s2dxHLwFsqqv2Ocrn0DDL4FzCnuXZpHFSAz0vBI/NQbMxnQeE2/Q6ccga/mXsM7+Z1VjMpV5cviltKhyogzF1SrarXHiDlhdlS5L4oZhEh7L4fGmRol8uknjeX6+VrUoEJdgiNVCJsy6OIxoadAtmBDFmTplo/PmyymS50EnkVVtXf5Ckd3BzpW1vfNHwQiHHRE1gL4frSpKdW14lJYdH8xVWUaKtsIpXFKNqmmPBZoQOZBgtylGVua+UaExan00aO5NqmdoxU9EVq+BRmdaN1mqJQbnNDMAF4fcOtYKUlBuOaOjk9K0Iu35Z33YY4HLz9GRHfowDaIC1gFNwu812nn9gnQlA+dDEgB+0bXWF80nuStG5+IrpnhCDPLRmK70u6Fu6drTlSxDs6bIapH1LmtF/4f2Fdeeq9op8Tn8HLLJK+If3OuovM24lVpbzTOQbtiRwQIvxtiQAhRrX4+LOrhJW+orkQbDpXfKAtGwfQGtklyQ9T7d2jQru08U6nGpbc6xn9us9OMXkKUIumqwYK/Nt6SPOvGTSddby7+dUVcs0VowGorKmaOGc2boZw7c/kp2tnp4HOP3VsVemIQd35OuylnMXcNl/HHMjwytCdqRQ+BRz9AU3eK+BMvnZcJcdJwG3GMdZAf3b0I1cKpJvsEPOWUQST0tP7mFJFGoYaiwW/3BstBrpz2OwGLk0tydCd227cRRpTD65PZZofrcxtrhOmAceOfTs8/TBt5sL/mDpeEi0/0a8ohfBrW1gJW2Efg3fVCPPVZV5BCOjY0Stb2iDcizdJAlVpLB79sYRJaeim2/otGwabr9XbaMabHFImB/ZcOkXN9vcy0QE6FLskmBGTz+CIDJ9VWy5TzS7yeoaGlNvvv4U4cGnipmC8u6pKSa8XV+txRKuueUlamRllbVZXLLrNaD5RM9cSbQ24TSdlASN/6FttteZOLGdxcp25CllWftn7EVGtPZjB23fSBYmegn+y+csO40VbxhzK3CJ07ixYKhxJNIoogWufHzdS51xuUNlphKNDUkNoQvEtBkPZCVnBLKQi3TTO64vOO1tbzGuNOcvdSJvFHCxGK2gpUNtj6WIS3xfQVWx1TO9g9Jdrw/PBzR/3X5ztPym9nt1ReVGfL+3z5I1OOww0HizJ45n+gwhl/oXkTuKt1PyvZ73p4VHlUBCPE6JzN7E+oKGinIhXXlNvEPCJeWqMX3FToe/zLvWiO7p0ByDE0fnObPKAYkPRc/MpBg9C31N0ultTJsaNsGZ8PBxHjUeSe7tF0WODAzlmGXrq/kze3lgrgD1zg7RgUWS+wnq43SE1kxucKqQ4l3S6eqaAYoj+kojtpw4x/h8RUG6xSF30ZzBP/Wij7vBKA1+wu78HRUkrOEVWSmjpGbfJc9fmtzFw59/iqMWcygkN1RmGNbCTnhwVNsXySxXqtOfZ0Yi0xrCjk5nC5+v4Os82dxGCUseysg9VqUJe9DK4HJC25/vKxdNJIaq1v2+Wc/bLBAUoDuQESejPV4QVDArQFGslEyx1Eicg9G22KKHkBfa8YkUMOeinhMr7jUrtVo6ruS7pCNMCUg3SGiByz6JhOBxj8B1QCs4QxOMisp1H7nzJFy6LTUsKsQAfDY7dirWA9D/PuD8KXy6GuBee7tuTwN629hlUdmaAoi5XWt519/N7XCxfQukIfnmkjmZT7skPiUOUy3uV4dRqbi4yD3mqMNbQ+PG5JNwc/vBIv1DTie8gAFIaXb2o/9/+4FlFssd9DwCdGRaBpgcIwxdeuKKDr0sWrfjF6xqEFs93QXhQX5kbWmRyRsMBqop6rDxO4pY7++VBGCwm7DgJ/whJ85pO8/ISCz7vCeQBxwhz2Dgz/I6fRNuDWTaevbi5xL5iyv4XQD5hrBEnQHEw0oDYmXYiKjxsjbD8xKT5jXN4P44dbdYyu+ssfIrXdolj30oAlfVl7zXuMeY08VLRK4va5unntFYw3cKHA6htCZ1/xcjfl1bEzmsP3q7hucQPIABoHaWCeWhUAMVNU/ZslruyFeyveFPMNmCJiOZX3+9aH2VqVAfBrRVwhzvNlEY8fjhCjQIRWPa9NQhQVq4i5NAifhhJ9WtKATpkdaqKEKWCyAh6aLUSh4oDFDgRgQMzggNK8MT8n2lep1pkp/J+Ly5c1/jGcPWz6DP98r+RDhCpxR32qONYzb7EB+Br4UTDZ8uhuGcAyY+g9aOBCF1JaudQuunwvM1JhpI1hb8u1C8x/jllHdQZ5japXLlWjfV/1h0qboshmopKHWQhXg2AWFSzaNjud1smvS2ZmCoLTTAljWw9g2f9cIBCSwhZs9zlbfdMQx4MUSf5GSLEh1Zi8tvT977RBAtkMWzqEfR2bhHckUGnteDU8yXcqwqvPp+FFsi2JBJ341djOSD2JrBsmNpUDBgeNyeiEDHpK3ct6igdmzVyck3P5lsGsLmvlv4anWFDlGmIei1tlt7yQsoBXwq9OLEnZv1l2Gz5VSzkgZqiUdcu7HcLlBql01s94GRHz1JXcH0wg5Z2P+HkHu+E0sAllWrkZ60HPqB/rOkSkOvLtTaV43Cv0L6Ct3+giBSBU2IU9MLhfPsoAcu82KVfAXi84N5hnUSKI3misH5qUow4nzIPJmM8Fr+ody1GA4/w4gzWACz27VMMwDMAGIOQs4JkqfOKz9R30BQxbetAj6ZwQeW64IoKT1XudoLFrL/ekOGpdwQkZsYRlMFlnsIYPf4a40CKbVDJddgWSoHb1BFf5l0y6EWRIyu1Q3kLknhn/Uf3e4Jtt2SnM1meiuJg8E318X1Gh0oZS//VM/9Tfh2FS9SKzbXlcFPcRVJ/WLOcooR1jub+2eyzdZrDQqXQ0KNY26BQWWzddnoXRF19t0xleauff/loJSYFJAOjaoGYRetzGriZIUlEz8RsW3Bff5a/Ur0o3kmEfmf1RILOvpUFPsMXzfqSSWobN86xY5mUG+jPDbR+jTWd+hF/RclvXI84EwGWav7H3ncMo16JiCMipw9qWvPqTK6hNlVGGr5pdM7QAFwSrPcmHCvArDW/ey1D5vX8Qe67C53neMYJxL4ceI6odNDg5JOF5T1SgsqneaQh9cxAZMWR0RHDU8YeRm/yO7Lnq1+SfGB5hT+7Y5A+8n9bEkDDe8/iBl3vfjtKA9MfbGKB3A9ylS+Oq6E43DY9k1O3hv0nbWJlG6OhZaTuasn4ZX0FcZwdoyuHIzrWpe0VX81C0t29AlnUsNqJKCLKXK/nQJc8PQI5+y1yhHyglWWl041JrYLfVrsbsXiYvR7kAwIMAxItpq5/30hPmOG3FSc/ltDE9cEgG4ON5QGy2VzWRcpvDlooYes7nKwl21b2FT/pS4gdhFiiv6bxXVwEh6s3LEsw3aIZQRY1k3Kjtx43dm9BKXhiVD9axphgRO/XpWMRAdgTHUVQ53ZbMiHgoCjgYUayhAfe9BvuzC65mBlYLfMiNE2Mvt3REXr4u25n6wxVGyUUDLvblU4ZAYDyjyH/Q6wxWd4h6DLXknX2S2+4WgYQjV6cd6rRkFif4eN7cpBtY/CGxXa7R//Q65Y5LIIl2bnh7cbMqUtJ21dYU3dVAJmz8GrcsS1aLivWxIr6mXODkjhO6LwuD+G6Yqsn8LwoZ71R+8vFyJU/xFPF+yIANh8sNW0EsnE+RmmWrb3IZJKxL0t3+rb1BW3rLYPWasPucVfzJ/fWX/eWgKjWyJuAT3Cpd3sGqcPxUjxyPx2PMnWmqvIl97vNH3VAmLdqpm0lQ2RnxJdSIluUXttM/WT+KFmzhYAdbJ/dtfKO9BYvXd/JZ5Bqrz2AYcLZLzh+NMMwB1z+4SBd46qk9nltLL0f12JeZFmHDk4X/zHrFhNRFkOjoG8MNgczulZemg4Dy5EUWXYr1jy7goah2BMbEiG9Mq8AOtsNmkqceVOStWSOk8BVX1eb4tAIF5/kJ5DyifqnZX1SlXQO0VcvB/hD6zgEJ6xVPa+fmu2mhtvl1PAkGlDgwEWAnhNntiOrX91bW0D9e2VNuTZ36HV3b+B1QqdduQUpzi6w0gND/GF14ex2F3eW/xD/Hb0B0lHuGmEO4oL539aLKJh/7KB8vlxWG01AqfWaUDpTdVSMsbv5PbDZTVqezzlSs3mu8huTpgdKC2HeG8Shf2l2pR71rlzST9uNhjGhV3PqxMIMsaLFgUdrvdKd+9dIV346IpFDmv4V2vfZWCOeiCGQaNG6/M8bCYkwzRxV/B767ib51ofhd8Vu5iJwSpYUp77bokiz420CX1YA7lLZ85ROQfMisx+cDGFN3+AM7ZjsTZ3WiBJMDDcpIOzYaMtMpZR8uzEUBpXMGha/ME6a6yK1ZCWcfXiAQR7UoncyUs2gQzpWwQHvKHQHrNMrM5VeSmDoRmArZnyJWRmrRQFiNeT0dMC6d6aQPzhCdJbgL3UvRHOfebEsH1ALNHJS7SBzICYhwmmxvh2880aSz1cB09mNI7rf+sVA+IiX1BsPG1K2dADO5ztTb61Bwhr8/xlc0fwK0ay2Qciz31wAkMmR07pfls8hPI3ZzfZ4ddEbzP3SmhJkkVmH8+g7CnzMrpMFQsmxoY/TgNUp1r2LH7TamGzTGtayNIJ1zgXWFwlsl/wTfmxn5f/15iolPA8lSeyRbIQEYTaVjVrX8oucrR/FqgWg1DsrfRBA/YUcnUBYDLb+PbBOvvShYsQgoYODN/1dlJ1JBaCa/TJqEKXi00o5g7VazdLsMtLJvbWC5IvArFkW1f4c2RQAvkiueSwl6e3VpjR2cak+DZi7R2PwzSw92cCvUVVGNU9zp8MZ6FcqZi5lGkRD4IQ1aX5CGmMaKsfffAgbUGyUuD0c6xi6GrTiLDo43nIBXIrlQjfAb9++v7vZgXHLjN2eJcFrj3CiBdz5yJyLxuknv+3W3GV7vGacsjH4DJObBiS40KLx5oWGybtUfaQrFbeEEu/geMwRuaU1W2HUQXxRLYh+8iMasDAxd1Nd7qCDRDPzPeR2yQREKNJwddlUoYoRjrMeoM5Q7EzAChLrPjBIMa+ECLzBBEdnbqJF7Ktje6pgwr6myooD0TSGFBILb0rIBDk4XrtvRRRE5emWwvDr9C2iydvp7Na4vTNQuqMIGIr9upXpAZtlreIUNGcphz8cyqj2GBRYDkhFY4xpxOKyV7C7VYcc2Nl/UXZC7kySnJ6xefRbc1S429GFu0FUrkHjyLqa9p2se5r6KyINGn5iOPyVfqY5zHixT4GvMLQk0rhuIKM1l0BU0/5f7PpjnmA0taKc4+RdjoLTciQKVdeno2xC79rc6GxtnQrIm1TB5CmOcWeanifBLlmla3W6huC+RCT3IuiGdeN2juQg3XGouwenMe6lTTV/kc8wI1x8OkwCN/fm8pvPlJhhVU9FA7q/+zHUR++JHrKlyGFkT1j8rG0kwOPoKPUQZbemTMCctvi7N+sp8CLxK2REHBrETm7pvP82qguggMXzQMxy6j+/fRDeA/Igf3qeAEZ0d6p1zGATUQvn4kZBjxxFZIn86ZAjaOl8KUoelRpE81pD4vDmYuvOYjyK1JpkaPRLnxPXLZeXcCK5dMuThezGQsP7x3eXeFrPQT20J69GoEhH5Quizb4lDEhILBP9Gj4WSLj/7xit6/g26YaqeYo8uj3qbit9C03h62/FgizWNOtKcx14myShlg2NQYBbZo9qq/pCils9kqIW5svSgIa+i301A9EwUAvyBMOl8H6fFxHzJa0msZhjBSi7IFNLh/N3FGhFISfSzfICYAnwQ1o+nFUNTjZM3Bppir1juAGTJ2I8tm0q/TpWm+Km9mcVoJjhZzkxdNIGs7X/itoOAW7MuB0KFjrfCfK80HTfLClsp0QQHq225N+Pq/HZHPodGbPvrWX1/IgosAS7YeuUedAgtaRiqBjRSqyKulX9n9l08USBUzUZbOlefJ+Ras0VwqccZNkEcgsoI11pMa3Mf95opV6qHB2oF+xBQZXIWt4oDnnwB21ynpXFMMXOVrLcmr7Of7/bx4Vz33o4o0RAjAYsrMibSZleVV9fIawohZlk/ZRqIKJfiiElKarmaIl0gqqSXMWx6Y64b0H7nVGQhn+QmyC/xyQghac1S5JjAoyOfYEQgqG3/P57PjUbc12YUcvEbF4COUrtTd9zzc7ltud5vebzy1v/S/x49RoA+/knsbTI9ZjC7LzdfjjzHMaVvBiD6tMiooEAlpRt4fwqvqxiav6U7SYMihoRdOyLy0+kX8J0WhR4SBCcWgw6xQL6KrRGVcuDoB5z7q1MfvqQjglBc2NbeSMyNu56rW9Fu+EeGipMBbjVbBd6sCzl481jDBM114hggOgyl4FX+cal+h3I2R8itE4Fmb1twcHdfN2euMy0pRxvMsWf+WMh8CHjBnWjL5a0PceInlgUJ0uuh6HWMGOkUpCyd6zJtt+YWgEOnjIgNQ4pNyaguVetIKUt2lNZ3CtZQAGFHaqiwGndi0W0NC8EmS+tD4/ZNb5uDtMEMC7cyud4zHOmJxTkWRxBj/ajwSfXFzwqZybgkYjWBP+/hv0iL0kLKLiV/E6416lEBzjVogad6l4g1Q6GGL/8AJJwozC36BcH09Ff3LrzUJ9ZK1k6TBM86wnrblhsr1VvuIJO6TP+KyQLKvF2FjQmPRN16SMlJJhcAyZY/DUhivlo4Jj7v0rNZzwsD6O8Ou+pDc+57pFv7ITuiZfcZCQwAeOiBbIUwfc7B74AfSTuCFbaMy+0J7IM3JJ6Ifu0lV1wJBcAttakmkTdwslcIqKuHyqWHQHNCfb6LZuDTH12hd4wxAdy3D9juq9zpwLPe9KKYy9oxOUYhlSnNsdXHFavyVue5sUODlMHcScyYDMmSD5Qyiv5wBfZ5eTWrSh6O6wO8+IIZ4O9f5UHwyAEBzA+Q9BiQe3uKUb+jNfA0oh1tY/1HCSuWIIGgRCnPDVxwM1WIAEC8hp6pk74th1sRXgHFQ3yiruBEhJ6xWlkQ10lvQMN1D8rgZGtHnaZ97+8SsqH4SHAaFjGrUum+ysArI++kGXVvnb6s6bMyGt0bgwlT4s9WaN+k1EeIBIYd7Csxcv7QMT+Rrh7q1D9jLwpChWCpr2SWKd+TgoeBg8srWgnvU5BRwTj7zwoKcEDdfLDF/3k3FqLREorZR4AXE1YVN7zvsEY0svWBxdCrQXxtjd0TXs2Es1fQLJk7SglE9r+TPgcmH+w5LSbcBy5CeRQ1VdNvIFa0ath6olywstMuUd8L2/EM2x7LYDLRXwwlzj4aI2zVB7o49kCrsvo7AHqkmLMuquqnmXRYO3d/OMXekjYfKP2qAzvnyHRZflGrnVQon6iVSLL1VE/57Ws1P6RePLxppcv45WfeFNR/GDAeWou4p9W9nFqz3czGMGw6sAnhzmfbCYaHWdd35bg4hrfGOnK7TABuvaKfjXr5HRUXw/OilhN9j6d5bZquBj178jIh8deYdgf/up7lfsxJMA78ePaYNTjI4vmcpsfrQLAR8UHPoLeONTVu1S745E+4mU/qOXyfoQPRUat2zvuwgCmnBo01nW+UTE6f2PZF1FhuYQMgbvpNHjo5oUc8QUaKrrW9QtSbYJoSoB1XrcKi/wuW862xJh/NZKf/Cr+O9++e/IJ+sT2Baw37RIdli3xjvDH90h9fqs3+kY8eHXfHG7jwkIQb7ycp4vGCdLcITdi6QdB20a6qa0bAE2xjglXVYcv+1Cp4x4Lgoa0d+toUkMskMkqh43wfPEIx6nHxNEOPMujbrg2QXD4kxJdAGkxCgLZZuxks1wFuFaSXJ8q3Sx9708mktccC0v0MhOCH29GYxAm6qvt+f8irEYDNSNZguofo6eZ2Sp3wmPq2Hj1CiVv1U6aLLsA84QwoytDjhUcI/6hMTB5lRdA2jPlfh0hggR4gEtUtxAT6LIVeNbHDIIB5RyOskYbbT0+3IiiEINbim44Om1/+0lrUJfzqD1VjLs/N8A/h4ypf36E3GZ7sUL/oc9uLCiQtUCyqKazJgSbXM07VOU7Uoz4HOapxpfWCNKzcyc9BeaMGs3OvG9z6ucvHwZ3tNc2r6k+HAjBMOFwZRL4nDIpnwokEN930eb0sSMHAgkoe/3yX3G2O+Msrq93ZbrHUu/JqhgLs06jJ+se0KfmCImBZof+wLm8wmONVOh2VpSpSxWW9tnrfcuSgpocYkZNqtVOrvbSw+BSlWzNSr4KqAPQ4P4s1bZCvaIbFQb925A6AIOHDJyHHjDugJyaE7XFin+23x97gmEB9Ezq0Fg6eSvF9OddM8Qs7ueajjc8IqhErHlQAP8k/YNwfdsjZmNg1zXDLe9NiQV7mWuYRJYTH1ZZqzcBUaDCLtsD0J06CFzlmm7jegWs61SEgu6aheb7wc4rPgc+ATtssAvtLkFAazRZlgr1TBaNup7UueqCOEKEOJHE0yncnmc4LYlzeUaD/Lgaj5N8SdtMo8LZC7OHSGcI31/9VzHpGeG6xHxeP9rbdJWJc8FJQTSkzGNAd5JoD5zW1tA09L/PkMrIICuu869iurnHiI81jjEeqw3uo28oeDqqcK29MCQpRHuX/D8hcBzs/EOIayQFKrHv1vk8hsVVB3LahgwN7EymtMlPgnzgTx3TKsFl0CCCsM13AvYDKFd2PA7deOGlyl4NeEjM3gIHtm/3MjXwrztufCb9qmHtvGCq5JEOeNEXrlruKAoL94szWrUUxYFyy0SAG1Qbg+/rOQkZWI/ZMC/sUsbD4j0svubIJFvqCRIMyLM8Y8ojI/0XZjE6G+c3aGpWbyKGVBm+OmozNsrwMcV7Pk0RtZc7EWiDx9h7PxMgjnsFQ9vY6agi08TKrBZ2UOifuYTP0Ws7FHYgg+YI2uJB9NDQ5VcysEdBURbbXlW56s6PzKmVDbyPm3K0ognCxs//C0MuJJS19kKFIgDBKL/u9G9FCZpQAdqKR1G6cVTrzBOAYp3zuBBgl66jeORoVXYjv7ZbMM1hsUrng4QQA1IqIYCisEN9eEGbVCHa+iTmFFBdIklxiynEzSF9tW6BqDAg/b/mjkWBBekchD1k1d4dBY/XO8tTLbs3uAJ00tQ0hneSPus3axRxGAqg7cqvmTRrIq9BPCXuAiomz8rA/czwdZyP+R+n6R/qNXk+qHmoZiJ5CMMyhXyzCPSJQpzEj5KNx+ws+G/r9W6tV7C+4/EdV+PHYQ1+zFcrJyf6mng+rpHllLYDcCbzUlrRT72VADqhErIMXDT2AB2n5ZHrkz0wmXT9ZOWYws9wzzbe7nZ95NpBAQF84Z0KXXqKCwwR7kwRATfQO0K3XRLVWmcTelPjOrG/RmYCrlqa7TjrWTOjNiuDt7vDqBE/9rQ/iyCWKBrdaTEbq4g5ITUYboku/qXUwCOhqCWQvYJMHaAGVGTnJFvNIgAIQoRaeoGMr5YG/Jh30kYWiLpHZxwGYHK+N8FsgT2RhyaUtXio6La1ANQLeiP01DO1PAjO9+jM+9/OlGxUj9vr2iqMefwj/jG7cZweBl+e7DYr8cNbEzanRDws96oN5TUuACkIYXBGUgfGB4fZoQole8N/LxKDFKpbkBgcIe49r6PaY1enSfyTznbXK4Whns5y+nEoQcwjGqSVtBwytfsbQ41xLVi8aRWjDeV4ez3xpR8j/ItZXWzdqzBo0UwRmPqAfne8TI4C01EkkjDdyIBQm1xqnR3UCd5UcYg4feZisi9hKG14ZPuxQ2Sq0DB0l4m0+7whjtlpdfwjmjUTL3Lw6hn2t1u+cIeTr/O7HptCPVk7Ut2+EB2E8FcL5QUwKv+T7duJ/vmEP347IR57ui/IdGUr65NvlrvS16smNKHaoVfLeWgi9QN8qBty7dttQ5N0mN4JBaXRr8UakeWS0wm3yQDbQvDLueEMRHhkYXkW8MUW+2F++lyKE64GG6FlKg725XzJALXICbTpJir6CuBXoZmBjc+ZWLClKaXJ8pqJ8wWld/CY9rMDmnGZDoB02wPyeMKl2yQxFmQfxyk0HpjnMhjRQNfa/TMLaxdsrgoHGeCD5xln9PUcM35oc8A5U1SP4HszsVmXTwzfRbdt4GsQVJwqPjkN9MjKVHN+Hq9wufH3TFFLVzo1FfdNHU4yCxQbQ0sznJn/ILniGHDBikXA2ufujIV3wR3NRCISBTfPHeaSge3mdaFWNzO8recAop0QGuNpKyNZVvQfsTJrs0hSJdIlVRWWgnK9it7EoEcWKvyGzzweM+YZa+A4mQFBtKPFBwzr/umvD4PL+taAwladj9LQtbmD3x7xfbqLEEH6hfo7rnGXGpa4TcQhqQyehCHuDpmdPkRTlewYdhF5l+ueYAs7UmmvTdcUZqyr9cEVFG+9nRxSCwoqhLaHcfexznQm4yxEH5hOGwbQNWgzf0UbwrwQX6qcMzHswrPZk6O5dFCXPMjkKc/ml1i5Hzj9VHtQtRTviYhV6wDW2tyMt8+gCusOVcHuOWJYAvhn/OS44zKopQvV96K1O53+u+OKKeN0ZK//LC8OZx7Hy8Ub7FAUch5whRCaPCiFwm9S4niaGTHYG+PS8yfT7Bezo4iJ47kSKL1eT+RW0f+6aBOMZ96QbyphPeoiS3GtqyI2nz57nuVIvG8f9ZxIP32j8XjfDq4FfFYUOjn+WE6qMylSU77piifMQtsIeUD82D6kgAPg96XhvvPHcZNt61ieEWc/Q5WqukfCbpaS1JacRdu9ijC/8OUSmdhWbTWAhGYepQliyZEd0OfrPzBZkSaPP5wZFU8M5EYVx0+jw1MtWbYbSnxQCaGZyAp+xfOXZPNPsDSuNL2qkoxCqQdVfSt9XpnkYh7lRtMOWLUO6mOiVl2D77uI+LQehh1xfHG0ze1HBfRsxiEbxNVVTF24dJlpbU1XN8nprKa9EAAoCiCibsj9omDvPGtFEeJg0xm2ZxgdgeREOeoX7QDZa968av0QqfRriCU/Ybe2n58TYCXefSmEqyOuezeZwSuzl+19JDBG5FBVXUs2/PXek6Gea3djWcq7ATMMj3ys/G4Az9eRPP4EBi15PucFGQwwjz2dPsntSIBaN7sFovDal0Ylap2thGSuDSqmHjWadRl1Jdj0jA/+Gy531J9WikQE/sP2Qzzu5S9CguaMcMKAjwpTKsE3ll7ypme3/1mmKVrwMP2gXMWx5GNLmdc2Ee1GEEjXqkMLHdISXZe4XMkh1aigihT4uWUfGQRxyYgcaSmTw9C2GlIQ7owPWcLfmoyht4fHuGqsx3Ba/uFGttItPulmNZik/qrtUZ1JcOn3ToS/WMZZa3a8MRCcJ8O/ksimd8932HzV5wKmnkLOZ+X6VeUZn3PJdNtBsCVKg1p/MVFP+9khSMhB5L7IUN5oA3idhiH+qjfIVi1rKq80RC1xFbRrP026YTfQD9eyK4ijjhF7hMdkQMOM+hg/1u/IaeF2Kx/ODnqCLHqHhrSM6SV3Gr2bSfvSdtGOjIMQy+LeBO2skn7aKp0BTefg2H6KsdQmemgrg2jiLnAndTR4B8p0h+M/0pMp/it5e6ZOiNLUGQfe2p8hJrd9fZP3yutHQ60+2GhHc8yNP+sT9Wbjb59HfVIYGwYXzfdjUqX/SLCTL38nQ5qx0lTsyb8+xXrcQBOQqtXxwTUPgckcQb1NCSK3olMhcxTtDVvxeulFsxA6AIDfKZKj6L0r5GDwkjxGo9SyDCLiJg7UMHIjw7Not4OC7DXx6k82hsLDgu/+3oqbJqyW+0boJzaDE2a//Y4qbQHUOOadlvFLOOgkM/bI5UOQAMoI2KLA1YIuKkgRPr4u9PZfea10ERuPFFgFPszxFTVylyQu5pUa3s/wKuGUe4Nr1gGqHFVAPqgcOEK6JmECvlQjBQEP1/vqdrBMgd9w5JRd7mXptRB1YGgTU1BpOQIQZI9NGKo8tcSYYMbuJuAT8uRKygCvJ0PEJP3Yhmd6nh+DGyvHi67vblUFNwI7JwL/tuTade3S97bbS+IM+7X0VoY1vTjrdLXzEexRKorrRKnhwNy3Y8uBnZLjvqMfRQhHhqZGD9hZQ1SL9UdVDF7Pt7+9oceG+ah+rwBgpjQBkb2IdGqRjOUhaa8GOU58eHasaJOio/AJJsrxpYHCtcQhtyDfWf5uY1WzwV8O4+bRywDFwHo3qZCgAmMnmgdCdzlmALo+WxG6QwG7ZBOceeaxii0UgDJ06tQcunpDt3m8w2lhxDqLV5gw5X1ij04iKWkJk36RVkpM6Ng8KFYZ9xL5ewVKV3EON5BWWsiv/X2dJknj+9302SPNeNf8cdzCCjlcrwp6+hMCB+HHCMG9Sm2lEZR5zBw/Yq/bvWrD2OOk3U7bHyt11SB1mKewjhTYHxJUH2vB6hcSQSiVF08jTvwftiV4WsZu9Qd6YMzPjWODLOZIewgSTrjrxtfC3ALmtbsFa67MBxi7yJJ4FKBloNJwMT8DxyvQRyO9TTc5ILEj2jerBRrgDLQBmkAzwS8dHmdK2PEiTemMr70iD7hvgsk0IOgFIeE585P4UwQsy9gY4wVY8WcMNPL5C+gPWbe2LTfs5q+IXjBNzenCXzghyrrbVeqkPu1vgSYldvMB+qFdz7qliX+kiNk26ug7ci1SzRb6JRwfGrx94G/zlLZMxtUPMltitgoUL0fVNsOPuAUVVgDrvcUMGvTnDnaCnyEA1FowxDmTgM0GFp/SqtFTUymqslLvpjoipZPBBPIjfZZyL2eaJLAlQwnpbipPeicDn+EUEMKyRUlK+DiPBcVPJq8fqF3n97M+KPdpiJoPgI5eVN/tM/fGKhzJv18CT80jpZfHd33QMW3zKlfuy1A2UwOBpdopwE77IBD75AvPx9nO/6zUJI9fgOsxvWhf2+Z+5zUDcYnuz25vtcL40bE5aD45e28xEEBgzjlq2vkp11KSy93e3MqdVGx8emMxHHyCkpeWEJtfCUoUVp5rapT4kujIJ9NNWNanFf1jYVR2PtOA4HQQwuGJAzeSI6IEGLGWGec2B12G+oKXPrQqDed6Oub/1Jj/WCNTBfaxgaIKeyHq4hnVfTQIfRzPJtj0NyZ96+7jCuLbawfObWsMndA+ZZeaHdcg1qykASrrT+KAf3m4nRAkSGCJrMx26cNiOuIJY2WoKMcDQRAMAfbeRQoyOwgYF/qsexFegSDGHD96YjOGWJLg4vsjnQA6RckIq4G/n5Jl1poFl6gCOM4DXJKBQikyK1W6Y4VMNO+ngVQFV55whPmeBA6MJs8TDEcQP3nCNYj4yHEx6LMw+5vRBpAxKy6maqbvmY+IL7b0i7sbeKLVxjPF2Kx6HUZNTWLBIAh5UvcMxG00QyIvrLYnT11cDycYEnpBnTjP9Z1VYtRrsK8HD2xpj+7SGzzv2k9akgGPUMbr2nfnmD28St0AlLYB9CB36F/NLwNDSWz+yc6H7PFmJvedokJ8NzMFIUmzCsysSf/oMCRlsZoiGGq5SuMnpZti3m+/0DbVEw/kxUWNFo48OceKSh8on1xVhYDWP0n0rrrei037xApYo8rPBJltaxRDboxPLl1RNugy75fDMQeEFNy+iBM71/hnAJjiTlHTC+Q/BxWzRi1R0WGGuxCuDDpnL0cRMuQAi8sVkCDaEtaGBSbQuD2+w/r9bIRIPOW7z+RfMk1nIolovlGTWPNza+vVTbBC0MZ9zY8B3IZvQXAMCdZTKkf/epaJSksEiGCKMcPYbKRRGrT4PFIs2uPx8nLioqpCaBDZgQXlVSDTHqj+wQPhvaHmjKcYFLQNob5C/5uNVGgKJ9Jn6dnrsydR5Opj4APQhpgPlKF9tILJOKGGzupkrVjBbedzjvpuX5un0g0O/GO4I7baZvjz/b9JG3XSyMJRA0XNfDe/kvXLvw1XDYcCYw+canznJpzH4ImGUYf1o0mbIC5+JxcUABW/MD+GUGC+/mA7ISmENmIJ0SoxeAI+h8VYlaj2MDWCnC7Rsr4j4CNcgcN+dgeMkNDLqQfynuTRShB+TXaPYBo3w2KSSDzoJM02WK9+UKkRJBZLq4czk+ouYI+kLWL2D9IwJe+yHm4YCYm3Q3PRzAioR/2OuTIpijxRmfkfd4l5dASwlW+5uo6viWPvRiYl4nx0tZgr4pP+cURjOBdZKCxUWoDFKFTMtQKY0N8wVIiJVY92y+XpckInMOItP+vYvALiFYStH4aTJ+EvYHJzRydftdSgrrm0IwnntM30aFRvyy8t8ZR0+uKDC2w81PGmFOa+pn1KXyIVqir+fxIs1Psgrefu9fRsGjXiUQXyj4klF8RplsWFkvFz/qm9/MrdSZNf/XQhSm+bzQ5vZZOw83UYA0t1G2fDgQ6yuE61kuhNnDYSnmujGkiHsTxoZtuUjCG9hQuf7qs/ImJT3TbeD4VJbEriiumKhc5W+qhhanqj4UnWk4NUNxjWtUbwWlEoeW32u6xsfJuoJg+E0zSnWQw2MumtFZG/HIgDcQ+mcQdnsCvICAyELBztSuoMouDXBO1CxI54xk0LONPZvAyJO+k1WjBBuMYBLd45lSfI8G91qsowtTWYNlsQfUHlsiTBk3yq4bXUJ8NV2pCnrMJ0RnGLadel0Dr+uF2AWzzk1Moj3aFW4Z3Jx8NjjgbblSp8wLK/x/MgLa93z45EdAtB+avx2UHb3w8p7INsEdWn03ogtcjqSU5QbtLmKxIPaonupv7GwxvOQ61add6LZ36WLUMPO6cgrhKB3vd/xuaqgqqMSqc1IZYGStn9TPu8jYKo7TejKyRLW8a+TCOIhFlyK0YzrsCNCmglZbhejL5hsX7NnFlUrAQwQFMXrQ9Oj9r/Sdrz9esIpWTUIJtNy2AjZTI2G76fFDcMZ8M0CMxPOWYu9uY/55i3YX3SlFPTIdafuKLjL4U6kju7FAM5xVmKHr/hN1tm02YqDmgIVm+1ghlDPZHJ3immtJrWTLr1C/NWWSoZ42cjICDzmkeqvqRsMX4Uv9LwHBO9RHd5SYFBqg5AundXqGYm2nNOo7y/lCSxOq3q0cVXX4uwroL+yEaijAoDHfL3KyB2MqaLV17PCujXKLhJlGaBEwYsmLLERTqauWa7Bcj2xBIT9B+91Mt3usz7/jpGpNR/6w5CKf0Evfj1s6wG0kSUkH3LJtlfXIIlG+R3X5PGJku/hwGR1FjEIxoVRB9zAi+cTDzcyKP/KFOOdXJaFJ0ooIqyz24xerO/RS0t0/hs3tl4dBoybcvbZIx3HP0ymyA1ymS/WsyBrOoqq8hZa9C7GjigiewpxYUMpZixoS9Elox9PsgI1DJwZHwA9cL2NiWsiDRavgCHHfkZeXvZmLvuuXqSeIoegm54FALzri6JW8ZnsQnWsHYNvKPBXu8+YHLqvFs1YPdLf/xqIQv/4gPxOn5Te+tkWHKq1Fbw7SpBwWu21yfg+SER2664CRiWoSUh2Ax9Y63OrptS8z3oxc5ImZQMsm6kMQk0Z7CJgnrXVqMAAzdflpIHCxtOSAMy+LKIpMuvC8TXhg1soxkjYClUIC0tmN8yRdE82UhSfjuQA3glS2F5IEGhi9283GQO1fdEISWjn2YDdL2OduaJcTwUjwx1JWnH5RchVMWaDqM41hWdLsDt8GxnA9U3mn2P/juztJZV/FPcRVW3yuK/GKVTxb2lKLHUXjH/NrNyAQA+YNMXm/dmREweMXG3VSuh4rxQW9iHhJuIYT8bI9M2aPG5ZPWABOvfA/EvPe2kd+3Sq1XEwAYAmujud9uPFhs5Ph9GfeA/imggr+xYfRd9EFf+gli5gP9CTo6bBh/ZvVbKP8k4zKm5BAfWT010ymVcqPxpJZniq5PjDdb2XaLaefdbkiNWbSG0EApSVihUsx/nmxLpuLFIArR9bMl9fM/d+9YvZKJX91xhDy05esRAeeaWj8OogqhHB7NyUfgyIgekOeZ5b+zaAVzox3l20YsDWi2YXi4L7pNmxIlqnxjmxwGddeL/bXr60sCE0y6VyPEDg+yGT7/kjp4oSxXDwcig5KgWVtIFVILtz8ScoTT9aGs1C1GSyNnCZkQDHK+0kTu3zVE5Q9djcLPWtgO4QjZtiZ42f16NtRCgUwSBkln+yk+J6NShWd36ujPXXMNWSAu1CEKA702urOHuzmupeGz0N2FDcLhIKq3twkA8wraLSghGh8pcUKurBebHDgE4pvgWXeXTFM2BoeUEHFP+Fc9oKnUIzjKeZ/KRwcTnwfcNcNXMM8u9fn07X3EbyZFMOYy84I5oVOuTyqrnC0vXd25n4zTOP6RNkxj2CH0+uRecLP3AweEkfkeCGn41VXOmyO8m/IcxVJROKQCQnIuCxdKHQ8+rbBCAZW1XdvRkOTMgHgYlJgVTrvV2/0QJ2qnyfkYFDGmh2t+3nihbQrywfT9gvduqkrwCeJUXmsszmezluB4QQz5CZQxEuyZAMYKw04l/fy7uFcFJ8CPoDVu0JcPhb0cxS5kq2ay6TfyHqLA+8XFPWKze4/s9D8r8tLoq1G8fare/g1qJp+G8Q5Q3fzLa2BDVxvyOM+DjH2zprbwfBWDVw5jq42YuubBLXHaQi6XO7ZF13904nW0A7i7wZdbydB2hqby439BzUIm1swtz2CWzsuLL1jrNuvOvVeKSoJswlOwhpxmlrh1LpdvbAKR0cjFK0zVUdX1EH/f/aGNBwe5jmBI/iav/+eUAH7F/M1EA3NWHsYv3xYRvfuUMR+lVWgcI9cp8RSRQrQVfzU1eKhSi7l+JkjK/4c+vVMjO9muKYR+vlKfqqHzh+BdXokFfRX2b5ZJbkV1pDKPVDqz2/p5hvJ4xh/62n96qOd8Yr0eLfvedBOM29SkAahnnIYnjnC8SwYIvvZGfz61Z7RlEpz3b5lTaY60lvUgK/4VRf5MyFifSrHEwHYctVMoULUhjr3JxD1AtHxLFWzo33PUSyXWV2Vpg68COGgFAnQRsDzY5XRBfNXhlaiBT+P2jgRT11slrWOGFVXRKJmtUtjF467omyerqejBm+2A+JS+ES9Zz7e7oQN0MQJbebkBGI2xNcQPDqiNK7j1NyLIjqBjXXwUpQxMjfQM//9+ZL8GI9Tpdmu4atpLeoTpfW9Hvgf3zxQE/J/rwcW1Rqwi5GsuW19wIXCcoUdTYnCI3FeCJtpFfWZnSSSZrxsI407PjViDgBCbDy0ujoi+Xfvr3T+E+OJkI4Y0nSr1v5e0lIDxWWZWLSL46IMlsawp4ZhmSB2jXQa4gPvIucHLC5TctV+/xb6/hOINp8mGpIH69GDRodCYnkqYm1ziQKgjd8Tc61JCBWJzcgtJtyMBB1MwW5JJyst6YdjQGpTYO/BJxa5RHneMNGDeAThBSFm9wmEdkvSuVt9AZFZ9RZvj2jQB9cJ7mXrnQtlUPaYk6FzpUNk5nGb/qOHEMvHNMd7tvPh/DILnXy3zun3skIquFv2Et+mEBYJ2qdbiHx4Y6y5gRRnXoE+10Locpmet4yxC8ipsGorRetwtKKqYLi9tnyaoheG2a2VLHCaq2h/lL7Y89Pjh+hgthY0EiX3Ac6y1VXMv67AullU6t6mCwKhpdzLYB/IkOUj99gTT0aguMDEBIJO8SC2pHKXbHSCFarsCPCslyhDr0rLW4zkORcsFhTCyTYT/gLwD8IPXeI/xDRqW70BovA1hFuaUIKKtXpmfcYPvT+I73HbRbOeToIX+Octhoy5QVnZrdHBrjvL8ltnRJDNAeMtCPwEEYIhgTArBiohb/kx3PGkrQy8EjJj1k5vtojms/thuFD0rxzBwDsTXUaMQQ5Ys38umnLFzuTsD84K/4WPLBvv9Y2lWPwfsARyZbkiC+0s+Jd5ktH87xSlZbq6pmB24qhCeU1mIJMDkIuXO1eBGNbuYzT/2Pxy2511oDlam0cRQcoTs2YIt7cJ5Hmfhi2Myqmf70hl/zLLVd2I7nz1XGgGYfbCBPw1R3CCsPDGOj44E8argDyg3YRX57xEER7+ZquX8W0P5ZxGHVTYbpG7O1MorKZZzVITk6xy/g+/k/IplN+3uM7pk/1C0icatVg4XSASX+fn56zKtXojSEaZjvaQr06YJpzfHfp4r7d5XyT//Igmw3nfg0eoMzYq/RMyFDL+z6mPJjPZ6gjTGGcGA+NRxuhUrcjXSJAB6VJWwZLeSPsBFa/ppgZ9Cvu2Mxfr2/D4dvahotr1Rq06vZNcnACST/YwUOK8E/9J8xOM1QBjMcI46eRCJ7+lXUq4tQ1m8Vr0ZzX7D0SbBcUWOxs+XlDUeEfpl1ddZUYpynlv3Ej9FhYhZNmPRUWfj5/2nXNb/36gCiSWnutof/4ms6BbsBSLkSAfDGHKmaSzyTwVTzvrwjaCkwb76gqJSVrBWMxkFW9J4QNndioHz6vAtBRXPNPCamqHUmKW9AJ62G7awaxQUembMQVnPhHY/uq1EYZwAz3sMprtXCPNZDpYNGfB6Mg+cBQWgxgDmGbgOUbHXsKLk/XQ1It0TUpK+IY41onV+bNeDoqX0dzbUeFtB/M4pa2a8aMIz4ZaF+h2qa14j70OtcxztxI8WVwZXq2hGyq6H80lj7vAXJXi4yS7bMEQuuK8uTA3vvMo12+ZVyqL/kN76NCwF/sGNO0FxvFMW4+bDeu07vdDxvEeu2ASz/3myG09wRNe5myK3isdlCxrxZxmR8QPFByuy9P1ywc1XpcCJItLzusZQSLCidnBlHdl9O855ny0x0kIaCEE4myoPV1seukBouYYp4njJt3wOvPZ++rsVEJCj/W9QgAmkDpykOCqB3uIDcommZxYUD1kBQfk7vQIP5JWVE1iFYUAfuN+MbniyKvuinQze98LQhzsYVLgMdVkYMfkhWnU1llakuCVvVB1L/tInitrK5QvZfNaXlUbfV1ewlbRBknR1X/NN+a+hh2Plh+ULMjiGnStCl519Uzbbvv5MM8kI4MmAl6SHjEjkt74wZcWRRTp4Bo2UrgyWK5GNADNEVuhKLDLnOoinMBzYLVMf822dIeGwwi6OhqBQiF6nk0ij4fuLFPDVElekZfSSfDFM8bXsbte5d5HT4LBkcwHbE7WfIWNVOWsFw7oEHB7fnjO/ZRAI9kzLcgxFLYSMc+At2ZJycImFEkSqYpFwwINhE8OuwKeRPl3wSPi6AakSjSaKVG3V4jPiGup7xmsGaX+eGoNGiu+TIMMJagTMDAKQJtIRmc/ttAqiZnn7zx0RiXVcd+FI70TiEw3BKvlZoukyvTMuqd9HtMSRUN+EwlsER3fdWrfbOisxnmvhBlSxMYLAK/hKouO5k5gIU6SkrfgRVhzjm6wG0rkrvKlxZnS8GT6+Tcm8rTZDp6M0/AiGmFdhMBNKqtC7g1D+nhOQbkYSxvU1bFkHSqoCWaLeiJsL2hfUIkB0cMgph9Yh3TNKudS4Ebr3luXKai288/PMVf0vzmAOCFDy1B5sf1eTvySBQtZtVvBD7OiWZea/XhFk0oveQRBuyqWQEgLRjlLXjnJbDy6KBSZkbLCP00zgnNekBrH/3FmczxDnFLfKSSQUrfuoIV6MPmcGT+1yrwGzd0HhxlD6y7KYJHFiQQJ7tss2uEA3GQ3IbLJ8TTiHymIo7gLtkXv9apNeCk0eNXQUuokGY+Ay7BqNznOiyCpAHoMsov5B2eZEC3RslotYJ5lUqPADvxXc71JT3OfCnvxzzNs9EkydpIk1tdqVl6SdJy6oyskB8cVZ+9UKKgz8glKrii31RmwFMFMYmj+Y4JuXb9feYHSrg7knqHqy1merGF7HpV5xch37rCxBFhFL61zVVRDE2/YLqi9CV3tux+UrQaCJXc1ky9w5/HpMDkq7I96HXxRkp7+JkRR1/NyXJ+ifyLET1ZrMvD4Kz1mqT/i9p0iyDDffHDNaYvSnB8+p5LVt1tVNDyJ/vZQNpYLpI+o/3blqB+fgzOIdsQKekQFIcd489R8mR1AIJ/S/2qUxpZF2V8y0LcCxWNfRNazQR8VK5dYFfChmNYQL+KLezxA63MY77xBTg6ACCapNoYpQM1DUbD9EDbXrX9X/r+93lyrkJlUxyvSIilHjPd644yXQc6VrqXZuS+qCBQ9zeC5bDmBdNeWbjfkL7vUpwxZYuepyYAgk1FHikrGu4RdMCvakU1j1Zj9zF4qXvsNiBUtsDZkY5owJtyTgt9mlWW5d17E/KpcAbabiRNnmCbN9vDKmVnvnStcgjBqw+cB9hgliNw+lyDg9TfrAhqRpXUj1FxsY2x/RfCLSAkYzWWbE//KfIDSktj9IxEj12YHY5JLVPcfRD4wyS8vSfWAztXL2q1Zk2wjYRBF1GBkjPbTtCK+5oT7ABSU9H0oXj2FnPDBARLKhShXHAjIjfyHXm3ydpDCEJ3XyuQ8LB6vSgTORQLOIgPf0Uwg1s8Rh/tXvo4bH1juhYP/COojBx2dFX1jXv1944C7gh6anqOCYp1Fx52xgynE46bususgr4KXHeVcyn3KIqU8JgX49H10txN6JfKaR1Vn2WpHcZ0ux5aWoBKLo4ij/QQPw4du9ijE4SH2OBzSHxgxHFimr8MKGahoxzwXyD3rAYN9LSfWDiaAsuBj/IpyaU9hGF4x+/ByEgMsUYTd/gStPHYRpVE9FgZDuAkZvYB+sQUfqthyfoQMoKmHdfFtgPSSEBySTsonSBfd+GF0O7nMQ6NeKD45lKkLCkQaNbPPdFHV7RzvGvcqCncuAvaLZQ4+gvajs5djNjgWDuQ44iaVH2ajeuqrh26vPnLW/z0lTWMybtjtrQW8Q/sR5c/RKx0VG22InusdFSBHcCypthhL73s6UI4hJ6dT6dws6pUQlJ40a8Kkw89IHZBBZ4sZjFhzBp+Zh/ojGQJ4qR32O32yKvc7psbpBxshqCswDNZkla4eQclN24XjIauNVQXpq4FJaM6ABe23OY2nHQELFirl7QO/p+89IXF/5gSy+uMz907mn9e26zJv2v7yQ3jqynQf1yuxLfDjiRxi7L6ya4QobCGi1yY4QhImcgcFWvTGNom5wM5OcLU7HuMyS4+icFiXZwLUfCdI+5NxrkWMNqZHJtXe56fGanyJ7D1aBHPh1zJHuHZq+HYcw2UPl6Ch52muUaooIacvB26vQ2dHEcLQ132//x+vKfWf2EIQzhb+aSe+zrGaDawjsga82fKSoRqDf1xiPu2k90XERhQX80wom6XH/p2CV3Y+WjG91K8ee4zMCmDEhy6Ld2+Gwl13KPX9sNFZy5gr1YAOPjXw1GfbjyQLlOrZxZTB+P6s9HAnC5lgc9LKc92HuiJ854BY17qNzKVKehrk2EknNQ/+jRIEDSK9S75v0exGRbSuKkmqMotCgk475sHlqd+SxRGj2OvqkJ9SBPgpwYwWuKvfv+nynTgdqQD23p8PQgmzXa0GH+3lcgp1B45nOaaqECkl3y5lsYB92XYqMZBoEGWFqysDOYWtZ0NjTzBaJAuR4XIWRTqVh5xQpNJxZBtofPUjr+1zseJLzH6tNSPgWOGzjZCfIp5Cce4W1uGB6PLxNTX6/IHiIOCrdMfW49gXiq0afjnz4PtjBm8bKQKk/2prE/SPPmuuh+jY6vysMYYtt0csjgpmuoVpV5d7miCgeZ1db2Dv7mrSz4AWSW7Y9mUXVyjnowTLgkpuGQ0ndjbl/8f5eWrhkCAJHWR8rgRfUCopwBMzA4+ooigpkr2QT2yk2clspKY1YuuvSrJcgM8viiQmEPFffDbunzkh2XVIikb/uvNxgz1A6xQGns0eyRNlqnO0vRIgj3/+GpLSdKx9xMr8PSFdr0QOH2uihxf1jqXJxvpr+kFKXDNOVcXrr33tbieVmus7Z74PVa34ZEMRBlv+Hj7X5g+zUuQ77Lh3wN4r5FLYyn+4mVhhXaxUoQBtcMDqgVQVpGGgoI50nZxGjhmuOOE09NpxhdJoCN4N4SAI6UteiMQXOzW8NN/xMLOn69kNlvH4s1r+5GTw9KOVzTPr5YU5TAQzUf3GbKlb7V+GRIjwppVU+wOOOPZbSgeO3GdSCCg7Z9Q9Bc19zUHqY49Rh0FVL8EfW1CE8uS61IHaU9v/mSKYbjAabXlgLuv5BnvUG0sBU2VMMhh882irKbtOt1EfZ1DZlHQEk8obV+bhdGFAWeMw8tijB19Qq7ILKq2jmY/IoGBs9RnDUvN1sGrNHH0pAjs9tKZS/YURBX28g77mG0o4HESrrEtRAfIystw5wyvocQ6dGc50Rm9OsQSA/+0gm+ldm1k3BgXH6yAVBtnZr52ZWN4RwMrtWpD/iNVVkyKVlWk4WTKSjjDWUqKFR/WE06qf8fmArZXRAURsSTzCS6aX80FSeaQoi210vCioJBOs8q6mj+XMubSVlOuHkDkcJCJoleBPBx6zFpkiZf+SH8VfnBIwmWwahXbwTe6zFraoeERfewKtNdsdNLhtNqFBpyZ8V24veQv5UJs051skAAPGfGdKeTP8FGZrKCRuHl+OBhwWaEnSsvJMzBZgc/zpo73GXyPuCFRF/3e1ynIo19Fv8ssL9/OV2mWw67ZjJgV5e9EBcCNTgvOY8t6Zx9PbGbfGNHdVs0J9d6lQOM4/hkEf1Px92v7LecG+gjT4PRtH8HoX9re67l8RSYk9NbRASYObWk4g32uuoRUjiRti6XyggDX4V72f41/igpUWPNSxGioFAymigcNKp5APY2FERHhlWNMsiixVoRV8F1ROLFD3sqJTdEGA7OqRmEste0aTPT7VNSeVNi7K+BP15d6SkeI8CU4/1I2jRtHtCyid4ToDbcGph/mzYSUELWQLaMBAfY3TDynxOvcjyY+ssZmwNyXoluhodPSO3O3locdRkwmZVvdz6lRJAvvC38NHZSgOfeZ1e1gKFysAFegxE5nV19m+Qai8WjbPrgvUPJcUYUrBAtJ3NiHiZGw83NFM063qolB6afkAvtL2xIZqmG3/xLjNhAz4JtR/Pt3di9BJqc3piN1vhfi6E9kmotZZ/sDLKBkE047Y6e11ECV6GO3fhQEnJOe59QGn3heJi9wQc8wx+7ooGn2KCiH0LtU4r6s+9CoPz8IcinQLQglTXLiHT29ikvloK/XiBKMf3UtCR6kedbUfI+U0YgHh4/5wJGXyqpPkjhoSksVQMhx64TGfHpN+9JjAsW9ffSirH3PUC9YrOkFKiLlPc4gfWITRud1iEOIarGAghE4Ar1tFYUMgJEZ4SueRhR4k0CxBzCHSuz9RHR3XXLfMwkbYgAtKkJqvJSTb6PlmdgyDJRem50W4UblcyX82RRpg+OhnUG1YDMUCWZzhsIYoLQ+Nls4HGwy11VwCRc4GbK6j/QNe8dRPqiK0h5cGVR+RbY8BdgB9vS5TP/vCkUBAW7a/d5pY7I6O4wiv0FLDv5axN2wZGH1e+rmoGK9brN2JOeGTnaeriweWBj18r3iZU60XoQ2dNi+CbejzpWtihXPkHpsafz5wLcEIh1lzcbrJS5X1D+gzlE0Qr+aX4kJjc/7NBTT89kcS6XYEU11o4zakSRKWSxmbBdjCHoSk8NK361U2jrT4LeR6p6WGe4VdB5dYN1F2LVl8Ls5vamCMzZOK/Vzi7nUjUuBxOHbo50xOjpLCfo2kMjaG4bzePFyeXpBm6DB8f5fZdwYdpu+GIDC8xEroe+LjFNfmbNFoDt2DI9BxHeUJmNBZxo6aBtKXXNFrwwM1GDwkD2uYBHQdly2pQO+2081Dfm5It6rqWorfzM6ZNifzgNHnI8Jo+TN8FA/GlWPcePYEfkGvX4iwfSVrDvSgF1ypP7y3PK4SEAcinajjwMgBtxE6lMKR9/LvteaLi4qlkZ+m75lHd3/S+7hCum3Fjb0DfF0MgONzhyqqYgQHJBDZEaTKHbJc+XublyVxj/F4UGLeILSQUlDyr4y9JUdINabkHc2WJ7u5SLCykOiYhRJZCXQNKyYOWWj+xUWFW9zamm4bxUzzVp+8Htl7zJx4WZ68GcNknlStJkrpgx36KdQ5yxWplarzVnsKmF/j2nAo++kkVsZAdspMJRu+HzDLTiFBqs9CLN2w36Scw3Cg4Lou6COplQ9qsNrAVJf41YpHElke43o3WxMlPHJfHwVxHCaQugKtvIkaL+r9fewPmV+UQQI/uDuDYHGVHsLyhVeHq5v4eOe3QHQafkNs7JtfB1uudiqMftUCWbI7Q7vqUMKpJ9F7txv/kQSE76hUS5hNTX3yquKuMHXDs/jLQig0SHWq5nusOjCXN32Z8fhjeak4O/PmWdxcVgbMyfqXASr/taGcjfxet9PzbV3LdcvbXwQ24oD6x4R4y/MaimhvQrzBAlDRVmBVOW89JBi61CqrVUZd9MDcweu2aGeEdwhkQZyqOueSKk+24po4anpQyswNJL5j6j3sT+cdc0BghkT5Gy30e0wxQwZGyYyJkKffNRtrASByyoFRXwiKWFnKZFfdvGY9ml+eWXUtvqbGVTjqe/z3I9x5Er6OhebG1NMPxT6UC/0Q5Lh1RxYTfkHGcJKjK6Lsxply9e0gCFSmdldTbP++t+Wcg7bgLOMtyQqbDmm1bgl7iz07x7GEpxADGXEwETFjvoXvSctInfln6OVviiQVhdAwivUFirrpPo2DWnWXdk2ElTKD6Ht/GrbmTWBUrD2ACv+OxZzGVZZ6JYDu/H2zyJzpoA/sJzhbLY87TfVuB9MEcXqSJRLlSVd2JufAfS+TaIRXpYrvM7qpHdJ0M980A7qLFD1N0Pqz55Ts0WLPXaQAilJy+k5qpmlPIYgHcsgd1z5pknXZTuXW//Pwct+kCsSCHh7XJTic3jS0jWaTnoy7Q/9gEY08MAnK20ygQ6DIFNpOOdqcKi1t0FvlitltyarfuvSAAiCM3R9QfK9YM1g2qkDC/JqYr9EtGOmIw8Uh2wjI/3cwZfbF3CRfwkFp6V743k8vyszGDsixrnjZlyG5ENM0oEhkowdHk+1au5pIoJHcDpZW6HhHd/ZHNk3ACn7p4OejbTn4fo9YyulXZuzgdjhwrmdjurBcceibCpuYaylL1PwI1Cv3r+kbyDt7rJx9wcBw3ZCnMc3CPu+qlKQiWGpDy63NrF5qIYdWFxks/9jXmYiuhNXC3Y1nDfgT8fA98djbSBEgLu7i+wuutYeR2yIf29iinsScsuZBxYYwaITRroJHyMfvmF4XSS+hrCUHrFjtPgdJ1daJDuIQVnRqavPy9oIb9OEQI9gs7wr6SY1x69A5gHI1kA+DvXv1XX4nCsutFb3QTCnDauVoUH36h5f4nMnOQdzPteaO1m0W0lZTR73ivd8QuDKospw+gt/qbmhNJVbJsfAQJ+kZQ3ABAAMPnL9w7gwsqD1thmVkSnGsg/wp/DPxvS/E10PV7CfbAPDEwZ2kGeeNgtpu/xvhYwQVjETyYgpvDlPdQONSBXatn377KozJxW5R6zKWYBaxY8GauCz5QPJZ4JrzXB6cTY0sIVd11KlEjCtDy/Al472G+WdKRhBTI9FaAor9XPxA/IQjYqjvBbDfBh2NyhS7VscxL3yQJbDJmItSluWa/gZViVYKR2Q9+sXlUGfeAT/wJ1tZzFuPkH1ZLrSZCBcvTer9e5/OVIp7KTR61OYwHH9+Z6eyA6JmNIJ65XWu22k/F9ECyoCVu6ke4xC43dZ3RJOoo8VGE/sKec6o9NaXcKkUSLypRTaKfFNcbOWA4UU8wHAksasd0ZWCPbysG5fvMBBnVmeds2iRdy7Ghcla3cwz/f2NYCl4MiQmTl57hkJHAcT/M1+ND/6Oj16tuUweyP7cu5qlunztletNrIZ4SLr+t2ip4Y+j1lY4c9csFnGvin5ffPH44oB81Bv3XOR9WKnwAexszBfnTi6tafr6CWRpSN0IB1zWVcMGB8YvyQekREeElUuAZ0dsEECK30eO/NO3kenRDbIIgx/WdxxQfoWT1jd/8H7dRgeQHNDtqK26KALX5Wq6B3WXMyXhl57+FnnGO6arCyJ5bXase2zQ2C7FgwCqy1PJ4xprPTQ+cKmT3D6HNfcYxXF5Ga0BjtsbLo1vrE1g67v/uPttMVQL1lueGpx1Ounx1sBkaZNIU3wZjtqFzMacQJuBp+L7yZ7ZoKmtoQ9+tZJ70LglWDwWGnyLJaT9gYgwqEueA+4jLzs1ONHtkQUa/oe7wy+4YKTGU9O5RDYJmJ+bEPg4Yf4PNTyukJf3oqdyfd8URHITiVH19r3qc4nTH8RSj4aFb/DqMGGkkKkzpDjixNWpanq/TXGdYzwYe9Fxo6+ujv5qq+AYxRf9r2MiFzpRbFaymmdHOooR/2qGqF11P/CGOYZ18AyaS1sibox3tHoJmD1t35VVh6CWr9lR/KnhDVIVP/KWk4z0/xZESaF4UBKY6oKGEWUTMAq0m0kEGI6vynzeb9Au6NMi+/ywWphWhA0Vs+5we8MK7yMWs3o7DR7619mV9hnUXpc02tz5GwrjTEUlhDnhSlXE0wp2j+e8XJ3avyD7oFCInRh519kt9M/0h3Y/mZm1Nbeo95H+2fvxK7+sy3uajfqz95k0Rdb3+U0cYjePIBk5nsVbQVohAe6nNxXmrQiAYeLyH/Y+5iogxkKb0oiEvooJSFLDSsFLCTKTQr5Rf6Iy9s2lrwAjYjVYDVcQMwj2nU0pccCW6mWF67UfFG85WFEfjVDjOlX0LTlQuJNgDlK6EWdJrz2d/Z6QLXqA1TJgnfaehpPxpAoeZ4DVyvQk4XaX0jgarx9fl2KpNi51bHvyoZGWo07T6734JNNJoNcD6Y8UphA3R0J7177s226KNj30vclWwD8Y+DkL3UeNixydoprWH7xhsHZrlv5p49YRrqv5Hbkj4WXjKXYt6sAta8E8RkZ/TjIjR5xPtUtLmxK3+f/tA/TmTGjKCuBlPYGM4DfRvXs0thkA6pwTVqRNiLbX94u2cY0M6s8GdLX6hsgvlRlyUWVWlFcK1513IqJzxkTbhknKdiwIiT5g03EaNyECnpLqtCttvRGrptjnyKEkxsVE9De05rPF4VYL4vQTztK7CRxdws2hpXKXf14c0CwmAq8h3G3/HLNv/qDilyARFIm+rtvDmHyIH9imYWKvGS3dsHLGLVb0x+DqSZri/bIbV/dumvEB+vt1p76pM3KF2xAhZRg8eVfvsD0GJWyeznVSHOSpwZlK2Zk6xeIYAGZ3CFZfW02iAgOzdv7q+JOXf9uEVLwuGIGVoetkQmGoc7ZFXxmQ2JXBTnBmIT7MbDkGNlervzOk9KhAjUMZzXHc97Vuq8vj7zaqlPWcCnjwdN7JWnq3MGuj2h3F4IkdR4idR62XZd362REMlRFlEwu2oY4GIq4p91Q27+aywIPrrB6Qd32rY9QgBgHYE66GMRgTKWXkOHImq0Jvg3hCghT3EkbgqHFR68o4sh0Hb8oh5EwoXhM7gUyQio1M9Mj0jIsNZC8wLwydpautdbx9lNkHmvhYp0Vu96RMueSC0UeaKhR1w4C7wLHzZYrJVaWkvmzVjKmea8GArrrzVw8w51J/lJWLK0BDaGNn1bENT67bDvDWo7DjtCy0u6V+r3FAMnZF0+KZsqo1pE/uHBBsdQl9BBFqmXByYpt+UtgQKoaG4ZUKz8EOW0g39APo55uyExCspFneSEhS0hdaU/Xbdgy3aznT4smBsj28RA4okq/xwAJbQYXSdtyHsQIPxwTFJ/JVUhJ8D7pKH6ytbS5fpjVXpgsHuHDCLZvJ7tmOfz7a5cTKS3Ku1yuNtdLZkKJei589JisTLUXoiq3BLj/i+diwK7rfJVYksvVi+oynFIkD7BVl0h4Mn01NfTTAAzpmbY8mrfWkLJlhvRn6u1v3jwg8dMaA4/GnlSrKhFwZetaChamfabXaL4FB+C06k/TwYPArfdCYQXvvQmUGAVGCj3DuG/Lvbo7p+PuaKqlQoCBqaxQvX6HFrZ3ZOXYwDmN67vRipwm0ROfdp7ULWHLS+aEQ2WtIpEVi3P43isYZjBYxD2+Yb+7ngGn55PVynFMW87RSknyx7zsXa9y4AouByy+2LOX/zotTbQLrOxo5bIrhd17lLgeNBBML/KqASEs/Ps8FrYGMCjeUCqwt7dbuSCgapFRICJUZOhMfCOYDd39QuVBCPded+gjDoNXNkOkZHnvXG2HL1LYkrNJRWqSd8okzpCxLH+16ApnUbNnc0lz0w3A6VInoO8ZS++7rhyU4EjLz5rmaMa9HHtVPjWOV5kXRTSzpksARgWS7XOGnd05JslJAkxen83z4gDRBOlow5UfsQMCOl3Q/sbb/yeya8CCU23S3VMHV8QxibZxvmRas8Fn8ZHuMEouSPqV3NGKRqayflz5UuJqI9tuJfywb0OGZnPaDdh19AzoC8Njm18LaXKclxrXtbMuDtfYyFWArC92AUuZFnUNX72Y9g7pFxHg77vs0o4K+vCaG0I4aoLtDtc0wOOVVBT9k8k+Ph+43K8vZ7m/LfSBoW07KVPth/7Fi23lLqVT2PuM7ktu7LQ2S+uVYrRN7E70QlVMbxO4GtwjmP2Dnw+8IVJPiDRowbZUzz2u+c5uLLmbDS4Lq5c1enA3kvDmzTW6RZnhKVgmbVBE4+nmsl7bgmzMOfYsbtRwoSAE5GRTJVXQYX/bnPdU+D37T0WcAmwuAwfCYB26GBmY29gqbqsCwfe0ZUKV4PlszJpepjQ0GwD928WaO4ola849VPPfSk8kM6iVnqtbdDv3htkiflPdQFWud3liuZJjqEv2Tf4BpTpVkAcc+moWIJfcQIgZ9RLANyi+yrledmKm5o+OLlGTiXEGt1bcjl59hig3pU2yr5KaBeZPI+r6M4aQ+d5jTdUYuYA+nGgjzDgNcOSZoNXR7JV9dU0Z9OFNjzMQB98IoXrPrvB1X9PFcTmQwt7In5oCa/CunebEt+B0VrEcBKHKl6SpjrKPL9fgF4GmAB0p4HTZJlq/whJzDD+4fNw3r0+FY/JklRQny4ZJHHI2rqG20ZrHzmA+J8mwXg7BtmE/jIuChP5Iqm0nE+QmQNyqnWnPHJQWCtLorwJyJy7vAyVDJfaOVAUlTH0DTQzuxoysHCoccbxkvuOYevd3RKpj8BslhW6tZ3Iatxm0OTYM4DHg2IB7jFkYaHN8FaAKGAny2hFbps0fDrDQqP0diNoXN9LS3GZmeu0BfQsqGRw7hCUiorsmUqgjJTnsIVs5HF7jH38Rq3ykJtn1lTfojgtCEDEJKKOwniErCjt0nL6iVcpZFsjrpfF6TxlwgbfHWRc5feZwL2ZDqIk9yQG794t6JyD1Cgj6BPIx6j5Si2xb/3+XczhVLOPNfYShETSpkU1WMYoSWg8s7eTqS7EPMqdneaLjmu+BQGirNRCzv0zhK4Hj/ZCHKoissZqQMJT2WdrJA4YvTnDc5P0fWZZnb2M6iuwTWUbDGHZV1x+ecYZJ3XiS3NgEsZHZiKFvPbPQhTKnJaPPk4OXDYsNwR/5YiuEcNt801UeyFU3N9f+knzF2hsGzXl6xhKEsc2IeqW8zeuCZTiY6wjzK5QLjv5w0SAP6DS9Fd+s6iZ9QGM4ROiWCZ1WcghbmqDZGpayCbxwBy7BBqoAKDlvn/orVxyqCNprmLNE5sJQtOB+tAhqAcuUIkykPfdrPwLX3Lp7vdnQ592Tl3Dsl9DrEfNIsDHmhPyI/dEU/JyrlBFT6dKv4YJ7IqiEcjDUktVI/BAYbN+oMkjokBXZ+KHiHrCLvuagS3G+2qGcjRjNZ9bvx9AkTbIWiZ84SoRyrbGGh49x7d2ZDByTzDciAwTW5MuuPZBKCNOImuMH0mdOf1U43GfUjzKFvins+D74SBDAQEuw8lp4q3SKTREv6qLHCsVDvarC82UCb+xLU6jFMn/wUmSQHGD2z48BH33iy65PwR3YEjXJUjXDyLhPaYIo4awJuG1doMTV9IS2UWKYYsb7NFLBU9kd2hImaCwVCV/oInRkTtnDS7m1F03I8bKOUkrXIm7PV3dVd6ZbC+nwHq9hvW5WagDy1qcvduVpVF6fE5jfIrJSq2l1idX/vspKeJrsRjYQMz9es7aywWbWp6QSz1XRVeVYatf8OejUD53W8t3vtWTQSicmVhoyBcYT4WfwfEnvErtVmnvj5A8rLYg8IwyMWOmjXcPNEoep1ftn7CvrrC2UAWnANN6J0k83e+uf9acxdHjbWUgbINfELFIRl4HsXKFg4mWQxt2XkGqGzorGY+6lfeFsTo2r4QVc5uvN099AqE0RveQThU9/VhDOKR3pQr50ubtNdfRIzuWRfpD21Chbz1VRF1UPW2XR2wShfP6FGh5IPoLbgeLd/No1KpzfQ7HJiTtWevN46m8axJ8DUnuUBFUYmJge/D5YYKg0uqWUZ5L3vUxaD+dAKfIkkpuWz8eEqRxLfyPw/phHOxZHd4SavKqyhKasTk38fD0nhw/GP45BXHKAAsQTejh5tTt9Bfuj+O7v2+4N9Vb2UAKyQUx/KdIhXPX1ueVvdRWttRsK3soXEFngwLmbB8uBNnIbJFt+ZairAtzfieYCz+FViUG9CBt0eY2lx+pJt62NvJQ4Oohphiynuuhhftl5FVB95BH47C2bc8jaQ1XT2NhPigu5BgqIYsDa3s6v7O7jLMDLhqOxW4/02tAJ56lgOOAcayOfSQj/Ww/dm1O7NXps77YnPn8V6ULbNLKhOX7VLWqFr3Co9fE0FkBphLvSlObRWTEpN/VkN9djbQ5iSNngfGVyFrV658NvuwBn1POn/hIocPnPFdvskuID4A5tt31Nb10SrkuZ/q7h0bQffv27TMouMnl6kLSkGMgfSDMH6zsBfMubAygnKUNDgccVTfSwddwsWFCihpiPoR6LSU5uRMPhiinhqbB6wZRcuPokaez7pruHgqo4FXXsp7XN6qLIDNRq182WkBFs+IRvC5UFtYxWqPe4ua9QPnOOglWOscOrW4ySLUNFqP1F8qpMSlxM6fnnFkSZPa4a2sLkwIWO01hLg5Jv/8hLB19kLNywjD9bbTjPJDjLI8nzGgWllLIhNkF+ysS0ymJ7MIoq4BbAwp3Omq2Ll59ZfVgxNq2V9CGI/tgkcXZL/3lZNeOQJ0bzi4spKRwXdBe4Pjptm6X4aNQp580r6IeQI5aZ7N8QukY7qAUttl7Nirzx6/v3PLT0nH+iyMiNwjVTGk0FH4NHnunL9iOVsuHjQ4xVceiCfd5n2kdbfr9PatCQS+kjHmpuYlGZFncUhLMgXlEelHySgm6QYALUpr6qlG+oI1FRL0pSgMpzXzTN9s4ADHulyakGzbgbfDnXZ2OTA7rPA/K3iIts6WXzlDAUaC2+RnQ9Hddkp5qCsRx21+Rgm9sAF/geBr2Yzj5l7GvHjPBIXqX9w8vA8Z+W1aRcaA8RiLnyCFxxqchJMjCqgewN4NZQv1VGpqVIYTCpnl6NxMMWCvp6ckuAOGyhojL9LJwSwZO3vV1J6Vh6k0Hl2ap1Cq6ZNTyuk3trLvvH4Op3xL4p2ExdOe0ZDwsfidyI6eY/UGaizHxOJucYC6Q6kYJBCZ8KLNUwiJLZKGUZBeUwyeY/XQ8NevusVKh/lh5cA/wI51zVABaQ8+Mjmyl5Ye+GpCjO0i5UTLspe5VAVfyVRNLns51Kh0dzoVUU0dU5jRHd4GhU5JW7pNORyYEBLU1E2UCAzh+na+oDU/iNStfHD7tGWc+b8o6B//zL+sOtO436thEoIdnJZrI688XgWGLt2oC5jMfCKpQwpLhBsXZ7mJrvkexAeemeTqiHKpraoL1clWoGiAp5Nj2AFTYWR0B9MmdLGBA28YQ4hi2sIfWqwZycygSlvLudI3EMZQlvhlxpEx1UP24vVANrKsoBWut6danwDCd8XfydedlD7XNVkwJZIc3aZ+X0uxWuNPzRzym9XGaPKJLknxwF1zkhjgFivG65XAFEj9hlM0OwMF7vyuAPXFzmL6+/+mvg0tM9s3JtGydAl3dRyn0ElGS6+VMqXNsHrfk9sA53IiRA5SYg3n3k8lKnMX+2LqLFaWuUYnfuvuKncu6puifnhqZgb7lEHZ2moy8D4uZrS7tXbSX0QI97NGXG3ZQInNcd1CwUPyV1HhxUegZHQHxX5uKoqI4tXfVUEL6e4OP1+DDaWeM3LW5BwtXB3Ov4ABQ58kJVQWltoHLIfMyKAkQos5xRLb3a/NyUX55VEtccC+Lkq9QSvAe9wreMg8OgOVsKxlYxCwfNpnJBkrDVHaO+jecAI3WUoX4MwyHUl1diDy9d5sIch+L/GzXh+lm39eIfk8zKN6G1xf3VEsFHjmyJ82hQT+02zKjdj0yvNi7XL2dtbHWKh+5JfRs/7AwAr9S2Yp0pRyamgpsOqksG3yaH0cAnJGdIkVH2FRAxVWvl1a+RC0ZcN7tI8m0cCYdmtgBcimLwh+fkt6oJOceQ73IZ3QQFyAdHN6xFUIGfxsdd6ASTrCxUzmEaABkVn5cfgQUP+w5qhsbm9vPtwNhM526xC+BlswWnZe/hHBYyKipqIJ2BnJcbm9dZv/h16Qk22rpOJFvi3AkzV8gEANxLgNISI3FIWSF9ni5Q5iFMNkAzsFXmuYRqCSrkN3OrEfzYYi7myFRA1RXv3FDsekMme0QMQgrJ2nOj4Hqd95hwtNrECU9bn2IlWsqaKg8WktRxAXTqU/6IkDXrgWYcU597+LLyQhexCGon+iSUZn7J1CT7U9364FA+LN2vz/gbVD74rZsIrI9ae8q1mO2ruvUj445y7eVBEadSIBOrbQFnVFXWRMKv2YhEeAQ962o9pbAkqxRN+L6Ltn0hOvs63IoSiAg5777ahysm+qSA1QQaryKNYUjXlt8Mdgm0AwECkTHBvLrdMK2QjNvUjxIq/gv0RqpNYJRnG5wzBy2FRjRyYrzMeFa3h6HWWiFhl2LDiMhCugyGMzdfAdSGkjOUZjHZoGNssTKxRZAs1Hjkci1a1ZvqaWPrkDIdKkNcOfbkAIrXTRFpKgkt5FYSY0k2ygybMdSG1nPnFJa2lATxGMa2lOOqGXvhAfGkeLzrAu8zY2Q+AHXKGelPLT5619bxXe3bhtoIDZRFEqwbTzHFGuO3tYzVCIGtB+1PeXrYODrgrgHeyxJ2FQIc5Qw1ENGIavpkmm2CvsGCaAsNctK9YRHJQwB3bYsqAAno3a20lCE0+3PQBoIAj1m0wzVE5MIlEgc9cV5J9G3FoOIKWDJeYcDPJsfDnOlb3Ka5Gs29gNEfEybrE7sdXmHmrQI76+3vdokAWc9KAcy1ZkMY6Fjt3b3f+u3/V3iSSmEFKXR/odM+gVk999gj8njcXqZLxVZ5q0iHDAEZiXtC30u+u/7KzAFX3wpENRrdjXyjF48qoSz71yeUCPwwEEz3DzPbFK4Bdap9MTL6UcsTWUDO0uy4+USS486yAcsPta2NeW0F1qY5WhawZqe+mVqyUo9l0FZ1fIxHqNP2+GTGvT5UcqWGBFwJJJ8Z7UopFmhW8FKNEhnk2JtMPiaVPQSb/6Pm1hA3salF4xxQorTa1cY9ICwe37bg9wwFiwXfbF1WdIS/l3es++KyDJa/yXyPj7KoY3hXN/kyCc0/O/Zaku1rY7QKb1FFBj3w6QUD+luQDuMLdb314suNFCVAC8Bqpls9pMhEWbQ+UpD5INRXyTD5p/auHAVxpsv/iG/SMgTcmV/lBSHmE5sWoyOPzmbNylXoyQV27LtKYspjFQmnMzy2DP4dsIOqbqmH9GwfYzhKqZ+6sfnl0c5WQu4ZJ0dNQtlhbuO5iNMQyWHVyeZ3619XksMbC2JKi0VE3izar6s4BFwHAmwuh5p9a88Fpy/PaxY2UPisnZRIIOTdr+GDb2w+MyhElMFP5bw2wmmIzpxFMaoeVrjSCre7e95FQoygt0H/e8r/rVBWubAVg7A3Y1LrGCbA9Cuc6ZIB7tLnSxdXrZGI/tIQKqlbAmLcKwbIwkxBtewiV/UC0Hgt4ydIfkWNwqepct8UQk5P1Y9uAFm3bfTiFkmXIW9Sws+pBfmHQOBuS/az5O0/cnBcj0YxGUFWFi47+4hsM2UoBrEjwq9D3IlkNT7XtzXXXGSNor/NhJTyRQ2Oiw7ukwt5NIKRvUDBVr4kbvoxTRnW03KpQ6kss3W6MuyfGp4Ae16JEZTNSUNewmwyTjedeSqMeXM2TC6bPf1MZ8CFqSN9s9QCr6NR4xU5DJkVCXez7E0ilVtH5iZdDXDyb4hJwuEjnLD9KPFj2IzHfDVCrSqLG5B+bLOYPWZ9Qc6gLKBLoAMVA5qwhuWhROuqMLVCwcBltaW9LmqRyvWz6UsDKPULdPwfrM9KBBmunyWlvL+OuZiM0Tlv74bSMiI2Reun5KV2eouTIT3bQ0NoIN1mgsWGnsw974oCW4BS7+bvWeS6Gdbovm/uPVgXhuPhg7PO0/RPrhloyEcxixmgyqAzKXTLdslmBuLkw2ByupVLHHXLG17gXjzC+Vw7WyYkwIILN6RsPZ2lRvfVQZ1FRoTk+nMk0f4qv1epG0y/UuUQ0dzs+dFfGeiVeX8gTJsgMe0EuRk9ARS3ke/+b0trCVx5W3txBVJ21cvDNnmQYE0QjogzpqyFqsXaT9Nux9pEm351Afo/QbbGHn4b3Q+7XjcKekRJXEpcjoJpt3hDnCFYFozd7TelA3EC1z80VrFFU8dkuDf0emaBgMdKanKWaS3WVz70XG+fkwgjZT4SkCDvo8cWCXngxLfLfIfPqecVSWARFAkbyoib5QjHW3BaPMv4g/0SbFNoPSVlcZZCRQV8P1xe6GK8sVqjQXrTQZW8coywuAjzHE5yERHn3TKK0PFrO9u7RLrJvKwCfc3J152BeNx8htLdZdEbtMUI82cgsGrcvIR16kwkVlK79o5mlw8+uas+Pk/q6sqas6lbxDQlaO6O8OVf9cyleBLLJKOKuB2e1oWgqJUn42V+He5T3bAkrS8T5RUFPNQhU6DeYBKGw2Nl+4Fptz5SCANlJa4kTHu+qNRyfXMN2bKCHak4Upr2Lpp1T9uXDDhiwXEzhOOtnNjnKjSdXfeQ4UWhzrFamY19o1mTdbEv8LRvAUya+8+OEGTNCdNrsOo64B00jg719ReelUT4v6GyfmPgRSeatMWZ9ZqBNveT3EIWjhEN+YVhww2saRjk7nCUQbFYpeQih6H9yp/8xxv46W9KTo3FJP0Vul/narITgQbiSkaohOgKxDTLCkrhGtNw2CbrzqFX4uOyWer6CvFPIkwrDcWfM7jP/jZHxbY1gLnZu/bS/fTf7hgnqyxfiGXq+2AanIM4A+i1WKz+aPf6vOmLKF0Azl5qILkPN46rQQpOPxiffcQ31gkOavC00JSRpXQ9bYIA59XUtTKo+gikNZSZ6k758mLh8l1LF7MRMere6QYQVrP0wfhR5BS+g9BJljAnrFAnye9zE5QLfXD0ojkEkH5/YbJdhTWMDyLULzqMar4ixOv7wtu+TIcfEBxC56/xcPISIzCzWV+yDBKyOeZ2ybJWOee57Pgba3AvQaVYUQBqxMsoy7yk3tldnuq6fl1oV8SvEQYavoyS1h/qFrPorRkZ3NgkgdxO6zMPFuNY+dy5tfT5NO9XF34UAJDsH+PlUdyAGoLRnokRzdWFn5X6M/NQvvaifjw+mvcBOHE9uJvBYf4rUNAuzxTUaIUYMQbpEJymcAEgN3DYYHyqe0d1FPqOx7/lkrW1vB8/+7OTXSV9j++T7Ivqf6k8YS8ngAkQRddm+fKmE/lgbWBL1/cG6LmmpgJnJGy8RqiPXw18rVpZKlR7s8iw/3VECJCl7IV+iliKrNGFi6b29aeYWeEzjjijHaJqT3g95+fAUk5dBLOObZJkqiD6+d2vVm9jucOyq6HaknPOw4Kp2UySTSTroTxXRYBaYWm/3sXqMzrNLUuh3THXZjIJmozQYHRlS4/LShgP0zC+ZfmkooRT4C7uaFXGvZk9p7BYwwhLnhr8O7CQwsajXPbgt7r27y5Xio9eAHkF/QQnfvdeFUVxX+ttaQ7NBzfIus3KiQOsvnEibj7NwUxD1fg4Kq9RX+B/stIyUcTkRM56T2pobHeCwCxYSMRVKzqSwqpac8zzP/TL3PBmw5e7tSN1MIeQVN/b3HR2oGyIAT2sRfNF6cB3W4rl5J5mG3TzioWHQUA+Tbx20MqTm5aaUBiAsNHWbe0vQuQGgnwzH3n48G+vj2rWWnkfhBgJR/be0ByG06HGSIFRlpKmiuGxXAYaeefUebfJ+0/QBPBnbMXMAUy0BnJEn2nKTTCacxHQWktjI0su7+r0d9bkbjurKlVnSGxEJAov5qHnAcuJNtdHwddvGwGE0yohXiVNwaCHXI2a649rVLwkpdRdf0ZKYm1JRiv/38ZB1PSwjWSd1pdtdUw8O9zbYD7oYrPszeK4AbdlAg0dTtmfAZKtgIQEf76KvgD43LjAjZ0ZapUxHx+KFsuW9iAqbpkIl0UFNHUPibOaoJ02096l1Um6RJxfeUNX//t+At+Tr0ghTStnXszPskUbpBmo8LJR+lKzMLPUJoYVq//6+38ijL6ZMWXb45g1zK6kAf2aQh/tBK387wHq7IuNemQ2Ugw5sx2KmRKn5gmlynzvQjX6NV6YVM0SKjAMmuJDLrwsuwnkDTxYyQP6egIZLy1N22MjgIoRnNykYDVMAgML1SyAY8htUut0STitdJ8NBxy6b+BhE5IaJ/1+KbRitzen+WRqIKrC47FqMnFDZzDG9oEixX2iLQj7ClRs4W1dyA/ca9VTZSV3XAUl3LJxLY7C0MPrRjWzlclDcuBoObgFRqN79sfHWYWbnkwYqieL4DXaZfFFvf8PtVSPAjVPv6a4cNuoHO6vtyWKDDoOalqIRtfO7LaphQFSPrbx9KEwFCXq3ZdVgHqkuJGJzgC2/FKGRnwmj63RnKNZv1mDoh6sX8EblsSg4UqxO2V1pYYdBPUk/Rp5mYCV1PqJwUWOWpKxgmlPORrlZsMMhI1PdRWZJpQwKOEmWkcyKofoVyTNma0SwTWOwZso1uvyq29rdXHZWzwfoBxvUXWrk+nUSsXKUc+b0nvhYuN27ndpqNdQrnwgXTYDCxAjmEq/u7Q3FbKBtV3wowrZ/fV8Gz2BRCmG74mNo3Q6kalsKKAk3qsOcilweraCtuoPujoV7gc1fTdGkpdPeni4naTdeOy/rDm4KA7capnFwBdxSZED+dHJrVhw4zqEN1KtNapxFKUpST+lgW0LQ13sJvqWZ76LTrWt3agBDQkfvOwAIQ6XT+rRVuW6J4TxTv0bciFIJn8va3hbzuHCdSvQWgg2DL9gfo9w0drTo3Y5qSWb5snIy4AAle+m1Ebxxq++BKJFr4jHiXnz7YCFKo1xKdcBjJPOIhrPd4ocEMj9q6zPC7x0j+rAwI4J8CXysAWogTDIF8p1SsbhJy413QMDz6MxPbwGdQwMLX1LURbBQ6oPIeCNEU4OOme5dOxBSBnCVxE6cT4aCE8dUkp5f4Ks3Dv6u0IFgRDfEhEFO1LVpQZrn5f5Q3jKnmOrHEX6y/e+5rUZ7VVB23BUYmovAYMesPW1A5nBtpEoNod/MWg3o2lLCo/nTpcrrrV9g7Mvb7vjylZxqXuC+w00DIJwV5xTamEDm7jvYqIgBW3uMWxMCMMUOwt+lsxSlbzXZ9tmryxGShMkLXdbvnn7llN9W0D8Qw/oF6J6DA64qhC+4jBHn8teRr2Am1O7DV4QQb9JK6KPlhnfbtKcfQbIuc3bshB8ndMCl70mHRbCizE5AkQ5nz2sY23IyOXfAETY6pKijGeFuw5BtPZumWRIvFe5lAsIznHtJgrz8kL1st1oQU9wpk8eMsr6uHQvhZ6tlXgJ/BfCaZfXK7V4F++gmLBjUPAiQY5TroJ+CbIENO1IA+ExArbPlU5ohhzsQoGhTEd/r3wJLu/E1V4X0l97QKZIBFBy5f58h4PMkx4VNeqsy2L6HfBKv/wvDqJOxj9J7Z31KUxdcyQA1PmyoDhIe3qyChN3l7TZhUlCpmiSn8PGbujzRIqobJaGGspa3YLQxqZ3X1s0JM5VcFVR3kzOH9PffmypuFbSJa2i6atrjwdZ9gh7uXCd89Yp8Ku/Eu8YFv06Y+sHp8B6q6/jDpbLscM8xHWxLdNq4DYkO9h28U9hy51TG4+J32n1nbcGo8uAlth9gKHBQ4C8oMKh//ZXEbromr6akNGPiO4LXwoYihaoBMSPFxOv0bzhiIDATj09dZbrKjcYxVz4sAFZ/B9VxDdNXvV1/tNE5OL5YKQjfeQOh3EYh5lihla/LqquwLlusPZ4ZhIGexNQ+5OY5X2k/yYo02OjY3u/j68MN6sdaRaiHtfL8HbQRT1aWqGbPu9BxM6MB5dUpvw6K55aS/PonMlBs7KzI11H4n+8BoK8DCLVfcY7NWw4eJhzVdib3QyJp60oHKsmwTnIv3k/L/2WP1sfRSLt1F3ScJAPCy+X2i/jYkDE+OIKd1vowuJu4ng0GT81kJ0wTAVVx1mzxckPVmxwzSJLkzs6+SusKQc/zcNXr3x5jNSUbGZnsaEGrzu69Gcu6q8ovnyuuCLUnI3oc8gNA3R7hJJtNM4W8zWXMkVWvE+QWbSi8CThKIyYaxJ8eWeaSJ8gYnpMKgW+zZAiUTAgFY25uDKCnWihdflQaeDM9SP0XsVtePoS9evN8X87CW3fjsh2cy36rJGZ0LoUUu6tPirws07zldNN4T8ZDVK3vagWoV3TIMo1lHZJj2q8eKnHO0ItXHFVcb2pIwzMWg3fo0eG222DJQHSSvIjG/T3uyxyfl7MicMylTgizQaALh8IjjK+og6CEnxsZyLZboirsCYIRVxxIOlqWCQv1qLWBHwi0YFsKOWt+fieHTo1lBrwb2qastEDSsHwmfkclvLlkPrLrrJ8kwRieNaz83FGV3pPEqRhX32qty6X8JxqMgcDrtQONTVSAFj2QFHwFAreyfdqpzy1QNWdETaA8EPt122u+SZz+thXI2GvrM2DDbb6imbttw4JxK775//TUqFRrxpnNA6zIQiA0QoWZmSWEmiqCO9fJup9k3PLFu+HAu4ygSNV1GVvkannEUaOOlyaIs9CFZ3Qvv5AdEcOFRJoHqCQhHtChaqgWJHN5P6olk7hI2EnHK7u7GQTJfhCmCs1cEXi8gOJtIB9G35b02e/yVa34QgZDQzATguBQBcCq1Ysi+trhzeiu0AdzY0/ne2zpMyypvh4Yoqfp6y+F2SMHBt5wdfr70/i2vOsV4tA4HCQ97xIK0vxEYKgaja06FxsDJoPuZA++QLuj4oqdWj/NvtamUWMIGgq0Ru7jE6knNI98sLkYx+ZF+VcCZltLfJ1FTNYr5XmQgQkv1WYrkXKSig6+xn1zB5HgUdT3jXmyf3PftF/JzVTZPCNKjKzHU+NWhBShXhXMFwBLqgz9UVIL/08b9C3WSrdJxH4lzzSRCnBrW/+xVdIJQucZA2/n9hZhYOzgEscy65RDRGTdp8o6ssfZBIr6MPseJp2276npIc8TJOlkVb2k7APwKBRNGDNDbi4U06LDp9OHVNioXcWoTkA2fIpfzXuBmynQjSVMbrKiEThy28o1CyOu1qrnULD/NsWfSaFZw3g/v1VluPleNIvIDl79MEUk6DLMj2ownKwDZaCLGrNwKhVzqrSSmtMAB4jJ972+x9DoHMGZLWy4NvdPmOz4gK4uXZ2fYEWNwe4uXZJVJtzy0kBx/0DyyqDiLyRg761s+y1uOfFcsJd/sIx9iSxTIU3lm9OnJul+WJkJYbrknTroZjsFhICMb0MnfptMcaQ1qD56Agl9V0MaZkbLnsZBrTybvrZ4Quh/gEcZ7rJyu1C0kC1vaR0v1IgNlfR3vEsBEJiiq3s8l5wHwmtGb5H82BYm8L9cfSY7LeBrOw2jPHhx4o/QLr8eRrxad+0VnHG8XM+NXU3kj9OunmYH05PqB0DOh++3G16zyGS9TvePcoBlpKcXjIX8xVEvXQM1kOCDfNmf9wJy5pTZP1zaZRJYXn/qeLlhhZyT5IPzQq/Hhf4cdabWBp3r5sW8OU3xt6dANJYHzzyQnMgCR0KR4AJGLSpjWzpGk2nHF4a8X/ziYN57OpsIzyrDZpoNPqueLshKSVY16VSMnB8x7rcYr/RTU5iXwv0cL6AjrrQdtx/oMlT0lCnaTnWv3YISUetp3MbNtlRkwowdtS5ygVO86I+Wb2EUn3CvWaZWpqDYO7K0kMVmUo7VHh102AIWITCThQEeAbuFCZMXTQQMK1xbAqh+CEuov8EMoLFB7k9kaXhGvTr5ADy8x68QLjt6IWeGOwnrQVcf+ctjaa1gR4RSLP1VugfZODQ43errI7dX4D2el6IH1R9WIzcuuOMCAyo46G7i9Y0AGr9RYj4BswxGH9cdm7jqfdNLeHP5/yLzawdDvpt7Wk7e0fyMUU4gKpKgV241YbLmA/Gu3IRkOzd+GtPvTL19rge0Yuyt9DQq1i9T5YpAtL9XFNXf63XYP+14jxxrmW7FmpwHLwhzD1HPtJmXKyybNYdilk7Qjwfkg8jK4FN0EjmqKKegcO5Uh0aikJtJmZ/bIsHrYWqZ9HSpxCsggqHReu6CWHFopG4f4Dx4ToweHNNJ/mMXgxDTaBRDUo6yJXJj3qDINAr71iYjwsE8k1Q21RxWbU8thxM4a5gWEiZU58kZVfVoJ6tFhUXQTFOUpeiKOnQuIXqaGAPJo3CbfYkLC9sDuvHqmC4CXcWqqzMkAz7PkHuL5gXBdTTrZ8+7RWO/V6VYsmWQ/AIvz0Ij226Cvwou16aREslBq5wTDj15Dx3kjBgCkza93JRuBysYBvoqcx2s9OHqJYzE1/hI5sxETulK1APFk8oIpox4LlGzpa4m+3ZOZJou361kxMKdNOCFnpLsFKYpsnFUtjXPpJjHAdK52sxhOBmUOL7H150pDr8Z8r6DCAT5Jf4wxWHbwGpYF+Wh02IFmFAVSxASzK3AUYFWe9bcmnkaLycQwL7If9RuyJGo88pZstFo+PY9kTDzepZC69Wd+nqUN477RUl5nZoqqFeT/b4It4P6YcLXFbPTm8ATVUKwPPk6Hc1aukJuqFXR3bw6mabkVxoO1w6zHjzJOv6IREdA1nloJnURHCPWzeT+fuEeTZ4jf+/l/m7vT/thMkzTk28NUc+79XuHX8qqeLJPc7O0obK9T0t9yt3otFLSATTpJDBApUhVS0nw8gU5aOM1UjcXW5nW84ANddzGAIUK+scLKnggYFEW6IdeDWEd5dE7JOCWkrVVmSeOVB2bu0jxUSqFXnlafbsI/wO4f3b0GfvAgmRHDRzuobTna5d7cHxVRYZMTBaxgR1rDJ+xC00AFHw8PR7aWCIyfd0U0HCsWhmiYz10WRlsJcuuhXvcu96k0LwAfOqasaYPxsNTikQiiEaZkxoVaAqz8m9X/il25XTITxiwLOFf7t2Nuc7sgaGleEP/biz231K72PhDtfsZLdH1eIBkfGTIKTJlj0EMQIg+/xy8h29Rk8/EcIFF2NyqT0YTRYimNEULwDc3NS7xjzr2ElJQ7Z4Ac0ElXWf/R1L7q/6q6IavN+vP5n5Ar1EE8vTwm4eCqkvrMDJ7Gf/Ugh8Wzv03zM7S13uN5L6I+s+NWRUXYh+Yt/64PsrJjeZwpedr0I2/gKWu99UMxqhX/M40EyOj75s7l7snD0GkNCjWEPgRZ55W7IrMZzNtGt/X87yAldr4rtRb3Ni102bkzUGrJI/E+VXTHXMJJrS+Tg5V/smdYfVAp/tC5pJX5Q93+eQuAOW3VhNus6sC5X7h7EYi7k5+efeZVs6IJhDI+xD+fJYlymMkploaBEk0ZCKbCE1VtqgklXcr7n+Ats9ZTJ0qpmY8vTJaTDRSgiU7iXCtAV+zisk1axm5TNXxjjvtcpfcy6HAw8Lp4GeyLwypusSD+7VXD87H31djriGoXJyrozRIjzS9DCw/yq6Fc/JEgFQS24o4H7avTwfaAllpULDQq5Bk3799CKopkb7wrT5YbIyS8jSkrbjiP8uKLnRW+JoM9xxyCFgjzSUn0ywrNjC0YaP97mmod1niLuHms/bQ4FYwuWF3UjmNsfNY9ryKRCvRWtYJbpst11EDG74TN5aLYsmfclyThEjVcZZ2oyT1ECoaSZDOdXu0AzDeXwv7WNpLY3F+zvpZpr4LUinp7WWDy27ElkK11MDacio7ndFmA3pnPASPqhXVhpobBe6q2O3/wcm4OoBnlSsi0zIPv0VZ3jHxlB3Vxv80Xe9r+7sf8TQrp+knflPzcDScI413H9A6LNohMQDU4oGIKnIIoyG9VluDuq7Fre8dozviPlK/XFxudQtDUfYWWhy+eN7uXE+Wk0S2HVqZFc2pMp0JnUj6tL7GFRRC8VYPP0lD7CoR/+7SEDdzU8GzLQ99n+Mjig0tGSPHf82rjGOE+tlBb9xg1DNyfOiObEbUnvy24M/2lrcnuIbW1LJ+Bvw0PDfkPkMlMAcG/IyzTCtqy6YmeJSJETJoYDsSERvpydx0rR5YSXLufTO1U/I6ar4W1IP3bMdY2jikUfD7VSCZRmpyB8YPdUcKZBudOT2dDLKWEZJNTYOwyThW5nZJYFaqQonKcBviHbqao1E5HGWUaOQ6NQO4OyNV5XuVXt3QQgN6juIZoMfCpl1jlHJW5fovzPexk07PGofR9IjBId9RIgcsR2lSl+9C0lcsrdHj0AoiYiP58PGGDIL1EUh4TMwEElxuD5YqUVPYxXtdZmDMpwK8BetkrdOuGoA9tEB5xOwdm1HrzjBHJkoGLRYTIk2bJbDxnro1HUaYIZeRlsmxjrK4Xbc6KsdT7YAF6qsXHxsMYCwxiwLTNq+0jPfeN6ZfLexOJmJ+yfKViRFArjb08rlKnWV72IHYTwoS5HdwIq2LoTfNKdb1q9QeWzWvI7EM2zJ965OuaBq+vYua5aE/i6MqfQQWabr+FoGQDxCinxKZPrOKSK1OBd/URU2EtcX3fW+3T6MUnzQ3l4yOAlYZlzciUM9Tyf6OjvWXq0CeWA84TNuJR6KEY/t10lFSUx0JkdXA84mS/+11Mx1nr6OY94aE3VdGkiJDhdCev8VNP6dSZSt6Q2VnkaPVLH92oKvFLZUG/SIilE4Mih48tbc5hjP7l4DfvZIB+WYQMlO2/SLWF95jHOD2RJwbRN9awrKvQCjlH5O871grg6KYws8zrZLz5stbysMZcJgIdXiaGwxj+9SNSYPnn/R/nCc6B61mWYJz8c6wgLE/Xt9c4R+Ja794YvB5HirGWoUa6SrYweXZFY4vBBhn3BrGh3nd77sXyJ3fxITJoSLy+UEchpJvIQ6MEoNdc+eybb2ogwXmaMkEOFCV4brWi02SflEcYYVmCnJc6rX4sjWM/+Ly4hnsJyYrgS8PtggX5mNIZntRGCR0KD5k/7YZTWFjS6mou7afUQsFQa/5GEv97d9sNFDBQzyFssdxuA2Qf3+1vf++uFra/kJeGl0SMAToZR8jpj1glXGfCqMeXcvRueLVTXfjNf0CRuaxImdY3Uibcl3Q9JuQi4eAMGy33oRRYYctkf2V5AfhYhYSZ9y4ZfQCawXyIOeGKy/dE/QcfxcBptD3ycPkA1ndgHN+zQw4Ng77W5o0XbVDSla7UU9Yq0un3tbnOTms2X+QP2NFFQs7B6guftlWPNNv+Gx1ioxurAj4nN51Q7n58qv0Y26Nbj7ZchoXQjLEUbiO/N8hZcAvB9O638BE+ifytD9eqca42P1OgLR6i/LDVzV8TVjuy9+Pp5xaMqFVEJIngmvNu41lv5LilcHLAHLw6RW8bol9QfJIXX3be0P++j2ZKlnjL+Dc2RXRptfo/z3qUtD7c5QssZFAd7ZL1mLrxc3JM8HqLgkXv5fGcuxXcW7RMlIMU7D+x2tkzLFmcrQNe0HN80+suTVd3NVCoqtBJuZKOwPHX86ueSsBEljIoevsw4gvCwUue/0B51ueLPhwxZfsM23Rl2q1ntwV2aWF1wgWHyZujaHov2dLo2v8Dx4ow8rPKS6DvFcEYFhZ121KNoAFVggi1mT7/qCVRV6txyoxWPruSb3410n2GEigkqAUkja7Xwzg5czBcuhVhtAR4kRApo4tdg8JdPrezjTjFVhK4VNGFTzkJEzRkfHsfdkZfbJm16YauNHpFFrFHaUgED37mpDErBQe2gO7pbHrGFgq88JOvBbDZi9ZJtQeGxpKq+sktOWiNyXo/rQyaQqqf/iej2jUESeiL5NHYQiSv9ASN1DmAskytbXmLmwvzQVYW5euWz589mxObE2uaErj8guHcmodD/d+/2oQEZjBkN2APZjaKC1LyhUPnQ6XDLdM1yueVZRPkcZ4T5JIvva3YpGA3jBTUnEtN/8HHZwK/FTBOziVPa2BB2xwS+t0X1fuU4PpUJU36C2rhzhSaRq8QANxlQOI71ziOr32G8uDxlaRn+Z8IKDt9N/WnGQXOOFyP+C+mVE5tdknlwZ3YYFFfQghDJLV+CXocQEpnVhsV+sGyH0T3k7lc6A1OVqbnMh8p9iuY7cZE4o69ocY7K1tmdsXJyFZwpObL2B0j49OlDOJ/Bso+uw3od7bTEb77huMbnLTVQrPSMBUJb1WfpTjU2Gniwdszw84OX7j6ImKyGPz4AOaeAh0GRfWWFAEF+re8htN6WqEMhrTpWUP9jSpgBe88GY2TMStzOxZFWzBuEgONT9EHIv1mz0fYOt2ohJqFd5XJVIIsPYU8JWll6kBA1y7k2D8QtntX4ktPv/G0VNQD9SuZveuMQnxAclmBSduZv7svAf7HbiFCt5loOD0yyVOEUs1QlBYMeRf5iBg1xDiNUo2mM4QjzQvI3DNSiP/kpTYZ7dMmVi178TIM4h8Ns5yT4DyCyE3+fbCTqlch/aWfFn7QQZIz8Vw7HBUrfPYjqnJ5Z9r7g8zmgCt3IfUoED5cYXnGOxFstF1N/lnPZO50ALjPbhe8t5yV8elE/buKv16epFT2wzptxDgbjKgYMTTMUmnb9L2F5lR/bf8KGWtmvL+z6JoYEkwG1RU5JrLWY4QuImjRlvwVaRqey+0WwbnB7gEhk5qLWFU26hnyG02luPrNtmoDzWV3KD5tHr8kuB+NfDH//MkZ/vS0T68U7XqozkOycygvGv0PC7Zs007Gb9Kmdk1icgi/fA0Ab939Wgxo64Ka7j89/QNbTSK2UM3hy3H1avfQD9BcKhRaUmf4wXiEOm0cDniTUjspvP0QtuMGbXXxT8/Ul0UO2Enp110mxK/tySlQKXUgYaz+YE0LPWYei3Wy1RMXqN6PkpweJu7lhnp8CMSb6xRF2H3+qXPcVrZdzk8N3RXOSx7+N+j0cBuA/dZOVaI3OJXKVUakYMOCxNS0IiS6UiIJSLUIjhG2wfZD9D01mKUgceRQ7JG4UtsfVXKOZwO02c0dzyizStcZybTP6bcGZXDS2z6FL3fwo4mlO7jFli6UpsSjg7nYn2rbG5OMWjpZtOcvVcUgKBBF+s+jsRH2g1Njsn7YwsLoIabG/df6V17hn9i4Vwg85iCxeBhgU67D7vk8zz9xhhf9oot4qth2rZ1z4F3gE2LvzZqUSo2C27O74vFZ7IehdSUvgAFfo/QT2XsKlU4eq/VyLEDzmQK9hAzrvlmcsFbtGfXcKyb4oalosWvGt5BA92OTCT+QjMdFHvRfUXMeN/63lM55QndXrYW84FtjIuKxIj1N+RgrlaTOuUL2PscWrVptXBOmmdAsuruZHLPkzK6hhWikXGY22BZlf7MQsvhDUTzUQQmkBZhsyjvC3zKewjf/A402owiLV/9/xxumfF1eIR2js1CS7vbX78kqkkqmfE2Uxw1627n0DK77cU90Mf8iTcFDKPUQNNdyl5elU5toVPT7sXOtKSjMa0S/3K/vxV0wgj431e/TP5TWaJIxmBjTF02oQe8tXIASleWvdTjYdzApIvaq/gfCOqYzyZt6S1Z4iOcqeFFFwBnfUK1aNw+WY2bGLhVaAB3DJodbm2P70k3LpL68ykU27yIk4fLJ22NlUBNIt82XH4RA/LOMtRKMrhG2Y9F9LWQQ5NFGvUhN35ksOkjvTJmXUgxUzQySd1bDhuB4xxOuFqpPo3FBscq2IcsrjXBUAytQRMfem04ATmgBiqKpx5u8eYUSNX4iIq03bON1SUI5MZBDrqxK1O+oVPQd1p4tor9ALyZwmOw/ry0jLun2vC+b3UdOdSW9GRUb/Z937GZDhJmZ/KSHrIkvQYRosRQ4cCGQWS7H+AojEGDzeXsF6+c2n/Bk4sVQy0OCAhmnvUzOzQlOyk94V1HF7bmSdSrwbqSKOMMgWtS4nGLMiQw/Ti8QhymrwyUkQlIgTJ1qaBL4Qjoo4ACSt7H/+tuoPPbpxexmGHj38S/v4eb97APYPnpx06ymCJhJxoBCuHIp2D+TBvE5yHJ9CC8Ec91Qere/GMyxP3c8lI0H/i17sl51lq2px5hLcUorcVoqVXo6Ku4ANt/Ow7oqBzOSjet6LB6YZUe3MOiVzuNSojv3JOs0c83QMyfQqUpluFJs5bk8Tgk6jUb5ykeIXg4F+8x49uMyqfcvJfTxCgho7v97eN1finebSlPTOzY3+wTXhX8TDZolTxxyX2JMnU5u7kXMoRb7o/WGxTn/sk/smy/XQ72+mYQaivaK9DRmxyilMaNzDHXAO59Ba3lR0TNn/NJJbV0In+z2l5padpSbB25eOaVUnzeDe9XM71wHCgm4mreM3o0yysvr1DELVtSOrp1ipfFBcaQOmc8PIouLN5ELIvJDC6TJvcuBnpv7aoU6l8JTgukwVTN8TfLrGtAnpaqCtYkfB9/99y2PTwmbKa0jIgpS4gyY4e4tLT9dhLYUslFNienTL7RFYn0vFKU4b6kBuXxGJOPDyQItAp8M5ZxPum231U8pN7O9hfGqwImkZA7CYeOmdacclIPJvZ9KdE+jcG7fze0JF6tzAy7hEL4J/Jxjit1L5JNpB/rN5U6KQWOW07yH/6iNBYKqagx46vqUayqlhskZtBfcQnMFY/VkzMUbEoXno1VYrAbdSQJS0fS/sjki+EQ2Zy26RJBSv+oVY7Q2AtdfkIwZudiEeisGBr7X6MPuo67MqrehZ9ZrMuEmhyBdFRRB3nnZ0LsjNMvVA+EpMosGa8+4VziFhu5wxwmmBhFL1Mnacy9scTZOVzNjncVIzNKpHgucRIRGhJKx/f2dpuOu9cSM+CJFq9LCt2fjEP9EQV1dVE8bVjdiiS5NjzdFTt5YcZzUfa9JDZxClJmo6AHbKe0E/7DOPLoNaHgzH2rcwcBF+MQRkZziNKt+Eoy8Tpmj623JTGvh6egjLjWzr3a5Iuxi+KEw3pDtKR/rR+wsXSgYQxt53FPND9YA5PxS7yAmNTZEBDFKnhMnO6I/cebq/sMSsKwSNcHbvTUctaxhbPa71UKf0aj4ivp1rfuuxXKhYoQl1WRMynybpAzqsh/iRWVvwqGOtpVth3bPN/pJGgKb8KUDDZ+4jNPs6BIQZA/65c4UDLhDnWb/MeyZMeVouv0QDyQFUhpAQQmzi0oIYneHBisL4mMJZgkCiku0/F3HPobx64lTFYpGfG3yKBDx9Pk8wxDGjA4gtgf+2ZYTnHVEXm6lFHojj9wWc/nqFPOZu2MiqdpapAMEfv3oGVUdOoR2lCk86D7waJIiByEYuyeFMMPLPUNwzMVDELINxzWc4vznkntgFxa7B/LMuPjbBvcUvBXep1iBs0Q7oqTrTxY9jsVSaEvuKkQSSddzboBaGFkikmqPvPDiiMmBvJeocdK236akuia2BYWdlDCWIArKDdQxzdfp519OvI+sDI+auvrBuCXzufJH4iwxpzTkfyPXizFuTBW8L0VnCvrW5RjSCPU/asqpRk4a6o6UozuZZtPJlyLTZxL33DpehlanyqvZkmcmRahmRrPx16khlX1m/1JJ/SdZtdPZj6lTIUlg3NK9BBG+cylKgTnSTV6kCpjGi+hlIm6OutWGhxUGbow+wNtBkLk7wNoegsiUmFBX2HKJvBirnKwkpojk3uq7bud3Ia3j/alULoxej0BUe4y7ylhhpLerHeqzPwGFmCuLi1L0mM68LmNMARNyB0S5qwyRGT7WTWT9UvPxLS8UNea50N98bUcOVFI/knhCQTFcI7a9r3lWYOi+JhNtpqLSgbMkFmVLudny61yBngkxqO3wRoGCvKMKY9yaG2dzikD9VXJXyltHpMF/KmYHWUaRq3GxkgkwJDFOEOWxqDuQ5f/ViVGFal3r9MNeiUQQwwYQaR8d68ZIaLCOveaW8nRTzWNx56l97m6ncuSXO+6jqCJiGlsKIY7H7PH61rrqrSyBMA13AVJyrMP4e/m+fUjOgTcsQKirSoI4+H9CMt+lp3c9tVBM46atFyojdNC7Nz9r7eYWfeDYRSBzxtrHGmuId6HwVsrEeXeOk7ZJgrzTwp1JUGsiVzq6jMgnM/ybMiUDK7LNe84fzSdD7uI8Cn7SVBXk4sJHqNzrU0Kj4/gEQ0rarsGrzjE9CnNMZNogxL4r1uFrlA3EkqaegjjS98goEkNl9RswO/9uZmTXov7MsAoaIy75RD8wT7oFqtkvxNIIs2Nvm4ZrLnGBgfxC46qmtTyLKsO5DoNaGnbud3Hw76FhSwOa16UtqEzLpume+rqCF20DsldGC+LGHYMVZG5xXV/tw0jNqadxfyXC82oeC4lfkxoBlyd6gE6A3Kr02rmK4GeVGqtQMvHD2nDbDmkghzdyB2tYJnAJUPPBtnEguUGZD83Bc2EcYnX2Ybvlg8H1gKbDigio/fEoUVx4oZsHPsw+IGbHQpqvPGy60acPTxBhy0MYNwBTxhweYi04EieowENg9gEBxfelO97bTw+WAKzIDHvzYjGhBxg9tMokLbQ0tXZEKnjKkyiEkOmcmzSGd1YUu7laEK6x6iglmvwYZJLjse+I5WfPbMDIa7/ryRGbMBSFEzJMLwRENOXBbTtOvgoMfyTEcFOhJfbcB1CvPhpR/5pOkpw5SSiGEfwNyqvnhOp9JUcf/LnRBDs3qKJs0846UNMUESw8yPx1DL/BqZ8bQ2+JhOdxuJG/qDRu1hoojrinHZWjpTpmXizJByxvnob+hmehfR+d+tdzpLumYHYUaOewI8q+1C0hGG2ldXBpsG2doBn7i0jPqeeWEmnFFh/HaEGxbWrgfgRMbDmYGEyQkqr6PUDbBlIVhi3NluC/umPH25oAlCadbi1Jqe6m6gfYEJtmUKzJXNGDJ0VWYpHinfpRFvggsGvLITvdy2UkgTPwlBGunpzX3NPDiN7aTBHmSLk/g0TQ6me2rypN3PPlYmlcGm4d62AUkxMJ9J0pn1Jc0JitQyZTQ/sYgaE5yGD+GBHrK5n0AHfzLhzbRnf1yYGV+ujx23o8QxeiErzCrXrll2TL9x4d4V800kNUUjwzNIURdWP41eVeDX36Eg/leD2s6tjrpfRwIbHY1ijk7iQVDBesyGfU+lt+BSNLADr/+Ca3ZiASos/DzoORFVGIZkJE28Pbqb9PI5iVHaotaUC6lLRMmQms807fV7yyiJ3jU+CBkUh+BJdTF8J+Xvj/WnBaltfLQ6u64P7GUHSp/dJP1FBJr5g8GzW/X78P1JPoU9vwbmIIsGgsP2LgtOhiBcmmeJ+He051+q6C79CoOMJIW8i7Wep6ggtLuXx5LgnLukvjIrdyqB45R9WFlaYSmDH4jgRs1J892fpcdr7Sz3AluHa4ecSDhCXI+LkGMIHl0MUhqrbJZyEsYp+CpBbu2hdzr+Oxge/WpMDYdM/7JS5rlFpdcp1XB+WIYbnvfVsymVIfwPy4KwSZnglcXb7nrjAHMVEGtB81Ikfj451eJLztcIxMT/QC/E4euWomwPzFF68R+vdSCp6CU1S6+NQUJ93d6RbrLMus5b6zk70mbSAIOD1L461RBpL4Jr1bVoREFFL60LCwU/jSMtt1d/9YcQeOnZmrT3/u5Ozr7xhUH2eRXgBzZWvTf2iyD03yncnj5jFU9jzdrrHvpwVFg8/vNoQUxrxR8QWF3Z+VHyTG9Eqgc6OtSo0VFTs9oiY3G1lC8c/MbcKbyCKQoaseCNpg4ywRSCoVUTAvqG1sNPZNjd1Pz5ViSF6lW7sOSKwL8Koo/qqkhuuIjTuvINv21fb8J0TPfYTpJA7OusF61VTXaRm/G3svtHHJiSeM4ptHOE9IbdbIT8U4tK25d3Z2/+IQichBB/4SRtjZ+cXfAa7qatMYAQfVIOHNYsoB9ZfOOEXowTn2qoWSRWA4Opi1N9jUxdcNNIXETIrJQ/niFtZwAX0PBmgm7FWArrFRj4y+TWOrK0QLUnNRYouPj7XLh/HQBltGqSPE4WGgVGWKV1FE4kJRfGjFUM7yX8VCFSrgILvAoSxgqbP7oaSXqC8zj7oaHobhfbz8nDxolIWcqqvUdxhDFFjrpyHMNzs3MOmzx+4fLblAxUmpUI1xuUadcqASC2Md/S62G9OfPjPhr+a9MGqtmtb5YN1JK5QqzjlXMDpW5A8ssh+R+oA+2MZlNxXbQPa3rO7JK79Z1SqeN2pG8eX53AXsOR722Ny0vwa3JHPBWfSfrgJ4oXeW4kc1KFUYw0jKsgzsi8EPMOiZ2YDVbHEdK/e7nv/gGNrIw5gtTYofXCOfi7V73PdwFJGcDUvzrP7+EaOmy9VD+AEO5UMpvkDCju2NFN2D9YoBHvrk2G3637FDXRAIa6UsUbP11IVcxBj8wV3siQHoFx7ckW9awvzoSCUwk0gfUQUIy/jtLt070Sid5WLSBgCiXNN53SOIQv4ipOnuTTNURO9JOEUphuApwsg8I6GS9B8or7fE4qJqIxv4fZ6JU80KTHqB2nCEcZebD5n8+KzI9Sq4N55D9rD9+SYfKJxSYPeRqjjCDtoERTzzIJkQ/T72kSIhLis5QBf+zoyKr2z2A7kN9we2/VJyMhOWJ/oSvHyj/jzRJTvUkY23uLtfzcW/5ewoo2FvvNdUl8ZwhsmebjZUzeHPtjyqYCIkKoF0NBARmcBn5tqJkpzVJU5MSI9O63k5YOZI8UFhAVTgtZXsh5JOpyoMi11A7EzeqiScLBaFaa8gQB/dWQ24cpnF/xCljjXYOZUOrSUO5gEp0/uY9/AoYorKjkJt+mM3UoLR56BcuCodbGc+CQa/PInSlwVJQR1cYFD3WAq4dqea6NwYcdaED+f1+0cSoaDOvZIplKhKiKwXbHSWnMrAm+dQLgkPXRgj+PitnhNORQPgju5QZxqAUEp9Fy055Bt+CA/C+qt+m/lkloezOva9JPRf6oPXf17+KoteMWjBKrsB5LBJUCr6g6uS0JDEB0c7/VnrizTy/hPGzKYuUy9DQFAUlEaDcjb6pLFQqHoXZdG60ZV6wDRSqqZftOzIrz9UZkqN4eL9u1OZOWhshC7m2OMmAKjNmlgHqQEwyTkywy7ZdufA4szWiw1wu/SZ4s6jUrvmafNP4hhdKTA2QiXEZhAINN/zWmKfvJBRLhJrM48JZxq7x4H+WXZOY6C5BfNynrVpnNQkN+o0D5loYnUqxODMjIm2xuXPvXNMQYuwPdyFLIuOFzPVYyv3pXBMLwCH84NiZnHKDlGv4PKDH+QzrXG29DvO0BLhzJY5sa6vjvWvA5I7+lhwUWyIg7QzC7k6cSpZlsD1AxbS7u3b27MusM+i3HSksJsO7dG9joDOGcqwCKvqO+jN8Cgbt2p0lplFXv17/EiKxYt6Na+ZfSRY0U5ogq+vmhU8DF+HC+HFEOhCZluM1ADad+EvG9kByfevlcsIpHVT+TtHf7yvTqGWPhRhXyVjagxlbHqIVDKNgPcY9pz2bjUyNTCcZzWYVc4PaR9LerAaIjUMXEv6gn7/FBBqHMqBtSVsW/7gmHNW8TRszCFtwDo4g1XoVTZafqZ+3X+WKvSz1vZ8/Q89jx0Uk/hHTnbcFC+smezQgQII1MxjdKxfsP5UWGl46O0zi3GWFAB0BBCzeOg+rfKBv6QXhq5UCtBkp2fdfftYoXpDb8Mb4HrS+FkHW4QbP6QVT42CLvxPjRFl5hTEWqPEa4gnPF2K/EMmeP8gFelAnyjvnE3FCsI3q/8Y5lG+RNmz1Z723WWHBCPOmpJzwSkyJqarxkpCo1BUjIP8hcjhLHJ2gUWTxDAZ2rXxmfBgDrReKMO10QD2P6w6hCfQ+2zJqjGaMLvfam4L0WCISR/962y2xFkgX98iiOleAhKF6G5T2UBCWstB8vKoC8seylj8E5JNIQ9wCwl/3azubo0QbB4FzYGM92EEhfE8ZyQpW5dtVagAHIGkpBNSRphxLEXZ+ApqruMZhTcPDxtDz8qr6NUFlaaLQQMIgMxM8ua6SLd4Tev+ubVcul7duIcoaeYg2TfsWS5YX6fqFa3oEfdN7BV3z02OVfzVlnvDxBb6BiSZ0Ua4Sx1ilsW2CPp6K5FRVmwn8A0pnrQvt3UbqgpM+18ZkZHN4ZPKmAq8I0mgVD/DoszjZ1ikx4V2lirCSxwuQOacGlTxeqxY0cn0VnJh7NXvCgchUTgSidSGzTj7DWusPBblUOq0F6sG8fyuiJ1jst67BrYMaE+TD19xTRwIFkc+lpzRmlfY7JrodF5Sp4hXZTuUlC7gzlyNRAdH28VLZ48EqnB/fumHnjSPhBDfNtVOM641G6n0tyyAEa8vtpkg/5d5fkoOd+GHs57Vc8CB6Zlr8SfUlQBgALLl9AkaT1bJMAPRpyqp1FpinUezjnXrucXszbpXghcUATpzCi9eBldab6egnipPTkNgB6NHO3IPbpJviab6EdAutEJaROmU628bp5KklSkZK62nxafOFpsybWeX3Mf6qnDoslqW3NqY21SM1oz2Q7GHimY0Low5PdEKMaD7KT2KJ2J9C7gFltL5m3sdbEnTNy2LBRnnSmPcZH7a0Pw5FMHy7aLPq67u6ObOCFEiCa1PYWjR2hG/ICsFBS4LqBYtki4S19+5zdVWZZaWhpsH5dM2o6GwohuX21jgmr8KHmgjyrRQgqv82ls4pyv8otoWsXPMuroOZ+HSjuAfQTWvsLPNy298P70OeM1JTWbXrNJTa9clbR1YxSntJRUP5Hi/r+A0iGUsScZpaUHtZTqrEJbSyuAbyKuh7h7dB6tDaGtdw5mns7jBf9IB5JAJR7EZeOzQmJxdGch6+uicyR6IxZ4u4G/WpHqWy3zfm94WF8jpvaC4vBGHCF27yktaSZhbo2bJdQaZ/zxKOaudnSu0GmaUcf9dyJkS8qwKnQRETGJeI0PtjfWS/TGX6vr7pqNrFKlRhzZfPtFJ3nh6o8O46a0Ddkb1tZbVLBTW+M7n2SJcDxHuFW2oHxWiThl8wJ1Ksw2eJz8zgdJCm1NLaoGkQeAHmO5A5dT68DYTvugisNs37Z5WJL2Y6EsLO3PLHGJntTPUOS+VuFF0V93WyVH7r/3gwgEb08SAi8FK6yCX1I5RVpL3IItL7NVxYsyqtaCnaC+xQm8Us1jo2d6azlsh1NHSfZDPnJaxVAKvq8c19uQpCMFGjfsc/nuccfUhXvE4O8/4zEgPpDU4GosfHY6a2fi8QwHmnOlE1ZUOGswI/pdJ/Ahk5s8ekBwyE7/yXa2EvUNmYvtsWBvrkNiHUZkAkWKa/+FY32cV8TYJyDLOWicyv9D3uc2UCueE1ZkNeFZYH1GFc2ecJkjcl+1t2LWEv6WdGacKoyg2FVmTEN1btqGAvDwe/sThMqwlZYfN+yPkaQg+VTLAOAwxTojeg+kOn1cKbKV2EnGFfMfWA4FBFeNA0U1KxJHcqogHRnghIHNShRU6L0xGq/5kjx9x2ItScblQiQm6VHH8S0QRP9WMtpDEQYKSP7rykzK3zC8+1fYt9PznM24bbMoS17dWv4CacPvDkunzs0km5iTCIK+0z/sgNkTbLIozDFniqTeA2uIi+Zzgzxn+rcsW/WY9opGEKPNvBoEyMH6Q+t+0u80v5gC6TOicTAc7zIU/OR+O9VNkGJdLAZ6he+hRJzN1QmqOKETpolh9MxNDATUJ3DZwOhBZ3Bp4ocvUN6qlGFo4qOqf7pHoV1xOL0MdAYd9bbpv87fwQ0GTTOhTybyUjusa4LS4y2mTuSNKCX+nOebzh/ZY6YTciG0BNFF27cpaBy8SPshTyggxAsccTmHDudLC0hqsO44oHFPfknt/E/aP9/ZfUHuCuAcZEEmOSR5HY6++Dj+KczeuTuvKtuxeLuDAOTImUhbIvH+LdpFPh/D2vGShO5WTC3carpmJxyCDAg8rZLLS8XoqvgPHBsQnvvqoAwAMvOKnpy9XIJsYsfZUoU49CztNAa7u382YohPAvqFVW8ye3AnxvAwKb/BFAOl4h1B2/lLRKjb/ASvNFsW1Brh6x3nabZiXjXZPYpMvgqhxg2OQd1p8pxRo8Pzuv2XcL/txQsijpa8E59Wu1bRq/98Xf0mjtAULj1iSMIOB/45KZdcKt2Q4ZB/7dl8pv1YFQBqs9v5Asq3YEZ1pQly7PvX177RcUCFj7IsAGxJwNkNh7gr0DxXymoTuzumoGAv905BIiyIrgMtcjqmJsVLdHuW//Bs2+wwHJC3deq/crjDB2SBYfcq38YXZV8zyH+hZu+3FmZyKBnRXui3qCYPSuyU/CpxI1VjZgZ0Oief3/3FsbtxdpiRUHLfwgnYLW0LgylPG5Zc+lzQ5i4fMlJLkYJbS2ylgcrewjVM77hCfcMhofqF+ZbMlkFH4BsUNb9KKAIryk1rVS0XJxO20IxC5kHaBvnnfCEJwBj3eMkUSi30fHk+GwDpuhXBJPOR9ujlMvU5e3ph2el4oe2F3mw4MfK3k274tt3B+OryuLnCX5WxSSKQz/Ycf81hyO4rml42GePoEnUlAL40Y70dd7V9XPJE4PWwe8HHdXNB3ZvFCh1w5abWLK0cAreWhPesbgu+tF2R8mMI/+bYA7+/NtkwGg7zdp9ZpXIMuqiJOEj/N1I91pXX/MuDtkHiMrZnJQ51PZXV3jOuSIfNQxnn6Bi7OseKgd+UMN4icOZ3wVKBm3fwb/nCW3rkktUAftXk9wHY2RV1oQLJ0xumjOP5RFK7FkS77SIjf7I/5uW8ih54mx/r4XNB2tPH0zYjhEcx/0Gaxmic+iQ8Wkcx84CNz+7dK4JiMm9pc/Kie3VuhQjIwS3VpPcJahAvkWoQ2TRhjNCOx7QemrW9ZTX1i9ED6scQnPv2Ce9vN10svnZ61FtfVhkke9gAmsp/I1tmS+CjQWlA8cMCR2/HzGCiao9b4R0oRuVhuISsSum5f3fLn7IoBJylLEbOHXAEbDCHe49j3YYZpZ2P4BeT/bdicuK4FazZ8dPl3Jbpa7aGhBRBrQzLRQLRfzp5V6Ms+LrFXBZlaoFrAB8zEd9QxRrVLQfGc3+n4vBApe8eU+UoV+gQGpfDqHY7zqkYcUE4jkRh6zh+t92BaJbvJR/tUWQDVlBMJhWzHoA2c7roWfXSGZ7a6HXH8BpDTyHMQ5VbESzRkzKL0EJtaYLmQR2O3ljg6hHqJQboQuZpBEBzs3RrBTwh0J7j1fj0rBNnOvCZKA5BDnEfHqWVZ/KOw+AC5gSF29/fINd5ApWPHkfLIH2QShTfVN0RjVVekPdTH6IkGTfz9cONrMWb3Ohc5iz0Ts+yMjSZCp1/WANuuInn6Ok1tzcJ0eXlyFTvKt9JrQxYFqa+9I5YuNVglP5ZBWH0jIgbl/MR5xEGbXopiQOOSBqn/PI5pRQQsDicRuEF1PUQpIhiTWLKxOuLjgX5lVFStlEtJkMo7H0vM248EBx1JhjvTfk3W7+NvTudiouvkskxFPfPEgbkOsPftE90MHPtT2dRttN0rS3pmj/jmlCOrmWdclYxfsOo/erR4KhEHcXgkphY/y/9ENlqpTBZXMFZpNOSgGF+nFRhenHNjKwTEuGkr6sHQXI8+fNhj5DUwkU+ifo4kJeiuOVsSlcR6mcN7u4YmOCWZPqhvbsARu3Zr/qJJJXaCtDfV8t1oKltSmKGQEx47EVBOpFq/ZbqwNy7sNY+4Pia0gb+seDGT+mWjct3Bu0InRlz0idqv3wNHnOyNkl2buzczJ6u6KxXnb5U6NRwBwTXQ1QQ6lMpkC3nnV0OvunoDxUYp+KPG3iCicfQjalBLVKbqDVXKM5VOZMWBMg7W7DwzcoIjmWNWzP+sejt5TtweNfQCn/KaFZIyCHzdMn4rj3T/yRQCOQTmzpEeRmOIkr8FJZZf5qhV48D08c1kK3ybpWan2cGOL8syezMJ8rFYCRBTq5J9Bf5iwfczJZE9/V2gPat7aj/UgbG+QlMCCQSyj/KATZZW7pOBihTBmwUGGNGqrGYk+wuu1XNmMs+SZXb5EnL1vxefVYKYQGnEBkFIa6++kf8v9iQdOCivyA5Hk/WCGWPRoU1jcGa/hi3hj20SHHRoiY3cjCUe/HXAk7ZcthXOtul1Jb5KNIsHrkT9EChgWQYLYsX/YLrE2VEstThbjSEQu+MkTaZrIRDGUeQLsSjssCF5j8cJchwLpCbAo+xnu94akC9XYV+p8zoxceJpOtOs6+RvDOxi0ndAvztTW3lFnV82wsiLnUAGvAiQOPtZ6MfqWWVjOTG7WJOSdSHVrWoDHGovnBIqDaUOvGadcqcUcFPPo2HAkOv984D8f2jHnSm9j/K/1hmoetBIVgJ2SonsVU+wTyj5qi1dN7eukG8dneOH3N8sbaoT004qG24CC0ytFKAh18+1l6IdhiptV3meuW3gvs7Jrzc7ajeB5VjVZYQNJACBLizhG3qu/4nA/6uXbCLnaIfdr5hWdIO/A+USvCLpBvr0awdG41La9x+WgYFjO6qzMageriYSOdVCGe5UFUn8/LmRafjK3RO7GuU8cZq+3DOAB+kDfqQaEmOpglaKJYhsqV9g1kn2G3PEuG+A9QTgAW+ZlT3gP1v9p1t0AIfxeIXzyjudzYUiHtemeWg0t9btvGO/rPGpqj6Sb2j6H43KNZQI9RtEXBVD/BQaGD5OzmxCegUxH4wSXNy54x4Z44hEjxJmfYSr3G2bRqL7imTXBfOKuR7phDeGSoutrnhnrdDKUZlCcQch/Xhzsad1LOyDdRy6t+X2SqcHAgq2/lIpA/1S3qE1oBG1z5AY94b+2D9VT3dThGsWASzaqJ6cnr3V+UxM6OOiMylZHODIZABVleZhVx3+NE9sev02QrySp4yC8r1T8YK7zbjPZ8ZQ0oon0xcedKYuzEL6AZ00KcgCd4gUKgZhde4sLz96Zbu0Dy98k9K90blLICPQhv83n/l3XzKaJO7UQ0ImWlRBN/BtxOIrRS3Mt23JWICSeVYDOJLRa4YL47C0D00bewrdzpwuPvy63nTuhUAiJuNrfgw+rvfoHR9z5dl/nQLoh4sIPYxOZYQ5uX6OwG0zLTKeVXlEGCjUTn0FBP51qgx6mEm+wYZjM6AcgZ5GK7kgk2ZmdDr/fj2i7fm9nsFtVjhqB+uy1oV7zTxXN7eNecc+gbpi9LvDZd9+oiAyTRW59KVsxMvtQY0kus1FNY3cy6sfEseKVmsNHbbXQij7AnfKlrvGrgdqr83RzSSY270L3SYrRPAycifV+1EGKr0/B/qEOIuOyADsumZmyER/NrREStgLGDerJVyH4N11ZxAZmef4VH1DE/9xS+GTVP1m6EYmL1j1GY+5vHlF1djLohht4QDLlO4cW9+SFGzoWfvBlQ8as3nwMpz7DAWnaNXlOtPsxJE/I4PFrhPzqkfqu6yTDMRhddqfwgbtuajB23NqHaVgqG7l0lYee6ZEykaf8TdS7UDX0nLSBSBJpv2nhELJ5jcGvEja6ODFZZHNMwLiDodjXCHFzQ22p962/4mWrRed4ld2l0YiQxr2XO1IokdUuHybCPSMWQi4VtK80qbIDOZOLGxi9BszNuSsYvjxNclueBAX2nijJevUUAX4WiEfUdhPoM8QyXHod+g6Vul2MXRW99a2uI8B8+kvTtdlw6haJ8QsrofdKB/efLTZ4FXmxYoyF/c1neRAADdUTj5w+dxWh5CGe+Nd2wuh7Fu5MPkM16YHRw9sUVCDgPcmu80eF3ZEbn0IzcvXAdygFH4moRx7lswgptAhIg1n1DQC56iTUEspvCHJSHn5d3mpKH3kgkfMdNn8zkPeBd8viWcU6O4NOPIsMyH3LR3rwkANCQ4wdbdw82XMxCtg9XbZHWh3iFBKb9b0N/8B4doUHuSnpUWZRREYdVe8M92/fxdqlmNqkb3q6b1UnUxEb6slliKdSCkirHzGl9hXyVGsCuG+rIcN5+M8KN3kuEcHOi/Lv4VSQ9ThOE10Dvwh7Df8ISaAeQ+Zr1CKV/S6r9HRiw2rshqzfjx6jIPLp+ufu5tF05tFHfe6jWEigLF9cL8RTdcnIwXLq4pDJL1AcKjlT3jR79WtYIRjAaEDsSIXmioN+LqIPrIfCvVlGudXr4AbRPiHXHBX3swhHC7gfeplzUniKSUNpSXTB4T2C2HXREK0tVrkCIPF/fPqXV5MZRUzJ/QKM+bB/zeym/oCjMcV0brVWdodzvjiNJ08aXoQ0xjW7I4Oa7ojB1FUdSWWThEYhyUWadEjFkJXbUTcbZlJtfu5yWN6vY+08GNgfWseVm/GPH8GITlGPJvkzFoIhDuyaUoVAbITI7Ed7XiMdkd0v4MSptrLoTkCKQtBFMFrstfV31A9L4pk7nVil3TZUYPRiKMpH9wq6S+NFzdOAI1S4f2C4eBxeOjAEVwhXgBsFo0NJnAb7sBYEugG7aGldQj4pRyWvn7UvmjfopzxQ6oFNfufqUeO7AOmXGk0yDwhlwHShcK3lLZYlzPPiGB8nAH98LwBqVYdboSoH0IDOBAvOHJSDbCG+LvuKdItrORWC9/XCPpKzHudQToTspLoftg6IEEzYpzSiwN2/87/FpdeBMRIJvdEUuwPbBWUFnrbnZoe9V1AtdJU1hzV1Cjm3h4UM2qrdsnOJ6PaX5jNJusyG6TFSdVKogFO2DE4pX0x6FbNGymI++TnNEIP6IUV0lzN0BgQiX2xyE1JGCvJN1iqNNpPfqANRwb2wqpiU+nigolD8OgcyAc9RMbdZJFMeFw4YmKgeCihHh6lh8GyvAH3VNFPmEQ/G2E2e7n4ujMPxRDJIInUMrT6CCj98+E5O4OKCjMK+jIy+FV2/R+kmyKCJDTycK6wCAsJ7WnC3hed4gwLsbHSDYe70AfG7IDozg8mTEPLeUD1yujzOr3WY7OgV5msKG+kV5JJTOcOhHFJVr6ZKb+N452BspkZW6gfbWoTA+rFJOAxJ+g+3b9PgyxP9ji9buJb4/nVdYD/XzGUeJw3XHOZIAuSalZldrB51awLCrZECUUWKSb7BIg7FshhL6YZVSPYWiG/B/NUwsNo3b1lxtCFPj544naUt3ha07OB7Ks7PVLMPAvHApq6tLv7ZQV1wyNMJgdTnLCUCDTYzkShi5f039wU1dBi7GUXX0+UXmrbE211E8OiTKn0rEArfjcGz1y6d7ZALaKjhYyvXWI18r4sNJ9tdvefIft2WYnHrWvGASoSZ57cjPJAmytJLVKaImg2LE/xxBfWwevTYhi0XtTCvIuxzU70Q0tPtIGuGiID22IX4zWVQyIOddwFS4nFTQRiZRFH9HBqj0bA1v/tKburNkbOFMH5Fi8K4Edjj9ryEkljq9EHabxXy1SEKof8o8cf6M7I78d98+2WDpSrj7sDQ0oG+PNjuUexMB5r850MGsHEJbtLbdqTy4bDEaT4CpqfbUL1MGcAmXdeS9OOymyg/aMfbYQS7fvqXk0M0YgP9gsIJZs9uMRhGW6wHFvU2BE8vooEA/UlhhZcNdauyMhnd6M2untGyA6aDSXpX302b8P/KgU4OSw7QAAhymZ9UqmspsJdmvfswekdxk5LVi4eiIY+jICSW2BqVGEl3CUOFEAxVyWHRJrN79Bbns0Qq76YjHhZHqn00dpNbY3Rbs72fAujNha7rQklMTz2vIEALTP+8IQKT2ylDacliLofC3he2lc205qae1BSlYeIj7ZknDNRrshbQ/uRZlq9yPGuh2I7TWywou4RbyQ1BDixO/guULBHW8ghkw24E6ch+CiNv1Xk5t1dYYrSeXkkdPXlOtjTMsIYzwxFOYo2QtiIuq7ApHLR0XFpZlAXqN6a63KZiPE1QLc4i/WSmNQZ2XZe63eBaldc/shtVum4+1S9rLZM02VUTkhPA/w/ZpIudnTShGLzTYxRdwK2RbeciH8BkQHWg9BzUoLnTmxpfhW+wqMXjrxqzpDpj6KKv5zMsiXWuFxt2f+harQbuRQF8O9b2NtAIWVfAixQqHR3aXLsIuvz8UofQ0GzgOPF4O6KnDY2NLhxiIiIrdQ0j2JqgCl0MtEQ+cv5/NVcmjcRE+DOlWCbxWh0ksYCGWUGxV5/olEAvq/gMe0bKgVCg+2phdfldTJQCxcEytnaVX2NYw+neElP6sSC8Jqsnik2Bd2WEmSrouHeyW53X8S53owxUf+bbQLuWBz7SV0aJpJoSWjP9LtzChMzcp7pHf3ls37S0LRsPk2KDlzMoWNm9FpUUt/m0I5Ez1xGeXQDxCg7CtyN4E8rVgtMOjve9uI0R2aohB0I4V8a5y1S+dJYvq6NVCn0yhAwTcijnIwzS6ru3eKBvi9o61Lm1HDFEpHyu9i6JFwG2s4EGJFGKYawBGxOB4dEsQI74psUimb6VIDPTh1lim2bXl2IXcNVCB/NOhxlLVznhfhq2Xl+RyFMjvkOhqPOnDrAjcBLJxhgRg+QiqROEot0rSKjRJVsL9eBnR/NTWQd05DyKV+Yd+1Q9Yl2s3OnlvxFfltJ1zbXt4x0JglmrFzdQnqYIj1bcPzxusXruXr/a1Yew8EYqEXSgDm0OftOHWdhZM1Ywz+IFONu46q9zWS88cRap4TQcb96mFBlEMLyDeZx6/HpqcZ5MWhIO/OiHpDfO3OqAeQwHVrPOqvHayDqoQ+gFjf7LqfWVP2/t+woiIAW7BeIuIyPJ1w//EZC9omEx1HXZgUGscnyZdRMJf6mTjey+q81egZclTpyV0Xhynb6PAD5FnqrWFP1VlmMbnLxD6XhTc3w+1xvfI91sEc3+m81cZc8gDFSL25Ndb+6tmD858yrEpRkygAN9otHgvUp0Iw+QXw0ftmoLUs1jzcvyNh5sKEhc23MW1keHP+rqKZ5Tg8KoY8xQKJXc/KJjmsFqR5/ofbPoP2Wz4nF60qV1yDmXvU2X+5NY77d7RsKVeHP6jmYXxk4fHdxOaPX7x28O5O8SDBAVMvPenUsKU9OioXQwSCli4enjFfvXILo3kTLawxTbRn22bQpuMvb9hZNmYSIYgMB4mVW6WMDbpV5obLB9117rqQmSQQtm6qyodeIVhNGfq6Fh1zAlS3he8iaq+CV/RGyweUEgVwRf5ZW6Q3o10CMqiu4jCDE84YVn1baONcrw2mWNvxA3KDclM0VlHfONyyrCVzuMFuBSTxLTwFtwQiNTjNTErj+QX1StyRd32irNvV1wpYTxZkXuWZv9MplHi5qR67YwHuJ3l+FI34O93R4xtrOIgBBQ4I6d66I3Frg1FqsgBH1opEsC7QDqye9ZI//P3/eT+yT4ZftUW58xW8GVJhj3047Qau1LuYh7pfpMfNWYY4qFSNW8XBzGpwMRQCXeVivjslCyMlBf1hd99LervU3BnxxwKIACJ4mIhxITbtrlKMLvFarg54aj0+/0/vmo4fobRN3U+1jDFOQvr01IxtHcvwYMaMDkJp6OdY11gsGZ1dgj9aQXuE4RWtmUP7+A13dw3elAWvzUfsa6H0sJ1sa3zoPOEDo3u3MxQqVuzIBL6/zEc0f8l6tMcSymkFRGS/mF2JyumTGo/AFaKA5X/GB0+cERSfY+iRWY4yLFTb/j4k3akPT2YBwoyrV6v3uwQIMvEBWJxgHSHlF+ZA2cCHS1UpD0fUycPs+pzkccZJAzxepiZtVpkMKTE9Gr2Hw1FX4VmHFpwOkbr1Yy8jwptviOyZkGNT2DtDnOZUPgO/4PYhx43YzqhuQf3QeR/qH+2Y9k4FnOfhcLMT2HY1+6qqwdlgpQs16MnppZPTDI2niCJe5do0sMudBTnHMPGgvHQRQTzt3mfaUk1zIfATWEUGqCSIlsbZXng4jNrcCtSDqOYa6i/MCMQR82U8InGXKPihAqUyoNRinD9hiTJ+26aIYNR71xXgFOAifQXgi6BSTyQLrkVa40VizJy88txlUqhGpo3BLLEVihB/iqou2SlajUYVmkMgGptOAFZ524eB99GrmPyNNOGxyhzWx6XQsVpTPuC9qIIpj88+FQeRhKB1Lf7TBdmBRdCwT5zMZzMqs+GVpx/jfpiewruVYhv8XFQ9zb7uDh0K1LbdIVdddCPgSY/sv4IvZKFKb1VVXTUkajTCwubCo8E6a8VFAfwARcle/GEiJBLRWUa3VUu9fvmG8PAs79qgwRzVSCNMHE9lR0grpIt3IGypZZldxOHIhbIZ5oemtI59fwM1sbs5fjnf6b05/36XjXINxB2IZP50qkYeC7KcraT5qkX/piTXqPgME0VSvUqZfUrViLLpHiEZo9bVPgeXqDrRKG8F0WBDi9dFTPKBbYzTJ4xmpH2sihBwm5qi/4bPDxAS0ri6zNnDO8k9VN4do5akG81gCHKyZs+cqc4a1CalLR06Cya2pdQ/Z8g5imGDFTDy7SLgFYTWQiNvHcc0L1tG4ZaXcH+w52C5tzQujk5MNGQQ9C0N2Ri+JSlJCHjkLe7FHdh0heQEZ6uwgUoAstE71tU+P3lB+yM82h5zVpng8bkmlUZMeFQMDHIQFYi7sT3ZQC6OjrJI+qVphzyBxPTqYxE8C9A65kE3tz7BKWhBmOnhpC+W62U1vqpmp5Erd9ulBr1sSrtg4NL2Deta25uNsc6+FdR2Z00jvrTpeRSg821WWJN/jaSCjmE/e9K+lwwUVAukIar8Emfmj1zvUcvaeNa1boyUsaiAOCmafq/DQZuEcsqSQM6z9sqVq57va54iCj4lYF7t42OLLE+9GCXb7NCGm+ACf/3p9iBDqjkVgYw6R877tFsWliz5l8E79sLZJ+h3ZKxSV8xHYaY/ovAeCgNYOlM9mERrO3sENxf7nxBRcAsL1Q3Z/8o5xWOBxPvkx1pBEuYLqdS60PXwiatZV1ku2OcqbInyYHPOEwdjeRATXK38Y9lRMf5h81U1+M0Z1SWM1uRPkpu/dPNi/kvMa6GZr7KQz4R/EPBud+NUbIbwKPhre4PtmazjWfqelxA9IaIupvxQtKzuhAjyHj2Fuza5OVsQod5d9gHKiINrYjnygI6DLULPd5dSQeqnFY8QFAKMeoKdF+AGrQzHxWdTRkmga8KZvPbElJMtPHvjBLFGwqwqdzaCm/x5iW66hwZ+JIOVPysu25MpDMssFdSmXLu5s+cXyEhv/4alEM3c+ugjgaiynaZhCMEo5ApeeoV5P7cQhgckJspL0/CcTktS/wxGNpUHEj8BZaJ8M5zxu8R6t/TCseipRb3USfgfVPKWUudjtARB22GCh6N9UNkV+DaEI0D/ZfJzfBsYxaxw63vFmbe01qbFMvX1cPm3pJk4Pe5ZIkNKB5kOlfEKTXSvInU0PHb2LgPqZErQxRfv4sRgiXQIJa2y/o/dlIFCko4K8oIQcVnjcN83z/d4thlKgXXhkBuC7FzA8g/A5qDk3C9LG+yQRKIjPX7XJpEP6bGSHe2ldieSpj98RFYNVro2IUOq7K+Msre0b9dwhcYMusn0snqD9CZvi0dg/FDrWtHS68QbeFaXURl3yiWopcFdgWn2X7FZzOalhayNu/KxR5sVDBhwCFnVOGRbpNv9aXtRVRxFcU/VWk/+ci1Aiv6rOq3c8hczldRRde1mS3GMvTzdieHKTgkNvgySqDg3w/sodrH55LCv0ZQzpP9iC+E291dIRzUxtmg8QJvkuq4lJUD3sDcm181u339Dc3xcF3QIQDShAu1izP7t4eD549s9s5P1kmG1KlrSv8XE/rbuEj9PS2REsGHO3/0MWF8Vjo4Wvu+Frtb1q66HXqgAQHSWZ0HDwYfxo/3fuc8N8gas7f2+YgN/fWHOxryALryLCQalzHWlDPNqkahFX2cKjuDQffB6kUEFisEAFY64uSyT3viZJ6D/9rtv0ta/K5QN4mdu/rkkSxQQXhtaislLRMtlxiPKBt7ouXViXTOO5Jh4/KerANeX3rq2Yrvup5R7UrHv5cjSPpwhJUShClCiOCNyelkyIbuC1WWPlpK9YwXXhOHRFE8+GAbc8NijnFk1lb8I+4pMBUlwjHqfY1eHwrNGCOlrAR5anNmjzcwqUcp/x/bDrBqcweYkYpglZuNjPqpCC++NM8/EenEXx3UjYwhoWks1w2Qjdj2ap3jQxSddQLT8Tk/2QCY1YhazbpwC5pYnE4T/G0orTg/axiOjnh5mpgwuRgJcSG1RL3lk+NSLGSyPlu8F6tSSsOBYMig0JCDLYhbfL1pXhhK+b1afSjMbKo60V14nK1JLsq1e+8sc4xYVG99sWxQ/SdbX5J4eO73WPzJAomYwa2eNSkDET45vM8NF2ZHpLo5512mnkEEFavwTP71N9uD0RubBrHWxXu9garI/O5u2NyEb7BWYbYF9pmSZ5M9Fb+yIzu2J7mGX0MA9z9rQr27FagKyVgaqLXxZkgKrmVorGn2iOeP4YoM8bb15c19t/FOCygxrtIr0A0HANqDuGRud5UIAb6WyUQgcYKqecCHDfjV4GxKrCbm6IdpDswIspn59cTC6kOwf+C2fYo2Ckofhm2kwfHCg3YYfY1ipisjevxxFCrxxC84mo8aTzWiwXI47WUnYMB53v5ePVoIIwBQS6gSJ1XmBnhQmqkvdVOq3v3Vjz1kfkz2MERtRnOe0UlPIBilNOCiIG3boRbgAXQssCehGUiAXv2uxXc/JbQwfOy4kI2JwOdRqG14DBuzFlNrFLXWWC0QxOzOk1VX1WsW1Ri3U17uhHnx1z5pMPkX2NnXOpRltFPLLcOxMWY8l7a1+kb0QQOOql/uTrJyzOYqTlkPw/ihPOLmgCFoYcuHFcziGkzLlXujLcCEGRTERWklV8Xy1VXQ/HwbBg2CKCzAAkX8wXSGgeBlO7xtQxDktSANCW49Axdrfb7T4REuCRUNaeCUQjfXdrHJKb+GuD+m0iELNQTliuiz1mKhCgpO+6Gje2hFmZphIpck5G1VKQm8MXLxfjmDV769/0aVOqiJlhzq/0NlYNSV8FIMsbfbXsQvAAdtqPdYInFFLCt3fkXFbmdCIFPTOYC27YGuqrfUrrHh3/SywyYADcTfUMdtFoDVZTyUETF58S19I+ULSGPCEliUsdc6sRg2MFENbfaQxkZeu86nIRV8PGZtQ66jM6675mQsiUhsuNc+eLu4++NsT/b1TOgQPQuXSfccVgb6iaIxFykSHqp1N3qY/YZ7AocjrUiloxED8+qxVyU8g+GPbCLRAKRY01qnLZTootchpMvZGNcT0G2ev3lmMA7xPmg8TytS/BolS67PUcNhzXv5LPR2S+DqagBlgLhok9qiTAe3tiFZB3GuxfgRIabeh/nyCfdfIis5MCDYp3dPOWed+UXm3e+9hw4uYQr5gDsrwkYQjjBLBqxxIC2oXzjLcFne/+aWua9RAtGgs+8q/t9kElzaFnkJOXLUtjSbCq4tsN7wtb/PUSNiO47g6tVjkyRepUShxtqHdwDysOGTqneEcUm2rQyckBanAiHlWiJPPe/Qdn/2VH+zgeSUF9Mn1MoGzGB+rO9WsZ7UEmm3y/lQAI4hzLDkry0yLEl7lhsMfXtgWC+hGWymKITvOGJL+8ezigYUU9uoEuMLQZUOP3kjl4d+v8FlQ/8xpIzx/kFlfkngi18KwsL7SFE8I2++ANzUBDtw6HMaxk4cr9Hn4AYfQZo5ewgcdb5OJmq0+o3u0xZcAbwfRj7Mw49xvGbek/HdNVnSoP2wN2BtDATXBzddVeS52jY2kJzqkcXZfbiNFuuXVw9Lw4Vr8z/nwHqxxHhIEgIejZo/xDMTk8IDvveSUcHu3fy+wqChnmr4w36iYIK6/RgaoaZUEtRh/xdH3pSspcFl4/JdfrgMtnhyC6D2WIHoSRHYJq1prDIjYrWpCf6ZOOa84LXw8M4fzy9xvUrhQQfrG7xyOVof2RrnJqMWP10cJSrfvFrs5GiADqj5JoaUxj5ARoGahPpnzA7PzeJZTMbfbq3EK5dcCKXN8V0x4KBfA4nGD1meB2aQY8nPPbB2QRHTYg/f4glPYzCoubFyF4kYgwrYPlzGM2V/TxsIMpTF8pCMJuI2l9kWz5HiA7WvHehuhRtq5jfVR/NpMbpOVOMaCwVRYbLSCE0FoefQK26AgdFDGHs6eYDuZLiUCC2SHGH6EiGXQWSFsoxMpJDiQV7zkNS8saV5DfvGcpXNjkr2P7+2Jj+2MSU2tJJp9SJka8a5CArO4tBlKu7F//rx2jGbl/yOVUW4octvpUL+Wa2CC+QDMBNPNwVhsqTtGVM9u75gH+0h6xRKVRCC1KeCoUC799DBPpBOXXZbwGrrPEuOE1hQm3CtG/Cvrl93Uhr3jrbI1YYsd+D0z1bow5w8STuKu4UiX/8jRn3siUPnJTnhqsqGBuMh0EfT27jCi//PMXuIBkJHcwoSD1W/tk9LsMQ+3nQ86jXeFDezM4eAdRC2itGcnn9+ln0gO8iysyJWMrfj+fbjTQxRfZJI0csvWIr1fQ0hitoczIdyetNLSEw3PpBot2brU/AT5s7jBn5WxQrWQg89BuoZPX+KntipOtOYdlUx7ekgbldyABuwjdMU1d/dLs7mIoJPZeIELgX4NPfShOFAbfUUGj8EzyYKX9QhFDzDG2yBQtoggIPrNVaoVPzbN6YUNGNCylfPcxAeHf85axPY6Dlc3+9qy6J/c5Ix6QMHb+C02kW2cCwFZzYiwNtQUbv4BSkm2AfJqFjjvyQ45b/6r04S40LdB9IeBmvAMxZeeVWEp/G9InQTfTXL/AmuutN76yLDdv9xY+O8LueSKTFLD/CteTZHLo1L1MI19pf9vOGr9eui+jBNJU56R9SNMZeCY+EZGPq12qnIqHf0hw5QYfZIXTdlOQO0uXzGjU7NyQp5SZl/fUWXtvlDcrOi6cBq5wq3ZPnpaj0j7IVF+TBJTEPWRMERhuiE+9rL4ORqfOmL4+ZBDq4PfeMySc/gqVRDZbr/MLGYgHewkCHjlaDOAe+zrSe429jn90mRPrfk5ORYWAODnhdHVIXJ+7Ywvt9xGxUAMligbd5BPHu/ZF4Qd83MHFgwvAB5PltRhSfVRYe2tZJeBxD9bBVqjEuA1eY17BbZdPlpne7Us3P9FBLiBpN2DXo8GCRS7J7BuVynhdbS8gBSD5ELsDtUgk8ockrTbVH44JMlKFosz/1m2WMmGQCzVqiOtomcTHFKp7EkzyB2MT+UDZ9DyoRM9NKFIKqg9j3ZyefjYnYa+MlrW3mEsAyQ+ETzCiyVzGwDoLMagHOJQs5jBjIWpvTNChkc7EO5oD7Jg2sI3/mwBHxb61/HcNGVFreXfKQDVYRJFSJ6eBcCli4abec6pHSWbuOmtFmmtdXuouOETK8RNOaXsQ/DV8D3o9BOjStsmQxIVragwX0J/Ta9o/yJSmWUQq/3f4KwJWWFiSm8HSgZk3id0IvytdSesw/aJ5VCz4ROk0OsmzGwJzSxt+uN5xCj+asu+CAf2ujtROsLFSYyTCPM9dtHPQlGmsWIG/l3ui7HtwBVc7L20d9mEqOR6m6HFN01wJw5ddLzGhr3NSnaWi4RATTMH5TvR3ss0awbZQUv3x+f5jVQs5ev6r+7+cJmOac3Cyvefv0foJEDSm2uaxFvck0kiiuwvcgi49AQQ4SNGIcVtWP0vc2C97grrpA0qw6wjMGhgU7I1gfGELJwGqZ7JIz2H5L01QWT9H/pyNOS5tGClUTtPJU1LREb4fKsO3CetOU+mxDmDFoM7JcknjJnNkydqsncKdA9YKgltH9Vou9F1WrIB8DT6DuvbWtyexveMZq+jxJAlCijIekeVU7LfQj2yhJQScEoA8OgogtyHxo2fdQDzg1olxFSNceqCTooCEii57TtkwZ9RL68c/oY6d7uy5erpYVZgwyFvhF7flKcdebBTN0LlnkWSET9KKKNzEg3u/lpLJRF+j6+R9fNKeeyAaOGtL4zVfX0A4yc5pggVw5zs2TQMd+JAH03YfCCF2Irqu8DBRpuwMZYtHHnvi7EKIKhbqFcB24+aQ349RwuISq9N/0AmZ1twifyZmicLfAVS+dMNfRUf4Nipa3o3zsRoKu3DZKh8mpDiK5zVgXGgEg9ckqdtzWoehWtazPXZ/kKMRWrI2eUUwo8vXDo/ubI135uOtqol2GBN6fLzlOqUt0NuOEsn8dJDNehfdsunBUsjTMjobTBKQjjRTW+FR3McWcoqLddT9cvKTAmQpBV312rNjz0dvEOObtBNjqv05HCdcqBHh/G2K1b2I8fL6PE8+AG4hXnjWqoOE69fqH6MoYTU413K+jc76IfgayGQm9I6XlKTLrpia4jwrTc6jaIrCE65akE/HQ74TD1hon51wUPHSWVFwkuXLNLRkwyZeVX8fL97x2/RJFho4ZaArMmZ8tRw23RGSxYIwwi5gtpNz6t3rxIHjeUEnhrJJInjNv9wNaQc2ZBYscblqK13W9Dw5cnFbQpSEo9Cp+QrhOL0gaSvDBnBdv81rZgxm9+IJ4NATaB8/N/5EKZh3JsSZT98Ht9Y9Mh5YPXqEQRZdfbC47zl0UZwasGTcSnpuW2HBo6LipD6ebdOZgxZ8IWLzYz8kvmJ0wQvh05n8q+dqy8BMngJhMqnMhFBNuKeXm8tB2hnfWavJLMMcXxDlrAPaxTxudpT3zX4gO7vLtswLu0Fh1Chj/ev6npvW3mLTs4B1MQy6xlRdH2YMbj3guhNltLeekGOUPpaj3imM6IENRkQjjPqFMPNZU3aBRWDp7PHoAcGM2Yy8KxHwUCVBLRj9L7IhU35+81OhfX31/Lthw4a1IjgmcO/NlpHrKyYjzW4PkmkRseuIOzh2VLNfdkMderjNlwqNb7VBr+rC1frS+wiXuUbT/vdvh6ph6rMRGuBPQOYEXJKw0opnQRGtisMVz6gRUj8mKGG19S08KA1k+EvAJAjrNl1q4dXq3FDwEfcWVpKtNWa2gSSH76zoGIPMhkF9xJEtC5BlF5hO0PTnnTwU96j9Yqolvvejwnn0JrHGZLGsmIKIfQdcarhR9+Q974nPjTXNnMickyoxNH1CzEJlhOLUpk6ElgdNdXIp/2betdBtqeteVc6GDvNX23mFZLE9zQG90mCSqNA3KJKrTFPQTASa0Tu9sau+aq3Njfa/hSN9gg9mCvpDRt9yS2MosJOF7gGDZ9yF/pH1elLvILynYGrzaLWiSY2FqrP/9U8k2NJ88fYDU5qwOtNFd+X4Z009X6+5TQyEG/KXsqmpHe73Es+QGdx7d4Z0C/8YV5iurv96MFpR9dcKIfKGBl7Uub6R+S+crbGmWSuWQLab9ABH3cu3e3dluGLfRZ8KaPPW4uO/hV/8NOBnk7RGVAdrxk57R51pktqCmTrNV7gmTEwwDagyMuIV++ZmmmDd7vMUsjPvZSBoAhq97m62qt8bMbqADm3eShS9oFF3Pk7BXmJjY8SBiY6gYqEndKqqCy28qMlfxdje+P9YuELltKLiVOqxIrxq8/RzVTXLZJtpqLaSgDEJGVXe6mzq1BtdXeZMlzW3dl0VjsDcPCiEmtdadv0nidtXbBDzHMU4DmJdL3CjOtuwKyDT/c9Z4PfNjhVf7wqtTzJQ1ZGo9mH75GRppn7LQ0mZtS/v6CNJ4FIIKL80ZKpjknPYdB8cYtgzCjxwgluIZjhSLsYZJi8OR4WkUohCDTJn1UxrgVKWMq0FnDwQDDZQQusyunXEVlpgZHHbsjp3QJ4XQZVZjxDoMCc2kLN/xDUgLYF1vNZe/xylBmFXnb5/eVx2D+x9lFBq2tFo3mgWtAhzPYUHLaO0VsqMXzF43WExbm2yU0g/HijTyOwwMreBEgggoxjaLMO31EQX8fqLIF7gbCFeHiVeX1sm4F6mWPV0hRK3KS+rece8lP4Vfv6RgabjvDIqF3gS7kDHIkNnAvSfLOAoUiJanhyVBTBQMd3qpY3CLI2ZSB5NqhwurNv2pbqEDkG5mCUfv8al95tWUt46M6rNF96AkX6sZ5go9JudPKGTxrMkcjR3AaT2qmHOZV8VsA3vj9AEG1+y4j000lCeSmrHQvCW+KD/aja+EONbFa9riNGyI/4lG2IM9L5i/7jJEh8MLp7VH5sUeTNT5x9FetKWvvomMqz2lNeUrBMkcehNe5fjOTS3ApC8N85f49Jy1wTN3hgwXmoSJOLaadppspVi263kKyfRn44CJj0bUXrZW8vZan3jDsxRh7dfCmMt/NebnTHK1FYtMFW52Ee+XFFQXL2E7rJpWOsnorSjC7YPtsuyJD7BS5I5NFlWTPco3JowQO+XKOsn7DJ6bc1i+hpzy7AvEkoSYprO6GOscZCVTt9sZ/cuy+woMNCqMpmNtYyvYi40pTQvy/xhDHwtLCLXFPUu3AiNurbwGJQfzia+QWX/jzzvn3nNr1YH6MXU07MF9goRMyFmDXwNYc5W90ISKRt/vd8ujU+oKCTjmDXSZQX9BIgMcipu2ou9xZho1WoqFw5UNaOCg49ylD1vv5CckR9Cm4SfS62iGOlRPYXDiZiF/T/VC0n+xLnjgfR4qu6d5AEiJOnDVA0+EWSR5EfhzAZd3E6QY48R5cqSgCnmW1sIsGbOLnVvRY+k7YBN3xVIQqsFE0UJp95Ga1yQLpfd8gudYTZ8fmdIB7e+/Jrg6SiaQl+O2tgtwqSQWT/r+r6LONEnYwiZ3NCMWY3a7+QEPLs9KNi+URr3UY1D30usceNDOjx3xkWujVIlYXBDzws2WfP0WoteRsKqJfYmMVaSY7T+pKv9GsUSvDB5RmSnjgabnmkUZFv0KiuOFQkgP53nxdXN/N/ykN+Y/G6X5uzJB+o9Vl8zLaXJv6b32DdOZSgl/CuNnmyU8NCnLJP18omn8COwb1uzXbFT6BLmIeIAZDDoDLdYuqTnNCpmhqHH/L90FuwtfLnVvlxFWJ2YXSp2C9lffmPweYqmHAVDy6FFkr74SjqnHzOJ/zRQ8XXh9LpZAR6iymw1wMV6ZrnzzDaIZEy9tYGMs1jyX2tnLCd1kbDxrxsUpK4CUioW/vKqmO2mJtcp6hXhIRboin2K4ngSt4tNsv22DNZa+6sxsChyMt679M0ZSXYLseFvB11MzZkIBcIEL95GT3WEv46tjxRGc7OD27CsN0fN+IkQlVLiplntcWYVYfwy2dyO4QLCCvEFOpLIejdLolZloiz+lypLkEvL4zjJZGuKWyPD6TI42FdsRO7+tcsfCEaAsOSaOLNEi86PdBEgOm4fyz/8fBLhcw8T1AaJ63TkKYkcG16dSIBor9ti/Yis9Vm7Ma+4z5eW3Wag0E+WACwlgt/FfecnQOKUslEubcCXSWtSQwZxV3+QPSD15es0OmA6pVckf8sngZTvQay5TMaX3qWB+84b+InTbLlIAk2ajjkmVmHuz6JGuKIhOalP3D1irZx+iyDCD2zbKx33jco/6tlSIfB47BsopdjKadRciEQd1pNxCOtCC1FuxmI3nFBv40Ki/FQbBi0D34kg8C69NrKpuWVqBdO1p+OtbymiV7iw9g3tCtyxUHv5AnnxpPPeoTGq9lRGo96ooq9n+8VychIQuYEetJUGo7wHR29TuIZ4otcFzXE0OK1Xs4IfMxmM/Yq1XwJi4zH6m/5xDZnKfLevyu7PPz1hS/e0dbu14UbT0M5VJaspZjYGsUQ8mZwpoD1T99ouyaYu9N3YZm+f/lCL+kPq0ebG5V66/piUn6v5pt+DA+UrrTVUEvkFfHD3FV0YCOwpaqzKdFPzvmr50dLNm2kys8ynJ1STEsDzqY3k5Pz2PYWag6KjlRi2fTe9HjM+mcH9GkQgnQekfEEitRrIAWU3JDXc5XQVRvfqtVPSMjjkCQhkZD/SQ0hCtKXB4t9JhoKgs9WmStidFl1huepQDmrY6lb07+I9jT68Iauw6V/uZg+0y7I2iCreSUco3FfbsRO5ZesuvWAWLZRNNWkLqr8Fps+yV2ZWmDw4c8Blsw9iJhG2YEBOQVqUZoFG6hmo2SZAAtoghhr6fC+728f7OFqGLDDp3Q2wWEkdRmiVuIAWZsjuSIf+YWT9oZQiSFYHnBCPPJCcwuF8LDpPuScjxbZKI2V/oSJMZAn9wh/f2hns5BoSeeambY1/WB4Ydng0USvtwbDnKtqHrPF0Kp7N3ZDvy5AkuhZ+4Ob23CPcWTWw+Rw6P+Ao+LDQVlmI1grto46qfJ1u7UZzPECw356so6qERE8oGeO10f85W96SO9V+oBWZbZGQVKfyJuZu/dnhZdV4RJu6JyHw0b92s5f9056ubQRpwQN9YfcRR7AoWWE6GZRrMAVm1u5JkkLnDz2FQVIS6djup2zbg8OwYl6BZmFrhyWSeRJOJDsxGQUIxeLCwIK1/IaZbEqgfWdmvdJ0tsqDWms0pS826SGnC6teCZTF4EQnhq0hoTlk8nanXDpLOkPDHkc6n9e09WZ+ruvf4HXuISOGXmK6MRUd1zCrWtQZ++E/7kK+RW8Yf54IqkDfUCQNq4fTVZNTPyIiX1Gi/470glGLwz+lnxQLn65IxbtJL1iNPgGU2fqEFos73g+qBuVyo7N44yrP5KvpO851q+Pswtva1BCgvHEjVOMk9rR64/BBxUaJFGB/c0EPNTqTGNdlxwJAe12Ypb/yiLKgXVDdRR2WUgM4WAcJQoOO7VpuGXReipSehFbpuMuZEB1UqasOn/s1hJf0R9fNkeVZigIRF5riuEyJ+l6/bbibinuB6HVR1kNKsp2tXJv4quCTfLDvcEMuINDYw51l0kuA3YQoGhpWvfKOkfUHt57WbWTZJ6X1hoDNWNnrdnc42bFkSipQtaZc6qY+WjVKOFRTWH1n9Moud1V8UFjh8LGzUeFSY0eypQFZ7fPjJR2Sg18v2gE2mAQ7nxaLp5UrbZYpu1Jw7JcTOcWsShX19phHNmSmlF2YrhDzmSuHiLl3/Sn/OzQau+ay/fCYZ9OJuwX5Q4WSEwzVR8YO8AzQfBNmJQ6ZRWpFv/InGegIMjGrOmwKqDZDumwocmEjfx2Ee6YLyS4rjIhwxPpzu+zQddG5idX5HgHR95a9vobcwGyG9aUL2whf5HBIqVDeAk6YYsvb9t0SzdSaaxdav4jmpeVEVC2nhc+g6usadDqg9533IBrEvj7yXF3UOMVwFqHsow7uODhFkRJI1NEKI9gxdlniQcUSONE6LjFcgR33s2TQDNL0PGnnVA8FKxl7pO2OpBaoGA0AtW38QMAGZJAzuc8EBbcrETamu4qAGJNmPzkTUoP7MDftrbNJC5Rs50Z2VuRmfq52HMz/ens/trSSQrVDDMRLAjSu++MDsWAn3eq9sE75rLCC3gRDNkbrP6ckP4RsuoJ1eDu/U6vh3brs8DgPMkjl/+tDnHtY62gtHbP3K6gaBWTXqGkTvYQQPrv96w79m0WMEOT7JhPGuqVqWM7mhI2vreYcLfZoEK0XWbq+ny+RNpZK5xi6MgDCNKfFeSIYo0w29KbFTzXEncu6m62igJbFrZHYo+yk1eUoEhXw+hh641y3Vfa9hDcE/gk7eNOvl4/5ag065ywz1VJ86F3otz2mFeWdKjDTrDWzpHsMjb8DsiWYozYeeoPaiOFgS0ON7fKgUjM8QoFz9ir+P5/n5ptJOaRw8sWE7gQ9/1/GlGNGSr3ljiKzZW53sBUdF1iZhI73Je9pztEgq2h352eXjoBs5n891EB0MH96b68iXUXQk673A+81DWQs9zoyU8qlRsySV1/V1SD/4IUBYzkgQA3NY3kRAhS0QJ39PtYaCOJpgi48WZajSXVAJEG6qdKh7W37/BNFjnlK0YVzJJ2LduFZbhpdmBGmyasqIM0HZAXsH3xtoLeil0zmmYB+y4VUwbkPvh/etdA6YqI4xCzVZV3FCpgRRhwosA/6jhLZKsMrqEMrUGidXlvqhrCNdEtyik2cbHs+FPOrb/Y4rClDMCsZ8agi3U4moAPJ8n4f/wECfTE7vAeUZ4IpzUJPbPqFREx0DCXJxvTPMMIFvm3a7lcw8HTJd3Mz4/5m+R1e5YaVyrHJRMEif6taxkuVUB4Mr0NYAWowKlQPs6jOFa92+RuYn2AeHvQzw8XdDmUFD4BIp+K+z7BplY+egINtWNrhrzH7XRlo8+ZgFQ2lSsw//U7SrUAwoYfDWjsJdIsfAanTc9oxBiKWcQvrJiS1osF8zkrg1CwOvxEUT/uDALLrVWVfFv0tGUzvBgpg23YH6QX71Xwe3x7Re7MSC6awJ5GwZScA4Se0gi7MiyuCspxnI253g/PEV3m+YYLO4zU20PnIW5X6r93otyc1OQByMCMnw209ysjQBxjM0n3TEE6HSMaXzBcB/chnb+8rMNMQO3fLbZQFbFKk7NwlyRcThfoAQ4MvtpwbG5cFfOHacGFOm7jA3aMy6iA9Y7j/CdQJG8ae2N0+cFjjTfp7QaJFZzXCwPNHHmddC93TLFQ/YoXYOZPYugnJOwJwFbWrQR1JVhkBfY876tv5NmAnmItTNU0Zw4fnuHiwQghd2stgzkwDTXDcI8HCFrdFoqyaYHwkRVtpyRmqLLCTVDFasd9hB/n+tES/lTj4MdcDT4X2LrV/J+uMG7F8cJEZZrIRTrXI7RyQcl+4c4tOdFvsBbkrTAXIBoIptoSRKppXTQlyFpvQ4NKf37TmXFZqKSDHNaa7LYGLRdPYmayei/wuu/rZSaydf/v9XaaM6AhDWcc8YW2tK9IXpDdsM0IeQiHzJJCKMUPoaQcYtmzK1D1iHrpEMq8YInz/gZIKkqXQxAJIAjtuMgT3Kvr//Rqum5IG501M/UoOiSYuHrQXm9j72d4JCujqiFyYh7WjJhIespinYmLjed/ano+5+N2tl1td8TkmwgsAyjwLBLAXT4fQCMqNz1bmkyIvSI61bWE8ZruuXLDUKIUcbMS0aLFPxJH28iZ3ouvxJ3yyOewyNKnP7VBtGCHTEG9NTLMFK9eO5joA5ymyHQ2XDTWsuVhrF6e0GXd+BcwBLS2ut+yzXp2wAyO7XiXcqNru1/xx69ySfd1Zi8lZF90H7v5juS59PR3tCuNYaErE5m3vb6O57m92JEtiv8WsDF88mt+fOX1zweRqpUe9XBfGp/GasUP8zlnhk2zxy/ETVUN6oI5s2n9CwJPczrdm6+jY/UDje1GC7VKl18LCj7GEEmBIQ0N5r+J1umJ1zWP5T0UrtTvp6uMvTjjTTd70gdWsExTuiDmxvsMGuQ2yO78JOLwFCgFfugnuZ876U3GEWua35ba7kLjgk0NiewjLFNxhsUEUgoOo9I7PzRw7KylKMFL223jU4mO7+a1bHL0WSC0lDXBvwJIBinhMNMVtpZFhrBaFqISVt+H1uMBXTmab87dswPnrcE1yFHqF2u11/fQPedAOkENqAcHYcv/ZdPlmof/u+VDyG/3zJ8t6AjjKdIiDFxahUr7y3boyTYWB8NKAWX62qefoH+cruK3UVu+D6blO8hDVVChWiG2gsSYiXmrjFDcswrNXt9ReVx+VW998wkL2Uy5J0xTZHGmkZNmKA91sBwFjLKlVdlm3OewbN21jL6bNQ6tCpmy06b7AOXoHLvXsH7OmZjexdbrEKs0RV4bAvVHJ5G41OW4SXB6mtCdOQ0+Rp5VZWtsMpqEk7GKVvnWJc5nk0zQkA00K2nGLc902ZuK6w3GpVdrJ9HPiD/hwrdKpukMRE+n3/0lm6CcydqROMbyPhx5bhVJ8XPAvUYn+/3WKqk5ZjnYWJboIvtsDfIuIU4g6KlFB1pmMOBa+4UHuQ5XpD4f3CwrvW04L2iOW6v40dXcAlHJc5NS72XJdZlQ9OHLZwDz5FeV36mqRHBHUT75VeDdiAUO35ZukrSZ7d6yadDpOHBc7aJH3nSL44ixkCnVhUyOogxHkWU0b1RIKJYX8hWAcHWnia7uLgIovDSHQFO2JBpCkH+I0UG3l7EL0RAWIRBzy6rZn9qHb7xIMN2BLl935geLVz6s9kWss7j4do+g80xuX52aJEFdepNw3wcXjAQ+7aB0YnDPr/7x3qHILcCHMYmo0VrmerkjT6E/l4Rmxe1gSZY3GpuYwZFq5Jk+7IJ3VMXF265cam0U64Cg1LW4aqMwsNHeE3yglvqG+Ig1hPLI6ZrIX4aHg2KNZ7k63r3VEkU46np1jeIH3ruF50b3W49fMcfaP2xcFLRJlR1UCJvWezA4d+WUvWeH7wib8m8jiIj1RvCRTQdrVLeRzqwOgYSFcsZy7KUNO/kJsk6q1mmlLxBQ6ki8+pUJZV4T0OABffT2zRCdv7FajgbpcAO0vxKmZNENvAPN3gtmiJxRfT1OHAyadLQGamDqbNRDjfnSFv/XfW1CC7vaqcMzCw6xMUvnjQdkNO6XK2mBJuLt3NFMQViriPAE8KwovvZA0J70F7QoybYVXB7c8Cra2jKg7v+wmGkZ4Ws8MWkZ/TIT3brZl9kY90BX98Oc7VkbPk5c0hGvBV/ypAW/CbgMXEOwIX3NtfyQ5v4GrIqB+OHtpeudlpYwklhAFiV6nd2RzDeziFs6PpJeuDLSIojPmSaPnrkOjEbL/wpErQls3wDAFA8CRkdr8XChCIGHFAjUspI/8d06EwpRxlRi3zPudT9mTPOj4BRzFdfNhWUejNZ/nzVQ/TrX6xMNsEN0kTMYEypZOtASW74zDT7yEcSiFHgxlwdloE6pc2oA+UR9yTJTJBsxzoOcZLbcRtw96cv4kqDd/vPyzLJ22sOhS7S/+jhIZpsSWEXyozdRbvd/njVmMjvuddgSgx3sSWivLZz8jzjgl95L7O0KS4586G6TdOK99jbMF43qOWAeFMDuN6AJIMm8j24X5st1X4PcGF7psh8BL6evES842tcvIpKkQKvThWYVtAGcBXbZuW9c2ppepMrl+zKVaW75XLGYqFV9JjkkLZL+TvGZ0w2JuBgSYyq2HSzCuCSL8HAsTGAc6N5bix+cCyvickTPJVfnhMS202IhadMgj95uwWPQSWyEJ3hf98TZLRhtfd4HTGINDuPnE6+lV/RPthcr6r5bIcTByKv1JJWjaQ6FlCsLKPs1ZU7/58X9MV453pR1OAe9B8wFyCgf8rGKhSprXQtmtlKWxWy0f196yiljdt+VX6ADMcuVkrJDansNFZtE3Qzt+0vG9gMwEMXuH+KRrmeKQfUaqKdIwX25jQpo0JgllGNmN5RkbwjpmYo9NBnD/0R8749FILNxHYor+NeT7rHElsP4vyM0Dcekz9w7rTVH3tSwAX7LKNKHm52/HP485DdSHOBJTA4R2dupziU+C8UnmnguP41wtjD5fCnwYM21f8aH1ZonzCieUjn4rG/7gQUYJ53ZkbMoewuDzMtMWRFrgnKXRggVcH4PSu2bqUffNqeZcxCbh8IKeUATsRy7KG223RLjnEBxS4YpRYEOzUaCGZOksBeGlLiVecjVds1xR56NWsPmrbjB+7+Cb65U92frPanppOfuiR+5SY0dV4M8nd16E9ud9UBhhQnqiJp1oemsKN6XytyGvZmVXZNfWAc+77Xhp71HettqsGlukdGhIgZwl0eqMo298vf+rmoMHTprkWfGjV82WtaPHdPb4S9QwHWpa6Lem5aPNMuSeALV08QU/eMWQymV3op0Vs/nyGGHkcaWVHX7a6qtImaLgZ75u4LHry1haXGlfZntx24vbi/SDvog3MOzKPJypgDYQW4y0/+NP8lNv0HJdzYwtRZd3JHUDpImnKq3MSD1Nys7vcOsFyIs3Fams68DdDgbgNXRN+3KGO9bibkX9/8EfJi1+IkvJVNF6LR5MlTAm1r38RHfmzUIPIcIAjSJIzbp9WdcWIKFS2/Wey0xDbFN3mUyGr8yKzTGyuNT1EFku2rxqH4Kk9ybN4EmOytU9o4XTjDk+HTzGHROKAyTZfqvoHcnzwZMLvzChNH+5tTcTaZbNW24oYE6NUVc8RdGvFLquw/bfbSxKE8RknEhvOTDkj/Q3fpZsUBfLye8fYN6WwwCZCcwQZJSJP/F8q7CWqp1wmvnIiarlIn9fc7T9tFjXFScnVFi+I7873UHpWDMpBhjjAqucdrOj0L3JsWkVxCOZk/u8zV5AKvgZ97hzn595wDQgczwJXI8LVZIcnUZmZwLhQUamM4+6yKSFvCGQDeUFjYnZ0Nf80oRDAUzExglcvJD9a48LzwLD8XKv2+7BwYspytkbYL0QKW9CLSEcC8x5++l2Q7zCLnj1Ci4BimUaed+jk1pCNdtBvxr8n6E/Dog+BkAlvvxrXonmqIh4QpVsnFmpOxv0tnmuZMGoMbKO0NExez6481l5deD4wN0zt99/k1XElgKfIwZo+kxmCTBGawDh4KnSQbHLVS1KS4/9kHQvon+nWLnz9TDF+ZrubScl6TIOR+85DAq6nbiL/JC0wFE09LD4LZfsGhPOmYT8kcSbwoOP9OAqFiWN4w1tb5Dm6pHnwxhVDpIBxK761x/i0vRqw0Wob6RCD4HOA2YiKHaG2HKR6G1ulA9FN8Dm4titIWhCnzclHDE88NCWHD1gYqKW+2pUd7jktjij6y4U80Rih/ky6IVrw9OXo9pt6jkMgWVg0oquzG8TJfSPH/daqerY48KFrsZB3IvEQ03qMRXXRGEhB68tJFxwUWY7CzLqNxLwDeshBekFp1tDUa+IF/N0kP+EmKlROZl7qKkmHJ+AO6JS9UBs8F44FDJL0SddPPn23K6fKj2OZOEETtOPartp9HcOC5QQNRFWnc2Vn1nM+9XjVFQFP4SSzgjzkRnlAdK2mBaL6P+1YCsG7ErHra43yK0SFKljZqk9BrYLyCxvAKfDpu5griPZp3SB5HuV5xBPmIpznTdBVrItCNCMffffgHwmSF9L7s63hBdRvTgo4NY7IQ9iGQU8PCbv803JY/GuDrb69LQLrOQWsmuRGz8dUkfAqSHSRitnyFoPE2xXD5KH1CbgJo/V8kiaqTlzL92NbBWGvQUYkNc7SMjx7XZgD2Uhal289/P12411YuwTM/nYFn5zewpZ84b5UFlNU9yWig7ITCBSqaak3/d/GSqPafpzVHjc5gMOb8pQymDWtEMdcArG7YmG8XTNP8TAB8qEg38RCoKT24iMandxq830jGQmGCVdSSeWuca/GudQfyt/TkaCqMwwMlEC0OKqRgdXiI5YYLe+MnFRv5wgbA3cVoo2Vp9LJkSZY/Sj+fb1dE1BWUrPz2QIK4jYLkTxZglGR12Cv0zE3x7k1XkLrPmKOIWviGtUb40vhqGAk4GrUemCFKrNMYvwg/iA74mI+7AJmajnk6JEdawUFvrbkG3711hwUlDpvVBQwe6mp6w+/gF6At3+1oMLNFO3D8t4uiwQa09TYfpkrfY5C6fsmVBI4T+7+gN25KRen9WJkocaLmHZIgWzKXyGpPuJ407bcvVd5EmIDMY91DIasmTDd5NDfU8OrLGBqQ4fQjES2wOr+LtjkxuwDkfj6GIx3ebnxr1BiMCRDqmbEl4Gmh96HXu02xkGVniSUYzgA9OCHqTepHfUKIC7pNnkAOr6cg2jIAh8TRPwMo68iNe2kmHYwBzguG2itCxclVO7j1crl5jRDCcisk0zoh/HflVlrTH4+shBtsFzNhAp92NK7cALbr6077F2bIaPuvJ6pcQuCriXpi1z7zb1/E5ic+/kVkwQ7QCdUocLBtl50TplGIRDgEFcyRE+A03dgv4dmOTvQKUGS00y/x2++j0Piill/xKVqqwWaAFzLWHhCylifm0/ffBYEtdNaurHtC0NyjWwXXKexvOqORsN7gcrxmfZvbI8WNJFCUBAs4FmyryVYMhhV+wf7yUjIVUGlByqzXZEigjPGcH6y9v0MZSH57XEbbMkqFwFkL5Jhp5HrJ8BTaTRoD9xwJhObdqkYcTLhdMO/7tPY5SyPyD1lrI7I9a1aiPD/hmHFo08qeu91JDziGHtr04p8LTyX9+uOIX+HtzxABPLtURwYAgwh+IV2cNRD83ITdV1KSVBegERGmkXCuFbc6xhJHuztPmSYJNAcAv7cL6LwVDyW6f0Q9N8d2Sck5QFogfEEIr5qpDmYnzqO7SbaniAdipzSmSpb/ODboPQu8QLC1IbM2fodNGI9dpU8mLgFhnEfKynpIy3uPpvSyD/QpUWaPez58ASbtpmbMSMtsbNGMdGSmZvHEZOdriTwI8hyclu0Pd8pUXR2ZH9JqWJtsFG4t6AKt6nc7AHSO1RYI8z0TgY746jKiQBOeOhYRM1BAFOCmk4VK10IQuW+ZzijzNrkcZb5u9jeWKNryz/5ZVfe5HrSLRI5NLeG9cC8HeA/iN1qfJkitLP8KdYk3CFRDwVs5Fa8nCLErXGt7/O/g5rp7d66PTR2OficMQmF9Pm3h+R2XqyNw7YZqkh9n/jlSMFmMmU3iaA7hUlztc2tSHmV79Vaw5TpjeEchxxKQRVf/ddmfxniyW9y1+CeOz5m/ZdSX9u1wngkI9e1yXq3DriKw/w32dePh+Si9r9VRvDhWhA79MyXnBpg0VefrY12JVdpulxwbcUQTMtcVpQwsZ3d9+w8Ls3IKpH9TvWF52MppJdalomJev5jWGyYPhwt7kBqZljNW6v3mVLn9mkGt+mCbTRA1hPGcfuscSin4AXuI/+E1yU8UqwPKYNrZ7IM+vsSGcZ1LpZH7KMtXmMvfWEzZdMLqtkxHxGVtcstYJPjlaWhI07g2VvDrPYU5c7bZyUemJ5ZrxYOy6xsmGE2u3ffJwB/w+mKATIj/qV7nBRgaEpAYqgHgnUnVWWZBa83huv5DFjxhcgE8o5m6sg1e5Ylc6GHXrtxoZdYfD5nFOyd2dfSVSF1ViNZ0vzpM1pVQHAnHb8TaULTFk45oZO/d7GxlNolWcqEKXwVKVDtG4qO0XBfM2x6tsAsS9/CyRXBedzscxaBvngHxPthkAjy22hrSBAT71aXWEZbKT18+eyj362xvBuT7LZNF9t9ElPvCjeFkVFQply1bEEQ8HoZ5gz3+3IS5r+10rCeO2COYGLJQn28BCA1yYla2GVAlmH6l0VhJ3ruul65LakmqZM/pqJjeYYCm8lYk6sTEkF42AIPOXmwkpkvhDQX8OxG6lfGDsSaZcRH41NsuOgQxZgGCJGnzXMM3sASSYZ720GDSt378QvcwSLQGPMrZG7eOZ2Vuqo854J5rrcQitNAMMSpSdNhhjHnPl/zQGnGkuA4p21laxgZUmr7N3POJAEgq9NVMuOb8Lgl+qRi3k67ScgfxIhpk7Jjk35Oc6CJicY8kQSCBe3NYBXNlEMm32MZMHX5JQtoTAD3WAeKQjS5TGiZas0Ol+iNJ/T2O7ccQ55u/NT8DxEc6UGZJQwTifGbphmcyac3ObRUXpsFk9Y14/g3+DRr9PeOT3YmyPSHDo+ghnZcotL6HewYoP4SVZqgAy71kJF3bwYdyxajOMPA/FFBiazm/ovyCVwtMOyc2gUvqNbjCKD5VyyYegcT7kDRahHJZSTAvIFuSgZbEP+nimdoxudjfSTk7K3J3qkLXnLNjAB+8e1XUGXvpqHsf02gtgGB3j+Oxgp9VeicazCreAAk6DfUPGwbboojvGVu/myw915wc44bdTpir0UiU6CXFFTr/bIhVncr/ljxNhqDFbpD/lylJYiUIPvicxpeMIiqa6fEIkIFq+rTbbEy4GxWzLAI9GPS3MNvSYYzpHzUAQIfkWtkyX2NvMIl0zUH95/lwQnTNxzguvIw/RM0quBIkNHQnLHCBNbTH/PJ0Baz2kfRa7KnCKRTkPRpXEjnZzd99TEs+JPZy2gt1AgKNfAk3h9DV16zkO/U+oAOlp4lKhldv2QPwOLDSKVn1ASwYi9CtxcxBPqmEqzxS/lL2cpnifs+u3AebqBGc0imXlJaYSPaIQoubP0IrxtOXyqcQp8shO3zhkrPQQhlYGtrmhrWTu2KNW8c+5IOCgPQrFAkl071sAIVgGmtZsVOoD/Q1FJwIo9bcBtvfgZjFykmbkfuHCSGzW3PMwZRXZ8/hJZ/mtJ9ZcvtkHR2SOwvoq0pqg6VQ9X8bwvtYT1vHKJrenTyk20AMP1zaltFwJak0b7hGq+yDWh/97vl2FuZ6gHohqW3xZmpeP/OFMZ5RhRTYbhlGp4tUefCdt8/+Nd4azQ7A8+8n335XO+upzmz52AK+5xyUHjqb5LtLmYMC1l2X91CPlU/htN2y3Q2FT4Oc3ndZdL3Kw9xWPHWN7LmXboKgfR5Qi40wOW9hVCv9nlHT7qDgNhTufBZM78Zc1Q0iAWUCqIo/Q1J+lIota6lGzYsB5YtczRHnR4LXCpIH9xNYMUpO1jG3gz5xyKck1WUVDq7hNU4oB4Z38KjX0jKhwh/hiCOuIbY0V7lEYaUIFpnWxymkGBoR553LpL4sboF0j0LeR+XslCJqSowfBoPz/PrNy2z6MTur7I13b5xE2svcQ2rTsW7ht26sSNfHxpPAxVOyNM32LNRssHdQTNX8cv+gkzP7lYDvcz884dN0KxDaGqFmHnQJelp3LjOze3mXw629i6QlPQOAJkCc7SIn4iq/9rBgJC8jMApaveGNhf+CwHiykpDQP2+l+LiO6A66wkZdvdo59iKpqS1i4NRCu1pzYySrk48+jmcKRzdXxeHSjJKqUnJUmSK3unDpMj2eDfVTC91GfXHbqHPRZdPbznGDgj+VgNKUF9RvaT0Ce0EazogIz8cog7TjN1cQgPd6ZgNbsoNwMNjcHcM0PCY6UxQXYfcDGJ8fPd9VeGqY3Q3ywDqyg0/I1xcjVMPzGrZc4ZMW9bjkbTqPJDUTAWhsEzrxYFXz0+7qN4/byAibPHLR59Z+F6dbkysytjUVSo1+a7bDMjLZ4ChRVEZIbuH0M6Ti1yq5f1Y5oUiOdrqv9KraJUE7GelGmaXWRhS6WT6kebC8EiAsKmCJ4SJLDP6P4YOqWJ6KKM0qayn1Ad0rBH2RZCU/i7p0KWcyBbrvkXStAx6OcRYc025nFC9Dg5sC3tuAWCnA930+mRuj2VBH3tIgAT7IHR03oNKtHXA/VZlmr376OcBRvKt0jhQCBdNbQbpzrhGXci+oGfQByKSh86FkDHduZIb7mcZmrVXgoGwPff5z9fTKxfr/QB/Fgvq2qHovFFW0s69rp79Fw/zdrfz3ORtdfuN3+XbgLErZvkg4TMJyL2dfsmMeg9DLluio2cgILXRN7NjmtAH3/6ZFBAlE7C+k5VJdwDaz1nYPeuku/2lJsBJjkTsiYJp4bd3ODIXQCrW6fZ78VbMcVZVdd32nTBnKnNmd0SlRVfzh7sJrECD8mkLQJdgR0dPgHQ/Zps52jxt657bASQbaZ3pZS/bxPeLgVowdTU1DNEpntUh639Mmv/VYzaHPynqMKz+o1TkvPMm/Q1DfvGCfJD1bHp1/5e0jxrpQQ5P1H0/j9k2372Cm54awn5yipT+bMXoVHgGckK5MaD1fO/1gYNAo7aNQnZPXkaBROHSN05/J+95dtpLlukzvEmXGnnkZrJTh4OpAVTSRJkc2Lr0bWzR0ppbRCbIP13edQUAZK0IMB/xvlokjqxA+8DFz7oI56orBblgZlCF29b/ToSmNswvm3bWluS1q57ID5mjaAgTvGbDFyqn2sq1m+GXdNNcKecm/XK7qXQ0WWq7SvJ6Ks4PWSzIGtkd1tGugYOb+H4J2xkJcLzt8z9PrRbCs4nu8XxaXsQQXPaArlkBbZeBH++lS/5oL9e6Lyg+tK2SgNTBGDAtDZ9mdGMbJAsQwvHoSW36Cbm9IYgjtKSPTV+nUfUus99GHKY+noTMsJqJw9H8ajqclASOm8PzBePUxAbBj+ShitbXs1OuFrKC/dM7hXmyTOGvRsSFhK6ol4ZkdRADzv9ISGDJ9ghlhZhWKlf/XsCPxwEkuYqMzkgX3h4ibNzSKSrMSk5s1zssQH6DzX3ndTFEdk1PwVIRWrcCNC8rEBfNLyriEJ1IukMARBHbV4Zkf09e2RthpOf3PxANSQWnG91gugv2IMyp+Pez3MdTixhQWdh1YLwd50hOl7vGX0OJXszgzJaQbpbc97KOl3qnnGb/4V499YH+St79og4N3JekVXvCTEOYLyJWkwPrWX1hOXjEU5/V/TXHxzvmOHWrN7VFP3AxYO3Ul8ppxuHT+0CI2KOLzrAQaez42uzC4p8n95/F4Ccln0P/3e2LKCptqthQjeWHCpfeLJYAp2GPj0J2oVbu1msJ+yMHgA1E5zJIn/JrpTG+63zNv4FX3Fl4fizlPpk+axEQHiJGcYuZJPUZw/3YSSOvxbHrAJCuVkw3RWbvjTC+XQ6vCtHGjhjOM7EHGH7n25QsatGjCMNGPbfcyVa510vWEiAXDxUw6x7/hyHlst7ccJUZpqJGueqV7i1if7MUZSdhVLnN5JGheHBvHnqzrZ1JOT11lZ5QbwWyPh7ztK1qO/vaFqEBq6UgFXXzF0q6d+5BlzNmbVBazPztR82/xYCrZVp3l53KZBThNzKqtopiB5oViMT1YSkxGKVR/Ro3aFrLDzPskcbmJMNxv344C6GvhVkIJkVBlT/XsvD8G65heUM/rHq8nbC+da9Lcb+Tx7jvOaRn3Yp45xHqQrFtktIncVglMzeLCFA95uTfkbgeudR9CB0Ein9hRB50V769Nvqgc75MVjdWkcHaCzitzmVcbodn/4PUTT1fs+VrMr79O5JS8OCjswrTDJHT11JkJWevsg/jOaL5MGC54kWx8S21IJQuJzVZ0TsM/6/V16vf5Rr0tsm160ggpWMh1zBHzcLPtTY/fggWDgtJV9JrYa6v3YtdjuqZbR2a4myIwftCkYFgzzzzK5bW8P68joXPvGv8SvyHM/9FEqZ/xbVx7u36vy7WLBJbmWrXcU0G+T/TSFNThHwDZ21W7byI850Z3Lv2YOcDYrWvplqdCkhOE6zx3xu3AfuhTElKSSOyY2tBHt+L5/PKaLrMVno0urkDn+qeBHRTZ5hrNWa0OxL3zzcBZgtJ8gDYJkK0W3aVRRMD3Fwa77PDezjBCC7XbMPFohjneMgmF9COOLG5j3rHRtp95gd8UMZJ6C96gn23Xoa2kDgy/sSTJkXqce+OcOz0i1yv3XyE8yhSjYD+4PV4jfjqF0n/ADSbVKL6kO/5VVeAWIS/rgt5VVqS4l+MswDdAIrRlJzronveigO50wlV4wNMF0yPsLaeF5WljGsrIr050xpbh6w57nlSm8Ynh8OUyXLtin/40sPKpvOBdqo4Zd8tm6Hn9E+XTqTBRYXOAuGu6jHqb3l49wugsnt/3hgq85AfFnJOJMASB20LLCcRipdf2agsqTAEY9BX4iqo+YhNsEcKC7k02CeKdlhUKn4/CpKqn/mf2zdKU7hB0SAdRiDMovHP0mi+iusT8FxUlecFJEV3D42RdIUbECnS0DElZAtLYA4OHu8t/0SuvJgxrjQ5y4yLIKnCgTzJED2ziqcesqEmiHxeuhvhpoWxC1SpIp636vfKNa+86aXT/XxkZY1k2Lj/96y/EtVDa4QlyWBemhRfzk33dEk8mY9TdeEXoTA37bTXlPRv6WSzr1JAJnaiY88hzWWgoJuB/2h1beICQ6G5bnlTEwzDyAnpnpcBg4XPFt3CUjwqhiChXA1FShcf6Gwdmz6yCIPMFLq+JOtXMwoSGv9w9uQ/6qsjAVpUGVtA9lELZHMwAFiwqtQYLIyTI+R4GoCmQroG2Cs79Da0aAXBsIJe3U0QelLyvQ5HJ8820GSZwLMRzEw67NWhLwsLeMfReGVHXiHoq4kSMrkINsSrbJR7NZ+XUHIkJwDo+MtIAW9tBaBjBL6rJHdVU1TyJ5m/3IhSg/02Fw/V6QUrREa2ae1n+dMdD++gVMFigJx3wY3Dd35g9Aov1kWbr2fQaTx8GKK5zhdard+AHwmpx4Dl1rVUofmdibZMUWgpFAe5WuKAG3q1snmiwR7mC+uy+mdkT83px5P/EvpjsTdNjE28gNTsm6SeVmhZ3+040mfe+G05Bjovf+jErzUHClA85UONZCWrbbqDBIGT2lEboD4qruYhai/tNSg5EDAFk06lNgt4BCwMHhhI85JTsWgzdS0uhJ8r1QdmiRhgyYaW7yYs4JzPkZsooZafqSnvC30gmGKAQXeH/ib2+TVZeBzrfrS58CpUvGdCd3aTbKbyI2EQ0M5QqXTOF/9cMtdCEbSrCnFNerJnahiFCtECmEZniXIda1cjtYxToIVvHJ9A38zo1xDs1EqcGr4LHLiLNdHoLt6+s34GsYb9SXXCQEpAmxXha3kSAqX4RJ8Yl4e86du3LQW8kKi/g9yW/BzGp/WNAJUNc/x4fUpRrZQKDI+7fcj2zccBNa8yEbcGeQUXcFCP2zA3vWwdeoyYE/8VQXH/wL2/8YAzyNaPpBab6lbsRr/M8BTLu4BzQhpWW3ekTXRH4S1k9CxveI+qWboXZTdKkd9OUQtQR9ZW2w8zrVkR1qGX8a65NukXJ1uK4pAkGvKoEv5sawKzY0eixJPO+JL5+eL06DOeromUhJ9a/+2SV4CZskIH7brHfYGfmadhqbCzMpMykCA66gaT4sqgtIz7vCx1LZHmvOTGPz75ufhp+dz9SWkH77Z4+8y9D7v2TUKsyDpxdVQMOZ0S2pTtsEIQ3HuLNU30BOfOWL2dafeymZeBMx6UohwHHzLFqwUOT0UoQiPRgapPEKYEFhufhBiNu+C1UBmd8pS406eVlM2nJ0LiSvQfd6Nv062fD4+si4EDKXS5UaTwnVTZchv2SartS22JgdrVrY0LZnpjihU6zMA/zllb30rnrP5ZK13iRt+F2naL3hMiFIaZziG1i6R3fiXSc8ffb/YU+Bv7f2L0g8V8iPxA1gHVuuNLYO9piIGXa47kLv96IrhMgxySowg+SPDJqs99jB6+HQyaM8hLCx/I+hH6817RXmv37oQPDEtSEKRAmWVUNNSDbT/APZUwoi0D0NU6jgm1QtvUsDaNyNQDGYgJojxa5o3+y79UC9w88du7gE4Y1ZjbgpWS95oLyvJNI9O4NarRlH3Snh6owKSSZGHTrdjL/U4WsstKLxgtU/cM2gTc8rT1KdbMlSEMCgamui3zNOYYyBz0R58DRBWqPCK3upH1EFwVvpRlLsRTRJqtzNGgIg7JKfs5EG95qp2fGHVoMBKa884lQgMd7GXGdISupXBHxo3usOD0H1RPBDfaHsqRLk7cnJdkgq9qwFUajIMniEcr+/s6z+FR+uH2jOGro+FL+oNsw+eD7Jjs+Q6PP8wlkAOLril7K3DROzLFPTDGtcpdXRkX1/7QxgnWd2wYIjpvY3/gxEBVTO8GU+Bh+uRldGDWZruw7R1vplRVwbrgBKBENnJPn9kwe1V0yICvGvdBwaZVQSujQEBkPqHRU0dkVdOf2WfPOYD1b8eXEtRkyQ85oojh050tTc7SkkJ6loUOzsFB7sBds0GvmOyDrL6RTl5IWdmaQzmjDKV11hzWY6D8LNE2pdRFDeUShatTFq8ts4L8SPQbtj1nyG3a2euMlFDti8JrP2MEdBhekIz6ulDKXlwHMxxfXrIve6HQ6KScLltCtpP63Hmd7HixrJgEU7kSjyn2/C3c4npOE4eSKUhAjDFyP48yaP1my89qvOSM9oVmgdP5W84HySrzjbKctXdEOdjSRfDA+JLMOqrst1PmndBTts27zf3FrawRcpbIQ6JNJU6rH3WAwO6R4zh6Vxwav32UiBZgdHA/7q7giPh7BuFAvAEaCYLS47zvjwPAYimwXMzBOOKeRH5pGGPTttCrL2+Qx8QbOcnxdxwBNYoPnDwmljZohpoxyk7JI7G9O6EuBeVagSqHFW9v3+u1DwtHkJS948quG6LpXFW/7+DtFrEfOt3xmiM4sWw2qK4uO7+ZdQUXoI0kEeon4XQVe+QEwlQVUx7EL0/Xlzeu0gmynk6FbGCOS7YVwcXIrKPbQkU0qv+E3jnJzc98XaQzVvxjiVwjz+QUHEi7XSbTM7V4+NKzYFrm7iXl+XsUmzLjkfyG1KSCSm5EqeITAC5Uu0CnwUDDGp+CqG8LyLe0pa7vru+PAWEXfAzWNvLPNKMdZU2pondTiibncopWL5CtpMEVGW/U390Vro8SzofElKP0Xxek9Kbov3eRRkZGrKs4e7LStGEcwluEvLdYXrIJbLlD8IiVn4jadPp/D/YfbJtD7kDOeywJQrj2Q9E0MHuEMzi3dBkUU2dY/kKIoeFKxL94JuHXRcwz1Ro7x0QkVCizdZHF9VicVds3A8HRoDCi0zqgMsesQL8Z9gzTBdooQhcGnpKGdKjwUe5KKfYMfcFmxDk2IznkKQ8H4wvs8WUXIEVU5fd7kzSzEVjLT2UmeOK5uyfmRfSK3qtAlORKKDzX0ZWVsfw+tAWGOgJh2/WuFT2/pblRS+YRF7HSrcWKjyaS4TE4ybOLhvZjzD9WVsmbBl9ZrKJAohsDrm9VYLuVpO1q2cDq7jtmU3jkJvZ+7lnAO68KTFc/FZj5fL+i1DrNC/rZ6IdwUKBGxB9F7uX3fiA33PHLlPDhKhDHdsDgt5sSgmxeiOT+fi04DCSpES+ILVowDOuRFjo+BEJ/XhhKNtTlQKF1z9klT4IuLfzdd8haseXNdWwRcpIfKP5XE2XSU3qM7Rl0YogYCHoouvfWV8sbZ9SkTN2XuIyiQNuCehy+rZ8Fpjpmmb8PQPCwJ6AUD8X8VSOeMeldP/naYOlVvjb3l5O2bF0jFIKoTX0UL0uJGhlsIui2hrD3dI/23yzbq4gMhvjBUNL4JNi/FYyRooSxPBo+0q+3WZJiaz1Acrx590qAK+zWVhDKpcbpPlksDClNvvbk6RFaaMV78T7a9j3WRjrYDjItzeXJeBwAT8N7pCaG1MH7YiFJOXG7E2fnUIYQbHeeziefIWMvaskMO41HqGpqUCu0J5c2lR3yYR8IPzQ4lzmZqKPIG5mlATPXfmf4EHKN0Fna7/3AnrppV6U2Z+ZfcRXkUAwXbN6D4FZLLJNFt5BlPlNVJMn9Scx3VBe+5FAoh6ToEeuR/Mnwg4jtSq6b7+54es4reZSR9XPlBxf3P/1UvVwV9XRvFTx5/Yg/Bfm0bVkjxkDMUuM34bxTmAeI2RKbccOJ0KqkkAnKOZ2w9MYw0dU7qi5HLHnnTUyYUYCUlcCg/OT3vP/vlToA2rozpB1JIG1QpRMQeYnjQdAchO1uHbVemSZ/G5RSfpMqNBMWEhB1l2wB+1Zrok0c81JOAtm7z5985WG3u1q/vq3mqureIWPKbryMH69I8DSlYHD78RyYN2OBeGhFRedXi9PTr7ymtl4L/IvqmJe56Fua9P6UA8W4Lj5jNoaaJkyKlt4AbQBokGIU/uBWTBoV6cwP+G2wjohZi6uSoyeLonW64hwI/z0Kpj//vPGYNkAzFkOlrjFKpQZIIJHdl2qucU1Mvly/t4MAHa7G8+K5UqtPG+Lst6ONc842AWi7f9q3BMP/Iob0wGJB8i9FX/pTCl3+O551FoBBgQGuzPBovIHSR6YkOTAaRGHYnd8ByD6X3QN/dHTA7OseUpoIbFyjAH1TOsgQQklDf+kZGG965BglSSjaWZEM0Z3/vv2nlly4M9i695FbAib3jYY4uqh/q757A/+5B2IQyQByskew9/oZTq8apZJKwPeLkSkXeBXCRw5jqblMSXNcz/+I6rKTdMZUF3YxDxnXPdtSEBc0NjTkExEXQliXrxq4f1Mf1grn3lAwVTR0ev1pczvj81gyeOO4uvsqmcMVSOkVAcvXdGz/zlSeJsAEerIrbTAKy1pZki7wMh9hoYFbZoxzVlted8Vk/JanqJk9Tzoqegelw/IaIWDAEJ69ouA6L7QUhfzBbq9p/0S78Gt3q9cTOhDXfcZYSyM85oVQRJsnlSjHZ97e0gNz/mTMcB++/DZiIEPBZWN8+TV6M3oSbtRxOAxHWCLQVHe9MJUZTHxSyxS8AUNgKwkIzSOeEi/nwX7n2REWysowKzmYVr+bYw75V6w55HslDBBojS7zOpLnIM3sJnpr8+PV5mhvU7rVj9tsppYZyH6m78SyW1+BMBAS0EuD0lklse+6lWi6G806a1EJIXYOPCGpIngdNbYG/EbtKzRuwOp5n1GR6rY0G05SI7px2Dv27vOq8KK5+HB7SRyKHVYQeNSDYEO226w6DNiX/c0GVSAQAcO0KWyzsDI+eK4e4wAYXZ9vT1FuhI7tAUt0ow+i2ha6nwgg/soVJNQBJVsy1qZ9R22mpO1maSK19kXwlv29QPLLDo6v3uLG7Lb66Q/9TU1gQ0N/pOR09UUHIGThIorkGEv9ZlJiSPy9oO4VMdtGlsy8Pu3tLgsYuAvQPIs8XkcA4x+3mMVu7QrJGDiX64vYSbIbcXYzJMFd3fPbUmf+Aj+3LHpjvyXE3YyfasanjSHOc7iZVZ9iTTHt3eJxsBUl4HV/bEtAG6PqpPuUAt6m7LMneejU18AMtHAtiqADJm7FdJ7mYZcB2xv1vFaYtHodJ+nqtZgZ/gVPOea1d7Y9Pra1/3zPf1MVzCd3+ISE/RNL5CUi+Sln84bU2teihq74zs8UYqut9ZRkk/MQgqPe544RKH3hbXnmLgAj+qQVO8Gpy6E3cyYF5DfGHzPBFi+024ljQt9hRbiLQ0z2j2YXMSufgkG2u6djnHMNMcbtpICIXrQXVrZDn5qE5rb9pmOM/+CkkV2I5Aqqo/69sr7VxT0icDzXS8ktZC7fSHhpsIvw5VFutC8w7GmEFJHrrCxIp9J4rtxnY4rQ9NASeDDrvgVZMkhHi7l97rw3iXEZIN8sM818eOIz3oMKDFYurBrPHgT+ESxaXEkl/60oIfR/+4LA8jpJpDAjBwZRJfkE7Lf9gFcKoI8Bc3CCbXK/E1kVoiuKHqXWUQyF0YCwAfdPOvhLF971Tl6fxz3btlXkAcXeSjlbbORcr6Bkuw/oP758IqNRxthNR24eoWOOxfU4ER+FU2D/6MjQpnWzoiafQ8vCmm8azKaQDpevFBg1dRMa4SrjTuwQP9NxIU12C8oJTNdhlIHqakSh/Ovpm66whOg2yQMxnLmPwhjJ+EFJlmI4SF/Feok6vyw8gd5sKzjugym4b5a+GZo9f1t02ushlcyMI4pxdvomsBre4105jW2Ns6Fy/zcESt/V2MZ1uMYTl6IkkCp+BP5r3nIPKBG5Ri3GK89CshijOFgepEy5oktQo3esainVKAF8AcFU1wFRuZZNdQRJpnXQA1SPQArRObVKGB4GHw7z2kViblfMtISgbQA2hjQ/79CIt6O8ebU9p5s+lbhaPAmuhP/SdZ3E6NdAsBA7+FvTK+7yRIJ2/EvJNWWcJ2k7F+yfZIH7RiwynoLTQAi/RVdYzCtvkHZm7hYf2YedeMdQGVQzCVp27VNglaWvFgej4oZ4H46yI9Z59iTRiNTvzwY+YQXsAVBAwXGB9/ofoxPZYP7o/zwOlnLNzGfuqqyJ/wIG7RGZ9D5GE/XqR+UeTx0FRShHjwVzr+HSguQQHXm09ckZwxpamQIQAfTbNIiKY77bgzDjjrU1fmdwDbUdkpYouqG1y9zBXLrm5djBblLNFWtUy+QSWL+Txt2Ig5YxP12JJsKFe1xHsdM1vESwS/4NoGzGgroUPTYEvIngTS0h+bHMXUTtqErXGX0NnlEF6+rc2cwXfyR06oeqd8xV5uPsKj0/tDY0HKYUZowZVo2ialLlN+YA10ibrKenlGF0XGcZ4kLVXbO+IEKVb+v6+R0VwqU92LKTQQV9RYFDWzle38gh2P0dh1Ppj2/pPZwTI8poSHtNVPIHkxNLmij+NabYj3kBvtPkIo8jnyTXZZMLxXOfdfbY7xKw8nCuHwB1a/ycP9WGPKkDwynWLWESCL7QxiJQlbjtTizrp/UdtrSowKzhAVCT+11YswWHFlpkxR9EWLweQ6UE/cVqty9C4eRy7doG19mp9sc7GOeiEUnmHCYxB+4Y/gVAs1GdqcLj2yAIXhc3NG9zZ7KPeNeUagDVRJMfkYvjhy48TjQkvKCaC79SidjaMbD0Aef8mT2jFnFU+MVN1eZjDvIBExVbk9dday8zA1AgTwH4FZma+vofSOpZ37DFzl4eWhiL5lfh79n2D/h0THgBj9J1Pw3AxXkQAmProosHL9ZB52ZyvqsNBlAJ8rA3H4pjLQkupIXYBicNSTbps5ICw1SY+L313OgoMn9eXE7hHags9KdagLSayzCml2jrJ09Fnmu17TfmMQCY5JjTRqamaNJs6j3a/BL02gnA7PR4o0QRVMmwmVtaWvmAETLQtzrlidQoPF2rtpPDLEC6dRW2/F+zTMbeq0oBu8AsTbuGJIGDIjmpQDDBg1WGiN7ZVflkfU8kpvQCWpCNT9xcdAnCKvHB0Dkwc8bQnBisn494U9RYI4n0AgnH7PjmLrHRHnkw2IIEivxvxqEPNF/VzvGFHMsLOC7OfeC0AqwBB1c/D+0hdVh2hrm2UaCaW7fvJhqHNqJ2RI1WEmzdrqp9qvP1ETucFEgBoGzAwfsuUPzPIcJsOPyxqDJk9/mYCcRvBygatfN7XY+NiyqIcJ6qiF6GguVUouWeZELXSXYLJkKRE6ZYr9QBWX8X0z+gze4aO/0B8TazpevdhCKffcf/Z97uvNcc1fo1enZF97HLdu4XTXIFzFjFuHAN591FCMz1P22Z5JxsgQxRFtZkfQrozj7E+sqeumXM04FXtKbpgClBIrjCIV1WjLI4SD0islT1n2xxMf+d6zQ6AyaUm8gnGrGVL/NIg5tlQ0SNOsxdSRe1ojthAVt5NyLLdN9nQ+x5687f5MOmDU4khKP1C/Pme55Ve9WGn0iz+Lf1LiY4JHIpF9D3TYymUWztcVxBtOBvkLzmOtiaIixz9afHZF2XzTGOZuc7vVV8S+cg93DjOfGzgmO3t2to7vTFoh9t7EjXFnDkOy94fYNfFaNLP3c59v4Wnns3Q175RcT/MMaldZovrAxsPRyVncrng0PC7s/i9EW3SKHDLW7U3TF20ZiofBTBDM8nzA08+gcDGTTvJ6YQgMYtd0rX4rjDWSHxerHWfGPiDxRQVawd3FRQvz8fHhfJO7avIlg3EK6+qcqdvawheAnn3YsSUfjXmqoARmxL53KVRtGiI4YV1ZuLBekCrknhDNODFoNlKk0487G7YKPEW83IJEP6nWGgtAyxnMRM/nulJSl2AFQe6bvHEODo+b1tm+2/9HPebr5gTf62hXmD8dXMmI7/RnkM7LS/Ppa4BlbBr4udy5hZLNP5VYD1bK/SK2Es05JR76nbQFhWvMRnTHzvC0jxYkpjwUwJ8PAR/f0WaIZdU2JQvuYNGm3V27XOjZbJCdJ1Gke3aLoeo8bZG/k5Wk8owMZOobNcabvjOChFEIqzMUTYBOlzl40nK8bRScNyaDcfBfZlZ1lNO4T5YnQkbGwdM4wqhqI1EpVSu+4IVUqfdFQ9bHHUBu6+PqNus0g6uwpsHCUHAs5qv0HjuOANHOeXAHrF6AaDtBtLV+aj1Nle5zS6lEWuWqCSA/eptQK7CIH2Gy2mOHme+PKhQKQSER+iQN0Gmx7Pj3vVqOpEO/qmgLbeXSfRncGv9P9xOoK0hqOlar7Jb2eOZylQiGlSgqsffx95Gf/dyoULf4Fn/CobfPtYLLrglkwXMzfKZ9n4/HcQoJy9kW+kxyz6ngj1px1aKW5FsAY6yfajFglnqeuB2eXOaxbFPd6TpN9jKGA6IB/Ny3zxV+MfReM53i/MwWecaWz2I5tDoAKgN9g7eaJOgcEHSTE0R3kJLBNPKv14AsclFORTRcW9DJ3KTVFCasv8yiDjC2Lt+7ih8wRGYcz8qNIC2QmJuZhda+bQy93bNEeT+IoeXZRAJTe/B29CuNU5nBS8FHFeoMUE5a04np9C9CPdn1o4G+GpjeWnmQHNdzpo4lKA060f/TLgCkZcqeTiHQpSEp2SGNvZPXrQscTrkrWWNOVM7qL36sKXV3gDGPD020V9GM512+dAk2XQK0c62SAPfv3k68Q3Q54S7KN5sVxbkMDKm2apkUGzJFBSWOfE7ANo/clItY2gD5iXKkjOE1Qy4ytaC2jLtIv8580vqttxNtTn5wtq39BurnlZ2/oDR2zyB9hRkO9wiCel3JpiuBL05fo9Xkr2zOV/WIinvKLudtiEPphFNcP4Zl+EQ7+P/a9fg4ydL+FvcmF87X3Msoz95vGDViUiyTrJKj8QdT63/D1d+6AsxT8OST08O3bKll1S/FLHW6VMhDeZjCn+j0gzQ46kqlsbXWwcb3wGkij77rdd4BlrI7elXW2cZta4mS1xw/Wr1wNdKVund2EZIeWNa2ZSQY48FO2E41pli7phNKwY91XKHN58hFCB40qMd+7A4nIe4KHolqn56f+CneQjrvWzwBeedhLFVS5QNTyb/Btk2ICjb/llbzYnYZazvSDAVbk/zwTihteJg9JP8260FSvPLYPBoy8CNtg84aqc7URkB3VE3eg6Nc9zEao+DQSHCVG/3jUf3tcm84SGQp0scZLAqDMSi5LMXARrEAiDIbFYu3YtYx7I/0EArGPniEvKwKydCFt79jHV0TBUm1q4b7/M2tScH1tMXpLssK7FZAGpqh85NUrqFf5VQdGJUIWeLbV+5wb5dZLZMo7wkrXvGJNlngCbYxoDmxUVpT+URSFnDw8LXRWThMi+9BA9hCiKBF128clTAbj2uIIu04qKrlacnQvudsP/+NTNljA6kR5/75O+W4PPABBefL2FSMH/SFRqe/s7ePhjyjPnAZdPR+HjCvWQEMt/HCkUpMQUiJqrdvKOm7kbQKqtyFTg4xAZVUMJ9U9FKiFxbFSriQMuATA/OJNAwPbsMeEefuEkQPSKyWmULM7AMng36NZKamt0vzklbt3sRQ9ENhjtKtFE+uFIOySQE0qHy+rnEG6SXNmbbN1gitV7lzkLotL4f7ikBpaGgsEhnRIZ+msFz1UNnJJ2e4jsRenvWxzqDkxr0i3x2eZ/T3WUEycWxLhAItMSNmAwxqEKlXVeOVLne9yB1pCux1lHMRT8L81E0uSnTsX5sx7vowMcIBRkZ3XzC7XjtwjKfhpgpN3Aj5l2L44wRxuAIqkSLiFhcqPkTyvP3cLKSMsy/VwPZ7eLhsMZYLORSR+kqjifcaHapQW9MkZb32SSaAaMpKhOEpNoPvLGP5QThHusvP4j/a5CxM6KBhqR1dd2v+nWcHek5bvjhWxSe6qf0YeL7ycWi5DmlpyR+3xFkG1q3+2gvFu0YMVmBT4BxLg8XZKBaHDImA+KD1BQ77Qmu0VgfVJNeXC+Q6iPlk2GOYDLk2KHYz6AbF0gZmolF1zw7UfZPlU7+5sGtfA0L+xbSHWks6hhcremthWPnn06C/p4zfXg52r1Dwn5Bld2Yw4O9OGKmxEg7YvQiJqkgSQIcDgZriq2qXozAWRmLTbDmmVIQgqrWEYKUetsqBc+F/kZGYprA1kqBh3AwzxFEtWGbJS61P6AxfXltpaYR5i55ZsCVRR8CNVuD8eiJKoh+0LfP2eXOMaMAoZgz3QnauQCyq5iosHA0P0KsDw7CR462hg86eZvQoq2uW4Ug3TrzVptsi0lWF7pD4vQa9BUY4m85W54dgzp5UhT9JaUyXvDYYHMhDMCMYNkbQvKI3tlF082BT8v/ki3cFRlHjUZ3IIruBt8yPY2LgyBbHGbZUWtMn5jqD23eZCSiV19jHJfgaCuYJASHdaG4zHV0Z89pFtSnLpb9quTLbd8xfnvxeaXB79+54KcT5gNi8RrHe4P9Vff4YwZj/A7FLH6sP7dtYauehAPy4XId5dyOctj2UgzmzVAc224jtGiCEDtyfG/+kCbWTJPmQY85SBizfIMMpLq7O4n4WDaOP/kabKnpjNfxYnN+zihFw0f3E2+SOtefqCc4W468l5VI0lZlCs2brh+S/FYf57uYrFHJ4Q+MW6Ev2ZRkjHK7tfOLlavXC+IxqIZlA0MMfaN/00aey5hhwxDJLvNEHqhaYMY6bbCGGWSeT02+qP6fEQViuAATOMlHFGNOyRhp6bWGbNp1NsSwpA+zrBvagFw+RATswdmi8QSTRRiSZ7r2jxWJhTRXOEx1FFvHtBiRwVyALz7ov6eps01uV/9EBc3fG4R4Mhzv8dcB37dJkOPUP4xN/KSdNd2edp4roCdcO5nYGyu8WTB4ZHQzOn6zTbsDHDshWv7KWpRkuX8q5dYE2SBkebUaQMnnigEbUVTL3FEaqsUgq8q14xawx0fIfyDIDok8y+AlqZREflZNyX3ioMZaUl+RuL8u/i9+/1NjdW9T4bcKyFXgWaytEwiETQA8e8Kfx18Ztz72a7/QFlon7vR1C9HEC0sX2A1HrRLfnxKAP5WK/s9i78NDas/DI9WlMX+LgA1HopSRffC3zLvmEpsrhMzVfbld/TiQB6FUhC3RrqPR98Hm+Z2VFw13wN25eqiDbk/R5HWsBnC26Yti+KGC7fLAWvZ3Bh1Dfj8TfAs6aGzLpqOrS40CFYKPMBkW7yeimzlmhZUzVOxZTGTg71kCcgTSOY9DtAeQXVcJq9CkEYsU9j+6xLnapNICWZ5Q4qpn95vpP3OeQNVm7rLsCcrt5vAmbAcPjxe1EPW5Lqj1A+SZm0Mty/LaBqV50d3/ExAjsmklgeRYihvj2l505JDsF7n5H+9iiYTKLHm3wljC2SO9Bz430I0fNmDWzBqTBVMtZjT6diR3+GOt/82FBQmXLwolVycrH7lrwcT8N5XgEaK5nRB53jdgjh64oBlpN/eek54KGZVNlAK/ahhEWX/ACTgDUv4GM3mno8WTX7ZDPtnJyeO1DzROvfWYy/N+44BulcYJFUCeI+yRdZDUxFnDtnzaTWHd3i9TTcChB9SVfEZVGPZfeRQnpHFhmRiIonKIbMSrXoFm98CV89bQZqPbefKV5xm1IZpfCQgoZUQNa4Hx0W6a0uNf8rMRQRAJO/0MHfnpGxB5+jbi8k1qELKTaIO9jXHD/Go2cOPG6qTvARdt2DTPc3q1Ylrh6z6jkrpKix7H8wmy6UFyUYILbdPehFjfPWv6Gdsf5ovT6xeS7d2vXCqlrH2mlNmYqYffugCWDR6uhsEeeltTyO2LG4BXRRF7697dNKcauQJL4o75UTMEHQqtag7uV8R9PeBDWbkUcLF4Usuw99Iu/6kQIxCUNa9VmZ/O1rW0E30qFsQMBuNSpfBbl3+z/1zT8fCPukE970sRYnz9UyPDEsdz7pwC/tgKKre7fec2F2xdmjaZFou6e+OYonzEjqRpTGdwwcH/iKQdeIYNnMaIsACa+e766TNFIbnKU46d2rYPuScJGxCHQwTO7cXkJfzNok/5Crl2Etf+hQ9rsYiuTcSo/6sWcmnWYAExokgxv67T0bgEQ6zPTCsfqNV4b0pVViPoerbjo3SJnbAcSB7IsQGVfv92wAj7JH6YOr3G0sMErfseN9xkgZC2bTO/JLU6et1T5EiwVTRs/b9wq06Y7jZtvlv1bIbJLqlk7k4gbM3VMVfZfsc+5zViIpM9qKWCMPr33nTkqS2KszDf3UhBb4ozL9ZsFAOUaoCAuZJmtqIJ0w9eO2tFGa3/JheT/B6np6c0BbxifbJ+rTNRpzqjxJ78jRW5ui5OtCtyG8QaI2rjtBQ7XUBoiDD7N2O5vjKYg+Jqt2m6TMqJhHR6z7dkqJFGKZgtk/JUBL1wqgIog1Oo0hPbgwQouIGBwPLcMtcGzf+EDujmxKEQKBzXkr74rpZ6adnfQA7q+tVvyWW78B7o6Rz4NiR5jjjw+5Y5V9Tn0bHKxn7FT9Xn31w0pEb2NVHMG5LfY2CjzA5tBj1mvXdq+YgLHqWXyVmJQvCqIMpV1dQYnYi2LiR/quB0sx+L0mbFh8pd3qOVNNj4Azv7yqrsLVY4OlHbFkJHMa9AvZM4/+szPGtVfxlaagr+riFc12wGqYv8BCZK13SYFjJwg/78DyjHp9TlrvDR3P/SzjbBSojGYmHqVG8Vlb5NvRoI/tmo8w/BN9mNNlj/0yr+Cfyt/wXaRsMum9iL0aTXklllATXn5xYw3jWBdC6knnWXdKK6M/VDoX49/7eVL855kdFQsEWviP+cCNamWbvRSssvvfPqoGDangjZqrPmkLY4KQoWhYbWVsf+wVYI/K9wU+uvQWLMCYeh6v+66tV4fWJTITFQbuIcS+EPQOmmhSST+N4IXKo4BzycQck+Rs7cLg3GAgcc/APwa5YLMCbninoKJMz+ACoUIfZVZmPR0Tbg2ka/qjQoTBl21h3jGUxImv3Wx2VQ3P2cS0jkX0DaEdL72oZIWWrCSV+AHRDF36XsxeBg3K3tjGPW4zRTQISQozSHvOKkTVbFklCL5YF3TG57wI8/Z/V8UYKBjeSt0GY4UJxULHGxH7F6eKWOC7sdOW2KRIwXl/GH/Th2ntiWpVIKfGmfuUsGyOyHCT9+CWR251ZMYyHMs191WMaQzzs7CBNWhQEpL1jvl0TxFTCeNiAqoOPFg9xGVgzerUFZVdFFBUpLF2d9fmlItbEsYy0C+vb58s8ckmcvM+TMVoaPPMOGVmvylIVr2ngyj1dx9pSluPQ4SaqsfOXz3da4JXXUin7fPLHCdMbjSKnLIDh+OvWCGBpBYQ1PdS2b9UHz1iaaX4Jsyxopb/br9TE7hhJHI8NPUFc0tv1Eq5skbKa2gX94MFadCts5QEx+FyORbfDxTu6hcnjsn7ccGIJGsu/OBrdaZh5brRWnJCQH46vc8JYJeGWrfBsen0hH+dLrcBAI6FGV83CKVCZSaAt54Nf9hbCKqP6ABN51mDk/G5drhBTruAt4/WqpEewkY0k4OMxpDesz/xjpxmBdGliIZreObIqGXoYZCSkFlQz1JkAnI9cddj4kG/K65KB23RmEiFO5go857sJEugFINiyZdxan5BZljCDI/GUOVA7w7pyKqTy1iLlrcGuRl5DJSQAvmwvKwkX0G//RqRKwYM2un9fCgRVBSk3aNaA6f0DQKQyhTmXa2T3TTfH7n/cnKS7DXVfndWAzlxoEcccDVmPYulkUOSblLP1RlrNASLu1EerXt27SQmLTpAFvEtDSlFRGJk6czoKOKI+Ii8Hys3uhdJZIjYQFAhWGOrtL/qutngUU9Bf8y7X96astO1EL5Majpt7OC35oCn8k4LsskIWw/7YCQ3/9s+EbirmhzteEOqAzivXbXqXavmro0UbFE3lMOWBs2LEzHaiFD5d10G2kqO0Sf4qb1bYL0zTj9Fp6N25WiZopGKxwMRCQItYhuBGdzZdfyqzOnDKxNwcxtDMchjvnHR21UFHSdRatVj94a7mlvTGbLqpQDKf+KOll6b/OpPqeXaIV1ebx2P5B/d2mQ+ytWUhB9WcpT+Vc2XqNtGM/dXL96tAdlVeub7apyE57PcBW/RzuHEGbRFRwJUvTcjzazOQ3JdShI5UA8tYjuzHg3MXFm/wdt6YXXGV2nH961ROXMk4UurmiC/9b9jHcSSEZt1YQ5KSxDD+uccRUvm04NIBZs4FW1VsUR05lQ4/Un5IuuuS06uru+DH9PEbV0ASc64VA436cK6pCAYgmpTY3obgdKhTEYNOutGVUEg4Dgbv1R/nJ3Pqsh1eeYV8fXRZDn70FWrqjTx21B4ctt9SnvJoPm7C4dLRFobo/SSg7xY0sq0kXvna2G1H1HqORYP5qUJkRu71YU0e7wjNnjyuMBDQzb7WHy9DvuRem3KbBNTS7ULitKLwVYV9BqWCuZmmvQMWGueuaYjkUD8bwNZzBirLTmVrVdhqck0bXQ6MgvSfKEg5Q6+8UBSgpKY66AkJbumWHytO8wvvB4cAD9iWn93bAIueZodNmqXg5il/ySdFVyj+OvK4C6BGFq9BJub4WuJaEQs3gtOEfVgsA5fyFcrjsGBenVQuMK5Xc6+sL08M/Ln45qTLk4faxIV2Vob4bQVQ44NltNJy7wdVePBxh2gPiDMgdYKY5Qa3cM/TD2UZ6MQiZwJmIu+SkudW5i6KjUfLNfm2gE6pn7LjH1xY6R6uQSeCdo9O6hjgph+bDZqqGnuh/kR74LdqYYVJ3yMC85LyI3R7NbShtL4ejRa6wFDoioJErqRzsDtl6S1yPTIVOkZF7mAj1aSIm/NzVIHSPGc/HcYkQSc/PhoB9140/TKJc6WqGrTvqHbI0WcKBRkKKHmtRP8xU+T2SUVn53jmzXOWPmXouvbtWlvHO/S9W0HYoNB6/8ZVIpjRwI7rvtsj5UEfpwDQQE+BH2p5trsaHss+I5t0Bxl/Vg/7ZGfAHwXoYrQknZhF4wj7YqvAJ4bfWlND7rskoyyWT+E4VgGkMTmcGaniuBxKR/Z6sDG8PmzNIK44AOvx61e5kEd6YXrlqzNvTV94FUCYCZBJj6MYhCfV2t7t6WqPJ7P6R2+1qmLLsNKcHnyjrvVldHD1l46nPrQaXuvjl8NXUy67wDdlBVViz2bKGlAgW5WXow5jsIL11iGdvMs3wQh5MLbMKc5RCta8AZFED6v2KYepAFk2E3gebilmyJ4HKZirl6zO+zlu3MiX0SzSrznpMzQvQOFmm9Nry11qt9lLYekddeehzKRJFnfDt1P/g9LrSmktlrxXLbqxdGiLrOwT0UFNtgo3+bflTvv47jUWwdruAsDRHvL76M3jM2Ur7E436EdEab/fN+q817iBfFFOKPlA1WHPfjCimFby4NK3bHPehrsvfLjjSOpyZanb0jNCBvbVEbcr5YN/WIbm0bBn1rVOrxarKinaSO0532y5lY1/YcEh8FUthVatLgopokh8dREHqWkH70fEwuv0jY6wMGQV3VQREA1lZidTRAhwi+rM7qt9v+PK/PjiJW9b5Vw57bOMIYbF66FDHqt84lmDO9ZVRoqrJaFQl0YL8GmVlSobsSMdzK9MW/46SX/H+HnOdeert+hj58zUF0qCeTUmE/4n7s0cH27XYSGhcaDfZ4Z/1JnWz7bEQVYgoGN4cyArlorWg8rWOdYt0/n1Es88JmZxEl8UuVmvGbwm2AGiaECkLSq1FVMuhlHLva02VYA8zOZgA+eOC1iGVWQxSpIYMZE9xd203/Phzw+YBxzEkye9I0rXfq4zNqzM0vkdLq1iDM/+R7IokpKAQ6JFYBWhwdlCdurSm9BZkP7yrzSqJc4ttWWLy3Hs2D/gBgPEE5EhNAdvpPEzr9g5CplGqAAebHwg+0LKsxQnRjz6Rx40Wn9+2abSMVrF3gjr2FJkNB8atVps7fXTo4Mpy4tLn8ENV//q4Qab5M2tzayFcS/OFcCVntJEGlY4ZrNlOKPc53Dz5eZoYsV/Yd8bVkh4A/oioVOjrBP6RjVt95OsucBi0HYHu4e9srCv2Cyvy6gfCkAb7G8ABZUkoUx6R6VpL6GvL/sdptnyXeRho8Y4lNNO4VmgC0G9Oma7kDP2HJBXCmK8HL+oLDkhzSRWfbfrfN+vCyWgq2+MW39t1fjBE0HZhhTYKdrJn+ZMcTnRf3C/jPFxXCZ93Ya46n+4jE9TYIVBixW9RRG/QE7sFnhR1PbE4r687GOWWSBUAjzzbdia8HQIQGNPt/OXijBjnfEDldhavI596nCjj1cITG18ACZUmhcu9QgtreBSC1p7SuxZQjUlKFY0ijBHXe2ro4PA2ZA1H0dJ9r1vT77EzQVzPotxvm75f322CKyW4shgV+uyxJu665bBq0Ijn1UeDL6kVxe50Jrf3cwSrE0CUUQ72A/nVOzN7kHxov1D8s02mYs+3xSf4DEfnbVDS80HoWbgq0SXNhrgUNtV7KlvF9lCyZVkzsMHShmBpJ25EXb/Oi/k5gT7wG9YmZTMuVGUJDnQOF73gf9lFW8y9kO7G9tJVdLuY+03i2ly/LxX2cwQYXFpWfnatqC49gtESSvRaNdUb8t3SifOpznBVTQbFoiW35leKJnhN4RKwvzrcQZ0+BNdLEYIrbv3h7lUvSOYQ9fzYfKxM2PcjfCFW49pq13LG1CL6GANS8pXvRzUtVup3xC5hbHPUTn0mOxqgL3X/pCtdACpdw6WpIVjt5dtVM8u7dlRd2UAlfO+VU/C4O6ROXJt6hFFW+lux927st3GXO7rN+zbrLf/jEca7935oGYLw7Zx1MII/GSStf4CodNxFGV+sPcYZ5M0amdO6mCcoQNMiOUwsoGPIkpZnHz0thR/Z+7wHwjEDy/gK0k4JCLBPS/e9q9196+mVyz06z5f0qFrHrIf+/U45beGq9JorKGIcLEEfGZCELAtQ3xyefP9VoeDXYX8XyQJetB88uPxYEeRuYfMJK0Z2YdpBQ5k4+zwpAdZejjWGjoTo91FvcEyH5mapNU8ygaPoBYj5y6Uye2I3LxReGNQ2suQNzAglknut8ID7nVPW+rJIo4IsTXYVBwFhTp1Fab7UxH1Lbfe3AakXEJzSlASUWbeqGamfCQgOHUELCwAIxKmt4iL3SW5DOK0CkAOe2keRjubn7nBe27Wc5brmk9zXS32ffmlZiOel+SPt30Rjt7vf7H9MtIQPkfZEoaZXTv9FfAeIoNnR68jTYpUtQqd3oLyNYdIB0LmEEVYnyv+w22cb8nLKN4/zMv0lx8S4EFxA5ESYTOnUDJj/q0KxwxCeZrHOWzlFB7AEI/YeyabHAVyK6icNlxlqbprln21uwXR4d7TldLx2IPy7Z6TbaTPmQGJQx8a2Tm1jSTxvJLgC5x4MC863QsgKJQhbTBj9qVPANPttAn63//BRWzFiTe5bZIBEEgfueDNEMPKm6GM5t23j96J+hRrEd813U9Drx6EwKq6oFs1zBniSYNm4FhTIEQXOXcBDJjewRAN31t3+k+RIUW+YmIc8hfE0qfm7reDZ6rc6iNI/IwgQOgJVcVggqijw0tbL6hkCiDCpjIWQ7pmYfFC4h1UKJRE76owgn409olPQIlemTKf/V/qEZkoD64rVsRWiC3B2oHZoJ7nFVWUA7GYUmsUgEaxJ+yIpKszBLp/qU7hTix3kfaYZeQ+3ZiPVRtAOjGEnYQy3DOi5xU7kfcan1XYSgeU5+hkApXDFStT1N2WVVe6bA2bMOUTnJOvaN/9KYR8yP9wEwIexq2GjS2g/UQq5Kbtu0AS5I2pRe60kcHFjIuE/tQPQV/ae+PiTRQaHIyk7iKh1o6AxNYwH74ljh1qQmJZ88VC3Ze7GKl0c/1hFy4ir8VeCcSosR0RuIrWz3R52lzKr5Xpgi4ab+mEL5tTjyUfL2kS0/GOM1sKl6/ut2ZRI6p8LFT7JrxLr0EMDy/tn8sjWuLPydBYGE0CL5wK8AYezx6b1pCSZbDBbLU6NqlyuLXjyOwOTdRUYJFjhp9XoGwyW5BN8z6k3Ykhdo7uqjGGDDpTSOeujXHrJGwGZcsnNU/cCVaOSgBcOaK7od5MqKhXdbRBKUnDhUy7RepM3EfPU6E4ZtfbHNXC05UpBj5YjdHB7mD1wbQGnf0g+e7BcfeOGkrsExQ3huBzv0GHebUOGNKyxbLQfRZSiF8GIcb8QE7qpujNUMZn8UZrltMtU0bcT+fIe8W0t4WnZjhUUuHvaertpUXHP5xIzGqrGgmMuVPs7qRNem3xDWgC/b6OoORyK7BNuDMtNXTR1883NqTpmrdAbAEL6iSNCPKX+nfEVhla04YzlC37cnbKgP374RMNKgSeddV3pPXL84gexUlG7ZSmSaTgrAZkbv0ylFX/ymL1rNqi7Y5g5hOhuKAuXpS8jgIAxeUuwT38n1v6g0r5CMRO0//dR4ZXma6qRMSBx+fhHNivPM0Si6eGKNZPuMAkuwAjvknghSG2g58UAPrM7exkUCNI11I5KszR6iuHf2Gqm+X846E/VlPYmcBVvC+j/0QkPuKGtkEW8oBdKB55I7zMOEggAdL0ToXDWYgEvt9HbC0vOF1alfaPJEwiS2QS/pnEa3dmqHcBTft5Az8xfItnba76gLKaJNp9okaXAq0UQqWWylwr1CAF5mgi8Xg2ciWj9BJv+lPthgP7gAgmRFCRbTFTPzfzKozZBJq3mZGhZG7kVNJXtVUjketTk7nuajszBtMHCyCh6BCnE3OkNaKCVYlatt67nEAph645vOj0OzEh1IgUFhN7Y6EPnrxUAFX+IqmA4bKgxo1rTSUhG0ijVW5cwi/2u6/LIY7Mupno4EHvEs4/E3EK/b/5u9GNt36mjlEcMmLL7QEmh1aIz3g/h4hyyOPXfweZHsXjpcX45PugMZ/8at5ZZ331W/NgRbVIjp+BY8sT4hkOdGcGIkDKcxbquUs7UewFv/wqe0qDpIPV18uHh1HrVngsAQwdV9/Ds/jYU1PxtBvHO6JHWqCd2eZMkZu7QCZRrAu51U67xc3/RnKLJpz7qJRurUnOIe9uXVYNrJC7OhWHop37U85E42WayhSwovigagVlZZeipStOYG29nGDbMcVqv1UPUL7SHLkVWQhhbCgGxVn82kDF80n4U9NsE8+5WNWNt2htd9e9To25AeWdAZISGicpbQ9CFOrpn+PWQhxcMQFkGAk7hb5T/UL5l2XpIXSG9suUsFWeYJIrwVw2VxvmL4jE7WCEbJKNUYsT9WXQK5sv4NWVYiCZCn8Mj1Jm+J8n66dhSDe/Q6S1WdR7fhA/wFHfDO2melJfFCca0+38/qI3rv2LxbFkjGALitCT50LHNm/4EOo4Bxpaut+vsG2bm7wWic5+XrjL2Z89/MbjIqua7js2l+YMGpJhfcvjPWQgv+mxRBFCvtxgABY46z9OwWlVNEbRwHTgzmTtqt2WqiWceuBgiE15kQIaVV7L+XTQQuKOttWIh6UMAyC2Ww5Tfen1aMR9+TNOvYtdTrgVcp0CzR2RrKsN1Erbmz1sz7rm6N+yRSi6vid90mj/Gy1JaC2fkyfXbhJVS/fpBC/HGucljYAqzMYqYJsdttq1TsNpiBT0ryQXFNzgQtK/MVj9TtCr1oQnyExBQqq6+B/ApG4NbA1P9ungDWvFkx1c/+yTsjbuj4EgBvf9CYiinO4EUvtYFW5PdxHTN5Fn46P1OQUTH57dYvylggd/Ju0W7jj5VV4zyGuFIiSaJCgAmZBpHUyJFSqff1T0/COfful/g4T9AegXz8lSB/XzutlkCtGkCapjaMO0X08MkckyFERVhRSTMEwPAaLgF+OTi4n72p3Hc38gHB+zg7gm6EurWyPGf+PdO6xqrQOBx/72OSS7Dn2VMZoS/xw7fi4fN0X9cGJp56rMTn6yVP9esFRVA9olo0Ya2U8OhLNyMfJl/IBQHF08vMvhAOBblWsmGwbfTg3x3fxQN/GVIAKdQmf44ShbgOoqxGHGHoOH6l92gGIrbTsoPllbBvJPUZ8Lpl6LWEEvGtPdZVkf04k405Izw8Kb3VDFRTtKL2Y9qRd010gVp7dpEuK0HgFkT8YZ/Uc88hwc4QwdJcgjyTbYUQaf5KVPC1GQ4pz7wTuwpTsVn4lJFqqVp4S2JzO6HpnmVbbPlBsc5zEYds4PIMB1UBsjeiJbsckh7y6hHUGZaitTSOhDc5WqDN4VNS2xzfBvB99vQOV05Fkq/irE9Lny2k/aMoQ1FEOB6OwAtn83XB9M9x27Brb06lcsXzOS1seE0x7VKPQtxRxtO5u/NBFv8KuaMo4S6jHfoHLc8YeaK3s7mofuiwHD8Dh0tVV22970vU/tyY+xpMIxZkbYOOAx5bU2GI76NnDYidMsw7WQ/X2Mus7DZBIQ1euJbN+XdZsjvBiXZHV7y3ZHIEDbxUftRMr77XiE+8AfzfS9dcEQc7RqVic2fgOP4kQrIoefYuBEs2eG3Mx8mHvtD03t8CHv+nzYRBHt6mF7xIDAeMSBgT0iCPP+jjFabbBRMCZC9MI29fCzccn1uOtASEKH3fuHfX4Q7480djScvY0VCDqYorUr11leiODNGV1qWFGfnIGyM9XzHYPXNlOtayklj732pEGf+Zs9clK/u3J610SJPonP5DlUhFOvHk/pJXUL8DocIi+gNSxcvfQfcdC/xm1WmmRWtLsB/lpmqoRBotvCVt5B+lrDckQZ0aN71P5wI0g6WnEB+c4hASRW/A8WomH1/EbnB7ZfsDCbze0grm/euWwjuhElyGfJ0rTz0vuOH8f10qwUZwx2V9cY5rRU22nx//ASZ/ybLoGeSPG3pP+iNFV7DyB5nvBrU3wh4tyOZ3IGjUSrLRwLmJqfaldIThqVcxq1AKEggi+XzTfdUdBbWOSC+JXu5nJWKNXpOkktqCgTU9xZ6A8crmnFBhFo4hdBmemWr3AeZP5I1HXJGq0KLsrfLssraOl+rl0/4AnbcVlAu/KC1DoOFVlXCfk2jO6JarekuTPH2NnskGL9ok75yMqicp5iyNOZpIgzc4p2cO3uO63qFFKHPsnz4+DE7wAy3XfGYOd6VrcAnJ63jMQCLNw5rwg6A3ZDxfywVc+3oE5FFS8IvvWgOVJUzMeQnocBKHJXNazg17cX4Km1HmIKb6FAunQPEq28h00OMdXc7UI2xuuQRcyIVMtQr6wLVbjs5L9hpSwkLDyN5P91IC5QRE85dacLOHKXiX42tiRcfzAyak184CVzLM0q8XwGcT3kQiKVS6FKglqkOGMnRk63IAEaYdX7/jrwJUb/rC8RxyQqLxeSkDqKlHQcN6HCGs4ahJrFBi4EPAS7gqr9mKk6VA2/OaKfPd0tYaCG+CTCPWO20jod6218DOSp+nj2qAdV0QkVGHh3QXJKvEJIlsbgY0MzQaXXVMAs9nIEfgto4DFk6/VaIOVdTw/ZrPZNKQL96PWmSIrbHAuw9t9VxhPmdOU6Rj5ZSyNyl3Jopp5p/8mWvZLli3qSqFt2PpBPcZ1/VKiZtYP6NmCYmVmrolVKtIHuMpYSzDhNoNMHa3suHb1nn3xus0Nxs54z5DSsth6dGTR4amM6qzdumkgW+q4Cl/EHp5oZ2NrjgPntZ6ISzcSJtkBZbchV8TCiMrMr+Y7Om9Z9jXXiWnOifrIgf+9ErGx+A1rU/qUH8jxLe20R6ok05QcPZ0YITH9G9UOo6uClJpnYpq3eWToMo1aCXr/Gc3LZxX5mWHc6BJhNrlVHxpNyRCSBMGgg0L1nRjibuw76Pnf4cy/+7iVzZF3USkEAy6k34LjM7mHzaCrxCCoCP93rXTPsEBjD/MY+1zdMgigjCscm5ZUfhE039pfQjV7/A+ICZKsu2ic/re/zxaHLHkBlrQb2kY65gjKLlvKSaEud0397niAR7pT4vZhcejDNeudlCc9cqn/mcb8fKpxnMS0NncSL37H377Bs+6Co8PSAljx3ovGezP/3Sz9+odVV80Eacxzh6HOGff70kG6dCh4Fsu1lvfEDIg16iMbtfeAi8tsXY7FwNVg1CY/2lADLfGBv7cdYct3tP5SP0WG9UN2A0gfFeQYxpU4jURTwA2Pi4T7qU9rLel7Jo1jYTDBmqx6KFkYcvGWHS7qOltpoA9TFGphuwAe56xFPtKiKsWxI2PAFlBKDS2/n+MNTJaL6Nd9pta6Z60sp6NJDaT4wcmh7210QisdjqGhFAb0oWn5+3mf0CwJwzB3AIJg5qTDlLSryM8fUIPTpjRI8VBCX0pgrQFCNxUpunOkFhJhAklk12eAif7cKLYNBHM9+eHLxfVjEnbSC4rqWZQuQzhaKQwiJpRx9GSzNCHI9iF0e5pbq+lEpvuJYGi9ryvpahUvwBkQRAq24SEkit7se6Fi+iCb5ew7cgs0qL37Sz+SPlWmjZFofXft0H928Eufgtx37Ro6q96SGAJtHNDunZRZFA3IgwLTLJrU71cxwFS2M+izpvP4PiIEAaxVfBIKlI53TPteg9di5VTuBuzefiC10AY77nLuAUKSoCFRfWgbDEier5nMTb7Gby2cqWohhXZhk5qI/AFA48pKZOeSk8RNP7gr/mtR4LohFEInaTKd+Bd52WBc7Gr4Og7T9jBH+ES5QWaguZHTH2Rp3xnFkP7hDW1jAcPvh48aiCBAMYtqhgw8hY1SPwYv7Ffl+SiwKrEALm4pzrXPme/J8C/GUVYyqnnRV38kc7xtDaErAaUe2yOTsrMkGgx5yU40H6EISvJU7uLviyDG5Ysjq9mIADilRw/KzF2sgnF4Sdqf+LHE5ZLpCvxKY5px2UIa7H5CJAky2fONknSN/YtO6n5kemSoCq/ocotPkXwU9MUIfK3wp6ZCZhFQQJP7db720BnuZpKVvH/CYYfAfjtFZIdPsJclYoqJQ45amdQuf7yO4MJck84sIJsYAWEVxPtqUT7JcEPX3WyV5aPGtnEy4DWztpp0JnpWzaGjkmL9T+XJ6ozoW/BKrmFwUKlvIw73OJQFJ8Kd0/TcKcsKgYZ1eK+Pz91eR6b1M2dpPMyi/8AOozOI/dlkhvDJTvZDioLJB8ygnfDY/aiqVZ1MvfINWLLxUDDfEga9lFeMzcMHIdYr8Jx2nI7OpPQnSW1tXzHbfOcbizGFoEPNAR2828KTln93w/M64orLCt4GQnB8BrqcihDOVBIrTJidHTBWjPOExA4AjkJkNxwKeAzS7HzJTftAIo9KPXEvlOLx3TR3cEeEZZ3lZSVy6L5zCIXz1gki27BDYkWZHhqRVdIy15mTHbps6mOs0q94pZb6VCsM5X8XvmAgC2sg0rF1O7Xm6gHl6lIfP04kIiSNtl9elzKI+cSIq0KGjAX0KFiZi3SI8t+ED8LEDnsTaU3pFbTjMFt+kM02UKT7yj9Qti2W3F62bFdK4DcSvENYU8purpTlx0cHBTOwojQBhW65IXNFbJwOTAzNwzdZPIJktDEcQnzDMVHYD6+FdFB6i5mlNlBG/aWj5K5iKNb75y36oKTSeO0rUqOHizbAS+03rY8O+DsRJUVHAVh+X9k9FREMsFMg3e4kqgAbfs8pwbbtQcRHhMjMypGGjacd9epSPWOC4YAbIXIQBXu0+zeMcWRYXAc5gT1yOTJYDmYFKho8SlgeCywxLruGLZ6VFqMOww9xZY0iDxsLMHezbXld7GDJX/8ErPhV71nYZbsz0ICsxfz3ZMg7HP5nlb3kWjg2G2ZuQ+tLb4Io74GGqfP57CE/yJTUY3MMBAcQ6tzGNKJG946l3H0HpoN5nGEP+wE4tQ8fJN0kt9KW54ZyRiRjD41i4dM0Lh63CI7658MejhebFMQrzCf+/msPTOR+5jxhskCn833V+H61hmez7jZhIEElnsIVWAsP+/QYnyUFQStJLSddXFwFJbKilGEQXzZXhuiev4GRCD8+OBPnmA1+GuMxlwCpZLgSamSoi07/9VaJvo5/QGVfDC/714loMcoYdFZi3ppgx/zi7lc/j3iM2aM69VW+MIdszYn6NnY3cXDBZxKbWnfenf62pC70NypBEMpOBVSdZbBCVlaKxrL49QLaAVDu8crz0VEvgCzgvEJSawGONvqXqxFKR550D4pjllZI+6ih2ChMv/7zYraLpPQQydeAnzLwUP4n7CbliXuGEUK75aIqs9+jmChCtwCOqRfdbaeF5kvJCj4/e03tHmh5s+WQnXPZItQh+uMyPXawH+pcVOOYBHtZEATqq9CUYbed9gDwEBF0qIKeK92iUGLuyrhlY6DTMi0WUHJFkOlkBHwwLZlVTz94F4DVhEgXtx0fOJeApuo1CEdhncl52nGiX9e/t8cJER+TIBAjo4BuuujUQk6Pj9+GYO40dv4s2oFRtOUraYCwNL1fpgIAtHi7PHYHVCqnZNt/HKzgzYuF6bJxcf8SPGDh4ClypXRjmxzHMqK+2sATAsaqaZ5pOzHr2lF0vhHi3BQeGETYUP3Osv4gaf3OIHVanqXOFxzi44Hb58RiuXdKAWDpyz4njPRZxTDT+K7+NS5Y4YT5BU1UjcisB8rPsbUoDvGHMyzxWU4LG8UD3m1sYg4UtIJYKq8cu9IMwgZnBUVYGUXO2J1vetzxlU88B5MSZoq7F7QZYx/9tCRZNHLohcPBOaY/qKw78pn3KVVnxLNb4UUJGMnK5CMCqg1rBursc/Z5GcJVMBXQVWmEx6uJg27+n7kkfNPE4rn0Xz3VpzIP1v+e/1NKKqD3MkHOb5P70jfmBn28jPmIWXDFgJ6nGha1fS5fefF71rhpbX4L/gIlcFtIOAYXrEWP4ZMxZuYPGu+7bEvaMJpr3Xnysm6JzXoTTrIRiVcm7XAQnYMjwbXaiv3sRmyLk2E1PUqMAQAma4aw8dnNJI8fFFMzB/54Z1Ra39LLZD78Jb1d1LgGi6648if5urBjBEkiyz/d4oII8XnZHMkQqmT3c8INmAjMPAaz825Lj4J3JL6AkWSw7OBA2jQWjnY1AkZGuC9pfk0yll3Fn45XhtxJxDj/qiqjhh6XkaZPLiCIaJPFAA5cwW5vTVKylkCgMgy6lbR0DfZNR1FObOiADU/kwIExmmJq16BMDOtlJeR2R26Od1GQeCSNjIDZbsSWy6vizZv83j1Ynjj00sVlwO4v9oVsa2Wl501CrkI6PV4AwG9CIBo5QUbgJf/6sRWY50XLZ/fjOQM9eULZl+ggktAvf9Bc3O0WGvzupSSSk7z7heyQGwgVVGhiVvticj9dTWRZ1f8pgZBxkhb41vDMWjvXHYAPfCwa2CkEd/wN2s0N0mMk3SNaYxyUYsi9GAPa3XegEeeU+0TQVwUWUkXKgnWQXVO2cQn+yJQ7rOzIV7bh+RSZdwERd9KFzrqWStGofFNcxJJyZdp95Dm8yJzkZ6NrDCtHHtIpmavLBfaisE8RIIFeWG8FMwmwcPU67fTRYrgeztvrGJ/bmZZ6xK7qRax6rPFNxqmP7ZbFQ05r4kDk1HIQYPxjMuwWE3enu8NGpEV5kGThgMTxXjcirxDH+VuQ5lAJQsHVRgAsRnAIaaJpFZdKJs4h1lGijIUURh8yjSbMZFFHGSndoyY4/AsHqWOEWr1JaffFchYF2/NT+C7ob6PQewxu8s2ctUG9+Hc0X4ZwgHqK6vohTS939UMGTxAwC5O583jV92z4uzsku1SSD1kgcCFBg9/M+IV5pXegTlb2zb4af9BVXboCFbawmPgoiLgd+LElFw1VVUaOD2JUqWj+u3A7pnRF4kzRpayL56uo0TfPJEFshvbS0xzPrxp8oJe0QUWbZxJgH+s6+C11TGr3xIdsJcA1ILVo1rh+F5KLRkM2h/m5W/Ndu3RrZ+NrczLDNcABavmbE7lgwqpK00lWWImIm8x+JvVMAq9vKy9hEU0LH5FOu+N/jckQcPQsJ+7frJxLf0jbYYt8mlSb2oWr4Sdl9xQc/y2zL+hGxgddMjRkjqCggtUlB7XvrhWtffEW7Df7jYkR9swmRxWwEmmVP1+4tuLR4VvCJdonzJ+/fUK5hyiFjcs/sH6HLduAb+wADZrs2t6LRa30s5F8q0nkRHxD1oQmvOIYHBJLSaYgv8cZqD7uVnUWOMU9DlNTK1SQJ6RsmwimfPEwxniRTTUcfFjD8j5Jnld5480DugAA8GNeS5zpOoAnyjH83jMdXMg4Z3OCsY8tSreW94V/JgUjEHLiWG0Xt5Gi8q/H9oiZRmi7nlE1rVtYtQLNd9p+6B4TPPWtaffJVWPn9KZbUHex8OUfb5a0Cwc0voAb2Czu6TAbcMVm9G212NmX9twVuFAoLNeSnROf0i55KG3E502PKfxT7V5HY3WAPkAk2h5/SX2X64l6K6v86zHNJDlmEtOt6N0Rd8bjMZ/tqdi/oen2eedDrWxRV1kWc0OaqiYPYJHJZsUNO7F66FoxGpwAFaobqycMxVP1SLWYNDI1h57Ae9/epJ3xllmuMlEenA17/lc9ZrW6QJy71LsbMoO4kMSkinCwE1LzoQXtHQvXLhmpw63ULwxcLnw/7fTeIbX8W/zZ+I4Hu3hJ3b6rQFOeMAS1K5CiX9jPBISxj6O5f03iTQ5/qdol7WlgolMNng9l4I+NgLANKvUjtIAC3mm7xqATnP65m1+b9QfZN/FLtz56wLZtvovsfRP0JknyX3H0s0Bu2vjfzooPfj7JecHpBrTBmyvt8GaS27GgVjAtWjJzwgDwEqoeFQM6ouu84Wf5l+yLOZwF3SL3DiBsuQ8PobIFOdcXPOIjl9NVunUJoyEZ1rLdsRr8mztV2RDqQ0SDTw7sdGrrttVLMA7G1ipK6ZYVFoq5/1zH+pyyWHjmvHY7szjw5NnCgsmJ8il4BJg5VmwmAXZPuBW24cyDyLaFIsDW03mip1hbyN0vEZLNmPS5RgQGw8BasHot68EZhwMMlpqDFRqTLZ6edOet3LJWCBpLNuAcsXHA0z7oaPiodBA5nd4YRkMzdlRkEeTGnN6TxTbqXTm8KQsc3pZM71OmFDY3vkyEhQwfzx2WUdK8TfSMp43dB6FpGB87nkbzP9PKBbTAv7dSZVw73FM+NmCpA8pOgTfvXcQfknU2ukF5Npfp2h90i4tV2cAxBlRotGwfX5yooiskgjVH68nPVV9DKqP9xSPoN3/iCR8ZSvPEXGkmyy/IDs9XS2I6bSWQ4VHJMCUamhEdZj4dkcIwW7rDdgfgNte+VfpsobyzJQS+Afn0dMvY4v4y1hIfaOGa9t0juLDROxYFpMXD3qi943VHQuX9ZIacSYFKy4JVazG/Yf2P1wDUVk0VQ9K0WbCObcxv6u5jU7ergtYtQbCL7mp2nV5m9f5nYNcHw++QOcO8+mAzsiiG83s03dc/XpxMusavTGZuXRWwdlL1KaDI0eIwSwLGJpz3ix1MIv9SP2FWvkRBBjOAuMfpw+M/3pE18kgvB5Ee1nmioMLG6rf3sovE7ouGoJVSJ6Bc8fiF4gdIZ0URuvp+I+o2kvdIWhyxjLyYpd5nq6IWd2+Q2EKSga2TzHvP04Iwvb31SF4M+12ZMk7gj0sMIN3MmjyFRDT5ox+3oZokkAJZ32cz4gwEVVVZpaaOdadzjDra4jtCgpLkLEc7KTllw9pLb198Y91K2COQWIIBquIQHMrlkAiA2LS6PdmK1j+DDCs220h6hiCtzv9jrxNpLwzBeJP4p/xVpcF+ABZUyn2D5MBZ2lZl/Doo6g9Qq4YAm4gL3IOTiStOqjFYw4JeUkAwCG8hBy+Tw9EZP+FKRbfNihCV+Unrl3iT9OBQjcwKdUwz7Ub5STTBB53kMSmamccRmxGSaVX7Od5t+dRUldCBBnes/dImBA7hXHRb9MvTRwxjkm9O3XwZzHpEcAZiSqaPoISTKqqKQCdX7CD9N0mY4AZwf+nzOOp4btqn//tA2CLW1nLnG6ceqW0myD+3z8iyZtVGC+jfyoBA86mGBkbRoaxZ4pAwv5Zx5i/i9BUgdvOrmOUwchMGEbnyN2G6k3UqnBl69S3yNezzmzSTF9e70m+tNWpKeLM6b5RGRqzLUuPtHWrAB8/nBwzB2/2LMarUBzW1Zr/7VEJBKK5t/2HZnFv73DvzfXZhNVD0uo2w71tstbb4cU6S016+J8nkH2jU/b9vIxn0BOscFnMbuBolcA9pLSePqrFv0i0lR1Tsd3X8SXg/C3dFrKox3cdHMhFAOtSVlA41ay70O1zDbK4ZGrBREEGzEU2JZ4KSLf1ft6GrH20jxtEbTeFBOI8UFUbLTEw1S0EdVzQR7wSyMtcoMtJPElO6iFmCKFYZ21cqQm9UN1Yvqbb347w5ipqziPnz1VgDZgofLLl+AR21ItdWekQzP3ndENY0JOOkEfplvekn/kSiwyhCVUBEha8F4wW2DQorfdwMUF7AXUbYAYnkcGEB/vfC16m3uhEBBLIToJJn6uf0+f7C+izxzbYTtuynkBNw/pSVGExeKJyMOv9ZQEmoflyE3xn1ypwYNcT6nGmshfkYJSYCzL9aDbNT+lv/7Z5x1t2gl5RXfJnmdLyi+v6ls+/zBJydKsiI4eZY+CyJLfBekbCGTMSfU9BFISGsn2Z2mp82g4mXxrU8hXvFVq/V1rCkZMZrPIA2PfZk9U/Dcj8YfZw+ccHq8JIhXoqWpAFO9g2jmwr1nR6tDwtQdnIVp8xg3IjvCe38URPmwb3ew+ljNc1OKxs67O0NyTbDSM5bda5HdW0CuSzTeZ30go5kGnwemHtsW0lYGdSZhMPliIYvebcU4kfaha+HQj69uSz/4NxhrMoKUvQPyeb6iS1NbdoVzjNRpGdxNOafno9nPpWjMPgMs9c4TJvRPD5XZogkq8VKQ/MR6qI0SOo4TMLMfUc5EZwp0d9JGXLEf0ztM/5Np3PerbIoNePceaD9RKGKl3WsAXheDlbzVogM44ZB+NIUFWnbdy/dlwhF8P1WX6wifPwRREjqBeSd8l039z8Wf1eyqSm4JMlB+18Lrv6NURDHEVviZbrC2rJWb9vvgDdrAEj7ULtdJQu2YC6xFcJ4FoCA+DCKlSmCC3c8vZ3IxYlMYA3ULTySwCIyh5uuIiVJ6YlJ8hxSQhj/OYF+rOtrZOg9ryvZO3DH3FRXFIsNPeKsB41Dz/e5HTWoxbkt3JLXyvUmym7eDkcSiBhX1Tl6FvOOlC4lN2ExgC8y1t9WlTT7nXQ/3nPwRKuqQBRZWiZKyHLYk0xAtrv+mOFcTHLGxkA+UnAHnhMiDS90a1NUrEkpaFia1IqzNKw+z58HNOzPi2jujkgigspQ5fXvHxtmHXY5Fq6vC+6AaUH/me6iSEAmwvBL0mw6+g2tc8YLu0CJ+oTIxQHnX9w07SGWpHycBh8t/XE/tuDkTT98Q0iC123k5kM6MCn4oW2oOnB/qMoyN7fz2Dd9o0nF+R9bC4QSVE5kUlzMBDV8bSmjd2RgwlFlHNCv5xZEK540oTxiTw43zczJSx1lCRF8et1C45X+m2nuv1fM5LEp6MnYc52SW++LY883at5AYSYTfwAkMUayac/BUMOS8bX9fluIB0PPdA+9c6+UGqYAoswrskTGVgrYtUl2UPf/fOcmzQhm0JpBJpHCeCgehDLC/00nSoh2nITngqGWBDL6lVkbbjeOzrxlj5tzbCfFi1efvfwyCccy2fMwzH3Xazhjf+d1WHSwdnk0f/nH2dZEQXE0r/Mtkf3H+NV7RiyhrsE3cowMS9lxFapTUyj1Z4GLiQEImBrsqE6HKmle3wQVW0Kj96i048VKYUVJhjbmNT0zHD5OJQdukihw2hL7JaA77an2c/I75iPPGbYGZ18P3yxGp8bzT1Q8i886GSjoP0ttjj0EjXSIrRgRYLWa+rv9gG9WtkLrYIqJDoCXae14aEpKfsJ1mRWe4oQF5Iup9JCd2jpu+3sKMsLbmpN+kChGy/BiRzMN4ESnYgAP8rgTbgfqBOmw2a84oHM3/FMwqwoQMHYbXyJUzOXcv/qjx8slueJhvIV8iWM1ZrCq6PWqhFzk67rPFQQp+gaPDQBNJIjlMSqcY5JtZP98J+N66uq5Wu2hXqlXS0nrnlYeKfiD7WWfSunx9xbdybzM6smbGUDll9rR9zROe8XanfwDvScWIddeQQLjQnJy1sq1t4tIz2jfpsQfsJZkw/aHzdqiuP4NiN+9Dhq9hScRtxyFnLebN3/6C6FBeVozsPwcqCPOmuInN+e6+17mLddMXAJCz74or8puL0GhUbinCWXWGDDk+uy2wkBKRfvUviafd2L1sMPjJ4TbPL6oei/+p1ar9F7CjjmHubBX8Wu8BWxS65LD/p1TeuQSQ6n0jKwfm6d8ew6KOL5m6/amvUXhiCO0to6Zv1VOpDQxhW499bFIWof6wF0FpKClER6k9ZANOSdur4bathe80NbatDYOeQjEjzOSLJDm5x/yAqkedc0ks69KovovC/jXfxqt4v4HBRxTv/OUVrNA8i7MxEoM9zJqbfpImyFjIMa8lvvQuANlNVoi7i+F/2nC5FFDfEaSkERM8aenvucwOeKMU77TgM+rE9vaPrvmz5XB6rWrWNHC1mTcTHxB0Nfx43E4HHOqkGvq5K/weQ/r/dViXYRwLNW4EXppN7Z0jdQndA758QBQbxTpDnaAFpqW3xKks3coQ7NwYXtV+jlE+9pXOUJ8UmkEnU1RKSCUmEpdex7dDsWMGJ1CV62DONjizt28t5fN9FEEEKFQMt6eDXWy6R3qN5aeeK8UJ3D9iTDnl48/9NoO3+igazvWkUsNfmD1b6p+h4R4c//SRorFpPmpEHTWR8wxNi3Desm2foxNZwk0Ye+biQewyQAxOwm7QCoLDdgyEFTLa2f2L250Q4F3DGx4Ar7YJdWrjWYHBSWfZtLpPW66ecKd16I60aePtSLW8dA7P/hc1do2GARAqsBMZ0/amLG/OdOSzNYUrOCJBVVdZUHF65ZMM/TWfANgOgUCbQ1ZbYNlvUdSV/cdQsJfUEpJbm3ua3Fvmaw4/XBLo+a+KPCfvAgDDJuWxTeZzPA7uLcq7F5yO5o7+3hfE2LKBTCtxDB9KRdOYGZ5E0YJtG7gAYX5YxswGcVe9ztwjJucmHzP09RjXINEWOsHwjd167/bALshAg1cfKicguCoCz0/Ojv7hHGYIe6KO38NwdAjGDiTIwKdxyekmGY87Jyyl+Az4GXiE/jOtsSwwYwNAqBMrpsbtRiDDUbey5KAu0WcbLfa+iJ+YsyuKbGRzh0eaCsn3nP4c5sxjjMGInjZtfERuOffcM49CljnjLkqleg5uu/gPXOo1PBSAWnFkY0mlw4F2Rx48JCLU3U2XiYZy4Z5sbTXY5Lx3jufoDzmB3WolZOHm9SLR2d1GdLVl+wwSauLQRtabK3sMohM7u4Tqlyab7xvbXUQUtHcWd1cjgsusQnyqSp1IBUDr9Jv2RHttSSJ/j02FrB8/V7ud+73S7c0Nsf3AjaU5GDwJvYTbRADLPymjfswEL4L8LHkKURYyK5vTvGBhICgtsF5bQBAzKJ5FQAg4cmys5JL3OkYMARaXNOqX0tPYbGWxd9CGSVeo/x+Ce+yZNuYc6azai1lYS4TnLAgeRh4Us8a5VJUKvPiky2g1H0pfoQEfViZmrDFCCMW63i4+NyPy9afY/xQroHvp2YfmcQP49cpd84pWu4lIae8HRWGVqdeTot6LkaBsY2UEUbiiHWt525W0H0AMJIjAAzo7W+tsSwIkY4X6tSA2dRg7cZf589G5aNoIg1GO21Y94wgGxXbQSr7u34pPmoaQNvoUVUZZ+9juJQvrpQtw0CFp3xFj/HQdAUBu1uQbwCBD43dcrJmxOT3tbHRgmpxXSHaWED5S8CWsjaLFqhvfJvlLRlRyIaVQLIjoRr1KxIG/ZaLTJWhQMbofbsiV7wKkMXlZ3YDlh1JsKqIGc42mdo5KvafKlLTk5UJyk1SwhhLQd2vccxbfXXaTGbimonRBtBS+mxSf9vbg7DpiA8e9iE97ngKKVBc1mV5R6YIareMEqEcU8vsFEsr4kgERLe9DoPYitV/8tJKnG57jB3ERp2EDMQ+1jJ7yBnJ3GCJQBxOik0Znc2hV/OHomGzPU4kcIDsUIP6gp2r14bs7BrWUMJM5dfl5FELfNS+OhWnc/nkwl3fLWDkRtXK/CugjyuS1Jr7vn/PrxQy4b7UN1L7vS5Sns51qsTDbPoW3BpDDL4ZBcS+/YDFiWntbPnzdX3TXsGHF2JcXkxSkGl8KJXVDvSuj3JD5eFOd/pRfUB/2/ov+pK3mRCtYoq3iyHcYXar2FnfFAsB4NfefHvtg1T+m5yvi8tAkshqZG8I7mEXV6LDVG5PF1eUKbYcZX790FZeSDQ/IbJZS6bDLZzvEz/3q7X0CCBb38mhk3tGErQ1fhFquJo9cOeW22y5iOoeRLr8sAss6Y1FSl6Ot1wwjgrAcLba7gCAoXGVsqVE2ndc1LW2I18INA6pxU4ceSUQ7Kb0S2QXvmSyZwGvQyrtYKVsOpEGQS93NyjInXGmt+i5wegkOwf8IIvMCjRQhSlYXaC9O+v4P1YozrfcDj06sizVdtDlnQheH9z1I4+sAg4kVJVPDynGUOoNPxocSgL/JJVHOgithxU0ZdrNdQAw4ETNK+LlIdc+UZrUdNXrxrnlJUS4sbyNQDt4fLmGL72UcO/w+5LCvogulTpxDWjFkHoDUI9Nj/l2RK0Gza+OFi2q9GpxV/Z0zRICXc/U+r+8fs7xltARDwhYAu7AzquuDI2q94MXI/C34DngFKWNzzd3znUlMid1lLwgoRLe4KvX/vUQggXNkOG3hDKhoKRnLsPZgEpgm+heFL8PzYpSoThEPjNMAJOAc1oJswn0T+SUW+rDaz/jg50bDGR7o79lltpxGdqtq2QVcenb0Hugpyj1mZslw03KYAGE/5wpQydKGcDtGLLF/YuTdUcHsYjPXabxif02q3G/jBF16YOxAMQPJYjxr74z4gGA2sPOHiIoRv68KWHUpg/VCY5t4biT/fuT9djUStB8nqffm5EEsun5vmKq8TNSKIlR0v2zlbpuda3LC7EQfZFUF6kLGs3BPGU7D/hz7J5jJhgmBjkq+OL1bVAfunvgSnOVhliJ/dpEMaKMsdWj+S5tgb+HaMuoEBxyOjoZC0ytvkgcI6SUyaiVT6IdTEc+OhL6jlla5BhSGKNMjryACWRux19Henbw78Z8U6XkJz19Sr75SazHTK+hJdpQm9I1bSV+Thsuycjt8mvbrl0KHLymczmHu4IRaayHdWRVGaMmNZz+/O3XLbzwZ2haoIB3brxxaIzVRN7kEU+F7NuiVVENbyRg3ggEq7I2Y18CEimNsrNyMUn5SgntVsvvTNbfbI+/9IMHMMXHDd3cp8dR8NWC42bqDOw28Mk5q448oNdzG5lFMFVerGfTfBM1ylp3BH9fx8DNZWZzko4OVdqq2X9tS7jvi94Y0uh7tGkSqEgJPz4VODEkSCXpRXzP+/0v5tPIFLYmZiu9rPWFi0V9RXy/g+Iv31HToaSanFoIGQSMuW7eJKP2PvCrn82igSL6I6rAlBlVV2X1ZBN6I/AMSeTWSTQ24dRvDuS5Km56GpCxYai+ld41MBOMYY+30HbEwnFR67MP+ylgkmRcbfqLwBj/DZ9QqJanChcm1C+dK5GsJod4fTlLqZs7uWswF/8ApJQBTaak6ZfOgiodJggGgDUbufUMK441B7/N6kJfx2UBhWCRmxjt9YV1u2Ykn0gpO/ZEu7trtbk4nHTdpZN2iusJcBQCfTqNweRRmmDrwFc0pSqX6SoVF1Inm6uofUsoGCt/umq9uW25R3T8SrmMaOFx1j6F0X53nm4JMpqNAQvVfnl+RsG3X+IMFJBklhYHZGpiA1ipF6Tg7qBEeWpMAsApo4B5fj4ckl5UghEHpQ4s569NRFJ847iGfcVjH3RFEmrTx7o2hnzK7lSN2x4puby9Pq6XKXg0mAkuiRyS0HpBztOZCo0bdMBn8ix1vvFCJm/kLBvclaFgLdjk31kWWExz+jF3B/DIIV+YEKxVlmelzcNiTVswKVUktbLa2uBkLVSBphed0x5pQQDFfCyGw73Fr/5cEPFfjll5H/vUxKo7K88WjBMHOH36DtRPsnDtgOHeqPXXJaNnnHrg8R5jKq5k3C82rTBDcmTYbtK6IjS9fqHpUJjTUxX6+nZFsd+P5L2yFDNOUARnO2NoFxCD022F1etvK8Rfq/wkdOv0wJ9ak5X4rvdXjRAqSp3C98OCYQl49jQ2SwUXVp6rsKhYVljPNo+SNzdMW8Ud6mBCV4wFyftDqqPetxBbSfupk86PpDm132GW0lMMS8HTSFyMDbGfs8VjPhOfGVhFjszP31cYkDDdrawwAJxuXIk29xGGvL22BLRDVTf/NPr/fqiVJOyFiKx6hLWAtDwasyXNaqlmMKjSZkItoQ77Z4hYuy0z0x3eK3qD431r1vnospU+rBb31gDkhbN9GiluyGA+v67bDygA4r8s3l1duwkmHyl1VWP5TncdpVK70kk+X8y+8mbX2yMryU96/bxQq1/TAHMEW+bJJqwUyc7kUNft381/QAQckuXf4eq8vyQK5kdsSaNzU3gf41g2ionnh9HphSy92oHvUZ9/Zdm7HJhTbSuBcVans5OH5lTqq3Q5qcGAQ6kcL2pHmdevRRTpDlspH/I2L9oQ5CULOdEHQz3cMQi1QlfUlyjZhNmssZDx/E1IxYS+pqLSijj0YjR0yviINcxRUh9aJDQuKFmycYrIzn4zZFQCZxpKCYyNeX0iP+GpQx2CAKJtwi9U40gZPIPjgLbnYEbVfq8rS6/2OtxmXuU4f12imhdea5JZ3gvZcCrM5qfx3Ab8hEuP0nthPp6qX1zb0LGHdzoECbhby2dCJPp4TR0wpx5RfHasnCHC+PVnjSB5ScRbuuXiRJ8HdkYDmIYSFZci21pMw+0DOWqXj3l7uoj7RjPVv2glUmmotJn/H6iphyVZpoF8W0hb/efnZKBVf9xhBz4uaEeFMbkqsMSHw8+OqYGg6MDVcvWyiUjz+w1y2t+QGNcKweDeAtOiGZZVd8Yq0BJp+49PDSLtdXWF42oAd+aOtncGD9+nPjRXA/DrkR1OCzDXy+nyAxIVdYVwbzNip+BgwtLct49zTTrpGCgMBmkObJr/+B0l3NEAEhllihSwEwFEO6vzttx1BgeWnYvKG0gd0LF1esO4GosWoKTz6BhKu0cgsj0eSqgF82bnFBCK6H4HWJvXPWKSJAY0lnD5lprLJEpxFjaFlKz7zbuZX/uU2EITINmysNmor7Bhxq6U6avUE47sf/Pi28SrS4gGc0knw9JBAXNSuJZqaYMF400qQKGsjGbUlKO4rGXADxLh3SbbYO68LZm2piVe8u+4FYByaPA62Ks9p/RsxwVFgXIvY2clsUZBhYKxz32XFdEZefQTg0QocNahhuacIzoTJsPJqSvh/Perx5pOiQ1JnfqiN9uQW2jT0YrG4hLNA0FU9bHDW1kN/rAKJNURYO++7yGdw3TIvKTJqs9jBkUkOeaGexqSxOFVgmJCWRieZcEUP0siWBCiFt56IyjCmmX92U/3tVPzMOzEZPz+kmYla7LliercLYPC/3kkQUyunsNZrTc3bOvp9gf28ABCsnOCAKbQ5lOOItltRx9S978nswhpMwUljMxYUjCBjciA+OPL3S3LupsvdyaDfgLgrcbwGhxY19InU58J0/yxFeC3UVzRA/CfaPFjUnwVRY8CNWnTQwrFZiGj87snLrOojlVCa3UaFHyNR9V+NvB//wqUD5gJlDrdbbE9jwfdC9KDSwfys8aAUXm1DEdWL3jNZSsiECPTb9L18xU+joskP24F5cIel/3pRVRriIlh40Yl2z95EsROzgXEDSpEz2nJUt5HNtuxcJWhi1kyiuFRhogkJyx81KYlpZfa7fWKrh77SdadYOt2smoRqixlnFZWUq/M4plpxNSkznUNKbrG4sq15UdeWYUJadbXrRNK1aaDEKCdmcPBU1SZSb8OtRMLfHpsOvvnMO+tIBcaM+2IEFDteBel3aZvW4a5CIyNrue7lTQNLFZtYS52Bj63Fsw8Ez3hz8iwgF9T/Y/KmEGrNwK9T3sm6vzwudiNv9FDcVGCKFJ/PBOl2MdEowBommrp6upRL+exqUz0AacAsAU/TzUaBOG8ErZ2I2g+cFuoXAUhmRKufo5htYUH84zSPVjEOkpCzI3GbYZIwMIqtsR5RVTLj0XsQhVgtQAf/VQjAPSFV9MoIDocLcO4HuE6Zrsdax4qpJfDhtWh+Gy0B2NuFQgOb62q2KEtwARJKSiLnGKwie0PAsKyMfbtZfeYE/iSvFyc7P+DKMzPfs+a2CzLHmPk9xoOcwPgRLqD2d0LdFd/foG4t9gxFkXGd/SEWfCs1x+2GGzicgEzleDJKjICNdGk4NYnFZxBJMXJyonAb7dq0v4VxXTNsMKVr/BZ4kTtTS1d0jfCyXjoKGnsyycnzOo88BYyvEciQtsy+U6cxmeOZRa6OQyFb6rDKKiMUhSoQzx2VzLSILM6csaBsJrc3591EST/7YPFg3rdeJnNMcZ54M5MoBTcX372EBg3B7fyazjCj+n2mpGvrI9tho3BFhFq/ABgkfiVywqchbgxbyNOhYYssq6f5ClQE2fXcku9lRDevUIzww+JG3nQ9RicynwF6dosHj4DZDHIfcJTFAUGNROeiaeKyKt6qibixoQDLxZekjDIjdeYzN73PVcCXGTgao0XFTZCFV4wZRtJXDZlQ1SGJO2qnMZ+sFljwRQirdTtbxwnmMu9EeyXetoUttgWu+y9Gyp7lF0Ugwwc8/GBAAP9VRiJmgOw742pp85aeJiPdgd3Kwky8VSlH/Jreb3zPOyIeuwing3XJJkPWCqs3plPrxGjwGUXXYukfthQkDU7RCp1JOT6cvn9jbuTjTxyClrfKeXyuXdmpElZNAuMNqueFq6Qc6s9AfQO/7bdXk2EOPqq/c1+hKjMLJ7iqt1N83UNbybKPmGKyw9XpaCoJKqfcGxR8rPj0LR31s9JSf8ISpkLd0BNGtUzjOw+nb38vOJ6tx/Ww+vJAzhOautO9x9FVjJVXylZAmi/DpK57+ka0jNiIyu5dab5RZqv0CpyJr24k48qnU278ybk5ZtX7ITuTUDL4chvTgF37ynMg3FJLab/mzIjGRHwwjP0CGXLiYRRQEyWY39SaP3958gn/N71y6CsZkJp9tRk63p9NboAH+PMRfMhu26/2yD3V9odqvTHKN5DtKgHMq9JG7JHThja7yBTU6wbS5ANlG0iSZeJcL1UrAo0AgJ7XAe0Z59K9dRlPEu+1f+awP2N1kLEAgKcAl27dfcfi4FFr36gwFoyTv3UMRZXAXMISAGlny9Jhhwip8h35YtD1kSPXVnwfozp/B6jZFvJPNj23hVdvkiljoTdBhVMzTCQsGQbHDljlgy0E/eOqn/gqdEwXMvA6Rr5u29iOVk3yrch9qVfoJbNqce6RLOjUtzKrAqHL4nfIr3yOIduI1hT5D9ko4p5BOptRUne0rmU2NPb32N1NwpR2+X8+LySMXUPDNA0btsqd+pS5PVHP+pbn2+KrBENoAany6FQT9qiA6R4Xdu+t7Tt/k2Mi/is3Jk1kbaWoTq0tEOYaeJVdkG1eicftDBiL51k+rPICJGtgcaIZOqqnCo6AeGztkiqOghHTDoTHQejO3Y761katKESItV7KuE093+k8aXpM9h7gAuSG0UBs+2s64UY13DROhuYphD2toz5GYyQsKi/qPN74JhWC3/4++D199DmfYlw6OnELX4dJEMvTZtU5vzv/yjhGX7A1EDdMnXCLJjH7KIo+RnR7r5rPJnRQXyfHnK25hB7NES7+1ANDrar/8dSYGm6VbNArLnmzMF9BwUDs9HJigoAI2R5iSmONxN7T/pRV8Q1yAxJdnlhIa6xM1zWSOuDsRq7V8fySzgAFfReG3Dc47jWscMIGZWgNXg6hQ1F0SsAEGIZy8ITaa6aMxsI6aen3iU1AB+rhWbcRRmMgjnRZyS/deSCjrG2NOjOXR/SMZgnsdlwqk1+K4I6R8vzMSAN6i0DTUyO8ljPbhdHgWO2aNhbTRdEZmXli+ZNKRVA+Pu6ac+QL6q0C71zSvN78tITrl/Fe2JqoQ/gbhVZVHcDFOnvxHtrweQ2trCF4NABzlC9FJtXzySyd1ATAre3g4YYirzzDohNuAdugZzgtneGkQUO0BQ0wsdEzhICB7dUgHKSoSSqzCAs1IBEZQixg9holLFqyq4eQ2a5WcZ120yEwuZAiVPWkEzGIa79HPXhtUa5WtTmEjwxeOOTRJNbMxiA3L9+iu+3ASW95ZE9kNkL71vXDGjAbcZacWbLW2PD0/3SHhzegbf0/wnVWDFteQsRn7R6+qnFHsLKWGJVU/W4nztynb6mFpbfHsmzi6nPVHAvlzDCUiwwyZM6crdK/APVNEZaMIutEYKMfGwA2uvxhaFuscVF8pkSw99pDJVtw1zJOHAIdyKxLSMpI1KU1HODssQr9b1MoM+ApEiNY1VRBfHVAzYq86J0ns3iaqwOYhP5wv7UQPkmsA3Euk2zkC6iFYkWnn51xdFykgXW38r9UYy/A6KyefQJRbuzbS3CeqUYVHUyvx5hcM6w/VoPuwai3RdQn6UHghLGS7YGvmYmP9faDSvfp8FeO2nkGCf2s1Qm8uQPzJAq3SRqg37kPhftwOhTDTE+S2HwspJTXPpSMJtkXL6uq/kqq9tPkGlUP56cj5CpuLJlTr8eTDmWh4RMgJzat1KCP2SlMd85IiAkCcDHAheWIZ0zQAvxyM23lj+DDY5biuGtwrZcf0DrUoDF+BuvPiN4oPcErnAsgyWhcJhBq9qjcUiUDNaSpw0Z5fszpgvX15ZDK4b4ebRYunp7HuvY+ar3SWlczHxV0JHI4m9q7sU3JDpJbocWZzior2I8dTB7GeIrumbjfZzAUhtgZqjB/uj7XNJl681BgcgVgHqhsr22tfBU9P/NufbihCLkUVdimOsQ4BhQwgaE+ETbqvagOIUIOcSnMHDecNF2jxU51fNz+RTOMPV5MQiRpV1gFVTNmgCZXVbLFU0qaQtN2ZzCpwjWDFUdzQesucVnyGPtsBpGlSmAJ1xgJo0m1CY+djU2wixiBdiaUP6izjA61HMVPBDQ5xC+PWO3aFmb3UtJTtPCEnMh0GhN7/13wb9fbZYAbkfiMkldc1JG6wuy2PmFjpaBaX+s9OlJMmSTLwReCvHa7YleoeAGWr8S2bJ9xVjgCYJ2VIfhr+9GuuoC9RJua8vp+cQio/BrBL8ooNMJML35Uspgc0XzK19HtNmCp+A7Tg8XjpyAjSgeHywO5qM62EEQ2sZy5EegC4QaNAsmuj+8KLa9Lgww38svfpEV5Nkz6EjTOKX5H0HYClq374+tiaILxAymm8TieMweD/df9BPy6f+QkvXfHnJnAmjkGqXMdHmJQLMLGA3PpORwCAEQ0CFHpAdbtn2GdV8+X/dORMPHv8lYxXEo0r4huch78f1Mr/+xLeUsvtTYFz5yVWd0atRr2rBR1XrRQSvFnnLxvkVBhZvxe74zblzzyHH5adKgTD5iiI7BzsqNa+JR4rqfGdu8nzoGAV23VPNlCUT4eFt4rJVQ2QzQIYX3OZ+hVJviuZb4M927FoISs4ZACU2eCX6j4mzmxKOcRKntcB6Ieo65GTIXe+lVF34bJpaeNtns3hX1H7++gayviJCqL14FI/AHGZQmFVJTYIEHThG0bqjCxBfwzM/H1g6ys6bYHIXVfsnqsv0v2ucD6/fTlz/imhzdjapS4FZVzSBKj9Xr4vowxM5bVem6/nGE7MkUTp1F4MM0TYT69M4W34u1QWRz7DJG4o7+ONwzwFFe9zFdVzTroBHI1MyjQBXyZZSER9HsiFzHLAjMmAygSB1I0mjH+fQMXY8nKkGEynOq754wYN5C8dtGLIps45Bl40maUBNIhhGlu4lYC7gouMXHx/9gPWygnh8fSnbWe4idA3wvVKxewsyDnj5RAjanMJEATgRqv8yDGVQzYSxJbUTmnyW80wuEbMN/cufprvD237Ys3njbPzwRQrqzHjFIhTHQnD2hBa8IXD5ppDsnIAwT8ccs/HDqtvZWMKO02zIOJEOTnhG4BE/0VeO5CRsz1DpWBojd4W4QL8hYPmETdi4jEfYyZ8IJekdkM2KviR2aUYDunqiFwGHmxBvZ3NQVCZY4PNr+K+ojpR/em5r/18MtYQRL3UdxyBT5UFfw2J9f6pghv4sX8KTe5+z46dRBc/qp+EvcRb5iBVaVSUx5vjYO6ZkjbWqmJTs/lDt4eJV2Ojlc8L9fh5bonEUVZQLeV/5aRk2fHK0+tT2OCclQxjh8YwmxxEAy5NXO4aEBzaspmCt3IJL9sWVwZYtDfa6Eam1Sf2s6elVDPZ0LU9zCETIG5EzodnG5LM4v/+T8m40x7v+eW22TzpyZOLpay4Asi/3wER2oQGyN/MCWjLTGC8DXk2E4VwS625gHskXxFfeWKTqAC8OIdPvE1Popts0ofoblqjQ3DM79k8xQrbyD4CQuMD43v6wJgdK0879ymC105NBeik/4OSdh0FohnRmtvmc5TBYDK8VMFrqdV4wFLF9kL/IZPF5WVt6YKCAGsvKvIDkm3jPCz+so4loStZeqA6HlGP8Wb2+w6w3UU/vg2WbcxszmuWO5TPfVafghA9vS7N8ocFi7wMpUvSkMcaK/Q6WAsHDZ/iJd4qaD7XKlFaMTZmBj0o4DKuUkOp4ZTj+AVJLuEPmX0NI0d05QA6F2j2oLYXdsYNAxTG0rYXzJe5LYg2Pne2xR1katZe1qCKQvFJu78JK5Aes7L9b295YsKS03APCOQ1IBUBLmyAtQ36udPMm1bxJzsFOaf88UKS0kpgPTtHMPSIWX0wjjwpBoVAU6dN2LElKyrqc6vfEw3okHWZpTQPzCLFDgfmeCeP+k8yur1YLpvSaAQfs1yNqNZzqKACmtvOooWrxlWm4h+ZA+sF9hE3qDRFNQJ8LTrntXVy3nlZ6KyaZss/MApaZE50VZPffJL+T5KyEMHr3LxckcD2ANXvT2BkR11GLhCHfRBsvq1RlsHHzcvKdcC3FblDUkxwvDQtshuY4wR2HtSJCPHF8O5KIzird6OQtRmYRCTXYzS3UPMu5KeeckCI703qo+GhEDFHtt1zc4mNKdCiZ2w3VS21V3mlDe7Rr31SyyTieeNLwybXzrIjQaNZb53iBhlNT3BbMeWnJ1RCIUvLYpDQ9nw7tChjBBndy0pNAJ8KBcu+wJGLt8lqNzzjj5qy1+xL5iElHqE7mQUJew7mkQ3RiaPTJXPINPtkXlt3b5Djg8xceFL/TGt0gZQFrt9+s0AnvqlLNroHoT5FsJWdlooU9bf9tuSpInwh5b1B9RjLfFQTok+UaLWhlpQ513JX24w3RjtJz4BrGaSmd1AVI3AhNjRTdnMNRwsi3hwkS8lzxbS+N+G1w8qKCFFq8QUg8v+ruZt0JxHTtHHIBykB488Vns28zC8KBOsod81iEOJfMUTzPh9O6qkDfEMXEqqE4X/0INhMtIyzOiUXvZ1q71dw9w5sLkUPHhNb4UYcEoQ+mXZo1a5BXHiqiFK/tdCL0XUZHVlV6tSydz6oJd1ThOti8ti7iVLjByR8lMv/oFRrWynwI+fPWjSor+o/ekwFhl440A3KR8+bGBwmQ1qvOt3XqNMNGWf7bYjugjmlCIAYPH3Si/3IhuL67UjAUTDtHvea7dLUbUsD+NgHr41I8N3B6Qs8ImGpZf55448awGLbrCHrQ34hjwDeUyi+xJYhVReHXFpqkboUxyhUkA1tvW/6BfDfZHdtp9x7QR1Xn8sdPM4GA6f38UfDUiwUwKYd+FDp9+ndGMkCJaYbac55zPPnD5YrXfN1SDSsN3YJhGlUf6KWLGUsu3KpegGmBmGTeLxz2CpPtBs4SeQJCzgHBThldr574J9DoVlOrI6B7D4WQQFdxh61bE6seoo4wCaSCeS+SpVcVN7sMYDwDzHul1iuzX41DDH2yOgRppguhjLENqnofywpNmrdn9FovZ6tbIYNsdG5/mH2mQnFN4T9s2UqRXyYq5+ZsD8/ptdWc6Beyuu1w3RGnPQkCMMk2aqmwL0FDauhVs6xo+uN8/u5flPGWzR9MalNkXUOgi6G8yoWPAzv5p5BUB0UZBTIuytj5kw4K4NbpobkLPpJDj8T5wngSYptEf3uIX4cdxlZ50pGyVV3ThulgkI7Q6O8jeiAtU1ninHjJkKnZ3LaUQVPS6q6UPab1XDdd0mmh3npwnQDMOxtvTLUSIvnvJxRniAZMquUlX2JoyZLht29U80urBhvdQaMWfdtW8GkByVms9ICR1umttotmXHDb0KmkVAIISz0RDSgAXr0CoqFDyDrjE+FB/HyLvUFBDy+Iu6sURp40KEZ24kejSHJ7Y8QWCj0KC+OSunq1GJ0BeiXOI9ZHlRAvOaRKg0OdlXvfJ5wSI+wOgUR1gac9ZdV3pGOvQ8vjZCyFxiW/zA8zy4QtrKpYj5DAWulIUmxne0xH2hhDDJ+5TVCLtSpRc6qxzWLEaQv79AKz1U+bqNMGM9hyw4k4VE6oqqS3LA44AB58OqkWNtc/MD/A8cMOU9Wg1Qz/pD7lGScuMctqRfK/WCEog9Y4g7R7dd6uHWoWfVtnZPyyuV70IkPBERM7FcXDUNz5W9vB/Ak7F+rQjlaaAIdGucBFCPHIsZ3uKPQEg2EVrfDVkqgPSudTnuY7AWtEqxLFY6pbnhTVct7FEKnohYHugpMbp01NqIbfyUT5p5ap6TdvO8xaHLFoZnpcCcsFEKVZ6+p0WAWgibcTU5c3aPdBqWWiBIHFZy4tk5fpqFQhxcy1kNSVxLSoqvQhEWv+gmdTr3xRKt1urnIeuSUGjIk4fSn1i1b3pMUWSCbCJ8EIaYXZRte40TbZ/KctSjabJkSq4nftWPa2fsLoXH2c2QDGir3aimr7wdxPTy24yMROtxw6SvT1GdCLsnvQNajSoTYoAsAg9YYlpx6OQ+mVt8e3cXqTgAlhX/HJ1YXgv6xOLNkfEavv1b/b02D70Yan/7ifvrCNnQX/pDUZR0uI2WLJ60h83JYDY+z4eQFdVyB9aERjyvkR9cl/j4zKKtziuBoM194af8EcMB9ewLMGO3I32uhqr9lDTICPhRPyEmBB/7fzFtYJqRLsbOySk4Fkxl+EQWmj+9xSJCeO7ISY06c+YQuTenWOh0qh1iyZDkJJVVQUo6gLyY+WX88HxGX6BX8rI90pfHgbuYrOT3ZbxjbJsjzlkPWnJNuDKTqD032bpKVi5lDAW90S8fY89/j7gCdDUxQgmRQOqyLxQlmioGg7pSBDFSX4ulnVIsJNEH1r4Wob8YFDu8LTtgsZ0EdL17bBjVpirrj6wKu/KoSjCKo+zUlLY+zKUaGqbh1V82VPGDeLHiRiU+oDAnqq1o31a3ASP9T5jN2mvef/WZPCnWD04dcyPbzxA9QbgDNev+ivMsx7kNPsytJXbbstBbcuUFXPhoFb5mcbnBUStziD83cISjvgPUxIybbq5S3fYtsb1uK3amKZZCXIT1why3xnWvm5T3Bb9c1o35d+D3n2U9vQSXdD71aVF+Zcf2l3sHaQ/zBoVDmf0ahmmjs3HZboHkcSBtGtobHhwpjxX1PH/x++zgYuZQNYvySPDtEzqXKASGwo5w5uVtjuxDfmB9CL25vaSNOxKS++KcqKjI/Rp/XWHxulB4m95Bov4Lart4pPpKF0stPcFx36sqChbQj2SHDN+bJuRZN2mZxrnURK7TRfz+DWD/m6PXNYToRUZ7WUeymr8yQaLX0hwlOwRB3uMUPcZBQgPK1ZL3HqNTQQW9sTGINJy1PM8J79Oaejy3Njvlq81ALS4A9vMuo+j55MPU3dRVCauKn/rGVCLiIM1kkXRxxcCOdEWXcSUdKReR9ruEusCslT7yjfU8whG2sU1UQH9A93tIvFjqxKgEguxXHyfbi1js7gY7kpyEwFRBZo/kDUXvgOV2r29Fenku/gKq9mqCZ52vNqfKQoJH0Ale3rh7Et6LIyDf0bGSRtjoiYWE7AMFTrJNqF//hmC3+blbxPZOBUYhu4jEGYSXwHqoJzoh07fzARgfhq0JZw5elMDdqh1eRSWJORseJfg04FNCObnUqcR2LbtJ8m1nwKcrV51awLpAufmOrYyFYQZpSDK/klTmHwzokW331qskftvsqE7zlMqdZyUVNrxhtjmMyGFHbndzLUJnfhJ9rFnYI/3uAb+t3iZbtrtwqJ+GDwBe5CKJsdM77ltwZRzwG5zSTD3+WYSX2CGzihgQQtGBWQtgED4k5Da1219bM50LGRFbEcgnKoGQbrQ1UEbWfboJ/RzrhDd7VD9rayIHqTi4TvylFignvmjmGEVxDn0KIiZ4AWGalQ2tW/yBeCJSubodxAoUrpnrUVR+ChuF8nvE1WxH/sHqt4rlMSaOVe78LGNkWsb7Qfb8tZUcLnOfpcAq/hjj79iAp6BXCqMPFL451S02+IVSzIcplaMH5WTAgd88w63qsZwU97JbqmHKxqEidalhZvx6mPw8dg6UCknmWvoCbJ89wsoS76i+ViqJm8qYNQznZ8X5mRsDel5SRVQAVAZaFKU+2T00oPU5jfg1K9VfNvJQKSJdH8mIq8ZNbU5gsHq1ZFMkC/IFyPuG4WFNtvF0jFOylg7r0nBT5udkrM9st8jF4zDIQOQqKG1PgsPvbabDaye4/6S3Enbe1kvJR3zOlBPpo4z52bEm3ebojuPtRkgFagKMRDFuRYGm1Bsd6CkDCJe/FsqNGa3if2QOR3gFv6d2nVfkhbGlRdP2/n3YnlSoW1v7bKyc2qDWGqAeXNPT1dFRnK3VJmnqdPIiQZyuSbVii81T62omCEdpkNhu4UJNeYpZ93OWC4P0pIh9oI6lam7/WvGwtL4LtzHkOmRn4gzOUmLM7uwqzkM7fSxpE2urkcHcajAR8caYJ8vMjAr3X4euTkrKKu+/dECBCBFkFunDq54dhR9b3V5FUfW8n+uWT5/t4CsF7FPJEiDPA1agyoWHFS8UL64tlYMS79cuwzrnm7l6hG1DtV29G5nYu1DNjgoBlEiVjRE/zdhsTY/S1SIshNn99mA0iLuV2PmZ7Aj22j0sqhpyUF98OWfo060cf4/2XLhRuC6BNYppl+OIOzi1MG5VE/kYIfyRnF+yHl72bAZjlRg6ITkPFPgIPdtS8Vl3VX67py6aXoIC/RNJUlpEqnIDkGN49+p8JgQd1vhHpqmP4rc08Pcq5GNJ8vbmVc0T5V1pH3RlOUEslpbZZlJeg73Xj2sUlOBk/UbcBYdTh+h6p+CpnhPxSevYCp39EGV3ScU88CPhoAcscEejqbiW5m+qm3Fi4DlF8B608o/bUqPCvRSXvm18ik71YadsS9DsFgfKwdwQfPVW6/QuOEONj0BbHsvSAIWt4E7fTsonSOxb1cCcJN/zNF+/xJFlq+HUMjYDXw8mvdm4RozSMbUM2g6KZCner2tPE0sLWWPkgDU3zMJKyG1BhtZg8EHANGmQdP9yr0rsDeows79AbQ+bykw5dOPWnmSAhv7wH4K1OouRfv/xdcgVe25iwSzXZlWLIS5yqMiqkT4tyuhn2qqOHtxyd/ZKmNO36I01YsEYgs8+2NhhDUcFjG4NbfbsKjQouaUeci7WRVxSYjsM4Lmlpph+j+ug/EzeABeml3UGF2cBs7spvyOMZ+5FrMA0fzg6uXUcur5SsNT4LiM/QLEY+24Va0GWOA0UfzqFF67I4DpxVxJuzi6x3oAhf40SQbShSMxre1tue4l3z5xBxJSaiWPQ8nJQqahA6Tcr83CEy+Gynbi33vx9fLuzLCSN8MwucPDCV2VoyyqN/TWo83QkHmhHU2YfAE8FrRot4KXF187+ryC8+zmRXm3THmffgj6jjIKSqjp3Bq07RWe1rhRLjJFS0LZ94WQC3DYwFtOokyGW6XfYRQ3UHBmlZc2Jkv/BVYk3TacE+ZOG+E8JgcIqGmpuTswu3ofQgIqAmOPbubyH+TeyP5R6U2LsoxhA67rkYvGs86Oji1ynqeOXwXSBXznN4NQ6u8k3Zkh9Bk/oAtVpm+E5tWGoyLFgti9MAin3tI56s9SwbTzKoYAjzC0EszFUdiNN7Bfq9yiGpYGVoK9eV3FAAnVxWn9b0GQiFjtbSTRIxr6ZpbmyWK4eoKLgkY4VVbQrp1N9KdF4oZ8aEj7Xc9bmqQ1TDpnet3QeM0Bk179U6cuwVMXrWmqvYNtMHJaK8Vry3XlrVFSVj80pDVFrzXotLLTvFHYNwJ7kXs24Bw9rHm1W4E4UNCuaweaLWPUEyYBNtgFAke5T3nrpD+LffA2j99+qS6GKaAsrN3AeHo+a9fHwxZWeS4aQMwaPgbQs+uEHs3SfYv54x02jKedf/4Toi47nK1HkzqniDDILcDoVTZElChNQBJwCxIL0upvbj6PFpxRcdJFzOEf3gSA2s4Rw28Rfuhf3V/VCvuYGuP23GBimv05MsDWrf+O+YY2SfDPAx0fkZHFUumQk8FIK7bfiz4h8hsQ+JFhnyGtNiRWKqxPf1+vP7LACrtIRyn6uS2/wD3gZtPBbhaLY0QlaOEhMOOtTsZjZa/RixEnw1qJ2E1Ld+aHj2ZC32NGTkqWnc9xoMnahLqjmd0hjFuruZsCv5ZqZwr7lygf9M2WnR1b5azLdkklfUPK7MTaEzBq4VPM2c69kGMx/2N8bqZLXcAR8K4C9Wg/RXWvx3EBY+wFZClwKGZicpbPFC7fTuK7oIePoYagEHKrjEaVeMWll5XsfC9UBbXd6+NmsE6Wqi7sPaXd2ZOByh8q/iIVzPM3C0tyFJhf4XwWyEpLIdyto2aFxSPE8TjTo+lKt3o6cDggiDZxGJoS6BM6nMZv3lRZkA52X2nVwIyrAYKpvV/5Hl5D9IlHgMq669INsHtL2QLqOBfDj89sc7wpCff0B/Q7MqR67YelDj4MCVJWBQ1wAuFjL4xHkxfVNOpbvQS5Y1asIiKYLK+zTGapJmfbOPO8da9tu3lB/4lWSW0QYGN05V3hYqpiVt7qFt4L5rk/uSBQQmOS9FaTl5KPNhwZjzoTMX9w/LuR+LpCWPi7tqTfYuCz0FeC/QEoFsNNf6GOcxrC4okDAbtjugFpLSeeYa7j4JObtM2YTQ3TbGi8Ras2NcjL+RIW0NC/Kkvf5dAmsqcAee3CsWjMbvgjhKGj1x4T6IGU23m3LcTyMDAI9A5KdSvElW2jzrwoHjY57cef/hgijEcbMLdsmcoZm05BLBD438Tkf6Gim9nMYYifBBkDTBO3rvNgW/df27ZQ3wAfRDiWFjrmlVTivGm+m9zN9gaGksj5NmXvweCR7E9X/O3Zw2dLkR9V9xUKGciphIKZTOttUb3kJik8Ud1wuAMZEcLulzspNCQQFyjCgG5uG1RKpPFJX1lmzg8Ax/eezzTTGtH3R/2EWyAYXU0+gOQNm9erK2s3I6Qa0D1EfsMOv541o2njN0tMG0VvOBZN//vwTGIUAKmQOXseqGQ5txE+b2xaw38U5siKL/WnDwIkSfxgvwwbbpLrBLn4HshiosVCuvls+FEss0jPfMWOkn/mciZMzYQ23KV6RVi3o0/+yCmmHQR5/QYt8Vvot+i4B3vkHkJU29BbG4ZPyfBhleNmveHEmg+bVAGoAb06U/3yExDEzeFLd/41DEq/vvhBl2Jq4WKCrDO67fJZ2EJSPxODHxWhhFeRB1oNFMs1sFw03M/Pv5h/rDE7/+fAjNxPwxYX9qAg4TmYnk+EbXnQKP19SwYH8rn9BzVtAbuRJ9AZIoOPX5gZ2jglSe+VkK+h+rCJdj81uCOu8OV3fX4nSfyyIzSBFHF9O5DQf7gPJ03wUjxmKys4DqYIHO/mbdNCn3twPff6p1xkeNRz5YbnvWbhhjtzuWtqifhUsOujG69PFiEtwEZ7xB7aMLQxXQYgc/IAtvTbErRzBQEK21vLnGPVg/DUnoJSbuKHJqBoLR1SBsaM6PmC5wjVH/35Asw3Rjgc+YPvgSb+eMDnoUZEYyznthhaZ2JG4zY3RH+8f3S6goYPdji6mwy4Q8xc0y64Es21ig35bfel5eiIhCatSJDUaFGWllhN3q0swQJKb6K0nCoTBzJf45oFHSs1pv67qkkqUvc6yPaWLXS3CI5PjqHnHhGfTca453JX+tssApz7XWydYfTuZQZvF4Vn7f5ZSA4JOIlU/TvB4MhGwmyAgAgYCQarY8PEpatJ7XFOfFxiAYiFbrQDvW1KeEgKPNPlbApFGaxWOdYxV231eOp3sw+YlNXd7ajt4Mz+G5Huir3IJH4ODP5kUiDm64pKIRvpIIzoaTzVUCp986bkr0R/dwZ3qI0xXTXGokzTwa63atWVR5ytTjR4yLNCCfdirMjZJ6BUlNtVy6xAh2vPq2o9ZxxiIHgzZ3g/qdhDcF+blSsJTDBXP4p0KWt2janrUfIb4rBydDzOTJ5uqFLhWvfgU2IBUrtJcmEWNv7rZ9D3d55BFQwO8ktAuQnAEr2Xr1N7QzXcD2YlV1Jzxe6TadKRGPG1JodTVZ0eTubGa+AwVJWFrvx4fGOLrLoDb8NtHs0Qqt3073qg8EyYQwaRA7Lmp0bAeM0MjHl5gYcrpl0OtB7+qepNGaSxKJ04v0xTZe2m20nixTvyPNLPaESwQWls9wqo6eh9DjRCUM9EVIpKJAR6ecJLPekqrXlNj8tq2KtTcFT2E0fILbhSjOMYAGxx5pCF0C+oYmKONVTn/UVUs0vH/byWP6Zf+gZOqNEKWhq6+rqJJeV4g19Ht/dATnYLIMY2f4dJHybMN0RX67yowrO+Zwnoe0Am/4+SF/MIXD3/26sxdeO7FKLxe9uJORBiHmCHdH1OM6QyHmnW9hZKo39LSPskTt6xJN1Kvm1acLNMxSN9G7vQjO0xSJVbnNZ1aDbWIvRKwyVx1JLtNshJSwxbtld7t4+6h/TOjd7QtUSVnu+YuXiiyiwuIYxoZnJz6j8m5VL0UZI0nZjiRUExBNiYAMx8N7wse3mzyzpXkat6EguZRzAL7eJSF657lBQsJT6vUV/TXh18Mmeci15hxvuLuDpYPar4ktAPpMMd17c8wiIUDdvXqyM4JsYwbFq6+FHBDKyJNESbu2i7cbhM+v35GD0mmR2jqqXP9y/Bdl1UM133rsFZx3+0n9TweLsOfy4DeVj8f54iHwI9/cg1KbGP86rq4kq5EZq3dE9RJZrH7EyOIGH5K9efndXUGfjITUHgcskcOWTWMWkfrQRTiIfdgpdbUxNjMzTvvFM0SQzhX8W0CnoqdEOJTjnACx9D7FmVqao1Z/bT4voTIsMQAA2hY0aAP8+cetffRs1GiFwknOdrjCw2JU6Cc5JWaBQbs+MinAkmz0R3lW8cw06lWfV0nwdrBZMQcDqRxwEtTQYS5g3yoGNRTKXRYCOeoG9f+rtB5qEMWekXMIlxJnnrHePtsldglSAs8He89EGV7vTRSNBB5BzAVdlLqg5LoWRbu3Z1K4sC39iopsTe0n8KogEvzhc5Ftix9edNRpWjlFY2RdznQcLnpVvsmJGVKUyo7ayalZXloyqJid0zKhMZWEgaz8AQRvsuM/5MnZlFRm7l9RJ5IFVnzfwJei+N0WfVeTzPQKUbl9EkNfkh/m+6rB7+Xli+JcSvMXOmNIaef3wSPDyVIEEQkelA8rIG7BD7s59/8gOKzb/crwK0wF5xPIkz7zldvtHgBIDQra5eGQJ9K0+/6qtnmZVKcY1yZonndLFVARR2AoH+vYMW7ZXCTc7C2D4Ku0vyulByNkLTonYVVbYACLjbNS9CS7YTvmdn3U+Ad3ll4GVJ/zTlxvIEo5NRwCHoCiiy14+/xMfQ4oUFWmtTr7RJLkiDYXZjiNfIgAZZ52doR7/nBQzW8J5Tj+g4BM+3ClvjuvT2IViVCZb5XeFeDs+H+6ANlpGf77oi/t/1fp7JvY8p+YzqhIXtbu9SaWx5JP4IkleM/kagp2JLq139pB9a6pj6D766iGhJhBTKWMH477O6+jQ3ww3XrMLFRPwesqmG0C03XmRrguu5xFaOhWR0ONjMTAG5mo437MuWlDms52bkP36CaJGP6hKKxxG/O9Lu2BhY8VMAYrrmRjTgMB0uBJ5AOCHbpsmJyqNW6HgAIW2sFJHe3WtDC2ehdO0+0ORq84PxPeeASiBLZxCDkA7Fz2BSKhVWQMAUaxfG3TOsr2lYWCQ2HuXWw1Zuc0MnnJBv6wSI9g0HB+3FxdEaQcwg2wdMWhwwiouhm8frO+4mdHIIcgmMLeu8gps6nr2LBp8RdY0pL5JWsbtSAESdic8Mbr1s5WBBm0ImOxv/VD1CPwlS+qfYYi0aGGg25HTXQGuEK7MplSeXVZpBR5QuN2NP2Yrxh5JTJx78f6a08H8iqmn+cS2EGkllxUduxEufQjmalWPX5wRrXZgqYi7tKom5gXAuHFfx2eE7tm095Yy1URh76jBmJbPXRY4BU46yXa9hh1pUXzQqZzNBNK7pFOt/aapxPihSmHRgudOa6swkEt2cjkJn5BfoOScUexaAJ++vn67KOBsHWwYI/+2jkqoLzUX8l1rdgQHtqCmf4WM6OnNqz0msFMbtjNxaaWCHTiFY0JmPcCpGceE30ODgO9+fsOhU7LwOmqdlCyr4AzsfB1pzyHiENW0CF7nQ/NXsolG0JBXrr/Fi0ALQB/bIh8Jusocn4jTkRMe5wocX902MFAgGvFWLQt6bh5gtQ0K9aOeqtQWdixG2e5tlM24o/lP5FdlWzt1P56HARYA0sVyeR0RWYPyBRvI+6qNAlTQZItTuonlIaeqjShTK0dksXhnNNeWKpv/W8V2b/bgRJRpexN+uPhNHMhbvfvKCWOspf7m8NOWGR6fNnjPrPJDjkK+pwxln3eLlNhMD5/8YlQQQwsbUq7gYLrNXL7yQ6aWChXL3030mnWnifFx+G3nZvK+uir+oKD64LeWb4FAlb7pnlMbSzrYkZRExAfk8Uq9x0G/0CMI69eBZ1K5+1T6la4PZuJEG5tbskLWzGmo5DJxC7KuRBG3RIj2MX1P3t2ESmAtNHiVOfu4DzzAT7ZstrH+bDd47vAYHYp+H5s3RK3wBmOZkZ4N/lcS5uMU0T193GMRPdvOkst7G5Ad4aC9D6FebIC2I5aFYj+S9kNAAx5burOFmDNqrmw0SNFu2rv5TJzRH9LZK5Dd2ro1kQG8Z+1TILSBojd79StyYjVRb+mxxcpo9/JC4X7IkovKZtXQodqYmmIWD2mrZ/hvlOPwI14up3ptwbXURiCa/+O7Abo4ZNk3zqYd/Y8GLIDSy2tjiSXWheccUm1bSTycbF4psk2SYw9wDbLtBnENZDNfpB/quEtfTQx2aityzIygQ32LAZh/mX5Klzr+V7jK98/c8Jzb/+XYS35lsEqiisf6s7CcGJVhgJrUyT9o3nCDz/piUthrKZPLY2issCn9Yp83pzYynJjM+Ni8jihayWgKHFLDWddGPx1H65Gn1X30z4JeOzFprvc6xJTdJ2h2oBJxlDFVEwIRGPWZLhnSDKyn+gPQHLqk9PSjVtMjzjtKjBorX1GSZa0glDSjga2wue4XmVY9qlXszl06SFlyFT+gm6FWwtAMjamQk/VSQDOowOyGSaXpQM7hWEpZsgsYATJFfxcJib+oQwVeYr5nWLRNaMCXIP7cDzjeegvLx424npS1+ICWucA1p8yUFchn953t/CHHDVUu0GlzQeWpAXgtIfHc4HMQGI9hngvLIpMD4jFegF0KXSWVdRYARB7dshqRCNXqe/5Zf4GRAEB3FBA2RCv8ol1f7Xi84FuTgmSMOvcUMLatBjFtUyqU88LCwGz4rQ2G2ZC6ICYid0p+mOEpsSrcQlqw2FwkEfmuZZvPzGJ9BtMsImiS1hOcn4Gz0NHzsifeXN8oYBVF2SxZ+EaDcKd+QyHF7+LnjTAkQqJTQCrSPKBKruxSOTjJUa0cZe+cjANFfAbP8CVw3RPmyuPV9KRdjTydrWIwUvZxXpomDrDXesdlUl28xyWWp9fhzJnwchC7r18kNhNTZo7R7rh2ng1z+qKmjI7pTX6m0kgz/jSQA19JSQ4u0QdhFefyYwMRwV/aWLowcgezNqwtzl60FVVqC6VVJ2ColaUcL9Tf8cetfduKGY+wBVEEdeD/oh1afJgEW1nD4Wz5jreHji8vjvbvVehR9xexIPX3ALZIJdpc5ciykSGWky9GqC2cCjio6Ua1OywGQHsYxlkMep2+SzcTX9tlGb6x8rGBkWrZ3dx18c021wbsfVOS72N+OKTB/BwQ3XMSBslRPQrsG6hqBsLI+d5Wnv0QjFxub6C27gAXSE6c/pG4cs2t36cslfxDYZtYln+da8K/S6qV3C+vJYVbgkD22OpfJdI/NOJjjJ++S765DRUwHuZxsPcStqxHunAUt3kM5OPutvTdliF8ArkhsSMEGy6wYQ9YogQc38ggDEIK9GY+u7rjQVqOdAxxcyMY1satqGs2BI/1s9v778qHfqs6NQJhV25+337AZZNHQiGkkbgk9deK+jNfdEWt31IN9XHYHnN+OXkzHfmPrzoNpC7rOXyqXL42EtYemTrrgLZ8rT7z5E0nduuTdsBXBjmfzIFAIlp8UIco7lb0BshA2jB+vkNB2TRXjsVlM2kjLi+YHequ2TutezB8znptgQdXvdPp+dVsi9qz9MtreyAntGvKoGoiRxWXL/s2tZBJLFD1aRLZajk7+NtYoCKzeuSXg7OBjMzbrd2qgchttO9MEuk1VfUK5uVsY9vAEuC1xHj2mekKH9MMZQj7qsiXWAAw2VuwN5pJ7IB2YyTANV86SrTgXQO7XluFZ15WXJG1hQA+wH6G+0bwxUKwHxfY2HoMkFp4Nhugajntua7gINz0S9gtOvx8/IgIknG/Oru/pAFBxMTOKc5n9SxSIMFa9CMxD/W+iatvSTdZ2yWNIA9hwhcUpx1ELRtmjdltm3j8Dec5MOimHRdjxssToAYWbywdQ9bXMmKhnELZlMv/epwPh+LLeZ41pyXOJcKiPVw0oZlcga6EXHLnxssT+RpcCvPNliaGodLbMIun+9Xvs7e6vHUppPZk88K6DPJj/4mubTfqZ+Ng8c57b6EAvZMFYcVHwvtPwQRJVeunx1QVlvZ/kQiWMMarSxcA6sj3vYcamtSuQ1dlsdwWBHwtDRZcKZA9w+1PUg4NIMKBcW37b969rGLVecj+wcV182+nvB6xNvxh2nkzdXmF9fqITtDV7WYg14qvsCkOS1ypgxE+W95xt32CxxKGGe2ypKylqmce8TkjUOXkpJGColfv/4Brr/567BjaBuYJ3QIRbDFCDV5t9plR7aNt19dK1rEKr7OOeZv9X8+7PNiEIp74qJ+6aJnG1WBFyxnA045PwQwrwx8TcQIwGlE77csWLk2OLnf6JmfQ28vv7GwPLLbbFboY0lPkIc9/zuenhqbB7IhEatmW98qlaApSqutD0nD4Pl0i646f56iiDvJ2fWmKOe9FfH7mxtZUdphregkXwxlTTEew01+jK9F/ncBEFhV40S4CGv3Yf/ziBVk6BVYqzwKFDdqTDIdpUHrCqOtDSNAL9pLCGp1Vm+8xYOkwQ1/3/DaniwFy2NgFhAkbcvmHxpm3e3epMNjyTLY/oKjgnAY1Bj5OeS7DBpmDHHkMdteZZvXzEPzS1TAYO7NjKRXk/HR8wUwYC7mLC0ws5QrLHs8qik3lAEaJbSQtwOTvHxECYB+F8PilB+0Yz06pm8/NMCNQ/ki0HAnJCU5ifBEmSZw99nRznZptr+MWhRimOKCa/2FqQY45HSxiTQDt80bazyLDBvK4ZsMVWa8iZKNIFJIMVWj7h5v5fNN8+Ftm0aN/trZHGBxgv/5Pbd2nT23o4hgnj9kgm4eCKSdfQB7YTL21Uxo/agNfQaocpXpyQwirHmCPJwRI9MX7Cv7+U/3Tid7IdGiK4EOzPUOnsYYtU7/iX/zM9WK75i9QZO0nGYAeiCvr5lTGtLXpnYaIABXZHc1SVqmeRELwVih0LWRx901b3XB0hcCLKDWg9EYM+kdBUtb5XExWwbN6OBdcKTpt6eex8ussGY9Ov+/8NI1dt6D6i4jIgWWMrQArQic+JInqI2Tf8Laq1yqDjdLZYJLYHJRE91o3OssstO+Qy3vrmmpILMUn5zrXZWFBuyrF1P2tQvTimsbUcMCKRNsByNco5Y2YuTxayW5JrMUhhZjyAON7ApBxbXsJcdRpZ0luiTpG/brbdPQn4gjUhSPF5EH4ONod1VxVOXwYgIjB458MmJVU7hTCyzzm8tfvCO6RBFNOrAbJUYA2p8u13w4WRyyuQVU6Viw6byyFS3nUc2n2ynzWHkc5X4YvXK8v76yNIHE5Pg6IynD2BvUj/9Vu1GNgQhPHpd8GDy2mhi8+kQhzOZalDOkvCI4+NqNI9Fl1pQtOz51dGppm/P/r+v+8GZo9vXaAYdMqERmz78NCrtDksokYO6J7bB8Z/zWa8kEo+8Hvbf4femVRSZWC2d4zA8qeLFKdPmHVBxHlumnkFv/7qBhiXwy17QiFS8rKxBgJ5swrs1asefbprFo2DwQ+O8UliY4BPJXTHxI2X9XTj0PsT+JtC6Eh4K0bBFFs+EeIMrctSOWLQaNSb+F6D+M7J09VlcJQFI6ae5gMHL1K5htz2bjgNWCZglZxUSk6AFOQHJ1QnD8plCJxvhXLUlfNKjtPd2Vfy7JEmfTBtvDVRhZXdxJ6cppPxM6YFfsh3ei+Ns0HhV/BFoCe923clzNr7aKB4vKvfTYMjeiO/UxZyyTkQNhSHU4q6FUMlMlsvnGveFMphG/xnwUlnF/UJCDyDe1FyDTYfxhRErOYDSBfzmPIGCRlgHXBmoWqOew1GLQyLDST8uKx4xJHmzdVhy90v78YBiVdMeFLG0zJAIqeG2ll5Ii1GeTXmYtDt8Qm/M0Y8Y1tdWvvAGE9+SR88YtSWf/x92gOnjMI9t2XXpucwlbOP3qxOi3va/eBJy069qWK1AktDx/62vFOcoohe3sP8k8ZQiTH3ealG8FJH3x/r3gnY1XIsgMP3/56Rd/amIvwsH8aPYS8kFZaQxKA0ilOjV5eOjywosZDlJ5lDpw8AqjxDcnCQ8fc5fozkbSWQjY3ejUdInVxtMNEExbuS+Ok8EJQJQ76zmdhlp2bYWr19ap/9luqeRQNOUGjJAyQ//ofoxxmk341uGuGM2VEBRdXYRHRs86Rojn8MByFKu2T7L8K9cNXgU1/7rpcVsuONEFTk0eK56DxVVqKalqST/4IjEizGBM27EAdN3vuhnVjoYWZYq1nkcUEraQRG+vgbluxxEBFxPUD9H9fJDM5JIsPG5sWwDHUwCBLb+umX1qqMpFjvJDnsuVFI0cKbDVNlAtAf8RWQsR2vZmAyNNPAwWPUUIBWXp/FLWApAyjk8U7OH3IIwHuACPjpLwpQa0UUf802ZwsZBkh9EbUBVXt1XUFr7T4Ftko9MF8jrsLgcA2XtBYbGw6A/5cxFXTSuqupInYyHHM53f2Dz4g1F9nkMI8MYhmqQQNizp5jcWgCEn8Su7meDekIX1XBkKqW8bqGdP8iE4QNrxrRBZCASQ8Z/LTTp5v+P+kJrFdu0eRNzKpvvB2iozU/GFtFLXmS9bZh4TrUSqoABA7KEsd7O5nc4TFj8mtne/5CYb4K7pvw59g/hKDwdSKgJP4XXOERruSO/gIG0dlz8sQ0GTRYLT+pXwkQFaZdIBos2b+nmtUesyWG0NOlTF4/oZCaW0LcODGnHFg2oUwTUnkQ3a6IBOuX1OaidUtlSfp0C0qHpTItZy8yT4HkruNh5hr+Oo199SRKmwgCjMTDLFoaJmZ6MHAmYKSuYkNMYIDK6LhUcwmurb1n3vIWv2YVUw2gFbFXXZ1IuNdP/REJjVfRpGbxu3lWBYPwoCXkD5QqKddp95eD4nqmn9DMVpvsUTtfizJxV2wMaaNBYOcVlG50QgIMh7cXmiakSvCPwb5RLM3quauArjvaeyrrnnYK1R7/YpXW9Z0T2rDIuTmgKV7A5xeD2XkHUkoGnyqKFTeMGpwrLNGKx/Pwmj7hJm7ffnDfQD5CuA5zCT7MzlXoxJeTLPx7eEyjq2Udo4eTNBA9byCL06Efd1BMO1VADqWkcFquNQQvb9iLIfTWm2ZAUjGuLGe2Tn3wmsO7vhzkXOKnaxbJEu9xAt5eJhiLDE+ZcmIqEguMZ7jGTbYGHVM0XxS5yfracAYVM3hXWHAMR2DooxcOnr2iwyej6UPXswW/+Vm88Ff64A3EANjXm+j7LYTpuct0hoDMu3pVeZUPIgrCbSUsKgB5l68LRVzIf81+yBkcGpFj9J0rMLN8ZHZB+YR1FZn17y8U5fD4ISdQkdHQCNxdQ8FmdRs4A6v3A4EOn4Mnwams74+bVn9hLCWenRnzdabJJaI8H/Z5C7tUiOknVKPUJEczBmrh9RumAadXCd1uteH3UwEIeaSDR4APq3uBWDIGV6wYd3D98YbKn9dqpi0IY9FNcIKZP5CgKXyP8ytlMtuyQsJkIhKG6eWnldA4/291UfAjGb4kAte7UVh8xN7sQVULDvFy6y1YgOXw83P7VSdHJ0orUOxDfbtK2HTzfnYc3bKE5C/Lnw4FfdCx3DAX0uvOjsXurdvmvEs1h8dECzjHqPB2CNcy79jshwW0LNP+f6SqDwnB73xVmjlDXKK/Nr73hH5W6755oKPmZVaAg//ylnO5rzNg5LTrDp0Z3+9zCFOs+ndSeylpVr/9w2JuLuB6G0CqEDS/0+zc/nxrorAJIA1j1CdO8ZQwOXC4XoIDWYWTfoqk/FeY3b/Iii665/zQdKXDKg7mGWaihvFgXccR17/cnyVzSGL1U9RWXG2TgqaJfgZZFZJHgZltbCbbCbPZAHLjcZI8B9+EEuUF5cGvF9Z99FMVNk+NqqMlDxFjtFgh7jVDgq/ZLgjDrjBASqz77D/WtpLb3NrCChkO61tMb9uv4lkYn8o2eio48iVcjR3pVHiT5FFtINIHz2R5iPLi57pN9aKV9a+MfeUQJTCZEWXoBRsgjvDfW8MlxVoczyMMP/iwuyiY/zvUnz7pwh8ZFfjeRK9zResnmUhSvGpy5W/08SVFNUxWJdLlaZLcCnEDlHIlw/ghKIMgK76jYRYZDlT7LfTtH15xHoHYKjsTyvTEunEuIJ/JtqnqHAnaS/RAl6B5j/eyhPupPmCbIuHyPYkBcjQwuuAZ/gk4i6t+gfmTvsP2JGaKlay1aDvvUeoakGWFQkhhE3/52o0VOU3jB/Aob8TFTsANAwEMVbodQbrcSHeyHvVZCIkJSABFTj/Jkzsun3HfrpjsMtyTKL4DbNdHFqjxGzqV4cWrr+Zx7BwIPoB+k9rH/cRogGXJKs0ifpRnSTSVT1S54cDpnoi+N1Qdeepu/CdjGllbvvTBfPjDCqkCQUhOV1n1lw+MJoKDkRvRJH0pLmae+uOkd+W6lvxuD0cb2NRz/kpzYNdZ7/aNDnRG01N5Sl/FjJcL9yOok4xlE/tmCI1mqyxZ1Qgp4DZsgITBP0pXaHP42vVjfTt6/00ulKPLM1bKD4TQZH6xBuYD6tY01m4/VlBib9Y+K8LsyuDb7raGDc2FCf9WNdu2GQO7h3vHRGAv+ADTZyAkVaUKzlVXaANyQey99WM1X+/BHfZU2NM5C2dZE3F7vtas3OBZjWVVur/N4N8pkaUHqW/vq/DIRGW1jm/lrFK8igWhOD/JOA9FzQnqN7PqAD4YkKSqCF1IZUZkwPk6QeQ//fDnnlRZRIjIe8mOlFjL1tJpdSHMZOZlYEGPu13daCOmArIxmNUPGcrPHulYZwXNtg1PZdBEKUO9fiHBxvkCXTX2tU/wrcyy6jxtGon36KgBC/+yO9if2RXUCkdRVDEtiifJ1AprwocPABM4sytwfoVQHejJNAyiOLKQgQOe5folT8K/3a0tU3LoGsd7skdSeq2nmXc/t/Z26f+vc7CE8gU46Iv5e4UPomRJ3Xe4kDTJTeYzqv92yuUECwUtkT0J06rj4e9y28j2qKhlyjxpKp4hnLtQoro7XvI8eZ3woH0mJzgq1O/O2nDuVT6YQbRen2JiLvdSw1CuNNrov+0paa1lrvHX/HF7wa/EMYbcluOXiT0nY7jPOHNeegZSdMAywlLYlzVJ7vGAGbM04nMf1rEHzp24gAgGR08ftGn3VnkVKqDjYzyX1v1QeWJKHrSJapP8xEMsZlLfu2QKlVdFTrMfPEBOXdQ0PzTlH9lRU3LBpzS6Xuxv1ypjqeVWKCc/Z4tqQ6gU3kVS+yUG5QT+RgZ0hUtZjEP4flW+Ludu+AKBA5l9C9QsYDc4l9f/qZQ5Bkkm6uPsbS6QmY70PHcg7+Zf31E2Kwr76An1dYQ5R3c0NiWKy24Pr05/qSaKnfEJy7wChbDzb1gMNhJJpJNiRjxfGAHWnVmcdWw2aecevPdLot5Hfrdx4u7m/8ungr8p40YKbnl72Pil3g+o5WRAXN6ZG/+Ujbo0z/miqke/fRdiySKpsnRjIuWCMwCYQDr/N8PSFBfaiqGndfJMLf1Nlb0lOF8svtzVvdmY+7MXCAmFhogf00ZtU2NK0uSAocQmKpcb9FiNYvFR732KpiAuAiwTFSzznv21xtlpz/i60B8cPcL+mJZKg7iIPNFMluRKaB3d1KmE9+iwbLhUKmBKsoBGx/7z8OJVc4ECKO9QTeEu8otnz4/7fBU5NDqxKy6fA3Ws0vWf8JWhJ2zydqvJbkg8/1E1aD0Ki6mS4zoB2g+bbJmQV6IOKuitlR7sR4sdUnpOMQcaaKyzpXnlrDAA9sQ7d149ZtkkaXvUOXXAl0mMx2bBDmpOgSsCAk4vuBOVNVb7r0JEP56TXBCvx/hBhF0/KOL4SD5R+gtEB/H+aqojDwgKYKk/+VaBK5Yhs9lmIxiu9R3J7c5l/xePa7KBYsPxoJy8Hn5T/dJl7GGDhrShYGDTQrHJB2JYSPBPIeiy/6ogTcbZDSj9iUpeqtjuVOz10MTKOgWMDSVGceu5YYFcSkn/e6EgxhVM3eV+nHvaUaep+nBTKa7CgQRnhK3Yc+Vhr0XmOsDYHx29CdWxzkz2LY7XTh3hxsd9ciuZR9y6TzsIZCfAs59BgPbeSp51QMBP7h0MBbSSeOEEgTqX/IgOBgDiYB0Km8CJTacoWbaEVeuLMiT4G8s7dk7FvkY1KIKcWT1fWfQn+ZQcb+e4dJ4HY2tcW2ynFWEPZ4J/bg5I0QkJ3b4ndKmnEzOS1zbfoK5KgvlUlKraWCa8SEYmKFVRxeYfUbJXMyZBqAYYtD/+YsHiB6FInTt+sgyrCYsnGak46ftyQ/OD1pPB2UCfi+/vyQof3pxQhKhtjcQFQ4cosGEyR469c3hZgXYPvT+6AaIgKotkFWp299BlRrhQgUmVo8n80FDYUT0qOYUIUJkzNg3HYRekOVFCqraRiDdjPcsHYD/P4UlFLs3AkSZSf+WXyfNRGIQfr5+56DcyX/1gUg0gEhm0Zc4yT795CGGEXKkqKf09MRgXy2yqu5hUSf5iSdSIS2tHpyfMmMQVdCrjFNmfn/3pNsvnNBDEfiL7KnhTJFWlmS0iceqz3SkwdmfRDRksxePxxQkUiBSRmZIu57ZcZJ0su9nt7rjJx/4t0FHaO9iDr3ltE7bPRYzAk35iwWcXz5TQL1za8r3aAlLk02HTJl+weE3UfbZXnAcOFCKjTWFFFgRH5O+1iUwqZEiLEG6KOi8FGxuHe0/B+kl/ENK6Ve7EOdUF1r9H9eBGz+NlbBieqrsH6xtc0bhGCyiCZ8hH1hvY9vMTyg5Ngf2NUM/7omGi2ZflSMz+AhjvgKzTjLW1+q+qZPAP5sLpbe5ZjQPpUiUvS1KTkly8zrqI/ffvq6BKWrarVw3juiWU39rqIb7F6v9XI75RCJuQyoyiarC2eyGWs+tNI5BIxKvnNGE3aeJO8mjSxNV7evyKbwhkVefU0gYKHqGm1bDPHiOI/YqJs2ceDJcIdYx5pTHW6L5K159HT1rZo848HgmfOaVwRdm9fyXDZRFWNd3SZ9rouAwTuRwUspFrN53IWYBP90U0jXtxE4gfcOWjUa/sYZztn+5gaMj8j1X5/F5IpxuI9sFyAI4LO8J2GuDKgIUiKyFRvZFhvwKwAlJS6d06WwOFN7W4/ri4i1zdi4F6FlCx0HsjHvSLXqV+10tPxrMvN20Vhvetz99bhbT7W5QdWicFfOXeltrEH+4Q1cJzBmI8+qzlclGkH+/K8pJV+n1a725XyIUjcg6jixxoQtG6o4Y5w3dIrWgKfPdal6U+jgUch5zc4NThWZdklmK3aSsIYbZki6U79oipKqWnfXYxj2kI0Ktcjrpnzw6QWlEiNBJbwfPf9zdlsSoslaD0v70URx6OdydZWxCgBZRmgsELSATz7hFIA2tD89XGDCtw0yx8iWlzPUKO6OY2PLz6n2KbKTtu9c5xniS8X0zTgXN7IjdJ+U4B1DkZYD8OlpzM0gw+gIq7vt3eSHCRzVUqpn0nZy8uu9xe0pjY2OhTk92JTCts2DrJ5hxKGpJIee19bcyK042JQBPoRYPNNmyhPkMsWIu7r9v8jIEaY4XXuKoUPIgB9RuKNUqy2IA3oazrUfgYEvsfmNpiLSmG0X8CIOaO5WI5YbFc79CNBP1tj6VsXdO2qfqKcVqbmMOTGzWJOLhWFTPPKWJmTCHf5SO+vXEeHTjIQ2rID/vIQtihcE64vEYReuO8fc88XVOvwP4PBpCZdpwliNm8cBj+m0xh8dQbLoU1rX7m5uk9mjR/Etct3gudh7SmEttykxJgacOBE983ZochJ7C4M4zirBbfET6TunjVkfPE9vEXPQbrcpmjxmO+5hh8HQ5uUT14dzPHiCrmaDBzGmPPzHD/YipTzCo4GKpHarsXOTLZ7z1tqeiq1AHl0WDos4RtCnDCA2q4p4H01c9xZGtRPYfu/z0VKJ2/jhA4mOs0SWQCHdgB4I4qii8x42zMQ2Wi676Xf93CZAIsvSjD88gTsJJ9XspylHwIYMiFnHTJl9LSrFyeOOYJa2oTSyDceNwWD0pEmsJ+Q+tNc3WZwZ6+Ekbf6vOWtHl8iVzHLvqKcJyztCL4JTUXScdv5BS55e+qEptL6Bj0Zqf8inRdQ3ZgvEvFOqSf9BsNwlOpbxVsBEQo1FMQ0bVq8IYJgnxVDYF8y/U1IpCl19O8Cx1ss9Z08Q6Z6XQEDTf3+hU8oXZakEc675ppiN6KQ/1YidgNSTujG0Iw1mnK2RuPUCV3Q5bC39qEYB2JDbM6DWyxdDj++/3O9ScfbW6ktRQDIJkzHs8iAGTZpVfJw5ngRReFgrZ9umPeFsfwmSwEy7oIZMHIn8C4PCRBfvtFjtwUFcd12SzXC5XVv81dy3YlouLIxlB8o//H/xBcYrx5Zt+lsNxwXxafCFqby6gmNExnVpObq+5//YO/JWbadP1hUbPYyhR1BSFbckUKnXERqBF1viGh3G5vsIIEQKApHR7uf7tcxPYtbpnXZISmStZUzgA+qTNhpgbAwTWf42qZpcuHjekyPmg6PQKgXyp554B5Dggq3MK5pPcm0iXK2UDeLDmS/wOUTvUxQdaIXvB07sSZbW83riQl7+sLG35KfkKF2UzvPlZQ/7r16ecaOAAlPRuX+kOXmeY2yIf7uCyibybLYw0oD/vFlLjLdZ6ZRO9Ob46ATzGivoHoe849TxxogFhymyy8Y0vEPTMJAjZezdjVMB//B4hlOVhyb8kn5E23VkQVi1Lt9SDr52ZgyZEzi7/9tVP3G10rSzhdfU5BefF18YoumtG1X5mTgT4BNC6wKaBvw4mzrRjzrQhU14hAOnlvy0gWO79PXivcdKJj4xwoEG+iNxEJq1PhM/u0GjtPCGnYV3f7CsCLHQBrMkofO0d1A7tsftuxc8VHylZuHOnroq8IjnH5PqJQg9qxPoQJqSDiDKcKHcjzpojNKTer84pfiiVaihlTtY2nWEQpa9Ar6gJ7z7vjAA+FP+CCBsmylZmytp3S50+647CeaMROPbGSzHbjsvgI+abWtK3pXTG0iM3LlapeLj5uNZgAU7afnGXBh/U9y3HEsmsrSK2LUbRKxoZjtnT09liOGbDrNCOVwotzaW1OT0gKTQPogiD4tfBS72QEgxbi6/J+rW5Xpjb8fL74MHqqNdczAk/a0gAMx35EedzEOIocCnhwunFdl+QsB4P6kRw4hW+sdz2R/zSpRjdqZU8OCYvu6qP28jzxniyqHrJBDo8qOt16o1kMPCKffbxTpy3xXpMWQHlJCAjPiMge6ZWGbhVt/F4VUinq4byuS68UjU0j9V6nYmHyLIX0bdsQihv5aH6crE9RgII6FpNIvzLW5IcG4dDJvDt+AqykV/UpgeaV+ezQgOX7RsGf8nbXZXdEYsCKVL20Pvf+06aOynK5iHxac6In+Ode9LsNNTt4K0Ww1imeEIBFSsw2GUVQV9e2m2F7C68kIvUJq9gMCbYitQJZBk5thbCDeaR1xC6IiD6MfZ4pd/LGF6V27rVDBMpHJ1WM98T4M/DwLzQLl6zbVQiG/2L5/1XDUZWptjzBNDOUuS+tuTsDgrrNTyqlm0Ji8Y7oypHJ2KWTPeQiyTFBK1Taur/U35K1CnbV5ANRmCdCd/mlKVPZUUApH+2BkE75U621xZB7yWg/N25D4SjVNneGeWfPUJTS3PXedVZ0TdqjQsl/cB4DO/dfD5DvFgI109/EGY4dR6wPffCUTQd/xLwC80oBuZ5AwlXS/trD5RUI7PMuGMJZviFbwzwj1bqDRzv7OJaWKTifs8JKNIKysfL9AKqk0wLoF+lsHw25+C7SAi3Uf+bFBKzHCLMZCS08LGsuMNnvh7K16xvWayxLYTFANxcHmk6e23fwhEDQTMC5Af7yaBWRcW9yHOU7qloH5cUjkWY+qQlV0hlYjImG/8AYARz8FzeGULrJ9HgS1cpeKgVT5lXKNmeQOeuySc+P07iLyBjPRHe+8UjH4BtGSO3v/7EHYI6M1MbphEqSDPtdT6IwvnIxBtvwYaQ/Svk3jaHZT8maJdH1swfu2BYeRGLS+uK9D2Y5UUbzOMRibQOc+LY/fSLHVl8TRLpRdQHcRkqWeRK8HOs4k8fuM5l7+be7Fvh+IUkqZq+iXsJ2v5XJw9IHE25QqF5bUK1L9nia2zfKJwZLxdC8KGf4m8aaPUfoZDV+OZ8bJ0HkQjwudz+Xr8HrLordCFJYUgqneJiqpGe0otapa3FAH55PRlUK/j+SDhdHd9ycMtwgVRt7HAbu2mZru/nJ3n7hyKA/eZYgXuFlS61ocjpGbqTtgMW8m6B9b0QoiQtgr0l/QpS657FiL+QjEGVm9cgwwTTrxTvSgzoPXlE12OLsTYm7NrotpYEKPfYeedBpUINg7AH1g4jiktBl0CTzuFZvKmM7K+NBomCmTFjpUUJpy/qaGscizDpkkEBisNyQAEyKbNofslNcLMD4gN1DhiQlUFbCu1WFUgt5ESrKU800s2EVn5UMq55jo+3TX7wSa/EM+NK3ijg6LX9MXn2XqT2Hi9ArlCnBOuep6dy2flyEioiZRbdj+0f9/zkOOHzTtIFdNc4XCnX+2YvOFHQLNDUQdkf/7z371ijeENgQM/cBH9G5xd0ADcwq4cRu8cGOFhvbJ12TRarIWdUkOYmWbckKPfZmBfnwtHbuGIXjTOfVHETtD85OPyWRz45NctOTgWslGU9kaBu1hQ/yBU3thCUbxTDdDQWErfCXrFAdWWSHBDvG/qWcs7eQexxdbPOeyrhbG7WHZIPGkWWnfe6RzS7UAPQswlKrAVdHrpwRI6ojsby2xa5l1zwJboRxzCxaK5wQNv9WReBc916QnuhJ+kiWSBjlTMRFdt2ZFX66r9aWxKidaalznpALcraH1BAigphcW+eqgB4GGFP5LuQeW2DQK8iza+uMBqfCx52M7kfgtrbOZ8wP2Mh4tvzqGJnt9S9+aIdyqebzeO9Rc8crirbAMot0XQ2ejx/r02y9RgJmsqy2NHAYrw/pwUOqbQe/t5hTzZXPTmBOS4pIRfb8hM+0bYeBclFQUtQF7R0lNluS3AIVCdRMxfSBBwycjdQmPk4zVDrubmwDUAMoqmJdqjhLlGizUs/pxjvrchpCDXJelcTHy8X/3QifbIar3zIiIM0/uAI4Vm0cvPV+wIcr2two/XUg+mO1fG+FbTN6J3NbIuuJMrp33lCFWE5DmefNzXGYj6RCTTQ3eExIAKZs3QRqNm7KoylcH5csT50UNy4iUJv36Xl3hWrqQ2hscMBorqCgFZn443122k+dBDsn+aiYBJGkGuXqqEqkYCNNcRRYObyZqUKCcQXOaGOmyBXwavRc/VrfjcyBReVRUIfVTlX34kf/AcKOCg4TzUFUPesTSLCHxh3oixYRVhOhNG3SEGDqCQCmYdHUvevxsyJWYeMUAEvyQ/OygJev4w+CxbTMoGL2yANmDX7e4I+eYMIS1Pt0ZgLUB2vKp6psd9naHjGOyK5hNa5fWB/I967fUHv9h0zUTXYmntn6COMbT4QhJJkamWWSx1Gqym4L/wJ6+PWbC/lmwjbH4Crb88+HRLNPeXtXl9yfxEFM92izgoqUrRR/CUq4MrlCiqkE8/AUzjvSkQBJBkTmc94G8OWLjAqP8gKLbsv8YkhaNaxcJU1p2cYnVEUypJNpbAkTn/uc1vccfxDQpuHgGVC1wHLx5K8ymAHLkw2KWZwwtNjcUA0Ln4cXdPE0lliukN2kS5UvI3OgssNhzzE7kjO3GStMBHvOu7kLdMhreGPPzeALpO4/r2dGA7EpsgrrZvEav8iMxPT8MnA69yl1y5BmB67Ha8aXiIazQzm4oOY3VQDB4w453cPRQm/TDT9tkxlNMBApjSO6Fj2pLvfb7zHqGctiAKPEP0glO4Nc70h547bcu/vi83NkZ3kBKT2tCgv7qMTR/urdnruSIBM9zKa5xqZjkDBcq1ViOBPnDH1AA7xmlwxFr3Oe6vGYJGcjgC61Hag+RjasFWa6D2XhM76WppwWB8iRoe3oK9NT7aHCK13MSAE2VZLuhjiB7Lu8oy69Sq9IuCsFSKN3Zf88C+JTOsnSiqwMMA3uQMBYnZbXsGfAWkRMk2RD7M85Jg7q5LyXM5X887PZzFy2CPsv72I5MIgRM2jjOJEUEnPF2h0/BecIraUfJ2mW6pKPxJ+3W/ykPI/dAfiAJA3AUyPQ3SLP6Qs5gotP3uX3FTyKUhGEQvs///Xn6IPmRMl8FeRPSFBr2hsToq8RRlS+l04WwbPmkVaUtiwluDBs77WhgDxH99piuAtj1pVnJEbCZpRl1a9vMy9oncaSGAaaXqxGsLj2QKY/eT2XUTbd/zAeDhuynEd2hKZkoXmgivG/dgk+yGdpFx2cX1Tlg5R7RKIp4LdJYtPQ6S6SJwQkoSCvZnbUsJeilEXGVzYZ1eTlLb49MFWLcz1TlfcgYn6AJIhDb/HEVB5AGe8sqCB+y86b6NGpi5iiqtE0tq06KQHpb8k3Ja/wvmFztLzRMcFMNIDtJA6Lvx1DlZhH1Rbj9wdS/IJhsNlR6qh6SBbrGoekxE+UdNgy+upyxW6NzKSKSuu0BU9H4iSlsAftlpviAEzWU37lJq8m14d7+Yu482jd8scSYBhYXxP5xZ5PmHrvqPpMCaS41sbPdJxfkpcQwTekkps1Yt1RdZU8eTkGGrNSkZOKqH0uClavzrS2FC42WPIp8dteKJGqO49+UL835bZiCPpgdln/YlHfNVinTN7BMW74dTxjyN9m16w62HvXLOExbJckvhEgOrJrOpmlXWuZIqsTWN5K0NR3XJSYuIML+V/RUY+xQOdcufdbi/3g7inM4ta8MaT5gabbtxg2xxlN1RRP2b1HNszKAEvVo4VdTkLK+ea/jRsVj2LDPV3Lp7jKsemaP9iFAIOhtPyuhdmn5+CZK7wIkD+KK7olxFez1c8aOu4ViGljo5PjFuslQQgTzbIGlOkEZizss4SkDT8/JQ73JlXwD6dmZyVthEitDVSdvH5ZnerlD4ugjDBmeEX/YHRHc0gfZbKym0RdJywbVfZPiXcbjXF1PDaphwU1vq11Sx9b70JlJGoYS61W7W+56PJqaZF2pP7C4bFOdpvJPFvBLFBvLdb222Vpl6dswSoKEWvq3hs7Sru8KGXuufH2Er99OyUCfsDsPcDwFloSNoH/2nCUt6E7r5R5WfvGt6xyxUqybG8ZQs4ipFdhDjLovvjiUPxwjNcbXd6zW/VmlWgIymCuo9ahzaMRRyo7E1yiIcORDETewcHd2lcm7SLVjxgqSNFuX5tNvhQtn3H45GtgTEMkEobABw9hLMHuX70p6jWEJ/nmEqGVNWqYhsJg50TASsdFtsZQWPZECjrzHsDmovveTXv34QX3jBHJh4gRpYYTARZzkyq7XRyq83nn+8N0x+EKM/44bqh1fmZtyQzxJFdsIDMRBmJ5WK0i80ZrofDc3khdzfCp1Il8M6wDvLSqrGTCVAChpfH6zBdxZlnJRQqbgrKkpPXQ8mKGw+aRmBFjvzIEglPtmSBcFoJciY8e5d7YmVU6DAQtzInDX0liCnax2Y2GZnDQdBYpSBMmjyXLMR2mhggbKiY/ug3CccgX8wj3pb65rsT5EGO4qI7tfULwbp0eSxUijwKL+W67EcsNSYda9rBK8uXLd719uRGPZojyelRBFpc/XvHjh/4FHd0f5/WvDjmQExRZc5I9l29G447lmq/x8WskRWOYIXGT7KBmYAua4qggDjkU7P7/Fnq+forEW+iRAcfrfLSjMvhwSYjgU7GcFcl0T2ZOeouPl1HoXKjarjepvhoUoAbUsA+Qjg5FcINw+f+C6y46AZ+SrNuBj/N4iU4NrvT5xl1oPvzSzSWbToXhitd2Y9M2QmpWqBU3IiJoN52ASqDu9H35vMof518iGzgJIOZh2uqFA5mU4JTUV7LHv3wcgwlWH4awhzEaWDVFyzWQKhWa1iWcH3zK3NP75ToN3sOU16+TTHRB/TBQZgTN81fzwPNXCD3nCwXVAtdAtAbe38DxkBETA5uQmdOqH1dqBFkLjKpBaxyLEGn+wDbJ8hY/UebnL7KSaQ7+qEbzZDqvE8xM7fIKdRx+SZgzk3b9/qtRL8e7XykMgHZyYQlJTe++dwDSD77zvgazgKc8eHSZTL3Xk7+ZLECEGymspTw7gfsVRzbpdr8BES19f+L3gXnEONtUEOT47mmXrH8c6/59NA12g25iZDRtoD32O4/3GRxSTPScxAaO1sFwL8tZRschvTB5EmDbfeOuLH0Rf/HDb79VR2hwuD0h8dfh3Yo4YZBi85lnZPoHpi3QUYJZFxfARzj9atfFQqOUbIBO0E08dznDVXpoQpB+XB86rDAIXaJs03RMJLMT94/E6jyHov8C7o1KpHv/VpEYzEHISq2qnWz/LspF8hAOLxlk2as+ADl/Ad/TtArOYUHNrq3VYwIujRx4MgZcAqW6OM1+aoyzLRfvZIFpDYMowxec4mv/f8tQxY0gVDqOMFldQYc/wm25d+6Gg1q5Y1wg4U5fYl/fNe6TQDMC20ST7YE7PnyED/QkS+zaA1TeW2ZNqRUFbjSAT0K9u4kkwrR8KPCBwiGE3QByitVuWnP9VSBC3EjXcIxyh76+kR7FT4uyPdV0Kab+wwSbd3OFGGXnpI0WMl4uozS9ULihhk1FifMtrHexnuFlEzYPcHcXf5dRyl56DbGMACZSYNBizVzZ7qVwGS4UmHJuWYbiZ/YFuRGxM6PCCrt4cXTr7O/hOLbWOEYp2hJTfqvDSwAHhDX9zXuQd8GZIHrqcyNCAnlubANZdJ0M9744+zbjp4T0B5QomBKwrb/D3E/lb2AIfoBsL64/Zh9gPqD4LEiTqt0VwR6zN36VKrdeIraoy/pvn7fYfxxqJEnuIJWkBTPhSt39R1xzt9M/JCx8Mbc6iehAC3GOZ0KRGViiqzQK9btOBarVDCgq2nP0WwG6bW8cHtrukP06pTdQSsA7be9oei3yvWxUTfl3GKms7wHi1bbcBAGw6IZSskEo4JuvNFxn3KTWGg2EknTRfVY74Vq6Gxpo/dm0XasPXGq9OAdbVqo2ZkuBf6XA9eneBk0nZDU5EOGvN1MPdwFWW7ebJ86XDTBFtxtt46JDBs8f4isvJY9KhnEjlYM1/DeN6O4urFw4PQItrJLgWYaZXIxN7WN0JlbY8crJoMr8FxFou4ECz9PB5IwcEJd1pxzLnpzzZtbyXswPZZ1Kp94dZ2BvAwxPhUJpfKTZMeitx0ejzVJjZlbdKH4n4BPLir4Dq8skWebrld8anlbGswnrA17xKwNXdkWiSXsYTyct7lV7uTKz6SVYfJFc4k16y+Nr6FJDR3jdQ3FydOcG3puGGZpqMYspnhWQWkGI8rsbiHY97YcjhyNFJ0yHm1gS7wqyPIhCU5nWRzUDXbgNawN7Flb5/CETLvIztAn1yOjIQ3b1lzj0mRBlWLn5JkwGBdI8vZf/TcBmIRRaCB2dZB1Eo5K9+MGHGykVRGk70Hciuglzc3N5B55ouXuTSTYScBJ45GJbQ9bQoPqwEoutppHkxGw7cTC6gytaf4B7p6pFZIHpis/lrXT3S+W1TKN09e/Zn2e0djTcRYnBOa8/BVtedmD9b3zXVv96xijOVjy3He8Xzh2jzkc0qHMkctr2jWBZ/KG+hdrcsrvMaXGpu1Zno3pS9bXigReJj6YIzb7D94dA342kDA1wDPLY6wSG+e2WLGV08xc3rUJSJEQ19jGyYdqzB4HgsRsgh72bZslsq5MujMfuq8V82Njly4f/NDAjwsOugmxxDbPJyAa5zFPJ5Inm6P6RDQeQHVqkO3vN94nK+DGQuKYOS+gdzwpu46/d+N8hdMeJOwgRiQuIGoK1pMunfjSAvY38KLKeOB+n3Pvd98PA0KVh5ZvP6n3cmKuqrViMNUpsysM5HxpPoCxO+l0n0NbtB5uBoM3A9RXqcEJTUPUdwhpS8t9Y/lt7gPLDSduxURzgM8JRtZWk9wcmTTqhZSEYWql6cPY9d1Lk8UFqUDF+NIt3MA/uY5Y8CKSHd73aNyZVzLQdyktRoBCcnVAYWmrCx9vzUHz9gunnQFbBLgyjsa5Su85L3+6mpx08lgTeGFWhuigBPwPTe7DltbPZuPb6kYxvvyDeHU1zYbyeme252beNdW3F2OrVsXs2UD3Dqq0Kuon/ReVkHuDfNbvi48ryLHZF68KG3nKoJwDj8kwQKv/tc43sxfyzSRdAd76yyU9Om87BiKiXoUeXLkgjbAe1j+3KqZH3COFcVj6FNqSTC1qSO53AIqg/CA76gmAaoO+muTxujYM1fDMg6NT+dUSlEkC+AxLnGVqYF4C2BYu+vWLhfqMaHVBGRTlBUGzH2f4NIaNtqEZycmiTRhv/ZXPzteQcAUI+om76qGOrpV2BMshQp++4pzubZJ81FfS5/kg1aa5d0wdGpXj9JstdWYT8P16usG/x6nDrWp9RV8RJM4wH93W0+yyuI+wVUr9ghbCrkCPvtux3uDK3BaYzsBqxPKxyRbDpqk6gTbMWqGVXW6r4iul5ldzg66z2IMpo1bijTWvUdBUZoLz9U83RH+ULHJufhoRRNEg4akPaYuM7miTF5a/KuH9PBKnAegvdBf+GsvIdWckc74D6v89PrWBHXnE540uA/0ncOSH/zFXFGemRTrnsxOE8fPziGXJ49s7k8+WQDPgBohZz2Sz2sqolZS/wwXb2zDO22r67yafNM2Sgwq9ek0H8NpExsBl3VUqEFEMiK0X4jr+8uFEtmFAVnHXNisFy5oiABGw5srjnAiYIbcTk0wCsQtDAOSebOnpW41ZjV4BEZNTzaXUG/CmDoVS2MZslUQpoxRHTiAhMqJUsqGai5pHcwJdmpEJgS4mqcl4dn8jrz2SHuLGS7mN3FXpbsk+YDuSVKOszz2dOYFuqYbkPNOgr8m/3RP/+4Aj2BfX/ZLAfIgxHY80A8fekgOBDrQsTlHeTFg429QHWSu5BdtGc0Q+SR8E59qXeta/y7DIQIAoh1EN5ksdPmmDFkUAe0vXv8a2hjaLKWoHVKZQMwukqX4Jk0Io1EemNVquW00+bU8sjPWxvpVuoTDPWwpEYSlBn1nPLEQm1InOkuOtuf/C/cHSoHjO/ahGicelB+Xg2qAVSIumlWr+Q/OlTD/LkY1rM/hsdH2Q/+XvK+PMIj9vVHfn5IojRDG1xUsKdLgS9WwxqdwaFAza60alad1bhUiVsDXgxRt3ndFXy8hJjzNd8apnU1sUF41ZTFH0aWGeHwy50EC7Yio9OY3E49pQftj08tYOxt5KkJIB0rxWMt8khHJ/cY+QPv7g/jXVv160L/DJM5lRcgkSZsg7MgkUK4dQeKnXQp6Y3QxKHDyjFOe/EMnjI1TeunmNquWboBiuhlFBq2VZjhTS9MgjKcOPm/NVbwYzdtXPdGk+Cmz3q4I9Lskv2ExtTEZV5hC7ag0TZbU7cl4Kx+wvSEFG+Ygw+LeDkJZat/xVtKHAOjzk5gVZiy0oRozM34p5tcBlm/NhuItSrVPDljGQeBwwVaP2gQyWcOAAwJwx70DFdSg3QfuY/UNEkfLmh4oLGhlh/tXzncAEsWyUGc1giDZ5bSs7d8NOyikM4f3LB7YvrkRxlOFciIzj/tkwp4MYEzG0ebaWhS+cffAvoEFNnU198wdYjVswBvxu56irWYm1IRtn3n4vlmBfI008Y8PiaulTq3ZjgzQ1+i1yWKx8zem5w3BPpgDqrCJTFtRjfRHXVxhhkemw69OJsGpHx4SEDKgdhOUkMEtap+Y59TduX5iruFJRiyMq/OADWBsW5Vfb1ERK1Dd53JAOfQDPG4G9WwkbKlQA0Bzt7nlmuhyT+3ulbgUml2F7YnCFcz2XSVnPjk91COOSxDYsn4u8DbO/X/2r87ICZpGQS4IxJbw5QqqHZG6xpK5MBPed9Qeuw3WyesY7o562oCz0plFCImlqjiWINRhGb7+SjiGxgu+6zxFoXaeJU6RR0wv66y4JNNnsDybBN8v7jAvVtGZu1otAQh93B9z23nTvMu2mwvR5TZ2za7VISH9U3C0qWhjjWP4djBCMnMqZrtpGMl1tIxRCVXtbRxgM/jT0RG7lhYva8QfRW4fBU+ZxT0GjUJgPDnlbh3RW35bjWhfVy2MGQ3vkxysuWWyWEuzcaPbQdfkIHWTuji3wlXIzlfIlN8So1FwYlUsS5DUIz6J/BLmSpNVWTm+3VnyoHrtuYrKz+C7ObNYLw84QTdWeD3I3yW1O9vb8k2Eaa6OPOg5EXW73RAbtgLdKQurhzVXjdsk4taODt29PP3+rgHApzEa7CFb2tQiGsE50urbNwIEDbu9oj/3WwtW3ZHSNVZ9DYfUFyMvq1651/kqgEm8V2HeLxbA+ETOanVtlOAK53icxMZRnu0Qi8B4xS6depgEu+i+NcooRk53TKmOkeqaTEtFE7nWKyDZTEkMsABj1F64HpI71xBqWsGnGsybbVuKpaZ1ahPujZIjAe7qA7R45Bdn8yVoi5fq7HLpeQkd6ULRF3suCowVZl3akDWw4jXor+UbNpNQHRaZk4thLwo0EGdGnC+vFd8dpAeY4z0Elq4Zt9uPvC13/XXhEPmsGaT0zMNMWtPXABAKtUP00ZfbWZSqVjW1TrnYY+ZXzqSpfHsUCvSNOAwXPPRpnAuoh8cJd5zWE/gBbs0j24xUhJpNU1HZxmcyS+MDtgVYQy+g7hMFOyIyF8ncA8+KniChAZ46Sl6KWj81/mbxYzsRj5NXN26NO6dKysFsETquskMHQThTDTBLb4ZGLYaU9IyN+AIr+SKdiQcPktLSymiXljz4UnYTX8h39FTXPmdiFiwIyLbUsvaXnUTBwuRLHa9DhcUw20s/mhzqY3FyhDTrLCzMrBIc5MEzkdeqafQbvVq6AzXZqJhDw5OdC4v/Ld2+nGzD8M/2RJLZIBI/DXCWOQvXjKPlaBXIdeP1+8i0b5JSjB6zpRbwsqGv96E42EK8RM5AhH8HhOpPfwDTwMGSJhRw0G0FLx6qDvLpaRmUCZ9oOiGxnSxLyD1rAPiOTxjnrSoe11hc5LPs+XWKEeAUufhwrae11Bdng3eKMXptotyHUjEnO5+oC40bU7/ndSdQxho9ULuiUDuzoSfCbpJbsVfcfuD19IoMfohv0ItQ4m1uPId2rSiEWUvhsWiD57NThMTYvim+q5DBPByOPzbVBAHklzuuBpxfqOKUhuhS+ezlToCQgarE3kRZo8ojvUOwnpSlpvxiVLCSi4IxQU25gPaAZs57GNpebltt5ddHJ/pl4K4q2gloGcmwV/2NHbcBlCS05Fiw4TE1pEaKlJZg5u+4Lyz6IZl7i2lL3pv8ZfLMoGL57kvvi8dzCv9r7FAZctcCtoT/l35WM26fdoaGP+f5WIsxoCSiKKQIuNEKl/wQtipXnl5m5PPbYWifPeS158qM8zxe8DqrhccgST2Ib2gvBsx2dW4r9Dr7DXreKmfFcVykKRPItnalL/fb1BqpemLfm2UOYMjgiGxouSAv9Ruzd7rl++PqORQWvqs3ooHP2FaqIm8OWalGAVqqfsmyGfeo8Txv3kO5UsT02/tdKusaothICimhxl+pH0stODVBVTqOBwpzn4T8pPCAFsYf2W7pb7+U0xZLLrohw4Q9T1ff2jqMJFPMJkz7vbndNbekJkEULHllHnlMY/IzVa81MId4oRl5I/BGX7T/CfCyo1tFH6+V2iXRdgfaEX5n4GuTsRrhIbryNUcu8L4gr8/gIvZ8LiToU8mhJ4FT9MppRijlU8invCzMFKSyWc0L/B7CFW4Xm1EKwUf+ftWCR9P4bMoo2KvI2I8+LQOMQobo/b6pWGB34UxMu8Ge5+W3baHudt0JE+f9FNBq57iVDRQ1+k7HG85WjkecUvhhqQ66X2WC3mA/vrRoRQElb6C0WwScxgpKo3EP3qJXyMlaWIdGyrq3OZXI+9civdHIJPkk34u6UbKbJW1a6BClsgDkMkzJEL7rZ/pKEOfZwoVVQmbcLwJiI5RYAwU5k0/eA4dmx++wEpUrVh8fyBM3Go2PqJmxRvspfn7zTADv+TldtcSSqdEFGBgMexDvBfepBZL2MO1a99McTI5bM24rMKqFUCnMt58S649Zz6vCEEmuENVH0aONcvWMZBYo0GAYJ5FItOMOtjnxYN8ZBvsi7nrxPODharf03w03bOSYpBVJ1dZVOG4I9QvQK+tge1GzFBas3dnO+Lmx56GuWxor8izH6K8eYSf8zul8n7VM02MgS0W8arj42WGRnm4uq0UVhdrXU4jvnE6r6BfJOScALF6iRh4p8WJ4GfW/rP1nSCrcSvHIrjaZjgLMLjldUv04MQsGt7Vlt7X7ZGIr9fV1Sq4XXM/yDxoe2dO8WHaRyKwm5XYp6BoByoHoUYJgYAs1EjHAzjnDUp4llkZp3maO/BzU9FBT1HiRKXN3sv4YrK4kt+N7EA1GSYu1Do0W53NFkxcdpSIrKe5JbGfL++Doav2I3YnpoKGowsinnQcXtGlzwOWq/RhyvgB/QD4exjwFmhaj8yqu4tiYi5A73etsU5el4bHQ36662MWYbT+D8UcRh38vcJHaYW9+phVo8L8Cvg9mW52CgLkBMdChxWZJ9C90xfrIltob4uF319dOEW6dbjja1c7+AOBeNiL1DKzQ/kB8Wg1zDVmFuVpNKvhLNj6I3NmcmH5lHTibD+A1EntkgdmAAABOye/yH9dvrVrRZeoSMKZJxwRGILE8ZU9nhvODA2fEWzCKl5xrFn1s5lwYraGlaZmDtseqW6LnRwDzLkLBT3CR5Hseqbg6uPjj7SZAD7wpDGywBmaPUjb6t2NRVl6GQiS3PHiGqsaug4lBO/sr1HMTRS+kyxOyyZPy8UFUbMET2UhIa67tFyJ/MvlkjDA1hoGrADU7lzclYdIDlMwtDXUpYSMHMJHcTDS5/Ncz8A526cTHvs0GhpbPw4cO9zTZGN7ouKFr0YdFy8swB2gzmu+xrUXwRczK+d4ikRCTmgg9uMKmpB7cdyhhLmkFJfBtvGdB/9igLOXm+o2TpAELtPo2BnLkAR5ibVJ+tvDONnz8HOQM8V/pIR1fVw5AsVxxKX6hX+BoNsCxAJdUeJ7ES2RWXKBcX03cxE5F3EAvlJZOs7dBv3ifvh8QMdX6vfhYkRS5PywttioNHAj7qJ3gJ1oeonsOze4aLj6Q0b7SiXoYpJiTlQynmz/599rupPetrvaeA1kdO7cDRC05Ro6o4MbAxvvJsAreql+xeYN6RuBabKZlLXtWeqLr9cDDPTf5cs8dboIJh1VyvnWfB/cLMyLoMk7pJgwJI0Icf/oymrokOw4C2j9YhnBxe4X8gVOqcRqaq07PBMrQseLviLhADi5xu7SVUsKCe9GuPVQamAl/3yJUd/Wm5i45mBIpz91GdoDPGs5fyd4Wss1iZnJmGFb8yYx0Fo6lq/URQrgeFfADNipEFO3xt/fpYU+KbDRIzP+V1i6fTBTmRN7vtLi025dIE4olSbtHZjilQYAZqdh/sUPxNmlk2glrn0JDfkNjGwBkO//iJ+xZW5I5BaXco9VWqzeeIbsMqf5U0cdcA/NebGF8a6Pp/4OKf1CVLyG6ycJnjvgEuuHli8XXT7z/2iwJ4JvVB1sUOI7HLja+YyoD6lJnalvcl5gPTdBYpUCD9HqaK7qBU+tPaCbWlBsk23a2yYv7EnTBtSI7obU4PwrFjBuhF8qz0COR9hFbgF8NAW7z8WKAgndoe+VLJqa2B53m4dzjDuF49ZXLNVWqhvNL4D5MZAwcbyoefKFaFog487rKfu94iXdgdD/3aL9zhQ4NfLdyb7KniBxhqMlioL9gpO8V7f0Te8iHcKB/xXZT3c01+M89+7STyob0sLa3llBupOcUQH1jUj50FzSpKop6LJVImgbd6Q1S3KZ6YkqlIGQlEC1owSzFE4ChdfshYBG3iUJf6rFNFOq0ztzznoDdx/XD5xMhxSgIBmok1lbpNT4X3LcBaPmKkpRCVIsBKxS6QNXOxYfKARzqKt787V5jDRzLU1q8fvD9oanXvlBX5i/nteUlrQ/EuFjEa06moSYlcu8R2T/Xl+eO4FSAwF83BeAz0/+1wajIP29qP6KBtZzhTl5MeV22/nAoiz3HEMb8dkDpBJKJ+ruT15E3pKNC0q/PTgcRhv8nRXJ1vOxF8AerQ+WzNQ2O1DtBtbyreKXehE8HX9ThpLUhRg3L/MrxuffAv6/do6Fj+Be4VpK93M+6ZnhKcX/vHu1VnWs7WsCIrDCm6MZZE/QHq2B3/bGEhuT2KAazqhb7WkM4n/s5iP+6E1qWae/yn8QADpUe2y+KpMi3TkF62ZotZM29M6mqSKbO9XmI6QdQzGnjs4zGjjg+00ICxxiF/eiWeCjf3pYfugaeAwoGhqdK6EXdikZyL2K4SZuyiqxMw6zamCFaxR3G7L2P9LzcE2FZcKmhI7BpuhWx/Cc0PcfE5JRsttpbTArftKsm2afxgeQn0gF3mgK8Zm+fDaCvy/Vw8IIIuXo/rl+9rQYSEPMBCT/GTnzIgAi9QnbTL56v5nop1NrfzEW+GcWtGcJhhvYz3Cs8FVabOJQva2fEqciDt10PKvbVbQKX5dyHWq3n0ABNK8ehH6tdepvwFJHxudWR+oNIrsdEcHdMMQ/u/sLWjZeBM4WtJ+tca118GrqpiVHK/C2jZ5SWq3762IswTE15xTqxAjBQHcIii3/FvnzXUy6BGzG6/29ffA86A0nLvzwCg9XUKRnZeQZbvo4C4gSkmCSQNPLwzPKCvm9+4wwoteBWRGUv9m8jjH6y45scCGtiIedYFdZaH1Ah1rmExvazKYxwwYrOlQZuu3jcbriq2SHhd1MMsh4gs9t86iAy25XmjmTldRXIqxH2Rv5jnxGU8isQ5NHpdRwfNSEqbNDIczaCG0qp1tw2Nakw+6r/XJiZC8rMHCiT/qJzvkPrpk2HtOGEILAs1Vbt6DjFFCKSrT4i+GEIyCSQzrjNiD6rEMVOlEuv3F37kYZrfB7P3q0RTnp3SHUY0TZvdKKuFxyN+EgjJeVEdGHe2HgCNFVdQfRPDw/QcAs02KS0aKf5K1KQmtGr+8V4jZy/LbHrm+N8SQEQTXtGlTruDSxO5vFIm6cF5ZgA/Jwf2IX0PITSPFBcPrxtZCEaWkO0ItlKags/q0vaz07y+tCaVcvAJkrBwBbGt4fn3H8Bl8UmOhg/cdIU3opuZVboXQWUJx4sLl+tXi7hfKekkMpbw/jA/+OVHTGtCHL+B84GlENFtPPelEaFnLo7PFepJsa3zyPAsSVcGi91bp6+S1vxz7/u0oRPxGeiy20oRuk3HlBtqhrHW24ks+2IY6zpVWpYBe8jwn6xBTFbWP0l3S1qEFeFOHUBzjZjS0sWJEzd0K0Wq/7h94pCcRA3TYhxnluAbKJ2a3i7Vo5mXOAT4mBShif6B6GBNfSYlGSwmUM1mApZFmdceq3pZxLW7VvXEisFyqa2z3cSugzvEk/y2whDaLNOxUs0w4CDaHJJghe6y+L9Mybxi81r9oDj2ilyLSJG95f1gtuJT6FNjMXML6QnXFXg7SV6rO/rCiicIQgbM0DS91ECtY8uFn7MTRrYK46Sa0Iz8tw3EFcfu3IiphHVanKMSAXtvFOjLFkEO+BPLf1EsoJEa+aRmB3EgMj6ZkDP28eZEnnymLnU7gHvy9kVFtxmM9IcYshJaqtxyMsuJ3+/bSPBsE+tS53SjtAacGrCXndeXFQypagrNTtU4xdkqtmMwSNup93jwTRjCGCDLBoSuZ70hPCtjlPjDWXnpfmZIbFzyUkrmJTdoi2us+yYPtXFNkeCblC2uugUIYRIvIOUg4uuZv/4tdxvUmlk4Z8PFjlO37JIGupFmVseIG+uv3rw7CQ29DLFebr+IMSznyR9n/KOwNmW6yKggkMIfLsR58T1Z5LEOV4qo10P2y+2cAg/Pe8BUMQlzUSKrrRPhR3dgHIRtEGi4eRac8qasorkR55eGKAeCro8QURhlXxwAOX/VAYQE0j126rPjLN7H9mMpG2FUcHgokGryEvl1dcVFFpxgzN23PBfDVx33TK8ws4mmI7tC1uXjj0iA0ae9EYO3vOdrsKmNM8hvEy3oVY0p0wfHUdUWJ10BrAUdZylTklzDNqNxt7dqU9iz2rYnRw6051ykSCyOow/669Iv1ZDx/E3HdhYZ61GDUvPhA1EDVTKdQOuZWnqagqCNldK8kDEsLgZXqFhdOE8AsFMfOLQm0zJuCkjTa+Ey94LwzNnZpTPojg/TrMbvUU04KWx+qOtKkPzdsCiej1yrALHUPJJ2mji0cgAx+TQHPg+QFl3Px62uOfhbu1pn7FTIGDcadbCfYj0As98TbhJG9PzPEJIHXOf0Z8my+dEoBdIMPcXklmmET8xhOXcv5Z814Y5iTk5Y94EBnUI2gSIudlKPu3xeBHRwch0RO/D12ABiZRK4NU7INnV7WffI+7RSPVrVH4hbyolUpUQCsyXpghsJFY4EJVseviqJCeBHXxYVG8nGOvBGbgaWH/NcVvFiuHUhLNWzBEtu/xEudcAPY5THqqmZLnSZBG7v7Eeg61BwtpXypmarUWRn1f2UftIt9369huRqvMKqhZ3kfVZcBDZQ4F80W/sLSrThW0uQMwYQ9PzlbJMaMwYRfQSP90cE8+NNSWlwNP/tu6YuD8H72EBO9lpapc99Hx4KaX9PBYt3fllb0uulr1f7QBkLCDtvChRgXxDjVRMkEDxNc3k0ApsAbWfRy74I7tSOL1/B9xv1firW0dh5w/x5UTglXexJbqf3xoUIk4ZztpZNziEZiSHxL4veU7gcyDG0nARS5S4pbBC1C17Ug2Z/rDrbhOfZOJ7DdV6AvmAXj0SFZnvwsixZQ+Js6JECu2Tmn76NMlqY6l0hJA/xaVVrOFjRFTaseVyT5GMl+q6k7qHASnqSsflahCndsaR8dJCu6+sfBuQ0+ibQ+kU50vtNsM/K1715TaFetQ3kPhuyX3O8eZnmaQQ90YP/BItUzQMMQSd3LizOgfWvgkbNr1iAhgO4qDIBNnasRyOlU4k0BEejluuaz/C2QVifPJycIA9Z+2aS2JwqaTkV39oJh5otGgQ0LgO387lh3BynelML5yEdrjuAJcRt84BywL29KbwsE6YNtWrKXIc5z/3kYqjCyUr8uwE0MUrJC1WPsgHYnM5M0tzHUldCNfZMXm8Uzy8DnX/asGP2NQskh/Upsb1yKsP/O451AHcsNK/Tdi9tIJUikExa8DUEpM/nMo35KVhYr2IREtOpRFvwTW4LFhBuhqf9myH9MDuGsTdJjojyGTdCg4CBLOHN2otRQQJ3hAV1uLrC5X+HN/oaKb6ndROMPMzdxQkA27SYouYtkhLUFzH45mawwTn2jYvWB66fFh4Rtb9DjwsDwEVJMP+vX0EzlCz+ZwAgVg1QsneA5pBz7fRUSsGjtMJP6h9JVmiHuOvn0woXYJHtO9DbN5MnMKysQRujY3Iqthk3/PVgofGS2kXdNJPY+O6MS2BQS/0Z/fym5iq4IYqfS8c2GYVrYcdPrOLK6J+uFJPK69F8PbJ9sizpYhXbE9RyEers8USNOWoAB3KKUdyACMCf2fZ8hNCrNHqCVxwOQb/AnnThNvyHlyBzUo2x9bit8EvlV0fksgM2TulhiTmsK7JLfxkMsbM4rbp3I04bHp3BOjiQ+ZvCAZnSU4f/lFae6R2Joa4iaWRCcCiTesrXTUH3biFpc1x26yoovcFNKRQrhFrK6M18ilM3aOG3ZONJGKWllfWacNXX5IKUB5O7Oqz8G42awEwAm7eIDqN46YdZQ9X2o9BCR+htNYS4a+iG057S/PRK6KwmIbmR5n4i9fQtk56JHsmmweijKDUsPj6pFTsp67hjQmaOfljja6oa4N716/3GXKN+flol9DSv58rb7A3IG/8A0wAgq6kfUSVZDiNxMnPVFUtucK7E//Kfkz8U4vTYPuRw3HZvZ2mk7InU4N9tgy7gxU9SJ9mpSfH55kNhgnjBqNtktjWDA+0IfFYElBCAGPfiIy8nGE/zwbx6Ztqr8r1mPqAd6CzfSQi+UZJMMsSB+SOUgirb25Zz5okWfko+v8bU9eU2avWH3RVO/zWpm2KvhNtd6TYZPyNpmNm4NIuFw0WHG2rGMglLT1PMtQ3i/Ll2cB7VDXOkeI2A5QNFiZ15zZUc/PeqaUeOdAF7JM82rVKr2YfnsCUFX4WOAUI8M37jGcnLlVU4FdIqOH4suey5a6gOA3b1QKNJd3GvZNI40iQMGYdf1W8/sLLt6nu9u6HqligL3MxP8QPGdiNF8oMU2/mqxVg3zi7wwYiDf/GNx5AukDIc4f0qT8cjVnZkaDxc6+DdaJO7PUyEnudPzf/tz7HlpF3aMyNpTJH2pyeef5F66WTalFYGlC8EuNyFU3YtHCQ3peVP01Ii4fo8Z6fx5avL4dAZcXyPI1FUoyIMwoZR1zOeBdTStUWwmA/gZ946PW0GdoR7eXMl2Pcz0SpLnmi/rUUBzO8Oya/2+r7upN1ZRKP/DDg9Q+SLVHHxs3S2rIMX9kKL6fKvgZY2Fk0ONsJbCiXRkMRsh47l2+cEkEucnL/A8EEQNz2/5t7rI8qgMh3qWmYoAfwZ2/lh/vQV7lO30ZRUnNbXFq9t+7spj4qpPI6nVtsePObo/IZ57HLvmLZTipavVTLw4MamZ9+dy3pX6A8CQZbmy0mkR66ImUNL55JWsrfMpWiQZiTCsjMXjZy01S3kIhJGa96Sw5IqOXSuGbCqUCqNbademVn1J9fQO41fAJQ/fq1zbR2WOnoy3Bz5W698pDA+eeQVIiujYURgneiSX2dp0Fet6blHPP0fEjhuBz15Jibks5BeyUd3smN3XO/lGu1Y670mdNxD68Y6q2GaJ2IJBtcJnBf0W24QDjk2jmO0a0cjnoa4WrbjvMn0FrMLTl9fTdyZ5Pu4T+e8kPmL73oMjCRYw475kFCipcFbwgpjcjz4cLFC5bXeLlvRpk9AC6WjRiGH8lnliCOaZOeCn7O8O+DX/ZXtF8oH7ytJzg1ZuAxu/N+OjPa3Egq5n7tA6js/9NipzefmmsL7nH5W/Rcuoe1mD7W5MD+I6PRzv8Q9s1dMAaLH/6ngEHS7yxNIMSJ4zVxsVCd159oNKSOPAnoI9ULt5I6JbrvuONKxltPksnPJykISvM/mLRCLK7l5eTo0IDOkcRKN91LmCHMkv7fY6RIBwVBUNAihLbWcdVVHvQstnHY2BxjYn1FfZj5uNmiwRsjm6W3FS4wM78LndkKoY+ZCWqTUkCUGQITctzg8wcNyuvMx21kC8vUf6IWzvtCF7mJs7jb3U1my9dECAXpaqnC0UKHh/f0O9CC7awkTVgis8BQgOVYQtgHAsMYUc79vA1j3wc02feDpMgp9XrTeTM29hkGAhMfK1yhxWR4hznxYAlvwF1FASTll3gDk+AfVrMMYKL014NlGHwithskZppNEM4jn4V+ZnCSovJHcgIfJB/LVODYp4E7qH8P8ily1u4wLCOKb5K7rG4LUqRunW8g6MMksUyfxGnzC/r/toVgSVVSTrh8LYQt3GKk/IRGzojbCNolfQ3AXT0jEbInJEdy8dwOmTVkS5+UsZJgChfjMaNkG7X1mSoKU2u5r9Y4Pm2KaHGYYEqhDPN5c4bEOCoGHjuyVwXd543ywGYgi+113cn/1YgX/lFxsBwu9xTgelPb5orVIcIUjuo778loL+YaaRJxOJ04rWSNOaJar63nAPjaKH9fjDYm+UhIor6XQu3hegbsp9d5l8z8EEzPzZC1bJPJoQt7MEHSK/ZA1CVIm5HUL3ANJZCmwQ8iuW13x11LK5EAQESHmDwe+qehdXc0oVPG8z4DoWKktdzDdK9bxlyXsM6fFtAHnpowzkDvxwVcxGhQtT+rwlcRaALkx1exxrUNEzdh8xkdQTIver/67fNBX6fo7r2eOZK9KVRmlckpJ3FTybTr80sSJ4A+0O8T/x4bWQ+jDvyHwy1+B/2peSN/NNVrtuQ/61SyXX2HeG0SXiR0RVqIjYM+C+tPRprbA8ZgPv/N1gRKN3iAC+IzXdreNVnLvxRW4Sk6sgVgJgzAywFbUvZBh7Vr6MNB5A3niYZhK29BY+FQGnkYC0p28Cd1xlcEaM8bHJYlRPG4Rx5/om9sP6k0cUwAe1hrrpRooot9fmTfYKNa++Z8TNodpXQerJ0amY9TFh0u2LihnYbeUI/3DjS4qvW1cDWU7T4z1vlpapRxzHXn1wZpoLmweiq/LSTbq6CAQBR1nsDY8nq0JpHzE4xk3FD9mWX/+H+DD081OmT8zL7dH5uF+E+ZR2GO/1p4M1ux0WogMqsOzxcwF2s6p92sCaNwni33gfNg0ZWx0sOnoRgWdfRXQQHpm3gUMT4SkXhPgkahVgPTy3eAKcVVDUKHC56771kUqXJkMsQ3QXmOI4ftXLDgppN6rlesLTAu62GejhhNgW8ahjdNrFkgvVm6zCBXvglQlHp+iUq06t8WeN1v/NXEVlSKXY8ULcwkmbZtjBFTlOYX04j0N9QfzBYabmf92fmY9mVjPXSVuDy1X5pg1p1UK94P3ZjFuiiKFaDMK9ieUywnlq5+B3FUolaoZNuStcs45m1bDgbPz2oS7Qatf4gCv4jhNmgiw6gpnpyn8SUuxCXaHQ+JAc0NVEb1dvex9vF8kBAY8PkOVvnDXuxh02troBaXr2E7TDIFoc8KEKCrhn4OnjYIA0xmClaU43t6Uvf/e+hJKI/9+WoLvguKWkd5WKdgNPX0JtdqL0jkHbkeFtcciMaccroQtwSwOfxWEeVA7vBbwD9pwV9zrwTdZSwyOf7Allj1uEsQniqKxMl1W9iSW1bJe8Edt3rANPBO81RScc8WJLF+3d1SNT97w2DM9S+YtunVl5Wo/FN1uEnSRq8UmSOmImPnZvvm6bGBpR452FkA3XQmg3iP+yDI24Nkd8A0zoO9ZBLjTlTEd6JRM+foZRaIkXWlHxmdFMvO5qcYQ7T/phT2P0vrViu/Tq5xf0pHdzNchMNO7zmss1H+afY66nL3MauxLcvrfJG0Mh7NRGw7C9dZWlUy/rzXzmtpyQnR2UPYTvKttgw9+vYaUmeaqBO0FanpIG5W9OX9Gr8ny4AxSoYq8k+Nnj2nIY0P4zHUqlscCcnOrv7m9ZALBDVjoWNkD2oQDa6dTHcZXLQwA4HUz8+354L/tCRyZAoramphQCoD2P39Xhhng9CECaL6NQqyb2dWj8pDNG1jJvhOP4MyH2la3fNHFC72rdRbp0X/K0/XXsnOcARtAz1XZZI05TA9ztwG9V7j9EvRwTxnKYD7ZwmAJbsqpIeLpyLTYgvaMBuc1LAy5bdUMlwWzKrA1FEdycf9TkpetUQdhwlDuQrb0QkFCqZS3igrstwgDBPKx9ayjyR+B449JsJ465c4qh4fQEtWko6ZchoHTMmGqFSATqg76IVSBTjOoSGpe5MUW7tY2nDwFRKYAnIlVNK9BlfcbiAXrXU3YFl6erctjKJJTtRcnlH9lojTQjDG4Pfv9dOhUIlXoasXpFX9h4/YdD0OQMbQl5qh0o4HLQPQKlP0LTDCr9EgsZEBoTPvhIwdBL2tIGdKmTQbn+8xzJbWQ6eIjJTZN23dyKDQ7yPtS6sGEv9V/pxfcLdsHivBXWEBNIFi/OvKsZABWhJaPvUr8h/5zsm+Rf8q6cvUaFDqq6wfQnESFunvBeEYehAxFZpic9KQodWFHWEbN89kK3GR3Pduf/hvLVVldQ8YelWPeKZ33pbcyP9B+f+P79xWsDgC/pEd59M2Nmg9J4x410cpjePuzbiQkZG+D3s4jX5fsSP2wmZWp+cNWNkzQuBka2iTtGjfALFsYIILN3mxIlGyqKQ9dn1QvmBSlmr86iIlgy3V6nFkLcnRacDSRi+H/F62gzGVyV5yLgvdnUMozxiBhmXYkoo1lEl13+hWYKByzIGXqjCtCrz8i4/krKe8n6xsvYT9AOjNCgITronBZ51FPiQasWPwxNw9Wi1o7m5lu6opFEtgeK6/byzsaLRGuzKccRaMY42uMFqXHm1hecXqlpg61HjdInx9JW4b4Wku/R2k8NB4CedyzM4S1DkjMimgDiHhTLGMJe/VvnXuLuQdBuuzZpCqNjiyYO6zLJL3IfY/DAt/Gnb3DixybKaFittNPKe/htpjP+4POsmHwbBu7UizIRAQ3LWQE5iQrwD/+X87J9PVCZY8YfeFiqwGhH0oKhPH0xGwoR49v2sA1rsbgYUewUUjw5RunKeOM7n42KszdmrkhEOZ4DxuT66UC9n+yhDb5x8c2Eux4FrqfE1qqIpY64NFTJED2TOr844aUpwgqGeUtouEcztCaVxwwMoyF4XyVH5tPy57aAjPubHfAsUhg8XG03E9oYyqWt8+EkNaIc8+eO3siqvkiU0eRhirolk7DjM+7q89suKJTZpi0Z51kJl0rVETEZLa7XbXni0F6/xj0s8oq/VKlQRnE8Dg+n4SBrAcm6QTKvEKkhyn2yVWw7E6eUNlTqrh0MUZxBrtT1dIAUKxYRySTNj/4l9qBPjoH5hDfnE8UPoo4rEr48f46T0Q66rgOVbt1SQmHE0qZ+V2cgeb/koKIjzLFBXccFMuyGi1TQJ8+lVOkts9fKvtu0XHWkw1ilvkaPjV8uGJOF9nTIcqN04fQBqQ8hV+fjWaGA2CcfL8AZN4O4uJrbs4meMp7UvF68OXz91hO02fL9VItyOC5nTvs/+xl/2f9WCeXaMoh4gQ0S10S5wR1cDYUSJw94kq4V/6FxxrOotGpHvCZo7warXOu014OgxVhk7KPTTKTZk8L3CvlRR40klH5Ucyp/E6UM53JdegB57qy0yCK9EezJIlGdVjAAqjlLZGxWasOs7upn96TsRPiO5cOb8ytJoG4N6N5/IuEh+guY5Tzto/mkoRreIbTV/lysoztsc2e5EV57BMz3fcQ1zoD3UnXiNAdJ025RuGC/vazftlY00kjfXlFvzt07ZaoKRpIjIulxVyOKgb0bUR8qCXBp1rJnkL0b6LDMOsrnmDROIcT0VDKFda9rDyNqtNC5eHlQZzMUMiL76Q4VGDE+mNhaMfmO833PcuinDqU/8+HPC1A4t9nkCbRHicDeG61AJzp0tEma89SNFMBZ4tCqv3R4UkRBy1dNWSOO5PTqOOetbDx2Ny+sPEpXlDDZfClz9joFGTxZj1sRA5sMp4y7hEq//GuH2A4BMTxhINtN4kiXHLe58ObE3lz5Dim2rXqNWE5BYEjLSzIbjlaNXvvurW9bMhAm8KTEd3AnT3iGAA47lQQnmPn2HRgV1OPFr7GISLFV+cwA8YZQsJvejcMnhk8IgYR3UlBtWtXDKI/5n8EEp0DtoszQg21jHsz/zwI8UJSJ1iQSeVZOdiLRpp4UVEnt07jq0Drj4O7wsO908fnuF+/3zZLbHmL3Mm4dZ2CGq1lyykQcfgl4BOmlGgNTn3oAutIkK1pNaiYPOy/bX0OC5vRC/p90ld4wh6AdjxTybsdKiMJQqcHTOiQxWzswfNXSv2SazYSopo1FJDtTobxhuy8CuHHHhBpL377T4O7UHg5Cx8qd7jBZu/GhX8jmisU30jQm+FDuacBbRcLv0S72DkSdOLkdFQAFxQwKqfMD541dr7Dq4kXd3fGlMO25qb2FIgWzIZ3yzXE+uDdZZV0aUWhDFgO4mNjYl/MV99uV1xEIWtZ4jjSYFU0SMF1xgRBVpUscTo9oSIg3QQ4ZZ7118D44DmC0+J4Kd6eid3DFZMAdP7VF+0oz2ClbOVXN6jVTNbxl+4Dx+//7K2MiVMqL35QvJ6rMaKdNiBppQm681aRNfNNb8kcI3rTq3nkPNa08+MDGYuxsJYh0PAfa3V7iOFpYUtY12MbTOPdMLgK3acgwtOL3HSmj3/NbFFiXxocMvKIYPBguudQM8FhMikaZtVMcTADCnMnN3ljHH5VhBRugpvJ2ofEDVTJssEMcuYR5+lSxCdCDJAzk4hSEoGPAwtQFw1cVDpbZItAuEfOrjQRvvOexpwllYfNbbxgxScZWvyNdIR56lD2VSba+AhdzocKJTpPh0GyjN35pBJGKXk+gRHZkQTR7sfKy8CpzOq4uP1dfXwoVGI5SeKZd6w04kDChvymlQm7PKCCxJ9s7eISA4t2uEO/ggfoXy1bA3rfteV96HMZ9rIS/iNneUWu3QEQL6e1eYbD5oLrBzaI89/5jjrURnyxgvykHPftr8d0Q06ztG+3TZGvhUtlXFHoeWOmhEyjsYeYUEdheLGG2qpejh3RQXSqjXBwwcWk7hZEp6wKorT1iSSD2Pwn5g9WPWXbk2Xr5a1knpbU2UT0ZwjpeMA/JBn2KgPj3qmlXu1NBI4pcsdjYCbniPOJ330Mj20UrthiirUh2yOEHEMinJAfNCpwRarvwSCk86qtvUZw+HaxTag1IFEY6q7Qv1uqTyxLEz29rBSSDSCnIO1bEA1CjlpzZSUwoFGjRgAmnd8IoMeKCSj0H6KSkTu6nlQxLz19lUUYr1oF/EmH79E9MHps6GiTJPGiuRkiQHjt528pe2Bi+FZ2Thfs9QZ4uY9lDi6ZJ8zhghxFec7ehc2XFAhd8JZVJN/e5achbqeW+nLvPndgUyKfNSCNbOUSC5R2xGjT2ZtWQSk6EowDh5UfpQ9IMQXjbetwCZ7J7DONcLO0F8g4WWAMFG6PjhjuB6c4gpXdldqKwHcAiZpvsyggH8nIJMkSqNFSqj/lPks+PPA3OnRFnvalE5xr+BfwVSJ0vX1xr9V+jPWHnewz14wNozeK6AESJUx6RnozhRH8gBapNQZd8PluM/gJ+zzIpweboJTE/xTdjL3sR5+MMga5lfJvQRtO0s9tH3nkVOZ/FJSrizKlOLExeFb08B4SbjVhOcp1mVmHCT4SMF75hZlHgbSIfXNAS+0dTyBJbQ+OfvM9bB6CSZzjz4a7fjrFPg/VZl74gYPbqUAstGK0LN2HYFUwc36gp/EmmMnchPbfJ40nJrF5+xRfhHG36TJ3aowzYAVpapPpkxjroSmbDDe7LKNGFDGCCto96QA5Pisq4dypGsRNfVJWy+cYKNo23XZ3MYQlA0AG1TqojcwZXvQPGFffH/ORxgFEczcDCxPANSKNBlpf8NG8KChLVUoRpfLhekM/1FDKqd9Ma1CvGmx6ATcko6g/WfevW6gsIdiNWkdgJtoOTyHERkPO6ML12K4XEr1U6zSewO/T37Er6e2c9PRhAzFmh+vicrSeG7ijmFoeg7b7+/aBZhxN5cUjJFOwh/axABuet4zJllYpr7wPadCwJwJ1Q+frQ6l/fxeY1Ac2qN7FbKSXsHSltnuFxhIKk+PIpYc8WFQQgzb8PgwRoW87ZlFcDtuuUJkUb3WERKK5qASSRCLSh6kvlyi6f1ll+/NjxFCHfU/HBx4pIQzHKUy+K2gFWfnC13Ntyn49GAQ9T2b8yDNNejIPh/3b8AO5iEpTQ6gNBA9aqD85uDmNennOC7zvUiTa9kybChjUUn/g1YC3NZGXnoHLCQ9jW+Ye7AuWnQyvsed9h89qlWH136aIvppNHh8ZVExtXf4Oc7a64hOpnjDwYAaKrxtSdmGeayyptip+PNeurT5cb9rjlP2NG6sc7LHcbv/scFubGBZrUefIlHP+NcDd0uTPK9OA737Mh0gSIB2DXzyCxJi5jjiuBBeSYwjkezPz3w2lAdKN+fIXA0+ozqkozTdvNe2VnRW+8mnsQYTNhO/vvd/XhAYILnGz3t8hlsB/2knY6t31gms2SYSIE72ym70xa/M4rBIpTrfaqjEUatgUkRNE3RbQyyUobfulB5cJcqCvgZUXhe2ekONnmlf7V587YMPlb1IiQgyYfCFz9NO3fwM8hRFASMCrpvd/A76IOLS13lSEaKOEchNNCkwIaUXxIKmxskXgVkF0m1Vp+V7cpAhcnAClVt0f7QW3eiMMuUnpa3lZTMjYd9NRxKC/+5jgbe/vC4OAIp6cWJZilieBQ+gOZrBYLrfYUFIybURq/91TFlIWGr1evkyVrvqJans7wW8OAVQsAyWrtX9YLmlnBBM9gbl5T+lOa46jBFxFZ6D/zVjBs+ByMD8b2iGomvDYK5lHyFBE6pssp2ngxdLsfY1knoIGFCpJwiQwv38E86Gj7FJ6u8ssICmS56RP3r+c8Kjq+DEFnsbmM/RIjJVkPfmuK6jkkEhYAEjxUFK94SV+DnMqjsKaIpQ6W8ZGu3kxzb/QVwIV0Y74N5z1uRdYqxLUyrNqGhCKEc71axftk7jI+FaPDSIVwnzCDLP23JnIi71yjGoXkpu/2cj+Q2m1p3UzNp8S3FqKcsnZcupuW1x33z8X5AIOV3N36GxwLDkqi9fdBayTwlL7BzjwzxlF9cODPnutNwYUVRP0M2PoKgLvkS5Ia3gmKYftMVFXV596u3cTGjM+kBuXBuM6JahEaWBtPBi6T6Q1JMad/zMfMToOD+bzzQOUN8UWNLAzDpt02hyNdv0YiiGYrndGUbQWldS9FTxwBC4y1ZyZ8clOXCqSiKgXXdyCNSI/57S201Wj3wUAt7GWcmMR+9bWRW66Etbpp04YL+dPZqWdvbgMUbi2skMheswXbViWRkVpHjVWmbRXqZuj9AKCYnspbOutIjqHliYitDgeph6QTA9mrFKFOLAFYWVQq6tAnTzGhMgSlcRP2klNtRmw0z68delcrJHRD4NtFHG42+7RL8bIjJOF8Brg2k24OqZ8fRpo71+te3rjIIo+G/LrA6LnXusPp5zWckTNPyK+kWXY+0hALgc5f805/71psMqyQvr9rEN4rOgpDGjFg14Iq+ogKrdIExtdPx4RU7AaSSczM70k2SJoqTNr02+yqDnWAeX9okK1T4MP2WVGULuXy7fmqGmPFqYv8Fem+Jo3Ty4/owJh/fiGoZDzjTbrs5mUAwxF9WZKrt/PBXCc51/I7k8za6RND7iKjxMzuvOhW7DlyGXUztmBYBAS0aEAlxucHQHLfnVbV3FSKR+ZJ/XYp292EYS/gCFg4gSKT/aKSkn2DNpf5Zp7HmP96ETOTikGS+r6R4o3zAFjiEviLw2S3gY7GM3pjGDxef/MMr2MP5jsm6gfWiMehA+y4J9QhPueOx5nYyKOCngV80QT4JskpQ2z7WpIkq3Ts1Mqx9UlHFQDewUWVjkmUCYc8ImZXHlFK1jIbzDcU2S7MdD+Vbe4Q1TfbB9E3qgJZtERHqyrGgs9hCwOmqcjD9lPvaB4pQxGn5FPC/sS9Sdz3tA/BgUH1q0PIUAr7so9W9glH/8fKdkldMejuSL3uLKZROQ6Vem531DQUN760idd/QuwWrE6n4JxFmtKojyzG27ykH01xh8d/jqdMdvWcmLsKgiTNd5pQr6j9voWJODws36V+MvJOvXe6iULm5HTl3elib2YyrwdpgC5sGgUUr9oI0S69+AwsuF6+JSy4dnpk6PCurZ2J0G5DzCmzk6RKrNJt32hWXHw87JODE9z7atw8VwDn9CrgNMN7lV2yFi2yAXxYHTgbIRGou3HInreSYIlSRyQfVzz3b1qHUwEJxMoIQmLFXofRASS+YVqMETCDEvrPn+EJyY1iYI7I4JlgYqVviWuKQkBv+8aYlVSVg54wgszC2CNLI1rrT8wnqMB8VKwbhnjpXrv2Gu7ixTWjLdqieYZcZ5FltWGkKVLooQ/ZguLnegTqorgIO0cCYEDAls7SSJntQ9/7EvcKoW9h1h8lTXyBOnRZr2VVuRulVBAFR6KUanmNNGHxOimtpsCXwnvL7M00Alv7Twyky7KSizfuaq39eWB6vbi7sVgwWgXV28cQQ0jMPXmeRRW5yy9lVVa4S6hFivPNKW6+Nb1HG3nt6T5gZ3ZUTzXJkwzhaNQV7tAGFoUZK5AuWedGcil3DeGgpZ41ukP+NafUDfK+gHyEWsWi7r3njdOSJXxydrEAxHy3lRgXvAF3dmEJ46RsquemiCqkDV3Va/19X1VkjlPtzhDbcDGubV2j1f07QQuHPzEJjee247ypxXhuDGveIee9vOV4qgew5AxG6T7DeyXKW/SiRBdR1v9qA9Zfh8E+Ea8lSSej5kBtFM97vzO2LtEw/heDSKDgbQvackZ3SA9l6Iyg+fffVveRTUOQkNSFaa4uYsrjt96E/bCQpqIpOjFAIWjXctaJ8QahyDxg335r+eNlmEImXSrTBM0brGh7ImY0B7M84QnkkLvSS3upnCh+ajluB8RlVvicPIEr8ECvjoap1a6Eq4SfOGYj3MzQ0wmzjCUnEcc5qR9UzbVvECKDj1T4YPKDWPUf5OGF/GG0Xf4TBACM0ZBU1+HvyIVFXNAQmp/IoUF77javI8rcQxuyKJu2AMKs8TQAfBp7JqeCdgQaOEIYBzxGoOF4PXaGX9omulegpALYMSX9Yhwc+p7sEfgCnddigwX19Ywr0vYtX4eOmlF9UGwt+ZZZO91sjieWNdvDMoFNCKrxfyxcq+enHBbWmlD5Oc8iWBAIHiThY4XEUqvEwKguwkhnfJy+IrMx4Q//oMDyki6zHnVF4dNJ2bMSC+zeZzBDFAN57BAAIbFxgmKsJGuwmQ1lItiH+LZvs5/XuDawDFelfxrkDIHLmr12xHFenuCI74uh5Dj+ZkgysQ1cEIGBANIprdQcB+gjrUPE4gSi4k3rvOjc39JVGo4d3jrJpw1XR5JSb0DQ5iiYU8+frGUMTlqEMY+emepTXC5br/YRtdU/poLylUPcJOsZGv6VFruBuma8+e1ggaHh8Cf3NWNB5lkeN/Zbalp9N+mngMZ9CZgQLuTxk6FCRsrEkrsfhwi8AIdrfvZUyRc59+QMk/rhCS/tODC28+HFUvWI+At9xO3Rw3fYrRIaCifTwUJj5nRa7dpJj5eO3R6ptY+RmCv0NrzXlMN+qbHg7oC+7cNf2mgxJlw7g2LWY31OPkUbkyldBkfYE7a/39I0KSpVZuSL59+e+olKQmThvm9xTLYXPUVyUOSBkGxZ1PCa51XsK28ASbWltX3HK8BE+maFieAe/rDK8OsHW3yLMq6r4i9wqmfWI5X+CHunZTt7pSRliseBcAJQ8EZJvcKMI7WKf+3rkr6ykE73it/V2kfaIiWpQ7fF3OpcsjNTroDsfdWopiRzh2U8fU+M0BD8lbo+rrICSlmM7AM6mKQ1104PU1L+zXOySBRIDdT8n7cKgMZQabU+iAtQsKGH3I7bI7SYcibvLiALEBplHtHUe+JQa/sLfh1ZnnLGi5oLtVp9MazxkyjZJyrDTAT/oisUmrz0EadPTXqhwK/71sMS+dlkp4+M4qpuRpBaM3R+Xe4FLb6oVb4zpAs8hvE9FyN2iMFWyoOd87DJ5Lhhfoze0o4CGBCVN/9ms5iysVlPsiiv0o8e2bEJeqJ8C6lww+yAsCAciTSHFBk+8KY1sm5lEV9ai/k6i6WKxK/y5Nj+9ZlDrv0cAkr9y1ba4DOwM0KxAGLzlKNKUexLf5MX3UadkEZCuVOMeNSb5jvTV3Lri3JJTHJC6jGJ5QWq95UtBXXV3nxffEA+px+037Y7AxaRKsyeczSbrXJ5bYoOjtDCc5gAhjMci818kQaxlt/Kqfgn2EQbthPeRPrlvmLlQxr6oGnJHo0GefK1z5aY9XLy0BMYID4lQbegbLNmYtDCqN6HYnyTIpnWfaQCIdPhd59xtBQv+Nv1AIrMOFMVldBFp9nTfYWL+yp3qAREtPfReFqDp2ZFcpWayCyB7bIJZHw9Es3mPLf4Bst0CVRYD8jDWLDWqxjzv9M44UpiiDc8bLl/sdi6fF8eHHA+V6mPlNEhyeKMauxnGEYQ+RJBw41tYshKXn3voYIAu1m8OEwqP7YFAiEpt9k36mHGsq0v/vy87ish+OOioARdMEhECHAljXCdGNSiftwG4nszgJscPgqLOa1QdMskvY/jSrVGkcEU3nDjBuUU6dykHgSJi3MmwnvL6LOs5Vs6RixN1W99Wmyne+vvAVR0QX8jXZT3Wx/OhpVzDk0Nj/GXjdpy1zljscRd1nzxL0m5U066eBxEjHw516R3lMury14yQA02gtRRUmBZxnqAYV4zraPjczd3v/wq/okXL91cmSYHw9mGbOd/uGYU+176IZsFTy/EsHuQd3DhmfzePxvjifZgclRp3zVIZ6iRW/GSQa9PVOSHLAjDqXvloU23eNHnH3VXex+evKJTOejuqEENbcdA2aj3rfVr0PicGeJufiDXE85/pvav2Tx6QRJIKqlBWqd5br9JYTq1LocFV4NWGZwisrJDExQDVWwfwYKM9oDhG+Vt7SMGFWGHJ/9OJwiwqQHWc1R7hKqHjSgOTO+98sgDu1ISzHtSnA5NicvStpAFKwzui+OxlkFxf3+gUfUNWZ1rUkqwuH772DPpMIJDrnZa5pVCD7K9eIC3V1tRT1tc9WCBmdo2D7gpo3EUVh3NgCddd9fhkFvOtX81VzjwaDD9FryUSig3w6m+NYF2M9bxrdmIbdRO+bcu9zPVSSq2roIK8Zb2bMe19Kq2xhOsqiPQoReEboglbRyIa8HkwseQK0LkryvjbcZiSofGFjGuQzZv6ePdiHwbJZ20DM8n7wcNxHiE6LW/YMReIOhV56yV76Imjtek+K19w9rGPUMZ35b1Cz79vlsXmRjUstAd+be002PPAHgSPeK3YLZx5QsDu6C/SxOHFxSEU+LIzsmCHAOBjt0Rijl0SFiLhcMbStihXyocgXa6QvEPI8McIbsfT8zI+TvTAc+PKzbxIER9ZiTFc4rH2L+3EICryKqGWftDOoZsmvz/j3N6diFeIMZyr7HYxMozCuEw596tnj3i0VefypQK0nrIstUcnVZdQmu79QG/b4VRNlLeomT7+y/WljchWTPYRnvnJ6VxCeROWc6mUegZ3N0muDsNlHSZnOGVRZ3SSTorVZ8MYtgQcvSCnTY5gFHSxtW5S3Wd5HABN2r8QJtFhLtLFvTKQ0IYabqG9BBFX4iGpMdHme8dFtifH3c8mayaSqEBR/j9lG8qWRsMT78anAYrvLyqOtoMkUNN36wEEOqzBeGkx/9SeTk7b1Gta3myiGc1fiyD7Dr5mlGWxsLGUVGHByyPcJcPpx0fJ7ZwJCyIPxa7kT8zCQw0oxdTiqoIwZ6vt+G7en7j9SsA8j9V4T+R2LC7iOH5Q5CxOby3IykLN7632mpVTVk0xnYK5CgqweVr8efg+KdA6HA34HOwp85077ixIJHLnMmTgBlr4jFAUvO1dfQtdn4i1z5Jv50XpSzC+ul9a2bRw0/L/4G0MV0e5RPzryS24kaHaVwKMLDutV3yhyOefOD52v08annVJQCiRi89Lr7z+wM0CpvXW7LMBNeZk812Ti90+KOZWcl7iN9vvKBGSBpjN/NTiaMo1HbhOcJyVXZ17IYpXjlrVyu88H3CDGxukiTOqTIO/CawadzAC5qTFpmOztvf7aws3L5T4d1f/OScIQ605rGblExBVyGaXDR0ie60fsQ0PPqIe8lUJnhFvtDMB+yISsC1+Z8EyMk/dWk7CwrjvQaxk5sXi20kfIO3kSOAETErX5TZdB98MHtefidJF+ohi8HSQ/p6lWTyQiJDKieiqO3RhYCp7dQSOmg87nN2EBzizz9Z8M+r03oliVASDrVcif0kxAraZmiteUFnNSFcoZ3r7PMcDzUKGuMyZtOxspaZQkxQHHdzDY93N0kr991sQPb9DKL7bbDdItQUsVs8libJyzsYamloDWj4pdCONh+AKoLIMbUBi1CuMV/VCIV6y1RI7iNJZ26VQBUsXznRgFItZzpihe/q42TeZfu3vj3mtChLpdSpCWVmrIFpwz9msTMGhMzx1yMLzgVzA6utd3iit7V8tMNilUokmHGUJP3KyowWBekOFAYpnjcHJN3FKbbo1oHYZePlhV3z+6+WMC3w79kBzyGKqmY1/vAhJqfKUHjx1a1fCY1/tAKQT1bHiWnYpagRUF9pbiScaJzjQz6IiMgiLZDHaH02YG8VQMDxndpC8kVospnXAskkZmgo+hkCETTj6WFFb/AqlHi+hN6Me7m/Ta6paceaXvDKJNaaK/XgY+ekNOzx4LxzVIkLEmdwibI8CtPMRYHmKl/EaBV/0jjctqId+DtagS//DTt0zr8KvE/WctVAGak2Cd/P/+svGdxdTBNXlBOUITV0EQQjC56FMQJsCmdgg4Fx0ZKM5PwuKcFgyEA6kGWd3VM2uGn6QAe20J4zJ3Nv+qs1qqzENrj8VDi/dlsmAM8Q/+5c9SNENoZ03UydlGZHJSnQWysIfUtpAWY0+xFr/BXgLTW73957GZg2TpCdrWT6NOpN3LGMvCY/hZF1HjBG9vdB/j0dTGX8ryWB2j1Nn13M6HZ7JhaQbNE8+UX95aKYzB82OgtLNgzMOzKZC+bbC6poa4oEgANSpskmD35bMjpYmNUr9vGl4CZpB5j8cuUY/AHPemdjzk/jt9sK0lwz6fQg7EVmgD8UNVjhmC69QuW6v3V4yIXClIAxhTGEkRH7Agr2OT3M0Q3QlJmywB1Jc63EcU39pg3//k8wD2d1ThG43QyZKu7dKQmUnCNV+/Arf3uPQ+hyR4W/+AUqVHuaKDi9W/C5ah4tiy4h1CizdxcJXMkU8IqKlaWTw2vI4MvO4Y3I90vAynJV/u5O0iU5hcy94lIdnHHhzjjJMjivuH0eRIXh6sbmEZXWLn191MGI2KU6o9N7SAwu7pWnDNYZwV/cPFEabyCTZYCTqtoAh8XscidiIC+BHZLoiJnRLZKuC20ZLWmTgtjlEMpBmxqlfgcVRBzblkLI5Rgtu1mvf7EDvu2G5dos04+EIliM0CdGi7CUNGih/uSlUdMFwM33QYXcEfLoyicbvmk3QVXQzZPNJELXWo7f/FXwGeIKbVnTDf/zogs/C3BwOHCMpYu/CzQ6eGgz/UzPOotIJZ0B5iisak1Ii8fFRzhj0QXup+Zh1XHIi4GfvIoOC81K1SGhkeOHgZnNX+6i7krLLk8MGpv7gYA8LY8t44XD1Xs5IGyxQkq0z7B9HZq05OsdXs+/QH1/khrLcXOMEDBXC6vcm+ZBMYyLcqU6k9R2L4RJnJQ1qs4DI48IW4FbJmD4wbn+IxSoaSgTsCqh5Hq6kQnguzuQogjChvoDgbOhmNlmzzK9x/tkvIhvc3dsfrM/ckWNEBly36puX3nrIfFr+6kWAWxblgYOHaxFdVkLCMvgjygXzIfbN5g4INyFbOE0bUut18MP+r5ea5zKmSHu6AMgXXJubctHDim6uB6+PSr5LOT0VCjOFErmthydphd4oOWxGwQkfLt9BvC1MwjaGvYVp3PKKKqPK1BvJtf8qiDEEu7HDFKczD5XM6VGwv/UA6yxhzIoyCTyyRbTq7bIW21GcKaHAGGDcHDxbDadJ/Js3hh50VtWNnirqeWCdeQ39ZYgadJEgSKkZLMLTEJmCIsqPkz1eM4ieGHG5Oj4FocD/w+CoK4J/u+eSYvCQ4djgxE+98cwM1yN9E4TUS8Yu5aw+8Ui/cIuOFmLNTdDrc+HXJnsfYO7NGLTu3KuDVuEU+IiO1BK/VdrSvbaI7chIh44khsuwM6ZTquDPNtFX/R0ZXwV8PWC0LMk8feg+XQQw9vqehnEOOXvfO/mSlyQBiJPg26BBZ3IVjKH6NLf4EkRMjHeyPry3q15mTFbCSTDiU3cCwl9zfIRwx49zgE9UDkocMFhETyiq0EFGEOwyZ9GesF5Rp9QuxEiaEHOFU00jBY2Dc7pkuNMlkMcLemYXH+pDkyvdETNp+D3IakBfRFyKrjh9Db8sSJlH5d4abZpCJk7Ap1bwexDlTN0sGD986Y9jAQGf32Bob2PlNvZVDLEEKj62SLnsRk3iBXnKKQdeyO1mwLPcI4nWd3GiVGg7RccsGopV1xd87s3PIMFfaO0MxVEusYyHPBRf7Hf2EBvobsobRQSJeQdYv+f3D/hWl4L/qbJctG/Zp0rtUUjnltVvDHdyoGCWHnDGrdBa1jcXcLn7GedsaT9SfXGRc0u4c29n8oWnJadZfaTWm1D6GpZ//rsadIN/pJbfHH+i9RcMEaFRPALmJMQdG+m7FZyplh9XH80jl91o7Kv/jORtGRSYny6z1l1SQUfpkaujslbyTv6cZCmfX9aKw5XbuCio0cjEyB7NEMTW/QFxjy5JXb0R6FhbHZCNR9/U+fmOAYm03yqYCFSBXoPPG3AH40YKIu1DBuix1jI/eQZua6h9AS74+1PNMi/MK+uBq7VElQtAMpko2rzYO5n4qDI0a9m+3Vd1KSeTg4Npb1y+ceGqWdWs8PoyLx1yN/rqgleraBUJ2wGXjtokEzcqcmEw5Ioj/RQPOeTluhCC0eaTkGETfzxSioGq6LL4JFj5i87lE54HyjR36UhTybHseCusQJSvXukk7QqfP+lc7F5wD6tY7utxRcxM/Rkm4PyH2FjDPa+/SLCu9iZYhTwD/7g3NmLCPUeutfMg7CrTiSHhvuur/vwjLw103jWiuMObDBKT3mXcG0UimjOOIT8ugrSdIYaC4u3Bi/8oyY9tRCdPEYaH7ChoKhwftrvT+RMtP/dLFV61gDh++Vp8mOBWoFfEgOanzxoJWZbDxIH56B1+NdDwj+S7IX834DhqkF1IgNo8BENy4PSovo2PjA0ONVbFNS+3Q4LKg4JvQwg5BJEqwNXxJSxGR9sfjRxzL7bqBLpDDdcSHNyL2JWG8vuwzqMNJXFSGQYING8DrmxxK5RMXowFJOt1C/Ym5fN2x0yOYC8VXRZCo0oqI/ZgCgrgq0JQxFp0P2yiJMgE545Y7qVYXeQJgXAuTkM6PrEavaNcQ+uSblX6i7YKER+3KOynEQrO2a3rLSYmUoObBpxUl/EmQDDtcbkJbpUcCmMoKk3go0FVKG7Jt6anBEoEMwmXfwXCI8cVb5mNrOqkWQhbHcH2FcQLIHDxHKAnJUljFJnHdcC6BqZpWnoVzYSdTJseUgkhaZKWvXZPtpiQDzS6x3vueVvfxO0sMWls8Wsw2cL6UVOsakMRemh9P+vL+oPBffI63RSDj0xb7RzorQSP4UTPyES0yZ5L5Y/QdSh+ZXViBDYlddy4OJzZZ22MjKQbyMPt55wDVAUIB2GYhlQIKtJvAIsrfMVvt1Necju7PygXaklSAfzoOoNpXNVTfZXuOI9cSOXaNQsAXIBF61cWzQ4HG79jlRNwiCtiUQE5X4EuzJw2ka8GcuLMBgPBYDhZn54QpdCPLn6hxH0AqXkYn6mgwt1KiuZ2th3Pybv3Wmfz+95WVKX/Up6sP96wWFxLVhpaOpb+NbmVzBntJkb4iRp+v8njWtt/0jMxAeiRQ98PxqC5C2yHQaJFW6ojynzKCxkN0Y6cBptPY3lcDjHybZdotopKT6LKt+pbtb8TQ7LMr49mk6NZH9O1mXL0wsiUhHqrIdXr5YDHja3CBCphSpLMHm1m0pjgCz9kLm8LMiL6BiM5paFFvlFixOIb0pRrOnYrgG2IrLtfOkVEqjwp9WvbVTzrIeQ65wcToOKak6adckRnUt33hggLmphcmd7BzYXLeETj3x7pGsn63rZYhn7VDG0YjwbgqxSKbrCLHIwRWf6YyYSgFAZPxzB2mQ62DJoABFJBHlebaSy1JbfMpnNnEkQzHLnkDB2KWFRcwSeIDjm5kSHfs4EY5uyZZhyZWhbWokfU8yVrUdQVkMRhAGDSf6oiYMcQcEQCnti6QcblekVAUTrrZ2jIRVpkIKoRTezfYdU9CtB7kDNNuJxElV2Wl+IzN7IY7qdDbK/0SmKsZ7jD2DVOtalhWRlqoDK8NSU4LauWOL5wcnisrDD64fwMyHo+4TOe425y3PCK12b6hDZNZjVDTwf1GRAI2ry3vOFWGHwc92B9KaOma3NMuIwtF82941wruifay15TWUKHbUHSzwiVnJ0Kp9cm4o1FnQzWIfXOEPLPcLriRjRsh1QIuYPhjtU8T1wZYCYoPsIXePUhyASxEOOrWDwY3fM/L0u1Vas1F6s5zXutjeM9RMbKXaOO3t33SWE/16dUiHM2W0erUMuo0PuebPng92y6AyfGcRPCslCf1D/fgOY0gzwXqzZuejUINLsbQuqqN/oNdCDEBG7CaWDYGThY9KEskdsqGF42HFVQlIJsUQQ2ZWq0RaWJye3IUZXCA0tTlSECJWWykshR8bXNkUOklPHcwqpcQ7NM0IN+h17qj7sVfKKEXjm67v0FcBPkT20Q2gNUwdDQMisZfUsmlGRTforCU60b9yjtRx06GlkS62iSOXv5R10p7qBRU4bReqKijU5g7yL1+SnnHXnpUc2ACaO/Ne0Dt6sZEvB0nqv/obJwKvKKAVLMa/gpjuEe+d5VTwGLiVJTQpTyR8PdziMLgZPwkdD1rAbZYxY5AHn3XjpLFryyQplAraykzZzJ3od5uuh7CsT1fDS5iGW5rsTdomdNbMLjHV+3kUE4YeFTtpGFl/0ZYzfRRPDwLmuLQxOzPq41naQQbhlNwIMevrKOaYqbhdDMYRNgVF7iWsxRR3tnYZMzNoPBThrrtBdlEJ5UmsRJM6LfPErujyoWNwVW/hPFCWFuis9znesd9JHtB2nTM/Kbk0rvnlABZpsk4CoBbqDVblnnyBPvaD7FL9DpbYDw0OXxsL18xG5CE6LAIQVB78plZptFZukQUJOzHCDo2Sb79bcCA9O9s5NZXCxKShhgbGOySsNoT1qjg9eheZRTBq+s8LIQsrxZFSbjlyRzwlTO/GSMLZiDgpup9LW4lScJK+XRNPIdd2HcPdsM7i4eellsAli5FIYnPG8AdZWSSI6LQOYinkJy1aIT9rQTeQMNarzTvJrnmVj/o120R0bH8CGWXON9hJUtgJCih+3Zjjm0C8CjcELq01Zg9Jxod7vTJ34NjWQfhi1aqyNphP/+Su/TzyHUk0Lj9zaVcTNersZsH3Ri3PawHHPqkMHUISeD/YlG6TNzf/rU69u5+hX+3jSoi6gunrDVGviH3bXRUP9tCj7WYrhpDtSLguR5O4/BCwdZuM7Z7vepJ9QFx5f8uI4KjIoiJKWm0OHWApKbqUUyBAuJDRetaz5HBzjxnQSWceJrcuuCrvFYCc9XnJJEJ/ksk50RVUZokfceyW/spfCC5pHGH6nI/YTgxImPgAQvLriqnFJaX9k26fVmzTraS1Snlo7ccR7wGZvnN1IHVUVYuw2c3XKMF0Y9GGO3GHez65Q11gyAX492jsT0huqcc0l0yjX88t0qfXgsdV1NJlS+JeYPBsFwW5h0D33mq/UN0upqK5HoPlCam51ATm6dBm2aG3uhtuWZE1CW4qV7dR6gUb2upqaqNP5kQtAYIt/qmAA31WJ6t/vmGSxZzpVZSt9eDiKt9T91xngp9ETXTnufDzDVAQc/M5QEzx5AERlEETbVE5xKk1DbnS/MFUerkfGsfTlK8TMxhq7zLGZTLuerE8gMNd7hPNC95G4iwS0Ef5Qqbf3Gjep7YuFo19p4uhdYcWqZhWVVtnIOtc/574YXtHzXnemPlrrNffZrPnPRqDyeMkD9D1Za8EYIxvxSD1BzXh8qU2ngvGp/zel9kslu5IBr0Erir4lwOK4tMPgoBsPZjTOPGTZr1wU/q2X05ZNMSNST5m9ZVWuq/UfzijvJw5ygdndN5yGzEdl71NMA4+xk9LfmTe1cczwFDQYT3g6af2mgFqOH9uft6PsJgTIzeSF46E3TZOfn6imR+WjZoeqBF9WaYFY4rNOQiYWBOewXkT9f1zieIB9C6Eu4ZUeOgOkhTnYMpLBaS+OHqsqDU3Dz4zBDGvETDhszBdzCcgH0dpn7MoMYPtd4A7CMl9GVL619eWjb/QRDGG3IaxiQWZm6+ooZHRyG2XENQwYrsr6jfEVI2gpg4o7EJ/Sd4JuPP+d0dzwLwgOzMBIQ9Q2yIry/eCypnWTGMsIGpK0Uc+sk3Pr3Hx3ox4M7ql5Y+qqtlB7Qlp9WMMwGcZy09oFySWbb7W9tagfX2U0l8g2Z0cdICy+MWf8JwQQkQoLYqTyetBb+Nc2OXvUpeqPRhSU/f3A9Z4/kTm5rjPHZUqk9pJuP8O6LC/4lN1PBbgUKeIoWVM3UW9E55AO1kGVqU7lD7jcRKjEmCEXMjgmUDck0V5m9be56sx0SFMpKY+VNgZFsPwMgErOwme88q55LtWTtnCw/9qAjXoCrCMObY2SB1+jTZWeAbyoNZtctIs8uGBN3oxEy0kMxLhw9PxdaSbHNcVyh7Co6d/DzUJr/c0VW04hC1N8ZoTb8rK7Ju0BlQXn7iGfqKvT94uullFp1eygF5SVIuP+ObTJ5G4uuYpbOWIxQwFWuWuTzirLUZ6pjDXkIXudJJxySacPiRxIl5sSbgf2W2EpUbDmyL6VfR21ZziRuvx2JiClrQW3nAV4kYAKtMZm8z5XF5QedoQF3WmJN8rE9Vi6Y/kFqg0NopjC0lk+KKwDSxV4RXnhM3PGqrv7YjPO2vxL9r/ZsWj+E/O4e0a4Y3c1O9Gdn61zkt6cMIf4oCuR2hXtNvgPntkQDaCE4glK4FiWFD0eYYBoUWnjxaBRNXnWAeZyMAtGbP11pXrL1a0DUS0JNfYUk1bcjg8XvFn2xcNKkhSaSGXzYo4b+L/9tMqpB4EKTWnZCKZCmknJ1zoppIY78ZRknESFsUyfAKz94KIC02iux6ahILUPKd2frmR6RAZfE59ljZ8pH7ivpcpxT9anqk1sPtqQ3OAdFKtyHd6bK6aH/jT88QsXtvk80T0BxEujXbrFksqnXk4RGVbBjmI1BN7NLofPxB2ap0vd5/2HNdr7eatA2o3mocHH7q9jolYTYxK56oberw1oY1HAzO99L4LocZIe80Fni6YEe2Gpq5SLA3deYmEBaAFsGfiwXJzHO0+j/csc9wQT6X/w/r4ptaSCIdc28/lm+b3cE4ADOc1FeEy0MMkwjJdQ3duPSBMC5nuEIyeQYCv3w8IV2ykidnCe57phkRLkY5ilxMVHadoK1p5HVCe4YFJcLnq5f4enujfFoejbltFnyGnhSw39p4WlAn+ozoIyPzz/vDbaJ1J9N1//MJMMroyJ0j3YJESYYdMFogO/Squ+Z7uuplse2JqJTbOcXCqHSYpuKI45E9ENOAlQtapxm7j6Z0e62JeEUGfKLvAAzbay/k67VaErLhpBxqkNrSK43Bz7XEPT3zDYPQ0Zw7wEVsxU0bVhEllmVxo0DOEfP8sjFa8tf361p29pNym0ky3+STMgKyCxmuBA1m1F8hIlwGBCd5aqfTj3N4h7S9XV3hIaJK1AFi78j8cZhypeUCR70qnDwfcKpKZcR2O4ZO2qgVWoclmShWAg68y1hDWXHpdv/ohB3gerk1TSQEcz9vMfLlzCFeAC5hpko/VPoXwkzPvxEWgr0xJ12M1gv2dn4FSz1i2k0J3ZaNG8RWy2OhEy4haIkllWJU9AtEAJrhgIBOydk6gwyY1GBcmAAZ2XZ+zVSavMEQK8Dzb2fpwiU9PNg0dj9iP4J2kTAPnQLIb1ESLwU4DJ5cixdPpNKWD0fZsSkVDL8NZGNsassYgGVfGzvtFmTHKCWKWkxALLrqBsq2X5V+WKcxUKb5l7d0Mg4tBglu0jKuiVSAh2lkA6h2/amS3SrO1OC+hNxkTdkkOnvdvzMcIL5xjf5Wf3Qe/h7AhvY5h9HiPEMMcxbQPvIyj7sVx369gaM9CQC34FDy++fJ13NqnBgh04Ur7PVxsND1ZDtXXjwHFd5lgZQy4QoA27jhz2kByWMMWyYPV9Xrl1YTb3Yso2rRJCq52NAo6eDMc+fXjuY5kyl9RmhZMo2349Tti5E3Ri9GUtQQpAHPyFD0DejPYW9Rg/4Fw2PCFdE0qJfvsyBAEOFouuPVUltOztDF8ZJQ3M8BrtwJ7LFVRTSJzWaI8/jl6D/pBJ31h4XT5YPodhsv39yRLR52mHcZCEYXNxAqwx37VCjM/cUnVK0XzXWUVOpyczTo3fUoNbCn+UPEZq89TWpn8rnOa5GfKkj9tFIJ1eKwjDRWafysppxXreQTx8Sb3ZzlmgeCOv1bHTW/KsUKiQrvy/ZamdbBi0LShKP6jCKiVru9kJzyWl5wtYY6MZ/1VLrOX9dt1U2aPuyTRiCn/Yzv8lm0afnPSa75kD0hnQKwRpFC9eq9S3OF57qvD0iUqyF7LyRMcw9abfslPoUz6nIdKf0+f5iHs1UtSNzQ1akR/gskQfYQfz8VCJYy9JAsqbyVYyq1NWiNmrnd3U5jru2ohC3nheQDhuBk70EUGH9tJhiPsJmtWo3dYY7iMm5au+uRDGgN9evlBUNaK2ZSxhohWB/oMYmn/ZTWO4BW7J0LjLumTBHvZy6rfn2USZ9uIKAivyA7Civiq4PYSqIEPMSI9OwZKS9J8FyiDrbVtjji9P6RSzfKVKE4cAmypdJvHO7QDk22mu49QbiB+jDHBduWhSxmKb9v86rl8On+7vRDfbjVPy4NW7kOnwIDwCa/199Uo/Q6yagUFE5K6pmOlDznjpJUx3CFHQFxtt/q4rLyoo0tv0CbjQ9fmBvNvLxnjYuntvfXh0MzbxvHV28mTCPahJBwYv9Prq+p7HM2Nug3c6R4gPYkvwTnXMX8Yo3l4Lyv4594QxR0tTasAGQ3ka3mrtUAHL83xDi4aZ4jlshWDTU4eOwsR2Un6e7m721Lv9IUB/ozItNMKFHi/kebkDbD7MkUXyGm3TUpZK8Z02jGDPDlK5n+XkBrVig6h2aUuL+f+Luy1OfsPuSdd42gtEJqwTJrApKrtTztbboPUhzwQSKogPdxDVR73hJMItuoacneWaDHvXTG5KNy1X0MgBCDC/4N49IPVC7ZoVVXU0aYMl+RmWrQL6lYBRiEMcH3jqy60gwEWY0PMH97wC6Yayu9GXlIyZLDGIACtlaizzBf7cL7OMFbWavoHtRlzn83MmjYkwRrbpz6P85/fYOHJI5XOTX2uRadNExYeopM2+Oqo1paAc5xW/lNnsXeSzT6S9zKIiMc0+8ntRWoe3b4g8ib8FXQYPCJJaWVV1rdaNfOyvESiTffNRmV9KkfpyYONZaxXoE2wdCvBQbydow7qJWMQfqhN7TvouIttmB6ksyAXGBSfW/eWcFVeQfGP2F0V1mTgjyyiVJsHBAf7yXieehvDO9VMHn244rStJPPQ3fvX0e8GoFEvktrPPGDEdWVtUAeS0Rv2NEXsjR59j005Io+Ux2qtnpG4a6le2VJd1H0BQD2GHsGCA57UAKIYPuWFxXkX/HNagecheTAmeFqxb/5PyKNJ4x+xzIP+O3ewBnXtoXb6NZIFgQtDTJJUr/X1e++knLHqDu7FOc1sKuDGsFgrvCjy27nE2Vi6AybzWozFwAKGDGcZJgx3B0uPTlsFSzVuovYRYylm2wuxCD9Xh3dlzgcTxqNyn073qXqbLxu3XagcwRofEYFbAqCHQC6Ww9PPwIVyiZRLWKTfj5mnrqiwDdppOalueATgBLhFjQ7uLhMx8DL0IcCu2fU7g1AR8ngO+a/nxDKc33C5gfJY3Mlp1mc/RDLF6ymVy6JXEe0ri+r8KWWiA2BZCp2uSmo83vSVkRnJApoHbFhMKMCB57ZfMRi4spM1MYdMuXo+uoIDTVznaXK2neyN2h5hfseIAMoZoPan3aPYP21XWjKRpW8RZ6pLBUAfUsX76IJIWseSN1lodDefN1aRwskoomFxtJd24YV1A6LCVG8GUtYpVI1wJ9tPRKwzhAEqQLY15/NXkhhF0iGyeoLvoE8dwAmiGeK+CUFvGFEMl1Z49u2peu6J/MqH+iRFYV88ixb7ycDulYhMGnumrO/8jE6APfvvhHh7wzC8dPvQXJDX1rOh3S+jxNIOEHbdhA3xjz8VYujPrgLYndmMrzgMiLvEYDychPDVrNzKlHbEnCPk9PmkwsHb4n7y6fmHffU5pSN2uSrx86GKowSGrM6dzwxosPY51ZhX6tp6l7MWzq8KLA/lDE3pjTZ3s5dB9l307Gw1kesmSN71X62T2F57BKZS77TarbaNH247GxPfm8PsXdjiV1yu6zqb4wp5zUirWNZtaNwBwfMPaX2k90W4KAYj4kihdxDujMSsRQqkK9R0eQ0oXbUN62tSfhjinIQDkl1xh8hS1CLY863IBBXXDFRpGrOH7JiHuxrBxqoV1yGss85CRjztP+1VcZrIQQk147syXGWdrpiuPxn+ffdbb7kJecC1+6tuEMbfYSYFv4AmDYlk1zknqYWqX1UvrJJFsg10UlIe0V74AHK5UJz4JxG8Wqbr4Wn8xPAqIl9hacpGyU/peHUSPhB8tqZRFkjNPKTkALykelNQrLQEoBhXUXUoYI4aMj2dQh1kTOE2lWATGU7e9aHZyG+dpX9RYiDPJDcDNTxk6dqXBK/6d7mxGsIwxIBob7Yp65UbnyQaQUx80IizTunNKxOIQUvueycGL09cj2KuqDiFJ3WMlBT2V/TYGE5buhBMqeu3a9TS5TqQTw7P0bWgV5qMcGR+IiqUQWlM+KImTN5vaq7zCML0IAmkJbduoi4ZefBdEA6h4txCWqr28lV+TrX8mi33WPQUhnAHL8IZIETbHxo0oLXDNfljEKiZxYVQVynhBGE8Z8OlRqouvEQzRo77wenfuFrPVW4JNXEoMyWDEl3ZCrm5vGRP7RFCxQNNqW3/u4SsKhxczVKMWmYvyaNNd0YXE3GJepqh5xjzVw/jhDC2u0IhLIfjm0DM77jXLAbFuxu623Z+QIiJlqv5ztf1bv1nLn7H7ho88dSolJ3UyjEO72/7H3RTESbHTcoQ6Im8K4Wm8qJby5v+Ww9NRQqpdIpJzwfPnFPtKIn+17vlojxpLPHMaPppKIiEsYX+1qshG8KedSdYlAgrJTeXSREXAmxzgcyCtDVHdxGDlQBDIttEpcn869tXa6T7WS1kBWR75uuw+7+hSsgHtSJzqQYllGaLNy2ya1z8J/oUKkffDN5MA2u07xDeYwsAGXtzjf1eTumiHIfHSJBTIXfTiW28HWBriQ3m1X7o00WiZ8NXcFQirFaPHDDbY5aq0huZmTd5z8PLS78Dsrr06ddKDmxGwxSDjHos9jo50A8a7EqN4hZ78q/cB9w608nR38SQSk75RgmpzLbw0J91dDXkHx+StzApxanKMuCNRyDrhBbFuBlz2ZaVKM1b5JWG9QtPojOLDNi4zLJT35admsS7zGTolCVko6XmXxD+lYfic2KepU/Ni6WIK9f3qEfe2e8c/O42qb10hMZ0bfKUiPU+w7DrFJuTTJxqw6uqUbeM/ypkMTiEoAPAERlLk8aeghb6FxRNYxF1b72KtTxVmnDjeU585ZnL2giNMjiKA60L79QOOO4Pl93kkOnl6r0jEQohp9YQZivid+gdGRjsHVEI7GGM0erM7j51ZwkiRrI1kKeZAzqJ0Klre5lf/sPCc7PlTJOaH5Ms3Q3eH/Ma1DXWJDQl5GXvB4sQWmlFfRffka3v9K17fidatFQMTLu9RVZBxtZAmEkQQnzLssaO9oaLAGnzLIGs076MCAPs3hgW+MoTLFWjKza2WPTpEVor7Zgo7tgvv7+NBCnldoJ3SOy6gKWoQ++oOIhPFopIs/pT1x8PPxmIw4oKTXohzafVVpbJjaqQoMkxME83KYHlzqfa69oQ1QwPU0/W7Lzc8168w5VWYftO1JSTBGosRSbdvL4+CnNIUCJVotWyF31jpJPFMvQRAiW3Q1c4NC6Oz7aDrezde9NIOoP7NMVDiwDtwRvMJCkb26ckHqSg4qe5ByNvwdz456QdwZrxukoYAoFLt5IZIoD0OvqkNde8JB9lRAmyLS0JjiDgmwJi1h8rYOLcADeWcdIETq8f8wQr7w1qa/PY3XQy0eodKh7IXmlNUjhZgFX/nMsdG8KKMXcytUnPhuTdKwait4ZWpXt4hdi+MLudk2rH4qM12lePES5fNUqCzTzve71O+++I/P95AtlpxOg28SLGBCSDZFM2yOoPn+6mQcUvLzSyA+4kXBrBTYvryd3zQQTX7QDVj+XM99pz6RXcAuBzrNyUI9ATmU9+BL2EPzEvFFBberArNDLGQYodWX9AzrNvfqNk5wYCEb6nYodh/9c5e0F9uiG7zSappD9B4FTU2IilHpYZzfd0/+2pX1viEYGQtdiCsIt25inahUJdJMfvLm80X6aBfSXmvTArVjmEw7uoYjoQVkBPmLhqLLlkjs1aAmE9eE8N83RcBffdybLksmFRVJwHx7YaQTWEh9bSaab7FDiTLDoOZaHd4F02ZfvxljseEFb8XKY/NnNgDS3PsWlQvq0UHgiwsHopIlVD7C3NQ5qHsvKh/atC1moREZHEv3O1i52rXIpnTGpzDr2RAVCmLKR06USX77G73fvateqmkOHdcCTghCSUv1VSGGDUuKbFJlHmKvjVrZl/ZUl2plJVRvUPJKtBDnybpXwclE3nJqDmrCnBZEiVkgwfa9SoH13doS1ni6++xZszRfW1AtYUISlLYjK8kHOaCdTUz2fiGJAgj8HZqmtcfBgzGxvZQMIcQjB6ZoDvwUPevinDr/rEYz5rGSTHjSnL2TXiB6BhPbT2+pqv6LV3RPru65Rb1pKkZB9QFDanM++Ayk/LX7pw9lRF8F0mMQtS0O8SyS9fcyl+qeBFqiAezlBiEWsORY9YUK1GG9o+6BMg4Ag2i1wXMIs7Vlhoz+WDnjKiJZB5sxFzxgDHpPkrH1el8doO4/g/CDQNKJhiTg+Iumjdb9Ri6UNPzdjACeOmSWwhEl//4rkJvLGP5KaPSV3lIGe0lcHlpatNhpHAhZr/sjeu8q5KoSUYq2Q2B7nWy0pZ8zACcjelz0RW+HArzjg/1tZEaUUTFQOnroXaLFKtHD6nK0iDKY17cRXZfppFT+0xErj5EO13zIFjaJvh8me6vTlqP6E87G/opsT4VWlhmmA5GIOl3g5jEQTi1tyxagUNu/CUlQcWG2F0dtHBFYn5UlOVPaTSfxEHqS7sYd8lkqgI4BVZ/7QIdUg3RPYlZbNwGhdjGxREAwMzc7lc2MNnzItOJFxubPRsfAp9zgF2Dz9fzVx8Bc20U83XlIMLq9us0hg7/TM3rTRpvEbWBjp7WXChn5HqeQyjng3aiPf3sTylyScQwxmjMzUxVJDdf7iKNEGnKH8swT0IkG8Kh6l+qGmY+EwJZkvSv9BH9vgr6N0lppjIu7gg5FvOHc7bxYT5Pcma50/hCWWoHxCNBEmsaf2ea5t4WGEyvcA59d1K1W4WjIGpcWI8faniqrhYHrQPqu6ddc2J0dNs4o7bPoUVA3teeDSf5l3b26h73ljvMgo4XeRYPlgqKvTInGHjXHmcF6wPui8P5E+95Q5bUlWATZ+qucNY4rF1tBV2HFxzTSzxn3cOH0zl6tJC2ovyllD3ZG8tT6kGpdUERCBex70el8kQ5SeJ9Zin9MVMoeFW8mi4w1aVFYvRD0U9url84x5OQIEwJT8AolYMBxr6oslrt/K3DdW/CiWtmL0uyHlIbr0pkwMNpXVFQGOdmT8Pi7iRFdfiSc5Vq+HwpELJfVwuWOG0PhzYkrrcNwDHpe5B8w2iV6SoYP0LBlQpC9Phl76yjozJw4U0FloMzkadZoW0/itQ5yT+isNZdI8I16FAllfWJU9N54RyvIWo+ap8lf8Drs+EpCqq5pkN0xArMzbR3QWKsAnDG1Lpku0b2nkoQ0cW9OyRQVw0J+jUPMNXzPnBn1Yv3brgGUy+YBCx35AuaxTYmP7rE5Q35WMJbeKZmuw/+EOV1CdmwidReApeuO0lxorcbB3e10bb1LjCgkMUCe59tNcRDugccB0YSRsh+CYbEd8cqfYLv9Ou30aBpWLo3QDtE8I2lI9cu4GaISX1lnNmyR0CnsaBhegeBEgOXpZIWHce2v+jCB7Xc06Fg8uizsddH5HjjTDdK2MWMA1Qd3PdeDod+S9XTpdV9pQbl8LOszrYVd9YU36/3XVYQMaPhvAi7RL2K5K7e2v9zWrU7nrtXWQYnU8EA1JduvU5UNMVLP6D4wHqiLTG9nfhg/aeKiVFq22PYH6RM2beLoDrtLve2kQN1x4FdoosyOg1CXX72sjquZQzs/GdxecER6yCAM201ETx7i1vR3uJXCnsjN24QYJH6XRD64Vf+Vy9tv1j0aSrdBpSB7QZXX/sSLrzS+7arkUQhwPQ6xkT7Dz24eAI9B/hEHnL+X7Iknr8WcDNbgK6Kr79knikIxl/8Pp5bDqJDSCSx6NLFE1tzlnyPb7kG6s91S3l777ByUrFdGAVzgkLkdkf4wvKSnYsv21N7iQK71u1B+m9mBDedddEO0ZLlB/DjEd9pnK2tQToKZye7SChEaGq95griJUFmiHJ2MgFKtEDKr25/qfnKjIDkaZFrWOhrNjXF11+N1SlkSwa0xu/QSMqRi1H+MmR5rLpiiRqw6XmlEFLaAUTPw6ze9NHqK6zuDQYfVHxCgA2XomwuLLo10yxS1E7Vq2eFBNTM7BKP1dmsArl0PSKb/vH04xpVfgHKrE9ELjMLwiFR/bcSmLFChsYzgKpRRBlKDqUI3I0OpXrPQVJKwtAv32LSeyjO2PGQm08bJ/+ZjlYsa8FRtNWz4tC1bTP4hvTuEZ1gF7hndQ2gycV7PWXkboCUivQ4hLwLmMtAfXHLDZLM6h5gc0qZMKpZ448FNr8f5EHBotmsLvbYZJithamGJ7CLoq4nBMP08jAYpBQOSm2304WoO8+kkoZejd+IQpzH7TRxWSwOz/8RxtLIC9s9g8vARQjkT0Og9cSTEa9X+BM1oUNAUYiogVYKVJo2iDCaKh0kbOSkCMPX6bknR9z3r3fMP9kckuFQO6n5vnNdK9naLNw24zQMwyV7Cz08ElyQeKieeBZII2KCjaVEepn2iNEq1Sg/LzSuTkKaj3zlMU51dmurjgvjUBh/oJWeAuqikU0iOUSCS1MEubWN0A+MkrH37C+0GaFUJMJKgKsNi/tXq3p0RwyUzFPW2Z/CtxY2bUw+gZV9kOYF4uQXbRk1w4QZHauId5i8/J9bDuLEBQBA32qM4ohq1bOlovcIhvzGFe5eAacIdVsALvlZ6GHiZIgy/dyGRHxxzHE45pyMzqB2okB+MsjjTfJoqpDOCs3Or/RohlnkzKx5xyaAoDRuPzM016K1PPiLG3AccyO9+gaSSgflYtef6lnZrrKazuddBTQfl8wPkodgsu7rg8dorH3yNOCK2YBMXNcnsUuyWFTMPzMLATeOImwhkRwff230/SH0pgAG+RdRGdfAbBd3SIcc3IZWTvMdXzZ58A17TtSHnp0vne9Y1k6j17wxp5fxSAwS6M0ofJeP7IVFSjoDQ4VeeZ33WL1xgF0R8FML1TMroObGHgNO79wWWCswMl6sS+d86wghx7MVQnA5b00WtcEtLxPqLsLmBsjEfA5P1jKxN9+e+3nt0akisR8tRMkEBM0HzL8MCFaxMjnjlZDS/55eKRknew/rFLWEa7N1aQUp2bTmdu/kSM6EIW3wciqwqUlOUM4akc267TUdZm2Zqeo7aBEb2WP9WE3cfTLCNTiKRtcUs4hKPcDagVIDUeDk1OO4YkFy2O82XFMaQhxc9qaF4KEXwZBwJgPPh6nI99ZmSbRa3JuEOMwgniwBkoJyFqYOM26FJ28XjzdLDLFko4eVpxVNcZfr4dQTOkH9waJCoFWK5OjIcEoEODoy+eTgSUGfurnsyDO7C6Ox7pEh1ZbVGIzC6I8rAczWtgMTsH6+PenLktkgOMZPTB881v0WLeWrvtCR4wSRdlpOaD4c06Oq2bX0Lotc4cOGyOo0ypkbqEu8u0+kIdzYlERFCsWmY+gV5+9mpP16cbH2cK24L9M/2lkPb2CwXoOPPy/nsKd6026diRkVNYXURmK8MQClGvT72ZufdGzkitk/LQisie0Jy5ZLqgmWUhuu4J7fE8BR3IUV/c79pgz8dvg5gYD1d8C9QEhTgwNrfrszPE/Z9iXKPFsaqA572glWpg4vjy14OWdbw7L7ggDwq0WYvFJTu9zszi4bP3RuyRnivtYDy2t8407eSAXz/QY5SX0Ce2tQz8y+DYHua5d10eGuHASCcnPpdkfuAHhwSNKgJ+8lUt1gUcwC/IQSpWc/ouxFhZ7Y+tLMztGBA/j1oRnJ7fBJ8qczgwxpZQqkijaHerUFGMoSW5lJJKz7TgIeBESGxXyrxbbzEE/2qhiW3aJ+hToBK/IljDDbnxZ+oscDzuV/JkloiVlnlVDdiBtDxV/C4mRvE0dq2yfbNsAljg0+TYhCysEs2ViBw0cm5ib28djb3fgiV4cwYFlqDD6ooRhl0DYPN1ywvj+1Ay81zDjNHj8cUzXxBu5BpZJuLnzGKfEtsgJhGNaiNMbQ7aoHpuCdS09/Ou0AmmikPDK/C+w4FMTk9f8W/QZTfjeeAKOSLPwe+AmV0uI0ZmiclVf/A9MBmPchMGafX1KlqQfds04RDOuqy1GXpZCGn9dZTidhFGNosib7fv1aI83UD0hGbhD0T+wH7BVcHVDWBvYid3KdENYvuvFaM0nU6CRCp9TBhc/FuZU9642GhUYahlyL6ohwc6v2500AqkatACaokt/17eGNj7FntI7OtsDCUCKqwhG4eOxvUJ+QCW1VGOyEwZE2B4OYQDchHLUzkRQReABEIiFu5E9MP6c5pqypqHuDdHH/PTXxun5y7/KCrJB5tU9txYBQhp1MwFYsSR96X/TDAL8sPbxSIYlTGigb2oFQa4NfXv4vQHXQ93cDkCV4xSkGZjzlxYugc4XS07trC/6PegUYBxAjYH2igUyQMD9WGHGCnL3rm8Gu4ustcUKlt84FSkuXEVS9oEgDLWjbLRGpeftAiOC1qSBBJDIMNpTK282gAuFPPjeRIs7mtOsDnI06hojHUnZARJb7jTsgr4JImPDwKPdgvbTGiJPm2WoldgtwtecqttF8am35WcOZA2rhMVJLQAdZQ5eCqgGgFDD7UenwGE9JtoaxezkmRjBTAaUILlyFzEVPEc5VqJFd+QmalrJup3OGDA+ky1YX7TbmVT/uuDeDyjSHXRiVQMitVF/RWDXW/z5jrejiGEha9WZJerpzKjWAyBnWQ/2B9T5wDltxahEUnXccwER+gTI1fYcsegNKSMbzI4QbGnixDQUObehUSd6Jn42vUqcEsP6YiIf0+/Y2NgVXJwKHPh4znCAO5TN9MdEVrocQ/Ku2rhFoPDIi1fTSknt1iICw3mycbrweHZICcHy4bKl4u/YUupuT7BUpaCSsiHSMA872v2nFNd3Wa8r34wkytbw6bnTgRBEPVUwK5BHovIJZqJIqgchBccW318BN/cGM4j8EInnUDRfYsISq4H7vs3hFBIijb4fe4fC5FeGYjYhXwtoOd6AYvTZKmTipU16HYxvC59U3y+DizoxWd7o2I+w2yZnSgcta6rPMuzcdSe5j9Dv0xs1KkAXg9roxWGTQVDzEviikapu+TIbIkhKy/foA2+a8oFFUVGpfZzKAxNszqe/qen4+OY0P570uL+bH6nICVebohWKbC7i5P7D6BDInZM4G1mV2o2H9AMnvVPt6vHbx6k8AzVmlqe4y4LC0rXKslYhl4U98CqXbAB1zpW96X0np0E0FrV6XcRG5kaV/XfQZnZG0kE2gnRv9GWjMr/oBdUsb4VtngEHKo/BS5gyzn4LQf2ARLeeRcaPlsj022mQmq0OJx3sb4Lz//AA5rVS4+ndeFrfXxauR6hoWaFDwpIm/Ar3ZGRCPd9PCSCNeX9AVuJF+Levvjq1kLe9MkvLfa8igAvdyZ87hMVLWwQ7R5FvA5nSssPRVND0ZpsZ15WO8ezjnkH0gjadWJab4TtNx4S7li1zhUNmRRatDCvPwFgHgSt6yTbKIoc+aUZP9ALAhzlPFhlw5WdmxTM51r1/yavBOsK2ZZZN/b9WEmfRjmfkODeJNENNIXYRRL0Cv3oyibd9XKkvHRG9yrnfI17LQYcxJtE2uRToCfutN+ylhCHSkMg4MkWcY3en+OoqmM+2KVBXUchaLwJpbE2wKGOk9R5Ovm74UCTeJNDfOiNaNCjR4J6SaKHrDblKyRukyj7YxDBjtAMg6EqkdcIawYF4gfYvZuyo+DvDdItPT825Uq6MLAZ2G4/ijnDBSBOU2Ny/IKMFUefxQg7qWB9XWOj9oRovANvEQoTQxOdlf9KDPh3XZnS9/uuw4KvFTKU4ctOIs5xbjvDEISt34lbVD/BuyPwh7eFHQxD75pPA/qHn1KNm5CidL5cEzsuJF8IPaTGspV9UfkXjuHPDCPRc/F7DHav8+GcGMPFUcl6CYVxevqiAgNDcjrJEh/4rpxrABdcxfQ8Ak6igJ8T98YszsncMgR1pEUCVD9lREoVjMkaQVohrFdO3nIYTegfXo4ULq3f/ZExAzroIUVARJ7ejcaI9l7baVxZi+kCTwpr6SgPd6Lhk0EdInqOQvatQ7BxBWL0hb9gf3d+n3empnicGguGj5fu83UDRmTpaKicK37wt95uJtqQYom5s+Y6FmWL028oZYq04Qw9JBj7pihsIRoenWCuMswXR4IGGVl2IZI/SVc65s2NWfxxr2oX1OTH2D6itCYRPZsRYU1Xm3w+L2MpIGbR9uJWmy2eWjiUMG9hhEjKUaDurH/aKNm5ANM4EEpr75up3Ux6u5dy0Co0I7xmPZs/DPiiPw2yS84pG7OX4KdpG1uHfaX8AlkYCe3aUa383DPuT7qIx8GE4+YDpOBk0ugNni21rZ2jjM0t8rBQJc3lp3tKJut83GC1WKCQeScd09d7RXJitIRm9lTNLQGXleOQ/1GwXV5bmnTWIlee0FWROD+QLuHxqc14fgylc0N9UnAqgAbjsyVp6uIFgvHGoGCl7D1DvuSVC9wr0GO0wrnd9pkgs5N7zhLA9dH+KPEdsSE8twJu63C7q/Dnn9K6HM3zXvxuWg3chMBxsnGmmWqWuGb+uBKvk+AoexKqI6imt+a7mnvW0ex8y5GHyPcxfhJ8n42nrZSOGLF2IFI5zo2TceXifphui5t28kUFhHsHoNb8he/IDDm4/sRayZ17V07iehhxBuwM62DnBhaahGWisU1XPX+nRNzrxCbAPj7tz9oqzJHWMrahjDfD8o6cBkXBJksLdoZTmK5L08hwrRWLxFe/miLC7o7AaFPP8zWScfbjJGAdeI2Tk3ClZCN5pnbymf893eyye4WZZk9JSQOnCL5oPitJskqFX5TbBCysX8/gcjOYzgfNbUzHqt8VOmyuhxWukjniz9gPOhWdT/pXb6AuWHT9+m2AYJs3HSncQBmJ2PsQUNeN+Yvr6cZNGvdFagvF3OlQwjpg8P7kd55Uj24+d4CBBFa24WHGF7HpaLBZRa9qrJ/oeFibLJnK1xT8jWNeKz3EFeYfJePZS45xbvNXLIwCoZnpb/TWjW4ZHOIIMPpywHXx85U4FiOXf/nFBqDRXaQWcANyHOIScFtAxbKNRtxdS1ZOeF2mzDTlNQlmysHvqHsEN7OFakBVprxqZhle/XENDM2wvJ3rEYIIvgr0ukx8y2X/chx9h09r+b9t7h+pecpQFX5jtd4clAiTLXD/g5fcTXM5kCCVgiWWpMRpraH6nzkkzGxBvziOtwsjgIpZVnrwXe+u/1rl2RJssicOcgD34Z01c4EiP2j9z4McSH66hY8kZDZk6+ePOuhDFEq6etTiADUGXR326dAKBp76oLbwr0lDoRufDH99qc0uUnrzVHgZvltYaYTYuNr7uhlfegcD8gOvDnDRQgBfkdUyPIVRrcHVM8rtEiIHIdXFcnBFzjYm9QoWRgu3lEmx0DAyTWDiHPk8RCtIsx6761mPWRAIZpab/Lwj9qKaFm+cm7TUlEk/mESsf/OTqZAJ+FXrekoDmvoiUtcuk6H6Z3J0IUY48uAhnw/RJrLDen3TTbO9o8HHLQVojOd3E2e0IKGj8wevcSFbO33cM5V7ecsKT/UyDo24pUIdMdKEIopZeyqa3NCRmwduC/0ocbCpeF2CHbecPGb/tugexopULtMrUsmlPXK9QqcRkjEmSHWy4ZdFLqNeKHfL01+eExq1Ag04vjcB9nWxlfxrZ+3NscE/zuZQPvyW8ElZW6cMDKsp1XmBv7EK/KJNPsiTe5cRxCYjOeXn6jcG96qKcciwU3RxDFebEQyrlO1/Lj9B+knGXwYw98sSdadY8CUADiG84Jde+Jnsukj7VeAEEzN2LJXjXNAybR7MgY7vwNuOIaS/MPMv9JOBVzfKG+xWTZ9X81wPN5s3Y9g1ZVR0vVKShX+JvzYpG0auIjgl/u9TEeNtTMzw6OPCiNKYYrdYRnPL+6E7/YdFqd51V7tSVi4nYJuNQQw6Tfh67dORqoiSj8KcLp1F+IMDwVRAQxv8AC45ga6sTDxGxOxVk79Bzqn3JHhDpumF6ap+xRf/jy09ZNo0W/4WLH6T6uDvMCj3XcZVDD0o6Lq1oH1/9LTtPySArwV8swiAYIubYwIZru/N3vRVXxAH9qQFr6u17TRIT1CkZV6qnmSI3iWUguQwRIDfBiH3MSk/4SYQwpy+nHMtMAF0afIzGwEsRJizZwqhm3kIknmrhptxpEpJtR42te4WIavBWPLrncOLhX9cOAXjpFwuHLVk7G3k4lDKtXakv4hoMdX1k9HRAcn5Pq+YmQ+4ukM+bu8LT8kT9fjBVfjZxIdLpeQ3gyoEcWfnge5EBrD0SY6x6sIfw7aQfeBAw8vNt4IgzS5Gnp75ZxYHdqTGzotri3ZLo4fDdBX2bHrjOAiEXulcMx+y+Z1NrEFqO2Buqxy4xtSuYueRCsd0yCOJUYbeSp4M5xYERKOG/bggDUOkOJnFV5kTQ/a4dVf9IxlyaDW66eNEXCdwREOKJC8ABa1oEgbtipJ6o4KHGTo+kyxlkK8YM6qBKtIyu/lTiC383kc/jh56eiv65Tj8fD3FtvImydSZFRZolGvrOCIwNJHCY8FMUW3mHSTP7q9qjMSqxnSgpBVpciHKtpPArMU+uion3OOoI6/PDqx3Yw/H9kApn3bsV55gf4B5+Rlz+W8uKK0jIUhfuLXZ++a5GDs/CPppnf3cRNZZpAZ8VNJ4w3Y+U3OYTdvZi4hHDnza4FMpqDPJM0rtDxE5dMyPsKdpoKMOVfTDxY678EuJYKB9zR+eij5Oye+5XOmphz7edm/HgLUwQTYwJR6J7ZL6sQtlQfcrhA/Kv+cGsEVFdNb9iKNTqzr7pJ3/6+g7weVtc38IU/3A0XoJcw8hE25V5LCpW6eYPj+M7YkjWff61mmFB/RSeQ5+1b25tRtjGF0fNzz8MXDPxLCsy7MGIOtTbzBwjf9G6HhplZlLLA4vmN+UbBN8klteR9eC3igXJTRCuCe8Cw8flQc4R+/P14q25EV094Cc0AsQAo6YGlVYvzik2sbzvO5JajT5/Q/iYavZmM3WT+iXfbeF137tgEzHLOV/AnzlRVdLx8+ZE5N5xfnIRZ2rqUA9t9NL6bqqByxmQnr9mKz7bl/0vMFS6EjJEy1CqR6QcXhCOLa3IIGh2MrBc7GIaxCaUeHIWZ6O6aYt3dccV8yJdpkzKY56jfizC/wNWiMOoPZ9Q0wRWqaBOMgfZZiBB/FxMttSibz5hVvO7ynadCwuuKDYnbXtjGsU1uvwDfHRuB3dEj0xxRV+iuuiLz/5bFrOW3NCHF9RpVz5m2Hwm5XF7J07cY7bK5ey28XQyWomI3Kk7zYvhS+HuRGmtlF7rGr8NqyaJpNTvxBzHEcPh02Hiua+8WTOKgiH04uoTvElteKhjZmyUhhlo1i3Aa5NfDH4EAZEQlr54m86vN/bZXEtyEjgdjAmGtpO9XuDTvauqXDj33386KR3D9vkNQS0JKMl9LlgK6d3BiPzk7R6ET7zG6jf3QGqC608zpQ90Pvw8YWiZYOuaVS4si/XfRPBWRzd6jzh1HbANSy/sAQstj+n7UHIJiGEos1h04CajeMqL6FfQDNmO6a527DfvCeMdHeFIzog0KFv5jpUNmNryAdZ5DJJ3c5Jvc1jBYOGyquRcFI1mSsofU+yJONLiFsCwwrJLlA4wec3UwQqmyvaTyZtEL+tGTg1K9WS9/1O6e+wsVPWKyQiGh/th00MvSr8O4amUB+cR5ln2JlU+CF40gZt3dRTEibrBIDF1T7XzSXUar6/UICLx2jNS7nDLthUBQf4tZ6ikI4sgrNiRcctwrBBZ2w/pXhEvQYHC30nmdgptfic5OIEkAWr5F2VxhIzdOWQgRh7B7r84pY0naFCU0DVVjOg3K+p5WVk6yTB4bjx+1fClwQmI39pHvN85NylQtXyPbIORO3Xh5zKemcdw6V7bJBRVso6YlWNrxjMHOxvtgVeLb4h25W0CSEN88JNfZxu5b7dLwbwKuqHe6nJE9AxJACH7seVd8t9pZKh7FErO4CcRT8sIFCJYIfszO9FYBxvG0mfOw3BY1BF/kPMXUZ4yfN+Zccfq+L0ZTauRUgwj/W68/eBxu8kUekFxWEuAZLGF/EVUAl6oAwFO3dC+WHQb9JlizlzEEiEkhd/SKeQ2J2nS8N7z3xE7PcFMs/zrDoKjKm/jjESkL60DF0cgAsL1Q6nbJ0VBsdY5EhQGiFt7IKAhm43EvAzBmxPsR0bOAZLL1BvUfmjt/4D8vLrhk0XZvCPksFiAsSIPwLmdtHGqe3Z8HwEmi1Zu5NgJ87wSjIKgKqOWuAHOwZ/CWGIpXjPw3xjCcAbinIehddKN6mYwFsGbrB4KvgiQGIUFO0FDWJxUnwhj1HKgOKUbxNCWVpTQAwWjKodSRgsxnJOe4I3dtKnSrrKZl6MNP+OSyncPPI3fTxuGHHnKjAzxBo8x6xC61pvGjtR2RjOx85Uwin4v5dPL+JxN8E0Eh6SWmlC4MkVB2oNLhM9laLa03oE84MpXxWJUldnQ7u79w6ZvK0iz+VGSa5r930Gygxb2OMopaCb4ruNaI16IBCmNEJuZ1Eg8VV4vxMOzDCz+3UefCHTkEbB+c+cslkFw5EIRwjKjHyD2DIhYz3irYI/gju6vRfAyMFU7RiNv90gEVfUBS9ycFfmLUsXSJRkohiOYVjVq6aJ0R2pVlJ/vRnC70MLpvVs6se8ffxCaBiEqYe+0yqsdHoyJ24f1/kLYCBHIyyFOFypEerVER1c/1BURxTzIgwDrPZ6d5qbGjGqNS4CnfBqyvtq5fWmDAjjqbiuYq7vkw4uX8CdcwtPSXThyJ51rbtIPcry4ryUehv7UWRPvrYP8R0A7IyaLRBZ7RP229vc/HiZiIWPZPxf2jVQ0Wkxw2/kKEa9yN/6IOWdVZv28wnkNM0TD1Y/oBNVt1fbnFzS94D52qcwjbGknE+DTyzX0qO2Ujx7Gz4K2BVFxOrlf7IZdOFdISmeQtQcBajCxcoiOu0vES86tqOfzZwAur//GXuLeB9aCvVDzphlH7gFpAdeC4JcIX6rsprHod8MQ1jP2Mv2tLeM1aiRLSV3DsseGtf+dRsjbP1pZdgP8txhTt9Qr762Q5kdSOwUErYhC/L3+txzCzojREruk6jaiz9s0EvriCsyD3C6nH7pRI+DAMxISR0Nb+hx70eogjycSsHS8cNpOVemyjUmJ+u7BWbSNCZwKiae/OecOm414PIkhOF0TzFTgebJdTSFo4c/OaO2N/2QaoWpSIYEIScK3XV+hrEhUiyWjKxM2lSnasDAuSZeCTj1ujzLfF458TzBWf70GJ47R8vORs9h/T84Arb/UONCg9Qg4RqlR71SmgOcTj4xYcTvZBD4wiLvfzqir2tcVUzrrmdYrvm6HdN4AnUYDkfF9P7efpkcGkI+IANwKmLUGXffSW7lqZHkl8XtPRlMe0QkMEwAmBSwt7+whz0viWhbVgYyY0j2NNX3/4mYGUljlddi0mQSwTdFrQvbiKHep24s9V1c9DQcWL1+0RWWe8C/+hkaOMgIyKtOiMvBAcNw2opTADo1EJ9tv2LppOztSvziLn09vfuczrFrEDMV2qdN9KkK7GES13507CdeFApG52xQFKs9qHnci/IrcveSXOnzepRbcOLlJUM2f1RLEmizuoiFBuxFuoxo2WxDCRSBmJEa33fniCjz94X7Vg+U+PM0IjWQ7fvkB2TF7QWwMzqqG1IRqy7ZzkJ0wwMoebd96mbeiuo+rqZ7coUSAMA4nEHGEPo8g3Mzn4pl4VBTc9g11vxRRIx8HInlNlTcg8+Mufz0qtvo0gAqja9ukSwYnB8NUlx/jHoyyxCozdpHQSzGW9lcqPKZBZa49SoJPCSDN+6TQp507Vkz0PcDoIUACjR6UB+I+epwbzwrVTGv6D5lksYmtzWS5FZatqMDupuUo23EvzMrRvYutW70ZCTMnKTvPzC+aqe2Y5HANFyPK9EnTWvyNmaCr6mzKots+tSvwxc/a/99AHuL5pm30l3hAy5ZBTGRsE5SANmoKLpmLpTSGJQhXDAlrDv/lLeVE1V5mgH/dt0FLLdEHhRpf1tzLZlXqQhTzD8f75re1pRmc+c4Pl7Ecpsi8skALFy5S09pw9jCEUIGbq/LHjuqyGluTpN+ibsSO9c8o6lmsefQmtjXP4jtCLGYCGJKGgEs1mCxXQgQNpLmfSRE4BFJCkVwyELkB5orN3vxZAGmTu4iuGsWJMS3VfT+s8VSHNfX67etzEJbAd0bGVX1NAkjIy02zBG4biaAvjJ8D4yqMU3J8miqe8UIsY6gI5FzYjzF08DWRWOsxi/ZgIpsha0TXfSRlo/c3rHY/DVg0ENGQsbESElpnep+2t2pnhnaYV2qBOJSoNs5ZKTbbp6PQyDVWoZTQZA3HXeBVh0SqfmPEXwWdIy+a8boW+F5vSXD9iXEgYRo5hQXwrBgU65RaH5trEQz/yv7V3tbL2YYO9TWHuZGuL1wBhFAFqwuXSykwR4kVuzpQm417mxHrx/onwDMxsQuemRYsujGfBowCPAV+saGWfBqm0by6bNkk+FfsjdOuNTkGax49bsfa4bkhTd79JbhA4dg1ahqsxSMyzC/ZnfZKCz8qh1Q3DySONe+PuSwuT8Kqy0TZnMA5qPloGPFx9lPB5YWR3N0iBBeR3AeawlgB+poTkGFoVUUph9BCvGxAS+wCLER51+y6DABkQbvzQbRcOX05sM2XU3Cs7EtVpeAaLkk1CnJ9dekcXfzUGtj2qNp5gQp7XsgvnzW1eS6tcxg1nuMz8dAm/exCCFFYpbmA1WpjsjtxYd/xPh1cKaYDCsYWEOe98QDQmVUBwKhMnZuN6EBdV8V118czsnHqpb79mSheKni3mWsiYkKHkM9z3IrP3EwCrk/mtVllHOL9I2ZaOCrqiFqIUryOEvoGicJuD96BGpJ/WR0yepVMxV/X0MsDoCfdiLefixzdsefh0cdn+gWtVSUI9dW9rQGr5rh84AtsQLKlSDSr/ryDn7eHHQLHq/mFzIHhi9sqNkp90PxVhfsnZZ+feetmmfEi0gEaWq3smeKg97bePyzpalk4fg3UbI/gjkGserhGIxxDxG+txW9lDYXaYeHwsAQBQEt7BH+oVW0J2Ce6atJQa7vzEwhl6yVl8GyE7TQb1i9Ui2kZX7nZm88ZA0AkjQBN7xEyWjXRhc0wuKwYdXI+8AZ+mbA+1QgFtQ6k8DG0dJVHoMWMazd7cO91gZ/9dAw6yEmcLsF/OMEsf3UlhhyaCgS8+2pC0eZ4WlmPSh7aPU6YF/jCfTh++/2IIyUeiiqJcQN2uoJbdA5mMCxqlYTDAk+Lr4erJUeqbybLheCmf57ve71rSVgtRVVWUTIDgsa9CUXa9pCxlhZjA+FFI9Xbia08U6N6pLeD+GRi2UxX67FO5TDMJSX9y09jOqz/zzHnPPaMC0rh70Lk2ZriIpBdkG9/TUpDutEACpy+y+pjTRMqAEiyOjAAQsNFCqSs3p+HV2wwhj465k3kHCddsB6954axV79jXJEmb10jEg1iUCgBC9Nm1G/v/bw2DwDvIpjqytpJv3iQzceILNs4noXrmfFhWOZG+CGKuntuXSNu9FDg04VrZ0hRwpI03u8UvIGxLl1swPqnebier+g7g32b77cIb2HczYr53fL/kc+yrmurPj0vpvB3DTfv2jQHpM43lV3zhduREUmBIJrw1F0KjiYkkXl/AWtmXoxz9TaBH/m1OiJuCOMitMNTPmWvYHWRjK6sl6FUMWqHqVKt1JHF8VwYlrEJFQfhoTmf/sZ9Zpre+ihnIgIEUvIDYs7UEJT6ub+4la8ijBGOOYdv/cf4Tyi1Zn5Ziu+LC/ML/EwzNgWVu1a/wKFR7VKnK+bAcB2WUxNeG8kLa3zbJPG62P5feOVuRs5rWjeYD/ec7BRpAtEv94e8Iq+L7Yc/uMKY3BVSyV/5lN4pOzzenanr9t4UMCNDKsqM6bNaOSlj3jBaDdmKcdlQBP/JqcAY5tRWAaE9HHpskq6NNs0FnuBlW9sDCsYGyqmfZpsOQaRyUOutuyWXsCllFNk5VrDpDCOU93gcfrXVOldtmGaWqcmIySQN6Wdl6hXb6E/EOifIYUBOb4Nc0KC7uMKM9czgNEBwRxHvEwWUpTdsY3g8cHGM0057m6Ml+iePa6Jvso2vKu3lQGuJkuf2Cw13ojsBzfOWgxHwc59MJtS1wYRORtT7t5AT8qd3/jianJaHM7qrWcCVh1DdKlOwfPVzhGLu6XBBKhWu9Gsz8PefQqCCDRriTPTG50/2fiD12tkIQ9e0n9msTRnjm3cZNBkzi2xMCiRkgnryeuL30XsMme92OzfFFNlcxR/jdOsuJ2NscJtnGXbMgurPfDMxB2uWER3ZbBZtW9NykXf4JUv4VPFRtZrMSb0WWniqi9iq7Yi5HlD9/M/JUPAzuhSpXUQYh+9vWcLAgjnbyt7zV3JwRC59VFbQdePOIJimVyZRzW6zip+StDUxp+HMkPtuHpYKA510rMhGPpmtRdvxDPSqa0kLoY/EsDKBtt8j1kuF5En1BIo33Y5zNuD3mfLJm/hY+W2G3LZajFPHafqpFu590WyTWfALQ8J4AYpZlaoYb6oV2NdrAPPL8iQJFiFoKKVQmwFZhu2fOCxyVsufr8ms6M3xLSv4Is8SSsfcPjFe/vJ5prLnQyrmBDQYXaz0S6qy4TCx10PVSsthxW1MGzL/DyjEUrp/Ps85VuNZ5+UmwCsSRIvIT5XqIx7lii8yquqYvcmi8G4JGCGqInsgMe25Cduw3Nd6csCgF3d7nm6zsxJXAufZEa5eoaLyGPWMoCkPocRB8qE3niCE3mXtFOmsdmOiAZIdpr1IVeTJboa0549iV7KGcNp8b85+lQtiakowR8PImvZ1Ab6Qwt35cu2tVmtvUDFbfBdkYbTGm0Uz6xKGz/jufZbEK7D9oYDRialr48xIpfkZXHIwNSTtgMXEo2OLnbo/Dr/SZ8qLnQWukzBH+sS3YjlsMj2fd8KVVUQjNcOtNnfJ7aEjQPQy07ps7/DcTlMZOMbtFlJPw7HSfApe9RCcaPGcQB07OyeRQIQ55wrvarl1jAX2d4cNhCIDUDGTUt16Mgiz5FAzP+u419NDaEeBtZikOdq/KV8p+bPuOxsv/RowLOzpTHxZoPJJj8yq6E41SWjxtioxXohurDqK/51ktHcPolGMaJ4/F7Nvg5MHF4KAAzXIX0I5hkw3ylvZB7C+UM8u4QBaNeAQbUpP1NjRz87Y0C/4Hp/gdQXhG5R6OTfFZ0nZ8I0F1m9LCWBxj/NWUfiUrGrGr1eH6LzGkAiWxgePvtkhudxKN862ti1xobd/j6xKjmgLWGlzieicPyClQvXKXZ3A4MiYouXyy2vWewVvglDGmBsC+x2R+nZCm/MHeA5qsxUMOYHtTtBkgNQO2uRVEWp3dUHX6RhENXVJe1yVBlJByXmkHPqnRVwfeTxrPpnyb88hm6fx+IuznqQTCkCoNuWsGVVOZ9vKvTdnH20pcbTaGU3A2W9CHIerxjAKV6fWR1LHDA4KESKoCKe4/ad1NUQ23zNC6SMQD1Tgzg9cvXidP7QY0lmeX7ZEgFGKJplWmGGBHyyXp7qT5JVpcWG7/PEYQN2DY/MO05xz+p9OwuKxDrep6YG8fPGAhK8x9wSCP/+LelNb4mXHlZIenWRpZ5XTE4dL8rj0ZYc0HfY+nyoo+8pZ9HFdTcThx2XSsFjrSFA1h+j/gu46+MgTVTyUqSIp4HocrjN7AhKZyV9r3pDPtYVvgMjYFMhQepmxBb1uRvq7mYHhFAdp3J/+sCL9K0Je4dbqSXbygXikzdegl0aZ5rCdlvtpIR9JyjQwq9dJNnEFCIPJMwLu92hwXKh3JHFs2KdGi4aKkxH3SsRBV5b4QeLrsxn9de0ge41r3RafdBViQEignkKncwOaD7YgN+6Uk18ItCHSixvabMAfuNI6hNvxzJcQDifturSdD4zkPnIjm8pEfrNcRRHF9748TMCDpRPvHLu/yIUb2pjTShXGzFrMK6I0xW4UnhSnVfUws2vRDs0LLOpBwMKnw87ooLNx8FTov9GycR7BukBUVnd/4ZXoWY+X6NcU767cSIL6CUiWWj9jcZgXBpLRXNSN+IlnMaM2BV5wdwiRvPhtXnzngAqQwEqPeXS0+TYf2RMpTCyqpR4dY2r1haoEzSGmZeOd8QMCS0EyH04onz1MGBYt0z5ge4ph6Saa+Z1f9B1TE0cx6Fav6BNTr9Uyow5QBFtyIWA/Owy02oFRiC8D8hD0C5/0Io4alye08rJRocDn7mH8lzTP54auTxfcqZhgVBslqeAOlE7o6Y9PgS2Fsult1fLu0WEt5ztb9XrFIkbNfXINEojYMtMbY6o2/lOaEPubrI8jr9g1c68yckM0gKHzsX22xY6HAmAXgywHLszf3+s8uwmtKpTaGJ5CgiiGtxBgkn4OvdFRHDYLG6+zeuPJtYoqw8e+Sl3/LRNn5fzUHjOqAj8WPApfO/KJ292Z6lgdvMoYqfBn76NcaALOy41eqg6JYKleb2L/B68s14HSjTk8ck52oWV6AYV4UHqb6S41UfPnyl9WXoLK1la/D8GaZUHDh7YRRQnie2lDXXkBBQ4aAgdHJ7OJntZ31P2foy6rEs2l1Uu1YR4cqqc8qRJ1XVR7Q7EGnCeiVGEWH5gFHVH8LWaSq9MpUIbk4KSs80ysLPMudhRPGGUPQvJedQL5nCd5LSWZCi5y0EGuiWTnTzgq1xsj3mfGYNObJx1tERyRdzibOS1HJxhGQZpQM2TmPaDacqVIOGeEiGcGM9V2aIq5bol/BJ5IldiCyPcepW5Yi2K5NIwiWZsGStAcu4j8C84kCoxTSk1pk/zeDBxTYQs13KMb2Cc+mFi/vm57iFcZ3xsa6/0S14DCcuMeXI15GT2CYWc3EKqc8azWA1xXSNeo0nq54dVFKgzjAZ9A3sF38sDE5ZyYsXl/RbrOx4oV7ykvfdbAWpQmxCG+aBZEky61dKdZCz/XExeeUec3JClDjgpHNfnDjmIe40XWY/CUYwoRD+vkjWnQEWMORT+esVDkBEPqdfj7ONPsxiK5R/aKGgIFffwdYmobgO75rfxqqCbZJepLIa4aAGj3GlYr1scGZhaV6+9TvQf5hpEJjenozUv0riE+cOIhMoW4CgBfn/uGhbNynMK2iNoGXqEatFQ4jQd5GDhWKPcQAL0QtZtWtm4/QUVOOHWCVJM+5lOnyFQIhlGF7CL82j30HRdziow+9Y6y6bB6SXESlz1zUl9dDGU8cvaMwabv4W+vRuUy10OKagbvimO8TjAnw+u6DrCUyWEWh3uKTBHR0WNgXWxRYQgtTPp9KNa5Zp9rG+q6EK/nIhbhS6bdehZlCjhPMT4ey5LAFKQIPHVlQlKK10LQcSKPXFmX6MqL/xk+HCEiFXNzJR6Nl7LhiqlsN1RQyB92g/e0Mhl9BOayS/jSCZh+jWRUObm+SQhma715Fdy/hkhHan/UEav7oPXcKTE2OIExc6u1JZrBc/2U7weSIxb5P7QGs040utO3AMkwOCX2Bj+c4+C6t8jI/tQ+b0KnX16lvrM4hszGGcWwLNeemJ1zK0aayZsmJlyRbPLuRLprRKwCgF7729oWrZuA/0pYs3KdZ3Z6QmR50K1vSXslvUTNf79dyC+UbCv7JAF4zq147YCh5I4YxN7qkJEzs8lYmgZxE6S8H9Dyz+qD2ckXvUo5OcXfJemUGPODi+M15++j0gXuHisb+G2KW1OCDiaJ5ftGcS2SOcs/gLnJ289W4n8uvmXIdjzSYq9aW0Dhv0dCHALL5BHiHWacDOvxYKJKUlqtlNoX4nS16MNIkNaQnU9kxaB20/w5Q/MeY9ac1VLWpjvEAPiHiGEUReLD+KjGr6b+SjBvU094f4bIrVavRhDftQ80OBxPRy6Ak3cbiz3aX27TzT57bAEmvhnO2cXlXNpTQLZ/kD0WLMx6xFibnaB0vycGNiPfPaXY80+9gUIm69nlpDvmK7f+AJ4ydfzViq9kpm55soD3xsW0SJa9PC+KWyYvHV0L3WX35st/AbTZYR3r1XVKJi3qa4pY69+Ykp6U6AFl3uwm882p5T9LeEmufsx9era0WJVpurcK2Q2ECDWf+iEOhuO2NYBSmpyW4Q8if1TfPbrnEc/TDIKxDApCyZJVWe22Xk1oxmo5C23mQ3GxAVTqfolf5kEtUCVhAB+F8SEmake9BJqDJQMPcNnFw2JV3jJAGAbjmZRXW44b5suwISUtDkbLkztKVG6h9MRh/XBJouIWtWCkIQfZDEzzdpph4SkC8CBYhvLuv6kXclAW+WDzXs7kzLjS/rvKXT5jjYRdWJFK5m3n7tM4I6Ugp0ncSd3IqXUrnRerswxMCDLCqANuevNvRprTCdzkwIFHkP9LzuDMZkYTPdkakwYYJ7DV6+QomxBfiBnUHrUmAGCkqxf66IjNuV+JLU+WxTeDlPmJSqMCy+2U77gHMYxwQbdT/WuOspGdRhG6ZcpCvUQhMkg/Y9eewRq46aHxKoxyrQS6Hgt5AImQgVka9WuZrJlLYUAD29MWsYB1Ke3zobuBswi780yTn/pueQwkGdA8p5IDQTZGGiq9w0ICr6SCLppQ21os0a13iWF3sEskBxgWpZ+7iyf30Mx8ALFwwJG7SandQW0MNo4V3UDhUMAzasBNWsL9UZmz4456UZtYzDjj7YPig5cyP9AYLnWEKlJG2TzkMaBljga5p8p+klI6pzzwbpYmxrtg1RGEgNTBq6oWJr9fNe3fiYWCaDintj3QYzBr5NWdPxF/aFJX4cgbViQ71NV81f3JNZnh2Fhf7GZPs61vbB4ogM+v6GmdLxCsgu6JZQFkJ3DNSZgetjHASnk3YPQFIWip8DI1ADCNrtDd9cfcmeOQKwDiP3tvig8VeoymRukiBxQAKhTgz44FV/oa8N61BBYIcT3dNvpg0f6ryO2CE1o2pgpW3ohZgqw/A/6q7Gc20tQOb4moScGpG97XY76rmuWChAzoHII9/9ixWtUPrL3usOIreUYc8lhx3JsbC4ycw/R0qnc99hM62SygrtzRSoRXbfLaDhLHKTP2mwNmTIKnTmIiwtN9i5+wkGr5vQOEd7BP5SHdl0ZtkGiOVNgRiij4QvxJSEU2PeqjFxyMf5TgdIQ/yLwUDmIgL+6e5I7mtoCJ8YPZlE9lxKnJVphlDXVsaezFz7DvriCduVVT2CWvsEF3IJVWmC4gMQPFjx7xbBDh+gYgeUP7iDmzYWAHpIqQ9802A36B64MpDXMYQbWWq+J3kBVm0NmzyfzHkSg+8i9yoosYKMl8JyCMFm46B0FLEr11EBjwbSXs1dAnok0zVepFPJlK3Kvs1du0FQyMZpKLKy0Fgo5gVv66S+snYjOBBkh9+0HLFOXxst5pmOz0m2D2/vVP4FFKUwWRzGwv5wgPv+s9C44GPVi/XcI3IE7RCRHrNC0jvR3tJFX31infhi2uKtjIv8m7988TUDt67t/mLKfa/ZcxWv+VslvKDTk4xT8tlSoU9IWd1ocpFy/f9jwyqPXDJIUPHkJyvJbqqjJylKNkHv06dYJW5JDzzmFEW4mwyrC7SmQDEWU91EkXuerrnMctRyEsrjXNI00CiHUUJqSFgWyOgo4uHdBVJudObwn3w9KWSl9p10NHu3GXNhUO1PEg37YAlfGg89nsIREdbH808rgMhPYO7aMo/4HWMy2MLP8k29j0gUaKrmnWei5JGZkXFYxQNfdV3bHsBqmhSshjPmrPSAYoK/9R7lAcuDQWrjBfwfzQ7RZDPP7PK6BhOFtwglj0IuK36PXwlAYlQFGU7Iqq9+MDNRueaxYimVQVNIvJSuiGNYCrMuD4zV/1HmfkeWFOzt2IngbvSbibH7eSvdDCbJAqoc1uh7vUVrajqJpLKDik/XpXN5y99Z5i/elQgdA/ArNl5ctqtsAzSdywlM6L2PyGZs8tPe3pAab73i/JWF+Ngfm/1tiLtQT41TFAabWk7WOCBt3F1/RbNuVlJoaWnZK8mTYhHAcVow1CflLqx49hPVFr9P3iPSg80kMINUuapwyFlwpiyNhXVBp0R/wgX5mot6oD/MerwYvPNLrQFZNTQyDh1PbcM2JCiWVDj+u13xSbhrxQt4QIlkug03PInNErRSlvJa64QPp44zrsj4oYVA2PBmS4ExqP/Wnlb2wVKPiOZHMSW8fbnKw7WV9j/iOTNlJPws5Ct+JteWTiXAaFQ3woO2lB4iT5nduIcXLnhJdsaAIPIPmTXHI4TV6f5XlBvqbJyPNuticKesvfY6EaW5P2pcpL+Y13ATwQx2jIgZA1WiN+LkR4e/UZC3WpR1h1NS1NDn2hcyJqPr/ZaiwrM4zXw5j/J9JCaPzBVwVCbmB8uXS+eeNn2b4wwv+6qsjk8HM506xKvNnC27d5iVWIgU8dlhNf3jk/ix49htBHVEZgBO4jd1xr17MJPriE9MpMo6dx2QPQV7IqowPZSbym1fh985akQZksXHvrAfbCiD8PskBQSDNODvNJOQeuaTEt2WlTNcnsJcjsQlclKv7E9xCCqMvmz2fLuwDlNbBcdmq01J74/LfLxI1AsgeW7UUuYCL4iMzfDPB00B8O9+uyhnczjsml9sjW0NgvdRCoYgD0WeOQeYo1DqPiOq5RyCXaNKIJuzkz5f6+iuOnQiDU+PyqSSm6jNt5FYZDDGUzf/Q/2+gMy7URheuOzxFPko5c2vv+H7WXFtRCOYFdViO7weKiNo+U5ZEiWyv/BHKP37oBSbXimH9r0wBLSssuoRNFAX0TzHvYCHEEgh/i7y292xAcKYkvRyz7nLHTV8FpWtQoNMEHq+c8kwDYmZAieOuVB/x3teZt6Z9ZBlEmBerJ+4oYmlwyQWH2djvxNxSkU1myAccrOk0f5vbIyUvKpeTpydPn/qr846JyeEHK39+q+uJwOXM6y/hnpy5MhrZ2S1lnrKkU0aipCKOCIYM+SLrb+WTmAsKl8B+MFWaOGhmWx7oI8708sLjH9UeIKUZnzhGtdVn7BzkEK4KVq0I0hZ7xuCC7j8vbyC0N74tLWvYMOorOyxb9UbKhDUKAh1athCXbgIf3Z6e2fLOjSdbCE8Gqp6U9mBqfczae5fLj1kMUbvh4wSjxXBgobLbYZ2YzPi8/X90GF2FVb+ZMJfokj6cmz2FSQl2T9RhFDp/C4uEZFnevWyhG0HskN1OpHMPIyEOtZmt5xQ7w5xCtt+rEi2ohaoGZbM67b0Ez9TnK4l6tKqRnxyTrP6pXz0/B/uKQ6AFcIC3ULOZDzKNPTRNm4KKTYIjqDxxdccW1fU57ipnT0eK88Z1A6QBxq6BNVYPP/v6v4u2f0wy0Gr19vxbpngjHNl9EbvCMOw8j0pEhl4lKTmX/dfLWBMea4K+XnpS2pzrZ36Pf69m5p6mX2LxO2WgBhrsucrjb15WUc5kxnKm33JzYWIKfc2NR/rPl2ZBEWjr8Lj8xr2bncWMBiQRa+43lk3Cl/6NpTSQ5wbXoIR93WbCLg8d7HxSKgAsrCwi1APifF/gHDTRk6rUX9sxtUEaa2Cfb3/npYLaEz9cQi8oOfZqYRU4yzetjkZI7zknzgRHIq70bf7j9QJYthXW3QIxDEzHKJBNhg8hIutuqK/x+uZrIeAjbnmcO/drJ3WAvfBuWaPNA1+wo5GZw0eycsyc6agcJ4Jyh0LRwWigIXrg2HM8LeWAIBQH4sxO8K7hLtuV01rdck/JNIigz8gB2oX/mIDF9HwpWRatsZEyEI037CnBRNwOEQY9G9vSIyp1DKapuoTzI2owyNaVnhcAGAv174YRzYCqSb+pDvzIy5ESEdCGN+wxmpF/BsOL93PYLAc2/MKq/nSljfOr1HS70fRMuqgReaPtPhv5VSp77zTvmYn1yZitOU3Q5dQ7iraspCLQlbemsz03z0YlFMHc8YLQNJLCBvzHbRsl9uqYwYMe85Ye9tHHVABsY5i6/XjTGottaJhYLvbC9E/UCDSaT66G0i/6BTA/i0bY5ur92MfUTPvdhqcOv+t7CWjo3KDb7IT9wx+BAPz6fiPgRuxp2DNYWlaaQ++jidkPDjBxevyaEK8BqiBjVcffQDGBeJjM9+C/lr3uw34PjruyESRnIgYz2NiajGpKhFMJXinqQ1he7WIGzKRagsFq4v1HyHcrL46P1ML/nMgE7AVgnxrZkZBsQKo19L/NM2RPwASXnSEl+vBCPNpf+tMILKygPfESelC6PMLZV3c2CsNG8RmnqwsSDP9qcquAEXRlq9g60Xabv+TcmphIPP70GpHWBtKznTG2T2hpRBFYv9Fef78pG1/cL7ipb8vVJ458BSi2ilNByGM2Wr8SXOcTDy6iv+oWdHWRlN/yU+lNQXPxqH393hwkI8msKUKRlm7eytuDEs/BqGrVBzonMnF9FXryEmyvtyawv4HQ6q4Aj6U3LSEcreqKP9w/SzlUIxBojF14tPlt1RoQOZiylCxkVyLnwecVvnytGvqQzmKotdxaS267+ffolGw/BDAEDmvg9dFhKt+TILRm65NgeTBQdLic1BIzS+aLaxrKv9t2c7SmwlUhmA2HzTSZMtIq1pdkRmznZFsiK/VcCA6dF0Wse9OpGsblRQcd6sKlp//I39W6m6V9JgMKTJJmdBMti9OVcPf6D+aK834ux7XQhagHh3CxfqVkVJ8L33DPBRteqvTNi5T4yCxQfGotDlNUyDsXfV4hGZOpmq6/HadsZnqdInLbzgpm8afvHS5+c/3k8rRKsJI9GtIVOMtmtofWEswhRXiB5llrqBHrHvUoFNQp+T88NX8Plv2+LI6BZt0o32Jyt7V7HXJ5KMfwX0+3UfErVYq61M6Zt1/c9gsILgvDifiIV8l7MgXGBaO7fsthcCsS6Sp340W3Fno7OCc8247w0lSIE4wuMKJezW36MQSMBvCMHBETF5yR77HyOdjsqZkKSe2Xj8uGz2Y5iCeA0NJQsyW8W9+owFETEPuB6MpmnCAsAqg0NlH2zAe2V9f1HZRLD3B2rnmD0oPjkifrD8CTdhSZyGZj3OrAzImrqw5VSOYWAwj1WLro4WA12V3tgJU0+Y8dfJ5WUYuhDTQCf1qutiEp3VHrfKSWOHSlgvsPf7vwo2b2gAUkJ0h52ofSSShVjnbJ+oS6oC4RqMEtzb9K03HtejNspvSVQXq6sMyH6rwlyrFbvZEPr6iZBVYx2LpTy+VLpAh7awfTtpzMpzgh7Q5f4wE3ME+iYqvGifiCsnQHBPrwumJXp+ojFxvTOFiHLHJ71vKwcxG9cxifjrI31NTGk+GklaG9b6UkCofJq4yd4km3G1AxBuZmuefgeubxYEmcf1IuwecMBLjl0nsubDEkKhhSvY1gfzBYUuMXlUQdjIZ7J9UrIw/6Xr2EQpArWZ31WTxycF/w8VeCcrssNhwwX/c6yU6NwU/YTUyfyZbB8ojM3JmcHHzsd7YbmVYjTwYiu1agxDPUwQsvkAiWL36+gB/O/Dpc3EJxNMy6mSNokIlfmYTH8zKN353YQLjIW9IITywFln0fsKS9xxE8aMmyeiutV1M5UFr6oEmeY1VB6J6gdtBNKOdNLiGS6ml0D1Nlyg/FIzCPQP+NaYMHJnp1SBDh4s7Zk8qPQ2oeUOEOWFzSq0BWKWLGwfmZs56fdP2eauXBWKaYJ9ThoUA7pxlmj0oWxlNktKTxC1Uk8iuTLWzvJ5r2VI8mU03Q+PO0ZA7vlL3ch0EEo7KcF5AzZP/gfVJnMqjkigKDOhkciPtSEAnY4uqSvY4SPZbqU9Tr34EgUbaCDBrhxYL1uMQ55AiAZubQTw8rJ+iW8tTejB7FmIRYWxX0GPRnYaT1ob83d5uKngR2aij7pQYhQGNgaB+VPF7K9iPwn6vXMBg93gMG/XNrha/3FbWBUYzvThQSb9nCnJ4LlycqmLzv+M8/p60vTToI1BeFwq3Cs7yvgutyAIG+/V64j5TlhHg5kARGSCeHNRS0Fl/MUUVt3jqfazxiTUDnAKyaxFOmT2xZIMwQ+WQp+n3Ido3cqEKUFf/a9bvTNULtj6RrpzftetxKxoNT/Ze7UemlObo9xpXytk4ROEltoRW/zvPpKT8Q9B3Ji0nFSm3nxH2laMIg6r1TPyPlForXv2AseXyKTf3R6tzXzQKyNQu7tI9J58KOOEtcewXSK0BmtL+85o4N/pTQ+iEPhuW7gbMW94n9lJA8MPDJEKPgpVU8KnZvVegx9A6+FD0ZXen62oXD11MpDmFLaKCctr/sFmJ5Lovpebgq379dB1vbsmo2t0s3gwY0X6/efUNT79M4QOJH3U8Lufi9rr/4BeE7S83HP3Jj9LQwOZm/7Z+ofHQXYCDgK9dgHAzpdv0GSZErOQj9aq6q5h0BX39L1nVPFuUa9SMsgC2q0+U7W+RsQuOyQaenrSRA7OIEF3VoEYJX0QMab3kqaEYN3BoJeYyAhVqLec5bN/Kz9Djo3IByL8w4t6KXv8mi7ifC2Hq4siWWbPwVIeZ1lexa4h1uUm1Rztbkr64rxPREDYcarlpMoMz6tSoCMabrsWT0hBcV4kyPjjtXRVDx2IVA+A/1nHMaDHg0Mcf3XDSdiyI0uGPUhk0BQ9KKVd6CY0ZblnxsV0yFIkpHvgwrdNU3vZLpHZLchR4vHIhdjEpuBeJViSemUQ1fVvwHuUc0Tnf6VP950oKjRVNPkoEJ5QJaAjH54rK8S1fdhfcyhb5bOBa2UNFj7A3mW7LnEdo8/GVJN5IqzjGp51iaamLZmb8t4Vv7FGi82S8HG6PCnuA+uAQltDvYAglsrTBY5BDtV1Jrv9+9D5S7vxhk8hDuj3GT/w69b6L/YAeYnJssDdFsIHzB50UgGa9VhAPdGhJeG0QJqaNneJbb73x3YlT6In6V6Qg2Z0E6ZAxvzBeDiZs/KWWNWwQuTNfMLbLIwOE5/YAFYZlMB05YLVdGtRHWmtS7Go2Ol9sDkkJ6eTVSrdLiHW1WmNR4jmqXySO+qSgwMzW/juagj2TcgFyhB31P7AGOIkCgTxH6hVckn0AhRtUcLRqe6Sru0XKrleOgYa+fY13oJovVIiekv7hobN6S5lTDAOeKVjdFpYC7w1jgAgVIuyCNtU037yYBEPm9zgk0p7qGC5DKIC0Qj113uaxvchEm75s6cAJ8zHleGDEQavvYSFF9Paw56IcM5GGPIzL4Tk9BiNCNtU69GyMB6zmCYrsePBmPZMOIa0IqKvvh77d3acejO3iI6vVsKR95IB6wyqkU2Pxb+7b+SIu1yqjRTswd5d+zf7pEK155Af3chvX9LAl0RLMqQEbRKApsoqlIRl3dhG+xIeEgS/kbPAYt5R+petnDCFIMSXcQJK+usSVMXu0l86geExHqRETmT/NZw5X0xS2zu6Llw0G7GYlf582xzA6LYPL7xJTJRV4fNh2boszpgrG/6BvahCXsSVab1+vyi0VkLCEp/yuoqbKp7okQTTIcLbz80qCXGIl4caVDMWnFvZ2PFe5aRpyk/kPhK+YLSp62UxEIsrooL9pibBM0wYEfim1u5XIXLea/SoDu2G8nJRMbjr98++j5mfTG7aZZxmOmVAZypu4IZfAblx9JbG9BahUrpPx7w4EOMhMI1YOdW3bEDI6Qu4aqa7EckPeTLtAmm/RASnL4Uw4Qc5tC4g4U9pwAVVkZ17IyML+QnhcQxDLuOWbn+2VRU7NM4VlC11pS/89lb+smyq8u680Ej3/fE9bpPSZopJ9wUyUXT+TbPA6/rHInSbcyC6bAHjg7A5etvCPP1vFMFUEXhfbcolOxxuXx6FFejiPwUpJlqKtioeFRoWxzlDkoQXsTwGBBAmCI1gs5D3jdjSUCh0uqC8jj/iSiPemf/uytMt7195+ZCMBFwraQbqHDtj1FMErZI4l908RECQPk4QQR7MgvTzWtWeGBex54l7CScLatwYGZORZL/zveMVzymqNAXN6/WLcUZg5/Ia+gqpFsY+dIsc9Q15x3IWD11JCfzgnw0Si8ed2cAk8jG24TbynfQHo9KO5olr4Q7/PSTPdl5XCWkMCX8WzEZOi8mP2k77jtUqO1xhJqxLA5qdBMdZhbcTv8hy0cZacE+IXEgWaKrsCdcT1UXzvmbMYjMQnNlZcV/FeeKrkRyJZC65T25nF3wzn+jNz63smIJwnN+W2ur2sdiESsGXrN0r5kdfnTQ4O9fQ7ZpShjR61snaioNIvIe/ZFZmioMJJiFpQ5sYWgYqeqtUS2sr2ZTwez9kk3x4V39XnTyAL2M0k0bhNE5Glfi8qWanb7TU0AXglo9Tl1u+ymkIpD6qYQ2u48sMvMyHolfNe/IpTvRsR0I5F21we8vZLlqleLVu95s9v5srYmxgoNlOFoRJk4zor5EQXZU4Z5NrOD8OnUjctQB0TUju8YA+vZfItcwTwlBo1POFLzH+J93ia95C6W0wqgOieaWIEqVV5lbBM+oxH/xiP3zcoDNRgiEtkZpdrKNsSTvSORygouivk82q56cfsziDRAj7TlefM5zTZH50U4rt6s0b6ziKKlu5u9I3hozcsAm2Q+bT29xeJr4XvN++Q0wwSiMr4X0geIRLY3k5uzmMx4L/C3PpB3N64Ny5m4flM6xfLTz/TGfAZuozDaP+8fFMczDPHhSQoPWWWqdU2fKeGF/ed2TVQ1iQNv9+nqo7hZJR9EeYy9UMeckCR7Zf3/EA25D+1vhPf+Yld9XIS5JdIHIZZyaqb88HVZ3wK5+YJlu66Zev5l7I0RwxnneWLjrrtHkgYsPkw2ccW4zxxNVyWWuoasG5gD5Z96J2dNDnwbLLPwXSSruYYN6bRZAiYYPtgN62TIE3nEzYR6pJR91CZpbFeGe8meekPe8p6FLhCJczyZ9fHXaY9NEjYwvTuNDmOmT8zA/wh5yGpzDD5cRJmw25Z80A3QKXGo7DLCT1Y0SGEQYxazgQ4EYlDSG4w7vRPPKUbIcML292mHt1JFTq9578+rS4AJnqMxRWnOSu/jIgtp5OLFheL1HVHErzPP/2CgqL6vr1dyvt1MrtR5AQS6hab95NYVRPHo1qCZCa1qjJTO8FlI31b42erLm/sLDAbXLpmWy8c58YxvlTjLES0M876zHvKRUidz7tnlZJ49o9WYAxcg6204Ce28pyZGGf8nRkaazird0ykqufZSnpcqAZ057uUb3zCr+Q7PS8s3iqjPeRarX3tTeoNkOExN2RRk9Uvg1I6PkmqqSom8kfVUi78jQY0zfHMLHc2nbSZR/XKpUZpemgwaHpeGRKf01QmklZwCZnZM3jO6OaPrtTKeFFnawt2O5vMxOf0RnRuyZZREzWYgMnbmQtGojlMM4trTdv0toMmPIVx69YA1E/Mj+oin0E7QIR3Bd7pisk8o5JBohZUsYWsA5/2V+sA2pUQaMtPqcIIarDoiXNvsujDEdajtRs/2i3niRWUzZLr3PeGU1U98xOKzc4JZjlGV6i/wpapGRWLp9gmp3dr8D09DyOWL5rCNLnRTG1x1xDIHjULx1HHZmQJ6qL5xU48AUfaDMWYXm9asNbxowo9ie015060KrwAGydqRUkfYu6FypW1OwZ2PjoWqUDv8ovqOwa9kU0gXxm617GcHihbbkiZizjvOYg25nI9DK0TG1Xi4t8/gHqhTAvFxbjGyMCtFwvhKBF5g8rj7qcM41HWDzio3c6vPPMIJ34q3fqu5pa1VD0sX4Hk7l/AxQuYkQgCLuHRMiH48ZlB6pL1v81kdMVIGDTR4ogzihyfzPtUI3VCKEVZIAdDV7o3AFUfcBtlwrsgPKN/ujLMm9+FS69hI3YzkT0K0Eh6aC4LzO57PMULBmbV0h/8YWky9G3Y5nvobUFHAkApWpb/FtOO+JznrSesbli8t+aoq8XRiS3hSCcTgrf/fltG/BSmdYhrA3MoAszXnHed29N17xPoGhEDizxgNgSFiNMR44/35b9eDAnvy3EvhtImXLLH/1otVWoo+mquZfE1flHO/7o59fTUvFZzM5QzFDSKUINUZGH5gWplNh4Dl/bYtGzOtq7WZ+6RTdRwN31d6YAX03d72xOFZtujIOjpn8KeN+Q9Wfsg5qViFte7U6WWMTTudSTh1Zx7eJuiMArY8kj6KtWgwgTLP08KcGWSbRg70XPFU+CMLtvaoNBeoEi+K/D1/NqWERqIzZyodUTsdwjNfx9t/7vQrnLvPQLbNCU8rUdld37VHSj2ITKH8COYxiwmsmMwgDJuRLXTJ8NivO8XiqljOHtVih6DWzSD+9kl3wwcN+c1GTKb9QSMCRZvzBdjXsEs+PyTEBuyETpj8QiADBwgjUrz0M9cxBGr+YjDhxyca+/DEECG1c06U8weav6GUP9luFqJS/jaTrmiYYz/D54NhleY7vqzxCvVr0OrT/oQT/FDBpSznpz/NBJRhjkLnkT5qQKAx2NMoSrkGNJqDz/PxZwvtMeiLQf3m3t87DX3KzkzCjy4dPryZjvXAu5feRQtRMddgj2j47nbUiaGmPj+6zsKqF5JEeJZ0GmbqhqiB0h78QZM43tHaMa1rOW9EEqJQTo9cfbOt9WXM1V4ttVTg7PmQzxo7ko1eRodpyit6ZS1hrjNKo3bJMprm4yVUXknyABKK/oGPhUjrdFxMmYqn1eIHexKubyIPTJRLUIFlHs8LLH/H5m+vooikSF+3FOsUOBkSyZUKe2ct0+MaOKTqtMZ3L2Q9o6eJJFKyavngjL25Mi7DKCEcfqPcahyJIwQiCLBKMs17mJr9Bro/5rgVZoN4kYNNAx0xyoG9ga7Dc162OazYEgzF+qoNzrRZdEeEWp25uKfqzBcj/7KdT9EaEJHUXN9oku4qyVBrub4ifZ/YRsQtY11dXMd3BqkOD0kFQWV89rpsFFxck5CtxLipZhIrgBwlqw6w+po1ga0HT8W4IlNWVn4cwDtd9Rh2F//R3kjT2Cw/NetV3QrEdYnE5MJPkZXBbPc75ND4TUhcdWmWqaEqsdIFAWHd5Z7zOOxiPqFC0LqyJtYyCMu2K8FjbBVZMhEKRMGNEOB2hRnpVGZ/8QGoZYxbAR8BQN+dmLqeYIs4/MCWkAnEb3exgqzKOEiDz1B3+LtxTsVCCSYj0llN45vZYMEwNqj+vDyl6Sdf5wxqdmA+7AEczN3pqp07hHgo+5HZT/3EQK9WOVjyxYt0tHbdem1RtD1D3y2swxEYd8lAkfF5XuqrMUaZA06ZmHhHfQEzMNnvbCg0/D9JtKxRDBwtNgaK4EnP5Tn8cPvrXrxpXA6SDcdGkRZ7RGa7fPbSzDwDs4lMcuK6WVtKb8NTHpasOB2jWs34UmkUV6tBpoImn5LIrhM5C91CDDKbxeDto5ByyrwyrmTfLv7EweaNBG8DrZj0irNjYkysn5CBixWx1tY2tFwsGDLXMImrqPy85psb1vYUv8cY8HPfVbX2mn4nil2zAWCUnwt7VM2ZOerPQjHXywmOFiZTNqQ9EEuMLsPldcuWZNaikBCPTxSjvopcdzhXFK0hF3iivbHcdNJkoNSjom/iwHjwlSTtBvykwIPts8nOs55GBDKNPiSmmEFum0qj7LL4s1NewjKesh2gfRi8J6GpBqAcTbIpkglWVTqIESh7F0RL5e/16TU6EBKxorwobVU5dO1F4hh8bfAr85kQ6mJXmRbFTtQniRCkKBcTbTjpvB0d5HpwBhb7DYWxMC6iqUY9qNbWSLHhRDjkrjfydM/R1otreyLxcjbQKg4p/8ay1PQ0mUYcn+ldDQHiuLIom4v23Wrbw2pScpmbcCasoFiTnwijUTf6qrzZ2NQj0q57MfceyUv/i+Zz3juk8kgNz0V9ZQLur8HJtZlpHRknj2RpofVEDmwzwixcVoaRHG3JGLduJLIZfks8SyiiiVwqMuhTqafWLmE6XAIpm2fcigb+pxWJc9qVq9Y7cRo9gcXbE2H9GdtpdX9MM3Z/iM+whSWAJ9tTmJFE1JTBrbpKw+kIFPtN5MNjXH/TIpe+3M8nsSEEu/UN4Nhgtah4cUm2kATGQdmb/zvXOcFbnk/uFwT3P8Q+N63LJGhn2pn4OitMpD7C26pOMRqVB216YNfxO2J2LMr1VUWDWrktmPWrTlAlo4/z6lP9xDTedkzoE2x21OQEVAd4UwdulqU3hLF+WSvpvdktlM9DSvH1vTDopqI0xENVkQw7votWIw2VS+lEtgBEqWsOT9c5+QYjwPVbG7wQxC+yogMid2zuhlvLkhHoh4aMntqHMsWuLWXvj1RUBwF42NcxCjsyjRsSxvawI9ijfDFa6apXuBcN1Di/I0RmSJ9+iiniBA/Uf+ano7O/T3gPOH5iUGyNUFNJfnEcd66eojK1zgA+VHj9lPmpira0qUKCzXjPqclkqtiOGxbJrmeCaBxwubuIc9xEICIpHSnU/ZpBdyRcxXOzANjjN5ytJQSXoimrGa6v5uAEp2UHJzL/m0eOAg+mzLT4HtE5BcRb/wAfKYh3HbkwMegVkJbPnZ9XtAUASIWqcZsRG49yND/NK8jw2sqTXEJlaPP4l65zy6R3ROz+NcKXtNT/zXA4WEOR0wcsryOZUzQ2l3tqpt2GqFHg8C+yHK5oN8XvdJgBpa1+pGwTAEn/2WeLvoe3NgBdjeU63RmKzXQH1NC+pljlPaHWKaH6xiJkyHdKrpzs94XcCfA/c1lG3mqm6RVawMs2WIMzgQBCaVnr0C2Yx30o1Nfz05nStVF1w/zl5dIgy74Fhmwbn8toPBZHbc7o9GJ7BQ1vQFAK/vgEjhZyCuLi2/kabDGAM34pLaXKLIEaoxjdC9SrolezPqK5wk/HuxuhZzWGucX/UyMeqPAlOBnW194kgJlKcrZEh/YkLvxIIymDpkO+TpYW6wjjz3eGtfwJDtQ9PgMx1kwUlvVHjddjp8eh1kOJfE9iSNBOQhXNSvIl+SEqhQkCUCZxdAbjla+eezIZI4ocQNyD2aE/H+J5cyrSvE205pdXSL6K79aR0ybm5XeBPTOnADIBUNPPIN5IxPvWrh6u6EUPOIs8Jr+GD7ri6ejz3h74cDMUcq0j1+khGEERlUEXTh4zufFKpb3/AepvqUPX7kEZ5sQSBhi5/bL8rRsaikjUmg8BqaLO/LDe6sJ2GX/oDKtJIQ0uxaQfHEaa67UJ8meV9CXlI+IWB6L8KjpwWfQetAs56OZhl6nblvojjsE724MCfwfkPAYN/TiaHqCCl5qV6o5ULDgOghRkqaB0iaxI7goByj1XWlYjC0jE3G+MsM/BJNLwC2+n+OEKjppdTuxdJdC5vGDJZF+MVpJm5cUsO1my1PhCDhWLi6NUSTEP7EJguNCiBMcSj1Q47ulLz3NcrivAqtt2LVrqjWcE5EY12EdRJbox2fFVibfGAsuDGgNHfePXeydKOLBwSCy+6NRt+nvMrs3Wn8vAwYTVoB8+5VrROW/82zLMm5wDjj0f6tYFtl0+RFNZEqD9sam9bTSyf9NyVaXJcK/6C0diFhXl64BdBuvrUaY9yqj4wxx0MdaZmEnL/K0YT/1TlVlO5K8Jj5AlQHD3TxpqGP6f07afroolKcK+XLXkGO3Bj0/GIy/ea4FW6Lp+2PQOuowDxomwLAy/BHOIqjeluaY+pXyqhBkbViMG1YLP/qL9YvuELBLIq6CTwbsSaBKZMPy2K5AESgvDU+ZosVRJXP442SpMnwGL1UaAp398umJRATFqg2ltT6P+RsbzX9+7VCra5iT86CK6Iv5zwUzyVt2KPbag52btGsFRIko7dwHu36dj7zo7R2on0l9UqLEFwTRjIMjvtKq/4WTU0SPB4fm7HON5YAPEUNES5rY6EF6PPwZKzmq6SR71ZI5Cy22fRdmUJ5D7P91zhd9TEZviHXFcjeoQSClLhnTv3NummdYGjagnsQDbjg1XVG1ZkDRtJSk7zRbICTZkigPxlBTnyww/Ud0fv0gNrigrVQ5StUgTFQADMOGh6uNKxrFs/vYHvXgesiBGU9e+ceiAo+/zCYHwOpyNfJ6dSldpv1tY5R7SjhId9Z97YXErKOZKZow2uqyooFF1RdMH4OOsntp7CaygV9UMH1pRRsrJnk/INvsMKYe1zMo6xaoMNjfkhccAmJo0azLtWGaSHgmwDblVQlkvvbtzxdjrx4QrHy1HLP6gK3FfAasDGtEf+q9Oa97vVxCQn/h/MqEbeBGvYpqw60wv2aRI7QAm8Qq4i4/rvZjiPZIal9AZwZJ7bbPGKNOYmoEnIvRUzSzUS/lsnFWUMAwhacRwpy4DQ3kP3LmLwAqBs2Om2venzqHg6J+s9ApBU6hP4NBz1DjYiXqoY+N7rDEUn/czSKF43mJE/A2jfTKShbNM6VS5JECbbKbK0kgT7cbok8L0gQnmZxR7EgcvkhqzzPkM7Mk+NNVWdc04UYW9SLQH4dI0j2n/LYYFc4HU/ULXDvI49vh8noJf51SYXEMD1boQuFf2l5Yhu0OPlF/V0z9PFUFk4/qAynsesf+07UCsocZI897AM/d6HSzDjsXCAqcnt6Ngq+BEzF4Nw9NLH3UFRntN/vtcIpVgClWjdSHN2YuPU8TLk0PztRMIg9Inq8hI7oq0knlslq1U/P4GPiZAuLJ5bf7vLsSsUt5dLzer4kId0YD0gqYW0DVSmsL8R/WTErZEUlTagzWMP4RK1Z3njP44v74SzVCHwWDWiMsmgwdiI79kA55TCLbm6Ca0mw10eXN44ZKQ3Ve4d6UZAzevs7H0Sj0yUVMkXnzvM1BGaenZAE9q7an5EKJhvwwcuJloQ1xE3+n2W+isrF2r6vEgL633h1mc6oqrJWr9dTwoN6C3WOnySztM8L3q2e8r7smbMT90Ycpl2Xy8mcLyu0G+gZYjABk7XWBJdS25slAXoAKU73qifKcQrsXYx6sBBWrjghEIGxWXoAm1/9bgP8ElXx+gbUzkbJLYQivppmry9Q1gwWaOhEUMlRWY/y12+OsYZdCGeOhFZHYIFThLwEbdV8Fwg0mEbO/D2WEj3WYTaWUq0TgboTDabwMfKTEwIRz7+Ek6PAqS5N4cc7h6J4FEg/mD3Rpd3YTsZYwNkHcGLhitpWc9gqSfpW5/z+jNFs2uQ2Bfq7ptbC3s2H1Fu9yLV4/duT3vmlccoGnlIn3bK1Jd03ol5MquIZjwH/apz+1krTM0jqqOh0McXNIvZPXZwwvgKSgqt2arLoqKRCWtvhejAZaCBS29aScJ3w7O4SqtPr6H0eAWvxMmYDNB/djQEB6Z2zq/n32f6Wnh3//ZmYVTGu9jSoTg5WOgie5g4/po9jwef9RW+4NK0Tf8daXzMvnXqLGGLsaV9vrMXHAlhaLLKKxlNDdeFG5Ye9CSgkz7nx1Ez92woWDIKuOQxCswDt1cCEi4TOPKzmSkETr6a48FIK1I4gJUZe8XnaYRK3vrazGME2PZ6U7aEHnOeJO7nO2GjMslQecJKpmJfYoKt4MAtmKJs8vCgJHfebFsAJBuOz2kX6caDgF0Tke2xmF9N/eNq3kwHfh4Ej9P0AwHy0Je9Di+wATfG++OF4Y9XM0a2ivxlNAGpWz926fN7vNi4GEqDZx6ouUNyp5H8lNeCiMdIlC5UTw1/GFqn4s/YpRoC62Hn5K8lQh1awyhYPTX48f2JrOSzDT4TfvK95wDc14jniGfuH22nl3Vh/lTVkbmtxeSP6n+8h8UvOBUgYIpXO2bFLfOPMoX/gPbVTQyvkCgyJapGremz9+NBCsdCaUA3XP9Tbalf+RUPKRR5eqB14/e/5gU6ew7uknnI86oH+3StELz6Q2/w+ze+EP4Y06H9FsitfzDU8+jEYPB05Jqni7fKGx8imetHFxM0YwnoBla2Z2xwc2nOk80gulMfIBWQI2MG3co+GR5ETXVQfpFUFR/ZTCH9Ri+/7DIBcUJ4N+CQp3PuNIJqnlQhIS1Kq6weeomWEWDcYG7bAMT8Ib7oS9rskFa3f12AG6G1QojE9g6oo8jJryFPxBZZ+RJ2fDvVbohf/dOJNiC4o+fEbV9UmM25jEJcTnPwL6DOZWf1nvsrPA0mOirCAviGAYRNwt6OBCYyVbS9dCpNdOlOljgmiT/8Xgv90gmITcw7v4TkOqCe9xRaImNfYYAUKGyrdwF8izu3q/pucsf/7sYrvONPjTuFeuoU5InUm/qbMmsi3NHLASGkeoU6qq51zLphCYuXIFG8jo33P9GadlXV81Pfi1uL6z6bsBhvyyjTMBOvYcLBtsIA1I6czhOLBzooAWFqarkyONpch9uYBK2EIOovVGzSQ96rtZFYfHoe9FwHeQsusBmWfB+syod5YigA2PSDJVtlz4MD38dGKZbmG0fK6otN45zxJ8Yz/p2jaV/ncJSmcsq1tk9swghLf9muFoweZ2CpmoQsJQ6EsJUopSwC4+0oA3b57ZFJWhaNTutPPVCSEongzGJGWqLPasFMasZaUbAUAwwXsJZt12NEPRN1I7zpCsYpPUdpELiD8AKmIlMY8p9jpZVIOgs+b5OyNCkOrGPQYnKW99RqT1xMAVUsYXt6ljvejwJwtmRAZrGi4xOi6LWBwpQ+mG2E2I9xTp8uj/91d9rq0BuNfLxHJ8WszEpePXXVIZH6j34lmNmgAdcKMctJUghWstA1kk6drcL9ahLudoRxBmCC9F+pMdfGqdB+tdJmPWSB+VmIv0quoGxLq0n9gg7CANVTBjfrkQUTTKyCRivjjCJBYbtP3HUfcoHbIEhjglAEWXmUB/SVacNN5bfnkfiEt91BDzg/AqunN/pIxlc5dkqc3aTm4USGKIWKbwp/gEIPNbs5FMdw/nhmpulaY4kyP/eeOZzVdTxq7HBucgrWipQtFd2rlgc5cZSaSDmpAZzYOZ6Syh4b5KYglmQ9YEMb3vjeM872cJu0GjznH1VqvRiZ3jZSAwMvdMZJNbamjoUkCTqjOrW1DRJTcvv6K49kEcbgd9vk+iiRoeBVqSeEhX8Ny7ChzsoRB7qB0jxbxcelrOkhapJyc7CfKL1EL1Zmuk9bJe+v79KyBEdrGwS9x1UF2Y2swNHcSLlfOW6E1FcvPEITTHQdX77F3ABiR7SUy95XxBE0kUh8ZLuVORbDXxwQSOPlCbP2320Z36sS+uz3nuiwssOnFk63Q074QR1kldCB+mJGQ4qwYyy9Fjfqu/7Oi5sGskAF9W/p7dV1mYrRoTaWerBxA78e9NNDYZ9jMfWdoDS5ifLSs2FseuygffRzRKU5UMZuQJpAqObx2GdxM3Bp3BGAnavgQdM6WqhwbwvTgMP52oPl6BpuXC31jN/mwED4XvpzYFlPtMutu0H21Oz9cQ6O7n/hZ2aRjzIt13IlEdtkdHwaibfy4zGH4r1athEArX/67QjKYtvxKXBMlRhlFf0U/MZXXdIpq5PTK8vFfr9/IzAHTKhhwr7H024OitPzXf051lo1LipGJ4OHmQbDZZaHuJf28AthUjk8pknQl2lb+hsBvKNb+L1B8FD0M5HgG/5N1JSJaf+fe6quOK8wa7RhmSbStqRBKszmc7eWh8NtEeAYHuFN35TL+S/GwC//EUEdUPHKdzQXaqPiAgL7VrCbusy2i+8z4q5rD5yuQuD9sNqlpq4rGDlCWt7G/D17S7ZRgnF0EnIklZweV2Ogwx3uDuFAXDkvbS30eRCj0WmsFpme5C3Qck5CZW7WlQMnQrumtkQclFGlui9R3mcy6eyJEAYmjyeXdW9tI/BZ8rFaSE0VKy7e4vm2akDxLVcpn5Fb4BjYDCVQDCK1REiztGftOdZ8Ed5hH/GgSaSxjnTRnsaV/wN/e50frBJIgSQdEUYJWBYeADzIIc6d97mvRcg01LHA23yeEY8nTTa+bGh3P9oynbSeHid3ZYEzF9LRjk+xC+oS2YWaj6kBV4WhkYydoP89gL+0UzbBqbo6EtJ3LaNCG2fgLhRJYpY/oFFjWqO/Sw9CXIkJtTUrW12IBwxW7AlFEpD+xyEHCnHooSaoGyo3FADO+eerIhO4OziBUqA+ouLb7DeaPbeLcQGC9DBGRuNBqa1mgpeMN6DbRwGli8fY/L1xVkWnHT6rByZNnB1KciHBuyISdlB66eqFSxf1zikY1uYwWX/ltkr4IkhMVz3Dlo7gU/UBasnsLQB8hIwoPDORXfWGCrYrlqCBZXTd7hasrHAEAfyPGCF63HVUl46bcMeCIkbTC6MTFMheUHg/RgnHtR4vNycuokaUyGyGHWJaKS7gY9AMHCtsHWr5frMU4ibAdtYlxU0zuEUixKUFmYiq/q8aTUrHKwPPOqIFUNLA4tbpcx5CFAiL/8jT/y7DyAh2hRyjnI7YSs7lZTpYwfDanlvEYCMzXpVPtRykPnTPOcox0nXfUtAQAKjGxuP1GQ7BKEHil7x26jb0CjJPzG93jNJtRki9p+Woog3ZuiMjmtPWmjrsqqM7AL9iDYPyaCvsR56jPBjP+FNUeVHJlZgw3kODhAh71+ohSnzOXQwfJPTEmWA2m/wrqk7vSlVaNG1lHolsFb7LUE2aKVlSrlYfWaomj8tFZNSOjXrLK/mQyOr+uuqQnOdH5e8jE7vTY2ootAj9W3Kn/o8wALEzHFvLShaNvzhGXc5VVjC6lJTTQdniVj/q3jBH7NYgB+kYeLluoShw9yztAtvsQmCzZxNCR2XGhLYJqJyG86Psw5FWuaYuIGunlg8gtcE8am3773NK2fK3WcuWQUSYSyFQQOrMFKN2GP5QXI0/sXzUovnsioHhxBjk1yc9JMi386ZCD02q04+1ivoRIm3nZM3qJ7NYM4ywEQniqC4ZeRQqlrDZVreMn2lnGRVNz82sUN0+Zqp+JhJF30YuMC0tgxJq4s3n06LJ2U9JnV5V2Y37IAwl8qtHo1lyVGgYz1gd7y1KfLRa9vYdvjGVPj6GqYChRY3S0ncO/SQ9krBs9GdFRwuTXdW2vvXGtJn+N+wIL0VQXM3ZLH8UdlUONsZaVSB1gZOcTmkbDbFEI5mZlWyU6WWTGOC6xKiu2PNatQM974/EyAcuGTqG88lRlYjjw0WQiqkej5G6YK32rggK28szNCp+uHs204EouwI8K0ZzW1/Groz8WL3Q/vHwWqCPj/UauEFPOLgRM5c1RAGmZHVclqqbGuN09BTrgP3620mjpEDQQ+tMcXaO5YcnOs1nwLTSOo6JTDp6kdJuSa9agh5EHAqjyKUYrDni/W4f7e+tc/ni8pSpCcwmFXotfuAZPmAUk64pTLb3vknutKP+XitANbKh3EU0sga2pEtcF8oZ1gOZgcujGujcp5evPqyegv+zZpTaeE+hRNxYZ14rtSWUVvM/TE7aor0AqT14hfDFJ8USoCs78SEcUzWGvHAw1qMlJg5Yk8wGKSF/QXqIGL4ELTbNOepwD3hKQ04QH/1YI9+yN2xxFCu88SciUWHdoD8o4bEpv9LKnaOH3o7py57988VuRXvNbY7DmtSS1i6Hls+FI5vYNvxTbGI3FAkZDFOYI5lZ6AcUg7R2GcgFlUrZBnz+rWyUsbmVkT+nxvaE5tOYvD8oGLUZOrcOlyVYaE6WHtBaGLIXZ6gHQhzPJmVIO8b3tMFyrsZJat9SJwCyQ3Uplmki61A/9hwc3id/TFaH5tl07JPKE4lh/4uLGo/5BO7LGn7ngZ79r0slp2pDPgP5/FdZb5geimcXxsWRpQIQ33KH4oI0RX4Ni9uKaOusq8uv0nS+d0WmICtRh6J41UmyGYadwXwMVAx4mGyNlLb+tgNlwz6xO547v70nIsQZNX1FLL67goninPFrGK2zQXR4u4B6uGkW+n06Wpb2asF8yRi8tRptG8dXEn2xoo1iIUbTGg5hTGmHEhLYe/NG2hPKoKgJREU3rMO++S/nrCt45lzICSesN8YcB+uHt94sci0jnUecv+KFo8KLNjnhj5adHSFKR/DRydOS5LsfH6f7Qld6Es1+GfRmDqd6fpVziI4uxMUOCZ9jbniNhSShPC7rAxsZMVOth2irKjg9mIk7N3s1SHPPSX3Yvkt7pc19JkyBIpBEnlP71xupR+yJ4Cy63oFjPJV2FFGL/5vwPy1TeCbgeStKxiTFudzj/As3wiyq9veTCKRO3IGJS6hcOmu3WYUFF+cT97Kh9/hM25jtJ2gkV9Ml6EgE/h+V07aj/o9GgRUI+0xafpDRDE9WofjxwAu/24wZPinhyVemH5eizOS/+4Fa+E+eathm0toybw29uiGcI1qqN33aQqA4tgyqGhxEmeoeizKqzUUWRVCtQiADNNw9cvYpqh1IMBTOtDv8aAs+31MW+y2TsqIX6CVjD41ttgRbaQIGLfal7Ykuo4xPflXs7xV1qp/KIMPvjtRrMlRiIp5uyQPTGdgemmSwG/n/HkoUadbjEHdsrb13RwqLIomE4RJEUh7d6suGSB06hMKlwKrt7ZA2pNddQvLyCJzpPuv3QXN5ZR4wwHKJ9cCuRTVGmJcl9QtV3gWbXexucZk2ziE5ab0hwF4gaCSptmD+Hqi9gk/ppNhWeXQGvyfM068a3/H0r/rN2pHehSJ8HrIL7fD4m8GUrdy8Ag81GhiDqGT14DUjA2TZMvVA4teTZEKKozhoogI2GeMDOE8XEH/S1nkbxXYvMMyp9wTWT8Voa9Xyk9kJ+0HcVO71lyRajFZeF8FSR7WGehLwY1lhShZ1VJbnr2tAUuUP3PpsDwMoDes8OtAxdMK/pGXKeDh8hcRJRygfI9rvu658i6JhMWmG0MUqyQRKSesQeZo7rs3D3GeNJK8CT1LFTXYIWtn8uyda74z/VVLmF1Infk/HflcvoPhyddmXkuj4hlyq2FP1E5994V9PwoO99Po6T4v0CR8YHGIvJMqNCg/RHOKZWVEwtNCrogwJIwVrU5S3Wy4NXYOOiZWCiIi7aLfAzh/Q0XNKCxijqaHJUicgQIHb576uTkiwy+BSvwsD6eyBCzlEgOLpkvkjVjv0Q1c5afvYlBD6KB/Hk2jkCW8WxYadCBEDoDVAYoL454WOOoSgMirRKCcc0wbPWbBmkgGFoif/852BGKzm74bqzUngxYT9G9AXWq/c5ktnQJ6er8LR6IDGk5faQ2d8fiomL9R4rrXnJEy3PEQy0AGs9+eGX0x0FKewIwZZQ1QFAdJM3b5jMHOwUBpVOrR4gXOsUk/ZoFWyA6HG9Yh649HIwQ22RtkiApIu4d29oYF3DlnvuwLwYUoUOptGEqnsVImoil44+ROZLrPbzdJVwHKvHcbYr1z2W3pQJC/Oykvni9MHYp2x5p/myZI6pkka+FJ1FCqIv6uIN2OqkFbVF/z/+8fNAtfTQtZH45U+ySbTW491AISYAtbesPEujfS80d9j/5uVjka+HhiyoNeCWgToZ2kj1FKjdDDqIjR9JCFkd4ynfFNXEApcnle9pTu7jirnoyy711bBptHk5AnPdHrB2UzhZ4qZu1yP9R5AffbAZsqrRMaZCSFAognblK9ZWL7/QtLtFItG6B1dHkxxiDyXY9HMMLfD3k8IQCptmxyy6U3MnO6YxXaeaZhnrxj8nis473TsJcvtt1KKX5EYT1jf1OmZWO4p83XGtSwcw1eQes4lGEfUrYzHhYf91v551hGZMPW0kBLB2Fu29YLEzfXG6IMwqU2IpC3ZHhXnFz/dw7/wX8TfVlgn+umyhnl5Vq6B3jjv8G9TK2U2NnKcXW2GZZb4jccs54c7PIZmgyK/p65UiLhzQ20/DNAhVVax5a0tXI9S+GpZi27CsYI1z2gb7iODMYab32NbTvI23HY5YG2pvnNSMW/dPyoKtskBpwAIyGcTCfqsGLHpbscmiZOOptifUFl9Pj+66jovFQh3jj+NrKlD10JkHQ3dc3H/T5ixrtj41kMqecCQeakX9qKPiNPZA8fy2BplGIOXJleWs6QmIOH+Bfko6Ts4joz7zNDkWABSOMZcjxaQEeD4oxyV99WI9yKcwhMr7r978qJJZpKvRRLqCl+nTN93yfgzza08t65bJHtc86o4n8rMJKjA7YI5GilOe5Iet/8j5g7xXc2UP6PEElbHxtIkTOiUxuQC7D0YYnhkQyzNimGrTU/1tD64aEAgs8XvBoXnSJ1nENdbKIzp65SfQchbZ/dVjbqMmu4QydtNEERKv08ven/Q87Akp52ZbhnSRvRkrJsJ5+fY5dFnq5xcJgbjiwIjQQSYbblYmc+pHwuNSRolc988nMTp8lZYg/fbURilBQZjogmfyVSHB8rMaCo8Zs46cGa61QKBZCrIc2DfbtyFOkNeIm57fUMGs0Th4C4tPlTDSdgY+cHdOs0UN9BgYXgksN2kdnq810ZzKv8PcQ21IEb4uvmcNsPsfEpKZkpdYN6d+kmuaJkWdXh5jfChGP1v4xRNAYXL7YOQgNCmtmrzaL2ZWIwgsaDhZiGrX9cWUqffsDZaERNoT7UQmJmeQCjXM9qOTh1+HuNDtazJPaxslWwFcW9CGORbya9mY3FwJxi9y3h7ThkYL13f1CC8Y3IYLe3VjK3IyFLgBcg8WgcB+x8WA5b+P5t67I1vHEB4nhysya+Tcxp0jO+BpktsupR/2efEgv4NwurbUj17WU8C4nPbJj/8UVGrRgo272ILX6bnuCfQ4hSPFKiXJoOaTn8fgMtrvDDMV57Te0w47I/o31nXvRTSUevyQ6QEeujs1K5oN9CiLs/8s9+zrpC+83JefuxZgbhcoAwBvsWuYLZ1an1YBbMRiaeLE+xK38TeKA1c/ljBPIWfw1oLaJHcbgLS9FY91KlwQVIvG3HgRaOcPrbd2ouGS5NPdPoUWK6cAQ+de9/xB5eaL9S8ykhwb2ZUaf6qQlrwSy210lvrfL31xkm2OZN/GdaV9QRQlxQHUA8pCHaZGToTTPjMDQBvfOch9N7D57eL02GuHl0XDFVaTNq5uyNNwGOFAJVkJw8hoILH+wuRXbvDmbHz4gX7+sa3ZWOvACqZ/rnr0hX8BZVjdFT0nFbBiyh36kxkExZBczWtbVXEJHX/h3b8G6DdPB9UX9Uy+VQdInea/Uw3ypXEP+WMD96ZLW4Mp/n8MGLUk2YLKQenuLhO1BKhOkN4VHKSDFo0dS8pK/w0POa5y5bSkYOkGZZzJ0Pj1NAx/25Y1kZhmeGbNZiLm5S1XlXy7r/noEXaEgXFjJWu95LbVG7j+RKLXuUTmyDTUbGm1ygftv5Id2gJ3R0eO9dlQpW6lLvmENESe2oWvDXJsG2VwQ0NmSudaQMNdL3KwEHjavfuQKClHeOQ07P2zI83KcG7scbUmZhY1Od3WBSogxgGjaxYdP3Ue3RXOfsW7p8ZTvw9q3N4fROP9sANtdMYKES8tLsbIDF2kJXhluRM6lJTua6n/tT4ar8iooGIPeKyN7CrClufFhQNfaq28qFH7NnLhuxG3POGrXDmCI5DZguE4GTPWhyFKrktCBBTSa7uAPYfpkJLIECSTuoob/amjg4KgcTlN3+n5B4kMM1oEvccyFiglsbzB8K9TCZUDatRB9DEK/jVvbEsbm9hg6AL7CUYSyGd49RUF3AGanZ1rP0PzmCZYTS1gqQgwFRB7a8oSEhwqxdsMgQa9ajIqIFx6YLFi6y1byyUeipbE+UJlu18ejwNjFqPda/CehejeYr3OHN5mzIb+n2Ks8/t6BSM50B87bSHb171JZ9kmjzaCoFD0jYGVKGeWlL4MVamyac8KqpesKzV9GbEhAqLsEt2qfywJGWLa1g0QrDsrsNjyarofyDNO6CzIrFOsFr3VVmC+fcXlp6uMa+1oq2gK2j0hhdmzOh0CxUU3gMzWY47o2bYnc4VxABCwjHA7voyvyd0BbhmjOJy5sV9ixA/3vQP7DtdGG4805nUaw2eXrDFdbNnJaNcAKLpi6nnDL4w5EXBXggKK5IPZNjEzXmYrd2WZeoE/4J133ttJEzKSd/RmKFnhykLop6OYlNymtTtBN50w3AtV94pAL6czJ7Dpe/4HMUzulQtfllLTwS8hqLgZ9HtCNgx5/OJ7CrJgDpx2T79Ab2FoaBn5kYdTNk7vtmjRqNVKCLzqvarHpZqw5YJ+Ra6VYtBr36jWZjjB9g94NrP/6EiQ/34xR+RRzgF1SRXxBg5LidanwymHJr+B7Hjltt1fVdZ1SbgzYCksp20sVwid9uaxviHKJwlr/RoGFuOrZXklJJMc7U2dnnsQ6gQDYASRAAFC4Knr8iQe177Rd5bTVFgdQb9M7hgGJ0pZjQzI1frf4r9DmgTk7n4o+k7V/7D4+6yZvzKLAXZ5HJgIecfPcoCKKG4K7L3PCrxOiC2ml5kRYsmvDKuyuq+gCQwbaqfvjz568Y7t64YOH7K/rLt/h4/3psKrjq/yyNMrw/e+jGmyUSGZsJHBf0YzIWRd0JL8Ucs8RSKAMhp5Cj+yjiljJ9yBoJ1sKSQCYGNVeYgQqELKpXL3PrcHz/1v8Dq+DOG57uKfsVJprkcTkiOFduUxxfh7HQKF2ZOfyqQePbzTOO/6ZyvLAPgeEfpD1anQFfiZXGnPoorSTjHKMJ5sKQ0+pSfhATHIOkQ3+52n58DkgwMMuZDuAHaqZu+vfGO4IXwFntyxSzbhjJex11rgPEC+Ay9OAUo73aWaH/0H5MWCRyoQPnQh4HlG/Lza45eoKs+IliSf8L8euYbqBfvq/ExciRepCXyJA5zoo1MGTD24C4Z3XhHXfTNS4O/kWp5BHbFUUp/odaRkiL8X537K+obLeOWyPi90JqWKU3snwqtwgLLOP1pd+CAIF8lH4112EAGXSjJinmx5ojobn3MKTKHU2iFEYhXSJDrGshoGfXptxPzlmFqDJC/osZ9RG963Qo4gQTuz/U436Kaf8aIlD9ljz0s1eEFHL7ayABPnd/AIEcXg7/V8J1ZpS6GkQcR5i/8gkmrBNaS82RDvwi02mTUAk55fNWxjWMrelA/7chZUZIBrbT+vuPTgKpYBG2W5eK2ZdJmS2M8uGhXpS6K7V2D8GaKHwit9RUcRTztscF6niokpBt1dDbEGUOxQVR0Y7VFx/+MKUZLnRqJBeJ/JZYn+/775g4A4uG1JxKrrR4RcYs5uS2D26UYb4ct/nswUZQ5/spQz4qziInLcozWuiuxloimtF4RzVsAye/db/kWOCReoy+tT6SEIJOmcn9/VeqMfqWxMhwIGrbPS9fYJyvKYpBoAYHCSByi5QH3RVTu0kDixSKxiGet0CspLIljUKpLLAXC+sy7cbrkRuzTNYqUouB+T99S+mFjCmWKGqYZ0kFs/fTc9isZZ7jniHg2hiGwbIiEKlifDj2BAHPa6VkG/RbWfb16BZJXDfPT/PlR8CA+TReoqE3ZYf9sKSeTo+1mPyikXaxYaubVBA1pzFUAF8Me1c/otUKsl9TeUDKGZiVSkXq3GpEkj8gT7WX9Ve2Wz9gI0Csx2Jo5t0CrJZXb5BPIYq0f7XIUNC4dvFu2QJDhEk4i/PTiDYgP+VqGY0KldTR/+HgyiyVVhya+7sxD9J5CmhILi3iaDfbq0kmWOYCCJgtcA+fCeoaBaFibvReEWlcAP59ZX9f5maZihVCrUGlJW4hSGqw86G/H8r0RWq/lZ4Y3mdMEPrvwqjzAKbOKSxMBPNkaezOdC4adNmetPzg5a8VRE0qsGwC8XAYkPjyMhSiuK2lGteH98U89OuTo1K+d4AEMIALORuZMxl0SkCx1yxD6C4jTgeP7CYjWuCeTu6DLBq67bJhLFH0Qi7BRjQxyTZXio0PhXS6sdzYnDVlZS0YZsA6LhDzmNp05xjIAboCoqT+eECx1iAS73EyDlFoYEIbMenKUn8fUQu09dgDMjScOKcWVhgcOazNhhVRW53FvRWK0RDB6dGBIjVRLEXNZKCUr6NOoQp32SAuUvt2R6TrOoNypNjcHqJPA/zh18GBXXlgi7UdLTVFUSGoXse44jAxX5Qsh0dL6eLDWb1Z4zMpypBJNy5vzgaCZA2iG0yyz5d3PwpxE3UjEBWC4ANHJj1OATD5ovex+r46yggOXJl3sIcHT29NZantk7nkSPd54ulB0Bp4Xl3LZ7UWKjNaiAEhNNTZLjmVo/cBNcb2LqREZJ09WftlDfF0H7H024LgONvfxrt4vK/8RoAUwY7mSMzCXxFMjNZE2FrcAVUGQy9M1cxySN4bBc3ATqaBFtVSR7mW9Cxcgy1iijVpVWntr3AubcmUz1wvwiknqAj+GdtxrlWoXm/KpfnWBWchuCDHa1MkA3GRuFDUFdhIbE04FznCyAeLTJsAv6wpkol32QB8LgqkLcRYHBKRJ+WZ5kvmHF96YQ+sFQL3A7awRmIg6T1xnKRe5afQPquvvbOdG1MY+fhg9PLRpvmt3UqPqu5QaHwFW8zo2cNNk3ezzQ8SauvuosfhNKN6oCap9wE1dMLQqYYJi1BOEynUKVjLINkeiw5ICdnvvGoRMLnRa59Y6OT9Gj32UZrBUX15jezLpnMh8IIKo89X6LvUfyNf6PIKRqMfJIMzrqWJZBjTLwN4XKB+SCUrjJ47INJJ0mdLM/DWdIppEKc6B0t/bCdSzsQCKlCDl/3FxGezoUoBBp7Nq+6++mbDAem2TBprK+m0EWmj+SuyD366duqvEtioNY4lhc4DNbcHpCMlfYwMNArojP4+3n3XcGuy/7L/V8aMuqEkh+jwVDf8puBz0XE98t4Ea4DeoyL2DRl1oVp2dY1a+03eePZS4TB0uIQFbOo+6/tHi6lOWA9/e2mzcYLLThIL596w0R2zgeu85A98tWT46c/XJIbI7WE2kkyYu9CLIolJ9PCatpuZ5dOLiWRdbFx2Z/TToZWYcWFBIeT1fztLdhjhHH4dMxilqkBNK6l3DVaZnY2vT7yeyv0zzS2dqbY7zgVL2Y6vPqA1r6lCWqV8kGwxzVMPesh0566xp0Ur0SWFq63hGpk13QBVuH8+FvUYkDLdDu0iRS97FRQ7sBYhHTr2xrR733VrkWJQE+v6jxBDWbaXIcM0oYMEaxp3N240SZncgGK4VODTlwpCGvul/5sEMQlfjz5NKN2grlyk3xacbeiNJcxz6myfFLc7DrSNxHNaK4ERnzAnxuF9IR0SoLWBHt80CAO7x2CThPJ8f0F06G4OR50B8RnLAuAnXqIyxqRcgRmiGRTdPhyBtBiHkymAR3EzzRenXXAPGkuVDHsflz3IpRTA4WUtGFOcGzkfYdKfUgIGqUGmEL712R2kZc6JdUMQpE3RpriYH3uFS4PGeJu26B0hymCmqateKBLXEBW0Qq62FTM/wJdOLHMvKudNlQfhFgUV8SRdhRkUErWWrllYA6Hz7g14bRd34lxtuX1nsI49DOTqre7mcCngarvAuR0P5YhhtnrdTk3RdzDGEAWWtUn8wgUc0jOYQn3vYGDL/j/ziu1DdCH4ZWup7b2xg8RrF03CskbSie1CC5EBm5aizGyMaN/8zsYIzLVBsC1Fm3UwOEHPCe7VWFeKQ3fTzCpZg6edZ7f1Shxt3X3wC4CA7iMTWZWosARPsLh4TQp+QYzmeXdUe7eZTAtt29qtHtF1JEv879cr4yCj/hgq8ylkvxWjzzAEYzTpP1bbxE8uCwmMVc6HYDfPvrq00AQhFRxaKcAVbpDjiuBC2eujTv1q4f7761os8IHUyV3Et9OR0WrCoA3oUIPYY75F3xBuySGA8wJFVW5AzoHrmC8hrgRh5goaiVKEr/jqnrDQ9ITezGh/+OMWOnDT8u9MNOFbZO6mKJJlP5Yj6ic5c3a6iwGk7y8r8KWF26TgMGbblA4ySfFhKrxbSCTeEVgem4TsA42JFfi6acpii/TojuFMgX2hcOtZSq9a3GDAJcfaEsAHh8j3O6z/xCFLyoAYICUunyX1mAlr8MPMpsALCZae6jLVP3z6a1SpaBjY1IWhGREdC2pNZDw7piKAD4m6L49+wh2h/gUnDL2/s4Bqm0iT2KRfpRUShumGX+yC3AS4RrTed6MbbDKTfTPera7heDmUL4f15hn0NTBgdKXC1qkdc84bcbLWKjC/ERF1IQiPtlX1IBD1oHIZ0gvwoqLr5Bd7wzKvT2fBszAKluknpN7sDx453cxpAjHLy+AEGWD6UbQA5Y7RYasmCJyLJLvropwiMk1SRvQTb80oqo6jtTNyqqLORynfd3K47At9XX5LfdiBj1NregngoSGophwnY63kJ+bkGe/4Xljg+mxxOlapIb8H0mz4T7l8psMZpov0SEbeD9YnumNc+Fyww51ojA7ppr6O6/yas+7Vq6r4Lg0DqDWE98wLu9SEVYwLTGFUOge/jHcwB8er6ls/ZTlr80p+zrKu12GhPDHVSFEJUcxmJHwZE54/l9mUns3unP3pPYHc1F9YfhvDN9IRJ7m5A03M0SQ36wEj0NVOQWICO5xmlg3xjOJFWBkD0ul4sItkb92jTBx8rjdn4OVbB89yus0m2Ves6suQkcc3GLFU3yrWoCKUjzIFYXLDUC2R7UxHI3sg34e/jynTZXfDqMj4jFfV+gmlivXbqiJbjCGBcxAUl62cuYfkbWmK/iqhfn1ZZEx3HXt7+G0fuUM+4msnmHczSeJqfZwGowAI4tgPzwbAawVFhWrYH8FTE0pwcGmUpsOUrdzAxrXndW08DBGqsq2zIfP91/BynXItLjZiIbIwLrBFQkGu3g6C5s1ZyH+juUAcHtIxXFMhdrhgL0ycoDaugSjtd+DqImtVwaHUDJ+gSqjaSTYRszqzQt1B+HZJxV78E6CcwnlnaddZd7mSb8bt8V6uFYPJ/BgTUiRUM71S9OQbg6HRAP5hPIvzjysRIb894kZ2QSMgwKBnck3RA3V8sxLK5jejr2Q5/5mWF4br9PFUlDoyUYgIWB6AxObtHQpo5DKpeysIobX/Mal375Ka8ppI2ANehg+M8YNHmn9benTFxDveMfJCkcZcrMmvepOOJvA9avPqUo8Ou9ovT+EsXsS+8ZNuI72RhKaJ9GFIWqk7YuW2rgVfhTFxKWm7DkVh8zOok3xFY7B/t2TIMAwNnNaJDHr8ehy3Is1cWEYIBCaP7djT38B1nfga77xZh70tHPC+oMUc830ljEsoNkEJAubhvJNLs88L6rDnnYLNzDO/BWapCmv6Z5AgUtd4aS1aJEh6uJ76gUUmjxM0s/X8lPASOX352Mn/qKbO9RmI/RJD6AhZtwkibqkAqL1d9pW7yAFeb/DKtAUsnb/EiqgYeTvP/RrT5FysWCIl4QnT51x9dqsJgLpnXLU2QWja5QItvSl5s8dhUkawiDLTPFAu/yL6/NjVkhgbtWkyHJoLSFXHbN747zcG7Z7HKbfT9aWRah98LN5QrLdHyAGRdxuD6YyW3dFEpkU1h6jQKYfTn7WbF2PTJY5WdXr2LDBWSPb3gmc4tms2pGil1H0H3lLeU/uf75VMO0EtHKK/Kmk4IJuTD7DgB5P1t2IGCPbO+kNp6NyuiU9nMWrSDWqc9digFRh6IjobpE5mut91l1K3ak99HTi8N1MThkDy5TVoKHGU6TV7ewpaDRxgQJTI2pFU3EnfXEWcsBO/d4QTFrz0kmohhkmpfyrp/Fpy5oTyeOMRV8OFYa0ZuUl9yNuUfOsw8sVgM3dGu7TGxrZ3ZqFQKbGUax9xITkcAYHBfEW60hn49f51VEi+UW3qzXAyECZ5IUHfHEq/CQ0QlcOHupNBDfCjTE8iLbCVS0W59AftcNWb5U3f26oeWSNEz48TwHwr1DobHQYSiQDxAvWAsv0q4CuG8O44C7rShRB0uEhSkmTvnWMizzQPxuRpWzyfEVNUzeTik006MeQAIlOqAtgSX88zIgSvDXO2k40/dl5JxTeWSFOn0lc0stfp/J1wTE2VlzjLnGLlQ/htLdPpBTy79U1sbTFdG11AW6nk/jbpa6oak+kQ/vpY4S8UranZidFQVRAa+A9dSvXdcv4fcFkiuaE9KhFO0qHna0JxggAwbZtzy7wxd1Eew34YOmwjdDTvuTtrbxMTmyr1wTiw4Pe22cKSHkuHWE7mQYzk1QVq2ZZ+qGaT1YwuChsPdnf51qlRd5oWpeILz9Q/ey2bExMdyWCYgpEhaIuN3X9KR8JIQ9LbU6beKoIBnpqhwC3nEz0hRiDGHUVWT35wIkfi0GOqfdb82Zp5zIntYJItYgLsbCxxPrzkrQm5N/N56QdM1nc6mnZnqNdDOUW0Dy7m59FUAcHp7ZFdr+bwSo3oTOB20iiq7gxPFU0h1h48Nh8/cr/cQs8/YhV9BVti2MJCdFXRCaIDv2YJKmNoXyTwggUCIo2xc3/gGxi5MIGIbrO+Lp4j3OUiZtkrXVYMG9PxOX9SKBENTPUvHggHwOdTfW1RR8mGn1yA6hc2Lmlp/ivv7FYWaHIlpgVKOnQPOEVCLEDbvkSSp65eeRmKvY85J7A7IJwGL7wUEkSQ4gtS0QIP/6fQKoJGTqOkm8mTSJrmvejeAt621OuqAbTn6dE1XHWniPG5QIJxHhrDplI73Y7bqM0l1XHbDFIOcOK68AfYV2lSG9EzlCNylplSbBP/H4fuOM40VCODXLsgiaIbUEw2FP+U1f5YIJfdzdUOpBrRRAucriyDLlrKoUtHF7XOMBrtB29kI9HqHyHIslUk1S5OYuY0sqEFQ0u748alGZY/Zqbt42nhY6CcSlQmPs8Z9+whBasCqaaB5pfTnIByLufu4TKgXSWsPLuvP8ms1YGa15TIlzUm00QKEwWN3gpN4n3Kex2GW6UWQhy+NmW+SgqOaPdL0ju7mAEAK4r1yMV9m8A2imMo2drVJ1ZxiisIZKjgofasur7Zy7UXDFoy9UlYuRPG5QzB5PjTnBsr3vsyGhTxNd7gpyL4bcb7AcpmcfyqPt0UFuKNRrRPSVr8MJkXlxb3gpHR8OHWmkh96ZDn8a2N1POoQOZRL+/GknwfIImNsbsxprB3eSY7kcsM85nCYr0HqkIssQmjg/b74NvS6mm5LsAtzFfdkdPDVEMi3AQEWb12xuHYdHjcU/aFdFs64qUyzH/7RnNA7DeWyqIxNQX242i+G7Xg15LtS+gqSsfukCHB8F6m6s5fhdytWjU9nc48o1WOkYmcCQiyCvL8NkkH/EJkcv65uxS6eEH6hM62Nw6F329W0RDz0H632xLIZZri22ZxcAkeTclEHX+NdwD67/qcbWoEz7iIQ88tWGmit0E1MHRBObAc0MKT1Q4o1Ll+mBllPWBYX7NwXGI1gO+/pUQtD96EqsZ7uxG1W3WeZJLaqfOCEHbu0YSqyEJpTkisE3a/Gsf4xqcySiMNCiY6k+ndL8w5C8dwMAKStgFjiXGjs/3/p3fmnfBsQTCjf4sC9t3w51Bm14GUmtlvvEHwDRq1QtjAf6KFz23XMEOOoXGMb/RGC1OJBjWkoLz6oqd1TCAj+QIjWKUDoUDyp523NfaPF398ZWh7dxTKBm0y5Lgcj5rqmrgRX1K4/dcxWbkkUFadW1CqzAjH7I8KCYYC5o6lyBqv6sXgH8PDJHEJ+CCD3mwZGaG60pOevvgFyth0Af9CoMUMi0rUUKFvb8JDq03AAPRPEifuPVcpqIYi+8rLoqVWcyCrC3UsRaZ39Y8ZcXBu2JpAwlyWRxEV3orE2W1Zb78BwQ3iiRZ30VPnsQNbVhA6qCDynvPkLdcWnPdJn2PwtF8vlKqJC3LnnafRMwD7SBFoih3iKexv7r3ftx8XMKBXmGBGRQeglUddRCSCAv2ZNMEvpcGf6YBD2ivshyKDSW25ys+fu+eJ6u8k00WvHLEXIYCzuQyY8U/4BZmYwAFX8g3H0iBWwZbDWdhBGTZP9QYcoQbAV9NnbL30oLZl9dqYsbcZm3ctSq2102tat6kMURbW4FNwbLoy6bVjPCtolbUIEjsEot13rh2gxp43CC0LgU1Ts49upZ+A9AqG75TaVYrJCMaule4p/XpJtX4dh1cPd7/TXxbkFj8HeD6dgqu6/kVKKdx8peuIY7P9pVwB8tvtFClkqe2oWz2jMM5/nqfk51xgsIpbxn0rcIzW9EB7uGMw3nN8aMiNgllNSquDn7oA/vxUEXdPo6pr/SvxIlTcB5eQ3+gPzoN1wLKsG14m3jVps+CbIuF/DIDKWOxeVM0IV3GbxrLJxibD1oVnruYSOoUKsOJUppvSfkpHg44kAgOgzt1Tptkk4M1D4v2ZWz/xjPg9spGDNMfsDEvOI4nAWSagom7Ohvx+dw6mNikIwvWPk8TmiTE4xmVDcaSeOVJo+n0QgObeLc0NW0vhiSDzNHr0qyzCSw6QX7bP5XiW/DBkYrChfPAzpqPfvwzrMwi4i1nEaZu+PpbtEWUQx0MsQYNgMQCAKh2f2jAzFgrUmoEMh5MxXkiDr7uvRxIVL7LfZzKLKLn5lHp9RDKkP6wUjcGS2GsxV+EIStBSxLhJNFeb1wiS6LtzFKK5AluiCr6Ze3KH1H8XAlAPTw/IfK1zeQFOVkGskSy5X3kOom414Q+0cN1jGUuTDUkE66AZNM8v2Q5OY8KqlmMwRaq9Mmm/K8QoWPZrrpjO8igTNiuh6tjmAn9dVD2hl7gf8hn13BDI2+X9kyuYefozpSFF3a4Y1xMZGZ6N1jIBTvIBg9gyZ63IBdY4Ptn8QsUc/6imkVNpR/sQXrGzspqItL1AFEhpox+FZghesIA17+Mq9dZPMG5Q9vD9NBHehxZpDBVxEgMgutXZNwF3iEabSaXNDUb+y5BY/wHmhCywynGpOigCO9PnQUJfaWy+dM75lNEbEZIxq/Ll7nY+hBjU1j6ajqvDUHo9SO78FNfyK/dDh6EudQ9qjX01kzzux/f+FkNEJXqBIVN1S2vmVJ1/MB07FeH33WvukL1oknc4fZ5Xj3HfzZpvAlNkZ+/xfLBOX4Z8+WzlLQCIHkCwjeqLpIwkGvwdk365351WZMP13wvzXeR2YzOISaY2uxJltTL9x23F0ZjLBMkAmnHXJbJReS/lzvaJstSlMoQYUL0dtlTbGYY3LwFZhdei0OZWxlhM1c80Y67mXYMGM0qVC3l5o7thCDmJWfcLlARCAGfhiDh+DXWy2/Shglc/YuapEj2Jcybbv6P85rD2NFvNvNsi70f2nCC7mblqUGuASe4jTcTU0KMY/y5DXvvp9dQY24tJuj3o9ahbgrVFZ/D3kzFLLVpDo3X5VOFMnebK3qplodtU9LeIG/XTzmnDRe12QO15WVwMdBufjadtnLwFIo93xkd+iJu2jy4JA9y+S7cYbMrzxwlwrnnoc6A5YIKQzSCxBTSWY1C/3vyTwokkSWroNuhqhpC/WUnK1ZSyp4+71ZBJEhDm8pUidQdGT4nBl2fOfIrpJXhSJrR96CSMnA0CAJtlVCzZ7iALEM31Lx98f5zQ+XApNTm/dx6AK9SpMHdosaigjBl/61TFpy6/qp0hK2V9uUIoiijAt1GW1X3OhjpgXbq6WfITss83dhXBC1oTbxsRhu+QfmGZw3zfX6vqUS5Pi+kTQjVXLHpscnBJbj2bWcCEJiQ4C+Smim0XgO/EtbuF7XKfurmoyvQiKNh/d08pfcnfPWT+rBf1+rCnM/J+hwZ9samXarSNvmBL4eVGrcZp1WeR9DSJmbQR6TQCpx+r6xa/xJp/gPvj5yt2AYtRT2tce7ENpNnU3g4OgGBYth/SSokde07c7VF688lWfQaV4go1PQyDgpaSc962SzJck7w59xkdik65WhdPUPKot3TbkJoBeurObBm64KP2R3bF42uWOYUsYa0QKfyQL4pi/iwx8E6RpI4bj6NuWid9RrzJMDjAWURGZ3LU8y9n0AXWAIKzhnUcLMrV2zg4qf35Ql/qYMllEVPrQED1KaXOeirAem9ZWP1/FMullZtFGQzENtbCTeW83XmLlfabxDKoSim3/3hiD7peayKrF/1uFxGhbHF0VXughvQeAnobTMQZAulvzYo7GToRJ7rWTpYOoNXmgiTnXNTfOo8W85TFRiSBG4Ywq3Pu18SDlaUP0SvcnjPTlumPQyUKAKNMTp7F+J/pF5wnJb8FCB6bFgvwS0GPS3JNDw6dXfse7zPgkUdXNmALNS77C7mR8Bmp8IIl4DYzUti5UBtruQuYgDm2EStnszYCRQ3nBM4Drpb6/rmQfrO6BjTDeiBm7ZXk9N94//h/1KhtZ39ofEei56yrmJSwwNqxqrDFhnvKsFNDG1RhZmWzmgYPVzM1/OuCRLNvCn8eRUTejM9e8E8PjmXKhAK8HnHIchKKPmGQNd4umf1knpi656XhgnjwpVuZdGLp2zETqt6T5lzr3H19le87DykD/3XYD9Yb7whmAC2oIg1toEYeUlnOFgjV2Ne6Jo/AiUqepYMqzDILxmoQuaroBT/jE5sCBjM/firWqjlIux34kgQ1IzQ4gyG3AlFo6/X2zvcvaoeNvIhD9A1nUbyj39lkhe48KJulPYqaMg5fuz+X+X6Jrx1EP+h8MuSzsZ6TcXP2ftk4aJSxiaSnP6MqzGfspplNtKTYPGTkpEWHtmgnn0PsL/PeoxsNPP/8b8i/VS0tMYNLG7vrRgFPppgpgwL4jbjZZRwjARoYDyU0DyDTm4lAW0naIXzhQ5T4cA1cLeIWHJPyxAH/CFhVhGTh7wdP4IkSjsxPa57XNHmZouULlveYvCQNbnzIItjJN9JnpF3rt40DbT0abwUV46F+H/U4oFQSK/pK5jPriPlLRjunVFdS6jCqrmx9q6yqHgXp52tKnCdF3EgOPaRqdIhDU5ZaTQ52JX6idz7//Jtt9flbMuYLbkTRjbzWzQi2ds58LMwjpl432AU+2NT03ETK5n8g/2TceTbtYioXavDrx6rEsLXYnTlqzfFmXCA6x6no2W7hn3KGKbrcjmIve6BQEM+hGKeKiWHhGR7w6/TGmv7/y8tgBxE1JInOa5WR/rgaB8Ss/+cX7vmPYsB94yEVzs1c+Zz6WXK5t8UvCn/lJFARmGE4LdzFPHvCz0G2+MDrnw/BmyZM9kRJkDqbKLKJy2BpGuaFPVodXzbB9gKqZgESKK9mGuAGVRJ6o01rdJEoUylqlxLOtDQZKMRzQQX3liabByeTddB6ZeZ0VPxVRMeYFteHiAmNCS3+UJiUDaA1o1atU2QKHlaP+DU9GLWydhCgrZdgdSttgbU012orZszpkPepT/ebI60nlgYDNbbG8gRA+47Fjlm66oA6H3onynazINuGRdrYhteUBIUh4hX54OBlHKjEtCaz9Ny4CLCfVc44yNjn3SZi+kDsUfnDbldaEH3c2syn+WNEvD3i0Y/VdvhK9Reu0H5hYeI7BYHQn9+RmDKjc680Hm/dJtpZZdOfxMraNGIg45wATdvsn4DQHbAeAgunh9COrOY69WE+cTZ34Sv9cuLK6nlrcrJRAS93Je6LMJdINdcaxFhBdv69ZqCRiYRyrwZp1VOb2VzPDUYuLYJQ4SSxJxfFNx1TJTD6DNInlbrzU3a4+dJlMs5fvI6O4Dag3B7oEfAQ+YGdEb3d1TyAyaK0QdFv2AWJrwhX9IqebxLPqQNQ3wVaxcvU+q6wcgYVPTFL1JY8zFic4+XGuVIIV25NcrZXcrr1uOJFSRr3YEswuSwvJfVHgVDBSP1cC5g+h7xESNVe662IHVlH4gFlpyXEQWSFlukKokJg6izOi46IqkB5HDKpgV/1MFowf0C2joXTx9ZsQXLWlD5J1tAeIG+mrY3g4Dham+Biu5pZPZCEuPcbsvokhMGHg5cG358ZgcdqAJ3tBHx3mFzvLuH1ZXzNS5SUgx1YXSp1X/sIwvhSX80AiHrcPxEXLUxwwt2bJpvpLc4SPe8rk17rdo2jdu8Y5YFTKG5CQdsNUqBqKh4wpBljju++7Ykd1m0WKtXUqTpFAEcDfbT1YvAmLUfA9ajoHWhj7njOhpstbSmLRQi1ccchZstt/xLvmPE4uC+1Fc3Z/dCpGhVRhoSNdvxKsD2cUuAMUOtVmg/4xYSx31phQDWLakwGBZY5FMIWBKFsxyXVOA8VhEs7vFI1iPh90YbHP+Q6KI5t9kbp/3bU07bH76vX5feMrIM+XUDgLsn0gGKWgkEeOKRaaBS9ga/kIUUYPtkb7aAt2s7OUktfB6/p5L/f1Nq1xYAUqBeVNTr+1EtX8wFhb8NlHkkDRP5knmhp0oyTggAWsM0CcKH2cXKTtHfkLEwQmr9qr5tkt/u4RnhjlwVq+BUE0N5+cibAqp8FmqzYmoKKvNV+JYusl1DXgjXoZI0jI/NXB4/Yn+Uizs6c7ZyFCsYYM7MXuKkAFNkedmiIOl5HMCi5WRAJiDNBU7XlhaVX2IaOXPWLERLS6kMvPm5A7AERxq+Nq/e/NR7DlY/Xe/ojRacS9vrILhQPH+xByhkXyB7dxPEBsVxiILXOnQOquyEee2TmWsiTK2jKJlDAsfpXkuyvSMGkr9xO1glexaAMOJZ85TnDRjyZD42mALtTHKQCUkiS5cfN8gWxofwcWakN/HfID2kjpURnWHGORAQ41h9s1HdmKzeoVLjCB2M3G8RZLFH/F0/ApiDGyC0MtcopiGJCjrlMkenYSzG9vSzIr54XPbqAe5gaWXd4dVnRHec2wZ9zO6qpqiitA8rZsH/CoF/FkkHVod3gLvt/mSQx+oElUweGTT4sfGPb5Y4LvJXvRjeAVi1GzpuX4faxTE552Ba9+P6yGHrf1BGlI5xgys4CmJklw3vdo61/mW6y+0ER0KT4jQPiacKqRxN5Pf25xXUnr4FtMWClXLkhX+emih5ElKGYfKfeF/5bgKN2bzpOQx2yid2YH86iWhrbMGcaaurGqX934Thh+vuuJ3kt5xPa6CGBO9xXLZ2ogubN/I+qSj7OmF6Ciulir+XyccCHV1gsEI65IKT0+HRoZBjRWT1U6UNNY8/h+hnaMjrT8N+jLiI9yqJLG1ldggvYV+ARz+yewhg2ReoVvyFaiuT7VvWIxad/CuCGm3m3uKCaUR4iZqTH8UccNkHmKcUzR+v1v9ij+qY2MHCrY98GGBsMKGfNm9XKhxExaIqumfq4w0NfW+XZDvI8oS6xmJo4hGDLvT7k0Cp8UFvCz+qScefynp5z7tqkrEddynwyNk1O9Mksn8MRJjRJn66dBm7PbZEpwr4D1YygOgzQ44bafL8mdZK6UQ4DTaKmOaG3LOV6l5vn86oyiKjxj7a0L5ZRZyQv6sRE3DoTdtbYYbCg25uvXix4iFdLfSEyGme8gC5Z+fCme2hhuDUVyTce4KjEJSppdpkvKjRq2iGgITaiPVTqkSJ2h0xLTNfjQgIs2ilBNGwax6qduG4Ebx9XTC6eGhbb8wl2XrRrlMP0Ghbw2NoFWngc6Ehs+kGi1PUJlLJlfAMr9bvBHavVQlmVE07CJW1Z2kQ/T6eL0xk2By0gkrASRJZfIUGDASgCgL8/edbT23QPLtwbYFukRQbXWiYAxCCIFw+r4xeLBdd186+81tSM9YB7YLFkduzCnO4dqHIDlbAUlkwXNycuAYbDTnRFeIBdfIxkCTXCW8TyF6TJxIollIs+fhFRcMOOKFXYTd3NNzbx+0GufkcagtBFBhDKIsEBnsN1NH76RgOZ53b2BWecntYDNglp+7mEz972jbz8NsPfT3IzaU3m/5Jg4TSkWgJZ28pJSpRsHPR0appU5UlpPuQPzQfGmWK0jLmoqinQUq5SjlPGblnzbQXVVkvO7uhsersqGu8o7HsNsL51EwoH/AnpoqDA8VJnwUpiWR9si2iLxLJkvP/1DzQ7CZ0duIQs3/ODP+viKp1VyjtZJamWOtCCOK0c3vyfwjszN1G7VlTnjE9XdMmLEhIyQk2cab+JyTaYYxxubdhhJFWRb61jczCyj3QudqGEf2epJN93lGOrW755sHLBK3l6ZNC1wxc9rdxk2TFeAm6NQavSqx8eEUXUoKC3XVp8qhvshuQN6+r1r752OmjRhop3w9r0J6FALjlIRFd2l8d6xH2VWMEUD9W+mlOYNmV/J8AJJd34+L0j1NRGSfyacZO14bS2NfBi6OOXOo8LXaVJCeWcsOSLnrABI1JtHaOGVvrPNoceNOAxkRZRPmt53SiDlnGp4niUdzCyuvcVRGB9Rd8bgvdbk/VwNTt5ujt50QRbB8xnlZjdZaIxN/OzZ09S2Hp3jHpBuwWHvyYImI1HToJ1G76PCGOcqBfus6JHok6L489bXJ/ObuVEv3zWIqgJvt+IXIuai9zug7N0utYjh7x+dXzCXpAt4YFwUWxM7u9gzyFy4KMpLApeVRJ2giPCFSZ9v4I/GHY++QyJNfFi0YeiwD1l3Is69abyBM8F2PLpT/HrERrnIi46Wt6GQAKhxbNoRFdSzWVDLb1s354hLO5TOJQUW0WGAwY6/j4RlsEChlJlN/6NB/4ZaILSvGiKWjTd+FSmmr3KVXhnV/s4XLCzk6a/bqr5PMz+MS+wr7rY8TKBgoEaTn458OgmhxX/SNrXoFFY5nOYz5Z2bVxYKGEnxARC4iaywONOk1Qoefq8rSYqOcUVfLKmnOSkbWJoPQIs5aAY1eECn/XTKTvpSWEVbCw+F5mHxfoA9VZ9ELd2NxPQSKV97qrDYYpcGr1VlfrPlJHzXIkPvyd3b9XW1B3Jvo3Tm6B9Dfxou/yMGdKIohehXF0feKwd5rzR1q9AEyVwIXK4XXy2Wg8BrYFz3UbW841XRwVQYN41AXguOKhENkJaA09gHbi3dQ/CHNM8IM2FAco6UUmnJEfsLYRfSJwtL7lp737a4gaVKrfJM1E+GNrA/JwnYjOq2KX0sQMu0InayfH9QCn/7PeZyBSuZ8LmA9FkYS028oBt2eww0Y1UHR2aUKhrZSNMqAw2shAqQx58/A5EGPCTzdpLVmNtdhkjRJo8jL6B57cx5NIFdo/GfySN3tXdRlYmdvB1z2dvIZAmHCjKmo+6WDekoB27AKV+LNrBIrAAUeb1WapwHtcjy1MMNhecfVjPLGeTpPe0MeTeTKHgj2VJ1Cv/uWeauyvZx4zxLl2bxBjOKaBYnxA9x8lFLTV95EI5LYU6MTUi79xbjoA3n7XfzErZciqdV4vPZP1a4TYMddZL78tNpyFC3Z8HDOXxO1QJmUC0Fc15KT+G2/0Y7xe56u5I3qwTl16hSdPi/cNzm/ClVgnE7EUTiGOYsVQl1MFs8XJkSJqhwaVeb2LQL1YmqzZhFCZrRroG0gSus++eHddV4HlRsZFnMbtyUAVssVPHvKag4C6ZYjfjpU40qUDyjyV3wV/pr1YcQnT/k78zODzMYYe0jQViGFUOTpGWZWXBKOA6xFpsdlENIVbqeUzlxCg2CYibf54xZ0fGrSo7pfwT5sKnjBEkGsLKZEgl85gxej71cWQqyKFbGLW7cWhmBjKb9DGr4IXrTpHKLL6F4fm5bLaQPt8VdM6fYzNN2pA+Y1HRXqfUmPMnsJFsLA0olw0W49Gtlkxe/CDcYYvkXBzkA4iz9QBcikLDuYwtA5auPWyl391AEnZnrQYGZMLktAz6/mkNm41gnMDEvVlf2XFmQxSVZYJSPWMZNdp/Kcwp/JcV9drL+DsCGtuUr05OBMH2NC7oZ9YYVvQjcKj2uN8butGVqh8A3JHuYPF08LlO7AVqHUX+0SfYR+BzD//ryzneslkcw5m7ozCROW9Lp5J2ob/qhD6vwxxs0xeSriNMaU8eTGfiD4MG3rjN2DAZ5GE/Kry6Aa9ELttXoEH0YeoUWcvH3Pnv1hQAvQ/ekmsW6g5GVKIuHMLETkXCOg0SzXpHxR/yCZJJvEyChF9ONgWk9Vmsl67M+tda6LZUchoBIc5gpdY23FNp0ldKOqji11q2/+/jYi036Mb3ya7qKXA7o7uf5bhQXbx1i6l1lp8ijXub8io2vJrFERfRh5B3pNWNPbd4tw8QaBBnPrCsxuMJKS2DRdvcbu21tH8o4Mz9nsCDoB0QQUuyEuVVAk0bInvBmeigMorsfUFv3HwYXtmcWiwY0GVKg125+69Jw/T2EQPbV3VnNaUaaJ5e3WnFCq9l4dHYk0/alQ3GjuJH9sXc6koVFmV8lnJjP69MKWyglyCBWNvyQAIkR8vbu/qdG01xqFbHNZbbsYEhWR5kDLj67IrmZzSKRNYuUFr+UXQDJw7CWGMsmS/c7soRadnykysSM9ObU4vJVhk5Xcgrs2HIFslRNL2WwDZrzTQb3vKIAnA9ZUYCXN7r3SZN4eNzhGLGm63R7wQwrAceFQKrMd7xmnreSE3Imx290dJYtWi1grq2lbLh9X9MQeY9+dbtMEbkan4InU8hp9PBfa3gv+bYar6u4ET0gteyMv2b9ieqZ1lKLsIS+DyBWvLtkduXLt/0JY6sm8STL+ddkRjtCVFWbNliK4m1wr39dzHjeh2OiHjLv2eEc39UOuMD8Xm1KLpAspweY8ZE1RQ8N9YgvreaChxqiT2rvOwPDxDMFlgXtwilO3R9O0f2zWxPDh2SP3pgEhH+yMWygBG8JEmVmHkCDu4BGyye56HUDpMQlnan6ZVM122k+ms3C+8Z14xmSWxufEQ7XHUfXFYhKLuTrcCbBKa2rl4H1rmOliZiEOc92DdhdDvqKIos+dT9TlkU4xAJlN4+5Yy0P+U+RGaCPY4LKCCPZNtHs0icpSyNUOmKF7kw3kgk7FwgrqeA0Ik8FyI4zP6JkEILaNe6WdXdYi0XTIaOY8etD5Za25ySsBl/+YprkqOtZGY9YGP3qI+W6Amhyfzk2kI6yYY4N92RsYP5HGK5ZG6T+Xxb1DOGk8y/dkOwRTJrQk5HEYG5TQUnZent5AMp+GyfL6AL6HeX7riNmPmMOXRq1I7LQbVU60f8F4NF9hUs9A6GJlUlG5usrp0wt9stYbZtV5M9jVLcy3dyoaEqvA+XiNkaCbp4IsyVdpr9pM/hZ+lcVhjh+dOYIcgJed+Z3b+v1FNlU85Dq2qVfe7gS/cx8DvmE+yOiZMV3wdlMjCF3ADdtCYA/BMkQqhx96r5iJ8aMclAUULeA1ApCAl3fZitvj5o8jr5dvnd5f10gUtfC/UoihbOMNzcc2hBbS4ntUD8F3Sd9MjA5D8RviuWK6QBUGNEso95OMZJ/LygH3QFM63AoIbEClSxZdb8iVlWzNdZZF4XUxmys149KTQDuX1g5y31NKbOV2I3oVu5+XRFENukT05UCk2HAetwiZzfgkQGp0oWyEPaK+vZwV9Q2iJfMvmdAHUG7BCnXWJ51yvMosGEE9wehZUAWQHuM42lh/e+k2hPPqoW/DUR6ZckswOhaB3gW/WXO5QzskCWBknxxxgsidMwA45T53trs1d9eyWSsbqDLuNKdLwPDetgOb2Rog8yp9rm/mGJ9eRLHLzqlJGgtqHBu5VdPAkPDmiv1aXSXwxmrb65Bk00vTSp6YtZn0N5yNpUZr40gndcwSmno/Us4l1fSdO++JDu3k84yphGu7Tlr/Cb4pF2q93KMQ7qxjnd7GyoIx+hqBCiP0DU+ew8votPI+EM9xQizMlLtRdq51cjeOzArn6p5rLtYKDy/NpsZkFzi7AtASklEVQRGI0a5TW3orqGq6IeNe4vRSz6U8sxrVInf7niwELY4j9CEiw2mYJImM1Dfo95XzxXcjU9gc8RkeT7/yPZMZYhUHWZVk6TNf/MBUpzrKYYCpWf+OQe7h1wKPhNCn9prBZ6VcUhY4vhMicykVPAzK8KTGIKuCIcGUcZVQFb7ftHHO5SF3GmxZH3S7tagn7WkBdfsic9IxIoMWjE6pjceqdwp9tqcnQm3TbIH6iXdoU1FbpkKz5gWaiu9dJmPbQ7yJcz5b9XwPBy5BCtLgvA8eYlN9bo2EOW1DEvrUob9l6W174SwDay1Ih0/uNCFXotERUOMt0aMZZ2eEhR/foK8N/hPWa0+84jGSKu9CbyJ7M9phZ3tq/KbCre+xkPBadRsabiu8YNc97SeTtUffgHcX5bCO7FB2f3vah0A3aM7w4NziHr+wDnfONOFPFmGRVKCpYI8j03AN5QAijZW3OtExCjZSx9LJAznUX7xWzN/aDWeoCwylkCJYdzchRZh494iJkOqHNLAyDoHrMRPkcKusd1NzzOvzAp5tYFnjlQ3x8tYGsWbEQmSaCoF86mAuGdVi6z2lFwgqHptN7AKj9kiezM7vIfpve/iqCAbrdrpn3Z4cXTNK0RJ1r4HllpZq0RBcXw110iDEZoLPP7Hlfy8OWD3jbgnUgy02s1Y5RGWG29ggesOg/1fZnV6rdrIiShrvPBHIyTDVgjD9MoBrES1UGVSzA8rlFpxYlOTDj2FU9Xi3aM+Lsk3w2UvoiXRniQxutZ5UEAER0XKErcIvic3NxfJozp/5g2UWsmCGPE+Of7dmY+ZcVc2g71sJo8QU2hkQGRrwWCJLdVJu/TN3nWhec6XJeZcDm3sN26iG2zYeiNMaSu7qp7cArrz+XDUeDMfDwDXhpxhgeR6KMMDPfuhiV6lj5CyGPNQH9yQfdThup/nrVi8t+f12H5n2jDeqNASQFOAyL1ZMcj82xtYDZoWjUG3eO3rXJULad1alYDiFUjpQ6AoRWdM87hBeePdyMAMyQVLDrZ3qczbMnUy3aIaZRxj+RnZanS4apgZBkDjVt7IOnKAZRmpwWO+kTkU41iLRE5b/hlvTc+bYFANOZgGcmLOaFaiQhFjdD+vfpRJo8wuJLC70+meGlX6wdHr5Pt8FSWHhIuXnpGNTMUKzMCRsAmpLBen/x/azTJ+x6MYe4U4Pnu9l9nhTKhxqxuxA3NWHFAGbdayeeZ/jmZ2tUd0idhsOrAL0uHVNl7pYyzEBzmTll+dpCSxh/Eew5+vurokkjqerWixn/0HX0KtJlrqFsl/UjnqZCvtLYTDPHGhU2ZJETafY6J4IGw8z4Hlf81j86VONrmL6bAUsDHb7cUsJWDxx0FpRFr2/ss5fUQkl97Jr/GfEti35Q0PmEgvikhZcIUT0X0lfLhZzn3npzxU34tdRolD8a4bKmShf0d/xO306bL0vCUEytGE06U81tp9Mae8bJ4W5z8iUJcBca96ntUOyDyBG2HAw0GKaHOcvDT40M3NHIGfDPKd/VGxXVMvX+dzmll5bFUCpjVvgVPMElrc87b+hqG7DCIwey/0QZE/JsBoFauAT9QixMwwQavWPaYh6YcO3s+z/f+FNJ/92JF56FM58aRRLKyKxTLB/La3GH35mGt/wFIUwGkhjYxcijNbEpjDLWgawODe4AZN7PnTRDajoe7JzYc/1uoVshux5ue7HYwn+b6pkIpZI712lpRPM0h/v0mUSzW6ICxlVevCE+/g+O2TBrkgcUf9ZYOLif1Ur13sZlo+tRP8eRWAd2vvCza0stSQSrMrYzrcgRLmQzBig3Ccsc88KQGTukHFRoKyTrToTOo7ZiwDToEM6Sp7LAb/JB4vJJXrzjcbLXcDPK6T/r0t3V2NoQtS+K+OgVqauY11NCtPdG0rX2vbQ8F4BdZOGxGSDY8wURBoAH70fuCkffG6RI8Ybuz4CB31ViJRFSsZD/xOHCXxkSSlByRL7TdWjQFI9X9NBSG1kHitvvI/yT4qYDQO18nupaWdD86nO42iJ4+sSY/TNPHAapXUhuON53IGkeW42wo/K+2U3xvQl8GhQ/r2v9X/9udwlPmDZDLPBrnpdG9QAYbpdDKVGhUUt8qX237pzIUn0VZtyLPinYVEe351UuWPbCKRY7OGdJt5l4ciQTPc5ysySj3nPz4oOtpv+YbZVWMd5zViTa1ZYQWi82aFnI6SnM+CxwHGevhmIvGkmWhuqvO3FLeKeT4E6ETpVvpYQ7Tb06Dar5uHaAoTlJkTu/35XgbYy3y3zJ0tWRE5+iGqDOqNzDPNLcmcPk3ur7XEe6P1ZsgTOrvGVRMPWIBE1Rq1810QAlWXxJYzF4S71hGMZ86cXfESsj9pisoTAhZK5gCTz3jaEtDeiVwmHKV+Fxd5CfeLiKSBVZGDd0UjqUqc82keKcHMaccJnWe/F3S71BoiX9sq/l8e93V0LtjSfAjAjcp9IlUN4MORrCf9pl1ePVQU38hMuocxTzRP7hU4K0DobBCzc0KgGxUmzyApLl1kdQjD89ImntZpwCgLvWlKDFo2hZl4KqYKsXxA717o8uYqBjg/OQZ7VujzAF0F6OoVNp77P1zuBHTLWEkxiy1HFLwPUGWZE0sGz9lPvv/dJWkkSBeWfXiUgJX8shsv4ATJQxNtIvPRqtiwrejTF5zjTMtCWB7Wvth36hviWQyGiZOtumGQGqeG5bdym9it/E80i1rhQs0r/VsOzQjhwuSd8Wyi4K82LyIaMqx8C5iDB07QmdsAbeykbuXhjZIWyNZw5NMAnV5bNTcnf3XMCCdgAdXayZPFKnN20XMD3IrojzEgAUEJ5ju6iCRB0tQhxmpY2JWWM/8XC6XpDvigFI8XhpvyX3IvF7k9ORocR6SlFUcnACMVtkoujGD92K1XzXPRYLegaqJTTBxoadphQxGxiUU1cLSTHzJ9ueU1CBfyT6exOzlzoIov0FhjzQYfyIhVE3DMuU0xiEsOBRiGN3w4+ztJvaVUh6svcisHmN9RVFLnvVNk4kPkc517GttaaODQ9+UA6FOeRbjFseZaND5D1izjzI1EvDRWCRC6QPMfTNLQ+4lhHXoLBH48D23fUkiNJhlPLMKfC9TOcze9Q1vi2JFPOElHaBZ8oKBHU7s6VCVLJGY5IpkI41Qs6XH8/N11ngyhsW+NnBj6UWZWs1YLQeHZjgQx7wA8Rkl4oF0UFEtymBTLatQFKq3r+tTqtbqVdlFPeE6N0JbahLncULb+LbkQ9lXAhzSF1CoBPq3hIRIsJPG1wxJQr3e1+kpvtXZK+QZ0YfkViOZVml7Ys7r2615y4gWEExfidLNgbTnZ8A0GkVFexNn0yIHDk6dFdAORdYzDhX7mxhY5j+PhqlwxrfdEchLcwRXDJoD2q7shSWyUDuMh+0hYSHC72RFD+tKDa2aTOL5ns+8lmSGFoBwXHpoVt0uZxp64NK/9FrTFAgJEFBpehJ73YjJCY8Uu83zsgp5mVjod2pptCicl254yimIkeWNRx8j+pmcHTT+KBQVT2xXQCHoZv4ehzMkWU43f+gjQqAdxUu7PkU2Lz/++L42VJj5BkSvPpoJMU8zZMPg16Th9anzlMI2+vuXGAuRfx5C6zPWwtXE3ERQToyJTOqb6fOhKeolIwilI71cJcHxdXiosQ1bv84U6TY/eIjsKv5E7byZs8fVFOR9Wh37NQjcWOWa0DZ3FgvfQYhnEgwQdFWGj6Pp5u8DDwvJPwRWgavboIROzi04nQPFsbRpn+bghiqsWbXVAa1ordJKbhJvKbwJx+FJ7CGPFcogp4w7i5ZpPixNOAv6L79RaIPvCFoCpl5Z+8yAVQtqtLd4I05d59XuB9Ww5lFhpuazmyqr3vgBh5lOixmEeKnJ1INHQcPtwbCSkN88qGa6o95BNodPjKJPopsu9m7BoiMLXEKbSUKsZo3hIZseSyFvzQBxlFXmdDGoPnE5SUN3OuCSBgqkPaccFUrwOtMy0hW/fnLVJ4da0ltTxeOFT1pDKKzLUML7QdDSCNCtjgsJ2ZMNCdFVOUfUt+CdXs06AV/dSKfRteWQtuX/eRP1WdTgWh2vGbr5u5cklk87NC6QFBtAAaEYppgv9z+5ChxoFqQgroM9xMfbQQkTETcxMM0Aja8X4zELW0SvfWzLh8W5UUh41kkzCGtNDp3p6+FqZjU14fWsqdnESTusmw2vG9ts8wcF6/jFRbBtovLGeiNRmePmm62Kkgfy/hbGfoptiF+UqWvq/Yc18g8C4X9XyvGaGTjr/qTrsbw91XPrPVLdCZmOydkJNrJXxVJm1zJnGITgZhwNf6zRZrZMWK05Qq0ihWnElSX1fF5Rb1ZMJu5Lv4JIugO5kTSpsbiArKabUc/KC6xlfxbvJIcyzuP2l70cJymk3Wk8LziijMtn+8dAPsVVvRx4AFSjwBYs1bl39MWj4vhnDFGkuFSg8Z64Ow4XFJ3cscAyvjcFx2ICEMsjGEZnj+ZCS823w+8eb6k6cX7jeydch82m6YyASBA+Ju6vRWPJkyYmDx3I3Gd3JOvsHVekMqiu0B94eQV6qTj9Hxpbd7ISuTCE5QpdnJ5NzjCgt+CBy5Oy0kgcWECA+IBdWUTIW58cskcw5QSP5UWAaf6X+dOcnI1KnndKjelIst/rev3RAv+OKJXb997xsnftWtOULHyfEbewjSw2Ct4Xj9EDZppN2uJAlPn471DAVNkbq7JRQzxVY7cxBfSAy8PS5IF6Jy99B31IRWjRCqrpn2Kt0fFyseuQUGGduWXGHhKBFxVvFagVqDs2c/Pw3/cV/4e4kYMB65A6QiXxon4QKO0FMpAOtWUqOEp2UOktHY6fe2l5HnbvMtWg0pwy+qXJzyifZnb9RglESbJUiQzv9VBMktbXgfMeW8V7unM0KLrDKp93/VJ0a2dbOGCZR/fhs07rl7E5pFWWuC9KH4HWGoCWfilqDpQHs8fn6VXxLc3maSZNZLAKWr++Repsc/0rAzJBLOKRw747yhDoujvufPjSXHhgKAapustg3MzjN7WsRMMZOMwutnrfUn+EWBQ6ZBnVn7eqtRoPnPrE/5wIJ/6T6qXUyZQfpmaDZH5Q66y5PFzIAQPwtQuj92VluDN0b8uAIvRZ5Z/iOhi9A0Bykpl8BMDLktpGFbDyAs3fmFKsQLjMf2EnuVp6VyprXLpyCV3uyEgNKws+Kl0nMgGNCpLoPQ4QT6IP5960ZBQueADd0+spaeIRJCsqwvlPl6RmPceSwtZ0S7Ju3orXtpO3ixr2URSTY7NqVySetQeKK/x6VxJPOn7PKiCuVcublEUP2JZdN8OEW7H2Bzyc9RKS2/3G6nT0stwLT5qWcV5UxluLGb7CYXTe3TDDSDv3J6cUuqc+em8lX9jMem82onqvd5zhMBbA2QVgdTnFYXKA8g8U7YCtaeCmwGNb0Zcr9Bx3mZWmTCBP2pKDX6y59N2SGm/74fUHyIjtGWbVDlbnOY9qvTuXGfbr/fzjAnikOl7rAb0ZzNwHPlEixmkM1o+vJMGLWd0a9ylWKKCvwZXOFRqbUCIJYfUUiZtWPkBRuAUx+2a6ucUrCelRn/oaqPA9xsq/zWaXscNXB8WcbdjRoEj3ZUI5EqUXb57ngFBuQwR/DT121+wRmclNSGLS8qYI8C4+dgcprxBLv+5tAh7Bxekx9ABLDUHFDsK+JQCFiojTxfJu072Nw6qTix/v1kAzFxQ69SYs1s51Ds6UwNp3s9cSyQfppf2RaIlIw4cgfv/O0u9HC1EHqdYX88Fk2IFU25JZyqeAgl1+IwZb8fcdjGIpaa/mEny3zxHqrwO8VaZrdqyQq7HDUzNPMm+X63frtEC1Ol2bQ6nqIEwysgbgnBmGv95vLh8RvvvME7Ms89IuqThQ5MrCGkWWG2PSemcGbmsD0LIw8RRpdHusBltX7pnZyJd8zkC1B2aOW57jNIw8LwXaPyZZVHB33+FOgelJc5fFJXVG0TvVnChW/lzhAB7CBwVvCmaWFOCBnajZABnP6micfx0VAUuMXLnXwN3BSmnE6Hj9Rrj1RcQg5705rWy8xQHdMvDinpawDFT96NjHzSzo80usLcXrYkHN8DCIiY33Wzm7d51W/7Iy3LKGWd/NI5893BZ2sbgj/Ifzp6sbmiNAch95TlXhaiuDm49nbVu0WI9d9IFjraDvw1bVEWKcmuSFp1aFy2eKzrst1/QJg/6pF4YCcrG8ZrFvvb/wpoLB29NQUvINIU9Bh4Gv8oEpn/64DoSl36e3BYu4vkVf/ZiNEIKOFacFf8F6FCsOOdYXCUhTUI1ushhqF/pjDYdS4FBoueFsgIAkQeBWTcTqyzcLGBU1ut+RFIm40cXtc0Mcx68Sm+HCBD4DEvCU6WBMbHUbPnDBfnokCub5Cm3IUWcyao1D3Eh1keyaH5//SSvxHOq6qwqaotH09LVGTeFKgp/qmIEffv/uET1dsoiQMGH/rgDjO21u5cNa8dnRWVR6M6xx+QE5rSWKD7Wia46z7B6Yj0AOvrEEPKPXTGpL6MOBxEXTH9n74f78MaGXxv7D9DKq7tglijw9+TiSxaj59h+mFs/n7qWOz2uNbhXEFXU0Pj8OfOZBNmMyFybIbUHOEytcA+ePTIf/tkiPOucdpC6DDAiE6RIRWYbk8R5jzROPs5QdnOCdBP/meLwirYF+7NzT7llQvOp6OpNdVBz35COVBYXOohXDMWeJqzH45k3NXQdEyHSTN6Kp45o7RmYnVmNawD7JvTQWuIbsFSAPRwyWSDr6wpZpO2ntuBU5dFiSqedh0s+GkPTlRQPQtQVTaZuFymImwN9TgOoXVUFg0mybAld32oAWjOgHksV9sb/VpAlin4BNQ8mramGfc732EzTBpAHdVdPwbTibc6hdO6QwM7DqtxChD8r/TZMBJamDHObw/Ga9ZPhOOg5hMXrf1dYp0eIBnJ1ZTt9BOkRdL2aU8FLsTjmg82SYXWFtWtwQZqmFGF14Mx+pFPGck9AxP48CR4mwfrcZp61SN0c63DAqDa3tbJ0MnnfYSemFxiIom++nbaS/pDKFUBSZ8vdYLUkR+L043bvtc+0MQ6iUzq5q1SJDzcNSVOQpeyLFoHCYR08IqhohZK/EIareJXGbEb+wtCi3hwhej7US8NChXCGmBync+TGACUkdxfdwqsvCZ0y3C0PS8EPOdywz4IQk3gCrolMfe4hOMrGN4QM9BhaN4TerQtePVnSiScuibp9k1zBtJP1ur+CZYA/8VssKpYFLlxdtfGxC1DIhxm6a9yrK7wSFfzDChcaaJOrvL+OicYeoD59BXVAaZt8Ov8Nn5EXjx0Q0efzxm1vnWfvw9lFEWXeEdCgb2Yvnr3pBJcnFH7lI/hJhz3Ihtgn7qAYNy9+TjsQ1xRe77L7uy+6hpHnKhJPc/WP99yFT2MMGy9LVmaldCEu5o99bPj5a49vJuoj6aZP+XLMSgItCS3rVcNzhWtSatoKMRqhfSk9Ik4bujMP2PyEbN/uoaBmcPZvySrGiBi0iRASG/KaQrUaWkTEWqdFV9YFJpb1c1PtPT7EAD+PPLsGVwLgUifSI7+wa/9funq5WXd0VxGqWFCQ4xZGWFRtCPBH6YpheXJQci06pPuoUOI8WSgjamaGfGtH5BmYmvrZ/EX6WRSZPP9+DKikU/a4UVQUI8/VTHruMmOPe0jSiTYsI48pW35VqO6KqlgzVQUw15jMCD0M98pvzOcjdTb+Yysgz0eyTXedaB9gPZvMaA1HjBPbplFicymOdY7RYKYGzr46BgRRh62Q9VvoIHDfRtTmVwoyFYnKpRKIya/gbBzPyXgOYipR2TmaCZW1CD1wbktT9kuDd2LMQR8B6WoQFPpeYfFl64lizksSHJj4qDaIpVv+T7MZ4x8lVstY3SqWDzwiu1KSjp62hsic5uUHNXOpoYxRkdKL83ZfWGsIxxMXVJuVnipbLouu3kdMCbbhyN6WhU66G9vqAIv7PiW05o6OqOcOA/y125F3Idlj3z9zrKClCohJimr86zL4Tez08wg9ubXnkbdjARPyRWpPUZIoWT78RBSK/XDjTzuGMCIJX+RC15n+tvu6coV2BVUhMu1sXCGza6voSCpZxFeQ7KxNiE82HJ9GUaPMMq+3fq3iJOswpS4AhLGZGckuIBICDQM7mbhDEN3h6eSogBrdd2xRCzHDSDmawBFz/L9k1PNujGIqrUEcnSnT5YqUp1BNTa714TdH/ZNExUGrq6otZtCocU5O8Sx0Xwf28aer1L7wJGl3hQJuDA0McTsFecyw0tdyWPlLqmWZiS8ibIsKbPW6ljVdkEXC3MUKWcrd5wvB+JE0VP2HpY9XaK/dQ+fd+Y1k5WoUY1pFblO1ljjFQUXIfGAu3lcmrJwVLx88WpOogDU+uqKTMRby8ZKcAAHrmHw9CVESTkeCq82NpVhV8MToucFXNpZcvuLeQ7q4i0eg9cpAouAENOM1X99y/woBpMmL34aZaM6fm2ueGFl1aXxv1VfAvijtEfdCC+4+Ufae5loLbsoMnfOCFHGnTRkUz1k5l5dBYMaII+0LHRNDUx4F0NSmxHOCcDGrv1LdRs7A7ubX8vh5io+E3D8DfOBzbT6qxOhQoRt10C0n/tOXd5Vc2KeP/fdH7/I8h3JUyJQum5HPDoIe/rIEriyPjp2rNbYWkD4dOwgEe8KU4mwOSDj4zcsCjwlTrtH/8BRcbi1ePhDjxk1Ci/tdPvop5ONolIESSGVL+NtQ1jyT/04BjawB7H+eN68HpGLJTyP0kwuenvYtE0YJQCmyRV8A0yfDXUojAjxkkULq5F9C2OYWPO02dmyUV8XQYEFNo/OcsgaGfaGYyOtVG5tQE2eoFbS96wR035YLy4YlBISyJufUTwZ7m/XwhnR98I1k4lMcJcI3R2gG752gR+mhGb6CvLyfmwWQMWraSO/dmV37lnA6ddOcr7s/qMyA9Rc1akubU6MhJwIXt8FWSugyfQ4DZM37rT+jiDaWfUHOxwNKz+S3aN1Sq8458IA9dLrctOd2+jRxDdQPvnKK0zosmm1xjptQ22Tjn+5N4cNjVA0G4mQRVUwjLBrneIaIhj+rcuvqQ7LKNVYgriro8D3CGcflO89f4aOesah5Z77DjW2RuCpnOIg1ThTp6tvu4hmpfCA5RW5AFL1V4eH1uYPc5iw2TY8Y8iPAVr3yNzB3ewTqfq197V7rQdSemME74VMdzFfT55ZEA2yVMBPxxILz9UxrRUDZ9mojFgFzi9Oqr14lZbjDdRC/JD2SFJncVlRmv/c4Xyt6zI3KvgT51BLCfKY3/5zGlvkBXU2j3ABn0j+36AfyUHSyycIj4VXoIG3k7IhIds6WTzlM2D39OP+S1wvIFiWC1hd76dYRarpRG4K7ctEye7yMEHnECZybBYrvOG/kj+pdLNLIprEB9jQBOfPo73Z4fZpmLcOQwOw6tUUb9k7T1YKM7+UcwmcoP2rwDrg2P89L/0ATjfjYyqxwNs7n9ps51jUMkODuaG0LiB8jcMCfgDw49Vk8DSxhaZaixKsib4yy+iECcnboG3k3BDr+GS48mwSauYLerDrznehxkd7rfOopF05kXeS0bi78WhK5mEAXzD31DXBTMrQfLTyJER2DL+5BZKuhC5GPFIuMxkIVMjHD5dDk2S7OLKTJQCqeL9aAod2TZW3RLQuYSgmT4/zr2TJNoPAjZqJgAtBoH9WYrSupxWxXZgVQdB0Lm2aF5N/jD/OmcvXfjq1VOIUYSB0/Drs4GtGQqTEjDItaNoAotDmdXcDGs//F1p+gtIARCTgNG3QpZAFih8jPfbzbX9xvfMniaGFEK4qWDnHuAIB8Q5yZ0jrlfxeB7wOLjXWhNIj12PuyXF6OI41KUZwRQERpAfgVP5e4JG/6ugYfr2pHTuXNNk5K8B5Fab5bQpggMgAIQ3nq6ljQSda7Xe2RBkLD2Bkboz2+/od9UvhDhAQDgyc1ErTN2dkpTDfSaQX/hA8giwjxAR26zVqQTAs4i1x3nS62bcsarFKTWy2SlGPJBXctZShxI8CxG6G4TQ8Uvdj29ylu2JOF6Q/fZG1ky93WaDwsqHbR9eD10oSQK3ov5sPEczDNZoxVzs63Spg9tF6AI8JEUAKEaHIdHYfAeUde4MzszvBxqqefR3WGRTbf4YNxciY7hrdlYC7t8PUeA1owoQZPAL9R9cbRWIQO+hdASsRVElwODRNMtH+0h1rubBcq6YqPdE6X5Fgkep7Otnwia21kCgXhNnAl6O09rTAfpwDFg2IocE80vAuC5twANby5PgnAa75kCUFEGPEdNlAVZeOeIJzIkNks6yq9C2ogP0D5130llmfChCp88xuQZlYW5fEev3sXgupm+2FiC7MwgcO8eVqqNQBsnnJb95prFbtyNJbs9ZuSuTo4d1IA9YLvEWxWNivXkprHPf4+f5gVi/Uider0wdPlsaCF+F/js0HoHvuHg2TqqU/ggMBa1t45CMQLJeR6frv/L2aaJ0l5wnzdFzPTh4PKf0Q0rV88g5WHqYN8qmmbJNWVE681oYIAEOdHQgycBg2ZTcmyXP39uY7iNy1YW8Z1KbbeUZ1HQjHzQrbniAIJhj3LeM6GxEzv5AmEqqU77bSntCo5C/pU3zDspFV23wsR6p07j8OfqQgcPKZqZY2lyENVFH7Lw9gwxQQ7m1Td9tSPmzsbi6un8WAFbWYbupqqZdf+Q2kwY8+bgdLzZYWqXcuIJ9BrqvJUtkL+iByCPUS3L4vmg14Bi6Js3SzkZCdO2hLkFtABm/MLIU7jT40JV0xtx2fED+EDcOvWl2VB/RispkXxCfmtrxPj5wwObCzkFtRCOfY724K8megkO0BZ3GxlMPBu5nuafdbJf7Ct51ZdPT+zTQ9fUNqhKIt94ABFPXTJqYPzBuGTIvxlrsArqjLGMvnNv6LjW5pZyAs6kz3Fz8aHzaBdkAJQllOlQA/qbH9lGzd6T2NmjyiFSDDByzv4GbifviCZ2+buvTs/c/SUcC6gL9QEjLHIZjAn7ysfvlxYj8PAvRDNmI4usDqI8Fr2mgWZOME1wjyb89YqshZ6Ls7rqxh2d7FPCQ2w24+tV4CM+BmtYf9BqPrQEBmOuZTMg4aqyK/Lr/YlLDC1iU3qU0V9fAXjJx7kEq3DFvTIB0SwlhtFmUkxj4b95lJLHkAGNSYO3f+14wsySsW8f/CMcUYPAoAU3LNJZLcyUBzdVwO5aPNl0polW/WLXK6VsBIV1KYM6qgbixKuIFEo9idPW0YE2eF4wo/iWQx4vN0IqqcuDZpHGaR1zsbUBRaWIsjTu/OBHOmv1wFC/+GhDzNGi2VYO0jdXGZ183Z6z3vcj+iel0CHRsZmpyuQbSgcX0F3EP+w6GQvXYOU5WsbwzvxFxOp2D8UUZr80p7+2zxKG5sYlNwcTkkNmxaoRPUW//oAQyWmn2VNqwhJG87F9lVjbvN+KXVQKH3pDsQc7jwZERlr2O5Bmh65eedvKQwfItQFheAf32BPBT4OfnO4JOgPhR4dPftdxQEK55W+a8DGVDvyZBKk9qSp7/aW3zJP9KVLCQPSzB53OlWCRnuo+NMXPW9TecnjKm1Zmji9sQoUQ4Jv/fv06eY6FK8oe6BXTa+XvoQQt0xX2jGLEyTPfrI5Lk21KM9CTs8P02193jNUCymHN305leX3NKJ9YsIW7jIzZKmPG+7FlTPICcc/pbp81NHViMKMciRoBL6dfjtNNK5/rNxxe4/edDcyV0R+38CjmYalfJjzpTafOL4kaOnUCkgi9trpjM8tAQY5JqWj5PgJC2GWaDS8m6xh8UUuJ+rz9AEJ9LlvexQuVN365aq0zjaDCqAf6NUDSVwmXYEBjpWzb5XYkGTPMbje/00CFpoOjYk8vVJfNiXOTynJIb5MdgGPit5y9//b4qiaH6TLV7S+g+TXgjoqNsTK4VmHeBkQwF7aCyA1/9L2qjbgsrnlTt/SIEoaJ5v1A9Lre3P+7hxE13y78pVXTm1/yRzFX1B7SxHKm1ji+KmYIJKrZLtmv59YSlNy+8zcT84zGARiOEOacfsUpg738bF162Bx4MS/9dQbI3pSAIoaCco+xrL2QAkM5rNGoHN7e53sodiQFxqZ8ogxL7MkrKcjIYlw1SIo4EOiE2paA1LMqXAmZjLSVL80ZQW+dZl5rKEA5aMKVb6JEeucROtbW2ocWnhATBIthlbM8oY4fyMtxm7i3u5pibYPMtXKcXH9z4q6ZLG8iH9THwz6cpq1gvJY+nvYEuxM9QaIeBSr0CobOSIO8sADDJ6MnIxiSah2o/084RMIoCQX3+RAcsMYShjDNjKRzsYG9zRWYWg2pnI9niDRPBb/xZJg5y8d8egwHVWpPDOkTmfc4CvPn2ICuZQejpyu6F8BpXfu7LR/8dWYguO8MyxRb1klh0+QvA9SD0S8ixp6w1UJ3ijGh6rMvkfBGAUFmcbq1ZRikfxSzpLiQlGUo0Qcz63zZo2mIo/ZthP21r9D/FDzadNzP6kfM0CBFDpIoIEEWpEH14NmKWVtBmjfv972PSdCCsIlKIZL5YoD6wOJFDZoGkRBC36N+0RQu/w+9lYQ2W2wORWC5/+KCiOIF2ZUT9hEMGNRwnYuUN50xCEpOiBv4gT5QmEXLH3P1gtDlb+8iNQxFvolfqJNX677YdAJsAhPXwZxigwasRkrqUOF9JlFw/6LXPP1ACQD5SoEzs4FAFZpZMGt8c5ST+bCFOspZDPBJk2xoVQHimOWpcJE6b6BZ79issdWHqxmr00h9rJ0UonqBqGJtxJ/PGSur002k2xCMstJaX2n+isCOZew6BTpE+OVQvls6UZNdFqkhJxaUnrNPtUaYk9nL50ZEjeR8aKUKJ2sESIcUfkhq1qibDfZ1rvYQHZad2TFgizo24CquE1f+PzK3hwjWCI43f9QnqBg3ImwYujg2Plp/6HVPQkw+oCXAJnP9jJYvxRTZ7iiG753/AqBCU0JdUKUCKLlgjQGd3tqhIOHDrKfJ+AShgaX1JuUlqXccPRy04H3o/z/XyvPY/X0U9ElGui9F/HlAEHcqygVKSnu07a/NauzfO4xyOKEDnK3FqitjDOW4hBJa+RMx4GpeA55nBXlioZLb5o1O+vcek3LHnfaX7beXajXLC12IFWyJzsprJLoIW1Q0WC8tVJFOJQnyqiFfIVpVzNz614Z8m5/IQisBbbrbwlGiAcy9wG0TWb7IXf1uIFxojWrdZa20EYcxXD5q8iaENTcnilch0m3CP539YFVZ6eEstB4F7zxGqYyYRzfljAff/hh9+9jGJNUAF36+uJtH5foDxduPxVqrnzqz/n0ocYH+ccHvY/T7jvymEcPg8RB87IRmqWXwMTwDy1M0cNR52EWaDsbxhsEExvssL59kBlaK/afyzB0AegPvr6g6X9JfMgNz20wZbRFsWtxDG20t6Xqt16M5YznI2+fYVYro37Hj/EvhsKnjatbH5SNy3vOxH5H9gwdGS2Ko+OZtQ9fPRjsoF6xKplk9+/bvve8norAkY1EjsHiflD6ZYabqY0vHdncNXtwaYmhDakDC+bsmsSGbHbvVvYCbbwT5mezWVU0Ra/yW8IEM8nHkgWaR94e8PYCIMt+jwYPK/G1ccaVcNoA2XCgZ3ieXIHJDweNq+g1a3EZCVtq3MbhN1/MxYKueGD59c+cXsTowoPSsDS6P7b8rEtoRty4elW01YCHtfDMG9hazK5jcPhW9IxDkhARgsGKzHbHh5xLk08RXPo/ShKBEPMmy8n38Ck9Gi7Y9LRix4ieSxr6voi4zCbOYUfxa3ank6WoYHHdDNjk+D2xAC6IWrAFnAuNfeng6FhpJROaOn1we891OUPw16Vp4E0/6V7w2Q18mI85xrg93RMJlQCHqygGiizDJOywUz+TzBGgnaBC33r8Lh3nFX77kPJ9wECSJcLVcMuRZVytxNHIt3LCEiblrYFSUA8RNJ8amMSSpoB/Pe/Y6cXsUYuzNqbJG7FYviPvtTZIYqeMYgHfsVu5Skbidat9jjIp+mEThwIVm8K/ImDdcMckV1Tav+5UBN4ql19YUOG7oCj5WThyMAPZKFM1kwdKZt7EmGWKe5LZ86M5kpmjc4GlaIvneflxJy2o3ZyZk2zi/GGoXDGfyA40kfrJFWb4N1ltVLzTPZwiKCnlp1Tn5khxw0FLPPmj1rnhlUguyzkYn6t7ewViZFuDslSVpfIwoN2M9BOTGbJK0az4a4HBxshoxXyeeulDQLJ0cipp0IT9mgxQn0AZIOJO33hZwxzTrpNvmIQqZm5NFJ57vo0Ulk5waSh/VdUHL4TV1yYJlk+gWsntMqOHxK+6Rz9Odie0j69vgFiA+dHhW+k74sN1pINOVSyG8Ebi2HBOGqlhSF0T3Gup9gYLPqPR4e0oWHia8icd4hkfkjYqSBvijOGx2QImYNzEbs9kMer33+AmMO2eZtUkIaTce4uJIHPPTZWp/pRU5XdNTfofXUodIvhutImLROyYtUeHfhnyKmXCK4/rj7LTzsWZerRrco+BVoGemkJv4jvXKhDu641Y0viU+4U2SNeFBHnR9VP9Tii7iW1QAAIcy7zpAAhUYOdJQplWMUPdaadMdn50xS9IPEW4IxKmIns6Fu0QKtMfZKe5KCBb6SHbeGBZmTnRfDFeoh9D6LRUmZeEtZMVkqqSQ468yWk2vDrScA8RLxBgMGVfgVkwmsEWtBWiRWBs62b88TOUcQYunX1dhKKS7jwJ8+bHlYXq+f4NI4YmvkA8uTCy/Zm8RobooExut54VAx9qtuHD9bdjNFq88hTpJhwEUDSDa107iivEy0Qob7aB2VIl3eC16RPdSHdcoXoOLv0EsvQ7FlNSsp6SP9/E4u70el7Vfze7QUhoBbvNOctMWdALC8ObDQmUEUguINC73VuMRZRQAoOl9OtSsEwcgUc9eciv5kkvYTG3JBqZV0Y2We0cSuaoMf5xYgrXQP42ymeNkOH3hK/8SGNC57oVDhkRSZ3d1f3RdxrCHqGBL7yb/qvELieXEyS0seERS1syjHsJhSLCAklJmW9bVqsZCt3kA4askajsBWCHRaRwFoL7mVDiswVlvpo3dkGsgsDMgC44XKLoL04wKyr6u2U+KAAxRZYAz/341Of4VY3aAg306sZ6w3G6Az7okI67Kw6tfroXT4oZL7mhgp//vQClG/vhtrwz4Uma9SJ1ZeNpunx99PZ0HkcKNbGzd3+5cI3n3ge9LEKKJrzfvgLpmmp0sUw8Iat/TYBIsw+iymwaK1rlF8JXdirUWimh/QBwiH+YhvexG+SFvArcrpEM0Ee6vhGrtruJzkdrZZU2Y8u2VZyfpUvFmmN48YR4fdXRmnySW+8iH0G2wRiedD4Xw9qezUfkfgHJp1NEi1ktVDOHbzBdr7eZLxAwr3u7nUdhsU7cn4n1J+XBFcYEdcSgDA1VVmKXGrZYNyQym9B4yhbDaJsC+Zg7L0MD6eAjn7ItQI+fXyfV7MpwNKoHIL6jfFmkd4CPg3pGIr42nm8Mtk96bUuVpmJtMAYqetFw5Ys1UNvlJ4P16T8u9Rwza12N0b66sX12XUhI/tiKlmI2OB7HUKlITZ5/u/rX/PGwriqCUzTgu/KsMzcYDSbhmkmCrEW4HlKcNxDI0CJmqxE8KjUlD3mcfjZuZUjUIXThrxbwtNYQ2Q/eKXMhB5dCgGqMXon0ZpQZwASWHWnX798tHufXiF4WWnzHHUq55V1BZlDRtU601bmq3zaQJfzfWU9AXMfbTz4xFD6auEfr9fezD7ISY2Uo323WnAbuBog1AyED8mCEAyGuzBQgRgvE0Z+zuOV4TTCkUiuB2CSYdu3gfwWG7vGRFHwdVvZqj2x6Gu/9yMzqORuOl+Su16AbeBEd2pSxPMUz+DJIAedVflLIrPrHss87FbH3N/pxx0P7lP7Xjhb8wYFGMoyXgJBtH2c19UgpW0IRblXY1arEruCM6QnOj6PVGr9Eb1GN8AYVfRZB9WE4yXKT8Hzr3XWGBL4qmubpDTcJdYZ8s0iL51iQqWUvjyqqqYqQqymrCf8uqd+UdeKnA4a/lGKHXEHz+PuH/t4DMEyfRL4HomukIc1d9h2QtZFPjTzCAf+qYZh8za8TGy/YpKL2LGpJKoyZqmFywrTDf+UEnvOXdNgTYqfb2CAD4iqliYTsixt49KMToFmf/F4npj35FigBHpNp5qjZ3k2wNPbVvkX/81nh7ZBb5r04mNzV4Ca7sK56ujtjUQagPH/DpO2T/ubTKOSdTvqTwYPwX3MIe6kjrLWQPw2qYKMYjrwxSmHcfk89tSTLO0IdGFwHlbHFxv2Py12gPL7D8ICOR2xAs1BFWJVoahWijRkTcUJPozmWCh4k/93Va8Tqrnc2yOKpLBz+U6H50c64pwFMt49Jq+FKDQN2UcWO5NXQ7dBUE0kgH4wTITKdA7i33fo4B6TH7uzDx3Fo35FRIWOGgLcb9lnxsfCxZgDoCLyYsAuag+m1dibR+UYGWQ+h58CDw6m2wGE4gHdVXnhGlpiFO+9wdFzCWOdElsFYQZyoxDG/yESW40erIMNJI9ACxb1rN7HGkkI3NJ7QnbmCffDsiLgJyvtGlilTneREmZ5uCFmaz/W/59loKG74m/VU/DDohS9A+sJF8BOCsZg/+gUczGu3v4uOlXGwwb+2tenK767IgLzhMl1IcyoNFAtL8IBBYE3JN5PVQW9hynnUWAEvALZwGAXVxG3qWqC6GVsDUl06uP68UdiGZIvvqf6KY41exyrgvzOvrr9Z/C6pB0tf3tUtLDqO+wExwFqtz++mUBax0jtjdzaa241XlszREr1+O4H/1QW86blNa0o38Nhm2KNqxmWY+St7Yl2QcAbB1Cx25l6DOTmXV3SX06uqerc1zpkzQpJd/ZWPWb+Knj4ZmmW9ieuNYz0Gp8Gj7AvDXoPOe5qrjXtri4vmTvkVXzKcNVjiQuRswJk2XgWcjpsfyZ3hciD+UAEuPl7OnOMgNy6WVND5zf3XsVr2Tdsa6beB1lsWZCjBiQbfW9EJZr4UItdnPCYYm0aA1pQ1E6KNCKOcowyjPNvbeNPKI1YzUBbu5FiAZCZInbsXFYZ3P4zYjquqY3rBiIGaqyLt2cJSHqtJXiYj/K8H/DYS4916wI0x0JoRyArtv43HmsrZF5gHjbNmwURM3puCKbqivWicr+QEbIXBodiuJXHMqTqbtIfpKQpbbNiJtTu9Dt2zyi4rnKWyyavFsczG8eR3w0ocDtBV3nP552gTYV6ruSgUyCwtSIJJ7hjuHTkyDZrQXRzOLjlv5VhJoD77dRWrRn/r+qMHh8haBKTdnt6p7EGNzKUn+NRKWcxwIEpXcNmUP2k7DrG3ATiDA1UEQmike8JxsC5I+htWLnz3mlTernaW1cgD90TtWQ+fjESbul4I3I2ulIUAWBuPtWt1ldxNmYHfLfHSl6T4QKxhkQBTOOu7zyEoWBFcCrY1L8NFw4ukA3be9MAT7++B2XOS2e8Y+DmZ4+04oM29I72RuDWDo2OWxAddZ7ZLpy4AbJZg7bpwlYl0R6QlvGk0yOzXndyFxao4qjPj5RywOX5cAnJvVwjlMdDBKghqyTazyEsi847I9W1zxCRUExrRPHJuJMKCdSrIqEknSx9hIFiVycVX+QsVT8IJi4Q93J40GrmxiZ79lzZ8WzUafAuS6qL9zIRl7mlAS2PqgQB4SSnPCAIw70KdNZW+PWXF07WbioxT1Fj7OgVYVgCYRr78t/DnZsMWMtPfZf6w/eG9J99wwAjkevX3HcebvAlHuAdv0AfKCHgfOj8AIR/UslIWZvRDoxikjZYNSIuLmWvXdOHfgc/8N5rXhUt7E2F7pH+uDEYcGyZI/EJ6FC8F1umu9K3NlSmADCP8k1Z89LG71GNAu6XO+0LdPXVpoQvcpRbuhgI2HlOMe1e5iWyfeSv22GzFjNY2yOD9oeDfYELGMxjCCgbZYteUe5FBb5O8GjQSQseZev7e41kMcSEBXuMz0kuF2NTu5GnBUwFh/ICh2KoAPEdl3NypJ5PUWFUn16P4IPU+o2RISGQxbKUA/GaelvbJFPpJnDs7HP80J3Uh8DO63OrPkugdmPAqeCySi92bnjeHI37cfM2lU33YD8A1rG0nNYaXcZ0L2c+S63aFhbVXuRlZelHo3rEaidMkfOX4pBcSgPmqoxkYpLfwmVcht2LDLCn/CPHAHRHptllBamI+rA4rErVZ+BgEM2/tJixh0/VFbXs4SMXyZNeExOW/oaM4GQFiwBHT7rw/byJ4wctNaCe2ZjPCg1g8PpOV5Q/vfA16IfTfNUWiLvDWmPpniaHVfI0BGvA1T+JJS5AsGfd97xzSMkNiR5JOCPOAKAb66I6vtNzILbw+N5i8j3tXLGOJY1lehcVb6UFf6Z9sBJcsAbBTH+8i3IE6b8xL3Z2G4DP95LMAb8gIiX+L1zvV31Cwj6sqIgv0jM4qEmU4Pwc+ANeZ6xXVsMnR+Zk4MWYWbTgYmIOtyV39ylo0s0Z+nZSkD5+ijriJyKPx+oD1TCRKYHtmbNZEWrAK5wuqNLVYJLT7CftS6AnZDlo2qgDIZK6urUoMIalXvJYbHWXkpnFUwHfJZRiTBkLrXPPtW4khocXUHy3Ebidf4WMkZzxJx4mdpTV72VFbMYTPGelTONhZ2HpbyTSFfoybYOsRw4rr7ugAQAS5FPY8u5hlgZlKHgSC3+qLKj0mVsHoRFQZLz2H0bap5A+nd6pXCDUIEnWCvix8Lr3DuaRav0DBMMcM7yFB1cqcXEP7ZDPHG44mmBFVa4OaIGQED6J2jDQLwOUXi5t91Hwr7D864YCuVZfTPgiFV2uDjUeLwrezihi2LG/xKJ+0KRGu1ncgjD4X7BTJRkr6jtM9Do7Dq6Xaga3bj2pz0guda2qC0OPsVP/EMS6ug3dWlFvV0yiofwF4/Oufm9kTqvxAIlRUFiewYPsoy9gJJES/IsGTIAX3YxQVtwOj194DAvn70lAvYRgvQ8xKfBw8Z731H6LTzEx7BwUvpy/rejMBQBoxAuQ7AgV7aZx/y5p5Gs99iidaUPj/XdKsTYoCpZmLe08RcVKx8SFNd7G/lSqt378+NngYNqYBY5c9JvY5otSuUWtD2qfjAdmFchpG1And68RnzM5kZa2cNUhfCwymgwRNcc7BM80Tr4eiMkxYOcJ1tnOIg40k/wzQXf9fGIOLdJB7058xi3PzVlkNmPMCe1hWknBIdWm+iPct4Hlkj2tuX4u9YDSswqcyH0T/8Fii+PjccwKtUe7Utp/hWGaL+8nB+JAKzfVLYRU48RbZPt3hGqg+wiSuS9YWt0jKbHMogkFGwdjholERDhDi3oc40U7p46CNOBd5j9WiRlmi7LNjdVrHCEHCpsX5kZh9s0Qjcd/seVlNaM49kDXD7Jjc8thJ61TQuFgw/ELFA5Vokr3vNou36R5fhDdjHJ26wj1uEkVsCMU2SU2NrF9+stZjrNxHJTJMXSoETpthUalbh6bIWtsm003aZcskhg0TwVHAr55hXD4zUQpZ3jmBxzDHJjeB4ZoXPO8LKw1VPg4wgkRp0hc4lGNbluRmuKcwQEe23EtpzQS9UC8XsSyGbUJd7H4s2z7FIN5X1GwNiJ3NWZAGGl/4CBuQu2od/P5u8KyCVj6isjyBH3ypg5ctQNxlNV0MLu7yULdknn1a6WC9F8go28+PXV1y7ZnM+GX4eWTelBksWzbFFQh93KG6+PRXeUEMi81I1fAvB0/cpZkrvw3QRoECxdRje0ZoL9Enp3afYj9jyRj4DN6Svts1SnO71vibDFIYotCAWDlyG8pSmi6BJS5Alvc1qcpGIOhSfFtfBQiRWesTHGEoU25Wl6PKTAh5Yqeqjou7yqu14jPVKpqYT6ado9It0iu2TbRVTQ9ktG4mYmvGxvoGqUcMH70uhgosaPel4LHALKWpnvIVzvXIDWXq2nleCYbxX76yyxInu+f7afESq7zmk8fPuEBubMcDj7P1tb/MVOzw4GdrFdcndtcR2iaWbXOA/28dmvuUyUTUOE4J5BxN7Pnt9YQsD/amxRAbwaAjuTGyXLApK/wdBjPX7oNxX87tE1mnu9TN+xXFLyILFo4wqohujbUz5ansGFaCF8XEh9z9ku9h6aBME5R4JVMBpj/x/QAxzcvhUrnxV7ZkERjAXnNuczOIRREAFzEMm7ENn9CNlDKvBL55i/JWBwtQ2xapBlDhKd5QyazZfTtgZ0VmSLMeceOhu02thG5nfTitXfL5M55/N5TrIhxunpyZuNozp6R1c9rZcTlf8CxMifkUbK1Iz54STfpE5JrOivcTCH7CVA8BTC/nSGSKSl/veGvV9OIsvMfhqVIG6sy/LuQjT0VT7oZMknBqV6u6fIKavivSoWggKm9eZExrxipXGlSmN9ghwdJfp98dhahWck3BQdPTyu63JWRgxlrW/lYM/r0aCuqcxeSJhzC/FGlKjwySuaskfD+0RS5RvI843rUpli3Jf1QhBVa/1Nn6uUXDt8hUp/28xIS00PHFaB+OG6HoRvi7Q68PaGI3SteRz7KxKxp3hnVITYh9/0RZseRDBBaMQRsiVYMkd/yFe+p8NhApQYmhe9enSoeGaraUxKB8LZjjlfUQOJK9no6zwIOs/ZKVnTx+VORTH6z2Lv3+VhbFAyOTgLxrecaDGrEj29GZq/BlLAhch6kUgketjRWIyN1nkTh0xYgN6QoS90JSF0/q7mVDm5a/y8i/tP3weH6W4VmXkS/iqMBgABRqvqNQIdU/B84fsISXiIt+TGtn5/KPw3oq/hvkjdh2x9tO34/lOdJWBjgcK4OMQCzS6eqtw8yHnnZHcE3JC043GLJH9imRgjFvqBNa+KbFNV71g5CEgGlBk++MBgiOOlr2kQVQuz/6Y3KePi728yPqafsiLJoVyRa+JUQKpnRV7wPUgxlXF/75kRzNTTbENbJsr9KoenuRraFAnvoyVv2DjhyXj0gSljfXZ8huItHAP0DYTgzEVp6EDyhaWFDmqdLZ0FexVx9JmGepMLmzKmDVPzMgxm6NIXc0j+zdRocnNu71i9WRZkOBzHKesWreAno60PP7Qruiqk63ygj8A+QRLW/oKK+XRc+vKCRJE6jEMPADR2kEmtnPBYGx5r1Q9491NE9Scmfo87H5eAgmkZmtrT4qR47hZJGc/i+We6hk3c9oEJDvLfy8zNP1tnF6p8QdHxq6aRBeSdYY4kpsaD6BPB8MGhyjuXylYrtH6hXRiLEcmzCgx2TmY5nXtaL6dYlMKy5/037UvNDbNOitTVg+LgTe74FMqGSrpozZskme33lVU7C/FFZbVWnRrvsa3UyQS95oZu4ABqaUiRWvV5zbqjUUaFsG+hX2FRAhLvyIjcyArEapvXRe9JFF+WI/qn8zutpEB+yH9yizIRjIJYVFqkbP+7nV4DK3rcdNBO18rWsniDRaAXE7eD8FPC8hBtZym5q52KBztzcdtVVCQLTw0AnGIbOdJmYe6W4oeTnHK0I50+Z2E1L/s4W/2W3Rle55jatNlicUrudgW8ifhGRzsFdVI3xhCBe/Z6manus5KBjLRiCJ/ls117Z7sLf1AL31bl6cAs2qDnet17Vp1tWca4jGqWarv2OpsU7t9C5tDweLfxvYnse8BEPOEtKrURsk9CgGx4Zg7a9XQtdYjEY7yNzPD94p6doQCJp0NwWgW6gdSwF8yB41gowLmHqrmjndfKdVnskwO2IC+3W96lQoz6YAbAGFbITkj3iIa3Mwc77RzBdcYYDrmu+lAOiIkehnX/BeQiM26WxXksyVGxGOirnkBQjW+iEEuDL3FGoRWfKJppVkTmWwFWGtzsqR2oAJA3vCbpfstWp4DEW6UZWn0LK6/o5GUwjD3P/3BpBYFB+BmdRA80azHW3bCXqxCjao/h+k/PdMwZ4/KOkPMJdlur51lKdxdecmyMrf25ZfaMUOKoLcAbs1682Tm7FwvcvCazCFGY9U+wRIHJmNa9A3GFwJejuRrORFheIxgOIhvT2Fd5MYfrMYmC0LXE8eoqceGevagZYVBy3kc25f1tddvkvR7Pv4aClWvd8zAz44AZ/IicDI8zF6AmaCE3Cwtc4EU8QaPrOlIZaOBK9p3J0yWbdUiv4wgOAzZyrHDqQ83M3NEWb9e5kWpgx5xAWnZkWlEnxLAH1W5G0bnHqNWTyBKH5Ee2VxYOLmlfwZ5TbZY3XaeePuSG9XCha7mAgstP6oHskR143A3h4RnNGIa7qKDZ02XRn1xhYbFEk91W3gpJ/J8NRuJtyMF8N8gdAeINAERJ4yUUL5XhOoHIqOqwAsJiYQ86Ae66cggK5DDcnOsgqGh8UXjfcVKvWFNkIWW7e2dZtWcxLDGxvWR1i8VbzaSqVtPBgGGgy5HRopfDsVKSfa2t+qmMfsPVfoqooTb0/S2mhYw3ZR5YARUrprEk+hnWchoKJGq4AT2tcnHYitp+/et61WCjfKynotUEEx3AKmkUA59JjjGiqOtXOMLE/gzmWUVufbTqficRLGKHSiHhGA3rmgJ8wCpXD3hsPptAP8U8NCELbu5CYtXHg9ar1mL6hvhI+BqEUArJmf76mLwJx7Bv3JWHArxYHjG3OrcnIbm8uG8ZO2w5yQnZayh3oVT966npXJe4UnWww8vYNtR9fU1716K7Pl8X05hxQXXxabloc0CUyOPYCGJ91LH0XhmPRE4GtH0rYiA9OSOhOLcpKA0DzcrM4ijBs0diNXdaz3EyBKO+pdnEb8HZR+rPRBe8zjHU+2uWMWrHVAIgOqz9GRxyWwwSRD+AtmK27/b8DBUkj2Tj+IhLX7DFeLo3fmqqH3RMe+5NQJf6A7PRwpax5KDRp58wM2Ds9PEMkeJ1Z4Hnr9NF1NbWzQH64hEN9HEyJacIJUtezjvWfoBkN38cB6kXeMRkE7r6U4+YRNLJVXHS/97lqiJ4rBU95yN3U7JvnFLAwWa7oEYbxzi4qvY0B0PHM8B6S+DKB9iARruFb94UrGWrUKnPtClgrUDF/GwwDeaMJCTV+W4DCi9xMsKWZZI/S5bhPBeP1ih7DQ3MyQ3Q5Rpx45TlpYP8D5QN1r+tLiKzIMiamxdm6i042RpyiXcq0FxvbeR7k/DmnmoAsT89eBAjL/8FJMCYW+iJ12Ph/VN/HzpV/q1ASrPKupe5LKimWjLfnhLmlariN+u6KytPi+i1+JRHJdLUPqmaE8MdD+by5sFgb3++IlG6mH4q+XcEj1HI383+EsKiOxQmgenLVPugGtW2ynAaUi2I3ziMTEISuY06tjoJ5wiwhrYXjTsmyOnJdjMNL+A6LddTqQK7nz4iV7tdf4Jrkf7QesW0UK8qjbexFvr2UMDCoYMvO5KvQqruyPOBaRW2wrpd5ozqpHmHgktY9YBQmlp0ZND6d6D1l/FfyV11lNYjPHcy7I30G3yUFkFdnIo9JBPF2hvsnFprlDYMDh/0xh+4ngu21nyR5nQuv25/HURL0HkyUjzd5kGxiFDb92Y2plAhyXa0tH8uB0YhI0muqSub5O4q/mXkn8xzUjEhw1mkHm5KbjJp8texFwOCPjE3Q9aUXyXyrImwxPgRpaxCE1fkpOZZBKw7hNlS2VkVVDYog33gWfAdIgRFqnV4eU2bo6AXNecyEPoTr4Oh9pXJ2AMolkvhEWb39fu0ljbwQPyupxpMO44yI6e2PXg+UK7bfnRzT0ZOxwpWRIK9eLiZ7wKhKabJlcJe1gP48Gz19ZwbS0xz9RvXqGY7OAlBQjOjhpBnXIJwupki2U0fk/0pXVPeWu5+PRXEvkXXWOMuohZQuZMht8QQK23V/kZ4+Y2pxbIKL4qpTumIfewJof5JVdXYcFk6tHthp2XvRi7+xXbsx3V4JqSwWcJUdK5Eepe+LZ1l1EGoHCr9Wi8sIsFSt6zkVyz7U5E9m/qSVFEkLnZTUYpwNkrhl5kijCkYpHvoMI4JvkAyfd6CBWHVVIzmjqej7RUkBeHlc6MPfbwB8gzJWZ2PgTcqY7JF36+EESXifsSWPdyhQspHzWLArWQQDGQunJ9chl84+2VXszUfA5HsfqFpMIK4k79jq+vvuWrrXM4glxW5OGV0OOudMrKsNl0B9IMLYR0yPLh9Uq23Irq3MY2uH1aop7oufYkksW640iyokjRC20j/fKxOoa160gvrYJlshHNg7Wt3gaf1sto6sUpwRrCdv9aFXfTD4L+cuku/d/pAvQTLrIooN7F/kH+GRExgO/lliBH+FjSfLtJYOa9N9RcJJSTcxNH/9/GQ46T2Ir1LKzTpkHVUG6C6j6AAbSHwOuADDnDV+cZC21MIrGUC1a27OmXM5Ut0+Brx0HlX7E0Q3UKr6n6oQnar637gaMOOsbg5AbNVa+1IPu6AopkovI/Rbh6JR0AqsoAJD8yal0lM74+cxj8MYK6rGucUVoxsL7HI2vsarjcFdooO43kRfTK7mXyKu+aTv85XDTMu68ovoOthSOzujkOxJDQixRZ1dx7ppFHD2dq3rSnr3OT41PfCWDQwH0nxLMfUNy2cJwCZjN55b1Vs6gwck8jEj7e3H7Fkozbjr41lekgeIXJsYyJ94qFg0PY1cAul3eZOKAGF0asJwaERRlQi0ec/wBFe1Elu7XViEgs8gKNhn7Dthdeedb1BJDriJuND3q5zr6ZVJBcvDbRd4rWPbMFsSi3GYjIxTrz4AWjg/X2w2a9HNrAw1wDH02udq+HRtde9sHk4ZSGpEEEQ5nE5kwrsh9/Qs8Ucd7/yzzAe8Dt6Ka7HIaBzmJZuxn07zVk09qLd/bER8JQVZW6Gr/aToEQ7sveEIgA26r1xcUbt8D8eexrO/DF7YmxxwMtf9tlFb3aEBQT/BjxbQyot01HyhjOyQY0uIO3eAmKcpXk/ULJeTh5Abcf0d/axRMi39amgnz0rhBnC8xY69oNk3JF4sAe7p7vgK+VHJSuImnMR08Xc8kFnWjrGGHscORUawa6eryNAaajG/Xvsl5iR9WM/vPTkxzLiC8otkioMdjVrLAFM6Ot/9bNvvIk8Bm1StnXDgSeqhdsyBWwWXopAR6JU65WdLnnvm8d9x10R+ZIJQTStsnXqo3/tV7DMVY5EXFmLcb+EKrFHVPaVXGUe5UugEiZVK/enpTkXSLuog4E4VUqpAOJEjpbVWKPoltLJnEvyxHfGGZDxN1hVUcqCHhCYn49TXvcIYl9BIFAu3e8jpAiAa7/laKfmyznnOvgPykcOv7ZnVzcStk9eMHK2vXBvpWEWswcq/8LT97LPtULjFbZ0bo1fSZSnBa7g+sibILFr+qBp56fmRpUuQCtesXRoB3br+/TqFUcy0GHr9+tOqenZUMichBRr+axRTG6nXwvbaj7UseDi75g77V9jNdynYG8S50372qKhuXMkcrSvTzJFCC4kwQV3YqlHaEZOynB6hsQsLelrHjy3h2XtLXCENaX9FpAtZDvPMtEen9eTIi3GWCIbYxl8BqWUhyM/TYN6T5sPdtrAu24bm06kk2mzUCgksTWXk8AoZRJUBgNCAqswXMRbftT28UkLUElFZx+MMlFRCpUoCDQqF3gqEl8T5u1yYfjBaKzYlrs3IYQXMJaRnmm/NL8BoOlswo/09Vxv7zsF6H2MnyxX3pmhIFWDDv1zpiV83OrhL9uYRsBdc4C77UjG8KlEXKcQYR1AdMB3l/k97ifTfdeiQHyHcHhOL+TZZivZUUypZbl+HJ5Aau6pceFGbjrKB2gLr4rnpJ6dlYqbpByCoxxY/oP3AKB5IyQEqvRAfBKmFmWECAPX9ox6o4stNHJsIgJlRRoIxHVvBt09zDeOyxjtGyvtu6s99lVn9bWxLrmG+uEr7FGeY5WtUbJrIMwegk8CpOvIUNQMJ750CGYlv1J7UkuxqspfVgvqpdhG/jv+OhuaBnDnub/eaMCGrnSh1VeL95MqACwfpdg2MsGmqQcGdS0aJRJMMViVeFNdjABUonFV/KF3xQvKsPuT8ddAn8rwV9uuVD6z56tWOejs3Ns2VYKwBK0G/YeVYD2qMUeRXvKUrr69m/Omr1BaaH6En+7lxzsl+IQtE+/PyQGqcz62VQiWAjrXGFaAMbP+4yNuwWuKkIgZ1qHlVLmWuoCLG+oj7RW/pJz6ER2+u+Jk6M02PM4qSiE/5qvl0HrKkuW01SY6MyB0S0zdn/8JB6//EBeNLVY30Tp4vO0TYrFSUTosG7saZxdPq7bHrH7fkZrzvvFmuNzoR0A11RkBa43ft18YHuEHUYCkoVuF8fRZbqHrp/YKXwsj9d86vs4TAVooc0DxHvGst43kye8dJLZ6pi9h4tLRUeQ2JQO6evBfsUfqEfmW7Z3lMqlqyRy/kiVorWDt6L7u+8qhMuVYI+SdWP4s4Pw5L39jLcMpYvX76baVoT8Ra6cUnSvveJz/0+lQNr5k9UyfJvY3Xg/xSnb7DR0M3Fp61i072EL2CkFqNNJACwjpV+W+98h1iSazWg3bhqh+3u8wVZyF7s13MCYBCWPLb+vad7q/AwSryBNy6m8FM9fmxNnbbzqBE0Cz3seYc/qwAo0BQc1OxoAMP4wAV/ZItRe/Xm9v2E/grimB+TzubU1uqMLSia9GU9VmrBtzYI3iwlohOlAt1MC8Eue0fJFAbvfv9B89Yf4fIIARVVF290ANRiiD5xDi4AIhJJdUe7ahjNANy8gIJ02xB7UBpjhZu8M7pjNDZ8I723t0THFIfm2TNr6Pwvmpy6Bpp4qOqwxBK5TuMQ0Rr+H7BntZzc4N46+femn4kDj+RP+FehU4kbTk/xSSnnPweENJw5VrKwSiemfLcwpyAiDcJo3d28NaGtri5SfBSr15qxHREqDix3q4jo9ljDlWelkQ84dRiE0IjIHo9AwE28GGjq2ZOBS4Ur0zJWA0hWmDg0b2y41OEdXzrXdrONbqxMb99Cy9z9XJ2+TkuQZXYqL21u3PywwkjewCNOxTudGvxGxOVvgPVXXtBNcDh0SonccEJolYUeFictr9zDytr14KDBqAaI59EGQWatuPvLaJ1i01pNb51uDBsVa715cecRFsO4wdRL/a4OnOcMkYgwS5Qja9EGJd5GWvyzyUAJeorLq2RJyuZjOjr5Zl0YKrHuJWKmmgXyzmGQ9Cscwq+q8r7livpgE1MAmC10gugLk9vn7NJCyH7wu+eSDp3BkQPeqqiH5QfiU3O08wPHn0HTReImr/YUgNtrDT4j2ydY0ppNzfDAdW7gjkKOXoBdPlODFOP0yyDW9v/lX3iLBn7fGe6LaPpVxOdin62rpXlmYvMYZlSzDw2+o+xPoi4elEzPMQADMAH27zS0f8HMZdOTi/hj5EZemhdtEZ3rPtdyEGhxApu89k6o1zgTSsh0lmGZBYrK/LyR37RmsQEOThcYhrRsw8wYhL3xqTEpMp5hQ2rVHcaCTJ0b7mmHa3wHbedHtsrEHfg9B1IaTxpsPTaKc2+xrKJv+C+3QP5nnFE2o5v4sBjFhDQcwBDuOzKY17vOkQejZSsW42oPl6yzIjZviwaQMDIZUQxXvTI1aWCIUi4DaEjA/9i6ylgEGeVA1xtz3yQa87a8BwWCVMBZHaR7vFvxPTF4XXIvem06Pts5lfGfpC9VxuJmMcJp9Jb41CFPmorn+vqqvHqR1uoYcdwb4AhRYXB5p6kxYTpmF4nNaUIzq/FJeUDtzoqALQ4dCpaelq+UovOPluRhfmlceBmw2jP6YS2d52+vbsisUG+kvbzXJl4HUC/VHqyefFIM+0GM+ETMj/98TKxxYa+AL2j91vpFF352F1hImKqE2fMSuOSuqN9TPZmr6O5+LzWlLxu/fJ+CjBwbkmA44ESEr0AAQ3F1nc91HlmcpHUpXqHi8x7UHqfIWPry5VbiArVTJiq31NMK9T53QsF7u7W1eqsvwDxqV/yf2MpF99GM1Vaj0Ie2pPFBviU5sj+3EgDqfqmLBDNFWDhRWbPKJ3D7BDYQT5f7TDE/8fGjIuVUp+iteCDs0KbDwNF+k+hvSbLPE7J9PXaeFCTMdez7+rDa0oul8mTixY6xQCGPQVTyC5mUOMc6+4FQHQ/MPzZmCombDK4oQYSm3+shZLlHG1/hvip5iEbfSpf8VBF9HChZOEV1sXJA+15Lz0NJeIwma6F2+kuIKxwxbaJOpzgfkykk/tX8UVQhIJC8B5xqG3wAqhlrgV0THQATykUSa8hRa1+kdoxedS8Rxeg4aQfFhcQJx2dzfeY3QOsLsUsZBrjX7h3vJJ21kvjXAfX4l7tTu5NbL4KlbAXJr8Pqq7N6BtSO7gIiHl12jzDe8h6m0Gw0dqzfePiAY2WEVDbxAv4bYUP09oLkOwmNQGq6toY2xyPbijdXWv8PafQ1iaJzsJD1htLpJUAjx4YaB/u0UDC9/go5Ogzc4GEuPtjTd/nGge+p0ZxnE031rmBI/92fHtqnAb3EUS0jpptYtkQhf0Xm42FzOy8afjvO4Em8NAwGMWnQCO6ucMibCD9RlBjYUjOrVQoR48+gW/NYg4qHHeSNmMbT9vLCVpmXvLe96lCglRWmvNRVGOnzcWkv6uf18fW0/JtrVJfEU5M8tG+2gBl89d5I9SUeECU1MMpgsYz9AdlhvL0gwhC60eMfbEnjYi5zzZ28jzZmFORxrCepLNitrqa0V0+wPZysBkk7mRikyBr6iCl6SnUqqWlkIXwg4vRRxWZzTS78zHvvNJO/ZnFAYI2wWmHVjTfRoKTQfc2hQTMZfkfs3zYdwNtpqrztVw7ZkEbCvF0v8YGz1D6BSIq9KQ3S8YjCeImxUr5JPoMQrhky721stw9eyKeSrBEbQNfMwOLntyaT+7me3n/mGHX+CM2gQZCeInyFTwvWLbvhBmPWO2QQduqakz5haIX3K91Ab0yKgoThsWslKP6hYVG2FugENxjNWiYORtbhYdQxoer9GHvONYutPMxu5l0qU1SWHdx+gzX9VsQsgnXJKomlTPPouiyazVl3uk7pSQBWZFO0iP87SpOeZOjz1fEzYsOJ8xFR9Gt323bi7hBmMBcmYaEojC3dOVNCE7psi3ofiOn3eViPP3GIaTvY02EkmHWYG/IqQxpWrzwaiob87QwbVc6FcmbrkFhwh6gJz5I1ftpria9dDV1qaX8CqG6ztsmc5cmpQspkQ1lE8KrHkvey7FZBH2kBLWHVg/c4qLV1YcYFPSwzHA+d66pvuAyiIsbq50hLfNQxLXaLcd4XuJ6NUyLKkhNFbHYVX876++db1Ofbe+Qmp2HpTzowCVWt16ULagiR0Et0wEBQSGLJ+A2wVJaowVA87479Lv/AZcWYdJwdtyYAK20r6QdjH3G/sXIKuD7KPw6EYpOuXAQK6cdr9D51FB/VJQL+ED9Pyw+Wdzyi+9Pun3FQ28VGU00BAqCI6s0PTvrGFSSnUeBhUv8+NeyE5zcFJISlgfcad1RNTCMR2XkIQREv3eK1wl0h/AGvNsEMREzX7ZYQjJG3KehSigG01Y2lAW5yKUKuGLhqQp7dzNKC+0QwxYOcGvzzbXwcEqU0bdI45Uh8qk6EhqspBy2tOZa//eEY9WTeduQYBLXnTY/twhP1ZvIJLqCS96o3UoJzH1THXvHMIgL44aLTJyAmV2Ymrm8sQ2eHvr/YApj1wxwftO4v5DGGeOExvKDHhlEfHKS5QtHwPZHblD8ErR74z/uptOQ4aNC7GyB5VdBcLn3ba1LKri8OyGnmXFzmw5XRbh6DLQox+2Jc6JW9FU80T4gk/QMvLixJourBGZBH4FcqMviULoPfmw2MpFnXzGlikNUqcsbyw7Hl8byOBbPYkB7DiFWGge/s0i8Zsh38EEiA9CurTpWhAinPb+DuZ/1TZin4G3S2Yo2uagS2cOvsGmvla4s7bQYzX8TGMHtdszPCGVyq0czwBibA6XSO3dyAiyr4Iyyi6SmSzl0N94ecn8patLaesDIKY22PzN1tIl6ImQfcpc1G3UArM8B/N+WPFdubjtzyjJ+pZC2UntB3SQJ/IhW0owaOUphK3M1gH2UoG53NotdHek0EqINKOgWEJkdTtYybHn414fCD+b7C1V2hoLY8EikCuHtgORWUB+gOTfSyRJSsvamUi4PbAPIIyOYB7LuksuSf76vGocHAN7uqseM8DrvZcbD/JYWvHOcqbJzBc98pmW4X3WS/N6E6W7vyfCJZZD/btA+oKZAys25nIq/RdLoGE2cDasjlqaKEZa/WVopuk/JqRLlGPCxJ7R55Q3mZ4OT2quufJ5YKguaeEbIXodSza0p+fEc0C17DJkdMy3ib/VgfkzA6sqlfhSekf8lcznzUGlrJnp260pCPCnH3eN6ds/FhZPvL6kg8kH65LqvllkELqNeL4qhE5QOvbdHWoDaMGSqLlvWEifuye8o7x+2yJar/beu/M9d0iWD01PEFhH06OfU4wqbbu2tUUv2Nks7NgaSQ/zNk4MoTV+jjIBj+GKHu1xebr2nep+eH97AeIUd/e37nrpPUFyIGYvdqDF3dsLSG3eKqJ5mrWJhRjZB3huj18sYGTd24aCEhbrskEX2Ymf2JXjdymN24TQ/ZuZ8f0Sdt+Thf8Dl0Mxf3pDgNKI98YG5T57JhK+n1NtJgQXxJggfKsU+lqqvIaGoF4SytgNin7fZoo3NlZi9vcHOz16Fov70rBQBFMpwx9PFgsObb8cJr3a/oXtyp0kg7rAYKBusSPUqnKWx/cTAPwtFQJDawBdRVsjIbG/Db5UidZeYzqLHfQ5DvoMRFKvvJYHGom03eX2+3XK8gYYZ/cTmxjFNYQ0rel5jWTKx5b+obiJIGuyxgcgcyA/4sFSSP62yoVvcdXD36/Oha+ywDtVGxz081ZEk0Q8fWG4adJ/j3Bj+AqS9njGV8Sb2iulmk57UCArefpG6S4uRW5LKM9ngfGHhRQq/nFoxheOfExd6lZtCH0I0UbdkSUpnHjPZo01/6aQLQ3M4KWm1kkz6OKDSr3UY0mMDki2HOdsTRBsrAe9EGQLc3IPEx5zqL8v4lou+uzohtwjjjMm4UYPn1u73gvFUByz6wr5NCZMW7+3GCRVxgKEHn3Z9qUnpZM+sYzQ982kwuWFotAEeNvZN7LV8qtYRyqn608ZJjijcCTxBwh0lxxlsdvR+qng0pNayWZvYXOmVS8mkNfkh6R6W3MOnpHrMx2/snmk19D272fU8UHRF4lG9QS12MEfuIIzlEd1e5QJ49LJUqaPs/k31WXrUXftAvZRm76mpOtbcjC0t4ngCCrS9cnNbrRlolCs97RGhoXwiBID88SaUonljzEv22h6m/yRSB/sAN1jddA3PdE0s5g/WOo2RjW7ZYupAdQqN0XjOqhjXVHGodFcdrDkL8V+NiC3iLC7Jn58EZMb0KCXL8iiSRu+B9gndWCFOFhXmjRzebzQa0GUBFY6aP/rfoWBA1QPHHlfQ8Q6vGZKMSp8FdrM8IL8oHxLoYrjw4xA2M8R/SmCSXhJPZ3WNF4SvPcdA9/48ADGN0fj57sKxGTm34Ke//xcTTFYrGl6m413moPJKKzSb8ie5DE06EdLsjCnRysOovAvMjydocQASe2yh3YMflP06mePVq4BHpm/zHb8Ep1+4paQ39wfgQirf6naGB8atxkvedejytqXaMKWpo15dkElVYWvBMstvvW/JdUP9cu2aRJfr/eUwr1CKtuhxHF/kFfQl5B+T9WJH4H613jn8sZQRkuRZfuZz3mfUm25vv5m3+HKyRe1/MTkuds8i8fzUjNpehEK0QjIUyif+zo/NVxdQ3/qtSrivviAYIU+SVc5hJMXAP2/4yCHQC5KzhBRsdhwK15ROKi0Cdebne8Ku9ggkWXWeV+9gbyn7FCSIdX1O0OVcCwAGw3TZSEPTqmPHy0manQG4S+Ujn2PXjq55H28KolzG4qJ5g1h59Flolc2UjvEe5cmXJOiuUZiUHsLE1jm2t1iW/c9P0kliMGmWp7aJxt9LgNPKpwb3SY1uw5WuxbHnAgVcpGZ2gpa1ZPqECh8HrRYHiBC99lV+lBQqfGhIOZnbNR/u5Z6IS0hm3vZ5+DZGiMyZ005tNWFGD9qFWhf+vrbzznyAdN63eTlEeOxdPj5gUuCkVNTOz76N1lyq+jYt5RDX9YppH++I3P+Uj+ppimS84t5DLWC3SxmoNOALEnJapxpzAwVrfALFZwMlShjK8RRsFr9A8Tu1j58vtOxDFUx2v8es9H7TLe9K8/DvgnBgMXVKnqYrDIRbKVCWC72GQybNa2soVCWZuOOID2V4HdVuzwyvunKVQwYdu4vc2Ul1ZquSREORiI6ZYvths4XtCsXAbxxKiJ4CH5kOaKEtU1y1GWEHLRBYqaIBiulP/ddEPEL6MDW6VlyXOQY8/xMk9TkozdbLq5AqMEN1l0F6M16wLZCDlxknE1dhfBHdF1Ppp6Coj293FzIvwEH/k8bxRRvZQRW+mgprI2IUyhPqDevQ7pIy+IEGRkS4heycFHutSdcJXDzBxfsvx/ZjiF3ED0iDa7HFlRI1gHt6ry1TrLoCsWcyK1oFzEIKj9Z1QxB6ieTjqPA5wmuLa1+2fYkFafj0+ou2/qgwudnE9UrCNFHysrr3bpBRezWZxe99N30txwdJhfBuAsIjwp4QFpt93mee7Q10raghPgIXe6oQnQfPLqucVVhAJwbgJ/7xvFLlblI3yOQ+uAE6DucAhNFZ8k1xBncz64hwzABJeKzRU4aAvGC841mBnNudnppu8MMPGqLUzWEyeGtU2j6Rcm+7utzJ7tRjeu4P6J0rlATQE2zKVpm10EOTumD0+1vBrmzdjsZ/l0kfUvsu7dsqSW8UoE5U+YNtAJItly0BWbzKa+yYblT3OFLkP3BmsUED4CWjU0C52DkF5hvNGPuEVi4RUthbHA/efCod1Fp+sYefHAKnZIBFcFDcIfn4lm57vor6avSpScGEz6zpbd2vL53N+mp4m05AJI+f7Vsk0El2p2zFNzaD8Itu/WpGhs+blNpxpmy2eYimDFYR75hohL5zLD8lwBH5X7poRnWm77noHwPPAHWTWhKj+YMJmKetPvVOPiOHGq7lcRsszRqQ+5+tbihxG9MBlmkydNectV/YgsQL1c0wSASWBZi9jruv130Xq1YSuMbGkvdjxt34zw7P8+ZaVApX3xho6HXR86yUlslsT2lKV1kiSuUZk0XWE5HLTyr1mllDNBpXiGeLzjAU+Lv+daL/GG8SYKi/7/y/Mm6DRDXLKIzIajZ4pbrVAKNPmm++BpOXPXGKsiLtqmFp71IoI/w4UEZ1vm2/HhFW45PwDk/yU8V9ygUZ+4DytWyhcOeIybUDZwEPuktnjiqTuKNrGYjY8fL3P/A8kwScbSNlJmclEECXhilWT/EHHEjL1rYMMVVNy+q78giTG1LZ9ZDFEHUVQU4pN/Y/8zgUk0FVUgC0D4dbBQ62/pQz60f/75EyubrNI4I4eclfufdb7gAMsDDx8+KCMil7TmpTm4hMlUJ1SRzRGCOPF4hwHp7lOBbQG8904nYSVWE4WlSOHEW3vH2+4/hd3ACekOn1Ep2CX4D/KXPWxWy/HLZiMsTRVSqdkA8auj0hr9c2+DlsMocsdH7Tfa5xuR9lns58qUkhMQM9iRJJa704os3c9PeN/AsadpGXP24mYK3Y9XBHFmciAv8OjO/3jxZ0dMq6ldN0EmYAqp1y2qMgm8MA8ZrCRVUjDAucw0MMeUpwmQ9PJbWYHrxHrLy1L9yHuPIit0efxUvoVYAZXpLPJd7HUK5DARljMMqyZZ61JQHvHLM+0gAw027kQO6pRrjW4DWXsDpPDpN/B8k0aH4l+ukTL0kbl5aXYPwZVpabqJw82MZhUKfrDeRnlscW1ZIzvuX/l65sAtc2r28MP2bu2Z2VloTyViU4NqF0kge5W8ATMhDhPBKguQ9P9yJ1TAs2ve++0F2XoopFE8kaPgb9gQCrtuPL/sg+3jeLHQVbLnfy+ZKE0hloGc+jFuXsh72dm8Uvp6qZiwx+FrcjNRQd0o4u5kN3wSSzblhWeYj/PqNLR1QV/pylb/+qonFCO6D3E2Qz8Mlz265JUKbhqB4D/s9SDz8DqvFQThoped6FmrgtvzztA6z38sEmjAbBzp5XX96ZJ/TpjfBu+NIAX+3WbPaXY/Uj9sBCFsS3yLhH0tBJOG4uJg663kNl8+QUbwu+htr7EVJQLUSqIlCPneBcJtbH4bDWSurAKHnT2H2Cj/cmL0lbSPbIZ/hGTeHanHGFlpw4Ols+Foe466az78ZZbZEr0AN5H6I2lCaecHc+06jpGYo3Mqts4WnxDzDQysusqUWcxCvreqav+IPsCG4iav9hbKRR8YaRuQZ9xXJveRMWvp2mYkPixIIWBgRf4ifi54LzeDYE4Rvd2YAcFMGzE4MUsOVVINiyi7f42ArtgqANSktgV4tKIY1742pBjgK8n/DwYyrTJf9VCj48ay+oHaZBBER2MjjIaft5kJdz32uExJmHeqQlubRBxERoYlhvoYR2/SGUMH9w5PTI8NKhiZu/+T1jf6szq/9VLp1LCSb66ed2oMu90QW5pMy0pVdwcA6oYk7MFbi4yQTjrfihIOVJA32ufJEuX+Mg3liy8x0jv5dAVhaen6wnxYEQSCdnc0VUTKrNFRT9A2q0QJSZYawsUvydblICQulYM0jw01FAJSC4etm4uTjNYiJCZlVkwZRLfbpNydRzTubGhYT12LAZzJArAuBse/osXlHZLkzLyFup7l80mVDUaQuisL8xm1Cct2GQQyZ16ok0hBkYnyzDmsbiUGpFOJcNLF8iZEmU5h4gzEtZlR7GG7XiNujLqEjc4fLKuNZcDU8P/+SiEUikexnWjTWaUYoepRSMuMyscm3nOhd+smgq7nYG4lUeZuM8mSwlc0Swr1Wj9DBAWJSu0mSfPNkDjLpE5r7bY+rFbBcOuCfru01s8bwLTP04Q1t6w0zjVwznC7EChkoJfx5EBpGr6+zd5VtI2kHZDD149P4QPhlY9fwwT/Qhsoy/V5PP/O8+FlPmePkVz4ecfL1rgo+NIsqW+jvfgfx3WVqg88xvzXeW1x6N2SZKtOEg3PL6uGG2oomV5saMdY1wn308F9UUgieg+p3oPT5XdNx7LXMwBhi+kdBmoBIqspmThUR9cek0B0rNEyKICFxKFyMjrDht5qnmX7msVyruHFIMqywB0oIyk0nfwoF/RlPOnwuqIdb54VjLyOaODpyrAucNOB/hbcX+O4FiAuwXH91avew4xpQTw+wt+PMPY1iuKsD6mKOvvpScJ6PneeIL2foPFbUTFepGKfYTtjnfqXXMKsQKEMYdfIDjpBCELBWj863MOd7P2dglfKDT9I9W6H6eKhBiG17I4Iz2IAYw1X37qNmacLfqT4ke8YrmLu3AuxkvVXbamU+1NEDJUCTkIYGFjpXSUUNw185mUjWimddlVLDR+xPpNxzHCxcaXEL5PUC/o6rF3vR1FNQ5R6g2LiecnOMdGwiChC6THgbMHtCU8biTQSlZ3iRnFskyyZqLdlFEJVqOp5BVMoXYKiEsuYOHEFqnSjxNsuoPRRCDkVQ2dQi4EvOZZnS5e8Jqj5OW4aNAy8zEGVwX1+UPzooeSKviTUrK9w8ltlYlV3X10rINDUqDYC0ZvU4VISPmKc+MSiuXdLKWY0jmowEn5G2R9pgcTxjFdsDEUouesHEqIj1EpyY23wiVR6n51Ga0AUyGw0FeGUA7JowYGrjedbybEE60FH+20fBt0I1N3Qm0SW1RT/Be8zXT6yVLhs2K7IUdx4XKrfU6Hkv23gdwtNkik+VrcpAZG7v7wcUioAYPCgVoX0c7xxDPrLLEXZ/lrpAAuhfAPmI/+EROt6BJbwOu6QigDHD6dypWWU93GaOQLrr+hGr2zd8sZF0LPwRgLuBl253a4IJwGnOI7a2N/c/4aplZN5pVroP6kPfcnLghdO+AubnjGJoLIllacDlOFZ2M1Q2kEkfp7SWqRsj1yyZZt09a3z1HEouKVY6h2GpwarX0DQp/Xd8mnJtm/iCkXEc1kXxQ/E9n5e2oFewGaPNtkgqAvk4GMLS3G6hxinSTugzrohNAXKRgQvgZ25IMOkkbC17I0fapqx9fnyUUuRzBY0SbMRpbPVm+RjAjX88FKNEHTKUZEeMAPZWJRc07H27F72liV7gcEIU+rbwsfpSFTE7DkGgYdTwOZdzOxF9OLvqVSmiw6yMKKyUT9xEsntpPc+nhYSPRkmTjp9FEqq5n4yjyH8kpXWb1yipfcILLZQj7NIcfVgYyGZQoryiA2ht0DAUULLWLMaz4vdswXMr9CIgSUTyccOnHLozmarxCCfYJyZsuKVOinUkfFU6rGDU0/66IMtTK+Ywk6BQBMJGTP5+S8oUF7bSU+G1S/wHyRLT8TLw3fk+hjPscXtzq6kNSGbsTqYKd4v0y4TmChvAadCE2o4xHivtFRexRvJQLdWaJ/ExFRtg9DAlSzf8/yJyUULTM1JoxixexI1z+S0ADIeClkQnFQqZomFF091eUHajtHWrgZDQusnY+6gCDT9XLi/I6tZPdfFOcT6/hQ+oT/7iZs6jGcj8pslDUUav+2TrHNsgtfIv2kzsLCruJiNaeVsq3qt+hPu9tn6A8dJpRFBGyLMK3Slb9hKVzeO/+rmoPsOZTlSEfxrVp0EsdAoCl2t3wZlRsnxkzK2QZUXvULpc2GhXyWULAdJbG6fspI6tBPzDGFYwEO5f4znPi+qedidHvbVq9+DCVW0dhpFGDxmxOC/RIaZ4t7d+mTJkRZrvsoWrByJ3VtxPPQZEcXt3GOAKd4lIQcwxEaL0yuUwvYNS7Ckz0nI7zSg8QNd/HCYxsv7KUiGLLai3zPaQ+g3LyGfTxFVzdh1V6US3eQyRpJgQEs8vnN20EV6JHxoSz498smahB2SFSW3vZlAaS33FjqFsRdjIn9veoGEY3mGUqaLl51c3RWqzQ6khvXsVXAgHszYZNHqr6LB3CYZKipH+f3qEBq9zBQKwvJNQ60ipyo+KTB9MU9yVKVcHUyZzHgIcSDvYK+FLqxzzG4V0ZihTXMNct8rM4v5oORtKrRSFhvI8e5mQQzOkZvHiOkEJaKS7SisD2cKC4Jpc0jA+85Ii9onm54yFH0xq5USqH4NbaJk0mhxKoYI1BvZL4aQ18J1VJqnnbetJ3c+fzNjU1/SYID/ZiN+GoblJLvkTHYeMMfHSnb73SACvBn5c48656W6YcGASdZALDMfQ40NUKWWy8j7Axs2O6nOYu+JWCsv7v13rvAe7240r2yKCfhh1S0X8bvD2FH0rVOoy1ocUEA0BbPOVNLjAUYmhH7FiHjLk+26+BNLXRh4LcG28DxTcdGnBI4nAJGiqn/ZcGx+zVbTm8f3mFsPfE3irnjRoLRPOqjO9c/eQqles8Y0Ny3HeAW1b3rWSDeyiloSjt+aHgABhXYhdf0E/RwoUNZwQB4Cl0NV6reRsgH99T0IwTAGovAXOzCrj8lKIQZnsUcLDluZXvxs9msPRVqp6gBDBJuQbfN2HD6qOY8sNxmH9IiuzaeZwcRgSbnmQIOwCq05i5VrxLqeVzh+u5iL6koETwzWE6/1MpNqaDHCPa6wVKxnX8rbBDckcH/urgoX9PJMCainduGq/wuA0fFOMzGqZtkBwaEUfXGH144th4TbjBIJjeoNLrJX8lQeWS+m7Ea9bZzMv4VnWUWtxc7cEAP5ufFQSS0gk6o7zjET1GKITmteDwxyAI9P12dPQ3tPwwp/GPIo9JCIyAIvqD++dcW6YG6PoWGX4iT3ySUTn/kzpayjt2Ih1+CoGivRMAz2E1kz7+SJgJNsg0P812StTPPSxUK/xvSTHJhIwpUVtAQFKoYAHg1p+8VdF9FCBeyxwqB1lxpaQ46oQeLnoUNyRKp9r3nyKPacl0kkZH9FamVCoGfQq83yrUxm4QFZwb6eBG9W0twEmoPpJLaTnQWCI2ohgrdVOItn8kh2g9iunoBGgRy0Luw58ywK+Z8PQJS+kj7ZWb7hi11XL3oukHu2EjHnv6xMkfCGnomc6MB51cfO+BeXE9bRX25j2zFSNdGPRdghNakTOWf9HaY41fj3VwQ2N82Ywz7dV52xluDdD7ycHNpOc4GjymJGslpepjaCoKJHU9K/ol/BLtiNs8rcWfsTpucaCv7xpjRcMWPcGXOhrnmA9vFBoArYf2O+WxDlsh9CXCBbrASNQmLmBH5r80qqYgQ+OmqBbe52LOl7zrTrz6sW6yS0LvxJdR3VFjqXwjbBOzh6t4oaRf2DR9H+LffTK0xnoN5vYf8Gl8zCkwnokzHJed9axpDWkUPOX5IWb9jK9gGw1Gpev9wB0ZWafx4RUvjhqTp3oHeswbGEOOJe3RU2iKIvR4FGyr2wNf2oga82VhgSmkkPGGekAUK97hEHKYIzhG59l9vNMJ1OA7hfNRLKjEZtACJyHY3wpBAyxyULNxcVg3JCEa9rYt0Ic3vWE+hAIaW2bUTQsHJwNPimWiAioveqHDlQHIjTw8PsuUVVj5s2cCjQt7s4sLHH/KUHpwzcZU+Ge8i+fDqDtpNSIDeBiUGHQIMMYvFz+mJmpLMcZgkhU/Igir6eB/r6gZwLmwOrZj+L3suxPF+w/baMYXWi+ClCpHL/LT52BKg7Slw/HKa9W2drqGlb1FjP50yCyVhsBK4oB1wy+8plMfi3YcCI4fIYsPZqpdHEfC+Xt3kwWOana5nJ9IQac5S2l+9V9p58k0hQXQw0Vt5HaR/pFCltbecNW8fzNbGQhA6vVNKonbX+1wy4ec2V3WUhinowPa257N+hrIwmKAUldTM6KTxGLGPo2kskriQlFCtt2wApOhq8+ixaPANu7RiUV41blvzwI/WNBzQ4pCTI0TZvnNBI6VsO88+8OMvLdO4E1IhoYobfTBrf6jlOXlU6/ULkR+m4rT8RlAbQolaGte+k1bTRFKrMUrhQown9B1Qy4NIDsJEgHpwlIJyayEwFy01qDBcrtrhSUZJhCdEPFLDTPP+h3qoh72ca5vvmvB7ImevIu/cOQeofHWn1HOfUXnZfeVlYn24DecvfOlj8EjEPNzmbTmqar7KU7zdeosIUuNr5SaMpAKlw04H82vPBTknG6wM7KPIGy5foSxV0Lvdgp7UP+boBdlerdN/31JqSrU+WctFm67y+u5f/Oeo43FJ7aRMGWYXfvqCoegPioaQZLAtvCDxHNtkk2cnj9u0SyLLRRfe6p7nsJX+aiJ4mqw/NiH6Cpdjd7bglgZLFMBklPHnVD+1Q+5KnDuzgVhHoJpaPEg8azKRa5E1M27GBw+IMrLFohO8Al732FTsm/EaxQuOIaubWcewkccAZOPaYmlXPRTYvSFp/bZe/8d6PRWQ+Hc8U74SoLY6HwfJqLbmBCHkJ/mn4chy81Dj3wtyn6SKdtLI2YgGR6sinPtnPRMgIiLYjVhr+ARiXhBj7CFDFleMdg19fXHIb3Nbv3FkNR0RwqDJBYWuzIxiDBLqrW+RA7o5sN8j3zAh1HO3BeyZiUBwoYdchp36xGXfczxKY3GO1yy50ti8T6EAMSAm0+9219CtHWt+z3fKkMzd9NGZyKfpIccJvWq5wV3myx8ISijSbn2lxprqsnYIRc4KGxffaCsP40J3tgrYSJviBELnychI55/x80EBN+cn9gSa0USXu5nv7ad0m3T5g3ZKcqGJTutw65slZIj0MDFeikFUm4Rk93IS3NMd6K9q54CfODe9a8Pv9AYYHmBBjmIFcFFebz3ydoX71F/3Ow7NOvjIIXUgOdq4ZxzPvIZqT9LcxsT+YMpYT/CVvJabPpqq56O8Us3qyCfr2aGrFFdZKgvwlIKEPB4O6IhufcglSS/acxiybmwSlDx/12Q74XZvUXN+8cUdCKap+jGy4k2t3MHzlqLgObp3knDR7RfVfskMsOGZQW4X177H8k0yHt8ZzGAxfA8W8x9kG+FP+NGK3dlWsCWHjO6Oq0fwqVNVj3iDrSkOAS4wg1DAfk3ztr01MPrNuA5NcilsE5NKJPAh6NXuQNmDGdtMl9fSO9A1L/a0GUYmYQXuv2ztunpUd8resdQ9gniGdtn3cjF0koFUzstTQIZLVn66uh6Jp8Up9B4Q16I+26Rswgampi9KvVsoLBBpT0OqZzVHg12wvDTSJMDkjaYJladS8Pmq2DIqVClbgkQvJCwfII55Ie5xswBJUYcvzs1z/birf24IYpadMBSLTEjtSeqShXD2MMaO+lb2rPhEtCz7tvuaseP8OlRN0psigKVhE8ddDZ7Zbt+W3ccqfqtj5fc9rO/cf8mQEqiz0F4i/3dmjnnsUOi0AJcsUsqADeiSJ8RBMR/lxGbTcyeyvP1s5whXik+lAWq2pQsHAIE8sp5/EFEbONqhiQIXodHlRl2H0/sm9S7RTMST4hQjFAF4ArLi1E3B7eeM3pEfqzlX41Aqvf6Hz2msSKcR5hukMoS9guJTgG7slwpGNKRMoSjjwvoeeHMKk24peEvZ9E/Dx87xGpE4o5fK+b2VcIb1dGKrcmiX/yDogmUsq3rVhQWWcy6KqZeX/kw9LFwIDRahSYw+5/7z1JJfwNncFzzJaObkTnA+VNkblJY++Xq3AhWKfE9QVkIwYwwuCfD4mfKTzM9e1TSaVuXxAz7Z96tA/JehSCQzq6kjtPqrVC7uloHo2+JFCdjK7KIpX2KitFX+LoXeSWLpCGHHVb477I9oKnlJfHwKmNMwzNPCt9W/C0ve1Ng98kf1WEZkLZzLQMxaqIJobgDjdOr/uw/JzrRDy5EeMrjWA3npUbzMvtqMrZCs9klY8Mp9mp14bzvxPoU1YwI6SqPpe6W26mecB9dQMaOuTt1i9ktFybA3X+mPx43wlHn/inU7kKcjFSfCkDYwruMBiPyzRs6TZSoT+Ks5xoNIKqYsj/3Q94qunKgfyLLIQ8jDuEF+xqoPgfUJgl8d3PKZpHgiruirPFdoolCA2qfAesvJ4GqXL9EVvgfp5z3wM7NQzOuUNG4x4ZLJnIgp13hCjSnkEGBJUyVNLsi4opOd+fwS6V4Z0Khfu7D9VaVItw0aFv5lBfofbKd34kkZ/hssxV55DEMmfnQxaSehsiAioOrG/iwctlfdE39gZkIGr0wiHI3669kK2muz+Jfj8w5ef+g1OPZvtfr2YUyA34qo0vh6bCXZ6+mEVg4ArztUqxb+PoCd2dVk2tMRRXw3+hBwiN8GqHIxnwlAZC1A17YcPT/MKDfhoGg/Q2XcOrZGSjjPvamRBcgzOOlqMTetgY/3avtfJktTKxYh0R/k1TSXUmuyaoJdOR+GfarFMFqISjx9U/OjLVFiiQinUqUQBOKOIHIjOp4GcLGURaRkLxf3a1JFEuu/t6KNXxmgJwvfpUhcP4AJvTRQZcBOG4dRvLj159PlvlJ21XS/4UQuRFgXl5Jyf3Q9K/hbPhu7aEbWRj33tM+vFQWVg9VazJe5ksb1XB5Mvl41hGEzRltLQ4ULZiJDitMeiXdHxdQh8Np2aKfK32BKHPNZg20d7i8VQCb8TBYSskUW9SriLPaixMsixCevMNowQywj35Ov96ZPRudizaT/BTzG85Vr9wpY0dIraUSe1ea4xtXdeJ9DpL7rjYK/ySsKUNXyzmlb2TMAdtBNlICDYjKdR9FV5phsLwXbYt1HF7XwKCaQQqYfqSp4L/wIX2pkMAJ122N8anFfuBE8dpD7FGNRbocLtyZiUBtBCXpYjQT/khj9eYMy9CGHLM0g6H5zJINEoTCdDpcd11TBIlFFbidt3b0OngoFqq5sGSDqvybGDSidEJVJ68H9iGijcPLCpgs2iNkcFDy0sAuHTT/3ALljTouNedHTbGC6qPeyY0hLf5MDQB8PCARnbT5O0Y6eBQq24xRFdW1uI2Ed9YeWUme9LEQv9ChGAcrB09RZxvg54oxQOtL9AEeEkvGP2QhDDMx/o2nyUN8Bs05l4RH6dqVYbMXGux77hvyPiKDv/AmRBnka1PmR1FTdAAhEKVPiGRC5QW+E5mROaA/dSrgduDLg5Z3cF8p9oVwpPNZsSaTMDgWkKoDy7sHjbJ5ACmxUeieFr7+T+pFKr+eUtzDKw3N8tUDHc11W5qldVfu4hCkSdxa61mYYwgVhT3mqgTbVOQtdmAHqMKwflEP0q0Lhp7tFvsSHsG5CJjF0XsTHrnL0DQ3OJ96To0KGl8/XohaLLZKcvP/t2AO1fy/zHcITOQtKjK0PKovtlKBGfYePV0xzeBAkm6q1rbxStWnUxCN+KUTzL69/obNEnmOOM5oi4+wUUbFfddR97zQ35/rApV66goJOyShY6/+jomS9+rg+mWZa9ODiaTpwD09T4WuzPo2tDUYdeetC+xj9MK8Zx3+Gwjt/w+IJuoqEHUXhSzzhlkj2TVo0Pu0BRNGUIO1rRtNkWcBYcRqoRmwXEJssTLEn62F8tU8u2yXXK18P8dF97CSn5oXhMit47tbu0FIi5qEDJ2GI1fmnbEXhJ6JXu2URKFvN49LFLzQBFu2IX7EY6HIuOxM1jBJDc/tu5IJIt67/q2cGazh47GoDS/WKHjxxKhpPWA8j1NbbDVUJls+gJ2LbFu9o6KOBVSx1wllbI3KVFrA84CxEvlojI9afYAa7MNHVrJpqJiO+ni3vwfhsefwKpZdaVt4i8aHAEVC6EvN/C8HRndJBo0v9NKX6hMR5PXI1eysCIWN+2qHbnRO2iG6WAFBrCYtYb1QMBtoU6l+F8RVRIYH/fceWyLh3eoxtZ70arZb58SAeduiSa21SVwb5VC6mkrlQt1DukOEjWku1uu7Z6knlqUDTL+rPbv+GC6muWpNTLZB6z7g0eUIpTagDYq2XP6VUtv5snCjgy3lU3Wi23FkZqYnUW3DwogPRVEX+yUsbZIEDFU82N/19TYBlqMsVrLcgMDsYJyfzadxOfCJD/ZH/wuToaz94MRgjWvZZeoLaWozuEZdwJxkw3Pq0Ovp63/Y8cZR+q+7AnAsZdXet0kj3GYZ8aQIeMI8kL02gKPDE/8fpsUIjyQdAuCanGvJzQCazw8+H5bszJaoZWy7XaEtYKUJ52pvEfz9TqNFEuQAmNYCs8/3bw5gc0oG+cSHiU2/Ew+OFpwBa9haors/vehHqOv0EZ3S51340YM/hSfCWLYo3BYvh4wrrz3vio246CVDo8qkSFgMYVRG5kH50LbEWdklQvwXSAZA0hi8GSwbMpCFz50aUI5Aykn8e6KKvzAdf7g0e4VyfKJGx5DQzIAKUWq4NKL7H+OptVxEInfvkUMV8RMVBvGNeLTOtqYBbg6EYcpoj/oTfza61vOOLVGp5tB+kfTgO5nZlzbAvfeKas1mMJpt9U1HcVF3b+wd1wJBjx67Bims3QDcd2ueVP2RFiJrKHXbsAqvpYo/bdoORnbRjIBOKD4nMZI0d+ooo4VWEoSVUIQiTN/4qTIb0h7RrIwiS5XJwowJNwKdIYvrRcVU2R36dep5xP3/O/YqHFqHDio26edqBwcj+Ls3nDdvdtwgySkkaHH/GcIb7VKdh0Zl7J1OIN62U1UJ255NCV+Nqxi8Wh6q/oH0jrqjz1N6gQAYBUViFTBCcKzq8Sjfw1nsu0fEe92aL4V7BBGS4UlqWcSRPuAZ0j05pu3BJbOX1nL97liWPk6lGIwJG+tBuUxstXvM/bMl5hQAzQ3gsg6wKTxN9gk7h7kofJ5GOICzwuaUQfmQvzdyJ5oB2Efm+oYqGa/MuuNbhKdBvxDGUo6Fu6SYHX6RCL138yE490Y8MdPnLtM5OWF+kdR74A1jR6l/+P3HycuG7RlgNJ+v4xscp7Y3cyhtRtfhwBWzRU4lEOu2E9zx9xdv+FOIX5lrsAm0j5iIYMZ7BssZ0GvakaZyWLsGopMUv+b4QGuI8kyOx/h2qARxVoYZufehFskhS/Nkp2jAj8hbxTRNI2i6wtjtLnY0Jkr+Myio2meD8qw6gWAARN2IrzMFa9fc0cloKHdlgsSLbBPEm8dVT5X9msiVwYVwgQPrK/zT8BclAJtgUFggxWGZPhZLCEZ79Gwp+BBZFNpx3AuoLyv6g/uQudA8ktEZpT6RiUHW8Pj28He+KX9s/BH1kA13texb3zcqz5dOXqluGif00KuEqSN2B1wTJos9uKo3uBELSVCMDvClyDXIlSc2nuPOZK9m9jU+sLTwnCyyDiNk0SvsaloG7LWbwB1gbJj19Zb1CHOmP0uebxEnEold62QLjJXxSUpXywLrW08hCjrLWTewmk33S8WCmtDTCYy7xhqqd/ER7TO9arxQHZ/nv0RgTxhvGz6ATdTLLs0Ttpwn1kv1gKoaxbv3AghH1Ohm5VOza5bsDjGrG9qag3W9SZkOQKVmGsU2ukAqDELWmlZHQk9VfYInbG8hhGMo/RffAj3ZoTgxx9gFIyi7BnoHqP1zMNGh2LBU3U5Gl+tLf/mSEZ1KoduaypegMi44263T5MkgxkRd7SvSws/C5+ddSV9bgH0b8o9kXWFO/1ofWX5eHAKUwUzxYxKJlx5PSlEoyoBUcU8vkqmR6oCvfMijkS2koLS3AKfVoM3+XnidBlILmiCffh7OcWd99RPhoN4y8vPg3zqOx4oPDZ3mwtFclRaAeDGI8Mn8YK4JmwRkDmoDBT4naB/AkG7PVKAGP81OcoOkKw9o+WepxQjp+ISk7UIjh9OMQvwXVG9f4vXHJ8SJV+u1M+a2GsbH4ivmxoCZGs/8cAfLP7CzlNJW2JeoLUh+Ai0y7padB0/M/QlzyKCP6Fr53GUsTTRyWFiak6Jr06LMDmjnWBezyjJ8tUWQaSGt54LcLsWl5qpPTOKSxnDiPD1TFe7z85Z9GvJakclPXArFEW4vfY+48DkuN+/Z5+nsHzlu8MYzZx1+xDmxfEJ809pcei2h9bODDRPKxvHBWS2UE2gjeG7xiVF/TnYS4KjENSvFtTm6RpgAc4i/hL/QJZurGi8kOSE4z2g2XEJfPfUnXTEsUKo8Eb8qoSeVl7/iq0190DsXxiNqGCoPt+wf+Loq4enF+I1C/cReXobkM3LghOvPD/rTKANEhcJCy8b+tVRWGOl3dxVwgwwR7MmFkVN+YY6B+X1gLHszKkEXFvDkZf6lnxtyQHQUN/TjEUQaFblmY3b5QWLLm9G3dkNr5U3N7PU8C29x/EMls52zL7n4R/LCjWthHRT24Ef4Popdx1GxpRm3PzlwGsHzklYsPDc8PfOqFl/O3BbLEMRBchsZOgyF2NvS133ZyidHYNnk87vVBzATQWjCsWPxvfWiYk7N5biprOBsn7xQORcA38nW3pvZNfQ8aNkMLRT1cGI6VyZis8QrxdeIK2OL40Kn1cZJ/aqUbwDHVW/aiFnDlkCtByR/lSkeuUxgVzQjY3sXYuIo+uMzTTw1xDiP2rLi0bd68FJ2uWOuNudGYEYLYp/sSM4qPNKE7c2ZqRRWFf7e1thZhLL2IDt/InSXWeokQtnIVoN8PU4Uua/WdXjmxAa2alk1HDX4GQOewOVAsMKZ2I3mCEl7xvUNd24UDxIphwqfwMunkz9J/VpiflDHgB22Mtze9t3pcLDFtZ/wWm/TAz/QaTHpPcrgl7FrZGtKFpWUsRHL08Fqtf41gDWl74mQmPb3zWdoKUg+eMdSHgwVabxV/oUDicBdd1RxYtLmfA6d120E3lGev1NVBK3840dvhE7W2Hd3FFyfnRZ8QzyNOfDE5cGWNweJLQYrwl5y3+kZsK6yhLO9mi2in5iKIikEffT16ef6NwI8wRPDdGLnBx83DRc5WE3ZID3E8gKCob09AfizWda44F725FuyzM3o3N1XZdONw1aKGKT+nfTgKdZ/SaLL3+C8eNggRBMUVVsdeDhMgxYhdrIfmg6SaV86B7v6Qv1p25Q5kLpStvr1+foFbKpoPp0Q9Q/U4bnjifUlpPlL0ptTVGeLa3dyzxqGCGOwY087APUo2qK7D0m2bk4eO4LkedXVSYajMwU62+dpXDHu1arHUAoBAcZM1yyA/R0iyL+0SVU01IxmoDP0jnxuJ8Fx7Di1GUn0CE+LUovAGNN2XNvZb5jk71hz5NwQ6HUYOG3v9B6eVtpuTKrbusIrPxbNRga2iSJWZoEeuAn12tA92EDhSWFd6LNabP3fHUGysqvoTjVG2qc42ClAa+sasNgp5C0mIWOb7tqzTUyeq+6a4ETEe5kXboyAXjGDmVUlcUH7c4hu9IPysHb3nsE0pLTiZcyVzQmB40jOb3zaxSw6S8cpp1bk28+qZQFLlWzajD3EBsnrHZQMzpxWedpkGkOYxxZNGgDZNtpAwJs6ikDrFwUL96MvasoHvw9exKYiAvCEQox7lXPo+WV864p6W8CJ4TbxbFnM+o1qho7yeUBfXGpQnI1oGdhkf807DEXB2LXZSjK28hsivFg9KbNFJ4cHPP8aQYLdqbWMUTMnO4GeEhzJPqulmRJDxFAN8+YyYQD0zHGkjoX/tgiqb3pyl9okXRlsO0ttDfrVVmgEZDw0uHnflNmEjQB58/Sl6FihGixW1UjbvUFF2wiD7/B6ylLXwGSRg6DU83hsLAeF6LP4IOYdjdWuvSxDDC9zcy5R9pIhW3OM0Rhl4LN1f78VJBAgoytnOINgaZWnUlB8b8V2wrwoeVk5deD2FK9KyMfAW7D68PPP9RLzM8Ypv3egkxogcXw0VxO/TETvVakJL2xyt69lyFHL46BFdzPy9/fQPJPNzX8FVmDUoM4+Qbd8XNwcA71HC/B2JUSjOVu/lFdZqzj0G9jytZ8VNK+erSyZ6s5iS1macl7/3ieOw0b96CDG3nE/BBBrM/VkqT/wad/9e0qmvl9WY7aRLO/BeQ81TXhunzKq1JQDs3qFMlh4bPXnhjBmZYvyBr+HtQJBBiq70LA6eEiHusbp90IbIAKpoJaxeE+frexL70njijfRHW2hoABZvzl/e9cx/vrbBKG9CtPNWcWAvwANmJQacMwKomo8Na3NR3u1YB6UtcmX3E2twOJVInYW1RqBoNQ8amXnwka+U7OEboPTPRkKR+xOr/qoaNBMLZQJAsqvFwz2jBaTxbWP47cHi7mGh6QuWNUmA0KS9eMPF6FmfL6GXy2icjhcBv6+HzVQvRCwEro9/6tTRnAlcla2mTW5nNn5/z3SXF0UCm94mW8QhhHPl+cA3uKG6zwjuNeIXZ+K5Sxxd8jMfDJ2bFO9zxhp6QTp/OkpeesBO8Yz5WpMSNDX2mCDe6EbiCbTjKN8EbQspESBNt0aSE2d7gcMnl3eD7Zcv6IR4/eWNye6kp/p+Msx0T+fzFKjNgzxsCmbw2IBfA2R1s1cx/7g8j8Vk7u2N6TZYzNP7zlM/ogo4kqo03Sy1iFI1PwYIBjJYM/8DmE26S/nEzwo+w/RofPRJ3dRRiho72RYpa7W2v2kBw7jfit2lQD5Uilj4cCUJgu9syn5KIQsYK1wQ9PK0AzdwT8xof0UJ1B22t/aYITsyFfL/vNQacW3TJG0JzPLYnXWlsM0CyBo5xqT17a0NveoM/ZDPCWWIimKAEt7bDTBFLbtf3MaiGoAyc4VPnsibiTh2j5ZKjbGwci2m7gn4a0ys/7VdUNNSn3BMP1yCQ6I8WXTPUVC1QpDOgDt9kG36m7UZYU40n9ItYHCP4XFbrivMFCm4IaCh5Jf3wRzca5A4bXeqnlemag/OiXJMC/ph8yrYRYIBoqkR4sGYR8txUgvXr1n+zLI5roqLW2CwOEr3ceY6odyjDP95/LDiv6UfTGFbXvj3vgYr166EWHNGFKBze7w5Xq2pSd+0HKTP9FJQggRJkmtEHhVJ+UyAqgFDaRMjxAtFEMnTKevlkhB4aitrKAtkmD34WQbCGI4K7I+n2LVEvyqWoFc4tyXF72vsFBYdmmMNyx+q/DDUxLy/e7I9FXn43g6kGuAVZcbBPZy55iBkFUA+lKCk6M9f2dkK7E03WAjntCKQFSqu2H8FR65f+DZr5PQ0Gsf9UOu5kCObvF5nExKdHhK5Nl71W5qga60/CEsA6fOPFyRo8kCRaxXhJIiJAlkn3TWuJzgXjcDRBCVG2U9awOzXMYuWSWgOF87CsamQFWoKU+eviaZ2ephAxtI86YBoHkdDnZ8t8x+iEGc3jn2SO2ACmL3x8zwIKym1kSuF0RYD5SJQsyNRBy9CaY1NRgNFDBmNy22sq6kz7xNzvrnulJ9vAk8vnOIvkemtUr2+hj4wIFOQXsygej66pI8Co7Mids3YY1yTtjr8FwS9cEIL1uEKFD22sOF3+B8gCuZA3cA4EnZCoGvt79i2K144vxUPxeX/9cf11nN4zek7D+RcvVlRuuOJdSfVu3zFZ+6/vDJn2jygRZfW7Y9M4tK/UqjnptW2vHvRZmGdZdKOi60Zb9X8nIHz+3ZvgqUfefElOAAy0BG9o/4i3JhJ4p0f2zKQ+wIC6JpaZGpeZCbN/8VFvZuLFIMXVpmjcP9xEhsw5zKVKeAx3gKDli2aQqmbcYEVRmUyvlVDcqzvKM7DCTzzkp+PA3yU+9JetO/e2sSY7m9dUpeGAKWyV/kfS55msIM3Thk50WZI03prIh387o3BCobC7g8NwR+/ov4+ziRN/2BRDkSEdW+kFY3ex6sEA9yXAOxRzE0YOytTqUzLTFYy5P6a1iWJDZ8UEoMeAlzdCziBxbpz+SAD6lr9XJ7qtOSxp4bPsPY/MExx63op6OpvImoKtn5q2CE5pC3q+jku+vQkL+iCllQ4IGrRVnICwIl6KVRJiTJe14h1PR4hr901jEKpLFW743zlzJVMLPBWOR5Qeclf4/O0Y3nkZaYhccU8OAj1A0NVGWP4JVc43YZbAvF57b77l64YmV8IJ8eO2I9YB/TMkzkNJtoEW3JbOPtVEbbYWGx5Muibg+essd6dnH5A4XAXX0ahS3bDgb47jat9U2kXhGwCiJlYlcM6dwAg5OEBAKz4oRLgtAXrt/vsc2+NCddZaq6NnOuT/YM74mEy/3AWUfGMCtWLHlXZG+hH0Cr4B8FzkQBXu19cfLjRISHK5opV6hnOh4F/uoMaheEawASHQ/1Ra2LTQTD1sQ02MLpjDSJEGTp7j7I4sU2DBGTNvjF87ggynoolHMJCKPBcpTUClXJaDdc4KTaUsESHyxyQt5lNPTV5Q9R4wrQS85WSae4p8+7X1rCOXRW0xcVbO59QOp8Ag4meOt32Tx9M5G6RRpgDaVZifW9b6BMxNlbcwJ7CoNBLr19th1afM1+Bfs3d+xiaI6qkjSxOKz+ghHnCHOrvMz3faMea7nF6GYTdUeLJA2D7JbTCgdxPPmfTA1+k14GFt0q1jkTXDuWDPKgww3EuRnXMXL+bLYm1Ctosl0eY3fIR4zGSLK7q+zgbPyXsdk4au816ez5zyXC/wpNGrKkmhpksuwCzdQbgw/sDhcfKyCMuTwzktP6YY7L+42pBz0OO2VR0SsBA7CWAVNt68eHs0ucOxa0TVfJvqoxHCyUlxWPK1QfloEFJNiUA2+fjeRfjwkSVFL/Swvy6JOds3R+xvx0EEuNF0W6QmN75BLF3/szz3UImVryphHEQg0o727tvsYtC6jWs1SCBhwnlzIVBpmnSE3TCYCrdSSlSGenP+9PHHUSJ6ZPlX2OST2WydJxeY6/b2U0dD5AxpKzUyJiL+ZOb+KsjM6Vyx4XYjcBKzZRSOeuXJfiyyzKeNQxzZn9K3YK5kcjGJ13D4LCSsxAxXI5q2kEzAn7eg0OBZSbbaXUU3f14m69XP3AdFVR2/8pMiGsVoYvyA/7DP7wkH+bCwbZZZqzjJLcqO3LLkABfUWbnRktt8xEMsD/fTHvF6sKn7uLa02p1shU0ftUSekFQ5jp2+fOBkndANmWw/NXZcexl7EC2bkey/F1NjfeevyCV9Dhuzgxje8bVk4brXXHqEcqxywDgygPU9avoqhIisHtYhbONPCL9h1erTq6UNPuTqPuR77VNo8pPaDMm8j5rT0/JEuvrS4ozLgp921HYe52ES1BaUWrwwzoSgg46hc0R5SUrXK/WaGnqlc8iTQRIV4XybGNHF1ir7Ix2CtnIpxLMzRKoo9zg7NuslMYpHX/bHO6rjwGHCeTvhulCLZn+KVg69iDaPcEudDeXwkXCInbNqtchIVzhfWuoAXnN7ADsx23qIaSo9i06KEnL9z9OxArAvtmiw6vDVo/n4kE0p+R4jCMNYxGENjITLY0h17Aa2E+PcqNa7kWzHFdxsGp7IH/o9sTXsHLIXzEG/FmGcGaJdCi8uKkAu2x3zOe7X7jOONTAi+HO+Yl8sd25MX5p+9wUgNu2uPM2aZQ7yQ8Tw9BFHzfnWfJj3zxwR7aMkW+1Eny5+bUz/bzLZQl4mhWhyuZskMrP3bmv3GN+Ef7gNFlJOxlsLhJmVZ7U4/RQze5f/qHo9wuBN7U0wJsOsE+s2YV0HY/VNn8m8eSuG3oeR+iG4S06C2Mn9cPAfVjoUICibpx071nz1PcMbOQ4W9az1rawvqIswS1uhuyi+tPf7V9gAXhpgr6ho+OTyQKpo/hupcgdlfxBa84daDLJaL3vTPVVlSntS++nplXwF9qCrhuLYZ2+Rzb9+FV/hP7cSeWCfIC/YmrEf+gdJwEECg5PX9GTVkrvNtDjk/XmqvxGU55CXtFwKEmjVmKVyWgJll925LvvR26rMvhw4Lb+s69+zHIHh/fP0E6TvRk5ANkUFzdPmo9GlUV0VHLNru8W1BmiFiY0WROYn6d6h9KWxDb0SYB/v1eC1dbnXKxnq7YnmFyU2IBl0CJ4+2sSJd1pdbPseVx43r6gIOT+9kUfszBQwIGwajvbuqkoXWD5HKNtfQouHOOZh29F64IGDRyu+K1lDhPScbRdzmiUpZSz6ZegvvlIKecxAWCYWieDHw8hJIvJ2HbdzjQoRZGc4tEjIeqwDlANpw0kamousykaGcv3AXBXtm7QujEjYQPJW27DGMJMJ6YYZHRSFiijI5W+mxgq26q8tx/7kWnGM+CH2jEhTu3bOR7BZHd4MKoYJtYUz0V26nphBQ0YVyRxQmewrrpVqUJcu73uUNIec42Mjb6k9nSJ79EcgSDPOQbRrVxhi/pR189kYTko01daQxpnLYTEC+sYcU+ZTZYXhd56kj5ehtl5WcYfdox90JcF+3PRe/ydiowErroLv9sPiAazyRBKpRWNcE7DCsCeMUbeVE391a1ktiApcPsbxVyhryG+5s4r7fTds7qyHFU8l+ir8XsztlFA1dGGsKPsJlbhn6U4KVA5M3O5Zp5tsgsJUU37EspkYtlDRZ54GcGmABIuUVH5fZzZTBX68sWHGl28w8TI49S3NcKGD68cQVSf4QZSd76JHbYw2QgR7N1n6IQlswACgVkaimT31HFWcSDwiRbAN1jVQsp8duIq1aoFWiLu7YevmNX5xhqjFt9QmNuxXN/9TXV66GAVUfiIaZargqxCn28nuMnzI3lRDbddFo3pscEhhTT6cmL3RY6pRxvnuXl+RREhDt6P0+8VcXM1PXx9XB3rqlvN/igC+PSiMrvxZzT/1/E/nY2bcyAodceKopGO9I5L3Z+OUbGk9JoqVBt508JAoAZuceHDPLpGAjxYAZ8uIHN7DuOMG3C+75tu/cJHunFnfaFKsIC8FISgyPYMmz/z75w1Nz7gRkRngiGf1qMw2lRnf8XD3v2BWGSGuSrZp0MoBdOwdrhrtCLbfwt3n+hoWE/r8m2PAafQDUR706A4S2dbM9BWBoFyPAD1ipNrJubzMvoilTBmzaRKx34Wc6GZkULd+/7PH8z6PUCgmgLAD0rlYCGDVCgOu+5rI0o7FKrfsLb9p4HrPMHRXCs8akrTmXqHWGvEIJg4P34Nw6hG0pxWtwFgmKocvRT5+Lt+cLymx9eFjk061K3zZq0vY1WUTlOvpbrogbH5NSNOXjZnr5zR6eFkeAWm6WEOEbW1XyC3pZT+w4rzLZqbIrVvYiO3CuAWaxYWBGcco77Ggv4qUQCN8gEvKknk4oDQz1r7DgWbRb/nmAuwvi+TmIwyZfyxPkCfMSlwumKLTx7J23rBYux1Nip7+scN/zSUjjJs+KO7dp8aYJv5+WlFayTLHnScKDRNGq5v7Q7k3pkTvJBLlblmOYOQhDMdylZ0MgjJ3tz5MIkrXJFlS784WRrdHeGPR1f2ZmlN5Um6RrOIBpttSQeAyWqKHDL007wC6f1Q4GKalvDORPj5PkhV0RJvxG6bmi4HBKsgB3r7OaDsAVH1D+GmyanDAJpN5PwhE9IITMSjIKzUMOfbp94eFJtrvupHt68lmCp6N1sAbRTtqoSXxbQ44dTRRLQyRJ9oF055PLl4mWwt6HKyVgq2AK5x6KOXnU1vmJ0DEcNrqyvQEwKTsB+jlsDHM5XuhO5XeVgJasszYbY1/oZgPcz3+96jvoudV+6ZlTPA5+S92A/bNinUwzGMpTQd8ckyil7Jg80NsX2zxAqCXZSsyl7+WGk4nC/b8xnYiKP5PDVrQp0GtD1VU+ahtf7ph93NWH/e1MExYKn4BQbArPQGJ/a4YubzFkVu9ROO8hoV9XUkxB9qTyUKjFWkCLyinOm1R1j99IBXO7pTCwQYTvNzQdgkUiP/F1jWBbatbKaSzvNUz/wZnHG+QIIGZa9FRSKc4IJJjLTdt+AKVknRWKrLAwNqdctUq4WNRzrPM513Y9N3o8vZa+TD33dfyiUEKJMREZCKfcuGlULD950g+Cu/Wmdmv+wM6I+JSGLq1UqE410/KcGxQBGxLBcSVFKfwwzNJmQCDHoYASVki2jvSrre8S+MiDGTzNWyDwKZUoPL11iMC0tIN8jzUnpcROqT3PeLv36zt4HMuaj+kThx7mvbu/7CGqDSJSyV0TT2x91/O+0/JIca9dsrLAiDvXHu0/kOIMS7flxXtCDI7ZPa+8iX1R5Lr9D6MiF2JExNy2Ko4NCfMQSE49l5mlhEmdJ5x/RHr34b9sELJh+seip+kdN9G4WEaymJ9feP1phPPC1s75YUooee3xhON6FnkCk404pv/N2suCY5Ag31Ewi2V1DxqbcAUNZp7bPDc1ALTEwQBs0R5RntVmo58MnRB9V2XwtPLciENlz5mQAJ/xRgNjE6/5L6S0PVEsypEO/eeP9DdgIz5fRdr0k2rd38q4F5P/Do8T91nDbrBf6k5PREbCFO32aZnHwaSCBJWa9SoDlOiGUb26ApKaLepwEq0T723WyGhQKytJVe69CEJ6o/vR9LJJA5F7rD8mGtnWsUPiBCDE7giJnt2fX3QuqJRiV+ag2mBoPHs7y1he7tvix9wMgamYi95yGsF5LfKWUc3m9yRYfbs1Q3SJJ/LqteB6Lwf/vuF3ZwvW1Xnypb/QFwoKItwTOYJwCj/Zfjv8jRvzHdGDVPKGbgb8mVmHX0nsRNYyBUtEw6+E2nitItWirRjryXW6vVu2OCyfjwdD58ycdjPUnUMVDvQaocBx5XtND+RnyZxVNjr/WtlRFN3X2TOaoADm0IEnWHczRoI6GbRp+vOataRhOrRDcO8tCnK6M9HasITy3pI2Gix9bJghVvTc4SSWeRBLFwX/4WDWr+8cBkk46b2HJRm0++2FCzukTUc0Rou2OoBGCYjGwCSLpTvbTTN3ikaGVrkJh3C6XZbppMSayA1n0T+9h4J6Ny2vwGRSCMltVyYoSrhrcrrOKbXrnJHHjwjKAMgOqCXloF7an3oNtShIzAhrnEzxRqqRaytzFxavl10ctuzpyj6iKmSLSfOqiv3TKZdxQGLeYIN/QmfHei2+CD4p3a5JY26IHg9X+xARmdi+3js8/WHPIMLZtMrlxSNZrXxpensYHMWS3wYg5QP8tP+9c9xEUuN/CLT2/0gaRQWrO8eVb8hpbXaN5L0gqT6KNTnd46XKRY21LL5RlhHgLqe+Yfq3aTFhSy2XsD6YRvl/TRZiqM6x6drauFDXClhCN1xJsjMeP0sp67ZKyyMQfR0tZ9O837y9xN633/t4DqYUp0YG9lRpYaivfIe5dqHDCkOYlF/UQj+PArpugvsHVG4QV24lVJGYEcko0C/0GI6EXHgPte6fLTmlxR3PyBVDGwpqGaUHUun5Mwj27FZ2MSUeXfUWL8OGGyevcjjTNlnDduQ3CQczAzBWP61yAFYRc+HpWugszuMujPk0rEZdLfusdMqPV6FOCvCtcZbdhBECc5ONpDB7A8AFV+HdHg2yw9Yx/ALsldIwMntPoO7RUdxii1au2kTfqCog/VxenVsJ358oGhMGWi3VKpiyJlpaNX7V2oh0QzcHJL0oAbJqeMZA/831teBF1pgDQ+ouaB/eI31DvshDgb+8Y05in2LlHn6Pl1Khya73heo5zncN7r3RQ3xNUlj+pAaY6NVNNG8qVaxna8pVcCuionFZCrsg/zR26dNNhG/8YhYyKcUUg4K/lFosfz1p1s8lgBvIs7LmQWnteFZ66R/wWpGA3Z6DRY9VfMexHo8MW/2f3sQ/3mxTRMW7+QJRa0teuF08aQxSQbO+tAr6roRjqMyilmav4ja+79htLeglHFyrqht99XRd9L00RMACqFY6SzNrfvdp09RNm8bFNohEN5oiLoeNC0yAXhMyv3AeSkW13pDnDm2eBtA8IRiogwzooxP6Z5MyHMBpk8u9GYR/P/TFRJmf7fH0xuA5jFS5pRhqe2x3bdAIHmGGZBJmDvYjQ5FRRzl5/+2hDhsOWL9W4MHGFSmuQkmsfhYkCRrfce2UXbjr7xiO4sj6BJrZvBFdGoyiiFMydkfl9f1QToSCPUVB9yIgFKQethDAfnj2fz6xuppq7glSZ0ZjWkBwR6xn/PlX/S6fm1goOMeV2ZaJ4QctBt5PkclhQ+Hp7zTvEqooR2M1aIRJ4IAqHXQS0LWOdZyE29kQiz49w39cRHZ/jb4UBaXB4bOHu5GY3zhGrmMqv1Ywo21grX2/J6tgRR1oKWAaOHkQpe+9bWdGiWxz908pm6sZSxQMMF/s7T5O5KSEhjU95H8zHKOXIYPkQzhwfvFWWDHsiIK0br/a3XZ0qw3EMWiG0ZduotBXVsPgn0qLcjDK6NXrzh3KXTt1kL00QXJLxryYcPo4H4iCpuMJx3yEcoiwyHv9Rt2SSn6Rk+rrv6XmpREm22tRS2VZYH0R2nSqzG/E4gYec9c9E39K/gV+pwcbjh+URDLw498FysLaAp83fQoDA+BwGWcj09XHkrkoWi/WmO/exG5YdM6MzMikmwk2DY4Js/Ei2CLqW2cNlUSkPYQX806W7QTce5rqjXcYKbsvDtmAhc46MTQYp9VAka7SbJHF3yT0ML2Mssm6PzK/itbkTx9VmQ/CqnVqjMNfNobD31P5VIVV9gAKlrKhBHdl/IT3F9CjvuQqIXFHQZ/x7Sb7yNNNvrFzkX3zZk+adIG3EnSaWMcosOkgl22edJ+FWu0USvZ+JDGoEvw7orxEciUW6rY8R4wQhss0ggdNepWuIF2XulrBHp52J/SZR/99hDmm/Tos3W4FX4Di/Gh+rDQ3PvwePpFLm06qkIpUdks3DmIDalBNtrVMPxOgjHf20DLO8+cFzBD0Jl3pz0lyMILpGFnblSuygq8+XfIKZ400UBZg/xVr2+PWn12VGt+KjZ6lTkQtci6AILkbS0a1LlR+bf9/Nm6u7p+aLOw2dpW7lZOsrkZmw0vy8cFT0Ev59S/mqS3l10SsO8/9WfSpAE0DSd01kB7vcZF8liqVBneomqBQ5XvMQGFQ0xAOCbog1PobhqDXCDzXDL4Zad4s0RI2sNu7DZsABiTJOTqT6c16HtZ/lHu3mkkws4t9Gz/PvodRu6t/Vo6EFbsJEkk/oV4AIXZjy6JyUKFtGfe7dUpva4yJUx/To1vtTJqmuSnK4CI4Iihkd+Dr/EvXRYeNDbn7+CHyK+PW5C1zIZegiIVKHjJBOdH7QR7ZVUF4eLRX7xoYZkLJjTUnw24y3rSmIqs9oqx2Vf3N2T+EAJeGHWsrv2kCPe31XOHf50MvBpH8oV8oM3h64v9iLQbeezfHHmZg3LPSPh7bRkKpUmnMhmGkZ11wwPgHrnK8tHMZ7/nVvbPNUrf86UgR4B6B6S5b+9NMYRSitawIHER0u4tAHiXc309MlAxkGLMNU1G5dttGfuNTA+y5N3+9fmEgF1XccBq2MY3R4KytJrOcRPnuNMj99KB+54VvgcviR8BW83iXMEA+/8FfH/KMU+Ei29TptD6Jml5eWaXALEatvK2cilDZCjnbquvi4ExMx1zVlwFyu6mG65wDS0X9d+JP+Aw9MiO76sni8QiZFx4xWkR1plI9TrE1QLeWQ3W9l7guqELLSD5SQUKAsiXX3/mAM3geCqsZGMr0EMgsQkg6YNgB4mYCx7d4JH4Rl/wqyHesbBTAc2DiVHv+1grgxZlUieguOdzuJ7pBelyddz5nAvJuP7S9EGLw41HFFMTUYqVCjxC4HHYxHy3JlTv3qL6db4MxaI5vQNT6She+UIJtmTqVtIIITmR+fNnJP0Kot0I7Ii+MP872xBqw67NfB/KMdrKekTOWfHj2A109JKnaQJUiykSl/L/m3qla2u0HO90AvQN6fY9I5DeahglYgiXZBz393dPhs68GFGj2snK3MmZYBSvhvcKPGwTLBLRk3V2xHc2yULsQHdT/yDLYSTwwx9nSCE76UjelbijpTxO5UMFRi7N7KAymcs9NkvPpQBfNtHIDsNi5fHKZ1EESbCTj5sNKevtdaHreRXysuMAg9WHkFjI5YbK1Xbrf7QNeDOLf67bJcMJWt09EkhonTV8/FNNbjwSOiTBIxC9SWJiQ0OZ4AGRyPW37xEJJ4xdoQDz98EA1G7leSU8KeHOBnf23ExzZx/C1KLtAeYaVtYnEGFjZy/ZhHC8EBv2OwVrJr/EYebkivVtyQlDOmdiHIyMuRi+9wDpFOmRebi5zKWNXWtFIZncTLn6/xvHBmbdwBcfAPUmYzhZX6ZsP6eBnzZhOkdXQabJUIm1bDO+8HBEwDBgu9TXaEI0/i0NjHl+0aj8d1gLKO7d1556KWbX/Mzy46FjDp/T6XF4P4vLuD2RFcYQO9tztwOtx30aBolH0mHu0ViF7iCgdUsoPDg1lZ0OSj/OsfAnSZSxQZZMS7En4eXFYk4feoHlS1Pg3bQJyuV+eVggu3qt6uBeVd6XUfGqI9wMwj50FPiFYo2SZDnSjEDnUienJh/iw0ME8IG/rog819OoTu14rQZ2bQ8FqGAwwPblKvfAA/oDyUk4XRzRTKpEug4wIruBtmsZhCVBPO2aMZR/HCsMuLpp0Hzx4Bi/zr7Nw1MOqu5XYZLkqCldm1f92CaTJzQ1Clx+H8+dRN0DMnGz9/iFmxK4r8dzf+odhmgz1DVJZ0KLKsqrhngRcqPcH6sXen4VqHqo2B95+nEhVRS4RdOddqALtxWHwlWH+bW1OWdUf2n5WZfn76ypFpyigTJUzaFD/X47uPKsS5gS1eL9fMY5BgAI3NGDeScgQ2adk8UTsHWR7CT0rbQzg6/7/Vvb32FoHSD/WWahtNnFIFFp58mfG8x4qubtxh/vUNMnYglCmEXb6kdZIhV1GctStioImrkHsfibuxNPyn0khbDpyZt7whygPcOCw4jNzq+V1Po2zD02LGoFDIwxW/PEjBXum7z7ppjt3gs8vbXm0uvK8B+/ojP8cxhVUQT1/DylJuHZvhZSvDIuUpHtVhUDzIuLjmhJg47FrglMTdudrkbK3nHszj3ptqFQxZ11tXeGgkvjjf4uh1ahkq7jZ2K3o5SS9QgNnYSJuLZJqGxYl+nCAjbUHVnzjYuziAjchUYRdkhHBjIsSZLijrKCen52hrEVXdfcaS/cLgv8TL4ENNx080BXpo09zfRpr9xYHt8HCR0/IrpSw9rSd10WtK7eZEa8pfR2gLu0OhOYcgE+A15WB+T+bDkksqSpqfaPAMd+tHJtFcXjzazVxR3YOLQDQyNIiBL0S8L4PG6YSPz3itMmyp/2+3IswYdnGBV/nouqd6yU3akRYAHtg+s8YgQlwq7ciCMCl5Yea34A1npwNtq7+aD2P0funAwOulOx4OwXJ9V0DCYgPYSj37hFBr6jDf11NxfbfRFuE8wPilGf68wRAt/ZpcGgXm7V3Eq1T9PQODhj8VxJfroswYVZcjiCmVTIl3YA3SkamOBRnbYNZPNOB+lH4ZcqHsXndBzXt7la+HDlWsC05rWU9Iwm8Z++lZSfl2Lpw/2w7pvGDwjaZLk/QxPDYhbbsXDpS2n8w2PRdSXCr3LqNomm3wdM9VppbepG8/0MQPaGbjfSt6sjZosFCoCSopaZ6Fkt53IyG867u6ax8Nuc/y5YZJSum3FPPLxF+ICIh0AjgOrXW4yyQ1MfmUxpdAifwPjR8/iVPOSqXhqrtY1q7EpbbAU2hD//3Tr+YUipjrUSlUQHLfCBW0U9/l79muisXsosTyqzjD7v4OLQqi5W3IpqciMxePzJBiKZ+mEzqUvX/2nFmPHa3qkA3VLKkVBSKeGzwIC6IMygniprbZG51sEPeK+Hk8zoPmOlKU9QkvkGOBepPiabH6qrwLQRurv9RN8xcMSs8yaxEVz+Di3g2cdRCEDrvHReBP6wC4Wuia6FLFc0/bHbGsvA1uo6quQM0rI5pz8oxHYLR9Qpn43XdgN/6wyRhErA/VuY02naeA6kmQBjmAzkfgZg0rRCFpoMK2rz2YT1u8y6BVN1Za8v3/abDxEbpLZbjl+j8Jk1Y4MALovdkjGkwbz/fNs+Y24rIMqSI80lGyP1ddXNSqY+IMtCdZYJU/ewOrreTEhKX4TJ0uH7JVh0bBLSeBUoX3DaEMaZGEQrixMMZMb3Bz01qnQO2oOcl2fqo61FET4fhrpu9dbYdy+zf3u+VorV51JAdVQOLXC8XOjnTN04aiapMkIZSI/hslmth4RCUEsLiMLlG5xbt59P9UZr5ehLfVBwlXKoOt/yZ+t0cYDSkq/uEssJ/94kVShmasM8p8h9jFHNouQzK7okCOVvg6NLvJG7nsQ69J3HUaeg2kMOqudklVXYjJuoc4uS0SZO8o2FOc66H6zkBJMcS2jMhN06UBXItqxGmTPYna372lodkus/BgVCri84fmV9619p7zoz6se7xdvSDgZb0CR4UwjbjratCj9NirJVnAMHxHTwBdY61XSGnGuyxDXBbC880DC2+2KaFykjK728h6rsRQfkB6TYw6/68chfN43cFb0rAsI1aCQYjntqRePgErsdV43x0eVzvYZtG/3lC0jLW67AlbUUFtlbVCTcM9PJnhrqtdmBWMhS98Z3w4Ei9K81Lo41Gm0nEnGv7/n/IrvRKJq0g23XFEgE+KAL3/CBirbA4DAmSEHgW1iX6PyjpIeVTxJf1U63ykGpHxA/HsBEj87Mg1sLs9PkmSSmSZEmR+UL486FVfXh2uUVYf1bLD9d2WKim7GUkLC4LT7AtZrZjcJ1Un6L/MLRcm2/oU1anQHesxJuqkKZswmWxWN+LuCHnvm5/az1sF5Jz63opf0Db1qOEp0gZNROBzoAgpuS7I8WQxYpdPWN0SBb9AebKfNxjTo7lSQa2/TvHwm3sfd2OOeyNtsnR0VqKqQ2Dy8XIIN1nbbmBdo8bNCaR2ZVT0+YR0uWOeQAUvzmZtpkUiNGoyX1ddpkvMNjMIjbhKc4/Gt+8cWMcVnJ4V4weLjt4DUSmDNpqRmOegk/4EFMrrMEBlWSrakFUn6YI7jKPEmdQJbPexIVMQGlewKcdH4C7udHBPkgjUs/HQKig+YzDUI2LDUUo91m2gsuwz56xC9Nh6xPU+euJS1cvUvDfl80WgzjN2Nc7vnUUCcwsNQ+KzFoa8mLeXpPh1JZ5cmRKx3Mp8BKJ2XL8WI55iZZVPYEC12qR389yQzOurrjEGj6sXeGVOr+crOUaS/RsJwdgZ+gHB/lbSK8lGRFydspkLhvrC3O5BSyT48tsyXn2hv5tvjVSs9g64B7jn8nY+IANFuycyMcPf/GSvDCIcd6bK9aMy6LKf6EuShn3rdW5czePL1qa4pW2zufMTpYoEuiSxOCjAmYUAcQ6N3QvPS+wNphqNvjOqp099/oSaaRNqR+GZeBvXGB9/3/PktGoLJNaaVfNwXK1bWIbCvUAljJPRmsxuDx7h2BXJsl/4J6UdJuHkIvJQEQHzayuMfq6RIuVEb84CYW3ZoitgQgpyiYKA8MROzSSp30dYRbqwqiZN9S0gAj7Mpfba6kRiMo5NJhARm5tQ8EVXjhgLm5ro7PxhjsN1kSNBiKot2eEmnQcidPyN7ZGlsLW/yCPIN42WyFZ5E68pW1kgIgok/D9hsBkxkHgFZEcpfIboiWlM7TozBHDcntzQBzufwGx4mZMXAQurgJRZRljQOtFDwr1o8oKiws/ewJ6lZn9sItHmnG8TuM4wOy/IsZyf/O50FKyiLbaC6WmWF2TRQzknW9k3z7G0FkkunBun9m5wE4zxLdmS6GdTVmmzfYzKWkNlLdYzuFM92gzgdNEPkUKV1lu+w4rEHH6ARfmOl4JKrHtbmyFBeB49EsG4MB8234Y2yL7Xc/hEGbehrqPdHZBDXjXqa4WAJ3ByOA3ZuoJKJbQDA2H/bFUOUl+BqXwZW0ouzxoYZM1jrUig6fWkAAYCS9q1ZVlnShQ+s2sQuZct/Ztasb7jmCM9Y/G/bI1XYSdCo1T4bp2IV5fsexF19DtBnBfDRWC1CAd2u0GI8wy+UJnnFN7PXPFVtwEFmJXpJcHvtpBZ3GxHVOkjLbf7n5jPLSZjjUHv6EgYLcSZFpmEFgNDQgKWYeGG14KEhOSBAYj5qKxI1kPK9ZyZHWForwIMZRn6uO03lRv/71ELnbFrvDHCwb152x8BAHtpEUzO+Bl7tybbUhdNOneeEyP68PbApWqGq2s/bXlL99lTgRZXte2SeqX1ubzsl+815DO0lzuWLaKkrwc/voh1rPvGDslO7NOWQfGH2yw0m4Mu0JgpYHugNXc4xODsh0/aRDfLe61w1XfW6L/Kt9af2pmZz8w1fsWcubol5LDQXXQhaGt28cHvyeiVUZXfzs2yotQQZu5ZEWLdBunDtONJfUO9GCA46PiiXFk1qDJ79BlFUaHD4gmwCjCoHBfXcA10NLY+ks5cx9Jj5/4eyuqjkCVHu0Yip9ST17B1fVxmXapgZRFRicsIYnjmBht0jBUga3T72umCRbe1Z1MSmwfm2rHjW72gfwhSEdpsk5toSUv15sGcS3dXe+kg91Wqh47pEXAoyJtKZKALz9cxDU6ZB/RvKxbmgC20bzG4PqVuGmZyFuwDXtzkJCFJh7n90WINRrM8qstTUrfRJ3/4nlcgo34/G4dCUlk3Jsx4aYdTRnSTXJSz1lyPbH+um59sgnZ2pO7EgxEVntAqy2i5+O7Wa8AXO+6ybKcqJT6oT2+/qod/PnDGII8KzQm5gKvsti8BIS9OeVG8l1MxJ66DKchd/x4CJO/SAxSi8btWgcPSeGXbHXDzYpi7jLYiyynWiSifjAul3zsiPLpmjOVrpAol0pQNfAXEgooXd/z8f9BICnRSdJhyjhb56HtmSbLSBVJ9RRPf0FSWipBAja1mtAEdayAPSmartxzm+RYc9Lpz1dcAMwY4Md/1Jil2oBz837TTRKtYQl6hg2w5NQax5pflHat+GASr9mZfIwhsAEsv5xZvdV/dnBvNVc7H4oJ9ljgPQpsaUgsE5xteqrymXAh7pTLPRcXjd6FZzyTrJizLpXoBiXrEoJhfil1E/egoIsZdXWhWiuuqEr1qgs3K94QrIhyIL8f7KVzQf62k63X6kaaTGud/bo1JHxhUN2ar6lloQGPpNo0NzbiU4L59VHNE5ihsdlqJ9gdlvYfdiLo87wCrG21UBiQQqxBNPYEzsuBbZbF8NcVcwmh+WFTBRbVE+rTlE/ZnYeFzlVUQab/ywZ3Iccnh0/vrci7eK+fkcfwtIHTyIFwHlLRAofzxFvZ2e1wUj1xl+WqO5Ui12PQ4YEAj8rqSQsZwXR1jY1KxhyE1pc0jHEZuHhkfXFKAjpnsDE38q5EvImKVdsg+yJimam6ydTEB3eiviAZWGp5+ddeEqfXWBioNk6CysswFPXCEUOJH98tFpWgag3PtNptcJHevbP0bAJVxGXRmAza+bmxvL3A7B6PqnH/HRCT/kdQHMJqVo5wSRv+ywWzZqqeniRhxzzYhodmrQwvtlKCvU7PxATXVJqbTISUTZFkJffgvrpXnA/kno5m9fnK7nV67d8K1TQb7WRXLWZE0c64PYdd5eOjrZVYBg506a2MHBunsxmRrOxOTpMIwIdRtKTBURslFOlKQHuMHZl7TrCxQwxFGPEhilPF+kraaShckfxksdv6e+EyxBU4jdpk3dnWMRzQ3bH/0YeMHCknXEt3BziyNqSQHe5DblBJ+bV+MVTK9mVSe9ueofNzaHSrAV/mu7eDB7ulns609vNGDLoKD61URsfSxsewHcW47CX5Si4PfOfOakCwYdlg/iwCI34lTO+UfFzWODeBLmhsyPNWidYWnrh7jzvMyeIijaTlkDqJNLnlVVWmix1bgK4hwCkpftoEeNJJjUoeMsK6cmOeg0OqUMq76u+++rDExd5lKuRxryS1EM2TFvxGrNwbMFP9B92eDdOJsAprtUifQFquSViDocoTK+iKxkvmcFe985OZ17j99uOqp1uUzbFKSDaa3dmjCzvCEiFoS09FJggv6wdUa+5jS6E9qs9eYk+kddrMexLh6Qap1ad0VDqzLEFqJ8MyWck2/3GVmIv4BYba/1sZmbXVJaphGXrSCZLI7BotqXOGCGdU4Z3SDMp0gm4r9Y5fwBFJDUF8kzR9Sy8nC0bSB+hfv0npN02L+fyoQYPZ0y54uJ3awz5U7TQtqeyVlEmECEvOdxn6jTbLkVqBcHg5sm2lST7W6bUs97gVEwKl/PFtOqEjq4BIoTgXeDh84iKkN0Kg0rMIj4+35SLDExGqJ9rjqP2aVTdCwSVRLj0bMmGSX3lFlRadUvKqNQ9JyVGl5cu4sQt08mf9UXFR4JPWdZ87OfPSlxdH8RYLVE6tMwVQ69LSVss7rX/6VT6fZ9/pczOi1KJ8vsn1m5p3aZo9eiGooMMQuFMPws9Ufl1qHfQHdfwULQ0cqXrufTeoLWTizdZrkzVI8Ttm95dozo6EcIwT7RemPGlrjhx6ouUMKTpbzM0TC871pQBkKLsad/7lavlvO6RtAY99Cr+E4KuKO9+veei7cen6nFLmKMdu6/cG+dIwm1JUtlGeC8HNvlt6+WolpPiX4fS3mSvrCZ5Lq5Jcht0SX8fpVbEp0STTFjtXy9VtVvtjBZt8b9w5IQuC0FMLeY22+InS5+9LB3uomu1lQPT7yLy3E/3W5TWnaxPycqZhkhz3IUD4Vbg59ra8iVi7oX29yOs4yaQ+weivW6Zu/WKJL57C0FXcCjbV/1lA6XpfGiLI9oMdbamG5uA8SkmTZIhpx0S1A7eMV9qf9L75A7ozC+sjm5YvucA8CUWImpQ+siL6SZyPGnYZ0eEq1AxH0hyFQBtICToH7DXsLd/EE1ckPtgf6MBmVFH1DqQto7Vnwq5zSmPGxoMCognl6vcWbhYn2xSx7tizb1ncvKVfgqlmpQn4AfMxVaYn6d8RJH9BGIp3Li7Ql4pcg0ndL9POimh8xJVgsziwQVAd+7SfK21GPoBEmZLBR3OKwYsghGmDmUk6rZvcj6ial1S56Wh6LAPkFMpU9yv98F5mXjnYd1EDEvEAZAtuvRp/ZPvZBIojhDCcRx7ME/WcuN6k64qT+1HrCIq1m2SGxfNa1hz1L1aCeCGBXKjFOqZEqZkg4dMypcy5CCrorugEoCG+YsK+YDJd94FaDv5Zokrj9YqnHKdLDCODlO8XrlweDa7mfxwC9gy8bmnzalu6SV33e1EM8lsJ+Os+uNYgQ5RKeGndDOnwAL3HVQF1BPs3PJqeaNX+B8NQTL0QcOmsdcKS6Gl29eLR42nm0S7T/aWH5ayb5Csie6wMpiBV6l69lQ9pxWvTpZvYlfy1ZI6IsMRbHkOmoh0QZnQYETcuAPuU2hI432Ns8YDyDoOksbamOBQ8qnbc2ZmOPcZaX22iHQfCzvAERV1aq+Gk+7DlAeBrgy+uE6bn23l0K5c+35jU9PY5LAg/v+PCCE2RGENNoVE5d74o9Wn+8hAZomj15IBB8NvBboe1DCL1A9TE17Rt8l9o4E8Guq7ymAuZjCbgQmi+5aetH625vj6jOkksOexXTUq0rZMzB/wouUMT/4zYTUZPCYgnLnhON5l6yJ2D3tH4+Xd7nKTzfd0jRChmarOkOfNei24zZHkwd8QrXzB/7gc0ImpCi2SxWmlmQYFNZD3vtdPoTgIkDarqdWYuq4wiNAj9G4QKdpz5mxQ+U15mDJ6n/Uryvh5K8IbmSsv3RrfR6I0dvjHPORJIkcT5o9bShUR8mWzX5UvTMIGJkQM5ZgxTnZ4US6T4PjIq1Js/sTAQwr01xgKI2ryVKLoWOKnlaTKtyABObKuwqY5KngfWi4GpgGZKJFoBAk6OQu3yJUaTHtXHhXXo+J6KoSz8J8X1C5Xh5MnrJVTbLdMzklgrLycLfV8eZJB+hrkvfOLGl+ZhSm2STwzCF4sMoNxbXdzVCSO6zca4zp2VY2Ew5/1VEfY6r4h/C/sHPgXGdTn6kWi7k2oKRCfx1qsfM4tcBtBWMSKyRCxRe0/iFMZ1RcKUt7IEIXayy4iyK9r0ykcli7wZjy3HtWweIqG8O3Mxx/WlbmkZIeFLSjB0g6744sjWAtCpZT67LO5TibMLLieioVuxx5P4Uqhw7FECQcUBj9Cm85FeLu+Si/T8p3n7taJakSZC8UrfiB343lfXRg1c6z4OuqAkva3CD8z60SscqFiibAWOmXrhsOiuKZqM3fWTOddgdAAanWovJ4WJ6Y4FEWbf3WfWcj7nYfVRcUl09kgFOmcxPLfrIIeBfb+AeYHqNNsd1b/BYOpw/fNIXiEcb+jpolLQOaLLGbFZQ1dFEqY9GkWkV24HOQ1Yy99ub9PmDX3PsdODYMB09XFWEKUMAZ+gSaZ8oOqq8eUuOJDOu0+AgJfYwB1pNNSFiMgZ00dj7CeMb4HTlOMu6BQgggpr6iRvrHMsefFVVbOLY8nxE94/MSDQu/1UwRqR6igJ0EPhcXcG19nN9vbkpSKZPaYOkofqah5NhvykoYcDKTmxt/mhgyGjnl/kml6Efg/Xrs3UnC9FFGxcYY4ABuddaaMEyYEDifrDoQB8yD4kW83+Ek0nLXfJnPdWIIZ6BOM7N0OnXOle0lOT9qN7VRWWS4zersoya+4oRCukSeilq3orJvHVqcCZ6LhS0UEkqWT4FIpIQi5B5bZNaSb8j/nRlw6yXy+XJ4zch4sFDyPZnrNo7rFg9QZT3BTXVDsE1Dx1n30qfv2gMFZjJiI7+rkKuf+pNggeHo9tNImVae93jNrls5JN/hhwlRcwq1RPafMvAXP37rhVD8f/b7MiBPknj2SkyevtdUDOUEj8CBUvjGhYSZDDfkV3+Zwmf/s2yqdeZih5PnSY58tzCSfPas1oT5NxabACplsY5151iCTVI0FsczbV7RHm71drotSB6A54SbvIHJQV1GPlXA13p6kwZ8frS41ORsUieBaMRfXgqw/ZAzNEehDEC+2erZVG44N+FU8XIEVRNImkFqFaNdwbXnKHpTTvAjiy6L7v37tpva8M11aB5Npcn3GgaT0Ab9zpoOFmhX2NAWF5S4SuiKAWvk7LUPMBD9bR8UdoyUSkfYSf5UShW7KuuBSxqnCyL1iD1a+yJv+7l0zFLR2VUgL3ktL+j2GuorpirGXYwPMIlI7sJw24AakvQUxdI0ZrHD5rNVJhDQwa+2p7yfzey/VVNS4UBosuydeKAhvJitUi/yKfiktOchCrQ03FYnJaLqX9K5aec9KAbSmTiFYV9fjL2QafEOzAlnd9lfi87L2dXYJ+gZTrM7S5+s6ueqFYi9J+Ch78KiaB7V5PPe/0Rpj0ijtjD6MOAoelbM6L7V0QO16LlDXk+KbV9pZxOsgekS/W04ghY/Vmq1tziv1PwV5POJ2M1MvT4umU2qjlS8jrJLnPck3H0HzQ9U6O3Gb049xtXiKVMAzxxGeWM4NCy1rojFMaJAJWd6CiBMRjzZYd6Mw3kym3hEOEjOMCX3UlKErKcVzPTy8Okx8BD1XKbky02s1ttsBItc1UuD57zs4pahJsef7lzYvt55Mg+x4vg2yTdQfnlE1NcLHyWjtL6LLalHsU91zUVbD5sbLhe54JoODLNUgZCWEPY1wnMbQ2/pXveAphySI1FCqRvwpTPFzGbgv6G8poeoHQeDYMkTokWkJKop7ez9EHKQOt+yWMcg/L7g8Bax87YBgOOIMHcdUlejsIAIqYU8zBThC9v5/tZ+klP6vqtAu+3Az16PBndQdtAhe0+eKkpqKWKZR2NKznh9ynaNnUf5Yyskhh8+ACmXwlIECsnar71p6zyFqahruUk6zNTqlkRn2oyc5Ts9qWzn4rSN547wx9Xu7XSsa9PDGWBHNI+yFkoQ6z2YUpw8cldWY5dB5BggBGvUN9ptTmk6xKXfuEz5S3HyVciYgs2OccYUrlKBn4k51NZjwFus1RR3//7qFo4/ZOjUsIvkmrMCLO9rM7yPNKu5WsbAL/eBRsPWC+N/XaKYSqxbzSBxePkxVxiq4kvdIzaR6DtK51NPlHKbL9La1VY2+e8h8NagcAYbqLhkuuL+luq/lzVBbb5TKd50cGfqCNa8hvfB43LaHz69snJYje5KojDpwI9X6C5JdyX5ct0TQoft7/ddlg7+8jOlU1AVpB9WI+sMU4lmcUlPdTyYRsxaXTQEfkf1cW3UZkNespBMwsg+B54/7zcxwcDccGgb2D+qqkFODEiin9OFs0za8TRPMeEVcw83gnKoaSpTJihinqvBST5pUhEApNSrV+07ZNOOdwgA+CU0HCeUh33rTmA+Uo31lFdECBEMilloCvjbrwa8EP4rNidOs3SxF8OKVKXhQSHZLcbEr9N+D4s5dsm3ME3FZKjUgmsdx9LfKwF8O9hoIvy1JjXAG10REJnBklVA2DxvkfXe8/I7BPkluqDs2ABuF606o1zqZbZZjhbuSug3GeC1/iuGGahDJ0d5Fg68E6aybNkj0daEpl4XBAKMsXaYzrnXNKeqs3Se6pZvhkrbHzT1E8wt51ZziQSBnXuxWXKmv2RJSBN9/Da7LoIC+koPTe4ono8vGUPSJIyHGJPnshRlgH5pI6Arq3NW33K6CWwjSsycFVIsJiAUNG86P78J6ljl7paM9y3IP9Riuek4sacGsCivQOjXmuJdkpZkQwyCLGItdKonFFCcCX3sHVTjMqWEGPOXBWW6zSPHaf7c8KgIqSOqguVOhJ2WEoj0/DbLFBsEktTQRMTBVUpu5Q2SHgyZNtLa+b33GIS1vmiy82bX9AEapck4w9UJXUPsAzZbZ0cpjv9r+JaXWqUbYK7uxhe714T1BMCnGizlmNG4Y1E9RG0n69cq38aIGPb/ilWD91Ahi09hh6/HgcV8qGL43GNaz2oQcKG3LRi82Yp5vqWmEzEWp5kqAh9yURtc01Sm0djHzxnbRLTuh5H4Sq37mTuHVSDV9yM5Cvg4KImTLRedgZyViIOFD7LFfNXfQm75hkbebyX7jocMgs44EMwrxyfn7rIfjtTQ7uDgWsYFj2q1GZUVFXEe0YkwP+y+TP9gOjDBKHjE81udg4o7Rp19I+Og7iLlwvWFetETz3UesJ1lLUm4Czvy1cB2pqc7nbwhC9ziQ0e1gIeGXP2Rs0kVsfiV6TvTRfr1hW4L3xT//TowW1MT6bkVFfUDUCviecmPHDa2Emb6wlpC7EpmtT/MWofA5dIXZIww5Te2Vi1N6+qYpGV365Nkky/d5AcU3tPRanGba7cR7w7K2ZZGMRyE88O+7hJPPC7Xo+lKhDZL1PFDhWFitLRnFqUu4CHb9A+wRTdJv0b9KZp2lVJM8ZNmRRqUx5q1kq3iLlX6ANConTZmto/Dx3PMXhzeXYQXHp08Iuhvf+EGnGfwWPpv/a4Ebaw/anWk1m+NzZJdMewxWKQMD71mgn0ephNXmWsowiXsJwQ61zZ1epAkW+nYhmslGdsjnu0k8+xokcnrjlB4VRMO32cxRxCnlCfz3iB/SluM9/tWnBxugbEEWaemVGuy3lrDYBOZJ7VkJ/OKtVDzEobrbUgWVYLU2qfsp74uSgGrlcYNzujLzJokLDM4P1r/+Gr/iaG81Mk8LynuUYVLgPmFV+RVt65n3veOmf/Bg8kIQlOafDEMFi/mVr5zcMBYc1hTE8aqo/Q7d6Jj6mMfloNeTA6Z5UvLnkPXtUQ6cwMMQHp8dx5QvTbl+r0JLhjupO9kfCdaLsqtCq2K8ehHL1H1sdnI9HzyfpfJlCFwZxqwOSHSDQXsf9nAzKOwdtIl+ElkvGI27UDg/J2ZGqzglHnlbkWtomwkdiu8Kpzw0LcmwXmi9qMF5uBxyH1hJSPIWIHcqzkAJfzaPvdoXKks/tcbBk1BTC0gLfmIUoElf8z9IiEy8O1Jm8tkHAj6Rzm2/xkVDBgLBarQrb3fhWMxwFSo+2TT7DeAWRYhhpSG/vPZJVbUWLAM5qmSInQY0ZfKMgfS+SmX16DDyMMtrmUsLBodAzi+9wZt0C5uL6B/TMeZGJB+4n5HD/fY7s96k8k7wxfsIkpBkIMOCdT0OpH3iLBZNTdPC7RmA8Org5AiHJbfnHcg+OvFHg4u+loWdqnqeKn9jdA5FqJvhuTz2ovVbHSebpKQ0qvOkVEJfZF2u1zjmA6tZJuYlG1GCqoEFE2u8KyQP3LCA8lRBL3KbctHjg74i0sKthnnvvb8yJq2Ce+aRBReKuEulfejm54KGDFL/dyVBmcfHUmYSoIodjjT4LJ45EJIDRgmOi+hpUAqDhs9tawEKvWj8xaW+S4zmgFhvcpRYgeiT7gR+PRmN69IOAo+PW0yrKmzrq4/C+ZcN7IxO68bTJLlX2aVbaeuIYFqdpXFp9iPEbaK3JovSmzaKa7+Rm+liFSZHo6hokrxUUbtThHjsAdQooWnaPKE2L5qib9Pi9rxiVV6U5aB6nQUgW7jq0JZgUP/kTmW+uwFuyHLWA6LXEou45z9kwBAZgDd1yTW3Dh1BduSKBRBj08YS9XgPPzp/L5veEyFKYcG3B0ozOCoMxnnUFdxYdQGWG0QXVUJNbCcCZlWxlQAIZvlRYYzzwqOyj8yIZTdCFtoQgom59Cn/aYIa5pLvjsb4UVkuqKF+sRzM/UXiay9hgiq7N/EBmGxq0O7Hzch2lT7m8Ii3sSxxbeSOqtE8yCKAtJH0rrQN89JqRcTeX/pb6pu6DyDwX1Cm1FpV/2pQOrhGSGfQOjaQbFGrZugxfPTnmtoCa11dubHbf9pRRPWAg4h0F7QD+qqtcVBBtwoZ0DSTRTpmRnCcqkeUtGmr6WYH5Sh0haFd/wIVHl0+pmAgreNy1wFSMm9MYpUploVLbuRb0/DZTcNyj4retY4AxSGB4H9r9cdq2R8d6HWIpo52QvyRSRGzBqkYhYr++9Tiup00OuFkXGrYNy3AxtZFEwKKDeHt6/DKHHe2LYVz5qn4LG7JT0KukOmddcA5Vnugfd+YCRJ5hTa/HhknkdQyl9Pj88zgFcwhMqOHiGwpLRFOc/222gcmLEk/+1cVKwMEkinbD96qXIY5Iulrml1RdfrT5XXpzl0T4s1X1kiT/O3QPm1j7SHG+zpBNFQxSPwiGC49GpdxKWCBETq98q3Mg2rww2Ru5fcakdKaq7n2JHYC/aV4Bqtir+hRL2YaEogNn3CiPV9+bFtAqUs/6yfsx6wyn2P/j0mvPX2engNBGqEVhsZgnh7H1vFfO8HZNAHNFKO0WcAh5N8uXvUFltvyKdLG3zLSd+IydKH7h9dSpvqezcjZ1tEiparddv2GmHXvjsyX+Fbd5VuBiOlKWD0OBwvt6ORjmXdNTlQm7Z+5H9SAVoxJMTxl8T+heILw8jMrHZ8ZX4rm+KN8sB04gwmn62zB45/ZrL6aBMot6VI+YTdycOOkcu36BN8v7nnT6hspcsV4vhwuaqKG7rQCwnugkmF2j/oAyU22IbrScojNG9+b1Hm7Kv95FiewRe9tYYSfgvHoFk0TfHuBy0Qv8LJyJ1hWiucHjOg+paZYPjgbyC8/siK9FWsbiV8n9vIfkttfspYokg+hdWquwlYVCnjtK+RzoJXJQgBUaILbdSh7fOPbHzoNCqhnqv70BaxF0/PhhuQfgqdnOrtyBCuTteoxH+uwhW7sfS5qpMBuuQANVqPrjEIWl3eb2ugLX5CY2QNBIzU7YISPNMop8nAYVr8tVRjrXkYWp/ldBdq5OliJB4unaUSX5n7qcHR3hUvg1SYG+MEr9jAoUeabe/WrLcQyx0F17ofAJ835TqwoXrWbK2VX1rbT+1qwEHDpn+oKsLqfTwO5HYxBNEhPOjIxsXDu6F/zpUmDrp3uM8Ddp5gEGXp7lpB3qYDQoXQB/7jY1B3nsVZtGesHjitd0wTaN+md3HT32R2WkGLnjD4AiwmCmVI6Mx4PpMU9V8H5jdremwHrQFisudHJspk4iejO9Cc7u7Y12RuQyeVMv6ETarFmElzJ+I/NJYAM29u3yPYF2Wev8pjgbKxBTo3p62J7No3vTnywaXEvAfWHsSItF7UOnVzw86nwNLbDOcPKqgbeNPu3j2leYnf9OfDbFTO2kMtGQr3MEi2mIBQa3WDcq0UfwvkKWY4977QVgp4tmm3sEHXahJPQe3GvuhdwuTRhNT74149ox+Q+sYcIH3oj3+LwOvFD7PtyTVFcgiXhQM6XHwbND8S9tKzsErNQt38THzjZVCtQlEQrm2MmKLoNk+380NQ478r7xmlU+UEoMfSBjPYP1m6yuOp5XChZlxmIH7s5Svye0qNSGY8jc5mndZiOZl1XbWHA9Imk5kPLVyrC1fBihnVGp/qC5+HtKPuL/saC6RX5ImnbUeVXFu94SPrzxONAcG4g/iJUuVS4IZmmI14Ka2aXB2J5ifAkfSVJsEpY4PUWWqnw9Bb7ezzq21LzcJffHTyYPXcp9LBupmEHmIWyS+b9srZS+6A13paH9P2iDyUk/xKGhD2d2XXuexhK+lShfZXJ/2M+Du3qO2hQMmp5B5Kz4LphaQln+Iw+k1WfKtjinPV8svYdsZh/1OgbOx2Sk6rl96FRigyR5G1cJ+cPBbHf9+IfLxHqA/OlBvfNmppwHYfX3boUhM8s02rzmrQP5eL75qlIaOUSdVrZYBsZSisEOo7qnhiwYlL1TJB7e9bCKjOWa/wyW5Lb2xxxFExC0XWkIEcyqdHtCpi6zzTVEMT+QDOsUHXo1kb+sIalDmsiM7bqTgHjiPSR8r/FV7CtFcHlYqXvNUuiHw7R3qgfCjaU4s14zQzwpGQeYxBrtcmwipzWeApMNSw25L1HtousSfGRtX8N0r4hn20oMR/hb6uRROVdQh8rFQ+UuyQW36tsvewgYSnSaF08tAnbUNJ5fJq+lBLPlWnINjv7+MymrUnkZWL/4w1tek/6EvL3qbcn2ygMM5a7Z+ZV/NXFznGjcpdPyNjI3Ga3UrnNsQDskLBpKOaAAa59RSUyO+QyUwz+PXNDk9Qs5at6ZmZAvh/R7nbRxAe01WqZWMMMRRvQ24gIvaaK9hPUuy3klSjEq2IJFXlySJIwyIJP1DMa8HkcHk8Wlr9nJsBOWl9dDmPmuMRoPyNAI+2eBrajRcJqv8hY7emossuAFCK2vMRDgrB/Xtj/I2IadvvwYIlT28gCun6ZZZCCKzkpcZSE4VGwAxd/ZyNh5iUfwWiVFOYszRxyfQOiQQkyog6fjBr4xlJU45XkbIfVbDsne+/fH98lOpYxst79HM6Nx7jwFrLRHQJd0xs6WTzBxFdXzQJED+fC/llB1DXB9wjIZ4YA7AltbYkG3HIdiTdDq+oc/IYOfAjZ86/1MjtW6ptSmuBZXlShmkrHqWjAvLLug2HDeeDKWTlQlfDWUXFMYvNSy+u81VcaSaCh/Eqw+4HGOs8YsTioQOBdN91UsmrJEsVazSu79PRV7ZAqjvMz0QDrXT4HH1u7oIjiyrnEVoEnmyTVS1wUExwpU/zAV/L6S3SfZGliEc/8P2VnHtWD8HatnwvIptprH6PWM/WQgs/sf5AD+JLJdmZr0NFYAeygmkqKbJRSH/u5s00Mkre35a91F1x+izGVYPMilq+qkZTzl9n9f3whQWHpbU0JuU3ok1tXsgUVEkQwJ3IYaN6Vgu0GfIFIeP/juooOQmxTLh9886FYhmydzjnWQu7RnyvEOyIRXTRQQEpQPaYm0zJf2hefq7H0KOacqWjO5VaZ3a34AkvvCmdD0RST+mT2KzTSElklC+NaUmtnxmwMrcush38we/ZeWJ1z3HoteRjMXDFqOcHcSX7SgxOMHTf6bIgrZ6z2CeVxTmRJeQtUBmtc7vQivQ94Ue6fmKEX/TSJspv2gPvwlEecgTtIqD7KluieOox9vb4rEuXAB1j1gtFsZD13IBukpA0DyeYbWdFxSPsjSwmpcc9YpQuyVy1p+LnDnrIIIlXlIfJYH4mSJI5BiLKje9sjAVEcnOb34q/jKE6Rjw4R7LlDnxIEETO1WXhlSEKTWVnbqEnyhPXdEfiKxqekUCMjIUt3QtH8B9f5FsPc2/RhHrRZgFx3rxewanqW3hE43SQNwmAs2z/9CoeNbBS6RMdBqO5M8xEfG2D7KGT+s+tcHAUUkuSyIIIIH5b3+F6fdt5hioARoHK/mqujEZrIE1gyuIDyYw0H/2Vs1oJAs+xNsYGSAWRd3x/Y3+g7mWKwu0wEERdNOfobUzWxrVbqTIKru9Myzk5Krmyl73/ckulyU5Alo+sO3r2DliSOdBsqDBRqaGuxu3rnb7Xz68Fy6u04t652w97eIBAPr6qxztXrXUTVBTuZyiFX110ws9MYyycpOuYY9rLAUvO1QsgGh3Sf1gIsKpuxrQaO7AM5LfjF4RtOnbeYiiw5lGbebW2Uw7vvp8v9ZMLBhbdCuKTRo7OjuIEPRN3sAT/6bYRAJbkHAUyV9HP3Xg5k1sJyggGY60RNBH2QIBwHrphE6fR61j37HtHcLsXcW1pIH6qbBlfYJmPPwAL0Xmd6nd+Db3LgN1aLR1oKGn1KmpiKujfrVob6C0f58UwUNr1qrspHZMysryIRdRlrZCqaBBSIrDG6RFrwq4x4o+9/0W2NNzVNgGI3GwzyFcaFlM3O2+qDeKmWNEQb7Q0Aeq3Q9ZoiPjgsEz6FZaYgZ/bGX9jxPSYP8jwQS5Xl/+LIAWelg4DvyStl2n9RULWYtNwRWLZvzA7UnSc3yEJediFPVngtxPUgA0oPIjF/UQMoXFmhUiU+V1HE80sDCil21h6USWnixFGTCUbdvDsXb3wSgx7HBJgKPlaQcUh3NCFuv72Pxazf6ApUGyj0X4/TVB4ak0HsnRWmRfxY/ce9Y5SNsLV82O4LtGmV6lqiJebm2Jjc2l3+h2ZJBbdjhJa7YzBHIfeTpKBvTxY4r4RS3rwIlM8n9EJ7AQABkXI+TzZguHuHeo3+4apW1EyXGoBgMtR738WlsC+J+c2wTE/Z1vSFteuCEubFsUHilv+f6tvBNrHVi1jNkZxgHuaaX/hf1nPk2g7a+44n99r3kapYh4rBAuc5xzXByXtgyIXFdPxON3kx7YRuHnubgCRRFxtTnqLy87D4GmJ53ntTX2xP07MsoLCMWWZFHx5JV4zOKBK9Hv0skKWmjVPTkZYjZ8469fsTzCvrWps2W7K2fyE2/Ocg7T1Pdrqd3LI9kGaNA3XL2pO7+mP76y1kmkf9jECnAOZjdAXoP/J3ViJCjzvfQEaB/p0d5Cc3HO0qvZ84H/wjy/ugL8l0EJPqEfDO4Eq4s9XO6clFI5ZXShOYD822YqwMFRe5N6opw5jYBuw/7niPmKd+RRecuD9FwBWXEbTzN7IaTZQ0it4KC0AFmlh3NmAOHMLu93Wmo+y6fBGYg3Az6e29xIhMlyVher7pv+sV5gKbfUW1iyNK3qOd8SWFnxwurj6oWmX4Cr7pymPCp0DEM8ZKQza4ho9m2MWY91hE5Aw21fR7tyePgret9QdPyXZK3KJfIpGTVkk+nsXlLfpNM2d7pdaSfJVkSBvf59+JMMGcKyTwEuWiibd+EjfCe9L6Nq3tIXtmAcdbc/GMupWY/VXwA38hKsTY4abObjc6rSJzszkBEDKJpwoDpsmTN0Y7r8dtL5kt23LZpU/m24n61m8z6csb0L49aBSi2dw+AdhTMw+wPNAJ/Ns2hXi5DPkx+otPZKIX/ahor7+pKb40L4P28FLbGbXwLFEJBEntS5vfG8JdRHE4i9vUzQN+OxJwXT7TRwXX8eqod/LLzNavqk6HOYxkfVLlOTy13SI9s7xmjgsqv8WQ1Kt/U2HKTc35Y7mMIg63FD9vISme1mb7c6A9O6cIIGccEy463AmVB7mol+eO5RbGXCd+lNFINfm8KDoambWpKrXWTGgRdtbblAixGLF6bHVkLhHHk54zstxzzkl6w6N9Ssocopfr3F+gKy3NnWnGBsaAOVyz3pi22OX0aKzOhvZm6zfID+5ICuxE8OW0G4nZDWayNLLlV5B/RquqHaly5+ZyPlo9IizpoFcKXubhvL1TGEGJ91QdIOCqCcKyURoX20PeU1XRrlF7G57zYsfxBTr5fcaG2RvgBIkDuWeB1kld7HA8d2RfiBYCWvb04pULjsCFoRUZBF63P1xEfwe0Wkpu0f+B2pKqqQ3hF0ebmxi5IvBDK9fygfnamK0wCjHWSKdIYAy0X+gqykCFM8l8jPPeGPrdYvG0916I1ZAv23gdy1nr6tCBKF8A2PLwtGmma7rhpwoDDlj+EBtb4n+lW5EjRofCoKWqGaabhXvaeFUEiJ0EduP1kPI4kf3OxWsAWA9iWj1rJr9BLS3Vw7D1TKIRVDMrfqPJrk7uhY3dtEWMQRGIz6EYjHqvUYZmlPP+LKHLbExZGVmGXOA7aJTSCNZ1MmHYYtKUgu+4RQySEAwdmofxM3sKvzODbuTL9dZzZIrX5ovWxPtiqlY/HfI6qOLaUrKDmlS/5vKB8dnQhWAv1YEIy3ccebbp02jDB4xoo7yRGekK6pGEFKfg91wiCYAxLloJnfngxKI+SjyetFB7S3cAlHqqeXC2son8QY0N/0CcpPH7SqZVNCC+7JAj6ynsLwfCy8aL47soVu3hyADRJ3axMWCEhmZUd0w21azy6OtEJPry02odYhmNdDVqHHd2UaC9K1VReDqgKVn7XNvgH7DtVGBOfSkoQDWZkAZgpwsk+8b2/ueFjXITlRQ0Pl7JrWLVChbnCYmj3+LlW9ZfZlQLPT89PQpTppJRu95EDTFlY1rNf2pvK6Ok9fD24D3lKrmWhzS1c4YJnF89OkOriYHhv0GFmVvRFGmOGn5VFAhYCH2w82gHDLGWBjqQ1DUxFTMuLn0C13dLWBEE0RtEQLwtUrLKusKBQrSPv7fhIFnMYikmSKDvKXCy/yjB7oO67WT1pqQiYauwFz/egTTM/4in+JAWA3QN7P5fW9NdHTYfjNdGHMgi6kjUo/+gA7wb8nLwmqZgZrLeQdtPNeNrRgndscB8gZeqRcOdPlggWvu5/eMf1ci/6804Vjtvxt2VBTGrpfvTsJwFAskR/4qxtElU3Lez6MIS8ApSlzFkIxvd6dQboYP1WW1B+tzgLCSmmZ57tynUdaEazYi48nG2mXxqIQeSnr+rA2HIwqOVMZ7h//9PFPX9BmcPiSS9zPS5VIKAo1KmcPOrkY7aQmM8uigR35WjM7hR6HbAvRNkAOzAQgj3uSYDi9WsxTpah747RpzQAPPQSCdm9A98BwkBDvSjF1O0BsK/F0RRmURspSQsFX1cApM8FsvoaU2x5w8lBCGya+wJf4rrCgxrW1K9nxSRL4MVeTQ2t6ITi0r5mmJilFxRytK4AHKzmEHlPckZymDytwtIwEQQ70LyPHPRdu8jng3s01x96KO3OjY5vky9EuOlII7WT2RCk2wO4U+stjWBqkb0ytnWdDgwbfSB4mT0vfXr/rAN0wWi3Mo2aqUsHj+ejH0/YgrDlz/nOKCU1LYDXixgUoFy5orftA24CZwLUtPdlfFjKBqFv9npJu3OAb/1OhGeXEXAbcm0NH/yMlI6miHEcghJW4RovquRqrITe3Ge3PwwCDdPjhAFFN0o6k/AhxZIGRiJ0qUKHdpjdggtqN/KuyqbkySbWWHyFgZRfXxa6GwyYE5DBri3f0yLd8AtGcZ4J4MGRVkyDKktisD9+9bgkUZp2AcTy87ELJgsvCqsgwLo+IRsw8qokdO+SWPNpsAJHaMohgrBL0MuklF8qymm6H5jM1hQ7LoD15K+jmp6AiAWofhPVfuWW2/UMScJ2Kexqw+K+PDTIHn7esPd06iFOt706uyrBZBYkCaVJ4DNSBHwHKL+AjWmPWq/fX2VJ8tRa9ttsnosdew2OAsOYR7IbOIQqPVm26I8OM3Gli7Yi7O17yPlgNa7xG9C8O36wTixZs4FkEr8bCpIYV5S1QUPfQZkg1rcTvuY7p6K0CWXBsULlzaz610m1BkgNYWZFSoL5sp5veEfFOq4bo/ExxWnTPgbuEPTXx7J1SPd365Zk75W0MQQfyuArUTPGCNvVwEeitgWDEn4PUN/pEFrZe2Qjnshi+qux+ECb/hc6qOU1tBddAmjDwMF8WxWB6fP7UQxlaoCQjWEHlg//irenDsLOZ7+hl0l7akj9CyP4CXri8pKGEOtCkDXgSS2qcEatn3jfhPypz8KYkN7t/v+a/aXeLFBPusb1rSukhQi7m+3OOY3H7aFOAcbd6jQQcKEoW1OhtRU+SoRaO1KhQB3Sj6/lxpYPD/VoVU+h4gTPjU3V8M0Ab4Gzbv5Xc37Zq+Yvvbpqbc+qZeHnExs2Eka/nAPle9XLKt+DdW0AIjLAwvQcYTfi9bw5UYBM6gckSgyJ4NImVyBw1wElzzODwZL9twWTaACIbBt3oarR9tw2OUG9eCU7TJFYr/fCUyNp8Hu/93eqhPYqlWUyaGlC/26suKGjRulI4KA8fhuukthzq9gwY4OIT4a/L2TAHWMAJwUb0z5qJCy3hW5l6ZOgS7JiLot7pJq174f+6W7lZzuch3abUuj+IR2mrDqvixz2WJ9hsXcRZcaTWCyG7EZoiAbBrktLTMtf3umhGfn5TAlCmTK3piKtZnn1C7+5bMJ7hp5TNa/wiJI/GJonpzdDp3pi0MvGcz1IdC8yFSYdJAWzfHU2UnNh+whRMnkfiRrGVCWNCXYGOCRomMS7ZU641M8he+mP7wE0gNFFMDjIyU//9uq0jo68cAO5C7F2rmb+LzKXxI9hFAtBasJqTsUy4l4QFPy2bulYfpvOR+SrNu9XQ58LarzkWBVgDUTbWcSPSdvLE38L2Av4VbtDE6UGhBH99Wf93QVbx60KBvQxBqKTarBtXviEMr8cWNB66jioo+E7FGRr8DuTaLUkXB9/w3TIafmOapD+UJBe+XjNBNaOEFZCEgsevxTH6/MbmW6/rN7KQRWV3AjqoYmYJNP14Xqs8z1YbelNoF4u2G/tdanOyPZOYsmSEkrO6D7eNJB2nlENiqJPpiRaOfk26ORO+H4Fdw21+JXMK9sIjA/VgGmtua1MvJ1WhZVicFc5IYQzZpmFrQukPJMqAB4A1eKXsLw+PsWP6hly76oZW1+bkHZgmL+iBV83O+Yah9VKfkFGdeVchNsR/SOpbPzAzdVtKTsdRJWy6kNpiiCG62I1DOKZPXvArYtX+/iEvRhacePCX50syejbfS9+050NB/kujPDwQvCm5+rlj+9mxNHt2bMYz2l4+JZNFPC3+I01vhclY2vhHnHN/LKsitlJDTN1z4r+p7XmiqTC83j+rOE/VZfM7mWNtpOROMiPbBdg8P2d7LXv9xKbsrLzCQalTKbOTQJnv1wuDt4620iqkFUkrosWJLA8ZZC0Qq6GHy/gkAI75Qz9nJwssX2Yb6juHdZfcE84gEEYg7VwDHvzlu5fqfaKDBYcEGUrBTYwjoBh0UoJTNpUXBVetPN+1srtKkTXs68qf8W1NLG13DXiX2AiD+DDIwDuNomqc2ZOHykXvAMElM40s+38eFAv28uApAGZeMVQ1x0a5UUz+m1tInFnLpgzi3Dn+ZeqtvGHL1zU4xfKauCr5+QpTUO6HO0YPKVSfZy7RQfqecJBRLe71s0sTwC08pGGdr6aDoD88zo9lDi9cdRoUHAAGYySE4IPT5G6/2Zp3wAlVPT60DZTPgXSayMNA3bMB1znoq62LTi3wr8jUkFI5wZsqWVE7AfhDcsrOzslGxdACeWkXHgQKLRIwWHx3kyHkupY835t9YtxiESeHV1ygvqqmRRG+ztqsE8lyLDxNUvKikuMGlAfXTc6dUsbeUknl7bCNVKPkA0ZyvESgo2fFrGBTgfFrIYqET/JqQTeMskg6KlJl4wLEed943lo0xynIanxRdSf0/zRw9Qs0HyHAJunhLyd3/Ofez2+zprqmiAUrsKdZWF+X6As+tuiKTEzPhAH1JaCkqGbDKrtRNRfSF6p/TFN3gVOwFTtUZbHqvvThF/zTLOp6RgBeG+EBfD3r67kAKld5RoN7anmbK5UH0htSeOxUApOb+G9bCdxKc1DOd3DPjTgosDSmTQDjHCn6FfGjNrk3uCI9lUJzhf5HuHJ9v5I1E8Pp0Vqi7PRpcKFLXcFXsZngxtfdULUSbOOJKeen/mB/NPUzkn2eq4ppsFsiQsd/rEa4RoQOUvQGGrrxo6JvFtS/uHMB97Z1be9n2otdb4AeKN64oGyMuJ9dY4MRJBzhcNaRiGSpfqNsAoCtb3HHoUQWdOar2QQtdmmFneG6KjO5S8Z2+792/5+Uk5cCNi3LfEaosFntfM1q/AvDXchZjSz6Iagq/mj8t4dd//k56s4wrLErfKhmc8Bb0fYdvYYa4yvWbtthauneo045Bord0hMQPHVoGSijtnTa0nyawF2upO1yw878tPFFYTTmxCu20faYGTiBXzf9pCOuxpvxOwKgs0S0MXLU33nmlEnqvJUNJO5kdXmeVtXpXacVmppi/PEQsFoIYjWvJQwIo28CUNPPS8AnFtLmUGZn3l3bUwRJATpZgym/YQRmg6c4SiOTUrstEVk4/10bnwqapbSnPRscWH3uWYUGCnjMkdXiHNwcYDiv3jI6Qlj04JZx7nyMnGVPkegCjMPTMWeKEDSVdFwBLYkQgwLA4uV2lQ2kwSf+8IMqryFMgeymGhZ6ereP+J42jxeHXPRdS5JLGhPcq8sAK1WQrj4sUQUDQ26pdYznFtP6QYec4DZBTn+kcm2+PnNivibc3ITcUhihInCXXpCy5xaPYwWzi8JhIkwmRDj9g/h/rCAHkiwFGUBzHsPg9qmuDZLSgllGgsf2fUHGYTOzJxcGJKy3p6UCRUmjTsE7rD47QB4Zge40uE8NxaXUuxcOUX9wqGRBP/qee+E7fQOwGRrWaJPg22IfDrEKp1biuMKXo3OCDWfxSGYuwz14jhagcKGBA2oVDqPCis40DxIIoLeGo1ATtOpWKMTJ7gr6J++PlnnY7fGThh0/l4QRMA+mgaygkWzS8k1mg7yzH61DTLIvKK0C9yTELdDCqrfCaqZJYjju25q5o2E4r/ViQlZqKR2MXCgd2XgQd0SYZcPlEn2JfohoOdiC2qcn0K5RQvjiEsFzYECZ7l3LO7lVIpWvQHwCWuNXvtR5jpjSSfruq+vnIvMjLCbT5gjFjHMc9K7yH6GUQurhs9SqxCqzw7E/NC7zrndi2DDCZBjemlli1YchZxf9L7xo3gXvQBM1crn+4WWkcglSDEKrdt6Hmg/tvts4OuzO8EGNlxxpYFeKmLvziTbAXxbPwvnrRFqRE7w9lVdT9moof7luEMycLG/2nNXHWUlG7xkwi0xCZ2Blipv/9xhWJhSE0bBJ69oXIWrNc+ZK5XKbz7fUlQWmnupleECk8R1nnZbLdohMP1zZO2sMVD8ZV0d35teNrAS6CE136YC1UAzUyLPENdlmWvPYqOA6WRB1LbbXfuUgoSqEh+MiuCtIkI0wnbRBKf0kpGPfeZheuVlFGGONMiUnwZxTCy0JID2fSrNkNdo9vf3Wo6DTBa/S8WTttvap7TWFtEna2s6if67s9rjcU9m98F4A3xOIS72mFfzNYSVz58EnqYP4Huyi3ufb3SYxRdQGsr2kqp4GEsWvNVKrVfzcw04twCYdAqB12oQDER6xm7yzC1nlfHzb4Q4pFwoEkj1IQ/sRnH+6kI/Uhr45ucUhowT3EZqI/meTawoMibV9It0CmbsHYQSqUIlTRBmZo50zCo+2yMHn3nFQ214CWXOjJW9C+9L+mCgzmPLacguS9JpbMeaJ1dY2q5XVVIeOeeZJHW96r2Yg27/CTMgJ9bIjPhoTt1rOmdtM9ped9EWov81NHojBm6yDylebUm9wsDgHp15kobSE+udUJrniJmSUjhSB34z9Zd8vizwFsLGrg7+BYg0GsRk4QnSqxkh+rt09By2vMzAuCjtZtPW3BDyD1I3tpKpUj/CAedXz5RsD9eoutOrG5DZG1/eAqVFM8luKBZk16vLFQsNRXEj9EwbxgrT1ksDfG7iuhXqNoeBqZx+gijadeykgXdSYcw10tPSTzzZYTaZiJLZG3a0LRuXIr6GbffEBz1D5quO4YK9PvVNsgEN/rNVGmbMuMKCxXBobqX4JYnXWrVzTzw7jtEa5OOVg3bC7rJwfZx8w3zTLqi8MFHBjZu+JDZpv8AYZJtnxVj5mUb9+bip/XzK+NmKEPKbVRIJZ2rsMukb0TzmGbTTyNQoWY+NJCF4wcPBMZ9myY0ocdvRPtnfYLBpZwCFB2LCePsuLZG3f91m+yvWvrzOnJPBPOT9FNDpO1qtBN5UHtKq3bSDJiNVn3V/a6od3kbtf5RWrjBs7yTWbcl4wTalde6BBXoSxCqU9hflJR5tLsJBGU1SmLzuhApcGZeuQ64Fpen/wUU/bl2n/RVy+n+PP2+PTox0zyzx8LXG98HGT9dDphSbq/gVLgcwA0XnpURLA6xvtALOk2SnspvFfY5PbKn6G0sxQ+1QqQckiP2IL09YTa/q/NAbw18xhEDNZ9gWUX7ACJ4doEBdg6sNVAcb20tnkLrYfx2nrQO2C+wG3FdT3c1M6E6zFDW9NIOyV/uTmmL7oA/r1IEXIRQb8SANz91zRfIq3VHF2LnrTR7N8cYpOOZaBPAr/aE2sUonn+4BBT+p5QRF0uMEwWXA1RSCTAxJ9GiI3J3MIS1/eNVLDQRFt1A/UexqaJgsGRxfPPZY8w3ekTrIccLNCaWj/9edodFd+JjgkSv4n9yMU74ioKC47f57s6hNod5oDgqGLZ+KZE3mZh02srn7Sxk9QKzAyn7VHdPTvy9Ha2ti7UiVBrX7oRphUHUwC2B3Ty49gA9WcPvXRQcVnz3kODsLHfphQcEYG+DnDDsl/k0uDUGOPCvjEbM/nnAJYvruyA9kddxBm4f67KgYg+FuZ5yPxg6MGxfLlUWZPFcQGbcpHUsLCRov5m3wAt1vukIGwa+45osL7lEJLhFAkS96ombcQGULoVez2XTp+R7yNgcTdqhWH2+jhg08LHzH0Hw2S8hkYH/82E8JdpMg3sYvlWH1SVeFuiF0xpOUm92eEjbzYMPBMgwxLvQSNHsZ7z1rGsynXgE6V3iJWxAjj0wbemkgbydGzNbr0bHNEDoctNtfuDUkUwlIyQsEFDVmATcy28ERXKX6siQQQkloLySu0WV12cyV03vrvwM2Srfiy4Czzm/dn0oWsTN0v3lgEOXJna+p2uDYSpKginDVQ1IUby69/Pd8Td36wHDWEkk4Vj5Pn4HMfa0f6oECM6mICVpczXfa3Asq1sd3lfME6n4G+rouwDOfmWH150bM3mXJVW54zD7vgI2pGqP41/0eLJjVD/6B+44IU6CRrCiBzGe2mYrQzabcwIsu3QEvSsp+YVtUhI46WF88Ikb7iubO2KuAlRDuEkt5Ye9OWmWBfC3P/TYvpJf+HEt12SoiUU/mtkq+UFJcOWIgwWohUxiVvUHphC/XlDpV/i+DtR9yJC8gW3Nna98Nkf8CkzqwmTsoZfVpewq3aLnt340hrBCqxof+HymuYCxl7MbIvJMHvnUQhmTibXuabcHBzcWfiv+0L+eEY1muPpU/DfUBDOoIMH4hW/nM5FkJsV2VPijGKTm4F0ttrecXuhKM/Ei0PVfaU+17UkuIMdYBdQxNhfU0W0s4qtmpp1pWSx3P5CnL20jejpwxw4AMD5NFouSOklbfabOXww1n9xaaiw3i+xrkL3wTwIYai8IstYD46oTXjCHyU1ZsSnpTt8hzYRUCRw7BhJp1sGVZJK9X7CiHqT98gsCKBfiM+wk6i39AGJJfq6tB9lm+yozBuzNJD0CQ+iEeKVzl2W8PMPVxtwXKoAdVNkynKpxFdFOqncUHvBz7wj6QpAaRgm0S8sdJ/eBJ2anZV44BDyMZ/v15v3irtl3+jUqRow3dLBA4uHa0CgWn+d65rYKRFPfJIgDJMltlCm5GxYlIrCzNfec1WsnwcAkQ5E2pCREn+wxlK+xZdJS954p8kvDCvxzqX3ECzy16Y+UubvPMttZZseFAH1ckLSFEUCZrdNuhj6gdbwloB3Vyp1FDXtU5/uMUlfmEhQuiMWtJJ1mgcJzo8lP5L4DnJ9LGAw6KlnDMaGNDXoJgFqs8KmxwX8j4mZ9avwGRpTnUKBVa1xoOp5FitHlmKyiS4UzoijD2FVk5fspUfwgi3zORNc3iYDAE7Pqrx9t9Kv4B7nixCWhrQrAM8mQGUzxeXVhuCSR8Y/8Vown55NM4/cenM/qpxNm4wEB2ZanDZaPZAG5GLU34+Ouoqow4G00Ctm2N5IR7zW8NtCsNuBb0meZb3UjzN2P4NryBpwxbPyFcYfs6kUA6e9GpHrE0D2zpFhisBlC1QndOdzQa6PRmkR0eWb08h9C1zuij3ouGvw5Lg8VKKD6xzKDRArjR9lVBAAsbsc5JqmPMRYgFK82ayOyddbzB+YhOeYHoREJoJ/FLFxQK5RDx9JwZcomlrUMNZ3vkqvkdI/syDtP0HUb9DhJw7qo1mFaqxySV8skxy5rgTqlopW8J/KTQLhsQ1+80UQeCXCPc/ZyQglG0IE7WIn68LZcH/CID7y4K/bgYmkLurGtpOpKYhLTJtKaagaAOKTW1QoyIPVfFoNevNdphziQX6fYdNWWnUklKLV3MuCAQEyLoMLdY+uBMVbrNt1wBq08glMoPBFt4lpI1L2yHOfavvfhgMR3MbwaFxo1bni7n5dG1CHdJMKqs5+2sRhfvGHA3G47eJTsPRRtHBGwbO6lKh6IrY0L8cqzvt7hL+5juZHzTs8ap/UxCGspScvHQEUzBBR7WOi7iUZqCnx3AroZWyB1X1IPu278J5oNsTif1aWQPLBcGpLsTGXoa/GqcWwfTQoI46YggB0s99mhg5PDiI69CMbKGxDGY8eUprs7HCstc+v3HqOHBPbyCQv5/jUKIW22a9hbMCr+w58fJFEQsh2GvN5J28aIISPYVnRqGpmGoL3YRK7Kk1NV7raWCh8uschKTXmv4yE7u1Jd3IfhbkLnH06zupkw/3KDbni0fkp2HEIh8f8t5x+in8tAg3kx7rYms2MgO1fuhgiD1pXaAgnzdgg9gY+O0vPiODbS+mZwIdltSWExjgrkjYaNmV0qnFLlEIU8BP0M48UVlzwXj4F7XrXUq4Jeh0WYnULTzdcLj3E8ptt4pLnq4xgxSvOtbSrbVXbq344skDrEwe7q/MqasVg98duP1Z0PIXZvJJKv0At/SJ1VLHLZSCShQmVESDG6ag9sEWZ8Y/V4NgknMdCRgNvW87v+tlU+OoxAsOOIpBYyegZK8sNKIcSuXyZ1BnrBbzfG9X3Pe1xaR+rS0OVcaTKsKpFAhudWK3ZHDLqHrGFt85CqshjikmhkMZM70cxSv6otTdP1PC4VGrcQQFPjMOPntCN2RssRglxTKOpnchujWTt9zChpKi9u296BfTKjxQW9moyWbUs2rH1I8M8i8NTr9LemCc8Oylk0IzIilFe5lnvKaY8sLnZTZnJNv23y8+NyxX/71M6A29VUA7L+sYUsOzfiSo+9vbjeNEKmftz1DfOLRjm3lrhU0E7fIFMs6XHSgbDyNl81NcsjAaoYFHrb5m2p7e16xhnCFu6yTqHPcYSuZjKt3X3sgEcVCL2sIkRV67W1ZTqwQJvrEK3PyUVZ55qbLLLkMafAVu6fw3HDHgWP8YWeaOSlYUZ1AesUaR14kAlOcOIjprBbah0HPtn6Ef5tvc5kjO62xPFqM6swhxt7K0SPDFGGdenIUCUuwLZ4K5HZ3OjtDtC6kIUCJSqqEsexayekyJ+rbZUqQKx1X9ycE2O6Th5BKMyio7rEKOxdxsZ1JfqREnaZQoKxz5C++p+dJA3FBxBHYMLsu9IIuhGo+huRzxh0qSw9/di6NNXL9KIYQasdtSPeO1YVVwjUfAcyjf/p2dzOaDkCUhvHpvhOwu5zLCjG3Fv2+R6GGAY4hmoaWuXuwxdyY+bSm7Mc5M74X4y14j4nupjsUdAR5jaZfH2tSxDC61d+moyKZ0tzdxP2gYLt+0eTch5Rbhz+bJ2U0FsM2ihQ5WQOLLhbUi8utNDWfuKlHAj10y7tJHU4yM6tF+aEU/11lg4r4pqeOzxYu7F0mT3y+DhdhLCmeOfn4+mZCfkw7e3vqIF1DTtH9GoaMvitWMqP6QxEs8KiCpOpa0+md4P9pVOyjdvGLjaQBp/4w0qYy5yLKfiRu5fSKVaSiZudj7bohKnMxTahrtt3rFVIUCURTwH5hU+HqMwD/6j89+hzbwMI6XXAmfFXR70lc/AEgVwwccJQ7n/um7sfJBTpF3t7HkcbNV+fYK/uE+dWfS+zAGJI6WGhNKBhT3UbxHCB1WOgX4YCJhGuarIuTpr/7IJF2OYZKBLVMvP77aa3uUFwWCh7jjocOSIEg8rRaZ9NwS4O8syD7+9HyS5LF23LtYd+M3k3pXRYzU1lsRtCjmbb3nU6hvbc8GgV2tfpydAmDBlq8z2dySqMus1OIyOBTmflVxv0A8rp/NoMvg9Q2/YxsO052oXNHf3N6k0mW9Tz2s3LgbNJJFom6EIHAYhRAwo6uc8gYaigH4GHAUniu7ezyoj7s0rnZQMp7oefR62kzNHV7LXnMLi2rwtkSYcE+3hX58zc1FbhrA+FpCwrFJJzAdGqW4KG7AYD/LnRIa5We8EHivPgMXnRkAomiQh5sn66lcNE5JdGBKinal6triyo64l0hXqyLdZX7uLWKbAAgQd7N0PLAw1xoeWMGYn6/CB0N+U9hd4cME7a7sc+VoBDouHx6S8wW2AzPEExljCouklqhJTmKXOKDvm6K7u3FmzolAF0tbb9JrhJ7NSFWRkebNQOr8nuTztm7RkNH7vpS0PXHCMOefGL0J1dD1tIOXRMf73uMFX3XcGW6fKb1XnERZMtZE3ANZCglmqA72bvbKf8WcSriqDTlX891EFlHGmWKPK1Dh0XmonfxnfY5fg8RGoPCyvtTBTYISXOWGtymyXh8ie8kAwgdCxxjeeGVr0kHOy5Bf1eb+SjEojDQnGCrsyGiaPc/cDldIq4/aasMNhJuZbf+kiTJCMoYP5g2rQnBu54k0CtDsi8Vg3ifDG7HhO3kzLMPp5sPZjgZSpc9OmE/sPxOA+OJsXw91dkYJMrirld8hAh7K8oD5doxRndvCbiGkzkkmyqT0TeMbJxOQKYLkGId8bsO/3q8wMn60ODyliXeZItUKntxzMxx6MkjLPLHp6+u0uNN884qjpxEnZ38LPUyD29jmFSdvFHxXXHGOdrZdYyEvpqx0bfa+tdThV+WpO+cTeXMeVPYXpSQrjsratCpeBA2RWyGDgYuMND6KbwCL7NwgP8w521GdCjTQUwFzu2hlXtG9jMqOJkb89KWDtv7pJXJz2KN1ry6wIeTRXVCLF5NpiWIn/ysFOxUdQiFHmdiWczFWUyD+F9r+TBh1/cvDnVtyOW2dwUwgjo2KI3HM/NJCa+VA+MBhyIoVRE0wwkPxpDVPCHHoiGyLIhH9hGmL+3uvxaE+jZW5hKuWimLCQ9kJFFpKPCDlJE4gb7+p66ee2g/fCatZ8GiUKWcrkD+yXtRb15SyZi0bGLBB0WhbI0UgYtgaGFQp5X9KJ8t68QC2+s809ZVmcuxaLXyC0J5T+thtBhFL2fCCJ7CiF/vmkAABaQ+LWFGIdekt7X05iYfUN3jhH706Xiu0c5kamq2zX6orJ3X3QhnVDb21hkRNmszySqOVAg/2Nhta+hR4SMsMDqDFYYZLapptmDfGJ8nCtYE2WvpKus7m2vePCWKL9GJN/s9NRnMJGcrTdB771txttrAWuTF8ecglZ7Uxj/TCwN43RpoEFa1XtjacKyeKoNs9wtM7kRPv5iqVIDCBxLia6gjEx6H+u1Plrte+WmS3VL+trL4MwDP+h98yRkg0JAl/YtRcvroNnRVyKOJWwZ6vZ+3Uo3DVGNc6QVG34HS8XWWgIGEGWdGEEjAV73/G0j/egcUQBi1PS9sTpuDSWmRPykoua5j/PZcIhdg1iWV6/meGpbsYZiXvAJWUZr1TNYq5zxZkH1F3iMa/GiUm61Rx5QgHgbA6tsLLA7Dvkh/07XUmaqjgngxDbYJX5IA0fR+zc21BtHjofgZJGVef9YPayzB7NAuPi2kn2uCUK8n1S4MKvPihWtofkHPgecE1UrrxSgPphKAefoSCmhK63R5vTF+azfUQcKg8KOvAy4efHkeNARzOq9bfxaZ2vvzIZXTUI2sm0Vf6vWpKnA3d4jNU9k7hCyFDGYhyhyiECRKS8FpMfVn0yotbh6ooITEn+waXBOqUdqKnDpLYMXKwRb5gBBQ6ob4dkYhKXgerV/XnDiCPYrZkC0/mabXlnLzvNnswp7U6bAXilXmklEX+yR0aBg6zmGRsbVJfn0Yo2GRT5uB6DnPMddzz8FVu79ZT3i8GSNvGqXE2xUcQj+u2FVHFbMWQ0Gm1pdrZr5KgmYp8Ll7eEmobD+YMDcNyrlSe414IYGkZmP7dUY8bvEZSBpKUWd2hCiFzo/tG2Z5DxokkiRHxgDdE4957dF8/e1Ef0ml5s2FurHMOFil7Hhev6HXkH8a1aPv6PAVwlgzBez0rhdQ62qty+CoQP6YbnBMI8mlY/Tl+OCvDdrh1S1EwJFMDm9XaYmqaDBBwgJUZ0ek7lIINB7+znXfRPaEhmg16EnSMSbNkbCxgpz6vdt3lqZfDItAQZLYPd7ch34zC04fNS2QFljIB25zTDuKSgfrYE63y1OxqriCpeipi3QKvR6WVmXo2mvKwZiNqcqsZzJT4BwWaXACbikt6mBAgeziBDGsSaU+2CKOSb82/lb3z8f4lXz2F2kEf4KhfAYOSx4fFpZWSl4L/4doyh9TfxIgEQGjSGhlIhSU0wEmgoF2en/DeeNNUAarDKBtN3a65PHanD9x4LUboNu67CLilcONWAKbQ7TzbGteAaVd9ulh+D7NfNVhCANMJRCbUpusnA6dhWkSnBkjDGi4TIuilygI4q2NfoBwn6FipyxJfGe726BQeklxW0hqDn7aQMW/0YeH5EyZ+5z1DcZgiClK3zvZUgBjr6bh/c0RwnWoTA0fLd9lnsTougmlpOZiyBDYDSV4cN2Mzwp3mb79kDYHxkSKrp67LzAzYr44ehoc2XxieJ/RVsA0CpOo91CSFQi4GpRH4SF6Iz4ZCDlpeoqMm+DmRMX9BmJSSOrd0/FA8YEuaAXftO2qPBmSI5C7WA/HLGZ+jRI1Uu5wvDX8Rc+kh9+lqEWgGPAsuvMuN8sCjLvXnlpaiU7PwLHe0sgZejW+VeTGYD+KRA48b3F//mLgb5SNh++n9Rvj3cQ2z0NKvSUyQsbqo+cZq3E9+pF4TlObONdmSRzIi0a40cF2KvPST9P4Uke3Ju/IRmsXMPtAH0TrdA+0TqOGwPEJw4AyJ5YXEmj712hrULM+lzcKcgK6KfFl2dI8xzVygFHzeAi9oOCbvUQCjV/1mfZHM7rYWbS8X7+XuwXD+80xya0Qo8sZSjjilQwCSGkwmrAZ1SdUd+GRQikGfPHHWfjqtoSG5QJfLPd+NSUp6Ukuvxlr8YCY+QNNwK27hpLvIiipeYbCTuVWwbPNitK7f1ODdR7U9hdnA3L1jTG0hAC8aNDmKhx9lVElxhdV9MR6kBgwtxp1LkrqlKNU43aVvToKyes3/gBGX46D4U3pkAwze8Vm7NvBDxNB4GmtbwB2vinW3N9rOcFHkTJykatw0LFn727MOpabgHUSNvUK7zpCoQl8JSVPls+a22sfR0t+eD1e/re23R0XucnlRgUuVx3xl/LJB2hjqzEoAhFByutNs6sva57Xo4qxIIvIzfKNWgo0YhblJNqx2OaIQuZwn0x+RLVQ5aWB2a3s2edX1WomI4L0EuZBcrYmrDYq+eVKME/y6P7qqDUxBz3LFCkCUNyUp3jl30JTKlIVpQd/r+uquedhYScCLQHfPOvVhAArxD8BIO9EPUcFUNv6SXRs3BJoU48wlzVG+JrUvSCEJhYuOekvhQuNGKgEuct5LkSXo51mX8vqwhY6LoQqrKm+1fQtssGQ1hiU5tNGJB1e1Xsz2ouGzVdN4FWhwuSntn8aupU8MqgASLN5QP/yguWaVwKIbA+qeU2eHJAqsT3MD4I0dGdEoAD+NNOobFDyrUuUbCw0Kj4arU7i0Y6SLyJ9qth4KzWXz2SKnA+TXJEKz79NF6/nWWrmNLg2/jH1tbrrSPv8nBrmz4pAgy8n+qHCu6dgO7ZJD6Rr1YLUdJZIB7CyyVKD6IE+lWCcGq1Ip7XdPalBDqrytmC6LCSj/j5HJVACctm8dqSYfe+qV5Lx/O0xj2rA1S8byHL4BZK9X/fQk6xGGj2J5LR0OX+SdP3VLvnuRhWmv+QoKnnVRbZJbAHcAym+TrxTVBPY5rmmrwR72OQ88PwYiPmyxLECQjq5NuLa+M/jJx0ClwN22yUOfgZBdygV68J4mvtrNEy2ifz4IZmiyKSHwhyLqe0sp5XcYAGctpGtiW2ENUgcBz0zUYPqptlMGoMRmuH6y0cJVUyEbuuWEf9yIdENXRUP29PW6VygGU67uJ1sqP4fPgTqiGwaHbjOJYwerdNM2FelOcWg5g/GKiK+sDEMqSMBXJ8JYpO0fY9bqNImB4KBrtpswYOF2p4vJfhmRo9sF1/oaEeusyeWywGR7BDoMzcw7nncMHGNiAGYQwsJQnbNoIP7i+B9CEBMAWiHTISvfWreIF+FYYPUZXIM4ocMR4Tf0XgGblt+lSPtrf9FfMOlxGeEMmXDATKagHG59N9SFtsPij4UgaHrZW2OKfiQzangWn8tE5gN5uRXT+8uTQXvMPt11jj3iZEr4lLgS0+Mcwi7jW8QVwbmfZ5R9HfJ/aauhMVtFcbdF9xj/BUDmTQbJSOjmitAS8NhS+3IG5pPXGZXsI5xIdHbIUkLqSPKAjM6fXAwRgytFb3qUdGrI35empEHCKLbx2/gS69rNYZcJgfwBHLA2byIK8d3B1gqIT66Kdy6mlW1k/uQ8xUwoHCR6eI3Sh4Pm2b9VxuXk2eyGGGDfaOE+o3/c2KVOfBLsVyuWKZrJGTPncTHb4tBCexBxiCYRHxIbi07GieO13hBAmL/3kmGhAkuzXXOprSpKbjf6an9tXYNEaPQZk+4OHADMO+G5pTlhu5aleC6lSN55xkA3sCNAr0sU89tqucZXSayjg5CBPN44jM9CHliVWOV6Rh/IRoNFqm4Z8Voq51yIbU8EnXLOfXr/cu02dxzj1VQnzUisHVFQ8q4ZTV9HbvYwbTt/L+6lgNvIarX/GvXX4x58sVfJNZvG7ghekJMCFwG4W/7nJHjU33rXEPUG18iUxdYtZumvD18RuRycd7exhKn8IKsZ/+3MvssmMJ1lDyf2yXOjvzi9o28Oq3K3eozV9FDSzEf9a5Ul9DTfCzDEw1c3jSFoCQWQG0EIQswS+nMHDjSiw0/IFTN1tCRvgJipFRI+A2zXCOpLJuUgVy8D1WscwLOE3WW6uHN1Rucy/P6lT3maEBBgtvjmQ8ZAHR21sMppw35lMSIlaMsumbG1zGQcHveAyGpg2dMuTzb+3nu7VP2aSGOGNmqUAHEVCirb+etNJrRk9JGZT8yj4XbvbNKbLJdXUU0vG1zQWnCFo/+VM1LyCr7Zcuwqucf5ylOb5pbwDkFxVtuTauW75OxRWhdygVKyEvOcSzrUXb6ZS69pSAdsFcvenM9STCHLeWV9A5kCmJicyU1yXm1ez2ZiCKZMoWIxbv2OiA3MQSlkyjpxvf6Oxjpzxvrnst3wC7OEt3k1QtBUbqCPMZDV9AiTJNAH1R3Etqdwof0EMWEwJMwpJ5XxjsbsHA8j0u6m0Xhm4oqHGQdLb0qQNmv4DmlglC2Z3ZY09W3AA0Ib+cR9T7dOqRJ4CBXINU60lA20bqCZqjxSGwSyLk8s7Tv324EWzbfXGb5CuSPFvqS6ZDHQsxw6PGHlr9Kq46CErN4WcIgcQUDkbBJAAub5ztagskiwKAjjhW722Ipfc0CcE7F0J1aFILyXaaWGn6kOrAfIzvwkwDlaNszerz9Kj+yjFqIC0R23dVCWqiD4NI+EFiXrpx3pGaQB9INxou+2IMGi0yd+i07EgqVB+o6p4CtBvgEbcc16lOcuf+r0VZxgjp/frnoxXEqGNSgH65ICUBz5068uJ1/4kyMlxx9Fkwq8cjlwimg60TvEdyE/Bz3VWctaQQYNNlE81wvqV5WB9D4rRnsReHJNd+1y0LV7Ef3Hx9QX6PatIS6xCk2ODkEYDX6+zqJt6TUv3dCR1tWnySpvxXMWNoCLLY+eXvDWT6ea0cYUb7Io96c8RPRj32/kcFB5lLL2zM6GOxM28Q6PnPND/nsZR1fop1wqMb9W2a1TRDSzRUQ1CBtNjn+Jy6mTdK4N8eBRzo6sWPfwa9f/2S47EFlYde52j/FoC5zZB/eCrUhUUZmt+6Pd1gjjjcEsBbFoHgD6DdjHkVIipG8J/W3akB8ySXt+y8hyOBOhKoNCR0jSzcOhuwwP2bpyyDQknLy1zhA51R9GoJTyLkFz4sdBdiMr/FHJStf+hHBOk9Aia8vOk62js1rwUNe5jdIbgUemcd5w+XFW36BHEAkSwPHATZW0eCWhzNFvP1Xxa+Br4obviMXE4CGsfkaFtGt3p3n/pONyqcQSi7zmVFpyrOPpwl7WcXt8pyIpfE3jY0F9iBeSXZ2i8lK6qJOMWfHX2CCGltalFlLg6rZmwUhhlcdxjxAx2mdvrl6dH0vt0a5s1JLlvYYe71lZuG8YR9rEA08yH3eSlsuZre0SK8ZCixazpeukX8OZetDL/EuJUUh7BLoglnPZM4FlIZqV9U1qgkndhKhnJzU9vNDVKmzlVJdFe6hcZG9bvSbf4TuH1Iqp7gDF30Wa6jc+70FunbbguQmi4NOhDWoOsPmlmGIKFjnlIu37ZjB22SRKDI9RAd4nKAQAQ4YNE5CAeeT9WQ3JbmB4Jk5A4KXoZ6JiKUo0yeSV5+fEc5yZB/6ezLucDK97FzN7c3csUVtXDyO0ohjHDTWV8dN3LTR/VEkiD0Yvxi+bMUBnVmbE6cmr0Qu9DqxyJJcRe6kHLBhI2NUYMiPSn8g7/XgU3yJ2h/FdTvuNqdb6oHtbr07X2z+l1CvHGUJx+sdwFLOWJikOjeE5SfmoU77nd7A8DBUdqCeWkg9kYgJGYMTNvQE43LPbUUO5mjnNJN8eIvRYP5SdF4OSdWjsX3bIMY5F554NxY6TIJ+N9U1ta6aI+OO8dQA7TOKWZF42Os4mJAWMYslowAr2qEDvcXwjKxxCNty0YDZrwYUgjvt7U0CVTWpimprZ6YrIw2tfolXPQZOyS17ZY1iVf0MooADqA5CWpfl7ba1fl55zz3ZVSxssGrjFTJ3U0BRHEY19UP1BokndBkB24DJXCPs5GU6EhCescnCJjAQgoXwEqNSsVcw4uUtU7lt265wNcY0tg+63A6fLgpo+ifHYb+gb/1+JO1v5HoqEBL17X20R5CyjrGktks0Gp0bLG/kJOTgmV7EeAJevGrR7EJA4bWginfCjl17JCCvpk0q3C+eUyBe24KesrQmIueoKeIKMFpdsGgoe+xfN7Wdc5ECARbvcnN9Y0H39vFQFR3AJwzEK2Fdtjcb3EtcoZ9r677b7joB+CpJFnJwEyrmc7VKNweoCfE16gXJXN3G9yUX9dj/0ZStePIlSYvChDa0P3EVWgUAb+urHKwecAMAE6lTI7ABY2+BYl6ryq5XaHGcv7OlsilvDphYMStOXZrtmdMkDrElEjYU6qTzZ3b95N+65yILqWmMvE96hmNZbmIgxCab4zg9Xpit4KnBNtN7ZX1kcg8n+UWS1dDXivGun79AtekVCySq9nebbTGf5w3uFoZtPk/W69+uCcFE0Z9OtqZPlTCOk4C8uc0ePttdaLPW8ixPlDE0ucQzQq7xUGPhqBM2RFfVcl+9759oPBOirwtBR5NyxsBts1H77T+pl4zOCb492WxTDsC2N+cT8dfxgwCuDplT3BLgU5Qpeq23zlAZDCdxv8QJQ/T+W5qfeJhGt0YINgmpFHuHqAz+Nsw2wAGVsYTT/BrW8cKt5jQL1BHNWHmuotReiu44W2dbS2L2SIz2+46QUna9pikOqZYaXTj06RyTU4kisS2Tw0niYCKenGsiHaT3WtAQ7j0svPWJtNktZ+OeOYrNqGropznWUMp/eDAu6i2FONGQ6TSOYmOn4YCuE2ustmhCaeZdd7yxuFJ3CmSkVOVjwMMn98K68Hz6Efwa9OeVkmLd4FRorBw/Wt8Mji7/tw5ql5lKtcCJmxZJE+uJTbqtD7GyqcoV87qImKCLqyS3pR6OeaWZx98g5+Qzii+ZwAJYiQa2FQ1o4Dcg4TTBIWRqiEUf6mjyxD6OT+Qhv6O8dN//39piLNNx5n3cp34gmYm1gxH06AhNpSDRd+0VLraosmGLJfxvn45IXVpEsiuSSpqa4I5SVsW1ZHUn2W6TNNTUXL1cAKy3twtgH0JQFdj3NR2yymczD8KDi25Ns+DsqFfjOQH2YFm3Duus9SJbZqP6qt5r/rk++hrr8Um1yxFL0/rb/vf14HYojLwMGn3U+o3gXmLFT+19iSFM00gzp82fwF5cgGacOi9cuJ9NT/d8wel9/t5tuL9HkGyot8/vWLxiAquOiM4I6HCVQDkdmFiEU7rqiyUfPjaLleCGFFppOPHxvXmk+zZsH1vHdU9zkl5To+CFIVxPXA8xgKD6TvtF4w06f7f0PBAY4mWqNBeX517rdFZTNqf8cdn+akHTNUFDQe10ivy+uynlSIbWlqnQedxwiegNi0si8B/cc9kyrrJPPPmDPJo0tOAyrAD7hn1/hkB6kqgaM7IwA0pFj7XkZzyoa6cA7R4BheEHF8lg3g05dNLOIaCeCcKiuYr2l2SXEnGY6F44t+xXJy653EiNV6INZ9o6D1kpBfDeJsnehEsuoDoo8NS6kHhN+pJvnM5uwIRyQcjNsW9Z7mlr2/1yCafXOdlNWqaPYCj9adoraQ/BdCrq+A4XV6ybTcLUOGFBwZpaflEcfIGTxC3FtpyTX4RW2kv1caM+himcYT0NUVFALDmhdZciNLxmpBZC8dT5Hq0UfQtsrYi80uF/hommjPWbPQdmO1abQfCXSBj3Ozw9NKxhVyeLuSb9DD40LAJSKp4Ex3cOzqvt1NRp84nJKIXZ09fNUPhyZAnH6iO25XDmakfFRdIfOZn7v9mELouzfbWqrHBSBXZCHp+2wFoDNYXewertS802PELDGGSFzPSqxKeEUSqo5q3Nq3E2+iKX0ye790xaxVk4UYKSOI53ZAraQZtXzy0QWYPUQ7fyaVhGXWB6ZirbgVcwfzpXseB8vuWyQY5SQxNSmXwqoiBvxt7Q2VkRicDqmSouPuACPoPlN06EZxyOqPk2UeH7ucciEqdPbiaTnXl6T7ZyV6J4aT/xjT6rohfcKC1Dqf9Uhqh6zLqcYsAsvW8TVeArNnXj3t44Wva1yxYmaxr/xYtq8/ZPvnOhw2LPgSNfK7Zj/YJIXhj2qlej9dJAfuE3xQd57Rwhol1thwTdIKj8XRlYV25gKPGAz0z6DDLY4fXMVXWDWknos58CJ/v2vcluYMLDOA3Wn976cKIho1w7flEFkURhwjA5nngROzE2C7tRABamCo31FSyxk4Svp+y3h7xC6p6LpdCFuM9CIVN3LeJ1dnK87YcmHorXJrjSL8hZ21OuPzNh7UIpAmcdr7pBVPxao0oe61vbYFe6WsXpmgDB8UL+Qt0SmBzom8PTekgD4y5r10tkCGC/ztzelqFOajEDhQh32FgAK3dNQi8L5zAkXQDRahlpRXihMDnA9Y2bFeCEU4VWNZjaUNN6LC/mkuhC61p1Ex3IdsdhV/SOayOwCXSUD4Gu0w1WEIlxaL9pGnma/ncadzKXsy5yu6UXlV9xpiwPTiZobGPWcmm63waqN/BNOO+aMJRi7ah98iHI4uQYyza35HioiSPZbfQVVg0sj48ImTP/gn1uTGXm7PWKNtwdHPGNKkO9KrhFh1FXu9tZr2SwvLPzBujb7p7SkuwuzGOdzbeVraKlwIZw0QvdscAUXezt82+/M6nEC/Bp6Hi/2CXrF6fSridywMImwm/TDpfCC2M1OysQUExXgXeeBtGO4PHHqaOt9DwxKKJqERBzXXZ64xzu/XF+w1AQUYLmrkPHfJ1/SpAe5hvNQOhWJQp6Ornz8OIxFb+u3fKLMsij+BCu/kh4Rj0Qt5R46bEJKIHT8YSnC8VVf06m8tK8uk9gZRfRxmK3LjzxoNrJTP3CFxZsSdnlTkevj3SX0WXihE6226l1ugD1I1Ir1LAnnM6KlABOwePxaTt9muqIB+x9WAx/D/OYCkimaR5hKIdm8qus/M8YiitDxzuZxQQAW2fTrNFR73flstw4Mh3tUh2f886dRvLirCx9IHBAKDYdh0RU4uURPx+JQicQq2nlhrcLUJjkPE+iV9oUjFhp+oefyMoNLJ5cTkJuew0Ov+8hno+KlNIodhewSYKAwnD0M+SQ4LchmyiBNY7fymsrhyUbNSTYxaXysHy4u7/3kptm4/31SweZCDTTBEfIatczWa4fE+tElnJItg/G2ewPOYxivjwabzzhQpvR9PmTaEpYKK86vUJHchXulwu9CN09rIdSzHzXBMS+dtDd/tu1O2g17qf+CUWPhwjCEQOul5F3RziclFS8WBZKnpz1fyDlinTAk1JhaIjOBRRybJKYtComuQfoZFCcWx2WV+6gNeD9zgDbOkAkXgGNomh/WnjDFU5YeF7j/NTyIZFl9leQBIYWFIZ6vSOCpU1ZtHTf9wZCob01UjdJSUvtCR0OX7wzWb2rqeg3qFl0diVxr8FzY6qU9RdcnVOLYCrn0KOHZ2akE2fE2qtvS3Jlk0icpl1SOXFZE0WzNaj+k4G5rnXcwz2zTTMdCLTVwEdXr58uqp/Ar9gtPLaKJEilW5u3X9NUgQ5BDd6GOFLn5IHm67f3bBa/7v7HYKpSSdMdx99vulxwpAd2f72SuWu2HPFonsOougd2kTs5KcCg4abSsJVA54D3LE1RT12/mDrvE6qP96eG5qHG41hi7CgoGMhqIscAgk+i574T+ECV4hkf572cuQrMDDEWz11JsD7GzzunO04dN1MrHdDZIo5bDdp5t11PEE8bdUDKCV1SntxfugvAvSK7DyNNw6JUe+ctXlqAmx1ztJc32hKTEqcX3/YcNIi5JXF2ZWTcs2vwBTpsAo3GRftSObd9BXtkj0iBdFqLVsKG1ybTGXsF6kMy8rIQaBecV5uvKYoAb9SJwjgaby7jrMY4AlmkvrZD/MX7nMcU284aaSidnjbM9rI2HZcD40dXqbAm7hBfuA7r0h6hdJ95NOxb2NY53nFZ5Vx04azEv+cU5uURzpbbkFvNl6iNU8KWnBQQnb5BDFrYTuhmbY5NfQpSmYhnu+TIT3SBzFA/RIp9rAUdV++A9qTEVxy/29OCjPEeZ7R/xJ6xcwFouV+Rur+JJOJ5KR/Mi9Epymig0lkWaq/kSUCdWNz8g6MfO1GdaAfVA9GCQ/HZxGpAyqVVBs19wRmijW0EhslF/raaycZb5OlwlWYItS5t/dEdDGsQwzvdc75qYwn8bdYW+wsgK9GIrShZILTqPc2wc7HfrkcoQVSklgAxmJg0JlXO9JWk4G7PWDRVCNO3qPDO0Av6XiCjKsxrYayaJlO2j/LS2JxTkEX+5fOgjPBBBlWPVnpmOW6mWBpuXQCLbTd8sTccLHYVqAtxBc4cweBan52rl6I2SSbIC8nLViFBV0m4EkLJj9X0yNqMmCZQcBORCiQQgzzCax/QepYvy+z+1/sq9Oiedafq0oU/d47MJ8qJkWVaZj83e3XLGknn8rQNYWTJ+9kAdbilPq8tuz1ywfP/1fcYfdtFsfybKDnuPXr8y4zieDIKvK68oTG5VgrJqnaGYTo5J50R1wJQpeQwoaUKqjCAc7rlmNsdfmv3Gl+DMMZyKhkDwOjeeN+E94UOEkAXqDnrYHLQkUFP1zzcyrlXxoOGMKo9n9BFJWFwmelmJHImu9xoD+aDyrFusJkmSR0jfKYjQq/7oM7ggyp9V6KkZ53B2/x2VsPCFUTM6PiZlqpbAIYvKnMTvP35/cWKHOtfckwAvn6hRWYmNw8AjrkPR2+TsIiiqynjSwbhc8v5CQs9nF4q7RcxfBr/5STGtLbAHhfDfHYHuzoZjcCC4BHQPWx6B0uu/xrNUPRna1rSHapV6YcT1ekq94Pl9kJ7Xr7LEhjXAFBvYKByyAF1IV7AMx3wi2XJxvgAtBMw+od1zpkuL5InrEJGSJULWZr58nOzswBcHAMdTgFhn+60Ikpv+JX+HQf/CtSyLmcJ3iVAuiNhVOWJi4nfVQiBDPj7kqf0rqIMlno29JoTYx2lGO9IklWU8iSV6BhzhVWEnTz2g/C9QMnFlI9c38dKLAzYnz+eiRgShHWxElitJtiEyNXeXD3xaGm4ABrmsvvNI0OuDsWNRTiGm1WmjTPrpNUeQmDafng3PaQ3HbrtihNxbKi/JsjrAcUBSRk9SjdSzwHnqe3lkTj+5zL0Uktfg1nmy8mkJ2dcevqcBH5bxe/6kWIIp8x5GjKYIatS8iq9Wc7VhQQ5lrcXtNMwQR4u8+spwjyc4l7AUZ8cNHonk4LRjOR/tmxmdC+LHWNCd9lfhdNLnlCKrxq8eTDjE0RvCb8tjYhYNkvzXvTGrYRO7Uj9vLO5qRgnvnBHmetvQXoogISO2CXZkVcHqsrWvnOu8rGG4KkCwo/WpzjFxGac5VW7MYbDeRdrZlY7KOzhSjrlwRsR0QTrM4WtjR5f+PJs8Pa3QbfMoT04b95/0Tdd1efQVxn0WD5MWnLraw9bgEq39SVFhQn9nWSUGnTxISTPFDAi2FgJ9SZyNQVLEq3KPqqbURSex8NptrAbHX1NwKjNlUKO+eT7Dd0M7yJKiUPDwSB6+UaGXp/rAybQHbhf7OcE+2Y7j0HhoPTkV8Hqm8ZghjtBa73bzjhOjdLU5JqqCLwgJ6sBd7z5WBthPXNCLGdo93qx15uoGLj5Qe/VgbmOvduvaKYCbGMzcygF89ZbVbUclZwk0EU1CalAxdlhucEq8e/I8dliCPssCeRZ444OhvIdDzLy9o7JV/Q00CF4y6A03OAp5HovzonrWeH3JVAHwusg+IsuM+66H3cIDkLRNnjAatq/+eu60tQey6W+K5nmLbxw3mN4ROKdcXluzTX78ej+pzTfLEz/+dC8wYhHArwpk0AjKzUPnlSv/IpszDZleRVq8gZCutIuPFrKWTtDWs1IL044RcBc/SbSnDOF8K1oqrwVrKBaK3bqiupUZnknealQte+86FriteEizpharSO/8etfhSZ1tNs+1U39UBAYciTcCJLggZcBnxiHnbkgwnjmNn5eeQsj+UJLgomBMML5Niy+5BhhwC1Sv55uGSkE/4YmV8Re8onyzFoSx4C1fyelDio9FVd8LxQ7lIgIaGXs6mD3ph3YBrSIHUy10M9NIMM6K23lIbJAcdfqCPeuDNV2Ba4t0xYTDqAg1WYrptx25Qvjt78g0v6WMi//smG96gIwYyL0Ym2cWPDJgrKGlQ+0IS2KvUUxxdP3ghNbD1ilWNCRoAYHssLFNmHV3UnbJy3C8G4PadeqKiGaHhsNeyr8F6tCDbYRXMXN/xbIM4QA/9Fr/gTZSmWTd3Xj3f7gWQavk7K+xXD1SbNfyFsVCy+wjtJn0yCcaB2CMdGeCqQFHV4of2wFBaF3j986ZaZZ2Z+pwgWoeIKo7Eod08dq8tB30nwn15+IaLtjIKwxBnAq93IMGl5+nFhkmrw5a1V9nIDqdu7SbCjPJqivlevl8sPTscwM0bh7MswYwUv3Nr7NMgVgMqSNj+Q2AWjxIaex4jxctlRQkNrkjp09kOqXaKT5HqBT72a2Df/VlWSRRsHjNgDX1nBGqgPFQBLSdI+/OBFDvsN0bJCP/aIiZsZa95+zjv3ms3hXZVr9WICURegJagk4j2J4/qTKuv3Gq/vsLCaGIrM9G88udBzoqiO2XC/IQylmmq2tF+m8sDN/r2VNEX7xZwPHnWvF5vBE2WvPiCKdlA30Z81fbHV15dYWvJqlicU1LwxTTnIkNYGfKhhIqJieGCct4ICHGcVPNsSDNZhl5XgNyIvxJHxMAjpOZK2Q8DEVAGfSDdzW95ZpzLvLbcy6EDbnyeVvcV1VzEUiXct99alvgFi2PZNAzGEp4mya7jS/wDj1+atdTI3SVhx9SB7OuZSjoWijO4E0nCMjrxYZIzvoLOwyjITgre1mOSJDAo30XxKJvCw+1KIcnZIlgS+lg3vfigOwofDDju0nzL/jE9BokrR+sbk077ku1AS6v1ErhL8kM/XTk5S3LIp/Qo4y8D/j4B2k/UL99uHjndrI3FU11LyshIPgMHop5y+pyrsf1U8Xl6FSXyLQ35GGeeJjp1/TQAXC3TFxtqBuJGILVQ0tx1YMWH0XeUNXA8LJHSsuK2nYXriLrBqnCeIVpfWq6Q4K+1m3ZIIR/DNaf0ga/2l3eUfXKUoU45ne71ZOUb+bw9VFSQE5HUcymr9iDsmNvLujvC28DA7tELzEj14DPPpewO1MvO1qUCytKxssYW/+WTOSqyJRMgyD1d/6vBGNFYLIEie1CTjkE6zmsWSAEOLehqaWRwkUuj6d0atH81ZNggFFEPxoZtcpc6awTmMSjcZqNTifdEXgwwPe7ERkSLaPDF0vuS/LxEgV6FWjF3abqNrsGjlAuoWjOMm+unk6EFqgQNICkMRkk+uzUcKzsCH0UbPTDOze1N9th7X/asSJRhLPa7Wc9gROlzGJ2CtTUylzJ+wuGMoudRwBPVLZDcba7CC8BF7DMZMnjAtdeigjR+rFcWCI/G7Ui0NmSrQExAo1Bz9xemY7xXkKGbCXj2zFbr1+aGksb6dPUJ35ZgtiTVcSXraGYsBnv3mrt78ze6CKwTyEzK6/NNCFwHHdMYZlt1jXezYUQyQP5UOJushFMsTVMTtIUFBOeLoWBx8Immk+lLxrLLk15tyuptemKtgMea+o8v1dxCG9HhQQNWXDKqZ6+Ua8Fw299NwTTppBZd/1WMK3RyjYjO4Sddl0fqVDOJTnC/+lVycAhvEx8eq+fjmmdrRTb+5jnaN7TDH9MrOtAQV653TjKoxS/I1EtLz/BEdV/664Yfy72hyhlIw2Nl6UjSd1rvUYgCeXtWZAsL4LKCjAiFlwscytiNhiaFwzcFg331Hl7wPyLqFTe32z/9G2Odm+KYygdRPNIF8aGvP3YrEh3b5DVJG7iThB6asp7jO0MSmaCoC7z2pmbjm1X/buVBnscOsqoSLKdA0CldP8JEyT8oS2GE30wiYa4unyhDGsYqcWM7nuCQthVpH148HVpAqcv8okBYfal8G3bkJTiUqvheE2h4oNaDK6kM/a8t6AywLd6gFN5MVfoHcRWRAQ9aPXszHfqouiu2HyLBAMXTzUeY/ATZC2JcbbXtkzMOeGidm8HIvkzr+Otny5XJwpFJ6fWcB/noUpxDPN1c8esx1xNgVYFZKOJyUnSRLtIYQFN/6Ik30BzMTTYey8bVRBmvKvxGa9S8DdA/CAtpaTq80w/H4MMJMzADkb+U9lAky5GL3eeOCOd7cDWVUD/Hi7LoWqTstK6l6TUdBttQE1uZcxl8Xqt0CbGxKkxFG4PSQUrmvhykB1bPsZyiz8LyZgXaaUyFdESufPzqXi7EtcyiRbXDTlJ8ZcXe4aG02Wbhm7zHoxxOS0Zppf9B2PFvoUyXUfVhi/HjLJwlaO8bsYm20FS4Ehnw9jK3udcdGlpDt/Vs2IMONkw8En75dMaynFvgsRL6gvrhaKpS/b+7dpNUz6/rtUhQWZUiE8SrZ7Zo4FUEvDudiQYkoJSgNB603rnZ1ZoOSLhd9tEBXIGfJgKBqXPsJkpZwZuTjGWASb5GNsLHTBHXJoOP66dRVN7Rq9c+vtcYXLVAqSNbRV5tBT/zIVHEfAxrL9dXA6VgKJlEOyh2cgc7354txuHBbRiVnTbuyaaplABEiGHvYt4Y8T8aJ8wB/eWkMlbqLE9vztoSq4bvbB1I6ErWLwLwJtdIim8PuqSy79QtuwEBUKvnSbImh/AgTi+cUycpDVJgTsPJSLd4FaGmvlJk8eqYBCarE+5QcvUTYKQrXfsgML2eyRVRbGtGeaiNaTGgIjgMri/wlMnHAUnuvoW3Ii10EE3pC7FK7nYmeSmE5dpj//R5ecwmYz98voGGMAvNGKWBMs6ouuhoMBuCrB9og/HoRDOs87ZSAz8GmgnxONHgAKoEu1hMP4DiMyMCp+iVRU8yl0OjTq4Qi4KqYEq2U9bZSEdbHXRjHTTS22oEuEONKWT/IOks1kl4iDY7tB39+yG31fQgVRRH82GJxMhe2lji24e2shhA99sl1Oo0cn/CmecYOA4QTw7FMmKMp9IK/FjPLix3sNbLikoyUSGq+IxSqXdDDZEMrdB/o2wl7vbw/MOjAtaD3Pnt71/TFjVlILrhFiC55CuoE8EPEAvwKM3pMaBS71TQdvdbUuPZUSRMPfd6UA8u5ut9O8RyA2gdDzt4YCqnmczsUmQxzUeCMjMwBssNjWmK94YMqI373EgY+DZeV5PyIr+gveDGze3/H5c3aY2BV6FoakO9GLbwDVtVFu2LJo/k5LMSrwHaVhuIZllAMqOAVLcrOvtaD01Wh4w3ozMFvSy7i29IRR29UtgYEeDj3r2gj2lpH6PJtzJamRTUlta9l9PcxgvITwbSJiLMB0ZfPcuMOps4SGZ9bOG26Iz21K0XNx79pEPXiMFQZPzTlToLKAnJbIJjNaA0ePdQoGKkWt8Fj6AaTw3eDggKZVrTj/1089HGNdmuXvlpwKf1GvB3XKJTORZr5H4OvdRHkMkvqG6OGJMYX+A1ljZVYEWeSZeyoDWo0nD8eFkqAXNx9q5tyO2q6OcOUz6B7lD4y5kp0UTrgYSw4zQyddLMQmsBJqM8hmwIiIUMNYWrxP2sxuM+ELBU5AaWsP5HozCclE8HtrUJDL1oSmE81gSJMeLUCRMMIAK5gwMbclNwLxi8Si5U25NeMeopiJBmZoHPFg/EhLAbZ/nRsIm/YHgXZc9CGbOCYL+xLtLHW5m3tYRaRrbGGBbvdqOpUtlLeOadxjDOiBo9geaKgasU/vOx6AEUzdiNTmSYJ8WQ8dwuFxsDqqtQR/1Nc2CpF7PuyDNQsKuVMUfKh0IpJtU861wkACJl6l56dRZEJ7QrbhHAArmzN8jUyLmCNhhPu9mOI9OFQfujxsTJzj+ynCPN2Mn1n8bVmaTnNQDHBmYVUFEI5m0Ph0ipuIZ6f2+oZpMOtreZmzHbRH0Qi0VKL1QnqYBVScZDyiuS5Oznaf1DYG3LlkeUfql9lHn6cHQviccYLn7MAcUEVTeeADq57xGsXRr5MjFunRPQBbbNJ8OS8Sdx95QxGAjNDsZnVHsVQ8FlV273zPTh71a+QezJtgkph4MOC0rWM8Fl7a+xy4vi73qlKRDGKPM2bZ863j3xPK1C453Zv6NK4xAA35mPL7bWS8WKuvzleHog7t0ZUrfmbXrosgfWP/mi2uZrFd3GoPek5YHcmMYtdUzCQOqCXT9eseIrHtyj62unZi04s7l/x567IJlsQTCQBLLof5iI8L4doigbLoX0sbJlCKaYykYj/ACEgOm8DPU1yjBX2ap0nhMZigZYjaYqP73Fj5t0vNGeBgZoY9dYy76uC28MjeuKQ6o/14d+I9olnEUTGHzkpss7zlF36TZU6VDjg5c7eOfewfgIfxgXjznI5B3HfnMgViy/N82Tk7Foe8FKkIwn1QWRPgILV/UGkJBkpyp8vBY9WB5KFtoXFdHmi5F+ecV2LvaHxQoGAcK2wglKObBKGA7KZfsO4g4Sv1URiodRnb19V2Q/GCSEP1MgLMLWs5SWdECAtEM9mlNNkrp52wYUqvr5JbgYBBlbAXInnboyNYb+2Iu1Tmm1FZ12nmLFbTWGN+MDg9s4ZANNbWdFDLcy1xWV0jdH74p0avK4xyvF/VJBca7vz81loOfRdeerj4Ow19Q3dthjHoOE5/9NLa6p9Pp6kt51nADD0QH6OBkUFhZVvC+O30nvNd3ROko/gtj1lPSOINKh/CvT5SWz1lxqBORmFitZxmEzmZCsL6knEB6pyaTuB1DvLyYwhsV6IsEgG2ayYcNLZqQP43Y8Gqv7n+beBmFV206N322FoAleOveYE9dVg4u0w9pAvsQkJdVsK15i2y/4rjxUL9lyKCr90oBVOH3/hZAGv69gtlxIpeNQJEePS0eR1dsUTlptMTALcPxb1SFdd9bwNOfCvhfC0Skl+M63negcFiKh/o3SGjIFdiyGISGyFjS9AmtErD7Up+T16LdfFRIzqIkDS0cjhTqX5Ikml5ip03OgmZh9FDxDt8krazs0xiZjHxy7AOoe+LidnyDHIlQa5NKENI73A9Q4hkg8DWBGR6F7+arb9QwzOygjvhg1rFA4YN9z2frNi6fQGs2A/GeOEDTeyCrJ7+JISzlCw+IqeG5dCR1etbovA1+I7Nc+uyu45d0tU9saCkbLxIqDUtfq2Iphv4aPY2lfyBToy8iS0fud8LOKC4JNp+13uR5lU87D9dT6otN/D0u7/MZ2+GvZt4hSpM0ekvMZivgeYL5rrnmFlINRtl9XfC0jkMQDZjhIxihGM42/i5yjar2s7t8tZIEPYDAYqw1MxECxJf+5xUGlHdLj0pNY5UtrddKrqV1vCcza4fs/azdvutN13hlDiDMaxynAgfLEYJagHYbWh6mNtOAkUXsq1C37vAtFmUECCrb70GHWpbnubf0J9ixZYGb/L5lauya2eKN6n6qnBHBBTIjLfV4fK8/9u+xaoH+Rws/KCqSMkDaWwvhMvtuZ6/QUb+OmSI2j7EtoqWCVp6b604YNy4pbjcmrT55ZOhgGrFWmtKPzhLL1VTvkS97P5vF5GudqqQJX6c7GayFpK5WHbl+KjS/tiuNRCQDVnsGXwaLuW/J1yiDqCVNFIDGlEyF8B/jppa9bd9j3hM+Y5D4cKX4g11xdXu2Y+7xC+5t6R+BuCWZTvLkREr6WcjmBKuWICcgdWo2Uc2YvFQnet9U9mWWN8CPPTPAbV+fMsO1zuW34av9UOUe3+/8DThAvc7aPZ0AFGKqUPb6OZVikYy6vihABN3valTgkDCJRnzm0ugpMSB7clFlgy7pV9IUnhExIvNrlgVNo5QSTmfGsguEygd20FGifxR1c+DEXArhMTRleEgLElcdhqVLYpXXt59ROkm8zNSZGFumAVt1cRk6ffsmg/iYioN24PNlIvd63YvtEaH+VBr4UMz6s7Yv3HYASx51LaxsD2aI5Xm4boMnznJBzp33xybodEE5ALEmqFuXi1FLLozyQcHt9+tGYShaMVL7sYjtUsWBgMYBgcp+rV5otscoJ6ItvIQPgLSIN/+HiX/CdhYHI2gtuwEBSo85LqsapZ5j+RnrdgnYwqkLWAzkMUlx2BBozkvx0uSGIq9WWi29Gb6DQuzUJMtZFxg9xU6FAnAmc4gETdlilvRd8tLVwepkfZxsdeo3hbPkUDJvehQDSh5hFp0G/sdnQDwHPI2johHpD/KQOunpwm6jVvLoyFAxLtskIh2Fnx7mxZ1BrrnzVGFIYucBeT7mHxWXBwOs+4IKNJAqkUiG//NlP8oznuDgeW1M58UnWiHO4a7KCfrsrPCokzbDaGd7dby0Gop6r1tJn6opiaBz92unmgfU2aDfrZhSzRYyx8gUFBBxBm32mR6seOMrnUFxf6zdy5JtJ8x8+uXSS+fZGsaPo+8SZ/SgvwwdkJlwg+rdp3K5OJG2rOGilz1HJQemcLGiXeJdvKhPSCMDD/8TvC1Id1DskHoDV1ttv8cNKyf7cEVnFIe4r/EhuKSFAIxROxG4mhFTGuAQrdBVoVJAa+ab8jhnwhiIdQlyPuc9vIBEjjQl7b/ULUD+11eUhW5TQENA9kWf71V2Y5PdAdnzFuOCKisCWVL7H11p4V0dKyjQB59E9nP0RZsJxcxYSZxiPuX5K1+derHcz6rr/PN/uSE081t4DnisT26m8KZw+4EwWmv84zr6cFpb28F36//O7bpKSW4T62IOOYzatX5GgCfmVP90KUviu6JTZanxP+FSAwgS+KRfFWAyhNhPwDuqVbJreCITXaUZloDeKCwChvTRIRgdglL+eMo60C+VFBxWced/ivrUckiwxt5aR5oQXBd+2j97UIJXI6YbGSU/W25AXzXG+vuk5pj4fni9jwuvk2x6xipMEiopKQWS9i6j68M8XH7nDogtQjJLL5AgBtAv5aEjz5dY20dw2NL4FCEiUaEmv0sITVpXxGAu8T20NKGV8jqhvRdJUFXKZFql6PECisk05dXwKE4vf1Uo75l7fKQoKUgFOjZ0tfB3irmcfpmPyJ9eRDEh+kU8U+C3VhgYVy8itoOORGYSiBNnUBAZ5uHgtQbhJ52laZ+l7AGiEFERyxcs72INde3TrPQvig4Ufi6Pypg3XcpbG3fobhCd6nZfrSjSmr9yyM3gEvm5htb0VBqKvJgtYsKY0srMyXvcdwluBtdZmsurcIFxWD1ChycP82dWFuz8ciTCAzupVJLNYkLsTJ/+efdSUb2BEJ0I2sbXJMjZ+hNqvAmUayVVXfLxEqeEy6Iu0goCbhcBJ0Ei1S7LZcH8Cm0BpWQTTRX8pnPEbr/chTfiknbIe60BUw7sDL/ST6vSfbs5MQwMpWDEk6SNUETyvq5E3Ax8SrEksF7Y/5Rp9T5P9EHcIiEsV9QaafJLAUQqlJz+8PXapPDXBT5VQdfJ9GRzR/rfvpUSi3+nxxFhMvlXNhmirf7oJB8mDMS5Cz/mjRUEPu6c4tR4ThqOQ0x7sXpGALSyzPWZokKHbaqFofCRgcjKmR1RIx5CjwgwXdEYYhg7mJ9QwONghLaJnoNVhHQiEdfANre4WPxy7TTyeOPpKT8yiRDYIYiNIGnuHuTBOMa5XZMVsmHb33weQzEnZhSi++m6crQwOO2pAo4Pgq//Za+5tX7cRIPVzOXQtJ3afnxMe5ODztrumA8Q1UZAUtq1q79fZuFooFxPbJcvk4H4ev1ZguUfgMt8CpVKgsPIg1k8uH6zy+CqEw2+ZIQPYhQ5MRNZKfIx/sByARDyJYXPY7zZ+28cfZJgv8JWtY0LNLB7Lij1devfgpwaQnWdZwQvCJQ6ZQkYVrdval4FBg+CfVRlzUGiIjUTdAh3lPL4Nbbmefc7IbFnJMXPJZBz+bovTXp4e9Z2tXM7KaCTIUqgyrohoOQsT7YohP/iA0Y+/pO29rNiKQTH+qqfpiYKM3iU+GjxyjdGQAShGFvlJZl2RUE+R8sBflZl5c+snpn/FwV2bUhtOcmjQU9YMqV9B/QkMqnIJvoSmU46+qfuo2yZfsViGqXjXCvZ5MdsxPzn4RiMugaibD2uH6qnmXD3E1uGh5rXepq+/kEJt8uvo8RtffOcR27q7AxeZzt70y9QU3oB6OTIUiUn7/XdXTCBZ7xokLUt3tzLa7muhO1fEA+t8BemUCDHNvN8sCFTvI/EcIYPZlotNb763/eRp1jaRD+OZNsRFE3BMX68z+b1sMqPzdbPyMRrHdXyk+A8x6wi9S6IMOdeyZH7Tplg4EOZnUBxqjNzF04Z9nplg2aarKpqMPcSkHnFdASl4jSyCq9j0GhTUVLViSHhK4Zg0oac6k64FIyNJZbq67H/OrFcC8ms0JIVsQ1jXXd86CjTLWxsskJ0toToWndibEoNCLsSSskuoFGU19idqBF9J3S9KpM2HyNy+UsLDTDggPMztjM0ZKPFwpiby9J+3ZlCiNuiNbIL2p8mCUJjU1WnA5n2w4iqeAdxXkMZsrBns5+DHFZf5m0wyNtfOjayeyizaPPhM5ZkvBW6h5el/TAG/P/FeZfV5n2N3jRDW6awA5eicXr9FVnTupXvNP+AkQvVB1QwnSpPqDqzKPsV3aiOsrJ0F+u7Sol3CsqbCC+sMNwta8du5qxrrbSHNHdOtr2ph1ftUmZvZ7PgUJ13fDclYyIjcKaJYm3gouzcNkWmkTcuQ3Z4isweADCooifww7acwWxSqwhBjA5FSLyiQZmk7oFZ9FpHHzfxMzRpOiIbMbQXNUDQONcz3qrsFaLpTqYrEDCCpzuzaOzfcxukoytKVONtAvA5KWxOlzCUSBP9ChpbXJXOB9BA4bD/xN0iWnkMehxwsC9pUt3lSrtsLQjVLix3/UFUHrC8vNWo49Mt3MFM0/g/efkEG0vQdi1dwcdq1zq3WX3PhEmSQdBJ8PYPpF86JAzh03rLRZCAi3Ea20G2G3sWrhQU0lkx2HQRPppNV5fFxNMfXX2pHXsJNZvlafDEVC05ZKFq1A/juoR47frpFq5tXfNd1A44ULiHBHFRs/+8K3mPhz8ToA48jsfOXj/JO5nDnLzT+DQE+SNDpj7i4ju9Gar0g1pB3hafWzHat177ys3Qn+9eIOhIsVsG94uXqVK+Jbn4VbiMnb46UlpGzqYHEHozIA5UEFKsHVarwBU3tPZGGX9ZcLkuVyJ8buMu/HYLFyZyO/BejB8rAJ54kvMtKsGyZr2a8nvVOe42arywUrb3VwfwHnaaxl2GQb8oQhurMmaCNmP06CzmQ1fQLc+awGsLD34d0A47bJUVy/i7QO0dd1xfV6XCRtTjmW+AT/AVUjbwg8nhnryG/0xOp2c/zU9eFHo5L3KgOkTDansJZH7CXu2Ku+B2qpEGgdemUSOZN2UdJJtQizZxJ7fZmcsASKfYJLwVEqlpoWPF1vTZ57n4Y+vrocprZ4MkTUXD9ZF8Cli2WokEML9kbwQ0u3T0xEeRIvLAPMqG1UHuYV6bFd/AKZ7AMBrp+VT3xLclXng8yzjKl4we4RO7XI5CWU9BU7pnsR4DukJixx9n0d6wEPRaklWdZW5EnC4GUftrUyTTjn3tAP8937zpm7811RnxeLuowzMkiVBntAmDDT3sDhjmF8Q+wQ9X4pSK8f1MUkEOrLyq1d3r0uN2IiiaxpfBb+Vl+4R8efVrroPAr41e9Un2qAu53UstHYxRMGJPWlgwBKpkBu9QFxz/QaHY/vRMFIdRbrz9yVxMP8pxmdzaQgIjl1ei1Jb//+eTOUkfYANOngK4ciZfcnQRSpZ7MTG9pjSddkjkf46gzQmOeUM4mq3deDIK7oiIk+ouNZ3mxDkUI9Qqc7GLuAiwnbLER7KPX9TVsTbEztVQtkWrH/R9SQHYtgLByeoSlGZWAQ25vXxcY1UIOTYT/hhRMcZHZ0mvuuQKoBJpoUO2oEgIOif7s1ZWXivglcwi8elzhI3EMkd+xpE9FEI6fvepxjquZQwatSRs1yzFv/QtMpsBB+bUMJjIUrIbO7sD0kBDZsr0HaxFEr+IOmEfNd32FaLNuKhr2ksjAqrDJ24+5srbS5+O0HXA2EmkqRbmUJgaRudKVARRCK/1F/tdx5Lf1Ed+wwzORvUwBxYSpaJkLDPghPSqQMtP+zkXKCiGXCRlYCJBVgn7/PlZyo4xBaJG/cKedc9+H5JEvFo6x7qwTb3QGfqcBH3lFLSx2/jx8HvjtmVzGev/WjA0SCXzyjQos2BkHUBEMbB15ZKdMupqIZ0vKAqp9cfPyOWIxk2pnsu/Zd/LVRhjvW3znhi/73VgWMpQAc+uKWvPFtWHFXSn1+xDb74w+bictoJCZ17q2x3MBYt3zxFsiGQnUBLnNrL6aswEJXV7/ORfvtqNaDIFb7jZTVZE4Ua+jwZwTL5iVu7SzW6/FLs4rPqRo/dVr7Tf/jz8aJNhw6gLUsBb/1/T3rr8I7dbygZYXgvW4Ti1+DGStM6vrmIVON0LVpL173TDMy//XM+7I86gN95f4UHJWR/+/qEM/0L19ep47bX7l5gDedK+sLkLA1T9d1UfCdS/DNTMZBgfBiN3EEPo3NRK44s2zNRg1PezGJc92mPdkzqrZp7VgmdoSYPu7uvF1+Jxa8S/dR9eRXgfjOFpiXwLr1buWsEEtW/smYisnHShhIRZqF+/SuBKmwxWyHaGw/Wh1HbSpwBPufl222piFJ0djv7sfWPwC65dB/k7Zl/ONkCYwfriVJ5eYwIRVNUd2kvlotfmVeOWZBqHWKwnu0B3tNxthndjoPfml34IRurXo9Cp540dDo/vkF275nN/2ly9XoJUcnNSbFJgNVcIw3y2WNQwjmJYA8hdTb3+chZNZ6oTIKe0HHaqbvA+Xnivg7rVFpBhP/M1ki5XPnSIWRc+/YgPK1a8PjcPDq90r8IzNmSPPvtUYgZ+0PBfet5quw/Rmy1BCJOeO+pwg4z3HHtQiusxK6w8D6OuUTpGeKL7EJKBceq1edpCgEhdSGmaY1mqQq2bB+V7JbqqCG2lhBawy5U4ABX6EJrc4z1DZqVfi8cAkYh9kWpOfEVsnQQWdkUfkQbX+0H8fk5Q07Y6YzSCK2vjRqAXXdOXOi4mO0ysk5ebuSOPySjSYnYZTjzD7qxI2K/PufbKI1GwbocCMZVmdIx2wrSQwAExSOTRdofziHxrClJsG2l6Px7o04EQFZ/4df+nKrhgf/1fHJfzSDq03RAPl7k6PZoV9pOihY9vQEzCFI2Lm0EgYdEihWAPFUkFxqT1hTmXhu+F5+0w6E8Nt9ydy/B85s/8iyMqRXywH0pqYM98G5DII3/iuAXgJR8C3hc5f5ikcu/o8sVQDZFteLAZcFuFzYNTE3KmS+Ti/M03VV+XP+/FtOLpfW01wo6+Amn7N6h5QytQd48fixIhbAODl/61lS2XfAOmOBXJnZu/M2Z/U//41pME4bQo86Vw8LzMKtbnaAW0EMMKsjZtI2MFMbtK6DzDPoK6CFWj4327DHm3LMZkyEA/v6kVzYn4I64eGvyMwHG6sFZR8H43tUJUiG5KYJ0dCE4XekWTIX9fMAIybD7+zc9koBHhrNDkN5YuaszzlBv9dSpIcdphsKCaQ+hIm3vj2aKo78EuKJ/fcVQJzd6Nr8HKEGQWE23Z+3H1T8Aq2fce6QrwNn7bC6rwDb8BRGxs2wBC2Tvf9LRn3KPqvRn31BIjDuAMUwOBva8Zasooyw4u4maSfNc+XyBN/vxa/zLbUeBsyHHuHJtuJ3RB7NdmqSa9i8OEtYO68zVPQP195Z6XfOPIfXXvQ1wq3jsGN1QfDSKcyHDcVdylvcIAmAb4LtOzVy+z2wrGy47RZ3YViCKa8obcMAMBQ5H9PovTlVJ+pnXYV1THA9VjRkuGOJtwRwjdzgqlKUZbzFxO8v7Mzk2jpUaFjmLR/ntiMXD1uQo1QC+e7i5dXwLaNFHr8LBv/o8M4pwEUPjoydCYd5oPsFiUkcMqqkZsggp6JUAuD0GGHfgrSpZt4+HCPp5rrZ1U8yGcUdp01iO2wUwkGdk6z+3NoGQ4p9AXEV97tztq6CVlRGzZOqRxJSDYYxlSTBLUWRqGOU6VSrZ8APFFzgZ+DNGh8gZZyD88ph+9tf3Q74MCHzFPEPjCT0YXDjuhdJFgTGL2oy6UQUyIgbUlA1t2XIPlWlQGJK97qHfWP4W0K/kSTiWdY8ykkc3u+q5DWBses5qUoltXrXUJTHT/sBZl1LLoswo/q/YZelC/Yp41SMonUVdpxXkYEjJsJw4YNKGfVoa/aRQzlLqR8l5dr7eUFYaw36CQopbBJFN5kjngwcBdpLs+9nUxRVDgt0hZsfDlnwD2u1JCMyrZmWnUTFV+g7hXbWCtKUIIxKUSDwZRB3rgs6s+RDWCkyB4SFXvazA1fEliV9q7xLs9Rdgo4M3JkHGwnwgAtWg+fhVwQMlWeU6j4jqUcnVZE2UTgdKaCWVjXB4rrYd52MiV5KHi7pMBEY1VK9XN0YU6pwQJqBqNibpb1UKIDCA+MSkixTx7LcSODp38rd6zVh7diljS9r4eno3b1Cn/6fzOFOnpHxGUkkfB8XrdbV/6/tseuN5QaEGRa4hB0jqy0lKsSNYaBwXHn6JTL6LYrpcGQuC+XeZ5+Y+0LEf61ieI8krtn/9ui7JJ+WMhPUgCdmoS5VTYH+aDSn0P6Pi5Kfhh5CjJi3g/0tpJB+LJplBgvUCZNPXkpLssMDpjUFyTNBCuoh8V4fympQ0MVeF++Mrs7b3diHEyHIiSjGQiz7fuz0ObTxNvTM0+fHnrL8Wy2cz53zjRoF/690jlKNPuyttV17LdwN40PVyZGJrdL42xH9s14tpmLLfMVWNPuEaO84GrWPwsiWRQ8Y/xhBPuA6NspeqyDCRRrsjKRae4VNMZj20ORQ6dZZFgbNPLgAoF9grCTiZkHqVMHwzAcFZl4k/B9dZ90IdCZ4oVTan3mDRX5wf8oaM1j3Z0iNl4gu+4e4nynLlVO6FUqtiSgOepgej58wP6wCaDz/I0Tc4no/oZ2cvvZVdM+6VHEwLHrLYA7Ea6J+vdiHkrnc37FNxSFPNFYS4SzsnJXZ7WyQRTZlFiyDd8ip00KdXxtxAI7hGNnTdFHlyszozkmntjbZ7KlLLIFqtwwnLo7SXETD0iax3T/lF5pqf/3I2+Bv18Yh51yZJV6nbqcKf7evRODD+Iay3EUffgTmlcuxNyY32iBjy1xgLQ0g7dxUiBKOxLj/Rh7PuZPRfapFPbaKJEIrrkvcQD2Dw05+d8r9oK46Moftl8rSHi4fjz8ZnHMQ7alYslLhjB5DkJbqKKgoBrZLSctPQz7cJLkUdZkZWyUfqCYZ0VhXj5ksTd8ZQ57hoJOSAbOxeYcVle1jIFu+a3CF9MOg4kJHyvuIRxwDsrzI+VA1fhDbXWqJjnyBHPXoaM1q+PfNSpPkme/RdpBH/kMJU3L7TtBCTKsvsqsZ4Fk7ucB0ETxBZkcCaHgHBo+3CXx8Hzv1gVfosGg6mqdHMeLYvSjTx4OaE6FFJTU8U3xVSHvvs+WesyH4w4vWNxY4ufB1oiPl2EV9Omigk9x3qMBTZoiiELQknhL+nYl5Nm9yv5BXRK5P0rep4U0Vbpl1XJ5H9izP8FOKaHXNyPE9oV2FrE25ZEYZWG9JMZQ4+Dae71j/lNhnq74J3lGJ7ikREEYvcZyjE8kIcIJQaaAcxVMIoF3c/r0bnhUc8XksRy2ZjxEKqlYOWLh1hHShBYqOqqnTZ+UphW0zyAXw1yPPh/O7hzMn69h78neqWmkG+5KZ4xlafH38FdneE8SIuntknyaSRTIPxQYrB8/CtvsuXgKIt6JrAM0uuW2xzQXJmnNMsqdn2E4eSbA3qWB8ZUVfKtsvi7dgwTw9Ri03xBRBudLsDVOiYoxgtIqAEt7jG77K1vkvQVHomtcMP3TEfCgY5zRTgPvg4b/XaIe5bT2CEetfbDnXSsK9OFOnqPWlQRULYe1B1rz6zs5Xay6ner6oGohV5sAHb4nhpStuS00vkRbdEcgLiwO94te9+X4yAralUeXTQcGe9glsggvQA3+6zi7npI/LvNSTj9jGghu0MnileKMfwXqijLlnifcFIe8L7cX0e//kJ2s97q23dkuHUlANDws6t0qMjxm5EBhUX/hLAK5xgWDDHSu2T56mgM4LRnfbJ1OWkK50B4fSNgHfUD+nIfhIE+GOg1VL9ed9xDfPKmwXCUeN8/FfeeetFtmHOmWXeDCR8VAypQ6HQOUqNL50obBhY75lluR4oi+vOTHyUj8KfcSH5TPDpo9rgxdnh5ej9D1mAKgd/uHXSqeSbX2raMC57wFga73loVaokivsGnv0kfF0/I8Tpepfh80vbzJP7F+YPm/4shKUvM/m5JO+aHYrgZ77BHK93YP64gjhl89stclkH7eAz3DtF/zKNgjSrOHNqVNQc47Jvrh2Q2jUwx4U+BBThpWWtYzwJYBoneKQkN+t01rRRIiVLFfZj6cmPOBIlTzY6qnLZ9E4lpGVQg5Va6mhovWvzMYT7qby6j8/nzL7Iv/0MGdVrFBC18yRgFXR1q3i+V2y9pDh+MqbAQZ2YVfvp/Fqu7+1BJ1IVFuL36g9eP1oSM52bk8xlwb1hp9QNW4wmth2pLmmDEe60TaOgElOw6St3wHyum0G6DZpz+hzAHwsiH1YiNlsnPMLGq4DrVHko+bziFxDG9wM06gSVhynjfjr6umQ7R4NZeCPx/DLkYwrFtrbC9Wcf64hCT89WKMOhsArw/umwa4RwVqueXY9jPeH4C+XOam5U5LQz/B72q3yHbHUSN7DH/kei+XPRC8NpEvE7LVS4HH1PC4NtgdN39P4nm2eu7ylxk7fU/913FTevf1vWDFF2+O1DHPjoF24T7n90wgliksa7SqPMih8FO7MzeyO7W6LlshbPFWhpWu0jjBwqK+qVwCHVyKXkDyMfVoB2IDgbFSwVrRxwGVRXLfMyJ+zxgQ0K9knOrWGBXVFi4qQdgkHVd6sZXtBVDmeAjgqDvJqzDALPunLMskuMoSzVqNupvsjS0O2rEk/6+4Y7UCKQIRDjl5NQUhOIkpeYwVmUN2ADuijU8DjnMpOTd2NY9+Iozv1lVnB6ngjDhHA9WoGm2L1JgV+Cyu5RLiQlqtMLLJHN3c9b36hoUYjHopuFs8d4FsU3MdGENAE/fRi/ZUcLcuDY4yxrzYhVMpX/2ZRg1ukKI8xd8AAyjiDMpIBBcmu13K0q1VMNlABOhxiGg4z9Sbwx7hlioEY1l4kbGDY8cFnudR+62xv7aomlNpjaSyI04SROzGHW/bfb6Bb1O6opIa1jOxXYH/ZEFCpZO/4YaEBnySFz8Vk2b03Up085AHwdOKUydQIwEC9B0e0dbdvLq5Grf5se2FucOhm8VkaFTQgjLCeccQbL97tC5JCacibzwHIw1wAyhAhUH4uiTrBI4n7e0PYsjRSKiXRob6EBfy+0+G7NeprE3zG2IEuBF0OU62FEhWZFWokLpKW2wmKbwFMOIN4y1qcgA5cbLrkPYRwtgptfy23TtOxDqAG5ZpWR0+aRF8APV/znucHbBzHyM9FppiBTpUFM3IMwZlHt5Ktn6Xvj0AKvfM6ZT7t01A2lPnxnyrCIw5jpAYCYM05vBaBLo5XisfpjxFOCEiLRb2pgcD+TX7p+u1q70rqHuKglJeXeJj9eP9tSWY5wONDkYrIUXhlMg8v+/zWkZAccpJVTVJ+WMXexcBwVwMwLudfADQWA2/8CwYzpUFPqqild+KTdH90uMhUM/9UiKJELZ7DURDv0XNQV5xTa18aKS7xERKKSWUEdXCkdB+vNZYsKjaKf4UZOOYzEpWm5xhoxpQP0DYhMcFo0/bMj7X59l6PGPpA8bLott3GJTAMI6/ODYgTWXE+axnAHtqXHUcKoZcg6BIZ9mtLsPx9nqDfKoXt9/Dtze73JIMXbFZyuLmo/smi+oQpmBVwVArRhtzFB4td0rn1d4Y6TC95kKEefs48Z2DhfcGj3zzyPDClQtOzBnGy8wPfM5IY7MnuV9NKdhFvq6RqxOTaniSAtO8XsCkYNd5T2Ify9HYOz3cZhQRKWq1yRigjYb8vba9FbQlbgNmc4Z3aA2GvFETECcsASLwyBLsXAFNIY2D7rvQGs0y7sWpte6VUVt0bDQxn88XbSRDM2/01DFVU0DKbEO/1jF+FGkQjFIIT+SL8dvpjqZCJN4PftIpkwWNxjKiZsI+nE+YW+4rWTMsHz3rBPI8qSEpWyiosOSoregKQOZB++kxGjKSr1VHJWs+UMfX0GsVHtzqWmEwpws+BdRRP7DHrByM/mm/ORLmtla/g3f6l9ctFjx3c7thODbjvCXaVWIvwEbGLaaXVhyb8xNZ4MU701LRltqtKHnEsJoYzYOmZRzQOONiyFeMWeYa05ihu4tlPBdFzl+wPqz1N/knQyJA1soCCzZxQ8ln9qDeF8p8EVB6pSFzh6fQKTfF4lBjFCXCfw++ZUVeRhwe4/Lnt1y0Abn5Wwzy0GpMMp+fVa/IaeSqK3IDCDdj/l4Jfo8VX4vw31SaSFbwB0XtbjHIRgrTGoSziRhsKGYsu1p9UHnczYQxFfZTuB7uJhgR13ax8APjlUZC+44YN1U6CXCaLv6jYsUZeSxvxh5M86hC+cls7pg+jBdy2TW5kQcGGBGM30KMmX3F1NvBxfA1j94ykd/DohwEhwvrPKbl7KCzNu748HzauTy9ibIFwCSMCkl6iOE4DaPJsTSrGRCZ5qK6M1T5CmPDB8sEpuxT47xB32DF6RKSWJqCjGFWw2s7dNuSOnYHTiH4RW4AteTyX9Jx/GLzyPvSsdTpfluFx+0lj/OwwUc7hokJitYbuN0IzhhfUUhSAnPpGVMK3p467NQiH0fCtf+vdGR4N/thlLaDtM7zXjyB5N6YQFM3mBqR6hnmAmxrbiWHeQryJSs1VMmDxrMxlouzrkMeI4UfXUY/DhBnKs56vaWKYicy7ZKnloa0+sSolkqsWzHW14KJxspK9+q/vo5Y+kqJcGSk3ke7zI0p0o9wF7hVsPAkHULIN7RmphCNeBCkyhOXIhp75IqvwR4BL2ZxHG5asU1V/R6Aksv+C+xeADIfyOwDHX3CpO060sP2t++FU3s0M91rNkjdg+6Q9sXXMZp0xpnwoAqfwVLdqbz+H5M7Rfm4+acIpXqJyLY2RXVssuuu4QJ/oKi0Vnm4SW8Qj+vNPBcodrIHQWdZyNTQVs4EeQiyB3cAsg3h02WJ22wkhIJbs0oDGhuDfsFj9654LXmOCJ3UsEQs07f1+S5o9biC+bO/d5JNGVC9xIz2P7Fmy9Vl2gbMwXa5KmM4kWojpuNuth2jtMEDk8aW8yHmOIqYn73Pw+GYH8c8ktBY7qlj5WKlyCIhvG2G3O6PKcDDBEz6As6/6YqnFbqhYhTLleVDxnZNo97cZyi7VuDTIpxwJ3z25vVptJJmz5d05iiLZ7mQLrIZUXev8CIFOaT7b5N01u44mq+MBugbA3oLZ2vMFjHYHwd82SsNpOT9SL8ZwhP0iGlxPlK3YVMqD3tjqglh/lFBbGu/xqPnQWiOSu3KizC6Mz63Kq40B7pET8zrAQ4qQiU5v1qhRDeJerLp9fRgnOK13i9AiGthbWvdkCr1c9FQPagW/OpDlckpbMHH9XTTxnQ0VZrN/nyIwvnPdbtlNd8qgSqhdwZDq6RDFsvr4H1FsxO4IHEWutw2cFN9fbzu/xKq4saBdZ0CHkTN8Iha4vhEM/rb3Xf6TveT1dowlgdFWTmwp6V/9S7c75285Rv8t+5mEoh9odLRI9EX1UuoAlURfKDTK7uGMcZLdlpfBVA+c7UO9UtYStT+BZ3+M++ypjDxTUmK00exWgvUHALm4bHbApOypvOY98DjHsj5UrJdB8gPwbJbSPxFPWxjEFoaR/6UzzLG/IPjs98ifIHo3vu+q8aG+etNdI3hIl0HQp1qiv78NnCKRzLSE76U9WvMrxg8mj5fOMdFg7Gi23lNqRBTCDadS59eHGF393IMvxHXF/LfEW2VZ0uYaqeebzy0hr3vv3brB63CtKw+9qku2UK8ShHt0K8c9EwV/tUMuJCaIlTSJSTLp63Cq7hnDJSYqf6va4nP7udOLopnvmRwX0hIVjD9gUQZoaEePcOVmpsZ/rM5G1rkUs4M/0qp/iuXiAdOGPzO/whb3Ry1mVpwX8v05j8UJtxXayyHqZL+UeICXD0dX/84hhbGpQhkd0NhnYP9Yjibxig1Hlbb1HSMDvp9d4HBgrtk81Vs0hZPEI6A8Dw1inDyXvkZjpXO5YQ4t7NIX1yQwN4PmGz/+mpYkfDLrZX9T3xSKOGQ7kbPf4ZIXbOuPaIzWM1biSb8oGh6cXiQQyUycDpItu21QPB1I/Gge2OcnpDAF7stZlNk3gKmrUJbHK5zdw/vM33yNrogpLosuICi32vEE/GFe3M3KGHEY0w+ZFiWzpVtUH5Lwo+Z9Fp52EEjCJG+HV73FBJ3vrsfz4Oo3z07sBbBbRb65QmxQBY+dLLf+zxwlmB3O7FnHiOtUBb3tlQYZ4RrceWIA3cieMiOQUcl0TtNKYCltK3UNJ4P/ceB3zWRzIY7HyHldxkSHr6Wb49Lqen2Y5hKFTCdvf5dk/e4btuDZ+KvF7bfchIZzKll82t/AUq+WnZ06IWJ/zOZji80AmgB6YuPHmAiwVvj00gTWivrHHvXfD3T6YknSa3ORA4TgdTXMibnjkbujLQLoAKWHW+9KSkbNBVjIazBxNDiR2s4+NxY8+LjQwVln+5/TOHNvG1fqdhL8D76+E33r/2odNHTh53FgtiNmssd+G/Pw4lFhS4+QA3MVRt9QMgbJuY0ITxl6y9HFSthii7bnIJyxSPF9Cau/aK1tWMm/Rbu75M9J3wzqAwIHC7zB9mTGp/MzCno8kgQ3k1ExAs4NJOfJeWdfs4LzK7aITvo556OpccHRjGMUUuxp/G101LHYmhoxBihRFBcNG7lafDycMEizyAI0r+w0rU8CF5s+tZFJA1VzPdKuHlwLCHimeZRM8Z4GYfEOC/byDr/hd8wdwyj5OVDTmUDDgEteDJpnoAW5GNxCy9T7+nrc2d3v5pRH8afSiMWBTpaRVXf7wCo/RLmDcWNtJFufPSOZoGFYoIuf9u20AxbCN5mTB8zTe3vkdUqMYFmLT/KxLmyc2AGv7zy2YQLM1BNWIpbT+q7c75BSc39qb8iOlRouguv3WGBWcrvkLZYJjg1vNysARm6YfyUsVLTZpydvJZEXVoHSWorJ2RLrPasPf//YHQAstM6H4MoknIs9SDUxWMBXvnZebjRvTvIQ+BpZ2jJjEpBDQKKfIt/ChdMDM1qg2zH34DRTQTS9H6Oy/dUBja5bNugYWBNFCYrY/qIpFNKFCAkkSz5D0ZpQ20TXozdPpe2fRH/9tVGyBoePUQ1DwEx7i8jMepogmlyQffxUm9IAocgzRG24JLLFfAQ1NKEVw1ibAdvhklR6J9Z1GG73xvctynatCfdXm/g6gLtJw2TKfSau+zmNYCw3B4KsPZJWggpVoHt9X/TbtFbsBJHB41jPi7OzNWvlT6TVNGDT0pIZMwW2rmqK+F7mYLEWjPm63JLlLBFqsledinyQU+l29cB4ONZC4133NsZ8WlojxjAqPdprncjL/IGCGixeWLVjZTec5LjXW9hxLZZXzKVsqTivLWqGavOXC2VD+y6odGRJMgq1/irOyQxZqqeOdfqAEeqfBLOBeqLcsEpkIEHvk9YVZVHIfhryfMT697VKUCemHCUFXB/r+1iemC+oJLp26PUXefnyvXcFzgsY6vst8CMjBrZYp2qLmnC3GRB3uN0pj3g/I0g4btDeaaaj4Uhjlsh25lB4EkQk4fDJXI1v1cm5Y+xveCEoWc0TIgj4N1Gg+rF8iHAXIq0dlOAO2tFjOf/JXuL6iEQGW3pv7UM4nU+m6TOnzFm4y2W43qLlU6jDRucBDHxCAePl5C1+AoXLHYHES6OdTTDvmpp2AD1U/ZoHh+O+xQYPU43Sw87ZIvK/Glc+mPSOdQ3WZO62WiRwBqwXoVVYrlIqP1bk05aKNSxuPGngVVJoHycTVBMow6KczW4sT5NSWNnsnBJNzZ9KqwKJrIHT0Ka/omVuvLvYD41iGzY8kO6sQV/NlCQagMDfQrUXQ9HRdFDwrGuxCrCRHVW5XGTxrXKiBuQaopgcKRjs4uV8WFa+7FZWQ//D1qsHc2sN4ArWcugs6ua0NWvnhx2MAIWkZevde6J0BziQJ0AGz1NWjhARt1p7+RrquIzsyZGKaKelmhfTaHaXsWo5pYmFizTZUScjnOHO/40Z8ZfhvN0CjTs59BMF2ND0gjOWxldAoQemTfav8vprvSiMUA0r4T5gxTYEJdmfGFFSTRLkHIpZl/PH5+E9Ua0ortPHu1UYF7N0KfdrBqoGRl9T9zRYuSvr4ijaBOTGJ0QKJmadjBITLkvWDTPOEhDJJBZUhtotgNSAAM5kltQ2ArT7k2fz556iin7O5I6VDMDYTDMh5y/n4gPNX7PjugrubwDiOM7ZKY510Jwp9NjaaG6mQ/O5KqjNrLPEAul07EwxbZ1gG/F6jUu+MwGR+XQS2nl9Hnaq8FTGj5P9x2tTr3k+R+YyvoIo1GuJWdvC1AitT5kvhLXKOv0bmeNiknbupN4I9SJbOJ2N3gG3nrDWa2P167xi5hsBXvZA1sX2vVtYdCCKo2dmRleORUo5Mkt+AZs0eBW79jI9aLXzKVqbmwKOkaOZRZIcA4OPayETvmVWKwlhdYWWGVw7xt5alXg0dLg8+5Wv/4JPSCwFZveasno0W0CQ2jzsexEiitsfT+GkiICGV6V0r3IN3DMFI8GIwrIXqDv+hNA7KqjdhOmYQTPK2qNBOJBNelNyTMiAVxQehdFc6C+s0rTdj57PcgxKu4jRZ9AAZmdFjsuSlS5K3Tv4lmiWSU3BSXtcLPvrWaFUz/+pdqWSmC5tmec+ROwOoIoK4ViPcESFyIXuJ59Jl35IBg/dzbhUrxbVY+eGdEypoZLqZWHyBMLtK4cGZneHtrXBDZDCX4/2IhY5c3Ihjdunrd3ghRDMIZnRUDHndBmDgIM46lOjPGJM7mYzoO4GKvtk3gMbNeDJQysPaycdYfeDfwvQRQXorlmgIeZ2myfYntljoqWIiKUEPElK+KAcnswhIlIeirYoUtsv6l16mN5pjdgidcJI+r0MBDNCpEC8zonDfecK4RiJ+1P6WOJJZsSAlAeyEJN/qH/ODQtHoseoUtytEi4M8ME6iLoH6CdJn6mlj62SFCoUp/6OB34UvZdCCjcfkze3636Urnhk44UFOdNzIGDBZWyiW2iP5Vn7zqfbxXfi3f3jJioCfgwy99p3VQ5pale15OBN4O6BhMvWBwib/95W1Lv4sy0kfpYtLzsDp0GkddhzH8i5UAAt8AlEw43b1L1H0c904UQ4FaR2YrozMJ1UxsS5PIt8nz+rgpoPAUiELNd2H2kzXE8JsWIMVEDF3RH/dQTPeNqbcI8vqHYH8Jg4BLmEo6ph+rYWJAc39MwmBRjRoamB6Q9MldZGgD2vbZoEoqxWo+ASRsD6j7+lwD6MEbySk6hBhR4HAOLk96dQuUqr5GftC/FtCb2p4byhYR35QmAL4EsWYCHIWF3ip+lDTgeJ/1hgDK/Lt4ZoyZaE1DyGxQ2YJR8f65n2wfToqPFBMfTnUCLIH3Z5GvC1RhpSblUQcK8+TBfPuvf7XHC5zD9GjJos6xo4rDcuoK4FHe5Ivr8SZfTStlL0GhPZBEqNIJuxpIdfYH4n/M1QqG2Rwq4PBVaoDTARAMMJh/XctEyUjM3tLPGPWs+Geqi/Hmai9O1OEFKC9J3AlcN2xfrKml4ig9ZcYbP0r3pQ7JG+6Dj4HZpU0G6v34ltza4eWcDxgwcIv/NKMvRM3rh7W6A01wRBl0eAPkg5s0CCaY3RG+swn/t/odrcWaUB1bCEgoLbSY5AduCGuBCGFvCHK8xZcFCsZUENgiAtPwtBiar0+FRaPg7s/yFusd2ZLF9JCpIaVy8ifjJE4Fvixl1u4OrD3nbyqQrsS/7bNZtK2U2PAZLRg6NqUIwCDRDXqLAVlmlPQQaRnIVoKbgyPC0BNe1DYmMyrJj9dm48oeMC640iaCKmkw4ergYMPxw7XKKYVyPXB7jJKL4h06n/yzKnMxxU0tdQiqFNGHEdQiKReBTYmZr6lD4spINE9t2NLWP2E3CAvIHhIqvmdzOmAHkaZp4WFUuerozGweolIu0IAa2BjGknHTavNs9vi3eyFoJh/pv2/+KJKUKhRcW+ubRnhOrEsFGe6txo+Y0i99iv37q6nabLI49kISIvG9/6R58M6I+gcZEh8ppmD9P0rZUby/4r8+BWOH5Hhvy2UaclT0qIsozNxiN2PnsyuM4XQJTiq7skhJdTy6J8+EEKPeXUVrJeVLl7t9aHNOfOWugfeObOm8mOCWreU/tbLY0ptQnTnQ4f3odgVvdsqjpDxVYiyOzxzenW/y9+uzzFCjEBwRsGWoNNj041UZuuj8+Bigpt1SC5QZlw1sgoDqT0SyRu2CISJBUZeOEwexFD8s2mQmwokLivzzBoMWHnzq+iK+tlDm6cnfKaiDUWCcZYo9rG0LH7jnRb2eUJYx4ikLgckasCbxCJU9llDTDLGHEwrITkzIjdZHO3jixvds5EzdRdVOW45cn622w5s0X4akdnSoHuHqPM1H1veeCL4qjlO+f6O9Vx63VJKfhMNSrs9LgdvE8v00/uBx4H1dhTwAl2FHdv8jntNyUjQPLYBm1nIf+zAnvzYPSkJdw7BLiMfF+I/5TM8Zs3tee3fluIwgCvgKVzmjJOJfYCQmB6O/FTNtS1IEYXWtnPlEOaFA4BI1gCrsj7wDpJ/YahSHrGhLvS5WSqSJG7YT2YG2kaUkjDXUOrOXRob99c9GXK+pAIBGqhqpDcSWyb19w/vVmQeO5Xip5tuxDwlzqdSFMOiEzHuhFSbf11iSH0GLJxP+JMt3Vu1eYwCplGLDRNfdngEB9JwCxqUJiYfZNm+azOsBcgb27xJwWxKZaCOdYx4lCIGwmP0sTR+ExqmGeeaMTnviDbfYZwj/WXsJCB6d9vw3HayuLU5tAsWjU2julAeys78gUWy8LWANC7FUXzquczMJv/5BThyIZO5tF9UodwEO1DhU9G7k7lxLHxi6Fc3NkqtZMnVNDK4jGc+5gTsPV6C9TgGMrW8TOcL7SNwFieghtMugYx65Kd+LzoP8HL13lYonBFhdTaOBAGkVKa/INoVA1/YTNjI9gP4e4Wft4VgQFba7PPwD9R0w1tXZs88UZ3ipiFdISiwI1XXhnj0uV4RTBGSsQ19gbWaN2ccelJICLiaCe4qmWSuEfTcCWAQAT3jveCw8ahWU03nwwSn1JrYJTkHzVJfwn9/3SQouGt3scYNtpPoel4w9Ejnfb1vTZMSBzl9w9kuVbaDkWkD8U5ctc/mrYFZBKC2SJ2i18w8WPA2ZMQVLhqbvNaX/Dvi/2toR0bRL6DR4ZxAdEyQ2y5zSVIfpvP9Xyt3bNlly+gM6KbDVCw+WxzYSHHC9OACiNdtdFW/bahH3iobJm3X8j7+qCDS/xilJArgcJxQ0r32HeZmWHsa+Dqm10s2yPNZ9Ir6Y6IV4JM/37Iw7tvsHycul9NE6K5FZ5Qto4sbg8kFv2zQaJL5Y0GgqS2t1voKKHS/eiEqVZbn5YxJFipq/875hlp7owsK12EVGQj9I6uLKfhNXjsAyvB7Eq9A7fj96yKjvT/Q6yerT+RXXWZSl6PM/Dj2ro5tzbZg/411zlF427T6niCuTxCs1sCWtfDPtKYkbbJD+vlAPnRtPfY9Hbrkl96hSDGtxq/81wMZmVZmKYmanDv4Fnch/T+uP55b7rb/IsNRN3PFwZ0QPO2jycuIrFe6mEYvjEQU8DyDtgWJlwX1lgii1byriGB5FyT+5PIAisNjh1JRvUJv9xgkYKuGGc6fN+9SP9cIi8rFIxYJ8dXubWZ2hB27EnzAAnDv835OmD50cFVFTa8R8T+5UeENRgizUWmzTppsbvVuQ8XQDaUuejKvnm14ZYFdE1/idKbgEHJbw0IQUUBa9LEiEY+hhK0h21ZZpNZ9dpNbLeU7CjVe9dWDnYmpjQx+F8fxMe5rYHFhmANcr3idnO2+F3uMdJzVbn/FIA6/yFsBBTIdFOhtg5tXSaNWxn71FoNyWqAdb5pU+XrBGQthE5/ALtkTBoCSZt01NhcUQt9bHI+NXkT4L5Z9i2pXVqXA36rvJMHTiIjVy7SIyCQuVvyjiqK5h+GOph0UDf40eU1KhghJX81eDCtDUgjq3+V9TjGZT2wwkorSj5XwrOydBc1dhacvGJqvPZ8Dozytlpt7BLi/UbjuXB/jL7JuI+ab7cmbGWA5UnPgZXO5kS3u9NNDql+Nf00lpx50vPWPxUU4iaHmYsiKTHXO4IRMPCIn5piFlzGiNt6ZogKIYMDoEuBh48tF+Z5I0NLFoubsJ6ykDXbYYigddnhVhEJ0/m5TblTnxta4KT9137IHPzteNtRvxFPN9U6utBMJRBEqN65vHdqcRFpQZPr4thwlVrZE6TNxDgvND0Th+nInr2zaBarIRR+7jsnEBdRQ88Wa+m83H0pR7n7pV/6q02Onf+Tg/iTPlvsMMS2v++iDica10DsN/MJ0Y8t/sS4cpiiA9/vwzoHDkZpkfOq7fmrf8oacFbBIblt0tdtjzZKTTyZBdJyohUB9r8WL35+hfsBpuuKRX2/gYMD9KcAsIH4OBZy3w/WVvPU3mA/f7H976FH9/zQ2R1IfcO9dLUIDh9KXuez16Vp16Y7j5HRG5RpU66nud8OjNDXrI/XV4RpH/2ohWob732dzacyotD/726vMex7fRHbt3luoG4GbrmpwWerll2+lqEmx/EImBKmUnIeXMkBBNBbJbVUfQdXy18J8JlT90lMK2rDOkwGEhfW2arDXwu1L1/8e98Xf8W/0QTmu+sqI/E5SGiH5QOGAzmyxZpB+CDj1tjh/kDkrf5hC7Hv3V5K2vzsIoZp1lVHAVHLqkdCsYw8d3C8BnlhfgohPyfKA/P/zyp+z+A3Squ/J1r87Io0rdZP3+yyp+bfaK7d9uzLxpSQneVtpWiFDVZ0T+/hz0R6T8Mjqscf0I4Hyyh/FJeEuQ9mmgDWwzTnSTJXYMY7W8qEwUU7ek3IFlRNw4GYRNut5tAsu828ctZ65e8vmx28J5ZU22d0Mnuz7gmawDGYgbBM9/K1LDQVZRpIW3MbuD0FLdQOpdbuIefmHWIgO1KRjtY7Uzlwvrvn3SCWKLZIhAxb+QffjGthYTSgH0jps0uv8ptDrmGb3Cuw3axbAKDBlZR5jNc8pIj3nFiGAEVMp+DlPwF/Vd+tH5XxiZNw/L+IaVsbmyY39FCjBgIaQoZKpS4eWu/Q0w5KxYpX+jEmsP5n5iLlVZhq5gXV1ssCD6pf/SN4Y02VRCq4nKlNIclJUC7Otr65eL1J6QwWReKHMgGenSxvZHjmH0We4V5by9PHbJ2sahJK45yVHS4G51T78N1Y0dsTEGKlScp0i45isVi4O0Sw0SKp30Dl2lhNcCpNeIZcLkcsZ8NvqYE/9fyy+gUXz40m2dMJqmkwA4ZxpjfvckCAfddVwNeweEU+3dx1xKDigDEBGb9FUSHDO6RYRHBhKoTNk/E9D0hW8tehz0vAQiqibQN1xPeMAqs3A0/aDU5vkPZyoWB/SOq2r6p6PRkvzgnKBwcsUAhiPORkfrxXQjvRkV8jdIi/LNxzRuJKkVu0rBBtcaPp2wv4iVUWiCYvjfcukgJ8Bz6uQgikLt5PvLb+w0Kalx+4v+ZSZFFelrFwiKOQOiSR2QNenz/35GszG+5OS2Cz/2J9STShzjj88ywCqw9EYIs/u0J2neq+d0jdevOmXMN7+rsh7JzrOtJTRvn0ghLWr8MX7yVQbkDagQHVrHMvWFISkLwi/Fk/unzrtitKUy10vSnYlF52lvWlNkqjnb1d+x2aSNgghbWi/Jm0oLbyg8fDGMaCyQDDAwSsC23yx4aAAThMfviXndeb1L1yqB+7c8LSMAAgR7Fu5nG+PMVKj0/4bzDIQ653WHt2l3+NeaccsVSfxK2ppieynMUEG1+Gle3KJAoJ9VgLJooxz0OPP5ARZY6EwQwubL5MJnIFGPyK+IcLQLtu9H+4OePaaXT13hcNt3D8Q7pJMTqxSrc5YOBGmufKVwKsEfsjTo/sD0SzOiDbiuMTfyofZF8f6bXU80oWMPFbbmMtA1BkCpKX2zjAQLUef6PwPHSC2W2DiioKtAvYCvo1s8xhL8ZqC2a/pVykdb2VvMXD1pNdtJ7hYc5FHMJYhnozw2dQqbV98pne69CsT3WsXFzZ6ivY1cmnkK9/P/Fk5YiTPOyHgJZbJtXc2vQmGhtqUQAFEfNXqeMFnZx1s3Z0Ze3BZNAJyjxkT77Bn8eW2+GAV8vgy7ujUtJcpUKZIj/797E8ooxbHYaMysbwc0Z/5F9DOCcljk3nRjfgFL5Wo+I4JvjEZ55zgafIgtZm4FO4BM7YGYmATtOoa/4Ha3TY62V50nnSjwuw5u3AEEIFn+kzItgtnMYg8f62/osfRiu1HDqaG7IFMBK4yYSzwdDeUn4692xY5dtXUJJuavUpZt1z1pMdQmEnKRa9+RVW3mEXrttftGkOg6ofbRFdRakCMXHwQ1yKzVU0or8ftYaCKXDKJN3bQIzEmT0pnW1wVZ1mJ1upPV+htQLF8d9tYPOMluGUk83s2u8ia92I4bbCiIdIkieJcuiyPChHjSwd4sJjy3fE4HH3BsCu2EQqkzkoBZ4Z4nf6CS7ssIgc+1JF+o74n4+hDb99YRzaVhbfTd/Cm0iFkcWd2tv+Mvto7FLP/Jq3PcsZfxOWjN6KzVQWkOcEoLwNHxyOirsppAHcddfLMfBl9A5WJnQHyvPmBrdmJdVxYTVU29FkgCGOGfKPpBvAsEmhA5gXOj2weqCSncZ6cVooljWxAIHXkqeJuynCCWqwgVdb+YxAZNOn0PO4DLnoMUFlPXu/yNu9B0mAF0wF7am6fhLHpBV2MVm0gNzVWeafJ8MrlkWo6yoZmplBEy41Kz2ZKKMHe1XtNK+10s+MYqrRK4LpMoD5936zhbbHEe4lk64GsoVXHwJh1mya42aX9oU2JwTPysZR7uACiPii2Ctz2huKtjYIQ/d7vyg+kTsn4zDuHVrL/QCDVMvgGrMourqGdq2pODnfKRIOa9Joy8gPcVWqpggq4UabG1mipLtShb2HujVeWKtsonC35LyTa1lPO2QcIlOBsj4ViwoLZlvX6g7O7W9+SxKJ83b7XvdigVPFwFL0Vhepba+LOSyR67rIfXZ2EuohwRLkGXokv/j3P1ZldrmvZLYZp8Qn3jV+YN2weOIA8/GK64lLAi0cK+ODSJ9bVa70PvRGzQeoiLnseq8SfZRI+KMYZUKp2AGDcBg2g9fd4mG24onCH2J4NKlXJXSnR8g3lOLyQsNgPhNRuRu/+i+c0qJhDYAMy07mmGZDsX1NXElR5sSt9CIWqy7eAEBph3j2ODmdVD91NiEg0l5K67DolI0b0ktjZ+sq6T5FSxB5GfROQq6F7dCf6bgT9mwqqOk6uDXp0SQ8Ukg5albiAgWHhDvlbbSGMIYSRJtmzzQSqYUUQzyn4ZFE9ddyR63+Q0dntYc3hpLcgVGr4njle1B8rWDWxbNQrrfkwnTFxlBCqMePDnpLV3mmMsPnDjAesiIpa10KY4QNMcP2duymIX11goImV38QKdHLAkEywGsU5qAPC//wkIxri9lq4sx9QCCYS86TMymO4hRLiRAVQnfSQH5IPFnDSiuEvoKqZADXaLa5FO6W1zXwpWvMH2Ec9Kpuuid4Wb6+gI/MmYmS5dLica/c7mPQ6p0dOB6t9MbXrYVXgT0KxhlWHx1EesCmIQ9W2eLQpAcq6kyJWEoOZX9d1GApB5mDMnvF6gbFeoPZQc1GLR28neLi16QpSvrlzcsL5CvxKeRzH6LlFHDDj21LCzha3n7NWXtcwb59kKzPhYthCMRp/HcyIy6ulG5+qLK1JbsqrDcLHXOXti6wl2t05cw7kHosioA6Pq7FI6HhMGk5oGRsUou2IghpW3DDndOTv7RYxXggksoTu52sxCjnei6SQadMzQzY83DVakSmFgdnsLmtndYRwE1h5CNEg1Y2mP95QuUC8SXZEp6KGTOSONC8YFV1thPDAlRN7pTDUTTXhnod49phBrIf5CBmW7uvu9nzU9smPn0gg8cfQ+rDxl45REAv9ezntJe7B7g7eGTk0FE++AYw1xhLcEaR8NreA0POpD1n71iHGt6BJ/FA9kfyxXCNMnCKMZQ/06szIle6Qeh+s8KzVGoP7mHtgwY8AcsizExi6Ps4oTxDDMZCkvXYsjxhY2NkAngX94xsLFdzkYvDL5rzhogXE+yhE7uQIALpcn3qV4/3hcW5SLqbgUZhF7MHvav29j/dvGQsfb16j/HLdmd1euTTqLcOfusPuMUCsfU9OYbCdzsugm0oHzeHdWbbH43b+Fp2+9yf29VJTGu6qp0LrK/Xg1vTcW4qqCyuvNPUa0xu7cmaI+DklsDfoopoFNlblswy8td+H4cz7UnJYKLRGrShPxo5QcAz2A4lLxD1sCnE5rCx6uqLCJNBl1DgYfNCfEu3YWVpAz3tjmPPbPOOy68/euiFeG1JEv9F78wagXIX3ztPZ9wpjiaBJtN2aDvGpoiiV8mpdMUI4KFzdxfkv0H1LGlMxDI1syMMAAnUMcB2t8fkbxTFVzYnNXRqzkyHW0BStb6YIcj9bc1u1dmDCS/nnOsRr23sqk+w4+aOnbuvD5BtJk03LlozBvXLwRX5gk3LiPv1T2OKqslRRYWKEdSveR88w7TrFK2iFQDBgLvCm3DEUMLwbEjVVLyvcRqE6UpSzktiq0zaE6OorR8jKvMfI4I7SavCjaqGA3CKbWIDnBrfD14ujVclGsmfP2FLZyHqpXbia34eaD3loxHdJdOvXzjqHr9rCCjS/faMRaZ2q7kc38td5hhgUjB6lT9CjDfD1WWyvqV6/cA2JhdB0kATAujDZqSdbuFdkyjUyqdrV4pUBKxF7ZDe3tn4reaYN5Z7mH3vMiCeEtBccjBC2G7dLAvpCa/8WkZ/MdiQMPwiJAiIDi0006c3iHNv+mzC/lKl10fGsBPWmmJoB7NV9fA84+lUx5Z9Ayc395ha9FIyZBOpapjAkBlFk95ODfIGlzPsHRU0KfJIPTPdEyxhYbVdhXP38n4jJxUCE43PBuCbjcKneUCPB2YFXL+uTmh9r8EVbrX1ESDqG1IFk8wRFUMdiyZxH/uY62rpXOWaBPvXdInXFHNkuGtwahMlM0LDYFAIO6HPBjUEoaBhYGQjfW72ZdlTywM2hc4d1WhRD1OjN5EZezMJj+4bk/6tcm+lAhf6roJaPelU9JuNXJtRkyogw/m9n4H8KvOwqAI0cX9B94o0rTJ3hvYgma8T7EYne0H7NxMbQRIPn4IwahmOk6aF/LO1vDCHC7l8IWUjOCIOKLa/sTbq9gABMHz2QKRodoxGLVDX3Co6q9qRTaLyTcq+PLKAKdPoSlTaJm3MwLmLARH3dmE1+WH7l5DjoqXScxGOG6wRn6HAAFp4mZQ9NlrHnMGqi/5tsmcDtR2dY0IInmlJpIZHyfKd/DEX3dJFXCdXmJSvn7HTzdv+9CsFFCWlq1l6LQri6/oI9VYIYbCWSUct/uuB8njklHEhq+yeP3oCCjMs5qEjGyYXlkjT8/ec2kYnciEUeJqHR/yMp0qxB6qVzM3BMzGRKezgU7AQkyV7g7Mm/c3AIuaHAMA7E2geqbF813FHU5s91/PpvO7gYZOmqx/a0HwkwRY5En+Ng2AjnRHBHWfU6JYrX2A6BMka25xtl9X4I2my5DDKUaZy5XCaUBp8eU8p0ULUxL7oi6EvXf+Qurlki7x8LNjv10VAWHpF4J+7MLLCFT2YHhAIaF7Uu2VRUnox/5UtiMGCRvI5Ix/IrInFIc8uFuPlus3glLTQriANMMu5aDTLbBKoM3ZlpV4mOfDVB5Gk9zXH7v9QP8SXGTlGcUwTxsKuu375By+hAkYQ308pG8HtplFzXSXi7D+MOnv1N9qBwx3m6UHTIFrAVqkn1QaUEGbk5BA/bx7fePhbxTKDYKy+0ShbpXfIHibWz4kwyunWUvl+3sfivtwJH6WHvno6U9YmufuwZNQZfkFhXNXaP59eYO9MI4GfhsJUcoBL0V60De8eNDGRT92nSCyTHZ+vcdPpCC7WdrRQvXuklLbbdN6B6PCnv1xTuVEXwhaYo7uJyXAhnkLkrVJ+vJVGx3WJNUZdfkBlRMw3Z+/rdOZUBFkc1ubjHhpSMaDmxQZnLODtnxkcd2v93L5fARD4/OXSfPJ5UAb9VMf7eW6diGcfRCqyjhuHXNqa4VBZWbNiD/uIE5OklPBaFbjA8bP3+WxAS3L9MBYbGHOhAIm968usgTUl9XQY+/RKdse3kKsDeD5Qik+x7gJ70ZKmryMp1a1Ffn5Bp9NRMJwjZCeXUNKOht5JrvCjhjX53McawA/Szm+CXfFGXqIY51x3+JHr5HsFQV2gWAru/PDIbKdpHAqPLkzwRtrFDRsgcBiuwwaLW+xtSCLzhsjoMz7DK2tYKqzXTcsWRPsgXX+9ZzoTpg5DwO85PQLBBuwQ9CYr8zdvMLRdrZCFX229glGW31HRWq95D68gy4cx+hhQiR5OHH2b1PJoLEcV++QbHhJI7kf9m45Ku+j5+UtxzkC2VIcBbi/29rYXUzPS+qcDrzX+sysidkuSoM9xGjA4jt4bQ7iHzLM2esXvos7doTuu5daIDH0Ws+9A6QiIHGc6pw7uXjbXVtzvrI1ZvyMN+AZVB4ddOZfQIY8m/40OBEcGS7O4ghfqmvlnhzbB9ayoMPE5KUdlLUp1BQuBz3QKcPlkFOeD63rh9+ipK5+MbaBz7bWKIa8xLYxn7EQ84nmfz4fDSnNkHMNGzGCbPGkqc8i3+TBPDgzxoEbbKh3oqlCaWz3c7y66yJOsbc8Rzz/11si1xpbEPWSBRzbaoAbJJYHzhOwpX0Z06Xd4AqjOyCgCqn277N4QE4RAlp2MyvcywFfuU1pKysK9o7R6aYOm0HMy2BDJp0/JEZ5WSNFUISBzSD6w41RdgqySQnU5rwjaPzGhPQ68nqOUObryOdeG7c86FWOih92cWBppda3MJ/AqZ3volPi+SEGWupwKHSmzXp8mOoOkOFQCXdZ1DUhqQT8fsuC3bupDc5PsEy0uhtbjNFT0RqBJKukxCx9EvZfItPI5IuGSkLLjDUd4qIOC+YNpHcbNs01kEjxt6y1h3WVJf+QHdj6KdgwQsTnpXlzNH41lQyrKJ424EsLL05bDheMIlyKVCJOcr+seRjHLyuEJ3yy8AJ3H+ipHiWnkjeBKeOixskFpCm8XGBJsuiqhbSR55+806UcF6VHPRusnYbZ6oKp5kdqfjL8PNOjdblEw7AFX4P+GbsLlaFliwJ2qhtoVPRw+YzyNWTO5VUJQj6bsBWFHGjZTOa9gRB7z/yUiNdu+dR+PR7ueE1mAOGPXxD3Lpag4YOXBriNFyNlHXP7wyBxU11cgzl5VhPldW0SPP+ZLBT2JSttnPLGt6o6wps6L2vdkACIyt2+HjKw0q6Vlp0fZIKSJ8w15Ogn3K+euLyTsZu+UoTkUKB4F7JuNElv5ZKQUR8QMx87b3TzhNa5/eBO2KKJf71+Zi0wwkNrmLFvlw5YRp40aU3+RpCeKZJyDre3vbOdME/PQLO8HLZm50w5WzI2UQ06pCqgjI4CCuqLLCcKWtq0ugcDnvUkrCL0F6IUN758OIMQemschaYZYAV/ofUaN7yQ8Pg3/Kivd4VBBT31Lla4oSIqa5S67DdRiysMKjO4Fi13WkP3ptKdCyMSkNTW/vt0/8Dw3pwLPj5ZUT66meWqMP7dn5Ut2lKdcx7DYtjHFrodudAI4G8WCCPr0K9TUIor5+ND03ldE2aXtfBpcXhv/cWRdIKkI1GhM0I7ctGzGfPCTKPASZmtXvTj7pt2PKfvgW9ROsjzmvIQK0n72ENg5q2dEpN/2mikQrpoqfaoEc+1gqFlIe6tfLnXLtgwAZEBznbvVVwb/IetHzJ8JpJtyWfltsSdadU8qFl2f8PyMo58MYjC5UsCDxWfCwQ8GzX6fwXJUOadH9NjK7Nq0mxg4bmwRS4E4lL08A0sT0h2Ni+M7cV2MATxIGnwHOXxP1YpR8+oQkv61UjYOOJryMz9NbqSnZUxCA3+W60maPndWGGho4wvO+b5D+2Ckkc4s8N+83sOtkNAkuZ79C/RS7vWCypdEe5Nc/n+GIWPaPNO6HUbd5yiS9mJxV9fpY34VJF3xM9he4WiL2AB5dJWAgnwz9kbHuKWjr4+z15TO/T/RlL2QM/YV03aiG+kFrCVttFBhlOmnkpWKo1eiBhNDmPjCDu9cWyNN6DdHMvW/OeNqBOWccHwF7eExmRtqS4ReroYgWjNynABUh8Ox1K8umwgzOQB8sX8YlSNsFWSv2/PbJNiWsBni0BPgTy8EGK81VwuaWCzge+94SUIWiVWqi8Q4J5lm2mckZMoj/rpnQFWis44lAoGJq3jmyZv2VTw6NFhOYruuTHoTa2xiNeAX9zhLiwGjw/hObsJc/tdAd/WpG2HHfCk8O7dSpTRVL0d+oHlCcLREr3vIAL7Iipy4jQVG2Z8vY9vqJCKMrHt1yeu0+Fb1rMahmBUwyrW0RRqy98vc0pX0mEZmCNxrT9klN+Zbg9/Q33bIIh/Y7hnXEt8ZTuzT93Hsc/PwqU0zVY8t1TVUjx5Gl4zgLPHoduI0idyQhp8MxXnbEl0weoM0s3Utk3cnCFXj+lqZccWqCXXor6R5gurN1V6EqqbuuBsf3/GhlptqdwWzduq4TGv94/ALrD7ilKddc5dsR3a8MV4TPfRbcVRbY0cPdhmcc+G9X3zYMs5c5RidIGM6LS2JH9MiUWV4m8gmLybKCJjMdfQNaMIBkRFjnvtQ3+OWCPPvvF8B2WRzAKr9CkW14A4YoUuUmcJC4zkn5b3vazTP/X7T6qFWT9IVAVVo7XW5W4VJDUR0v7aXUiFSzNnCJgIOdOLC4UrWsc+3ZmlVSr8aJKuaXyxv0PX948hVoRD4ag9ZltxVFC2KzKBu9r3EHWhqLBgi9JjWy6N1H9sHodAhz1B6kcyiIXtHlffVNhLHcQ6MveiR3uq/IOeQzV97nDlYUhXjiRj7blkf8b1dkvOjE+l2rXZjQMQVTxbmn78Z7ybF9ujo3MXan5s0ZUliVG9j3HlE4IzWJLywfegg00PNemsAeIcPs0ONOqWE5NTl19b/7ibCWyc+Ok5uB2+WO6rnyftofock4eRM03suqCsBYk3ZZ7pyrd7lLvZa+h1cccxKLptLApMLcpoqh7Vld+K5lxNXnl9WnmRVcZctz1eOuqfYZWtRm7uuyJLNQM+Or3068A6xR8rwFs4GKsnw95ULUweANTvBYfjBomB/OyMOkGyBdGNO6KJpGC7o3RhzwLD2NwUmaXkJnGsxB8yD/avrdrbj0jaSeab60namADeNLs/Ee5OPZG5bdwqp1oJHMyJmjNkmXoo/YdjJ0GhMwBvWblEpmcRX7KkYmh7Y/yYEGE3saChGuNSnLgzebUbeku1kNpKa9ecBSOjxoMKIDB2X9nDqhIrUSBJneTHnfDpuLHKu74UHPuV7vnMqERrgWPIBsw/cUKuYVlddo0EXmSfC2zf4LE+E45wKbc43qQEK0rQzgb+HYG4UTrHy831bYPGXuZUf7FmV0XfV392jWvLp2MOG7FKAos6up3kOcQ26pvMI+J9dLnCXQM6Re0QrgfE60imKJnPplO5M/brqDNkrHZU+nOfgvqPC1M8fRivBUcf7Rs5wVL/+/MXGuv3Dof2X97Tu6piDtGKXXODbF4bWMf5GaAR2ZQF7MqmBY+B5xX07UsFH+O9H8TGKxFZb3oPa8IQExFO1uTgfsTeGP02RvotJOroYjDbFrEaseoFMxAycQHTFbbdujKq8cmpemoXQ5FSOxK8IQaJbLbj9Wwb0qcSKePY/No9WNfcfIhjo8r/3GrocTdQ5pNIEEuyAfHWXyJoyl9kBoRERWDIoGAiSsJyjG69PBSmUlgU2nX3jg6f7sVBnJX1+skIKjxQLWnO7mN0GitMaaJQ8+EUFtzMNT/QB2gmNPGli3S1mQx3yFcT3FErTjMtJIlfwtw45MIZm1+9ZA0PvsClJ5IrdOuTsQY0PVuccZYGEmCQRfRfrJQRP9TbtobcdBwOZn8rx8XRlos9yvByummpKNTsGZkcvFi7HlyTV7wjFm8mU+WdpRtvL9y+jk5Ut5MwoxQnoHiS9qC30z3KJW7tZmWtqAdVZkARGLZ54KteJ9Qp7tXZIX+1nW5QuyjbJH6YUvEVj0ge+KfQCt7hIvugoh1zpZ4H0l7wdN2151v7kw8wbmbF8jFZrecySJp4zk9LLITDmGqkf+u0Jf31lq6wvtJb+2nl5qeNRuFhVlSv+0+3ecCnJSfWxzA4ukaoGfnUC1zl/qMIrH49UrgDAdOScdXy5PXfdRxx/LqwszWGMmxn3W241CVHZTpJ4owje+SH+EHZI/gRCPZf8olvBjLmQQKNkpNDc6TFKZsFXFcBuaXAmPCwptkqB2zUfr94mnOarEhsnEckLAm6jxIo0KCWQ+YBIbdp+V4IlsbU5KWCvXnL0hUkT3Nt5nGXhk/0Me36BhTYBNM5zHGbLeRwN1suYWxNhU5+/pz0XadKPYb0k+iRGp1kN0rgKf9c8NE5PQLwlEaXtxxkX9yFaRIa1NYy2SnUEn6YIqzp7yK3hkNgSUmq0dedRrFqd+R2B9N37HWeOznb3030XEoBp9wnFnASbRJFzzl3605MQhKjgPn4yakA/yQpWlkm4lvLWlqQ8aEAA9mFe7p1jIvRbPloX2kIQWWh5erttL70NmLduN0an30YwC2w9eWihgUHnjYf2g/+l59lJPHlDdGDFbEt+zZetIPI+XxTX/rhbKkvDyEvq1MNgBeIhsunSlRsRApvdIvfdrVFPiM8Jx7by4dxc5cDLBdSvuUQi8d07Pv8Nvpk2sUFS2ZL2sVfDF7adQ39ajQ7PCV4dWv7dJLP7umdsu1jeTaUgjr7H1Gi462M1oRMPywBtWiQa2Vm+lpItQthr/FIz3g7+TXxU/FzbDn118/uMXW8M0JLGTf2hPIrj79K2QDG0N0pnveNEonPIlFUJecVy+xZlwfx0W/FBYTzf8TDDlClH4tbxzAn9jUTfSJlvSsUJghvJzDygSgIMOn6k6z0d4+WmbZZTJPbcdkMtIk0L2iUrpIXYDm4wsX2veKxnWhOnLmizgGwZSLdk+8ODQ6SNLsbVWNobhT/PcabQPLjV6/SbR1Q0uogEzBllZC7Gbulr37oD3qvWNy+JhCtFV+838IbUOYaOe+0RIaZplvMLbiHzJY29VF4QwpQyNuAi04vVNIevuGht3IO5l08NshaHM+iQoz8MXkLFjk0x5BCqJqA4jMZoRtlbXrjCquuPPKV1ug9xT3dcrazE3194unFH/GoS1IzdIHXNx3kygQ48AvmqCY36vnL/2ykzSy1Wxon+h+Hh+w0xyixG/AG+4KSlerSNfPHqxwJyBIVUHyvMqghBcz41qlsa6AzvSa3zL9G3Pct4xI7IroG13AyLToCqIwC2OeQALkaofeNvCwbma7FEUbG4ECc2LI8z008V68CjyqQlQKKA2ZkPC7/nrRpB3smV9URY4FKN7UCYCaoL+YAdS7Y59NT4vCTJDXAM5X32NLYQOwPZ4oCqxgEkZsFJ700Ms5Eux/cTXPZNhKnfbxRtT5vJ/4/JY/lz5rdr4uizO6oxIv3CxmydQEWzRniandVXWduJCov33HHbeUeLLgeE2UKI+P2YtYfh8pX6VRePuVCqXnz2LPBIIH6mCQuDjAINQQLWVg8ik4JGeMQ2YtX3Zc9qhlDU54gpszROy/2e64MXok2rbT2NSGWnEmMAeAdDr80uQb6723mMObsdOLT7KZXAGfepxF47OeIy8ph8UNi4jreDH45QdupGD8ruqT3jM6zE7m5dKzYrT30WPcanGuPnb7BS/pjGS+yP176gz1oe+6qCt3iZ+OtZsm73VoalrH2RUzOHWqzx0NJLJemlsLhLUvDczBVN1EwIeW2VuRxVnSo65y1gIaFZgNrOo032jDXnte0HkzGEMf1WWTEUiTjfVFo/lT+6Uj8fjGSn72dZZgs6Ns9o91b9fKYbbjm1PpoTOYsQd1Jts5a1GSCRJv5vc7/36SGQ3GaDZ69oBF0u0MNHI8fzEm/qcobliZ/aHRVQVQ+R1a913hdB79ACWgwR9o09WddozaBg0ODSBEfN4PH+9h/sORsTxW/avAwQYwKVN2wOXNphC65Y2nqaogS+BbPk5bZ7SB8RMDO39qgGiV507UTDbD7JiY1ANVrxdJWT5veHbINyfkJ0b0upNfV4zx2NFtQ7+myLqDgot/TC9AFuAE4dW1R48PJ4INyGMEujUsWwGPj7IbWn7HMvf/cZmNI2yPzIAve7EllqCQMOr/wAKWch+j+3Hd7kqgGzbNlqmCjhMB22/uv+dBJXlx5vvgz39OMIkDbQ4KapbGeSfeWE3RsFs6Nzayf/fHrbrsVMCutIJ6IqWqXqg6DTzwg2VF9t0J8NVhg3V7YnQ3e0mvKJED26duvAi8Bhm83eEfQqEgM+eSgzCJN5s9Q+aK9ARDp+TVKboqIRwlj0TAt2QfDolKLgfsGX24dJqfjExri9G2aMr0devVbTAKquTodc0FEoNaPbux309ioKKHvo4iVIuAeDdbeo3ppyvFdZmyZxOxVyNcZJ4gq31Tiie8EyxiuecOZ3B0J99tPaBznTdTBArPrVshkojNjSVsZWhxw505XbrAx31Kmwnr9lca+jHSzJ3JfWp23a31nOm6Jq9vjKV8Bq/FK3jRl1KiHlEwh3BfL7+tdm2A+E5QoAbvdeLm3uU/nLO2OtM1qt1IXCxIFwqHspWDfiV86dLj1llTQl+PXbJm1jlmRnisLIoBlHaFhsuvBw07Tl75r0OQEPPJsyDAxSKEpxjuBNdMd9p6nkU/3uq3UTldg2RfHj7Rdv6mPAtDQqUV3hy7OSNbRCQsGf0La5fP16JyWDoTLzgphjzK1nQRqbMD829v3rbkZVOSejp6cDo3+kPNY6HdIpu2lpbvxYJhp6d1ZnDRekgOL+/ZeNLStF3WkBmrY0D2C6Abz4xcoqM508vdAUqFfUkyo884C1RivrGWpaBNh0ilGE+jWD0a5s3BWBKKVCx56QWr3umnS7UiM6iGbP/lrMx4F4Yf9uoo3CitDt4Ml4KvUG6xBR+Qggj6EqFlb1L98IyL9wuCREevbeV7PLq6h/XhZnQY2hRi3P4oqmicChUV0YAeYG945v2KcRfmLkxlh561tQy+aOSxcOMbHGxnrdsqt32OZ0OIKfYw+ou7V+YZL3mD9HyV59YY5avo1qNPO4tiTc61OKtwfHr6+ApvYL+3Xos6ElU+22B3+b0dlX7La2FNyn11WDIuQ2qMGuMMclHZWnvH7vSaeHQueEB+HAhvZS26T9C0R40daLCIfxQGlvVU1USxJeiozlI4CKvXp7yxlKRTY5/PQW9p+b2N4azlyN0NQ3adui1J/+Zm0HLhtcEetMqocJtRc6joFlMrBV/oFiI5l2CYJKqSN0s996yTqWKarfNgwLpRsWtZXiOXmA92h21DrTd+/DB/n8FoApnZAmDPLtQQhA1LzEbbxRwTNwN4z6yUCHBrw7C3oHrqsWDjzUq6XoQQNq6HtsIUifbkOQLufylPaZO290i0r3diH1zv9THDCy+KjobrHCqA9bdYrWu9Wqu3m4QssVn1MM2j4G2dpHhIXz5CIFQF2kLbf1o+C3N3SSRqbRxoqKCqR1mwwRKOHtqxUM+ebj1nDaRiPKZRw9V79SEmLASWg3fOkI4DO3Jm2CNLAwtbFYOVMTeX51mVObTzuwUtv1IIJfmHwVhKWhumlJc5Y0IuSgVakOZc6O1EUzphwaQWa03mT56IYwd4/TbAyUdFy9JlZF2xxoMYzcmB+WvXcitOilwaclujR2iceNzu/Z5ztUe8vL+yJtyk1kneX/DN5MK2RwQ1URaP8BrKFS6WHSpoGMxMGHhhv4ebneCSjKQUjL9HcrF1ZmSjfLa8FSa48TLabFjamq1eqHWIepT7bmOgqYfbfXP1n8S9vALn6xoQXtXq2GeeV916qZZO5vnVV0+thBv+A4FwcGOZG8OyoAIQfuSasmJw43YAL+2KYqZJnP+H/fGaYXB7Z+uLtfWwpOZXqYE0D1AuGAFHe7OKxUL31r76f475oj9wb8EoAI3yMIdn3D1ysmNJxgSP0Mzaj8iHF84iiJW4ruV20p7k0cBs+R9HevYzapjMWeQ0ychExi4idRC6qZUOaNL2uAiKt11n7JUL6RG479zfHzVA6xg9aQUBr+rtFIpNrcgFYt+DVHcaKKHjk08LHbwI0UikTM9hL5+3OqchSGbt4i3sUB7e90m0uGvyC/QO23wfOQWuCaBoil1nSHkkrDB1Um6RJcppyw00E4VoiiaGMu9Yd8vmmOECYF82Uqd0AdKuC84JhM1RvLZVwP1B8IWrzhaD2ox0r0J1mTwDk7LV9pQAsqeVVvGddw9YIEQ4AxpVoEishE7cySRULW1S9wEel6kRZsnGBTK8ZnnAVIeCBR7c5UVjQ2ULBM4QZ6ekEC1Owx2UtIs5Mr6nfemi8v1koGbGDy5VS0W7/SerzswmhmneS2KbMrQ0eEjykLMGdczCuiHkfZW6gx7/fCfpJ5dkKHvQiBgvyTTh4E+TdeUXpmO82gOk9XWULAixrEQRdJ6aTpCnaySKRiRyWZqUyhtT+aPPWVsJu8MQWqcF97sIN+yzYh4K70eThuGJRBJJgEOfbwcOrGQhhU998o+c4XwFEKVNb7mZSpr2DsMxmEtMHBWmcf88lKMrPYeGfLo8+poZa6hcDsFdlG4F0F+08XVZ4i1agGWFAZCmRW+TFz0EqCH//p5hl+9eFdsp10MoqMC/sxX06eYStblEufvnCwCCt0zLBGptMVdo4YZGFMu+5kqReZfZR3QtFldEZMOlqRDYb7HvXKHexj+QAf3cxz+ruSC+ZVbk1vCl2Cnc1EOiJSayMZQPTh+mjjOXQiYZPA8YiCM9uy1CGi6TJUrHFNUODB+WY7BniFbnPUcDZTAGesI3s30nHTz9ysL3uoAPgwXz5XU1h3X4fBMQt0l5KMv4QcvKhfEg2T96ZHV6Qi1MfNq6/eYNj2/q13eEW1QGtqIjPLCir+zhNPOlCwTTW5jfTWCrCAuvt6bE0/961y4HSxjp5dr7CN+4kFpNkLONlc/QIi8EVL9Jp/ht5vgqiFlEfqhkSx8UrQ4m0o0erWo/PwTWZG+JV8EkqH+sRVhc+tYhUbJpduC+t6DPJ9BZolY3Kk5nh1ITYjYRCBSsAAYi1HD57RpPAGjVNYMZiqK0mhf9e7bvmL0T+PhpUviMX8HJrRW/5GH1VlX04VMnymae9NipauJ8et3Rem/WY80pSExH4dDNzji9NawpVJYUsfDt9CMSfXlhotiyHOy6qgQlzPlPig+ccq3bYzsPviQOb1XjD7V/cS1lcNXO4ob45hnVxSjxHg+sbT5FXyeO0dp9xCzAC+FnaJdiLG86B3KK6VP9ZNxIHRhKdfycDbF7v8ZqE4EjuAsG9vMgM8j+LfDjYvGughkZeRkcSjXZU/dUpbOEVYi5FNZbVjrT7g0rADlXdiP+heaHKNAUf3rUfaee28Z9bGZz2gXtdCwZaj+NsZgScpIU+pAmRoLsrhDkQjb9YFrWEew8QxkvAh3jJTXbAdk7bXs/j0riTpiHDQd+gVRnWDpDIwMbttiWrx2EtrQJwQAScLVZVZLxiY3XcDaTqWrN5pUwMy883n+wSSOjgg3kXKVFfFYGs1ibi15JoEngrhLihwolrwFxchanyEBQhLHAk81JqfF4MxGBCxmHQAQymntr0aiRID7WCXv4XXezLdTiYl1e2yDaMcl2JwrZ2Tm80AeMgkP0BM5FLzbOsn3O+AgIb84BtzNn3mDuKNpiXrXl+s4C4qkNyMFg3nHaP0NR7jyondlRLbsx9vk6jyDeN/wntxzBBxiAJtw/m2N0LPmjsjtxIIijMZoSAx3QGvUK2ZDNqocJBtue2zq7IRYozuefk3t7XhF0hBNQsU4+j8ukfirZPcowq2PVdD3Ny5gUO7C1dEP13929/zFvRuSsjOF31sjJyEow8dOYPKxSd8zJ/36zClD8tqW0HVHR6rakpIGwFEd5T0iO72uIyGr8jisZJ6kWkfilUMCAH54qGNAri+l1+dgolrL1cuKwya/sLcePxjX2MkyweXpxPfMxGy21/5urEycPbig73xzbFdH65B6bRsQ5KZPRa5KqLfzxCG7hnz2T5fL8LzqRFApBE05Am0HZqwGS93+hMqTXz1LJ7+CmE4ep2Ww311yjui/pKN8+6kNyjAryMAM+CIzwNZd9LHmIEXorcCBm5koC6Lam/JsaeyV13JALR8UrjnDPH6oBN2jrZTFyEQWgIPvdqPMtormVnPAOoaAHM86UAOf77ZYmsAJ2gr57TIjo5RSg55+juNBPV7KXKdmqig/w4qgBaV06B9Xp+9jScljLFkcGMBCyk7MrKux6luGNEx3MuBYPk6YyfOab8GOpEvMszdweiooiqOsxfVDryy0RVKJ71wI9TLbQfdjWIN1IK/78s4Cec6KpbS9zaHkKxtwkJ9V/3Sg/QW8QxRPHcqRSemuAK7+rxwrCWnBiiuaChvIwkOrilL4dbKAar/vnGjkPoiA43aENRXLOwo9qznDihoHDmzpeXLmKdEeoGhfKlLI+KK7kZngglPMGd8iLZUZB3sTLDm32ir4wwtsxPGN48NgYnqdznQ4uZDZt7JNv9Os3zhBrlc3KRL7yWiTWpRuvjkCfqKe0w1Tx1B7fkioTTkJOUHDAfv8PTYfeshAlsbB+q994QcYHzK1cGkkJ1sLpH/aZpi1jdUYvF0lmtUGN6MfEtvwyv3CcXIeRWtOe/xVxqUi/+4+Jvls0noHvI9dBI2UHgxGsuIsVFq1gpVIl+6YQB1gMfj3+vNr43/+MMNbbDHTeGHkzDiBVE8UIsOFsNxShdvymnUbgK2gNrDCkqPr2Esp/O1/Bq1TDI6MZzohReek52sxUpPrcG2ZR7yP34XX03GGHoA02Z+ZH8V6dosp6SOHe0exzPJYK7zPFXw76zYZkb0TOq0Q8hflkmGg7OLRaCBP2h3kOFfP6/Knlb4kuK2k2ucfmpuWft1Ml5bnhZq72wBWP81XF6BQQX7jbAntq2S1U1pgZHy6qzo+ZWorEck21DCaa65zTWwaNmuqbFusTfXWNCGrfHT4RX9n3ydWSf0sH5iAE8YW37/D81eqDFdcOb5eSLhulIBGp/+2pZe/qJ1BNm1RXWy+ZxUmxILhW2hXpguGZhMOk1Q+iXvNSj4pk5CAGhDhg4vhrVtxhZYOLsh+7IXrFOcwk7z8OLNRgHPpoxQNiCB57lvPm9XVyWBP66WO272vklymWJ27mOjhCsV2KdGFPC8fqXLiJBR7lKknPcrmM94MlKbOFQinfevx37VJVVo3JX4mjhwLj3sa/ZF9cfhYv2fdL83XL/S4WWuzU/ngyf7o0/KtTxB1n9Mmm6xgj1gNj2ck1hX8T9+qYrcfvDxl+Vyhut0CHekUxHEn2PkdS+PIC3QzK91TK9S8joGGUFZQHU89/u/b0s1WFJ7hIxbN01Csbi+IyGxxUsOJ6OHG4zOHc2Uqf2WOpxJYOD5IhS83h1DOuxVj2qxdl0+IfyREaMt919mnyeF+wN/PmejrArIdWSiFCe0+mCDzWJfmWEyItStnB+8Fr1gmDL+TBpBpblPATKpKzO4CQgPK67r8IQKM858sK+NRWgdoBsK/NwlVTahTvRtLs4LboL5fd1pNyctn3oN/sFjJ3YFuSoUmWPuNq6be/4314KIsTOv9BX2IXKXOarCW6PNdumlkjlC2q+KhePblWEOqMivzTlRfwdm17ADsMDQwVSbK8Ev79X8znNKl6WJ9v+p947O+wY2ySR4RwvKn1mASpxji08MhKJRC/dUBanvT+F9l+1j/FHshXFRQvYfocMm8Li3cyzIuDaY3hUYgvwPFD10+OlvKyRyDJRY7gd1B5mBqK9BCRUhstBCT9DMQYId/pkKZZNJBwJJqD3fRSx8yfXZ9eulVGnmWqRggFaWpCaGb14XkrVXCk2a7kNc+z35SJFevs/VnNtpeO5bNoLPVjvMH3FHgMSDxsOCX+2zio6PZL4P4gVM1yEdbahMbtvVnbvI/X9h5yH6MexW40IKx7aVyBSRYRIAwOLy4zEtGbja8QU4WS/KlYzXlnVcjY0JnXETPjZ2ImtQdnG9/0boD9Etafy265swEcEkV3y2KcnzcItf5Rh1QhJPzOzqllvMXcng1js39oous0sRGyvSs8IrGt0MdBVuDImT1290UILPg99VK8ZSqVY38R/gi5M9cAvRZdJgrooQdfdZ1A1+OpRkh9uYf7E+mHEoAG55BCKnqDPdS2oDW3I7lzEUPgys7AIiU5XVjCBLrZ+NJLtDDlbB0TT31rUh49JeH+r252L9qz4xFwQyj3pGVcVXAbCOvC+VwKrpw67+01lPtzAz58upR6vn+Y9pJWHPFgk4bLA+kKVzZGzrfNL8SK+ti+ZFXfxNMbn7S0KQqNC9B6SvG6vY7wZ75AGRjYnfMtM/2lLRqrliKZAXCIFDNfX/piLfVhsB+uJwlXs6MnwRmrLROdKffSTbXT/XhvdJudM4JHvWJoI3C8p+dGe82Gr7m5yDJtueLu2mcU4IDXABeBCOPH/PtyErOyTo1G4L8PglRJB6oY63ey0RhYQ/rCoBlXBJiXuctw112nubhdou3haUQQ/ff52Fu/9S/wUaq3H+h+qM45kN9cMb0Ddu7/a3qw92apTgsXhu+/gI4gtX4J6YDyaMS3r9pu72FsLpaRJJZ9KKwuTmtxtJDsWpfKPqK26om498HEPa5qqvlUYyzGq7Sx8x24CVvgvIjZfK86pOE/iZV+feCCU740nzkigulPCCJ1unQuTByG/nutNnpfNR4XjB5LR1ybpI2ir0Xdc7hFKvEmdPv3iwG/4dUkANB13IJdkBc0ZVFY9BzyJor6vYdrRxlFsQL3mpt90/dlY6nz3A835PGG4yBpqmGPm2SL8Bzg2KpYEWErXK2Mw/4PP9S9S9h7V+PgzBmuUZK/iYY4kb7lQmcthpYikW/EPD7ukSV71y6Df9hddawVZL3zyZAgJNeKuk01xHMgfKwpcJBEogBB4uJanH/Qhbkj84D98qrf9mvK81U0J9rBoPLwNLDcAqToUU3j9UFVCKN3lDik7CAxORGCVji9XueaHuxf7cQSvKW5FmqYmiWmHYmI62eZEcg/y4Jp2oN/uqN703Ga83KW5N13VvhbG+BxwrX12lsfhI7QNunJGzlZr0fU8QnNcSoDtE2bl5No4r45/aO+M74qKLVfQqpKODut8E1pdUWguxgC+6CBRucR7wMGTuqzuzGQLvHXaf+22PVyJjqgooyGjJdytHYG82SG38vgl+dz9OpHKE7imkGHD62zzFjpvXNlMDBa41z+nNKV+3ReVncmPgd7U5VOmNaa9qfM6GAcs7nAjvLIw57SdPEKX2ZvmO6BvfgO8MHq3+lPZELxxxEAFstJfBhlU3GKhLwd5KPPgSXNsWsnO25q5qDk9Tqr0Ss9Az45JD+QRPCtNHQlMaM8HlheJUPUwhg+srUlj/r0bTJbSxuRtg5iSBOnsSFapqwZUq+vEUtXtufEBtiRdHd2m4e6Ur0Ja9WzxFIExS7t5LIaKPJtEyUU92wEsjPhIsJk1cH2oOUtDfx/Mjyz2mnUz1pQYOacRNMYSwyIZheiORU82X+CNxxthBgjuJtYayb5hqudaiDnmAfMvAGjHEfzv+gni40tR0Z38y113u8UB1SIGUDfiOUNLUYq6qvAiaDln61/HqqHRpdiLy0OpuqZ+qp+orwjps5NHvw2JUphHIRfHVPo3lehYlJ+6e/61lFCcXTHo2zerRKhfzKLeGB4XAzFxkQQ7/hc8Osm2O5x8sVzPI24CqkWIdu66qvXTPmaB8F8EQYjdiURPhmSBTbJ8MUYNKhczFhvCF1wlOD6yl78YbNQBuhetgKB/OJKuj+eOehNoCWc5wiAh9CuhD/Tqu88O7D2kYtrsjo9p2c5xM54g0Fdr5gJij4WAGLk2AkelkY77eBZf4M922FfPFABoU3X50HUifHzYZl3O4jAU/u0YNUp0HT5uXI5GaM6uPcSIJh+6BHq9DSbhoZgH61mQBC1ofFbXewaUbSppJhSA44wefOPC8bomVKL8brweRTPF1+ZhgQ4KkdgWxDgCHN1VAduhk6y+pSOEoO6ubyNXrryi51ubWJLGESvr8mDV6f22pUzYubHwN4N5B3C0bnu4wkfpntrQ5bi3LXCVHfdEDZbR+tyNtXPYDRdohLNqymkSfQgR34ZPfO2zLIVFWxCYA+xFskR5TLGPx3ITU/2MEttJAcx6U6C1kPYG0Fn5zyMDkX+UJ/bhK3n58pQDVFyPvXhOpG579g72fnHGLg5/WyiHPLmqE2I03hHfAs3RqJon/NbQiq0A8//HtrjFTCs2A+nBb6plOO/hUkFcDT4hEnUBeTDCDgQpm0Ugb96ZzM+1EUCcjLaYmGQMLB/oOdUfHlwqq3ZwSem6ji7+bae+iS0xZIo0pfWA0HAabO05Iu3YdbzwyyUfHScE15Z76UUaKa3gLrTphT0Zv7CJWOw7hKWjihQAz2uxLbKlhz8jozJMdFlL2OYsmXikEOhPu+a7Q6EGRYOPyE+2931yTZOYWkl35wGgBljmT9/mi1go/G6W9+7WDJMFtKnDlbtw2AXtrVXBP7GsdJfm5frk6f/QwnkXqZs1jQCRMJ7D5+6809JJhEw8muX9dTBAVtKxoUjejsaynoe9LD7/R0D72bMNnOGKFBZ5SqBDBkhb4+gWTbzKqFkhaSqmxaRQ1Fj0Ci19B+XFnt858lqkySCfe5RBSnns62ZyaUdJYntAmypgE+SAFglkHuHOI+lunRhhdaTYYBLaFDKE2yiy7b7KgmahefcYu6qNO5FMgER5sZ7IcZNktJ/MXNYY5uYow0cGh5FD7L1UZPAmMwQ9djTQkiN1BXKUot+D2WRA1HjlTPE1ck4vFFVvQi19v14jDEJQqOv8Fx2HKT9BIcuV30TLidg9N5b2oShM0Q/5PplQbkdQ8Pd5YCvxlfmVUixLj6QS6iCDPvTiNZRBF2CPTLABRRhlej1OpU/GCNGcg29pGKrsiZy4RWhMAoHvsgk3wCzYv6Yu79Q8yn6xj6Vzd67SMW8zKwo8RN0UNrSsd0rHKbjvwbyIL7RYrSMnxEq2tvgOWI/JB5DK1O+QP7+c4i00WaDgrVcMMdo4x8x/+65rK/MxczT/C5SqBUFnx9pbek9a4DJS1uW+S7ObENZGrnTgYv5NqRucHmR+cWFXDd6qw4ChRMuKkr1QbhPN1PRzBuyvICgDbVGUNAbtxdZWafswXwl/tjgLALvaz1kxb6hsWg7tPJjp3J0C3C/V6NZF2E6p2E5rL86V1kGeF0mn9cbQuyW5ojZyCdMTuTgWZ3tXJeKfB1Q2FcZXK7CVFWnvD48McZTykY2Evh+GvcDcrcjXJYNMtCWhzdwPpTL9eWa1C00WlqQgqTkU3Ir1Dw+5UwiJNrysvaUzKL1J8C1kprSu29w7fw+HIsWoW2e9N44nnthf7lDP53Ze6Lb4cmmmMr1+VGWNa5zi5tzh9gVUms5YOvLdgepABgsGZak3qrLYnevvTqZqeqwcH8fNiWNlug2m+GRuag17r0zERaPUP20jET8qs4UMJfEPNo7mcKPwJTwTAnnO8J3M1EKdkFgCF7M4scRxVDxBXWL8RZT367DdTrsUtrRosLrJSaBJ5OQhB0Z0lZteTXMVx3rDhPCZCk9lSjdYrzQm+Ya+jisU85CbBDEokQY0R01Nqwnnft0VbCY11dQE31DuaemYn9lj5gC5OYR/Tk0L5o0DGp/9lVE1XfT0WaWXVGm2ArGmwrbzqQapjDGLMgox5r2hD1IMU7f3d0i2g78j7QLUC03XhWinXjlPfyL53fDeYmkmmwENMase1AlBsb4+juqQ+sBgcWqI50h8GegHPrxqlp9OPx4yvsnYKF1GOs7EUIjIW6Nugpw0yPHzcm+kiKrKJ5cNo4f6GPTX7I1zRvmtCKco9S4kmfbPaT5lETDp+XRtmYZuQvJNRP7tZ5g2G5/Rplfr10zKEPHxT4EfZGnQSw0GYTx4nV+crIoS149EmtSJdJA+heNbK8iJcyZQfItgqVYtzZv39cn6Rp8V69DFRqGL5KLPYtbx6DS4+l/DmiCekQvOUk/zVHsH94+AbPrDZQ40wnJ1foOtji8rLGcyzMuY4OHwqzPFo/BxA4UrwcC0R+i3r+eTpRthiYJwTfxAIHWUa4UHjDSJGr66QqFqQlnJV085eUW4g4UZx6biMXckMccXOFw/awiyiLgTrDy4ZLaX1WiVc3d1Fie6w6DCqDqVkZGe27Lb/PaHw2xYtg/SaBmkLynMU7W1hO37Qusa0Hv1K1DxF13epoec7kWUUtxQie/YarfJlZxPX/DKy7/MC/dsM73NDREPqdHByLLMfT4nMg8k9UarEiCCIpPflE9HD3FtuyfGXUABHpBHptxtRwdQW09qbw3yO+ZKp/6Goj0ZjIIA7h+WO8g3J6qzky9RzFbwNi9WI7SsUXprm/T/MGLGnDIF6VRruthmFutooOMat8q2rk63LPD9bFL9M7u9oZQ7V2tdw+ueyR7gNv+qyq8HYZSKTMFcnkBKEm5NCr0RdBHWFDPs4WHULOic/BcO7ENjbMCd4Ufbn684uKiGxVkDxKJIbtzuSGEmUrZcBgD35cj9tJF4D+tNhV5mZLi7/NLelCTKZT8Fw/HUiKF9iMVAtD99fxe3LBEJ/r6r5/Cl4UgsCMvwj7Cx1WVY1AIrFKnGrsrbakDFz267ZhbLVIaux1MPCmQqEVm7Bo9mEFNCkVX51vCMcI5FBta53hLKbJaZ+3mNvKS3B5ac+Mex7NQYIpqt/cEfbMmoLCiPLOzJjvwiFBBcw7CBEAmPulxcKKwN7nL0l1GfrwuCWwvtSxKnO7ILxc70PXrvg4+7mGAYrZa+uguaudm1vJaMR2czji6r5Yig81CGF9tCpa5MmCSNU+3NOl6kY7Ucv6wds6AlRO5/BjAivctdNfcl49u51t5eQ0vfBoLyF+T0H3JOVSItpCEXoZurYZ6bEPPCPBFzgxJZzxNMTbRFsIThqX9q4oIpBBJxR+TDIdyN+L8QCudeFRVNmPZJ/2b3iVLO6Xzs+XPBMZRROH39dr7jSDv+hOxcxguVu9hhuiZ46g4o0W+iXzv95PKqIwZwzKVhUYjd/LR9QU17/cwoRVHVsXeRIoLRcRhVzWnUWKmsLGulRVbeyQajAOvF0K5lDrxog6m9VNwBQxCTgprDhPfBQVIeCRym21BVmkZqgYpXAJewBWlPKBw8xxY6+aJmrrTo6yzCz4zF+uK6HNVAm3DU1JjsAzMaE8ETk5VKKsCjRekZy64HwzekKAQ3VxjxhmDXEagFWvubmcrSr4RCs9szy4n+xIfN6+rcFsYsc2f6HIxTLZD1uXlClDLPFqw3amt/MDmlQaSoBUoS4jJZgsDoaDk66rTLJxx8wGhTwcOICmWIiEe6sZWTqzwY1uQoK8AZPhDpirxU8ztcKGCsNimGxZChll0NhZzpfgTUHUjMWc+8XKrM4Nrby10b8y0oM0iM1GJSKTnXziw6kDkv1Iyp0OSMkVvKsBcXBjdiZyKGSYh+r8c5LDmpTNtSojQ+K/KzeyazaQ102n73WqTLtuZaGCGeMtrgcWb4+O/VbuvekMOMWryQYPqYey7nI6Hw0NVPNd3JmPxxkfq1v+wNU9YfkSfJPeasvG5OxEU12hLC1anUbpFOGYJrKaMrfq2nraF2DsWyOjbyerYGXbyhi/cHIv7P4I6PBIntNf6adHLZwKhjYdmtv8Z7WCd7tEPTPE2IOIPaYDjlQ9ax/sQmAHhCC6Fod92SLkQ1iXWxyJ71lC0LCmmh1+efvHNFCB/Uf/yXieh5hdF3wKDuOMXSCNRUo5Y39itvY6dsoYGkUZWPrynfJJZ7cJzuqGI24hyPxbIXGFH9exNEjDv4rhc7lGfgzSC96boAxw+3ZY9W9HZfccxlTcXy3ESvtphsLVB7ia6AxeQ/i4NDjCOjGILaWgLg4A+iz7cn6HS/wXQB+qMVwLh2PexpMQSoRV2lTSwOGWC4V/xEjpPT/cgXLpks/EewEcDR35ANzNc0c3Nbe6uY4XLKoYnd8N2ytZAaIrzksOzTz04Tg9kUk458sA8f9xZmR5h8tSRCzGyk9RszsZExdTaZDZyk0Eav7n6MMyCM5eK+xkPD4RwYdNIdMHozfPAoB5a0RLNq7d0N89cD/bN33ATBi3zFv1BFWA+6grqjSgmwDVKD5QJvJtS0uFPZ/ixmLOJ1FS9GfJ0wxPTL0L85/pKvl8gdGJoGPUBXYqlrmVv6Hqz19RnC/CrB8x+kf0Bgt4cDG369FqcuVeph8FSm/i40IJ4nZYPk76u5Uh0WRWRmm82FX7qpCwWZm6E2Drryw/7HwmO2oNi3Ykll8wvhrU0yElc3KVhHd9ypoqCqVP+4/DExH9hdUfqeJZWMIymgn6VuW949xg9JqEB2NEKpamG96bdh+5VLRDNkvI4k34dJIAP0xoj089+aVsI6kYhVx090FL9XY2Os/kvMUkpJyTKPE88b1eBZyEi1PNwxcyPYUG20Pesk/n1zGb7EfGi7Il9g6vpfkYlZP447r8bC+4oXpLAd8Enfca55Zfljo7ctTMvCGLo2IDofFTVEnGLzm8gSJe3jtNK/LupzX+2QAO1Ofs4HHWyR05bTjZBzlbqxx4XV65gqxVbPeoiv8JYQ5pphE/xooD/I4TeNwC2EDDCuXMFPZhnbHhngF0AhgPtepsRwmP88X6AtLKP4FmaLPsPnfXr4pQzir1yo1mXIiGNvom/R2GQFKUtTY7gR9VT8yLMMIl8WNaJcfM71oWul6aF21Z/4qeDjVZ81EmnE6UIVPe+LSOn0YlbDNhbJWx5HqNUnx9EfEF3lJgSOdrmymfyLpQXR+Q9rf5h9hU1SEGLCnu6eG7FPt8hHLB0A9PAdoAgwcorGvTQo4DB0mtuH83dOVxRVIqUoeICcnrlhrb0g+NLZCKjOvZaGb2oIXS+oBnjHIJ1bgu1OENyrIKSlEOELApwgKqWGD864pd07Od7tTNdVetxAx+cmbjsb48tNNoLmWJ2d9x7dHOY3xYAP/kuPakQxYR0B76/7E3TI/owSCIUnyVYR3HEZME18w+2kcUlxf4uC7zoSy/iuuiwztewf3KOn/UNyLhwVdpvnp3GnkNBnH8B/oUMWaANs6o8EStI55O9zRrIU7AZ+75dVaV5ckuh2VxvWRfhPYNZmZ6zQK5jIj58f1CUynRQ+kYJ7Bs05EPaDH4pppxSp49TslWfp0xA5CZNOYiLE+7jweDspgEExCMw2zftwDYRm3vDgjjdDWOzWyCm3Gr9hIbTtXynXjGaHlepqFD4/wICUwHr4aWEjCF9Zkqc7Arq2Aii5lmTsEw1h5R0rxHGWl0ABperPjZpooPmpQwQkiiIiGwGBjNY6l3LpltdugHt+e2YKygCX1QMCSw9b3DzQepX8sky13RGdsiFLgI256usI869LMHi/p8Vjwp5uDG7xKApZ98OhLyEUUq0yOJl7qW5C1u+ymZKg6sGEMc68OC8rddRUMtlo2uKYXglwddw4VfWIdpwvLlVdVR+p/bt0dN/n+ZJUvU6KrsHo+GKSV3MShXBQIfcRiGvgFW7pqtP5OnUbr+YNnzwdWNZq2Unah0i+2YZWJSU376rQCx09TikhAuqvWWs00jeH2dcWT/ocxCkeq46Tt9yLG6YkSuHl/YXPvexnKI/QVggPPwA0Cz35nkOyitNLVFYhOr/1JFcgHTCYzEHGMxB8ellFTGu8y0b6RAr0zTqk8zhSfSKEowueFcxA5qt/+9eVqigrZzPQDcR4A0277exReaHo02wvyC0meXx5cYrL3JBoGyu0eVCI6BRY4sp4Apd9KTMu3+EMehztlh31nQUpuQfIKRgVRQn9bzKteJN9IIdjj/h2MHNMMJfnLiGcg3S+RxnRjxPr6ZgMeJ8TWn9lvwHiGbicABO0AVpIXtv2t8VWryM+3XpiIMRW0pK4ScXxWItJ5JDNyOZtI8eetboFeHXj0FpKCTwhocwXwZqRXBrl8RXgeOw0uv55qQ2QL3TyiT39BG0/vGIh74pSSlr98UxzgRt2jcsomcRU4p/EfzVUGHEA5L2CT9J4VkmBU6YeuZOTX5qPSPhEYCKEZEb3FvuX5ZSsHKUb5dtCk7vWhunxdIgos4Zq9G3DTmX2kSI+0QIySec84pekJJVJpuvlsJcxcstBr2aFb4ELeMGQ/pb7Y3Q20s8hsKPSbeq/MOhzvoxFyHF3v9iRYqqgR0gZMa9/O7i0b2JKst17Mp8FxboACFnhEUcXeS0FzCku3wc08abeheNETQyrfAEgCUSuHqghxygoM7CrYxOQgu2KhU8UY2PYbhck1sePhsBEk2t2hvzcZtEOmCSppyZ4B2Pso87ldL9AJWQD0YITHlI0es8JrD4pRAuGW5YHbSueB/4jPB09sHXVGueOODQDRf6druibSGAgJ/5ZsDxYLbwWE/3YSyimf0aNXEae3+YUC/wiX2r3+VQd5s8cmjY6W8fTE3sKInbqa/Y10ksC0WdHktm9qtIntophn3P6LWtGOyScxLzF3M7lQYnhDkZVJrRlZzTidOG0I9O1ckvo24En2gxJF5t+1hX+fjAQ5/5+Rxa2tHtyHg3EGhb191qxEg7L5Nntuw5YkFblRkXjsSSkcqUSSOumbn5O50pLbiWh9zYOVJFnfZ99NSn6tj6Pg90Hgv+amuXxEK2ewbMe/i1svic65TjZYw+knbBdIVknRBIjNvYVQgwqVAfzyNavzeCJVSzTUr4+hf5OyGYNZDw/flH1uY8nvvnpzMe5BU8ruoSUhkFGjMUntUNgXiS7SF11WvI/6yKWakPZHLX/sC4gDdlxSLjG3kXaTl/gBk+tEGlg/kTSiAHV6qQd3n+3POwfRj3KRTl3pnVqU/5XXr2+/TbuT/365sDF2CusXGupYO2jMRKerfntgFfOSaybVomSsp5j2b7tjlZHsD3S0SqUM7KHRh6C1fHK4zFMwKfPkmgsqsqS/qJApvcupqR4If7sfk0uCHP6W3/e0LcevNPRqs7KU9zd2EVHWXCqTlaXp688NI8PMa4YtHTRc/BQDZfgxE3N7lLHd5iiJkij3R6qtRfjrKFTwkr6ZLR0qGj2Bd7+6J4/aBqP/fiDtF4oQr9WQfdHV6CvUzP6IQTj5w7Y3VkOMsg1ManUofiQn7mgrYAKjAx20EXl8k7SeHJGxagKovR0vPSfycFxGpB++Ma7bc/b38+bZg1pPhE4x9Wz5DUdjWE4632y8aLs6G+yq+zazJy2BpQJAdEWKpgG7oSJ+rFlABIQFdL2jg0eEq/PQcJpxcOmuni+8xULJE5NjPWeu/lvT4iAhk2HzFyFPAye2R1WWh2CGHTxSGZ9DlmfFIpjiJ0HyvkieiyEHT7Z80njMEVbh+/Qdk8a6XDJ2qqCsCbZZ/sUZTBgaEotLkfqaGpr4bRj75gEL10iuE+J5ixEtir+W3JyWHjSeTRzttkvioGDZyGvJeLVcIxR3vI7xVAt5kEcgznfcVOt4h6iKU7FhPP4/UHURQlwa5mHAkj2VAZnC1dX/n95RCvuq58sEARrzm7cJcdIwUUYRAVcav8brlrWyaHkb8RcONNovbG+z7MvPz3d66/MVbAvXsCc5MLdLowRGegTyFrU4hOipC8n/cZaGHKlbK24+jXotjxmLjEpjvPI1GgD1R3C0MdhoKUwfiXhnJ8uJIYKukok7HjPYfgn5sdNLHJdcOUasj32QI0Z1NaDAQZqQpTvO51tngZt9scRE0UH7rpWwFTfqoyfTSH6VqTBHgI4QVOtdV3SqZdJlwKCqUR3pN3463VgNFPEaeGtTFPQpbXRzfgvo4b/rfuO4rlEWlMKVUlyD4Hwo/RI+qqLkNe6GzU+62Ayzo4VZdHlHnDlIEWxLmUeVxE4bt6fTACbWAMT7zLt92hWw45dv0+8rjr7/og85GnbNTvTAKAbdpeILZm7hjgnobVVdovedeYPjvjKQe8wA9z1YVQlZ4pgNsCY7IBpSXxKyaG5NiKfBZ52QmtpedIHzfM5I4vqT2xqL7U/1TjEOnCR3sLO2qnjeEXcw8w+ISEKX+gzG9+WY54nfI9HZQuGtkORDPAiOWC+zpoU1UKPf0jRTNzM6uFPKXJ/1jHcDb1eIrSI6ZdYgpaUGzJpV1k4qmcL7KKx3NZI1m6WQVDQn5U4k+ewcQ1AwuE9giC3mcbBuRyHANuY2vh46axM2cDImkSS7/7NfxnKTeIhgnq2P2+NWGBr8A2rOYdd0hFo0a1mQF1luAQqmBtHImt8eXDKYcJIIg+Zi88A7Tmejs/VtnbPtbR7PktVAJeVcFF5YkF3Xgw2+swqP69DiZDmlU39MihWJrVkKSfBNFZmlhqkQh01Sb60djNzdy/yZBSGcPxsQrTNIGH/yPmA74kOJoN2yYLO+h+6DoTzK9HwjA4FIEyCFG87KyvDmVLhZnf6/6WwKo1n5ILMPm0loj2cWYqOsG6ldsESvLiIvqDpc/nnwxjaWRKq1JeWqC8io1lNiLM8mJBX8sF7bvXjI0OHbA7lEi/HwOleY1oPLQ06yD8MyiZs17D0mjaVtrDZw25vDtQAhBnaOcnP1VZYKnnqucljIDvG90BVhWUBe9EEV+sM5YA7clmWT9RxLRDBWOygQhzJ85SzyfUg0i5cn/xZjCR6JKIe0gbyQJH/0ZM/DintvRki9Cb0MsGCtTXYFGHosjNhnLFcY+BDHaV6RnpzNsoa1cVF3cu26B4GKPDgID/zeu6b6D/xejHaV/t4JZNdJ4UBOKPkg+bkvq2VL1pn7dKzZZgoWO0AXaX8OFVUt7iuafaw2uD9ZQZM5l7OYCrrEPMa9AVzltgiYXPN9iGH+ygF4b/XJqqd6xpgiZSyA/wiRsKv6gKwgAZ6/NWEaTFbacASJbFZpwCgcQq4UJVpERZd9DbkwuksKR0fMoKdyJ3+10999eG8EfnPpSjMMbVZyn+2ajwFKcAxZ1L8p9+nGUmWDNilcY5BSw/ZbSRVLLuQVTOkiulOJ0GzpDU7xd2aIoe8OXnWZC1nUWNgR4i806g9pRzdolpeu+ftDMMBT+aI8Ow0G5qmwMN3CFbPsVhHSN7vkIWxLHQfzwcQNyqiJlRTofo4DhSEzb64FdoVmEOjxOEpOexBj9GZhfAYqgBqE6Os7g7WOfnGjGGLQhxrtkA0xbgwfr6CIGV4iyjKij4YNyxJejm/BXWI3dfmtFdZSRTJJyU/2oAZhRjhoUFuM8ZzxxNf+w4yhfbvFezXdUk03ZJ4JMyrBCM3O/TwQVVua+ghB8Ad6HvWeMsPO9LSa9HERpXh88WGf1pq53iqUboZNkDhyCtGsES8vfCLHwm/VdaGUN8jjrd4E5U4jy4+xQx2e+bgZ6RnUpymGnX/4RekTxwKWtFF2wgDqIOyXfR+IweQjbyxeG3K6ipqXCBGhuzNAH0ooCrvrkH3DHbpdBAUzUwl3f9rSj21lFRFah0PzF1v/+pAdG+Boihr4NIq8NJNUp7gerEjeaOmzXQM6kMs3hbM5xSLtlaGNrRbg8NdJ18jc/tZtBvB4XnWBW6JBSdEe96UQVCzyrpnZUju0ceqUK53Ftn/KTDRjGwKpk6/DR6Hwu9c1Vn7TI/bLvRLRHws41ds9va5qsSI/r1n7wxOGPxM7HNM1Z341wqPpNNp+Bn/VbeFDzcCOzpzx17puerk2C4yc9fatvhnnBdIPN5Ur7gCPJWIpjLRcVugAiCxWvTZ9Wo64HTiYspaqC4kHR8J4eY44j7qeoYqJdkvgiYNWC3fzu5PTE48xL6YGD/FHlHWcvG9dNbCUK6R+ehfROHAUPLzMta4IcMJ6nMs2vtRaH44E06bMGblwG45teFOIX4I2sCXR56X1AJm7OyIni3+rJblKerljUS230KgksJOpitbUMswynyoXXWe86b0OUON7Zbr87OOkK1uLVHj7AMQ6fcd+gVuYfHOE9Uyp4gUg5bG4aHPwzb/8IZEfbTeGrq6ivt2XpQYcAYGP3YvxGPyP6w2FX8I/pgobrWtYM6+ZRRCnqQrjC78wXeT9RXp9n5w/B2Hikt5nkEjBIPU51DDGwGSrF4dfx9/NEOxJUA2l6s7UImFEqgrmIsEknDZ/9PRP6phcgjf8zQ79g29Hh8Z/bFgItpitCFCzdNQObgtAj3c8vhYMubQMwYBY32ubrrl94fvRE2UceWln54mD2wRHyZ6tAQNidWOxiTTYGtJQ/kw7RZfI4+5PwONJr+eA3yK0ukHdLmkwV4MwFrb8PWVfc/Rkvdl6v+S5FxbHPhciBgpiVjH9KkEUmxSqEZKbXamQitp2FMfmxHZm9CGlkLJrmojZCGVIrWVN38RjPl5gMKZdsg2+vSk0eJJ2VGxUhbIGwNoL/lyBD2HLqkYJJK3Pa2ewiWV0DWkEGmb4Lmuoddfn1vlJuy8Xl0zR3gU0DIHh/5ajoM4nnQ9L6qtkvOaxOJUpRSqWbr5izsBFI292esXebBPeX1iZ8rVuOetMHmaGuH3xR+YnrokPTlopzr4VMzKF8+NSmh1cMmP4ANtrFWHIxMOjUX+NKz/0ux3I3ftfhNe3tpTwSX8PgiTTKCVSFd6otmGchAMmR1QSRMNnibSfiq2XUM87G3mzKTA0jEUXWh06A+JNjAjgXckuoY1/7gi1EKmPsCDg4CCFKfapYwXG3b8cja5L1M6mFQ1EDsjIjcUddMj7f9F0Djz+gpz4Y/7OpZr9XvuNVOISYvvfinLohL/GwA/VxRwqOoyB+yMucKs5nGWAkU/IIfcOAnwJ44oulEBCg9VXHCJVxuI51Ualsjw5UvR6G1DAE/KOSmgp4ikEG84lrBf6xcAWyoErALKIisyFA9dNJqFrp3GMvS8UPRJIiCbCu/lay8bwJLvBGPv0AAI3Sh6We9FYIhbn2vsJinQ5dojVGN61ToSGnlMZw18FlRK+f3bdsKviI3ySzUkAF4FUlUFPDA+ojnbmFeqlb+0PPYH7NIy5e8z8zFcFxibpBg9pysfSpjr3uznUtcbZb/ZRH7qdVJ1Y+Efw22J6Hzja2KLVZZGYKLDI0JXTXp2/toyTBubIhRZi/3aRTYjiF/F8ly8IVnnLHvdNBH26N9Ci1ZxoqVYsRLwzTL0fQXDGbwtEXg1KcaTnaqAOeQMCax9m46PC75fR/+1R5wRXJTjzafySD1Phufo7y6zADu96+AYCbSlt/hnJi7KicNRicGdIEWkIbIcRX6StRiftOe9i/WHMsyWdhXIx0DC+XL3FCeaYKB/myioKI0EsbhbSDNrxqh0gkrkjxjQSnW01TL3LMmZUyQp3+BdT3MgWoMTxB5HsW30Ph8dK0BcJjcIrA+dfnjEKi6SsnCU0O6ZYmQQV1h4yc6IqTFvsyELSdaRdjA6ftINyHu1AYrfelRQCgeWl8Uv7y6SXVn22Pc6xx2uCKblV+yTG0pJsS6JjkDd+WVzGNwVqRRpnAMyPwxYY4rHSZccLstj4ZQuzye26Ema51myPFyfK9NON4t7ZXED1CTWo25rWtce4zvrgwuHe8v34opUuMho/9mEhrINRLJBHqqGgLvgmk7sJXzOnOcfHBb8bV/t5vyw8r2qIC71R3Mb86yQIpJc+y4EkAba9jB0s1SvZUcGS202fYKdL3kt8ggkLQwBxMHzDv+HON8Auoq/XyWcrNCNwCojLAky+igpBHkQJ5oCdvbHEZjRZz5FHdjJlssPftzuCNrl+uGV93s3ExMAcUi3LUhzGzGQ+c/0xp3jFe7YR2bHkpnjI9YTEsfCZQ0GU7+huivFYKe6zI6cC6LhgnKNE3jiHAFmlljfpBX9dk3xPTW0iKE77W/QSdrbaY0sF+QM7/0nBagmgD5e0f1E2PM/jAbd8MTicpJkLhgXAqaRJ4sNZBYBwlbiG9Mf8Aa2N5x+FZB5JcoCiaTbTf3W62AFWvEF4C7fGjGDbctWt+jNdy2CbdfvPcTCNWu7yzHFUshdfAPO5xbl/v9t+vngKl2JDjHXVm9ESrNnPPSKnG25tGdpLqQvlI5uf/4C+3datLxVNlobWGkO6s+FzJimvsnRrYFqUApQajlTns8AU4oswhKkeGrtktR0VOTueejCoYlLo68ym262OEyi1S0bg345cw0F0DcnRhJKF5RFTD4/FV36KabgrpzAxMPTq6BSDArB+86natblc1yCaxPUsUo8eKeZEKDfYA5eiCPnxwdqNsUDQfUrgVaZTLiX0l4xoSfxntchMsTNMpX9eXLZgOFN0hBNf/r7jDVx/bqxbFuPPFMg2c+53z80o3qIbvoHSSGBVdW4vIEojrz4kmFwwaoMyzZkbcAd0mm+BZdlJ2CrlmDz3B86H4h9bSr7cGJk9wnAkxhffizZd73AmpCrmcJD7wrUt0rO+mn2c9Jh/hQGRlZzdxNVVEhR0QIpNaYzCq8z5Um66iVD+GtSgJL2Vw+sZo+6gyJBNccbaH40L36favpIZ3OIb1b/G3qCHMJI5CGrUpZzGmPU88Nk9SSa2FzA+wgmY+mkuivWQ2sh1XgrR3ARuGxZK0+8o2ddZNO28awyTAgdhjMRHEAFx0u6KQE1KPJg51N+OmH23JfU/sYg9BetAnYcSv/W8spHPAnPDUkmhPjNs3qZqfS+cQIOew+qm9GgSrj+oCyEm9cmqeKnQ8Y/cTn8riEzPchi6B2VZPByJZ9geywNG//PHSTx2cbGkn7O4gN2ENN+WteN4WT1bkI2qgn56Zn/+HSUjY2YGr9NwHOr+gF28yM/M11QtVUPoh2O+Enkd9Mf2IHSbneoIQD+T1LyPSBf5yVZdN1S3dL7leBja85++aFcNPt071e0YGSS3p/Uo7OZ/XFlDBJTP7WZUBFm8RGXwKHPRJok3M1+GSzgpq6ScKiY+ab28EIuAcjTSH6vzavFhAGMcX2P7xBibbZS0nDn1uLi31KFHfzfuJdnharawEcIoGnmp+2/xzFSUwSgWLoDM+jcJ9qxukXPNVC2Cdr8EcZTniJE+AgjNAY6mQ1biccjtPYjgZQ4n4NUUpKWgNny6OOyyczXyRADyen72escpaLjzrepQ9wjE4SnkLsB0zGj7ATfsz/lbJ56G/BPDnMV2HqOVIDz2asRLx6fRkNTNuKrup1vcM0xE/HkEKbyoGTsPR/z9UDrDXhxkHkihkMGa1dXjt6ZyExJlM1qDRl658BCDbo1QQwYMP+tElHlK1Yy5SDGFqJSZcSHm6yABuvbSwD1b40BbjnN7f1JyNs5dqL8SkprI0YndRWsmSdqZ0cVQZrAVfFZb7BhQCYY6wIyTUp+4H3NYEwXZSRkoNxmoOEbvYAa/tCowh+ygipXI0plWvnr2dV9ihRQjQbNiZ8/Wt6itqbUXmjf0SaHAkSm8A7YP1uAEW4CDWKnuTppgkeVT6ktpsW3PXUTjhL1+fMeDzWEbh2sj2xFlS1aiCQH3jzorWJQXYp4l/Knv9+7S4fTpuBHNQWtzyYMkUyYtBHHmC7pGkB/sYOYgVkezs6oKpLgqHNgX89LSBm0YlDCNyfghNiPB7qt3mxoafEfr9GdGvwP6AbJcHKRYFp19awHUYgaW4N+gDs+zx1jp1/UzoOGPCil5G6tUnef/MgC3Bc6EJmZpW6GT1TU13cXpTD7UVctW2lNsbHWf8dezb6cm8uSyuP8C4ncax+tHH5rs+KRFkOuHEuM8D/GD1pN3eSD3eW1okdT4qnOG74qM0qswz4lx6aSjpEN/WtiqbmvSB4qt+XM92Q4rYOEx2DsB/yHStM+tNjMS0gXPQRi85OaxpwkbEk9VTyWBYVH7RXsL4SidchyJn7LE9zjjmjvvST537nhu62DuIk4BxbYeFnJWFncVHp5BOm/1gNV00+1rIAev6g4BMoVomhBiTdBa5l6KQ1caY8DDJJryA5wws9Ce0+Qk1WaC92A8b2efHN5/U6g2zBRxT6SEy3aqycPlbXlyODU+8RMrmNjFdWeSax9Pu+cPPrXFcXnyDl/uDUT+SM/0ZkgJSxrnFtDPHYC8E65S3RYOwd7+8hz4A2wLrIw7oikSz9yGT7iFIVAOwzoS4+SIhn/UGL2Ca+IElcOgSQ9kC0xL4DT7ICSxhnQjjd8vBMIHkuMe09rUkLWiAPjg5UYuYSvX2chXqVJvYB4YpirKiVah0uSqBeFzJdsf4ysr2v8fnSRFrJeEqHPKxZyrO1LUCCURzAOLUm65ZGW5K4aQXgFuMnpfWRs/0fD/0G4lYqb2WWAUwT3nNAs/MXF4GfNuP7SEkdc5WXcww0LBMlT7czx1j3TVJk0TViC8tshO13Vb9wkUg4sO1ItSmOljrM0lufk/gxyi2gwOC8iLs7THq4O1rpaD6yrgQU3Awof0n7F50mFXkX/yLoimStYLXF21ie5gPKSpmcvjeDxpUgKqBYfgvwMOTDOfVpATj6b6ZJaSXw7dpKfxacxflmROA7uzQ4vx7kopUQBoMj6ztw4G6IABTZnCJQr2OITW3NzOkzeKYEQM/SjRuUejhOj95+XrKSSwta2wFqw39GttdfodDxXdJLXLI/r0AZcGFMxhDGVGLJd1KNHvx1Wp1jkGVjmxmdS4+JOsdZ/npDvF1M2qGeE///kwdfaJb/EBJvAE6yZ4e1eJtDQ2zPdEzP3taUK9SrbNINgaiHMf5alNrLRZM3RzaExud3PR74pyDt3nyN2QZsRC2ic2ME2pP0viGMyMyNQzX+/yDav4zk9hV2RdihOLjwGM8XehKVYxYVqLxYwVbLpQgO7BvU4dE0kB0LD5Kcm8Rkb5e5W6mYsG+pGTq/ATL2Oghq/FtdXPw6dQZ8OlH9vMdcS6qSWp4AHJSxvwIzjwsc+kLHYE5MTtKl4yXhJjyL4DViqaSY23iWZ1f22M6yq3Ata05soEZL2hTo1A5vl2jnkrzjK+Ly2EOPkP0dN6v14I14AqAh9ZnfABmmw+tFyGeePR/DGv3RkJ3trvR9qmMQJGSFc5Dv0XSGIMtF8NYNkonFRSSrEuzk1mnP/J6cYG/JyLj/rVMBed7SkLd7PA9uleq0p95UViLv6C4RRDHJ/eHI9gaSYbNt9xk+OhC2uDUgHQgK2ZhWhLJFFs8WcjeYALkMdu9lRYFJAMwgx2l+45kHga+44sDb0Zl65zgSls6Aq2kx3tICyO9bafb6t0uZHhfHE6vCH6VCDN+KCFsMZa9G2j+28ASrNIe4i1C+5f+7YNjhQNlKJh4Lxt1xX5/nJv3uQptCJlf2sRbBheQ6ucHZ7NKuynUSgiTFYaqtckc+TrCxxQWwy0PjuBrfg+iC0Ii+XKZhIV4LmzZABGeUcz92RiS5JD0GidDWVCpXPJb2uuLCntXDxqt1IA632RkeeDIrH8kc0lWdDkAuFlgjuynsrVMQqcdewB20vDg6kfyFYcGimRMlX4LdvOmonVzRZp3gP2he2AreYy64csYawGTUbyeB5zIPXxFnakkp80PJnw0fS9qf6PlcLlfGtQWoRCKvhdB2wDl9LM978EjY0w7nFqkr12tgas9uJ3/uVtKbGNlrx5BbKIvGsPGHobawkFxUW+QuFJhaSbg63bxuqKGKWGeAErgT/CPvvejX6UY+8zrPL9b4sFd2Gf/2ll8kjc/9NovsZZUvtZrrCIknJI9CilDHf7sDjSsK6P0Hc3xUO7UWEF63RJ3hVgD1kclWC7MKV3ahargo+96kaz5tafI6Zv6RT9QgDK5u3Bknmped3dbBui8kyklNtDAbsrwIYxTnFW325QPCLW4rguu9/JkSjdAt1o+Lxi+Rx9WMGYzcBcG9cofj4OKpn3N7I5R5pf8DPk1NYZ4XNIuMRHXWXEpgCoJhdfoJTXiK/sNqjm3Ie0tZ2FqReCODyT3ZyISqzx23UmwH69RnELAzD/3c/pQ3LoQ2uq47qRJREjxjA2lhtMklckmvdC3Qi5LpqNN8Zk2IgWNyayEYL9j9BehOJA9Nf2D7TiEi2Vxzpk4TVgOtMc3sDmJk1ia26rHl9tDlUdYJXZMFZjSKDj8BCjabeF02VSPCB1x8bOUQP8eIpwbZIjqqSDwtMRjX1+mhgHlxZUysfB9HIUQthcU9ScwkUq0W8dmZdf7hqygtvFU+O68QZvmvJWI224E3dZI/QibambdIxsHkF/dcDx7RiFi10VL9TN64GKLzTqlzMmEiPfzMlGwYgFxPPNdwJYBGImXGLfQIJ7aTToK9FPypcelCipMG2N9bjOnLMFS9TkfVVxx6nPuWdncv63E152sT3x37kzlY1GXo5IZ7QylTZGMtC3G6OTdc/YrTC4f2hkupOQqrOCWGgcjKmecWXDphvZdEpHjjdJdQwVjkX3aLpaAQdekTlRk6XF1sTINnSDFZSnFGlxkRFO0csxw+/97koUB0vaF4BeIXCvWGLlCgvCBhWd9N9jM3d+Br17Bx9ho6gL6tlARwcI402FdWeEOAzjKeKrMPnFhcafQp3oXGWYSTHwoTysdkLDvGhmDkfiIMOCT0pRCkcVZBvqKVTTnIpNsdfgyoEL7XLpU4pc8kxSly1EMHCHO4b6N5yQJnMHYaptt5JPEnmZ3U5rLAoFe51Ul5gxbegRJAjLcb7yOq3lIWRpB7VmCJi7bQj/4xFMH3Mrm/l4ogyl+bRRzwT7m2Sa9zvWPYkN9/3uxS5Qsge49MhrYHRpppISf/eQmvmp/2xxmV2JxZAi6d7wbGpGakDi3uTRGJEvZAcr7Q+49a34oiKFlnpUJ0IVQsn7qKwbFbLkQOzI9KOyuhgNz/k5Wt0A784cCj7yFYLDrGUyx0b6OlPayYwv6SqqFtRjfh26MB2VFn58LvHjipn07qgm6R03SwlzbtvNanOgRjjkiqcuTgNbckHBGeg/WPgLk4onWhaaw6AG8ogLHtd+dW/DBQj94z/Ppx4QEfh1ZD/89P2NY3zoszMQp+WoMrxS5Il0Kaxfyo8dupd8TOxU++5LrJ/LXdzXgH9Kh1N1BSK6OP26WlKo4yPwrslAC6/CWC5eJaqCLM+2Mr3gIxh7L+4w3/mV8hHAOtiBSVbVpRmnoDgb81V2oYSrori5Ob7TSUOG/EBTRWrYUyZ01juMKVQ7Q0uUUdDSJU2rV5/A/9NsyjGPz5kju9Q58LqvqstlZiNnDJPtfhJfeqKT5xP7T7leWKTQzxqjbS8vnklAmttUTwCJNbKxLMwITHyZd38trHDku6m5kyVcPs6hHkVai6rGw7aTrBtl2mmiUIKeEXI6svhsbov5qJFK/0Zu+a1ipMH3YVwkb2A32aFvZQDXRuYSjnQLf5mV5tXGSkUP6O2F0Vj/o5njEGVHMBfdpDo6LupHt2JPGYM6Xgg/0YUbwA7Z+5rwiQRkAdt2evAbU6moZ0g3rAbZUE8GuO0d9ly1/A6X3b1wTZAZh6OtkZcA3cpmiq0c6hkGKv3OEpohrIMHOgnZTizKS75lSHr2uFvfj+l1i3G+VioCReHMFs35WE1ui7llQBdKfIpjciPAC67aPaHK1rILRLwaQi8QoXyCu8hxrvvgblQbfiy5ReWffH09YffOUbt5leOYatwj0Ed877XHmAKglaTVgnBEGL1joQtLgHGnXP1sqh1XUInsPNokW+sac4tDlVEoc4N2o9/GdVd8NxuuGExFjlz7NT/0piBgMLU8QOqp1tSDrpQN0Tocu2kIB0aERz+5RRh7SERzWkhSNlKSaUd5K8RFRVMxOlef56XCmaHxnl4mR1hI8+36jLsCorwBHX2allKlavZJmBtydhzF7rIJcukbbHF39LzbX5weYcjg8up3l3WZSxt79obwds6tQzu2UofT2oh6p9u/fR8v+T5D0U8u/6Qyj+AgzYX37MxkI0KFn20/eokhhnqpP4oVDmTTf3JdoD+efjIjHbUczgB2mo3rKcGGlcABGfjzJMJT8KG//aFdbfS1wr6VW71qEij5oauwBCkKYpo/HwHni0wohDfHyl3G+8COrkOuTlySdF0al7Tl1rjC3+N/Oyj0CRhhwWObWv6q9R49JXa9piYDwrZYxnzIVyOr4WVcjkTrkdPMhC044IYDgUANccoenyOtbNQIZ6XrDs6Yp/N5vfSPvNfeeOUyp1UHyiUi0wS8m3m2aDFrNaLxB9SHq3nxzQwx95i+TObNGsIEpKivukLsFd0E9JDZbjte374zf+2ExkdMhLO6dpixAecvqXvInfKOgTMbgCBltN9nhgAdL+tGcvoERCPnDphSXFpCCD34eE3jEPnzW1MND2g2yQYXB2g3w67QEIeu055IAskWpicFarPe9qebTa2K34lNi4h+xMZC2Avsaat5FNc6E9OaXjFtnGJ3ywg5+/0dlh+hHZp+Pww4C8GKh/BXkIToHILE/ujqtLVAaJiLgyw34sHop0jqFa1BUNZJjpSQja3t0yFIg8beM0S231ZzhTpDd1iyvuTwJIT9Koo5O5JkvbOsxzbp2wnP1c5iiqBH8rQ3DoY5XayH7D9kIjhuED82w2PCl8cS8neswaN0UvX1IRPHJaI7qZB+d+/sWyEwM84Es5q9Hw9+icEbSK1cu7yGZgCGhGf0IHiNXBna/6K50fF6QAKQB06rD6rPY9MVT3ar6VdWhsVTqgWKJH18e37UMIVyghAy9EnckoaBeaw1Blf/edvTNW2pU7+DqDel4pVEbmAaoyDjBQnqTzPqitobfYzWMpd+ELm03AD8qUHpOScWKMiema0uKl6g6T+p1kXuCGNtRjv72LwEDTYjUsnGS7MKGqxe8cqRqo06KLqbA4Nf153y/AI2Rytz6q6oESJxfP/I4A1W6yOheJ2ZbQNwJxXryBQ+PPvEOHKj8paZMpBHVWMtT5sRuGXfdMiB4Zm7yZSMGg7ujoso6jyTCSAy/wDZLhJfCIhqSYN/d4c+8lgVl7d4uU5SYxN0/7g6YTN06kB8aX5QGPfmS6T2RmJB+poovEneYNUyBfUBji86Onh+CjKYH/nT8a5UtffxvVpWymT4OdMMAA+QfUcp0uVpwkDsrXntF7JPRHlZb6kAyFsOLoZyDWIFfXwG3HjrZB/9JI1tCQfdXHVOp/EqWlGysXhCUTXv9Vcm+Hg7px3BU42i6eJepkcpkkahP5RLdJCbR+9BiTlaaJBocFU4Wb5O0Nvn8qwdxiSnaCYnw/hKXQUK6XDi+uC8769UeoV90Bn98xlX/W5Xfm+ufGwuUrFMKoMYmxEZVIWAm3vJRgO5NHQmG6oO1MkQkbs5NVKW2AI/g0eDYYcBWX97Hx2FA3IXF2md96DfUuBxUcyaDOdAslm+MGuXreoltlS/BgoFHYgHsPQGmo/1oMXtNJ4gMJTKPtyWOA8j5HggaIZCyuxQddi1hJWNNHIMOND0azm+JFFa+HPsq3lENCiptmJ1IY6HvsbdzF2Tdp+z0yj3mlOxV+MGjdM+dJo+dER1HNe/wQwl2aLHBs+7w+qNvGS7a5a8AUCuH1KnvzfLV60zkgQk8n53F4kShv0GU0tUcO1hSQvpLivgkryiVlrluflM2xyH/FZE2F3qH7qwLyUM0Ap4doPCogQxqH9bna1vfEmyRn6UkyLf0ek2loyJhqmlNpq34NhrDj3arN9lYMTgQiujZDGah5ZJZTgDQxnvn/vTGKqu2g4C17x0r+ZTaEgJcw+YXX7IBy2OS1T74CWm0zz2m5eRJDvreO6wHgQ9NYhctPpSansVg1dtI6YokjuZlKBFX8i5YBPjiwMjtCwTbw4UVEfc0a+n2xfIZjIbFxJINK27vaG8KSbUyIQJFp5zVAmNobRAU9lDlF6LEKshMlexRxf+iV4mB6++YnMg7QYGwgkFwLHLE8jtMsRruDjv2C+VQzk7BmJ9C/qF7OV1n2qpM6mTqPA0NJY0DqJcCbSYPKpHahpIeTinZvajOYLZToaoPkwDwPe4K5LnH2EAHk6ovPp4MeyoLNN67KK1erhMUZ4vf7Od7/CRyyWvLDidoq6rYBNPJ921g+8rn8BevS4xg1fFTBmornJKXghY7E7r71sjKEot6B9d3i/JqSlzJlwa/1I3Q6OheaUybJWiI0iU2pimXitvAaLlURcBt8+MIeqri1cupSVkzPBBRXihPurBhs1H6V4cj8rxy5PEr9wYFF0calOQD/Ym6ZLtbTcCzAs6Kg0UzEazlenQfGQ0etMynbNa4WPrMTMwceBb+VByoCHvp6+XSvHEsWWPsvoIcYnrQ18vrmCK9+NMFqPHSJ339z/hrzd9kmgYVrMcJ2hue/fd1jyYqvlRHzGsOTRFKMTA4EOY18gijZhuJQhbuabUYCIjESWxqaMoZTOQ6KOVz89qee1mV8oYF6WVVsVds+Wcxt0InBPEMH/b5nSj0BCF/9sGCK54kI0Z+oZ20a2Z+l5AyOPeGuRmMZ+eTguNgeN5CmvmFeok6Onek2XnCm9crnjxsquxHoxxgZEGN8Fw60d3FmSJaW26bgmw0mr7F4WKvXa4z/PkNsKrzB2OA2wiaL/C3NIaaEB4rnGZGJsHX/DfMRjPynuyQp6DSdG3Nab+MGEuIbnc1/hT+PZldL7QmtPilhBVT+EK5wJ68f7wHjzCP5nxyiOoX8EQSdrMj7cY4czGneqzevHWRjvu7gvEVXJz9fZudxyUW3fRkQv5gRQmHeN8A0CMvfXorz9NIDUdA7NPV6GoiBgAz27oTenwLycuAzn3rxWuoGEbMWu4D4CJWtTTkRasdJK4QjfAqxM21PCrx9DKxHUg+MQe66HQ125fCXJNLRHpyoTpaw2YNUJLYm9DqJsq8hHziJQSvpQL/GTKYzJ+CfX18z1uTFm4mtJ9CwxM9DwcXdRKUlLbNQtVoPBzLR2YmkAs7LoFQqz309h+wvzJ9ePR6lkQ9cesCxTe0b2kPHKNaohW7H3CRiMhH52fN0GIjGpHPX+KMDM1gKH5cElmAydvB/a9I+/J2HhXbmABzHvs/Kd5tdgluCiys2PZ6Qhpla0YxCKHDigrL/kJnskPfgQ4R0kc+H0xKyEnTIUgvN5miA1TfG+stlv9q2ScTggq6Isl+rOnlCbl7VF0Uzt1Qa3WZAfYJsA86ZV5xXBs7VVmSJoMAYr/UMftHANBvhnRoXL2NeYH41eNAtp6NrkeFKbLSSaFcBixEaESu4bIOpuWO6/UTEnXaUpimgYz/ZMmQSdOjPnv88y/VEXuw2KyZmGpuTyvYnv2h+u9G3D8pP74bF7u/mNIaAfokS4ZJ78uUIBV8OFxY58cEqUjf79it/oOKKzqOnpFXKUkokfwBC1r4wSapwd/nQD0nMADKXaN+ZFuADXV/pyXT0bGG4UesnIFca0/21xKVJPA5fCaHLFcrG1CiFcL9IcFqg9FogPUoJx1FwOGkfxHoHXpIfr+K8cCC7rEgGlFBMHlZNMF3anyFEaLmh8uBvhuZTrqD0OHsjA3TVDOd7LAVEuIpCzNZaDFpEfwqzzH7ihlS93kbco+G4hWeC/vHFrPCJqCmeNC42OV7RLyRArKobrT6aTh1XcVguYnxPwI6Ala4QZ3Pkcq3SZYjS5CWB/3XhjePn9Y6qAGtMRJeeWyuq7rpULqRwb+3sh8ClAKnkMirsfX/u8A64ByjrqXRPnM2Fr0waHFmibWbqEJ/u58c86Zemr8rmajfhTUw3WS1EI8EV8eKMJA6v4cF8qK8D5580UnxHy2an9ocZbxLZ2DTKBbUepvQL5QH/EuPTKg+7BlP45LlhdzIBg8G6alKwr/iEfZRisnTEkTUvljuy+J6U1zU2l3CnmGXsLjZKqD/QlX089+ny/JpmPal26JoG5k9eVetboYaArFT6UtcRupHLQr2z3d8XiQcv9r3XAOgd0Xtz9sPmoZTcvkJK8C+bh23N47etO2zlWluty0jNaJbYe+5o6MqzJvZqpmZ9oX3gM6GNs1tziFscDehrCu2l5Q+5aSyg6w1g1wkgUlEKAKaebhpQv6tHkp3gNLzOMSnyPta2ziqehCspgjsZToRDAOzJ0rk17Q1lAmEYHUfNz5D93bneKg/pF4RRbSvDazpyplVisRbeHwVcGZnXCpX2buqSU0SLWMDIR0mXTO4ka0OvnCodKiyTuRPiIAGRtlhMrfdMVrZwk32axsvaM6Rlj1akwEg+IIi1zYtgbIFhvvmHXcRscttHvjG8YMssLoUgvaB1tZ8WPTBnHKf/Uwmfi6Et6opGEIRekS01tdlmTOU6+LspjHvvzJuZaQFbKWCwE0LdG/2DJ+cu3WoV1ETx5hcYPlcWy2Z6Z3juvBWXGm+nhLZZ0buCdkIhlmrtYETZwIoF2m3rY4otHusik4k1lowmM/0yua/MOjJswjwOW0og2ka+0a7TMIh/p81inqhXADyMLVyeoWBpaG+ZBJ25LotEQs1F1IXO9s0RBxHSbfqoNCJSEQbHrzjzmuPlwlRszCUBuA/6wkj4SR2X9nj8rnpS1bJCgU4+s/lauRyw+Y09Epdk2sm6VKveZRConcouELHkyjvgGlvoWV5ddyV7bANrfwJJzgEWAdA+SksO0LN6uNBjKFz71J5Q1MGaw9JC/Z2rfjI8gBNkHXnbQPXNFXoB0h/kJ0TZLd8Tlp05dGKJP5Av87r4NRXe/BBPL5LDyFc8WBserMrlkHjx6b9xZFdZcinDkrQPHJIZUhoakjh8V1uHDYgveYo9zPr00b86Tv3Xtsw3KYpu5jAi9GGP/31EnDUarQ5Eifo4oXjLzjxS6Z1jCCu21T6U2Rgc3+4Lixsmuo1epjl3Vd+ulcdSIqms6tsNjSP9A5YiWdglVqQbxXiaFi4SvPb3kwrT+9Dl4R7ItvfuO9pm//VCSAbJZYc9kU9ev7HmygUWHpqOJsx9Uh1d4JiRLZlRz+UmrIFcueSxZwJNZK9k3qk9O1aFEkjk3rNmVWpNlNjDvJWx65dO/eUST9qEunYxMiH/qs93mEOfwR1xgrhQJXKrY6ijcT15iXP2qbcnoX3sJJpzNfrMFNCO3jthcfx45xizs9+skPqLb/HlnXbii60ndhOLh6GEkV9k8hz0U6cO+LFaQ7kWysUvS5heG79EC/q0VBKGW11TGvJ8/v10E79q/jRDlj2OOzhr8gL+ZehPo1yLcxvDzRMt2pmomjMo7368tje/IGZWYCfHzyXWCzYORkgVszFilSXzIJ99TmH1QuoSgr6lDESv3E8rCmJFaVyxwu5JFgTM7sG6wuxQOClOZlQeZ6KbpDWB8rQr+E4EUwJwhxHEklD74cfogLMDY+QxSGkbfCECn8BPlZRoo/WoxBQcRkVpHB9sqEtZz6Avmwy2RJQuQZ/NPDSWd3SVcJ1vVxSTr9MBaA4O9TGJjQry+DFUehl/EOhfLoDsGHP4l0ngawrm1MA6UkwpwcyvxJwdIS4pj1voRqkjjaL/TBU9ddmJkBP7l3F+teDoc8xWZ9pl6EJHM5ryWBMtiKWho5Q715wS7sijnpbuRAnCKfZX2ypmpKHpBFyjaLmmvlkt0exlRtZE8Fbx6sD+M5vLt6axWnuxm8+xsqkb7oR8XnCSWtZiRc/JSOt9pzDoMTN2Hos+2aScufNQLKkaHbtRtk9fDmgF0nu1O0XNEdhNxglH8fx2uhy/G9O3atUVUI5uZ9O5YmGbMgipRtVFSLfpDyGd5ozOmvxaIR3pxgx2YuL1YiVJnHx5Jv8gcOWbZ0zl1ZMOvPg0Krfy78dhoFl3I1wNS18CUflhsgppYJE/sxkVC4rltLtfSNPKe46rALIedCWjFoClbBRE7JpratuI2iTpcolipaCfWmdf4BNskF/w+CMlvsFb6sKH2AK2kdCMhnfRFPOqsSQtkI1bRFbe5rZEl+T6Wl/O3FbqNlX1mK7bMSRbfTgC9r/vty+goZNrGieMd/jHwNczEpVGWBbw0VTeubmYvJ2ELZ7y8wCzBB4vKvzjX7sqO2DaifJKGFKXhNm9mJem1j6Z8jzeDC2jyF2LlCKy8lmLz5qwmsUl+ckVTc1aY0dJqA9W8txdKi4qAo+E1+e5SwWBD8BStqMg9t/Je7RFsLDq0+oqOPXrMgxulDTGa5U0gSg26ZqFl7MtU0RdU1pHIj4I9CVC4+Q9EsbzE2zLi7fuOsi7UQhdsQfs2ncfNPexT4CvkGYmLH+PAZ/XM7vgteDmR4foDOfCrkuqoEJVW79vXeVNEyuHxXrm3Na03csXzSeOlTdbxNAoJ919glxlFZU0VwTWLzjYcSyyxPPGPq9TNO/fX6W3eAaJIu7JCOpM48CCz7GT0U7nv4pgJFeq3mNfpXPTu5L8HvGnwcTJ5KO8eloydJs11c5qgE4xrCyWygEFSm5JeZvzow3tpqHDjP+GOhGLZpYhpe0F2ZslxwTomJIlLFUqSvAv1qJmpfFJ4l3nF5gfWM5yMTj7f5llBPGSMCU15CQIcA3BxP+nGgqmv+Va4pMEeRiXht+N2lO+Kzr8ybGJLEf4FvfVkS21YlaHf7LGSTFO3qw8gND+WYS+/50cipPzCfpZN9yLBAuNNv6hXeysu/GvjAbkWQDZz4GJUs6dGZDXs2KlCXEpDcDR8/ib3+lCoTJg2pGId03ydC1BJ9WA+a9yJVVy9RDAgnhrg909FymOV+poo4sgzojh+8c8G8F34IR8wuvUe5EKyPGSpuAwPWlHIkGiqIZJamGGkyYRiiGO5LahS5s4n9+mNUwpCATL3AxqoIbx6Egq23QLl04/tu/4imjAuIdcGmr1LEafM766JGk3C567daJHfGSBM3xnVNiqEK2FZSDZxFyMnD/ban2AG+zDrJQAISxy+ryrLhQ94XUTL+Zb2Ke+/TIcaT/fEYrmQ59qubyiE/FK/WQ7x63Uz0C53GxwYDV+3fGdBR5WNEv+eBsxCWQi4xI5v2hF9EP39ETL7HVI0LY51zYUizvjfs4cyk0dTHemsuP9CniUxNVcV1Mybf2l4P1+mLioOyIftGu2EXBPXy7H6khLNS725xCxHqfr5qqUH6bFDL9QVUsuexLt95fpoCZaM4xe2TYNPt2tFjN19b26bx94QJbDdbWlFIjfvttS6l6pPYvcoxocgc9Ll22W76FsT0aTjbc561fvzhkTPpOoay4hrVoPHl+49FNx+MyDpFp0o6RBO9BU8WT+dSNxQfqvTV6n8ZLSTPcORB7ny6a5bEHU+zrYhnAQZTuMj2ffLSPDNnrdsutByZYDq1KWRzsLB40I3Jzl4m2z6JF4cfEI5DuJI5NAq1MY0DX0BTPbblkQ8syzsQlyZq2bXttQu/L7Y1iLELqjFPxknAwdcr2XUz1pHVbzJWznSbVoDdd8Y/+g1awN9d0kMDZp/SmEIK8Y//G/oX1pEpK/uTdSgZNnxa+Lj2Z47QEC7fuFPXiFnyGVhVHvhtTeZcnR2MWBvjSq0a+OZHanR8iBqMJJaXYUduRVkunW/QKBIKH9IFoA2rIF+zs2dzO57klaKQrtnBHqA6Xr8IF68RtqDrhcbQg0Lzuk1TdnUEngEnzcwLV0Xf2cS8ls7oi+nbjjdNmQdCeaAAAFBgSfL986zAsWt/XmORqtbJf3vsL7AfiX6acw4AXuIBVF5/eXi3RYToB2rB/6NpbZaEinBjYRsB+sbzHX9QuxqCmgNcRpBOPufhpPsQQQgT6ITnD4zdgflVqkH+6xV+2de/HXm2UJGS4Jv4ZBO/hveqmZJy1IgYr/DZdOelCWXLlHAZPuNO6/HKs79f1FdATGMERaWd5niPZzdH46eFGZm6NToUddclV3yd9yLQRMh28LyqBiv0RhgUia9GEBkkieGjQclkwyDioo5xmrrYfKI5rL2BennLwqXto3GMFOUv2jImVqxny7FaGGtp8qx6Ad9GrkXwJlmItWn/pWb9HvTW2PwUBCKh17AZGYNRPObK8SnpQ9A1CiJ2qqSfMFWa0djDNLQHRab9KadZU6ijJ2u2zzboFg0AVmOcD5WruNJzbAgWrFk0C8CjHuh2GBu2x5P1F9ZbeCyMi825Gd+CdF0kvWQAa19iYu7RYz5FTfoVMRIQ4aasbW+wqCxg/KX7GwOH7sxaq7KTfSlmaa55fXE+8fM9f2zVk5vvJV1h38Ph+uwhHk+4xykj9fAq9pmLR4E1SY1K5fjMR7JBVnwX4ey3AFFjOGyCVwKipFgZLdAYBxwvR6E9bM6stlVKSS3QAY5Lc+78uxDX5OIuP9CsQ0xabAVw0FG87z8+285wcBqezoSQD5K4rKieg50O/WTfCzLYfhh6QJsquHXaMu4b20U/nfhvI85fysJE3lKX9xAo6GxT12xluUzG7PNnGvj3TtRQpI7PcUHDcixgBBj02AW9m/7c0DVAKm9eFcg7l/L8+iDlMuJYUMqI6dDGD/eZYC65LkHHbrfQ8v01wsiAe7S1C4vc8D75Q58jEL+fx1m5GpEj8QnOIn859DmOvn1cgMeOT5TMY3KnmUIn7ISrAX4AiGxD1wE/e2rfFd+OoGqSd4Ab9Cni32TChqG6diRjx53Sq9MTLgxmAQH8fkqiTDxMCVBdzOUTJVGJ1LojZeyr+7k/1MxUTjL4XQSuH6BwYB3/CjsN40IawXcP0y81LlG041Uhmd2jHRIZH7bsQS0jjlomfizmJpGCxjOHHKG5uteuxc5K3Ed1LLeH+Qxdd+NBOfOTHVeMkdclm7V+eSxTtvXlaO37SGl/A5rvP5YJO0YAOsCIRxo2dbiMaN+P7ykwzvlhbDDCLXDlu/TjxA/r2EuNJT/whI8AQ7YqRIRBQrTelOBAhTmSuqd66XtQ9LnSd6NiCu9ygPJD3MKnYtlW+HL301+6ZD+9uCr+I14DxYnQqI6jDTvtUJulG6tGb6QKkQrkhH+uiVjFgmUX6pWgFkNrqJk4RieIjD5/64Y/QRFnzBs9i1llkYEn3RXbTsLkjIMzpjv3Y6AI8ckYWKtmbCn+Lbk6qLPt7HW6AbDpzQtCR3w7ovQRzi3sI3Mo/fX/G9Zmjmeu7l26jUEq3V9f6FprGQDKU2+ypbspaazrAS0IewbM9KYgML/9WLdPwieWivfTJPxh3ngjKFFgItgk5+JYkqkqqVvr/PyCUX/EtAuHmc1olJkp7zRg32MxRDT/JMUsWUs4mdjfAMnN4SDOln+mFTJZDN1xGxqJoHl7VCGz2BfqBw7J9QNsh7LPRhXnh9c6RO4SeBV9ApVHMvSbUGJzHwg8fcqXnHna9abe7Ygp7uCCEc7YAGXxAIZJwFuA6mwZqRJ+HHwsmRkb7xcqowzxGJxRkeYD4jDnFWFUgOHeZDdCOvTpXq/DyZwOc0bJnF8OcIRiC082YPB3Oud+1eduAOkrMvbYuMX36naNBfUSBwGoJMahXy390eJgRrFQjX6Prc3BZrZmtoB3y82UnAwDt6z2gK8189Xc12ZrN7MIUHsIPAHTj6FIkHQorqEDZ/jVondmeiU7g+malDWnXEneaLIrYGgJXMG2w3Y+eNCV244xWLpSAIYrZXgeyu8PJ8V5yOF74+1Pf640SKx/UQ6kcH4U/S2amGqebmjEVop2Uzzy9Ynlgz00lmO0cWgRJaKzWgA4rv2dJvu7btxr1EccnUY8vxNIsRvAu1kLmCViJp/of+oR6z5NmmMqg9BJYNKiOdcNsoVrAwPUjixaGacJLkUMyAFarosJG9743GicJ9jC6oPpo1PISPDmc23h5qJJuk//oDq+/tIP2dwTjEa8opPgCn0QslDJdPPl6Ua1FHLHDxYL5eea9VUlSiQkYLA8u3M08Mn5zGpR9uIkct32s525RI25LHuxl4aEw7uPMAvudJZCZZ3AdsaQb6eoX/6HSoI41M89u0ijIjbB7zkVoNssx8el7Da42l7qTda1J/7FfdkuVpRDYh+MFTadgT/opQa0gnd6H+jbBIgg4BHlkwF0MV+Qr780NhvDVmm+kgXDM1UpAfFGWZDnIXSzDrM4DqyZcaKnj2D43EfXpPz+9MG+KKR5RFQeDf7miXXSqEcOdInBCBMrrn5yXpHIILyA4BH1Rf0/z7aV5SFOzjEsDT6Ew3qXOcQb3RhcewS7rngTFchNdjT2suvCgFnOZXNHb6KPaftWczj3zmAim6eCW5GitLrrdkALie2uQTsiAFXjO+FI8GS45ZotDenDpIB8bgAYQgzs8WpGb6zQsH0a4ezGXcAvO95xWlUC6B4ZkRcxNLtNf1Ddg2/dXbEfJKuCZuEaBuwak6oylEgD4lpzBb8p8wmMDkrpOMpV2dszSWYkZUa/zwdlYYhff53jaD5BxLk9vPTBlLxErF0sJyY0IZ5Gvg2xPU91NDQgbnyqF+XfjPHZpKLMczIrQOdnlgukebq3TI8qQWM4MNXMp/QG+v51O1FbMtHHxtK1s2LuCNn5JyqV8dls4gFxHW5QAU6Vg0H1KRnmryMRN8BtA4EZGxM4fwSYo8z94GB1ujRsejeDT5J8DGzYZ2B89/JlYwqd6RBRUYBvbnNdt84ezmHOSJBUcBFGl5wkzIaZMDDgvhTIBYIGXcVjPfj5ZG4yqPAreY3RZLYTnIIy4h+us1ra0/SiH2ppCSREGyxUmWeKDizIdeF8MdoroYOBoyNZ8gkqRWq66Ip+NxyjIMdROwAB6D9srvW34iArGniGh2C0LWRsms8gLVN76yP4TCmMzQKze/Pxy9r0dowvZcXp4x3fkB9+UyednUwbI+BAjIFgjJXpXRZO4mIGGLn/nlGWrOoAY6nT5I52HBJ+hoysti1x2TdK9vqiCelMFRx+migdA7V2JcpFzNqOZAt9Hy+tFEnUp23sD+B5Ja0fI1YVuLiXHcd2E6vACT+jgNbYy2/Ph0GZ1fcDb5J2hK6pFRFRKWM+TrpIU8WiIZkxtpLWJqdzBjrv9CaSqN2800hMGQ7aVTCPSr3dvukPUeQjCsU/56xhhjnpl6ZcJ4DaBIQF6iBbzrwWbUdmblWf+bkAbc0q0TAdxQB38tUODTCDOn/7dq4Jy8tbIXgvgAggfpukt1jEe7qp30L5e3JZ1aYjG3bgxiYrsKCVDkseuS7zPFuXe4KoqBGLdzlhKPpjWTBCtCCzxJwj2w+5Qj1ZAgR/RThM1HSPd4lQgyLJUfJhAI6LD5RcDBdv0HnfN2V/O1CnIuuGAEcWfzywUJQ3F75t0hVXJp0AFjxM4P1U/GPOMfeBkXptE9U3JgrUCAgamx08BrNgu3fHDJxbYDejJyIxeb1gWmGWeCWPbfawDLYQrGvpz/FtpRhWLg2zBD516psKcPpIumYuuaT2yt3KKuYIludR2CsjhHnRsGXz5CAZ964bO3lp7Na23V0Yyxl42+vuZt79tMoouSzn3IAPUj0swumk/e17ppBxwBj//VmldL/BMjUQ5F8KRBE1wwI1IlNJLR1RX1sRpQHhwHKuPqE3p1pKtRTm0fbjBoW5MNaWIGHYnkSNbYy1BhQ8QArKOyVa3gXw51LJqPjT0gqMf30rhootFuajKCvKIpYxHwhIskSDKwNJb4HoM3OV9JViwvZffdOmNCk7uuBMukJzKKqiwqPiomG7sOX2k/B2RGrbkP0hbP6yKK7CfxR1MrngeSsnKJLEBUuVrbHh8sByD5rEvp/OCFzAQ/tBaatuMPl8+nvOztQYtTBgIj+Vykoebwq70NCxZrVn3iNoHInbdFq4sdYBTtLr4jEP/Onc/hDFfhl8LszjvsRC0rxcUk7SuaCIvotZkWj4nUDl4C1nLIuqkoM+9fi0wAtRLZHw13wQkdIrC2AkVeSWuBj6FgbDDcHj0pkSj68bFnhrs+6+0QTZ9wGuhjqbqYiPoFgLFlF9TdfpSofatMn5ANA7WlD+9VJzCjpDOsdjSJnF0TLyVECUivaRQkqhCHE8PjotYG9uFoi+E1cBn1e8dOUcCQ9ZniOAvu46VDyDpwjNqmjFe/QpXZc82zybmKqzOYJ2paQd6MC/JuGvX9C80YFmM2/uvNYZiHHmNTNrg4UWoAmw8Si91V15FG//rS2R+kx+FbycMjuXMwCgVuaUmxyxt9QUS3SCb58cGVGURgVw4r+QUwLFZrRkQf1hxP9pOdo1Fu0f5lZnQtvjvqG3614wj5eEM/9xmeSa5E7EaBluH27ziuC0kkGPrXaSQH8euTeUgianToxrf6unjTa/lBF/0NDm7pZ9EJP8sPooc4ymN7trkCOdDivdc3LZfPypskwQDLUvqWt4UE/W2EZ+/nCaeaXNwPPo0bhrRt7h5VfBY4y/5dcr+d56tfuvTAuqhLA00ErTMHmdZFKds0KHa1WrNTue4415dXgbKHTNT38MBpm5holuQMZXswiP84aPYDbryVDu6ofeYlTCtxNwlsWRzQkY9yqSHFKtHROLU9RsMzJKSS2jws+SX6yZdzBtQ6/9U+R2OaK8zMQskqMz3rBiF12CKDZoYj3AhJp/Bfs2tsSuaxKYvjDNk3oYK9IC4CsJhaGTdnY1QGEv2CD45MXZY8IFa0lba9uRmrOWA6Tog/X2fg1N+L4mKiIawfY3Dctcq8UwWNXfBErnvzMEhBpihafXTM6ODzXT6yX6kxOEpEQ/qoxOl6hAKKahWRds8z75QiYf4W1ACKUVKBSmqj0JusVRnRS8a/Rh0VnkngC0MQ4oTBhFfC6ksKHVMNba8TT/2XmaE+Wgsjnki09DdMtv0JhxEeWF3t8MloFSrjZMcUt5DL30Yq4fACYLU2lq1xK+CRKEGngZRE32GnkVL3q5XedAp8KFUAj0x65LTnsz3cl4+3I/N6a8egPY6lJGv3MtgieHwMIVQVaV1Lwf7I82cJfkWnw5q4Moz8VOQxVTpSNSwE58KHoOFgWpiLO2UnxCkXE+Id7VpXS272OYm1vgYACal9X5B8JXI90SEdkNnGboT2+Fppn8/ejnWnQMrk7aRR0ZE8ayd+qUKevNqKP8kHnHnlhIIsd0IMo7GsRrsiINBW1+7996Xq97R1sGoLZ4bD13Yr5C8KU/jtnd7LEThiSslvpddIzSKuiemKSQl6YQUZQu9NbO7K4NTsF0v9BKwhWzug8Vw4PbybMi6lUSemGHwcrYdPFLDWeowEbNgPXxR9KhoZLkY270zpZULAm/z3jlh0gTDXaEWUZNLuuhKFQfQ+j0wszd0V4fLWjUMnvuyeh1U++alGYtFlqB+BIPz5xBZJIW8hS4KhSNb7XzZixzzQ4i/uAGCCk+EZWRKkcwCEgYXEG5xwi6qQQMphqncwdFW/b81Z5SCctD4OoKNmKqWq1YLXwkBI2l7m4Kaky7dtK6W2YdSNEBhnmT1ZEa9HrFSl2/wSOvxGEaxugmhw+nLiXhPi/znr6O/0YUe8543Qsh1fS2FtFQ7IPzxLKCYtp9ywbNPM3PP49obM5KkpDrVm4gtZ8EYDPqAOpbQbKRv6mFqysICuCnMLEphJcgZpKLuvcrROZlmawndFZFg8CSCdi6PTN4cqixQfrqYJxau+Da5Jj6G9QJ/aMISCC77hyt/0CGC4w65g4kz8zaKHD6YF/0uJ07LqC4ipRZz+OocdoohZ7P20pVknGqoCe4MFB2Q2c1B+PJTQ6hg3Pdevcp4o17h43ce0pDrPTA3/s5u/lFINE+AGWoGyE/SyEZnsfQAl0O2q+rgtKeKHR/2BRiMaER3OhF7k3FyqscQrSSs2Cs16ipUAzwQKuDMqzFSZ53qnys3gCWtjbBakyNG4jqFd+UGnfObmZfjnli7zC2ZRnrLBAkBLQ6idoRO+lQ+wmbmRIpqcxAtEq6uWOQBsve+7vQSr/l+UkcyEPd7KHuO8cCZ7iem0Fwq37T1UfQBaBhmKMFQbHtXemXcRep2Cc9J6kC06a3T0JroEWBj0ZyzjooPNZeaqiqigwf+jcuUjSWP7rl1bmM6mJxDq3+xmWTclQlIarCoHx7Nr16O2fdSE0K3Lrj+PhyHkff6zE3oNnfg9XTy0oiMokvwo+8LTXatCx9lbhOy6e5q0F6PlpfgDgwmUoQvFSwqBJ14i6lqkoFBZ3lHhVqnaejHEZOxqQvOSyLsBdDJm8xEka9zM6vCA/JLJ1DwOSkXoNCpN9fVvGJ1Gi4wuopIAhsg29xf6nwMSmFNUQtr/NL3tUpTTEa7vuBv4OW330G3Iw4Zi0XFk6HV6ax6EhrxMqe7i0a9xLSjhuSFY5/hQ8vbm0oUI10Yvyja0vKVj7JWszmtlGgTCOXRbRIZDW7YHrVM+JgXeGjbjGxABxV/BPM/IIYiYHGhrj2MFFJgCDwvQN4oSxnvFu4SYZmmT48TB7CuSliVxw0yJu5ppkmjVMs0qBQxBbFoX4I3zctY0Qm0jpW/tB9Jd1X6+BcLso/Rf5z4wc/1hkjU982C+4xdv3KfC4uwTmYMstiqSPJK48Ftv9yVb+vqAax6x2dw9oJne5qzwBfStBm+SBZXluz/56n4BPUtgiedVysamYdefdNHx8uUwCWxdC1EWJsOGiX98HkF1n9DjCibLWtGvuel278y65rWqLRlJpkmGe1jSE4ATz0nfgZwf9dqAFd/UAj1t2JN9d2Zzg5fwGRS6i+siY3pBYu1SjZajWZNh/lv6qpH8umNKD2HQYKCr6MUVQIux7frAjAYMAMlnEIEm4TZlmX+WBjIKBezudB7EmtJRZPHycu8SwnuxcUkVoQkNvjcN6g0msCvA2GsPb0TMppbOGfULFS26gyNJwW9dO5aQpr83gCq8ZCCNIAsLR67xdQtMkbjiTwa6S8AOQqQ/NCpakdrr7V9KsODbyuCvPo4eD6MJwWeVFR46Dbrj+VHHMKg3gNkNzkpXUiO0vbQEoS8XruveA3GcU0WUVfNUg2SGqmxoJkKwFjthQAMe3bw6GJhZifDlZBVwbG3zrQwRdIWsO8aS8R4i/6F5897UJUlehXosO7Vm2YowmAaGSlZTHA70mwgulMIzcDHPBb5z9LBgXdvRlihKO8/mwDm56Yimn7NpWzzeWvqSmHiWHcjaS6t9vWOmRn3nrpei2SYN19q6iDlCREUhcBiqJIRzJVFcuwa4RjIctvia78HWFA9pjW3BFhnG4EVQSVmxkqEJ3ehG7J8lFKROyQmnZPQBEm9hKAnDYfoMNHX3cRdlw1sigjj40iNQJI5owZhOXiztY3SR0flx8FyC+L3J0GiCKHjyR/4yH0aZM+Ac0nAv/RRa41LvYLno22Ki4lg3BaI0s9aE57sYY4xm5Opm49jhHw8CFAac+KMxKaDckf0bpaMSa0AF/lwTOOSohXz9DyU7GxuF+8TFJ6yhchEc+e/iteGgnd+8kS49uAyoBRilrOQA35Yr/cohsZdhyOGRRRHDojV17yoRAwey/WtKOxD1lvVA+XHTofCVGArTn5tnJkHR4HkMy63JKEmBPidBcOOMHq3LzVoWH1jfg9U9M2t23tNJPvRoPcwGb0hyrdBAOaj22tk34fcImOBKw3o+VhqMLL+Tp3+YZKOcOBfqdgnJmx71QpIDB8wW1woeLaOtSBN3QVaxYvDpD6SmMD4US1D/RCAY0/Yn+aolU2PsdJVmoG9hRoe1nacsXjiU0L4pJw12Txdq2MqjCiQS5H3EL1kIoKHJ4ItUB+TD1lnA2AGTOJa/jssmuZJk++iItjyb9vaQuTZHTGryfOHerIFfa2dBEupRbhJQ2yhhc3J6JfIb4+p371mcKci4e17GXGgllfFimTYhhscYxb8zo+zLqK4i6bWc6VwtcikrRORrTkj+8eicgA1Yq4OuzGuejHZa3lMrNc3sc5VxV4ykNlKC6NwsgGxT/dES+/P3Cz2KXZtrqnstUCRkjCWvoVNfbdMmltsFAV7S2TYpvoziCST1NgK6uYSZu29q/+x2kuPsEroBmgjut64cSZUnaBzhioWaJhRTGgtZzX7lY2TxY28C/XssLurYNrw8lplC3rkSpXyzVP3Cbq/H0GfBg/Zvi5zCCf1iB0dbX8rqonrLikkLQccCdlNVHqAh9Qz+M2nmzCWZUpnbUyuHbVHqlWFmmER3vlWnQrH0QUZEaXGUFnqqqyz99KBJdMT8EviZw5F70NsJAGPqHvQK/wwEW93G2kPUGpEIfLo+/ZXXYs4BktIgsMq8B3W6Uq5hDwvKon6hhvSdismRPXz29jH0rM/mksPZa2HTyaxfD+vY0zlHnL3CeQY2FSFkLSOAkRc1LBeW7mPUJgH40xxLhipkFpCkd3Ur+Pn6F8TwOYlxPCKE6sU1s/ksK64LeuGMLy6vWVcd35jVgvrkR43VeQBZ8P03X4MB1N2reAa7DWTOZE7LvzP7uF9hJUy2s40honYqZkWblr83fjVg1cKFxBWpF7AgppcWeYnGJLtXnxjf+q7u5a12S3qUWfwJfMmWxPchY72wOTYNlb8zrDaxV75dPjn+kB4CQ0DDMTt5vNzR7TnBEGlJH+Ck1TfXtULrvZJj5YdrBZkVriYs1b6BjfcVzkoo9/R6rm6slh6yVRpAbNKi5a3Mu+74t30f21lJld9m4mo9uXoQcz/yyQTia/QYENRBS5zr+nUgq2eKHRuSHS3A+ENClrruNgnM+df4KIwlFafGwLlLQAgjoZ8QgO7eVkXj3gjS+IAjoiHdwu5AHb9CEnvCRwsM9e59V+We2R4AJK2XO5fDCtheU7MI09pDqOgEaZtff/ZtFThtLUa6HDq6dx7upXKUBxhNrMCgjXaiSOlv3lFF9bPFvQbWLBGd1pZ70bcZ6qyszFzec1sMn7297sbjtHPdBsg7AT4D5YW60mdyIfcmi0Do2Soq4UBKGXEIUhEuVf3bYl7VjZNrAwyhdU0bqMiCvqERGPZSAhEHoi7gi3z5EhFuh0JxVpy4J9srA2ZhsI3gdmMVUzHLdNU0OZQBnL8GDkUNJ3ftg9DcZC+BqAmXUMPYO/LbWCznCRPgWzX1LY7LUhWbYMDCQg9hMdIm2t0gaVXkwW5093vVAabUtBiKO8YGyvr5cvRUBfE7sZR6+OxqzlPVdJexU9ABHNPjdYr2xWWhPuyOw7htTijej9zK88lHynkmsko3QctFr+0PmHTSicc5FnrinnwyR0jET4LSPm9HhAYaIKoCXlBqpaUE+60Yy/8S2tWnrKl17EN2bHSxMBF6XV5CkAzdjAfZx+GkeyE/JVIn3QreIq6oh/CRnaUu/nkKZtruC4A4149jOqsShYQzrERjX0x5kokc9JUOx5bcdfhpv8MPw9hC9wfOzgAYjVmB0UJZ55y1mhtDKlXbAWaA5NPaIFvJOtPLFvYDH2IHhfgedLrJnhBL89WPQvsP3hVaAsnHWmq0kYlGFcr3JbuuKWBZH3il8blRsqaKt8JLuIw6v425U9Rd4REhUnzyPgy+7umIGyOows8ZxGiYnnP7vNIrg8wLfqzqdEQZyvuLqy96fuTm4zNxO144ffRD03p8RlQcKpavNzr2PeSEqi8fheR4vy3YKzxkj9QKFrjAXeAROgRxN+m/2cukOLYDYYKLtTUp2Qe7lCn1CpCyRsOW+wnGK7mOv782vebLLHMpZh+xzFKOiB/mxbdqgcNbR6iIQQVMosmMuszOfO+YNIjYv3/fGBH9cbbIDaZI0KLn0+iYVo/yx1k/0idFI7UfY7FXmAVpghZyZEuaeK0sMkn4SY3hPBk1XWjuowohAbHiDPehVES4IJjS3/Y3Nhwbw11d3cVJbqP6GMOBrl9ibLbK4R+tB/jgAKrI6eEHOXFfDIHNQy9I2QYeCr71P+mxvaMgG0BQjymfyCcv6uegfRW3fDhUdb64wCUFkql6mDUJzjDEUQl+Z4+u+FgHSmpqb/JZAmhiuHti1gfLuIeJcL6aF7kHXZ5gd8s7C1Vu4Jf1Cta+cYWu0s+1K2olhDPcNZF2inDcPrMwH4Leu68AqqyYsFmWe17KYTV/0c/sGk2xbkqUNMd4a//NIf+zx8xiYYNLCwZC+ztIu7icAHukeA/6Hq6PzFejS/Bt0ZXQF5PBe7GKrYJBkXpj5+4x4pQFBY29m5RFfVHLsHnUd5tXKN236OUgGrgtoIxW9bl70M4DG7e9HE4bZM3DvIY7ZNxPlevbvGwXGRc2opg6rY/QC04D8ZIOffrPD6Dy+t/hSr1wND5vL5RKSTpnQiQVnbYUJsbhqKBc8aKqEGYAvFWvJ+IgdcemjEZR6LeIK8dx/wQYQZo3Z50qSi+rL+i3QxsgAokMzbS8WHcJpOWr14j1QNqrTdQ3tdNGI6AcYftvsSozZbxQePKn5GWEuafVYG5FYDXX7f/2mNv1D9IKJp/qAt+W79QK50rK6R0dcJ7+tHPJkcic0gZSVH+yedAu+BXZcOO5iWqTpDjsvtPsjLwjCqwU/b7xITURYUvkfDtSo/fIA9VzVlvWVWuWr8Haae5aQ6MTgOUu5TbmbUelpXfOaFYxqYciSxB+mLmxGkxdWyPJJjdS85G4gEUvSqh49qRlIpNcViruVrHIwW3mLEQAv13IYoFjtSwQJq2/4Qedh7VORyGvUysvfJIj4tNUl068foGGLwGHlj/Oxo2PZZl7rW8oipfyrMoyqVVXhQrYPrZ8yc00Oxsf6pz2Z2gkeAaUkE5nsxWgsbk5hXv9abq9SFpvIYRG/drhIHecWwACj+SUrUf9sjD13yo1AWmkrGp++PyZbz+vCj3z/SsEkvRmbmGVfc8BalMN5NjUzxM0rlEMEoSQtzAHyJxpk4cRF3JXEzEMM2iCTRVTuv6e1KcZ6C386LMs3T4t+p13wAz4Zp1Skp4eVEwPWo9C0sXSUlfBl5sJO/jow1r0hDI0A90SsS28ZnwqMQhuTwZeFl+5IMduUCgf5ILNugbjeNNdyQ/BhxlAH4anK8byUtRc1m7yBsahJlmcNx1nRRwRbETTkhZ51cigsm2E2sI7P1JX471J8v8FJ1ildwpRdFmvqjPL16ZKXBxbnyQSHo1k5k+N80hLJ5KyWcyci5d6B+eLtvCtIEp+saZwu5dhGXelsUT1bOxZCVwsRkZ5xhHBYZvh+eOk7pPfBNqm266ueglNtG51BJy+e1rDLIvPi1EWrs456buIxOKVgVtrYjPl6ak5N2r733JXR5Edj5HSJsLUAmSk3cQWcmTdp7Ibts1bOGd+7DAGeU8EkfoNO/lobfB1K6s/zP94lGOaoiIdQl3tEBPrgafcm8dc69RnwAGY+8lwwTV8hFtVL5FpyVvucZqWuhCTlYqiDYOuWzsdB7DRnR/Sy/t1oMmANioNFWCwgafweZwbO1pU0FKJcMno8LP9Qr9ewPw1ZoWhsOD3znY3bSKt3/UCn/yYL78l2xl+TlYViKOysp0bSkNdbAilosXkrFG9XGWg041ri1I1z6HM+h1SL8/FFz1Zl+jPIOf0KR0sv9h2yUBaNhgBLUC4gT+sN+7eDrFAk+eDWpUzxfjkoIlIBfJ61qKgCbLilQS9xMr3QIIm2CoCB6NG3+tmbOycjwLhi4lOoL2Gd3hA8N8ypU2wIE+dtaVxT02oscUnTkeJjh2AO3irSrop58abqUsmcjy/41tU3z/Apkr4RP81uW49KGx6V6HBkBnGo2h/wm7+F4iq8SXeXNKAoAqFKvYF7QHRnqncbQ/f7sALfIoW+UPqdnwfrqlgQ8qFgX0DAIGcW/IcGSU2H/fzXDq55hAl0IfekWWMELelfbdXaujHHUWj19WBulXgiwRsi/NCWXMGhgxWMU2680wHK3p0U8yyhgyUmF5Ughfnm2hG/GrYCCrtIJ+bY3ba9/+zpBiwalHVzg2EMqSKzHD1TAjJFjUkLTd+DzDKia2V+OMQC0QkEesXWH9ejCc37ZmT+quaAH/cnfRiG2DUmvBihnhmPaUrRKkUABerWNZdsMEuICl5WvflY7K/A/KQ1GZfYBt8zumL/pNTBRg3AOjCh78IAengD4G89u2+n3VjjxdNjNCCBehTsJAB6MlwHKjUZ4nBHbqs1d2wzOIJS/jxP9sVQsmHiXcgcPsTpYnxiCmzE1qvIjVjT6uhALAt2HAjWLWUplnx/FeVZTps01x0msImEjpwttPgDRVSThNPALX11nQDsr7d6+FYogkfx6CQPbl93/RTByszO6JuaRgz1MzGcAVOCm7tCv9ni6lr/5vWrrk41kFWEBRHH36+ZlfmlFZuaT0ZZPWl/cbYLDLKbaHzlCKvhdEUvMJus/NbC7CC/djwwBipvvNbdjvX2KpP+BL+t7ThbCmQroO6AM6h+uNp0tIvsVaXYsZbSUcz2iAomI5SbWUNBk0EM01IfzKkIY9P5dKA4PHqrpda2nNatCGAQIsHHg07r9MIexvJM8TOqwehVIcYmIE9wABBBI8OE8Sr3oFpz7vZ2hd4G3T5/2sGzCp+7pFzKTWRZpfKbGlQcHxUafJiNEE7zSfLUnW5g8jg2GFUz6ECWuByDJJmpZGPsQrOXueggjuPEwJ3MRgwUCuEodpN42XfPetAXtZCDS6385pUpDMXEh75w2LFcfXE3JMeUxjBfnJlC6ArB1pDNGs6xGJ+BV70zUTCiiaaEO8coHI1wxdaQYnNniZemkX0RMDUujGuBQ5etlXEQNO2XSgVAnQZtA+Z4Zg+iwXXxef59nxe/nSme3MwFja7UwuSqqIhXHLfML0bedck5H0bcfktXjUq9AHb9ArDqP9++OQzcNrXrGtUQXKl8gT8HZsxGvydPeJxF1FINsrFLAUFQE+Tejm7S7f0JVYJAATVypY6okRw4uNR036MlM2dWOLgnyhxMMrKpWt31+Zl7SleXpUioAHHtGkr0X2rwhbcIBf1bDoH5dE1q5ao4P81jEB7NmpLcuy9uqLolxNxFlYTr24y3nliUng5Aylezlf5vVBrEo6Dsitkg6DCBRytGUD+OBSapAqfBDNS+tyB1urx+M88sVHnTLgZwxZSqyt73xkYuEmeasCdIzJhtI2QpkYiRhiFpks25OrCQnk+MZz7iWzbs92t6LQGx0ozDtqzLBrP1Lnf21OfV3z2NxaK1tRXJutASm4OM1tSEIGFTbZqPXF/byfTQI0htL/0d1zKGOyOxPnwPYyUE4sgkFcLIjToFFJkToVtfR6RD6nJeh/jgc8wA8nyMQFZBho2u4cEw2AtRdtW8gTpLAnAnOvf5Kyd3PVtfaYamZcmYImGUj823uDrCztP7x4iHQq2MvN0Mm26ZRwzkvUCZWY5/hHPKEGrPR4ueCXZenK44BlZvVcgDPh4nSANH90iNrh4KLzvmTYrW+0ALpiAL4gpzQ2eQQEYNYPoMXBTDr90o384mWVTpZ+l/Cp874d0Xne2VIC/hMePWTCC8fJp4mI/YDiyVU5Islp4NI74zahceMbFetWASaS0A+nUZoEcNYpZGvI5XioHxwrhSf1INhmrqFCjxvg3zG0g2xrOWkukzyDz+wH+Yx5aVX3bhgN6U7hzF3FFh71TF4MLwisRBzCZiIJK+1VIg9CpZGCTTfG1r3H3ych7EM8LM/eyaT8gC8+58L3t6eTG8wIxyoZywWxfjYmA8uzx2Sw7QFVvvZOo6QUeU7j3xvQzNfabKrI9sv+veVlbCsjvDpfmQiWEpKOzGaAcDSMwASdPatsJ7pIfm/k302fVLBNxWPhv6NvgbqNFwpgvrYg3iK7hyPb8sKkYxdcJuzLjm/qjbSyxuGDkVl+IBFiFnTpHpqki489g6PQaJ4hBb12rSy7SS6XBIY2JS5tefi9COFaEcq0pG4MQIH91Xdc0zm4+ldwe/vsxTIKtHq7GxId1Dp2qQjGN77atG43itUoHa6RZPyBuRF9hojmerAA2quPMEnYsxjqLcECLfl6WSCC1qHY05xpgFrKZZqZr5AiJhTOUJYQDZYo5pVqtxUix15KQVZ8Vk9EI216l0jtZ5R+Be9bnQJ5Tc3boVvNggPiHewsNKOVmdG9hQkm5NCHVmMA7F99u6+bf8IABqknLFkxGvCB83/7aQ8BglnNTpyOfqbyNsau2qbwrA/2njzN4k0hFbYD0wZJW76TRo8On9jcGfV18M1Z0Wam4O5vtwWMC5ty9tjOHAAGHE+9uZ3J/DSDQgy1CybwnO9qu1nDZdHDd/6DRLc/OycTYJnF8TnUIhAWQ9C1S3JqQzDqOBY7YEdqyQYQhfpbEz8rG3xsumnTCM+XY3Rlj3sCqCpcctw1pMZVTCnYn91tfE2WlkpC8geg1y8v4pN6p0MpczLE3GNnJWt2hE9ztRVm9wfp4A9R01XaJXnswWrjz9sgTT/EP+XR1YrS7sRAzGadRDKLkh2k4StpPv6Yy/K4xemLQTJqHO7tT944jkfcGNMDkKhG7mii61zyEYj4sAV2DZ16UmRZG4V+urcS50lTuwOuijH6a/MmywjF2fBPTHJAfBkFOCzqHxIL/9CtUsLycP693syw7UVARaxAeuAh7La948sV8y884uD/ExmR8jeDcqecG0vsr+sIPL5Yn2QfwENkeVYYIyIcNBQaOAewyc49u4kVlEI3X9cDBFIUSNs4cJCq8Qez04g60nsFZUtUIqGFy8nUrzCS6vDeM9pZRIXZWEhsL12pVT+z4NAqRU2VvaOD4zyhFiHNh9XHXHgeT4soSNRFbR+we9phO2OSdOY5gA++ck+o99pafROTRvqJCYbMpLPak4Wo6I2pJ5tjVbXBoTcBbT+fMYL1eB9AYVLhy9X8OYbOHocktpBJ1vewQVTcV1JbGKmnN0R1IEMlxJgfIBHeoMlyg1CkWd9j3hWinVz2fDCvRXs7OjL41QqIXOK68XSKSzGGyHuGdJH1Co9hJUpc1exY9/bAC9jODQ/1fmuk9PBKG/erkBKkLMZUpqC6GqcXyHw3rdhdt58VMXxYmpT/QOdyVGhg8xeIS0vswqOFPG0Qt37cZKVHkWXLiWYk9WNl2EdR+Rn+pwB4rKeuktmf/MwBSyJb+UIwWiGI6R0OW3vQXVWkLrMj7xNHsvFXkiDusB5dMAgx39jXC3LUSKanphmZSLKIWP9r/KBzPDQkwclkp8eK7X6FVdQxJawNNVrB5xQqniCOR2xSEVcO2s0CX3tOystNc62opuDanHAhtvYOu0CAqbb0rjqEXbGVan5KPY3lhEc1hoXZJq89JOjdhuDiO4t/qvCwOCJMReFm/FrpaeJlkp07ydgBrZ60t943RHuzEY8FAp9yQl1Ogt9ps197SMjE7hD+m9YG3vgXpNHe1yT35jwMzXMct5eAdn5YmJBJiM0hDW9m93pPJ86XMHgU3+qyPTzdCFBuDEdD5WSrKP7EHzTledAfypvknmfo0KKgCXFsiMtz4FLGNFWFE1B3pMe471p0e+N2VHFrzBBCBJd31vORJX00qPcak21YLBEFkWzJzY/GxM4ARJI72G76CKeyorCWRyy/mnbhfhzzrk3L5OLpabB/XBjVkR5LT6KKF1qXHkWEWAd0A7TdNKKGEgOHowmyDdgNSYNSHLJrcdX9GJIqqg8X9zNJ18fMiTNLgXTBND+CzJLehiLmbwRikAzlA3oaNsguRWTAUJh+dU0ekF4BkXLk/vkGizUWG65uDMNA2T8i1vtqH6ubKHckVqnuXZFqqs5pkBc4BbJ46WeGw86MUlVaVR+FdTtJ16tD0dI3iVZl47pxhQjxUiGY6MjdjQp6F9Pw8MbPkuPqgKkdmIV1LHOG+b64nlK2CHbndaEeoxQrhkQikqA0FAQONhSwyRDODXzpMJIvJe1cNBHAGPCWM2E5pgNKC2qJFCHwreYt8LAkUoxJKf6/p5dtx+5gAufIwu/tEfs66SVtEFEGrZ27tuccdYUiuxZRmziaVxdzL7d6mPP0R/xORs8Amxrs2EHIgSYtG42PNkDxm0jxCfGR83gVbY5b5xALXB658CW8kzhumE0ce0liP5bgKwf6WKNJx61nCk2+mdhya6QTA98OWjxE75kea3YRT1S40KPgDRu814BjMmbcVW0JuyMxg4Lb+DjJ4n1asuthGl/t+wORNZKJRAsXYgbr6DHq/ZuNEon2G6remVce4lRbM3G7hTBla578W6WfZsBhVVkIhm8l1tkSnogZ9JSbx3J9bQI6aDi7AZQCaQy2OGxSKwnSRCFpEYcFm/oopj0p5apIcHo5s0HIE53KjzRQmSg3hrdaiqIbqxvdfpZb17x3kYHkwp5Jmj0Y7P/shlQg7zg8QDXKheIPDioF97oWt7QeAzNhEpvmX0UB/ZkLB17PTV8o/THtvAnGKgXxx4ii7lgbmvsqMoTP8nLuWnClVuQv2t6t4bVMUdxjfhFl8upqkKhvHvjNp24INkYWl1lNJzxxBsZM8GKUAJfR+0IWyO1PbY1qlXKhmXplE41DwYPbVRqch8P+L0JzSq+SQ5NbFqIoeJpGH51lozOrON8d1n7imbCXsfbWiturcIm5hhd2cQb4vS/HPHIYw0Xi4fRTVSAExyOJq7FYM8nuARY/N2HJdFCqsg8elFAYluSFUbMZO65SO3X38lOBUEFTbrnEhKyuGInQNay4bQ+/8cUqTaLq6qyB8XulbeXqQs0EQOLNh16CvRPO0HmYUWCB+lndVxLp1HJwPtEEeiHPDecpsLvUo6agglwrr96y25Nmp6OE/t6ICFriWHoc7Y0CDeRrtZj+lvm5JBQq4Srnms9DrrBThmzbgXUeoUCZYEUYrvWXTv1E42rIjhEbYTq+ZWUCuXJtofMJLw3/yUU509yvfNsS5PEuNX/oZB9QyAAQ93GsvwsTg/rfFtGuUi0oWIfmf1NqppjgZG7KAiJ1fjcFW5IOBT2OIltD5VUHK38aWovZViqQnbQZMmz/SyeyzLnwht76KO3XvApLIiBoJPBIB3Dxm3/nDg7U5MD8l9KRSZm/EE6JqrkNbU7gDZP6vuvtEaaavR2ONKkHr8cz6CX/od7VJkNyIlPwrArqjRReuQUSypRpsRMtKGmq4ven+P3nruKPOUGaRlCe9ZNqX2WWeG7at23xKME4RXi12l1R9v95V3Ku5uCOLoOwNZ2YIp9IXv5vVjI+L1pX9zI+Wk10ve12oT9B6Gu9aoPc1mCvxyzs7DVdtdq2sFiB4NxAB+iKHdFYRZ0xF/wjdHMhKM4oxMrs387QJ7cJO3a6JLy2Ayrg8FzAx8vn8qCIctZxn/1J2Z67Ak2GhYvsp5sLHF2mTpL66Q083gtKhV/5A5AVW3GjnhWqrNQUsyt5ggAolA01YcXOTbBHb7LhDYldcf243LQCYnFa+MoKG9XvUMdJdigcv9p9wMlIXf8XNJXXHw/wsS7Hz4Ugbjbzo7DD9492Y93Rb6KHgdTFqmBi9iRiwZaP35mEaU7NPyio5jQYU9IEUkUQHd6AXe9j/k2+7hcc7lvhW7l9tohZ7fJ0i1t8par/CvJ/yFCSZTXg9tyavI2w5WtWqbufHjdPHRBuF3XYyL2bZ3JLmTtzDQc8PVK3JFRUTsaOvG1y3CwRFYGkMvDztYOhfrgVxn9iHS/3SRLaPRombObRP+Julq83+3jiBBOBxUusaG8cuTMTeTMBM4m1HJlL6GCCBX2pLgPaBbCWTZbPRQZACzt2bSTxZdJSbVapw/GT+tI9xTpSsrO8DSzQTkGsQV5ctvGdrZNl4yq1WvN36iKVp7OXSz4Y7QYTv8qH6eGoFO/YQGu/8w2bSBOJKsD5nItY8IWSevIlDhyFvb4X0MVSiAKKVkouBrK2YPZOy6lVIQxrV64QwWZvHoRjjlMBfcU/mDm0Ev2/tiVKGRHFtSxsXltKqBMcxAaFO+qoKX8CrS1bGuUppKyDbUi5BZXspLH4yDV89RVkwDxUg11SEhurkutHpFU+dao3ualq5lDNsVopiaHuPL892KoDuFwC+Y2rU/Ii13IfheYJJNFK/8x3jqbz0uh6NyUfIXFZx2XwXXx1YZQ5s8CWqBaNAtLx83sCvnhtM2obeeRBrZonR0dG6bw0L4AiTTrgXYNrARItV633pT7zdLoPK+4e1Ut+u+pOxzMSUeo7Zy5qvdV+9PJuOqSuY4xxt/nX7M5mp52uvQcmdtmnsFrD0ws3T3OGrhTeWcYW+zXfObIerno14J/di8jb6TkbJd6XSZ/oip83aC53NN9n+8psq+ID1qUtjyRPl5xTsm5bVW/btsbtWzyLS8E0yBS8oci928E5Rxlmy6kYr369zVQX/O9Owa2weSBSCFuj5v2gwOejbuykUFQBTEQeKFE0Z5qslkh/MNep4Nzh5xigpB5eMknhIWOL0PqxLRT78u8obXCE89yrRx1NrrW7y9qPxK5guuTqTyf2INZx1XfY7Kbrx2HJOSDEO1c8YMOrEczhNB7F0+JUwaadMmWa208pNUO6D6CpuJb+GpXEHGxvuufaK8H+eOfWRSh4AII/iI1eQsDBKbpwe8XAArGIUjMEYSi0WC/T4JiEhWPOt5N+SS3o7fYEtcaqeugtSaG/US+VU76m7qG7+zB762RMWibQGWMKjZ6fr4KsrCqotK0kngSuWrhaBYOV1a1V3Uuj3MpMrRFJmY8n7U3AiiN6vtRtgmRROzCP3aTO6TdW7qSeIEJXK+T3T06dKbx3+qJv7mM0onP4oUyjNLHxWZ/AF8nt3cYZQ36WYVxo+jXBtUaBuZPUTUtcuWbursFDqHnrodNV8nMGwh28k8D6qQtPduePrzby6pO23aJRa2cl9/zB4TGoYwoChmbmPDuuksMFso44n4ZpV5K9n5NFaXaSOAZP/raA1cj7e76MfNRyyFU1ezXgpKhnKFTFhNCoA8pFPZaf7YhuDQytR6pXP8cjA9vTpVx4H7DVHfDHGbCeH32qE2ZSyGXzzwOkBXa14xafbCct5Rb5mjaThZ3ZCYBGV3UPKgeN9W9zpfhLpb2EdeAOxuS7Fzv33lnQcCL1QyhyCj8S1k7O45k25ma1AL7b64+vg7Bk8Vi1OxqjhPpKxx4P/0Ds/6CW9zCZpraVTZekZMjrGJpKMafGnbzPU6T/8a7EBj44xfu/WIX/bCbh+v2SEe+l/nnXuseY0IJ+9r14NvXtgINP0yTXRh8jBRAZZlntKcUz62TRWrhLHb0MCZvB5hPJ2dQB1QgVdX6ZWhVBJVtunjdouMOijWY9zSMd/UNT8lMvlVfY9u3FIiB7z5M+BCU0Mxu43MBdfunckNfjkSOx1lBZ7FYYr8nvKOlpUuA7ml7RsxTn61PHoqiEe+XFVBOTNBu1CkBh9+eoPNv5S6eMExgA62IRx2YaVVCjeHfad8R79RxVJ9zjjcXwQBvkeD+feY9FWcrQoxzb2ZzNAU/vydP5qoRI5zVomGcxLFxs7wM0Rx0K5sXsL+d+bf6Sdl3ISjNnI2jC0Vv5MGE8Ggvl+AECjoegmkxQmi/IY70JkW54BgCySEaJpBPkh+2zfmoBtzbMcmSlNmIIQThQT1NOMGliRrlFpeSM6VzAQ3lv6HPRWkavbe760oQlgWC1vR+yLfup6GAlCc7WwZ6XOz5xjvtLeaiRrADbhMtwTz3J6ZKEb84VVWJOTjA/x1uvSy6LjFip8viYI0jhZ4geEMJ5ghhOafH6y8oHD8CsggNhyw9Po4RRXbWfX8FnZ7NARigxzYH0F43l3LlVPeKkXfJoDmfhEIEjQOI9pcGppulJA4EIMZ8jyPGhVnw+6l+p4Vjryz9kX6Hr9qoCcjmqgOtePnFutFS6Vu0H0BibPTiXgBExBbcJxWRBVbz87ZzxmD0xh7H2Wqg3UURDduXuUNS0JG13nU/dTkShMaoa9DdhETCW+SXNvWSacCPmX1/Qw9dlPXaLb6iL2EjxY9MQ1G25N+U0TXk4jFMkwCoiywMcBZv7N3HtSKlPrcitVoIZTW2UjPdzlB4Z1Kh7D5tSJCl/n+v9EoKENU0ZVku4dfwDmGrtN/uugS/97tEq3RNr0MjsBxQzVAI/gSZ5qtfzOGY7bPCHPQPXYhPNyCef41GahsmbH2k08gJx6L99yTenbZo6uUjLLUhxiqtCCnAcY+fMGjOowxsGoWHJ30CymPIqbnuaztW/+Lm/Yvl817E7yqqkPKkKZPzxqkWjIqN2e2FTkR+a64ulZeF5oy/Ps5fjCzUfpt3b6eT8RWlEXlr87K/QftHNCaaS7VpnCcrXkChcMS1v8cbgvZTJ+yw9iWn6a5RrqImwHdVoKEN11vEEFfz1oXB8Q07DS1sbRNvXwE6i7RApW3WZSO2/0W+oBm/jyh+02HdvTMsjv3KtqSTNZLbua1HkKC/df4neSc285HzWm7tkazau5zgV3BugcOnxjzmsO0jO+UqYvqJpS6+5xmJttVWoKrWMlwvtciw4fwQuXzKezA6w8fRvb72szcJPS8qq9AyFBETXB2W0xBMSa9woanPqdkzfqPgdxWCVe1xv7BYr2uuz9M1Q4DL9QlimlRBwqj5urCdz0ex4rnzXuNASzXHHa0C3UGIT5ySi6Gqf3nAWFM34Hu+0ENmseO+KVzvX3VpZu+md9bV2hgWt5zCIxUd2HMTyLMTVl/5715yutouTIHwSzN7PD8JvTipYoNn8caKMp8lfpeFnyU8Q9+2b4tg8lDYaIA9Otv9muWsH5XdAB8+lEB2wNPxkBHHbwQWs1LCHeBqZEOC0cGQXV/ZtItQ4C55HNKArbHcP1naU4ei5HbyQzcBeoWUyZdY8WG4z0G6ib1YrV3h1thzyUyvN0aVAiBlCpXKsl4TPRo7AGU7qtZqVR9MN2wEIwJT+ZWHVi/4I05JTlIPtTJVEOtUJDI7cG02w2q+4ZayZcefKoTkp49M1tA09w+aIfrM/LzCd5KhJpjwPOe7H7jgaTVc4/6wfI7DzLcw239jN1R+AZ2ttx9sKs5ViaciTXg94ZsLdhAxXCIMmJkDiEEWDTPW3YVjOfxgKPOb13jDOsnHaMfmfoOjQC+sEs6B2zWz+mmL+0dPt1prLvbNPrzxLS2OSacNFHNHPX8QojJnmhdtAi4xFKhxqdiPNei2OMrnhUA3avMIQsbgllgiLxI5kXnoxqhLaSVNTmH9/XawxtvzWMttYD2n5k00Pj5sQAX96BSu4ZuDqUIC16Js6CxYIrG6qxMHXr8fVjmkGUyBum3VraCPrTGkg1178yvnSsdAt/7G8DH1FxLO3JCh3qkqvUDe+8KS4u/0IyXIz3zWlE024CUv0X2HRWZ09fc9pTnVZv1vRBYELndYa+z7piWrhw6ePHwxci4uTqwFXYf1sRx6ik/OLBwu4WDI4F676JUOkBjEaw60Yzru/f861uD4hJj9QhNNBT1ufDjsPQf562TLa89iDc/IQ8uJRrW1VLug1uojfOsOeC0CI6gYZcR0jCS+hGVJwMSyB8nKpxQLf4+CdjhglW+6c300mAsTWd+UvojOetYVnK9jqKu3wVnpyypSCH4Ah33YRjAmBuH6uwnkHVVIukm9QRftSBT/29tk3qKtDQgZzH/mtiYfFU4r302XRxGdjmpkL3LrJDtM0twIc0//8oaMv0nkQVQ9tX+ON+gXxhknexRRoP7he9yvvOnasLoKgpmAB3098gv5yalFHOik5D+nNvUJ5EV0uj81C+aNZ1Wtl5i/es0yfWlyrQ7FhKdWLI7Cyq8di/05kD3JTbzOz8WxoSwKkFomE+vpBVafPLlKL9mGmTFVGcR+Zm939qvHd/ASgAEiZ9XhNTgvC4OqyhxmuXaCSJ0qEw5VR2Z1hsYHRqG/5I/ANcxmHLQhgFZj2xM5HGNN6580rF4Zd7QuoBY1sKSq7zLcHRCU6HJ42U5SlMP3hyu2yvkVlKjtR4pCJJ6+HQ8ITXgmMqUeVb7SjNjC4aBo7slCMtKFF+TpoHOolEymp9+NHAOXZj/1IgvfOaKwgMjgm3mVS1Ybfg6bUE2g7xNjfG2L9FKvp+ECQV/ZjDld9u16LJ7ELeuyRhasfKZhoV1tP0Gz3kOEI999E2cB4hekdXvqiX/8aOpZAAhN0wxHsuQ0lEjglMYiwf/2gYEzffqMJfKw2VcTB7ilJbc89uHy5xiQMJFD2qy+Yjc4D/qyS6Hsnr31gR3O2N/tb2Lr/8oIyHbRO89+T1JNPp/qot4PbWY4zyWmEjdMd9KQ5LoauTACVH1oSJixcRO20sE/FXTwgpcaSV/Z6kEN2WbBvyvtnI3FYWJ0FAlGzw360VNTghRdNwS/Vdmw/GQWv+5UBiHbRQQTkqzQYghZdaBwjDorCoS2Vh0whUzqr2nJnS6rNWGTI0ml6HwksX5H1R6bVOBxRuxjXYUJsavQf7XJs3eh9pGyxN7oMoFOnWZGMbgfcllslnFg1Gkr2H3EP131XfeBLasKuUOj+dPKpdVfAM920kXJGWDEiJSi5AoFvILxmUt6XIWEkH861RYMQSBZREfw4KGBhbv28P7aflrzm2TsyggRyY8adK8C7vrLiceJQmHX4tJ3ey4odjNeROiw6PP2MMyqNnwRcm+3gmIJB9+ceXMqmOziLoGtEP8V1yFZf4HtY4C5CKpo40FY/RJup04ZmIn3xQtAwaW6H7QXJ3DEI0+nNkhHP217XYn7Yt7iqWCr+dn4UDTf9WIp1lupMfj9TtINcNnDow6R9YndiZKwAZx1s328c1WJf+HZE0cCycMIZ17bApy15oRLm23zh3dM1aG3ARnDBTj9O8JBj4QYPsBE+xsFCxNYfKVNB5VvNavXk7nVMrSA26jZSRj0kmRP8D/M2e78Gmxmgbks7VYgajbtpYEEpKiVo6m32lmg1zJ7ciulg/bxpUpjbvaYiy9B5b/ZSNZh4p4fF71PIFtT2EHPyD4sEqlrj557NqQgL6h8CraV0Dygd/pMow7jr2raH9UwdQbn1X/muNy9bivil20zb+05vYMr9srsmf3XSeE7o0nylCFgyqD4kU3FosbfoPrAWIYCXajLgV/OMxSgr3QcdOXZdVg/SE0PnqzptH6JdRpvhvaWKBx9c47TfehDrQ9na2uvj3oRX/GF4JLytvVBFirehYj6XOt2jACZKv7mJWQuGoS2uGb80SWpSIAECc01gijaxYzEVIPs2T20Ld0aF9/YYlkaEB+UjXqvHXiduPd4/Oz6U3+Bj4kE0BGHDvci66BLP1cFOGKTl3J6+iUxxd+UoEeXcq5YTfb8fiBdZEljgO2rixV1I/nS+bs65kN79lG3cPKvOHs4lxl1cvf9NJ5RITc7npCnSTXmRgRnZhevY2NaZMZq9cmtUjhC7yiSwe18ksqaUzZvuk3e88ZoHVFnXZ2qy3lxqWe5l8eMwTKNE66VzrmH88kaGwb5n1pP/xbayf3RHFytjtf7qxd63QLXboM1y/ZsoCKmVunhyn6xtticpcW09Iiq4RFtLu598BSP4pDUSgSz56lhWE7yPLwLw5AEQtyOFdHxHxZqkh3aJprk3oOEhdrMGoQ+jnkJsAQuS9CQDSS5VHZ+syt1gy4q1NBfA9atC2jYqojaB7u9DqQChwgT/cn5puRmzjOHQGP/Sv0cGU7HM8OXSMZndlorQ3iSStXZl4jhqDrmmwk6CVphK+tAmK+avc+4PqeCoT0KMD1Atlss9Eud8qwx6zmVKpj/muksVZ39sGkk1LLHooiAEO5jbMOW0HoWNxCgNUqKd424V6VzRm6i9hZcku5/3V07ZQSH4CJmh7mHs4XpVciltIxcnWM93Deg/EWRGtf/ljpQCOL2RH3uOpg1h3LqUh88p5CZwYrVivA43HP9OFpZGHAzYsN5OXH5vTdDWlVzZgfI12bNRllFzHvm6pTAJVjthlxbU7g7mCK1G1dKinRJjZy1ZZcXLrxS51mzDgF1UoyDjHgw9I5OQI+Z48y9klKQ8+T3CGSiC0o1YmU9l7nYWG7Zfln1aWpwwd8oJ6kGu3luJKSNXyMTuFqRF7ze8WdjvJHgPpNu+CP7FdCJNgBntZga37nw+wfsCLrGAplml8cQ2fVIdlvuOBCe3eY4hkvhhozJduITsWcBs+0P0fOP0IBxECGGxelTmnyKo6j0ZeDjw/Jo99IfaCaC52DFGA2FuGXRTuLhihboOtfG5kleHUxsrFnwrCa7yZQwhYwyLqWEkOMEDaJCEAJZiKzu5pfmpgeXG7/XXZiV29qJ1VwcroXnFFy0NxGY5lpxbol/4zk9DwRhJFCk9RZ2LKYZneeyvoslgLfgA9pI3U0PwINWHzp3gpEG/0BAuLQe5mhcipETR5fDqLwlh+1ztwrM/7F75SqN2R5/crBQVTNF83DKTyug1AitXN9qVO+DvT4hRbrkEWKVF9L+sRYEeI+7g95hggV+p/kLmTEixagQVYFD58weAHqA9n7EEdQsKG1VytSi+G/ZOZXKODksezkQ2FeLsnPIdw3WtdeHWGyqw9/F6WkPBmQ4pe4F1IM0pF87lJ+2pdvTAyCVonFh0a1k1mlmfVEVKzQl14Mk8iAClOOyDSVXOmlXr48WUgRsJC9AiI2BDpUZb+MHDv5vJ6UU7GDZAJtnlfcReKBI4nS4dXhdw9/rBpMkxyv+kWmGuxCnNdwG95AIypo6nlvJaEP+bcssJ9M+4vtOYt+mAQWEgg0y8zbyng2DDNzMhp8jbSe2iZumMfJLTXSkNU2Rf9y8eFgYmhpdMMLrVBj7wBeQNY46bFipyjSLj4aar7cddZsTAiTlr+gn05+d5oJuBfcZz4s8I/EeWp2T4+EsS6th8zJPsChYq6NXYB8MHa/bRBP3shgV2N9ESP1w10JRllIFUZqP9Itja2+rHWCUeBKodsq1p1q0isM1218LBDmkWjEv338quiwrJgypDBc6klfGiKOkP5bq0jKg/DvauwzJkdR+nS8qpxXLDYbpwYDSvwZS7jYGSLO9kuO4eNC+/J0KygDi9kmeMc9pDw4ekrSKF/k1gpcuPPqlgQUAevAy4oHDPT21awX5NV3bJz/t5qQAu+M2UWme4YsnMtLTaL74wjTlbXUZUYfTSi+alGLReOX+eg16C3ciqeDiFN/wPdqme0pVRJq+3XfsH65/B5h01Y3YPov+imHcy6Qfq2gd1Pb2KyG4VQpjIolYemohFrKdjiL4si1Oeo6VkTexf+DCXjDfQ/6Lp1vwJK1PEiscdUQeqa5FvFtvLvuf6b6Rar17jtUqa+sRqFdfKCOH+mzQWkWwGMceVJ2B2qR9fAWwmp9FBNpGdIW1f7UE7fW8P+g3/OoYUhaBxmjLyXqlYcA3ENDMMMWgZ8/di1DPgXVHQrXoFXVQrA/63nFS7OxTVDDvaMQFruQa6Yjf4sEICf4J1m1xZJDoffBbjIKWI3WubDGfSSzV17tOXPiSqKxQMpQ2atvk83uekt9G2PvvSAZ5+mKJSNl2gHhKsPqA4hAO//actQHTk5I3Qr0JpWDuLeuX6ynDdkevwcZVY69hIrTG73yFG44c0vhxmZopv3evtNgo9Zxd+YvLQQWvWPCxOyGFJQCOG3y9IjxropGTih/SBxEDnbRfw0sMD/sHJ9TjFNVzJ3nC0l1EzLRB1iu4ed84NTctxxcPGq915nkOxn5J7He9kbheAr5NThWPq0WhZsBnCqDsyJG5ZSq4NEkyi6ZulCT3MV+kxL45r8gVMiPG9BfF7w0bjwWXpc1wWN5TRL46pn0frHt/xQ2odYH6jwUh6tBO8L8FgsjivhF/2qlwnYtKNql8OYM6Osxg1V2LxhPtVAmHWMmAP1NY7Ab4sGRcNoiAkpCSIZ17/HwrdPCBjqP/U0988Hu/kgGIc1Lb5nHXrrCMaXH/tKI3mxJTjF+QPSfO5IepmiBb351r3bdBLSckO27rosJPVC7oWr78pIuhY3Kyrlztilr6i1YkIZkqPu3ikufXsAvrmuUXv6d9J0anNaonNR7X9LPt9XV/dAam1AKlC9TcSXZiURznWkWwEKs7bGvUBbAdgxNE4lj/DMesvOcpoibG/swtQBX82F8ULQEcu1BA5qNYbL+lTJhyquuYfArro9Ytpt4sRjc6r58O1WGP3bo6nk7fAiMPqDQr1dX5HPb8W+PqtAcInS6Fs8eimWed3GoySBuFPwkQUsVHiBeZVRH08CRAxoYprVBq5pi5oe6KfDSQ/3rz3bvGUcc67I/EvGwhboYov6IUmNQ7my3upNpyigxLzXOB2h4vPTLmrDzQVFEWluVxC3mwwV6uzJpkb08YX/sVwBJLRkYLMeoEtxcqS0529DBmIGDcNPU7eZLXyyYhkLigMjb+h9lgMCnkH1by56aY27fS1HkD4wNUITB5b/KqVWOMUpaks3Cse4T2TrFi5Q0Sfz6OJLYZH2edkeF2DDGMy0PM/f3x+kFPH2G/RXmCItY6NimXvZufVvKTcQwZtL+GtVd/ybR0WOL5GevOSw9Fneaeq0BT3NBZ0x9wcS28XhY0MUusltpphC2epfOkCSJh90mnPyH1UfuPbOSJOIlsVl7f3LCqV1TooUzCEQTFVyAit2lkDh326ExF6dRJBbLQU5g2OHPsdiYgjUF3gwkhsgmRWLED+LSYMBqNXJ+uRvvuRjrFXyCEUi6ltNtE0yl0q4JwvI6e6qhDTz+Dg+DKsmxCzlQmdlRDqXICQC7hAhXnmybKog6TGHBqTJEadGD0xQOsbAkK167hzwFy/tomb/1Ub+ER4si4KGwjOJnJk6lTtOYnuN/PJqJYi4owe/5oWhBNml6pdyvjQAgHhRgQXSTG14aCwdcj3PJWw4tFAv9ysvZQbIUp8n8T8fIFq19NmmvjZNIEVwgSGr6Zn7wXluu0ujyhBSa1v+Vi6Qmr4dAIuOqneR1VAwqEY5qMEwyyT0h5NtJUXjq7mtY60vMswF6fv8IQepFqCPcaSiJSYEzki7nQmkP/KKuVPSHIeF3x3EyNItNHwo9gl0+ksHSe3i/zLn+jlEICcxvBSEHfN/0qDNg/uKSmeaAFnAlMn+oT5GfmFISo0NVBb0iQ75y9zWEsJilDGfv7B/+AVWsDm9iyAUe4OnEdTrSEIDCZsl662TnZrqF70wuMr1jeNylzUWfBGkoL5AHQ+79CVXLGc4DH/U3lcQ+bAXrDNz13YvZ1uyb45RAZ8qDNjWpbyMRmnGtaGiq5ArUsLJRl9yz0+mZhhOg7Zk+L5oRiVwhwIqH64YiEkcT3rJvsYgbW5AWaANmbLLOoDwtTw3m7TBTYb8UHe6YJ8fclmpWuytJ+LbiXhG/k4gR+QUtDhQc7Z7t0EuUAXiIkCOE+z5yVEikUKm6H4NaJRDASAr/Bod38tx0swkOfs4Ew3fg2wqg8YCZqYFUCKLfV6sEARSFPWxHDPdQaLj30bgbpKvZxyIOUj0zvEBlzpxtH+o9bh7FUIbzy24M2JqYRcLtK1+r3j3gC4cxmf0CIMUKfTLQGYPToMRDvRg1Fg8mSluqUyf2o+r/8FXxm5vXr+Egaxhbs9IZ3yHBKan3EfvT0fE/p7Vvi/WvykXGgSL/ZyMuIvx9L5OYHP2BvH54vmw1Qpl1hOsRHrLauMiYkDfHsWtdaUvwDV3vg8CGFjtFvLe2KDyJ9yx7KfA9Vaktkf+Al12IVNj/yaY86IWymDxxe0fG9enOZd8t02d5qyHZ/+jZr3I2lf1bQtgWKUOtqoQANTgn7Fc1MnK2VaLtAclhdT/eQF8xWiJrQrALBX79EU5tdE4V/emEeckdo7lKm/dnUZW1h/nbZ1owSK4u08A5LtC2EwYnW+TT91XbF+Iy2SsRA4BA55nehzIGoQBnXdWMZoUv7ZTZ/A7gaqPQo2FKtCEhgTbKErm0xIkQm8yE73+ASTwBGW5paYddv6Yiq+tR8ULvFaVohlk33Ua9ycmoqahEd+cjakHjSubG3k1qzukqixcLqDgaCvIcYwkZHDhHcPCQY9UKH1JQe2VrlYU5YZB/lFqo3vQ9k2BhrMaTWZaJikD7MecCEh1ykN6HazSKETAhaFeXuGN/8BUy6SnCPyFvgmJkSCz4/EoosKf1insTJxWL8DQkJGXnkKDqdIh3l9wFosphu8llgiTropxoU+R7RmRWJuj70xXr0Zawz9rlQYWoc46HL9vFl5anU8MYk35Iag08Dheh2g8uR5+cPktaDYkHGljeuZHYEReNcKEUwN4yS8KXFt5PVuNPmzqwynba6Xu+2n+RtFg092TEz8dv3zynGzflU6O8XOlYxr9UTRrgF6NS+N4NTBRwkd7D467/HeeZzTcPpP4LfpIoPkl3JRUzqA+WN4C2GDthHMd8Jasv9/QGRlSP8AewfCLwfKRdLChUa6POUFvocUED9r7ibqaguLIPdY9JIUIbGsGTB6el/hOS3FkNQFM+m7od3HEZ2CUSlnWthIZjMHIdKrkk7y3CABwjMEPLwesq6S9qJ3plIuu+pUcMZZ1VC8sSMEHx5F994YdcmM9rOImopyxjiTGCvOlYgkQzrhZLcCs6vdUkdqSGZhZci+YFnzmJq7qb+3fPeEx6wU5qEHqzgY+dgk2NihUvZy04AsSnL7ehL69rc40EtkWNf9sheipqj5EaACrHaRr2B2yCnnzoBp1JdUZoFsNBbj3L6y+N7JSIJPsOwqHLmLl6uibaBmlfcFaMIZh/ss8stTBRlVt11+U/gvZnDwJyW9y9xatsbth5MYS7uR8UL1qm8KP2iieOD1v0KU1LVHlepQ1iFX01LfMmZGbNZcFAy4VdOgTn0p9KIamhdLmGyjy+p29gIbpIEK0aMOASn9gZDVoFU3gknvwqUHwbvnqlJRvBm11IHQFmorwmFNn6cUYZhBTnpM59ByRCn2/Ru6VVfkrB+lJln0i17Qn7JU6OjhqF2V05sj3z5SPUJtsuNjX2ejNn7QJZCUwTGph8gjweS8JTIg2KIU0UHwCs6IBURslY8tOFk1og5hL7cENXO1eAxCG4xzBY7X7rP9sMyXncGJgJWfabmT1pDQgYbD4+PvGlEfWxslSRWB0X7Tmj1gI2Pg14QDUBcBZAjipMcMoPnDcA7bh0szjDrzafg59HZJzO7EMOZIbj2p2x5gXKKMnOHs7f6SyLWbRAp/X8Z+oEk0TzKxCck9DFOI3IUcc5h6z0P+e/kFB9Nyf+z4oCB1Fr/HYfi+3krEdfD8eULI9RgYXsSqP6rEXJhac1i/x3ze4jWPlqaPC2DBnW9lSTGEi8nIThEc1Fah5ogfgyd+c8w5XdHWSLNMh66fJtQkNwLHpfYfWPdI+uDG35w/ysTjr3kadhji2rTnf2vYoVOgKxWPzFDA4Pz+mn81lUIbNgYqDUNY7ToDHcEGcGeAegjH7A48NVRmP0gwj6On7tLpNbvs+gb17nVN9oFCtI+YXjjRMKLBviMkMU47qu1Nq5mf4SdIDyc9A3ZRt4G2mgkIM+0VuQEAk65c250cTfuCVuVcrD6xtn9MOT1q7ePB2T/Vn/+hQoUKMPPYkaiJM9HD9sDsG6nZySMWNvpm3a86lZglLidk+sW9nvX179fZYyWMKq6Mo/R65o3D+ALatAkG1yzngyCC5efUUBqenwfGxpIbFVm42FIz1ssBj9M1Hi5b3xVzUvcHkkUzXblWBP5FY//qJvYRsWED8KosUBC306ZIOvPjUMuql3QSysehOZeI/Y7HeaUj+Jgg1YW1IdwWW6XlHGzpddhGz+Pu956SVEhHx6zapMPxsu6nBlalt9JuO5tULbt9BUjptC/mYlmeTqME6y83A3UglpPklyfdEgWgROyrR/sZOuDOBIcVjxhY1KBHroQo8Kx8tWsa3Ke48KmD7IsTgJGFXuhFT+wN5fxaRoVmDo+5T8fK3umWdnD1ijAuT9A8YMScGrragvYmx+KhV1XGgbPbYikr1QHOWVPEJJTUHynfZ9P4uSTOU61q3IoSaSDMykq2Xo44UGeEz4/tJaxMg4IVXjttMliTm3CJvFP6aAh+n6olrpkyiNk1hCRSJuJOYKBhj7MP0e7+GBKheqmLcVB/i089Um1HfT9PrqSbjz6j991zWMGQb//priGXpWlHeHjZu5+5xBcWpzyG9Bjsfiha+3mcBFMQ0b0CwxYygJEhRXt/Bjt2NaVsq94jr2CS+6ifrFqIzIIsqFYiYGukyBap2uP2jbjNdAb7xOq+1RGf9mbuN51D+5wG/7p23bihaTDSsL9xTERSuvtpar5w/Zp+aC5GR/YHrjhoDeV+VtPN1TIXF2kzLKGNXgVMwFyjVPKgr8kYahqBoqUOG31dmvkN4FJhbGwNeguNXNgBuWHm02CTgnDr0I7Re1KtRjjMu+727Xu6KHmTb3kbpAP6OzKHOEeeYSPWU1iVCtL7zyIM3t9Aot2pdncpYUpY6ZVN3xLgo+kyT/FSUGnJ7PEJnxe/VSYvRExRF7OphHAnwt17iL2K92bL9HT1BRIq6SXJldUov5cuwnJhfg94s6IYiGhL3bac5Tp2g0qxSkNiuUeEobLHX9rWDgLyQboKA95J/UfNquJnlcuyOklo55hZyfVE8SDFKwpjwNs71rT8eT/ZZ1tZ4KkSV7DvgzpKltkaEKXZ7s6RfGacwWhi7k/de1RuKgqPgxbS/ZsCq948QoTOnt0ksiipSEw2uKz6exzm0T3GZ+ZYWcay8jtUF70dhJhCvGGQNfMYU2tshOI5O0dF0vmAN6U43AFNCIxwTcPdKsYOxqjMg6T1cI3JeerVbhp2eTv/nTwByeSEODoiyV8kIUyZaOgxnrqMR18sDhDQ5JQ3dlt94gCUoBVLroex+pkjWzIx8UxGqj3F084yyLDAjsNvKeZVcTtm6tt1DSIGi1VFryR2rOHiWWrBUdwUvrRMmV64Q1qnNqJ3v+3QFQ0+wrDlMjMQQRyUIAHTjhBGjo47IvvkqhqICcOqXQmL3zqBAErDKYB1JrP3p79ncus6oG+LiLpnDFGsO9h8zQ29q68Agml6RwcGGnVBqZaFbQZ4s4JpD4BK39jVp8KsfS5pDGRZQU4ukrDJWcpxaqU/BERSayZjv72U7DtnC5YnOE8+eLeilc3cRsz42ZzeIUVz/4P4ELBrVNa0cz522+m2ZBYX2R6vYIm6jxM45Nsthu0zI1KgxgwsULbFRPHtzkqJ0AA6x/aokUKe+ZqWKLlV/g+dBd0Bgr+4jRtZ1GhYvD2vpYgxONVuyeprw+4bsewvcQlu/bmClIx/yQt60VRE9bC3dLs/I3Jlkrk/oVH8TpgtXHs0eNQFEG7E4ANP9ucSUi7Fq51vv2CeGR3dhkZltCT+6ODfLLWRq/XKLJyX9YTp7GElxgzBEXC7iskJ1Igcj8LnvzCLDhOjwVpdV4B0t3TcRTouK64XmNj7tyRnYtKPZ0mK8/4/xIVNQOfVXtaOX8oKzEDHir7OmDd5snOHu/R2aDVRY6oUNtP69lp26CLmtI7QX2/RTQJGou+3sr8OYc7vflV59jiY3TOfrhEuU4m2A+tz27v8Cmdkl1lsPEm0fLl41gqk2b0ONbrCU6ZiaJiIp4GPIaMYwhbYrSxp4Feyi6DZu0bdGGFGlnRwYW+9iyKzRRLD1AxktR7V84KZFl9ENtdHA2X5gsen9WaS9UG/+DymzJf4y49wYyAIlo/Mm1gXIT5/hHAVf5gCFiu+cB0UDeQeanmQ36bOvhAZDpFY0VfAShBhmMylgKDWssZ/k9EtgIj1GD1ByqUBDp+cU3ckE36uNTeP5YqRd/9wjAobbK7gkwmT1Wd/XPCVMtAHYqv6JvbRIjl0nu+fg2tgHVNa10Oc0d4ebDLOxgA6UT3lV5M1izyvtooUOZtugsjMYKN6o8YH40xY1+n/ZPUrsd3QNxBGHZqxSpdLyDylYNDM9Fue6WSx4kYheH88yj3OZZvlhqVcI4qIZVgPA7hp86D91sqS+R7XhL0yq5oYaYgQy6qgSvKcJ0aYweHySgeyNBq8xexd98j+E2iHlYeIClMg5q1zusBkdFMUCpzY8hV5a3N2+E8qQeFyu3QC+N5qr6ysNiKdZb8h0Q2y2RiuP+qMDZ/s19Ejz0cXYb0FocnFCu4tV+z72KnYIUKOOS5Y/VwfHK3+RDaBMamaXD6+pu2MWI7WTvWkA3HHU0nA5iTrI4IYivROtTQkB1y7qIaTNXoCvZqvXBPQuAO9YeEVU/LmBvLZKYvANSQlfTLYBUiErtTY9/7ak/RuekEbqPknlAYpU2CcYwswmdaFVBt57iPlflT80V/jwfeP9Y2D2jAODHAfCMdl+K7LVYDDTWCePhdXXc8cxxNbeiHL6neNgTcmo8P4Z1Dc+lDSWwG/E0eVXN112/U6E0hWVltaQRsGiCBOmafilMB5fpqFnCxLhXPw9gMnFf6c8criuuoEH3SCyOG0sP9RERmz0kMTM6kmUA5D23MqBNdG7TnmVHDUIv7vJfUBa6MiqeOnKUcwVIEoV3i5vhPmfpLnkzNHCs4n7Rmvc/075yMex3qZUeBKB7dKNri5grzHlNNaZwsBu9dHpatsVN5XvqD15w9xnzWLFH4Yhlq+co6v3gv2CZwP8J7h9/qqp26xPYsm2lPl0rULojOL8yhnEJQdgT6CIvC2ikrKmdCSHxgLSBrOEDJnXP26PSpTRFuxP9/FFYQbe3+VbuBQ5hM1dPJAiuJ6ZsfNARL44wMOwJyMDcot1tNT3fg9uhdMao138w4KL6OSm7UbQq92pzWW2dKA9e5PrY3hqR0IzDjaniWwT707skz3zHYcCnIJ6F/ZnB9tN2evTRY3LamGX1SatpGbLjzMuznGxrIjIPMrBjqpbpHVwu0HszUcN/nqWGbR0B/jAaBxGmZNnz5JQX4w0gGqMfu3XQjQDNl+vGAUqLQajOB+a4azNoZ7/Bd0FQhLx1HECp/iwm5jrVy83G/fdDFwIOIJckklhrdDWXe3Ls4yygzjcw9wvklGP1njb1ssXNJunOy2rB+x4XV9HJL7gWsSXeHtCg68VFzBQq4ZF3W9SWbk1DZ2aA2oL63BGgq5Af98qusxYvs5q5JLIO7s+plK1KANbTAz39NDINAoP7Ps0YJNTWLIz/31hZEVJRxNmYfMAIbCNAJ4i2V9UJkz4H+rvwFdAEFoAOTm7yP/0LmZY/M8gNOu+yu0+YWNrNxCHk3wBMRoUdUADOinB/UpXsjZyMKhSSr04TSuSZ7ukrqA3Su9wdhj9Z0ahjIR5I0M0zskkr9V4I7y3gQ2FU8BRXbcE6MK1jmw/wTGkj1Pi8ERIMRBgarea2QOFqxYBZmiu1cqSDaMFKg1lMI9d+AkgVyyRk3OuvIgdui5OzO2Tzec1cimHBjrPy+XUWnz50gJaTre33ieT826JGpFgy0NngzNo4wDxi81uTZd30x0u0Fw0iCtxsUDW60wiPrA58lN0wnb0xWkUeH++nmX5y23XHrYeAQsACWEvttuWwBsPk/snRnAr83XyxaTVyoK+UMtHeSeMD+nXScLwKX2nLM9UH1HBVi9PBq//32IGdTxgHxJa0fADCnu28fhp4qL3KSjoUeArbrsDr5QtMju9dqrKw6PIEuWJyu1EtLunuv4b35lMwOCydsid2Llz3zlIcjEBkRezKDONu9SmrTogHcbHIdefyspXQ2BQig0Y0eprJ61ZDeIHSKoLr+dA8k44G5sNJRq2eQiTtUCkPHhw6R2cLb/HUnuUSybnYLPUNNDS9IFv6QMEbvLqHyo4ETmqIv/lrRuT++1HjlxAOZeNptlphBfcy3CSYozH+YL7wEqtXDVuuPmOQh9a+zLP+mbUlCa1gj3l9thx+e9Z0xEDSJunthDaz/N5mxSZdNoaTIjjZdj3yIyv1w3BlSLMlGIAEkijnU0v/kaxdXXKp9/zyGJtk4ty7FAb74o+fC14l9lGOaHpbGyTHFuzQwv++pdKjmoiGIBUp/xLddqHybylMheQJ+Em4cbuaG8/foRveUUhLWyBadtkIIJXfPl3UEPUkVZziqFXUP5IIgruSfFL68vzAMmiGVUlDvn14eNd+Jbk63dosz9260QD1SDeje4ci+YqcvN/wHt4R0whf85chQ3a4K/d42v13EDDTWmY7PBkmG4FtRtvfP+PF0PUjPQfjt8bqaBZjSGPLxT5Q0M/q0WKP0SpYpGvyprBedVEGDB1pZngVpsGyASyDoAJ9OO4r1F7RgqBmhIHu39Sh2odt5qB6ZTiTRhTQUuD3qQsYauK//zUc+E5306NMuBOAO5rswPoje8WjYeaitVel/2B6vLWqzKXYhHyfxz1opx0q4ENGdSIYIAhP4Ot6pxDRJ3EGjZhytSX1gBPBFAjK2sJe5YzftOjMH7J/bdY4f9E+FW3G++yHHllKenRUXU+bHH49CpjYWYY0IIbDTF6lIDn1F+8XL1ctXbqeu8fb4euGhAVQZbBRWLE059SjXl1X6P5duB0Km2+LQOymGAVatyZXgXxmDQCiVQn8cytMPzc66l204SfiItqReD2TJLB+kYTgHrkhINOeDIoTAJzBNMBLO1shBqscHWbwKAW3a6jfS9SHEq/CCohmx04vYwNT9yDgKimyU7WJ92Gd3YKFoSw+wpr487FAwxrKRtNoniqWuYnbpU+kXIe8CCihajXXgu87KToTbXrCMZzBgbUlYjpKM3er7tqZ0N0gGxcJ504ljH+MjuG0MeXaDoOM38gX6lZoC/2RCBx3mTYTJ6mLR7BKdJ+fm4RY2O27fzYdye9tQs51cntWGa3rVY9SBmth0U9Uh4YlxhAFZnUak3B1nipSW+vT96O0WhP/DrXlZ8m6uUzFQZmAuzEMqEOPOZJ4yM2seRGJztydV6Afe1TYkDCpYi8HYO4KrBLPeiOT0cFlIjyXyPZtXDDjPtFf8SW5Cw4ImZUwpxMUv3MbosC65G5ghLe13ZJpY4w4DVfFXv9eajAsJZuvdoE5HBb8T9sjLwcTVgEy4AbVdudX6P9DAmvrC3jsiEm7BV8/rxCMT33aynfoyFU4nboFIs809iZajKGXifjhkND8Vfq488IjcQ58LgNTdkTRrKvTFZiOT2TnW4VHmOGcyeBZjGAU48MeXYPEcQJocuUZg88hazASl7MRbu4cMCjkTfyg6Ymcueesd6peqSdXYv5NCacJWLBuf9SPAEs6q2qoAxEt1w5IA2f0rFYJUAla6wF9pik+e618/oA02DrFn0PUp3pMsbFt38YjOg1KKrJ3c3+J2/Kg1uzqiNI7ugbMcjrLV/Y7fud/Ee3qW/KH4WHIJ6GcSt/ur39Z0zH/nVzdRKxJY13KPQOWoD7ODKz+A+VBeTc+jrCCQ7zwujdbOgd9Fh18AqeWcN08FtSbRRynhGXQuMwLgsT7DgUPY/lkmCoZVAkhmbEe28Rf6fF3mci5dtdj8ZRYPrOusnCzMkOf4iHy428enoc4atTbdzP+sspJfNk/djfQrf+glk62zrG6frXx4PAfjb3S/cEfbXkZe41VXI6VFniYWhnzXX6Sk+HTSegvQS3fqDd7NXpqmyGfXhnx/Kmt1B26tuVtoIPt+U6sVT8grnaIIUoW3tlPqgVxpJPPDBEdNaMGwygao9PFrsr1R80XdTDxa4cpwFoKwoB32IONkQtVQIGi5nkl/jkV5w7hWM60BJYa7WgApKW1nx3a6ReCrDqY9tORmd/ImnEU1PDBmsay8+q0902wQII+/25NN59dWkidaVh9Au2MQAOZJVJmSnthF0kzdwkLx1y5IIcmJyFoRg8+UsBtkUiwa6JhdnFWj5I2cfPfT6F9o5JeGHHa7qxCfKf8grLJrLonAuC1mHhQMeZpS4pQh93HZImAm8L0/EqDXR7jxuiA0mCvnYP82PZ3qqwhVyStl7JmbKGZDs8Zkol4Z5Vtk9yFLnGS8FSQoAhwxuTXSH2oJi+WPQBfxBTBVIb6fJoVbWfR2cnH1HMhnJBvA0Ob9jCCrxQht3dAL3j4v5ux+4HYhPpxr8hefkZZQBW7A7j5BnJf7VH9ntTa325mnHHJLfn5E7t3y7w7c5rupV6kzLRF+QywKoJ4dkhFeMZeO+LDvtlg9qUn8ScsBKDoGq+q9yYQAuYJU9GMihhydczGVj/iUn6JJROB1s5qo8HN6CR5cw8h0DoGHLtvmYbDGVeGigiuqmbLQtc0f2DYYHC5iOlVIPbYzYSbllm6v+180p6xuH8vuPMYN98bEfunzxSErctE1LbxIgjsvstjKmoxRsn/yLouj5nt1xw9rfp32Pm30LAl+ooh8Kdp3R89EShn4e0PJOUffgAtN0fdoPTTu6rTXNsenMQIT7uZbiDz15XdZstZHkNOu6XMmzaD3rfX9Gc02lRDIAi14Gm0ffS+jM+SziCvQdc2D3l3d+CQttCZeZggHOwZAbuh0AgCnSt/JYPM34ENK4wvCeBS5nddsUpdXOuSRzevjr4O0/cQyZeycr2DZVEX1d5jdzOyzdOtYMIRiKzXCHGTOzCgkhwEQxMoIumV5dKxG+8AfpEhN0j3PqSP1FgxKVxiUmULvZsrDlrwxVKg8OVml6SNNL3TnO8JBSBBkCXQgsp+R6cVEUG0zk/nQ/+CPBLbapN8Bv3MkaFCOEi5Se2rlYIm9i1e19LLcYF8vB3g0wk/Op0cMhT+Uuokve3FG8f4xAzljfqXUwjNwnil7P/ZwTVxhggb5tnRpB/caaKO/B0QpC+jDkbDeZEjlhnpD2A/+0HaawjbJTYYz2t7xN/HfwGsaESNWE24eUbTvLq+sfbm1YVDy9VndHLjepaL6VVqbukJjcPuxRGZR+kEmraC4VxPKyumGIrqfjmxxLUwb7bT3l3y01YmceFQMvaFB0VOuY+TJ744d+ONOPENq1SBwZgyfc0CoUxxM93Oyx2o50F2vz5lGdJjEHM4F8BeYh105mYzvLAyMIk7fvrnKTRRx9t7lbkiXv0Wh7g2W8h1UGn6GafdqA+s+Wac9ruVkFJBNw+BsJ/awSqrFfpbpk/iy+5zAFB0ao8XoIMsuDKnVxCdU8ygV7ZcRmTha2BbfNogfLsmMOxeqqUTzlqxFyaBwlg4biGkW7TotmbioRumqYyHhYn/yPLLQzwCIpgJb5KEfosrn9cuv7eRRxj9eh0pAJ+j8Foy/gVJZ+9Z/5gdplQ6umXowg7lNRYRmOchI2vx0vxdZyjyWSbMplJTT7PgKMTLCQ0+zUMlmSMkjtCqrOApaEAiHW/jALF8gvXXUL9dcaSQH+JznrSrynb1uxY+vsnrFHROjuKdv/+MTXz4AYdzTFzQ2a6XpgiIQgRMZRWcZNEqEmgsN5GOJtKj+gs8+jzSR2p8SUYrHeVi4bv2xo2V4AdEJ3j8sQonWig3l8XBUhlAGPhIbvwX7h277cQrzeHU2JGJj4hYcNFLt+weF84Ldy9Q7QrmIIo+bfCMSrflIC0ADhZzOn+DfxKQ/SOOBxy07D4vIJf9AeKFLVnWUd8vST3UojID347xFhymoxpraPn+qJ719rlf30IQXw6snMmg79Fi2k96jTpsGw9M8lTNbd2rD/HYz+NFYkJ59YUQbypEGT8d8/RbpSmd5eA7Us7Bdr5NBLsaJVNNiQ/zcGQLa4py94pj0gEAmtqNdImAQO2U4XEpG3Ds6nSwfh7NxFCBbHjGpBTQEADy3WFxCHwwXvOowWxn9wae4QDpYxZaP3ahbuTKE1XdxDRkkYyBO3uGb06zVl1pqpFx1XGgReJ6puGOJblV8C4mx3eU+fcxixryF2b+SvvA9kDajDcRB9FjzcKqtITEivEtkbTgla0bwbuoCnXYPVu4Ar6NdyWYF5N/XH6z1TS0GV4D3tLflfGf4tNa8M+yRa1S1hpd8UbF773R8S1933MAxMOnIlge4hD92t4/iZCaK5AprWriRM6UFMczx26iE32UJMp+/1WlGCXoK9k6FIJc+YAE8VIwv2oUCdbIgNc85+7YQ/690ozh5C7z1X4laA8Q6Hn70VrIANRj1SHM5/ygRx45sepvtYCfWvyaDNtniGT8srNPBN4p96ydJMWWPDiW60LlTKbGUbEfTfzMnFmGwj1E932WYJhToUmtePfU/xCxMUpBzRNI9WjBsYkv3TZahpjqKS3+1SZZ3NR3XX/cmelo3+vbwHbHtJMzg4VQDT3P5ubZI9JH9KYTZKWCmsTxWa4A2wC2iGpOOEPukyK+rYWYnAre73Idzmh5YjzUHMK1OLEww6xyMst0SXvwSweY/e+vL6gbtHAdfAHdAUQJqOUNQAPh2N3ZbK0azI/2/M66zo+4EHVf8GQmzHHCCZ6i91MELO9KSfneranyRktTQMn3vsuKmu34NLfFrpDOAZWJ7RBlJm8xdXEtFmsoPY6vT8paJOdZV8VU/SpE1SJGqCDYyMwtmwB3h5GSr1VnKgB0+TCH8hC2Y9Ni9TPBE2vb5ElTKUMYqkKjtQGDyI2aL/mBT5mDxr2adCkACEb1oq8FeKTcUp9rTOxo0CX55h7XNVgeDsP5/KihDjDBK3j8vPkKNNCdv4sd8EqX8bdqtO6kbtpHGm5tPfmS2y8oDJjPplenHlLkM0L9M5UXKZYmYOCJzy6+RyU/7XxYlnHhG+Foj2Dn8JcMNvfYVgWGkGelvPzTtMjEmdQONx59JaSCs3dsL5jlvHsPTLO4zD/9RLjGTkjZuKuF1tXYl7M7xUY3LCZuR6CnaC0JPxr8robbLixLl2uwbDY0/o47OI7OYNgVsVtnIihC2D8UwUMXcFb/7qdyNKg2az3QdV8HEbXNzc7DoC+xZKdZQluaHW8RJ903rqArtgl/tc5dlANG5+PsiUoRMJAtNEINk49HKohKJyPTkw4qHL1qFSbvjYdyzwjDYw70FBDPRZOnPQqtS1kJ3nlfo4dMUMhI9JIdP/DP9Brpeui65HakeDfjnPJPymP9ZnwRwnvhN3Azi72hVl+82K2TxERyvqfXysOxXgKanqQc1VZ94ZjoZG8aucTX9Ud7L1X5Fql2UvWXnwDZbRAek3sbAh65lWQVj9XUJcWuSIONkUwXz6BWHPKOfPuaTpqg/CaR0iT7gJWfhz9uONnm3nOb3xR35IxsKPheQffLFkAnO5b/cB6Mmzy+bDEHorUTooWvB5fKYpPZ+ykYREEX0zzSMZuOQJxlBdjgqjOaV2Hc1SjjtvW0DVwiY4SHwoaPKGP+M4xKkNyr7RnRnHRgSLmEE7OI6EVFZc+vaBdW3XMdYyHdnI4NxDy2QHlg5jqCTBIzQrM0TTfBj65jnrONsFXlgHBge8n6SokHL77D3WXMkkqu4K6fTObdKVmvCHd2aUFfnV5G/0CkV7I+FvdUlggrklgb574kCq07O2LdtPMU55IUyhfaI6tEKY3phvbJyQS1UpdQnO6xIBO92Il43k3oqVkjxcAG0sNVkPTWoRLgg+JDzfJQ3Lo8Pf+lyK2Fs/bdkFB7kRa954ABHRQwvBT7HX2fCQcqo/MWpT4E2WfrQ+gPWyISgIZeNiyISV6pj6ZdyrNi1lSi/8C4ACrJyLPQnIE8O3s5eSXKE3WRQYgNwa0XaRS+IIGQEyjq3Kfh65r/U8YqQwNM/rGQa3UaT5q+vYS/TLCy0tVqLZqn5IBJvpZJen0qtn3pItybQ/CCXWAjQXcCmRUPYlzIdZGGYtYcDiNoT6UdwE2LviI0H4yieGC8caynFXvLwLpfPiCp/tEjUJEWivjiE1Rs1b/Md+8UpLvrlNhmFmsglvx8ktL6v7RVR7RoL4mCIJFgG3DBZHu+J37GgEaO/T1XGi0iDjpizOkpBDQPd/PhPgHrWRGrfeSWwURRVd890TlAKmFUUV97DZ4jS4Znrg8GiqJ9q0R8yCF726m8dxubeH4sihESzokkY1Y+yfxPfjdmWCE9hUA5gi/9IHps1uW8vTKEx13b8jL4EAnBnOB1EJ4MnIsEWiLtP/B4BtgpMrbb4FKD5iit6tFLNhCvBIe66cIh3c0ahOpfvkA6HuIS/deU2XOnXPdm9BnSksJuhy8ek/iqG1lJJ3VuSOO8/pxkUTtRjdhKf7sDeNtHGY5YYKuEQAm4IlElyERY5/MWla9GhUK94Zfov1mux65gHQNqjdmIRvuFTimlOV8yndtPR5QSsK2tf5WQNORkrCfSezP2f3esmxrwAHA7/1kCy5I1NUcQanAkw0h995ElELuwznn/6H9NidHFN2RnfRX4qugDD99RnHhEy5Rq4kKNIhfB14BP7CIDclz3IDiFwDs8sLfx3cqej9c5OnrwqSXhNwR+oA+xsebZFegk9561NJQxlHVDSOJXQJE+J5C4a9IVWztI6e1Scsiw02V+0OUNHxB2sf9Eqaof4+Ad+ipquZqISrhhJIm2G45ne9W4l1AncXt4svj+1gJmSHrs6Y9dA6nWmAWVMhoZ2v+hXC2d0fQDvSNXaB4icucVklL/qOG/kYW1FfB8YvhLAWI/uPKAUNcsfXJy8rsDObCFkbJVz9Vl9Z1KB35gUF5gA2LFpz2/+YuHE9Ea732+Pj5ozTjL2Vv85nTrU4In74vX5RC7v7nyl6dgr1gZPPtxFwaueJ3vzUkLg/d0ntlD95miCp0ZpfEc3s90ukVywAP0vgWrt7PPMRXZNS0aIe3qGdpygGR60oRTBG0kUbchNZsMrq4QzT6F9mPgwNNpev+I8SPCtt85txHkds8vhiAkcvm3+L0FfHaisQtMPWqTBn/aMuvSuf2JOdQXXY63efHrJTnevwAumpbxCOtCKKBzz4d7VuJxhT9am0GXTFMMYMpfAWc1l2+UpzXilXjTBj0AJsqdrKotiQExsCwNrd93TkThAcwsfFGmvAzYxd2qqx7iDPP552hI+KngZrPyUwhOjSRaJYcI0Wao+NhX7Zo/JzD7VZFz3aiNoUNk4SPFhKg2YnvQ4Vtyog4E+yhcCIwwWRM/C4cXQD/wZcDiyzfv+kWv+NMAjqMQFd/3tEzJ30XIEXogZFnAwybxnriFt9P9MY6pnzMPOaG9/ddBqyXxD+674n4cToQQDgtekKt0Md2d7jQmGILB1mMJgPAvQUScI1tCEjMAkEc1kZZgQ/r36eqzNqu4b1BDn8dij8xctoUI9++32qI7IDenDik//iiVL7NYWf8/qpVj24mukHrvFvnswAq//AOCs1sF+eYvewQTorEs0JQSt0I+LgZi4tcZSq8TI4SUAk3OJDI/XXdMlbDJlMd8mEgURy031XG75bd12eEFGSi1uypDTMUeNsxq+7Svlt54jxjU+VvfU6olZjTglwoLtBGJkZu9VwB0wXG8SlipbSJ+CRvXtpqxRuF76z4wnHUJcCGxV5q/YnwD2ruNLV+VdLNalR/MpGN9ehPyGuYLfDzU6QLiZ3bHjZ3SOJmd36Y4MKnWFDguDZihKWjviY9/FrygIcIO+Eh7ykL8ivZUdyywcilb+6yTBpq7+0D2lcGlx1RBea8vkoMZLfMyp2XCwOamH+DZaEnh8mwqxR+gqWLMk6KEDRqJy2a3SB9CRzPbzSdLmP8mM10US/KigO3oeNJfIt0az7g8yEVsiDLfXv7+XM/Qsoj4S3o/9aHmIc6xL3j/ZJ6upDqkUrlllNstuh+YS87g6cfZxUmhtchWwewm633xGn1WR1wCafP22F0s3LkL7dqw06tvZ8MSSZAu6BqDIKycYEy2atbkLOq6GRTF/HJCUv6fBbZ3NSPo7d4yalvkDBSlNJCtM8Ab+PrgVcTpVeae1gBGBw3t7+WK04BNn91+tZqPdI8BCir7zd3CfMn4VguOZoC7d/Vsq0wACf+HBiUroGA0JYF5+mZdvaGsDm9tSmzyBwVO92NETYyKzhSl26+pfcNQeYLfasgeKvKIQDY5Rj0ZdUWKtfYrIEIM32g8R6vjg7EqaZGMDyEHRaK6ylYz4MuC95jmfyL8/sFcHDfSJNP2VTF6eNkszfffwf1Cd7dLXlYFwvnjnOAOd1OVcbQXqnH63UOHZjUSIwazEMPu2ckxYaTEe6zCwF69E/gvL59jD931rJDX7qZaXSV1MkGl/Gu0SALyTM/N89CQNgyOF802t0aQcL2laS8TQOztdkY0rt4Lp5WuyosvHs+tXoPg3WNfYf0ol9b7Njjf6B0EXFmSDqnI7QHajlt1MXZKt6Rq+b/h0Cf3Zd/wWBU4NiiJhSg8mt5llIHwluaKtuTLU5lHPN1Y+p6ObO/4iJBOhIoIe2VxSFFCVEb98b8nqX6RUke1Bd8hQLMNgvDtvADk360XrkOJR8HYV3KflvaGg8/IOZUj2mzfsUIM3hj92MGC3iD256GLcMLUGD2NBuT8q++a/ogSPlZ3Ps2TY5KsazsDsyu5rWfbxBMdoMilOj9J26NptqO8pzZmDirhoNL/Lcwd7mJBygWt6i2kZb8bSUpr5xfggl49zNyWBL0uS3VIf/yRhDvw681GaEBIlLsOwiESUJ29YxcQANF6CcwoYH+Ks1OqA1rkaBXGsSm5P4/EX3sz2eDWvSDxwgpHQewjdSExgjK9rTXXeKVj1HxuWFXYZ2BhvjP9R4FtMb2ZzGJmGzthFNBe/he3sIkz5FFSPyu80e4Q0pm6RiW680ylbZCHX397sFqmJwRdwLbkI6sJBADh5H7GfZDu7hRfPp7RVCi1XtGckLXzzLximgqQpnrCrokl09XYRa6ulD+SgdL1SJnZHdR7heYQZ593pioEBIwl+EUTV+1d/987oJHzUF/TPmFMYN4TDrXrXPmOE5O7/9xw8zuK2fRLThRdRBMgjHz3f6kkcIGWRLBCIDjUyVESDFv2G/+/V0of/h2OLWKMXGsrm6rWqHguOSFbBRekabB8d54sKqUbqUqwoW42NIqFA50jdX/QuBzngkw/bzvSYX9uiMebUipsDgDDUAz5h+ogE26EJAaC6yRqc2LW/VpIEOellotd82dVr8EYQ4p+g5ChAvxBcwLINCH3QGMA0kH9IlD3qPXAo1ipprsKPkhI2XZG36jUjviLUnf7ZxGx3Z+nIQp/m6LEtCTiBqN9QLBhWwynz7WSnEVQkVkhhYy0BnSYyzS6mMyedRfrUw3axF5L26AQyGuO01L8cHVlS4jpZCS571XzD61xk3TgCLfZ0076EylTjeOEqF6LfG6yfa4QCYBgoyNjL8w7yVU5fLoSCf2U409iHbTD1V4B6m3gmWzbGPaW14FIWOPtPpP4P7jfoCCpWWnIazwY2fqr2ScBOxRbecPHfkBALM4Gwrt3SQhhSYiqbkpGlKh8Tb7MxUa7iJEqSlA7d087RrLYOqAcWRbvXqcImX1iC4Q5XdztQgNEGxNZNAAUdMJ/MdMMZVVWnqMBJhKVu7bruwW2162flJ4pjgxMKCh1E2CXBHsU9w35dCwudq1XkPz1Z0kharapD4wT9Iilvn7+dWOhwWw5oc+aE3lSQFPwnxWoT08k0WQOKlDEjRXvlsVfa+o9vPAVlqyjWGha/PespYhh4PpLpwUQDgT54VBBGTGP4zXd+Pd5bppn8qZbJ6mBqLouurnioxuMowIoNPWUN+e3gtuOi4qkzxWA0Yak70/0ejQmxzQhgyoLrfKJhfqhMgeBrE1qtq0/msftpEp/z7HWo3SmG6vPSP/kmRG5j3DCI3YJX8kATtFBZxqKgh8bTHK+v/CQL4EctSCMzy5vHQ99n14kFzOvQmvnLk5wRsd68vnRzTT8Dtw9GOrgAC8g7GQ2GDikIXvuUZ9LtsEB0/wkGBmAoSdqbnrzccS2fUtVGw1ToKAzxgUm4hz9YEkKzoLgNc5Lhpa3x5teMOzGKUwR56yLgxEWZL5u6faiVKVWP4rEeAoBiKn5Gq9fdAYPOjoRhfz/hnpVYYL5A1z4TvnJgYkCgh58xr4yw6uPMqq5AAwDQAr5kGle1vouNudlPLAo6iEYfGK9Q1zmlZ4hH/0WksmtalxFsiNKzF8EqaMRdFKjQGJwJLiO+4fTSpn9uU6mqKdB6W2O7rmNm/gI0XWyuxGTSO7/jAsnSRR+5Ji7XO1GyXAJ6RlZCfZwTkhMDpGWa0LzmMQG/MYXLPeT+WDRcPzKM3aFgh9FWahlWCsaBP/7VB8hcEEE0KdQfqjcWjgYDOFXhWysMsakhuNrvZlGwcnpnOMgKp6xdmEelAvqdA3q9G8/04jpukhi7ovYLKkI1hknFR/FZGbWmlGOvVJZQwhDDyszVYdea7/w95Gh9sDM3EU2bv6AYYWpzDHWtAw9uk3U/LD10aWKGfUH0QRF20nmNN1xAinGej1p9qaAP8HYqYPeom8nDQajyruasXkzenrgnLR49zqma2k6qFkRP06ca70VMp/43lMC3B39L36FBAtX0s0vYsBxZCqkhnv48NwcOx99ScP0Zi2vU8o1ItCniLvroEArI4iH98UOKOUFgkzqU5sFIlLTXxsQKnKGn+GQxOrxbtdARD+WZIQEl/4HdsdypDQN3Hdt/cqv+5JK6kLvN3tUyF3AxaoAhaqQKHOnLYR2l4pCXmfhpagjl2mjidZA69HY57aqeys7OpK4IvxrfPpk4yDmHKs+hvGDmGnCQ29NgnTQq4kweKmJqRG1LJtK1eFgd4iCB/es2czOchd7HFyANH0Cuua/DJPtrwXqr95OGDinpn/1wrADWTpg2/NTX2L0dqkNr6NE6V1zUHJRz7nBqNtxr0BxWHFS+9DltIGj62N4ZVufCH1J6dLKsw/DrAvympug/qoHneyrXxAg254SPnXfpMb3aF4moQ1+Ahpp4bwI5B3E+wocPFI5qPqjbCU/ovL8mRh/zpR3dGaADVHTpKi6dq85E2BQHpqgVNLt2t4wxh0aimF1kqSqMGhEsVoc3S3WBIZ+Dd2viAiGUOxk5Vb3SEMKWhXs0OqUW5dNe/DfYlZWCv5JVY0fnGRZD7Nnv1iJftWCTy8eNWiZjKroc0L3HAf2HynRqX8EqkLGPc9j5fIe1VkTW4q4dckZXWjYy5eoyurz15v5Nn9LXajIPwyogh/+J2EvKYvsw7dEoWK7/2NummaqBygw9m9g2FsUBRAmiu6NPds9+YtMQhVVEcZyG5P2A/DbQqTy+IM5xdfXC7y0w1QQQRG6VUgeI6O2WvFv1/75MQzntKQebXEMSgAq+MIoqW0zA0a2bAqJ+cnfex81OAMUR6qml8cr8vcIe3LVXk2quywDxU0kLVUapqUp00BmXW8tFjixugUA8jCuLuLRadyyZMbjmrKgS4AwSJSoGkRG5RWfTYJ5oatioqqMjLxsWFBECp4ReOOL2aE4SAArx/+nj5JM1bdL+94o3x8/4VjdK+faXrNW/ktdXEcTkfQ55Os890puQ3TTGhVDJznnN3ETKG2FzQhHWs1VvQuNUkG9+4LD2Nwo4IdpY2r84P3w15Z9c7gUSWaK002dTz8Wrqh4j2j+pATtsI8gYRwg1Dm+ur7GGu+YjucZMquGmZedmtKz4u9S1y21Ko4Q3KG/RBMh0doEuKjucNSAAt+RykAbICLOnXlQS6KQI7HlTJcASirv2WUfS+NabNH40XOMYqmVoKGqt/diBnyszv9js/+b/cijvObxvSI/ScoXEGNtABlUJKs5qaK06Rrqt00Ml8L8CLkTGLOrsQK9tRgIHkVZYLYLSnuQdS+ILB2f1Y+NQFNY2/RxBBD/tKomDsHw3Rp6PCe22Z+y39eVszzWSnvkj/HhIG54x+X1EjxUNZprUxx17V0jVE/KzYrIZ3kSJCkh1lgdTYNO9t+wE0Qx49OfMacDnB0aBcKyzri04T2seEn2ZZf7ETGtFI4YmAoLwxFI/NHAP4uUTIqnquSUc74ebjjit0PLigAnbbFpRAPc+5Jh80QSUUMgH1THurkKKp4+Vx2yBQB2bAzLVZhQb8kzGm/Vh+MTkxVYQ4b7fm0DL8ybNMyoLSMw1v2IrLo/Mq1nc6UwDQkWrso+cB/r/7IoRRgoc/75rd71btpZ2rEEtdb+tV8nMTjy/vq1nbTNC2EL+/2P6PrD1mnf/K8RF0HcRW1vxz4jDaRGenL+OEDvopSvvCyvfnczFRdeyD12VHf0MUdit5r9AG9oB6lDzix76tE2ZDZQ3YExFvw/527RQPu/FZso/YQjoLn9iWHAD8nCpmAyyohRgQ5jwRK0X2MV1Af1RorqaRxP7V1oU1DrLN7STqdGez7IrOVrM2EuRccCwuGbhQVlbAMbfPQa7cDfN7LPby7yOf3/GimLk0wAmDh2wd0fgxDYZcXECKTJUAkXyH887Eh15jTInXkHuJHIllNlz2mAQFfrPEA1GYHjwClcADFS5aFeqeyja8XBJaQrsHJ9whUo+cuC/AYlZD/R9+Y60iJCzYdv2KPM89EO8G0glV4xPVQfyQReDyUPKIyfnFhIHnDQ/gCKpVHiz8nORaGLX+bWTeZMy5VPIVxGXkr9GQdg6gVjYIavzGm3tUiFc0Jmn/gUGJaxlGMUjdKzLnDBN1hJkZNawBhCWvyR89+Q0BYm00nqCXGCcyd3+OK4U+tDqVcucMebPzqtpS5AN7vw2jx0tRmUcURNyaf9tKD+arZ5oS2pmcT/uSV8MFxHkAJzyoZ6Vtl86N2RZtekpIXde6vNM/PcGJ5n5xU5NVSfqlk/O+dOF+VWJ4ELcWD1Ygh6/8rta3jzjxZsRaNORfb4d3Z0Sq006zLXaO+0QkaUcxfGexCv/040wpWXtUN3LYPTI6pIhCnAtLrAQWfY9DCy7X1a2tUwRnpTVda1TbX82rKlgqoQtuFdG9fmkSSw/+BCI3fFZDfpwICe3QR3UQu3TmWh43M9Ty2EEwuT3ci0ux/FVgJ9PSYRe2KkmvhJ3BkF9lx+/DiWOmPdI5oT6cC71PaWC4qAoERzEKyviVOW/S5jAx0uo9NgPjVUJbhSRWtcx8WcZt+dl52zVrv761vTvWLQjIsx8Df2DabaQ9W5TRmJY5xUT3nQ2Z1C7P5ci5NkadoL25Ib7Cz9PjYa33aMoaHGpbB81tiY71KpDiTDKy9+aYq5rF38l+rlK7SZW5vBIuRPWyKrazN1RPadVdvR3AFi7syxaEkBfVeJXS1MEltUFvsGI2vnqYouIxdpStZLDdvk4XMOPWSClVDQCzfne3Rav1kJUBBTFO78+cNvi7ZdEyodPofluUkNNXWc2WnSDx5G4FRamAzx8yehfXOdqvPbNZZxTLJEjAFQ74zRzjEZH3K3qN0Inx1F2gRH4Qm3WK2L66YAphevXMMyF71paMjoxV6H6P8pgOeymTyUpdoq/sRx+EppHzyvFxp67k8jx619UdXAhiXHrcLS3xXx4mMcZRsEGI3KYpzgIWBrTpbdhgJixoyWcUKDyMDOBkwFld3O9qCNsE2PAsWpv18+qnzch+jeu7JGJdyZ6KZwtML8LmjXEo8fruU7L+q3yu8+LV9UP7sWoSQFnYSert0f7f4lwPs5l6uoS/2HNxSoId0vNAk1Kep/Fqr4qB4PGq7vQhjDCrNb9n1ieUe58nEt/o6NUnIUFbOGdVrNwFiBs5/Q02Cl6ocI1NxYscdWf1l4A6JXGVMBRID0s7RsZsR0NboV+i7UnQD7+64VJ95vM+dZyA5pUl4X6gNzl54bqfTbH3hCkfqKshDsgyKvk3NOOWdVygAwVU/MGEo2qsyqNIEpRSJqxhzd3Wh0hOzUBH7w5ocLtgqVDfCmnASbJM8rB4UxRQr1b9sZ4I0jXAMBHWOGS70BMOf2ZQ52ZpIHrFEn+9OlwIlp1gxB5EOkfJgBgXrQNoo1YnILvHxyMK+2PHa7cwoxhw+RpI+bkumdArss+AuOguzERZgjHwPPvjyoKUXcgb61NBouzRjCTCTQ22HWs6s2b+7Fdu0vOn/kvv8FKi63lS9Ut9K0FomnP3rBd2aiBzWfSazyaJA5A+vKIkDWMVKs7/pykKf1oUvVWOQkKDZbGyt2GE7cmqUAewjoVDOseApN8bufxuvD4FaKZbvbjYW+GE2c83VtKDUsiKzUs5bUAbFi8qNH/M/jmY1Gd/lzKt42Mfi0n9l7pWROjD2EedfpC565759aSsYDQ6ElPxuLgiWTj+C5aoUY7qjotUKh4Kzx4ghu624A4CYSLEfI0ZgdIjLqIcRPAWeXZU9dWMR6sIwQx6ALJZGjPOJP1ZYmFVCqbNCSFgHdFpsnT43zwnGZ72/hG6AtcgktS3t9Ajg4Ojp0lGNBW4XYeZxVpvD0OoIhkQsGo90CQGVMLNm7XASMI8LsIMrI4PhEC0AsJgo2tQQYoufxVx/t2EAuSe6TzMBvX05gVx5RJ38UOQArGC4R4uCFhINAau+0kxgi6HlPKvgigtei6dWh8YlVtzPgaXfAP+6mtcDyZjNz5XXohjUx5FMT9t/qHe3M/PBHtpHPmhfb1ORh7j1/kPo/ELfav65JPx0ihlnM06LS+bqtQ9ErzI+XXWwfDy+ZdfPhf+ZbGaN0zoS8iSCfzibRnbOtD4JKcgEOLacJDJQ3SmU2pHyfqtPo4yXWU2EHSE+NzMSGdOdL+AJdn7oS90AS1P93BzpGe5ASMifFUvmGaJ+h85LlBXtC/wLI5Mpl9gdf8pr8vQzfw2IT6qWsZja0+Bo1qM3xE7zDYlSm2p3j00DE/r3Wjud6KJKsGXjEPxSgTTSqtLXb34fAb1djlzA1NhXgt9NVWiBpXk+FAnkb4jonME4aO3raLLlWRS9C40vgrvUPcG6bRyWUMzTczQkGOWsa1xqDOyVzSyQYOdMvEGfMQfMswy+sn7gBgSB2DrFU4K7uff0Kzyv6nJPY+wQ8VGIdsGCSH+VxzTgIdpr3zMB9DkGGwggs8wH3SAysKCG3iWqo9UR9B/Er1tyiqu2qz77HAi5kyGXmVBEaVKwnp9I8afVFzDX+d6k2j0sOCsht6sAy148Dor6hsDECtbRZq3sY2LEEvdDnTsni7JMgtT+qOT/CYUu4FnqAjnl9qzgbewoUQxuYNZoQXIE2ekpWAxUB+ptG1+T8J/03eyAFhKT+klL+tS5WQ5oluB4ERtRKU1HX5i4fel8gnV83LuIU7Zzxvyi9hwzFjLY0tUxfUlo3QycxfTxBhoU+qKdF00btLSoUoJsp1AyezQmJnmBJNlnsGK7/gqQvg3E+XaoFXR5BjM+QOZnJodWHSZKpEgnmNLKeCMYZrJ/Sj6Tq+wUDAncn+rz76/Yi7XKs2faxT/PaRBA00d5Qk81McK/N2bjmdIO16/NVDdKHRfm6gi9nYV1YPytw1t2iplA/JLVZ1Ej1mQOx2AQ3ha7V8SoWbwTWtpNL6pHMe0D5MyjZ2EpyQpr2VMmmikbflTe8ck9x3IDYakPUYlsK9Ph915qu/limFXWbQKluOxIpmoQRChoTZuNENHK52v3EuY7o9YQ/noymZRdkFcBYgTd/39NMuszOH6+0ETZ0g61sdbODmzlK4mpO18T2ZYrvJfmyGKaRKRQfWBa75nzCAoETN1Npy/tsCKiMFhLF9ZZBV3CNXG3qcCFwcpsLb199UaUrAUMj0hsz3B5XbisVr9iZwSStKNuYl0jRMU81Vr6lcGT9J9wN+Q0xBHxlRQ0S5oCgu+/r8BG+4JWv17jXkjv/teGKYbyVTWjIMcDnJYz3h86C79FZZw8Vfxf+Txe8yk+/j9jJMBADSaQ8PXd0mvjk1WfFf+KUKliO4y85U1R/D03A9oHNgMdrmnpCOQdtv5OJrIhTklyEihM+FdBFSvBIPdGOe9x0m7gbf4/12Jpd2z1s9XkjHyQ+k135SIMk0Rrr5e+hRKXkh/av8wykeBjjVmjtOlhYdeyphoztCFnXp5levb0dkLJxVpzG+sKouG9pg83oFT5aCRNNPLR0aXjYRoaZpU1xsSaQmQ3FFPkLJZ+Q5WofvKkUviU+ppOMnPljr5DklqFtR/VO2IoVLJggBDYurJ4nA4uHtCxDZgN3CyfA3sYj2T7kpK/jcx/UL3hQXhgrLiRaOh1tauZ6e8h+v3UkAMBOcjRSDhJCkgJ4lVmyxySLrXMOEtJ2FZkaIXDeu94LuyYrNRfaOlr9nF4mPw1lfqB3UuCKLk20o7uHYm02Giz01xhkfHBAdBaq1i3khUR9PZySp9v2Dj3EwOtQtCL3XwwyUJO0YS9MUio32tnbzy/jIWuZMyTfiIgTHaNJwRpjKjzMKunFgI5/buQNThbcpy2/4kh0KND8motBZa3Ynnf7XF0J+Aq9FDjkr6m22MDGG3hJMW33eyspFE7AJuqwortTaZjw8IBqMJPOHyObTwuVGBKf2aLWa7ZmTFlpbqLT78pUsfW2tyQQQtugU7aBty0lmN+FO/jp0BsKJfnsyfZyaYbhzxAScramVWayBXe+6re7QeAN6EjVELjPC25mHYJ1ndFGG3FgvAcDEKosAWorAJMFSKbJsqjSaLLw6PdxGp91hCS9RntOFkJ/HtVseQKEZrVaFYEDCKhipo90W4EDvKSPxDzw4QwaSDNYxKMHyEGSZJTfLScZtikF4oYw4CcxoLtR4ey/Ca/6RpHJEXOQX+dQpUvxMUmPFx4wkOm9tVdBkFqo1nR79Kdw11bn5S49omKmSmTz0ovc947YKXj9V2inJFl10nGsG3STc9FYnupDKVlCWTljDZaa8tS0R/orJEM7SJBlS/NLUt3svfqVZr8jAnXz7gRgm3vIkh7TAy1A5+oUzlwqpdHiszuFaCsb/nHIrVF6JTANtMrakbPJEqTzqkEbQXjEmJ6U2iQ8xDQjct8n4V6uovMYoiXP5P1I0G7PGEVBZRvVd3lI47AuaCnbuqm8QNwfsIvCy9ZHI63shSKGSoxTo0+boils8igOAlUoDJ7js98yqVuI5ed+Z9hmDVFVG5j3pjVK1dmcoEwTpsvvm4KO0Q6wENzqujMo0Aj2m6XBrtAn39lcnrMdzdZcV7xfQLJUgerzNGw68ZE90IbSLoL+pCkjxdAA5pBIJj92SSlHN3DxfMQ/PkicNDMcyppRI/k1BsldqaJZCz8I7TMsJCmFBi0WnRG0yCarI9ACBp0pYNxoPGAMQRtK3KW7gW4TBkwoTRJ/yomC36iMA9UDM8OJZPRUmcheaXuBVyImi+0ga4Qkl+Tsp7KXKBNRTHy+saTGoWcUEcdszoGn8Nub+BeF8y+xdv7S/m4L/Nhh9jE3BYcirzxKrFDgYGh5RMEt8M1/4+8bRIDv9DQCXnRUiSj5Q1gOtK5X6+THUy8x71VWIM4MC8uZUoNmxcK+IcnSR08BZaS8phgj6IHIde5f8UA31VwQZwecE6b2v7scETocEUDRt4jEBrp/ZjtY6Td/zx0WiIk5mw3vlBLKlQtn+W3byuYHrDwroby9E1uEW/0NeZIGdR6xZY6UKY60a2eiuD12OudYLIC8iIy5paYzsk/eQL4VEZ6h1kHQniCUT5S7NYnp7Z5o8fvpcsLQAqoH30VScrec6FbESfSPF341RypXEjQNQJWZ4GTUKSU+h2nuQXKs/vU8s/5TPPI9+DxKAZZHfrOhwfKh1qgD3b8WxNPb+pmPyK1mdqZV7zNUZjd3yTthRGNsMW1iYcp+eTBwBbtvwuJFZdQAQLtShzLddnghz3mT84pWGtxdAq9Lfj4kNvTqxh30ZRmL8T0nPZ9rHWLdKsrtAFXOJudRRlzCx0oas9mp79zflOdNtfKWuRq+RQqI80+fVvwioEASI9+zenyByP2MfnRJBrzicHb3ZYBSDHosJs9zebr/aEbX7gI9qDhxJWhObAIuHKHJarzjZ5b23vnTOEIJ6rzSvqZqQJ+kHCsKtHJAgg5w90hq9vCq75ud4yzhq2t2AW4SkNxNALFY3DRWOUe2h/wha1mTxkI/h5ZDVDxfZ9zK2kXqWY9Ihyz8mhOUKVuNDhDdyTx9t8KZiMv7wQWIzVBSRgCY4EFNPo+8o0Zh2e80aru3NIxwZtqSAU2b1QZhKwnfIAXtSc9qHujuSNLP/E537scpgg2RVJIeFw5U2prX/3Iupn06AAKCUQIlX4A5J/g/JPWqawlA177bzfrazTdFmWqPOwfO9JNG8YTu0pXdwEiSCumPZo+/C9q80F6ts8CHNBTOpxsFbLZGJlK56HVGfo9YOIrGOgkuIjoprZLBb9aDzTDc6RESKK37AHBWalgFeXhK3y7ZTkIf30/f23nKjgO/HbXKBS6g8flAubje5s6uVbuOQI8yTEXLSa64IISOKkdxbPSJ7qUxtT1DMxj2wALTtBilfTDuqsThwEU/lLZaqsFzROGaWmOYZCtUv7QrtKQBW+H0gQ8ddEkELTN6v4L8oaxVL1gbHKMHgFuX9tMI5ryDSX96fMetMkTViYEqlPYrvscQQTutKf61uZ6MjvuB7MxwnWF/jGac0HJnX5gtLAwRG42jS2o9ajYq+mGuU6aqpa7nS2KHeHy6uMD7b/33oT72u7/NPHuFswpDvmiTzRutbRcYkg9nbENS/2d3WeNYymQ2bmoDpm2Y7BAogrqbnPGiiY8HhG89MHAmWBSQSIcxyqAR5h3C+bIULMe/Bxeo60bovhvgMPhygHGPOdFhEMqDHy/VvuqNQPkLdmv/LcFNNefK/wxemc+XT2sMrncPRbE7Rbr3y+M0+g0fJnJWOe2euYFGFmZj18Y4GQu23J/kDWGwd+1Gby2rNp39w37ugtOzJkPd6UJAlSR+je0tHg1Z8n6cSoerILJWyIWVw+VDQ2Vovj2kB6ZEv7Y7l1nFzzIn+p/Ue2G72JaJvQ+p0CcK/oT8fCpmA0qTwxg90LTlrl1hIwONkL6OBnusQPToPDrjknKVussZICyGyrUTR9rF6GPt3kveOWmkkUfmu/EUsCwfftw/3OoLOMk+GkzfOO5skiOl1wZH4hxW2WOVlwZMNZqNL/1AwQ61xxdRLR266TyXCJvkhw6OcdjzWkfbcUvR6opaLn6xh5ivjdBt6B2ViFAmlhHRxUzCDpnKIhBipULoZnFT/2XnRwJkrrPwpolfKb1oKgz4XaKlzt/RSAd2OqOV/bC1MTD7Th84XPaa1i+aqYeZcIrakRXKrUfn/6qz8kagpAK2R4/e9nfGaua+0wtd5bJDoiGGsXcu7zqbxItskkjm8N/GG2PFbi0gOqSmlW3rP6dGPOv86Z6biqFlt66v7LPZmH9KtpW8u973Gh2hqX4L2L/LmrjyWLD4og/SPa5J+AJkoca75hDS2MWtW2pcjlJS/PKXI/lyjZXU213QeUeyxZkxJrE/1w6n99hMaD/IyeX2VEKUrfsQZ6ccYRYrIKxguXcO7ejBLCt0qhbi4vqIkyKBzUzT76pSSg879pqgQCIAbpum0/rfzajKjfBMULDTYMQ7iJUCH/JbQTkj68XYIlUaxSeXxtEhJP5vRJIg+HiP/PjKeTJZGGg7cIbvfLDwTxIFQJRyNk7wnjW2mXoe276RX/mPFMWZr0Fcvnc8mWGjIrnRQUDjfL7hJPYhZt1pG3nPSAIIJCQLnaiPeuHDpGo0kAZ9AaXscjrKmgZ9SuP9e1Yb2V/AFXgo4hlQH+bIBHAZ4NO5S+4t3KWb1jx61uEEB/5krByGlGsBF42nDy8KNkYGW2rR91nJDF32A/GYWiZH3R5+hXaQXK48K8a2saOd6/dAtO5/IV9ZQ3EInA9H6dX5safpsTQMNOwqOAhQu/k6cut4TGVNmqnwwKTfZhPz6SjrMET06uulBn1/ndrZC7QaFhFuv+F6LB2MpaNOPSlprKRHPsGdes/nMxKHRIxMiYnY95JgwB6h/YvgHbKW8vdhYwodrlcI8St/+MSHIpQpc1/qaXOrguz4ZtpaSg6FYwLH5/OowjCKD5E60+d99aQV1OHYJlhZaWI4272jopg5cwNjiZ4b6gvlkz2nDbniwDsa+4UAhudlldmXr5vHOmQHgJPTfULzyaOWRU1Jkybf1hwllHfAswk6vQ4PUX+9BSiwxXq0igSMBOAvwX4i71DadP8mux0PROPns2jmoH6U9ZZZjSj94d/LTlWhnfdYWeR6QFeZNyi7H+sibd/sfRtE1frZRI+oc/RBVdPSE+13G+KuXszUa/sVrniv/lWX1jiEUjfZ9q+BwYQWjgw0538vR+Aot/gRpOx565Hgjic6C/tbKUNN18FhkrSQGs2TvOVewySEYBT4c83NE/Qd00izKk+QtSkndm0Glw5NzfE5g0aqXOPLTKH597i08+MfIWQ12qtMl/ZLKvjdxTyr/gVh6KzeTFauGT3lLo+PYfFPS3ZR219NSnYa8MyEYqdhm5wM9fMwJGLbclZWvpK9a7rJb5iq+DZ78Nwy7Y3sx1ZSPcFdFCjmsmVhliMfkJGCc63JUQ/SZvTj7+QB8v7cZE/rXKMVtn8ZtoxS4ZdZHoIlcfMkPZw/2Y79vHJs6iHNjk/w3mizJCFub3KjCPT4TnHxxwlZwibm+AUEUYjh15x7OaUEV/9lAgU8C2nrWzDub470unBtpilNcV1Fx/iEj8tPvRqySKlpNdHv/J6WKZlS6LSomOYVVR+17mkFNx3SqrNgdK4KIE0jXwWHcvXilj9w5sbDqOgKLAPpR9d8YEmWQ3QZyoMC93C2F+ais7zyR9hqH9y6HMkcmh50Y3qGivHUymB7q1LTRBjUb2mE5gjG6xPc3SzdeX04XVF77uiqGyGTjXXmcceS0FPEawFh1KZ88krtY7fvK2yQE43QuY0GmjiYFG4Sa4cADN+7FkdLTmCDOHwJN+AYU8+/squyvQfD1LFPONOag0gGaVvz2Sdl9z/FFyc3SfxBkis057/6TSw09C57+wzLjqcPzs2DAqRlr1rBaiOEvY2AA2MdudbuWniazxy+8jsNQPH6B5o86Hqra0bvDJkLqIBejJXPTMZoTB/TTSyaI/LYWKkjPHjZ9MP8IoOTfCX3YudP2anHvGnRkkXpKtIIUuxahjH2IIixjUZLydIIwv+nVCmbypSvdL5X1aB11Z2nC2V/ChuIhEZLJgWSd85mFvkrkYwtVFy5QujnHdtk3SBldYQtPz8GOaUqh2pkgwb+m3sBqMzquCqthCAezWEtf3W2f5JNP2lyTRcZIYD+s9Wb20W48YyNXoH6fHRaT9iGspGCXIl+Pjf0sF7SQfdWRHyfRUW7ns2MSfmYfIvJIX1ImvcsN2OL7onWBftRGsc5HM2qDKRrrsm1QSZxqSx1fv5C4v6xPPpie4JIW2rVvvESjM4CPqfNiGJUa7iFYrH8rLDDRdNKj0anEO5QAHpp750K93tWTE63MPHwXdtIrWKMblZkJc6RgjpPOxJnJWYL8Vo4uWA8StqreDKBygJ4dY88rdDfl/WeRVJiD7YtGQjkHyo+q8rOj7OlEc11XL86o9gCeyUoRpRqblt1ymHQg4wdgRx68rgolvS8DoL548AcwY3hc/o+1g41ReesmGCF2XguWrFakIvkj5qIpMhJOZTJ79DjexObYeRf9Fg7knClIdb6/BicoBoxTiFURiTLBAKIPtLxsOUc+qM4+x2484QXNYTja6rLghn4JFH36DPo+oM1bZFJ+0stBxUVqeT6h6S/moi2ZuLXk58P/jxpbZ3wjXU60phBKMZngNkM+MtJkztyRMyMXg7zKo+ddsaS4OzcSjqO1GtE0+hXM4XU83cwxEO42hRuE+CqeyIycnsz8Pp/7J6TH2dvEbUkXcvBnc0eIEoyD7dmZgWRDOFqprXqis3Bzi/XJ+KHhmKlulx9GHDMN/gPbBpsIvjz8s9Y4qlB/UI6jOMxpObz2/RBjCAkotiSAa/gsCzHNGh7MsDpD2Sr+nxikxQJpPncBhV2fTjC4phMTNHx46KGiQ4hi/L63FB5GKBO42I1lXbJiTUYnyeftlhpc3WPCtusN46QqOQNoTlPKNDhMVRh1W1wtSZPmaIEDgFeOobczqpOQrSiJ0nFv7k1AD0KCwc9xuQ146oySioxKE17s0Bn2gmPdCxJH6NmVyFLqaymVGqOaccECEqdwjuNul8a3JZvv6dAe0b6pffRlW0KUxR0CpX+WSn1ZnVjnW4mgSLFD6M1YBOYbspvsvaMNB1yCOZnQZTpYfAksWC8E1pcNhA9Ch3dpp97St6dz2lvd8znJ3gyA9h7kq07v4FFEmL5eEDtPGEmrR6xdtXDhHzqwRBkUv45eTyYF1tKsZ9xx7E2+aq+tHbb/UbgX7Lv3OU84wMBXea4w1H+0kDhYZFZJ08yhVNyQiGv1MaQi8qwdyNAumJmCOpYVsPI2L4DKMErdjTMozczBdqLaFIgn8/NWJ8DLWi0kygEUfEELmDmPLvSTLACwBLuktGkAnpHeGcow1yG1cpiLVdlmsWeCxvRco2emTJNHRMflp8LHDZnRcQzmgKzDctJUTdg0T8XWyBM++6wXLUneWZYjMT/LdmR7UNHt67eRed9O95RpzC9sOvJqiJo3umLIi0dkRQ3jPrpbEj6/HMUATvY2uROIH1S4T0RPwMVK4/1rSgaZ7HDyNWHo+a+AEO6xQOppPogkoQ1RC8KwSHcn+bSJLQWab1H7WHJVwRiQtaL1gursTmWmc6g+wxo3m6mFbn0KrVSwLH2jZtZMV7zuIP8suC84wSqe0o1KXiE2WXAx2qlCAQ2gSdsrkpdt+q2rrGYiJj27Iz3zNrJB0gdeCST1Q/B6PhXoNWWEMy29u8aRKlAUeWZxmdYnvb50UJOyYDWwv+RpKh0sr5mIY7K+c/7WQMHUEFPHS0zmd70L9WxsEh+ljk5pwtFgQ8Hsag/8Qli2Hn87eFREy7AvYm7gZiodU/DP9fhoOtRMZJrSR5nxTtB7RM0qV8xzRAcABSqp2HFNsTUpqgs5D6i2+dzgIaopLqjogV5l38BsIBRPzBV5D4wHyWuU9vGuuA/WGPX0ZKT/bcnOHb68/ZEsDDGyEkJOunRBKlVncr26moYJqX7fUVc/+53Lhsv9xN8vDKYeZksdEggu8URj1saPKFcfz1hWPuVI1GxQlhMKaf/PIJhNA51/0ZE+8M14h9XC1lrsqwu+iT60p3AYZemnLiyaxVgB3FrflTUrnNfa3b5+5LTF47TMkjlloEazwY5udldAuLk+EUzt/R96ZgWCq0ayTOoEjhNUkO00LWL/r0EePyJjGuPiEljxxLPS6yH/IF3jmziZJgUSuhVfeGr8L360ocRdRMwkStp/T9eP0U4YU7+xPjNfI8bWuWfntZdPchVKltRy2KjFO0Eu1oO+lDtjeyWZehxqSPUsJt7PU8fELI5PW2vjwWY07W/BKABYZSOEew25AwQIDO1nggE5FZo8shcEovtN5kmAyPxnO/3wJkwLnbe8oeiQSeFUFqzfnte9h67ALv/yOHers+JiVtjlNfOVLlk9JaPSobGGu/UEZkn/uNxrjmTrFgpqVrRS4ryHBT/GkabuMpKApcJeF8lrZl89r7Q4FfZYx5QjwZQXQMdooZzHvx915Vqpg2KC0t9bUrDuv8GiDBfLImrfMRu2VthDcgU64xOJ2EW1zjMR8jjFMcGmF7IvIDUvJSMkxGC62jMn+LPd8r3VUWy3Hh0mM79Pm5cG5Nd0e0/vBoLhnQU93030v0/yosTX3HJtV6HYf+D8dtJGazNVJ8oK/uX3VN6zxovKvKcb/7MYJLVj6gJTHl9sO5AaRut7ypsHHNifdJsEKAxotPxpWGi0iea7mz12BJGoMz1bnnK1/gRAIFeDMaakWiyMGloX1k4pvmMu1i/bT/L3lUg6VlC0gwS8k+ugWEhhcytQpmMbqKrMtUB3aevpwKGBBM7+KPuflnoJo+sKs18fxFedvnrkq/IQhKllP5PRYcZc61lI+dTc6p4LlP+iSK0IJeVwFmJYAESTORlnrh2NDiqX/KJbgpZvJVlwU/KC6EFv7O3pJDaOH8Nd+BbkwSV/yvtTXJEf/nfidlawdQeuWit4EdtKtnqcmaO24hyN/++B/8uN9QZumJc01sZUH+8PEYJ/zSgN2QBGOhufEAYgl6JTObmg05lZZI3ma+euB2w0dDRyg/CLp+eyeRAdiw39QqzRm5PQQEoiVfRNXjx+51yZMXMaJiFVrszihyNOG/ymQA6M6jpYxlkZvyA6ChV4G8u2DjlpwZDYZSS04r2K7eI09JXUA/f8auwQnJqS/VinXJtKs+Nr+aMXExlvhPsAyabpYfD6MCIXmSq9U14grj25KIJyvmOlx6YEJe3ZSad3gaNAbwDvabgeIUI4WrT8gEZEqEzUBsAWgKIfCvxoczAvpkSovQJ8NdFZNtzCDRG63aga2UnO15QclNxouNrP6KKh8PNhYQQMp9lezYLilaEacW19SLXXT1UJyR6nbCrFQNnb4rBf9hxkqlVnY+EoLqj8eOAuABn2JbAtNN1gpxzHIwJ2EmeOYG8u+rkng7+Rsb6vfVAtjqy78SfWwt1pbqxyhIQ80/f8hoFMNbL8yiMtA57fpnbfCMnBcpLQEOSJ2+z8ocbTfgHJv2rSxZd4+61FbR1pxX+fACxnxOEOkqyX5A+B8rLa4Y1/B6dQvNEd8iykYvr+VJ5HzcIosugh2FFItt1EChw1kKkJfeUv2eadcELnJv2B7UL56vRvagmMeZ5xhDcvhtPh4PO3R32ZnPoN1P6a/Q16Ttb6DH2PRda95hVjLCzDE7c+gYvw7OkFcPRAdXPz0MVbozlos8XVReMI2Vo2fWMWC6jIplYUcrnHZZQGf+hsTYSvqk7W+y8ihYMx+RhntxyM3vs1viA6qKDpl5I+oHprkW9FLH9RHM0gpOoLzPgWxEaLlclI4RwU0txTQAP7jFe6w/TPfXZYz9V1WnhHr0ZLPWvdgsS01B5LmHvvY6Eo6Om5XAi6XnVZYXhn/HehLeL8bQvIFxnu84CXrDi1nUb44tBI51R2R+Ra8ULR5kgf6+FBJlSE0FtseLKyRThCorI52NnwYNgttE368qettw1NS/6isRk4xCT3QoUN2x2KozZF4Hzy6ZFgTUULJWdMRhDGP9YilAyjfbmvozxX7T0hpT1hWJXiPMJz2W41hgJTNnrVh6KjMqWicB6/f7L/s/jjWTHkta12DBucReCt7JqGaFdj6ObbPAndX6LUsH5Hp5XKvoqaLtYJ7xDgRuuvm0c80wQdi7gYCs20rKyw2XBao+BiwMn0/UYq/buVQM3z0r1PG7GdYR6IA2jRzdN4nuzcok1mu4UBOO6xucHjpF/CjZd8VJO3fbKA8cvZvA/BrHUIGbPoDQ33jBVlHHfgq+GcRZKSAuTLuaV3kKLsfimY4ihBwIkP+UNhkX48zvn32/csdN8ZeqkeoeJzXbNp7xTTq+TExcXQ6irSfboevHaA4yAPtwrsa46u0yWRFVO2AmFu12IIcqGvbwsCAAIT2WSUZRmnJ+Ht2aqFsr8TlTF/Hx2i8pzrEM74s/W9VwJwrEH980kz0u8ptvmUDHR7YyD5CdinhXheidvgmPI4IkodNEq1GIrGQt4PT1W2Se3o7Z5Tapvv3HJhXn7F0C8nlxUTVZRHurNIgNr07PROENVVZ2E8Ycg8hZXqnuMWYm8/Fql77V3+B4IgXLm7qvv+LK9BlVEhBZLs9SuDQJFrjxW2keA0mZ8tVBfJTEzgjGUfBJobh6GhyOKFFIgLn2bp0CGNbZ449/wA26KhYpUaEEAQjHDCvAIymA7fYOGhWpFT4cEEcR+ZmaZEUG/m4y8FfPCk4Uieag5Ok7hYwLmrDOF1otKd9FrHxl/Y8vzlial2jEuJehhMsQ023HMasC10t6FXGNEoTN5HTQp6tfxGzdIQ1tVFX4Zymiazhv2vBeyAz4w3fqFvuh0zNGfLRqUtyxMI4ix3Z8OBH7wKqkNj0ufehHTGTUQrxQMB8TXJ36hPPGSk6fWRQiOutMYgKAsgMS3dJKSsHK0z5baBjKtA67MOFEahZxNSKrdD3fLmm/a9222it4eueN3urBU42VTLSIZrIyng2xYHiSQ0HXMxtHlnuFVAvLsQfWxEaUOIbbWOjRyfu1sp2A+MCeulPL1arkeh9TP9LLRvAbslFYZFYIjiACegddKpmEvrJHt1Ztjm+EEGOCRLU7oyz9LnxN9IfrnIssvrwhDkjLzKXd5LMRxSVhmX72tRcPEQQH6LXfqXMXdmMN+cAMLcU8xx/BJeCgTwKfSeDwYt3eoBzsWy/21TArkw3d73io2Un51nR3FsaoUISt8gsZozq40M2OJ6NnEqoet4eAqZhH7ut9eV9J5ziQnhvGrg1uHnqgeHuEsolFP1X8kvhJ6G6gM09Jm14acqv/TfE68qM83uTAXrS1oKgWd7echKj9yAzBlVy26BzFRXimfnvLRYgh1Je8FsMcCIWJeppXLBXUcpifvgMN9MyJTLYiSrIHRJqJs9tqLQpkEbfy0k8a6SCC6X7W72RuCbQ7RIvrClvFf0oJEtLtgOVF8J7hx0P4X3tUvTgdFotNi1f3Kqs77WBNRNXeZLnexCVQ3vb4VxhRBF4OtXABoaaKjulreTRoDe1/pwLRRt7sotwOoo5KM8nLyXdk/5oIiSK3bD7rtd3a+oTKgm+qPeTHkBkC38uhVXSCBY9Ud2Z7NwhPkZt8GitiHGvHm0LA8pWr/DmmPXKWCuv8EDpqNBiU+loLUaCsYubdVPC6SHADO/f5r5aWCVqk+8Kcsl3a8OifM3Gb3UY5WhP8ELrADAlJGNpoqDJckWOgdrnlN+J8kWjzAAQu7NsCHE5kEEb9jFHT4HGHjT5GJYQM4QxQ+7+DBO/4wjFzeotYL/JWEzuTfCdgYkj7//pvSw+8Bj6aqiyWhFRSX4FuNowQokZLRk7nyi/bJvxtoPIl+KxONnQRuPADxnAlKBHFDHSmnsNp+Mdp7FNYEYaErPvYmrVK98zN6bJ4Wh9oeD8rbkR6yBdD4CNsZ4L1ZPRMZa9/JIyhMnoIQ6SF8sRBf8msfzgTmThz6HcnBZHJH+s4Z/8tvZVOrHNBmUj888217GpWXEIAfzcaSH+qVvayZ1nuobh63XP6WCC6bJvX83prkAd37f0yJ697dfh/CqzE2a6QbKWmpNnbmmp1mjN6ZEVEmKfxioWtatDT1208idFM85+ZwmJfABUfLaf1pNcc8gLcak5GVIec5laMi3v2M/c1u5NZloXfv+TI2CQsgwzOqxEQmK+m6dn1mpYA1dLsoRjtBSCR8UKN93hi5gGhvvp+e3YZe27KmlmfJ5/HslcpMQN0Q/Ka9yQct/FQtuJOjlHhABafsjWl+y0Np1Iudex3y6b2n6ULKiWZd/CgIgkrGKbN8HVmXwUZSAMF3QwGrg60ZrAtXJzF8MU+WzSpcwPBDG/V53+4VwBkHHIDT/Z1ZAEG68EHNlP5uxN6DFe+iI5mGgpFqFr0jHkAquQ9hpxLKz4vf9NWEEnKjEjzYdFxe8NcFBhxFsSouZ1QHvYEMNJ26Q9yZ9K1Rzes/5C4YYQTNilZFRWDWzpN9maXSPajpGU4dwkTIPFekCVDpTuNfaLGcRqI0m0ewasYmgrqRJYpS7V++XMiAx1GhvPlm+L4xshC/IWcyPpzzaLrBBvvGiDJQzD0MqeqUZLqSWKQ0U9xrW8t7M3YE6u6Y2uK+VEJjlEHJTFStvxjOcuRwx6wM9ZopprzJSSzoxGGsTRVNrYagnMogw6CGkM++RVgZONEsCQpHdYYguSEETodgwAaf0Co3xlUpVYqfb4EDoxoPUOaA+fWMvTIWBN1wwR9YOFIxM9RzcSltWjrejmI9yclzvLzD0YIgHgRme+pIrs0mfC94Ctu+/gNz/ipMOAkFN4mevF7HpquWSKE9AM2WkL74aymv4UE07vs/t9XH8YqpRlCs6wPG2Qp5UVLCg+krFcGmZA8NU7zXJ6l0d5Q/lr1WgX8FcwcztVyN+D7nw93xZiz9r4noJ33sxyZug29p7PClPWUpHVyvsM5f7gGkbhpzsSNHzPIM5pi6e1nMQ4nJIy5C5LmM1I6xYgnKLl+kcpm2RypSVFjbeg5sYVW6kp4VoBFxdo5I3USLfzgkG7IAOiaqhneyYxtwgqkGUR0C2WFAJk+fBMJVWgaxJEMb3fYpJqLZDYrhsMEIHatFntEILv+fCAVZIPmErrFSv/ALmOrJekNd+jxkVp09HAE7AFiZ7Pt97Uy2TOppjHN+vSdWv6AHhC7T0tGbWJqSomRgcbgvK2NHgssgKlgHwggct7kO4LOGoAr5+dtQVDbAKrGsBAZvD7sS43/M8uh6/k4Vi0AVznu57HQk4jCcTFYCMN3rTaFyzpEJITQFnk0AmexdaKSTIahVW6BB4RL6dbgyMpp1O7gCFa5OTX8esjNpRT4clZ6GR9HNX2PwxVtzVoIkTva/tsbeX6KnYzy6IhZJmawd2T7N9bVgUiElzcocevG5263YfAfGJiaVMznMHxBzKf3APP5Urq47ZdaAidlf2yTV1E7MjPsLLretyy0ZqV7T1nP7K9B2YgOEHfRXSm+KePexPcxtHAsFC2sPx0Em1bAaSodV2CY8OA/j37Ux0wc32yn/N5cdacARlDpp4H5m/kwYVXqu5QZMJ09Ywj35htKvxFqjleGjCIdfN+6stusHl7K2+4N1lQagdXvaazggjho7FU9ZWkzJa6U8Qnx6D4bw7GWLu2bdEP0QUFOOUpeR2Kf27k9cuV4o7Rh96UZ6FQ3Go5pxe8MCMFTSiRhEhCjrmQT7nHB0td+AibnxO/lwHB3FNs0MwimLk3gl9sAVnxRhCGq4RkMWtvgJTA60sKez11zJuLY4lmJCwKA54Eg2M9Y9N8ThG0iS0VK1RWwI2AScRxKrMhTf4ASu4Kqx16iCUoA+scAy2LccOeuDoK69mXayoHIamxaaOi0qu4MXJbsLQh+C12Pq9cUbMYukPJ/+ueRwSMNQ5OfIpdxAdEmauOYJFTeBWm2wOPi77Qe1/xq0xdhsmeIP2W4+t+FYzQLRKgsBplMGD8G9C3BbHRvD4buBJ5f3n9q3fJX4Nycppae4Wuy2KseYggfhheBK6Qne4A7j8qxH8t+FigxO+RXROvO+UERAJVqqTap+U54D6v+MhDRVxAGIbI/L4hpB6SDhnbW9nczZnr9XJ+uGDUsozh1i8mmZPcZgB4d5R4qkESfMPr4NR7PUEJ0jRcQhO25908M2A4+DNnW7CYMbCBCRgEOhJAlxpSIihIOnc+EdQqs8UDdC0XjUnI73rchLyqi4t/vzJTfHa5JWqKtYw5eH6jF6EdJBCKIMYeVH/CkWvtcJPB9uADioL/BmnGabi7HqBQrc6ZaY9kt+9argCYAAiogEwPo+7GjINfjq6zC3Xuq1mpQgSgiBdTJMNlSZ/NtMuLHtxQWVchp0LWCIhgdKq74XcA5fig91yTVC8LQScovnduqB6LX0dxAUSJsXUnGgnpjyjuuwhCL3rx+cUqozzaNXISs/EbFhqIlj7Ryy1quWxq6dPVIq24yzhRk7ITWkNj9weXQSYKCzgyM/80jh42CICT17QX1WHkK3742uQdrACntsG20o6oMtJsNf1Ij82Himdw3RSHhq/ahmsHP3C0GTHQhSzTB0vMOCy84Nn85+yEdB89lbaDcWimwr9q9vWJWaL7TJCgUvFTE9t3c0L6flNNpiaT9L4KGzcwm5E3wtU21dPVxXDOSOyKADCISXn10IXpNK6H7WTLIEDdfAlwc6//v2i4tpI7X8gn/0lzkz7bFrT7xppiMJVMhTktN5pxJ+sIybPPa+pWVhROVMyo1MHWprkri9vVYq25R4fUMvuJbCNQdE14igUKB5M0znjgOBuI96PJl/j+44SwHuc8H0Vdch235NPns1Q64cHJ71QRwcBGWTc7RLB9tUk9FqMPZPuTJvB9tTiF1gCPDw71kU68W/+wcer7Lpnwfa/bTjicUywxsyv0q5ecLfLikZEnDUTQQrKbLokmISgTl71RWS285EndiA5SVeXN7w0xI/P5cdO9RQDcKc8Noc7Q9UqH7PhWu51MkSvIiDlhcNF90Nuy9Km5lwHlRbXxYKwwxM1XUDN/T9vGFOUzW1cC2UW+vLMvM/5abrbzgwNxyGQrL2UU/kYdiaZAu6DjsKfDGDkMwkHxQkfHFozurZ/jK5qn3eKXFthE2T99tVDz4AtUARVAKSQnEvYBP6K2juc0YXFtWwAfRfq7zQPhWyON3Z2dlY3T26ccuai9tqvLq6sijQ50ynLMkvyG+Z0yXnZ79Potq9HAutJmIYBAnWcM6jBzjAr2AeP9GGH0vzR1T/CF2dz6C5Z6u28rqZT4SDPj6sofr6y1fK0Pqm1FSvNh0SpCblm8VeA/pFb6w/zOmDPKkx+sy9CE2ObTUYx+wZ6BypRUFgpfOCKeqZ1zEyTu2vuClRQOxrixe4RYN7MnX+Itv1TfHFDv65zxvxzFilgQfAZbgkq/lu0zmekuiIAsvW+kuDVHHMaAkKrx3BSsVN1qKi27vuAPUC/dw27pvZoQqufTK4r9LteS3TpRjtcXyRADDHI/fmAWIpQKEpFDiyFZQU99FgOlUI/OtOWW2ZVPmTGadjzjQFmRdWUhnOJOGolk/Ldt3h5d4Pl/c7ksRrG44q5rJIP51ATBs2/oFXsGonlCqiiE/PoVHgcga39Q5iY+wGs+Ky6bU9vjWHUqI5VVKFguofJt4GXqgeKvgbEZ9zSq9u6Hwwz3/kFfYL4SwoLeMeuBre5w+TcA+EhFH64oKlMi8w4sJMWzQS92HFFMJgPn8j+7q9NsIiO3df2/d3++n+T2qS2vbDzqYESQpalKf/fdCyiNeEyP2takUv1ClVS/zcM3rxZ8EGueVtcqN+payt7IKQO0+q5ntxZoirEkm4m6QZSHmVPbkMu+dKPdhF7yDCBo9wQ7DoZ1e1MCTMRtNlG+oRygohmC0AaFOcCualGLuFgsFBqlt/RkmMS/ukAQ9I6s1zwUIx17PKISRmi4onQWhtq3zyA4tMlJLYqJ8azyQrzOLw2YhKlXbEmgkhPIHbYUXC0bs7D333+K4lK5smek9/+EHcLWxa6IWCje7bAKH6/RuAyO1mGki8mC2yytBMW4kYkzWjpiZx5F2TiS+15D0Kn/UKsWgD8pUQ6gW4G4XCfzzVADSpXiKnfUBsrZnXlSFpaH03mH98/DX1VmokxMmWCqxRrDdb+1QbVAtGMQ+qfXaxXV+tqizCuly4dEqEwHaGTv+K38sGyZsJIp0/t72XCc+TChN/2QUL2mqSMRmVFylrX8gBHnPgRWGG0XLhY78KsUmHUUvUlg38FtiilRtepKk0oJyru1nCxots9LQrJu8DMwKHjNLN+zMK2dn+ZbZekY+b1ESXf4R1la8awldY5OzM7U8phezHMOnE2Gf9hD4GOUDYW3iXQ1IRMcCUqGVqTn3hERdUMFLSHRieST3sOBmeUvto8IJrHzzj/b22RMvBR9M6NAztCXg8GXAkVcvNFCYS+gsWnEpYusEnn2xFQYax5kZHBpwNh1WtZXQ3A+AtTPy5QFynZyon+nKIZKKcpsCCv/GjVf1DpwOxLey2Y6lrM4yCzVdQBInkm3jy3N8LgSLi+IYRCgUqe/s4JT8gp0Sp3q0ZboE0Wg5Xz6YJ5sw86CNV0eVaB4XxOTlPX4ZO0N+2PqQ3dv1cpQ45sxZ2x80UWqtGgu8zX7aHT53sGVp6ShpzufudYGpRypQbPwQ7offnD1X+Aa2VlxBs2KdvYubl59dj0pu36sM+kBP6wt08JV0RfM3z9nwzzXV+4KUcr4gv13AQ1d8HFsuvDvWU1FqzwElw+tER7QjUUS+AqAwf77k0jdPvviOsm7lCRmTLFeoh+0Bx2xhy7LVWr+RMEAgu0NMeA6Tmtoxke1jUsf5FEDisO/a7BPtdY/3Y7Fm5QPQtJmI0aR6wPoHdNBGWeIvHtF1cUGxxBjrsA8tPAvvDzRePVgkujc2vnuTr1kbE0JPYx9N42Nxh5aw6XcHaj9pG02cgpkfE1JCNCnYPKE+2kR5NDYwFB07mBa+flRt+iS4J/J4exC4zBOA1x/VyVe72TZbHtNOZcAKFEGyEdX6pLw202/vQ/dHD/tnA4NC7Mkj2DAnLH2qyvY8EdgEu77DoTW9NnllUuG0cEZDOfXqaamF5kDVO++Z9PCMPWoTSDDxYvzpEfPhzjFtc4t4PFvM1uRQLTc1iPE7SxULXCYMbeLH9who1I1aozZd4EjtxAd3OrtidQgdS7yxo3gn3Tnlix7EAso3I3+2j61izWOr6SF20+b8qbG15pCNcxnQK6WcKAR9YdTe8ZdF1cNbh3XFAwd+pjfKEtYaolMe0CRisLQIM2fsSPg+sHy9JAkm/JnsRt0oM6rUhivqpPZjZAKG/Z+BXiYpaum/UbM7WN/E9cNNOv2Ci7MzNKuGejf+OOrQq3aqprDRkrMQRcC5rrIF6g9xKd6856/2cSLeTgecYRVeXDIdl+Y/CcaX3fQAu407HZFmPgUFsIIck0tokQ741hGER2abUcRGdgkiuUyNBfZV+Z5k3jqFSf7YML76B+47x8Spgvg3Br6xng2/2Wn7FOcrtf1qOoOXt6qvIepp41t2kEXW6pVTBv9obL5TaGSRBlA2Q24qGJbk+bpyC1cK66IL1TEsOGdnfVG0H6uELcDi+CBG4sfckOLbdPIbhP4YwiG4zHVqusxYd+YB9h+d+pcyHc5SD7ebot7aTiep2wNzs78qV99apvEHa7fNC3s/wAzoWGRmiY84RpbiJkXMCYex8A790fWXlG5FWhLX+B7QpH9eEur4NEZY+Wqw8cKM6h/GqKvL+TAywkkvgcuoxe7TFvpjdnrqVWKLDszQvm8tn/++j48/cLnZ/m8QM5L0OJDBRfzPIM2vPCD5KNVptuvMYVwXkTYAs9hIOJV7rJPMFJI5oU+WY4Adru93CCiOQWfV3EZdQDHLaveIx65/psEMZioIhfFjC53vQuHtGnmbmCexJK6MY5vl/66EtMl2wI1JKzeU8dsIiLszlr3ETv3+89eu3l36EGicgZUmCtsvxN3TFCcv5ru9ZhtfWg3jgyYYVEmj5BXB0z+z6CN8m5Ve272BCCejjrOBam+pgwGTLBdB+z3RBF9+ECfCS0af/GIk3kHvpY2BNi0zAHNV2NLIfKcISZyeMAQFFqWyBTH6P0MgDss1qi2q4dfBBJPgl1MeyEA5TpgkYkBugvJKxQrUONG2fzrillAOjcHFM0rpZ5BgFEfrU1071BSYgOUxtYvuz2tLcwCrraOvmP5jpKJtP0fayhkU0aAyXG5oOobv1wI+sdrXcvk5AW+2v2dkhym/iu8lhE+jsdRtiz3yWcQYpcit9AsSL6jzlY+ZsTElpnR9PerNHSx1iW9NQsatrDxsWfB3EQ3o5FVOrd4ncNmHQkBJZCB6bSTNG0lQe2mQ3w7Nnck5wAeeUt1Ydi+uufXlyexnKUo0C4/ZFzCQBSKng4SIScJe4P2q12i7zjqrhk0PTWgWJciogDPf0OoOWuNp4+E8tJrQ6PeJhPFxS33XHpAqbJBU/p5deLd5LgQVoPxpOowWmEHdEjR3dyJNpalQIhGkIl1R1z08GpzONKOpJf1GKEE5RCNXICCmJH32eY7x08UWu+ggguOEpvE2KqSU1xFyPGUPA58P0OzsTZnARmnlkQZO4GTvFZHhy+pXtifeOVD33kPcR7DHHdBRaMgiRzoIKLJCeMkl8o+kD21q6nj5gK5BMuQUDnmXPinQ2PgqHiVb6xSO3Ty30RaHysguiyYUqkMT1kEO1UQPfWdbOfLxv84HyoZQLBjrD+KcLFTlEg2UrEp2WflmI7Ly15mrZi9jmwWCXfdMKugA6eFzSwP/iFlAfvD0K42Jvmbn9fptnRg98eD30SBMArd1eayl6najGvVyRUXRvYnN3poqgpU+L+1+ldvaDCmJatSXGP+bytz4uTv2FSQ/75JUtjgZticfn3+YbnoLFwdQ1JyFNRryeab0i9l28qjrncCKU47Mfl/9s/XLHx2FKUwAaa7ZtaKmogcgPajzGEZXO4t72zSKnXRN6v1ku1kBJdRfmRKtA2ox2Q19b66F0ehjeS6mbzm4GirkXHggQAIO6PNge3HLxxPGxJaW4SK7KeXK06xPfagNy89e5uaWuHRPRb+X7avEyAGOA6ZQW0/MocQyy2WyCADgT/FzEOSw68lLne0dEQ03N6stTEW2MTszWe5mKlvRnG/w6UN93o63XkB+Wg6b+QxTR+7LssdGWpd60L+dQGxyI7cmVwdPNI32xDV8tZCTUMWRqPvhbeHaFxluL3c+Gd7RjmpxGPzAsELR5A8jqFqzxf4Me4V4MApm+aBGayRhvjIUMQ6zqarSBpMybz93h0MCMX10fa7t5Uxs9jfqh1LlHdy1d+wmHB/0Fp7XJnaKM6Gmt8KTY8fe30/5+kx05W+XDRj6SHLksM/OdM5lcs7F6QHgUl58l80/O8EsC/MkAtcy5ezXuEmrEPDWtmHMq709iyWwYhblexOpU41T2XZCM5L91G43nvhfmTO8H8RUVYtnrZpzf9ByeB7+MG/gwU0mE8TSg1ukdf20fQ17zAqEEmaVX0Yt3l41pXzOoXvqBYUgJrVvdhqBiDwNdoijqv3KWRr6o4tTaacAGMXiZeUSiUL5pFxq00b+sriWNHAcNUqaQPBwGdhOypAq2bQWkLxoaRD9Vx69MqtLhFa4YBvGE5x+3Nqnwy1++2gLqHuZ+6iZSKk0fwbIUqQeixxg5MxOZiQI4gc+XN4l5rnkZr7Rk22IYTw/Qk0dBf8+RCWv11mFZ4aOgK2UCcllmdh1slzIuKl+8GWZ04PPJg1+2Xg5EdWDCJD90mzZf9V6cXWYGMlxGuHatdsZPHHbUORuUy7bejeWZwXoG9rc/vsQxltqr27xeZq/8DhGRCs9lwWtG1+tnXh5CfyR0OV+Tc9EIRBP9xUE8DTmHTdIPmIWSFWEQBn0a6OFPyz7OD6Bc0xhWItfggH1bIg1SnoozJ7CNrf8gurBJbgBWdeOIjkV92xM8kOrWmWrHA7Xn/Zt1jM7mB+l+gwc9lzp4OvGepFJk80bzI8S52HStbrv+6rKeNWHR2IXoNDjFwlQeuwepNuid0izxAyckC9wcqCDrVyzDoZTh10OU5REugz86LdLlHQSSXMVZSW4j+uQyEKPIhh/on/2ilJBfzabR74D4zGgCcxpoRCeQfMz4tXdsCzUmjmnIzDm30jTf3wPVSPYtFZHb4miir/4KEGfQ6tSng+rVYr4zBbOeLWVD/MwCWb0UTBtoh9vGvwkz8fbQN3ZYgA8sRkFTM/IsjA0SvtX7WHNtyTibm5b5ZNHJ/mqgfO1bi/BA/IoeAZSAfgLpsam1qaww7qf5Oq6kyGsi8C06mq+7vcOedTqNyHmAkJySGlzYMpzX9XrZbd62QewnRAc8mKe+7h+X9rvNmc3YpsrHyQE9D8MOaxCcXcsK6A+/FF3PRXyPz+G4ESjBISxTrFdz1+kFVyMpLJjPiZazG+sytEZIZk3A8O2YvO2epxQc5EAf+Z4IRHq2pFBSTcVSlGkk5/lwrVbj4UTdgzOnmveIihRxwOh8/xzuah/QV4ntzkYPRMqDirtobO05UeofJEepm4eomrkkkL1+JXsPkdvzv6L5yHgf5v6d6tmoirBsyS7SjK9ZZdz8ddwFKjkc110zD26MTC92anr2BknESsbEgv/g0RkbDBjzzvJQTccM695QYUa9/vi0ZlM+WalR95bwJDSzYWafnBCOcT/PeyI+Kmkx9KO+mLF22wm/UxnewXEF+cq+x2P98MLWEjJH5xwxK6bhVCg+o245vvaY3Eq3SrKfezJ9yA5qlQ8xzQ8BRLGHqhxDXN1tDEpJcqHZoYoV+Egevs/ZLbwstIUQEkawcY5/3zUNsOQfqgeNFKiOg4la5QZZODQVCC1zVVg+dCvPkGHojeKD4DhfXB15rUE63w1OfVNVPhTcy0Z7bDJWyHsZT+m/0/wgA6KQdM9ODX9orPjvoBcvY5E+0NkAR0OZSdNbM8BHa9rAmpu+IfMR2LjWawv5img+0Y7435481Bhch23ykYcdNscotxFpDHDSHOnk0KqBZIeu5usjM5bR2AeIw2HWYe18iWs6pRAle7W3zCflHpoc5GucuMLQtxapxozDxnlXyWcTpGAgsVwSHIrl/kN7xTH2B0sUtT7tDm1psrn9NgdyRd2cNVCbOypLby6i+Vklw4o7uA6PmfgOGiDtxT3f8ACHOGNb+FMC63hegOW4k/DvJtork8PDp6Tql2LkAB46JhbmshIIsbJbrHJtiiyfVL0KWZsI5bJKixSMY7KhdnLQweH1P1n1otCZJPzpZk6Z1o9aZ/U3WUSqPzyq9407AeqR1VmRnPsUMdnJYsgstlGDEFX48RGKQE3G8KNETXd8z/QvjrQEB9cdHE5f9fHhd1DUGzjkyy1krdaW2sqz2nngb5Vh8YRUWnFN+pc4Vbrsz2SiFqymIjXxiH6IrOY09EFE7LHFxwzorbmQNlvdeuWRdwu040vGnCwyT1pAUtxZ/Xb6OZIgEgi0Rakdd4eEcOg8zr4OUtVqkw9ENQ5ZF8s8aNHr+A0Oa+RViKqRc031SwZ3N4Hdssf88NnNktd0w28v9Mg18Op6X9c/orypvjrtpnbM9NJrOL0Pg8C5FFpDxQ6CHZ3Xq8JiaPQ0c7SEwbSjX+g2sh95O2MtsWYLAEVQrzdlo150LZsphtb60ig7RWv6qyDmpsfjFgQJ8ze+3eDCtyLkM+n/+16PumoePAOuBlhdR560Eioz5raeUC7HfAy5sHlLSqMaNLyRw+V2LomchdPQNos+myrQv5adO5P4Mm38QUhXR9q2PJeL0ViHaZ3KnBks4wlEbWTibqBFz2yWTjZnmC+fFMyVYEBKtGF+Fgx/2y+0kkgN0r3OQQAeygGivH9ceLwA02t51PycNZ3IZVa9PC8xrR2EEbPtYdgAyoBhSAPoyeT/Pul7PLY/Ofn0YwwK4GaX7e14QtJlQM6sE6PX5pI9IcMmfnKK3j0tJJV3dTUBNQawnPHbQ5sTqW8+ajCzYP5KYEaMychC6w031hysQL5SAPf6wgHGePRUfQVQ/mzVP7D8CmIlp/Cr4ui9/m+9UdXkLbTDuPm90CdFp9hi6vNYv1xyesVN/FdKQeK3fxas8+pWWOn4ec7ZAi+dPsff8KOZVCrz7J3BJkDD/e1j6r0eldkWsWRV7bYPeAXVIaaz9JNGeArUSdg8yfj4W6S3tWgeZIPv78PLzmTpLBskYg6g5dOCT6ySNBl+VJ9gZW1Di9Ri9veVejDR1NvstDdgX9ebYPx0CqZXoYR+adN3JrxbIUp1IxDPe4fnP6FkjHcQlOyiljZtUxl0DoAYzKYbanJ2bnaLZSiaAgSgFoPAZzfLdkUk1hmIK11msOUzPZV2qmMM0D79mhJsCMdHXgIZ5MOqCIQwWh1aNmQ5wcloHIKonR8mNqVh3D++foOiyHmylCoOA9FNqUKWlRhDeCPbjJJKUuwe8gXIucEyTvWO2e/oxBgLEaMoINQHJhYAM1rclHts1M7htFVaCE3PjXVlHiJ8jxP6eT49WpfwZGhFEtFirDwhQH1vuqAFOJaBXcfXSiNsmy45v1m1ghHACmOW8PylfrjOmyCJuvf+3sU3FsylXe8Zh/J0Vsu3D/x3g9dYdiHGPpPyNYuaSRe3T0uJTlXwg+4Ee1vNHeazKUGt3ntoWAdJMeqBTHE7NUCemwBGLK3vOmzeM/e6LKl/AUJgnfipo9qBEgCNA3QYezioNaLDSf67A6X07uc7bx9hjyVVUQAvitjqvNeU3yZTGrk1OK5yf5tj7GO46WwfV423N1QFgSlBfagFUYuIudhqMXKD0s4XiaHLtYnoJv1LXe8NisvJbUWsE59D2d2byPr2pApZfV4aEBWSF1HkuK3AbomdI5RGzQHt6zMvmYLvaoKIXK6VVWBC4HHpHnmjRfwTf1cs5POirloHfT2SevQiOFWDzRjbyvq2JnLEen8D7x3ZBpPp6vkpzjLYdrKKtbodnLZuZwOC+EA79sZ9q/usIlr78H26Cpo6y0aEHVxPtHRstCdDxE6Emk6CwYlja8zsENdiOUBI8s8VccPopbnIPlwiaQEh/sYXsFqOxCexkMujgAb/Ap1F/1S70eEM/+SSfYWMSC8XTpWI27x7e9tTa181K1GDHgbDY38jSDpFNchX6nicJflJYUrIit6WvvNRdZjNtKUZHn49R9DqY1MoED34oD6KXbabfCdoIRJn9nn6fuby5BeHZFPJsM2/R9fUq2PXZxxFSq5H1mUoN93mxS8C/DstdWPUzMoA6ODLZ2DKnkGRLNIk5oQFx7ok16IH3RbPdK896su/zmERGWgxb7zBCZfvnQ/WEkxYC+/GTcU60mCowXMoHVorBgJt4PYFq7O2KmkiqLWnJSAv5vR+7MGzB4qf+eeD4u5cDKTmEdouJl8sKRlj9V9PSNmbT32/aD7R5mtAy2bPp/G/hjGvgTz+P6jVjF+5XYcPj7VoevY8oXyM/y5ZDtPBwL3tiSqauzV8nXkoF5WVWDSAZ/ArmK7wJM1bC8PbiNl8PhMyApc7jhj/EY7/etpU38Jw/18B0OYGzUceihWxLAr+vdEJTIlK805wp23/a4gAQ4N6gRbqeHK/ogqcGE5DomGZzlaPxtahgPZZh2NSrh1gFON/j3RaMzin3wLAGVk+d/n2cKJ6PdzhWwpMzWN+X3pl2lO0mWm/CBfyQ9o28eteZI1+ve28dkWmEE6i+1Sl1GypJVf5MffKuxe/TkqRKAavjtTCdjxc/sUjUGaaD3ZI1MWkElpQBNLLgcsaZHlrvC4mJozo6WT81X6QnzcVfY9PvOoSjbkwQpAwjawYJ/lxM3aAvT00JOY9UYAz0pzvuiy9A1VNY+iRnHme5Utr4mf0v+yMC1H46714iD26JOaS8nZzDUdBeZYoN+sF9ebDnJ/PhyWnNqvmAOXeijG/RHHuS4xfdRgdN34YW2JSt4TDn55tUhLHfMpnAYJ2zgg+h+3TLPdJmKHHwsEtsOApCaKVKnUsso1DykLcaLkU7JakZus50/wgwxHpXEqhX4Tmmm07CmkoGVDxECC3P5g6FF+PmtzOd3uUSWemmjwOyAmpuwgWs1Yacj1yw1zLyALLt0VSN+RFQ/EMGFhtEZ84E3stj67LNS8j3o1razymS39OSzknML9liTgOmGd5XNV5QG2rlFr/V5m92JFHQv6jT3ICjyW1/+xgkNK+4zZH6ncIuSEhjqb4OU8fbD1gYUrNoYcAsyLw7R2eHOAUiJl9aenf7A6+/R2+I4dKNTrcZGvwn386BJ53eqevtBq6uaHgB5jdu5jh49N/wOy+BP8kyC866EZ2Y/wz7xONVVTjwHGVYMJpnMRN5AM3MRUpTiemJRKhUsP3jwbjxKjOkTv03VeisZbLCaqRnsUH3QrLjE/g2uHsbNmoLkS/27ej0rhYbzqFjn1jKWJwz+e4AkuPY6nsXhErNZkwgpbqIo+yCcyHWXTqckiR0csuG+FoWj/OMbOC4ffSHE7T6ljULnkIv5yZuuIaP2FzII46zTWLvBN0sp+XVtkxqoIXuLBAv3x9VfyWHsgqvpGBJgpcl2+fEUYqn07UVaPFREIn5ZVr6c2bK0v7Q1IfL8AyxNn7fl+g2ZpwaA3iInzi2NX3jH7xx9G2e5AOMz13m/ln6JeE2bO6FtDcldqsT52eGE8R+1RDi1y2NsJqZ93iAZACyqsYF+HPMoFy5hDs+VsVGBZCQnm4XqKPbLHK9xoanNcxObB1D+FieeCw5NYZrWcNyQPEY7l/pa9xwJNUjqM+JRTDFpJloKc+DqjHDN+0M1EOznqaSSYu/y6AVv0ECk3HkN6L3ETtVsgzrdv8rJtSYukttPQqwV3QeZ0TJA95gFXQWVOAhSSK1MOnHNaXtG4V+FKdsdJTVDbeIO0dvGcuFHQUt/ZJFYHgY8IZO4oLYnRduXP9JrmlZD2iB+bR1cMTgBltMKyQ+cFJwdlfjZE6fX+GhoN2DVUH9azYAKWrQfLstxWnsyWdWiH5IkvrNcQs7mWLAfIgJ6g0nqP6rSxuRwwJz/3EOZm6E9/NgoGkALCxt55fcVtJ8SR6H9YyOndIBOPoc9hHipH0+U4q5ZRk/ciqtLPJHFGCTtpG/ekcYWbJynQaZX/MtzhFJPl903FxyIq86rIj/4IPIecPYmtcm5pkWZK8UsD67RbZtj0Z+89gHLbxl/Zg8lKnZ8inXogRbCu3Ta6u2Zj9aqfWEAKTgruYd+fYqD2gIOBoL/rZYkHCehAezoZ9kAUjbZPQc3wiWK4chCuXoqqTGN8nA+r5Wre9UgVVDZjK+HxUzFOWslY4A79tsQ+yLquzaFoCyN2Lx68mCG8ob3TeBqu8w/Ba1L6kU2rcMh89zYp8dwOjkYERJSyuo6/hp9SkoVy4p5Ms34DGRqmVJs17W0z2GIoKotOzlEhOAhNFtJDSZGO8bzyo5OqY4/U6lrvSZ1Boi/qKCNU3NM8MjFG7Kmf6RmM5oW8aOTjOgnDmzU2n+b7LKXz1Jqb/EybGTfh1ck54AOFNhMx/Xl12Z3pXHdOJfcahbaMDkXGJNSEBQ2XqVC7QyiPIvYfkIjkH+KgfjO/HR1JxpOtDb6oQ05J/B63J8QyYo4awbs8MsQQYUj+ImbXiSKrfcQKBUdGm0azYl2UdxiUJFro4NPsPOs2iTfMTiGVjmkC/UEVTSrdn6axVKv2Yqi/apGNYgjfw1O8PWdTpB/Rjp/OYORambekd0mUHm9G9Ao5rn/u2ECupeIhl8RHXDW1s5h1/3htRrvSpgP+RjHPihJBRa1OB0Z0LOX8QozsAIAhBtIz73r5AkIC60HRH2EzfesMKr1fH9QGRQQZSnPc4hSbgEcP6Nyo/qHjcRcf0+AqeP9eTFgMtPjItJcIPoQpVzqNOXme9pQy9SQsfDRsNTMB6X8LdYd61QqoRe4d3fQmySFbBChVpPj0Aj7WP9I5Ump4wYXEXSZ0oiX4U3skIpyh4i0KtZn3KdRcv6GL6LxVtDsy3KDMZta/fVFQpLa9sBnFgQNoRzgbHBQjviEV9Z3QdkFr2CDxAsb1abfDdgtykjt05lfC9v03qim4knl/j4LlAJWgWlCj17kM8GwUiNKDF81mHwvdHgbCQJJchT2LaWlddH3GRyPVsOPmm32yMmSQbDMGCHn3yInaH1qUiDk+tMbnGerFagI2a0Yv/Z40XAkcqnjhYo6LmfHAq5EbGIrGSfaRmP+u0L9+68zculZw5z7/0Qxn9F2F9A9e63sUDwijModP0FCET0lasHGkBkni9+MXbH4dXhz3NbvF1AIwYMm3zF+Ym9APXiH2cjb7R1pM3+diSA8ivn7Z99Pa9zDS/JD0lYtzvZp4zW1oAT7rr2iCuxkdsE2B6GJ6AdtS8HrB8gqYqNmWmdwIaRLXFZ4v0PUE0F8bCqungVq4gvuT/WuApLKoPNYg2p3PPZmHzPBZLRv7iNvG8/hMPeI31UQi852CLkWx65PJFIKrvbX/+sbx5hX7UmcxzHu1nqENHN9zh9vqExnZNpPSuUGbS7V+4f2Fy686goEiXTjkmU6BdLVXcsPI4XWaQCdeudWcVbXf8v12XKwpiyRs82R4yHJmuvoXp0J08fhOIXRXVQnHpC04FZb9Y7lU5KZeiHObc9tM0M1jvg0VkeoufFVkTEpcbHjv5Uik2S80ovNHvolFKuy9w+zA8qB0ur4mWI/IDs9vJt3ly3oMqNqCOpF/fVxObHvnTspsAjlbu5bJDRly3gp5vNjup1ZCRcdQqGdiVTru/UGhWtqOpwV9fX2AiZkHjjNoJ4YNl27mxhICUck7LCg9Nzuz+3g33OtsHe5EuNWPwNIJDehV9GjKvl8NUxnyrchfa1fd/P+z3Oe9btiXnVV7QQYln/vDdAGw/Owixxm3bRhmsUZc35x92S7Xq+q/tbPFKcp8TsHVeGCmJo75X+vQWUwYr3xo7wR0CdbwJZN7btn+zJH4TDMg5YTWbl5B4Z/u+LXRhOI8yHe9h5mST2Vy2ERfj+0nFBgP6ejy/FMWiSXydwXT/OGCgJt0dbvZmPMALPoJ2wEjf2av7FgLG1cOyjnYMym6qNt5y8oKYdkGS6LVS0IiX/V1An8Yd07qzokb/4Ti7t9cfIx3pMP3BTabhjk0+aOEBr8R2CWJnuC0BVvgd6K2VgMh8maEj+d37tl4stY8SfGGTXBa3dSsKdMLe77MSozZJwv+CGfuZAdBFK78r+e3/kc/R4jTbP5o8bM1JgrJUXq4n21sFT8KwbHehxtwKyKQPaCBpgZ2SJTAgBaV1yYnnOakgr7TpDvscMLaiZ4oeFQf90WYmUx57rQDaDCQ81DgVCAgQLqfrHbtFt3qd6ckk8uSKVQJtjLdV6hHNAo8b9ax9yKbApPxn7+CJste3mUPYVZqsUYgCVZbtSAxaZxMYltSD/X9w1z1BBoNusB0uXvBZvVAWBhhnuRdXgZuGgbcjSq2CdYlQWErwDnNMgQa1rX2ZOxQTjMtaOM3x1ijJ7P8eCJBjuVId1VE969sGm6DQYRcGCJ+QW6bBMc0P1QnoIa98P0+OhWhUcKBJfnV3RKkdI3oEuEmNabW8eYgqqWnhUMI684x2QG8aC49hHKEXRp+P7iIgVXcpRhEs5TX9zD0uXKCXjptTruOl9u+vPdJRFQNBjFHxgfEF+vuWoel9pdGuCqBFBRg+Wk8JgsOe9rPQjCQ7axMLQq/fcBC8lJFmNJKCZFGkP2KTu6928Fmcy8vH9Gkyj+knS1yLugIfleRAHoT38EwkTuBSxWJVpiZmRLZNsJ8CFioIgvlxApYPhgc/Qr9BjiwxNP/qB2HWwo25Fq9JyNfGPSDqwk6aWhOCUopHs55941mdXxRm5W8AF3jyAtlRYWa7YLQSe6RD5woqDmOq/k6QeV5maWU6Bha8/eRSHy5yPd9D8PQYL1/bBUP+L04z43+58+LM0+tIsgAM1EPKWaMTfOiBr+i1ZkqZqCr6ppQks76wPNQuO7xlWelX0LRuWF9QYBD/YswDSuHUEVSSb66P32CDyEx5DZHnPPn5+4+MaT7Dqd6lTj3iNvrklsXvEyHmT8cCA5I4sf92zKYnZp0toaswqut8XgD6MmiQy4vOuu4F60cLFpmsVxHCzcvuIa/h+bK6+6CNABhpH7PpxF2MYmRHNUp5CitcsbyCVrKbyPEzei7AYvvt5jV7WR67+DKSSQEnr8Zxj9PHzhfvrR5MZj3XwpZ3qtaEl7A9utLyiVuroS/yFwS98uvPpGv/YB4q9lY+v+KgTMTkfTPEUGpsqhKMLnNvV3WS3NVhMaci8hDuBv17WbT5FALJX1TKJooUYuc7c9jVk0t9+8/7tVU/7n7wqOje6vUs/ymFM5A0m7oX/yGGaaDlX9qPGsiKhF7YR5UWfkCVMOS91RkZu2V1cCrMP8wemXshWSuXe9wPZe0PHWTz5FD70sUHRnwgYz8D1RecBYM/jihFndClw5Ycb92Ax/XH2jveWBvXHs6vH+BYQ5znFo8l+TaUGHgC5Mjsk+T4uOvQxw1XTBcfJxa6Lpy4bA0zHH8O4P4Cyin+jXAF+9xtL/fbRDhOCJaGjM33kFIwKS4r648T9u4qaTTUMPBqNcrSf2FHu26EugfEiUFKEkQXO7YvbWXUDv4735wBq+1Sb3vqqI3jAB7dm9odfw9JYyiSGdFcJzye9qpBu8i3vCO9QLtMLdn9h8Wl1tW6YjcD16Lk0KteFUP5H7Chd/VlY0zH5hNeDAz7AMaCgp0SRmZt410IJT1/32Ek7mCVTEcv8hKORdm8ttVRh1Z2DAgFSmEchHwZPzw8nyeNkB7zONzkt2Mz1+wUvc16XdGQlcbZfPAs1TOCvqb68VnG3r45k8bpNT4JT66mipB7W/e1TE6D6xfN+mS2XvugMRwj9SeHe+OFnOogjE9c+MaGQCzPzmTsuvJbmJT6Bd6KQtVFEp9k+j8o35KPYgSXJDNB4l65buGTeb15D/5J+6dXDeOxzReb5yEKk6mqDdZNUQx75NoBcdh2RFGHk+velreH0L0TTXQShmmpFMIFd6ymIRs5p5+vdk//dAwajbZ1cCOtjneQvqHv8UVBUtnKWNy1UmqbxxCVcECRGQ8WdQfksR3kMSESy2Nu16RoaE0VTr2cMQHJ0+UuJ/9MkfajhdgNQjhroQyMHZ4crjZR2Tj0THkS+F+vPGflxa0irl657CucsqY/jsRIFDPrVIdN6ZIojiImx4bCk4sGQKQcQUDQNDp/SPltRiUAr4uAXRrvyrP9yunZO1GAks6GtJB+afoiPGb51YRPYsWXz4dT/z3qhUC12vgQ5C+QmKCg/EJsMUXestXd6rrFjrFD87fgFpl/h1NJu6oPtU/C6WATr3rjzMJxAMjhWHUYGs+xzAvxsR9xMAvykIje9HqrjNqM1pYGm7uLdpUR5/r9oRVNn6QYM/tqX6xgDzD5TUDU9S4PSmFZwvuqYhfdWY02uG/GT0PY9AxhWZidOggq93N7hlVi6nlm7IjUjOd2+tq5YQXBEfdHSG7n5+ZzpIIqSSWK4v9VR0CmfG7YjnUiaUU8187DZDoYc7rXTYikjY1GS9QMEPhYRq+eLSL8A8DkE0wVe+Gao7b/VJGQyIIwu7Guy2q18jCxB94UGYBCAHzPnuKX9bJ2bx5s4pblgVcPHbJHKfxQqyMnnIy8MJ/bor1yd+oa55QwU56flyS+7HluEOuSQHRT+jGshCQc6MWkIuhrF5/N2evSigzOUKnCq/bvV69VX3dGFX6YgZzQjL8eL93j4ogHsW00HsIoHX0N8rE7+Ra7BdIr4SisnXph7BGYwnSveR1RSf9dH/fNnvMD3soFRT6apNEEG1jia2abT9c6+mOAEumb1IEknQEBCQviMKiV9V+F+2HRe9SCwrkMMAFPeftRlsdzliFtEovvVmok47t4MjrW9cRwHgNfj9Qni1LerlGRyYPW2j6IPn7EWMMwa/v1QlV/i8162sQ4+vAJ53AhApNY8VEXGXec5q9NOYz0HbfVnRwwOX/ce1KIPf7zdY8Xx5bKXKUa1gK8o7vxsG1+yV4KuEAXuUo4OsUeY5Fcv6iTHavCNXjwAhM0OufIj7iCfRrlnwUgceZM754FxVY771Zvu7iqKE+uZvn8xOvrrgEDMoUf23urZVEZoZqDja/9D+MnvOl+gMfWDwnV33Vu0P4z+IChIAa2UK8Zyj8JBQSGfbn7VmlQBWesKjoKdUgjR3RMlvQ0L4tjH0qkwlQFjtUs2hRUGAF6tPYdh6sLG7gq64Trl05+FEN0cqaZIHQnccJL/e/L/W4+lQ0M8/RHgkhs8XlvWeMkDKbnSAMOgA6xq57Xe3QlkTFXa1qa3lMKOJO/wfDo3yfUM98+z9vaZ3AMZ/4rAdD387Lu6NLz68iuAHBs4+huBdpp012yO2TEEW5mEcShUXp+fTxCfo/zUZQeTzLQcqE/ntWOwl5Wx2mjXgIOEi/bJf7UiGkTyKBzbvpYxPlGvdMnZSfoXRo2bgETVAh2XSl4aQyjoIlilSlenvXxV4L19egRiUBL4o6JxzP/AGQTBTQVjQkGRYlBmxy/eZSjXrvtyQAwBDlvfPVl5PlE1tGT87RqwCKsqiMkAzeoxyJgfshhnxxjV95NiTMl/V8QuUX6IlvqxjWHN+q9Pdf8+hv5pZxEXd+f5ZFMBKQuzPMRPrWWas2Uvbd2/ZJ0x/7M5nZo1Rul+51ew/nKzKl00Y8g5rqM3TYwFzAia1e6Si4dxadLzmKFLLEKE/S182pjCfP4Q50o1wEYHrUBlwdvDmqbOeRk7Ps3zc+sZs5xu20IlqXwR/y+YyzSJrm276/Hk0FSHucPVDuVtW12QIl90mudQrCnb41qZKJJU/16xxqJEAKpDuLLzoAVRqrMLTuq5ou2bVMikbSad/yGC63Py+UlAJi9wmOjWqkWK/djjWPwUr+qRB93wYrYgosDUEtFgy/KyredFoF06otKw7aRGXP3iiqwjFERDAaPnIodWdUXqKKprHugy0EPfy2TDSIb8Llj5IQ18biyrvmEXaPAn4g9QK+k77QsRJGfaKwjf1wNP14khHCGuqzJYnJooWU8i0ro2GLLxXgn0P+JtHwOxStJUqVspMH43ddL+13KjPSV9tMkvl4I2fhHahfhRji7vEAsZpoJgnGveCPnJNeodqvBEJ4hDpg1G8vGUDaylHqEA2zpOLjihYFgOhVeJeNfjJYXwif7FqSlqUdWvhCb0r6nqFt8wZzQjUS+2OznJRz7gttfSTOlivaNu9RNCPgLI/jS9oYuC6Kt0sfXGBFYs5Ci113f2NVmqhntXBRyO1hr22dhUI0iLKaTS8qMdaJKekUgyFNnN8758/zsDP+X7UqM0gugKMlKWbqjfhb1d9tihc2wnjsxfWVDjz2/i90YRIQHujzvM1UEBOf44NS3A4yHZkeNu/9Wox3BQR23fXtjEf6EDuWwOFedDWQFYMCU9c99ced74gauxbcllSWdW4iZI5QpZ+n5RDO3HpUOHRylk7Mr4+CFyasi1vNspQQ3q4vkXJhppBC9i4ec0xHhqo+YMA0rXtYUMJXG7KVfAoESu7J6tdfyrLkoZuEaAF7rde0GgRb+0DFPJcS6dmcw516NJ2Kzmw922vPBLaX4w+kMe6MwI2G4bTm9PHGiGETj9F3oiceGFVMhP4xEPCy0wRglAJMR6W75bVyK44DgKtSqtjX/hUon53naED0WnTQ6epdkGqU4O6BflARTPO0MTglGE3Pmm/NSbA6b3u78ChglLK0B3xpYTPcE2OEDUuJgbwDcGBFifXgRlMRsPwUINa5tjZTwngt1RDnOj+NJl/upkB8ato5hjtF7qxYfPfgwwnIzccC6uPPtf8HQ82I0wPELiVucmh0FMlsAamyKSsKAaRwzJOG707VEGIN1A9p6hGG1ufkrPvJcX9d6zR/vdSMMr2E10pCp44BJotGmP5zALcOdWwvNXr3mkdG1ExmBEtJvq19YxWsSPjanSrHcEnceKuOUlJq85tmhNy9V6RppZqapJkiHliJwBQjj/nU5sV33zKUqQiTmrBcoKpigxohgPJRqHN+hc/dBLg9OPVtXnmxNZuvbtnM/GStDxadZvZj0rfUtF7SjBPqLmWNSUPhVTu9mBphGo62OKI/nRJf1qLjIsq90OrDKTQOFfc69aqArUcJuwaRG6ujOTtyp+8NpVy7niB7bG6nV0IDQsz4N9ufMnxCjiP1juORrdGCNRRSGuyJdbnGXaK/KVDrtqknwrwtwwrZ8ulchoNPSODYwJHXjhVhY3yw+JqjA5ATT/I2+id+CI36IkMt6bvaItSIU37EzHMtOGt3Cxe+IjEjsfBRJezd4pvz3qLmi+t48jSL5h8BNmOgROozZhIAd1/JIx/V8l0HdwutciAofJOdXk+ESp3sWuD+A8WaMw2r2LTHtUNoQwJxoUEJ6Xnc/BpypaNbe1n0SmDluzyPA2dGBa8VLpkXxywC73LGy5qwRBWzHdKYPBuh2o4OPzn7PDdskJAhLY0BA7Ytln7hg4v9dEbeROWWmIyesUwjPiN7y0Xt49qBuy5FtK/Ma41jof7R4spk3q75FssxupMvoen276zIFYqgOc/HAZnHeeNiazDX3osVi1ChkV6jeWbmvbFiYGCB4AaivvldvhqCRKLwD1NLNrp4TES3ChpfRA/O48Yg701JSEd3mEhb8EIiuY49OoyTe+hV5KZrdLbAJfH0WG5hiNSitMSIJDaDoW4FXa3hpujTu7gFulwnkgH+6kKX195JY7dcHObfX0o1mq59wVdf7S65/B0asq3K36mHx6QcKYe4sJ/Pfy4OTNZFvTxH8PRkRWDxjGIAJxzv1CXMvq4rwrG/MW54DLJr/MCne04HUKSj565JpXJnFrmH1jIHRcXp5713QkrJoFuH+pIiu8cqc+a0anllCBz8FtgIG9EtKW6ryhIMqBS980TUNJbAbymT1yTkOOuThaIoNN1sHgzPpBG/oBctv7UYH4mzfEAtCMaGLV9PnRjR4FW2xYp6+fIpJrU5WQmnexAsdYdTEmeh++xUowUooIF5b4eEFkKElTo9JRe8rfp9ySUHbFoPK9xnsVeC8AoR2fgKL7qd7j+D1hrRW2tGLql0luzRLsrfqyjpXEpQD1bPl8QXaQyGLTgooZ1fDGNYm+YoO5cwJZd3nkXsTV5dYzZqN05WhWeOCeND3WlsG5mhU7doYonv3unRfMktJiDPX41RbP4gc8gGr4ykOqFAmoVdOF+kiXwm79BWuhkequhi0e9fza9rAPQ83VbVl5UkycJoxxRsqhR9gVGJIGzaYtI9//GF/bVLU6+YTEGBTRGNz4SQUbybTl85Q79HqDnco5enVyNj3eQPjzdQMpRxNzAdPfcrEGI0P4Wmtjhh/8oF5bkadqa0rWAmHvtQiY/d8Q+zcvKSQnqHF/vf+/Ui+V6If5Erj7BrYOY7gMCLDweHx+5KlbilztXancHJ9w+cVhiE8fGuS5CzF/Jw0du4U7+6CLJTza0X0kODNlyso+XYu4EQ/L1KUaVaKSnAAq5vmWPAru05VBPYj2/KSZH8jRIjKS+JkeLzPGqK1HdvTsV/Axm8JJidKq6b3GfdE/f8SnKO7wl8hXemeM6yFUHu0PeODzqOIpF8EOyvJPNXJqur0vYBEjeVl94CUM6gzmjZOcGTvf4xGefYktSjfECP+gXugDjxzWRYZRKRREWa+iI3ApaPQMlQEgPnwBBFZ9SeHJ4LuTcZcHgFtfsyXaYOcBCfsxi00OruwaJ69R0xHoRM07r6kh8i+hxfmRhUK7HFBNoA+S1T1JWzw1Xvx7Vyx//Pt1mMJnBWT8oQUDbsUjmMjveAVpboB9X0qdM54gGR/Msj2BOlfuiBrTSexEKap/Rfd/CwfncQJzbsW5u7Z8gmlXNoFBFpxrp5alL8v3SUymqbWxWzMnEw7EOW0DeD0IF7h5sAEUEXi5xG7BMr3vBCIX6mhU58b/G2GOYlWL/9ovBaTytUA7UGfEUOZklbp6ytv3nfG81FBJiRmDBJKGSZ4XbQgj2QXXFuRXkHyWrYCp7qGHQyCkrA7BEvfEcRfhwMeo1qPT7kZnHtymG1ua5MvmV3byc48A/+E3paDhBds/2DhUlhvogegoLtZZ8zCJWuZCbuoSFs1QQu/DR0WQMJJD2ufw1eFMHqQcvR5REIgiouS/9YK3rehrFURUj6WiRcTxF23Nvif02sVT5Wu9B1D99YwzWIJDafUstEMe6LLacT81w3sGyp2j/MRQYJGKELyXphEy2TPOI6ZrZaTUi+Ib1MaLtx3rAxYMn4HieOw9w8X85HeYuMLwOWVgMBGZN/heWJ5JcS+IE1O4372r0wjFc7/KFfHU+qzYO9PAu9MesJdZj2yRke9tcb3+StoyCkWJI++MecOi75ZkszA3HwjgnwGix9tVlmWj48y3zYKtYphdIS+XkhITnQEUiM4BAtub7Ch2g9B3/f92ROf8zQmIWcyjjJqa4LFcJOmkjKEHrn69IlfxVQWEj+pnl+03f2nxAxCvEAvbOMrmo/MrKPdjQp0/iFdp/g3ikd1YTdR9pZwjmUBxvxAFTwzRpobc7LctceNacIlyJhouA/XGuyka5BLLduB8//0/tladqK7KOB8X3Hdf9l2uMIn/qw4TZYLPsaOA1nihQV+V9zMW8GXy6RgR9S6cSLTQ8Y0omyJweeKoAf9M+oGhR/oyvGc+FuGd016Yx0yhxCnqhQp70b07CG1x5MXsgTWg3MM1Y5NWtEzixQkddmodifxpMkUMsp4UPWc/Nu2Uq+X0j+GhvVtYmyGNzmUyiPPMyu+oAEwGQMQyNScLTQCkr3/dEWDIR0czUEjIL+bzoAXI2Xf3jNwDbQInPw2tjIj6tuMqnt3sqckUpLCOqtKu4ERhlNtNzfCWTMC0hzRRFAziC56/Qv7jW4ezti4h/QWTXFxaTWkyrxBHaB5DGsyhn3JzPIM7TRLjwwYs1xueZh3WeKoR1V8KKR0nUPEKrVq4GCGUAP6Mso8QBVO94OhARc3JUcL0r/uIfVIKXsWodqLCUdUqQlY5dj5h1UJGje3c+ieEP0sEiMWbwXE4HzE8yz9/RS0zZIEq2eO91NwlzyGVUbv4EvOe9WwXuwHLLtEiQhsB5R6t9Q5no0vWimFtJa6NGFyC59SP8MGKlDGBZlnchp+zVNsv+BHHCEpoH0udkMr15CUdLwq+bDmVHNJkiNgqQ2akQe9pAUaf5QyCPcuduTF+90GQW0eO2WXlEETfJ5PdQjE5dL+1mxWluRXufWwx2vkHhc2ti1dyTV3/G7xw7ccSQtYASavpk9dMInrazD4EbVYm7NVlelud1PfEUTXKewwO4T2vH7dIn8OvQHVWoRrPA2W2sYv4tf/jb89u0HlKvBKQtnwIMX8aIj9PhHCBRB3uI6iPphLpsAjsAbCgtu31cr1uECCRTj3PMjgq751DzXw/bwLbP8IkoQi7DJ6yIq5mu52bIGZpv9FSjdWzMo/A0grr3GZB0ATABR24VJpvIyXK3t4I5BW9Ne5GQ/6q3ODakZU/N5sQew8MwKfMcH8I8I4BQnzLHXCyzvMju8cZV8h6QNw6hO4zY6SUjQ/k0WbRXFfFIkXRIYg6YXdsJOZlW6nlkKeou+AgxNIPvNtkHvBAhK9EMdF0v9/Mnlm8rWQ2RAqIqnfcQELiMTABHOOu19sfujKMS+S/Dtsvb8jzOlokQGbbd1+JMUZhQ7GKh0uJ5UJjppl8c/8u/R2EaL7/VqSXRU2v7FQgzF4kxk7v+f7olceZipWAq51PxFLFzvIwEH86t/+f/MAzUSCLMJx0g7/b6wWjltCy/IAmR0E1bUH+a62vY13tgBW6uGpsxwraV2jc03WGIQLsZYDqZPTyox03J/kiBTWAw4kl+pybW/jDn1OSGvQ4UM1FaSW1cL3z3H7/v8qu8yYlTaoUyNbMmTz5SqdzxI96Oj2HacRRDmAUdvuJCWe5qzA5XlrEI2yf4/p5kwhHL3mHMeO8boZJgS7QaTPOTPrzzRN1eIdjdYVqO2cHiFDM0vud2I1000eH92QzZ03f4Vbs959m3gwcSOlht/efh1xZtnoV65drZpuefcPHe3mKdtlPDGzIzCOLqmuoY5USdmNa5LKWMzwaiBuQEIXFp2HrXTypcqQdFnhBKlJA6/1V22FUX5K1X3A3C0msnLJvcfxXwosojU8UHvWda/bCLIreBQvRpOulLz65T89h/fqTe+DmyYjGVv6znDTr95w91Du1CKNuDcbfWKRNEoB4MYcYOHqH1Hndz+7o8me4URm+Peuq+gZdx67K6BQ7ZT/KbVLnsbjx2TsmzNXgEYmlffLez/iQwk4g9oqBTuYfY0dy7TepXVQ0l/Yh09Nf57qaqXTy2UTOOMzJZXAX6r3dN8kEis0po9QEcK4qGc5ArMuAhRNK0FubnxgGrL68SP4KchtfTWauIsyK5l6D6yqXG8Wc16l4CsZJTYysD+Dk/z7ykqLvctcRK43IFz4oUqC6QsCpB1PphrOAjRlVpyIa0oMxBx6cvRA+NIY1f2uKcqiUNMYqcal2uXaCIIPfWyqqrUMS1KOmq/Sqc5BReObE6zXpWkU7aiiGq1IOHPyPOGKNzq1qxZO5CaeXEwwkO5CxHXNri2A+oG7bQYbCUSjU1U11Q9fNEZGtb8r3HAmOpyJ1KZTRb766ui+ELyBacNAJ3zk2t7E+1vT09VvycHCKyUKvXEL8XdLfct0c53fltsNtrnLIdjZndg1Qr9dSQ4/UVMY1sDbWOp0Fy1QtrqY05rvJnbRf5R4yMwdp5DejDs9ZHR6xJybD6hO3BqS5HblenmKxg4sEuAWr5v7dcZie7KBziNlMdiavGZ/U/X/PeENV0NqnaNH0yekLmb3CH+EF0hi1Pj+DUMhzxNIPkGKLS4cyy8DqtvqqwwwpQAnZtN/Lz5lHggbh2B49LOFVR1yHZFaJ2/2petoin3qR8SnwYWnFkbhaBtGbE6Djd9PneymJ2FwOXFLfa3gQlPQ+N7YFbUQ9EDzrIhPJQq6Jf9X+HWgfRPOo3mv3GzJFJxEmmojvkjx2pS1FULdUMb9XySxrItJ1BUoDg56lBFKm9+uB/X7k4mCOrGwOzve56z2HtzngiF5igpj5zIh0pG9d8BUKQUE6owDEPeE2G+4qDnKK80Z/mDkmYtEIvUxU1TJj61sS2gYXAyHLPkc05xDlvV1ELaooI18Q6dI5hM2JRCSHzdbCq9XEdpPh/fMDJ4kWimDfSvVl6cuWMlD+eI3dOWplF+vh4eNGcSO4S9M10PB1TeDiSCFr1PhE504dX9v3rplGs6pItMAfneVXV8Ei/SmmxmQ8YQpQhHUOw2CjZhD6ppEP4Ep/f6BOzd7kG0kzk0E+BWR61QvzAT1BrC3MmAtgNarLvlwznTIwFcQAA2pvalEq6zTxIH1xKfxo66izyK47DwhHWtJ4dGtlmKWPB6sc60PEnAP9snsUaNfQUTu67+29t7KhjtM7feGkGH5BYSfra1eRnDvKWtOo1bl+6TwxyGrTPEhY29LSTzn/3CNWZeWHczCo53ZQXoNYmrDKMrO1gMmiuk/6ugYEG1pgib2KrE2x9lSJ752nMI3ObApCURceF76NXz7y2hvpYMNQKIK0Zlton8UTbIf4724inGY8t+QNKTIQde3T6VfMfkKZ0J5GaIW1bebTrteIg33CvyWAtYXU5fM5kX0g4ecGawNs77iNhEPiFhKGGFg6JWcqaEPDzHVAL3v5vqa1vJK2csxFuWZ0kchvO0YoZfjRZeFhE/RnZsHsuNJdTCiWTmpQ44o/6nRTiUhPfclqrL120fddyt1vUKf1yhVwYHqxrdcEJY1JesuHQeCxSpuoqiNi/Ssl+GyMH4GAG9TX+F/WPNmUHWGPYkO/NjaK+mfDmBD5aRm60XZ2ntq9MNYDCbfQS/cUOh5pyFFIQ/equ7BWEZisOvSrYiM4CHUOzQ+JafWQQd2WbkhROXVP9TLjQOjC3fKFWWJc2HoOiJpK8EdUHdaoDfs5IElAwNe7UdzokoVx4w76HQ+CmsRgywvRRWwvGL1FW7P2rziNQ90Usgwqy77YU1glRkUAH1bukXT7KeeXOGusAhcLCrBPLucGdJ4b/hIpbJK7iK9SEAqX66w6YNOq8HhcJ89HrHU7yhEmlFNuEd2DhWhqIxKIfRXpHKPT0yoRroMPc1wYLNIvpCz5vO2LmxmFA5ZVqfiTdWn9YMuFBIZpDyaE28Ysa9xLQi9VOEjg2bV+ESp91W8pmXl5WNObI1KoU06dLr6PNWgn+srXmfIXeHPRGmfHWZz5YWin9cph0AvHCieCPCI9LO60TshK9WtPVZyzWyHoXZDriQ57o/bdiB9KX3xv7SLkms+ggZVV79b0biD1VuC7/4ag4ELN6wrlWMLg3Ldz16I2MC9uVyu8Z8jTXj57RP3noeqRxiHVxICQN1PS1c05HyAQvsWu3kZa/Ub2GTMUV7ATYdeoD+uhN/iEcOhhrTDHP56k2bsY+j2gRuKoM/ZTSdQZELbX0jqtRyagp7p8nSag12L6f5SyfQalv4P+p2bkQt037k30AalnWveKfKR1fS7kKcYik0GIw43kAFxCuyzNXJUrobKHPCJ6shXWRW19FPgx2RWna+5Cy+a5yBNqlIEpmwQJs/VQub9tf27SAXmDsH9QNz8WRy61CVnFCmdA4jd06x+nuTYBK+n2SnKivVVdDj3JHSoPqUIWYGq+yv3UUECcC65dIZIavGcs+zPL5MjwGDxLhJlr5lWgMcQpjVx7VgSoFwd5mZ9MitiZ4Fd1TNfAhJzjncHbU8s84ThGQ2btAZXpm0FNe0FSbdvbPrWW+J/C5iFelAdgak5qRjsYqeOkAJWGonrFxHu5sqyMJrJCJejYe/fH+FTgHYsCf07WG8dx29NV63bBU7M/vNvNwQeNawXqU26f4HjErLmogQr5P0B8lBKdtzLu39XGj5Cbd4MFutcHUk6HU6UCjFHtCRsfkLQgX/dBp/FfkWVXmu7AsJKqZ6+l1HuDHetos1qRJ/K9Ye/ijlfFflXdbRyZAS+ZkEW7vBRBJPIay8ofxPNiG3CqJ2C7Nu6Auu7C2b/kQbD8sUoBbfuJ2iogqD0DcNrbGr9o9bpELeMnnVM0Zyp4FFXUJtUSOUCNvVwqfqzwi4Vi1MOAEB+/4doh1OAu06MYDw1KV7ryvjWos1F9h9OGyUdII3SQ45z4sgTDOZD13HRtN8Iuk/7lHtWERJ1+tDrJEXnXBSmAzLTA9zhFOlkEM8Gof0sTWgZ9xxG6DHXW0IEaW0XSLluYb85c2x79bJIlMt2JblQgmGw8Djy5hUb4djW8o/QiXANpnKN2LxkH7u6+SbXStD6s15QnX7oxZBgBjINQOx786sX8RiOrypVh2Kvy2T1ZDhsemEFhCVQWjU2kYUhWEMgIhI00bQKNQaZ1NDKo+c3Q8jLu6UfvkCGm1cHRoVWI2atm8qaWTSrarAbya4gF2OZU5wq2jDIPvN75e1MYJLH6vR/iOu9Ek6RziI4Lu9EdfgFdV5idN/LqYwp825Iz53Q+JOFv9QEB6TKZG6orHP0IRlSqevdkkh9sMKIQfba6u4oIv7k2QxgDCMLJem7zQB3hDLhcIGv77aciGBGHaZPPEQzpg6zv5XTtJDYQcIUrYqLNwL4q5B2qrbiZsoHsgUg0M7bdt+io6/YyNnjYRgA7zvU6VFk6x1U2KlX+DroBkek21GedikEWwdoFGEyZuXACdyp6lLPC11EdvOJT5dE2gL6KjarZhDtrd5q9r1N6vMwayGE3MTc/aYHmdQX9cxSzsbrxSfb9P3V4Irb5P83KHi2UbWHk8NnNdz/a6SAjS35lQtFUOZh5ispWnIHwcyadTNcwCw1yduSAlsHU/AcKIPuxy10f5wYVCSc3d488MEtmI7dvwsM+x562AqS30cJecfR3r67JLqbLtXjGuxFlqrZ6/7234vgDux05h5UPxyeo/J1c+2HkU3gItiNNOjGxuJVhFK9WmTVVSeH/UMN8C3U5P7VK047zUPrlaoNUaTgrtEHvzcwuT0yoSP7mO1saHjlp6nmC5wbJZ6FxVJnpqbw7ktdioO3y3MLw0ZA/b4ZHVQwsfARObM1uBcQh+q5EL7Po5ObZV7HvYAG81H24jtx6ScwT/qiPZsTqczL4Z32s+gfT4n0nl4kGaE+p+QIIsTJF3RS4syzOhXyMkoeULtgcpy0jCVgI9lSFM6EC+4m296aVQaScR7H7/tk0LFEoaF148bt2iFULg3r8pAasxhQ3OcOLNtvd1YWhi5tr2Kq8m9jh4RVLTvYUnfl75Ese93AuIzA79i8vZ4a1CDDNCNg/khCwDQhlIYMlNNSHtTnWz6C/OpeqVxeGBesLTtW+IiRwZwhlC8iKqecf4iVOifjr7UxfM9Cu6Ns5dRuttCc3rFxVNZP+vcNTfxXVlCgW2/YcmEiVQoYqLXfeJYrhWTK6VK7eyj9RVc2TCQbDQNxm83SnsbCGQsUAke5YaqBRyKdxN+Xr+o/CLdyA6nxUF2tAx5FQkMbyiHb7UdFlPNgOqfviFoe4H6ynoVHDryCz0U/r0mLBxfL+CgH4Uj95DWvPtIrflGE9Ei5BCU1y3flmJvlQ6IkcJoYed+CZxSPfzdMmRDPJd9BH5DdDA1hsEhDwnY6X8VbooU5F8LDtFND/XVC0LGpK1LiR4wVxD5MQQhuTj8skD8u1OZdmenBazAqXt0wQ+jsgvL8sYtIhwhkYAmxAR8QMLn6UWUv9tEJVG4V6Z/+7aDqqb9wgqXANG5BkbNacwv0817mmK9au3lhw9Ew7S/ju6k+4MPrW/ThCy5qaDZxp2LsL/eNGR3UhZS3rHLuVB1VdgY/XEMa0plZuFgK0rExl3U+sieE+Tp1kYyDlzXJHR16vG+sLjnnx4QVWzvZr+cZbgYTGGExgNg3dZq2+VbaY7qZ3C0FL/K4jVALQcZzWKp0BEhJGNjtiXlNa4anv2xL0VNMSVALCG4MHCf1wdWBa0QEdv0TGWwRhC5p1+hQppUfURIAYNP9aEnnBshcxaDT4gkZUA2kxFYk8gzxUxHM8QmMeFLcT7Jwij2Niq6ag5bU52i720BHPa7MNy42fpimQw6csTP8CuT6zNh/edjvE4hdmKd7ZUgAsvV4YZpbvWQ1M/BDEqYAcdn8XmJdE6pWYOHu8krtZdI47NvWKUY0RMUpAAaTuCK/1hx1ENHdxGOptlCV1BzL5T7RqqI+11Sl0q2JkQthQBFlpIAyWa0OyMNoB0foJl1xMi/kiPVnwj6q9Q2u+6P9ixxPZFUq4RnWO/ik8AALaqmhNWPqsM1EG5gQnDwDPffqFymkAPQDQOLv934+oXExBA76ptuzZWgWOjxvKEhO7F4d2mPHMVMq4ytDXdFbcn8dNoE+3S4438XJYTMjY7dlARrxDUJU4ROAiVs1nTREfX3/46MP6cEp/RILStexxYJdp+G6Wl7Eai4NGnsQHJ0pOrPWciXgOGsSf9KnOJ0j9fattp721FwXFxpxvSODj6TdckuGJTxIADkcIAW9yCWfaCX6x6uovzWjf/FnIeVq0MSDscp3PO5VZnPIZ8Dt785tMZuj7HJHWJFwAz5hkOfgoOGxt3dcYZQ9skWntzx4qVaLfbaCGWP0hhMaiDGnh+XXWO3iZESmi58eC6gFNV2fiAVCq8f2j2+9Hv8yMyDvEj/U60iGAdWgW0mAwwB/m+N/EG3N9veEFC4OAlHHhhp86TGUSBQMrCByOUDrqEx49WObG+99wdHqsTg2MYvyRFsiG7+MKrwqYh6uNB6sWkFyVGg/D/3n2IN7q/08rTle7yfFS2ffxT/ME7/CiMQkmWaAVe9J/ZhqOrunNkDIrt8QrEEYsjQNm53PmOpCMao2YqbrTLzU6DaNk8lDNcvimruIy+O3FN0T/EhKoik6UX1K4UnBp3p7D79Z5Nb/AKK1o3IpGNNnrCAYAzof1/An8SKEQTHAnESUke6gvxaFKbD6OHlSbM0A3/qDt5oVOrR4gY+QftSeAdb7Pug4AksEd5kewIIy4LQ7rJ54sfLK04nXsKo2nKcH0GurYg2hGI8K4HYVhu6pSHW/LcBPDUY7zPlXifV5htc4uwcx0AQYejtf4JGbSCZqtIgiy2u0JsYbyVHyK/uqiwb1YtmVrqZVQAaevSI/M1EjAFNgrfA4mzhhPtV7B8czKRpJuaxTjRjGbdfNs4NAyU7yOnaua6KXTOyYqkY3ASZXFCi2CxMWU9J4w7t5Jo2l1WwCcpTcZM6g+ijut+9wLfYZjB78kFHjoHVXMBZTNZLry2fZmFNQAurnY3TK83qV49l14j5xBWGgXi3k7bL1p1+Y3g0YKxp05YKqGirV/qiaU62/FNd9yAjdRZFWjV7r2f6ucD4KqgdrbeUHqT2LTAJAFe82x4/EAxhn691DdE7h26cS0KCEQJywNvWXzBnmPN7t2B5nulJcsGX0KbzPXQPZVH2yYS5mbtsXUJBa0ww/vbVUg4Vf0SYMKeZiWjZjy+sifczpPWG+p4JQy/0yvXm6gv3qNdUeeFqtLsaCNNs8PjLR+TJ6U8w0BC5kWh55Y6lfIng4HotVCuxaWWt9xpKT6KrC7Xn6D0LotGA6siE6xQC5L+t7bYAWIdqXNVprJKZcIOV7zP+jzL6JwaJH/wem3ocJF4jL7GdHOB7GNtnN6+CC4orlGJde+Ky16OSrRy4aINNk8NUu39xauIqm39yxV1O1Y8L79fXk6NArNmd5vMzffjttjo7TgtDQcLkjchCa8vMIWqtSPOSEBgYAT42l6noWCozXnDaB1+EY/c9pq4+NoxHVBcYthjXtenl2M2YSiDYmhaAetmd8pJdXD21x8LBt79g4/BycEO9u0WFI/6bjioGn2X6XHVIl0jSqu/qK7CXPjCyt8mK/MdWeXc8q2qRYMuCch3Goua3ww3CPhT0CIAKGMJEwOsHvz1kYnERPyJBS2JzjrVnoJV3ko8o2rvraD336dUqd3mXiXGIzXLyPWR4+SvaasbeQ3TQSSC/MkJwkudpmSxsPrU+Xi5zgUaQ/KF2IxSaU6xs41GJ+2b/Uo2g9kIf8T7ic+aMdjdn/hunLJNPg0vfnYLRcv6k1YQ+984s6XY/3gYj9LFgeQ9G5EYSV+aAhxhdNI2SsJc2pe/j8RY3bvKhLQnHFLFJ+iOr8keEkimEKss8DK4PfKVIbuWIrIXfxmJUYhjUIuIzr/tk2DeekxhU4No/Db5MCZ70pTUKxylPxivLD5Gdd+15DvqosOjwOUk/GfC0uRTLBHEX41tpBsTv6TF6vUWZq/rUhhz+U+z9UI4wYhqYFmZB3txTwXTjqrXSxI48t+XDUSTe6U5+B0sspmL14iXmYU210KEbVuEkNLB+XqEIsBhLTA5ssww7rQMxXeA3n9ROrou9byW7+A/vQJvS2P67SW0Bo3v7PjwtBXCXf5mCi5LdPXiXTpmtLHMLXsupe86UJa9rWPWQx5TWjzPjSJtX+H/MY3CnG3lGYnhulfJWJF7wLNXRrYOjvxfHl9EOjqZ7upoU1gH4GK9gN4Vb4N4O0rDQetSDP4Xj/+gjdTWuoau1Ma/GQzpaqiJmZPnZq9WkTEdDbLb/AtT2Kry0jI0C12SLaZFCOZIgZ1PF2A6+qfzn25FDif4LIhs6Ic5ze7QVAU8dOXN/CbJP06dpTz1UAUdJM3M59Bd1ekRfRgT/w2dVifC8Rf8OaUv39OSBMobyCiDZRZZ2A8W40JPHCddQHmPgcbvdxhaCTHhxKypqlMfydvIDnRTjiu820aqMPjPkpYl5KfJ0SKq+S7UULlKSUvT9l4soXcmsXNWI6v2RRafLEE99BfmI2pkdf87P3Kb8Wmy6Po7VkkQIkCl5/cAkSaQTdndmhQBp21Jr9TQKlBaqfFPgtL85BZsdgrdWF+fIxvUbZzJvbb9ZLDSUhMOtbadqHaLiP10znrVVznHgeIoU7Hq8LFMwH6H2I+9NZM9mbtA8Xpf508qIOFFJArTHbgH7WZ74nYz7kUTRc81Fu6LxtTbylKQMDK0ijnXmrTZgtsL8kgG8u2DkAwzEa7NGDzWSJvWmYliT+3YQ7v1LhQowlDB3BoDOx8HqY+dVa+6KC756+4ST8MlzOUXsIMiBzn0zm4EZ4CW/gZV272EfXkJFVsIT8QU18oAKR9+JdUHG+qKie7cRMm4hVEbuIkW6Jum2c3osuSt03UySrO98JfJ/9PIuVQcm2442EHJK7EOXtzAAxOqn+j3No1iHc0VmOs3QjFDTvtSRkVdNjCRWMJZBKNJKNibxINTJt1nKYJpnm2MIVbEQri7RY3HENgR6yZ5Sc0wqCWnKs9xGqX1nThow7amcgJcGH2yULlPS1hFmwIkfUfuMSQY7F78F9+ArmYHoTbMJCg8op0PMFqovvxMZ8ZEPfg5/hioV86VyAyixg4ZKNmBbaa7fe6XAm+D1gxMLNPR/yFDwBfruwNBXUUiMQ19TgIOlopFEUAedxdIUgLiIAkV7ICuzx2Uu10DOrQJLdc5yPG0otuhuwuXedc2PtwgXO7GPD85tYmuEunezGC6s2jt3Oo5U+Z6Uj5h/sWU2/4dnxfmpMga+KS+bRS5xY35U7G82TqILkZuCxMrr2hMF4KvjTutUVIDb0PDxAWp70BHA0WfjUUhuxeKr8zwSUFk7T9c9tlii9a1KX7WwIzoZMb92ncFmkamlcBxc71XLSF+3v124tEMYrmqF+UkMRWKO/k6Kz4x4dpZCzqZ67/DB509XRiaQTzu1UDwv06hl8ERi2M8sfKLnYQ/Zg27CSE30ZAqxFoXlMnWx7A20aWW0OqiyYXSffSULEvtdYmt0qWl7WJxLvTuvfyxv+5dRYeLG40nbhWgmsJ+Wuki6s1DlvLQXXXwHDheSVCCnosIu159MFXdqCf+UmJCzRGQDDtsi56VsfTKg/6cZ1eCQB/XFzDcEveklPkJISVdFwl5j9YSvZQZnX1ss8xYAYAfhfyXJybWikIHs94molVHBkblBW2OwvdGRTiswck/aj7SioflzPzhGCOw9OzRx1Og4nTpsZCaxSW/O/VDMI6znCB3s7wUnSlW8jJhQxpx7nqPsKR19fUaNAy1rX4WsrFUWimnyfm65I5NHfICeZV3AZ8CDcwFz8ZZFrsolnFVSUdBH8Z+Gj5gkNwDs1yoDRXy1xs/5Rcbkacm+rrVtxYHecOituc1JNvOTy/OxL8oQWhaKBoyUZCwrVTIlRVhQ/ENoEU0gBkDYcVgbZ7xZp99+A2zknz/k5n3K0CtBq5kDxjOcrpNojtJcxs3s0U/GloomSB+4KHATtun4mEeGSFGXe7YWlFwZHfIWirSKZtm229hEh1ULY/HjK9xW/R8Q+dygFonCDsM1vBrjwI4zEQbJfteK9X9IStuLpeWBaeFkCht6pll9ulrjuQFRRs/yaM2t+QRPnarnrkGMb2mMiYdb8SalSIOF9k4gfljYnxZrayemhrHFCF7JCsHalVP+jceE6+GdqSGhKwTwX+Gtj+dGHfqVijA3auXv9akaISI2zqWeXPJ3VdJ7tlqSVMm5bhLF7fkbDkXWXCtFDZNIzV+VAgD1QaZm/6oX3KmhpJKrrCe/A3MfXdJrNuxJjQHwDz50J2Hm+EuQXH7R+z5g1M1Tr4ksoHRj7tSdfxazKxjvzCRCYwgqkzeR0x8XVX6qDhU0mdl3rqD/1S+AoEiXGYk063G8ICXCweEA90G9pWATH6TnISgew2tRXnqsl/rVl7Wz13CusqIttkhxAHV89qCpkJGr66heLnMYVlyeIp+xBrqEfgVQQrq/RKYwMGOyjYjHnQckkoh7W2AserEvHNXuvxH1PFNC0cQOKdYhw3y+h0lyxO62iEcxKoOkP1lduuE87k0GhxW3U7b94FKlUcJCRA4mQdIjL//ALbBiVkujjKJRyT2phJvGjVAYYkOysL9M9AQXDv4GBwMupXt5iOx7KLPjS0ze3PW8Xgl+9UK+RvVzI/4g8jD/69UJSVn3zguxQXU+v7A3vYV8AndAs3vFF9tgbhKfdHfLuZpk0sCFJw4jQ7vh/9S+NfekyIW4XNEtW9tZMUlzGBFq4pfbslb9bbiSe6G9RIGxqENHXa6t2f58MCHVW1fdXSQU/DxS89vTieoZMgkjhIAxyD8xYkv34mvBq/9zO6VZoF/LBtpZ50aURMNfxCV79IjggnDNC0+ZSxG/n3TYN/xO9E6R/frRStdEg8+fSgfCH+UvhEgV8vC557LnAjRGHa1MUhyBlipcpdJi9a1lfUzKuu1XTxZw+OiPt9f4w/K+0nhoOK/Na32f3FtMWkQrlh9c++JJgG73I4xmmVYEbtAdm4/j8NAu9kiM41rfN0slLYux0aSRjvi5bmLuQqYRoFMlypSGaItoCmk3Icn2qyYF/LI4h2cYyPdvXgTQ7rxKiP6csadiptrHDUF896VyOas0JvQNtZbedLP9wfa76FHZOFV2LOO+0foUUK5O04GzKXsMl8Jz5fhtJ7UFfdjgcjpmxrYyqBOSKm8ajX8RLszrIB/lBKO1QY6yvyFPp78aQ64GeEeQSulKZr9AqueVZVYBumGhIOp5473ZubJpVL1hlg+iYZ64Xge3n9jm42nc84cVgf9/QqdMnV4J+wl3SB+OwtuTHILNy+BGtKI+/TxH/4jEDA9q7d6VowA7uuSx/rZqkWbJuqJ4uhwq6CvZVNHunrAZkvuEpgSqwzkJ38xq5bWkkFVHZdyHmGpdYX7TWECsJY2KOaFWmX1/xdY2VXB1grMei98P1U0Tc/KP1hwwBDxPdCqPrn1bVLYX3s6+KV+tEX7EqhweoHF+jscxJ+b1GHTuCkUKfb/R2sOWES6UK0yUPx/hsvYZR7mGh2NLSdwsS3YAQr+p2I51V7yEDSXeshpZaAIq0BenPHsOIsucAP4uWK4WejcW984zFRFhEjAN7XmhjUOhPJlWK/XahZRJcbT98rGuNtfJJ/tZW5aSKeEWCFDy/QczqEenSLshVk4OJ02P+1JyvRBGqCtWkGxu1bzUjx5g4Yek+pZTx8SbCgQpMeSHYkcQRnwZX1PaVdgLrQG7XaSi+H8zyBTvHI6ch2uPBm/Ez0fPOYqbW8gOk5bojNMCL0IYEfjMce0fmdlhb20zIQvUHUn7UYmipsHvOb/626NLkhoDk+wUlzxW4B96prd9MqnWbn9gaxUaU9jym+XGLZVSPhDSFdpSZIbB9/xGCcG4n9iQ13hhVwFdhwtQGBpfw3coFVLaMygB4bnGtu774qSyVrh6JelkhWLyc60BSa3ZHav/aT2yXrEIepAZiLRY5xrWqwZxJPtFEghNABWksm1vfzyNFDZlEsG7YfkYSir9vZLKHl0Bjx8lhLsnj8TlpLbqWy/GWyTCf8IujWktDgbFbsnF5kb92ol+4uKVUchkwsqfEOxMzIGRpjlK8Y7z/9nXN6dOqiN63u+ey7X7U0eXl6qTvkN64ap8kh5bsVAITixkEviCGX3+7X9bY1oTJeH3hUc7DHRzWlogeQhQNrZgmOdm5tSztmJoOkzz/LsWbUPYx6GfQI9jhiDyxNs+ViSgeZ9uRgdKcJx6aLtl4wlWXQzJxYPT/iOiVLRg6fyo0Lo0XR8KUgyDJCGs3FamkC32equDX/6gLivRu99u8ZzVk233dUFMl2xYgbvij+npoV5Wp0cYYvzVeeDijEL/yau/F8KatixmFov5vC+LphEQTjGSzprcxh8C2uPlpw/ybiLxW5toD5lXII0FanVWq0y7XYb5DT+Pw1ceMQd399TF6CCAIqQSCluvj3vhSX/jEhVF3+A6hEtnn0wW2p3wIyOBSordYLikzvE0CtF6gL5an8RfGvmVUl7tj5DRBnEeLXBFcgKekjBAzEPRxOqeohF5JsCloYd7jzp7B5VTsu3hQBqyQVuy6rekuyEDr7bhbnE/PMQNPRWpcoBTIJ3AIfhLFNKGoWWp38QuV1acZ+fTfW3PZJMuITr3qSwnXOoWuM+PWOJuqsv2GF4z3PqCkVGGEVG2r027owQPBP6w/6/fK4VslbxtUUkyMnwAsR5ONzVn8Q8fiJLtXuxiVwgaOqc84xOkEhcaSEV/F8CMvoUIog30DXu5Ec6grQHUqFCRsurWxDoxi9KL4ug7UUHLBivMOIl6fIVbFLZ737Ivn30uYZB811fkM6lpKTYM6tzYBjxx2P88XxNUQiierNEvn0ClUOn+Q8hYC4PKiO98SxNo2XYeEMDZm3XnNExiCgnNQzfL2PUrHE9UVmFnRGILE2oRtmUBvpOqsVKOj8VNLprSLC0A5Hw6OVbAZvAVhu+5HiSpqYmYy8DmWTnKEy3jI7+kqP0/D7UO8xD8TvdwiRebJU1yHTn/3r81si6FsRYo+TCfvsI6IDcsx+JgKixTCXVqe5rplp2C9avAyiJxZTWXKtKIMQcwL3wUdPA0pMz7+qlgcia9AQfwIQLh2fak7sVyov4/hCwrThdemMySTEnFLuYnlZWYDPm41Po4OcNlV9f2kxvdpXv2wz2vsUzIs1+gPIWOMXkMZZJgvUX9TBL2DDyqrPyHdcjOQIDyD1uGu3RTAUUGBNwGb7r6YLa8y7RkZwkAM4Uc7SNWw3mIGhlMEIRwgG986791LsCYQlO8mkltVlWJtmT+w3JrOdWiGccAJETvZwBqrbb5snirGMK0s5aXfP2v59U++MUhmF9qCIuFApdmS9rWS0mqDUTFXxMPjG2/qnXBScFoaNkA6tYINwKFzuEL+/7nvdpPocsi19u8XHb8Lb7rIBj6BLJmzaCgTJGAmMV0WVJn+0uwkYp8aBYc0ff+2vNgKqUMzKM+D0LxuG2FKv84PWNNK2oqQC+9+M7pAElyKRrHa3r3BRK4qINOort813Dx/QG2CFvxYm58um90E7IeR/FlcykCHgWe3b3KamVbpOtWDH2s5MlVOtnTMU/3WqX/RsgTKdO6gSyPr8oGoDkdC+lqPQLRJY4jg9qeQ6aOUj/aMZQg1CDr8OPGnhtxvwmq5E2tBcTT6VQ7uQEgQHf3rdwCNjnzIMq7EzIEpO1vsThq3OXDGDM0c7uSLCtEu8aOW+JxwHOFKOyY31dLFr234TPxoJK+wB3vY4wzO+txNhZYqMI9l5F+wwNvXFLCQiOmkD9czZVCFH+TNEdUr1yRytNkgMRdG6MTm1gPWovwGmrB5Kpz15iXbUAPfvL2Fh7uYZxxTVKIbqBmlsmZXuCAqCpMOULKAY6H1Uf1zFJI8+//UQExxqWRBa/ULsbiXSwgH6oepLyNxllFLMYPfnjgRHk49iVbZ7P8TufWX8ptHO8XDDRwvNmfDZvRQKS9HahZ1Ye1ibFRPYJxarxP8Ggi0U4B7iuyZgov6ViP22gI1+3lquE3vqn47x5HhWzss6FPoL+QUKqYtvZvln9WZV4AgYPff1dbNMhlKn4mkdEegO74sNs9i1KhZAdHzATFTKQzypUowKIpszkNjF99Sgja5bu8xwd1iKJ/iIS6B+bAGtusSCBwaLho7f/jJaDYhFzgpqBRtIhLDOUnIcu0TZZzx7mBING7DD+Ecr8gppO+5IXKVung4+lEw71uxvXxe2JVHdvvMzefOC4+xhy5y3kDlCPADK5s9TWH06kpPv34h3brm01+UGhYtKy7zgbE7vlGA1cje83n8TGdJOtbhuUh4OReyU97udGUw2HqQfcIWh3xir8z3amqnUAfMJzUogKY/ssIUk2pvdcwGZXFWQGfD4J3RW8KwIC893Fv7Tt2pnqPgiQqdm/Qf3sbEHTG3XZaeiaPthEwppVrXqsn77VLZCwx4MX2Kesongcc9v0p4qVWPq+m6x7hVjAOqP+5ybzuAh+tRLv33YsMfwan59pqqiK4TuS1f5AWYU1TAyUHURmmXmpdlSWijKHf6AywXd4nR1f8w/FPavJpRSifoVdLA9fNVIorslf18IR1Yf52Lrdk896OE/IfSteS4jkinOjA82Btqt5QOKiEehq9JsnETARB3EzfjSQWy937lBWXXDIAWuBNP4j/0jyDPDECjBuiJSZeek9zxvYIT3FnMrey/JUI1XddFBEltpH3u5YHTV0TdR7tuxhW2036fEXfVz3k5FqYeFgdCvtHcLqwF7+VkxD4pCVlIWCFXhCYhVtVdyNE4wLHHAKY+G30TmokU+jcD9J09+UJqtYJGjGCkZdPnNOGAhVSkHs72VZpA31S9o20lXxaKlDYllTc+QRvgkQbsVsCPk7zqCpM/iUPMhMprjlAfA1vNwk3IEqOh9qKgedvKRQIIFqrA+wurvdCzFypoVi4EsaFd1k2/1zvFF3WZ3z8RqR2HM1t2EL8dyJ3FKCk9UvEuuMTwdB/7QPkjY9cwajmdVc7gdh1aPAVGpd3iTdn1U4SDta5FRGaNHOdsdCA1Vho21nkCWuYicA7QVly6TR0LNsiJUWoyxx+qkECbYNsAy+LOhzcBOp8Vuq/Zt9J5+nW/sdXAVuS93nvOO4mfOn4yPI4f5nKMC0/0TfTaF285g9UQ1z/B/ei3JNtRf60piNCh17DQQxjjETcr8O/5Fdc2xF/BUFbJlGVFl5aQlWgkLuY/Cl/ONc1rUzy75ygb/xhcJE3QJjQX+bpa2YNtZRbnUVG+iNooQYfXoDwSZcgyWR2L1lKyP7YMf3PvUOW4nT3xiPIOGQwQesdXXH9y0GtvtRhVj7S1EVKCxOW7V9wsOIFN4y5oCp92OFr9GG1PYZz8mur+emvG0aGtmInn/0qH1AvIMhoJ2Kg2pbnd++ycHR5AOhsKQHHXpemOT0XnTaCkiJCUf/sI5U7LpMw+jhC4fv7mpLx5o+n8p8ye0ZYXMidWMgAlu78iG1S+7f2IAAMGGoRsiowPyN4kjkvj53YWHslTdcxz+Q2UyZyNYmpTq57i+9ubneOpP6L1jLUwOFZZ75O0Rz1VelST7dMJpz/R7+8aIqZYnHwsheQUZXFFIpcMZ6LWFOuuw17hhjDnqo3ef7+OYO9vmAvDXRVfKBstssGW55l10FVM02AcSIj6QKTFdxaH+IwrK1notjdbfzaHYJ8WQsnyabmFTYwUnqVL7K+bHDznq6VFGGMo8kc8pc7IE83SIChlA4InmOfZxLIsBbTvedBScsJk0Am0YABLndpbaflY5hp1hNSBPibKIs5D8Vd7NPcAwXjs0v+EoZsViU51zE6IdN4N6k1u+jEfjdqQubq8zX7SiFNS/N9olVXHxatE85dEtRA1XEefbG4hpSh4FiwIy1FF+hWipaXCsd1/eYWkj9whIbGObQdR5qhRlHMsLPM81yyCukPB6wAe8RlxrJqzXtK/7z5MHd1hsxWqeYWvTDxFYu17J3M2WVEOWP7QBMHopi2eSuOHHyKc7FvI8bdp8JWoe1wAp7H1NiEoqaoviAyerAbT/A3fk2wsiJwB306ziKLcFfESunCno3R/N/gDDnJ03W2Psa/7k4etL8PZ8XesA9voAH7lVBVDG/tgpzqPpF8phQPRu2MgKPsrJS8SDZdezJ4+W9Q4ci+hQglKWqJwLz0P3Kku6WhwuqKD4sOEexYb9PRTcEddgUJB8vi2L1lePH0VqVLAPDghy9SHPT0qWowa4frmLbPFW70guKeJRPrVrVnkACDvrxL3o5w+Iapw7k7UEj/VMk3LDrRLyn6jxp1yOZSA+jnp7gJnopbnB+SYa6Qogt5jSU0NNPVJrThehHYHtslrdB5XkJJm+V97uCzAUuCDCtuRO4ewtsZSwTd4RekrtwlfT15iMzVB986vmL0+UjNBrvl0tQsxB4uRKhqRUXPlVPgxqu0CZkuLU5xK5xH/k0zLGbtfXHnJWbax30ytSHUMyP2wcUEoGi3s5CYQla72lvv2TqnrgnQwJpvFbcxBzLIbi3UvywZVbbLxkyHzw8ENGQY/cmJcyDZyzVHUEdp3ghHrMcuA+m+zjKoMQh8d5wY3XfC5Fy34W3mAWU07jbrOfe2rddrL0AxZoJJN8F+gUSDNMsaGY3l9J8Jk7FqrtL3ilkuVSu+p3m1hsr9iDmPiJs4Ni5zX+8d9TmYkiD9OjnTGfWTvE0B+wyzmFQnk9EJ9P38nAFJt4qcUStvwshnKWAuORS7QkdKxL80mWJfsgA3WdA48cCvg+8+IZpOBgqPMpcnEFu+Fz0yyetkhiK9Qhd7GyLRD7duyc2DzPDuoXpz/eQU53mLCJhYEe8dwqyj41IVt6Emnrj/AZGfeSXF2PXpcgYRI/LZiAo/VglfJPWU+hLEAKCZjs5URiQcOuZdpYjzILR+XUhWzS2ltVLDgC7TfEqX1l1XP073suzi9PMvkquKyGK+59m3k27VehVOD/0AxixTkn9PKOpBFQcfA+6Ykb47DnLtYpLgUF17EfxZ/apkXvcFipuU4LOIhaj+3B1Mjs6XhLoRWC9AZMqOzbjrNSWx8eF4x9oSRkKmwRQ7hjaaVWt9sOTZBmq6Ep2Dvi2rHJs/U4N/PYFzUrV4Y+j7puQjX8AbVnCOPWMU4lqxv4nZGVn9oWg3b2u89Rr/cz06FZp/geWjp+HYvtd/SMISn3gHbbi+nVN90dNDXnKlRDTCQZuuI8SOzCLFtxN4MFhO9KBdPXZCq0KJ1w0rmKY/hTfe1pBSZ1+EbRZq2ra/iUT4XByJ+cyqS6wF4QuG6SZY6Uu+ff9cIStT1IzQH80dbctKcjS98nSfk5/iCs7LMF4BuTAOp6XnAOT3Wi6tTjjBf8Fn5k06RWZv3Ali8fPBMgzVtslPXZDGJa1qVct//I0j7UKqW9z4pfiL7VQRsLXPCas02M5d6fNtDN9npo5Hnpx7y4wfcAP8nnmHMCQj4HEdeOKGUk8U051qL0jbMQv8g4CUHCDiHyvupinWLuPWlwSWqxUBRbAPPySz+wp9hMPdbbCrD8Rjna97S4lMLEKoGl0p96fP2B/9Yc1a+Nb3LvV/wifR0TMMafqtUg+8JL/+ca7vZdKxFiexUrgY657Z2spX+KkHPKi15HZU5Uk1brJzafTowG9QQpulZuotNwsjJZkwSjl91jGnE9K+2DZN4GYT7IGPJuXcWAdPZKnWpoEAvJyjY8phcUnb9IOoXhBWbyykSEAsV5NGH0aOFjg9iZ5OBiQd7+R0y3hynEsrm5G/skiX1hWKGAIgMlo8p5Kl0pODe5AS+AcKIpNWm/HoLYpBrnWebJ+j/IOyZFjtyq6P/xa0+4LpxXpEz2JLmXlsdtF6XIMvg25Wts7gMGNKioAxxhz5jylmlxc4lyaL/V19ZNRxoZ5PaRUmGl/ECsyARpnu7pi8vtgKGU5MQn9q0BB8l/QwgAgDRQjT/bY+2kavvCztyPWBmdjR67bcAOH7+DVCn9cZwfYXMN/v1cEsbIvi9OrPtIX5YUo7qmb9AdPHW/4LwdqwutlO6T2GaKlrV3l/4hwkbHLH7tETOFHyg5B0xv/jItglm6P53UnnEEhZNYFJIQ2OMkLNjQQQHSe+SOClqs2b2JveHwTnJo2bC+axkiCpCJuN09Cc2PTCgo4g6tC+2PBDDwh7wYAO/WBvZ4NwtmQc3C0AW1Y5ijW+Q8ZVuOyNE/Ug/CV+13/VlADScXNm48xxzfFA5XzrPQ63CWZ5MHu4bfGAjx2J1086ORxH2zNraNWUiy7m63zWrSqS8Y+ElVSATGLv1EnpWKdN8aANOyWpN2dFgOWtXrSA+hhAa4oFnxOfeZhcixehHvfyMxq9T7oL/Q4FZN7RmgCSY6wNwu4hkuVgz/R179mKtcOObiEDTKx4gYkEkpo6n+Manf12FFEDvqgfZBbnPKNjjQu3Fs8fCLjXcgdVEHHkg1DGIorwo8h3hb28wRm8DTw8IajfkdOCPbjPeSFJ+X2IDtrjmBV0d5C17xp5f/x9kT3eS9SGtMeZoqvfJks5bAfZKCkm1xRglo/tHY6PnK5Y6hpyOXEJWCHpWNQAjgZJN5l3Lz17enHvuRkmVzkGKo7LJX3cURWG0SCh/378xrrcuKJLxZcaREwz7iSIF/44hGs4FETbGMhEWfvL4cAJPWKfGqbHGvblwLz4g6g+XaFNiFZ6ZzXEwOG9EkSwX/RS7Dm7Qg06IbyWMTXg/kQ8HXZQW3z0beewin1BCRr+PJoGxXjKB/36X+5PcXhpODzd1RPDrBRrbCgrF3q9CM8FT3d6ufPm04UZHLJBF42CgmVYINo39PHph+Mm8QB8/aeAryUrwEjf+Sm+vJcYsi7Z59iiwxNj84CmKmrXY6wR6GtzIv/QYvCjp2NtIrphm3MzYUBXrIgE4/ojYILb78jxmd+7M4TU/FFJBqTfUrXOyyRawZX+BxjLlPAbaN9Lr+9rZ0OrGHdugZNMcniICv1EPuw+JtFdsPBT/6s4szkrhlEVM2tojEWALwcH/Ue8He2CX8NYswV3OIuA64COy6TyLF51UME+4H6JVXAUPS8eqJ9x4hNSt4BHQdbPxKp5Vm05zR9iO3ul9sErT+THQeW86V/bttUL1sApfdpbFVIW8gLmbEud25F9Ws9SphMtsPaOioS74VEdQaJApjFj1doYWx9P2tt3AmO3yVzZc4+yKwcxN7GTlWOiUH+lZ9KaWGcoS5tK+ZaFFa1aRJ3PLs0F4kG0lIUwrwCWcW/62xniwj/8JMaWyNW3QACtX49c92b6w01pVaT8yPulit+T/RSEnrH3uYdgeAKXX65KklbuG2XEnV1IkYmw2rRhNRYZcvvufrIr40LTTw2KZFzlkdFvbkAiVDIewkRa2ctGyfZQIQQPaCxaFv4OM3xI7gTRdr73JLXHQHxSdH3cj3PJg9cEAJlfyk5D7ULi/tbJ2z9QZGVoTHVBip+DWT42mh0H7zhosjttQYMY8wLr7o4a5FqgNxjyS2uS8Ewx4QkCcmWSh1QiQysQEs4bWEk8AKS+Fo/2QIGAiNN/nIktrm97+V+CFlUe46sC0sLa2x15qA+6h9HqpKfSTZ0joo/27UK8eiJnruIVCTyAedDPicOzDQvoHs5DYwuYg7c/IPRqVeuVx/nTvdUUHLvGF/GRhjWW9zf3ThiDYW4muuE4jRGF16vTFvwPYkv+NSK0VMN2ul2qfCCoV7/U5mwvOQFewg65u6iVH29F2SmZ9hZp+sIfhNJOvSUJsxhoCWfAfjebzkfM+MSd0R1PT6WMzulnP/sPong7NQ1kw/AS4yd6imQJN8bYTeR+qE7PCMhNLtE7e0nkVbvlD1paP0NlqtRfQz5sRLxd3NEbzGxwW89CoGKJR8kzqaKmtNgtAx1w7kZ1Os4BHB2Y8IWuYdPlF+js6saIrD8ItAmtG6NX21Sy8EKTYt1vdZsvn0nEXUJXKUbnLbWdSG/0BIrEdK04GXn5sfxOOZPPHNhr2iI4NbnmykhwhFqdyH3mYSM7Ma9WWI527Z4/B4bJ+KEsavTLrCNiWQ/UGX/nzcEv8/GflhsAnAj0nHmZusjB6F8M3FlFMAT4vvwtYn2dhaviMENwIFXshwMAASUa7Ss7+w/D1Cu66wmJDL5kUZBP7GyQ1QrEasmScV/+JylJ28tbM1Ee1ups3bitc3fEH/sqa2bJKBEZF6JcdhxODoS718INjeDV15H/jwiBqTbO6OCAQCV81MTl+jpGzu8rs/2JQwavKPtRcgOf7QeCoO73qKpGgkNbYecGdf0WxYPEy1Zq7XNmZ/eX002aXIhgf8y0O+OtCzYow0VP+lj7Lgege5UIVa7PnO0gIqDyOjbdFob2Nh4jmneFtHJ0Ptt0OPelICFyMiJlQP+mO0DZ72UqQhnO7sXoklHXD3CMqyGMMFlS3fp603HV/3Wb8uTO0wJla8mGvFgsO63xXkhJRBSzbrKdXoV1V5DG8AF8nvdtfAwGtnm/2zbDhU8N+c6Uv3SoOyiS1WwS52tWNY8uBFRKCiACE5X1kppZCkbmaOBgP2XaamK3cVnBcIc3iKW+NAWTZNYm56063zGEskGBved1tirkuLmJThH15cbqGBQ/jEUO90FH+9iUXl1wl2trdEf8W6/kHd3Rar+sK9qfHCL1e1B1Mx69uUd1anAaiPvhHZVgONsmmswGBW7ToGGsWoCHUWlIRpGDcT0WY8dr4FHBXrsVVL6JeN+jaLQu1d0e4JVbil4UBSJdPZOnLIySlrdIoKcZyKd5vZD4YvVPJB8i+c4tdKtRZCuDzq9cRAR5KHsZhcXBcYkNaU5FlYaP4A+vp1/VVL3CKsdBKlChjRW6WbIKGE5NRQhh/IoGKLEa7azimBdbENwlVmJrZfa8haLadl+WPLlW/rEpO/L70dANWEJ+ZD0EyQ9T5JFFKo+5+IHg2CvX5vln8+XCE2ZEFO7zgD8k1+8GjufnlS5OQMXKvE/3ijCNzcOSKd5rRQTO/SKghOZeE0Bw+4qgR6BN3yEl0IaS+fXBXe23virD2iw6ky98JBxat52l3xIB8qdS0f55cs6ccWFlhXf+Cu7g07qODUXZxuEKNLgut48l2UH69nCTbX0leyOUdVaeLvyCDpxOwNY7PnpOHMkSOAP70BX/hag+PNgyLyg0PT0hF1ovL9nt+zqA/IMzH+Gxw3Q9ij7bicGoqKUgGN1+lxQoUj0PS6lXrUYlgnyJL7Kbc3J/5O4DJkYp785jTm3+sOn3ivPGPY6kgzkrd9ZWwUoUhX91WAu6f6ky826e62DgNQMidPioUxgWQf0EvlT19bRlXXTO/o+XOXkd21WL/v7h5+U6G3nZccGy2MM1h7T8TlZ5xKS2pISEu13m+d8cMtdk+Km5mA/j1RKJpKkVNJn9WI8vGwPmc7vk3zem66NwL/16q+o2EKUhE2oiZJGhnlISORtyX1lNmjWfTEiXgs5F8A8JEPH7krJEOkP+d9vWhQdArLYY9rvQGe88Li+paNNtCdhOZJfeAJroSo8fuTWCu3FIhtSUQXug0a6Q9bcIGUYvDQuUqBSS6mmzUVAzJy7KWqzHvz/oeqiqN3GGqVM1cZVN+L1R165tUZzPTJJuGCrEoSEU7kIm9CAGQVh2SsA1G6LJYM+Yx6Jlxqy+pBP6Szqx0/3Dzvy+4brumcfpjr9Ov4iQY1hdC6hg+Z8YTk5Lq0zEH8ZXs23t3/uWgBhBJN48NBki0FvlJsT+Z1U1Zdghi84qfwds2db0iSLaNqL1wPbgUm4bLpfuu50n8UgitrlKZgyWMksWbEjq7JG/3AwHwsQ5voNxp3ziIZlB1Zu9JTbyClnOLsewCtTekM1cnvbDY9+8KCEdRG9vcfHnXQMyP9/DmPnDia4Sd6GOzEuxeKsnyNwCmLwXi//xZkNNcxSQUeu+NGTCA3+IeCCTUOWfvUKM47elxXJ3J2FNFszsVd+tWBZS2zzie+Ce7E4uA2v9SUtq4SEhmgNC8q2Iq2HmZywLCpuII5/0cg52fDBa6RNisIQPc6vMqPdN0Qo1hmBwXPawt8Ju1v7Qmku48tY9DbUkVWCB8EVvst+fXL2FQLkcni0wxt7O3p2oMxp9AaA7LB4daDc3U4ZTRYf7YUlrRhNb2EBTbpN3M7Kzu57y3az9A0altsWEkXpQMuEUoGW9cQE+EU3KhrMtzMTxJ3IoOf8QirxqtH5/5UcbTfZBSchLaMNa7x1VJn9ESXflQCmReAJel/gX7rY0YFna5S6EMX5TKcGkeiIyF3/d5AyLVs+9DZ2B3cerN5FyxsZV+DH7TASkxDQch3Q/zM40b2bVVRakYpA40DKzhylfpCeeJsdwVz1p1C+92pDnD8TJmxPkbwFFzZ0IvPP/4Ak12/iTGskNYYX+N1M1v+RowDfuBTXzv8AJM57pSfidVGnIJcLv6t/w/lWOkhn+x4qKDGJqOCDfjGt5Qju4OFTz9b5PFqJZ7mxbO2N88VuxY2jqXnlOEs6Dumc9E8/kMjd/fDoW5G8pqLGz0o7TD5KnIYkfMWmva57S8Mu1Adf6JRPGkGxCf9pBm+MM68IxRx/eYIrMxTAYOuXn1A1B+qFlo3GBn1aNe+AXMKI/VODSwrg6IYikxToPAPlFFJP68MX+NTiHFsmcEjFOVoW8UlZl1wd3wy7TAsHXTspt9Ub021qDxKTTzxxRuFI7cAnY8+/td+66PqpQHXEfiVNsWeIi7lyvdSN+K29exRAksxtw52y4wxRhTzH1pFIuXKHZyeEaOpAb2ToUeKaL+S5gpZRWFLVxmJMRL3bQuDVtteaWolaN+neEvJvEpT9zE82GOw5hUuFio9aqZwGbJ69diPJnNSse8zrpktr6ApSdBddKEOgxxCJitP38JEOmEGOol+UDKI7ZqMXqQbeFkGW4a8BFYnhs0Swn6bSB/ImEHNFcDHYRpY4uh/hOM44noj4UqxKkoBIOyU2UKIutDGM7OX9Yer1YKrnKXOOad36ADmmsHs53NbK3B4jvlJMoCLLilJ+gyVQP56n3tZKj+ByHqvSQm9FSX7I9gySN1V1wcZHaYC6gP08tCTUNfHx/xZGACi9wK5TrJWiUBg3+MJ5upTRo6sJKiQkwS0W2YaZZAzhwqik8QXgZhYdi6c45qloBm+2d4GJdLW+c9akR+e/WhoxNp74jHohvFXMu1Ef2pAZVh1CCdSDjk5f7NdukjmaKSrZj+CvmsvebPPk1gZbLBka5LmqE3XKujWHxjFIJBFxM+oCSgtkuhR5I6y6cmCBf2BhtvEjLcoITtUhVoPAZNwoNTI/7tkh7dyFZ5aobMDg81/vOG64n+NV5PIvK5R/H0lM48axtyFKUDFn/j0IjgK0ohu6mnLmGL9LZ59uNltUrVFXYA+koTwPEn61W1kP/qTv6ATln06HyV1bdr43yBEnBsXyCNLhFw21AYoyWwgjn7KkztNap9n/N021WwKIIqvSE8w98JkoQ2wYEsD19XPjTJ+AA6YdsIIsC7jv2IXl9qxhG0N0iddq0cZhmW+H8Md/iONLX9Ic5BocdVG/+dNvrhAd2W90j6MwE1nehOmvG3Dc/2u43MOQP1Q9KVHLSRzZ8XUFRPyI8fp1vUjyh1fI44T/3fl6daW5zeks5J8T+MbEXBCLOOBgzNTDgufnN6evXFtRaxiteSLA2TftDahooy2U9YoWD87FxtgINfr3aUS/RB8bRNQ+vLedeZbinb/3BO5m59lhRCKdaeEbfisYeh1SoxPT60u1ehYyCKwQrSxkPHMDFvDhzVpJFrzS4c7j4AvPvdw0JzIT21Y0RelUttJmEXC41LUTN+iOdwUCB4W/F6uNeSW4MV+TEc3sb7rYPhscYy16dfT9GTeLOJ5Cad8MkTna3rPPvbHIPIDaGJIhlivWG6QHeRV1yjFfvIU4HCHw0fSe+eJ9MuQQrnrnlAWI8zdqisObhazVTJTf3/265F81R60ZKQOP1cbTkppfGh3pMAC2KyTr6OvseZmAccvEw/ej+kXaFRjRtMRz+aCgOFXU3LJb1b+1MLShjd2z+6cU1s+eHC0KjPP/ybjpHRCKp9DCsvE2uAlNSIjf2wekL8pxxEOObiEOKqOu9dwiNGdMiZP55zh+/QMUrQ28wXLvHGkU9BK8D5Bb7Wvh8nb/4d7hEmfQFxq1r49uuuubDMZd6sLimXlTabm2pBmHuCzQHVfVW0s36Tx13WQ7vaucBAUWDudW48OCjV1jzGP/ikDNBncduDjLmSk0ktlTra1gUK3dyhyXWPcHYDwXvWAktDZ9yrQ71jyKcW6NAzgpA7hK5yVoLC58Qtt9K5tKRuCsYcedeKCLjXUhd+PhWSAcmTYX/I5Npb9drCaLVEqiKygYQ9XhKXn2pqcmrN/ZnzISou7sUzkq5ZeBrKti27bmdpaXy6x8YjnqmYLJ+7g0QoFL1XkbZnjR/1Me0FegvgvuThwmO9Cj3/eHsuNwqzKq2gh9YuCj1RUEQP8lJFda+V5PWhbICxff1yzuGKKDAwKcJvWnMgS95IJDhVAoeXyo7HcSg5JA7VBivmvcEMv/vN9ejdAoazmkqr4Z4yDnZk66zmaUimU1PnQo3mFE4fuhuMgJyG1g6C15MvyL2UyQK8tnHZl5EyHssvXX7hSo1nQfQPW9X1KxtIvsS5SDoRyYuDSMKVuChh9GhMwX2pSaa6t8cyvnEy7VAR9ed4yY5xs2/xJHim2TwOhVA5IUJUcF+HerrSzZut3HQ8XE37hMIzkNO/iim2bqzbiLOSdwdCgEBEhIAcnxwT25T0aWB+khbzPZZChgsynKmMtnAxMjI8M0TS+v47d75esaJQjx0xUWeo0FiguO19QI583vxO9f+C3zMG5xzusFwg04byKAhkmwO5kSJopj0x1HxJvaUvWsNu6nc4/JC6q8MyW7Pq4wRH5EIFHDwwcsEAac3Mu+Pz9HG79fPptOjoH7Umm8kYrESYz6tr81hGvBpR1RWikWL2VJKKS62GMXRLfMLPyZi3fd4qzO21NLd76yPTCQtBNmIzXD+0OHH2SUsEoH4y637ld/E+Ko8nE5Idhp3cQYoILB3POCc6809NqZUy5KmsIZQazgTHMAlHUPx3njp2ijIdtfN7R+lR/y/lR+/r1zbz64aUsF9CE571dvgb4FWYnePFz8TZFv0Tl4sLlH4qze/9/TBNMm6keYCz/lt1wXYNXF4os+8wz8Yn+kX6O7/1I0/BNRdNvNtaGGHGMCs1E7eX77ZUelmbQiuTEmq9iKqquQsGBfvFobWfKtBs0uhyKGUhyC27bmEpmOiPquVNhIsh7qXGKdsDUwQj21ya5P+pdtiKWhtrwpQTJEoRxgV5P7G4ZKKNYuu3lY0pOSCtTir9Y3BFmx7k2bUCekbcdSDc6r8haW2pOAs3D3BfcTdNDnQGFyFU72Jw4M+a5D5qxxHQoZy4P5WYVPcWuohxEdk8dNo5K5huP20sf63uEwXLHyEs2qKv878+nJb5RidTIk2sgjmatxbg8m/jY1ar+lbqf2YdNYArjoh5E+MWDOZCEsOhTcSYZ2IFP1d/bdRMNF6b43ES8IQKgQNcAmeQfAPDJ0hv9l34BoMhq1euQEmh9EGQVym6QA55RUN+e2sF03f5N9w3Efb7mXYsjXES/wq0fJBWGZ9t9dLLJ2dZJ2WW0reKI6fnAr8NYAX2N6Zn1rFMVtDyy0eFp6JO6rQmW930xUDkYZ83z5NpUGe3sLC9gufWOrbrvh+kC6gMmaqkDfvpm2AOhKTMUg9FYjhhNJwl2662sPbZf3lJkF+H5RDs/eV63Ap/q18zCkxZRoVsGBVSUjS42NHOraKuwinwd4A5fBSc4dM0o56l4dEFtdGa4gxtuVjc4NIYbDSeLojfnzvyL7Fwj8J1Sk9XRAlqO22lN12UK18ZBekJFdMTaG4Z7aZN/O8Vti00rPHilJ8/zRjEkDaapA/+jBnbKjZjCR0efllaKtExfZz044/HDCjxchYKEfroVY6vEFBhWNdOAgmjj/ry/yGhowWIGoUGAAERFZuTQ08gbItOn66iCW6BwsPr/YgfcysllKTLMs48gSlFdoq7fTSLsgvGPB7Wg2z+SQ9M2rlNMnxiz9gIXpTQa5RvH74y4UMb13/MWJsSrPtrTm8qkEGQSg/QiEZvWPhL7Elz8/oXanOrnenKwvmuIV2BktdaH5dT4mxN7RzcPB7PxHmWlTnGSdFdK2znOGqn33TBjr13fpfjMGvV4F93VFckK0Y4ODkJhrc7aAbLddotHwGZicRvT8mqmYV5/rRTYLL7iIOQWjO7i3bYYi+NB0FzvgPLy8bQi1XI90TyW0IXpUv/BiEHtsEyXfLXUFfKnmlv6LHvo7U6ta78BuICWrIzv2Vf2xQb3+QyAz/dNiQWj74Q4h/xnz5NaEwfbY0u8PjkE4H4Z2689UNxAfS9SWGm/nZ7EorvPcGkuc8T2SqvXtW3ei6exSVXyvpimiabi9A89Zkf2gm16wYtEQrhRGlCYgUwwuK7wcbbeFANgINGJhqpKleKgLZ+wGLPmiCA2jb37aYFEUtkL03l7HlUOzQ/Kyi5UBNfaiJhjex0L4nT2yT180nkQI5Y8P0Jjx+PgY0UFd0tj+M8dXdKh2j7HVPurqVQRUWTsz2JXVAimJQknbXIVFRtKNpS+aCC2O8QH3CFLrleLsmV8topKa+BfnL1VNErvX0FULbayKNaYKytsUMcqc563sYZ8Qe6cHB7oDj6bQbx+GHga1flp5J/UKW9EJdIWyzySb/t2fYKWEqZikdJmwH/qEaKNA/OhJIgpsLxFJMMLuK+ggfPUqrT79QKMBXy8OaAoMxq5t6vRuy7Aglp1nfYequDlTlov5b0Ly1PqXrEVg26fSqxesFd55slsElCuZx+bg7hREME+AkVAEsyNM2WTbMfdgOLHnOYPAjDgyM+1HH8Ba4gZxCabiZ/Sh0ealvr/JXdzIYisQFO+wDiFT1DPIfM5llIH8pkSM96qCY96NWUjfFgdSNj6ftxTWDFgtetfMIXD6W+ZVfhXwZAMy/lB0xpDpvg2i8UyiICv/kp43/UkhcHklNbPXcrPj7XkIcVy7Te380Ox1eQ00xZi4Mh2HhfwZ7sVxbZJ+q88o8K0Y6/T07398OSf2vHwRB9o8Xiv7qDsVq1MXxwHToMVCQfXv2sHsIKK8cMi7BgfhGJetyBynX73Y4Zou+AWufrhMUBtEJ5vzebMwLOp9ydpdENkN7ENiH4kP1Hd5kioo0GxAaFXW+OKAUwiF6AZ15eljynmSfh2DLtoTUpDg60inE0AL3L661BjeyAMAGQ3VnGrd3RLwB2lq9yOrvdOJ3a3cDBcQzp3OLn5Ij1QsOkhb9jjw7SQP9rUdfqcQ7z0qdscjVJ58hHWLOFHvv3MqwFtJXH08AHjUE8j24pAh1f3FPX2WrO751byAon+s/hHgvfeE9oR3QjLShFhQfrndgQjUGlE2GBwzmaFiIF1sLiFCV0O4N3JSf09G9u9nTEq+70Ig5yGqvxnT+HnQmgmAjM8TcfRAhlzNqhAVLYwGAmW1LxyuB+mBAjUzojqYWV5DWXoirZ8d15wxaYYwv9KeZHX58jSksTrXeQ2Zt3AZBZegKF01/375rMXfdzV6y9iChSVGhfShDcFpZbZ0L0uYJyoI7LjcMHeGA6QXiidq8FT05l5UTQZfQPlKxiLWv2NyjXZL9sDfyNsj7F9duvRSkGrWP7dXphtZ8lFak+mXzWnsnjd2PjAxCKqP+QI8gQxK8vyyBcdK86q92CyVDNy5R29xIVD4TICTpp8R4sj8HMF3/SasWf9ELXcro02T9GGNfgpuARGrAKpFQ87bAkvW8fj580ANjXWHkwcgQo7hh9tYo02xgZH/mrzF8jBchKaFzs045y16AEdQ6lnpQBV4qYaklhlGQsXzD6uddKNUYurUTcT5Lkfpqmp67jJAkqTqDdxM/0tszb9cDh89KuNshhFljTCioMNa76U3bq1YYV+iyTokLV0asm2glvheHDxlM+taEvaUg27x0yh/S00XQ2bhnjYGrrjjvB4WRmKLbp5D6mRNz8twEkpY42+4XJsW3dji99lYUZhv7lczdSU0nZVXtkcsp70y2RCwffseDFPOtlOf1YoQkRnInl+QLsNI0fl8zwXwMxzhZZ3vfO083k9vZloIZyl322s0HpVRuAGg/3VI+/fF2Icd854NMIya4cE7ZKW0HkAVVycATxhcaGxdfuH7FhBR2oHwrlkDHQNyXvcKGUjvcjJ/c4aYvTGs6v8FQnVBU4Kv61FMnrs0YmTMvFiUeoVrYwIWnuTPDJYxkVcWJMOLPMscYDoN2c8zMC1XvbbhDmgXJWSD+mX6GD75azsM6ENN81juOTobYCUth7/YVI5a4NJ0K/FP1sV+G64vIJoVugxKDaaGLVXQjV0tE3J8dGeRMG3vh08hZprmAnO64Lo8hiGQKMARLcrqqpQgSe4yHAadUIaPlXNH0VCJ+FQrKdLuHpeHGDNd0gUGY0YZK2FgTTxVSxjqDy4fKRyNFOHYWWAwc6U/q/EGxjLKotZt7fqLWAnjB6zCKU/VmIBXefHgjsBuQqigATFggojaVlbum63QjLPOQi22PrmhiteuApp3eLQdn5uXkvpDWG5zAzNRWN3OmJe5B0IhFc1iWN/X320b3HeWgILWkXpOKLPAbhInn6A4LruENBCIbhGC7uAyax/1mkiKzxCmRHpZ8tx7NG4YtqCj9gtbtAdNx6UIURqFNKuRitgpAL9X516ef1k+YwvDeVsC74M3Ho8l0GVL6lJngngj8GZ+PLvvQ92Hk6txn1bL5QU/p/V/xPCRF7P/PgjvkM4MhpUhkO/9IkI6Mbhhj9a6Fo/uoXMHb5LpnCUa/TrOD6VWvtxQdx/wu56SOyHDoZnQswbR5GSgfqaZmv34bSfYmB8IqonT91v65xez64VS8s+Ch6YvhkwEbneI53+pVVHt5rWzFednxC3R87iCaGrEw7bE3M/Ia2qN5pJ1b5OTXSdiL81jAE6Jf3Zep7LvRtcqywT9Lyg4joUJrMrertLVZmJbzrDIL1zRC9Zd3FqUz7x7YjwLSUVr87CQF7LPruMyafseUJs7PevkFXA0LTIaWBOiswAdHCAzPTvEdOzF/m+V/1jGN9iAwE/g/qvt8Gwk8S2iN/Y57EILFwgRMwB8HW7WYmSPDba5MXFRu4febFoDTIzL+Gwmu0vqRjpoW7if8nEfMr1slBSByAtWMNhDgtshqIXytTP3XbpquSTd+S5hGWWXSmOE0SIv0Ruh8V/fVFGZ/uF5aQf3a8cZ4vUNWCnSA4xwfZ98zbP7hjrcjyRb67DIXttuAm4iMgVrUK5UoT7okOEeRgIEiWhM7PyDLg16hgKqJEgK+P7T4ArK81eDxNj7oeQetmNHNBs0fQ/Bh0Mo/ReRzONLVFk4/y62//f53zinhVfgrfmfUsK8rbnMmWIkbeFogtLAAsMpaKjMQc5Nj2EIp3OYVcdQ4mY9uxidxwHRVlaPGr8lNMC4/kkZb3VJSK/tbsTK2/CTDXkI4voe3YMR7KKfPFSRRsMbF8DfYLEWtSoMws3eGGIO5Hri5soIfbK/KGszPprzd+mKTD1u8BhWpobFsiNqaos2rWC8qSkzDl8HUMUbpjF2NTGgmKOg4j4pbw9m1Li5sO4nJss2RfwbNEvcDVYFklbvKF5u5qUS814UUkXd2xaSxv7eJxXWa298OK4uoaO7eK49XVnIeb0x6lpGMfv/jmbiT+2y6p8CeIEtEikFsvr/faPx0GH99T1OpJrvrk3MrKQeSrBqvY8m2mil8ieC5sdnEWP81+ihS859oJQpTCkRcE/Zj5VT6Vav75bDX5k0yyGhIue7HZkI66wd6rFgDib+mHd6v0uyMCNRdXMdVRl9LiWkV6L1tTU0kuS1FppL8xbhU91YLunk3zyrg6Fk1zTIKG2U4tpXZIT4v70FBF2NepRd9w7I7NNri+QqqF/9Seg5bpth+5AuXq5QCcZUq7R28ZDDTCm6iR8qOFcJ0koTiK5OkGytwWMQpkMWwRTTaq3489o+kT8A1+nltA0MPwm+GyGO68kV15VT5VoLADvkGoeXafN+GhRL2OpdBMQl1aTnz5KRRhS49e5irsZLCSeBMDcR0KE6IOuTqbgydr7sqVMim7vrwX6WO6rJJv8kdXL/mvLlfjHun9pysb3p2BVaLC21jN/8v8BulGfNoi/5mnROy6Rojdi4OWEKugqbTDzlZvOsoM4aZbK0kCAaOqx/aKErvets5rZTJJiMFxHksBGCfNjE3i/Ifdrkm2rTGopY85GjBaIF3qhYXbdW96EtjOp87TqcxhsicVOjSfqZsi45Lq4OPAOF+qWjP+yeNe28b8HGujyJ3aH8ERsdq+WpBpuxitWTEXWfc7kIQL12+dXnSeGTyHeXy4Qlfro5c1N1wKA5Bk2tKgrCbww5gVVMjEldzRKXQjifBeghd7DHc20ApSrf4K22V0zgXwsLScqsI418RbAClDmriurCAz6JPdLVwWJJOTyuNb2/4NpGMQW9+N7RNMY7AJWrnoJPi33punz0u+MDMQaJxYwBdPdswGA87rwJtFKN+hwUvUYeyGm7x1+Ji3j/eKA+A27vyioxM+Qm+OFwLzmLpb7Y/JBV1enYHL/xzKp7lfO49R+CfoI3eedNhwbMl3j7RYgf35b0tfE8O8+3UlNKMGXYbQaUdtacfKmbUJ9ysPSkCh2iFTjLRotOOasY5KDsXRFV/bC7eupxJu1sXX5rExLST628njMx9G5oERMLk1wy535d0K3X9klEFTMcKKRCRwgm31ZJglvDQ0rz6iNCeVwIRAjeBgtP40Zm2u8gdmST/llKs3a5ZLcfmyWIof3JSNb6Re+FG8gBmwNxPDRCUcDZ6nEMKkF2UZlyvk8thKLLsjdc7gQlMyHAkBFa5FKIWJK+dsQf2pXssC9+Tf61euxWgBvm8NLLlgL/3fjigOenACqPp1GzXqT0VCvwniDrcn9n3z/XLwOYqxp6vgH7cpIcsPw3O8t/TQI7DGtRJab1F6yr0oU4UcHDqkc12c4YPsPrZr+ZM+gWleQCmU+QuZiDkYlWJTuRZV6GoVoXzaqkoWtmUyHXD3tG1Vfq1V68BXDZKXq98PLRU5aXelsOaVe9HosZmrwGWnndPnNrIl3iro1zeL/Mdv/NKnOsXx2xPKTKydFcdNJvIBqWc/YvL2zGx62xIfOeeeWMAsPqrLEk4z0seaMN9LGDHvcd/DdblaMFegMIxZyOvEjE0VR2p6GV3FxW1RbmxyuhyPfUihJ3pZIOYs2u6kf2PS2arRdIkRqGqbaMFyRbv4xBETPTm2OR7d6Boooj3Jr4h6X/fHvGFLexhsOyT7X0/ed+ZaMf7iRDHvNdjE+epy6aiyP+SS6J/sWadt4++PC10pOgctO33rH3IStS9Mr1NH9gBKC/17VkjRmZuRGHW+kYTL3bypND7l5/l9QQJ4wtgK0Lo/wcQhdT1AZMwdi1YvoXbHWt/ogIpRbObnLgCOzGP6SEPg39lKFbFQeIt5alv2LX+T4drNnKDrH3CyfQJK8713sXK0P3pcmpf8P2YTZ2WmKLJqDHcfRItVV/v+190FyEPZ/+et0pq4k+yCaZmYJiQ0NJUlDKrdudPZl1GfPocYmfS8QYOmtigPrtfIXOxnRA4U+05u297RXPbXkBbBlD7vr6DhgkVpOvQJ5Y3Wo1C9qweUid5KR0fBA7CIQuakPk1/ievo021vji2kL5i6oztroWFVGTRWGHJIaTpJQ2UrgyQL6J5ScDnnP5ndRjFqtBU38wI7W4iQQbsoK3O32K2uSnxMNGrCSwBFYzO/nLrkjvD9JqFCeUavu64pbdO1JwX5hUi/TQAx2fDWXSDgcbo4ptR/9HYMOJIgetGbhiOkoJTs5mM5ybpvlG3CTc02kHNs2l0e0UasOhylnkZlsmFEMHO1P4MeDX4tXtWX22VA5YLjOS//vB5Ys9rRh8HaA0LsWDFqSnwxgLY/IhcfGciuCeJsPWbdugzHsb0uDiOChl9ISpzsl+cV02jyCRVnr5tz9B2j935oClEvHqKZ+6lkQnUpn4kyvTJZohFRRzjM4wUux+lqzU43QdjyGT6mH4NDbTLGoIZReOba+J4/fZDoLtHVVP7Emf0Qj8a0hwbkiumrZaEbT2d1q+/sZzdnCY/EfJbWuEmK0vaqdJs9hpYBQtGHLNuEej33TR/3BaUZ0nUrxSfr/CZD/tkvn1+KDfghnSROn4qFxli6rvEPQSMKig/bFzaDSMAQ0KhSyr5jzh5V1fIeHLZT1wBTf6Hofg68HRF+F8WGQ28kNBi/1UzPZDPAGW4Xw+yJH7gfYOL8AHSV3wjhgrROPnC7VFQSVZ6IPsrZGyw+3L7EOq39w/Hq55FaDltFu5xqgkcpijvdukHMmr6x6oKnQPqqKSTte3hNYDd74LhZ9GNnrohAyBgG/7dyJDQ+GkrPxJGBPIPSEWOjqSODkCJLSZ9DXXATe4q5MmW5HdNlaBo7x4A2AK9xL1zHj4C86yvHadqnmHY+qVlc07x0a+hZGSEDtv3JBiASRf16IoIAndfC3/3D7SBOFSPlZrSQz0HLrslNBnnyjaROydiR/gaHZpaEd7dE5KemMrBXgq1AjburiSOo74YWIb5gsQdyZUgFIMI7lIxTEKVVZTqV1MVRubp3VTrPaqFl+l0XjvWeTmimABJsg0SerH1lrMVqHeWbGy3C2RPuAPZeZiKhj3t593JuLvcwC9jj5MoGq/K2Pgv9Og93NyJQIZclEoUBOiN3TN910C0OUm2PNI5xCkbgLouMsHkCTdv5gmcuJvMiFIuriXofeiv1CFWHVQ39f1SxL2E5p/nvaf82CKv/01Wc5Exotld+iRXNsTVm2A9sOq7ysvbSZQDGWAyBstGy+6/Sgxdy+L5I4nQtYnb9fs0RFurivWL0YbxAOO4LDXdRMgkzIfLX2zBcQiTS6xXYlqRSOU019e3L6Hpv/kJIRb+nIc9c+LFhhchCX/hMTfphTF+Cgdroqm282T7sVI6/D6+vSbzJFuDEZE+NuXUyVI1M4EZr5aORJqF7kpTxtGzkceMcxD/4Xs6aZ9HMCWodE+VTyVgFB7G8UNd0VFL6aomyUyJSpiSmF2MSn8I9SA68cdVFu8yoNzj72ohf/c+vN/TDCU7NBE7FAwgmXG3bfrbQnXGVfLeyK0VAeX8IPMIjJCMIsYZUDQTs/c/bKiYck9DAHIb6HWu55qyBhbrIwJEFDWTyj1VNQck2SbJOAWCGRPMMhEECnL6XA059GF5vckTxnSPW0NVnDIurl/vY8rA49rfDQTfP0Gcvhfga09XoRdUFGmt2ofULtl/R3ABInbvV096B7hrrGevKifevLeVkmbSfbxN5FNegQ09IjXSBrqHPLdk25aP3T4ZNBMLmRDzM86+LmdONjVfVi2iNnZlsv/09ozzaJub8/JK/mFUAhpIS9vEdTchu0LIdWXplIPSM19imhI9Kl1dfdEsZGUuZfl70hyQGETahr33CmUpVQUSZELxmBuCo5G/8lVurGStrqDSeB3VE7PVh9i9iLt8GUch1e+BzpQIFvAZeUJPskxs3weshXzFfwxHgg5iRSGIwBHuSD4ZtkAz4BbIjHwvVkuZMRD2tFEeetrnuOV8IEJIDIWoddWjMIA35jTsdU3p3eY5jAm6tzSydE8jbAl9RWOT4sd6agSB3K//5wd2tzSJzp6y/7fi1Z5IVRnp42TCJAyOGGKclcobuasWg18sepSpKq+Xaea4RybjmFJdN077iKC7SKxpZmU356ySG2U8wpzZb7yszIfsZZi6RaTazhDWoLYbZEbTnytY2ZsQmgn9+WhPrekOCE50AArkNLC0k8Ns4NAewn1caOsZXBaF5TYhMHwYgjHJU+Y5bUcD0Pq4AwZFgVRWPPTImBRsOQTL7sSdUpooTfe1bZ8gp58Jwy9y1Taga4mNEkEz3YrAtjyq3NQWtfbyVka01EgjDzNdCA88l61JcuOx4jKTzKig34Pt69ZMJd2olhs5ZQD56p72XyCA5mDQnpTyPkCwxu0Fw6LunlMasr2gjQmkmIqOTRMlRJuUiUePVkL9BjqmWqcCcGFN2vJQxVXZnTzdUAMfcIe4/HAsBj3KRgN0kxSkZMY8MiQ6lDcpxcGSDcPELWGLpG12fGTVmNY96dmnBlZNBuUTfC18fKg0HhFek1vA+Xjd6WEMGieFd8p4S6uhHdLfu8LWsXUlMpsA5iP7R1i2LtFvKp48p0hjKy0tupUPHvRo5q9gFAVtcJa0+4K1LXjvFTtxy3aAYYvcigcD8rJUlmu7PMkEccyeUMKKwh9nqTEnY9Og07abitejjpO3YEjf31LoBo00MBQ1eikOlC/6xchTnIsNe70OAP6Jru1QhnyaqYUeXg/n61Hu32Ojkiq0V2KbBVD4ncQG1odcJrJ1hYaYGfRfyqXQtUrDAEKAu4Q9JD2g/4fVVpFLTZw61qVX4d3rDQrCqKzz50cmbM0iF4WHzMkWJrVG3lZkgC0e2j4dYJ1IivkQD7hQcwVpmSchMciDu5mP8GJMLIXY5GziPGFqQKQ1BURqb/8m+88akeIQX65qbX7vjxcWSpeCrgkpLsW8tOvaLuR5qMwcqI4W9C3SIM7l+rZs41+mEEU7yxprkcmG+aZMGfzZQcfHDiUf2WVnfpOBQPNi8STg/B+qu59JMIWY7c52XX/7Y/aqZpze7L444NQX28pHa+NLzJ5KotAiB5+06vSPYziS3svLT4idi/Zs/jMJcQSsSlFVdO1Gs8tmYrQj39F2uXGvaouc7CMZHMQ/lQ/6+8wN5UQ6TFImkwQhHDtH4DBgXkjO3dJ0ZV9+lBJa2xKPfJHc+zykcFBnGzCNiAoZQ8UOMzYEJ6ctYDopzH95Z/IE2WO5R2vaRg8HYSl4f/jh8RQVPwjgyZWUl03wohAfiqkkHPSQoGtgIN/H0bVb7rym6wj6V/TCycK2bjsmBWtmMQzlkxp6buxIt+wQHa/PS6TEwdT6GL4UbCMrcm/xgIkuaD7zAjJSs8wySgIB7EoKHq0/N/0RypRw85QS1VX5MjUxMcs+QLuN7QOm35JCMWfO3DfqvpsoxmZ4n7Go1CXmAUslqgNNScjzvjnt/u4KQxUh7sOz7fdbHx7hgcikbBT7vo+LTBpkQ/3Fh+SXPohaQA4D3t4XzSA8gN4Oy8Ml7m+h/q+Cxi0DyajtaKmwGEWLiXGEnY7c0Hg1osIWgOPedeTIcsDxvFD/rFdGnF49ePQTqIn9wKufRwj8L6AajQnWzYdVvlnHI9hQnoN66enh/EWJBT8iHQ4ohAVNEIQvrfDCN2MVcXestmd9zr9O6abXSzCRGfDeGZpUC/fD7ENMJJ9jPii7pFRe4sJsHcozUlvTDQ1pjI4CXpv0La9kTUpY5V1IJoFcg/aIMCpOI6+Cq5IFMSAVpODp9IhC793TbX6qACov1eAq1T+VqCLyJCZfEo82BXtF5FFHUXh9rD0ksGN/F0JBsoRUVJuhSm0GOK58uJ3bZUTBKVVPEsJK+o9ed86zVWdESssRm0E/S+tB5St9aMhUjujg2Yzgkwao4lNIsMxsaTGd7S1k2HOimmaONcDAQT7ddDaBKThUml1fQnnu0FvxDHOjF+lBgNr86PUTPuFP+QRlo0dc//VQPfcLXE2T+bhx/rK3CKdX/298/FRNZVtPr526IZMm5DuU1Kq+1XTaNKPkf4iWphvDyJxV5aAxtzCuEJhYgSUaUgLrpaR/CtqRVyKONz17kj5n7Z5qcraprUGn85eImjKV/1KAIGkROW0nLV058dqccwHpMvf6ty868WLydguluGOgyyqyGG1smhPmJKyx5QluOFCepiVzC4gXEiEBGJm8nmCZwA5OmJAYIWQcm/xQ10E4TyV3iy2A5dYUjXciUm64dOPz1iIlxSSYk9eZK9vGWtT6ziSloVyFvIsuiH7Oc+T6nsT+SihAalgTwoJo4xTug/1/JKcupmnR7b2IQ64rmDhACJalXGFtUoutrRDwZq42CT+m1qOo09bmesjxtUAXeNqLl4J+xcHwf+1tEQve5CGsVRr0/Xv3o8nd3xvNgP3LaGiX9vY9b9Yc7MZKXgNzI2XlCMxKrH+hthyZTBueEkcgJXs3UUYMT3x+ckai1jvllZVCPyRuuDKahiWTToZyctW2v6H3HxWdZCp699WnxmAGi1VkWE3UQOULpvJTPKtaonl4EpHPQpXFITPXnI+07G0p06mWPTqwJb84L1X/pPRS0uV1CWATh3P/oKP/742oFX12zayD9RtMLF0nRZFDGk+x89um3uNzqjciXtr7BlALsl+Ro6TTGVjCLlQiqIsxXEfZCAqnQ/8C3SQOrFTiCLOmaNOS4Y9XJqmtfnz7jxKP3w71st99p/jGcP+WiH/GZueyNzKwiF2Deo6hgFP6pinRo3Wz63xlQTIOWkrxOGy0J/quvVuEijBYzPyy3BmuSlWV7ErWMsYGhMAdwgm27lvbTY5hDcOhVU3MbwcfhPZM6BDQ1/vjsQkyCeFR9Fu2spG0naLuhm5YvM5BrYIL3tiV2uW/nC4FAced9ZPZklCgtzLMXH5W/XlaZpZr3WIsuW+90ux0iGDzV5xlOsC1msKom7TNwJVSRfitmkoyHdwPff9jAqzAi7c/mg9DjrAK4uNuyD4ZQefqBSJPv2h3cHM6YG2Y99lURzZD2GYo9qYNij7F7+mcX+EWIAHnKy6ZACxdADwHeiAXoKWcyK5I1CrvOt/mRmctzcw3SsuNwaD5OT0ANNob7CzRj+hDPvOuxWxIEKINATYhTRmpTNCq6JecVTb5yBMWO+0S3Lm2LWFfaNAa03nQxIHhP+oiRqxuPjFAYT9Xw+ZSs8b/SEdnnBdx8OQIMffAxZaH7E+8eL6z/ToZwDs8/5s1Bq4iavVLy5rJbx6xLg6IqDnhdsU2bh8y3oRRN6pLrBi4zIWraRVbcYM730nNccUAfxN7NI2/EuCQM7YMxHIo5SsOZrAHjBujGXUFaBRrtGvXaNx/fuTcyzNf7nL7pFmRv4w09x0GuaO6jlK/ZqHsiu0LWE2che2QdIsXejdSfxIZKAzjnHw4tD7iu3y5qZaKJGq2cWOJCIHIHbYqTgPByiGfwvIvKgsBw86CsxiglxvHRB1/HfQ0PTKtaXAcrVYzAjYOH69FvgXFlo9nwt3K0fcZWYbi0iLKaQw6QUmoYZZzCStK9/Cl5z9Gbzi8WDiekXj4gs/xpa0H0KyHx3PQbJ2LZKFsnVX2PUoAKgpR1JiRq4NeiNbEEuSoGnQ7ZwgTCnaWDeaMtFmK1dnhCZy0zY1qgM88ddFPbDKwsvSFfxTD1yftHsu0H6aKf2ULcA/h/3ut7zOGayJoNule15aM/rl9iixrzeWze/TjtBwiuVU9ul2q759EmPIqxwTCgwR9KOvlGYz+isJqTilTXbzskxpl8ChWkvUKYuNZkkZxEfIpjItem3ZvafjcQTmgzoitnglhjR+64L3+8hysNXdQcRXK7M0XmjrrDs9NUxHnJstyLLOqrd5Unp4LsLlECvLJPkN/EEIbdNIarFZaUa7gZSFRnenWJ4KQAHkelSbvsRvUZTbT/4nntf2zUUSigyaff3aQNn2F1pPKgVZcgkzySnqo7XMFsPJlHTNAeXWnPtRO4tuu3W2IRD3c+d2rlkDb5Jhs/Y/hnbldooOPptcpexC/7mV1tymLH229tcTx8ljNdK2EzinTxX9ebnpCzlCmG4CZr+aEhut9veK1zrcmWhDQG4BjhL6FrV4NSKpmObuAEGSZBrgazsn+EsBw7wqbmCEPY41jfIw5Xunbg1V25x8aezd3Rbx37Ofx+ZgqR2sPh1ot8VR4+LiHLMh/kNLw6yjo1hm96Chj7TwTEQ0458Xmj5U4DMn9kkqONjIcoEBtytH7DQ9cijh3aIAkqyhnQV1L9qhUmCC5l1CuByACt1Dmngsoof5w6XWi20Uyi30GDnX1lH5nCk3xe+RavhgyTR2QOE7h/VvzFlb4JDMmx32ni22R8MG6fvPG/cticIrb5x0eqSNz5bfFofN7OYeArG77upzaGBZgonCJqrcuQHvX+GGLXp3U+BlnZPblXLTR1nu5qyicIskKX2eoEJSbcQQ5SnaqwOZX2Hxme9dKde+vxM6bXE6itj7It6XjltstWXkLDhwgwYh7gpDouWlcmv4IJpyULp6OoDGUBV6x2CUOKQUtH4YS8ZO3Pn4gg0EO1Ksr7rLEdxih6z7o81rlnglgNFwDCfA2q00eaFXZ+QTYgyw709xbeYE7lUKyAio1skRqqC2s4gSnz2WRIIoCVbv3v8qBRh/sTdNu3fsTwHzDJw7IY5O8s6oRCZaHqRIXZtcAr5WDphjf8ZgHXNNo3Z/fk1ipKOboqZiYCsXfTtIS+0bTuOMPL8aOiN+Yz7S32mMKfKJI5ByOnYPrsL7vDRSLZyPe6jLzwnZD0V2OMl7aghC/ir9JepYZSYm+Rx2AxYFYRUPbfh1DS5I/TqpIEotjIdVcEUZeaVL5MrK+arHDT+QS1NU69hmRxnX3+4fBPcFEKmaBryb4/TZv/tzeYeqQDVC5UP5DQ2kO63N+7gh9TwU8jbLmHwH1koMidrfN3QFy9pLDoco5OZGg1hVX8nal5IjKefFr1yOZ7aJaxN7I1Ii9HKidHZhEkxhKux0oHwYJdoPbijraraNaLV6/wlBySNTj/qYOVqOEdzP2594ycomTloSrUocuKHqUgSgkM03ul/uCMNHN0PePfH+HIf4QIcT4zJkUSrYv0UmoLKv0U44+k54Ffl2fZUc2MRWeNYwVgoh0dfOKHKhAHnkvfOwbipx7QirinHQTINg3oVJcPZCagNMKo52EM4YcZkYRbq5ZlqBLk1bAgvMl7wc8sSKg+/vu6vAi5Jp2GegP+yR+XdNgDYdHget9R3mK+/hW8Ovm6qjLdRT+UlBvoHZF9HGz96RgoxihDMw7yR34mFvocBCc2VUX415q3+riQzJ/D+7VcAzHT+0SgNGPUDLiKdOcZJLlyknTPQ3IKkt834U+qlkyG5bvaDM0YeFCIL5MLY3qSnDP2tRbx7BNVe8xAnt/OfZOb6rtRdp4TxQ1pZq6Uy2GxZdp5Homc2C59NkD94ume7X7I7Wd2nuiWfb3Ub8CsAR0Ex+rPWxs7vHpwKyLydvzRb5BU2aZj1OoIFx67UFgI743U4JAEdsKAFWjo/H6tL5jEud07sD87no/ugkXsyMiLKdYaizZNLHV55LfeTupExUfDMlpo9sQBRAoX2/5p2ThfMFdFjEx87fzdZEjNlHwCnlnE8jRJlT1KjwHilrIsm2TyYOhuo5HekAg/zAYP20dJIgEzO0K664jBI+n4IOzyqfQrs2cvQn0zGO7XC/Kxh2zFubOLMZbEk+Ok2tuxjraApZ2TmCZHupygdXThGWQX1NwvZjgsYADvzGilZTtUSxXti7Pcn270jsLY0eM8JKNqdXXSeOYN+79YjBlBiqk4NU8h2lCOej08i4+BeKReSyB7c0teX/Iy3C4V8+EDoOFTmMgeYmu8SHb/5AD15HYg3Z8vR+Am13YPOdr/EuR2hdFXJesTZU48DmfL2vyqvuvMeba7E8bj0Oahd6PfgqmIx5iPsMxnkh1UPvP4QfjyzkAd3jqqpy86DvVqBI8r4qh9ZZqATL2nMcEPn+W6+/nsaBbcVQaU7st5rXhSIEje9XIwXkHw2lkvvTA0FiwRsrfRFSoBLh/dPCK/39h5VuShRQRUR3EqozqsAFsCcH8h9p3l1CffhGSAUjsm5MGVTOfPkVeIM/XSt+lHgc/aVCCQZ9cMSYx6Xmz+LQ/Xajf45OComTtblMNSboLtwPZlepHln0Psxv6BxOt8Asz9W5b+9qWyLWw1V718nFtESvK7/j9BP6CZpOaskpSgsoqrx5Xw1CKaYLEIxUzohxjRmE9+fX2Mf6Q+zo98SJ0QK7ttlih/cyPU2JyyvrN8lY8raMCx6c0sOblgGo3GZ7/0SOJpFu9bNWu1CYfk1Uz9BKICcS/MPd7ceZHhlpNIkQijYHYEjcr5APWyIbN+wVluO2Myh1KHXwx0XW2RSwI0EKzGUdzCEfbHJDtPDGQLGMoEmO3CZ4UqvIkws1PvybS24CTP1u++yza6dX+qs9PxX57K5NMRgnosb7XrM+CipUPK632sU2t1uikwoDR3PBW+sbZGjaFA7HE5Y8dK8Tgvk+a/FcQnCn46PNXb5fghr/H37AHbxGzw3fZ4wUOAMs550ntRp/Uf8NH5Z36z2OJvpPR+V6+YM9wCcIDebQZ9MdoXO57JTrL0vHIntJo0puCi0vfkrLKV/NUVzkNtTxeoAWnjTk3t+H8Q1FpixNUhNpMy6z8GnX9YSXjNPMaYO+C4n7UM0I3gi0S0/Z1CXjcNr66F1YcenncDbRlF0RbJyIAehhlRY7DFM8yaYB08M26cNkkTqygoKOXzRDtTwkvyTZXJzCIofzybBryulpp3A9cHUv1RHrVLw9EK3bParmo8iCLl690tp9Ww+tibeAMeE/ebFKGH07qtZdBWnW8o6GREl91d7U3XCRq6IAUR1ZwS4uJE3jsPISg8SxbxAzQcKhxPN9OCDPaNiLFUzApKNsZsRGivTGGdCmx60wY1rt4QBL4EuY1QNvjBX+1x2DHk68vrwb6xIwBvcRB8fv8rzEfjcKKWwuxO3V2/axe/Lnmmuaologx3UtoY/Oxo8UJ61Nq03Rd/odhunzFIX3rvUQAJgdBKFNtmcdcGShw6gsGh1MRECIbp6IJ669xLPL2GRcFkRtJL4zs/5fDgYvt+gVBoC2yv9TWKcvZGWpswY81LRT6KubBlu8Ua8BV/g2IUebHusqPQDwYHjGIoA+1AOBhjTBseiLzU4GTMN3SGhl6wWsFUSGR8kQlTO/n97VDKtXZlvodTA8MG8HhHrqXRMWpQTfRpaV1jlLKjM9LE2x6zJmehaio+7UvqsiuVVYqvJd3fbbhcdHD9qTA1rcQ7qxgt/IunZIftMDtTyVFOfb+WcK5N/yS0W50epoYJWlEgKNQ4IQMGt+rG6gyEc5zkLzyB3Wp3jYvFlzXqdRPqI8MpSjYttqigcCvUecfAoukgMhkTb64MR5nKl+taDsBAbogsMZZumaZTJtdTb0qHZLZ+PyLYJbtndvDGjYJ0PdWw+AkxOO7CzCSXL5NyKMrhWFIdz9kI6K5Aeq8b+mz81wMWJAqJJEELApnbx3HxrcnbzL0u2HgOhMIW/3ca9DgAqUFWWIY/aPciyNWGprtxan3t881URVcObFCHo4BMXe6uQeYUq5No4/3WFlrCBohGWjoL6X4hIU6PSkJGiYD/R2ruYOx7BD9+S1NT1Qfjijrefu4cmQ9M/bYHAaWUy2YWzssrUlFwwkP7N+IjAV2N0QZkLZPbGw3pLPoJCnSCsrNg09W6ixUHRa8CAB3qKOg5YCF647Y3UEBtS/1VOnbqy9xTb8VD1CaMDEEaBIihT1lWFZhsQaAnMZWf/GO4kKlvyRQrCVXW/GEpYNe9gw/KP7YRWDSNCd0H9krGRvS2D/SOlVgq+SCxxs4ecbwNOMnW+YJ6i1zNfZuHZ5pTtp97xL+/L+HKYlTBjVT6nsM3V5W0RMKZ36+aGcavEKBqSOJkUJ5LGy2aDY3n8fQMhNHntaUKg7M+e1wFuVMr5zO3qPIZ2o6QmxTnRnkL1k6tSAJW5PkvPe0QENtfEuHoj09dZ24UhDN9YSzPKecMl4+lxdYWqboS4zlglay3KmFZz57wUIgECshub0OzmeXZl2WJAhxDhofbAW5yJdysGaOliv4nBiy7z9JAMYXGHRadrvq0r00orPbNGsyMe5rlObfSK11oJ6ElzXn8Zf2tWoRSqAsm86j6WcIefcWSauNO0UP8+oet+q5fxiYA0kiWTtZv4Fv0kOZmbGQhfr8REl6zOJNN+BtbI+pYp12pZZGBwwHT6uwuhC+51PXe1VcPVCZac0eIc8WD65aQFB7AlqjuAdyPpDCz66lpRFrduMgXF/XvrFjUQL1qkQPIS8jUSDHDeP7oFIS9iheABYWMVkiwSKFrZwIMEXdUMioD3vn+o+UW1uuXfhmkwQ1909cKy44kupv8Q1Wr9MKZ+9Cm/WdM5H7zQQvPqOkbH2gkCr6UhVsw5BItENyxgvC9Fz7GAXfeuZw0nvzE518zCyRXAotqw69LnviCY0xk27r5Mr3zUKcDnFDLxh0kHSYGTfOFiNkxg5QWCHwDc4r6RTJyRQFd6U78o/0o+Ux16zVVvwbNebwX7JHO3hnxCx/zpXV+QThJl0qgQIjpHlSeQfUJfnUeAHzjtgtr4SszS2r4i4+nRAQ6lexdh9pNwl1ilRDiffcH9f3hWwr5vq0vidimXSyj/YabmtRfjENVK9vnEylKT5ZU6KvFgW9oYvs5q/nUZ3eBcuzotXs4N2yLD0OHBDy1bEP38XnfTJcnd1XhXoFGItq6/2U+5mbAOJ18w/niirFicp1Vv1UHNXssZxPhLufBdwIxpHqmcW78it38AZLrpDMVztf5SVtp8dDK8UCrcyzqn/C1yUIoY+jeKN4Wo38218Hs2ghgo3WV19IQhVDgRzBN/PI5KnyUuOWyThaD7hd6U+I6MOJP1uKvucmMOrnd32q4CdnbRIBPDTYi+4Jvb9jE5xSC2kh0pJn0o0auIhfK9tMP60Tvdd85JvzrelDaM9AVfEuCujrv1aOQBQyn36IiUMJ+zMyJWsuZ9hjhu79YKz6Mh1Lq9ri4Hzo63b2i7ER2fBWPmVmlRN3nemQ1VUjt9+POqQW2D2XknvOJjsF2syOoavy1XUoCYswlNNUNh6t9wf2cLN7mD8x+J20nwjmvJCZ7IFQ3w7GYpSCG6vdpwEi+hQ1kdK0SW0Td3yep14e/pAjH7DGq68MF/16P9+of+7QUtzu5YHb1A/W0VdLJS2t4iqF/wNg40cUheXKrUGLr6pBaygKgQT90uZKcCOL1dopjRpiGac9ewq0o23W7MGCME+rOQZg8p57j6xW6RtnhkerJK95KiG8UUs+WwM7nOIWtKe5AFLZcaBxchQi24gy4JjWNuzk6CIFUuOYq1nTAKRoD/h2/WBw9uhYOLlfGhxyowbSZCWfX4TmLk4ncw1HbMeuXlAstbjF0MkcUz3zl1YmEYQI6ZSjttDV9H+nM5YmpxXJS1HoEXIjFaLSBwhzWgCxh0DphDSzFWrc0/gyOEAi10a7Ya1/kSr4h5s6J5YjKl3Z/ymfZ0c5nYG1S27Hk3AfBZKarZdVD0USy9bVFn8cMAQQpyeEC5Fj3g/O9VeaJGr+QbVvMeFnxlT+OFMUk978EBmBYbyRMf6W9qU1Vq3Ibgw9F4dYyYPNqsZFN4xGN60OgG3j2qrfP4MoyLuFJSTgfPrHCX10xb8Fx3oL0mw2gMzZO7GneqD+y/Fiy/zG+e2iApbzGrfug8okL0mOH9SoyHrlDniCWdeZ6fOLe+6i1bcQ8VaQKxWBn2y6oIOrWUzTBWkap3OwVCLwfnM1ORBJdRJJaikfs4K4UpBmUxCr2JIAZ4i0bvjgoywSb87t/FQe+03a6YSpSlLXe4FCp2eHIF2XOLeB3ldRKbyuWFGFCdcvt8DOfMdiuS/myJyrc1FIUStqARdqtaL4DG3RFlaxc45fEPwk3CBqWGmi7KNKioPu7dx1CYefiTGk5zCo14ak/AWPuqNJfIKrMWdCR2xFuO/JHPfObucUJWZCsaZP+7UY7LcKfnRUhg5tt2LKTtFPoEX+3iqQtSwK4d9BMNgCRO0yFyeGjvuTzr3lMelgmqUZRWZQz5ndPLrAUhABXRr20S2fTiEwbLe4AAejTdtsU90EtGtERjLnxXIURi2BYA2tCrgCzYcIYtYnO8tDDi1xYDokpbELhXmTd9j5dGhttA7vbmjyOE89rdf5NW5lpUHssCyE+rGxJhtlXlKySW4Ycws54z7Mq0o5j00IihnC/lxVDJj0nnewAhefgmdOEw0SpjNtJN/dGtO01+MJ1S38wI8YIKnMy5WinQ5ghAq0Dbs6i1hz3bdzCX8Gt7S3UYbtmaLLm2koXs0/OZwSC1mTZW8pCcqZ90JjCY/6qoVJt9On0iKqysHcNPRQatwOK1MO6ohjAB9DkE2BbrVxZH1xIozzH9ZwpjxPbCDtp/S9GEdpUhlFKQ1kwRKHrU6yblrvRd68RUAnUaB5BHOOwq8b0qNQr3Yyg4/vg0olWJxYsUdqzx3GWLNm3cyyrWu/2dXuQalyK24FSoVr3wSvPN/IK6ZQlB1YDJRWqVz/9Rujja0ir3ih6yZxvvFl/niI+375iLolP/pEJfV6k8hLDdjqRaeVJupuxnMtnleDbIBzDTsYiJk8eVjhPdHZSs+87KiE+gpoTGAV2qaJg+valUFNwx8/7NscD3Q+mPxUPapO97gOJi5gRVAWRLXlY97tdyPpNIChBZxVWZlk9Ptamlo6o5e6A0wkVppofez8eJILdmankKdxXntJasAB+yICLTInaHmo9zLokmTc6YRaAaROkxIgBc16GH3MZ8V2B6zBjcSZnWzcC0cP7uEMJ59BxBRiuNM7qqZ3X3xwsjFJddq2as8e8doHP5JgJKrW00uMIjLR+cWg4XHM5njfwV+9eTeAw9VGJz53qKV6csAxPtzyrLrbgsk7ZbKYN0BYFl5iczdh3z8Q9JyP9YS6WdyEsTvEoMFGWlXWRF4KOb5PxOmSchYfbN8SafZLivs3myBZgIunWG+4pkkYpcO0M53W2HzUArQdaTI1EToazVydD/ZkJJ/YRHCj6f0oLq/aUq8HbTOAzp29JgKJnZqwuM+9zkJ/uJ5N5fSr3rQKNe2Zp69vXlolVtanrTkf271GKT70UptZPDX4i/yAfaLU/6v4ucfg+tZ5lK9tTKc0+VZHDEIwL5Gv65K1EOLfmz8QKZEd2xfTwjVK2j0U/0weuI0jcAB28CXik140Xuz+gRlccdGSGJYBzbNgpxLzUDierbV6KYCKChlQ64yBp4LVZuAMF5hXy5SFqbDjgn5kVNUFehLf9PNX6LgYYwMdyU0/XjYhAhwJpk8SpRZKJIlolCIznO+TGAqZCASMSEB0OxzZeAGzmuWKaPBv9wrZNEuVARK8ktqu2x06G2pry8XY4bxv4TApq6W5Bq0feCcUN5Pm4IpVULBzb4JwVTuF+fOtYCRnzbuiBrX6M8uYMJmkq4Cbtik4pv60JdzpWv/XTo6p8JU+12BN1HBoj4ObQ4TiwAIH3gkj61repatIGrx6hN2Sp5tNe1CvvNRw+7QT1jfHhRzxcDKPkTBktI8C3PQfE4uvIUwdWsEDrCDVuxjoaddeEeX9EFZiku1fTlP7wuE9hYdKXn+VhyHC3YK5uweYMcLMEnJzuDJmVk+LaC81PyIXTXOmA58y1iN7/TMNsJVcMQS3A9WB46+Y/MPc7oGMHEqupz1akTuCPY6+BO7msuXG4kDWWjsQW5XlZCE982nhNkG+Qcp7ckKEN9vezVE8cRwnqI5Tde4ugYEGf7I1UlcT2jahhx4s8hN+/PjwxTKFLMLpSgEbm6rQQMug8O0NMH3clbWrUh+6i87j6LIoKW7EO+nicIPRPzL/bDgN/UOzFg9lsfK+we+cZnH4hXCTQ4Eu5HtbOe3oTvDaFepa+rnTFna1afFpcLF1NVcNzXXBFeeH/Y2rmrlVJGdNYqQyrazokQ4P0e2vks7j0kZthtwnfgJ8kSrlqEpqu+MIb1w6Piukx5S8aiOLB9RTgkV9arLFk7m0KrOmaKMLhaHxhVIiSLC1pCT2qY5snoQD68vxGBCrDkDf/bJmyWmzbOimYUR3Wv1EC7HxFoq4XeKzBKvueRJwhH5xe0o6KQ/3tynKlgIPzR8e85Tm+R/9j5Et7b0/oLBEZ08B1oGxFmU7R7Et+zhSm2bNKsbMKUPtyNEn5juhO4FXlcwwLVPC5lpc87fvKjYMIJE0aAX99WjHe/WysVMW8ukLPIIQtWGfLIA2N4lhlNFJazpgebFxbuwlZLpBgQuDM8HlWnjSWO5eMPeFZAsHHcjvcJ+AgXiv81WM93nAk9NBCXYdI9EOSFA1Xvh9Jl2GB9YIc7uZM898cF3q3WQDM94MGnQPf5F15eOadpZGaP1UF75Ocb3qYgpjCdQjW6iH7r/uTxA5v6UFdlyLXMyWbmFQvkfLV3Gm8M+u8L9A292y+VWmKvSM0XNISUxU0kV864EUA4M1F0f0lkK/XvfvOp1SfDQrqjuvzhZVEk2ZmFeFoePNxzp2BvqOO+TWrHzeTNMtoCwQ6RTWKXXtdpxKhLK8bcc5czJzhJl3AOZJcuQ7+jTKPABfN4/p6O/kLlxTgqL30/Zie9EXJ3RnMsGPEOj3BXKzc0VFfAb0EFLzMyBhkLfJmRgfBxojOr7pVogElqcdqIUswJ15tnL5Ka7ridX4ngjxxccFPtBMJXxvJ/wjABcvbueS4OkawgGTWrKiObfgrg0rZULCoCXEXWj4L/nR/iN+RRfN38ZB0/VZPkMYS+LC0lWd/IBSnUOazhB3sgqHylGQf6j6dsdayJtGunnF29tgYU/OWvle9g/qx298OIrw5WmU8P8r4rQTAu4X2Uj1V93f1IWiyf2myv7j5+FEJT4IEJ6cTlXI/N3JZnfDrtUAuFiuXBn03xAgv5yKGMpYC7nrce3nBBuD2gRVCMzxEV+ayj7PyH2iTk0bBMXDcGXQ37h0PpYvRyOWRP6pSw5lePCmHs6GfeZ7qZmAav/PP1Og+Ci1eEuJ/EZsUlRbjqr0M1JTrleb+UkD6JoLeMzKsl0rsFHU6LdjDCdS5Ijg9Hz1Ay3c4opDyy0CfkGqdWHQxxBfJ8dyQWmf2cUabxBkZJjhL/rmmkPNR5f45EBaSK6Aw19iR37BrMmyP3yOtkKyCYHfCajGepYyQHF4Be5wfpKMC22wbQafh0CJjS+EVTslEW6/R8eSI0hrRJuNapJRnA9wlgznGViXVOCGOJe3RE8bRo2/vZvrUsBLdPupdKPp0mqcx/cVdVEt2eYom5r1dM5fow0TimLAfDXsw4Khy7AdtHlr0TUH9iRZT/NuXfLQtrQrjHjjXpFeTVRc8AZ0pRQOmRAdH39KUhaLTduOD3+CvyZVgv/f9HAMYmA37GthoonHoJCSZPNpEzYCdlIIIRS3AqJ6PgwedxM5Fw9ngrY7GGv773RvN15WSeM2vzqPNjqQsvzZJQXdtz6DyNEwDgmv7aD1pt8H2toPnSHw5J9/SN/Ruc0TmbZYyfDKBMNhwctZ8YqUzsjfvfBYChLLHRHLGxqD9QY2g4pqVWhRcvkECUlAHWyij+dIl1XbH29pY6xWe4uIqWkNiylnjRxRnULdKb3wpBGxQ6Km74Y8DGebtQKAck6sVoS5o1MtfF9jXj9lIXsnH356nO1IQRsVyH2KWDVclHRzNb5vB6ClpLNSanuDZjY6Sg4YZOL1rAKgWtcIP2UBzXN2iWR6dm4B7VtuZd+onSXA/OZbp9uVnIbkgTaaknQ8At/i5KDD5f8v8w2QsmZZgZtpi2qkuuv+u0jleEBiWxy8jCjHB0sntCKY3K6sCns5fEThPOOoJaAnOlxfRFXqXxhPLxKIfGj6q8egPbdcIQRGXCt6vuRDVDnqDnlloHL2ijG+Bj50NnH3vuWM3rDnRE6dBnkKMJsnzm9vGnifV//Ws5LgeLsf5XJ0w4cLV9Q8PlNgc+OvQblRbHk5zVtnBqObEnkZzClfjBQm9Szf0c5JGYskvMsbcENODGeO8KSAi4TnrCKj5Liv+4psKRBKbKK0HE5ipGNHitYqeM4waSpnHXczL8QJ5RmoG/+W3mWtH3u7DsLEQdjcZ6oofzCrnlX2UH3UVKH/Nc4PxJiMT9YL8UO2fn0bNRV6wFxKkvZlLMRG/8oZyBuW1RUx/E4xraO3IMW1Gp5l+WF5BoPqqO9R/twXSBmfy+5b33oR3GmR0i7RSvfu5AJ2rIQLlCCQ6wrzpRDh4/5UOB/YSw7mXkdcB0RUHDjgsz6PvJtGij6B00Rd5G6oCf1nT/3yrxohOCRhEYs4nMCIeNnC2G5fz24zk6fy2uioZnPziUoDFd5bj74dG4exNkB+JQFJgxgryMFLOATzHwV9Ua+G12ODvaELK4MPKkYf7qZ7mncFsF6bmonqe1f8WXoIqr6qUeazVg59ExZnQRabZx+Qn6dXlndXpmltRhzsgA0O4iqQdyruuhdDLDNqYl/QEv411hhvaQErhEuu5V3wmx7vjustzj7JLRqR8MMle4cs+/K+rGJUJlM7TW+9JIRUtuPqaKdJT1Tej3fh9duU+F7I4Bk6vPmeIP+RzDx53bo6Lxs2/zoo/1xdakpnlAgRI4jfJR7MomQQc9v50th633eaifvh+2DaEXzBABVZx9+IqoqtcLJFrtaSYRl8L1Lsbw/dtGrLoefL7ThBkOweQ+Oe4w8NdKIa/HuPMf2v97V5CBTqZfRYoshc0UxYAHcqC++4RBJnnpHPyUMPaJiMC4YCmO49U7Bd0wHQihm4+xutnDGA4mZnS5aLSS92V69gnnZq7/GikGnGESsLnQgjd5+jhKZYuGzOBU1aZppqBi3SGFDk99Vx+QxZYAfRUNgfb987YwzAxAOTQkjdnvdD3+T3Mne989Du/z/VqDKElgu523cQ0bTzfYsVmenJohqjWI0nvuoVGsp5VdIrz1IWdRsXXtktMjtXH5/bi+fyVMyRX5xt8fFnU4Y28tEyOhfozgY0ba/xV5LqDU2K9+PnurcOMNWIdDmZIr4QXdAQGGvfM43p9OWyJKwmk/0QqDM+e12/7qCgSrcUq9r2fTbhFGS0lTOvHYmjFSO+9wrnLZYDGgW9bI5vsrkgL0aAMjmeEqNyU3TzoVn23bLpijfpwatmmM+bmRcn5FiO9XbPBelSGRmzyfCuTJRErApp5owfUPjHu9KgCjHA1I/aB/ee/JENYcsMStwk0Jke0G9jMy7Lpu1SJPTyaRYiNtexk489f1Bv9JwYF+GwL+56j4nePDhRsU9MYDyCncG7f8AzqgF9YlTyH5cknkvbv9Cv37oO1M5jSXz2opewok5JNw2OB5xcH/s9e/tQgaPbCz/2g+Eg/UqTN+fcqKE24IgIm81iRpvDq6y42bZM/1SHEaVZzfNuAfUl7ZACR6b7USH333h+GJCfod6p+7XR2GPgw9DCTEItG87O7rDOwhUWEqHnoNxDISv3cRfetDcWd33ysX9r86crVPECmirtCkm7NDPUQDRr/u65c7bSyhY8+eyI24MA7dDiHvnJCJwXcVuGESsoVFLpZxxv8P1cgRS8E2852Y29990J9VMg3aW69zl2aYpu5v6EGZj6UUmpoI7AdkwfPDkOaVtkoJKiKiYRinN51vI8eUsDcjQYZsSxSRP1Xy7bZxp81Dqnkrx2ZvzN8pExlW+yw7+H4zSwFXBojQT9odMNvXdm+UbnaOM8LANj7MzNtZqXhpouA76lkbFqveSGAxsDI2uMHnydDSp6fB9n3KJH1w01U+xIqcXNOVXtofSBEf5kKOG6arzeHT5BVIx0G962oxA6JAd2hVFwRS3h7icqOrNT6+hDad4wzJh3o55+wxHhIennLXoUEFmAgy/eJHV84o9tCiP4JfCYD0ojYgBDcx8uQut6U+w8DALnkedK52hj/TJKNcxZlXh0lfF6FhznL8cEljVDAWzOLzREBL2Gnxy7NMxeTzIn97gexFQE/YTJ6MdooD1xArq3ZGIYX7+7wlpHeRW11+qIwOhMT5DOn73eOKFBccD3mwdlbG/yatxpDZunSSHQbXWeKrJjwkjsTUyXsUhR3PGuQibs0NJkOEYLv2JZ7HidowV1oM7Z2WK3P+r9zJk8yZcqsA0udzri6DfhIjkpp91W77I9Evyp9OE66w9aX7jTjUll79Yfm+AU/8dhg+ibTjdHUhmFEm2ozbc2swRVZnPwZjEVzND3lQigHON/kgwUm6pgdyHHSoHz3q4tzBKLNpmyLcL9QjtWmcpIpSBFzC/k6bfUVEORhp97Qyz2gQ0iRiNxV4S162iXvGS2P/SQID5EcbpF5nW+CCN/rNMuuHXNTp9ynQnW1LbN3Ekidm+nE6hMs1ZGa1pOV1ibqObJ4lzh19BC6rIuAmnyVTuXvGkwkQWdzRCHSEbB6b7YLbaCY9jv5LoGlk0SETyldEYzK9KOHK4C4+y4yS2fAzFznM83kDr/3zJepv11AnxlkmUe3rrhM8qSP4ZdVZaHM/2N64aysMjTWDKEaTGbRzvEL/stsBfPWaLxrTk1v5do3DnXUkc/g3qCx7Mo9qFRmxY8Ct37fKltPv15B0Dpmjg8tZ/E2morA62PnmlxSEbhgT8T3qsRdRGZ7aCo/Y8rwoF+HCGgu2AlCKq+6Yt6jEH6X3u0H36fBNzQIDZY4WIfq8rp+h3u3v8FcKk2Z+IKnxdRh+faym91vpZ5nrGy5ZYnzR5sfIiVx0cZi7s7XO+VqEbEHrxPdaeSu4YBaCW5yt3cMHgFX5jMQcHz/bzetL8V5fkIeQwrGca7ayXgdsSZ3HigIK13+OhmT92q7kbDhqZsbUiAgBVFhlh3fTr47HOc8aRFAzWnlC5n8t7djFIisRHlJSDdCCdZfYkuFSWz0HOQilP0Bw7gXp5UjhwCMkQJlbLxWOIu8glb+y+U+NRb8NvIu1JO01SbGT56UteQjGZorBbG5ZOZDvlujWiY6uS92EJ6JZSYNFlfQtelBhkjGIsqKHia30onbG1IupbolfQy6gGJzGa20/Dc7WfGTE6evLwgtW3qhPiJUID21Hndemtk/f2whQMcGo4tJN+R5S4RIQtm/1/OsINqFpM9vvyrRvM9PauzjGHJIZHCYZvUMoBo52TpQfuWhv1zRm9F7CNro3W/sW03mCzBhAVAOH2lRchKs7AIHySJeP9RO4QFFnZMU7WTEuqkMhHp8NpKYhlVyJoMGu7UFBHksdMpw2i3gkOkVfXMEm+hsDnBHkR1pZOncjsaxHjmFYV7TKA2PSUzIb9LZkTsF8q1Bie8Vlcm2cf16rI7YDxiknVXLJTbUggT4E0LtZdisa6tmkdPk6wuD6iTcZpt6VzfkOvv5sy88lq136cdhOwlifNioU2BZoUcXAahEsVUvX/2szwNAqC/nd6WpBoQ1cwSTlI8l/95YhUvDchNE3iaCCa3BJAC7qndN3vOmzYADJd5qIIBzcrZQW5Is4t+mt6A4AiJVujB1YnXhNYWLpIbxKkRJ0HZ+YK3Jct+cj8PXUgnHARuvH2VgxDf36rH5v7TylpNzRMj4X7TVmzQfIkpj45OAMk/N5OwmAhfCLspR7RLB2wSQIbkLWX3NgGtwdptMPM4dFUhCGNeCFDsGNUhF3dknB31+LWtHUBwn1uvImGK0yP7Ire/oehdfLm3DwYWu4wbqqa5vorcSzDlIzs2bbDHDaHyglSL0O3SRL+Y0Wp5zLzF/TDVQ5op3YXXdHrKjgJcOKejzCtlkdLH2Ecf5ZwZmf+niGm2b1USV2YAjQnUl/+aJwWbh//0Ap27ppf9zhzUVQICnOsA1TZUsFeaYkhDoAytm7xCcATVDt69dls9DIKxaB3QgydjW/AOXlTqNLRAIQ8zzG8H0OtAENPc1NLGoCyURZliv7AWlSq6x/435yNpw69bEQ0BePir+M/WY2fD9gEvk+HSD00MTDfh1wH0JurjsbzeFTzeMsjL6wadMpC3yiY7ZDkPVELY0LB+W94Wg4yjKaaeN9oHu1CEX2fREZ87ho9jz83YRaONF1SO0iBIVqQ/eO6QTanpIKHs26d3GvbQ6qpwV1A0hKiZrE2ozqglXCpMFM70mfkiNxw26QezQyTmft+Ieakct1KFjr4UAy2ty68pitnlVWSdUTCMEsgzKKawyjmnYqvC8JL5UwiPWu6agqsOnSwG2k1A+EUtajwLPdJt3Paa6gigBONmVecYnc8ZaOq8HUIA8H/dZgcABQU9ZDGu/dT69zo+Twqf31786cFl/0FGAc82ZBZnu/sjMgwoK89QqJ3lrgYU7ppiqMld3hivDGJU52Tc6SmgAzTN6wq4UzK4s3a8sjQQM3IUIcgfHPautGqYbqOi9QbkYYykOv5V0/CX80fz15xi1RXbyo5RpZdmNWQnfg215XRClbujLXz94tZzgpbHX1/K8dTisZUqiL33RDm5qeZhpWwUwZjE/x2zdtodvZ8VbH0HXpoyMW6TsRWIj3gJPegKNd1kwS2xHzYY1ITva+xod/EZr+fsjumPDFCDs3ZrNJ59n80G/OBRl+pCKMLaSDKSf9by6iuj+NYQFHmGUwYk/qfJ1aAsJ0GMBuyc8rXA8tsmL8T9Gss6nb9ntffkCxiSqux1Bb+Ug6mKBv2so3POASMz/pjcXXqUej+qhlZ5IevUiw/rXXrZWiS8gyOm9Q8Sj2mhwczU3lu2E5LELI0w5NPzujdfoN+RHtkhIKWYX8XMJTn/lODiPPOv+RYM8z5ccRobyzzX7hOH90XiKPzPBpLpBDXZy76Si9UfQIfsoBrxCEz/p2yVzi4w+ixAXM5ui9x4jXobd1yJkTgsN6Xiq1ZtB0l3ihD0lT07B7Do5Y2Ows3oLLosa/6yiy7a6NvVojxYBviXxyJ32Zomf8D9tkiTyLwKypHm83kI7qCjULNNmunTxYT3tUpZAYq1rp8SamTEO3rhaZg+d/vWFboIYQkVVDRdA99gTl1+Kjqcq9STE+Nm4OFca9KSx4rxlnHoTII1kHLTXvniC0AtMbKhOYmser/OP0d1HFB4mQGz+EYGdO/MOao129sOV5ERG6MEw66NwGyf2jm1mdCkeVPHIgH+0OLejlHrGt9lEUheYPrMMcT5bOR9lhrB+QnhYpunjF3EGSaFX0t/hi6RJMoxJJPkdhmlcCxJN4lS75/Wx1yO9OdauYtr9UrEJrGjilsHRdOEiNW6KwWYnM9oo8Tn8Vx61o3E/vBkB/3NUR5I1Hf6G/xF/ss3LprweGYAHJd3Sf80wa44AzJk8gXo7NeK5gBA+m5Hg6QbOPuMC2s/J/sKT5KLD5wH1kUae4oB+unYbgLjxxdx954wD4KeaZp+6cfRbxp7LfeuR+ROeozhfrDIH2YGXFfGDeUh0g79+AxvX2afWTQUj/9Mdfg/sGOIf9JQCzQjYxog6fLDD410PL/lisRs9vL4eUdEEcJ4OUrB1/dVq2AIB9XfyZ0qyLjwLnUpYdrPtoIluFm2FLC1DdnSD6JpCL+4SkSHL09t1/w7q+V7RG/Jx+LZ9TXqc7YX1AtJnQEQ4PL6kjPe/0O/tRot1BR2fvEh+Lth5bHMluhPG29IYtjWvurlYKAUv74uUGI+kRXC+dd0DZJ4QuAXFANDJTXjZ6d9LC2t62AQI6IR46veLxcHiWdTUPWBr4FVKMmI5wf81abRcKx8TRUAIlMROVilMPmBSyAaDhPLVt3gEwExZp2ZKzHVzcKfyF74I5UO1v1KQN3iwd9VnBy+GxVvFMZqLGFaDJWxRqXLpmDZbST925eNAdvQe4pmEinFANR8rR764FT8CVVEmHHZ+9TpVZIu2ruz0dwrjVAYmtUQUwbG1oIxwObdv3EQmeSMhLf6xaJDQJNxoyuIRm67mV3okfx19msmss0kR0vYQuBPVxXcgmFxJ/Qe8+oZqGkZ4r+xeJL7NmHfDzOzJDj0b83svx40OE+C+Y4DeL4pnEBWErdnQLeXBemZqWFIS/VGmC/wDJ/dcoVTxNPJPqr/41I0BcyjWNXVeVfYEHU4jMvRh2W6MJe9E9NYhoZTYHbQyHWl6q1JuRmoN5czzJxRwotCvTYtQeOOACfJjE7atK0KYj/DpyYFXs8OpK3Sfe2zD4CoI4JtByUx3NQUv36LaJGSGyfEBZmLTxV1P/GbcDdiEeaoRu4oR6352lM1wUdjYe5HnLRy3wNDE30qnBZBTxRKEFFzr7yP0YLepuGtKdCX1xsG4G+bPDDLIHyvGJFgmh5bMwETmRE6tlIvfMKxaSYnWQgJasOyRqn7ny7mZba2d9Z2bzBDoIN/aVG5/u7tUli1pfxp7vuMxQvSRh8QEmnwM1sghT+YX+r3S7U2xVIafiobQ+z7uhEY271s/kWinCZABDd/YjSQ831XoJ/avE+Kf6X9kTQF10EBJ8VYe3sAOMN6mMBYfx+zTx16vvI8ZPkw/6I5iCVh6JF8pVK9QqK2gWZC5o1hmfl7g4KoPTaAllrWRjZiPlC4MN2Ei6wMbzdnkhuJesV16+Cot6+KKBm8kBoClBn0lx+rPkalrInjDpk168PuAVphKkH/odvmHlrJY1Kg11imEx5zc85Oe7vGkyjX6j7J32L+BYflkG6EnsoM4a/WghoQASJoIUfzAv9GI4+/V7QasCzi86Rotk6CB058KKzeRFq7wgBBmHad6ZnBvfeJNWRwkWjG44FdJVAUN8zM/fTvVVWFcLmEellfPGdI0MPvv/tKeelO3WiFRSYxjDf+phNi+Ffhtq+9ExcVt2BXKsh9kBl+pUWWTDLpj1frfogv1jL5ly64cuzKww2AcZo6DqQjiJd/yA5l4wkBfU7xxOE2I9BrpbxA1vR7XTdQaF4dDilsMAtWI88kqCKC+yUSg3eLfeLl5yttf5V0lDROWLgcBmuQLRx31MfuHmv2FsZpntWT57byWUpUEQFbohLeb+AUw2b0LlKUw4gOVbbX67eki+kp+A463gS3tMq3e8kwyBstoNcs7uiz8nrbpDnvppGZMThktZxOl1mzFqe6CrkWdxktFgweQBXBt3NfrzKgSI9GrdGwfyy6bfuGw/ER1Xx9W96wsZxAHICMuPHZvBCwKoI92ASZohYRESthCUg5n4FfoQU4C3c2DyWiQszKpbV8re5D6hpI/7l136g6eIUp6MCWxRYsvXtWOBEzKjdglN8DG0vR12JOR4g8z6KjTfmLuwbEPo6el6CmTQdA20P9fLMoBO28iDWL85JySxbP2ptvUxfOocITN8mh10N/VBc1XoboWjJMqSGap3ra/nLbNnlx+x1KqH+Y3OOBlVPhY0NLqewIPE1JB8Xc1nqWSZ91MQAFLv40xBZt8Ml4BKGVuIwBzdxCofgutabgZhhpealbfWyjLoFfYXqK7BrWQyz87ZJLs30xsqriCjC2PhB2m4Nstj1RJn8+Uyy5d8W+mn+zPWmDHAmCZnZOfUjzTlLMckFVH9ZP2XL22FC66Bd1Xy0XiPBUZ28/0qLpEhJp13XeY0Mt6mPBczoqknbPPe0LHGD4pKJls9POb8KLF+S4s9diFh80+qp2OWx8Kx7xqbuAxjWdIqKjMZB7NiQkbv/JTxlYtLf9mahRD6dZIzjGfJyA815y35EQK2iInNeJuUcoLSjHDxUcmMTfDBaSyR7ra8rF6sdDsT8fDMe1z8vjTD9dCqWtmYiYi3ZopEK8kEqoENLss5T7SWDTFkmytBYJ7t1hvsvTzDGD95m/2qFjSCIvMdLdNFJ8tmf/d0CHWNzML/WRWin49l0CqvDkwqb5GtwkORC4HDRL7JWdLVodKnu5lJWYtfYIcdKM7zDepIOVnofTQzkgIoWbl2rOyTrq+yUEVXzeAbKe6FFJW9S3/YAALv2PzO4hoeIvnApbTDYKj9kmKTX7dI8I1nyqZej6rJMazHcmtPTSYg0KnJ6jMkcYOKnDWqufj+iaD9T3Hisw7JD4+SkZKUgfdtfLXczNcx8mw8P5J5Ti4m7pVxXtSyHqeUJlGBG5liIGWGveYw0NHUW/TkA/nNfoSwpDcNRF94/doSSLTDSL+vf42BrLAF6gI21EnQxD3w6KqskjvrUgPAcvA0YfBpUbR2XvJWzdi/niJbsE+Vrnggmz9cF6lSVLWwHoE0Rb+SxjbPRKKAxrILjkDKSMl3m+tiJEUj3mC+h27Yc9NLjC4RRkqYD66Bpyah+dntgPNSIkNeLsk6oqfTpRAsyBZyrLdYUe/3I2LEACFxaw1/QYNFqF1cDhuLIHtER6zrmuJdnFRIfglawjFt0TwBKF95yr+1htlaq5iy0f5Lz4qMX5ml/iODar+jXTh4yMvsKO8n/P2JgJkUjLN55Xmkx2vSqbFiW4IWRW5VmwIkzKMC2rsxW9nErZKYMCZwN51MfzZfoKbCUsJmeDuP7kwZZTpi/sFD1i3Hurq01uP8XCUMKNSAwCFpuFYOvcfTMYJutHqw3II/HAzFfXd7C4mLEwxTemr9HEyedhC7mftn7P9xZliqEkEHg9NDGuLqY7V2AJn1u/+NQwBMlOEUmhLDaxHYRtA40PfBi+jgeRvY9fJOmRZw8IrwsU10J9Dr03aUICUXRFgPqViu0JhXcsu3lsU7pjkDIp2bbd/IWJuUMJdxp2GX7cRdMk1dOUMvRyU4j8z8xb5MWEOdDsqFLhd7LAG3K92koIYxSaxQYrgus8yYD2FMPuHZ+b+c4lapbN4Cnm+cXXShGCnObhR4urum6rTcrAMdT5mssn8oFaZ9Q3zu/Qt6q6vUQOR2AiDZdKLldkYd+0eCudEaPvrk0SzI7Nczu8HXOEk5eFg57Iki4iWyz1M5z8CWPuBLM7Vw8ieyuyJED+1Qyi7sIdDoXLQ9cs9ODUOqiGQndJdSETXbY0vAQunmGJz3ccSQ9LmMrGeWSafo2cjgm7ff+pTFC7ApgFtI8+HHpvJ9C9Ch3DfGeuBCXcK9nxhNNKO+PdSb8roLqWiNQh+cI+E15syh8hE/p1sicAMAnPM3F1IgBpJVofGrfnNzypOPGLaygLUK30mgE8s3ij4i8ihc7yuLJKIhgmR5+omlpqk0CVCBMIDalNfEorBOy2kPJ/JM7SqprzYUoO/7yUB5iBHVeNKYezgvxCwBm/cN0KmIUho4kIZm90ee4qExEYhSuZ5VVKJLYc3cHNPEFbUNnyMZqW1f+JByLqpvauLfWl2KwiQK0EEoaqZgl5AqEeAw/Llx6nmvtEm7oXhMxAJlHvRS6481wcO2skJsPvEuf/Zie/9MpKxl1Y1eb5affptJaVDnce08Go0TieGEIMhJtuhkJjHJvEdWl3nhrLt/kQSuTH3D+mWxKKNXsxQDlWqF+sqJhYVFG9kSBaRO9zcVU42UOvrjKcVl8gGkOgroz1Zk87x8H87RFmMe5L969ipUKJ9vlMt0nrZLFHTUnJLsH1PF1VEZzOWZ+twInWLZjlR6UsStcUv0J1fknm/Pqb8ayr0LAqQzlwoVOJoqFli5IeA7xtpb9qYLWz0W1rqY43PD3Yg+qpG37U6WO6rpBol0tZn1Y0xpxN1TjEhAqOePFyB2ZRJjPEkkfCnx8OjbrPEbr/ObgZLzWKcGacQ6iKPrOy7QQzfp8oYBNZkkF8jhLQAZFDYJnyE0Z2SjgqVUTAJclfxqkaIfwjAc5/RPg7QJ1O/oCb404F8NcRCuLk5jbSJiQ7FlB3mI8s8nZTYB1Lmc53Cr5HkPpvZdTgIJFgBkOC6sIUg1wC6X1SM2efnvVpdWhnkWEvFtjjAttONDmj6lXGg7r7v9kgWJ6yirqClDHKcn90M3Fe9640WHVRepzVZwovCNNRuq69hDXiVPcki5UQ6G3YiFS1LbWEAbHBz58nG9OGgEaCkqQq6rsVL1RMV3ubzzhxGOhjfmk6G/+uceSdBp9xl+DjTV01u0Ta1mnLM5IEaIMUuZBeEqyvvNKIA0IFzhkbyFgsk2xpKOg05iegEA958dVfewWL61ipzcr+b2A4om56F/G6pb/orqHeJJAnX2Sud/csEwj9AQUwnMn9PxC0km79Hbqmb5tOlgai6MSvT9y41s3H3zpBedmh4gBYwF5RA9B//PuzmMH8g4D7R/HJHzqUzRmCrxeJmOpUyjjhxndqD0TytvPEERNpdFi+g9G1vG7++FCjSe0Sp3ZlZFOZve6f9jdEQhn0h8GWZGlC6y7T8N+nxX+2R9KiwntlspSj2FQu43B3wHs0RKwmtF23g0tARcgLfcYPfK3YoXsm9s0Rpq5LociGvqmWrvq69ISrx4XaRGHgSbo3YG8mRgv3BJwNz1hQptl/7irSNVx+QXdUWU6KbKF/2e+LS9tQjvUhSOC6Wa2fK8rMHcj/YdHhZHsVRg7eKhvsrPHEur1tn26S8oe281/1TmCZX84VloPoQH3mzVkrtwxXnrS9cHSyq9/6c/5gKmfChPvHnIkIzT6ZAbm1azw/LCkqncdPMG+Y753O4YyZblPdsWVh2HsZ2Zmq53+Rlg7JEEaRvM2qwtSiI1uKUUsle6a3gLlptVEJ6xwGaFiPwA5trLUekvPl57kXLD9/Yf708jX9UiY+84/avrkAW6mgXEiUcLmMdsnXuIsJAyeAYo0YyIdyXq6o6hk/pYN42i2pm5lUbu3TPKq5M63+Tq1/ia3YNSzwaBNbrAdj5ZknC29WRGBBLbv7sEctJXGZ811GgeMpIeoeyvHyDZ4FQ8ICL/No9vOMlLFJNO4tOZ1hSMeKgJA2q1SF48/r/cu8BW6wbsy9rBGiFXMmeyyOvXuZAev4XZRzf/SrDRKgI3SBPxUEMUxtXBPIb7DUeLUFijSQjLomLynSR/qlXC+KmrbYwNWqvxQfZU3PwT9V79LRHvcHikg989Rbb+HypUfcSJpZuEaFQmcjyWIkGuwMM6v5JKfHx/BdqgJniI8mmLr3SLLnLEZ0rMJl0aALx3HZ+MwcioHG8V/fA/DHXzbFSE35YWTYxMct2dUUbYMq38DzSriBHrVj/gVier1891FfMOdSBnIsi0mIkSggzkQSjJmcYM3hl65W5PIXoPu6w5KPOM5Vfy9d4JHoVojjX+ryFUWlEwLS8cXdRLI3ESsFgLgVm/nlvIYTBT4gD7CBg0rIVwcr+S1rgCSyRe7omL8syBksxOpVbhaH4GtTINsT4v8Y4EvCxYF5ppVIoFQxj7LjryKb3xDhLma5AMqo8IyrKzp/Rj2988tse6caloMtqVS+cIe70YY2yLvgqMbBLln3IBpnmtJrUnnDZDLnyf4bOkQ3zxIm6QKXIs0qxujiQgZcZdfetL+QduHblM4VwAUtJlmpfR1J3m1IvHghQTubSwixiSLLIRi64A5arbYuP7kkLxshHRe1xj4xij731SlZR17x/lcjSRPa1g98ko8hobQYAULMC/XwGfHN3OB6QDtkHzwqBpANF0XDehwUhdf2rLn2Hg8Lhi9k7kEUt8qVVaieT+SYxNvGrutnEyPpbGI8M4m0udT+UFAO4DNrySO/KT1q4dyJZ4RPZCQbj4GBQEr0IhwBKhCsrqAFbxoWW6P5RWwhB4mfc2xsAwLq34CTWmqMIsjV62TKUDkJxDwJH8dtDgQfwJ61ezxZERpelO8eXvHLmyqj5tHji/clN3W+SGDJtmQid+h0Jogup+94mLBImvg7pi0zovFFtRo4RJxcFPclDTNXz4ji0xJJleOiq9UNRn8bFq5Nn5/4qQsbU4IWGcIE5UEtlA1Dls/2cuUf4tjgw51Z3ApamFbPI27zmeivqcZ8P43/Bh8+c/oNlCvEzCkEd4Kfxn5xLbXOPTkjSMZhFn4cbVkt07hV+71PmH5LSbvU39NPDXEfGuXJOvN3Axi17kh9tQdHHhiLevtkrVNrpcNM9g8dWVEU+L7tKZJptixhGjpwEx456nuttuPZ3EAyy32F9/eYaEtlsGNh1sDKXozH8o8/jkY1qv12OnjiNf4LIdrHwcdyhKciw5HQyhJM6ldX0Epcb1Yhq5hFXJjBGnke5/6Md21hUlaj2sJVnjVVUU1cmlKRhIyav7lfRpNjfN/wb4eidES+F1Ysrwv4PvTGPq5sbpuJ5MmEdXyo96Squacinr7DihOPJhD1gg0MVn/94rIe2lboLnzrOtQuwCi22pTDNBDq6B8MyJlMhq9APUV9FR42IVERc0PKSDlNhkTci6X8XMKFn8bK28BiBETXkQxo2w8/WJLHZVK2M6aNYXMDGCVnHJUXtlfvRDV6vqCJ1cfaeXYPS43+Pd98Sgjk/cFoh9mM2HyEsaxSe8emPJ8Ofan2+AkJYZqE2n8lpHHW0pbzXZBVEj6fDzqjdos4Q01lCgtno2nYozzyGMK3hIwC3gPMA8sP49VRovUnXrlN5OvA6+KKtMs7LaEIIR1ViZtndEKUdzKNBFwnDesJNWPIt+03srq4iQXhedoL6e8g7SOAPDBicKr7vpIyylIRCOJiL3M7qO4sDPaZ47j6Kt8JCYTvJi1ov5WNKLZG64vcC+zNjdji8c4+xP5dD+fndgDH11iQ1VO/+60ij/klhsvZQ0Mq8aovWIDJZr0Xzk1qapFRwHuOFmGp/vMZpaq99xGIPXhJBC4RpOC+B2E/R2nzvYl0IMg4+IMXATs43wrsk6kuYtSnrLlQm1sI3Io1x9UsTfPgeQujddLKTQJQY3CO3QNEW1Bio/SpoPIK8GXb/TZUHz/IbDoyTlwN1dll6tIfkY1Ctae9bAV4xrcD7G+C2nRFSimVPZnSBYO++wNu7Syco2hf9VacIOT8cyMdK2ntIE6Jqve0L+zeV4+n5ysIz0eyRWEqTSKkPbULhfnkfFR/azh/yM6tgxPGHPiKvVP5HgVJ/OCKFXLZYu2ncndVtTY3IJprXS7FgOjX3l99+7Ymy43YYd3JWUUEzvIQL8R/uNzItarQah8agU0cnOcefZFb8/c5d8DwuMpb8/3JchC/NvlIHaW6Qt4HlnmRUECVlIHc1RXzaXWEnb16z633sTdDn9wNgvAa1yp4nmYErarFTe8CwcXpD5Ehs913XFC4uGGc76nNVDk2QDKGoy9sHsHd4ah1kV5/qg+51t5TfgUyglJ6ecDM3lr62w8DiZXuVQmk2UG8qdJ2p2tQb2/rufBugjJlEypm745Qtns8oUCZGSvJvHWVHvRg7oT7zNs0gj9JHON/5L+RIs3LB4wWuvlsyoQmzZK16deHVVbczzfIk7W8kYJ4edFPV+hXP8wiNfW/UpboptZThn+QtyXZ+rceatjnnsKV9Y/3qfI4Yd5Hk7XLGVA9aYAwDrTvkxVFPYIoseMTPNibhgPZlN+lUlNHY73f20rqZoNAU3kgSkE+WFxKCXxKlDqH7Yy/uP0Z+QryAfZ7PooEVB0kEESvzKu4BY/8qisI4hy3NXvb7GMlDLPYYggQWTjPCQUHA8UeCR0proOGR9+5Tn+Z3S9dfpeijKxT2yGZr2lg/xri6w9pt5V4I7ww6SZRqj6xF3T3H5g1uCyrDB9NEdhOfcdEqPcJ+xQIxb7gIrCOdUFf3H/DzglzquZxXEdKSos4a2VFYlzV27pftklLBcXVMj04+3QpxA5lVV0f61dpXG24QybtTAikcehfdrS3qmiAdbni+L4V+88tbpFBKSuAez7ToagmaqXQDz6hnaez7MKNJGhC07TmOLrRhRfL9ZGJhfU3Ui6PzbWMZOKY0AYY9ssjUNGaC3J2gHfJN+xjmmI7YuLbgu2O/5gMcnbqcgl0l2fhFtr4MDIGT+PH3kyvxSaN/qbFZMTs8zsdnb0eB1hGlsa8VcODr6uqfLGBLUtgvIykmZvN05EmoU7323erJoIOYfu9vhwRYmDsfb1vO9DinblXkg4UT6oeZj/JpmKxLArCPZw1w5/ILWbHRlv3Ymp6Y5DVJvFjtD5un2rSGQ0YkoUpvNxXubW01jVEzPZ+LlZK4upO6Askii3RZzDXnto0oP+w/ABvmK1MnYt/h5v8P3rJ7CRaGtywLRCQj4pRiKQ17CqJhmG/RP5PrcljMGP1IPEKM4ehpHbDCM8QgeY9+6xnAZ/KWr/O2ZjBV5RtrA367b6uwTtv/URy6uEKT+heKbGbWvsGLya6i9LyXyOjEsP/3tqtaRWQ7J+g5cCKBLnftcdQtRQL+HHcZ2o9lSxhXaDzhgCHPgN0i2WENapjtje5JSB/Yk4ZycgWG99Fy9r6NTnhYEb70GaGKvDXOOl9ImeMU/47Md2QpAi/wNDjsHVOf4QxBt97Cmfw0iHlzo5isZSarzWfc7ESz+s8l86ooN4jfvVfJnAaPCMmf2rEo00hNzDiPA485wXjg8m0mnepw90cPKW7BTLHKCbQFG99Zem0M3dPvGuDQat4krLamQoAMuWZIKjtxO1iMGZWVDiNYIcVFRXKF05SlmmWXxGIsu5g5CnsfONoUq8ZxoNzEpMRJax8wCz65Ji5XjTW4yBqBCm6BMmbPV+Z7efPTykuSfx7GTGeEgXfc2J4YH9hxOZXfYZDdUUmbcAEqwJC9uuGk5pmQI2RCNmdKdVZvdDABC2NiVIjCFlDREFBNuDsl3/u7jLkZMPNST6DU8oeFblNlONXDHGQBchmHakXIUcL4/i9XjuIP6k/vEF2wHXHmZimEJw/jz0bDO2+EqvxCuinpSf38KyV3asGXuRUCTM/3dmIEpzTkughjea55iqOBLU0CWpyj/jFCuLgXNTunudlZNu5U7ZojrUgauVeTen6zUv5rnHYUZ5Qg35mfDO1Pry9N9ra/XV6SjfI9MXLFhjlEqXyOYjxbnZY8Zt+eOnIBe02j9Om3iUTiMqqb+buNM7pVnfpBJZ3hkf2DQFat7mh4PnSzERwXwjb9kJgJVWiXwkQxDR11WIopZmeyAt8ZLSr7MgsVJJ+02jUEVdYME+xJhH68eVBrzSy6d6rttl25C5IH6OyjFj7X0dPwOAxRz7P8cOESUoi+z3Ekq/hl2UxYTjKN/J5GggTlewbUioui7ftsoj6OTCUzEYL18t0fklr49JtcRbv76HBVxhmczBoaZdVhvDEomipo0ETMpvCNjKa4OXgsdxiltDbN5LeG8P1PHa5dwJ0uFeouVoAWjssAW4UD5wA57A0tcRiXkOBxJQk3FkLRHxAh1qGIy5HX3p0aJAg1+b5Xu6+DsioS5UpdD2Zm84mWZC3LMh/MZL52wRvJMlXil/hN1uUxffCEY4EMs+Rfqi5QLE2M+ZUKN9aRsgkxfLWbWdoVTFEfcTQ/N72ErhXuklockYrzO1TPLLp35kVH9/MwtfH/wFali4OZ6CvhMAJABlweH1tjGnNtMh7j6QVsU8t3k4b9e4HxdxsyYDjroscLWmhNC1ztJuOoqvKB6F+vsxChY2Xft0UqNDzRCfaqlJPzJhb/AhGlrp/6dvYFr5IpsYL85GX9229dsFpNiH5qkZ0cgiTfZ0wZwdppStL2sZnfi8hj+Uq4Kp27XJj4SlNh6Rxu1CG75Ox9EChyw4G/IvKnHmI/fS5QVDMaOCSvTWbsirXRhXS7tH891VmFHngfddpvzlbDWqUuJbZhfrG6pvh3XbCeNYf4xRPcwEixoAcKd+XxxmLhirR+uagEeQjIcm1ttPtdRJIoOL07XMU1IrOPZoDCulpyoGmKKjB3LLPlhkqCGFmj8XkeDxpbnyxbJeTT6xawlvixCT3eA4jvGrTxyBtG63Dv7EFc5C6COkjvp0zQ5uFBYyWEl/Tep4YotlptDSmzdWq+zN5AiHUkK5Hrvgcq9qjz6IXtLhdZtTHhXCZ09GaSGQl/hzpqwX/zZ10WTAw2eYkkrHqzfF2ymC/fpR6wePrbPvid1vpIgeYY2b7Whj1neQqLOWBXH9rNPy5xhlBMUh28P0Yaop0F66UeYYni3lV7fmS+KMRzr2LzmZ8sUlZq0SCPikIehyxfsb1dbmQauBBOF5mrpVsHRvXyZ2jr9rQqSoKPSlZsG076vLJDis5vQ8woonfPO8lLabi5lkna4PpWZOUKWiKr62k/jretGfqmBnAk9k3/nl3++vX4HT4y6y4UJqUQQU7Hb0+XtTmfhUGS6rFaIr2vltMk9is0gmDjKJKoN03t9LTo3fQVSM8DoIVBwbfmxqmR4JSvzjhDJyts1Q4w9tWCozHATCik5bWBW50rONLVZNTyX5HoOpohcDCKl0bizcRRiiwySGPmAT5VHHAfLzivaf/CvOY+FrjnhwNpXtFvzWrnlGgRvjUVC28+Q1bADnRGDJtqlSDeWN3lKCzX7pEZWpCPTEj5ZvbsuNr9w+V3YNfibURVpJe6Jnhdg6n8umZ5hF8CscvldfJ++5J/fQCeODBmFokCALl1iA/fhjfECtINTS4BYqdvcFVfioe7HhAG97YvXwGMkSTzvWV/WrrHHJn0qwyfZMbfLZTU2l7/cLWNlmX9qjz8MUVLaZSp6Pf3iTUuYBOnvjMBr7UqgdGcLPyGesL89A8V/KidTFtNvN3jsyBhmAhbPlP96rFxnLWCMnF2FRikpJIJ2f4prxjPUk+hGenpb0hHWbLUvjflUsDgn42cJulj9mPL+KzOFhd5F18822C4gpdou7ifZrw5MRvkfVHFBbc16CeNAsYAt/y34kssZ5t9SmFdDgDg/V/oIvwerdq4TB5HJnT19IhwA68lu7NnpUtK2ova2EUjrdl2XnrPcVPtE19NXbw0cANtwaa3l2BTtqUmD1OEegep00xGoyXDHx6c1iz/Ts644/MeXNOhZEsafYzJxDJOUx2ROlffQ6Kt897kt/2nHfe+bvbttdrfwiG4wubw9tbtXXy/olNaoDoe2p0lobA1PoM3t4NjqjAUbb+57rtTR5fHqem/sKVX15RCS8lMroo8KKsXcJ2Z5ZiNg0dvqi6JMeX2OJhAa3C5/1KBZ6qctff4G2QXQs4zsCrNothXZT1QunGUYIQzwIf8qfe2EtIzBeI51aEKikRymJb+I12+pXuTATCwCry8xERhv+Qd8daV+0me2SWN01XkVwX2sMGUWGqDb3NSGjhPvQ8oGv3ebrJ/ozoh0EZXO2GSKfWGHBFnO7IMZcwfhFFsz6+cQrdHyUZ69Pq15y1odK1lw/tF6yQ9Uj5W16WfeGoHjs9jW/Xyqhk8cS+7tEBoBB3n7xA5kaq9hpYkb27XZd5NO3lesp7c2h5fxzvFLzbFFbgHQtZ8RK9NOy0sOWhjmbh4QSNG97tcdM/azm35Uwg8YNJUDCNeKX0mn14a5stv5ztyBHvB04Oay/Sb2nRajgkb0J+QnO9LjS6oz7y2GHrTR29vb9cFj6YlmCMH0JLyZNKs1RmMzDFnR0TUb1SNG2N305JqsokdjtPnVGlW/cFxjiFKyGYLMJkQSuWhQ/dcceV/8x49WH+/Aq5jNXQ6kr/vs3C06QOlIfgSYaOp5VfNYHthgBfwFSt/iRGri3vGW6WnrGPv0bJrbxm9wiFPvcYFsCO++N0cSS3MQwLmD9aZYLwV2YCzqVHhw2kU7lH+rWXO1I4+1M8/PhNCyWkKw75Sld1tuCesSj8F1vX3fhxXO9nvCGqpXuq2YeV4BqZ/U/tP28xBNqGqThjbNP6kk/G6OhdPjdafuiUj3dt2stC1p6bKZqZg2FxU77x9vJzeH+3U6g1OAYtFJfwsQ4foBSiGrUMJIqRZLZDB0+TZjZ9911mZL5rI1JmHfKfLoynTbwUVlK+ATW55XumI+mOa0vWh+/l/SpdROJCYN3234V2FZLMW5gcRfbWETnVv02qP6iq9PesglDmb/Mrju/QnucW+uG8yeTmUwc9jiU+5lP5IDFP+LYPTyxBXzf1RhSXv+Pqchx4JPqOx82QUf3cYSFRqqTizGTAE8Q3R1m61PmooC7wLjzn1zOafrkTzT4hxQjEhRp89A1EGH3VDhyEJuF2bT3StDo+5DIvEQiW0q1kGKJA3tTH0QUu1fRQq6FiLBp80cPk62VgURTc9PQhRmt/8LnvHDABpiuKFFtWCYme9vP/acpg6pIzjph9XHfCwwxMqB/gqQh0NiE5kivKanpn+xf6E0HIN8lnJyi+rnfChrZY3CmH79Y8ktgB4QavaoK06wAPxnvMMfyurHhAt2/cAQz9VdehIiZXePL5FZG3nenHQa1S3gJXMnf75NmHFNrY9WXq0uGnYj2ylrwNow1li6hPiIemqVTOjpKEGbskmnenPORuxM351T2dcwXJ+bqGPUwJ38z8MVKbLYx6B63y+K+3psuPI5t9PBV8o2iskOSE4C6ipbxbV0Naj+FSa0Jd+YfFmap8MUyFbLP9tDPGjuo7k578rzHYzFacKkHjMT7rmpyOpXbK9xcO26b62XEqRCQrh+9BlvwoYZymAPpjAPxvxYwgNUo4mNlOVZDje9uDMAkkGb5OY+kChowblQmhckYOHxPvFFnqstQHVOooan8M8eWS1lIy8jPFwYXMf1efB4lW0sI3gEcolKfoPq51ECX+JaHCg6yItbQw+v1/MRvmQRjvVDquzMPFMEs1ll7+IXsrsTJUyEhcRPSYs6TQDWV+oraCqOjHYVcNpzezv7L6/ozGzqdOMPBqiGWAw0e7D3zmG1sdh9M5Vubhu/Ipt1wU5ZX9Z2RVgYUidbUlS1XeJ5pIfgBNJLX9zmxnlRoGJg8WXNZRt7Mc2rqOSqbrfZZ1gspRRVxyZOMGTPL17UIqfKa8VAPnK8Qg8usFe9dobLLgcOECZZFE4GQHLpy4JZri0IfCqhQtEd48mwtgNLTdoQnG+xz6QL8yaw+yT3RssyDdnKcFbvmxjdacaN7JGlMBVmBKJfLfIPRsBa9KLLsZrviKVBfRV6YIgXDxBz/SL9iaAIBhNEizCQ7VAyA0ukIgiy8dq/AJ+vsKJREiSnz3s2jggmoZZb+4/L0UD3sDXNWl6bIzjHNL2yMRiaiLN7hv4202s0CtLaohQXFqPMYNjtFFonOHMEXc8vPhOIeO0SwpLUAAUpfq07PkvPMBdxNkWw8GcXa/KSZGTos1IWoXOU/kr4NOVfk5Adjbm6fAMzgh3ytHn/TQshRemxTXoOjTiAQGLyiC+5qgj67NlzqXcXTgdKqEEbDu+YH4kE7pZsOBibY2oh3dUsJGSLnydo2Bc7OlRhMdS8yq3UCK2lXPCZ6diu9mB7LR9VUgqf3Egi6kw/BpEP8lt6LoZlfkMhc1SHe+uIr34YOE9r46tZITwQlRmkpm80tiCwiKwhxvzrpNVhkQes5LFrwe4PfBqfHNcv4MvqIjf7Vds7fH4vqQg2f+n+zk6JC+xY5J3TOPQxOHjvEL/mlQ/NVoaz4UtKWjXQnJOE56H0pIdn5Ur+aPIia2oqMJSD3uk51NXIv+s67gOWez/ubYmlW3YRo2wJkD3aW391slSokonwoTryJqYlM9CjgkIiBsyi24ZuhyUtsk5nhnML3F/XoMwJR0M4+Chu/SKGAjMnPdHcVFhPNrzeRZ2SP7D8PlbOqpopKNPyufvH1uK1I6sHKmf/moONTegY1cnU8R+vhbH8UbW6K2vdot/axE3ZH4IdkxRRC/G0acSRERosjWiTNb69yrqfLZmNWeGBTV+JoqbYwXdHc5dIzxfShQ1STAQv7DAQSfibm5iinPq9RsPcTj/ee8bP4uOymu9ZiRjMhsDSg+Ppsm9UGl5rcSNZs+8O+8wuSU7ApEg2ZX+8Aidww66ErM+RwotYEM7L1oyL3/cBq0orrOJ/dZGpqwyEAVOLca/aPLmP7TU5572ICWZygNHi0cVieKFFRJk8Q6a3eHBEZyzMjNdZ4PG71JXYIyP9a5hL3dP8PUpgUygR5yNI3cGbuMEq/RQIB7cz1QdMpLSBdZcySQN+93niMJcoBEnvv6NrFWjhI0GSmScwDq13i0ah4/2Bc+7w9uN7IVJa/4T2TBcR4OMjDFfVm3fgEABIT9QKYizHkmPseTjymELI7tZwpaCDdiq78ibPNbgeQSjYCrK3pFkr0MCG6Dp4JhVfDQikO2L8zov9xbpNofrCLKCqaozd5ykiMdUYOr9jMz6q1Mnk8py0zCV7S1Ts8vYh1iH8LALJoBW4OslFa57fPTvLI2KzEZRzc5nhFOK7k+KZK1MC0vZZt2g+7ntdLLjC44F4QHP325T2adfycc1bjefKgrPBVdfVGBH0JYhxClw/LWiiIomlICQJxi9rBK7LAhXc/xjwGTtvYaSnZEWOW3/bYaQPXTvzGngqKKOn9++ZcGdZXOrDYOeVWs8044SmKRj15NtmxBx3fNrlmrSWp4fHgCoqeqjU/UcitOY4/aSsJLWINWZqwBuNjEvrKVdHPAJsp6+JsZkTOKK9E92Mc0WGMESYkKHbZwscNxuFTQ92OBqfu/s4DURBh84UybPL48tSTJKk1wuzj37qHTBYVIr5xE0UciHiOxXRDVIzgeW0F2z63fTjS5GLR1izfS58qkvhFc1QNtncCUcaon10n7FXtJjyCiQTGeeBI7ooCfVnD0TG8AEXWmwVAXecmL8LHwGItFOsUZ0F2jG8ubWCFfHyw5DZVkBX79ogqW4vHTaVqgINALyAunHLpdPXOqwlHT+uAzO6veVlNDmgwjsdMvjn0FQcOvjkut92oGXBcKLUWdQVh9acai75MiBd3a5APf7d70kvci0fNNFS2ZnOUElk2da6sjdYB0PX48U26VIMZTJvEGSscrALjtcGnG/e5zRE1FNWeNbygVAjPqlm0WtI3AYB9wPKU9QMO2A15pRmtfIfxGAwtVMA/+yHzugiRAeukVAPYlSn/drqEKTvbQv/MhMlFgqIKCmdqYPMOirHDa38GtEvda1AMtLoLQ8vdPB8lejBXPHy4+DdzLj8mZFnTHK/DcCwoOHFbsNYR18hLis7cefCpJB7G94F9+povSCcQrG1n4hv9h4v6zgjlCxZODKry8uTaLU3sZlaWGrN2akc6ENGydpQpO/aUOnE8GJcmQH12G/NTdR7VC34fVRxa2vP5BZdjkAcK5Rblq2daOopPKM9we4azG+JcCPgmeHp2qw7kYLofdLSF/7tbDOJi14xywge76dC4GXs6Q0srohyDen1QrIlUMpy8u5bcGmq2AkKPUEwe3N6L7DNzEhKo/cnxyBfQ9cIhMGrz+hN5skj00sZY1v7h3fygAa2qc+soIhA+0hAWo1ysga1ECS7FmEDDhFApYbr5sxP5yo652TujXc2HPPPchvuBeHxjtBU/Loxu2dMwbA/W2G7WMfDBrzVQ2Dihl9X3os7vFf2Z/ffA14JymwCVnZmUeMyul/7DJ0//rS5DHqzWiwUEBK3MtT01vQmVUDHUa67xbnxU4G9AaiHxncI/NlXMNlluyrfPN7Tii6I+Okb75o4VHo7ymDKhrb8Uywo1i1n++4eqRf5xY6Z7/PmWBYuhRHb04xV0Ywxn5UDPwlAkPzMGqzVhxzRB7n8Ds7PihRJz8sYyashDKjLJWUYosAiZRuWla6P7G5yT7rxXCizMzVGJ2NoUfUZN1i43nurNuSuIbP56w+bu5BZa7queuwiv6abHsTSHyqTvz8HVeHDkRvyTDWmq90z9J/Q/gy+f2XrYLl7Tq8Ujx/5dX7EapbCCcdeWOW0iRMGJrpdpEty9hiPtMQY6n7JMEMkXJ4039PUlU+4TKpHKCuLuQ7xM4iIMFdl7fE8bd5zthxvyqZvrbhmRK+IDxADXNhqUu4CQkL0LacgsdHmaZm1igwldnsL0YuUk+7CHtirCksZ9v0P4qEsG6JoD4sL8ZUEq34cOrqgrwnqeRvBBM1mo98COa6zvqueG4jq03LSsx4CeQqyYXHu7hMrrmVYW0hBit70ZttErYVlmdLjzlj+ocbokIHxCZX2rN+hcL6OEW5CucmM41AC8pE5TbTHpZFMxV4YtRZrmu3LIAdq8JaQYY40alljJXF4uOEf4ABsXPL8QNpxD5VmP0u4HnlagvlOnX4zoiJQ2xHzuLPOh94Qz/+gkvB1E4rAobIzz0I4BOR3ZfpcE7Xo3Go+F0KRKvKShorpfSPl/xrzyfqcXHRFfAIPN5XI4vqmk1bKKiioSDVTsQmDeml5pTQscYkFaxlPd1Ip96RF+EoPhcbKH9oufSMRIsTNdm7bG+VP8keBb5FEJQ+WrO8pF2MivWziaClEX5Zp3XluPLIZ6ipKqFIt6JByQ4ylol6b/e46F2NxMfhEPAj4wdRKqV/KAdtFIVo0sg1ymIETtkHOP4pkcgsdCIWCe7qJCiRbboPeg81e6DiBOCA/ZrP9fBpRYsAzJhoe5MHr3t5IeHwVSFAJJ+7ERlN23T97qWt6WjojxvxsT6kJbh2mE4U8NHjfj7OmPDc5g81lsQ0fjZ86nFl3z/12N47NW4WmxjE2pUXMyavXCnqJDebYH4uwxtzUdhmmzd8gi8aIbIvubkFXTAhCRt6kki3pwRQfZQx2z43iyaRaABV3TKCDXefnI/mtOc/LYCSqt4NVvEeQHj0lz0NDO0B5x8ueZjHeYqMJjWorEAlqzO0iH30WU2n/XoXt11srP7E9ggHtSVD6x71ea48azXsK/qSqjFWQBk7bYKt+naCUtPL1CTqm/OVTkl4hQTzUjT8itka2b3/sOmgpN6Xtsb/6Uewd5sZ8SNAjp82H1ChWoQvKf8IqyfLxWK9jf07gfJEmw1la9OzsI0aqWJMVzg7uHHMSaBKIe2OrqwXxcFjVBsBbDHit/SvYQj0ovTUmRAUR4qrouZjYAuyrDbDs3tux8dafPM5zoHu20HmjETzPNaVzGKm4e+I3mQKNdNQIHb+KfkFfV5uNvjMdA8CgZASBk7t0792GCsu5q08iE6imxBDrNkUvjq93+dybS1cEHNGKlzYt/oO5Vi+BwtNe1RPM9Q69IyEGNtYmUEJ9fqkm90zl6sMdRDg777bqlTbqtSOn5NJTjRC52Te9Bq6QJfq0OF1Wg1XzXeg8+8ZA7WwRjLPmLzfXvYuR6vZ8wxP1cOw80qi/Z/q5/WEMKksJ39KR8U2leCZRLtkP8Dsmua9qASDW9GMesg/w8pcEIbV5TtIHmzPJqDFpPZSWA+8jfQpHCMrni1Iwj5/xgx4iOyi/mPxQMuhu8ZRyQjTT3lgCHcGW7/JrGJZzZlzPqrwPu2fYKk2KvICG1l6ivs6o3GyHQECloh+7Lr1Os0PxoNnTkwIt+iEG2xQxYoV7gTqSTkfmfEw43kk2WQFLzYTUl+cNNPOI9X/wDtYsMm8rD3ZqRME5/WiRJ4UxNmAtyfQ1Q+H44kj8Hr3+eYelA/ofQQxppxz8exrYMMwXsrs79pKl9UM1wIt9HThthjpRZdhsjz01udf35te28/+9HE80eM78R6Kt4l6t+iVqLIeTJDs8LfgMWWniPit5ocKA8fjTHKoinpFIC1w1yZ7B9gi4l7Y1q9rwwSaE1L2UtxT9HQ6CQMKejz32YLI2RTeJuD60kbfR5ee+UMgGh/Zru3kAGLeVD5GWmQksCh51ZxqapxuLPBcBc/8qy72NhudHnjOX/LCkV1+LnSISibXsG8nkXyZobs3chX/6/4bCFNWbQCx4diLpUdoTlgf4vTPP80wKCTksqfwPsU5ugSVNHf23HCHdAnYNoat4tTEJiEqftZwexOu6ienNlRdy3IIoLSCVLlebCMEMR/punAWfDtlOt+v/xbS7T4My35qp76APBUvaSL98zLIXpIe6K+cRYH8buVLlFpBSY2y8h4NciJwMYmNhbAlcc1dxEzcaBz5Xd/G5wlwzdW6Y40zTg2w3C09ipZkO0xhr/ri0MreAPgYB13HjlXrPvX1aMFLUlpxmHS+4YzMswAxbwwlgdrA14t+t7dNgAE5XwHtzwKXaJD8E9qM6uFWUsxWaZsKpWbrZH/hFqzV23gdqUkqI5nb3otc6VxsXwc6neeh4RQnuKmK5km+mAHi4oob1Bo4eXN8x+JisleYpZp/NsxCXIJJumL24I+uXDTK9tejYHVdhpI2WxoIbaEPjXlV2MzmxmRdG5vaH8duKazv7PuC1aSigz9vBCikhWIWUNpsUAj/Wb275VV4f0fWSkOsc3nk/v3P32NxQUgoKtqdYvPQGBlqXGsn6lDlJhervjuRdObHpPMc+Uk4RQtbw4yc0TSRTrSeu4cDQG2JScMykUjWKQb/3gllw1wTuC33MU+gwhuGzfQ4C6RwzMVrWuk/6S/sT7A7urvMz0HXjdNdIYLCWR+IJ0JQgkB0sYUl004Z/Wby/0wdRqVgTA2YPopA2UWJIIuaYli6lrKy5RIrfuI7xJ1KO+DCjtkyAupCNay9MJuJZBj4hWcJQf/AXr6x24lQRhh354p10U9JdLZl1k4sdoDyPL0C1bH3QACyk7faRkKkF9LMCkPbDVgaxz6+85vL8aRoofPKHNEK7wbypMBoczzYj1ZC49DWK1dtwavF3Dk8rjx7UVresf5uUj8gZSOPHptxtUBmQrHTGftOCsmJdn6kC+HXcWLHyf3s9IUUnhjBg+eMaoqc0BBXKxcVnuqHLZl9SZuWluOlBdunvhSqRFEcBHWKqRVFlVyfRnyyrWk7JrwztqlyZfAXQ6FV2m+NiAzvePSOtid/HK51hTB/2ZVlRC5duEzoh73aBbKeuJFdUtFVoshtXqhN2knu0C00Q+ZyCNZmWymv0CUq7HrO+bW1SfAS25L4rj/3Ok+PGucVRE6MybehN+pT76CpbttOO/T+LTehX0YWWh9F4IBvTQTsj4/h7emJ3Ma71BkY6dWctAdaMJdcKb/E/7qbBYulGimRNNzdsJo5TyzNY/mxrtwJMOXiRIgwLSJE1JdmoNKChLrjvsaZJCKqy4SQErZT7eYifpz5El6PAGcFLZ+BqP4cf/cbtz7Poj4C8f/PZrUcg5mW9js3RT9XrQZUkSRqyAuovJoMY0hXFjWMEA6z80/+dYcgQB9pr7lz9vXURaTUXBe92PBdH/jXIKdBmRe7uQ0p9qWop4Fu0H81CmWGT4G5SNaOoLfjEWDjqAbxOGk8qNp4vRvGaJ3KTlCdqIoghdbH7UFrW/F0gzH2CExhI4MCSatoIfmQwyNFGehtk+tpA4KbJIYnMPZwCB6bf8rayToXHN0HOdSKpf/D5TDU0VEFawrfECtdXLGXoVcKSoF7s6VHkimdBjzOe15vHV6Nx/yGnpeWvWlvvMCUN/zTzE6lCePiw9TGsvweIu4Tg9GBp0SA1xLCI+kdJeEblt/JPohkLHK8eS7ZCoQaSZMfKDxxKX1YuYwzxR1IB/g+kfaIpTJchvOPc4IVGFc2QTUG5x08fDxm5+HowmniY3oh1/iNYkuodg060+I0waCmacSzsqvH9k4RX8G8mQ3aPm4Jnv3wGKIAVHeCJJHXG2GborjxgBpQijdg/TvIrk86bOdTX7Goeco9ZhKIb5lMh/IAt9g+3g8ONN5s7oKsSmDV+KAMfPDcn3Op6bXebt5MpYUElrlB82buZaQp3Ed9G2+WE2Q4Kf5Gc1/JXuwkUfb/P8TB72ME7nW6qgnv3P7SMmNpXdFCfZe2iNH5V7UqzRFsQdWzruASLN+CoFEYSlm1f7iu3qP4lY/u2wZ8/HSl7JJ/VlNiUUBm+Ku7PE4dm2Dohw/550YWshAsWzCMs87uoULp1UE/DnXBJsa+EWTYa5mnwATui3cJQapRtKrB/Rfb7lzTQHmXR8jut7CZHIj0kVRyxDGAtqgz41jI5yMZWJEsBQtw+syzBPrzQ6vAOFpbcubNr3ltPv1kqS+orjSLKyU6+dicOgjfxQS451UIky+kMIstOyauk/TQjb2dokmo++QWjp3JkYcmnd/7N+xuy1iJC1+0QpoLKZhBg0zN8MrwVoZ24dai3RUOaPLfgZHpHy0luRzO2IpJ5SvImocnfg9p9pDlMwp20BwopVXvg1G6Mf8jkgXNhlOvqKEmJu9fXYpkmMu4V0jNgSCVksJLWXmsAva+0iIi/XFQgmmWnclqWq3kt0WaRG7pqolfrhML7JiIh4fHYoA7nGSsz7sQsAOEwRvG8mgXZ4+QRXD4Ff0jYqYLOO3dIuSIOEF4USlq0z8A97G26di41SNFfS955RykQO8X9IgndLvEpzDjSqnm2s4QUAtcLMp3ddcgVfIQjvdj4qwyW4Ls5kqzj9GYHKtAbVv9WeH9XL/M4iGbpoIveNlpeOfLTP2GGIrSVQGejeFwiyB6pAstP6t3nmAxw3909q+A8YGgHltzIfiyx5ssR0z997DPLgQKQg+yG6fHa6EYMl12Rad2ByFCRaSA9GwPO5LQv41ljiXOdsecv0znDefAJkw3CxCJwY2C6ccFWeu1WfxJljzXxuKywCg45Ujk2Hoc5gNfPkTMyN0ooAK2CGl8rLUoSlCalOz3i6y0gcIgbZKfmfAn7FPXpYSF+CFW8Yx2PyxdWN8ghlyXYn0cu7L3TXlYBZ/TBOYDdd2rui7py8BImkEBylFosfwZE0C5I7je72OapYa8PReSLmkvSJtJDyBBkxcRSUWs8nmppe/67A9/DBudfcbAYS2ml8bJRKNkR/GmqLIYRyZ81ml3kMuyitgKV/aA5/ceZLRJaTJB1/Rd+Ao0Ng5I2NlZabzs6Zgglh96Hhy0ezqyPdbwUa3/VZT+HDBMG1dU2bhfj/SduZtsfEKCARKpo3WYPqrNV4IbS6tbRfVdYyKzQ4ehx9taSoDxs6mYGCwCfN2o6YWZHAJ9fzTBIm3Qr9KAjpPVBYpoqBX70XQkpf6tqeSIoHqKykfF877zh3sTZzHEWmLWC7l1hd6mQ/KEmaL1AGgcx66GEuCDHmGBtBhXhqyOwlmjwQI3uCjg4PdusNFV2RQ9qSZjh7A/BiL2FYZmBoKcTmabXhfmKu7LGTJTlfzGw0fjT+JynBopiTFKDnNvN3yHq/ASbsXgPShznDJHur6OvSBChA4zobuYqxm1nUapPr5R04Osqc6wq6W/Z1piTU6nAV2c+g23SG1KQSMRu0PMDc5Z9r2uqW6lDQwfCMJuyjhOHqF/+jPZVaFiCG49y4O1XJqESUbr8XwfdgGCUZk28qDXMeckjGGAJyydCBznRO0KBv0DP6r9IRHXkP1MdBXZs+K4tyqa4fkFmmtIip71tef0LSdZceukJjiUN+WgVXkZQHts4jkagqm9ZECprG7ESEOCFt0Ouc74aFDWIo7yDghPg2XYipl5AW67VyCRm2wgNHzjhbEIybE1PRaVj2R81v1oDOCbznl+ubtTzFYAKW4Kts8aeIKYK5fQcWj/9WxH0jtTnOmJFXQe5s2yzU8GrsoDR9ikjRS6u6ekygOixIU5RXo5A0um9vjs1VbX6JTSGLqoY4ayAt0yJYAgTVLsqrog6HbwbAizlVvP6gTrgtILJduuor9NvhHsnsqIrK6QPFCOfSTQkB5oOYHKKftTKxTUzDsWtweZMYxbBnAzmjNuRRiBcedqcHJI2Ocs3pKAEHWTYIdx7IUF2dsWTWmflbKw5TVEolekZ7kz+TNVNo8Oq55frU3ZDEPxevKK7ofZFspvY/vwXieLJ3uB9Ay7i4c07Q1xifQBkvoQkGRXhqAKb2NtM4z7NqNcc+73QjgaAEywr7K556yKpm8XQ7YKdCMeBiEz57WkqiwJgR8Q8HxXIfKiX9F0DJBDyhSLeEn1PnAdmPeXiL+UvTtpw+ICGbcI+b5+/Ryx1eQ0mwP4uCxuNZccfg9buQmYm1h1eJ8pmDlVq/0XfARPGYkYisGhsgi4fZd7+Xr9OxTF1ZFLyb/j5AMyv3kNpGi+URLHSIfOfrRhmonkJ3cewKem4pRDkK3oigG2vKooEO/KoUdY/xhGAkqzeDv44dvcYttfG3Tv+AIhY0GepC+FB5wGa4/GDhFH2MfNF4Tb+/IzdiW9LNTyXC6ZsUyJYSYuU3iUyRuTADq7p1JKI0y9rBslxnu6GpzisWx3OI9deXa+7GD8Vv8fgrGrDnEmZuCXODxAieeoaRwHb2cqxjDcHgDY8xDh3EhxbnLuspnXukFQp6vqbYG3jS3GFCQ6HmARf34+oWaSGDf6GId17c0czll3UmEDF/p3gTS2BhS0SEno5Z7hgSAhNKMT3oq5RyndDDWkEKJfHcOXtxdFNnwRsUzlsX5nq2az82rfu8/gK0dMRIpVtk+PRisE8d6p4BI6/FrfjBz/LzCcoVTkoB5yJBsqNf5JKJutIFZgACEGaFnJAt+MXeyh716kW/6nD7HFVP4AFajBdPUQHMsRgv1UPmzVUfdDdqtCU6KUfTl0f0vqWRPaAX05ITjtQgwKJGW88sC9mzR5eG753Csm22KQ5/V55wtYc8noUQkwQcAItSQW1Ume/2wHjOhV81TO2kd+wdjxHTKvUCH4MRA1HLYGtM5N4jstkZx4sGlslkKJQ9iMtZuwX6VQ6TW8bzdoF77y6GbgI8AQr4ijMS0ucVAGTnToQQR1Pqv55/3YzoZeh8jIcabWiZhenZtorQuaqxLn0L69HuexMEGsyg224pHL38Bl2Vjh/J8JBSppfXeKRTw3ceI+yRm1WEO4+cKrp2D32GbA+ZE6MCOMDGpGgKSw1dXp+FsABf6XFmQJFzixqQIgyIZIgDBZqhSGeQvuFj0S5EakF6vrHaVPxpGTxLUBoeNgMrQdl3k6M3FbNtUTOCFAY2jgQD/fKLwnLqBLXRZtB127i5IrQKYnrKDAyGmNOOI2Ip3JrzS1wqrixTY18wh25AKwVBbdK+fMzkcDTS7J07rN7xfK5B8pxXZclwymRwREASxAcC6Q4kka/qWzPvMRAoP8XOzvugfT6UMcgx7oqOJ3+VU8mZQ4h0vOli5665kvCJiRq18bD8rv67wVysXgaLUyvBLh6U5cIkUutjGGS6dueL9dQi0IeFbSL0g3VvvDWsd/cbHEYcYi/R0T7nbvSzOKr3PHtxjVi7oIVsbXz3MCYboJI3PEgxm3LQpSrSg/8UuU8Ogjocaoi5j2yejkln/DOhwutuV1f7ONdTK/b9QVZMJMlFyAruQq/g8+8Qk3KK381JjAVo/tI0iMUZRwLjuLZW3Z50CmVo9ixSsP1imhe+W9Jq6zYRB6DKEjq0uVNZ+2EnEmq4/ksm5nuLpqTQkYuGptMCu2Jn4vH1sb+uq+7C1PyP7M4QptZlUnaJZ1LS/9FASe4pBJVZkkucUvZypxQ3N81ZiAGExCRm0eqYvflJpQnXuBbcN9ti8pSE7NEaemWVoVMPgDINXc2dHip+0d74WY1uECrEhG6L5X0F2y59fO4eCysGGf8Y19pDa0DmJn/KtzGP+CXnxgn2ljM+l+OpbnpgJBViV5s97S0D4gz6y+KddH8PJuUI9bb2dTDa+VuYwcslxQBm7cH1UQHdpFRFDG522NjZ3MAxaV1WI3mqoroi6XZkWGRI7lu+yA7Rlm6igWh5prwRPHIkQ4IZ39m6ochInGA5n4z3aSf2RyaU1sqt/asLd1v4+rpQK3u/RrD1FCASqEV4DIFuLP7GijIFxgByKau2p4NI9dqhXW7wlQQTMb4HuuwY3WNlR0yYVttBxYLWjVOeNOzHM/fLFnl7icvWcBolOAC0NYvPvzP+A7uk0RHuC6SHRU40L3XZKLFPagYWmu9bqAm7/VgQUz6gutXROk2KuVxi92LAgpk49hGsKLjxrAUkNpnAf/xyyfjMhxb4S82XH+54x/Pp8c0W1daAedk1lWNf2hHrdUrAHlZVPtGJ6IhGfWycJOphPs9mQIeDBbviC/Q4wmMCdYF70Yfshu9bPgFVP10fFT6mVSEUhQ4q/JPtnFNkvEJ/K8RkrPwdOakZeTN1Ji3HvsoomSNNeJHZ2YuZDCoRcqRJURUJrfSeltmVIchPhCz2dacN2wDBO34T4AQC0lPb7m8kfSeRULSYtnEKf5Uo9g0VN4xnwMlUFupZfWZ1TVrah9l9Tf2N5SiHA8c6YBAS6fq30lbpSb/havSLnNEwfLCQocrww+Kf9/YkwweVlpZTvdoby6XWfjlEKw2VFjmxE3yEwbFr3qbmRPD7czskX9mQ19pNmYFN40lCt7r+c7/1fDHAn4ySe6PaPuTzjaY7BsbriifLoYDOOJkERJkMu1Qo9e6f8aZbE7aTu0dRDcTbXjmH9eAxfmXC0hnHL2kn5a7oGYIIolEUVlxpmRZ+Khn0ok52lJ1PTvPBEIW1r/786JswQV+9rAyih1rql7WHFsz+s7QCK+h+/KRpyVBDf0pzqHhnIukAXvdWjjet/0YmnkOGF4wGVKMruNjmI6OdX6NuY/gOnN4EraN/5nPZ5IXOYT7cubKPYP2q/O+xoBaQFGfIZAbUCpPtuzKLfmmfZ3xhoBZhYsK/N1sVk56ywGUTPVVsWcDTC1aQov98NomFm2WMFKhNhefD/OVeujhsMsaSM1fhIEFgbnemeGOqGakmsvGcRn9cm5WHK8gh3p4m/Xf3KJc7kqdNuou1O2vi8I7+Wks8erRrVIjAmFpBDcaJcVQvIH6pJiboRbN+pmm4Rband3PZxR3ZbHVCfbgsSnolNV6JJL3nKuM/dLvwlaOErqprjRXSGD6j0BYZ5+P5qfRak69qQC8LG2LqKzqWvFvWNuqWSnIe8j1ZgF8g/xE45qNZ0BPbPDDeMfBJHwzCCfD/ZeRiu+pt4hrRkEeax2SWg8SroXCYVEQSlpsOyBXxMK/fUH3iuQ8e2lZyUsAB4XJScfnGpEyypibYj39vYDlpJUftkfY0DkX9p4/N7+eWYguWTiRwUfaCm+BnZpAFsNWtf58NElI8yQdj7q/cq7S6qRYzuRUzJXeRChXaqlWGZkg/v7dhtMaFRnhCEgY91+CHZZNLJumPgydxuFMJ8K1S1qjF7AOUIJyQ+sU/HtH/v1kaZefGhZCyl4V/+yvkGB6/VpHCI5cjdCBdIpX/JRNKGt9Tl/ijSjh5qv3s4Pslo+mh4ofM8DqGwX3kCCnJ9asFEDWih2NZzmVVHU36xdyqdwp8d0c+RB3nnwEQRtl7xTw9Ld9b84djx7jxiHTFw4Qh2C8MAy92wNqgDb3kmT1FaZOVKykxfNzjdrZtHcggkowKJmI2AM3cA0UGxhufrfYTMIW+mvNP2jEuJdgJQqOKdU2ohsOz7eHRB0MCqQYDlU3DZ3+dQ41rHLfMKdNyUVvxEqXYTzNTp08q1cFTPI+BooZkBlwWzFZVt4oOWl7KiPp01Kn5oBrZ+gR1jZ1P7MN8ZcOkpj9JDdmgNgFrDHpyFMk9SMHFEWUTNJLiy2psFgvLcW8LoMdLcC1u52PPXEH8cHonzWoNXA8ENDkALPoJDgmIIMe18oyQv4MAM9Q4c/rZLwvlY/IpGSSAT0XnxsUqkFORabKoc3HKWHqoyTMuTY8SSrOGeI0hHkDI+AA3nwMEqubAQPTyZ3qAfFHwVp1jInvkmH8fbvpL5Kb39vmIIdDD6VyBlX4OLbbPWPZh+Tojl+c0ORy7vo+kQkCi3dUa/y511BKtEKZyqCB/YUL2ceHwWuQud0kuzZzhR4tX3Yt88ip1W6VN2dubsMfnPasH1DSLH7TiLiCq1vuavHz9Bv3bPll842nbCquK3sKGtIEu5nOLFFfVhTDDko8umAD2+DcGLsePDpW9jVcnvHGQ6jp3JkC6uA4eJDUnSScbjgCGX/n0BOHGIyiujdSLCw6jN89vzjmvzvhEesFa0GxMYRJVqNvOjb65rhgrG625bQOoUc7SkgrDblt3ANFPe6FshqYr3tMm+Xbt5meOnIfW/JzrwCkWSWKj8ohVz8yigLobf5tMoKF56GjR14SbcvDZRe781ggFl8bLVa4XcreTSLT1P7UHKLLfNw3jlh/LQh4rnO59nIH2TJbSSVhGg8Dvq8o8fLTZLx/gbj7fOhzL+MwoiyxM5nAW31cYL00u5Yv92cpWzuSPILp9SEUqLeYAP5kMDQXWwc1BRbAobo8BUyTE6PZolnGev1K8UJx3fiAyzwMPuCGvMPhGtJ3t09EsGGgKIW9ifJZvMSurqqejdgPxLVo1o6trJjj6ryM/H4382BlZJpvi3h3zatg96alo8NwJNB5E8TpnxZE5MT6m5+ZSVdmdONB8bNKRBTgvVdXcM/jZCMTnCOK8kFOzpvrPy8OWo6pJLr6ppc5YyPVCJWLecyIefaCOrVeHlKnCueOe07RMXQd3LplgRpA5itDu2CKi2UWvRNYdljI8W+05x/HvsQ4CC+sLfnpqwqvKM0gADDYoB5swLTiijidCb++JoVNsIwmZOIEwfNU0RtXCgqfUZxVP/ikYoHZ16aCLppSnFOxYZi56r3ffd/7GZseAl6i9HmnbncyUQf+Q3n9RIoQbCY0KqXUiDTCSIsBFdfaSwqdi8AuOO+FvJz+EROW+T1DCtXR/eKWQnmz54FPoiUaCQO/wA7QwD/EW2X1CyOXC8dszjWBxZ/YGFfTGWSmWxqcaYPA23rKnrHz8zRxH30Z0OAFcTmFpoCSFCeHRB0j5nC8brL3OsD15bb6M7ryEIHTsU/byU2PGKMfcsBiKst1LWsyMAQQgtUV8SXv7aCpe363IEAUelcRJ1VXuVVDlRVbBLQC8MwCOwv+GZfNFOZgyP7XAMOsgV4zil8R7rvdCU0egIaIuSYN8Bl6WzWkYb2zRqEMugNqQ6g/30efA9B6PAxl6iNYlE8+jPZwsFkzC/8bEXiRPCZmxlyaiGYg2HDsxGNDo9sNSvlj9TKy/EOdRAfvVkux6NeyrXZrEvM0HrQ/1NmD5lWpVKcqaX8+nSMYIb5pHefkRnV1fPPug3siYMF42I+1nZPSpy8N/2tF3gRtmTQzjNoHbzfG6Skz8jmY05ooL8o16q86U4YJvo7pxg6tGOMavBK5C33HdjjiZHh8bWCklWFMXS+v4Rx9skMC07nrbF+y6CgUVwqBITBbVRuC0n9TDyL1jFxifNVxixz0z8I7euS3eKGLAZJGXNj2H0TNV48yCGZNUdGDvXhS85Yn7sZ5JQ944D0KK2n9HsInisH5d9DRz1Z9zTyLaN97Qbp2l1jlGSs8CVMH5BmdFXkP1WvEHpm5Tua7IFfSXbBWxMlNaNCzwnpzltk4g/x9luabe1YJue4yUn4gfT42G1uIySWwWvunWtGV4d9NdvwOrQBsDDKNBlpg4yEjW/kjUtxdAl06igGYNPIM7bYXLw1BPeFv8xA3lsGRVaMndOJCk9hBL0XzsRdfqxE6I6ey+G7vWdYRZMfuUU83qxV2XTGMlZeTZ5Gq8XwTytNP4Nnwa631z+xY6qgjx0k2uTktlytU5CJBsocVr0/dHVC3HylFZTVGY/DGJvPpupEJmkdTltuAbha0/cB1fwUpwc5M/Os9IoCamtry1tJ3ax3uvD71VrE5rVvbAxPoKBTL9i4S/YpEICo7qh/5XKyUGVwd7T8G8doBETUB+snD9ignAjnbjKTgJ6Aj1de70TElETC+YXQpsNNX+HPW/LbKKRbo+k25ypyMbkABIPJC3m6j7rsv9l7UDSxNziFbh1AbSwEcYe/ID6nGwAbhXpmmsyHCF2aVxsHrZVmUcMBD6Xn/Mptb/+3w0mXyeFWpnS6kQatcWXMmTHUZ6LlbNIAN75bBxzECLSUzVk6Z+RvVYfRkQqfv78NagX9w7BQy11yFxZW91WqK0CHGeZm6cjzKPW7TMjAW/uayW5wJ8w1K+xxbLWsTBvfBWoQaPEHj5w6qMcSHV3fuLB6va4NZDeXnNUudPxexIDOtgwv0V/BgfX7D2OidOydFCoZ6e9x0aa9TZEs0GwdOrxkYVq9e60bT9/AYeYl5qV3iFozz7oh2mqAJLTUVsMpgFuvU/0Gz45OXKvy7zDhRwoCc6gS6HAjCDAjBZSS/nvGTQan4A502IGjYWcR6X8qggX0GAlRjM7bWEVR+ccZiGP0CbzykMCOTtKJQXod7hsMm9VdByc4GJzXqD6LNpmEl+t8AKBCqwBZ+IuUcB8yOot7MOQfn1CVOr3d7Pqp5mtegO3Ct811OrgT0iXL5t6+l2uNUtk/9zRFtRtALM6feIM7DbZ/qlrba2kLgBWcw9XjCV4tRUCVhHcMFbi1zBI6k7PYUjHu5tQJ5WA/pq408M75YTNRCeq77LA6LHKLr44iM1kGqQ/b3l82lMSjwe9xsymo7ZtKVwIPVzK5+TFDY3NslIaWQoFiL36kihM9dyhkFR6CSuK7eRfQe7i3L7Z6jSmfp2xPMESjk4gwedXoSXN/D8BtFddfIikAI0Fk8uJnNsK9N3F3J/lyJaJtGrwTVQd4LMBOFrGDsx9r+QbT63jJ5ZMDMlQxu8BVSCZxbrEv+Ucy3Ndol5/Ye3L8HzkglEw4/aKi+Wc9IxegUKbEsJbzyrmA/7UKXZ2tEtDtBS0m0Tb6bW0G1DUkbRodV18VMkQfiuwuZrgsVoIH+vv3+OzUmomNu2x7ao2x05R/zxCKFhiX9SSCMMIw+AYhJDat2U6O27SSdjpafR9NyAKrVO3GBU987jAy9JIPwIDQ7xlVz5zu0svBW4RirW0g/4CP2rTv7mf+GUaQuuzaq2ZF2wWAxmUFf5nNoTI+gGMGGelA+QlWZE5HFDIgXxlMl/PbjIRAVB99/SYYebE2jabMBKa0SlD5hn28eqBxYl5X597fyHYBaL8Wis7s6IvKPRA2t8VtXBAmEsur4a3I9V39cpPr4cpesFq7Pj7LMaC9qHYz7uqE+8V27qX/qyuF9ee2xt2ipEdpXfLcvPD+0tkIgW0YAjkGG1B0oSbDcOBg8PzIjLrRlE+dNG51EsrfMtBDutClDRIoHInoLtWVTizIUTsiMwHwkZdNf3m00koXTpr9CHwGbKV5gcM7RPREWo6keF2TYtej9YOU8ewX/KVOXwBV6Sy1+LX0ssrKNx8bPuYc125WqS1YZ4lDpGugK+5XCkmLpWINj9SLi38U3RQy6aSQ+TNgtec2Vzartohao9brt10rH8cwZwLJj+x31VrGy33aJpQ+BR3mKO80oOMPuxlglwxG3ZiUI3oj6HVueqxzMZ4kJnkMU8lt/iRP99NFP0EP4MMgkkZJS8pKKCPMTOmTYpFJ4Kn4PbaWqsTgjJ+7bMAeGgTcDK6k30bOIoaqJ9glcjkm8Amg5vtIn8FRr9Y0IPuUD2/dCexN5ZHqLofgoXnJ8dmN+8GMeVoEX+ewWpqeJJwBC2X24HtgLgJ2uw2GhXeRTq4oHlUQKyD3PCiQRI7T9SvyDca9WWzf3ZHyfJsfqReuFuPi5aHD3KKmc9f+d/TLnA4LzvpaBxCy3pBX0ya5uZttotVmMCSKz9E7kX/8Z10lK6iEYRp6ixO1tjgQ+EiZRTYJjiOEULqWLIHq5/fMatR93zEv6TD98Z0kTPmpgnmjXLWoCrhHs2TD7KFCN1QuE8paTuswnDaGz9X9ol8mafkXoDrnQsPQt3p9crmstnN5d4ZLxzy7xXTbNTUcYzLHRxwGjhaddevkr/n+8u77+JH5dDhL8BooTp/53bp4Ufyhz5/FWGvcsbwF5Rpp2LzzNqUlDb6pbcip/zp4eT1o9PbgaGczMEo3GvkFQjTNv8Mtm/mr3ux79Py/giCJrmA4rkHSdsxURb1xC77AClvhnz0728NF5hMhGYvAUPO8H8acphQTIv0DLOt0SPtm2/BkA8lNA77PaHC6LS/kEXeeNLDsx1Q+TApNhv0uFFsHOpj2cj3j9B3XrXakMlWsnY/bMNaUflQs8MpLjt2u68CbMeVev1Ah4giuQskrGqsQPb3++Jhz9J4Qq4uWnQrGx9q76xqxx3Te+4ACJcRN4DI7odYXs+OxZOyIxucWbkpfK/9NpR+yEz030JVyvXk1mQvXWhfvGo9wvEPXlvyqjCdNvwdxb+MYCxYO01UtaKk2o2AGJStfu7IsKxhvrLJ3w+6cAGJ+VJYWgm2s8713gek+9V+SU6F3iFEbo8Sw8pgNQ7E0s+HkVA7a6ZZLVxfqX4G0cgrtFCMYUVvY127y4pPn/6R4f+1fTtGkFYBBTDjg6VgFqw7wO2G2nWDKZWZ8nD9NV41fpwax6ANGTdJI2JotFdCIZm4L9ncMbRp4D7+rzosmJZKgtc6ADkTGXIWU3uQ7BHvpxJ2jttc4xtlSSCPkPuy8MxqCBcGPqOzWOAE6ABOLqH640I2u03ZEW/yUclpptLLC56yQrwTWqHsrBSNjZlTrN0d6Y0acKjHYoU/D+G3Sius81Xids/Eh3LqzwGtjyIHNohIguv/mEOC03IT/iHV9WePkKTrjnSAMqEVlUcSEvQv+Iilw2KjPpk7bEf7d2KQ+DQ4hTpmCLftE+GQajj/0lRP5wWMeu00sxK40NgypBQdEb09tCV80Koej5eLhPbzWTM2bXFv0N6MBmwpFyeIGS7nqlct6cUmfeMs8w6WsnqH5g1D5Ko1U4pp4kLb9HmrCwNaHI4W7Crege5HAT0mVspQO1e31eoCy7hnXPNJSSXocCm4IOcAVJXJQj5iA/VAudfA6naqqVemwg4OV3slDd67LgJjttFWU5aiu33VD1zEVFmstQMCD0R3LEzhiKSleSMauJ0A8zZ22Kak6iUfcLwIan13xZn7SZ7KJ14tQGPs5qKgLkpqPL3TDHI8S/zJYa9laxqBFsmBC+rZ5h+b/nodC7udAX2VUJ+ANkjG2aNpZA5/KJCTX77ydvWvakx5ISVnSZ9pK0d1uEY/+tDiGstKay6tGauZVbU0XQvApRxbWUb0CDkg33QU0cSSQl/ojCa0zpPL5szeLYbkPAa1dUnJaPkeL/QN52dM3u2UZYRI5uGEHkxDy3xrpnBNW5REyC7Mz1RhD0jPrhcVutL4kSbgEtsZQkVYUL6AW9iS6SAxEllJK3YgmOAdhoGI71NxP9dvfUHBxvYPx827HDuKoUhbVdkZL56CVXAww7Vj9CSdzTHG+TYdJ7yxryE31admrGf53g9EBHATKmiSX52zT7HT63CD0CykfjZWy0SDjSP+6OvxHg8WeE4oChtgBTeBSWJv1jR1yYqvYZ79pLkmR8VspJPglIMw6b9LckEiuB9Pl5JorhB0Xt5d52qALIKzK1tQphbTqNn95E7y54+qkdER0waDXTtJdRvigR3ng4akv3sKi2Afi1+M6dCeIW2tmYUdMePl3YDDDoY+GjXQig8am610BBlGG/YgaeaDtAEF6+qcNtbLFPCskHK1X3zPWVivN67sJhEc5d3q1kXtxYLJzGCUFJDN/MXBHOYiDaIaRscaqGqpHH4XRBJeLviCYjY0wUERI8MBkGtie68dY8oSTLmRzxr4GV6Pc75dSkMTgvAIZM5cfIkKq4sH91FHl4n8NVP44/fRz4oTcFQLlLVOE/cuwg6JntAankVQv63oJIhJB/i1kZLVYklqaeJsYJuYSWOrDP+J8IAAxB/MnXVw7rwsjsGqCsShQDkmLlEmnWiKgrZyRigEvo+d9B4nRcNHHrQXScOwsyyWeGK7FZebK0qdBEzs4RwGiCTOcBvG/OrD5CNTmUcHZq4Jq5YeDjHBUCBLA3TVQx/35NgCfJvQYf+5TejlFOEp54r0F7vG4qGTCfFZzix0vXtA4fH9h/WFmwDcitz0XVGEbh7qgPSnhUCleXTyhkCtJftjf3WNRf7Ef9tKtJBplBhdxGdGYm07iCtBvEKbcEA43Nl6zj1lSh4JbW6APPfMCpGrYub70iKjwBkgZdQYuIFvS9Lzjo0Z4WVnA3onF49i/Pdx1iRHDpHWgsv2iXaOYxBfuRLfxY0lSRsrAVnQhxeoAJ9YzDUC86zRaDA4XImOgHWE6oM04GW3CxML5/g9jD6tKdG13CNElg7Yf0xlvGp7K9glhoivoqheUzBHZ685rSNuwKivx/g1s/6qealN8Ap8JOnx9Hn6GDwq9p0AU4q3fceFSw4rFy7QH0xiG0JfgMntOY47AhJz6LvtRNYNrEbylHHDFoz421JdKWECJ9uxqt4HaHs/s2H3vBPyspJHLcMx8Lzrjx43TkHxfmhXcUy3jd3+n/yXTIHZPMmkuRtIl6LV5IX/3x8Jw1mCYo7QcVNG8DT/Byg2AhzU6GMHyK5S7ihqnfcS//DZPJB3BQvJ2CleVH745s2CS7DMwa2adcAMwwp1wspkzBjp9o4gmUEmCnH4Tvs2+vcTe6ldVa3TxTCKxjWi4Ep41ugouY7HZm6tkqr+bSFT6HkGPfCj3qEKHfLOXzGP6Vnl7m6Vodhho/Cve8OpiST8u5xa1yB8Q8L66sjIFq6qZr+fQAIMvUpWNHgXerHs70pfD7x6p+nOHSuhv6sYPZlT8yfgtYf855hm30l+bZ2B0prZXB4OlLYa/KKXW8uIaJe8ff2EKtRDmh3nJ6Jgy1loBiIVoAN1iRR6H8MQ7TQ8k8Uy1x2+v9+PA8E8zH9IVWjFhrYbWUSh3UxxdwHfjWfq9E5C+wfGaV73samPfc7QCtdMv77oSFNk2UlZmMg/tdm6Ijj36Ctz5PkBJMToobZyoFDhDTJU17WWO4ZDppA9hye0QPXSbHxYu6piMG9L1/rBjUA9y5nCKq/6ZLZOnbfp6rp4XFiHXpemLGVimhjXdTwRtjH7+tH3PsMBe6BnaN9g2N00DSLUIrfyck5vCQX6NaNiED9Pu3xvbcZHj4BhF/fZaC+xVjC2tPFuS6omyo9OMJvHXCD5I7ryDsO06iu5PLhMsZWMgW05g8w3IzWx7ToC/PGP1nS0riiWkpXXJXGlDq6Z5XKncwcVhSVsY/z3ICzhlq2mzzWdh9m58YJCJdoooO4DTHb6RLMMJpqnt+DppEq97h+qR+Mbm7fdYU1zTCKosrbvAmsgzQCrAl5FFVw2ThD/wJUd6wZ1n0nIImyoYn2ueXvbJ2Fyyc1eBv7hgSbki8N3MiVl9BUXgMbOrde/mt42qKLhPUAE/kdf9w0rUsfHyynrNE73Y5GcoNpd72Oz6DwhlANV/kDxEDYSZG2nxqKC+0fLuuESn+SMyR+S2LtibldWoSpdapzYPVu0wuSYEQm0+NLjwHHXvGra/nmdiuG+YCJaFjpJ8yuJ1IDCclpUFkobbB1RZRhOs4Mi+4EeuKXvofeO+zt0hYBNLmlGBW7k5+Jq5IPHweF+V3UZkZsQotmBcTdAi4ibWPT/Qec7Vavfo95JkYo/qxYUgYNmC0sHaqW3p6ImJzwhij1LL/xCo5U9WuUa/EZ4jgKuOqjwDCnVEDYt0uRjyyGCYrLQbVvLXbSfIB9j2VzpVR+Z2H4nEMP/r+rWg6l2GzYkcMfu+Dui/pkDgn2+fQAtGgLgQ4Xck2mKgfi+sShg1DtHS4gjXpwzRxnMH69KeERKhIk0gOUIa/CX72tm1PvM/6LDbCEATvMKmlD+4JhyBFZB6TGr5Bt1wgQB+a2JVNLd0qOTwWjPJkCFHTvYybyAbw+uoymUYEIyxMpa8b07r+fNqjQ1eI10ZPmRNmHbi12ya8sjw6ny2JXVWz04zInGNLJW0jUFUNTfscDfbNugQjMpDUS1KXCFVW2437I//PCowuGkzWkmGBszg2legY6MnfR/UEzzAa6p1MyKN8f1LJ6cPefaFYa/2MGVu/3u7AfxkxPFsnB6TfbkBgluNwcslxTIriWzikE+xAY5OsozWjKFTHzy7TiEJRrX8D8FEQzbIpm300X0QDdl1xFp7gMC1mI72HTo5yKXuypt7W1/F3+ejZgaij96rHdVT97jZtBw58A+zWesnNb/2vvqBCqpFyzN7hysuy8L7b8A5fn6pZSe4cJ7CbRXtvYayYD9Bv0lYlHNLmCKhuP0AclgZqTN4KY//yGx13D0Q+zkiFVf4FYhOaWAxKCT3Zcsdc/izwQaz0zMKqbHDJoLbriOfbbHf4hWmS2zQ2qIpS3beXmRghC9ipJf5kXGXrjNgiZJwt3AVDLSvq16crpxjjgPQ144DplY6li633lk1LEUbThJnD95u9LU3cCL/4jEw6lWCxDMttLoLTkbpKDSoavdYVtKRkpmJTUBu0GCgF1WOvUvqZV5tF8a3aGkQd93MJb9J4abMtRyUi1rLCN10HFHp+Qe85OU4PihEJO8QFnPtAJbCLJrYBekr0Wsc9ynQE5g1BXU361y5Du0MjhWcF3lRpM88ru6yfTsU+qXlHoHOKOg7Lcp5qNg8cgoAlxmZ6PR4+V8vvmXKULMX9auvhrArIePhYDNUyxcnbN3ks1bjivJXkH4Hv9AD46DMqMzMT50oYPenpCFZs9mzntev6+rOjtmtxnOIGLJVO0vT/GaMcgIC5pWLbKEByWrxZoDyop8wLPLw1NFgyknHdD9n/6EJemukPCte96oxyyIbR6a6iS2zdOPXrOVdPtjvngXBON3h82KSNSCmpK4AXWHYKbBEA4H2bmlaePk6xoH9NIsHyvnenIctQll6WUD5efP+/xswkM2wI4yqw0gbv8gInFhs9ljror3TGxipXizqX1AlFXbGpN4sAHWpyVSrbnRumJ4bm0GX0A4WhfITprdPK20gNhb8J/MFbWB3aOVprVqwHo1/VRTakmrdbchZqkK2QkHiw6754C6BncaxZtBQitsnvBQsu7QSLOwSisQxotJclpg0ECqCzVkEh8yekNV549TSYVJim2DshLbP+/iou5z6vs/fPdlYfpT4iC74lKQ6W2x5J4Cu7PBgAnc+Pu/bMpRrTcIfqYrXOolvJtfE0Bt6p2+Iw5pnkvlYX4Y6QciL+ZIsvaI/l0vHOoCVQxJ4TveXKeY7Kn63RZxSHz316jsmDvby7KHWcwLIFlZzpKVzUpuYLW6Z5XwQnOG3Ftj7Jb7xYSsEMrvhzNtM+dz8YDFx6a+DiuvQbEkfVmklALvLRmcsMkjbdu1yfRXhT9OuVZgJFYn71yGu671jo/UGFtbOk0qn/PpjNBSAeF+YO2wpUa39m5LceWCI0FF57pAA1fSqvFzYDgu7OIze6ol/wtfG7S9hUUasIYts0FrHy3PwXcLHIfL4SG3hbqh9JgndjhwZoIvXPVfrsVXNQmTW2AyqHRIBDxHJJqb3aEhm/WQf/EFKSesQUzMSY3rDLcVd/U24/g6xkQygjkJpmbkwog9O+0VQf4iMgt8P27jcUOByhRPUGNvFmMuavPeRwWEiUwxhIMbU2hDidh9e4wryoBJS6KOXHm6/tIcf60LX+eLeaHfInDm7qqQVcsNC/3bItoR1sgQVz7Ic8LZHgl0092ca64qtnlPufiuvQRDoTDETqvBYlCvgmz5SgVxY3IiMLiqYLKqBV89lxldXykjTbgdiayqByj4uICnwgtTT/Rc5SfPryk/IOmGjILLHEDj5crRFooLdabUbnkOUmlLRMv4AER39DawOGlmZvBYgqu8XgOOdIuI58bYUob0ti2qu0Foeg4YvGtSXqnqCUgd7hTWeCZVByUn7cwwqGgY462sppHUMU55eLC1c8fDjeFQiVHuZAeTz4ExX6pBXmwgLQXyEP8Vq20yzxoY/w5HrfSXhYO+uuXSfT2neofpggQ4CYMw3jeAzyc+IAbylBAov6RWhshsnVtJrlpWlfjxiNObpOT10LN8rUEdSMz/4OuCisxpuUfVqUmsXzdx2TPHdeACe2l0P2r1mAVgxgfeGzr15M7z9ycVvSaYy4kFsOHal6FXbdJUR9eWVmpA8fbH845y6kJOXssJZaOk1awS9enaMFW1e1TS4He1HD5wx5ZmtMCY5NisdAYrGT81Rnox9DZkpg1UUZEFKugpaUzENL4+oVL/J0d30cmzq86w9oNQKnZSkraP7gDubROhhlXNFUWQeV7BsFH2IsH99PmTOzJh/I5dGbXuEdtdlcHtE75vG4mtPs51KjPOfu1c3LFz/8XmVfS9qelja2Vjhb6XMacQEy4rIDYTk6A3IPpViq8JagcmPZqI27ZKSf2mLRNpJQGkegIhdgwiXP/9GvSjQqTvxTtlJ89Ijm9urs+lodmX2uS1mmUUVK5DHWtfnYw/NG5daBzqTZ71UeVP+NtlsRDtWT4ML3JlZ2y9uEB9GYfX8csDYagiTuBTm6L2bhL/rCMAVx0Kv8TZNvLHxGpgjs8TRSe/VgKAAq3bYkwB1BeCisAvkGrjGC/kq25K3jtAZvfoF+ydUmIZlKLgyy6ccMO7OoE9lA7s1c33+70Rk7SolbHvQaSFvBQmQ4R4IdGdj8JliNQn55evdheEHlEWH68tQR5iXtafKLih/644tsS2bOLfyi3KWES3gcYrB2RmvLapQrNYcdj3WSGHbulCemI7No6x5Ob4VmRjkN6VAOir3kXK2CApsEfNh+BI+fq9jksiSQShEwuVk/M2rVXO+H+8HtJrUA/NfMNrU/dT/XOQ/xqI+53DSEaczXb8/jp7hVfH7nvVoJ51dE8Fp8OPvwQgZbsrmnOMja8VtZaBmBr7BEzVyq+TtW9eK2MYVWOStYUcsxnjSbUtMBOsVRDhQiHXMJmtFv6kae+cqpI8pWnc3DawGitjXM4Tsy8DDREk85UZyFWjp39DB1zZhaC/a7FV0saub05XOeVaZu3QNl9Tk4/01aJXlxmNwhIGPEuX/gbrdovz/sPEvzjZaiFMm09+zk3VpvN8UtkQqAQ0vxGxKUbNbGqd8jUvF5UAHZfGozotu2/RQ1Tu1/mf4iyCcgyRoIOVoXjyPm5AuACwDOTIUsaVSMzu1W+QOwbOQ8NhnmJF3qpc3AWIGXVBsiTrvJNkaC58wg6Y4pFZ78lIL8cyNU3sFzO43uj95xoRwQQ8r3n0EWecXaDrgRB4SHs7ZKDftT4+uQWZe0XraIgrQPu7M8s7UWpR2JeMH46E4+uBZmVuWAKwbHOayRAvXy9ajmobsd6p05fAKqB58n5PFniymae0Lsu6CAg4rH6KWm2M6BrfXusoBFcdErRXPf3HBUi6IWjz2WIMF3BlkoCf2+xLX/6j74KJe8eyHKmAljtKlyBAb7/H7zKSiybpKZ7jmTeIn1imvJENG9JCXFTOHg9jTETVbDzy+7FNP8rzSUP1NvUb6T4yj7XVrw/uU+O67pjEtzRH5zktRyDJE9HWIYt01sjHj8Q8CxPHkp7grgzPD8c/cXQgysIzXsDzB5Butl9BGfIHJXs3De480bz1INtzeWQExOvAoDgL31nbivG15E4vzSp9G9EU/IoHPZnM8Dj1YE+DDcYr1OgGuEwg8Im0JV7djgbi2IlMk7n1URi6M/whGppr+tOlfEBL32XQgCMzHLvpsoNH8Noeq1P/Kr49119Mwk4Ms0EgX/RWuTluVc4sVmt1YgJC/7yAs5rAu9uB0HzZrj90HNoebopj+xvMezwIcDYfMPRcZB92HNoyKZPtEkgz7Gp/TwY8LP18gn80fYr8hchRfvf84c2M5q+2VSi2/N6fXi3YKHocxv3js1LhPqN8D0QyeBqYee+sEdnCKgHVq9xth9Za3CPioUWa43qV9B1v2sSeAttWWuBeK4XGFD9+C3etKJGmQAyssa48rLNq7Js9WiBEjv7aLb18EEZoxajd6b0BnBlcRuaebiuOkq7DcvwXImFDogd8HKA7gytM1Lu/1oL+BVN/XBvtWFwEkv5LI9su+0yuEBkWv9ZcE4E3FYpd7ohm3EtFPyVcoWnvZ9knD5f4W9+yKUgOmHq4JgtoFjuR9cV5EKDovgLq/HvuTGjt1U1FYggWiRvvFA4be1cW6DW5goIP2sOyBN33OYQgsJv+ER4qDVySeQCw58+71ekHbWyWVIrIU3LgyzaPqk+niWYJcjh0bs8QU7u/P4q7dgEGMAuwzWRl3yLPxMKOgYiDmB9qHPKTD/hYemL4gpGCKhR3bdi8N7drazD7J2TNvaTbnqBDcgoe0xAOXwj5HlnCxK5hmATq8ovA6CbcZfLH13FGeuNGdkCG2+Ohov2j3gYidjHm7YfERU+68nrATXlykoIJQ1SWDJtyU1wThQPqrdzWfKmUG1qWyDVfEckMfJwIRpmIlFL8ercUsw9i3GuoTX3qgLTqrwvzTD1mvPkJhq3KdNgt41/Xw4WspiDo7Evgr4tKqGnjwBJr2EecmpWzYi8884o4cpc7eAXID2ykDIjhI+VeNMpbRcOHIOpsbEBKTW7eZPLzscaCdbeMhe3+vM/ptJxcecxOcGrAAqcfdCydz2zsHN1uCNr/OIZDLy478Ztjh8N26y8fu0pTyRw3qVck3hgyN0lOjCPlmEKzNgYQ2TnoJp/8FWPW1Dj1SGTPhlsTNem2laIFHQr2Xd/eOoDbM9gVh7Z9yjPxWW2xXDJkMWq0GxapfP15PayGD5P6TeD7zZRcCf9Pe3VwjSWolV1wkWaQjdQrTNTAOsPp5oVt4yd6qeUBqYVZve814xKthcLNM5aQAABWvgCnnjEy9Lv4c/YkuVLwv2eNCAuAJXfP6+Onb6ZxNgyfSW3WdA8GaeDFdJMnM4uVhZ6zk1w4q8MSi0hV5Yv8m2jCh6lCUPXBCUmZg9JYhK3mrYgm7vSIWMu9MZSoF0eeNs1Kj+Wlp2ahF/50cmIgcn3UqzBES0o3mrwbJOZHyKX+hA7k7Pq1GjP6UyS9/azMmTEbWN6Cdac8kChhPbCbjUpvLGQgMs4pxJWBboZWo+dj/P3yctMpuT+lJZQCP4OLG38AcUsR5ZqeZomHwgY+B1PsLENfKS1ceAo1baCLdNTxOCPxLCZSw0vPzUeZHfXXe0ctXvwEVLEpkmSPxalmDipszPGSpSHU4/jtrhcELXqguLNUUeW/HeIo2spPG95hEaLrIsN4+mtbZt7wcGZQyP7p9M3TmyqEmadBeITsTNabb1ifpu0cdLG7idVvT9sFxXjUpv/fsH6MSW3KYQrBzKm6AFq+Ws7yHqobMXYF1m6FRZ4CVBnIF5OIIYPE4ROr2ijJ6n4Z76CqM42yih6mmWBfaE7yhH0BLk9SUXRDnvIl3c9UJb0LtZ2i9gPNIfNg8NSKYNOpx8UjlWnNErnr0LJGkodPRpYbbUmDMrtPseBgqB9H9XHuAO00dNcGAynsA/KUXLnQsdY6BEMhPEcB5z20InyIwm6VFTxlCi29aQc4615b9cSx5agQL5GeVUfvN1Eoiiy/mdmvBfGYsy5SwtfpBdXpfqaHdo6AZK4C2abB5ClNiYlWWO80p2ByI9CTsV/Wur3d6LVCdZJlIUWd7opFKAkMYd1hgwqb5VM5JtJN/m6IMfdLfGpPFylupkbQEHSRbu+oHBO6R2/VypEm06tDK+66gLd10uj0MUGE62CF5hhmsu8ZJrLF3+IjopO0Q4KPyE5nczJj3yzGcA8UTmwtUUlMn0ByyfU8wVObxS6e+HqHxZcbfDEcAZqRjVvZoYugO19KDfYi70vjeWal/uf3rn7i4ffZx9xxwSc41waNq93oopZpREGVj++kx8yTmFUHzrGBqnqMl4AmX2imWaSaK7c+zrYSHfOz61QAFCC32uYc8MaW/vw5veDEHdr+gUQg1v7tThPqeDgILZEuEHGc64k+/rspQt6lb7ZUXRGDHiWhHIdU3w3aWioS8yTklauCIoURd4pFtFxiYT7kLmLEPc2g7XFZdd39dyisT/mEDGnv2aP/TC3XI2EIXWqz/j6YYaK2hBOHGePtHN2oyK1/bSa+VLlHe2jDrjZOMU4U/j4HOd1/H3CXUXqBNtTwjJZyS+3rZb1ZF5e5V/e3xV2PqhA+8Z4tGRAnyl7aGBpvH4XzjUyQauy7WtO/ZpLGS0lQPJxzqSaTSDYU/r9ExUiTSdMOMVtgpXH5Xcz/XfT9yYi4egfQl9/IVKHY5a5D04+cCPpPj5eaFaTSnW+tj18KfwomhqrYwtlmLM/yJjSbhoisW6cWODXSV05U+bgpAE7JiKNmnkTU9Ba05peqA+kFJGm7WumKt+Km/6mcOVYvuRHEXoGGOiOY+lT9PHJ8KHpFNQPHwn0D8+WSr76YC/7h8ZG3O6vavnEW2Phw4hfR1SgbRt0svoKWWe7LjBoOxtafd0C6az596wSErmrZejBZObkr24szjVR6aXk4W+RRu0U9M90Wmi+SciqUqrKX6FDIhJfsWZPkT1JiKWESXrAhF0kdJnqPu7eZNYheq1uA38x0Xro5J+ABAFBpb7mvgxKIyEB2fBmUcMD7XqiFfsscKhoIgT4RWcUlBRHtdOAb1CN03SR5ZMMQp5Y1/vQm+iapg0MVoNxqFhp6fbUweriFKyj5LBvnQXVczC+QDhZEuxmxewRrcl6eiPZbmecFj1+IbT3IiqHoVR9bjzcH3p9ODXWeR1Qr3FYTjEatO45oFBbA5vEh8uq/SmOLj8RGmqVPr/L39C1lRpOemf3a2UyQ/AO8bqHLKibm9POim0bEmIjRDvPKwFmTcT3ReM6kbfFU16eQPexZnfmEoyF76pcPXyQm34in2GBs/2HfetIqRlcgTggmm3aL6q+FWCMFLIC8cMqKxOMp9sDqhQF2zrHDW25i+Cc1JfrLWJvBgBgDm9IZNL1bmXbBjCE2+OW3eNiIZWkaFlgHq4LdfVTdiJsCnhyBL/P3xTuI2ASL0RC65htEmdTfKWNi9LNjiU0a2Tkwam7c0mmJLB4g7ofI103/qzA/SkyjZZH8pKFRIe9DdjZRMwNLIRTi+JLgYDxEivHZhVw1il1CeguL5EYd1DcZl5tq/tw3pPGKjtRNgLcBXSRkHC3xVQo2qFAZdji0FL3R0FSYUuwxXwS9Y6c41VTmej9uWYIYzveYKSGb7DfjqIoGFpmAH72nftvpGyCriysVCfZweLOdCdacGHbB9MBXogDuEnhJ7o+FSIgWeu5bQIhJj79CUY/2BOs+k/+ovSDHYLR4xTt03DhLWrRVDQSQJ70E+Y0mW7p+j2Q94/RAIRh1nwnXHyNOGXNfIy07Hyk1gAv3nCfu0IWb30/wi2h1jEJCZ4OdNyuo11zggE8uaQTeUkn/dXfT1lyqTufN2A14QA9DGVIWjTmH2nFam79eA+uqqaZkACAT6zXZOfhlgwluScYQefKOTdW7NtPh/vS6ExYkNp8ICyLnx0OlWr//O/VD/25xFlWvRjaTz5iCWBnX0e6zaATYAeLW94tJX60OpsXOAD1EvVS5KqS2kf7h1qjw7gdFDJRrE60JgQ8/pMGlm7uDopRNhEBOPnJTmsl6UIGg+eaxKJQtRF1hQSjOedAf6QXVp1Du2lNe632oo/x9H+G3YL/MnOXVfsy/11Uq+hTe5Ov1Jm2LAzLknjtNpHSPbxjHoCrR3uWy3cVeHmJ1Z6ryfkYBipz9zG7CWFXkMEwAG2Fh5mmgbZYyI8Z36x8fuQArSI1dCsxmHNMMItuB/9FtHrtMPR0CLU8oUa2rAnr/r3hvo2i9cCa7cI7/e27Aj6qemXQ3rHbptQg+UERUbd+JiwqvbqqVRd3rFVdz60pAFNLDYrT5+r4CbIHRYxyLisH+BcFBEmzO3QlXrPboGPWd+ujSmgPmyK7caU//Hji8hdjz+PUIWmAC2iVfrY/VDoG75WfgVqZP05xTgDoI14gL5M36ctkrfgjCIYC8reF8tv+DjPk4nh0AlkfbPDhYM638oP+b0mGuh8mbXG6wBodedoH3sBpbmfSkxiD+YBRVeDEYGsP59Lste++o1y8dVLQS9Qqq/LEWWuSab6CE0xvHZduWMzUg5K4n8OyCR5gej3V4RcAv3Df06iY67+XR9A48rQPJxd/yBnuDndqjHb3uJSqMR91ld012OoXp+v8mItVPotUTyxXA45+IGrH7LNyTcbV+BhmbVI5Bw8aoPs02YbzEJi4NcUo517irq07eoWsqAhUK+vIJ/Fq1+Bbo3vJkIOdsTQwish4SJa1H4xvPbLdj+xDo4u0q84DkGeRRmKp6diORj1g4QX8cwVj7NN5Edac9fFoSa32aEN4wdmvPEHKC4wKRmqQz/cgow8GP6x0sVMRB0Ivq5ySbSbHDKa9Nrn3nZjwHgaZWKa3BdPLwFDK9BLUpnJ6mp4Z9rkwNUWygeMsW/jQSgFmqI0LOa0j3NAPY9QouG3NKcX9oV0lfhcEcqdmozv5C5i7oKwft/B8DkYl72V9ramORLM0fjr6pbetUcC0PMAQe78QfL+Mbpk4irfy6AQ0SZrVO4oRUsEGeGbLHi4565qqqRvtyLUV0in/4BkzH8gWInjhhKdQRoNl/u3JK0TPVx9v/hv5BvWb0Tbgmp2BwRM/jS46HY+0DhdMbFWeDYN6f/wBRm4lvBBpLJVQj49t5WoOjeDpMuKZFiKLnJ9l7adkzZNPfydjeG0uhKMJh9P72hd3Tw1dzixllPy3/BH9N/jpHzGoQ9wdDGnVDcfMsiInTYuVhaNGJ1YJ6usFpGJLHJodyBne1EaAzc3ZyoVizbGCpuOqSFCaxb2PLH7tHGVdaVDygiu6Q49DAxx6AEL/Z3QoRXDtV1Nvrv6IrcnCt7qEmTPiaVZGVyJzLhOeCT7AQRIZtw5noqTVY2c6FA6VrlYRBsHh1vlfFhMXs0Qp/i8j+R5j+bW3REZmcAJcL4+Dg7svY4Lfk/4+7Kod8RSnOfmrjZA/1Xpxbc3/zX/wiKjTuxmll1Ok/JOS39ZhSHf9vweZn6PU8mu6jsTaaxGjj3BVkFwaQCTqqLmaHQsZuYxU0W+ftnjSAYYido8hUFmiCSKUr2UgNEtJ+EUZ3B0varjx0CsWlhjVgkckVrlM7exzUSdQd8iIqSJ3b0InBRifPiYKsl7EMGyY4yLbOeh7qVE74L5CUY9uac3G902fIm6IquAh86fvvRIPwKPV2FNxabUHQm6DJVSEvqfJIbU2SxR27T7evgEXnqyx9FpfdyQE4hSEC74XPCX4bQL9y5/G7jqRuHgEgRy6qVQ+f3huToC8qDO07ke/0qNcgj/eOG7t5WJ7aakITwABQgLzx/ONBykybl8stoeeG3WTiz339NnhP/9bw2WxqV2luXXvrKzdIL1o1S0CEdPiJ26k76oa/A67plvonLfwiMaYtJ24ph2lyxM0+B9LlTUEyZnJzdVSY4mH4gHt9A8zAhBxmIzYtUlRYwZmCW2dNA/DIBwnoGB+Fv/QhtrkIwLqbbUPefCZrnCYzm/NCRZgTNPypXjBEEnBN3V7jIQSf65UDxivtq6E83MpvE0637Spn438DQkUREunPXlAi37Qa3oVbEK1MbKqo0z4YmXdjFEMO5fwy40D3r6Ioh0RAghdbFco+C51MzJbHlB7iG1YC7pkeZlMoi4Y/DgAulHBFrvahpEh6rkDujTEveZ2xMfYl1FnRqrNstgOf9/x2rLj/E46FJYATaq8QFFM7Dr8gXiov5FcfGZNmyQeFhO0MzMtcv9WyKtJGosHS6xG9ukvpXWMqbN+q1WJBEFI+TVANwjh2M2Yz1qzjqg6Bdof3F1BMQNIQFKGKbAkiJcRTSHINlvg/xk9qp3EVJf8ryvy4XHiqmSGKBjD9gOXwe6NFrXyAhcjGkv6ntd+Pl6Fw/d4Z3UOCvEMMMHDN1HpXZom3abG27FqwE98gYFBGScgJFjJKR3K1KlKJVfcQ0gkPt9C/kd/B7EOUKXojdQ5r66Y5GyHCyvgvqBOpWjyCDRHapvQpUnswi/u0ieVgiuiSwyifqHFgWuQCPY5Oqd9GVMCORqxdi6mB+nCvtaGeQw9kDvfFm7GFX5l8nXnXFA+V5uoG7IBYIj8osALUxscix+bA00SWgW8hJInBpgIUylttjqqsYhFLAbOuXIr+wwBfLzn0+iXnfkWDtzNNUUvmyi4eXfJx4ypHbtGpuzSxk6P25m2QqPS8h0LOZwP62V0p5llKc3iEIyO667zZk7AIgzRZl7On8lNfuWpB+0aJdsw5QGv0d2fDBtcnhLv79AXvL0b2/D2gDEY6y2uho9ez7enwNSGMaBb3HUaoffBgFRCKW03luOVA4ffyQSjLgo+Xwikv8iNtdJwfAwTaLYcITCqoMAest1kyiZbNyCZovErV+vtQ6PTFXNVvjzRYdRz8pX0/MW7K4RFFLLi25puNkq1kBA8EyocvdUobmZmfT9gBm5grG+dcfEE7YpqCI/YEGOwymzTyrMEvsb5SMUvo24qg+2Wyew7mXZNtccIMUZKkQ8j3On51JS3SKxE49kAaGoAnVVrQVRNsAhlwX4jhNN5z/xJYBq32rqlLhwZholcyYmes4k0eisFnSB0NGhnKZul0cYFPCfTj360vz+7tSRSAcgMUR4LzF/h1nNgxyx6SYfUkta8PHbSswtACxEP4l4hv7S+MWiiEjDuxsB+3cWRrrh4/ieakstp1q2NZF4AUbYTJvT5mlXjtx0l7Gm4zw21RwAg6wrfUe5+6kjTVZC3UHS8/39ucGFltET7NPE28buwEI2ED96Ez/xqPMP/wHV8Hjj32Qie8qBcI0NHperGs6mtue0ogs20JdC4lGxvY/l9nWlIUYn/r/IZHtTVTrKYZa/8Vb5YWwtnimpWWD+QNfrpxKYhqP01Dd/FVPlU9rUxhJcc9K3I5FxH8Hbf3XBtYTyE+ttJPPTbh+bl+qeVJnj342Fp+EmOuI7dGfD2AYQEz0oS8bAHTjwkUsIBoqQm1BRGI0Prv0VMvXgCFvHazAlm8kyXnyNdRSOpoGT2gNl1Oj1lw9qgd/0k6UfU0r+rBr/qikbfLp3z/7qwZod5oZ+3/H6kHDwt651my4nS+HcaTkhFr/v3pOCQuqX4D1tyP2gxIes4VYcH5F8SbMhdQ7DPYxbuwV2DrCbTxPmtd8XA9xlHDszYiT7EUErAt31kQ+dMhneVbertVF6G6n8REv4R7WyMcBCgW+IfPwrEvOGGeqpcY/DA1gGYJalJKtZIMLYiQIZPh+AU+Nhmx92Zi4Omk4/VMmczVFc0c1AjbfXzE/OkMBBoQa+mykR0i0rND2BixkLE3Xrg6+YV6iIjM599A0cmg0hzrHLbDlAKiEdA5KI2tqRVHuviPGV++IR4/FOCLUK3d4YgNilEKSY0+AW9Ab1wtA7cRWB8zt8CbZCBUeHlwjRqGs7GpIXS0G10o2jBPMXUpXBmDtFPTR7eL5qTpCELGB5dK+w1YcV0MwYIYXS1jOsbY7+BJnI/ZYL09GWyRLSZHBxqZzrXNkrVXlMbAVED2thGPLEuiY6+R2VlflIWKp6Ty/hSmuAxtA6NmpxjVKTOnu5NQbN2RRNWHtZaJoHo3irvogjj0qf4WuYC1STpK05g17TFlrAiqeSlAMGYA6Nw9M+zsJynnDEbuS/duwSIVc4URzYsLE1W5zWZtCp3NjehDxCAXey6g4WwBjkT///6t5T0t4cvIzbknUvyo958h1sSIc62yMbXFRy51ggRbyi1I818BdFT1VaJRQ+i21rz9pj4pjMhj/sCH9jweeKVQN3B+7ZTd887AvN/BhQyNAzeGwzWCpfCqMLO7A2+wnvyTYBupZMuS68YQH8PHLYmIJhRRlMH/TEi5jzXjrMGeKudlFhzqtj6x78Un+dAbHS/YR5PhLiTfWeRFpoZma5DbcewWYPsfTdtpArEwQwH+L6CHM37WCridk/ADLjcrcof/z/x+ljma5cI0i7rr6RoLM/nWd8KME8VrYkBwpfuXC/uU0xAQNS8xOyr51R2MSOgRYH3EJOaPeJCbK0zntmNDsw5MbRlr+vXQggzL8GZaIG5jUV2IOwf9Q8eCA3jwozCyG+OYy2gcwk97DxwiACYTmk4ClFatvP/mHZTtlGP/azmDR3jy71VL54zH+wQFv7x6YNzVmkdErwWEXIoH1a1Yv1BX6ib9Cjk5sz6s4Sx+9+EaVpROVUwJQQG/H5vCKh6Nx3+UC2FnGiSfR7le/MLxyyEEsvklnI1EFxgZvZJONh8Nns0w4SJz7dZtDImrjSIvit+MaV0C+2xb17jsyndqidH58CTgBzf11uTzVZCIJVoB/8+FM5+HjpwGHGm5Ll7BG16QpoJ70Ul1Tw8zEpTRDxmYLIfYLSqVM2OB5BnDLCvaVgjRLcXNZZrEkiPoAIpYEzUBf/rUYiX8gH16r566x7QPruRvGyqxm7BfX4LPjMB29GEBugQhOgTeK5nIbSIAoLc7couOK1iW18bbhD6xhElHNMk+ldDyWdjOHkQcwgivcfrzNZcEG8uRab6wiPAAmFXJL51FBkpJH+h4L8CIxsVw47jQon/CofEAUazNYJQ2OD1HeuThQc15N9dqwlmveNp1GeYCl777emRQJxyvX6jkFAqnX4vAqbwrC32Sfrx3Wwl+vPVyjxLrbYWbpDtrgqv72aCtD8EOxFqlBCVH4zNGOYG02fM2AgdSgpyORirxhlLgfyJ5Zu9T0eRhRIHeepfnPzyxrEPnPmD1RSP2f1IKY7G/aouX8Y8E2U7r6WZlth35QWe9wZOvrFkUP0bV5cVFCIYcZIIHrGO8tBtCDQFHWTrdPoUp20jzsXori4Valdb8ssCwrFlIyjABK4g1ZKRJszLPci8OWceZ0s/5/pJpPqU5vH8AsZlaOCAUqDVz2CL94wzzHhklbZ4C/95Qed8EFp1FYR7LvzHstvMV1w61tA9MmUhgIfWlbo6rj4zHHO+pgxNJ0LdOVG3j89VTMu8yX00g0eGliFm+9cvdrpNiC5q0h8610mRPvb0XHgrEhLBGwrTPwHvUqVS9jjLaO3SQeqm8didsWVy5ZQXJTF6nr4D0tjU3kxWXO8aipUKLK3+DCD6vcnxs8aHaA6+ERx+CXgNzox2TeyxxQXG40DQbz86bJYI7Tj1CoPRcuFs54wYA/Jys86KSh99QNLR4XpugqeJ1W53Uncden9sweh4h1epUUjeHIDlemdWMepYOmioX+EIRt5FORPxvrCx9/5A0UwD/WvNGgqKwuDoz12T77IiUeFkrp3B5HKWSyH8oeK1Iv6EI83Ed6Ve+6AB2yK40NPKrfiDFYTAvfqI+oRLhhDdDVTjB1z2Qsg9U2WtZPGN0WXCkbAMLL7Add64w/B43erO1vA4/hdTNicIZe9wqsNdPpTKGVaG0P5W2UBt/dtW0ELbkttP4OLDdBzCH/3muDBo+nPC7oGJtI74yuAwCuL7B68lKtyzbr43ZkZAvg9AAXs8hHLWXn1PGTXwgmf82P8FlLWHG/BsalxLrGWe+hCUF7IbGMBKHCSO4fqKe6xEQggdSneMpdeBQVv3Pn8T2ZO/qW56SxH/hA/JM/WPPVj9bUj/xpwcbjIFp8RVK3mYbAr6Sh2G9i6Wy4LFxqrbGiho64c9eu6WnaFG8l+X6FDa0R6lY3j2RQYU8U35x5FX4rC+lV2H42pk+q4yKFQ66Q9Qhr6WkcNMksS2LRC/dUAnEJPId16NAnEKPdtvkP5gxVsCRfK3GQdCK32WGGixwbS6Oj39yJIzw4RwcEhaRFCgrkDBTNVBoEexHCzHIAO+Bz/F+rVq7yT0GLf19A3/SSPXL4dYRdnJDaCnWcfzXyj6pLFtrri1szTngLI4DiZh0ay+NkSA1zTBK8elP6mUW8fsfKk4ZXohvTBFSpWKQ+VeFhCy07TYiE9Qq7YKxudZNwx3ZTjWWxASRapLal5xH4MmY9comqyvf+c3b2LzFt5HJPcg7vOilu0U8JtBKIAE3IIIXJLX+kCdjPMJMoLPyZbRlcZabS3fu+HiKEoW2OZLO8WtTUoo9h5z/e0WbQBwJvOY9QI6kHiFelXnZ7FF0yLWIDmmIEwDF7f1kg82UxVnRIBhtW3vmltOM8En4Okedknvnv8Nf+kb0fCxP1Vu5lnaiUQhZJVXTlGr207N/yXbGhw7IRWtx77dNJDJvCAXzFGKQcL2ziaWh00I/77L2N84T9T1F7aEML+a1l64D2F54yXXgnF/B1zsaKRAwC2gZZwsskQ/px4kPnBmlCbCHHNmZVXHc/ijLYDMPWpdQXDpiAw8yoLqooZF4bTvFbVCJPI5LZQ/eJWSq6x2xRHgQPclp6YWImZubntFcEpjngwwn4t+WGMZxXt39d/RHNLe4O0LlHPmxqT8iFq3idk2hwifUz6BIUO6LEMCIkM88MoeGM13wFdZZmXqCSAU6OAWAosa0rHtTtCfQ3eP/eYzTVLbcE6yyjgcnBBTAhrcwV3hWuBPElO8WAnqo0BpdoiRvo9+5mOgVtVrZM5bhhTcdNETk+pxKcOL4RKq+K6nwvD5Qs8yRUY88Ss8zdn2mEvBBkyVj7yarssZTfXWkIOu9mHwxhbf/SXGFT/2B6deTpum5RBnFmL5T0yrmOeBjL5B6lAhdeQuXzguHygg4Kv82O86OQlJW10lfiNUEFSpC73GLJBgBspkN2HrLanTZYhUrhWVsSUeWnAsB1z49jdgiRWPdkH/sK3GRQeRRDzkbEud4ZhlPsgZtljfjQVtyxwuB7acSB4Lo00ZdF2HUSvwKZ974xfFrbDXCFy76scwc5/VjXfUoQR73xunbfkdLCrzwQ3UzXfhGbgsR5BkK+IFTDnnjhLh/LcQiNCCcOwYHhFImPCzkDgRxhTALNW3EKE96bBA+0p3vUyhG+WIrUepol8RloexfiWazJwEJEi/YIwVm2YoEwsAR80bztJ/7dlE/YrW8Y5r7r/FNLL8hZfbXvw2r78Hhi93m1BjFg7/RDfaGAx8vj2SMe8WMZptryLodSRIE2gJFuabb6BGaKpRZTub0Wfxr0nSd2bJ7Zh3G/AWWyrxHkcPiheSMV6gBuPVf5DPmLIwJjcd7s3siLR8tQYvyu8uQV+JmIRditM/ti0Yk7ZrGF5OXXJvKOnfREQHwwtDH69kvx/Lm76EkwYrFFOiUxch6siR31LjU/FxylNESJPb3bgJs89szAF8OyYCWJb4ZdcLLXe8KR1G9U+37al+9asXpV5/FsPwkXGU5xtWH6hsKVJQGBN5VlYN64TkOQOiiAyYHv/wMR1RBgMifEl91HANvG7rG5B6RRRzExVHD4WBBFzfBZK6sCqenVQ18gdU1kggqtRBu8/BUfnz0DghscgkbamXC2ihaZmwenJ0foLrUY8I12b2KyZBgjAROfCG9z+3s/k4Vvp8Fn9mD9kLxBOgoGAcnoz7iAnhGTkQS3rOF7hQs60CIgllJq2k9tKHbBYxSX/Phw7ZNMXhYXwsvN6l32+6ELOB8EPDlX3ZnGYW1MHf4WRWCsvVhh6Sd/2Ms9PH3t+nCiO1Ii6OwVbYebQ0rPGaa8pdv1hnTEQtCLdizKeAluWnlEdW+NgU189BKIxflM3lIpRfVV9aR77HTx9JgE8jS6X8Ydt2YTWK4odBGmYMiSWQy/qjXy+1p7+qIC6x6RAi200EBVz1CcTmxCGw3pwl4GG47Q++1sg1JWJO5lt03XorpBbqOc9gnbMzz5ibKdYPEcddcSOdETa1ZKRxPrYxrAqbMIC/BLc9l301WJBQIucbXedo38KNp00fnhTcVHGRGcAMxq+uBVutooaVlnM9sVGWjpSrIHrvH6a6j4DEG+Fc5LhfCAPeRSu4zVgDyAMXXCHimeBFzvQBb4R4mHuG2TvbmSBD0gdnXqXqx9HpxZQWzZvsyuF38qz9n8GjSrUkJYe/j8KYuNt55fzxq7JoznBbPqqssxOp8e7xIGHqAZr0TQBjZuVICf43QhZRNtncF4obqaG6rLqbCfAyIJlFBJwKb6cWRi+0Ms9L9kvivSnvkVKfwQJ9mxnAFhi0UCcul23MBBsPQapFyokv6pIbbqH2Xa0D3qtBbWl2agoHVSNb+SczuErpS81LIgqOnyVsOc1bPD/yFNGfR7amdklG0Q70uBUj1sECBt3YgHBOWABPbdEw+SZWKywNGShJPyHTolVzaUK5GXAPqGan7ijb5xmW2jYshapYBVV0NZU+jOq1mv9EnfSdWGZJtVGu8tNzvl2JnT6kuquNEda5Uws9vO1LxF0YbCiPSYcJd8560XKUv8382n6bVve348VZW6ZBWbk8dn4cP3yHFyUF5TlTBr/EYDimlOcQzaQ3eZIoFhxALs2jlsVWO8TiFftBRScGwKNdPW+elbXpq2ONGWAj27Xze5Yqv5zK94HPgq93eZVRTXFdVbD7iQr5nlQ/HYYsaiO9nvXgtf/bHPaAZ3FchwIxImbXTDLL/wK9ApDnE5682xLjSXBy/lMrgCsdrwVc5fs18LnYqb2yfi8ElOZSZO9DjknIJO591XbsZZhYZY6szcmoQeD9HKFYotuS3FX6CRYSPsZnNnUBkwZmgdZlgfbhWytN1/9mgFDAqRv31+enzEUN4Th8r91sDY90a/kKd3sNpThX24xLXeog/3bM6jFxnX9QdBLbsm+lRt1Qwsf23VdOmomYMwo0yg+pKaQwIurYZ1U7lX7Gp4YblWT9RNE0VQ0AO82/PipUmkrMMd3zmLj+rk7lVxtet9FMAfeobhrSrfV1fcOP0iGe1Qu4/h3yPBJu/tOd/wXArNh0zYFNEuRP6G3d2XI4yRFJGK14Y9gMhaX9VWjG/xBlLJtTkickTF0KmcxQwBgjeaXT62j3mFkHAyXrrb0AW8hy06AtVb0PnhCLLC8ienarRHMzl5pB2N5yFsx8k1CZybzxCaL7b1fS2bLhgruTguBMmomH4IJcaA8eSzDcpED+DE0NmLcLkCak+ymHNC+R25PwSB87dnTN2DmcroYBxnMz4yDKe7fKH6l662L9dRNFqMb2Vx98PLdLXhTdnd/yrtZheqgu12h4urTS+WZQ7DBiEEfGQBqtMDbrmpf5pss7phadJk91gWopMBnbRAGc64UUd5uGsM10yakTGEZ0vt/KfR64FIB2w+vIEMyLfKn/keVqcicyWtXO9HZxFRLZIo8f1F7wruZzjWOaGOgxMyjImIdPCavGQb+3/PNQGOSQwbLepyW7KMXIN+DKMJWNqxH+bdaheMSGIdZNH0vksF7UEMA1re6nu/f7aCuag+pzqlSaG/1XBjQ4E7XYFRfF71892FDYs0E+vNeOBVqpEsUOUbJCyqa4U5IpZi80u/+7jZ1iklFpRG6x/BqLBFURYsDOHL1mJxQ05R4G5gHIR33wwJ+6wSqbfKjkc8b48LV025tBdA5S+Ku3oh7MRXr9iOalo1nGNhlVd4iFdvXQjUT5EFneluRLgM0/B24KhRoBFYk6saEJW/S+snH0lP4mxYdoqmA3nBV2Mqdg/agI7DxqqTxRCR3+aHEVuGj95oYjSiNxISLX6t75kq/LziZV8sYWXStkXILea21hZveZGzEwn5AxJrdrNdYNdXmN5JpVZ9Q608jSqiNE/kXgoTlsHJS3HM7EyqSmJiVBb3WT//yhAlszrxW4NNqKpvD3RQAdJNrXn2n/v1YWJXDc2YVf+bizuzT41uojWHuYOOeKeq3bHxL3irivubIE5j7HGH9bYmOQ7st8Crl1k4dH52ljQds7CIHVkzR/zfazYCB3hz/z+RX3BVNMRKe385MI5pQ04WgRs1JE18p/P0YaMJTfMVD5myEvVEXv0nJgdytPNydpXggfZs1mBv3Uf3uUD79tL82p/Y+S9379ToPWf/bupT3h7KxP56R5JDe9lDXfTSSGXBKqO/A5+raoCgiqYtaubqbALs1vrLK4u4ExS0j8A3raWiVHOrsymupKcZez4JhMnYJ4Mv957Z5pvWMht0q5b0mki3zc6DMZSor1e3jbM75Zaa+GocZ8DXKNNmlX7BB5AVY7jHiAQ4WkK6tjFNTS65rfh2skb6kw14FWY+SeSG8wSMRscbsSm1dd7ULqR5dyt3ifwI/HSmBBLiSv3qL1NxhmWhijhdX2isX7qGTKkgGFte4nnp1WxkNhhUSFTax3Xe/z4KUPyZa0LpuaG3U+DxCHfpM3XpA9xpllfM/sBehzojNLuW5NhUNjzny4ioYlNTlrMiRBzF+EyOweqm20jk4aHO2Q7FrnowhXAJpkzqRLzXkoWPkWeFdnKh/Qk4/FBX4NngQNEL47OOLeNYe7OQXpW/sz96i4d9fXt3VZxyzYzFkFR8aNZe9QeUNOQGfbvxhbLDOUqsZTs83nBecj6m2MhO0e+Ai1kgCvf8F+0N9jXfnb25Mu+nOsxW2xae4lc/lNuFf37tol/oP0UCj1N8e/yZ+C3x2xgL+hoWKRrN7CGeMhilDhCdZdae+65xopBtUDPAKzd6c9rknurcY4WuFpH1HAfZpGrHsWWlynrikoNjHPuihTwGbohRGdOl27h0zKKjW6rcq9pyQ3wzV7lkGR0Z2R4UKvTDZ5EmPuFvnZ9oWo7cCegWISyniupZOrQqXNWBQaJ1Dn8hPxKoqeasyJclllp4LCYA6/CddKQVh6IqxF2flCtpzrCvqdp3u3WMjNac3LhQibbEaEYhjTvgqfLG+ZQuSIgnp4e8EHOu25D0U9OMgyxDoEVcpksIl9SktzCyWJjkoE0p7BvH4YZ0+9VFD6PWzg+zpY/skOiR8gUjD7qYoo8vCI2idlDkwedBcF+nV8dbwROrVUXliuzvJ0vDzgdBmChyKrDn++xkv8wg0fVnkN/oG2FzVKpKeU9xnw3FRfB2kbD1hw7Mji6/RvcJf8LsqyCH/UonI/6zpDo86/Nm/ASezkPXfqQ9M3AwJA+0H7kAMOsGtDxhz+xNVgwRT8m8367+0zv28y9kmobmD+6NT1ffVAA/vSXlEA735zR8FWTuVyE+Y+VAmaXWYzf0zNp8xyPOvKLxYkSGgx3P7wMpU3VBOvfLM/RkwRg36l9+Yesk/7S168cmBzslaLuJbE6n8jSa6o+dE3q+cvQhb7LF6VS/e+cFzS7d74DKqqAbgy1l37M9DtLL98HfSNjWZtx7bV+PGRHO7DbLNsWYdT/DpgWQhcY9jV48p2KakIwjgW6iCpv3i6IwTpe416qO0g2Ke+dd8EHxHLcZI05hOH14omKMW7xn/nXdiidiysbuLT60qYXauOcp4vXR0INZIK2BhWrlPHnvjwnFJJpSaIZE4XQqnBbLnAae5IOgqodHvSKt9CMvp/A0I492If3muwr86278SO043TzocMMc5fxNjAZRhNGRpBOc6HKlZIBZKEya+T9hsWXSviqSmTEoCF87Wmlme7ZvAzhHo88VLvQ1+ntJcY0ojOc8rZ8K4TCiel0c5PDJcKeiSrMAwBZR7eX/ElTWXl45w4ORd97ZaHlA/YMCZi/Q7AhdCX03bKVC39Ug9+AluR68+5/vvkhk0GrGWC6rOOx9eS/9081KzWQngkX9a+mSlBT7Q6JFOYGBj66tagz2iKiBhv3uOdMT+D1C/Fc7+h0L7O/SsILszWChA5bStsOTQybRSCwrebKCfjjl8Pj3gJnzf48yf7UncP1ZZ66QDqm+tDWL5m0oFe5PySwuzU1FBYKWwhLGY+2WNoevDEVObCzwtwopXsO2lp8RhvW2B3VxoSyWSCV3URykFZNDrsCKpacneUhrwjNWqMNODuMmNG3pbpSa7s7F5Q5fUSApUh1EHYr7AC3rTt5gpwlzLXAbElKgqgMJK0DhZVydbsCrFOljmdgMlQKH1n86Le8lpKF0NimMmpxLKGdxGaukyg+H37zOLKp7unM/CbHiC6mtKLKLHPYUfEWdE6u1rn9avPJ1MvcFSNLHKHVok4i3fKRMvr7tH76Du7qMc1zSF5q5ba0t/tlkdaIWDRoqU5DUMOxqHuDLmc+DxwrVG5yr23wSvxsY4payTbJAtyGFDIzybb29tjtTRSVmnVlNMlf/RpOn1A8wESChfOqcoY9bQ6RgtpYzGDeU5bLG8FSNSiLT1jr+s20qAfPnGHjdCR56QJecPuzvI4rK5w3LNHDVm1AwA4EQ2bRMjqdLafeOeHMVo2i7WAKh6FaKOi9xBJoAfeUI6m4J2jWBle/muj5Yj9MgAHQ0q0HSJoJVEmDSpa9p61i1Sg7bDUemK7eVL45tNW023eZDhGMzo+5P1XHkeo0l9tqXQkQPjs0CezypRBdn600LVlrCUk8XWQJtfLGHC7YwaIeJdd5tOGGid5WKZcwlFGCvVp/pH6cdiyebz7R6PuU7aT5tevrsz0nwteDaeN1dwJ/pFHJFmDcu46Ma1A67GRrJffN2WO+HK2mpAuAFab6surgyqrNeNWZoS9fEKpIs7ah52VRyr1xzCsk0/WqZH/7qACkV6Yh8bBGOR/pZLOYIYOlZ+dmEmX1yjQ6QcUzX9rGe9EmlxT9DKpLKy4GukTD+ydk0uj2ek0VxqF+ngLrCMg/bpYy7jc6qsdQtn7AVPkZ+BLAdC73g3HXpA09ujliU+ilpFI6/GqelM4vfNlz45QazfJAR9ESZClA7c6K4eif9i2VIujgSpHMWAqAvCiucSfd1QoaeV/PqTy+dhAqmaMduEL9g/V52/F1n+vjKJ8Q7hdupCD8eN7fRtvq9wpvrGDHSNgATFbvsfv18tiqBt1rfwhi2A+8b+TUF/T0KWhazOLcMuwjIcrgvBWcvE2htmfOtI9WFP0XR9AB8HYXGUnwTlDTQeBQc410ocq/i0E9Nhf3IuiryNCLHa/Suru7I0CCTsQLFA6AntBiZr7ncNRt0sxwJ4cvSsdAoCjmyawl5YPHxzj/XpxquGFeTj/CybVSXh9uo217225iy4bfHtw36aWHkmjxnQnevgWLQQRyGwTSKe+dJ9kAwJ/OyVuLIKyc84Y4jXr7VSzO7O0X6koobNDFOh9CUVzSAfPJizLyLk2unyWULme8ojZA5RNIpxXZ0c3GHTm4A5pK6j7BfA+Q6eBLSvnZI5kfqBle68q0QNVr60II0Q/TdCM3JWuQ5vJzgC4P+XqdNYKUvD5Li2EnLGEj3t79orCGsSPymgyxDQ+8HvebwvgQhKVSiTBEVTGPep+JrEgy9vs0CO+oYWNemXkfB9nsB2dFMBIPmzZWWi0NksSxdCkdLe/UDDhrak9sLbbJKYgek5dxn2Uzp6fmL0SHyi0bAnJXVoKNT80jfRjB2JbPLv7mfeDBtCFqJsGyA2v3Km7B8gPQHP+jfUcE2WhAvRAWiM5aEmkaEReL3dbhBkL5wpdQwAGVl6/b3VktRyO9kcd2Zi1pkRLAAkgIh2fHtE2qaoIlRoinYPkC3tx/ARXmocdPHZvNoakLc6XiY5JWYv966WvfL6x5zt7vUkGCL1k+7nQMBL2ekWpXYkO8pifD9hswX+HvTF+lslGKDL031yRSSHjWWOtq2/cxzmTB7e4rS8UZ9mSU/44kwD3xPw1abA8YEMeEWozqP/lq7i/9Ne8cveVTybakm1FeXjNXTPfAR9UeeBfReL1Oc12m9FODwmuIdoRwUwcZVU/3W3/dQEAKkaXc6tlKsFFEtzfqq1lO0+UAGribOiXwpQeoSj9elYJZOoVemNIcvg+ih+EHbBZXEc14eEVQyY1jetK+BtcKRESeLZvqqqZHC9ab5qtnJ4kidD4Dg31mLdJ3pR4fn7LXDUEaqa5woJb7yORzuhQSEmAW3Dy3Fct54gX4dePjFVL/4+glP4Lv/kUrBums1ZadjAcDF5VT5DYKceKKJ8FnA4x7zm/9dI3gKa05ohEqBhk2UgYLO/a1L2i9GUWWAawnw+rVmiNguBayWqGYfoASxTfvbenVG+8MSvdS4oJCwm0wAftMewSg2QR2yF6EzXh+bIYQ3P9W4Aib13Y73qX7ZPbtP11M42dmEmXQUr9nO11+TBZfaG636ZqomY8ugOU+6QUzJakMl2wO6VG3HGm8IKrY8ZBZNeg+saSWekmaZ0aNwZSjARMG8bBgWaDF5r357QoNe/nXQYTP7iYPDvT3PAbGYTc/eKp8ho6N9FzHh/Fkl2kH8zyZ6KEpkPyTWavNqDeXQPJUH/pKnPk5mRxI0ZAhg2J8X0sXPHnHA08fvb84+Uprus26vCYPxIAXm1zHWKR45DLep3Zco0iLoVI6QZturT9aRiv0y1+qum58aOuKHkeYDclSzpW2xVNds37OhDtDBgUfM91oYmUMCaPp/p+d3NMa/wr5yBQSVO0KWVMbGgWobLuP8PMFU7OX8b16o61q2nYEM5g0M2FITtxUr5P8Ojmj+yfCo7VpAydOTxmwBUpG2bxbKROrXReB4zBExgKc76awHz0hWpYlBjoF9gT3MVagQKrKqNI+hCRQmiqjJ6rlLvm8KATOgdm8cx6E40htwMAJLyfo+UjuB8slzo7CakPhtvPiK9NY6YrRG9k5oNbURzypwm2fenCJKwLsIFzT54apceYjxPKMJgiFIfcAf34Y6hm71sDfPNWRAeu5Sm/laGeAMRltA0Nm22KfDDXfb9eE5oUCjAr86OocrPEegQlBkkLAAmPCRdLVib1tmzgrLNFEvYbbTnKJCyHawrNimKr5u2gMBR89k3TTTvhaDWw5Jd2nvjYcZmCootXL4H9NmWnM7v2XUDPA/tR9iLGYwUSvk5jfHAr5nYPEOYhx9cCK2yQvQeSKaALMSSaOBPzddz6+pdpAtEZP7GmH+Mq2eU5hTuIkD8CDH8zVn6GQU4KAuxqZfKDBLUYI4pCSFl1Yk9O14razXCBhtc1zt1s+9mx67Y0zhvV3GIb+j6RzKXEdFIJnp6x0WirsuM2opB4eCfMvsiR598XYuoyUZePu5YExU+DcmKBz1jtI9wfv5d4xd8r/5RdH42WbeqR8p3lGC+Ew5HJ8uPR3lLSs3boeaM3pIewVnMX1e1crqpUl0AlszLRz+Fc499mxyWZV0LmyY5WoXnlB/mXCxyJRqFJ7r8uZbE6GrqSSOPlb7sE3D7zG/eXqg1ZLFWwyqOR9XGP3YV9jIXluim1l2shizdBLV/+PnRaJlSEa2NluYx3x1+SR0wMRUWcoy249PX17IMLjVNFAPeqoMntWgzQ7be9IB8+wfibFU6NjyCOLvA9nmR0+vsNNxUaTGSupPncenAwHbg711x96OwoYmuC/qHKaI4FSmXnEohqxcepFUk28CsW1pR3gdzQXpqgSBdxd0ZaxQwuddxjTK0E74MnmmixryrSnbgwNW2mdNsbnhX+Oi1PZKAsW6zaD8cBTgP7BI6zPaKHqiFr3bI0/p6mt7b11Z4a8zEsjuo7hpBf6jVJvUyIP9zxWnH9I8kp4DBf1y1EHTwZPA/ylix1O+xgrWmfXtPBML10NFZxLlLTB7e6SHAGEPdt+JXNG01C7+tiUEkO7AJ29gTetDdjUXKJ+lf53104/xl/a8YIQs+TK1kFLE8yKDos8RB8IiOJy2r37eXiflUnmQMzf3B73VFPqBrP8dquYMqb4onS9tC7N/u/79ypdGmvOqNSWJv5hICTams6/ks/nasW18PewFXbvk5XjRgRv7N0QvF3xKut2mM/BaySBxqesu0sbl/KaJiZ4TNQ0d0MuBhGYpFgN8KR7oQ4lX/yciphT7tRs+EouxwYaRfBd3AGxtVs5UeD4cCb2lG3CgQNCnNQK6TgkJ6l05o/9bkdURSG8RUy373GRDQzaOufty6NOfyKiXMBI6ybRgkLcFniD8lQMEtqfGpOHO7IYauUrgunLWyv7a3yqupzjmPhL/CVs39lJWmKFj5pRe9A1f3rv6cRS+Fpakek4toTimseL/vd7jZGFqujVD0TDJbulR7q997YoGHEgK1Z9D/4XsccE+rl6fS/fOxpcnr0wYnbzf2vgweu2KOwnkGndcomn9++clAZf5Ypma38KS9gXK3NC+qaLeHEmAOnSvN5kjZPXt15czrr2/uUf2fN35A0Ouv2COqIqoyQ2WP2ltbRsWZ6UObCcLCdM5DfvKz/ZU5kSEIgDKheyLE1V/G2UqAksadXwx7934tdtYlfTDP4xSX+1pFtWhUK/DP/kdmQu6MY0pZZUCOgllrakmmdLl/1sL8VYGHiFTRPgilmCOBiXIZIUSApaKqVXdQkHth05WnBGoXOLyejNZHd1burZMNdAYRdGhDXUmOCNG2jmiM5N2O5rCx4qIwAeOTDBj21AU8u5ymKhpIP5va+P3Yp4eQi7PUxXewolkfemd5CzrrihLnOkviVAqB6h7wKtDcFkr+JDmvnyJ4IGc42CUd8C88a+vyG2n3ybZt52g8dfv1zPQOPc5PY4n2QE+8Ke+ddB5JvkLDox9pheDriqdMVvPrd7pntei434T+ozmgciMbD/ETVFj5pTFpmEesOOm05v83um9ax9T1vRp9j2jmVRVNWTziNM2eAcNWwv+P8p6ObEvnBxr0BQ3NxIhR96asulQ1nZfReNOY/T45w1U+j0CszM3TtKuRaChj9ceInpLRJCkkrZA7eTR7pF+ImkwynxjWYv+/BfLKiFMrUTMUrZ5hfIszV+lXv5D4tpmW/5nuiN9ZLb7ojd2kCXTbzn2wsgnv1FPmsSU+zotUYPknwROWtah2OaY4jpHJvmSRySxsQI04mg+gvon2+mw791SLXHCJeLnwePhGgtskKBCK/VoG0YTJW/Yjt5VMAmgiPfUl/U1PHg5cHu7Q61hBJf014Porye/hASiQCEloOxZ5Q8PWcymoL/oOW/eqLnNTI03vcX9yZ1b9ikHKOj06reSGrsvGbKG/gCjKU/Hrt5QVji3HwZ5Jhu8Mda1pM7uC36InJgFI3QD+AxWsgqGrInrl1Wy+w2ZKagrTxGidYBJQ5+YL2SKhjMGUbt2tdxQqptJnO+Ka5qAJjt/6yhIPcPKDC1BtOCYvcUZSqMClPLljBg4VdRarhNhSvpQ5Thf5NNyI/0E5s+6Aw3FvwM0mZmSx1UEM1ugSRuE3OSBTaM9V6yY26DTJ9WnuziWOfbpX0wAS5V8PxuqwNXDcqG7MYPOY0J+a5GfcLoy9KS6FWtuSqFJXqxgFbOCD4F1UD7IlnI+C+g6e+1jgfzb9mByE7HwU3qO5Wuf3TCP3THKF9h8CY8bk9VEgCoczchYeNkiidQXF/9omFo9/Anw1ToV1jIt4FNADXY21tpSbYyHPVTeQkf7c8PsPNg2of7W8EjoDMhlwBAFhh6FGWTzEk49lgzAT+TD8y94jvmODqTO6PNzhF6xRXsFRzJsZIjWmTpOs5pisA89zz7iYpyR95zxOZo6VsiSZse5ble5Utqn/Vm4EjLZIvTgXeUQPhW51FCLpmdxJ1Q2mCxYGOK6BkgAZ+nM54YTPN3aubelKBJe1ZDfPR5x0Y3Zp7olj1Q3rxoHFl6dHi+0JlqUCMRQGRg+9IWovAAp1liDauHdrq7JieUpccxnjjrNUHnSt1/rP5GFTF6/GcJAKuKLNs4PLxySJUnlHQSRLddlPndnnHjDZedE83GJAVHEJyTgmh7/Tpzn0kdps+A9bOC692YpqlrrkmTOJhHn1OrziXFX+MjrGzF1wTT3ERyHD1qLkXbTXQtVfMTWFIOdnEQ3+kdLeUZ9rE8/A+SlyAHwC61lgPCrwvkr531ATDX9uPcYjLVHmGAlMhVbcvjv0hiERQHb7EOw8r+60pyyHuV50zIBB69A51hySWM2Ru6ctGxQyWTEaOSNIsrYBnhhaYMblKpYJqfk6QjVRR0tpx2ViIzZsJ9+PsNcaFkseuZzm5PkKM7W6AAU3qp+PVkaOZGbKvCG2W9PDqN3V+Y5jo1X5Y1GKtBmXM8Jp4n6vMGqcvFty/jZg6OHHwHKS7jhsDGqbdfDI4Qd0wdZ2ovmLgux6EdyFU66R7Zj9dIFk56/cnjZy01W5dNFWRkx6WGxLSGeuEaBn4kqUqPCi5QqZCzsNugpP8POx8WN99d3fEnCVyhbLXrSyJ7LMIjP6D6ansqVnovVemf/tB7M8jU6rK9Wcx+spF2vGT4F6KeuVJn3fjkuS2sw4Ry6GrURL4GE3mk2nobkz+ogTg4xNTiSAz/hlDDkYQAB7fhKPwkdjgf6gqjSDUkWzgkSUT0T9ipFy4V7muqprGWG6ieqSOXQnI0A1mb1OEP+t696oUVNMCHD0jVOqsZ0Sb+ic2bGrbWs42JZfAmCPBYOOARs2VjI/XTkidRM7TJg3b2bjkx3McSZHl3bWnROK88Ke5wZtMSGp7Q2jt4p4qqmoEjlwubbrDSCN14qhzMv5wkyxZ9Cam7+8hYePg/MlbfKm/zz1SIJeA6H3MP0KVHL74XOASrGOZaO3ynlU9LtVhXG/xmb3jrdt0Q0C6Sxutb2C81UNbYRm0DdxOHuu6F/JCduYOudXP/8DYQQ9PGMbCiyJoQDpBFu13k7KeA/VWvuS691iKnQiPQmOxuuf4ruGPztckS9Vg/MiD1Sv6yZDoPhYUe1xxrMOBWPiP8PDhjtNyuv+La2grJwIPfBrfba1a+Qm2DjVFpZOAZIeuiB+w5VOPPulFSO1iHHTyfHqO34O+YvgJGxDwvzGQbfY/VYxxJDgyRVdRLbGg0u+gI2M7/atoot+yaZ/yE+EEALAjp1rWw9taOc5BNsh7E8bNjgiTA4zOoDc4xEWFTYoeSiXFEtHUk1hJfFa7pmrLMpJ0s6GBinizdZ/rN0utNqrp5d81QmtEhc3+l0EjsS5+J99N4YMikm8QcFLDsza7Me9+3+9I1hIaY1nIby2ELaEMIXZizhGVJKccIRQUSRKCbtlZNkZjY5YhvgtAGZfEhve3CpHLdBitUon3MpUITm4YLntuMQ1S24ge5mm6+7W3oAi+rXxJftuTudIfXTufLVM3e0nxnLCO5v6nZuTgj4G8JfNIgCLZMoZyWf3fUHWk2lX9nzBl4nR61FzzVsp5LvzXh2ixBCqDHMV6epArk5C5Ecz5tY73X+hxMO/u1i/+6Dp03uLdESgGhgpeUNqdJrxBVfrJAF9qIb36tFFy4NlN+/daze/3DgmtcuCqP4Ni20Jc61VNfD34bmWig8wIQLhY+6TlNNM8GBTqqymTA5fI38n5DyeiKDGN4QGeTQt2ElJGb+rU4DI60i2clwHgWCSJ37YVOYqLdGIOKdWffQfH9nWS7GdKw5eyIBmXcOv1SmCCOelETNteKtAZZkahQlqbtT62K10bRjGQ2Ax5yE7/Wd7oQgwhYZLMxpTM1X0VsyE4uxMudfJMDY1GLRi7+OqLbeVcrHeFqg28N/hLgQ4sg2ws6jcWpGXfTfuo3bT7tO0T1EzHYW3O3Rd2GPAsXdlQWHobbfKjVdn2ai/5u2meblhtPKrD7HVBt2EOCamQJgoOlegaYCmM5Olpw7ZcDgIV4B94mzR69IHyAmVDvnVUNvIaPzE9dxLLkJ0ePsuyKUJTz0okFoct2Ybefcx/DhjLeczajD4TW2Fe2RuwVj8gKHdnW5eLujL2k5x4iTQwafGj38ai8rQKxKOeETPPY03LjZCfoIc7FSTF+tJPs1A4P2zupaM7ClOCphAAfrJkXkxKX5eetnezV+WEn9TDcjQ7e78pApsSXY2vg66uNnWf2pTKr7JW913MTB8ZgsWueXhmTfnUuSSlxJ/NIhusAZTM5+Pwb/dndghR2Nwz6SS3pwGrP0TBl689ojodqwcUJbhFQcTXuENf5eZK99i3E4DlclZxQm7UkDOO7qIHWUoLePjSDUnd9mt6v9RnhJW9CqAiCB/oex6MAvz9Q8uyJw4R43Sga1rWh6VoZBSg0hWQPHnRcvvBHuhRgj92Shc+N0ZPnEqdTB5pyTOdVdCcxBnnDyT7+151ArbrbDblZ2LdwRu8cL71Qb4RKqS8re0Gn5BXoXl6d6RQIqXJUibOYpEDOyPkxLbSnZeNeye19ioCKa8xT5dSHMtut9/gPYQ1v64ZtHwJQNSKgobJ+tk1Fk7UBeAjyIoZUZSa1+SxblWHZ43gcrf3DoHT1n/JgMWPa3XOE9TEUgFpgZAwph6CJnPXvOjwwPp8hQZdadOqy4NXs2zKAWey18YXFvNDhOIF/eDm9/0gcE+y8diekL2MC8pglDKbm8Ym08uyYPKd4McKBy9p19qidVxz7BNrrsnyJDmGZPpluA5snfH5P/tdEAY7uS1JK/YaZpIUoWaNspMeLSEQG6H8lCb3gveQxSBBA8uZ61VFxrp9DvK5QtjP2NIhj0kpLWDZ5u5+K9PpYibXVR9uu7CBx1nMB9O04GSnHB/dg6NslqhFQivQ+pqouwbZM9UbTNCznuaVrgj/s0fFmwA81bHslP8aUPKUZ1cDzdJTdJaNdHTd/zEeRajEoNL5RyE6STjPOfO0nGXaBVwDWTFWth4KPQoyVxstct8xemF/ggCSyrk/J1FfhAhRFIhO8+fqzxUNDu1b5joQivZ4AdHBfkRPj+t24jkj3JdTmb+vYuT0Zpg5A5evOPD2ZGARB5eSsr+TZeavDgwcnmcKYNtqUaPnbEK0gTdM1bOFhJ/dgwI8opHBO87MBOvvDkN2BTizJ2YPd94K6q0qSbj3CqtK3rB86WLDfesFYivsnHaSP6LPzUygNuPvtqK7pVjfplum61gQFwaPFZTIP66sTzPNnvwkcjdLhKt9bkTOv+sR5xYoAyZnfs8J3mBqUYTVFhGWk4PC4k8mD8w2jOWp+6h9OU59LDOSLj1URdNHYZjqDYOjt13Nzw+wPnACdfm/Gztc4UbiGyfo6U2QN32KmPErsQgGJv1E5HfupE+5nPYdugLm82cmB/qwmrMiJG+ro3Wl48LAsJqboHIoOkipIE+RNE1n7JhxQ87AOybppq85us6+EbKuXtBCFszOuYjwZuOc8RR4pTxQP3yM0TUSNz10GeUw9xGN/PuQ7wKt65BJFLe3Mod540EnIP9P2YFruOH/VXtgsTD9tFGgdk6bSfvuXbTI1uAKNBapWwe3skAhc1D+9raLpmDQDdcUs1FoQcIyerO1xnaayaUsCsBRDzhmkB4gWOuncQswX0CysOwXcUHbvL4EBR/xEsAfqozUzbKHjEMRHUa80jXr5GEUZ8VfTpqo9peWki3vOzQELuB2e3x8kakeP1oMAommkl2PI4w6bXiskKYEDbTcQ/Nptb60SY6OJOehEMYbLNDQSXUcLk4na3iR/WM4mRxg2ZtU4zz7BJX2urOVlSTa0fBUgUfCU5ncpENs1wTWHGJDIdBHIOU3U1qA1Pv2lNGmSMt+/a5K6hdrlXTKMdD6sBnU9JOkH5jOJJr6nM68NHj4BpZ0LP38SEdtAYSJLeHNDTeDOoj+QAjwFHhWb9hICi8Czg6AAgkQnHYWflt7CeRIyqK3aSW7R8FsAHHaWe37hBuwXI27Pnxs/zZRjMVcdGyBt3cHsAcOEvAGybWu5K561f4LRib+VLWTcELA2oixArbgD0nMJAJvWMTk7gmpnKdA1QYE5D88juxy44EjKFRXzbkTb8hys/FbA5kGoVlbJm9LQrKLlyaZzMObIs9wDhOIMW3RsesuFF3Q3HB42aCD2teXNhI9CMd/EbEZP8ku19qOBv//MgpHw6ia4XdduY6ASm9RpRt1BTv3zQC94zh4Fvit39P9p7RAgpjoEnx2jB6xQo0M6+XdbDtlayJGDKOYMLxRXv4RW32+LQvDnBoH24V/3fZhJu3hGqUfozuS5vXJ4/M5jXSa3lwSLyxB736cWcbpZVCDCoFllfB4oehOHfIoyTC4x/Gp8Dl9jiBeatgWsEHRUVu8E1MC6pL0PnNfhU2ku5n7MOfIK2IZUYKpPZbi92BQQ+JbTlHkQVxSyCYxVBwybmGbP022lEF6+/rbFr/nGUbIkUUirXEMuuO9hihY2CgPszJbyJM20W2Fdx/5NNPv3joU4VTcHNB09TfAEc33Js3LPTyhriolxSsIzxXzKrJKfVpd4f+jDtWgz0jRa9OjSGvYil5V3zg8vHhIv9hVOePL2yrluQ/zX23XrCsP2Iv4ZClbX8/TeIO2Xqxi2QApkjglX9M+glGncutO4fSXxXNPxA8CrbbNXbRjh8SQkybCUdNoMgPIsfdGXWlWkUs7EULASxRusXq9M2UVBbwmORu9v2re6Jg01mgWSbIuzU2blNc2/oMhgPN0l9HJOP82xk8vdjCN+efpkEpkExUjr5O9FMr2wMs58EBA8WfLWzbE+9OeJxrvAY8k3HbzLlFarqU3fBL4Ro83NKAodHSk1KEbPrh7/L0I7CzJOqAzCcOCM6likoLhYm6ozFRJx5rV+AxqvEf3nc5s01GGB8sx47/vBcEHss8zQbdkRmUD3YpuzY8pIxMjhhWzjFPPzJTATMJx20buDoHTqYlSC5x/nkTiXUgXa7BUEOlncb9ypDYJEQHXdHInO4LQ89NIzF+39xsgwKdBMAHA4fk/2lASpfiFM1+U0cNoXQaEDyCrHlDy1gI61Q6U4QC5h7IdigQmmNJ8hnZLUF6sDvp+bx89VgW3FVDd5dFHsvOPtsc1Vz4zwyorvyHcEoT1RDanWzgIWRl86BosQ8YZN1Q8bxpZ8NPo8Da13iy57N8WVZupopyLGJDlOHhy7kRfbP/xSaBq5QJf09YNxTunsG0eGLZsXjGIjnnboBffA6eQdZAlwL70U2S64oAEclplx57Yq78LUvkSOY6mx6qtKDzDilJcwvps4W1bpquMOVFknPZseMoTmOqovXDPIGnK4yzhfFRIGtvnttJD2FCLu/MbyUqlxzDAi8JXjsNklgoclKdcq86xy0ke/fuThm3KfIclB5tk7ojICUdK9a20AuDj37eGFdrRWwZj5AO2JRIzhGip551+ljV393oDnHGeMW507GReoDKupKU5VzjBMMcLnYaAOhRq0KFI/cP5727+WT1J0zYAWKWIBrxeZ3kSWSQ7jQdoqrehp6AAbElTd5HOxmjSp2tIL8yLfYrkpdIcAQiwWhWWm6moBFx1+YpHFGzUNbXYzuO7k1YDNlN8i8Iuo2FJH/EtDV4bYAn8OQuItsNEE2BxO4foziaBoJec6p3HSNWiRC3rhc0oNNh2HfDlSYCGFUjGEBOY22AqixaqOEs/Qx1eLyP8y/qSOluy64KgbUKffgFv6x6Xl8jCYb9RVyy5xO+UVk4l0jfTxHZbzDbmrKl2gxbcP3hRlG/rfAdssXRjmM07pu/hdlrhbF37s5X1RAZJnEtvy9GhnnrKjHEaripAyeq8DY48TXahlBhZtv0s/HsFtTcVLkkGPMtnIDLCdNXgskbKDV4Sd20kDMyItdd3CTlOezjy5Z3+AWXHERrfcK8uVkGpxxqeaW0o9Z6oLMXPFPECt9LT8YZuCKdxYUIJZ/39I1eHA1a10KQ5TCnsHnMqVOEOFSJsvK+o5Wan4r3yKHjeaveF3UXF5dm9CXKA0b9QZIi9sr4M6EApWgyYJ1nnOx1c96bHvrKCKygdxXfdW7VtD7AXEjGc1pTgzLMKs22KMZuQX7d9p+uQzHTDGx8evTkbCVZLrqylM/oezsiDb6io7Jo5M5SY8wggom0fciojXfdez35f/ejBfbYukO+RUd2pXNUp2MGcOprs9bzAYbxrxhAbs02EgEJQkeq7170HG0pLYuD3SngiTZGxtVQBEQEIVi9/LjN+jT/B/278A9/Z/o52+Oqy1vYtA1p2ZVsj3iQH4flUjOaxSZrL2KyynDiUDOUAsUB7DewiZe1fDRsxoHi4gdnnajHWWe9J1Y41pbYPPGl5+obthqeCkfGI/etQPSScRot4K+TNpwxhZPzqzhbv/MsoDjB0S8EZEqfDW2Xm/5NoETU3yDRJ76L/qRH5ck7Hz1I/VmnBEMVuSnBR5282h5vGX2AaPKpzVHQ9cjt0UJ+iB2wHtbddhHfOCCYBc+QcigDduN+t+KmuOyZIe72FUonorGkTv1asKI3xXz4Ohcr4hgqMin9d9OxXfu2zzVD7DarL0nzUKERey0gIe0kuW7o4jGaZw5wf6evVqBHzfp5y4MXScnl01A+Qz6c3qFu3n1Y1Jaoh8y2yKiJkGcmLZGuPaQnBnG9JnhsyxzLIwSei3d+PcPJqeiO8I50VlIPzrnI9f8ueZLKiVJ1MBuaHLk074If5/s01VQI9TqzD6APSI4EcyRMgUOuiVmTvVXdrvZh93lDxFad2GEzQLAomMp4inMjjoHWkXlP0/L3CcoiKx1E1ZK7FZ9VHhTZVon+vj7g8cmyHynXsRwr2laPAUF/REByt9gYlqDuoxKyZtMw6txWhxHA3E1EciqA9ex/GoIQdZymAFOV9XhSdacirhmuJBadVcXedEq5QMWEZmF0fOqqJWanf7IfAbOWLHZ6cgaGn576Mghqpc24rTcpD3oPJltSI7pX2JIPo7QTihc/6qA+pl03SGaek/O0AwlIVwnTQ7P9ccVPlvYZNoBvsr8j7nsBJxZP/XhR0LnFw4g9FBPxq/hZvaDxm4n7gWvXGCshvF+2+UJlftby4k/sB1K2gq933NVczFD39uEFVUeYFyg4xZlSUhOsAvxbLwdJS9005da4TVTb4c6YobT4z8cZz71i5wM8r2RRhaHqKITtbcjifaEkAXd5YFc0HmoBFzp/F4NUBp7hNA1ReuugNWrHgmVb4hzZ5oWUZ9QVh9n+QQxVxDLa8+kJf5nIXM7sIwvF8GMH7EIyk6Ku4Ot5RWQptWiHMdjv1F3MJ+GgrfZ7ZTkiqW2R3ndgSLa/4Dk60Wc9s16VAwMiDCB89hBdt/krl0vSW4Rb6lecd26mDTPIGpn5OoAr+DdwDwdHnvr2LUu+i0A+IgZGWURup76RkuM9t7vJNZa4UVzMQgxqb/cEcZY+68atY0But7nvKCKgTv3zzA6qbYv9FBU1DghFGYs3c2xWz6gDN0e8vPtWzj4ZySjEcn0KBz+W6H23rgp3m7JXETZmR+24vlISIXcf7b5o5xLReJzq3lhaapIg3CTzRYkJDODKqoIs5axg3h21JHq06uBBak16ck4HTpb3M21QpHfqP3g9Ky5KjJgiP26c0gyJhs8FGInUuqyuKhC26A/6ccpg9Fop0ZMYx45/F+5uWS7uYRLeyYI/LyVezVlvCfL4WdVVQ5aB2ZGsKQRNHS2O+n8xxsVT6PBmUiA0XGv++6u//GSSQCBWnbEpL1SRz10iRv9zF4+emQ4EbptyXwP9ztnCUYpxCHrw30JF309FNRq2RJy8gBvOKe+WstPDmP/51iIjvdYp/2CwhOOKicTvfy7F3u+DzwWzy+P4dTxidG2zYet/MdRvXd6Yyk0bXmJvhyXPdd8NxSkakErrLhNpETjMV4LeF/ZhnG5xIaiN28iDLm4E7BLtsfkI/I9NUBvG227WrxWn3Ec0RPOjNdz9IVMAVJG5i3I75Lp2J9zHJK5eK3iAUEcYJrgyWzoWt85h7IevSzWbxP+dVv7FqShYSQfnpC/7cqhWCkcN2nF+dSmchIZ1A1R/98Bg0zIuT2VdqV1VDmBvJGWGUdxTSYtVt1pgkuh1zPNPxh70lpDyP77WV0V7WcHYb9tMP9ZWmF4vSZLQ+xlNfubOn2lJt0uCy99F5zdZPmRktasZ1aFPO10W9fzrsw2DKTikHuDQtlAjIEiP/yn4fSlTbRq3NhCmMnD5zTvQH4Oo2NbaB7GhuA4X2pAyFQgvqkTHQExa8fgu1EgfaShg5BKvcQfQo26vGJafa9zR/yDUFFIighpssK8aKYJmgk8IosdfU72NzhmYYbjTYt4FjKAKAwxLFwUSaWs5PIFaAI4cjyO3FbJTK71QK/HUaLbTJa0lHbbO8jMeHX6lW8+EAUrIyS0MZ4J8a55foDnmt+17aw+sDkP3uzBrsBiO0oEiE2S3fAvmYv3rIUFOy72iimW7alv/UfbuVvVHHVB/fSTjTwfaiKSSABAyjdovC7yKHcSJbX8N3svvS48dvSyCOFjWW5Y9TNununkIRSj4EwVORM4s1MUoiddmQ0zLVPEpFwv0t89hYbESpAXGtJamcoO74TM1BMaZ358p7hcxiOSLt/HG5zeDdlWK4fBTsRO4umNLXK6o/EcdMHhUMXSUAKK7ncoKjlVm7nv7A5+62+Y52mGt99RgrNtWjCenZ+H+0ITTNjm0Ppk4fnMZ6MQnINLX2yQQzRiUNwtWWuFvdBztI6defSSI946ZffiN4M/RBo0z7GJ1UGoSu5/GZMyxV6hJl/PgwRyGIUKPWmtK2Vm6tGHPc639v2f8DAymJdvS9bh35pKub2QrrVJ1ATadba/l9/X9yyIxNPOWyKbiAaoe9e3jXHpw6nK6NGM6oIHL9OvngtGKHmrL5gga86oaPVhkXKzglzcIjYvRuFHz5Or0tRGdERtU1NKkS309jxEh8IduPfPjJnr7PEOjth+7Te7niqaUIOYvHmLKxEeu7A7/i2+j8JsirMr8nTnw/SF6i2Q0erxc9N7foRpDqcRWoeJ3MeWTxc0nwpE6TZmn8Z7G4fyxNRbzRB3xRh+gk8yryQL3viJOE+h0kdmhRQRxj1+menp2bOb01jjnEZw1iYQiQ3puu0B+PfUHpzTGqt7UzjcNBlOY9NiwmU78/kbXW5lviVIh8IieYQnsLVJinioTkTfnwY5oyTu37aIdDvOqWOYvpsbFVhJZJh4taUvGJIKE7k3AI/hejSGnqGILD3GBCGlFg4r4wuAtVXB0umN9Ee6fVN1iXtrCZOHOinQvy26dx2UCqINtg6x8GbKf/UWTt3lkJORupEA8NmTifM3dbAHQCdRJinJEPGvbSUZt83vAEAS3C6exd/YC0ZPJF9wAFl2O20IIiGT4Temp4NzIYUoR9dlSF0hwWt2/ZvatmJ+0VgkHfAI9yubCEqIAbsEYS48C6ynrD7qdBEAjg1w4MXQWNcgbHUx7VGZqByE7UNLIfxyNcCcChqeBzW6uTVf3wYqw2wX/ZSmNkHZ7X3yIn4RmCuoYbQiVEYcr6eyxJecAu8CXgYo805ZCOzfynmJoxmeFyB0Wabic24Q/AlCLphQZtWuL0Q1oyMNDodh3FbNJNatw+AmmzNlW0j0VptuKww/qdRbNeJVTjIbAP1ub2zHQLrpoeMPcBJPfZXtt2R68kvX+jDdfLVX6Al3QRX9YzC+dIbeOqbCqex8rwWgZosbwhmzk/qui9eKA5XOk08O7JSYvS6p1KZZDfiXXTkqiKiWTH4Yh8sUD50CeQlIRc8hsPjEuFqlVNRA02GXmH7jkp/WXHX7WDapjv01MYME30MreUyKBVm5n7XD0yazOF8btUv8HBFdcQrvw1uMtcZrXtIt9BIdwvsnOTviXYy53k2CRejM5St02EiMhvwmPnpwOlfjkFX1hohjLf2v/mYmNwKvln1aLKE0+Ma6Q8UihRsnwrVzrB5co5v0LWL2nvHtBG8rJlWhQMpfijSAqxmUuF1d+zU3zzkfhejf8Jd0NNopqIeaRRrdVogK0XMAmYnQawy0fPwJPLPHao8dwkqkrkh+wn0nSABFEUXGhXBhfEM72ZxpVcr675z8PrQgKeDjvGkjwps4H0l9SSGm4XqDJJerkI28me3/8R8iq9raeEX9tKlfL3LBKqE+UyhjO+lcK5QjWxoTdwvpAAIqh1UwQZfYHzP/JoySPh+YkYrrMvxC2qnidtRNxJwVc+ILtT/5UO2d8iRqynqBQVD7UgP1uCZZnZJ4XnrFlaf5fykBOvXDrrBpyCjAtPAjqxNl+Xw9Y1/lAdzc+c3k9qPn+qAptd2dTxf/iZ95mSaL2z044r71SrwO40ZpXIlf++w6q8hHHLj51P1DnqJBoT0AuedzyK6o1GplmKKASkF6Rz3jedvexmQjJvBj2aqtzEg7wSxkAXBCtMdzUo9E96IMrs0BJZuS/cnxNsJ+s9DsIvSA6LmMsTec/4wazG9X/njCo1ktb94hDvJIy2NJFi5bcFb/+UTv1eBJqmHh6zL6IME4J9keY3f99EkfY7JDups9AX36on3n3pE9n0WMU/ersqBFjIH18r8U1LSd3p6uA8jpXniSpvHtpLFPz6nAHYTJZsWiHmQ72KDrRcdlXrq7yYpHuLspDWI4/naTDp+CfuMy8zGrQfN4zNmtfXapCAH8oUk67gqQi9NCZTRYZITHwbZvdy5BLf58KgbkopyrqzOzEZdEm8q6chHgu7HQe84aCTV10xStJTTNIjBIJcK+nVNfsIHfKlMstQ1IHzuIhHA0+M48gjSvWwwB5p4A7SbAjZZor6FTVI/2U21+Har9MJ6Mj1mxwXeBC0gcnVQeuK57bw7fQZAFEgLCAeSHUI4c4fCUzhZCzi/TT96u/ufx2dqHeeQj0w5fveJQHNAQa1WEMmg5xPELbEhrM6laBTIGY6eoUlRvQn6ZZROC3LP7Mr2krsPBi2/3zZv70Ay7tGJ5NTafYYyBM0aB0nFQWWfhyRs/QbKWP6xYFLkCRutFodgP/ne6igm3at/1IJbV7zh1yVykC8QgcxSaJjeryZUo6PdA3ra/XRZ/iumq7PrWrs6FIlyA/KxS++cBu2GwOINshENg5ealQZg4OGxVmeitJ9eo0RU+mJWfv7u/y2NgIFoFhvJLSNsG/UvH44RjgudxisWQ/AiRgw5QJbbBmskSI55TNEv2lhBHffMNc1r0w/DUfV0bEE6930lpH606avbQXupzdhUcvrAgvfnNoPnpBFNN3Ft9T9r320QHAhZb4fdOGzdTFog+QFnjNX+r7P8QdrJbCMi6EhDZzTJXUNOq5MWAjbxUowETRq0iQkcH+6MBKRQa2Znzven9RZ27vTejqVMKmHKxJ92UUSwgZK/wmhTwWcOAwaNijSaY3PLyvIfWJpVtBwgTaHqt4szXOZ70LuncE6DkwjvjONUr2TJSRfpF7zQU6fnQGZSCLA7F2DHy1QsoBJMntzbhCeQlkmMjrxjZNyOKqtmMLpuNf9/hS4NT9hiiEYKblcDoMn8fYzBKZQAGUBJ7t1J42x9HsPFwEJIFAe/qS2vS47rPujvRXy7sfTvmEA2Fu7DXTZZlB0VZyjpyI82koiBb5wjzpzQOhauym09PantPqqRdjdyMY8CS2XYnznUnHtDF9TzCC01QIl/KtcpzKr+g+P34sCK1+i0/2UUFp466P9cJ/Gw0XZhycmdFd8C9EKfHPbbj5THhy6SQ+Ef1v0sC4OUweRZQ95gY9j6Eaqn7Y60vmONuUEVjcAQ+ihEzAV9qXtlG2VJPCg4VzP0BAIRDiO/n1WZ9n2NgnjbyEPLBaZoKHz7oHOHuCn5tGSNeiP7mZJA99aCQMRvVdlBDpOsaOibUm0xWDhZ4sSwtQljFleBePSBMVW47qjWUDpLV3ngn4ddFBtZK2Y5DGqC4h3afKZIgj+A0kEP23Ya0ISvdOwT7CwmeQ2sZk6fvRVdBIsBK1k8jStjVtY4FkqZyvNgz7OqMGN2VgpCB0E5UT8cCW+JPIZXxcg9nETb41J49rZlw/vvuwwoTKOETpDtXSAVZNVjjo61uBtaxw1OvOZ5Zdkq6sAR0+MJKSytSU3bl+rRfjDk8meMdvjua2VEmUjFeUrKZ6Xug7GH6u1djE3hj34AvXsPRGAIsIq2tSxG4UaDFzFiwblUeJwGm3NblL/ow63et51NVFFGtavCuvzY6G4T9zUZnO3tv+nW8XxjPaKsqXxfemr2A4Qr3hqmEXxx4VsCl+wR7+htK33nL+Cc78evOfmueIPcPp5YDc3sj3cs7WDmx6+ceCF2dsQzkU5lK2BYo7UzwEYHaxCPnqHhQiPZp76EcC+e/ycvk4AA9pyb+jai42DMuiaJiMInPSclgd4GALjByWo8T7tC1hrt/ckzrU1CWx1rcTmITJmbIsCJH2g+igew9Dyzy7R2an6r+bj04UWc7tDgGinSOAkv/ukKkIdjkVhOs8QDnhUPGEpy2wh3K0dIMUe5osAU8fBgbJRNanit13KH+qqjjXl8+4ZXm8ZNXW639IzkW9b9PmcMzCqtmUWFrjJvZnpuhVpdIX3GcOkg95+iy1O/KofhElkFzHlxcmodqIqsnvFQkG1mt1y45GIHYrnFHVWceCRCPGEayF3LwF9uImEfIQXQS1ZizbxMB4parrO1fL7HipM4dTRX23837dStKqB6qFAhLIJXk3Ja+wd+DsHO8Ikp/CLMgsu9qBNzn4XYFYh9DNLvBmdgGK8A8p/cZlRZlOLad4V8fHtlzSEzgHbrUhM8QdNAb6YZ34A/PQbbQ6tFyZzEH4KySm46IveAp3Vt1yLOTv2qUyqmm+pjvmRmH3bUaF2cKaQLmj3TkXMV5hf2rAxE5Puu04y9SLBXpwzMWc4mQwATSDVUQ2x1xcl2MEUZysOo7akJ345btrsPKF8HoXzlw/xgtnPYpjbbLFK+WIyQ5oH11j51ZJ8RQEHXBfSPENJffnoR0ukwTVMUFVbv0LpxE2UzBxqVhSjxSot666rsMTx88ltLTkHrSYujFFIdLMKPzHMcO1ASHtsXxfMVjtJUZJaJJtcS5GYhJ9rRDZk4gGp+1ZRid8Fr21jp7+nbHCWHEZ7drD9Uwt998bdMZzsQmVgyRzKv7sHW4rMdYst2LEZC524Js6UsAgT35w298JyOw9aJuEvkNHt2Bg1Su2zCY69G3rDluiUp0UonOlrD9jQLxgdhdceFSnoFAuoxJjQEOpMl3XYm2G1IdgwIkrMZOWxzNRwWENe5Lt6RAExeaa0PjZdKC/v5DM+4YW4OCBkmRvi52WLGoJ/830/mF2c/FnjGB2s+OiB1kKr9qor8e+9fCfTeJFNVLW+XvMR+3R43xqDmkzrCtULgjPUXkdaX6k1Q9tiC+fKqf4OBAzd0HmWNu5GbKDAG905tEaEvEzardWFL2nMUqilQM6PRvPiH+ggB65Zub+GDKhKmodiKICg8RaJyPOPt11ioejZVcS5lJ1fZ/Wrz9/yX40pW9aEVvrqab62dNubtf0AqLkWd398XKgH0aZy2bW/TvdzlElxFI8UkIe2zn7124qVF8NTl6ZYlPt5P8CmYhnQKw06PKAWV94jB8znHKoZ7IT/EkT73WK/yOvV5Xb1g1QkIBYznBiaaNKoZHd24v59nTnl42LuL/EMJsGgTgR8yQEFdPoI1uh/ux1mC9yUZXw2U1SKeQowKqrW4h7iSxnlG4vepFmj92dZ4UoADrOQ0U+tB3b34KEoexphmoYu2LKRznt1WXvFvpe9JGrmyvphF7utGdYwshVG8JhvgNZhpz6Z5e2qL30xemf4thbo82+Tm1TbL9FrZYVaf+fjKJr+b0v1dHwCVwabcGgzAF04e2e+9HNETLXd7goOtd8ZLZuFIZ/f8DXy6hQWQzfuu6XRTRBTJEEf0tCaOU6Yv3b/YMAcbY5PWZ+A++KylGLN6rgXlpSMtlfcGo/Kn64Oqv1PKp6XuhIYPAbgRavKBEhAvoDU8ul+KhoVD3PnarA9/tzKfiETJVhS29Y6+fmPWwVlGXPG3IXG5xnlcsqUS1eXqprf3USSyycEyoUV+stZypj8QbZaLrM5IJHXetKU7l+t0XadqaWAkXDoqJ57JRrhgeKqA84A8NTLMBH2vQN4nYgQBzTBhefAvXypTPpIaAxxS8bUrC+JRj8qQm+SC/UUDVjz64YQz1AJ+0oFxSnJEyqLxzu9pl8+my3lNYoZnuVTaUgPwNZ8HwJAOhh9voxpATds+k2okF6+33D3C7ju69nQTsnVK0GQOKpnv1cesnRNmdWt2pHCXxtzbOpBxUBmT4UotJGYwPZT/EuXfQiZJ/pRhtl1tL7GFVx9+JjkssEkooQBnGxiJ36AY8s8b7nPOp3hS5T1zEaBHNWrGtJm5g6WuJJiBPO2LUD2Z3E+xjVc5unjPLWTPZ56yOpf9uLzCB23gkGUBIc+UzT3VH1uCD9sENlP+NYRC1D5b7Ei53lt0UaJSpKZa27pRuzZsKUdKiwEu76sfqryOaswtJV9Vvn4HqSxbOsCNG1tUcXAKt1F1EODCLoTCqrElo653OMAmlYZgV3g6ovmMlQeHwHfnJ5ia0xHZX26Z/gN/97LcnPax11PwOrAgKVvypDZ5Frp6IL0pPkVdM+BVflay7hO4pU4Yb423VnAR1V+3KBsnSHn5eXFl1DlEL7+f6oBaTtA4PeP7Lsox7fLKxFviEkxZk9QH4JxYpyXRa+l3U7RcyTLk1yWUKCvZR54DHq2SuaeMlxx4USQwVpEURM3wX3VwkqHKd7zCh8zSl6xBk7UD9p4yLCGjof1VDJMtrc4/OX2skWboEWi66SLPBIw13nrjcn8Aic50xlzd3Crh9mu0gadYmY4/QkDp7/3UdAyZ1ckEQ7T11/Z3jVcdSYLJzELdlYbWS85siFk5YSd7XginjemUXM1J5TSiqRqKFdPY7tMdwnkGgWzytmztPKYYxOePmEqXrlHLTWpnf4jpqmS1lpzFzteyI51qgHtVvViwslkhK3+QL1gZvxLCRyUomQMWXb7Pd+oJPoUbKFGSWdOj9pzMi/cCiSIHOjey1CqqAlSpGL8GqQN3+ziYfrAF6xu8Wz5ItLv5nJzPlU5EMYyRE8ImlFflHYYTbsQiHRd9nrwxfL153Vr8vpmqWubpoJSJhguTAXx3tGRC8N/fGyymtBR5IZV/Y31efQNZysOQSAhUPQbz/9DqkC/pXWT20HBmsZOlzShMXOMzYWAwUw+rngYntxyiltRoOEcCXXEG0JpTRvrDOEXkTzqP1jtAHAymezqNdFGJXbrZdYv5ET+Hwqa3+8MbbFfXzDLYC9kbZDPCS/GkHHZd669rgXqb5Dg16yo8Eea7zETelky/rbQRFNQjtGFCllebeYOSBh28LyMnodc0TzFcsE98Sh0OFkNoasbGefKX2Jg3PveXz1kPwxOSpRKPvYUJXC0vjMEsSXN0BWlj95r7VsYnR3sa2p2ZkrzMig4VyzOB9XXSCKBQyKVCAv/SHuG8HaM9TEuteyR6HcTZgoMMy6O+NFinkZrw00yqB74hlivud3tofqexmzTlSCPbwslefx7wZJmYm9e2LOJxVgiPfhU77XDbPhBRK7nbo83nbEfhIKtsDt3hKhchEqAOTPyk7vkUrGouUdJlAm5IFawxNBs4tAIE10tMrykf8UsImY6mKzSrdDQ30ANrorJ3GGRG58FfOKB8RBASwGUf3Yfm03rm6ivrM8E5lJuG03Z0rzS7pg+JCQYnvIj3GKGCTKiS5lV1S22gF5q+eltP8LWk/wyR6GYdk7H2cVktAdgQgfp5OqBFkQVxOPPnf+PLCQjDJZ0mVXwvsxC+o4FMZkAmDa7ovwVkcaiZ6uipWxjDRQv+9XpnIgkz7YhwfYl8W4EpSvclRsCnQ/wefcI0riFXJec4d1xUDO2m285fnFIHqV1WNmbGUS44f/LgPjtN+wwu1RCTM34BtkGcTBhU3zI1dVljj0qQCDe1PXBiJwsv1VsYGUGVJJWgpxKWCKtyCXYvlxN8Gq0/3R2YOAjEEdXOJTThUKsCD+gPv0AQclTNHfcuO/bXGDix9T70mMP7mnGMrbFgFXeTdILSAidCRpMYjdhz+QqGAZy5iMGlcNi/2qLZxcihDND9kPm1J5hO/gdFjB5m4IcfquhO9qsjRz/IYehNIFSo7B6AqoYi7Po/VCDqfkA8Av/T3eIclncRrL9s4t8uBM6IAn/vQSOueZjBGdkVMcyWlp5EKR0U503JrYdaSdtPDkm96i93I4yyZQQhPxwDz0bEffVbKcdiaVFA+BujyyvtzPoWdrV2EFK87oDZOanNeHMMWB993amlMdB7g/C/zz771KQZEoCnMMhPslyCqdPJDzKETL/gYIyaeqBo15KeEum3uEuC7piBWZcvUzguJ2nEpGCRKRH0BGHa8ACICSRiUUkGf4RDtqHqyOfY6oK2pXW3/alyfM4wIUDCielJusCTo4Dh2rlYhOy/QwJOEC+z6AkqlpyIKQkmA8p2kFTBvnGYn/esoxiJSHyZ1fMs4FJVKL6UJTKStFf3wXFGgjfOcCL5VxFBuZv1EgrTTlT/22ckdEJFOV9xpiPLgBXmM/+tXygHjIF9iW5heqgfvTDHKsO//QTy0k54IEiw+UtKdo9i4i9BZIPj00V28jpbftTz4VraEheJahTJXp+V+q/ZJeXolzrB6fhnP6oHzZJWNpK0eMGArm4zwb/ThiAknp/a+ZYbatY+MPYIOXHQCFcs64xyh1FBOFPRejYBq3S4Jdokxfg8GnlIwT5aE+lE8wFxdc0QBIUAOlMiSqmQDTcSYI80qU9/tH5s/NWeI7hcP/j16ghsyiUhvTTOTyEnfHCTdlVjZlfKZne/59y1NY2cwPfSAcz4RsvftF+9ekZZhDfkjIJjcxWxzTF9U8O9xcYiOw652sbx3LvaOHdgQVH1VDHZGQ8hg1Hgt/c9IRWXqIX2WcLKbjwnQXb+PH04+uWlR/3/T8kW4Xnab5bQ4duXJnVBuUS9uRtrj50F2eRCS9Zxh7zZZMIh7pUblG98VlUAig9K8OJr4Tf7M0mK2QuMq2bESaidOkfpba/D+IZU4Zj/YutWORJnL0Z+v4c//zaj3EjM6wIWcytsi2AqfZidyBBgDXilQe6xm4MHmsxWfJL3f428y7MoITcR8rOvRz+ApykcN0UFY/Og2XkgP3tLroGFoyjF/xzo/Vh4AKOQ6Rl947nVRV4mMNgUgCUVwEIuA8oNi1zkv5/LtXYGALDyZhyg2+KVv9/i70JuBhbSO/deiB5jrV7iJwUxAKfrUsrRTUWJ202foxN+vxJZqSBXFlLuUoDD44q6DDXa5VUmBdNGSqoZvctAoW/NqsNHIW3bzHO945N5tP5K0Ui4025ulnZqUTwGMMEDAwBoXchVuwpxs2a5dXQLuntbyhvtOeE/XOumA/T0PubaRlr7cvpd/Am1RWqoIIc/pyioPlOCMycXSRSkww8ay7i52uQqL8cjFAA+r+sWfh7KOwRAl684Si20H2GWNbxLvbJBaKoXaZ4I7HHRCXuV2PFgHZOPTunTlE8jz5vkaN4/PsTMIdixsqz9g+wuyAXMRFV1JOa07/EthZakn25pk523Wh8A75r80IG6mptmHa6KMexflKfHuW9cCs4a2uvPhMFa3nBoenbMQemDgltZha2tTeMi8qLI5g+VxAniSDQc4x9ofdOYg4xx0anYewg+XJKvMfMVIGeLujcfdw6vkyuKDsrGTkd/Y36Bv5Jh/e+xuXurN/VIRGwVvrAx+DDdkthBx8Crtj6Dyd4Gs6/HvTLhSTEf5XkEfaFnp3DT+3t2Z6rffxMnfsYWu1U2SnQT0dFo/gIDaExJvFUO920644o9Hs5Rp4s/qzIxhcczF4OjkadlLwZKfP7rL6Avpt48ZfSBjoT17FJxPoGrVWYLqka9jCY9eGGYHmFYIDSGyTxw/zbCgHvFC4XKDyMzELhC6iH13ECIxjIwckd5Pg/rfw/bDjlT2D+HoXNjAiK4s6y7qtcwCiPPZx9tb3sgIx/Enu/qeJJNromhas/s/fZzwu32z7m6RaL2wF0p4PgwIcnZQAzm3atShdGgU0sdCUCo941fhRxPmsgItnhXi914ucZ0a0R9bxoQ4tC7PROlG6/J7vL9QdZ2p3EXRBFKXYBqU6OHLANUj2qrHm8BBLDK9pcMUczRToUoU0gbuKeIhyJrOEj85D6CndokEsRlcCdg7KApZwvs8h7gKRFIQ469YV3iSIFnofa73BjlLQelwIPirR15ANcJfURGA/KcU8Y03LJSgxnN8aLUfgKvWOyYdoAZSeyElHpBC04y2za8195v+lSK0hBOVUVBVT6zB1R0fQTwrC3QMxi3smQWYngJq8mIpF/fCsyPFOOpc4/E9xIp6bx5Ra8ZIBosBW1rU/tZsfqJjLuIBXvyjW2tl16L8Ya7nReomQN2sQHtXwBS5YE0Rqap7RL7OC5MQ7reH17jM1VC4mr14R+eQ4AzT91U9ZvcVLZ44BGNJCgUM/InmomWqbMp+JeT5AjoEV91w/6eoJiLqnbGt3M51qhgL/MJhbFDkWQXlamA4IfO/2DMv1t6nCT1rM83sJmfTqFKof8YdlT52UEezhFhX/komZYyLakupWsjhevVtEcmnkQknGvqfG1BNcbau5tdmYhfYGfxRn/+sDm3FV4a3kCoQFNmMstoGla7S4fiGStQnN4Iw0l4Gux+Nz/uMv8j4GtCDoFJn2fjbgAQngdPSyjTOWHxzBdZcyCwuzJdZZ5kq3jttYrRM8JGMrQgFQtnxSs1/WSs/cHQg8RsXugYKrAEXAegiPSWcvQVd/qplrnDEEjKA2JQ9Gnw4Xm00q6JtDiwWQF9RbLIOm1zpHnyRFRkSKy9tQTyfCyijiFve8R+nNvsOPRywzqxs02k3shClc28AXAKowepJMXakEI9PhA/Kxl+qfNfsOABgNXYU716hhtqbEsoVytU88bunNBDSSJPcFytiUeHvrGqzd5ZTE+smpzc6Kyhw34ztV4jMAFtqXH+EhanZM9dHQvOkWXAPlWXFUlS+EJaEcMu/0eu3K4H2dTwmIvaTe+Nj6mIs9GZA3MQBHFNZwf1cECsxIq2rDbQS025NJvy7fQFAfUnfkpAaI68Jj1Bq4leRQWiMJH35wnf1ulyLrkKOdnRSEWtuh5Sgx7KJVNwQUyfQELIxkugGI+iB2kBZcrdNt95ETQYhmDucqUjo2enYfCDdsisH97VrT3x+TVJ/qsx5B12cVir+UL/ZX8f9MphIQpoc4iDcCVHMkzchGnw6gQSNNrZTJGYiGdX97P2Pe3Y47m8xHG/71d9YqwJ5a8esthiXcN7BAQuzHoMqBqFSA2HxswI1opBfEYSGdLutQkhpGORCccLCmFkqkOGv7qm4TrfS5CrEyy/Q3X9NXd3zSKABQmMZBU7FPE0Btpd4yHjGwGIv/rxHnKU2xoQvfAWUxDvE1Yly/9dJ1kAioaAqVgeX61be8uuAUsVZExQMj4nBSHONC6miNIcuKoge/CzmW47CnlU56SkbPK4qkhc6jq/5w1Vd7Be+qf8HIhTBbbBzB80jnZ1j4IH4AV5tyGPV6fhhxDLcNAWSMf74juc0QRODWNWGhwAWUMR3M8uSmdnUNXQVmBekpiwgc8g5hR+z0V2jBE2cO2jNhAGQkxUjiFUA/E8njPQm6C7r8Y7DbZtnmd3PuonP7HVcbjuzR+9VLLsR6JBSs/evn33vdxlTz6d9A7+us/1y9eHeYSGEYXFCnoMyR3mMgnfEr/jbGvR4FTcXYhBPn/5RyDeids4vLbQ3AkzSRHQRwUwRAit4oLHqk2U6qa2fFmaMyoecpvwEs8NdjUNlcnOxm1CFr+n9Qkzy7rlZWqlmaCiEVxZWIBuG/yfHxFEF1qhGn1YvYo2uUyCpMQWd7Y/7HsyGLxoK9jqUYnz9PS1F6R71/9L++HKRE4/jF6KwpmH6+phjMSGPiE+ZKbeUN1kCmcbtLJJYWikgZW66r5F4wE/1FWZCUtXp1w3pFwd5WMgGf9EOaSKGf23nszF+/E40+1poTZjYAXQ901p9r9BRy9oZgZsKPzuR2M5UnOlP1UW/ZaRWaooY/SGIcnBBtzq9+m09SLGfEEZb3/rf56BkfnCcxvCaJxW4UaCoR67jv1dfg58GRnIgA/tZoxSxU1DFjd+1soQb7DUnoR2rzNn8xg7xc2NsEnsd1CBk3aoc4+xuZDjnbLP1YYOkHBcdM9oBEzmRPoL+ZgC99rs5JRQdnV54Atp685SwPbYfxq2dTT8sRnCjqc6/uYY38nCHANTq+qzYIizvrnSoSkh22JTvUPYyfAhpYAGdh9LimTZJms+/nGzRXGTxDczwpX5FKm2cj5f/Fm5PafbdyU8pNVmTDe7yzSvOUx2PxqF85IcuwbhlmXI2lL2Wnm3igi7pTo6ckyQhIbvyX8OpnB52fEfnmKTfdEGhwmG1XAvOr5aVaeGfqSLMtgLzN9bZIs9Rrd6rWat8fXCjYRAPiLRgzhL7uXVfxckjjvg6QS+70ohHbooq/2BRM9y+iV1juWS0onLsblGfy9ApHyOLy4CHG+AmLQXU2XuEnmA18wyzRJX1DhFA7mvtTW90BzLyN7skH8Mf07GhZVtkcLhOxcLDtqf1v5qN4DgQtEfEIDjWdGD2U+Z1qbrkIFF+X+mDYBx5zydfhjAGtafCzOxafOiu0QlkQQaxPJ7UZQncYHEuIbctZ62mgxJNeaOWPFI+hvAZ1ktAT0uAZjzTBtjcpVNY+iJLqaSbiLbOZ7TCZdlTyN69vZ16xFK4M0nTny5TwQkcf15hNTJN1K4C7i8sH9ZHK2Vrb7eta642wu2+gln5YT1Xz7IhVRldQxEdkoGWVGKzqMCTaLrWlsVJByzxvXUHL4U3LlKzED+kT33Bq3ZkPftkhQiZCjVIx73P/kLyA3aPPwyXvruoUm8ZEAmhBJurpsxTxRflbXfF1BFEb3M6Y/ySZvAJ4LpB6qPNUIog8vpVko/wfvhS/HUk+aRiftFFbSYri1pngHuvx2nOcIVaiHRGFNqtZXRsxVz9Znu65iRjRiIKlBudZO+LRW50p0avx7cQ7spouFdqiupyCLgNVrQKqXlY//BQbneXDgC0qxA2nVZQauOpi+B7ZL41EAWZ0ZupQCdpjCFFhFqAdysJdLyvxs7YmBTkbeZfeXpA9d9oaFG1hNOGWUuSNiJOo92eO5hMSBwvS39ytsnujx+/ikwXiJLNNj16+ZgTSAZQXEuibbItnm2zwexhPIvja0+zP2iHGPGC/Y9sews4Q/yKBd8ic8IuKdWtBC9pMinEDFmVjedKh0t9D7eMXF2jQw/T0XmNmrvvMlxc3te/Rs1fMEfe4PVMHEqxHlYcfB/ExviW9rHITpxph63qwnF3eIdB6M6He0zHWedZ1OcL8IplOvG7ZZq4S6Yyaohqs3C0/Qiwfy9lje4urnQ6OHC2jOHanpTrwF74AsROa1JRsx2W+zXxXmtXtsywHySIizGL3HL1FqX94Gtihj0PKyytw2QbJcYFY/ZWPbJ5ImTz1QS4NyK5YJQkIrxEnuUf8WGIMRRsZXhNga/VMvBRtjXPjdJgnZ85Tb0ZsZVHSmRAFyQ+ip02LaRQLPDpslHugX3wVpht385A7mR6mZvLyGL8gLiy9ungB6SoBaEzrWV10eB4gRx0UfUOxV9/kO3ZvM0qk8Xoxcgfnf2z6GE+Bqa6TPgeaARwoif05mRBkbVsyf9dZ39MRs3KwWn0LVCg0wQ06rIBT8+AwtjHj6FrhZ510WUdrgp5SzaS4WFDFNX7HUoymIMU95jKZcvTlOUVjtTymK2XjZDFpRPKW1tR3GKTgtGzMA8d7x/9dbI9NVMWeTnJqq9o5GQFmFsfJVW7uIJauSVrHTZjl8qr4WypE/y8OBmjuO0BtUX3JjVJGeSbAqZ2p9AxGdpZ52ayJ8gZUckCmzycTJTi1bwaDPM4x60wgnXWP6upA15sNWkCk7o0SWDu5I1/H7azemF2+4Vs9uRVrAmV3mtWiKjweZxMxHhDcLUS5frYfsbiVj3dH2zsowOO6kW7W9UmBRPXj9DFLCAMjWcLSjbJ1353Ip1nPdCBJp51XnBIsSPgrfcdmPHoSqIYSUc+/n+KPowSee18wSZB4A3c5tfJ1PxghDLkDzCv+hFTRQmiwWMU07U6iEUG6xvurRRB8F1KKqf390y6F1xTZO57Ss3d5jIc5BfSmhbkwDZm81sg55k/WfsfnFI3hKAEcqKT4l+TMLRb21IV3RHS337hn9e+0kivO8yUdgPp7LD7L3NAYk4wM06riI35pmBw2Vq8eESvuOGPip+DTsZ8mRJ8pt99yBQCcaFU84iWvmXQCtwokJwlvvO+WwMqbu6Mb5eu6m0ymNNtw6uUteOnCnMec7CUgyBHHtVzuo9lL4xWjPm6HB5kfnCnkJsXJZ0ZKa6f4WzYf+4UxkIefZDClusxQ6xNSvvrNuwXM3tuOvwIvw9upFXoGm4/cQVRf6fZ+XTyX2mt3YCWuHpVzjSOk/9LShQyh+ZvYHWHsMuSV4l3OAvTBc4f9Q4+5oXR2WmIa9XVdoNwRriqzIHoHjYkdDqsAtPIwwb6E3xbnR1KjRhsLRdpLLWK7vbTbm8yKGiHPTW4+Lje3XdL2iy1R8fjsxLzp7CCU2fMu2coTC0NCn69vDOxH2SB4vHH2Ymz+QGPUWq/CTnflDEOGtzbyq7ZLMvxlqMfqP2KYavW/aI0c6XWnD+CdrlpgtxI4SxGgLx7Y4p5cmurhEr834ii8f2ZgxDUNtxn/xtQ2wGW+Uw+Ttqe3c6IXr6m2FtuDI1bSa1GFnMXrATh0J1tXWne4PZhNdpQW/nwNJM/jQGy4pc4yGCQC8cAmW4ZH6cDiALR/Ex/+f3S+ycFeTCgkgDrQvAgBk1BY4DHa/JraBxnpcUYqZ0MtTeOiteH/5O2/HSTANXFrYYCy0XroMoJl6utRdE1VsTkvShzoIQuHwNekxhy8wnU37gCKc5OyiArQrHN/UZ9EuKB8DtrJcLx2MlWyURM8CSgGHaFUmaDG1z+R9jglRFhbp0AJHr6eqKGo0DKjlD3xghbIhDEXZWnjRs3U5H2zpIfmcZ/85PBz204nw0jiHwVv044dUmBQ6RYt+lk36fuI0zYalPIy1pA+1kIdMEkvOgLpgh9M2WoQr0z5bJf8osJB/m7QOfFO18fmCJaeKxueH/VUZivgeLpLtOBU2vYeNAbbNaj9rWztjD5NOHGq22y4dcgwuCtVtTtbvgvZOwG/UuAGuuegPkYSmB46C//RdWJzUI5pzYGWBEsMMFsBDbd9HkKP/1WaeUug8NKc+RSDTIBo+8VEzNwODsBLIlm4aFgksnUqPMkDDk3iI/vDPYs8I3mHkQzvweAJHeyd++liyH5IcF9rYHdsVNH75tpDFIeGyDDphP9HNYucoGDm34OJ2E3QDhUZnAAkevqHrdbikrdbWRrMXlrdgLA5U4V67/FVoFS8yeIXv3IncYa63USuo+nMj/Yo2nGqF0dKqVTFwF2Tf02Ni+BNIVuDWyAnFfhgdecP7gyLbfDfN/B6frCEtO4fUgzdaGaIgKX34dGG6rfupUfnKwuL3aJ3pjp88yYT3Ja0w1Za2GaljvJGj8QA6IMsC/5MFXplDkOQrGf6g/3qFU98xKxg1syaTQTeDO22p/O11hmEODx4MxToU6L9bgehmN3clqLdX8v3bK458Kj0uzIfpaUFOief59eZWA3HUa5t6w3lgc05tqikAP2TJOtm2On7xUBVuZp7SIjZ1qxOmVQAwaugtlML8lB2YgG+jI9XA6ehM688p1e1SjYB5NmGWL5TeDveFAbrfkd8JccW4jp4n3xaFaNcGnHbXwDiglbe4W4p9/neHJBe90/XRsCaL7fSfcjHF6cLYZ4dFMBsFi31K/XcCfpxM8HmBamnl6MLdIhqeONf+O9Gp6EMR00RrQRVIbCua9M5ufLUi74wRfOs1OMG+aR5jRz8wqyhCDJ3FyYynIcTsnSKYPw+8TX0gpkxtcG2UJTAdxWomfBRh8duFlnlPRGN6gkZgFOIDJrztmTGSkiWStKxKZ+6CPYGKwSXLeeeO+kA+hEj9EjGs7whgLaJhtE0aS2v0x98gSDmLoQjyiJmRBYsfPcp8kxXDdPy7gXot49Z6LGcO/xPM+D/TPTXEn4vMDPcK1PGW7A6NvnmrX9kAJ5icHBWKrvSbll5M51W/eiPEYzNOH0SaZkcGSyaOed+MENn4mVy6IhNkNt3UDm1L2bTasbpXgzUbgmZktS3i92zoumLAJQdGf6lpGhLTNjoyNF6R7u0FHqVtvQ6pphxYOY7VCpDtkLgLGYST2QiwyoNxSTvlUJVsB45oc67B2NRTz2OKCH/FmN5FKUhohRe8ptKno1ZKs4ppS0J24ra5kZIZ9azhQA7XB5BpACtDDi/juEN8pNG96gOXzSWRJBXJ9ChGstKrt1rm37ZOTGl8npnAZaOZcoSEjfVXpGMHPlGrnkX9f1kXq6qCktZVlm+2P8xQOx4bKX3SjvnMn+GbW9t4tGKHp56clmBZ+oEXmbyL3N+BTinRHlSqyIcfR/+4zRF7zq6x+ruEGs2UkjKY6Akisqhn3rsSSCX96ujZhvxxAJnBzBNZ/3UrxspLIteLRCheFIR/Tx3CoQ7s4P15tuXTqP+f709uFEya+JvfYSTXFEbpkapKlIEd4VChrGme1tcwzS6jrTDnIrfAwrdtMZCmX1kb9T28xAaRsLAYa5obbafPyi/U91zDc6rP4Fb54/NcpLFrL/uZOq6lTSvp0x4d+vq8YpESiu0/EmeFK7XP/eb8von51qzq1RfbL4pRsw2S7aGkgbBrIJSqTDxm+TM9zRHOveOveUwoUPrB04+AgTYxs/fAyR/4v76Oc5ALA+F2TShH5RLrAnN6jVQnSMJK91mhxxhE27opunvyzv0rXfXgULHWopxijruF+kzCalDc7p+wuJBHb1dqqAANNVJHX+D+77IxkStgLiqFMyXW2BhYNzcKpno7V7GUyJnEfMrmBGBDnPcjHBjaLchCpJozWCEtll7yr8iLXW42OhbyAJ5EJzu03invg4VUpKisnAdPZ2Z1zu1KkBRcOwwwJGpz4h16bxV2vfdaRMdz8MTiipE33J/vcBN8+Bj7Mw11g4a7pkBIH478JE2laEQl/62Ivs56W5LMYH7qKRyEopyL2+iLWY1nBx6VgZCVPkRugzT6bVVxO3bSpmYTIj4rFi8Tc+fayESRo9ApZ4f8sOt7bqXVIpi/LERhTRqXkUdArrEViYOnoeziRTAnFX9alIraiGx30Li7BmsLRqZ3J1jH571TiZYzbfGseCVhcsUroDlO4G+KYQM+8bhxUKlwfOMjmodG7nl/dBbCRSD2qAqyXKK6AsMIPB7FEPeswu5o1+NUkdnBloPvj+Ri3sjXXPNp3DJkb6879c5XGDd2EQLBocwqF0qGUxFCLFKSFDc4ZmR0JxG2Bk8zPNHASFOzjMbs1Ds8MsQTYgny6wRDpwC35Re02t1x66DmhsVCpW61g7wOppblEnNFWMtPnRi1xGyh+XfZ3/re2o0eh6+PqgXL67qha1ucBkw69VPuwAHOdw3HkbXu3julQ2llF2JLS5eCf2dynnBRf77lFc32pVUnr2elCAD3fF4CK05j2hEdzTXwTO6ipkYk4jzDcSCerZw4HjngBxqvAkqDLW6CfLtuUgU8sVEBcRkE6P/H0QGr93ttd4VNKQ3DH21xMRv+nDXkzV+b6bPLCNdtwkBL2taHi0IZgcErpGaKD8jKIja6Qcv/9JpDD9wWuiAbFsKEMKhpJdTqJvEGEU8RyHCROy9jvoXJGutuVt89LGIQ+Kef8QAdWttZGA8OOHRvg5wGJsQRjgkibiFsUbWpkWN49ouwW8ih4k6545s1AgOvYDpfDh6UDrMgfmviqASe4bnP7fEE0KroP1abgxyx88gwmHXOoVDotKx92QArT2VPziLfocNCK3SRVOCKYB6VXGfA54iqWTAPtGuwf0mGnzG1fuepZcmsW992cVwBBRrhTydQgKdcoIXJwlGtKiipEd+m4IzMDH7qkHwODYONpi8HCyctQU5M1Ds0REjm68wjYV637yVoM2Cb3Dz+eGm3RnVIIWULp3EvoD4c0sdjm5iV49wSL86bovRP2F3KdmYLPOc87aNBkzm3lJRsn/Xi6ELG8p4sonLrSF+ZObiLD+T49imHbuhvNHwWH1AZDQL1qvFPk2fGaoCG9W67bv+ZWFqy6H0a09AH/UGaiWrv3n2pxv/mDGHYphNxHUSZ9Xyo05oQLs/jyaUkXfqD03xfSqy3cl2IJYqGdkmeVQXK5piT8wa9xgLcuC8KLVUY+/ZsH+Lbucs71kZwlUDiCiBwY7rOykKPeVgBMIndWvPlP13ZIIXcX/kR6b0PySN1ATirZoZfECZZdeS7WPndOq2H+yMw4bzQJ/1kMSJnMJ4HrCK4DLvXAqiFqKJnPjcobXmrumqJfwp3rFxPfhRfhyEQabe4rb7BxA//qAyQZM7Ty4+o7VvWbGroZ2PEGiSogEyCXF+DMTknAeeEc214DCyEIzYBBAjPTOWLcV85sp0sZz49WGldxSC+QwCAokhz+jxQD6QbB9Uh4zdmW9QUzbufV+Su9UWEExjAw2mpkaCIrbwI61qyXL50hZOY4XCZ17hq5KwFu5vPVazNdi9o4yDMJsi59S/a3ZPipwJwDfSrTGc6+Tka58RGr+Cyp7IdLVszZhkdC/2zjN5mTm+j+NQGr2nesLdC9pvE2rkQwPXuByJhZuq7mqQcn4pD47VaQGgoBaR4Ia/BiHm0fgSDc7QVYHUZpKQ50o1sdYM8OLbVa4T9V0Hqakbi6sy+/btTG0OgnE7lJa3ndnTu78ThfosB/zHW2KG/uc9xHGyTA8CK3jdAoKbEIPemi4X86tFtHwEu8utCFtpcrQfjXAO04UyN2RUu+KomkMtZQchDUy/3ef5CBbGgzdruW+dF3LNqMpMF++ahHSf79fBP6/uG9HtPvcFDlJ4bVsDXbu6w2QUfl0r9zmIOwgQ7/5Te7R/Kwe++Q5E74V9vqPrVHKhmnqCdLrSCwY8wJZoFozLjvpY8G5o6mlh1h44Np4W1VM56oa6fc2KvGeLJKHSX2P/hU1FXz+filchV7tz2zsk6RM4LHigam+Y5XOPOrUrPVbhOvFXpeWwf4wriLD4N/NVf7rlkqIYOU1iXhLIdfkps2g1xm10BJlL+O5fvy0qtOqbegGZ+Tl4S5DDkhhMs/1cSnBAmjG7D7MchXxPnFsjeG1JGp1mgRc+Svd+iKt+shMTaTHL+WHgXY+sUszsuJ5hDxEGvRBKFM9s4YPIrb2Yj8az8Zu20GlPIXfz0fwOlMON4SBpUdvEDvWI0Z8CHW2K9+MZd3FTchSxFhlfD4eXhySSQfN0Pv0mwLxsjWFUfO68nZ4ErhCC38naIgTkgsU70uP38dOsi8G3Dsemt1mODet6qF3/8v6CooLXi1c8Su3RGxFhrl2UlL12Dta0Q2VNpabYI/mFHaiO448u8x4PICWGIhTGqywwLimKA7v4k5RE0+FhyHoCxJrcRlnwO0GZc1JAbdsou1QMwzaFjNBf9htfJWfZooDYTMdJNuMAN5P2EeZztP4XSwEwjWjigSWE3T5PzPOWSDmGpZZEe4mVrzmBewkSbRctV8AFcqgUf1OjKqjyIcW6NXOE4n+0rq3+lvnYlTHLXpZfYwKV0kh38BwZOBftwYSLmpFjA8FYjno9haflkijGWrhIyvZeUZ9C0ikl3ifObV5mj0oTIL+RiyEWn/TfB/rBubcwbYsoNYoLnJZbKkyXdwFbn1GoFWMxoNJaGld93jxLL/BHu0g7qFcG/2h0b7UjiUr/HEnOVNUOEYaUN0J55bbzXlvwd5dIlbAs6Jggu2R7Qh/K3WjZgc4T57AxQI3vR0Dp+gMOaMrILIWoua8dyLnem3NZYFFAo+cCkP0nCG1eRMgEjbUofUlmaCUenCaZz2pd2TMbEnwHjHyGs7SV8rMQHRaBQmL/OjzzqhbjccVKx3ut18YHmKWAVCFe4qnN29YHFmRwKCu61o8n6mwbZQSGtX+EpO1IQgRe/nBwT52bFXPSuheUiSezFd68ZXyqw02w88STOrXfuGvDdwjiXhGTRpdFVjVIaEsH2pbia05UipRaq9/qG43eej44tSPmllgL3lZK+ybk/A9LZfQGOJUyd4f9zbgr+8Wxuwwy2mPcA50RsWIlfx/L3xIfEJ9h5Ayy227d/yjz3BmekThUI3N419eGWCYKiomT/BwgGOZQkFhxndsFy01jNu2/UgCwF8XXzCQUBpS8z7IcMazkAN626YFJxKXBrV2ykYBnWl7DsNCpA1QaJK783tJt+uMVneL1524l4GQSo/Pk02BOM2yksVA9PImzj0nLHpru2l88AWTBwVFFVt6P8WZR3mS/dFVYCf+fH33Hn6UfzIvcUAbPIHqTIbq6/8l5kdcqnEOi1NDzgqyDh3TFw5RDN0mWU0H57iGr579GeT0YehRkNEGm7v3xMyVTiqzT/Le/QlVqE6BA5ivvj9ylNcOa4Zqh80R3SRjdggHzdzjfpVi8TSSzOWVtXos4gvFOodve3fy6x/u/n3CH8qcak6nRnPaUHiEkM2ePK+ysHgxK0QHhedcaSXOCLPyJtdm8QV5+JxZrEMNO8u+8tLRrBlfxriCySDHLO7TX5fV+i2WPo15zOiWcImIO0IoBQaI87cV8fgCjkujYaWhM/4LtaqSUDLEqRC/sGn7oRhXlbAmuOBSweqy9oXmbGCgYAcn6CO7yooo2ewC3PrEGSudr772APt/EOXXjXHmd6SNEOJBOCq5jzCmwjrxhwYrZkZC54OVdtiCwxG9SadlW6kkEWpkUqJ93ujPJSbRfFx2r2VawGMyYg9aLXLHzaKbaGrMgZtl6TtlJuplBJo8/FagymqpEjTf4crVNgjJTTdHoanC355GY1ja+aWuNq89E7WEx94BLXLuKllnStLmjxWuO7RQElkamV8jNVwWal0iPgkOdASjZk7kBJEFbo7xXZ6bTlI1Wzs/bpchcGZRvW2FnP8QN1SLRHJpdSK1R/sM9QTkiq47hlCtu6LJGrEQivPhAzO7RlOYsDELJ7xcz0yW76kHjNtYuknPeImbUXQ5s7PcGNE/2qYrqtWsSbVmTlMN51WreiTTCbB6sKbpeWav1pAVJ2sr39gsCeTn3mjaCBKC2Y2emiZ9jJcFWRrbdj0QjGCr/CBohvg1/6SheQynRHl1ctb+PaOqDmzFSAG0BOS04YgfdPgEx/Y7wXfyrqdRMuK/eTTH1KKAc3x3DQkczflftlFPHWdiEbBDHikYSmhz/EMeH+Roa/onJwUkjp+nnkzmhuykpKaXDSAEld9jSZxjQAfSyPltkucNtA6doYvVOIXMAiDEfr42erTZ9wy3a+wHF2PvbAKEN0/+R/P7R1ilmfQRMTohWLkvFkTTJKHsIClTgQ1ZHeHA48694q7BtyWAej+AcxdGGBMPrh9yYQwoqz2OYWbQEPdCiwBqbmJG5CPPwGudr2idhGn0dzmejxrlRvGiOCfPWjzxZh4EhRCf1Vv5lEPjdtyZov1LJekLtTucgE5ixGpKg/32arGzVUGxNM1ekR0OTkp11pchx0Ivm+n36yUbNKziIt+hdDiy9EEeOdSyXTtx++sWEu9sBN3YtZu4ebiSLT/z1Eu1gn3XVasFJzo8SYhHnhOsLIiRBbIK39/dwcGyi+yc6cGJFN9OgFLFCj3/b1ew9vh8XJuiMPB7HQwe591eBONaxLnp0FyzcTko3NnmrYEPWcmDzuQpMvTZx2FRfXJAEevoq8Om/CTMTpvmk/DMcj899UwoDHZrvoUvvUJqGefwdFVsUlPpt5rzpjyuYnQUjshOBzJgSuVpDNjxTBLEnO7Wo5HUnIy1M3d/wGDqoYqpNorMS/bbmcBs/ZBkSsuEpR15hWcH9Hh2+OrxuumTnJ4Kk5zghy/9zLkAqzoHwtiS2Oi3dHPUu3XYrLetQm5208stgzen13gm16EUkWrzj2bPgR8lyGdBT2RGhbBsf0gHcj2eFeEd3EaKtSCXIlo6Bcws/JbXNONtgWtOP2O++d/1JqckyHu3OYxrhhLhFGfhmSPtVg4dmrMWCc7O6P7gDymIh+eYpYH8emf8Nkl3Vz73z+J32TMSqR8TGhj2Y1gJvaCSWxYEmzWOpDDkV47IQP4UlK/I4ezDJCo2v1oL1hjrKmSxRCE6ywxsyUg+S+0zuK/IVWTG0qmL8qx5g20wzUtMv0KZbBB0JYpv6NghCdlxNMpgfKVkD2ZhUeKjHWrmrgTQoi2H4LyWPgQzFih2KWVmvoL/vz0SWwcocDykUwVR7OtYr2UIp017NXbJRucFQnPQq+kuwh442WFOgwONFOoIpooTGkj+sEFcjDTKMxENdk9Sj1l3CXo/F7XiYwRamJi5aMDuuAgwr+amm5WtHu5QGQwA0zPbds6XiM9ejBZiUxlpjPAkAR+lT36i3Q7DOeHOtFnZgNWqYEd4oU2IkaZrf7YEkHdPfcbmc9LTYHqO9DsQIoHJ8xksxz1HF/1SNVeqXMl660ah/kJysqmc/OWKFP7Bxa8a5sw2RDKr8WJ0XdC7t6YFSs2C+ykXJr9fYWu7yIRlJH3neuQarDTgKoZSkSVeIhG8ntCBCDfQFfI2n3JVLMB1/GbFyKmvaL2tC46f1riYkm9EUbhGtENLE5T1GGiSrPBywPFbGThwvcc0PgwS1btPOybLsgKzB4Fy353oIOHkTx8GUrc9DdkT1juTHMeFr1ME7pq/eo1upNG0Q27shM2Rfx27vse00ad3cSRl/yZKOWCxILhcVnrRPK3AMfSCzpwUnqp1VcLEltvikgOO1jfTbzym7JPrH4VrZVz/XWfMupcznKJ10CBk68hpuJFSHuWCq6QtqveHOOjMj2LfHWpPMI3K08O/mLTelDLLwp5a6uh1h7YTbvjf5Z1BWjcGFDeplEMT3cQlE+y1AOovVzHtJ4sYbzC/O/1r6XOyIPK3n5Q30Ph6459XP/4ggQBZmRNPImYk7lN4AHCYqQWWfOuKtkRgezlxuZ2vg2HpbOw04W2absGyK6S9hRYDAK5hd4TAdu+iDibOq71mGPYDpmvWyb2bXb0hPXHna1YSRExVsv6j/y+C6+edSsOaD1zzLOySWuVgb+wsMlaQ5XBT9dx297V4ksoZAuv+BnI0KF9JfY50YCbzavC6XPlHTf1tvbr2HEax+2e7A2qVGDrOMEDSVE2GmI65MQsOgGCTYeIkS8FmekATObUbjUGJ1o7oNSu6OGGNDoTiwIXBEfL9dqizODBwheUcNU50C0GvCY5oYgr63pWi2UHMJR0KtKerz+AFmKvHaH7yuQxodxMDJLuHHgQ2nLH+as6KZz1zrYKPhYEr83Tg3vR8pL5tpLyOEAUwjGzp2vRRQ/e3/M2vWhj26Oy/fy/fba37oN/j3BcimGjxy/7TrxWwl92ba4bU0+TI909Y1/uvMVZ26tSJSPjodnm7bGLc3xczYM3b/iauLfmrVgQE22ZYa/c6X0jiQsDe3GwHbYZnpVFdAS+abgrLYqTh9B9k9rVtVnL91IiSuKjAp+NRe6uzR/cZiN1iafLNOW3lCJBjEoqY/rQFUx/IAsV6w/ehzh4eKj8gGctAkC1xfwKkIeiIkxLz+/KggTlEukm12Uae5uQorvRXYddBVtl+soae4j+7efETrw14Qrmr+QHhr6xB4C/6SH0ifhO4phyerWIOf9fcEtO2sOH78FwT5mTnSHF7ma5oaIgfD2e1QA9KR/4m3fTyL5rZ0M+pS6CPqP0FOUqmxD6kLXxsotGzaFuTPpbSTu6VPSs2/YolMcBwhmC5Du0tuBtDOLc2Iq+ZiW+pbq2+Lx7dSrQZ8uAHFeU+yRaV3LfMuiU8aia7a1TTqW7A77VXJog7/7mczeQ76WfubzhXv6+HHO4Jg8kZZTyxmwiU7VZ5x1MnpBaF2g47uXLPElQMuedIVAP25hdcXejpfFPV4nSZRHoffooXwaFsnIlxH2wuDC4+4BPA4xIFLAZBr3relvhSi4DCpYZuf0W0q76OJsZNJDXQ/kNEN0u0M44ZHDhI+z8PSLxvJFmQ8oW10Ric4hOImunaiMe6iOPd4mO8DAarB237fPRR1DitBHXsG6KkpBBAAjHd9CKdjkHhjCtrTqXZO7jhFA2v1cSMdyPRKS23jqXDBc1mB2ZsKgqIuB1tlqUMJrdV9ADJST9Q5ZeGVVBBRzMDj7Khorg+wgu37iK4xIvLMeSKTJlkon4CDtwQf0g7k+2BRysujfNfK+rOyCxYyJe9zpAWk1B2pkmcxTxV8XMgVN/FLS50h+7fZCUnr3IZGVeZR+bKyDFMCBa821kZSP9qj225XixCUABqUVwOhMOeBHAydIgq/BSp431cALB4q0LXA6Tlysj5zC4N1YnVIIfloxBA86jtyNLsMIAWHMNOaql416NaBytiOAxP9/qO0hHNvG/iNlKKxhC5eH5T7fzau3sgGkyqbVnEeDNcquYIfgMBmlzPcs29SSYwZVxH2eg050yQJ01I2mSLVfNyZgoYUiI50PEMsQFiQMwZd8i2l683At0mwzs3HgiqSg0+kBTwjO4fIEwJU08KA6Zeo/3d5/tP5Lw9VtcHjokjziifc8guh9ZE2/C/M8lqGjw+mlNBoIzEhPS9M6yI8UB0/WLlU4JMFD3MpuSgpYbIBuG4Db35sCJf+Eq+P7VvITfS7bRGWD7Y4am+1yLxnrdxzKGLc4Rp51gIVrePX/+FyvdQ9wGAqGzBoqftMJMkT8/XUl/fFH/NJ1uL9V9yDam9+GN6FxDAp2EKlso7TVaKfjKAZ6zPiXffjPwpMn+VVRKPJe61PysNWc7FQz2ksEc8JQe8ZIjH7G4+hw7tOeRME6TS7arJlBKTJllzM/MKCEiHzF5W6M9Zs8EWQ0yC/IATkn9LuHZLvDq/j6pdqQGn3Xj2T8NDRx+sbALzWsTjdOxErkmRJ1AI7xR+WbzqZKIi5VlnApxZsEbTDotumnOraKoCvkE54snjiUMSF9kqPl6gEGZyI1i4+YwvbKpcSiMM3u3xez9Lc2oWCLGswP+iIfQ9OYSC7r3NM3L6tW2CCnmGu8dpqsU8nOOiR0H1IPbAarxu6Yop85Cxb+xn/iLGZ5j6qJFru27wFa9DM/RhZy2EH/HrD2NYoc49BjsAY7ltBWsl3CgWJZrMz8qj+W6r9FT0btR8bR7XTIEBMLqI1aN2Rt/etoPHU/qJjH5+lq0bQ0MsAb5mk5xOTFcBVSfqMscKRiOC24N8TKblEhk9Ga2AkTl4HPFFi/jpO0n/z8tc1gdKGHlV6N7Hr4E/F99mnFP6gjClpMsYfI3YS8cFhV/8FTd06ETYbnkoPanxoL4XFwpOR3rigbeKQKclGF5bFqii4HCxOGoDP8l0KrIijW3gbVGiKegMIXUk0RXWdCEU8+FaAcLYw5R0A8PtriNWCm5X32KBtFcesTu6cmwmypiTpo1VPb6K7q2EAdV6re1YP8cx4rJC5HHBx+S6+XV+KpiLr7el/MjUXRcRZoeoDx5RjO8CBvDtU3vKQNDV0PH0svqLEGoxtnJYzFbYNA1GXq5HsXd4XaCFO5pLTYkOfQTB0znCQk09nnuENJROJju6r3vL0UB4ppkjGeZJAUIyevCzN4T5qPd4XpoBsSiKbVZsZI1ntvCPr2s3xLKIPrKaK3NWpw8hC5tP2CjR9Op20sjyj3p3P6ElV1u3z8udMouoaoxJvGkiAOfLvnBEyVrVHjIjnnhUo+G3Qc+A+XZdCgv81I94yQaPlXXsjQKMDNsJbt6kjEHin7gvXkdlqXO7nMs+Jz4/7x8xrkPCJGw7jX0WD6LKwnecaTrNUpqGpui0bjPG6YZTBGn6P8H1qkt4vcYuHR8pRxVTHOu8fhUaGV5LZSS356RFhm/7OkzhxkdBRews3EeFpXSrL+7bKdL1i+SUkm3+/6oBz+CEPIfgxIO9iUMgIEUC97T6YrkDWAHbRna5FNJpfyp6LElDzioE9xSIAw77PmmXxoTfnTeNTtuoNmG8hqUl1RAnmEq4Whd8nGSbxoCz/TgUWi2PqfcLyJalmN12j2emiiwaslVi2m4rYEpjz3JYvWagQst4WxCyES/QevqXxetFHqWDzVf1wYp7nTa35iV7lHQc6szNK+mJYC2JmrTfNhFUygtL3SHDGzTxdnnC6iFp2sRcsYjh3oOEtBTUOSZrVZOcnFwPE3gHm+BE5IGQd9eeBf0Ee25WpbPAC6ZoXox1hIC9zepfdIKFrI4TnKx2rtbOMWUZyuHdp9yVHXbMJv1XKnxF2GLgoekXg8EqzkbAA/F7AL/C4ta3h3uFt0Kcgx8evIjyA/YO2skn0CZwRyS+H9Qg90oDoM/S4Vbq6tYDRMe967erkQjtvDg0uiMAwjQp8KesrakKm0OMKUykLwRcA3Jr2JcarEllVpGh40ZbNT0LV8aZpkZd+rmbqSH3ZOMdOty8F9ElSG2ZD+ugQnvBRDKD31dS41yIJg0bM7CUbUpW6a53sV6qxjRRoqK0a4IXjFHYkoFInd9wCqSB7AWmYuqWumC+rHjN/NIxw4IQ5/wtxPCtwNb+LOxRdBZ9WzfLKbVDY8kd4Jm+bFdW/u2FKE9jOoCoONPz+DpOa+JaEOem11m3Tao+wuIILPWHLSXzLqaTa48c4s4u39N7DsOCtViiOk34Nu9D+tnPKF7YocMP+iADC43b/aUitcTyeR0KL2xoYtLZj2Wzitrid8NVCtmIDeODQDMM2vahWdOzk/YiW++FaUKA4IPTxb2KTVNrHSPbfa2SupxEbNtWxXgv+nsZFf8BstaxsaiCwFGofZLv6ToM1I4bfL5w+i2m2KIBp3wKea5xRlYkOlKLZiAbWuPRqRFU2kX5uIaNsqtPVlPtjyDDSckLyTAiH9Bqx2PPbMJGX7EiUgzuwuyEdXRCfI5X5Ne+Y2PAWeKQ1RFF6+JPcIPNUCXBpm19l9mJUX04/juC6geQcMXgjVtAE2tvhILBH91hEkcJwW97bzHJq8ZWITJ5NlUilNiU4ctRryr5sWxKdcLBV0ZtOWabVYGAX+/TyqAvAD6zIgrx7v58w3nCrR/gEOfQaCCcWp6BqN0uugTaLfPXh7yMMGI+0WKElFpr00zojqFrjdtWn+8N9AAIYn4+OY2Z8f7fAHDRBkmZ9hWi7+4AL4k/G5pTBILdQCTXe8Q40t1tTVeyx4iLSq6CNmkxFiymOhCiiad0ntwjMROhTesnBCqHavQu5+dDKpLiU1CyhYcG4RB7aey+TIdWDr9y6cz/X4KsPgUfwD/b805Vu7ZHd1RcH4X9JZrWoAPTO5yTroY8DZOs6u/P0w4GMhLUE/1QTUnkZMrfLnItgtWO/Ey5IIri5CF+uO0vsJwN7SLJ9PTwwP20hZtOlU/W7VFjnHo0xxbhceVviuXPNPg49d/gHBlbNbBlgOJ7gpp8GCYy3kbpzDwgwaMSxYRfiYCF5oKqla5WKVyv/D3Rv+9jxI05WINNkTsNIYMO6fQvfNIdWRXiCU+WDxu/AKbelaQpGW3WSalYQRdKtcRxKnbO79lPpMHPmg9H48YKQtEjc/bQ7NXDJrV2kPfc/9vXvoIoB5bwm3NwfJ+9lnCJ1oisHgSyZyeVad/cow16eoTl77deRvuT8haHMRDwfAdLaScyrYmreF+bpM3M3VZ3XVm9GejB/qkur06w4+5qtfarEWuJleXZ5OHBHrDsjvm+wSEgLfVUFUY7rZm5+P7TIvHuqnEDOS2qdkSxbEgjEipe7rJUxzbqpZ7jDaoNaLxvOcqI9VKz/U3UBkJZmd2J94IYmu1o0g8HpTSNqttd2qs8Ay0keHjKGlV5KiBTvGps5LYZJ/o3YUgZUutMA1vfcsnr4lgNshauG7f/KTgjIQMcEIC+4kx2SGKwsbgq54tPjUIgE98wC3cH4FI1EXO+9bb3wE3iC/a2sIqBlHCi4mQBH2vroBKCnEYCzLSY83+CfXRvwWTsqJeS0Bp7hdZkJn1gWvteoE8XBiyAiupnSXZAilgXltfuXIjitEj5HFjZFBi7OClgqPWSewfFlh57Q8CXR3dw7o19EeFp6x7FVuBucs9Fw5++2Zs3GEmGyLKQbEuW05Yf1m0ba8beJGbSevoJpBIj7ERyH7KNmuvO3/2FFRGPBP8jn+tAJom/llI/07xW0YqvDQ8ZnKuh25Wzxg8UyNdJMzWSofSgX6gQr8RM/Fi1QA0FAJ4yqulsYaNN9PRi+wo/IDFIlBW+nafaInUARAvNaYgrWj3Jy55wfCS68C+bz9iqFXGMemOqc6aFO2E8JFfCPa0VctH/fhEkRVTmlo/QS5RmSxbXPO+4O33yTMHorexqGIHtkD1a7Sq5AnG1jsB7zmMCiXVMODggGaEQ+pZ062Hgs71miezYcV5QE5h1BBxb5xKdKoJT821MhfliKPwI+lWNUTVo7PvcLuzPN/4R99YVMmnElm8hgJpkbHj6FrTR1CXhRG4dr2S2yJIEu6mq6oE6rir6KkU3u8SWWg7jK5Dp/ySgZTzOrqatmToyYXimTPzXNy0GKVV3ARFN8Z4W6Fz9dd/yVSM8ve35YdQKAdXts2ySSJzdoHORdFn+cX/g6+7wfdLC+25JAAB0k2e6IRf1Adfp7/k3QEwd8ZqX260tiPRnqmccKBNhrBf+2c5Zof0AfhbHRe8L1cR++wKtF2GDsvGqcLphjtPRmns5rPb8wqExJCLILkGy9isLpXIdXIZgLUjKVovUY4hePthmDK2QRUpO8zXbwiGp68LNgq/F+WA+d64nTtJsz6WcGKO0FA6vmyQj4tofyZaYi5qQ0JDN5h2C0iugjhFM0xVNyIOu7htr455ypt4Cn0AX0v/B37UW8jz5BhSX3kPmlInpW1LDz8DEMpWk+88cOExc1N0/iRMaXI6GvbqD9FB0QNR8NLZC9alQ9/oELuxVX9QwdC/m7WPOQgAaqRK3HsRx5cjSS8jkV4uYekIiv8bYqoLWLF/IVdfN7bvzxGd2JZe/g6lXKLgN6sNDEBVf4l2LI9NU0IWymd7agfhvLwZQaBGaq1mwZz87pIU5UGkSsf5s6qspx+FJd4jD2JdIyEgd7fTRBXJaLy2urOYhLLOoRgOCzMR6src6tiWrVj6sr9gSCb2lDIcjfqPzJqBwHwP3+k9HW8PQSOyUmWMLqcyuSO8yXGnephFajZoBZSSb5Ml1PUXdX+507LbgOsENDrzXLJ8VozIUVK/1E98MO8Q03VUgYymVHSOr23fay7gsiOZ9aFzo2Nak4MvBCePkm/4b33lakqj8sYUUIwBGxjYGlRm71KpqjQeK9baoHZBlyWXGPurvmIb/qOqc5esoWYDkLeTMUrdQC5tJJyNoiU6rfthpvwR8zW2TSkYiUz2+dJpxfUO1PniI9bbd5rZOuZJCwE41flhVSg81kRdTlRbaGLsrgYEppkRwxGVr9kxA2OwJaBW7z4Kz6rsYrLpyvlF5aPoDlhOmoDs/ouZSRIrDCArWtozdYcHJtnRkeMYY3uMLFUN4dKDg6el+1bbadgRtlpI+jLG13N3NlDGUc5dn8jIHUF8xdOg7MpOlhhRRNzBl0fTYfZENeMk2muosbIuSM1u4NCcOsWwsyGv7J6ljMM4X3Ar7u8Hwph4+cctdFeRDQG9nU6hG5qL6UYz9DF0/O2VgjzmYBdpUKB5FLsiXl2m5xiefcRcKppAE7rsXaN+64iNZvRwYBcI65IbOFHmPqaKxd2qK85EFJwdKzYkBToWRTCCzrHJclC+oxSPs96RJfoslJy0Ey6hgoUrTg01ZSNPRJlV1cZXXvjp5tV2bkPvP8dK4RyqSfrCGYx5K56Qq/qvHzi/3L1hIUPUpi4vBdSZ+hdzDWsc2B/LQwlGHYmv7lSNwWRkLDaVgg4wsrqRLsiNFDnC+k4i64Dyi7AgsGatTLjKKPut8VlmvcSP1Lz45BtsJfwUQXfoEMf7P1UXSCAK0+vHl3k/DM9zGMdSDIjGphfRbYG6LJBsJ0pOsTC+59hEcewf79tIVoDEPV+O/sbvN6msG0C1gkoLF8bnpTAzqIaz3rf9jXC/S7/qJjesXCI09UxQWXlNlqRPeLCBaTXH1/24NVxa01D9R6JNouFb2VNXqds4b3GZimgdIYjkksJixbWG+y9lGojbyHcCGLg1vGoZs7GT9TpfESrvp/Fq2RCAb51O6qD7CrhdDXAurYelUQLOLYsKt0bEbkFOWM2JCXw+QIlCEYolp2EFIrXI4tOEQQnLW32b1K0olyiqKcVbpxe0abO7cggeKV7iWcpC8Ba7vbGXc/+/RupJIVbyvZljDejuDuJPCVb50qrZmUfVlf7mo4vPiDMLs/jdALhi+u7C8GD+fObao2mtTOqZcnZDDexSL7T3HKdMr7LOw1tFMgan7VXgCeqRSGrba0wtFVBOEGjr1oXtV0gIfxiuos2OzkkH+1vYg6iqM6LHllKNdqLPN1EsYAXRGVpy+WiC3rWY7YHsGBYBT/6hvgwJS8nCWmnoAp6q32r85IoWLLgZ6Hqbml2mSXTcplztklTcRQ2ydgGnLm27XGtnuxBUI96uDh+dxLgldntDS1h2I7HF5lfccp4XhTGOc3o3Ax8SJPq6ptjv5noG0GfBvP0h/NEf6XSg1Q0eRtNeJN9+4oC1Wt3Sz6y55qo3dAu89/vYzsUyORJi9RYvfWupLe3BBko5YOcmvK6xxWsx+rptIt+JKn3gsvucGYv/145BrbxhJuIZ8qNkdpRlOg30U6P88avZh82104oXvJVqI4CocGeWkEcI3ART65+h4DQEF9lOwQavKrhm+Janv6fsP5NVLI7T/7xvADa5Yh2eVZo8j++r3PUOmNMAMtaj01qqTHZxoaSbGXbJP/m8UgY2I7HJuZ+zwYETEJ+KmIeRufQ75ITPA/AW2cbrLctJ+T8g2zrH63GJ91j2DuLpDb165r+7Bqmv5sQ+tfYQ/fKQUQm7ZWSunJJ19/a0NTROUPnmOIN5Jo+++I3GgcAYQphVj4K+krIxOpg440t0JXS5dq6oy2XK6XCCyb4IyeGsewKzVn20AL1bX+myIO0ZTfSgXyNEMrB3YhJLcgyU5k49IMq4X1KMmxbirMdyZxgfGqRzREgZJV+izEY3NgxJIRlw14GZnEUPfkPpRBJFGO/PM4509EKDBnuO79/o/UfThai7+c4HWhUQXM82mJwmyGaNGQuj3UN1YYX3koVb9ffdfZJ+IDD2yG1Mw2JOASG7B7jtksIHLS4eS/fOeai5ulYLRzyGo7NkVEObSdeXpg/+cq69UYz713EPWoHdmWMVEzDK9qdMJrLneO4Bemz/xMibkYoqLZ/3VTdATtVMfXDga3kBpE7PqRl3qZICvULK67p+qOx9WH0JwhfTaRF2jMxDZHbQvR9g3koLfW+woQQvOFKt/7muroiIu9ZTZykx/g5NOcSTbRlS6D/BvuE3wcmnuF5BfgJpl7uwlyhP9NpoHgsj8NQTxKAog2wyGnISZ988tq70dnYGSqLOklLQoeMdgKc6BYhToNB3tLQbZWv9B50thI23PFOIcLKjDLxtj/4KH0f3dqvQS8BXAN+sOqh69wg4hiADNWVjE44VmWRO88lSSlVeLyJUQnvR0JbuWEzJSC8POVg2fZvMeEuHxjVMLG7rizVsSxiJIdmE31SGd6S1espysEFYu2wnQO2HHP/4Y/uF4CyZYtus6apuuE0FmRPMJ1LZZn82a/NvKF06UQc2OcLfIeiAFRsv0kb9p7mneAc7FGeVfgF6QTCeYpk4bwcMAkwU+mI8if95BwLPlr6LDNswfOE/Ypyo5brXvLihM659XBa/mewnTmnZqyMOeV4SjOuTQKm8OIB7v7D6MPKTWx6j34hb4L9W1tuj4wXib/MxSBylnjs1AS1yIayRPFxmWw2FsxDjUIftsfUP9JXn+7hq1XlPkuXqo1s739jC4gFS6CYuzeS1Y7qvqxGrSIqqIqBY2EHSCLP7rR9J7xOEVQc4RejhTMlmX0KKimCv6PIi5j0ua+j8VmB+5sOI3D0/WjNdwyp4lVUHP1/M+2i01REE0wrctW4dGTYGULbZED4YOTqfGrqBzn5sXrbWqVTS3B2oMxU45NBZJMdWHwgZuKKhdghIJrZHOaaZ8e6xt31Ehw6otgHuiLrXGCl67ZB2Twez3FOMt6L6vAWW2Tq3LV6XLHCQ2zTtx59TJMQgkWxF6tzw4+5MQndjiIZIvYiioe76UiX3UzCdI8GKM3dVsyZYXan/R1i3YGmPeLba99wjMyMz8e+GuBMIys6MoKq97SfdWsQ8hzFkfD4ST/+gAvURjc7mD7/rf8fpriykG36/DO0Xw/8fB5wJ7yWTd0fBCuvkZh68RTeqmou0yvMLVj0WJbyU5VqY+jM51sg/iK58lS/Fza2UtdJIrP/LfcvFSTQlOUsn6JiZMIHXCdLDvlJ8loPHAg5/vjz8N/CJkOS1Zd7tkJMv2sZuk6i70seQQSXiXOXOUqQXYkLn54E9WZrp0zovGoLtoxO8xW/Del0gyWmPqXYNg8ueHXHXe0lkkQIenhhw6VXNBS01XXAXn7jP1/gPXNH9dS6qtPgCAYaee9WVUZ1JNQ1k08f2EDYpQEx4pVVOVUXpUhrKh1s3c85zn45LaXZhW02uTWWFYcXjLcqQp53XUGEgUzMuoA8UbTY1u1ednyhJqm6u1jN/w8ASXAkS7BdZkalKlN4HBstu+u2XzP9MS/JRYzCHfIC1MSlGuxFRKnCbAjQOUhjiSPPJFaAwCGkwAM7W4wXy/7w9FUJovB5WTju9cmLZgpwXa7STaxTxOMkP9uXTj6GjXgjQZIdSZ6BhuVggtjeC4ZWclIu12L1BUNB6bVp6B9iSUSx2+F9GU/i5DYVYVsk1caOedyg7Rnr9dB9l94omF3CjwhkmttSrNvsBaOlzD6Gts+7InO9K0JswiD5Cp3SmYJzrm4+ymf3DkZ33K5c/b2j8i6o6rtQYgSSj1kX70+wsSPIPNU70hDghTwRTWvCsbF63lDowIR/00HinIvoLcqGJzefbvqv0qGVMOigTlnKX36vuyAKgyejKGHghVfglsOO08N7NtEIrl1Xjjay8vajDwe3VYAmvxfQP9TOZ9BbEIkmxDFyzl6bscfBBWuPy4Wrjpr581iir1niELv/uu7+skkg8geWm1Kjq7HtWgLTRKa4tYa7JKSHMfbdIArrGsstrFZ5AjaN4o0gYlGVmfUfDQ36vbgcGdt413L0HJZzXcEPK7KWIHOowLdJcttqIrlGpCM7nG4yC+07Cp24PToRzVS3ELj3hM3SLk45VpOr8VaVaGSEhkfuaxH64GIY9N8Yj112qtoke2oSIMTK6e0Dg9tjEl2dJ6A360FR5eDuu8ygYUwJXhe2znoyKxga+RHCVf5tJfLlDwitQFTzOn9WSPQWx2Zg+bZQuXHc4p+IMD6GxLCfjYF9S5JYfa91rhmGQv8QEcJNs40d9SkcwJl7bBmpEovteQyeflTHM2cJzH049SPaUDeh7GsbgsE85IYlgNJEDTH0IKRVAq/9OC/x+Ve+lQBmfE9R1KlZbGRaTxs2S3+gborr349kaSRNgkiB0WPfEHVarMJVqe/WWnYF9mapAyN6dVLNN86P+99kbRssgb9tDT7PIqP8knTt5mC+/uGSg9xTkmdhg/MCX6XeddOqArjN1V1pRT/6WDCPqud3XiqnWdN48xnAfEa57Z6wfMZz2HVENBVsXcWE3Jo0Z/PXAZ8l3TaTvwxEzSSSHUv6hc2HiJD7yGwfm9jZmuZ0ZaSQ1fCFC2ldxvdhylyjnCq6DIgbKG6DE+hh/MZMCaTVuLENGfmvpGYqlspq7YeQERa5sQV5l3K9tusfNb+WJQTP1rA4APUL1NR9pdWB/qX5iBflKkZx7Rj6ARWKW6MNoOjtNS0nm8fcsBjd4xqAOtVQ3wuv1saz30YtKx5gXCmqyU4oatzPkPnO0eejqMWFyOUJRXXVc22Q56Mwj+AIymQE5DakOoDdEvfd6LxFRDrav2ST3Hk31ysoVnmY0taveNCMFYpL+MDjkbJqR1DL0LHR/f2Go78NPjrBjLY3JpHWFiD5iIC3FY8PziX+2VdelHMOSAwleHNLvCrIBAr3L8Z/gpVtA6SKl5d2QKXw5D711rpqSfLMa3b7gei9SWTVhuw9BJeWfuNdM4u5ESHJmtp0sTW6vT2eeR5ZUyHPyfDvIJn1RBJvIEU8jHmsmThI98RAlMZdt+I8pcJ67sciLmnaYCxetbJLWD5z2EPTYpntbCkLyXQ7nSFrhK6xBHJKFvXk+ZT96kCaLSX1oODPmcwxjGFkItzPmk3a+wlUssU9OtccYY5WiVcDjknncX7bg9LK3yD36f3WRXXbf1Bh9qHGM2CILcCnHvN4qbkcivelVO3Q4QXssseNHRG8ysT5tVIbnXc+A+hOs9pkgQ4kJqorNreqEDoHovrwcgsjSpc8i/dvlJU5il/rnUvjz8zUl3mFtofDZyQOrdiV4QfVhzvhSPfU/TuZ5bTbw89mnqz+NIKhIt2lip123GrA/p2RDQIG2wlBKqI/EBwbijTbZ+mGElUNLp//1OIVfJBgP1QZfcZIrYEwYS5id/gOEnpKiz/W59cTw/VKcNe2SrvFoBChtjFwY3qNsfnpxWLZq57f6mvuq57aHrLwHpdXlv2SPiOlTKQLtEmHvi9SUpKUsutIXYEHcvt75dM0nWGj6w0AmDaZU94kbh9R4m1wCeg27nEDHV5rzEjoXYTsZjSQT1CgSAQSdbx5lK1id+eZzteaIIkakTYpId40OVBbLpj7Pfs08n12R4vlZdjVGpjpa8NnVLdnHbjiyCWJUDJdlI86dEqRlrY/W6r7fc7MVJwYuHGM/s2cgITrVQu4cTkIhcqYmnkbiQSzqnQ95cICbPkYM2qkJDTSeslTuGpPYQjalbFDMz074GBkr7yorVDAzfflvMlWT+ZT0mTKmKwNQep1K1qc/Xw6/2PmNP5VZDlOFWvH1yBowp2aH9jusw5VcDfjxz/OaHZFi8cG7Rqfr2OPfh1x+GuF/lxLbVgQ21fqTdDgGqJ4f0pd0A80L3ZaAHsYrdSdQFWhSHsNzxE3FSic2HVz/fntzgx+2n9SRuPpPCrHtPRMgCkV3PUebILAqq2E8cCYh2SNtCe2sRVSiphXvnRV4uDs+0SjRLim/GXJejqxNw0wTdQ+rMXKtR2pregz5jz8PoN+I2y0RPWR0WYg6a2nS8DMRMoIcLQLU+maf4R6UIuts3TEoXOuPyFnIRgLqr9J6oqZQvJ0j2oH6Xgaq6mrDvfJg1tWtMPh0vVpIN1Knh9SLoKfT5CGPPcpFhqMWR/usUcFX1+FcnXDiZERES+oOlhM9WjoC85rYcDkn2fcC64We5vy/dDego6kv05CI1dK8pv9FQ6qHNg0wqVD1VtwlOMv7F4eOwqld68C16GiGoPp+wD5zNaqRAoBbYvVneTFEL80cQyhsZqTpLONc20u/7xAAApECiVckJVAzLGPaTeQCIT+x+FBm8yDDZHJ6tOixiiPJkzeuwrvhEhXGscMEwrvTBgHfVkpNGN6vDQtIebhYtS1JxW04q8UKyw833NZpEBQKUT0s0W5WfjJOxPJ5zP9nqv/CboGCzZrVC1PoEKL1KGt+Ilr/X7BqY+1xjLlpb7CT3ftCGmqzNCkV3wvq1MAlDy/hPTK8LQw9LunbgWEFeRiYRCwRX/5zO2dsjcf3AlZqrlQM1e6ravSIhVwuG74CrGWwBrMbsbrkHgl/60DR3Uxdpek0NKS9WAW40uwucHrACZg7Pj1SN4yuHAepIsd0fCL25R/6Zo93IQJsq7r7azUyCzoxir9HUkGvmc5BUb9TIlm1oehQPcX8lVzpgwKVF++lVXAyIR5Fjb/a7fAoJJpSSiM6Y42spouxdhSsbeMkZCzigTokIbf406SBdjo6So2q1wIQNUBhPHZRQsjVKO57nIVX0xUT9llYbffiW1g7lyflNxrVsdNi0DY0UwYfT4b42fF9/2Mk/aTznFlFUtW2mG1IfU4B7WnkWwQI9zGia68eDGXsUiLzVu/q43KcrKhPdyWtHZTgg4FZAd2NpfeiyVYgEaV3XinvwslfCqfgFXJtQLgUJ4A2Wuz/binQhUFcXuXrUiQlC2Qwebult7Ii+UF/gHExcn/UT5PpsxPPZfaHLmjxG9nGdUO1BpXEVF9/slarIUAY3h7OjQn67mwXCXv65SA8b+oZmMizAe4OhdVy2dvAY6/Bd4MI1p+avyozVsm/SjVnx7wft8xoNsCRZ33t6PGhPi95QANKYXWAX4ft/6adCl4xCj3chsakgaP/v2tnbqejsghaLFGNcWsCHVcE1OVF6jo9Kgs8Qss8qOGdj6ERiWYdfvLpSbo8FvpU9nbeMA5+I7oPNUF4Xra0DMoyu0yzcvLKVuqLjH7Nll7StzLuXMd7ZWf3WGgSpUBlmFbeTBCH4MuNeXk/nmgExPIorFmAIBKKa9scMqAvnvSg0iWXiJrnHux4RCekzutaCZgsHCl5lLeL7NoONe5BQ90RBns4UZ+bwHJ8PERx5R6dD+1HFLd1Yt60yfHJZTLVkXAF0EeucUPTJcy2rzhPPnHdGrbTFc70XDWsfC9XSpLu1PaxKEs3i4udw62/uyKN2+Ap56lqon7qy9Jbk4SPok/WxcgopwlNSzKaalituHwPmfrtFNkcMgiJyBmWMAWYx7x/iTq8rDZ9e2buabxJ5xY5e+vqUKvmLT+kWr8IVFbsAOE2iaIVunegSsykrWIxjvso/2Cx8OVSzRy245UCVbO+bDaK8FK+S/jqV1Qm0e8RQ+O1HvVEV4NMUApHQmRK/uUoI/R+i4MAaxUZ67TJ/Ge+G7t8TQQVyBV1SIXe4J1vVJ6ejlYaSgGLaHJYozPmUqzcXs2wdjxnXJizyiYgC+NDfKBfDyJj/Rbq1eEo1TRZR+DsFVjjXCMB2mAwosCreZnaWD7CpQ8ads7KIe50qFTlvPZI3PWydCYfeOjx+FpDgTaZkNGfVTe0TW+LGTSlQhnG22KrJ0tBI+lnb/1JG2JaHO2yhhdMNtepElolaRRdF7s65gzYFyFkFM7si0jbXjn5LD6Jy9R9tWcoZqKCvBeCCru8/XrgugZ47jFgel4jwc8QbE3bqaGSWSLHRAhIpJn2G8DSnvoKXUPLrwssg41EAII6BgGKOawlezWlSIn/kQ1exF8INfoGzA3qvP/0vCkoTVMlzwSIPaXxw9y7yA7jVJpSs5yO4UBa6GMMyXlwIA/+mxnirX0x3VELf9fKSH55Ue/QZPoZi4zxcYuhsd207zU5gGiYsqemopsy9wOgL2D8m+T8w6Agodlytijj9LxM3w1UwfdqvICy9NSNZwHDXpdYRuC4E8ftfTqlFB5aGwL79PDLrnGrF5RqGS5hByLS/NA2dF6tAuTbREPuStUzxik2soVbJ8tw0aGmEK8m0ZIkrbepQuHqLcR7d4naDilpXfSLqEydIBRhXe/N5KetsUZykCilvlHUspwXVSU5xTvpUiMKnSw9JjWqBJIJpKGKLgPcsR5p/EDpl3o0x0SP9Jk0LHaUcNg1rLDAcPeb9bu3jBCGbpUo3QBM2XRsNGHPnGY9cP11KV8f/HNt0NpQQDmeNmgCPjV2LVwgwchsrlrtaqWRnFQ/3KHL2O2W8SMAURQWzQuuVS8t7QvWiR/OJSuPDRYSb0jSzyN/Pl9QiczTm+faoADv1aNSHQ4ieOrw8GKb2+7irJ3SmfjyGf7I2uftkIb0+Fd0fLgiKkv5BN/npJ4SkAIz/t9jved+ABefZeFwlIjzkwSzSUJRkNqVE4JCMflkZEez4RFY2m4Ba5NK3qBl81iXYnjKL9JOGtykjPYu2oOpLeefBBXf0LKNuyyMssdaiKRnGmpsbuXEt6qHtXDj1uR2SxXAtc9TCA1qZdNOFBEGyzqV7JNdQng2yZKD+FY+GrdewWlRRRrhP6mCrG2MOwtE28HQJo9XrKiQjBMgvIddTyw9tpYTtz8XbRAitw2CkADk0BfGH0Se1PkSqApsZogJpfgYs75F94PK6qdcBEHpdODv7mmh3THcqMNmB+bRU8SMZonpZBs1c4kG46gK5uUJtya5RoVR5m0VTDqAsOeDmGNlsUiObMwrpD8OSnmrPy/hmt5ifEUFQRpYU3QvhYzz8Xo2M0dv2zvCWkug2FyNH5bYUZ2TC7U/kU1Ku09GBmLJuGoM1rSsDSup9zEE0EJgsaj6aNhVhi8NKmYLUyXm1i4zp4m2GnMdvtWr+RRDCtEQe/yarmpFJnAix5i3sN+umZiwNLsig3PPu6BtXTTZMZoDYCU+FZDLrzO9jvFDsyxwEkgrqpnvFBGa8n6DXlqRHzaCbH8jaFBwtqIIv9ixhr0BMgN8rwFHPyHsYcidPVo7h8+QsUAh09tJlyjUxFEg9Pw+Zg5vpBrSX2S+fUoeM9QEHGRVwUlmA0nKgiogN+hPG1a43dV0qQS6ayL4F4HhnyXHooYqqjVJbBJ+L1Vj6EEyvysZOak1S5JUlwXwtKLML0OYNJ+c9iPnJvxjq0BklIzR3PSVfIlQ2HnQjcnwULyc7WFgKL4u+iXxLiO8Au8ZnNkKzNazqHgRe/ofuOaG67a8JHxL/0KdB8TncJWPUJmkPL3c8eSH6SQt/hzn2twFl4qNeKogUOQyRcr3pySpgnwIN6u4ezTutDgNF7WjoAEw5wxiSJUEkoztrAPuIBUfI1bt4phZNqrniuN8yF3mu8cftbrdiA5sV2j4+/SDAeMMXSi2zkPBdN07jg0y0EWX8N2fEntoCJhPzRZDo1OhJIDIPZ/u6GlORn/cg9MjXoP0vZpY0KhYOSFXRhcjRD1DPxlCsTIOCjr9IljVqavWIyQtIbi5+ao3vhFtyq7R8Io4kMqX6cD7aYOl1mFLmXBd5xMylDf+6LAYNbDwBtgU2v65W2O9xWd0HK8RTOCxCsdqppOy4xlb0FX2srBA7EKfdbhI0cZ0Bamp5fxQySgM6ZghCkyEzznzTLrXbi50DWe5EShWhmIbDXjyY18P3O5cf4dSCpXEU1gJ9zk8oBUimOPwnMLvse6Rm5PnAc1nMOtqmyp8uLjRDme9Lw5n3fsuYbYb65h5j3/B7OQkZRczkBNMMWis3YP4+cmEBENg4wyB250jBSrJ52ec+NwQ0vTIpoI2JQeihGPn2UgEDnofvb1a09Gf8pbcx9KesToUtG3VfeKvKwK0ScpOLuxBb0aHWPIFyra/Iu1g4N5HHljMxEBVdibW2wvKRR4sCMQytKaj8GWmpGVpf6/mLMtiel0+uGiVAiG1drDCWHkp2p765MtoJAiryECjAb2CkfFc6GreniNpQO05X8StcbRM1GZrwArIkj+xIjy+JWLmJ8vKZ87lsWaMSOWCR7ws0yOzuBzIHcH3L4VKWgPd3Y6w5PbXpI++ocn2nC/EEgOLmiq+X15oVjCs+TgCdjAHgOkMtsCvyca+Siw2yfUK4lOz951rv5qKzUxrJs0WOMmhyjHLu6pF3LDgBG/It/KTWEXW8+o/0J9DaIzHRCubhalclLU/wlmt43Wac0ifJz+7+lc0XuM2/YEsPDe6otLDD9KMMDG9IIKnBNLsbNqr0K83t3duRQ9ndOgF+7XpewSYGTjcNrHpZeWogAb+gU5KG5a7tnMqithwKMO6wgGmpcXGhRIqKHgifQh8+PSRNdYvCm/awhar7pqnM6XNhDqHmooMKm6fC3EqnO6pmXkUQrFrDPlZF83YiVBNRGtiAa1bJx0re4ysGaxuq+Bb40hIBrBkMdgNJFfU781nvyoPKzOTsvGzXekWlt39Z6kU35zzoubfipoYQVKm9Ku9woUi+crpjxrcvyTfVXhl8NQAzuIBmCF90pDavlCc9PbZGWKp9g+zkbCWUbOgzo0jSF0hpIQDNVYr6G5JLiXRtiHEEp87XLbA5BsS4aTz9KVRxDYWIzxUp66Ux9wzseBgWszE3qDzko1fzMocbLew/aNzurW/j6zeBGgv/bNOG9blKgHcmnlialBqMpXHH2P1Va/oFr0ogf5r9vX45IEk3sutT0t3fH8YWtrMpXj+31721MUd6y+fknkkL/ZaSA50b/9xVrvfLmbvw9n4+xi+mafWxz//B3RFJHh2KWrIuBSmotsScTcS1z3woO5dp8Gz57WmpxGkQApzB92mp8XprP6AaRJpmv4UXyXPYu7jwiMgdN+SyY1DACaGdLFOFlIXucUxMjVxPH4IekZAP8GFQ1nuprlSEvJDIzM+BoZsgp9z4XjHfnnv6JVfe0uZoTHCLR4enDvSSjw9KLWCprOApQlIG1acQvg2jgoUQBP3UWvAfIS7p+PmffZ4BFAzP9aNqW7s5bQ8casKH8txFbZbAU6m+P4i2jN2wWrB2hvCzVrCqLLfkqGuP8RkU0DRY2X4oQuTIPeLK6Yp6kdZPTFuZ6bQtqjh9dthdsMwBgPxKUL9l4Mnp3L3GOvaT5BL3TzbeVO6Let5EwkWYqXidUR0fXw32gow3/mT7io6f+lBVSQOhNj/clZBdKGq4IKSXP/45f+OFEz3F6ng38OHPqkbdqeFQwznEy4EKIDemHGEtpCyQOahaYScNm+Zx2Y1BtpPM9W538VSF2WfYcG7+Cz7L2JE2kr/ZsZTD0+29yXMUBIgW+R55fbkz9+q+J7BlxQ7FOhYZHMZGEREpCkZH11DJZW7/1CRQQd/9F2zXrlPsYruh5+TswuH4EIDKpK/WV7C6hmHF3ifaeVGhMdDo5a/9ftenz53MNFWqlDqoOeApP5FNLl4/Z46NVtvoYS5PzSxN5KQrH4fj8CdVrZGtxnkW795bhF6fqBz+JFgBoIW/Pemx0xOT3nBCHcV3VZtxTesFQwzSZ4VHLdln6y82P8fYgnB8LTb7RjJRPxiyLpP9fdZIA9gCYiiDUyEjw5bSvk/cbh9Sul8N7Q5bGHjvTeQtc3gOyhrwe5ZBFFXZD7QX5BnkObNpSDZ4TN3zpxEJom1l3HcximoGOiJRsi1wKbsPn4Dj+8dMns+59Ad4MAqVM49quoFvn+aZ0uoUIxV7RIKgUQ/YcZ61lEEUveGTYcswjhrjTtXKcG4L0Dw+ShA4MCoP9mCbKb2DPglk4n6NfztxEjqewfkVn3QR+unIDzjhrLXK42OAzPTgsGDlRup1jGaHz92PUm17ImlY3Yz9XNPGvLWlxF0XuU2YRU9gEZC7FSpy3LjefG7OMUT6VFNTyWD4CAR9D0IDBpZGBs8EmqRuH/4OpajRo2OrSq0USgz6y5qyt8jh5eQpXqSSOi7sqcPwAtQ5SwDpll1PdqSG1MqTmwdZbhlAoqLVOdtoQqu0hgYhje7JcHtDGdvaJqxKpdCPmi1wF0/fffMJC8eUq+5LfZ333exYNomJGpmeFdVMvPyGQr0/VFJYOQQwO+uBvrKKUt6gz/K5vxBgPpZMzKixzOpiTpHi3QJLyrgO27aaUZFlXHNYoZGTwgvjmFYUddkn5rjwX/8j1aBSNN2H9kM1X3jfzTB3dk0tS2t82UFDeAVwqBv5lObDHX5qM7IGLbI3Vu7dRjYF0Tf3jMVhqEo2DkSYFiv6VqbaDdGtvxmpF0YEe/QdaLw4fO3igLZ/Qv+osM0H1Ppl8+zFO/6qCrl2C192ABzoVJjlARTK1ZlMAEaGtAoMOzaEI27+/VOHtAF4siJ/TeOrUH0NHJ3V2Qf3XwvWzoVKWGlbwiv0DAzY5ZR5aezUZxzAPJIcAgOqvToADDh7mSVCcgNSsg56YiMO5pzQJn5eNxoNjaWAi/nt3V1B+dQckfW8qKZFegsyqCxIb9Q96SdLMNAnMYY+0QfHCTXMdnjlerFcpFRwiEeb+qTppzugKaBlyOqWriIhFdyONjPpWgjgZT3mHjRT45iuT0T6V6ekMqCRvWfr0gtvSxgFDmvau4mBNSnrCm79cu8Kv2suf9M1M6n2ZosoEA5ci90K2boxw9Fn6sW7AyYpw/xPjWnsdMt7pKijui5Sgavhj4tkGAyiZu/tiOULHc8Fzr/vpzcsZtnv4vm6nGcieVB7EIEw6GjrNV71IipSzFoyBwhrGAupRQLLhTq+V7lGDFkNXZgBhd/E//2Ei1LHpscszwf5CdhIuJVoo4gEbPW9xPrtrQq5LdDf4xqgROF/xG2ULOYitNHjTUQscwoBgAm4DfIS4XKRWQ892TadNJJcF5ixhcwURRF4PTCQ5RftW9PWJ6d+2GqDr7Ud9Vu/JgktCSNJ22+jDP6hbwXjkX0mM+k2eudKUe4kQtgfSV/8sOBy8KHt/ie+7vr+nCj1TBGossMeZNUlnfsW7RCeiDVycRjhZpjMc8TdvqWrw4g+OteKDPIy7Eg4oUmA38R6eKRpmapf6gOwxfpUowENPGHcaf9+qgnOxdG8DAAXD8oCk6mVJxsIjH9RK/8C79Hc7UAlhr/6oaL7olqMPKpbfnY3gqXMrehK+EZ4E0cYq6u9bq1O5JPA0SOTy6KQpFeyLB8bkzL8AkDXskwBXnyp2JmG3f7IkBUvQ/9P17ARjzbTQwsSXcLOeCllqP400zpIgFQ9JV/K2qzX0Kl6xawBSKZdZ81HKO6Q7SbhcVe2HRx+XS9VmHdLaOB4119ZEciMopnUAyGvxgGl6tFmtazvrbbeYdeheX//pt9jrnACMxnD9zARJWIoD4ncuNq2INscjr6/Yoh+17RT25vG3FtAxJa3+oLJpXSls8PFTI0fjpKQa8Yt5RO96tBhHcSba9SEjvvzxVcw9hQ6wczg8zEYiULNF2YC2DnUHis93OjgGgKVrQ8m84JSyTRv5Uf71N1FBC08jp/dGltyqUxYZpCNSze5vBDSHCtP7Qspk/52bKqGfMtniuE/RCQsbwjYRTNi1RMfIDHlbBP0TeOP1s5CDR9nrk7xQM08XBf4Ovjeur02yyX6+sHwb00rvQVO6zK+WVnCG28AKOCcLdQcw/Xum0+XSuEEHXphjiKq/wG7JEMBJwAU0VZmFdh8jgv/G5lInetYKB0azbcE/vCtHAv6HuebpBjXpnlM67VS9J4032e5epqV59iCX+QTiXQ+BBDyWmDGpYgYjsNWzWhxlNVQZ8tJbtGRiesZgS9xj60hkQyfOc22KTVcXvv9F60XKHIuTQcXaEvIh0P04onGoIQ7/vqSlJh3EKkbiq5/O1JJbhjbFWcVBd+EzhawJLAj0Bhr9ybS9dAt8X1npshudBbs9XZSWgDMXp5dZHTvVFipW90eTZh9/dgi3qu0FkFdCfueykphko5sjHJoyM5aV1gtYDb7SqIcVXT1RHksWzTAmsU/M6BniAWW741LfUUZq7f6KwtvXHbivK9XkVaqSl5Vuhnl0hieXMPEGDSKdOekahgw5yWLDRCJTtZqvRWRSwRUkNeDrPw5oBsY/tiNAlV821Cth2lTmPKSgaoXX8Enzq3AkMfYey/DsZyWrul3/rvT2cgtHnDpZWBHJusiuHV4EIB8ZH9+v4XKD3cox7jIpbuQaqYEgKAkr8v1aXTHPo9Qvm+gbVHychwYo/SsMHZP/Hq3giw+CV/1JWD+GJJ2qujDsej+JuC5lX6cP7pG8CTWKZQVHOGZcpW6BvkbChJELOp1QHybDrrnLjCaySLydIQ++WwmmIw1vvvwOUTi02Ga1kfspmEDAdaU2XBroo36Vz1sL5oHCxgwFllaPf831qa9Ezfe4XDvsCd03RlavFI0tN8QEP4+GA4qzQIt1h4zoe5+DzlxBO/ZaAs3QD6/N5bkPMNujLsdhT1wFqTsnkAEwGodKqtyEGmHgJafORMfP10PBZmzqNIrFKu8j7dMKRfPGag5658iX3BIjA2etZLOklXJg0L3Nd93EmrB8AQHDb8Y9gzpLUCUGN4kyA+5PTM8Mq6kv5ytQdV6GQwelwhRszBvzkNT63z5z8MOXEwKYZQvlZ4N4vPNJS8LWHw8sxwjn1AqD/7LIm+lFFvnDbO6NEabsVQYIGjWvi6pIPm84CrpjCKZbqi9KhDpm7q/rh4P7lVpNcHeLGNW8b/2Bwue1AHHm3kTuNXEiEf8vzUVkX0h9v1WNrF8SiKHKsAkYCa3Upn4xPOFBLNNdC312yQPYK7IyxtrgRKbUx8Uoc4XXc9shiPPnkfx1s2mS+OSBEvd21JI7f3gccbUUe6v6aIp4U/0zYluFrdb8dRZKTY6IFz3WWbT/FE5CgaZtIRKwTWhqonrrKBn51SR7d5e9c8n7UJkgxf9uvHazByR1KQZzCGpNANtDxDdwWYYjei9NfqsUVN54t8eLkZxI8QH/qnvUPq4rESTqqkuMSaPMXCpGOKjzDwkpOg0tQhyOevSL3cQ3jlYww1Ufas2+LC51sKTRRkYVtfMpWA119U1UiRXfxOgRN6JWWLYhH59zxJX7rrBkAVd9voETPzTBZb6Xi5rPV8rhjrJ/3XvBsV8J1/N9GvU79gg0EhCgPv7xnPsN5rcliDb7/Q+X+KGBUGJnsuKL2T7LMjCF7ORoUGibR/jwonXQzJSSum0Iu/8zOGCoV9ydgrsVdLFwzvdwJkOhSp5wMuVTQc/GVAeUFNDw+9/3mC02mPBQ+z3a1VGUGkrTNjExItUcWIinL7h8g7r7vgUuRPs8L3rU1v8SD2OLRQZquHZDkUm6NbYJzrvp3glLa1CIkHrraKmTIYh3KvFjOzNt2nctOJ0E6+ukqNjBEvyckuhryPcU6iNi8lK6vNtqu/84zeVKOJlCKLXF1mGiX9pksXAEJVHO3l3Oo7K19zDMJKtt7bsHVZy1I/ozJAIQzIpw/7k+sfTAxBRKTKbzf5RZQGrZFKT1Cca3ypLGr7nN8KiYbakeX966AOoEqgNL3JIKKP517ZdMQ8spH9TMEe0I69UGL2drSyxG+NwsxvP5A6CchVxc7aAiwLKGdqZnaGk0wMkvdJ1ZJQAsVaVg6+PGjvVVcBuHQ0KrgH3Sz2kBZ7GGZZseDCqCB8KBYt9R9JxP93q4rnAMLOPgutpbHcoDEHmy8mnRen5mIpGrpiEiMOmWlmLLbWgmRa1VtUrRulkTxn0nLcoze/qrko/gcYtouLoA7J7ovaxgz1HmhZltTwGIrGMumfFXeuro09yU73/lauhmUV+HIYeBc482zs70CSnqg01PaeTh33sZVvftCqM6OGQQ3I7+bupBvlPb2JaB6GLz7++Q66/LgAQ0tBMQpYe804WOMtQSgHolOFUbw9AygFXNFKGRz0TBUXXUpC69WR63jQATZDFgKkTyjPBCZJHvE9AW//8E+JczXqxhrAfXbbLYH3CwY1/fGuR0YEfEiRqhi6m7W+2ujQBBAaeamRKQN9Jwr9wP5fXNT1D9fOuq6v/QAMTOQimsCmuusOGlPhjrWbyW8BnJr5oRDFui/rA8DI/ccqXcqvwUQgbLNvrGdjBaHqjmAU6cYgO2XhUlFA05Z7DZEDG6EL3H+aubFkPNlG+d3QFob0dXXzhX8YejHH6b3mVZ/0xjMc2gnyRP3Jp2/iaBezuEaVMfL5mj/lr7mjbv7QPYvHEFTHrA7uessd0gToU959yQF7ZqZiKwJBiEV5uSqvfd0MYyOctILXtBZeamUpHZx+3C5Wsa7AO+FPKKA7rRvm+7d3Ad1xQ8JdgY8C2888u6C5y7bfcbuPjkjS7UBjqScu26wRMdXJKyQXYW1h9rK3JuDhcbhgo7S81WD/27GUkibuN27kac5ObTOSKT8U5dPk3QJ911ZQo39iv02nd9yzm+/3BN7gu5fzJuXVc9Cscm7uuVKcn5MeNawe/ZPglxXIAlN0e1xo0G5KrJUpAhFMSoU3vqSGhucEonRdDEHaaJwWZt5naZjbFNxK6Vd7kDXz/Fd5syDtKEGgOwnppHBlSkbmfw0pOI5Z79AqCiBZAQCtX6ge9tcYzWI3CeEOyw+R0A+HanWS7u93lePiBFZkDmbyPuBRwo4iV5Y9dx4bhpaAfrYNMSStQAOblgEx+6xCmAp0JgTh7gZOJaAsqcYzwRJNf0x52sk+3LkQHWLmSqxSJPRbRRViaUE/n7D+FJIFtrhhVZeXR16jkB4HbCp9Zj5JEedNBHblOJNWSLdBeYlmPn8sebQKRyJm+VuMzyTtAPI1xYxrdcedd5wf6Z7CXQZfdvcTVdCUeAx70tVntsNhHVptnDuSNDuUNWoX4uGS0G1KD3xvJk4NvhT2F33ZZzu3yyFQMMLK0l5gS0pGWmh7t7BsCZjZtDwDZaXsGxkOt8PRxYmMQ31Ll7h2qv1rjgHvrJOke93V0oFrse6bs5M38ZdQ2EK65lx6wcG3rPnVgWIiFNcEoNqaKdwF6zStQe0SI2Sxn0gYoaudtxMa4XwzezDFLJqE4wC+qx6V6xCpX7BIF7cEkqAt2dLh8OuLa1sthEqQC1q82ibGdyQ3hRzaN1JWIf2M2h7zpDsU8V8wUS/bMeSAqYN1a0KPa/x9InibPCdOrcgLx3sUtRd0eu305NqVMKNYx6W5AHxYrESbS5Sza3xGH7aRM0bChmQKNTr19Vopw1d4hB2nCWB0Q/RMnszxIigTEzSZw/VYI8TvbLh2SMPVNQXYUUhJUk6y565SEddDt0ZVbMSerT5oFH1Kt9t4DokLFpBCkysdUl45Ij1uk0GSXvVoiLEXORDZMccC7W7WBoMHobmHsQyoM6MakxRdwMpVTjP2zkMT1n0vFp8I92J0BRPZMDIAgo3orodZlUeZEPASGJQ4g4Sq7akGtAaEgJYOKJeT/WzQSfyzuLsv0RRxe4rdBnyjWRsf4pJM2sq8oy9m4nAx0+tsUmoNG9MX27kkHlT5wKnYzMpKLSe+V67p3g9JDfnAqIvXzUkQDGaQ2dvdQGkTZYmKK0q+YK0oUjhIdoVkSNaQETyPtUs3qXDMxD2N9nJYWrIjcRQvteNr+Ik/YycKeMlgRa3WaazCUlWU5yX8RghPy3oLALAHm1iepVtGdRBqN1/XKD0gIYWR+AP89zEmFIKZBnJkTbSWUWO2jbYrBokYdhxqrFFA9504QjgJzqahghEKxkRdD963/yH8n3aPiUScStpZdyntNSzWZiNF8oMY9gbTQlgFnV7O1OZ5gKpecB+hrkPpsvFetKJghFLCWEBkMqW1LNgNyQQGK2HOlnmivW4WsSIwlk9xWhGYhf8DenNkitOkDHVSKIg3uXW4y/V0zzZB/iYMRoUzrsV+LkYsslC9PWRu3EVhpZ0sDywMMTRdMZ4xn1cd9yzETdZ5OYk5g+gpqUc9ooNsA9sTE1NjcvRRgY30MMYdqeFoiKkqtyxwniAayCtvw83M8s4Ldo7NMJwslVND33FP8V0lbqMhBVwBb/wMtUmuWGdoNaJhWQ++U8jFCob2sT3yPdqub5iEUCtEWTL92CL1pMeDHjA8CI/t05BNNaRG+OPOS6YGwTSf+r9LB7HgsfxUQgmpkwqjhqVhVc2r2L6NvFsii84qstDVcbv8BKCO+5NpfNiBSHfWAKmNn0pIipHezTJNgtLfjs54QzQatx1htCTaGeyWC9gL4ZzqsYXZdNmnA6jCJF5dfKskdHlD3nMmddE74bVrEr2PwBOPtIEASvIQsWvzCtELTgzVkGeJuHKUI+rOyV4RcVpEF5rADhJVYt4YlnpGxHWFBn8GhemoG5PAHSa0e1vRvdd66w0iUIDPE1C17o6pkL5zHZVQNXwrmWildRDz2Hzxz69Nwgiro0+QondbVFD4IovReiaWnNafvLYYmKaUjOlIUuTFe46jkWNN15lvIZpgCVmvMV3DmAANAiwwWVNQM1Rw77R+rcLxwf3SK3ki8EdnLUirISS/Lx6Q687ZpesaCA6lMU7iryj67pHbFCQO3abIyQ2oFxFJ9uC1V1KVNEaZ+jbqHsPkMYsTh4/mh4kH0wtv+XIS4OXEPj07rDo69WYv/P6li+5xnrw4EABLMA8L0sjW5U+yAFhd5A3TKLxHTIIGpwqRh6afsXyxxiTdx2PAo9gFHlRib2t2XS654kftfhbGx6sPC0LHqz0a1rZAUqxtWKmgeAvaxRrmfReTX16dmWqrNFLAeCoR8+mLWqj6h+mMNeUyPq8vqcETB8bc76pvFVMFX6WiGia6m/n+SgpY+6zL1/M7KGXqGmF1de3eUQdEHsggyt5tI3MXHwjStN9RiH8SSJaZFIa2EO6GTIBhMfduc9jyG0dbqk32NdvJnqcEg955FW4dNFMcY1PPxvfgqMNsodSvrEpd7liu/jWDS1IxrhS1NDEJVh59bVgOfL5lu250hR81jFhe0uG0mLvW38Muk6z3Sjz0vGAfrqCAGVZQFQ7Gbs0SbgePIjR7u09LFx24x1FhOgJUYc4sGHqzSC0QOObJvUJUR3+dbh2wb9k36+Qmcw2560Hs+zlnQMyFlNgvda8c4/qYf0nQQespQXOniqgUJLWUN25wuIDWu7noL/As2Xdv1jxhrdOkGTj6HqrQKT3jIWjYhLBxg4QjehQLCEXfEFlN+L0zY8FojuvvPb+PP+bvxFbtEgjr9ucHv/0LtHkmhDZK1FHc0lypvldB5JUzi7Z+abAWF8LHqn0bsGrgzd1LsiqA+B6Ie1Oh3LT3gV/i2+Qz7kbghhhZFrsKmgCVv91uEb3WyNW6Hh5KtpyqRPDSgRP6zGlut0sFFoSciEPXVhj0Pz5V18zH12YkbgTR82jBRhfquV/mdGAiKvjvRfy+hJ4D3FiEEINPdaTpXHmd59UIm2JBAsT01mnCdvTV1gLYf4BEl3kee/hC58d/0unrpJldDM8QOVcCao3V9quRZFV2+WpWxtoysHbTaJDQRw16C/en9G3Tv2VCkiPxnkdNWcXVrK4TFi2d0X42GpPmpvtjOqGv3bTAlG02eDyeQ+4fN9FpAqS2dF1SUd/krKcmWMH+OxrRwT5TVLatbYLwC7+DawrMYAcsbOMmbmAkVO4BLGy/7yHOSKvyxwL2TtKA85oIXNKwqU26wy0bY4C9pHGd9NlQgnFx3re9Y5q1bSdfGz0UH57N56AmA6G/yfhBpXrv3U8F1R1W0hUVzklJhGDkbpG34yCI/v5JQ/XxT0/N0pz6s+4KANQfZ3EIgToHEU+IV8wjFQst1lsdV8GoZ+9dIGaoGikiGm4KXUz4otMEQ/Qg9z4ZW1TOQzZx4dooV+OmUUo3RZRsyg/tvesk5m7UeCs9PQE60aY4HxCkFagx78CpSqZz8st8FDUSfwEy1YeNLSACMYxGfK/t0fI9Ib7TAIxfzKb98+0WctGirZYg1ABftf/yk9Ii2X76y/7NQgx+R3o3PARq8+RPjZ7KIUzWdnWhEyOyhGMsz3C9c+hNVNRptM6SDGzE9ZHhgTI25OutbuUvSyjwqelOfQL34y8f+vX0zs/cFAH8g9KdKkrTK60EZY3hTe62hH1y9DlNJ/VFImLMzrtfBx6rs7+nOijW0x+ROj2aCQksE05wcnZZFUQZG19fRvCbtVkh0eZaqd0019pd2W8mra+LW/kUlNrfcTKMuglg7PGiE5D4oXVR3Yx5b0up84UldDmC75ncUiCSBNL3X8RQoG5AdN9PJLgegFNszEVnVAXzPsRhMqupkJzwQwUulnanUCxZ4f+P9Hvq4jjGPFBe0MKhGmC94ciFu3U3Qap/OA2PUzM7E7zh3LsvALfR8maaoVsBSk2QbrhHUwWFuy1fABnbbF2SQ4ccbh1MAguicxlNb4waVohK4023bBQT6Tf3nA4pgmTF3b+IXNEZx1Bjy9uXMSST2jPnBIV09C+4gjQmjdzG09LENbMvxqcqUXL2gHRpGNis2m/Swel1v0o7wsL2AvtYYi5H7ciD3CWCY8AkF4mEZw8l8eerkMyF3ysbLZc1nGe6C/AlrVDXaW1DMVH7cT3Z21PH1BU8/Ch5FY77HPNqIW3s5rlCIrK3wd2wjRyjOOUIyH8zDxsu7IITyFY4CVOrtpzAGMJQECodx5nSLY3zL6qFOL+uZqaE/KapnXSHGv3e29Ibou1E07UVePkE3e6MbjKrGsgAh9YYpk94oMWs+ONi4cj/3IwaPgxc4XQpYms+g8seiNPT2ov26l+nUmobciUwiAKV9HVxNKTdRc88dW7cofiSrcwmbcSjWh6ddSFoH6+CUVhSfH1e8sJNmXssEsbYZs0fxrHy19Y/6yTsreJp5fQyGcWnNe7iO9wjgsCyCC7dczuZnbMH+puDfPLaIJSlXmr9F2CgUmg3plq5mqBrnBU+sf5vWOf00LSPd7h/3x/3QZQYA7Wj4CcEI07/vZbjxN3JxkK8oO+wRsLCisjcAJpBcB7jPSgfgnDTnpVIltGcEmmrK9qmC2SOISuxpR/GT1+KCm3Z+YTID/JPykk0V9YVOIniRq8k/nlRlAiQIiDx5l7BxprtOZ3m77qGuqfQJR0s+bOgWt5Lm9hoN1wQ80P/a0bWCSBogT1FnhITXQP/PYStIopSC5kRAxrw3D8bwOhKKggawW5vaK9eAAa7b/ZLyVttYga/hbnSFgrQCXocbEt46SexZXV9PSqiw4Qox50wLGreWrGLgakyeb15qG/xBX/85xJ3nsg2lav2CZgWXL4UN2JT8B/qnxLsU9/swpSMkP3mLUKjdfaQuL0gId6A2S9UhRq/LAODhKxOszxucsA8yhQLlMixA5HLrw1Tvr5OwpwJPZgUaOl3BJTuDCKG6A49C5PmZG8ZGg0TKVL57+yxJhsW3M6LVEDL7VTntgtsnSQFJK4lEtYtIIWPboBqob+McAxOcGMJ3iSeRVIDHiEzqLCrWk65gB3udde2wMqbOsLvLPZ5QjE0i03KvZ6d7rgtiv10TgV7xBJqedwgDaa6lEvmENJWNyNSFZ+j9JxX9sb87dC6QHC6mK3uhs1o5XMZF/mwfI02B3OHiIbd+ZPDCJndaYVVsdnqQcAQLjMQ4PgOlF9y3N9owsoC96RUFDea3qnAKVjdZe8GjdkOfwGuWC4K4A9hHO3sluyy601qq8fUJqszV4fg3AbME6Qng/OFaeyJxxzEGkDKWoAYCSglTO2aG0VURpWSFt7vYQPp7hQ7HTacER+8Ap7dMVmoXSHOj2Z0FF0zURDbCBrDm0pbPf8+RvygLYgGtBzjyTVz3eRklvWOM6igq0s8WWfjj5wqDHRjoUi3/zMc2iAdHQRx9eFfi9LXfCd+vlKl5hU5EEmQRNDiOqFkiYKGR/KRz752JIQIxyOEwzNwAKFIGiVvqwA59eHkhT53L0aKcDUO+0otYCobfICg1q81fE7bHVPoYkbfvvlXZiZtLgrRKwJGRQPwlFbVUGEfZXkfxmDYPKasTGeCi29HZf/+eCPfSeCRFDI782vKFklVsDxLlI/h6kfw/G/KUMhMgSKK0+8VLwOh3lQDIz0XzyJEc0lOOEpfdxffXQdtcLa0fZksPyCGpA3O3h9LhrGkzK8+CaBvVq/ZpOQfoHr2W1DQ90ARoS4/cRxoD4w7P+XqQzPIF7nde+wesMowAOgawUYjbsulvpN/RN0UVzhMJrpISSTBJuqaJYXA7ZttmE7mL9BBZQBV1efTAZ6WY9IPn4Z9OEfuF0CzgVCCJZxzhGhUSpKbC+apHuIfNqRl6kDC8jOYwkSP+Qrw52/tZn/sWl/EouSIjzhCrv2GXRPmJeXS1GfhxnVa0wWAVDUxEZHuWI+tavWmcoAnW+DpODIoEqN87Qd+7+++6VgPtxR/khP9TtkshYVDdv3sDr5Oy+dYzidEFaT5WfVcmWhvVx20AjaC1/mEumhsMtnK1hlyYCIYezzvtrvHsUspPd+kBIrc9gW9cA0mVI5mz5EOuylcVMHRKHDn22rTGKdCeG2KWmBY5DLkg2udaUqTx3otPOM1wEFKU/aCr2e0Gs9hvj2fFInPAKi/wT1YvXjcbDoxOEuLhImt6n47vJ6eunVddPzIQi4FUmwTOhMqvoHm9JfWkWHWUSxb2Ay4dmI39PS3JQL0yQfBQpqiZYTz9fVavGuZajmR3vp8mhIv6u+GFMrF0O3U4oOn/Kk/zWaTXwWVgnilmwemHB/M7/qfzwFy1rTREZjJ6WEdNhmoMjra98J1RHc+CU6nylNCnTRGlANF3tmzGjxhnY1DiWmRQfR04dPZjb2qcmPdkq8Lec5eBX8xRWrBpPmfr71GCybi3mspcwz0b1FNVKawZiq3coPtCxvlK6CoPb9kz4pYgT5iH7kDDwcPf7ohQdgLxBCo6M2ZoXKUv6AchZXa9BmZb+ZCE3q58A0pf+chM9OPxEUeEq+KGaEUuBh46YwK5DbFbjjfHXyz/42OpLAkFMpzabKZqTFDYYTrgx8BH6nYj7LJqtEP1Y6a4CPezIdaVL/h+eM0b1oZcpkpSk5Em4NM5iRsV2HsqjzBwKDMwMZj/3lS14yB4B/jKHC4v8n3COJAIdjR7N8bgXmCptrx81EURSn3I4BEUHrxE8q9jswrq0teXan0CKBI0pq71+MdjO/W3KN5avuZzcXqLJ4yb+GTUOasiyWjEPWzbcoftwPRdYv8DGmVFItK+sXi5fjC37c8oK7iZjcM2ZU4EERqx4pFujpvkkZrwi7w2AqA1s0LqlZhuxoaf9ic3K02DfdkPdplM4S34tAbfrFrelJfT2/oQHypNh28AjFrA1qvNgFlxKS+OFgK/Ze1NkezzqCNJVHiLECnVtiaotnEKpAFM5/6WK8i4ZDPxgZpRCbbLU8+c20BNrep+I+/9yyBQZw5l0yhjDXd66ttKkd7XWjurcBgS8dC32/OInyLS94wxLgDSVi8hRGVPnxBJn1OU6Ca18PCtZuEWOVnCJzoCSMI0S9WgIJx3WuyZeqFDPv/EH51XfWlVDHjogs+W/qt65d7uzMhJsSEBLf7IVIlY+RF37Ski7REWHdL8itG0cjx90XXkYTjYgeYrEMGa6f4/dQDIeM7yJ/B0hh4SyhYDPQQ0Wq20ODE8QeGSUhRm44G7Xe10rILf4hVICa2Foso0QQwoT6tt5vgHsR+NPU8CHHP9vE75J197JeR/7/FTpFNlfyzffpXLa7QWmb+zoZIs9P+HpLH5m/VE8X8QxFQmlwBdmpHVqnobAEsgLLlkt0DPml9omZ6SFJr3vEgLwKh8fO6H6h+eaenXNJKluWVsUsaghUBNDB9w+OSuq+7sZ3V4Zc99mVlvrJ8mL+U1ER3PNwGi5HEpbMKqYww+poxwfvyCTcovL2HzDBilK9LwZGKZ51CJlLEtjgNhbzc3OB4en/GRW15T0ABUeT++PIOsmLPGQ8n+syO4cKFXLzqBWU/UnlhMvBYdo7QtDpiqZwH7EbjQc5b6Og2q+SY8K/ODoRtoItlTXaubGGKMT5ystKrW8PY/UPnLGb1r3LQbz+2ZN76lg0kqauCqW/gCbu2tWzCACG52+jVZ/Y/uyqbejoN52hS2B6nGelUJEXjGe2LXRTD4p6L5Vcn5uj9g6N8uMdoZtafAivKKku2Q8IrkZWbK0oF1zpjn19jyBThSsb1Wt0NnX3uHj+TauOVbm2CqOaSTqAZ+ViK3y0t99kPG0lp5jiTv8garT3Md8TO4EJljNca/rcOoI64OX9Y9ddj7O1g00XOAuTFkX8E6mrihxRBgqNVGt9F+grAdJf/owlx8pS5zBqymqu4yxV96SQJxHVWGA/MJ/ORHe+ndYXW/eOTsTWacAJnQcec0E3qe7gU4Hzuunw2JOuoE0LoYgnLSaTNOvHVo49OMW/ws4ERh5PP5j9r/U+tBjUIA1AgEYQ31LEhB57sGQVVM2Mo3cSAmpE25Qkw8IRTi80dORrqlg4sv8g2uv+QqqTZN71bi1Do6f9/N5RlH6Kc58vCy/xRD9ZWkfSWfElhUaGJQnZRVfr8d5PYAz+17xzi1xQ7bv5PoODFOhs6EOmHyWTWDi++oim2tezXZ1i5i+p26gTdTweNxn91wbZfXyjOtbUnat1ag31qMCwBdIWC+/C8ujKsyCiE+Buar2SAwHxtLO7dkt110KDWguVckGQ+T0FOSnPVFEFC4VtXZ9KDPhUvgC2pJfGg67f4v/GUUOL5QpZrsN0e+hUHgDjZgshaSgJBb/79ew6cdeqkXrGmEESPUDcYZnGy9q/IIhtjWqDFwgVO1G6CYHQL3tgu+NX/SrXuQTS9YnRedvXjVifyZTEiF6V9lDAWxBqfkhjnXgpbvJZuy7EXpktv6ozmMfZ/O5kBYtXWieaDcarA12FGBMHiVquW5wQMmxRfHtxvkKPa3jOLPkPNogMk67Gjr4yllsKMqiUOmlsx4ri6skrs29Io9lHuDG6CptxEjU044/HgWOsv0bD9WUDk0CEEolaNMqt7LLUyPBfFYbXgr1SDWdz9CLoi44UvfYdpIRtpaFibEGlvN6wpuH/ETQOOvOfpBd5TKgIQEUVTWh5Xri/i0KJv1HihViQeBkyAUSVq7PkFLVfndSdu2a3DPOTiKjU3Y06jAUSzuVTvoGqqxCvsSnuk/NMQ0IL4uiupvxGC9C2u+9hdw0hhuea7NjVD7FCOaHs+SQ6ZBpQy/rx3pPM5RGL1/1dCMcSwuZZVCJu9KLRbh3o9M8btDH8P5kuAuM945wI62s3arW15LlRWbWNoFnHuPWU/8GnlEsgd5b+DsvP9CJNqEqVq2z+XsWlthkY+QvfaV5TYedS7moai2qJMMLcooq/OQEXuud9i5L7bAXygrHXNG+5J2i1rJS6XzzEybGkhhmYukmAkSEpytiAIMEFzvS6Ugo35dm1+CUaVpSt7qsFV2jX4zxGYzoogvfK/GpLny4YDOYBLDVUH/b5eRhZD8P3KBm1bZi3n3s7d/9q+0V6rVbXtmHftO1RaXkeza2I9kTjWX6AuMu7sEYkM/pTDmL3U1chS+4BUzH+4TfMhPudlH8wzBUesFVkMFMtzA80p0OdZz2dOp9SYUP7KdvV7KU/caJOrU/kxtFXRdl6t9Ds6jwWU9UCnxXixCMQ4YXT8xjGxY2DVzjqxo8xC0SYrN+uPkXrlSrTVGD2SDBLkJhqi68Koo9Jaakafpoq+ENjteKOFUqCfZdvvZbHO9w5dHXMu8pGleL2yMGaZRXmDQPjSaM9myo3rAWYlQkGfYSLOu8iMj/PD/QR58irVzMnEdDoJwj6Cs6QlOnxi++lbgXUq30zyY8oXBG+allUa5h0qA/u6Gc6VK3b4QMy/JT0qoQH4Ps8J6ix2FREunOF9Pd3AfMGFbgLhytUxpSX9FgDhE7irT2i1HbN3U0pPTbhNe4xhVe6zl/OwwbHguneRBcpxHYA0/kJZnYyCpzJnI6VGduH6TeDdeY6FA2BeuU4MuVIplWovyDo9pTHvl4xV1VRoPuntVvDgBYiw9IvmqFIUcY6hfnK6MDxtdE59xbv7+Rhgn87DhQlPFDLGpL0i3k7M7rezMoguFkz1qqKags6VXpEgwB/xHcmZjuLBUN3JLxq3SJ9cuGjhJoTe2dJ//Cyj7bjdSW3UHqu3q2SkQMm0lVh4d5S5ky8BThBQGJIPKVwt1z1o5SA8fT3GMN8WxBP8AJrgau9d0IJkP+lR9ZWotxbxxcG0cw/+jArJs+7EQAF06U+WYPQrk3PwERBAYAJFZOAUKdVcIOyHEpZuuzo/MdQ/hWtk5hORngUrRPIqKQ6U+4heKGmL1B/RY4d4QPoEGMEfV5mq1PSF/x9sCTLoVI+1JaRj/TqMZaLbSlgEXp5ryTPfhuThIzlXjCIFLmvI+68Bijquk3uDiE7hAicAKs0KRWQx9Z7sD2E/1VBKZ4CszY/egvqwgKm1OmjEcHPCRWb+Scr/8m4u5tTLUO+95Qy3vnYBdkxJ1rXSuSH5Mwbvch2Ph4J1LNkIvfD2lMWEXqUKR89sZqF3y8eHANOw9IhDF6o2J3n6pFzfqcYx1Qm6Rya6JueelzlxYCf2iD089UyszONZJE73SZEOAksGjpQDMd0x6Igzw9vU5KIfJQZN3F/ljrCDiMfdT5xGPzNhuPzL6VyZFNZGgfHGs7PWTSAkzA/BXtTZO4zWWEWVt5LcQcgcf+McIPX7Xky4CJ4aDRu5qv+EaBMOyTiMkRbRBdVe4B2s9GJkuaFSJWsVp0DAV9WqX1CpO7Lw+oUssQbHrDTCNkH5VuDNnKQv/IdWxc7Cg+5yC+jeXx4arhgCaseaYGwRI6q/8Wnymh0bJ81ly9gB6pwC9jsXIfT4n7B2jatA9Xc9YND/0OxpfYqaZamfQq3tGnwdEwPdEvlFN7QmNpbnKJ0RRQ6XaUGWtOAOg21FqN8Ne9cQGAMnVkuz8hBGz2WUSxohvM6wii9hNnh+lqQI55lEr4Brrc2FH2hEhSiyDa2PoBbAenWaHjbJh1mx0T3tPinRvXosi1KA0OEF0z3Hfn2enLTWfzxZi52v/dqOdCGrmhy0/IxVZAeM3CeMIU5D4DNfXXowZEsM90bQzI/BL9QcW/y6KwJ9+Y+cG3ALVEQRDgH9G3zb+9F8FFLG+MZ5Xv5VnYId/MihTvrbsDtt7bUjdzW/o44aHu4M+QA+EmVYglHVKlTkJw9Y79E1HJ17lyHv0535GCajbkPIrF6DWsu3IMvF6VA3VacmFf0u1b9r6qEtZhSlZVJClUd7NxKLiGbvjPCT8nwCIkim7I3hXux6ftuZB+sHOAlpnOv2lgQtUYBKgikwaNQXgDr9OZ5IMhlFvLy7ptCFBORR9WOJdE6B4J7j9FXxWFwJ5KOog8A1zzujkueG6Fo/hethDe8mqleqj8Th+bSeF/q8bdECJSTm8+/0Qo2+eLB098k6cVw3b2makRSP06yq3zkRIJrFwvxaQrUU9h9oNAm5mHHitwLjpRbh1k3AOcue/EmeYYENkauM6K+q1NdEiRcha8nPQaVY7FLNxbLZ9hesHkJyWK7n/XKrjcKjkH9OKD5buyqyhTUzQHfHZnMyNdReUMtAywzLLLmHOOzer5C0EHDpbGl+AmOhD2LksV79QKBvopbh92s/yYw2+KGGXRoLnoLL4b6TJzWcZAxIcowt7+OsURHnWuwjfE6mQpjy26TPIlIh5i+kjrmnPpTZBjLco4jtvJLu5fPZ4BG5yLO63HH7rEhahsNOsFwj96hgBaZ0TlM/FkKk4tQGd/RC5msM69Om4uV+jbAGTj9mjVw0wN+KD5H3LSjjbb6vgrLof1DTKntQaaQNmCDX5GL7PCQAPKozkW9LCGVc+sZPqx2bzmPWFRIdQIDv0JQ5ZK+zSAPo9DnFHQwBrN+UyqT0pZTpvTpiLgC3DCvx+0IUNmiq8uI7ZNpuboBJJ5zaTziViGFRkaX+lIvU4WY6icokL98QblOliYTX8OeisDAhQMWghDHbuPfbFyrsslE633cg2y5ACzdoQhErgFrLxpFzKNqHQQvbeOWUXDiuDtzZnyleRFpUpYYsex/hF/DEqqJFFoXjLqpvjLnRyuqiH55r3ruthyIEXOSKeq+5oXlB2yyj/VXwTzUgAdisLDiXDtBJADioSCYOMMaMlw+A0dFCMVDrUEzE9RrRhkSPKZSVRkm+yAd+Mws0+aYWee0j4ZfkVAi/W2JxyPOl6e1OTIr3n9K1GFtP/I8HMjUaNrcVqUwmhSrIJBfsNSiMbBLMzRIt2FdFypBziwSNA92s+751XYhE/yPciDQdlBNHZNAu1S9+y+ILyX1rmF/PxRkuuceAmLM82a5hKJVXBMu47TuNlaNrpdb1MazNTdi/PpULAxIVODTyw8e54jPFNAiUGm59kstJmOC0Fy5g9PNMppd4EcbBg/aXc99kmDKmh+f9Vj42xF9eXisGaiYqiipnq5CmhxWz4CwCt366ySHCZKw/q2aOtNSREUUDUfL7B3h2ErDhoi7mJUfg9nFGXIz5cg1s7jLbYvHwonnC7KAqZamp3vazinqXAl95liZkaZDUPGqlwHpJmHtunpeNOxB7TG4actgHj01Om/Bu87CrZOoPcL3omk2pxggdO6WjeJu8NZ2DaiL/MxyxIwxOqo+8L6vbyROOthFusi7vhX/ib5+KWxG8zHgzwnvCaR/vpFDq4DsHbxKv8eBkqc/WZJEaW3J/JGuNwlTichRGqYdNqlOdbUe8X/ZT8jReo4HdboyWPY3LEhSDz/6fDpDctx03+JrrO6ARaD5MeT3N0fTGXCSRs4YLVJSSm7ZC2ViohleEI7pHVHpGbvFlyKak4rNceAvUN02C0L5/JzjcWrJQYvXTcfdMNCO4VEgPkzXvdx0y2YDXpv3G+jOoFWmC8ro380KCnm0wTL1Gl+Hxd95f7pchQhlGScQ3JGFWQv8m0x/+LNOLE8iTlc8GwWbo5tTnLVHSDZvTflplc3gj0Nf33OA2GCkYq72P8hRjoTyK+c2R9ALGNsAGvZu9Sb87eM9XH6ikNRNSTCXT6ltRGKX4LB8VIXrO6CaKa9vLvt85/r+hbRleV55/uv4rWkQZKKlf90bYIrx4KsPE+5yMvTxgsTT2xBo/M5IF5y/aRytUKOBWV1T/YlCfBAQlu4TUwg66xYAoBpcIm13H0QTqpDPLlWp6YcI1G7IXI9ApKTOaKp+XOZDd1ZKZpg4JX3pqfrpbtUa/7x9OXs3AGdDbIiScd6DOE4IFA/wB+jBp+zy1K2HvgAyCWgkn9DKXSIyF30Eo7mo3tmIhODMEHre6XXbtvqDMo8tOrzO7tU27HsxoRYQ88FLTKwq7BhdewNm1w0E+TA1kLIeXFQJpCuXkJk5bxAQh38uk/oiAzjRaRLhzqwy/rgqrHIHnLZovQLsuANfphR98xg4vTJhYE6LGRYWNZG8cIicSDGczr23Ip0QmlOLvOGBhieBrkS/DkHkmZHbuhzk484O1oVJ0M0Uv0Ws3G3n9iQafBSVpKk+Hx52nK68TMa9Hq7ri2AHoJASNJofntGmIm8N7ZesTTghfpYD1yLU9mV24zx3qErXXVJhVJZNI+P9lbemeIdywYNU2okd11URZchcWICbM5Pa2kQ/vjRI+GFSXz+GA4NAEzplORdl6qrk0adW6ihBK/vaQWcLjGqo6TfBx7QSPqvu/V5EAWd+ckPL9xtp3s+uQIUuNyj52EI/Fqp5MfN2GCGw6X/P2Mb76coqYoYBxQC43qZG0aDqfPc8FhAY4kMTCXYVBFi7pzU2QZBU6Se6eNm0ZCUDy2fjCPx17/bUJhGCAeoRaZJJ1EL8G+n7QRDwgDnhjasb6T2/EJCK2N+wyH3oZEWpT1eLGaMdat5EAV2cQGxjxOBn/RaGDLk6STpPgJ2nhw1PRohAp8yufdI0Fz+dqkwa0LUE/GCVO60RyjqKypcBp/fSiw2NvvldwSzAjBbC4kU+hmy/WQNQvKSQ5/n0RsutmF2+Fu22j1beV3Lzm9YSB7hnUt+6pIMQ2e356gP106AkRDp3YwQ2t7ilkECl5JOwrUpRYcyzudWbj++InmZfsETo8cw+TyGVUdJX+/sd/RsSL77QLRpzg9IgUER3ArFd7IzdpsV9oHBw+EDqdQWgMyjrkTNZU0DbRA5FJ8k90WT44hRHEbF/9CpVBXQkxIUvnRnnnwCgi2+hCZEA6gr1EOKXs6jLD515IPZOyj5LmA/SLecEPp1ibzp7DTcy/npHP8Jax2WIoR9W7EJczVK9HbS2QTpIaE23eR10e5TKDdJ9LcaNG7il3+lydvphHLF709yX8emPmkZSgLtpfk7nWkj0qLGgBhFxFZFXqbt4U2CnZXkbk8+mdVr2U7Ee2pYMXqEJu+5FNHSmbk+XQlrbbCTtBWlFLkpHEgM6rGtt/3Y6vhTjsV9nDoJi9OPTBDg2c7EvpbqIuz5+HktX+F5yIBWeTC4cBFMgVLa6igd3hMTcm+Dk4U+Mhs5Q8cLkYF9I0ugYboh75tb207PTbl99k3NHWNuztPI8S+06ixik17W+h2UEgXUAWb9GQr8qLIdu5g+HZDs647BUU6jF9V2UWWnhbDYL+2XEtntaCw2FTfLZYQWjL6SforoFFo2GyITZPoQtIbP9kIPgU2JnR+A4+3WveWOUmNUJMbSZhvxI49kNVUzs8RKP4tz2dvCLDK1P4M8r/WyYAtcv3nGi64Bnv68kLCkuBXVkPC0naal/JruzPFoMRwuP7sHLvjjlGQw/k9R6usV+RrWc1Wg2nGz6WS8smsByQb/ToDR07Rho3LfcRRtz0P4Bj5MzbpxNdE4xR7s0RnZ7XHO4Qhke1wdDh3VDFUKFU3jI+DdommouYbeFZIgDZ/hd7d2ZJqpZvkjOpQTBlcK9I1/WTrOiHJPcRcIEOHZfeuQWmapAUOnCfUR6INdLD/9MIo8417LqXFxRZW0wy/UIH0zsbIGldkEcKbfPxuhIL2BwrZMrBhs/IlvjnUScA4m0qSIcSp55df3EF99YcfkXJp7GfXNa0uGB5yRmTYvjcttGPbDN33Pk+eqsWtkL/lXNnSRkSzgVG5kQ7i5DC0X8srw9n8CYFxMKekmtAm8x8h8Mp3bqoBP/Tg7fnS/tI471tLE1SB1whIpXnKDbiunc+EoWxabgZ6CksLL631pSZB2KU3AKQydyy9G9QY/RvWTqFXw13SLUX6KGGrX4b5e4KGPPMZz1WOc0VJxm2GTHIGU95Gp7G2/DEWfq3A6aiIZ8MaFWRdO25RygqHFlVuEkXod5Rv5KFnabmzOa9SNByBdCFy21wNkr+EOioK/X41mKA1EjNhB0Cekmp6NWJfbBvG1907fgPjVK8ogoxgD4/MAMoXJxAG8CX/vFpeQtlGDYsmu+qMZjwUz6A/P6ESAHYMF7+r2fnxD4ENWrm1qJF3Pug7GBw1Cq2lhErNnLwLe7mQVv4DmhJuTSVCgV7FPs3DMnwFE6rIqMViVSeIkIlt46nzQgRZuOV1Oe0szbihB87igD3XWApkoQ80lowa490ON/8hFJcq4ocQs9rarL3Gi5XL8DItHvm85MmpU9ZLYJOCV4jKfF0ghhytpmw76DPOk/KlOWBf3RQv0UKvArXui8h4IGI6l5UGXdWJFoJ+OYcnHxLZbkXSHARUOrW86fcXwAnjaFdE939wX5pKaDOe97ZRC8L3W1ywhajQCKb/zCMbmdKwhXUfFXGISSKzbgDQxI3n3vcxGA7yEP3TnnZu4dypFOeIvaW+KZBHchsEHNr+mHigqi3AVUkFKaZp+n88/4KXej+xn7JS2XGnS+ye9/pZRqNa5khMTyFVEB68YpV5xRlILFfm26wduRWZGA/qOVDqHW7tmHThcoAtCRvhbThknixb/8eernSYVBZ0Cxfn1bdzP0xrheeB1kzjC8Ym/vd8qmzTj3HAwqGyweYZ301IvHVjhrCiQs3LW33ab6J1vB1ZCsQejsvYgvwJh2QNLHUb8dGQgyAO+wOVZ6jK7x/xnbtPccwywvc0z6PzuTOWuWflvHbOvkZ/QCM4xKIc/uCDe7Rv2I8jA+bmxn7cv6/UYoFL/OWZYKLh+pexO4J/wacZtiB/NX7qZprLCJS4uwysWDjfkd8GpjRL34i3YSkDtRI+qzPH/dMQvFpHk75S90Bx9gVFWU3/aT9pJbEN4yzntYmAJPRMXzONPFnHUuq7zdO1VTjXzRzciiorHpdLWrr4VLdx5ai3yasrQEdXll2zKBMbDBrftJOKCZXT11khJjYOPxX2ZVN4m8gh1GImixXtXD77Lx/L/1EtOMovApI7f8moCf8WvzTMAEAVRDGsU7c3ofia5K/y0N8HVpw+gkFp7ziSYunFY6KUbwqrcedFGWnPzFGjIXWlCsD9Oi6wntkseve25NqWy6WinSgID2VkxazgTfh5uN/edgK6SdK/qIQGvlAad8K+oZXCOQE0a5uyeE7BGdlxKI4l5E5IPATz+FzgeHCGYEAjR1IM+NBNT9hHK0erfoR/rzfQD8F2R/jqZREBepc2CDZO9xihVH4PUERUhe9zmyMWtVKrarA3cToZI7pP0L9fPHCNc8mEDpMRviITOKcK8WZ0WLFQnsEcM/ykENJWNe1exdfL83H7Zbl3XC7xS81EL1cJ2e0o9MQG4XAkhS6eQXBgISSkh/3ATOyVY9zzs0e+VpTbmkVhpUOdJMaj/TlbHygt3CT82aM/QwNkAmLFBsFUhCwnH4b/fd1dswKRK2V5WqbadyxrHM479B4Q+xnpsCpVd7lw54kYDi0w6ZuDPxJSxwyacwUtkpWKgvZPRUjLJ0uAU7B+CRJrCrQBGH3V335S23lG4STA6xoj6IrWWJ6kwH9SD3LNfakPYxkZl89TCMZklRqyf69dAZt9XTDa4B3pkSBoKYo921Jt1ZOgV4dQpzNDiED4TSeb0RhQFTrxSSl/QKm2aV2WH/mNwY8zEUwdQEuocgpR4eDP8ENQrchF+QQVkbJ6V1PEPypByYgBgH6HZqVkbooJDFflucQrX0rWRThu3M6/twPm1NaZiuAq46Mt8EyOsRAkgSGGIBAFKte87wg3NVYABjzlmEAMlsZgxsI1m/I9PBMmXRmpa5bpZRdK8o+8l4c3Zq4+bBWbiKxhsW61X7PcLP7LRVc3ichpXi/JoBfkH5TR99uuWqN5lRBD+6kjK7gQoKqvQpar4lhn0n10CsHVD5CsnOv/Nx2c5aei3TzV7noRpRPTGvbd41POUKyQB2CJZIw0NmltO6keb8Ti2ASNcF3dCjCqwuqsi0+KIef3lgohuiJXeM5RKsjyrmgmne8XOZBRPEAfvyDLi4AG3KD1s5GIMokdZoUqIgTHJypMMVwwpfvtgUD65Yv4gQtGpm+HRzwiaSGJHh8+8DnacGAi4er/1RHG8LD9UxBpVHwsHK2gWII8DLAWpwJU9MqmGHSRuP8KBmtPWbRt5sJ7HezhgVts37kXuYqx1vZ5jXqHci8FQqyDAvLmZZhvDQa79sAGAJGdGHlFCfiPlOxxus1HYSW8ysv2zwqfiKbKyjuT/B4RzyOUp9JGJGdXNCwuJNnQm3WZ1ZwtG5HsPWyLp6yApMySO5K+nTOKqkHHrRUm56LG3FrLDg8dIXyH5S3/MKy3CQCk0b/Lei/wFpGA5d8hoOuM+z11VesdooesEiK72ZcNEUxeD8cB7p1M+e1cvx66bEVlCqzfU1KqYzEPrPuGf6l2R/zsUzUi/FRDT3ObMXLDwR6ddOzHDjsmUUShmYw9VHuDkpvP817yPeYrjz5BwELoWkVz+zCoZug2NK7V6eNpCZEk+9wPkGtKDgAY+qY7lxCERTxaO2vNa1Lbuim2D1tccN5X7FJt9j05qkgYXNW4WbexcAv/hYR5qmDCxewm5qnew+M4cEbN+NkkNUGmeZVHT9CkrBLO4gjIUloCKCohJJEBe2/ARgSJUaO5NEz8bunGFmogPPTi0MmbhSoWuPICyCFbN53mm3KtNquTt2afBBWxFQMTpkqqawYuuscDto3XQTy4aurBt899cJHqGnU4h/KLxE0Po4Cauj9ZFdOjX1WlS6IcrIe1AugONCMqmANOvOwoAmrqTbjiJ2XukzQt8tJLtYqrLQg0Lnh96v4w4woDqgyE7Au4Ps6/dzO9A6JOW2sdRY7ia+jV3rLjc43zcZUbh3eDki211AdVTPOYTGxAr1e+s/B1NTsf2R9cRF0TI2sGa6Fb8JseOGeOUfvjv6DRRcHC4VcLIUewbZs/eFe18zQJMPH0iNUHiOuvKY2vLYJwf4OSDdga22pistGfIUL5i8fGz+YVI7DGFAQTLsf9q+n9WAN8xHMYobkvTrMYPZlTP1AFvJBZk/yufeczWw9uP9TBMzr+aIjJcoLZAswKhXruIXPzEe4T7UCFmRdbOKBEe2lxc10+2uwjuVWq/45iv2cNRyxetdCQd+8kFDFzo2c+IcXq2EByl1Mq+hjrKJl/he675d9iLuqQQBJIaPk6+WfOJqNz8VV1jRpi2q2Ny8gj5z01HUmmNfjw70Oaacp98AmzS/+kINAjoYV7ulqYOjqG0j9y8XWVdYMf3th1EDF1DKzuIf0VwvIxxmdNkjt+0XFCyB8gJmWMA0btEJHkydDckmE5pzuzHUMkOL+2nwuZchaFYoZnIpl2Nw1jPWkCigEth7atFeLj2kIHuprIE3itt+1GHPZv0c2oWgzdPuZ/Fe7qOH6ZJV5ud7osH18UVR6Kd+bSjcG0IZRtncgpxLiMesDV1P+HRakdoxoGvbOdquu35snQEcUjjA3S6Uow3mM1loVQCJ3/CjD8darwg4FXqyWu5dUDOcknVdCWk2gZI9OzEHuE30T63EFhRB45hkQW+1Lee/4Zq+CQJ2cYXKIajDUJS2BoXtZBb8qQFen3i0LLpYpwKtmWePon74B3RNxaqxeHrkeyp95okyDTtaIKwN4o3yYKc27gEcsE6Y9XTKhBAP6wkiWhWCHjQgaaaya4Ho304sxv4VwlIt5beXHbnlhupWI0UeDudbTR9sdniSWWNYlK2RSspiGIajssW+wwXu+JSNzHlC28GbIFK/04/Tka9cgPme1iuQ/khPnKxScKWfodmaUlZmEo3aKYYtcanEDpzxB15B+Bp03CcBRkPJbm6vPFR1C8RNUxUfDKYZpt7HqnQ3YLi5EGcCybCURMtN2dirxNRIbgRS+ZVo/0sYrnL+F2fy+TsuN7tvUHpmn9ZVM0f7aCjchKk8ZazLz9kmI/vWKnotlQft+iAqnVWkFgn0XGwaRksebv1HOe14zj7knnVDbmJJB5B5E9HjCNtyj8D5LKicjxzJhdVHlRjeZyKdsp4lYGvqd1I1ThBK7vbdYnTpjC6+4/APKdUK0hXC+HEO4ZRd9DUlf5Gm86mEDZi0GZwDby+DU4+Aj5OY+mfz8kI4/Eu/IpG1+z6esgYTGJ2l9C1QF6ljPIVtNVSq/e6fqjShT3kuAZ6U+eGE1F3Jc66duBJVqMTq+27vGvq5lW4Rw+hw+IARrzGf906dHcUbOfn66191pIZDIuq2oLWMhMVdCP8G2+PIo1R2sqI4uzh5yI2GQdgvSTqD2gyWViBFSbFUVe7+K5aQ+hj8nyAVgLlqIq9l11ra+UmHjvtM/zJ5Zo/b9uO939oJydOyZE+VNE8drF9DCFACGOmMBGeKDaTmtuP8b5FVaF1G7fSHdxOqVuHb8X7C6t6mBxgFmp5FEgB7RXLgH8f9cOQp+AWyv7HlUieJWXx2551yLKIl/nW10U5eYvmPROUMOLWlKX7hk6dEnSujKAJfOzIhQ3hi63rdnxf8Su8RzErKHOG8SlWjoKo8ncixkVodF+VeT8hmAuhwI93iG7o+Umuq5XP145ev0NS9oHzvfocZmQRRr+peXMH9DX0OGor2ZgtwUc7asE0cVAynjV4LcVpv9DceOYAE1JPge6LrNg/bSmROC9z8HcSwBOH77ql/QH/0F0moL7vuGE3swKYvKHpJVccZIA+bCcQv9rfN9UG2Pe8X5wDva71avTLYcxHhiB50uFNkie3ohRtRvVIbdmhTFhoYyAEXBWv/YyKq2O3b0TPFRdWo5JmOTYITRxI5saxgpVnwhoyLMzN6gTck53DTyWPH057cLFmIJaXu8fU87G3T3PO6MaSP/SZvmqHb3z85OIh+AfctxdJT0sOi27Rcl52p0lyhlsgjlqla/e+YtdkS6FLiRERvogWwWBsMopoEAfnrA50nJgmMYCkzObP/yNfj2B/+3VlYaADJmwuOfydWjXoBzXPA2lO9Pg+Bb7MYLypKsdQSjvUnHmrRDsG0vPNncdwoWbyRHLAvM24CvllMOnkTjeVIRUYBpOTuqeRE2y9ECqBUUuVLLIfodWnglEqPqpC1+FoARhna0B/4fbYRTTL3ew++us6K8SxQ1/8vknPpnCsON1neT33H5RUu4jbND804jYr48FITE1/eZGpr/jp8wZA2Au/yGDssetZJ1XzeFnTvkQDpPo8AYQJYbB+PxCzp3KHyTjcah9kN57fFaajj5d6mLg2wvLowpnXk1TUMd1qos2b43aKLC0rZb233XZVqW25lcpBzFrht4eGgVWxrN4CxupbGWzT/zzhyAfS4mWFkxwmd2jZwB612BZymoD0sPdoBxbS73A2lDhjvxddX3ai+SQIIZZ84w6MfW3iB6gUAntgehRfWmcmh8QuL2rmCsLSLOI0XU7TgsSmtRob2LzYn2/6FLiGsL/hZ8+s+/QWbbDfQdOzAL1LQdfEB5UlB2sAwf/VPqiawN+3CeMqXbTbPNuJpClFZVlX7wiNpi5+lR2PuQ98z7i0p0tBpe7ZIL5sS73Dh73Cj/ZKUwEy4UeM2NpBRCzZcpOayygYLyVgVJ5TPhyx3DIwVQxeyqJ2HH4d/FgfOrVoptVrhd+ihQg7RXKpJO3jdSlkFwOHdL+V/MshndlMyfxZN9ysIp6NTaKlk8/wuD2cQB/qhr0KHnzxmu1VR+S37WXkUH/gubr9FMmXrNKUpBF8xahIimPK1njpFtxGRl4zTmRCUE/rl+l++yF/nhr8skXGxDLlwuacXNSe38y/7+20wNA5nyt1EmZZYxs78ew6CHul42t48nKCAyLpVf0i21MYXFyll1VCooDtU3fBmg/fdG93QrO0x7VhxMG57ALbBqw4ee/Wz5Q+cFESx3ca/TiPDeGxiOXz3n1k9HUe2a3QtrALf9cCnfSgpIpvv4rzdq9Du45kdOAAGkQSQl/H25MuQFa8aQB6RWS030TFPZdcJ7klwOvinYXDmAlydcqM/odjV3zhbSjrt0YzYz33R0eEgq2TglvWY+Xr+cXv3LV3TLPq32E9JqDinvXtp+uWUnAQp4TZzvh1FNz0mtplGROAgCzaxpGV8vOKRz13nR+oZ7YLwI29WGO5wIeT44RJvsatAvfb9fNQ1pBg+cDhNcjEicr1LWBg4kUYk6LKNuWByYDXhAXKBOplzzW5NA1UiNJk6U6Fn41/nziKHgkxXsg9Me7kiqoETROcNFocWNsZgWiILrgdoWL3qeiDnszLR5aglMoJl76z4pR8NlaToVdv8aXkzUp203n+zTdbc7TWlIfx4rPSNXR64oh3SQHo3/dHkkPFV4dKDmY4BR9i+OAIK9jXNokNLhfqFsNHYBp5q6cfQre/z9GdVmNDBbj+nT+0ZzN9TsgPkZEn6xh3m4ooAqnuKAdy/Jb+e3CpnWL4MXeJeIAewbgvkbX/0O9OxrSg4Mckp0BG5W8VpJGEzBWCeirsuHGDmNmgBzFoQAI4/aSkADnxYaCGCI9ir37gUWovJemZmubiTkYI+Q4szcTyn5z72tYMq1+qOeBrgDDuBnknXT5pEK/sCjB8YOPEueLgKMgStp9NUFX/KNQC5V3C5OEjhxIwzBT3W4R/4Li3MlgytlVKt8nimU6WaOEj/JzxC2HDUV6qeHlvPFd7tsApgONGKz9n9GVInfY/ih5Sm068Acy9l9RHwYit7sD1Y6TDq1jPdNx8zZn8DMGfW/A0gKPTjclCEDX9d6DtfQnW0s6mMlvt+Q3THqeAET0OQM7spmFzOgzfYLApFu1/EDKS3OueO7DbElyQBkvpOe6nZsTdAbpADVAFjBQm32bvFUgscDU0ZboavnHKGmJ/yhskTqEYFJPzYG6jWJ+36Qi9pA4fyVnhoZ4Lxmy+6D64mD5r1nO+NyFpqXTSVstJxojAFG2SrlXd1BkqndZqGBS7URUCTSHmRwy+w7nyzDOZQatFoII10FD3wViQZ0rURNjtNXXwEVyfrdIfKEgS3/1BO2IqbsTcr58XpwXaczmpvAuiK2YTjz81UbyEVGAtBxCaHsHUcuca667vwFGG+ckL9TJuuK10RzrEp9XY3/CYO3bjDA+vMnajeIrr2POtWJJcAh1uEqbRd9/4KaqdHC7R71a+HPB2O8ujgV4yMNfCTWiesCxlLh0noxkchEDxgewD8z9c61C0f/HnlHYuAgMctydOSEgvqfDMfnXoMsdcnE4ruf7IX8aQbzg1BquRIBhci23Dncpalj/BW2PX+k20RVoa6bT6Osb4o60QJkjv2V01CVMB83QfDdd+BRNs+J3eJx92BywwVPO/JR+D5ovTgnmvWazlFqClcJsMAY2w7wOGeCW46vOChbZ1DG2gJoQsPwogpS1cm9q8MtKRL6p9GcjW3eW7R6LjABqvOqyBn3k/J04sdFR9/Bycb8vEhAsN7L/arriVVFjojn3cBuVo8H/QriT02D0h1JLsP3Tgi+MO+acByFwXIoPdgAdexBLRmziddy5bZH26kohZ/jGASkLVLZ1YtMV323d/s35lNy79CUZRfFJ8fqa8AagWxZsqHV8RPl+CYDElU7+kpu+saylximGIvwvGB6BjYdEh3aQMI+LyxtOqiVJX503+qnP39xZKP6rnPEpsGdQfsKx2uulJBX4HRVQFqfCr03nQoKoOfcMxgV91VLqctDUoCE3CbXWmIoFfaX1hQH6Gc402NhGAAxiXaxJL+NVeWmFzsZcj1FkMbqiHVlTvh5hx7aptCQqzxI/5TV4yIqk5fR4agiaZ5lE0llk82zvqz0KRuMMAFTjtOIuZ6gUqpe6GSCVieqFpju9onMyHydXT0e8N2WIOtGg22Bh2i9f3TmlrEcuwCMzt+nCbES9FuSzFjvKh/3Du8D3wKVoe/9xpJl7zYTiQb/SshSdC12HjZ6HthyVTj7RFlsDcM/KTq0LjfRGOIbzduDifAnbvKWozlZXOSNsiXhSuHQKZIPhQ+lcngOXF0O3IP261A4x2DBkh0q21kK1Bk+OY9DmAjR0fZcw71wlIxe/gYeNn3tm9tEnyd4oppv2NSVrCEc2W1BbZZRlkxTMm3nwufuvNP6mTnHZ7j1JpUBaw0n8YkiFJIhaZF/vu2cUBPAWPzEO+lRf1/2O/1lDNpEMzKJSsQQc2qauQwr/+xfmarYZMrnSEnQaFIqRA0tuUYmUwYYY7CXxgS+g5ottMd5sxBEcwGRMwzm5k1bPXf0uPFmdwjlUb5VZkVdFX43UWVKiPRo9Vc8QDeA0ZmbmfDsCA6hsk7GiLCOp5TM6tRw/tJVOTLKKoihPopvgGXKjFYMKOsPtoVCAjyMtcVoednVNiNFZyEIrCBA1y+F7RLUxuPUkDTwM/dnJWRogV7uZEhWfpQCiSI1+5sqndiQP2IZ1l45jOgucIUfBPOKTimtwF0bkoUmCKvcEcymPcPM05V0kNG1gTMz1YEIpyJA4F9f1diyrS2i6oCj/hpIb+JdoymisG1D9cf//JSz5fODbRvx602g3Lt0Zcp2CVhk4H7H/ZRILUhkAzJ2ZWOx3PiCbh32bE7/Ksx9r+HrMb5LAUoO2qE0N5RiPQTNoIL8K+zZ083VFhV1/qLGNt834/FB2kZyWa8yB6gXopZ8bEEDWCnXYJ4VUcfJK99x/kK4QvHPczd7Ltnf8JNZAWRt/emSHAolSOJfeejW3n0hfKCn63Z2UV3Ro1gadEYYFIiOH7pFPwmB+Ok4qroIxwlH6+WJsjIKp1O2LBWTQ0RgkaZwMU8tTXfwiERPALbUmeIJumqIaMOK9MrFaGfJUBfreu1l3F6qPCPog4gZRD0k/e/GaD++Oqaz48/8GauSlH1iBLhdxrvLyl0NK7ZLsX5pDhdvxXn223sG7O9CxWMQuZxI73Ps+MPbeJ/vUqNjVs/HQyxNXpA8shUMebgVM0knRGa1d7rfQXQHSh79nbp/K0TUxBWuzB78h3+OmJS99EbqvKviLVL8QLfkemIPCZmjuSYLmnyxwCRS5tgMiXOVbls+hZeZ1sdubZ1MY1y1Hs4KH0ScMM5sl4+iLoF0J2nx8dKesUR9snjjfLSvHHMcjceo69CNAQ58W90Okw1bJMBNHo8ntODm5CUtV4+9FVSg08wg2PARJ42b6FX374JRyyoT0YeUL9N6GNbZ5fcK3SWF201ef1OCBWN2HtSL9rmV1yLGbp4WLtnu1R2mkkrs7lRIucBpI+JRIFhQDmvDRXj+luJ9V9m5qPg3a+SO9rBz+R6nr26ut7G6eEFA8ATW9eZYpLbUi2coaYYt/PJlzzg2A+oJR/4GuTnTD2es1/9JknP4zgkeD+xCsyqRs23MXfeprSGsVyBGqx20uIV9xlnkaZeBk3TYRUfSpJwDnKflyZpxiYRKj3Xbx6fTROvc4hvGYRQqlr2PbS5p8Dif0RkSzW9Dv3nyZMrE2zeL8caW3/69VRKJk7GLd1nTKlMYRHq6ojEDg98Lv5nd5eR/m8RMvAEoQPkTuVafAf0GcoLP4yEXg3I3QxGpeYFofD1kRd3uXo9nlQ3mlu2WKyNXbeqawFXHEAD2XKuVbZhbwnofIo2Rd+QQRXQVzGUr9DLF6Es1sZsd8iQ/C++81uzkCIlgQOYQYkGciCTHcw0y0THMgI3sP6aMLT0SbxLe8hvzWatW5JVtrR4TeLwHq4SWkbKq76AmLzXazxWblxdiPycRiQbLLmbSsBbtYn0pOYsuwEzOLzHRKDQNzxy/qB8mlEZdcHXJAQxcga+qILLw11Z6W/z+qbWmFoRnO0Vz3t3qRo/XNw4JEbKgBlCTEcQCvYvmhQuizdfaYkZkgEHEMKQz57oGZMyDvSr4K7yr/G9vmkeI6/lh7uYsWTObS3Qgb34ahSA/rqgATsjuaWIsdXY6gs9ilnkxc6umqSbqHoJ9xQOasUMx/WWx53VgdJRIAmxI1fSn1/lZLOqLYQUZsXfJOsraBYkr3y9C25hwwtVkzK24/WjCDq25KjvEEBWsvvbyjYthPu6ej8OzHhNAIFshSJrOvJ3WP36HSEmV8L8jLP/CitbuJ9de6HhIVr6pop+fpvNH7c2TUb4/FQLoCh5HnCaRWns0umv2692mZo31Ec7YbIUH9fIkcoNFi7guaJVRcXDfdHL5U+vKZz4AZKmsPD664M6ATVaHck3/XLpSaTypwlGZAcdH8A/bOi/zDbpJXiFzwUxEp6POJ7Y/UaHNKDDUztKlsPu8sa2OaVPvnf4E5u/53sSFNtpWtOPdzgq+oS34RhEyuqsq98906j8PbuVXCZgUR3QdnowuSAK7l1jXVjmAPzxcFBDzNg0mS8PnI75GJu+UXlzpMuc8yzjISmQ0hHPGJjj3zQyNY9aj4OQVvh7wq59Yq4H6pp2fMovmIgVjEnQlGF2XgU3fk0YoM8jReoM0uqLpOScB424IZBhjr3kVFns0gq19aM7eD7Ba77usGdW85qK10wPmXLF64HrhRD70I0KzlVq4jqlkGdTQoWBJk2DsrUDDrE9SMz6egTJ2bda5b51LWmDQBsgp0y+GljudBXCRKPjX+o7mMZUZspJ7aTwG1DkfLa7qF1kLx6RmPckyJs+Wxk8bI5imKBoho8DNCt3LKG7O9mD7VoLfBOyazn7V1Xrd7xY5MibsZCHoB7Nyc1rNhAyJm8lPKq4ekGUXNYFHQTNJiWMTo5qzvU6LzZuD+PhfKnG/QeY+FXcjrIAvTc85XUciZH9+8764pBqlz7W7+2hK9A50oXlDcpEkUko+AzNSTxCiR/Sc374KAOfkfca1mEFmcMvYzB0gJoSo3Tf1JDaJrSxMxLvt7YHxJVer1ld8/C9QtktL2Qc4htdlSLp1TmBPcyRB2Zzhs+LEkOXRhb5KrOyzN44QtzKfRKUSTjVmNkTNPR3rBsVl2eLCQAPXjU5cYawkYqNJckURfZxd9SSV6b7M1bDz7qgQxgF0ovQ7xB5b+vmUJxBNUnSJP/XFvi0VoVd2yqV0/dj0AXrHyW7yQIHWISS7slzl4UjEqgQzKtdOxH9OSq+xYqM3lV+IiMqSlyamGXRUnquJJ0XGgSIynh0gqfZFmFiNbFFGrL13UJk8rqBAleEWkW3OfTc1z19UPDHzcKLgMLIJe50ysyx2LkDhRa6DJOtMMOv4hopTfSSiF+cJL0BwR5vjVri1g4QCx7QahIlH7Flsuvy9r8anRvy5JxsUf41z9vMuQJrIzHUSHcqG8kKuF1ogkE07e1QDfK1d5FziSKPhhn6ZpsBObbZS/bijt/50xYGrr7XAa1KKIPTl4F3Z8g1yvZOzI+9g0aPzjurufpMHXNnTrsGFEI9egWbsaOlc+tpNIB4jC9i6juR5M4BIqaAmFIBC3SCg73aYnYz2jKXk6CNhZBm0niwas3DoP+dkpmTOZygX+GLsQE5nsQaRn41o7U6OLMlDe/fdvpvynwYU/ORToVY1GA7TlSWljAeZue9NWNZM+ihy7pH4X7DQwzkZY6I2sWjGb8AdcBjzInxSQQzYEIYOIe5/bzigL3Hv9V4X9fAOFqkAp6Zxurd3J31SsCkpYVnU8ykMVGFGmr4iZW+4zmDE4/+t4Vj/Kx1GpZ2FzEhhx18ULoyQFWakPX44tDb5HpG+qKIKbchjtudGOUDL2+gwKEiowbI5ljTyPneNKhYeufec+VSKGE7+ROhQXwIdz0ZdKM1K85J1SeRqZHKflA5oj7D2pXyZrNPM2GN9iA1IIy+gS82zg7273koZnKIIj7verEiFxwG6pXgs9MWgsfCytuz4VYv51yjYSsY1AacrVAewSHgXapO5cH+z79jpps8OitMlb+TYCGcnMu5UPxiX6eUdx2HDi+fm6vY4TOetoBkGNrscboP3+LB8U3X9jEPHTVCzeFym0FxWIG1KL0j8xLaVZF/e/6LjiD3RIdlnTRES2nLsvzpIw8wQNO+Pru1JqRoSf63r0/eLMkLH7WanVVFZAXUlv1AZ7riE6H8LNiqFNnFbO+qxi4oOx8cEV2tVjApL6m+KpAgNBdNc97TGsruZ+FQDwTTDJGBHKs58MNoh7jlc0leZ8g2KxsRbcjcGqgYLmbZBcMezNucQB9M6ZLQHE4qY45xt7t9sUM99TKlh+FhVS6IUZZiLpLSEUa65NIU8ZV9VDKe05Ce4sxSsvblPcVtzZU4J/u3oXu1TelEhvu1zZf+9Cn7OWBrUdJvPCVIdN6eEfZ24RGbLt2XEJ04jAhQuvLlBgvsx8ShVWWgfbZN8ZoS+/v1ExJ9M+5XlS3B3rCC4axqZlNfB6p/Ig0W+Cfq5Gv1HURED7Kik/7se1XIINwG+lT2XiyyMcdumrGK3p63uS5uAtScA6PMZV1B+e8WZpBu1jn297zqgMwQfq1Fh7QV46LVzOmmjrVg/g+0X4STIKwU9ELybnmxH5trzll48jc+j1yFh1R4c/yNrQE9xqvgtxhTidRQQS8vIQQIXC7zGCLPh0eeP6KPydvpCsFFKowWx3iPSvYy+2tEaxU1u7JlQg/2GpQpzCPBaarC0/7wpaBPQLhWN98NioI+IWSSGP+qAQMEiYyGtqiuFDyHhuadAn7fNxxVD49D8PyHcZ2PQh3/6Kk1m74HIn8P5zIDp1DvLiJOx0339NDTXiWfc5yJYCe0lTj0Qyi1+d5WuAGTbCX3EvPxBzvovKyM2z75R3C7ar1xPdWd5w1ErUoISlIzfPCtTEs24JG/JkYhnH71DDy+1cK6ku5ntUx+zNhn3xNZp+MqRtUpuJD5zaDhgGvNM0cCwjGDnfXQRdDzmovkS7S+cHzLbgeOKdgh2vnc6bCs9SzIycSzw6TU7JDPd5KFNQgtZqj2bd3ehTmdAGN7XIQjbSpU2YHUzeqd6GluCJLV1esYput0C+KXkoO02ptyaBTn4vWDCVCHwDUPziCktDxT+6bIYGERo6Rhwxyjk45PYIseWUMwds7oiMtrNBRI+Zsg2LpZuSxAxCYTKdygbjlbKjZRX4E8XfxDqSyoNy89SPoMk+ftIk4PtguS8XW2Oy92sjuRUXjzP/G8N8wJah6UReSOuvp81VJZPN7V4qkhwLlubsnQfiK/AVxQbs9NnjtXAPzGbSbcI43sLaeMCYoPj2n5s1Nl8NUR1etAfiPXShBskGc3ehvaDHhDXVksV/9DFgpDmYKUqJDycN+oJ6g+iYRXUtJoHXvksg/A1xMj4mE5C1LxVKcmrRHYh/MDUyUw9jBi9W2jUzoFiJh8lb2Syw3o2JOuBHxXJluCLf3q1zL5Ury3HJCznr6ODJxadFgXOFo3osJUyNiVcACa2fnoVaxY09AAufBa7NWQjBytA5afJCk82QfoTNKW0/L7KCRi2PQ9Yvp48FrV/0JPmuWbLxkMI/Ef/YauhLzcCuY3wIPVx9vrehldNj4jaAt04y+T8+jsQ7nYFyV6iCwdL06Rh3cQPsw1wz3pkrtP1LvswGm8NhMCrMbNm6/awhvpLSgPGh+T6T5618MBFJqSHNjG+Ryne+BuJXbl9cQ4/ac0CxX4t8Jh+NYMeCYqLrFCNVXcQBzEpN/Zn3B9ycAtLQKXuWYe0eAziNcyERcJ25tfR3iSVfRvfPE1Wp7Jcd1jvN+NHDsG5rmbSRoSbyCfj9wFku/6yGG6qouwGIUNN6zhJtzGqDbFCRoWSskjM3Vp6GCa5XzxRNLrFB24RfnjC536gJhK7TAAlytoSKsEuz/wIr9/c2y3ijTsszqeP3e4lQ9VKYmuFbPxHEhEGg3YjUJuITB+C42SgvKRr9waUc5QqaLfAzLLDA7bwB/6tKi9/43S408V5y4rlmbTdLcltyvhtRQSnm08ar/0uxyY/PFde6wK2XEubajwGn00Xcj7WNxxuveSc45RDEIGnjd3H3mek16e+dJmSNI7cypbJfKimtU0xWJoNReRv4jsp2z6NsApjkluVAbnkKR9YxRZxLMaq46i3QRKhOifnRNBaQMT0j3PGB5M9AerZRumBL/8LBB/ejXIfF+1O6kQd+VmcQ3wHO3lnF2j9geDbaphKHQcdDxUUzjDVPZn5o6iCrzkUefZqOo+qKWsI/ckCEnndK4y8W0XSIN4I8NSDQok10RGK5/Jih0EE6ypmZ1wUUDLw9uhUTetCC3H1za0Bwgw0+t93KYoUvNT/kT3ASbhI8QfFit9hfNt6egHa5KhmXF56kbSI/a1lb6SQX8LxsFoN0Hax9BWHtftUuuH9uRLh9SMsAXKQL4DhoW73Y6GhlP+ftdQZIw1vcvePg+ff2mLNv9b8yjvDz5hU0xR7NTXvcd8P5sD1M8yCPHaeKi1mNwMwJLnekIVToqyBboalx8XNACsBUk2/pMfiTWte+7HbIfRUmjPWZUdR+AY8VozfICJ0jmle9DdcoN+5CoXDyEFwnFeiFbW2iOhoNQJA9XbVhDcQiYxMPwAJtAtiu6pb3ZIG9cGmYIz+EX0xhcG1n6LCaqrJIrCcuWs7kZsklMdhxznWzgmQH5vRweaseVnnmtw5x+wyvmIiKj40HeWCtYE8Dc+yJ3fXjU2h3fnEeiHi/N1s+HnrxnaWgpolFYQLBXTg064ub2X2o/AJLToopL0/joiwd32v0VqcmobO1LM2LU0vVMQSrSpnFoOiS3jYIONssimDYg27E0CETDbJhT/DlqU9ByFELy3YleC8pED37eHnu5i+k4Nmgoidge/AGVUStJi4BoYjEThL2LDxqarV1MKe1aYU91r9PvVlNNkODIYBPInZdt7dkuR/demVk0weAH+CQ3mQKc4l+2SP+mrYVM7eTZNJEwQmBhhfihsxARI+PU83lUpwv/JYihuB7ZzkLrHYqNn40MNbn+3rAW/bhcZQrmap5sMW3/H6N7nw/Wv2j20zaqbRHGYYG1nVOKKK5/iMDB9HIJx2cBCykTvBUKnxbKkcs6p4yFuHQe7Rv0IVJt0YoaatQpj2Xpyh5VO1RbY4Ti3bEsK9qxyXOf9lcuhjmwQyXkPtwRIBTQGtYQ6SldjD79aotblViLSlliQ8mkiPmGF7yl4YiKerUqHoHO5NelRgESZ/eSGRfyr7g7UzLbCHxSMeM4epW5Roh8nDAC45cvA+Oi4y/8VvCowjrWAIr0RmNKURIonFp8GqittvlmPdgBiy3eAsKID/SiUfVUlRPP/YoXLWuUrg2YyPH4xpX0rDeqBaCfeOSRdtCmAgaOpUMZNGJvneYyN70Rs2SWtgOXQwvzpM9ETXidEW+mum6XjalrlHTQF1FYQAoN9bJsjWtWZqS62Q94FSErL9ns787xstjGeN3pCE+yGowM39p+ck92f/1zZdbb446G8b1Js5C7UNLtxbpfQEH9fp7z/SBeBhrTQx95X7uVAdO5zRVqvAyNEUIXPaxW8DXTx/YMwtf4ceR4wPNin6RgGEXCtYVXgmF0t5P5p9K8lWMZ5xKEmuMQbweSGoehxGy2PTZZ60Q4O1C8o9Inn4jrYLVQuUA7ezQ/yXzeN40Lg+fb9QPInkeSaEJXmxVwYCBEmXREyihuFryOxlmjVhroqeA16AXF3KgbfM6uXytMmlG2IYWDaOpqg8irwz+99nFaHR3WemhKDiKobgJCDj/iow/kaXJ/W3Tc5AbkLxrp1EEsG5wfI9bhOe/e2iXGKmLK1vhoTY3BID3dM8vwREt0o960QlMdqM0RGnGgX4S1lU7Qw2BvkeCjS+3Oh3C0l7K0snai7TdXtel3pFOlMzdlOkLbePn7o94Qx18UtpXZF4xfpt7DXliD2pVnXqmwMXEE4tmiMlLZfo8dZc/+0LXdC0GT2wITwMzKI3j83p1rp5Shk5euMG94ics5sbo/Nc7ahTrdxCtI2Q0sHCHLShsuGnR9sOjDg9MxsGghCXgfGCXqDsMZB4ZLQDHqnX8kIBvmDg2Js/3vyf1cvKbeKedwyxDKZ8N3VJh8fxm/x2pKZoFPz8Bo/D7JdSp/MI35ZipMYTkN5R22dY+kyfj0XpKQf9DTVtlZKBxFdeZwkZJJKYCyP+cOpkGQ87817JBN3aYntHqG6J2K0qsloqGmdCPTuu115yHU4y4jMDQBDeYq3BejvFTk1vHSPJJdcnWqmem8BT0h1qIer0c9W+SgE69LvLGU3krcJQoGiE5cFL++QW3kCTEBqaiDHPiBUv1216bURl4Hv4vyQk+pkVEhomiGGOtQh1Kr4Aikwdk+23XdcxoBOuo72ZmqbusZWorv0OK0Z3t8AovVOhW2r/2ij9WWd6ZNA9yfCpyrsfpO0bT5PDoVruK40iGB3+6I3SXYBU11kjVHSJW5WFUko80CQXoghJmJC3lhBFioc1HB/vic2teRraAVMA4pGIk4A5+2akr1J+aLUEoYtTNaVI+jU220wAvrfhq9oDDOmMDb6IbX4JlQSGhu0xP5Vs0w9NOXicxa0PAhzhVxm+/qRZpYpQN2H/JUPBtwmia4jHC8sOjmWRlZZozeUBS6KLw7DVwOt7+5nlX31Gn858SFV7lYO/n2gLONvlKSSCHNayWVaOP7UjIaVvnOSBQ11biG2YB/X19m/0WKF7wMa+iuJpCZPWuAWekuoch7lNhjDf8CnaPJLFL4UL8+H2bI1u2mE6xnKZ8p8ox4+kRIKj3rWuo87hfoJOoNgrYwkQPGYW6OgxDZW6JveNV0FOrCU2rE6AWst9zAcMMKMHD6NX45BhOwPRplViLpfViSDsvWsXtg3mGPqUJXREzJRmVCxs5MtUFISmLIxQKESWU9WSUz2O9OCHSv37VoGX+O2315peFWHJj/FQLL83N90zLpj0nQaEa/YiTZAkkoDKpwyr2+aQcez8TBpO+Nttv8FqL0oc6AE5voUi0xxgW7cZYB0oF/hqfSrHPq/qZ56TJTtIu9Vjio2bhmExh8t9j/P/h5/B6qu25jtYlmcH0Lz8uMFb5+xYZkahteeaNAt5H/+o0auYF8JVIoGa64xhC5Y3UL61iwH3gVssdlTLTJWmeTK1Dn1LXlF/QG11AZe1p/sg4Af+b9I2YsMIcoR+5+fO1JDry3jVBFkJG7RPag8CfUjJrEVmhZ+gB3BAN4N4ma4CTvnaE1zzk29xc/sQUTN+N8Jq3kyzUjW4WEFiXaD0tfMbKlaB1ogBwGx8rKfG6170kw068D7hX5h0nzOBlazyaR0wIIKRqBgeDukwZGJ5SuY2nTwOv9FVkEPiArBARkaQxdMskuJ/1+XxLpg+SCNfNDubjpbsDB/ou0ZiA/KlPlik57RZ4CqRN5sHw8K3zKL+NovhQgSPvjWxtTy83tBkmZDbXZZ95nMLA3Js5OaCVMrt2/4MAGORkyNDKUbIQL8/HvIyHUEEgNEfijLKyc0FqKDJtsBSrncgINBGlt4dRRpD3yMBjmYeP0AdKvgj72PQIZt3XU/wzzfl9AVELQjqwaO0NhGIUSkrd9ZNpzK6b50ZrqV9YVF2rcWvwxfZnLcfHKtftPe4npFDgya88AxypTmE6KyLrjJ9r8q8fbhQ7vc2fmX9nFi5eMLQ9uqnJMc6wa6kuDiUEcsABTKxKqywy9fxdCZQQIQYPi1CSeIpkKI6DwARLtr2ywo9QQWzYe+fP4n1aoKJFp5jsS1SGVmSgYVXnul49Plwce5kRg3h8FXG7lKreayPmLAahd8LlcRVlfmboBKGh9lTUVqB/bRqCo0OgY9fiTQaFV8lQ579BcLusxxj5Wb9+oTPNMreduAwNiyHCNL7J5kTaHtd8FQyWFD0ixqXq1INcO2YcOY6co5pPcS6vfKgjAimxhJXQf6+pNuOc6nHNokXvFvT7v43+qnr51KIwphE9IukDa7C4u6IK9krEV9aANyo3RJmo5EgZj3LUmJPPakqVRXR+OWLiEx5H8G5eOWur76rK7IItEIkh9bBv1Mwbw5rM4MC2ywifFDZi1ZgsqUY9WK4C48PhYfJrsDCZHQ20yuRv+TxBbkMdG3lK/DYV8fhDkSncLgfchE8HFHWMZjNEu1bDTuD10M+9h3/vErrDXPyBARk6Yctj9FR+7MvZDDBKUCRKYwYqDI44YBFskDiT0fMrR/FFwqKZfGb6xeIFOI5cVVpCjInFCQAjrHxA/YgH4fZQX5acemMfLU1XK+iLVZ1aWNk3hCk5jg6Ukt0P6tFTZSoPzoXwMlxTUdD+HgtRgPO83MeuSdHfYRFDh6Y33F0rqL0aNv9EXJpuvM5m5Y0MZqqYjBKA4jcQDG9KN1ztazTqOXdafqgR4frXYb0NQ7ZiWsd8TNp5Liew2QALTp2h0IWAIGJrTYrQah4dC2gJHC1vxVourL85aA9gLmX3aMy3Ya8WlKczS3p76PDtf7IUCv4aFM/zZxNJq294IKN6pegf2+7/Pka58bH4L45P2p/ZkF91vwtVe+O6WwSQ5kfJHkEzMkf6vzVwgWf+G+jBpIMGb9ZIxU2WfXZFuQbACOAHbl68DHUs21oX9tts03WcLvTwoNhfhvUkWvQ5pyeDRggd/wSmiDvn63g7gRcNolWkwxgXURhgBfavPQgqOWxbsP+Lp2gRGh12Swol17tlK09vHr/jflcarNHVloofBApC999ddc/t+F4EhIPPml4ZPuLN66OyF5tGrOEPvk3etgFz4PgHNHR7bZ8+Y0IdAitV7yJqKNbZkpKuwJyQt/hw0YmhE4RoNCiKI5xjOr2LWhfF2faoESxKPCjPkbSDK69kbmZXOCNfgD4P5UpOhIuOydX9+IYcGhWkzWlThUDhRY44UhGjJRrgFcppNvaQrsk5UlAztEAaLhmksuGX1mxM52YwDNXrIGR35JxvLoU7GAINB/pLzO2AjvUmwdZS2wkcm4xpHkWEsZ7xjVk0hcNy9dIZ7oLWdAI/fGkYMkOxiMeF+gt3tYTGMzg5B5D/Ni7n9a5roEt5zVHKneuVRX0uKVjFfZro0r4CdjEdmqy2tUhd5GMlp/d9UTMrOQ1bJtEcwHJbmVNPd5qHIyTaBysRR4es6gKviwoPNvrOrTcxS+iGGDSNrrtM/jCgMdYj0hw2XtiIawd/Xq7aRTc3wo7L5OMThVZMcS5L8Vjux69zuCH/AfIPf/wr//5P6JLQ+s3Mpc4vjeHkCfggKXuHMlzliZCpMLWdR19dJ9Nb7uvj2wC8770Za5OfeCzRfvZDaKlPMMk9iFYjWBUcfqx5IEwn+RxunX56lIbJfRrNApv044SX232hghv7l3HgkOnCdyb1k54V6u/CPhwu2iQ80nRjrxHXge5Qy6JMrScIPjdI2YNY9ZpA6ty4KNjIGJdu0fgnY2/NaaEkewM1ky4ir94+E8fpSNawTlm1cvEEhmhnaYMo3Za4bY22r1Rq/x7MOInkAtgTZAP+BquzG7pp7xnO5CeZ4eKs/luVGpvYwyxylr6yQW3UMopTfNDeydBZXyTv77ZZmAgQibgMZmxNxUrXwL3jUQGqdYZ/e4GU5jPYxNZpoSQ+fe/G9GcKr3M6MEqcRCmHbU0lmCZZVlDeiA3Tfr3SlXQ50Dk1wQoBImITI60iZLuOl9Pc0z7Lt+c9WbYnySOQWf+ospmv7rLae4dmsGsM9FaM0tzaOdYsE6el7ewiersXfnstLrS58hDszgHmni3G/cIxjfSnv/ne1Nhts9EhY6lHqOIaI4sHemIqjBDgxj8hqqLgTcvMNAUekbwKpwqhmCvX3X567F3R6tUBU+hhUxk5SK8xbrK9hO/x+dQ4kWI6L3oO8EBS2fBzgq9V+mjHk70ragTqlSSY6pNEepngJXQ9HjIAPK3hNX1Sjt8XI5p9sPRrDab6YpUroS/LYfB9n2qew4Q872N7YZfSRquw9PFvgvEhx/pOilEay5dsXDC/amqqsRNRZ0KNTaqpPglbsO6UGmYEKB508xJJyaOwP664OB2F3UG3npqofnuZ42b5SeprLh53pNNKvjtqP4T24B/WJuZ6+51nxypz0/ZH5rkdnSdx/FQiYPoYLyQgJ3I0MzQu4X2MCGj3cBlSnAj/gwaKT00ku6A3+j8FEvJW/CGNZFjrX8pmbpYLRIEsWAGbIQr06sziEMw4NRbRISmGKCJPh1u1EegAIOuFAc7+02eO2KsJ5sppBwXsE8si028YScggvOvd/Le8i98uyYEZxiyI0JG2zzSosfZgCcC03gOXOk71AJZj0luTAJFNvo2mVBp2Kgw9hmIRA9E0lRcH6bWUuLI+XdKuwWPIy1nJZfbhL+zSmkZNITtyIcQvDGAeM5wqepmJphnStWjlU/ByUD9kbKs7Z6RttFtRFMoc0nti1qpQX51G8OeP8ZP/sAyWo68Dof15BJjL1geijIktOdfB4iwna/r45KIckLuotHcR9iXWvJsfR1QHgYafN0XG/yXOMjwBwFrAHEqqQPBg+7IHDnGbKP7be5DSurbBR944uyHTTfWrXWnqm7p+Py+ziRE7msWx9CH8g+hwOFYlMLEz0bzemW+WWq5FSXxWIECouRbRYTQSIPn/hHdBQP47xO0pcIT/H4yhT5EghbRtMVHFDADBEG+7UQtAalpd4Z4wq4KK1ivMBB5ZEC+dOnxv2aISl9hRfiFxKkbv3HMloP2QYsEk9A6abGMbNCHFhqL8K7O/5v0bWezbGR9WM5M2KybLwl/1pCujcPqo7tBLGVSswha7tJFPwfwtofNhrdLd0nsFL4yynSZSeFuQ1s/yCvSzK6ZGhpXE2C7Lar96Qc53gLALzkaxokgzT4hVEZYpz8fWG8alCZ5Yep1dOKyDE4rDVZzvvwa+/BAz5PNZjqzDgjcT9gZiz/b4KI/IeraVXAEsGLlT8GvyFb3JmHihwY5oaGUhP90hXLEMkCu5/vF+snCC1Y1xOe1S9mtq98W1Ci1myEzDXIwkx65KKEnvNk4qPYinaQdlJNx7IsPsJAZpeKewUnFNurs3BLmhV01jSaQIJsLULbU3f9uTEHQ48zL3thWRAH1ItPNukHyNFf93WDJdnBxZqzvf65SieShywthdq+Fy24mn7kjFbhFj5m8eK7l0S1qcYvDdqQaiPOxxHsfx9m5c7xQtBcBUepY5dLiICV+5uwIGYOO+E43rWc+lmy7PnyGljaxsrw9MCvZfjO54K7jJUdv8SbXtDdJ+uf6nsO6DqBgx4n/pZvKB1lKOM0HBwQeZuUktESeW3lVsaZ1eo+nceZ1dlBxhC86qV4fqeATbFQ18SRSsEOyMGb5opIO5QE+KoJ8kzj5fFxrv70CHyFR6gEMNl3siVa94VW1R/3jocQTlsq7t8eTDGk5uEIFQ9n18oC5aQ8juOLKPqOkpxD4t/Lx1QRHFRcoszsJ5dfTdQ2s7gl5RyETDVYVRHLSwVqwz+F5bmOUdgFPGI4Tzl1qbh6swzzybTkiRA8sQ6mSgo3qVHayKS+S+C74GBw1nS3jnUiT1Vvv60PpSNiLwPr71DxEq7ixyKFZQRZsQgNtJcwq+8XxjGhnI8TPsuWwvuCTbD8DxL/1adoV/DH5e3IkZ/bd8WRYDdiXXlJ3C8I5Ws4oxNOa7D4kzovE84Q5RRDPkN1yga4u9EGrkgvMV9EtZuNR7r8T4WlPcflkkeVxPITo9ExL4gcWmG07o7lMQMn/MOGViKWknep403xugespygeQNvUeM2u32snRu8L5j2lDvP0mqpkQKW3deMuYK7QzHHmG5ctWXuy/Qck47csyRi3LaUBQ/Vtzn4UzQtWDZ2afEpxeBcIiWqRDpyt85CTf76+gEx2sq5Ipb+biUSvjJBITI775q+rT60FGk5SJzeUK7mXmO2hZfq742L38yq+sebgPJOQkHlNkC/mNE5eKfTMRwLhj/Vo3sD3dedVQv8ERlfgrz7o0dRA4X2AMv8dHRcGAJFXWQ68/oj7ufYUNXfFAZRjMKso9HqDzet8HJ/yfqYQFuYSP763zo0+apCqcVShcAxs8zj3WsRD+KcRGKBk+o26I2vdf7TRBPtjOo27D01I+PBXRWKrx2yKDV/aRXQl8RvZ659GTWhd3nAhhNvjrKSviY4arF5/aFVkG/SjPCGXPLCe7lwaJ4C6yri/Cv4cMIPsw126bOs01M6SYhiHVAxwhX3DXFGFrT+XoCrpY2VJIwDKhADRqy73MfKSyPD2QfwbjwouK+BnS5Be8TUqawDu+a9k8Sg9Ukk/tsIIlHrYQ7QOAw8l4q1C9kJsZ3mfKm71Rrs6bj1APynfiSj0rXaD7vq919Ebi9NtHCOKTaJUWv9vwet43j0ZC1zboTmdU4oPNuwCixW4+l+tR4xNq/VP5p2ugcCQ/vgw/hoK1IBu5a9Y2eJzZqS2zT1CiEFzzmPi+a+1ZGel7fF9xzUmK6FguM3ClRZaEb1qafqJlTMiMRjjeqQJXk3OfKRnILod0I3Dfs7kSOnPe+yk5aMOrYwgkgXPFyULlHhxHzKspEE3G0PZ0pEbHA+2a5bahtoYaxz3iem13O5VzRIf8B6fXZUcJFzSBrK/IcX8mAmDAxgtdKda0ucQ8mRoP+nvACsOUYCKODacRKQzgGl/cSMv6XyU08M3zkNQtmt02QhJMgI1fdgitOdl1NYjZMQ+IhUhcoJaLmxdexm3J4DpBkm+qWANAp5bx4DKV5Yqa8LSWf9tkPO+blHb64EjvTdUGgJzLfEv5Q9MPGiA4i3bXwRzaXGMBE4wQ92EuLhZajheutwpemcEvy/vJ5TJB/D1Z63uNbFJEG8Mvr2ittWwdK7qMEkqnAwuLFL9tV3cYcRPnAjGmUIuTfr9AfJ4NSBrUI/kuY3PU8F82R+e9TLKMh3J1B4ZK/3HKAMzpjPHPA+MblK7C+DOU/ei5akXHoSfQ3meeL9nLSd47/U+C8S+RXYLYMU9ZNASuN6cd+LwSZiQq0siwisVjeDfrCD2teIRP3Lx22bXWxFmWS5YyVzpYf+HEpz5pvWx8FXxUFJHXZHsLu9ReaHYjcc3sWoWFGzt1bCs8gmHqBkZ/8U5k6uDC1oo8rWPdgwupFeQC2wMa4YGJQRi3noKHjh3ykUeWXB87kQcDcrNDsHqX6Ir5V8qHJdkd3OIhPX2WHumeqN5O5Hbjt5So9f987d2ph73mLGbI+/P+opQ6bJ755kDF5w4vbBZrZ3GvUYtcx8jW7LAnOa7pEkPhSnIzmqvWNeHP9TedKvH6iMoSe1+upNnmgeUeoXTLgmVyFeSUrK2gyrv5lvpUZaWiUEQJ96q1iCP8q3x9Ve118hc2knFP7Zfl4XFd+pxn3+v/3+htfyhpSqlHjDHnZZzcr0Vem49G6NXj3QskzXfp83Ns6rOd6jvygqwPr+Q3txIHfzsPrh4nxH4VpqEGEK+m1+RnVF5tXmFSLZZKggC6vvGrYTwM7wt5t2sKAZm3/aIkKIOXdk3McXrhpbKAXncUMoSfZQzVSv9SkPVTJC478BJOPnlEeYNbibAQJWoILGcnkJBqI2LPRdq1k6xKpoLym4T5/Z1paVtVyyzaJmvDpNM0MNrs72buZF7J3W4hLJvJce/3Htsrf+zVKtrCUvgCtYS/HqE0OtjZc6SoOs+Mdvxq9/lC2KlvTn9ApMQRPdDl36Mfxid/o2TjYHBoZjTe7r7NaPALEapZTUSWq/2osaKS+PcLra1SII+z/J5FiXuGt82oPK+xYV7heF5jNBiOCKruv3no6UGvbzyOWWqxUbS3GEfxRLEwKSqWzfovb4f8oUkjP0wksqEx7OlWzwZBPMRipalBfm4NUdYwxqttTKxBn6aS/2ucncJ2eIAwnzxp/r+HWpzVJVzBhZHuU82DcsbfjO/1Ka1mgkGhCe3aJLvxtLVfGm0TXuMCdBlRgpKRGXjl8Hw4tDaIqbrVVN0e7lsU5dZxgGcnBOSpvaKuGxuCedZ0S9P/mQg60H5/1z6c3sGhNfGG6THszGLgwdPuzEvkgxVB6KuDFmuGJckc4i/ZpgP3VnTvJaMqDdrlVfwIEtumtxb6OW3dLJQs8Au9yHs6QT6p6yXAZtySizS2Y+pMYyn+YZA9rIxCaUUUYRph6Lc/505v1xegJ9pVhGFJhpTfCY/Kp2apmnkoWwOApTqi11X688WXa7prcKUWeWw65zYgTbEoGLb5HAYePPs1EWFrEiuf7PJD9ghI0Ww80YrMd5wtPnwsNWOiNJTDRuZPk1CWhCN1hkCevGFO7Y5FZYdcXTg95PiQRedMFl/a9J76jhjHGDwfLqREa7fKZgKCRUHX1GnFDCYF2I494OGA/pggSc2vdCIgf+GZQ66kRBcoqjX/qsB5P+2TlDEp2gqjEV8zeBQj8JAafx7TyyN1vbzh5Q3n3BC42nSYxyESK3VR6dY7Ze8Q60Fzqd6NNNDGUkZrellYWqYCXRt2n0KwD6M1CvGdcsBiqhnNMucR18zH4AS8PZpIS5bFQGCbdF2UJTsZqUfCr4+uvirqTrcvsRD3fTKym42LtcF90KTl2byKWA72y2s/l5U8bKzG7VHhzsDYBFJ+smt0chltjEC9pMVeCNCTwPfonBsIsrcY6rtPKN94Ey/a7og01QXm8TsCm6tOpMN5EcuQ3dTL1UUEk/3bAnp77eTEeg+58zTCzWQLPSAJ1vOa7H2BwUhTKdvFMvfpL283Ae4KB4ftI4iPEZ0EqCH+1rU0OnEORsMjKuC5g+IsGngjXrjCcteUfO99QPVX3dbkKQ+0ss8NLmOMEES1x0yzIyCQDaIfBxsagvPSNmjQKcICZ1wJw+LQsVKZlEM41brTuxJ0+2Xz4yySSrtiOoAJrwqOhrL1wAqUbUmuaEGor/tMO4uJmLdv17H+PMWOlU3P31HYvyvsmto1jJ4c1h8gzxEe54HcShN/aA8ElKS6JvC8btntgMehlJuBvVKegkmsxOB04p8LxemFO3dWt6FWumh3RxPUno1iKVsWNHOSbtaKNXb7XDG58/3wi3v6W8Ql28MRoWouVtjaAZQ1AEEyQUFg5WP73Y5+wdUv8+qdIwkG4j8Chbh8llwq3jYeFmqk5LfTxfkLU6muEHpYZPVhe6pnnqdgU1Jzt70xvgYhAj2KsfKI+OFp3UuMgzkpoAJ2kuO9Q0Ps8LoWYEoTgvPXp7Lil469rFLCTioc6+A5t3OlnXjv06biQI8UQX8HLg0/DUU5uzaYRYBmWf+fNKRXE2lXRBs4U5mDQb50n1sZ0I5p89gQrCW3A1wPcU4ASe4vQGtkOSer0enjO9kxCvJ+Zfzl/5uFkHXDofBcc7Foz2U+Adq+f36AMTEcccAqFHibjoN6iBL9GXEiVi/eiWHeLpjXz07rGQJ9sxK+I9nSABk+4xbaSWXCncJ+ZfLvqM1GvtEAI+kLdfr1apnJerPK8QeV0MSAmlGp1/8/KwXWDUngw/E0Bl0jH3Pn0ooSptgKyMbJqPXLQZEHUdLGoPXYu3wm48gOF7qpAWNiG7yrWOXDJZNcvsbvDUMSnUIkKS5lHUJAomywc+CRKiij6c0OgAqX4i6D8q7J3x68CxOUpKKiiO1zH8xQi/+/luBSzI2TNP0/iR58pOWV8CgZQlXWkISzYkNuiCxt3yabWe7+vDmbkvIVC+xyh7WLdlOB9swFswSMUFvxtDBVgP9fpwGR+wVkaUpM4iv+vUPzNOWqo23hQywQ+CqB54MsPq+TZctSVMeGROIs6wfhHfu9mCxCjVJBJYcISAEOW7LlGI8gIOAfo+a5dD7Qbk+e5GIAzccNv8Khjkd7Y1zjRxQoBEsfOLet/qUqsrAzB+xPluXf/BSYLoGQWWsSWfXxgWwBZUz0FUqiK+xgpsQhAlliCe881kkPalvb16k2Oiz97erhk7kxgugW6/9Tf5R73p+XFDCwgiHJ6vH+rZGd/ZgfsLXCGWva8oFhJaa6w1+qHRV0lDTcMqU2g0k1BV0aSk6opRg9DGk9Iq0Zt3JrpE4Qm0iDTJ7J55pmM1PJr3uK37to3JwXJW0FUlVRsTDmetV8HRZl8kXKLXIjr2PJISyuUJCcNQNvFLuvJd9FDCbrIY9gbiu7PXWd50q63lSsGRZOkebTD+okseTTGY+sUyMhPICXy3T2SCN/6/EIGEWB69jh1x/EcCEuTvFELFxuBtey3mhGJq83zM/XAKW4FvCCxEtHqSOfxSf+98T6YRyqle+GCpXo/OzyK+7Pa7+LgiFCueK/eR/hfb4DAqSrsJNeqIkY5PyBiSK8+DANNkRjXQE0YHKKJyfAs8ceEwME/KC/B62ffQMrHbh290mXVi+6iUt1WW+LtqaDMWwsIkDWu7SnEG9/X3i5Wuzgg7hzn+qgt33lWEYuJnuI5pxY8YUJ/TN/7q5m5yUHLpnFYZIN5r4U+oxQvx6MfMZxBWoa43jVabY7tf9F0Le2UoQ2rLcHgqi8+tOgqc4aAPd8P0+5t9nDnDxjizAdJdWf6gIbg93wD3yCvaQMKObH1Q6BuOjJBARD7H9xTk+FZV5u6YFTuBSr1OJH0ymWh723VHV9PYTghUtwMufh6/TXPD7N1cHOxfsntVelbmjBeadQm6bh7NznGHLcsa/q8aIGGX3bhyQRt5E2T8YRYMdODHzAM2PMM8dpEbqqXFzyOAunUDobyJRVK7+aFRID3oVnBgE0/0JuoyktMcmjxgGQvl3iubiFbaKxv5yWRe/ZQST1mZonbn42EEdpUd3XmWn5yqwWSeWc6Y/TgOEPVftdR7vGbfELhsPSGmEaiJslWC0zmLztxNmuFqznHuqGpdPisFIKBe2teFkZ9Je8+nWb1kuSG7te/YX9euSjc1rxSNYtKf5j17JPC3ZJHrNjdG4oF9Sn9KFywJLoh7qGocX1YYoeM50Df9wstPLUamkiGiHhEZoHHN2A1ujWIUo9B4LOpbKYZR44iIOlgoC9ka+GLfE2+vRkJ1sJswiaTDB76RMdpgbZyXAYZSMyqVd2/REXh4J+SGx/HqByTrBjcvmkovcdhRkAf2jNr8f3NCCowNnhnh0MA+y4cuBojdCZh8qMjp71Mslsh01KUnziv7b9QTTzuJ3gc+5KG2OsWPGFQGj8rhnfAMSPAAdEwY0KJFPrrKQEzAC/chXcrlUgz8qFMVn9byyywtNwZwEjk4SeC/s7jVGRB3jwDfUje0KOmbGPZkgsug6vq9Hc3UzxcpaHfgj4NVqGlRDrwydh8Y2ANDjbYYoX5IkhlTXcZEyu6yMP5NBBXqJJIgUxvEyfHcm1qLJEx66zFwzTXAV7Axo4LluV3HirvX1ATwg4/kfsPi1OZYvuhtbw4HhnowrIj49ya7RqUDRLowI+tQ7+NH9bnmDal6gksIN1PwCzPplOUiwiY62gW9r9eTbNUgg2akpSh5dU4Hp6tbapn1FSCBxdj39RWbevSYmbiVO5na0Z9K4niWYbZpr37Gn8tmKgh3e0xvr9aL8Q/HBU190axVexVQdaFhoYhunEQKKM3hAfmcdKPCBbMgh9lT2UIuPAhH4BqBDFCUVDZ6TGLMOzDogid2dsudZvsKjuigZvUvAOYq8Dm8yWJhrO9fnxkKi0GrzRA+NGOIGjTkVfcV+CVH1faPlymMxvhGDdw3Y32L6clgxntbxdZvV8r3rfIGj96ugLtigXbkeBlDgZnyjJVN/ZrDJTYxvbN9gk4VxJH5PqklaT39CvXSODfAjwdjhO6U9YVb72nQuNQG/pJDm6H3ehy00Cb2b9eNS3uATXUKu9tRWcsjkCo9mSM4/ODuq7aMjj7IxnHuUjkyH1tS1mnzgOVInxSnz5PGnu7S223TPikaxRHVjXrdEuNz7MsV4Q2hPA8Kpj0Qts/99iYLxNt6SJ0ZWIrmLHVFfjhMWXPOLQhL1RdA4I5EEqnAhxCKhsxqrpnA8M+RPQeBohwZykhZPVweyRKsKx9so1KB/t5qX2gE3i1eb0QQek0KO8ByqyCOXHZbJFP/ZXJP++WIYsk0I8s2CcscM8LPi8WjtkBA7rUltLVukE94SFPsUVCt76mIaAGqzP5vD+ghHuaoqv9km0zkl0jAzWaKPyPs+EGkbHznC9z9VPlrXkilgIJ5Lg1h+F1yObOjbD+0Q6mbDW0nzub4hBoCQMbGrwGHyMffb2T0PfPZE6uamV8LYRzc93HCnrunlR3/jtl2eCH8mLB8VBNtacQLtYX4LVMK4jlu7y+Z/e4ecCPqfQzNTiFD7JfVNUucE66Yiz4SQ43PeHgYbn80LGKV2HKKCxzjbzXjaDvC3QI+BcIEhj1dTr09GMeBh/ZFqVTpdxZauzHlJ2nliXb6NIk87ofwcenq4L0vPI+oQPnfrm19/HZwZ+kY7onFHKt1S7DEE4fYM+CkXvwD2fIXWYjF5Za6sIX6i2Uw5plLnPz/XJvstMO2bCKu7xofH/bH4ZeNLvRteXwptdLYqL5EAXr+57ctmcs+GOHF/eCeRymmr/fjFSmEojJ+XhLfr8Y26dv2O162jX40X0ZnOTMUPRNC4WcU6PCSwruvmc6xVmruUy0S2JkcXK98I95jwVpGFODTs7nZ3u7LTwTVaNpy2jMkE+7PAXQ9MuJvHWDsC/0SZPm6Th8aplnvsED88Du4I3Hjaetk5i5MICGmKVbhNGkKXJ6/zxk/eWWHFmabYJluympHf1GdijIVXQ8pWhqLpA7sBiO9NVMd0ebQRT57ggpQ2LJf2nZlD8PI0ujWtBQOXazgoyJpDvZHai0zem6eO1sck8kU4V4ngMEwxJho5c8+AVnA9j6fm+sQo6sQH6+I/FIic8kesL1VtJO8W9GSW8w1B4hw93RNn3pA5A3EmbuA7J0CaBqgwgYBG/w/BXX8oG9ua4dWA0JYxSNL8eiU5Pm/EV1WCWgmp8z+TRdBFXWQ4vMf0CcXUSL5OPauZb6wQ5uwAAs+GmCS+4q7iWNn5OFokRsrIHb7MkJYuV6gFpFc2NgJkrBNACbQXYAwzj9p/as1ga9TApkX/wzKZlwW38XBqMI1yGs3ahFqYsWDQZmHAS+PBGzUSK8h2RWEGheM+73MXJiLHizyq4q3ZUF96NPhyOlbM1NxKyFdvoohTJyKwXIGEmrLxezhwcS570VpiBaCetpic3p/qROYSA7SppSebOGhtEuuqc40TXou9BK2wjT1V9OM5m8LtT7jBe6oqLUjhNtCjCBMwu4M1BLfd4edMcZGoxLeNmIIJQ7IRQhR/szrq8gZzpGkKzqnihB3ZG3q8Gu0ZAv7GQAr/QnYpkCzT6Od64PHwstY8Sei+SOdxfDiRAPaffY12ruaRaAI/jh/col74LTdRIqTvMb4+Cs4BhfPo6A/jrvvJnMLInV7fXEO9m8ad630EkxBA3I5SRtb3zpY3CshqH9eRFLS+T7Ha7HMUIYb0nVd58QAnL9oAwYuYnupH82QFFksnprLe8YXCzH4x/0+P6Livwzrm/iyzbrMp8oo4ffzBLSjXr2/vIokBafVsuzgUiP0bPrVNmRTTT8OyFXm34iAM6yTe+BrU8FMn9swHt5lDkQJpyk6DzY8j/kDTbeXULfEXi8H8/Ay2LSL7km/OolYCzWNX72KlJaPDUKQRJMVYRj4E/QZX10p5pwqtdZ2Lr1+87r2wwl2kj5PNr+isyChc60KlHa0dv66WYlvkNL5UF4tOz2+uQ8D6/+oi6SlSmLQoY499dlzGVlQkllpAI9jWg6yJFE2zgVofCnVN5wAHox6+Nlz7SEG0nNjdCyuV236k54tA7QqypHbevYrx3+g0RyQc7lrUyMT+uRccKGbHRTMAlZvaIWXKT1yfq+BKip700JUVV5/re/q8adG8Y6whqaidTduHOomvHi82/3jMysu4sl7gWcHw9MSN5sLSqEMRMuNnjGJhAihM7J+gpv9vKjgDSOnV33sq6eZiXLTV1AN7cr/vpZAW3eknIVbsoOuiMHWCHsncl+DUt2d58LUGcepxQT8J6fV8ZqEB9yyiI55x/Sqcdzuoa/e4cnpcYk7s7psj+gfVvQIxhrGklOl/bz0cWfks3UN7itlz3VI1DklTOBrtoDS9ojtP2CEUV5c3M1PhXEt77LynJxaH5N36qfyIGDQHqnWbHmvfX88NcFLCCGyPwFTsGk/9rcaYkbCf3VNPdWSs7coyrUSUSsH8Obcp0BLawj87J3f60RpADCcfbWaLgYu9g1U5MzfmHPH7K38dS3lh1RMuZcFXdR270OPV2fv94fxQImeR3EOXHRIW/pAdvIrKBh9pn7pn4qbjhL2kep8u88q4RNvM7NoxUJSoNkQ0z2cA9FH9yXt4yX8o6lSz6hEsZ1gRr0qncV7pKO7rNVTAPHVqbiab6FAYcejcto7evUuvc1rf0UF9uZBm4Hi0QZ+WTsRKRxWC6sBqaqNH/ygSXs1T1o+s7wpE6pU1T/rD63WnkfO/Yq1LCpHSYgaLDgUWDnPoOPn8T42jk8CIQPwLpbJ74UWeCN+bMFBwx0iKXlePBnCGNjFyt/yQBJLIxTgLB+hVX6zHIsgmp7WuGy4wZxvmO/C/3dp13ZISOAyFHEEGn4hzDSXYxK3+yxuk3mMYUgEiEGM0yYBi0BVNZW8dClG8O20YRcLAJydHO3JXw58RC3jyp9NGO2DS4sazP2L+jEVz+/dsy8vMPA02nY0Fk23uqqseUhIIr2S9XK8mWAkwemww5VT1mZkfjCEq5cinoUdPkASgOUSp7TpAi163JakGhq+a6VqZGQq5f3Qgko1Z60A5hmsALH5TwczyqKC/zJ5CXYCUEy8ruAbTjyztDfu3Llt2MZDmc49g2qbGnz+Co0Ehct89ryMuuzew9tALnfrokV2pdP/RSvEXZnrcS+U5uArJozTnlqtvX42YS7XA2o4szytwFe//00qds3zmu1Xp8NsMAn2d1Q/+CQK5tQ3qS6nXODOXjl1ebJoKSG+/P2kqVRqlOybj19tb+dUuL9hgIRMAope5kNVJR2vvnzPty96zDrWZHYXvhx3EtPAnFyQE4iphEm+exIZFEUdMOCRsSce8UJ+h/cKXj0zGiRYA8g2FCVocCwua3qp7Oyiypj9dC+ICOfdGrtP9H0ZhdNrcB4oMpW0geycW4POWdPjXJocj/zlXSSJQpmdolWHts2lo/xciPM0ax34VBUgK4kSKsJYkV5Z30TydFlN9zglDy0nypaTQtotSfSbcbNp2FMfdGXjdHtV2KgkO00atcXow6EFT9KTa6CpPYYaQOMfgSCuKu/3F/uYk7Kg3niHjH3LL2MUQKDamm2PU2m4iqkmjMHJS/MZwU8aHjZBu4+cqGA01nwFJ2WOS2T0otqpB+TsYFXqPUQPV2Bcb3D30T9A9V7B/jjoBd9rFIxORaIeP+y87tUmwacElCt+KMwNPtdML1HUI3u1UEh6jS8LujAUOv6oY9HKo0OsRoC117HbrkJDNL07PRr3kR3SL06N0HbgHb64s+30hu6zlvFrcrpMznuMCRoo/O+u2yiNz2SmGOu0WmAd7Urf4XdXiF9bvOhA1c/kRD89CCAm60rovAQSENnTC+t21c4JdijaUFuKodMQwizPdy7yIkbQWMqGtGPRWnvRsWlLvLKJnohENYpKf5QFV60DkpcJ/KLdy9E8Sr/74agecn3ieRtl5v2UZ8vFoyfQEGAmJTb2dPqD0zJRipNuboL+tsWAt0kZquO9t/qP/85u92PzqZnfBvZw9/jXi0Xl8y7xQWBKQ4taZnEP9NaNfeNHPaYWXndbk9Xpm9dXD5QDJ0tBu5uST4tP4ZSR2LY+prC1i7kZOmhQXqHVclJ3uOljDchWjOfxbHiHIHf22huLSUERsJmLtewFQfd8vX2KDUm1RI+mdaxrGw2sJJ1xaTjCk/29MfBqv1jh3yeY+5AznQpeXoNL+qkU+KHg0WcxkJQd7EqpVYxYWvdqVo6j4cFz40kRFntG/q+NkFI/dN7BpgJynl7huZgPrfbd41laxVKsPeaQbbiRyk9gDfT14M93iUVRLJg7R8thil5wY/8h9zTgaT3XlhLhUH04x/uF/KC6QmHGV6ibnG1vaWlSrnbgvBNEDqjsYLKVPsU9AmPS+2s4JE6bAosxIVu77HRE29JQmRZM9DCGL5ASX5uBT9whldzQ+ddd1PYynvWYqO7gq1DGfaShKjZzvmn3wTuLEkpLFQ0Cd3osIN3h2eJ7qnfdDPYTFlVCFA1j3FAXM5coka9Oeh9cdN03OMwxlOkRMoszsDtRQHvKl4290p5vVwS8i/QvVFBAK7ncOTdMMRPbfG+4wQvCItPAdQK6Z/CzRYH6HlzV2e2lOCPBZ+RV74Mk0qexCqWiiLI8r3lXqtTbIdNvYSYJFGgixSRjY6MLxICYbeo3uzHiHzIZY94xRp251Tbvu1g3s/4d5u5H/8M0qr9E3/ZksxaQCB0/z0awT9NXAo8jYOoPwqw6Z1blDySJv3QR9dWlnwNk8uxGvPTALPlIw8dSiNAA0q3B38wAocp2EfFuXzw6Wj+jcidpOyu2dhcAXjzgJ2s5FsPPQ5xngDzOryaYTjat1W+3YQPUIIHKE7m2BnqxEI2xp9J1gQZmxc3edEzPwCdHJonkHDtOJrK07Fr3AnDQ05kyjS675cMKxcKxCDN1cyaWRwVqWGxOQeLKXi5wq7cudzppv+TN+Y8bV2PHE2WSq+pfVLl/HqBtXp/dhrTUxZ5/EecLsFquu4MgILm37eS8eDMzR8qdxys2F4kmQ6VlLBJTB1JYLJ8PMrqSjO3WsXTVOUwO/FetBqertAAinC6l8iLjkmgAeVuOLDdSxj7d/83TyCAHEBP1XzLvhpHZFX6VaZIpSotEDIJ9uHWswACMYC0wg6qR4nNAtQoji/VkrGuH1grZjYp2u+Upn12aBkzYNhFDd6b1eTTZrhcEWJzuQQJgzya5JIf3z4wOBrxrMzUZp5ipW1QBXlXAfsWvyOmAmncRL4+7ADhicYv8UW5kyBaz2LihNTr5bokwfaLqG6OksRp7EkOPWmYnSNHJHWfqXrj/UQkEfiCEWQKMjnNfvKRhwASYn0njNMQW4rDK1xjCO+8kJm5qhgCN0Sk+tqbPDSszXIG8HK91QGXJIg2+w2EiXckyXa9xIcg94qTjquW38fVysovt6CMxLW4GRjpgv6cT7OqDa8kHG59yKpbDHfRLWO3y45yh14uTW+uqUpV4d0GezjqBBkPrEz778pd+6md7yIHP0zX8R52MQdhR/cOXbYuAu30MjPa3RVaFdBSxLsk4zYTuFpUZCG2wmn6VmUs4N7OpRFuXba+BoMJc9lgWtsJtbC4g8wxTio5wCErP1NPSXETYFM5fcJxl0bdsj/D1vhIfyDa7zlWH5XFvSkLWCwXihd9K+v55wcCndO8boFeK1TlJtpzCd/txfv5dEoa3NohkkHCHys+xxlRddlEpa+fcdxL6C7Kk7Z5vDRS8ldaCubVdKor/4mYsDsdaA8rR4bxOwUOfOnrik+bmWffoYMAYe+11OsP+0cM/FgqNXXzQjWpy8tTpID5vb9TR6TC6oig3NagZP292SM0/g33He8imkQlUPaqx059uo6Lup4EOeiSQ7limxZzPw8SgzNJDl651P+HJ3w00FllvKzQFIYxjUUOnGHXO3NCTwNBkuJtCN1ae/PMW8MMjVEg6dzLZeme9fUNw4nBhEIxN5JQ8o5QWHh+oGrHNMUjIM0jy2PeYvdZgLY3uaiEkTKF2+vqrLVdp4NMnllUJwKoTj30CXIrDfFNmGHpPYunPoVdwcJ6+CtRbZxkRW9RtrL0CfSsrMlbld5jM9poGQHcEFMaZBlCmGF2V0Iof0zozNvMaO+o7CZsUvlIPgrzsErann/hK7hY3sel42AfP+atnLbcz3Np39feIxekWQTZkOpohUmd48yKXEGfUmODrS+hWVrwNQHH8hATsnvoaet8H/EK3wYJdm0+beMAbqlytwfWQwwlVwZIt3SdoQAl6NNCMCI+CjipuXckPgCy4lp4Yw1l9dqvzFtEyqwvGWPhFUEhYNNvk+9884YR6dzIhUc5WWrnsHBkWz+JdtUYn5UHzUG0f5/MLLkWtt2QuK+oSlQaoZakV4UUEt9jqD/ie79nC+aFPDN249/w9R7qNe6RLmBh6gnZSW+mEUqFZSr/LWPKBu+HNDbbzhjdLqwSOAEDeTd6I/k8ZyZB0cDawfLI9c5ABprSbjMJuDoxAiozSY+fDni507KonTcTxpX6tfdIqId5yQl49IvsK+hboOec99xeL/OvdR9ESfuwu/ZUdY2ORoyrvTiY8c30ptCDp2x70aonIVsyU5Kch53n+4uPQ/Fcpm0ouw95qGkLnOKh9OsgjjWRSbslPRftz3LKuyDUAqueehxrxxVV4tJlFSvuxHLkyMzle4C/3IrIPZlOoiY3ZiYePqR5bX7ClQUc+S4x0c22mWu05CCnkL0sSiUgOu3y+u0SebeomBjh4BCwJtUiv0Dn/e6U2rqJfIdRONQ67RPAgFv4Xt2t4kE3KsYp25dR+O96zE49UNhDQoycnFBqCtTIaXerNnh6H9WPZHJB8H8N5Pk5ucOIBNigUqJbn3maBwRd3/FC84Kxxx5Ola9fYRdZNaxxjek3J/s1yCWxqJLgx2UNjxWf9DyCs2u9EdHwDtlYfiQXIJRwrtSZoSh4Y9DssTA820mIhSyLVPTOp1ydnQIx6Ksgg9YJTVs8U5TPPovrLfmG1sFELJR/k97MDnEjeYLqJNGOGgDmxzdsOpFF8LJ1EVBD1r1wKreozeEjyrkwzgkcICKH6c89OswcGDb5/TWcZ4ePPRpmjW2l8jhUw1A1+Liaq4VefD2qPKYOpRNpTl/zjyP8qCYKN5rwJ1B42+T2h4whmZViVRd5KLOq4xhja2Q41x5b/5I/AcIixEMeZFZJPPj7mSIQCqiC126jN20nhPws7aMsJ/NuKAO9WY5fcGNI3ZbPoGOmk7nTVGYgghn6sycbsZxvEgoSVKRlylmFO1Ulsgpe6P4SnPsQWcmNToNGxua/YUIremWqdqMBT0p2Qq9pdMeMxHS3U1rmf+gmtmYJLIkPsvcKYSkgX26gdlkJfhFVeWWwPQpARFwmFWjxqhpgNICnVW3EsuW7IGlkPsqIh/e+V3s3idPU1tekRyR1jId7kDesXp9qfPBKf6XTb+7LsYIhEs4Kr2VT7jL5bCWA7gk1OWv8rG0+kF2ahZ/uVAnhaPqPz+jW+N9oPSH2vZzTKe+qxIZAv4vt9GJjBL/URov4AkLIOmRTWOHK8JM9pZVU50XirevPrgNDNyzxlRoU2A4ArNq1dKiLfuBcSdZpjz4etj6/556L3K8yR0C2qpowpcNbgKEVkndgVF8Dr+OuY5gGDIDGERol8KdrRMQVXJiw30rJwA6dxwQO+cZPbGcv3pZ+hyHhO26UCHL8WTPNs0iCjlo1knZP1HvEOjmLUxiKubaDH5zaTLA2xkHt8UUNeDleKksslTdjenG0uffFAeOUbEpOW1wOTZO713wIZudR99Qi0X/xWBZS5YT0h2b7srYikLK7iRB8Oyr1lYzretykRkjiT7WnuUjVBuLBZKs1RizlyVLdtLzy0/FbsVBsVJJKFlyAE935n3WWn1ZNGZevE9jgSvyFJil9awYkN/buJagXw/upUUhM1X+FK+1z4TnkbLQFB/hZLpjU+2wDr6HppHtM9S5YjEoi/yYhp03jTxLg6l5329/rc/1cdMWHfy81IXVH7jJWnOY2HT+3peJpGOWFvvtY+TcsobEdrxzaDTar5D/LfWMz8ESdW6cYRHD2crku7OpjMZ4hKTcRXyPlKqraUt/8d7X3YiHLH7hd3VZO/KgEUPMgiIrpf32cURSWgzmd7FHyZaXhm+qiv6KQUdauK65hfWT+HUZP0pYsLEU29KMaq4A9da2ECK1O9PnQMdg2Zhrw/+Fs6hjXGxAgP5ZO6zYbXUv5ptt+Y6l9i1XEvMdl471+yRIqoyAuLY61erj34+8gJ4inKqVBxaZb0NjaELYhsupguNUWvNs+llJG8ld27QnE4P7/Y8Y5biWh6SBpyPtKghneKd5DT1m/vbwO9l0lTbQ6VQB/H1ofHEHF9F8CF9QCtmMDbQZdBRwozkXjIP+sLeLpDz4/6Ha6jiCVbUuw2ECQDRwPpKIpZOUlnAg4bfFf0fZPZE8DV8XYVWT42ScoygMK9bZDKevCLf1iIMDsmmYvpNloazu7jNoHebvTLg/ykzOfmUKrdiPNpwnalzTbJKPskMWgjoq6MZ+UPaUq4jb3zXkQ6dxJ6n1ME96RNqH2PDwxfZpaYLTeJDO1Ob8uG2iJWBpCmJYCjwG7jHR81rTGVzpz9iBVyGkgvFWJORlvPlAgYMVHur6mPwW7eAAd3I3EjPZK3kb7sGLDNJQ1bXojBpXb1bAOKpxZJ8jDALEPcYSHgNe2+2eIxozxzlaPO0IpFKAwmJEXnevqg9ug5vOyiT6wHlBoQ1pSXdO2c+NNNfMoSjjIRMlZg3h5p7rnnPggfvGY+IaVJ9Xmv36lF74zCN1TbvTqLzSLANWrMUvkkIvA5v17iPu0K6CRh2897gdQz9R64nFcNWYm/P5Mlao9AmhZjrlmU56kMN5R5QqLn2sHm19L1Bn6ABlXFg/pc+v0nuCXxN/v84Sxb+wLuj4w1M021ZRrhwio3HAg7xnhIE1BuxsFhbFNa325UIJHbMOm/Rsgef7Uhxq4BM/wtFIpfQ/zPjCf/oH2NMUBugD3E7b0Pa4dpfCKtLzYIo5q1O0K0rHJyYbBdA8QkyOzWmlYSnNsIfcVDe4PL6Pc4C+obCnN6a+B1hckggrbDt4gNfoERh4KCoVBqwVSQFO+lQBElrRYh/FfH9IPzNl7pIPUehn7QSL4KgqoWOrElyRf59NJUhFxCjYSq4L2lAav/eSbiscL9BNSiS7ddu1Dp8jKiNrm1LzVHbYLFj+kVhIh7GMhl846Vq6kOgwQ+AmGHd7CPNnHMF15KkFP0cC4k5NT8h6cjo36ZB0a8C1Np3hKBe8KI5PSABlU/E+CfkTZS1gmFbIc2E2/QKDnSPiVTFjWrKaANiA4FAqULCiQVqvdKMdpt8dLL+5oWDKkpsAd/m/IR7gd0Q7OxsbpXjB33cYBmFKT+6g6HdXYXrFITD0iJmnfq9/GePQIhUh82XFj8mQ1+g/j4fBfRHtlNDBFAAEvoj2lwG36h4mQUaV5wSqXnRCWpAOkVrhM2bG84SVGuL7JhRnXDhUMabLjN/Y5HrVct0lKPQqOtHE0k1j5Y7DPQ+bv6XA34JsiI6IVlC45qsLIeQ4/x7jpsgvtdcdQ3XxutKYIZHjdJJriZe8Ano1VoeHLkeM2sUVKKnQh/yZ7RV517thaH2TALlmcmV9WN6S3Qfj0QUmCf2rlvPaoGt33bgfHrDJPZD/735bUFr307Li5vNFrZziX9bHAWIFiI/tf4g2X8CcDCTCsOiau7IliffoQH5XgxJuwUU6C9tpObidsoj+YhPMDX/ZJMl8OQIg0jPgzjPwX8fqDPkeAC90UKBjvYT2HJn1FDpalPFNgc4vu+Roj3ZSw3t9ev0sky4GvLx8W5tClZvM0SU6VL813F5AWo5gh2XC9lUIi4j/e3Tid0+IcopWXPm0QcN+V/cawOGWQlhK5gfLsckBpQplow2GCgEtx0XEX14y7TgllqMagFvCx2f5RZsMHmCBtaPHSq6XKCFuch4kH201INr/h/vdXBRydDpPKT1XYKW2UHVwu0azy4fLbVIpxasO8mN42ztLD1d2HJndYeXXXMVFrgQzz5TRyc11IZr3Ilmsn0qw6849d1Tkn9OpVrVe7oinxx2XoIsgk872JFM80EaL1o23Y3cXjNrruT1qBUJvm3e6sa+wMHdQWLUeDg2h37LD35CITIqE3DMh2DSFQj6Mw5Ih+XgCSppb4QNQhRSfLxGyHHKYuD9hLZrAZGye435Aqsqfoyv4gEoT0Riw058ANkeqO+vDCzFn84CWpfXeWSyrPvwcKPlqUNg+6RhfTv1lieBVdJBucmrEUyXsvP4L3QtWbCav3pWSguiMOfil/B9d9k7X0unb+QpacsA+XcKR6hXSolmNnAzojycA6VCx7O2C4fS7ZYP8TNjqpDv3u3zwXzfgU6bU4CXhz8rcEraO9M6cWZUqP2JEUlaQZPczlCiI4o+reL6/vUKbP6B16IYhYl7HyzGNcI2eSDef98/7XkZiY1kkI8+NszwfxNgUuiX3Y6d4yvTQP94CtO51QrA4JFMvw5GkYlg1f+nKIyZNrqtAi1lnqKl6KVAXtTyF6nghpe1NRwlRyK7dT1pPdVaAOxeHUXjloyRGn1ZjtaOSY2HW677swhRJ+jnE4nXMEocbNwPX4ta+6DO0Jyc1Lk9gWdaCjO7+EFuOVd8+9qQV/YBln3ZxyXOKoG+TLdhrBcahwSL6ypDQ+JFD+r8Tm5pvp0ZhkhhAInkcdi/osg7hM5lsHhf+QFBS7IwiIyaMr0DN9TT+fEbu0Msi7LHBnczwXo2+dJNGDPzf5pNUc+8o83pJsiV24yETEeeIa+8ukS9WX2KAgAr0s6auDWLLVxg4KtBvdnYg4q0iiptqelCKd6Xw/BUFSbMh/cqLcS0IQ0CQCHyx+Ki/2vwR8ezgYw2/IUWo78kwfryA4VHOf9qXeti4UDgJ5ogpps3EViKSjCFBgsYtdB9NCFxwuvXnx8NsDAJ92e7Vssft0ZhcjcavmwUgQ3bXCC3/OifBQWnQZ+Whqq3iUSD4tVcTcrc+rJCq9RrV1w0lv5j02kHYRQ+ZsyhhLLoC+NRYgP9Bc1f0ZDS9tjqn6c4mnYLftkIE6UUlSJhFeqL5UMhhXmD8HDBzweDzownefH9UxSg3/YKqkQWSFo5RRjpvdmRQP5pM42ylQDFw+TsVzVEk3tUE0dvkkS4VsGTzjolxYrr2S1z/HeVUGW9FRiiU+gRptWuYz4f7wA0MUjZKCLtXMup5jbFQLnN3qGsSirvYY357lirY7iNq0RhOuzu3fLx0kwWZJT4psOLiisKELU6d5qnJBk4LUXzMW0ISElRUXfp7iJI6utiLl+R5/eD4b67qmEwVRGiIdcn/CTVEXLnbC9lU7oLE9ncxuhaYbqKRMReVGh1I5kT74BkB+Kqbf4BGHwFKmJmGb/74vUnMmTkUSHvra8o60whg7CyUQXUKxHMsohZel+1ZYukQzwB/5XF8z629c5Rej/hyINhCL6/2mFzl96e1/GHMhlidVCFewO1Ukg6Z+8yjQVOHtDnKnaafbauIF55p+GCvSVjUkURM89+kJtkUWIhVyQZEpdiIQYpzYt44i9QnJ+ZfGAsCYiGFuvy9pUirE5h2vL8iyBGZW/8+0h98Cvm5HMybZBc/b5Qi//hvoOnqr+VanbwyF6ygcdKzLWaEn9n0Dv7iTwqCCND338gpc6TCrbpGgtE+QBVLDXey9E0UORmqddsAwqHcni3IDHa5X1IAMqz5Jl42RPr8i0rqqIxzl865nTC31cGzdPlrgBf2rpYti3pZ4nNved4vOLv5/Dbo9alN/5UP0Z86YxIWFrw7SJWeDHtlbPa1tgNjHb1Qw5DqCr2qG8h2fYG1jbOIKN99i2i/SCgrwKYn5m6R+Knl2071G35hhfMgsovkK4by6a/HsMB0njR1N0BAlpT5hrYlk+xaISmWSjGvF+tAtw4xcwuA5Kt9ZMaIn1C2MvFuBmQ8ULenjS3tM1KDY1ON1T5S9waMMM1LNIAZQACZ5z1gXmtEs0ZKzrnKoUGyeDmZlyXZAhyNQ5B6z7Lboj1OmYGlTuFYT41WhAz4JHCVsI6sveRk9XVsJqh3hba+rdSNCCUZuyHTR7RThTOP30lJVu/P5XeVqLpgNFbJEqsaMsOBEarpEb1Ts47+hQNKtFlZQdc97DV4eJos/f2bdlFrohXtaSnKq8u9s8X85132I1aYggBrfmnl4wB5+mLlFcII8MxLxDWfhiznUQ9H/KJp+JEH0Yuw3b0xg7R9DkSgCqxSs1tGd9ax9ZhCyf0xYGtnXZrczk6HIadl3+5XSP+qSrc8DRKT2ZHkeg5K/QS4XdV0oBnbj0fLRggwzGfzjCFBtXEtydmH5thWoSwkoZQ+P3c6tuAPapopgzLNVhcVnCuwGPa3VjmhZ+Ue4F2k7pZsuTcNaha1uo7gkXKT+4PMkLh1XVEil0WS0h7UsfiSZ7mKsdHV5jc6cFbyyVzV8nCrymqnKA4Z/mL6z4IHy5Bylplw2prsHABDSz44+VIXlF9vP+mpZ3DB+jtJRIF3sk3xKG6MBPKdkC0Iz5jcigYkemcW35+YmiGU7BRh0M+om4jBVGjph1y/Cgj85znY4nzBjaYhDK5OvpA4+2pT81DEcDlmNsfVX8RtBpeNzvZeCigjmbCWP3AUKG513Jhk8dYXv88WuB4DPT0Gtj7Mrfxj+Y6258UC814CN/dYeBGN1Ur8vVcubYbmB+7hiNI+7xnYbPsdggzpANFSMFQP/Sucv2TrlUS2jol/Y+iwxwCgdvWnShyTOtf1mO6OYFxwJOgOw0QRxX0l62Z7TNsjB7X5k8EoIEWsQDqtwg02Xr6ivs63BNaywgIT4ac8/GUI06LbIGDfSDfFJzBTTR++T0rrEI5U3+bgZYQ80t3Pv/u9MAXVFVppx7+OOujFuNPBoqkaWQPmndoqe6ZmxupgyL9/n1UkKnJ1MnJTXXJ7ejQLl4z2a7EDXkTU0ss8YZHE3o+R9Gqpyhiyufc3fFI3hJEakhanRUJq5x0MT2LTWrLzC8qtXpAH/7Unz7UJGZNFU8jssYi1HHnh+Xi5xsZdEzgO0H8ZKzcki6jqX5jCdSLT9rY8+ZlEkHjll/pOxnV6bcTHA77C4w+me1vhScM+ShuP7xu8p6Eq+RLW2VHo0bX0xOqxDKk28J6dO7hfheuvkmoV3hFR/i0ZOYK4iPMllYttPoSiP2IXPuEASaeGlc76VaIOsaUeD9pgI+QX0S62sMo1bUiSpY+Xu4E3peHpTgYDq8hC1UWsM9Pmf7t2lekVk53j3LSjSuRtAia/A7b7qHKu2nwIxiGQzuiBdB48SIE8VwGen+9/C2CNrV9F2i+4bSSbqZ/Q7sB1OFXCJsqai8vIZkxDmJ9xITZ7H9l+j96SE/H27PBrGP3uWhiHD5NY3c/dpVIMLi4Xl1UBc4EnO3sYWzT0V0BDj/SDzHazTDjZIitqvjAcKQ/Sg8Ltp2jphwrRQ13jiMxlD1ST7axu/QqmEVN4dLs+Gzg8bY0V7jt6JB3bu+NzbuNLRop3IFmMLDY52+W0LvpNNeg2tmhm3KftD5s5JTZ+Qt2Pwr6EMbASsVjkoPAr/sXasTiW88dIzy3zyGgNKUCFYrXAKt2MCXMrrDjr07C6xx3rBY7fdObjZFpBaMGSarkEFMFYPXKzlyuLI0Iu7d7o6c86wxlc/uPiidlUGWGOky0dJwQt+BlKmff3fd7R6Sc3bq20Jk2FVVYxYQG8BNmHvFD2z0ZvvAUz5dgMzZO/PK9y9hVUQ+0pp5t1iFmTppEIa6bWuBK+jAlbzqYeo90ErpJI8UnajCdas1oMuK2sWiMAlXPu1COXdIx+l39webg9DNsYFk89GsL/FeGvzmkTPO6QFHdq6VchH8FvEkdcOAp4B09Olufb7nMmisyMjzFngt3zSobjfYkSmf539fEjv3vsgYj5bcbxVONQ0bWLaIp5bPAH2LewSatdwIOdm/9uDz/yeWtZh2WXTLEWtZmm5xLnGXB2OaK0dQ4W7CZDOGaLukNkJw1jB4+L9vAljGfky7hbpMeeynhiX/S57BxNNEA4SH+FWopYyVUAiLrxGq4w7EcDyBMDw0dhODm4W8wU+VkzMLIHRcS12tc0O6X05xsOs4/9KnA2UOFC0MWOoAkvEPzrkK/2ecxBaQg76M8SMSuO7mXqr9YOlIzRdQAGgzACciviHcMHzKeQbGNICpO8hdCmtFqZ9n45QoQUT7xZw8QXS+z2/cuHcd61T3Ok9VWG4KtPjSGLOTwlkuRfFAeqwr3RIB3vURwVZwnMvvAsFxiZUzUBO48X7gIFzif+t8YtZOJ7xENTmhQ5IBm5o29qJYjnKnEJazXwS4zJu6hbAmKnWd1uAtgS3wYhCN18MZkm0K2h3xnjRBw0g/fQMfnc+F3etcbWROTbxzgH/Hsm32dEnHs7E/b9eyY1BHcIvtyWcHWihOOYGIuz4eM0IkYfjs1fnBA8f112QGdtvxgTURaNqrJ6uoAdx2Bv21igxoNsBHZcH8lQhMXXZfGRvUTTfweqAXxBoIWroT8ETuGRe3M97NpTa3VPP2Q5HtK6E+NhccrxW795bBMr80qkMLlu0Xtmns4hKfGDWqbu0ltmkAo915cfjU6ct8dQORnQVOhAdYgzsB/hSFVEUfgnf8rO5CB14bwImrR+s1AqJR2hYCkAhPD4KoWRxbVeFj5SVcw5yJgGtUY2zlor08k0rFgaQaNM5v7bgwV20yScDzuYLhXg1V4pRpNLFc3mKRpsupbmAz2g6LUGwhxmO+rxBnWemFpycmErdP/WZ0+RusoyebEsgKHnzoMUNiQNntJGbPPYMuWB2voH1MskM/+b/B62WGdi5lW5vi/Zhdnw5w4yuc638LQ0QhdfsdSHMqONcKKR03CD4a4PChrKQ9BNhBxoGtsQdx+U/duKHvOGlfggJI+nr1TmCYSVCkWMUKxgiFGcmOFTpu0rGVfb/HvYZEE45po+IQS0Vxo/1BMQkDOzsTW19dgNwZonq/miSCQPjaaeqvMAg4iyfyB5bDHJ8DredfiktdQd0xFjSFKDUopAlxbDjsxIbWf5zRaJs8QwoOrGkDDQY7Sl+HlYfUFkbz3cLZd35KCFe1IM1WDs7PVFHRyAq5zx031/lESF8sI5wEtsovYCNtZtRLgpLtYRkdxsUbv6zcPO4zopLgrT/+RSFORyLyoj95v1BZyXddl6hxq8Ww/1TMK6Sl+2G0+9HBzVQl3MtgZ7LlN6lGu/h+/KsStclEsMUD5UlSQylneou9J8Grs2aQFMJc8hY2ndwQd4JabOBNkorJlF/o8NzMCd/iY0QTbxrQRNPh+VtTZH8+tMoMZYy/JCcLBeUcaMRidEdHnF0l4eBHx8oqiHKSSa2k/gdwmAmBSRd14bADYn/E6T/0UwkA6jhrEdV+xEdgJfbG+9Rq7dWuu+EiN1WDDvHk4NBVHtR0ofF1BlPUA1hGHqVz9XAqqbggAapIgJEVNcX+cv3IScaL3PJXEJxBF6aIBFhHprs4WhYeQlZm8vuFNTZ1Lx1/LhlAXXQ7ngWQAkbsv777HAKd7jp8OA5jeMV2kG1D7NRA9PIOB/jITWsCTZmJY/i0jpfUB5ST8mBiRzfbQL6RehDVWZeCaLlpZTpCp1obKYEvOvgtupP7CqpNIBSTzpfzgQ0039HCB4zP1Nl8s0HrdfxUDCYKhGwwQu3b8JvJb6JXT4/9OFGTHsE8Z39Bqbk/SOIHcqRp6UIkbwwExKq7Y/XhCwzRwQxPrY9gP10b4z0A0cw+wWAHWyswQ5UQY7pXgb6qCXZcMzlB6vy/KEtVw6CBRPJIvWFZfsdUb+u+nMS+CS5ATVATpsqo1u26Qqn+AlEooOLwVL/XGjrtdwNAEz+kSmnzvuuW9GnHGddbeuxKuXd1jf+hBKddmEkDRgH7LcZNCQFq6m8XVHE6mgkTFUfjgCaC2pX49LRCrPSoDK/dUIlx0KuFo0p+oV1TT+C/iR1Zfqs95GMBJ944/OyzfzLAG3xS7QkELRvQ4EECse4Ql5TqAQsX+lFuJwdcSFZbM2YICX6nx+JJjBt4AtJ+F99UKEAHoM9dUPbNpR8P/zcOLHHDa6FJwNhiLt54r199ENilNkBGvtUd7k8SFmF9fJ9TZY+pVKAIt73Gk7N5cSMnVnTHCjlxUAjUniXC4dkvy6+HlGC2y2xz0G9Z3H18bzcG7lt36H2xlTW5UIkwzj5z9h+KUIQ/2h3FvYlNo/cfynNRrDLCJupDIguGTy4r3U8NEIZRTGtI71jTbdCVP7UL6Q8/HiabkbZNGIuZ2ycq+9Bhyq7jOJdrxta0/68eYbfOLwdexG8vKM5/1padFJnmt6yLEP9CrHXQ5kk9NVNmjUC0sI+KCauC/Mahvi9rqUcoZ6whMSO0LIIO0xZrWR+KITC0xOYPrgy1Xskpl5rfMorOI/jxU3pD0vv4G2+wZ/1uK1XeBTia4zaX/cVar7wDowPF9OldRkRz7l/OgJmvVfK6nDxbDWX9hADtkfS1E6DvjCN0aLwJlfalAxSnliR0K3kkaE51xOeedzcGqUZihWyaJ/6qh8iQxkNpJtDa6OXC+EvxBdDq0ecIU5tTg+XQzhKJdTbKCWUgnw8nAWsi/PhMyC2v31sHa7iU5pgxQrzAvLkwSRc0ik35KB5aM238Ac6rPOmgSWBkhAj8dNKOqsmzQZl5tN/OkZJDn175LI8Fn4aKWuNnymzfTIi91NK8dpCBTJtQJluzP5nOpqkgjTQ9vkFh7epwK54ocKvjjFYZXcpqSRMzC9gt9WMM70U8d9ji5nm+jsbTvt+uEefpOFCF0P//0/RREfQdEBHxONK2BPmCR7qPt7wcDi9ikbbw7zayyH7Q5ntmWBmgElerx6tJAMxTO1cJKSd6bzgihm8m9QgSOF6krbwc4LVKy8FwPSpQidkqC3sV6yQ1t5rVuL6Y9PP/DoRM3aAheo/76puheGjdI5U0tWnDLzgapK3DE/VTMyQ3mJxkeWuOQBGD+dY7czYIgI2KYSvFaGNlH6Vsn0aD6svH9W4aT1RWZHtxVmNbAswBVYk52t5bBou0F07Dx9Q21Y7JLnQm7bSAA7R5k53dg1UIveakxs89k4QtGSs2EYrXD6lZHsboXJ7SPyJa+ytHZLgshYSVoARB9mKK6htlvbe4BNdG3zL6OJWbUEek/3Ti7bODnKWkYH0YrXwOnnvaVlIDTkdi/FmhOAryAPoh9hWlfmQnI2voF5REr4/8ioOJhLvAmSzNPVfELpa/Yv/l4ocyvpyhtGO3VvBn99tQyrrMt2QVJnvycZRgx4N8wA+i86+2emi5Z1gJVaj2qMFYSCt/8nm197mmFWQVdKl/NSvtDdbvUzkrPUT8ezYXLp9iYficnE+6J/ZMM8OQEOF+b/Vdp2gIRIKt26jILJXBtwlOL289q6uOgBKDVXtTdeTw/WdwP5CwUtHcgh6vqFan2JOYGJrwVtd9WLbO5SEminahuEjRMdmGx5YxtQQswRD5pocaQ78zvhn8kYRekqkXmtqk/huAx409+XXZq53AT8wVzDfBQV/frjRYhqlQvWKD7uLBOarcr8QDsFeR8XRG82mH+UVK08uarFgPbN8BcKN+yBzKfvbEdrMv+Mk53294/RLsq/tjiBo2VV2auByp6RSs4UHumnLcgVSyLvQNRZIEdpMrOS646vGl+BLTaxdizncx7YAZVw707P/26NBWSTzDVad6UejkcXT4zwnIsuPNgM/TIBNkg6xSJXn6YdhK2hH1T0hEzot47kuhlea/nswVipAB7q6CcqAOpTwYUDEsIDc1OOcdpxNrqcU6WrK2MDzCpqloCKq5n+U4zEDtNxdX/Ugr/LIkPDr5SBHAKJTTRKP47NPblPH0bcGuAPgRsrZJlcUayyv8qnmY05aTMCCySzhrXr4KpvkORWDsid0GdrEtV95jQx2I5KgAWcsRPt8IOs5vFxzbr50NUFT5j4DtadmrbDDBI1W1MXt7AMQUJZKDp8jLOqjW0EFZ4+PKVHz85wAkJeLCTTCwQ4XrHJUC75jKj1lq8WP6cCPxqL3S+TQ5LifpnEbIHQVp6h2XnRfNj45AAnulYGBts03AwpV5LiEXuUI02fblh2OyAw+Z43dp3GqH0aysm4YflDIEzQJir5kCGkdTRlhR7NHvsgic9gO1Vzt9K3ThTShHSpgoGtGuPoGrtAbUB3U+/tyWk8JZ9f2BcUMG/H48IJqgTwvOtKoxs8MzpoOC0TT46FVB/iFORER9jiiJvJDsSYg7F4hde0FWFjo8wRdQx1LWlAo9jMouZKdL3FjoK7ZnTG2xJNEwaGRcFyFOKmSj8aAWsWtmaejmuL8M/Wj2aU38z3DeqtvDXXIpuva2Wv3JLSpvCGpkhUCpeRsU4HoXOqjkzOfm6K5fg9SHVx95eIxIuV39d7qOyFCjur7v5xRSZi3kglBhKNBfL76CO7nUlQAA/8Tsy5UV0nUAwbMa1KR+bQtEUzEcTAmX8EhsD2965sOaGBeYm3tpey/L3gkI2HW/14/Ij8cBk7/dQKGJw8W8Wpuwb61qWUR8lBLmvrvFJxlW4krB0h9Co6jyArfKSw0pv7bTfEyW+XChpJ+GoKKuz4ZTz+U334JbPV4iyyl0pYhA0IzmmxgVijMSwd6GAPwXEnfZKAiVS1K1tjWSwelTNKbMeBWFAWQIMKjr3jcbtPyLuAPCWa+23ulwUPwmmCrZWdd3xZhAkwojQSfggelxEU09nZ72unFu4qS25/+3pD4dRUZ4SI7tx0rkxNtxnx9sss3a6jd7Hs/92/rNI94zKv3nENqu7UxSHWSCzqTqR6OkK/Tu8BUAVeu41hmxEiwDcjciPG2FQbKVmJlba+zT3lvIhd7r/49DUikq4mC5a4XRtMlkUoRvbFttS40pfL9uqB88aOqyeOvYlwFkA6xsOL6brGNzvfTsyWFmcb8WXF3L52OD8hqcHHOMN/065u+h9YMW00E+Yc5preeLvTX8uyTCulbPpK0+26YOQ+Qq+WErMU7MQMP06ShF1MsK81LGp8UYP7CKWJdJvdEXKs4DaSE4eeVaj78NSXQhfKsnnCwA2gFOVft1ejsvz6lpGdzCBfrundThOHG+y2fez67t+c0rqVnnmeJL9urhkNV4fO/+HN6q6zLM9DqxyOZBx1j5JMHALm0SZIdXNR5riSmU6rQgu2wBvoQt8/0BHdp22M3UAizX5ESFasuk1bnaYf1N1oN9E359eY5qnGAl4z0ezS4Hk95xr1LD+M+FuZRTXqaM3RHuw4usb0zjaZ9asehLH56i3PfLriywdCdsAGAFkoeBnuLyRAGWQ20Azib8nS2AI4xcSOjOv19x1ciFx2dFf28DiLW0jPOCk+dRR5S36hOJL8b2U4nSgTq1XH0X0tkKmsROiaytGNRVCLNu1sGR/YPKQ8fkoWwUi2Se6lzIdOH/Xk6DoK0xvdOBgpccHiu77TjY+RYeqIBI1HXGblr77xZnjSujCDz5vNrReK1ApKDLIX8MzfTb7ec3UWnMUeIEC3vdNstT+XUujDzgOegKaWbLwDOTLpvilfTLcxgvm9hNqbEKA6Liy8h7VHAT8vcD1z9S4F3HxQvhSU7SIAa1IHkm4hnlB0WplLlwOYEL+QAr/bEE0+lkwPDu3Z5rb89qdQ2jTvQdTNbpuzlXaayxV6mgMSNORZ8UrDWOwSKHhKklN4LsljJTYBhuZ1XLD0R8c/t1YCEVcd3EbPkDj6ZoGYryd3YYsru1ETH312g6uw/MPFJuj52Yv54CVf4qQmwcEkAoJFIXhae5PFbOwMlKbIAKRotJCjKJVTX3Mdq9HqLEmm6OKkap+rPD9u9K1eTA/G90k0VA6dGEhy1fkpFUef0KvhTZsupUQQ+nhyvRvJVbZAR7y8f3NqNy7wyF3NfQqLu1lWdffIuLoSBm2mwGMODgUbSD2AzB7zGBiDc8a8gDHZJkDu+aEOut97Qds1G40x9pMgRW8opDvUb4nBavwOn7J+oh0b7E22DeHqKLDiqLXsWOGmUb8xkKQEiFcWXYy+nuo/noLLoPMYsiX7xiIoknRm6Fc+2JCBLzUjKRYRVMDnHW4f0Ls6oU1rb8O6dO2yiQLpRMxSPVMfjarKNnSMZQePIxgT7UTFwfX8nUrs7lX3iQ42R35+TO/e83pJq7t7vnls2W8dEPyuEIdzmAivQpThBcxpBbONvAUaxzeuiZngUx10p5j8EoG8RMPf8bmf7jSsgxZy4wm41IrhGvLMeHeVh2u/mNNkbZz2j1qDVx71vYLGdpWl7p/TPCEMn01J/ztDAzL3HeGQGgR99NxzTM8W0yc2XQzK9GdJ9rAR4zInuzUHSnORkvYxtfd7AlozoWVNIBj2bLCkIXLl18AGVXIhG/ldEnD+Ka+Jm7q66wIVtRcYpxKaAD/JukdHfuDcXRRbvOJ3wSKc9yYvLEh3XLATMOZZ4irhubT5JgZH67kJtmvaq5FbFtCTq1USZRLrgu17FOhPSFRnd4VhPWke29SdRmpGulKorYlyeKCgN8fvAADGahdU/OMcrJ+6ohQWYguF61J4hA6Q7bMsID3jICG6UPrctIcyydvdLzi1nTiWnY9E8nn931hyH0TYWVSQJM06eS3l+9OIU6N+gPC/yyVjbskTjXfV8SgOey0tG/pzDHgndtvUnL1IEE4TAvRPtlfwtwcCoF7TJIhLno/XKRV06nnnwA1wV54q5LZh2RWsljL2L2PleZTbEefli7RPLs9KXVeqnCZQWWvw/TZxH9TEZSLRkPaH3iBbSDfHy4UcWp10fCXux78ZTSiBPBMiV9NDjshcIMiun9AdMjgzIdbPn3dvXxqq5qw+qpKrH9F7rRchZw7AwrrI/KB/O9MwgsjNnxytSGEVs9LnGvintfh9YUQDQvMSoNo76vct54EqLCoO+lNZuIbTFJjGKvQqn8PExZ25PhtSbg7DgNvkqsAO434axVPapOvFtIR8gXfGa+b8NjC2KxRrz2kwfnko1mVb8nNFT7tLC128e+dOXaOtYmFpuC0zNEiD3OSwM86Wu3iUQQXQC8kFl95iiwOXO7JzZaCLTVvsktuPIu7Zb/a7XpxoFJVeBz3KzwJBDLTDoFKn896ClFlISPDZEGEkCpnaxNtJcGIrUSClf+cXvmU6k4sfuepV809MetXGz3DEGwvDSbp0CDtuJkAi1ddZd+Ds4XYw+bGKxQxtqSu2HbYPlA6yZgqwA8TgA6cvH2bZDF1eHzPYIsZiLoCN7+jay05A5BnszvyS4vTFYj0wpFWpA3TRklQxzzK4xtomZRRXE3VxUAFsQSmQREhuS4UFM3NjJwijXZttfsbVik5h4kLi4EQbzVMuLhE5XCS+koYsARDSxxdzBRL7hpyERv5kfhetKytjtnGtAkh4p7g/U7L+awKf8n/ufdpHGzWLaUkJnLuLzRCAInP6Pl7OsxZ9RsMq6IRex0XH6zcIjPWLe44b9c8pidN0aIBe3WjIypMHOOjhJmDzKqFnGEmX770o+uiU9NafOe+4teeIFS5bEJoF3C0kXmTeVqX7xCf6A6odd8agAd18K6TXBjLYi5Nugf60415T5/dYfvNNS3gFljmpxtV/DgSJZ6KchxgE42pQvAUFL1P/7JsmDCSXRhsw7yoDQfyAuy3/wGWpo0cMRZPLORev3vnrwqCgmEnLXzpXc4MeFmVI2o/j+v8U8EJnGiyG5sqgufAK4NK+ABPH4D2PipWznFgRCTJv/ZVfGywPROlAIRnlgew1fwTlPtqKtQyxq89LdCyMna4CmeVJ3rx1xitwG6LV36XMgCR0a1QAIWuyN2ImUIipx231f3IEJBzwEapRqQ9+UR8M5xISfGAfFxFUY4n6GOeGajkna+fzKE4Kp9Nbw1tAdty+HT1uztzvLoWoeX0iYxETKiVU3Zfa/RmNr//4CSK/oC2tFTgD+nMsL2bPNPpVN9aU4y5LZvCNDvyUXDaC4Z0Wde57gYOIzS7hL/kTF123hdwqb3r+0Uvyz8lfNySYTd4Qxy32zQmIQdYSuiecdY888eC9PrilbHl9O5rXv38B1oRKoh/XfeaZEut3vpNHB6k/AxJZa6C0WSe2lYy828uj+OBmx0T6bqK0FLEUaZCn/ALk85xcktLZyXkTmDNOamaGDJaOwSzS1XpXXoer0anmveFWVTE/ZV3UoBB27jYQvj9TAfoygaU06cbvuaXoWDnrwUnuPECrG3v8ZMbsSiNWGTACnRC60+6kUOYvMfeeZZuAiZ3VH61ZxehS8BUT+W2SJ/cPe6dvKmR20U5GgzQpS+Eh9wcEa8H2sH55mVqEs8vAz7/2MAh2A5W5axp/g4rnp3Ub0PW52noycY7RTxD8qM20RrqTsQCtwpn7qaiDVAMAO/TOlRluf70FPZMJsGdA8cqrrog13KQwhjduBbjLpxTU3p8pVn59MeLnm2h3DqTLeoUxgtlSvLboNSQhmzAQid4yEqg2kp1qBVQD294FdoWh0U7592CGj8y/7b/4sIGy7ZDN9dW/pqNsOxHGH3NfJ5V/ExtvHqTLzuD+hBSFHTsNgKiUKBkNJUOKMlrmrWl2vpt+SMENuJdVs1IpX3lQ4jO03YVji43bzuYb0TB9QaGYuzHUCkgPQgr3ohtUBhj/k+y+Di9dStFrhnBl6Qqh7KmFmh8g2MUCkcFxnMp8ik3/12ShqlUiGHJ1cW+TtgLPO7eMUZ1an+YuXUO3lszfQAqxRKhozQ6GTuJe7GLZe2TQ55tEkzq6H++yLRHMR56pkh5GbbbJLspYUPH0PwKp4W1/OongGaXuB9Vub8RVls3WaYrR7PEpcYCKTzInkUluUuxfIzTWy9XP+Xr8UAMZpHt00izj+EruSK1pTJYTvs/YJ31jFSWc8XFmtykN4uIIKw10r/sMhjgMOoqKn5UfNJI5gj0VMy3oanvwxNpjkOo6H0OR76yCosCZxc39eiOt4ODULAtFUFArk0PyGeRdwNSZIN5czfqIpP2N21gg7PQNSHIcFcD5aWQdkYP7AnBXI6lwgtdj0Ojg4QpFIUNzEzbehvhUsNweWLa/QLc5xTKV0KnuG1u0TSxeu79Rg2PhVcxI9YMSSV3JYNrWvytbgngQGWmGmiyHXXUJM7tRqK2/AhjG6zZvcI/pkPhV0wzAfVHWiefAYJxq6XvUQKPBD4EMiNR1Kx2GwUKXhd556ZHH1P4Xwzys4q+O79vKiFv4aTEE1sLb9umi5lQstpWwehBGYm/+qY2LiyWqI7gQjpJfJsN1bFCpfrsiQ/0gQfJ+ZO/ltCqqG/YJ6TwFhm8tMt0PSp34v29V7JWIta9M61RQBDv+2sXZ0BPV9ezaL3IRrtoc6JVZdwfbyLtxgGkCwMyE+N8wdgZz9cv0GzInQeeIW3anlUZAqReDDz1NfyA11PhDmoI//UqUaJJGgBiBNp2Zo2D4/4ETLrWuQt0JH1tuo7ZHK7GB3XerQWPa8Led1t/Go2mT4rurd4okeJ5L4n6Wxar5YKff6VCDOy/ZJvbAixyI6fOu/56P320SHYgImGSGeH0sbaARKR0+dl7b7hP4ZVByZJl0OaWKB2huaT4DA+Dvc2kev7HYxjCTJmqf10LTuWd+G4Xq/RpbJeLQX3yB9AUC+9GDM3c8d6ObSoxDyrlg6v1XmBV9ueSh7PLrgofT4Bad2MtcIOZZiBL9nLgJPJHS+Jfy86SyiGZ8KlluPAsNylXxHGgk1D/MfmT/yA0vtEtswdiaDb5wXxevEHpWTs5TC6JnWT7UO27pU9zyMjn2A4WqQ/GC6Mx8QxmtZ5u8pg6JGs5kInyawFUijK62nxApbFkJNIhJEVwxoFudiDbV6RM152Xka6q9roEAJqPgRFUZOyF8xb66/8KG7s5PpcIekuAy9bj3Nd3nUdXNqLq9RmWRdw71cJWVZDZpUyX0RwqRuON9jCFlmjFV291IxZkiKGp8QalOM7BVLAp0t1HwrGNXic2cOKT1IQeb/qysewGdQL3tqV3FjAlYw8WeU8wtBGUf91uyLLnd+0zurRGXPR1EBaDBwfNPsXP3z0CRECu0+dqTViNm4esJFCaYm9wSvz/jq2JVorWG6shSGmNLhFVqmePCGW4tTLhaDFylv+X3IUu5FUOFxpk5MMck9pPoXBuN6xVkONCz3MEcBrsETl3ypETyBgMgHxx2TIqJMtgVtJmWZGPAm+Py4+JtZy01mL2OchdR3OhZoJKPxvbEid+KnHNf+xTV+5QUM4bZ6FIyk4Cm8evyEAqT3UUD0A6T8jS7rLzd7ABT9P1tHqooDCj70RyCAT9MUNfjjGfFRvdfSA/DtvPuz1HoRAJHN0tYIWTPA0iBXmoUx//NwwxZwYY0wIUHzpChdKjOTZYj+EDqLWHQqnxwoyk5C48o0sasc6ToXM/zXQouR4MxdqKyLBPaiPo4++hYXxPRNyNJKB6UNiSwNLLHxRVZM7QbP1J2xaLlXZLgzaq8qz2z/yPwi1H3fs2CZuJ76qD0cUEq+URCGQMUW+n5bvuHzUx+A+99kF84jtbT0bbeiwMY7lIOyKfMMWdk4lam6X/CwtR/CwFee2UT4vfloFWn8Jv02lgWr4xk4lmYUVzShKw+EY2zUJER0CyAqAJEMCHCEFGmnfJNFYgT9Py7ch85dHXb8SVTix9/DjnPaCru0p2jQPASova013ZWbi6XPg5HOnwuZaGuADX9kt2D5g3G+nb7C+bXYckaFlcbRMWY/xAemJQrIFQbHliKjZWbtqzEkn0zMQ8c4WKUPI391KRfZLW0Ym/I/KdrNpOCkUgxgxt1t3Xd/RMZS6uWhjHux5P1fQh8zajRK5zsOxeuy2sdacbYq+thYGZHcjmI+JdH65Acz3lPPwO2i1Xkr64z0PSnT9rgF3JgU3zH4wYp+2gRsEfOhtn5eqS0GDG4Ij3TgBYkvAdKpL9nMaZcCUaHQdOeGEEiGJxcLFLwqD6/QNxrWL/oT05K6WswuMFAnekvwTTdblVMZt/PCeAJsFselHycNxsncHM1xpZFQxRTYNb2iYIRTwKPTe53K9cGEcxs5qeZugUr9EgYf3fr0VvM/IXMWAayZ5iIiyV8hV063DlqyaxSAZ2odmrFZgRferqFTJtYyYjV7iSvf5spl1IeWBrImmc1c+CUNV2M3YlQkUeAOfKAs/btmMhosLTKC3KOHMqFfLwaDVTX4YztZDQs/ZKXHJ05kRvh+X3NWJDgk19hmKITkQ83eZrQHafw5xPUjNdO4VdBWVuzx1S/HXApq1zSU9Zq3uMmYS5r8YuxFYEJ7sKzH47QjDqA4plCywubF0yyODtLUvZJKc59Png6Vbk90j5qxLBHzhf28ggCYgkEOyVv0G3NGlXYHmBzb3kCTh64amdAL3HwCDm3rHh2XEetFR/gxO4fuwI4ukZn1h9CV4FrTlMN+d/F002Jm7jRwIX5iHwXdLf8zQDtfLmbtDznpKjLFtwK10nO7DoLfzegIBE1yHpTbdQCtgmnux/Ay9kbx6xLJbAf4ydAuSp4bVHCefXd6s4Fd2RN26lneiWrGAgyLYTD8D8gMAfh3ZlX39zi6Yos7KTdR7KURrqGOZlawYAh9KAvbybLqStJRore0JaxvFsNdv00gM3vbTPOf+9UydP9bgJ1chaRIZuqTWDUvBjRPmiMULJJDWTxglJ7mC0ulpsWYEuatTc4fIjDpnYC8Lvgja381wMf80UhT7KiCWogCQluqNkWMlvjpjfsC9CRnd37tA8hrkPyzMxsjybszY48ZJqmPiRezDlII1oROmaqr6hVXotjpdkHq3ZcRGgf3UtPfxkLeWVVBvUIVTjIYAUYN9GeZJfdBbamZp3Dz66J8Ru9jLpuBsn6fcZOiAejTURII4eOS6XgwhwTFElPMiR7M4YVt01bQ7QAo7sPTkweyQBjs0puFRhsgC098b7jkpxQjk8RWGUqXSEm9YwpKC9gDO8YjNTVSIS5MH4Kg1w1w565rtxeBC2qzfc2HO/1xU1l5XZoD4fZZKHr6jTIk/erBB3HUjdyxbpBOBMZo207oF0MgMn8JvobeKL9ZQw4hsEGJyDfU4QJl7yafjtk8KoScVQNytkI/1yT3jIS2snIAZGLLKFY+Ck8W7YPG2xqbR/nhmPvkXL2Vk01454WUOzpKsS8yb0hFg3A+IS+8URSS4wnryLygtIh9+WV9qxyODqbWMeQaFjtMnAglZjRWm6QRMqbYawguRxhzZfWZ+EEL6z0Dz2WQZoKvkmaRjO+TSyK3eD+GpnYoQ1XCqUYWikoGu9+zk/N2pQkuN4VDU0oJrrXqHDr383YwAYM/X/DEOcZ8aI7nrbkuHah3x+pqxTWvDNqj5uDi+RwfE93EvzIee/3yewnT+kETB2GI6JRNfSjMAK/IxJso7kedToOZpiWCO950LTjV81DgQDF37c7FNBM5rWmpGEpxhXxcNHqUMKqB3S8nJn2YymAhxrYgRK7Le1Lb3DiafMPflC5kdNQb3cJoeh/x78xVqWNaFbBbDa4ihmVP1oMMiCv5HBPWEfTvj58nZh3oNuVHBcSHjWmtE1W7nvsuMYxhX//lHX7s3/leluJfPjlmWuCaWSwbo+UOj2FUCE9aauWXaHgpcpURzrA2d6uyrSPeeL0djH/DoRQCIlrhnlTkaRD4XJoBcg6jzvHL2SL6vRw3R+dSIpTsjwQ/I3h7jO194zEkNBQLKszoosttJpYzBFiNPw/QqYKghgmJr+q7Xy43syquj+hQwDnEfpmiZoOzyWCdokmmsEHViU0/+xSbH1c7MBS1sz7CY12Jam3UoicewRL7HOe9Y3le+Sffkgskry+5scOjh9OyVbmNoRYY8V1llhxpwPU/SsGji1PtKhsH0N9gzC31qq2zie3luOgpjwfNgHfvXOvuSS2dLZ08AiBVzw3f+gaWcc30fgIkTpoKyon0mMGtBJaQkfCqghMiPPoxzhfDfn+es3bQDySfiWrCl0SX6myidUKoq1kOzym8LEHX8Gh9RBQBIILnB3uD8TkVOXSQiQ9WwsM1bqEcJktQkF0HoRQBRZ0QVOAKXNGmp2nh4ifaPakq+ln2OS6MHXDSyAJhOADSYUQXA10gplKf1BGVYBtrvlbGC/RR9qOVsTyziGi7J+UyPUVv+bIDlGSQ2zzVvUmaUy0iMjTkfvBhzjPRCnR0WZYf6Zv2JLf7ymW6L2/QMZ3Icx7ydrG2fn+XKJlBBArAqXT6j33Ks81OGyCanCfzhJPHCjjHPQUmGjFYA2Gtxi7i5EQGSFcHo+4S6fqyegqLvGbGYq+oTxVkq08tVOzGjGK3TW/+fS3PhZfsRe8GgxxXv1UeTCdEo8tvTuMdDNctuWpPZjiHdTcNs8m0AuQQ7NQRg48FM2s5n4dfV52gYx67sBN5zWXwSdve5lgdLpCnPjmrNdRXxdCNXNilbyeZYrD9ykqJw9IUiIB+Q9KgyZDErZyLx/6p3dCPBHeujagVImhc6jrr4pf9+k83o2hdHyMNPQUW3cd5jfe48VtAUp04MO84oJvhI0l5Zj5ixWVoFk9COBdXJ8SFTUIhmZ7s4u/K0928NxZBq9fKVxP6FkrjmVW3ZeN2WhLvsKbxLM5IHRw6i+gH4XV8+M4HeUnXCG/MRi/p3qF4odG8xRaFogfEQGTfdzGI3gXrJmJWAE/8D/ASgZxl8eQKLzmdXH7Wq2cbcFPYpz6cTa8GhZl/BOP4a3Gzjkh9S26cXRoOxF8yrgJzTdcXrYm6ZthOGU733Cjexjl41cs0yb4NVHszhPfqFVQEb1Ios+bwlSPH1Ac/XI2TEUJGlwCX9qv5E7TRJPt8HMvP9jAFKF3gs8JyEQ3fLM5Z9IgoAX1JF9t12yy21YNERgCjvSi665SR7bPQdxflpeIumE9WiKr8U4XSuvpD8EZrhh2QkVa8kTm7tohdltGVLH7XrRA31Jsc5VRJFycJ30ZLwZ0lqf4UU7PMY7Q1VnLjJvZwWPvGH4U07GYgnsxzgDB1wRdx8USqWZD4x2BSqIB1AYNQtyFBkNAwSyi9beDkKAnsN1sqVHGxSocw0Hnw9NxnGSVJ7E/OJltsj8VhtUOHDR4AAUbbzklmHoqgx8/NZZhHzsoZMxGTARbH9DXOcwPIy+/XfFep6nKQ3yZ5HkTcMMrUqrJHF/D47Bm54WE/S1PYJTBe3smJjuJ9KtQvQ5G1xYybbZI/MbCELjH/RIFmrXzGVdnuHhxzY4n4omsyJXXOb3B1jcodL+RmMleLg6vDcKKR5bUglCrnCYzh3Ws1OBEHMIsD+DDQDDJxHYFQugtscbq8OENwhfyJtda69PP9snRE/0yeANATXIi6pIeN+usBeN7Ji5sX/r2ifnp6E3xyD/b5AtAVeXP33ejBNcfVP0jImyKO45NIqPQNJIv9gjya3ChSnt76ClGgxBJhBu8RtHy+W7FEeK7F8+wknkmcCluS76+V4BFrDt5C58k0iORAYKQKqQef3JZcmjhtTosdojXR7I9jmMaEalL88qM6xWcMBgI4LGzxvKpRUbD1WzKso46EWqiOmIcO/4Zyj/RMMwVKbmfgRiX9TeYuneDtahUXmGnBhTeRG7q//51e5SdfKza3hAQTQgK4pRlyPK1M7FYiE69oa86VSSITIlxJWi2Q4vnF1cvPy/0cCpwK08CLhe8YPcuTp6RKoWXcPxioEVgfb4W8pf7/HOl1RFWwyENwhFwD4qwT3hPCbo/8zDstp76oS4/qCr6NDwXPVdwvOGMXP7kAa9AgVjngnsko9kxYAC4NUSDbfphyBzTTgN5UcUO1feYMbHne0WPyA8an5+xRfQhxuFsoHcx+2tMzTl39J6zcZJXHN5aBwFiwm/73F5Z83tdWC6folIQstqro4Rocybn2snScvff1w0WcVT+M8bKbv5VyCTFZPJveN+EpLbgVcvOMUEk/RqOI2uEqHeC0ACaHboEKBTtU9V1b4hbxSZiqlqGIFqBb9vQgxXSFD/Dt0DvqevdVMXXxdxj4Ie3brOhfPzjrCUET5eTKh4zxVW+0o0gG5/CsZtUfGDF96lLy9dOFe+TikHL6vL35mDvEjZ9NjDCqsKhusxPHweDwOD2Vy+mitm3RgWIC2xtYUIFf5Bh+Bgd21DApm2UIs9plASujCITqmbLno59ib4dMRhfwsv12RWwZ0CfEs1joRluTbZKIVPqGD499lhrOn6GLxQOZHmFOaOe4OW2XKy4myx4d9a7HpOaryrqtaNl6YT5MdyXMbxpjoXfmdXP/McB0WVusGtMQ/L47gwVhYxuPcGpO2HrmH9uXD9fr71cBBcIRY4NSbtz2dWcpI87F23NFNIEE8KdY0yputRDnfxmyVQ8zH8a8WD/jD5xhF2iNvX9AJGIYywQD5jS8aLuQJaAhjWJpo/mJhGgHaaKt3Tl3GKGDDaUeWJwQnXhJmlfUGtci4n9IYlXSw764Xk7JG7CjehFMgi6yWg3lDlMHW6pGM1ryh5V5n+J17txAqXzqfUDQRNKkdUPY+l480t5zmYoBsXU3vwj6QieqUy+kEOYtu5vADB5LorsvELt6xOC2mSaGkvyLkYNj8R+7hr030MBke7I1vLDzr2SoC3ewkvUF3GJINxq2O3PEqx3TglAkq3/+HK3CfWcScuFxSaTzLmB4y0gnjmCaAiQ/N2SuhN/RA5wJwKhSYJNZAkdm2OsIhQEwF2LG+2RqVM4Vety1nDIPyNbLRexg93vFjN14hHGRk0PPQ2LxaO2d4m4L6ok/f9TP7S+J1GZ7rjh9dArbtf12O3Ah1nnAQTq8pqEOvht99NDKeoFyOrXAN5RG9RF7lB5rI0eY4uiIr6Q4tJX5oY2lU/qqb4IAtbJDk/aTrTIzY3JRadt0wT/58wh1LrLFpb6ndAX5lXRCilbfyihg2375PwVtg/fN9Jo5w+vRh6GQMXCb4jTlfCqQmt4ed+jqBjccLq3GweyFL+7Cu/XQohZSZIG5SKlIjQmdQWEJHDZWs4SKfu3O/YCGA609XWDjb8TyNGSSWxhtHJ0fzsrHYK38opW2gf7AOrZOGvkMiZKtrjZtYHBbcZ06kSCDi1jo2uJJDLlJ6nagQVJma6B5JWTTkFwJFYWBI/4kSNbZhujbqofzMb/jhNKxqPPHDUtF9nZhrctdv7M9jLbPMoguK6PsTP/IEAd+g8QXSWFktVuywyuqsR66gz4tEOCvv6gMqcjl3aZiIvnHjaPzWMRo5rs9CJe6G41kXA5U3hrOt0QrbPKS91gUMDU4YSog/DQiqDzSGRS8vet4x7Az7lrYqlyu0Hp5pQhcywW8wt7/Co7Hc+SM1JSqu9hmpYOy1jI9pY3ExXThS1HB7afhYyXD4Yd9PUi/UxstYnqeO+DRjK/IUofbAPp5+3l12pr5qtMtA7i3BRx6b/deCCEaJmIrqK1Bncb9A5pYBKMsstD3AUJynBO6DmyvrShYvZVXGACqHFDh8GbbsLvE1epitt73zPYoE5mu3MHfc6RGVT1KrrJ9SPb9DM3T0iQ1ZGKAb4YjAmSc1+gE86Fg+FpWfqCAkHtrrN0Gul58T+Hyoui4SiY7YMI9nlpw7gDF17OKoct1zA6aH4rZSQlYCXu85YUU3S50mZNLwLqJDNiQHFQcfhpL6kNLH9eJRMVBS6WRWbDrTL9MCG3c/RUuc5D95GlAnfiCSWkMAG7ePxofmULzb1v5EtEXE31S0+eB04hakeJsxtVH7Zdbf3igT1+LayWvK4F+KFtfciFo0hEODws04GTt3a2VbZfZSsLhJutHFUy2aDEff8R8VlcvwNa3tORpXT4OLWha0gtqr47GQ1eEyI9XZ68AJd96/cneEzvEekMVotXQJE4kfa4NOY6TBBLutD0FlJoP1/bykk/xjLzCMGn+B9PTI6MqLooCr0CmuI/tpkua48ogmvykUkIRdkzamYeLzCElqOv6jnySzzTN+/gDPci1MntizGySuIOEt1/sBWBXoH+wsJhgvOlSR0fBkq+erkKN3m806/JMXwLlWY6vbBuQWc/+2kiYPNYGZGUt8YcmOdJiU9KWFaMLuv+1ZZ8hfBlpMjrTb1TfhLitmpMpP/NXRubTK1Wi1FCImTJnwpUZ/EWER7LIQ5doKMJb3c8wyI9ybh/T6RMB7h35e+NRz8tDAED4r/0A5lbUnHPGMLyaKdElgsvgRb7F7vIMDIWs4g0Bvsyx46NlEVvle9fGLjo/r0FrqFecD6NwP3nhsUXRZK4lgJepTqGJ8Tm8QFeJEGQiCnvZctgX8NvMcAKhkar5kKuJOANmncnQtjSrHBYCeMOOD+VQfSJP13qqgrV0guCPKcVU+B1OmWDh/gW4/qr/1L70+Lah4QcZux4l6TZgas/DnDg07FwFoVyz7u0mBkWyOAWj4CzzUwt/rFqMSRUlCRPcmuE725ICutnElhyQW3NsGw2ADINf17rO5Ym2jndxhIKlnccdeDrwT/ogNbSQWUN/ZqRkGNcYeMWKkg9DEMxereAxYuqhqNmCdiH4ogVLdynjhJaKiW5KmQb8z+5ZN9WdpKbLeNflkoidWaopEyIAlTRL/LDx3txs+Qqwc+wtdwzYiZu4DO13fhxFJW2d2vdXMr3VoAFrsJ9d6DvVh7rQGTLf8ZrOsTaMEzSa5AWhzAKVhsa9GcJQ3DdZeAKCY4Mz1VTiZ8RtP/GYlvlUMV+7tFmGpR05HG6eVzWHFHA0rNYvvi5JLE3TXzsd3aZ88pODx79S/YdkQNmhPLEbNA01lS2wa6JMC3IsBz1L5T17k9mLQqbkstEuoCNm8f5z9i5yECI9uXIxdPvL+icOqmdasRGH1NEfXKUTaliH7R1vKSUB8jhld0iLMkD3XeFFNnFZdWXiAoE9dv++qCBVDQFSwcGItPuql4pK833t0sp+iricIxQP8bySZjMTnACB5FS92ofMNrja6IVktZrzDmp+TRvb1WuzMXhdMQ2wC5GZwNY18vrhWrsVBFK/0fPYMMYHUtb4ykGvqUhwblNcHLHDoOimJwtplrrgi7wZJdcJE0XuSaHJWTKmGZ2lfgzkRpUdE/Fc1rOTt8MgeeeHHveR5apbWsvRkt2oF+MBRsa4U7zmwuLDH73j1ueXniScMXi4+mKN+jhy4ceKJYhVlSZ6OnlhTDWXf5jQR5Q62xcX+4emvUO7iKhnZZ0PvU96VefMQ6e0YAXwHK/hWsm4C3kMnk9CnS3BHSOONpbfpDtJBfkAv5PfJgumqyQYieaqmfqFmC0s71DsNvXqpkJRZpvAQRvgO3NvR8kD2Caipl87paDr+r6gJ8eZF4eYaTwiPRKQazJj3GToK+WVn/ReBEgxcqy29mTQ69e8erKaupzA+H0wGHUpZVc2km7CeiC+84qna9iAmcS8QUeoqA8RNJvij71XeQQh/bkKyMWpcImefHv/c+DrTIzjgjoGzyhnjiDMFHA120W1p29ktv1Yt7RSd+HikqG6lSfBgBqUFH8FK5xH1cbMK6vxzTunWE2KI46DqDJXBCNwXaqgfU4Ujd7d82+MyvrWcM4LjC0veinnKamHCsnEbQsQiDVHkgQWqAM2a1EK/u/HYCY69X5YVpd2ApeW1MvMfb8MXm8ts4rxK55UK1e0rQI/87L8UlY4cFPBWDCC37mB1hyvhqXijZcEvRRo1dQAoJh134Z5KdFp60LaIskPsaa/iwhcvZz39u4HtLtrkY04iy/mpXbXtBpPIxjdOrRtua+ocAhw9qrZjD1q0itsL0inHpZV+2KvHY3MDzvI0uxHfPL/HkK8diHAGytGRToIuAUYNbt0KT81L46nac9rEK2C3akx13OrK3bAOkcw3+mhfp9DAzznx4cJ0KDX7PFuqwABQ7CAOFcHSxiYImnPJ319PVSnOYi/JowEqtT7spxWK5ZLR4ve8bKBig6tlaDjaFBCqwS13TZmEFwffGGjAZFkMCkDi/XZLgupTYeuzEQc3n4lf2iEm2CMKZWWSiEw/miKd4JzrHxvhPQEtNhavL49JEg5i5PxQMW1m6ArCxUUTANFTNsNCosuAmvHvrBF7VnjtspRvNgB5QzMgOa3Cvs3aVchm6Tm5hH0c29CGnvlAzWpcv0GQUrxhqfnk/t84QeG8fupeapOhvpLrf4LAYKJ5NqUdfxFbfWZwEfKPCydxnOA9GjyMl/IZA0UgwsfzpQJRCUWK2w60b59+ZS2RnPp8khRrrM29MXoVl4E4Uin+6ynNANGwBL9+nwO0YBH0sWGR52MPbHuBfcwehImOe0UuEoLW3VyVXucLxJSxUGB/MpSCUA18Tt5XyJqvdO5QzDs0zNpfZVjPFRVpuIkC95C3CFAZiKKovSiJg37CfFTTrQ9xz8XYBSQl4giorNrEe0HxUrXEpEJmnVvbDS9EeAWDKLWS5wNdMqiShBw3owr5OsgYY0bmCYAF98y5JdVa0St7r+SyNd7T8HsaqB3HX+Gxo7nOMxiIxdvlo4zvtAl2xkO+tb6F3TV2fe/cOSlwHiZ7oqH6PVb+IM35baMtbU8vDLygNFuICnWr+UhaProRBPP1IcqgKVMHwlewQENWq0UNaxIbno/iQGgaFyaBPM5kdqPVTyBnD+gAv5KfmpXiEh4zvJdaQMAZWdChGqxgnZrOeOh/bRIMm4+vJNzS7RGAPr8dzRp7LdnI2NXQ6na6jzR7P035eAREKhDbqHRIKLJnaRH5rkI/aV1g5d1hoAKuMPOpgwV84nDTRTXdKFK13nc2iP4++Zty9Rw47kxR7Wg4JZEpHRYcahDnk41OvC5egIp7SIjBzDK4KRl9MXID86YXWUUg+k4VkpDQ6rGMAZhYlgrzTuBKz1S9tblUp82hm6s3fRBVS4XrtRw29Kxl7q4aJm6sTr0qFNhpqF8phE1dOwzITBxjiC80hBKscCsvJZ6SCec40S26005r5vHztO8h7NHsY0B8OLpuigIDVd5+6n12tf6QxbNw1aHQ9s74UXIoTQMybwy/dVq2i3pe6LfNbf38PA2Y/tyINitfgmwe27aY1jPl1+eLA9FHrWajQdsOWY4NQXMxmcoy9aJOXv1vFpqFkIhBMPN0hsg3h/QnKdTSTAq7zRWr/TUPF0+jQdmDStETifv7WYO0H6z8D++JnTpn6D5nqvkp/joVJrWrwDK3Q+FmFJCtyXmMZlrrQxZ8a4IMPLpe8WRp+YA/gK698DySRZ+Xw2WRP94/EY2aYvxFDm53RgS0gJQsaFHbHWVwMslwz/XKr1qpNesYTyM170wE0x/icftFV90SgrTnBZeUjTiv8X+VSoZUf3Ka+fO+P9U4Ebbi8FRQ6EVG+hOroRveQJiQoplxaSeoNc26MdDAzGhWm87CsGiteJsn66D2wJyfcZ+irUzjOgmNJK19M2SHGkzum+ysG+3bHI7VS/l4Oj1m46jglchN5vz1YxbOd6vHV/y96kyecMqXdw25qv9dl5Ze+qMRDKqmoxKjqcdwpxaXdj0RdoLESZCedLreBMIznjH135RWkmB1wKW9wRIaLFGu+IYqXtoExqdQKMaW26wjHbjCil2giGdG/3Nf4lcS0Zo4yX5CKwyuzH7dG98GgG/M9vfSP6fT7mWWwVhyIS4eOU15nXlMG6F/Vw5ElXN6XY83AfvkC9TDvx4OVPzI53EpjHikP1+PEqYV9KNZT5VIF3FVqYwyrm3ZV5j3wAeksjBP5wlvf5+6u+YksQMO0R1l3c0X1ZppOM+/t3ZZjWYRIbdLRfyEY5mPYRFQ/qtH4CG/PaQCjofisAeVvIHgmyvDqsGEVvD2cnX8yvjVVvJJ6tMYUGJ+Xak30RT0gwjqIfSZsfydYbQZ6xukUyafevR3E3QWAL50fkUwhYBu/ho6wPHThm3J7vZ1/dsvNAlDkKlKeJ4CVA4gBcPFTiSJ1Hz4KEXkWkim+JQFJNkG4B0n5H6yn/2LqhPynmtzE9dfgZ4rziM+P97DWmkdGYFEUBahx3hNvxKlqKfNu5ExwKNTq9378oSLBMNAC1OBdubD62NjMowVNj7nc+Ai2DSBCC8iEQ5g71A+/ZXTmMdQ9xWSu9TYppa2J+EVxQXT6lG+zDVdQ1iEmQjoIgGgGhsTXzzA2h6pEcSOJTJKYnQxeJi8utbce84KM9V8zhjLQeFD/Mwyj85xWWzjfkjnwMBShMWuqbO8hFoSOQ0Vm9fla3i6z8QUAvGePLWiaI4yZFlHNYQC0/NxGAPTGNQmHnHkMwlzNh9P/YM5AELp0tmnZM5USwqqsLGC8QGUxIXP1gG3irRYYZu6slOUalWJ0YPeqdGRn5ikwrB1tRpN8LwaB21VNZAvNzdW7G41Pm6rEhr/c2Wx8o1BVHhmxkYT6Sa9bth1Wq+m2bdF2N0FOstLVrQWJyIJ7hK59PI33+DzFAwB0NnVReDns6aNbUT/m1GK+mMwxwpXdK2BnGJ1PGliV4ymzdRvV6dimzt8g7J4jFebuyX3LYiPVAZq+HKXtyBQtb2NGPOEGEaR7IhyO2jPSBQ6Pdsd38JpDhLwdosQ/deWEi37jqcrYEJlyIcfBofjvXvrwiUbWbqGx+VCpEojuM8I205/1mA2Tw+eCA7s9guyzByQYYRDs4JB3h+ZHWlFf3Od97CuhDXvocQ0RO0UtC5ysvNxQRgmaXwr8F7Sxe444eCQ+xZcGPgOX8fF1F0MgSzFj1XzGCMmpNLOkO73zM6qIqrtdIfTr5ZcsBg7RiZP3s9v62XPXShTU+gEYkNn/RZ2nS7oVDKGiUOGC2vKaK+uyBpEuVV+Bf/KSboI7nUhzVvul1GqckgKclhnFQr5xi5sYobUpMgRc5xH2nddldUCkK/Z+ZXFLwM46OYwr6ADl/ENmP+/EPPzajSNXSKfpomBo2jqrJsuVWnlATH3YyUzo7+Ytx5HytrExOF+t5yODNKJobYPJC5oZ+em931j8YJWBavpInZNVMrQkA32ddoRNLD3muGjas0iaFJpXuRMjEgLqhn52WCCQZSg4ZAtzwT8v7fXNbokVrk8oza4/u7zCEUASI+zbDxjWAjEl/B37bfI6Ifh8rg+bcz4qAUt3TkFUnr9MgMjlBneYs9pb8spcjxNqE4ByXdPYHfYWl17AllhAqJfbRmbd4OA3hOvyx3yZFlndQuhZGadxSUhEqA7kWTffSzfmwLAN/KrkdblOyEYCBJR4Zwsa485zDjO1D1JGiothI9zOe+sTcy1FbafKWBkJhAvtxiu96851BWw4XBm9kRJdyVi/dAr9J0KQrCn0k1T7lnC1hbyGnJAyXYcFTTQg/ZiMZmuRysW84RZ6aAmyD8YgvMs1A9gPXy5yoqpLPhjc4/7DfnYQcINXtt1xbcq4UjXbvFl9HFDgDz7zcFA7f1YYw0mRcqLi0Lnm2XliCrMAljXBdt4neiB5qIB6qodyyA1Iiktj5a/gczrZPomBKMkIUmZLdQJtNw4HusTbjPAZdaI4EFMczaKvPFbKj2sGKFIMEcOEzV0xaSnwHW4edRQEVWHmF0GpHiwetLqC0p/lBQlkya9QynL6VBBaNbeut0sz7b95DelIP0dhg2uyD2uN+UwdTM29FmzTbGQ321W/Sa0+f2haWTpVTKegKshEiAhIwBQZe8wYd7b5frJkY/TYQyB7dZFTLDS55+5qwes2qaHD6ITBqLk5eFj2UcKj6p5fFt9soOSfydeK1yFgprRrgO3IYNsBCiVta75amROO/GW2k0ycfZhjFL2Gb6UI1OPy40R2iKmva1qC7LcXS9LapCMbvvtVfI7QilMD4WcqDNZN0EW8Dv62KOW+0OjpmCvh7EJLAO63Av1E5Fu1EB59IuRbuGrh1O9XhNs1h1dbUG+4/2aVNM3dOmkWPvQvXERGcs+Vsmmc/U6noI6Ul2pEEU9GsMonnpBW83LdSheRZC/ujb6K4xyn/dYcT2NomW8z8exoT0/P8pZvNyu0hx/OLCRgXj4MwvvU4C3T6b/MxwLuyUFOd0W1GofC3lyt89dfOsORNNmMO9rZ8GXsrhqbuqymsiTAH/54cUlquwsW9qtaHF8UlZCcL0PzZZL329/hTJ1WabvvhfXItagXjJg5xOgJ+YrSALM/hvhN/KzO/bVEMjf7XcPAjDGdzHG/Jwu1xjeyj7PHBUZ5028pungCBdS/yrP43ZbvGWnmIEEN09cgtCA9PMrXnYjUXPFDjNmsoPN2Fv7e/qeUHgIT5KFq+lGwNXgvoPmk3D+ieR5EUu7zpJgIvX9NXU+iK1pbd78RtKuoDSSpYmbuDQ2dC1F4KwSjJy7xK0atn8qjBfSaeSFmQGAlQNbRCcsIl0cPntwPvEH/U/GodTU1ub2o3ZSp86+qZ868AkNCJ2+GF4iwqxVHiQYcyEfvXHli4jLvxPyRUvstGZx97PTewX8Vnqvvw5ArpI603q3/aYI6QrTBtwYGYzzc/cmGeE+fYzjY2sJRGu86TMNWM8N0rdAecCNgGmRE8QR+xNGHwnHt855eCGx00QY7q+SqUyGeXSn0DBTrpe/WLdpAYcAtccIKrKB7norqQOTU/0w4PdCDbm2Mu6pg0Dx7n3ZgDFzWmi9Fhm36V16Lt6ppCYJ8CDxHeWv+7QXFOnnDnUfEUK/l2904QH3pYaYclZVE8DvkDcJBBkl3uoutOxVvrOrpEZ6J0xxbH3D8O+B8sZOr51UKW1oKlNRVxN+QWBsWsnFx2HEMmuZE5OGe20g5e1c7GePQE2/XLi8oHNUFGLsNbb1M/y2WpdBVJ5pWvwR4AWJA7UH6/ziICrwymqCGT0ALyhRwn9mbrihkjEbfKB6R+nmS5V/aSzjAQTTs31vlZd6I263odfdl5ByYxBJj9tF909VytuEWyiB0Y73BryJLQWngIYz9QiaH6QHKf+KnoukOpHWoJwgT1EuYah/wZ+WIhpEQjwNOBaKaARKXiSrOhSk5JAmEhDiHnXjCAA3VlLdErGw0/BO2Kxr44OBPyyk39sDDsogcCn0VfsLQ/oPyH/Xwpjoo0/6t86J7gTqTMV7uvNjmdckRyV6JKKiqMEQGMndoXL1Pg5GUwZe3ZnTlNatgbMMZ/W6gPAmyHnMdqgHA/FWHnQFVXIpMJcwoYPwp3rp1LRbXgLvC8ZHEuq6lzgc5xDabIwPM/CtJBKDyMeGkOhHcOXoUeU7QoIYBzkXtdLwHKl0FxwkLFrcgCm5AaEodomvEUCmGA0t/QjL4jUA7JDGPkHfUN2+J18FUVH5xtHVlcOdQ11RBL8K7vQn9VnOwIBOO7err6uIcNEGr0MFy/eQMZdYp8w/4kOq1T4CvWtgtUNv33/LQGOi92uZ29J2fHVN5QVY/Uv/tt6F/p88RfGZf0r8rJBmW4/4NL7ZK7c0MS4VcJdJalOozMbL0DYlpbKP91r16Gvlha8EmHtkFrRcPi5lQJcfX2MWhS8clldUNftyu7/3Dn99+A7NCuuuzfvnIlhNYO/c6tgsp8td2xe9o5dQDRDtXSKicVX5mwNy8jYeFeaiMZeIgs2S5FzGeE6K389R+YSjuqY0TX5ndBUP6DfeXMi4HJnYIKx6MWRvnjDZ9Ab/qUcj3hLo6DgULbZyrUiluOcGQgyB10s+Vsexndu4Ql+d5okfiD+5qu8xTwUIagyO95LNMCofO1echW/ZjwID4VbaGKtqQp7566BrwZ9o7SV1AZcozsbU6QwbzRS0tzwrWxyddkLKASdmpWZRocuBEtnS6s6tvStv3jfe0F3qaLsD3zwqW/XP5XS4zpNjUcyZDX5fEDchZdtJLv//ECe62UR4N+mOvrV2jasicbQs/2p0UY360A2DfnsfqkuVqGswh46ufYsMGTvgKi5X8caOBl43uLqpcQwP7UHFH4Us2dTjGnMUwm15H6acAgmYXaFI/QuH9o/TZxBOQTH2nYUK6tWskp8eqVOdpYIU/A1sImQUpfbQ0i2FOj3Fj6coToIneyHbrlOeolD0cbdd83XhkLOQw3bLLXGGzgcl9ZKQnuCZzUxDCbLd+CUthgHeMyovCujJGqhOLEQUmSX1arl9zLaS0AdziaYx/BtXHOgKluhc2A74jcdm53XaA2zrWTGCsUbLOzVb1FvsMBr87stNRakpsBm0qt/FbNewtaCTptai33Zl8tqF616abB2cLwQlhcn87OWQAt8IJvG3IcK3k9RkLtoofMSHRhiao1a+3+XiOphe6QiMY3LkiIF5vkxZshCyfVSsWjSx8qvB5JIHfmTyb0BLs0sg000wJb3N9069cIcBgONpTykd61NjLt2NrL/JG/OmnzVkigX+QibgqIfJ0MpcGUtQ+wCzktCa5yJrVdnwge0uOpj+5tIMKNUP9ckEYzQVKgJo/1+6V5Ry6SfMc7LQ6jZg+jgjkJ6O/FPc28LFQ2ybJMZep5ykJHG5NTmSgMyP9o8q4oxT1XCOA0EUxCYBsZZ/84vBtghCaka1FLC1v/Ghe/ZYg8M3b4KQSYdpOLipi/vtw+o0d9ztlATtRBCCd6r+IUlGxq1Uudf6mTHnpbbzd/XNimOooKDQczvUAcm4bCRiAEfd9aWu54afioXjcxzd6cjpMX1Fu6KbgLmtnhJTAEOxlzZ9e1nKNQonj7c90Usu7KxWgsUpfKdq/R55NYBoN10I+3K+9NvH9Vbs6KREHdjkH1LBdV3wRxRgoAOF5pUYsrUNLM3DLDAw7j4CMnV7DMATZduCjzvK6dcK8T+5EtkARsXAlgy36qOiIAQlwasuvzP1iuEWssBaeHQFT97OHMxpK88NCNY04WLCwdSBOmq9t5iuy+kNZ9VW5BChMl9EqUpsWE4PN66j4FCihjkp3mTbWC7+pZlz3i0tzImiERVjS0rBqmDlJuyrprqogXL7F7RBeWFCIqaRJHfA3Srsi185OfXfezVdy1stn7bE5WNvhNNz8DroI8tn2zhdjj/8CqdoeJA6wir+1dDBv3BLRrXMxVBwZ3YrO13VH1ZNP6vuhuA0mJUqegKX9cBznOlLCRH1hdoDdZIA2HXDUM2LfZ6CLhfqsmxc7tjdssmk2Mx4sWtQ3yR8mxYQqR1JIMucWPibbPUdmrhs/w6YER1QCiE6D+tXzzUnPQ8yszykgS8haQZx6D7HWskLTMXdjxIyG8oJiVZ94sX6CfsKFmzdwwXYbdYMXCdgmvkorCQYaBi4NCQYu4J1nSWn3BKFNSkTjOq8fZLcVgg9ZyHfBreoLYQgkhNUE8Lx6+BZ/bJH0qQrRwEKQjZa7Za+ayuOW5AfEa6GGjsvXBnKRMnCBUxxiJIolk3NiMDq4wKMUTv3fOYkh67nhhajy7BCItwVunD9DcdPQdFXG/aTzgb5dRtfIX7YhSkO2G1SGeY5f8b6ea3rKAa5eDrzVE7a2aGnyTPeiYeoRwX2ddnuB+GZJnk6mt4z/B4qSGkCSYhRNe/WVp+YNk/GjZt7nK7XN6wOWb+z98pwIbkrW5v7r0uDPptU92i0CfBcRJ1IG91EGHy2ZOnY8Qn38xSQHNlZgFKgLoYW4Hgi1R8yFRnfKR3h6g/5sXB9YaPCEdDV9L21q1hh2T4ub1gsC11HrPqFKGFoV16Q8AZakieClTmeGBaEMLAc3Ocs5r88XNxrsb3Ji8ZgZv16sst5Gpz6BhpuLo084JtywmNBPq8+wZwbjdQWcjH3i9IkMyyWZUjKW8mXyinFGuOlsI9xFIxHdod5jxtmyALtScMLSE/Y/S11wJo2dl4IfPaca7oCtpum1s882cTtZWeq01vrEkEmcFORxgl52dSEltxLUeUetD+/hc2fmihIVkA4QqiVAq+nzr9HPhR9QWedipwA3pGsG2KY+D2rNVGkBxYarImi/qa7Uk6CYwDVaw/doOLvIlwjDm+04J0qVpGhYQoK9wbgJOr+BGc7ori1NwoVco5GmJzpsOGqHzClpBe/GRAJPxpNjJfJ6PylGwYZIxY1NwalAvfNxhZgRN48O6Q7ZPzicjsq9O2UxKHGBaJ0XkHhLb+7oyVudEcFA4qsiC+S6vFMoSfO8VAVlU2Osn8cEfy1qh7ebFkW/2iizwUUTYbEivJ1QC17/2leCX8XnPpJFyx+05U6gDNwXxKDsFT7s4DURbcOMWtoXYtMDhXl0nJDwgvxOwMP7jWQruijqidYrBq4CquVJujkvKYmF8MBVuvswd6qtzlHapFRs7nv3qcsQojieLCD/s9Drr1GsJz6QUWxJgTWpPJodictHGOMPZpRaYczkI3SsYrLoHR6X4EdIxqHo2otifNksvcg56XOQDLbk6pGLkiTsltn1qnFiAUEmS1R0trQW3SR/TZTWyEW8hHtHuVQP74GXK3yQts+eluHQKXcvqaY7neWvYzfM0YR4CzniQReawG7iYNq1W+ObgEp80U6NHjR54X4s4xHEt7uZMbu4JGNvx1uoIsu5O/uBdu5bGgK7hqhNUSSONpO6Q2Vriss1bwUGFeBdmR3fAzoPslpHM2GqqUEvckGEZ7lw99eRYE/d5R0LPfbbvjn9HD6p9NQZrgL+yg3eWPtZV1dSAqC8eSQcWAThgMvEkVHu/Kd/AqnQa7iYdqeFWjnFnIlxGNkxgLm/XjTClV/4B6EQgfGS6KnWjDZuraGpdBUWwUtZAiAP83QXwUdTsNuzWv6w6J8qybwFEeDfY4lK8NwOfCrwca5Wkbp8A7ZWh0g+wKe+CtvDzorS6aoXMWdtYwngr7oWwVEDez0ILPOs0gPVZ/GMMz6mEJhwSlUp6W7mO+pY3pU6URmmYbAG/3tg35dmJi7NtUKn6gAB4pwogMLyFgCm6LkaF3VyF0l19TIgkUzrv1PKD0IPHIw11h2GN/e6aTUSm+wOWp+bcEOY95DTqJoh5yMpHQeipd4zEvdf8tEVjeTBqPFTTlYV1aB7whppBhLFdmlr9aG/lDUyrjEJ9jkj/TnJyhUwnYcMchMtEWOGZXDVgEYl1yFiuWIQu4cihpVYWjwdJFHmSr6pUxDm+l+oTTlf7G5+2l+AWNxD5DOmeG9hGe5D2HfY5VRMzcoCfpe/6bvW4r3a01hc6Pe0gstf7VnXb+OFfOpQbq5q1AOwwI4SA9lwq2x9HV17GMUBHJ1OFnbMguj90zmfV6PBBhi7BOYTpWobL/b2r7kYIY3TunvzXsHfRaSKbs5/uIWxzuwsLqEOEeNUz9jLf+KGkMKrRHa4I9+tuU/x1ezfGltGpQfVNHKUn43EW6ZqiMcqrbLwsrTjfkr4I1BOsbrD3tPpH219dM+ZHaTC4AKWiVAFg6N5gW9St9TWtYBk00PGyeT+AcSwuxNo+n8MljIAaVYGOghOFm80TKZTsY1AR6ZikAG9riEDNH9zStLV8R3Jca2VgHP9GTn81xFbcjdX4X7Nn9YH5lZddD7MU9rOIfrui3nP117D1StTP6GJaUF4Mz7qHsSrW0wj69aqXCKPRGBTJXpiKWgnguHqEbkx9zQBsrT4HfMK4cemXXnT4UlRcliUEY3avP7ZyM5KkTxRoZ4qF8VFRDLq8XzMbk70ACxTT3g/1zZRDtDy5yrGCelZxFAoNZnyNpqhyEGf3uBlifJM4nLOQjP/uMU3M/78fc8V2DZW1+AlTfShSjOrmfeRSrBh3q7/ET2B+0SFBPvWw3A35aMZ5Di7ag3NjYWlkaiX3Jb9jRLwoNNwoxROa8JALIyilBNHOI7s/0B1z9uDtC71PfgigzRR7cq3paQ8qCQgHAsNkr7RyWh6xpjWkJfBg8OGB4K1phROD5KWUO1vA/VpAXLNS4Btytg2TvBdjGb0o75cXdjC/eNG1H6V66R+iLsJGNxrnYnVAUFOi4WsVxc0svj94ostYkuOHtj6gMm606md1vXU0GaAVc1LCFULZPRta2/8R9VC1Imw3a60jFPJgCCHIwJTGcqKRM/UMuJYHRWezQ7lbymxFt0ZZMG1oZMUktSGamUr5fpg3iWx9LT6Hy9QLAcbsT+gyqPJTThm1pqUTmXtZlDJc0Ann8r0EoMNMJIyjxiafRrwtOuk51TQ1lZhB6EurtG1X5v4+A6UdiGCiMp81ZPfXJiadS2GMI+JN0HSgYtjWIYDPv43mZC6vLQdZsCaUlLc/DHINd6ogTtVdvI9JR2Bawa1SWjA15nErjxvzsiBsmxy8ZSb8mw0SIs/9n+ic061Hjz1lI04G2MrJpEWV8j3U52GcJ6HN2OptgW60XHN3ODW5wtl4ytMycIQz+sXmRNTgcTqpwa8e2Ydtltdcc6JLDMzDL5TicDVNHzl0BGW0Lpvd25vfsoNZA9gjVPgKV9aw4XdEvW1XLqHWHEX+VTWT53hOHggm7pePInNytxTBVh3ueGLgTKt/KJ0WlqEm/zbXNysLUkwSp2uQ0Vw4j+bhNkoDuCDBEOCr/Zh/E6EQp50fQIM8f/eh10Q4SXaAEj8rl3OFzx3sVTDd7P7JvgNemS+QzW+yI0FNZvAzxgv3s2Ypuz7bHmsXR9RaLidHCYja3TbIk7WrjyiQijisTvlxxoQl8tjhFcIkdzoWwPPROJa516OqRxAKxDTmaHWWCChsjr+Nm1m1G9/Nv9UNHWC+HOb8muj/4uwHM+lZZKvPZmMSfrgPe+uRFIgoow5ad0qxBjGGpSJKxfgB2m9PGOA6Rjl2N/Lsztux1ketYWj/jtD+eYOiWM8R8GAw6IS+I98SAZTtdrU8id0VGSHE3TsOCQhBgPih/46DEFDg2WPk9xAe7ubpHPzVVs70/StlhCqC69f7gfhPw1M7/PNLOQDYXwU2eZtHqoUIiFOyuiHDDCuXKM0ZudurrJEFAaLfrBXZHMYdYkW1LXbPH7XrwVTtTr0FCjze1BR0nk0A4CrdiYhGBWQK5yiX0FtLqrUJzCMXP0bX9e8az3mHsKJ7+jDDGthZwkCpIoJhOVh79ngRq2nH2aMvw7jycQLn/gz5A5FUpNZCGkdcULGx34aP/RRzE14liq2mvaoCBsIXbduH4ewC+zvsUJ4vHmELvzqZd0LcA4WZQtQAhgeLNQyoB1dqxDPMiWsKOee/2ciZtcBCEGU//N8kyd1KGd9jobH1+jiQrbguuh8YjkBoLVUqlGwahEStNm1P/46RsvASKSva+qlZWlMXzopcFNP/CC9Nr7fZwMY+Ln/RIOaTsWWqqAnmWfPYxu34Atsn4/bTksjeF3giIxCKmRc2KgB0J+KHSN3ZFS/VKqGXCfGbudse/eGs9R5esEVA6MlOOypNnysJeZ0U79S0VbFIPZqgkcfs7VZWYZbKN4yhvHYI+ZL/1Ir33/VacIRyPjPCeeDR6EfGuynJcmYl/dtD8hiywG+YeVcRT3Oc1gJ5DFUBBpHfHlaEiyC+GqxWRrNURQoVqIJmWbtq8ieKfoY4lbcL2bsp6KOZH6vNXKgAjyMwRcMY5fYoXV0wJvFDMRFwqDt6iYdh1Ld3AimWSxIbV1G3cLmXUVPlJt16xN93GyYr+Anfj0zJYh8zR/PbEt2PKi0oSIsO+oWs8JVdm/qzoO9jui/q92s6aMZ+/wMD1qHbBFed6bE3KYVaPSD9rfr7yhKl+AtPO1tjraqsEXW7XAAAiDqQPjQGnZmu7kSfjUnP2sHY2vgnzLdG4ewZViNCc+Rid09zEPwME+MrzAU6d9GKyU35eY+Lyg9b0a0MnyfBhOTpAfso2BopvcFrOBfT7U5NNmoC1BdrG3F1FHP9sCNhVwGmwzpoFOygKr1sewJxnpLSIbQKZh/VkVn1NnukjrzyphcEbaUCn0c01IOrg/FA8/yQAIS/Mqr5GfFAZGDI301NVlGpu1dHfTYLQH8+FSflralJmuVO/tAHryaP9COac0SbT0+uP8iezfwZIk31imTb5I+o3gl3+T24ixLA+cSiaLlI6o4wqs6uMM1Wto/nBA4cHxJKQjnwigaz/dsT7IpntiNfoIDBCTuXcn15e54awwxWVgXvXJYUNusOXM1xWDkJtCw2Bv8QlRiSVHI/I+3R9ot3G6AiIxvV0qxDC5ProoRPbsYQi9fVnpX/vcU3khG5OBIo6Vr+B2MV47d2+an9R+uguloxua357eeKHTrgsOjNLOAeXCz/CQylArsQYnPSrOuGlmzl29bLbd36YspukyK1n0RV64DHkViGcvM5APae2EeGK7TmAXUrQVPQcm6QcYrrLzftmhI6zvdWiGTfmDODx9LSgLHR/jOPv6IJilwU7WvfIpYZ2kc4qyxzMxq1QQQfvJCQqCHpK2vjQ72DizYcJJBHKjHHqm4NiIBgprTZYlZrAP+Gfuht4MtsZ/ov44YipjQVcPsTwaDlbtDOSb2N9CL1S46cIYpCfSOS6a13ytsUAV4mKZD6pCK7f+DhkbxEMKX4FkheBxh9N/72r5vlC8JgtVySnJsjvJCTTeyx/N1rv3k7pgOwYxC0uFD/oM0bPAvpHkZz44KbQ36IiYKHoVKaNHvI7dV/nfmdVEkMLqTUo7MbpU0wvWFC+UiaDXfiJhhYoI4tyDR5fa3F3o1f69dBBqOa8NzYcMyXBjdtXw3gjVMDP+JAunqD2RPUmNfNIi/RTailDH/ZqWsBu+EKqnde7a9Mml4m8wnOJO6PeKGeC2nhxQhduIZyjkzKAd8v3chwfkEr8GsvxLPV+I1AgoJGODSkue6FX+5ahOxT+gT6ORSKWM/AQm0lSG/fA0OQ+K9LM6zVMY133vEhqTGz7+hCtcV0Wc/E9yjEMBGRyJyMVF5WeAt03DsJ/V+7FhdRDkwSm67LUP4qPpWtIuP/KUFpf6kJBt5G3cuOpZMBD0KKVMqT9Gv68LfE9rU3+45M8T3LYIzR8pQS7MQe01Aw7sgaxuWTPkpbA+V/FubA654r82BARAQYXSZvT88bp9ljUeGrPQ+MSEkKmQL/QYvftRDv4KN2MtMEhv/UFoh0K48IwRZGw/VM2vqeA6BUEmgAWIGVrewRVAh8sriMOzvTKX95dBmQya33UQawsfrqvBRKnzS5ueICl7jFc2HTpHmzKW73lW2L2YpjDWHIkYSRktY9ZZkNLo6mcbahWOm4XB+a87WrmprtFp/gHimbWBrI3Ov1Yg6iamG13EEcFbgldVX4f7VjSw0rdPcSk2NElFMOjHA3n+dTjBmtzPYSgvy0rU5YPTDRCQx/zaB7WmRLN6K5u7A3Lo1G5b7QswwBZrhfwfr72ZLBj/Qeh5NXaLbg9LUYjMVJogK7RoAOmx4fGEyyDQlGJ/R/Q/3zO8W2Eqt7BSuNnYbJ1yyoDbGVxaOrAv+LFsg6qGRKtr3gdKgolHVBU5SeCTLYs5hIASOsHjyTvPS23S1ai03CWG10Rqs+1rGbtOCqYRI0sPKGjBkLPhvluYj0tTudYRcA1taxcJYIRgoLy6uXZJND0UScmT0MGHfAShsdXDWsp8P3O3iheYOwnfNIk3mfxlJECz4gOVchDsBe8YdGsqmeQz0w1kJ2t3nJOfIz8WEC2uTqVsGZ6nosefhYrYq0LL/W8upGM8ZKIvsQh9q6t4iaOfVlfR3JJLYVeis/Rlqv3aN0yZuNItM4MpISYY/KKpv8CTNEAw1Rfs9IR3yQbPHa9CLSzcvYjeQxRSRCs3jGC4QRWzpPopC8C0gcfR06d/F5lw/8sXVYwpq79Fs0bkJdpr4Dnlx5FyU/ZzcWm0KNiKSZ87j+Q3DQKrw2PbzS4jTFqK3cG3OtbFP/WycUDx6HnqYuDO2FH8SQ2vgmG4XRLDnzDAnmRjIQ63WedwFettyzi4Qq+g5dGTS9iXummTfHARpJDm7jCVCszQ+9cEk3XQHwBFE++YuskZVkjur7vvrzT7ZCfixMiKGd6b5tqEXJMKg8jEo0ISngP7RN+oxA1UQ5v7fPz9YsnzC52y8v1cJufEKQQQS5y/cVpUHvYaeR+TGtUCoIW8eb7/WymH74j0H5+5vSVAX9hbt+6s1DpSlqBF327EF1YZ6JBQja36/p9TUtL3oYWQhj/EO1REKvadfvMTmtKjFqOLOIXr4G639pnGjkSs1s6Gp1A8GELfy5XuRkuYtHXGtdojvnsiXUQBKbz407Van3MjcOZOtFJfZEGVUhgYFGTfXlmrs8tSM2V1OaWAn0YoSwkqqK8p1Mfli1dH20955QdVKD9p9uB+rTjhOOkJeCY5TI/c+anB+9zkM+3h2cEJaLH6Sh8tH8LQdx1ecnw21KjPVlA+UwsZWGs2mLtyMUYApKORmQd7/3SKj+GS5WzuIINOzwJzpV1J4FlvsEFtGWjQ4UVOIQ+P0iJVcka/7y0MN4YFpFsy7voiYe1a4I549ImY87K1IrH9zCLocFWJXmpyM62MMIkfjqbz6grMo2pWfmLVYul0Ez7V/aO7F2iKl11vCEzyb/hdVvwhvCHCW2GqLiMlZuXBX/fJHZvaGCKSmVuTKc3xz3Ef6N4+fLKQE3OnoTLoKsO91bAhbTX2woVy6bvFdkkJzuNsO93sa03TZ0Uej+kKrR6yo89DMaXTp3acA4J0m03XdvX3PJcetd/X7arscSt7mZfR3biEjrGyU9Vpu7HDqVIvCNA+6frfqHTQeUSkepAn+5CwNKN7mB7F0UT/KFQyuOhgEbOJEImf+HU2qk2sZ1N5kwVgfqFXBIwJPx15fVYrVoNy6rdm4+nrdOHvsI/o/Bs/y0isp/X1plq5Ve1elSUxOg/MNpi8vPJfg5ZOmTkx4V4EISNqCqxwgZJ+Xf+8b020edGSluBuoImNyEajuHCAKSxRFWzwnixOGPHM+EF7CcTtaGHK0s4oWUe9tLCwfSNFsv1kxKaXZke/qxQUgPa34gZSq4z7FHP04Z9mlI+DciSRJ5T1FW55VVnCDXAKgDOWmHf80hOfYYtZcXa92M7of6DKn1J3nw+xV9hiwiaRefXI/VLYUrp7ygFXfhqM3G82oUi7Xj2E5XbgI+PQkU+dfwYPKaBeNCEWlsBrUcGscmb3+Clksz1gYCa3UvTl5GXfjkZpGZLmLylUCo0J/aEP2HvPxjkuMaaCFl06SYnmFbNo2/oQBh1u9F3a136GctKrsSlXm17p6Ku8ftlEWjd+UJ+g4TATEn4ULKs0EzyXnu1iadWjCPIDb//OKrKtaw2RArZKu5PiNVm3/z/09/OXkiWxOwI+QI3XeHZf7IG/3ykKMpZXNKOnor5g0r94fDjFnewNwJYVtG4Aj7o9Z0rRM2uA1loOcSVUz8j+RsUr1o2XFdixANqdtwIjADO52/VQ1o/wnl/o8L0nHi9VS/NX9kl9H4fs/LI4tKNYnP4f/zFeZB1t39M78/1/vZmBGF12hWjbwdQkN0yLyrM6j6Mz7o6hfy6Q98FI6BfV1syZsvFGmKqs3M3rFCt6JqM8zTMoDZv35av4Fs72SiHXbPR+53JhyPnAUEASaiif37znkLPiEB5f15IKsQZYd0p+m2dM2QYmnLL4cZgANmAGnJ30Wzl4p8q5wGX9HBax965bA8LBqhqDGpsrhX7CyzlPH0bEZMRsyLa9DeptCGDQHK5RgnbmnhV0YtdpqNEeFaS9Z5+lm8B4h3UtcsD6sfKykp4yYW1mn27jucOn94+Y2JXHp5y375EENVz/WAurqIAbvq5JN5v/Mq2U9QSjQBdVdZnAU4oqx6HX46+zE0dLQz4OEGZodtmi4Nc5FHrURzuf+TYe4yJD0KVlXWElq47r9O8Fe2aRxIGtZd/XeQlT2Fzg/bmBqRgl/r7AHccPhfUOUZkSoXs03UcblSlfEsnukvVUAOKq6/MC/+RPuAUcgScHTlSnor8YYJapVlcEjX+UGIdVa8mhmfO4WiR7zp+cnkKIlh3CAt2ZSuo/c804P+6W3tlfk9zckSI36eZERsyaQfTH1PqsbA/4NUeyA3nP6r+FnBBArfwNAJFISBVYRBPiSm9h9Oc4s79iKxRTea5xK8Ia5aNR4L6EfM5vTQS6zCINYDpXsCgBggXQmqwsbb/d/43uq8D9GDKeNWdAF7c+DsGq1L3vy08jVDgIzun+d24TRF1+dUGGQPhR3uGvA+W4h5zJsXjEidD7OQcAihwnCbTexikLflvPdZ/ujLy69DVqFYF5JXXD89XhmT2OC+JZOrH7UTWEH/rlA0pOc7zOfIYoImXzlLOFgQad25xG8IK+WC1y5DCHsnJk8piWtJ4x1BT8+FDHoM55m9rz8VMd6BDwcFw+xX0tXIosfla30MM0a+am0Xe9U01EToBcW7jvqFOWDOjnpISzFm1Yfm03bW3HETOS0G5E/aesGOwvPM6QfJ/xqI/20U8Uhl+Pa8CkgdWBv1VXxKhd5G1Kv3DW1pOmQYOIPHhy4p0Ox2uRPWcjtfe9XSVHdY0aeu2qTKAw9xUdMXCiFOAqgvjKhVCN1V0kT+0t6FqeZhfr0M51kqKEl6SrW7XFlMa1kNE1n0KoMLgktDKKa3C7mADc9jlyJOGtZKJBtgrkpD+ITwwayhzPgqW8XRs1MdgMwt7KSCyrxWotiClra+aEeqOPBpxoZlp+N0C4nyewukZEM7IcnhOq+IXq1Lkrhe7yhertaXRB1YkPHDzw/PMk/HbRSpIsNwzynZTyArWhcjjgMDJCnvs/eThwRqQYsxFcmiIQTpO/C3TFyPKhs+T4DEpzdD9jFoxuQKa6LKQ6nlq6C5WOtFrDfJNyPAds9f8yMnm1mOpApoubD81t94melj/xgJ8XKKQQDFBBx+xcrTJ3NohRAg3P17RRPD1wKsZtTZ19VWGNYveFAm/YvxgD1JAcIHadbzVfEUMTIVxf+ww5eqtO2SP0asDI5DM02IxjW74+dYeXV0wfHkVGA8bUj8omHilHCdo9SHszUmAvbbYr4bSayasV4xli+VmfjqfR3xVDvypnSg9DCvUDk8QMo6iRFuCMnK7w0ap6S/atAcvE3f4okCVu+ra8q95cDXKXGC6bWNIFYh/TPFGhvXchMyexGp7XDp/uSwGcNywKHRWDDS4UWupXAA/Ks/VhPWrrEfTL1tyO+Fs2EEu36C3FY3BckztRUHnkJSGGIXaFWP+tqtdM76ydx2E/Y7iIi4cbtacZLfZoMefHuFsLlH+J89eWsDFAv+sxby/wHtEqnqCckvgS6QPzcDkKmjooTGfbadGfanBgrcvyGiuR6sL6kiknm6hPh8Bw6xpaniaDICT7zjakllWB+b10vL+Ill6+No+xNkAhC5r1i01uZhl+XWpaFCkxvyLnSfxNMFieofuuJ9auPVUe1gKHPap8SLuv0q7knDnQ1QMaRLU8lw0SOic81Ji+0kmhFspSUUJoI66uvx+WedWRAEm7vG6nUTOG1Y/TGw/VmsW+eG1ZLnDRwANpGd2Y6cQmqJO+i1DF57lwoTDSLVc19jIOgJM7j0mvFDEbAA15Bv3XaT5JhC0/3pkxfpU+bq7VGeO2KRo1IUf2Av/Ke/M9SmJA4/v2FsO9XWvD/vmeIToyTQXJQr4O7kGDIm1DdOf2eAhkcri9li+Hk12xd2qfRh0KitDs4/TNzPD7sEIL7lk+9fP9thP/YjSnVJiLWcUB0yOsYbtNYBeZtGLkhaXAnPAZF3xi0bIXPd7G+9Q0Vk+tFgsgHNWdj3Z3OQm8/8BzwiawwPmUdy2iH8NkvZ4rOJl/Ry3OUVEZbk55MhBViDXjYCZ0168HgcKDigPs4Q1UQsl78X1CMjao5tDN63OtPo9K43bvogGnrCMyTIJs1Zp6KETkC1+eAdocJuN4ZkscV9HMR1+L7V2PpUkOnRbTT56v0R+E2h7VDzDbmm5+i43xUnSx/zYvhFS2fUx0ylgmlNsEPCHp1czOy/sN7To1/xPRn/P9TyKuliojVjE2m67Ja6V99sj1SAfqkGylEfkd8wtFSaT+44ug802AmZ0WeGKcfebyYYWgL0so2zC5/dC/IZ6N621xx0Z5d+aMI/TdqJIdXVoipgwsj2utEDK7S0AMC7DDPqLPFV7HFAnp3iF4iMqZaxX7rPt+XMXMJFNE2g3VebYKIflGouRLGNzi9SAxgOI7glsRFkTScZ9nWH9i+8p+OCakKOaeDE+EMtJxBJzByjYSuV1E1IKhPNaEymahPVUh6t1C3s4c+kBPpWI5X/u0ZYDKEXr6xHlOCfi6hrLUVHurH2coXUyglNW3J511OHBISBbWFawY0MOobluFLJSh4CfmaBKi2BU+htLVPSe2k6LFut9Q4bSrccPxTvVfGu+KsR4fqzHnxOgdAbToq5XXgAOxmyeXtdT42EcWYKoFThwSed+sjzYU6D8Ib9PqmbIMIcIIGl6h2l6T4mUQMDyooj5G2FwHZpFNSUd/2HMQciAaB0YboyBdwRqlaCQ+kBO4Tf0egKsIle0sZ9/XrJpgwMRsW+UNzDv6yd9m5sOgLh4Z5/NRRveOLD6k6l+G/juMXW+kWTrqJ8kD3iJBKy3/yyfYbNW4cwXNv0bgq1Ba9xkZPCfYfDlYiBu8XfWGyqEzkBKHx20NDvS0FVVRd610AHMRW2e7M7ru1d+GB/PjG1UtrFMnXXMoOFHFikm+pPeFI2LtEVGCJbOJ/gWdraESKvpONfHOeZU1aonF3cNtzNiGSYkkjGFZNm9lVX+3QBvmZ83L4QpM9V2o+rbLGuvYKoHo2vf5Z7tqbxgL6p0tCs8w/uxTNKjyBHyPBg88D8YN196czW4XtlPcOTbY6eazTw89ueI0Zkv0zN1mdTh+BjDfyOk88i1Q54SIfD35rYdAxrZ9nJqY1akp1tvnO0E+h2+W3ojXVL28fHjk4+D+FAY+eKDjEiusjRj3VIDjVexEmuqYGm6QHJzDoybbaiz+JY91Hegj+zd8g7L5cmot+kGwymyz3MTWM1BiY5Pn/VGdRyYKd8EBPukt6pEx9tcD/FvTF7lele6gD+l3KPZ6qeDyUsYiWTMppnMa7KkeSGv5y5SX7fd/zxsM+q5WnKoRU3blGM8h1tT+3BA/HqOCud/a81vQQreE6M20CrXtEltf+8ZWoZ2CFnIVL5CVI1+ecRm5UK983HNa49j0oCEPjxef0x4eIjimYUpv+JejLUel/pJPiBaqMX1uZuxGFFr0TmsX3Fz5iMY/gW83DMoB5easRbyUOV+n4RcaE/Se7nU4LKoQpPNg2dEM18kgYY3L4vx8SRuHyxzBCIJzDRRxGShhJd7lBzCW/zGD7Ya2Ue8AA7s+HJ0356psXXT1k2/PwMDffkxUy7/x7URg14FLPhmqeuc33W49BiDcvZftshuJtWwKBMZ9ZjtMBTz5LNfRdeYEWsfHQkCJ3mamX+lG9fwxDYtspXOphytdGUxNf0GozdPHMy64raup9XA7R1erTMWkB9GB7XdNlllev+xJmJhV+PGSTsNTfDKuhIYRjrkh3qkiaKa6m8xBkQGKAjOXTW+uLQmIrDZYoaWpxz0y9pOhhQLkJttch27JqVM7pcE7dAU8htTzV3GNhKTtlIXy0XU22572uDCmyjGnMCdmgWEo/Q85EjTvmTeJt1kuHPloFv4+ydbBk3WKM64O2J1zRRf8sxS5zirXwL1g5mIAPpGXf2zRGRsgM0UoXL+xq4kOU/jI/rPREng83QSVBQDEjPvOY7o4wGY4PhflbZLLkcT350BRcRRw5a0ybGgouNy1w4aaNCZRrlOmDTKzkQ5EUWQxcRQ+/gYEGDoaE+OAqc7TYhVOBT/iNdy+msNRTXhKrkVUK/9N7eY0dB7fho7xmdToC9jwic5wdv4ue9OmQulNQwis0oW75jU3kXN1Cq4bfyAOif0PbaZwTRbA1cHWT+bvHGoDnCiYs165L1401gw4wepmjJe95hgT5IbnETZPJeYhSweV79W//Qt84FYQbzU1F949AeI7K5QfQL4BDct7GAyqGetN+rvr7q5VudHK4gyhPN2pPiDhvVpCFR8BCVo9wKHmMgR8b7XSSci9o6QbFaSOnhV6VoVKCcnSazV51F4X/Q6DRNUS5WKZ8D+Kh8HHk/KqF+aKSJJmiriPrownmMKpcxDqeJ6EATV5faVIqtBFpvD41VM/qZAClr9aO8+92PBc0hbTmQwN55fDN3bq62B8NLzLys170WndGe2CKCtswLKENFyxQKuzNovWFXahdhQpzvVJBdOeHF+4iptOTh3T8drQySYP/b8sybXbeIU1tDIPn7MnNyj2nBC+ucrdnE/NXCfw+BjLUMXmva261w5+rpLEV5ERT4wbULe0XlGUijUVp00C+uyvLHowcOuXFGpgd66vbMk144rAb3h6cVl/VG4NSgk424MsHyGx6M76KBMnpnNAwrDzcIgj22jEjj/LvK+7fcwKkv6PZ5ab/9ERbiRdAi4KyENVaKA59Hj3mr41OxsYb9z982ij/LwouTMeq3uUb7x9VObRBICVYnwgkRWIfXQSWBH69ghzQAp45/2y0f0D/SNfVkAQ8BdtEQw2yUlSuv1Bjq/B9cQyBnlZ4JxIk3ZgnbD9U3Y7vFfanGqmIIHi2v4KwYlUQaZJAiaurOPp6B9Kk2cNpOJ2mmYz0Lz0sDSR42qN4wQU+MSgZxvsgqN4fVnRQbAtwgNi2ebBk6iz7IDFg6p0YvPNYOz/wJ894oKd9xHlUNcMA1z965UDQzZpLezWL05YAMzbyQTdXo3E9CraA+WGOx6lHf1byjup8/JT7fE9s+iKVbgYYenElCRMajy7K5JKWBtfAPs49IojWgF0yU34ablVFT+WC0FHd6MJTDOaJYpKupRxX3SSN2dRryWuTK/oKRYoApayi73E/zN8QNbeDJHO4VXQ5HFpfeN+UriSiaqBCfXd/jS8yO6Wvn4DmTIAun6RPeqXPK0d5k0ZPX9qdPEqcgZrshOVmU4Yh31o4Q/km5sL6gg0b+/gzaGk0zYf3l0aKhNTsURycgg7yQ9e7LjzMH3mqfkH8pn/gQe/iE1gO7Qv4Qg8wd8aGbItkoRm0+P/khFcP7WJ1azPWuH3roZ2vlWfloEXr2fT/z0s8M/9ZqIqh7X+tm4cXB+Dvy+q1ep+UC8gdpGvbVh7PZII1tDpVS3J2Qqnt+FZy+wV6MSeG2Am79QuLUuim5JhuS5amBrvYtZWgHB8QkXZoC2CkF2i72ui36RXZYe1v/DE6ygBM25sufWGL9sAuQaKC3IEZPKodzBBJgzIrlGu2jBep9I/sfiryPLgG5PUa6HUbLdtS85NHD9tKY3R1CmwqFg405c3FEXwRkhnkQezaFK1xSC0okkT1DaN3J9VIwkcXaaXvEh7VO7XDk2oGOlCCXEWJlUlE4fRsD6S0L1110ul9jcOuEHqpb/gPu7+EwffKvZOTaZUUJPBj7JjuZaW3guTwkT6ZoPm0RsXAO8EYGjFp6PpoiB95oUi6N6J+HsMNVryOjTWBItAT/K7scUW7CCJQvpKyw3/9BTgeEiCn7LWjqineWQgg/dSX6J4lw8oX9FHzXVfIB23oB8MRw+4HRY76rNVguAwoyRQYvb5jKMv7eeLW+iyJSSV5k9PEMbAyrQDWDnXgfGcoSZ1nDo+TuBLIvgKITQ05As9/VjyssmKB0Qf23iYEuUrXkZItpmN/5W9iMhUlRHuZlm7Fb9JM9FD7hfPcEv63wAuxGODJWKdjDcMgEXQKZ6JUCEdZ0waz8En5Oi0Y/h359Upu9SndNS7ySUEgtxESuU5GIH2S8ouhOjMSkyAITB367uMO5zW6aoO4VSNBmV0SH2MjM+kcjmi6A8w1nmDplIcrX7pcq1G6jqdKLye5Fdf/XK8+SNu8xcpYkxoEycGKrUYEalNTinaaeFjJlg6EWI4SD/tJRwUCdE99OwF/sV1cdTM8767JVctn4KNkCpMI0wG+CQMAvJ/s4HAeutac5283sSl0GPLjNlWkoY1hcXzifDurVO5WLsTSK/mq8+pnW78K8HuxG11hi/NnuTtuPHYgQoICajNBWq23NZR9TV8r1hn6yPp4pDF1rVfvlQYNEL98J0xobemm8QtdME549mPdK4Ej6Z/uwMXsTm4FMKouLg60ITWa22QWp03jvyy4h03+3i9NkRw+AT8KLDnxjGjgldWXvLCgsIwqcUc5M+AIWoTtvhP+embJCMQsKmrHezCy6Xib1/HDq499F4iMX6x5O+0mK64tsPcoYU9ndpavn9Y1s1piqYAGgo5PoIehZSToEbk6o2c4uDKwREal0LAjXkxQyDJQh8CPhUsGyMenZBinQV8qbdmJ6AAkndP7JkUC1+0FM+9bZoGGjiQBCulRUhAliJTm8sUjt6/dF/ejEsEDviFUpXHENnfSDdd/KX5v+Ol6G8pI4W3u+Xt4apUITV17PDMdK2libjDnQsWZrVQGKA2Ta3mzlwC+5zxdAoZLgRaNKcGckqiZm8LaNYLq+nG9KsPIl4CJ2EGC4fRTnYjJyNN5VPyNXe/2CVHFyYzryxjL3Sb7fkevXGzogNyp+Oh2jLAFvCU3Ef/+fahP46HWZvpZ2cDWZcutwDYY5jN8JBB4+Cyer46HgDzU4DmkMJztbr32RfRPM4PAKziMnEexJpt51IDrnD5RnPSIEdiGt1bxPFkp78R5wIKuLpbIkS1DNbMHLbtqzmzNfYvRYMBqakNF39Z0AyCjsjitxic5tYL1hdpWzcnbJseCNFXJ2aR0/klBz2BViiv0KQCxzEbTWq6iuZLWfZS+qKfZeizGWefz1q092SFU9sz5a3ilo25OTMXlzkxrV7570faBXMQomH8wHT+L+GTKvyZnjGKpxSs4+cn+NJdQL+/bcACEU0jtpfkEXb1IV8g0h8ZaeG+C2UuAx0D8MD9RYZCYwSU9Q8gDZK5llOY2opjny7290KlG42k3/SHJGmLPysmps81kwoFArUhCQUDPWundZ8MpstJoeBzi5l3cU4+TY+EO9F7Iz2E5oIaLAvJNl/YAkIPQzmUODbKyvLGLHwfdVUSey0uVUXhRypbp84MJ1yStmmCumAURkiUv3NDLNEJ+azxsdI8tZzNN7mFXvl91W2NeVIwTBrYaEO1hNRT3yn1cT3WcKySkTGIiKy3cfNTl8544Sd0jyV7lUXlxCrbqg1Mr5G68Dlas1cZpMvUyMcUnF6WoL3k3/Xf7MEX6S9jagz9A8oO1CCmDqPsVufFCl6mvbH9ONlysKBBdhryabYkk9QIoB5Lo8wucW9aYcC6q0oEW1w2pmCQmRfQevBHk0nXpHPkkRzD5cy8gPzxgDs1BxGMqjI5rkRh9JzMi95vPhNt0lT5AcZf2+qpJJz+Ti8yuyqrBYJs17+5Av+C++t48IH4makdW7G8j7u+womfWu4syzBSB+vzxFY2Jd9jO0ondmr1ThsVnuqzuV6f8CyqiLaGzV7FScvuuyo3jpJ9iaZov7LaVQjJMIKi13Ssgo312weBzdhRlgT5GTkJ6s5zUJwvli2UQBrfYCq7OqaB9WVFnk+wa/v9ySxWhuXeaXngsJTHUwyuJJbuyUA1mC12SjmLD6fgotVODOBaZnTUSoUsDbzHD9hVtc3e93dUXgjKLTELmWu5gs5gen757OlmTH2pAn/GGwv8mC0z0rB2FwKHvvKlBO8TcKhcZld6t74Vtw9sYwdJeWSgyXPvqFHHrC+Cq+yYVmFSb/EmykwJnR3a3j2eQ0P//YTXWNq5O6fKLocGPyJRaWRBqKMjefWugUgx5VQZekEuly3cfXnT0TLVWixnH65YxfshxDVHV7KxluSw9E1FwfUI7qN+K9op0VobVE8ARuixiZFDynVjO+YWXMMg2gTLhMzc1ba/GAOB3QuKRFdvEfW+tPE+DWNcDYzrcYQHzPLCZtZHOatwAE/Es0DD9KuCS7AjHSEeSr0kU/6Pr/KlaqkqoTLnbz5N1Q99VyBIcZKIvJvDWadbrTEYdWO0xuRjIEUsXa/DopY3CRu4TDWI/EZ+d/zpK3apUK59ilw6D2UFjv3kdZtPF+SY0D2rrJI2fwJgItEtbTJY5eg8EXYDK6o6RV6S6p3tvMAOvFDEyxYEPfjAMULCwJMEG8PPxcboM7d1lJ6DkZlvI/sc40tvZ/ig4HkiM7uc7q5NfsFiAXiq+Gw0DO/P4Ipmk0uhMZOZJA0FQl4DGBreFSNdFj30/rS81HsBNbZtD5FjMf6UeTOjA6ZHLbwEfkdBWgPD7Y/PQ0x2gMljov1qruy9U2f4o67LI4/1lkEGlXP8B/vM9+/AqeTQocBVZXCJ8qk367UtPliWK5y8M84IxmbNihcxL0IY1KlSOelqvfeB9A5g4biPHrzHxpRr2low0STXWKBCTd5ANfy/23TDDKRdgipufXEVK86DG2XEC2D4sHLz/SnvbZA3dgB4RbSBg23NosRWs47dAT95CjxSZy1zeTlS7nJOYK8j3vcx3jBM232kT6hXwWYIXjgx/u8f11ecgIgu2R60yBW1Hb4Sack2hHHO2pCsOLDqZtIfoTZWkf+L0aOJpoRG5rO8bZ31I5W5hoosPy9CQLceW3hZyS0d0yiIT3XjGPFbSgXRSWSlYb/oD8W7PfANwpSgLMW3/wOJXgPDgfU5GJqxhmHN8qj04puJRHI9JGAV7hQ+OjFMr1xtjUKHr/bcYvZmbxAFug3APYCLS/kh5ikLuC1AGCkNGcJbS6pSFTn9wqFVI8IkHgika3EjTTajV8ooTdDkk5LIgqZizfHDNDSf8jRQ7MepztBtf2N760MoIKzKPEdeS7B/dHgda27BDuo5pBgmI0wwpbcwyqqO6KdzXa9225RrYn3Fi0kFVhEpEqnlAcIC4maDUoXtlAbcAD2FEOwPUTdg4K5lsCPWdGveeAc2FKOkTVoHq8/6ZqEIN5wPrERHXrPJppr/yawNa3yjol3IpxivjftHV5H9+YzNud6PLvVlRETcjVpm/p+RYhwGqxJVMtvl6a/1AZheco0PBVcTLax0QgPqnDh6qS5GdNgX96Sm3iOrpx4Yg54UTxXng3jnsTC3YmIGLFBOM4HO0BMqihAK8G5SBdo7HyETUjOSW3arW1CLFs1S+oyX0vAm0bBx4Ox7ExP+c066ElR6VLL60ujfH4cfMtDE+kLHa/RTbgglEoj9XWmBgQrxxKqwLT1xl1NWiAbyR0Tq9fsJRrnmozRo8SELBqXPv5Dp03IlPnlZFdSFkGOr6PnK17xevigtCmueVKTCZdrBr9OJsYyn+JBGBdrE5J0iNDaSAIAZis+oYTcb8bKfo2MA0RqW/6mK/cZg844+ZTEx8vu054Deg9jE4eDcR4/nLAsSCn0g9VqZBkLXpOGULuzCGXFgnkS8KpKG/UO9KCmP1ZP9J0tQMsDHkKwkyqCnVjY6o+x341zUdt0l7Odbq6fvtwEhPieBnUJ5QrQ0uwrXeiVrwgwT8eC3w9Ps9rk96ZdmOBkCF/WutXb0uQcl0h6REsH1Msl1nPCuufBa71alVpykGX0BtIIOBuTmQo2l0MDX2zNZ1ZTy3xnjpxgb0Peq6+5tfC+lA5tkeJyamuWRQ+do92bKteft9Fwja+baX+p+8b54yT91RIC33uDKjHI0XarEWJ7JmZsbeCtRYOVzIaP0hO77+y3Vumq/5UJDX5fxGyOsLkW2po5WVAXbDq5/3wsmmCi42d10eVCI/iY4KUyg2O50vCFUNzdX6YFAlJQ2D9ZaLKeknll+mBR+m/OpWGr2q8LcWt4ZRK4+OxhSA4cuODKqN0mf3SHnbE1Udhb7PAYhhGZQ0IknXYkOYjJMg/moBvTERG5L0COSQkFd9J8duDrYmiuPlfMgCERqr+Q3x9fQZpc4TxSGF71rGI4dh3cgXFioOeBVB56RVIsbqL6aJYve1V9WVfK6J9t2QgQol+UskJnI49GbtjjX7lXFRZNWqtJ46X86lDO8QoYnwt3514w00vLQfwJ98x7z3ztFfEL4U11Mu2mrNGkn9nQysJQ0HaORTIGGhypwT2XpItcFynNGqfmhGXbhsq3AynutvCE5zrGI1Zyf1e1FxmTvFxz6+yvKbEHUy+UYBS4LTLx/fsIJMbj0Qq3lNuVZYCxFsFp7EwXUWsYMxyLv3zUxrJg0BlUmFOgnu4Yi9vGh3EXxVdDjfp6FAI2Rq63jmFVNG+HUXedW70goJlfSw5c301BAo0rSQdKItDufrjfPJWooNU+HjQodvxkovBkSTmWbHQOBQj6UMSNoctXBx0jD2jQHxD4Y488LuHlOsShRro2rqhNsR65HtUGqEadNzhcT5eexSlh2wVZUllfzlnW2nzD9NNXA8Aw3s1GAnvUpW3bAd+t6G2chMfzoJHAoYnR207+fcJvzUDc428HZoi//uCEgaPyLRDNBOpVoVopYlzvUND1Z7e2HT30yShU3J+yO7zRlZ5/fU+7pX2RyIuixOvbdQjw7QQgrPkXVjNT1oXR83ZyV2oO71FhWIgcazhOa/phPlwKLj5Z3q5D06qNjL3DAX4ZfV3FDXR560k1xg6h8egaaH1Mr/0H3hNGx30J/dQHIu7kvpaSfapEL+nTBsOeZawFGZMtQpKmTI01yUzHiz9x3WpR7G/kmJZZXEgV3Nnu8KjnBhaeSA1O+a/oFE/5iNm5pMbAOZMoTIbMy+jTOh+mg8P5buAopArC0a+pVHhGtCBcBpMZav8plzQcqBzkdX/Sp6XzJsC4EBU29RtGL9R9Zaev3Xs4Cso1/NEGYDrqMsUYQY2tnzk2J9tCLDWlTyYD6r1OOK1FisZMP/FGlluf3ZGOQPe/ITW1X4QKvmz5BwxSeygjxMkczCgUquT626clasYV7mvn3G2ysBL975w2ktzAUrlNzFsCj9iTfYp9+qng6vWwR6Pw9Ms9LW0ONmZS7/TP+HYbVgNfRFuuupP3uoNJO4uDxsafughktjb8IpmZ+39zOonGUwZtNPSTNJnKMmXyvUA7uEHdk3vnC6wRb8kKgcjZQMFyMi3LbIKgJGG/cUYIbANFSZIYZ8AnR0p4D5FqOe1aCAjDelflAJzN6gKVkzhhMEbJlk6K3TUUAhxiJmOG4TB9rEIN556OLNLoPvtGJNHf5rfA9sdskjDRp2RjNXAg1gUb/WnJzyQLj0keXCtqkhwG5G87oG+g6ZsdYI0xnVN8JbUVTTvkLLbHAPrR18MkZZIBYXWo5JwWq6eTd88rloBhHdQOyZ3K0owAN4u5I/sm+pJlzdXWYsVT+MwkAiZ4e24IZuwkqr0G13JqXBwnqv8OdL5BwaFa9xroVqQ9kUAnla70MpbzriNYGDtT1foXeYk1TXkFx3QR5GGS11P0kx2xKCBF80hqRbYxQHyZba5Zmj15Y4v3lx7H1HGPy6qqpKnGU79TkB1sr4o+jNLOAWMVtk5vKxx25MfEMUUOePikUQJeeltl0gcltf7DjSvYnK6SUvM9Ad6O/qc/IV0pjkz7gu7SDs1H9FM+4rfRL2E0FTXPoQNaUcwP6Y7/MlCcSuBvvpUF7y5Ckm5g+aI2r8VZuKDgfbtrxofKB0CMhwldsSGE00z8JakdOhIvHZg2GiIO0+XBEJfJDfmmISLhyYo175Cg943GR6guVTThPXcanacnClRXRQp6gsyVsZUiRn/BF//yiIyHMSiY+OIdAppz/DO1Lry/7awvQNAkA4SPQrBDBe58bioLNNHC1rAzFLXjXtrIKcsDlWUslpMIJlr91ouGKAgRmH0nSC+vGNtmjmwmGAJwf3USSgW/avgG7JjRquw2KH3yPQlah2r1O1EB57tfymcG5pmEifcG6+64JVWzbhAmJbK3gNZqUizrs3p1ZQ1GaqGv7Qj67K0O0awFcWBDpU8BfV1UgikktFbytFvaKTVDia+0Suuc/VVGZd2JMxGoKPwE035aCmVMYPAe2r3DcWK2b6+JWpBKMgHkyqkBq1oX4Peh1gH9gBIyqnYBJOBwKQ0nii+oY6Ip9Ozc9y0aKznkTGqy9nBe7QaoUWhccfu2O8GM4QWDzcBfIrdaaf8O6CH3OvFNt2PwsTYKhJgEBI8ymkhaVobEZmkamJDOEF1bSaQ0yMLHj2bcVc5rv++Wfrz9TPfgsy5Gq5e0NOanOYwp+KXFuLjIIBwebpN2iovFtv/XJRNk88Hs6zlxtYXoNASKD1FOQwIZsVdgUAF8TbuF4CjUTfdP9xV4yTjK64uocPJ6O6FXcawdYubLVD1SvJifLhDCCZCnxNk3yVV7LtTZOWYzUb1VFp4S9+CDJJLBTeCxbeiER3vJNvM6uRWbi/4k2xLI31GWTxXGSrpImEG310DZVgWvf6BPsXypQdpXzcIWbBldds5hj/Xd+TZMXZuWiEdUQRflxRJ7gbRLCLWQAw16viuduMbIl9joRx+fPzyVdKb6nXy09MJ7aLaWGncaig/K0rzz7HzxyHw5VUWKkP9MSNVXzOIRwkws48bynrVNiUdcxQA1U6Hc6zktZ/2xBlvv++LVm00kZ4TzAFciR0qo8qWF8F+hQBtjNvbo/zRUb2XEQV7VvmqrcUDPaIzvGSBzKN7dARupbYUSNRf9wAuUjraquzrmtCNoDwS1Sj1a3MpjLDXjpMv2jornme9b1p6C1cFaQQI/fSh1pTg9eQ8Des9E342LhxiXqpSkNnQwTOaGiRHkH0YF9CgfbSqRtOtGKwXavApfPx/q320INlcR+KmCnjllyKiVfw9Lq0eZVQ5rr9Zf9D4NBu7T7rHwJOWmVRpD9lVZ4wqrhhS4DsgVLbgezVR6wupOwmqxoeRJVq+sUqOub2kahNjvGpkeiXjK1zOB4okJL13ueW0wkEizjewEoyhQ4nocH+db0Z1ytcDJA2TlSyT2Rn08HiqG3fMotWXECwycrjLu6QOhMDbFNzEO1zPjU/kMo6+OIakBT9DnFxtl+vEm7HMiHOQDf3iq4OYoJ+Wb5EXdIkVOelrWrAviAyoUOMn5WxLiRbB4dqFv1ED3lfajc6yMbXKv3spnko7M0VLl0CzbE8oKVRZMw2vC4PtnYIuyGeDgeiczr8hn9oPYN23ZA5S/C+1muB6m38oFvYsMj6yQo01inH/8Y3OO3j3B7+rtmKG3THPXZo0SqcNGinICA6K0abBTFxS14GUb9kGNQq0zjFCykrZD3oKWuaGko5BquSOLgo02d+YrdWPXgvvUzE+B49PbeOI/bIXMe3lQBNJf5szdb5mrVKTMSdys/3jRfQGft1Kkf/Fl35d2tgQCCCfULTWW48kFGAtWL4o41vftUPOXxE5S4ococvsmbPKmrsM6HxgSAvM6jY9GJYwqA5dyZM//7ST6qd/+V572KQJis4JQWJ4vv7WcY1s5Y8RkJq33qDhf+ZnlKO5PLuJMk3YDd9vxYOkSrh0mX7AhDHemxO/Bwl1Xk1s+WaEfSKJL67a3rwoDChZZPDKkVJqd8Rb0SVXYLWoUSGQFDnvpuyZwkLa9dvq/FYJb8iJIr+cNKTF6KsfLzusA0MiihDvsgkEDaa2qsEBeX0EQWigFPuuzIrMDBZ/YbditEzblX62wOszzEYXbrq0yGCqFMhoKiIcz+RrfDnKgx6bU08AwnIdDcppUWkSNMNZWScs8piZwLp0UeJXzsymi36Y0SCbXfmUt3XtohM9ANXf20OiqrFoOyLes6xC5iByLzNo05a/C8/uCcxsuSkX4d/LB4SPFEW3RAxHsNv/lk9QY9d9UNP20RGBsR7RanzMFDmHznPNDAZQtgF9NtI/yFTFP9gvI0zCBCPky2I4U0veMDOmAkx+9i3XF3WCi+5ru/EPhERpt2i+c6tNiB8DRr2kqaTaBGk13nv9THOCkcocXKbmFNEPJLrvgZh8xcOWCa/EFs2a0SNffUMtwQ77hx9rSsg8/yWwSNT0XkmluIp6xe8krqNEFwh30n/cqVsyCYCDza1p5YbHxzGWaV1sXFHny+bPSXAofi4ZkJEDOzC7s6qyOpT6rcIeGX/l7qofgEmR+s3l7PKLFdcvoWiS++7PQkHLdLM7PgtAYTEnLTuU52gqxXe0k9Rg460axKL40I3Wnag72W43KLdMWhfVNC8Pf5Ts6sutprMOV8xjB/3bH1AK50mj3tqak+csoPSdcZlB6tym9dQh9eGnFOL82xEE/xshwXZGUSRky9UeiaAHsz/ytnRCyQU/h5DZI+mwmICAnPE/GakFYIM1woR5f1Zob/ni27xo4CeCsyfUGd5rj782dw59Z5idKldrR0GiwhTAkY/aL8upgac93+9dPz/Zspf1mNmTvLHNBEN67n2/CxTblXbZfR8uCr0BWayr8hWGRk3JXvr2HRpIS33G9KZrVzqPuetos5dKT6lP1MEcNxN418MZI1vDHG77w7iXfoTDijw0EPrjsOmqq+p4UWZFgXcNuUBfpHvg6UVs81qS9+PQ+Dgapib9m1o870qAvikQ+lt1q6W3Ri10s3+pQ0uoqASHAsCrRBtTxuKG2pE+XPhNmN6cbqBzuxN7cwkB0B2230OYKKkqG8hZnnSggG/brC14F0aQJ86anZrAM5xdNfn+swgeJR7iS0uminxYsjtAliBD2rVZ6Z2G6egclHS7Et/zGin2KjK0qxyZpNHxHAUSbRJx5S+JiK+r/1WKe+S/Ss9JtYISk/SSpX+ST5AX6wG56LIuEXde5jsysTyMuC6e5ql9OLnDg3JTbIgGifLtgh6UZnGBLohrX/G56YlW0JaRaIT1pGNAtIBFEklxzrmSu5nc2IPeeQQyhWlOCOjsJlL8sIrkbcJcdAcPQSBLxTM2TdQK3qp3ASTeXOLpiYHJHziFhMfs0BPWITbOr3tCySamFDtZil4WM6VdVOC99AFXFDlu4nJIsm1F8WNPK7bFObbH54wZTaWa4MSDD1gCMvFEsltHwH05JqWEncQ0M1x7YxDjxTi6HkcU0WqzpPgusYfbAHxWl7oDzRG8kjkXvgKSJigHtI2yiLFULzXTw7fOP0xqPOoe/e3PaOpPwgaTZa4VIQkOHwannV3t/f3Z6y+fTcO2T+yapGBRC4/djk8j/x3vf/lhJT4qHcpcCW8c+RXmjeQ9xRP5yaCcFyUm8H0A60TvWOhVAbgaUPp0qNn6sX+HlQ0pB30IzZ/xQT2Rf2fYJXW1DdL3aAnH7rx+T5OZRijKTuzXKsW/Ge+FHM7N1UHkZh2YGOJlWXvnHx9LNqpirF9dT+oerb0P+clr55wvYTK9okU7M5VDsMLmNFfZHAiVEzFexp1LQ/i4uV3lRY3TU+Tc+/PApXUbmQVYr3FGGQrRbBay7Z9Xryrrl7HdHkCZGcgKAMEyPQSeMZgbRsn/kR+ZWq1NewZPbkNgo7l+VFcnTtv6eTilh/J2xkGU/D4kcrhY5dkUbiRkTT8606R2igf1qJ+YB9lLUcKIcqG0AwfdWelu3NJ1Enoyx2cXtIjuIuHUYFrAOisp11fJiTFGYWwzEn0efAnsEww4l1mZrMnhHrH+Jw0IbZD9B49R4dt8WtWAg3qGZEUund/Spo6eZhIdR3iUFb9cd5PF7JM2QdOZDchURS12fHn2UTHsxBVmNr4gq+erBh/5VRr767iT9mdVaaNWKMdN2SfxsJvFNCi8bR54dTZ8t3U6HjWqkOLheAQl6Simiw08kh0vlrUCoMMZNrAq7D00VoHmR9xQEV7N/2KU1blq42bEh0nBS4f2KaFeWvfrZNdq2gt6SwueXM1SB2XxZY3tVR2pgf+3O0ooVIE9HKcaAIwzqreB+i7VOQZPigxDRb7GJoORFbInsVHXfgXBMeiuYjMKae7ytTy7+96jV0c5b0npBaoJMOgz/5kjSAFckBLrBXt8nSAr4WuvgkmW8GPeubMeG9Sc4HyVbvMv+Qcb8n0oHAaDuFg8imx/l6IBTmFedy/dMqUcy1YXaZ7BUzKIJJ/qyrpcew+8hzXn0dhf7LUkNeNoRhIUr8jkgoAePQkC+j39ex7WTtv7I8RrPfYPPBNQUIhZRvQMdEGTxEt6d95yCSBiiBpgTGBgXPopg76rLlYL1TIyGJsR86s0T/rzEBSbpO74ERgtqSJs7m/afx7KrUEEmQRt9xzXpP89xRQJ/GXGU3ygZ2bNbwtkY9HjfG8fedwS1F4dCNEIw4Kr8CcfWAnTsEHWTABxyAXOjQTmthJu2QhAeQQOjEk6fLZlEHqy8mjkUUJuB1ekz35K0I/rxbpswTCPwsSS98Rnvi9R4tPXd184kuzjUWVz/dzzKHk/okUTSsLyz2n36WjiZffxJWKsYAluzdBUkuQlgcIOdoDht5AGBdd8rsHT9dVhdxDhOnlhxuI/QJuFhkZgAHewxu0RuuUdEPCjUj4mXKyhB9wOlEoCp+g0rh5VAmRbZ6F3J+Eyvk3GGDIPyTC4ZgS5ChwXS90xFvGyZzXrqWOY0Dhg3dWMl3Itj12/yuD2RONAucAArg6GqLkm/XkAoygv9gjhppgMzYtdXVexls06Js6MTpHlM3TXpwUCvdmRJycvK2QPkL02fJZwM1MpU1q8/IqQyXo7mjolvCzpJq5QBUKEjDNOLwIst7rfrSfwAFrfruQ97LpeLZZEyeef64+Brc07gyrGNDNpeY4rpkKVn2ln8AWcdm2h0JhOSvVO7FzJs1ceBnIBtTw/VKJ1/leaczxBqEgPCZ6EgEViH12fpxHQ6JqbQSbXooWTyO5B6nsDaSLW8Zcgm4uP+hie+ZL5F5Vv5DpK33+S1t9EJ8wh0U+4QZWOGdGg3tV4z4bknM77RfeOwVFyTlgyCc2GGju9VkqIJEVlbfYBO/ZOYWqOKi1eAAk9YrEWnkqgzvgjDc2eSM2VMQd9D+zk2xKJ+xH+m9N4AqMz4H556On8GblREPWgqh3pv/g5S4oAM9qclJRHuEZZB7cl/iUlkktvoYr+j/RQNhPijtpXNuQIqUmiXalXEiiu9Ybv0sncMVQeH0PArQNY4FLyIHpF1rmLj6+8zWwnDXzvfL9Z1LbUe/KVItKSbZ5pmGn0e88FHm0QT7A6XeL85iA0JGyj+8xhzDYydhFlKDFdbLVZMQsDF4IBG64o58F6nnqRCZ45+2Pg5ZP3SwV/ZibrlETTBhehwHNz3/d4ViHngC2phprtStbd67hVNRzZh+QMvt7aSJgbZAWU3fgAiokJPXW3tKKQZ+HT/RKw1Q4qVUjErUbVnytiyDADZeJSSKm3v+029JXgLBGSLCq3Xnlu5bU76A6YFARRItvdrnF2jIq2kBvNXb5OWUG46vcolsYBDC8olZnZPPCxInqSIudOy6Esx7OSK40+Ha4+aevyQfkfs+0YAduiByrbbNYa1YDA5n99QENtzjq4aEFtvLcu5aNEpT1zp21+S75UWHcR+1LI+BoZSsgUMHLw51y/BlV5E7DnVKymSdED2ciWh2nZOjDlNXL2wzHrchVBycnhtWmg7IsygRpvDCbwcLRX+ITYRKyma2+JJG9B9Li2WLx0gcrsvMqAr3eLMEr/aF6NgUKscQa4Q8rh9bZlWhqamuA5jpCnb1PVEvJ9oK5myYZGfeZDwSpbGXSLCjnYEJqQSEJ1x1330TJZTYpNzcxN4rZRSKa9FEcZyXBJszX+tWRLD0aGStnhN0S144i15JqlMGYMFqFlK4+LmrimmkgjTY4gRxPXecOS8wU0wt4nYtSGIzF7QPC1MN7K/5Q3dglfFEhffYhxYeMbO0ueCqI73x3UVM6LLiLMIrVBP6ky6caHNXWlsMqLKi/uDtywMXqskFjfv280vPps3erQputWuCBNcjfkiYmEP0Awzd6ujRuGZvlSAHYmi6OOqHU0SlPfjIsJv5mvKlDZdsE1q821h/eIJjt1yLwrzqizAd219JtNVgOuYlnSIgOUJBR7/K7EB45BkEweiHkh4V808udKH4HvG6W8KKsL/0uoXJaX/J+MkZDwIqlilOqjd/pijDCO2TwlLSDzbDZqJLIjb/7fLrpa3KyLPt/h3hxFy3jpTR5gFAVovfqdPB73jU1ZQa+6hH7OUnxSJmrbXWOj4LEvqQG4t16pB4VCevS5Vf8Pa/HIECkrZ1dIXP84zJf8loTZsaOTa4xyKLSLskt8WYAhvGFWj3JbcB0X6FCDKEsZprxnth3JuCz5QPgFQ5eDD/xsMfLOffMCRbX0b2CC1R8WIoKWkvk/BZtYboMs+7KMAk5AcKRGY3FjwYUbsZBx/5Q4za0QpFFOHqghccDRawtc6D3SN4ZYVKbCJIybwRSYDqbxJtK5qEDkNVx5Ldwc2aLo+Txko4eP3aofw9aU+sXVvh4LJigthgsYDlCivyAU4Dh7ipaaIPoZkUJp5GdfAjRat8K/gimDGj3/gXpZcvoUpaVj0g5cnVrrskXaEX5W3TnWy+DiRgm3+uG1PaTx2sqn+v1FvbMRt3FOa3aiW60yTqh4mWcwNHn3OPMr2CMu8WwLN8GhHEr9s3RCJtSulDCdSJDUaY1U0YA6K4d0FZ9vx85ZREFpXbVHQHBcZaa1PdnkZQPr7szmsxnBvO1kMVse/KNpjPZNoYYpkcsLZmZZPm8rW9raUIgabFOWHksVNTPuM5k+lMPugMn+TLJIYh2nYjeCMuujM/uGdT/T5pIiToWkTjdbAjz16R0UwUNkSO7Tpsid+r8KiK3DIaMHeDjXmJBuu3kDPcmkNmvF8gVE/yoRfDXhPssofbC+b/eWmOJ1gIizDwIY+h7VdRzxEaBTISnm4/wsCnUWm1Et66QxCSthhYtrOn5aU9QmidyhkKVdCIFMF+PONx8LdAkTtTvo2MhFT+ejEaaTrI5sCMdNHTCvXEvn3n0V3pSdGt0N9s6d/n12bxT2PMlAeAPbMq+MWpbMofj2w6kZncZcCZZeFe5/xJVBxJeuPqC8s1C7EOBiUQ8LvSDM7LPCEEwhkPIraaETTw6NkSrtw8n4NhkDPPqvX2hOfTCTCyBc3fLbC6u1GLB6Cu8S0nssfu1BEPXQyllnq2N08NUApLcClveJr4poEcHwknG+twYxBKMU1ElQ/jIJ3QJ1UH259m0h3iItv8ZxUO/IjTWdP/E2qhiFdlE+HrZoUWIPjHH/Y1ipBiZVYsYU4qzdj/A/Ua0xWzAO/aw7TzUPZfQ6vmThPm2c+jVhrexCjsyvLv5cFcUycHykcFhpuna1sSyDIRusNQE5Pkv45X/Ii64WbGZjxd6B1HaxssLXcHwMnF7RZ1Y/SLR4XLxjO2mVthLisDyNm/V5HXhoyITvvxUc4H+WX/Wp7u6rxHrGYHRy9kdJyyIsljv7ujHt6TDWRaT21wy0Qp5XQHiTonN8M2XnkEqP5/DMb34G06GQR1YZz+r3eRuBcOgQq6ejXoLR9T9+XhsZHguzjy6RJWkIC7ua4JXXDTTrIISqMbtp5l+pNGsLlsVzXDQ+UD2UO/WQVEGs0JL8qbVJZDjpfccCUwXUVFHuzFIgrq80X7Lau9zPLLr51J/ttQaChfNLhoWCF+hNm+PJzw6ub4suZoha9Iw8v5EEDuoRHaG0bI3VvxeVS3xUbaUr2zQvKR+wX/EBvM4qMZsFKnOXYCeudPPrTjodMgqvSoJY3Sgq02U1rmydWDx9b3pRVu6lFa3D1i9bO6zY1nCXI2zNxTaGWbrNy6xJ2oXj4aM4zRaC2vjdPf9TEVNwYo/7lIjSBIjPxuc6DFOMgbaAsx3WiSSDIn4Le128cqcSsc9eCTU6LFgnEdPQaPJub115XYjQHorG7Szh+V2YaFYSD5OhqPbBaaRLmMJCrVO8+rykple5GWs5BLolwHtVutLEG6TunxGOiBDcODYHimszgMNaTkAM+EVdinQZRb/s1OvnEMYHnX7q7DuHHAAOKuYs8XaHKLkBBKcE681cvig4T9IwqB/Lkia0S5zlaMYHegyIB8XgOrYh194Q1TK6Tcuz2X3+6dnsA4Kw3H9oG1dI9Y61JofOhPcdS4Ve70vAfcI/j5t0b6iT+lE9/fVTu/bjaSFxNHo/RgkeBZbxSYSwiqke4mX0mX2YOb2WWu3hGPzzbO3UIceMIMAuwBc7y/CGjH+ppGrMQGFGz9Zs9Mo2Ax2dYCnXzXXjS6mZK3S4VuNKwsrVEKRHnZ/782s+yffMTEgSjY6tYIvGn04fE266rDpegS24VwIkG5sGn0neiMpRXlZt4uMIcOtPLx1kXnqzv6zNOLS6/x06HUkI9hafkioclhTa5YCOujkQQitUlpuduJuCkI+peq2VnJaiqUBH5xszjWV8TSnFhpj/1LWpS59n8pOkrw9YqcvWUGNiokDYqqw4KgDuGn01aAH2GPdfTncTmjzsffFwkyrqZxRAw1ILEgggyVKvaVnQcODmwiyDIcgmpn7F5deiqrOOedmAOkFrYEvUkwQUjuF9YFQF1io26xrx2s2Hke4ReZADf++m6yWvjfERgBExRR6VVHKV5B2eutzzFX8ObuaRbtXHmPddm9pM1cpMZNiEyQqEuwM2amQwO+V+fB9vb+T8Hp6XEcfzbhCrB2MYwIA1Opt5CvdFi4IVOJO8RUIumU3mUWL5G7nRIaoCN1NNBHUfFaYPjsdj6VaVABggRcJgvl83IUgE+q4c+G6Aq+KqnLGceO4QlvJSTfM+BTby5eJXm4lljM1U17Uxd5iGW4aer5TgJ3dA0sFbRJdKjAKgFDXkuUpkVxyAnT9vy2WjalxMJEGKnqRcm/u0ugeOSKjEZHUtopzQgkZxpqmE2KSrgZQbSxta3bjk6+g/MWlUMFxqZC+wHEkTUnnLNgrm8WczAZJhOZuXNOY4huHO/6pivdieKPGdPDWI67OPODz9cW6pSdOLoz9V7u0yvYB6vB9xGovATNdpfxjHjVkwDkfpLr+yVSDCEMmd99YuvaICPWsIKNdUTrv+IcOFQtvKMnRIGFKNv4qnQ6TfahtBKua2pjOTge4d/ctCkSfdXyfbd3h3JHMzeJ5L7o3UIzWmnGvZzKXYjnRA5TXiDn5U1ClPHSKCwTZ9HM80Th9f8XJ0tQ3bdCgsBWeUjwohjaocxiZL4EZoinX1jemcqMF+I++tc4c5TIV+K2Teg8QfNivChm6Mecl5hDXI96x1sL86X5Q8A4aAKEvrNC7RU8ekTHpRiFdi+KlmyBHNt08MbZcaHFFqsw6Edv9V7vMC0a0CmSOmE1/MpqfkXB0NsL/z6MUorZQ5Qg/N1olsbDSP70s3PPUknY+wOZZ3vQ9KUe+JPDwgC15f01o+H+4YAsbk6iIEuoznUgHL7H7OKTsPGRKyF1+dT3AMIldDJziujZCBlS6XxI9phEg1l92eOcvf5361hZOFrKoleiyyXlpiBQxB972Cm1YrhAKahluqHmy5I0hZbZbyRqy/bTFwrKkCZf6xPJ6SOpv/tpof9OMM5X2/OK0oT/RD0t2tgY6QrAFi88dJfKCgjS95MsKAUOYmmw+2vatgl+e0V4x+tFtDKalUjPEsKOyRPnjo4tqhACzmpVQ8tQvH7wBE2K9XT/mY7ibBkfWxDzNEb2Sfz9+hQEwXp1kjz4tApfnlhM68rIHWUsNizbUHhuPBkGm/Vnt74DWnzleJW6DjS3haRTvESggI4htrO72ZQLDswAUPzandTv7Q/Mt/qN2xGzfmKDlgxzchJTr3KP4OnLsUEma+KHUBYZXO3J6k6aPovR7L4/IhvsnvquKz5zev7tIcgPx1GW7wLW4gea+ZdjCuHxhCp0FVzOGhiwXX82rSCbcKZumiz/WLGjwTNg34g1FqG4WmjG/2DJB+8w3Daq6Qahdim6qlWUGKHASJ5Bg72l3H20gGGxNcTKhhnaTuJPm9dvxQP4jBuJk5tUFzp5QHI3DK/+vKFn6yViHRzDKNY0SCwMyaQXjv16x38SfFM3t3m4YVCV6yFtpYDPyTYBEKUVenYFIKeD6Ud9UYyU0aanIj/RN/t9GW3nfcMmYpyNHROhOpkwuWgjQUx0k8A0GbOhSxHL+JQCNgDXmhrXGg18X5nX4c0DtBGnhqb7zMR1DPFsSR1GtXblUc0t89Wrbv2lRiGSmY77p/dbanVOiyf0u/4ujeCaw6TITDVFkIClv5I1yw/iP+cmHz2GbuN8n1tsPJnoct0e9j1bQuoEsk7uE/4h2lpuG9TeF+Hvafvhl1vLfn/fDScGyZH7hlMzQi9YfCvf3JbRKTgvO4In+CpkXlYXmETEUtz6mFX7tRDzS7RDrKOV9rkO7r+QmyMXK20ycdf2/h7fC7OvIxtJEX/qrL8erdnLwIrijABvTj3Lzv39Yl2812xE6yrijowxr2rO7dZ/NnnSP66YGJGwHcUtPUDBtCABDBkZwCSF55pfOr9tMtYwojdfT85BMQASpun+KssWDS/MYDNbKTrbd5Rxk7xyNp6AgbUHo3pWhkjuK5g3F3Lsn1s0p225kY1CqD317kwqJGFJNyFsAbY2tqItGlVsS3LOAzp0vD/TAKwxQr2iXppH6w1xmS+fh+ChuxyN7MxaFiNUvO554n0gDcuQMBkJB+TcyrieAO1ouRNuCRh5ebwECQG1zISRuEqj7Fv/Rum+078Vs4/n+JrWbqIajiTNBAQCwqucf6PjYWSKkzUwKclxUMZZppfXCHp5dDXRuA1cM1NA1hnhKK5a7RLsI3c1Nf58xefroj/5XlZkowIq0t1bPxQqCsOTNQwOL754DMzGss6BEPEtiYD1zE5xigAfxfGTltY6uxemGD1XZ7sEgaNH1laq6ri3lKx7ufGwVHccf5vyz75YJDZHrdbc+KtRTam4QUyARnBu7Viw21knUfpUj0Ejht4aABS6iLtrfsQQeJO5Obb3c+Vb9py+SeYNBFzyrjfZmL+ack7o6IE9isrz7/ZHTnAIDuThR4xyG6ebo8mrr05H0ygbKBdd6f/jETgniOSrz2sXx/X37MAgGkEhU8HWZzxzOVO435tfzy58r9BOplmUtS7UMwI/FKWmwr58Bt2tHAsEug/hfj2VVrqQ5L418IdwJSQQJkMKMY3xbvani0T9jEoiNFf8b45AzOK9UJwxHDmxsDA3lkdIS2t2+lQQ9bq77d43soWlEaKOfl8spu+ZadZR5Bfnyco1VPF0hKT9HFt51Veg+VRg+ZcwvDXodLvEURsGHTh3BFtWYekWRP+IdkiT0H/ufZC33AaOLbUJst9w4umFMZ8GrsJj7ZQHBESwBpQy/r/aqso7enlRAVn/abBNqlm33pWNdSA3Kaglm1/EwbgrbDWtlFIYYDX7GXDDXWOz7hVjoWUW9AxtWml4K7A9hTe4wwJXVeNzu0ZlTItXhDaMyCL5IxcARuZ5FrY/PaHkqy4QR9vwNE/t7nXjOfq9S+Nlu1HBxXh5K00MoiU000aOPgWw69qwqLPWvUpOsEsCIYzt1hW6nF80b0TaeMRPesA6ZeIhudiiMZNt3/7sfHBIllFTpVMKIz/P+mIxYiCu3Uzcqkm+L4Ktwt4g0CqALVnyxXPqfY9wp3/q3TrdRgIhrgrUOeF0XgzBniL6h4dBM1Z+jzo/aaSvZTCtOeOH55tLlcynjAD0ZmvQNmv/Kyj9gooV2CXj0YuJGZYZAnPQr2LXE/tc2W+huO8PWgBMPD2idK4oYII/KPOHRecSK0/i33blNTopRj6Wta+HQaPJWkpOevKlem07D9zxnJbF6zxww+iMKovhtlJWzHXln4T/D0kKJ+je8njXugVJ7USX1S1cpyci2FI7nqSmYc6z79kqgN7dHHSYbxSXCxXM6gt1K/lJtHnTD7i1TSeqmSfypQCnelFWd8WZ6rM7DpbYHXYhhN5tfzx0aKQ1lyhOIGt11FLHlndGqAqWijZig+/avTe6jRNwqbbZfek4CGQjuaUx7RVIl1GXpiVYcbOlF6ANF1FIDRdtiOtpK3nmfoGw8Ic3kOO7iW5kOlct1ft8isRx45QZkNa3K4uxReYfWyTLamTZvqXx13gMQcUaHTOi/VDRO5fMqceS592sUwVICeuyJa54KndCAIh/QFN8tME3kaIznAHuYlhwcF5j7+DfCeWUZ/DlwpEGyUz+ZuDpDUbsQP/Sq80YSxoK4ip9FUiYzGG0na5Dh/zAWt0WeZ5d7ENl8vOWiGFSjZ3H6MU8Q3GqCcERKZu+/n3Y+hPoS9N0ZslPUpdzwXYQUrG84zg71HDJ3CeWrBSa+Ik7JtlC1lemRqEbx0Q7122DR4/1OPY7Vq9V6g2xoyr85PgYg5MOt1duF2fpJReOszynFAAIqPa9aFvx9cAM7UEytumYf+j2ijtU0lK5i9lSDIB/EmaUl4E0/f+/x336veuxb3o98ZotLdGyQ/2xRl5szexUKYlnnzPnanKX2cTWq5xtHvdjvJPxXYbVmlzggJzN30tTodHrXLjT8nVTT3doK4/ZYZFf7kCkR6mZmjZLCZ7ecLLVp8MDMI9do1igfiU14Hj9AVv2uipufMCDemOM7mFs40psYxvzIR6eFmi/oNp7PFnrTq2a7JgndgbKIEY+0rJ0ChbOSh1Rq39lTRpAHa8JVm767IPftCAFeBq9LE2xLph0z6JRweFMdLTDykpEkFhl8AR047ga94ZB74UEmTsjTmNHnLVuZllnoL2HdS6YshywRfJQhQ5zhql9WuKpka7a+UdO49rxY4zzHThK6U0yoFGKDbJ65TpeDPVmg/mVU8Air2tsWVnt6ibEIi6KapdbHa+3iD3+2Dcw3pnNtWRiESN8oAZuKJotBDggjVXAJR3s5AKKGijMUg99XGf+aA+CFaTuengyzyGr9b8mJTf6GPrEPaJeUh/IVoeBHFlOxiY3EzCFTSdsNGess8hZrgooJA8y2rz6/fJkY3qs0MPdmEMtNQ/aH6ClW6DBQSzsN1eP6B7XGNYqmM+JIvEirEbBBRVj5rDcomSjNgGYpazOwEMDPBw/TZUg1tuh8K9ZwlzuHGl8b9PuDceXLg6DLgcQK8TQxu9vniKsjQMq/M6+2NT7zKzpPyn1m8Ea6LZ2UTUgKiPZTG9wrpe/uGpMO7cJWBwM2QKyJI/VW2b8IxirUT0UPeyQTrPJCFjotGrftE0bVh3LuT+eO/tTlW0pQxgnkem1g4O2hoNkVyVSi0JlJJnx27/0bRDVvpmKl64U/ey6MEezDc9PAHulsDhAS1YC2PPU9p3oYGS8IWGGAWbzFLKDzOR5hFKgZEWbu4I0crcSFBF39TzpgiPp9G9G79ET4KNi1loECOawdxZuFEjrSijyYAcaZ5wk2rK8l4EL33ArLf7HPHLxz05tg1pvnr2Nj3B81defWIaYBhma63SZnrYP8W9MdAb8/g99fyJpwqM9eFVtCsBivQFeWkVspapOU1sBxblmJkFAYWbCz4O+crn/CBw+3nmL7TCWG+QazdkNIqkTp/tPCAXzG5QN5IBtQQ+gMA2AEyirOk1QHTxEck2b7I57Jt7fuvEc2gF9GPFVq5TKBpvdQryYC45cAVAwyP54QR5OgNGw9rEw5v699RU8SRD1Ota+K0EfYYAIHWPIiI1B0pV77UNEVjIwMTaQ/Q0wvzSI5WNY6yaHLJlhpUWeKQFvHS1GSRWrCzAUCT6JRpg6CPkDBgoxJi9YnJkBFrAsmsDqBSxRYWFsfW4T4+L+qW/8CNGesnr1/318VoBxXYHjgS5yWcQsMz8PMkV7OxcDc6+1nHzQKpOsxYOA0sDauwk3S88V3vG3Jg1DIQ+aWuUhw6jVwDEddmmaRCc2hAkBcHtb29brFphEq+Jv113DyOl1LxYs3Y/hCzn2xcW3lFQoF6YgWOt7nLVDPWfyOWxwywgSbjPhtbTho02wWDiqBn+L/BYhdQdygwFggZzJldbrOD+EhtbP4GUpmxkhI20VgCIEmMFvSf5+AKIvY8uNv77OL1ZBvbzNqjGyp6PQbD9si9UYKgOZAiqfZz6hwkoPCFxKSWLQ3nU+aZuqGvagifSw20mYug7YhTSN1rUUogMgs7JgmyVzyB+gx6qFbA8dxswdN6jannxeAzq3+DOGhBUv4oZYsgXnka2C+5P1KCFZI0OK+D7tos8R1HQtXlbguzaXmzHP1X7zRAZETlAO7PzoiX+6dvWKTnG8PdEZOgTAhSOxRMnHBeK5Zns/h+CaLzUdSywpA/nyk5gWD6F9HbP9XTATUOHrFPEt7GlbZwDm39TGQRm2DYM2xTHyb6lm5KdXftXOxZa7vc2FPLlWG1DD+ag1hSbtbCpfXf7jn/HyTe/xkOrYlAgdhzPSyENpx7CkojqoCFKHK9AJcgXeQ2iTQPZ9ZqF0SrGY4NVD6gOVGExIaUas2rpOBxhNVKZ6uyBNbzpnN9AUC1ajpn9gILXg4pgsAFdyVit4hRxsAL6Zrfd+ArnyBMV4ZzrRNeU1timUDz53CozNsz/IbYCUHWJLRhDw2Acbspn+FeeYj9uUPrZhiKrBD4LqkdKdu1V6lgZ19wGpu26KT3tX3qS95jw8PiOfQ/HT97HtxVmAk0MWr9DeDzKmoCnme2HHXFyvWdiYR0qLM+DlecXklu5Pa8EiyfJ0wRJACqUfvfMPnaeYvJ3sHJ2/tTsCP1emDufIXHVjTMmewTzEoxWhZ3pJZ4jdz0hIv6Bo11tnqUHJQYxuVpUpNFD1T3e4hI/RxboYRF33gp7OwvGQcv2zxI31/HTIpQmcaZTSVwsuXIVilg9QUANwilyc3NP5TZPOKmEUuQZIaw7TLx4Jgx9/Cb/8ufW8Jbr35BEW4rhfhOsqOZ/mN5V96Sv7clcFsIuyUvhLpQe/+wsr+canXVTs07uma9bWWzY5TsuLr9mI9uzRE6x/147KNOfDz+5sn/f2B1wn1DQbJbcsyyPjRBfPlzxmWSd8L6pTdKjR2I8L3YFZTC29uxy69SCKFTjzU0aZB5SSdHPWqFGZmkNWTAKYN6NyVMT6XcrhV1n75cY12wnDHirs9qIF8oq6meuM47kEl4+qCITMJXWqjR8CGcQqEW/5S370sktwLjObyHgX/O3/Yaz23+rtudPppb1uyiepDNwUh45nr3xMnnQtxZRfDJsU23pL3sK1mGTUOryxeOepd8j8KJqcnaBy0qharrocOKH6uDvu7pjEhCjM+nWeG9z1fh3N+HNlj36p44+UUHA8Dq8T0tBXiMElnlo1hnvdY/Q0L2emsD6M7+XFh5awxJNksla8il++hmDbcxbbpsGDcI34STSjscrE+FJy03URRpUX0mjMG9qRD3A7/B2dHjvz39oxRRxaXdYRtwZH9wta3iDwrhDlqUYcXR2fI6Bi8NPiv02wrJF+6huj9sfoVqm/5YKJQoE5VFd5Y93xUfpmvunll2LWuzsx3lJavB44qLSI2oUF00PxCrHefkCUsm9WFu5VGWCaEYnJ2V+1+JlK0OFQ/aOzgL1Mct4xPvDdjOVQVTo8eVsHB23/qwh3Mb263JpOlwugfM7P3vqZxWIK/Do0VfjYJFszAd4LA4X4lhthDGPSpq7Z7DcPvW/u+WUylL/lTIUnfENYjbZnQ5EHe9X42OAzG8qa9QfQV05CenHklhvW6qsW7TNKltBvfM1TWR5GA5gjkLNkBcaujasZnR5TO2i81G/bF7aMJHVVfA0/1un/ZWOQx6PkwA+GMqKvPoS65BD8BUuNF742ZOptNz+R8UCvjjpurqw9v0CSTmu2V20v+S3UKvyyur2CVEG08wmPNIOqmOiXJHauffdoLgcLOoOOb6EDSVPUll++/exQmrc1nHPKbjqRSQ8Bv9OLDUoGND/ejJIoYOf8mmo6aBfla85WNP0H71c6ixgnQZW57AaujakWauo2YiqVmLCFC0N3ZcvPBgERS2YU7u1BwgtqEWn91/o2Y943AINT3hxl1D3KKO1PNH+LMKFnJaFGmVd1+CiuGkBubteMnjnA4IZNBiYde9Dc8JnfFxfP/WEQZOnXo+BmYmOqS20j/Perc/R/Cf609H4iZi4lqYUJl4khbvn86wPd5niJVK+nrSZ7iRCmRNqHt+QmDfAQQl7lpJ4aMkTHLZtKJ+2VOAvxD7tyK0BudZZ6HtAtGMbqu2+aeQYry86vUnph7f6hTXLyfsM6iAIiko58+mTpbHyZAZgX8iRtPxmZZeDYtRBTeUXKhWMvFp+yIrfIgXFeTEuM7+wJ7zingegO9wzqzGcKmft7sYKJFX0SVe9j79uHqPNjBJoY+nDFsqbnGI9pCzelP6KLqVG0ArKCbmZ7vPFflEhSKFI/RAKmjhabIg5B54IDEAr8jacBYPb6BUtd5INWF/2zIDPRX5B6YDmAmOQXWsC7mAJjG/D3WNlaX16Lwo4dFdFlATndzW8ozLTbj8MSE9vJc/U/Co+X89I5B7RoIZRmH8bbfzOKTAltS0n3+OXdLwmOk2rHkirAnwV5j1bzIwaQM7BkLNQnjuoGCD/ohEeJOfoF8Mm3BJcsHMdCp/pCojgKinT5Nx3DZx5SKkxh+mnPaoZCYiUITuk229+9zYlV2K/UDdpOv10eW4ahdPad0gNQkP9K40mo+sIpC090u8EzzbCO0Gb2wRYl119Y4UTO2BVup11v0IM0zUBhSSgj2jsGyTf+xD1pwjjOhWRrTyaEp66ke9Xjr53ZnD4sokt9xfsIjGEj9vWX99vfFUd4xDTrL0V4heERrZHRE0fgJfrRFOL7Eeenio9fUdmKv8FsieHhb2H6NM/zI/foDDLdVlvIatT2zuxC5N4gI6Jqt3qyknUaczK36ge0etGLZ9n7I0RzZLRsdCVoGFMyAoD+lwpHmXn6xJL9uy07kwrzNqyvqDg22S+m5Eu7APpjsJCuhEpw27ayMEzzN7ueePH79pmvyGvHkrpxlO0xFWVEYTM4XcXK93biKjZz4tRGQySqHH1sqiCD9GcMgbCKVLTNolmks0QWZyOEZ6LNhSmGMAFiDeI3zlE1sLIh5NGFfVaSPQM/RBGB1OhghfmQm8mn+6Hv4cJHq18NMf6b8+bEBW/SO2nu0/gE+gz3WlLiXlb9ujKvOitHSXwsleza7/LtfBtzPPgJrSyHbYf++B0QW8X6L4T74zR6EKpE/bAARRYtiEjMLhXy25GmoHwfr0ssjjN5dXgKkP7Q92fD0yN3kFfqRlD/LRaL03gAPytiguTnlTbnO5i53k+kOViQ8MJW/TYlrRnjU0cpQ1HSY9YNsubSm45SgB2AXHSMWMbEL3wBfKg08S3T3eLgkSnX1lsJRVHWrG3nPFuJFK570By2Y7Bsg+wxMv3RgYyolrWZhQvY+YZ//2wjIZQuxaXy5mpiKzjCsQVMPAmZZarhmEJeXEFbcyXdKmmMNvtnSbJhqC1nFp+D5CBuYCJWjyRoDkQ0VydCL88ba9ufxv8DXW4IH9drGalOTd0gQMmXJ9fMHBykNMwn7961SkJtsq9STRq9blze6n7uTlB/djN1qokMpbIK87ypVU1DjwG4dQUpYp9nuwnvoh5iFa56IxspItzYCj8zwu1YfG5hzM0oX17EXumfbxAhF1HCG/jFQYiFl5ynRt4NmXG1KcqwTeKjciwXrirE2EouktuCOLj3WhIZGrmTV0RC8auLlh86gRkUS5XRq5OSwkeGyv/866JNgHdSXLv5wtXVxcDTrCLFsKtCyv2/8VUnmekCJ7HQbf4iAN/tQAyYaYVkPBF+6m+jD6OXMQLA7DOjvLg5w2el3zI0xTQo8znjOCdQf8C+dv6yPFvpH9Gco42EPUpR/dAAqMo5zcXps5NsGSHpUVVTxdbpe+8Qcj8QRqKnyvP7wBbDfmHc2nqfAUUQtYMVDnhVqkQdFLnNhkyPxi2+AgYzActJArNtorLIDFkYVAmSih+p/m2tohDJ7//L+F6MVQJETKvRxaK2uA3nsfJn7W/tn/gkSy85AhSesJ2fv/agZjzl0tIVxfyW14pJlAt8ih5JDw9/HEtUBZQnL7pGLSXywM2iu84LcEf9Uet9Q/Zk323g6PUAX76H0DQ6SlnNLkueSjeqd9cwm08Z2UC8oILrsrRxtNts1RH9KDdtPc7s97PEFTtvVRk9g60GE1jwRWr5cTKokJSFt4DBEXHWEJuSlqHCHRxteZEQk3z00ZSqPMfV90dZsfRjdcGMKJ4SI4/m4ec5h3Kj4vxv8z0v7U+mPmK1pi+UmttN1dQn+pcW4LWHdRsJe6V6LkPZtP9IkespJ9r2zI9LVAMiWhJqF6FIDiKuMVP3Yh4ZLvO5vG+H7oz5sThiw/F+Oeigm/kowJGlwWahaqDF1AG9LanXQ+huJNmF8x7s+Oani3+2un4ZustCKG7OrGMEwcHZT3hmADbvv2Jbun2xFwqgtmu6DQ30p8llzCZbStSnPEAPrJRSKgsNXqWNeo2Wi6DWphjpHwEfJzI3nLfUXy8F1oidb89HYUDRcTY9dcDOrnqSLez3vodhTNjDPX92jeyt40YDEO1QGLpXEDqPdIAG7rqB1qL31gxogG/9GyQmqWbfAuGMP3QTrkCOySyN9x/VilYGD1l6D63TIBs+Tda638ngVPJCXGNruSIR56u0b9ejUbkNJJp2qgSwnP1ZVFX9JuwJCfJvp1f5C2JhtV39UpASTRsOigp1RubwA15iKsomV4XEaWR0y9nuI54T3V6J+Su7c6JroUJjR29Z4iH0NnGx+TixlnnhJAkpgNV9Fp20q7/qm0FK55qz0vWUzA1ijaTCRWGkPxOgYmbQ1nAbs47nTIqZgZ2UZ2btTRx+j5JreMEKUz/2JUynW7cEPpsnsChy/TDMP4WZnf8WIwD5WylQ6zAVPVOkiaCj0vMZpIXXlIDgrpgyciaIvmmCmb21/HBJwBbME2nNqfItQ54eE3y6y8gQVD0i4frJMcX55+rEjnBabWXc64pi0PXJQmWSsOVZ5COAniIG02qvCgMva2kcuvdZQTzsHY+sg2UI+E9TPvAV/IXPpoi46OBC1UPWFWzmiSpXOm8LG0N2qvWCm4F9r+1hlu0ewdhBPpY0vUSPr8vZYu3RQAf2BrYf/NSttBXuIHhCOVtCze6+GBhqMWmJs9ej/wsT60mwrt7gHMaH7jCynmibjp8Ox+UO/PbCBjO3cD5N/uEstAtrRF+zSD8DqxtV7MKSjCLXK6d06aLCPqolDUj9z7YlTN+VB17cm5LRIqPfxnrVaYECirjZ66yCuu3yAdXB9atalERtfJPY9RfIK4JZ89TPIN82BLnevm9X3q5dnO/OPcHgRHzfFXZBVk23kXEJpnc+XXffXMu+aioPvdhQIlq2f/PsQJn0KRXOFiZI+CY99EJyPnMIMJ8rduUHlUgsRp0LiFlAeVx3Sizw6ZFylHBPekSmZ46jrHVuhLJNN9boIJkj+UsYjFLjLzewMyCk/bXWnKVwv/jqSlBfSjf51l4+V3bV/Yg4dJM3Hj55AzPNYuzfQHl1/qoHlkHJP0HV/em0XY8CLmCv55+5CW/b6Qimiwk43AAwnDwnIbRe6+JYjkQrUFnb7m2aDJLCqQH/s2JzWtojCncTcpaPf5Pu7bLq03HTWrfvtbbBG+ZwCfhIvEGF6pSNt9XFXElvyd9F1DA1b7iF3Z6vOSehwOqEW/0WUFNSn+0V7yuCkqHm4kWhsZkDgxSdq1Un09xAOT+kKGpbVfJagBeJ2cnH1suf8U44cNug+yI4m5ZH/LbUWxtW2yXqaGdoZ8lwGZKSk6uMWCMMIQcTvKke2Wde6kf/LBjrMuDJGVxyLb45r9+TYnWLL2x/vXAGYDiuFvC5iATuGEV7XuIensLHDHjshJRhjR0+WL1CSJvmKyRSPHEkxpKEJxGq7RwlO/vnlRq5xjO9W8A5rAq5eHDZrUp0F7ndETY/WXTJw7BSxKiiSbXC4V3ALOIiWXIa4VKpGlDhbnzqm/wOL8tYaGh+weqbfP6gn7MMw+oM8JeUDVQnm8HEtAgpb3kgFz8uobSd2AKAQsmd89rqPslFQEGYVZ8m47addbKaN3JVyy+IGqQCNif+KUrNEw6OoX8gbgDTbPzsv75Zf2jNuOBKitANIQG0tUQKosLG+Vimydqrv9OPjYe5vtTe1Qe9OexOJmgQbNXW4jgX5HFEOmOnolBqd/VYfA4lU+57d29tZ/WorWtA11flm8dMIJ2YTWhmdZP/1b4A8YeE1m3goPin1pAd/txMk1Z6uRXHSFQVJvXiReNrq1ChofKLC4uowReh2CwKXowGnWKI3gJnEZKhTKQTgPK480KNuwKOUIfn1+cTqNDmgVvMJJ3VrylS7ft29wkn6Gw9DCHU6mVPmPuf5ZXIoAiXIY4/9Z8Kzh26MMZWk7y2Zjsw4XvYfILVIHXQoUdynWbNxA3iHe80yQ2Rsp1+mCyCIOHsSwfUiCaz3TA/ocV9SNnAVDjtC1XPuriW7N2Om33Exf0ZywFIC4lxZQ0Ch8SZkLLAhAH1Kjnce65wYyn2D+bgrcpAZMzKeLwNd8d9lxmlLJClpSTQ+/Kh57RvtzS39l/Isb3WvSuBXO+YIf00QPxoiySEskpWwh7SFw/lXgPb5GPSM76IyDgBRlD3PeC4wGQFqDcR8yTWzDwy2xVO7jgJDvhPwpX+3tja3zf7M5wvtiHNua9tPYtBZnZV4Pj8vUnvX+8+nJgBx2QMbELwjkfsEfzmKeoUPB55Dp7GjDfIKM/ezokx645+m7fcl+XGG5UwQl/LfrkgwN2Uk2i/3IBQZ2HaFcnI/CDukkvjLksak+6+NZrp5gfwjN9SsNsL04fwCI7JiANGFrluEPP6F63x12ekc/0ETgUNScPuSFGRjcEoTcKGQthZ6izuCbbVbRJTzfyhxXrHRDaf2AN25bOSExUQj+s8VK246DksCFC7jy1gx/CGO4XQvuaoY9GShNiidaMLXg+kocGjDacRJNjkoKJCtFIsa1LUkqGl2celLuVw87mDHTmaAOl3H7TN7ndlqxo5530YyRiPtN9mi9eEAaRSsV5XUpOfrsQTpti6MSjCuIaEzVo3ZaPzHKZFdRJrmCox5xiiwPFkYEs3D6zSs2H4ws3G+VdQF3XhtSPylsZ2qWx7Xoh4TqDYaelYCMd9OLnhhYzGGko22vFlJDUNimzZbFVgYcuWA9XkpauE7txAO5IxOGN3YA/JbfoQkXVOJDDKwyao/b8PbuX3S2qXVeLcAsQFRil85lNKUAY4m+rhUOE6BR80KchTkKrdUfArpXOyLNCk1WzZgGq/T8l++ygJ3Lo8P5457N3vC2GVqlkO4/JLLit/GrP8Ar444PoNQ50c1VOx4M4oEXs6VLCha8pxK48kO2fhOPK7ryILLV9ixoP6TfRshXbuJBXuvSL/5wSswBWz+mlJV5fM8KnzROUwmDdHwZGLRVffmmp90IcGeYSammN9dNJvk7s3BU61DRwDKdY945zmKI5XMr8kueK9Hcd7XQIV268gdQTKDIbsC8Vd9qFvVJE2B1ImuJHngJz9kKSXGqmdVcrAFhvWJUpvckJKO9W3pHpGUlSUlFZIwMM7GIYH/kRu2wTSAoVpBaljC0XNvn7YidENCiMHXGUpQZBKgbrf3out0EdjNWNV+/ZacfAll17YRRGBvFVwbQmhj+kLjAme1C+1cgRR5WpUlMa1siSpAN+7gBPT0dLaA7wFQbrQJ0BJM+xHyhxrKETFZ68eaegsK7PD4ogTChFteWGiJRtNS+DJVwqzv1Cib4rDEwXW3hZbfeP7fKgPC5HP1ocQGXejKXq9utSFTHukpSseJKTrVjpaTiv3YzYE6eC1ri3kXmMONmo114reyCMvr4OTkXnPVAP7eMdlr2yNxS/Jurctry8MtONn3z5jRA14UAEDpxjM0yebA/jcppNoJS4j01dKp+xPf8GZKnspO3gCeGi3UuTewlVANp/e5gnNBOgKSi9s6E6cxOmD70xmsXLJwe9pLl5XDjDO2Gbq6PR3w7FuqNXOPgQ7ppsc6g3G4xVFyr38euCfGjhfgJDv757X4NSJvLifeBaAG6pVIZIrUyRh2AvtkQo2VHLoqk62gKz0KdVtAz+Wr8zV6j3EYwH+e0lUAbBGvTiVO+IXBAr0PhKqoWkecmCW0b6LBi97Z9PfEM11kD/nETApWgiGuwXCZey4pRqVAnZwzpvxu76p0MwO+sBAksN+fr60wIPZUX4QbsCNSqk9sGX/YvUY9cz91Bl7R4EK/QSPbzCI2IK3HjJlUoGCIVxOFCZacN+XcSxxpIAv4XhR+dGa6uurEQeN5Nsklo8Fb8B2eQYd4IqoR76z3aPOqiit9Ca2s5l4+ReAZqZDsxVpLjlfCGJJ7x4WtIJRaWUBm5kFPFZmhCsq3xKV6Jhzg4gsB5Ak3RZeCkE4mU6RN0ytwoVOE44dJfKHC+CGt4Ml3F+9er9XDuLJJuIfGgGrcqFtmy9bAatB0x3vKCe/Y/zX+o6snLQZ3pk2JfaflJbXg5YhIdEZ0izSB1tF6sn5hvG2UOaoeeS2LWZfW62fToCCdnz/ZzgdR2FtqBiHJ0BnFAF2VknQbT2txIUJikyeQIXPdZ54n/QcuI1+lYdyenv0Q8QbfHx0VuvMZHKqo1tbTpD8fA7hTCJgS9zUk269aCdTHviLSeUp2klUqaaTwRkov3aE5VxMrq0+xr9hCgMXPz9wZc6iEiVRw0+6FPHOK9K7dCXSocR0NAyZ+PKHLfYYOTUhhVUY9aWgZxGu7NDVAAXBzoz7o6UVCFbU9l9B6YkPSCKOATFiiVBC8li4w+p9iZKJvNjwv+fxOQlkvb6XK7wUAOulpV8kLgwKX2sp//FGIOu2f3Fvrogww77gTGTrmIOJrkGuePgv+4uzsS1rBHeHp6zG9rm0DIOdMzjuYTkfp0iAEV+CEGxSX3xgf7llPaDyZpnsQgAGwKtOH2m+u6iZnNO9/9V69bgjJaqzjAL6OVcWCYFNeEgQBI+j4rk4Jt42aRptw52wUxaOpuZSMv7VzE6zxF5C7aQCsYvdAVpIXqjrrELHQydOlfQfx2v608vb0zEZT+kJj9OW5nUx/4wBOiHhvQrVklBHYt+MlfxFVv5DuhZQO88tghiS16GqG+TkrP/JVlPDhHGRmHoVKm6RGoy0W7vewr5EZZozPkTjbOCQpTu40Kp4MlXdMOCqJ1ePSfg6yAMrkroTsJca95eSXoQGJDP/s9J+j0Mdkk9nwtlpGCQJpyObylfohCnOPUyOaTFZNmabXIGRlGbUT+L+nmUcfQAw17KUsk5w1mUAui6bWpBnX82HxKToRQr8ssz6Gn13puKhHp94ktLdAei+GSJjij5LUL/BAP5e3eirr+lxPnSnoJyNaraQ5VYe3xG5p9i4xj4zOkr+DzCgNXHE6YVlYxMV+0rKBUaOzsD1rCROlWCJdAEvfpcTpFOjVTL76HIP0wWjjAU8kjklMAy8O5RmwLrOY2+lLGRhynxXPOlSr+BMnwkLD8bFXOuO4XVUSdmcEgr+Is06EreP48tTT0NzpVcgBTaygHDAdoYRimcujE+IkoJ9XNL9NwcucPtL16ti42dRyH6hTlnTF2kIN4wBVaejmE3K2vlVyuVmWO7ClE2f0HxUdG4d+4hWG4yAj0dk9s6TRcgqVyAwf/YLo2OlR+zCiiDY/G6bmPFYbnkFdBefc6eko/+dZdbMmFV+SprxNHpzMFkcI48ahDy17uGz9w/QSDcKtfTBHB7PI//gW/7PypmG/hGZMW4f6mhAUzHZNc3ZLSaTY53ixwwuGwVxJmu5Ff+T8uXnrLjMLa8d63N7D4Im0ANuy0d0G9hkfbfjqKTPXPJfvcEbu9gyAn6lWaFgt8oxxGcQLy9Me9EhksZ/21et/NKJKQy8luvKU5waOlLvfY0Xgkyu47ZYhkwg0Fsy7JwPUm8PCcMGb2Zshuj7M/FZ+1OTRU94aqNdo4TNQxdNFGbaLncVGF+vby3HPdywaNSFOPxrHFYHUkYhEOD/PWt9bjPfDaWeOf4QrJfZva8RpF2phPnrI2i6wdlqdDXndB6bn2hjy+e3zMoALc9pSzveGmPjHfVWrAOLmTJRsLhxcYEHqIZ2OXYKA26RFCPOian9gyxDT+snAJRWu3toCBSoXXbK/JzBsKn5ST3NbltBiP4k8RAW+V57waRK9IerayL0gf5wPNSPLuGU4LWdZIoS/cDjmbqqXjaQnXGGeT7/ZS5MCjodPEpvVBDdpxomEBNlksAg/OPE3pf5viDRCoKU3R7GfC/CTFEfakYdKvUON1MtsHHKtVSJt0tNWgwE13wt90QGDJjluMhj+kmIP1HLtbxZLX98WwGLJt5tz/sp4b7HyszQ6VIaUWV6FBgf4waZxzzXpXHXez8VukxaXpmN55L8AndPU7gJrEUM8d8ju0wIBxNONQPYKaKBXKyhvKHox3cvYXaapzQU03CoIT36JWuNbLFtPKPxlchbgyG3otIRAp9H6Ti+TYlTuN5etlGawoqEvi/UKqtvjJJDBZxPTcwhWB4Fsj8tDv5dwxaWSiCTD+P6W0lI0/Bp9tvALEuXLGR6pyFhfXK/bgJ1KH4diU5V4i2SsY/zidWSfcD4BuU7XrDCEN8qqxcqd04xEzkWWX1sIv3PNjhnDt++Ir0TrM0qRcCQ0QV/tlEGDipwzDuKOMrZuMLXZW7Flv0nJLc/pHGxkSUj8mROrwa+OqdUK0YQgvvxmruhH1msyBYAWX5WoNU/SuAjQk/DsZMeQQseR1ehxy8faH07EwWYwVTROpW/lkrd1xg++rOkfj1cTpHRPU1OYpzvQIxYMNyHpaHuxkfocYQ1wqcAfm1flqFoflg4gxdR+kNcc16js5WSkJVaqKyo0PkuqQ9gAPua+Fwjx0ATUBkaXn3r6p4lv0HOaxQFzPceW/PEkfloSKS++3vYGvV0Z8keCFG54SR5O/PHiDeFUuCB+uqRf168xUq3O9GysfP5yAV3M5P618UN+dUWGXcWCiFbzNxqVt2oLSJbtDUmg4h2qNQokvnm70QRs7pUsFpHbWXGBcddWhbjMWfTxP3DebHtQIU5Xn0zh9QBHdildj/G8UVXxgapfaDoP0zus9yq0Ufd4BNc7JF7uOGk4XHDUvpTqEboVurpY3qVPGKNrN7I1U7cYazDjqk31nPWESJzzMIHkY3n0eEBxEnZfmUrK6XLKpuHTKEhJEsdUH7Rip+NWgJ2vWx7e6HgxVqH2iuOrW2mb4qf4MHzk6pnP0HRUTflHhKESyhK26ATw8dsaLByVXKMhYWIyq18phUyPedLqysrXrEz02lpxWyeUcHNwjGJqwQSLtCPDwSP2/OvJVn22aGWALQSSR8155nzb11jyzaeZjsCLYxzdbO3/OwL+M5nKFJpzOhoVSvMiOoDR07TeVo/toF/QxZvrrLk11GQFkHXRFwCSGqr7gXvI0adEVPKR9rjB4VhP8xWJlp1KDhinlni5zRO7QTWdRLTIEFnVvuD/M6rDEAiwtW4hDbBCzGs+0T84q5c8BULw+7w5bMoHmf00wkMJAqT0/J9Yg3S52fJFACdj2mzdXoUPICRKGSVFVY+cU9mXpmaoauPy8kuDltY8J4GcM5pfgmX3gT13IO1XNI/ncy/wKmNlQ0w1AFeJgSDctkDiXcgv0uF4XgyZS4yxPjh0CczGexHMvN7UuXalsIWGvURcW18YYDj8pM9BQKs4BEDDoyrPv2xkOefqYXkSB+CRtV8aZ4sxp1WPvjEyLfVL2tpMsYQ+X51zTe7LkQ1xJ+ioKnem/Zzp/LD7D1Mza0PoKBeSq9RRp3tuq6cu447KbBhyvQYB7OvSDJn/p4kmVHBE0Ytqgn4fWJydF1vCGn+hnKx5GuyQBIL26SCdA1Qva7Bp/zHM70gkOfw+xDKlUyNmDjWRUxPFhd62n9NA9RCCOOL+DFy3tCqaj6lOqpvC1+A3rp5/de/zqM35znSfLWD3SmwDG9QLGgcBtZ+XtFcQjBFiKxkfCJBypu5iea+7xKVpuLjhcXVnVIMhfMBqI6qgm6WmPQrLaJ3XMubatn/Ibl7nH1Mgn7p0j3u3qb3FvtE1ksQvBh0YjXY5Ash/pGPVFmMBDgNWl6amil4/yAaIlYyU2nGgo80bq9rLwiXSSHU87bT1RB/9dVsG8P3GGu6NNYcVwAL1BKBF9H4NV2Ic1WgvVYeo3p6P+VhBav+pUsFThCCGQLwVh7/+ThkG0CldXLZX4tC55ElcKhApLpjKunuU2mUXB2JE+1VXoQYcNYI/Zxadf6/GHUpmJHbyRrS/6sM4h1bZ8OfFDKhBBE6t3CjrTwhP0nLYhD7xab9O+QSem23ZEPhzpG6xrdkbOb5AD/TtgFFyg26yXmp9m4zkOA1lIp9CUGN0ZaoZVS/BbjIO0zfhyGQFUpp1lBS54lguJ4CfN8LojrGzv4v6GY0QspkthesgN+QZfQ4Ruulqd8Wv8Bp+OOIv6tXvSKhyivU+NoF6hTOqAngCIdng3aWk/1N+iBjqApt92tr+K/o9bZNP83kvuWcfvDTgQPtB5+M+JruwwmtiS1653zxSqGvbj17n5cz6iU3vZ4Ayjh9dhe3dZp9oTZQQ/cUhAsAT15/ScQl/7elNh7zZMHmfAxN/5JloO0Jf2Gti9K9HtTROnvHs9NadLfkH4Lp+uG9Aet/Lpj0xPSNcKfoP6FNRFkQR73sxpdhCJIaWWE1udNy60O5tsAAPADeOP7nzxoWo8QIe4QKT59Xtb+iK+TZQ79C04QvesSFc6D8ZHETRao1BwAPSRzxp1IfEwbvojnL+9BXeVJbdctnYKCHOZVxJ2r7SVrzE576kaslqFCPfVRZubAL4HmXqR4lfMFXXXCHmVZ6QxxrS2u7jwkuljCm46f2Lkva5UK7xS5exlymu8nH9wNWCu/cNhRnsYuOINhlD7xIuWipcKJ9DicSa2kJ4ido62P/SsvbhpZyYphasrymewaRmQEQreJ0fsJVDzrvZUo1MGdF5q+aVssT7cOoEAA+0NTqrZWZfYbIDTa8Bn7JrhroSXlweQVKKFr/0/BEi3FCoI4YWC5mWEhwPgTWbOW1YTNuG3S7jdjEU2KeZJXvmukU2U3dlZ8bIgvXCS/84EoyOeUtyywL+t46d2ARssc4nfnebPNIp5hUlLQCyYEGrIkJG2B+9u9UjwEvD55kDf5EHZsw0Owi416Z9vD1M03mEj8uYsytyh2Uk/CqKXMTXLUXh25caI6hGSfoO5og2Qt/SaS+a9lPVEy+2AGab8yZm5mBPzgm2gu7xyC7Rot84ReKc8gCcv0DIQqLTizH3hkVpBbcgI8zk9+96DTJzbsDqMBtIGbgQIfqvPNNYsVtje+aJ2R4upfccsF8d4nUh1DnasX0wkLLdgNfItYGkACzJoj6jF/5v4ip3FyXdZarjKe8ASaKNtzhA3rV6yE3RwwYDGM2cyUrrKuwVsqRo9U3p7DtuqRRXKOsS03xYZHdRFb4kNHzE8fSGB8BI2Ug6n28AjEyOy4nVliWZXdo/KFs8lyHL5ka/Ea6ojZ+g9C1GBrjYyduJZAyGfxGMxhIWqaF+Qe7hMvnquAgrYk/byFhxLQuVWQw89E3OuGgBDkcOqnVy3iEKkEkB8Rpp9J8aRYckNRW3TXsaiL1d3grsVpiVi3BQ50Y/tMp/jRHRF2A8wfUGFsj8XiGveX4OKm85rGaLlgmRaeZceB6NSwVWHFDB6Oo0vyPcW08pZuNaqXwU4YRMY3VCUp6qs2Qzq/4O3qnnCiHGhyMtjVrdoWCP2PRByc0K8EAu+SBLk95BGrOWf2FR0aEYKOi5vGetlJ4JN0iOK6f42tcbE5Q0lVeUT5VTvGSHKh62pquFzTl/Hi2+j26h4v3gwNLfptiK1w9rtduBqEfNQWf6GemuTEACbnfWp2/hnQhZPVVQ3h7qxUUpt1dfMadVgB89reofAvBW20WL5H0MAQz0vNitK8tUqZIcDVZKHpuW4oNJ6YNz41Sd5KATBD3lopN0CJtdRMHSbK9guZ9YncucRStYiM5XEitjNIsFmTwhLOUh6Jzt5x+XcWBp+oGC6YpcJYuX6t3/fu6TBnkY3QP4Rssa7zKCsA6n6jSdRNMKc/jsnwY+WbI8DIDF6BBsUVr1nDxFg8dig2Jgjed+5qMTfEf9ep0IBq3k5qwjR4NPvoCLyvzddnXnF0pAItpFWPIpou20y1YXl7DYrNR/vdFmhAo49qN/6CTJc/vHAerrz5BtgFwrb3Zs48B+sFZ3ZlogzWDfn/eKVO+AZuMP/8T4yaG55F/nr4CYHT13mopPLYdd0B+LzwgAsccaLN99m2y7pO/Umkhdlr4tslmYNqTA9lF6S54BhSBKe4gNDF7OaLY/kAxjbst6qLGNOzOa0LjrJj1SibCo/oup0zrIPkdtnY0bJlZPG9oF206sX1Hc7k6XWr8RnP1qFHbLqJDJkl2Q1JvAUIpLC6nKbXu6Frlu2Dwy/n0mZZ7QHWUQK0/KJCXnmVpiTm8XRNz6HhwillupHXkA57RXBbIo6mkZSdQcBHlXZrn6Fhgj/bKJcIlIPYBVtSL3FPYuWxoLN2EsFcAn+5jwDK2/53YHHvgZyTytZA+4SE+ZEKwFEHnfsuNrNh0Jbnney7267rtcZK4Muily6wYkREUJPL4e33TJYtO7eWJbZkwppLWCvQ4Rr55Wo0NTdTHzbWDE7xxbCFidtryVtBMgFCp9J/NB3aoUlbn83c3z2wyju1KtGWvy7BeEw88Uy5hxtvnDmthqlK9dlCwEQE/RcZ+BhoDdsnwZ9Tc5b9vzTCMcz2bza7I5c6VsF2kT2fIKhhUW2rSbrANe61K0tVwpq7E5ScYa2PFs7ZDrkvjelgD2Ly2tToMGxwXcWJAVGf0X7Hi+mOjOy1ORzWgB6UqJA4a613+1veAguL7aO5jZSJwe7DrF8Hi9bak8ApchJztRbHFsEfLItRM2t7dPIdKigEAcfp2vkNizm6RrCaX4Kxla5k1uJWbRWeqSFC3HFJNK4ByBcgCx+0cVrtFmboalBYOCHfmcPkMEur/WOcyXcA+Q70og8kB5TWwqg+hehUdNpN6uMO9uf2o6KMbwq9XfdD0TYXze0PMufm8dbxKbfWL5k48FGqfYs7SlBW/UKP3pxu77/9NzR3BppDaIa/DmbY2SVKy7G73Lx4+CyZWCnaWFYKY1OLpscprif5ytYuLPveKL923EQxPjzpamYGmyfS5Nd1NxXLAFs6CaKbT3a3TpIXYlADik+qFEezKerrdTs+CM7SMsP6vep86i4fiqTfiQTtbPILqUMs63fjRt2yWwsIAcO5w3dtCNfXUXNVVkgkRQuewIgkXhS7KZb2qGAYpx7RV/GVlCZeUK6NO4jiXmCCpolWuORIUcg58JB1FlSRHGotEHibUXh2iRAOrhNgkdgdm42uvqM1T8fGXfcqVJdEqcMbVWXFZgTfQVS4ft74S4qPmzgfAxEQRsxZ/SrPzCO/iig53oeDSsUPMZ44nGoVYMztAaK54uCwr+sJfSIbFCvF/vKNn/xJoo/ZN219pWZ0RjgQgJdDFOdfhnDCbitw2Y2WHPbmvxICJRCvIIhYEG3qCrQgSce3m7FuX2t3wpqbzYakO03Z0HJXoZUab7KGu5XfXznvihneo1zv/bhkxZzL+gRjoPKNlj3O7UoFSiEaHLvdSYN5yeyE7dBshkv9916ph/Kr/vaz7Jma1/ObkfndUifEHscZVfQnWv9wnBeora7ivb6A6oqj9+okkRy7x7OOs8itnEQUnfG/ccBWJKQfUQC2VWPbJc2tElI5sVRe1sqMwanb4lQC8r95fQIMN/AeekL5SMaqo+Er9Of8YxIyEfPVy7+TCbxh/GT32qTGuOg4K2c9xnaqeYTAVuTPDOSd/o+ndHME/6SYAq3VyZ83vHYJjWzbzHE5TOyseNjJGvuAAZaxSNsu/6zOLbXi3owJGdDnvRvQov3jWiEjZGyEgR1EKFJUwCUc+EFRpbAUZxkhSzmNcATvu1x9Prl3ZxrI85u2KNiHUTEJVh8H4uZTIXhjKIIfJ2T9Nljhp4bjEdVIYTEv5TGmW1IezBk9jYhvaVwNngRXEVW6CT1RfPcgQmd29uwnFLtCYc5LHDpBSr9oK7F0QYoXDvP3/sK6wy3vnoKDUiIHirp3c7iZfgRwGt9dBBj4MdKtNsybmBQigu1XtJ6lr0dwVMT8YUpJcCkg+NlhJwRB9RG4bj4jHqXR2pNscq83E93BpRAwDq4wuwszcejTYquAlrADD9f4bWjbUQOD0i3K+fRH+NQS4WSr7+cjjmkYT2KvQTTo87/bBvMpHhlKPVASwugedgvujglbq+RBjIvPwWTsDvP3MgxMp3LYXt2zeIwpJgr78X7aBU9t7GfN5aAO/9ElClnoTnp5ZqjoP9GeEtAaCB4+cEzJLqiKvv9zeYj5Q0ZfWW/gIf5x52cLt9+ALVJ9MlBC2ZI4fJpM0lztNMQozQHQiKxVn88xeYDWM2oipcCWrov0rleuKc2qsIn89a9ttSbOwXiKppHMMIE8u51JSML4wGb/yxxiYY6Oxtbu5qMNvAtwLr8uxJjQJ2D+Qt8TQtUVw4jKthx7AeAhWD5chZNOgIGMtGB8rLDMaudUkvCGrAJz/MZlq8d2g5K0uBmYuTNcSNJp+720XUA5897dhsr9a7hG8jQ+I+czoma3rGBxSKfYx20Ol+b3uTrUp8LobV6weW4AiUL0cpDyAd52C/d+NNtKXIYhd1j/8BzFbiqB8x8dkMJ6mvswB1V1UBDTdfyyEM/HPHg+MvUrb6IvBYwYbI7zhFXNz5ifrO/V7WM+j6mDtxcJyVTvkAEKjG38jNIrifEMBLWP1KB+l+dRv0fZcQUdfJhGbudPXTeOUz54vT7Ia/wL3FBf/COB9tvSOrg1+0cyvqWHvWs3WyQRlY6jMmvk9HMhFK0OZA7fgZ3eZ6VR7WJ1WMH4jJRdKb3lo1PzDFuzIiODsWOtHLjEuBzaaLmN20SeXullNr9tffMc4k1PTw6UyDJVZZ6JdG1T+W4JkY+vCeRrF22Dtbjn2UUahlJMlqu1AWOjwP6p9A7U3ZdcIKOCgWO4anLjstQXKwnbgiIwFhWZQAiljyQgxGw5eYjvCKtW+JsHZh0htzZR2hiZ/HffJOdImpRo3ftK49BijbkmyP9vuyril/W88hz4Z1YdcrYemxzY7gz526n6x4bPzAj2o7ZWU6rnZd6pxSiqCBXoiMbq9rK1AR/ossr1f1P5CXUT0m35J+t2WT2QWmpDJ7al9geDcwCV4yFY/nUjP6ErfpBWOZWpYedRnwzcm9jLqGtrMo2ecsTlFEsqyQ5PZT5860lKtg3n8JO3bt6E8R1FmBoOeGMwxyZfRrI/lLVZAXdOfAKisc4otz20x447yN1lqvrSYRpYAq+BMOYBIP1c5mqqsPFH8GZc6Mey22dJZ3/kMW3nkwEJuMpz4a4yKxXhPullDe7sDPs3M5kP4hHkzwHdMQCYQUjKvspn2t+uxpQBJ/iWpGtr4Z2UmVq4SUmJfVT+NjQsnh7beA9dfRhP+alWoFsm2sQ2zJjXVEg3p74KLLF7IrgEaM39qc4Vmwm/+FTpQ/dOjh68Re+sxwKCEsyMD2eARE+V8OGeLuhLWjYkYhrfDu0ZGmWrJZSuUkS20tDRBInK2cTSNxqNA3mR7IaX3dA+2XAFaicXFHbimbA+/67S3/0PomBXE9JThP6Z5d6WqiA91XwYfJI2pCD2DtYvyPXPLwdbcZBJjx/UBv967mmzk2Qcg7l0VHm8hoe1k9kM9TflhV9I4qDEiGSb01CU6urd5AHZjgdeP9VLSwuu8JfsI9NtxLR8mFjlpukbmZdB0X3xKTNQuIuj9uAYhn57xU6JqhHfXZWTR3KWA34r4jYZl8uJHYPUNS73hQRJrMFic107u3AxO71OxQB7bQA6at/LviUprMtYeL9yLjjsCvvhmZzFfWF84umQBpuod5Tmj9PpJyJVA4K2G8RUiqhHwch4SxQENTrsAFAdvwJARPTfcwd4T6S3zTSKJOd6o2X4WqyYenZTONUqE89bOUudEQp8e8KMCKpPlGlLTf48ddv/1Oaf/g8A8gj0FxPlT+PbZomT3Z8j7kkZu+M0XS98BC2B3j9/8TWnwJSu7P9KikfVunnXKv0HM/QRoracpQCUrz/qhmtivohjHXuYnEVzCwn5wR5TU9A2C++jMR0WdpYgD1M2fn7JFXJL7xOInz7przKAxAP+uo1+tHWDw5P7Zb4K+w64KrST9XFtZ5K+tH21Ye5aBJwZCh4BqUuT7YRWd8W86LV5ib3hoQaZUKD1G1ioLm+n8iOFKwOwluFJKUuizvxf9ypTgqQGgqIWI7Np0jtKiduZhe1jIRTeBEnw/+UkXV/VsNPosQ/1zWWvxNH1Bmx3h3x3eGNV8PwHvSm2aW6epH1X+sPwizi8tVhkkI4J27gJIxArfVtUDpj7DdTIRmEtYuNustaMBkHu/raXIoZRQdmKUaHZAg9MESexOD9akyADLIKBUWEs4v172dVgOS6Y3lgrcLkEl2uLy6AP8XYz2OPaAbE/h38MOy+M/tXeBChzAFCzqEI9Zg6oRYD1E+x53ODlZfJIZFKN7/2diiHZLn4Lv9oULV3A8Yg6/f3G6HQq7q/jk3x3kOubaH6uvttF7zz0BQQkNwtlWXDCtCHc9KdqHamh0xSP6pSK2Cv0OfJz4J4P2WtIc6SRn2bj0xGoa3wxtcLnWOHW/DYJpPlFxWQRfq9mEpbqY96hQ4PN4sRzJ68j16/DpUiOREihzRQeAPbMkHkGtEhotW9UyFEJCwVZeRIdk2aHnXV33GKxNfkza6brzg5SQmJQsZFXScvlmnMwuvvWtTIHbJqRsjBbyA7OsHPl3IfVqZU9kybCCBtBK15QE25Ads0StnxUwU9kxxE5y+oiFUOvLBmDQwoeoUU4rUsB9/gPHiQysNx9A6ilirVfbiPCP7n5AKgzu2coKPFA6YojVBPtLWyfix2b8jsyyubhUIWcFLBi6v+U1YE4HTKpIdWWz49OpDehu6p6o1pibzsJ96LcLgEweMknR/4bqiCUcod4TeSJh7jJwtOPG70ARyvGum2gtOp6Q3C+RDNfMW2RpDWxL/QIy7VXgh8oA0fqX0JDOdjTu6HSaiVYC21LxzLCAJE/0ctnCo2prK8FQyKr+LyMvTsGUS9tRzZ9SWb5cfRDOyHLOoXoxvAMnpE5Egr5DaVyQ9ffg2ZgRSkusLH3pzKds3MN7ftZ48K7W7vvSHGnPZSPBTNxX1k8X/1/fmE+QsA/D9jFQt3RvuxGH9RLc3GRPCIfV+D3wcTuL2/GtyyNfdvHni/CdRHe9yIsL3IDzA7zZX90/Ouyx/Vp6T0qiXm0WkwwusmLYSLveRtX50luZj7P1mstZoVXRJJhMDntTdmbD38l9L7RvVPOOiNYW+hLQwcMmWt+rQWYrE1iETfgHPYDBJmJR8amyAuVKoF22i2bJudRzpUrsaRDcYk0SvHxtglnoT731n6MsvXkYdrFZPLlwh7vUt6z68IwYh3VB62+LcWsuXStmrsGoYvuHDxUqmO/hIU3r52BMzCpycJXW0PpS5OJrwdq1me2Sigiar/reCxtWQJLgIP+Zt7BjaDFILwPJmAD44wVXrSE3iGkd/l3rlju6kzPGqZ55lig0EjNgTQCEIjoqKj5cvx1UN5H+8OxM2nircJ1qriGU1dkwzrs0dEoPQHDDAHstlkc2gFmiBJbIdlC6MGROjesV4BGuNSWyfPZULeSvQAotaC+iSl7BzwYRfygd5Khunelc+4S95bScgAbeCuzcnG5lgC8NY8B3z+/UDO6Hejl6ITaFRpYoPB2CUpPEauj8VDSiy55z3aIzL/lRhwQC8ScXMVdM4Sla7kY0ZbZ4tb4X7dsrGMrYb0EQKwxO9LFvy9H+Pc5Uk18HHxnqsf7YdWagQm7zdYkvYf4MKo0Vt6ugpK5hSEVy7mMcDwqMMp/6x23k5WyXEmfgaoJigFvLkRzZNM6FnAwYGFYHmWcnQSHk/YjwtS8e8NGgn+gKIp9KdOJZ6ugtuQPvlIg4B2/QsbWh2YgpD30wOHl4N4Vd1fZjIA5zIg2gICElI0uZ36K2EUbOj493kQ7hIyvIJiWWrA4Ud55njOgpDZLVdve69en3YpkmcxYLRI8X07uOhg5KKmzcnjtsSGbFC6OlGJ777tOfQPOMxTu3DxgzYtWOncUvjEpdgKWcjKZO2h5HbiQEJk4/OWT7lQGGLKFjYvSX5co0uAoXS2gbYPXUrsBIOvKO5Oq++bIiUxVXBWE5fDzuo9qzAIw/y3yiHMJzTb3QR5ic7AJK2t1Hoj0NSgq59AQog5joMAuffuL32FENzyVlXWzTSBHqeAF0u/2qjeOTexQ1DU0wLM/2q67Kdf8/R/rkQnlmLYC5zlvpIk0Xi3Nzlyj7+GHBpQJtR8WzfIMc8oEsI9XLDc8vHCLH0Sb9Kcdv92Z8qDCPjxYhw0bdPUnfFMg9+My0IbEDicdVLHsvtr66yKdBznbMHL9VcfayaTrVwY1kw7vONJPtN/Jny1V9M/cMeCda5VLqOyJlCt7C8hG56HHdP5VB7tOpkY1d+5aNNHVpnZD7xmXpTP+Fk3esx6S+Fz3Epa2YwqToBIBPGXUUuqJg3I5XFYT+yzUf9XQQOBAXedZDrwFryROAJ0KlPm0l+nW35+HdDlLVBv5LLBT/X5VNY87BWtZEf/qWp64yTibFZxI7291aW1dmzpWct9olYlqhsV1TYWOViJ44VgG8pY3GvMfGuWMmj9Bvh6ZCoEPEVqBTht46rRXEYIrOpnMK2bGzXESpXkc7znARs91fMY2o4pQGc/lTzVXEiCIzPUlXa9NoNtwEiaYcABlT4G8G2Z46vtnkjg4gsN9LVKf8vynapU/3eTFCWUAkbQlQvYkqSMXWOLoEgcRiTXrDnBz+amtvYTcav54aDGABTFuWXkZ3Tsq7VZyKYLhnxymMr3I3ZggmzsNXKGZnO3ZZg5V1QZIQNWwh8kA975IEaa7bM14XtfEQpIK+N/W/VMbRRV07MXHhHqb6aWyk1uXQk//eTgREq1BpTsg+6dvn67EmN0saDcI67FRwqkxC7+UXfICFTjQpu+7KGxrnmE+1OofyftnyJ4bNAbcjNigAsNJCrK8jSaxsrWw7bW1umyq63dOoFtX5+V9KcBjkbjJreKyq4Jce39tYu+rLB8faeRQqgH5qKLi1gCTG08xGD5a8S+Ww1zBjfwN4Ib4/bqxhznNQGSWK7/QmziD93MGoVy/e05QHFPDWhMMeaJK3Y1nJcS7/W7C29tEXFmo3afYUGYqr/jcQj6S+wp7MGUHgQnta+wIfkwZStkuOziiWIRDXxKYmxX/oXCMo/EdJ2antBzSx1YFN8aDTUdnakmNs7ywTnNhz36P+CokcLHVzkQqBeWLDyanGZDIAFQm5kVteZ1pnb9rTysnW1g59vwLxoZyZqspeTm0PdONChF5PjPd6il4Ujr6TAj5WkUMdoGa8u+17cBL7mXyx0BzI5zBjFZNmEl/Gpf+3RFROZhUyXS7BJDemmpo2NbdGWtrN4xXNLO4IpcV+FpUuSTqehm19f/Yi+XT/ASEwrmm1PfadBhiycq8PVrBS6LZRaWbWPxo0s2Oz0jbAGUb7B6s+wrsKnp27T+L2JzusFVV6RZvdZ675FkX6+k/mR4tL9We90uN/yu814M/2fqZNkm7V8AHpDASIIfyH54L00eONFUIZFoR5rV1k0t3dwFPwNplaLX7pb3sDviBP41mu3jz/3RWixikYZsHoJj9tT3C/Mg2tTsBqG6dnn29BHMnLbD3UljXw50JO2BZsweeT7BNVvyaUkpppGVWNcelCWpzOPylktkEr4QT/KBYRwQUI/6VCJAT/S5swtRiZTNrQ2UsAu0/Owqq7hVeanHN30P+QutfrwZjS/xKmLx1XtPYuZE5fJPM8VnpBRRLSGCDvzwVXzQRNnWKEhKU6uvrMjpMZNiWqWcmMVKhYGOAHN0HQLcmqYJHQSLZt2TG5V2va5dAMZvgwvLBmPbWOXkIElPn83mVX4N7fW3uQuHEzNhFa7kjeJyTsA59hwdoY0gDwjjk0YFW22HUTLxn3jYV+Z0RxQxEsiEG2AIUNwvom2FaxRawsXj4WtFM5LTLj/Klu+LYtxm+9QNdiyZjiU9yjp8YklAOO5UWIvIDeJVemPi8wF71VZPD6YQ7CyVyapsYypUCxTSHZ/SDXrtlZp74XXQrRFrYjPY1PQv3ppnh7zEHndenFC8o/HZmy5GoueYdCFR4aIS9yjGiBK2KImcVjZDpnDyndjetTvlwxI0lLApRs3spryXRKph7VNZDXWtec5n/3OAKN6e8NssnDkiZShqpuORsdb2nqXZ5DKwXbZGXkO+Wa7zbtucXez64bZ5J5aHmTLkJIVl3UuEONN1DwYxWUmf8wKEfHPeWBrN4RcBr3Lh+dKUmrQp2k0YCeE9j7A+nItE9tjW0vDuXXIQZYsKQ9VMG3FS7bUArEq2+okiagWqy4yWHHU7EnkoPqe7qHmt5YfN+qwPIj6lITOe0Vcq8dSeoGjO7uDFB6oo4F9qNsbEuMENCjb1h97GQe8jOvH8hu5KZx6EmvWMinPOEAkKuCcmcKyPa4kK9p0lABE6pp7H6EdVOZ8QQnGR9SG10nJW/9Zdjbzi6u2kLqAk0dM3wzT6yalocR2xd1sJrKzpvDXXoOMrFarsCOhawT9dh6qqNFs4QaBqnxoXakVCM1s4CkYyheAXqpRDDpiL7SvfFsFcRoYLEFdeOhhR85NAyGsjjLyTe97ruzd29VY9KF8Ss60GDgZhJWK3conOsj7nRf7LvHBqKTfMLmVYs1g8DEhJaLSGMkqUS+U+4qyM+7pIxaDOtQwGh2BFF84+DVv++bFk0ijDmu1t7VW6pY63bFVVoihIkcWaWxJqzwGocIW/W3YZmgKhEi0qH9idQ+nvv8I1T5M3F/RBGTzi3QYVlPTNNZSxkXJFZ79HKh7xY+18FJ9SwL8+16iPEmYsopej58/zwJApXmv/N06+HCIulVlL/qBorwKxCM7efRZWxDFF1Up50PuR1trOftGpVXYq0q2c+7QRv37ZgtuiXBSVnwdVS4cmfMHZ7NTtD1XreJUA4Mp8PJrHqgQhkHQCQjlC11FO/qTB20jvyvh3mP466FHCkpxu7IYySZOpOcs4NJ2n2Q4RI5BGd5LPu8VCejFQt00USQqjzj650s4BDubL+lx1njCltILDkTXH7lLmwwJR+iyBvVIIX8qdxqrDg0kcfrvI9OoJCED64yfyh8Y2YUqGdkvYK/gZqxctS77HM+ABGM3iry5/LbIR6f0+t7TbzytTnYz101GLsJxbT59CwCYP1GHsaiqiy8ocgPw7EIDSO/MqgETK5DlAteQ2+ZqpAaeaIIbaMIHzz2lYUjRCSAa0BQTrOcZoUfBx5l9oO6KbwfVH0r8XBfEpCEKnauDjDpSduVbZaVDmd6xDmjNLgRoI5t4fCLx1izhZqTZEJ5c4Qfv6tj+0ANIRhZV44rRXdZCUp+Yt/v/lszkUiDZQDLLaZebUf0wFb+LqaYti+Pz7cCtNG2K2QzIsmBM5YLhU84mX/QDITwxRXC1w7Sgm06Hhd6Riny85TNBL1rrprnUfdLDiZDa5Hv+ctn0AVBQxWH/1YBCOojtVrOps7PFEZTjqRL1eaBFuI/aFJX75R/mshy5hA1T3xrk24x8pzWkD6ex86+VkfB3vxzfXtmaKQUnqz3gwWebCUqxwS4BzlVaNCWSu7O1+vfUOsk3TUiXOuCQqG/feikAj+Xmrr0pOqRdDqmHrHgFO19YuT5Ls23dIRPdUjK+MhoqX++M8n2hdiDGrbmQm4Z4vhGu7iNHsESANSJoUa264pHT3VjU5j7fifVfW3dQt+E3/oXJqyw0Ot+ngQ3nhTxjn79oogMGmhuHJI1om+a20tpGFVaZUx8TVOitmHpfPiwK3re8n5ROXaPRN3TNdXtYvJIoYkvh+MN10Gv93m/YVmGJB4whHAKFvlv+o1/KrnpWFMtqHlELCBe8pMrEtL8xBvQSWqNhQZsVg4S/TYDhfrI2kc888FenK8RRrPXEhsfadofX7xhXx/EzIzfoI9BTVFZMsXm7zzNiWpMX0f6E2hADbgHY2camIpI7cF9k/P3/Svk2DrmUeVjtr1ysQm4M1DTdmZiQ3AgDH4LuG8mc+jb6yTrKlOocgVDvTsNKtTgERvYqXN/IGgcbCFpc9NZTrUJf2ekxd+Vg27jiKrCnj4SBzNvmI+CCvdFbnuIuvm81ET2MHfypUeBQIlu8qZxjazR4tyH7esx1Hz1nS2p4t66+j0AtpIEwYzTBMFjw63zWXdS2YUFlzK7FyVH8PKceR0Xnu034WczZbopHyNw7wOPl5hq6p2R1Pdtt+8iAWxwgPrroJfQT0pRkA7N9HwCx1qED/vqQ1J+GdEY5fbeIFwr9fmNaLbaxIRsVhZjHacITe+65mq+ca2NBjQBeLd7KtIXWuGkbuqwIQauOsTz6mQrDUq99lFpile5Pr1eTsa9iKmQXPuCR0KqtbjicrlKVrCcLqCeHNHDurbYB05smIAO7dOvoJCwZKculYvIRwb4kQkbk5QsoHDNPk8TlD/Z6pWz6YdWVDhnvnYTwhQqLKXUISb77WVljdWiyr/jTLWVGopbiNQzNNaZ8GMdQY+4Yei/aKkM/ItUWo8D13oFKpkbdbtXnrUwReV58im+zsHpfwxk9CHJdwPA/qt42k+O094fdX1N3il5axC1UtUNOh27eE8cfdKlVzDEs+kyZ0YthhAcLZ7nMQGCRq2IgxPmNKilWcTsazZ7o3d9sHEMg5q0JuCgf3Uv2JGJBEVwsz/e63sJTdUiYkzmN6ROmBZMMJc7yI8/hyuk/CadRoGk7emlnrC7dhv1yglgqBohQ3tromimwYrTnedh5cJ/SeMKEDkIbfv7Ml+bkTchvw5dcGSB5ppBC1sV68J7qktDQeBL0T3nDULXAhSt0DkUPfmOGiFxqgHGgZNuHwvioC/S1ndyfDjbJsGmrhj/pn2KbcHgmsv0/iFSWsr4uK3P5haKyVDq/fLN+hrwP1NheEV/DnTT49vJivvVdCMHdLVbKlriPdjgLwufZjOHS/bJlh5Yl1PN5hpKNZIxYI/Snh82RKMwtg+Y77alPbPTSkM2ogZL+Jvc9ZapLq5e0tBa1njU2tSeI6p0fG0sTVC24oKk7y42hkTUjvsy6HOPwoETDjXvFErGk8mobD4VIc9bc4STqA/JYck7Z4C4/IZmGQSFoHX23XJEoZIo4sPneLf6F+BgC393dqZbCunPsP2EYQWDd8KvsyYFPbdvcooyZaHIinnPsLwHeWQpvAD7nsLD5/GzftSnNr3pD+ezNOeLXo/lPd5lwL5tlH04YK2Xeh5mJTXNAVtKaAAvLvIqY2rpILr+SjL3wYEwAmsDr71M6V0HYm6B+ZMvD+GxMNCET0T52QqH2ave7GFygsZs9WWc5t0QLbyqMW4sLDgMuM9Gx9mJsqZYoF4Y5fx/Way2R2ppx73T4r+s2gwIzCwLTpzBcr5NJsPccM8LV3CkrlRaJp7Yg4EQKC+eg/2vCi5y7q9auwWabaK+yRkQ+3RXBEcsp9oIuqRa/Rwvt1R/39TvUGygk+v59qarXzHesMtee4xodVXLLbTGB1gvsAex0J/MNsnxe/d3JJqYNIZByP8JzLQ2ah+ihuppAF0o/rsaMssviA2wPjLyE/HHf0SOjUM+vbK50fTheP88jfWoxVkp2STmwF+udZnguu5CtZH7iH+pWFedNoBTHFDR0fgNxxPjQNThmlnR/yrLA5+bLd49PHaiZI6Re+oYFQEva6k7DM4icJaSp6xBdZUrTB7pgnDI092mHQWMBB4UAhmmvhmVnyUZ0AnnbCfafdCMzcNWKmg61uz6jwZANBlphJP0tQ8edbLmAsk5TprzDX5kFW0RxOA9VYWly9sFDIo5qUDsh12suh4laYpKso3Tfumr7ePSM1XirlaP0iM3rzWpAkdRNNlIjjSOfg9ocfW/j5ORCowDRa7xoBwP9woKXrCy6V1sUfvX4lawQ4UHhwf5WKkTsScrNsbHFwWv6nkJ6ncZAZxln9C2Cls6hnRQ0Vd62FI4FdSOYOPnKJJuIenw7kxvv7Y84KPtZ3fuKPAVMndPQFD7VtChgjeLcw5rN2Pha/EI+61guUjWG5qN+N/weXobB/w8SZEJvaPZ4R9AkL6MV5zcL9I3jDVP8/HukVGWVFGt+GABpOlGtt/tYhOHp6GMABCrloMtbsG0SRRKzljiMIWYLSw66yLEyqPhGaw68g4+XCAcpQIgq7WR2q3i7yP/rlPVFisqWoUpGNQMCn/md9NSJLNC1m3bFv6aWlaOs/mCpHVj5qV4J9y/J52FzKbtR8pC/zYDdmrGzW3/uKjLFasaHeZH2kfbwhGUXh2tEVqup5iYUBrOnRT7tOAOi7wpv6nV948OzMFk8K2SYFUhc0xz1AsBH4gOkm/RevNNcySEs4IKFbnq85dRoQi4FHW6PnKT/4IRMpzvXexAl+vN7NJTJo6+1cay2BFK8lUpAvasK9UuOaEhxMctTPdw2d836OUeuWvvwB9bpFKpAslPNssIktVr3iQWpAJB+qE9DG6EUFxbmWAEGMi+6filq75Cr8qL1Ib8t6ACn4FvgY4ykcAkLe3xuy4VH5pyLimOKsxfrPG0ZVL50zCRAa9FsvYO7GXpzyjMilVVA5v4hU2tRgG6Dhy9HkwxYVPcQFNbzvRbzhcaNrzweqVziHaT5x/ooFDUOZGWUAazJp6oYlSBvpA91Ibm3/1Xgs2GaOBpa3Kx27s3sbBVcY5gUZKQgboGKCF5jnZdE0oRBEtUU2zavIthkdiKB74rTcZEOMUlezOVn9TurlfelNQXAISsklIHfu0Ejf7aUR9IK2cUcumIhJhIHI2BHTaIMXFuvFvGwM69YoLsZotqe+X90cDxDnKF029EoX+ngWHIRmRS5bKwCa12ihBR6Rh1hhdOr6M5S4ZO09rH5kx+F7MxFIK3iUh6EIKU7LflUW9gqNAsmVOfDhb6ZU2YQDAllbZmnYkzOfTCjFJ54SyA57g2wOdMexD/zr5waJL2ZaSEhWu97l/KSt+s5QoCXixnmva8IIvvLevXSOUm+6IT2tSwY6RE5le+x/na8PFmLCmZ5L0o4sY6sKGFtrE4ftiABDtA0H+BWp1W0RLTyrkEuhZNGp81J9we7amIIZhqmpKE/w/QcBje6Kls7S4Mhf6VhW/UqkzTfIrwFH1mJFhw/RFSiFfHLodKPIouGi1widQBOnt02FIPsfjuj7RD0mZpbkFT6NSYc1iSmQ4TKxj28fAbm2Fe+OTLXgzpZBUF4Y54eRtIhYURv1DLC+X68DDNa13pRtmsX/PSqYjUJa8Nbpl9ypMdwBS73rcv1Y5Bwhli7Xy777gAdTvE+ohszzkKqp/ovM/YXkz2jZPxEa7wq0zG6/G1RelCvJvIpSEyWaWNzNJtEXrydgG+CzF6EDtRR7Hi8EZKz36jIGXbsmyTF/6NnYPgRisgHcBQlssUDTD43m7WQdLZBizUlx2yu75Mv4iK+1iM+t7BOUa2C3ZYB5cG8UGWTFYPHupTpWDUo1rkdpXWbIHPT0pTQyHhci+e+kW9JpBD8mT3ey4NBa6JKSiEoQ2pvrTzdPwtJ7z8yWESHLpRbCF3kb2shca+OhI2baUv8Sj8CTK1Ti9uPIBaRBLwLAa6KF9h1rEENAEWctwcgp9rgeiL/Xvaigk1YUBvPVqw0esH9KuXIJrqNIsaP/KEBusmKzuPn9frlKxVdM3XcqZbZfVwrC+sBI9TIrohv98VAJw3itB5mBO98MLzuuZePaQPjjA4RaZrQ83I2+svM8tiy5JMu37sYf0hS8RFqSO/blW9rz1tzXU0Y3ApzkHSYBqntcQvBTYVhqdUptWIXgcrpCeW4Rtsr3cDo16YTHxc5Axv83cymig/EEG+3S7WUhwGwt8tTZiYsDcF0JG90qD9kcGIYP4P2YT4owwwQFDxdJeyiaVMBJhCJr2ArCgDaaeUJ9Am7RYQGAx7k8D/Nf66nI01JFdrsGWHq3MHfhWXFshSb/LJtG4ZzBEnpi4mJ3DP/2b/RTHeiZDe2I756bjgkoahSAIrgYiZQkzSVWXPpMG4GYHrOZVWlC63tiuxexFAzi3ZmXobZnaeFlsMqQU2bM1z0TDY6Ub7+tCt372o7n8OgPNinv+b9Vms+jHgYbt1JN4IQ+vxUn0VGVH6qPTHzC+XZnrGDJUX/lXc/FY+EUyoJnkqlBQYjWnv4wG1N+0z7qzh5jD+bAHLFYSrTu+QuVzdRIapKGPeStAmeyNV8dCiODnEbED4utl4+RzLKPRb8EOVD336JLWk9fOWqJrQv5twtkMHke0fC4S41CqMJtikYenVQ9xF6At57gHxTFXGAhbYy9QFmqmDFJ0+v0MiWpf6h4528uK84f3qrx+jq1FNo5DyIlBe1Fa36hqrcH4ygBvEo+Un95Gujf1QeGzKvsKv5oP2B/J/JHlsqy1bJ3TTIvQGg4R98bW9dhdfNXdtQgYeWLlMh8gvvif3VPvQW3wF1484PKY6JtI7SsNNRaoA3gtKRN2exC0GPZ2MWFMjbUty7FqbVEjAMaguCufQSHI7MJ9OXXWaD+/Rz7l5bOL7a3wV6iGP4r51HShgsniYTW7lkHSrw64DYRoiVHI3at0DeXa2OG/UwosO2R8FGA0Pm0Zp+gwfstNFI4O7+Xwcv7wZhplHv2epBP/EOtfMaqc76dDCIfSuecJFgfh9JItYTVZ9aUCL1JzxMnedX9WgKNp3iZ34cMXs/GrD4UOTRjIL1SK3DJ3zg2KqcOtCYUqX97PP5v4e6P+I4ubpIv7VeanGfaMG+hdzBB1yXCWIC5pjNtlpyP378vE+hX2HiERabE/2lMFRGsplCgOtNlZsyITmxMyb0x4/7qLT4C7rl0QtIpFRLhbw2FStVYdHw2WLiW5trPHgThvQj3ZNY9IffQh1+7EswMqYkzuQjGC+TGPfa16V4aenLgi8EIVoVNCU8vSEEQ4LDKquxnCeHG2KxB0OHx+1ZfSplhSUDOcxIyZZFx515c/rVV4LcodSDFFQgNf/OvCTpNui4y6mb+ZRt1P5ood7kOvYi3E0OOvBQS8GSKrFYW+//Xxvm7obHRXoHii7oUjvT41sD16By3PokcpqR1oNXT2hkz+QZ/IlknJNYAqCekqYrGDPRTpiQpWJnNhSRh8plWTJX8VWN/s4S3p6NTpoNIUVsaoJW93sAKgHXXlBdVtaLF4hrtSei/vWXGHkPanEddSCkfo8AIOI3bzGPaSJ+3XvRzBJDBzK1ThuHOYHPB8g6Dks8n4cZ54CtbAXvztM/eBDqNU8a9FC00yTzA42OnhRZQWLAi6kSRTogzN7KyzDc2MfthO4b453/ueOKYyLSVQ8AwgeFo9iKWHu0KKVOxq6euQaILNuugY9ErD3sVYIklds2dLL87yHPmAdka0nn5f+LmyJQPb5fbDlVVRhE+HmmIPbVI3DWCb+pKVFYX54+ii9bAIuO8RLh1ziAjeinuZN5o7lqMhRLQ3/zSSzBFtLjVKfMvOqTo5W3R8SRqzI/AlWUPE6dYBc9NtUFOyEfqofG4idRrFD47hGY0Ed39eNcUDEiGMTGrnWa76ElDvrrGSMD3NJ8ZX66tHYbdWcyLcfKaBacrv8+ndwyMmDe7FWomCMU3soUxDMZiXw0hKZgyM6RpRxKryz2a7xqJm62rmwAiqRsy5Ng8zbBHbvUtA5nrN70HfapMhfM6RHrShwPxqQTfDd/YyHFp7W99Z0Pebv1vHI1pfa6wJbQ57iJlpqxwocEPJ5x5flnNWJCqdmgXPMghIxF9aI9JBfoVaksm+8FdqQZo4XFv2GNyhRjW9MaVGf0OTPStBW4P5j6KX3LpXGH2WcSVpbDR7a1Jcahxv09OJI/yv7Sde6FxTJ/P6dhLQdYWl14XZcgdPwC6ig3PrU50LebLPZ0HCyH1XT3j7+wCaZLTcb0jcxBkgsQE/OTG9rkD+MJNLlJCCJBfLGwr9MdR5UHqHVBeo1wl3dis1OGg45YmDz0z0MQvbvWHMc4hlZ/aYO202yLTvmR1xxo0L6FMXt1kOB2uSbQjC/pCm8tihK9KaBYFz5XofRZVp9tHu2JGWBgoOWk51aTvGI0GqkFunU58liwTl9KvmrefH/PJK63ZlcVGW9/9OilLAjFzpRCtTARkk5UQQtL4Sjd/eUqyp/5bUzUh6raCBejRkl6cm+VNACGI/1/RaooVwO65z9Le5IrFLXkGNO6rE1XGBIHbJAjlpNLahuNPx7UHwFxh/LCCfmBEjQs8ibWe/jLF1ghZ/dFmWnSOwgKVEcsrjJuEqTSXPT86wOKoNH/Xr2KZNQ1Btg9/0arQZAUySonKMAqkcdOIndvybHxyznwAThp3P9w08ymurD8AgFIOvMYiRFa6bph0NuM3V7K8KLEj7pUbG5EQfH4iFehvPH2mvM/NrD0bYoCXrFXMj/1hxZra/vsoldOGFLePxk/0XZMwtRE4bqXE0hTg/8KIXtMqM4JU+D/xgGqjsxdQ0W2b4TKIg4Q6+vAwgofo6Xmyj85sYaeU6RjN0D/Rhfs/+2zFV/p7ig6XW2GJmqH73Y89Wxh3jxPe8+VhRiZBNIui3IpKD3JNidbRKmIvr2/OltjGdYF2UVxIXD6OIGUy7DQjLfVN0gwCY6tMSW+5aoI9AULHvtxP19RsdffWs2U6kG1O31fA2D2Rx+JaDiAWFyTKjq9nW5H6b/X3FZDuzaLspiphl/sMCvkicofZ1BNBuJTxUozNGu361kVRtCMAeJOmgHaMatiiHRBDeP7HmVEtQBDsoRpoBIvkFH8Tq5iVI2EnZeXYFFEUBs090z4HIWsX5Neyhz8ZNvOQwtlgW9Pos4Eqn1oN3ToH3LSZyJ4sKtvs7rJwwC/CMqBJ7mWN+VMMxexqXSJHXSN7VYYbFHspMTc2xs0ZBHA5/a4MyqkBjCtegK4NNdT9BnFCt4pWdzep1jFZOsgoYI3jxmX2SRN0QutloED6qjvvXwKfq9XLwTYXynjawKX8eNZCS7FQreSR8hR8AKoo1knsnAuac/8PJyXHPJ4I6zs7kq4HClIVRlKzU6+LMrqwU+bfddGtspRhL74KaG+RcArtbYBoaQfJd+C4B1Aguen1H6onvJa35NSG62ARZKTxzHtuiEEVNyZrTp7YN+o6NyrWFkrZj8AYZFopEjnzfYxjBlGJmvnU2MeQ5mjKlPA8uF/w58SCHBBmyuXJ3rb/HGN5+GlfspuczrTJtLFgz2Zo8TAiynShrNuR8EFF7CjIGf+H7QbLuLAd8zVDtbB1mtqIjMZk8SwJvTlUiYguCVbWk0Yu8llSaJfd6VK9KejJTvI6SrWXyd9D306Zsu0cdnbkvs/7Px+dHkZ8FMcROm8LCys4DiRdbwNrGeAUkWGhcWjiNq3bdXG2r9OuOB6jfbdiGKvG6/di2+vzRrif9UA2U8rfX4rgF/OEvNCv3ie1zk9j11swCdAN8I/4TOo4EM3gdb47KBEbUC7UeyxpftW7/zBhrUPTUNkd77zlwxsaoPjDn4Unf9UwMpkH3Q75LnM9fiHZeD/aXqwsw4jNtfyuqASdDDI2FA6RX7fZf46dJThA1WGpuzleJV3PiKdUk0fwQJFY3wl0LYCqDek6yRV1vvfjZ4cUa+2x9hkFoLqmxAw8mUOe7LU1JqHINRNAf5k9A3aHxaHKtc4f4olqN5Hd6y2lIHWWPdGj/XHQrC/TLfawfh9S+JFFB9PrkcPEJAkqJQQmZIxEJXk58QulLAUBzk/FMOMSA+GoWLRXfYxxkh1nPBfQyC35yC3NbK1pIN8xXiwDuxCzu32+zT9VIeTV6sDLwBMFIpZaCvVKTG8hw1A9tk0Xk71AjphO8fHrbBzBk29H/bTgFA4zh7fX8aD3CljlyuZtraMyUH/Tkvrx+gxLFbQ4GrXA/lf7BesFkg6YfT1p7jyfONCZMh9+VgJOXYfzCs3w+ermcjJhxMeJloHiqaEhKAdP/OynHx6KSKOP6jQDnnTHdCSCteZXWKi82bkUDUKygaGEjWf3QyvJ6dOQ3Y7OQ41crtRYvLbK7clyHTSasA6T9m9bSssS/BXxCMz/mjEsK2Ao6ADMz0e8m9nXSWPz5Lss/P18GohNM33gvBUqTqTN0Pe6v7q2zOHtKFUv+GZvoUXL/pUYvhZrKmf6SKkUYj8J+Teh0XmV8l9B5FoL8GwXqTHIS2DdO/ffaOQNx785iJ3MOo1IhiZaoKMW1ypl+ZQFPgD8Udz0FEAcSuuU5c4I9BwJfyVBp/1YSZTTx8/TZkSDnpNtSLXWGeX1sktxlRCYr+BJCrfF16g98BWkGVx9D13cRHx0jG5I7JkHa9XUCZG5FEgG0nkska4L6dBk6gbQXp4vQUdDG+MmBzfYZ6lzeZS4wqe6DJy5evQ57SBvgFy8CnTkxtyFi9jZiBL46Uhr1L1WB2m5/ZVLF/JxksrMQJLRJJV3ys/3T2Wv7ZVjG/74guEBV1a9kU8LM5ggB0s3hu07LrUZpZo5aE5t4T1LK1al337Izm+7/WE89zzq70T2tf/9UgrxzFshgDCFGoOO3romkvtd9jtG9N0tVEhgEHlDzRYWiDkeCqtLZT/WVsf1XPeNh3iqPqMhU+EhZoI57CAxbkEPsa22p2/jUELxq8QTB7zhgYvJKrOLkiRruPk53HRad/abvKZa3anc5DNoYT9pGB3MAHNwoC0rp5ssdwcGFgSQQfuGYr63JEjdSv9TvG5d/Mk2YwiJOFAoTWwgFezxrWwkg4AFqWw7HvI25aaezhygwiH2N4bfOp5+EkBi4SQXWAOdrVz/TEqjjU2gUzOH3xhRN9rXCYs+ns0Ptela5xTp4ci5ZKWjANY3V+ALDHYV4OytYX8s4iyqxcdAP4TPj2er+lVHW6F8lV5NLUzR6lMdZekFHYl+lEXoTZ93CRtzQ2kQUWDwQtYT3wYyPOXMk/JH0cLZnLXN5WWmI6+bAitXVSGDXvv/hwMib/vRHOUDGb5OcyXILBK55/0eE+pWbWW/s0R9nLy256lSteaXXfH91D4mqiruLTPAJm+Sm72sOwAnAADwB3oRsUWF2Whyu6hq8HFo2GgIW9g7c7TSnB62w3NzN0f+ET6V2hAxA04oEL9KSCTnzMo52qc3zENHsGCo9cjExnXxnw+wAhqHsFyMgofe8TQel15AdR5lp0PIsIoy42x9CkcaLj3yql62s3NuFnnQ6nCUlNl0QRHUqB/Wp3eaXOp3muJ6fZwRBN9x0C6hP0JdOcVcaIE1A743oezEWJ01YsEQhWhx0cbiyk5L1aQ+a9lBeEnJxLf0GZPh8Zh6EXJSgxa4iB11TK4Yz5gpdcj/Pj2U8LpE+RqHj0QqW7q5rRcdkYJo8b+AcqKZsqCuu+ESRNQZyPMZ/xxkh99kl2IN53SThfoh2OThZUSvnrRI9Xz9s44WWO5SkMx9V4E80S3bolmkpv398p61JFvLIQQfwPS+JULesl1JbXI+Io6gVrmS8cpmEAeu0OgPnHm5ZdsudNLChjcNQouvhbHyfoF9R0LBK4+ENmLDAqSq6y4RbyoF+XrFR/hfkckr2l/Rgl4ti89wkdf4C/Cnk6xRK1JkzRPWG0aVzJYg3GZBM8fw5WXXVTa+taWM1Q7MJ3quFdMM8Gf5fcN5t+fTNEmf7gmRZiTTry/DARhKxRqEHPZGmVCSZcmJ2qQaqcWINoIBNlfZFOnl+Mk6dwRTW/t+dCK7Ka/hzgO68fPNoadN7F7FrwzJqssNwR74o+9GrLkW7NK4fJNmUnTdm2PtPvcv3uQUmrGS2AXMjP3C6lfJa7eCWBiztbJpMlWRig7jSeHebiIQQFVi0BI61rfGcBYeFOZpunWfmGxUcKGUx+UKsv/djkIFftXwImKl8AfwGTnik5FnIEYj7KSqk5X5vhqsoOJ3rzJ4R57k1SVMrtHYAD7c1MOt3Gpnr/9uRxqztunQA6lLFEHFvKZlVW5Ee+lO9F/dKCqdzFhwdHif1UIaEfbcF/MrMP3Hoh1PJFidy/gcPrLo22+hMcdsFAuVwujqHxv88Mp4BwLsX4wdugco3yIn4vthb9xHJyvYMwj5YL46ImuErHeDKFa2MTC4QUZprDghSop+1eEnNoJ1t41tUaDUt/Xn8NQ8Xm/dUissMJ6T4TYR/sjXSwTTFe54YDKMBSa2zoYoOTogu8nyiK2wogoYKJYI/hOKZ5XDEtqlur0BfyV5ipJt1N1T0LPr223QeZqWCpr514zU8LK6kjIvbo4Wh6RqUsGEtrMRYD/z2IOZgDlH9Vn3sPoPBrdnh5kScbOySBKJY6keac/O8jwWHOsRaGcv2UcyJgK9Sh/Ugzi2/m41bda933KXpgdsWuPuybKWFquFizvTNgUnSzRK3ygMasF+S3F/72sa9khVv/uWklGlwmUkaBvVZTHb5dtRb0nbKqRPfUKl/uF1rzLpgTMhO8YFN/iSkA5As66AhW8d/6mcBOfYOABNgSTF1nZ0nuQvYstEmGhAIjdzRuO/4LwCJiFikAjgKQE088w61MQO2tESNeL6/4kydPpz4kuY/RAa4LwjUWlXHjgmG3K9KhmaMCUF3hHxZCFlMwtqJ2zUt2UFTb9u3vGdTNloBDpMb66s2hj2oiUK+72fSgxS6uiQwMUNmRJVfzxFtbsq9jATomnFOaw0lgC535GwHeDDfPYGvwdSJy58wr9dBEWVLrjDM3/RL2fF4a5EFO/gqcPWqL/jGjDBoW2ZT6Uwsk0yD9KAjL5bGJOPP2pFSMvzU2fVk6EyxNmaJsRdg7/1Il32niVTKIrabY+iMtlaTbuqDpw+Q4yRRLM8LTs4HfQeAOAs3H5fe74Jo0Gg6HlCYZsVuZi0bDfzxd8nBHN7HXTHMCCcrevuyZzaMMtjZ5E8iG30eqCQb4do5NiAvxvu6u2xUBHjbNUtzLViSYizje4mgtG2Y1eaoKptQkbjQ2c9OQFiixANtB0tYqmdQ2xNcnLBbAQ7f82qXrxNtzqSj3QIK7hNHuFCdGBJMgVafrb9TbB6GTNkwzjgDcKlVRbqdsDFeDElExeaTn8+8kCZupNAmEWpUFT1rF0DBF86rFQal310jdIH9thRcG80AVfrQqFzyfVGYwWV4nAxoIOHXP0bQNZgF3I4VmVm6n4MFDcmFQsguZf6P+wC5Dwcitppnp93PdcpWJ3//5d4pmkZ1ulVgV9nMAkR9IPBViVtuAipcR3hf7TNuTGW/ijwvDwCk8SkeP5vQMuQhOif3y19E0gFk7Ke7LPDz8TTBsnamTkPzqKHNe6bASzwZyyo6gue3ufpdwaQ/abpqxfa5tbngmLu05d7jU1Egv7TWTmcbFaHpeJM59k/lUZTAp12N+CmzYMJXvtVdyKghun55asQ96q/rQsj69QL5lNUHTqk0zLketgVItkWonMwNrsPzngUNkEMssRzJv88K7ZP1sNHbS8w/koiOCH4XjpyyikFWMl982Lkn5P3f1FLQl9T+BOubFDbHud9xhL5jNFYRbLArsXjXb10K8XHgEQ42I5v814Auqwg7wiPAEkeCBasve133JOI4wAQm9CkaExF851FB0MhhcU2t1D9SyRhTHe9olUT60BVVm98yxe10kBH/gUzL1TdlUoiPzkCt0V1Ixk0BJR1l9lhzCDx7QzoWIilGfVsy9L5t0SJP2eJfFDdVLQUTEaynZHpVIujpzIysMtwL0yR1TNq/POaUUxmeBIBRAQHDheWQgdy0RNo4X4GqpJOpylSyGW4juvU0/6aEuiGzzKvO/o11lxEMQRfLUAxRocwhIvHBSG6Fa5sgv4f4++1y2Ehe4+eGuweSvROq2lzkr02w2fSjwRn704q7de4R8DUk8bYn+NYK4m0ogLagORpDxpuqRRNUGhotpcRmveJ6wXgjy+A+iXyPNJpu/QaaGPPUb1PFrEcHV47uKPfzhZ0n6VAAmv/Y7O6ED173b8q6BS43z1tl1ZDFq9KeegSDEZEnnyv+emQDRzYIjLwrLR8WSWWZK9Iy7ahAkA6FbW7u8bvFZ2kdmu/EIQdSc+FIxju6cTT7tlA7t33gC7irOIhYicPknH9y8neRQyv1jOxvrSr0uzFmS7HVV/QZsXBeMS9jiihxF2KWaAvmEQZTPtFbfibR9rZ5kRKB5CsID+18s5LDXRviaxMAHdaeQ38jXRVaO3bBuAZNyAZERbbPgoWh9S8Cf/2626L/DXlIrsAtUb25bDEUM/RUU58mBAnL8MMCAyR04kBuYNHzx8p8tj4VJv/4rYA8pbtRi8Tb3bKiSizR4I0nop+tEw2+1A0sonyjAfB3hP0QwMl2WiJDocI/5JhyOCJ4+muDItaVvlGsxmz+5nNrxwOnaXevgNc0zOu7gOR2lqZGFRL7VBLPeoJJJwaMYyAjLwxTlQUrvpZfcE5ZrG7xMnl18FF4l6iGXcpegDkfAVMnc8Ls0dLucTkneFp5ZCZb+BqjcSrETZUDU1aOi8VTSV4CIsQ815YIJKhmVubsyrbJXhSd9x50SjmTi5BtBixJ846KCxwMZTVQPh668vpv5rkjpcFcw0lm0yyv85n7E+PFhGARjv+uTfuEjbED74vHGMhEoAOp82dT6aUbTuNXbjeCiaWSRxla3/23YcGN6NGqShz7CqTbc9IlR3y3rsGkyM8On3C1gAF0dlumHS2LZLC7+ZwKJXH4DXgAeF+HaDsGPkf1zEa+FVlsIUosOH5AqxFZfYtBH+2zg3O5w3wuSEArwIV8ngnvkuLT9wWTi5uAcQB/4yDBGt0As+Y5ro2HS0r61WOzopHLUWmsyi2PNOvxnNmrH1Ca03INogW212R2SzhvovAGs7SKcyUHFAI4i51OUCj+iZw3l192UPU/PwWJt6vR5fjvY9EfBxfc1VDa65uHuxlSxmuIeQ9cOe8D4erBMM6zyRb1vWelOAjKoWqnrSdikVCfJ+enI3bVu647w1khCIrFv0CvjuLOPnBo3dT4RalhQPXBkCWo+1gNobevxbhsiCoTXcTib4ypqB1TR4OGsuIrTBKTMUUG02tCruNoiLC9Pp772bpRqtrockdCxqoLoO31si7NXOkax+LKlFxH57snIYFNH63Mhmdx4mlnTSe/+eg4ImS9LXXNmt9dwc8QK4Ligdv2Xi+s6ZdDTI5tjl7UT5B7KBCHD7FIMGKbqMiSYuqjXQjER3dnmHJRiOUV5/ARnSCfdnKiYUPe0SHaSeJXKA2E6DaE+IWhVY4pN6WI5RLiYMHb7vFiDn5OWgUqC2ko/jkOSRq/kfmVHmVGxj5Xxgpvop+/hchMVFR82BbAT/WyxRqERfVWLBSMbWQmizPh5J1VCwWObPwH4vJnmVQWKRGgbVaV7PPYONeqpmYlsV6p1ffUq6t6jGvmHrWYvyySv1hEZ66rFaCa4t7gJvNuL3IxO47v020ZNaNVyMLYLCuXigIcjQ//AC24LKglvV9Jv6PcHSakEcpgP4pwvm1Dx5GAYruAJp8x1CPlXsFft33sLJGSikWr8B2tf/yMIAf5nwMAuvsczdcjLlnOaU39SmkfmfRp628uWGDNpJwQzrgrOGX/4Tc3grbz/Um3oOsFTSfKOWUEZrq8TDBkaqKxKErdNJtc2EFEOBQEMSmkLXIn9PrtadHuncRTSbtqLSmFSmJ8rzYbYPR52d/qeChvO9f0V342wU9xvMnm8z9eKFfH2HA+5VSiljkKVmvXhGhiT7EqqbZjMlZRAACTSk1W0FcJvSwafjRH89s6umkziG2s10qfSUodbHsN/P1+5AziPHZnL7SOxTIMk22Pm9UwGWRkb+jKhLyOmyUPMSYXudoHZmx+JqfdCgNmtonOwOyBU+wBl1Rp0XLFOxEWPXw7nKo9OY7ebwepPVMddV+/4OlA9BtKi3f/qjO5KzBCDhnafwacl1GoRvlPZSpCAb3zDMO0KFxLKTjZ20AJeS6HIVjDlT2UrQCF/XppD6RnDsls2sRCUIH9JwKStk4mYcX+N4o/exsLRq/ZVDDTh9QlpCZ4SG6nHMQLaxukIEFmkVh/ZlsN4Mi8yISQLgQIgwMtut+WJqGpy4IR2wxBIrgiMSN6AEuF0ElhuUEM0yLjGk3xR+ql4PDRsGQkhGdYXaXhmL4TZ8bOSwOcGA+ZqLjkjGLPjoeC8ih8fV5KhvQbA8F8hqVax9kXS8I0Kdq1ekYG8vz2mnlC0QDWWHWflXZQkeFCL9DJAsJVhhEm6wLgvtNFNqmEbPYa0oBQIImi787plHFSujXgFXKMzChYDkrSZHPIHoR38790amhfsQ0xKPuUCrwQeehFw2UD/Sa8OJxxOkLFr5t9MiU43I21prX6Q58WYtTFTWRn4TPPhgdcNLRzYPxRGD2afVVkNQtLzBdDvzAqN7XjRoe+PjikSUcXLqMi+81wCFzjAeKA+mD4wR6lVoq0CCwmGevJid15SqaJ/Su+dPtdxGmkqH23vFzb06FB0QDqHQ+d2Hczi3NDdGVN9tOIWyYUwbVE06Q1Bhr6J2WEYn2PuyA+LftBOByWExqLq8px1gaVoj0q+mMIWvyYWQu+soz8tDdJwt+NOlNpSqrHu1CPfuDsy6SVlxCZhXyQt2h1IZ2qLfoSCIyDXjt4i+bfDg8ajY2/pZlEg7L6Rv843izqTgnRTBmR7bFU41mhC7N1V4t6N3nXJ9L+yOYzz24X+Ul5w2nmhidIQR2ljc6M79NDeFEScIPAnCS5ozLy3vyqs66yr8RuDyt2qKNh3DqzkT6B005EDp8A5eg/Vs8+wGm0Ej9c6BTlgWlB7BeWNc8tvFz2bNJGMQrjpVTYy6BAk0w0vM3Ju+UagKbHnWTJTRdVjNXdgT/c36ERaHWLfGjO99Z3Qnev4BORnwPbPkjcnRBo0i1KLjqyoVUG/5zJ2OfWFb66jp6HJ4/ndx+PZaHPKMMgP5LUkv2C09gjqZfd22j+VaTkNXS6+Fq20QzxDDqp7D5wR8FqXKwT+r4WAF/mVST/Kffh5gxdVE4gKCwoifiOYohTX6kFPtdE+MU1UMSmdA320I31nU715TLE9NRpYS/fypunlWr6Vouk2ZbYffjQ9Kele70xVN5SrJ6qbx0p50BVxu/wArrqn0mjojXi02XdZILdDOFmmsqPlWgf72aofALQlEk7KJIwRP81Fz8kTlUx4+rCxBpCF3oDV5/ATmomikiYR9uxv3+r/JmB7/+o65kBeBdSgAQjuAP3QIlV0nTGBsuETJZzkd+XKOvlZtNQR07NGk2onRh4KzbCNOqYM4umjGwAk7//wn2NJ4AjugMAE33At97rRwDhXk15WxFUw+9n9LiPZPOG5JcwwTN3Pg2gCOsnxsQ4CT8Mr94tjzSOZslR9ezj+/wTuf15MgJ/mjqVQhWMJp/ryLYHhh4Q6G3pfsZmarJr1AbVaPEJXeWilGvPsvAvzyXun7TUf4tWLJq/RWhrP7ve+tSrJrOtoa0pJCUQhUbqQRGqH7YpAaSnc6Dto3QAtcFUBC8N1D9gqpdLAuQ5RNyefWRV2frIsUcf68+pKMIJ9wFClxLEbKuIJJsvCgp94PCj6WasxyiIJ5up7fLRpbsXFUaBSaGrsrqy/h2iZt/MHanKHBx7Z/JJ5aIH5kx/gsMusZ8M9Wz8kvgJAYuw73aWLesJAa1fhjBdMdBSGMEI0mE+Gob+XDyXl+NODWADYd8/mZc3KVvij+ytCEFCMLiFlrtao7YKvqoKcCpeWtrmjOBfvRUoS13qNS7BUURgWnX/qGPf0/KTgQv8vTj3Dq300oXdJ9/fBmkYfnh0a5oDOJchCwRmNas4CsCKC0vavA8TXJo9jcmgi+Ok7y7tJZluYdZWMPY2UOd88Wy4ZNC7aMfqBOTVF5YrNywk99SNaxsOcwcYogxkc7uYK+SmRYHQ++fj34ILjaSQnvy/yipex7a8uOcqsrMPJgPnuCrqCvCEQSQcOz86ol13O7e+Sdj+LSRNurlV+EzTCNT2zVN6yr2dF5hZ5POtyRHnSO/PqDtnnN6C9Btun0eVtFf7qaLmthiyexgS4YXoPmyPzWf1PWGYu3Ubznh7JknX77N6uZ3O0C8lOsVXg6CtJftDrxYha0oJeiPb5O9jN/W55BTI57VzHrm+GFE/fSA1ZDdh+7X/afpe9LOy5wtuUlesLW0YBjNAMGT/uKjsURL7e1btwjQYAXyjSp90SNYd/hkzRDe6qqNhJVdD4ci43oI1eje//l6ZmsoKs+gZhOPpQNz8h55OTtaGNSCJg0xnnaFw+NgzaWZRFrfz+G1eQqZMayG/BSYCJ8c4P1OA1cGvPT3nq6ijI02zOvCfZjp7qa8Usq+L0VplXnOwU6Kdfkyrw3yhaNcuPL2CHCOLNiTEwZ+1MyvM0PIDqTYFsEsndWLMNHPTn392nqe/68otBvBgqQZ4vRVeKLwMHY47kjz2qr/M49/nRdGytJoenEQZMv7UVbmm+kVWzyE1oMM4p6KpWfL989rOx2aq2fkAvLrafhU7yXHbGy0g+0ZSQlZohisglan+YG3NWZJmGPzB4+9T3nLqLLvHC40IZWI1XKplZhNsTYQ1yv7OlPvVacXzUi3UICoumh7exnM4sNmFWv7iXnOldJTA4aj/dt+7KAEX8V2C6HqTPPX8C2azSS25Ze/oiYe2MSpTINLw8gu5m0ZCQsGtzmQAECIL5mcezXNe8ts6RlU0013KxolRsEGwl6HzfBfjVSUOcfbK7Kkj0kE0z3NQJT1cB0up2dW9YQhD0pUBWKlelXFvtHXv+UIogRRIdvy1yHpX82+2FiZehobtU5bJsMflWNVLY/CRWzkIWW5e7VCg6AkE2YYruLnnlbxMnoXDG60u8aCntQGvvyjMPLcC9dvh6ZT/sAgRGQWOCi7OjEhBLY5l/Wpyp3H6zEdmFFNMjMlVCzjmkVCF7rsOrqJvTWFMTLxWHNS6MFT+ILnya5mkHMyG6G9YJGHKCw2Di7n5sXJJPYxhaH9bjAloc3yPB/v1oUqi8kqrTKzBoyspPyAaIT4LjnYdwEqjiKjcsRveIR+TG6zad30zFEWKp3gg/9gZlct9DCh11WMJqiqP5f7ae85PKQgyi2kzLKCcp+xfJr9wjhiYAepvV/npckgrims2FbPODDs68I2E+foNb/y4Qe6aD5+yol44wa3w3kigx33VJz6lprAooY9dzHBQpqAjnEOcNdPxrBW2OIthizhOjQduUkLzDEcSnp7c7ihX87U8vmzfF76bdxDJNwJiYh3tONSFL/BUA76fiKUuZmrFq0GOmM6onI2GGMV9fADNFKYm19g+6wWYjiq+bgfGWjfv/LV/IBNKpOgXtsDEw/I963bx3izPLysTbmIpjNhMGuv41jJG7u/07xoUBgVHu3sJBIolj2G2FlCe+ewJvmryg8kbP2xo12Qu7gikLnFgYTiu6wqvkCYvAJOYzYO5W7K57R6j62FQgC2m2KHv25L5InDEolMUMIa0GROwHA0/gKH2H+P01Yi+2sO9uOw+4enaTHq0wriKY39Pcy/Suhu+Fo777oAmJNWXKyKq4Up1GlSRhPcMG+/TGzobKqtADItrQtiXxq5J5biAxUb4E1pxv5BZuct+/hlU56A8Xc2ceaH1iyY1vBSjG5wPuzyH8MZ8SxBRcqgL4//2npUIYADiOlMbt4PrjFnnterx8WZ2HWSjG/LnC/d9vj77lUHQHMMwoWx7Ef8LeMum5KaNBTmPLaIenYtl7JjeTNptBlAjBQa3lzl6gEO2CBqSb+m3PLjdmLNp5fc0yNcaxq+sVwz72s+1efuPhaDF9JTsyvFl7Bfbo6LJc6ouYcxafkH+WUSAtiU6fUNlIjqVB3ITlnwi2TfAdZBrhQuvk77HXRJNXQAX+VER92YeM2SrveNOLXkFgThmfDDRk0rrDdAP46y2KgL0jczgw8kNIbfR4UwRQQp/T23IssHEdIchXBqlXPHa6AshMy2jVSfpW94bxwM8htYf0VV08TvLTUV1LW+FunJ0RZ2JfwxamAPuKqpgn/ZUxksaosiljaH0aCyUO/A7tK9Ets1p0XxHfYQzu5b8UCP8jsVoMaxoaJaPvpST1uFazkcy9Weu1qTmodx4q87Tqf82vYYNyBOLA5fD1kfRZ7zQC3fT16O10MGAB4EQLA2Zm5MkcqzwMNLX6tsU+leNOd8YYCA+h1nsSE4oB6RG2JgT1voEgCAjYMd+3jcvWB7tsYhTSA8KbEy5ddpJ/IwfbyGw3/aV2ValHMytwCZI6kZVSRBJz7KuKCu6pPDYjUyFgNBVblT3/5tKs6mTBezfwRX+hHz8r2YdggnJq2NQ1EKqBfQUsQW2h+Q4PqcGwlGqWtoKp6DVTiriuck/kwZbkf5rzw89kAzSZowlFGMlYBcUs+Bam5C+YFbb/lC19Mrl1KSzvlRwiwVxyiIyI6lHA0foDgTX7V+cWLKMeNRBDPisVF65hwWsz2HyiM8IBBjRmkbiGU9ppsaQu7CUR2OBYGOXv6N4eePd0x0YC4rFCxzX4/msC/a2/j0QyYN0wKYZfx7UMfJVhPzuzLxFKHRojOweLozJvFk1Chonygi6MtmjSEJMSiF8ZkvzE+5mf31gzrUVjSg8I/aeQaBw7GabseewoFsfkjyXhoIQbH1L/5EyFCPD9wDyTm6FtZTsn7lD/DIzMFNPhdMYoGKUf116Sr4ceH1/TOJsrOn/h2FFZ/Dmove5s8pHdOP9bQbELABRmY3KIsbDQXEjCNo+v8lCkSkrS0NQfaophow2U7CootmHPjN8+WveTL8nRkDcVolx6Jfeu4RmuGNVkzDuQVGA0C5PC5hUHc2kgP0OdnV0rTFA22ggaR/7d8G7CIAaKIByAFE4jW11GOQG9ACHlNrVOZT3HmwlBHEe/gnRwzh8corTDsMmG3Gj0HmveJZ9RGfx2dPg67bEMxD2iyAh+EFe1dHGP3CaAlkio0X4zhv9o3D6kUw74libo2YPWbyrI41Q7ztToWmKTXZG4DRjCxl6a5qsj9yY33uDVZcEryP1GhCMSG4OzfJNw9/liHxQ7DP7DP9FzIU86714RsJlCpECCfBrIUOTstegaKHE3Q+Hq5ummz6cvQoEuE2KUFuaPFS3KZI7dNA7/yTv1PMeHMQSUy1gwF7R5q9yElbE+jDrZHbIw5yz326kMOFUQa3VMC9u9G/2X+WLmbytbj7q8g9fIjhSQzj0bDRR9ls0UHwQDjB0KEFEIY3eiGjfHqRvflAH0wpYfUlevfFpSwbOKYnV1i8guUfIPcz9CDSSbi3HYzTSdMDCmRUHh2Fxl69Me9omLtkICbqkgQhxpE/CFgV4+MO5pYLPBhOUHSPmqqCldvUmOXRu1UC/1JVtJ0Jksm2dYWN28jELFErnvmgkk4c0iK58tiifYtskMAJBiJBef7AS2FXVbwEvCZ9foffk2vS/Q44ZFODt/+kI5jTm9hECovhNNj6zMnYXsmOrQzyQDnD863mIP7oIa5+6c5hkG3ytHt4MZIbUZE3tX23dKjTyB2Ax3GKGQdYiErliPAy7gxs4GnXSE/e0NIDarXt+XuqhzyvJQd+7I332QtdP1eKAk0NO0e5rvW6zHbHY2/SFhGf+2JRBpr3/GZtG5z680D96tznBsGUELOUhCfhptuzeweunqdwzuW8vj2pC0P74GwmuAOmZgvYv4WIjYi35GCaoxPDF2l0vO2wkSHsOxdP7791UF5haQmUSuBdkzK21Nw3Jbb8QS+lW5msHqxJXd3wsc3duL82pSap9QBBgbK1VKc36H6Sn7e3237Oa2o37m2BQU+FuG8KKwv5hIZungixafnt7huWCkMyKB9qpPU09LM4Mio5E6VsrP4SfUnY4xFKvnleM+DuAKfb8yub57QQAszn2TZRHbO1f/Rp8YhOQY4h0wJ/2NkWHr4YONMq2gJq/x/fQOoufBvZbvbr4JDaS7FNRdBQmdC26y9aT4H0PSsiY2QqP/7UUoxcmYjFGOQe7ARKqlsNnH3lUy9gydSoyWSs6AxJIbZ4u/7LsCSqAkZXlLcf9Ds34okONfzTLeUfVdbiIrFW3MjDgFwQP2cAYa3arE0aBabpShWiq2u58K3cUdKfKp7NwYNuI2X8bR0hDK1I9r1FovFeiZwwbccotD4AcVYSn7TYqrNR+8UEg9vfGH/XVDRzEnjDHNWGHRcy6SxdCyRWQ6F+mdAZBK3kZmh+SLXrjKfHWFeAbtOHIZ/UbsMPVmyt7zyMm8rTvpc+IXZX5HOQp/WS/0s7vNzwqVf6M8IzQJKPBR7+s6ouejC3bc1pGiW3TQ5gf+oLophDH2RjCJEWi4sJc9ARH2JNeilcXjceFmAkAnTDqL3wVHAF4O24G52hFkl8KFIqQb2o7qlheYqSRdMG0v7rhSIUUJdvUUB/JyUTkXIQnEgkY9666mt6o2nUBNV3JdNwKbq+TAmT3U3myIu6LjkXU2u0xY3q6OEYv4oA9lT7T4gJPSFHuTcKLwLHReH34HyzWhh2fOb1eG7jLpJgTLMAQ8Hu2tlxo10eQCZBVKeMcONNrIDUCzFlf7RuhwnpXQ0mEThO6WD9kdj96nl6AI6hUeBJNdQOMWKz1xsM6XNhu3upqTS8UsMEeANDK3TtJ+pwc8ZMFldY9mbwKdvtNu0VgP/fXAmJTXP5WLw5QXGYykyVzbhv8GwH8ypkHIS13dkqsgyjSd0+a33Ot7pkyMZXn5uxTiwK6NOyuMCwmhw/TJ3kKhXtglspNmy7CVfVcYsD8N80xecou/UmhcZ9RIf4PDoLj2omlZvq775s0CqCbcDzl51r7zWCGDG6r9FzntRFTLJUXEdgxYI+jNuEaGezXb3saAdlqspPtU5f/8hs4tOqLOBd2V2kjE8rb6bCCz1CPAKs3EBOLcafL+uytvVKXHz38CxYtShpgEDPdEiPaukvno4XJDDugXd1sT0X0UIVdoyh5TNHFaMnUTYRzWUd55UqE0MbFTrLeV43PetTsarQVZs6ypEm/G1q/HJ1ToClFwEYGiGkl68KHCGYcvuftm/mlPUjBZSgWQRICEowP1yLnvVD7lQOVVfCm5XqNZ/D7utPvqecm+9QGE4SmiT4cq1MOYgWtiMIw25FR3uiRQFr/1uBEXcB8RPCBYt1X2stF3IF0jT+cwF4o/DlvBnYwx3DCaJzTh9Hzs0SvfvbZGLpnJc6u+yXMwf1GM/hW6HnckF/OzXdNqSnm8Pr3b035YaLpk9iIbrO5usJPEpjfoHi1bm+ViLiWJQUYj5VOW0OyFsWZAqR7Z1+VUj1Q7mnpdG6qgXDqCH+fOZPX0cW+67hevXIhufszNIFUMDbuu4BmKzklxK1gO3eYHPbmvnYfZR9IBI0Im18IregryJbFezPZ8DFxqLsMkXynPktrxIekrvotdI8SHAG79HfeAwVrROL726O5eNzCbdQOW7Ty+xNOMxqJ/CQHNbJzPmhAyH9WYwFn4oIKUC3R7oR2m18qWXsIn16zx3VTCFL7js90saunNemSWX7QUyWvpBcM+/a6Bg1ecs6WrFHW9feUa4BTgwUgAXHy/OwkYZIi/INxlq+Rc1LwXUe3Yg926Yt3Er1clyybXilOoVUp+20qptcQKUzvwT3PaOwBYYmk6RkTGKyVULqtiK5tPay4AXhTLcaNIKPgeo+dBmnM5DjKNxxl6URa5PWqcleUJ2KRopop41O9d0FCtvn7u1BD2yq+NdfkfnDvk0g8nLBnRY+bf6lQHJTsMeq8DhYvAYbXmudmRa8pstqJG/ii8A3WmzCeMqQRWqfixxuy/IbWT2kBy2e12ERtzuZKgQ/CsmmDai/1nulzDDxj1S/rUSTShRx45AEcLuYG8kTOqdPzD3n/8Hxr6dVdD36jZlHG3pEUdoFw5FHHmgqVSjsmUkHz4DiEISIA9oWc9Tht/nZCW7mjWSz683deoHkNBvG+89dfCAJyjnyI1ZMLl3hv+wp6jqKMF4PskEfz4wy45UuEl9SCNG3Ci4Gk4zV32YmjF2YdmMUEXXMG/a3oMYsiJ4dCksYeYH2OJxsHt0DqpWzr4DjcudMlenVo5iYOMoivF+4/76aFeLb0Pkg2uFM4adeEncA1NVNYG7MmhL9YGaWk+17LySHeQpYNX8JGA8O8eCKSsY7BpMKq+wI6NJrcQPFpULWrKmKFXto9mlU0oYUHUHfjbZ5eSYKFkSUmer7SmVbFtr+uCrsnfkMPFOd4fAqo03SdBkxJAkESZXYbirfLB/R7rU4WZt+mDSe5GVr45gHEZKjjR+WfP7ZjdkbMZPtr8pP8MwK6/Pdtp7p6/3FOj+AHWkcEIVEUc1DEnGV1FmGjX9u1c/CmG12yF5V0yYIejUXrrx9I4t2VAMEhbfS7U/wBoAF7NRTAeVr6rV/zlRg87Q+YKcQaP3sz4kihQfMSRj8B/YEydmLmEm5+ajYTA5nw1mU8IlKGoxMGwgep+CQtaDw7ekJXovvUO7rPsl6z3ZRHBje5gEKszZ9FRXVHMmT7OZdxtiW5Jzsiy81oRhKDR+EbpZ4HCwhP1GDDI8tKndPDaGO7XbFTYaP0Qn2tdZbIaxIPA7TJk5N/BboFUGh8k0uisPEx7NOQJ3qygj59a5HkixiZMbYa0zTL5GyHSbP3XpQVPkIn0Ze4cuX23QEXUq5NPZMhJWaOWqWrsiXNawpPa/tgnuZmgryrbcK1x7k2DZmcR3iF63d3Jt3S6t1TvEovfmNTzAFem6TO4cPj0eRB5jLQ6FWa/QZlU+RXtwrMct/uNrkAuJqBMXkcf1+NDcxtTCUiYbGGZuX/cPn0XXfdntrxyFu1DUL++9DbVnVE16knjMk0RRQ3MBKCxMNfGOczO32BaHoucdC2xbD/RLrku+L72XNcISINBagG4I/jOCDSXhjmSaCgBhsUc0mtriC1wkaK3OI/B3MDgWM6wLJ7iso7S2Fllx9nNReN71XrwBQVBw5Ev2Z87Lhc0U0wB191TwcG6UazGWhOOrmSxlfa872AaU65DBj+/tSWw4PrVzMhu1c0ctvcnuYvBj3FZ2QfR4FC7e1EboRsB+0qp2o7NFJiXVhIQ9hx3oCLjC0b5zD5vTbdeuOuPC0drPtVvTCW8JxZ6o43VAc/4uuI/n7XyrIG9Zd2DXyom7Im0pMNUMNTGSjJKADihRPeg09teCLH/ZiQKaipOHlWAojGw11RQV5iE/wG/vGSiZD42u2ER+M1rGqotk7xtextGb9UxBsumMiytGFAlvOmGaNfnLCdxckq/771teMVHzPW+0bKDtmxFByfWtWgtYPPTVoX+piAvpmKW+DWVFvIJt//rF6FpSuqP3ypLtvJRFshyefqqWnrn8rtjMO2BohB8ONUpUqOsItiTN9m8FAsZF/e7UpGptKUicPHTR1sjQgZ+3bddI/2ADY0d6uVv2oQKy64iDtiwSJH1cqtKH3rM/6rAuw/lsBxNehjOLcsg/col/xegjl9wz2PiWN6P+D3XgMGix9pzmP+Md5tRpFX6zRrXguGtOfvLYd0qDllNIQ3Kozm0O9Vi4J5c4YMvFodhKoeNqGQ+riGBgN1yeh16mAGx4CBJC0tHDILXf+55+VOx9g+kd1lmr8UpiW6aJ7WtO4IiKTd4LQUF1YcFmPIevaqxHerU54YMpdjnrzOH62bM3UIyeheVbFUspnljHWFO9OG0PfxHE+J5a72mvrwwUvgBw6kpHrqrGc+28wh/MHmpa89meDDd1108rnjyUo+QCtUFiRRa7eJGe7pCpFXxiaeH4aXj8yVVoLUAE37qyRYbCQlBQ+ChP8KbfAJDOEDIvkRZ5168dbR3j5IK17wcodfY59AkgKaDzjYqX8KW1TzeiEidECkkqi/PBULCBfkYlilEj8n+aShBt82X56rocNkeE32CF6KiBFqjkVXIocZNjdYiIR2qUnzF3ru0yV8iSVOldRka0PON/drkuYy4PbEYBcLqdvCCL+Nfd4Jt1kbQ0YC7CCnR3g6ky4jUkIa1h3zYQM2EWx3bH5wKrVAyD278lkZ3Ldffz1/g/SynOKNA9Gq5fuhyqnzHoKd6ejx75H7hFl4ZbR9Q2JYVhJncG3DNXQ3Y+d9dse2gdzTyyhs0m/clElhNT++PwMwajTP3LGnC00LVwuUT+H4N2RdwZMZ6hVdCzwq7CYFQe6zP4uqB+gZtGS6h4/7g2kcs0ZCh4wGFp+pDLWh5h8+jTKkXvGHrnvoWIhksyyA16395uvvvgGBDpiKHvUjtpadOikLTYxKTqjxm9YyednmPVNMCmEasZFvCShHfKPMOKS0ZkRTTn2lkr4lMSv1vvpKaNLA5GWIFVtvK0y/a6GFRjL8MuHRzQY49+gzSeAXzFHkkeXpioJGcnJe8gI3mQZuFvgePH+r+LruuPn6gY2eNFDOL8KPjePKAErl6es6JIQvF+KNzRPsNAHExzGBIhLY3K3IC62uYIygUsmsb2gCtO4SazKNzswOIWLpvU1IXtc4r2iOGY9dJ3dtIxMU8Doj8lU7DgsouzGViz5yGam9IBiYdMSS3AOraIcisIqx3mLFXZh1sXxabaxkNR9+ckxGjralZ4rk5g9ctjKOheadRUw0alOPMe9gLIyVWA0mlyuyGRn88DeXuSYStTQEbsnzIm44c5Clz9f1CfIYfy4uoD5R+E78yU8Cw6lqhklsNcRr9omubRh42ZOcRuEYKzKGfncZ4akRJYV53frzXDE7cLmpGHeQDFP7E8Jcj58eHI+xcY4wH5B6ptA9sYbQhFljOQA5ApMpP32CvA1rbJ5Ofk2dHcW/FyJ3okSOSImCr5BngRd80e66z9BUVIj4vTRY7p4Tp5wUehZrzNf807u4y58Il7+KCRK+A8DznRFdaccg1pis4lhkeymBnqG8BDZO6YHmnQR8qIL0DE2k5B//V11so1pRRUHiSqnJxl9600az51+DI7AO8SP1ieyNSCKfjmw68/33CIhc+F7u4wluv9j4ivQomwGxWqdXk2vA9cyYKZDc8ZIrKej509EtYCa309teYFpl3IyI5VSa5H9VZLP4+6tr8/XQI/miDCY+F1OBCm1isboYwGP/73nlzZY+Lqj32mPDDN2OsyKEA7a8AseFd+qce3VbellTGU8Bf1ncWQ6KUczbB5wQl+xGAh9nwg4E0Jw+JS7dXoyssz5755dbgQB4jQ+yCCC/C/P8s+zErdM7kPm00gMXW7Wonh8kHZflAEajyn3V0ytGHR3iQ7K+5uRjCL3oFXWyB9tqVucI/7IiSOXKcCdYU2SYJos6Rw5W7qg2rowl/INTPsi8q7hO3EKW1XHz0x2+dvXlqmvM953lR7NIRJpe8FeVGSHX4HRygIY4nj8zfeuX8JYnWAPCseMg9l2AEI9FvvtAe2HrKaCmD0zT5+Ok7bUfDAkaiTMeeI0d7D1HrTxjp5QJzUlnCD50HiG9ExEatBIqwBjjVg1KWWi782a+cGiIKtWlFRDr4Et4N7eDJ8ri+Op1HxzWRN/4r8ST1A6zxVFoflxZK3u17JhlB1Dupp/SaGUEgUFzJLREro9m6TGwe0yG5OR0O0hSSmfG8BbbUtpqp/m765W9fovuIiHXZxHkHzqPazV+tKShM6K2u/CM9RXwtGAUELBLQqv301G4AGaiK7/qEmOSiUKA+L4mwAapcRZwWU3gH7RKCyzzVcKgAdc5U3tJ/BKYPUzrxre/y0wfdSAYHPoVp6iJRSGPv7EtzJQXTat7IqKAhjxBq5EnKkw2DYVvrkA2rX17yBWi96dB+bucya+WcNEIV6kdckChTQngSWk10lJw8FaWxJ680GlnsldgKJG0nvqSWGP4WOHBLx4QQ+g2GrZwTX0XcXkQrM1SY3WOJFKlzFSFlaXTdoKwORhv43S9dhJ4B1NAA1BAiseAWRf6tsHFC9Vb4kQzad74NeYLf077LVXPguWG7DyPf3fZ3EBsMZBTfhl+AvK2zwUuT69kpSXk1GjfZSzNhEyICRjtMqkU/3/pG3vrUfAEE2/IgONJjocpsnIg12esZEzk5Bs28UkpxFpdiobtsoqyT3NntGE9Ma+ECjAZXDkrAN4NVtSFOBb2HvskJrKq7mgygmG2sSE5amUpxGN16iTVZi4C995mANGPwbpil4kt3cDSiQrnGInyCF+O2lf9GbtwPBtwjkl/VGw0rwCH3t50ZuUDrGunDFgMkEFJY075io+PSnSPOla1QGFdIIlaDnka124y53E2TNwekIjjtJF6ouBBV8wGYKqTP2O5IHR9yEZ6R2FtjUS5Qds0eJrqVtF7hXSLP2swid7mJPPff6iypiZ3HepzPh8k1mRYgyh/Cy7kYgEb4ggmfrsiW8mpYQgLXNzE2KPVBOivMVqh1QOq5atpR2048cg9R6+euoZeKto7NhIA3e0Jq31wlO7EKHEhPTc4qQp8l37dSUBoy9WRSecOqxmtReBe3V31Gwuif0zGjqt9+m/jsaF1XojHEEoQdyPJcSt5cBsHoA7C2Ofb0aecNYutWfwTF9NJA6uTjLEclUBR9AHt6CREyE/rgoc9BhAtA/aYqzQjdZlXJOZLzhOyanxDjr2Eot4EMPBlC7vFPS8buXyhhwOcMUJcy3owNaVK1BBKmBirWI2fVo307qUekRSKOAAoluhpOHq86cfYqGLaX52+Cpr0s2UW069zWUPSU3kRFfMSBhTe0Tz/XqZwgGsqVRliFC7FUuaIQhxVThrCKr5O77BUNodftfaKeBMdtw8SX/79Kcwhdd7xaLSa6N7tVWCLgS5hCHWU+B2xSh8iIzgZ4mEixaEqW7S6WLdjoVr8sqN692Om0ROuOLuL3sW1QtGmTuSTc4cXftH/BGzKDLZkxf42wNKugUd+gcSx8zUxFZXXNaQEYjmLEgAXURRM5XBVRx1G13vSt1lkgn1v3efhDGh9+xC7N292TiX4d3XHAhzt6WPFQBify0+omRiGSGp48UrLKsYZGFVAnO/s63yV8ADrzqq7RuFWV7iIkpeNlY1FuyVAunSO8qxzAD4jtcFh/zCAgZZYliIX8DSlSFF7dXKUxbpNXgHpMeZpSsJ90/lZvs3Iahvrn2v7FpBnL1V9KqN9nQkl++u/Q0E2SVtfMS0r5gNSWGmRHco5zo6PBOnaOv0swO7r2KOU9Dn0XtQbn4Zl2OUeweyFuhcRLiU+SgcvZXtYQuwMXwCc/XDpaU4cKWzPESSxOIu29KXNEb2t82wwRLBRMXkgi2c2hH71WV5en0nDzogVrQV7PSna5kK9xtUvsKoB4dDx0YD07PIW/vQYGXuujcw9HAUKfI4EEnF85I/FZVqMJGweMj6lCyn7l2OldTboFlrN2gL6IRl3w13B434yuZs0xLEJAOQEgnvMg8KY7q0BOD40JkPsvs1Y2P/1j7v4oR4byO3deaRqvwUnTsyONJ6Fqn3Ouctph1jwwc7ZnBi/8XkNq0scVgNlkpG6by0N3CdtPh4e4JkRgAqOVuV9hduY5nh/uShMxxVV9o4gcDTV9Wl0u4syaySr2deJPrCkMlSXUiJ8jxkkZ0xt3FXZW4QqkvATNlds0XVquUxJrInk0I7UX8SrM66cb/Yr19SlsXXcKwt4hxwRMloqaV29JsB5MZpK8RdTMka4X5swp67FFnVpw+fhvel/a23M15TMS+ejggFPD+KNEv6IEriMhBLHtl9z56v2vEKOK2aJSWreQ+e4VdD6Y0/9GN9ONrRhiJyWs8A8eEJvWMkZXZxQ79JCtAlo4JDLlXnRHblH4yo/Qdo8dE+VuPuKxr399dv2qCMCH11Ih6Ugm00gvICKhA39ibDHGAg6Rg9+om5kVAgwdqOflb4+787VUQdSnaLCmJEdHVkur3QJWBEal8Aatf7f6VYGaMthzBy+0rmQiU1G5BvxWr7ygRiF9+gf/xI6aoxFOMkxz7fXuxvai0zL4tGpa5h4LYiW/F2lOE+2qhteVfn/5Oyvj9b1TSLV9gtvq0vIYT9XzojkUX/5FYLG2vfhFpQiI0OJY4d1g56giwtmS5ATOY5tRFSxLYfy/+PDYTXecHi5lZP2gXkH2EatuKNBjARTAMkgJXY/2gxz3/qwWtYfqakl0oOWYdSF6U+MzXUhvexRQfxrgQpk+FEOWB8FfLxkZNeGdr80Hn2G48ZeiF4R4G+FKD9tb/i1ebQ08eDr6zCPTZaduboDoLjzRGgdXhulHfFPLpga+przW08Ghijt5E3NbaQ7tW56IRRr4OEnfh5zHEPwqXnVvgGJBQ0SWvLK0B+hOdVUwl3UQnSbNTPRM9rM9jB+c03LB32keSn/ukeqBoinxz4Izk5MgNoMEVI0SeqG4g33Kh4G1YOsbjfdHx146KvofYe1CpkqmUD84qHgQrAT3UcUrS2G5prBuiySKmtYZVmpVIHSPbU0082h+VHEjPUjPYDeCqFUIDVVGYzIg3B4DrW6b8eg046MCoLHPL7OchT2REF2/ufucS66RebRjqGzqFg16NMChnek0gNRMgcvNiQxpSxHWe281knH3jc2579FHGbAREPs3fxaHuaeYBb0aFJQJXyCtqhOyKhrtqJ2+W/w3YODK8KN3jzZR8R8wzqOf7tF6TzCCZPPWIZE0a6TEZ/nRbIsQuQlT6SqZm/JTwbkuaOdXEcT1S952CTA25KXBV378QSR1AIWdCqIaSE633idSye8Q2ZX6KGSDZW0P1FfUvqTllDc9IrAxEEdaWQzTdv08fU8HSUzmzsNrUPJYsvU5HI8sd6NVjmJTW7wVa6Uz1dxMZtWZZt1j07v+hazkSa6nbtBxBrqcBX8XH160lWEsgAfinhvFNHoFd/Nd1BC/JZl0TW/sr1nwYofcaTPZcsAy+tVUJsDgNX85fCb3IHvTwkMGCDLtZEVYKLCsSTUy/P6pvzckITL7ryxtiX5bquo5JOYQ5rDrCfeZEMhDoBpmz3eZYZNyFGeTq6df5WSFnylYK1h1VeUvOLK/3Di255NMN28iyX7jlf5qOgpxjLSJSrDIq+U8EtaP9LNf+3vAyM3p4wTd0GoDI/LwdfxMdjQ9Q1C4fx8O+D6OrVmB0WzcPZ8PX8VTrOGa8R8aUI/NqYcAvwi+I39S1s3izU6UsC2sQwZhkxU/JpbAn4cdGDsJynbgHZnRVF7ZFWjGEG7QSUNji+Sq8x54V73sAESdCz6rSZ9xqmcCwIyf9XfTSH9pHz4GCqLKWqdE2svIpn1fkz3c/UfMFSiFQUpT+I5LgVCnfIzzfxdYfZv3+52GolIPtIHOD30KjPU0GJDMBcyrs+ma9OvwtZPSQPIoPSpNIDjNFg26gARMvf6k711Dykr5M+ZezJMBysqZSjw7OG2M+7dSBVwoENMTxBaR7Nz0qFIM+m5peILJ9ooiqrDMB8yGooG+95jN4NMbClmRJKXVik5wCl5JoadXgLgwFAyzNpwsJ0FTQCvPnEVcxeeqjYmbY4ex5m7I5xqh366YQW18xZ9uJPsyzbMHqsV7N0AiYgDw+8OMlHH/i3piorZx78azMM9R+Dr+x+WuxK3JNEep1BD7+RO21GVzzjxkDRJU30l/di2wjRA92AsfVa0/2N/iao+HNZr3tjbYW9MF2dECGCHOln1+5HQA+RHWAlOUvl8OX2IcudyWXm2BZzVIC5MXmOnyj+iNu5VdwSUNYvFR8f9W8BJaMJbmo+kOEN6ZM1U3fsMkAbbwn7LFgf4tzlTYfmGVNjsLEQ1ajJlapIFueup7GzrNT+Nv8sGyxTi4vZQ33G1WQ0eEzethAfLX+ajf2AnnHj1l9PO5kyGMPzzlIf54yICqcDP5ZNFyd9ZRFvB6X77JTf0nqqHZUurjmMWxczDiqRqjNL0tRXpq1thAb266S8QMx7AhjSoCOOgF1rUhgbyYUmfMACRmBn+7dIyQfCiU1t5aPYAjGAvJuVKfoQCfbLGg3R2QaB+zclDu4WcUkcrMBxJ3zggAV5weRfr/dEq9fqGm49ZUmaBE5+FCqUUXYH2nnzLNPxh6fZN30nkXaG3HhGLUFvggRegFDOdPlfcy3skER3J6LLz28mN4Ww7AiHaxj74AyThsO788/DKLGwOcELbpyAiB/fss8r6UZpQv6K7I2xxl/5TQylHEl5Os3gEJQYp6+6ICc8z5hM64i8sbcwGgKCTEpIt4H/5PdACXCavqg5nOItWDrBGhsn0WsHhBbREAdGYxJg6vamA6eT9Ribf2+7Hnck6Z1dLAUU6d6XRHGhEKlpMyXyTVMNF3N3DjGZzUthYoOyoVxps8OH+Kg/Ox/DAFp47uE5XSNwIKYNLHOsnFObqxQs+P/abQ8YekzfA+/FABqaeBFj4SWqDdkY9+4RRwpKmP11/nqOKDyGZeRvtspBN4AVR5qrKUx1f9XscyGK+5YgxC++jTE79zDlkkzWZQBu33XAhIUZx55PTq6CvdLMhMv5OeSNSH93JD/3/ONkGPoLDps2Rv3gXs+a8jbovDywX38K68t6qDYr3QzwvO4geOsEPbZ8/9+f974wBqdGIonitRb6uBgytGwMF2zWfVHFUM5hZIuQywJ7HMSTKq0zVyBMaIFAsZ4wKXCZmG1RQ2b8vjQqNRGXU5UhKPU0kYkZl98mcB7smrGVLmCV7Php2kpu967qQRZmI2Eye7rqqqZeUGnfoy6frYTVqDo+l3Y4MeeP6+B/2pZyH2vHZ15ZN3buptP9KpO9Gd0B0s1EnIF0KnbE9muXvg/pIYintcmGArOogigmYo+Cwi0cnUJEmCdbGl/yuKVAJu6WcjZOURUPe7hSceTvu6V1v4+UX3p5DNWjDhqFEZyOAIYCzH0QHNYcguuw2bYE8iQz2a9tp6T0ngYWI+2BqPk1N8BAC/tF8vGTTZkCmuEib4EtHLBaoa5sQSMxzrgDG4ONMHAO8ngJT84pwqsdhI5YAS695kAo0an51OuwK6CeaROEPbSnid9P6DeOuGdR6y5Y8n3ddvjl72dtU/W8rRq5/ukA82wvsYqqbupkZkbLBaeFcSxQnhq9sMqBnB8gbD2TMAXtcIw5kFOrAtsYEvd7bDjm+g1kZzHNcud5/Y/Vmh+3kDYUhG9cGoFXIdCiJ5djWZbGiWfeinBl9/PkALbFo+ShJSETktE6uwBCo0dM/NRqGfC9fy2JCaEyyKyKBnn1keuy/ucSOdQGk0r37jU1IM505hm5FXs34ENTmqrGVg9TMrHUD8jZ2ZEzvzcitMZH3A6dx2PVbZj9iNUULFoHVkcQj3fGFHyL0ccmInlbzEXjRVGucH8g5whf5BafHK9vNSra0GckQLSCNNyXHRJkLCS9xOxLstfNDVE81hTzEfpoqRnfyBUWQiXokU1EAWROgPpUj+UFNWe59H3ZI69s7OP2Ya3Lw7td/7B0Ba/Xu/hHmYPrx1s/NzkaKIckK5rKn0+WligSmD4TbiQgr17IKKmgFvuKDq+yZziIFLegy7emfjYyKnCMwK1eh+4HJPzVtU5f8HiYIVLXWAUEvLj80TWCb4tdGqcnjbkK0aGeO1gKJphghLX+GV1kSXv1lJlJbUgW6M9wQ5Vzp7QjzarQLdwxdh8m1cBmnaJQ/A9PtMmR9vK0UY3e+PrhiTnxz+vYuMwIYua1YJg/RZBaWPGkue3SIBNAQN2NAehkTY/Qe6KuXXRtP0SHHtfUSvOG1aDVzqlNXb72b9Gi5PcHUU2dRpXxnAbUqWi0dN7iSSbdI0DN0dKoImcYpx8KxmqcSC+jBJS+v8ufz7n/nY5FRYih9VSndLaviEwMOQDw9le+OXtEXmtAwL8QuucY8OaLVUWAq1YkoYGDf9nnBth55Pu7Sug3V/v1hb1qhgeyxe7pZ3D6iXEZNBAKXZf6NcMeOuz8swkuYCfRXJu0ZNvnFjOrNS512+pB61b9NVsTVK6CWVsEwTv/anBwLsGbz6Pj+jusjsY9Qn9ve3BJ0zbYmw1nyDxvjNKN8Ce0YaIL4djx+oEeXUPZzpFcIvTj/iq9cqalAwOwT2YyL+biO675wRMFnb3T0wkT3QnFtlioGVmKMiTxLA+0eefELWqVDAFtJUjSkzB+x/wNqTY+BHBKDr7Tx2GAkCyMIoc4RFz2mUPUeBVoUVolvYWQTSGlPGFdu27YpmuffUK52LaF9JaUjPA62YCCvmDHnB61WkcCbRizd0hneD4AAoQVwEeGIWAhMw6Z7rgKr6V8wEQO8gZv3nu05UL4VLdGBcAXX6SenwEUhGFrTCYaHhqPxIxJdxECOr8Qe0GsXNhgZqp/400RS4ibGepqOVJC+f5w/CGDyJx/w/rAyFVvHVfmlHXqeAGfU6wvjNQ2lHgJRik1E91pRqIJDJzbQaKo+3VMSoRzSgNlcIf2uhBMx5unHE/314gIksQNrkNUbuFrk8+r/oBm1/mILRrEPSya8lvAubzLiwEmyXkTzTKchDSQknD0CSfDtUrQX2o/EuLLtkKIqdG9j5P4N1vPCaGnic1xUWznbWzeDgNiarkitcPb3kpbMMS9wh0v07Vo5R0gYQd2rSBikal0snWZwdUXJsP1q0hrUjUFqOas3pecY6Sl44EMgefb7pOSnLRxUkNvgWstxbnh6L4eD71h7QBAEHNanrEZssg/bAb1aFkRtwvJJJKl1UYju8owTlxOWu7wNMbIrUx6xhA1ppBCrLU0r0rkNzQ+x8tNacP53g6RNGpSVgsvEyHLi18rk3TzKMawPonUwJC1mNgNqYHNjh3UzyLgGnezz5bF3T14ZULNOOUQkdRwrWL+LIg/syoAHzMdbSAp5RyAUYkIrq433oMhvwSv+0nt3sajUEtFqIjttVmWs8qJqMuWMHauOFz+xfItWLtzSyrGcyUpmyOS3O3Mhu0pCBEblLWLZdF9jM+mkBa/Drj48ix1cAy+53ENofSenx23Pp6IwA/+WrWLKpSFOVBvz0xR2k1mMeCgOo/HdtjExd1vqPlQNuziTsVPgQAWOt2UiPfh8yyi6t7f1iMg6yCRrdaHfLJptrtCmZkPdKDy7E1806h/XXgbRJXlAAUUKfGaTh0Cm1ne9gz2LviS4BTmLvpr6LVfoIXH5g7vvBRwOewmtG33zoaPDyEvGocTgQFY6qOpBSO6JRKwXu/4zf51tYcXti+dQPlO8WmoUn5hx/1ZM95ztalx2vEyYWBOmnV8pI1oVN3xqLMzV4Ko4S2c0C5h2Zqc/XW+Ta7G7QNhdtojSaHT55RWs05O8BzEx7z+gkC/d4e4bBMshLQHICml0m6CONu89Z7WAPeGE7Oe6SKNtHIQnYOvYdeISi58khTqM7DqFtNauaSb2r6xQwtWQKrzq+XjrIPT11kOEDLmBkn6d5widnwvn0kYvq+ruolf5B85T0yga3Ojk1vD+mZ+f1qGxANZSX9WmPUu0Ab7lqRaeYUM2HIdPuMYlTnUDWX3QXt/NkiGS1Wd4q/Sueb8GgknAR4mZs2Fe3Hy+5qQExKU+Mcos6POnG6TmEahDMSKtkCn33d+gUfBRVivA3vducsQOCrRQEUefFcac0wBmBcfAur4YergAtwDh/pYIbJuu0bIs5nbKSVXST0CLOUNfAlgusb4loH8eKIs/xKLrMxjWnFZWi0xECyVw+PUc7Brkud2eqZPgVhfWvjKyrbR2wHGW0U4wT93vs83tplQy+1IAK+NNJ31L8dhVNJMz6RLz80hO5zjlAa0xxVjNw/7/qZ6D3KU2p+YF43BSBqzntZZqvgj/m9WBtyoLmDrwo7lE3dsqFuri/3KlGIVrZhEzC1OBh/SJZexumq9iqrTIXfjdv8F8nAUXZYODHLCENypLZzQatMQSvcxnZEUq1Xl8N0kvqaKhU/0U5SIVLNQUJjhegHPHgSQZjANvhWWP2EbVvY31+WxMUzdw8m8SbTz+3aCunStl/w999U+Z564x0QnpgRN0wAdBro/LapiTqM8jjdPhLZQchu2ZksVsYguYXIqph5Me4BtmIRLzrMLSXEU2ac+RzeyrkOONSaLEeEUMV6wIMIGEszPxFEhMhYK1y2rgvOv4R2IoHRSkD/tmvWS5T8/k6zpOgC+oUpGNthghCufll+Sb5tRo1qJOBfWyBsBh48jpOXA7wWOE03Fy42Rc+OgdUBRcoi6RdhJz5ST/C4rltjXMeWiEuguxiUJQ553qxsnbAoz8NqkpJ2bY/mi3dMgeo4TRNM/G2vwW/eGZgOf6e3LxycLnzW6BYkwyNrwDPURRPXTkQRSCtFVwvCRb09DJTimPoXpDAWfOSeZAcizxzWzm3r/tOULyIqXmAUqnG4Vn11UMcpskxsAJWxoA6NJDvlhYaMB55JrveENJ0cqsz3y6gRV/sR58JC3fF+4hUeubfV13z+fI+U2ZIserdrGP2JCMuXJm/cdjr71ZId/WieGD9dc3CJmylABqeopcOO/HmWNwgklSSWb8gFWLvQCAuE76tnjGpigyhK4K4YetJ0XZgtdm758n1EWtOav2I6f4tiHI8kO8yX/l6pyzqdicV+XIJOc8d5FyzgrHRySynotLL1hRcLrUb5rjSrWHumf6sh+xvwcHEfMkdwkcXgwmOU96mWRoScYqo5V0xk+o9v+s2IGPXq+X1Yxv0/hIV+DUmGX48MxZetaHuUk1L8dN7pi2FP/KBcTbZpzJsTdwTjjMzc2P0fCiDLyLVVvfIB+aj4Cff8Oh9tdgyax4RQzhLDJZjFuASOj01/p/mmkt4a3pVW7jUlLS78kCvfpmZwnjHYV+zLXJUFk/PkyiZlAkK902tcuseNZmEpUnYMWBV2Jns8smQIVJsqapPRzv2zzHA/h2HdJjMTUX0Yi8kAn8wWCDuyOUSeN8ES0spwMv6glMACz0kAOYA6WAe0DCARSxgwMS7Z77GdMHybeBliWMOevQjr4QKVBw3HCmUPlJqIRfbqdPb1yJFiVi/zNTm7NAvW1a3EgoaIFD2L5CqxI1Qrwx5XE7fU3Qtvwg0QTKbUjSdEaklYOEuzpiEFBwq+zV8EbCznMXYjCmgtXbps/wyzfp6nOyhWd9jNc2GUlOwVR0Hh6kcM9uDdQCmjrnMbWZRYpjHXUjNbpCD2qDuZE2rmLfLnydcF35Xz4yvtHvTsM+Gb1ElkwZ0zS+1ZHOWAl4IG9iC8MjiIfwYfhxM3vh015Wjp4RVFjwIeGKRRhFm3zbswhbqefWq3dE+MHDKGYhEvLbWlPPFf4K/t77h3H+qCdIxZ0yBJ2nIQhG69l8B70ar6tjtWTbVhp8cH+pX0sfso8iWu2D4x6oS7yrhm++8xDfJJfiKws1UK34kgopKU1FKskgFn8rBKSBYjS0nbUNyCnLSGgv3tcJATdcix68OsmE8Lsxzf3NDqeSE7tGSkCViArZnbmEG0yXhvO0DCbqlPrEF7/86viHxUl5d7gyLObtBXjEKMBeLzd8vuXxQI3CM5h9EOSheB+/bi+NXLPHU/wvXSVwjtU17f6x99il+oGwmrHTQbTsLXOmLhGRBIEqbtUzz/GTGUhUu1HzYi4on+6e0W1n6zZrklsEABah6/zWLI1h/jBLijn1HBhhLKoPugSpnQf4OgDakeoo+n9io//sJtkyyzqgwwSQmMILM52UBogKC3Cbq5/cerWNAddXnxm1aiHvOhz/b6KNVlfBJ3CgkLQgCSM0e9j+hQywC9qAPEeZd8KhmkjQJhXUnWDv5z+00sv0PjdBiC+j+2TAnrZlvOQ5Y0Ln2R3cVmKiEttkCLTIJdsCkJZVXgddpUCohYLDZcHvzJYj45rdLKXeLhclGCpcpwldrqgWouQH2gR1OE3WqmJUtdA3OV7pI8YsCVhbBeDZgIHLVmA9bCidpPsFZ1I2tz0Uf5RXMw/w2OSNjyrnqGeRN0piq70UiZiiFYb0o00hwovpZRnOFAct6+gelZCta57wY9bCiCnyHkr36bWU/TfWHM2Tx8fKUQR5YKkNszdRdqWc9BEQMOG8pHqCLeMR64g7JeyK5OGhvBh8mIsD9+sUQ/vyh4qEla2qjVipHXUGEhTiJK1rQgZK2MNLm9+Lp6uakqlaPaZd4XglkyqGuqEQGNBmb+uTm1CcWd09X01LePUMPwEY7Mbs1qHB1pn07TJEkCjKjQ4xQcZJLAejpDXPrfXyY0CXou3OdxIkPM2DUnAcHmCodfE1a3jwWDXgw/S/KQBBD2leuvVi3qu1iaWd3ZPIX04nkbFW9NWElB2l87D5uNo8YdsYVDNamJko8+SkMkja0Av6bWkjUiCilyVpPKMj/e5nwq6NuWmpw8u9ein0sAYPywJYrgVbABrLEmfKomTfWb+1mEPFTNvXoDJI6CbPUNl59aJxBcr+ZLarhe2vQXGN9s6vhRQk0bHeUixk5hMN8H5kJOa1Aq1D8nbkvVd/nwz0okx4zvaNR/dd3CN6enfN1WIvqTw1uG+vHQE03jC/oyUBDyktM5sPOrEgdWDpm5rx/uMG9LHVImlYoHhllDSb1KE2BkMV4qjG9JjjykxfW9zIqkSuwUptidZq8kW4r7allIK5fxOC04mld5RdbsdGBe1KaAWq5eH22HHXr6sLPFrXTcCEx0LWhussl5XSOOCIcBuaQ+TC4rQZ9BdaCfI79qaj/zGJuNDzULlqj4wqTMvjT1PTUgtOcxTUdHERU03aIVFPBRb8Jm0JUsGjh+5loKtwfrNEcc0Ccytw3VnzPtT/SC8V9pK+ouosnvnHuncpBg3bLbWXih/IYbykbaMvmHPW1xdkAD3xxE/nuwa54V7wciBOjK+sk+ZMceyTN526pDhZmjcEmKeuGw9SZxT2M2cA6mwK3sREQP5qAxnfGlC1TNaUQpnGsA7GaknqtA3rvIRRsR8QfQHA3e0kAx/bK/dKKPweJA0jXs1vqOJz4evbjEhGC87vUPFHUWyUAZyd2Aa3ZPTr8lp+bWbdyBYW2OGj8WLlmJtcM+q8TgqLKARBzWL4G/A8QZOs2O34YECzOpvSCqrwGrYe4vIf+X3yd1pDRpbmLE4J/hnNQX0rtb+VNpV8UYXsyx7bKQnHiMqCfDwp8Guu7jOMisKwvZGf93jJMf4H5uY0F3R59bmILLaETBct16rPCo1yP0j8LWXRptrHGYIzlVL1psGNI3ZbyL9ouaJaETEXGGgrkyVYGp7SsYYs3+Rmy+2I6ueb305M2rnamkAPAxBQAyKsOsgayeEq12OfhIqesBFnBRBWX1fgqqvognS8ncol8vGH6QYSl6gMQ9lJ+6GLJ9lMQsrMM45KQMWgdUkLtRDpCYVZw1WGTP1SXkKX7Sa6tjcog8QevPQGs0uOa/gjhGntuXqURBoEIzys9eNg/l7LpexBjKFGQNPiUaIV0lh6/kvvVqHSGaTEIb8oQPfbqRLwDRzDVhKm9w7jRaDDNT1d9X2p7sBNgxzYS/kvqaDBd5GhjuDCKRoynYxwxVSTIifBzZLitOrZKpr8ucK/LCY12DoOZMi/sA2l35sgQ5ieM3EKZ4VYn5OKz/XMV2CVO72BYZP0h+xq98c/boC0AbjyHXJPEgYrXKHtGeStalBRGEOEWc+aR4vyt4aCSdgUM1FUlj4Lx0W4IlR/XyDy/jVfbdmqlEr1nOpdvIDNvEtpTbnMqRZBRb1AQzL4MJ/Lbfqz2XUL4+2NMEp9zBsPnnyUZ0ikrlO4bU4p6G6Rblwaeuwuu61tezFPgv7PLaz0AFZ3D57sVB03e8hAeGqs0L6nkhzohzbaUKU5MSnEPJ/GV2Z1vVcY3/uLdeZCFQ98E8Vt7JSMgu/Lmtpe6nkKuS6AXJqumddeoMmwrpR2GDgDHXUiRahKX1HTYac8RqT1kvmuOMDzNqg/AQJNB1gnyHm9nyl4naDWalP7eEm4QobrCr2N8xIfz5I8LR3FBGQpfwpr5pk9Rug2Ksk4V9JIejGxsOSCboqlOYJEsdP4PemfRWpxIU5Ur8yQeDvtAhYy1MG536VTKS4y9kTqVsbM2OuG8qZuIoZmaRJF09G1qKOHclFFhB9YZvvYgaDgdSS/OZq/hKSZG/LeS9vT0c1PMtJesJgrKuNglv7mafDC2jyO6EqPNZbQbxY2GNl3JyD0u+WFiIvfT65/OluPL3zmN2ByZvP3TMqEaDLqFqXthpEZnzBy4TpKkLScc3TtqEeMYGcJqrGBnsIAw2xQLDi1hsP3MRNlfOXcPSm2ftrgIMjQhS2n7jhJtOEdao/bi5J6ReYP9HUWyfBNvZzVNlKRLVeoDVXfYlsPtbliyfbbV281qBmJAy7O7YY4yNFU9YBdsM4lwHzFacjAtjnOG+o9dgYxfZSBDGMe8ubXSZlp9b5Pf0TcdSSQvZJsPhOQYH/H8LmmBktf7tE7exIPzPlO9RkEjfa8FtZfyrBvhOOKwTbq0Pn0izm9DfmSzybsUtAhK+bXKnPrIFlGhtfcvXO5WfIjewExxfiCP8udaSb5SlD+zivi2k0mD2euLbGwAnXbWSmIC1notgWntmhi1mRxnuPhVc4aQtWwyrG8TtqmKACETiR50UzS3CavHyWdv05svuP3lBaoVBYHhAmYaHRRisOaXgAKN5z9cPle9brKeyhc6cIEJlVaB2s+cO1STzkrwEB0BkTixCisgpMAf5vNWYqlIvMwC1W51Scj5t4OZE1fiJzf6ue8OErgOOq/PBHeO1/Zdyln2/8IL5P/aJe36q5DuUd8bqW1q7EtDOldjiNS+wMkSR9lwYbBPVhelImbxbkzx9PDJMlaGVbECmbm+cjVec6GGL/x34NNAe+cRGSwe4W+2nIJBLCBL+WFCwGZd0u0Jas+CdiGlGIZO/8yyRkMM7FoL/76GYGzZC+hraf3Z3yA147QeyWwljzNJubOk4vZ1clTFzZxyi0/AcjNyRjBKuphzhd6fhsZFV+HIyy3tdVfLgUdufcfbiOqgDn3aeDrjBJbQ+p7zyrKLfagQupPXSGNZWV47bcC/HiZ/N2HR8i3o3KjYwInsfiSLdEJUgRZXgsUORdGS71UmbS2+OeEfP7VlqFDNIBknC8c5+lS6scZsQzeqHVcaoJM9tBcgtMwxIAhEI7nQYga/yYgtJxXytw8WCTla+qKQ7GUcsJgqgeQHL1CVYP+5peUu6XXbDHPiUmvD0Vwtvgk5zOG6se0zi5AuV9vtrf2d2Z72wu8ly0YNzTb2nTcw8ONJcyySPN06ndbUcDOh264wFquFeqa0YIG5MLt06TiMNBGkXhhs0Fn46rxley3Fk0xUjhzhbmKPdv8rZXBNaoPO6WWx9x5FsTuRsGykRM3aP48kRiDxciYOL/dSysWq65+yGVcHLbkXxGOOhDY/x8awvDEQMlFK8398zDIT7D8poRi7iK+SnZOx72UmR1vJh7xgtXIonucS4+fj3yWglBQEyWsZHbk+zGlT+AFjUtDUnKWurXm4iCZGT5ciuQWbnF/OUi5CcV45cq+GhU/XF09YXVSOwJSZGfskXg7Omes0QelAJ5E/+mS8Gma9v4W8YCySCC6EdalhT0DRpCH9WJ21pfJDZ3XI/3vJ4vt02ZQx4ta5lRhv/oiWwyuapV42vfwfUgotIUmtAOgfKtyqqyurx6ycR/qE4arLnc295kkeGuJW7eSdTF6xUE6bynq2GT4wUhL56XEriBTrJwh/UJg57SGdFKioPXosa8WOAWgPEhRKcTNGZggVmKMy8ff8OEsCmkF6P371uNB25v1yBP7zQaf6iiG9h8NvXMhIBs2w99lzcLFXNQ0TlnR8Gbroj+kZytEJ0T1MkmYES5gkNxUTs2WdANb3Y/2vTfhxTY3aLk0RKSZUtVig7c9gYclm060Bozvfkwb9coZlNtDX56ue7jLSFwqXupmceosq60YGhNWX2GxU/2rJmAU7mgkUstJDWXvIbGmfoPmh92eDK4s+vO3ykDwkG0HeBYEx2DBQbqrnLNfb3FrcWkrQNPHZZ+kAh8lhLShGOyR9qIKNvYmweGHFwfEPjNgWFGpqoB9VIn1ssnx8E0TBnZXBMKf5r1iC9v4Uqkl0VkTm2IOawiL50tAHReqDtUduA/HKvqwwB8X0z3IaFyqoVoioExYwmTChybjgUOi7iKKI/YS1ZHoKIW2XQ18QeUeyAPblW+sQrjx7nqYgjBFvHx23Lgm6w4OOcckXcxAeyNiJgSy7Kgz77iMyeb7dk22BnIr6kIYl02fEJCoy0g14G3/XZrL6iAaScynPVJZ/iyv3BaLcOybyUomJCex7ZNRXkPvuscKOeaMQfNt0cubatpRDJw0eoMYgxdt+eneDFGICahyKkwTsCcpWmv6JQmiQkE4/0KbeEFBmNq+MPNn+wnYLaXu6c8lDE9dnp+F1xbbUC4MNwLSgJolP0+sQjeX+q03hpzQ8WP7tdk7pQAlkpP+bjMSDE+4LFetZBibOuvNsRgY0wn2eNJO6wP9z+8YqLogEWoRGBz0haZ/xI30JQ9XAkauQiXCZ0f/genQ2ThCPhfEJJvsiWDD8M9ZOhTBnCNxUE+VOI/Au0tC7JBvzttNFh2hMINf1a9Iae9aoTFfWdZdONY9MHWm6UEfRDIbkBWs9A5+vOUf8uCsCVj9hZgKVKILrCJj+93P/gYgRmUz9Xl1/L/ACEhFfJaKNuF+CbHGQwFs5yKFxlVA2VSTC1TZgVf58ulVCxkXJy8ZgsFIu01J/qfQCkW6TjMPBBWOgnXN7aSdfH2aD0Kdu8pDpP5aQQArSryubycX9WITp9cSivnT2EFTp+b2BSAK9g13BLjxre/7It3cw3MG2cKh6VbsXeSGz3YW4yL4L+vi12Pd9hdQWcIotxLQzo4mLNffFmlT/7Aa1RXt0qi0m9QEOhl6Ck3n/0dw4HApw9okEZ34HrNMq+nyQk/5ueOTtK2ZGY2XH0CETyQ0iwHGjm9stKTGt7G3oDDt5jbZ08fWLPosp/hlTmLzJxL1ljUyhdL5mo7u8/RzHnPvNDf0ifvNvI+90Xz5LhlF4944exIFogdxzZDbtvCyBjN+riNjECKQHKFQyDwjwBhks0sf45VZaQ2lvbwmQM+rBGRqvc3fdp17eS7WMePJhtgK+zNidfF7Eq8EOm8KC9tux2zXt1xnDzdGyTKks1GBsHRtTQOkU5dTJ9PCQePzMfrJXsBXGmILdB/AlGsNidxSprmw7oN1/b5UB/I0W07vgbwFm4fJ0xGv8PU5Oh0bVyCR2YTt7+sREfiOakFfxfn9J83RFS4n3ZkYFszZxYTxDK89myTv7b+0SSpO2ipMMd+V8jttOL/cm/nNcWqoj6gFkAa2J/37YSaXEXqpw/bn7JXTdkRJkBqPSFcG7E/WjNKjlrG1eqJzA1+B4EOSPmG+Arf5bONXAsJRrRtYew3E8HOWvVhhessBIz6U7/BlnyFs0dMVpwJfY96Lpy/NYT4NLhdKIGN6I/Cge7WSo/4FRy951GUDjsAtR/bgk+h42bsBvvoNhgtVKsq5klvtRr0LBr1aZN4R6N69EcYz6f3PcyFjEPIpxTB5wlg3PYEbru2LWDQ6CxR/5iBJ7MlbzJHLq1VHwyFPM/1OEwT4cPmns2p831oHiffFFCiCzrOG3kArRmYOdSVyb61oxPbAIG1jytnJgusepABXmLnz1A5Pxd1PzI8Lh/8rFQPTG+GlJEnJESYXkkilcbL1KxNyjkzQGR29QjJJnYvjkYoP/McvO6ddLCp9jMd7kjH2LQh4vVI2227dqZYay3l/LmrYst42hQvG/KMT28hk7x5em+IJRqfUJ4uMlkgrnBKlwXaRPvr44cUmXS8e8H9RS88dSSwaWisau/04QR78Hcl+i0yLLYaUoKoECIAaEYChlVmFDyAgJHkd60ITaBn6PQhWewt3QchMzmnnH4kx/6Jyoz62pHqPk0h+MHRNPbcHER304CGBxLJw9zq1imxcnEKTBf8g7darbiDqu23UcvnAswDKuFXkgOXvDgi8aFAPwlmSOz5JgAbbs34L5MuzKHlLZtgthp2yhnhomYE5+St0eDZVto9ioE0Na7jAtbCXmJqqpA30t9zYYo0mqP56B8LwRgpefPlCRa8jEJW72eWEsvM+xYOzI+JKK/hG8JSbYcqFAdSVG+CND+LIGXATsVLNHixxI77eOGIAUL5wHbz73zHHtQLrLluej2xGC9jHZsEGQMeiLQddGanhC4/0jmIJn0J3rc0JZlkcckbXCX8BL1Y+ihkPmqAV5aA5OGhJkKIYgJKRaXmzy9CtmE+dtCLV0Ge6tezdfGucp2PNvFUHS5LAkgeBAtHquRWAx0SWod2rw2i3sjA7MwTNbAtTZuQol2Psru/QEbKz/1qR0SxFBlpu9htIlG07IKN1ChmWe2RazJzFOu0TKkuWxgiQXKUbUASnAyhAtHI8IKtD9/KPnDIHgjRPTvqSLfZeK5UdTb9h+WhXrYNq7rRySC5zrXX8GdWAJ+gX/ZodXuRgH4gHHY++g4xcGxNY+cAEtxqCzhNWFDOVyVfOyw+chYZE6A5XGNEEqI5zBq03Sig4o9V8JNdNj+U0J6DnGILwlnm9GoNiXGd1SU5wQvvfpGAShrraSWjO74q2QijM56Y1Js8pJNveahRtUibEFyc7gGKoCc9wHe3Jb5vznOui47QMfdw1PTjzORaz9W2J5iK65m9ZPDK0WAiyGrOOY9yL5HAZdimIX2R91PdRaY1fz0O6M68XEVCAuhdOl8gj2tBecb0OQYL644M2HKLDmDFJXUEh4zYNYqjxZ3zEI6+Lx+uOYl+i6cqFSjAWRSIiEi4PUkqgQyqWE7xh/uhkm+Le5V2K1OBp/9aCOj93v0KID+t4aPFH5jNGY9y5H94ZA2BgzV2kCqoTl8BuSrLh+q8oCu29GVX90L/ZYEVS2xmgnhJ8/u5bzu+H+A9VJL3A46BlZGMQ2tw7H+Q2S+CpWWLRzspH7JrVukzSLRVev5sQAK7GqVOA5MPHopIDHwO/oa+o94JTxOj4AZIeeX/iyhQU9ncss4LshW93XhNze5EYv6x57H/6iUkPmvkU4fPOOFDX3jbsvWlPNxERn+dK04bv3M84x2tWArpaXm1K87uIKIXC0ZA8d8U6P4n4KVOaR1WdyqgVQnt2JQNJZJJ7r/dWcQOT8OufVR5OXUv5xFex6fa+YtmPtLc/lCESFqkWAtgdmVzdwHHMo2h+NKGnTY1rEC6RYfDgsHaCu/RJkGjrfNQrm9uHSb/11he3xncYxwPGRznJKYdckfK4fuzWN84ZwLejmToFnVdIqLxs4n28TD26iQbpPe5dTtiGMr+4oFWTJhLJFoSEOkLnoCqXIbKlcKePA3xPXUGLdaKusuEeNK5GGJmc0vXjCkrjlfHiUaIDeRNA9L1uPE0kaNAEawhwva3/isTKHotQrObjcLMkb/cEhemQZDOOMNCy0rnjVorHmJTnhlobkZTtO9/w7+SbH49LZFpDe7aJvSAsv8R6IfVMqLCIxDVkQzNaIHZsH5NWQozvuzwz4Tau+Boc/+uN7BUjXfwyq5k1Oct7n6OzW2eH3TMIxWahpNhx+L04QmPomjIqxdBmkSmGxvYqmqC5kVQkKR1Cee3ayXJcW8U7zxit4XboW9I26hf3AnPxyB09WA0YK7qFMqEZ2p30f8smevecItpxjW8Af9Ypg2kZpmLwMStQegUSuEyL4jJsiBzuoINMO5AzK1uiZNMtwguSoCzy8N9slBbGRIhLGNuETqwmOSIBGcTyWOR+PRHgUxHAItdtMcmoyZ1hiMR8354wPUn3zPGvOpg+cfW6gOyK3XATScKLAiEQ8jUi3RknBngpMfwp/+toDzvgHZ2GjyJawgqp5aQskVqfuzNfIq4BxoNrTmRsD6U55nQ9OAJfoIyWJ8ThQ1D7+CUzqxeteQ8/pyALmFni4kgn1MtXG1Bbb0d4OAdKY7Ivi8TO5PkyfQPZX34rbyEE76Xy/ZDyWORSB+PAZgm77m3kHwqUMWj4YEuERH1bYXoN9fCJp7JY1N/y8IJey67D8XTsl9fVksPgISSzCQqySKXcvAzZOA52xj3sKI6sUY75G0pTkhWa4tNMcJ1Ve7LtHjjnF8o+XZcvwRik9AXtPNSayq2wd4bQs2pSPpSvDMt/jJiVqfssoSLLLE/5I9dPSjL7WlxY6QXMXKZVo/TVOqp4Fx+lC2t4vzU7p/Rownn3B1JVr+C0zGS6VWRNp0jI7HH3Wh7cR8S8Ci4IcxjfJYvdgPtCX3LPyqhA5oUzZu4J7GVTDpMrm9Q4ig9scc4Y3yqK5HwfO1uZ+wfSuW/Tr+maEAsTBMKf9NU/A0o9x8m7wr2Z+JcBhAkNfVIeZ2BCx3Kdx8Nld2Lq4Pmsn87KwYJ0p1iv25NzvQXGGxSE3oX7jDGZ7qTyjA1yNuBL05ADxqic+v16nRs9UIXOibN5vIM2kpL+7BnjwJeT3jxw8GepLI2PM7eSgovgMtdqGLPa/n3GDpYsSRvjwFlMynzGR7HeAPoRcg7/O/ln9dqf2d6K4IjazKGSBkcytQtqDTCnM4tUaPrYuWvGE50BXTmUkqu1ydlV0iH5QrcUQec8oQYK+lDsQpIOy7j6ybkjgNKJZS1lUbjjvZh99DYyR/1x6ggBMswZmPm4+2eO8sgfL5NNybIcP1xriWaylalDSY/ur2nkwFsMF4WI/hvll12rOUclmbpdxbwfOyhe+tiaIG2buCKFdEEJw7hEW7IeG2YjxGLVwC50mFMYB1xyJ796NTjFfUReu9g40vacoDhADTKu7aR3Ef0CaQoj/mufX7uqpsKJYOvDxZYFBlKarb8a86G3QNjRRV6qD4XPSpYhGbu0YY51WAhXLWw6zHbMr0EJrk50uE7zXW5gYmavpC/n4DqXrOpIKJtYs8Be91VDGgfSAekH6VMSGzYaXkGxDmy6YDAFvydjhj6RamBWZbyd7UU1Sk3yRIGZrT6m9PuSZ72geO97q50gzVcJWZ6X+BtMowFNqVvEYvCGMpYK2QYEvPK9oy5WMURrG8tmIusjV8pwPFCMD3AOMaDso3cY/QnZNCo4NkXpgRwgH15P5ulHHrwPb73iQOryRrZ3ndaL2RMt0GAKAolFsWG5YQeMWxc9tsUwnotcBtqcuJnmvKYG1LwH2C8zV7mk3JTJ+I3WxCgZZrxbbW8bL3sFuyfPnVSzLrHXZakfYGphHA743FTEvQjvQm/zD/piVHgHHw8U0fGH40RANA0lP84v2nuXxLzGX4/1VH30diYRM1EFGJhgMSvrGBSGUfTqOiFwwJplylTEjo95ErbwGefHgqo5kDnZPluxOMprRLB1oQz0fONdBPT5VUkjxEWRhuDw7nJX56EE3mdf4qpV6yyd3KzYlRhSNeAnAnszRimI4VvCeKPchj8Dspu1fO75zVI3kEUUhRl5+H9rdkpBxZ3Ikfl9RPdG9JznMWuVE13Q/Fiav7jMbpHZp/CA5dM9Neo27G86UZl9Lze3KRdIbNDGEb+Z1yIu4eGVn70Mbwe9f5afUhf6TIrpOAZq+VJ3OWonUYtiw2Y9LSTaynDuf9OObQZ34QGNhdBxm+/hA+fmFCkIWZGW4rzm2oe4r+pdvjYWrZXHzdSea840lIjJx7ahp/TlZ87jso9t+NknnEPK0RDyK9f2hMIuJlhxjkYIENdrivSe0jEggJhHJm3vsgRC3lLjlDt3cEt1tNE5C91pvpIs7DFxXI9/RsqeBFD+BD1/O1DSlIh6UdkX7FyMiq2CKib8JwiJv9EQkfSbWW0aBLy9YKcVcxB9ftvdEfkZYlia8Fmqh+b31xH1cHJBh7QCevDWdiBvGsbtbux7Z1JHZCaWgEPDo9eUCv4phefUl4D6mwMAe7W7I1FU0e7LLmwFULQZJdRcW/sHXV/r7gt3W8CchQodLdUlv7JIQlrkE5mQA1DR+CH/XE4TsmZuJMJPjGxp0HyHejIZbGccFoZ7wXPLkXnuPnJ2LM1Yax5qk1bcv0VwEslSyTXI/VrYUWUE8qULangi3PMna0BaH4xg3n1Sf2SDEXIGx4m/nEFx3vXOP9rdmja7rWPa8vBCIVh8Z7WzY98NypqZGYdPBOnifvRjs/H31AWuscsIOjCB3RKpz0r8Rt+6mTu2HEOycbrxWQ+HTnscn7/mzqZGWaltiE5bGAI8JJy7aEiCGc+cXn8yTZm4eHcfccoIKRYTwilARqPa0q4D9D/kzT5iQZ/TqoxuH8bXSl6qw2vgoWMRhHv1MbZ8blA6CRGU8AizMVRXOoTzIaeBDGfuzuwvDds/NXK1h03ln2wDU+orj17fjuNyyqcH/U8HliiXhWDpixUy5srhCSCVj0w4UUb7Np7m+jEjLI4djmeZVTmgJDXRS4UYgW66LAszbcrthEwQ6YcL0xSa8Y67O6pVs3KXvTi5Lwi+wd8uG/DnpGJcBEsBA/5ogZlb1RbhagdIm0aG+fZb5Vv07fxn15anpidoLfSOQcbdjNHTPRw/ZZcLwI0Q3/7ZD1iVaib7vQREDz1UJin9rXC9poYy5zBT4GkoC6NGtKIi+iHoJcV2eJW3EuABDXJ6vFGMvrFaOuRRtFpNGlAW4KCUl2xH0e9r/KCeJkYEbN8+5s2UQ2RfYUsRWjGJQhOfSqZ+dGwv3ahfHpRirgLV4/rznT270Z0EXw/IC8gXjW2oipj29EHVksy+KyFI5mVCeDpYY6CmXVNSvFq1en6d7lnbGCm9Jbg0hCwgmT3Pwt2t6RwewurgsPcFWtPuYpzKJuJfFKNNvCrCAH5t7tHGTZSLjLL4XOgf03M1ElMoiB3ECqEuEUyXFbyuF9ih859I9VBMtTldJtO8m47ayPRCglle0OBRKvCZNfaqYdMjAZzXedzooHWg0lFS0GgoYD0zE031iuIJ40tuF+oYfrodvWxkhAcF5SH/sUf/+kjAbwrRQsjGO53rRXr0hnvbjOzdF3y+v0lhpTD6sZeR9xNZ6Ij5IYjGe/wrnOzzwzi91YOm0eRUjXsRcs428ebk64Ox0kKhZIZAOZX03G7LYuCTKeNPCpBvu7Q5LeW/OpnY2RNwbd/uSNBkIty3kAdoVGMq1AOHXnwNFO/FwDmJEufuNpn4IZ7mSsQOHX6TL4rZ47T6zHWxzUOj4a/C5y5BL3gcGKy/XeDLCFc/K+OazfzKdtl2W7qkVXrZvHaryE9HbnUGYJ8sScnlSC/2UR42XZuFiRXIwF0UEcYUnaOo/0A4Dd2lbP+2RmV8DTMMD7QWNtteLeWUXTdDrmLpGYQrRx4NTy4uGnlSMuXwdHaaiuP/8714/bRQ457u+2cHKKYnWCkxbu2kZF/SjKxEprK8JxF4wXlFP9hJw4SZLOOB8IAAKz6k+ZfvHdPrQohsJkUsVFBUeuC1eCd3T+Zwa/Y1HU0IIt6ptoIgscfYKSluU0ttMtafKucA8o9Uv8ZeJ+4XxPLBATAdmtU1c4Uw4vGnfCOBYiMspGVjVayfbg9xZRBy+IK2unftE9HVK6NXYq1a1sCiOof+CGRUcAFHB5I6rn33XnRqYl11go+EbDJuZVvIZTM+EjlwuD5GHklX8AOXL/ozx4v7A4d1y6BTz02wvwY2EAbMuSbH0py7fy3fqLt+cbcEqMGO43faGyDtQSWncwdFb0/j/K4rhoyQ5QLf/TsSBpmmd9L0PstZukDKGPyiXKFSlQ+KMJFlav7zYhcbTRCjGYRua0gKVLdUxMN/xkvvqoX8qgjlLBFkyKVphengGzXU3T12r6XLrUHSARdXh2ad2wNxKb38mCMkpVGWpjodFkhxYDNwk2WsXncNbFD5dm4gm8iEmvA9WG3q2C4qopjQ9U0/8xhDelNzm5G13SeBzcfJQ+yqyMoBJeZf1QnDWqqPCFKTsOgnZ2NOwaz9b7XnY+2NLKV04/IR9/tc3yovsCLTAH1kpXYoeG8dFsZePBuAs8KHMesU9OZGVupOaVjLZpciKC46z9QRULfc9+z3+sQD6D5Rh4FKij8JsFC2Np0L8an95uSmB8/juohOWp/E+z2pRtX+yN+ZFVbu32tM6nRg43odf8nNM+k+ZmGsmo0nNkjlsQCM9rxWaI9iqvDQtp2bmKINWKahk6iK+zXqbFdjYc3h3PsTibbus18Ci7zD14NRnxxfPrb/oL6VUm9eWYdkeXBeCzb4YJ8fS39nU+61VYzJz0WuzpECaIoeSsayRf3na7299AVWAc9D383uZrEo3OnkdSASFN4IMnm2CwFee/o/t0sUkpWnrpAv6O241kum/OLT9hsBC+yyS2w2yvcQTy8BEc4OFoH0cBl3yNLUONHOHwxACAV6KBbF55JFmhiK6+CLpNmH1JnAElzGlhOto2K2Rzn4LFrL+OW2C7xZLbWwZzjk69OJPGMDrHbjEogPaHzHyRUDxagDsC3V+7SY25EPzO8CiADnyF3ByQLrCJ1MGeHC93wGLf82zeusA2iWNeezbeEWrNe+7kztqWYjxD5BSVhhevOdREW+KowBZZhWFg478i9fCKF73WGFKAnYP4vw/rgYl/P1QFjT/cUuqbfW859GjotsdzQYHeRxITHWw+7vhJPTiN3sW2ZNFbDKRygAf/VX+Ma5x7oHfFqAiV0EzxUSo32Om7FRV2+DIrSxGiBdmmkFcdDYRfUkRyYLMpkjHPVv38KpQCtha22P2BWZLrpbmcNrN2YCspeK6BVnBLc3WojHviaKWmmxoZyOM6wQYfct/WSToRF6GX8dMrHUs1A5LUDrUhPhNsZag/cAeid3K/ueWQbDUryZ6WHhW3nsCUym4K6TMysb5zt9x513KOaYcFINebaDGF38Qip1y1nI79lXE1532jVulUNVbJRJe8kvagpohU//nWEyPUON5gs2F3k5tG+i73iv+52B9tVEafNADNwnKzwXw+Z/1gAqci0W6SP/YQqNE+n6DVZy7hcZsz88r4kgccX/zHLVcWzV7YzKwyZUMoz0lHBbWH7CRTwNahtsB7rwBq6e/a7BAJ+z+E52rKxROJBXl1XBd6BUPXJwFoH25J+Wgp0wDiY+ZMJMywSqvmV9yW9Rli9pwm7qzQjayDY3g0muNyp7Yo14zef8eis6pnh8JSrqrpOqPniuOILSko5D1nLDNqJHlL2x9PqOKlKTK/zp/8Kd0zjJVRJXf0LpuPGQSR57G0lddJ6IMb4Q3WLBSMkmVRQ3LX+ufp4CaW7sYrzXPhK/vVyMyk8z1riQkpq+SaWFQJg8xfbvfr/2bxROyWiu8FcYlILENydF5pFVbAyMT+WlkNNJeoMhHUhiypLuae6exVwNNs3Bq0oWqdeHIAqWOGJKtpf9YFCJyWtfPNfX1ASE2p+b5fN3RWKdHya/JbaZbVRvUV+4X9nB+Ad0oVNBIZn3YJ6ObJ2x/xYRubTyeLr+A9YoTjA4jBVEQXOWCFWrYq30IEZYp6/6yjvsZWKphM95wV1Nbgs/R5Mc2J63N5Qxb9UW9ashvRl3DRGIhYdT6QX0KbOTTmfYUVMZLU8M6p3wflT0l3WkTg7+AXuBavXy8LmbFkaYOX9Gt52FhPMdijyJCr7biPQNjrCG3nLSFPtC3Vzax3Y7co0jRsYC3CtwmvHfPbQpc54DRtdsEpXyb9nU9YPqxolUG2xksYcoUwBVATyxPl1Se6oKeOi7Q52QEuuhDIwdTl9buhOhKFGuVC77a2zv/OB6uwHE3aNYAwhEdwNYi6ehbHyBzfU1fmxKKG+vF8xihTRuiD3rwlyQCQszmR5vxtWGVBRT9lKDSnChwgaD6VLjrxJ6xZg5y5oZc9iOuRgKxLRFDH22ldpTo48qpFJoLWgCdqVuZwSU0/iYL5Y2fjo8Wwe8XQZx8BAj4ODRk+v3sa64wbHjurlesqLgupSibxoCvp+2HhPinLqYG7qpWARCwImwcxBWOL6CAxe2kw0l2w32qKmaJdv00n5kUABIIqYFG+0Ln+Q/JuL+uqWQoV8ux0I/Hz2+OAyF6RCVvQL5Q7jtKq/npm+FB91DvbFLSOlkyLzgca/A6mqIomYzlnKfDOT007hfiLUqTraNdcRzMjZxe3hNXq56v3oXYHk56YH7qmUplM/8k3rCE0yu2dHKp1AXqChDwD7uWzJrBfbOkgNYa9tiTGe9lDOrwYrtwbW4A/tNc0PbpPlmTQsb0GAH16lc2Tz1S6/tzzg8qCdS9pnmutNHJK+mShcfegrinGKhT9iUHgLyypT/Y/w068LvpudwQKp6w90MYayD2VBwAUa6S9fFs5D0RQeP/RPbIv0l7wbYWBcLztn2tjA94swxsp7SGGUUGbmUnmk1DpVSVeA+N341tg+8jiQcNhtJEbHzkyz4Poh7DqvblO8x9yDTxhKg+FaYayWCx4r+9Gj6VZTzU5k7WJ2tKnRt6bg5apD5Y97JnT7V0Q4QBChVq5twH6WXMZVjbMwqmbV+LIfA6OM4QrjrzSZQ+wgeGKHnMKJvLOFwtTRG7J8Dr0xi9qGajth49w7QSAoQDOGqoCFXHKcXrs/MiPaHgVggGEjeqL3lSQ0aOw9DpJvGkJoglo4XC0URBe75xhrP4Jrd5emBZ7PSI+Red3YXhuiA+8wQyw+gd/LTtPxaXI3TRM0zPuZWYqVXAoGOupyVkiaM5qYoZos91QuSSHxo3QZlSMzePwa2pW2Os9TUfKUMp+xrL4toz08d92KbVtS31gDwcOg4FgJo8TDkqZMppMvuuvGbfJUSnSj0NpxSVJpqzkSbrvAOCN1702n1T+jJqCakrCobGl2BbVnpy4C2qGsVRsRR2wulVaBVrvElqc46wS+ACGbK1EtFxkoL66PYU+oT8lekQEDrVae+bGnLkwm8W9qdLLCSTFDspBYvnamUxVh9s97DYKu3oGr/ppp5u1esL33KmXHtAc5Gh5bjL5M3vzai+fSuyqGlsFuqN6HFaX6ulQid8iLMhh6HjZnPqOv6SqsMd/IpgN/ExKoaJNKkzqV//yf0TJ4V6uV8/zh7gGlJgr7YF4L370JKLYjzkuu/IEgMdWrmZVnvy4VQEGoiFel1TYQSF37bRwJoxpe3FnNNPabTf1h7wJjuZDwa/WRLaa6Tk0wOIA4beq2eX70aURl7uLi0Lp4sEKdgyu1HjihyHelM/xHDbxybogjKA/rYI8qd3vNsN2VGdhhShHezYZcP79d0FkF8Jr19172KJY3lCwoNKPfUigxVvfi3wYR9TDz1fD/koXU+BoKv5tnuF3PlgrP3VwS7X7Nq43IVKi0GDZtFXDwrf+geeiDyZ2lvUpgSLbMo9QwaBZKusnvlZJGJmNHQzGyrGbX2HbhkWpP6wgi6tL8xeTN/Hmgujik3zez96bX5QoNfTTJO4jPRmXtUB7NBInFipPTbN/Ac6zob0615PbyFeIxJDQMclSSg0YPP5PpMdlg9UDzqRbnrUVezcNZ+0FoAFFJ1nn7ouzn+uwm3L1WIrWd8S//DZ4TSYLFW7WZFi2AXekf6P/4pLiA9WU+NTHkVlAx/hPQpnmubzZ0NlLWuIVW2kvvoMrTau39v6uj3tXH5n97lmfh1ZKzOXx3lJlgIlk6bcgqIrQx9c7Sj1tl3VUVoiDd231net5nwDDDLjNJQmxMOPHheHwOlDnc/D1aYA3lkey5KP2BXIGt0J/ugSWi4Xkatr8qlBqdfstDlK8rW3IYqlScno4WVKD+ORbmfOnIRwNrv0W27QHGzcc70snKdzBelhLSNMb5KWsCffFZx4kdxUAw4uhsrygNa2l3PspcoFYbJUy1VawxP4gz4OLFVFFm2AlTpLx7F1mgdxCQ5UoRSYNCW06HVTLD4AgzIaajqtNkrLYdYxMsJ4L2lBFSIGVVUH/4vwT3wwZq+iSReOFd7Hp6/u4u7D9gdLY5BIzyR2K0wNTyD0DELO/QcXUQrhUzpSJa37FAHrPtAYmzvsxWH7aIVryT2PhHDFv4h7//BauDr834r25TXzpreimk8LHWR4wr8tIsEqpZbiBO4B64z7PAMxzHjcO17WNYQDfF3czEvpHf7XmZh5qxdDqsZVbjkLUibYzZ0yUMHgCd+XhVt3qrJ8cR5oynx+Idz6gKf9mbbnz6fHt6tGGxqvMth+wJzj/JGiRU7XMMDTS3qTU7I2f+4eLclEppJYwDvmx9zmjCaFGfkOspz0CYEb+fHVv0gwa4EPvmxczqi5eaAfFfWrzKp9HO7DmQsL9+cofzsIjlNnczLO10dyDAawpttD+5BglEInyboUevITG53u1AgdLsEe3FkGAWqYF6rGD85/durKdCBaA9JktqCnw4LO7/jHcibO19rbEN+mXD/DR6dcGT4Om0l92Lgu948Tj2lFNvC8i4LlNu9m2PccfVpajNoSE01nAbtddSeUXu32nTLE1LIGTzls18RtkS1Yu9okt6NE06Rc0+j0DfaPrCnYmS1KlHeIXFWwMmzG4cX75NhIrPyD/g9Wv6bFr1XytgSksEK4j5gXACTPFF6Ln0Cyb5FTLBInkGiTuztA5qQG3ceY08gMtomsRG2Y/zqWw6PtEpQeyevskD+RYPzAZpUS7wjiqcjwg+st/BigQ83kYBjdzeF79Jq/LX6AghGFH7pCQ3M2kq/R3QNgfjZCH0zUMnsAM94ohIXqJm2HSkeAt7+kOvAHaSqKNNLZcNJxNiLVbZNIN/EgAE9Q8cFK8/o1Pu6MIlS/nzun3UoAb94WRiJpOttCxubcsHJbUDnPlfjAEgCGvLPjzbl5dqXYQW9WZEwZlZWojWDRPgm5NDZm48JR5FoqNaTMSGfM+TqwNqgFs/FtKRbG10u19b5zPJLIbQl9aMMdr23NIK2mgMI4cC4WCtoi1TA5qT5AO+/g7PtthYTHLz8Wsi2/wTE92X4eWVxOIa0Ov5Xy2yHMhx/f8XjnYREf222DKgSa3oR47m6bgZIcAqcgQ7nBYgGt5Bq0bDzw2NFhewekT4BccbVwDeUqkPmD9DNK/e+ck0ECGeG8Mu2Aey37My3YY+yxsBPV/tN9ToWuJ+CAT2C7AWn9klNSkz9aJ3Qqufj083B9eRt3UA/tZKf2qwy3jWfeinVIfrJiO8vjqrvofNJruYO4D1e4klazV5KvtrcDRlAvID3lCJhrErgCr/2buRb10tFqMBYNxAJTsHok6KE2QIrqfUmy180X5Rz6IJIZjHEWrOTwzm/+sLAtWm5iUqx7pX4oSLBmwxv9zOFBikKhZzY4SoWbJ91N1I1VtjXwI/vBkINQT+Z26clDwFBmSSovF6H8Fn+pN/S7wcDtr8WZiMO+QguMWbuRljRODDHpO/crkdfNjqA9c5B03vfwlxGtVpbwdZoV/teE5Fk1053NJmLvr5dOFyobFZfppU70NTqlWwp02uqK8ErM20ICzspen5sGf8nKvd7zgBmZTlvUzoj6l6OgVolmSnK1U+e4CzrSvWPHmKuHBbI6XZ/T8qV9x32cl2Bfi9LzEc0YMm1ZmVOiRl0Gi4VTycTS31JYqXDi9CUYhU73Oo83a47TND4Fn1HordnveSq12dNQ7WTKROhR43Bew4VQ/j2h84qig8yFHf8GfHunjAikRUfSLw8sxmURlgAbI1v8uJQoji+SGjhCO/xe60m4C0/pYFcei2t+cBnnBBMWtFdjwuTKkhN9uQlyluxf2kH84O4DcGrNQwploCMo2PDBuUjge8doSJuWcX90orZt7ho7UTq+YUOXf52SRani60vs/foivymr4iuaVdSvl0y8Tbb/a7dHvQCNqAVIY0Orr0M0ElqCjbi2YDLyaPpCxjvqzxPKieUqXkgX+N5zESvALfDooO9KXrNpMQH3vEz9gNrG/8w6MDLlAaJvPzEC3nZfKeu129SGWW40jsw4Hx7waLEOOJuRdCDmtNsTy7IfudnCHK+0vzCpsxRnJ0kWThDicN+1nJ2g/LFfT8wgBO5ZclqgIFFAyF3V4FhDRSUIHexIl+wTkF2qEI2sGG452p49fPdzYPO91dVqCcXcnxCsyklDWtQizzRcYTL1OjIe94DxqagaPgFhcbLSrCRliRaC6YKyBAhhTlewmXSZuMAXhWsXEMWoqoZM/OcuGh5ZsDKflKG5mhnEfbKzwfQ1QSkzkGhLr1ciZeEqI3TH+VNT3BRkMTcWhGot0DRyr2zw9+A7CSII0kSQGvb1aBjy1L7aSPRs3Y0LvXzTZ+tOWQW1ACQjYHje3NMBdU71CSr71IEodo/jBFmrQNPK91DUB+feFe51GB5nUL0jam0o3DLhfF+4KXZXcKWf4pzG6mEPhMyPkcysHKVypJK8DY0MkeyKRNGINb3IApDYVed9zGAyHZ7jVvNTv/eyZEwt9FfIK/dheKZGryHSZPx+LdUmtplV23Wj6jjNG/UJnRkj1lPIH2cWyjfIOfeKx7sHrSNC84ThUKEj1RviRjTTxu2S5u/jyy1R1HlhS0++lzuUKAJeePmJSHXYLb3acp+DBN+YInFF3jRzkX9OrbDkqPzcmPQU1cCOhSLyO4RVovvBg+2bT2SL5Udh3QvWUA3m7POyyWZZ/gendl2EANPz1krLO2kIJ01ZdUf4sKlldf+zeDJRYcwLEsnpHUvYjzjyHVRCcUCEe1B37EluyUTuiKtf+sWJbk05MMdh0/P59jdL8rBQWS0+DK0erU+VHvfDwwOBXy9OGFD0npn7lGe/FevYI8JKCnQz6MSaDxav7nSLR+B14bpay1kJStEwWE+Mm93NVMQmZsdTyUmUe4nOdP2/S2sGMPxtSTFlonos6ZkX4FCOcyJbxcvQ3GmYo76BZZsbDQMAlCjFHMaXwj/S8S93A8OruDp7Ps4VtPsFNVXlbdgsX/j24DFKURWx9UOtPLFlC6ekwA/5mBd7hsWSLQuPsgNaakHu/EVj5HBYcfJkH9iRulVl+jc6BJYi/rewzLFw1UJ+PB7IqvkQhfRijy0pNGIyX6tjTV9GNENpozQSgbel6Q5WiR3akPg0xVSqDfBZhF0LqHbvypRVZOKLnmM6CgU1zp6b/V2Z26fq7V5MIjPeT6yi2P49Dz7rSdsbSCQAKXnx0JYCbBBLL7seyZQgc5/Qv+83vx6PqQAm8/VVgf+2MVdy6y7UF0MSyeh3iXMiXMdj5W2LHGUaBHEhtH1H5aH46K9H46tKd3JUNBtwPMXH1hUfgGHUwtxEg4U/49qF2EYdeOM+IBhBguzGoChxswnrKy1TEgkowt7i4+qxRq2fbyxT87JUvbKu52mkcR0FSX27hg2U1CUFtgzxE9Zh8k8Lq6vw/PHKmlDpM6Jqc+hN8BXeazpR0GF67eNfKayKZz70Zg1XLgWjq8elYu1IJxB5WxyeZooeRtovTFzcrD1WsT5mFlOGvZ7QeDMDwv5frASsNAAndyYoTDl/K1gEnsu/cGvJPZhKNqZQSvJxPI8LtjaLVlXsBMF9ZyO8VQR1dghT7Z9coFWJEVep6j/39xXMPPPVj/bKJBPiK2tytwz95WJb/Wvxwc6/fFoH5WT2EgIL6YOKREPKgSbLIQwFJkF0LR5/Hz2qVkOcbXXDOO+Tt48cqc4Z0jRqSy4pHVXDBJzfZSUtrIpV1H56uuwNNtpSVRvUcDx2qfgmwGlKKclNNRXIt1nXnmBgKyt0+EEmCH7dRuHq0MYkkCJBharBMIdDIOoFrgpsJmyjIIZ4lVctYOfmz0/vYM5iQvzsa+EyYCRSnlRaUvMK/fN3XqOdZc886zGQbqMPEYbxUwxSWdf5cyEmNo/pyinBUv3bvn72kAYSiuFbXYS9kRSJUeyMoBlexHpcznTG4/rK4MjJRizH+vO30D3q+tgS57qaFxPu3C6MmB/BUm4+D1aUTBxxUWF7cw4m3fILJYqT126yt5jDjhRajru7ad2KZh3a7QR3OY/3CoT3tFSaI721N6fo+L0brvqZEXQ+IyRknIBTOW7ZU9BF1+zdK5RYvCfQe45037vIfTB7EzDGzmIfx1ZQ3HdwszGGj6tQxIty448ltJGIT3BidodmyrcFhLF4kDaFYvjRCp6f3z7aIrLLKPMXSapffl6whAac2JpONsYpiR7Ge33HDj5w+CRDZ3gjPRnyYDErfSkTwKLr+/qYaxbQZMYDcDy2imKG1gqdaSmT5RhFXr7UpM9KB/DiH+0nqKWh/+D/SkXg3Rl3upEHn66pQmJd9eEGdO3VG3HiTfsQq+Xsh8cduLntzSbKKDpi8bQK42kbLwxdz1Kn0HtiT+Es79nQFs/MSl4fJBBM9PhvGhjnwRQ0cLHajIZWMaKlOMXn0fXsIrnkmq6ljXw17RSGEC/BxIXl/zHGdZcPKoUPOYPzcQRL4jvPSePcJIdXn+Smv8tTBlMp1QNxWBKKcYm8ZUA40UATUxx0I9f/EhncQkqaBpS7L6UtfLtn1WydKNEHiT2q7I/mVT3fTrtKQVrHCT7Rk1FdAhmLYTT/bfh7gZg1vP/5j6ppF6gz8S7fh/EKYyCmeXrLpAJHMvI2Qfwu7ic6ZAne0z2WsVsqUFBjYT9IaILsoqtRR7vE3u/7tyQX+vXOuJql4MGTHqX3YVKpTiZ5TYl7JTY6OY92zzkemz4rD8UE76Oi7CF+Dj85BOFGnaAmm/M+NmNjangBdVfnCp+ydIuscvj3hPxZl7r0QXxjHPaNXNyLglixzU7AFVUuElh/X0wD9Pezp2TPrSwDu698zrLzSlEqTIvVhp47W6sFHIzgiE6j6hEFwGwOABtpWsBgTS0vqd7pNq5XkljkPF8785EaL12eRRAogpt+VbZykYvL5+8dxuebzeSilvzD77V2ZtF5qAnbwvKv6xLl7CpJjI1K6g4JX8zg9LyJtiVWjazpbSfl+T5piVKofqT1Nzulr67l8AtPKkdeSu7W+aUXjxMd6eU0CFtaWF8wAPtweJwp/WWhV/o4SouHFYzLM5njQAoI7muhcanBAOSnryvd4SBjvJ2Stoo4kR4m2PDUEZInrYo6hXL/o1azpK3uHjTwFTO6jla5nj2Q7pAyJdQtRecX/Nzx04WheeBOI35JO+Y8/9I4XMHjQm/Ej4Pjkts46obRhi/vkY6aTlJ1XpRh/6y1kkxSrz/GY37tdRmrampZRXEt3xnEQdMHUxPe44HBwHw5QIjEkHjcp837c8M1ITm3nxOVvnC7KS6nYnFGaEJIM5pwuOec5oYMuvvMbxcyviqrYqvo8A6/jf6Kd+0XGF1rz6/gGUeh/qvDMNSzijbgAobeBYvQN35YveqS0tDBP7GnHwrG/PyHWvu1Uf4l0M016Nek1PbyWYzhPxMURPPPhnTysxv0IYOsnYU3riMLvnLpT++lmFzrzTYv4Dg6CD54qGU2M5nU7RtC80xIrUW6abaXOAD3rS1Kd7P1OHiJDUKo5jfLnalQeuwPTfUAq7MLPEHxLzophA7rQFzoNENZxoU9f4lXb0hBYoxfP+NISLQh1wF9eM5PgpMIHENe8AJIs3iha9SvS/NyWmmJxBQw892AQcwH9HLs+W91EUa7e9OgiwMjyxyXXo25VOyngW5IY49ar3SZePkxmtWbCk2CX+wP84ujnf8mpyxif2Rzd7jBi2aA4SlBHMja36jlWBzurVpmxoq1dk/vjs6HUcyXMU6ainwo1oGhRKaYiBcidgRus1SYV93//4vnk77l3dMSKKUzxRicJIvF19r0QkaX5R127oqrbRJEMXQFyAJ4e1sbq/250ZIL7/8YrO/eCRvAjoHhehnx+EA9tSBgfSI5SSiSAHPew/U6U2xuaHhTf6nE1E8RTrVqVB4iHqB6ydL89eX7PYwBxcX0P1jv+ye7UjyIdCzKzZxnjvLLMTzemiANqD22jaoTdS/KqGS93Z4KliGfR4H+ytM3KC/krnAztyWXMZIvIwc2EK8HSt4swPb6qgPvrKvSUkMpS40j3GHa8bbIQ6MxdiE5mmuxI4MRs++XKDSKAKW47PPexf75veNoCDw3/yCZpMvZKPdlgmu3l1q1aavUE6kL5hfbLmylwxmbD/nNcfFCfwZzvR3Q4u1d7POPX0C4b41FyeKe4jYXdlUV7uMcEix10gDpRr/LmzFZmUZjEABAvCc8Od+NsQEfQ/ZxK06FkFpyniB+yMJnh+ChN68AeSE/CFd0m3QXdRA+Hq0azk6FwaUQWeCxW1YDpTRutb7/O7F9/iqbdC9ng1KgVGCJJ8+uYxIE6qeSFPYTQW4aXkwoBgB5NwWGo7ONja9sJTezKBjAoLjUcahWB0RtDqD43I1xYXl7Y+Yry6ugX9cu4UgxvioDTUvs+aTu1uAGRhpwwA/uSedIj4A6q4y57LcE+LVC/40rfLqSNoidif1/jzRrCnPx8ManRaYshB5Z3NqjmnjVu7VpoTfyfzGgLJiaftTVf5KrJU7yDFoHgf1raS1HPM6iH60WQKbfAjQ7FKBL6xn1saQhFP2jz6Qz6vm6s4lVVQF31gAZqSGw6s0kqBk5uoQ6WEFnxuWsZE9aKMQqvljIHAYiRIZDM/fLp9FlSj1/oFX72P18aZSMZyVa6c/NWFnWX8ABrwFBEJkHY1pp5TIgQiHXDw2LRu+9lXkGAUjr4Qa/Hb9EeaLL7PvCZSmDF5ZHAOWAw8b0S/L5QMih5VLkyXCKVAD8UvIKt9ypaAS+9PjpRuKz/2u9+GwZJh0b4Y7jKhqETnHYxn8/zXQpvP7Blgg2x5lz14JM86zAYb9jHMQG5ZyxX5h7XWzZ4W22EntBLQ1ZM5H8zMEVuCalKoFMhj6NfQ7ArIQ9orpzLgyXg4Rk9IwpFfCiVhcEeqlyUKSzucAtAZuSu+Ovo+Lq8ZHXYtpjvdXifg2+/UhLYGg9RgsGGAL0azdbg6mDHI73IwMc3s3qHTVyGg4QHSlWx0MgpxrlU22sXJXOvMjULueA4Y6lBrWBWC6Ojb33HuNUL/yTerYTYkMTgTPPWL2UE/lDytxSatnqs70Gj0K+4IMvJ8nuR2O6UR7qCyI5sMlsE1hnJbyMUJ4d/OU9EL4cATvPww9fTk96w8ODcJOtANPhu5Ssm0BxfeB+Hab23YdsTN0HH8zPaSTF2mdIjon7H9qasX9j8xncCAzPrOrK5lRH/D2UjFd/P/UPMVCFtiAFIldCtv9NEXRZyzMBb92mQmSxJYa+cA52K2DnqdMo/6ipHlLcu5P0fxhLBv6BXVcHeLBgMcHCQqJFzGKaD+XYfHZ2rFd3Pu5nx/yguubeJQitlODlgOaBwrwk0Y22+b2yP0LT41FIBXSCXuxCKnJho4TXiaZQRovIjICwKhP0SByre6vCg0NOdWWev423tz659qR23A/4B8YsEpMBP3IPVpqT5PAWw/Mma8pmX2i8iAhF3+Hsw2GgN12HMJe7MXXsw5fUzdJ2ilyStYg+j7F3eZOcu7lPB41j6FWyRFNd4cXchRkHdp4rlrPS3BHGjeaW/fD2QLd2K1LNdNGQEdJGgflkrUWWJzlTE+gHW9BcBTRrt+B3onwkfX0pKsX2K7zxWW3T4l/PxcpEcBunmDTZGpDdJZeevTKnJMrlPQJZzJQiRfS+ZDN6VjPwztk+qG2sA/Qd7jIyyoBtb/U+TQi2qFws5rsB2KBMAWfup0UQiE0o33E+OClwPV3wUp4Wu07UFyh7BCU6beSYWEImkbGn6w5gJbRtz1GvYFnR6Pfmec2dANveI2O8a580VYVS3tXOoKp02Ir4I8lpTcQLkA0STfHMmVBsOVMPuhXHkpx9lz4/JgWe25xgZ9fPspQd4iDTz8RhpG8uDgiIrliZHi93cbcpWmutOT262eA25dN15zm4iVPAqGziA4xdNkw3TkH5Y/L3CnRxhKJzvJTQLTG4Zf7CheB+Mrmrhr6h7ev93b6EduZCmAXej1qOzjKxift+75LsJRRqAd32D2BgoBmTFL6CV+/VlWHvsEj2kPrJ+y1A8lu29sqCPd+u7/YWJ2meopD6+7ZVSn5PQTmjE+hJvC0aDtPfMpF/F+RVrIUxkgRtmluP7+Ts7oJgcZX3pP9cA4gCPjQ4XxGoDl68ARpF2Ge5+lCwaCOOTgzys75Hwm0EMFHCcd7k03myC5hUpKUFdfLCIVtACzcrt81bAkVYhDNB/n6Ew3aFi2DjTBCjhBLqf2Thp/2fqJXRiAXwOe4C8oAFqHWwwPu0sL0osyT0fOfXrGqEJ9ucvtIB0rvy/z3WUH19auBq4IZmW9A27erqLt4z2sDI3f8DCBnZ8ApwLho8EMGY7MIE6VoIr4LzDlfRUAupURl07Cfs6n5kCZCCkaXNq9x4WY14RlDGu15HSBaTqKUwrv56HS4pldQY6Z+rITPuAchXofZKySOQFWfWq18lbKwyuGeV/Bdw0PL+7gIvnf+RG77xDkzt1INfBZJtx4j6yfJra1jIyYmzQnh+zUeX7JN9cN9XWD8N9eACuVQ2SSw82aL7dJwAUf45R8x+WxkLvmL0FQOyRAEv/6cOrO71Y/q0jAXBc0PgIvMNXe7KK6d1JA4z/qB5QhWOcRfHS1HUydqCp11JS6PHXMwYsEW7/9PGVDAjHy0c6YSfwoQtNxQfHFWsoIW4Qlu0weNm3bf/RBcuxiF+hHHOQHeikNbMIUGUtJYuoW+Wz07ZCVymE6TsWSHdQ6crolO31BsCoXIVnixaKXS7LkJ9kcZzOCx/AqzhlAiTW1Xv/Rom1BOhvcw6X+RiRRtFsYv07KxxZjyOlvnptEWmfbiiPam3HiSwcMWJvVCd3e4AZlrYHvxeDssXu6DG+Bn7tbp40zMxZzmMWYJ8RQMmp98f0WVeermQUGjwUdETj16CVgUT6xo9tf57I+bLZ75HfCfkN3hfgn35ps52pceno1RdrvJiu7WbIOBCm4FdsUFG+pEU7PUBd//m74QxZ0fILPF2nts7EfnkSfB/s5slEexa2yelAQPKSucImVhyx9/Vi+GQDAek+vqCiPrCDn7aE56y/JRa9FUbEBCQ78xJWfQvo65pF6UGCGTb/5MyMt/g8QiRRydexjcpCnNsJ84lS/eaVNjB++nxpaHbsPDJK9qbUY5Mx11POBjrMdm+15jHzejd7B/gPiD307MiWTeArEH9vbrdj+rPwZEVkM2ImbB4ed2Rh7oVNDog6hOjUgulfFB4P3kINCp0Z1Khv1tODBIpxTUO/lQ44xWt0T/0DRfxOOIUQQw75NiEQJF8uo5hekAqOPoe7XHICm0M2Je3po3rgv26KdYkO4U786CRjwu+ewnOyceFpd/0Y1ajNVP/ed77jWbveqLxcOALUiNriixTu28x35KI0RlD9wDOVwed6CbjmEJVaDxebjJKEYVydutVyFFOsAVYmY0Fh8JXGGAm/B4qAGWMB4mdNYVyiZoSMU+d9WLjaPCPaEU2mc1/eemfBCuH5Dr/bx+1RSc77YeLdJeg/AcViPGqtBewLMq5R78B0DKBu1FmLbQeeRzEXHB9Qk8tox+G4m2aoAySinVZjHVeN3xujYjtl3UmMT7OxVoy+tFyNUhlQ6QKRL5b7S1lLRvTnlWfTndet/uul0PUlJpo9G7gavrfmmPNzyD+TYsWwmLAqJYFixXc+yKP0shU1QXIbklfFNTCVfA9G5GCFbMSmnowvOopPIdVwDZ4h6cdUi9be8Bj0sux4gMQ9Pq3y3JeY55sCpiS1NiNIS05ckOSRCId1OLM6Vf0knfghm5qztK+yqRmRJncjugeQnDj1LfD1cogmC5tHt3ltvJSf6S7Zcb7a3WcPskq49S189+m0r4OZZLRa4udEy/PnUiOqCgPrPyvQ9AgIubAyPtQkCGTOD1NTq2by5c90QzJEROOomH9q5GOxjerhPu83APxNQ2n0Xmowyoeh71UT6v2LM4yqYFLJ3spbURXinnoAmjok0y/QeaUOVFdR6EpVXTNQJneD/ZCitHLPQHhT4d4WBT1+QZC90qiXidvDnzU66oG3actDVIwLnFaDw5z3dD1Tq8CVDEDGzqFQoFH7VF2fuuabM1/Ggaein52+kX8XzIpy3X6bI4QWWDo3AO5xT21q3BPaEYLUf3HbdzwQt0UdhrR8PrVKh/5on2N9zNCyqfYYQsY/+SoOGNXzJyvEODAvauX6UrR3DIV34iJhZwSB+8EkNzzJX0uaso6qZwev9bY04ZksgxDCQfqdaBpfCbhUIEECfH/Fs7g2BVGaVd4w2dxkwEMSaBV2zJZbYKLcohyf3E9+1nBrL85qEjoxbtfCKl/00S6wleFt6NNN2CjS3QndgFpcH+1Hban+mJmDSTmkwsCZrZqmVDX3d+PoIQ4kl+1uCOxdbdIqiO6zW8XVbdA4QcwnoiX+6cTbWCBus7fF62LzMprmLJ083TE/vhjna9BtsCR+BIP+LeYybv6AUHudC8XwGIaIupiDk74P976UfbIhVM4H5KLUJ7UEg8nfQJlS65ciifSa3YQwB6X15zvg3xbZtYUIRd08D1Tdzyr9JlfxTeHsKR600WXM3rm1FaInUm8Cyow44MyNYehA6pnjNFL0Mr5RGCWgQqRXPpSDF9Ms/S7H1zwZaxLsmxaOhco4l3UnLbUbNQdgwyVLOiPapWNQQCzYatZvdkosnMbskmizWcbkX42m7GPoveBD6XE8rQTGLxs5olIGJ1B2yOkkC48DrlQPsxZZnTMtwCiPtsCmcd/hTXiaZJqKCXfBRBreI5UtuIcHz/BmPk97WwJYwdqh+fHAaa255uB1YOyvGkb0D459LYx019dt7qpkvW9NWjxKYbwtOTXPbn0ebu7y2iHnm0IS6nupQHuVvt4QITisbN1krbniyWqR72B7d5inTYXF6XzE+vGpJxkczYKW01uLD1hXlESv+GEhw5U4dCl2S8bRiImg9LvABBm5GcWBsRqQ64rRGeoDPeSOlG9ZSLiR89BxibD56ogxWC6Ub6YtZZLPDlds6WvuIrbx0PStMstzqLjnEcgIhv/5m3g+oBpkhoPwM8ZP6gMjp7E3B8AdgPYpr6GvD0BGbVQGL+1e0+JOCQf2mQi1XaEm1AxMVmaBR5YM3O1bbkETItIL1dPylLGeqPZsbEUFGEUxBlGMyXrdS0S0WcpG1TcTcz3Q6tv3Dy5AX/fSyOK5l7MZHNuuGWhr+Rhj5NKsiJyqAJD1BJXAJT0/UkhFofTjnZC6sz1BBLkqzwjxM10+W4w1LlHwYKGiHRxe6z5eCDsft+ybK/GffzEfIwYtE0tN0wwtgMdG3N1tPiIDr5NIEGk0x7X100vaK6TFpy5T+qZMAS14ysssERUGwULNC6HrrtIYEGoOF1nk+fr44EvKP7zCHRdXTi8SmZZdqsjK2hPT5/3NE7wR4k0IZk+MotevI/bAe597thietjL9qSCXhK3uKClHerwEIU8XsLB3cCKS0PoK1hSR5T8bOodKxzIuNxfrqiFeNF4m3a5udEbBbXeTJKcoy/Ih3TVd03six0NgDOPZc+kqusKjhItED3DurPscTrxZNvaQCbWC1HJJ0O1i2lOtdWgwM7TYhCH4LpSLb45+sV5x91VKeLWpvIev9i5AMMexryUQbxPhiqSnnQq3hle7RW13QmaU/kJcyPVvUuEFVSikC8tWXe8YoizRZipFkOqWvvOo+ga8dQTZUphpsW4seHavho1VDKjY1WDWxqpbJn7fP/S+pTepKD9xTTN/ppGyzpOWOant8NCia8Q2bftCwD++0PjMVWPKaClIy7MtmGqvb6K6I5AnELlr9CVbe7RtG3Op8J4Q4qD7TLXbSC0s5+KoOxGdV0s1xfpuYj1R2plEu2i3hNOuGzCL39qUd8uN9qteYt52tjBN+WlSmbXIYt0+1TlLoawoAnxyPcvHGexFAwnM/j7nwUnvCpmKDwowUaT2oHy6Nc8Yqp9LANy/Asy080vNkwe2o0yDh2N0e9GSn0uYst5ZT7tCd6T1sBBb3+Lai08+d9RltLF22GEvT7Wt1ZQGcKbO8l2YSbjwsGvoka6JVPh3eMR2IENMk4mf4ApMZnX+rHwLvhwX/hrNNWLmG+UfCDHDcZVJu+TlsIqSZNy8LSd4NagfM4tS30d13Rb4ciu+NT27Jq8/tZYCCNyI+v9wMIYPq4lbahwFTEzdOYveUQrDIFk2vGuSW0iPcVVPFuYZXhV2N95ifXNuiKWm2w7KNDYQI+OrX7w/ck6Cwalw3uKro7/MgW02L7yBL6kBxsA2qM23txKou3rd+45i8y6555S1Vi8IW6oS1F2wDcBiYyqUIHnnIx57kYA/M9tFoLL8m+bWiXIFPgf0iyJfCHuFaQhHmVt5maJDMxs0ajRsn63qqYg72L91PGhaaVfVRYxB6HsJeewvK60n6sKnsqeLkMw4N8mGa+St/UNnyvhieOO5UhR0yFwNjhOmkiGFmTkCIeHFNuxcIYwcSKcU+6lrUPIgWKDchQf7rVlnGjoRPS2mBCTPeiXDDF24gVHc7mfQtpB8f0Imam3aH5Q98Qs4DaKX0wijYA/P7XVxYh1Prz3JvZjpVlYriD+n9V+QiPyv1XTCR028d70yDHga0kuz7YnIAJhqL99j/cSFZ/Z9H1IH3V1fj06C9ld7Q/Zj6zvjmqif3nYgAP4OJZ6SoSwi7kNGch7A+Kv4Mn8cvtTV+EfsNtHn83RFRS/Pak5MTUkPaMQl2+7i7dXBbBAYcXsEqQ6nlON+I0y33xuNGV2pZ8E9ETdeJ0UBg6al9sNjYJnqxfbqzE6mzxyXJwyJq8rllPcRrxRgGbWpqgefrPJBIwRG/Jrdoo63Ee3k0YazBRF536X1i2Lg5skMn5uysXUYt5pRzsbq+zSh6dQzK6GvfBnV6dxfEHmehhdi9T+Gd3nA7XxZq8oetNikU2RoFAJX08avV7wgFMZ90PXn1Nyq/gA1r+vvZVpluSO5EMdJi/cV3sH62THPRNNDYJuodJVsZAsBp4u3vY58b25Q7Pm3aqHMcGmA5VYT6Un1S6HjLYotzLgrVdmIEwU61GqAeZBSwWpikwaGAR2WIMLHAiNqlmjmZM/3xOj1JWUphcv+Q/yNkK47YTZm0XQar3pM0bhRecvPy5yAn6/yhgWzHqX7eia5fxSQDA0dT5TaciVz8WkCBayuYTZH6+E1XMadYywJXn2n0Rf43GYooUaRS9T+uo0s6LzpDiQNFs+f+jyKoWUnjJZcFFMiCfzy42DdZlHNxUw/tNzMUSy6ANwIqudAF9BK6QttEzCArLTvtHlv7XsCGJloD/vA1JxiCH/EyK1Z4OXuHPrp5pNg95yy7eFWAZoT/ieu8s+wgs1zMHcF331sFZZSmsoKLF1g/r/KkvsFUwIMgWzUL46oNauu77oUH1CkA0dzavF6qWJygUjzYOohoXSUuN+v02G0/lt4hRojPfoZhmSQoTu73EgJI+T5wLGU8S75kg7HHXtS3sbKeeiD+W3aaFhFalHREAMmMTPE2EJpY+5DTP6ahkQsBJqnzxTQsPrOGJaUYo73WTVbArzcwwtMxo7REGfhHOVggaZnR3VC66O/GPI0eogKgU4o8ZFaiwnQROLmFnvgWHPcvRER7oOVd35pALpdkzrHoW/RWjjoNCt5QsmyNxEQY5CDGgKw16cKiHz1+nGThFScm0Gj9zhXAiTq7/gUuQa4RG48nC30RnlA/mZWQMqv7XH2z8EMxoBVhmjJ168qXqnd4EQW9u4ra5SJ4UKPd0nH5Cw1I0aL7s7vUKGQVulAcEMos9SG4ThX62Jd42mdN0Kh1fyK0FQ2rB9htFiiXEd3aRzVvNuNiVeXH1v1yMSZMHRKGV3wU/3vZ4rlCO8zGu9U0ciGa37pFLRuHNxtVGipQtw2iUb9Mr1FXiBxQUMK3rvnk7PdrNwATx8i/QbM1/rzT1wMQTyhPlUhbUQaeqtgb4g3sw9ObkKq/CsCEQ7Uj1RbSqGKinGDxLp+Q9iiOVv3pkt+6dOUo/xIpnTxAGREs5G4BM3bvyMoInZrQH0/jxVZUfEZg4af6S3Zgl4/MDNZLw0+ARxtZFgWFn2ThYJEbjKuXMmRz2B+w+ezpVAcXtlhdc/5euHGMt2xBYqSHJiirySE65A3qA5G1FMQ+Vj56eiFof3yTXeox6gmgpPCoeLEjU8lJ+/Vs4avk7Mxck6jYknSl7BgubesrULtWu9DjWau5MBAoKYo7xpFBOEI7wOMDwzOoJ1P6czu+VQmC64YdvmxX64lQzhu0/on7sfRAsjtz1O9aqRN2VTGCDRMxLkVTtJ6ub6Jvbw90rEBKggMdLk0FG/vCwwqsNp/O7vRY/bwTNuaz3clQ7XEHUVuInZGFx/BRQT4nHP37bkEWgACNYgHQzQK5oHo7sPwk5kyEu5KJWJXAyMQuHKw4gKuEY9KWT55EgcAGazRHFc/r1tmKU5gT3/eEwdGd8fPs7XKBbbBOVno+084AD7Q+2RACTYSV34vptM+2Ee3sBMLYtHcmvTW9lJbExfP1bawT8yEwI8X9mrOI+VyFedksdPrDTp4MZ6RzfV4Y4EGvNCS9vfxcgMlVfpXDPrx4U8OiO3dpY60tV3nkK+b1lViwp7ykcY1rcg+knEsGLPUHkH1wKpQZJSBCth7u20fKxY/F6QDvSAmWjcEaB8L2bllaJldb+l1ZGzLZrn7ifuo8En4fWXV8OXZbSqg5iUHFR+AgaylwWaSpKbQ+JXSLZz0P0+cIzfJHjQL+CJGOJ23O2jbzhN33yw5BVjM4dHtmmoEE+GbkX/yUUev0U+bOcXVQ0gNkpmSsbsMCRN+zpQMwQ03RPuCZK+co6UDuskxAcYDtvF7rwhRSQYCnRUpqbueNG1nUMHZtdAizjW+dQXNiCk0pBNz/yZwzP9D/MCUYFjLx2GOninI7JUToDiqKbdy0QJm76+hB+2GS+uM2YqXxz7cxFXO6PH79nMLHbr3fjQTxQPbxSyi6lB7iCRBU/A1hW3tYsZOsuAqxU4f1RHbYdiiXhvKZDc59Zq1lJHpssB4H0Cbbf/9Iu9J+xF+XSQpQZ0ILLwTIqanOBGBJSxaMoYskFHuXc7U3F247yXuKF7uG2dVYG21JuUaTpLbl6czWsbqC1L9P3zYsCWEqnmwj/u9ZqFjwv5s8FwdJbOWdR58NsxiGwaBMB2WtMDaa23PuqDke1mGdYOjX6FFSyW6tZ+AGUmitcwEHtYASoNnYmDwUGZXe7BDdbSX0Nj/jrjFLRmcWyFh6A34EOOJMubRO/pggZxgc2SQRBndO4sY03g5rlCRu8w5KltTlK9QP9wa4iYiUQp/0qYf1RaJWaDZfaxYexccNalLpFtuyFrGs/q2A2osdtDvOkLMMrUteEZkZWejd++XJa1k1Q61fCDBZlaR13RRRJtYoDgN8G2yvrBMbUl4J6u8m3RCIGuRn4TvEGI/Uwn75usgoMP0EtDluZbtEqem3HUb8DaGjHYyjRuKUtmO18VQR1x66+rbUyPYBdqIueexX9EfMklXnG7R2yusMM3oBa1IRFItz8d993f6yU9vuhL48fhM8QjwWpvR62ZdKvhX+jlJfT8z32UnrcT2+ps5zVFGG7OZD29KNXLZM/xixFYo8bAVQigcuiQEvWQoybVcmXAV+qo5B9j4Vn5avTTyqFDqHfU0789ciTEIYXtaPAHiiJ0IVUKINVG5tF9l5uMgppcOPkzW0bTJOXFcVauJZUUFECF/8xT8kMDliStvqoQ/0WvNM0ZFlaTyeWiUQw+WgCyR1/hPOLMYitctpi4TEZr2D+r/7EETtyqeKx3Ra/9ZJTrrrV62yFUwTjlBOncNwtxGpP+B2XBM6RYakA72TzG2eBoHL3TIoke/IihQY8WkdpMsjowLg+QGhcwmpPto7pxZQjkEYVuBps+SYmFIYdeeMTauMpq9tLXU8LaiPLpe+tb5x7F1yWWWK19r/iSfR8iuDFnBhnYqVLsviQl42KvE9iGYVad2f9QNBRiK0anQCdKOk0LPvEaheZfj/JzY05dn204QlUcTrH36NstxbHYobl/zhwNmLu6R/571HrseqXw418VyWu7Aq5eeVcOjjOU/4+sDOX/52XFYulrnyXJ/4KC8CDrf2orJet3QzPKTC/we58bh/ny72AUFUUdxW4bOOKhWVoXFYyHSOdD+m37EKAkm1xJFCDiu/c9jF7Kf32h1JqwjAteyFt8R6w010O65FoSTGnBoQgAQ2dZ/HZc/ds9CuXD3UvI4Uw7lF8rxTOL5rP45fu6g7EWB/WpYhnMbHWbCNgMtOB3697wcDXWKw6tYizl+HWxWOrlm0ySeXB6lPWUojwM0jrLxGGo+KVEeikK8lmihW+gkA+5VFwD9iovG/MNF0df9pAQN3emexMGxHRHSnDQA0YQsiJfIgkkU317/ZeqDdzkx3N4KtGKwbpNEfWFQSCHleP+M5IAHWDEcnkOTdTp2paMChbJnKqR/AobdN9CDACw4gY++QPci1AdEl8p/4ExpaoEBpqb2wjKHqTfv15Jw+IqtnZ+diyJd5rtCy71s01GWQSJ/w5axAQHyh8K8UgPEcQA0f5ixCOqr9YBeDKMI8eEY6sDi0OlRMuK/68C3yZDvVltmXZkAeYCzFDpKteGyPUuT291Gg8/DumHUkiAeoh+lKmOrPmNLZ1hypMP+sbA+ZL76soO2LHloKIEn4I8cX3Vh7uvieKkiODaFrG7K7w0XdiI6G/Tqzh/VmVIh49O9/YI3NLHyyhEOkqiI/EpDWekusv5QPBEyWiwtsygDY0rpDAvllQzCtG7aRKwVG3We6zPaIPra00ZGQb/791UxaTpn6qgFubAPVGgdZBhwlG1276wggYJ+n2C4P1Ty5YfhB2AqlHuot/cs3rbxlGiGgXViMqZjPMGDNiF/hjqm945Tg3d/1Sc4B1UK3zgLAfvwU5DTxTJ39FLCBvrb0bad6eulirZrM/IkTZmpZnsVbNRT8OHJGJcwNcBLV24vlI7XMmSanaCKZWk3G4padSpZ6s9hbznvWy4FO/M1QihPNQafZn4GexbYjF6BJfDOAigSv+xYYJk7fDd5elrnqv03j1/5SNzdlGwGwU8V0Nouf8ia7ji7bL2VVZSMATPvFm3xAIjqM9kd0PyYd58DC3KQgBfeuZbienHYCSexSjo/7olHGIkXbKXLDuws6GeybJiwViDcwxrQBSqZs1GAB1myVIriFJFQLGnd/54VOB9/ru7Mnk34fMu/gY2XByhbsyhcn1DdOsvnwfraFYkU44cua2IrSYWGDiEZxGR/jxHdF/rG3QMIFl9lOG8oRE6Kd1apJFfrSLZ6OB9/EQHc+B+9rDduvgq4k0Yqubr6Se+x/hBbfoWlfBh/xGp37eEwQlJG1sc4ByAi7i5BTICuPzM3qa78ZGGfTo1q1KxlbRIG+9kQFV19MjocUCXALbP7LGqdTv2tyY91FRKVicmjckhGdMh28xufkKNh5hWJtdS5j6ukVkNEEXs7Ewc+nB6BXoCNcaAE6cpIc2YD5Tx2FFGKsQmevETK0VaI14f0bkw03YWqk0T6B2o3f5G1VIcjapxemEfupbv5bwF6CwgNe04vz//gV7i9dXpMlS97d5ySnZRQeHmxHHVlkyLseodtBpVC2HQ8E+TBaDDf5UmtVrfiMqbzDbY7qzpZjgyL0ZESYR/vplA7XdPJS+raz4PQK5W3LePtrl6CRYWtPCT4A7mGEkJGklCyKhgGdygtKYvDOBqL3MIhbdQH5BaalWZR94Rr37xXBSeDYB6+Vrd2Kw5Rb1XEuIW1iyFxuUUplA9eUKwdn++LQox6sSQV8O7DCYu16o6bEALng+IdUjc7QAvbuA/r82a/StHyXRyKsZP26D+OtaCfgqYXXlA17WO2D1QldyNwyXEt/nW27Hys7tAveSyp0sKodKURFplz6UJ8V3KG4aNwmQFUbBtaFKDzdzajaZuygZDW6NQc0E8ldGyTFEVeVMsSbF4loyAye3fgXlNLbOluR927nqiTe/3WS4sH5qrLHHpIIi198OfJxC/A4dkVu0ET5j55HYAvteCoRtNK+DELqC9P8OIyHaz+S/LmjzjuWYk4oy7t09xfqoTSYenX+1nb9CRdFSfd5MBRXScQrg8AFkUpwGSAD2guJzHpEc5dDy/XCh72Fcpca/lsMkZs9JTNQPg83lKL/dh0WDfsHJn4CqedlUPzdOmWSf4bFA/DLQB1LjNU5BiUX2gNpKbikFM3wyxZtlxeYOy7gGM5XHMiKDl7ds1aXe/X8Fj2f16HY3jf3vFKHo+EIuTm12k+dMEmgJay2A1c/o0X7KDKz8+HbXNNJisQ26ong51RomoBvcYqbOLq+kASmgM9CAwWlDywDn1NR2NIqjWgxYoYDjepcAKkzxlA0yjDTERx1MG+YuQRQ71DVmgmCdhS69qi7uWt68TErshKeECEgzJ7dzsFpEGTsIqRsKy47l5fdLo58s2EbdEwmL1Kq++oGaIaUUodqExICBD9u0+VpRKlOeDdnLxb1HEe11IHiUfjVDj1CJ/mvC54Y6H3n0nX4LgYjhf4cixid7g+kGMlOL//rKzBRynkyfAoBjDBPuM0S42HvcBJBZtinDryuvKB90wYhLv2kxxDajcJ5xxmbD1qDotSnjQsqU4Yt72WtlDykciZQrGMa6S/xZPIBCd6sCMMNP9eQaC6M3iTh/v0qSAOzsczFNcJU/m6R6JsR3lC5Oj1A9EC8zRDMJrAKVJLcEBj67lHlNkFVVvClvDX9wDXQJpDQwQ+T5TGnjWRtXKZvlhaoHt2KD3vI8Zf9kmIWyN2QLOp2rBYWiu10HOuI0dxZiDe3KdTVWRcytZ4YA/WfPBT2tXRVoarUoiWv9aw50JeV2bjIq7iSRSyD+Rdu16jSDfbOR8RgjQfbagvXeepJ98NyFjMJ2Ex1RObEcsc0H6/6G5ZFFl/z6g6zy1Z9fv3Vw+TUKqPWWatZnwoSXr594ADKrjcSOuhuB2qcD5pmuFObdjQAH7YbnO8PFP6S9if89b4tdOb2BbUFMGlB6G438rbbAWiWHK+VFxo3f5RuXPUYB8gQSSeSN7w7iDX/rSohuLGxZurMrClTara+NRXtsbSlUlI52MxWNzHlYjs9GgZLe43aRzOvVPccCXiLLNTok67cqzL+wQV5zFIa0U/XWanXsI3MP73G7QsourcCKl428age7YfWTdrJdsiQ6jmX676Bj9uyw0elp1Ek43o6YenDq9WP3vOmPKUobg+V0GkRxCIlMHpajOFAOu7FQk6x5DCLoqbo2p7OH3CcOFcF1amaYqOQ2JgBQGo0HkXG2Bh8B47RwKpaZ04k1N1XadKCvR53jYvSdCyautX3JLzKqQ48WgdPH8M7NOxe3LxfiGHaYLEkMeJnHImCvPh9nmooXA2TYB9ChtynC5Sgnk5FCBLwfPBCDnBojQEFfCnIzUuEZuzMIU02eLhs5oB3t1O0b7Jon7u0j9sfrsb5VWXoiJLanizj4DyFTfBCwYJ9FIaYEI1BXIloCXz+gOqNUGQx8QpSNpr+BPIsowipkOEkJRRuiuW613VjOzTKudD5L74vYtVRZ8OlRTrFhNsOSgSTOfdxkZXkS1t/Uu2zcmkRiI3ZV/3Mnx0e5sqUxqvI4+WYKrzTiP8lKUVnHOohn4QRLXiNdLM5353FEWIKWJoTBNYqzrjUoPtWOGI6nMIbzehWCVvAWgMdpwgo+dH9rggjbn4UtUUXm8qmI4fT/L49WXLpT1/13tl5RfJtqW9Zx+MhdLwZaBrNGpfeg4KZSQ1nMIYRROg6ELZF6RgbIrpGVRH4OMVYWWSOssc7nwaZ1mBhklq9qdk8JEfa4JtwNDLBr1xHLCJieXRGd7D9o10wsrVnKThnfVIO3AEa98z/JftYvzC/6o8v3ceNrOOtJn48ZfQkBZrrV0B5Y4T7o4yRwoZwgnHxvwUyqoA/Gp1wPpjnIJhdqBEqV9LGK7wzerdg1JmlIQxZMCRh6X8UznaoOk2ydLNUtpxhXy5MgszgjU30kFYZ0HsJ/Bsm0lypkj5ANXSp9VtdzyWjPZpbOHHj0Bm1PGEOaj1NtiQBvJS4Od2f3KWhaLrAv0nb3dZLhptGdX4bjodRruwXrn4hoEd/ayB3y54C98Sc0CUf5aurJB0wbeKu4VrO6z/SG5iZwnAdEM2UZGL3eOmzP0uQwL53UXOUialmqbdpGDapoXavlZcqN5LI1Qkbi6567sszNHCK5YsR4iLQksAN6Io2iztZWc8LTqjuq6FH/BlC81gndde2Qo9AJoIFi4pXC93synLlhhQFz4BUG5l48SSAWq1yogKRKkJ/fezcCyc3ZRoFFf4xV59Tm6r2i7JNyqC2jQB7sMEmsnumi6sE2V4WZIwL0xtuhEVKgKu5OEr5eVK5fbdHnjPiWz6GNisVeAZiWqCpSNsDkmADc9M3QZOf1VN9NsycnJJNiDnj6YeyBW1kMvE9n75dagobcAx9F3lQQ2xJCgjNsEoHU3s3i5p3ESSvq24/rnrVGNQns3AYirZiiakz2rhGmnC/DXlUzZBbLfguU/MuPD2CBP1KFElZEkn8R5JykFrKopxGelostbB7I4Rc45dKt6AX0bsQySvUh3+jWJ6UJxVycq8Rp/tzb1H52pNQvxiafxQ5nywCRv8qsTWaiklUwzKh3iuG7d4ZVKdkJ41VtV9VFCAnRyZxPQvTl/2/jnq7uCmMFXOXmPXTDvxQyF+ZSSnQG8UziSjQO584/Cu1gyvudNrXOrN80Go4jn6oAQhqT3Fv14XoGGvQ/wKAS4LCU0OMVQM0np8paSzTp4XvXRMsCRiEy7vDNAphFqgfvorDneVEBsMNza6O9oOqRxVtRdjKj5Y4sR7EX81bjDR2fpAErfWnqZghdh0Qh/pRka5qLhuC2TI2IMc7Rv8gw60FxdmBB/OJ90glyfJxQbD1PdjXLnYIWDtwmFlxinjlbbJf4FLn28cZXjQURyCjvRJhyBXQ8QNMWl0B4MJVwstKhvdNTkdNbH/AvXW2jAQgG/JEQLQXgMblnHGNIQv0oYT2NGsYndH/tF3iIBSNlGkU7/94zIDcCB2mmBQqMBRvyellfAluPtve/9uD1Xp25R7Hlpdle4bRYIsZXA0IfOA/M99VXLZeKukmYjP4qycGrl3YiiODNWKI0ukJmzwjjyUYcMuQDFJX2OanivGKwnKyHqWp7vJjZ44484azPrJdC9tIUJkOwYQ2SPwaRGstxubfDgUgm5qrm6r+oT7X0n0ZswQJ/PALkLv+9ZzxUP0FccohKfv/5fyT/BZ+D/4bAO/kcSnNHXFt0VeYq632uI7aBT1Hxt0HblNZMBQqv1uqJZjV6610GYiu5xUVNRDEkcGHwmJBd6DFZ2yOKGlFz8iETjGz4q4c1ZIP7kGVoce6GNoPibIbis0CKw2l4xUNKppB1TW9fHr5TAqABPSXmnA3+/A2zoP3VkmUEowcXFpf9jk2nvMYN8vA+DbMknz7XabjYv4aNtS1fahJWrHr4vBDh7Bv8mlLLF3DXjAtjNV+TfDbc+SZPZF3jrrTOUxUfdSGVbmVIR34Kxfn4hqFSVF3C+B4O+NFTH+TneAFUGLgGOeiap/YobfuLYIv3BcceCfN7BX4ygo/xuna3ohFWQvDpbxRDa+w7OREzNjNkuaxmP2jVhyGOUeiB9yqrcUaeaH9z1L5rD9MBLeqh9Bon0uGsdgIG/5rSDO/Hze+bwpETSzX9Fc9CuuHNwLZ+wD/3iM9b6mYqdsLnQfEp0f1F4CQRgJ/D36ZbrayjcnNHuQLMMVntm4QETuHQe+lflSzmJkHBVgVTRSf0As/zZVY1ViyOSxNJBzrj6B+n3cVh4qahXfLtEalrrXjAqGktUMBy4/kIKI0PdNNSy8qDqBn8C4LdME50uIcwmquvQkziojZAseIiLHUPIywdbMIB/K0iHsCNzdvKklkg62/sDMsM9s9yRQcDOkY3zMKJQnOmDj45tyF7gyBVKuVwUGrsWFMHeMwUuXq1Jz05PEjK1GX/cRcNg7XYr1XpRZJPVKQPuCFcd6NbX9S+QIm05SE0qyhwl7YXWAhW31TJXwbJxKQIJXLk501d6rK6h3D5ulGMBmVmBWopkyMNHJhRhRP8t/bhIOmYQhzhav1J5ShcO03g41CNOBs6tV6aIF8V4F+cjy3Srl96ENuSn/6FIYr3bl4DEW+GGFjsymV5on+BPNLctS+V559nFYy3HxJsT+xuEAcDpUyjjDeMZ5XUq8EJEQ0gJ2jYU5ZKrDpySvdmPEBwTeC/3zxpXE+W7XnMiCcRWMZ3o3S59i3qSZZhRIg/BqMMeRJ27QdL4DSAXszBwRLp08mpq0AIf/8ikyvXUNtpCQPtA6ThTMBWRkBJ+CElrhuigrALE2V8wj+UR5arngbUVn36k3e4RMkxUbRzWUjvmPQwsKvPNyAnDHfgI+DtPYdygCg79mMCvR8nMYTnMhQm+X9yEjwQ9kPrO+44CQPW427J55VS7EMFmZkKKyRx4MvG9NR0xvga3p80NB9drNPjZC4D1KZqj5A35lKhw+cEo/utKv8SNKaXDgAiFJi7PvX75KsS8SIEXy/8qKmrbZnJUoACMkzUSKKwy91wn89sWkrrVYPRTK23RHql263+g9+YeuRquGps3ldakTUdZ+CvmyNFgIC0rDyKUS7d/Y9fEi6frrIvECKMhfp7tMU7XfIpFqfS8Kb85q/1HWXykwyyUuqfW3mGULNumszwc76HzTbsHhVvxAOA8p840pSd8EpQGkrB0hdybChdMSTvy7G7Vn32dYeoemz32ivhCpXWr7hkvhgQpurv+WnPt/u7XhVtv63N6xHJVGrvcIRBEXiWL2fpLw2owYHVDAyVkT5VRMNi0EYK/Y1MN6kG6ssvCQECZ+p2GZ4r/5h2SLR7ip3BlttAb0CmJXydBDVCMYMS07++E2OJ6v5MLd16Og2AvuqQtXWRg4K+fo9iSkty0nynbclJGmRWUnBaVBaz+urigrWJ8LJvupCvW4nUbCtMMXdBaYFalj0rMFl/sdhzjEUkjj6LKrk6ulwn6gRi/LXl1GGDsPYtglluUfLKwzsorIRfK/hXd7WepwLnOOcJOOvpMfK0dm4jUGdoEnZOASKqS2MUbsoO6kDpfOvJG/7AxhWi8f2uUQqqach9PuGfTHseo13CJtl1gPJ5TBPP1CRgpj6yOChD7BsfZcXelnrdS/OCYkUDtAJLkmq4gpbpwfUllK8wi3foODC1WNjQe4B/RxDQ4+7GT3o+v0WcC8B2LvbE+5blEmfZPjNXnOKrUQ5OxaAUqqdjdTfdLAwTre7/Ysf5GZTNkdEQk931hZ2T1fVmSoPNVFOeiX1B74yO+7yvfJNvNwffrQq01aGd/aez8U7TbsVXV4Ot40+eF9C3dHWPmZaPD6ZxxycRCmqzeDhaPGw7njscq6ZKiZcnYvBXXX9gVkru+8av1DQjZTfVntlEsd/JWWv/ahxvnOEdzXcXyQBTSR1HRTMmhaRErKz8oxT1jq4Ql3o7sOd6loMmzHmfdenAHWXYdki/G4+tTS+1fgI5gnpBCPui1K1ZhA3LGq77oZ5R6pplUDx+0PCmf679EoItUCY9yKbD9Kb3XygNMgMnuJeA1BANFzG+xa0B0M5t037z6XSJAVBYlvL4LMXYlr8lUkPsD7DItSgXDidOkauNAihs2x3QHOseMTe+Yf+fdQ0L70kBNSLD5RkWQbLIcldTj6b6xOnBhMs6wGgo2X52UcFPsvK/slUXxlz/D6r4D6GoWm+SNown75zaFfXXoZszXuNDojid/cz1Ao6DapkNoFFM2nEYZ9wE/pG44jWA63GOpqzrqWZ1ct7fqsB360mdRrnIcxJy4qhy0DRzsXPl38t34dZfYqeNW4leJYrrt8YdC+aFGFIwxRBxn8TgST2EcDFVJb1tfW6mfUn67bTTB1nvbZI4O9X03Rw4BZZk3q9+YIlAAUj1qRU3DBsP2owQRpb6lRStGjTHXQ1rKr2+mrPez0rDf8ruxxysDQnpilKLDLyJsQNi2mvSJxCAVb0Kf237rreXrzavcsTmMxw2UILkSlVmj38dN2vTSDNv3YX+oubvb4W+mFPwdf7FGzuFCdKSBbidKWw52xIJuh2KviqXdR1sM8CBvjsj9k2OIjLUoVilFMn/TEhYyIwJW+3UITgLGRYJs379p3rwGm0e7FQraLVzmYcid/xXq0r7HL1EspVfvNS0p4DOAg8S5y/wCCJB+TfPjGf7tcannTQdCMSbnniBvfhyZFD6M/mRZzvyWnz7yzfYf9Ghbxu1zLDhRFytIedDw/DQXNX1+DDfmiCqLDLOjkA0/PemTHpSRPr8zMrmUkcKGJnKYMu8mNOu0gYHl+98AOFs0JQhWW8P0/3qGqEW5/RE92JG2A1RGCweu4lwaVAjUA0ioNwmWya8AYtYtGwgRJz3ZpNgGlNdHwatUrmFS5vuLF7MvB+8O1gfMKXYfWZWNrbZwpVu9P/hKXY1MVn8AIHy0wCG6zZ6lqSfeM7TnxVMfif8prZNAfA6cXfqctlLJ6gyKqY1AUfudR98CnR6iGyR+8ANzpjxljqNtlcO4EtXvOXnjPfcSv31iU5HqXhHku8Fo+MUH7FoAPCr2KVHST8NTlOBzBrLYs+szQP2SHxb1YmGQ8+HDDD18sAGwgpnweP8bYulUDvibkcn0n9UJCAT9P2iIgj4iVKnlFOJxl6fDyN7OyVZvc95mftbPujfS2WD/20umSJ2Ailzj9RgmJ2nneyPW209xKixpUwemiKfeH2CP9lRto9h81jN1PKsQAFBURiQXuRVYwKW1RVBd34aPq4hwYqh9rApH23tDF4+G8mWR20O/k24VynOZ7u/lNo2H7UHpgp+FuHATL0PjPLjblgwBgKBe1WQuGxP3qINHt7cUgqqAbuQbqGkOyNf2PstBUFqXRKpCu4sDOtL1eYeqLW8gdVZdea8Sp/TISw8yatAmWPwtJtKRNFVRQA9ZFj4ne5ddIrZaWjXdRTBiNCkpzd+LUGbb0vvuKXv7dPkAkPBuz2eNFKE2ZK9yJdpf7Ik5AMpbYzYRpNd5Z6O5yQUVrqaWbcCZp2p+akOM2aVJJAWQ8h/KQ0cQ6LSoxGoQIDv2mu3PcPnfrxVg498YCE/eW7IZAWIyAt2bZ8ay+PLZ2APFjkc9GV/AJRAW5BCTR5WUvFDU5UR+xMqr/JPHzlvNrz42KVJpS/b/w1c8uKx/40X/ERjaYvAM/Uq3Fx1UgdeO2+eDS2C8hZeK/q/VCVr8nPuiG5gNpAk+C4cROxiN2SVphXrOtBQY6OBQ/ovmhJOV7LAjHxd48Brs4E4mKPKtDO9PiCCW7mynZ8JK+xUslrj0uMCeR/d00HjuQkfBIbpLbbdDUbwAwCj1mm/tMGXm4uBUP0HD3LQ83xI3IWI54jgAWWQ5T+lTOQqei8iAr3uKqyEtIE0u3l0QerSB54zmqcBdlMVC/n1FjisvinXxKAy3r3Z4gAyMnQt7fqH9QwQb+fOo2p48Iu3wocqlKswGRqMOonTlHcVbEN7alD3cB9MWWobDpTgJ7wmEGgGszpUTer04OcOCa08XoEm10odJzct3695r2RZcxSvgRnc96u6MXK2+qTpw6BnzP0dT8/OCBYAU/wOHVxPFNb+Re8nMlzc1i9h4pV9UgBpXwBh6gnE310RiBrt67RJpEDQg+zMfX5hGBcYTtLqaTnHsf2sSkRcIjSZYp30xJet7xFgZ35jIGJEviKEAfv4kjiLux7V6xOefYtbCPlMG+NSbM9MXOm3P0glkJ3adNpPF2ao3tmGiF70PnY2PQfrGxQFXnpCT+eT8Vf+bcaMGDZmyg+qJyVT1FEchxEmu4UBwqNqP6BpTzP5aA5/b9rwnYdM6Thl/5stOtIXM8Bl0lQDH8OEEv7HwGan4p/S9lpBzdzJYtu8GmG2A+J0k0AQukL8T/i05lcb1UQj/qgdnXIUs7nGEtVSOxkCAaJ3VjmWv2ev5OlQ8kLmfPb8FZh3bKrAl2iixkdIXYMr6KJEFblPOpsyp2dC2SOU/SUsU88Ck99DKSJoVjLJqUngPg5GQB5R0ps+PJLzmUir9Z3pY7M56QSt0CCl6ATi2pO5jQwK89JtgZzAKZkHR45jk/9cU2LCYhIXkBtOo7QhpgMCYaViGZB7N7rMYTOlZpgEMXlmJJNY6dpytckg4DvFnK+nXD6W99ocWZRk5ts13PJuHkRz5QcTyXgfXexdC3G0UrCmhF672Ctj5sL3JuLOUb2sSFq9eB3t1yfzmN9b/oveaYTVe1RIHj31DSNNNA8tWSSnSTmW6WyFsyoxsdN/5hq9FHeX8UGzKZJ8us+F/OTLb20a/v+Pje+pi13TJzM2F3JrGqbhcyYVCj7hATRUeEltQObR+DTxbvphAe3VE47ppeV7/f3kO5bpb9G3C5iGzR2SNlKzEpYX1AjLzdPODuhBF5WkZC55mSyvrvhotAjNwnFGa67PFezOIPsC8kIJNSJFaYFJoqhYm3IdUULh2x2FRL/XM1OD9IMO8DOV0JIkESxWp6x3sWk1JS5Cxz3Dw81K4VEyoWAWazxtWCcvZK0AN7T/Kh4Cyz/yHVUkBrL5mAh1QMkiLla2XLqjrNHsuqMBxmCle1uenpj4KESoyyzzV0ds92tt+9iAYjQzEZkDZNtF9EGZYaSpk5IzmVTa9TFriDBCNj5wjPAr7I2+vI4u7L7HNYrO2FO6Unmo94PjZV1k5xupy1nthjQjk414axbu4UbhjL/lO/Z+aXEcsz8YmRX+7eECkr0jqpAAqEscoGIJ0TJ+vZme9uqL2f+o8BsyYtzyf41xNeuEdChMIVurSYUYmp2BxQwu3JZ/6X30OiYNM9kwIKAfTMCgUgOdUxGYvGvVFeqMNIkTHnrqcNWTldO7jhPeUBBKDMgCmYt/Dhbe6Of7xkvP3qrZq2ZMOvIjFgwlVlR8nI/PhYvv7QsHKfcYUv8pZYrzhB0cUHxgFZtV0ne3GCYwWMVKMPaU0Yv9AoUUDrig96IE1I6RqdHOdyshLVDw+/MOcRJnuCUifCfNf0W0IdomyszzkD9+X55QfFn4n84tpxWZs12eIwZItb/V0TKJnNsgAgfZq2AdB9/w8VYHU6DH0kbYOW8mQtloxE816RdkYDsFoQmsX87U59pE3gc9icfFw5U/IflNWplDzbO3QnpmJsDk1wt2JARgEnK8s8VCeesPScUsoWWd9u7d5XrYWsPU5lHHa6uRxh0fkJAFAGaauJaGfygMsQA2rWfozTnLqq3+w9rxfykCGaW5qePiNGH9WX9Iakfw+XMubNPTjKRTxf+mrev9Qk3uwJSXQJhm1KAZ7g/l42+EdLRpE3/LMjjJf5LK4eZxk87ZV0cp5oRUYAAvsKFc3596zfHppjmgur0rS1Z8B93zuS4nubAOEqs1H4M34fQvrC7m3AOxF9GY/BO8zzoEy85/SJXHx8xYpF3ZQuuqDMlgDc9RgeUo3Gv6kkYFLvif+wbeDUfTaQryoE4RjS8R0SScxC1haJ2LAU9dC+0/frfRF85PHpm17mLnYiRifaoDay77oXAs19Cn2/mLZoon3Lnt99V7hIyskoX1sCeGJffQAzWmdo6CY7RboVmFZFj0jaKPwqOGDtFpXfEPEvl72PVPT4jYXyNmDUdsXxSzqzUy6HtuutBk82z5Rn0aMBo+Vy5JIyORBkdRameK6Ye1jl+ZtDcTuqUyzoUFRU83nH8zJsCoTq5HCQiwX8JAPWADF8ocNbtyR6M7pYfMr5oyo1yzi7L+n0YUkFKOUnpU9BB60PHoLwBvRa9/IMbAcH4+eYXbwrtha4tRw3Lc1BPpaHMicoKuyrZoHxPcKP28uPYTvEq9AVkRov/aMSktyleKEkAgZ9iAtXX/DTU/1TXPPygPBi+FlC63nMEfoLQXIKELSNP/RhVDn4oPyLm+NO6KEqeHj9fTwFlbdk7AOo+gqVkUYWjOnmFq2iGzIeVUnihiccTDrZCK6vQ7xGs3LRa8skiXNRLbgIzdY2MXa25wVx9tFvRY50KiMT0gxIshUFv3lFY4EOCFt2+9JIaPFPIAJ4dSxNQIhl4MbzAKr7jqsJK0a0I9Rk99YvVUqMOJhoJgb51Uuzqc07A2RHFNs2fsmMx0bR77VnURrX13w1aESM0e6Y7DaSAWdhrPgw6J3KaLAJXg4ADeYQbaq0fci/f5M8IG8MoBHqNUHsyUq5C4rxgN0bSMg//pFOkZ8I/J2kujjQpO2P+7cplFlcLwKLvlwqLaKXNYfWLKm87fnKgUhR6dnaW3zAaCQxRCzkEsPPHcSDjSVuQdi/GMVb0BpxvzVHp8KhzO6okLfk4qB+DVzMKgyPrz1oZmbRlU3XkukaB/SDMJ6Qw8GH3S7BXdz7Roqg+TogUuJmszcDLYFr7xVGeKAC+/vN/Pgxi+xGDkco87MhH8RpjmJdeElzKTXGVlEkXOrkKSCT4ZIQeR6n4pAxNwc5aZfeZSgqqh+3NB1whpMQ/B2AQC0YyWUKhKMGPuY4OetQ1hGtxkiQqvowfqbf4Exkr6YPHIoZKIWEjwYXE6XRacsMJSlCboQY7yMFJzWwPI+KsgI9yN1gGwdJCKyfiC/wLz+v6pJlYMI5HtYTXtbJhLkYpLA4CD3R7IBhGSN/DHaTEXnYh6GYxu23lCZ+9WYzekDj+7vcTEDJIHfFG7MhRUwQc7D527fcaohcrMC7G0u35k5L3yBaI9JG+e1HOjpoXaLlo97UmKhGp5EoOQQaM9rUfNbNbwn7ZwydWXbPSXvD24nHqeeccDgvFSdHxf2HZ9k4yoWIBwqOAs8eCbCgBgv71Ft+UeWQZjVVtXqvGFL97HOqIbvmFQ4F4xx0d8exyRBgU4JHFeIpUAmPL0KNvWIKbXyoN/qhKmFZ1cqwhzd3YNnfAs+hxjAQ1QqPOJgxRCeq6pNOF/99s/sKf2ieny3XYYZ9RiEdD46q4J46qfLXIj4s76wJ46cRO+dUAF4l7CQX2V1gdJNutheY52CE1Dwa4SIoPaXDLyRJIFdXvkymYJaHmPhUYXxzf00iL0HfIwb8WRvvpyE3VSbRMBFaXZXB7lmO5I0CcShD/iDmGS9UaVsxDiPH1V5F9KyXaVpm+zT5rQzABNSIKyvYiw/s0X1i+vrAk30IOpgVVRfv/bogCysKNQ26DLsNtLhNbXRdUaFoQp6LSwUXWLFnubaGmjMDXlkUZzeHoDc2XuMnkI01g6NKzvhGUhOuPNcP5EWwbXL+s+9j+RMeolB/42uYFhVuzttulWhn9iFYVxsV/7lCWDz02gGEQeLJuCDDA0Ifm0uljbmqfDiUSFDSavFvsUYbO58oRPbWYkPtQ4SLMsrx7UJPMQ9AaCCOdE+NlbSSGxbfTYlIRbcjGh5UUhdboqsoFyAxQs/1BEnklcannfuPmP2YNwGgC9T/4x5ElN3lIwgm00ubgbvyS5IgG+o2sCNhK5+du/vMHFbb2wU3vwqnTJK2BqwrpWK9/pYBgqevspFqgSlTpwnJ8SolXz7TX6DyTvAe97jentgbqhPB7Pg8JZtF4MHSvnTXlFXX/d1yb0PIXJwNpURdbM/+9FNWf056ADs5E8bh9/SMFEw7avlBSoQMi1rWpn1MIh9HobJvcw6tsETQQaXpnHqiV93L+Yqdwid2JX1awwbBs/7+QiPqFUYW/gX2wuI8WLQk3mmFlOow7YN1YUSJ9zi9HqpyC5LyS0JxqSMzdYHXdOQZNd/tOp+rZ3F9V1c9UvN7wmUE+z9uhY6DzjnGB6KDTNP/Hs7QjyTldqY7O5v/F3uC8e7qV2vazn/Kak3wg2z+HklECAf1qI1dl+zl0uQrwYYJHVJK51GJJsB2f51Np0Qtbunam4Tt4pDP4MtBEZoEr5ROjp/afW1OPuspHTXLy0a8IgQeUK4h5WXJB+BNHbvHZQtG/k0UkdfdKjYoXw46djfm9oLi+WDKiTy1ywCthX5Lg0MH7kJWat0HyNE0o4PJzSvzasp2t8KYVxygS1+mUUg9GCdC+gOIKHwop42ZSestwdCsDbmp+hIi2XFTx5nVVQY5MOlOlQOuBYive/DcDpVqjLl9U/8F1Qdzrw5xKwL8o7vMFRk6EQKtRj49cTmrDwR/abqLgwLFXj3qTnlGnairdKAic3C0veBJ7p38yNaFYFgT5mPzmtPeClokykBVrfMR7A5PvFmOzyJ7EOVyjSqXYRm8m+/UpUPfRA/dn4zT7ElgJShDXPEQpK2XEjEXRbtdDVfO21tzvIyoVCHU9/Os8S36Qfzx+QqKQk1LD6ACKTg/YU1vWzoT9lKoWpEuIo1xCXAPSq2RQTY4748PgEpVJxlV4hYMBeNYyNStPITgiQKUIfMs8Jz1FGXmivKZx20/0T6s6wYgX6xSHZXiO8dVyDwtjl4JsWb//v2ZcxXzEdBx6s/pUFqcoukhoOOUFIqrQGkEblnV8PspZGZAW1+Ip+60VuAEOTaOSaSYUNQIKmhSfLhQjHNCntYhWwu+ZR+gu1BHR2lIiclc94jyl15B1Fc4noybWsNeiKC1/slETmlpL7jAwT+XInjwtzY32zuyto6eSNZcRim3tOJGhgJj+THJkbLub9mf+4Q32AHv9xMgEiB8b7xC+oo3shRZBsY1mHFEXLlREytGoF6X568sgy96kYuJlKZH7tmdKzgOmD+BD8OIUPmZQcwS5uy0eETvoLa5spN/HfpCvqG4AGFTQgZ2M7wsJE/C2Hg3+aX1C46yFd3n+ztrae1Zmose4Y80X+2qoheRMS7iMNuUJGUDnVYCkyUWSV0KdUcpGzSS1RGWtsVTUU3hZzV4GjHnvEf3tGJkOV/nHRwEDsm4H7mAtliPhbF8P/F9nRdwT/D+gVA6HcYIKznaB7SbYbRxkY9mi0GLzQFz6Tmd6KNVYke81ItpghrLDBrlNJes9Fi0rxzhuxu92SESkzAyVqK728MGkXtW55gyWIqBZ9hk8xwCcsFOS0Lg50MNg/X5RhQ20UeRhUpVfeBvmfhqGmU/jmMEAyZJVxX4TpKWlg6X5vlD33qEj2lMYQ2O0ErqlXbvkKBhbCsqyCcYotcm0Ydfg5sIZbdbbeo3umJDXPlVd9naDZtEAVqxRXQW0Z1RDc0AlcpT7ogaDolW0cv22etc0jkArB7gKM7VZgGHxoWxHgbdZzt0nXbuXY3OsYQV0u/GQCYc4NoVe0O7H+AwlPeYxTuw9wDeGg3eNDEwEUgrNdIBrmxCJZH2qg5lxyMj0D7xl+lXc1FUR+e4m6cg4rtQ1kdChiX94nmDe0oEyQ2Zn4S1pCslpYzNBydqUU93WsUw8Imjq58VzGFhb/GfdTmMJG0HAJMkdHMX8uvN/U4sWuts4zBTHqi/648mAp6/RT1wOlUc00OtGXh/jbQVmM2P1+mYsY6UkkCvXBQ74ouQtVVyN5xaJNDu2Uq2rhMcRzOnTpsEnBjqwWEKUu/VioC/38w3iOkqgp+W9/gs+gKVt48SQvferjz3J8kegrhRbhzhtFQ6YCBqTJeKDfl6x9wpUwsFmO6Mc+CE5k0LRKmGeymKve7f8+sp2rOonjzLxk23pRMs3p0CXfh1DTe1/nOYAy8F0tFmXHMIuWeePOP9zzuRsWk9gJ35Vd8e1FLxBiAYjr0T0qSaKXLIcRb0E25C3/4BK1wlKQJDrNpbZx+fkBQZT4+Ez3RqESmvmjsgVL3A2EwrJFH0/rdCbDxjtl6PCfKPBzHDVvVY87NVE4l4Q0JEF5vKBxrsMrY6VocWBKY0+NbnLpXlL2NHAAemNLc4wLYW/Kb5Nvm3jXciZgBboTWvSnWeUies8e5XbbQmWehFmcww7EkkWkWUyN7WxXugrIP4Vvnji+WlOeqWviAxhBemSkzQz08BvHoX+RJfOaTIcVB+7ebTaH2P3GN8EjU8JwfSDITVWp+QnXIWeNK9PdX9fO1fzdooAs+25hjKB1Cp2hAVdRW4srJbpoJtEQUclU/wKnXbtZpI1HUEyZdeTRYayD6DCEfqN66LISdxlBHuM29G4R82Te/pZMAW+UIMCN7x+EQP0cKVOhoY+Tb0ZD60ebt2ov5OU791HcWXF8QJu5dmkuHKwaBc4NvHLsgpsAL02YVDIcEtP6Cc7JdM3PH+6L9TQzxkGLtr0Mm99pEDgPIe3kK+bEWUrd4EMkoRoO3m2dcj9lM0nW1LGr9yzBgeBS/qEPWxD9/7vuVBiII3x30FCoEMBo7TW90prJfSj68VVjP/4DQ+SSaEZzxUAdKlygWZDxLDedVcsg8Jm/DmUdfspAeX/0aUOkCyGK88WZOwa6MZPpRAfT5GQW2cNZTXkRuz/qW+6aCXpgzxrvXqW6BURjxff3uiwvTB1VBUiRa6t+C3TSo1sfEbUiyUmH4tfkI2LDxLrljdiHgm/4EULcxCuZ2usttVy6WqhPZQKZbYOl/WuhXZbn577+lNPcZmU5dIbe3J1X72fKGyx8SYp07vcPHIEEIkTyNYdIM5dm1RoPPYvoZIjgm7TE2XeOHautCGXEISawcCooO/d+++wfTvJcbWqKEqEVedgP2i5kQeDFN7tMATZFR1ZutcFBPukaEWRP2uF2jKIZ2As1yKYu7QJhwaAWBgoCA7NTga5IjaTVJkDNMZS0OqPI9R0zDRcZcu9KwQaLgTeWStPoHOs4U+r3Z/ZRoToyfZC/7piwuLWjh+BbDS4+3KXCM237q8XrK03lYFQZ5VAd+Qpqt01opBoXxONfpM0PCDVFInEsS6LSDyaY42SmDlVXtcFUAWVEvFrj9ztqlg8REWvTH42CErt4wqNao767xPxvsjourgErKyLlGTgsCPvtQuTlb4Tpm6oZ7gni+rfqwf6ZJbP2bWnOxg4cSv2zSaEUZsBX5k0xi8N+j/1Dw5DCsD2FB9wUk8QA/xr/hhEMGeA2851Hf7/And7EkECw5eS+q/9GnRSPnI8m3t7bZpj8jsIGDXZaX7YQwhp2fZPr6nOYB4kDKLc4OoO/qXrm5fJ//yjkuRt9o+wlVxQJUkqkLjyilBqTiaaZFCZpjruZqYNKdbd/WBoCErkIqrZUrZkDXieBAlkfVKaQGrXas5iebfok2MPCgbCf5tpkVHPbV1HUJEGbXbL/XxLYop14M5RDz/aC91clG1EY4981h6Wtp5QFqbHJSyzgW8jwVajM/YQKjvR2jo/A9+NqlxgwbLOVgZlxlcukP75taGcrkzN5AKl3TCAwFd577T1iOSaLVmu18vK7S2mMCr5Pz03ebHD7AuyCbpjB7e9fTmOspGvZqAu/1xj81qJ4VuuDUChBnND7JbHvqeq5XgT84XHqPEZ52VnaZJjxbffrF1gjAVNUC/YU55PRXwrW19xj9GNwtf2Dp6Smo85bPK0/ALHmaZN8VUHgQ83RrvykoYYtatyd0H0myCbMYn0zzyBXbTFy1L24DhdhcqXyxluxZ1BcfqoBvidX0ttwe5XSQz30h0vm5rUYNRB3QjpKB8zBYuSK/V/jsbvitOoElzRvi3tACNyjLByRT8SEowhjXYGMZ7wywqXXR5uXY7fvV+/ME+ATRUE6JKBZp4fSQvtGiLNPw58Efccft/Otji0QBQrOPMUk589U1+08V+5ncvR0Cilrb12fTUMXcHU488dJDLWMiEnvvCis6rx2Nz9MwwnLQT7EYWcJRHOu/B9FWliwMSEQ2paKH23OoigFunJyQCuHyOygUk4Mx9/vpvg13q/C1/MYqw6zG4qgtKHHfG0BqWXOHDM4D51pT2ffgRyRMnq6qj1KuRYKPjfln4CBFaeqm7/HdBLM0Lo3aBebQgm3cCiVfarHrGLh5iU+f9zi9OeOYEtATiQeDPpicF8LC/ASmvdttuvj+L8WOTFntfh6r+LkC7HIHQxqaL8114z2Sgm5PC7aSqJed5g8oAr9WMtFPKdKPzigEcKtZt+AwDAVgKVtotyDbi/1JAjDaAJREcs6yUxkgSeSsNEEJKkROcuuVJCfOMLZ7LhiSjbxg5odk9j6o85785T9m3qi0FcfhtkKVKFdvIDulyEUkL10PRSdNKsUywZK+0EpF9WpPx0UZEY0ChjwCalNRNGg1IUz3XUenAty5DUNtHwP5EZOI/PiRWO2aHTi5t6vbOrP71ujxCUfkyz+EGoLIIsueFZeSgkLduOSlOsvtwPggr2trpUKDHhCeHE/SxPU819ypiep/KD2Q8g0Y8xnJnfcp7A1gQ3FCT66unG5cNgqNtxZwkpgdhewSmNZAw5Bib2+SSHbgSGUcbBzBxtdjsXhHpFmR+S0XZ2l55I0HJJrHfOptXZE9LdDSnBaIuL3Vfh1il/2mcDdw0VbBsnnv4hsAE1v68ycZ1UODxHmvr0/zIqXDa/L+Ti223zWqSYjZvPp0Gqpg7ynqdkl0f0SOTDrQqeOqteyIW9S1qJIdZHeXtC29ABATVjyhHFo05MYu+EoEeAmrNd7SpYktXIeDFyiBn7wORWBegQwC3PpSyWBJcLk2doyFtcvzDDV/LZh8I/yZ66RZqngw/j4yyHicFY6CxsbT0qfmhZ60hMYyStVIVcefPvm5fXEDUM6uwHxz/AfW2E3lOVQaAe2xIbReFUp03emYJfmHl606o93xedvVtTkWna5UPp2YHIRM486u0dUSN8ucoNpFlcpcWhC8VcocKZowCx4HdB8hX6UTMbAaltCam35LW0gMSTPXEiEYeCjYsnsm9XcRxRWBApwdTp7X0stzkYFf4DgFFVgAfdg8s5+JVKBTqI5IGPnlmGPFd/UWF7FqxX/9bqx2/CXsZv1DEVancz01ChXYRCpmKwe+Wdq+Z16Ov3Z2+uAyBMYZdox7IUwOp+aqObxw8slP1SFdjWQT13NSJYtVjfPvwp7Q89wAD6oaO9PEtn1JCNSkJajEIiuC62f3HtkxOyVt59kRaNKreluYwqyhkpqKmK+0ZSqd33YbxZyUmxts4HXHuayAnl+CL3Nq2pBWFlsrYVPTgjmpaol1wbPjR5vgAgpoMwnVQyLNAcbcGa1NZ9rCZpQyN0LdksOc1Racj+N1r7dzX9zzdaV+kBjQnNiNu3Vjv8lEaKF5SUAajtAyG1JxXlEQGQGl8ISoNNT7lNTZ0GiVzSfOLXsP3b8LhZ7TaBHsQiJDSwoO8vBxCJC86L7t/VJmrHNblAUunufsXhNaZgvcyDIQ5xc2DH74eYwadGp0pMZbxRl4VhsBJ1W0nA3jgKfXOCeqO858nX8ec95bNIvqj99wJRsJ6acoxRt4yLgoBe7DG5ELdHQauMvbyQLagNinaGBLnUzFymB/83uUUlatNQ5Hni0VoMgUc7mZdGwCE9ftvO8kg0g1yo9T+dnwK0ukP0CWK/iJxbSrmOYfCk7JnjJNEDNBevjdiKtMC90SXDnb0mhb8guPC5mZy1v48UUZO8SqRVKzTlXN9LfaMplTZ7oMEyh7fNjsKg7h7FCx1gxtzVifm5WjBkO40ZPLVtWiw9FGMNPjeKFH8eURi1crq5Gz7LYr3T0EtEYrwrUCZOa8PV4rXDFT+b+nKyUZydWno4/qemALYZ4Z6w1DusQpB6FKhlt1GmJXNyYIIt787uIMCsFfMMlb0bYpCDHVSyzcuxB8kY81qVt9i8Zj+MqQe/btA8kB1gJl5TgXvJm4CkxbrpeS0N3hHIGXhagGEq3CvVLgWowZyswVcCmvDT0MPGdNTuNGYQCdvf7FibKx8zZK8bgTuWMD9G4aE67tJ81X0lUrFKKCyTyzWitqJQrvm+fAHgxqUhgkgws+9WeaaPTzzGlu++z/gBqNCVb6Q4i4v4xebcNSWP+ICsRvmRqR3GDmwnTlSBahmX90AkhqxzaBL7R7fOBg/SMe/D+OH1MyKO1s43dpZ1YYINcIFmKj+hsDx26aF+LFTJKsSWfw2d8yqrP9CgzGNd49TfpeXa8y1vE3H7ZoLZ3YYpxoqZfkBEH+r3lzoUXUlqMaSEdRBgIuVqTltJRcFNxbmS4acHArdhaLAa8VLwNgHHnbo7k7A8A+7NS1zj0TiXYj1WfX8X63HB97eOJBmh7VlreYd1ZVLCsM4eB/W0FK+7/eewRTF7VX2tfVIjPj2+g9lXBRIBmVb7dr4TLP2MYCunDEuEsABWh342gDkBsYpXvotQnR/unj38tPw+gMz9WHKJ7TE9lW6YUXa9lAINBHkGvEngTaEe25Ttd8mivZ1qgLS3rLB4ll7jqraFE0jZp8VuCwjPupYR9FPEGXd2rv5y79TUcvAVJ1HZajTn4+qmIuGjfAeRCRE1yjMiOr3XNnKwy1Er9VnPLRawYxflipadlVvaL8nJIQE5SpCK7gtqxXaDC0nd8tAvR1LemElcpamy4E/NZlKQCL8VASXVgo3kRBlKilGW/HfPZnOgqbusnj5wYJ90q/jJyvKSAgpQDmBBaJu0ER+8PH2nvtuhJk9pimniRz7eHCUt5EOoUV0QM/KmumrDA3mOobbRxbJcKR1jmtBycaqRNYHaHfAiywyHX/mJOBalHsM/TW4zMwYGpRc2ZxlLgxaP2/LtWSSRfS1QO2eogofqdiQFF87C4rgKkamlvQJ2ri3i/rxY/h1LB0D75ztq3MSHeu/+5WdY8pjz4dk9b85V+qGocQJWTn3erb4oQR1jDpKpctQcebBSBUhKi/aPHQUzq5YmJeeunYL57MzhCE7EGLo492hLYsw2m4d8zRIey9pDeOyxz8jEmWqfluH3FLRNnBPx5bmuq5TpfS9p9vRuUJcVUoGRW0HPPOI15mLNhCvPrSPU74xKdf5qH2reiWKruDjcwOLs3wGK3fTEUYuXJhpIXwnG0BjVKRKXipC+ZL/lzh1KbxH397SPZUYxEiqJGJAkHwDRo6TCP4qXIa+oCDYWLMwOZZv+FZdkI3Ny+leYtKu9gtgEhyVMuQBcrHl0i8LKXDOu4BmDhabKJ/Wfsa8+9G99f+ChEtWrNHLzIduoPSdrNPvps7Uq3wDGOY8ImrCAw1zGAeOUk+Va4fbotsWTwX/WENoxaU8Hzaa/miZmEuRlJ1muDSsQBYhkvQvdkqAzdhR1Q8Xl3bzS+XxdnESzSLAdY0V/HjCYgeo1xK+zjaqNrf+UG3G42GJ4FgdbjbOeFa7XPmEacC3RNkQNc6m5gweBb5kF9D+2GBcoob/IhpjAAqVHTWhoojXuSvgs+GRH2AbfYJDHQzztRDTvkzLn5mikEkqQTJwKKRlHFxM+HKP36HbJEGvv8VqwttAzKUE2bH7oBpF1YqGs9uT2gZeUNO5t2g5SB31EeMXkO5PGBr0gs+n1vztPBwo4KZLgsqtlt83rb6vjyMypLgGdx+aa0k+d6/qR43x5MPmGxADnm//iWjdgJ6KFlAj7TGdnhrs3RG/2GD6jioVEJYes5lu7Y7LPHui73OwZmyRmTq7fGsO4R/P2DfSCI2GpcC32HVuEJeNMf4bE4LVsa1stvnWMRjKju9SUKJSsgzNoAqyTu6Mhko95Q4zdhqIs5W/QE7cmtlsRj9ly54mwh4ebmTX5RU8uTvShbom+Y7Kpsq/+Up7HQkYbU6AHCRU5E/nRe/IutIyYJAB4gt+URw6XCcFZj1SHIjg7WZ6Xj6QNUGCgXYOy61EJ9l5bYwqOMdbVCFCYhO2vjgJ9OXJKOuSGqKdGNtxT4H5n5uH6xC8auGZfU4JZtftDdG+NEfLn3GMDXjBe4eLUOPfCOGIvc1S/ffp1U0boVH9CxQq4oMlgK9tQipVRr+4YkfAHQozOVzkLtS4n2hyPhnpt3L2VYpyY1y4lwGAlnN20Z6jA5RhRuaHUWPX13gv46wLOhLiCQg2SOLQYtB9lydbBdAMelKcVFqZKLMalACuiJE3udT81akcBZXBUfss9Wbinq8WLI+T2j3HduDLfToa0iVo0HZ+ZWZyCTs/uZkfh0mxejIhbNrtGyLj6QJFwAqHgYApWbXeyBa7xp4XsgpXyArA8DbJPFau+HycVHI3ZCNSRMa+XqHSGSBWZzvYdb0q68EN9a+1GQRc8+EAYeU21BFMDpre6e5F6++8xTFULf2bQD9WvWnKmAeKk0nkqnMOGqSl8Dzt4AcHj1aa4MahKIWa8pfu7h8M2UQ0drSm4D+3CNc/Ot0gvVDaXNrMLenxXf0n7xO9SpVIrzR/OmV7nr3YNbN2IJSchsQxZLZutjlenGG2LBAS1SSeg0gkg8mrhq7dNOmch0KczkS6/lV7XCxccab6B+aM/AFjVAyjy+Sn87niqjuu+hb6QByj9vQX8l8nLJgm0KnCZh1oZmWDUrsPVLcMP/sRR0P5M/y08jywXaj7qbL1pVIVTYE/wjbAYbk57Fp5yMD2OSzawWCmaoaGwfqTiGklSaESAXJ2/T3qB1yVPodt/ddlzTki+92V0X0Nlk+kfjruq+xkWM/N8k4VR8mNbUw6O3BsZ4rOb1bb97Sorh7+nfGP6ErJacKR83C/LUOq46M2nzNFsHUOZnL6rGGbPhHqvRgDtZXmlsE+GVyG+e5PckYf47+dJuE4x+r1m0/yB6LgfnZQBEs+R1FJRsn48hQRMcukMt4mWeCDuqMAgaaEqMUP1CjLrInrQMwBmtVH9+ThsOw8LD5Om4PPSy32wLS2IdRSDUch9aOf2KG29DbkfQKbAaIA5zOQEKuOUSsk9Me/756CBQGb7XD0pGksbTJziHWmIE1vkwgakkQG2HVk4zrdmst+TZBEaIS6B/N37aBuA2HEz7UxDz04G6iKyqol5MGVPNR7p3ycx0Y+bV76nlgtl83KwgsuNzp71yxEunrnH2/INKfMyz/ig71Iu8tWgoB7nboW7mNSIii+3zlvTrySafxpM5+igyJFqU8pK6ublBYXQNUzZAT/CQIwQgZQIucerCL8xnKOH9skkySo7KchaXeHE6cNZZth0U5MiiXau5fhj58EbCEgW6ZX908eSP5WO1bk9HpRQvPIvGkMvsbqqL4MB8xnque/FNCCGspRhFN3WwYk18CwKoWSHj7fgMCdy6jcsvczDqP28RZze3QkqJON4eRgbARj4YEAgfYT4GLHHKrQpUKe+tf6nvWckU4jnZSQVhhf7Bds2o77jTZdyXXLb/05gJkEJKrWrHRp+H8ToC78l/50ph1PcWK3xptKNghGmBosaj5Um9CH3n6En5FQak9QeOXe2cFdqFYjnIp/QcYfhA61tLaT+E3t8kLfSDA7LNONH6xN+irZPw4U1MY9JEuWwlehtPhG1pLmgK/qIwzQbR+eSqzNVQ1EKSPtVTfoojuKUcGTqczaGo/WXQ/nnQVhXGQrGo3Lt+hd15qZapgSBoZcrvy1YXYb5uOKIIeNvgRad4jqcUSRS2fRsm4eldAvVbDKUxqyzBloVe0qsLjopYoF1B5RS4p8td3OTzgH3oO7kOmc6HdSuMozdGaeThlT8TFWx2QNNS7cH59AU71zaP6OySz/mm4JYgQYugulIwQZwafaQ4YrrYJcfLBr9HXKlYoyeUiqb3/2J5BHbSavdXEcyFI7VPmKGXKpiiAgtBnoAMQ61uEH3NiOuCVNgx/fpUgu4oMaL82dFxcwCFv6CtQijBWZuPYbzYtOcynoaqy5d+gI/4AEHIgXxZxrZu8ulTQsrwv38j4igbgH3LxZb8U7v4zI1kaVdTbJOlBirtlCmgMuf8yheV/5WosM/AJolm3Nxd6mf0paYRbI3QOo311Fcc41cYJDkH+TrkMdi3wKzsZw+1WcVCn9o2X/KgSr3y2dhTik76CmIoNc7G9Cl82+/RWghN+6q3+MoN7f8oMZkGz1TKGTgg/g+yOxqy/UMF8gOpAPWcLfjYuzuz2uBL4G1hlYm5czwFTleynsSITFyuT8zAkZ8P6loTCS0t94cCmNd2xYevxTIPTLIEbRcl91ap9mg2ZLL7h2rLhFv3D1kgQMJxyteIV74JlxLhO5RE59U58SWgh29wfJMvkpmPhPmzMHR4eQrvBhetV+TUsPEg5a0B/9JOlbR8PKsKVw3J4RLI13Cc2MYU+2pxbRX04SPTWA0DMGCa6SqUYtZLycvsK/8cmvyD7lwsVK47bcunZETbybH1+quCB9Z7xc2qdwdRllF6zv09Vf92u/QKSE8HBXzw5KexbAboiTCwHhU4mInm6XVKuiezU6eji/4qq6okFRBZGk5K2ns/z7DElqJQDSH0THnmHghwboXPbzWdssWauUzSWWV85t5fj2S5tPmtrR631kq8PLIHO74sLH6qY6faXPaYeflHffPtAn7pKnlfQP4IQW/ClVL66/tZDOrB89s3NUUDqzmRwvIRZNWh+1/F/Xx/k499BGMrwQK1T6L2pgOiA2ddv3icXia8nqUAzsx3qfRVRTGqx4GY5qYKboR2G5K6jr14yrjFA60AEqzFq5yAcO1QhhfL2DjqUAcnUWWqQMj/oteZGleqgIAxnG7TKaM0POQRr+M6QWD/5MNde0/7fMLmG3PceaZE3FP3y/R02H74Uio4iNh6NknPFVXmwQgMH61GFq1027KtiAuWC55aGEgLvYml+v0uEAnXWmrHqwDOTm1xXkaZuet4KKYomk564CFU1JuzOUN65eOaT30tKeYoGcUxHAtXuW0euKpIOc+MRBlSpoNyT0/F1wEXpfF5X5hY2uhW6DoaaCuVAfu/XMDUwwLxObimHx1EWp9TIudgSNO+mBifEYflGPEfuqMkJOndKdkWCkY+PvlpcITmENP/4RrHjezu7ehJeep3n2Wz6Th5fkZIHwyvq1OlUkiMRgEfeUuxbRMyGCRiIaZh2Dp0mO1LD/qMmNUFKgDkfx0ibiwuWw8TBMqkzue9aNnpZSyNkDMdxlp8l/kQT5tRF+ALyHeDDkI6D4m3SMvxjt0YqxBgFOcMTdgKdvIHTnCydxmEVsijGRBugTkPuXhj69g8Ijcu9PlnmScYiKCfa92w6PdT+E8u4V64uIAMnmE+5mHOM+JgkQqYWTALtK9Ub34cdw8y+NtaApoSMf/J7u5mP+8ZeF3rKV6MCiyBFLafAHO010T/dYGD0gg/r+DmOrQrvd9SlfsEozygX80UaScRIIXZBDD4yCWub5rcoMFuP0hOoI5eQJlfFOfPr2umpjFDk031h2eI56KrFKLlVfrKQlIVRUavUN+LsO1mfNYr4skonUJ9kl1NxsmpcClBlSJ0U5v5Kc322DulMcgVe9DDW9l9UxW4/J9dZcTLXrosYfNfznzmxhRuTXDm7LZ8e82Z1yPE/2EgHL48YLVw8M/GTr3FXJ8UzdQj2tUN01bWj+iN4Gl3eE5Z+AuQfaZZZXZo8mXRFxutvYMBsCNrLHPA+WiRVCOrXPM15BrYBKjyvRvCbm0QSLGsy2Gxj8weVot+OBnL77hsztv98oaVlCvXpW+7ZYWj9znUXqgTXpaFE1qitIiAOhvUnAJ4/r85NWE2nNLvTbg2eu9AJVcQRAFT2DrWzAb3/9lj/5d5E5Lajsghwr+CDTNVeIKgC8FhpT5an0K60N6fAklKnX6dsI9gBq4bP23mOqBDYXH5b6kANgoxb3xvcWxS6KyotIDzjoQf5rDh8vHel9RalAsICFj3Yr0V+EWOr6KFE0bHDQKxo8o1KueO2OBHda8KMlr+Xu08z8rZrIScC/xWxEp21Xk0JprT1XPbOPJ4oIcIh40YkrCHLlB45VFBEyhNrkjn7KtTC9Oh93zuVLkrMSjvdfirClP216EnuN+H9RPACtsbaNEDO7qKVuiNqZmsF0ilsY3+65FusdZEWB5S6QO80euVUqs9bTekfBHgeZXmg5MsZDloiROXQeSP45ilZD79v0rRacKAK0DnvyfH4TeEA4DOSk2B/xcMTCYt3jZ7jD00DrzQKg1WnBiu7hCby3pZLa+dAJ/04PRDhuSlrN0BRzwFr8w8XwLiK4PztvWJ4mZaC3l1Z/t6HSfcLoabQxNFPbjEkeT2+z8wMYpLZ8GgSKQCjZJxCGr9ntV90k9rwuH5jzxY7Kst0DiKywwfSZnXM/M+/q5K/j6roqzouFFFBArnrfa0nLv+/YwsuMiHqdxqVM+X2N8dctmzjcpiZOmQwV0kZlMzpMeLOp/NNWWpyIZSUWb/xbBMKNieftJnukr19mr7jyk87+Zg0LNYOtvgU9QDwKstIBwrQg6BCNgDkQKc6Zg46+Io3fXy4hhjGNqyN16Eyt/V7uuom0xl1b50t0Ax7wioG2NeqkLvV828IhTYt1QCxnAwmFzlIRzy4PbNUh9T1ZVKd7M/6I1C4sXM/upQWyk+GK/IJiDfIdGMbj3KVtMYFoE0VlqM72mEThIxMf1bgvE9pzS/X3DlQpXxlhuGCrSXkUefHKyOSnZvUKTxdaYfQDVfC5XP0o/8KtY0Me/BGXLemDtnMRyrBZFFYeMTBYd3Qe41KHZUa8gysjA31necMhC61hWtvadT0HUFpgk+pmF4KkTxT+97nzvGt7qc/wNIF+sNZBxWkkOeeVNL6KMQ5krpfMckxbKG0QAxHgoopYB/iHrgRNdUopIPkF/liduS3Khm1gOiCwE7iFL/SEgJtjg9Uxx6KaeLL0GWyEgw8qOKIgf3d8Y+03Ue2iGrAYXrmoWvYqRba53BqrM6TlLH64i6HB6Q4I6OEtZgP1Pr/nzB8lvfCYkYeK4L/wOG/dXzza0FO0hs2f+8+gw5ojTHvbAYyDNOPoySg1fIW16KWsr7G/ywoLniLxhTkeoUTIhQK7y58q8HffII0V/W366CKRQU8E2ydmVN0tQ2+sklogtwatkfPP8z7fYcyy920GK0rbLLbiKEwSPpA4Wj35s/tNweGSvvdDVgctG0hvehJKKPYNUsW3t7wExQey0X/R1tUxMpNuOnHujpbcu4eKoeTqXFQ8TwGwHctWaXw4tfCydp/C3R6FitugxnjvrdzMLq2KRvH2QxiiSTUelmGcHP/enRn5TEhuqf+1vW+R8/9prPt/oG1h1KcgtDwDXY2RZHhoBU7Syu6qhboA4D8FkksTNyEcDXojvH6TyTykI7FPoSqtwy8ZrdPqC9HXzJue+HZ396syCrTBuOamKYwq9PaggbtjY41fYuGcOhIc/Bs053ySshCfGCrsIVlsUG9ngfnUGtE5BZDv7dSlpD4QyvR7FmDNE4eYLFZ54euSUrWTdf4fikeN0njuS3WV1k7wr2o1oSDcdHJIuuzIEFEZm4e4V+54YXNISWol7XXp7y9yE7Y4vFE7tyczG0AAmSswiae1SXws9kdtqGVfVgmBNGDo88uhMWgBWJPd/Pp1EIcDu4adCKjh7qor8+yYOTzRu/WvgwnW7pOaTpKhhHxSmLy0UMQW5UYAGlEnsMscdofybkc1y1mROZm2QEZPH+W1iYQEH4jilJ2XALqX2vIjddx9SUuEyZdJqle0xgGf1DuyVJPCMWiRKBNfIHXWY6NR/7t39kS8emsbwO92pCoIzDgyACJZwo89pmumB4/mrIqCv2I9zDPhp3cw5tNtpUxckvJZCHQXMek2jRXTe/Pv6wCGOAzDqXNrY/hoKC7AZbIrqL52goTd/8rfIOO4fmvtMn0x+Mk5McagC4qTLX8ikI8kFxSXrZETYYOvpsdxb5H13hoSRS1ZM3L33pErpXfP3tDWjFwHWz1U+xNZ6wC7m0/1+vo94F0a7lYrtOdEl0VVemmigNMLLJKY6mzSGZLLvdYDrRIDoPAOimKO4zMcx1Mmiht5C33XwE+sI+kATixzrfpuHg+wQUaJ1UJj61QcgvCh602mSrtocYnqDv888a7LweunA2jaO5wGOlG4BaueFchLBaGZXxuHgi4dkZGzCMt3cNB1AHAZCOjxCyDqxA2YVeL+AY83ZlasZt1Obces+l8Oamh3fwwMn+i0FQTruikxwT8fyfBQH8BqMR6FNqrZeoR3G3vNTdYsnGePDi1IVLiQjoSCLZmvqOfRg8XR8WFm8wWW+svH+AFuAmCQggDNBgdYFCJPWIeSaiJ/z7jsrxNvMVaEC56zX6M7ENYudhcKUGgo7XAAoGTiLpIVpYy3G5VZB4se57fojZnN2kDtA1ESPm8VnKFcgfRjOD+Srd0GCsJjLCq96yCkT9XUPg3by77BVMm/E5fgLQYE8O6jhDIXJaN+eQ0uf16u7PSKwAzdnkTwtQOf3hPqAvsyuWa5ROJA0w8StNxCdwZfwrSneyJbUYQE4RFXgaIWr8LSiGjuCHmCjPD7OJHofaNU1zzkiroDs2euP68/OBsYd/ZfJh5wLBK4AvU4HnND50mB9qGZ2x1rlNMaOkZJQefMEVtRC25RSvzPFJ+Dwv3EeLgFbYQIVtMy0abjCNZXh05bHTh9p69JQf3nq/+00XyBC3Y6vLpaybGBheIMkS4K6ichlBpu3Fsse2n/SPWRhHeOphmYA0QR3YUVXeayQnuWzyIIiOD5OIqH0OQ2JyP9SsvymhDgbdkJKcKhyi5uSsTiqOX3DYcRjpTLmYaJAzWabu8b1PsMQZ/M23jp7UfsKPJDU43IpNGQViuQrPQBXk5ATHhgN2XPFMeo1xWN0LJCauyWaIVcCFi3wXoGqfUgA/nPMoEbvfT6aTFctOQ0HZOUeTxG1AHyJfDVKiH+Rkx+NQRiZzQ6vq00pAPcdiRHzh+0XgaIrGpszdnGe2xXkGmT7dGUZvPCoKXjy93i4V3aKHVpvdaX8BEIXfcJB0aGCGnNtf4uJnMmkvpmEYaWOWIHbipA/74eV/ZL6klAOVFZh/X50nqtHNPWYoaLNR1pWvOWhKltMXCLPyKVvIWkLezZQjDzDG3ny7uiCNE0rOE5C+EeAOn4OukWC6pFh0Cl6LA5mtWrBqU5xJDi2graw1j+stWGgvPBMrBPee+pkru9UXjOEMiqt4U2sCRU80MJOHPIdXiFFebdN3DCGTjmnm8ZAZYmoDs07mmIOac9R5IEcc0UN7n6ISH80U6V8C05nsaaBSsTiumBjqQc85Z5grY1uDBHljI9yTtT7jTLyfx/K6OXGg7carTtQRjo74Cpn5+lA7bsOXAIOQmKuS0Je+IeeH6FpwSNlCK3sRIDoaJFtCGt6NeUytOwBCacleB2IzcWub7DHQziufKC28BYgtWj7R5WAMcQfX2c4PbvaltUztVDIjkEd5I4CJd1SUOsvAsd+BfYKyy2ppvgDI+pCRk077AnXxE9Te8v/TPPkVx6KLC7S4KnmFhqu6fjxgiTZzJwtghNRZujJ/DNJRHUcOsIGIfxnHT9ovdQxcxslRSmmI1jO8L95WyXRbPRrPiX5pUwTGND+VnwPsWKOwvMpIb/ky35+MtACPO9anb6Z0GMG5LYDH8RMmKatruKe2JSLFtjGBLtLyTWe/i6V5sON8s8XTEa/lOf2SXkOzZIPRmqGD40FypH3k8Gkkz8VnIwuekxwxW3lVtyPKrywU2VaVOn5yiQEJlP26LaM37zDSFpwmaZ3Bti3OeK78DLNL1YjFuAsIvQJRqslPnt6HaLUcfHQaM32aI7BtoLS+k8/q2X5kAm75ZVQUs5J4lqYKBDXHixRZarC114DUy6bw0etKUZ9AYUk/cMX5A8sTuWw0Wm2JQPsJOvydPWR8XyB3lYtjuxMEK7IW8xmFLo7KJHuD7/uV/AbjClOkiRiiEAdptfCkDsxNzfLt9opIYSMmaxCHQe3lZz2phIMT8z1IyDalSxqT/d6h8po7LrTsRfTZiGf/w1ikDAkXedwdfxgagou3XLo/51BmQIgvz0YDvogBofJkljxwOphWmYcIB9cJxVSmx5q0hIwF0LObveC+Ki/lodSRlF5GAbzLQhyIlie79eBdQQHZMVcvjthk3UVFzx8fqMlzIDDdTDmTTU+6+NwrBnRQhmiA3NyZpuENcERqDWE64n0sB9r6AveSd7ZnwCyGxEZB/4zucFyufimr6XEEkEOW7IlXpjMiYoOJvZfpBTY2pe8UgWCJ8szbN2IiaKHdEspOsjLV2ku5dv6zS7HPaYZa+pyN25pyqI83wZmXsHo5luv+2niaVoiMjdhX5fNhpldQU1M0UrR8C7CbbgrMXvbZwdppL8E3zGRTx4p9grIdoofpL0VvCgyCWEwbDDb14MYPpOY9vh4df8/6/UWrjkLFkyOuuJtp2TymHho/cUFzs54fq7BbNm4urTTNgfR7E+D9Rh6s5GbZFARZQkcHeYhPFfdOIyR94QXlnV6Qa9uwdWa4n/a3MTnQ+DC5FIezhq3vy8Bw78+dzqbELNccES0KR/0HN/oZQ90ZuBFguqqX1Oq7Z8IuZDt/6YR1kwG9CawVy2sem4mc2RSrCOK4J1AzrHUmAp8/Qkm7xsIn43ROZlGz01U9kb+27Rzq56KQTw4Sd+0ieg2soc4hFQFqWFB3iIEoKE2xHiBuxBbuozUNSLC5VmfRlt+3y7DlOd0T0XJNX5A/wfAy0j0vlzbXeHP5JWIFzEu6j8vM9a6o9cq6nzWzA6aYlguNkWgWFLMit+aQJmoV8qe94Gs14FAcHf6RGH2kMhxECFxxbt68TCh/ZMdRvO3I6dsmJwviScyleozSCX31QcgWCMmsjnOV0jVS1LUjrD5YbKyDKQlOOUcKfGGtNrwaLf8NPm0Y3m3RAf4NVvpmKfB1i/m6PFg/gTOmmFX02c1YWSk3lMbl4ekeC11EmeiSacI0iJqS/8qGMDP5esE+sRIxvtR7CBWJjkF1aikHFWuD20zrJ2DqtsfMAFDQe7y5y692z2S21DlKLKwwfYRoRu47hgccdIZOawIY8DPiwQ03cM9zWy6POjHrk685SWJverN0A+940Xf1Km303gEFYk8FmwshFokGk9ird4BlWZGchBMEdxhr2WoCtxffkXdtyQ5JCyPj+ntqjbzWr5AdfJdmj6BasVC2mZCLKWYVUtGuc+EgFpYm1aDqjjHcuWrNxC8fcUuxnRQJgv/gLLbxiooR8JwAVGYPm2xWVNxOm57YltUHDwMJ5DW/rmJAKNzFsrA7MfsPZ+RGNWGP0wNcnXphCYYZu2Tpg2XU2X3xqvFpWkX3fNd1rHWGLrK1Liwwhz2zVFBrHZrkdbEe1VVBDpXvf5O4DQsCRQjldVoqi9og6e2cN4SMhMQK82gvvTZ1W8RcIt80D/UfCMJuh/eDIznAeMsLMc/R1s0WtS+lfmi/UNtqna3mx64LVaRi1TFrDMMPnnX5Cuv6QofXl3hwZ7+t8vdV3Ay0deYUJFe4l2wCWT87yqwIFz6ImDuW4QzK5MCxNutBlXreoTGfpyJNkv3LHnk/lC1q9D31wkOV2ztIBavcXyLhlCOnVlT09ECHPE8J3XUi8OUtOcd6LX8vljHEDxs/IAeJOGMOnwRpEfthi7u4crIDAJkitf91c+5O8Ns+lppatxSP9A6G8dirrnKoWUaZMQekfJzWXxdEq1bYrF/5QGCoO9LjJOO//ZXGek8V4bd8Awo53sqec5dohlZyOLcSIENkhahgtJDVrSMlpClshVivgesDAFD9U+/9ZWnvum0tMRxFeiL78gcfKavELoxVUuje9txhhsEcKyqQKjvftbmkxfIyueBcHA8ky8kYwFy+Zxy9DYGIxAZK+CeJWotjACrVg4SXIseYX2Hd/rPIRs5+6g/Re8Z5PpU8VSk7Ys1hT0S/D7uTtFH6gByiArfV3GcaNQAySECjtelP5NRPtmhN8b9P2CB4zbDt9q9x51Nf2AXFIUnnvoXfUI8Ffwg1sBnOe7ubic1OMiFmxO14aYTFYcIEh9WnRtrv2rvXkOSidOVnnMnJfkdSaMnCA2jcMbv6gqXIySDJL+YWjHHk8L6ESUGlQJv3A8dAJMES/PRU4JLttCMDSHKjU3PLWNkxF1garfPHo7F9x8v6o/kONIy6xOkBysYuQbv/eBuKUmqNcXOMeAb08Q3E0vPbrikUYNDdGEPUB2H1p23W3nJlCpk83SctOk5BFEiCdKhIkJkq5yY+/xLo/zFuUakhrO48pW/ameHThxPn9y9ueyUGOg0K3s2nI0Vtl805mIAbmQDlC7+j0CXW/t0tzDEPtnKXrwkp1bjUa+rS1I4yeaXDJbvLp/H/L290Rl4I5mwit3oaP8PHE+vUPfTonZCDQuQpiiSxTvC4NhGYCnTc4viaosx50gQbvrMnf89M7wAnxSxu7ojE0sWiccc4bcEYC3vhsmbdRQK28q9gHPUZqU1mV4ltOvUWfYz3a9XvXoflk4bnXadC2qLhEHZYdiaw9hhSnP9DsmzWnCwjtWoBdq+FlSWYIED1LXcSgR9rU+2ICVb5U5YDknk/O1ehZpvLd3xEHHdNgJCr3uSfXHmp9iaIS+i4p34oPE3jnDvBvS50kfVR9iBuc5azoBDNM90jcIx/4pmZrJtBRciEmfwaI3cTQJkKs7jQCVBcLeUL3RVV55ZMo+m+PbXG/G47bnTELjiJffEFSfpmmOS32NwjrOsCuj7IsB19pORLShfvK2pQA5vIuDvqxz47ps/23E4wBpwgL5zWlS4r6x1So0/sN88dJXa3ofhKQmvbP+/nA6j/iAkufn2OLcrdXJ/S7bxzAb75SLWU0ZXIlzSevZ9E2w1tGKO6VXam8yv5R7kSp/6wArtggSCeSx5cAkpflON3fI/e+U/Bbohe0Ho/CA1EcuM9g3fD1ge8GFDIL/RipwO/okHRqWZ2qzg5D7NgNulST2tdkRIMIe50KqUR/RCAsKDTNwFRQF+J2BeJGMTyojZpZAkMoVhJDEsIzj2CIwrAKh/rr+7xJ1NGuAqEotJ4Svu3xEM1z44pKgRhV4K9rC1RrGOqrqaYAnLUdoKZVDikkGnGs2YFFF7gth7NvKSCRKPXYOI2dMYX8MBi3xIiTMsGSnjAdO5yKe6OJQY9IBu5lTPmrAK4d1S1T8wFdzweyKsQYQ26nlsxKFIZeytDTcA39DCqzDfjvguOWiF2RJ/D+s+sH8pE0V+ATeb4L+Znb4FHYjxnQB9q80vOtoV60icNggbhEe580nTFh8ze1ffFO04U/mVBLwTIRp96sbYtuRNvAAO2Hfg3CYhcLHvYdbRtrCkZUrDhRZ3QXeFyarfCzcsy/PIXxBOKH8MXFaOoUsX+qlkPbkpsGrM5uDO8TgMnVxQDwkZLW3veTh6ehOCIlwr79TA2Rg6u0Kx1k0C4TTW/2f+BFu65s1MvLwfG/2wR42ShgesBQQLKNpqB20bs3g1VLSnImpJ5TqqYFFJ91pkL+nNskgSjC6EkLRvTixvWGUEh5yOcyy7S2E1ERih8WNSAZ+F77NFWTZxrlz8o4E0I2UhF0OM8YZlIw9UcqDU2Gfb6ypzbkEIb4qi4DmTVqfQxtHIq5/sj6CzW3Q/4Twv/LtCVlzc61RbTtr5SFS9NFtuJzH7Xqx81GhinJQaud7MnOucqXUCoQgy1+af38a76XXLdTvk9xwTavspWZQdYNihSYanLPeBHpKcPRAomwTTwpHw8L9j2woPHVVKrupqT8ymjs8EW44YLAVCRC5VQLYBK/tq5JYJ9wUwUTVCWHiD7YFsQQ/Gk4HO37T6L7YVL5hwYD2tgHpqpQpZP4os7CwfGE7oR4jgpgm8Xgwd+vCGMUeYKqzUPHLx0nRj7Wr6NhEVPn7q6Vh6W7LhTKjKWrlswLDZQ7EFsRhbv6nE+zhhHFTNgnY3PRtNM3VOvF8dROHi55pNVAF/VI3DZ5twYNhYm08vEJOg34A4es1Y7UViEVec/ql0XDkYbrE7c4oewf5uPYFyCizxMZrprUwQYi9RCvOzTOr9RRtlnk4sLAb197dmYyQc2Zze3FObu16O0vM6daCsw7onSQoT1iaW4HlV2Dt0Uqm3xm1iGWYxPr17vlvg7Em2shOCFlMJYIcO1OgDOiTSPEiG5YnEjW6snqhj3mEG5CJWtM+/YnAhMuqVLT7RCPbVBoU9lxIWHVbTVp3yAijb5B3LjODpuGXsznRZuY6hJNw/DXYzIvrd+9gqy1KzYurZGvyM1lc+s6libJSnr9MR4G8NBPyBNCy9/aEqQyTZz3M6wyUndR2fAjg3/6jm7ZroW7hfbzptaCV2G9fJeGeUu1oJEscTAytoX2EHQ/p17K2KSPp253H47KGCpKImrkp3gO9D2Igh3jqr9xBiKV8DsXi+7adJh4StBL5tV0l3EX1NhyK23mB2CA+kVPsLwGENDkOMsu8WDxco4DiTO7azpwZIt3DqRPl8MbFVFogi8h+WHtCG+aRQDmpB2WQTvHmFyiO4qvEpiFsozfLIUlWQQIiibloEOkJCS6OJ5MbguXHNGel/shA6UE4slnUocDDIYzcHtoYXuvvhMOcCnuRmmDGRc8p0tK6VBH9xwOSN9Dl9uAaQsSjnUllt82t0sE48kUng6uwpxbI9lQqQEyUDVKRP7+Bt0fMJVQ8YaP1ONTaOW2P0o7dWwKA2eenKbfgX5Gcl8bb7u2n9wQGwgQ09t4IzRO5jFP/pD97mXDq+LdtgYDvh927W8pcjjxFTtZ/7eb4tmB7EsGkWk1Hn65onQPu+Jw0los9x7Vho741rhK3gGG7PX3fplXBVDCGO70Kwzx5NDa5N0t2Tc3BITjQWlhmxonrsWLP+TYfFzLgQYuTneZFgaLqxF/0HPYpi19O1/wDOLD1TvoiYwGTvm0s1MYJebE+n33nPRdiJVhwY2mKNH/F+j5ld4QIxjOyLxlkTRDORAIbpc86yisJfGb+0juTnMlTnCLRym3IIrbs0mkxGdC4V+hhgo94ka9zsKsxuigCNt6gva/g1a9dNY17Fy6llHnIvtLbmq17SmQVrQKbhRfSdrRErg2l3LINWoR7dm8ZCg9SoQtFpAaLTkRIlKHju0d1InzOY9fHHZPgSvHymKwy5lTZFpRoG+pKsP6k0hKvJvXZ/YOTYnm2ewcvrPTGoJpWOW8G81AMIPE9MTPhfwV3u0Rh7VTAWvyH7Lw5kOFZ3mF4ph6cth2yKfZfuMPTHNg6UXyHyNVrNanYpNrzs4+VSNtmoj3FVZDoy7PfIwSNY4GEhjhKc5EmQaosdjdkK4SwPAT4G7xwh+CO1jXyvltpOSJYYqlc4GkBAa3cRS4kwXJYAzZ1GXxiL7kS6Wy1lGS9gDbZQK/oaCbd+lyXqBKqwSmEXlq51YhikQDmQd48R3dWyNYOWr4c/pY2khErnF9r43JhhqZFvpR3LCs4728/HVOt2ErB0pITyJ8k9akK78qWQdiZevq5GOSM4eDhbKG5wOJptLT6RZBAWpzG1QAoQQ4N5WhYvT2yXB/T9uPgH3d5TZgXV1guqKbLMQABlAWpZkIpc6Wazu1N8ZR81jWS4R9yYvqSmRk0yG4xOopsw3DvyU/R4l1IvXxyGRUxeml0AY2KKxKfzwkcMKbXEymLbrJKYHPdNtsWtAZJgE2SpeVpXb/7G06np3J0iYUfKY8ek9ZxUFBDd5rD2psEz6V4ADHgggevTomOb8UIQCLITcnRXSJU2OcCBFBV5EvJ0bv7Eks53P2paWliEN8HOeKPdjhgmbuiqTay7uCJ/eR6dUJpwfzftD826gjrC+2U3HSfBDLsIvD1E3aP64zqPX7MZlgOjcisLPX/2/HnRs1iPBBLAc3ynyiUdGtCSZmv6nJhLe6E77BdV3WCp3nzv4VRXX0+CECMuk43A1fJ8sVitPmv9wAr8sNw2mYnIa0/Q9b01ijuzhuPEqnkNAJBGSl+zfc60j8S9URxK540sspkMwui4n8VuQ0e4fmCzfMXQZEJviiGe9X5jdX5ivSR2I2cF0pSVJF1VgrsZ5+tuzA4+U+SUNwOOkgxX5W7eCx8cC5udde9zwyXUtCsPgfqmuIV2to0bjy5qDrCYUen0J7Cl1aLior/0Q9hYkwQ/Khzl9R+ncryornYeUIGJfVKb1ayttbZ6GEgbO+RhGinQ2zmQ6ElekuZXrm5/o4BSCnFoJsogk5atBssBzxl/DSsderb7/qqc5WFmRSyAzhHy7GRizJdLXyGb+JvoS7WGlO3ATueAb4dCxZ8b2NE3aRZZPOVx0o1k/E3Y2qAgFUVj2p8mNf0+LCNl02bXzbpb6bnK6idVbYvh4twLw3a7FPkYysWWi/yDNvNKMX3LYEbJsBZg5/EbwN6OwM2b1Cii3mWZje6a4i/aGAodzB3fOUA4zwjk8paSp08jzwPUw5mQiaRR4uZQUWM9ljPGViJ2TrmLtLvxDhD1iv4sTTSbOSL2k9DE9OPUV4F5SKqcvfuDxY8tXUob0X2VBZIvGNEauh3UjDw+Oa4V5/dDhA9L+3Zcicfrh0Nyp564XDS0ZZjSLQQqBOlpjEfGtg++NHUsJ0Q71eaBJEl7X1I7CXRrM3vrhwYPws+ZsZptvixXTRezMDKTBPN08bp49b1pgVg9xxxTfIeAuRYTeduBoNEWqrFSbp16OdbBvUxmoEyV1EGpjw1CWO6TIeTBgRDFqG7e+DUDIpxI1qAKAKDidWS79VdcALK1Nwax0mOAjUgkbfPGCMcnng5whD8y7LTb5+qjFJKOoU5a/P0eRuSx8PxMrvYgJOPXzmPjj9eRhDPvA1YhOlxL0gSm8tj7Re9+irfsCmzmfE4Aq1BeTw3jPbqmeW/hDAIs10ngpCENEh5RDm4fd13tLGbb2yZVZkjuHx74KFK/O/n5Ftc+XJ0Cm+Z8zMrEENInMZKME5ZkJ70nQSR53ih+/cAvVzdyiFz8G9/ADIHZhq48sAhxZaFpYZ7QxF7znWkcHW27NJyj/oWxRcW4AUJPf2oSFSZYc/pQ0BwbU66FuH+RZmx6jcBC58qZDUotVplmcUwj0n4RjhVFSUa0fYy/0RLDc0RMKfPfQDMiZqxFUwfbqUUy9oRVaU8sxo0wrk0gUPDuXkYLQydltyT+8s8HKSUyd9r2mLCtneYTVVkWKX2bGm8USyMDpD+YQB0j5c3yyHmeAR+1+O3yed4kbvi50YVAQrDVds5RCfvyjRQMZXECbP5tRS9VgD8E+okqZlize2f8cBkhBcBO68PiQ7rbkIs3HntfyYwViebgj2XaWbUrPAhE672Uhx4ehC/ZGyXntGlXer7IY0oTRSfreSgQDHGHH3qlXpgcvRyiQq5njKbWZ8qMGxjyruh4V9g1tz4LTR0wVNgDkZozeF8/vQB1W7XowOhWI/bxnBEeQPA0zIYSJwbpJ+rv8NkjBZ8CwaT4YJjxYup7hDtQDi1l26QTEkGVlAXXplm+ffeBnzDL/TDgIbn68L+kXqZ7L6rJrZhSfVYMMVqYes1ETGdN5VpTNM89AHHb9nJR2EA7xWIHTT5tlkxlQ1gQNicWJT9/942CVtFRwSDgOZzt/qQD08r9q252x8wns1HAFpmGqUgJqvfXuX5QZmEqFYIFWA1SkESxDbhRoBenJG2co4b7ZtN5MHfnhL878GjAeSxOZYDBBr4V7UxjHnlNiD5kg3DgzYv6qu7mZeVzCq3/5sBbldVTqRnMt8KWyb0TosRggG0B9CxNRyqDZVnIIKDJSqTiteJcAy3kxMDhTDhmerbsldvTwRxFETmeG/Qvw9h2VmA5+32VwX5EDOpZA2pmQo+AzBLF6puRuFwaFwLoIgde71CKrKHf0YtO+B6rQYEvU2yitwZUUPYZsFA9S3hfqwiO2p1admjjY9vX1mfJckm09lVELBQzFqEqgAnVXSc6MciM7Cr1v18ykXzr4YNHneGdUfR10Vwul9IArFoy3Nhsl45vPvRi8M29UYKw6/PLqIxhTW1bZyTy+77JCYWgxMFxheUhz8cE7m4V1BnfmK3KdVBwAMpNGv6dcxx9ur1aVW91FtwJ/3vaFZiscYWtveA2Ct8LYVWMEJuDZIcfYJmDPt/H7ZNh8ExZYpVsJwOKTMLZi3I11OE2/eFuFG2naSSCzdOH6BsZOob3fsHirGEM4v6NTaRWiKxq+kB31R9V79oMklp+KSE0JjA98YAjO6gKO1hXwoBPMK1A+nVK033UFfBhyK6SRQE+16Wa1HMBeD4JjIAxq6y0XbXv0A59xOitRqeF1KJS/FjJpdJT/PdKNuy/6h++SYvl50ScikZzMC+Oo4Rckfqlzm2hzpdJkW+s6eKIQbVTZuUzDh+jAU2xWgPjx+DC0Lr2sqoJ3g2tWQVhgllRvGfijmrskYE0pTjzpBLXsAFiIzHqqbx2V/CTU17iZv3eK100AWZRzm6xNH9k9mrkBJKyykgkVTGIXYgzRLzS8hFaVUPRSo77ZswsFo6rjJFU+DTojn9SJYsUsIkZGoZjUtN/t/4JFGrz1KPq1UhzRE/i6syylVIPH2fX7CqmDtPe29mrEGt/oOQTk+qQJ6RL7BOwNvMUOsgioe02BumwXq6EuW1bCGDDEV4vVkmztYNSQb/1vwdxDhSpT/LzQkJuNZZHyjDBUhGy0CGKMvByLLFIQxXv/xkHSi2xS0fjQq6Z+XzUjw63IFqsgVSVlWAuOMiVpGGoQhECfHLb4earg0IR8IAE+3lZUU6AObSsNT7kZFrvFEqEW+1+el4rg0zb4LvKSJqt/M5uxokXJHIi8HtAgWKBdaeSOjRyb/XDe26PrB5XpJR47QFJjDlwt/dm1BMM78NZh/vdiqs0Bi4StuW+y6ST8ejECApWNZ+PsIpTcOgW+d6lKFZMdXjaTvqoDwal3ssLTtRftqdUvdR9+raH/x/jktJQtdlMMO9p7yLesPsk/e7D8+7JblKD18Skq+QvVIwZ6bAhzGBGuxHR2W5JSWkaWHJKQk4Gs+YzoO2WTvHjcb4cetrFPdfW7b4yNuSrqJORRj/A5HuBSV4h6RiN+F6QYH17/wn6JG0uZmaq7fvNepqN28yo9Gze1k9on7x3GhOeGYLAuNj5PE35tY3x6dO3FClTUgGsFJmh8GB4H+CKI01YidJhfLv+MRi66CwiJex5kGFcaHteexnya9RpwitINtC2bbKqkseAYR2xLnG4oznKRdB5x5cAnH9WFtDSvPMWol9jpxYVWjdwkyAePrWkI6dg5tDj4iCJsoKcbt1CklPpTlAQ26lg1aDH80DD4bt0HHFM/IOuGyMst1PjSKWtUbORRYKo/imUyEjZ55Jfoao/7F2lh2r0LMIWwYb5U6c+fmJVaYXwQj428zKCfLaqe0icT11Wqh81mMVVH4iBysci/SR/AFJyPIcOD+na1Ej1f1loj0uxlZDmpQu8/DvL1NM8N2EDokT6AwGL7e5XAE6Hyzu/tFzVZKgbUJrNaDQJzrqdfhEU+HoyZMSuXDvTosRrUL+acYLYlIXx1Tyy64/MqxBKyiXn1NxV3fHlmqLabEAU02Tyf6Pz7j6GCcbLIa/FxThI9tRT6Y/xVjWgogp8JN9X5QyYA5K8oKnlTJE60nQ6Yi3CO05csK3eMeVgfLTV9rvZd0R7wMaD2bBR9zzyQxlX9FvtfpRK01M9Qr7miJGdCz8CdmGsBvu+Kk04eJqRp5SGO6P2VpapylVfJJB6C+ETMXYBrWUdRtKsFRmmIO6Fb56FukVA7s+TRnsV9r5B4khlEPuupHDiJC1QNm8Yhl7GgDC/+Ewa8TgVFz1Q7OGoX2G6vlLmZ1etHkYr/O2nmEOV+o4ON2H4Vd5A5BWrj8xcN3WUWdCMexnvGzcIh5x4soECkqT5PHQjN6n9ex0wihFkuFRpp0xhdf81o3X+uT5/Cvsstuj/8DCKyii6caS1WnDxv3jQyaYkgha83adwicf0ZFx8MsXrHNDo2UQ/Qs8RIQG462ObmWiVngOyssKw947Pc0eOqvBDMBGFKG+P5XU0EqRUeMi/xiNLFFajgDGiv1vnnfQj+tp5pyamX2JQ4Ijppjkko/HL69JCEOi2l3yTcOMibH3X530MriHRvaFA35NgeTU6lYHXoRaQnRbxFOGpwHIzeOUFKkbKojuj1CXyPtmk8nmoiWpdhRmfZ+lY7mfgEeUg6VHMHGVb4FZ+PjRZ3z7CbG3uT8kqFc007NWj+PJuJStM952rOJqJ9dbALShqQvPjGUZhmFa5Z1WqvJavQfD9trA8KvYi0s2J4MTw4RBQPh0Kbmb3mfgUjVxB7A5IQmOleOWll2J9lCA0tb3fPvp6lo35rl5XkuCT0kAw3e390L9WHb/nzI6B3rBjtfkGFywKRuca5bzetDS++81l4MMDTE8GTVk3XPMKfcrRP9ducvu4aM53u1Aw7pHq4JKiMeumKlgkjYOcgp+Km5KC19oRGMLrtKbsdSRyvdo96o+tydJjtWPU8q08oXtpTjKqrHRkn5q/knVdt4FZouF1R2GESugT+GxIbTGaN0mK82rsxGxz40RiQW/y0zHcb7nNmwBl6MyoEdIYEvQISjQLVv2qiMYSWnJMF4pVZ3+zs+ikUyYOqxacMBv7WanmXQSDM0kBiK2ltT0kvHkpDN8mRzGSoVCnzNEKvwYucSmPJvi91nB4jJz1CHvuPtvUQcgMXfu2Zgnl1FMgRrOZDLfHxXXfD5MIPHkTTifOJ83Z2kBh7Au57NxMw0vF+nYpRN7LWRlE6Iz7XGL/JzHu43osg7ojcyS4KGjoDawFnbT419pKUULFV6ClpDmh7Ni3xuHQhjLF21iQRitNQT9uygFOlSp4f+IlewX9CMZy4Qy2H9IGaNGs8Lx5HBnCF3DjRxm8DwlbW0jzIs7itjGpzalNp4Nxb8IQCQTZ8wwpuSxLsh9je9/7UbcKNuuTYTx5Ceo8t0DMSkS9NJYtIiUTI245D/VGN+fBSDIH/Q5t8bAKngITRfySpKzjRoePdCWwmB8yuhjSW+tMoHkt0MFAI1r7iKQBCFxG258UgOZCJknjr7OGUFjnjO5wSH79C2aI87DSriE9BIZWy89mOV7SYj/rirzQB5wY9kXat23KP1dqN+lQ4PuLnZFOI+D0dH4Ljz7PtWHi87fuLiA3ByxJlv02wzwu5sNn2movFoIX8QbbcIHlzuR0g8lZGuCRCoHLEOIc+9Az+AXufmXo8FSEfAeB45/nlWqD9GlPXIsCl62dufzUpcWjvkYnnuZzkGRsT9GzGfchkk71561x8msaaGRsOu8i47gNCylpHI7FXRXEGwcjlh2ZswtJB5CVKNr2lAdfM6AP9ADwPrpkqKtuHRNH+znmbYK9uzm7/LfZdilTX76hjTzj0SA8JTSuBg9MdcaFZI7dprJLead3qRRFaW/gmer+AALSWUJRZcnP+4MnsPobOE8ZsbCeGixmBfIuuDkYc9zduMQoXnusS6+SEObS50JkTJeXoq8IHGliPtHUHBthw93fJcs0Hb6cAVULgL2F1pLqp7lEiQCkF5MaWZGvwcN3/dUO806si3MdFmxj8dy6SbSkZeLsl2GpSvlbMFX1HTLFBrBLKr2P6Y65UICRD5wuHsll7bZJv4bGaNy2O/+qL8Z687Cm1y16qVSYyZvAFQVdIwgMV/EQKsiOD8288rvy/UocZ3gXGz4ka3N6u2ZFSbG2YwJXEq/DsoQTYGmzRVbkV9LlEyZ8G/yER+eEA3UMC3JznOO68IAzwELEFavMAmhH9mLP5thahPcSGwyeZ9D3JFVoAQ2lw2+wyVAERxF7gRqLnfinHukTf4QAMIeV+IqhMA8MdRknKWLLcstmlt3N1OfPIBYzJHvei2MoQLbcUo/J4nHYWhLKs4XY8TdG8l7GMQ8hBzstOHt8RKiVUokuCS/ONJWy+STJBTQjhaIQZaeVUF6hblDega34FSdqbNq/ypRYPfdGy0IhpPg0HO+OkxzkIzlB6e57aJSOxe7NlyQMNAExqRHcttoEUNYKPtXwHnKBoPa0argcCMXPIeteGetsB5IPRaJsImrk8e72aSaeGJC9vA9y+V3kXUfnX+kJkLxSZ/oX0AwXLVtfjCoL0+IqOTgitrCJr5fF1YELFaKlUWaukCsWJe9aUcJiWcO2J5hw7a5waqhLTrLXGNS2wIPWK7tY3qEfiUMllsb3ahFuV4722VuN42/odL2r5QtpZgmPy+HKs7l5cDfDfaJvNkUeGt+i6PXZa5d/SKEsb0qNfZ5YBZoaccB3kSDHQjOKICxSrZ0FGvhPvblgGXOF1D2VPNithFdFYNIBAz098l53RBFtVNj3U49eXPtRofXSouwDwMZP0oRLjsTXPsDTe5g3FoZ3YmtO3t9AmkYT748XwAAuHmKufVBMNWAKisCAtGn7+tZbPIaCiHm2jBtkFidhEfGMuNU9IXGocDvuAlS7+yln5j3tG/d/Wnsr95ixp3Y1TnSRKUQvhGvD1qg9HR5TQmWLeAgI5AUTXqHalrp7h2EYLyGndMB7+gVGFYrzG3s18C8gGq91o6k26LoM3eRLeQV9A9yaDgMjWSVFa+v8VL2bubYoNO+SUx/+mWihYF+Xu7AXKzZBdROcgR5YXi21Ah5O5fUv4LKuD4BKTvXyagp1n+WsKKTx9bNWtqKmD68p0wy4yiWvj3HuPT8dcM6wM5LjsI7SoeW6NRSRrrGTgeVxePt25RSSeq6bjhL6PTPaJ8f9SxzKqF3gGrIy6kPsFxwFYAHNyrl4VYd2qrYcFrtyWMOuFZGQDbvA+zNrqn0b3c/dsULhK3j0NlMzUzfdiLZI3LLAPCY6Zj34lToU9M9IbDY1QaLX41TxQzF7r4IA9uEEP+/RdCiR5LbCxp+hbL6UFIrPsiafqFPSWariLFna5yRu3Zuo6z2R/q+120or+y0pZk6Tn4WE7D6QkDYeq/cqTI45OHjL3DyPznDQlbqMDxFfTffMeKsFvhvYZxA9v40z6500OjI/oxPSc7uPVg52IFcrDd14/QO2bA0u2uptjjfp1UyvDBxiXyZleIoYvJiDzEg/ygPiORUQl5Egbso77jPrt6vTaXNDUAVE7zC/36G4JQrmSulRBXeGdqLmFby0V8gwLBlGiafQj0SajxXPQDLszSrViJ+f45Ig2ChehfSoNuiXf1cmA4opjQA4WUQIb9EcrJc9HS22Z8xBNcfyuFFDmAEPaprun6FmFXNnAxQ4E8Z2fN6krUs/7GOOPjf4Qb25eET0gLn9X/xbANO5OuBOTDuTq5Y/cKSbz6fmiymkktyMhlrdHl5ExcLuXPM0ZYjfaToEINfxSnQpA0MoUe+/H+ZHQL8i9Vu/wHm9/Mw9gevvkhsT6mluHTDbwDW6ENZe09DY5r3SzOhFNqTts3MGZZOqhQfiKRHh9sM5s9n98FB+tFUQI+6GbbjykvrYUQ0cE0uow5gIxnL0TjFKONze5vxvm1NlVHs7vnCZ3zlNsAUctomaRJo64nHGgj1K9emyGe696/OaKVpkYBFRCvyEP0sjWkWXCpd7jpbItNTlOHbQs2u6B4BSUY3IQHpuO+k+/DY93PGFGlCjn6LrJU/UNE5TTHmscx61ibONI4vl8ti0WOGOpC0XoAs3/Owx8KN/1eL/hdkZ1m7WEHkSlnzCsiJ/Hb9xwMdaKdhT7gu9aB8zxFQ2x7r2TqmBra9exllrvS1ELzInh3v7Zq/Odctf46UtZb6zySStCoQylkcy+IKiu5YjNMII72AVUBnDRLMPlYMfBHq5d0cXSZrZ2jfa+/Q0qPkeZC4MQ9U8fYtU37nznQffXeylB9cdeh+k7dcp5L1OsfR0gMMv4FuIT90oWaY/vYrCe6UnjmeGCnuyFkEKiIWLZZ6eeLxBcjjXI4uHy1yFJS4ArGKqprsuGsPSwLRRODw/SFtOY1eseayML5cO2W49cx+WXIBf9d9XreGdUr6WrVJ/Qj/gks3Cy/TO/xwmuvd2XzfZq4Def2TD0FEFETuOubJyIm/bKUDiWKP3iNkoIJNZdtnOnAMSoKwHz8/RUmKBhGJnRy3dFav7//4d8dq9uNnUR9V6yHVicnxrnDEhcrPYRYBCXMPMwV6qRbLrh7Ni4ek1xCSrDj3ZJHwv/RL1JZbOukcUAV8r6zAvmZlQ+nnZwNrocQszXRdrJL69cZXQv4K7gO+My9xp7Yg/8Rapb1OsED5Wtd3yRvhNoKAOUx+Bsj3dpKqW9KtEx2MxV6yprV9EMyjsc6YaEsuR5HMjJjE7ZcF9tYjw1cM6e/8z5Vuhcdm8a6A/0wOrTzCkO/Y2qsn44OxWqQj1Wsl+PlT0hLQYQ+HuaiKSOV8tBi10ymqkdm1KXLwD66LwWZr4XCJArv53Cs4g8BHdUhbBVM7/n+JpQlmRa7JHVIj/Fwc8nLbPVJcGO/u9h85TqW9GpIj7dUv4LqXNSTPvXeGZM6tfEQbN43t7sqz+sX6Ssy2fEAAalPdY9/t01QMdR2Qg3kGMgZXl0E9cXCbacoFyxem5GdQElUkpcaj5UoyqfIUFB5H9aq2oXGLdqJmNP+hCJDufNX11Dur9PrU6vxnUxJ29kDLHqgB+BJHiIp+Q1PECwJauqCgcLd27ec1oc2Kz3/hhXzlAl6MWUEGrBdMQifRrU9T6e+Y2ngmdY+fYkA3dH/nb4S8QK0GVlTHmCkhWJH8vsn8AdY+8wIFquGP/J5htt0447q4RcLyoIoe1ViD2hS0SzJfnJmVKZu2MzgF/AkevQL7Ap10qMDpRu5XhQ5jWn9RZx7PKiN9wALV2GgbHpcjPC8SBFNhZKxLhBAHBAd/74gSF9kdLq4g1o5l6BN8DaG/PdeZxJZSQvTADd2pYI7236ZrsYyljbx5E4nbTFLGNu84J+dfxSm+8h44UIHCEgrtNk/W35ieJ5okewsgjnDWD8dewu0WjBCuR1baXXCE6TN6mXQLFlVbNfzTQ+3YvPMsZ+E7RhLP7YdH8YsbSvXaPH9aFRjIU00B+5PvMjEds749uh5wOZmHbNpNV2A2lQPJXFepkAOoyV7DN23GhbUKyuoJaPOJmCkIuLdG+T5pYxvja/iKMe5iPtMQPpmjM6x+iAYBEEOFr2XstLy4YRS+1CXy/HQ1Vb6jMyoieio4hOKWBEjSKdQoH4ZNmsIv5hzJDXetIYjFiVT2F7D2vTkheTo4KpKo/gDR07z3YWSQwar18feK7rAe9SNA0Li43kzrqVDeXxhWSNDXPgQCdAL3RRauUJPnx0+k2HaEzmvK6rcQncZvBbzaxz3tfRpBTpI8c0B5Uu4uzab/if8oXa6Ig5ZEIO066CEchSrTgIQpGSHX4cSSpkY1aErg+DLB/Tu0Q650Marc7DJkLxWx57lh6cCNZf7SVup5oj2trq2Ka4j4BaVhDCvmskHB12h8WqUf5+vXDB1HWxNvyE5ylCqPX+bpjONuOeogqe26Z/f+mUQSDqFb/1IorGZ29qo2AE6WGPyTXjv2OrpSLfYKBPFeNWyNUiD9v6ObTNfszoeb3K1UsL1+81191t42l2MPP1vcwWonwVcAFqnDNEgMqp4q0EkIGO4fk5gDTtx96OkdnrnlKRWaU2tv4DezLTk0krbnAeU1tiJyzA20kuV+oG/X9FSk5G+TCXHvuP9eOvxhZ+kA9RDBlLJeCzUFS32ZH0AujaRf6qsuiX7fVhbmoHm1gEAuQh3KK5lCZw/M6/OSINNl/C4WChP+gD2m68xN97mXY5kPJXaVOQ91GxjQQFVVdtn7PSxa3nNO0YiAsDglpkj9r4UJdiDVKgRr30cQdA5sO55bxs9yK5hdF1UduUzljYRjXzO97aZ49WdCC3uXcakyPtZKR5IEaZ6kGvSZIMvU63iH8GBzHezHR/k7SSfFVsAy8QSfQtJbxfogbQQjXGijpzQUuSo8YblOKEK4stgyUH8nmgP4/wJ5qalUmkFD0EHGfZWHq9VnZzXMlkYDgC25t3WABfYcCRyAwPMI6RIYQVbdOIKtZnjlgWba8/McH7Srmjuxv66fUFt6eYRMbNXW8JdQMzOWLmGaP68K17A0VF6tNYefX8KwU6mDVIMMHTEXNo38R6o48EXudEmZIdz1L2a7JyjMv/QaUNSiAQC4K8/2x9+gGcXJVABZ8I7dzJHEIi91Z2IREYnCh5koD2XPtSCucKg6fIR6v6iEM1QmfRcCN6nBgoZaYPpfMNx4hgxaXZbxgHm2HA30imHny+Kw8KLIESIZJwTPE6ngC6sgzwsfV1wT1A1y/6+2erT0Vsxno3ZePkcqcdgeutwOd4QcaA26fe2AmVBnaFn8sECweJc4mBjdkbilPSI2kFvC6fLNBB6sYiEoaO/uqQMLMwO1aKym4KASztm+sqaWqWzT1tCFbHcCarbf6BVz1ui90G0bQF+kHcIh/jxoYluSY3G8s3cab3iA5kpgNCajT1zxfg62SJtyXfjTIBjoP9rFMNFoNWFCfC3OMDqeyWgt0FYieNyC6Ch7GPvggt5CA18ni3bYC0wyqS6pXyoCogaA8q2YQeVNadfKt9eWjHFTpe+yJhojZ0qbXYp93Vlno5xT9Zcb6Qan1E0GgPYxzV2x02MZAA53pcbYtv96arPIRUJGtmupswECn5tWFv9e9+JWo3nRucD6F1susnAd3783/HyYyeNraNm4R7RqFBWbHUeo5/I4sVn2hrXXBs7dTGUZWuAdghej9rofctfZz28a0KYJiSvGOSD1bsqqVuSEJzWXyp1VLvJ9ADLJGgxDX7nTXBGwBRrXUqJ0/3eb4uuMqvs7lHEvcO6/62VtvDp7EksoTa8t8vQFUNmphP1ELzf9HbReuFSatAo3AeNZ5KQVBsPn6nNpUEtOi8JLToi8bT9kDxKtTacz8/gihSyuPNMPnUbw6PqtyJnmFB4oV7KVQgWobEaBoPjyYI9uxbdF02O80VbxX9/nMDYPqvmF7/1IBNNRswZCN7QRLVmTrg8je33Vl49UbEfCAZvAKTougAq9W3QlEknUb+DhmVUQvXctAOyof/kQj8B24Pndi37nydAT0wGFJTRYR2ZB2bduqEguEwyFbv/9vRe2zsV9fwBG8Vo7mOJf1AaCmMbm5iNf72bBNjYTa95tVcVZLU0zwee1dvMxN6HL9CpYkmUCuYH75di8wIWE8kdZWWD7+9TzCB76D2gsQEyaN9L85w1WpvThT1Zgb0tL5CVsgwdgIg5BFVP52wNT/eADk31abvXLDJ+SOc0T6fRp+8Ftvzt1IWbMTtoLSy8q51V654stoOxhgFc3Jj/oOrMWefw0aIxBe/MC9jzeCQm70U8A/QjNwp/Hd2lLCmZ14X+rpeo1QHgszhuBFRqO7ajnOnt2bjNZvUwMeuA2wNZ3RS8o2MObbO0CshONJsmW0V2e8/oYBU2RJ63NRkX0Emu2EytUSqTkb98FV7u9DU/H/hheq802dBHJhPY6aNXoN/V3jZi0poCb6JNM1/C0GfZ5EWMtR+Trpl1bJ/xsy97gncKYSODN2W29x5emTEOlFzboJ/W1Cxhe6GcqKpJzMdc63x0QuORYU08ssYGCxLyKjupxXN/xFdPFNcFzPe0FmtPpjtHRSJJGaA2/B3ip3wtaB1B1chve9JVGaOgdkh0sHA8fS3l03hLuUyfUI2LZ9vde0aE9+ERXXhvwEJlbTBvNe1l/HFhkm/RAlUMaK5YHR/6iCFLA9lC3lO9KCUABcYaeBNdt+MJinl86WK8dZw5yLafYmYHMB35OekgyRTvkZEKqTH9rya4xXodhl5fX55ijxyFu9nona+/+i/IOci1ZboPwTibensFLTZ72ldQ/wbUnNfBW7ZkULL3tnwM6RHdwVWpazfqjeF6o92xzAk86kNYti6fM8rkFW+RvW7q7vDs/aGjqAwVJOjXW5QANDciaatc/K4y7GgUh11JuCLTikvVsBFbwuECqqr4AeerKdN3rJ3Vazl1rc8FMwEcWBSAvDvlxX9zkMG6CJFewoX3TeI85AJBTaSu+GqIDz2hag0ZARzcoW8LHDt1Yl8wFTa97mft2NcuWz7eBe/QwClnLBXLd0zztUG1zoXS9YFjtwqMzqPtqTntp6jRnbVpbsWdOoLJv25vRKSBnBcBCV2Ry6u94Ju4nFVyipawpqSlluArKgLEVe5ERgWEZFnGLHn54GFrD/qALeG3gCCX6ZkvqHecxiJPaOlIhCsB/ZoFiXrrz9Pei7VUjvphDVjc2S4UnTbl2+ay5AfXDFfFv47+htBqPUhUD5Qf2XRgwgmdoN7UnPs1Y3anm/pmZcnHgGH21VO8cB7fxPX+zCBHa4jDCPJqrZIcbwiCGYT5tlKnxuwTiokq8/alESEQI+9riOQ0DB0jJ0Jag9zNl6w6qn776Yrih0FCpO7VvTgLC2zCIm1Jh1UZb5/ttaWRi9v3Qj4BHY6fIu44q3ryOfciAymmhk5j1DiXdn0LPPsAGqA1RBzMOCjzRktW1kTXo7pQDceWgN6JlfbbkfnJcAlxuojKxK2HgRDqJcGmSldO6jNhHADva4LlT/7vPLoAMFlsBFt6ajgSSeh/NpDIKBfVZ4igPB5R2VoS5wfSyL86XqZIYDAClEQ4d7576/vdDpBPwlv7ywOu8+dUVggVwUjU4JqiZ4rIc9gVItkf27OWEdpzDGpdwpp9UL1eaddoYm/cpf9Uf0Uv2cl3GqTnQ3vxhenYwxvQGRET7vOyXKE3QKqFZZq2gWB8id2j3rp/aIN0D0c3wOevbLlmQnVDAKkfvzmpQ7S194Rc7XorrJ6+EwTgAO+aCZlii4LbJNdkHbr96JgCM85ANgvqQHfOHTqUWfGOZFLo1VtRCi0ZxJrbw7TZcP9mV5TTzjxdewIWebwyo4RdNm2YSfzwnuSFyhMKzYSjzGyg92sBYHnvzEJPZe5flrrTV8G8B+Ey7OUSrDJp+mKshYcnNYn0v7eD7HqckEM738WhlI/Z1ryAVctxd1Di60DD3FD2NFveCHlfu1a9g+Xes/2pZzXnkuK5f4wyexEKFk7Jrt9zv0ct8Vp6dG9jgS/CPikeTqVV9l3RiXmyUnM0JiAKCDdz0w3kpe0sqtGWWMb63NQiAZClt6wNyTB3kUHrYoK2WxvLBabSfhqHQ0jgheSgfcwASnWmxwz7n8ct/e5dHWizwHh2aUO1+SLjLPJua1CRWXMhRquKdGYISdSk4LLSdUJ98G+97Vh50v/+y3uSXLcsR2w7MgbTMdHHCDaL4OSyzTEePu9oA6uAfmxdP09YKMA8LaEukBKw0Mhc3a1lWYWA/XAX5VGFuHPlAj3k49vedHNgsW0W074MiT8+2uziC5Qv9hzQeysVhk7mdioxl7lQ4qJmKWb3u5tMcwOejlzfdcqO46Ob+zTbbYKXe1ZzGuv9Qdn62rz76pLV97eO4YkbdZEJsN57YqrZyoIb1BIWyjA4Mj4eWLFXYHYEl7kvVq/s1pEG9vyuai7GBHHMgQuXhAROyhWBLKEQtXQNi30rn5vtZ0Crdz88mIDuOyLeD+Q+fk0/7d/j5IlTMrHVR8e4VFQNyUKlx9tTgums9YKQLFMwWaeIae6LBh+D0BnaT+XLBUYNqJfRJP/mSwSv7NmvXFqWBTKm1MIcD3F66SPaILMlZRChkPNfXBhk/I+6Ty+lTgKVEc92cVWKFgwnsoBSRCvjY2s3ZZL3HQ2VuVIqIL8i+2vg+YuXqnNSDWU/GLNFj8Vx+EhY0sfVc7vMTv5dBrsHlh+wi9brY8cPBRFKfaxCZyIjC6crabUb4gjSTYnCU4UwQRj5gA4Tovwjzwu7mgWSJiLdvcb7fKb8GVhx0NEXuMz/KnW83Rzql3IT266S9lEsjSUzrv3lIvgetoIY0Im9iQfSYooFAwwD65WEdOcLOcEI9JXUmmey+/CTNkTdyH06b6ezoF4TxLeJotl6g2M0cYi6Q6xZH9HOMJ8pnLNrFGLR7mRq7+SagzLMMWMTWZJSpX4MJ1RO4/X5vb4KJmtIQyrFusCiK7YjV37imJoRHsuQXkXBibNp9qYnkAJsz04Y8MtSKT+XKNdD5mOZfOcPNNS8kqEdx4/CTfJ9taisWVWlHfwvHM+5gRXjrS1pqLb3Op8PkjZIwVYm3Cq8gWJmc9CVKw72VDg6t9IQm2Ff2l/pEeLLbJNaQsxVz00Cs36rtQ2zsPWJkyNlmR1AtDud1QE/eAOch7GK9PKBON9Yc0QujyC/hY5y9m1GQqtTs+8Bn/n/dqQVLof2VR9ljJ+6vcQ3HWIOm+EJuF457Hp51H6fRRwyd2zaPLesErVGBuR4tqonJvlOds/V5/4trcI5Q5E6OjvsH1bMDekql9kHcZ49RU+n+SgCtO/2K0Jw054sevFHCi1dRpPzZky7ne/nb1V27hZ64i5FX9aM0ybrnC7QflZhDJxKquh3E4sV5e31iAZ3YBDKkCTGHQgpP4iq5n0sjRzr33rc65/JUnSj8KuKAs9TA33st/to/7GTsDPQrMmaDE2u6rGBwQXv8LN6Ud6+lzRoBCDIuzoJaKuYoBv9rZbvPDTxtn0yW8kOlD04aUkEi0mlYp6pYiNHAbf8KsD7lUtwBmWqm5ijEIZKiYHMpCdtOk3eCsaDtSpz44K+GnM6KZuk/f7nTVtBuV6zhZgmhNpAxR9g9JBg4P2rr6X7tCITJT4/m9fGx9ueOiBkqRmwpCRCYFzdc2XFv8s3MeDUIEs7ZQLzEIjKl7odE4USTpT5OZLbP0r94VGvfCV2oM5uHmz3Efck30wa8sLFhaR4+LfBaDz7N08gc4rms+OEuXmGLIZZLybDAwW0fYGmApMWrsUBxP5VQtbLoNAO0Ne87EzBsRkPZgzYVJMKR1Yiz+HRJpyyRWazH7PYm4lxeOPqx5IUqiChHVksqrdJTptdevHt9ZU3mRbTWg/opjNx504cBjl+1pTlr8Bxgg6oPFX92DEBwyJaOpVXrEzFey2o+Dhr0Uh6JBskdsmgN2MjT9Kn3j8Iv09dgOiYsg7JrP40L3Zbre6pQfv0h+r9HufThMI/wlyptX2BbywWCRxiy0RF5UlXL8K7gbIkD9Oo1VP2sXihiHN/N7nXJLUE/avbSkcR0bB29FCtAv0z5wQo7QD1dkgGdpBPTWn0edqvbCn13fDeysuxTyouKt6jKJCTMoTd/hcgbdO+68JLL0Nscpsqou6M1B3N1jR2Elsz1xY5h2wkZBZ3HKzy5hZjHoCfVlRWbrnh8ISe35SWf/HV4ordR/LPzXj/TdRfE/xZ2EqHen2uBV9CHLtz/fn5bYdsGh22cqj6C4X58TBJ0coJGCbsklxIULXmRSNtA8FyBJIeaf5M2XnL4Ue86NXdKFgicfVhx/IZRy5jMghCYmneu5qLzahSuYHk5bxyQ7/d4WjhZagmcNpv0bWvoAReCIa52XFWhm6p0yske+vkZNIvVO29893bq3nDFR1zUTmFjROF3mDcO+OSMBmoz2R1r9oztf8tQmJ/K1hM14K02fwOICyomKfyqvrWjN5znx1KeHfxNpOScLVu31mBXX57CE5VRqcLNC4ZW5sm951d+obcZLBlzg+SC2pPslMqrVsqB+M2qCHmcg8qpcUuEYlgbyLiTMDyeug902Ku5lx5QQZcqS1/GJo2mn+k4MaHvL/LzNcihuTKuyLS0+G7J2pkuF10mljluFJ6TTfljWGLUmh9EGh4YIwbGEi9VcfNinUbQgx+/S8s1SG0TBUeabnYKHhOH8VckMu8YXEd798ztHgDJ7IxbOsRizChhmFziYS0iO1WEDtvex6JTzg2gmKjlqfbkWkkSQagbbEZz5DH+LlzHPrXIEHUvOlJFWdnwgJWAGdSzMBzBEHJXUwLXAzIFmiTF/2qYedyDqbM1ofl5MSUo01QJfevnpg0kkLwkqzCwmNMGtXdehM0sGwzlj/nPVFHGjLCTLnMRO+h+tqvH2rWOvNIghbqrbihPx8L3tQ20cBOGuOgjV7WWEwvD0K4TWwX3im9cEI40FkkXompez5N5Vuz9biKqijTrnynYwVfD+MEoolv5Sbi6v0QPc0gLWuNMqSZbBH7SRWaty8c1CIGr+ujeO1YQSSKYnExByQKm9SLHXWOR7hAPwBDMV4LArPwvory5lxJ8t2PNCkuOuu/76aHw1YK/a+7pVTceaTGXc76G7JW4V+3X2hnCsUbficVOhab2F17z1hgSU68gCvUFX4kwYngp8QiF9uWCCXuxL1YOx2et4axHb3mVJX9FCl6Cnb5nXrusKpauHvUW1KQmlrtobaJFwltWKO6PVj1KSJm/MHoPvBeEOwQmjIfD8LLetS4cevHUuhL2qhQ1jRjbceNL+MqQrOT1fytN2cC+INJ2CiQL3Shcq5aoaS2aDSnER0yHla99DKvmioy+eVH/+aBVKUC/CZxC5dOV8ioBHfJJf+78+JibB0WSPLOvbfDjhc0AhmTwu9Dj+uf35amduymyfqhWEq/vVYr9BXqLg1CcH+NV1ZBUwHqEN4IDGAGPv0W03ECAphmInoENJs83JONcnju6kOd4YZ2CMxqASfH+IlObGUVDkwf6F61b8VLE7RvenK90FHtaPdrNyTYdekH7o7kPPWJdeuOqPk2g27nS+n0fWwUj8leLBj7NY/1KWNPz3I+stPPh0RgrVmvAuh8pABI6qUM9ziND2fB3DbwO9bivltW+1vyi5K+NoGbg1Q2BS0tg4UXdzBSTWb4tEQeDnBurC0MTkd328c1w8PhOlOzRuz0AzxbvI5w0LFtKh+bHf7or38dcZaxPh7V2sC0nm9uQGvQc4kpGtgqzhCWtDOaeaHaZ9uKpYUELS+NxHpXoJlwyNR15eLEPLOt1sj+NqkCYIMntq9iZhmxT8tN0yjav1w71RfExFMBtgoCOM/SLfHU4jJtYNEvYqM9/T8FiLbQf0Qj7Z/nxm3VXj7Id7amCBT/B5EYJeJuPBquEXc7ahjTNpRML0oiQzZihiGte5K/oKqM9Z+pGIuttg+ZjKU56u5ZKoL57TgEXeYixCjTUhK/BbCWgfx3FKg+sVypTPYQT0q44dbgq5z7f6aVLDSmYB8Zw9GfWtQ7ZLYCidAZPVg7ab2Kg8QGZU8mzoKUXziH/TyqsG5iccXuxF1aKII/OYcpmLWXdblSPdx3s0dMLUvJxoXyW4KRXd9tOz2WhH44RsGcEddwQv74sucIYcZmwlAvjQhpToRYrSw9u9WD0ff2qcy3n2DLh5eW2RM0rHSsDo3aM4O5nxsGopIJudUa59a9wuR1NGmdPUxMWF3dw1Oc3vrcm4z02Nt3LZapM2tgothh4y95xknqaX+hmZAyd2SpwGHgWH8rThy/fDjSLLc+mpKtPtBwYPrQw1+XIQbkXaQ5Vx8cBmlv34BQCb9qggW6ijOOH5yaPWhwZNX9SfqPMHH/qevQJI2HqeVzZya4foqOvwSwKOZDq2gWi3B2DnhfsywoP2pF3mKlLaSjB203arVT8zXyeTueOk4vP04YflG4ou/oAixKVWhLMzIk8XC1+tj4r+aaCQg9La1mhhA/IRmJXj/ClVhRx520ROGZP7Wyv/znr36YAOt6FfLRflhZzSvoxOn+vb2h9/Wkpwwcbldqxy8IR4bpciyGJMb5n8g/8DFmx7N1f7bLcayv3smH3S1eag1y0uVRdfUJqq21ZgXEAHlXzxILAzRBuKb9KutiMZvrIKgSbxEvvO2j8687W6XofkOH50Pspn97D0HLty4BZIsJRXT7U1vBGsMj6vC8bP215YhZLkGK5eGl16orsFks8ZQJGHKPR1Zg1Q9rKYmWsq6LDhHMo2Cchx0p9masKMiiLFWaWyrTJtZfV2LPIO0odURuuvCYrJf+Q3D4WXkg1aDMLy9PUK4H4Sv1F1880YktSwR0iGfKKsWM95oD1SXPc4tgo8j8eVvjqRLKHWTUuM0QU6crpFkq6mhuQDMHohUDzdwx6px0hB38G4nY2r4U7scCMvCYSbm50Q4R48Toq2EfXvS7U7kcxSj+aRkBWh877Q79IDmTonJSdVGoJ4wXHcM7eV5H5zzA+vJBCOPD2RPS5AqnAod0qYmZ7YWpSDlYtswgxxyhUuISY1s+H+sY1bR8qdEnuF6GHiUMRHhaC0qkemFAT+QNzcqk5ah7XN+p6WWsun84COl4e23Jluhd6nvqI7UKT30hgzTjq6I0I7GHep5RjWEjGZSeh69sy24qImTdpeVw/EYB1OBq7D+XXh4ZkIoJyOTopVIAdMKA2omzW9vwCy/IlHBVGixS4llwYEcuhbUNBrIwGiu2G0z/ndVWL6Wy3L6waQMhzdjRoAAQiw5imtVLabYEHtbGvY57HuCdIia72FO6Q49ektsHyHFooiI3ZzJZFVTkr26V8taL7WRwfPAzlPNOlv+MBJNal+ny8nAZcZW0gRcHh1TAsFSF2nJpj2A3n/pDs38kJRsptm1hPYNreiPo+s28zHJyG1VnW15hPLd3u03l7dMl9YE3cRNoI33B3/CWB/kw/2iVwyd6PrEIFyj4JKmcVkp2s4n6W4wRV3jNWz5XLuddA1TBs2kwVN54MV2jpXINHMOxS4t1cf4N9MR2vx/RaqEnD2A2gJyU4UCPXqUujZ+1b56zF5roJlToCfzJVh0bQAmMWdFWRi7ltiL0dA2BYCe0t8PUWDj/X0oRLZdVeInfx1tahtC0T0fyHYykwftAfQaxG0r9EiPas/7h4D2RYHp9HMl1XS1Kd3GmJgHGrYICyVxKenJL3wlFSfapbaDED34FFdRqzTS1rIA54HvjS3lTmmKUHvmzprR4WouIgwi9qaHoHsashZvGhUnHMG29Wu1jHX+kTFLbL5CqD/vCx7G0Col8ZmfrQSKr2cQ89hfe3eWwUMbUfQC2qwutB0qCKWyE8n7+lcYLc/Wq7LSGDSNd8ODP2KM4QeS9FEtlub2YPdnWMIb22Uw9UFD+eqe63uC31ANsgwAr3Z5XGFN2iAAlvZTuU8GekS2GfxGHHsCDQjzi/+F7+YTzcN+g/5H3iaSf42sLTyYkZrLH4nqWAfkRqBmw7lIVf9dN5TA7Ut5s0zpsUtl7f4kP756U/3RMyJxrPdV3X4xQ6lTtmIUxW0jyMLugL7IKQNVnnHnpB/bHySVAk6sU6GyDE2UDcQfNCgBVVc8Pq+Oomj6WcFSa10AqhtTQI0B3L4loBx2BLIy23FZLJy7JMiz4Xth0t3xP2BODKiWBf5CRUJIF8+qzoAdfGkt9CnU2GF0w3YIYT7WgO/fCrNsDE5q72GT90TWOB9ewC4lSP3EDj8ZXNjeVHAFwm2ot6C2/iKZnm9pzWpORtTJpIVNPRm9Qd+c6cubukHCHGvv5nER0DVieHMR+wiI4Ik1zvdw5X3v3SEWy6ozeJexhV2KsLpyPQinBSQtKVsp+Vz2HuAJa2NDPbDG4YNe1oDvv9JV1ryqDQoijtMAMkCkWEJfcqaJQF6kTb1ishdULqxBzB5/wI6HaIdepEqYnQLJ1FipN/H/n177nsHbg0jy7/DJ6uVBRbL6Xb0j7XnJFeThHBAJrp3rO6TBgcJNV1tYRwUsfAmkrzF718z9v0l9bhcsXZfNHD0HbusmT92nn3tABut596zz/qPPyEVK7ANR/noq6TdHPqxctnprgqCESKLyeUbTOQeO4cJKj9x2jWJ3yZkRLcIIhnItwXWp87nKjt0LK+nXoBwqZDcHBmLFZZ2ms72JetW5NZ+u8xdNtBNk+L6pd+baGFbd+iRgcTIzn1i4kpMVs88ECaxr5Ttc3D5jcMmwsrvoGAqGcYBiAKJYQ5Vkq5BoD3uH8V+QvuJIlOEYDLT2zXRKdmeyoSD3ZZpG+krJ9aLc19PjX468pk5f6GmIw/UWgV2cIBh14opUztCakIFqtd6tRtzKYjk1nxNszHtsQX6Z0g30zIz5cHlCai+ShQR/fXayfmjGMVlH2IPmHD4KawHkA9PbQE1UFMt3cIWQgnzOYs7nsPaO8xWAare/P8t1MmlccJiJPzJMOM6qd6AZ5oOLyqkIb4prjWIOXXCaMBwQySYRXF9874f3Y9kR8wWRWnjzrAjbABw8q42vVOlibr6lfCRXC/bDMMXNfr3pAPHGbVECZusrih5IKv9EqJWEWXc7JUKYOn1SR60B/GYOX0Lgb71K43djP6/AO26hbzJUbcZy+za+tBKdsEGMxkrnIEQKIfM0bw9wY4cEPMT8sZEOEyxnyb0EzFtPUNX1C2iiEHdjLpI4xbfQlaVkDIkyLirWml8fyy9AzZIvJ9XnoG3EPm75PiGVJrdxjvRqEWbyX+Kp/iO945eGd3YpIoh3SZD0JPRC4OCbQjRDZi66vTsXNXpy9Agnmkbrzbo2PBspgWXOm2FsIVNy544TsNUuXIh79xGD7hnEQcyvixK0UJ7P77KgVXGKCDNNswwP9Iq9zCXGJEILEYPcg2KOLUZEbz+hf4WSZ4HEF45BToEVAshAreyQcCPlq2a2Q+mEdyGSeIvKOcYCZzqb5v5pW0xs+Df3aDkWld0vN1j6b1InUxU0+2R2qxwXedqTnmSY46GrLksJzPa/p/XcGtVUk621jfTRmWC9oQ+VY0XSA9blLLis1wlrClsCB+84spIyqezr0Y1WkM/x4RMGi3dy5NziSnY/T1cKpp1SomhKHTvdf5yI0LDpmOKRvscWlbL3VfwenXMhopPmZIhU5O+mOrGl7b6dFFvcVoSakuBzs2PtHrOVoMmMtfd61eaqJXBypS9WnZCL+4zg+RW1Myh0QqyHyrQ1PksU3knYR0BxPubHoe33+RZwvMqcheVHGErb1nmOAi9MpRXmW1UeX099pGm91fUodqHlyA56EIXdcm97+nzAYkvXMwTGjZFkSHA9mI+tb/3gFO9f6XFuH0jaap4NFi3Z6rTe9DMzvmnsZOaMxahgEn7utUqLCRVJ5MCt3077o+8Dnzyb8R5i3Ru8gJKWCt0wogPLd/YT3kZ86Wqyl7v1YQFRIV3lsYlYpwDf+/lHCcNeuSkZzb3s/XOS37q9aycVdGl15FpvOGUTqw5Esh+wTY/EiIq1bg6DlRpa+tQstc1WdqGIplWrQ0Q4YikiX5DZnj6KHbBP9fiVRcOq69pdBFCQBEzpIf+iwQZVlOr4jOKfvYOi81HrCfS8YDAFzGHuJtuMi/syESKyLMpT9ZvlLIKEUsyGtPdvHtYZm9tiL5YZF0l9YYwHCNNHdAvwBsd7Ke4wHflquYjCd5ADsKwG7yTAqK/wHfUv/mgpxURIsEWiRwkzbXQI/M3f7BtI3ZQVoPAXFne3Q3uqUS0amBMdM1jc7tADcIL+PnIRB5CHeZT4UDc266ESmiOpUnDTmGtyRZ/JT9ghV+CgCwf2Rj6JMYcLxt7ZtxTNE74rbEVWow+cU+tRZod1GBXi4rDbr1Ptrf6S/9yYMX+Uh/U2jjsGV05CEKwg75znm4GuzxoW3u+y3y5YK1XzuYSo/efWYl5Twdih3LpB4NBN+eYfW+CIlUdP1JrxarCwkx6GYF3SIObOkbNtN1Qrynrbal761DF3OXoWwT0p5dSOpU7fUPMe1FobbQljOW8f93eSXCp1IuocsZYuYCmUJv5OGI69d4HM9PkCHbcMVzMWT3c5pN7elL2TFGsifezIZEDAyq+YdLfbELh2H2XFvjobhknj06k3U9QyEY4snZiWxZ+6e0suPQAwysZN0QUQIAxQqOg3U68Bs7wq05IK4T2TEgfIchO4lCd+ISHs94XfhLWH/ZMetaye/izeIE5HsgpK1W5eBSqovDQtE2dFdq9TvZCDEJloIga6+BBm6WCz5o4pWAi6MzGUgGlOKeH+QezLbHElzC2hX1ibx2yUoTsN4DO9xh/umLP6EJJk4xLXfhN5D2tgFAo2k4KyeY9D8ooySe0N9U9Dyc1vCaduXNUVeGdoXW82zK4L5hQs7VHEWFY+YzJyEaJwcY3/jEh5Z8WlyPIuMgCTGXpNtyC0EVXmTb7uZPgG67XdeeWXBT10fzz4pTc9BlCfOsrswnZycPEFMrjc2RHs+0XY3Ao/QiqUsPgGBxaV6RR6FmmFC7YG2F1rpfJRT640uDmk+6Jgr4HsWHQZL+7YG33xY1GvFG7mTIRv09TwPRYJDwTxv957D+MXkm72RgDf4DFXPNbxKaVh+NQaB5Td/xHjm917B7G+Tid5sKYU9gU3IHp4cYGWZK7YlwDxxaZgoto8h+gpxPfqu+4v9r+Y+hEQ2gc3ddZdsW353CQKdxa4dZDVUsuQkqWowfvRGmy4RotiPC9rQ97Yk6Y3BWtXWCSBuwb2iNJQH9VtNLkH+VQOGLeP4ohctFJwQ644dVR0B+zSUAQKN/jdfI7K63NMyAIayBEmIRcdynNaU2oQgegCzwapISerj3InXEA0UVC00CAD/yVG94dMhQ0gIDLfjZD1FKc/LQBf+I+2YHBi4yb3/kgqzdO7cQxMDlbPrtfhLkShOoZgpopYumC1d8Zl7gSfkbEQ9ZkLFwQHjSn4rDGYgh7O1lidsarZOZe4cy88/JoSY9TFGuerGZznk2kjC//Xs4Z64O3A/djHWk6+5PfnH/VUzX1E2QBaBj43bspk3n+wZfTEAPvZFblZVAxkiwWd7/q3dtaAFHzcOQ2rZvj/BIiUWay8cukoLxFJ326Lj32CKxiLOiZBATwjbTecgvZ47OxvsMoYmdkhjkaGl0ixZucI0s4jSBVUOfz83pFRbRJOpGegW9jTgf0nB7RPDOaAj3hLRwgh0lgdrIwPe4gGlOCDOvbEYpVO+mRbpFeVcHdyxyhFo4j3vfwasdQAXpXwK34rvXwmpwZ3erLL6kanFe2JDzjhx9XI8V/6t8sl8OVBTdwz0DQsk2l2bsO9ZbeQKItg4ccrDHgQ3PbDfbHFn7PdEbFm7TcjKjejzDl4b4jmfeANQYj4LprUy8UT+JhDzZf8/veDQ0X8Xnb9IRFoMzA4LeImDIiYVequt0jGgb1AkuCLCWYKDTJaQkpLxheK/pa4uOfhKtEqNOXMUg6TIeQvaGdrC4bRAXg0DkIv/djXXzUh45RfuLeIyMiiq6edhovSOwDwVMP0yFfV6Ghx9ZlaeB1Ke3mg4siaVf8YJoJaOr8rH6JrRhWjm/OIfOKkk7FT0l3QbAmq4QlZIkTkHJULQBczYt8HbterobX6NA3DP4fFze+gYMI71LYP5Op5PzXKu8IQ+sRcxTND1kFgOBDQyqtA30sJVJkygBdmRdXZejcaPmJS1ea88quBGNKSfNipK71tkC/D7n4JACwzCFhFvHa7qsyuao2I8f6R9aGezi53BGQRXkCeKP71nE9shAqbocLhtO0m5Wsayo031J2719FL5t46Ne+LjfRwGO2Z8f+FJZWtjRlCtlldgCYFgG/8y2YGiRmWsc+pzBTk5U37W0za37TKDaViuqOyX5NgsvWoZ509Tb1Stq6wOSM2NwqweE7mZEhjRDb7/SZ4HBpLz9Ftv6GftylG48QiHtl3qilQIjVZzJOF204wLHIntuEqEkov2z8RwzRqU0C3+AD8ya/OA46kDxJtRwJlT1+F4bUiA3wB0ILZx1D03eKDV2S/cckIUOCc3n+bvaqU83ymadfjJ0ylFYVbgyBipmYP+fNHzpu29jMo2zuuEQ6Zv3xwRwmtKfvSW/DRlyN7F5695QKGliT0Dz6CIQux5fCsxKEX5YchOVYJlPU3YPyLuZDYfY2tXRSZPHYudAF2GX8+L6wpEKULUF6xUpdanuUEp5B4zxBsYo67NDPRwA8qDPUG9/LrPakEG5oy0dKHYa9lVmDpF8wb5NPYaxWu3WxogG2hwWA3lTFz+XpOWDMfW/dg2rAfYx728S9+pZwdwg6orU+abe+FGCPtdhMl0OIKYUreqFr2jtGBoldYn2XTuM01isptpGapXDl3Y1n0FuZFinH6AxXWM8YjHTxZLT+qpwqlDoTUGlvOA911BEFqhMAgTa7jefNj7f8Vi4oGmGuezLQcAmiMAX3kQMVnvFK92rm6+4/yJ6dI8Xb8S1zbwf5hbyAEBFKfKjoaAGU4uCvi7Lyg6iDP8IQ78DHk5M/ZmP7JNvVxmorYB/wbBEtAclROOAtUl+ywzZ7vEMmxETCGX6B7l5c/GTgJBJeFpz3Ia1yTCMFqIhVlboD1nLbspKaxqQ6TClFTkXVrgm0aKm6naDgz9uY+tP2M5QEdeqoXhHgn/Nm3FHga7IN2G5zNZUabZHl4emKD6F7arT8UGyt1lWW7JBe2Yf9sg2uh+sO6xqOmfa3MM3QGzauXYpfSgtV6tUvuW5zcdZjcgmeQxvHLAnwN5FVN2wvMdMQJeAYTGcMI/nPCDKVIDvI5s656ritFL7un9e3czn+xEOR+NsAGGyiCtUkKhlRR4GonqGZfZ3X3yQmXN3bEmFGZsB4/Sxx8M94fX62fXXnpMTtvCMwRxB7Rta0U+Icj28xX5SCfYDD5qLcoZYUHkTmwVHvJcB1a3/svSjzQeLORNzDVqXGEiZ4blMyA0swnhJeIxKB6NsxACiTGmpYZES6E0sOv7sUUHLIsgNqgY8OGHWCZWlgjBUb7fdVX7xRIU/4MQzL6jduhMC/8Z1YnpbenuXam6Dv4C4PG3KlyE+L7d7g7iHmM1Vw+D4oTFhcW8xp/KraRN5HB0Wakf9edaR0zi8VMtJ3uBDSBYDIu0wITashZXUBnpWp82wSuyBO3UwGu6bWTnOm8ntXdrgIP/9UqHdFszbvX2+Y4F4TZU8dPR8f9whVgwBqOX/VTiGGygHtnIWar3Iyo5HRH6p5h63DfM5tMg7lA3OrINnVYnNEzniGVdebxPsNasDxOdK02bio3gtFrv9XqGVM9dB9fLsyBdqKQt7DVDp4YPJk5+USaXprm2egLo62kHVRE/X7JpTemA4/KMu+7bIEupvGVzPkWc5MyyKiScWC2fXjTsI5wiMO7yX8g6hDt3EzGoj9EU8Aqm0WZ/NcIKSONcNCCRIfDTpCKFPzr1v0umlnur8nEGOS3h2t55W0qTPrctz8DLolRZ4xq+CLerjxMmh82sFJ9xga/LJRrcEAL/VAL1mTyeVlpjGTGkAV4hxnXwOG8LR1Ct+OfvNhRzx6A03G9eegEcnTUPMe5ze/faNB5thXBSelspQtFRpJ/TkQ8wP6kuoxQaLaQu6ldkSfM3rQI4ye/ArA7wM2PTsOJ9R6MY2NcVk5wfYZcjnU1naI+mmEfFXM54ZYdadaxYgF2hjl3KpP0wMMt+jNS1wiyLbylibi4Yi6QSMxswA9mQk6Q3HQiyE8V3dmxM5htQ4KaVpOtAblGRXv/IIWPgn3IqMh7gG/RQFxwgpTxSBF+9uX+aRvOEUJ9oezlXoUx2RpyL61vyDAxaYm1BTK0I/WXE9o5Ol/jgP4hpvu/kD0IXwbKb/zXi79D5FdC/1zLV7Wj4fJdSSOA5gAX7OLbdEdL01DbCIU2F3BhIcKQ43YfYnwN+YBvEJ8uPz6aehxyJ6bufS46Egr1EpUSxJzGFY5UgIxGGqJdRWijFodqZzyG9xS74Pec9y9f+c1yr+RV3jIUJBJZ9c0ItqL0fWTA3I+bSLbHBoaKOEai1hjOLVwKzy3RIX7Lc9gykungVMQ/dF+Cck15Xsz8QBLdhjvZzMu/e+jpNajchSmAnc2r2G0dUL7em0rtZE4q+g0+dklnifiZMfAdjqPGugER0onqXMH1yDpeCGQ7f+QPd8sLxfYed/n6W2NdLbUGJFOv9s7ZMbOu+T1nSF+VBaLJA3wISx6lxOHSAz1U9AuGxxbxHjhpb98btDivQaeHdWUJPEabsoycdtoTnaK9yBgS56JdWnEPV9jSFQPsYT2nde2XsVhZ0PwlH24QSIdtodzPJBBhaG+DEasa3IaD80nc9z5rY3CYAWyUeFXhaE0rV7GlKpW3rOQdPjx5rmj6LUBM/9mHXY5YbQIxxR1AChnLKwj1T+ZZyNh+08HUP9D3r0sSm0Uz9LKYBRQTeO9Ki6sHNGLJRrRBeKTU7GK/9kEIajAGiZhkIgqs5Em5GiDqDDjzd9N9hEPbLhDCmWlqi/5TvWJwkRQA9wDEvt0g8rWtmE5N0P/Wv6jRybAT+iDQNBk2069RNCW3gFKeT1D4mas4araZFHZVPxUpi0T0JsEagzx2sJjsB6wJNC9nIPNlvUY3G0Easp0/h4mPcKL6qLfoy+qk956BvRO7iiRi+f/QkVNylCnUUSPHbkUFQHwUtkhmbjmDz0c3313ZpQulj4zg6vPJtKquwJltckmaVKah9NThQIepZpp7C1t2o1IBnI2CALh3a5z74F/2dMphCG38qtJdP+wevTbGegctcXfTtWQA7py41Qi0ZL3/Pb4cJ3FK5Lnt+FVBR4UBvB5SdgsflWnYodZIf55cg1hodlj5yq5NbuCocTqJjwHOKwrFBzcnV2yDqFpJWFXp8jazF5AZQilXttmVzFR6mkin72gvBADO0LRP4FhsDLAvzixkDF4gHHnegCRQo6l5arj/459zXEDAbs7UB/bMNx4lkZk81Lr5G+LnYeha5nWys/9jeUiqhmkOcMTpfQGKxXy5/m052md7zLmBV47dE2RDsXd3mFed4hfZmhfgqdVOd8VUjSVDnptkYiU1GRYtCMmfmrUe4wNbGCm1cSCp9IW+vhXlEI88w5hQjQSVx2pMxafOiUoLuAb4XhR7xfagu4WIJa3F876ZkXAptG1N49IwJCEDacieI3uC2wdKgydVbXHYaDNuzFJ9D7ruT5YOOjTxjvSJ+wuVjVGVx6mtNyl3UOXHzuWI6XJzS3yWLa6ZDjMGcQ23135ibSoKS0EnZw27tvk6hjNG74JXtso4yceb6Yj2PQrlIHNCZjOZCqRH35FbU+T+3dtw9+TL8w0xO6/XMSkmz5htX5qYwQAzartoNN0gCXo29uTiYs/DORRgt8dYq5V7oDh8U0JxfEs9U8rrdMEc10LSl4F2laFVSWP5u9IOOIj002ESf3wowUsFUywZjEL6U3c0GHnkF2uE3825d/RTpWYwve5xeuJBdV3ABlpo8c4buXlOymeWSkb7iXsfUsRnNNl1rRT4U9+WGnuoFhEhFY7SyuUeCV8Nb1hkskSj0iUEhS/ZcoMhAzNJaHLZvAybCmsZbtflkAlzrMi+HIzUXt7DQim2+bOc0iYiyKYVrMioYv6rIQk9CPm6GJgw64ib3f+lf73YQJ1aFUMcKdTGvSC8QvsGvZSQxNUaBvLkkputp4XrIsi+StghJqwr6ufglVZtDAcHocT4vG9qY9733NwVMHShvFHXT9uh//QVBbz1Krf0qxJrKG4tQrAQ/N3C2lh7w/gZHkSDs0yJALwQaqM5Rt807PGPecVemX0jhtQ95qo9NE//Dnoa2nfyh2OlxENFNW9gwHQS+L/fk7rCGXRUHcRAbSGoTASraJ0ihoIzaR6ajL2czcO4dzXfVwjoMWxuEyeaDmAfIVHoaCw5IY2ep35LFeuv9As7sNcvj18WFKsUX8uiEj+n+Opqx0cQ29afg2zqI3ncmr8SpSMsdI8PYUrYYu89RiKC+tgWElDLyEKQvBf5lEsnI/tfU3EGTPOx+wp7xkipTkqKBZmX4FG8fcpivVCzJPNaAHviQ/YSaJ5MiAGU5FH3unZQgqM/r6qXl1k2w0tPOOzYUBhIvhImmCRj3/8hYmgDgBXOew8tlwkDcj8Eq+RjjJ2c9RLpGkwmo5MWaMyr4S/VMQEd/+LREpJGe/sURoVKdXYOOSyBOy3yRuIxf5erT4QpHizyVse8OaNJ7NNU0hGG7D4a7q7+JjO0t0U+WkMAalU028QFKb/gVdzw40dRW4dqAVDHgsGENEPzj8a6wGZLwRMm5TJRKsD9ChZo2GpUQmX9KqM5bfufC5weodzz6tfhXqQ+jjxWV1vunA44ZplAkMVxuRIxUTGAOjqUPx/2sgkQDUkhMBclPcB9nF6RyC8hMOjiOltcg/R9wBi3ccr3zaeE6NO+15BOIVBs2JS+LU0opJh2BSqsYzQ+ijSNfLlTfMQ9MUKbV2VFJlO8UI/mUdzO1K4earplVqX5K9SzMXTfbR2xtjCIZAGmBBbXl+hggEUG5anC2gOMOUEKg9yFrHcJnYFroMUKnN9vmXrPNV99h1wmGeEcYnqCTSwfKQ6KoqDFjBSacXoyghjgZCnPXK4juOPJU2vCIaXd79UR3nwuNdb2oTxRPb4r6HzHxHWoTbfXCNyRxsVPoYc9bEJhBVuELJj9INLSFfMdbZfbUNlcGa1nIEcgFeCIE9FyY9j/uVyqtHyc0cQKUOgPy8goOfUsIbxhOnmDOM+FsnFmyh42AVR9Le4gilT8jlP7ZY1wfMMAmTsQjE9bhWSpmQerNnBaET89BM6jBHeBfmL3J/fY9ccMvXVk2Q0l/aTOOjW0n7DvcR4izp7yEULp0djL6grAK1OGEXpQ45fkdrYt/ye6XM4uhEV2SSdURkl45+FYfwLErW+ZyeJC3gI1YblJeJW0fhfOuBPUoB1GFyE5pDrKSR3lupvpoxRD89HjAZQdWKxfr6THfgYL/cHZh10LAi53wcxRxjXUAZL8XreeRkIhFLgTxszofTTEaVms+UhxOo76VtHKuuP6lhsQXg/7Z8KDl7KG0RD31gGIf1bNBYtdxU8DD9XAOTZTPVWIBG6jhZN7s0Pb153S/6LQoEolBETY7VFbJiE/nvGEwZA5O49iPMI7tXeQbtdUNO+W6+UvcQ/VvPRjQsiAAPTic8LAI8sV+jTsavn6n9Ya0pthPE10tlyFlq8jUJ03SIPtT7ylBMENeMC4exFwB6Tvbs2eJ1PIa5NNaGKhPAnK/bLZmwxCIqT9RboUhcSgj3kpkW8eaQcmdq+SwJeoHLvbeQIVN/cYk0GeCDLcWfp0jDwSJXIjpCOJu5TzFxwRA2pYXXYj/ggoF9cpu6Vqb3Jm8oPwU5krquNX7lsujwjKbU5DtF5NMYQpWb2zVqWkenRYdQqGJOXtSPykmM6+ws2NfcMGUVOoVXY7I58hJX1eWGh0VHjLuy43jn8N2vWpoV6RVaxRVKShKtLF8X4AjNZFKp/MKfUpJIcuZxxSN6kgmjPY5djl8iyp9E9ULQBH9sEGbng50u6+2Fw8MBy4feZpLh7wQVGV1QDOVfE+lM5qArd8m8CTbPSBaUSH0iBHsKnDGWqWQksl9wiXZ2rxcEC8mnCL6lzucQ5Z7WSm90V2vUjca17u4Lw/yyrOHYRw1eLDILArAkEd8cnyhgBgz/cdzhFsANGAHom1sG6MlQmkdOfi8FWrLO1SvdVPbSlji7ct7pdd01sIgDTdFVd9w1HyHp6unRFUHdFWiZ9HFTqpekzwaOj8RPKrF2AP/pvaLZeHRsJEPlWW7/joj+ea8XO0hBYzrpF4Kwu0m9ZdP0YSTi3eYa1UEFyemlsTAJ4cKPQ3heMXVaiEf5wmVrFz1suzESEa14C+UkBL3y9RNJsdLvOc3hUiavTQnzU7czRq7C8EtfC5u0VhYajxKk2MDDaZF+EJAKDzf8hYBpYyE1kOTWBGjQ5o6RkcllQXX2N8Ut2eqI3ofhVQ6L1UV3zXKWULyckyfDNYyIUYeTFup75gAj+t4aVdnq4/4fWhLhyZMda4A3MN2poSM2xZjyoo+vMjgDHBYWlQFIYnehBGTy5CUJSnvUfNDIAfoyqx8Uum9PqQ1dr6aWs3/J7RwTXStUum64R+ZPaZEZQUNzHl4oSnIj4ydnKQDC9MhHc706J4IjLwmiImIKqevY9fCfMtr303GHRhOJcD/izPVGrr3YNlODBEIL8FyH8hAsDHY6ndtBYHWhScL84aqZ+K/KseyOdkNMj88RxhyZh1YyWm+1bRVBDcTnU4DSqGqwGoCmf8+BSKU3J/x57iAle0Rp5gHaWQYBdNJW2Ssc8WyZaSJACLnhRJFXIm6lAZ6wozdc4lDhtiHDR6YFPQXmS3FcAXZJvmsMBJ23NhzY6cMbkUEFRX/PaYvBsQg5JO7SEdldki6QmP9S50+SqLr7gm/3eL0EWo3DbFC3vuSSKwxbLMKq3iFF7AY/io9dlBpK5kNGpc3GjraC5jZdoAaIe1v3Vdx4AZWcMBxdocVDkUWNdYG6B2Z8un+4SU8BlY4PE8mnQ5AC5eMKuUp2dF1wAFKmTAvW7L+O8zAUMV1kYA9QWS7Nx52lfzxjj5SMM2Q37ervOR7XR62pil+z2p/h5xF1sjYmWXkIfittX6T6MitGO6Dy8t7AXqftpbESMllAkrHklYbEb+nj7xfYR0WNHKIXXGIRqa4X/rnFqRAoE0u+Ho1lbDn5jocws0Fss1ZJQ9OJ0OGwL4D0eg9eGuvRvfHE6/YqYPAjI8WPn6Z1JNL4GQ4sSdCYTvfMvTLujgvrr1wausDr9OuBJ1DCZ2gVEp7Nnj2SYqDZtz2ng4sgxZJwZVYyT20131W0+EZnGcSZMUGvlwIAWrzF9N27QsP9g8GbNGCVGqFprJnETfZOxtNKIQDyEmmoA1tD7Ar299dMLpwtVv0He5fli1WDBB4Sl6ykg3TrxmMQTPo4JooKaxvv7+tmbE08fOEAplYqq6tl3XiAXRTvw4qYptjtimyUqiDmnbEXPavICJSGw4yqiL/7fUms4CPhqn25p6AWIUcMf8FCw+A3DUjslPqDgfYwMB+dT9Tkbe38VJ50ja03mqGN6IG8kf+vObFgkd4fGX9NB8Nfkm//STnnUJtQ2/R0x8iS9HAhbuVrt2f4jDGp30HAs4xjh4RJDL80ufWj5Giod68s9rICZ71OmSgom5xGHpz2nJ4UEP5zE7DeCF+j7HBUtM8Z09vnrPApCWGRqjlF/43KW4nZOmUB4WyJ05Y9O5uRvEbYWrBvWhAgwUn9xZenbsvu6lemLis2GzXG1PaPNU+PXXujoyUr2A5NLgczOOkmMCbc/y0/v1G+NJAxbEhaNhkCn/KrybO/viGXuz7z8DUNslt9il4HiMQz9ZuO5kFPNij6c0sgzqpfma+b8HSXyXQatIiUNAfxrVK7lKY/CqQMOz/u74b3W8yqHQBZeT6X0SIx++hy4XynCVmvF3mABQd0Cfk0dnAb38587GpeB3/aNhfUgTbIjxHooUwICbunqYjm+qBBg/6zWb2/b7GAa+RBuejEVcTR6uWvDmFEa+yADRVSoCJKwoswyoAM2HrE2XGoS+UikQc2eyKlVxigmTHxmmzmoiL8MJJryc1gBSWmHT3u4Zutf6IATcwbTib3d7seRPN21sujImbp5NVPaK8OcslQWBkngIppTM4Di8S8k89oYFTkwyt742OBrUJikTFvt8I60c/XOnOkjMHibdl5/ntH8hKoO6fXSEtByQ72QWu5EgDXoRaG1Y59qBA6fyHmVI2fqbPZ3/FR/DV9u6fLCYZuB592BEo6rq9Rx4OTkJbUAb+8aptru8BAOlM+sMxA3JX/Ifop2UIjGmpI9FFccDKEp8aQSdaBRPcwyHqbcfKGGicon5EM7rScVp1nBCx5V00xQSLlta/9fJMHlv7Hixlspqx4t9SRPNEaJ7V4pjFyPg0hJzyrxm8R5EnI7jGAPBXCYZdKA+G5zVnwhXb8Xq1K8zGYePSXGgi/Dtk3c2IJE+KifQOYWUkZ4W/oaye+6u33aqsZCxAPE7Fz8LExFxGw0lRfTZ+weAy+igNhAplsG9g2Gw/MEEsrnKvhTg4rThTLvix0PQP/blZ1NFburunLwenunkTL/bV6J3JG+9+Oc9+LyvvH9whkcUktJdb/+ZT0MemHEkjb0moyXVEOk0frJIiHt1fh0KF5Nz9ru1KIkj1ddz6ZgcUdQz+w7ZJ5am7uDyutpLD3sob5APxU4TKQiHclkXyVymNt61fFdoxcHVZiPhjqO6n+T+pahteL1bBz+DyYjnVSqZgUsFwozfjQFd23EYu5b9/NgG7Irof/TCNGTu3AoMJ+JmE7f6kMkj+mi/oU+mhC0nEv2AO0lruC/QZeT22XryXXZrVKJwT6pMyZl+nZsdNs7DMJ4i/7bKpkffuUqtF6l1i8erY4eGDcjikhvAM2wHLi99SYqcysuX0uzDZTNwn5UGrjyuqn+YI0I8ZWJWbB0RwA+mLYS6l/Bu5ty6Iqg5sWCYe+HXrek4gKS7WqNhXUZaRxy1ER3OXbrjgrc6vKNNWwwnSD1mMNeKSLpvVNKcosIdvJPfIGqrB5QJfrmDiq7JGnOHncId1Mz7nW3P5hjeCYYzCrxhcgxEiSNQdGbJ0YWHxTGxKr2ONFRQPsWbk6DnP/j5+rSQA2jq35tchmTH2UxHVZ5yyQYU5hWmwqKpbrW1o8SMapiWd0Qqd/rnbog+L+QX160iaMGJh2JLtTLbK8GAgf7a0wG3YzXmlzu24OBIvLc8kKtEGJ4Ec9ynJKCy3geMncQnYS7KIY+2YiXexAIh6Yc1djzcFVG/P52bgAZhOq6coTlkcGGAKaR/i1VpG0WZM2gAdBuyrJEG2rNkCfep6XB0B1e/AG/VGnVJgr7sQ/7fj0yoAvWIscoSB/g0IR8rEVfkbAyneu1pQQqvQZYxW18uG2Ycb/zKNmw05fLdt4xbA7fkllWq1oaBkWjoN6Z9yxLbC3Qp8JxWkylTdFrcsSnN6X/W5JW1IOVGaRmpTZIyRLDWuNt/8e73eJyS5a90l07Yre0etQd9UqlpCGWlBk+Zar3mN+QWzbwDJdfZaTm1oR7C6UP/iuUaO4/Z+trlNxdA+vI+BQdCVFa6C7FDXdbKdMC3wClo/RxDWW7F2eOMC82KaE7kQGoz98scmD+sEAXvX9ntJZ2gYN01AOxP2CKJTqnaanIaBObcai3+h52OEjczwIPkBux86TQD/WVdKmknRgMxxoWXWoBaIL/yg2VLl+doRP+e8JKAmSriftWzjhs4XiaEszdWSeKg8b7K3uRTYaDfcLJFYjA2tRX/xCacCnQ0uwXfor8M9sLqgRDSrxLTzYLap2yrBPyBYIGqdC7wI0s4ZT9lDaSDOrp/05ovv4uwVwHRAbAjlAzN6jw/hvmI+jC1/go24+RRHxLl4XIrOIrRhX/s3ro1rxbpeCAHS0R0SoI3a9qr2FywdXxFcloDQ++QzR4sGyL7H5+deOaCWQ15mK1+zNYM534TvvKNd2SS012XILepOpaNLFB0z9zPXmZEu7mUoIAVKtRamLpm78rkPwwIVYOGcLTY+8FaarZz9cq1H8KDvc5nBdPyiNpBTmK7E8n3sbyb/CqvUryIxgvhr+0YbJRXKscinnFpyfCeLsOYIJpfZwKihH8ykkmO+nyqH7rmJ5gNCzzn72J3esb/aPBTyyCxzjPL3EgjWjcR6Rski6aEKaPSJiseyPPYB3EYpF3MGH1qtx6aPgCRBHjn93nmp1B+wBZk7gvh/sKaPe5mY1TIo1Whm930OF5QTr8saNpA8kh8/mjFkOf/BWmQJD6YTCvGxriFNiAxQ0bOQJc43N5PSMCueW0FE5EKp2uCAUXnVMYurJ5bMIuFig3y5zXjSM2EWnEms71OjR6cZZNMWv+dFl0qtV9wB2bqmHTNtsn7qT6HmoHKpNXWEjr5ulwFUJuMxqs9HdXq5D0+DGiK/zdVONC75GnDlVKjdFCzUSKoaueOMlqTK0uyHDig2aDNE/yZliHpZv6+6ysCvWsQ2MHqvgW2DexHKQdj4UpYqXQM2yjt7TvcL2lYwpiXHeFi8734cb7uL8pTwddyc9R0HC1uBE81PYV4TtT4CLE+yXx6cVioby+K0q5vh69qcdzHZ5dYKrEC1MjgQW6RjVDKeBZ2RD7f49TziIBDE+6+r8qRzr5DrlASzhHftoxh8q4pxNQtS2Y5iYITiyDLv5pUk2lFOPSNW2GvF+aGdKfnlwgfH3yTB5KvxIa7usCNl2blNQIUDUXGzu56pA4L8VXgcKclKAD19uEKmFqtLjE/b6uvcc1hY8pH80lea0ieIVI5bjVbf8Iq8JzfYYL8nqg335NhuXjzLoV0XtK1pWK/F8QKApwNN1hdKlyroVH/jeVtBl8vkj93ysWDO93p4XEvlYJFmygfQ4OeuDokdWXZwbC6xx0+h4kvdtUux729WI4jYLIlTPE61lAwpg/8Grehr6/bb41Rg3KZRTlYE+oAguzCr+IuqbYJXA+9xMplVUdrh3O/CEyEeHay0nFUH9jmvvQLRPl8L02jBaE6SBu8GrTY7EgukWCvRALxoa7TZFu2alJe+gwTqLDyT7cv2qCh8teSPh1EscPewPWe3yB0OHhzDU3S7KjkPSbjLvtlzlapiaelkLCCODWZH7pfonl8DKs94BJ8gASOD1nTdzn6R5j5pShR0wbooV93SaBbcPPTwdKpY3d0/ug+R9n4naBoe8EQ3jndAyqm7eyMEaFUBjfq3wKKhg15xfdv+Bfl3SjcOpXhPknvbukN5rpq475MZPA1/7EyI3moRuukvoD0CNtVbHqHgM0F62o+XCqMwkwBl2yF2teVtM49hXFQTUabEHVov7VGrRuKWEjs+aNgC7cWfa8g+mvaglFYqLTx4sZRkU42nFllg6SPQwKyR1L9dhSRMvLfUBycr0zhHDDvSW3hUK9YAg2z9OI22U1MVsLi0MalobPlTNPRoBSbDUHBOJAAucTgUFY7O8Za0ScOeGxjD58m64shRig56PpzT+JsfhOiYvqxdEN70lbn/B8FV3FAK7BwvCHskxwvFLN8TeYH1vZ5V5h82fEMUGGBTXTz0+2649uWwStTOA1ZDaC/DNK4lOp9/VjI5PRa6FQBCBnOGE4n0Pr2A65c6IC8cLF1bh4B3KqX4a8pNswZsH/GJUlxF9XlIES8yBUIinS9gkPSMhwozkxFSC/ebDoreUgsHlgSvr8Mzo6tUOq+k3MdrN3RPTMVtoYUQtTYzVnU3Q11wOZT5fAk8SGaRgQc0mJJzLJD+Wslc8rO9FCLFay1s6aDtX3JBxXzJvIdt+OT0OXntEPlRGVA/AAC2WX7j95rbRJwZfU0A6zvWTllgbifnT0uWKXM6vZ2P969V49m6Nq0JFKjYJelMrRUvgCv5+B/UdQezI3WMToTfxcgwkUjDobRsCRi4OOxPliakKlatNo6TGEDYxT4XU7VZLM1F2DB26bCPpBlFSa6lYcdn0Fou36vvDgnpo/q11mbmZdjZds6gizock6bFr80kAVKVAh3M72Q+vNQB26fUYTuhyt38GN8E9dOZff40VHaq0jHkRdd84aCJS3NnLEec+zsoaBN7widrEZca5Sme2M002N6WEB3vycbbXczBdxEGX3sCPpZRTGMW3ygEiXIPWrViIjKRdzBIToW8CBOS9z4Qbg0ExCLSFLFH751W880s7kgdEg38k2l60HulGaWZu/1qqKLJOgmFEM54UcW40NpDfaEjsdUkaWHnHPCPVusl
\ No newline at end of file diff --git a/acts/tests/google/power/tel/lab/temp/Anritsu_SIM_cell_config3_ca.wnscp b/acts/tests/google/power/tel/lab/temp/Anritsu_SIM_cell_config3_ca.wnscp new file mode 100644 index 0000000000..ef7cbb264d --- /dev/null +++ b/acts/tests/google/power/tel/lab/temp/Anritsu_SIM_cell_config3_ca.wnscp @@ -0,0 +1 @@ +fO6p4ZnmlusNdwDTxCoF5Lv2d+AD3iaQJtEFqV1nMCwtZuwc+Fl2+Re9li5IIIzXX+pr7sHZS4VbQ1Lr2pdzym1oSpgDX+hNupKPYeHeSm7XD3SWHrrItblSSov2CYB+CIufTDn4S2/qVYgBsjQBszZ6CWNqCZc0xl3RePS6Lib6i4xAXaCkX3msLVIC4V5+BJl6MifxHr3NTUxFW8m+nsgnqed5cU7+yFLGF9iCTtVi0vvmTB6HEfyYPLaOXEsxiFOIkUejjpRcSd74bsOyIWV/9zEm1IR/1Dwb1M94Wg6veLbFhiq8I//9RmYJAnsMHPHncbWMoQ8Be01yxvveq9j+nnQs9k3uBOGIaVfeucWmTuRB+4+rV2TQ6zyKK6dcYQG+pjY/Gt4zWDSShwm4S1s8sAer9NWPaECqFATD8pXETAtBY6+WRsIPMD+1XZHxOO5MuvZBmwgrhkjTcVfLanoOa4FCa/oO4OhEwUJl4xRUZHn07Dh5fTKKLf3tCntNAONnkXyNyl97bJT1Hf3XXmGOQ7j1rcUx4BIFbR8Hm4C0o4cgVUPhK6XOnwJgB6oosmVdGwvDn3lD9AJrDVw3U7dcy0lIX22+362eYARY+6AVZzW3FqAuzHgpX9pDTYnnTkW9BQqxh+4kcps2eBtuodgwP/+VLY2IHWlmHI1NuRV34jtQG2xNBfBpYKC8fQq+mUyK+kfphZOpFrNfZmGzRb7V4DT7W0qD2Hje6D6iGaD8LqVKJwIcQMLyqtBcHvBpCdrXpb+pMVAAyFJIn02TOmZGBG0K4x4MM1mDZOFC+sAsNHZOYK57qiNXYOrwhPwpXJzD04qzXh85DGNcPGVBZu94AvI5rGXLkJLIEDbSG3OhOPu4MF1qybHqPEEZKEC1dCMW+rr9Vv+iFJ11lK/3U2Axc/uvEs2rQnhiIcYQWilSZPcv1afBCQ6oZEJ9u5ib/Kpx8+hSRJ2FDm8Kn8F3bNxEXd9f85jZAolsFHr2RnyjGGOSQiosEP0nzCIqD3jlKt5XcmDN0pfr9ML5wTMvzfIWdfNcaZbopbDah5JxctZp0aPZskhth1mwHJX8ndOaq0Fdaa5ry+aA4l7ao6rB81Jb0/HxDvVzEPA7UIk/3IYeJsmwTijfUyr9TlDnC/l/DPj9ItM4dU6sVD9BhAJnw3GB4TsKKpDsRLYStaGIrNC01vtCD5kYaid9YMaedspYn6e0fRICioJCEwkLE8z0vpiNRogpEhIVmKwlSN52hQ0soaqCaefU5rtqzLhokBPO2Wm8VQkzivC/3rpAmZQtVgg9sL9YpUPHBEsx4KknUGB1MHcGtH7Se8vONnDqHsR6Cy03VqxErbNj3dcOQPGgbqopG5cBJqiSU8LQ7+9zF2HZIgs5GjyZ1V17EhE7t2vbJvMjEA5Elelqe3u2gB7Hvb7C59zPmuww1jikIqdxX8jz/Qa93V46KejB1t4PUpyywfHleP3eL4+cdpO/16VCzxeGVZt8bIkd4nToY3REYG22bZYT55ycqpudiE5S15QDMLwjpPAYszAyd3ock51ZU4+Zwu9gREMlQb9rC9Vp45AXCG1jqjP/mxhhGMf+fl4cjFfM3ky7D70KWW3BuVfZrVM2/T/KW8dcde/ybYyBLyxmLLc71itVsO0MTUyqoB77uNXp5vqOth9fRs3v/f9WHkQgCfBstBj/ZtZPdcGoFNQeu6xJFw/yNa0NcHdd9sKTJlkEOcfaN1UwK5MmXXonUtDjdNkxIVugvh5/YOKtMv3xPL6C9TTIUhREbYWspNCHyyi1pk4pq0vQZ5kxYc1M5mFPShkSwT8AlMUas7nq0RKWkOTXHZkT8G+eurKZHxges7ryJ/XuO8scpl3N7PS2aApbB1kSg1BQG/b8+j5FN2YzNSJGhkBkoTUSLihGxQ8M1Y+8B46g2h3iGaqBWaRCdwxfcGqviF+6XEogJMoSLEhl3ye04mJGH2na+k5GlbxkOdFor7hphtNxN1CC34p//SxEYbY6iXEJzo5JXYd0fPfKZJ9CocYRAR7gSosnxsPQ/dte6JMeefKObs9DqJ3a58/rsRDSeXEEAPNrdjvzwIUs3vJIsQyxwuhwP0Q7ojH8z4mrOTyzvOEfw7TVNIy/TDk+D1eZkVSb53Brbj6juom9IgoaM77DacBeBLLjC0xczXpG8C2EO4RF1bTJARd8WaMI2fKzooAbhXonqkZ/Z4EdkFuy2K0LIFGxsC5c0kaHloGMxX0buJ0RS43VvYFWZON+h9iCns8FSp9ae+BNLzvVNotf+39ycM/8iarJ/msnC42crjhcWd0gKcqDgNJqBwdKhxnDgDdwLg/riwAKN/YnPv/8fyIqgzP7jIl6a2CBVd4eZpgd5MEqvswdXs8tG7dYI/oRSIxZJ+Okm2+y8wcaLKGV02/YWUJmyIcAsmO6HiwMlyqUH5MgPFpSBYckKLovbpWHzyFhSiua4IVcPdb5yfGUEMMlKShOMisgXzA7v29qZQAkTK/GSDE9Ew7e/6kQb4jpdNjeIZJN4knPXeEWQ+rsUjoXmsMIR00sO/PgBj1bMJrKilUun9QYLP6ETp28OlHqUbm+OUH7p2EW56CBEY8Dkyk2AEB9msmhCp2Yj7rQroZwF5jIxR9wGVJcUsWdhIbNfij07CceLLE5afbyv/S4xFrihYzkPfN5VHYtxExBTF/pTq7EBYcOX1qFsUGrvncW/rQrNhxqaGeeL8Pfv1iexqs4wwpr3vw3rt06wtgWzCSiaKk/mmwe1KQW69+1y6kGkoWAeksDLRuE7ZkjIyiYa0OYxle9bT78Nk6oQMl63oYXUT/CSIOQbCw7QJfvHzNbV0tZyWgy7UfEAhM8uQgLlrLcXdLSYD/6URNxEPLg+jj4TZqSlak/dNrY9M7hng23fCozAiDRYUSyzwwkS7C9ekt4rD+PIhBPQpGkZEyGhSRo6lXtBi/5ewiapwd443ZRj9NRtS19M9FS7zuKhVW8S8sLI2gLLJ0BTBXShK6V2kmmtTaPHMy6YFrYNgaeUl5ViMUketzTdDKY6wu1oT5fUze0Pg1Py01xyZXaAOzfPPhEBiW29vbf1K2OVfF/8xPVY2GLrHBlPlKaMXdkbFe+gjDx+WrBatYOlvZdWJRrVP1v0VTPX32ejc9S6Oc/1IwreSpM6UAEFb4P0ZhWDjxeEBynrLQeaaHdv3T8DFA81z0Lts4uYgEBgMYb29HhHcq2/+E0XxqHdN2RrzD3ihDbKg6aSYO/u72O3BpwLgwpEdyfUvqylu8/cB3ny5X4I3TemTR1F5oqWRwPLkjr3XQ+F2kqa1liKcemYDl3WhfO5eTM+w7c5P+WS+mDvMGu+ZrQgENZF2DJROnks1eyPe1kjA33YPrMGVRPH4Mtf8c/sMxd6t4SPJ1zhOmj3BkuRM7U2EBP+8ooBk+ln4yA5dqR6Xz2td2JwgQsZm46hBup51yekC77cOGJqvUT5EQCQRoLIbCCFNTcNeJx/+TiKocHercD1//PNfDdxTKvgooBy0vrZXI0EmihtW/BAqBESnWHmQdV7x0i840aBmG555HbyzYyH+Onrf0ZeBkWhk6HMK5v/WIy7/I64JGPmGKTE1n+OtK8a3u19fQKv91JOPdnDusq2ZadE7FwVekqI4eBed2HUWLLVRgWO6vd34lr9SjZPk+XhuK2PolLrw3iRN2AZAnnLG9OYTrQGS/iRr7Fw778mdjniEj/cn29fTlMGU59bKUlERjwYySnr3cw1O01wfpoTuPIgwwIn2G5X2zAENy2IgHfKom8+8HadScM6vQBh6EqJP/wziBIQ+w1DiCSCINzn2Kk/tA/urtEEn517qUXtiRPWw9HFmgoNTUJzMIU/HJq6vKzPTyaNF1eoubw29vo0+y5n/aDn0RUpPxYbNHgBhu8qxCXzb/x3qAksfcdClSwNBJd7uI8bi1gvHGs+HdEB61QJ6keTE5aXdXmquhhHMLiFFJRa+WP6HgQjf9rF/OSFZwk7WIa01F129k0YXfT1vEVsc2SamEc5gRC/iLxb4F1qF9xSOYEDSVBaJ2AGqfglaAJFEKpcAJv6a0tSoFK5ELG85yD9EXTWbQDub6I9RHKrAkl2i4sz3DAmv3A0R2/gDYWpdPPYiU02ilownhyHSl9KIDXOI6oB7WSiudwJXsJVsekCrfEcs2v99l5VL347ZPW8y6tv6Mh3kU5G8ugchQVoD/5tVbs5HW4PZfiE21Q2sDsG3gWHvOddOBEB6C4y7ITJqz2T3TcO/rFHGj4Q/vttwig9pzj5r1P4SSl8hnEBS0CsmCOVpHSn3iawrrDty0nqkvkFPcvwfC8JsL4ab1rgqqvnCHdkhxnZpCLPCZOVQWhP69DNFaWXEdCDRoR3ZPBpqs5A4hSrHXhExZCfIObQhCnuAbgzyI7jURaq7toAhtpjMPArUItfj+RByLfUwLIusBZIFhtFkfqM5bwj1ZwsrMUagJR9wZI1ncu8aWqB7JaUg9UkDgYdy6qT3Nq2dXKtQjJKwJeV+mXqR0u6ZJgyzVJCnfDhDBEj0uImVZG66njTjdbrgI10IvwfChsc/+0O3b6lp+Pq4ZP3oUCqRXeVf1F6d/XA6AesI2/e6aiqR25NsoyZdEuSqM7iPL+yYxNwGzKxP59CI+7cgsCANsFxqOKQGa9B4eZXlzN1k4BcxXGuh9Mx1GiS30Y9vx3z7anHdjEZaodKL3ry89CrCpXiS2wWp1MsKRZHS8op97x287wHqXgIjt6rdTZoDV7pioiLKtUj08eIx2nU4ZTqfBSeXNPvB8EqsaPlbU7AwI7MeQ7K6+zpfb2WWSXWqji91PYD9vMkjaYigMoCSPqlw+6deoTkjg8+sA2PL2nvi0an5NU0ANEXgT9mxa0gw2vM/D7l2rEzY1xh5WwCT138WzNERUYgDlg+elsWYNZmLZkYv6Zz4Xsq61sH24f5SSzO0isi/RFhC5/YJQyDuFAiCup2qpdVdPJrIjKH6HnbvKD8FqpGF1Hp1yUH8N8QkeDm0IK1bLwHAdPasBHWqUMEfKacr0CiodeP9Hz7oJpyLylsUzJCzg5dymS5Ux2ps8SL8SdFrnAR8FIFD01i4H/UM1tti/HGR6loMhA4Efo8wqnmQrct9X8JkOWhOcAw7Sp5j1UYwo919D4tKeRc+19rL4hBnt7WfE66QssXOKNUv3YCy40hZgKjoL+UF0Se9sL5zsJcLgKoMwum3epRzQUhZq6u+C+cPmdSwUN7svq5f8xpHXBvP6K8lGzVcq7HgCRHsz79vZksYW8gjNytuuolIY3DkASncWz1aMdjBwIdBK45zXLoqUZ4tq4M00iV2of2orf2VByaKzx39dRnbN/fhXJVQWhW+KMttH/E8MMzDs7jZ/L8rZGVr79R6xVvx59WQXIa4p5jf721cbwRY+W0v4cJd+PvCUDc1wZNb6eCsV1J8qW1WYciC4rd6xZ9oUIZAeR26wjJc5wLsVdG+/XOihKC3F55Bzr82u5qQYzNiQ7TDCJySTUXxDYh6ZgYD6wdmJ2RlS3bjtC0+aVXxLt7Zm6Ax5ngELuJPvplnIrrd+8QoW/djmUwxM2jL6lDnqzxjP9N3wTWGckULsr68u3UJRWLGstrbJ7Lj0sz99bVzJixXYrohmuTJmYOIzft3WUbp7huURcn7Mko6zw4ZqEN4r3DiEWowwP03VFROpEDWr90sS8ZrUbPgKXUMMjGqQ1Yd/20Z/HC23hSZGLosi2Rty+v3GxNxJZ8P9mEiEOhjZw2TdT/r3ltqI3eSI11y791KHxZxJWAWe+R52iL8pPqJJz8g4FdKR8jrAwisa5+N7tI05w7anoWzhlUlBPBzP6VBG7YbbZ/JLkd0UhMuzfvTMKLXohkN0RzNhjbmUxAI6KP1FCK2EPUKdrAnZcYTm1QdZ1HIk8MS9VwuCLOGMZ11UJnaYLpg3pZLVwBRcRt2o67zwe6QtPoM13NlleSHLPDeHkpinzUQlKrWyCd6wLvPogbnFJzca1soiTF1CFpKILcrCN4fMmRte1ZR9TWP1BjcnYbRUiMc2b8nG5we46bdKuwaw+sadkyqnh/VCsGWMFxJ0HgO+ce+yRTOKfDTGE02p4gTdrRwK6hYkmcZig/c3xK4PMkztkiA32qOYk3Sbax/6ezVITtVqL0Svvr+zWhZ71ph0+lYoKXdfgXcd6Ysy6aNjiQxDrP75FPXOjaYq92NYPtIvCHcoSY+H7e3TWQCZiKzWnM0pqSB+5Ty5LXDNO1TYAJXPUlfyMnCTJ1Y7ZrNCp8zl3cWvNC6U1nflhN0MWc+Eq2lmyZK4Zj9N+PTm6khwx1g6EBXLghZuPvNm3xUq/f1YclKQMy1vOAz7B4ZuxHqjwnQ+BP4HXKz0IvPjiVDmyQSpOrMM7GMtRkP8jqugXxiqol5P/FF7uo7eigcl4IQKH0Azw8cx5lZP9E9WnERQUGJklIEl5oSaYoiDupKceXo+NRfV34omfKu9LIKMMKcYV2JV+ryECrj+n62vbSVXGZFZTCIJdX39kgGL+fJ7Qv97Hj4NMMgTjSRgWHSqisVyfhWCZCzx7YS9gowvKGI3KV6IDgvuBnWQ/pI/zClPoIPU93gsEP1vCrpD5rqo5s+0MXXj3GNPAIGuhcfH95n522bsMjeitzxsMgPKLZC0+ik/gLgBJhxwzEkaov7utPsqs2XfAwYkHgODx3iM8xEbXx/yWqxzrkTGtp56GEtawLoiNwO7SqeJ2S4x0vctG7BEoNVA5pzl0QR3XGrnLe6vAQt5omskiBzqZGC38w+tt2ykw+dKJA/WtQngFXSQiSo9Jk1JkLmE1Lb6FHDS2nyTB/7LLFtB50njH8cQ8fXMD37eeLTKsDUQ+iFpq39S4iEjFMAqa6NN/4WzC77DhI+n3ouQGOziToU6iWghU2LaAsE9Kf5zB4af5ev5s1rvERlmodAuQDLVjeURRh557L8GbE/NN1Bj1cOzVZxaiXdVJClMbNOoQHskub0pmzBYpwiZlLS3Qc+boH/n3HMnAS2bmcdotApswmR1j9ZhWUo0HFaqzBeo5nFp6euL5SS0tLPCOH+daJT1oejCFcSdVjK+gm3q3SuD2Smd+Hrl8ISti6TGZGCo+fma27souSNzHlz6YMIrdWUwAXoEldAKtpW5vJiCM7+NCT61EiWqc9jIs/5jPa4VIW8DLJlwDcwCc/KwVt7st25g5Rq2wpCRdVhhyyYiomIyYfy0HX+75AaQH1wsVU7q2fLslgPxSrk+9cgm9XIH84Khwq2RIb0RZDRuQ3JUTzqbINGsXcn6onf4th8XcpSOJ/Eyuc2rd1qYa4xXfw7+oR8guEuAPy0fRVu6RWRKAZfiFfj5dw+IOaQctHEOI8bv9wIIWNoCQ95kWxgVdWXGDJ8Rh2UJwpItaPQvlOEHlPWp67vdzlVvPvUiRRTr63cBHVD29eYQ3TRV/8Vh7FUOn+swakib+yrIk1UnjPgsheHz8Lry5jyhgdd2oMi07clRwGsVMotI9j7RIUn4S+VEoW/fHRi+fJ3UY3P5uNAs8g/Pr0EsDqTOVpWOCGMEU9kJHRCWp0jFZ9VKfeqirjsMDdfat7ZXSXTV0OPQt2rP9wfj57DukxZMtfqPqXsfaPGQwVkpL1BWNwlb346yDFlYaSsulVAJQny70IcVfJf7tWxzcAapxanUc9k968QGUfuaBzfO+QztGVVAVMEVWyW+aUBK/CTKcgRhIZwjMQ4ljO6dudPDbCrfXzXTTEOKqUUxJV1dlxFKRNqzs+DicNHKR0r1IS/r8jlwEwyoKfYPT5QqsljiI0pB/D0HEExzPou6b/KsemLNCfrwXECGSwZBxrPsp9DAiIabgqMRPWWGsM79x47Px/+P0xsQztvTSK8u80dMQqZUX3KbDkeuWdRW73O5jRJNr6aHl+ThT6WbV2hyvCoQF6xh+QFSFaDm8JTfn3yJjek5DZ2rp5f6PObxLKDYCFj2Vwa27OCd4HU4NohZ63he3V9e4Z5ZyH0k8Df3BLs1IWOrie9SqrpMiWdKZsB1ho4vPPA48hN2qlkfn5RPW1wNH9wzsKr4qhLaULOK5aogAXWElfsaiH/3HhWjodKMHRwqakydVcKBMwmu4Z5S5zlebN6wsFEqlPROxv9f4v2qdkgByiLcdgbEI4OnAoTRdquGEXgmBtgBJjf0vMnwnLsfKoK6FWT9Luah15XfbkbkAHfrhPRNmga6IEHHnodvDYqcU7huE+a6u133321s6n88oEKBtE2f2UDnTyyMD5saDH+occQA2Nr6f3TwL30R9KH6CwHWUHcYG8tWBBC963JSm58LD4Kf2PAlpO2I2l+P6FwoBWGpq8HJladHp0qQbFjHSq0JieOKkcWIabeEJDaqgeMmZ77ixH2Q7iGWKaH5b5oBcHqKAidOSaPgltQaWrgQS7Fzu4poYqA2s4A82ZVN0AYbBk+T2CXbxTIEzPxsE2hZPr/8S8F7JYm0LHYKp4hD8kAy50LcNPMdvvji8Gt+EXzUUZVK9M5d7NPrz/KthJQcqcW792XiT8jINOPjwV8JHPPNwdtI32qIFJQJU7vRrGNfyEcrK++HvUTqhX6gHyWrtBvfTC+N5OvuIGq8sOA9VqFWl0SM09gOMJXtyjq7LeyAe1AST/+tg0G1Z35WpIxRgqKKWabkhPNJHr6uE4oTV/TlRwmHWkubi7PEu/ZS2B+7jjgP56RxfPUyiCgYsN3E+6gXfPoTzbJWnyzlY8dmlzQu2MssZNA6n8A+IfVXvm5dVL+rNG5cC4BWCVaP5YzOGga1hzKIZ4ZaDzWMIGoe7CrkhYlGaRPfQ/PCNWtCIU6f35V/sBXbl6f0hmFHzn3b2rZju24oSe6jdtBdNz0iAD93x+/ou9I3jGL7chbscaxnaumG+mQ27xTWJANd531TpItx6C1eXqlt5E0KYZi+/MnhMuc5FSD5P/CSePsPUscLj9WiSJ9YFdhbjDce82eqz9Fa01uQi16CGd7uNQWus+iaIkQmZawzG77xnj6zTiiRZ2np/jZgnvHWrtobHdIajWv+2gzbYp6pcpQtKD43Rv/q1poxAlMwzOtgHtZtkk9yVFOvyF5Qc8X4+rXv4VrkAAW6/h0qsgfHfT3YkjUFIVol6Ckvv5XvZKHvhjCeOGtHG4mGyXx0UH2EVaiXLR5TW6DKgxcUzU0mBJYOmFezsGLbBZB2qtiphSE7cD/z8flXf4KSCav2Xo5J/YrvG24F6FGq69Nymt05+FaX1A4n0dYsmeMAa9PD8fnFnW8dKl+max4sTHVLoxOoHWYOceun8xrkNR9cgdV6iRsk/f2zi8scXMfmkJ60IR/9s1+SemALmUP30vly9SD5zAC8+lnHrEBU4zu9LBlrJ+yBn1IoJ4sg9KGH4UxhvHHQTLmwvfwhvBJGBDVw14MIJPtIf7TfIrcoe38wZtH+PieCv8uAV4inFxVoWFgA9dbUUoMw5IihsMFCsk+KupfIc57+UOkE+d+pSvupFZNaK11ksGI7PV9SxgU2IjXCyWVCVDXyZb8Mj6yPJz/Ner9Hnh3Vw2+6lNKIN1opMFYiaKZA2gvKOVkc8WppAVvtoUITv9Bo598Krj1B9ENR0vd23xWOBdCpR5T4e625D5oQeuqxPkyIvXQgzJPlALMx3KnD7QniCo0XE8tRO83ufOhKQIH/qroppjvz1BWc2dRlhrnxLNFoUVHn0posuaDyROwyEoi1wD2+o4FTUxwtcaar0hShNGvxQqaEHmiddYEUSlASNoe5s8kmfoyCPt7ZavmwpDuDNeqtRgOIJgSTIAA0W1yZHPtNMZpFY8vXzBlmIrgmfN/cwLg1KIhxCFXk9WkvSaceTKxh5ZG+w65L+QfQmwzgbn4lf1K3PbY+gDET20qQTszQUzGndWusszSp0tBS+2WwroIuE2YUr07GwbnGk3epb/F3QGYaQ+yCLJvoq+g0ME0ObXj5rsWLxXEfYg1DPSUFINorvwWOC8L+ZLHIYVYbiw20wfGv4myDSvLGNM9D6tNZyKCgwiKntvjk2a6ZX+3lTCOWxhLkV48wHeBiKd8vyGKmH7vyqQRQ+fg603Gkoa9XoGtH+WQkcbXYK3Hm1TeciVj5eGjrKTQenLX5cI1RbOF199s41gCWbniFAUATCTfKOUr97U8GpNXiOTK7r6Y3PvDs/DAGBErmOV/m7CdGDa8Ilyf/9Vwc2gpQIEnuNBDVs7UXCe2GNCFC40xc6eqZr7kEHtqerKNHeH0tPEUwI8mEFiHNZTSoZe/obsJddwIz4gfOic0ogzSahMhKNFilks7K1jjHO3tqk1uR0FAZTY0nrIXyNODfHSBFYRlzsSa5OdwzU4srYF8vKYZ2vQmOoBWMkKI6jtiLVAcMBvhIjI2tAXWLgtt+i+1odfkjDB6kwka7BwAB0uIS2gumJao5lvWDnncUm0/CEWog2XVkzBU1pgnhG4cExiZggkfRKcP2qBk5YEikTXHQ3x4YF57WQKRSus1kRjjLSLgC+e5/7gR+ibFxIPV3LVPtxHulirmW3qnggingXofaysamMLj2SnD2X/5pf6gMlbiurtpTn+0t8oc7HfIK5vgGBdw8pKAo+96ZK76sW/t2nw1Urbokd1T6N1QwN9WDLZ4qMchy6YJfhKa2PGl90YyanFuvMwsvTZaq+TBrbwujs6Hie4T+EHH9fx4fCaEWPuAdAcX4L9T5PYpKC/r6jGiNP6aSdcse/su0gkhXz6s8DbcPf1gpeWhbULKxyu89NTQPXlaoS7TeV7R3/Di/P3aQ0nNOcnPENzfNWpGDT527YJgZ/u4RhVREXOufYWZ+bHVSnlINi/k+w/LQdypwUuw1KOZM8N5Wju1kKfDVCqk5IWSQlX/XtoEz834Hf8jKalxzssk78e3qyZflHfOxZged98b9k5ZV29/LOCVEKk9YbT4piCP9eAiN+FVoP7lLRuorgjyyMCKgDcfx37AepQ4DG33DA2nZcZVHEygwwhadSOvovEX5ZaxihqkrmTCRuvN8DX7dt/YIXJkKnPIFhaYvZ9XFWi/rxmsas1IfK/jYNsXBqCKbvy3/WHmxn6mt8U8rDYlRCPLOAcLPIx55g+KkV283yQh27BztH2HLUf0WLK7rZvdkbacJCC/RTWZy4P9/iiXslDyOCvfRAsm2DIXd3kRkBrEhkXdugPnbdXt0jA/Grp3UGlgQ/g6qgKM1VW1ERYfky1IokpTVIWyb5QZetK89A/Z95mDbR6rtshAxJtdY0Zdx7K4mVUVT37DSFCXgMNgsFHz/qeLTrELbFmFx3dvft/psjs954rWSlnQIfXRXVOhMM++OMFOTat06rZxFHgDT1a3RZoq8Gu0/pPvLkt3WTLtxQKRE620WaSVZCeWUpjf+QYNMmxf68aqUteXY6f8ncCz30S1Ue8Y+3nPpDXgoH5REMQhUJA7uQdYGU/6IJlKNtBcV0HnP7h/zxq5FlO3Exe/FwSoPvG20OWysG/kS+xo90g6fWdr3tubeg2ixi/xZWlHj6a+2XvrqiLNn0bHmAh5wSZ6bAvwB9TBgoKVRRQuR4e28KmD/36dtIJp6NMfHQZaLdVFYcl3LUjyoGGbKdA+gDsVZCN71mapeFWLSHNECcYjLMtSuzGh5jFSZ6cUSHqSHg0Rg7ejKXgdhCwbBAT4I+KJhaPhBurTqqNgDSPAb7wsuHL6NJU7B/MIaKYxRV79D+q0l9y6K12hBIHgwDyVfQOSNcep1R8Tta3lhYirys3v506leW9hhirIQZ82NhSVcz4ErBUgdTz9lkPf1+BhmutI7MIHrDousEYzU9S94504ppsjF92QVg4CtshPMDjUkI+dZ8KXuaiZpzeHquq1JRwL1/TIcOhlx4WIb8brIKWgAXEDa3xyWZ3wYYV6B7cr6t9cyj+Wyo4G1KHEkbQgOyezk6vIy2L5FrimJtQn8ZPvSjG08OtP1Eb1BrPaQu3lVhymz29zzwAB/wZ+q8qNP050v1T0AlzTInfQSjWPbod6LgCdTRmZU8JGjxPcFZYynzy3DSwAXkOKGQm9kWikb//sn0qK9PECwD5wOAnwgiNKh5Pd+rPcSEIPiDAGTZuDu5Ggvr6G79eZtpUb/sOSErsmwt+fEWYhLVYLZsniVgsLF+Ue+N3bw9bw43kYFHZUkjLu9Q79Ro5wf9K6Bmi3yE+R+y9gXDdQQ2tjMtnPMqUJZehSf3n86oJU2schUErs0wH74/8CvycVRoC7Z/jlmcowgkCs2gs+AhN/tHLYMaoBYa/UhEW82RjA1gX2G1K6+vQcaMxfkiOnkGDmpPVc8UYXpuBarWIGvI/CZDf2Ccb6TYU2iCL8pQdIUObLgqNiHWkg8IJRh8gYQEeGIyFZ2Igqg53PzDqEiYSoqSNEthdo9NU+IKq2IGEnO1GLTCleW0W0/PZf+zW0qwSN08gDBnqq34y/9QPZRYic6zWC4KKFsaSzFW0uRYKO2BGhqZP14L/9gQAV//gnsD77uBnQ1f/Rpu12bLQi+xJHUMHR4Or8aNKSELvuAhHk9ET/aQVPNlaglqh+fqiJcsMrs1wSJDpoGlWgjxQp6zmrDR4VGhf6GRuNS9n1FeLXmC7T8Al8nejLBEBopX5/KY7I0uhJHRVgSR+VxjPEB6LIoG2rAilJlXKNz9ARkGqSFm21DGK10NT7bXXPnbvE1XKA4AiqdQvcH2Eioz6XBioAZOPJPP4W3H5Os+RvaS+1SjnDUj4MniR0T2OGi5bWSSZVYbb20kURyB7DjRHbqdgt9JEZVSEB1CMWIhsS6HVsufJMA7ZQ5UCK6PpzRojsrhkCxdeHRETMcL5p1oJAkb+wUxhv/Xs5f56/fXMvC8wh3xiZJ9E90/nLBFvQxbDYr5r+vCTVPxEwJo7UWKoWWvVD/5d1WG8RqJBrhAquSeE+rZ5w/YJt9NnxuDek0QVM9CKWmnrbD+YSUGHnkA3ULoVHKkkoVgaPVHwOVJDvcDFt7UQb9oEveasc3Qfamm1AQWQKjzTZrcyUD5g9GvrNofkddYXK2vwKcNFEXEoUKxonaOaXyiHRPpS+OfMWOO9iuVtpds9B5NO65fOfR1wSMcHhHD48f8bkC9cGJ8hHAYMUlNhf+crZ7nCQGCtI6vhsILvmGnCjEIJ8T3b8ADCJJ5j5WXHyY4gNY6VwfxXG7+89dHKHaWwD5zMbe1I7Lh7Dss8nb/UOumaHR7230au1ZI3MAPXWh1grxfN0vxSpqse5DflolQt37tcscagXLGQqb/0PvlL4GDH8V9JwiX0DLY1IHKODRpWiNPWWMINF7gd0de3QI285ZflsWgsONQDnndXlcnlU8TPbt659t+/gVD2o7MjPShobG0M3BoFU18LfKvfR/gtK7IBunAoyecLPf80hzSh07y6u8qByLkS6aSXUM5dMeUPHiKmGNFI5nkHlNJACTJIyFXutbqkPBzeRPggNJdRCAyz9VvqgQ5BW3aRB/xUqHvDe9fGSgR1eIBIkcoWGWr0J25ebFgJHNOGGiNcstfi49SnqxGZDJLnfb2jGh7b+gRmRTRtTfp6DaDxEH1voSVlk/fzGFRGVHnn8hhgIphtuRX51Nm0mTUVc+5Z/HNOfctWq/RjEXmag73tLR/MT7DEL94APssl1CPbUySLHIf5020ywzuXp8hD5uikmt/PgfZF+pmFDaUE2I6lbb99Ot7jeHG/Bxm8VAdyoalod/OTrEcIXcUUpMRF/YczulQlD08J1WZy4+5XWFTRksOxT5JnXAhbYx0JQmU+cUjhdTLwHVNy3ie3aMSvXyfs0x2GkuWI0aSFaX8N2Kfs25PdCfVJWQIt2smc97FuE/wjXf6PSYgO942aXC5zYTO0HzA+JDiVQ4ujaEmigx+LHOP/gtETyA0AKotzdGzJHVW9szl18zAWmrEwyNXmvmTWNJEZWqqu1Dj44i7WUeCY24hPS+T7VlJYMpljCutb+TRbT5pyHva4wnKm8LF0WH6fjUtFSc6ZoL5ew/NNi8cXK4Yt4SVI3gQTC4T2kU2yQ/vwksPW1BUAWfHXKVw0rdl7ax5Qgss/NL5m+J5J/75ztH/grU7QvM7xfQnovQ4xQdpsSQaiHNTb9WnFy7zxXnwQQ2A7YT7OsFHjoVFCPjUTciNjIywjE+i72pDnNSsVHg2hISazzI6SqLeQsu+ynLFWv6bkXxEiEk8DotKGs8QFPa8TK9fMskn61hmZf5HER58VqOclbiRzYGBCVHx74g8eC9IAN3e8HX6o9O1ul8CYdBT6mAlzCTOrUBSkH5HWbC1nC1K29W7cNt2s0nSuHxHjs977Es5ANlhxQzB1nbYdmVPRQ80m4XDhOkNbDzhRH9S45Z2PQqilemuP/y+GDGnQPXC04UFzEmJrVAE1rPpvbB1/os/tGNMuohj4EwHz6mWs8V6aSfaE3noukCoNb66invaLjeUzJ2XczjsUF/dgCBx0A2OkH/6ZF5mfRhOGVHayEi7UfQVnG5UPGKo6u8S+gyLOUxf9b+e9NTTzXeZbrcHxXKzRdJ5VOIM1PT6hiMBelzQddfS0DqbYOgyIW2CKV6pn/3gPpxjU1qudVVcnOkb8tfiMINxooc5jjasQy2nzG+E3u7LxclMPGeWaEHQR9EtzYTbsgtH6Y/qVX5sD/D9alcj+nXsePfxYjI3/Pw0DuDuuCrfV+kUpi5Om51VSwixhhL+noBBdCcvxN6zZUosXANE9gbNkVkVG3t/WmMZI+vp2Rnkq0fo6pK9HrXnSdn+/IWYzw2jFWQYPFrhk4GkYIJb9DNeOaAHv4yXy1TqnVdiqpnI0iCfvd4v+okEN4BwG1wfcYu28sRyUisi31QLjU9y+q1HpKOykKJpzcivnt09oAHs/q2546OWdWQmwJks6x/azjVXWmSoE3Go9XUoNavFvIIoRdHw4by8q58bGBgXHlJVlcd1v7orqQntgn5ZEYoq9LOFBf9IeCyGLF5hOyfRYEEnPFs9VecdMV870SgQhuhqOPi3pDHds1iojHlxrHtUTxkUxT5PvXL0uVqn62sxRTdLZhmBH2abEAGP/RehOdBGdKc1pN5ohbOQXMKVNn0ElmF4q5eOvwhyPtxsfk5tDXv0D/1Sdm0/9L+gkEleQLCkwb+jzckyW0PY+QKqLyhyjaOu3KIIIX7JDLM0SvrP/ykvmbhPdmMji378NSkh5RzvmPp1wAgh2vuGHnbqvBfJbeErhSI3IC8FaTiHQAC29kINSbLgVjetcYo8DAa4g1KT55B5BUuXA87ZCu2jYxxvDtRGU5EAWwHJQQnJBFPgSq5cR2d0i0bxVzEYvYqBfUpEj2urOHSKbOOKnibT+Z17d7+hwA1q60KVz/Cl8/Z0NffmCch2Ts9l3Oe/FGZpcrl3u0IpptYzPR3JnbiBqPeImnAG5GaQgkeDt3SMY+RoSVVh33RsjaMicjSjPEvIbHatcqff7PIyCxHGPf3ycg2cMlEwQSArhpeBNaDc5nl27aXlNVgIneOYU+6jn3d3Xb0cio5EeCe8crgIuSfdGErcsDUUioqDSplxCwElrl1AV+30qxnQv0ztn3ds/4uJLNQWsBtQ4OjdzLlewMXI0XPQA1PyZog9vZlCaGKzSvqI90Vkuj6HSrZRajsxakO/SPaNoazNY3j9q6wEEAcC5A/8eZEasmqru2OppC544Agq8jOhGEIjl1D6M8jLLMnMVjVEh7ffv7Iz/zlf5Xr6fDZdyEEmTHuBiGvUFnlvygA5Q0sU3aFKXTrx00ghmmJNdfSEuyT7YceU3SB7VUZdYd8gb6w4xaTchZvIzMS+zeY22rYW952IyTX8Y+DW7qyoarCBv3AxSn2rXBlL4wR/dV+Ok8m6kSdCXexDyyB0Acv5iW+NrWMQI6fAYXeJIBuC92XiinlBLyaHAz9+YBpnSjSnmHt7PevjJ4n1mdXyx77ltLNIx2J6ss7QqnQUy0u0BPUUXrA1SJXFAHT5rkoOxcn03OnDwumO9TZUfcEvzoAbsNXkFSyzvjBk7slhez1YOJ1BTyHRQd1P4q3hAX8dcW71wSA4TAfXQo+gUbHWUvS/ShWJ34FLwYGHsmZoISKGVzbf0jqgrqfUUHr/Scw1Qf/GV5JHtcp1yM6teNKrOrg5Zu8l9nkz/He4dt3KsiU3B/MaJtEBMHgT32d3hT4pTlKHN/wuCCW5ghZmXjTCtORVVkkra0Vob45q9jAsgb7AFw6wReOJMtS+XuBQACt5knO15VlXaJl6q67NYUCPLlevEoloyzvCoOkSQlDwaye1MRi0ekSFvhCuAYTKeyRywEAWtqaCi16ier3JfJQTvSxigKGMO+NV4fI4ZPZTb25YCuOmU9N+92v8Fc4tpB8jJsYPvsY/8WyCuQ2wHJRLhzrk2074PjJjEV6lLfrvntmKSMtiG+o/JkhAl/kBSXfu0SjzMQfgk6s0ISPP9ajUW2AXaC5l7KBih4+8gpgQEbTCE8S/g83JrhtMGjtgXZp24IhnIsNjwLx02CiMI/51Bs0L/QhypHspPmymbSE4PGQgfLtHP0It1ZBAzFWclPmvrw1IcdV32oLuUukZUYzhEwpedn93wvGGpGpQlvv2Q0RUm6HnoVkSjw9HLlOvaQ+9h1G0CzyeX1aciFMwuXLbQ2xo+c7VA4dKEANo1UNWjVHEoe8KT5R8h7FJpFBzYmUXb4NtHOwRXu0T2VD8qtKMEbESzZJXx2IxFn0+GFewd/gmKwFBulUtWhfyqya8wLth7xjmdDtBHl2apFzeofI2bheqTu4LWeQQfNUSmHnQlSjxFR+Vv+0OTJ5Px6S6RfBn7IoxgN9qiM5qoiB7gV0BvNZBS5EmS1MHYs8ZOZIfVHC7P4gAB652x5DUU0DAyOQ6ulHSkatoVoxlxVAnVXEWsH+o7FXod44PORhsEBbXmWanm0LC383zG1WOcno4InZ859vow8sOUvs/d5CDfmohBcI1yydT8XgRNEedxT8UFmQRf584bZFSiHDLf/anQi+5GKGotDMzv3Q8BRI7GERJWtEmatQC6v5b3EVkp3qOa/Bh4P/2GBmdbfOiWTb9Qwfe9gNNDM5tZ+7NJ1d6Uszy3dTo2rny7Ep6c4ELULU3tv/Pmytin75peWZG/OLW8Au8mjiFiCnP9uqZ2JN6Zuc0p/xnOnY5xnIyDoS/36PsAP/3dbaLJ4ovtKHEyRTd1pYx5NmdQq1CKKad7Cor3wa0NZ0e2Lr/BN7wJZlTNH+yK1HH6OG9qctrNZXxGKlkGAEqunJo2ZWsRshqDAL91C+H4NtmRxyTR2vzn5r2z7OY/qRvWmfgqskA5lUgooFK3skoy7YZAmrVR73Kbp3qufRgrNbcAEQ9hBCoT34cVt734lZaTvXrcRJvmaoeF/brAaViT+RVGOyr4iJnKjYU2zeQxnr/wjQwo0ibD8iprNB6cooaipQ7tFaaXvNhFen3fsAbNtmqHLq3g5Ak0EkYRQgQCo1oe5k3BzfuGlkEyzEQQNEX0je1xNvAVNM7Z9+u+FfuklEhTu+94dhIMBQ7cHOHCl+n70D3pQTMFkz9fxMBYlcZOVC1do55ykQ5I0ZuK/obP4C9LG5zZtLpn5I29SE4G26MDjwqNU9fMF+GNdK1wiO5+XOFopiNpl/zYiWAZqSwJpttnq1mjpd273vR90Wl5iPOQJPp/Gdb1SKCIkrThqDsRitzojyhZOjfSakhwsC200u1k62jF6mpvUHaLjCcyehXJcc+0fqQLsO7XkhBPGY2pphrZQuKRAavcszxDDyq74cd+wsmZLLelnDRFAskBmGCdJGQoClr782bAyL6kTnHJo6I3QWQBgjn9TkhT6Wi3v6caXhpTJT9koDvR+Knsfuq9OKyfxjk5KOhBCjqJ19xXKv/GXdHBztsdlabBpyGzM1aMWgEsbGF184c527qgXMt0kyuf8lawMWDkirJF9PEO+HWHMgkMjUm5hrxZDUsPRlKkpL3Spx4QmHnLYRkN3wjcpQAh5j2uz94vOT6r5+ASoQkJHfORd0izmhPHG8rCsAVI3lzTtllGcfEeAC3A9sUO61Bxl34UPZXpN4ifVOzh/cxF2RpJBdTzzM+xPFtV5z4VR+4Vfz6+aFtH6FnLFD91BFesf+GrDSn+ZjOJLIkqiv+LveDyOH0yHkTSiD2YASSLzcNm6dTi7Z2enh906xhF+dI/C5DJ8dUrtng4e6afQc0BnM0JB+Zo3+5pzh+T/7rFamY7k9scws8YIdnjTd+JuNN2iMDhh8OCIUP8jI4n+C6U7aP6M3vRFyizjC3kbumoCxQWG8b/1roDs+9LevX94gT8C6mq4ebpPXjOWWsq4M2yRdt4IUU93i98mAzfNWrap/zrSJNNQPsFUsj3OQ0jtNEKRyneS/6Rflci9D9LEIjf3b/wM+ieyD8mOlGN+VCjo46gdxdiN+LFdBqmrfnWvAmvzX7FrRAqpr78gcGN7T+Uvxjm+ZGDea4dFEUlK3IjJqaHEgGAg/bDWf1LC0gu9pK8Zrm5GJycPKJgjd4IWNlt+Mse/bsw5BTdk3exSg9IbkVLRmFH+eTfEUuYUptPGE+wn4jpO439Oh2puvZypmQG3pR2V1lAziS2IF0w2mJ2m2wTAgfPxGXfqMlCO4Yz4VLTEzRGhSujfhr7vm250Q5B4LmAvKLlqbdu+J0k2vp/2tnG2yv2Q6go3xskE2esR1q5I419Ppq6UADPHyxUGaMTQuKQbbp0F1GvvD1lFZSw3GzpfgUU6pFOyjxNEvYkxfBna9lCv2SnXOAf/JfCSyWUmkSr7R0uXTmWdg8UO5gQs1VAzcstbcTmvsuZ3iKM8RItG5mX8UlcA3gRl91lCz8W/1vRo7syLZNv1rRHX/qM9LcWTlhc84OVHmSUdR505xOY6vAFhJx6qxBrSJM0rmn0BNCdsBEJpA7m5jK2IrtS73t6RhrHPA/+8egFLW6aBBLwLZGB+Y2l0l2aU+KHbeJ8/mR+zk1fjo09kBudMuErkaQEO/M+fM5QPXrNGrI0/tIjVF1wrfHZF4cGHAG4vLHeESNdak7PnESGACHsVzwvvubMZ0ptrECjVka8KOdfgJequ7F+n65WFobB0jQfkZCpM/6BhfcYCvVG+NkZTgrZGe82N+gVr2hGkN77d1qFjGFkr1s9EPZLR36sZ56GCvn3CL2KNwKtzvzmU9lPdCqlfh1ExfWh13fOJTT/uxdEWUeRT8T+gom94Pj+TH2SE+H0yOwW0vvN4FVoU6eLCPDhcurfENDD2eeG9Rrb82tWGy3pAWXLSw6D2b2iil6Hv9A+TK6xXh/k/EU7Dmh9JooiLxAw8tmSMedmrEO28fvY8rPTS/2u0FbvrM9sMBWDi9msai7PDd4NnsHJ7ZxwpCruEWs+Ih10ivuqO2Ayx4YrX0I2PU+ruWHwwyply6+S1qAgC0Se4SVfaXOupTR1nur9WNzXXgW/+Rc2VksrENJKeWrHd1Yg99GMfkj6LvHZsDatJWleZIZBHl/LRo+O2MR1iRpQLjnpX4pk7v1Y077b063H+QOEKVrfwENVyrPyOuQWdNxUz6UnG2SIW42aB0IiPNnRXqEy2WnBE0WACztUAhcEOMy+IG5luEh05x551y19tis4QXnHIu8WQDtmZIjme8Y8kwrolLkX34Z5LtrYX6uNFaFJiNYhhqYWbzTIVQkKNFd1QYuHBX8rs7aTCrKwGV1Boysn58plBfEc6c4sn4G49eg8S9snTql/mKp5vdhF0t1Xc5aDw4S2roRKbpQ+MoOS/MpHd1Z7wv5xngCdVg1uhwzrVO7IHVE2lnI5mNrnjFH5W5AZEBz3PIXqdKHYSQknSOYqLmZUYtuFuusIb7U6UryqVPZ/ezV1AqxZzKiP/IFd8v1KyK+qRi35rBvFXmPlf58vZycuSvVS95UUKaYj0eK/EXT9Pf9l9CJUSGXHjIrujb5DRwEujWaU0h9dsUxTOp10WgpIbABIeUgbobdM9jsVTDAG9hSWbmg+K7GhHXqcG9Fov2KCdp5mOd5L/ge/b1kGhKP4ZDqsaVmbGXxGsmUbZauBSfbT6g/qPJItd5Q3VED8TQHS6dJK/P8VSxJm3vRFMD1xXrA1d7Mq1Uz5gwszNEY3vt+G52ibA5ZMiaNVDIUio1hlmeOOSBavWd3lr2205E43axo0njINy+7v7ssjxUytEVpbU5X/KW3B1d3xmWWyScQ57CZf2C5vY+hPHUqR4NC1ogY0D6h1gKmPwac/RFUMpm5GbXAaUHIWFKE1tbvhWRoPF1zHGr/feP0o2ndqof18zKgqh19rnUovFVb1AcsPNTZAMWY7KVO0zfHYzYVIhaDW3kXUj9g8WiD41CZdK4oqY9aVYh/4oFzcAmYjq35hDo+OXYVRAdZJMbdi0k7xguwlcVkNZ/PIOIcjDK8WLsWiPJGSAExq42XnOXhqOvSWolJlmOMkb4bXCmdtwK833YzqmbJKFrT1rJTc4GR82DhU346oxL2icIZ62wvN4gTXOhVzbcZRIps4PmoqI3nFSa5BFbzGIe4iN0UUCkNNoQ2pyBvFK0HktkQ8UTvzaRVh08U1fMl5T6g74jSy8YBRPUoF4ZCVSSn4OBPhZLOrvu7Hp1dgJiUOc6LoCa153p1I3TySiFG5phDRCnuZHoCh/kHjq8tryah8U/MbJ5uhItsUzmU/DsDMt7qAHRf7RMpby/DW9w6ATzSoURRCCIX72ZQKtHQDgIOq9NlXJC1p7Tw0CbOo54UI5mcBjhFtpVRLgNUJTtP9c8oggopmDlZF716/4FHSQQcAKjwvAo2TwtV4wmR1MAf/5FXco0UkaZbKlkFK/K+8r5H8w+chz/FVqlrHghJR4/ORotn1szpqw1+eW1DIY7QJekUtGyp2i3KBIuPwej4N9NtyT8L+vDwR/xP7UjTg/Njuz6dAHOToRlx0OFDUDuQf03HH7cX7Wt8PmNBeidZ4mRhKGEpmuijVILYJ+bD6YF+PWiTEUUrYTfUbrlKjsFKY6sAh2//aXB0puCeonkoEmTdd8PixVQdA7xd1gWtBdWLhz8PAoXhqPlihX/M2ZZJas0P8URYgX4ibBy31E+pFiFYGFvbDNDpAkyjXVhIIL2xUjMKmvCzGWHQp+o0J4qsVRp3U1qZlKPtaDbmkLR/t6nwyBPec5DAV/j9ZkPxfTKylSfMmG56SgzCSsrFNCR62SWrsIiPDcSBEfxpBLV6iF+DDyqzbKg42060ZfOEivUJBtoI6PdHfFwIO7O2JKVZRKBsbuv4D01debD2vEKdgnLBmGe4PMyiAEHaqjtsf4jZMLlVwXYu6c+8JpDxY5nnrvq1lISGsc84boCBYPaDknotRPiszv9Ava+xjjdnAEV++jt39ERjgWZmNdf6tOGS+WkZmWtAVFAVhvr2p17o2QuRbY5A6/gHwQJPTk+cHWu6RKqY8UDSW69/RpQyHf3LSshFTWN3AwwYEEdaHtyH9DN16gJs9Sya8ZYXsrBHvWkBl5WyqZk9HmpL5Hkmq7cehJ0LGfuDNCuo0gFNh7UfADzjRaA+ST4Z1Mg8aWpHHzKXMsTWYGJTDrALtNjcz1frQStlbTOdKHxtAKJYkp7enM3PS7fvO3QXTaaPaDFdSw+TWF94GeA8NigcPhVZ4lBhHZTcsrXN/c0oVtrroguA3G63M5gMo18s+thrxzcQnr9mN2NvHPJ6g8M9dBBu6F6oRDI2Tp8hP5lu+Z67ACo1eUrvHkQv0BF/2qP3e2oCwncpYX9M/HllVUjV2P6dYK5TBNywQX2TfMZkLmnI8pbK6vlopCppZBk4EHbo5vLAzX8lW9v19E2Ic32DXGzBxtVH9cpU5wM2MMSFatuqzqc+iwiMgTknNzF0ig4Zlxl5o+2C6CaAgZgCi0VfDBcnxQZdo9YLYtsFDWuAtznvfec03Xsg4L0fvihT7oSx8y6hKRg6AK9DwzHFPn7cegjuTcPcz8z3RMkNbbD/VkRxxZYNq+6z0XP/nXEb8+INSucaRW1ffA3p16LE8t6C9ACVL+Xnke4/SdeoytTuE2Evnpa5Rm1kRPRSdDDLa0SUxSveLqe0qVcTfpKYpV6r9S409+epdTk7HHZ35KqTn1+ca4qANyGKQM/JWDZOh1/VD5gRu2gJxedbP84ucMiew1b2FvcVWT6OPQ07mAp3+vnc3nOL3rGvKJdAY9IRgV3YDpxRfB8lm8ksf/ic+JzD6uPu7n+diTSN3Hmpt6YLyCcAIb1xhgajmK/jGlIEQOjSIHlSM72XfIZ3iiZZQMVHouAr9HSS5lGBbd/QJcXEysnjpdo96OAmF2dDB3+oiG6Uh9kgc+2bHS1b4nwJV13tQ92BktZOhxkKVh/zHg330Y6IhoXV0EgLvvt+elnXou2YEx2sas9eHlZGvzrJfI7fGQ2AcxHqEIqWDYHj4gl3E94hbWafBX3lE3BClm1m1GYLZFyH8tLW9hjogr5Y5ObJu4SJHEJhQk9Io6Zc0XrcgLHpTyAvF4U3F+q93bNfCq0qXMOjmIZTAkvyTcmRsvpLvuz6/kUuUqaBhWC5BKBVB+PYJJjo+XSbQVbGY1HoZw5wzO4xOpTreC6AAy3VZJFzUmQDZfwFJ+wb8WYpmCbVf/U6H8pQfu49uFwqe8522a5YljOPQybjj18cqiQT1MxaCRKZVAZ/ATBFeeaRiSimcMq/5YwlA9kQQgO+IKqSrkcvcsDbznus1HCk7b1B3xHYCrsHGO7wibvmWB7UgXiaIf4EYhMJ3G2605eVZXyZUD1VHRdLaE6p3rMh4PBMTv2l01KiiaA/pvCCvlPoyeeXSSeJTCAAXIRJ7hkZdMiAZIC3ohvywc/UcvRYw+wpSWFA+K71VrYEcKL35haIYjdxzcehjR5jGTvMj17NRCxv9i/mniMPKlr3WpI0JNwIqP80D4Rxh2N5SbxgjrpFtayakRa7M7MfqmhblNF9t4wIZsHqKj2dKOxnfxO3d12ZAPjOtd6P5BRGDMcNMLD1aJcRKmDfU2vAcbGj4/I7KlGUBB2ZlvDKXV8wRx4jcpyHObY1ZpK8GgC45k5hA9/dUsYClAxhq1cHhKyUXjwrkaGK+PA3851qtCoBN7akwkC7PI6U6bTI7O1DcnV29yY5oKYKSQAmNuNvwnKeD7qXwQrusPBtIKovy4yo6PM5nwtvaXgkunaou3V0wswEI+vSQWugi1rX4+nB0xFf2ic7E7LtGvj+zS9E0vJizMD6U27KLdgh4LbSe6IiJponSCEhJYRNdWhsXeA+CBcJRR1ZWfRuGmhXJMxAootsN2x4FcU680TVO2e9PNGz03f0oBf0cxg4bdhywBmwcDewWNahFUl78O5dJdZrbzVphpQSwTqX3iGlEQOEht9KGw0xErhD3fC6hdbsCE4qbSM9P0buhm53vjQND0ERxIsZ8m7hnp2wPUuJRvar/sCspODCCDOq8TS5YAEaaDhM/CC5xgvPNYzbUc9aXyWSckmASj+GCTM+Pyw1Owpyv/N9xQvWk+N6eK5y1ltWOtxXH1QwJ+sPAtIsq4IH7iWWv8kzAjTYSy+J6aW7BuUe0D5xq7/w0upTmo4qf0Qvk/X1qMuZkUmJecplwPjg4liXGaZgBjNxukokfzjoZJjOCYOTxKU959puOaYOqg0hWx14iWsjh0kXkzhSOS3o7xMD1QdMkpLLVZYtIp6UvrrIZ0v8+Kc3C5e3XUPZQPpxKheFG3bAOHf65RrfQ0W6PSaOZkvCZt2PXWKZO4++fzuckrpEUZUQx0fNErXZHNE4QhDrbUWGO8qBiZSlXX+PDbhaIaJeUF4p1yvwZ2uTBVv54Zb1tGrmbkVpiOvuqHD8UaryqQzxJM3+G0qTW00UXh1gNwDDTnPoDChNAR/OvxF0GcHbo5YItqnzvO9EGADGu80AfgsDfof8nQPkxkZIT2otXOnhnnhyLvYQRYKkUzvF95O2/FKRBE+jM0f7AA/GN2WUTvzYwobsSM6POONZ8qXH/8StOog7uKd1kzBBeB+RJOHYFVvKFTh736vw3g8kemzpLSjtINUh2OctDmq6z7U24cicX7DD8Vn3JR9/xpVcDD12vkiKhb68fK/WE1G3o9tBOzd2nm79NokeUCwdwchl7QyFhetNG3SB+9OvyOTaMMePFkmDvgZI8/DBiDbQAY95QKoYiobXiJQGWB/owIEJNinBpRQMHCGUfg9g/2QFs+fRxh2WzRTon2Hro5CCC+lcGPqwQ8etvlzxlqppTUhuwMzXVOwNaKI+NMx3I1zg39FpfvE7A1WI7Yx3gCvqewudqCVfizJFRaf1rlNxOGn6VNkwE1KCdwuT/3RWE5ySHynZTcUzLwdXZ20F9M7me/YYg27yQbtCc1N4jFYe76bHUyqj/cC19cA1gKoC+mfgcsLE/Buuq4YSKVkITsLywJuxYx0VQ4OgxzyumHaD/QW3iMnMOp+adQ9tkVd4s/Q7CG0Uo+0S5t5dqxtJHgKBD1Kv9UJJp1L8mYk3Ys0xLirRBbBS/C9tJ7VNqac2Mjmg+PapGk52p/LCmf5ntpKV7s0dPdzXzsRE0CTT3IIlYVtmOB2MLXBlNeLYxKJooqAl3itYTU2nMXmNuLE4SvkfL8rUj4MLZU17a7iZ1YpelCn8GTIOsvHKSvtHHwZhgV5Zkx1tsxbFlId3jNZ1/urD4A/ZC9+ib7ik9qlRRKReCcaHDsbRrPJ3nbHl5cT9+tT9tSks98G3Wjyu9jOgXYp912VnzsZZNmJZm0aXhaG8Ge2lqDtW5GkWYsJOlwDeukNjxkvoU2mBqIIsa7TgbxJUAPYLslrn8twoHiMBhZM2raxHZtiRgPqhRUb+kXFlSy5e26B7aGD//iHkEd0bilKrLJ6onb4IBDxrFhYAFiFRCu3rYK+LeVomAu7w0o0+hQUvcG2m5hrziiXCcGthnMQ2989C81uCwrw42He16hnNPm7Ta/B09M5/ONiwDDqNyk4zDhfBlLaIZFYtgjy73o057fqD4V8q4uIGzeHK1jOJf5Hxy1yWKaMBCAvSP+BthZKfXIlL5/usACu0/OIVevIUEaAsOAxY+o1aFeUnwbfsWbV+/2goQvy3/beak692+XzR0qvG4A2zeuPwPx93TlgB4rB7/l3MDxI+O0BBUprrJw/uzjQff6X8aBoJeqhWBU0G/qnM4Q32kNPUM+e2Ar7MKkMq65g0L4Vy2Bb2gilQR7gy3pw1NMc8yUIrHY1elu9uXxUqWgwu64Bg0iP/Hh6d0FRoCoWVP+0gHeEgmCJMAepMYLB36QcmU8AHyg8NpQgOp3vCmboEG0JKITDK7OIZpblbo67U8lubQ0OySuu9LCXp4OBQUCux15bpWt1WB60MNMl+ZGRJaULuBDsWUlchv6dig5MwHnQ0diYH0GP/hLrLibyFSdhVo78N1jwvss5xAMInrk+Bq17HpIUZyghewLD1/cVF/q04j98aa8QBvpZiuwjjVOzLe/Ljdt2oDIqwh7iZMVGKXmavgsi4GRxfs6Di0pPKe+ecOY4Q/IwTAQf0IidsomGASId2Qfc3aG8Ipha9pSgqe43FDzFxbLg7WrNJHFpQRtpAhr/1TEe+QLw4hiPp+Z1HgbbLIA2ay2CBz5S8YpiWr1o8/jevRq7Mn4pF7FY73NAPto2j/dpqo8H3nC21dUpG/G5Q86QHnJTu6C5bYbLhXsf0bFwXypi2E85TIOveEwDD1LMlNgGB6k6UyH1SkCSR6Ofe6x5+83HViTcZnrH37zgTO23WVTu6V8vzPESHb5JRJgeK8tF8ONrEhnBqYoBuAp4OYSSG88jQHBmKhcjR6CTm6+HgzF+fNEZR1SyUD/ELVlYrDtaCSAUHiK6F80x5YPs8UrR2otxhpuaiOy+puBn4odOTz2eCOT0CZIhMbegWBQF5/DA7k7n8as0KrIRy0eHXv9U9BPUZku2aaFVZvrdswhqYWplTGCIS+fpYBB/AgzyBbitxWU6wCiEvOsOMKiKXVnT8jp2jQBbmvDPeYDCkT9OSDfxFUIbEbJvHtjsCIEEQN9gnnvxkZMly86FvacPxcWXqDFL6/MhoRxxso5HmkjfQf4wKep2UY7QLPg5fos6poUkMKt/Os7BoSbqxu18N5qYALjRjrcSnnn43QRL9lguJdwgxzjrSiX4XnbisVjMn8P/1ya+TuqOhoMP12KwtiQnzhSFuCouncsFA9uWcqNlOqyHr56g3ddt8J/RaYCBnZp+oAOzIIkn3+jHevKfvfZU4Ja87Af2T2XM1mstQayCPyBWGd/jfIzw2KRVrdH/HPTgnkKvCtz6v1oqIRIx+3L83y+buAGh8mLs0WB0upi9ab7wo9TqBthbNFr/b9//gdcSt9CuKBM2I4GvCnL9iX5cLvWXL78anbUIbaqfq7pdMx4J1xomYlK0A2Fjh5jrMCE/8hd01DvesYHv0JWFiqHpr2h6WdEg9CVfbnjiPGAmtYrLXWp2E8D68zOkgapYDmZKcazHETj3Jl7RxD42BuKYOjcKvLL6ZXnorv6GgIxw1hd1hWYIhc95ROyl+W7lo8RCh0Cu4iVVCfoqKyhAmOqQrjggC4Ebvk591FiUQYf7vMDD+QmizvRZaMzJEeyTJqx5y7m5y3bv6s4TyPF3wcINyBDVWIQ2Xd7nIzuNV7tt++Ts9WYiUZKLCaz9nt/jlQlPXL6s8FGsXtq7ARRuRn4eKlMfSYQJLw88BLre8AGh/DaIovxTSajoVC60frUUyR9EoE7+KHNoNm24RXcnVS+a5W17X+uaD8SmtKAtEC43KwINrEDa12yOkYBOwHzW/BBvBq1nTENp3hoccTOn6WJZX7rDIlSrtKO05xqIo6JqSpxBaAig1QAZruEYdLdjJKanZ39yYEa/DamgqcmhnNEzu/5uzQQK0fHe0uA8VTHDBtN4JThJb6bUg5XWUFfYyJOa+cVquDrU9W4pC8zBwYnJwvV7YPEq+g304nseaLrgWufbTcRJCQkJey4/DutDOClu1jnAtoetGVn5TA5tyhISzXDft7ON0nZfKOaOBKQTrLklmQGBSnOYCmhGy7BfHDY14dQ5eHeZ+XylrFEyG/PdjbYpKIMPWZDrgE9WOrmtpa0VkjhDPNp7pKq2KAxLRmfYt00gmEgbNqTLLbutGEa4wlJytOibQsTrXsTzad0Rw5KUR5Xq7dprElfYzgnhDEZfbQE5tzum/i8QN82GbFj+TcCWrvKSm7vGAHweUHVYhgfdhSI08oWQDyIVi74VK94kDPxeSedMbEVXExhFqmy8PVtDyitZraPJKp5TA5noEXfGWX0fD3spRQkM2Ub6FL1rkebIdcaZyEsN0bABskjzWxqVdjkBYcGQ6QD95OjYelXjN7086jOv5S6KePiKXG2uQF968g1hs+VsduKuvs3syWVheSqAL59vaHvE+25aBOd3NughN4dins5Cd/yNspybAdzxGQmds1orrdaMbrMBrutxLCkJkDVdaIxA1vQbl2cchnvuF1xwezaDUmcuYMYBO739SVNle9JaLjooBsik36IEEl3OKP5fLP8YJGdNCWPu4a8mRkXjc5W5i3e8m06O6pjUMOsyS829vsjwzrNC/ImbLe7vz3aEkLXQiIkAmIcH7zU+LxfMYkEruH+1u/qryD2NP0lTiQY1cAN9RKC705BMFqlqzSw7wQ9xkkv37EBZesFYwFMHDLgTLj545f+fGCyw8EINkUph1BC6BWVwaC9kaoVppi/hmiSyiG8AVUrRPDmg75JXT5OK5Gzx3H0LgTsR1/hwFnrNSGScpJMBevOsK+MKsZXlpCSu4Bds3OenVFOot2D6KBGZIr+tF6xNJQrL82IXjx5KZj9DZtUyvvrcXn1DROe/cPIhX7Z9d3osoqJbhhF+YekZ/w5vC22dc0y+5l0eP1oxoAdTTHQDosLsXme2QMiGt1wvpKITxWGiZmehqIRwR3xg2DgEFIPDqqqSVad+bUk6emDre11PPGOtJa+k6RKOCYZzALXngJYDPpQxYity6wGqiMUXfZVplqwa14ujwO6CqErPNgBwF8exZk0qyuQqN8PY2sL70Kxlngl8SXJ2hjiQktKjpw2kaZgkozfU5EcBQkK87ue9Pqa4aJMYNPnRyNHWdmHUAn9FTzt7Wugzes7rV7mOeuPowB2eZt0lqwXoJhnzuaKYxOtN34YJcFV7wapjFMt9OGzl2qBCZRciZ/dpi6v0Q+qF2MiFl1YLw03dK7vpboUeIdizcYURFsJf0xvAHn9RlT5YeQ25u6yNxzl9n1lnSwOJr2dWyQMBhsBH+0oWmcmXb+ZJHs62mvQIohXja6SkjBpWcB7KMKWt6nRt4utTQOC/1WlJ1GUSG82SyTo2XEolSvxoGqvxKN+Ku83pA9fzZw53ksTaNvQ5V5c+E8P49M3zBgmRp0xQySjedj04lFAK9IIxN3+mqDU3FRHistRcoZBjvhKEYHCtY51eYzuX1TXGwI7Pw98wfQfov7tSpZQJnCu3PeR3XU3Q0x+Tq8Ui265wSgrKPQP3Ptx+25TbBGMCX2TIHMUbUD8dygmmSHz7+KMIM4A86KGT84y5ON7/NkkZg3iySL2uF4CEsZeqYmrOPrVwjZvOC/moquwa+HnJJNjoagHrRJkZvmj/59Um9xIPd6PhxMqRZyP+CXN+P5jffZu+CD6rd9YKSacvNZbkU22rfOgb0j3Z2YFAAlHQFKeprgwVgGSySuh61NQGwQu+ToFKV5gMNjDssP1unqNPPoAcoCzbxVjCxXCxoszFht0fHNNfZ3adPc/7pErXFK1M9BTRLHeQiTg7hr4tiBVv0Nsw/sbQ8Pr6e+l4GhMd9avfH1IMcGLHVFuebHPrijoaf0jmA/LTgsEB92cv0dYBjvxmg3oKN2gjmu+yx2q00bDf0JHzRGSKJf4Jh1dR0e0tihBbuH0AkEXa0LM/ibvTo8SZKgyatcH/UgXEOe++lFIDWjCRRulWHdd2m+rmw194YAxHHRN7FAytH2yzUI1EdI59r30RWHlZ1ihIBnldXcB2EGyzumUayq9YaBb66MrxCNVI+1hu6vkhoaiMZlswk0124dnuR9lC1DtfuTUuuI9Ljb9rEe8U4biSnhhnY7Slh4mYk8BtcKlAIOtdrbj85NUxesXJO0zMxGS7vh/1aOHnfy+D86XWtLi4rZWikvpHp7y6xdcojLgnnGRWw2xxQ+qCbfTnBrhl+JRjlk9qk/X9PRmkMmUTWXxD0CKrTVHWuIM96rPz2pT3PZUzjCHkD2X4LjsfUZS7ocoasz4Im3+uYlMXhi9JqXYJC1pDKkACr8vk79lOe2Td5yNM3lnBnQUyqOmACH20pS3vYG3RfkS34SsEMdKurxHf9Sgpu9ely/Y2YmSp91iLtPAY3XdmdzVBEwuISBHbGBX8JHSPpiKAbKGeztfTBlfBKi++JDdMFg2CQY6italxgyUJNgvM3wrzsLtTizUmgGhETiZv34jXVlDfQQSa4NOtVWPdOwfTaCgPIhLI+TvIIyGdi1GkrdUbnAy+YmMCBFaZBb6+kN73/J0vj8vbtvGDTeaPfWtp9t0kPIq2Olb6+5kQLTuhjHx8doTKSbnRH5+TBBsV5U7T2cy+3lhN4w+vlf3mKChxJd/osBxq3MCAqrVeYJlXsrzIEWLqI+2sqTaLnEa7bkQJvnLax99okeqLhR4gJYJZ+thP66P2BnB5czqxSUaVW8Do0dYe+vUAZ5urXJkxNClnTp/Qx6LAL7qVYCtWu6R1fivcN7LjoGYnLJdfxq1OazJb0LTk8vfAf6ptNTiG2nGKChV6nnVwuxxlgT1K90+9+DZFOgKAzVX+QdTYNaonJsaKLCCT77gUf/UPYAnZjIjLZoiygygaDWA3dI57TvEmndzXGKH07C3ab7Cl7ToSJCr6sc+Pe1XmorEFpTi7O8DT1eJeRbBhfJr8CEXRaX8WNSmxCQOmI7AZg4KWmzDfSAyZgu65/TDjHWSh3ZitdxzcV1n+by9szT6b2Sst7+Jb/bEt0CSOsJuWBn0lsKo0EALcf3ymVlSGcCWMNhTX8VDy/CbMogdQlKTt9WEOdk1IEHu0ZAF3cbcjoK8km2Gz7jGWFXGzXU8MZGfMgM5GwPqGeKgnqaE5By/aH/JlipLw8LuVsLYRRsdmmVReZN9SgMVpJiJ9iVAFLRjh70nWVwNDF/+pBj55S22CSGVKIDRN3SqDUba3oPFFQWFLcuE4CwLwWfC8sEnTndisqGkCusP9ivrm225TDBb3cnXBOiXCmK3sphu/Hx66oFUkw6hlwFfivtwe6H963yKOR1QaOHb8p7hSvm1dkT9fFq/sro7htSpMoppshm8Zl2T8D1e9VJapb8Y4MbU2s0gwSgX5Jvn7JAop4cPomOVamfICD6TqKqO1TsX0lyumfahTbGISb1qIakmSchmjqQHpqraFbwiDge3B06GhnNEoqVTWPVVQXeVqw8imL6TrUYUuTZe9jc02hIoR6mkpKamoD98QyTRJzdei+RRNoLjZUas5mYiK4GMfDFKtAWtZqsi9R6zEZ7QfLbigv5aVOeUbNv9zU0oSTSZgK1HlflfxVUT7jZHT6BePECoM9060yK6/fVOiyJU4yY1Vp1eb6ZS1jska4sLPQJSpd4GY6U/gPlkBrWFr2DAnigpv2cYCELYv+D00rPdO1OUjCD11aqjJQoF260JHZigycJA6kzJRfACuw37GG7jk+MIH5zMaf6MluF7BJZ4243L4AQTydf7hVBbhlTiuFEz0juymdTyIdEFT4yRUUg/ChIDjxP8dPTKqKRTyLehhAoK3RekSWX1bnQWioCUYknpy2OU3uFVSd7FijrBCMGuFLseMRLKAMa7lp5bLvat9jhW6xBcN+f8mrO7w5eutYNnpmV+lRTDn3ilGbB07aJLJ7G2T+/qs00gW2ejpJx2j03YcXgLYrCLhxeu7ayaAK85pooqxKlKF+RBwuSbOJkxS2o9ok+rPz3XjQ8BH+RDmRrBgeDnp8PJsuS2InQy2SkgizMC/RMbu0peKC/EFVoMbjInU+N54nxRh6DjLFzXjJn3N5GYf1PCzvAQgt11x9doSmjVGxg0gl2AQAe8JUU/X7xYwEVmrG/rKPYhBJyzWOLe8GqUaC3UiGOVGRovxlPr+62mRLignW4XQ9dFaGnqO9EYB/brZPIp2g/xoT4pwJCagJGyuQQk9yedfMuehwH2qJ/GZGZn2SRT3TGH2r+pugTzSX+8gP7qGnZ4w/cTMQwwXWQxLoJfv3IWfdwKKgpb+73uaSzz8CLfhTLiVfaxUsJhAqhGqoC/XBsbUEgL+Dap4q2ZqVuRFVWwP+T3JKhoOLuXaRkI5D3O2hp6+ubxbYDP2l2XiQZBwCnHw+jmIFeP2LdUWnEFMJUlEmeJb3Cv2L7iMuwoCVa7BMXncz70bS/yPzPWI3PcnjXdw5lr+SkfFGtITOXJ007Ek2P95tQeiJyxWI42hZ7fl+Dsoa3cxhJLE0sZEdKcx3VIZtrz4V7OxwzafdItA2SNUYDn3RnVSc3/Sf92jPiqlUaPOMvOVzGeTP7ZOc5Rn/Y/dp9hidjjw1BnAcjrx4ecmm75zEg22sYBxPgDGoXbWM1v0tmxPTRfzLVeSbadsPA/Ts1SO5wnf1q+QChl3jJQNZ+QRS7MN6QrRrovL3VF4uv2dxKN6aZEgWrSt5MPUsvZd4/JjJr51FlrjNkhyXLDKPfAFghhQtnWfRix6nt9hQho/3qRWI3oxSpjxFX2KnGdp4GCksdZpRMR7MNnrQMHchpBPstcUxIZJgE2RjJXQmDv6+p2sLFIx69qWUxXEGzR5+6VAoK7QNxh9T1RzrrqkWsF+YtquBf//sZZdTcHlhFvgfBJpRxC7Y5mcj/4ak+OMAO225gybuA5EwylIfQq7oo2/NE/3qGeFpAd6NN+tlSinpEIkcQmOp/yJCtdGMiH3LOqhgvrMWRK+cfncxETzFT0iIp9+WxM6s0glffPGaQFeOhT6gmekwFEhDZWR0TloSdFnCPHST+KNy3cTzVb0LZzlyphcmT6nlAe+eYr7TQ6vzz1WeQr7vzQvzd9Tk4D302x7tOE4MFZJdf0i+z76nu9lJjQ1vtSXXhpM56RQHNy6zYit/4IW5+ONe8XiPxYvRB7TkBV3mCX/4A6AobChaPQmgVQHtUiNp/WtDIXhMgrD4sX7um+OP3b5e4Eb5T5eIVBPEABqK4KAxiZ0WWH4gKrA/PLx9WsmvCCOi7QU1up/bnv5wxUOsx3bplYCagSA4uNDh/AbS0tflsIRUmmqASCq9RBj9OCDE0y58lxc2CNXRc68LyxzWu3kTjw1zaXWmRomdmXOZPyLmSYrlgU/mRFsSBbYE0R55ROJ92vnO5lQ2J32uWuOw/QUAvUrS68Es+S2VYPL/hagvZI3GwElZnwkTW7xwfh/3YtuHAdmAp8WkFVcryoE6mAzugHjiFl4ZK5R0o19Or+TApdpT9Qmx5SvbIlC1rpVJn1DLfuiQJj3XLwkb5FuKbLb2vjoiatNzV1uw3kCVnYL5d/cRjAKwfEknpIRsTGqtQteU296lEhz59gqpUnKAvloPAPNiFWP3onEVYYEWL+WXh25A9F/SOefQ6RKmmHsXYUn/OJfoUE3D06eyCh+Ir4t9mlke9quMpIUBeU4s0YK3T6li52DgSZM+w5SNbEX3U2gtMxSXf6Ga+8rCOnURZQhxsgPeqirtcNnhFI7shaNR5YhU8B6wZQAWpo+vFaml411ShmGLqLkNEDzvnhld8X+5pDpEJqfyZFv54GhE+J8cGF8EBNkPK7os9Z7r90OV1LREn/wy18AvM1JZxf9ozxdCGUmzFDqWWkzATbr8f6c6ZXMDOwBJx7Hf8sHgRduIlGzdfTbfaPEP9vAttXHrn5UtKaEl2RiPrvEh7mCXkh0PuWvhH2evyDXGnJ+LtE68i2FhXaAZtLxZ7Mft3YXiSmW6dzaXyNedvsqxrNbMm62k9dt7rCupyH5itx7cNJ57pp5DY3YHEVU3wZ6YjQEgq4KoqabePBn1TXJeERS8ZyOT0D5TcMpxLQfnXo1cu2UnJd1PuQAW9rbg54HpayXk2hg0V71EeXCTacn3ZKf4Hp2UI1kvKVR2GDl2YxdqbP6SJsxpdEC0lsenHboLkRCIU663LnCtEOEioAN5GCceLr/neUVNrm0fEroDPx2fHMfuZBB06ZVCI3tugaOB6FHyoGJZ5xim2QuccIpZ00QGF2yUkAqgYN4EhIX118QG8WSsUtd0PDj3YdkgJY0NilfGjOk3N/UiEgwlBnfrC+3Oiz143pIrjLOuMM8W+DspPDuXOmmPQWL3AsC13Ebrm7TadhVAPdj49hWE7NUM8ZD8aWJNjbrNC2GR+fhjpJMY4a7ZEBgu1LAPmNpbYe/2jLIubp5D4+OGW1bu9UBuItcupnP6iaZsaoxzTkFNsDr2BukdTbc5h8OpqVL4ifvF2qqgl4Yu0Av7mfhZClZUOgPikXRp7Uz5keu37x3FLT8ncYuALdu0slAjcgAJYxZmhwBZuFF0hKoniBJ3zred/F2YTSIsaPJpoHO9B+31H/iIE/vOssOxiwAMGILsBo96znfGi9ySmgc1tLmM4oG9096rrw9QCb8crwq+Vcz1RgVaXzT4WUzcfHbYIelxdfxi7KqIYikjkJj0PR2I3WeCbBNJINpXmgSZ9AMrjJ2NNjV6UDmuQ9pWqwXKGY4vcs6HHprKeCKI+yIyGT83in87/xwWiy8z4rxdoICU3nC7RucZy656cD23giApqc+achmRMO865KyL4hSUnmpSkudzBx3bXvgtvEI3RqDZ5Zyl4XPft9qT3S63IPcUml6TexOc+f+Wqmw8uC1uGvu8UWXYbT6NR2SXsdkE4726tTDIYAN5nCw+fqhQYGswu+uaYAu7n3rY92T7ZUX2n6j+Xdhc/Ts/I9JVvqHgTeE85Yo35BU2URg3B4czESrXbISUVlYu3yIguUDiMkZkqIyOq+TpWI6NsjatFDxVgZqVb98wwbZniJvtIljKA7nPFNsQ7Bfo0cUsyxAkuO/3BTmqmFojJ7n3yGCeLNw9vd9oDpXkSn8NlzA5qKJjVD11O5F9MYCTVaTyB0xWhB6zRY+5PrdG/rVG0Mt94asJrABUQYGXVc7i5sYXuv2rUQmlSmoSyK4mKACR2KZeTvkht+IfPfL0QYrQm5jaPGL2BDyuBERI1s59zSX4l1mV0RM/DnhH70qf+0j2k8vUwNwfXaKPogsvoUYy5DkXkJsdL1twQQsFtid5NwR7FVAkfxI/Lr5inekM2ikTJ8lC2eaAbL8x2IIRWSJDdSiDWDgnPTDKpHiSx9Ir91+kfMeQ8yU/28+68Xz35t4lkgv7wtIS9jskRYk5/tMRc1nz6Pw8PRDGLOM9ikpuhPT/AvUvioS1omSG42JcJLA6fO78eSHbTA/niwLVdas96OkdRyVMFoHg24qBUpOyx48n3weWokupxacF2Rt2N3PrSlB1Zawo5gAPg29NGqjAgatcgFe9o2eC7W9FqTgJYV/uxPIp8NnidwDbaYWdQxX9Enjy4Sw7mJPTrsfI9T+UwtmD1SvOKSaKOoL4ObqzY3x2SqIsZMlj2uZuVSPEKfNF97RfGoEiD0oQUMNMZJ8FGjkBBfDn6l3MQhZPP/VYc34/KcOSF9p0qr3O0ONWY82GX6nvFwJRmKyVc1wJWfNPqMBense0neXa3EiNAfJRzR8qO3juY1MsnmEavROomMug5XkNwXuduuuY0EYWiHe5qCmPFghjb3Nrio6lnfILVTSPAGVnmWN0F5s+DUNXK6rHTCr6zfQYbLYwAAFHpTjghyytJuDTi7a/os8uNXjJgaE/SmkDoyb9t8HYgA0QDS8yq/o9LizZbnR9G+qoaXZFyg4dQ3olsivSrOdO9Gwr0OpQq4pLna0nQF+IRFGeeNNbj2FcnyhQnaddg/blY0UNfcZv3HFJ8+xSvgmtH7ZaTOhE0D0jQr84jTxJwWzIc0Q8omEuDcRS94PmT1r7nU2B0C0YLp0DtVdDM9gQ9+vGWBS2I1RRTV/lIPU01me2es3xhbEObxqk+4Q9hvMzK2o+pyU+jXrzssd1P2XORWOF+szMNzKCPvDq+XP2GKybb7fq4yFCCtLJg3nqDk6WUzUcQa7368/nLo/3PA2FpMpYxOoYlzhAjrjw1HoOpKilp/I3cNem4+NwASQfCmqNFaEUTZeFoxRGnWA61aexEMX6NWWtrjb25DANHGBfuRTHjJQWXz4DfQbg8VZIcqZ1aKbghpMN6K+89eNjf/q2mQnh6qWXjPOD83ZN1e6pErNWZM2OAA4jks//UqP7Ilo/jJ02PFUTZce42oYyiL3PJvDMjwssvhXGEZr7ArgtPFxpi6j2rQAMvFnoFHzkw5+6+GtpVCymjtLvT+oKNt6W94tZnqZyDEy5wDGQFh1j00psuCH4hRv7DwIQG+rx3rgURkyvjmMoFCuz+O/GmYrVXfcGrV6NfRohG0sugMeNyhncj/0PCpdiYnHYS1RAENmnGM+Q/nS2A3IC8U1PP3QedTc7cs3cmfEZSknY6YPLjLkPBy3FZtFhHtZMXP/sT7u7PzrElNqN+KdpnmeZlbZnA5rwR/pq+WSqt8m2wBzKoTIPEoIYXKKmxB0Ls6CdrmXYu4aj6inofqNxIpTNUZHl86kjXu/TLs3Qbp68ff5RWlrjmFjhgYHI9/ML8Xf9ZtsbnQmamqVMSo+20Ge/pG6dEzWScRdll51MVfpXVPY9lSSR0NgYiCttAW1Z5rAs5ddr0dSwuWT08+y6KyQ3eKJDKVadpt0J1aBIdspQmSviZxA1qRqyYjBu1av7yRK62onIOoToFGm6UQh9CoPrQK8WEDq70NvgF6HZx3ofKY1agJ6HQKwGE3LzjCFwbVE3REfPXiVMnX3QWGKRpFEkx5zZYGi2jZtP96ykVZ/KjWPdJytwhKSo66/a356dMxmSsbG9uJYxueVxFvWOTJvWmRzseT/aYHiYk+67hyd1V9HmiobQFnv4Ms4gxfHIsUdOyKFA/yQmlGVSDWyFIdXEZsDboKJzO12UAUbQ1WZgGde6N8bjT9chLlnoWd/kAwffksxJYsSPl+m3N0ivBjMBn19uWcO8Kaes+fnkC3wXjIt5gzBM5Xz5bXWG9kytxlWraqYyKMhtz87n9blscYs7B1DRldWavAKDOgf5MaOdww35dzuHqBGYYI0eR2ksZL1rXNneXMim0KytPQAGyY6tNqKCUYtJgAjK2mlox/ftrwpKNRPCQJ4CEttzu1HnpEvq6RdcuA1meWifUClQauj4Q3FtIuB24pljvbrEc+cZaRlRF7j0vdIrkt+jXfKWrGFPB9ei7+YGIvDD5/YFC+QI5l9gWumNwMNmJOINWxpKlSJRB8AqtJNcvsLSCUiGYLRm5NY6d/oGn8qSaJDn8tBsojgTEJ0Upr1Sl7+G6XzNdZwuvIeQxy0JldcwgzjakQ6AGhxT+5CO1NZ0ZT3STuplwFZYlHDMOldMKXxpjg157LhsuNU9PGsa6vRH5KsanHAukADizQYLhis85FC2Yo3MLsjUKVzcI7e6uq3iK2zfilzeNUhoEuojlBwgIdFDyJOn9iw8rgiYmbrzZ+OlXcnVJzzKGy71loQseftkp7Hy84j9DMMSa+OrVqyLJgI6qMajWmShZfrl6SNCvHjaiuzgUBSNqfeIiYIQsxOq6DXRLJauUA7yI7bE8+mKi3Gn+k3yN2DVBchf1ME2bLydvdvaxWE6jRzUkVdPtcwYt+sWdXXjmW2ECvzvKSsuGpsf8fz3E2JO3/BET9DOHVSJPY76yQjexaUV/4Fjxb+oqSBdm11vNak2b8p/xfSD+exYesILlbKnKm1NeyDoktFR3X1FdYCyLKHiHPeXNApjWmLN8v2T18thiZWT1tRuuEN6rsaWYhh8JxYfv1a10VCGQLCyMy7hx/xyeFPRC9Zj63csKlJxnX4pGw1agovDvi8WKUqx9ks70lgfP03hlcWNb+sgWt+xK1oMKZVaGUch0xjPZtI5oYR2r0HlBPJy9L02DE44vBdzNHIDVvuMNWD+MQeVzYj7efMOrzVRDLyKXPaEr5JJgndImtz00LhPiToVve7xnQnlzunjKVEAh8bI+8bGZlwr/wqbKUqCdk5V7VUp6n7lwtz3l5+gg7tBheFT6r1U7/i5AHJjashc4eiNDchjpvXX0jG55E+pQMjgSQucPZrRnorusCUDNUPL3Nts7pXagZo2UDsztQxtO9t5u1EvxtLJmkX6NuvnYY0PjgdoR1TbyeChej9v1KNrVafcXYerLTwRtkMI0bUWepJOYD+Gbpo49I+AyCwXNLEn4tHFRNFAIKhlnQ+lOsgbANXDyT7CqDXLvDLXxqNHyh3i1p4CKB35ouFt6rbMbbymWxlhhTiApa/JHdaXTSXGZhmipQLdCoVZ8N7OQvtqlVfF8t7Z4LO+S3GjnlDrHc34CYOl2/Ws1HoVfWsFhhsPbTGmRczYdheemR55qt7pLbhe7Vju00wXL7Mh3DH7Iu1sMB4aY3P5IcJ6hOsycc1Aa+lcAbSKFfe9tWV+D/WlDjk10LXnEiFtZI3oSpZiVX8dFEwspeLbyp3XaOHJcZQarRoswwOunoNO42znlZOWa80wTPyPkOyLC5Jz81jWDaWVGKY1GLNopevjt1v1e+61HXc1DHPGZBuDY3aL4W3CScAdD5iAoYNXlInIQR9NbqWqA5a3GWXLp7qWkrq1nyc6ZAFJKPx0+i78nkgp8mE5m6dexZ3rWDni3182xVSga9GZRrAiwEjQHftJ7mOH96t/2Bk49ic8s+QMuyEmpFEdke7pAZHQvJOpzue4AB5a7WG00tdrEAUVdHiB9TEiQr8ZPZ4AzhqXQ0fMQlbccvzRvr/GiNDam9P0pha1FSM//padghVqhqR3U0Hitsz94GoZwvkloztD6xd4D5GMOTuYUGpVDBkn7hhH/UET36Obc6umskntsSbhNIB2wFX86nA41skihjVBh4dnGuS0PbJ1WhCx1OF7oHDGjY7SzHdlV695eZpADMoOrVro5bPDqlhVX63UDFpUq/uE1Vq7ldrnrARxFuW6/38nV8QjT1AoCRYK2OTpqOPMuY+fayAWU/AFC1aTFPnLcT1bm8aAsqCXT/yYZK42H/GmpLlTI1opB4t2zSQ8FElubUijqsue0VWAMJEGbOmDQ8x4nvJhuwMmiLCscPWk2PFP0t+491skhKbjf9j7sEjlNinctcnnH9PcI542oqX9XR9MHO6jjXHgLxY7+KtkoZTUB4M4OEW/l+N/LlYmz41e9sCfqQArOrk+8qZhGd8by+c4F/0bDdwVf44aVAstDUA83IhLFRk0KFe9acQQ6ve0j+a6V8GLrChcQtxWZM37+JSYMGSaIIhV/zMRPa0A6EhSUX8tzgiPQxU0ybUUUvx4phKQogQoncDh2C8yRRj3KtASrN1te2TmarQ+HdFDjETKghaYdygnjbEd5c9lYkAvK+mZ8tckFula0uT0hmEZJK/nnVjy+MOqPv3hZCxpNXXlHPrY2KdfhQiFr9wj+JG9lrdvnYkFjv5yFGfVyz/+6v18LNkb9WaeKwjgUvh0rwDFrYa0cOy/acEnZohSNRPIW1AhOMNet0+LLPupIcCPixcPg1bb3UPAMugSY8QqNc2gZGHHiFPIkl1iXP8+ouEsFGlQXaFdISKqNjw7Xv8ZUn3uWzogDdvVeA/f8EY8zkp97OfbJZd9wwE8SmOUD0RTILLfDfiY9BD2Mj+h2gT20EGK7EP9HVJSyqZb7gjug9nvc9PKmFRP3zMdXk+lIrDpcLqP4VG3yNDUEMOUJYozILvjvjK+v8QReIX/vb5cDbrNwMCLHkaTfla29ofLHm1b4q0suhta7UJV2vyOkv9HXqpNoty3yE6tup4HvJy0Ws1jlvc3ozVrk/lrpbrm09rNxGZ9CLEJpSsq2WnhbFrhzomZi27iH2symOVNDv9ADo1C/jDX55DlsLuVT5Bcav4mSvikebOXxyAOMD4bYdK10BFV+jyRANJ3URnygZ2SN0qEpwHDDNhR4mA4Fmam72vIMixOhjRiXgwlXNZWK2bRGHaLJoyFPsydUO2LbC6PtquFsXnH9bygVUOH4Qo+pKxwM/GmJfbuea3LZnoAgqV6Zp+Qj3BgcRhHFOqGOeX6dujAnNQ9mF1kCYNLGSqoPMgo/+5wqUB19ZZ9rR74CFNR1XFcRLxqoPs0oOR9RuUGCa2R8NfqQxMt0Aq9j6VUFCjfSFicaDU7FDHjtDWI2IxG/vBvb14bCIkAmvLqJU+zSKl2DhSgN1mGYjobhwrIoKoYav+3mlxdHj/4qh9HH0sA4lnR6DmoJp4NYUNXmuj7uw2rlVTzNn6khgZahXzREm+VTbzj/lD4Q3TKWWGc2PHQsBW6rr6xY0aN2/LY5l4EdKJhQ9jtGIX8S605MSoyxUcrJtpa73amZVesYWg/jGMdTRlX8/tanI7jovvn4+ClHenN636QUXyrXt+JmJnsXP0vyqu6StSjdJsinnmJtnrWdWlYUl5ZAnxQ1KKzw7zNxop6drig7otJJJvaaiPg4tsXDzd2bj0AWQRLRMOk1s0wVzNNo3T9YAzwTcYJdrZh1DHA+pvSqDjw7jQMagFALwjMEMVwSEh2eSh2QuYk/AxEZm6pZEEbsMxsYQC1V3v0mlJ00BcXLGtE6xvq9QQPLtD92fpi1BfG6ZWNtkMbRWA60mY4U8CIyNaAVP7wJJr2b6ITgz4ZaP5/LDK2g5cj+F0qTTKLHVCbQJ4lno9abjGeL7QzpGwUrwfTRhf06ISd5J6XBJW5gve3dL698nLeWSztfoTaz5UUpmShLSIkoGmuQXUqsffKOiyqRKmjZuMgw/UJmutDsRvayeG2g/3zWSw4c4jitOUMVlmi7yBxlF+ltPxUyggo77lTduBpXfxkZh6SZipIZB+NYX+jPxXRicaTAPLH4nTCX1csxdJ28wyzPQcBJUAouZduBie40rIPZIM0bm/mtQMSaLbh/v3R7QANZTLkzE9UUewPbA1Ei8YIVogXeOD3oncV/y4zvF+NfpI8H8ajEelceAkHUcQzaVSgFVIkjF/jD4zcDWaI/rpwUkVwJwq9lnBrWB0+zUAS6tKRANGBzYb0Ypg2S7Sa/AoZoEShR+OtiMGZz2cezTx8mVvL09xOevJJ4BRIwK0e3XKS2AUOFsHRzStnV8ebhMI1y4BpjTscreeu10n083ZPZxxQXRoZqMI2iR6ojFGPBzOtrHyAZxT5n6JRHq12KJJy9A0BbtEyBIfmxRagTEt2aobUeCzso9460pzGWR51yzokM8erNdf+Wegz9hq5a3CJ0k/kB/FKrjJH82DkYfyIuy7ciZRpcnxzTd+8k8mk9gcWhrwJVXdFuCoJSdA+1mCL9sUFZT/6gxCTgvdzmFJvkqfdPriQyVroKP6O8hAfY6ioPWulV1r+5k/YMwBPl0XLvVSPhUi/xRLVVWe9VoQtdMD1Lmf+sK4dSw8nvWz0VDHqza0sP7MDIwoEjTMLjh6d5mFQzjsfea7sNm2Bg5tZdpTzcS3cGOS2s79A+HdMoO7VIs43KJmTL62IeVdmbB4N2k5reAltGipe9Kr49EeRtasqeRQBv9fbOJCzvToTLn0CPCiHv8lUPT49BNgaiWPQXHc0dxJAoXXRGIvOJ62ELW6JZLO4pkTvEYHmsYxvG892UL8DbFQf5S0DXnCAiNQ/YEzkTJYoQoATbU22zCbt7RQ0fuqqks43YvauLVWyLiEgcLnx2eQ7AeHoCr3my3dHUBQZKn9ILYttUPNtJJatklFdT5/hVx4ta8abjs8FVlDfiGEPne0Qzed0EaLfLRHRtpzs4NmL7sQ19wa5jMbm4/zONjVMDJEvaO2EphLAl/Dy8Vk8Vm7Yjj5uiA3wE2EpTPxWez8kmnaurNwIlsuNNMwsRTdgyUgh01Ieelg39IeBNt8RCkg7C7eSwcbr1Gu9woxJuAKPmjPFWvhztQCs/ZeXVCZWpxFMLCqrSdWkg53uswiR+qL9Lc6LdhJ6AtzzMYQhCQkLl3BDUz12qWy6I459whLeoC01/R0VJEvUguX9qqdSIEn4WyrNKP0oOx9Rwx72apgvEMyxrxW0Asg3rgJHo1ksEdRNxzDsGUbsHlOGnaikG+uASPCm+vBMcvI1Qov5+hdrpld1SxLIR5cLRTMIZOFRHGJo+uqyc7rF+dD5Tec5+9Guv3AdMukHohAVqtQOaATwHtTwmCztnMIRUGT8/WrS/FiIArRim4YUpawI1kFEAjA7k44GL9iscP4y2dPjQquXOwbucTaGl2Le30ved5WiMgWnBO1L85nBiYEwtum/7khCAyp7fXVom3yYF9tAJR5QVBllgyO7IoT729xsXC17980Z845L9gHnej7DAkk4H5R5IVkvh9N4BvE7vgjHI6P/6NirVeWGju0fTYmoZaJsfUMBKDGnt2beC+lM8z8ugYJNk/7XsvVQ0diBNhOBbv2+ivMWhk2hbnYE2h7UfDubfrUvtPlGJTnjyk/VNHmBpGRwCbr/4h5tZiJLuASXmdOnmfppTdrsZYKOkeBhWkzP0t5nvTCXVQK808rHW6Gcvqbtj4mew7ErRYzAOFOs4aSluAMDDEEnrHhk3xfyAjeNzEMxlkiatOYZvoXlFpG/FbrwrOCX9m5AXiorMXSRdv32dURMRz1Qg9is4Z6Ef2mK4DfZx2i7d22QImiluzMUskyr+sLShvVEFZ1guljfbkGSrav1Ml/dStEGrErklU/rfXZI5+s4Rsujc3T2ArZYI3UB6qtlcLGjg8wosv9QDxdmTCo1EiRGmVRKgJ5tlXli62SzzVqdCVPWQm6FdvCGikGrQDkOyM6lGxo00wPSlMRgNCmCNEy98qRIwb+ZvRTcL5IBai8LgD6Kd7h1B5iNYbmA6NUM8vkQxeqB5MZ5KXnh1ZF1ouxkJOnMJpOBrUGfZ0otdeu88LQtE3QJqF0hePQziv44YVGqLUbUBJA/VZ+FuWObyUjGRC8qfwsw/yhsUQJkO65H9XOiae+XO5+pmYhTszIjHt1KRxGvQjxNCrOhl+IsFhRQYhpW6gHel9gDxGc2RvWl66Bc6wYB7uHoEr4133bFRRFTKZsMem9xEV7P+yU25KAr7S2jMqoP8pL51KKae6j2B7imIQZ0bdmB4QjvNXSDvVopGLEflbtJS+fIeK1+B0Q0384yh8EwW2z9wsnJpphbBNfZqcOhK+Ja8OEiUGlH+J7lXn9nQ3w1vhSww77bgs2tWRUc4kfDgV2VgbxSaf6o2t58K0d0VWet+dH1X7B4n5mGVkWOskKgLFp8rghVpxALYM+yM37O3/qiQAaJuKBMyJ5x+HfEtvMmGP9aX8aq+5MvjkijyHsP79DdSVJy8oPgygFn+3Rj07RbFqusDjKedxezva65ZaX13z8kf6E8DK1x+4k7enrQxEVdNSuYs5PqD8ySZICjbhkqoHW2K6GtGONlGylyuvKc/JDvK21Kh8cVMuLjlTQA0kZ32jdbLKOMlRfyei0UoaFpkthhv26WQYSXwhUBn6auluqFsYUg6p8F17me7Nh+7/SzGJ5uRBsYaXsGPXAWpE4s35F4B/TANEbZXSgPOy4qsK58k9WaVn008JJWY+F3h60/ifwqs8qrTb50SmW2EEGHSxF6OAxCyJqhJV02rkbXNkZF45K1eA98AhR/ouAnWTXiInhBnFxPzRbmDftXlyfxKe4syGn/wiN1V+qZ/ZAi324B8px+BEvraoFlvoPYexGkkxhypp5aA3xeDm8lxEMoFbca3K88D3BOu+sMrjjZF+SIJ/6ZQq734y/FU4JSCXPIMSbJRPj28cgOFRhfz1SHwwdTKlJBr1bHLPOl7c7cWNFv6J/l2yFRFlagyE1DCJEVrky3YFhat+cMJRbX6bNzV6RkpyuIqwrtoNG3zbj/xKZdZXYPEeHyz2SZTYNlxbUV1ki93qtcMy2GMEb8Su8BeezUyZ02P2H4BlyfmemIogHKUnU8xUNhKt9hee569WHRGYzmOzu8cdbqoXaH0PWLwAy26CuUi6Q6w7ItDeOyB4unDmUDlP0nZrYaHo0XLwmHcWH3A3d+0p8aZsXQ9dkfWbFMJ13V5LN6fvQExZcMKubzp6r4ZWn966dt0/Kmlj6HqT1C0PeUADgwJ6aUUofKjpPlo4FA0mrN5b/NFJAeqiWXWw1Eb9swxAEXOsPfdrCOfoaYuCtDJ7EToNTa/Oqodu1amtjd39U/L2oqVKZ/eV1u+MKi9TOGMgsngEHM8YkrTvBskpxow1qxpE8wlKxQE8qcH5d5dtXnkg2J+h8TOdWNch8kEWlJKMZqURom8THQhwI2CPO6Lr2yHuVraUcq6pHH4GMb33A16CV/IrSYLiVlCDI0SCKcxCR0OPxOGPK9e4D4XFnVqB30q5PG4KdxsOzcOr2cdkh822h5sqXLXwG5Br5TeMoOrWRZVdMZt8b4pux90GzHBytW6a3SL6xD71pJS1R1iQyEkF4sokKaDc2MF6U6KbHVKAqad2j1kUDwE1mQ6dmSstlMQhYXeH7Fr5qzr1SKwQyj8bTowSkJKpwaDMhz4x3AXte9C8ZjyRICNs+B1vnOJE/OS5mdm0raJYqhs+LTNmc/HnPVa9Xte36bFhcCz1u6UPnHG37Ff6Ez+K7qEUTAjElgErxDWGgqZFEggTv9oJ8dId55vvgI0CaUXoA8q42kvSf2sMrJzrHNM4yCELW/O35NTPkNgGbj+dQhTC6/7Kw6cW5M7bptK7ggoS9YOKXWmnCjNeobONXCohz9ELC7ytSIKuPy+8/wcXuiaJZ/WzwY5ONOclMmOXm7owq19ymcsek7rQWUfmNwfVzEjpdrkLDw5swcX0lo3H1rp/unN9epce3P//XwsLzNU5RpnNJNXPZnAUb6q6Qh0zBVClmQs/BriDXDQLUPNxp/qa8cdJFTnChoo/D+oVB5ww0WzlxJhw1SgpXshx2d9SYnAZJ1PsEjnRpxYtm1z7uCZhZlw3iKnm94gK0GdQbGmgsX8uovxIlBHnusbVXIGJ9kpLx1TD3VFUndaEFT3NRq6CAcbtBwWc4AlnQJhu0F1ceRpDvZI2eVRzOK//5IpP1DUHCRk+Y3PQS936XJX/1N9OH8ukT/yILsBT16bw9DKAnAQxAujiFkdwv6T95Xm22Zmq55A3YY/F1ZlgNJ8INrzM2f0FJarm9zPmSHjUGfVIH0anlLkk/bmsAWkBg6Va9DECDzjN7k3g5uO5x5+S/vZSIo7ksFJl8Vg4RQDnA0z47LaYVMpbBIU2qUqDt87aqElTs4Rd8dFdtuUqFnrX+4OHGtjWlz/k+HYwL3Er5Z4pDHuNtGM3meJ19BFxLYHB6OYVAsGv1miuM2B2dPAODWNfquGNfzXwfg2l61Ck6+zGrkNyvT6x/OGRS2+b2VrgSHHlEHRURWCGRtw5gZATzy+dUvLsI9Ty3/NOA5/JlILHByJv0mPuiPHeK1uTukwmc5OxOFtDfF4xqUZ57kpyRsHjDr2xfVDCYJjz6oDn8jcBPR/BX9QjhYj/BGtZ82uX4iOwIznlVxponCAkb2tqjG/BR4qM2oS1Y0MZWaFLrs+moGUwunhhPmPyMcIyPQ+jYUJRBQq/KI8YxGTmj6pVjluZRbZjb0bPzCoGEKPEEyMDf+0lxczEFO/cYnGVAUS1ywqOvO4iPdIauiAF5gQa1JUfsSAGVQiQWPTVEWFdCW5sNcpwvN9C4PQuhIl6KBz/5zuTIdBb1Y/Dc2epoqaTp2ybWGWc05BTn56wugRkQ51fVzSn/qDbs4vpHQP5tZwkv5poR5CMPXoTivXGlo++tBRUHzuPCFFp9R8BjR2uv/8dDpFydqAswVMSmlElzVqgZwrr589aRZEE7590AoTgKJk+Y4/ricWXD7m72JIl4xGOVI+D1LmoTYlGd5zF58EZKSjFtEPX5qp5M4BR19EdOkqMrNUo3BsV8NdmJ1DdafbHjJAwqTy3T4w3FkuN+4UVofILZ2B7AtyNRcMRaL0a69vX9UxAc9eLtrp2fG06aBCpOEJg+1MrvFzDDx/a7UHyDHQr4b9+IAZFxMDpNBueTtiiHNg8H1W3OCJ0S8N7EhMdK7Vc8cq88z0MQ0KTRQfB//XF9O8pio1oMqSX1ZrELdn5VeUObFNPnqFgk+m23Exjq8GQ7L3CmpJM09LR1R/pzrJm3u4zFtx8Ged+1/nT/i6e7Dbr4HlqZ6ThxWOiqk0MCs+D1z6riG0zoeNbQ+1FcZqURiRfe/vsSdBxeBUmdQ7mY8UpTzieAGKg8Gs/xRtVEGX6SMWTF6A6bzUO03+cJB2hazCQXIA4IKf4pyapvOCW/gM7+E86RT5LXOfo56rvLK3he0zNOyXTl+tUMLpxXE7l4DzNMwZjzVt/6fyua5o9Nzi+Z2YsuBeInWXUo/jb5f1gC5DNhbYaoj0CE7tFTgMGd2M6UlifVIP6erpi5z6HRKaFq6N4rrnduxZTpUeIryFQflVmNpG0xVjX0rQ5pFm++fToM700sIakg99QSVTmQ9aKs0++3NjachL10/9BjvlD/P3lXkDmfaGAUOaPokNsrmpYHTZ98A/hJVjqpm0yd8t84/pZ3u99BKCQc46GDx+TgQxDXP/qz1AJZ1CaziyV2AM+H97AbsP6nd97SjF4uLtlDlA97qDa23ZRgtGU9/2mMgTGXV5Ae0dpAR/QpLolo9qzt/GxbJcPLJRYfyE4fCMOADg8wfvAX7VCySZf2qLDsoAz+2m1ygoYC27f4AyNJ1PNfidtzwQBUSjMVBZ0tLo6WVXAlloOxvQ5tFCx7IBw/ioT2qnedVEcgYFniuhKKO3cg6dnkyXot/gzb3fXInvxLp63m4FprXSF5SkKvy2uZGnO6IqLF7enEP9159uSgqOHU/FVsddf92PQQ0r+qC2a0uB/a5+VZvm4Pde+LJc8gZWeVVdJ3PTbUxtWYG4aMMRvgCxxE0BBmf+E/IxMtjXH9IF2Lloa/APv1JRmXssb1VlsF92773Kfqk+VUlkpJSP6bwJf1/Sgz04f2AtHSlmUlJVUAG7hlTC1bxxiLX6Wxl8YNvOP84JMUVCr1Kjf9MbaPNVQRKbyxRyb961sLTgxX+BSJYYLGn5rj8dGt9BiNNB3+uU/F0Ddfy7ESe0YGh03RfwznTvbOg/TtMB1mMlXSimYYGLc4jf7Qlm64vVxPB1EsH11KSk1WPfeoj6BxJkmi2jyJxumisoamOp0+Oj561x2DpRyYXaETqaDBSq0yjpigv5+wP8cu8y0zXqusQN2MbNln3ekgS0+S0uh6iXkB+O2ID5xHS9/1gR/g4VW4aUPHBDbIkfDRI4gsZZk9hgixogJ8LySEempzrMK7geuA6grA3C8iiq098GcCBkV+a9eVN83bnJ/tN1maQ/vHMDSExsEJA11R5Tr9tt57sAJ3QX/AiNZN/SuttuljORF8GGvAiqZL/oOm1n7DCjLZOHRY5lnKynHrvUIN3eUKzJNdEBrcUd3yGY0jWQtILadbV7RWbWVW0YHG9tLshrnPxHzEaev+7r8nfZY59xHqdO4Tk3i45TiUT5zjZc3llDBFC+Kfv/DT2Q+6mo8SAkPRJTNZcJKjdL52fSAKQk/rFgNPvxSbgW4ByT4Gnl1gHzWS0r4f+75Wu9ird8URxfUHUSnibeciRTN12ouQWvaTj2aySlPe9ItWJLMqrAk612+zFUhtVvMKvBrGEB5bm+vJmqrA1FRRA+mxC27bchFBjH0qnnW9+Z8oYdHT81upAPKGnvmSVRzZ2+4nj6IJIE2TjKo9Oy90MKrwclM9Sk0SEnMWXMLuxPTBKTlaqOXXg3Zfp7J2Mr8YAIOrmD+wMWDJKENPNqVPh2buxw0t9elEAHPTrGhsw09yv+FVjxRklyhPn4Q6iMrxvPMoZy68C78hyITyF6U0P4IBOFWIVo+iG+F07r3TO00sLm8AOMwdYq2z09itiWZ2RjOU3a3wZd2Ghmp90TRnDIKf/1x1j1h3++I1+unt5zA4+5oStaylz6KllLy/GMUEHrwShi+bGY8EMRsTi4ijX05382Qwr12dpLE9mFoZRfnJp7LtHvTFuklhZDUV/aq8Y5wRbLvEXBq33IMQzVeC2jnETvNsJvuDw61nLl8B8qeM3JVvYtnY8FB7H80ul80zwbtjNNId41QtlmtA8BOkTsuXmbXOBgjSPqLwll+wPM0rYrRyqTDHnpDzJU0mowq6j6aIOG1U9SLPE+CRHyz+IPAMq5QxAhebLFOVwUSKiS4OBuCaC3IMJllB1Fiyy4v05pZtwLgSJ+AW8QiOHJrqxJIkDZcpwzZdiotxiCfYDFnYVpfsYC6OAg+QMCekgoGtg3KsLWZsuJS7BzV6oyZMaUXJMR5mTuYeHQ7+wiBaHY9NtDnGihThqiJDKWREoPQCWGwSZtpmo+rr+gxdT4zbqQWqG98VhVQSHl1Rc6NPaunjYiknH8RSU6B8XyMw7RyPDmChaukDigxCvuGoAP2Cw3Giee6uXHrOdLVCoWR53H/QDz9m+NUsDazHveFBlFur0wBVeic4k7bBbdKNWpQEHbWG09enZnkmLme/Ztqck1OFUp00AtVfQQPRqUaNUe/V9hGz1qTbC93YSCVYapZPnwB1cm1DpeUMPGMR8vf7/W+4BEFlHptABWfym0OYv+GEvVJA80ZRnPbtJgKMeO8lLmBqZlGoSo09PVpu/FhIv2KWrhnAJNmoNzWadQnvRYeMeMGva64CMsz1gkQlAAL+RIFcrT9NSLdLA5ZdZFR0AgbFZd3eGe+WYq3PlUJ152tEbJWaLtJvM0OYgaRDIga8sSR9n4O0S74OOS6VNkobEbAYvQG4+ovOhP7K84+ASG5qX1LzXz2OcLNR8XTS8w819LlAr++lcJvcVO6Brg6MOuBgRuw4jJzsOsOPxji3hT6qp+pzKQwTyIVeUao9sX8bacVew5YfNdtydxsOzQWmKpNMM9HLltgU+ZN5pVT1lHQP3V2BH+B9NMkwP2Il5GI/cN/LnXpUfHDUN8aeazixTWQDva5eUS8J6IaSdg/v+Se49BMkmeo3S9sqeRuIFZzEoRFhwxiqlqTLol4g3IkTZm8H/xOJz6RLpbgzp78viLgavHBrfTRTGVeUj0yKJwuoBAeTiC/mK4Ys9fQ7OoaSDy+NDJ2cF8Y9XFU7HLm/DWs5ARp2oxeBPS3wqE/w0KNc8624vH+a/i3d/bz3lL1KOY8lSoIssH0pWDf6Go0wM3aX5tEIrLliDftj+p3ne2F7smTO0Pj5NQvusbLAMq7LOSkfoPVD44MeZ72poBuJiCbikPfXia07iUfu7clolv4X36gjdd2JP97lEd3jOX3RywRAS3PYjjgxl5bXY0RefnmTnXiG1DvKdTujXTWgqatg7cb7CX/oiM7yshsXJdfBDYOwwogkAX9pAli1BhaXrWJR+KogtKq+7ItkQI97lpf/SArzbCQaftMZ4GJ9na2cy7DAQVU7BeED/ptTm4+tMG5FC+LJA52dCNe+OsroC9YCTGIcoh9vSSzgbo/dNwBTNMXvxL4UQqXKbkLaMvxSaXS20d0sNo5RvF8oAAc6EMGQrxhuQpdGKOZchvr3WaGh/wK6nZrjd7uyXDMkyuynrrVVBfeP1TAEagyLSuqJ936LxTOP8w4kCAvQUv6x8Uiriq+ZH6KxUxiDmWjK6WjEm7lFZzFWfvgSb/+LHqqojkibR06fGL2y7cTLKImyMqEWmY91N6a4ailEC7nyVR/EB2PIqX918yerdQB+3I6UhQ9Nq55KN2RnqRKI/8H7GD2MTy/pDEPB5IWmXawdMtpzhTM9wL3+S4FgjbrvvFKysa3HuxuSowz65MWLwHicYRYTB9jZ5gG6R/suZquYDNacBMHfhAk4LB5KfI+D7J4eFp3eMWQbay1mf03EuMUAY/c1vnVphozrBbdJiBn4cYE3ek9ZDqPTsmrKckpx+JFfsNoODr7M7O4HM3c5j3cvI1sxxUW6xJl22raCwvz9J4iCwJO+OsNDAgzX/vfnH7JqyYqBA9Qu6bqGJVDyEO4mNZbJ/Q24qGQ2iQuIqsLraFW/viPqbtp3IFZw+kCCP4TFeg0gO1oYVQZARfbgxNdW9OwmpvEt+mdH0thX+M6mmmAVNtas/5bOzIiQX9h4DTG34tqPQ4nzLUc30QqrR5Yiuuhd7gI1d0klF4ENe/jV5dNPYC0oJfL3UPzlQ0ock4WJADp2vVVnKIsdi4tjvawBKAFy+Wy8Dqk9kKicclypWKLeEQyQem/KjvITkuicZfVod4ygISbB7QgqenSXuC+z3jdox/JKOaaCDAqK+f0xFIICZ/t3abr+ktSyb5BRPScaSf3IVfmiOW1SZDugrR+uH7YhCt6BnMJuO+PG24G7x30+ONHlHZh+E9B11/byzrExebpA+aM3Tk/fRG31aPFRri9YD1J2LVcXWqjfJDIiuhCx7cFr+Osdavi+udg+heaLA5AKqlKjZyf9Kk9lGM70y5BcN1yQWGQ4aOalHXsGZVnkAJGINXV7Ilqkn/1ay2KR1Pq0Vpm/rvl9kCGuv6S/dtqoCUIgYdjU1DQMjoxBPj9t86nmusqpFZrCFekQeF1Na9hHgT5V0CtNReq2UTZcHY3z1LLLLWGRmpNm08ZEHxlXMWHvZytebpx1ZHLaay73i8aMDLrtTSoSTD/5muIFJh3kUx6dJ6t7/drtdCnw2zcalffbJcW4mOBAqEieipaTCKsuJkirDHJ6hyY9gO1OH4Fz2ghCr9c5Ukw4RrQaTtjy7VovIM6nMWs8/lxRno6gIPXLbEuHlXXOZaitLbvuGbf3fUdDR9hHw7TXCVCgLHnC21dRO+nFDXuLTdQW7pL7uBYqzvgpKCaKsVHRl1VTzcbOcDw0cybJ6QcJNmA5PuPVWD7/nR3XZHsXUI5wMzP+Vt6H7GJQu7cLbWjkVpNH/2BAneOEjppVhA4DTpfp/Q9mMkriUMcmAZilkX9dXtnBpXInzU4gnAN2r+naKhE+LRicEM2jv9rbE4DCIC8C4m4YHbfrrYqHD39kQBL6DT5qllxj89FQULS/Pt57lO/RkHEOcY41LqbuFsl9LCU9AC898kaaKKQWh/gw/WWGfFVa6sI2tizJjGzLuoS2telcEg2ooBYu7sipKGFqFww6Rb8iSLcTVzKtKih7r8vy8mMz6DSNlamzpdRy+rTLW/KiGXajsqljJGMsJZCRG9JMs3CzD8gGHRyjM+mxUwZHfWazjvonO7cRn6rO7bIhzZajhkgIw0ENFqx0MeloLC1gSro7IIzJ18u4EWs3BAVEMaaZSkvt61U8UKoT8eLtaBamAvtswQQ+l+N+618CFAqqKV7ubXPpxQfTFWouhbrhkCZagLjO29cqU+nzH5z85HBPBYXT1p/on35D9wEDLsxhBvJ8bQRMNqMg7wjTnjjCcrXY/eHeXEt0s+7JEAemqmvf+A+v7GcwS6GJJQyWsIONLH4/ZWJ88NxB/4SoCvsxVqdIAMPm522gB3tyQYZflvNQiNfapjRzi/dGgrt231d2d2I2sNUtNnRUr07pYUPQWHzQK82BImIQJy8LRJtrzs3OMdudQ1eCvls2yiF+O6sSE8IALF5ykMx91K6haS7vjlBomxpd33HYZ2YuH4yz3GAKo76m3eU4YnLVc9vwMUJ2Fncg9VXRUxpLQ6Fk3TMe83jaFF2gU8ly50H8UwlzGQFGSO8jdia4xHTxSKYfml6utgzEzaIk71pJ7yWfMAi3NOaaVzkoLBfdtlVeyq7xoXeHCwGMSMDECZBCVbhwn/5PgsXts34w//zGAjNxEl1S6fzZeVow1aTpLQroKr8E0Sv5iSJ/hEdPK7UJkxegoDxBcTEfsEtQKfcrHpJ2jbEKDwaiu9sUF67s2CoiEki9h6woAQQmA6N3bepdvFqkp02Uwd8xckef+tPBtWrXneTX6iA0Ybmi09Knf3oI4JKSSbipN/WU75ZHoFwc5+glWeq9hCLqwVanJTN5DAADdK/ps22v17lwMY196/f6nZROn//QZVCrhW9QHlxZAzpGG96rzXbSzKiZr+oJ95kHx8Uxo1OwcFCvk7/tK8VlGtyFlr9OwIcY8KIT5W05hWtKunEyCd1S5ZTSQzDZMtnKmPVzfLq7NH52dEi47S/KvSyvHoUXZCO5B60RZqoSmScYzuvf2u0YaqvvrNrrdZkdW62gUs43YxA/gKNmLc4cbqDh6hklLTm8rJ8VFGtFE6FU0CgDW4foUUD99A/7SyRYq9+Co9SPF2DRcqV3/gXkQgmslt6T9voKq5yU0btJNfsWdwtBZB4mjeuD7nAeLsKoN8epMRU1G5+ek1f2dirGOdX9pPTDad1DgHeVI0l19i4Rk23QtGJ1Hrtr3mQ229Xih6Cosuk/tshgqDovg90fchSJYnNFW6wmcqPeNjkOA8rIWh3wRWJxGNB0EuBFjTFNSatXtZ7cSW9OFcKk0Xkc1aw6W7JTomDj7FuqRkt8CbkNmSMl+CVA/9kPmP2PEy3l7aP84jWblPJ4wclipRdI0TbWXA0VK25y5iBpddaQmmoTLER4q2zZosa7NQmUx0lgoNjiMJX3mkMPFSnCGdtEzarIVnoQl1I1lJnLKZTO01HAVCTRHDUOId4tYyWvihPzVUv2Pvu2aGrqP6jjiH/f+1vkrggGAo515v4fMgIr4qeFSiF07eLkyUsWkWEcwWrSJ4ZQnDuZxz25gBTZqdX0Nn0vl3MsPQjiHF1uMzFKiPGek1iLoGDA6KvQtA/7GgqTeFBUgpHDN9dDGF2v0lylYiz2McOZDuDdJWxmNf/ufSQQzHCWj70T+CoGRYjxEbiTjKyhpu2jCoYFuNwQxaY+5j73yGb0PhEx31wkBOhdA+eadZTGjNiZJRL4dQw/EW8/bI7BHaIXsMGaulI6LqJHVOYyqB5HyCXRQw+wj4zQUkWs9QMHYrhpjBZzs1RcxGy1am6fo9/QmOp1whcwA5djLek7qfdkuKHHRn1E59cjQ2xVqZKYSTwHMh9UgA14hafRfyY9+yJQGsOlIlBLQSHKz0lIJZx20+wDc5qjmG2nhx468eG/9bUzse5LEaM1xWwhDC+BM9/+UdsH9aotRR8bnUP9DQScssdL+46nmciOwtGZcQW1q3nigf/4O511wLioPV1b/P7e2lmCK/Gnmv/R41tbxiY1yEl3fBHgNuRY4MF5AVETehcfEfKXv2emXyqf22oOZ2416l+Ek1W+vkeM3g09RCew2Ixzv+a8pdjru/0efeTJzHuKo29SOMOril9rxjdWIGErFRERp2mqR6ffkHhmwiZ5Qri9fZZaIL3a4mb6CC9v1JKampAUdtUufja6lzDCx/tlVkSbbBadrihKSRQrPoLAZk7ezpBQqnx5+SvPUOeOoigfYNpnQBMmAu41YM5ZGJgpr0ubCNNV+lynidmTfQuqGb/ZNG7dDJP25MZZKZwXWW6MSFveDAw/wg4g4qWk30eWXeB67Uy9W2u9a/MaX7/d/T44+WH2xTPHUkcv7i0MwQGZz/UYWsaeWW62lndpeiguGFPwMYgvCySRkDuIvDUw591hFNUaKjIrVaS/izYacbPzpn+Wc7tc5bHuOsBFAE4/e6ieJhqJJjwnyAsZ9FeMyL7zmeBGt4RG3VwezWaI2wUJtdUGrzRM6h9IcdvhQ3uBMYV8fYSQg2KKB3Of7xP8CwxWO5Q+QwSfEFFW15Ox5nT+wIbdIX62CP2HAmePL4POINJr1PXIe/+ujvT/9EcL8SD0PhYueYrgyJT86rZVeIXinRJe1h7aR4IlQO9xOItJXhmxdxzg51AIyi1pPQEXhglNp0b4iCeuRtVlvVXXhuHfchE5TZzjz4kr39klPaGDXHRgN99N7W7FJK3BpmVgzuS8kXIA4sT7WuOwsMbmaZbYKbJyQ5eP/Uj9c92hXEQ7US7Cpy7pHihSB76K88sKcPZB+6zH6jB5ZkEimAcBXdmWox0rhNKUPGY2MdxUze2jQ5VLDO2GaP75s49cq7wYo7mFvjWWl9ILo9EeT7Q+aGiGhb59ZaB8mrihEQ3SgNUyM6StugGCNNRaWrB3k13E9HWI0rTPbDTEPwjjvvfVHSOHBhuF3pfhgSV3c5vlHw6KkGSyB00oTcGRa2th1nuqp5FSeOJsjsU2REzB7fx9L8v/EaZ4CbPq3+uMmqUuvqxgmF4z8K6ci0ClJkYEXYcoBI2qvQk0Uvu93o4syUeY+snxqHFWi3VBtIqRkqa4ERYepjsQ5IimrW4tyfpa+j6ZKzKawmL1KldRPkQn0FAkBYL8X4z4Q5K5XWiR4PLIA0DEqQd56ys3mFxFeGL39vrJzhHblv/F/PFgC1LYWH6yaKHz1ZL274RdY+krQnJ78vTa0ywy+hgsu+tfP7FQCfmS4Ys5m7EQRocw4y4s6T/FkAum7yko7Y7lS+NrpF1rKIjjCbDkzdqKUk2tKS/539qcUUhT0E0YnO4hScgoJLqeBrBnYvDHK2WztKUjYEWQyqcyghVin1LTc3UTptsxEgs+zMRi9huPgq6JcQZrMlhR4NiNDE49+cvQoHkBbHtZyHOeHUrLMA1cf68rSIrgYWCZTnc0x4MfOYCBzOXUZbI1SM3h5u8Vm8jhatnQSAkpW39I6ZBmgsfgzaEURh6HRsB7eGl81K7NvYfmmhuQFXBRUfhK/b2mlCHMV8iRlja4y6AJQSeBaOr9YHafdSHTGZGUiDAQh87hcatjGALrJ4CGnn81i8ZuIcV4Eo19199VldIBqpcGP50+DAlI+5EGzBKGBQOtqyBd430ONqEd8Ti6yUIoRh1kJcjmnKczkzELUNE/kkzxjbqBIozsKY7WFaWlx8kflyl03K87Pv8UlT15eieOQeZHBshOW0bnTJcW/erPbf765x1nR1vhVquiAENfzwhCwnk/bPFMXRUHgZ9DTCl6E+TJfHquvmJ55hkLuskVhhQdrdFs1wPbGq+LdJKvnLjt0vZEqpXzyjWS6VF2GlUxFNJophBEQFq+lzcjb54W5SsIgEObwcMSF1korZdpLeRYyugQ3QomRVcnXmwFmqaEtJBPcl3mHTkLn/wfnK12hQjfisUiCF3cy3uZJY6jJEYnJHfYcIjQ3Fdqyg9OqGbSLzx357t2rDcJHGMDPxFJKIHh33E7sxeDpjDMjgT75W0L0d3qOwA/77+clYd29RsQ8lm4vmXfIyEFakFlMFqti5BivqF3IwFflMo05KkpyttYirwHEFIVEmbJc0x6ZSHdpU6Df6Y0G74p5cYNXYu9cjil8Ldp6gGZdSfVQk8ANHB/d0UeXLvjPssXqzW4gYDgO1tDHeAt6hOYJmfUZVEr9qeeLfj1Nl+i6HGiF5R7AherRwi8UjYx0793zDFiuScy/8Y4HANLqbntwEqFosOISJE/ZfrRh2kLwmFSYGT++KTUIDnpD8zvCK80ViYYoGphbYp2d19rykSjFWDroGlC7YmB/Ch99wvFUBteRVgTqM+aO/gTLogdgegKZ/YDA4GSoBMXJ4MI15MH3nVU793PdlLt8Zly5jbl3sFwSFnA9PpNuX5IvOXq/DQY79FWLxjecpOXKpxPmci7GXlJDBzx4swVYJcuK4IlFd9E57I0cIOjdN1gTJDrlL3fsZpVpQ+jUZT4wQce/zP98+yMC0JE+/Rt55WjIwW0oaUOJCjpZLhjhJc7fx+JpO5A+BaV/9sojuXXlumtHO6JV6zslD/x+m6Kq8L1x4H2YnpiiQtvgxmdKtB2gjjxbaxgldQqYBFPWNO1JsJxhgrTlmzzgcy1RVyGSprYWEtcv/p//ZBDfEKNPfsmjnmV7Zi95SjH7zPZKJIqOo6XmryAiadzb7/S62GWwXeZErU5bgRx1+evZSsdQMzOYszi64WCS9tqXof+wPNmK5RI/upwcm8bgkh8ndW+clKUhaEN4a90Q994QswAqgsprM655TtFtghxCrluUIc0TGt6L5U7LL+5Bi5zTFWiOS32+iuiFqGIFNReqQ3WbjNHeHFGEGWqSryLP+Dia0SpxxeQgTi4teJ/o8XOqhqjSxhz/GCpPInYuym0jQYIjUEsxrrqiGCsuz9qilUgVstHSCYEcR+St/7J0H/LByzAKVegie5t/BMnlHgSPF7MeOOVGHij7R/3m5iPEEZ32QDttIOIuGofUXWbbdDhtEF+75bZfAYGgrvkSdAEny0GsSqkPpFBpt+JyZK783pMeSDpZivpC4M1LsNG3Ca5guSC6FnZRwD18xzqB/ieTAge5hDIj0US1mDhMOFHw0bbLu2XEqC/2t5tEYydSQ5Z+//8IBTEITUSYbdQZjtFGxWhbuQi5ywhd/8CUfNBCvOczv+ni0pgpqPlrTgKCrPENEMzLNvQUJbTOob3DvmNTZDlhi/6Oc8AiWF1DsYePh9SHeyrdtbycdiHXtH9j3Tp81bz556hdeoKe3qcL+xyYL8LW5F0T+vJvsm/mJgQivvKEKvNkGi+3GLBOTVmL9RhSq6f88ZQQGvikTIDKBqXe1LGqQ8q4SzOnxwbxYcbiJ5ipWD0wijBc9eCtjQZYEHnat1skc5u6ch8JfIa8TSvPWTTlbbOrJ1V3eKXkSTXUvw2GfbtVtaDOveiLzqb5838Jvdmju7oNafHdx5BG/eJmIaBAfIFnjOs3Hb+Drc5/pXP51BpvJvd67uCZZfdxtRs37HQhGtaUgduQvV2K5Yf/LLs0RwYC1Nfyis73ZCnw7ryQBw7hXcivnx1flSo5vq5ersU8zg6JdYUkCOo8bGKtXMViXLCdxuxBv5xSD4U/ypJicQoTD1G4T2uoKHHltANNWehXQEdjYMzPVXBq7gZ5SWM51DnijyaIyoVlyjezwxT6JoGfqlo8KZlwcEbRWAAusP7XHLTiSASkKjYJkvOx5CsOfWIF9thbWpg1LyVGdY7vhJu7PBM4ARa+a2aJHJVujJpyST/wgQoGRH2Xv3dDLeEj0FBBsLNiQdm5wXLZ5JnkS94HrU5Uk1bDPCpxEU0Pfnrjv2sA8g7O+FicnJYv3AazoS5kb4nqwSskJ2pOnUTHULa/BKs/xmim6aslFAnxJ97sNt6LJvoeAW1O9Gt0deu0Yh1UYtioYJkXN4+3Tg9iWfJJpaNZF7GGPpaNFfAmjg9V2uXrOwxd6XlMIL2BwrrgHK/Lc5VShz5fmR8WgW3PvMeK/dnIP7KYoYyb0tYTElVw+biLGPk/BwpugcS442vGNPdSg0K/y0NroyulgcXnAlHi5YtBWZcnX41CTpCcCyJ/0XgFRo1UxADpFoUu7brnduPB/57ZG7TDTMxXQ1wA5wNsXR8v6iqf6+q1BDWp6+2puLIbKP7iyDnf7lX8bju98R91bgJj+IFKHWjR/dLDEmZS7hTrf0sbr+jXMJ37obuNJ0n3pF+pI8j4U1HB1OIRCp2vzIzG2hehMpWdOZHaKaN1L3XkIWmAG0aawCgLfdpxkijf7dhtiRjiNBlJT2LHWi5FtIqMA4KhOFFjGwG80R7K23kYmwUVioSAdKiEpkRbLKWLu8h/N9bOKxLyWOoW6FR1XmMu4m/oCCjL8wuq7I1JBuuvd49tRgG6CCd9jSFHrI3FJw6Qc+aUhNkiDzNwUSlNhZT0ycj0/lpf7LdgpC0WsldcPJoPUBqkvpBdLRPsw8dcKzzkwR6XF60YRg0dqbLwxa1e++CJMxOy93+C6Sf/ID0TvYoBSHravTmfey5McEzBmYQvJfNwDGaLhYJvwYXIXGE+48v9B9mI+n325jF7Ym+17Tent/w2kwFRXLo/HwYE+jNY04iBegurRvZO6YY/u4X2LJWLOeGfnlgFqwPh1QB90lsOHd+j6AjHueUfQaPW2PCMpZQjGF/K6uVR/VR0Fur/7O2eBR5aZkg0qQjBAP0+wyALyUCThSugLBMv0XwVka0AhGPuxTw6UbiTzzGeiOepUmY0pxL/yWjZjadjsByB6SAlCvN+aMtNPhpZpebtzWqTYTg9VBodP2tPEhenjrG6ULRQv2lMm38e1ZmfoPQOuhPSZoUYw2qOjLniKU2gEcxZ1SjwqoRkcB3kPidaZcIx5N/RoosAxrnisXoENRQ6wE+6UvRRKLLt869x2Jf6bfvDOffEdqTZWhWrk49cjpgf9dGizQyUC3UE5TcAYYeOSpOPulE78s3dADkJO0h+QpQ4bKh9a0MYMN9Bv4/2AWC5rlDBRx4lpmfHetxD9zBDqRX7XI7m7V1JskhR9vy+aL6TITb740cXFtLm78x1QGr+X7gDJyVx/MMF6MhAqDm0MbpVrOFmIjUjCzzVycbSZkw5KV/QT1NeKeoqDQf+wGXJgych7091ogd/6VO99ky1i/Pl2HUEmBxvN/dyZDhSrWkhovEWcB0MiQf/A6lvYt9uNHyfSera88dXJM9XtJf0e6gK+IhQXJ394Q8asC39ORQJAIMTKI7HMhC+K2nGBAo3z7I6SsEOmSS83AHNxJnkRnh73gGWAz7A+twVku/dcrYIvtn9teY6TiwDdLZcsmOccwNAfubsd6J/vraG2H+qmA7zMgkX2qEVS1CZxJ32RZGiBJ3NsCpJft/5cn65xw4QBELTA7rsrz6/2fa4TMiSADICakNTYCIoWfIX6nWgG/r8yU4mVzpUDHjnvv4hfQOf4XkSdhJLuv7u1v2gvvQhmsnmJL2g0aORNRSSy82nM4sdP8WFGCQf46WZbKJSOxof/LmNlkndgp2NM7vHXQquPzUTutpSzjscdQBPg6Hfufu/MKyiPscVZHbSfsvIkQa/oOXrUtUB6PKz0CN9Ggys7bTnuPZFIcyJ9InvVlNVX1Oc39LB3Zql1c7/MPSw0HBSdzyU+PMZGQ+L4eihoHuB2df+pqJQPiPPYgRfj5umHhtxFDB+qAvNcM9Nt5ejZ+J2lAxh55ktDLdgz+Kp+z/VZtsBJBeP+XEYEc2Djt+cxbyolcIQEuITYV5lbtGl8e7/QohIOqFqVYls4ZPC86oRxZgav3G+RsoVv6LaWZId3z2cu6RDilkOqut2xoQW1Q1YzOzBX0XcI14Kifl5xfQgwwcVNgdfTd2oZAxF9fygPhFnse8dWgmx9av3lziLpJ+7NFnn7gJgO/IJ310cJWX539T65PN0J8RST0qnENCbaAhbaRZ2d7qHXZi5KTP8ux69GsOiJ4lslG47hXwsHWCNo6jXBn2KbdWW1Elmdtyc91JPngh9rvEewTZBmaQOQhlCHRVs9twBywBLyq2Kmx1sQewhTvfHdDFg7P08HGpUiZUqjNRzr5B022cFuzkJ3VKwZ4WU0Xgt/lS7bUH8lRQV1tR9igLFt7g1+Hot8w3HhbMIGq2uTaxpMmFfqVmz2K2ZqFHX0IeSPJXKc9V80y1luuf8px+9NtW55iz/DOSwxUXSb0liGPjXi4dNdSXJROCvcmJv5xANHaYJmL4CTgO2Kr9i5j5L4a7yK176p5zrHqo2S603a68/BTCImTwj2ojjhe7dnc//MrkQilMG/EMWd5BszQIB8TaTMrNmO9AHb1K7oQVvrgxa/wWCSP0FrZl9Xs68HAGlPaB8QzSIGjNgDXUO+RXBTXPCSrITRy0R/mmbutjpScyg8iaoLATKeCpm0txpEIi3YS7/xty6Fd0cHR7LPoeFk2h6WD/BGbRrFLwurPiDLBgA8C+Tphav2ODAIAr7OB71TUCejj4kfBcgpB2m+1TcU50oUHpO4brEJZReG+fFUDkBnmjE8gk6f3Z7FCxwTPrJcUnEKiXn27hZIm0Yys3d8eDtuRifxLH2DoE0AfMPU2xqPdVMEaYC4zrVxBNjHvtwGmEdtnQEaABW1eVlewDt/xohLQvi/17GQctzFPP8/hWFRt7c97vXyYvuq46NcpbUBXKoS8HqmNBlBXw8x6FpgkMT1WxLuAu3pMw/5B83KxyZRY9wyGGZ3qpnkxAplodHUNb+WWGwXcQm+LKhJeNQVQFcC50r5EV/7q1oLC/NBprtCVu5W1XP8xRQkS/Hy4BtJ/v20/q0GO1OgQILZv0t4yPNgMor9cfGKzvmYwI5GRjvBrYEstN6wYqzPzGzMheg0AqROMj/TJsKeeH3c1WXVFaN69a/+vsJYcig3noNxv9PXDZnjZsboq4XgF4XtNmMKXDMvO4+pjovyOleOuPn+3Xky3QRKZdTl3U4ZfA7TynocvcZbrz4LZsBkOlUbJGXcLrloo/a+4MVtx8n2IaI1VHY2c0bhFPbPMKbhA0PCOh0xaoxdsjWE6kXTmr6nzpCI7uzKWiTI6VXvteDmqcsj2rfO7zpCUUijtmdDMAWn9UQsveECLejxxxJS3bSHulOnMrjXnLz5nTGB+VDXxk0PGrTuAQxyIwHijdCSgUDt9AJ57NY6yTdpN1xLJ9n58GZw5WPn2RrXz1qP+LUaGQeGI227njFHIJTqVFLzvbSkKZIl4kYTslbjcnnijejeDmyvoa70+Pb8+ghPdNVFkiZGWscQjoLKyLbSafEnVhX8/gCnA44zRZ2qQ1uRE35VJSVV0pzbo+KTu65B5lKlkGqNqQklQk9kTSav26WAz7mVBaicD0N/blacdOnuH2IO2Rb0VeZ6zag4FydJ9/0pZIP3eeBLKsvowAs3HMcQxZV3kBqTl/jBOIgHMlSJy2+TlkToKlDTm7/j+JZKocOPAAbetmAFI7zPhnie7ELxWvF1lyAYbtyoJyt0f1RYKKZa/WzFNa3KcegJIpgmbnnlCmu2YN6kdU39H8N06jzRAXb6zhhHohwlDUAppSnOdhOj2yZFdrik9pPN9nu8Mjx7fWDYos/RQKIi5QqdhsS7U0aXsI2oKl+OwIB/C3SMPEbNpSo0gjEq+G8zPwCEFXQ5A4a4J1r7VJvdoyQo9Tg3kMDtkPF6ipREgn8aYZ9FT8+Zfgkb3sVKlICc5XP0ca+SN+55PfyEOCWTVxoKD6YUt1Dd8Abxz1yFCJQTx/320X4pZI+b4S/HXT+/FUSH/RA94zjOaCFzZC2R0DZ2UmUSsYmTjgVl/0QbPuyIEn9N0MzdioQJc1HffSNSk70hrYCUWQQHPORNp9ZY1Sm9crU936qBGen6VV53+9b7tp3/HU3ogI5UYII2b+y7HJHVyV1+CzhX2iobO++zJgrciQ8VZ6Ied4bO5ksauul4Slb6mH/k+0rs3eyu9lKtwohOVvQNq+2wNwAtoE7kSt3dgSilJAC2Zp0gAp6eJJgcl2t4EEsBgwV7xwWW8tXjI8ZBAW96uH8GBFDLi09igq6C5eqxcMH8Ks+LaeaJ4zeCCXX18AvWxjy+naiKrV00EY1nJ2/1xLEmcHrZt6uI29wTBo8vMIsJKHiDSePw0qtQDWD33ntW9cjOy4ZosXnaI9l3Yt04C9o5tjCc9jla3CozxQWMeeKP4l298WMH9LxeRCAjIB7FO9g//NU9rh0bFordyVh318ekaSmWDKi1iQ4onXHCYXy6gYvfPNTrMPRQuNSgNHOsBdQIeL79DpKmGhngr+VlBtOznlh4DwUueSvyfo+Np7U+hY4vaG8d+g7pH1h1MlZMTZrysqKDkCg83cDTRKS7yMFL5crSk/yMsY4hZl8LFQVRrbNYPB8wOK2c6ujfnOcBj72YJFjXgWaU7l3EOSVzOsGIF8BZ/DwfL+iD0cOYdoCFAtuaGD8B1Ct+Lz06C/dZ2ESoHbOKtE4RSLBWKJ8OVlck0cvM2i+dTs5rtMQm9LzYfn/l9Yqh4/0ASoiABkefMvQzMiIVCXDBnfze84++lgQAd4amMipN8nSmgRf7U2fsQY5FrXESj0gCzUuxVU44T8Snw1PfwHT1xtkY4WpQH9ccA8spS5C6lLY8keyw2zplNe3SlCEqxxyUPcxr91FmaGMoe2fL30s/v6Wj9e6Th2Xi12hwnnLM03klSn3/HnQGBb8B5Y5CDFjz44dTdPeSjKXt+NYZzQpWaaLcerIkIT42GFtTeblbmwGrOOLHT0yb2JjFZKC8uOCKTtA/Y6YNP/aDqL8a9bXiVAlHiCHghQSvHsO5UyhXDbl/0s+HR6Qu+5hzkkZjN/ENIyra4OeZG0moMmnHUkEM6W/ZH7PL6E8+t2oTA0zFuwjhZbuJJ6/dF3kbuQFWHj3mE7fIWv+pPiLUlMSTTPlzcN9Hwq5K4xCYHVAvHfzbuKytB/uUtcZ5sUCIki+O/MhXDNYAhWpuQU5qmynRAxffiPDjz3yc2TDqwICQAMIqlZF6oIHCdTbojiM0pTCtAQ5jqEBTHY6zXfn6BMz42l8fMWGWVzAj9U2xGUVzr23s/CoQiLo0OQu78ha87RB5709SxrOu46Ob8qk9y7YGqTAzGkPs86bstLvzF19azMKTHCxyPSXdOLnhdRMBqW3DPGAtrD3BM6PpRTN7Gb5BZOzFo+6GYsH29pCynCn9p87tYOmYQTi+x6nLg6yI+2KCHT7TS4hXXK7xNyjM55bNIoUHijjDzGZZFJOrUsktI16yZrDttEMcyBYhkwdWlWy/iQszAcWetPZ7XWRhB6BgBHR0M9d456+lbqZ9zew4edKCL/y/2EWtQdKnxHmcvgrTVoP4Mvx5AvQUu6GuZPJnROZ2DxByjRjeJxwRsKlATScF6rVPy4Bu+X3aHcx/hAL57U8qgqHeyF9Wk7Vb7byTRgiyP7dOxO70R7L1lzS5XO43HN+FXbM1dXriOQcZZHq4svbaqHISXGFf/0cKqGYV5sh+jkAulnvbbd9gafHymPHLmHx1y8cntUUqWFYm119sOeW50ReEv3lVkDBr2SD4EpNTr38aliOzC0AQBzB53rTC6zgKbfzc/PwgXx2a8IQwdazChca7XZNfccZER7otktXiOGEFlRbd0GxGG3SXpOj0iwvJEAvLzqn0fwPMDd8QK6Qjd1ygI4Kc6Vwc98hTMjghNSnYMijRo1LrCxrC4I5PKrLv1htqEgV29bNAvp+GogLpIEe0vtJcc33wA5Rs/CWDsEEXSlebmixCOstfSPorvve738c6s1hk19HVDLqvapzTqs0pOQDOXGvXrH6J/tVOGF2Cd1lYJIWOOVjFJu1+7cYnPGno3Y26aVTX3uaBiwpmP3f5PFLKh7Hzu3WWVtXtnnq8dFujJGTXYJwponAkurusHnFeTTwr4YB2g9XwUosD489FaYicA8Jaj9HpMoNIgZaICzI0ZK/SIftr0Yr/Y7LObXoPDArGmmswdNSDO7k93KJsr6LWVnCudRyOVasQz5yWKtDik3fvVyBuMbVdwwtsis4znUWJjBFvgi9yXErciUeSUHx/ePWlecEDjUKQrBZEyB/SWb49I7dFGzrLHMGjUGmUDoVvMLV0TITCmeMQIbAkaMUAFrPAYD/97TDtaaeKh5OfR8V7B43LrbdIkk8W1KL7oE728UakFTuRNzEyBbiZB1kKz9Zrr2oMmR1aWUCKAM+fJnZp+Cd5no0g2/0R/rWsA13wqjMEkGkkDhXumLNYVBnO5VYagsqaOFUrdkzLq4pEeVXbq862ydjLfZrovWTUW2mKv2R1wGGqjTTXmrMYzAMYko0dtyQaBUoq5E0IW3DXOqv1BQi1UcI5Y74d6h3eYmfSP13ECCTARxn7sxjSkvOhyciDR2XY3WBiN2MbafbC8nhKvFDbs6QHloLrdPl2GPmsmXRF8KqMbuY7W3wRuyI9Wyer2hpA/Wjlr+50Nn4lxA/drqpQ7/hB1uLLGXKHky4XT1Pxi/72KEPUoLjcsc7A4PxI0y3ogYaXl+GxuM6AysQfxVRfvM47TK5IDE+08jNJiJJLvN3AzaxDO/iyt61/c8GeCvVpEhBnW2Ld0idGsORWkmPgm3bmbhCOHwydUvZwvw4Me3xiNe2ql8h5Py8NvwGgxGt3kW+7vRKlKU9XCLo+8JmSeFJjoOhzldu9Y0B654wQH+hOmZwF3/nb9JJeIjFfWO7oBkrpmd3V+xZ8C6RDHWDvTKXco+sosBlmZeaL6t0nbdv1fRg3iayOrw2AM7Jch4Smg+rcSTX6SFVcGlFrS5mtHr7cZOJ7idqmBlkYyjq5djkXk3u7K1cmv1URVs4mM/bZNWMofpd1dI1AaiI+ZvDnGUMvwRH20rB+OPFtmH51LlsDt9g5sC7YHMxtkC3f3Uy5QVmTDHeitW4kLBA2Ou1wjsm7+LOOUfM5Sc0qRIu5AVNGYC/lEKRNMycol13pwJxLdMjfZyU3GMxEplv/Njk4l6brlR6+JXNiXddZkhzqbpkGiCYPsHbe6yXkDzYBj/iZ6DvzeeauChCpEaz01loFQ1TOg9SLu9cNJDe7SrvPaZYqaZ6l/rD4ATt0BFf9gwhuuwhCCLUWmbnl2UjGMK0XJcbSa5JdWdJh6movmz/aaq/uQoW7aOd4iWrbyDzCrJyZkI00hxzecPn//FN4hG7XVRnC4mzIipccs5oj+Lt3+/F3XyB9sKfMJPeiWN6oh6Rn9AhqgraMJxgOqBfnShBq7pWMYU0Ve0nQuqb/ntchms1FJME4JYeM1uAll2MfkkZ8RGmSaeXnqL3eXo8KA5otT4hJJPOMlaPr69n4v0xrLEQqhrXNXNR9BWeMB4wSSwn5yGuxZfqq9f+gIXhQwo4I8V0h87+JXJzOjF0/GZJAX0ma9fFVHxaPaz0R1rUEQ/IgNdPRwWnh49hQE/wmzHFlEfdgtqTaCa7uDWVmL5v9LzNWWxRr7PyDpYnWmvN2iJ0fTyeKI8rG65wRvT6Xx+1s6ECGxfspfZbX3SQwrudVvaSdjNwCojFIpuE4NPyHsn7SmCJrxPpSSSESWDvzaggLtgEcZo381behe6k2XopBTqWNoBUr8devvSmlmm53EquAz4TVxwAU2xXsnEf22mmGYuTTR0CU4ZEl78Un+VfDNoAlai4N5z09is2/BQKQC+U3vUDeqc8m8jsouxffXHCvdL6FFS+5ld6niTjroXd1Kb+3a6pLeYwvNXcvqA54kv710ko4iqNdVtnyxRE74P2mhnItLEEprqaN8dRrw7KNLQWEHIYC0B8hDMCeK3k7DhhtkkNT/GAF+gpxgp4LJxY3aiAfk5nBBfC+utuFQ35xhtq4rRotWrBotzgg0JfhAc4oxWGoBY9/Rz/dD7S20RgL7kM8JvtKyomVzl35foxW1fM6fVat439kH9kTwmGW6TuXrUgFUphUVc3sz+pGBNjtcGxYxlJw4QPEksXRFF2CIN7oYGCR5apSInuxcV3xJYp3f0J6teSdYN0FG1GM7yIzXiinDeRbSEH2ZlIBpz4U+X7Lm/TXwb3UuS1CoUSKM/VYQp26WfVsxVTERrDuhIBJL0NILKWCzwQJJ9U8bDz7M+MdcZcmIL7mnBs5qL+HF9FruxoLjxwwTYy6xaBkOyfjstmsOJA6U5Vwj7mEdDbUvdKgt/lHl0OOKR5vYIDowvrN5AqRb9u7Rgew5r59bTDXz24xfAcUK54RlxAFdF49SRmOROHcfFaDVFTVpIHmxhr3f3rImcJ4R7MhfgZdOyG2FNcFeLkEbzZGEkxPwFErjO1GPK+R1iFUMTHfR0cdd966P2cM8Ri1W0ozwgX0xVkRrSFdM4H//8V9z2wKojA3+Z6pgM9BOoP1RVwa9f+D7VEP6vrd7jTR023xi4HLWLAjMWRwIUnczXmrTUNOIitQxtwD4lG9qxo9pcbhok4bhLTkZTXIqUEXlrpo3pv1nBXsyebP8zZyirgxwJBK/tEb/zLRN3XJnUuEQS/FTmgcxPkPDp08A3nUzZOJo36AI0v+0ojkVjRqbaLd0vExnMe7fL3NtK1EG2SNh4yhRKbSethbqgT18cWE5UiL+DWtpydMFON6sEAUTl0GT2WRN9xWEbfN2Aqba9jLQkge5S7uILWqDoEL1TKn9lS8+VKXoarv5mdP41bceiHtdA+sNwkbvkmKs+2i7Hb6UegHcembklGQSb2HECmVvo9BzBgeZp8yVlybjadCx9JDUvAvIvtC0T9Id/wGXI88yeMPJvTLADNghEGU7FkhA8V42wwQdERRGgCdvMKSMQhcMHryDOmGnFMJSzsHbrFoSIsxavHS3CikeodS5lm4EZL0MF/8PLI6scilIhO27/QsaOFVcnpxEx2xH01Ggi6FbkEjcy/qZKNTw/z/UZqWj9SE4A4vZXoFEZiZLcpzSnPKgYlT8OT1c4kp/2uZgi2Bgzp4KEv0W/7lyu+OLYj/4A7yAEDxCMvaq6rVifugkHE1R489xrJYdrH9INt1OMMp/qHpc/WusqXfD9t32rJdlblE16tTRz22FtdVaA+s1JpG6GxyxTCxRkQQqhacOS6nWoKTvvZTLLcjQ2bl4m5z6O1wOaHLVngEqHAMxfeCuaFWw0AmnrqiWzFECB0XUFbsArxzQvwLbY1+r9/kseKxC1nwgNMeCOYLfErOglsQ7PXDSINNsGVgpvqviV/ImL4JalSHNLCrDCyiBtDMtuWU26fu/GoAmivQIGrL70sd38yygT9xTLmwufrnfZYZXH+j5VeTS0OCr5FxpvFUWeQNQiubVlWS8nM6+9nFOkFswwHhbaOFWYbNaeXcHMn1iKrqZETE2c+lgsXIi9T/HqdXC2UAx62hIaeHcUbiIbjSrO1UZrd7G9xKS8KCF9JkbZH0kMB4ESDMJmQriCD0sDixbxIn/Cmu4JaCOMwyJ5dcTaFPHdS+xD/GpnnSpdkD0MWEYMDo3igrRUp1eIKyqtCuJVYd8/nAc6tAkGqXCkyrR1podIDcsnCfaheF2CUFEF1IQQcYJVskEaipEuvNwd1wk6Ku/qEAX/I+aHsm4TVpHw1Pfa5Cpgxd1SMkFaHozdxkVGvIpYcVnWoEX+WJDxaLPXFp05STIELcPrMvWu0Dmf+CXP49sITGfGJAoMwiCTpDHd3HdKv/kgzE5dD02c+bcVFICNbZSTwkcxPNyC47ZIWAntty9GjIG06GzKFMNRaytPS32oeG22IBufO8NoAmaSInYGT+yxKBxICs3V/V8eZHGXGSfWmdr+WJXkIOrxHBqz0b+4YaOl9l1DrRTGvi+QECleAwEvsQ+A4pLgF4nWg3mXDL/WakvDJJU7fu8aWP7G9wJFaVBMT7r9Nuxp3LpcUTFh/I2jK9lWMvdEd5r68hf2PVC9JSGTbbTK04I+G0lz12mk8FBEu34r3iWpH8c2LLhTKPMECj3L98mAXy45AQxsqlxvyEDn5Og4UdRIksmHXKMWO1UKBHBdHWv+ZUbGS2w/B5pTerSiPyeZFivXsP6r4401z3EXbT0VooZDuyfG23uqn+svnGL4ruFq9By6dM0PRJ+oGcLHeG+mKQXuoVAR6Fy0jFUUrnlzK+l7ynMEDvScCe+/ZkF1vJtSISByPqr4mmIrlxzSEcVUzG0szXb2vJXpi96B4NeWTDIizHie468j4G9X4HZiKr9dRkHe8mk63cPSV83UZlhc3OdOWc7Pv5IX9IxQ/0QgsnBXSaThkCDyHH7c9PoUlUk68dLfPD2Rwt3XbP1Kx4tB8JezLqzgK5Br1pKqztBaOC9NGoIta3eQE1GQEkf51umpAbSKCKdwJyOJltE/m/KW6mD8mhlv3NsUAISi2tTKiVDDgSrkmB6Mqhl9raXp/mJSDOWzx/KcPwESRm+QXgCTi89b+cvDQURh5uaujZG1+gjTQ5JjupMsGp0bx0YazSv6MpGx24mFGYDfVi4E9gKuYp2dRoJkNwKNHh8fQ1mIN0EpOrFcTp249UA8OV53Nx3KrNT7CilJL+OQl1nwiGJME8atPgEO4rxNFEbGuwIFQiXJ23PR7T0vVl14t8fBtOi8blkZRH3hPD3TRW5c9j1bGKYSD1Hqh+HIfp0ntXGCLkVEmdSL5tL5VI+3pMnxTGf6VCfz6NcSD7yrne+nhUjMBX6DFN/yKtVs4pWhi7+S272mMMq2LdegRewge9B9142GI3pmguWVvgtsl8NNEAeKmQ6erNYmOSUDP1PcploS8kPS1N87csEhd506la/zgm3pO0H62VvQzV3DZljLijHqszsIUSFFspl+HuWAa2jHwO4aGKkZ0YWS4CpsF3wBFwHYF8elGehFI+asuJR2JzQwFu7QIw8U+N3TnUnKx5OC3l2UGCuDvlQCipNLTqbrKWNpnQc6mcbyuW+/IgObVWJOQiJIpblkM6pgKeACyyDtLhqJfh7zLpusIjwA5M3MJaZaHFpiyShR9mBRpms2jCZXyLOedUQJMqzy0BIf+jtX35mNWYABr8oKuVYYGv79CIRvuGFBDsWhIiMIQiBYl/o2tIq93bGz4Q7s98YgBUa5TIS/ml9Qe7zgwFMdeZ7GN2lkSIay/1yAuN/pRGHa6tXdlBhNLTg8JFvk2Gt26QR3lOutKmW3yMj73wGzgWHJEmYz/Rykq3Pm9Zhf9C7Dp6CN8YRu9SR9Jj4z1Gy/Kmgv2DlYaK9XEGorEhi7HH85tJ+qu35IBK516pJUKiOO1ejt205C7XTk4FgCfPMJxNy7N2NBBtMZPWgrovL7sOGhBFLOjKwOR+Qn3H4ezJEgTHeDTixHPovLzhB2rM4kjcahCGv6iu5PWCRd/ltxF0kGOVMCOUl1H5PC/F4LUwlv6wsBExRRSKgWnpCES8hSjmf6qFhar2EOkFLISVXpdr6NGxby1Rako0Ez8sSS3t4xIB1tDPYcpQpAOm64JPA2rYCE78QqxFePz8yJMPYbQoNxq+yyeh4JGv1DIXdnBVHBzb1ZH2PxEqadHXc6zZCxiepQvyHqb3HFiNK0ABn/whimBBqGAJyOwNP0n9b40AkE4kgS3yENhNDwb2fn3/LKEgYJydRZtLy3VLQ1e8Z0Oco898UOQyc982lflMKSi1BxFwDP8j/rF3AgDl4l3FMt4RYVkpvSTCOXZKeNMLCBClXvFPGjdCkFt7qsBRHj/OD6PnmLYB/RpZNPfM0MEiZZoTUF79xHtGyxjD8rnWCYUauIarFkqteaIgP5z+XrM7TH+Vui9IZ9HuJdy5WoQy4wgku7hSW+WOmsI+9BF1mHrNZS3c64khFrvGZ1YJSbohuHC6h36klxY+AUV11w0++ohlxJoOESNZxTlshcjqf/1z7ctjUSDx7uERwtPs4GxLkrDwbgdbgE54bK4NVIp0RU2vmKrgZdNJyliPk3w3FxL0kqC6g+avyzHvzWfCXDtVlF2VXF99UzccnxNd+Xfj47ovEfRAvvqyQSo7z1KuLKvbYVgfE0/uRCeO9xCKJsVoH41YFuFMy/6RhJRLF9yV8CHAaagLNCwWPmFE8DTtgVw4BzRS8+VfslnLo1+EvXvaTL6r9fm+4k/cX1wI6mVSBiMF8cf5NTlzO4FAlGChaElZozAm50V7FQ6YHyxXjG6qDSEixAyF5EnZRzbvTZzT+ExRrBpareQZ/rP4fCBU07omgj5eEvCbBbdrRKAZuJ+gVaIQQPHjDp4nNu/v76xrlJLikLbarMCqu5mSfOj6GoVM45nPsYn4OZMh5EdyG2T5N48f4VnjiN1IV77qLuRMuURuGwwSVjsOdX1iX7nGedoT0veAXC50luC4c6TXFh8Iwfqf65Gfhu0vo4lOpATWlqsfiZ3mYS21REIvFCU+Iy7CPED9Nmrpp3afut23+pE+/E/SuamhlOrlH93GTr4bIzGkfibFlvOoIaFRhv60GI3aoonyDLQtQJD9XZGLKBi6Moh9RW+CIjlmuCFFgMccUT2meXK139lVDVjGnxUFFG1/rpIBX8kN0wuqy4c1DqbImVVz7Vy5dNsO9SXlCgNsftbpT7nymRaFWj5juDHYnug/wCgA9/QOhRsjaCuJ1Ukg7FkaF5cvN2zx5Q+e2cGLXYSJR3IAJuHQ+yv9Cd3ClfTRCxIfS06QpCZWaqqom+PoOzbTbG1wR84sKnuMtY/LH+7Y9BwatZ0qO/R7LTCH5PhT3iEddh5NMg+OpCZmF0wGghY8dCBN4AghbncgmHLT0xcwKJ9ImrjWQJ2ujM4BlXVOROcP3mJBVKa49/9nBpKvKupbw4z4EPf58JYn0fWO6bSao9G76DLmMwF4JCiiiLNZEnqIXKs2ni8BgLis2+B13bFlLX3+7OF8d16DGCE82YDdaT8i9y0fw5yfUZXKyJckUcebNaFxP1JgvU1dvg+Wohne9WfuQrllfGFU7rhHLnOsk60T5mOgxl6fu6VzFPOKoVabwlB/w31JI+IzC9xa+MUOJug5m0JFy3DJqrmp3ldT5qrJklTtOtd8GgPL3doVGdxaBe4g3S+fg0N2fSS5TYnhXR1VUN4k0u6eX5Q/pQsKjNNsVEKTvk7l5PjCcT4k7PKjETgpQNYji7ClK1A4jc2kqwiGbvTHVHVmUIOfzsFGvP2fcIRzFtKdlrzKzeku4xGuL/CgTz0DnUmuypjSwRZSSGB5W/FbBZDBJ0WnD82J7PBt5xmZZY6MfSNAPkAV46SBzRRoBySQk5YEp6H7u4hnk+50aAA90EPmYjxoPh1MjiLCy7laxZHRjX/Bkx8dLklrg1U6qZXkxkDV0QTFw98Xm/Pr9fxrhdMV5dTKeVph1yz/kj7NvikJhsZSytyLsPKhqfRtah+5zRFwMVKsFo/ixMevYjlMhIsMAFuzYdcWze8o414UhKRCTSoyQPY4coPq7lV4ljU7WRjosmTXEt72H9NOXNYiszi5V7EBWqnjMxuVT6ycmQdrKo6R0dgBUxAe+rRGL8cRxGODvQifPStNx6sh73XgZzd6dvR8vEFPr8zjUFwjXEk9ZGNQq3EFRa+ldAUp4aZoeaYcZ5wzr+bpfD9J/JAbmYddP9/W7625UjpIZjMhGVZKOfvx1PJP3D7OBKx45Mbgq5wf59jfe3jHGRHSYzWDUi71WxKH6xTCjW0lf7GUfxQ3R4lvMJ9Y219QUU9g//1oEYd0ba13rPxzJ9Gco8tneipN73eGQg7RD9Hh7cGB6Zgt9SOsvtKF9rr1fLmBELsUVCsYJNiS1tyqI8tpjWf0Veifgh3Ds+/RvpYIURpTBdItEq+GhWF4ZmSXbbt1X0e61qznofrJYqESVvU//um+3ENkRK4K9lJDOMO6FJ6TIEHMdSDufxn0WAU5bZ4eyZy55ASttlr3WKUnM8/NJAjgTZB1qKMuFeTf0gsxa2J8uDm6FKS9iR/Op7LJJhan0E/mSRMpXnQ3q68yyXIfHfPXuedg/SX+hL/8RREmqhkxXypPt4fTpc9MVJCy3LooY8Xsn/LIx2jW8M/7qM9X0JxrzSm4xkkPq+XnoGaXvfWzi0XQ3Y25xXidkp85H2WbHjxLEv+YcNn4zcPp+gXi6RIpe0mS7qtZIt/37A7huAZZL9Upv8It1T+GWt+1yXhigJR7SA0n7kf7jwzxO0PN4cLPoMziI3I3kxetkUuZhECvgTBTLskOq1mI6rs2cMAwoOWxIpiWGv4F3ZrlVu0HD2vTkKUzym6YfiQzqIRLTDdBx9J0R9LtaRMw+gu9iPNBH9rkQ+NSDBiif4AwgNavarsXtevI/E6feuXLYpShx/kEpfk6Ndt6daDAAiNwYpvtnPa4vA+7DYNBoDC8aqc1MvAVdT4ldzm/xpeqakeNkfUmyueLoptYrAdFH7B3J1Fep2IKpwZLM3lHET11WmB8vpie/3SgJSzz2wa8e1ZLz0GYjgCpR76+rxyuof07e/mkzRvUwugKOlsMsxj3tFRTuXS0pryE3wvg2A9ioeU7uIjGHFGvHz8BJJ7vnOJXDLIhp35MnJVTzwoV5ciBpXtHepY3i70Bv+LI8ERJGTue/zkACbX+UA2uALBaZoprzd/RBubhvB84aV2jAQ/phaf5UGZeXaIrS5zrQL5ZxGw19sjDm5JhN0Fnas9VejOYsCVBDSeNbIdmVBSdvrebOSDllzzVpE9ih80VC3rEc+j59+E0xuextBfSijZapvXZty+ZlLcI8lFZN4zp4BIfqfpwZjcE5EhyX8uVB6wG9+vps8zH4nor/9tgEBourxvUVhsSufkjJ5BZOShOuqVaTTBHeUiIdEPWO9wCoIUrCS9Iem8LcDzCocMjwYSlcuCbqHWh76XBiha9PjAmA2oa8BMo2s3RdThVQ3MnLsldmtw713e9iSL14ErRyQNcdTeJY8dDabj5XWy+A7Xg8nO55f+8cmIBUco95Mz3SJEabSO/3xRfCOBFp+15HC3/HbR0AO+xLhYnaa7VBriyExlIxOQ6J2mw/BSplWZheqD/ZXyjWOUtUtDYk4l3XtodQW3DrJ3DAcxJDFnX+NAFVfUSjjBsSe24Q7B7IWoYl5K1vfg/oW+ZAudcihCyKjdpgUT5zbBQi9Z+0Pd0UtwNKBPew6rv7pjQkOm6+CrhWQ9vQOfjAAl77mhZeKayaZDAi+ydruAl+mKU30guHYVb4MhKo33Hu52hmfez+ClbnGH2Ytog2Z4KMkngZjGhJtIuQLkKmavNmdfeBKLst0zH8kWvN8OcyE7UzcwRH2y8UaizxmLwFldJqutYSdfMIu9wdfVKybzEMTcQcL+vGZVylp4E5MIR7k/P+0OyIxAVhJqSMZHmBVYwomZ0AlaAsGTNJaPs1h1AimCYPNEMQuOFJOLykqAeLjWPd2LyWWRNtZ/cb8J/9y3HW8kPFh0sovzLKNftfrGsd9dG+LNh0lszwMZNeVZhRu69khbaH5u2akHlBQc+oPyCt3QmkmOGM+MoqZjQgSlFUZ94wUiOGipnkFimG0UhZxpO4ert56qE0SOo+ux+E8wIp94RsydP4BezI6wY4cKBvHDLkIEWQ8dkJFwpIOyDJFiKX/al/zWC80uVQUIteuPOPRgdviiKOKYtoLAvtPMJg2bhaGerfjo9YnjT8hHNIQqI1+2U735w0UXLe2yYT21YbKNuoP3LRtw9H1SEDDvu7Vsosjzj+3rBfgQ2L2gZEST49v+crxcYNkdMnpoxoGV31h8Z0Q8dEHIBBKBhXJacorG36cx/jR5idaBeLPq1NdAc7C+0uWtPENncfYpqol5pnzTg86eSmpfY9lx7JytIFpSGTPUREmWQ5AXP+xLQcZFG428L/CGG9JNBlYdNjpmlDtDn6BI23XUl699Zr8HxxBSGyazodAq/wnBHIPRjvuMmQrNFfB+n4QRdpo5f/6DfWlrfcKwpvnFeQ0Duht8ly1uZzIYm9dsGcfVO1/upt04aXYGRBmCpLxOyYn0zhQgd4b/25A5Nhw0PqtexiE/FlIjzhYOQr7RxTzlH0pPTaBBo2uhKT0sCqog2oJosCNtCofs22uAVdCzsAJTZx/HovfTU7YzgN4cuI1j4z+FF4O0wqvbfGLz5Zx8eOSz2m1emwqNtpW4xCTLhZxZ3iSRpu29gOCToYFO3UrhhAc+33+OfrRLl+lzjmtAkTQrPg8F+VD/b+Lzg01E8S9wY8yFD4AKMue5WZy+C3ISA+H6fOfLIX476aoogQpAxAw+1JAzcuJIFlJjnq9BVYK2AdisuFghXSOT4aeUtjeerInK5rRFrTq8AtxjCx44V1YfAXxWntJmZNcQf2S50x3b+n2CFDecgzy92sfOI8J/Iv3MwY+mKnT+qtOWfhJ0fU/sdmazCYrZCnNv2zejHkJVa0iZyCSLgcTlgdCIDub6NUf+opcYKnZgw17FHtl/ocXjf6AN0qIOhQhdC7yJQCaBQ5MkhinVSwGXbQurE0QVyg5W/hkSEsnB1Q/x0eAHHp0bEMtqnFJdH7adsZX7Hj8jefIxb2LptG4tvuCbB3FHh4xUrtoPC15QYALq+vpTDn6/J4A7U2tWgkrfCA1K1fq4U+WXhz69dmXtHSdijvWKB81jRP8Efg1rZbiYwRv2kvvqAJnOvlmPVjTpmQeF/YGIJBgpGGobL0bTNdMRQyB6cEUalynr4y3SmJFcmtUaEt1kHzuvhFKF+/uN1e+NmhN+4O8g0E7/KnY3oGnsCUktsGNfql6pDcG8h9xoVe8iHMOIE0XmqP0NfTkWTqIzEoOgt9A8WqcZniZ4dUq8bYgKmOR7TC+BO+CDqDjO4WOO9n0FogBpPiug9xKBgHjc6zNP4p3YQ/+CdLiSCdfo6ejUiMEv80Xt3AZjH3+6ClXKv+qzyTP3nCnw4KXP/GZn2U7/ImHtupKqmYGWCEZqw3eXMq6gJppVc+Fh2PLsYDf9/78QAXJ1I/1YFjQ0cMlGe85oJrWmlkR8px4dsnBIcusDSOHI5nE39J69cT0TtVw5JTIE4FJBOZPuFo6HfK4ipXBFizTXXrK27EBZDh0T22M+AJNoPbhFEwyg29h6N+Pv9wRTEejTo5oMvBxQc9tEyywQvp60IaJIVmu05/ydBK2CHd7fQkWsKfVQyDOlLQWB+ldwBkfWQ+Py9ttQLU82GiN7NE7zPxu7xEIdh/rtHyvE/6zBsPzCA2zNx2h1S2As2E941D2LGhta/Nm6k4cn+wYTbuVSA++jYU6VFkTUFnfk7awzgrA+/KVo967MamIF5+pCGxN9Rw2i2/u3piwVaiRCqySTSpgKPUiDyFLpLUUbJ2yoDqtfSiKwJ09KIW6Br52ILjW6Yf6HsqQBJgJPgRrH3X6WUf2xViYAM296zsZgjooXkkcd4E1eQVTXYTaqIVkhry99j8biHURuWqKM//jD42R4TOghQDPdqvDNXXlVmCGNDIbJd0JSy3FawRdTpOesbDs3aXotNTvWm7GKyuSW1AnS8K9NFEBcJQGviQpXarMBTfxvjUf8kea/WtDfbgN+z05ct9zapbep+JgVexxtDaClSWVLBJjxhntV0uNFgdGazbneBTmYqsSnZLP4CdSZsrmtOXD10ssOPCZLpANsSqQP5AwZCgf/CADkS1sABBSAfL+/HM8uvN8JpvtOD7TP/VwyGVBImjLOxmDzMY1d0pEjYLlL7ihiI1eDvKedcCoaGgF6p6959O2JrWlXUcm/6eTjrxqV/Zb9NvX0I5AD/tEPUz5684pw7nowQxVWPGC6/fd7mWlgOCGR/3MUyL2tnS3PyTbPkrDX8g34zoYpVTsCnLaUeWPGFe/ZX23b37rGHEVO3C6mJ3tonP1ptmA8rccqv7FtoCS87ruZnLFXqUL+HsDigMpuIUlzJXZZp1LZk1jqq+qvXwVv94ieBFcNF0FKcbGkewIdkZwO0DLTUnredZyRWfaLjkhTcncjJ4XvmJhT6+ePO/jWC6CI95eI2886nXJdTFGyXD1GD1wsUN7j44LqngTGYpSxoiwTVM4sYeZadLlQ7c8n+xS/SJjoKQ7cqV5k/420Ac37RZahb21IMIuMUHB5nltrWtxOtxyE4eU/Skc7NvZpSetaLo1ALQ9ZnOfk19iOJhDb+xmrwq0bF/DrCBBOmk/ntzk2xJX8P1svqaNPew71D2NkIE2xymLD4bfJ//h0XPnvVNY9/MqMS4XhorycwCqiaJv4dKo3DjgENMCRfShN5N5ZWevRY/id9MO2R4jP2sPOfaCD6fOwNW0D/PHkL8gnZVctrjvBgFBZeCuzWEzFylOdx23wUpixQzTpqqX5InXgcanabiH5Fr3iL+xX29EcgGl4z6c3tYOEJkRxR/MH/uF5POmzABsrV5BbR0nr1usZ0R0z4AfEJHxGRhXsBSAo1bdnf7myhw5YQ0/2gkEDCMkjuXTcNEads2oUv0AImp+nSax3RvqiQakacumvBDuW/N9JQFE78NEDqLBxFw2/JL4ydIksRGnxug7cRzCZKZN5Sr0lMVolXHzI3qRjl2j8xYKAfz5ALFH/ARmVcrT9Z5K72ik5QkocBGKzd93nswjWTqRajQrrhHpOE++O9/usWY9pkGaIaQQqZXNqILZvycJ6RirM9SbLOr42+3sxOtfd+px9Rfdve1CQkKq/P4msR3iT3/4wm9s1Gk9CdRMZH2Rk71oX2JJCuqs550nqaQYeagK63qgiWLJH5LXahW05oGw4Cv7o1/JrU6JFnStMwseGFFYZQda4XFw32VjkRZTmSMpitS7OwXIQp5k0M2ra5+lCvaDEz8iQvuH09jikg0kkRNReeznQKZMyN9tHp7TEmiQf1zUiMYKzoDy8aRbpJAXonbymK17j6nTgtG2azQMfjUHclg0ET0s1aqZuPNzItMCopaw747XIIBXYOCVIN6Z8TvEnHnY1y8Pp2lV9looJqCCZ4U2NdABcL75StLtX3aH9nFLoJelYrJjIxVu5JgKOrrUWFRpVsuTeAxn/mX+4X98stki8cgly7D3nfYyMn5HEA/fzdo8pePwkwVScoINrXB/mQ+tKcGEUcI6sujW09rR6nhtDMVSOO0zClEy2jTnTzkiO/Jb8xG74WH+SbVpOXY+qJfm3zcVwnNa+2h4mexNEULkxMFKwZmWJcwLQxK/rb9tkQWMGev9PWGQ1TZS0/ieWTQtX4UDqE41oBIBX0asjWT8VCnuSpTcRHZzEJOjKC1zrEW8gpK7ZMoONM65lghzXikg1+ambW1vsSet7mZlanqTYMzWDgm6DeqTMo8xD2xfOrTCp3tkNpvjuaQYj70kKnAiGwIi55t9R0zkxdAKPadLn8RKPIAC9qhtqssmaoZGxDrhFeabIBqqkUbaGRF7bWYbzmO9BoCL34KhIa6s0vLtS6P/jjBNk9LN8MHWPlHE3ykWZHJmb7J33b7pFPPmxGiKCURJoNtWuryujp8mzRWWxR+dTiUajxThoAdEpjy3GfHlW9mYnwNyYuhmZpO+YfOPhf2w9AfKQpebkpWHdlQppkGLVVTYsl5V8fg2khQp25nv2wgQ549mRsL/vRABLJSlrHPU9Qz6LxUQJOV3X/ChMFH8DGDpvd/DrgRp1Mxo/dpvZrUKiga/Rz/c0yol21s7oPv5ecCaIM14faAjC6mz+4uIPr4Vc7fDed/30Pv7JaLYRT6zAOybYUz7LmHUSc2oNZgREu5rS/Cw5BhAH4FA50Ip08n/Twg+lpqupl5xMO5hGwiS7iWOcQUQqNhhB02ukkh7FKLymPbf+4P4Gx9rx5LuPTMLIhEXsfY9vro42OEnuStumYzRB5YNesv65LTE/lyr6B8HTdFbwWRvBwMexclUEV7RntcidRnK5yW47fira/LBqvMROHXJNkkGaRIoVhT4RE2EJs9tI+c4ivi5FFBOWraqFGDOP4hmnlL7FQaHy5l2LA89es894zrP7Jj/xuNJiccu/WD2PpAYVzhNALRH40B0lsNvPfKyLdOaCAshbimjLcBBvuye0kVfxzlAW+fDQjbmX0tHBg5xEoKXsc76PFadb1/70c8bW5yFAoFtDl6lfgsWhvD+yUbLxwh9mPEKVT5RPEdB6Nb2/aYjcv+YyP3fVYnzMJMjR+57dECcq76cINRDQ6wLKcJxHO2kQuk7HFQbD2xDN4fKUCjJLvRxthmyZ1yZHRuAH/IvBqS2TrsAbYVSQqjWZxjSIqDLzfSXvRDE2EVhbdOBS5dZ2fK/zBghRgdEdYjyVrbiXbrwDRJkAaMG2kyin1wdWayYQTPWQ2T//rCqMrf69lXPl0tacINLy31fFBiXV5ySx94lVXYQT5koqfl/GYCbQBrSkQoVMWZI86CNln3NrkqBoCKeibyFw4azqIoNnHpDLzvfjdrxNAPgwuvvTBBmEm8SFaR03wmsnha+/J5Ju6Mpi8LG4n68WwT184XyORpkCJci9itUkELrtVLhfNpnWKN4lw050PEyc6oJ6TwWojgcwhDkVWEPHYfxMB0MCNGOUbrdYY1MgfxA40HpqCNzTus3l9J/bcQUINvF6vHs/GkeTTdzlEVWi5nYhbQTj57LGpsBdNHPXfC7TRhSluGhICGi2Ub7kfYxTvL7/AOu5IyOAlQWkV66HuoDlCdjzU5g6xGAJia+UIlS+3lcnawRC3VqfzNze4FAe1Q1kzDu60aJdV6VMn6rv2tpbG8ijIcjDWeduXIsZkMn5rF/7iKqqn9+/S+ud0b3ju5/v2m4oQkMwWT5ic5lBcfapJ/DVeC1N/I74cnXNIafV7V0C8YpFYn0jIRxS6UzZC3PwRntD1MsbdaYQS1/7CBRZvWoCzZ27PfuMZwwjpGqGL7J8R4gfodwRCcwtu/fK8a8iQWgkj4RgZSEmQ44p5PzkwW4ZGDd2ZisfnvRHeESW9H9Y9ZpbG1cNegDTCAdH5Gf4dvaPNwitAgrIFoDUhmPFS2rxipopeFnJ3T+o3VM/sB5I7FQdCv4oWi94N/EVzZkTQ6Jx5V1NznQkSJuE7TdZ+Iuh6eEVlJKMiO+d2DynkPO8k0a06RtKy33cDeDsc5zRQROGRr0IuHV98oPMX0rN4qwdyW5uTcOB7c3iLeKy04ydr3AaiDRJ5YzUvFx+FjJw+zCk3TC7ErgPs9DU2eyEzhZSfhQr7nuFawA1EOWyGhcUd/n6SRdU2h66wO4Wb4xvO22jLxRL7J/G0ipOa674rzBuyyVTQdEf15xHie1xOVM/xR52NDbYQBGIckaxaJnJDpJEeJOrhwGvA2cllCcBsRUdmEp9r33eOQw07N2dDB2Vtb9wtnjkdmdSDQsNHDn67FX56OIq8Z0wYUlPoRGv4isbvhnH9B8hmqIST8lZCcZMnf+GRo/Mx5CKhhrC7AtOXnxJ2uHbmhpU+eB2l14VW9a7NtlkwCVZjx/1IC3muNMHIipBVPC90m1tmwaz+V0Tp1q/QNa8iPJb6auLxC3mQ177+x23M5lxOj6R1oUArBJ32irl76RQfQ9w7MGltAr3CuORqyYgMQx0gqdGGOTnUgMYpFP4StlMiGIDSz9t/ZBAEom1GdLm0MkMRoK4MyyyQKZsgeglX2VMYsJJgt5bwoiriAid0ZAsL5YRJw38XabqGagCvMgIp3bK1Duu+lMXv4Yw0F+9sToSPKEcxKzuwuU/CK9efj7zJVjc+me9u2wpyB5g7s96AwX5wpqzyFkueITK3qf6PbglLqjfKrwZgtQL0NvSesZ3q+UkQP8uMBC0f7+rq2z7mYPdhivy3mRBhtu3LI4ZRIwDBcwNQgIGMqgMEZu3ilJvdi79s+SzZj5tfknuNzvZnt0FXsY0f/6F2OC5KO6sW6GykN6cG/gHAfPlv26nl4I0gnz9DLzIU8HkSIY/i39a2dDahhztALjI60eLd2OIEcDjVkO5W7UaPKptNeTVdIrGkI+zvgCINVtzi30L/rEVjEQHSvb+7nqzDRTU4keBzKx5SdbvJvloJBT1/4Adw53N7t7sV4Zqid7bx/OlMWQoQJZ02R67XTdZ7vpjXWKn6fK64gR4uXV1Dr2xQi6HDePXqaO2c/r4CBkWI4kVmHGcJEmNVDTYJVtYXWK3fmyr/eNgHGmGvvR3bArU2i7MQBAKvo/BMlzpabJI4fnEeW1YxLO56A1JUgJBxOmTMqGw/hgdyT8g15yysQYlAHJx2PcMZW1YKREY+9VmeYGf7pF06PHMPKfmcnJyTQ/RR94eaSam8FzV59aLjUnVxcKT82LnobhzTp17We5NSfUVv0LybCMnkhnyDaRx6ZqkBkxzeGad9/9m0Khz0zkgZzC9hWd3vftelhyz6T/xeoXoEtHihLEy4I+PhelwM3pLE4+Nxw9k62BaYIY8oqQ0aFp3UX9fWcQtLOUVGUAo210DuUvmpWoLo93tv2S4OW0nnJPGC5ghVSco5m0u9rqKHOfJxfru2+GvzXYQq+oHZg/fYiaWKdk0qHNUECUfrTkYXZQAaWHcwFt4c72WbUWb7k5b91hnF1avumHy6DyxyfO4ubauIK8F8m+RKWVob+DIPlbaqGLKheqm07gDXOUDCXAZUOIt+jMyGgo+3I99C/+KAvg11ecqXKfEAlEkWrxSwqyw1WKlgIuu8FdgGtmE07vcg/dxrTwwcTvw/wH5ov3fq1nb4SD33SQdGAeXyjXZlkPNB8j5aHBgQHrAy+/NtdtO+8FYxCn+JclrfGOQP5e4B/2/Rlu2zr3EdttBKu+M+xrVeONMcN6AA8/J9n08HnSshsNpr0w7IXyYhWwic0Dy2U7+tZPtCYs65kMOUGtJM+DMJy7ocDQXdr0aKaKAyDmJDoMFkoNoX9q8OplKEe6kNZxmeeIcYoLPJQ2CZc6wFMLxoMR0u7YhJCnvztc57BO3MlbbiooeLZ85lql/5DIbMgwOqjad0PFrWQzto0cu8JSEstkuOYR0oCGFEQjCmI1vX7o8Oa7qd4//qjFgdeMkSuvnIz0tsr4couOvDxi5WU9Se5r1+J3o+R+ERlM26hKmOrgXGgsrHXJ1IVgShlpNYF9CBFjzfgbSbbblw3sXoFDQigsE/4TNsZC4rk5YoVH1Xm3b4naxroFAqnt8mh4wpObUJDlu0kN7SfgA/OyHWzxaFCQOP3QkQR2Pr1KihoLUJs4emYvGfZF7zntKb0XZeuSA96Unoh8Wzj/9WthNdXixo12DOekXol/uE1cUxeTjI7R8dh7gjUbzEGze+J7fAIkZ5Svk/FlylZ7wN//R48Yv7Nn12xWjvwpKFweFSxtHGMorh9b5hTn364kpiRpz/CF+hqZjjqiUYRgqmSZRrNIF32wUDG7dwftk6XAspsDiIkElLFE+fHJuk0WfWFdm5b+Bq5yLNoQv3jYMJ7EYOrhW0qZct1M5zyuqKEepKXTbXyOgRkPWMv/SLlfm2Gepm3gT9+0t791QYm5mMqsI3cx/Kk4XfRpxvABHXFG/pe5zdxZHUbJKa5KrtCp0Td5WUMBhzroMsWfkXZC8B201rZcmPJYSm63y2I4EAJ0ZvKBFxR3eByKFOk7r6jwwJFqXLssnkjEglO4hsbrlFj6rKiXuilkLk9Be6yk8pWtoIW+1MeJD2x1uAkQghRkq0SMQG4ORa0FrRL6JS1MGl5sYIaqFuoh6SO31Yv8gPToANx7khulYpH2elWXPjiHdYSd/uDpl8PEWIqZ0AMIA5iE8XSqyu0STaLpSefBsTHaNR1ryjWk/BH7POros3cTi6AdlZHFuHwykm17lNPs4VcAAzC0ZzW7rwq51HC0V0WOX4DmoBevtpyB11rNBxiVchqRpAENKGN/C5mFj+UFSsSwRqNjbnnO785q3idQlePnn4qZ2HMnZX/DTvNzZgw+9r7CIGHPwxit62E/FcMHFWkIYSw4x36ccrmVsumyPqnALNq3qJMjO1zb7sVLnH4DDWpOfythC2oIQA/3mGwndl380SKhVfsedlCvATInUknFww56xUbk8wxIDBj7a4k/O9xjkGSKtnxpuj9TZjG+aHXdBOr1SwPp4ZAmR/30ImAzf8bEynT7aI8lHXabx7iOPBlZJ8t2EBTxAGHlUYDMMbQ9JEacGaey7/4Hp0c/kF4t/+YR+WOHUO9oKDG5ppfXc5PDHFnQkoMFGc8UPawd6IK2kWftRdknOLoo0096KHfXcr9LVdNeTn2QzpBcpLX81rJqO7OfFCwPmzSCtGrlst6us+5RNICOHZ4ZBIB2B1aMTLT5O17/+HHUvXVG5ut03AlVCcCTy7tuf3MiPzgZDJolPGqm89/2chXlBlMbSscqnG7xSu7WETwdAzHdYLcpet3bS3DKF27nLBz/vjj/87xBerLI6HSgicG9Of0IU2apEXvR3JQzo34OPtJodJj7X07ZE41qwbAGCGeh7rDGS5jKUyZmuA+jLYYYtL/PBDrP8LbjgSP6p5oW3LbvDgKpbCWk7IFP8s24GOTLu8G9tsMB62xDQy2NEGf6tH5Cr5ec+xtJlaXTcfcL1duO4hOs/yAF1w4VDQQhnEt2zmocDN7V1WwrEla5o/nTTUvsUloPl0nqaoz3EibTEkNhYkWKhVd6wbSFNp2cY0KAxUHw9jH8JCnBxYFzRT5HVGz/pUJ5SXyR09UfBs4T80Yl+EbGypo8DNtfFvY6wD5yFN387AonMcr5yTgndW+xEWKIhnSZabVUL4vurY+gOk1Nq5DR3cgO155DmTxEHuRrb3SZL4zO0GjgfXYNL8eRjXBS/zQf+XFe3khcm1VIo7xxGaG37qgxJP2o4v4e8sg5v76oFMaoS0+rq83dNJOQmsHcaPOyU42tZMzD+xc93jUXJl0xajYVa1iaLhYG3hbHaagcsXO9owd/MQmJvteNSHVQPTb0zOthKyWXUL5s52frD0la9E5ORMwc7ug7GRtkp2DLuIIQxYORu61nCqlmFDqRHGIiXcI1QIY0Hmo7N0HepADyHqPCBGBD5VyaYTFQo297inI2zTzWXPRvNijV/FJG6IOnSL6O4Zik7EzROxI0f1KJKVeiera9tBxQV1n0pebGUJjuMYNebf+7kCsTfLnYDtk3S0X4x3kMpilh3iVXI0HRGmb+40O08w4hqBHLxyVi1be3rov6DRTM5+mJEIEsWceBtTSDxfKzsj7wAiuQCrf5JWzlyp83NTCTlOaU3Er6SavYSgooFyvGBTzE5Wp+zpVxUHuzlJMIXKFdkG2ZxVUa7L35okiWLYakxHSu4FqL90dEE1UDbs87avjqPF+lSZyS9BLtNshMfBE5Vd2lO2eLV6c9hKUWTJJg1CDDyktGx+UITAywX1Nd00bAO68uadE9aw7w1eSPwdA7PV/uCV28dyIm6FwRN6LfiZenHvuLvx7Eb8o+T1kYnI3+iKAJJh61qlM6haqHpMrr9aHBgZtCMnMpuihhwrJqfKOdWb/wqfA1ymlo0FJCw7lagJXbp2m8/8KvL/eykJmr6elimJdJXs40GC3Vgiqhl2Cm0Zp/xJbMVhkmZfG0EyNzVDneJe2x+THWCmO/OrYXCnOBMxwYklo7OJFzkJGXBSU/EoU5etDRDIK5Hin74bGm5DvSurG2BLv4ap0ZkWqL2R3gzV8j/Dh8KtG0DUZwW046F3PsQ+x4mZFT7k2OCXzbhcVoUJ3vcrBAYDn+kjOXHi2UbfUryP7VvbsJpZicgXBWDBplka8bzuIlRSrMp9XPRU8on5FcGzCvu0J7Wb/av12XbiJjxU1uKnLC6/GOf//Bdil8fc5237m79SUEYtSedh+Sejv5JAZ3NLZdVpXiEVxH/he/kORM0uIAegEnocBd0Mhe6LIon4fFKtFhR5RqFoFjhKBxWA65fu+PqNvPWgjMpNq21buVKO86wvFDLcMpCAgR8Mtz4tMc4BccqKCs6cGSq6hTVDr1Y7v9intkdSHgH1Hpj1y8z4KMiqFYKV2KCdzi75PyEvVjBfEiOyRenloVr7vGSitiNsF43ZRVe4GkgbG4/+z6CkcjbMebViE6ATf8LSSUrQoHDF2it2Kd1THv4SWQIAjvYykHxV8rY2S9iNwy37j+84L2Fa0sLTgjELzhi2Mr1ZgcAnbC/sBNmRmFSGOnXU8wtFewGT9vHDsqe7SzABEmZHVrSejTs1hU+oS+IMqknD5PyHGsT6Af6I3hMe+DgQmNpqyvjy7sNVEkmEc/Hj4QDJ+3TIbcJi8/IjUp5zIxz1my9lF+FGANRpcscJEEMcHeTfTjzSrD4WMUFRGxdvaFBN0W2/iKwd9gqSV0qxR5ncEF0ekqbKnIVOoMDHsToIQdYkSE5g3jwTMx+yLkQcSzG0+lfQQ0EqoOqSCRpfoYLf3jAhJPpNhjEq21f3asuUW0ot3125aR2mRfA2cwxAeSVOzPPx4QMdFtPL4mw8yD+QUJtmc4ijJI6mAE+6yiDvxskzMMXAQXMqzcnO/ziMXDARMJrEIPMTSzNK27Rs1+2AzBdFOvkT+DQiXsZnHG6pu8bnNKTLiAL6OOr2HIhJBrB5DXBl/tmDZeb8suGbPjA3G7TbnTEXw5y0rTSYfjqWW437cs2d4vheE84B5N65y+eG9TOYfpHIvcVaP6zqNRtVOnJ304HTR1Siyu6UGrK78XTlv2FzcCE0cIIPdZ4sJB9FhnhaGIYkhIEkw1GBNs2HDKJ1RXAlzcJ6Z5xpEbyotmZlOnMcZBzAypCXjqlXAkwmSV20US/lAgtdnVkSdweQ+cueLeoIurZ2fgzTRBeQbMbT9zLqfmNqj9iielGLQ//h/d5A0LKzW9s2Uk1nmXaD1+AkhP/VYk3jNqjwciiRWJmXKGi3h/Wue0vnanYJZVU92iZXovzkOm8gFYG1Mi1XiL60lRzudIc/859hGlvO/gF2r1uRy3132ezbHK1JSnGAdPmvrBnrJcwC9+3AEqr8Z/esefQdEPZGcThvS7gYXV3vKPaJBXNGtDvTF1df9HisLd6XcPZlTab1lwY6jY7+xvECFo0GenmIgqCyset3I5e7P2oohhMfYMRRZfewXZsTKKXDNNP5Qr/N5RWmznfHq1rPXRDLou/Q6Zu2L7JAlKXTnPWwwCBqsupIcBSMMfzuuyrdubfBJh0zLBGyys5usZkCY4v2h/q3AmR/W8NOkJbRRGJA/zcBUNURDcR/sXOktMDhaiqkMrodv1bRzApUHErSona05yNDEmTHnEVi3lWls+x3DtxVTY9eXDhPBlJPlJ3yJ+OAADOsllzLdBa3m25PYAkYZ1Yxhq3Q/AXzeKn722u9ptVZmOO2j9K2sBmhziszptXYQDUa5kvVEYdQVToIa6ctPQqWfOjJ36GVIdH8Vjm94VVIrBcvl1JQ9GJNCnkDgn+XTtTnMz97QAsT8pM4aUCM5pR0ZgCathnSaG6BvAT2d+6KluE4uJLE59JUDd8mCYMLy/xH5RPKF8gHJ8/cWOS9rbL1zREDhvr1844bLbl9AvgcCkvwf60PJn+cQceYe/DlYzlXDQeHNbX9rNhb+s4NsgI0be5KoOSArWsVsenqVzWS0Z7t7J8JpfTwGETZZj/7qEfLCF7HmONSlOGqxNtAxWxBgXQbqmj3NZq7K0lLvlP1GIyb5TUA2P9XZXAcSrp2iFHa+1WNOj2WuzypG7DGV8bLmzRQ6qqKbIw8hFqEdvfI7Tn/iW5W7j3FJyh9EhAqhVKdqtfBztEDi5V2FyQMfefG00hnRYdE16BaXLwAeWyXIqv+oojDAzkI/CtA0ueIKrdAUCgLAzWwSmz3PPYv8Mm8LKNBLSoXSjeMfOJZmLoO6FMW5CtFH1TQRUcsvgGB18c58c/Eb01XqV48pPuZMhoTfUkgG7h9B7oQoUgScGSfojl3tXJcQI1vJo+Y+OzTW1TBBnPoDBLBSVq93nmWx2S7vMpGLeUSyRYgE2EUp2mj9f5iVUJgvAuNt8XER044b0XxszI8OXJaD+dOmz6a+HpVrumwGMahc5Vu9PgMADIU3BLosDmBOE0YPHky5eTlp1u+ZUMINlSQ+8VvgvLTdOIsn9zjOGYpNYFR6Jcbv99SHVAeojlUrtb+79ghzd+4rsrn6jpZZG2zcrcvhkBIfbJD2TEc72TDHMxn6aueP1T+1LcJAZvBHTnrQnNedpJV34FZeEum5LqRTCRKcC42lAn+/Obym2yqAExujkFYWU5AWAg5j0iV1NFFnbc8puaQTSw2xCJhmQL9c8sM8Tos4BdRtqsLnbdOqekOP+Xqbn+qlS072Qi57xXyYdE7Fi/9ZPTiNWJq5/zEDCTQoigcdHgvzdxLShBZTY82buQh3HjMDV9/lArpbF4JJlaaS8KYHLNI2nqEgdCHaipLb38OnA6UUg+yRbv6rzV2gWVYW8LMJiUbNCiZWoNiZpoEaya7m7mzFX0qjdFNy9YYnIizWwOEM7tUWxm828Z5Mvsow+K/EnlAQ92rM2iQwXnEtxPZ+BV8TEFa22xN5SOb5hkDkzkYcKBMlj3lqkVNL0YM9+2MXl6P+7W/1kTnTXjnmKTPL7iC2NeImUN+rtbKV4vqE7dEovZweJ5h82xbVWjXu6bf5bCvPyQjpqHPmIi4Aqr7LA+2AeVFg94/LbnlVHnQFnHa1iN3pggbv+eTpjB7wqm0ySdib+A7aREmDWiiJRxzSnIrzvJ3F1Nc1SdZMRLsgVFpuuYcaOGwXPwY2gRus0RwdS/YxsR7R644VS4DZ5uhAjcSduJrLTkcBk3YiR69Z5qORoxMbKyTVUplZRBTxUQExNSKe/gZxrn9kwTpq5Go6E+MkV8YxSA73lzprK5s8XsaJcY75u4ixtC7XMCZPHPLwMLnsfNCoGK6ux2s1IafVdP0ElC3ehNrNzNipoj6AflE+2mjrr8OtmVNttm29xoLKHbqtAnOiOMnhEAC3LJGMRtnsnbE8/c4ztKwx85JxawDP7wGM3vqYa9Sh+80tv4Tj431dIfbMozoqooHcq2rHpknvuZVeG3McvThAFEmNNhZykeFTkOBGc6fbKlICyQk3eIS99ESBb/jsBJEP5bJ+XiU0XZ2L1x9RC5Jyd+H4v5HbTHYs85uxoj7wU0CD887zqSUzHA1L/2CNA8q0woEJDdyLfEFE79cD0uxkGUEjQ75pU066Rug7GZ4Cg88AKHJPpwJ/Gdqynu4RCLodl2MS80yPeRWqsASe0gAARToPUhGTqB2R3x0wfWGxYLYzYwHYyJlJwRUW07H6xPquudWnf8eFdj2clMfwW96dqG9l+iIlawoo2DOhG6JOd7gdNZS6MJKXG8m0M85jAcabaqxjmzUZBy02hb4YtNiQOxF5Nh643DWTKd6dImggwIhfVCETnJ0i3pjskQoMH+RKqGXR17a8ET3z4sNt8s6aep/Ea9H3qoBs2OIMcSx56pBO+bE+P+r7fcvnIq0eHAoysd1+8Mj9xm73XkOAcoXYBEDqCoiyI8I4nPt7ss1T8r00n/2w2p0QpLQDmzCEcKRKkjUtQyfs9brLNpXIUqeDoC+3aUrTDU/nEafw96/4dpZHXLXB5YDkoyTBW19w6wFntnNBGzdPy+tPSgRxKslC6iXwxKkHLU40k9oGOEkG8PXdd77j0F5/Ye2x2qAMXMZ+bJOHXGqs7tSeyvxOEAaB2q12cQnyGxktPRpYN57kOL35jSTgSpuEIMlxmS1q0CGMruDvSakQaEBatHkLQXDVw55kYV+2wGK1S/vS1BaIN8Y/Lq8+0iRmfqYaQnGto5liw7H/DUJut/7wHqJOrlEtniTcQunNP1k5EszZ3F1VXcvH/9FZ9Nr0pYShSegEu1SUgjDu174xr+43bnOb9fQoWo6UoP4MXK+3Es6x8clnaXcwwhugi8h6Dij5QWDGTXjz+CCxXEOns00BsoP5MmOYUhE79XNgcehvrliZSSXMV0h5ArIvnGkP4g7S8/LO50N7QDcGwk+5YrLiTJ8QD7LCafmXWlQijYyxXcXkurqC/YNJdhR3uAVb7N1QHYpD10rdvskLGcIEXUrSXfJUHJeADHUVBY0c17NeKdcYaZp942x1VxpZkUvwfXwtP/HoBoc2t+RCWWV/QJMo3BN9fR73ga6v9roUAz3EpVwQq+JIBrjoRamSvCz0FQ50uBZxtn8p999CSCgXSkoXdj+XAbN33uJOxhPyuxiV19kEUhYn2flNfClFtCApK6qmyTB/MFg4LaZyd/nGFqfTWAJaDkhvJPc+PWHVSr1M4HAlA02IMjwuBBDHinoSCrzNxqK7CpBijvXDq+Q0iZCQGbzggG4/MpopFvwpslWN/kX3s2NbZwju/1f0t4gOfeQXerZw9Bh6AbjBjnR1wA2YkadF+hy1zuwvWD3RQp8N+j6YzKuWXEx2Dx6zZri1gouqp8QqdJEV5SWbZbGUCHFGwHrjogwxg5VSctCWblR7sz1vyoKgUWQ2zHR3G8Adw9wvhPCFNZptSr3iA8qNjpoCEek8G+dMdnpghI3VAURzHhbcPNje5v52ntIhqACptftCqvdLoBgFA8vYzhTSflkuq2cst56QzY5oG6JJEGf7pZy7vBT5DPR71WXUTMO5gvQoSbaojei1ODU70DuKMTRMsnjDy72fvK4QvevuuM802AUtuT+rfA/kYpxixL52skrmF1OD7ONR7Rj5i2xnfuTEESTdpFyUuiLf/Sq0CVLPnAgHHwxswx3ClP3Ndc25hJ9UwKsmqboRDEM/Qz9/8wX1r2kM1BJ0Fv6m+8a3rJ+GRu3BwILhXkVjdRpccwzNej3iUBMY73oUA21+WhCRZDv2TYKzxJ+BDTDGEbn/tpwK2WEE4lrBfpM3m+mExks3c0zltJg7SstHitq2YnrZSyDxUpJoi9xLoW71BwryAipTx2DmEuPHBp/7NOtNbpuGs+UqCmc6+KX9knvXQfGdfg0qC12kRUZjY+fwzHw2opCOBtoTDvtxU6wVppIVyjqFv7I3/ETvhex47s0ee2X7YhStR2d49fHwszlTqCzLn0fiZq7as7lUqF6WnG1SCrYTVP3TC1NQhyYM46DkKn8Nduu3L4Hclj6JvUyUIwMWkvTI2XtHu5CAPTV0LXrhzsauxnJIcSAJ+yBvGJOYci9VZYKIigY9lDpzODVksmmiOZ6tKaZgfLbzYj6E8CjefYapN2QU26KBDVPUdQqcuLKFpBOBo5ctXLpr24c4NhJZytJijXh/KrZ+nEanbwOxJY6SXvOQ8reQH/DDpzrX0Q6vl6tp6uYTV8pvgQTBIFZln+BLos7o4shFa/8wSA/z/IHULc7dB7c8lqHbWPaTWN7mOsXOCGxPoqo6VC5lnts4tKXAsWWkx26FnZS0ho9FywPDL/dJMuKx2VHSPsK15jC1SRBfNrOJUeFkQ3FKe5JdWtnS/CJzz69dpGCG4HhJRo7/VNDTm75yhNVPn0lLg7BwLuhMjNQl4R2BO7mAzHVqfTICO914wMqr9AjwceV0a9MnVthEGjvzRIac97+glVX6r46JutskM4hw3dfmd2HFD1hVnf9ISioopflukeqcVSmVjWps5j5R1gEsgQwJK+c+LbMYoyt+lWEMvkkAwE+w49so+brloNXLuy3v7S/S/8PCUBjopxPvfnT8wqV9gdrOUmcc7ptvgfDnkeJ8NCTRQHBerb8oGopPVP8cbLY0CYo+vQtmRJfFA+6XxpRsRS5FGOEzHPzfeqWeWRs9Y09SPxwzGK/b2vKfBYNgq5xsl9KD5iTB9yt15SivVPgONU9CJSMMilLQGOMwCn/U1s3fBRtULK5kxBIoVnAjhWa2xBPkfV5+Mt0JXvHsCMZrAD6HsY39fOcnh9CAt5sHRR43sRsa09GsnEPORNtAVvQNUW9MPou5haq+j6cWKOu/OiQMVO2//G56tYa15hVK2P2k1QntwMEP1Glggp6MxrR65TAG8isSYcRAIpJmg8GMwg7KvmjMgtLEGWWfQtKEOJeSIk1nzK1mWtixx914dcw1T4Py9IN58EGfTpgwhruJV2vbIpcdsXE//OEKJjuiVkMGzNPeukd7ZiOpFELorr/OqpQCPIpFyIL4QHXPkDFmDYt8a9Na4BssvOQ6z9Qv4XZGOE7RhlX4qNrfoM6xhGnPx4gvnxmMIegYO3WPdmdz1o1cz2/d+fm541+g+zUfH/UwkFglv1yMZAA3fxST6tCmz5tuvc0hr9azV0IMFDDDgRyGnMgTlyWrMq6BpdClGQJzoDq4IzYZ3WSgi6qtfE88XFsPg0NxNHTBGpGevZT8aACudVzzkboz9xHDm0kqcArb5L3RC/du3dtDAmX7iNnSUuUHHTGq4hLXcWoAWZRlkhU/dKj5euvIK+uEOkqrwu+1nerjNXG1Oalai+0ldS+wkfXDkqWZeF7syNkT2q+FShWVreQ/y27Kimiv6l1pTejsFQYlvxeJ99bCKfL0xdaMd6PqQWF1UlBYJG1KF2vh0Kr7udOp/s5P79o081ZngBMJd6yUymFbe6je08yATQ6TKKOsLElDGrCJqkPpvA42mE/06y+x2n3MefYHt66w5nhFvINmhAC08I7cppoF2atsxJ9VZ6hctMM7QvRO/dvOT4yeQPbrPaYB3GlPJEURTXldRsDShna9nQZl+2oONyqLbD46lLpB1neQGxqB90XEc9FT3tkYmZPPt5Tiz09mmH0JSsJ0GO3bPLUgzVDRyVVIkHbmCYpTHmeh6xfOxkwjAUfMJABCPgTzVS1C5A3KYGMHX1ZUs57uDrLc9H5zqstYrW8Mg9v/8MthCVy3BDBBIDR9cqGiMDXK0qKV2AfwoU350bMaBfC8KhYkAhlCRbGZ/Jn5lUsdH68mwGH/lluGA9qCWb0FkmtVO0+XfsGrHfHw7e+X+o7miuupvL2q8M0sb4mvIq5g282/xlXnQmThSICLzFJ7VvYcn6Gdw0cxafk+gAvt0fg4JYo4XhaNptBC9H7GYkOjLcUKy2IuIaMR81fVCI42yHUKgFyWvGCGb31LfzqPMHjUaiPOKWu/YIXiP77DWH5RZDAFXqgQEIz10lSbWPDzE2xUPncuMhf/VRCHMAnPNGKEI6XPszRJjHKBGGghDkFkA++crIVFOLZghmTO6w2gi+LviWOsNbHogZqSsebn0Ru0yoBrJD/VU5YIk4t09Tmq2cGakZa+9WtnAZriHQJNUU1+KVW2wZlck+4oqHer0FNoZALZsmXR+DQd2YT3E0YX3mDjMF8CvtafEPNevmNpLx8Rh9ksCqny8ilmYrfQGC416VscowjJoRjffrQ8Zlb8KqZND9ZCZorhVVymj5O6Uvd4BwFWzyP0SEIxTHb9DG9GWjJyEpkV1utr0baF4r2/+0vUVFkYgP/amAqkfpImYTBH8bD0hKj2/Kk58H0zvCHTqSG8vCLW6pn1tt16FJOyfr9aW47y1FYPAJY+5f9oinEnMkmJSQsJqDsNt9g40K/1iKKj7hV824Asemn0eDbUNyj2XrLHX5fvqSOmbS33iAVqYgMTl8+RqOP9k5BX/aKuFv3cEHjdrbDEgIum3wdnhAmu6wzM88fPX1xNCpLmf4cnOPZrLIhFmd/mu6DZjvAp35QIrQO5vibqxcaCjNqne3VUDdhMV8cXgoB6mAHYYjPfdz802aVJPEpIEp5NEdsohCAd7DZGLh8t3DhX1eWEp4Q1BgmBsusL4tL02w5Lea3+fx3n2p50wM4eJ+8k8yWNhvA7m6Snm/z6D2jv+OjHESjDmFBkIYJXCHvmsr3mBD3wR0H+QKC+c1e06k0Qr+OWOnH6HinF8WEWNV0yBNWKLDTJ+xWtDAHQw7nVQaOHGKDnGfO11uqQU/5kZMOcd6UeRejjH3ns6LOnRv2U+J6cfM4sr7LHDH5PbK9ddTaNMQabgJDQOu5ifm2cGDICxV3SoTbaGli/IHDLfXxdiWnMp+0SiOQ/GA38673KK0YEipRsAJMZVJ2zIYTWM5e7g+EkS4cpls68fF/Rt1ft0vnEsMyFEK8Lc/M1/7OhliajXTw3r5/edQH8Fd6F6shJuRKIqF5JLbQcAJTqkOJrv61k8sC+uKIL+dVDwtx09gqZIvgdpHAiBwlmfFk0C2C+xuVs51sOA0SLu4L5zjp1ijhd7RjqXtP8nhWpVqF99SKc7rdhKJOb1Uq2wRgWT8HKfNIGzAQ6yo4alobzj2vkcWHEYvrP1O3uz8vR8rQ/0X4JkSH/iAhKCzxtolrNCsKwenb+EzVNji0mTJE/P0SsD9EWM4i1+/OylXH1RZV3vf5pwssJKaD413nPNLHfcH5RwjLO4XbnQ2QwBHSp6WLhL6nR+Qa3s0AqpKX3Ex39z7muw0A8APszfg1h3SDPjm59nnamou5iZn5YusKDNwUmIhLA1pEYdH3uOezl2k/s20tEVHInjQyruHOvQ306U48Rs+GDIlNQtKByQdKcx26BdlOlY1glgc7FbXrzFgJTrrhhf+RVccdJfk4H5dMWSZeVGmdYPmMzP73Nbw2K+8RvhMBYOpQCCmaoBz4u2mlKsExdIQJa5qFTEQx0Azi9eDrRzFXjd5/14lTFEst8cW7npTSOLPS83rWOUDwpojGMngfYGKAQTOM4hiAt0zZwGF+A0E4BtgFDLe2zvzJOyWsCPe6YszvJBGh0ZfyPMBHBxi9qfQgoUqPa1+COXECLa1lng7N/fAWQ3HmpyloTbt0vOvCBEaMdOktWEVFfV/zDYfR7EMZQzG3q5C41ER+gHkkXGtSd+eNNe7WsNSMOpikZFom7F6EF9yNCTEukcZhRBgqLJydFZH8ZK/iTf3iWqtBQ0+8ov4a/mZ2IYlAU+WxthSMKqxI8oGWDJS0tbHqc2tXRQdfdhxh5ZnkBT7pts2GA5Nuy2r6tp8AgNzNVF0BUeRjAF75fT4movGiPr+zAf5ufisl/hF2IJE08GuFTKPpsAGeZ90olyGenBhUlXzNxJspg9QTMPCUX7+3Ufkv24HLVjaYwHeTH6KVH1cwhdEFI6I7UIMoRfkYLj8Dxzmp6sqmxqmTOZovsVnVBUCiFRfJ5WiGjZ1XsJ3FHlxRC3vAfBHKWKy/OHwdIVKdLy2b6gkqeBQS1wL4scc8K/+hGkTVm1ANptNTvDyKxVM2CvN7V6hKjp4JTh8MV11PG16jzdkDYF3f8ksqcof3bPDOhqZoxtw7paj8PgKEuZTC35yPx+Qoqb5CIswoiwX81ffWs4yxho2GdMFfgkjnybNk5ISSvRGMAMmzjr5UrjvWPZ6dR2YpyXFL2TB8z01qlqS8Rgw7T1Z84sRpCCrt6Vx8YR6h0KJuOY3YNtZ4tngYJ1o6JZbk/FfFaXeQoLZFTotXws9XfJn4QWZXVPbB+Al82rQt78XYMIW6Xk6mk3ijpVgtnitw7aVv8PFhuY+K4RW+czHvSCth1r9+hYAzRq0yn+J0h15psfKk/gUImQMDJBLKhXHaWDrMsW3ql7b4+oyAWSXeAHAf3fyiOrTCcUwDrjLgzSSQWLuE6HTvSXe5eaT7/t2t2mCpKRYvN/yvqb8MYe7cCE+aS3Xl0lMzzk96DNyO7jZc//KzMp3UQIMP7YXa0+tT0CrOa2WxyCGVYFZp7c0SNqOWAh/DXNQiragLzWRBUQ3bxogCSoCSXPzzVcq1StskUQmUElLXaTO4krvpUano2YeFSyQQs2xp+ldDgp4ZA0pW5XXSn2PxvmOadGKDUzl7phUdQI6fESbC8rv7KYOhO/33zZg7/SAHaHU5UNIcBxNvCtw+jgdsne+oJklsK0yCmc7K8iMglzYm0Ez57t3w+M55cqJiJXs5TxUJ2/sfljNnNUuYWxkzVHfN6j0sK/BOkkRSRO7WtlHHem0dY6MGhvh/tqbSYr429iwxJe0/kkLbTZFzfHuEeKUo8SwzxowdfXypgf03kJtLAsMfqFRpAn11jnZi6f80E5A3VdmG+w3f9lXA4BLYBvRnhurEYJQo4OSKQDIXsK70fsNtiUIWJKROogE11Xcl5l5XitqHpWbDeXkMnD4e1CX205fd060+uFgC8sThk86COIPV33ZhoqslYcYmF8i4WVv7BFlKztT46r815wVMhm8SootvE2zHV0bNGKI4nH2f5W5GVbIvL2QjOPER+i8GErY9fhtRDi5D4vM3mW8npMnKNGRklz+8+WtqRpnCtqaiVVIJAb984OO//ul6b5bBMISqiqHByqO3zRomOecYynK7mK1qEq6hhL50N2y0Ajhd+BealVQCFaEUNf1DqEEU9LZHFNG0FW7Rs9FVhscyv3UpEh6L3QVBhuBr5X+HByS+2avbIpHzpWs+AQdwaoKq3Ko9sUwcPH1zwQ9B/LlTFe5QCxuT4QZwrYwkhVQX85aMp3+v1AWomXxfsVAVkKWo6CvQ71XfHdXNBPTfO5XKdwTSgSijeATtIhWAlwVzUOzmgXiHqCBptBwH65pNyZqQieKf6YqAKTtB3IsY0RZBX4sFxHaIDDgWQBjPYkRcUnpyYNBEtVd9Fvrx+9wAEpIoBoM+t9boOEpDSaazzGZfQhvp/jconsDcZT/lx7ZUzTVDna8NInVmTFO1JrCjyszsoMCDVZQ/+Rm+SJRobhAD1LEvNMJBmbTymcmAuEv9dRaGowkHfh6RNnmniI3xhpw58ol2EsCkfy9mgDYPisexqmi2IA/00HVeV4zjx8r2LK9E5UORilRHySdm890+SuCOxRKXL45UlvwDponZSsAdrShIx2tARW5u5zbTb6+xBJ+cMEUpCZvxZyiuwFn33TWFlqQWjjD+ZcXJ2xuTiZJwIqchViUjv/piLDD3YH/SY28HU5rR/P2N27epziO5QFcvZ1rZSk8gISVnOSXVB8stoBm63SuJTPr7DTtJ6RjPPQ77md0ZW2TDPSFlNqTXDDYjh89S/ZYxq9PWbY+eenIMcL2uxMysh1yLZuCBB8Y4rzYSJiGJzVqLqg/fm6kSkF/89FTJC3oEIo+feq9UUDKaZ5j6+g0uEHMmflG/QRCnBgqUtoU3y0zqR080y1bc2yyPqjk4OvxzXN5ridUCPHmEZSMMzdbJajPIng9YSD1NOz47tgGLTvo/eZenDLYsrc5JQv74nteDgURpPOJFPMAKBeYz63YjBvnmp/qtkCIsT7bLZAHdN421bHjvbU4WL+Lq7F56mDT9VBygwSDe+a8TVBnOioi5KWu8qVaYss2/SHcwJPTtMCQBziVhvd715UBhHrBqc5GsffxAuaqALi7kpDwsu54WzJ5bxOJGsQhvlw5+8IB+7YqvPtkIGUasN7RYrmwABzWkZcn3qq3QTR2Y+HyeT51TYClJYAmOiaVlgx8k2ZDthUb00MGXZlBH9Ed3U23mR3KffShv8X/A2xvXdIwkGbq/SYeBVvTJmC94JinSTBR70VNAELO0Pv1kAwBF/ksPb4ICTHbkhIX/9feFxH4Pw3DZJ0u+EfxqzvbwoWCvhaBvdX5aP9KN2vv9F2ot0WpqT30/I5vBarn9+9zc/rjqLv00eCuti+ZCDSgIRkSQt9KrnEzVuhit/7yOk2f17aIjLO0itkY3PUe+UmkqJug/aOcYJeRmwbtZNOo9CZEK//PSxJlPELx+HhwVWoan0pgE1XjpCTfy+GkODkJDJFjwDBnKg0e6YCqz8YUD4KWNRKKwEaZrEYce6X2T6hILMF0OGE6bU7Ahi2lIis8RuLq2bzX7Y9LmMp9GXPRIwB7Z+zY4XWuFwpMwPR4QUIOtkPJcgnEkDQTstiyZEk6aaJN9ic6dsiDC/CxAyBJq0ZVuBB8sZ490HjzyhBi1Pi7RL2wlahtLqI9VPetV8Ew8ZwfzlqEQbkDg+YtOLcTTiuy0Pdl8qzH7sgWyKXKrdJ1h7ZKgMgMbfM+OyyMdZdlVlGU+9U99t6YKczQknQRl+GAKKIYqJQsoTP8Dx0ID5ecsHua4ZWEngAven8uUcDZkydGqwSprbw6hCY3DfrP9bQUExdOc54vHlrIbQSSBV2ubOs9BliGbyZUjzlZ2lctL+Orp8IDGSD08cpptZu/bqJe4dpKh6xOcB/OYzIfdryt3pLjYUQ0PON8XGblL2UECiPLo9IuqvhcfmZzjaGhdSH4adZVl20MX/gV/YyJhEKm62MKv90dcO9VVgmEXt1SnxZQXhhQyrGkf04CIV1cjIh+B7sk5oZIG5k5aNzGBOaFpnpUZNJeyafi3ltrSeo/VXlBXct2e9DwKDnDq03h4ekMyuTbS8RQseRnCfI02jLq6KPR3RSzUcNaP5XUgffp0/IxBO0OhLZN8J3ZzDgmfFvH84XpoScCsLvGu6pTPdNDuaacCNhHWAFdP1f3SlNVJOJrM74dePFAL9rYc915ypKxhlknV72vT+/YEobyS5kojv874uIgN4PLvwLoJ/ra+8WvsLTIenoRmRsu7Q/aR5uYgjNquzpsFHxkEI8Z2z9jdGD7SLKA1rYXNtImOzZz3nbiHJ6tYn0BdjNnbE7Gu3d8pmEo+7nMyZKC+d50ZqZuNxZzHdE/sBvbSzZjLtdEwJxj4IFKUed1oa8HcXYUGNAAuV7ibHBImVQSQ3Q2PoXMXAuqbZrgxDOLmio+tvbuhYEQUBNB8A5lwNJWvF95Vy28d5Yc9pq+0BX9V3myZdvEFsg94TjPkkXBQSG4OtTIyRYArPWyJ9F/HDkFHJ/FPaOzm8PNUMy2OkQh6D7Uq57YbA9vcZ+eTWJmkYnMchqE3E2Mxikzmoz1vSeSEFWZjEAsrQ69euaT7rtO47Yfv+m0ZYF9Q8Ln2WuqccgDjcImDGBKEyWvr4cgOgusl97ueITri62Gd3pbGZeatlmkPMTIPoQEMoZmMtNeKyak9bw4xS0nbimp3pqsCcNV4DxH9TObmRuosUzoY1Q5QTK5HsBTd2HhrQ+M37JVrXlG2nL9tH773LqFKulX6UuKVhzb0RP2xhwI5xqn71eQlp5bvPK/mDsVygIrL9rj1IrxAD1WZAJGiL5VD4xOUx3O16dKEyHe5jRchCYYvjRrRaG3sawPA33u+0BhAzDZaUXUsYLCo8TgmyGBIW93a+Jg2aby+ICEjaBrU715gGr7QlOO5LGLV+QOMZSB+QUIehraqUkGiZLnVGyE7bkaYPc8245kQnj9pB7+skfQlm76TS89yB4W8Em6d8oImMuLlhHvvbWYQeyKV5zW7/LxO9WIxiRNXIe8zQzU1HI8aDNoQaX/1LK2guFh3C3tz+Hs2FHs1Zlv10Zq+c4sluhGcgsjWYGmRYO3oD8lVrbbiWnacBzjxHsHwsYS3rMXjG5o4yBv4P0Ir/KJKKUR12sMjiHT6b63KLJwYaF0OAJlUyCZ1Akqv4IkQ/xVK4nnTYJYNLuzTqLvnC+frvB24ho3t3TTeVoikouBRLmDe2BVQeJ918SS0+mxa86amH/PMvZD8mUHAYorhrWo84s/2g8cor8Cso/xs9zxKp9vcc4sOF9VJa2UCwuIYC/k7Ou5tWlvNIikeEREQZB2hMf+xHxwQwPYGSjoTSZMaUKD1UKvRB4gZ9HfA9sOP3vK2qEfBUbNgIgtKPqYQ0fJqnrHdi13QDq7FEP0q8S7QTA5pkEwh98kUkcu7GGli6OrSojAxX3qB0Eyw+LVEkTyyXPMFLWbkT9uHdXIg884RssOHrI5xYhRYkKm7C8OyEJ/v0A4OqRZ456gYlLpbwbC6rOu/YXF+FOs7x/KPt3bDZri1PWHLr0jpptM4bHBTPFYPujssTxMgF8w/zwf72Lg0+4wM9IgkcV3KDBlmAprYh1+9CJJvjRwPitFARDLbCAOx+Pe7nK9BN1h4qz807F31b4dj1NEZv1YCA8yS2/sBqjaU14Ic5O3fWTc732THLRsUFJ46TccBBTEI/n52nloXvr3WmvI7uNcjIlnWnSFoMvD1TZ2X1MX0mr4j2neyw5DWgOowoVrSmjrEZZvpG6NB2wc0NV2nCIQBtmAt84uMfW7m5123xFKojYLsFaeIlbiENuAPfTsSdOfFomubOz279nJe/YdTXkbwvcuLcfEsE7bMibE0mdnCY5SDB5ahCCOB9WhbSaKNKUE/vzBF4ZTWu7T9SUaYxJg3XNUnL8diX34eCOiX7vVMwZqJV36tn6VrPmVOZAJinr1fiGycQAJC83SdupkL/AvAAbzV7iF1iVx+HCsmNY/TUazwXjyz1sItVDfU/kmUHWUXfNmDDvhU1/61d5x/cVlOYr1fLwCDR8demKs19FUIchyvViXrmaiF+GxYd2T8Qoc71s/8RQWxr4dwGj4i5LmOwIgTt6uDfvcfrnxLVlZIFvql1JzlP+Kye5CBHC6NkhiG+VfqWg+WmruIm4oQb8UunME3oA3R4h6VDJiFJmKXppxwWvYjnJidSw0pf3wNC7Bnq8J4lQfD5Toe35va8vUODt18UX9G8egLDlQ65cPfXruYx1Li+WimyDXON+kuafMkcSIUe9t8Q8dmxbsS1PgrmxFbVpAOPe4XsmGGEEg87TGAA6fl6YPrDpLo10Jx2yn5oaZjEuS59mfZhmrK9RAs6IUu4GCiZrw0Dm8xOyFOoqAGFTePgkvlxW3Kk4IuectxeuS//AsVncPW8wzZ+Kc12485Fpj1zDPZyERknf1hXDxDQkJZ9P/u/Z6LvjhQkVYtIQ+jws0wDFI+YzkVh86ZWij7QGbmOaabRtFEmFlo/2cHP9RqukiS4lxNxx8BIwGwxa0W/8XmpdEa7x0kCYGOyjYIEUYYIFKXD256dVhcd59Z9NiCVCDGTl6YQ5JG6rw66U0hU0yRXVXfMUu+ggSP3WmI2kreu13q0ye7Tx3R9ZybOHACEUFAAfO/dkkkc567Qs5eK4ksGxSOGNagxHtOoJnFXiGRErmfogLulR+1Jo5X1wTOEMBArkm5wWQ4PLaW9CBg2UYVBxQp7pQFeymN8KF5YX+LI9xwCw7JQnn2Wf+IiRufRp+IAfxI2yz7hd+hPYCz2blTfqXs2ou2vnMRRDajDqChOD2zVOcfH6ULKzwvpYrGPx8Dm2vFPzHuLxofuawe6yYXjNDFNQ/aoS4wlhq+3Qx/45pAxDWdrYbn+4aTzlfkBgQaIxHvMhCIw2c7nZDBvGnfrg+GBiiqmqtp2pOm6c7/w5IMPbSF+6vN+5deWWTH5PRYG4s1p7fFIkj9iUlcgkY5yM+UfIF6IBcO/1Ho5NgcZxQHtv9jU1Fu1MZ4y/ZZ6wbCJN0y4WfbifgcmEz+I6iWKBI9ip+0pbyy631zdvnHLRIgev8e5rqc1ptqDaPBxh9QWxataGjqfT+hEz5M/RhNYJDpQayL5d8FH3jh6xHm1E/cLF9NJid61YYdEdX8Q68HJwA3BTpFeZGMWQmn/FSsYPFi77MxdAxprM6P+RdJ/BuKMt+JS2qcW9HRlhk5ZIMG97pWiNN0y1b3qeNOxil9gjRmc3g8fPqkF86cmoAhbomOMCCin1LA+2mCR/lu7oSWpm7ncL9mNzUb8J+wa86XEbA07QoOsvc9A5TNRQnw/ShvGZZwnmPOAlu31/cmAFOZ1Oc9I577Wm7GzT/P4Vc/RrSmvEqGtkhqRGQ9vHKvXgxsPy4+Z2jYQwSbxU2oduR+FeNz4SihDi7NNVXN1UxGEpbAyw2a+evMtFtBfkre7R3PyslpPq2zdKzIvzuj2CScGsnMfcIbt10XiQ21uPwXLW29md5dN1qf0TvBh1063WpUuCW7wlSPHtmwnPNWjehLfUrEVnlbde3axlEGnZYDZQxSJHQtcS2tku0WpZNMYnJjlO8sJZfd4C9h6Y9UHhO5Mj2YkjKn3vD+nNuS2yarfFmUI5dpE5DPMDQqQute7tVYFWQ//Wf6auJE9+ILThTWZhYSH4+AU6LZrVeNexlrUWBR/HO+pHpB4GcX/xhjfdV+eKqvktp6rxwzzaFJsJzSQFmRO5adMCHShxQmw6LPuHcqhVBG1Nbyxnyhi4HI2OqdthtqxOWeuHMwI5+S9/0g3VUHXoo4Y7B0IOMGMICE1Vqjx9Ea0bHziDABuzGxDkwSsbXX+0MB33C4Eoq6tboBCJlvz4+/Pa9WurLLjgg3P2LhvYXMdoR1uZmxDpaUAF90EJYAajJ7eNx4W5Nw17tZTCpayH4XehopkVvhxfPJLiveM++WlL1XqVg38HAS9k8lSj0cWe6SAdZ4UqL+SemyYuw8jg5nD2jf/C/ze+VfecMLZgwUyEGNMS4hdUBJ15uspdxYZ/ugPytfPm5S/uaNfPEOrjURAWCf2U4vlIokvLH7NYScf9qA5NUcFmaCQ/H0NjzplwAsUX9qDm89nLOLaKXgOdSuMuoPAjoiW+7zpzNq4OqdkLzZTnC1demNhpBhyYVwVbyr5qFM+B4TuyDswdMu3l4zCCBd0LMn8S4PA4wcv6UI8EareKEQ2p3HG14whTaSnawFXha5IzfYKqYtki6hO287/oHhLDblArz13oTUsjeCqdluPbwE7OSF3vq7R9X7S0V+folb2UafZGIgjzKc7fI0+RX6laj4uvc06t6KaBt5Bsclgv2u26hhySeu/aqo+x3N7+tneXl7F1Ym1ueFnD6Eq6sEo0lqcTyvc2HWs3TCcN9oeuCpuqRxrVPd+LkiG69uKaKwKIkeo0B0Nx24NZsxBXBA75ZS2KdRfd6nONR9c+pVF3ZuLSmDRU1Pb1of02/vlT/C5f5CqDTfw6Qy4QU0CA3m3xZ/sD655PhEPLGnjWMdAJMg05rN6J1qJAo+RpvnAQ0Hld9j45ZQ+rElwkxd32CbB7t9qPqCxfiMuBGdO/YmybBhccmoOm6cQgFnHSgeJgzVRsezang7fY4wkBiPzEx6Kkez5lXKGN5ELhNRsaoTR9KcZV96teespwe0xqw+gO0KRiWr7u8WdmTEDHHEkn2JoogzaJs1MloflvZUl1y8Cgg/eC4w5NmvBn3okxbiU3blnpuXUv2YL9vQ73toV4XenC8eyhd9C/q820rQ/dZp57GbMAskT6sqECWZddOQq2B4iGLwbwdXlXrgPh4ng3vp/amAsB93C+8d+nyc1/8PjIdnt2wIlT3ijKHdqkY8cbvl4QJIA7SVFvuhU2FB2eCvlfHzIWCbIRRzeHNZTodWivUma/wDY13hxZeAiHqM3NRHETDrSdOwHjy6uCvsG1Wse3DMde5poV/P5+KOroaIpYGjekxKQgni//YJTxeMM5J2e+vd2/DPC98lE0owzjL3DVWeI6VZIkjxZpPRMXI2oOkttM4lU7etQtGQ+AweY9OOeRZXC1efcsuNetUeRPUBwUFIQLQnG6EhJ/3iDwzxmp9wL07NJrFSAFkyv7uVWxF7aymC/MFI+WybYlQDjTfZk5UkGarPIvbOnclIfjMhyjKoKHL0P1CxR/THuH3rNguVfRipiVPl8y0YFrjIWE6ypWHSWjJaDJsfydGmtTt3DUz10FvrVxf0T8Wk1obHu15as5QVXrdVF9YgHrLMT7Dx6P7f2ZwPS/ODSC5mOY4QZbpg5pa9J5WHzEaNt8vkeCA4Ih0IoxCAIulOf9bqPtd11rkceooprw7a+u00faNOM51dBP9Mxb1vr13QKpYHaQcsebSLwxSNymoIp9KewN2ghyJrSjL5ZWzPxl9XjQ00QH4kW8+zmZR13LHVakC+wLza78O5kC6UPA1e87uCqUf8U2L8x12bZVjJKg9biHT0Y2VQUjzgY6IbBuQldmH5JLENgKqRjYsKEMb4seUT+R1ahydYEp7pfxITUZMK5TY27HGjikdQY6z2zm5CHASZ00kLLhsPMaHtRbyzEvF3TXL/J0gXQFCn66+pFL8pFXCr/NAjZoPkyxx9pVuXP4kUtJbcEaJumJUehZTNr5+M3cLwfX4b3Ci6/sanGf94/cZVknBl6hjQl+A4aMLV+oE4j9kEeIR2GJdMj8r6bXUEK/YKrPGijQWEifU1gLx0GTH0FXtO55lcajFC0Z3dKgIwlm08/nGHTGEz3D/e+aft7Kd7qzopdWQqa250+M7jwPDmBZFV880nDQJBNca0QslnH3/xUzrEeDG0cAyErvZZJuYxy+ya14l9nT/qmCeOsLytdv7XpL72OTQGtwqKUdtwThGVtbEPvWmBz5ie4ZQKnyjtelxlyzI88BU+W2WFte2pk9pIMDA1wEbEqPPxVurzEQxgQTVcEfF34QvHUT3Ue8MBDSuCvmKBGoF+lO5odg5LLBrABapCLwZ+sGDwNiCSzQvCrWTLDjDIlr7RV8bPljxNbeMkwNO+i3Fm8KXYoyWVCn5fB7ViW3WaIskW2kjgqetx73bvyeicKBHJMRQCiS/uJx0Jz8L5w5w/ptkDQmWuByNk+65/2q+rNCJOmOlsHVMRfO5zhcXVlumzBfM8534yms084/i4B3gSEX5zdELP62EK4aTUdKC6KNW3YKVlk4DjHS4WGCO6qHR59PmHEpBmVMUijaWAOfivBec+9gxPTRxk8xJTGGPkRaXMFnltEEx7vtk6PfaFhQW50lzfUMc+whbQt3OF6yotNk0jM9w5daC8f0njZmeS0yHhzFWEiDoko4EwPiJhoj32oVepNS8RlSX5rTctnYvsXzvwolwSKXi1a5Twoxu81+Ukij2MKljpreDeRARsqrgihV+WKPiLHp8/fiduYPlnf6baAz7HOMkvhCtgRkNc9I9ThES3uZ32NgsQG4QAvuIPFJCPjoRtcGW54ySpWNxXLPkcm9KH5bEMM5YbW3fp5mtlIPUMHJBR+4dD09ZQORXQ6aXZeIoqGiLFghbNHf4xFS561Dzc5GL3L4/ZoK+JO6mMC8EwokDFh3T/ePtczhs7gAqvKAmAsG83e8p5IVdrfCFD8E5kNwJX68qWwuri87Psh2qcpkQxVgjeV09m3dukymDL8KCUWVPMeIiezB4z8yP+4jkzmh9EaOZX3X6mEW7TrgfEwMnTDvuBsVn3w2/LAiAC4XjNlRfVlUKcn7UKFTdEi9y+ADlR4V1/rbRdGt5oV89h/sG1ZVvQI+qSbSARodDX8e0FgaE1acEa0drhlckVNB7uNzh2+2ClPQE3Mm1Ft4/zZoQ/7e8QtrwxBu2Dchie1z50qb5SK71SbILxXoZY1oZYHX4rW70SSGPsgQ10xrvYBL++uGpH0oacY6EmkuHqDVXRTiIcsKmWa1HsAtkKgbTaJz+Q4zLu0U4r5Eqcv5ozxiedP3Q17AP4BGaPHYQSnFDvkUcSVWJUBjuT+GVoo9t/XkVFyY0Ox3Qa5M59tOAKUfb8dmvh0iDbzsUMAPEMQ1mJ72hsqfDFihbzxHscGkCT7ghCS2DLVUQsx+F/5rLoxLmAA7OcdQtCANBOmspvoMJM27ilUEp20qWG/MZrsItRCep2kUuO1o2w29+cJEt50EQnKDr/UQqQckyEcOoUTrHZXpxTnshhOCnXNoUdMe9ik17bi7UI9tXXUad1pYGoNl6jhiRXdWudnwRFlAAs6lkH+5isuulVtm3bV4kKnKVEW/JQg/bFQcswBFpEQoXdMsspsM93m+JUXxyUm4DWlJXHTmBuTNSXGK+7MX0RSG+HSUqAwFwoAyKxh21fIh/KhrWHYscUG5oirNyBgzQ2I1SuG59AaINgeFo24GuJuaWI8jepKTRxEyE7n1gnIGwufNn7FWwFOtCSAEBr4A5BU/r7sGC9B3+HC6v2LOCzj2FHPun1HlOPS7CPszj5z7ng3vJziVTRK6/90pXgGsa/AHALCp6PV+eWMXbC454q2U2Spsk33URRV4/J0Q1e+wFyswxoDPcmdGD0bMbNwc6fcVPhjk/oXEHz5v4L2NDkfLuJLQaB5orNolx70F+YPfPTfe7J2QjxUWf3ft4KiW+nyQQBYmNRnDMJxTCe5EJfTKEFnRhZQOydlSuHW/ivrozfC/gvPQN74fmEmlkNOFYjpMhZFHUW+JmxSxz6g8+vXrCbKjLzWnDS31F3bXaWJravtr5QpNQUeBKw+XlagU9UtXQPAvwLNrVwM8ENHxjlwAfm9Mq7Niij2BUqW+t1ttB0niXIcH8gELjXavS9pEusF6diFpKzTmn8S69KPf6acx4DZYSVHiQqKYeW4Evb5PTKgmlPr7FpjQa775u9b+OyFrTKyfTt4dW9FXiwdjSEYPpcVLlGwkEyZDOm5K5sxEAIaeS/2oujfFl92iL9lAoIcclZZDrNmTGcuxQhnXX3W6gjX6TdQhZ+ZAF/rxmEKETwiqAGGRaap5/R9A5Dvn7iQWPWeALk+sA3eCpdpE/uC5VlQ+cmPF6TLdNKarubQRNitXaItLzBX7933+qzW3iqwoRiWXG+5NuQs2KCd1NlusdZkQZgi0ckHris4j+dwFIqJu2gyeiwF5uoPvLY6dMmUor2w0KrFK+NOQst/Q/eOPLu5dd8qk4hgxukgiFoLXfpqHH/0ANC+bU9pcLaAxo7RI3CVSwTm2nmmfNHaVjINpAjUIUVSylyWtU2egIEeKIFH29OMq1nNk5eD0HQDO7F2SG5XSdU7WlfzxUTmsNvvVeH66WOYwr/51YaVFL11E2CtNLbMH3TxUOpGMSldK3+zpSJNTTLYIhkIjhkh+Du00SD15/XmZtQ/o3SzFE12+k9njd6Gnrhqy/dD1e9ZSIgNNCTfR8p2NiT76D2Z3J+gAxHYHeIXefyi2Qg3hnRu836JpkufypMlxbOBy7pUehknsadQ/fIL+qly6xsi78NP52YKfNXPmOYeYANZy9W5bFJy0lkpGGvss8iYH9ybdIBT1tvDYOYBb0OKI316ljPK2VfUGMd8kKdNHHln5i+lwzsXhI9raEZtYNyqfqFHUYpK3JGSerOPGF66oLEMEBEq0R0U7/3BLUi4/81X07Hnt/e3ESlt6DNFVO039+7cdJB2B+DBbzAIxMCh5oDNYLy0rj2c0OX54SlYWfHHmveZ436Y23Am8/GI7xSAd43YzJQeWSt3/nd+3jrvbSWvWAj4VSrQ5dWIbpILNqF7Gm+p4WBP+XxyoBmGV2kJ3UX0OZXcgN+/PRbz998CC6J8458e6QseMOebujiuajsdyVAaArnAS7QRqDPn8RL++9vGtAxLD2RrL9JEUZETU4bNgVse8yV977EWccoHsMxuIxUZkqJSGiwW7V9ww9gOZK4xAMoadkM52LpSua8gVK3NKfZhPjdEMOc/ZMvVlu3bwbGEGcXbxV68e18TrWD+mnvBIAYSuGUwXl/LMe9Rhfc1S6UbVXupvJ8NdtxyWinNQ0hVTsk7hzDBPyQB3CdQRN1ELr9wAtHJcxUgylgif9ZiaP+NofLSRI1v6ljo0cBibugB/jh3FKIsCpoj5WVc8m3bgZNDZyCb0863+apF+E5H/oz7tyM2m1A6AqEyAJLccxhlVtcuogK+m0Z/VXaxxPZVIcuQGNQE/aUhAwYQICpeamU+tiKcElFLE9p8JL7kzqnpv5JMI2fU8yz90k1vU4snqOqhuVmejpV+RgiqVU3WrMvq1gQHrPf2kAGyc8UgOKdn8ISbF6ZjtBI3VtPQc1BBxxvQXHzl5E8wSxosg3kdElEQpwiRh4WFYqR18e6Wx3RPLQUcUDxqmOhSOMsZ23K70iXCfr/aKLPvdLkqaRFWwRxZ4WHqLo5iTJQagseXk+9bZLMPAXZI6Cu1vgJ1PZfk0mvxC3bSgygtKWLB3t/W+0KE9xG+tHw2pJ0Uvynma4+Y6Uiv5jhiR20Zl7n1yvKpFjF+4dFUMGLKvLXGEb956yl6FSp3twkbK5ibMayn1j5v89+wwUgYXup/vcz74UTa1iuJQQYl/v+HihkdJ8AIn7LoR3mGivvwt5VMD+WWNAu8TRdEugZhfQMphtyGWFoeWsZr/0Rw0s0xeY3zp4RtmN6gcCuEHLoiB54NqZa9BHw9lDckwGlFCITvJg3+gg3g8TX78l5dXppkppYg2VK6+ICnovOAijFA9OjZEdqUzu60n68WoAmSvmWtMintz0+ti+xrDMQgBzEglz4FEON+vMO9bw+YbS1BMiBi5ytxtftQVViTQBc7iQkW7nsYVEct/tDUkTeq8YIDeOTbwMvCEovFNwuNTErTrDOBooFDRqvZtWad9ZHlz4Qj7Oqt9qq9/Dja5+i8AKC+PM9Ed9TEq5NGDSBtHENkBvofb2up5+8UWxRLN24WjZLukzq/bqe3FSQjzh6kMR5hCapw0Of7bjSRgX0BVxVRWWl+w8zBZG+h6/aqJ/ABd2UoltCSiyunxTjfV/xKhlUbEY0cR5Kc25G5qZnvjm4q+qBLQzm9AXM3EwWlKEcSktS8Rv4SQX1pfjUKPpfFmYNwllcSlVq01dA9V4x7MXIQLx/12tKWRKbIqo0edkbne1bGbz+HNo+Uhuwqyo5alxAla8DdpzFMKJ4fJ87DKD5m9CFchwDQRpzqpmAfKRTwL3QmEx8Q1SOuASP+QW/sTcEK3kmhjj8Kkc4LPERlL6c1mWW1Y+4ShSbuq6xJLyteg9i0V0HnX17mO42RNVAQ/bo+ROvoGZ/yHhTutxGLlYINFaFmtKpoQO4oxxLMl1wJ44x31QcYUiptFN779vPvVENFQEJTAWG9nzlusUh7gvkntHwx9X9gjI7OJTpvtJsk50jQtyQXJg7EaqfQ/XQ5Q2GQW5ZvblKCdg8+F/e1fNCxPyRUXUmpq7+Go7nys1JUIrf3t/VvNGleBsAG1UJtUU4z20mUST9dIxfoITHp68Vstmj4s7erFY0XatgMbyzcfXbIgIOJvneIVued14GC67hJqZJxcB3mD+AnaT2CUQThO/jFdmSrtQX2IyShrdO5pPeV0idxs+zZCaAcGPA3hYZjy+IRlflDDf5ju4x8O918rPj/9RhpTCxQiZWpOGEvyAiubB+QxWQL/yCjToQq596pZl95OZgCSmbNsCb8PPCETOm39OrH2FDLbrUbthPUT/WIrHFQ9X5piSkASR2d99mJr1XfRLMUft0wdeGD31OZKSlVTEfNtdjqR3jUcSFbjEQOypcflnWWJq5OGLhlaRKtxCfFNVLh31nuv3oNbbSg4AIPGjOaq7lvtx6pBkv+pT62z/WqUPGfOXNRCMhO1qmFrkjG1uBNp8X93S1swFX25qnjk866BtuZTSETTySJof7Yq/iknzLgAlycE5qwYp/EoAOwcGOL2jRanrIHG/Z91BRzvPt7oH1+fgCnixfm0QT6/Cjz5YJ3YeMTZ6Oq94z1giXYFFm5O67nm/WOdVbgk3yQQ77ZGqVW71/VpQL8YamJCB8NIdOMwlzzqrd9y85HYhUMGsioGmMluKN7aro6BfN/wSmR9AKxpNnGEf1Y4qXTwkAd4LzRQB+zS8rpz9yp3U4IfjC5f3Wqs82iAz1UV6jwGpBUyuD0tf/YM2/JCLNoXZcYItWkAO/nd4LbYCBH2uDPubC3wzobA4nWsEw+wWm8KBDjX2NE6Ya9hH1kaRErqGpsNQWh66UnXOu47aWN0xyUeT0CKPGhmBuT3YniuII4IBWVApi9yoHnjRNaDJXCBRzPMFDGH1W/EAoZLGs6cIZXE5VnoExWriEuCbjAQkTo86eny4ZeQk11+OCaO76zIRGSiEqe4018b3nTFUVb5yNfOdz2AaxyEJQLOA++f7VgfFB/6jSEG0iDG0ManskSuBFU7k68tN2eUfnq7V0qaKXoE2/lucel8TLuf+czxNMNd0Ar01A/ugAGxXAOYCJuGXOqC4u7Nsq6d2nMR6ACH9/J7wLnBSPXr0j5RFTqDeiQjPFXw7dPgvUDCzYcYDaJFlQv6vsSiY+aVL9+vU+6agvDxwQKLGBWtuuJMWCJPV3owUL2Kzc9EFGOWzii8wiPEZYrZWcxSI0ohjNtKSo8hanJ95M47zA2BoVea178Aa110iuMIvBOk16IawMOvL/D/XKZHV91940m+Ql6RNZDLJ2aVt0sBkUzvc8I0nP3QTA/yaKB7F3vZaisN4oWN5qmrCluXS4MTN49UattYKIw3Fh9ukLyJAtbsiiuuSXPGsDU7XLv3D581HrZwZ7V7ohBkgUR0o3/EYecdP+0R1/cOvjEbWpBryQZIl0XYO4eJwxpv+I/sjYUydIhlHoZBenuXP753iZGrL209itua5G7Hjhypqr/1PLWYQiq9A+MOXSRi/vZi3ilc/iATczCw+YB/pqDd0rS3iP3dKoE7ZUO8HTqk+XRyW1ZPbw2pViRlfxlg4q5leUSC/dnqe9DBFjfGga1lD2PrZCsd8wxKNZcjZnNw0+akhJaYQKqWLWFo9WoDEqm3REBXCSVf05l99272cqLE+0gyDDZc6cxg/3PJIRpnUysPwg+bQmRblfBS0Q2FyWHybczQvy7ArbfZ/EHVR0lsi4K7FoZXwv6SNkWyxXHVjTtCsNoawjTbbuTaMzM/hNPzP7H2goLjBcFukr7TIi8eAECzRzqGaafXwQ4DnvIwnj8/exb0ehr03CEovcMYQzHm28jY+U0uRanWLUsAglybDtLEeJVI/rx7rWCaEQZfhA74yG2Fnf9Ok5TtmSHzd8/3U4yRHwQjNpZ1r/23aL23Otx3hx4QkKS2wjS2uTTKwTarEasxOt7v71KcUG0xXPA/M/q6GBnCLPuSTR0YlcLespPISSuWZ96QCtEHSxWKsncv6JJeNxlcnp/+pPNGy31hFGmTsE4XB09K9+1kzRyRAMmHjlTpMe7d68SyuWXns+Pe75nPYe4rbhOXesM75iL5YL5ZiI0KPGcF9L3x79lC2yO2h7mWt3xMHvcB0nkVdGC7M86475YsATizkQm1r82X1Hpu4WFKO4HAr8AwgnH8gGXS+SK7HnwpYh3ZYzLiYXv7pexipvq/r1BtwkQwtkbpWvH/QrhRcpTMYGb/gmV7Jt4rYGLv0MnVc881LVSB4AugqSRnjpCf6/kFV+LetO+rCrdZUrLrAeeKcMrMQqxnEOo9ZsWXJZ6g61fipM/j1O++S5oZpGmP3QZOV42q2B+4r2850KS1C677bidqblpqNNhVGrNM4C5wETs39gQOXsvm2gukcLMYNH1ZpRcp4Q6Kw5DAPo5KfBd5tk9ttm3jqRc/PARsRIsEH2rvMe2RfQN9+Vp86ZvaCpfKxgMY+b0ag6oPMvmA8YBYL+6q7kXBBonYaTWqOWSD9/HixCW2zxOuFXS5WFzFs9spaXG/GjYZDbDyEfkS+Em77S4S6OoDDP8mVBbeY50tDVn8KhzXazMO3Ar+Npg+P9zJuqo/vfogFvlzZQVXCwlbbVvvsAAg1e4NzCNXFZWU/felN4Gr/7aNGOz4QHuDLHEg+SQlIQWZ1RWYhEYpInubG0kjpYkuGcZtsPb5doGezfpMmBwsOnJPkdgkXVKFRPTeP2XMKJ4Asp7Zk7gD+FOiAZwsPs8Zu4zeRym3brrGlAt7MUV72Qvfqv/P2YP7dU2tfI6TZvMkB0e64P3OwRrdN091KTZEZWJtxD67bLz5ZChSjqmmS0tAzi230/7+ML7wAfUhzfNz/qaGyLH50NiCSJPkwxpZ4mKx9t7att2mvuAGiQrb9Ed1CHsoFhE4Ajx//6pK8dwyRPDNg/2YEfFNcGGTVP5Jp+tSku4Z7i9hEZnkS+VuwHItalQR1Ay97h8NEBzlniT2cZWYQ/el5cBICPgRIu544viJ2qyCxDceFvNqakOVyDl0apY81aPgVKyQY7ZJhunBhyfSDfPWzlwL33KUx5XSRJl1xikg812IbQaKfzkIct3SEwl4lZq9empHo+wOI37hfRktU+R06kVKEjqtwFqgtLskFkmtABJybXaiDy2E8uk9Lzxaqsoi7Av+/rtw1wSqMNcwW765f/8hUdzfigRIsQXXPOLTQcBqmzVl5ag4mUFgqk+5BOypFi2eM79jfi99gWLprU4rf43/8mTBwjbJA1ytPVUwaE/WV+ucp4YfqBSoNjI6iQVd1nsh16/XwI44ZwQw2eR827IK6ub0UFlmzD8BELM+2Zzk7q/AI+AL6hLkeIsQFnjK5lgTaCBRXOKx67EGHFCRjyPAY4o+nt0+OZfmFM7yzHCRq59w4G8P1T+Y+Brp6wPLWC0OUoQvHcAoOGcSUnYjoGhL+ja4VbhBy1RRZYCFhxugiu+akbHVMot3lWZ7oHK/YGVkhw3jZ3rUNHlXEb7jHTbRtN/ztAeA6jcJ9Pd2exOjFObW1NW68yu47akTDDAbvWUAhQp23q8AWIbnkUGfMDQOyZdtQjQeAGk+p7F4n5XSbEly8pjy3Q3wEuyTdhP9o7A3qpz+2QL/T0nDgSWEMnznNx9alTFRjVSeTNn90JDJYPg/ShSFGzKUCzjKrDpCn5hR2Look95g5Kr/ruBm83wsXmysNelIC53dohD+skl8gzcF30V9MUQkDdPoanWoAH4MnNlRMiaQ+W7EKLJ13DqICTT3LedpCCuXIgXz6EdV939NAkpKnHqFfQSY7UucubuqOii5o2VBruMEq/W57pc4etg65chu1IZoq93OMfknPnWIrRAqrTnfwa8noEVq40yY/AtCk5Xf6Z/hKsox4TEloQa5H6f9ehvjAtsIovsiRVB/+2XBSaxnDySfvv4QK5Elj0ztkbAd8ahkdC3689htLkuTG6WkiqphFcTaHWeCMjv+YFWUC45QlF+OVTAQ6c7ocq6h3M5kZuZy8QZqSmCqyHiXsNLdEu789c18akHfmNqND5uCvBfjhIa34GqMn5iQVEtqdMso4yYXDMiEs5ooo6Ar0zDsBom5/qzTQxLr8HXFo7AzGCwKltQ5U0BpYA55l9Z/OlC74WTPB20TVtMRQRmq35eK+6ohDbP5aUHjtsfo11w5ZfYblWvVQkuPT3zOoT6M9kWf49Q/wSTxG2BmMT9L1e7FcI6ajeYWLJpqW6ONk8d+wjdjA/bXQ/HYPFS153wEG+i45LWUrsdOMCa4KvTeTsEbN4K0t6xbSlxjuMAfeOwanj+0h555egxoXtZi9f6CuEgW7Eeu6qkXVWcvEVTlxmwUhF0ckHT7tmZAdduFkCDkj7BkWmtV2HedLxH3pDWzMYXfE1wT23VRE/mjPfeuJ7UQD45YCt5715soIwXBixfobPgbEWC37ymYx5pMuGT5GAmKCeRiNx+dTHUQ+TIGSAGXUH1rKUmvF9KXKwlVW9Cq0oKuz+FORft3D6/7dwLdrRXTNlZtmKFx+oHHWEbM0Q8S+00/oLZ6D7dQmFgscyKu6kYmbT8H3jUAswLKn4TCxG8aOgn9QK9PasPYGfZW/SxHIR5UHq2p8gC+/39yyi0VBTyTavpeu9/0+TNXOA5WbCKRNeWEF7mIxYXFjGyhY93al+Za2+CFednV+39RNuxcgf2YpxqjHmF5rXOBvhzdaHYfu6jlRQLKeYVtSIVFfOUX0WyjFc54MrgB/+uWQv/dTtLzbbZG91eamCTXOLeBFaU8An3ZEVOuWWg1xc217Y1JxzKJoWU51PZR28giOVxKdPrlf5KjpOuySklZz5GxhLh396gZ1jB3+CDDN7RuPdlszWHYvujLPh+F4DrN6XX6nG/73KR4l2SrX2pn0hbcA8dJdnJbZdn51PtbYP3y69FZi+iR7FItHfxHDirtVI7wwpZUgIUHtAY+7JLcgRRXIiMrmcgfM337WKgJMDvo7XO4cD+UAbD6fg5JbH90Jbfyy29NG6RtRxBHPtHhMyR1VWsL3UI04dtXQhdYvHnn9o2adns7ztQXPXHx7O2LSfWO4Y9w4dFcpQA601NS1y9dZdN/Jg9Ql2MJkZ5dGBvk9cH3a4FkxzFInmTR9yCcmzdtZdx3iNnZUzWdWvIHVfB7GyOm7KkM8BOduYla7I6ODVX00slxvmXdbb8HHXUF/keEXiNk0OuZtDIBs3zDuZ/HjwAlRBRNqVS/6l/mgoMwNLE8Vhm8ZqzX5gYXIWmPhnETFNXc4sMjFrdmIPDC6/q/WSqAWeAcnF1+tD3q1abR8OP6k47gE630md/zGC3wewwSgXrIujUHp5m8q2mWOENLbwbCGZ4dP3h60wje/Ua0y8qWMvh+0+PggMvGxPCoxZWoP3dJ6PmDDSQx+4QeMvWXh3q9Hfbe4FRYbzrgqlqavGbN97ltCiW6BWBt7bM9UydxbWN4QHW2TG59eRibaOg0TipFgWFYD9ODGD9ZbA3ooNs/U9YCrgSmPu69sL3eIYF51ubpBxA9svcgOKXppJndX6dHgyVJXPHq58jCWYjcOuClg0InhUR2wWZpwCHRd6DU89Tgz9Y846RPo3sSRUJNSn3vR/2tQ8dwQt+gc4Dy/DF12j6lSpkb9e5SC3rh05itgpmnzsA+uraa0R68A0K2liruZaFAS0Vo/8tXeCUNxbukfwFFreBH1FhJtB+gTpb6JIx6GOVTxi8DSvWwATYm6TPvGYH4GvG3cXDdZCC1ZoGOy/fdEOs8B8WBRIwhDkhMmRjpmTDtM4dGbjMJwgfMH6jawVATBLFkTfjgpLd6dXudEXkLRrUwKwR175ukmD9UfzUYxFiLUcda1ClS8hka6b1qOQrNYYvz2yZad0NFrMIiBchGNRzGRN98U85GpdPXZH3F77TJbO9GzV45/N7lPvnFLt8AVtmXR5bAYjWzY3v3Xuyli3fLnl9HXB1y5agkGrfAt+TK62epMwqYrBgCtyolFAX/mXwb22lfu2u+vKmySLnSwM5u5RNjxk1TI1+sEhb4zPi/DRyuDqopEu5/vJ2gVGoGCKvbimRfopPOTBMlM5K8iByXz80k68C/ZLAdy1svzDIIb+V3Qn8GEwuYnxrG2gTScgBJ7VEnz6GM6z4U6wLy4DVxMfdkaZx9HiNyDsbLYi3lhbKOAPWpoUv/oSID39/gPWpDHFB0pHPBR+sT0F7OUqm2gWhociJxDeRSI4knLPdPRlZnTvKcbCROBCox1q0E1aSAUoOdV+kzZYk7BmXz6n1C+kCVA3M0iBlKRWZhLJqn3B6q3Vg3Mki+x95xgoV7nE3Z9YluwTnOE6iruZFmRv/TXp8mmkfWDAGRuvaK+nZsQXCwxbBPqSzt6zlsytOmJKm888SBSI6BZ7OXTsXo6w2Lt+d5yvFS1I5AY9CUJPw96r3hheiYP9KJUGE37gSXvAMItaTdZfBtEgvPCgyI5iFQAAtATPZJCUiGl/7A0Sei0IjO5HaMQzPc7PJTgU2Pmq3iSvcp1QBA7Pa6l/uYpUsB/2Qg7jsGY+1MVXwLA91pnmy3mYN6mKCFaTmT3okY1Rar3Ob97e1Ry1TUlpdq4gl0/QARSytw1cJQl8WzVpl0Aycbz6arndA3et0GhQL3MW2Q4+Iy0GCi8j+/PvAo84w+PHYLP32anXEAJNsR3QRErDsDOAJG2vTz3ruSsYdR//Dd13WY6bLpLmp2X8SDcs2td0g4C29rQvofw6Jad4g3+wFs9siI0tGg5ai1gc+7oOzYU4jAr1PBAc6+uIpeejbBtMawjiCUwwZuFd7tOq3s/l4baMvs6BzwpdnoO7f4vYxd14XospRDdFqikniBdKWAmHiO3TM8mTttwnDq849vQN10+XwrQ6/dm+dY34oYEvs61Eh2Yej7tcCaVhdeCZAiLZjMekGtWYCg1i0ZjnXPXZmt61pdIeJ072yqUR5Gb4heZZ0uzXf7k8kQ5n0EOPeLn7J8yQx+sjAgiKFtgU7M6T2wr1HiHw+Z5a49lbvt0bbXEF0Px7srPRWF7qZ1OJkylxwDBThk2FFyQf+eAtA17a4qR4xeFeWcxbCkGu6yqxSwt4ClDWjK1SRNm2sMFoPkRUwpumabR6wKTFjTgZi3vXNIrbZRxkol9Qi2phYyze7hzqKbr5bNAYoNuxr8MnPEZOQk4uqQkZEYizPqCWkOjkt5252Dq3pRXUG4IYp0Bxr8m0dgl8CRd1+Z6cQfGqJpVgODBDiQCDWpPKKDlKLkW7ghxltxB0Y7jeMCeTCwlvQMWmndx3E3hDb/Hv9RwYDsRrAGYLI2o9c4br9X6BlbaEdfmsfoQ4yPsVJ48cmjQGue78J1omyMj23w3YUC9m902t+0aGI0cCovyRzlj9dT1QM63KpluwBoceF+qL3LVkZYfis8FgFglFVH2Etm9dtvFAWakcpzoVCQxzuU2JX2yFSnUywi0fdRaIzMfKLvDyxqKBdRyeqaYv/bYbgameVug86ZQ0+at53BnV5hvCJzSFig2FX+wncZZe2m9SZuxxSXJcWYlMAY9Qi9WwruZ+Wh5qffcvzor0TGivJt2KZZToggM5OckQZenyPnLsD3uSEnAu9aGgff7AhXtJP5e+HWUj1pi/a6RGN7lfipK4slKe0lr/6ZiKmar4GEGm6zSNa6hgnvsp7Wcyui05R17RLA5QgstuaOIaNiNzerDwQJJmiDM/bTQ4jGlLV8mrOcYlWrcRPKg2LAH9fL+MZifrtaN9t+kJf2xiMK5bOOXT3ZvlBJq2109UkW1dniy5dAWz0aKAkR2ULeN3W/5sYCd500361UqXnj7SGJ+mF+/Qqy5F4/iYAcInEp4eE2RsU4CvrmhZmJceqNFp69VmCKOr7mviN1D9S0cIhiGncTAcSAOK7FcY64zlmikzbE+exnYvoQ7jDpwVPeHaT/8zt5+lF07mRDFjvqFYKEjwzYZ54fqZ60qEKJPjON1+2hjs7JuAxTqdc+M4SUFIwrfG/qJbrG6fjCQNWaQTOjmn5nSyfBUWPakigdZn/uWkY7nGTJIMo+FVeFiDQVXDt3TxW3+3k+jCj67QzAZ3Im3qWGthdrI5MAkSgeeadrX4wVsqoZAbrpv/ZJ56OQG/+vVb92req580Z3P1dtIlwuUjMpivutdIxYMXvUXvd0oUrdYPUDlTqLIivXPKzJtm+LkoFI+Y+Ln1qpo78SyAVD47BKyklNpHPMlLuAEmBj3Y8rAfHNnIUyjBrA9/3cVADJKITviGszeNuDXoFgFggnLhZHZ0sjnMGZuR5iSoX5FkwuV1GfYQIw+gFmPK9bTdpuCYI1i07aQYmSpWNaGIK2olGsyZ933m0nINzraG9aMi9OupxnzNfxeqZAZW+mEhGHGFewT/D/FAUF4Uhpn174w7YvrYer+4RfUC1eGtWNtaUsq/Df0ISx9yvGoQ4Qo0z9QvcaiTwUDx8CjwoH2H3sKGJOQiu90Z/y10uE9hUbr8qirze928IHjIKC4ffx1+OLjQeKEy68DAqSxr28FS/6uiM9aGJ83w2yBwBYLOBHhAT/Gu2o1DLlIfnGIzFyR8SJtQebWEluNjXX0zN7vyoE+h9OEI0OKR6UV+qcZ7+TmlDIat310U43nbdfn6KkObRtEMEPZ3xuV45M3HhM9pFlmnK9ORa7W8vi3whAi7awa8yKlv42uIfPDwUBCDWOB8c09J6SkDKToX46rKH3e7WO2HtloUO9XVoH6NjSEAe+doo1j227YvJAiUkeG6vQGiYLBOrmtw+oNF5FUIDg+LIW17ZbNn2afk1VF/HsnY/AxHaxJmMksHrAg/xLRIsP+ijL5zQmGgYK7q9S6Fs8V71tfQNYIkxU/yhnGasYEIvgMujjolPySEbkgX2gBoKkpNvHsztdq/BW5LsH0q7cLX1jscY2veiZ1i3+9Pc+GsF6AoFyAyXKgQikbM9YxEuhGpyjdlbul7qsULoZqsSq1MLpS8QuFtthuxvUBNRKX+M7kvZeUpXpGQqaOD3QmDcKHThmR+9rwmcDeWv4Z0ThUIN6pd3ete2Puv4719NGqZrrwtAs+pE3oPBoKntsNOG+kWZdSQbcvD15vKv/Z8CzB3jLijNpQuZHcLcCJ9ZeN5JwSo/Imix5Iy3kzMAzMvF2bSrg+5+xa8gFfL//dCl6xKYM5slCPr1IJz1TnLVzt7z9llvk8nurNSlhgp1lTwznNUhphSJmvyFzUdPuStIf8lvHH4RK7J8BW8bSqvOrJeKngunUNlceu8ZX6qd3E+aUj1vThX57pwKgrMk0pPdxZMjx//tTHqInHFuwm/Ohw/8lwgAJhc7V99uqzsNaAQlIWVBudco6OY+z3hjLeG/Wacc80GftBBjnNV7BZ+N7oq4lxJrrmEa0zd54FFU1rZ4f8NsrmXiinLyrzXqFw+AIyuYcsnyjopZjykwdzOglsfkmTCsVcR8kzFxRVPLzyrQqnw1ArecHCHlyg8KTLmnl830zMebdo/6i9k8jQka+lm+D9cmanTARIrKN+9/LtxkiDgQG5FndREm3J0s7B2W5nBJLBFFavXzWKYIc8TOEENKINnsAvYhrzNye1gL0nnQ/mbKBR5Mboi9V80P+xxh8etdX9pjUA1STBusqp4XcBM5JDQ4BNfpkq8DO/cVqZs/ybBtj1PM1c/SBSNiJBS7siZQziUZX17gvd6M7NM8Z4EdwjjUYtHaKKlqTiZZpNLdqEEITkIdseu9Xe2RgLg3jk7Y7kL3FE+gEnMljptsHCyGOYA2u/hb1oFmx0eCAn8jNt4OjF4K63+MOVKkf2Tbo3WHDzYiqQhwA+k6Hhb4VbyKQmn3jc99mM/igx26+3qMsEdfWtsRvJuvozzJwk8jKxl5DYGzsLgIlirlN1DdKlaoGS9kWoksWmjTEaQw9azHnkBPLilyI2NN+eFA51wGUp9SKqmtTSj7uqGARmoxXdDWWjoXDBPRhLMf9MsbkQLyW7+iuqbbQh6pJ5BqChtp6zGiKI7hbo5bjPOsv9HWwP/K+ro/S61DMKrsIhbqDomLD+zjYw/gfkwtxNP+FEzC2WVYaHCp3MBECFObBL1bTG4ng7RbXZf+X1cci6QH2HNBCtmqp1d+cFLe0lmLV/DTIXK9nuI787JHXl6oh1MCWBVm2KjkOh82RiZxpiS2Axb5IMv1fMoeFghIC7N8aeH+NODOp0P8MGtANAtKjPK0AiFog6wfsECanbOWe9QeOQuDAOT6TRnqlVrg58JmVhMAY7pYofjS/eb+xELLDHCen40d0G2SOl4yMh4xp8eose04VrjdKJTCVnhnqdiK69VjaSv3S8HuhstPnGVS5omPjLmXzOj7UXX02UL9AGXhEseEC/BYWh2mZTsCeClxnl4OfgFc22XsQGYivWhgSkwmkDw3Cwnrv41zMJRUsnFHwMHsBkK1OtEvc4Rg6PTISuXO+vatH+pRGyFvO1riI9iU4A0OCp5i1C0ODa6lYGWRO/7b+M8Y7grGHD4KTjVNF6MdUVpgVz9hB0G17eIc5G+qtc7gpMRQ2EyGmKDhyBQzVMxme7B95YuA+/XGNbmn8u/rTtiV0Eq3W7EkiCkRggwctti6npWsyyWnWIxK9t2CpFOahKWkMl+QPtwFS/eOW4UzIQYSWbGqWonbxeFdgaGj3H4cQEGZZLtP6iLG4+O8PqP+7JT/Klyl/zL+MtXA5BbWneZ2OWc5fsjfDcfmA70d0k7nuu0CFAYdpRdy+CXi3BGbnTbKHjxm2DdtjGRzIaZ7OlyrpEGGm0FrjeuWH4msFKjqPxN3gVtCzGZ3t1JzlHvycDYJCF+VUTYdiOXL5zjfRLWAnst1Ou4wNcFHGTAwMWC2FTapczcbWD74iD3c2ICGsCX9QP0UEE5Cp+Hr7yFmYxixFk+2X28EO/C0Vpvl7K436qNmwyCDcYN7USZz8uFJ82scRY46w5ML6kJ5TZuORXxC3F6VC7RQXUItAmy/0LrTASkimj40zB7mBw23gOMbQTMxRCpbmq/4CZmxV8Rcbm3ZFYHgTH9FYP61qznhb7tfUThNNGUPoF20jlnQVpv30s5TsKa0YDJIm4tw15UM+NeAPpxeUd5EZiki0cjPtYdsv3bNEhNHmVDufrQUo8bq6dv8fb3cP6mjwCcOPoMwIHPdAx8fie49DqONoqpe6HQwtFyfSPlRaCP+Mrsg18F41gR8dF/CFI2pGwzTMuhiejWpVOigbgDjIHbK8vakNUs1ldEozHuxESDfY3x+S6xNtHD3SQtI7gDxg9jt09in+Ldzi6dVUNsWdOdOamzhiYVB7btbwffKD1c2yIRcpzv3Uggc0+MSssesdOrIOZCTxIB3OdFHaxhYhkHSup0Yc9G6zAAw0eu1oywPgg3eM2VQYr2D9jFM2I4/OKrJn6SmNVJhbC6y7zcrtWjnT5RODmljupXBVVwgTRqa8fB2h/8Pxnue5mCmj55fWDcRSnQDVMJ7GZzJiQMOTTsZyDxyl7H4jbfq3aA63eVTp7JdLhzL83kY4JfvmcdL9MdbPO0XqOdRSY00Ek33z1LtktetzDrnL+Mq38ARALpiYKF6Qb9iBCRIzGDEvQKkhsEMxLwXTBlO6nJX9VW/im5hc/9/mIQraftFBxk7g8gHghFyyF68KjzMpuqYcj9KVvkTF59WB/+QVJM8Sceh8Yy5QPc72QY3AJAUoZj8PnBIf39nXhgHk38YL0w7q+yoWFViZfij4egyWC2O4Vhy4FS/y6hh+idI9VsnReirpkGNE6kkDOUKwRqaB9FrZP9/hM6TqpxOmjNacehA1L9Djce6stoGW5lmwr7UHv91U0R+ndQvIfjr52NnPdL9QabBnMvaN+8HsgCMOSnDm7TLU1FyWfHuR6M1nNQ5j/g2R6A4+cx0WXvOZF31cjhQAI6O5sAV4R8L8L/ifqvMWJ1qMcTOuekbfrO1YG5WnR9SsEVod783pAC+Zvsq87DoeWKA8vyfpvAc/0THLQDyGQkGFAux7WcO+l8zt1M65tajubIY8YofOjm5qwnPPs3g4+8viEGadfbL9+OHvEKxG2QZqa3u8/339ukgBpfiJQQX8gnHEbIVTehC7bwT2yv9L/Fb4sM+Qi3begmqhzFmvCobPbhdkwQWfnltkB8WPz2PjCM+JEBycJ4nWata+uHQN63TxBaMVHjCTIsL5zNuHLLIBxEmFHWMgSKu6IF9H3+FaI2Q5im1U0+METr+vvlsE/r5Ck11jXeVeH+w2X3nRfbrApKQzmGQuHcolHTzNYk0K2ffT5VVOM9sIKFlLCKDhaVLBrUEiOJ4ebFS8SViinPOlQLs5YSkBNXZUj/aqPujrWjns/asX8vX/x8noMP4uDBXNGJaTfaB443CiSFfYkAiNxD98nSuwIxddkEu438d0cbSS+56BwJYYbTVuXYuMwdx/q+/9VDlEJ8AFJcN3hEBEpEldLEzNvPcNMe95mzZ0m0zULQUYi+AvhFYyDjOooSogmq5nfEgvl48ii5Fwvmm6HlK6oX79cGMv7gaB0+kztw6zSPZ+kq7huSEmrSpOJ8bHnhmNq0eb4cAow6SZnxC1wCueya7QKZ9SsZZoyhYm4C/I+GzEu4RNJFbPjtmCBpoSQRkdsxN5sd/yNiTS85sZnUUb857y/vlApBoq74zDwn6xpijMpL4gs1FUi8Roj9MHrlvmiSoaEDsSdAidBY/HurgJSdsQ78ucNRQUDpTkOx5C8w+kRZJFBU6tgD59LEtyLF/bIu47hzErVVdi+tFXUas/g6NQqcOlZ36dFkSSr7uNBY4R5vlr+BJh27z+hWXHP0JgxT2A+SP0/YdgHJz9VgC/bpv0ld6Ew+VoRfrZUTAgIczHEDRI6rFRc3MZOp47sIM9DwUJb0ksgj8WXg7Djjs2aLWQ5graT57R41sdvIZo+DFIKSEgJLfHdCIKjG6elSLOWz2j95sdzDdSYmRJ8XDWKsG6QsYRo4SIUTd572HFRa86sv2wBqcx+W1ykJlFUsUjYwGSPE3S0FyelRFuSMtvAQ55nHQPyqwdZOMDVfSy/k0CAN/ZFZQMEyLj4NcrLjQ7CEd2yh4vWHCUZNU9dBLC4gGkgz6QrMZtDhYRVhV99YlqrcJpC9hY+ZKW3uqOsbEhVYJkiK1/LCaWxBfVnuKlt8H3ItZ4L6CbtJYU3DDUR1HkMidP36ySxN5IlQaVRmfI4aBq0v9mmFbHVKw2yrTUMMJK/0H6iwPiqwKXo7u8TWKMqvYIlc5WL3JE/VHUJsK5FT3jiO+LQ40UxFV6EPQ5Ai9+RvwoPrTuGG9dVsWp8wRFpmk0zvFTs0lLGxsjBMrnPWe56ThhJJ6MQq8y/dV/YZ7v1Ar1Ybrcbxe6KqRN2wEKXXhEVrdEvPRrec7TpeAYKX/KuXlqL2VrzCqOKuETNJLuEJOqcMI5eonUhONsTNwcVU5zbqGZDcHz78j7gEd59EKd2wGZKWjKxzdPgPF7dlMYFtZhgs6rA3b0Y+xPkRsgJPQsoCa7TjgLtCpcc+AzeQtqVWua4c7x8bYI4VsRrPk4ZQrrccU7RDCzXY0qjHdAeYJwAXgVTc+jKfRjO9t4zwS/R1bRVCh3irFdbTKCAzi2oFVVOUJ6Gd/ZnqEQfROUPLJi+JMxg8gGi+bKWbzb6xYSdFpk8jzHXeTeZrWcNJRY/55mT3OueiGmlPnZTkZtlzoIqA30jXf487t0tePWo6j03LpV2AsCiTKGv2TV/MP1i8RMtuRVotvEyLBrlVYMKkchdk8mjqnLoJtEHB4aSOV5PLkN88ZfvLoftfmzjjvDZI+fCKxGk00jIgv8+AdkdX+CJ5iYf2t7LkoUmL6WkDQGdcLhPe/qdedi3eSqME6bVNa2ebvlx/habTIDvHN2arM0vQifrfpheCCsGpnhMw8zAlEPzuGRQrAdavH+5HDWOmYsV4f3X6qE6RIAETVsL89frzAWr4UxNMtyL7LR4aX3Wg0pxv6Enr0qmq/je0eDuJjTyik9arPbKr6eooqSiOCi3zLUfhxGkZeZCxeG+4Rywla/JblVdBO1+qoFrHhevamMDGIEBoZuPOZYlr2ugtHTUZZPN24vTyvadmXfzW2OBGyiRvJqjatQ3XaJAguPNhVea4GFnQegnGbtAWesPreAaYt8K86H+C0OW4Ts9Diu/pJQULcB70YH/5GEIBWXqBp4xSOpfBhhmMJE6TtSteOEQgLdzozFAmbsKbK+Ym2jupgSFp9UIHDPzC2Hulx/ScsWIoZlK+8HFbKZirSyuDoyfUUBL9uKKOasARQIhlTwl5Gr6Qq2xqM7SlEvzS66ENfvrIrlBAI87TUl97MgRbhrCSYu0B1V2QVw7OL05RPMBXLahyDjA5Ly7x8TI1cbKWUJ5RHWRmBmTL64Ok69pbCzoeaWk1jRHOdAmfBBz+vjz8Px+ghdLGSyQIq/cpU38dNmx7F17OuvD4Oqo/fA1ae8fjXwfYhLepoL+20pGlTCrE/LXeRZpAVbueyZIsfPF1gEcLa826+Ynf64qvEE3J2offQhTgD3T/vQw0zu+fIF8nNc6ZAdELNEPtgnNkRPicWqsIPX6ZyxoHyOm4WyRNHFqFsmKZFW7fqsnyIoHTOh6P2YAIkPR/0HASFURqcvLIWXgTcwG+epW3G9iqQgaza7/1LaGg7CTmno6A1/t82/KTWZ/isktxSawJaYjVHDb2eXXuwqliVKHQ7AImAqagF91ViFOZg6DhP/kEJf8m6f2iX+C6tYcKvY+i2n9vUdmsuGS78Ra2nCBi8+CQA4jodnnKwTI0H640/T18uqekeR/hbKwbHWhUNtogUbaY8NDOKjzTAxHM7A0LpigMjGUD4M8+j8yfzbrZO14FaLj5uh4tg0B/PgruHN0bMwpt7YMgR6pXy6a0s7awXQ/sIEq1c8C0yphbRIBTxYExtX2ENemzpUjUSlEZ1yYikieHPgurUChiyJC/orT9bSwHiOHStqKTQlYdyXmt+ChvG6auDcHLp0OBrhHsR/IGPKm2RZuRw+xt7JvPiE145EY9nsP+qSlotlUCCoR7EyT29aYw48nHoHgp4LAoZ7a69Fskf2CpNFk5wj8kpmYJlltLh5j5dgWFeIAotbI5ycKFffz3v+5F4TJBGKZihsI33PKAaXwTgaQbkW0w4ecmQKcHpZ67/DmOmd7QrpFNIB+EKSXUh9rjSp7Q/LSwbdRtfJOQa+BZfw7p7VTGuBTBjf/2IPsip4QdV4++vkcZrjRYH2X2sxBtvajXETCqyIpw8BSZL3gX73i4FBLPduV3+e9xh9GR8XmlRM0rvAnzZ4YVs72ljBhSSrxtqDU9e5QM1Pd9pfdr0dylKlZwHGgdDVlsIZOnQdbCVPlJQPJ+mgyEf2BZoa/AZtRoWhn5UrXEzx20mBxH4VILvd7hQeS7GA+fLHtmU6MIdAzlGPuUScv2LPx0oXqy/aEDZPzkjMjSgWvPMg3IJkcTDI5ycW4HZaRUZVpMntulTTIUJjJRtmlyr4uLbIZq61tZ6/LmzlrCr2P4Xx773iKHGPDwWVOM9ce6tr0hBlhKhIbJFyRUHvDDEYaqYlpOXaPHxJ+3PMxn4W0T1ohrNuoxjY7jOtVD0wbGQKy2KC+SrXx++dn0s49/YzSnlUr86g1/aPdlXAEXFGzfwb4bbVYZBR4xFrxA087nQgUaM9GgYfmf1LGuUTS/p59Gkaz0P/2qm7G2e+0yy/vLmf7QkaSsSXqdsiDYNJauV224ViS+Xm1qzb5K2dNWLZbqDXxTQf7XzscwSW+VPb6Tyfla1RepOkb16Zy3Er0P0dpcSY4Xjct0ApWH+jOk414aNOFAkrR4WorWBys1Q+8JSg1+Z4W+CGK3ocEKMSDKdfSceoVuSX4+y0vkR1B4MMukPx0ufLS+fS9oDd78FhZyWE0GVgjTr5VoHA6rM/zdNX3DI32vCtacd1myh0evqj+ZVpa8j+5XrlMZ7i15w4FG54AA+XsNWDEf4oeWJOCNnjAann9r2sq9mFkENekVzdxosD85Sz13dvZTDDWFPNpwlWjZTACCn3DoyppMc+dGiDUlnjCydSTk6ERw5rKNQhpUu9X+4zSTeATVYGEzVwHZmolclqS00z3rOpLt7DCjfVZOjJ2EKityigprCwPwZ1BkD7dH7UA7GCkA3ZCqPa6QXdgMY2XdkLy+YlygGrUyLIf3W4NbQTELY78MUezYS3+cn4kAw+VbApbtR+vaIVJLkn12xoNMDUqB+wME9tXV60BTL6hxl0vzT2Ylik5F5lbTe9fYOt7wWqwB0ai5sGmT6y3fkMS/qY5YqsdIgwa7SLbdLSbqe27Kk3CykEEpLkfHyeBDNoS/ost0DY8apWNv3oQWydndYIvltHdMMeZqMk28z5iBcmXhuIoERF84kBfiX3IZ0Qf+3e9wkx9mwPo5XSh5vxA4SyuLEcafcsKvprLmkn1AniaSqIM2f5/hwWicRfj2dCCAGFFXmyvpnf+js2sU0KSy6n7CNoAT5t+aWHswKEHY+dndgeQ0e+K60E6v2bG8cJi76QFd2q+aRLbb/3oQmPHZBexcD9whtDElMPd6/iliEqI07XSIlsU8oQgnfqOHNd4oryaZbfj2SjTQV4EI4Hkbff2Q0wBP8wj0P6PzoDvLTJbd1Pu31i5n5KPFnzWpVBmCMxYTM0npWS3+LgxqzQSBYbH1fI4Z/x3Izbwamjx654eKAyz67vFguTygch0IPhvqSZi79Ht4msfWpMbJE2ddZig3GVm+MuuVHYSPEXHMlwx+wMXaCiuG0B1EV4zHiT83AoZvk0Vsa9uNLKA1dTEpG735TPWFaa3cp5x3z4VnRe2dF2g0dumTrrCHq4b5mKDMwoU3moLsGcSMq/n6A9wuFhC8pGnyOuHa+eopLUwn8SpKg9oZ5o85HkqgypsWHRBLEHCO/tu612sAUgkFtLXmFd1OY6abY38FeGJEORu8TTtpbn/4npXgYqVD8QRccE++wk8WQzH2aPSyvb85WHPSOzDIs4BTXRzwGiwi7lvSb+pcz3l17i6+oNRNwiQDgyrg22tVbXc0153ONd5GbARLYtVDxBSjImfN7k3Qvj/9ExFIQIX0pkXo1UdJZmjzuxc2yzkNT08mQZW4jEeGq2cFyt6iJ+9ZrH9l4EdyrIy6DxNSAjrwPAq4MARpaevfkiTCb1HUgzuu1gPHFLwOSViGFgmVF1V1bPI7mpFR6WQ1okNlhGxxm0h4G34E5T6cGt1nBWYi/zg1Bf2473MCacxz1v70d8p8UymPT2mIOo+r86EjJ1gZpkvKakvXtkp54Kb+o5z9PEH3tmBx7gMPu7S755yv4G8nrdQRsgwwN9SSB8dCHh5ZVwY4pklu0WC+hmRlIXXAP+NzRJSmB26WSf0FNF7O0MGp0iLduMkfqxhkmZzA4R5hWuIcFXlldaH83zYBr7xiMxQdpwkQu+4I5FxCKi6SUOtnI9bTYgFsXOAARAF2M459Y8dVIu4/gtEX93TKy39BF8JnmilSyRmgERd2oEf+o74y9m8iMo+oC+QjpUFDJSvwcXLGRp0iXrmC/pM9KxiQArQd2qWg2EqpUTGfjX/8qogjgoZVAHusbgIXtW3TTj6gMtXVJIcDc2yw0guosHk+EmtfbLzB85669Fsl3vJ6BS+tPbTKBs0tFF9Ob+FQNHV4n5Z71c/qy+6UT+fpYl6XJ1gV7OIwBFA+Hng6YhaDDRg4PpuA7fpAQuPKGV6Pa4zbh/FXNNHY/Fyo7XmjQiIimLfl4C9hF3m1n1BZm5UMufT9nTQJj4lICu7Ns+8SoS9StrL655YEkLlG4XYORRF1jsEFLaYvgRIGtVihbSpHRXR/+4Pr+iopofO4wtv3z9vYq2wLmx8nIqdG547AsTrjH3Vs6b0F0LVSuppdGbaU8tSWlwItRUln7Fd3wkgkhAWABJjBrsbDrQyWzfvyztXXrB0Hsu+6FGtUlPC8pG5E183RH4+zgu/vjdYA9VVYJro5kh71mtp1DtxMOyOWXLSIPFzBX+wWyDPTgvp29fcOlOnQvGOHWr6zvoJV+u3mYEmYS5GiqSuaujoay+Y5qAdSw4zwPyum7vA9mHxgeez/NMHsxGdZSIjhXCT6n0qcy1GL84SZlh55gLqERMXt78MZBv+TB36PKTnbDU87HO1WKppCoBxq5aFAbzxFEkic4Avlq7o8Ywrow/bMSu6qDR2x/DFJ+ovSP6grlvgLTCgEZEoEwZYGglIYbDRc7FPBt4zz7qaxGn96TSB47+1II7VbDmRwvvZhFk86Zn2iMfasMnItAR3WzvbMcJYbhgzj7CwG20SNaA2UE2Q0T2Tr7BC/ISY7G+FhUFZiiyh1uMhVTqrdmpfrVz8N3ueJbD8EUxgXq7eFND2quA5qPdRdg3KiZFaqw523mES5jimoaseDA283me8bN/R9gA/HQTEa0Zrw53Wa6FlbvLWrF8CHui8xJH5lV8SchDauKGTyW1uwQa2YSKqRo/xE31mM6GgC5T1Sh/+7ccBoWV4eTwysa8yKX5+TP1eaaQUtz3Tuidqi/HYUEPzNAv2O/olZ98ZZ5TLTTJ7Idj2YWcuxY2cZNvBWTZe4/5vnhjUnutOlVHfQyWIud90a6pybG9dEwSNJrD1/HYdFyjt5K3LyguCvYo9ZyVg9zp+RIsQKNK9JP4EVbxZkTmduUgi2bZ31XzGhka1yOkM87YCC7MN8N74ETc9O34AdeNh1GOFp9/YyfpUozmWRDVh2XIL/NVhXueeHRaDd/b4fmqwwk/3UCb6nV+FX+XCN8y0zWWyIrhYrdMFXZVxDWihQoSD9G4HX/GPj6isxY4CbAG4XPc+Dh4vGB+RQ/yJw2Pf1lPUqTMxUnOAvFgoA/Dh7wq3d9VFE7o6vBb5MAWzGN1www1SusqhVKiWQjexZOWVMnPpBChBS4Ms9A3S0zOOYW120ARv0l6udUI8JcqqlhYeA9VWbdr58dgpnnOgZ4iS0WlFDQ9maFs+6yJfbbp/mrVkTXJ/H70rnDO5XQCKndy0/pyx1Hn0JNBR14EahiLTIZycuHS2m2Nn7ZDpLx66jT5tOucAqU2a9pGW5iLzjSSmNxKVlrk864zRDEn1oYp2Wyo3I+wJlnEWk/OGSYyEI1zzUPN71KSGgmuJ/0FBhscgs9wCgHT2T9NAO/b2yVSy+NsxO/H+qHRPRKSbJ+Q2tCYPWLEq2efAjRwNo9IU9fNYYdPpQG/eNBAzsDb/aQaGGobb/rpkVPocY/MNig4/rFd1DZWAmoaUxwg+TPv+jS5fO2P+itPJchLB5nEivj52CJc2VyWJ83u5RSaBmz2w1axQsJUSqS6DqIOQBB3SxHs45v/D2wWby5UdWDbT0sbHbcdSZtq84oqBiEfRZf+A/xAu77nXH+3SNQR16XkDOfmH6dgOYqlrsni6C/xthtX8L9rLepGtjrfkESm/+TwkT1aIxljPzdflkknkdwGEVuTZ2P5vn7axgn6kXVEaaxUvSTUqKYkxsbqDEhydq27c65yfLMJNq8i84V6hq8un4HbBz64l8V0hBdKbuZXFRafkpYNc3EQMQHOOu2wLZZ/QUefb0UPpN8PWGMTQgks0BHsx15DJH5aUqmy7/hJHwNRSjshC/7mncinS7ruEpLmBOPJ3Pblf1x9K58mcGwuQdJPaSTUBH3UvuD6/cDrQu6Ht3TajMoreTJkwlLPeky1wM9kGPEir1S8RJt0cj3Hs+WZ5jnZL3CmwCY4dQRfMSCPcs1PPdLhPj68NNgglUxQgCssXQ9200Evju1mCKxRq0T8uULP9Jx4zIE0vOwQ2uuvQAy80zs4/bnGHYPeHxngFUpbVezTVoD3550f2i8eHDrx/ixABjvAA/lYMpxc3R+jHEIFuWDCDmUxoEkfVSbvfB6tXdUepvK86RwPwxsnsDHQ5O2eZLoyfI1uzSFjEQBD7y6P1YtVnBTPzB8UctTjNAi/Ih3WaJO4Nm5/JkdA0TOSFq3/IUMJG1OOPK+aa/T1cWyS7sxtoaLvqGc2j81TjLeCffyznz+V3UgNtr1SCzqNb2V8npuYxVF0dUjqVRwDfCneIgfL4rAIwXycA1xoUlSiUdr46/WXvcKgfHWJMbhGg8LoGQ6Bu0Mf5ROz6wMPexTIXoiug47smAiWLSvmbiFeQBSt6eL8JlmLJL94wIBdIxwH4Ik3z645GdbbOSdiFg2ubG+YLeHSCZJDneSc7UeVqv9w/B7x0H+i9uAmV+TpNTMdSQPe+ZJPvHb8ooS3W19yU58JqNlsLlDmW5Yad+NiD9L9PtHjuBpgfecCelBSKbCM2wornrlTSm3fl9Lcg70A985GUJOCOQXrLSyJUhMZtjuEiLVPY0rqusPTqBBP1jxH4w7D64nMDtolGqMO8mDueKC2KW1fpkS6D/k8/pRfAGD8Kw56nB9a9Dtn3GN+IbwNKzoS3zz1ZL67lWMlyB8DrxDgpkkgBWNqs8lcFKrMtk+l7vTg6tnk2IiJvOoOW6bwchm9BKtfTxRk+bIgqMd7JU9cTlyc4APkmG2v07cXXuT+DDhDqpz7aERIfjZM24rG2qexQMEsK9Cj1ezBhKtvUdJWtxNCzOjw+i7j6BHm5BreQe+VX9EO1WE5+Q2h9CaiFnNWiK9W17tb6Z4dF5YNFrUBZHRVmCeVdFerrxa6dDJKKq37kgTJ+k+6HrM4rZ+55mKTetp2e9oNmMjs9qNBBiuvRRWC8GMsSVj/WrbD5tJcg0EFDvYCXMes4dQnQE4kG6oywdIBQFtWrzT9P/itAiA65R6U/bXgd4xmBBdLbTQwq9bvOns1JNkNXR9xps5Po8n1Mj9PDn5AKcI2rYUbnVxvfr1zb4JBMNS7sJOOpu49LDRJ1cSCCCZwMswzES7RWGDfosSSfnTl3+hNeM4CS+6MW544RBIgZpR2g7U7ZWIxAU+P1cDgL1N6Z4/juiqkTehNianZHbRh45WzyO5XTa5f4l1pd6HPW+IGUeqwi3gOXj6XNefh/f3prcAM5jOSEVYTVaDLQvp7ffAp6jNPwUQqHQ+0vYEV1q0kviSqKcavfjUz6U2Tx66d4qgY+PNVCf8QvUvP69uCRMwXCMke17wl76i271/JDe10b8vVsMTX0DGt/5+6YxxyCpZtTr5nHm8vLuwLIJsxPj17NzeC8PsoDU/BzoQR+6wGQNX21IT27Dm8gDsW4xJt6pHjnzKdIk2UlTTvOIMbDt2uhWppunscnugfTHV5CsxcidFRCv8urrVKfdi8h0/jQcQwIss2kZ8iJDhKyfeRzBIhbHixP27VYUNvOYyBPkp3Y3Dv0hGJB9io99I5L/kswi0p85aqBpTLOP+IWTzWkRwz5NUMvYHNTQR1IUcOD1Ypm6026Ge5wFw5Lvd+9nROUjdJpRs/8s5yQxvOroK9w3mE7lsHcxv2u6sHLL7/dnCMloJLpdrKudr6Yd+5z1EMBuU3bppOg61vOU7iZ8ZiD5pmZ6gu89EKmNI9vHM0PvmOkXPZk7ob+csEBx179QZfqjT28lQTpOVQkOCL0VMm9nGhFA2ooW3QNgn4uG/zjwlJT9iJhdL54jBMf8gQzQrUPWw9AhE7LDjeZYJXMA/ViTbM9CPbXTNrJ/Jy8wzT4iT5XeMWugapfinYzN54vUM8M3oW40eoqdckzPVRKfEYGWeTdQgy1B/c5u8TcqVU54/FVKx5ltcQJ7MbxjSlJDTjgvHvrMfO8I8UlkrUkOsk5u+6551l+nMwmVaL6aHBJvPib53jrT5HQX4JEWU88jjQEGDxUUI5otTMyEerjd/HzfM6uLx5qGKdgKTKVfpYYb2JbfxLoc2iARUa3tIoOwONgFz5Xr3tDt9qELRVjthwYigB5gOJWXxkA0BdW42+1g2WasaqmWM7CM9IfA7dfQfPolco4DXSN87QvU2Kb0grVgf7dHnohRDp2Ka9hfRKIQZRPijAYmtY/3R5IBTRaCFAh7D58w+pktqo9nWK+bGT2748QcN/zoaFDZgH+W0D8aUKiifSfd/JtAcZwDUlPqQWHxWCf/nOQSPeCoobqUf0/x5ux3X/zw7lIz/zpU3cSvvEO4OYsiWf84g5pCfLPfCxCCeDAuQH1XhBUscZE1fS4nxCs3pcou5oitv7h10rtU7Z6pjr/mb1n7gyepRaTewMAHAX/JIuIkQlS+fmP/p+zu9YH8sv3KRIVyWTQxDj89gDM759ijq7LiQvG79UtKoFP5JnLtpVjRzL3U3HtgoOIkpVwmwcSrNbdvIZnTz8J358q6Nsj69zwBZ8ahelisJGSqOdBCXptK0abCOHFEsdY4IRu3qny6nglcRX5eMa2kXvJQ8qRHJASv9qbaueFQ1TteWIbSMA0r6GCd366r7vLWlaacNy2XvJZWC/8qLMpy9RsEu78aeegFbD8Gv4hPB7r+cYC3iqQI6wA6Xom9YIJzKm4xxDYuUESHcLEXa7d2UUuUq/0aiK5/Rt0i2ZnXIeKV6fDEoj+pWhwYJK3N8bTcm4iWJhppwWT2AZol+2igq8ke1TszjZiKEeODsloGQQLTG2q3OuDusRS34k1T447XXLtor38oSk3shUlmSjUOqfz2l6KaLQxwno9U9z1/uLbm+1efHLH/DzhDC7jW9pb+wKvX8tboRt98v7r5MN8N53Hz2iEgXY7Th01K8lKLx9ZQTvKvlTqqubaNuEfj7KSrQae6+Bynp/VjUlfL6W2KC2LsHPRzoQkp37X7oQIGChNF8hc8ifyF6Ie0rB8kGk7VyJ4BZTPxqxNTMjNh/G2AQxfXS+9ztLjWGSD7zKjg02qiON3HuKFAAXA95LyBXo4q5TTfU9WyLG/J06yZ/KKlKHL/ui2QNgXLvt7KqpHMGGBiSZ/7cxRJiK2HAULDQAXSLqxBHup68EvgZq9+3b1n+zqW+VvNGr6PRKoAjhPJuhO1cZmsL8rOjb5DhKKJnLb5Nl5Pl453sAkNUcyc+c8GCJfQfPOcdPQ/KvD8gPrvj6bEx0xCct4kLOhha5ikuSvrAeB2beG1d7FO6Zzik4RQRL7EQhibvFu7K7xSWMaol8aX/9CzJ7sdQ26enpRdwgCv+ZytFMvF/i9B65r3YHhdzJgZlvSFo/Bq9rI4gpWRJQfW6qkUQvZRm66NEra3eIYlXPKLueyKgJ0I34bi+cu45bpIPu0C3gMTUt2pA4b+Sj0td4fcBK3NOTPl/G3C9r8vM84OV8JqrMyISA+R2PRCs4sA4gE6S7YXSG3IY3deizrhj22nXkiOeAC8W8ynDPWeR2uIhrzXXAb8TOXcXFg4fERxypKYoqvU+2q91dSxvJDbz+sNNc7l0xLMjragh2tLTFT+RqQWtj5SsdLZtpPMijZXe3IW0WWAeSksJ/x7hsNPZLalCzs9mYdI0TsiJx+Xc/YaMlNkb+PpxA343slWQX+F475/y6jaOMpoDmDYO6men3vK8HrFRxUGqiO7URecCk3QaxOwSKw8Xx6La7ASXEPd511BqrtSt+XXuPgVYYsy9sFMO4U1r8oa5paBB2r10QlXjzYZuwdAgCJ/uVYBhFLKXm4Bsx/idRDlTWQyBw1xLFGpu3eV5u+fqqGHHM0DLLD8mDzzCB3NUddiDcySZHyhBJRC2Y7HcHNjntxljLM2u+D5r4Af727xKfGxkkv9bU8+RLL41HOTemTzl9CrBStw9ZQ86m4OH4+mZusNmofTLl/UYVIxCKUQH2w5tbmKubZTyJ42URy8OoL4KYZWIyQQzTpLiEkr5zUG1yaUejJpikigLe4O1NgqM0P32JptsdBAG0ZUVSsX6KVpE0hhI/SNtdWJYjTfCGUnScARViHHRSBWcAupeR1VF8tBPDhnUcxi4jtgb7FQ4eY7+EDS73lPBX6rhodCeb9KXAz/kqRXCTH9lwTsi4bx8Xumu6aZTIjAsXBMDMlM1tub5OmsGdbzqnitrep6mGGECPtBsQKdlKOVjOI3j5BkBjowrOhAuSvhYDwUO1P1F4dg4iAWJ2gajgckPOklycqMs+GdUvSkwB/0vzY3CnZ6+pQ2v+NIuebhh/ppvqeir6//e8FDVkGBwNyFhDmgQC/dTcs2YKq+yuQ/VQE1oXuFKhGuAcfkC1uLVRN/ceZe7i2pciiCmtQVBJUg3HBXP+8Vt5ykiJ6Om04O/2uQW9sGkgWGCdQL1BlwfW1s5t6+wYQaoRP6cXRn1e1UVoatNOXC1n11aQqCarRO2P1Ch/hRLv9DrYQw1xr7gZC2YaBFMLoD/jtOnf5uG8PIVt8gHNjsSI0g6o+Y+iFJjBgdByXCsSXx0v3AP/q5DIms9tVK1z4hs4bhaQehyePcGOdI5oj1PXkj7aNFkr5vN6sQirXt7RwM7+Djkmo61topfXYH83LOq8d+EEnynvHyWYX/wqK1ZGKt5cN8BYJ169YLd4wfYAPtzGyuMTuHYJPrdn4vv8zbYaHIEAjxfub9cZ4GWF2mgBpYp34l/wgrEfNyM7MRKNQNgvSb38nYG+NQ6iUhG2yB/vBMlsciD5qAkk98KcB+oPlxFpx9RVqos4JQkUJ4GHKz6I/lg0TewHHREqoCYeO7LvdYosCJ3ZiRHkD7rHSjYk8Ped7ZPClNKYvvqooVKPc5V1zmmHQ7BwkftePb+tNYCYknx8Gnp+ijcHQs7/npSovEq5rYOK46JdhBm3l/fYWlzsnHlfGFtL1dzG1Xp7dx7NQV+kYknh6HI750aj83QS0Kz93sP4ngjJW6UP7MbBce8QozERJCAvJAt2KSdOkNCrP0W7fbCYnRRvZVgLDY0fQPrptcAQXGA2KBsXDsgvqHUL38LBzc1a28JK0C/eMtCMTZ/Is3MtRidMuHOCX5A9C7hTIqJjrFwuRWg842Ay7lhibgEXtIm2GKVN6Lnir+sscwtuU01fV5l1B/brCqo3d5vjMZbOx4hvkfnZMI1SN5nr3b2aauyjJK2M1xY3WJejWAhCbe+J+0V4jZ2uz1Mn1jLjXDv9suEPkJ98uJRoGDOVFcBAzqBP/Y0izPNUy5e8aqhVr3k5rsw8sIIF3k/Fz6ehowKFj0CBKjvxiIPFo0STzdHh2VXyV+b76e+QGVDjxKMyCHK6Avsjhwj1pWc+iNo+tjuanfyKr0uMP6W8AAnurhIBRFb5xzDeCXFiODR+S4ydSub+X3lf2aF8R2s5pIy4ISgNw7W47FIr02UGxMtIaJRxOUxz4MmOn71n2ZypbeWIFuRQpMXbx97qWQl5rW1Deej+9HeevHicybLFhBEZSZLAaoqLJDTJnQtdAxrTjZ6vA/gepR0Fex+dBoPIJNstuRvaFUM+rFDvOQYxTzCG3BslchAULum7EfX7fMo/hqyzYc4H0FVREvLBV76lopRglk2V+Ep+fPEVgarV18SOgRbvYlyO6lW/oXO3fCU2AD/uaQ0+YpW06TImCixtO/Q7mBe/iYwr3TZKp+gY+EO1Jt412s1F0rlm2i5IrwR5QviZIr66XioxmpGM2B/r4XSeZ0rpL2vE3GKL9HJ4Eldqth6l5TF61tTdjF7cimufTKOSUydpT5RTRaZAVoFysIvEiDDsWeY92VcjiFN/21BtQmbRRp/gJ/AGEHiRAv6ZaA+RynlyN6L4obHwvoz4zfzGBOJZVOGnJD4VywgcfDaLg+xNee1zEn3/F/lxXYhVFAvuCGjUqf4tqRh0THSolcfs5g5W7QFkZatbghVmjKmEJKaQ0hcRcTJMItKEOwwA0NenhFXoHQ/JOxOPP7ZofdNFHM5MyIQC78nzIM0Z/qWEK4iqRDAoQlLh9SX1pLOaZ2rTR9XhTNtf+Wg7ZmOOnOPr/Lo9V2OIK6JAVLoEFJkWg8puruP4VDmdzTVIsb4CbGBj7/60nTYSfJr2uHaangsIL7kPUpFymgDsjfLynVD/s0/ixHRvZOFH1ApLhOKOjck0iUSW19dOMTLPJLoi3KlsFjjvpaO/g2SkpB0gcb9UTB5BnywrkUh2XWgY04D/g86BiPWQi2RDKYrCcG8T6AigxEaU7YxnD59hjn+vWvji2umo8cryA3a8dVE8Ngs1pKoUeBAbWQehOfJ8uUNwA+U9L2gYErc3p/T9pui2RmbSpEO6R55DpRBEEWKvwpjQFa/ykEJ30lE6fKo/NQa17dsYnKLOOOiLoZ/mWrXFX/avfPCjZym8oaoTJoI2mN1PyczfKuHxdgmb22DjspbQT4U2PHNIot9VBae2Z5EwVvhbNGsAntBQ8+jL9SH6adbfXz8BZ2s7tNOBoxcvKvoQccFjhrZdyb8DzN1Uq/t74xT3myUeRLEmEMvOA4O/amN0dXvcdEhFxoQ79Pe/obX9LH4RparRuxPExW0zY7ejEBcgUocCBn5KoLXVni3x+yfhIEkcIKkV1KnGr+VZznrbYOkkT2hZlTjZvxSAn5QPqvRJxJOr0ym2cfX/7q5huh87V7EZlPTw9cG/Gt2QICAxXB+1+wEJVY+8FnE3LM+lhnZjtSvi/IDwFPvIdPw9beQHa7BoEz+092yOs7sVocX1XUGb8elXe5KilnIrpCYk64LueCnUCkYm8/1Cl5BOKmOlP2s94TRmR1aL9/Kqg+kg/OQMeCwPveLjMvlsnEJ3zjbg/KggC2mq/alafGvVJIvHOhmh1jSsSk4JeIjJtTVvuTCmCrgsiuwb73DzIjsk7MJTS7vMxEpmLzSBw6ZkK2LGOIQxwwKZkuDviVtCo6qWnPdZs2jJn//ESU/I1oIIEC1GIJE/1+zGyvoSBs38AtTelznWfuMiDFKPJ79sr94lW1LboJdexrDthCWS6bgIhGLpua8qC51qyO2fNgkmJIPIUxRkg542syOX0ALZhd5ZswFzxDVnBOyJPIZrr3+4Sj80NhBOwXgXLKDP8SKiv+df1pERthIgg1tiRVdcl7GuvkUwVw5LpKJJ8t2a5AKJB0HmrAw6zZMR1l93MuAtTM0hDakZCpBsCUapKSdSNPRnt+QXp8LvmKihQnt/2eN7OFv0h3AV0RcuSlZpcaLvgdLscDJMuT+X4C+UzpbO7hi+roI648k6LwwvIpcv19szcR4BP/dOtPNv6JKWS/jjfEC5xv1uxWlxfctTxY5qTh9tzTRwvTeUvtGOZ2QIE2ge5pv65KdilBzpv+Jj5rzQlCEW+7m43DOM/ZJrJas+//yMpfeMxw37Wo2iRa88+JVa0+6FLbe+V47KFT7T1TCEe1xAg0QAo00BiMKfgOAd8Jh9zgQ4W0DE+cVRbi3M/UNcZ7Cqhj1N5o+kxyl3dwdGIxR90xGf3uN9VBS+JFvcA8wDytP6ChWyf28CGGTF3LHIRuQso16mKzt4ccETnPaQf5QMQSNPAGJ4vvKvGIckegsAb/I0rH9CNra/alNcyGX7tDMtyFf1H8xcl2ZyywPmXIbrBC/Cs7KLp0/7qbyTffaukWBDaatQDjgqge3+tjvVQMDFzkdX6iJQMkn/Wf3DMAJOU8LFohqGwL2ioaptKIlK1S3IP2rh2xaWtTo4jzk7q6NqKADOToactFV46hKgUqMvHRcQFz12sK3yrIm652kz0+3jS1R6vVipROmRj8hKBkhWzKDG5JRsSRiRnOdcwqiSOhpcRn3zeLtq7a2ya6/g9iq76TuELC14iolauMdTkcm8+65ZxVB/Lc3ol1RaUuBzIyijVy2rABswGHgLqX+nMpaEq/U08ycAdNV9GEqmgZqa5CuqgjrOsxf3TqYPo0AMfQ88BWS5A+N9jdbE1ifd3lWWHrwZRp1W5e+ne/ZcxH5pU6XljCjAts4kfUl7iVyumf3KLjG4zIe+JjRt9O3jEXlRLzHYd3u8p5USM1DrDgzNFmcEoAoKIAircGbvHNqHUrJbh448Y5z6dPiLHxB8jRyOWM/QsBhYo0qLTD7qsz1U8aeCsXwRHqscMhXZWekg6zG7Bzi+k/0An8a/lL6qSvCeJ6wFarV0zI0WMERWT+wJPBO12zpUCKFu7B41j0be4LHCNGZniEaQq9Y08T13nczJpSjNqdrzKFiCtmOAwGscwSZikqLgxqNi3a0yFvkzoC8DlJpeVlUQ7d29nYBQpOZBMmmqRUpECMdijd6MFOg3P0wDeSJsjE9+KlEPh8XcI5AeSlv5Fxh+hllMaf2cx4MdyYrEbXGMB61OHW6O228xUgmH+MLXRZ48l2DhDIZvDrYyMZTSNLCbCV0kZ5J26dGcdY3xyq+yYzqsijVoUahbnKGaO0qQyYCe3Wgw5aXraOchCMk1q938X36Hd2oJbyi/6ejCPq0IAl8EvPpbEbqZA4ulw55jDhqy8WlyAy8igFI9oOs/85eptht3NGPsIQC2g798L04MRYn88QoAba9MQgxIt17t6S2dIvnhkmjAZGwaKmksarm0otYutodZZYR+fTEBfQnKPGF/l4li4COMfhUm8iWWuNhOz47Ls2e34WrtI9C9NDti2gRcUS0LIdwaUXy89CO/iqgYHDSyiQlHxEzc8ZYBwDXogh7VHPi7Co1xVpb9mYxQIHVn4j8NYGa7x8ZYrPVxI5eHandGmTIutMGu9sFLU9b0zUWy/ka5YdL3UOCms1tYfCLdpjwWQ8cASGO8fjvosZf5LRJ4g+1jOXyr7udvozcwwHirXcdTj/KDp0WfCEG4duTU5TKBthITIapprxAMbDyLWZlP+tcp834iH0/tDfBmmCTask/qu9CLbz8OMJEzFgf2ftMF78r1VFeF79EvBL3BEsYBlO4iFuBLTaHH97k1gwrM/DrkKWJ4kcCt8jaO3sm62QjJG2zTDjuvJaEAXdyO21eryedX7m08SRJz4TpspAorM7Z3DKFIQI0hbjakr7ZE2Vg9afr1QPn+60gqBp40wcYQRh2GFj5C6mPO9Lx0zoSWcl8f0B2ahzN41wWPwPqjP7RGAE5FRJ7vEX7fF00Ihk2Z6ccPWrxTMdKNem5BH5j8xKb1gFbJPpGkVWt18EYKYmmB6ms85G9mp0CdWqIjLkYKOlYDmPaeRnGBRFhbWSJbvQs6q9Wu0Bm3vWNxsV4uxrL0oDnSl+n5Arhrdg5PoAcUCLB+DC9PfxXHldRX1CChCYEuykM+padpZDZAc0sOg2nV9lv+hjVxiEyCpizzkiGrGQtI5j1rByx2lZ0OnSsiriKdFLdL4gcSk6j+S8JCEjl+GTDhi+ZV3kGi2yl+f9n3T0EML7o+tiNnF8rIQerrfqCyV82/it3ocJGDBjiDReOI2fE6m9SMA+eOms3038EqZClrgiJfQtJqKbLePW8N59vByJjpp/0jMBWEzQ0slCJx4d/p4zudcRCG7DBkQpwCSjH6IIh4mr/rBUf5tn74Up52nl7IQDg9XbtkOYaKIkkEQ7eTUDKfak+3+wi3dn71fW4oblDm6aka+1Cv2duiOKFc10+KfvD1w7PbCs0JyECE+FODAlLifqcQb1KptmBNxP00TUgdbgjuZqfoXh9F/Hk0yPoCjKA62gZuTMVqMuIAb2Heu96Ez+I9Z3ZJHj/8aZmKUY8QMOrWS1n0mMNyTWlsokl3slLCihjVwR0iduhZphKSnPNM2Hzux5UzpcQ6b69bjo9ugQAM/NapSi7mQ+Mg10oTNSN30GUPU63cM+86LGyG6QhIg1VQd271s2tgC+nX/VMJbtCAhZCt8G4EBfMWP+wj/4/aDzXBPnohK8RCyVWl7JynpyJqrpbnvTE0NwOSOyBDsW41906ttZurrQT08p4izXPltuM1LKbecA5d1nmEu6dRmjnKpjzL1FwkRf4kvlyko6BbRjIPP1xU8BO5B5NVGvcQafh4LojG6ylN3StISt2iudeDOP5StlqGeqmGhi+8byDkW3mFqfMg/YtBnII06yolcqCBR1P9joZShWRv07+UXVXY9f2HCEZnChp2NPoRacGmfXE8br65Fe9tXmPxzN4UbRghNnyQsy4lYbBAFdEfEbdCYhUvkY8xs4BSYDbSxIIeaVMt/Qs4na594zKxuzBqDiVY2SsYedK+SL6txiYMSCq6KD4d/zWg9QUVfYJaiLz44i+nPRM68Rbd/1rMPific6T3W4vY8xiSEQA3siTB0fOW2DgPeRdM4YAS+n3FoQeLD/DUQQ4Ycx5o5btU12udcnubM0IDGklISMZQAoOSYXZGdkDa3g1MTkVWaVi+QHPdaqONvMbUVP9CUa12YVmLJTd20udDO+JZyUpjyh/7+Y8r2VQGEGuUytPzhE9ID4fJ1WROhURb3SB8Edh+fAxW/xOqc7irKpseerqlVIu9d+c8I7wDEJMCLf9x9NTap/jSdlr/XrPUVkKX/TFmElqNjK5BNT3Z35Fy2hIqCIg47DI5vwej3l0knaI5OiPnUQZqqQQndZA5COxXPO9CpdQVK1GjoFY4aXbXyYw7DC/heJeVDg5L8woya0i/ir/xd7NciKxGcIg+t1c0cLNYs7WzrI7nfqDsOagtEoJR0ud/Qt/u8PpDfDhqb6vHHft4b6RhV7prFaqTdxuwjD7ckK1MBFXeoYfJa2TNaCNV1WHZLrUTSHrnHOsJf8+XBDLbHx+MgXxc7X0lzHVcUhL597RQ7C0BwpT27c9LtvO2hcnzeGKxXoqM/rZLMVMyjfYfbzYunrnsBtqtTpKItjZ2MYxi/MNdpz7KAlbYRF9w3tZnTdM05pCulz/jAVRgjwXMN5ryr7pnmVxQQJSQgQBCykUThBDXo2OCM2dCyWU8ARWE1/+W0+lFUjeIip76UAIjvJu5HTaXxzk1cFu/vJD+srCgK/aoMmPBLPjCS4WVye9K+iV+4cyRljGHGFrECmXLbRnrHfl//v+IXpW6kiPPRgG5dy6smWAKkHpgPC6gn8MtDFczVN2eIdVMy4HBfeUrWdgpRYM/M68dIM7IJfnENW/39WY/gikFPT/3JM38tV7POLxMH8NgmPYPHmZlhn2iPlWdFoAVA81ZpaLp3lbT6AAXXnx4qq+ivGlnwXBxqH73oELnbAvDORFaTGgBs2PpJHeo1/dykga05lzczoLo4hmeLXJCUH4f4ghRUJfQjr7Kq7C+j3nHawUEP8hAmLnCO5ap9RTTsxO9P50ypmxxqPqf8kLig95gYqJz+7t0Aow+f2cujESS2ftdRCfopf48bpOLSrGRicCTbGnL99WOhQfdPypCHsxbwNHk4WKu3KGZ+pKNwzwKuLTAqcz9UYNFXZs6AkfnCVb+/rZ/5VYAH+8Jm6jB+xFjFZyliIIiAZzICr/IGoKU5rhD4y64VSyhakX7BNWkdtBpmg8z8GpRm75CVPW+p3vxS+XM2x0RW5/9vnf15ASIbfWbIxV5ULpeMfqEHQOC+B9fzg7Zmt60N1aruXQleYTeORZu1zPlcCBfuddwHVwbzHN83DcIOydXnDBLMPzmt4ghKhgK872FzrYMO8SWMKQnVr0/yfX/7pFdpxDXtdVkf2FxBShYN9mu6pieBfpwklCOheSoKDmHB+74Jrf45ngJlkIZHl06uLPQSDsAEvNf6qJWG55zJW+tjHJ+0homM+hQtavyrajJ6AkjIved2/OeT8b+ejJDZBWITlzyrMhs2ftzN03fD0rN/XyX2veSJtqTinDkyqwFh7KwG6ZNZPQttZht+UDOQrDVpOCHPXOGZszTlBIqyTG8hiyRRF+UQ3edMGAIgdRSxeWD/8NUrqjyBotTno6DCiSdcP7yU85b1Mw9H17bezIhqwByBrWI/vD4y5zE6k/j4vqHcEikn7PmMOBx3BnejaZdy8dmqsGIxUHAuRyuL4Ma8YRu09Y423MfNFSzhRqpo5IdSP7ucphh4t7FbNiU947RQB3Yw8oTOqF64LWLMJ0+9RE08kJCR8cr6EQMY25ahhw7XyIAbm2Unql1Uyne2NQLEGW/y38sWUtZ0pcCBax7Ku46Agk/RNJNrYF6kLDb4RGWcO55cYNcw7OS9eEal455OX2pj0Rh8Vkmz/02L8xAlg6L/lvNfTt78BlF1zFarg8DpANpwfWaNrDsZd7sQPQtJqPGonm/2gCXqK2ipeP9hAwSJvfeZbn0M3f/4S51GuiREJTu36H5weOjVCf/lTsyh7BiOVaZM4tVy+LqUDlSg6rXR73yw9nKZ1gCnTb2N41wUBMJGwXCNOXWwX8EcJKvpCCmpHxoysk8wfLUu6riXI0M/VexSw9Z+5OAp0KibvkFRZw20UXsc7icp0M64R2PIon5nruVw83FlxXe/8nAmgZNCP8nOtsqmmIak6+iORzOqtMF/7tll0Zta5jBbmZbglN2RfGMSAlzTcPEUYoRcjFUHJUrryqAjFFav/jzwn3SR/wy3aeT733uwshZrs9jQanpFW9urQqpKXK16bCME+1BVcSSe3GlmIOo4GdIDdVezLtbES/koo7eCBYh2gKyzSjNFj1lHg+u15Xc4QvBKiHdJo8iTHyoN2xK00pIUtiPzM46j/uvFjEtFAU3Q8FsK3wQlkLlkZqWwkXwgXqBku4W3HipVeQ+jKU6dj5cocHduVvBSRpf2Z/qEaTA+Epn/B+jbS3HIsu8WLOTBBtzC3PCFBlXT9W2tYZqFmau+yakvhl1DRSr3glV3m94egq3QL6UJpjGJmFQTAWIzibwnZrkM+C0JVKi7/40QgIpO6ZRQHLY/nmjVQH8mg2Y0eGggSqcyIQzojyPzz5wVTmPezLEeU9EmDpRkwM6rQZYCiP3edbiRHytp/EkbImhCMAWq+5y8VWl38YljzqXw5jXcZv1O/2IgMSZPCUh2u8ZLyjJmXRlXkcefMWSrsU9KbGjXNOm+h0JRtbNqrmdB1q6JJVoYWHX/OwJNb0Dz9w41r5Q/PLKp/yczeg9ae7DfHA9KrGksOHnKtromg2+rvXlcH0YEVwwndZquHH8ymhKxXcJXYfG9Ewm05TSa5YBIeaEIxH5WF6NjGza5Emd6Ou83bWvZjpYTc/ltxr8rdoq4VAIjxo5MYAwkB7PqskOyerB/zMNZkkehGVsyPL/PlMVGtM16Zk/VBfRureHIaJ9W8S7CY42C0c7m5xmirVzp95cqVNJukidfgJUYJrX8ljotugKdU4Lt/DyaZNjP6OnRzAVXVRlem9VZC5HE3HHOL7r4+MuZhV+ejyCm7+3dydvRW//gvddeshKn4VVGfkZAczBtLtX6HmNz3UvY13HlpOhyCSiKRhZhOWE9c5Fnr6P8Dejr+6M6r4A7hu0mjoCLQujnTLRPf0hMjqsnr9CC3eLHY9PlBiCDgCbk6yVyu+AZ0yTXZOwIGAku8qxeKFzcEYeAfCWTueXKuzcSbWdC1KfRF/34rIquQPMmOrZzyhunskuKF8VAc8IqjAMdv0KwJ6I6d8hKvF/92DUa5s3o4enAvioiSby2wy37o1SUWRM0+APayckuLnN9KbaM3JFy1gPhFZiJxcHWMLcKKCO5ynTC13OQByWzFICBQHI8Tn6LNvSdcy7UUb4zvR3XwDtTIug19NssrOBNJR1AUOc3Lr5hz48lHjuQnLP/d3KMEQGOFe3GQqFHB00nvA0bppntGb+oGG2Mt+QCbGKNJ716g2GypY/GYb7zP8jaKsAL6BdUfis7b2tKm3iQz8oZgZ824021uwa8lJpcnrsBZU5S1yqMX1DjthSnA3RTeMsT0Prw3dpz4DZXWd5ftrTNtjfge17U/qssigtfWZDcHn2Ek7pyPZwY/NshUPWh4QBg41u9h3DZJWfrpuiMUB1CmSEi5f3002jrUg2VXm5tAC23s1PpDzm575G5DUSX7VCKxbsYQkPGCCEt/I3FQiw7wlyBPI4FRrjHJq6+/yJSe4sOidflB77tPxMAxN7/bURGj05mIQwo2UC3+sGgy8k2CXxYMA9MPa5WMb+1/NVt38vltWFhXAxzbxbKemVWvQYgADmHcSZDVGej2onOFjaKuWw0X/8Jd4Z6+bC1KG96ck9i49VbIy+yr5es0Hd/5timbf/ArtbveVSnrmTx0soMrTqDShBL/vCvBxnMslwKMwm3+G5xvd57HrhPPxfPyGzvjteQPQ6fDQsMJH25zaxfCnGImGrgWI9URju6fy5mzEoen+I2/LQwKof7WiihLjfp9z0m6ZM9x7KkGAcea1a9iEE4SM+qWAj2Y90wlFus7JEFsuXMCcxeixqiSKOY31WEK/g2gkty4vGM+CzAv9GAj/auqr/n94OssA3JnG1xrDnos8O9BCVxQf23aYZER6TgVBUQL60dH4WK6clUNnFiyC5J34Zmu/uVDpNcY8IZmpDSSuGL7WWEFxc9hQakAqew3BEb6DvHcj4d60e65papTLPF2qpg6JrQhMTuOSSMMebZVJa2pDheLaTZULzy4FWGrqrDovhWqhpOE1Gap7LZ27yYsf2wV0VQwb88bDfQxo1ZIifd1SLonwfP2cgGDFltwn3zgSkRcb+kaYvBhG5TLyFO1i+XqpZcqe+iOQmoKAOGKQv5niWoXZxWsOm7cz4O5VsB0DT2F3j9ld8RWECx5qHYN+L7nuJISmt1Hazg9RW3j45VeAqOmdSlVIhBvLtxBc++Cb2EmNNT548l2wCBgHObW1IJJCyZ6PoG9I4MMnWN9hTM8ujwx/omQ6IdF9nhGX1viaqdzBTOlUFblLBBhiLKw+B3wdDEcX9luzESXRjZ8YkKuBbEVcM/fl4nPpEy0/q3CiKz8umZF6TYNhII4sl30SXgzpFCn7+BDW+vqW5Y9X98ymNL9A6yTgCQUvKLXpSYz8yPMwqNZaDAWCIoD9vXa9RWPp6Jrfa3Bjw5a4/1m9r5PckVX5lJAvYKLUUCwWX+bQeGKeYkuZrnhKH3wjG7As9P0hHKL6A5Zv0xKP+EKvUdfoJDkJCZFuOsAX7ZGk7IEtX0UpY+HwZD3BjilC6jQET+knJm+CuQconU+MNrq+0A3eGQUGi4OfCi3oBTCtpOAZy+Idx0JMqgiYFA9MI4TwdmCgnEGVrhsy4y4Nv9fCUtuBJsP+ZpN3esqFFSwtRP9jUaV2kzO79vRcqt+QX53CxjDlVbWGNSP+VV1rYEIB291gxZMB3T/b4lIEv5LAsrqx+n1E3wwcIAEYbx0eG0BSwECmV96yHTN3Rm0ocXnxZEauvdE1CpHNdvI0Tte15q9/Vg25WURZ30tMCpw//4Ee1RITqutBcopLRkAF9SKKLgt049Pvkb0Hm02QImo6a/Smnwp4zfxXcxDDZIxFPCMSYhzYZ8mc1Hjrpv2NAmemNB4HPCZqV+V6bCWAfkePHL+nJseWJoo+3F2EiAS9oWHWoYJFS2IgXiu9hu4r6c26qP4w+2u7p3x97leBReWB90xiB5Hvga8AFj+5ZIB4IIwbtFavS6cjJtNbkeAkPqDG3YpByGsn+KIo8uUWuiY3rXc58t12g6lKkjTjMa0g5Rwyr2BYaKXkLakxjWGibBCS9Roy5Pb78wsl3XpvwUyqFmlUH8DhHwd/6ihJhz5AZHqO1L3wLrgoI39XXr5AnlBGSRTyw8ALjzfAMmqZBdhM2kOseBFbHhdqA9nfjLYasCG5cGFSdtJGntSj/bjJIjAlvBM5erMQbC3hXzsWqcvND1uiv9+xkXZ0MtVK11cie8gBmynbcc9gZKQKxzxRWYsD8yIBTlq3VBxcxXkYPENzZowJTf21Uqvv2hHcp9ke8OKLP3/pzoT3OkOLOIojmdDykkyy8tMpqCD9h37HnOEJBrXUJhvSssxz22dgVGhauEnJYZkapnNFevCyMQdWHVQ3Gzd9zJqY/++6GfM9dAoYhu0CDsrzJhtvUeENbb5A3sB9c/N3q8OlWlgRVIlBXOc5ETeM1ygQq5redUCLdtMMzSwfYR1gG/9A0Zm9JsPN4v2nZldlJQN9wKFEBLznPQhZRQOqD3b7cl/qV3x3n5LYnfO4ZlkKu36DniSHL3ifh6zzsScepTlJs+AjrG5PFVHpZQRoISJaY4oCjF7ikFwCl+QEKV3SD3OwNjoITxSXySwfpssjPhdy5CxE6FbT9GxIINX0ZHB8iO7WxO0nP4bi3XdKn58FbHWgWNY8EZx20g+OnA73jhan16AphdFXjO8OmdmdbqY3lDiyHWwG2lQMUeUGKCOJKnn6p+nD8bWbDBXxZXTOQMxD6l31ItOdrVbuCKUV94emCBrUIjdBJ9oSHAWeWMmMbn6OsIXhGfX99TkmIq0zoLBduY8wr9xR8xFNQoMfBoShkAwYOEQZzBRST5iZadDVji6Cr9knDvx0z6BsrpQXZIBgHMJDhpLj910WZxN+7m9AFStLx/r8LY9e9EVHwPaA2Jp2/A3k61RcjWGg2cC4tnAX3PCR4w+irNQeBCBRJyCfqosJuSt2OV59MKc6lENuGyHmCtXzDyydRB398prfciSdXnakiImBwrwrDkmNqREnuLkwCbrrT3FiWQI0Jev+b/Or35AE+X/7mEMX1QPerTELXBSu/j0i2cBw6BV6knMvnIsBsUIFrk23pzWxsyRDiTCuSA57B/66pHKNv2FFANuNDKDq3csHluN22VRbFQrEyQmFRNV/pUJSGuf4gx+VHNcl0qYTWypQcjIcXowUVwP1NBTSvnAxgbIiiCchPENR5MD/npgcy2plRV38iwC0LHBGqvIT8iFeflssYJP/UTO9Hcfv+GhYfm34uy8m7m+AQAD+ds+sZo+P6h74so4HQ41wI3hpOYYj73CeAtlA2Y+Fqz1ebZEWh4hHeRA7yr8+ZhPwRFemFqtIANqOGqtDOanEdo6xhISstleKog2wfVguyUsDF3rC0tQlT4arAjNXbo5JjpEVqzA73jh+sfL1uWFP/oSGv+n0oqGKWUbJ2Hk44mLWkMJ/2NoZt5qCBP/DSYXQJj+cuOesH8ZXY26eoDqhHACXxMG0m3ligpbPiuHD9uw+BPSayUc5O2Tg8DreeVDPBpaRZldRJBC8IkwV6LC/fYkVHAmUZkrbnsi/0sJrv8onmJ6zXcyBjZPB2waXk0Tk6Spyuf9rtlo4jrxMR7F4cOJHlX4QAQ5ZDhbAghla/1WOEnrgkbi8oi1Kfdz2H6UzXFey/9GL6dziCLiOBcALkrnj8JWCaNAOym5TLICgxHWtz9t+y0Gk1Mhmeezwygc6urlA/cTKNIBeMj3bEuRaBwZ9NQBbuv7+BQMDF6UxVkq9mniIujeOhVXoCW+X0loaBFRrSdKs5dwLBshErZFXm/p87yQ0z48hy1ek77X49SWpy6ZgbR42YujKd4bYxebLy4d3N4oo/247wjWFN9AUX/UyYtQXK697RvSDoW7vjGqdTpqT3xDERkiCBrttp/wDkXB5CmGVgdIfyU7RrQSbPnsLf9vs1Ukni+xuJDG61HVCwflaE2cY+PfN+Xayqzd3EfjJIdf3NnTMtpTZVlKHDXV4PmjIo3TCBGSQwGC+R6IoLVr/Aw7RfSO9UA5qVyGE80pssGQzjE14mfhdRIGW0u9XXn+RPJVdStMSJh5D+x+ctR8FOPXFRhOyBSDjQW5xcAi6unl0b4M/+6/Pm3qKxWcwvwCHGvrEn0J9Q4g9vlFB6UkBSeqrSbdTtEBaMB8FW5kkCkSouxEzqjiMejuDtzc/v5Dl1G73KLYNROtJwGzdCi9MJO8aWYpXpQuL9ukrMbmRUI8WSAukiEtK++qkNL/0NW8W22awsVxsa9tiJyyVYHjU00rG21Bas9lgO2MPiV0UEDZPv5isYUPEfWMJO4qCczQx2S6ln7TJGOrAwhPUajWU6gOF7ZxQGxksUktAMjG5B5DGRaMsQ3DhUgSfPydV32bOEI3emXyza1MWTZ20N3eSHHNCXmas3QgA9BZ6x3v6iB80X2ueCyazFSpVeGx8Ss9rejZMsezZZ3nkucOoLEA4Mrvr27fHTFWh0L2iRbWPOyw6MCNt+/BYQ+U49dD/01BGfOgjnwnCFJ8L15Se6PcK3MRFb5cYJ2rlY3nszcNG3zXe25UOS41yW8LL4JWtVaygmSluUPEcegSdeVeXIYUGcB8fmHaMm00GHZeSinRUZUV4hukbVgSuao6Y50Rr6JKlPTaFJS7n2MYw7sYRC3OtLAM1s7M5sf41tx28pYtqRYLFqNImcZRMFdjMS2tLUeCgqEHWbqcf2YCnG8k+WtjSOk3nwReRchO6JHIO3GsZuJIau3g4mGGeL7AaiuFC1W6EHucw+KrIMRlTz4Zeg4vWhZxlKZP5vShNvaF5DbTOvGpr/vTs/QRW3N/H48gdgUHGmIAiu3O5dWSDTuize6c8z8JB/hRzbpmamjxMXx3gXuJL6azxTzJy7SXbcaW0Ab+EvxCoYrRf+ogi7a4yl1a+G0CGYfgcoRP398vzHOhgga6InQg17NSEEACe/JmVr9OwVefCukDzfhiaquE2+XhtScqE0abnYx+rJ4HoNAzraGa4zUqw3CdaU6y7YrKC81BUvTLKhE+9zWamywrNCJ+Ff6qbBGSgd7GnloaGrVtJ1UxrTVIfh6SEIcqJrbV576RpOOxi2MSBkpY38yJ2hOgTSUkv0ENqSK8wz5MnrIdxUffvPNP+Pm5sHCBbR7FX+CCU2uGMpCLGQlYiaottLqMsG9ZugUiiwjwbPCafGVML2QnMYNmg9qpdIdtWCXU6uySrNkViwV4wr3GBG5AE3vpTSt5ebu8ME4hVoCmg0cPcYwcsej1xT4QkRoFffhp7GntngHfeAQnAbbzkbcmM1glVqCRPVFVPaiEgljb5kS0flwRho/xEPYJwvF4iqzl2OiSBqqbjCHjZD6XTSdJ9P7HcPT0WOKdM/Z2pZnbY5iFgtXdvfGk1/QmU69hvfGOaddqE0rd1PsuK0Ji4xEnSMW/pnKNVkLfc0XUI1pfSsmITmk/YR01Y+Yc9yKLYpojDAo3ZbODow3ZUj+cMvD39Qb9SMRBMR0OWnadx9oPhFRNnHcJLfiNLv1w6Y/DAEbAz5F0OSCBZnUd2ZFrdDq9E7FYzTmZw0CH/kBy1K9F8LbMILSOqO0bty3UsZ7FutrNDyUcBDsd1Xooc3rLang6ni+ZKNJoNAym5DeC35LsyHuxdoCan6VMjDByqMetSvyPtwrWc1qM47FUWEgFwNs5W32bYypSqlt/Qs5bfKiNe74I/N+cR2H6c5BiRtwA5nqC57BnSXG0T9tozD5+XAGRtcJsluwcBSOGOlI8eYAplPlEQwO/jSgp/LmiK/snqiNQUznWx5znVaXRCSvIE2n90At/ztDM5QgBFJBoYzG6aWQ0nVIQuOXHYQceKGyXbAieJcGgkGAN1ZOu1IXhgUxJmH9Eu1a8ggaA6Gl5St9CqltsMBRSAVGsIgTrdgcbdrya1Pg7AVvFiEzHd++HPD+LXhMJoXm6r2ZD8ET4rIKE537MUIPv1sY5262W3g90xI9qt2g5vtEHZZhz/aN06IVEadi4F9trutWtX5VzvAoFiIvkKc4pMIrkpi8VE/OM5+nWm4KFD22pJrN/w8RfwE9jOsf/bK8HBBWsd5Ute4dLxLFN8AQZ23ZQ4E/MB/+pEgS2kzVdrAevzqrFaz9XbK3tXds3+tG/GxYkWRyqYjturXEFM0uYTkJQcdc2BcHOHQH02z3MgB6msOG/QdaxF9rQaT/XbFQiu7u3BdBjLtfGCc2cqYnwqemZNTo6AidfaI7KMDtUxt/qzKX9uFqebn3UaydxvR2M3F+Smm/fVUWGFibXimAwLjPmBmyVzJliKLe767cikqlo/Akfuds+zkXAFiCEftuS4B/iMV90MCDcGrerRNRBfN4inaVg3FhI78OhRg2K08cTPLv6LHvAeQgDy0Nq/IV5hGPHejY1DBbzSz9M32M4abIrspUIDbg1QAOkzr06f3npxXkJdyIYuTvHZNas81/2YSqPt6SEZNXa8WgiS4VCdBeMl1KtnEnYxEGWk4+nUMhzaCR5bZt0aEkUf7kXSdTo++Y2LaKFt/8vDPlappzrBRiWGDZskPwElzdMaoTCaIcZVqm5ej2JTII2bzj/9Yx+AqEiAL/NHpcuVrmwqbApuBLPeNoYd85vXIpxKvk+VBwhSjAXnhvPHKh5q4bxgaopnZgEenic7RYjiPQB0yZg5/cuUTRRrb/8yX7X7YDd4F+owmkO0QGVjWEY3H0Q/Y15f+/86HnObmvBawf9ceAEEZuK0BNISy6DQxTk++4WFVrvyyhE7jzXzwNdm23ooH32ZbZfL1r33DPPY4sGXWNeT7TqclBJ7fF+lqUJzbrXaRjGiQuu/jCLXRKccxaB7Dz27E0Gh0eNeiR4eJLvv6mIzAU5T0h8ayjGvHE3FoQ9s5/dugstUQuyn2glIDyDELu0KGGrcqKd5WFMrLklU3kDUhuPLfLlpG4Ypw4VMKKkrbECa7cPrnleINjZY1AQVuPI2JhsKB8fXFk880j2499g+Ow/wa2SD56bfyQ9fNr+yrSVvzsD5AXnR/7iCqhDnTApAYux0GtpRjx5/Ilzrw6FBadoDbBvFWruEbgPwCxgyEyrp38nKtQwMrtbeBJ3VnuksE1wM7T+VW2O1Wq1nAG98dyb+EsGGkjnd8SsKwkft3PPXo1cHLRshEMt/t0aVL8fZ/7qC4wuqjxdvsO8ZJkqFMFXVQ8adA0lQhhE3Lu1ix4m933edqvpvJH2gKxuoeBOyQ9Z3dOMlk35Z2vrBdRoZ5r2QAtfVDxv4AXWJDuI5R4Dpcx6MZ97d7r1Ik4LHQwgt6c8kF+ndjE2ME2SMT5+dKFWq4b7zkkkRRpBK2yA+lMnJhVHK1eEa+B9CFzuPRr2XZIwFlFlhGhTqaA3alrYXKstv75sEiyobrya4dByJ931A6LAH9Xptqb6tfTWG21q3qDZeQW+OOg0gxKPOXUNFUYv3BiIHO+elXJDbOMgpSA+5iMLd1Zq76929Hb0ET1aKz2U66j27RvMVdrBP47z5vY9SVch0gh8YxAgSkyHVO09pC587dq+0lrDOnu8jLgkmiAEAs8OZy4I68YeRpQeP29RXe1QMVKoyX5JjCtu9cdf1oSSP8KSIufDDZ4fOn/S4ZuGE7NmIphip45nl8+6Cq7ySBdYPWzAzLwYpn/IxEQWXtyLyverg96yocqwU3C1OA5+0Vi5z2aSIw62ZjMIcBJ0q0ArnYqOUXkJvUkNOJEKaBEAd7PJnqDs4PZZwfTqof5WH+yt91s1pLnyg9uLbmmjbw3wCD8UTP40xn9MqCf6/97EbY8GcP13tjXS3fNk0weYc8hed2JTcQI7sljYCEhfccRYzBkUSzZFQRf+nsV6ue+eNFJdpvFfbGu8MAVATZYdp+0KhCHkXosXmEh8if3ScXdSwMmQjYAbM9HJVwylLUC7D2HGAXxe2NzHi6T/JyuXHtDS2PtHyrWhv6WDU58od7k6LU/acAmqtqPSGVTD0JcVtuP8wQB3ATbPIGKs3SJFIu6OCXUYRbBlKh218251Uvjq06a8p8Swrt092N/1vgIxSylmGKKqwtamc9xZfT9w+rPfZSlLtaX+tIjDuL9/27cZu1VnOIDI/B1S81OeojgNU8UST3YYLHs4TxA+YmBMRsooMaOILDzAzntfdBDe0upBebvxEB/7VAaXC/74kwUos+QIdGyJtg/AEr3+OP7T+yUICPmbEo04tC0kgHf7joEuaXdnO0mDwE1ORecda9UpHtkRi4J6ntScX/YnN03/dAZqabLYTYlBNQFLdoiHrS9rJXRSE/KOYOb2InllFXOxPYULTUdVvKyT5vZYvYlQr7Q5dLL6yHJ0gzyJ2m/8jK55JhNJhU1wgSOJQhZOnZ87IV89knowAdQVsSqopcMV70PoAShq4RLNkqHo7hzJldxv6ouDvH+74n/T9IruDWbH0q65Ff8SeDvHPj4sD5HSMxFA55+9HEcq9/DnCNPhbzAU2wa5me5fatcg8Y9DxeSA8QAmTQVbmQCuQaMcvINHhTrW7a9pGiOTgjCNI8BxVfLT1Aam4MYy6hyizyzruBNm76saPvxszMKXQ8obqMEIzBJJ/b1GSlpu2b/lbnnGX/FiEzItyjV4F4pId+URBGYKL8Hd0dgT/zPPLztRm+j7bejHdDyqqgBG459FxvTy6TRgnzMfxqKpQwbrfVhu1L44ltayD0xEyf5iHE0R0L5WbMjUYyEpMW0JZZyu1gk81NO3uMv0o5vt5Aed5E3xCN69IIMJKkblJRmDLbvwoAnHLB80DN6UFXQCqjvLXmQwy4lP1sGQTA81HVVRBrxMeCeo6wId07MryePNTiWofdAHbX+1yhpwIHvowGzAkolSQkqTFqEfzIYKZAUb5JzcURBl/yYCJz9GSDsOO91yJQ4kopuP43iuAip4Pby/KiT2hskwlGbvtdtBznDdzGSW+YGtrEj4Iges+BBTydCA1mm7v7NATkD2esKOvzDqHlTPcOoZa3ew76ImXEKmZpRpOIxdNl2ocsZcsf/ymEbp44fX+d1aNB/Nyh780mCr/Li/onuy8eE62GdH2B3qmiuZJhTmR5Ak3Hu/7pBvpKgxqAIZ2UkEFuj00BGwej6D6I+7mHvfvOQq5ggFo2XxuVro1kQtC45OvD5JYKMdShmdsNTVlyhs91ga/CzvEQfB/ao08YiEJyoLyQsY+mrdp+G65qazKt35eJnpUVMlM+5iGgEBfN5rJsVumDoI6gmor9oMb904rh+1BloFq899xF7+GrBgKXvcvQNbhQ8BG9TxsTZFBJrlgtDlwbQUfGIvq0wVOYR6pZL4Og66xyETF1YdOU6nNY293DySPEt7VMMxTGk9ED1nG8daVvxutkoTh9BHTu+G/S9V1zAdymHBJ+FOvM9Zn5OCt8U4BUf2gttvmHAtqGYzuh2sgwewuB8ryLQwZIGXufA0CkqDjdlQrisvY+iYlGx++NsAm7cj/pD1m21FtmKjyQByIHO3eijXa9SsfYB3qHVYhTYIc7Metfp0yh7YsaMcxnTpjgEHWKFte9RTFEKWRD1SVYbfPkz05raswsDoSPNXpy9Y8//Ox+ZeRGaJJcF8DYGQGCmBO4ihTtBqiAWaq0BBmBIkS20Qr/icbjh3nRfv3nLf2VfbvJKzavKIo51vYLsAIkU1ZndXVFngYJabCzczPrHm+sZ08LxAoVKtGeeUHc1rlPdRurV5mXaxDDXg9/vyWpiEvnjzcG1B77Smc5sM+MS/XjTHhmgZ+XCEd2BnCl7t41hT2DlJODriinDGYFR1q6j5oFct+KhtKpN//hhRq4ME1Xffa3eCc8t3fxCPxLI4uMj6iEFej+jRCLtNYwMv1z6Mfc6X2ZqYL9e+8xK+TPcFJ/oxrmowq2wEKdN8ONhkVKWM9ecVJrWCm8u8VuTwxsX7B463B5OiHjRLEnydGEOvJnd4PSH130s1koOCxOcWCBafIMoNfkqhr8CTYNnKTxHX1YfPJh/BomllNWk+SNrSz9S/ymzt4wjFYIhPgj9aPBePyW9FdEqhoydoVstG9TTrqEBmHF8lteYbwmclGY3C3N1zLlWf7gzZts3DtpCI36Zu8+aXLjT26A0H47ZQDHpGkMGtKXe0wSwGLBDv8eMaraCbCoUPE526c3LB3yi9wrBnNeMjOK1KBBprv5Fb1fKiz/JtkWlCsNDuWW2tR/eGUSkBtzOX6MgbEuwa0qMbqy6FojKRTwRWHFNAdrLT8d7wUeTbt8K781dn8m/1LEEpnjKO3D9TE6KpIinOin6N23LolwpPSqPylcEp7ceXt1MpcHtfhh414RYN61ZewEJ+mik8gyAb7/KRIOaT70/qD9oLE7F1l36H02l51i65/Xezxt6rBkzWpvlq5iSj2humP+Wd6xmpIN2gE6hEQT2U08KkDj0ktKHq7gNhARoj23S9laDGLWyIKzhSYKIB13KPXVUZr10PsEdBX5ev/Wh3iCT5dRH9v8d111vR0AWQ5GZyDLHvHsPVvu/hHC6Q++ECPEd567zgbPhia0KPGPsO27/Fs7K6Pk7ci73CFIYwQm9HbjIkMFBpPQWzvYIG/M2KYOEqPMyIogJVOtwFenDmsFYEolkk1XM8/FARJRrolzU4vz8VqRLmsKH8dP1QCw966EYhtJp1WKMFrWx1mW1yHqzC6IqgmYLCcTpXolGus+E8UCadeC1tBVhMbc2u4X3RkojfeTbKmRoqNeiPWJtWCsoGOr7ijCX6doAwCerMZfAKHht0MQtCqXLZyeS1OEZ/b/G3tYk6tZZdv/26Q2xBeEicHgFP/elpc0lheThAJ2unVJ0HX6lfMBAquzvgcKie9dGgKozBJhNLNa6F9ZEYNLWFwjPt2NpQP/w7oDVErWtJpUcgEUOQ/2CZBcXloH/86J+MANvyyHN+NycmArcoSmwhxbLDPq/b1jwNw7TFAaHHkahDm0o5cXeagS93QDR4wp7Ef+mBc3N5nf4ah4kpOjTMd6bXZf+Vfkguffoiph8g7UCKKOx0yJfsga7fNySfvdNDM3UUsAAIKZ99Rs0ISmYfKfoPkWag9j5bUu7X1MmAdQ/RhRDQvxoVpyddzX2/Cki0+XJGwInNryEZWVxp1NBobVHAFWnTzVhjn1IiH0fb2MXWR78EacdKqt5LWFAL062hzWDR651xZnsizn80tQVnM03w7OiDiofjVGsncHsogz6MXJpy3Emx2AkiLW8w6c1+8u0ISh8hc5jfSg85+ekUp2UMY+Sc4bPRRc0yRmm8q2MjjAXJgn0NMoXaU/et2QPQtYibAEj5CXR2qj4piV6uT5geui46V+3jvyQf3uonJpqIfMJPR07VxrP0+RBrjjSUp5xHUJLUzTkXnC998AkCGuoKN2zE+T0p12WN9fli8TOfWS/lJ8H/AYTo6G6AiSVVbTd42TXeQRjfvJhpxJAHAOkWY52npDGIdZXBoJr/t3+Nn4tbt3/TuxSwn7xWcUpnAYlCPtNk8sXo5i8muUDZlg6xPgnIQ9yKh3RRfa8f8RI10fkatXz9h9PHmgeDqhIoUrHJ32I5/5MgJzemaF9iRCPuANpbztlBHmM4vCLlQ5lhMItKRl4A9kKHasJKnNBrddwUDYgNEA76IBHh3Av/qYUxqpyOBDxSGimiD9mU6a1MXftGBVX4tcNY+46eeDEuW78Xv1h+hogegNbTXmOD4J1YQlof8QfSt8TfNVHnHmKUOS6+fqqHaEL7ORf1OTalHvaxpvywDymVkYQTolICEEch3Iri/hsrarRxQkSxw4i+Cni/Trkbg0DXv178/SyQNdq4TTXUm2lwTzBLAqH/Q2OFW+WWoybEAd46SJ6G1I9kMmdgTV1xk9l8aHSkoR1d4lMZdq2UraYSazN/ctmwz/QqTaBMzgHaErZ5rBGZgdHTcSROugI39bdcTDVSE8ZYe0Wa8n/0jYcmuPV3FIZN8Rfx5KX+p52GY/1QYV812BY9On1OrBWrMM7BBLpYnb1CAoXsCB6ZGHSGaWl1GK7hf5so05sA94eHqOPmJOGqhyYCoDfezAASEJSns8YvSUwSEw5dvsDK/mcgl9nCDdVT2VC/+0QKb8fN7EhNJV2SxYUlcar6NHge3wE6pfcMNMx1bqvepu0wO9fNKuykoug2+bBAHDWM3jCkdZsd/IDUV+yZJOqblnb76vGEdnpZ1BR11OjXamPUTtP+8eqFWQKb82C3w+/0hXhQeiiLwMj+vQ66Qsi9vAPmKx3bxPYCig4gIqdqLS/0LjZ32mLRlCiAAXpK2B6F+OmJ+xPlyfQdfs6IeKEkw+YmZSXXzlEsUHO108FoveA42NjWXvjFapIj9lNLV6/oGrPAtSclRS6XEEBDcofKkmCeEggqs6iZ7KWfrQKGXWvM/L1WZIgbE3vVuyJ+8swkdjULcF4aBdMakk+cT4pmEtXXudapgawcgjiy82ow3bZWdLotUNdXDzgDxwom2lmDkvl40O60IkTxIcgF9RQ6QLqaivPei8bzH5BKaY+bVrn1j8ljcIE1I6Dfjuzsm7Yk00DZWN0FX/WOrImvVMCgo9wn6dAkSo70Hsb8EkemvIJ9jcuqvH6R2GKUZe3NaKs2mbBRSOhivkukqZqgPb/kX+G24WNgkE1ckpghVCLHlN6r73To6z+RNPOJOSRf5AlLKtiIrYsxr+QPgs8BqvwZCPwQpYMrQ2rficVR+HfUJnbiPj/RuVQYblBA8TrYoHVv7muEx66Ea47ItDUygB/slHPS9X7Ah1xYJe8DpACR0oGza1poXtGlewbl+UmWYOi9uXknZC9fYA6J1xibef/d49oMhZ3XRVSRkWB8TQBDjUaZAY92ObMicXvoXtpLJd0z999HTPAvlGJhIX9AvsxQMJhTRlcnMmr1hJooAoxobJgXhPDfFkBUdVz4wZ8Kvn47oVBeun/Ej9bV8f9WKthomtd1qKD9LNT6RykHlonqwQ0FAAqswInQgo0sGhNavCBhKMyTxWg36rypgvg3X6DBOarnPID/MXnijhpwpzBD+vpwekFUOmnKb/GP89KnZ8770YMvqGcWFfXEebVsV9Ksh4Vmm7Nu/6fJhdHgh0Pxu7PDalF41fKBermkxHAOYac7bYr2fMSL0/js+zfNZNQSoPCxs31XA/yRxJkGIU3BIGrk5336f345nCJ++hJ86eBe0N83KtKn/TjNNLe1X8qs3nYCapU3aMMjoecEhxXm6ezJFYHHnHK/IqK1IzVqTd/gpCVgYmxjPty/HedB+FJE0TKf2jtb0cMvgtoT8WkGk8En2IKS+2L6JDJsFyngggxqKhvOwutfMEM7pTt2j3omWyMfgWF8Yiziw3f5R3XwRf5zJhFow03ZCu7dDHvBIkIjhacuPflgwYVoQWhCRs1SZBnaN2SJ2zr6acL011st1U4f+E2WNk07wnlWBhibPN4x4GrD3WcPqYu3pcs99xRKTLbafE3iIpks7mTThwa77DltW606Hm0cSJFVc59qVnmhHcgcg4TUHHwKW22Xol5APighPV8NSrAj71R+BAPZwCz0rpMaZEBuNZ4Fi23TBVSTm79PEb3zQWpjP6we+ag2r9OaDaRKtas62/jLh+GEO/e1GBfYOp0gG8FNgIo8I6vC77lkY/D6vtoYhcZsN7gpYReJhNHvirVKJKhxsTRhBNwJnCQUKC89AtDxmPOZL5+2a5VPZuzCNnzgxZOn80x1valxOmDgbCKJva9TEZEgUE9WtEq1NY1TFp+BCBS03qp1RidIXUNbi12rQDU3jTYteFSLgLAor7DLUDN7hLT2XBow6bPiyLdbjB+n0GOUz2uLS6ZWGbhfCt6D+1pVOShWKWC408irYfjqAsXSAxQ9+Wmd5sczsqtkCEtuTw955EXFGxO95nmgUgi3yWZtBxVMm2C2HGbwhFakChJ35Q1DzddBpkVa5g0T3E0MSJ6K+5y+cVbOd1YEZF2XczdSRqvzhJnSsLb5++YDafXQn/6VUv9vIBYgZ+8tl4vNgslMcLBEoGsVwGstl8FAaVRsyfOx/ubVlRFcb9Iv6wO7ELZvGAC4Nq+qXLu/Yq0YRHuX0WU+UlkhFnMIqJwegUksDCo5PlYITUoi8m7PDFd0umS6eWmu4g63oiDUaLFb880pwB/2SHvqGqInD3VgvDeMPvkNayHto2uqYkJ9KToVtuLWyzCncFAyTszvZaXZV6AXDK7VM2bXjHkBS+bpK4y1hw8+wEBZqma6s7g1t71YrapNWSZbtPusFlmYcmXea6ldrPR4B//abN7G75n5lbSRYfLXL6zO5ZQs8z+PnlFszJ/IDkEZxM4n5PlXMhCzGHuwujMNsuqbxVJpna+7rQPmOWXXChaorlF6xntidNEkduW3PsDp6FSV1izZKEyI3xfgk/kuBk5QPWKTCdc73Bfkb0WlBAkontl+4B3toHYJsnR9RcqluUSeGYjAc0ykj+93mMS2iSHsSzVV/CTJYB9Ru4XBOSHTdtZPgQZvOh+hDa7/I9aoTqhbp886OMr4koJk5TP0NyfkLZWAsMfjimSSvbQR5EwbG9k2d4z30GnE2l/WLkSvBOvdvuPy3PX8xqQxOWbLV7Q85tYJwPdLuCZqBsBqBhyopkQlcAynFuUoPoD/Eld6Gyg6fNxQnsHQVEAUnWS+KM9dVhw8KoNF566yVnUooP99KNjgoN7VqPdw7z9wO21UrWeQ1fKeTB23nRFHBAYNKnteoRd4DWxc4rH2c34Nsi/3nMprh1nsX3lVN5x7dUz4cxyW7h/90o+UVaXaw5M7IhBzjK5t+/w+xaYzGFT7U8CwVzElyOG3xxBp9UCqpivwrpAOJeGAAQHlxVkZxAN/+mXTRLbY+UzaTI5p0af7s9q9y4PYd6CEeyHtr7S3fN0Xk641V1L3b3cRuQRLSvvJlyR+GkopcG3Fr779u5vNha5Yi70RHPIF7+Az+5+0q74CfSw8KexDpzV1RvVVQBsSps0Vu7jb6srBzRJcmu/1RMeWXS/H3EsyN0F0LNidj/2i56YWwm40hAJLDYpsYuEJH4Fq+qheDxky5W7bMvYF9ytXw1BUeRFghqY+nWNpvB1g4zFtZO8sf0N7azbEMuHpWcq2ig8HW6rlzF2Fxd8C+f+MZ6dy382ch/oH/t1pMz/ljtOjQtqgY/IQVjbwc7ECEGraFm+wfohlEMJsSveePKQ4Q9522BYE35nIAJsqarEfn+Ki0B4f1kXsgs8samAlDXjqE9o6gCX1+39z50ZXNwnO/PS98DG8nxjIIll479jT6tvQq+870WWB5ZoYRGYcTaYr8hWsfovj2fNRJq9Dw3TqYPXAlVT553ncUUQ2BVNKWFjwqnmXeCWGAX0mXn2OfHXFvdACt1rq5rohCXZsa4Rulzh3rr4ITQDnHNT6kaY2xps/SCkKH211rSt2jQ+znd18tgolWGu5A0i55PdoL5LG9NQ3+/5HrAzIHgS/hv9G3pgznNCeZGdcVyQ1Tzi2zayAZqY9SWtMVjLnQG3LTKw97K8z/a+z8szN0jbmPIdSp0F/2NVebWezpLcrWjjUY5AKjzoo16y78uarYzeqAOQDPElxNJs8IZ0rItEuY8fNIs+SdXX3VYf+Gbav9bTq0f1blANEYxTkmW+v8KDSjP9fkSQoiokUa97wrMLiQTvTw45RCqshAJiXYrRFkfazgL8zZrR6G/8icY4eGVGFzA06ykRC8JC1cCTcxO2rp2VBO1Fb8w42Yu6xriS9zUQeysz1tnFekTD0JFR0hMsH/R/yRrEpAx4bAhRbxuU3J8sLrgQC9VYOdp6Qg5wKbgafgliTG8S1lhtWw/8veM52nGsi8zOIjsKRjIt/s3QBz132LGXBngPo0fmIHqpPOrhkaaTuK/wJyGRYH8J4iYa0D5enSy7GOzgfRCKFfOHdzAYL3/42w0wvr1eW5tX2jT8FBVvMiM98IWdpbHDBjFmqvDU476OUiILpv4iSAkwPgJmxZELKQPizyRMvLP3rR1evguy1OecCAIwvvtikX1O3Gapl/5g4rC5TEgf/G7Q3kOdzdBZPsTjseNLxPY69oJwzA7C4Ud/B7SQM86u56ylCXS3prQwPXLzw0TrDV1UUTDP2jM112UDVaAm7RoQanxGEG54OcHuwZbzys865ioAYnE5vOIZLmZ7c/HeDTKc6ma1Qwwks/Rru3TG16GDjhfAwMYDBtuUKY9gXZoaPGm/Okl88XRdXz5xph6F2pH4SywnZTzfkvF+aPPdYXrtSvpezrAGsov42EDBRNbCgfWYFqdUC6Guq9nrrKdW5+3KeXdf3+ac9ab3Kw1aU/uIQRypsVYomnHMvXEXtbtvdfHuaQ5XtMeD5392YsR6ik6qSDJtMulXqdPjJ7KGMQWeJa+r5olYNRtuaRYjj5FUbJNUMcvYA1831leqV7wAwJT0DNf+vVxJpMKxdZHM/aYr5XQQspv4O12+PhBiFXfTmtTnecPB61ozLSIvx+H0nPq1NCJMevGxUWGJneLS1YVV+gZLWHd/O3ds8lX3NAGq2Cued5p/cctlZffJLtGelSmzhbZPBmhSWpje1bcQ69d1tGJuiN29O1W93OX1dJGpfsoaroVLdSfyzFN8nXPhW3g56WrwjdCaETQYHInS9VjVUchUueypL0uYyRQKxNjcR4cQq3MoGWNy0eOYo1sIV2xRYhhmNWCYAPjXf+f7SQf6a8xg1DpkNQacP6b3y/x3YsaeYDn8cox7yjGKy6OQ9fYrgQ+P5eQAlzxmDRqNPB6YsuO2RisohZynBDm/bu4Tb0lB8vGV4wD86WqXMQDT19Gm0Db2SAcESWCvkP1QHibBURGBH3N2+5Ocpsi5MCGv8ypz659LkZXVn6g4WsNDlytrQrK5d6/YkMIFBH36XAs03D4Qj+wC1pvikh6GRWxTbPxw3PwT/6LH01AJUj4Q4OLHFpTkmRa8QxGh1ELst3pAObZiZ1tqNdfQViCix1p6tBTtDXE1EAv6IHrhJ1Yclt9kLbdGRx8C7hkEE1fiZ7VlswGKBKql+whGcqq1k5g9sf52iG3FO8O6yMHMA7xh3Br4DzOxr7p1jakdKsdgOgXpycjBdd4cbIsPeefiyLRIUDmkR7rSvkbVarESJ3haZ33PdPnoTqfOuTBc3hLHGRQ7DhtL0C3t8KiyLXxXnupNhDpxNDIuAKb1ty7of8vR6KXqCA0d/b7ZY4Ed1ZY2VggivztM9vO/nK8uqB0dIR6b1opm7InSt4JnIOyAZqJWtrs6Q3UnereIm7MgLgWlWO8Wy7QvnGeOAk8TFexUJOHDBfBcGz9bK4MpzF1Nozcy9s5TvlB1WRESTXIIYLpewhd1OrE1KyVjKbGFxuqefqDrH3pEZ6gcthKJRbVeLzG4cpudUm/YgMWQmMXbpa8LYyYJcpF4SoVPiWJzauC+jQ4WnKpkzmiBU2hIEqUBJMIxwGEdlGRk9ZaeexWM1MgkMxpwBNYkZdA06NorO3ZhTMxmmE2QKwG/cXvZfExpxhymF5fUnvSq5+z/3ut9LQJ+F9GRylCFFljhvRjzvf+2aiZEt3NQGPAYKUYjJvVEdW7M5G3RqPaoCm3L+OddHagHVoS7C2q2qzEkmdNbCYMdFfTAK01CWHf1b/+x8yNFvXruLpGtZEsqSgzDu86frH6AVEsKbCyAwNmbUUXC3z7cjvAFsagipK1q79LrkGEaftHi4cCQQ7gny8PakUPuxtyNt10JdbTkYY09u203YzFjL1iDWa5zIOQ+rYYbGg8+hlymlW3p7o9NbW+JAWwi9Zxs1NMVkDeMPuu4XkvVqcZvsgKiFG054/qe1f6UwIYHOo9deEaExyayE0M+ieKjrZLTQeiFvBJ75N7wJdpvpFivAsZmF6EV0a2qnAE9JzpKDDMkK5xU2ICjx7RtCQwuqumf7ilFSEOaqTukKFe/73JK2422UtFfF2iNVytrwTmIp/4sorU26vnVf9omn1Oc3Zjx2HiwCO/KBl6WfIfygJWCC7Br7Xu3W2lRDRvi4yt+WKNhiIBqOv7tTa39mBqwZ/OV1G7muuIireDIrUJh6SMVQFNdOIVxQY8dHJqnzGkTLdI1+frl7VKFkjZkW1QkvVwbmxVhQShDLNCR9gRLuLBdTfvnGurFoBvqFweUL+dpNeYWyLqOuuI7hQ7SmklpATSgzM82Xk3JEkMG37A6e4k4gvR5X62TpmvJeShfPN+qLkHg2WKedkwmf4+vMhLdim52ydscEsTuNkUd6Obec+LTbvjiF/soQWfEz/uTUKsjmkzv4z5QjHxSA59qJeXrWn6rsEptNnVy9ZJfmmM5yyy/J43FSEpUHZnuXHYrJXe6Nc6s29bU4EAJjbvtTfi41SwOTOaWRbyS6b1WXgG8Deopsw+xzvGFgfCZLmjC2kbkZ1MsTzoctD9vIODg+AwH3b8Zm1IuqrEB3WA2u/Bq5IzBlTziJUkYXESId2w6hEe4S9nkSff23ghUJVmxkj/dlksrlj3hIw0QJ8CEWfqRowC7Hg1ARms55zwYKMzX8PTsRtI3Wp66zc16nAJ36pSRolm81dZzftC7QN/apXOFh0ezsxY855dNgZFR1yojqKTboFLbCqj4i9YrqjebdmIhzSClJHuz9RcoIWQzaf8aHTebf8xM928/XvE6SJxJanr1IQ2tjQwNSpxOIAFJX3MgyQDkWnEsvHsUEWtOmsleyiTKIRzxbqEEZXk3bPJpfJR46AkmYana2TUJepBmBUGUbxKI86jFYukb8WKRiDkle1OcfpMU2aApUUQv6iXckcUejVlg5yZl1JnhRdj+6dIzy3mOQPGvap3/vl3boi8IBc7jGO4m+Jt22KrboiGi+R7MzE8jJAyjUdylJH8/MX+5QkfJG5WWTOCJ7KGI1aj9bUK9iTf/CWrvr6N171OK5FgZZWlooYcM6kpXaJFAQ0yQlnVx6IvUE6lkDyR87kYqLbwCSMX7s5UJmadCyT2yMRhsieLjki/gsgUz+RBpaOVZUgi/IW38az/QaSX3t0HErlvDZlw2bPK5UzJi55jBSrdoYTESFO4f/JWb1iFhEgDG0umjYQn3WrlQ50vnPcG5mJQVQYidOytuDgwvD+GBzXIiypypUIhMLJWnL2YvXCJByE3vup7ZpUE/T/eQoq8kKQ+vdq8YYW3U350r/MfAeSFLKu/ydBXsjxKZ614YLKXe28x2yaWWTCuNd5bEt/VAfObaKpfwgIiiVTQAZzDZ9WUZE5rlB48aaN0Ocl4PqsIYeYMSu0eD9S1Je12bYvJNizA57CWn48Be9zIY77NlGE0XaJ4b5GTUf2f+fZa68O8Qjdo89NQcjM8CwcfZQQ3LO/0KjwQa3GCX79aC/jvH9VWH6htRiw2C0H8lGCwvK8gXJqn2mblK1Rwie9y6zTGTbsJiqPX1/zeZz1kgm9jLJER/ceFu8hxZC/BysZ0PyJpk6DZAaYJDmLmhu4RWh0DWS9HMTKfENiVFY3SjezJxrNOaLAsc7cAcNCcCmNQcGjS6Yi5Nkz7tAZWA6gbv29YdJ7Ofn7GkO/h/9sjnJDX2rLNBntiVANYU9pnYCffXqw4kuvjlk8mebw2013kPqKkk8HbtCLIc4aID5LRTbTWlEh2FanweJ5UpyU7AF8VCnFlzD3gPYojjSNYcgt+PzKEuzT6xIWgOBnt1FwnN4XamEVf8kyDCv8kuTHqmftD+GS34BzrNrAOaAPs20pf83uY5kyptm0v5YgkxWn4Z3kl8ewGNAD9y4fZtIdDf2Ni8x5gtliUAsYVnWuFTxdigIC1Z3UPlbof/LhN8FNGB4LJjJqz2VTDzIc14x8OeFBycikmgjp968Su3i6VKUuL/GnNdJCANpLIZ1VeVcUvchmJBVYsePvBcD0XjOFeFt6XdwoVwL/Bq3PegVHir0qyBkCXMdow+hec48Qg1Ry1/c8i85BtgWoz6tgTBcI5Ouc0ogBbRwMCc5WSGAvx0PKadlnYw3299g+CgZhLesh/uy3IIeQ2Bj/SjosH3iC0mwvlzXarLddH7tqwjrmvX22/cx2vq0c+4iQyo4MRX0MhgB/+vJFn8rg+RzxYm2YocO5P/blturuIcxDh45cF2PuWmqqKPR86o2iiePMDFNZJubyjwKGkZlDhd/AJESFAX5i7il6SecoaoYut1itxbtD9sMDpeDmpD2vjHSOjtbYvI+H3tMaNXWTLZBi3aDf+Ix1Nl64JEuH/TDFhXSy06busEwQqwIpj9tpI1MhKsn3xaNX1pZLM2AI0AeBqQhgI1iD+SAUiqwGgjxADasK/2tlZoK8fzQZF50q+Qh7nChiJ5rpQGDqNz1yYo8fjZC2bfV4OtCnVmiiYKAUSWWruldgkbXMMOqtTVBhGUFRJkI2iUSvb2XyndjcojwWX3ZxaIElgKN7ZB7lEeiYXN6dr+vKajr1GWDDZI5zKk0tu0XrlToB+k+r5LAQT95D/PgkME8y+9oVAB6PXwx0jiUhmewscIX9/S2FSEgdbzEEtNn5gJ3sVNtor6MdulIsRphcBri9fLRWXL+ULODaecqDQHiqWoRTJtIMbk8dhaibAf/VD9WW+EmV2zYitXGhQQJibInhxzYZ+Het5RUATqYpb5TaCCM8JD2Lo8iZ/0Ijkl7RonCax9ls7pUIqn6Ho9cBXWCh/6xkn5P7ac/LDMRNci0qe9+D+E07Dop7xNCMRiY6kbonHfDGkdEYEbiJLYh1ZyrFrsToPqjCB6H9DzNDPOhyytqc4xPj2p1nUWPDGEy+MQlHkKHK19Y9PVS7hnDvsM77YQ7EfLDTxHNiTg2vf5LnkgKONvOOjXdRJj9w8lcK1ivKqKcAuCAk+DsTvPHgmrq/yeWsj3dV9vrloaHHNjeQaZmA5WInNkTA6O6EyBQIOcLwi3YGZOeNEUMyxFCrqTajMpaegIfHR1/sv1siQXgshVlVvXtfuxxggs0wQyZ84SJaebX7HyzD2PNnYfaY1uwNKBG/0ehGKEgjsTRhPI2ZP1eIJyOnkfSIy+nKUIVlcowYvvWdXi0rzeyBXSnu/YW7RPJYCygn0BH0t74QV8FHU/Q15J1gMlPvb41sVdxF0xH7AvNiHnbR9PFhTd5Lsj6yPweo16g3XlPtvhQOt+8ynVJg6jwOZdLaBUrCKVtFFErA8787EMUjGN1MoZEv67n5PyYGbP/toM314LUm+9t0Z7pJXHmx+z3R7rrny1QuQIr+Vi/ctfKf9Y+NgT+jy4q5lIcLcuhj8BLBNL+6TNbNrYS/nRDzx66Mo6EzLTg1ebyTO73V0oualk7it1PyKFXDmyukvlNk0S3zO5ee6R4bRiG9PstmGeRlOlYnAQbB6uuG+6ENJBNeRnm6xX6tDnWmhjH/8rWv43lAIlin1CBC9lncNO4PoTpCgNFd4QeU/MAKTYQUgooG/IwYoQ+HJwF5FCIPm7AZ58ZBCVnY4V2+zbj8G2dd8Qxu8l0vhrvfYXGIEZy6iXjHnzOqStRJTQKCTY41pY3pxpgC8x9IOy05hs3+4IQJ5Rl/rm7nf7jUv3jwZGCMwXTAb20+DDL3rMVMi2+nliEiXLgEk8hyY0ZhBbUSBlJJN1jTTtjpYtGfoh8IWbg5+EY1T1N5GEtNk/UT+njaE6gt4pCoQ+TDaUB+tfOv2qTpkNhUG9Ljmp3eU1ZJzpGJQSVCPapbduHLb9DTi4LdOcmFdUQcMIA8PEYNPqIe3SX7bwwULTHvn1LLxNXd9MV8D3ait9//dUXRpbM8xl1JQBZsAaKofjjDXsyUIiQGjSxHcJNDi0FwNEuG33tBYmlYuPnnuyIOmVFNiBthiL5110eWVItksF0H71FNbQ5R58K69pHeDqpTn4zpogwDjX5vbRjDN9t8eX0+m/DZ472WSj99Q5goMLNObb1nlleQ7Fit/9l9RpKtwqs/nTxzdKGOAAjwCoI31FVPgsQomf6eTpLLUnIbQdmAbc6s7GgOGlwREYKTlsnk7zydaZQw3h/bTJePNV+APdpPR4zCU4OlzKI6L35YGh69ie131022wuja/7Ldlk0vf3oO4m+HuGemV8otdqge1MLxR53OrclIp4J/XLUdqjNPNAkYmjeCgKWefSyD52ck5yg2tMZcZeVgdiaOIgHmxycbBOd4/gyuq0aUIFMyLKvX7uFzrjc9Bu6DSK8G52yNiVGgZx7QGQ2wu0ly03tg42gYN9uo6lV8lMDtP9paozLIsZQenLGi6CfZ4nnZr7cSuNyBcYchbZP6wt1VDkCPui+qTGihJ4fWr9qe4reMzk/JClOGDUbdZGRhVHNE/3jAR6ScdQihrdyqc5+7FNKvkRwH+gSzEhBL3smPZX/2RPhM3ICZLlN26IUx82X6HuaIxp3tUwvPXXwaLBETAGCsjekpueJXYaXqB+DKhMq5TvNy+6SkugRs5QBKQPyPTve2c8zWlz79vsZ4ieX1IW4kerHAyvo1rh0MjJH9IolRJe5a5/gi0aiqdqaqCnrEA6xY1gGv5UZSq7w7llp03m9/naVbEt819MrKroq4yno+3oTPhCub4tSemv/0A1tQm85C02W2EBOBsnx2YTy4yNtq1ePa7TFtV3GTEkVwYrRnoS7pZrMcPWw1RANgzshCF59P1P+ef9vQ/SfGEIn46FMMKzelLtf7/BBxnA7hVhMkwZSRAFscS5oHwC0me5BvHiCAvdju8dque4J2ls4NhIAc0bPyw6LOhD/lvoNQFUNRs/dtzhIXPNxUSv/kXiFFk+voBALyELwZGME0/kNzcHk5slAKddbPIxrvPR6JM0Rva5uqNHzsQKRAjRRHY0YOBPzDtdKKBFXPip9zPi0NIEOItL6hukb6WEBkB/XWUvg0KxwhcCiAQLsrcGUiZ/Kipci0paUNGnfows4MfaeWFB4biFOdc9kKf4w/NR9Q7aHnPiLRtIUNmyJQHnITQ7ByeYQTLSbuwiuzQNf2zvRJ+vn9HtaoX8Sr9AlwHu3dsLNAJzYbAhdQLeRvyMSQZbdyZWQ2JLyT9tRRD4GHIPAZP9YlmfWBDI9y5bCFzQhd9Jw4o5zB/bq3gs2VRFWVsaDwy+jccLLy3wmltRheSQXkg5+zUtUmkBR/4EjBAFDydC9EgEYkZB4ZKf/NoU2Lqcc1hwJW0paLqvgNnmpUqnJ2AHpafS10izzX2hQbUKqZZWTcWyUmUWLt/XgdisFMaKX3PBGDq83CBrVKph8Xg9UIe9/hqZtswf/4GJ3Qc92Pu5pSboFigamkDWy3K/ILFsp2VZpCQePe5ZLXp0Kd0FGZveaF4LXlv1b7ASjgck7cDWt/fgU1WREt0WbsObRWAPk5ruA/jcSG98e/QUuy2m+OwApJOK0D5CI3dAue3iX/jYBBfauvd0rdhwjJkMI7oIJ8KSbk7YFCdbCSu+boybscV1pJjh4tdJ0uIZvgI5bz+g1kuw6IqaXL6tJ2+W1q5ZVzBRfQ/bi7UecyJYWHMa9jp+QMDZ99alFTf10BaDBWljiBIqrm15KudDTH8tPnnrnrYqxcpEiBR47uwrBWoDNu/rz/Zp5EnbAc48ZJ0s/gY98TKMUfdZD2yszMAVopJz91JKTEYJPMiyXOPOUHrr0d5allluB68y1zLim/P+UzNt2v1Fb1XDiXHxzgjWz+z259/hU3r3TtE020TQi36nFh0Ao79Q+ysSsX32QdgaC/SqZUxgRbKW4az8ncbjdf74quzz1LmrcqQaaTDPPsJ9Bzr7DsVh4TwNJB6oRHy+0hLAu471mhgQUMJtQRvhHXBrPwhAzDH3IsQ+76oq8TcBsSd7qHnUPXkLjBSy24ZzpM/MTGrUE+7a/JFUuY9EbzmU3xDttGaiqQz68bng98CCR1+uXe2/nbIHODjkLgfeL4BstmbM8tzbiVRs5jvYbktimx2nHVX41fO25xURhJyyWAOmyNjJdZFJ+ufbGgxMFp8wh9U4LnEJA3pgolD5BCHsoFKP1Y7mkuCmZAhTN8CswaeK01lv/0CQLq0+tm+WWCKpOtBrCtpRjeTxpkraE4Dqg1rsoKSj6YDQZoWdbt5KUZ0CKnUoiV/fpWORUIZmE1jiTvKGM53seGkF/Jr6snLhmEKAFd+MWK7pOXSpwSyc9H+YBcJP+F5nyL93oGLpg7s336lJj95SFI6i2PQfESFHClKX4j0vHbR1hy14eOO1R0UDIG5/kOQHccZZbVgTxBiI5ERMpmu3Dxte2i5yOzHRWs9gfLmZV+bVGBMIoyAEOgyorJPuT9SU2orFumLia3sfRzqEOfyWJkvkXWEvQ4UX+uUtOWlWtCA4FvG26zTzZOoFxiLCvLF0Oe2wVM/LIeDCP9m5zPclXeVxYknPQeesRKv8jGlWDnl0HkmSYKFVF60OmUhIQ2FrZxxzEU89NALmKjdWX4kVk7kN8vghm7l99QcfOVAgSpOq/yzQ4QRuQFHFnwrdLY0rOwJ5hFgwIRQ+q8xr1MZJrMoq08b1bFjaUj9PKK8CYuhakPHtuHFnXsyJ6OlfyJpI7rcTO6MJ3xKDXhYzrcWPGE0qm/n2G7t+Qv88VNVW3Fy2vV5uI+OrCSGMzorA4weVajqPa5vNVZvftAM+kWxtAWI1RJRtpylK01RDixefBQJ6VSLrfHSy+vHqasYxto+QW+3J/IRo+e5Ix7UObYGV72Rhq+wG/ad4/QE9PbUlYyDGj0ZddZzDNDwj6ZA1JIBybTYgmuAywUEfGXkIk73xrK7+M2Vh0G4JOgdqgR52gS+64XOTRkUzSM+ZlRycNUFPE4bA0UzsIdimDIY34XjPaf89E0wXEkOiAKYFEYa98wy40Wxm/wAVX00IFJWeJmBDnXfGeNTxBIwVkkoMYPRa7/b0K9mHciiPzAiry8144BzvNT0je/MfYoeYBVTFyUoNAOErQasLFZbp+kklBLWHG6eDIs+08Cz3zO58HZ15q/hrjkWdFIjej5POoWKvgk8Sa53Tv6yn2b/SxN1rVy8S9HvQW00/4xMa8TmzmmJrKFytBciJngaoDX2M6m1U2BxdU1mCQAqrqmjemnh0UJTtVyMYFs0+N9e23ql2qqMVtUb6Sj17Fh/ESkXX5XeQ5/ANPUfE/0XZbvEYI5YhfgyepR9RKGLKk9iQsurAlBK5PP1fV/Hfauf1YmkK1NyQKrcAC7w2UCCvx9ch0YLa8G0+ifJfNG58e0Rzg0yyiKLT2awhXkU6+K2qYtHO06vXl+y9GJZJ81HsjDx+chyqs6h67DYXvzfaSdpWzV7wnHFuEao+IjYEgoA0lgcCPO2V50GthhUn/hqi22dXvFsqfAAz+ph07oh0fyMuhAxZfdExzM+jqK4CKK3+NqxUwGsokvK7nJ2HV0o4OY5E+HJenF3S2VEuUPXdYcAF0WzkiWyH5T+Gha6DmeU9kT/DzuxeOESvkUE4HhF3+mwK6zD5dlm4bGrlql64xS8zU33gkVfGBLVamIGuolMQZ+cv3NyUOu5PPIv4mV3Fe8POqrpefpzM8ZbXB3oI4BZUxbDMNOm4vfN8StYZoGJOraWGhuke1WY4ThyqV6WkQPKf+0vE9FsK2DF1CeMYhTl9WRbqbq/Sv+xvw9qaz51hIX7KhEZzwwRIhcLBY2b+VbDU/K1NHlDXRnMafpzWSv7wK2Tuo0EyAsiav2ZBM3QxwrEYekMRLbC/efBtKVDjl5V2OYKNXgx5knN7xoOEMMmXHdpAC8+UNFsACDuT+TOmUxjKzQG3CkK9pTSgGxgDoz4ngow19p9CPJBnEXatISS6kjY17s4oFHgFIQis6h6kbQQ69rLQ+jBU1ZwgOWCI72IKYiXAn+Ybxb+Yy5hZhryJ5TvFkta0oCz6EJecxT5+XX4P0xsECTKPBtiC5URgTuywtiLlo8br8IdgYvuq6QL0vnckIREDCobRog6dnovc6rYlqLL8As6wKcR4UVaDE8zaHkA7EAN9dogxTAZ7txeLJ6E6nV6wrmb0laFD3HoSi66cZK+9HYmwxLzcIqonZjoMcjHbGkEDyAlz45TvGojAp7M0kQD9NL3sikYTFSBAB/O9Gghag+AXP0CXrdmUiVN/yQNhp8SoiNciqO3YPnhhpmXZ/ULpLoCRz4qFyN7OkTmWOeu+pkS3SjYMyfnMtLd0rd/VqH9L6pXIfE9EhE3EJkeBjxpiOUmQ94IVN01HoCOHguIQYcZwea+ZNrsUp3y0w1VowpFJLsUn/XrO5errDJulew9D9GyMtGOOfwA61+r/yTJwXytXlWuaT9b8yVkCGYhyXlELy+1T8w4nmkNoO+Tm0DH5nSEFt5uqjxAJLWO3Ij2iM23BIQxC6pImbJvrTVh+V9g5l/btmMLwbA2M5CbBGOJznXFZZgvrFs8fIxJTmz7e+9v464lhzvN7bg71wJFx5X7fRU/2Sa7Cu1etb81fOoLM+zDFHMSmaX1dwvFNXf8f55c9ThGf2cjjTuAegOBojD5mwzPY4jiNrOTiZmj8qGQEOEod1Um/qrtRBlHJ7Jh4sfO6TPUmWnjIlo6AyTDB/tLXVUUa+LZ3Fj+fN1VM1HiASskq+FGWYk0nUDaHeJZYaodWBFWw90oLRoLCnhTqAtsjn1vA9KCCNrdKWl8FJSA97EUUKUFdAeieOROY2Iw4ATgELbnMW3027tMsJV5QTqNv8oDUug1udj9udgiS7wLYXq//E9hFci6FrRFvhSjE/8bsDfCP6ysoE9Z44ELAKA8TmuRZ4WRsmRvO7BpOfmfY4CrY5MbT3TfooNZjul5lhWsQM+X32x0sbtJAwSxA/CsFrwB1sJj/1atzx1HMecfWpiN2T98AKf1EXrSyck/CFOdsJnfo+tdhmNYNd6Qwd74tx8z2jxRryH8pO6AGtyGIb38ozVoxuCDHMpu4ZHPd8jvGHaNSQECdzrjFA6df15qSxqY+ueg9TVRNIaZ1hth9kypN7stWUqjcjrI2MPsBFSemK6kfM8zQQ1HtldTUg3r1krHfp0XKYksJhJ8yUtPMQQavR6fE2oLrQ9emv0fV+jNmK9VYNOH5SlmZ2EJ2SoJlAaJq0oH6gaWUiXKCFvDalbWwhbOx8/AqeoGzLPnBBC0DJn6YwaSf6mJ4kWA71t1PdX/hPnswH/nB6h0hYvqRVmxsL8giF+cCRIngn6qO8EDXlGk5V9rwozGMrVOHl0qhur35o/HqY8Wgaq/SRIV09Vfdr5tKBKFJuede9VQnDndtHVp73IO3e8C9qQt/VaeepGxSL+oeQEB+DYHgYkN4c7IgOHeOs0+xXHvjVRpkPENcfB7UtPa0hmysUTCfeL70I6+sSal6AInKIaXDkyT7LqprpVCnK38qQSed3sBGRLbtcxLUBzIeVFsyRUfxWamd8YCTaOkSlHkZaT5Z72oOLf87tlDWhhHNWtuyaQn4Iexqjiwib2oZ89KUG//KKwCYfpmhCa+FNcamv/wqJ+ZR3b3hk6KUo/usPyUHTddFOhG0tLXDyUQIUbvIUCUTEEBRZ1VSTsAs+Q7FkFS/3zn3SIGr+Jdtfn9U6QSkexWxVp31COdmxRBCnEr/Z8Fb0PPeh0go+OuBKgR8BBK6LFwyP/TRJcQwgfQEHDeLjeOkLuB5qCvYIKmiS25KSoT8c6+wS4ai8XsmFRyPnva0kaK3JrMbFS0m6G5iL+RjnxGD59FjiVXTZL4OuhcGJQquXDUlCobf4c7PcBbSgb8D0uyKog5Pn7r0ndZPOHyicNFS6PCB1QSu1/qkaVjfNouPrWu3iPaSNz6O4z1qskaSvQvPZx66ZwXZXDKCWzuY/Eal3BE+FKifD3CRSDDqtTqg4TWHw+D/Pz9wCOmRUlZZVjfob0cDW5JJ7TE5xHEmRnKjY89QVkGQ2L9RLhejIVQPd8Nao+McUeJlrnsgdnGO45hq3yhnyxBcljcKvwLbavzf73HYLD2NBhlnQbaE8l78e69qYlaQ/7EwDRXeAhKSOoedNpgmMxctXShSawX4O2yMcndk3pHMdaPNdTwJFzk+eUu6LEBw0oU9GcyRNwZO/eiLES1eK1Zn6eY2hw/+KDFiR/h5IAJx3W+37AQ/IVYRu+kd0u/i9QT0QyXGZLUyYkl9TmuhZ+ODwIEDubc+p0qYvwaIZXk3547Igk/lOXRdkVqezaBEUjONZ19Xj7HyVp7cIFyGoEMcge5EsGitXl9h4q8o277ACmwidnLd+cBM4GBaONjZpOeviVNmxozo9iUsDCj7NPyxFIB3JUl4cRm21zTuiWs0hoEJSApIjQuR8tlKM3rkHSHiwPFkptmlwrVpwPpxAmvCvMyM3MtCDHH2/IAn0RqZucUpFmo221I3EkYCYYD9ZaHc++gv+8S0btOxgQo717PEkYewxFZhVY7fnbnDOMiseN6uPgA1cMjxfIeM6tHTZKumXlRVOJjCTJ8hrzeDMCzcId7SqbuMWtNc/SgQWHQRkM1hVckc2U7B4t0LlNKc5JN78Ov5QzE5786UgQu3Tw7suUqN4MWntnG5hpzuLZuCNyz1Og800WvmlYMheUVkE22R/yL3fW5NUksw4JDQmm7XL7qElO7TR+TLsuDbS+j/14BF4EF2FphC8qN19tfEiCkGwqzLt0CF2o3DgOkwIECj3n4WlvRjq2dmyfNB17kK4zhZ7oMPKmJLgN+WwArtZmWMhAFfI7mS7YIhr2mSKfP1u0EhbgHysrhrvR2ShIDoJ0Fi+zUsR163JII8gvfdZXIibFwH5nE+YRVQ9+uDuoLhoGAqUg4il7mrD56dVgbAcuzs3ZlkHwRdtmlVKiP7MPS8cglszwfThHT8XpnE/daZoCmZ9XJQOgSXoz0L0xfTjTn9QGV9hgjQjCmlWM8Qo1l2pJ55j4XPAMk1PvHFXjVXghWUUYcV2BxByvw0OSat+iWHCHbg572XPrbcoFq1bFPsDk6BQ6P2j5DKEKAF7IOrky83XnZz8V/PJugFudRUPtl0e/12HojeWaF4KpdVB86w1ubAJc6ye5lTh+D+VZN7N44x9RwFERW+ccoNROEUavDP6PtPPq++OaxNevWAa57eaJofZMLNTM/RaSD3VMBJzvUE8NplSNYeFn4rQbkSlLi/3VHPAO2ZReQxgjpn97rmk493G7sZv2wtNMM15s8pOgsaL+lcfSfXyqGUS8bRg9Ulc3j1dtZah3BfkjnQLKuboaaRA8kGB473xdRV0nCTA30aiOlaqBVWAom+YXnYUd5XZraX53E7S7hsfY5jBEER47XG7FPPJ/YUAoeLLYrmdsxPvfCwpCYtM19WaeBQ37XJ4habmWVzZUXVFIlVhett9HMZeSIgJ8HXNP/qVPllPHN6EoPx5527Xa9aR0RYuGI0TmCcejmWzG4o5Xtvc52qT/nbs99O8BaQ48bGrssNRtRVEMCPY9tNQYK/3r3JeEF+Z4YCdwLuOyPjECNZIzyCKX/Zw+mggkRBhglko149h01tHD6T2dy4U2gnMeepEIRzsImBMVD/Sz33J+FIucDSalMYg9sHTXVk4PsA5HIQZVuPsfSXgGaheLdvDZlMtqIgrJA5LIvEuhUUbBNP8OYmTGwa5umyidOv6OG/GSBAbdYPgDjztnyj5+CWY+78oFOPnF+MHmvMx/4MYiIrQGH83LGvGtOq42jxdjiJAd3krVqwo4YsTMtaWUI55K4neaK+Q/DotsHRqrArlAOMFEAlU1ObnhdFrPmBBHzhAjL97MB9ZdtKEN8v6IG4vqLe2KDoGCUjUWIyQbhYA5piwZZVqmA16uVFJLTTat/9O/Nun3+IGk8Z1wanbqrDfiPOWFYHmTpId/dCmtfsm3z3vl8OtoeP7pYaGLLmVwHCLarg7xBVZkiyuU6BLTkKATzIYsUyObTo5IKKn5A5a56RY6uknbO839bzVoL6Tn+G+LH7r6kg5guD1j+owZiwy9djY4REJJCBMz4LPc9BdItz/2EPgqxE4BU4ge4/o5hmXbTZ1vMYWh12zxIvpEO/Oe2q6j3xr+vzrRyOjXEndCOAvh7ySmV5XhW5TZDe6U5LUFfmH2niUCwqG5qPAddURpaM+j82b70GmwvN/oQ9pg7Xi3XO23J7KpoCrbTbFZ0VBOUKRtX+xv1k/3bgeAa6KCE2z+RvleCr2TrU6faOgWX15VziD8tiyzq6UbnPZuSrYaOSBWO74iv2UsA8IzSfQjGSUucpJD4+CeyqOVnsv+VQwFobja6UwZKIRRmr3OaUMTXt+dETYGaIB9OzUXnqYj6pSFxfMlrdIVxk9EzBfyDOIJrGPmLiWLpaQpQvftqsVS+tWxGm5ZIgZ9+w0tnB0f9X868pYsnZ8mKva3u2NyfoX3zTb1MOLF9XxPGkmmlQdhMMDdFRogtGwrrpuD72skiIR78WZM5N1PxPKqO4bMuTuBvsLZ9EpG2Gprz4HXhPpD4lTc0rregJThUVERqqzsQaV8HKLDe1iIseorrxPq/UNYjCiMtf24qjB18qQ5zGg6UR5R+25FOkhzW0Hr7DM8VaT8zIZU2JGj8bWyQ2Dwg/QMkGTMWQydryveo4EOpBDVMQr+U1LqrVlQeqaFRTQodthZJtGXWKxlhM7zNWxI6mUkbTfKie6ODfQ9TEQ9boLtF6JRxIDvSr7yhplsuJvkQS14BdtVp5ZCy6tOjasI31gEeDKz7zKyD57NmroNEEFspZjE2YsErUNumxWHsMRtHLO1Rc5pSLfSZiilPwHdlDCOdnutIgZnsKXRS5J5+UMwNI6PG/2AS2F8LlROUGFGcWzd+aqvw98KqaVtOyO58srXkxk2l68lY/2kUP5jEbxygysq3STSSy1/v2E2+o+lUOQpD1GuwIxLNXaVP60SOqqowbi3w016FDTUIQOMHR8RTKMcKVci5usXMbFIY0GsiVfn0xdAJZgQu3b9nVSupmiw3BLqN24EsnQ7nS5HysTAHKABPbzK3TAujhc8mbwIjiTKk7NqbT0V+Fe8sMxcthtRO76vQnakzSJ3yv3wGskk/Ue7gY3WwPDikY1hva7c0SoW62N/TJkFs3SzUuXfT1iTDNsm84/f5BH9yQBkxRYjrGD9AP2rhd3Ui+b1cXhdTIH/CBxwcq7wlMAwNQyWnwbzT6lIOglksFJiRJO5X7DMV6eSJsAT+ww/U2MhpYiO7o97IB2Jm+cgMl1+B0Gj23u7xz1ugZoawB9S7qkTxdJGep7+5lpNtq9r71r6SUW9YWtfrodsXQLyxffc9jJLZ4tVJPgKeJ4cPvmajNw5B6paj7Hm8A9gZ8WoyZdphEiHq3Mk9TuDjwpys8EtDFRvj77LlU8unvE11NqZo+2ENnX+aQhGjWX3aD82zD+xNnBFJDVew+afZlYcGVqneunXf04dN372xDVhkT2ahYkSMU9tnCE2eYC6OmXu8KL8V0bXXR8TdQCA5jhn93ARNpizEK44QRZhg7v397sgUruz3yrzu5qT8OcU4YHtVpwdIA3lQmBQuzlwy4tT8I+oGueSsG3eq3JIv9BQeBWVwrFwhz/Xm39NPKnN/yMq5v6EGuR1ZfmM+AJZnhap/OY+GlIqtafHUbS7xKg9QskvB4goNpaZk2aNAV3fk9SUc3pwzPOo5SvnlJI0D8HFAP3bfdj/mfYxrZdHi2xhT5Ymh+L3SbWnKRDN5vNvmdaJtSzpqq4Eq3HlTMTjtejM1Bs3GMNiZDIgbTzYXnFP2TBESjAoIzuCHxh55xlFmGMU3qZuEb37chjwG5e46M6rgZr4GBjjY8Biy2tRpeeL2djfBz6d5SVG7Tyh4QTFZiO91un3EldFplHlxIb4BmeyAPRE7Ap6SO3hjU/RjrOHo7ADyMIaHGXroR+/vHhRY8XgknAwVkMw1nU9GID39HqcOVIhQi4fMjLbRDFbX50eUa/VPCps8A8Sxt3k0rgA89xSaSWxwF9EepVo4E/PxtXOUozLeFrDGObjHtgjyoQ6UY4yzGDJ6oaAG3mK9t+3ZFaygeKAAZy5mVnrjzJR6pNnTc9yj0hH1kfwqkRGnah7n9wZgHfwZ7iY5VHZEGJDFb5Bfn93TITYwPVcGREDKdTDfTw85tIDBRQO2s8Kpno1mUIP0rC30OtJGyHXR/Gnc3+7/hZgs7zH/aP8YNilUy3sznsClpvvOcY6JumCMP5LItQfIXomhvSKkonj908jueXX8H4O5AyP8oCDSaWptgPvCcPCYFbyKstyqBQvGozVQwWr2qm3HKVFlScM4U6A9tvtZeJN7IUf52VauL4fTj3LWVu/a9oHMgOsMeMlTOJ+d0Nv0A4qzWk9S/hXkEYogopwlFQs7UA7Wn5w7X4Wqaq8oH4i241sECrh/9cfJBAcZqKB5VCGzuFeNByY9FiqePRNuparYfUurC4dWHCXK2WpVd8sWS4KmM+nK9LLfJssutYdoQ4szuzJldbTtrTejW454PertCFDGOiBseD2gjONBZL8bZWBGW2M1KyDGb/7eFycXwcTyH5bcUCodBILrWGrMqVVYOJ2ShQn7dveNezHxvvU4pzN/Kg/p1jLjWMC6iHZEiRPE/3GAGgynxSW+4rtpXZR4owqNITcLw4no3DrFdQKQdoI03NHfgRlZeVBymzKR3ClX+PWHSSyIO6m+FBWYvGjMyoUXn/+5wl1s7vSQ9joyAU8FkZ8sRhcAuljQ7hEPLhSC1gljcRIHSkG9jNnI2rrSOOIjd/h9FXb2l2ScN7K6CzRVtF7AyT10blUeR1ZguYtuF7voPTvtZhgaXM5fl49PORdkU+DrydGrD4rTwjEdBGr41x7Xc5u6Mt8t+vNvjCZD6tlTPBc1vO/c1cbeHm4UTAg8b8eLUPt3cOWo3ykDExg22fNBsx/N+9qIm3JzJdQpzJf7qncG4uMvC3NAwACpaYakktV0dJVIZo2zFVuwzKaIpSKx5KccYitUYK9F+j/Kl3dj1GToITzAs3wDObC+4ZgQP1e2X2wlLlNjU9YDRq5WhRAqXD0L53bi7cvwfBE17i8q11gVhLw9kYBRS3uUwHs0bXcPA3I/KHYfotSKw+a/zrqTUFLTRkCDhi3E+lBvcY+eeyiX/LxR9IdsxxnICRSe1HR9fW+pnpREk3c4RvVUIXDn4qoaL/rWmYPHWyMAkW+iaYJpqfOFwAaL6OmVYvOpW9wqZcM0wJlQGJVz6pd0uILe+YBHUePc+RDWPMaLBuwmhRQ8WQgvGeQskOK57szKxFw/GJBJmj8RAT9WjHpkoR73ss89RRfmZrX0SnLOqtZqYwo3/fmmbinRbzqX3EWr9Id9+1gHFhXA76HmoD/FIZzGq5UZ/4GZgPYIx+LDqUJ+dzJbioY7uz3mF+vtokfZqlLG/McchyWWhQImG+w6LVLhV/AUwPIfLFLpHfA595jKdVTS2/ErfLDjKaNc7isZrDJH2CyGv3/bsU7hudWNRs33vK7nJYhA58Bf/2tWurFLzLDcVHTlflM0dN9QZGTSGIEA9M8Qcg1xoDqhQfUX3qWvgNwB/6E5J9zbZn5CHfAeXKVD9m7cFVU0ILj8RZJPAxHENjPt2xPHp4Ujh1usn/KfxxM7hm6Wl2FN0CU7tAtwsp6Tr5Ii4VvwL6diONjLCSSGjk+a8YecEW1RAA2rpn9b6YpxQF9PjcUkttsoo3nMlM4CvGK2yyNmPt5+IevAFT/GKZ8OGsiUi17au2plLT9XfTCOpGVyfyJdK0rY4Fbqt8MKz0GEFQ8D4xricVJMZkvfe9PbDME/7UbNDNYibv0AHrwD2iNgqNQYYrX4zxioJSAmhkdQjYzElqLn6opg7wcFeE7tXnFh9N5id5os/QEm7zai/r3lKnfJyqm4LaMgAA2qjbGCkdK7Iwz/ajacrvcJ/IePpPJ/5maX0DK0hcKyD47jYfpXBLXapok8POjpMGWpSSLnGFeXgwGaNnkI5oS2S+WsO9/DRmoAOTbVFeiGIYaPzJAW0dKgj/i9ozwoSigcvFDu54AfAoifci3lbGIHwvgcGBl8M6FZNLCDX2PQNQVsi8T7/gOVfCAGMyUvDX0Y3VwJp2/p1n1XpAfS2OzXTNU735ARqb6JDRtFpTThAJRBjakhUrF+NuyH+hWx6yexIwDrPCqFkx3EIYXwTeDnFLKOldS4MWoyRzH/zQ3HvjlLlj1dLLRtvfrlmKFuLs3HWJDVjZa4r7ZZHb0kFepB8fsM+JQG7KAUBLU+nlhrDFOH5lJg/14PCx4OfQ1GxQQWQDXUREG53/kX3U1L8UxJqbDgI7hJaeEc60eH5ifNZcwRctkUgC2QqCnwbMBzqMc7RLa7gptstfVV1Yjh2Ai8tvB6u9V3SZb2bb9c/V5+X7fHkQ9YpKRboZlQuiQrf/ExVr+Lh+Nju0+r5/c7uO8HvJKPQJdrBtKnie/sW1HYL58I10BlyCsO5FrwzvrGqBmK0LQozmejSfVxDrfmk9oSwNTdl8tzbdCR3JmyaXaCm2ZsJy9oVO32CZQIgqXhRrKcmucJ2Ag2fsHFHmAcol7JZCwkOCLRI1Fd28yL8UZydYxZD/aOsmYGvJFjCoTzYbL9UJHdbYiqW2m8c6adr41wkz+hthTjsn8mvC2tMFIiKNojjtORsLxsbv2beZw8RMXc/VwkscGF7wj0evZwIXwIBPre1Dkh+32LFxKOUTKFXkwMGX01IBfV7cMLD+ysX64+OZ5qlTCT232QQVfewvqaus10uLmwzxRsQUZwIzHkRRgdr7cld9PIIbYKrYlzMK0xq54XAe9Liof0cjtzBKVtlbZFf4lij1y0k5EpHYMAXVBWJ4wkyb2HHm6voSRu7ifnZxzWmQ4CVUgklPcwdSvWNoWGVTRImSDQUx0fXUZ0xMSv6jMOrcutgY7lvBhEYhKtmu2hfyBwpXU0NojBIvaZ3yj0U9tvVXPMFxXG1sh6N/LFM32Jta++7OsXTiOGyhlEZ5FQMla2+JiLtKQOk2UY7dqyy5/BKf3NBpDbGjBOPh+IV4NHLrGkwUXDgYNEu4AS/SL5nuzpQoDAYUrD+KfRU3dSsxXqyjhzIDKudp6Ebyr/eoZPZsm/iu5X25NO6DBesPzo43XZEE/A3/oM3Fomg4GCBxinSTYi3RSC1QD6L+ui2eQuUWibhT8hcesa2Pdbs64bDXrWhaItNupjnj5k7x7m8tycqxhBPxDZktNsbBFPLhbE3RbH/AUeLsghhmMxlTGnWeCTSOlv8GOHgDcL7Kn+ce+xEGGmJYgggQ0RWy6irv+qzzsf8zJZVT8mtOxW2Dig7NUoxsB+BCgCbR2gaq9/7SHsWgvz5N2lN6/j5Ar2b00/6DgBv1oIeS7L2lgZbq/AB+rySnDw/YGZwm4OelAITUaHh1WrB8GfS5MuLaGLvcfIfxY3lhINYS7Vu+BcNBctR3YJYOIq0d1YDc/4pKTOj/Yr/YNImc5CNokS12Y7KwNYzESDSYM0/XDkzQwdUg8n0zhZzcLoNS7poY9wBiSdu/xXOtDR9DlMX9uWVnQpytdPbWf3q+tnddexE6uoiAJkaawuF0ikonlgHZAPu6Z7X6q5UFku65wYnNBZmpc1TrELX0hXA8Tby0qBJ9k/67/S3QmYEl9FgTxhOYbNaa51LONEynax+f5tIOwtOsIEtpKcRD7AsebvZTP2rj0QuFxSEh7G9rGhkRpFZal1mJJsh6FuRMB3hjhecwjgPYu0hr4hE05tJx02dmPrAIYg8YED7o/xQXY1zh7AY3JFSCKQ8QwD/tc33vQFRKG6r4Ui5tY9/YtfV0Gf7+BQDM5Ikywh8KL9KcHHqf9QoXNKDqR7atsNebImY/JP09oX6ARUBugaZbcGqV7VphA6JnSLYYdzCBPftrrW5Fu2+5IYFP01G9sV0/a3MzQgk+hzDo4GdYSCs0tTEzq681Pt3zMCNnbif/mOK/Ecy+Efug1CM4sU2ta2oAG7EJtrrSeI3o0vQAG1+o8lB1i1rue5pZvt03Kz+ZzR7Yb1Dswfv8ecmJ4W0aonYQeWhDE8Uyv2Wbeouuo/Za+7hlC5SAdUoukBj4wDZr17uwH/jmARKdQ/UNt1f1z314qaGFWY5I1DdkvG1autCJZ3DIyz1JjeJB2oR37XgsCWQrYV2ddGI/YyuS011b5GDrWbYaHnt6NOQ69LoAW7aZZM6lM2td9wRnZEt/thR+rD4FAMrMHPxiHyh4Pm8UCsdBF3aGXvbO8QgpiBgQd9iIxPpLRsvdTrPzmgKUgm3QG/INDNwEVwD3fWxHKbMU8gHi7OaCFy0DKlAEhwFp3+ZfHgQEiX0v7v7mWJtREHAQGN34YsjuTF0QUndqryQjQ/TUsZOOx4lF2a6T2dMSoWQ8pEBRNhqcOF/z71qk2WcDjAzrKDP0mr7BFPDiDAgdDKBQJAbsOgFkF2Zx9cP2FGpYMHpsTyXG3AkHjS8O47xQSjT24n5RZTaRPUWJZhgCbRdzvkhsySPBCmbS+YGBewdX6sPSTphxwjDn5Oj3iJXaPQzB24wIGyY4hWBu/ca+US/6fCGy4X51wQxnp+o97J94/3uHh+btjsVgouPKnrB7ZhxO/vWUEitCy3vUvi85XCjwPnz8ku2urUIO5lnn3/kOfxQAV+JOlItwlBoPLZGHM9dfN4snzcqka2C91dqhkVDV/EI0hirWSuHYueI499hzh+l01ghkCwZGx+hxu9W+RvcOpEizh6r82qEGsz5aIkCX4Yh9VQZK303C5OFcTLLbfvyQCa28xdu3DiRxYl1iGtW5+z4IrvGbh8mZBsPzO0YgYkBHZ5OnQgAdMSICm+B8wwuwx2aqJwTF5uhl/9Bb6gtyZGl1Wc35eWILB9GcmqPlGJb+1BW4xsrOqk2FUNeJSmplLCkPWnlBonLWt8XnzquOI/n7xO9Z9PaJb1YNFs02kBlL5JJVS/ZlsW0/j4lLTvZQhHxsIHsBKktcRzPDfKWDSolGIMZPCwU2DWD1GCYzEU48krY4XLr0uqvQ+rFPYhcks8rtAoc+3GFw7r9qDhR05Iw4v3DcfBuT8CI8Y0Eu5XPxrs26BkqVKyWiSo3SWsaRCwI3L4xwu3+qB3CACdX1XU4pUxlCpesF1LzSrdB6UxRBK09BBaU4WDPwT+hzPaFnMsjxVSTgSI5mOaq8qKva4RBw/tpZRsn3YKz1eQ99AzsMay7WpPw+EGFJ+p2+JPsaa93q2CWpFrA/vCFxL/ALrunlAg/qMrOQxtPxNL2k0QRwNVFAhI5FxW6pOWxWAw1omhGWs/1eOT8LzWN2qO8LAwGzMWqGXpVZRG/kLMpPAiCoH2WRZG16qg8IXREUoUbKCw/5/HutInQPoIz4538XxkQvizdJ+QEaEXQqQU90uDEnHUvSecil5XQ1v7AwPpV/Kc/Y7j8fmiCL8Unt0q3IwKj7uTI6wNvHexunQ1pz/ha4hl8zy2MGDb1PCDxjBEr2O9GJ7nnEqhPmYAKvk5pLc1Ks9xI+IPFRCNflNFGCZKh4ttgjp4KKxXQtzyZ8lNQQClKJ42+b2YS/BVtnO+E8ummfEBqFyGRGj+ZRj7kaT1XCQA3FngcRpyXzkfGWM7RRZglUOOy+d0YEm7Fyu50ENBi19rdJBZ0NWZyo6SHmVCFON6ytgTUEDGuWwRxRB09LS/pUHhPDfUyc+Y6OfhX7E+td1amSZ+escOgv94ik43F5AZouPzABl3kzDfl5bK4/7MJctSfPwCFAxUQavebcwU4FirCfoHdOSNi/o32gaoJi8xhE5DvoaXwf7ncRgdMV7AEytUOR4zJtiEU97PLxsC+oXAsepLuImN9zIZ17w3u7xn/TzwuuoQEknqjij27oGrhvDeA1JKobpyifO/DE6IULvEoX25p8QO6rTQgvcxngxh2ofT582i5amAjv89zrpmpxBpDqwM0ipjViPNbq2dEPUFf4o/0oOkk8AXTEEOiIkHJRw5w6XHna+fOmYt342LkUV+wywe9PLxLdRdJOp1tBfzLEd19psOPLKujHmWWHQceqxjzM2XPVyPXU5tgsi5I4HhPIPtKt8FWVDPb28jeL21fi3OXcshj/i0zgVXLcAWafn1IZ9acz1DZdQHpZFDk78zMNnBwBRZMvhSWqRR7Ubvmo6Z82hVNStRx8rsvYd8KL1jx9cw/+/wO1U8VhJ7hPDC02FWaWKVso28WuZX+ukmyr6PuF0feRcRE0kwgjuMqiiAdNsPXCQYcd0Ik1g+aogAypWHT2Z5QI8Rrd48MEUMTFhXsOgHPFzicubFYjPkP5OJ5/orJl9X5MJgccIbYKS0+kLB0I1UFtG5hh9Wf0NCLwtOB5lcGvIcz5N3M2R9ZPwzQemT9s71doTEOYV+VAXyXDQvkbdbCoMvefmlwccqkVhFZ42TsTDBdXjEsOhCD9xraAvEw8tEyZy2whAyQCaAguEQQruD8qIix3lb8vlmKjfjSsofnGQcd3Tyu/FFMElLyUpQpkcl4F/eVqdgO0rU0cInGlixtkIW7KkYvVlZGeceEXRq+TmZjdyxmjCuoD/oQ6HxE02JAi+pmi9VwQr0vU/hd5qxoegVirtnhOWaJwpl0B7FZz94/0T+UQfVfEuLdeMGBrZun09UgT8oaRuaxqr6VvQPHMCsH0SxnyZm8aHhRBpIuCJdKaHyOuEeVM8k0HRcblRfpK7hJ4r18mpXWdx0ujbwHpz8kx92vTBePa5FhMh5k6Skl+Wm6mqUM4+FZCiyi4gg/HMz4clsKkxLFlL/6AcUAmlHl/oaY+W3uWD/JfwJmsQTimtyErH4bhZ+NEAzAxewc3XDIhcWQX8Sv0zRKm/vCv5TxzK0agGW0MtDqPoDhGmhGjRle6g6QtzKhx7lu9nW/W2hvPOFt9ImrajHzN0aN86y9Okau6kctZFRu8JPc5M7VhKQbmqK4dtaoPw/V+FOHYNcEbkWi3nKtvnD7/CV7N2bZktPG/HnrIamvykyIdZusZJeuiyvfkaupa/JrvRhMbaDuFZl0wtulQ7sPJh84mAJv7eJ2B6/0OQrTgpBG67JQnR8mTJEAy79WxMnoPRuf9QWvK9eeB08erogF8Rf8c5D8fyHQoNWtIVqshunwlUQw6K5CJvaNdM+XAJ8SZFaeWwDrStTJlmtH9Qo3cOkVzjwoTH4uMMs0J8irmIox5m3IMfKMIVscryRjjpsC0kodxV5BOvmM+tYDtw9BUbUi+xaYkv6/RthveL09r4if1Yyg2tVn3rtQ5lWaHj1lBLigKBE6l0k+42w6HAGntl9Uxf8+GF/+boq+byLwCaEjBWqXxUORpQkXXAA4d3nk00Ca78mG3d4sMZFf1vp4OozgYwxI5vAU1LP4I5DHg5l8GC9/oYM0Rfo9eRfPf0cevCc9Om/YtYg9RwIL1s/PvfTk6u2GKkZWcoePHyJz6DHj8dlYBgYkP+UozThawKEThqEcUju+U4ZefhKE+NhBGyi+EHWBg3ysU5qszpmKTueVdXkmv18XJvYPq2XSCp1Y1ABppOP5jegnn7ZtzeIzKkwq320UvAU2K6XT1tNT+TFiK76/TDs8SDsttfXBtQQxZSi4LveHyIzcCxT/gkqsrt8LQd2I5F13mm/opWGdtflhi8nOOPZluJRFpwIhZZTZeSn5g2nZcVnJnsc3DoeiBN1S/HjHx9K5/VSzg9G566DRdVZMd2E11YEn4CVEJHGcF7jYBBNWuvtenYB2EwRcMQSRFPU1oUatApFEZYpqAkoaCwW7w2rSfDDL5DMu/kbPOGf6dRKN33MDss2V9ZlA6qRYs3/jm0D7YLwWhBCWj7zhwPQqE4l6wEmI+iwMlAXF6tgUqYB5vEhMZVPTH05Ama/r0TTm5s2+/E0WdM4DbhXdYWqAgUvnLheIXHaL82DFAIMlW4PNP8W0ZFLFYRgpN59yqIE28ZEM3xXA3+VP9zAjKeX3rXgjMod/kkOQoH/71QxG78BZX0kzQTm2mnhopj+ZiEjPnae4NZCyMuP7biQ6WJGjP2mjMm/XdrMPjZMJoPYAwJbMCyHzRWfD8JjO/+4nxNfeXwOuZu6LYTwcsmdZ49/YBLaW4pmcmuscLwkb5mbieTOy6mPw6FFOfCFO4nHBlAGsV/M62pr9bWtR5PX9QrflFO3O1gqN7dI0JiqqKrqC37Nr+roNQ0+o59qJ/MUQHoEk1V0C1i0tOMq+lDkLQ5ozTPIgY6cs77CqXaCl869xR5FdHNvHkcGrq7U8z0Xlpn1cjoQRd4O7VabISph9Gckb3kfFLzsmF73rH+9dFKK1ffA61SiAqxN3dCep2GkPStyrVUWN1qHCcDQ3E0/4lK47iL6hbqJtA18nfonHOl/LYBfTP6VzLoSLavmsniUy5NsMANs6mnAOfy9BHae+D4yqTCZ7NPf9Jtm/0Ct+UgMsUJ3LXv/UVQ2vhjIuCGHrGLZylRSYtylG7S9o4U4Ti+8d6uag0ngKcXXSGp/FlUoOwoeWBdQtr3kfy8JdViK1lnBMrU9l0of0k1HmlfL08qoSlrS7NBubHlaNkXs2OeBgT0cq0w2qEhOLxRnmM1uwF0Ytrft0EBMGdKCxJPU2tOgtAzpx+PsmAaFBFTnhBxYz/UH04ig4zXsViqTlxyUwitTf8Jr6RsSlqmte/YzCfpiFzcUwrb3jgeOYExZonDmqaXwOui3k6kgVTDeo7DdgTcpBa4Wr3dDluBQ+/fn1yjnqN6Hpx8OqZvIKrAI49A9caeGYzEoKmZ36RxYqWjGPATHK5wY7UMcT9YeEnMUHzS0+72F1YD/j48LtfoS5DT+Cq76rXyWA5VqtUaIdvByoX3im9rhPv1cAHA0EBTJdb29NfsQL+Ij0kKJpgQ+0K6JQvY0H54sSK5zSOIoyYoORwgZw+dnWFE2M2EjRNlHxcpwUKbFIZYmebPm8Aa8NlwsBHu7BZjXqUusB5ljZhzrbYTMRN5A83PoTHoAg/dox61Iz3KGDgMvFxgW7/9IgGgWYk6uhnyWD9/KGs/TnNKhIv2gH+6lqu+G1o9oIY/G/0Z4m85byTEUnODqLSuiiT/jLBUiSLXOPukoOqtQWMRFkT3DBQ2b+jPXSCAiIdnPqig2mFj4poa5mWyxdcrxmBqwSvJ+1PLzAolHweHuamcq0pLS48zFP8jGa4fLNm6TmU4aDQ7v91nzfPM2JXx5lK9rsJpxq7I31suuLx52r/jJb5aMxivKcooiVcTzgIZxy3pd5p5HrmGRjQqFd8fzyK1iP14I3/+afjWnc+WFBnz7P9G4ro2CNr2wimyrv6aw3iayW9zZGK6m1RiVVBWUKOvoOyAQbY9aLfsqOuzTNjw2Z84nAnzFroILTNle2m7BgVmN1WHB0hHlKIJNjPiT4DVrGwDgLzfbFvgprG9YNm22N6j84Rga6k3p7g84+nb/c4GykF6b6yW1ZH6IDADWTkVTmWhSWgr2nb38IBakKBG+w8GBN7Y38RVvGsfZ+caZmacKV0Q1enoaGCCeg+ym4eWsELHoqWq+dqu+JXAUbtPg2Z/WB5T+RFgqrLF4stPnuC7+EqSXyETu3HUMPKbNchl4GY0zFBQOkAjcbI4wzQFJEOS088f+bvk6tsR8na88ArP3SJUszo5pZYrRKEtI9z5Xqtp2ewncHftgZnVN1G39k9goiaZvbPb1YD5874DQj44pF/FbmtnpKdfJ226QLp9QLrlyn6ztFpyNa0JVcFUqGRyJqEb0eDY9VRWobc+OI5byZWWAkwriABKgJ3tMm046NntQ63OSLmVl8bSNuDAGajtf8ylNISp7iJit+h9gxSB7zhD9wksuxW3Yf4qwF5/nDn7eLgCGn/2NAHQxS8sIuQMiwB3Wf4Sr0iFVVjgwxo7XAl7/4xMe2m1jH+6rt5d8OlqGUSy+ODJqN7XpKshgJwGbbNOezpJwA37CNEhJYgks4P+z8XOeuLMsK5kbXuB5NMrLOVEB4ov4DJwAzk8EaJ9RPqIaeE1HRRbKtAJa87P0LA3PvzTd/Zsvf1evhabJCAN812Yfkn8nyuNpe2B91zyO4c51ol8VQnhQJ1dMNWk53By4za+hNvo00szgP9GPNJIxcUWva8LkeKmbx3RN7x6+ocL1KiB5HSVLruvnWTAoprtG09rrK53VUOUGISvrzuWePah95gSPZcBb2byKafhn8iT2H7F34jSUO56+fQ+edJhS92L5dFNN64N+HsjHcTmpxZAxjutYm8X7FqqTULVQaD5RTmJT0vqFE3cMxHjUjUXLs2cucILOVNt6/Cyr/7IxNDlhFxO/jrAB6Mgzl1V1c6Oweww1jxLEJVGrXLjT5srkX6T2EHy+SsbtIr/+oNBvk8pgvNgOP7iJjLM33XQS8v6l7E1t71L2X66PxbRMya3Afx9ds8C+Dt+k+wamMaJqbblHDCFdpfpA/TEOVtRsEvH20ZhfMngeGGEyDYeyCBvFDqRhOFqwVvViHcWnBT4gmwWnIr4PyySWQ6xRpy6+UqUeeM3DxQYe4Q+bT2Eak8uIiCREM6h7f7cxPPWzbPLVBMPCEkteWJ1qOcpqg7Afm14hd2qeDVTvs03ZgPyU0Xzi7JqHKanxqqknDgFKFrzDeu4RUeMP8FCMEeeDMtAQcpvYcDW87ij9qhYOoP/hiPQ/1NVlOeH5C+BhwTN+VbDelnNtk4qi67NwgWnj/OFJ2unGs4iaiImRWElaprq3zhpf2X1wly4H+SSEj+Wyhqdv2D1kfV8NpcV4tabn9u/Ucc+5E/zJbhbhKUqY+ZLLGoomWxixQN1Uias/eEHm8uxwg4e5whr7hdVRPiYzMXwdZt5iXJ8buwvQH5GnBK7/C/ORQr/EfGCIH2l95dntsuBAwQTKhzSmv7OoDYLXVzOUSIrPaNTLZwKFvDJr/1pFBJtZtD3nVp9a8TKnJxyr+XFNcjvVuVvurJJAqZjv1bEq9P9qGy88893iyLfEYr8S0Gr6H7BxecrdZJ/y1sfjZF98xS4kurWBmWokHJYkExM3vq/pWtNwKKWdYcUSPtQK5UuO7+8KsUJTvzYpw8Ub4jH61ozhRvJI6+7LKrS94Ue7LCF/Njjn4mob7RmIopBWMFK+bCNuGqWBom8Qv4uT/51deTpDYZfUEeMsKl4cyXxx0pQkDiXebdpkPrb7nZx2ARAKOquGaiReaE6QE81sP1xyWZldvdiSYFO3w+XWMt18k6We6ljXDLjI2aDUwSgWomCj/15i3Afbjy1TgB5jIeYuKzE+krJVpbfFKtx42o0qPvNmB+ohVvmzDau+fj4NRQM7FS+9bNgpmIKWsw/UnEwOognFsahSPHD0tR/kd8LJhBsblt5yYlxXbqn4cLc5P9dQbkeuFbWky5eiTzx7WKIVRgrWFGqi9Z5nLCjCdIDWq6JuyRUIIiL40sfcMyjmBh2Lyi5VQ3RL1kCFuCDI0N2CM5ze2tG+ue7S0Uk72BQMTmFaKNXXXaDEFcFcPWaikkg6twBf3qHOQ4JteC8o+dHtGZQOswTBds3UmHpySAlqgM6MRGr0k81s4eT063oG4hSZ8yL6r63y1ErkMUVJZTWA6nHXD/NYUvti2fwQ2VyLQ13g2dQxkUUrvUn+urqEQC6cA9B3JAHNz9jVx+ZM3ly868srofVCnEbdpR2xIGgDd3oohHCXCJQeXo7cIN6vi6Zv9fXZbZSedIT5ybhnc3AIr75WqME12DJHkq0n8XCCUYLFpJO9E2mZwljvu8MhavTwI9vbZEKe/NLQa0tXgoELxfdLtJp7/KGwxjdrrZWtbMJwTkFG44TZPVPiBsjNzwb4XA9O6VSU4Gn2rZtM1Ztu+/Cf89AHk2LKgMJ8xqujn7Zdez88FtMKPTCFie+P4r29JFIwy+CevCb5gZxVUs2eg8ikNJqp/m/XuKfJ5CYkJPQgEe69Pygm9HuMZnvuR+bBVy1rSnILN9YbFjYV6TjKLQhGVmJidzPIHcAd76ku3WZBOZBbiFo2V2DnzYrTtkuUpJr8G9dIWxCzspG86+5cIGmv6MAwUyBY1DtWchu3Q1pTNkeieE09cYOlZemhArrcEJPh62wByqiPj/6xAxYu9+riftjySFELmNExI6azxgr4OidpXdiZ+6QlGjnO+q1HyXyi2dn1KIYldjLbyY479ZyBl3kjEeDNEd53l/UAFNFgnDJ20QhugrHSwXztdOis7QG9PsUH42qMPoq3msG5Rqj11CuEfB9nyAhBN8QjLstQDANnkA/JjwdWSkBAILhdNteyCtX11henkAV8zWjO2/6sDWB+rF0Sa4KEZU5r6Ay7Alz/lscQkoLW5866lG3w6lQNoGRMEYTh/NgZVZDEb5pM7UkFtwtropB8irghfkMD27ZRjlix7eU3wv70/XPHYy181RLb7GernLIjeGNiAm4Bw//4TLiryWY1/CjywiJ3+OnfrFLWecHzb5ITGpHf7i5Jor2EDDp+8bJeFe0ZPoKBaoI91O9hXOFoBFCKSlfbYigeHQjA7GcaVTUPYrbcm4RrGc6A7CU4IjOuBL0mxdG/yXAVEenXm0Qi7DdoI8r33ygow68PtvG3FT41oqYVcB1aqgMpEcxSJ77Msuqy5QGxBqLa9CU4p2ANEEmlODDLrivpNLLHt2+xDBpiVv5fBxatsZ5VxaQsf7csbiSyFehzdTz4vjLqm9fJiEcAp1CHde/le2gK2erpgWSHddGCAFbHBf5VuD9IZgeRp9FnZChhzHcmyh8UXJpJLz7Ui29HKdl63h2W//oHrL8gCUosezyeQHyMwgHTnMWxRJEiFdKDZLPPhQFeIavvrlSt25Ob1d/hBFKU9X6jp9K0y4hQU9hkhgqrij8XzvGiSOAMwGb0igTHFxHzSWZwmIqD9MvXiUVm9VX0+3QojT7A5579GWKoru62kW8sDtszhItkDskvqZ6+KVgQnN9uABz5DkAjYscPRjkQ/Kalcvack4SPcVQ3BKfpM+BKOJT7Sc7kCu+6R/Em01adYe3/+PDsZY9n3D4VMkC9p82Y23bUweJXCd4Oqfi3CMHTEipMiw26lbFGlrPB8MTY88eY2oMMZ6mtq7btAmF3HR9VzDhvIrhkQpXx9eE2EMX+0e53UgqoTr67cCrmGiAme1J6OaYC2IU+vmsnfH2oWT6QrNBRB9vIPEfVR1ci1i3kXqzGexw0Wf+ndFJ9NRmSk3SqCKMafDCcqkBjNzaOsrcg78K8R2UrYLH6iFxB6/2sDBb0tBpbN0+nYJej1tc8Jiop7nnamGGYr3xTTDWla998WNF3hg6xfB+aWpoU8VE1kyAlEFmPhCBjVYmDw2tnn1x/ar0Mlq1PGTZwikOXbWTJjOAf7Prt/QHYLVO9yoJdx3q1hxcyUGiLj2VrCgSIcbQKWxjuQ5VkGZZvAFbMdo9jTAJITFb7NiniiViJHF2jcSmdrAfVDloVp7LOkAqULzkC2jWlJuMZ+ar8IjfXJuyxbytJ80HCJSZFZaM1t5e4JD7ybLBE8U09OUqdL3Ov9mRSEUDgKfGGbnAuuPL4nqZwvZ2lYOKCSL3kjw2E/rS+P+tQ4PFXByr8AZN7d/6QYaAm1Z3QQUj/QPUSQdarKWu72ntdTtsyjhUVmarwXsurfog08cY0cfzVIuz5okUuC8dJC7coK4iPooxH17QsOItEfeavfxJ5Qsji39hS+bw5IzqxbDX/E837AIvQt9lm4XRGBiUAOGaK9iHxPj+TOtwvGYCREMgAxwTJfFbs1w2l3GOpc9aNJ0FsOkOCYMEhbNQaEOgSyXUts21mqSgA+W/ygxgRg+PQ4mRybAGBFzf5nTkdAFAZrtl2s4l52BbE8cKiDgIrQ45DfSCTnlrD4WFuKg3EWAar2cCBDS2ILz2wrCCMY3/tgMFZwQO7nUdntOkSTQZIP/JjQ6Fepr18owQ6h2V1jX3y/FL98s9t9nPfA04sjZ0JlrRtOVZwtW7nz1UhmswhnX3a9nVbx+vxBlbcWrmRE+TWRnj2NbTqEfgJDnmuVF3iH0XOM7ibxBKvbcpCvkehQxHbnFzClNMTZOhZM2PQXjy9ukpdTeEtgsGCZBtQO0IMOuIzVlIFQ9dkk9pOFVVNwLZruiIhbAP0gPu33yeNww/kAHwK8hfPSW5WInPgZYdnmBefDzoOuzDvaJIX8/sVsbSjdXcABUHG2IA006re9xG9xNWWpULMdNI9Ds1oSmZedh9rIFp2fzRYs4U6N7vlTJ9qWD6yUWHm8NW4RoQwI2IobK8VBmt417SYme70zPatat8PW4iFEdqQCtSzrZAmvdzeRtl/DpI+c47SBoqniHNP8ADf9Z1sKGkty2qZ9kq8OcwQaMg6IxJT7lQZ6g/siyaBW69DHrLnweH1lmTaSSLT+4N4I3sr6catI2JUDt4DIr5h5TsQOeyvO4btopp50TvkeLZsRYwyVl/6HlEnW0A+khKR4Y8UPb+zB2Y9sBeyFHHHD8I/GWhcGkocrgaSz8TwW844XlEiptZFLgGe0/yflDG4rwkTFKUMO56XVAxgifkfiBQtdLyXDXfs0xZTG5y2nMbPZxU9mSX63QYh6oUckW/hO8j+psHEQaWP+V7CqwfPu0kfArD/P8CbhGSNnjo4/aQdRWwJk4ir2j0lZp36ER5i03LAN3NhmirmeEJ66YfvPP4B0xdzx3/9eTIhtMTH8lwXuoEijAtZyMmKQDuBaBfpIhbbFjpw6a+m8hwV78YBLrljJoXKY0kRKVlzIAiQxuq1TDrlSbf7mf/CvZdmaqSYTbutY2m1uKiOHC2SW47e/XWKgU6Mwj+rfjaq70kKBKO9ucpXT8wG1x+Xth3T60T1b/BMBDfNWqOQTj6x+E38EbgCIFDB6OMYnaanORgLwLemLO9zyHyvFMkEvQd/naT9JDJVfkM+Sxml/zRaKdd6L5UWh3tqqESltD81Rc9y2CnVay0QI62MpFJrqCEXDNeVU//HQA1FAoXuL6RoLGxjuJddq7b9yBpePSwncILLC4ZxpEQn3YH4UNsyGaueaHskRYdJ/fzh5QmmcWr+76GFIwV+x3+APnF35rFW/1qRmDBRNHDYa0+wsv6PbkU9zrApSQhpzJd57yr/PmTN6X55zx+lHfA/bpGG7WdTeaAVBP8jtuFt3mdZNY+aKY1SdBKM5pkObC4z/ChNobZyuRJjLgZ2Lk8FSZfySJR9D/u2/TDgprhfxvC1IAILJA6xzTvxiXCDbITJFcIsOfJvvt61oUv2q+jZPcGKw7g041VG2640CfhN1y5P3Tko0+i70jEBEq5eUKjB6/pzN4WRqk262BZ9FApQByFxuT+i+ykNulyploDW73204fVdHR6N8Zvx+BuNdya08juPMikPh6U9uvCgmXMMHDxssuuG7jHHPFTtvO4GMP4aJWqpe/dP6IOk9dbR+JaDDYgsY2TOpodHyoKNUysj3P5Z+PICrHbCdf4qJ+RdW7upyC7cJ94qwvMQasF7t9cLt8QB//1Wdvte80m77Ex9A7sYf8205u2rbdqKb1wnNrpqT2FgfBMw5THxbef95VviyU00OqoAtARZNKdfoY3+X9SRZqVjPMUAAw3wfWz7Nzw1oX5RQmxyMl31fOtHTjFMh+Nfs36rw6psTNasCeTG3u2HZQDq8ovEoXystW7l7X/XlJmdz8ebPAHHjHsOR1fF0Rb68JnbD3EiDnnD9oZJLK+r6liWyHqKHTNwOufUfO7NtZZ6ig9l0eV07VRKDM489EUsLjlPjHS6yz30P3VM/ynay8m7MCFMrWe7/5SFqY58whokMM0Zt7w9fBc5ydVBoTUraHanaX5PaCad2sKrThgZS/5D6nV4vSn340ULxNix7+yCVndX2SjYkCKXHI9bPpNcNfegdISBDufOBxxJBLhHRckxIreTFXW0yhEkx7LsUvW8RWen2dvqfy5cfiggaRCtXoQcKNx711wXQH9aldqnZ5aDd+gVQA1LxPqg8pUeopzQzzq5ouHjfV/9lw7jgyyZ00VeWRcl+sAef42fnz2PW22ddoTcUxQrtIspRZLxJyqw0kqo4jPKGvVUYpgX4lYtNYGV9F92NovpHgBfau5S62KKv6qZsJ47mzoYABq9i2l8id3xaub1RSoI+09OFMrXJRXp1gpzLTg5Y2Fh64zZ0Eu3As+WqedJ6O1d9QfKiRfPTP933M0WJoZFvCukhh9TIxR0qHQzFX/CWTllt8hmN9YDjHMrlZUjM/XLbqJOFcYk1gRVGwrPqY1iMNbllFoVy0Gi0fX3Oi5AZONP8r45z6Ei0GwEWA/Rt8Gfq4aDCsc+rUd72kXW4UcNivbDmxdqSKORahiwDz3A2GbMfTgF7RImKgnrfS0uPCIwpdYwMHBGARHM95XyCAkwOUcbaxiotY8gK1wwLhdfbrO+zY95s8nnz7qIdoAeMwZp5g9nIScM7Xko9OyTt2XqRXVikbJx0LxsoP9TYX4E4Vdct6ZpMR2zL0Loqspe4UqNLYIA6c6LlISfEOkx9jOZ0Y7IsaVqtmsIzZoYkgm6Iinm5EnQeJ5uHI2gzO/QXTXjfEGREhx+xs7eWX0yZ9P3qdT63cj2BKUstfod+rNvPMaQiZQAIpIvVkOZNKC3Mpl4JvgH5pLge9bj5/bRb1EDIdCfj6An/R3jzuUJq2xohhOAvYYujJNAfnOMjjlLcJW/xDoiMCAfarzkMoS8B4pUvBcadmDKjiTOkBVgJF2nuljaN/VbUpP39bkpfjMqMBErZ+kT1tfeBsMHOTFRDBQt3cOphiXCjI968to+ymUHZYPyhZixBPktFeRT1WtT+T2L/FxPLQ9jtG+/JhZEs4mVz1red2mHPLM7ofPcSApxf6LIRfo6a+If0EURLzV6YuFW9jTnVm2pMycOtGjBatuhh+Onz2jkTKseWOr9mPGEeySHungcycZjlUGf/4vBGKbzCemgOtAW9HHlHhkUAo7zNRvgP9SyQDl5XWzOiWgzyc/ZfBBTpJLmr5c/uRD3usdN+32le5PaOa+pRxmcsyPwj77BDDBOO5ETqRBoRAto7n8ETt10kO/LQLIf+aUC2fiOfnm9jPoDrTnKDunNo5o7+cPU5Ij3etIhdq3FAFChu8W8XHlIhmQXDYIjPhRYocnqC96EGLT+X2emXELhd5zNYlGR/6M1tJdVCkwSfDdKn561M+LhliI8mnXOcTQzSnaBNd7IiiCHZLpcH7RffHixQKkz6jOSFgNWOtvcr6Sxqc9v5FM7SeCyVex9h3cS9dozM/0PnfaLjxG172ullxUaa5oCW/mhvOPDdbNKAUJpCKM0x94ukMGGQDpWi5erZdGPFnhvfojp877F6flyvOpk+ZVXJ5qeFzSIeYPpRzxqv6AejJuMull6t7J/ts/ByMGLr2asziGZSi8Fj/n2KrJSvfEqxobPIFS7FQW6GgVG4XVi0LXbgo3xNiIj4q4KzyreCQHyPAhWza99MA2juHsPiR1pcBP07Xs54CnVfC0smOmPn2hXQg4244gphvW8EGy25QLNLiMin2v49jBUVS7B1lnbIesruja6juiJZY6xsmg13gekP6b4JjssSKSJLEfkh+kR4R0GX0JsgT9z/6rWMyUoBcy+A0gyKD+9ujcO/ZoclsX17ONMHw7Fhk5UmOQXpeu6WLx9SiyCWBMN05iKDy+luAspKMVjujsxH/xztO1Z15XfVUrENZmMOozqtckg4mBbf9ayLP9y+V4wsJFOHxGfjNdUG/YHUNa3kFH7z9ip/T3Odl5x0creyKPPs9EbtAYxb5n7GkX0HNxBe0sCV9cm/CD1t/GfydjXb1w38gdECrcoR5lzG+gWfWyyVhqRxjRF+BEQcO5idx4myp/MJoTJ9sej6YJ/kWh0RkyaQKpHeVGsV0hmiTxDYoM8cWUZ3aMcgkKfi15YsU9Zj2MqH0XsnHwcNbRZ/iJgEsWdeoGWniI4tyriMvvH1r2zhmhO9Xucr1KbJD1kbjVGa4HJZb+IYcOir2jOcapCmnwKdQYAhUOFvR/FAEdvhUXRG6j/oqDHIcpj4l4Z3VyWhgd/MUFd7wlS83xczgDQTq6NzOPkDSOMJq2MykddUQ/luvWktyQcIJQzMz0lDPDQiizz84SWPAYTzVFkAGY8QV5BdfCG+miX9CjxcmyiokXvKM07RQPzSYLwBG8jGnGOsh2IwCpRDAD72W2+nChm8OAyxkySfFxMCA65Se2KXxb2dF2tX8+2eVgnDXDW0UbJBy1LckjEns6BMlsfNKPaX5dtjAnMAu30WpCTx9KFo6ORGREtDT2aa8uZ9uYzTiJKsvv5oZXGjW9oj7s93ZRNHRbOv2xcww5w8uMXOYDws4Us41l5CSkIL0lDgtaEFi5gyUSAmr6Kh5vsKa4TkmXyge59BHiG+UmiUae48DvVHP/UyuDU6lAkQ2aGyNERU4befQVxcfwMYsAPn3K/uEaKn8n7QalnLPOD1egqpcGzbaJxckUASjT+J3tPQ11wGDq/Ft5rYvFGq3Cg9zxSxP4cHR0dRCOAE9lqZPx7QyKnXVWKDsvQdvYrz8d9gFktPZ7lp3QkK7Pbrt7RcA28gkcBADnf3UNIHGF0SFgm1p7OrHv/vhX5Q3Iqw8KXo7DErDhfDKGPZyLVykH2Xr79s83orxlZXe/HeO1AmYqe5aeAmvo8hvYiph8ZJ9KG6jzpo4/1IeAcwmnpjAhpIHR5wL18sH5uHA6cuex7BRSegjW8smRWChsPpGMg+Wc1li+gPtYIrJCgPPVzE+my25MZVLRfSpIX2KGYNyAkyzfSfXqtPdXGHshnLvwwrgxnKRev6fpfZaRcLn7JATHsz3UOROvflxOEktbVbNtqQGH3X3+gAgAOqAv55dXqju+8EeC4lUfObHI8DzZhTnbcWuWtO5WldVCSRnYH1jMINIlp08/vdLHsO78JFGcBsOU/UvEL4pHmJ1+TQStDggHLTscoGk55Gli2w9yd1WqYgR/+we0aZAS1p4vzp/ZBGm0qp35vguWPr0MNUNHdnaB3iRfSU7Sx4QhccudZiRVEmATUY+C+t5Da3TyhIDgTxm9/nvmMdKA/ATKhHhsrtGFxTOHdlwVoRp9d+nio+h0HpnhxNyuDjh3rVWy3KXB7sInROrHbtRKwioEMTEDmtlXc7YnSzXZN6oBBKtkWc//+O8Xgc6AULFf5cdFvuHqXsMuhq3Gp3BI7PAX7DNQvAE7B9SEpntdkcBzKkR0SMEJ4Y9zs0eXMLXSDBf9W0BzjbLRk37ImTi5evtfOSGbIFkypA17lg7huEGeokaHVhFjMJ7w04fCozmvISrPRhyj3arvsEAEwoTDwprPntZX25fBdS1zqYB9CvP0niBAAslkiOhTI2Qhz5vYkLlhvT5XrSWAzRdhgmOc5sOX/7gr6/viMlQI6yLfX6UW0hzAXccLMdq1vW0jPqanqhkfTMBDvZxbq06e4D2avM/0lics/dSJ1Mbg3Zf4LVc6W/Ouu9sjEsPnNvhYz7TlOUOdU6W/XDE3KoufOkCPYNDaUzChoUnWDd9TPsGvEoOB6xMbGpzej39yFpDj40xcUqWBEhSAh7u1ekuYGRB2aaOv4pjiAj8Af6xILIUeoyDC4J5/KxB5Sw9jQJkPnHRIWulPYCxrmEGT5gzNbCoxEPfvWi1cNIxlUupUssW6LEUhGmtvECli8ZBKxKfEurS8MChqtC2sPufacTF15brUNJ1lSbckOqJ4/N2Aofu03GHaqeRbphuJN1/QTCMAsKH1NaA6/0UrGQbzO61DHgMxdpRNH0d7NOHD6bgTwSJaBQG5yeE5KMEBKPjFAW7CPI2cLiKRb8LIKYHACALsKoJJQ8K6ocsn1YUTlBaUswl2qDG817m13sPeZda3kMBPVn4Ghl7tp7D97DhNPTcOLic5rN4YRULol9APVJHS8rY7uUtkatoOWSTO2c+lwtuZVGEiiD+6iNrfN3jbuiS7lphOWoemCXCADpqY6W7QT58zBfiOYTadRG3i0V5llWtLN/XHYEXqokXFGadd3aeWtTYxvkYlUMWvBXKN0qZ6LjdC6GDb7ANzjMN27hC0wBqpain6J7ZSCMEyUN9aOuGEo8rrLakpwCLTyjKODulqDSCoKdlnRiGt5yO2Dp5FRnAfuzSRoIRHmdyJRh4PpJ5dxQudaZb24UAP2y7MC6A28IQBVcwAFmx1PQQxpJivXlNQHLnGat7fSS6sNKinJuSFSxAdTk0SywlCjAj7e8h4O1Z7j3NydvHA4AwtIRVFAt1nz0l+U7QPqcbLlUbM3oe6Vnxf7dpBlALgvBC5GZZxKCv3f0YB0SIvZtQ6vmfqyTjve6VY+Zlv3hiF1PPaRS9xCmWlprDu54Qiqe84+VPx5Bpj20QdfvM07RQJJf18rYmFT7rt2Q/RueKwIqmN6RLjQaIDboVJvjJw8q2TmtAkOqY+eFcwNAUEgeim90LiOGqkPP7OfnRKkzpTWTQp1y+gGBOs0obwaRANjsov0180mPU2eSvh2gY445xJ4ttmpZ4VH9v9GfFCa5fJ9udhhACEZqM2SBBPfYOzh4DCP+B2g4udFeakDwQl0t8ZhqeCJpCixWJnTUz8eISDRoJpHB8rkylbrgfHYaABA5OkYIju5v5iglyUpVztNmIS0z09694J8ICTL0b7QSCJCqbFUZc43KZsxaVII6iJwa+jNbPZxMmvE1heY0IDoIyfhznRyGTlw72FIt2smz1PmCLYIsF8uiHyakRy9y5Cy/wtWIZ8YB227hPgN+gWOLRbgLRIB2jZkqECaNWNQltyA4YFr6J4x22XDi3g6dey+S8P5d2ZxuZetxKSWuRchSnBPNgJl41TtHNi8ycCwWBTsxmuZU+ZrZJwiqs1A4aeWwLkjIXF/UtmuyP6yul7Nl23MT5skqy7RK1PmEEwEjgM8ZvlxJfQGIUuKgLEy1ZWeRvpVNNYCkj0Ddck8atcoeFZ7+Ur0Po6AHnnZ4WS3RAEO9Rhn0NwjSDuz82yKYmKCGXqIdX9TUHHDmcQbYd4Vxs0yXPNs9X1h8PpRZO4k7PAJ6rndHemjQIY4JYPeRQ0b7HVK3+RB+1O6nz7o3+lFTldGH1VAgCBck4CM5fbO9A88rcRgF6vPNtb1JEVyleDb46Sg0HIFCicDZLjPopskrS+Qjd10d9x9jYl6NBebotHIALu8/yAqUK65nVIwP3d1TctDFuYKyV8VnLdERP4qsmr/kkemGU3mEWmaP9J0qMwVsy/l+hUyw4xwSSKI/Lvs4k7sdCze8ndAe47u68SvPVF2JJDFGa90ayhtoVzn3zqEg1kFclS1kam25ncHI67gJsZekLcG8564Jf+XWQ7GuTT6cwPsQCHyoeYnSERvW3O0J6It4xsfeTfpRKhqfdPFz1/klMN7MYOXUDotlTlfjinnpJge6SrvW6mglqZ2ag/YNo5ufMRIodOCcW+J6rAmtSXRZ+2QympQ0CpMD67m2UQ6GEKUYhMn0v8ZiMWcOW5kTXsdg6TKHqELBC+FKFed4nlGclNInTTnRmrU8yY6uP+C6TVoJndwb4DBc9UQ0X32sWwwN6qhY0ICcwqkPJzaf+W8FLpyOOodRZsXXp3IvW7pSmTMCakqFdvKnDRrYYLW36H13osBoPfCAIL4Xmnx4tiggIFqKSJ8LmPPkOl30Pnf6NPmBMgjsx7pMk1hwnmVPF/4NVbBSLQa0Lblz+12BhPcNJHBoIzVwaF2exqreVPvkeBBWSPLXoe2AzHnMOY8un4bm4vGYAWlxM16pvbNaZezVKNvZ83t7ob2joXKPOpz4dBrLXU7u71RfajDOKHKRJV921cIY/oht+7tdTCpRo6hnsCabD9cox143vriUojjzFYjAVCZ6bbLHtfiuHJIwN05cYfkLbjNp06dgeie7sSok6Lz2qiutRiIcmO9aoJbdQW6DaNFWYXDvWDcDenoIFRNj6El0lsLkEu3MEjNE0woUHZzmBvFKB2+k++UFVHUP1rPVa0UpeoLVldsQ9JpyliBPRdm+qw4aZLPfFwMUWW1In/B+Tqte0WKtvhaiGdLfWWKnZlwm0lX+VASz6t9WrNxEASM5JqBaYiTgyEdEvK3PLrSSGl3YYwjSfAyWfoXPomSTZn3kdLlVSQpjWmfP2p5/mV44OC2vfSRjMK3PIY5L7MRmW+Jw0Hf4wQeCoSVhSLwLUjf3r6DYDoV4rvy3qrVlXXl+0zxj/E5n/MRkkFqh0cfhIKpE71k1Wkte0YBJZsNK5xpTFzMpCETwrUi6vRnt72R21A4KE6K/XuBw/aF2DQm+X+g+SWFHmFUfoYSFEu3atR6UOU8BD8ztRoI+v+eH6WdJ1ie8nTCeb1FsUqoziq81Xdel+SV+SXFx8H/snSwHfMwBZipz+J+tGLhpmk0etb76O7uPaX5gvPm/g8b+E0putcHhlOxe1vzVq9+Yg/qu0BG44tIUOFvRQmJorW/Ov9rzy80pyxnnSSLJpILmy5nH9SZbc1DmmMko4xHKsYyNfwNhThCsIa8a4rEsnkGNfv+sXa2P7nTVlaSZNqPcUbDSEw8WjyG/28FZQRUqB3y01jfGQCNvrdTFfE7aYqbURwfUmM6yWB2TX7cT+MxNaTo/MBEEYsmd4T6+6rx0QLJI7QX6+wZP6XsCOy1lm1DdVy3zgLBLbRKOAUPMm5VMYsb+k8PnV8brtD8HC7chLJWM/TDF4Q4UGtSPh9Qa814+ICeh//zVG18A6R/FctcJXWlORL5759ZzPHsmopdGUqCAF/PNB2n6AUoSI3JBmt/kDWghsKyTUCn8OZBRhJKEpdeK3hVkiNxp07qhLT/nmWDnj/vOXzR2kfvEclnTAn3Qz66SSui63cYCXdnUh+Q3IlruTieKBpuSpOVR6e4A7m6nvEAMZqjQyo5W/jsealuk2CW6hjUzk7aBE/woHRkmZYb0Op38JRvTke3BMEIMxzXJs5KriMkKL9Ns1BJRYWsW5GH/vREhJJ0Ego9Sn6pex54tz87/w9X3FCjBvfdNsuXKL0thGko2S8ZwOFtYSRIKgvejW1tlDuYDrE75J5yrxmxGkovOvSconfx7mXf18uzQizD9rvWsNOozAPBjBEXL3BVDFwuxi7NmGknHKSChbzAi1s1a6RJkqDtNG1+ZqhlYr8ygA/NxMIt0OX1Y18+i8wQkDPnbquHnzVidCxcY68vorFeyWIV4uyPIW2m+4c1Q/oV4mD0WpG7P7pW7tBx/QbC5KkNxx3bauqusUzTNrrT4azkKVYyZLlAw7cXaOEONHBC5QlO3EltTNJaKDomdEuSNK2tK5KDC8pXhWj/L8P0eGSZljWLcY8jIyGAc3ldZ7vtoXtzA1VDvGjzrZLJ81scpW6Jok6Mt5VISILsTZtiPWMHwU2lHVE9AfN00HXLV8R/FytvPaqq7RCgH+7yITxy+ly2S8y3k3ahR16XmTb6pCsVLP9XOL/xJiYuFhROK4s1CpfcvOp/TRCCc8LKlQYtsWhxOp6kZR5T/rSsyDsqRQh55e32v8kvQ0QmxKwZ8E2XYL1kXV1xyV4mYkhaGttMD8+5M+Iiz67P+FQ6cfVnfieRAwyKp0/1KbR34NFnKDC5oCyvrNHTqAex9RTBh/DsZjpWY8bmPk5OIP3MwpYs0PprqDncLxFXbI+jMZt+kS2Nn/BPl8Nu/uPGEacEVFGDY5otmKrt79kf4Uj93ZURkfv91ijyGgmwgAdm31detC+nmHaIYvk2LgEZ7ARFXpPKew+c7XK+ZdkiDHkWgkPhlcC5PruWc1A1xDhTrB4n12K9LFWWAQD9vDOXqFsJqRgIp4aGGR0MUVLdwcUov8mJuBW4Lu/9iSzBz31jTTNaA+RyiZyyAik2IZzc4XAiQkzpwoyRw5TcOBGMNHvDkCgGBJmvRlrH7wEmN3emHkfyhOe0s9OQgwfBkTa8H3rhEYvyTCnmTc00DHf6T2hIMkyndFGWaU+mutWNTrzjwCe0ELBp0hYhhanvAyEn34XXo5lT20p/JRFP88JmtKNtlRdB/G20nA452DsNP7PK11WJ2PHoBqCRVBZ1J/9widCOqKQd0QEjSSSRi0YYnC2BUVYK/Y1uLtr1BAS7NcVoVwf5EU9hG846IEH7WMI9TMz/MRMw795JoXayUccYVG9kTS1IMQ42WAxJmu21BZvhgWOYsdgsovK/5qsgD/ZCYoRJTYy2ngYW2KJvsrjhmwFvv3ew6puqHitBKZ0FoP+LvPSpDaaipK3Bua4o0nBK4rIOqpXrhx6SAVaQh4F1DB5ww2wN6NXEuAMKEJZRdbx5AkOC5CfEVi8s4Gj6xl9LMQoShOLsaEc1GG7ENRr2io5qkmwxYLDBhR27UWeBHTjrY/OTvvEPQvozTqG/aUcbdn13Iz7QlONycShyO2E9+ZaQ/QxXlTBuMIE+xgHoDmUNedjHTNA9F0HqHXfhdpfgQFFY9F1yFIX043dR4ZvzNL22x1SVR7VgzIzRWQeg1EJZweuni+kuyBFMNnkhYUmaTEJT+WNNt2yTd2jrE7CkEKEeJoq4hMWA3/JAXHM9Kmuhjqx+dywe0aNuDma0g6Kr1HVsFssVt60So52hyFag/FtRRKZEQuvJtxDI8QHNZc6kf09TLdw0OzOMEfXbH/lumhv/7fwFPS/2sekrQqJiWQV1qq06hxAMePhjfBbIlK0Lx0ZF7G4+zH+v6Uc6as/bsIsBsKkmCtktlCo9+1n6JE+FFnxSbbAWpJpoF2+s9teuOROVoWCU2lZvBpfMQTVbdrrXvwVTIGiDXPBHBt6DTg9reD8x+jqBYT1jiU6Lh6yjbVbhqaypjvYyulOtVhJwQ34on8PcFsOlhAFzyVZaqVpjf4YaWTk0dibbeh1VmwPNrTCLqnhUMsrFatXEQfaZmtNuaA5zR+vdmXWEPeIKAn/1C9QPzgEpUAwtVfbuA2C1N05mCxSnc6VGHo9+sR61YQD6oicNfxsKY0+1cF8b/pzwKbQucaCKWWiis1Mmfns7kD9pcFvHNquh7iCqP5KLHv9krbo/5k2+AxnwoX24e1oYkmy/Qi744rsII/upjjjVzujpkSdBNlD2+yZw2Me8qIzdGXe/plnHrxhouC0MiEULF+p/EP2CkxObxDsxw4k+bpF5raCcuRTZn1OP6CQD6HE5RWINoQ1kpZzEZewydRYlephAufK/M3q2xa/9L3HdsNpgbltt9Ghl7P8MqketrU10Kwz56SM+YYiRbx2KvQ9oT6LLk5Afl8ADS3ZViq/8+Q2gYOA0WHczNGj1N954HRyFC6pK+rTC7cgfLHDk+tLHjxozINYGRFcrCoS6pLktaAK2E2ky7HH6L9keeIVzeZWPE8mYSIfriNXQA1JeHndae+xLTqW1VKHePQa+PH2iRc0oZNyC3w4e/dvjxRdCTCx4mTTlA3TUWRcgC/qxwZrsBS154ENl201uIAPOx7qIYEE2dNu6iSLcuU9PoaXqquVWslK291l9tTDiYgKiFnfEgc9h03w+FN+EAjNNPYHdGm/duwohP3b8s0uOQnlIXR3qAtoFbdTCMqhQusNtDvwYOfdh3PZmZnfCgWN04meZWROcKDAqwvOB67GEsGST2GGuxb/oAdo46SIIifl/NydpT7RcygT4JXYPqK7TW6Q0WApmCNR/0CbejCZ2l76y11y4pDRCgkb64ytR4SY8V6juOr7ULMxdm1stm6k+c9MwR47GxdNGG+9x3eEKfP0oc3RRCs+2AUni6KoSqWepNt9BbLHNuG0W9lkOFA4Qt998o8SKCyV5w0zFLLOEwkvNRZdw2rPQy4gvxnOPwCnL6Z9AfSIUbxYWv4krC1y1penVXL2I6Vkfc6cJ32klIFebmGISh+iAayDydyi2IdnxfIf6ywqIhw+ny8YtG4O6k64apUdfP6BTYJlSgR/QCkE57xP+WrV76XwS6nIju1TBQ9Iqp/LpZ7umYYzsWz22X/UDkm61iDoN3VD16I41jlHy0Yo0Zti5fw7herPjVG/sgqZ4mUeCpKdY8RZrM0QGMkOkZlffxR/fxflvtkraCf99/HRHsGcWBwm4zK4knO0sxGsHOUDeB+HILLCVgPf4hlSafdRGfocl5sqD6XrQGBTOvIaZN7ZtQYmGSt46YwKSCnhtMY2kddiha1IEUFIdxIvEjiQ/wvhW6OFkvdfHkad/3dAFbTf8oeVhyqNQNDKgtj4lFHk7U+ZuLQg+37U+SCYS+TSEyMvKV3mREk39jpHXEMr5hCmxUxqflPZN+WcsLfmgD1FVlYNv1xgyu3/6CoAHsDxQCfGs1dIpx94bdaqKcnGbqmRAAzfhwi4DqyhGXJBQ19WqT15GJSb6zRzutY0SxLjp2wyWsESSSQ9hoYmelj63btOb5vMijLDFu2ZMY24uCTnwIgrQlZjXLnR2qwCGYKCfKGyaNw1NVkKDqYYcGtNHLXGsnV4bOdxX/9dSL+iSZuxPy8UONWc8OhvjqlzrExDNwEO2M/f3kaE+AmsrksogdRJZZua/Rasola17om1O0N6I3pStGkrKMZ+OWtCXMyzulo2PUs41QGlrcEBiij8/pu4ds289man7HJ/AUorWpMKWGG1jWbSS9pQKVSI41ugv87fV7M2LayvebBP5YN1PUo0Dct0X82faVEuZK5Shd815yw2h37g6Xvz5ZhBSMAu99jKfk+D2+oYR3Rpo5rT7h8tgQChs6Y6QSERpsYjmLBg4b2cuTj149FcjP+BM5eC/pL5B9YxLLywKWcr8uH9362RLGIoB/d9NiB8D/sw/X35f/tTM7tJJCP5yIyLcPjytWgHuvNKQ4lAu0B/pW55FBGrWuUprYt7gwBMQeIpEBh+0KpmOQ1jmfbeo5jLZB0A5bHvKSIJmtgwl0+kCi4d4FOVh5piBdqyxao4VWaZjs2kd35/H21nsWY9fXbVqH9cH/o962pCU7OLTYRhM207+8Muov5KOsr4ncFBhcD5d0BEC8uvRaVBy4FUjjMh2i+SVa6R0pj8cdfU7prcr71ziNBiaMartYerA7fCxw4iSqFDaQdDlzAaa5XgCCm74QaQeO/1aOLVaZqmYReYqaSAfmekd3Ax3HGyVetknA/q8CM+/yxHMuLH67980cVB0l9TAzlOTMG2I5/mh7RkO+gV0I0DhTslmZWAWE50xOztqiDNMfYTZPzHHWalsOlTiUjzpi3TkCKdwG5cLyN2XeGBSgZUgfYbD5ULpWIYlJU/alCo6JC8fmoK3XHbormY2kP73sTRlvlXIrVnClxU5HOJ8DR1HDJUz9cbLKB4/6augrmwmdLCb0fuKXgQrV5RhRIYZThbVqVzrMyywLQRYsSJo8pnIKXgsZzjeQ4kpEAIAyM6MAIhw2agJwQ65i1upQCtEFBkXQvZWBXqI94gdVKr1ZwPP1IRi7H0Xn34zxVvMJwntwuCmjwjfYpcx2Y7DAkw4T/PK3Lyao9CuMZCLKvtd7f9YGUQ7X1KpgQY7/rFBAs46tT+th+svDpp1proFF8YS0zMlbNg+q3qHmlkHgA/69hFvMEbeuoedA3VvKC5UgsvitLFdvdMGoEJtocJ/bQ4gKueHS5L9Sk9WqyWANwq3i5B7DxxtDLKCA5hpSYFze6raPNI0YU/AqjrZYAX6pFpvgjJv7O2GcJ/E3AHFvH3gdK6w9Rbx3vFAP1wgPE1+3TJ0Pf8qMnrouANQpG9yjP9eT33lmYBsqNaZxoX+gd7mNWkWGqZBU/5MbNTv/apQrlDoIILGUnL6x4EGFYhvOqAT1dmymUQUDCO0jCnhcgipjUENObiTVVY3xUif8gmS5OjZGqZIVFVx2qrrFLz+Q8aG/Tn+llgpy0irsW0rHtgP97ghX0dhP4OS4YZgFWf5vAepLg4srkJUdCU7NrRIilXCFcjBMRYkXh2sN3Lns+Kv6xpUyWMXVMqG1CgI5Q6YihoyfZzq+KocKGuycZAG4Ld0dL2H4Jr7HWn/u68iiR3Fu+hMEs7lxv7kg9EVPXZAKdW882/RPag+u7gJlwwGQ1QpwgsegPxEV9mhlEvdkkAaW+pdBL+AY3OBBikgPJ3TDwEdmiqdidMbl7mAfgRujl6QwPuai/+dlKZCBwR+/oIeize3ZUs9yt2GXtUyJrb2m2+OLL2aMBwLQkdjrUfEjN+Vo4zVmeFqtbIk7QJcdrAuzxR65qYJjPK69J9KuJV2kZuGN7UFHE0S9ejyQEHblfbgE9rwS2ydrPIxutxa60O4koZ+0vuVTgG7IPt+dLbjf/Xij4j3Nj2wtqadt00ljgs/sSc+IkQJwnSzKp4jTwSyuK18hBk5q2AjNwnBiyj8g5D3mcO52XVIxzkB0OWJl7hYpcg8x8WbbChbeG1bgKTead5vXAHJfXPn6rux2tMbOrp+cj7vGhM/vrprfEb67FbATyQ31nstnHWKIiW9AImKwdQVA3GMygq821D4Clv0wBtmu2Q9q9SekDUX/00v/cdlvLrGxdTTD5aBAKr1DSSzAKxLMJEYqj5/eEyppyYxBKdHENYRca3Xl3++Ig8BT1wEwc+Aa2YEIdxLcPJP6my94cASn/8YSYmZgWx+Oq1Nt/ZH2/J8ya/STXy8mLd+8es9czzhQVfBzlFNKBvFfiNN0pM0lQHqWPJWhCd+uLLG67UQQQXzCN9lJ4i7TFpq7CmTX+tpGzs+GYYAnAjjazm81buMX8/j1VZcyQIl0UmeFuQkHfTx0/qM4QIMX3aSz1eSLXr35BIxHkPEU2xdRLVfvLT7GAnCjXdaIDkIO7xgmLL1VYh1OEjBvYapkz2X/k/U25mAk6qGsurhvJXsiNyeBNeYg4bkzaY6jjVSzr+8ZupBVn37sBjIsQQHIctBa2Me1U1oSguCjZ5dJ68zIOjbRmMqHjwPxgtvh9bkX22tStFFlTiWcAjL4So6sBs/h+0AlDvEeL0eqQb9U3eNELua222zrrGPrqptU6yshjgkGqBfwdZ68OsN530YAaF+qj9V5VgY4WFxyQkv9Quci4N9bLt5HE/l41iM9RtjI4jFLZ3dL17Hq5SDu4HbN7QQgxu7j0Dx+3xqlekAzdfLNBdv8vYGOAZiHmyWKw3VmHJ2PCMQGF6UGB2kSbXxPQFUpiOlAhJ+esKR9Hv0a0fI+wJaNTKQlGKbT2m11zfvLxrcwgUuoqAiXGknBHwCWXB7c+1kBB2EKB2H/9MCrEA0JdrPsr26ishRk6yQzgJ8MRDkwudJLWbssgzdz32KiF4loNL8NR9AF5OpKI259SW34P9uwfKsJ2oWVAtrOLTOe3QKgk6YhK6sbT1V5luwQckyVtH1Bw8WhYcuI2BPk21A8DpacDF6/Me4V3mIPW7hhF1bNazAKuzTK+15mKUBBEKOo4NYayn72yXZehrl2udCQJbDoAw6MXVjSZ9Xv/zQMji885YrJBTlQFW06/ZhGZIPKNsZFa6Rk0T2zmd8L8OExNF31oj3Y7XDVcvpWWLim/T/xAiqgMGhBRtLxTpWZ+/uoU1zUamtOIN4x+HFGvRi70pBvDtpUZRlDh7YehIg0/NodCmLwLKvlSP1xnDuTeajUJDV9iqzHqQlagQ1ElZeKPCs1HCBIa7+0G8tEpEFgoXxctIquCo2I/aiRPqa98TZD5Eei7R5CZzfCPipZDJbUb/QGsWdxs6E/gIv3YQrYImV/KMyeO3BuinHBsK1LLVvOo2HUFryFnJXWvHJ+6N8+mH9nZIp8B491oJN5uYhxPgoHT7kruHmMgCtVVO3lOK8eUrvEL2xhMMRM9utlyBqNOmPHBsdNLxwhWV1xAmsDV3+qrI/BbV8zFu4RMsTAWmVgXF2BKKQ8hay58QcRMWdovegNS5ysQ9lEbzQMl3CTHViD/V64l9ri01IJgxEC+E1j2LdgQ/UfjLOd2zDS+sHMIsuyTW3t61Oqn72f2E9O3EoEu7/NtqqlRcuuniDHusmShwWD7CY3Hrh/BjpBEUmkWIIiB+3/gqBqWZszaJ0/eSObWcJOI7878Uo7YJ6eOu4wuwbWuTjd7TjBMY8s3olCtO734Ef4mKtAChInxvVY+fomQg5uTDDpiH/3BGZVWZC/fjxnAPbWpBIuSqz9rl20lfsXZpSZgTAPtme2wHX8aS8lXZrokS0zT9cd6lbqDZ+Cup25+1UW6UYcdHVxjYEHDKemQ8XkkAh6GiHe7uYt0I7R25WS2ICmKgulHMOn0PnrAu6UZzkQ7/CvmBeKGtwQh2sa3GX/2TDSAvcmanADf3tBs7O8eJn81VuS54CfJcVAFJJO3o9VnOZdR2aBGXQZoBAyLJEgIFv79fZjEqme8lzYnnaD/rKGBPsuURbbzrEjjk9WkTUAAQ9+SKtrGW+NC3nK2ipwtnp5/ymLDtdY61yNVumkb9iMCvMoYVizGLMG8k/rXolgdXL/XsFiSQNXEe0kj8TR+4ynfQPD1Nr5Ies+swu+hIiPbtT9O1wBEOBflEbYYuk71Wx4ivDBR17w1mnAev5aocy8DXsyo5N5Ta0A4pLQdlE7mI2mTT53eBb+gXc6NyHZ/uqXkUKzM1x5T4oE+fwXbx3IKaIVj1YsxZBqYqu/Vw/Xe0NicbjvRoILmyaurAUbWqapNJFQObBfDOC05Q+2b3bLBXmA5flQFgpRDdMX5mGBNNm48EFs6p/s8crDbH9tkF9o7mVsiaVOp52t9oUbi4h94aRYumgYjtKMrYwy6LO8oGpEbYZ9P8zYise9sGejy6snxlTpM36bE1QWNhG9G5sl4cj+rrogCnie5SDYJNgb2f0eYsZkM+vzHkkD4rYSpwfE8PChZD1X5YDwblvtALnixuIxlah21b/fLhCd69zmazrFndmvGN4QKIn+Km2OuRC4Lqnf8Fpf0cox7Zyrgcu7gXwzhrA6NvIcMn/1hn0H7nsfmL1XPnDvURAQM51FoMEsAV87wTr7Ip7ltXUMCm+DGcZy2LFL7Qi+GCiicQHGDPW5SdNcjTuekbQGXpWAFrW6VHi8u1X2exmkHQyDTxNYBEl3309RBrMIKI856xmoeGH506FcxJLukq1HidvA81ob3gBx3dU+FAhs64zv67C7TUJhpQEIfGz/sbaLeMUKZYXrkDXD+C+l19rfZQtztHzKZvqLE99dlzDHYguRoOyrfrPEeLnIEBMNSTvYhchn12OA+dTnem8k5abvJuiueH+oXHgiiTSCoNLbeObOdEqCd5EO01F6i6VBjqhwVXpLXVSho8xbMFpmGHl+3dnNNGIjBj63qN1uZW+f8fNmBgApM/oXCSD8O/CCY6ZCphzcWRE3P2k5MWtfKUAT6fEhqovOLg9G2x0wcTvtg1lw8OHIxOpm5amhrtl2kAZMiTuAmHL/Tepbvf/Die6Oqn4WHIuTkONiwhaNAclYp3AQvlSb9bQdxkVIWIIjcjhWeWCmQRWFgo0+9mdyl6Pu1MrnLIxVVNE44hcw7E+iCnxemyqdoTgxNS7u9UMtcErtwYi2kAAAMovjhOOtoPtiWLQoaijoBqYBJtny2yKCalvnndEbm+hCOsqCxkNB1/VkOvheL1Osf39JWKkjLN/hmH253jBAyE8kXQqCrHzmPETmrXeLi6chRwEngzab0cg54bBwjgoabReLE1wvbqabv5whJBXWLMyUd4gK6xe4YxWe6+tesWXJ95gtnxAzJF5JNkgdMg++R16PY/1CmVvN6ewf6jrJs6zJztruKlx7KOTVXEYhlXGSRkSjT+sra18IWNLLvdFU6EKha80Mk0nDrCR0iBgnOIXnzwiGxhSXIzJg0NB4vIhwTCIYJ8KMWZGp1ReZiEvG8hWBfTQfsVrZEhkO0XJ/bdLDy79mUQW5uoRLiol7syEEbFI8QMyBu/s2JZnZF/PKu31FpdIcSag7TnzdlHlyM4B7TfqCtAzjK6Xr7P8U2udBdlaMxiiE50KpBgaT9FOcwFykiNZKH5YRnSF+ndpZm+WdAib7IpQ0lfsn1f4ApO42c6vxAtO/2vNMdlqeyw8ehu49Ib57I7ifoPaBpwftdUS4aSKcJoYJd1ELCEKbNvRdkq5fPMy2v6Kj8CQb/3IC4Wl2fglU8u6EnwBF9cnd5cVaH4pVcJcKDSFSim1r8DXOZFat7j17NHZOxkux3rnbg52dz27Be0t05n/Dopw+gHUlHu9YddXtw4vexLiJ14vccne/lG6GlWGsJNK48NA/b4SUSMXQ3VcBb+Qh5FqvFPihSltK5ngkfB7s/UdB7YF3/2/HS5qrSWSK7FVf8S/nxvZURWZqv/Og2crJ9tjfIGONr+Vnx+yBeFPUG3/rNp47HUJzVzHI9kGrXEpU4jQCf7C5UaLG8cFEkvWBg0o9EZ+hoNiK0mU4SIaisu/25GmP2p1SRNKnsF2RLz6ij+fhoM4oLBx4ZproVOkWHSp6oJ5yyoDzPt8K3BG2oe8Q7YHn8SXc9Y+0Dm6jpu797X3lEFzh+GAqqGgwOFSNS91uQBNRwfszxWj9cqVRkM/U5oZYs2GDXXNCm15vHVIKU0SXcwnEb0lXu7Jmgm13ScDW4hop/GZ/UFqNIfGHj/9eRpXv9U0QQjzyp8/s4ZiIAJp0kVRKDvoi0dGbtR5r9nwm7MfSqKBV6kIFat0KfCHypxt6fcgLV3cKQgf68ZeecUmSxuEepjUbZU/m3sLJdjUaeMPbHzd6omH33dUe+Kr73eIndYx0/yiiKjnrtL7HBvlGEzoe4MHjT21zVWMucjGX+Y8CvLy9D46tfTHTq6dmDVSnIqksS14gPEDQstohTTdTKX+C/zNg+3TSjJy0XA5Gg7nJLspv+/15PeuARDmAym7kujSasrtZQyDAzB/fsPVaCR738IS0r32ZEZ9JjG1tQ/95jjM2HN2qCCxjplD0Bdf3MbSXXb5q15KzQjfD5Srz6dxDmXyxHJO4DAlp1hINxI++2oqCwB0+uaVYGaUt8mIdXJ+/PXEUo/YGcdoHmxzw/D9QbUoR71nqzdVlfSDx6QYNGd0Nh7ymMRkcdnbvIqRtCRWLyM767USJ3KkHO1ktvK1ywuEVnT8348Ufq64U8ixUdVjrxlenRBCcuK7IRuKkonRpbx2FZfbwZabRHm1KsjaLOSkB8LS68lcVzMN7KKyH4LKs8GR2ydPINzj+7ZZFBAZzBPnjAApv5epreghdGsr5Aoyb8pKOBL8oaUNIIIb8vVX6pb/u2NGFqEWRvWHSWKCC2ynX0SF2R8tx/aaEuDVQ0uAkJuio7hhIID1/isJZHyGc+N0eLY2BzukSb3DOebPEvQchyljXZ9heromPu29yDh6UFKxboKcaX5mRiZJMNkZhXiLeH4aAQuRaJKmcpHJT7prY51v0PFKRjS3/0PDwRA3XDIdN6aqX4Ha69r8E3cJQY33r0fwEyqxNJwis/Nl4yQWfC3OK4Z2P5o+fLvCYpo9GhczU2+wbriDv9MuePNBjLTKmYJtPbFTGg5nEgR+N4gvTx9PYl9dmG8fhrXU9Pj7kDEBNjeV5mKJK2J2h3UBknEmMLKYZ1ToUNnDU8/6xM6t81eqKzOgtjUeLIa3F2PFG4H+4hmVLc8xrTwdqanUtxk8KSh+2DIo5vSJJpL9ydselyZ6xgPWg9mDa+9nfpj+K5NSr7QcMR4AG9w/5ynAuDQltqm2TuVuMY2FQIe25HKaSCDLj7HRFd7P54EH5Su7YGbl9YQNoLw1i73xudij0HqHCQ0fSMn5rJgXqO3RwrSxyhztaVSSv2Zc8NsudDP7Wsz8yqDu13oemRKNKXb8OqHlhLSGSsuz24r1sE3zkBSi8yRyjrOePjcVGijMSegsLY2yS0dx/v4FqF21hWHBGm+sc8dcP7fXYBvRRqdYwRhL5gZjBCIv6YcS5qDqT2N4he42WBiAc3vbsWZ3MyJ5WTFykUh/RmsnzHmd5VCjShJh+ck2iNzV309OmuzTsKtC43EEun3N+MKvh78+nwELqYOXU5cY+jwJRnkVBK0fgz8r8gXZJVO4WzNE+flP7UfVVUH6QDstbWl2/SLaBD6DQd4/I3uFh3y8uT4LzuUNrgfw0tY+P9+LkwyVBJTS5vl0S9uebaItehKzrmQ+/bgFLfhfvsOUf/GKdHrh4eHTDZ5qqjS7/+MvwJjHC71TEz6/WM6Wm30Fo61lDq5zfLOFdn5V9wdQ5URQ2ePBSbNWj0lv2v3gGPdasvALwccOStc7PQ3NJU5ytcQOSiZ0CRETkZEGDUMN1doYjhhN1NVQ1FQJtSAjsIY53uyOEzjuuIqej7SPQ6yW0aDU2Ikt2qgp4u014T65ooZ+x+Cu81RyAi3Vs+udPqZQvJ3NJ7WP2O031ZySffjEilsSeQswFEVNoeSl2Woc7PC1UHqLhRLOmQBztsae2BbNT5o8dGLcl8kY2CRh0lBa5lWjmJg09CJlxyEDEH4GiYXZXVBqOp3cI1ntP16sKdu2UisjWoVKlLxx/ooM2K2o15PwyAjZDaKjVeiVa7wvLZQM0+MOS7ClYyK2XuXXLioioqsFa6jdiOohsuG4TWhrWbRfqQrBIV9N7fUDMCen7F5EaEByORTxU7GDEbbLrQzVyGUIauTryHLdU474pswAbJx1itrsiZSpgT0DiD4snY4KhrIsBL7vb3l+ZS4jPQkTaU3Ym2oWOS/190d/KU5tFedsxNv6LLo4cSCxEiwViOtYUiN11b6AT9kHJI8TmIiT/D9JxTXLyEmVbBXxmrFtVeZOva2zp5nNc0CsYtsD4uT/fJzFzW/I3Ctp8L/Nf127pAUyPkkEl2HfuBJW5dQLvlECU6hdoydoWPDuzt2GeHlEAU5LSnoXPPKO7pBPbCEWq6sPMMCeXraOeackq2t4XIIgM+J6IIXhXN1IC177fQClqlKAhttVleuyZ8iVOpVNz+ymNtYouoI8A6tvZArmI1TbiwuoQFS5a1NjuN5dnveA83p6iwzQIhk4onWfxXA6kGkDl8Sb8AKETwqS7Du2zH7KqkIV9+vWCwU4i1JH1vumMpGKr8YCAFJbdkT82s3MscArxvuhtlba4bj7RwFRUKgBjZstfdfNMcENByH1+8hGou86XeNX6CryNnqlFcvtCUmVh6LLmg8cd2l+uTd5e0hgbFv7TMXbv7lrd/FLDSuM0vPPqWeXDnHJBE5bGyvFqsDneFvN3JtQNWE6xIrJRb9QkAC7N4X/zzgFnM3Z3L7DQRcHj+bK3u59Vf3ll9JhPr3mmhaciHwv1++YrQ8dpQEqaK1ou/hDAMuAak0aU4LSbeuIn/TtfSEzEuQFVywwcCo2AtEzJdKRquBCxdC/diLSUyJlIGN8qeI6oj/mkJIMfAhbPmrHh4Vi3ESHk8jrc01/Cb+q2qSgdK6rIqf5qwq2GxLYNUYm1PN6bp9miOnI+PBCl75qeT1MCExX5+d5fghlwUaGApF+mb9WCnDDaXLweSFiFyzfqIk6j5EKSzGVoey8WCtidwZ6+sQQg7NTdDPoXOEvSqNoHyxTuyfXSSDdj3mRwijV0KePLiIPIRD5M6qzUQD2EtUiMP0yrpSO20eQrtZtP6R314/PByxzqKLh+02IwDaE/u5vvT7+Ou4lOA/OZTKqL36436A7XC+Q3EcV4UBRnRlU6VQiFiRZKw2LEnaXtxzqTsXz/hz2PW8NoIyjKVhnM6T6A8SxRWDpZhsyWPRQTAPmEL+jJ1yqemDhgFeDG7qguRg6+i21omXBl97wWaAFRa9TdkWlzbv+Y5bP39jI+bVtIkbE9HjSE/lHxlu2TrEayBuvWQHHnd6LFNUBTkleb1B12xY9+TvTTieVYr0kg+qFyAhlPLd+OOVvTu7uYo+IZH0XpJtkuEhIPy2r7R+gNATKYtLbwNViCn08fY183/+PA2n63LAUfSJtfEcUBm2NIgmJKGKAzIjpgrt9tMyPamJJxUB3JyOBrlFqTTKJNI/kFF7ome4JSBEj2OAYnbryyvyCgY9pCoFjntyO/enn5bQqk5dd7kLzZkzFLtIYpToodsqMNFb+ZLCSwyY8WEzGO1EelxjSOQzVLqu7nUtsRPZ/p3hbmBwLJoxndnwpRqqMvJew/Gowu0VRHoQSexIbio/7FjXL4oJzkoKrQ+QODj2RScwGNwzYfOvNSekzNn46i6eSmpbjuK2xI9g+laEQ40Ueylx3U2Sf4Xl3NEkOXa1rAeEHZu1uvxfDRW3+3xCBdKn4AO97j1ZuY+PHzvcNDTlmmoDJxpnSXvM9UPyryFyFDqsVbXYqGJqqJKNuX1yN3s4nzXyy3JpuMC1rNN7hPXlC4NB6aTAoAZf0eQRZmRy4k2aI85nByaDNF0SAZiBwrZMzKDDkGMvP4enN5qOvYb7ZmaEcwqbhKS3R+c+dSDGOhMTCS6fsHLc16Wa0+9TOMxSdt79WJtdRJxPYNN59390GIK8VuPLmNHVEIFdiws2GhPnPP3q01QSpyPA3wqqVBoElG7QTv7E4wmLqayqh9fJBY2uwlDNUthURfJeZAN4qc02uwL0lJ+89S+ZmfUVuuWxvF0ZIcCrUujf+qlqAv7seh+5/1IavoyUct3fTBPVrYd67WUfhJoOFsVqgVsL/4oVE1xNUdkd2BoBKn8nHF81UjnzgM22PoLmC17vmc3L9eLZryChHH8Vki9OgCFWPT7ynJpVOlwe3EmW5Fk4h7EBnHgp814AaGPGbbl7W3f/C/yojx19ynUOqcLQPUGE8ZVNl7xqj1P+KBwjyF89GEuWZCpcJHHJFACxfrH/ixeEIuIpcm7rx47rf8lgVSSZ5BMA7Igjj6CYnjFG4vxmaLTO87KUw9892OQrMm0+F6oNhe3xkr8ItdDa9hvvWwuoE09F3na+lmv5k4AUYl2pxaYXAfmCaLvKWXCZ9yOKBwK0h6JDP+LFnWcGhvBf9hChtsVBnpCFXq997v3puY+k+x1x080QWE8tP5EKzy40NcAz45oCU8CaRsQErQ5i5B346kZFAWWUvWB9Cq+y42iylWbhoiTIhVsW5liqvJGmHRIXgocq53SB0AG13e9V+OnLnwsNLsGIeOT1HMNPV8M8w7610u6NllbMFG6h5iPL9RvHaAEnbF8mB1ZD0z9Ep1iUdgesr7uCe0zEmZN5pFIrZIItyP2M79KIUAN+X0J1u2Evpp7yfuxDprstka+4uwTSW67VeLF6AJ5Cu/fAetUC/H+B6SUWhypBeFOumrgMC3raN4FhRiCLgx5QO2bRuyU7BECE9kLfvxZcn3oYm/Z66wRbuGENUlpt9YROUZy9B1KAxtoS+hf0/evi8dezBXHDSfyQKUQzsRmlDOoEdqJqcm/6t1wX66GQG4DOVRp8s7eGklgpBaFGm+pQ/96euBnN7EcfGuofZCJ+Rtlz545Y1c657WEJdhl8IhMVXkw38E3rP0zzcefhZqEPWKXJeVvBFybckwyO7j6/e7BmYOqh9yhod/w4rTxuAoY/n7bmsNyBxIjK03XI0n/luJPf5xI3Sljyqm4EFapp35WOqE2wLiQ1XOVG3pDZauYzaFxb8Egw5dIMddZmwf/pcGUR9ucvKw5LwPoST6UfBMetY47rH1Eil08LqXDwHf4M6MnVi5VmEYSIORMYKe9QUXiawnLkVSVBUvRi44JD4XkNZ2l5aNfvzqCUaSU/rztcgTlGVozAkm++fkgt201t5bKdfpTCjomwmhPbisUyvo21BUTF8TkyWlCXBTX13jEdln2Xpkt8TreuGyRfZNU4KrOqXCxt5tkxliXef8EETqGPKqpp+fy0u2sPMSVzmrm9c6JHYI2g1C/ZbG0Hnv5eB6pxPbKv+F/HS8AViY/LdKImIIenygpYvNQ90rvY8QXopBIMC19MKJgXCfNQ+Nnb2YXVXRVYvV8qSLDnzptVnnv8fH+pE9u9zDHXWNrCWMGr6uu0LF7zUMJbmtCloJdTBevvwVybnWtY1KelpkzC4vIWvo6qYW+B0DidmEVGYNziKm7V8VJLAVJequiWXfzH8A/964mBUcaCHklJ7JwE1AFjJg1WKHXniB7oiZZuPeYve5GjhPZcxhHAwBaWHp6LwB/zU+OfEtTdSFb29Ru4LZhfQEApWVcvSCGw6XNH3aXv4sGoirYPoXNWDfdYt/VRRx0ADYzcZtITgIkXfaMvjAAkedZKXMdnDX7W7hYLdy450O8joIlcvOVpWQMCtC9QU2MrPd65nUqd3iVggyhNX4LcMAkfeKww2oplH+Dk5ds9LNMahrjk9ylKDAi9BgasqcnJCv4qSoTmOpUWr9q/4rsmpnhcPE3edTqHky2uyGl8wCtCUTbuGZiM/UJLQi9x4W7OTTUWshgPV1i7JlZ7CVMTUAKy+T0gcBoXPiPpbUWHjFLqyCHK8CuowD1dDf/Am7W+MsbxBfowY6MZX8loyMMmHP/LDlMvvwm9X4qRdx4l5e8kF38rkBrDzzDEj3F9xPm1ukSf5l5p5U5sKJB7h8FLsai0oQZusIpbECNSAVa6TWTlszIlTjLKLQoSOLoUsZFr3+MuKm4ZbzkzDtBJOhcHaDgVbNXziMX2LItVEv4u8yasDex/8h3gFYoFbXAhVF8vh/1p7PKMmhtimA88yfY8JIUh90PVgQlVvnWHi9cBqv+Vhd4tMamy+Q2PPo7LUDjsRN+ZevlaPrXWC4+eiOhIzVk0JUxPeaHQ/lywFgA2qSzEqJrxfc8IMTaxXzstjWML6Lfl0dI0PVCucFfJjW+HmbfLSc2vEWvC0+DIKLGekQRk7qJQ7LoCv5o3DC3F1+7JyHujaNOAe86HTgizFnZVRN0V5Hs5TUNWhj0FKv50edh6I4oGlNuVvZ9gBs1BvdM9EMcUzwH1UPBsuQr5mR/WXKosBDm/XwsAWc5V58AHrhojvAEb/0cBDy8797G34PwoxFMPAa87bWY+6JMvURikw7Ll7oQMMDMDnBx+A6XqZGfRtmJXNkfNDV8KGbNKegcG2FwcPa/tTaS+U1zpvM+8V8ig+std5bLWFe27Qi9LOQtodm/22u5uq0wSINk/9HyUM+o7yKp4vUynt3uMpx14zXiyfprlbdL8jgIRLuMvVM7F47bTizCVkPO6Ezkr8APzmZV346wcku1jOIBkgjt99O8/jQS33Smr6ju1dHW8bHtyLdh1ouxnDm9KNnmdGzy4kc+43bIHsuGndVU7UAK+ZUaY8VQLezvTqomtCY0fGiShY9nQOJASTOltCjFHd4oHwzYdaPACG+hzoVUAIACGSrvRga1R4YUsmfrfGfux7WfX7hX48yDP2WwSmgn1lB401VxmQCV71G3zgPAkf07k7Tnst9Knr0Pef2VqmLmw5ljjvFPkc+6J9CTfgSL3ChJlrEhDy1cKPBsEOiVfKXOGiG2SmI2Gkw/KLgubxwN3/N+XcwmXUAhfgq7P5JhxbwooM5MbffzbiKQvgcLphkU8g4W5oSAyRnqsBOMVmg0D+WNLpkyd0QC2o27upec+xCLGnAdXKAfd0SKIpAgnPmFngtbdzlcfXazN14iz3RWuLG/xg67lsFFIHRwzqZZhnWY7s6o9qsXODhToAaKNmGEkvSNEWbsqc7rfL903awXkK4/DIgvd9VnCzNXc9q1bBLQstOusTVG16dv3Qn9u5+6DQ+PBP8m4t/T31nVWnnAWMOcPMOfSysacpvPEJJalLvLDPgCC75Y0SSg+goyMIBB38JvWvhINgT7hMzZFnqa8a9RmI9SGTiZpPCB0iHWSHJZijvYWwj5mMw+dtwDZwfR97zrkGsAcZ77BOLjXBm7FdDMxJLpAGiTCpAxvt42d9uuS4+IopBjCVka9kYLeQr87gUfQvhKe9cgGosGTtU2m+wcipiO85IvGMaTosA1YIel/+c+HxIhxpBRCt8eJop0wgRaEd7E2JNToh95cMcVG3S+2mTtdCAT/q2Tr4/fDpPIHUgci2tf1CtD/jDj5TS95MKYr7ykm0RlkcLjK8nV95jstja2WYkshEyfnpaUOf1Zo15zJf3gq7CuzTV3bKW5+p7NCYEky91UyqEhPpblGmvdXvNLOu0cLkVV2KyRRtAcrYQoO2/kbH1Cy2S6UfAFvZ64UhmYUfcs/q1gIItZdE3/gwho1mfvQCN8qVxzd8GDFMtlcNAs0EJYs+lB3ecQYBrgF9AlUEwxO+2maaCK4Q+D6u+hDhTbvWw0DtLnTBrE8zvrubbIPF4ny0Zkvr147KY1N62gaN9w0AG03+3s/cEDPpus0nHUl5NGwsugwf60P7Xn+cVcNbvlQmYPbq1n4t3LNv17yMpeKd9MHj6Sv47byxcmg0WTFdbMzZUHYcIPfWeoi2QT3Ggeh2ZeZ1rzPpQmbP2iYT1ilwwH+3loKbC3EfXh4pl5mpApPtOQfBkxKOnJrek3lA3dgKi2CHg1yIWjoXZcCQPZrU9kN1Y20FfZh6vHE5OugPh6K+zkwHIc41PiK1HKABabUtpXn3H/+qGa80qSz5crvseUO3fXBysvqpCS68a73hbqwjt9eKYmD1VKZT6vG7+Yyvj0P/SVClHszQk1mKXWiPlZnbCrUaSoJrx/zzJA2kLW/8p1tipJ+eFXfuK8y+aEL3GT9EH/78BulE+sD00HNB0NTjd55IAJFkmyg2Ly1lPUpsxelQNdmV9zEwVih+tUdcBsLkKLdcyV5E9b84rArkZ54xvP/11CzabEJYNfH+FWKuJkibr//nn106rSW+f7K9EEhUdfgOGIgPK8LNPfYie3Up3FKjPMSKt88Un8gUp1be0vbmvrTd5EHUvhe60dcPj5wq/dLlGldWWG4+gISwxG7YvkfB+y6Jemt8Q8YwbKv+7kBMJn1/8fxPiYFk0poT3zLd/Zf7wWD3O4cwoYrqLHIJ60ajrulOYYl2k1LcHNEc+mRlTt/6BZNpGxtVMX60FiLOcZzleEQuFxTJaCVXQ74rxmchoJLT66KiAkZf47NYGVBWEJxbLDpc2zFNxeEgKuhtlaM+A7O3tRH/o6QBqtswrtT9NZNEu20ytRcSYV5IL4sI6cye7w7gaWEufHGgVBHToaTom6JveEHTVs/9YKd09LYXXKACnz8v+nhUr1x8tXFMRF0y77X9CY9I0gQP+DqtUoM9Oplhfo1Vj9kVaMEEdZ9JIepyxYPZb2YDujsc7faLJWoo1gVM2KYkE5LYiFS3RPghriITBeZ3crvaJl+A9phM4/fFTOuvl3acdJc5o8jB0N7flyIw/q1BCBOU161n4M2hnsOm5S4fc9O+KSnqVGuxzXysKg/Y55vZMocKArEK9dd3bT7dVZMxqe6dWF3JDArZhc3jTVY9zmZGmGMbchK5MmTTvJSVaJ+O+Dh+gkLxKsBW0F/3Tw+ogl8QxSWL7eS4qd4xKkb6M7/p3XEoIjmLbCaJYgCXLJ2yJ+BpcA5t4011ZzZX4t+x438hGmq9Ae6kU9XLEfwWOZeOoANxd9CrF6UmOcsB2LmS74XwtBX7ja0qfBtjpi1KF3dfvtJZIWyF1lViBcgBqhDZNF38yx16xxzVfFRPUDcEPRVsyY+BMZeAdt/dc3FmMTM+sDyzLhTZUWBIW5c0a9DuNN8zDjkZj62DRth5O0GadTzP6R7KHHOiDWIOopc37U52hLftjslEBfINERGMEZbtdIzCUD7+DwhVq28aLKdEPzHhJwDoPo550P5jzwGNh6StUfJoZRNO5Vfen9kvLGz45Gi22bhcHFP6EfL/XBHvTGMneFxWqZpRwks7M87CCqRxzvClfYnMpkaWk2qKtGfFIR3Zumm6synu4riFYKHEDcs3CZjvqXZSHps9vuNHMzN/8ow557J/lcksiI/P+P9N+3kh3lWqn8WUSrJ22f71Rph/CwzbT9unr8vcvNQvpTQ/ZVaekJA+o9JJl2xn9NflKTKAUDAjpPlo93CYJbz19vroS827gcRkXhMZlx+TkWAKEqE7Q8l2CFxK8Zjd9mcdp+7YgAognEDHvIVNThK+R1bKp8rjwslG3MRyqbnHk57kKUIs5SIrt6hDFaKRRfdf4tpAyDCZwuH9Ff3jCjgbB/n6aAvKbUH088V/z5JltccN45mO20i3IMwYskEBBR7WStOTVA5SxhZBJW8GJrLngD0IlW4mBsNg7xfMi2axaDWjfOGECMdi812LRY98+Up853BI6LVALf+ZeOaBkTp63caoXodVyM6a0hTd82wR5yr4fhr4kGOFyFrwHmzY6cFX3lXquVxVbL5CSDJMSdluqJEw9ZAfYuZzrUULqnvmJWLgHpcLfBgCNO8rOpSGjwl8u7IBJhEcMuvyReWECrcnmGwyDiPW3K8lEjuqPDB5WkhE4FOWIrfQKPyiQYHhD5ryB9Y+WgJdJaBrD9VAM779Yn79vYViRC9GP1mS9cDfUWYvr1gsdygHf4AaVZ3evy2ymigwyqxJWJ/j26KdObnEjB+WPe1i6OHMPrc5s/9tW6ajDLWxY0ZRXYkkSze4VNFepsQ1LbuVDnwb4drIEj1nb+ryuvGFyV5p3cd1xBKXoMtbLcoDLy9wIVhtnp9fhN6s2verKOXwuwz1sYIrL6e0+czyAjRRSwgishmdaN9b10K70CYZgQVHXq5W35i25tNAmMVU1A0zlyaiK2hMrT23vjrwI+LQmHz69yrCB9s8im0noGpCFi5Z3VpD1pweQuclecT46/RtrlJvHRHlBfjD957scFx9rKzFcAi7TgI6Xbe/wiQjePVRbjHUHzZ/5bGX+O2sT0LWpZHZgzFTCIYnQOwWfSBE5qGAA6YOE3z5ktOuy+ik88Ilt20s7b4zzr2E2KkAydazHEVh/k/69GlBZZShiM2H756355YqUwA9YcahSWGLaXSItbZBK/pPILWibqMXx17Bb6/R3JbikGZ3mWwYXTh+rICy6Hza/ICFI2F7VYBoPROECt5/7F3UjrvQXFAUcVVxjm3kdMsJvFcWZrWD2Voomy030aRUmkwnGqF6+4Wrm8fAM9UwUVQH04UGJEFrcPbRunxtGotY/4dGegmnEhrblgYCPDvJrtaGDvUEJ+KWGn7FnKekNh8Lz2NmePsjwPsmZg2fqupwveYJDjxJNP/3rFpWNg/laLfup6xQoDG2ie1XUxt2gQdGeqxPb/ib/LQcCnvx7cHPcKcUhp4eyCOF/pxGYTF1lhYf5kzoLR0N1o6+sJl6lmOOTWluQCR8Xx33q/BnOs4CRpPfzNMOs50XDA4Tw2zi0t3g8czHRfvGN59bQX5zCucMCqYOC8Ocitm7hQIzmblUPi4fdRRqkPPK2U9exm6ElpRkHlCmXAc3T1P2g47qu+mpj5A8fxWzOZfOi5/w0OyjB35/1so9xNAbVQfGtIMVTv7so3cosEq0f8lIZW5fKth44bMRhLzvMxmkQ7Y9iFGkofRTSOeO/5WlB43Y75knL0lw7ZaCfyGhG25M8BcqEprcmqdn/rAWELlmNTRJKEQ9VCNn9PvfvfzeFGwYaCUbBS7OIp0l/4Oes/w8QSNBXiH9PvS2YhdkUZ+6bhydmU5eLFE8xKUFvBZ5VvVEIAr7L+5ZwFD1Oy5PwwR41h7iPZ/Tgr47lgE3H+SBi9bHNLCc7Ff0tC6C8HJZ4obCdFj0UBgi5Ci5J7ppKrCWG+nFeyq5BQm5RalrF/ViDvHuBIV72MqSzZm/A3NnNKiKeNOFGVyNPITYaOjcAMlf4WKKVze6n+HsVJJ1sCZZGQqo5td3cKdvJ/M0/D3+S9nonJ5naSqnaSmOA7tgcHSLhhsUjASQa8PX7AB+VuHQEok2IYqo/CTAMLPgJe5//WMuhu8LdPDcQY2z1Zh/pspTWqkR+oJ0zTqWUCNoFSTuEeymvB2a6KzskdR3AfNjxCDpKDA5+GDHqtwc71llpGFlax0MPiPv0qgxhBT8uSWLImNfh65cnrojaXanbIps3A3VeQb1BeziRFpDt1DUnOakojty7kJzKm+7+hLj4XN+DEUQ7THQ9n1K7A7ksNYGX5l3UFEDJgyQgwUsOvFijZR5CqZmz8dHGHjfEas21bS3tzLoigw8S6AR2M8mv/YDwvouCy/BSvnO1mzlCH2IfEPvU5ECAGIoRgDjONky3cUFpurAgBtJwk+Z5sPm31gOM2HLKKMZMrMrfxx4nWhfEi1dpobLNnFleVgVAmFqo7emVpV9eQyJ9vPoRxj+Hb2heLlqrkBHLryIExk+FD7c52maKjrNjLukNIAWGQH+/Q8IewAslXgqXuf8c+gRHYtf/99KEmphsYL5hiX0GSLU1v6911C9TKNi9DOQNBahjfbq6xA+ehDXafIZvdqm9ZlQYNRekv2BNCplxiR6c/Yldn4ZlMTsSX8nqqDIj8HzSO2RRMcmPmPw7LnZ5pSeL8ZaflAUtpn0PHVuGGopaPQ5iEFSHLewLT+vWFHDN0TR4HOysazev5INfkQaRFCEKZSWXneHzYAVakIqNjoHaDI0X/7RpwumKu0wduiMeZioWhG/LJBHp7VZIaQ5mKim1zeNHeAoba532kMXIV97zIt8r9BdO8ZTZeo4RhTTadzqHBSZpBn4ymWn2f771GKnJOY0wtfszk9G8p/M3EWzdjL9BpuDgjwLdPyYX85pRFnAjaDJFNMgYywjW0ijfq+eKw1HSPW/Oqn5OJceMhbuYpi3MCIpsJLwXhaLqHIRiRRAByVYAd9aW28W1qcyy0MrxcWUWU0M5Xk2PwQkx1UaL+NQ+gLxNN6NXWiX+zEzRJHi3Fdy/RdGZJrX6g4SxNNg5cyNhhLRDUbi2FRtUtQLlz2ZlqiSaVo5QkFXCco8KXcc/4sy3iWBn+Gc9+liPMnXMCAPoh3DzF7R+ZVnpjwZbaJZCK4NHlGjLMEWj4WAqeyG8R9Oh3Hej/khkepygSoKQ90hqdzLcVCiUkS9l8i8jp4EPZIF3c/dAmVXhxGfz4is0cLeYJtiDZc3ZSmHYhAfyDE02IXwHWSe/1fp0Su4REKvwkNP/VI8QSrmNfLPuAtQcxnbbQDejfvYiGrV6LPvDgOEq+V+UhRLq5VFGs4Vr5WXBe/lOlp7hTS/8dC8FoVfdKF5+JtkZ54mD16KVY4hE4fyQCCau5Yi4PDOhefd59mY8BiSvDyeBIZms8yy21Fmy44QZrWyJufwpKB1N9wi+YiKqej4s6FCCjsIfWtKSEKiR57Ivdy0qW42j2YVfC3Qb/xQsdKLfGfz2+AhbMi8TT2UejyJ2iue2rHSe0oheW5bqWpXOoJ1H8iDLJfDlAWdDW2wBlTrgJnVLDqdFA7E+F5D7I38wcmnJtAjW7pMLr/5i9qv4y2ShQrKxOsxDjreM5ZK5warbj5MOVZzS4jYg93l4cKir2SJbgpT3k/s7ospfcF1Gmc0kmu0bppfQ02AMLZrC+KzeJt/H8QW/u2JuIclH+qPgVvA/GCYNfrANABAJnPehRJ1rTWU35OvW/e/CkWIhaoJSdriLJIAc8+3N1N8TuyZEXcxhrz/9W5SFfz8z4eqiiGnqfNsuVqaQyq8XsTa3wH63yTEQtcKuHS9VA5ZMe1v7seZleU2z/+74sGniwzSUxtoLJpbnrMtqgelsS70bf+QuQVhayCTOREFJ+5Eja4uO5ZFO3eV9Svn61Wkojx2KaBX1mg/zQsytLxxSgt0cX/GXHFL1XRL/6yCfLzMV6eWBw+pJU6FgkWy3UGIfy6FGAWt0bsTMEZA+RnWpf8Wb+GUVy4112zjmn3Kus91+h3Mq6QBkSwW4Ud6jzshscLUxAFCDzycGQacvhh7YrKVFGFrkNpJfAkrUgbuNPghlOX7mdHiit3TQ7qPXtGg8p9EsE5InOwvMUTkjmtKXiLZuPCQCgDSZ/yzKI7NedpA41HUGCq7N1lsfqFLOHxawBeIcc6vfp0uuQuX90g+tONQXAsUcFNsEBLiHTkmICUEeiUL4oQgIRtpmbUJyCuw0H18fCyRFu62TE6JKOcNgyt72L5kAd3XCuwMajNpdvG5O+4YqvPfwL0Z0XP5hgVLO/rEr9UYeIH0yckhzscuouqTM+f9+J2ttr/FHZahHuaZwi7Nqueng4ssNWakWq/TQhSsm7W8JIV7InBqCZViV1D0mQXFVOnyzImV7sTamW7osdH/SV/qZ1/FPG9xwncIMowEpsyuOwoMVMRBTMh86Gs3q1uK/VlqArIa4+kjBfT8/6zL8yVF23J1/h7lLr/lfiHZF8P3cadLJCkfQX/UHilYEoht34ZJZ3vaQmwDvCjHsPdbt2QNTELSyoNvGBukJj1u3Nuv6IFpDbHxH6r11OFlpfktOmMOQ6ENmpDYlx31wOJ7o34w9A0HNtnnmnvgpBK7OOc4v/7TpLZxu6TgG+plYn26d1NSykqVS2wFk+6frqWYsEXXI2SayswWsLB3xPM/r4H7vGVjw5x7KrMLCfxqjV30FCeMWWwaXuhTOD8IqCs99PVsiMmMHOl1a4yWoo30vGswD0Xlxf7QXz8AvdDtZdeVy5PgvuZ0UdpIlEaoR6QY2oCakhZi8dXNfuU+kQFHxSR7cxtbd8GGMRitKshlliB66b38e2xnbgdyxvCPh58+KeO/Wk2l537nUJiwH/NY564k1zhn9385aZbb2eBrTZuW8jwlMU3W1WUlG8iswbv/aCxHo96RSwKncBQKtbciQs1V7rte9+kxs9pIVI4VlS0o1AB3h1YrsV7GuaVMhjFN+J1Wq3GZhcSXNJ7qruTZgHEY7a1bJAk69gtPGdNaUbjfPi0tFbI/ebuKCDGPkC/4tDlh+prX3vLQDx0K9KIvh0GteBz9xwKbtGRq0eiqr0JbhTtrxJuySd8ydUuSa/iLMOzeTK0Eozgspu10zpCRW0vDkEmcu6HHaLjYGY7mSXg5NMYHiUb6dDVh0LS2lzIfF3QowaEybkQdUfVORoB3iGZcK0cBUuAmd1ZPiMTNc2UKuKQF7ULF1vdyTJwEi6sHA/i9QBQOIvocJY/MA4ZvTh8WjLU0sTxFsiI3eKhGSbdqvLD4VSgnT+Auvs9ndjw2iGyxt5JlE0b7YUuecNENhhhyTR75GpbHxgkKh2wdxusn4686pqLMwLfUhnMDtc0o6KU2xpk/oeHI8XYNmjilG9KWoePkPTffk7tP0jTcQACrnxVcevPw+7efRLAB0Th7zPmJQqwwZowKFGvM5cVsvf/caveo24CRS68Wh0gi8Q/UDpGJ7E7XLrunVT7d3ovztIHWNDFlj6tIhbVtsuvF+5xIZMaOh9VE1xvgVZGM1oLtUkug5syKJKihlXPnojFLyiGN5rSosOeWm7v3dB8o60WNahYU2e4ApHIGpV339RJa/wLYXwl7+nk441CU3ecArSsGpjpvIxSycaedD9/YXwgNaWdffF22y6VVaPyZ35OisLc6g1a+dhRTrh3IjQ1XfkdqQCRVRazavvKhThlDwL+AxTZ7SFfsiIeXRnur/UPnoxHGSYpCo4/Z7yGVdkGhf89Yit8RvRN68IiWMBJjl+Q3R7CTdTheVxQ9oCl24ExCttQ69GKjdJ8vgIfKONndRBjIaFaFI3WtQl2GAKcvDk/4PLam3N28UZgrKYTkbma5k5Eno+97+Fsg9GPgqhtpltmvpPUIZD1A41QwZ0kL07KMjFOE0ZnTvK0VGoPvkr/37BdF+GtNTmxs5hzTk4CzlaF5C6A/3WraG/ngYNc9k4I6Os+Rl6po4cqrqZpwsi14WgeGpBfP4oCzYm/cEsAqQrjqR0dfozBqvjr0DmngjK1cvAyvIVOKTZTZEvC8Jh24K7pySmW39WyW5AbBc1m26B26sYyiMPeTB3UKHEWLRaR5PeYtSI09a9TnN3jdGbE8dsURmj4VizdErMLsQikdHH4N8QsvT7B8FvnPt53TEA/7g8ZSbPLAgF3z/dW4n6ipC+P5faS6UUi+CwCr+eOBO7qgKHocVhlMZ14jbHT9Q0LyVak11SWgPOJEJHLyKydI+0/5ROSbbCnlY1pdbphJf5k4PDfS+YgB+u0bpdfE7JComuHO8JFzEhJtyLdoYEO/JhO43hPyMNc4Zshx1XtD/HH4kXC7vsVQLWlHxT15IzBLb0DY3AaK3NaPMLXrwXVJKus97t/dIcnusuFIatkXirijgjBkZtk4+87xv4xredOZZrhedwvUwXfOifqvai/SXSi4kdCfccIng7nqD/MfaWZ/xot3+/cK1PnMOfT9Ipb9dmZ/mnqwzMgffPuE8EbQoQ3rIMZojIWMl8E+K+QBlTl3nynL4RTwGVhLOVTVNPe+pbuIxnuvktbR/Aq9VrUtTLccXa9ttzuaq93TOd1HcUW5g0qZtTucvn0nbjnZnGQ0Wz//VtnIHvMeaI/5dbVF3UzhR6No+azwBEaXuYGZ6uEFzYVqxIlaqaFVGrBxTCiUIIk6vn8+NL5I6QjIGW5/LEupqPPOrhtRN8d0RZcloVSiJNl+YMKNZSFq8RLfO7Me/irGryZjZHRRP3nJNZtHnTZ35JGbzdRmA7IMz95Y7MTYDg79b6COf7qGvKVMudCeKKopfoYNyp7jb4P/99Cy3S3lj7IdMtiF/kvkvbiBdGa/it55tPIl/+g+ijFYA74Wt/emPoUv9A8xo4Ri7bFlK3TfrbaIUKRrhwt+xEvFMN+R5G/zVPYUGyDrcW+rpan8hrJKZ4jnbyFREXwnEvWyuQNqbuqUS/xqj8YrAXjSxnWvmBklpvKYWi/Vw/dCIXqjd4jcD4uUSSvF0+yqQpD7XiShjUPMlmr6B17ofq4ng+O8TDGFPHMEVl+QAeGlRMUwWD8fLpl9SDqs9GPYPNiKf67XzQwX7VdVQ4kK6xB6G2J4L+sfE9BIN/uqz0XUR2QVQlKlrJlSyQDV46Fd8IYCjhPcRZqRkhFkqH03ZdnvkEikXPMOwc9iNZMFEA6QIeheQiusfVhB5VJmIPXvCIILREuRe8bL61pNZ6YSb32wXej6xhFmulAj+821aFD9zcMh86OrgfVT9AjAixsp4ptNb0QEUMHY4KvEjJ3MkDt0rvzpF3BV6Q/4cfSwmaNqLp0spoE52BCtQdym4MHMtDByBmXg/wGTgymazg/6AZ1MYtRiA0hOLr5XnkvXMey8r2h6FxtVk66l9viFptUv4o8m2EMWodj3ayW4GH6iOyrhuG47XrU8IaTToZKINSiIju6v3HHgBCoTun0dt5oZUBYrTBU9jRjGZ+seJRPJDo2NK5rmDs/9SVauj33NwdstixVM2YnICSwk8zF0dIlBn9laZNkPmlPibxFmPCes78T89RSupTRJYmgHQUXQEfzD0J6lB1NXMfO/602jY3fAAF0HMbPskHgD9KSgmPiSJD0prpblska7/PP0Dcd9TGqYoD7jqSMJfVw55Yo05xijylJG/0ebXZwAj3+H5RQMTgX78hD21tgLsv6xELQ1E0O3FkmzUrE+hM/KXVBr4Eb08asdP5DyqfK9fKB9CW+iavTXIrlnChmdzHJA6GnLbPd4jfPLBxA5eX6a1wBp/AghYF7c8ON49tOLqkvuYAGGuui9UkLPbxU4Cx3JN2c4jGoQSBKekuTdecQS65EJgDov2tDu41MTekpR7kauNGsBelTOgWbv+6tDAxLmQmybkrWM/6C6x6Kb4VG+0prXy0OQ383+sWgRuKu8JbMdhL9g4daM31hOLdZp/ZRU1SLIToHHU5xbo75V3jwxa2kbu/VumUiftkfIzrqmw00ji/0d0cdjPgqteDGGa40q7D7u2bkYMsjqo6lschhFBz1In1eSAQ3E5qSaA8a+1XPJTo8S0nHeY9VRCCb83lMEQa7AHH3VpxQhZlws5xd1VgUPys7mEJZ/TslRxoEekkx8BP77Cs3mN+z4qNDJ3rHNxfulCcuNmQtVKkvHyCErDJc9oIl2uB/SkBUbeLwwHsIIzPIsFKk0Hs4eMQ5qVS3S8yoO1aym5v5MW9lspyl+07R57ipjU1tCpgk6uJLH988DZwG5ZpU4zKSCqweyadR58aJTSSozEEk99MlRIa1SDSlxrbqwsKwmtw/RynWKXhEWoK4DnO0/G0NOltwMLH+VCZ6cFAv4g3BTo4KOOJXlJ/2Koy/8BjI2F4n/4PmxVYXdweikGj0XgUYKtztNWSfN0P5bw1ynNouFmwvwksgNyOfqZkDpV2vRdgkujLYITAdDRRdrGmRHiT3rNbOMV2VpvMJ4rJUKAK6Rgrrw7njYoBSDxQ0sq1I0f7vl/CNIYSS1lJ4TjNIIU4f8ffe78sHG7uqo3hO7GR3EREQrz99pLZ2QYgzyyKpsiUwo/t9D00+8D7XsNd4Rq7v2Lf7QL5mS+r1R5LctkUOMq6l8eZhiFSM1mixeu20zCdDKt8VXrJDycfQssLYM8wKVgqYkM4yfu8XObVQL6MinM35VqftmgblgCo2TuaMqqOl9nla5RdKDEPMQOFB3mXPgrX6BZPm4NAnjAaCVcWo7aOnuMdNmhatrHing2s9r6WUnlCScn0M+s4RVw3yJEl6L0xepFJk2Rq6kvJlmuSBdS662FR9Y8WrM/ST+yBSF2J9eyeCt6BL/lvLUcIxAsUXW6OWuI40X3M71lZJAhpEFNzCpYTObkHGA34vf5EczPsRZ2SHDtEW25TlcBJJj5Q5RA1bOQK1oH/moeFk/r/sFzToRIwcjyCOU2femVkCwZpbCb5BXyZyaBerxCjqBdQyIAXJS9JObk52h1taIADyzFOmNCYMAAdpQ+yLgY593vRPXCNlp8bEhDT8SF4niceWC4oisM1p+9jvBd7CZz2TGXYhussSApLGzCzsQk0b3cNcxOxJ3tM66wvhUM91AT0MebMC1PTGw3WrPqghCiH9YI+t4StZCidCE4ri+aBdpSlMz5Gj1zZXGm2wYUVv2MFRN7XqI0qARjaxvT3dmCOP/dxI7XQddYNomWBCbn/MvYUmIUQ+gHSIVnjfc6tTNFefz5uXRm9cvcPG3uiYlLERCCZ7OHRcYPXWtckL4WWEopSzlRqJOpMqj5UwU6OElD8gqtF6ZybW64YhD92p0CIeDCqV9j4PXIH0d9PlcUM4xQA0hU/+XCV9lABzvQjHv8H6bvdY1jWZl7XbdMiVZCeffg+3BrMvaBtAu2TjfsIqEjCdK4+60yJPwhVafB31J83n3WcxIzX5/FqZM5Bgpyy4/kBLE/zpSMBfpqvV/md9xFQnDbilN0je9qoi4+BLjqPbaFUN4uH5ax8gJVJ4wEMBVWsgQ2tnKv9xxd4c87frF43dwUf+mv067Vd7dE6S7OQBd3YVzopsk7de8VBNxFL0JdKvBjdB5ZtUX4tTR46qmURxWtE/HE3qxIvVh6TW8utm9RK6ES1RQTgduzFuvpSb+VpT+yuAgkqfQJszEE6D/MxJdHAKw/b5JdkQhoBf06OuBXgjlroNJOxgBc5HxvgKTiJV97YoyHAdIhe1jR3SufrQ2fdNCtsLmksC2uOipKVCQHemtZXUwjMLA663zPEyRiUfIiEptCSQw/Ex0MSk7GfUaAF+uIPUhsS4LxlQ1HSlovtN6O/b+Pz6Qo60jbhWToF8nRsg/yz/gZyEkhujSqrBqHxAa31FZUkLWud5PGiHt2sIESu9ZuCzASvItPyHXmhuH9VrES62ATyLH38OM00osV4PRUFn20X0BD1wggYff3FXxqGYZDatiOaTP64z7hQvSiYZ/m0AJyg0E66O3lr6aLYXMBTjNnI3YDUbHvUYTs3q9zAh41+JcAuonKE+GW9ThZ8PcYilGkVLYqeKnk21qN9yuMpt0HYGUh2+nfZg4hiIZ8cwA4+cz5XmvM/BkXE3LAeedOXgyrhoxI89951+xGf3XRgJWAkV67pPwsqg/PVRTS7AQZ3ONclTwcpmo5eN3BiF9/nt5RNscT4hcsTpWGcF0STS3yCkt5gT1px8+B0KoaJSy6z9QiM8yrhbl+8M4BoqRYZBZAoynOx3wb16h9ufsoLQWhtInbDfdN4NR5A8cHVhpT5J2B1S1iYJAK+afsH7+y04Mx/RfNITkI3cmkDpOObz1CsPiAVEo3qvIojGDZ9M1uSg9xaEGx7R0Eq4JJ0vt5Dm/VxF69cxTjWdP88yBGLt9oL25PEeNlIPcE5IQBT0elco8FAksBboYAQS/XId7+g3K3J0Ry6yim3baaNzbOVbrfKf7V0fJFRdXN+rUVZCS8dmcYG6k/1qXkH8PR0LnINzSj+fyiSUqUCsQOryYCj/DI+V6XM7Zf/jRceXf4GIb/asA+ug6vMW2I0UDCEDv6QVVCI82YUAchm5M7kjc9AvEYI19c17tzqvQU6dZ8ii5wvtAyMWu1/0yuqySI7DfH+NOSrnynLh8OyMOjfEg4y78ycNEm+gs/TH3DlAEz+LCLCzxwp4T8gYjV57dlsoWtWj63BCkzmJjvw4sf/DZA+w6Kko3/2UFUWlDkwnQTCUmkRwGArME0RgUYsRlrVdT1Ag28MHOJTv/2zEG101oZ+UiCNo6dkQIrumTIfeg7uJvzQPD3DoVBOP/Cf/fvAulGIIuyuOQ/IuN0FLdaMEfxYpR9x503r/FplrgvzszrZmr8+/bA8QPknSizt/UhUwKqxxKIwq/LVA9k2Z96N5xGJNRLUEjU6J6T6gQd0ED5ToRSpZWgLKZk9X9V4Df1hd5bYbPaev65mAFlT6HSleRcScirz9NdgDvJdiBsFMJD6dkwW5ldgiqTLDlgZkmOnYWLk/K2sbtCBv7rbAtfb2Zp2QOUjx6f7RqvarzpCipaLo0qaQ+Sd2GEJIMWtiSbeEWrRDZV/kmijjJfiaqy3sN8xI/LRNeKhYfQxs8gVDNcGAwyi6DSxMltuSUpTNJbIiRg2ysZOsCv0RKD007VaykfKzrrrr0pZzRw7yZqf9d2ewkaCfR4Ghj3YUH3ORsL1Ld0jKp1s0KNRZXVs6FzynzOmhChNE3yEbmjGY0VrW7sLPRPNPq7xlQRVX2KF1q4Rah/mpX5w6x4ch5ANhDNiBOyY1bCFkcHkMvMsWqp0TatZq0W55CkKC0Y/vnalwlqStlhtfIjTn9EkHCX5MnHiSXfixUaoHF7+4QdEh8qNg6rvM/tUu5craR0Y/O3cT0h0f3IjVJ1i/X7oTtq+XR8SklKWx+TZjYwFtuOuNwvEbxVvdInCCaSi72613o4XdUzgUpf/5WK4FfDMMiq/DhY3GaVyg/W4VpHS0CsmiFMcFsKl5w7LTl5wv4YgdXKzbiYBx4+1dnZshzIQN92V2gF3YLBrz9Qypoyvo2IuBJr4noejBPo4PytBbeQlZ6My/1qtUyZEnZJVqfKpioA7X66x22fr3i5tpplhFUopK5hhsMHxGLjC+grAthc6bkPBKySDy+2TX9pBRIPwLTvooI+bOYbxj14uSgsny+eY4FqCLim8F4BNYBnk7m09/9/MyBv1GGqX8wNdOkGh4KiT4a3fvT0A04UWggpDWNSKhyXN8XQ7HRs9sI4u9tUleljqBIIsuIG1CQE8pS8t1sO2ktTHz6voYgrqeisD1RB1zImdQAQSvUpsf/Jg9iGXT8oeapbXqtbE5I7jaTFQhGj3RttMe2hhcKdPeuQMUqBN6aKN79WE6UnL5b9Z/YhCtG5ahdtQy4eTFjUWLCsUJhitHHv5SOA81YfYuyFtwLLsvFHXBBhBzRL8zhr8Aw9mjwlAsG+YV5Vg9JckjTY+I9VaaQf0LSmk7qIYwCWrHJJjxNqdHDMRi0lluBoQwOFKVH8og78kQTiz7Jaer28CeORxcDfMNrlHphNm6viva5O0vU3rVC9lZJVWZSbe5P24s+OYnSieh0ka9UewNHNfUHSwq+CWYa5KpNQtihjCWlawoQkmAvz7rGVNdM1gN8u9XY37BHQv7eH4xqxrpH2I2dApoEVbREyUJAy2EGAba18as5cTu4SV3cESSn80zs41fSyG+ySj75yPn0o+ejDEpxU0rUkji7waSvxiqlI62uwi5bc/nZYUNomH37scKgwhzS8zKK5d/p2j/WeZyAjDOyPMKPsUvncNYJ3KjAmMFewAfqkzFycC9FSfV3AL+gcUvyCSNbBXFqhq/m9BpPdDaRIq7o0hZbW4BSRbYJrB5DxBqAfDPTp4eluuSIBIygmfER54mMgA/kVY7A1ghIEZ+rDUDGm+WuzcQEnpIsJA/2aBcbOMPO6eqE0Ap3unsIO7D+q701ZxK1xBvKIrArVgNwCZiJfJREDMHtNXfLOfW4Xk0+1iOFzrTw8XPgwEomW/TAIhmmtdTreiaxDIKgn9V3Ua3zAnn3UnPnlNGy2I+sMqfXZRxejK6h6jhegfzOfk1/GWrGbLCH1dCgK3tmDSdpQi90SLwfXMSevS+2nEU1GNKUmonWVlAf0EfUlMvINdHqYB4b/e92KB1WRJ7iuB2Wi2sVYarp3BivmC5ACyP0W4D/gwDIssKxkPJDMKvRmqTM5toIlXVv94MTxNcMdi0j7M7XBctcJd+UKGh34LyWqEXC10SxA5Pi4SPtr54WPD4hYmeQw8FQS8HvyXfknY3B6oOjlu46FZHjaNC9wya9ztcFS93BbR5Ev2DVaos/TXw0m/dmIHyxnDY43cKUxMYyaO87r0wyyEm5jVaOZjDOimrz4GQozVbNO27uRBjWyD1XKF3Lc181b5YGcaMww23cGis7Y3lsib/ZxRiZ7PquEeI6SlAAKenjsquyl4Gh2XF5y3CgwI1hLJBxWLL+BkMPprDkBGZivDoVF0pPaetmo/6Kd1+4QkHkWlArcE6Wtdo7DJha0bK1utCpBCtSq2rNQhz0fHSJaOqttw05/E/qvE2ACIDI/hWJUFIOCRCVdzGfLJlifpimd5m3goCWajt3UUqNgOziOgW+3gqNBw5wKiwjWoAJ92HsdV/kDsmaQ7zyXIM3/O10mU6jJzZo8orXPemtFDYly+sNmh31gwpvMojs05MCjyyaXhX7HpVd8tainAiGMyYlHvzS/kqbiglhf2pnIZDG14WowGcukaVggpw66o3d9fW8eDWcrxFv62nkEawct2f1kbPiMTFrG69rP71RiRslrZVRQZZGEkqjBXgVG8FnAvl5A1ZzjQWviY2QDWJKLLNNe/Pb6z9V8cQOI0sCLPf6nBuxe3unfO4w2By5J2S1rgzQJe3IeaXAYo93BswlmXmc1WC9XA3k0+jhA4tyEYPXPlzO61fThZNCKIBImJJzF+u+B9v4qj3Juv+kbfmwbbzbTh6LXTmwWqo4hw3fbsKzkJPq4DCmW/rOzee8j/slBC0WenhOze3VnhwReQKi8kDoImdXb0u6Z7HqWd9pnRKzUVt8+OKxAM5qlahKGWi8hBE7j7QP7LFhu+U/CwCX/4ohjvQgrPoMoI3URtHC/SbdsSGW+nM0ONyKx8kFAqinmOSzOMjzUvppebJrYzRhl1ciqL4laAjO+yKUefk4NDyFmpEiv8D1zeJB5mc3u6C25SlFgeA/1nG5Rbepi9Nj/ogCxcsTtnctdUhPNcDcrJOxQ+BtrArqImSQWvvnd1YilPMm3vFm2UkGBHK2TafEtcCru4nudne+kvH+X8RJ0yNI2b76Gc2T1ZQ0higi7ETaCi+AJWzAoBeSFW/UvXYoEw9mMXPppk3Zr2B7khHH+sdZvidZMxPx4ckb9BnGq7gVnv20es/Lt9ru8tbsr5EeVMPsnqbdzCrBiX3+R8TX62gXXlBm0HQvObwbvA2eRJUsam5KZf/pXTP2gpIX9jrvaxJhmg9elEMw2AWzI2Ke4RmK5RpOWPtl8UKfKE3h8J+OJmqlf0S8odLqOXAoVSIIndnC+t6vvmxKj8Wof5wDSWE2vK5vHT056sbZ/tfkxphiOmIh0PqtAF7PCDNpneHVakpRFOhn7/73uV6cCCF/WiB9jNe543SJqX3NfJkAnBOMEPWuZlKYzc0IBC3pnucXKL6SQceAv+TwE75b9iUGYFouNJtz2zYV1gj5nOveOj8WKKciNa4CvWhu6gXR93K9KwpK7xuEAfDzIlGv0BDKBDRpsYzin6/FjCFStHv97MQYYuFARxkyT3sRk2nlRGhRCq51oLSQ85f25V86kBRxorBjnNskWSMGbvk20RtVJInxAnD3xLplT4EWZcsAuTFjIqNproWYey5k1gPaLBjnaKcRdVYbsJo22BjEs+nsGBgbl20N25WW6Z5YXYdpnDEmMRcVeR44b6iwmN9SobOkxPkmt0bcZg9Zp9LBnH3N3GoS8PfCmeeEi8t64lT0WQe9I0iAvZ0XPU5xoKNQDCjTIY9p9iOUXL/O/So+WOz90AdOZEP10Sj7iOVGmcrZHKet84Er1xthKnuw/V6uCvehabbTRhsuz+wxZ+xDHbKvI8fyac5vgshsZdgzEpfy5nV5ln0G8uk58Fcbq/y6UG4c4qHIG+sg/QfOG+VzcJSI7XB00DSLWIXbzGMfo4JtkV2vCQR85YUEEbIfVI8zE9T+2ntzmwwldLGryxINlBj/aujAYIIyY58rdBaClape+UVk1CJPnNYNF5zwzznXLuHKYdP9F5WWPcptNodx0GLEibOGg2EZ8hTMQPrSHS2dT+V4Lu+IwcyyPN/mYe88Ndx+BlYh7mdbcZ0aUdfkFB8XUlagftMHEgQDEX/fwISoD/VkC7LDwNyo2oBKhK1BNx5G/bR+Hqs+5rAtrSwnOJKJKinHMRl00XZO5EvfK5e8EcZWhBWhKOwldeWOWBdszj7+SVU17nH3pgJGIwstwaWEk1yKdAc0iWcZVKPYuqfJz0w4xxlzDu5JR8xKWSwp++AiF2HwBdR9pOBeS7SZ6a3hFgkvgevfjL5tCcDUaEM8hlFAmM2y61JWEdPBa5ZFOZVa6D/htlLKvCIR/TK9xw1sYRI1Wtelxf33Tbn4Y0qITvHXyMJm/yLlfl5EC2/j25SWE9jj34l3AP/ND8zXEK4gQ+o6yvI/ufIgLbrHbi8W7YClR7bY+IbHUDdrVBv9FS0UzEFtFA6FLfPTwHvwSIhQRXf/dqfIh3GQo4KFrIMAUKAwDcrXzl0tiu4bux2j8WiWjf3Sv0Uk1VY5txu4TyjxEJDSrqh74wl1A5pKryfaeIDKiDIloeghA+fyIob6UVG6JGcFkUdYuNBWGKRwsvjRpwcZ87uv+TuElfh0bHrjtPsSAf4c0cU96N9akf/wfEi/t5DYxBE40TF9lUTDuSamr7UhjlGNWLN1Kfg8Xwz1RiQrKgbbA4bFWfCM16rKx7VSbwg3fO2CNrfS6WqajmQfX5hTqZt3pONmRQ5gzcghIwXUWmK73O7gnlYBVmT9lp4rLj9u5FzAw+7vRste4wIVdmGrPuHCsjppIniLH87Fc9Tf4D6Q4lRSBKb+rbnGYwQmY+ks9HbOyBFG5bMxMBCbVM0+Li3j71kJB7AMC1fMWHXJTKMMiGggpJ4QSyyknf1A/WgCB65Ge6jMv7Nm7EKIEPx6VR/2tUn+zoPr6ZWWxM4zlvJq89KPzFQaIqZ6NVJd+83O93KqBzfGnzG3Rxf6XvVTfAm9HUWP4GNLDEeN6RvwbLCo11r7/vXw0VDil+B4iw7yIX0hLwUVygZIrgxC1dYuBZ7oPTD+8vHUhu+ToqPpqlGGjQnd5H4wsI29XhSamw09oiuY1rWfo1R8N4IxDqEtxsabKsFwm5sdMAXcR5t9ZogOzrf+xXqFM0kTp/DqtPaSZWtR8JMJrguThbNcdzHaOHCKjAOhVnKlLfUtwngImjioZLqR1M/+buAXSIT9TQPXXJcuScFJEzaGZLGIrxcc/RhOkXfRv/Gv6yBohTkmfEhYAREmZ/5vC9SflKEtMNJZXVJuWa9zPLZWiUaTjRm2WK2NQrAacT5vwkk559jnHKJrlvbLujYlF2qZhklaLkhIaNLOOUIfyYzFEC+HFDHpHDc8l9HMNF1wIcEErAhiT7+g8YhVoOfTDRfbjWHUK20cG7Ay8crUCJrQB1WrTcdrE+ZfiQsfRIp5xmcO8rwxkR78/b19RdIXyT79PvwwmWj5JoH2pngwVp9c2uEJKqkVFIj89zxq6Nio0I7zgicRtJ9Ro7IxmRORufpJimHi3CaBvFRu/iUo/9qKwi61vnZ3PKCwm94zwsbTw9xBgw89HLhNNZj6vMdKi2jFkX7OT3iHKWHlWP/MKVD6ottXYJB7v2EB8op6RP4TLoCuLmWDe8+vqrfzPZc2XJX60odZcqeCbMdUQnU/PEkdY88jmA7h7yUzc8zzl1o6UMWM7FrW5AWjTkizfNGwutZN86/ilG3n5szYSwX069Ro5gIB/0PpbYJrr7ULidQ+3eRa3KKhp8Lly/CzpIyxTLzvhU4wya70tkddXEsqjs5CMN+9mw0npNhHnFt8i3nm+eFBMKL5dx17wZxCkY1vFlF93EuWMddHV7R2my3nVUs97ibIo48RvVXMBanCgpEMIg/aXJST3ca7jA6w4QIM4tYLIFNuj7gLEnV8614vQaW0WVc8yBEXYrZjUUgFjI9rx0/KNar4qN0J13SJJYlW1yr7sF7VdvZr69IQ5R3lMbFCkZh7WvL0ugw82BlFz6YJRaUifJeZrT6XWrimLAvedfNRVaZmA2eVfOHDRl+uPKalZf1MCsMRugwbEz/lW+yX2/6lO98wyjjQd8xgASZCgk6U0GM+Tmuhz6bO74lutJwvQYyYHpTcCqx7OEXBFBDtsp6sqIyCJkpobuh1IXPm1C4vs9B9EoZLOsQekcJMey4IIFj0r630zyVMbuZhRGe/vrECiy32vlq9/yJrrpcj8APqJvZsybKcO5YJjVxfoa2W4kl4mnykoy988SfbCjCOg6yPqMBUU2aWKYeNiESOmBip+ZrMpoATVmGBy4hFdqMNf5/MtSWeSM1fga9By0YELk6w2r4v4JyGqWheP+qjACld0TZh1WSsJppzARExgQCp3caLohulEjSc8769NTY6unLHVqe5zOYZk4XNz+z2P81qReVSgMW1oxonQFw8Dt+TKL1yzCF8+JyoxIb09v3+A0YkYzfyrstLCfFbFoKn3tjxFa5uoubzyCZBcipzspQOmDZPHfhOkiP4nNtXu0sR+q6906OTaOFSphQ3QljXWdyxo8Pf3H/yMjHodhJb9xH8U6ERsVFj7xwADJ31O48HHpmJZbw30gqRiaIdG80di65LuZPs5DpTlTb+omykFkeE3eHpjPal1YQqew/aCadvalN9npiCn8/ZUvCwRHxHuyp+Iypq6qC5d9objnv/1bxRkXQZal9zf5Kp6bqr9QNAeZBYh5UIqSg2mlTMzdXOlgUsYSQyXX8+5TvfBtxrzqT7Wak0gEny6DPZkgU2mzujGFn6sXLLhrhjLLydKmVks7pxhPN7O8hfVjm6DvOy2p3YiMGwyFY9NY82NUXdPiqOpCdaW5M6FnlSMMsCpALnwVelkBzaYCHawX7yuG8YxDuvKO7bxFUJjd53Do9vs+N5RQybIs9VN7JAbKGggqaK/XpXU8wNuWCKB3Gy7/Ouh9qz1yhiRJscAiTxCCUjm86WHShudyvmMoPOJgbvfw/ksmwFKNiKigmzA9njT8FnMUqDMwEOhV3D0P6SXdqyr+iLiYhNA0XDYVeFSTH9sNwZkqOcDhnOLHH2y5nE1CVNVvYUBGYrnH1HzNsifW/KyBVSmAnVwQbbwSI7OZ1oHohZHTnnKRCqHiiOeYcmBIWsfpJtOGPf1PklNpYscf0tI7Hg5UGY/WwLeSWUs0Czv24CGsu1Ykw25Ev9Y3CczeGzO6PuQL6yAW1hk/lczw6dEGY1VDY69DV8tzzMfg4QGgip2vpaJ7tTZshb9BjuqMHNS9WweCkbobM5ZeTyftI48+arWP/X0UdcuSrdgju4FtiTMS92yGFUU6KIcmG/X0Ds2MOBCrQOGqCa1ykW3I8KpRehvcaDy86BAB2JweBfuY7jl7lyHLWC/vxkd79kZWd65c5mMkS6Xx7IYubuCUET6GU8q+6khOTpDXp477UqERY4+RLpVCFZFLQG+MEVqaBst6UKbMh+jtntEzK9tak3YQoyn38RYTGJlo3GDhvQFGXC4d3uF09rLYcwj4/zCA8F59ZtL8s60wBokbtVRAJPD7KXi0IeGe/i3Jhd1tZuEVaRniypDHCxnaADLT8qkmL+AWfCINY0P+W/P6DNY+OhXF0nUiWsWYl4+TV4IYiqsMgdlPqmhcySz+qZbJU6uqNX1MEfKOraaHOMET0HEAuaBBOI5pHyOuIkUrTlQO9CdAYYOxdhgBksE5Y4mct/Eornne6B3ayIyF++ZOJpsuMXaEOEdAgZrUxIrt+Sbgg/ATNAN6QgwodaBwP23Fz9tx+xEHsBnGTiFFs6KjI+958Ol2y62fP9SOq0l7Rxo3T91dxXk+lp06RWmdGOmlnrMHUqpjc1dTHyWMIRH/lu7xZPcmWdKwx+5Hmopkp7S0wKDLCK0VdeYE/BXQmCMust4Q3rfg4/2SrutaY8GYIYcXzY2JV8vFyvJSp0WyqJ8T8xys9mqFTOSX2mema6DbBdZiWeRwXak44km0RaMZuzdqgLxq9IXSWFWtXVH7NFE4YXZdLdeLa3AIJMpFZ5uz5hke4yyjvcRNMfWyoEjaYHWQoz9Tkjbd2HCEYJQ/1taXujuhkcPNYIw01oJuccNqn1JEFlpQJGc2YQwT9Tx5jN0FqPDhwNYPaihg/smGUKreCkVKjHhcbbBmdZ3km9QpbpKTVJ2UccPObNB15KktUBtv6fGEtefztHmNMedhcqUsPzFYbitrHH7gVxw/X31WMtOeg4IdR7fQXyMsqnvoHyj41Pv+6jyaSfV9642zIspjTtbmeN4ksaEYU+nDpnrA0cMr+Keu+zq3mkKC1kpKuRnX+oBdc9GFyvuPAyA6xTfUIaaOIN3Hhaf2qvdy/1zbLehK+SfEw2zR7Bm9lWcdRDlZWB5LZA9CK8pE8XNR8nvsrr9YBLa6Ed33FrBs5AY34QSedpfMkxhepMbk+juSpcAqC4bffZd5GqCYNupb04RJIPmHNSo8ZQUHGMZqppBmH61Ovtb8Y9UEmh0tGQ7raSiM2iBaTl56iCUc3/wdiHZOwofx4xc2xvjT6v4EhE2Ry7Ho2Uav/8viwPXtLfMPcKn4fqBYAzRd/4xBdcNxW+xkZtQWHEmOdzW01BhvVu9APTSpDFFKQpSMiKG6+IPh19qQN/PTaP63TyQFpMkQqzINm/viz8Wg9tmoa6xHjVOt3f6CeX+x3/YreQHRSKTiLNm35XGRYmXvNgkGFHxqrrkf4bc+2tCQX9Nhq3oxW22FF3RgNkrzMoR3ZFWJYu5857F2e2c5NjBxCWCwE0cW0ZFu3E87aFg1bslJ9QYM0QBJ4l4ECGkZyEK7exf/rH5ATGMoYfMrOOtUZU7/VJWdlw5QYr/45p3NVt5p+nJ9wwTs7Z9W5EcUgfCRyRAxL0l6XJPDm0WDzNnenhNMO53dXqYToBbK4uMZVxJ/8Y5d1SfEfdpa7c4nsAKoTGQGZVWVOauyuCmrmdL2yTn9iBkXSRRuOkVwuNJUykzt+HMXmdiGeXNVOjk2LVO/yt96TfYq0YnyngILQpFlKlMqHL13UmjVBz+RV6VoVO/XaieBnFp/2AzkNb6+YW+jA1vo0yS0AleVVJBW7p1qMnS8ZGtzdgOg6vViOmVTuwUVeTtNHTtRzBssfhag1m9fExPKb+xuUsd/TQqL0VXNA/cOsb0b+XgMb7J70ZXQ1M1TBoaaeMQosAYF/75AZhsbOFPp8A3naplAQtig5PUnfvkxnHchV4wsTbeQ2P4E2gy1+M7qrvsWWnnLJaN//m3OSKzm1lWxduzr6O1LapX5cXfL3MRYrRdHQIXU7EbcUjtEB0KEFsxk/26cKbgk7q3Q08ennnIkyK33K/HyfX2M23t4yuhg8COFIl5FdGZFiJNjekfV8RoELzKj/Numl2xeI7qpoBF/pR4RQIr1uW4OVrPGdQPZtzWXzQmeGekVgqMUamITqyLje4O4w/ov0CegHQXrYs2DUSvP8xt4JcCQCCrtshxO7TZhrkN7fNPXMNaPIFgvU9FEWjzUjgUt/fsYkbwIFNZIKEyvS9CK8Wq2F/tzFrbqpcEhDr/opoOdZUGPigtHllaMRmt4lNbpCRj2ZU8uzzrGvQZ12yIxZZ8oB6IkBc/0i5wVd41XAZMKRvi0uvfc1QYwIM/GnPEELU4qW1kG4Upe+wmehozPbbJnmSdx94vs7ql46pEQpUhMYXTE0VBhSP/AmTjoX+p81g3HfRB2kBjpnxDL4SkfL34SZkmYfCg0qseiZE89emH1YpOaiXXDaBmDdKXfEEwM5RE1MJsoB0Iu6+LOjHzGeZYxVn+TehO/y2M9/Ka05DR6ETuiSckoR6yPLdmEFC+LYUDw4pKCA+TRjJDdYllM9Em6K7vVqrvirV+lcVLhSvWr7Eu87EXsGrjwVIh238tONf2Vdp8ef7oELXphZIBNiE9uwSXZJL5d3xEh8pTbjRicR2OQZ81lTMfdKhs/sE0WW1az0afONGtV0L90JcH/A0kRGNkCkH6bnY2xHH/LOcr2TcWDDg3rfOJodvT22SmJSIQZrZkGFGmbEW/BIdR0cR8dXukwIbVm8HCwRAq5C7eRK1ZwcZnsy0lVCH+upil7oPf6rBcY697NKfT1wiwkh4LpsUVmJEUFpsfSmktXH+ZZU/1doZNkg9czwn06j213/RoKCAowYy9wRYPvxjvMs3WH/NBsirrr7qKOCxqk1F90UQqCogvuE3Eqy/jknTiHB9aYT0W8XXrZFVlx2MgJCImm8Fuonu/Q3/KPT6fBsD/QIsFUQfkkSiyNrXi7pGz0wJ7+SDED3JBKfBji2G1TDWyiLfiRxqPC7uo+EVSx/tbadIRyErgECVkHwMmtC/TUtRM2S5jIEY/Bfh7za9pEdNHDRdKdhvlpRvG1WxfAoAgdTAAuI+8vfuOaSz9fAjhTclORD2oBJ7McErbzsh430ae3ByJALqAWS1rS+VTiBXLI+F3M0O5l8X+NCh5pPjzXnx0d2fe+FUZPNd5NO3wuIxO/jqbVFsfsEGL1H2teji+czV9vkYn+cGliHAc60tZ8J4EbCoNLZeWsuv053igZZArF0pzMqh5sFZ04o6eAqqqxKMc6V/dVrCMfC/Gh6l2lODA2ZRgEceUP+wqr9cFNy5d6TaOrTHkFfqFYeb2k6UkIvDLhzJcCIvm0v5uAFn73gr1zzmCrmhlu55S0IW1aPGeL/Vqdsn62jlCaao/MBpTRLNC2+/DZkpK75HGm55QMfANwFGFMS0NIuI1wDUJKRBHZwBI72OuseZJIfvamk/1sS1kz2bET0tOuqgjdgQgr/RBSJodOhnoHpIVS9oNthgfKzhRdn542CYJ4Reu/4CO1l3aLrwnE+dwnRrW/4mVVbW/6Z4XDFchFFEr/x1wQdgW28Mp3F2eAH5shUEHYb8GWuRXGo6jqK0WcOip++B8pzOCIiiAh36icgw8UfYoFGa0WkJK6o5meCt52yl5Di98GdPLLQAecaYSFWmyBRezXpgXJjc0/3CTm4pPBpBYVMIor+zoIrGK9YUKGtyVVWEZfWrjRf+HKCwX0NoSTjW8c39eWwdzMqEnClgaJSamRBDkJYyeP/cIaYCGdZj6DRj38sIg1LBYn9uP4wFV1mOybHNQUOmYc1Fh/VHdLIoIZxWwaWLGoQ9487mJRdU0qmoLE/gk66uVQempHtsHI9m+d8T6AariFS9wCnYww4VRc+jArgHmf22DPtOW46GXHXN0ZLzG7BoDOaWTWSIyOUDdWIm/3nQ0mEId63HGJrf6mZ5eh96+iD8Un0ekAwv6mky729QAe5IHl8YQ5oMbov87IkhRO+BySeiWCMgQgG9FtAeAna+gMeL4NvcJB73wyuBoYzuq8f1X6v7A8Bz1fYcv8IZuqqLLHfjxHbFK000HO3ZcDSSQmBEnJV/BTFqj72S+o4PRS8Up2DJTtIOXYAQQxY+CqjCQwlhz6lE5dN8lHhoHaEdZqExX94hyffjWIMr1gMAWE+eVkJM4uQYmrO9dAeM3jc5CxN6Bzto/KpCc25p3qvnUh/oPX8vzi4I40orfCdK1dVjzmExsOx5S8298aEBCw996MSutjajIic8wY+7eTr/Y2K3geAp2Pft23hQVby5PqDwvecFL8AlnA7rGCRm+9jIAtMA9kcLMYw9lNXhkjsFPOH65LycBK+eXBdt1ROFCQL5GDOqLs9rmiZsY8tHPIzfvXHtEKg2VsWRH/3mOZEAzDcSePjPNxTko3ldp7e31woFN9e/MAoYDUtPMoNVgvHpoxxqZGHjsg94tUU4U1XynXP9xOLFDE0iHgVT/uXvnOjocbwjLz3WSxF2zYevYW9+ZdL+Je0oLjkyJr88DicekI3G8sAw6rY4hiANQVryRh4AmP1XujoedpCM3fIuVXH1g0K5/pGY2BjRTwVd07W9vJanIftfkTPvkxAme/h4L5VlAj+yPphzvCSnV8NY02c6FcZt1P8PYlXsV8AEjcZAtigzXcrYpSdcZlvKxqUJ8OiYJtYs0CQQmlU5LginCAexLvzJqiB3UAWeTOXLF48GvMaC2B+4k4Wz0qXQ14yxLlJf/MkuKp1iqz7cLvn/mk3K9ItspmihpB1T1+pinrOZhbg04PW+v4gafx7IqXymh96JrzCgVbyP26ntHtIzk/iJNs+oIbfglZVi2WTqgtpa6FT2sQ0OiMF/W/X02LMWu4Ux3fKvAemiuh2RmX9ONSaM4VlViiF8htTd7OcfEP/YNlATDt+ZmP4Oegp8ArRsOw+B1PhLdOCwAgGPAg9dizzhCX5zZfed+FPsnC3Bpm+A/Hv9q9e2DPaxYFJszH5hdbcRBBmxRYNFNfEu7JTNmUOhoL0vbbQNhRb/0JQsc+vPcDjX+ltZ3/1tn6DtsTGbiWI33YUeRIA1BB0kMpdECtiN6s8LGiH8vb0WAXal79mdgASv+oPiUpyyyMNq2p9EKZPk1J1RZOkHGgAwvT4QGLMrT4YSqh9rE82Wow7cLvlckTKF9egfgstF3JiKIcaCjSkA+SqysG09VCXMJrEIHHYiyO/mRIlZlGwVgGJeRrUKme4Gh/Q+/AMhl28Zjqg/H4iv/av1vcJKLLdHlxOE8O4qxZoRtVx5aX9r1Ek25f6yk2Z9Rr/HrnjLeH/da6aRgoy8cqkVYkXyZxt8vgVlXVaT2RaL1ASKptD6CnlDwgbiK5hU2kB8eIfcyFO8/pTGm9ph1OM9ZraBiHX7sqGsqCkrLvXlG53B6GIYYiapMnIX71eKVJJ3QP8vnIBz/4M9JNPwd04UbqO9LIMReNTFSGIhX9nKkkZpGMAyL3vmpj/fxhBq6HkN56Rnll+t5eCKhEbs92vbAnnGd1rKc6qBabVMwLhxhJFYpm6wPRmXhWL04EwI6bjkCYLYtiVWIX2opPX3xMTwA+Qo0VGuyzCMLVQE99sT561JvklU/icgcU94bRL8DA/EFzjGiH0kLcU4tdiXA9uGam7+JZIrSYxZJEY6zh49v8VUgLqi3df/eLu9pOTBHEYCO3i1Bg6zqMzbsmGP8rbi2HqeH90CLHKWm3O8E+nG0IcENLJpbExt6tfVk1axNU9abiGG9oRulIcxzoO6I7ZCqVAOTqKg1iWOuXx+r6w37dQ3O08qwUPbe6l49zRZypORJIf3NRVStqefnS6udf/stYqWMLqEqxv18g9dg4vYIdGdy6jhkVs/2AYhDJqOonmJ9YR0/kdQGLxup1OL4NnyyZJT0YoQoxdVNbpIBx352fkcXhdNB4+V6n8txVuSj0R0pduxDHXeHNrZ7sjox/p8PSSQjSHnYh7SiznAtX+wuvyvtVBiRVVoJ1dSRDcHQvBZwx2/KatICZZdHl1XY5mN/IgVuUUtqmRN9pR4GPs+MxWj57/QSuhI0rJljVlQY+N7bwhutDFuzOvh3evMpnko3nyXt80rrna9I+f6FH2wt2WDjowFT+oUpMiqU7cMwMc7rw4VJdLspxumWcBkX09gi+rOlGtpw8q2MIeiBYhnxfWKbMBmaZACSV9sc5dZYOU9BVKF6jVgk9UrgA70xFj1082eJ33o1n/Wn2ywNsnQvol+eBbyik5r/+HE4wVrQ5Gw2BxgXZYMlCiVw92Npu4FjbDzqaqWrtm/l35aK09chhY06KF4SesI6RwxoG4HcDyrhKy9VWk+wYKqWVVACxJCQ3KgT7pkRyXV1Ay+3+Jp//w2aNRABEwXv5oCrrZJjfY5GyNCw4ePU7VjqerqrjnRy5Zqtne8Vd+CH9HkibFFoVVtd21fDYm0S658WvKX7kCHKGBDr5Zu5AGWTyvYP+syf9jmsHtu/cwNju29Q64mnsNtDbCNvOQBTzyIKXXdCWOjvm+gsoQRr78DecAtzRrYLCZwFKQMmBfqQponjiVjggqt+8rHgX1Arzb0MUQX/vEo2GqxaXTOtLeVJB4TJYe7mPJ/wZSANPChIX34EY6CCjop8QZwFPArAYYtLXm6TYr9qktcx7WRTnXZsoP3kgUGZ2f3QhpcmCIoOJL7pZYVXJ/fY9xjHAcsXrDQTbBriWz2PsJbGK5mXStKFy3ByhWamc3G7BL2GMCq1USktyIZIZ8AWIjMrZQXCgoakWns/z6c7EE/TyrDTMrx181OroPQd5mroCh34DxmCU2Wx1j74kxCuvB38ehGR2E/f2R7H+vjx3Ku7q/ty3HmPxk/J4xOdanl9BJLbBObQQNifwNhvCNfqbQCoDQvnAIMI88rGYYBl1cfO9dfPwqpu9xlvlN8pFG0MRafDWw8C2qX0eDXSdkTXh8DZGA/bUA9PJJ+Gvi1p0B9LEs1MbluyrTyVQCZMlV/yf1JbO3+tGYy5Th7fSRCerX3JE8iyEQiAvwkJH7gHb1XIE7cTM3G9UvG7zJ/52bXKvVEDH3FMj5u5QeissvDclFMP/BWOC1fSdV60yAvKJ9HUTl0dgjl4kUYDielFnOdeftlA/oZ7v9HbK5l3NBXQWUFdWxJJAnoT9VOKKwuDCThwwEBB5bFtBx2f2PdayYi+W7CemUsp/tiKDx4FZq57kiYu2eSzEax0kW1FmZgdQS62649gndvggGlA17fxbOKHt4mmzzIwIdcNeB7CNB16HJDWIJ5R/yHmCARyW62PeNs+xqLredH13Obz5i1t5+MrOeiD654E78abmCjkszRZM1md32eUeEtUJ2vyY2aUNKHw9gq98t6eL7xXWVqrGJx+zX5Z6HV02k787Newyr7glolcPyfJq2VVPf7NdWEZPd9ai3CD3Vpken/HfFu6VKXRChy3LsuJ1HlKeHNfdSeF4+F68dOejX8uLK+XNCEttq4HEbZiWpMKP9bkYO+p49ljMH0VROQT19FlIxl5doVyVUcEDwE0C4OWminvzqjrh/FysZlfAXpd4CatyEmK1z5fHexM51kO0WpM2m7ruYKfc2jpc9r1gp807JzWqf92Usf3CcmClfcMc1Zl/gT+ikwgkqGUJkE+iJphJN0Vxf4Smkqz0/+bBI99DoqmuEO8qduCc1iLEV1ESB1BI7CpeObIN9lX3F2dWjGXebwMHInuQvU7zTQ3z0h82bL+WXHyrWaxVIYb6YyyRs6INcPHFMeFIy7hYne6UZoUArpKWktL0Qc7zyEvWKadTJ6xqbaabXdtGWjmHdBp1PPQGGOC+UjCHULcpJWjgPtOjDAqA55OcbrzyMv+VBwcTYWmbztK2+0sFurF9I2NPiF5Undmmy/wizVSqJeU537ckHf7Fmk73I+rUenLKnLpx9mPEKi/fVMqT5cUWfIA9UgvWhk16giPaGoRbkbdEPoeuEndr0PIn10sbn5BD7YfKDxyBb+hTwytjiNrIzSmZCYTp5pUR2+d0NorHh+YOqySJZZGBkBpnT+mGBell1HqJwLciKn/jvSySJcGB1/4Nrv11js77bXIE7YqW+Pz6p5K2p4A9s9Zllvj9fDh8/lw8WUPq4R2U5cENkFqAGFBcpdZWMVu3SBu5QgngtnshhHHsfldkaoAfzKhsLMYaT0jx5tsZfoTe3IvikTkvwHtrBaMkMZkg5CttB110EGlT1rXwi8W9XDbbR7lqYpB4rC2wNY7VeawQhvBNxvVPxs+qEO3vbSiK6W2zaNcFiqStgXqT8uf7gPZbxpBw3Jv7fyt00dEBuPEa8oi0pwqZaGhNFEm0M+4KYuC7xcHzLkeNL3LCxNHVFhtQTTcvP3nak0oZbbWag63K3tZigKzIsuX0oKIVlFhqNTIZBH+qK0iA3C82Vqg85GOBbV85qcLDFUnZ/qVyfSA4b+odoNsGdpPzp8LYyUF5mIJTRLcOGY55XFbhtl4Fgs5v+JRKJzJIl6Je6nWvhnMYzJuGuPuygFMzznPr5mMSlqGLHAAlmqqhntYB6ny+CMnm+wLtkUOMQhMcP1ywMgTeWj1f3U2jqxiJSzpHcqrpzHg7X2QHVQoOQqE8keGDC7a/sWBOaBRW6uM+2LK2Iq/TErGA1XDRWH2ttImEB8RINDlMvhaRcb13r5Lng6N4I7dq0XGg6FuZBeL4bXD6eIrI4Lv+Damk+cvji67KnT8IGUJi+qhUoqtUNOXsaFr77PkzCvg3UYuhqCFS0oZrtTf15XZSfCc/ofiWgM6/lnqhyojs9bRjGiSSmL17NyU8dFF1tRIBOQWrSX3sPS08rlTSoCt4rEyVdZosE5z25y/uaGoLzSG3L1YOfvxw1TIoOoPp8m6M1bHWjkpeqHjBlcB4+3lxQtdDfx17nFdUQZUqdwYqHUOZ1//4hJARB71F6dDqgHKG1IxAsQFGo0M8z54IUFBMLtKZj/V2uPnOBXYu599ChVMCqhJuS2mk8FvQO07ue2PRW4vrtwx52wTbaB+BsAtBi8q/ksW5EKGkxYotmEXWPVU7kQJMQ588yyTHz5ItcKB0rZ2QLi0K7M3goBWddzpYWDMvEnSG6n4Hv2XqaPuM8E5vtCVDYi971RxwpJuD6nRUuzRYkLsSiiNgqYbN7i+hJC+EIR1P/wD7F3DqFKkxHYALVfdOt16bM9Qh3i2JJp7JXljsX/twY23XzHNthdfln0ZkhocqutEALWyd1ZBEBNONAbr/+cNsJvbsujiefg7IHearPPmFJMyhGG6U1iftVtXIhu2gdbvVty+MsKkKrI2yTpQnDnZEpGezmHF/4bHbNLcgaA1e97eMW3yV/u1PNztQnaAW29ycvzPc24UKlbB7JuHJqoLl53OPTi7YP07GKV8Aw/MKeE2zBQbGVSc5ioElwO3nKfUeJAh6YszXyAQxIGnORtm+R0CJ/XVOY9/nEVB+aeUnbridHLHeFG91x9gXr6kaCzYbbHqxp+geKEIKS324RPq9vVkEhG1oyRZKbhPBFq+7jdXcakKrWiD0YHVgQz9d87+s29TDg83HKqHnzyU9jFdstAHLon/byGCLYE9S8FIZKExziUWyUBvT92YSf9IISnomrlv9Ls+bDUNYZwNrW3Pw9SCtku3E4LqF2SHCmRHtAM97w1F8Vuwyi6eothoE8X95C8Bubq56f9ghG+rO4NE523O61zWEdg7g2adm2IFYKDCQ4m8zdHH+waC+ba12sukrym+LloCW9b218CtnfULlVt2eond2boEJJk3hW+afZGDApgv72Lm4+ueXEvnygrB1HeNJMXqlot6MKkmbV0MtQMAjwpFOEELwE0eARYc0y5nD5W3+vWvRqJ0rGuvKJFnqEp677adGw5yM04JX35ql4ZFh/vTnKklOvO0cLr8gPBl1T/mB49z6dO2+c5QWVa6ziSUyQ6rxT+RycNHB0Ib91SWT6lFprKW86rgvuiJb6Wv4lNCpbw8fw/Yerjcd1+v3hkAAoG7W/voyLlnTzgiQLu/mOeLK0ThrEjNBUPsjMfBuXq2Zh+X5Xi2yEacAEXBjp9hFMIwtYUWl6SUO5LW5T0bh5IFl3VP8gYaZ7nso3Q+JJ4ZLqpLS/ez70WzdGoZLoi8euEZ5ozuGSyreBuBkIbIeI/dg6uzVIQhAWWjI32OLCy0eCP6NM5E99XqSBNG9lStLgAPL5I3edajF97IGzlLQjKoWDwlOBqwnbl7JWkqcx62iET7FMvDVUDX7ic4pUwL4JZRhLCcWrb/aut6BMUBjgeVmPHsqbO8XzP2yndqNtW38cP7S6Bi7neP+Xc6flc5q+kXdIsOsEt8CWdqOJkDb0KjKnr85jQ6PqmPdGSrVjlnlKGtP4EiwOZ2B1Nerb2sUH5pM17gJBbilbw5kTeKXM1YDIL/K4oGWf9X6DCKa2nOb8a5tfg3ibpOEkp3u0WN0J9bKvz3crsWptYHZHkE08zI0hOOcIuILcJns+52DcOMAe42Z8ZwWpBi765y0t7+PCWfQ/zDUieITEaq051qphuWHcdhACYD8jiNeAwXGm3ZXeXRjsu3+rjnHr2xd7HmiPIZ/jibx5pmYtWzjckrV48/pw0sDuiD9yNEVPqSicl9Py8SYwqWz5GeB6L20aY+mc99GfFKEDBpvGZSSSC4UgzfPgAcidykdNbX+eaJZaVP8klviBHJWRYSq2GMi9xvri+3Wm/ZUcTqnowL9rM6ZOHcRDZcW3hFlFwdcNQsZwgW0PXF06xT/hKT7HNDRvcVpxT/rknFEiM5X/BTx3IHHogR2518y0ELnf8trVXtbzzJ1FFpwfgE554RkYY/GG/N4vM8RwS/yrQBFz92aHGxOpVFxH/8nsMBMGJ0Rh4bUA5fgTSPmGQwghmxqMSE6QnTwqG+ulFkFmJ7c9JW12Q44gsQMF/zZB4gIN9MZfXDQ6zx91TRD4jyj5PWzPkPl8VE3DDyhEu9qY7iQCTKXnQ9Jw/BIF7wG6zjdzQC2YGBKAp17aOEM4NbiTQECA7Dbg7oGm7caR6EKyZh5YC8pXkqCdGhMXRJCwtf2CXRL8iCC98W2o4uKGDYA8OXO5XmwGP7I0X9lH3TQcUix8zxQjDqiipxTssi9t2Mz/yu2BvXiOTQn7Go0XqR0Xumu6MihouQCSVTWHH22aiaItN2c9VI3nqJD/xWdo7P9IL+7BkWilyKrGR5+uTCEHfpBh4pfBXr3XI00u/tyDOXIzNSMrPJsx3LBRHLML5MOfZId/Un+Kgk3LWp/DnxQHT/DanAt7PLRM/M8xB5sZkexuiJ2oVJt/+1bp2602ir8y4GcgUiRq6htC76GL3otJpcccfeTfVT7k2h0Yvu8Caf81tvr5wVLK1gmw3aAf3cXeuO/WKM2p14g6boYUh1qyPPb/Z9nvKr8yUKRldOdqsIFaRcvk57dIeI72NiUKW3qg3exrBBuEzmk2JjJZ4V/BT9V7bgAjK97f6RYLS/d8JL7OvLH+QvWl4qm1XX5s+CIpp+/MFZmNkvo3aLfRVdSJrfcWyYM+j4/FAKAL9W5rnf5b5vBtPaz9udyAabHkY3TUdzh4Q30aBnfpLaqHi6SzdIB6Hm7ojWih6fn+1PLVYASRwRw7BPi1PIiLicED1ixfUPubFZsTWATgTwi5T8FA0/XcNrxmX8FOV6nyuZ81S9Udvkm/IT5njnUQjeutTwQ5GTTdOrdeEByQeSUJ1y/kUnZK4F+w3MCfsU3/RMD9LdalwINlPiYFRxD6PHz/Nju6OWqHOOUSvMdrq3XB207HqF94Yhi3eSwLkDf2/0uV+yZL1Ptbi3Sixw1YgToF87074wB11KeKl7MUG61UQGmKUM4PBlnL2QIZF0zKGPpGAq6WozH3xrwbTlsXhlmel0TI7JqZm14T5Ca6n7iad70qZKBNW8uxL2XOwGZoxX+yjzWmh6YWx7iSgQZuh8SHEwRWy6gpkwijk3EJesQrJEw4JHHlzaCw2Pv4MMh68r0eys8fqyn5Pq2uM+sXLQE/+jFn/m395NKy4nYPtSPwHXhYkGN18psHb+VpZT99UyCfQgrsFGCOlzgRcLhl1UvP7j7auqYDsYDctRkuxHNLHIh4ggVilY9f/YxwFLK9gRIqtdP8771dQU8h8HkOi6xyJfdWni3b+jZ2yEIpUcgfT3tHFwiOOp0mb9j4l1zsk6rlElVWGBUwtleaq9X3qUB+BEgSxwA9obn6UYguWIPerBtajWOcP7CaOhPAcBzcSspDo2qb13W8+6eXfo9CQAX80lkD8H+bby619h+YMBvoRfCBygU85Sg54wiP9kwTcuFXBe56caiw/5NpXywEAxGBw7NDqkCiMaDd1xihHRXrQqZRVrmqCPPMqb4WZ0oTz2DtjLcbSHxVpqCyev/uysv74R1S6w83Br1jBM5PhOYRFU/JnbF3ZbP2kl+t5+TTzPTuRZNUpMJ9je8quq4gQSYc3HcJ1XZDzXX6Ss/3URbQBYCsDrzLczvet6uukMtHKXQwWGk0tzvzD2THrkZRKOL1YUo+fO1OaMRgk9/zIlib6mx8tSMm9kFb/TQXXu/ZkOVBk+Uq+i0sLioNc9hMEIQUZ2f6goMfudJ+wQF20RP491sjAXPDQdNCKHk6feetUpNcinYKiWLohUnWoaTWJcDSrQHx44IZOrnXA9Dv5zDcO6A+97zJ/nYJgOilOHgt/TSGilOGDdMHdqov7qTlxyEfyJ69L+8seUzv6U6QS/95lw8RZbE9zEzHr20FQ1VQwqa3vX5aUBjO7ZocZX6ke21MLp+t8IW708l0sHxWHuDft6absZvjU7+rKq+MMJF1c7EmHPPYJOClI7F4nEFx6W+VOnrckVMhzaCw235WPy9roi/4/EDO8rtOp6sNdpv9+DGS1piqOuseIAqaY4jq0HcLeTa5ai1bQIPBFa0fBF1jYEstUj9vOjA/jiv24BMQb7Ge8xAYwz+WBtUqZBSm6IdBxZPbOyl773mI6fDuUlIlomAJ8xQbPQhY5Jwyr57sd1+en4/9XwT4CBp10bUtcju/fjwWMjaz0cJ8d4jJE2kk1islMBnwjOtnifkMdpsykK3b4ibBX9Lz7EYqJ6nj19IUf+CVCoMv8bA2N5lgi5MbfBQAhcgAZ6CFvS3NPTGIpfoGMQGE4eJRoFg8s9h3bqWpMVG5hzTaIuYC7Nq2yMjZ4WE+wVyMO/T80hJdepxTWDv14ww6YGado3HSBgdyTuHu4tJXh6hgd2vjmv5gZqPp6yOF/X3J42drJlgFUtd79ERMEybKzZN2SbmHyzXY7D7vTq0RQi519/ROGp9cgC/MzYjT+oKFkBhNfBCgSDmQDRSpLuRXYb1mf/ksSJPA/xGQ04b+lb2+nVbuQ3yNNRJCdpRVwvX+fyja+CTNbu0QrNYTGq2P3NBWZXxFCG+6Du1t37ZO61GKQC4kMkEJOXEKV+K9C2G6GdgllebzPAMQozosV09bMaWqxrKLM4IRludZabRvbMZpoK5PBVJ3MV5kAWY6Ik9EilB1SPDrVrExTeWISRl5Knx9ce5VeOzqmKGsg0QG6hEw9/Kn2mewy5U30rqkwM/KPCeRTzEw9JAxMEB/vizW+k9p/a5wfx9jYMmcegzuFKa4KvajnWhoe4QaIsjpgzYF84lrSkQ1kzGvq9cWbwiTz3djZsQZ3egHkQbfGCc76RAqTq1CF+dSppf5SR3Z505ok0y3+iJ3PVLjpp5RA+ndC6NyaV65i4oXk5RISv6XwzktmYy7kR3P31vV5uHI7iupDrQH/7u7QPscsxQCmG6f+mqE5YdwBJT/NM5uOL3ff3wS1kiFvZMd3eALhY0xZ11EZNmQuSRQX75/MjkksJc62SdLiB/7FNkOjfua97TgDd0LJQG9IgUHqqbCRdV3fB8mF8kuWAk5ei2nrjdAIqQ2qfYlX0oIg5rt9CmeQH2TpobRUqRiy/qxeku1L/G9SC0imgFXHgkfoqoRE962IAqEkr7oo3s4CPdqBjFWDpyRVWYohebzhvsD2sc8akhL6L4OEoHZiS2giDorZgcYerqbjwJH8LYjfoKjnywxCanlwBloOO6f9pil779bD4rtBrTZpATsjJgrUrT9zN4sEC0tOkczrj0VW7NxkPVFkZQPQNrlClQQ8aQYUzTejGoNfCAoqQguTXBxWeVgwAZcdTlLt/lyFN6t8VOwZcKQcImERK32Z7UGUNIjiqdvTZUlNuYC1qHPem7EdTsZxNMj/g4cNRfekbBLRWW8zLTQxtrwJ3FQTfOptEDIfGeaFVL29zlvOYGAgQVgz+1z6RUUvhXntgeX+13gI+kFEAbiCOAKKNMe7JE6SFbvBNMtxDIIUTDwRXVbWEOm10S5R+Rs/LZBab3uNx4IUcbFNeqQZKpAMVy3bNhsXXZMbGlraQMfzm55gCanqIFtURjNj6ODLxt+4dp4h1D4Kik+vHU4WHRZRXqofAdSifB5LLNcnm0/9ttsX6n/ZIhCsLOD4cUpHIuxvQfjxX6av434HWXiypo+aDAxH1pK+O2ffZBrY37yMzNOxQPm6UXF7RonsEOuRpII+/2N46PU5fwYW50gAH6I0sGE5TACr6fYG4tRoUbou1ZGNo0yjFEC9MfOlLfJZ+HRb804/8RSqmcy8df6zZE9SxljtvzYwvKxtaHlSPnRdPeFi3fw8zFtT50CBEsmfjCSsgNNospirz1TjmAjzP0chlsZgUIQ5OuZGzQyCjHph6gMaDdWXXtcKFlHlYjft8bRr+5lITWa3pO1Wcot8KFsbbSoHI5K0drr6bKTR04kiXMD4eJcCq0TesIfIvybPyJTC9g/NBCSjZBtk8ezIdlpQkgQS38s7nScFxfcqiD/LKCNHZV6ZYpRbtUm4dk++honHjm3WN2WAw/hItC0FkbqEhNl6m4OfIZcoY403qz0cf55HugHi/YZGZC3WUb/RgkC7hnBa8IhzfwjHNJB1512ZWqURk8j7M+bH9A38PekYT93b/JuKRFJFqZFtuD51TuKeMfRGdNhS3jztgGDxw9lQ9krkt8jj5Q8oYbOc3uLFlAP64SrtuTuYoLJYuJbafzqvRt8UtFp3Y70csimNOlb12x5rWsixeAOZ20stOJveds8jtOPu43rLg5gGO0Vl9GAfEb1CYHW77DVKk22Z2a/LokoM8JifCUw47AYKxzOs6Yvw/XHL3hREW2Ivy+Xx60xt08HqwbWRlBN1NEr4YE25z8cCeFBZ6xbfyOJENXgw8RaJwRaVxNXNyvxl92ac/As0j4w48PSayAXkH35N+eJuG8zuL0yCEJWiad/yc3WsujGNrK4pWukPm85BQqn4RUJMpFcC3vFho/EI5m5+dEuFyBmp5cZBMEo1U8838/jFdngUWd+/naNFxQJUVdOoweEWNH5o/7RCIn2+WJBa3iqiwC/GDRHk9dznNUGmSw596oANglAZiNDugn7eSJiCWgWQ9jfXdPMnJKxUdhUJ+ZHsnjMywQ9XNT+OmUtzg/F3v55XR0GpZiHzKnu3H+JR0yIJXGjMPms5tWgm3SLoDxo9RX8a3c/JhbPB8tk7pC9enwVwUetkhbEybnb7YI8SA/Gh2OxRyTz1tP+EbTkqJor1J8vtrVPrsk5x4rAF1MuMlTmivISKEbtVwIDy4PFRovGP8VtavO50qJ8inhNrPKM1yBC9elieWxSqu/hpEYGxLlr4ul+6/yLdJRyyojML9YQTH+DjWauXciLNTirKGOOPW5cp7Q3I0UA8M1P1rHuQeXbMULc4haWhSA0ZBGD23/79g9dQ9/peyyoZB4Gn30gI8qnSLKj5jrrmZBAc3iXyNC0lsf6deRaSD5+XrBndEkaThpp50SgHB6LPwGxT4DjCu+q0VxdSipzvMQDJQoynhLwaE2cWj12zwFt+ZKfFicVrdQdFrwNm6sc+YkYdxC8A2Manlvgei6kQ9gErpDQvxw33BmfdcxDDF9gyAByaw4Bs3FWSNh5aMP1tXDplDaJ2FVwQNjXrbU16J+U5FLNtgGSe4dVWdaNWSmuXcCIGv08LN/xhE9p+3iMSYK2PryGwffA0hlki71jAc0lY2vwLp4IEJWSjzK+bFVUwhP9moznhICGp7OfwBBZ4kagC5AVT8AEDaYVkPdjYYkl6tsC3O6Vv6lzkzMkhK2kj4ORQ02Mm7N3gtjqEg8ca+oHKJ1P72kI2ZRBGJ9PPnU5xKEn4WZ1adYtNV97JQqo30vXkOe6CMw2Ho0t5f0EA32B0LiV0q8m5S4hq8gWOb/2iajtRRQTy4snQpojAjzlxLY/aS9q72Ou/Xo5w4ZPfGdBfwt/7kpNK0IFV/aXP8p3IKmZMXwn1UfcilagBoI9behjxkxynt9DUsyszCFoeTFql+Km2TTVVjxw6FAWuNom/A6fTBZWohUyFjjkgbWrIPPF77Sc6/iY6+6IoygUXYOannxKpN+WPDcj0LxsQ/HODss0S8pPPfOMbRMx05pgzrEH1ogI3DFBQ/tw2vzjaRwwxa5WxVS56zDfoQ8oAi3JFgUa1w7YfS/7O8cYZfnFxF9FWFJpv6srWnyjnaMUJPROTizudF5b4mtnNPROkCLLU71EaM1K1NGkAv7VKv+lOBSz3DzzkJ057yAebzZn8JSWhV7KnpWCqtMyJy63EzFEWPoNb1zcwPOnWykFzwxtUyRAZPrt3q/+XB1YeA//U5zVXpBp0k6GalYEPen4swATkLvCwFbo2tN+nZFLvvhw1rE/K4FcvxwjibxgUgM4wSnTPs9m3nTfMg4SH9M71X1t2KIdVnkrPE+3PIIEkEwU02t/mvwP+2ioP0vAigLJLEYBVEVKIeKp8bTm0YLF4ssV3dzw7nSOMprPi5miGCtDQntDRFTiTkbrcJVjAIq4LgqCFNWxRL58l6SIrj28d3+fDUCHA2o+KL75CNj1sV/c3D4fg/rreS5CNkydgGkeU5LGL6Ej7DhBs2nw99V6rBb+pXi3LxG2TbHdP/VeDm3R8lOTNPihrjz+4FeW2EgjO9yWmIaJycQrrarrCJdIwCsmnpqhnPqHgxDRzp/sm6/RWGEKda0BJD/PLF890zh47b7lp4n73Efc2FkRJULFqTqVFgxPilj0qdcr1PLXJz6NJJ60je8VG1Fs5IL6+6qiAlC3GzMiVjlWdX840oCmnG8IjyHPYHUEY0IbJBAfG8zI636yw3FX8P9jdCDHCCHbufa2d4Js8hzRo6o3qtydl9SXEpA1BMBLiCEZuCE4BvtU/2PqxviOVSsx9O7mk8Q6uhfGhMiMvo/hdEPNhKzQhB1ZLwKr4veawspj2aIs+Hjn6DG0NMYDO9kSnqFHb1PBJBXf0oT9Xj0ruHUdTrCOGmh4dYFwjxehNYMQz5tasNhtY1Wk0uUfJg1eF98JqaQXkROf8KMAe3SDrFYS7NLos7ffIT+kidB1UE+3e/Kv0saKxVuba9pcktiodIzGcgplIxCcumeY8lVALce7ns8QM3hq/DI3N3Y6Pp3gKXyB+SAA3K/UecJO4prTjlXxDXI6ux4LmMZqa/q5NX9/9RzEAJNoUhHwdwN2nN9D/xvxf+u065S6dP4ka59gREkNz74GNsUCEI17Q3nLF1BIHWvhWEDz74CWKrdpQAAjAxGGNaxR4BFwV/85CvovfurC8/8aWKp4Kl87Jxk5qk/lX8MqS7vL6UFniBl/AP1qPuMzaTJuO/SZ+GQByogC+/P1MV9BmjNcyVLk7hbDxdgHM8tB1SRf41Gu3T03FlUBCZ37qBjNmg7x2BBlzjhrWyMG1ZRGnutxxuUMAM1CFxHzN/XLLzOX19bPaEX/Bz/iBngaJhKE5LdKoIUX0WX/NzQvYH69m1sNB37zzqCuYqbt7Ez0NGRSo7Z+VIeDbA7Z7m6QQsojS4tIIYn1Q+OX8/EzyTY3h01uESsQjVAKWO8GucJQMzWgCxHo82yjdW2kYiZb1f/Ez/6A1SFHtamrfyV+MYNDbKxe5TZpWkC4xIN28VdW4DXBgDWqQf2poeKF77tK2O7jnablmaRdHGmILLwIa5BnpqhMJTSWYdLUTqFALKXcPG3NPuk+R5T82Xge6fcSTc8JiX5eioJAIRsibYQ/wKObYsZHCDxGV0gHpQ61DakVNiWy8dloh01eNRopAapMDI7t/1jkznE+nvRaA32egSG5fXBqcsBXF2c02lMeuxMpIgqJMiSb95ZisvRVakwLDdCTmkV6OFBllKC5sIJmKB8q46PzdzzLNdvwx5NrI2d5Z7rkuLXAXB2IXYk+ipLHXKw/X+tbEFzpBK7cgXEnuEfYKDTp7ayrI3ZF6JxQWFc5Mo6gJGnBdUIJKMjKyTq/7KlQmr5Bel09nVO2JQN4wwFaEtA1uv1SpU7BJYuFKdw1hmkgSj0wDJ78VHsPAk6PjObv7mkA6y26jsb4AnsmiTz1unZ8sFL2U4xtX2xX6Dyq0j9Eb0PdQRQGhlsSWMxoO3GrIeBVGCcMyvcy8quwHUMEfGiji8FPhnN5nV/+glINoG4nFa38G/HGrm3XddgGBatK8sLv0VnAyPuYMf6RjVOF2tsWrbXfmVizrTSMJh03xhfW9/nJhxMvKYngujCkl2JkWrQv0q3ibddTsgT82+5IbfY2JR8mkIUxN5YX/Tlf3zgUj+bFoDDK0NjWshv3gtgNoY6R5bMYONI98+7zwU+Uhxy1htoGB5cZ/GkUd5GdHZJllrIWIOA5rTKvBu5P/2qFxOJTWAN46C58Wl1042icPxDsvBjREEOIfpvsHWQSjj/dy7ESgISqzuJpBrLvXwFWL8I5M8IIXPSFwZxz76+xH42olKD5Bk9aIjRMcB3R4HqGGIoIxpGpDbIUniKCOZnQuPQDDE7MbbcWFScP2BdVyJ/LZgkThdZcLjrDVeRFg31M/z49SLQcwTMksSUP4fD6KLZliMgeSJXvkwHPFZGr9e2/2a9cT4NrPvm4/rvfXFweXUW5bs589kwddkzl5ecNyeKBCmSveXxWb9nu8rierDC+COVBFW6eNeLny0rYweseWChHSfQqibTU9cCb2OcL5TXTfY8K3uAb+G2XM6OMfFPSiGkNxbTAyFEu/ikRhCm2XQLOJEMV825uGqLSMlFnsF2HHQdMItOPeN6j4/BB/SIU4hlpv4chJdYv3DfSrDS+LTJq9RmJb75nhGyzfEADhDLaIE0lECxB9KVPd9yN2Q5o9h+8avV2hzf8ABTXds9JeYTT3j3w3pniwmHjO33dcmv4wXwPNyhwdJe6Dz/6S1b53Oi3zSwl7Uwb6+mJ8UGVqUW7VxKob49r0JfVYD+R5IwULzuQak5fLtoPD+k2GaINtA3RERh+z5mIWw2hMrQQYdT72MEPcMdXums6cXsmDlau9X47a0+ZdYTuYpullANC2oDDKgWYg+GJocCo+MOfqki4yzl/66lgf79dvk7zERHq7ybWUvOje8/GEXK6uZUOpGtFJ2wkmgq8nRieQJ4rSY3qg9WENjV/BUPIn6pXPJaI1disICjWwFy+GTuyvw9eMP7K0NgS41aJoPgKxr4nGwZwU1axDWIaMO/t9D2kTcqGobQRBfa5/hM92lx0m3Xf1+C1VZ8gCDPPcpZPrPiSrEGkiwH43lZa/yQiNY7yoZLEYSGVZxOwDq4JNkt1nnuBg2xwv9WeKLD7mtBG+f/ogX+44+wCzxB9BkEMS+tyVM670xgNwq52Rb6NvhGZ2r9D0RiH2/+bw9mfWr8i9d3ROQMDRq1GtvpFD+EDI7dBfo+EhiLVNP/aSyYl9xOFxAR8bpQLkWsxrQE8S8lywCLaaQT6Ols/v2LSKgxY/05q6HWyPKUZw5H7+dlHw7top0ZZUcR3IOzwEMsh6GshYTKQIMqiVf3RZAl632qjrZkBrnZSq1942Icna2mQIeIleglgCYBK2VRQjxsSUZL8824n3B8iW/ac0JI2NFmL2CNonGo3RKmk1x4mxb8ZTeIbTA7hrVJC71wIxmy1jhW1IZRhz1efkAt0WJGZ1rvwPep+a5GLJth0ZyXSaSnnA69XzQIr6xHlzX0AXK4SdMWn8suY4DK5EfYWhbUZUrL490v4RjeSieAo9WXykD4yEGz17pzLy8wSeNQ4tlXxc6ByYqMwFf1RqiwfFgS817rCEE0qbwMD06f6V2e0hJQGp6/7SikbwwF4mQoyztlDOvh4Is70n6Eh95UOXkxBXM7u0zO/ifzq+Mr31s1jcmDXoAuFF5qGWA2jqYKyxYd3kZjSGA9uDSeUKJvl285Fp7Qh2IYTxB3yThuth8B6mwL+JrR4b2WHodvbNSh/OVOMtGwmgievkGdglPvy5EE9rrPlOrCw9XUMgER7jMgO32jjU2mlKrBxar8w7UUuWln/GpxOyuZUM6TR2EUSaHPz2DxSVkiAeJ8kr5AzYtXcWunZXEYFbYacIPSVOZ0hmv3ZEeCXNBn3CE7niz83U841qz5YTcqe6Vpl0Sr/PBpKFkiAfkpRtK51ho9enM0XCUfplj1BnRHdS+TUvx88ZOLlxy2gHyp6EtPuGSd7sUvlS9/w+OptlCbxlBapc/szcAnR8dcCvR+QcJBfCE1pAtH6wP38PIxqjc4QWMKNTennxYGr+XgoGqjo8TFaqZztgLd+sDRccr2A0aB8sgpQe69CtWkCL3mlq0iq4/ek040tPEk4eAap1tA6ZYtr1NGuqYF4e+3WE6yh1+JDRV+Y8D015Tvo4ihmFhkQYgD1lKEVtSUY0/y+zXVeInDbm5oDc3zUiOEHWqqXdGvLum1RVK6QQxKfDTM4DzgwEDNyZVMt7Mb5Fj3q9nUZLW6v3SXtydCsLc3jY8MV3wsMUDyGNr5i5Dj4Sz0AfRIL1CP5FF0VE8ocT6uyKdrZrLvJyzkkn9NnWtH3kxFPiVFcqR6rLopndogzIyLlqac6+tVZS4Dv1tQQsWeL+QStaRYENnOcuIiiwShX4SLK1yUMEOCCwW+yyABv6paixqyPlBNuNODjitLORcCt7NU04aPk42DfRs0leU1nvR4AJmyThMXvCEYSmUHyZ4IqGZzRXeifr49znWnhZBHJFcEjJh5/5WDISjR2oB1RQtDEt5OJdLOZ2noNl+LyCAmbrRQmbTvLyDXu6fjPRPMr8bvSTNg7iXLmcqACtUVoa5ThvhdXQvkt+Q1/shSBb3b/5xLt0RtE8xgtLIo+udmrbbipyG3D6NIJAiRQTYNBaUxmhkvO0b6LbudAidjoLtzK7/oAvM7xd3d5hYZmXJ2RrvOlSo96xFCbit0HOmZcyv7e7+TgK/kfMyudVlAEgoPwgjDV2MLGaLStRTSn6Z7GKZjgO+OLBGIJ4AybPYMul6H2+2BhbRuIeSfxjZJGPNnWbljK7n3A9swRvv2Sf0Q3LPf+y4j3XCD9jO+yLy/4ccjVUwdYgquQaJonCLSRfORat2AJC0s8zPYPTYWPqa+1QMeolw2eaXjBicWKZNDk6dXgeLPvhsIIVAJwPGPEqUYEQXrtJ/9+xagSKGZ51IMDHJv+ySPnQtpprl7GYR/agzPsiDc9JbEPm8uMau66Zz+q9TrSXMvpHJSczxQVCgQUZjpZ/Yji4g/GMuVXQVTfycvtyJ8jjC/6tsaVgbBXeYWgp5LzUZIU4rXyLbvjn261RH4ARb5dwj7jzruPQN8acXw1rLmFqIFsuP+XGPzj6XW3gOz1MQIPftC+3z0/kWd8aU8WnQcj379qa6h0+sHFNGCI6LcUYew4afTw/WRLp4eowX7z9o/w3lzQNZIsrw6vRe8pwQm0KCSmNEbwYhoR0TJv3t71NTTb5FPN70jN6db18bS5Qvckq63PfjuQixrRQlYIatCOI52p+Ov9K37vDgNIZbfT2ZvUsIwKHYJB4zAtC1Wk826ZnfT4ywTOGvzkWiZUVCp5CGxwy+3nNHlaKIwdmS6VrA892Z4odU+TugCRcNQDvzNDDu+Il47zkSigq5TQ9DsKQ70rpZwSuKgdc4M9ayRxnq5opaJgXTDMnPzCxvV6cDQBqzDjmJw6s5HWGEUm2mEirJTZ/BJ0A3xDZU/M22gMbhHmSnge/jGV1q2MonplNskGyI2RshYejtu5OOPq/TT23dDHCZAf1swWsLcdsoVD1p/FmQuxrlv85IqsIi4o3x1C5RLBfTqIFf7QmY+xhXsxjnAvxaRoYrVC432IkgEt0ayuqYXpk3XhmA3tpCd48r7puIyMT7WoBeS+LuGxkYLNTBAdlr7TfKvVkQQUEasmkHF1zIJGhnTXvMdI+HtzHFpkfnERETb8KZt20z73HbkDyfs0vtfw2iBnPimRIYDLoKuIEjJaqJCPUXL6/5sMKUoI/rX6uu0B60HwN5dCAFhllPjF1x+I2aGl/3EkTV9b7NZ3vIEELGLpteqrkzp0VOgtDxrLDd0K3gzcwywsOGbfC06jxVmkidCeavbuRcUtqpVPv6YdSSWMobGp5oy2JjHeEm8xgjEUAixBA63Xf1CfEI33aE1dD8amuW+42jGayxzdu0zSA19sNS/nN+emBRKXPm1GrEdJEcuZtjG3CFqPOflLMnJ+sflm9HXysiZHpqAlSFNEjlsZoCxcVM8SV7W9w3K4H2mMk1GAEqCJSgUvhfZJ+spPLXbKhMHfAuH0WDlNzNlF5y61CU+PmQuMHiEdI5X24Rxx6ChyGK7vLTJML0hlzYIlwtnx20+xPcUXqBHND1NQ5vkm58vQEgLELfxNhD0wiLYsFElALlfaRIoiKZkHmf9YSblf+QHPKebuw3jlJayTZ6F7dUIdMCcCgWOrQmW56vZ8OPWO7Vh/AkjWoMX03ovHeyyJv9HDJRR86MrLyqcWzx2/0VHEe+KkxdEhVPRcTAYO2MB2L2Mudh3CRRSXxoQjh1wEwqMHirSYFWyKiOv5wB9+B6uEzdDfNmT9b3Cw9PuaHMKTqchY1kQKd5nFveD4wnA2KX44Dtt3QQtrqVcW4gnFa3qF4bEQZm6Z1sJ6Vghz09tyPjgZCvzdZDXhMr65qoSY6ftsaTqURBqOJWG9tWKgKHtVLJKfXHj5mogw6WVJRxHDyDYynJlhOuV5EZQjs5W14kvBJ/cNTgsKR8aRneWPI8jN1n03LTS9/bpWLJutTU9ITGiN4PP0CHVwlqQkFcG4ubQyf3MP6KAYJYJoIHxrkb+ZP2OPkFltvywrFZXyDJYJn2af9eW4GOKzGqrsP48A8TVr4CY3hGy62l945W0gqF1JEXxellvZm7iKmV4MjhhhNbmMwoOLnYWdHk3f8jXc1760eww2ocUEgVJjLFGnIiyhOuh2Gsz9oJjD1vLfcYfJZmb91jY01JPNiC2q7HZRfS7IwdEtWq3Icqva4qsD7r2DyYd7pKD3ZTv0VrB3s2YSrlqJwOqSMxbPpYeDGfc7XPxSVJzUxAcmM9UmcrLzVh6MKbdXz4xXeqIHWC/YxRJ/F1cxsrQ6Am2v8mvkGJ5vblMEEFCm4+Dr6Aj3t4gU/pgP2scf1CP+uIzMTmDIEYqgU02jooOt5BzN6J87Gpe2Qbyz7keGxZoxqL+juH9+DrUuAT9iR67bkIc/EU8Wh1MpQHBzfgTcTUQavZbV+T4xAE04z4FDfHCyyzbMziwZdYNVRsS65VOHBlXHkNGezwYUSh7o8Ccp1t14FvsIF35hgWDAIVTVf3ZCx71VyNfuooMBq0DvnXzIXYHGgEL2HhmLHGCN0L3uIbrxe6aJkbXJJG3K+TRYAauuz7h/4vQQ3G6hYDGvLU21BAvl5Ds9iMXTp1uyoTtqmWv9yDd+XXsl79QUF6LWvGETcgEPLgyZwWSpPvMWa+hpx/6cRVvONO+N/IUfQu/WjLsG3sgCuLU20RMva+L2Q7Q4PtaI406apQoHrUJMTeL5qJZZ/biaYNoAupf3iTayaB83T+1oOSaQx/qpTjxupuZ8bGrFbyjeI1NdF7esL/KCzqkRCD928CH6tANxmE1SQs2cCckG8oYL3CSQLMihfiPS3pAp+xZBY4r0P/eDq0LkT0bwcMXCJO8sF/jq+SGJz85eFPWSVivg1NClwXjyaxOQ/TFEQ1D5OtV1dAXpvDbgh9vw1vBg35Oa1MEwHUiptOLOnq2XWd2CF4pPnSA6Yg+5qQotViSccCSg1g65s9FXs/vGJlKVi8w+NLntQnrh4m6p06ARITTUghuw0E3+u0Y/2XwsvrggD5a2aKY8ZzKJxL3HUsIpe1E99NZkybOgcYanZnDKrfizm66VtcPurk7WMcO2q1qbr1+BPd8gBLwaXLrkrWOGmGfb1OreayLwcQb8TdFckksJ10rX8O1duQd3AT7j+QgKKwKBcAqUG/etiajjo0k1Yk9uEIsqiam5KIVkrCsoJGBH4ESiMyDVb3bCXkW3T3kXBU2rm0T5J5GPDj4SY7TxjrR1ktjR2neTT0kLCsJ0pzX9xmt3BeAT1U1zqOGmri+/A2uOLg1LEmFIcmojT7MxGmLzvK5QEsySPJzPiRayD+nKETYLAM7GuF0QVvZRVCycrINqzsCDS4IucZF5oGCsbzU5vzJYRpTswkVJT4jr2jrVHVhYeycNWA0Q9Btuyc4kGUL2N+O34IlsOsgeCZ6lKjshDFKcsf6uaGpaoh0aE+Y88fILwlPqI4bNdjB5SpQz6Ioz2n6r+t9Gc+O6cY5rg4czlnHYsxEumuRYqIa2FDr91SRO0CizuemmqqX8eRIMWMiH5dkG5JLjVWlBn7ELbFyhkmMyIeO5NbUSDc7D4P2ZVWNkJxBKpDS4PwIrrdcCTdnUtyzRWNZtY6KjDnI/edTi5dURD435t59b0CvpsETnjzOTYgwv3OrV8HSEZQiZ+on6AbANjZkYCMpXFQLxkl4ULS47rep8J7UayrWgQIJoUy84WXhRGoCgixlBN4VxzISahBJ+IwQZYld9pvkx/lFwGo+YLRPclMbfKQPpdMviHqh4ZoWMfrDqr9S19hc3bRoWD6LwPkBET51GwyLyAEdSaERdxeaJB+/ttI/a93ZqkGMadezkW8nRKmtrZbAI8U1HfoK5eIxe41pELJKEOfw17Sz2GMbvQ7Y9lcFDwPDD8Wi9yUpU0wcqHTtPWJUxXuQFQv/VOHM9PCp6Gknpequz0g/UvI/2DicOCkvPaJdTLmLHX53DIXtdJ4ASu7J/w3kDZUUAhd0gzGEWLjr6SzvI3lnws1rt6h5rUqfNBjh7LO1QvEgI2HByi/0sXxxltkoFUemugNy8hYIXz8Nj89ljQtdYS5b5IObv2A8xdzF0HVt7j6KYRa3mkcRA2w1xaXRz4Nn5vWJt+TNeujusXDi9eVs6s1Xkac0JzsDfSV+AZdrd1CkiT/VUM9aKcsnR6H8LPZ/KoqrVcAzM/hXCxlVgw1F7S0/yVPFlHp2/KZ9a6c3qpA1OOqvYuK9lzS867dg1LeVhmg1PIKx+ary+GWdSpHp8tlN1Me0Etdq2uEHk43fK1oQEFYk5u3ldoZqfoUuB73zJbQLxh9JegmFQjzOqbJyBpgzbYJeX1Pf0ug60Hy0UVl6KTTV4XSDGbCXCNhDA+KTPCq02IrrCdaAI6gHWCltnXW5xoV34WkTxUTmfxTuB9YKSiaDGf45vwiDIX5Zj+z/eGuE2bnjXV8tJiKtCcOo6SJeOJz3nl9XLJ+2JInd2Iq/muAigTMVOjgAyFSVZBA5GCaZJjt9aIjvRmbdYqXb63o3Bpvc5Ezp024Oek+jGVvIgOk1g9z6SatJQUYE1WRQMqkLMENfTTGT0vOxGD7VjD5g4kvSQWMcQoM60BCDb/W5b4eAgCloh5hUYjzlV/lQJQ5vB7Oe6l4doBE0IENEcu2AsX4jY2GB+xG6AYp/6p0x6/mxh6Xx3eAuwzRgv0dB4yNSziQAuQV+2oISxWRMhH/LwudP4eDl3tJQhx0L1nnXJXTOHEz9QZjCvXbJ+RO24YtvUnOLsP5KCRD6/asi00a/xQxAsKRCVMRnBautZokiTGsMu/JhwOzne8OyRclySkvek/PC0/4uZPsRY8UA1fctoTn0tgFNQQRso3G9GHaQmaJMZm0YtELQecwHgveyYNJ2xvuUw2cymATVkLwVH9PO3znNe61qU6XHAo75PZGDsFIrtzf9RiU4UIo2J+ci8bdiKhb3/TJb4tBbk36a9tUsRxGxC6t2pEE7K4BRwMIxuHv5UllpvC8DjBzJpcntgfYKmyhtckgku5FbsJDmgLN41ZCARnSEECnhuxKGwaSFVR3Osq3TUlBrFlrZ0OvrW6XOWFcHih+t/lhMqnYb0DftLhKmXAyGeypfjQZl7gNBvq8iTy7unajHTR922M2uPDRjIrBYoSA5xQSs3u3kad35jqDcFbK+5GH1QLoBYrZcLOP43opDNMWLGj/fpMyPkvkCEYohaqvcePqJbwXuNlFvQwHP6wtnIzoLq2yqnlVU7/aRlqChAXS1z3hYahTCXyq251e7MPWxvdgPL/hEtva3VVuwsR6hyYxTqWJ5Z0Av2TWGbly1mLZcZe1WeG/WEqOhQF4fUMCc3yLbj05/CX5QQX2gE56NNN8o0vznEJTdqjVlc3R0iKv/z6hQ1fDy1Ks1YDy5lPSX6thmPVmSWZ2BVJJGPKIX931RpbPTZPkvuGP9V7NvRamrdRyqZIDyU/QWMWfNQJX1ASjjMVs+jFx/D/+dkPnOAUHuEwb3Y3cLDZYZEuFqjZmBnQb5mwpUFIa0IYkvm3UAURIkJeEVU+RC1h7N7JVVNgvNaAiyBRItsLAaKzj27TrHqy/l8XIu749N1lqg1oB8N/FQC7zi82qmkWNanCDiQhVwOFBtXHKWPeV4AdXgz8CsXaquzUYjSw/FJ24MPjXVLKcM69VdATN8yDEyEjq2TRAHbMxugV0Y9wuzjOsAvTl3vyDmdDfaFdoDjp2ZXRgxZ3vLv8ha3aT4ra/0yKWUQJVobRx7uoPXHPhj0h4ezgZKADCG/BAMuzNTm6FOsIdacMRQmgbaOwgybQGCWNoaSLhxOcWFh6TFKgXe5f+uHxiVL1nKBaKI1ALHXw07cCRIhHWBfZuUJPRWw4PuASSfMKGQEWe7wvMGRd9E3Xkr4XOlhbK+MC9AQZ1a9KVnkLG9/yLijr2UdRa2r9lTJ6LmIJkD3BBvAhhGUCzaRNSpVkqpdBoRKB89rCILgwB8XGjenFQ435V2C+RDd4vxmsBHTFX999rVVxE1i9KZOtU38UloXfGn6eh9d8zIiwEBwxM+VkWhc9T99tZ4jPLmc3PjosRTy0YynVH27pkOFZY7g2rZ148MGoyHRpF5Y8A14BKkChLCeSwYPU4ck558kM2f4a58l78e3dRLMQBBH0M4chhLtqiUMWQLhKAqBgUzCaJtJTj3FuuqMjGl8VCQC36xNK17gAVgBTt+prUTrXbAi/rOoKUF90g0OLn/rjqjMzEego+CQi2UehUxtqvIrsfuJk8JnSOARwt5ie3U7QMULXXxXC4DROcy4a1+NcTDYLIqfzcIposbFJnlOqsq9aj5mvP8gFReWGf1a8MPqU8oqGqTwrBuIjWaDzOuLEhgIbKdyLfL2bckVaVlPDSFHxpJszM5TZ3wq1BlRD5vN1x3tJCPpU5mCaj0ltqFiUhjqY86LHe3BOF4dqxaKRRguVLy2kKtzQMiOghWxsiWWZ9bfdGM10D6asblo/4hTIxkaJgsm8SBgNvQqT4rRiz5i0sI/tGBLBMV2es32eM1nvRkYEGpkxj8bFB+L2MqXPEb2nuiRiyUY8PhFTFlQpKSJnDIUXCvE/acJUd6LVbrxR9NCQ0WKd/F/d++nbZh/6QvsEI+OL7OuZegj3AHgq8FLPz7jMhG8ujhnk7S5uEwIiaqyeQ7POGEZRo5eFGk/dAdOw/tizFj7z35erkGmJZiJrPjunmLIbt+QrEa+i+CPLgVAAjfDV6wb0m+WyYsvQOii50m+27+NopINymydg0hiPBhouKC5Mwmdj4viT7EUrI4wpTsAAM16/UZCAmQQu/5LyBXjLA9wgQycs0wZ5znzDbKGK9dcbXSzn7DTzuTYeXBmyTJt8MX0duILplhKCBTNO/kgxv1TIp9uQUqbkBI6+t6VB6CYqry9mX95Hvx75QzVnRrGZ3b4DXXX70W+9oSZ3MOlremK7n+a/pBPgrVx+S6FNa9pXKUWwqktodvqbeyMIvyHe1kRngcQTuZDGA1ZEqctpFGClhmCLwWJwkxFVPW3fqYS5HCY8YGojFU0JcwO7M1hS2lH6KE9Hc3WzBWQOfRcHO0/+JX9sFBd186qEjNrbUKZs+ZiOxEIZjtqRh7+c0APNxjjrDukXUGZSn96JOdpJayOzdeVP3K16X9q/m78abF+lSQ3up2lFxIU64a/o14M9EBOoEFrNgL9ZzeU26I/inwII0U+NBNH+OSKmXAq2i/yhtBV9KnHCcHneE0hmvuLanCIO5AiL4xIONnluVaOE2CSh2Gvz2A1TjBeB17vDnpu0Qop7nPEPimDPsrOm33DNpgme5DmDp542ZEourHWknuEPMmMkujx9rafPlAO5dN4swrecFaAF3sseThX0yo0HqgmyRCJCT5/NOX57KRqu1R+zkwlZAE+5HYz8MpDsnaaDQpdr/Zp3S7O7GbAAsICGymjW94+uv95l5HMjEAPT1Wd3IVJFtjP5js06vdyulME7USoE04avTtKL9pSlPRrMp5BlAkv0S5YO7lkC6HIfa9zAC1ICqsKsTX+S2WIFVE9d37k19QUpGKRz2OZlYZoBBZhFkFmd+GP9mEqehqZgZyLNiUbTb6AD8LX32Vz14GB/Tw5UgVL71ReNJ7lcxylpKH34XhGX3DI1I6wbC1ZerZIk7CKxFleMsUB/dj+4BSs0z6dTvl1GlTgy8jJiSj/pY1AW2wE7yZ09vKdfF6nkZQb9FCR7JtsuhY6IQZjhGChoPLnSFqtliiG3ds2EfD4Y4nqJdQ8dtvglSHU3brupcCJaJM2e7zBD1lUI07QFsG94q9Q0FfvjbcqJHof1zbLWz0re7Fq3reY3/PpCUQuA1FuPeOaNtGByL+67b447B8tstE/cKwoI6x9fFnKgvWdFhRd1OLjAP5NxSVyOL+3dQjZLUIX6DIgOAqjZkwH6b26LEa+mc9qBoUGbhSaeH39YdWtkb1CoebSMQzz/+UdMTgEanSm19wfAfwi5JskWhg5J22a/RIZgHU6st9J4gLEydIiyhR1dpGMK3L2+qSSMqUtNt/7I3GOze0ANB9ZjOhtCA1TDk6VpCjlWUWTvSaNgprFQhD29Q7ax4KnTmnW7hNqt5lTvpIHbHmVlkmrpSDSc1Rs1dzyV8zVrG6AeP+XQCeJfN2EpveDaojye/FAVqfROhXXoi3IgQoRj6fGILdFr2YqEY1RUllkFUUxs4sRlrjMhqIdojsgTYEl6gBbMGNubyWhzVFC7/U+FJLpGvjLgHozOl6vD/48uSnwImQB9g2bRgVT+HQaMEBBBPcoL6hH73a+vP5HMCkGt8ekQ5nPLcJWYwPcmp7luMR4HFrLQMIPrIJVRapjgPefsCDq9Fy6uL7aoTQb0RnMntEO6ERm2AMsSnGZpH9U87rwLEVYEkUcsHrv5krhJms5d3AKJJJCZDCLqhaE4mJ+9euKIoDihqjxc9bkL5/HxyU85T01yj3c5b6B7duhAzgSd7tfvB3KjoAx/oMoDWh+eX/xzLCKA3lt/cAoJrRZf5GoCXKSUgpRjXztlH4/UXkLPXz4FMznOM1RzHd1TO57faZNcqe/eNyjRsjOPlh0NjBNB9ly5bEqpHxhPawSWqDLpdcvs5tGmjWiEI7qxrB1utgMQ/Mr2dncUuL3L0n8pNB8nyKMdw1d7HZ78rIgFaCFqIsFctPYIdsDl6mxDCAytfDk6GgfxGPUmRWhiIFI+vpLlpB4MFHoBA3//HilDUZSEd5Y1vora1dgOCgFsWniGSjkV/wjrkaxAFGBEqRu7XISNvf4WTh9pa6KEu55f0h1aQm9OmdwNdymQofKoDrklAk7zS02R4hsOulK5buWBxnUBh5qcRD8g4eVl2VW1yN7F3GGeNWsTg7JR0vvac8sRWS1sTlKSh6208etjSFJCTGOPYXz61sK1+Zgk41++C6jXJCXK+F2vQIaekwhEUEEJ0GFA/rlp6iQ05Iv3Jr+5ppUAEZYZ/e6gt9+X0nnTIHxQBjAV2ZvQb7v0NBNfkaOlZe0eJQtDrZre3m4N3Yrxg4BvQNArzy1pLBN/ggQrC+Lw+efVAWgmBh3Zjj6/RNzopJwznufgC5/2NV+pbCwhoIM+1v+zBil4HsG0YBxXunSj5uQuM8ZkDqVcWhnLQBF7LN384fJPfTSI3jhCgaVE7BBsNh5LvQPGcOK1F65Z2nbicpuvP7QDTCJGU+cbBNUeHquY6ITaf9baXXKLwwVmZqlN3NOW43sOYU5BxUmMNOL3TI0ZHA6uV8XTDBR3xRtjOZI74yGEENZY2z5bsaNH/RpxYXUsgrfgHxB8abBWCRxDUADuNZ8WWd2dPVGsJF1GXiwCGpDW/gKZxyzvHMiCMm7k1nMBH2casqyVxbWhwcXj1wKwZ/7kfwTvjvCL9/o7mcUst+C6DqNChW3eymjo6A4BIt3wOYBJvS9BwLz/BanGw9sa3JZzciLG31kpWwiqLL0Sihn0Aa3VYgSmqzAItul1RvmMD3gHiNBpS4jQ2oY7j59tL2Lrv6DLnM8X8jncayhX2SvvmiVEc1X2eR1UaK3WhgCRoD0VASFPbv0aEQUh5IFD6rsVMRoyYkrMBbEQK0jmyBWHZDmk30Y/PMPIx4+oeIads2gdiSM2fqeFcu0kQIiUunEwPpRSXkAsvIMrSkhVHbGuBS00yLJ2Pc7+UxAy0PxGC7N7RAWQB3sRSqzjMkLNOCq7CW+JwnmmJ58R7g5R34rYhp5hSyz62L8FUQSPP8aWPdpld5ptNMQ7Dww5968SVKyrpOJbhpnhrh4oguJlAq/jFYZTpgvpe5a5SDTtP+bYLrswldFUboNJkLBFIfPjzy4VForcH+KXo0PYYeBGweHqtTr2tDccJhXHfo6zL7RufeFfBUztRpnkV6CnrZ7K+MoDbGf2bkDprIxOem7J6UJwhbe9bUn3gAt3PV9kGRbzIxGObE/6hC7ze05G1hhmCLSFSemrR89QVqOk9fFLpktqEdwK45r3B3Nv/YE/qqLirW3mbVEn7GHJ3j/NT/P57+giW/WkXumkBzGCau6nwsqcWAA3Az3sUj4dHwEUbGelfaUQrAIteGzIFpw7P9M93CHGQE+MSaFIoqbGQfNL+M6CfxDOwzkL4zJ8RL93BEuLeNdrWWG+6Y1A9ChJZfCfZtWwXTNAi9p0lFjNkqqC+5fFiXu60JgcrFen5/LQuZAClUsq6PuGuSp7es4E2+h7Ly2ZlNJrpu9Kf8rSB5vI0F4YjS1CR3ndX72/h5s0+Ui2Jru2Zy3jCvU9WngacAuG1gnKhf+9zidlkB1E20s5JCN3JXtR4g14SQPZazdUBRA8Z3yKAXzDQ07oMAXY2eDgMvSyke+7R3geZGqJyUJ7NIUCrsJ0G2r5C0HpLJtlDCEjpFOe3yCGMjR/ZEsrHeFgk3bQ3GCof1XXjILXyi9hsHKir6x4AhTFvvVa/tjWlN8kjUS9tHv9LjfEbvLd104gpO1fq+fr4L1v48fbCbRQVMXpIhTQlH1tfHBXsYB7oUbLkymSgaDs8i3djfgtFid9tuaNKzKGefpcu9fdnaJUgzOhpFeYoQVzWib2RH/Gy7WKt57X4eks5ewrwNCaHHHPg6OCBWKBwssS6MgZt9iBG7nnfdAzDkWHmM555Aew1PoeNSGcqpXUplkPtE3mHEp4LebTmCiM75LtKqQ1tv7SPCYdk17Qq0iWykwEEK8aUu3QWdbq3nf5WjOx2RSX790YTCQS7XHaLRi6x+LWF17ROcD5UcuvMpXCEqX6R7VR4AeILLSlDL5ABXJSRqn+l4I3TvZOuXDyWfx/imToNmDvE/r/ePN7xtv+LrFyZCrV3kJxSzXQ6Q6+3CAoo7Yy+bUeLD/pjCYIi68Hga991FepC1L90mM+7mVlasEywqIERfSPUuDjoyHD5pGIPzC/80FAR0iSHxOqh1jcZ2xVFR8K4xv2dBL3YJmHVaudgz4iZ9wgIbWUO0jD1+QZqM5MrhfaIL2EdEGOsiz28CW9AMqox2yCgzCu8Ng455DQjKA/WbgPC2ZZ1Q2l8Vm2gGkjjydJCxx66ATiAXByA7wVfeaC9s3uoe2SFyVjCPL5aZuedqGOJj6BnNfb+ybs7OnI6lbyaDLDDbWaHOWmVV6m/DqA9QlHJyYa/87nyc3+u6L8y2JQruHmvh/WX/Z0GxwLDSfD8XX65V0AUoBYkyLc2AiSo2S6FMdWRlBGeKg6KuFfjXoO9w5koHXyau0DWeq/N9XHZOCptQpbSyi9RcLRyQGuxZlnZnGbAG9G4sSKKevIt5AWd8lydU7drcKb0a0Z94xw8WLSvRy9twkwybXMOYrerFY+5l1r9GGAyIyp5KKIwXwZctpfrJhztkXMjL56HDMtsaGVPi7w04etfnFkhsXKiMzRX9+XXUEWtx11fRgDq381ID9CLd/4ADFXfn1WSlkF3pvKYBXjQVhYxZH60nEMJgNPWgLRczwmLYZrTytodaO7VquGUURFImtpYvLgKEXi4nW1yHSISSsfbZz3/jFtMoWpgULFCJsP87NzFozHBcGyaoLPF7Ruxk26UEHqaPVVRj6b2fM73D2iSJAyPtTxCIFWHermRgyJ5T6mZ+twJGoLJmAg/RaRu0Yz64WM4vW2WB5KI7TH/WtFdGbDxRDYcX3b4tt3S8nFANbgJs//qJLTqwPovXjJaSONkm765MapyxSbfvagfAI9DFSjzf32JLlEHrfsXz4T40pW36qQKYxmcJJQV3fLMgTr3w/OFSvJA6x9mQTCiqUp8PZWVts4yMlm9CweqGsYh3988vuJVKvVqJqqszTM6o2Dkbve4SDMritmxsl7CVfFULB6K8+/uSH8LIJf8/JRaykCO8gY7xCt3WqizdXz0htcS9bcGxdEz8VwTQgOD3WWDyiHifoTbOTMJt+GHmZBY8zAowsxd9U8OPboDsKGDB3QN6Ezxg3tipa3hBwQN1ulkREF45T+HC2hg7v5aYJHed9fwlGvssrO4zm1YV+OrnIjFNcGdkiyb6lcExkICJJPS/KvlvGgc0fxAuQnnAj+D0SUvdpMyrbUFP1OsyhjlhDCgyChAmwYPb5dCp5KsFiGzzJlGTW25zHXGhu4JGMc60bOWteGjS25o8tK0gPUzZkprf6qSxvHvsFx69VuQj7rH/sWOdG0SiENEMgUnEuMhxmPP3+GwG19vcVmutJWZf83HDQAiqxqtEgzejsMG3WAN/Hk5EO5+1td+1AuTReQdrGajBWlPyNijfbltX3KvZHLZl2mTwoNRda9Qe0grnfvvl4T6JM8pREBv4fqPHcvhzJNjY/PGyL04dixv+o5t2GDwQrYsOdBnoPFHLZvfqTvw8t7bG0gYV/fA7ZkoHBJAh4jSXXBKxLPAEkzsL9mpHOqCmgiS5zg8+TPOFFXtRCU5OyBHz830beDpVef+2RjEtCmQivcHZ3yjoXpJkVpXN6M8dl93q8+XMtatXF2Y8/YOt1pse2Vx+NuritTcRhNAPMkPLP8s+qBgS+Rm3HbbhMRdKeX0x2/e5m+j1pfiPZMgkSPQmAskQmA1ou6iOUGgclKNA2NK9fYzLMNtroBqin8M1G3cBYRlQ/T/gpTBewr77P5l+f+8qyWOm6zGJ6B6FnOVYPlf9I/+Wj/jpD9h7XHpCXWk/1+Lp+EcRjxvEbqe7EScqy/xgonFaZP7gZtAirtpDZRy8/0uiACqBqazta0rb5RY3ktD1/EuZqgrvWB6nLrUSnnIQAoy2NvpP1Z/gQqxXiWcSdsjs0j0UxoEV2DkS9P2MLgXv9iyGYbRdRPqpmLpizZF2pv2ahx3lNzkhndVhWuhEHHR+kP43+PlU050lQsXdUAYjyERwPIbvy9sh9UgtVeV2fmf/2eRQZM2RmCfWotmLsILgPK8pourte0HvXBi0hcDQ8nOke8WcgP3Zr7JeuZUUTaJIHcRoQ6LOKAiVW32ThotVTBuUXquaDYetWDfeCqCI1FCSvtgtfsCD1tmDm8FqyKwmbxDrHjpp+heDOdcQUK7e6ZF/hFmZSUip3jTZcNfE6fqye3KJurQ19w0ubyjNn76e1jovJRncZ8Yf8nRiWu8UGQUWJTV+CeHSQK8PmP3XR4fh9pRca5JHgiVami14LExRp5oD2rlNK4MJBBfyM/xyk2Vm/tUnmlZ53qjL31R7Hb/neeVaKNblG2s8gYdx+xhNWK2Dkj09jLB3has4+RRcvUrTx/Imff+MtWmdBT6SRxNdeX6wquegtg/r6xLxkRirrGn8FGWDAhAPrz96WO+56geTE1//Okz2+sNsv2bgK1XNyNeakuI6t2nconYg0Rw0wldj5j3vhjXizksZVJgO87c6YTIkRerX2U2wECWPurXh76+Ag8k7RO6jDmnTv4rVFelJoNZZxy28t2DvP/Qnwjt4krNJirWB0xMWE7fKwT7AoqYLVMBg4eSGOSVewc76GIcpUOcC79z20CbhkS0dxfpcVbdLRoBXOSMZEwn9CS4ZPKHTz/jeWtoNSMgk/EuoItvEyJ2LsDj3rclZqR9/MNvDOQtb5RFZfJiMmohiHl6y6IU74BQ2E0KSq3+3L8HfawSNIgL1grPKVyakRsmTSw9YqxA3+P8CNSZWD0D7kHG4J97TD6He2BWFZHX0roZVgryPqQvKX9QNLeA4FJHVFaVkml3jvDsPBwftUpaDE+CM02tC0rhfxVpMlEfrO6m8PwFa7yp/ufplYbImYGsldZCm7/QFeyLtx3LDE0t/dL4fZ8VBMF6b1FdDvJUsiWUn3RES6t4qUsfQ5kdY1j8UjMYrcgK8wFL6TMkzHqJJowo/3kWQTfuVcPciZZaa3KwNtSQehlHojTNzVB0nlqpIZqLZExNJh453dII0uhiiy8dWexwZ/AmKhBbc8C+rptPyMg2k4IpJLPL0Kx531NN6VT+wnaynp+wjFWILrcwc2XZ8Fla8tpZ4mx90SYkzNLBF9IPnkzIWd0EH5c54Dx/seG3Tux1ow+Yn8u99ccMniHaSOQSKvqDjcqKelFbg+ooVhAfsy1MZof7675+XXbNWHcIm5qPq7Mnk1tdytRIJeQ8vs1IbN0AHCLOMODlfgkqtJeiqmrN+pjljnXBYQCIPJegTq26z5wGI9oQmuV9CCgOZFYHc30E3qmGopcpQCLQa8g6DswzPs7HXX/xUR2rhAVPdj225zqTnYMQvcmlDpU63TYEneDaTlXeUA3d6/MDqptC1kNog+GQ9Ucz1fyUaWPhTOZQc5bDJsSY/aWudKIWUBCu/wk/g1QabICJaLMbVLwu4Hzwj94MTOU8V/FA9z8DX5Q+Pso845BQLnKQ4aF5FB0ZWNi1XtoEVZnXF/UhuE80DfEBSwn8q3WwkyPF7HgECFSUSlcGCMlZ/ETakEr6/1Io3FWb3rB7YeB5Q9xFNjzk7P6qsEAHePa8IZnla/do9NNNL5Sxh4ZHx+gTK5+PcfwjYNdFhW00BXdPAKw9xHhYJbcrcRfmMeUiQ+4UD91HSktfNfr/9fT776uXk8+7NDVjA7gs+QYYF3MvRGlslJrucl3eAtrrGWWQIxTLTqWEoYV84OoIOcruCoeHj7OrXh9HDBfxhSvUMrAndRaasfd0+Xszl6Tqnv2pY4Z6W5l59gNXMLeZUv+ow1tYFTBFAYRM/OJOrov3AT6qJIjIBh4KSPAuub1eZXwY3FrxJOliT9NCkpasbjViAtXRIyUSqTG9IiMWzKZkN0QjP6yB6Ure1+N36BKMA0IqlPqit7VUKWoD6lACSTSlGmwpPmHC1PgR3XHk1HK4+IJVBv7AqpoNX1xnE2OVAHj4lMtkv4EOjtuhAhw6dA3MCD/2nX8wBlm+/ChgxQb231HXHljPmnei3Mn03Jhqn/o+d53lSxn8E+fVTFubXE0/H0ozmAKRYLkEcd0oyHYebzed6kC4btZagLfPji6TfHslxhSj5m/TP8n/eD83287mhbj741duDjP9aPyfOQRwYnWDDDYzpNqlSKQh7EOaHzGGNLg9h/IkG1udR8EpDOCgzQShpPd/kw6Ob567ihwuCyL1mXMvfImSPohJT7npPXs7xaMlpKUaKoSvOxrhl58PLxu4cdNnOpSJVx8BS7tcjywITuVTey8kJ18tz9OHOdXgp3uspyGAqBPKAseArGs5LEChx9ayc6FQoX/eRN7zSNw55Y8uvM5yntTIECRzRL1CQ5HuHEi978XGuGIBsCTJk59dgUSeqAoiCbnjhst9+eCZW+Uc30+RUYtouB2jjscRFjUONskX3NTDhf7eLnMfIFtwXygMMYPP/HVguzdUjYRZjcrqBNqicFeANC7jScv8MRuGQ2ZQvNfVIpTRAw2b5hNV5+qdneVgin112C+dWgwzKpVinITP/uV6R+JBzv3mWOFliG0ET4Aow74oE9gcNt6+3ITEWGxxPlg8XjWe4sCxZVp3tEB1dbMLjSWXrd15zyKnEeYhge8M6bdvZKmrzhk9YIrzT3o+Wseohg4hLtcuW35AY/ykkySB4Q14reR4T1sLJE7m0uvLFhAhnjWpC0OxZvvaW+PwJmSEfDMfad4eRXMO7lITXr2bs3E8tZ1Qn1mljEswGuBhItUvj03TwSstuq6cylv8jvmbpkxuHBiybEubC4+3QiW5IcIvzikUha+kVEB9DIsUkmtmhwSdLf0NBpsjXCNb0m7ae19O61q7MqYO/XV7463NsA5H+NsvIRTHBcriO2XHYx73274/W8/Wd22uX2Qa2Htr65uulTtYP407SmFm+ITLtgCxlu3YBmn9o7aBJbXi/5h3rNMMoTexMDWESpaIg/oJL1dM2BpCL9viRIGakknWfKcQmjckm4wYMqGDdpvc/m6I/5PNh5kbTRpehGUYVZRUkRSJgaXjzGNRlZTxvfWPSvde/ta1FEjtlKdlfnqJKyMxlj98DcwILkIYjJzokrpK5yHe7L7kaWlBNVzpU8cCuRmqOcItD6sD3z3lSDs6waWzVmQbGAHDrp32BnNMwvZqsactknRZM6KiHLBx7znbcfkn3i8TtrGN5rAqOkSmQEB7YkWu3QVZDdha+3SZTAS6UsLkH09yBZFb/jMABIa8YmzlsOoKMBkLqGlOSqBTVg9nIRfVe5gKA9Up/d3Z41JA30sxGZuVGCcDB/4huVfKr/FQR1Vca1ZuREcikP38E9hNhQceHLh9OHR1HYeX2Hf80NqG9KQO9yavmwK8H9jCJVhhb9bI+MMVDGI3Io5ZGrTcsPRpsGH+GYH4GmBvOeNmzh0/nYKWGO/FYb8tTnQMVnDiGLk14hLLPfbNmHQWIlISFkqkxF2lKlF03T92CmeKWf9blfUY6ONacUuaoZHG8o+2ikMDwpcGfErFUALNdQgPH1/U1NQUpO9cMLzBKK6JD7Nj6XGdTcYUlfpQc2s/zM1rb7s6jUP7dYlrfuJJlIyGgEBfTIXkwn+L51O2+fN9yI8m/rY7oEMMBsK1In332HZnQZy7HLRYTHwiViw1x4SPvQgN0aUE8C/nsB8BScQdY61NKmdbrzMMQ573Xiv2fm+CMQzGHNDWwK2A7FhRv4bFu4kRLUVYaJ+SVkR8S6VFkY4J5DP4uK/iJYvWHIkm1XdAa124rN/X7fcXO5IGNi2b3a4XL9tWLSUrjUyOAvihw3gN26RiSB5v3R9iGY7gK6tsg94BhnMhZ4Sb/vk6qMDtt8xDDwiEzRHzgXSu/9MmxLBuyg5Zbyoru5dD2Lm0gwLwgzHHGrTH5XPW20QaNC7dI6tfcc/V4YH8VziMGHgAu8fCGbbbENVpArImPd510M2tb4KDXnUnJnBYuE8jzQsrn70h2uc3cU+thEG5K6QFy3NLeBpUh7kyxXNdRp1kqDgxhJzT+gh1VB1xSxKVCPZkV2pk0aaoN5nfTlQ//wU22fVlW5UeFmP0Yy2DCWDmdluaF/OvjXkmTrcYQoMACmw3yGz4m291Qnf/QZlR8msf42GSSW+vwU1GuIpVTYXUCjuTmksz7PFXXiwV0nzTSwdHnsh77eq5MJd3NW03AgQh1kQAUi1qS46xjvN1+BdBOJXRS/GQwd0pzUmhYmISMYVqvfz/FMBjQyGEbSvC5N600TQd3exabJ8PE5+3konNptRp2muV+2OPpcvqG6WVBfUQYYEnVhmucJoaSRriaIXOi66NhGTyIpo+WKXVzyhYRDAxZHQ8YC5Ts/99KcoG5ZXKvNdRU3UpRtwC+FSnBzTZ5kxI2VQhb7q4hfxZQbHM4nvAGOPA3X9ZYUAncJv8dwMdj7exNfGT2VnLTwrBJCxPuiwaDXEHSYYt+mBk32xNBL6uJycbeDx7FEQ8nl3xM3XqjiauQHWTTOm923Yy+brQpLQoAlbAugZ3r4IAVejiJrECGlKzJ3mxp+pjUHWCSpELv7A9sKvw6/FKBJAx37C2oZ0xB6IyoCJwRCd50T4KwPI9fMsr+T7RlJB8kabNr5eipLWYAooK2Hxw01tvprMrc49hhDkwR6YGN+9fmTa1n4zgXH6PT/9M/2UDLVNw8BIGx3+tVaUfeEU3XSE2SqunMWjDXVEzNRQ8Dscbt5nIyGo7/9QsC6vZrTIFDIEFEs6nXQJzMPBYWs63w4C1bksdRfgYLoSR3ts6s5m1MLA/r44EoCCkC0E3rlfSSWCSkOZxP72CD4GabFvi5To7ZJcqDYapmwHcXd86wZ0GEsb8hefG0w659yJU/bt+Z7fi9XdDFxZuVAMDf4WKoPGlTKsdQiZZtaamVC9hwZTJtYB7KPgzw9XwzQCwlGk5JCEziEOT8Hox/Fxyn4wpDsguFQoSvhLPZhXBXv0d+2rmmmwop0UBbvKwfFIXhfliYVxvUhh4yXVr8T0gP/lQRrs6KJrFlhJpNVWZPuX5R0iUWKdEmrs3xTnatEfuecTrCuucVVqB+dJpNM49g+eyRZwawNtm86AGHROKEVU6SRRKAHuBZ5WlMOXJXLnCkpoiMQkigQ2MoX7Pa8vPMrZo7cDJu72e/xVdO0KZyy/fOr4bNRDP84h4D8F8c8/gdxTnEMM6qWZSMZT8z8GX+BkOBq5Ms5A52dTEarA0ZqneWiVLx+nEyx9d8RzdAFy1sZASchJmwTz2FDVswSjfuaQ/HfNKhg/sp+0cM1xQMtosW6FrOb1UgNvCX+/Baf2s7ar436fHm80DzykGoMwIQ89W0voyzcBZ4FGn5f/F7osu7hRvBpAYJ8zzsV6G+nTPyLox1Oh1j2dlTGeM2KnHi3g0L3BVJf8nuLcEiiqe9zzb/1AIoSYdc7rQa2Z5IfiqbiZ10y9hyxvJkskmO0BVWQeNXs+SGoQ0gSWOiwXn9aRSK/cga64/VDIskv/01KnZ2qZFjEd5Yxg/7X0X3O0L5x44q0wLWPDI6RYjgMWySDorRtrgRHmojcs8j4ADsfAHQxem+6yHZWoqJt1lCneT0LIPY3Ca6LftAxGC3MeLyxDGEXNvkKf7O/7XmjzSBnl28oosX0vtiy9OuzwSBaBkPTpeqxU8tdfONHRsW2O8H/TfBp57LhC8C468ynPQUhGkePXk+hF6uykLX1xeFtyyaN32sG4ip3Fqr24fjR7gjMixtprEyGy9xIUVApTtk25AUQy0puxKLdI8xEiWx1l7Mzz1spPgGRJd1qjs47ba62Z5jqqwX3FHy1bCKYZrSV8rvoOWdiIZj5u5EohSVKOm7n3mm8K3KFbP8LOv9td7L1eH6OCbz3ojXvl1WMOXylmjtjdj2ZxLZ0tzvDWrhes5cLWskYLK7kAsrQyNoodzzUOXXjnCZBJFVpnU5YhGxGrwrCISrt3fxoqj1pb1UVjdzpKLDefGsH7eGVjGsRh2s/XRKHZ83IgSO55Hgga/r8viEMm/WmwiZ04nwmGfXA0kI99Se9gdKx6rqaeSVP1PyjygWFK3r7JXWbaJfDg/NegW1sADHGgq6HA1nIZeBKl6iml8wriYdWv850Br5Z53yA6pYSAQIDJPIaTmAhnCph6n0oVJIw2QcEWha3q0kNYgsTCi8vweXgmw8mYAbirY/0QRnbHh4lwYQM8VxEktztHwzoNgcgJcqZP2Z/+Z/Id+W02QVaugylA0800NrRzBpQVXMOCTvoDY8DYPNGZqDoSNP+rdSZhXtK727N5Yk5y9krnHo5S/tAPoJ+0B5qZJg90DcdowuxqF9HBjAJviiZyTJijySlYVBgtPBxgB2p65NTzVatjIyi9JzN8RxOVRR2jipagOXyo5zWmJ90WqT98PHhwzkJLcy5empwj7p5nCjfgXbi8z+zLkhUDutDqXCL3YIqLkAi1AjBmgxGohtFDsy9dlliow4lgzNyZRWDwnRqZGl9s08l9Np9TKOhz1AkLTT/96ED7XSdN5mkW+0TeKEeBjKSQnwANUGzfQtVPt2NfeeQQCXldGB1emIBpvw+8y9hOCN9t8elkHLjTmJTn0MtPrRmpn8olwGzEzsAoN7/mh+WcCzWkNO8GLCAUToZGZ06HOixtUl+fhYWzJBZHBfVxZ2gNCvxH/QRMqqZrhU/hTI83hOfeXqHGXIgdTtMWdPY/vteX5mP+rQsjw1uVUuf711DrPgVRwNlLnWr16cCl+sf2V3AJYImo6tPhWAxMLaUv8yJYvkCOgWUmYKHw/dGRBVJMsvlr6fDb7UFCZoLn8v+UHpbQfNXuWNBfTeCf4Kcw5D0JGQUHw8k3vD/XUgN8NZQitvx9hOgjDDI7LB0teYIy5Lh+29l/cnnwdxDJ0eJf6WtFj1OeVOzPpk1yRyItoYTCFt4G7TIlPrEv//wRPOrX3S02sl8RneYOsz7QjGKn1w+6kBt4bQwg7+WFeIhKdBmbhvi12lwHy6VVcgIn0Wve6jyICjbUw7lxcpM/5rCjC4NEQbOlg7Fk2fCAlJB3Gr2VOn90fwX6iQeFMBG9+FfvXmntTiJhS8TnNVbtBLNin4bEh9GipTgpgw14coolYw0RK6Nn+Qa1flG6YAyV41EktlL/1qEqxGMlm9s5lW552qVyf8ives5SKDby8a8bdykD8vuIa1w3T5Aj60fJJzPGAFmaV+um8RFQHO9u87FvL3xnGaFWcFpPp5z9UOyyexOFFlrC6HJJPWtsFdWS8+/RGopPkBesB2HMZvEkF0SbNaflEx6Ylf3SpWv686kTBg8bcwYKdmbx5pqdQKPiqfcwN9VnWbqxLS4O++lUt0vsyERk+gaiiC1lSZ8oh7fRSnbvadoLnybxBJyiRTa3kRrq6erie3OkHJeHz0cUzHfQzDj+zJUrsZHqJDgdeycwnGC2KlOaPH/FQEqarOGdM2a0+zRVfXgPeCwuDJAo8Tv5ELatVpZiTccE3eUk0Q6RgeN4SDhNjH4t4ycPCJolCF63rgqfKxHPvDhJlIIn9g+4HSS4gn8TH4333OOUxOeBYYOVcf+U8P6dgIkWrGm23hfbk20V7Nb1H/aO3v8zz8ft41ppAEQmf7uJIEduBQj6cf7xsnyAaSjKuQ/K5rMZ6oHjcbKfidWSMi2KIPaMoyap6TCMSZEwj/P6SDRIoKOSdbSXYWjhck6gy1T8bfG5si/2jU5NeVxezVK1jNvwb3TfazW7JoxQnwH1MpH9DBLRJ6J3LbouTQfqQnjPmw2SMxyxBzVndXj2VmomPh97MhhNugg12X4N0YeNI1SbYuUoXfycv5EStFEKKC6BrtiJ25VnH/Yi26TBJG84fdT9hD9szkDwcFgf98QdG0aEe9k7CC4X8FxdZojyyt4Q5sTlQ8H9lNa/Nz1D6Yl7dUMf28G44VehnuMPkSvfwSciUngYZ/qEuLb/Km/9OfRCUW5e6D+HTqmcSbfvwe3qq7fiRHgQ322gaSK7HT6FXJni1TkQS5+3DrVqpvhIulryK8M+S2LRaRLPzhj5ThQzvpHYs5Y+VqOn4MLSWUDKfMluUdl8Z7pTJJZnZVjW7a39XMYPQe5tzqQSGuQf8VR8M8eva6IhU3kHaKnCuehnM13k+rUSD6+k/3AwJ4FxCgE4s/Ri+y1BChMi8KHY/PbU77LEnuei2anWsmwYUmD1dWpbIxmYNheBtzEwwCOt1Parb7W8e1koov81rS/Z0mucAhpyxttJXJgRbqZb/UcjoN8rmOWwdvkoH0p7SWzo4Ob0THO7S7FcTIjRdmOgVyoeeOzAOUEmxywOybYlBRP2hPn+rE2z3p80syEgPCofvFMz9rGOyz0uTq/POugRL8rxCxbuMAbf3ab09m95KrOj5fhCBchyNAeXwbJ+FlpnmRGTN6yUMuplBkvl5YQui/F+pL7Az8VhtAGXWo9qrA9ogFZ0BYxwJJ7FpGARVd3hwhYXLXHIJKP0Uj7Snc5F8A68fRI2A/63d/RTjEotr8QXzoAtMbj615l+uh8QunXrHCLF21CmdkH8aMyJI0Je/jPiwQ3t/qRh5QjjTrPzqX6B9SoG1n0m6pJ0Bjhx05jZVTDrTib4VJiOWWPuc+1awfHaP9hssqwrO0sbwKWsJG5AbsiZ6GEA962fxjQxl67+oxrshXvjwFWXCtZ9w6QibHv1WJiPpPxT0jOhTLZEbmtG9iPc5TnpRuwOseWsrVaipCZcAAlYHyC5ckZnxjzGga2PGEDHB5fOsewi7bzDGslhGvMAPA6MYzbl3ivgLtHVZfiyb2zhXPPtEMe/soTu+hrYz+1eS6K+kMwUc40ECBW1RYtbOeOPp6HygD3WFlD1EM4Fuefgptw6Ofm2Oe4U1Sff57nqqATlm22vdcgDmQNxkcCyrglD5JGikwcE1teom7xxFEa45eK9nIfAnPuzd3YMQrRIr4SpILHfW7W12JgIQRW2ANpZdNegWCh2FwyCt4+iLNWWu9jxmQhhOLQS8/QlcwK8pOkVIZZBYWls07go/xwm/yadCgKSZ/rjvzbbYnn3HMsTe7rzEGX12JbPfnnkCMFLbTsdero77T8ZxFCYB16MPloJApL1ww1sA8LdkzCNMgNIvid/8jsNFzDNBFp1voHLBQFaoA6p5d26HdW0IahuOSh2+/maUyBEm2PHVBT+tZoV+4LWTbQJajIS0zc1dMOnjCo/lqwJ2Iv3/YagSTTtcjts2DMLlz2UZxJKLvwqkHSw01pSl6NVSu1lNZr7IbNZDgc+TkuXIMzYnsRpPAxfDQblfnZqxVai2woGEzwtiYGqw5w9Fcc0JIj3KzyJVOVxOipcrIxFiOwMAbS+A3Vs/C+YYyEIfZgVxvsXT0nEhoCX4XynHr/wcSfR1Bafe5Vrlhk8tZ+N4DQXmvO/Quew+TNRhO/4yCUqypMM3DIf35HrsoyYP2gdMUHw6lcVuWlBb6ylXQhI67EyWoIFhD0d9X0tpGiE7p1y1x/xsJRAIZxIDhPpjlbWAjwuPdVtrryaEQnbpmWAMR8vuxZrgyla/JNT/kT21xCYb3ls3abl3fX9yrjg67yp65/bze0a6DK/HXXck+t1fafT+y1svOHqsK/8eUWZdBrdJYfS2lCFMygWHMzwvESLyX8FO0xJBJ8sTshYIiWW3TYWRFhgtHzjQ9cgjV6fOQKuNOZbQ9llwm1/EwMVN0+TnbtyvuIHUZ+rklIqXqK/r4Sv10Na+s4/boNuN9y+m4tMqZE8RAEkrllZ5WWKN3d0Jov1xgNNYlWyuonJSVpUsy5gSlvfsFnzsFzqgj/du2dVmFceGwY1HZQyTAFakPgFPjsXV+1wv76GoRfm7lyJRu/yJ37lfacSyveDpUnSnVnW85qmVsUDI++8GjCA1hQS7Vr1AogfQVWswo15HwAMNP+c0Fj2pl0uCZt1FRjfPpxEcgFuBxUP9uFiUZUr/dxF6YXwck6GyVvjKMkJC0IHu3jKV0US+ysdaulW18/UgihC3ICwY1l3jC3R8ag1tJUPR1c4v13ynAOUKMEjdfZecngo85jomRI7RSAomc29ifAugny6/Jue23UACy5Xom4Jb867pFbeSDt/kpeWVVaB30EdfoEXTk4whDadS5lNJc9wjI9/trfbL8tAPvrOdkfhXkxRAOIK+EX6zA1v5Q9iVq5OVkc/KexGzy2p+YnlYD8i/rlqmh/5UcAixoyTm3t1o+GzZ1RNgTJqiH3C+OIGTVs09tYwaJphWmD+AJb4G+NVRCsHlImZaFmumxaBr1BSal/RNvg8MbId5UjHuIozBShqAs3d48IyGte9jwuw1OkgRCm+71WGC1Fu+ct3v9awWOzML8aYnwBY5udfjHfkqWnvqfvxI680oGszNh7GTI1mTL3eb581hdmsF/FGs86fD/yyCOgbwtWzvnrf1vSHRKf6TMttZMMG06syA5ZCYf9iTSeNv33uX4p8Tj1t3oH2ADZsxCwPZz5cDdxpsjfqDYtDCxcxxRrdqzqCW4EwVzD6ryC4izkra72XtgwLjLLgzfbVGhCM/bS87p1KjU6HMdLNoxF92AJreZllNjB/wHlYMee6LqeUiAUR9YUEFhYpQi6y5CxImESL8dHQ64ZJAR9eFZfBJpeOyEqcKL36qRguAq8Qlf5PGSI8y6Z0igrOXR3398759TntDRPiUnO4LJRUTvMsJHGCvaPcSpHkgzg8VeEpjqP4WhqYW2XJr6JK8xQYmAhv4BTCW7jsi5XzF1cj65bPDdv+qAhsDOZjxNrx4rjxb3+mBzAwEcJw5qMMiXvVw1bOluDZR8pQstDDEF85inPuz1e1XYMRKLy6k8XL2Cwosz4IOTSVE6whF+eFdTlfB69oBD0BYE7ExTazjno6VSEUDlIfo5RapWMrj98I1VxkJ92nf36i0kCiZAOVH/midkhi31jgsgs6RpgsaLZsP8aghq1CKFENCyDDg4XlGb+tdo/nazM0z/WnUo9OMg3Uh4E7Ub4RoSZ9VCAsTDPXf6cERBJ0kl2HwKbcft/B4dRSbSDvgpbEtTCzbyqZ99q2D3aeM5UlG+Rsq5xTAG01DOS5nsTFOaUyTXUNwj2kVKTMizhPgiqxciYY94eswCmWNiYIT50bb6rJ/n1J5hyK/miulWiCzGqYp7ANkbs5LfP7JhfgqhB7dhehIWYrCFRpDFqKzqieXgkfm6KCxjQad2vRDd964YutCLSN40fOt4ort45Mgeq2lUH7yJ71bqz0V6+sxawXQCmnrIQjeoquyma6FH7iWSES6fUiblGdPVvD07mVEXJW0QTlqJ1dz56t1UNVrLxERkQMVs63auKeWEBPVmKcaL2JRfWAB5Xa/QZb/D0frGOBwhemDFAM1qUla5atidXPTB13qwrcZ109v6+Vbv/H1aBGBukjhJcHuQqx1bHHsCBbu/hDpIs1/GfMAczwOkLCH36a8Xv2AcdXKZ1yBf4nfpWSi3xPIbVqM9wnInxb8JRPDotaIyZ+nq34yges9NryWpQYXFCWs5F2Uyxws4mLea928qg0N12vzGfrAH4XmGifv6tLXOrSyjfzHg/Xbe+l8bF4/n8aZMTVLeg82WWzvS8vEidjorRrnGvl4r3/QYrwqnQOROWgF3MXCMw7GsbukwHzYid2d91Ds5Vpje8ElJdG1Ei3HXDOaOvVBtUtFcg00D7bjPNuBFePyTQATbgRKg4OlviWFo0kF5DW6HHEVHYGEyi4ok2UwkGVKEX3BSfzqbeGE4Ib8r7/O5tQVkxAARy8RV3RSv0tG9T3I3LLLKNyj6QrjE7qB43aZT42UdkqLWx+lc5AI3xNjpDksqa1xfixrv06iOYHSoBnf8xHx0thVE1iayrn8pMPCe9M7rXuSgSBGWSWmY7KDjNP8nx/14T9yLgpEQpFwLPYMAiOaxUbYuxOhVVaDjjJNXZdwxZlRqiOLEllimUgYMoM/JCDKiYfWD3glxvlWqZm3QeuVO6RqI0FHhxGWMKZXjI5WYBLCJpGsAMDW+84vmPDAsY9uamgzB64yDYFNoukLPEJZ4yBK11f3Zf5Q/jBK2G7vnHSdnpd4kdnsK4nja8KUHLeIVj5atTMtPX1b9TZSP14UrnZK2+zdCyL2ulKPRwLlKhNDXdTkEbqPgceiAZk1am/Af4TS9JkUhFQAbx28g8Brs9WHOUb6+jihwQcqf1zGvVyXPhoZau/Bl637F6kKcn+5rU2VtQPTtG+u3R+vKaFlNvDWdSa1qHRUdNOAc8TDAp9rCwAIJ72nppb0xU6smJqI3XtWkgVdE87S0TJQBXGbLuBZc0iPg+o9tqnRt0+TbVJJKY5dVEHwR5wanFjOtRaIBMEgToJHrJL646oIs0JLrDGj8UPXElgL9Ku56ws65Zj1N5USU9WV/1cmeqINl0q75yQ/FWqNGcGIwLNZ9R5ar1L3lVhDA9R9jt9MslisS00nLGlrWzfCTU3T6PqiVQK2JrnOKbAb1xI1zXg1+eWtRh5QcI6+6tSdqI0t9TzJmZngEWh20ovqeJ8NArDrkTdzlz4f2P1psS/6Ac2jT8D87p/misaoi7FbbqqxUmKMuA2jho1kxINQOtXg7edTusRgd3XLqfvrDndPdzZN69YzTozleszxLCuP1BSb5bdif7YHIFNSFGYImMpHXHO1mC7eoRJ6zMxV3ZhAsR6r2AI9M5kY9XROTVSFhsIeYvxUkqxvXqtgbWqSU3lk4Jc8RZp8kVd6FYGgUhIkLljyyfPp3hkkIEoKgGQFXYtlYEkhannbSpy2PmsVx6df/tZ9lypGdTjT5BtTcXPyH7SbmqJHRwLVUod7MKPiNfgz8boXBw/c7mLNNn50P2UK+DyPOy69ebweKZHauO5SJVqZP1uoooCfZDpnoicmIufSqVXdFXOM53u6lAmSJomRFDhyWCP38OcQoY0LcqesZVVgubRD/UK73MB3wmH1fo5R/QlzR1+XR8km73LFyzYKli4/rkCeO1kDaIQs2RIEBWQv/gaIilPp7QusMHBbXy9/1f6KibC7K7M3IAbP74YrHYpYOvP1z0QFDquJD0M+eL9S7PS+TnTWl62CpOCGj8rCgN17GQACYJe4i9tV18++MzlHj82KABodjBS2hTYfaMiCIZmOdZJDrjxbQA+VSA4/i/OyEyLLc/yDPtO3zQinwLNIwQlPIvk/T+VX0LapAOe4/4K0ujejvzhqzvSq97o7v5uTHAM0YKcQPFuiV/fF7HoLx0+jpYBtO/tOMv7lfxtOb9qiBBmFJSPOTpQWC0uVG4rgwJ/TvQPWuO08gKrRX0Vd07E0NnoSya8RMV41NbhEtisZ3G6Eh3SRAN6ZZPUhNJGKowMhp3I3dx8zvGb3uWTs+KJi3diJJaghmo1chHxKyiywuh4ENV3OeKokVWwNLiXP6MiFkEkRyPp2fHO89yFTtn9XkBFKICXx8zi8nU48bwBZ2TB8t5N8JmGxmn48cXLdASbQlJILF35+2UZ9Y3RVVZGsFknzBzfj8wptfnfXz6HMkDbUSE45HWC6ALUGokBSOwh6bMWUkx0tmc8x4f5/iXayzuPfX40p0l0GDOsyB5WM2K945vzsnwHCIX+gkRmeqeUr1r82mX81tDs18HUBNKZDnCDewgyzLTsWH+1XWEDyC3XX1meKudCJOu/Nde5TDPOna0mFpYZ98GYx+hzePZF82OOcdnahK/I44D7puNovB0LdR+wweNcosyTdayXdYU9XYR9APFcfxAAYVB2dQ2VfpgGaDwurd3uo80TQDja/Gd2go1fF+kY2D28lU28HZhOAugqLVlw0NUNSFVu0wEH8KB3Cx7LOwHQH2Hm+uQ2ELkBNFM6KGygem7emFgb4oaSA1g+zPtVUPWYsnbrwACo0FNa16by41GKx/OtjG1k1Et8VTQ2wo6QZL/2Y61IRsy8zeKPuKUZqAKusz7agtmlgkvaNmwHhIGtfDtqj3g33Nmc048VWAdKcwT1cRB46jankq/1siSc2JzH+MDNTU7Yw/BHtEmByYXpROPP5mOqgHP+ls5RewRdncMqgvFgXAz8Zc6Avo38CPAzXZHH+hNUnNiSXOyoa6AxAsNhly5sLBh2RIZjFdDvKhycudzpUYYMrV+Yo2o5Re6EpJUvDGT1O/NeVeBEuWkl66p/OPp8K2kBHd2lt+oHKPbAO7DjjJjzv2xtbc7tr5FSLsw0GXxUnGWlMBn9wnpG88WvNDM66a2ZeDu8Vl4fE296ItSNTX9pZ3bNo77RcrnIw4D+10wUf4Kww5xgIl83/PnWZ3OMNCmxiOjflRbkAgnsTa50V0YvXNLGgE/aK0Swos8ohbGHu2Va0ZCo9qO4kFq6Ytmpzs85O33r8r57JJ2ZDKcFEPGJZWyScLy+2AWKPRyvb+pgfaNdRQLAlUEUhRGIJyvxNbyw+9bMBDa23yrCE6EQi3iNtxhl0QJ00/iB0GTJWjm7cYMpz1pUKtjSMMyp0sY6TDCFj7giQwkOs4hj4jH0tIrRYkkQoaAc4MJ4uQaLXFM//Hhnn6+0gLXyLriAVmj+dPfHGEn19Egw+2NqT4wdOFuv2x27/kAc/sfVoTsrCvCXNrlmwJrMPEcjl+v5BuAgF/Fw3LqqX/hSgpBRQVb8bvB0c8V4pAGlnk2hsnlwoqPgh/VRcOGNhFfvk+akv1Wo1d+NQLunIHAwqxjL4RT5MlnnkZcAJRdBloKOyLHiMaZLcuWhhjas+UqUdqB61A2m3ifxVMDYgWCGNOAY56+H11b2z32nOJjGWDuE2811diOQdHCJOfaryLLYqRrDh6/EF62EO628ci7CMoz0OJchGDBk+k2POBtfOs/vbZDx6/bZ95Na3CjRjLFfhx0cZg4cK1TgWgv5G97HklvK7dA4siPcdAlb3N6u91isqmMc/RhaOFsez8/nYMAKxOZjSuVHUpzeTjV5p4n6twa3a/hwX46dOCIVwljf29h77O84gV9c+RbtvWDV+36wrcCUgnnl+bKa+CbQ54mKVx4kGKyfsSO3FbHN5Vf2rBuY/3PfhRvpHvto33xCzaaSyDOvcQ8jJo4EoLbIVHZWCztMA8gHIS3Jwc3tA+Ci8+kxCfORmf8HOUtaPOugrHz/KYaz8dfrbUtnW+SGSKOGXH3Hmp+O/27V2bdMXwVRxPcm72uUIjItVqJC8IrGecDpqN1Cp5yOvvSYO/a7efN6+7DYeaNFUyXqofueTPLronMVqsgQeCmPjq3qR+43tourYzeJNcnar+TtfvbtaaDQAPKMkaJaFlTMFICeMJUKLPv5bHsrHpx6PveTRUKnGqHcEELhULUQ5xbUnRLfA94rI8N9OeorvxdY1fGYqKoJVKE0Yu/lbkyPpSL8+K1/1Dpex4AbORLVtOEqHyqerAzhlUYHQEjiTej75QqbHIv3ENgChmbFissUa6HJ+SyugywqtBTFvdy55A3p3GRMdO6ZyPzYCRKH+E5YAazhapThK+uh2NUps0XCvj6EoIKjGakQ8s2LemWKBU6hS7xM1bl3P1rx/fIvpeeSbiYLEktC7m9SdE25u2LExFEo9aQLoAUyBsaz1CU616uDD4ORg2ILxBRQ4oWXgN1hj8KZt2gZlVTauqg/36/uLDGU0nb3CHFn53IBoB+UUOME7RL+58padOnRPAcENbn6PwL6wxzeFNDDOaBhcVO7Zre2sNdCj/Ex2WvDqlQQ2zXJl1fiK1yw6pRtHyZIVVvxsJedUu1bykL2qQw51fJcH+B6kAX+uo08mDAvp86EisGSHgqNlxaQlHx5FEkBTfdnYOAgMOR5Fbrv72p+DQwcVqkPZKeFt2TDLGyw6CisVirRkWEaytHo+CEhP8/u9+A6YCs38VzVa/unwWJiQd6Iza95Q16w4fgFxHUFujrZ1xx3v1UoORecXWEDgchL7Xlj9K52Qik+FLU6huFRWR+1sdHmGVOq+NOzW015yPmpLzeVzyd15KL4VwyWtcfxo9nNvgQrrgIDR0zplvO+eUo1jD5rGsDCehIDPKL/EPB4yzi5FQUfIDzVbF8O+zyKv8e+MBYyxquabf5dUFWsOVawpPgncdpDqmUuL0UHyjiyhopZcnRdPR/Oc0YGgYyW9UrqNjPUbPODCY2VGmTzt9kg5J35hrvRIX60LEwTAl3QAHOSivkZA/viXBccPyRTu+i32nvU1qGwyZXaFYzAEs2HsTl/A+se3pxe2X0M9P7tJZFl9ch2HvZCNKWyW7Kx4KpgVuAECo8Mjxjgi3pDDUM9kFialLv7K/p23yCPDQmknKHuWb70mqVS+MJgQF3K/3aUiqBDo4rA8K/p/EWEUwc786o9Hc5LPJtybBtIwF5+CaP0DQB3tMqgEzZ/383/uDgOr1aOhfrnzkOY6c5iSHPZL+8yAYtMsghASo32acsMakN69DkjsxGeS0pJEmyI56xMKlEokYANMNOh56eKGusd1ZNei/g++Nnrg/zN6h1KHw0DbkkqaYdQDeiy2CPyTHvblorVJDKSoYZvFQtvjZcf+sAOB3GKeWHx6gUsJuA21jFg9vY8aYXd39t+9QyjNXkGy6JDBb7TRO8o1LgmjRmxtVA0+cglMCPp5TMIFzbd4UHLz6ngXgAi/mwAgJixXOZeQ0c1DrLEReG6b1x7taAJ+lvOxlsHFc9RB0cb88dLbsO0NcDh4v/eU70KpqdmibccrBmLpZRP+SlDWUq1D2h69c7YFbblMSNEEcnea6IPrfVYtkmp7AAREILeiac7OY/kz6WOuzHpwc099MlzFtZrG65pfS8JTZknvtAQ1Z2Up1PsdzKG7k53wfw/1avDJX8WedTHJ5JAYLyTb41fRsJG3qyQKGPUC3YHDRTzmFBBItodggAjV9L7ELUMBF/Cf6JKuarGk7Jy55yRKmET54LieiyBW0Rz1xeHg3PjIcdo1N/mSDnWjcH3EOb+OWQeTWO+U3DGmAAgh2VjRN8mtG2vZAAwO/mk6IhS2uQG6JEq1XwixReeIad/THD4qrFJZS0bCfHx0dP55ityoQIidjY8ujRJNQIK0KD4cl10U5t4ATJR1pk5Y90yvK+QS7rdoTq+GJ7gf7Ih8q1Z+mGUDPp8kiGzUqK5+7ZvOmMfMnjz5LO0JFKKKRmv4U7nfRyeVqv3KBEntOmSqEUUIvfwq18Ol3SuNcz6GvsGnb0dSzMlGYSQ9wTfp52Wa7KytOMY8wRNhe1147ZvHUomRb0nKmmVW/l1Cbq+qSWkaQzOmuCKBoPVNpslaOZwrpDmunjzvXDQygBub5XBwMflfPkBM4ttebqkduOU3Rth29J9taVSs7qZ62PFCRLRHAe8+e+qY2rPRBee0/0xujDQ5sx0TTnuXagiYMsSVKby5cG2jqcI8QsWea0FEj0pAdgka4kMhYMPQ8YkRhRcJEOANpPRNgr9nh6lNoH8NXEv/905NnbX25Swww9mNPv+WQ/Pq1KEBo57atiDq0kY60yx9FO/b40tACDCpljCUU/BvtLYl6rnZgj3eW1tBFAPQsIw967fk6Kp57ZDmOElqfxD0TjJ1cce5ne9FAqbW9ylMgGuFyEe60egVUs6eBMGo0QxuUzYYu4IIYnIJXrelKWXOmcrr278ES4ihGlNRj4bFGNE+SePQZcYbvSNyhc9Z0ryhqjOO1+9w3VgacCyDb0CbCxhjsK4wrDOttCW2FjxuHbya/y+q59x8k3lDtGzxyPG4Q9kR1uGVgY1uNeHKzgbmkdOvwelbQhd2r6qYjQdAQ05RhmEOKUESxw9R+1V0wbIOKXRMW6KfmIFFasfpn8QY/nx/bozROVLefEh7HwC5tsc74cAX43hQukQD6/GVhmK0npj+Hj4FrD6PfE+kKDTtzG2VDBUbE+XP3wH9JHNLaeEVSIPNEBhLPclX4734fUbRW0w86N/5NQwdPX5Eya3Ynm/kCBwGKbpgyM/EWy66QB2Ztb7ZO74Imo4b6szPBlMXigKoiy/HTvF2DzTCSNG/wA97w4/sn/aO31bjs4Ir4+cgqIA9ay53vNJMUDkKWj4Ob7png9ZfVYAxuhLBnYiVjRiv+cEpDg2fE12OYV1EphaODQdJ1Xvq/lq06JZ+mXKTKqFNzs2LLiZQ2gektEJTBgNUPVB3tag+F1uXhz2fz00S/+/03yy7GgJf9E1fWncnEtTd8iFbEIG+mU11htvY4Rez7OIqORejc+QBnvO23Ykvy1rmFMnIcCA4UR8vdre4mhzEL2lp2C+6/viQffvJ9rmZsjtff3JVUNHGxcptOCYaz2U4zsy+lxwv7IP+cXgK7h/KX5/5TRBmAXOkHUnDSw6DpDQj+PWBd9shcgR8fFdZurJVntvrQpvryNgGhtEQof853fqlfNrhp8H1RlOGLBNy703BQyy5JKHwPM55VzEe/QhDNtrJkwDnFVvHdX3L/65GDIJaZQ6LDRafOwYj0Y4kdSVpxaqklgcpoJVfkvt0z65yxZhtyH77MQ6kHAHeB0Yf2wAt8GcgsN8siY4ndM7Xbgl8E4y1KioORC+rZLBZggV0SJQu+S37r4wMXnClAcGnkq9SJqn4EYCqRnXS5s2JoFdJ+NzFBEzQ9LyzCWSPpO/AJY2KBPLKvjh2kyM7jQegBR/xx/8YcLWtTQUthZgEi7PqoCr3x9sNWmrKyjq1Ko4S5FRgL5+7pVhvrbk/bOw3voI2hf/19nVEO3JLOuDQmmHS1dovf53gNuRl3YMY38ooUTl4w4+f5TT317WTp5z/XQbc0Ki02yflxjVPtTmBTWdU3P83zph1HvbbrV6YU5iyXZmG7WlYxKw6MEh1nVKmtKC5eJC7YUJXnEMpvIjXReh7dggv4MeW/7R7eNL8TKWobMvdEDL/k5G4K3HGO3b2HaEei/OG9ymd5ef4VNB3TsgnL0duHi1x14IV092FnMedBQ38q0TbWVQ3Sn2Ey1s7pg17ND2356NP92/rwAlM4AsNzx2c1iL0PdMcTVZV53okSfbfLZe7gEEuxqmMjhUU3PdG9tNzhAf0zwAWbt1nGEE3wNttIIyeOX7dbUVsqGDEACxKf/INDcKG3wDZu5+NF9VQpURwex7TZ5pESBV+ZPQaT7bVKDSvExkYbcngQEoPz3SiA5hpJaVIJ9H/sVsVcHjTA/nBq3m8OcEEEfusx8LAsY5MjrcdxKdsO5vu16TntZgaDj67bBt436guOrJr7gW45lKpVKLJggzfntMADMmHzz3JCOOWw3CeM6iq1nbUfFuKBE7BVsn7KQ+tkoAjh1M3wbjJu0OwzOEh5OshHFa+ou4LWaK6KILLSmPQaIra6Pc7kbwR7SFsewWj3l0UBGmdvL8FRbjtJDa3SpR3swbUqlsQnjCr1Ae1BYLchG5tGn/QhivuPI/4JUz3gRP6bY5FE68aB2iu5a3H+whSLYhBGFMxnB68j2VqLTO5uRsK4Pt12VDmc3WshdAiYww10BWx9UD5Jk8R96lqHmlWbxEsw33u28wnrgEww/VWVvKp4V5FjLJbOV/w01DJV6YwuvDic6NkrXniC5hX/fs6QWO1HfGNHKZNlnB6bVZv9bU/49UiH3ug1YBkg2l+vTsRBPWRIXn+YYvTFPYbPXRBqzf6sKiNHGsRsov+GO6Zgc8vpFoJzjS3nQL6zING81LnO41+Kd6zl0czKca6NXpuDiyMs4pCRjc4uXuncqFC7bjjc+o4YzNULFHh9cE1XhXg1X60RJ7tY/qdIytJJUfnitHvFcUcmfisX954X828LRrO2g/9gmm7qTjNTAZqC65vr2i7fUUU05ntLUl9jGxoSJMiPc8xyiVkzLAiMb/qhZM2c68FRxX8aaORh5esUfVq7RIEtOU93MjbSV2+1FM0zIJELsbs5SO/yh+iC+vp4vOJqgJGiv+D5fpRubvJXgk+HLG+yH1BFP/1fqJfkF1/0u5M93bFrVnYnmT/2SvgSl9Ysi+giIZEossHMSw0Jv5YE3WPNvk7fA+gd0tyyE5GcgfmodKveT7iE+P9RU4c+mb0gu06+ciw7M4HeASwQ37dBX0JSQh5FHJJojycNnE/yt0MPxZ+WOrSgs6HP6HKyG+LiYZxR0gPv25J1fHvwKuwdTpnpbI0+JEJ1sBYKDkl67Z9ysF4rFEGO63SI3X0F8fMt7p9h55mKGxAAJcfsx7CA8WFOxY1B+r7mNlj/sJUm/kQJugYiXsTgFUw3WTsz0DlbKi1HeNvW/PG/2wgpgxTZ/DiDAa/AYbBBZ10mG1iyOmCwkNkkCd6AJ1UZ0fW9hmB5ZFQBN+n88f6jiSeTMtfKjE4qev+lxrXoorHtu+IlbmGeQwe5N7RmtTprKjmFOo0GELBMS6WYr9rxYN6t5PPoEPZmGNE+jBd5VGAn3wrNAQwVzfL3XpSZ1AA2tLq3FJxVKHJKtPLLGmgBOjmBdeVlSueR5H1vtKCJFbQp9UXNNynkgxNtQyCp0jvcLL6TAWsXsqWx0VS9I0YER4fAsTxVMKzZujH+PMYtMOH1o1d40WF7+M/C9bFBn1i0DK8Rs8Zojw8VnQnBNR65I99KTJH++oTposYbijB4LTekB0ewiZgUIjV+cQ78YWHxzTPibCOYJQSKmiNOJsdOo2xJ8lYOpY6/J9wGMDapYenD2qQZBrQ+27vjOf+6/uYPFgpfTNx42xxnhuMCzSlbF6DxcSk67JbPGDJQPXWCU7X9/uFHt6ffoAKCzrR0XyUhq8m7OIjM2sedherHNEN3I6KC8g3qQsScz3skGlih+/pNKjBkHvGlch8bgoEG4mtnOnO2w9jD9kqhaO0+HArMridmlb6KfsKz7es6hv8bNW37MJtRba413tmtyg0NAbawLxg1vZ8tbe68lWM/vnCvBSx7cfaWiwFYpMEJ93aDGxj957iBAPyj89cAYWJfKgnorGlRVfwCeCvVPy7axL3YKDPNj4djU5k7iLZxALDViGPcXC88SmrK/3CiVmsFybnEKdcdwPKsmde4UAoVFWioEBTCqxwsvjHIh9CRXOQoQrmtKeZsGUR6Q/J6l0wYC9PeQ6z3fR35fsMs8HQRo4FTEJnhuJk/pW6kdjGwwnzJ1xmGt7nzSOAUlGtn/0xDdJgB3UW/oTekX14sUkCh4rCzmpNqLAorvi1vyX5TD0OXPlEuJHTyMgv/2RTJXq5+gm6jsgUaF5icRZodl51hIhmx0A35xdE2t1wVSMljG1DVMMX44mXvbtLpoeHsmPkEhmYiWp6NO+DXdDo5q4olVg/omwk8O687C8gEFh48uqwV9Jq2HBtrCKslMpGaf8qkntrfaaSy99jC7Zc/7cMhU12guWVTgTnRsPfzgliCCy8rJeMCnzixfzOHZ5H5oR2HK3H4bd23J0esLAiimOgQI5wwbel+jJ1eW3V+X2byhl3D6htmrIqrl5VltQCokn+R1A9ZDoTNp2UJuZDbMXE6vcmG3JyZyfHl1acMr9uyVQ1NP02t4/FtONisB1JJkFV96myag3dma22tb/E5t17rdFNhV4FSufGZboYAgnBaCjYCompwoTOOf3E0Qvy+YMnAjI6oq1H4SGC/uqRTNZLMi4qCt/DzXtH7H4CajU9AFgxBfoNKV9y+jn7FDuZ/ig1RaW27SU0uuvQpmXfEyIX6MPBx3TfOOVrVcWTUFXhQ13kpZnQolfaoXLzFL0EaqrDD9NyRFxOU8+gkwJI85bgaprOQhd6RiTJLb6i+IJV7fz1D7kz+/rSWuvjVlY0q/smbmYnCcxdFXB8pUCkWrEU4MLQDWOOfwr41zS6hfEGVIH/982oLGh4wrh13tld/O0kXqsY2PE2pumqtf4O9Szefb8zNtg+cv2mXqXIVLR8Rt6haEjDU2SWD40eyJ5PMg9JkmS0UWLU2EcnWp5eKn4emDT2QI057S4OY+G50Wt2wM5xDIFUyFzaSZk+DBCn6s0+/A8b+JYKygTozDuYryEO5gn+lfrQuXs/ksn/gVEL5k2+Ppsjo5E4PRTm3c24nTu8CDOlwML6er8s2TuP9p0x9lO7ic0MJvOajSn2A4m2Ka6EN55jJzzWY9iad1XyQzrBGM3OwP22V5k+dzpyDAc2B9M9ikgkkys6WaVYYGntvFCeg/YIz1KM6mPgZoXA+3bIti7v/RYbA0G2eTiQB3YwFBq2vdc0eRyxgL3Gn7CtOu+rTMUNDvd9wHTsTSJhI8nVPpzlJlbFEAUm8hxQo/E+pga6xE4M/Ie4x0BEv6SIXE3kRSt1H1Pm/5cJtz4ZeVr+SyzTUlkbD74byCCRAMY3IrhlXDPwn0taI2n00VrHvtGik1bURfdkvtlcCW7x33nz9IelQf9Wh7Cxs3rv+w2+RDv0VgZnkuwoo0aHV3Lru/2cLZu+/G0mHdZSPnb1z5MML05U1T6sVs1RRqkf/qAwkvPoLYyiodcZEqnkJxVaLKfDdvS9nZPo9c3gJTRgyhmaSkH51nef2LGkOmHerpMb8FPdi6/+jCjc5vICSITKjC+0bapj0d5l/nInQVZqhLP6bNX9qwK3uQaGY+GCwtpL6xAXsUrbegSsyiUm7RTJ1kRT5p7d2u/XCP78sb67j6LXwvWtZ6gH0Ch5CHBWqt1PNgAv9HmGagulMybP6rUfZUiXR+CYg8yQOsjNCkerOimhfwW9f6fhLKIwfxuJaplRgUDLhbon+AMlxdZw1EzR2a/D7iFQm7IcdrSDdAe2V8sPDXRsSMvISDPRzgBGO0H9ObFg/mE5joYHrPFTup7VUBIDZD7rULevEFARdJHiebU9db7EZz4zmimedDjy6cViuz84cQ4uoPcyTCGm6PV6Yk4gIIaHM0LHKMb21wXjLBDJJZ7KQLVXLRq+FiMFReiqanDa7+6oA8WRmmn1782dVso3ToYn/BCT/zY//dxNukXQ7bfsp4Hq0SwzJ//TkOCLNMg0Usal+R1XgTkrhXsTx5LGKu67Cl8WxT0/J0e+WlGaPPWmAA5kZNqaobWZ6GA7LlytdU91xiadv82eoLqsFgZ3tN4o56e4GkNecA9Cf0LtH8KZlSoooemaKmI5cCl4ps3s7owcl33Rfm1sgpARAJdp9e0qhiK/bQknOFfc/z5gxK5x3yHthnTbP0jU+XiMU8YcERW12Ls8AEJBoMVxXCrc2dmSBUxbDhrCANtB88rJwYs2nwGaCauZ9HVrBTHA09s0pWvbGHaPZGZGwP+LUoe7dex1jZzT6gXCmSw/7CK0jL0+B2X7kA9xM254EEaDMdniVr547uOGnyJ/aG+jZn1qeBUd4I54h+ojv5UOzqonNgy4Rk1t8I7V2B92Fy4tyBpdn5zw2+2pY4bjRGUgo9B8rY/jZ4eun8jMlYeFtAz3A67wKxBZhkP9BIt4enxpzVvIqkzWXCNlXH4KYr5BCAxPXpp+fDuOQLIT33vd0mY8y2CO3FjVt17akfeBwkDTHe9eyxj3HDLSd61OtKgrQ+BoL+rvx1fnF3WJ0u7DoX2q9v/v/c+j93NX3dXdfMAM2f5nRPUhNWjjALBdbcA/H16t6jJjUwZyw8ilNglGxkRMQxBq9VLshSDFE7TaKR3xQaty6m8HJJyRd16fh9EUF0nqrQFuccgltfmvjk27mWfbee3mmrh54grPZ4OYTDJXwhlMB6FGqQq2aA1nKfqh45Zv036fais10U8PGaUVL1uGiWDypnUEkH9ip8CRkZzydcWU+tywgPYSTzTrasFacbqarKPefmui2ieWvUmKdibTH4HWv9FAzT7HONEnPrYvBPKf6sMa0vLHPM1Ea2DR6Oj6l41wH73RAMNQxKklnuEmLVf8jvZgsf/iZjsfrYMP0Y+zuf7zJ5UW+BxgIv08EKAHBQlcomH2bYQ6H0PO5TaNudUKZUPwJwqXm5pwZYTCr/LJH6qp0q8ce1WvWsqq2yNeI0PghlqhaMnrV380ZFqekgovSnRLI3vdWSoEIthIHF058wizfusT8QvsLIf9ARNhPbgMbCm+blAWwyH2RvLiyCdPuKCdKiy19OyogkQX2QoLkNs1X42swMnqGWlEyDwixiQACocPbpXd5JxbTu+vBXd4mQcCOIYsn7doPmIVqMariN6C4/H6Yay3u+9EBFoG3kHsYBMYC998JAg115mjiKrzuo/Gic1mpp0CV/+K4LfigAZ1rkFRofl8zbLtVGXgfVUlfJ4m8Kr/YlP9hSa+fCt+X0Ku8CqnrOb5V8yNppBU23HmFZ6o0pcaDrU2d4s7PV6PU371f0hlN7UhdM8b2vugGq881VfjunhI4gcYeayvAhrvJYDMrl1t9D3IP9g5dfe4SR/S4mdp870EV+2HKrIy4cPjNxaRPcWL/HQLqnu8lzgIjpV9ynb2vn8yXbnWwn21uozA5K0P0pDgJhiAeOunJqsx/wXKEhujuaFLCVPjc2BUCiTFyYzo3bCSg4SAkE1zeU7MfK9QfFWA/2E/6V2hCLUl7iJUYxQsWiC36tlbgZ5/2dp6Pyf62zIi2CZqdftSzsgeIfneP2yuL9tDLv96C/SxevIehd2mgRuFdZcp89PVpipcymfRSCPEo3GEFbOUyLcIBFbY4Pdm8o0eJ0po1ngRyeTOsO8gYxbPsZsjXNY4Lzk/frUaLTxIln/jmTL5OQw1rAFF4kUMGW8TWL3vWUB22NIZt7zucCvyrRplkHqx38wyT1Kj5tTfEkTY89lb4WT6DmKejclnAvzxmHkEoaCxo+3yHAfi+X7nPD2YWvrsMwtk8diF/AniiIVAb76pt/7dB9iB0nuCTuSuaFbg5CTQzGOQfHq7Ds6SdSl5wUUSBX6HW6rALgwt4AJy+RtYiSgtHOE7YKoEOdu9Iw89GPGoG1iJxZHxj32vGucd1S0jx/byYGlGwe7m6E7qYes9KziwLInbHL5ieqX8qqBJoSBM0Qd1uZNUNfxSKvu3EtkGMGd8mpgbUKXMEnOsaCEaneagK1H6EFhKaLc2lj18XPck8Plv3g7YH5odtCXcho+ammHwbXnXjYWSfgOjHxDUF3YFXtZ4fHq44EsI0f0CPWhQsjF62PqU2ZwIk2M/VV/MfEsp4s5toFhX8p0/prMvjsPlwn2fHW2wctJcmcf0/fiyW64M09nAI4sPNyoDCSMQVhr6/xUzGHNDi+8dXg4TmS27oyo12m291ZWXDmICdJQNmfq5/OkH/8bnlZi8a3K5GYEXbCv5ep3yHwfxXTgvFf2agCrkB0LdcUCLHfDuQYU1HiJhwshqh1zD8wx1B/uYu/c4Nytjgy2v1FW951N6u9gRVsSIzeI7gYfoXg7+dk6NzkuNwUxwuOuas6G1hud5xwR3iNxNX4aDQJHSHpAiRPAdFk5wzAuzC6YG/VLRLjhCSaKkIcCLMg/VXknnpfzAdIIjwIZCWZmBHi1uvNZ7i7/ED+vfgaexkcNbmPwfiDmbUROjb/MKtz+Zwp8eXv4r8r2jPoQLQ49ZIe9GgN1QBtGdT2VUR8hgul3/4qJzjvFyYC0uRNqex3Z6/e4HcdVdXok0L7e6T+wOThp7GBcytMUyS2U+cn0O28cFuDjfHzihbWVbIoC13V/vCRqSSIexVJdNoR4wEAiOpPpLiHVpygTBPWVlnQITW2o53rQmpufdLRiB5y8v1YkmxBF4xa6oWdBiOSxDnpIgErQbFFXYhgj6VQke56L9johsH4KKrHgLUCjVSW6mp7FpbAOtJtJBFluevW2ukDcybD3nZmSyBZV3W7S/7abDu+5/qsszKNAExwOh09UppcgcSGABxv60xyzP1iW87iYAYKVCAkkw5h6hWFWrz0jK7zuVkHuJOhFNy1IVnG9WHK+/pwIH0AM6E2yDZjLQihMo8OzhzzhlCsGMhuclNCzc0MY0pRRZA81XQq+ppc9IKwJ79VzPNVtBCvTJL8ibxQKD7QeeQJOlrFpZBpUZqC/CGBmNo/WN/Ie0o1U6Z6JPDmhPUkSp6vzwbZKTdliRm4JTU1sAmdNZT1HGzJarjBSfJjur4WXyXa79OoK/4M83AyoWNkA8RpA6yyKGyRbYxBvl4AFNT0uxiG4Ajsnlw6Wb1w/E2PYNIKGmIKPDOcWGCbQciXLLEg1CLrO9l2+VW6I3BRKiUIuW/kf3mzk10ASc6OP046iqqKqd//Ih5trLUbzTIYg4IRAvFor5389Ub/F2mB+UtDxeEIIx1Rb78mPj1I+VaKs7OpcB+uWld1CYTNp96b0AzDyguhAIv7nxjxv+ZuivZrYonjF4Y3BwVQVfhZy99CXsnvt13K66+RDZueybWJ3p/mo8SzHH8th846Q1tx0AkBxaHXO+e1EJdsI2A8fcmZngjnV+ESwovnwDIJTdA2E6H93m0ODpOBw3bYnhGv7Wgus2oNxtDlunFddcd9RS5J2T/w0DJBK6rlI2YjtfIJFm3Tyv+P7y7MOA6xA22SnyNDPpTm1P/2CNo3aA9FxjyRUM7xNOXn/8mzdfUnvYcr86EQ0CDmzlERPKpwuoTrBUMfv0d36UkutLuoK1Xhom4oexdK2ruxdjsd3zKDjfUYlWPXt5fI50ly2SB7VMWvcZquAhrYWAeUus8KAm/DxLyXPZw/UG4jihg8yIIPVanhh9cLS0kx2eGZKu6FfPjAR8/5xRsz1befGr1uY5fX3UCW4nQIgKpt081EdlafliHPsxTa1u80+XUYV9hL+30qz2W7wp2nXbG/Cq8QQVC0YxT2O3pQomoz6XZMNOyqDmY/f46Ps/GaJPHVWTlFd8Gvgy3UxUk7RWgnHrCs+sQ5y1oHhAY736icwT35oKcrcuOMzpCAu6F4HaS4HMhOJrZ0hxj7zO9gGmhygSY4z4+lGGqIPHTWxr2sLY8Da5IwIhKeBBohmU/q5+IiBHJ/FAao+lj9mvt04IyMKV/2jiTLkolfxbbhXQ0XWySqWFcMWoCIw3OyZ/UQLWfJGC8uA2riiIL4/bg0KL6bpWGujeLzLhIS7sNR7v3ANL9kW2mhHvChDd4mUHvziRJBVrDlDwxjf2R21DUrVy7Fl+bVJ47uQJn74UPHxnFKkyjyHg3J/Ve/Bis/c06yj5zghR1OPmL6Ye/ZrETVVaTnvlUEELPVeSVpNvl62VfKGG7/VI64qg84RJ27gg78o/9oN/i6hm89uoGgTZchpcTCvwB6oAls7IkOAYmw0oikMU5rIcQ43NkVj+xcHjjvezZT5sruFXMq3re1BeRGH+lfRR7eX8tCAw7HpQxbSBR3KxpCEmI/oF63YEyRB9CsrKFe4V5z785uSo+AhLLYqVhfClxhBulHfW2o4BIDNIxrAnkYIqNtYCB2lpdcCAxvAgIFdVUxgJS7DcsNNTh9waoOPITAMdNl6VouuN7X09Av15TSE1cCRiEdZWUJgSuPtv1hoLDOaIQLWo4wav8TWflbj1J7uoQB8rTwjiRbHmcZXuK4nOhCPBA8RPT2AJRohEBO7R53JLBHcD4JOxcPemUNQ7wuQy5AJ4MllEA+4fxcnGdgg6LbStS8haBxokLkXWwICVAh/0AWuuCVz+HcpWMK/mxZf+alC40KWraNbE88GXTgBzTKwaXv5UCVtA1F52NK5U9Q41uTugH9VUA+RG4TZ4fg5iTLW09KK1vsiUKiSqtgHot+UnNe8SAAWgQppy4sUjWXE5f7HsrpAhfzDuiSfAj9AZ0AKY4M1t9phWsZWMlRAmGGP0JRFkzRwY6NaGimq7Q4m5sDoAge9Iek2jceHQ9/Pl3UHSMeWguhDHbGkh1A26wIAJq1u2WlY+DagMTtmgckJLf4qLU7ZFcnCM84/PZE3c5fJtuPGWiGMxxWzaxG4UM1i226exQDJh1MxFzWkHwLPvr/Af3N1HdnUJcUE5CjTxsuGUAru50S291vZSMLLHUgGH7aSZm9AHrS1r3cPv6ljsDXZ6sCAkREsNxmXwKSwSu374S6DLz2yDme3yry7erFwMKyh1hy0B5sNEZs7Ig8Msobq0Wbv7piHOrPI1GVdfnxYv2WzmACM4x0fSIkXIXKBKdMuwN9cLSvAbHwgtZ2e5CUzFBYc1gg/sPjk7R4eZyns/jl5CUvka1YAYdp6fm5OHs9Ew9uoGj7Cu2CHgS86qnC9mD8D3yfV/8IkioTxcgCEdKNxhp/zYG5v29OJfHS3OXe9/UQafRHbYx/OqDEocoLRJnGbisE1fXbIxysGOWkJfCM052P0kAuIox+8grGXGvd33Kmn2jgS4gqHZJDOuT9K65q51sHpDzPWGtzLFYbLXG5NzvrRTZcW4/HWlXfAO1Q3c+NnDMJ+UTF/LXpw+Gs3pMH0TgQxDEOWA6LnVKQTepnoUzYk5fuSlCYkahOyK4jiOqvtKqnX94YPCixXBwoS/1JAc0/L/zEQBtzoRSc7iBxZvvaYZA/NugTw8farKoval9zfTomOgZlhqOkCnSDcL6qCrDdGmrNIWloxF7KgU/iJwr2GY1glXt5FBaTBw1RyPHYJ8mNsKZXtLxfJpbt766Yr7pTxEJwJtnLMlmHJ4NudKkPtm68VNsS0VQ7u3tn4EUM67EFNRy7/2NdDwSsEWhTV3xw4HHg6WZN8KiATMgvo+2LjhNnKzCMaGJ/xEvai9ZGETbgX2mZK3AcPMeQH93tJiXEFVtpiK5QXSWlXMc898JfCD6+m8k98tWZY4ccKZkStRulivKk6qNzVZeDQwgcXSPY7KD3tSYK1ncN5/dM5/Q6HFTpZ3TTTvGCo7b6FNF4KByVnFqqnftO7BBUZVBHV8sOBPYpKM9m+3l6eGDUs+NBGygc2/XpaDP3MePKD02qLkH39QXdW/yvkuZ2jgSGCO0m/PN2QaI+26YQaMq7XITSCMypxTpncOxVcSIZiHb/QmyUK7plwAtOzhWnOLHSvRnnnL8wMwehqbTJ6zVTXNlTd5eNyrE1JuxJmoLRaLF/Fn0HTd81ZhG941jaGfyjXVi1VxBKFWbJv7G1zxhytExYo81d8nx+EfUnsBmfHnmfrRtf91AFxaIpCP0tA7ZFVAP5ZWOaB6uEDKwbpTg3f2YFbGKQYKl3GEv+lO/SuyQ7gviYK7P7ixxkZ3JSTqKDwwQI+tAIDZY51+u4MwXUoaYI93mpPh4KlH4qRfVFXQ5G7ZbhS4aJGgno2I/evH0wF/9XXQBvS5ULDsYZOQiVPSq2lDqCvSpsL/AYe3ZFG0zHhZAk2eBEVxyvZTKk15Cj8Az7U94zx1FXXT6HiaPKtfLuGx2nCUfsu6sKZKNdqUVVrl4aNhOxFGW6sqrF2hxx14sYuUpHn4nJTaLBa+96W0UOfvLdOFSyEkc2Vwf2Ctxeuxcut2jh/n2gDT9A06T3a/UJBh0a1J+BGXOiF2PUHBg3IlJBmHRrc3AUJBYZqPRY+iUVmTPF47iFLhJmLz4EySKTXkAQnzK5WSimTfszLJl0UEpnDD95QPJyalzxTroS3WbWM5coog04Mxqb36tX5+nd7T9Ym7Lb6Ua90+60avTcoinUfy99oa6rSc29mMMOT2dxrQtJPO0iwWUhahrmB9TocIAGc6LMrXiy62IgCoLVnllT9w4SQYB71eRp62Mj8QOVWcsKTz156Y1AifViMD6GCGXWbXvn5aHLwzYart5p7/WRkroNvMN+vjkq4Cl4S5f2UOIBz0hYmVOuPZ0vKyp9HSNb/wqlLvpBeHhtPU0pYbbr8ucTmkR7K/YEqoK7ZWkRB09vnBdZFWBtF9cuCD7buvIADrBVssedxLnURv3E6cyUDysK6kg61ZUTZsAspBiPJRPj8t/xRk5OACtX320PSEzwr8O8hDXH9Qsvz7NPa+0wnvMiLKgwtayN+vEUgA27xaMq+XXEBWiO5iZg5vbUJlMOrMuKP/v9UFtMeyXLX789WkR8dX84qdMwARpvnHZ7RliJ7XK9T+brT8DKgLfB5XX+EbFJ7YqfmmWjllm6ofcanDI3S32WrlMsoljmGD34Vq4fyFO6ip2lPluomcvib+YXFBunRfV/MrfrVc1vLG2c9o7NmZVXwo0hDelIGuvZpeRJakluDtvic3mEWf6hC/qHW2uyHaEzkGtT4reZ4QdWMfESwUTxWP9jkiSRLoFsmMQVPdYLfVvbsqFGps1hacObFAFbuLBD/+iLiyuS9LXDboKSjPl5Y/DPo8ipwL2p6jfC11XKGYpukf6hZ+3JQLT+vomBwzTNVvmXibQ4oQjiVO9fjOnVzfGAonxXGnoYfFzVvtkOXirCI00XWfiUDLiFaWapdswJfqJuuiMj+CQrYokLmQGGJPqBd/qa6k6Nt3W839RIegiJF4LKc5sD18t7z3rN1dm0dnEoCUpDI/Z4VFz4CUxGRg1//Zpoh0knY5wZ0NTCounJcSm/1U5BgKizzUXcNe+s+ljFjMVuPwO5aay24mcr7rnzuK9sqSS/eamkBA51w+OEuNvxNfBKTA6MZWtEf6I6Q2Ywfw/K/wWL8etQUwBBRymuBQI1IW7e2D+8XXQcQLqHlpolsm73Rtx7d7pNj4cRBIQHtvpgiPE+W5yeCU6QXzfQHU6wGzWqV0m3wYJ3BaSBVVTuw6PQ1M+JMxjYBP9XgI2OAm9XgXJQkP/TV4B/gpzAJhgirMYliveWA0Or8eazTTL5S/FXJmr9Cn/DatY+TS2sJKWy7rFSeFLsKOrwUTpy4FwG+dY2L7o2TZZmyAWOzRLgGXXeIy5j7QFS1+tMCUyPpuWIyQCAnnGgJIkf4PlP5hLafdQn3Jh3jxLwtjVPE6zq5fMzABOB+SOd5OhrYKBzQwaZEZBSC7AjjcJTmh90bYDOFytyHxMbEt+wh6GWaI1rBADVAYpv4JIerYBWqPylmzvqtML1NKd1Ekr27kAJ04lkGBfwntqX8JuKm0thXNlJwfmSIQ7UfoiBEnO86btrPeGfaipWhh8B6eMtS2BfPtVXWCJvVmvXlRW0JyPuZVDD/dXr2NYm3Wxc+mJvwUIUqFudu605QmV99FVn7BXKPL8cSqpiePI3IuUcN3DmBWNs9Juy+W96vrPbLNP9pDsVqbNs1xd7Z2i1K+PcykBFPr4rSm89X2hWKBoIQ1WV1S1CF0vJUYzM9dh0ms/rpnyZfeFG2mvqvaOSASOOMPWbmqyArGGwo+KY9qVChkgOdOK3/aYzsGj7RzykaII2q3zGSsIvzdaA2HAOhYlP4D/jVTzMPyrcHR+Gn1gN2c/VJ2UsDF65SJa45eN8EW0x328biIxGm5QPkH4EvF2wBL6Mm7VR9nTnFO8B3h5MFOvTT0h487cVEQOTq3IEFkhKo7o4xIv0NeF5wYHedQtHSk1a4BivM/R9tju0SAr1Yakw6Zy8T7AlKYIlPx7umA7p/GGIxm6m7VSfv77pGf9tOdBUQEHtQCKKQ33/rHWJJinKVC1XX0w2EEgz9kHwN3iTSGaTmRlprXwjT/0H52TqJfSjT+uyDGjFhAPunxnXbQMvcblpSEyXPyjGrhmtoDMXGOqAEXd5TRJZwY+e37p8tdQcCBhfxt8NwZWQf87g42uQjbkH42/37/TBPxrOf23hEGsrlNh+CapeYVOGIPEINFAJWfBsA5Rv84BqVCjhCYiflx8sSRUC1r4iXfMajIdAy1c7977wujj5UsEQWspNsPdjo0zO2OhydIZgACd36K0x8hKxj+RQ+1pZMamswlPz+NdSp0dTtSNPglE8pZ5ODupVbg1e7Qur4jwkvgle6T3AnkX2EJXtwafbqUE55lz3fibS2c9PWEII80Icai/knbd+vrx0l1cM64Q3jbbJLCrnJZhGiMShORY70Yr0an3q8KTl60rRE4INoR0AfAmMZnwk5BbiV0iYKdTi7W1ms6YUX+V9rlwzMehF1zOte214hlf2fFHZTBJfGgrNVAjDb5H4CWqcLScQysAvHx8F12Mlow+3wD4dR+TYOgQq2rKeE3pjs99UumvVbwBo4sPJ5j0yEfi5pAIe9MRykBRgYlgKJ+ARA/0yJTTOXyS/DUdHkMELUDgAVyGuEGktIHQlitFPKCC0VdUBLUZEFybo19i3UNCNkCJXJOnSqJEtiMrYmkzq0P3lVitGECYAhOCSOWzYvPtdidjVu8Qmk285wkuMiMWzYdBEaSdI2qPN3DRn03eJVxS7PGpOuHOg8399+zHoYwFSaZqrKBZd17KcSO024k0VEpo/o8BlJd8w7hyqSyGtMhp7vbiKetcTx59PWGuQKmAZlG3s8CGqHi90zjLwIxhLcZ+158RfOaVJjWqRyZbHmR0eJlR4n7JFenS2ZSBZTR1DJHizh3UnE9ySYhiU/+f7QRDu1LRZ8FRGLnfLHP/Ru2xU38vzetjDo3W20+aGOt+HK2/e+ag4BT+Xd6JOkRPRpW5fhCwqpcsC+uSeHOv3jMwvxu8Whve5SZG9vKe/7dcXmFXVOge2Hr8LJ4Mq6qJKTmMtCSDWHKLZMpJxs65+AvbeLLL6Uny5s7k8vzK5lQ/1LabdWDfYYkJwURx+fsBn3v6ccAxAK1woZxbj6qPRSJ/SQoJ20Er+JRz8hERlnYYqUECm//qYCGemumRayqtvxuekA3v56EOfgz9s1mdBkpTLGFBmOKXqwRee0maunEIS+SQ+n75YF5IdfR58lSyJphBo859ibK9KnFhb1jW/S5I9WDyLEGgqh1qX6n3r+YC8uy82SIh3CJ96oXLgnbU8hLACe5+iRUfX41VfZNamMr1O1hztXGHo6g6cozdLotM1zWGY5Uwv4Pb0E0U6hYzFSlYa6gZNlXxGgX3rCepztt64KDBjmGYCC0Th80nEiJ3db/HxLrwKBYR1hxCzm8lH4UakeA9UQeffW11x/ihsX+EcgU4sMOhjqeTa+3SINYK+wjozZ9YZ0VEwywRPJERNkL78ISgeNXxfaEFfUvB1cUz1XAXZ7rPU3Czb4LzD9Q+2MzHEDiB/eZINZ7ZUYMJ2allPtFX6CVNudMhtfQFf1Zs+bI3Wk5MNk8FrwDRYgJr6ghm9p4LwlT36jWBnJuuCO3r1PU2XyQQmnHYp6oMomm7pkUYiBpUNUHrJTMunjwY/Xu0ek29F15JM6+tMfQ9Im93Rp3It+WXu9G/AB17UjUR+aNB9bAqcoPKCqGkZYFLOOxUTdMZDF/y4rGuFWPJTL1pBvkWJhG5C8Nm02el7ckw8I1TTj3csAAOWPAuEiqvqKSoCZlcOcnoIn6CRQecadBC6eB4Wnp0z315szKmbIfmTGmsTAyhXk3AWJ47+e8erOM1WVZyW76nL+EPEgP/baoZgiJIZOV3QSBLS86iCGYaWBWR1oZg5xIwBLtTNFu3yW165xjRihF3Wze9bSn3kwUgaI1wPsd9NDqkEhAgCRUgSuKr5v0p0keFJ22ySjW0STX0r5HCDE4JUG/EjdbB1eH7rjI5dkxSciALo+kSs0dbhRqORGLUK8B7qGwYYEFB61WVS2oTqMxnEibZHeNPKzGGO1Vd6Zf/uAfAkiHyq6JGOYa/5kM1Jki6QNjJWNmnDyyCfTlkAnXxaHZ1cWjfFwe37/5VwMOnqvhTQmzBSpzqrrc9OFSTg87YvrXrv5GuKyiyrAJLxCB25aQl6qwv5jjeDpx0weM3a86RNXY4x21BNxJgYVsf4iNntP5CAi9YHNLxNwyFWJ8UCcTlcxfImBf5WNfpA51beNn19Nv//5P9Hc2T1N0xcoj3DtZArCYNldmlH5gQV0WhkliDKTif+SO41UwM9329aCyCyfnCxiWOBDq25UlcSnuYZCLnnWlL51aXMjUv9+uLWbWzD6XR1ltLsDA8agClOBQ50QCuksATleohBkws2V9IWPGDhcm0JXJhy3XZQUTL9Vi5os0J+p9QDnV8+6+ht9U5nqUVNP4OppeH1zhVl9PIshcQ2jpAKNbzJ3JTYnu7O1t+btU+OB0xaLTIFTfe1rz0yjjV7qKM1dzxbK7rT0ILyaXaVsNcK5ApR+wCCoZansgDx6IpSZvKCOQndQVjQVEZbR7JuJz2SrUY3MW6dWCy4AZfVnWymcZE0w/mJZxxIGLFCnxGi0H2o9KLIzFvowEQ3Q0vnDbWQWiwXNz5V7W0w5AEMyOpscDuMOOSgWUr5AM0oZyPaqrItLOxTnzHcHE/iqqHh18OfG/FkY4gF7cxoN9fM7nL7KohvkOBZqIey56XHSu1bc08+xQ6cDD0V7q8ZzNFqyiaWNC91eUSzrlPeIcy/m9R14taERy5q7eI2RTSg/WHmV81DSlZjV6B9AkY1JuyWuUpNOtqP1SAh5Rrk/uh4yYjEQX57i9crMKcPldL4XvU2Rfa17ckBs8+jDwOC2NjliRbyQK0/PZyaGYFAHxqUyZZ83Y1TWotEl3MJ+IhvgkLhyS/nG7PIDAIeqZyObBW0bD+FeZ1UPOixrresxo3Ok3NvlxsmTPh7zh5GtSbhgk7KrjFhC7HsFjaq4dIm8XuBUUDI6clsrgUJSPUq7baoVePCY/ZhCJCmkoYH79JRLS7hVpMCWS1o1IT/psuS7LLsFImC+PuBEYTAW9PtH8W0PMu2zEcGTghtkaZLsnQOC1lv5T/HMbcetjciqKfXqkMFTc/g1/VTNgfDpEshSWZzuvvWfuDp5zoczsEqvzWUWgqoIM0uTJNiNk96UFz9NnTyfBwTNr3kb94EHxwLrp3yXwBkrg/TbxWPaLgoZc2R8LssqNtJtWkRcdOjBwPnfuKsPq1E60wBUOxDjLIR4he0ID8P0Nf3yHfq6OFhDOxHQF8po3SpeC3YynYXhvGxIhZjlzcvmdC2PB8u0NaCOmgIpE5tQF+u0ZWxmSFv2V/kqP/Xc2IewPOX4KPPOt4wQk20sD6q+b7UJVWg/Vfm1sChyRtHyjhAF04C5EBR0meDmYVoCHQnHEUnynLrHJVJrhF1qzSB9fNOqzo0bv/I00uCnSIUX67ZYhfVhDHmKhivF5WxLVp+86yCkPwBuR4JZCSEXwDv25ZZgPR67Z4+wQ42tjxQToE8/8ZgkX15lIteLzws9j4FrhG35umAw1Xng3h3/AxWptZGsOrWxhJTv++OvRy+6Kj0fkGTJHfyiqHi1acNlEkd6xHuRiVzbsSvIcEO/vqKWbnSNUHeEwl0xBwBFcYOcCZ2W9zrtpfykOqXwsO9jdV/o7F8yDLfgGHS8H+wS/gT18zEje1pGANKhZ9nQoReiMyT3Ife/HB1r8JMA1fvfbh2xX36v/XgMb99g77cVCHep0XS13qoRZGLwGU42ezNG/+JHyk8NtT53+rfuMfB0UaQH2Umk3MB/NqsjDIqWnCGbaXbiklrws7X8Mjw8M86+WWgZAeg+vAgiAMku0GPyuweuJ7JkzRfeF81a8YZa559aSQRlMK1fXQyTIMh+z3L72pgAhhuOVAQ2DnLMXNopEtUtoqHh9vbpvyoHfCfT3TZo0368M/y7L+Ns4qpL2c7uLFPbunInoOt8pW0itdENmuadRxm/lkI3H93KOX3OrK7F4++9YXxYT0j4N33MogyqofKluBCR8BZGzCznXhPDyUNfi9JzG3o07AkGqjHpu57BlckXbyhuJtae/4YGLWiNrsU/b7HiYvoDosU1x9B5x0gStqHjeeeZsa+4lEJiM+IbnlRTOuPrGcjRE/ATHsKJztNJAbt1qOhAaZM321WIMi6cuzM5Wvf0TCkDlqzNEtbDfa6vYNia/s/WhAylo4Y1PnVtgeJ8OWm87rORNqrS3yUj3PqYRmKbxe5PitcF9D3q8mX826CQSwEWg2htYDeLDfO1jCIs2PiN7uYC6tp+h4rhBdCDWquqIIt52oUhxctVoOEJgIT0z07WJcyr41FoxhbrfQCyxXCyl+RH8gmp5BySpB8AFJWj3Sf7IHOan2cOwKIjMa2emxPbOsQHdpKfE2C8axAm1K3SDZDtxyX3wFCGX7k2MfkTZxK6qh/sSmxjMXyUvmCeOLPIZPbyJVMoeih6b5/H6fimX0p2B6Sr/47Neihl4MchM6AcNwv6bZBB/TkuKrizbTqC7dY4X2FzviVrR46KPZHRitAEgyl3/AhMZBgpp1NMkoXgCIYJ6kWCMLjFOrtoP/XJQZ+7IiQCatwElNqdPpwMArD08RCC6kjR31RZG0oq++mlDfw6EY7XqTDkVa9Ixt7GDjHwZCloYsNBIDCeGcSMObE7UA/8PclRd/EH1ILqMnd3GkWmEaRdjb1kM1AZGtzbs22DK8dZq2d8asRIvH1XtrXQBZzk3jqP6p9gmWnZtH+QHRAl5rHxZKvDbLoqz48/r79MxLooPLXaz4zNVSsZ3/W5t04Bw+NLOZP4SYuh6vlKla6LC4PfgS67dbrvS2cMhJbD1bZKESpqS85yqn4cp+LvS3taUFKjv5vr/dUNK+L1lpVDOCCbDpThazeiu5eNbyF/XgT8ui4MCX2SO0Ivf5snNaGLOHo7VV8DKMwgfP8Ivwp0lFQaRYo/Hin7dXBOp/yB5bIku9eN+BqOxKEPoAjO6RyFJiukc8Xyo5I55kkHyveOGBQ51ejqZHJpmKJpFqmoKfwy6aGpsY6chuz1WJw8cH/IB8voJ7OgDwDtjiTObN5UVZySm1Ykmm+eB9cdCAg2mqAngyZ1ApAuP1R/HDrvjyTpOMy6SO2fr1Pp3p7fQeXE0N63VfEHtctJmIUP0DE8YX1iV69pFyFnakC1LBSuGwlrjI0pHuxmPz7Uy1vSD1n1/eqDcP/Zl2zKLbZ72iAaIaOu8RmfGU+Y4IgAIvle50980dp7oFYc76W7ThSeqA/CITzlrc7+D652h+3459F0qCcEsEhsbELXIzHTODsc3KCIFRHwc+kqeY5zJv0GssqS8+/lbmzQlozAfAoTrrLX9x7CpLWJMfO1SpgXqlHJlSRePlXqDnijxnYzafDqPLm6M21WTdTV7PPVTjAkbHzbNgGy7VLkrmWK5a0rHqr2YnGMvk4ouPsNhoNZmRO28oVqrNgDEEy69CIrOKdrbT+UMZ6W9M0JAnP3DGz4qrmu0upCA/BkmoiJLXszavxWN1YWIzGnrenYSNsPEqEgFJTsu7Qw5N1+9ssuxHWezAVo7SpKCglDqVe5ZO89u8pmIH+7z0NZ6kXzQ1KlCQFBHv/1/lRp1eDpRIqhIhjKXSEsHAaUIFqGeRNMdAaTZm9Rp2VPRq4yQMB2uG98nOC8Rpf5upvaFk0TdiyejW6OCdEyDWwjFjw8+PVD5toT7UN3u33chZb7gkVMJTQHo8PQA/phsw0gHImO5CFuDQmPDVGnfv1rOMvpKFcf9jS49d3t3pDkZ9AS6/HbW/wlpF7qnPfdIHPvLBscARJu+kLleLQSwPbc8VvvusARyUE5H21EXL/TQ63Kn7NWk8cYnXuUWK5yC8WGDkQihP3mBUMucOII7X6mtz9v+QCrCjpFQDadyCkJnLXX+M2h7gZ7Z6A+UMkjj6yDMWifXls7mxWCu9bJu6hP2yq+DjEo3seCvCRwfBLcuEog/RRs+wDXWbCcR/H306L94eSmJMhzNbY6V6fPrhfH2QrJ1raMwBfkHlFwc+GNpfa1OCBuupAV1t7NNtK11Hosu3Bra+DExp7cvdrmhYDKfg32EdufS3DK+TjgDQq8t5SETAtGuFa92ohfLqaqIJYXNgKMh6zpkKrXmJQNujnkB9wFcXS7Xk0ZQRJMPWoMpmbflEh9WND6VD6O0jVWxP14tWceVXE20DnUUkTAngfJGdISzOG/veJORPOfiwBrWBrXUPZ0jioRHwkd4yDTKy/wIWaNvBmMUKldgsAPCCbmSRk6GmupxEAmYCCYjivZoCn7g15tt7hGq0X8FbKLrzmhoSTDNV6N2ozf9T5IC8G0skscFGYX7CCJ2GGvuelysw+dEupu/3BoMD1j6XIEBVJVF+9tk6e46d8owvopSPI7nfgTZsg+a8awt8wjB7FiXOPmVpovR0OVJcfDveOzXNUnhr9dC5dL2e52xFqkSr7hK9v1ZMDnhuYj2NkImCvtPbIdoFSpsXO8SywQQgjoSjk9QCEq9BxfsxKRoLPBmGobnAU3xQCyOszjcDBKuvbTvtiYIDigL1qNP2eOuzyUfqhfhZc7u4vXhTQw7PrLONxOsXBp8STjmzWAkhunfvPQox7M6jGZWg5o/0WNIsG5oKjyL6hMuKR1+cwfJOT+5e8x1sYhXjcDt5dN4A7Bc79Zl7JGAISFtveMC/xsXGdpQIFYy0fSvrhF1GxNrmSUT3xxqjM8MaWEP4jjyGQJ6TASIpwlDN6X8XaSQizpJY5B7GZTaEiLG7uoWoIZnmK2e4kC6pcFs81pisgmz8hoAArZIss3hGjUHxX2mpSfMFVNjApalI2y9uX97zxffEVLS+I540K1SGAxEYvSB5S52E4Edt208jk4MOE4YlF0AsNivrTMtD0/F2eV5fxXiPwyzYGVxIVN6qo6dFQuMtEUy+elRI7A7r4C3wrKwa5LpsioxgfwC/wsWYwfweBLfogC0TLzDtELBebWuzn3M+lxjpwq/IrDcCSGeEXDIDGsTg+rE1Vt6BQBIt9+Oyk5x3+0SwDmSkcn9jHLvmVjGuLMbtgKidTG6meFDzuAhZIpkHyO3QIRDCv9tMNf01LX0Lhrwbp9iXzK6eC+UAhiCKO7vvS8cImJNBdVf/e2qLkqVf8yPqmzpU45VEWW0e1R5wMB23rfGaXAHN+k4a5qihHcCtZkI+SbMReBt7c2KOSDWOXs0uhEMg/cziC+adEBa5dJmg/Io991K3rw7299sPd+XMoBmjwXbaO5YLHZ7pzswZOl2FGEMzcyVFJTy0K9fyOENYZyB+pypfnFiBlklHgIigR0/YBDj6T9MIPPe0lD+DmznxSARiSZN1WazZR3jQOFzDzHrh07rsFkkMA9V7isyntPSm2rMeY02ZfVMjBq/+e4booIyBYhOwvhGFyMlBjMzKsZPuArkuB8vzXGVb4NQ01XX/TqkVcfQzrt2egnAkJPnaN1ajcguVOTjQNevwwt6/NB5qQbxjBCUVVPY+PWepJEhnjHU0XGUZF3DVh93o+ZBUPxtmVBgmyBaVthAtIcBkXjS479BrQBnqjghabnb0m7Ee8oJrEfyEgtuQktCnsabTVQBsZqGBCUyaBslM7ryNXLvaRJDvU/ZTgmgYY3UxzlH1ze+b4bpELQW7myHNWzQYX/bgE+of2uZCoBWGFVyamhn9iayXA6YZ975JQoogbd1KDcKdvdR+G8l1AX2YSTzgdFgfR4HZ/njz73ZKh6Bmot5FQxr0uK+Yh8WgjJQlTcVJq2EGCCNXg2pi5o/UsmGdExJQDm4husHopFHllCXcNuRYjSJXmUkONS99RlryA/MCyNqmyUjMcZ6qdlw5569DTblUg+yFykY/IW0iq0rlnrwLzSiOCt5RjZp8Z/Whm34Y0xYqnb0QZoGGcrC+8UdOHO/S9dmDC2ehvsuI1pZGtSCy6QidUaZXf56dT6AZxgc92Vu6DnMInUjXU32WJPo0sgruddN9nf0ZiLW+4FHXh0CxvR35j9jkTwRQ9SUpIrkCXJnZc7OM3Mpl14Iy7CXMBpCOHXI8eiMEixx7xkNRsNwg4iP7YNZ8OhfAhXMN4/B2xKPCalFUyC9yhQptjHsE4nF/N0+iJ1o39RYH238D2EoVNxU/1O7mt7xKkPlLdFKUSHpfME586Q/PISzPle8NUtC8te0skIwTotr7/+K81cG0Jb5RMM2DxrBIKuQ2ZNN96xss5Q9OHX88yCAjP3D2cHB/ZrqV/jJt0+Gu6+pVH6aDMpuB+cglbjFG2HeBBy5MDOXTzSNQvtDV2Fi4ioyc1YHG6wId+CmigIedUhcV9QCpC/rlWnDtrE+IW3yWaLk3IxlF8xyq9gKcbz3WBmLBWZUHmf76YFrnEqtWoHGqh7RpjWhqoRzlCZo8j6SYiJyRBghuEUDBHnV7qE2R9EbtCFV8+XGLkkDyBKDBZ2UNp/y+eQv8dmWDjVbAO1uuc8qrxtP4pewj7N+4gpl2jOtVlqHu9AnFcM8UCNi11URYE/mrnR3eDFveGSAiQOy45wOsPEs+53hLpb0nLfs5VTNmfwkF3IgkdRBOvnEfO6RjCyODLv5dOx7LU0lkeg/PSyiM2O7KVkZermExvKTCa1qZvKljYyS1Vvp734h3OPDlynVzoSrIoOd8vVPvXwwjzvrPLhxlwl/pAB9mEykJRfrAwErTui2dvH4DHnPZNPMfdqpXxpjJP4OQ6p1qedNe4G8G/3p2o0tXUFuUVUeM7OtMzT/tvx3fSRRNOtKvQAUYjo8BoygIup1ml62u7W4/FNk1PXkLYyhPofa6zJ8CsOoz9XoRxK+xssZDXemZGEZL/CA2RKy9BKv8G6yyXyqVBvqGFCCcVx5kiXza2cyII6ioYGC7x0E/htHpDenHOn4ulwq7GnKqZ/2P9PXzmgKJFpM9ppr+4TikVrBIqfPx2op0Y9W9cP+Ix6Mtjh/K89KLPyvNHTVY3jHhglNOiFnenci4FCa+mamwDgl3kdO+d8Eaz+8RSztJAF3uQpFbM3xuh5vQoiJhJDKL2EnY6UXYcqrF/cuPahwyAQ4q58xaeBwdZP1qIbgxnt2COTJYVcGbHVWFjRRhWVaZq2p2re7K3E+0Va2+CFPqkPMoTkMt2nVTA105efLbincpUUgD5wpZev8mEQHm+oBUZ0dMyLSD3hObsjD1KwCgCT02kzo/4ft/H+GmdPBtHsYBKZ0jzbTAAB2LPi9TStpitaCrJY9q17fFfLPV4CYZcBpeB1C4QF0aeGGx3+HBn0GcmS4ck7MJJnKrZgew50MQWhs9JuBMOTbP8s3erIqnR4r2ixvbSvv8PiBJZT8al1ymX+D2jW4kfzrgfdWtHk7rMM6IppyNV3NlMW44vLO6QtrhG8Trp1gReL/w426f3vEYGeX8lFMjv7RNfgH6/vyOtvO1JbneFLgLKU9jMn1UpM7+bR1y0fFgkk8JvHNjw81gqN2woIa1n3ke1k5E8vj6DAgPko1owyehhhyaAH0hDAOna29T7gKo2ykZAqDQRxTTUMnkYU6NBUzW8F5Sb8V85AWzbgygJPX2FY+XuG92nrIeM/QW9T818cAxzpNHs1hVtas6t2ugtEd4nrFaDJVdlWH527JGDvtbAhNDpqbdoULGemuBZL9LlvdtSLF1pbd0rH9mDPkt3rtOorzhlisFT8gvF57J8kC/ei6bGiN7oIo6SNYqmY2mJSFTKwj6Ej5eMvGwdh/S1hej4jofs9zT1A1jP+XLuAr2Q1Fwf0H5oO9fgUmEHXzDg09Kq9fYaiURqrMAJvE9X5LoeXeMxIJyP5xSeQxCiZnc15ysw7h9EUN4D07GJCU21GbfGqtRFr7t9smSyBIpPaupu1J8WfjYqaMUE0asOeRMF+iIpggPYWvlwIpr1U4cUUjW38FJhXU44hOVEG+WZeQkkvdLXYCEzKs3IPFwLkelT5W5ckFHUEVDIoNT/tN3YhMSO+s2BVgzvp98b9zoL7afQXMLshEE6AdcbJtjBX6SEcjOnFIHh6etQYBmsOXsbdHQaxDl4ZTaC3oieH7NSMx1EuoQ4qgA5jZhNS9yvQg0gfcJQ34Or837csKDkGsoAfdBb4ULauB4rqPutYlZbUvQ3BYepF2Q+opq2Gi7B+oTrN3sytJI/GLTou0uygd7u5yRB99/NfATani04l/j8HONJEk7OXTSJrB6c4almjWhueff8p2RduavyMXFHt9ymS4GHicoUrlCXwFjVwgY1psUuqJVwdBMO5kYRryXEraY2tTJ5Pt1iaToj/mvRZsFe1ox+B3pYtayuVgjwuHBsAXbH8qFMSzpOhD6rOC0atq9JtX2/jCKCfr9njboHCavjzwyeTG6QSdSj3X2TFHCArIDl/3vqX3X0rLGa7AUPbMEG7or0Ejfx8JRcQHj6WwYT30U7Kz7PwOalGO3TKCAiAsv+fn5bYuFXX1xDy9wde4e+X3LfaNtXKsAYcSGeMwOn8rJlMQrYxwAIZPKZSvouE1HX2CYvHemZLgje87rMHemDKWcig1bvVh31x1GNkOyU3ZvEWAA4Q1ik7AqoUKV7xoO3npo064otXqvFpVcLUFXIw3FKarBkXEZaUaEPgbiTOjsvXiR5j/1Tm9PXelgDoobtqUBm8ChEusrMppOJX+XhlqlgNO6UZEGRXnuuAnQX187Wa07rC0Zhj6YphIIzf8zN5jh6yDXmS74qFDoBNKmu8fzP3YL2kVuVV4OswY3E1i0qVyEwXEm/gkFDjzxeJpSV6KvQy6DXs1Shv8ChQU+QHnBL+vPp9yfvVH7gHk777o0NPYNnIshpdrQ6MXAnkwvwqF0zgKzmdZy9fgJH5kPXYA7Ki8O2PmLG2Wb4/mZELp7AwND7lt7c6w5yuotRa4WeZd0FsumvvO0pquSKtf5TW+n4gA8H5mN7c4+ABVaBkyzgtgHPAuymVMYPoCSPzkIVQW848eqKRsQH6e4LPAlna3zFdh3pX3mck383GknMmgmhjQrC45Xh5zBRzOYuRtrK3FJac29Iz4QXeT4yyvxmujbIA21sPYKet/ipueLdNSlcni0jK/lhkEpqn2rPcXife5VONR/EBfQumrVvg5cbsFpE+5gf5wgN+hoFlsbzjJHC3h+aDgotdCi7tRezWA24QzqpQjydjZy8kug+U9iAGbbWyXURnntdNWaDe2L6vbLSAoHugL0lhXS8ScIRirJHdUv5r5e9hdH8++uNKswM+VrfOJdro0WI1q58GkMLyObcja+qApNCibaCpKXJMpJmBxRxG/2GMcV4epo4Zuq2Z0vtr6gMyVhS5qhpZZHn0zlYJhHfaBMSPt3aOGA7QvoZJvm1AslaZ3caXyUy+O+08ERgnKqxM52yanFTP9inzyI8GIgg/+2SbIk8htPKh7BHjHqqh+UJXlC1iAwm7ERz1Cj/N49sYISZFlXGSNvmXAS3JDx6gD/xwmkyXGCtx2KsLH9Ew36u+sjzbxcxNS9JblqtgZ8fFLxugBUvWhWgc3/H7HgBzpeIqaOkTf+0CL3iP4URNYg7zKlM6EUy+Qq0iceSqTte/GRV87PCswfvZpIfHlBRZmCpW3JOEUezkFzp4QCga/9RtXTzwce75EHKxm2GOREzNm3TN+iKqvocTij2XyEeG1Wi32pnTwr2fSZbyQBvpW5JM5aDyBFtwkN54Oz+E5pBRsSzmL3jUKfnRyNtfEgMWEBpi+gSPr0CEv/RoTkCfZMQTJZPCqUjn7dgyve8AfzMcJMfuBxgGZYyI9Ci3U7k5hXIJdYk9giZd1MZhda9Wqz4hraxQJkb5XVRztBFMtdWF5rotWAF7PqkT7KsLxIgwBDUwv/Fspg+c4gYKWSqj42VHvVJ5A52s+J8Pd+K19HypDcILFe/KLBdSCjMU1l7arhyDV+EO570hbF3rUfhtWP+Zr782Gabi+fi5ih2Q2iC425n4jpA8FWGAevS6iVLKjgSo/KWSyWdiqxJyRGvDiEbm0lbuSUOZaRl2lu2rqsJM1SJhR8T78b8HfG42UcQq+Rz7st4qoRFZ94XyGSZ+2a/EbOTZmmsKQmxYJt6cnhGXuh5Exm4aZz2aIjhFjcozpyk1lEcyIVYcM5TrQwATNYHRGRPh976lojkYwxzA2DstdWLfYTQytEydwQ5n6EH8nc30nBJPuT2X67ULhxa9hu8Tu+S4mXJH2rfR+geDlXzGF+RrOP8r1OWrf2bgyPDS9csnSaAJQuUJGEs/BT8PDAOKzw8JsU3bIjHTDAFSeXj+iVxIGZL8dxncIism7ovMtpBqCmvti+l5JoVKKHlmoNHDthm3j75F3+NGrxsr8zL1NuxOiD3G/eMMpU2hhwp3dnqAtEPxEO4Ke41tEptR/n4wUtdrwxuzxel7l2CFBJBYWx12E1dke/Tx7VmgT3Wrfy0asRPkLHrI3WNeWWcTa6LrfxmHozFFdjyeONxA8Lh8nblabQsJRiBxSXnsBWxmNRvuoSMkjarWDEyMTg5ix90ebSY+p1wnkC9V7TZmWNjLlNZohGJSByVeC8EfiS6u12wSJcMikRTHJHZgsahLyybZhE+NTbmKBe1YN9EfKrpABlX/AVlP7k3TXeMfZ8bugeXv/iAfjyFT1pjd9eikzs9XwlXVPXZ/PVQsGOM4yyWidu4RKVfpzK9uhGEAu4+AApB612OrU3zIg1qY06Q/AKEjXV3nY+INci9w75RU6i6ROSkBRD9sNCAVBJUOCJ65lxq+jcGIFlXXOxSlQITF8bML3HdQ1yz1WnMgw11zrXthmBUeCJhey4JceviT5wt9iWRc+wz+t1xGJi0gXlWpKfXnMLJOZHeg3KL5ur/yL1Ohfl1fYfAdLY1DkeaIPY4A1HOZRKhOLZbauTjS1IrLCFPYstKztG558MFut6WB8G92kDvsqMAhmdMKEyxwg6Sd/DfmUkO4aqPdx3X169UZoAGSJK6NGxfwGvn5xtbMLCxtAQmBs5nik9TT3VrEsvqg2dbZmwOXYD15NYsyua8eEj7T2mS1wUZ5IdU77DuBDuzFH0O4awP1bBeADF2yfAM3/oB7fvLxpdBE/MpGw6D2W3k3dA8WSLfDWHwRIFcDePSkgo5V5qWfgG/Q3lHxhDhb+/SI8XhedbWKpgM2c9pMv7Y/d74Qf/CDn8WxHdSki1iFNdMM8M3pUDAs1Xv9PxSNCGNJR3bYDsfD/7DBmox2TQqIdlM1Iw0s47wzVXcmBt5VmMeE5KEcvBfQyBcykPvcIp+dMd9vQjjcGZZAMCJSRSMmmcu8MiCAcJP8osg3IKfsGK4rSwq/r6DjEo6l6D1JXsQuuGowMfj0mvTc/czYkcyWy4UlQWCRSANttzf+LcZnL//EFbuviWptRT/8vn+e5/vDgjepPOBoqYMWrf+ekxrsu2nfhHnzgakucuf8tnbc3TXNSrPh03MqrYJi+jrHWiXOqjPDAUdJXsM/PhwEzSmBQDm8BxVIByBLM4abi8Nl4mM9gQNvAtIUZQfETQdSYJg40PR3W3TYFzSD1RAcnBMFUd2+pw4u/G2ZkHPEhK6B2z9ghoT8CWo1pKn6UPtxJqBBVrIbRV9HtHKFKBYxtHhVX/TlRXSzU49lXU+SOrlWzhB9lHELkuCU5l3jY0p03+jZB9cOFLHd0RkJYXcHMOltGU8Gsv5TUWyDg/oJQFIhczbcUXI5PaGP9nAvq6JqTd5FGWRZTXhCdT/rYGTYRUM8S8UNoM2ydRsNrOEHktcgCsqBcHPIT+JCAcsn8qeXipufBMvN8qs2UpPI4wueuai2x0qPlBHKbNe56sAl8WU3Uy69n7mHQ6Bh0OBKqWjsLHxNutzLGycb3kU6CRrKbrShmpKfWit+rid78X9CaF2cELd/thsblubqyzkY2Mzt/IqUQYg4LRRSfvnvNwVEoPHL2D4v7OCPd+8a547yXo2EbYP0Cta4fNGIWOHpIRcY6dUdtSXbPTJBUM8aar2X0OXro/IsrDDmM00c1Iq4z3LmArj9da9fqehGGd8U4JEwfW/qWGTucc5fxsHug28Vsw0jdIeeMQ9Hp9WU3LYTbsrSX/3e8skMJXOF27MiLPTQin/qRjljNNi3GVYwnBcnmzml3/3iXJn8hr32HVa1xPQUKXOrBDPO7kIMNc/Y+4MWbFkySPTDju9y+qQ5taj2AEuPYZQURO1BOsGDd78k9iw8RH12i8+OL0aWF1eT0JbC0Uf7VJE5rJN3icKraAXSJ4qD3IiU9aEshO5WvJSBsfWQWtaTVI+rnx5/IIpFblQ1zvgO+F8izL0dFRQMPzLV4TxB0CzbgHyHVTByAwwSGuZn7YGdjr5c0ZpWb89yp20pg2WY4ZyN6BAIiCIQwXZlQZteH9mMoFpYSn8xYj/rMVMAs7z7SntiKQt2y2y/jqdw1WvlOIF7NpLzr1TSfk+Wvl2iaTJSomACRDe1VhQcZXTWbeJ4IC6Q2vpQb2CrcWXjCaKK5vXdFLNn7g9Mm9X7KnfqEBhfGu3ny7tYHR6mK7bNl6Rwu6htGtfm/6morn8lLxz3XBklUWUwuK6TlBmA2tvNRsb+aozubn/xmPQ3s0zEAhBTLHrIzLdKFMW+YO08jsU8i24X8FFfAYzjOkmyeMd/WPqdRNxIeSnSwhBq0aNy12Db/k29zLVsgE96J8gID1J5dLpC7m7ijYvux5Eq1ZgmzmfvvX6d+n9AUaoZ4/VZPqftgAKzBvx4ORymLORxO+aq2Bjn/n0roYI5pcYlCOd4ikrQGi6yRvILLm01/WYKlmmiYcnSBhg8WldT1TYO5KpJHwP2iIhS9/tDhNthZK0ikDRovMnu0HBqQQ0WQb5N6uOTk1CBK+WVOL4/EGyHsjI9Tfe5GRMh3eW803eGVS+Pni8nZXe1tmfRMBKk+I9gP8DtBv7O20aXkGR3a5ok7EwC0UohRLtTFejjIsXekXI5cWCJzrE7VcEkyhIRiKTIcdbHSDOXzFHFaLOLmzuUVu4RqlD5cXCNd+CcRY3vzrk8ZTwZmOLjB/UsV2ZTjrFhZGZATW93PHu6wUlXf+2ot/9mAoxDl5CwHJSIpC7Ik94VplFFLzEFOYi2onTjcqCUx39vpWzWHCUStoxZpT7smS7U/FYxc7+THCuDjDLNZA9ButC8TgNKYqZND8GCzxn9GxvEd7U4lXeyp3EVnQkZE4j4jApmN+05/Fmwdb6ShUMxCfDeME2MiPs/RpgetW+QvNzlXi7DXvqVp3RlQrGQI8LopnapO5VjwQUXgcwQ62/F/QC662U82CXf8vI9ZOfJtNFSp44pfGAFDQpVCxQOHrMc38Pzb6I/sMFKqL48qNutj2A0q9fr+3a6I48PnDKIAu0zZf+rqgU4u89LIxAsSidVsm35xJZ8LgOo/8DLABLPaRJeimoLfkORvN8Q3+hlyoqwigL49kXFCYprp6d+1+GM0a1/GHhXFqRhLf6dNTTdaYKj2qDYRidhzx5pGW5vu/TcGo5IV1T29f11CL3VDHcTQBvW2GeP1FCPmXiV2CVqZr4M2xTrcg8xNqd0Z0Fb2C+xFFhtJLRflq9r4cPE4Hzo1htObA/WlaVg0KkfmhcG/yQ2LLit8axT8XWBfmyLiA/bMyTJWuNJy2bS6dQNXIVpifqJsLymdwRfh68f+ZCcvPe95Hr86Dq/f22/wTrnZcTDqVY5hLxtsXboBy2wxWB2GtYpDcYYlh+8oGukx48qLQcgo7r7SWZFnwOH7xvvmucglF6Y9GVJUvgV1z6Ujgrt5ktPZ8kXFa0wjJzBihwa5XsLFRhiij37e/RDj/4VAgHqcFsp4l8OTd88QqE49I+FJrzTtFca03Zb8nKhOtDd3zYOz/4PyA/XyCMvH1Njf0wn5l0j9r6p8ZxwMyqtwxnB4eItknOeIdT6RVkTdkOO30zWG8r072Cbno57grpb49iUrUfcGCGVGKC1wTRSSWlw5Kzz7uXT6M05CAwRZVGdI5sWXxWAzSErVbiFDvJFXo+Cyk5e9HkWSAqHSkdhzlZ9YdCEeNrcsbazszp6JmrA2DalwlIneV93aqGfWPjBLX9xsVDWuOCRAUP3DEsMrWm0+SnTNTnMD19JZrEPuScj8hfPndKLAarwDa7B35vos4e2+U+VRGXqxAMyGmt6ka5GGSiW2f/vVJxtSW0MphXh52Smj+p0WMZrcuqN4ZfFC4bsT+iM6RQF8uobpXSfgYPkB4WJ4v34TNictSm9Mdxz9YcKvzEj98mrDPNPu6hVaRFBEchoBSE9obcegdxid/o0mSz/JsDNUXL/C8tCV7elBkwB+qYyaRssVPq8y7FtDq+JncPWHTgErNn05lXrwS9Wl8yFqLKcHe7JL6yBmMC8Go6kol8A7/XGEnEgFeJIjx9dXpw4Gf1FNBk+bRdQGmpAWmlc+bP0Wmdvi8rxXxStmsCQncNOL1vH89XmjVwgI5JTRJzHpJZtOwb3PxhXeQnlDJWxFOWeEIaIzkIWden2tgSDvZvfiSYqjB7XhwagZqHNMGVPpNpER8AXQG2bRj3TPP3DQMLM0KRG5HxpP79T4ypOJe6Gnh6ga2S7hQ5yR9KBzl01l/XN1Nk5S65o/XNfsvc5cS75bnnGYg1sLygW4BuuLKvadEf2wf7PqGfp94cDbElPFPXwABXCCIeHv00l5pLvzVzXbMF1Q3bB6VGlpTGHAwaZFBbPVoIvHOwQommmwWryZ13m0Aeap97DlQWNdaFTTcbWDtHeD6mvecf2iTu3rbsWJ0TEGe3oNl738AD8sYoEognXqCvI7p9DrBCl8WPVK3sO3fABIMQt03uzI68yLS5MXVxR67MoFz7wLReyPA3BOopfMfOYgaRx9w7k4gh+c6pSX2FCnXnPfilA+yZiuromDUThkf7rShI8Bq6K1257e+S0K7wfR4vzp0PBQI2yHAR4b0I7w2/RgvlNlR7K3OV2YhEaWerKXVNlzdA471AndDFWQ4yWdiFuFmUZNC07mYKfzz2iKwmv38f3jBIvs92podYfpXhRrYbPVHva9r3/0WIE3GFTqq0dCOK86yjHz7nDFBC4pCGOLZtPa4/qrzFFp0aEZqPeC2yT/7x0g4yUwGWYHMrEqigYCQt3W4Jsfi3W5I+qrqhqV4XZw+/Gy/JyQkuHUv0JKXzG4g19NUGHOeLrMHyZi723oCmWTYgxp0AG81/NDba0H5ope8VRyJmzZY4/6SX17ZED7jiYAAunULWBIt9P1NBLzVpOE4W61CY/GT/z9kZLcVxkLfV5d8OrWJBMtfGgMgWZD6jzTmac3QQKmiG2NXMBe/QcIp3JKT6THjkk8ZkLXvKXvYPXiXiHoxZpWAra68g4VIveeYLmj+9k1dX0Glm8jh/8H7URvpJsxBSqTQmpmnnJ0XHkjp21zS8lMOlb7rZs6qBF3GD8opk8yhWKG4VrcolEQvljOTOZnwn9Enu5zPIfZ7A+15k4UaC6qKhWPcDbbr3mfezWgvTnVTro3eks5f2bNOXcxy3P4khg2UZSZDbXB9vPtcjkG6JsLhyD7nj0zIfGSxAU7NCuRS0GiSQUGZP755Jb+0WLg8Z8sXjvaxp2xKyOco/K4Voi1MUkX0tEMWbfsi08hYiZrY5b3eoH+0DfjBChvpxWG4oE3lx5pq75ne2bqfPyxl4oIK4dFFPnW0MmfwqzmDO0dcNCs9Mi1Hkf4L6Ikuq3LkocC4vA7EJbi046ucLOPJKaynopsov57BwYC0Tho4GAVxxdcIu1qWWlH37qlNumWZYiC2kmsMwFDPB3mx8CvnBDzv8LcJ4wKrmKhfv3sa8ofdlANw83hNkbHUMlYX/jIOJP3oyvKy/r/4kN5Us/ljwqPXdaaxTGui91IbRnSIfMxQJLh42IQ+zkog0UScZlJHEl1EDoJ6ZkVG1Qh2FPQBmg8UwVjCqZzFMTcmDIaeNBOxfHjHumYCOEDfwLOaZJGTE7R0t2jyIS/lpns9LB02cQ3IdU3U2TG72Soz49VoUtf2NUDHphWXKBu0+SHn3HUplaVDnOqx6D36K4Rh7GcMrZrQ+4mUTWt8uinQTwxxBB2VsfvhHpaPtx+4epuR8Jgr9RVxQsPzoz1i84xVzjsoFwX8uVyqczBTncVcJ8z1Upr2KWGq/GjAuK5zCD8/D+zocBfaqMwJU8pypa5edc2qJOvHUNDuVZFoMf8H3orpxOHybX8mFuIR3q76EiSkXV8s3F8xTzjSdNNOZt4IXRXjOhx1MsuSDeakfpCeReSCJzHk7aQPyUWim8tLq4Cu6+VINCkYvyc0YbkijpOTuZK9PHQX902X4qJ4nN32HcgMrWtfUVDqQZKLSfzxz72e5n3yz4ANmBkXFLtLou9SNexIkPkw3znIqd0Vmf3jQU+D55+1waaw+uLg4grtI6mrEcRYfGrl22t7oIcC0YEfkUfHpo3zBOgXHyIpA/S1L3VVnTRHpuQ/30VIGIhpFh7JS5fVg8Pk7cRrE02EUL9z1AvrmuUT44RcI3DGTD8yWTxseIfLlvdhHvjo4TW4yFApmEopMC4P5ErFkknQPGMFwa+S5Xox2KOjr+2U+NpW63NjFkQTrsKuiizP4WGMgJF9fRkOLrg/Q0qLUH5UygLLqe0N/GXZUiShbJAYj9Ie11lXOOjKZBplv3dmpgIaDSR3t4M8OcGLE33gXvMAfB2fN9DYABrxSxy0iLW3Gg2+X/OiL+x5/SGMM5jDVYKQnLXGvpYd06yBAwrFwldRmdxxGjkDbsKzV2UGSKFb6QHFsA4u/Au4/5Id5fcl6haOlkeKmzn1GoizGkQ98OrvtHhRMyanZjNGFNFA84UX89MToOSiMZi3XgQwm302txo9kvqxhd24mDvcwvcK3XamPNr1MZQC+mP2rC63jMJBSPiaBDQhrxDFdhddr1bgQ3OemZejtr+TZIy4XVvBZDXyBNKCZ2XQC6mND5kMf68ZkUGhP67jI9XMNoHbZbe6zMNDSXYfZXnfMPrkbvYU1n0DLamVSOwbgY0adUpVRSBGdBlmiHWnJikF3Pyv5KL0abW1h14To9+paIteF2/d24+hROzASMIWqWd8Kd4+qwvoy1gZKoK3RYRVe6hgrfE4XJYs2GRnZiXrpZO1JQLw/sXA8powNootJALmWulpiNlOsVlUymwiSHAWPo7caJgsS4LjInRt56INHCLmQpFuHGmuZ0kVBZCuEh09oTASdOQTfHG5kRQIDC3kD9sAVXOFAe7s1yIOGOv6nCZlCvd39K1kx//Xl5no6BcPfmFeiWL0JmMpumj7CSSRiTgJv4XVR3CHANoUWfpOlCO70VwB/Nh1ZvR8Mi8TPiWFWUeOojdH3I5y/R1DY7kQ/y6xpYkhrHSHEfcpRrcJTZynJtGh4Nw5hWPkunaFt0m/O3ojmXFayfgO/5/FRteFOaLcHnzHRWOXDZh6Lj2L6kfENnQTyZkyIiWvThdtrMguB7y1Gur819HFhuRTSdOfJcvpxboKFVH65td765PCZdaDDDPWtnV3/wgkXyQotxpqTIMJfvyVjKH/cyaV7X3U8MSei0qrqp26wmaVJfvHMF7TKuuf0QFopisAFoXBh5MVh3R4dpDQUmMwCRK3Vrj1mVeT1EVYKkPf+DhgrPubY6OA9+BKPlrNTG+T5qb5xluS3ELqak5yr6tSsERL+OYYn/4czOtakKUPm0kVp8Bhl9bZx/1shkfTDoupurzAdhklyBuMTYOZw6uVh7o8gCD0MgAgiWMWPdTzhWdbC3D4Tsk00dgVJSVLaXmZHWZsY5Ha5ev42sbhNkCHJmx3MbXhimQnm8NuWZka/Ym73ATgbpu57evDDqtQikvRL/5tSk9ctCfqmb1hD3pRZ4CuBhCnOAxKYQUkMEcz6Ybq8/RyklI/kWjrqqTKkAp6Bo0n+V+m1RRRDGaIN06vvdT/vET3yLBixurQJG2xX3ddNxPr60TG+/FO9R//M2+bdJEpbK8RmKlPndJiQMV8b14btKNVteUb4gD7CTC/y1CEV/LEmMHKfdRpya5wzdhzV64kgQJI5tAeiST2ddq42HvfLWJxFra0MO95aA4lnbTvlqcXDIklGcJSrp3QVpRi4LPFEiTyFkWCvA/E9hQX+QQYbgFCoGcLjhzeq1f9l7i5Bmx5ZsIHd/QRCYVR70dgAPP7Af9EO4hGSoM01KnfzDRQmmaXj4L6cEUVX1ez8FGJwM7ffTFE2bS0vjnMWj+qnLJsEQajL7++vJi9jo5Drf5a99KwK3zlYBsKd+T6FBsq24tdS60Z0JSNGmyII6oLOCT4qQGIXfgo4TTZtCX0QBnRbgM1vDy8BQbasCVgIw/xnKdxf+XQEOlnUBetb6oMYyIvXH2Nf6+FfyWdH0RxoOXOnSdQDO9tEl/B5HyXBTteBeOB71lwMCyR2D1nlCVfv4nbVf3QD2xRKNX5PJXnNX+Ob25WoIO7x7LL3CM8RMM+pfE/wZXgin19Xhq5Hq9vsRwMQgncRTHs83Iwu3p6dxuWZy31ZNhscCs3TegaqIIQ9BzJMNMJdQsZZZIrmY6hZQ/ZT5+BpRxcLotfGCRmCDpqktnRFb/bwiYayX8LukIAxzJivw8++ud1CRHj2NeuaFNWeprj/wDZ67v/kxft/yilfwxa0iOSFFl/Pp5tcbzg2V/8cvIfWfCALfQhY8lfDerHoKUF/nEUnKb6HpFbkYveIyWvxUYLilPZlG8UPTv407eSDnJR48FhQgDo7qhj3kgHOa3Be7fqAqyEMMdcSrTFcp6ZhvqUIVJ3T4uyGeABI8n8eoX5w0A/RtNuUgsXhVHGkcFHus88Z+3vjFxTJnecaacUmkU9Wy5ii/aJjRLczKbHU+a67WOU+GkcwvLbZdanvVbrGUF05TGU80gjLN7ZavfqAIYuR5RBEpJWVrMKK6Kaeb02KBsmsVgLE61wwl0EhDFG92n50DU1kS0+02xxeCv8h8lmuaPTMq+DaeEYgbc5F2qZJlYgHqymOtN1tU4T2UxKwXmBgSm1ZxwtlOKWbnOg1p8x3s//VQmbDhGFFMrFRFVAb84k0h5jVyHMZHp3OfAmrLMIYtu2Zl8YZ55jwA5F6H10MIhrKELYjnlNvEWP8X221Ounvqa/ePk8v6aGvrawg+aL4xGHQ2TmSZNTawUT6rkHO+r6XuoKz/A+SzPagdf+u3M/Oka0+BHNZLi6I4/GoQQ2Q/mgjSSGWbBSMqREKFDlmofF+Mu53MusFyE4pcU8744fmSbSu+fY6dtzdYTAlUf0P0AcM5qjuHgSdg23JVB3dO5XXsIgmCTUD5FzsBLAXY6QEsHe6unC2NQdd9sk3jOUgdjfRf3Bl8L2/Aqz+6UDCNCpvJGl9bRo5+1Mb3Cb4JOcUqB186LgS5s0S0WaJY2yzX2rGzNFRs8rRvXFGw8R+pjUaFbi4sc9dO5jqNFVfZ4re6rPp4A89eQHEag80UOlVykp3rnFV8q/FmOM4/Sw0PLTGtU0cfJXJy6++e4PQOJVws6lTypeehyO/4yd4u35rmZLqHvsqdv/NHCeIvDV0NUMebcD+2VLClhsetd+KLMSBxcpKuf83fmBkJwOWVgvvM/2kPiExmyrwc2StssQ4I+XCvF23YHgvwqEjXoJuTyJQN9kRCubNyjpizigcxoUElF8U0PwcDh2nKepQsTkZbx2iEZAPsPnamsj9AAZo0lHvJVc1gH/N4KMm71QrrtJbVZIa7/fYxYFQtfqVoxROEouZQjaf24sEuOKRs3m7/LNzwtM3eCjz6U5hxkQxA5IU/IAdbMQ+QHt8KNdOtf1y2I6cBriziolk1zejftHG+4/Pji201KTz6kpllArCapeHBpct1OtD+0k3opMqz9bPQsGKMt5JN+jumXnv5vkBvabVyXCKyqpKPa+KVgQzS8sXjAgSqngk+dI7CX2nzjSLcTsuctyVJjS6jS5ZPcXndeuzPFm8mdEU34vDjSPpYiJqBsiLMiEsDwyn5sxMn84GPFYHw51i0vga3vIRTYFOJ3WSOb5LtFTB1tcKn/AWnzE5NvGAGoWu2KVykWIbVen8fcnRgj0j28D2AZnDWtCuNw2nW2O/bO7sSKdfZR81ixONUnXh1AUA9w9sH3tVhspy0XYVuxttVDvo99L7L53c7sFouSmqZCbBduQieh1CGIxyjSxM7f4JuAxUeVqncGVwRV9SD8b6iDjFAkeJ+UE99FMcVe/Lgzg8Ewbjrh1x/A16dTCt2POb6/XqjtOPf079IH71S7EFqy7QS2gLUGtoSZpVDm44HOuxgFYyHfyXm0Jg9Ijr9sXA3maPAyy6D9jgyieSaMcyLav/Y8QiuvSZgmQhif6nzYRMG9+WnVhfibV3iGuiLJEKzDE7rwtyyRLbLj9OvKMRa2lqVcC69jXWUy5sZDUXuZcMeUBsPZt8M/drh4AoRw/hL3Ccdi0p9QNrwTGB1TM7w7s8j0Nj+uR71emfaIXzTGsKoHC/GibtHvzkHo23h2m/hH0+e+oNX7QFicG7gQYlM+09NIh8zojovdzpD9h0vV/0qVzPx9KRequOVPdLNRATtNlcmawWL497lmFhwkH6BH+At1YL68NJeHQ9ztG13IQRz8VZ8s8D85aHTsuzjzAjvcGJSvoqE5U4rm/WU9am6Nu0dAvvtAQ1HhFdqyHL1UyVnwzKbIh+p7sDMOf5koM2LhwUT4RKnfhXzuEbZRM50GCE+l73E1bjDA/1NQ3x9hHiXErXIvv3qVIOmhd0kNulRjfsPBLeqNPdgZTWnv4NIV07oZ83yXgiui/XK3FxyHTfVh/PZt2JcbsNfdGSgS3o3OOI5Idbyr8riqRQ2WesWdl30mJsWwqphT/7eO+j4r70uZWHivHZIn5sANkVYWwidcTRs9mA/8W1FikeoEFtBfFprdwHCDDXxnYrYmd1kESNLXHqgVwFDwKl/V8gKnkZIbrlrXa52fHm2Nm7UvRxFSMThmd8Tq4miu8CLqTkqGkdf9vzDeTfG3ZnOJdLm6AXlr896DdnM40jl6JVL5+9ENOmrWMF4nPMeW3wSGT0R0B4oW8EUhRMfvflwzwnjitojcHu8IEauBssvXRqwUXyjAFyu03b1A6F4kL4h3Bf88rJeKJgHSRAj+4L+CMEt9oaotQijcxQmzFzWe1w3+x1hhBd9Q6i9fKSu65xlFoGbaTqnSpNfNCQF4hcLoWhlebzjYwVEEZj3DTZv4VCRfzBNgwhXSpwDI0K+nWtVrT+Cx4Tmuw3XZTiDKzCKD/sE/j4IAUHNIf6X35EjTpJpcfByQpSAmlOw8FIucwKFekmSCpI27PnfxirDtiQ2PYeVt6/QARBCxJ84eY0kKZWfEM9tMJ8NWl48uoadCj9mvsTjHvdHBdMQ6u3GqXc5/BtUy+YU9DQwQhK0uKxJaMh0AoSuROS086Vw3Mv5kO6Tl1Due/qRDPFzDp+aHwyW4CJ7K46z+UAunnabL/lQ9zlU/W5FmqRHNduwo5T38h7HBoigGT9S3/hi2sLysu/nIneOd8WwmMFxrB3pv/tcRkbnauKnMI01HUnng1AqQ8ynkeGMqnEc3CGww95g44Dgns3lSmqVea4aIsiNXQi3+qeiDeALifdZJuMhtqIQjb7Fqlk6XgUfTs4WGmffr9UVGJ6vPFX6j2zZp6btLoYBhihw3UlMIRDQdR62V8ZySk18SrY1vZenk4v0AHxlpYkVtRyX47ycTuWN4YScwOmXUUb3z0/oqs1yMy7hU+KI6q5eaAXWEdiZrPx0Ceue8QAcFL4wyNYAICP4/zGKLPDpiuMQbNFoIsPvKtMMcrT2jtLb20xDuAyERsU4/583muJ3iL1njRxkbR5eEgnQqjY/Va1pMvpJU40AohQ4Cvy1x699h8S0f694PdEfinPeVy0JMe1k+ezd1kHlK7JxjJUHBtllu0NtzRinaxMVza9WMV9JjVIg0RpzyO1TRvkxOypmx57KFh2oFW6LECyXP81H/1TdcEXGed+ZkX+7GaSnOVlwnmBF9W6j7E/LaYUV4wx1XWJ+MTdYljlt0oSnY3AiYMDb4GDCmrC6oXPuwTv/2p+F7EUMLXZPXmBJjwBP5Q0pvJ5WtPN5xRp9ScCK96CjPcBTxrFn6xUyc3b9dLrnMKZHFUMhwK3J29P+t3ODxXzzmawJ+wgT7ddkO1nswuYH6geoCODzRalPaVZca5WXSYLq02TpwEsha7rVeXYSIyJzmLIZywu1Z50r4S7XrxG7GlESbconFW5dVvZ1GQF5pctW8sGn3KMjBX7icjlrc7DRUqOHuW2RBqdK3J/cZbP77Qhg9gBJH3X7+872p48P7KFYs4/JxqSpvNV1LWuqvwgH2SvJITapKqjNfzJKP2g890HuTUZF4N8ZeHI+Pz30yh+eb1FABTRwa47V/T8TXF40VfyA+IQGP6lw6QVVC0scpeqVpNw6lxIDn2YIHFdnoMbKENvD2rXyxPb244PBmZsPkseYx4HnNe5o1JCGNFgU79zoTXEc8z2gn6QCkLnXfDqtV7gP8MPK1FsfUHytA/Obf9ZRlo49AZe4WBWnvmhUTLesGdT40OHqMiGHfdFmhCDFdfVTzP92vmugxq8gfon1Lh2KCTgsEBuCFyygjmBTBvtnZVUC0G1wuKcLJqssfvCc8/lMyCs0QfL8iMzYauOgqxMvE9mPX2O+LNxraCvyvAdHdxmibVQ8pqRt6zemiy3PvZ8IvZE+B6q58pBsL6i2HVwoxZFwxrUugLUIsXziBteuI07WtXkcjHtXOLiIMNCRh0Z2Pxis8/JcqnEdDHtkap+3jar57O1RckuqVycN7tsRI0Qxs7AxZ4z69r/wT7l3I6DIJF3emvnnlwDdHvUcvrmF6VhVrEmX5iqVBd6xI4J3dkHbyYPGdpkV3JHr8WiJQ8zaUEOuf6+M5fPqY9DehSz7mHs4sdgAyupk5tmw6cNx0nrG/Bed6tpSvzlvmcQcMuOMZRDuFMLjRu/0KJo+V+/D1EvpjUTAFdva/YaKS/rCmUGALO5oC+RyT7Ghmz4hgZgChh7sh13iKpiCUvDUl5g5xr9U9G74+O/b+GKgVyJEuX/62EfBKkYiSymtr/cVs321MumRyD8lPUBfXffzE5Ztvg0eb/2Zf7zwpjSe5HvzUD+PBIPsksf5tDPfD9QqmFPmmYRUs+H0MtTF8Yj0lN/2NBtEytkiFXaqMApoCbXTwkv3xGNXFFspWXu2xoOGunNx5HFf8dgswRUG9rOBRzqhyjKe3Bvz8HSU3Tz09WB52PhBCeZCJ/mU/3K1i//DcPqMVyc1xBaR+zgDFntL/MU/Ddz6VBfrVLLcj3rAPoFlr5bpLEtvMg4D4d1fcF/xYTzcq3OkiReoD6djlvakfNK/v+pl513CgKHvVtWkDHH5R8rvm1PfpQBDdXjLjT8ntzGF7R6Xe06KANwpCYWFRddHDSGWy2ivjRZj80punXoVNqb2MkGYGvuN9SonZNZikWwrKdkSpiCaVAjZM46ZHz31P6OeS+xDc2/ABfIWEG0ffkzR3RnNb2aIeoTpC4UaegrCqyVX67R4KQBQuJlTQBkPCdPKGy6l5PoHnjLMxxaNV3dn0VQlZUxEoTBMYkB9SHGwu+zUmWj11wVKh51D9uH8lCcDJS8SPKqR+MOk5Arl/qQooKaen/FA1ERDtG/MJZiMmeGcq4TFDZCVWuZ9HqJZb7bGVXcXVSN1tIA6Ejge8yuRrYjw5a1bn5gzKXe1n08lnRB7wztyrBc69YI7pBpBvPgYmUhha8zawIoRGh/0Weq574Bt966S6otAc6j2JE7hN5W0xkGmZLOvGmDnwaoQ1zdeSFoEGLWOSNhAtLqvPedb5oOmm4GlD6CiJWMS5RCYST1RUSi88ch7tUivwNOPWGyGZq/xeX1XXFwvnAb4OQhVgw9riJlNFqoaZqwsIJ1OkvxZeNq4XpiGC4KsnbWzzgVDGxVN942BHkCadhPH0vAUr59n9JScjvBvXfhBdXyQrKwLXLmOyBZMxWUBzSXHhcTr4q7LgFCekxxRvKSI8TXl8E2+d8oz7DjAmPjltxA1gJhxm50/BzrBesL5Qge49+lrw/EmJFfmgY0cuEoLec/DP9vypFAEPQNx8DVkZeOsX2hD7Cxt2jb/ztjt3uexQHnQNJ087TWPiIHR6ftox3l/3Fwg0cWFJVPjy9wwI7SgBEnNgrwsMAFep0N4z8SyjOx58jxCu1X0Ps75fqoCghzeUevnhFRFNH8uI2gsTHREKovzjBLt+tpdUXqEwt+GEXlMbJs0DZN6o4XTCdXlYN2otOjrekYm0LcR7jX/Pcu1xrGJnVPpxLALtijXkSBHcuk6HSmDzIfhUqzJd8mLeqi+i+U+EYvpxO2LpO6Cn1zKCFCQ9gvWs+ic9rDSsecbR8qccfTcjv3oFGrPAj35jZ3SoeqarRj0Cf/lI+D1TBdxqCBtuyExhp10LutdxSM7rpExSK37QFUSHr2DaOnZPWlaHIbo6KIVLGWe+6YMCpaF3jl2RH2q9eDJCbsEWQWWwXGAlCOIA6iaX/L8XXxtkSzFiYQyewIQ/JICU290zbWTylWy4SfBOWaIGMUT0CTUQIEgqvb8yQ86XOyzGc/qBbbr74RlWCIJPx5IJ3ToxSFVTsv82ZwvS+cDVQv84VG70m4WUz7aBPix7GEJwhka9lrswjUgVFHm3B4f/XtztYTciq/lySE96leXmhOigmFOb2YmDA9lp15v93ulQXFka9zfGxyTbKMdhpnX9Oey8mKjvpnr4Eji60FXvCzNnbGs/VEAzjugYz0K5f3IZO7etY6F1FyQ7/PoFUjVCkLU9vmhzruWxH2WRAPlYlAfXGnK/1hw4EFh5efdQMugl3JYIkEi/mM0Sd+bMPt3lqlFTTSo+KT2qmvObt52GmD6wAU3C4b/9KC5g9cqXqHt/hevBbh8AxZgeq9qpSUkas59R6Mv0cUcUoxSNJh3GOPz7sz8OmvZ0oZyU+5DSak4DlIkWp2mLstu+P84fFqwOCE8VCs9pYgdjIazAs+0VKyEhAZ086pmJ8m0AZJNDzABkB9mviwW1mPLw4ZT2zAd6qNeqiiUDOPuHr6AroIsfNr7HsD7EW7M4JtyuPWC9IBUt3kD4Dgn8Hc1G+bkGzQNx8+YRardL3HeMeqDpZkZdG4gO2Wj7U7SR/I3NkX6/WXN8LR3dAwTdeKndUB6XYBYJj3a3PwGpP0hnnEUpcAGwJUXMDawhooywrG9g0dLwBwYfC7mWzdA6oBDSG6tT8BUuFyORvIAP/TmZXSYz3FBTKTWBE2LZGakUblK0t7E/CL2eYogoOEWhZJnrcHWHtsCrgncznrY34ke6N5j3Qx6KSndP2tLUiS+3DfgB8GiTb9Q8eim6v2X9WUGXkCiB8Vye2HPz5NWrHdxhjzgJU8NLNRdZaltxyLDKwg/n4GZE11t+OiY1lIhnOyK16QkbfCvbitFe6uFD63iipYg7xzmuqD/b4W8+BDDpLOKgR8X6yvaIaOduCOjavZ9cvG5U6ohnUZuZlQmK75CRFvb3Lkue0vfpWPRoXkEDUW4yu+JAFMAtUPNdmZY6soH5/Zu4b2am/wqiUkAM/8FS/4XpZ5DWEsoxakFmH3gwTOzBbD/ppCDpk0k+k2ZAqTbTm17XXId19WXZ4W5PRAei3s5LXoDW9KB6YUU95WiA1iaj58Yhw9nP9S7vhoxwBg+9wged6q8igrnrgppE0B6TOoudZfhTKPV27G8Yn5WPodInhnefqECLNsmHHIapDPTraox5nXjfbplchPTd3GBoInF+ulfUqZ/18DsuK9J/X1GSSYX3zBY7hI3YZonHO+NpIijyn7dKj77sFvD7CNGEXCp/J6/x5YxdiFGWLmpxLyV33TpnmNxtXytHL8igk3kQpasB47FSLwVIlzODhCgINkNs45pQC3Ezn/eSaggKEGAQ+uqVSF7kytfTYllF0hr/iEgx6/CCPm0HxUBZJ0ivPQIdQt3ge6MnPiTyNT5p0fmeVGkDPVwbC9rct4uxEOywCbs1v1clG39RjM5Ip1EXKAZ882ABZV+U0ouLXcZDRsEWTxXl9US4QiGWWN8ZShuwDkVBE3152NGh5TFdiA7Y3X1aFSGpCmIRtvRoBayO+DsRbgjtS5nFrJbIDM0PsqTPf1f4wIFywUnT4QVVQpg+yqo3DJnmgAFY3JnxcEc0S0MMHlgjlNrj8+VFYf6r6G3+xpEk+EFYns65m52sSS22Xj1ZHldGgwYj30ssDFIEvFN4u384unRhbl/cElKaMlMyP5tnmxvUSJLjjuw2IKCXFiRsK0ge7WPJDLvrUtJ310B10xeHnkz5UFyVfNhEnakI/Jzoy28LL/TtsOjv9VWEnTS1VfHZAdKG36K0EFI0ty7Xlk/sarzWs/G7U5URF/Wmyz9Fm3WFVBgJPnoa7kYwkh2BnZUcBp02eJ3Q+RcfjQHblxKPvShKf1TN0tcpl5arNcO5R1Ug+Xk7VxHDKvzphCa/j+R52AiPUsI5jdz8m12BtcdPSOFIFyIfr05MDcMx647hmgjLssM4gtVFu9stur+EGGxrpHwcxGIsXd1u5RG5/z+Tzif5NM2d12MkdDf5I50EGvDsWdNI/voTEAUrGNcKlCy0afoDyfr75JDL/c7jHI0Dmx5ObDGron0FAU45a2Ym4wS8YShPFsC1CCAgFPzb0YMo4RYWwVAdt8KN36YBoNjJZydw6Cupdmkwh7aoE2CnA2jwlu7TwIfZ2s6muw9lvRox72MuZyEbsdBMYVqphL1erELK99sQAPav7bm7AsqzXCZeHTq7mq6fjgVqoAQS7KK2PXxtQwdZqMwiKgum+9v7S+RiVg0Cl/pjkz/ZgE1Ml9nCtGQubVBj1W2yP2rLWcIpA07MUJuCh7IGz0t2M0xRSl7rsZt12zpru5WPd6RF7f2bepurSX3nES63iPgrvWQbmCfvZckGpfPr9d+XrrEpu093aLEkZYgb+Q+z2+ejvcfNYMGp7nxhAKgxNzItxntZTVM1wVJAHjUUzm9s4UT+Y1emgXVyTlH61V3z3cy3JUgQZ52K5O4lOYwJSOLwBkqhhiEvnMGwG5HaISqx1HoiGtdhy77JWDz4n+pbx6vxsZBP7OmZ9eATYLwIMKevaTfL0/wHr2Kwy2M5QVDITBfHKqDEzBmkCQtE1NFoOI/sIM3HtdF13lmhZAKopgU4tBLF8F2Yp+2+im+BB8+kL/VJl1u6W/jSEB9VRSKHs8RzVrCae6VV8VjmitNRspXppLRN4MWNDdvlqpvzZ7W1M2ZlLJ0WWHxDvAy/QSaUMyGcS2o7wecQpjznQuviau56diyRscGpIgEhzs4cslJBKL1ml1lXvt/LtiHyDgNujjZEvxABCuymxR8Lz0D6GRwAXc9myWOnKTired9A9O92/IQQV98rCxQtG20lRYcApDQwSbA0AnNiAaNJ+erZ8YrVH5XZLP6CJZoYqILu2+5/xii8JeK53nVtaJAhK0bQ/ezVXRESOemAZnmBd2IOsfA5R8RAPzD2ZyRoi4qR4k6Scgrf90TkZ6sWgt71oNTEV2wr4TtYOnCXqfJsNAICU8yjxf5cy0r9vl+cfB06E/Z+gskiBJVKCE0Ub9zhQ3vgIlaNNk/naQ5u54mZgSbqVQnWicNvrrFc+Sd1Y0FsAfmDAyj3PnvVeGmafmw/OKSxZiZs6AkbIqfSFr5TmOcJbE1Qr1IzmbpT67RdYD0euqoeu0R6KRq5AHhmOqmeALN+cCyNAMRpL9JQkGEbhxZW+6tl3k/jjbcuqq9IVrAM2IBzgEChVQml72a5QbRX3AvsZzoD+X51bxNj5u8uGBRGWQvQRwS4+h0iKipW85oFRtLOvgwlB7+1k2kvIsI3npbI+6sacnP4z16E/8XPrZ3PqXCHsUTVG0XrIrYwSMyuG0A1NfMVDk5ou18uTK6tCD2zHH32zG/GSmpa0lO/vHmurDPJtDRcMGyFJMUGCDBSPIgiUE6jh/TSRRx6gwESBqeixOKo6ke3fodE/2P8krSxkRpXLjwjoSs0GYNSIi7p0mONuo+YYWKPeHAQ5jN+dEzKf7ewmFz0wUZV+5LP94kGsYMBWkk23i6W3DoSDdGiNmmXuBXn3XdnFoSCOMyk4r+L9TEIw5ZlbNm2/VvuW/DUSpMMnMU9JswwG8aFYFSdGDWIsZCgNP6JosftfjCTonEwDGVqt9/9vRPeViKJXgdLPBEgHRwX6whVBHj01oj8zIi5nWAetx/Sf3Pok8lDSmpYREDDTcD3nXYhlcUfIE+bR3qFINZC2gOSI3IZR0WoBcu7PaJyAKpDtvp1vKS59vmKUiV/QOyZzA92qMLe5owkoREdeDQcU4ZmcJ3r+B25LJrjm1gZYL+U28ObG2SbSLFczMGX8wHxauwDDO5Ngalis40yZtVRC41HW3mpOmlz69GYylIR/9DlEpW2jTcEZcPEwtdPBuJomrVYlkjFZKwpM1jqjLjvsVkT2B2X032I7ydDzrWMhpAB38MDUFh01AvKEt2p8aRYDee/RZNbcbfLXFIOE2+hWsIhxAIjbNw5NNoJyybGNPsl+KFbytuH9MY6DYPzVVpKYyTuasrDZNJb+tNU/xYcVI1xXysRBX61EsBbQaycMnO92/gt2RaBD4FSVk98teMBainFVu7ZMKgOfjsDwKTYgTdkh9mdD+7MDsm1AWnmRIvQGsgs6M2hMmlqhfNt4ghPq9grm8uuYKQoQfsT/SDSh9c1QRi34HVJYLumM/GyUgXopupJlRLOIw54CWRGTBjh7IDvRe1Ep/kW3bihidoQTJBeYSPSWYxbevMA3g3Qapgyy0d7n3lpRFaz0NYSBtmPT6N1INLqm2Vp2+2Nnc5uyj1YEyAKxRWVxva+Cm5gcgAukhXaJUcN3eFILdTxr0HhWcjN3zLrn75LHOYLMEao7YRSyrLUF1cPl1Ip1BKAaNE4QI9keqZL4MT6TRFi3IipZl4Ag78k/h+vfolF2ATPdgG7YvLnLrJORWN/WB301N0/jRifgkz0CJ8y5/bQ14bq+q+9vh3d4AKEklxBiWym8Ixjhp0avOZT0JSD5QbPPoesXkeEgwUFOheCJ0yaCzKEvXKQ087IqRQKU6f1X+1vR+pFOjNsBGk1vCiNyck4PxX3Dwxl1XO5D79P/NuvUF/eISTA2X3US/DpOBqnGEm8WfLL+MZPrJrbmpAKZwA5xDNv4HB7+l1F5C1vvQQPBncVfKItTKixnNQLdeqkj5jr9SbbjXYI2jZOBIaqmWH36w23+nGmPafNpfI5tbXpXX9PTj/dZfL2mmJ2RxNG2Tlh5g29G5CNC4721HC5GEFifJ983eqJjyazctVcjWkJox5pA1osxpE+0xneMS/bUJ6nRASWkZLfJQj8Un0gQSZ0MUW0/kCUQIWcmpumJHbPmkpjGEuIJLG1yqyXg4CSvnfVVg5j4TA/uXppcOvscUt8RGv4g4DvurVTUP/wp2crWTyCk1E8PMkzQf2FXiVthfFq2GIoyh4b4e67VNpdtKMHzZelBUjDIgdES7VYIdxQlRqAnTgUlk/RdUUQkRO36JGrzzFAlI8n5agWd2tm4xzXSe3qNql2gl+7sQJ0D6vePCyhnPJliBOXw7t24T66LwS/kg1/lqfQHc7yfo144AE1ao5MgNe1g4B2BJ+aHPxsscy+rSFRLxVWhYYJH/RpaYy1CVMa99SmdXd2U8hdDjaiIL+TXZse2oOy0pwvrFyb8CkmrugA/IwwIuNZxPQaZ3CXahqHRjWUmb1wIjIsH3JFzPSiqFW/jGiU63FyOF06H3UK1kHRvewBACSJUkAklyLPrSE2S6tVxRkgPJEhCLpTqxdvi7cHIhAREc208gq1VizN7eMSUEqklIFNUJq/QQKJ3DpNBXSMGwgT3Bukcsz/qymIQyNyDbMC0fC1M+GrZwh+rdT1qHaX80yTckfZE7+jGxQxzmjWrO6vO8tNpllpJVUIBnAPdUQQ9WwYrYCoJ/dy3G0yGOB3r+FzlPIIwGw9obzV8Uh5WK6tRuwopHcOL3DZyfSehCKZW/JI8TjSoESs3MZPPpH9DruqKDDbyi6IT0JwAzdIoX26NY+RMtu939jn9pCZh4lKl5LRQbjo4zg9GUrRfjTMlsCf47vKS+1LChq81occYnUBSGd1+3rfsPG2VpnA4DieYRyeR+4FsxzTAbXU8qfkYhJggpjwgy/XTZTSVKYiWIhmlAcRq9/D+HRFZqFVjH6Tx2hk/aPco8QkElGxu93rPmQ3+iMNHvOcrTdsns/wCI2/SYSgXAgQi2EqKcYVBrO5vwwM8tjVOz1BeUYYu2iW+oRXOggfh9qohlZFSeNliL4vP0ZEg7ey/7F+r6NWs3AQr86UIvyNo4V3o7GG618yUQN+EdPCQFpFKCSJ05M7Ed0V7ezqQ6Jay1oDWLkvzxPSV/Se7r2Pvd7SR9oOyGG3qbg3L50T5FTiBuV53DrZ5/RCD5HNDBRO5pC2f7UtJehhN4jn70kx+yZXbNdR7jd1bejjz4gIiF1pD+5Naq7WmIODj4BHlaRHfoAci70Blcwb7/GHNvlihvZPsfko3FoLYj09hmuQ6hjN+qhCYPgJQF2vxoZs1y494YincIR9ouKP5nDsKSr86cX/U807JPmQ7wJk13B7fRDkecudL4RMq2SOnqPRBDQNYx7HIajUMnGlkooNntgEHNwsoOF41CK/syAqQvYOzAqjbA6t/7//YkukjJwDFEh3gqcvzSR6VLEgvjYA4Y/ZHMnLeIj4gAlcUriGHPbrU4eRepKRCSAELBWUB2RxWiWqE8J25wL500NpK8xp/16YctmGhrXSjauI/bY7jwJseUqEbfhQTT7+Xzi5SxHWocBgAsX9yJZjHUzd2/RZwPUIDIiEJKJvttVGpPZsauYw90jbi/Y26x0VBZPg+o/PDNcJNuQHFb6z/bK4OMabE57Xow1f5RXg4J/vXyIEhXZuBrwWuVxJ6WwLog0xBwn4wsZKwoDDhlYTTHbI+JVVwz6t4MFDBocNiWgOpB7z7x9EpI3/zsLbPm44tHsxfG9JsbrSva7TuR9bknjImpN6l0PbMdtmeXMgCr8Zk6zTSTv4fnfmJCjumhgA4SEg+J9jDLvnQVPd244AlN3Crl3H4gRI/bps9MS7jLsHfT3ISBxj3+9UMw+m/+ME2zxaLJofOkBwHEcSbeJWr4tYYLUpC6fEuyujkOPzmui1naQaWY1TUUOin1amu2qanzkFzRUbYzvLrQf+TBUGiJGVvRMESxij6b33mQoqS8nXEix7to+i/TY5R+4LyuBy2fJfJfxiOGFoZo5pbRvy3z+Ux6uS8Bhla0b0Ahw/H1m1rpwa1dXWbYuBCp2yBryUo7Gd8EFvuLAFrIhjgmbY2GE/geaKpsgl4vACIQeJFU9qotxoNEsMMJyUG6USYElzj2nXL1pXHH5dSYHKr9aFkYzOL268XIdAzmFzv472g31qFacWAoIQ219hZq5O+n+0Hnq0wt9/Fpk7HZAe78Upe2kipjKZBI9o8LHlBntF8N0H6qeiFtJeMs9VXrRnEKsg7gQD8tcT2bdKv8eOukVDmMYgC+rMqtvREk7YcVzEC7e9WDfDV1gPOPpVRdjrJO3CU49D08237bcRZQQRUNPzjk7aHp+1F5XnHYF98b/gvu1Kg1gDa81VpUJXu5qM8eyfhYBR6TUMMBgzw5Y2a16F5eH6KmdqbvbgUy7ciYmOHtQEBIisBfSueFyHWB3Dg4XTgS/bWtyff6z9Qav09CFiLkWjZPbchk4XOyijIgcfvrYD95exW4kX01LTLSFwcELeD15QcvjsgEJOFBoaOXbujYgnU/i8F7ckaMqeLccN0aCFxAOWvIZP7EQNMbGvmjfvBsIrU80fLIbTWYisDzLZ8Jq2bBj5TVtuwh48oLOtGDTCiRQ3If4kVB5k7XZcMgJqNS0fVx6ziMZZVUriJfjTKxD871NXQrJ2TUs4Z5TU+7e7owvtyX5IEl1e35EOQJq9m8BqyLFykqC2LuhOjNZ0u58ZIxqBB5l/xzy2rlJIuJ79rcKFPScqiKi75z+p95osdX/2nvHXEWRgT8JNVlXj8q0yv1R6KxoEr/EW5wZVvr2ff9DI5n9ZkY02VpZWWP9rMnA99QJuuGVe2Cqb442bVhoff9oVIdIVFh7H7FbOdz2eRpO+1CxWxguV83PKudhsVY51qRtLlAx3USUxVZ/B4wIxxphuM51SftUtN5ic4l1B0VCraB6k8fUlhPa0sYcr2gh2Vh1UUYCsIO/qCSJ5IyWboY7/6BFSdx/b6EN1GC5oHcfJQpzodoqeH3opg7eHyCk2439WRGQEKKJhNZfFSJwOAupzeeqggEKmb/aLtpJg9FKDIaIYkWmhO1+cBf7qMS4ddORpXplZKWqHyfXjMfeTDg96i/hWZiORewlPl7ukQQv4LKHrMc+O++lIWMmM974VN/ZC3lj1ZnbJjuphBfbHq6Velg1YFExKUPZ4QYSwUC6sjTWsEJWNIfeaJ8PzS7uDoRcAgkkOmpsJWYKfKJk4EuipCURkJJSeEiujTmTyMliEanidtWjBgj7qXsMMGO3u+Nds+GpgqiFGQVF+6oO52+vpt8cAOEafdtHfPY60U31jgL3Kkax5c5d07MR4Oj3+XIvil3Xe6JG9tl8CcOOLwPGp5wQOedt8t20YuHDQZNtdAVhlUa2QDncc6rRF2y7UvIo/1OpLzGNOKPKaj6sYAMhMgKoL/4F7wGXO2a1fRuyPISp0/2B4hQv4NGR+WLgV2Xy6gyqx+6QxltZAHnWBc/N7/rEAIaO73esIL7zN5DUIhcxDNygH3jg78KtJBAXsRQPCqIZYbi48a7oveLz2sa/wkF9zmdsq4/QQJJtiVNaUq5GGrhNGJ9eIygfzDDU/ZzW6M7V2VDN0whQgEcug+/Yc1NTm5T9yyqfQBAbb8a0GPyxKMGlldwBwWrUAEOqOHkc4KBqVCjV/FfShZQbt7/RdNz6BILZIOFe0fxhZtmCJlEY+FIxCL2YjQ8T3Lky72/3WrcoBudAzqPq9GkkgdoS41JrfvQ7329aDTBl+qRn07kTbKecauon3kIGaGIIVYIbqyAMir79wQsuOBLvw3GctgfVuuQH6LGtgEni/DZnl/8kQ1QS1phbA1OOkOEl4hYC6pfpVHllX7pd2EoLTFZpKjE9iAAoyhVzVKuM/7vSRXsFpHrk232bx2gv9TKP1zdl+p4wlKomUFyVCq7wwAkEee9ABfMR6WnLvSelzV9T/XfWtgIKLW66+btFalTYuF00zeYEXxZ/Uy65nN3dLLMxc8aNQeAGm7kNmSTQQXmc4eySRK3PgXK7MWUCNdoBbgjNNzZ3bEf0T46PayvTnxCt5vO4vJWG/kZbDNTFUrYEEYARejoBAzkHulYNSB5tK/pcMmxeREsxVNhGqWc62NZvu3pzSDurGr+C/3D3LPl8RUHots8gQpIpNioueHpxxqoQRhNv78MDBo9+WI2738xF4wiUG+QgzONyG9D7Cs5eqhda350jtarkAC5wnmMpOO4p4TDdDc7Yj7RuqdhrmEBCX00seenlKGsE35XNZgk5EFjO3izzzNQfe8b0ga1SYohiPl53RsXslGg0LTIgnO4VzBrSTuRr8nz+gargXsKyvhMbn1sDtaWMSB/m52Q94PBGU1FbejERYxy5AKF1GcP8oESJw04/feA8390cSa7VdJurknt1Nv2qr71LBUIm8HK+AlgzlOH/7zmjxRw9aWzdDPyiPRLZ3UtWbTBGuUKEscVKTh0nqwpwPdvO8iDv0C0L8pkDI930xZ5RFhMtoKGctew7nht2tYPlQXcrTwQsDno0Q8oSfuxSHi+I4bjHhYwAFig7UGjJPQbsZyfLVmxNr3imrDpEasZShRU0CjG+Vzg+WeG4BKb5ecpZCbXB4sI7Wd52qFbZnWwK+2EwRvX6ScJwIC8J40TFDxU6Rm/+PoOcdQ1MyT8aPv7/LCduoaSiZAqaNpwLuJwjYk8DQgz0AEGF7CEiivJAt5CA/Il5gEYolBv73HQTloIAbGVu2sz8EC45WiPxzFPpYCPrx68erxscFUGCo/naduX3JG2n16gn54NIJFf6umuzjML5lCoNbKEXbbtzE/rx8O3Nihn5hghwHLbDBIUFo9y2nLM3YiZwTQnrMH9XSXFYKpqizD2UHIh0P7b0jXOnomiZ/gmTnxjdsfMhGjbxSCAzDfFyv2mXnbVpYPl/0wwt0IzUH/jKrIynMl9VJZlm19atGdxrC2eF7mIfHA+DJSjZZBdGjX8X2EKA4Va4k+C503calt+zkEfEs7LiTyzSzkZPB5FBmRV897TLB8Yd38BmmtivfDcMPLx7hRI1sBZUvhPKG7hF48+TmYh6yg0Pc+YP1W7xVS0Rgy6O9SAUWDnMyk/1NbGLrTfUWYCW/WjwGPEqFi0XStH8bSQZTBdZeokL0/0Z3q1q/wQuy5M4g+XXBYAh2mcH+oS1r1ClATiJ2IkM/vDodrwadcq0KJ8fYyAsrxhe4zlDVZGidkCnBLU+TeN7JP8VCudIlgSXWJYMcac14lIuWuqyC5utdLjm89QwWU5EexBUFcAlJmfG7nm5eeL43EUfddlexLJumkd2UX3fnRuulYFGBS79jyJH11gQEKDIPwez5/VwbeoGrXWBxpxRLMQSXf5e/kc6zjdu0OOFbw54m0QWf7PjmZuaHfTwCGRQAyWCZzAe3Ah+95s9sSKWQQGnH3umjiTT/hHs72Sd3/1vyMqipyI2mCL+Lfg1gMJxC58e44QxA7WyRgrpHE8rbW8+FCFO9aJ2s+DkshcvJX0tfdJ6fsPFcujF2RgSDvBFIRCZAEsPRvIqiIVPQp9nLId57kc5mDBXuyfyTZgzunlsQ/kOderOWM84A97eITOx95+whtlAas3QbbmnXpWRqKf7jEeFKQXO9aIo9nZKShv1eCp93cjVHX99MuPBAHU0N+qjnnl91m6/7/pZ4CcZbATZKjRpa4FZmm4X0Zk7e1CsKJ4V/e5/E+9arBBgTudCQGIk78djLcAdXImAQoQWr1piko9d+Hc9TzzNxas/lqNvrif2WNnNbrtSJya5VNDOiACaBBBFqEt7emUnMCAc+dsp8QPY5pr2Ir4f04V/0xKIlsVadIGpj62+pDVv22blb9QKqm7xg8Y8FDgzH+NR2D0g2HpY0NDPDhrYy1ab0gRuc24aS7WtzcW83icVZpTjeoumqGWIOxPEsRQpX8C3ShaqLt7nSXRaG+yTZHH1+GdQfOIFAjXKSwJChpxlSINuCKBb9wxiPM/5wd/I6Gd7VeNx8YJBcLEGPRP15XNBvKNeaovcJAUz/Pdsyw5nrlpZlIgWJ7/F1RmcAJB7TWYNRf9nk5+2p6vP98ubIALfycz3PXhyWbzqFGaSgN0JoljJbzO4hvzikPteOJkTCC1fe1uI+n6MrH+fCnVpnm6ATr288kAUpP38ORO/Gkf9xR3Q8KBYB2Ro5lKwNnVH0UDGVmWwo8MiM/ZWVhQ9bQ7vpTTg9TndKW45jFK7SqHQx1XNUL5upRoK+QNEBeV2ZcyVzBZbHQSc0jRIU9ePSjw1syeXxTZCQGrSoaX+v2J0xR+KUkAj9lNfjBfuoVZ2h2VbpXj7hthKKtB2hVfvJmu8u2n7KxwIfsi/CG9RgE1Kczh3+FvBgD59X0n9uDeY4H2uiaSIDm/1fer70BqhwpbeQk5VlmqhNqJyBQYRbzOBsEtMtwHjNgGZtZ8/T+D5JTgRVEy7Ohpgc7EDd+t6W07y3B+cCrv1qUf7jogSdtrGQ90Js+eY+iDGE5n4Ksm4/pGa/XXAgmquaU9/+2/qLMqIJOa4AqmIqIldgWpV0m2MTUGMlRDJAQfQFEuQ08bT4Q31Y1qeFvjJRfY4+E1N7+6kqVz5unzQ7cJruhGKYCZ12Jd14zgF030/XRXCh+TdB87zfq5eEfGq1mSX/iGPmHxwMFaswvSuOiK+d/DXTJcqWBQpdx8i87rsx0NMHpN9YSYYx/4tePPlmeRpbhOwhO8wXKs4uqgaU+NUsh0kqxvbM2hI9ED6Xgg8aYQPExBUVCXAomZ35X8usCX7kRPAgPyxifRjG7Nif1pmXUbzM6+7oQcUMm05PRJF3DTKWVlLK+n5G5ln3eijftT4AyeULZmjtpGKr6yu/Biaw1P4bz+MVX4bF2eWtWsYen9/pqk/rgVVE425mMvxrddF8fAwnN7cVa8LNaLp3I4P6r3CuqnK+zQBYqpXJoAoGL45svx6j5NMTSBhWakLHefTL0MNsL1Du5jXrPv1boMdOiL4tjP1tn6EqkM0GECj7NeFhFW9hx3a4fE+4SthVVRN5SqADvFn4sgzoDnFiwsoMgM4amVcNMkoUI9CNIxglCseUPkeT8USzHZMDeZzkoZlfXrVWCs/xNqJDwBm4NLkAR51imFQCVvWdIM4RR07S+lFnoHxVir6Dw5UX63kutjLSVGRkumqdAjAyh1yd6xBu+b2+SBESFvrI/hddoHrjVfabkZzhARNKZu/kVw1d+oVoEXgM9E4ztsd6ufvZxCjznLu1VsA9f9DVr1q1IbL3xOHH+hTZCJugnv4Si7vuTU63YLASIS5mN6tTimSfOUyUCX8UXOiuXvpMv2De8CYaQL4VXOwxYWxk04CKQMFUwvRdyZCXkI4QQAYoSD1Txc85RTQgWKdCmQHJBYRdqPkU1fZ8XO7qvkvafVWdo+dJesN3/glzRJtrQi0Fm02g4+OqXtykZmbdF1ZMDIw0+Qf10+7qYv3Kz4rceH7ccs2u1YUDL4VcBz2P1h2dzEz9ejLO7X6fP74hMViU6nxjBcaFHXIwSkXpE/EEkPBkEbsIJqEPxJXKt7v7rESxbxiuS3/XNA0xmKURKgiPS8fbniqva82eEwiZ/72kzjWHrC9VS2M3QjbgeVMewp0hv9oCrfsk6/HBdiaM2WNETFboffkOdLyPPqJqUUtjxCmf4ak/Z8dMEzFt6fum6WOu7e8vIXmhj3nuIPeiNqqIP5dO36GiuSRSULBMeStRxY4f3VAbCkhtPaDw51ESnoTLgwL4cjtfwm0P1nc/CkZYVufNg85+AeJhtPc8LmDP+3D3tl0OhdgqT/zmm9eGywW/6swZ1No7uU2TFO/QNBKMNzpF8Q1iCbdC5iyaCnk7dKqErwtL5X9furvXc1SN81nKyf9UyZ4aOfo5lJW2hvk9KasVNQoazr6iEdUcVuUTCnOzHa5wFDgbOP3acdc2SAJhHebvm1Xny0nSaWIximSsFijYLfgR9EaQhZMdP23vDxwBXk0CmWl+rdb8W+MAn4A8LN24+4vi6aERw6eWpt2yiH1+o9V1fpRpkiObhwIe5Txufn1CVnNZSTXC1Xw2pL+VMg1rAh8lJPN3AYKSJBQHzSb8xpeXiw4t5etMGrZr+JK2V8fjesTigWS/qGSLSKhC/3u4nPX9wKNpSseTuNcJ1tNzovVsXcnPqJhHLW2Vh4MIPkbo5zGXZ/9pbI+bJfG7sxy896y369FX3YRQgYuyGZ8idvTvB1N2CXL/S5QEMbgwG9FpZ1PT7Z1zffi9gP82YI1kA4WDvkGBPr5hc7iRN0wWZG5v7DKb3IDQJTX4SLD+kEQc9rOXkoFe2T0z5iMGdAjFZ6kq/mV+xEcGMCXlfwJclLcRIegU0tFv0sKbnykEg/3Nn7mgDUyoe86N+4dzzG0AIFQufxnOuUwgQTS1MtimxoG0d/9xrev21tgdcjRd4rV/PvcTFtCIWbSzRoxTrPf6j7dLs7dF0yCOMm2ZKj7BKIN4KaGJ95hTh7fdZTaWmfkqga83csAh9P8HHLzdo5hglTozEbxBT+GrJkETyYc1xD2Ezo3xXlmn8UUYK1VHZd98UTaqvSJNov0u3eX6of2WLB/zEd4QR4wybiq/F6Quq7ZY6rGZL1tRCRYVre4YuYjy1Yw6VJifTib8WY8YEfABGLD64zwfFubkFhBWKtrldO/sGZa8kdz2elJyo5wZVEvHmBOnN2efGKc9ToX+c1SCKgg7orp6iBOafo9UDwMfhz065oFM14x93ezJfPg9V2ZhJGbaGhqV/hXH+Q40o0rtOMZ/+So8ctpb4jDRnrSNZD09PKjsIfWOe2O2c7hbm1zdkWKly1pj9MBfsvqJPBpP9a5A5UReKyaNXwTq7waauMFAS5lHG2V1Wv/OOqCZvzNCNB2e0COsSBbcgnbEh7zTGQfrD13MIuIWl1Z6ew2zjfiSVSKh8EWra+cz3VNiv0lXoI2yjn3G3C5CeqQkDxP4xheuOnYl0o5J+aC2AUGhM+BvOseUG7sKq6yV0e7OYYINDQqQhkgI8E869ii0/3bVAKTOTEl6g9NXViOERW4B9aweWprz3aI+RsudacNDDn1+28plnWgXytkRRo6gwcS8xDH/nW5Bk7rNnlFCcqIvyYAClHOop/nwUyPCa0RhM6nsKQRGjDyiAm98gYXuaqK1eTnIydGPhjdP0f3sM2JgprLi+RZQEvoRhYJv6p1nxSr/yDR3X2YUHPvM2ROhYyR9IKOm19BHvQez55KHOiWjESi/W6AH5dPVKRKPOAmAvNHSZkRqxNQiuaxPGJAUzDwu3SVTlRP+lSbr0tiPtWEP0mX/cVLwGDOfNgjNhHuQvf7mNw9gDgz5EXS6hJw6F/u+J2Aj4P7D773LhBOUArI9pnN7wr4mi6ICky1rN//5sZ0/0ponA3BmIzCVZiEXyU0OuwQXbji9u+lpSJWPRi0ALABzNh13BnVq5DCD9MXR4g+HrN4U3N0bKyg2bKxOOplGUCqXvjlAqov024pQ0NSpytPi2T/5GqlD+hZDtRuLP44D7559YxbgyrOK9dEpD0bDcFq1Br1Jg9zSsZLMMWpUukrp3Nl5+KAi2A0jnUiyrS0NPe1w/bg3rl1L8Rn5CrY8+zFvY/GJwVhnZh4DWxs6ik+Rj16kxkdrRI8p9VMi4NLHtETnmLPf3PvpxcDcVlec/AEeofZFF9Uj7RKjbniAlQwDGu10hcn3QDnDkkwDy7t1+hBhHi7ix73rTSpBIsjnkcQ/TAQJZVeDCdHGgkBfwErp1ezQzvNBq6LX1EGdWs9HMNIgVmnuxEWLaR5kdi7HzmNPR9LkRuDVJ9cvRasrCpCpT668XHouSTfc9RQUVVW/TPk2yzdAD5hLCeCG/gMngxsYdMZGWvu8S2hJXGMAbzRTa3DIFefQhMjYJLp2MVYznF3EwHci7/n/yuIMv/0w34SJSMORxsLQtDBolt2rVkQ7S6+pqFNFu6vUDQqMuPIRfj/ABvdWFKOLynFx4UEmYEzxAtuc8avMBR1hFn9WTUM4u0s2ltJiZDSQs0cZkTUSM9HC0Ugkv9S98dcJxEihSJ4BMHMZzN/5d768vIm7BeRlV4v9EeJyZW2amUIBWCivj5MgBmJLzvyLHN07cxX4q+H+yzTeJyVXr06Qsvpjvz2sEQiXVHNUBrKTwrjdE+5zkXup3YIXSABJoMq/4RRcpLMDQ3jT7XbE971ADFn4wVtNyqtBSDJKsfXqYtYuzxlQ+sojFfY8lHcjCHcGYb+m+LEspVkTfwjcYnQDcrb3i7VYl2nKeHyIVBsyK1TAPkyo6u4fPcGYsrHMsgdCNj8UhnZnO1oEpjXjcguXwPse8okWi0vnQVMa9i3gnWIV49NgKZYVDcNEUjc+GNTye/qEwkdFocnPlHlgmEJVOfvjb/6T6PBu/bNbv4GLniU01FeFoEek0+htWsLxg44k/PrKJ4Ui9dcEH8w0eU4d8hPNsB+HbnwgBZIkBOeqMq82nRbEVzY5WAu3v5HkWijP0bi+24mhHdW+R3pT9Z4RplywyMtslnB6iltwDKVKvwdJ/CFybgBgXyRgWKziLVBmUqHFmVIyLTAd6GxKc/PV0OwGWlISL6Et/mFps3jmv00v5oN1qnCf0wXEbVrlwy4Qfmr6D/5B2+14R4tTVxVZ1kmQCdqd/yfg7/8S0rEqURykijFJbk9+7Cg/dY/NRZ2n2GOkrWLg3u83a1RMHMQPJW0STanFSCt4UTZKNqQwNsQa2Pc5I9NfRB+ChWs0CIdUMEHen5ZAsdX87vf29CPLxH6+pA2cg/8QxFup+UQQl+A3EqlfUOwsrt5zGjkZdBf+jK72CVf5gv9S9/r3e6cGa7ypCWvDXUIi/WtKIvZy/+UchRWaEqEjNbXHcr3oIMF+/uVYZHbZ2JLRdRJAnvl0eRDms5votA+B56ZxtkmY3WIBhDmL5ItuoMrf2dnFHa+x60pjHsJU5WS/rzlk2whapKuQhnuyWYvuMWTSbXAIaATFcWTaaHBH1q5eKmhEecfySCLlCv4rj17f50ghQ3L4ixUbZ5TBtFjslMYmlNgIQYLzmCyfLLFJjSj4+8nFRK5xgFn1VP68nC/9O2Ro9U54T+NI8D2LuO/ksTmZhEh5HFw1ow5nRjinG5oaU++owRUNmZ8IGaP5DgBf6nDt9FeYCisggZaS1uOEhnrFk/Xy8wSXNtbl798CWeEYRzCBa4i+bQgg7a8PztRdDnPVZmHN0/3QlHhLnVdUxu2OGj+oZVLs0VC0tP6sdjGcWNLFNSKaHGO3rs05B3LaaGGaLyJtdkhReppQy37mf5pLRk0cC+KiR/aVgX6RC/z+MRdYhSKuX8VtjzWRQxp8xLSpKfFqMBYX+ue0BvhlnJPUxoIC5GegMg34tSa7Dpr1Xmh5fllUdYOyKBUP3VrS8zGJgCy+xjmyocHHGANcNcrvrYRmi0kOAzfchHz4SKShRZUJ/E9esLSLTUMdJeOHFwx3K8yFi+OUcpjQVsJc7GL873cqQQRevzgNSLhHtChj1Nj9ZDdgVDfIhtOPK8rOd38aD8LoFbmFcQNGSRMEApvT143QXQ3L7gOP8ZWSlYWscxACZt94kIr1NT3494IkHJn4HNd3ylsL4eBWFa09cgSL8gMglZj0AOMYm6eegr1P0/C/lMrWpK/QQiQLxPjjksNN2vIEjUuF9cgmdxpSl+/gVx93kFmUpQhKm+BYHxAT35tZm0RI8fK9qoGwe9+CHC9kS2LmNpXUS34bJxwNlsGzHR5Bnc3V+gMjAliPubJlK+EUVMYTE/UlzMcYQsM2fLPdZB+vf9OQ0QITLFFy6YW7f5TD6kMeRLCSz9GVIy0mSuURl/BAJmkDhkBtsAD15fbIiiclOl1uhZU6vmJ11SLBK25SuauJ57bNUcL3vSbx3IXFwvHM7SCjlN7uCepvLm2MbP0GwSJ7HVWb/mApi6SY7n9oP5ivS/CAoUT2y9pdUqq6A/6RbWaJIzURXHWOPPa4hWf5RyQMMRE4+gmIcapzYUH8pw06dhsuakV2yelKv+ATYYAZYEdJQjLUKYXvh9tLt11Lji+s60yWH2fmWWQaq4MHW21u1A/is+jJGk8DiI/3cBoWVicpCO8YHLPbOkgr+Mh9aaG7jf5wfw60Hddc5vxTyjPOFybjynSsOgY+W6miWUniuaa+4KT3Wl/v8H2ZZn+eFLEoCxkbzcS9KnmOc0UDjA4PvC9+QwzJ2KBba72es8XVtoL3B1c2PS8jADNcrVY2LLNfBQ5s7lvHFZ1IqXIe9O223JvOIfEPNb+K4DGj3usPDlcVeeYMMwblL3CnKpNrSlFiYUMvNYlPa5iFDjgRjk7J01zc9Kl/OjHwMP3sf/BuKJf7EjurUbCg4m6sglvxLRxyxfWALW2SDi5Ra3iG2D51wTtajW+BB81A6aZmVAc3TSfzU78dyne8fHHF661NRIsUOCLhTHQs4eJfe6EmIb+pbCk3OcNiUFE37SUC9LLoBaoGeiqq0EtomJ3pF0poO+rAjR1CUeg0a1bkLajqfUlOPMkzRGbzClqoNojjyCdPxaVjb/lE3fuzMbvXGAnuHwUcI3PhYCWClZPordqMwmBSB8Jhvl13jO3rwkaO+tC4ykPsUVygdlTqr2A/iRg5NhxYesee6WQlC+eYI6APjoayf/xVo/vIf6k/ntdJBb1gdEKkhTwYIy3QpDVmd0nWjAyJYTgq8C8eponJ6CYRt5UzEkwlkKsL6A8nbT1IN+Z3la8NtH94O1p8wAP9swbV7RC/uai1fB2bpaie5+WBbUGL/jsiIwKaARiLZRCA+LwIW9mFPY4beO3XONgyJJvWfgRMmOkls84uSQezloP2wfsTZfFr1ortylZIL2OTlSNScnIpzc3DxEU5w8FM85xozoBzPXaIicF5l8uOe/MplxEz2CHdQx2Mgvplz3PcMHbm+s2GJ5mawNKBz4hw6C0DSW+eRKKxA8PBkiFGL9MU+Nt25Qv+1NjGoE5g+vQYGISGv3lCV4VYEtJRS1MDfflR4La4DfGkdr38IZw3UlhurW2ruH7X4X5L6tlx7fQHg0KiDOvqefm+S0ABYK//wDV7MxO3ApgxRQJtI6gPhgtQDCJYh5VwVXPMIBGvtZwG+PRFUhA2NhKAXBCJV2+dPYuKZovRIVBAF4D2EsM9VbM5UJ8SeLm88EEpzi6rTQA3au/t90MTQq8GvmCk5rjgeCgkX7HIlxysFhSbudBXt3hGsANwv6ZGlG4jJ8utDeAxUxdy11cq5fBLz2ThG+FhU5B4MKa0EhrbLOXgrXTX5UHWvl33iKFUb8cYhOcCjPyqwRSgwOM9hPBHMIggqjnIxaDJ3ENk5GuNkYJoIadi7erloyoppV+9dHNX8W9YscNa4nc+UmkOimGlY6aSJzd/baStavaXVQX3YCs9BbmMMdWtP/El5B1X25a0J2ewFOY0hssiWWUma/AdA0VM3s1RYnqO2ElcqKuYU/lJQepOlzs2aVuwEamge9ouotVWBYrGSNVQQOeQkUFp4444TGjXEcsIX2jf4VLOz9Zl4UQh7PGyictlpmu89g4L/OmTrR6E/pDLnW2at9jMYkXvidt9hsLu8CZ+XHggWQH0BYmPuZJkQB+zBGbgTW9LKLYyYVkiLFRzI99PHt+sRXZHL/iJqtexX7lwUYynWX4uW1g/TnTmaM3auI2ssxCWnJMUeXZConLUB9OrddNG3ioe55vOVbSo/56IpWXhwOlphOL5svz/mg/qctPszhPSQAaEezhx/YcQzKQWcXpO+2hkyeP+zQLY3XgBbvoo9+By6QyzjLA2f67HHvvCRYdsBDwCUgIivn/qLMRy9s0j5WRmtuz++MPFn+Dy6Nw8xercCtdoPm5/7SUz34CtptzSC+MGksQBZjTzI/THUbFMNblj2NuFyUXwSa/pYVQwj2W+/QCV3BcFF4Svf0GI/EntM8SB2c13/ot9W1rNJZ4XQpbwX++AsUnPv3SMN/bgAzyBBm50KgppMloU1j7QWbviUaX0BJqdqzITuF7pTdVS2h10GNgTS61VouHYPQhq67hebpqDj651n0gWqDVw+W7JTJHAY3bWWwm15NNox99h/CuCEYKakFbOJoVGZcM1HSh9zNE0F4+ucERmG00zttmVkk6+EoRfKzVuz/GHERXx022XT6MLyKeG2jqJ2dYbn2O4qQbmiqOjYRK9OadWj/0Wq6SeW/i+5p6hhLKeHfx2SVTQGD3J7fXkFhlJif+IIBr3whGTzfLFj9oQTgFk+szccI10oNK6WCdLkCG5X5VewxAbtDbpaWU0TgXpNSknrncfqybatY462gARwaGO/BDi6SsxRzb3tfdi4fyLS1eymObBq2o6qbTNmbXgVPFDLdOsaios9Q/G+mDRnwNfUlwf98iFJ6mr4I9LEBRgAH3gCA57sSQwE7tHspKYgp6PFZ/0wEfRgZ0ZfJpYNRoU9WqwkUIcsR4IwFhwwc3kZH7pf3ovhLcgT0ie4WarmwNPe4AWLYkKZngNrcKZRTXFkr0BwEwcbNgls9MbTQxFkZugouZfKLiXvQM9m2RdR3LP6DwG+hCtEIGt8hnQiStqnIZCVET3RrBIakRzKvpRc29hNp0m+7fRmxzBbwup2WeUgb+ze+GzOsBVWHh0CJJLZ36fhhPi9PkkolGzVrI7TwnJFIrpzfvf5EaMwb6ib7jiFRitCTstALiHhvCTFmF2odZZRBoPLeWt7qPECP8vbuUUNYfsP3giUScEWOosxVJdMsl5AUqI9PlRuh+Gm8vaJ35Rvnh3AGpn10uM0rgF9KtWOZpTMlvh4yxnqpHTJwnIV2x/Mh/mj4JhTecTv3+CvkGQLEbTUv/kHDKYjRa8gSNewAAZIHV9lf92EPk+iW32lKNogi9AeuY98pKszj/9kndjRTSqjEknSIgUzCzLYR4hOzlsZbjwtfwxHv/rkYEoENP4LfUIU5blWZj22KuXzHtThyXSL+Edfk/YSTMgKs9LpJBmNLChV0meYxFSj4QAitj49IsOobVfr9ANcZEmuiNj6qyyVB1mFLqCmYIjOLPFHFNKP00ObWlGwa0dl8zgGCkk/M+IdP27gXzHyWs6AKGXzY/pmsbxaOXiKZ1Z53kou0l/GwmBGV4h1rvxoGFAZuAPODwMobQWILu8Nv7Ca8msvlwQKXtPl34alb+aPf2uuuXC1F9S0BQXBPtumOsvXGO7ExTWjMU4k13/kxOspRL4j0aN/agU1wSUWVim8JzhcYHMjTKzZbql3F4ypZqyoECJf6RnCMlOXq/ZgKPKjZwMj+hAA91aV/E3JjYCXbdfWbhaP3c9V9qj0/nfhVeV5bkd5j4nQZfCuMOTLK4bUghQfb5AmDv/Z9dNLOsWe3+DecTk6E/5OvYoWEEA8OB7cv0PZKEBYBACavEhzd0DLGORpawkqz66iPyrym5mofN6TQ4gxQxMJT6z8Mn2Ca2OeCUDWgtiXfTc7gKOi5cKTSOy8j9sjOSUnHZZyYJC/6c0MXohSa4ojsC0zFD/SprsjK6Ak+iqofr3BiSCi3HaYdk1q/0EU61v+3EgQTFnLxoGScIe8v/aUJn1Be3zKi4qkipsTVhgAUVye3rtrAZOzPOcCoCNvfdyNrM7OPlOU6sxL8QSzICO9BxUpNZNO4c/9A44zhFQzQuiYu0PyVlObAFbw2NL4TwAEPjEJ9zcsRNao2xMt+GJHlBLqLnS8x4BEIEdKOlfLY1tTmayGjKks51R/WcwN/9PXOKTy7t8r+kyVhjn4NEXxjh/pU1D+Fj8DP2CsRTxF5Y4QhcktnKB27XG2YMCfT4UfTCyqpoJIq8JRWD4S4QPibKsssHEL01pbgNPBJT6+bqCtF8kkuAtIX+KH4Ei7fftUL15tbnaDAeOR8AL2onRMKmnajlLyp+hxULF82vSEVhEdkr7igCfdmaHjkKUXCyZ+yDKdNY2RizuQscD145OvrT3f10YqosUU4jjt/so3zKY6RXWgc2xZATyklnCzRhic6xfTbloqFIyi7Jo74klPTI/OceTUTfl4XYeYi+G481KtXJm2RmPf3Npg8kEMJet09BpAFtY52HJiCTgY4HMpX25WwvD6GOVSNQ+C0DpNrwHLZ3sPPJzD2s11VevjZHT2tJ8LFYnvfDIWYG1dnk3844cZQy6w9CCIOcXCpKias6nciWQJzSq/45VscgKV2Rq9mcgbvpmYlJPHwZpoEnNosfQoIepP7f3eYM6hwtvf8BnVNxwAvjL0YvRfr/pMMkC8Odn+gp4rpbS+amoi81eGC8WHJ2xb6XVfZv4lE3idYqvpevWVz9UHkw/8TKj8na4sCX1YEfNU0Mye9DydIGmhJ2XnpRJCyN+uXF+GyqQD+HChXKZQQV5yKKLE9fbLJyLqzE9HkMrp3167Jx1wdhVxjv7TjqpcHPMkqdzNPSchWTXJWkBOwWaAJZtsTA5PEXljJ/2/GTUKTWfQn7eAtT2OCO6YwUBaB75FfuSrmwWBGY0xw/PR6gUoX6LMZQh/n6uGn3WqCJbT1qqpLSwzzLvZVCW8XAq30CFZS9AQIa2mPgdXcE/vkxswROWVnaznccZRqMrPlRnn0RafdPatik6Db31a4WhyQPamQa2/ataIOpzTSbLjXKwZ69Jbyaslh6Vpq0AOAUhTC/UfpL/w3RcfrKxaXbXOnCDp6p6ZR/LZfwthEPfl5d+3QMOhEbgvg3IL5q9abMAB0s8vHGdYGt5z7HI7aX8EO7ikFltU39iHTJ4ZZw3xybKt7W85Twja+OUy85nUtoWoGuAUQeD8LMsreG5rWG7kiJP128cK7tpfuacA0fJzeJXJUY+PyBwcevFYnaCy0miHrUU2zbIr5IHmhGXT8UoKK5UjA0xeeIbERrSA7lZmjV2knODS/C5chMUpb6IY2aiQ6NL4k6hVW6meWnBle6KeZbHQsZyUL/MvQ9sYqOb3+ogBON1BQUOvPtRLHdgQ8lOK7AXNBxuUtXAIVbkHxI8Mf/HiZ747gSBGn9TFY70cxC3lkGnTmwnr3whvyyHJWb3bSxAT1/nX4BxOy4RSFuopLsAe4n+ujnkM7RmHezWmDnx61tJD2n3YAtXIa6GfRz5IKVYsS/qZaAJDj7eA7iGvCdZI0smiPW9CqnP4zW1tnRbM4iXGf5iJCjyRSyiW0AzQ1zbOBzWdovGOsuQhsa8JYiDW4A/gEGHEGUS9lGAqXtlPkpYTQUX5JNJh8AMxU5+fnCW8b5iT0T+a+W6boojSkEoVT6feicWllCgxbjcOxm+6Y/pdxixUd5mqvr8NzhuQdRuWaVTiaTWZaYYh0ioo66ntRvQRgXWNhXXz7t71l1+7O0BL8J2mvBf0LpAnxrlgH6mG8LrI6ihXsBTwDeFoWPFl9vIVxJrKUbrKU+nTC3gY0l3PT8rPvCjNPMl3B/BtSwrf/ajmt09rn3lv90MvIkF8BGWQhEEyo+ELThm5z1CowkA1iuMGEJA795OcygFGMq1vkPYjPf3yi9OQqlpq4U4vD0osr1Qw3A3OH6EE/Vnj00YPtWwvDBQDKCjZW9q4Qhsr3s0ZpcUDI6fxRoxM/Vvlo+rDKTAz2tSvi+2lbGBGyr2W8Jwv+47EZm+EmMd4p7wElf+PYbkkNabchOYJoMMLG/t2q5rOwBkNjnxAmRGmdlCYud1M6kOIjp6BGZW72dEEaEkzFjJjfk3fWzoDX4Fu6tx3FF3zxPMmpFBSPAIBQaiUnJ0wrt/kXbvNW7pRe91DnKvghHb+OVeiKSbo27M8QBD8Lb9mgH9CIhvTCq7dTWEYoAGhBJAyFf9gmQQ53I+KeSWps3HAhqFUmoNwUZqtdlXpPW3AIymqmEfnTNkf7knHY2GZwqwOUIyARz0wxstBySr081hBgyYHmve096GfiH5DTNDKMIz6h/TWwOZkTnosPYmQ6gFNazcaqlyIo3E9ZPIkEvLORhK/g+3f9qiDez3xwZUaHUBUBo5Mh0EGD+5MegjsGcBPGTHzdb6lGtTO5CDQXOYIZYtucnVZbhz7lYqms4ZG1VtaaUid3hDW4WCNpaXJINoiFDjY1//9qS4AVqRPs4VAuo4qI+KgNPjk/+YASBmGO/UCaP+WC0uba6sPWTJ0p/wAtGIbkoiEflbyTXh5qtP255wu8m9T8iEEEZUBK4sxaiF8PTBr1cZZgIB1Xll0qwyuoX17rCTgkDKZbPLEzoHBBkd24+mdE7USaOuoealxI2JAwNbERjt+Qe9tJy25tnu+kVqIBtou707foqlLaEQ0Ytx3P6y8fYHVRWb3ohr6xVy/D5FspduTke1SQFyxXF1mu2bVj3FswVplSGwJOk2KzTkSdLiY84dsybt51Cz4pIIz0LFexBPqI6QwAtOWg4oqL0sefiA98licSr5Ev56lQ50YkR9y+I5GF87x3KqDxwxB1ZJTgtxXslCWo4rTetDxEA8yZ/uaIA0AZJQ8S8RN9LVLTZzUa4TbbXhQTKaw2Q/1+wztwTY5jcySjNGf/0zP1YgRDOWTvpGSTA9rC2OdkX+VHRBa2Bx185nb2nCMGJSWfkJ8XWc523Zq7fTS0XaY8qszYh4qZIQA07K4W10tiBPn5qxf5hHc1qA8Y3LjnHFTNyFBxLJ2TrqzMu1eVi+s7lLqhEk4p4ZkktGVsokBZa8ffayan4+zbf5t9IZFA1UYJmiHCZdB0Sr3530/21SD3AD6fzy97aKL0E1dSoS6kEzLsdEUQ48nAYNcuEyjiO1b7D10u+H3XP5YEa4llRSNusmeFFGRG4ttKcq+E+RbNt5Tc+Ghvt3ms5fufzbnDQjDQ+fWVUHFX+I3Y8rJ26tzxgboFALj5n42OSJdLIQiB1azrO4YxGxTVa1gfFAAu/5XG5RN3g7hGUWAfrzvrMvY+UNt2aAVAgexu0xJBQuf8Bsw4USFgo7Iyrv+J+1EreLNH0zD2SbW/dHBFdyjLiTYvYI4a5jmmX+zVnMGXe7hVStdEAYN1DWo1OwGTQUDjEVcp9mmqColwHi0EUC4lawKCommyvEwVmdm9gtwVpT8wuumeWht+wa+rzwo6hG0Y/tCnHQTBED5mh8FEape0OJIiLSfLlMbFxJe4MIwzME8zjk3iGaVZCnutZotvqFkOu7XwjQHTu34JmbmbQ7IgmCVZFP1bR5QlGWREeOCPrHQod7K9GvHfwuYVxK7mCQOmIYLtEFChA0A5VzKpSAkZVVUVRBVF6LgAeSqaQnnfnALnTusjEzOBLXBM0c6bwg2uT5lan4ohRkOgqv/GoIJG/3/y1oN1qDj+GCxll+grm/hCFkCpfE8sBk0KvMBhd5+npfqd9D7cNmFiaskbQ1Q1/5AgL1iGcqwX0UwpnTut969ypvrdk5fd0mEqWKYt1HCfwblEx27WT9ZIZDfPG/V0SFdqc3h2guVEKfZfPW9fMVYJuk6ivUyJvLTzrSOmEiyuu2w5rNhAgR5UlkDOJzHh/a879urKmEyxZ64eqRcr2UMNrRFpTjIDYNwVA51RcoWuUgtvrcTWVv+5Ok38T4BVcxgNUiETJPVIaWDYnOUMsQZwJKGPCk9s+xh9+RodihNKjvT/Hj2Ygr2oWAPYw1WHS0oWcStXQkynPKMLrUo2dMnkS4bx/brHJw6IMH+oQchcrA+v8GnNZO34B/egz0oZWsRr7GUvNr+aoVdX6y+FSxDqs5HJkkciKPnI53QHGRV8Bo/UW9/xjinCwSRYeB24In6uZ2cp9YqfmwHgBa1rjfeXVi2DHLe0IRk4J2ala+thMLGSaeTyspF9Nikfk02xMjVbWTkl4oCdagrCc3NnKqqEfed4iaeumRHC1UFlLE+bRQV8kszB3SRr1WpgjZDBQKGgMmuN110Sz8azcYl03JWfU95TvW0McPE7sJqCA30WL3GYS2zFD1mXd0BCJIxPH3SZMIulxcR/H+C8n4MDrWA6iaALQ5HrXyGGf2LaJQihHGqfqdiomTQj4w6BFJbAT+/XuYWzm0iDAYgjhMpPJbgAJuBjRVp8cqCYJ/4JplHgcjkV4mgawUB7tGsK5qnpSbe3MNh+V9sY/7YGTxe+1w8CccMdT2TX+VnFDooCa8ETMrROcqtWdSb57PlgVQOl+oyIfUu2OtSNzDKhI0xxyPxY3DqkjqzKKrj2d2akcs1SARGtz0mIg9ikaREkNs51tGzhmddetTRnE9pUBwG9NQsPEEQ4r7maitdopI8haRHv6uxJXZkHK5zaS9A6iIf04BF9m4YsFNBD3Vh++G11tjA5AixvtkJkD91IUuPyBNjwTJbVsibbhoplQiREN0NWsz9F2ELE1ssL//1bZ+z3TZoaAZG5Duro4gIk1aUy3wCYkwigeYm4qG9WCxeKxtnPapttG8u8h8CfC5/zbYJpTqEf8CX31cWU9WDnJCSQXJf8abKcxgZ0yfiChw7ya7QHJqiAHzqm2yMyw0Qk2RgZlOyoBUeQpoHDP+Or8X+oPO31id+iGLDApkm0a/h67PrS1V9vW0n6LqaHbNXYvv8gl3KO+MwInzwi3Sqm+KWMGPOZSNeaaS/4kavXoO00nceExJ9wRPW8TwRCsdRah7Y1xVn5mxUXc9U3MxRMsHtcCB3x8GrzqCB6IffqopCuOcGozMqO4dYywHckBkKDXQaLqqQUToWRZhLnrqJs1rsTOS/0AGwjSQMBu372NVXIEGYgIYtpGtIHZhH49BmqA3yc/8naIF6w022yei739QOeSQxTorO3aMOAYKCsYpkDSILFPyMYdNDsOdwmSVBAm7a3l7dILBH325l/gpufWvP8Q4swqABXbalNa+xADLwQxg9qBIxFov9Oiue1A36RrICVh0mXgZ8X+gSa4tPKmwQZFSkI1wzfcAfHkZUASzvzx4qQ55riyKaHa6SV8TINq5t+qDTL5NpFXRKZG9k2MqM+R9b+aAOivGF1IN3hVqG7NewbsGbpaCb76zxwFxTAfXoGLA1/o1EqsI3h8+vtQvU5wsukU8PgIGj8xAn8CgxPrIWKPQ0u2XbvnYiNgEeYhSb9vl4edHK8UZyr+UygJqwzIhTD5lu3ptI1KBTV6zT/1wBrXkepJQSBj4auTk3E09LvcoQ2nmrZSVhRnaQsbFpnCgZx6wElbPBPatsSKXtbMeaoo0p8WLcpAVxZGzLeGn/GDTnahPAfYEksZu5ytQl0HgKABkNRgHSwQupvN1pQlaiJRQHRhe0sm5ZmJOkXldQV2fB9YvH6VxiYbJHGAdFetR8XpIbk01/5RRQXsxIuUJys2jm2/sLU3CvPz/YEjooVW7EErWLEe5FOFJimUSm74CYZgS/cG58kztoh8MFAyJkxbabk+VniLgdMPhQU98bGXnUeWUgILTeddqP31HhDuzAVPDuoql3hNS/0FtDUDTppbLe3ewf0xLsyz3IXkKgGt/TShwKALGXXoZuAAWy/W5hOyWcKZIYs6cPcwBrKb31cqZtwrrZT5SXbjUDV592nnirAgAqioj5tCsFNX5twe+lLjiLZJEf1temjrmAujU2W0QxfFcrXejSkbk3jvRtZG7PrfiZ0gBc/sc753jIyD6EdvQ75LsFfDYuF53OL5c21gb2QdHvriMNnNj4kLjv8DPqHfXe9eIfGdpXhxuGH2CB7kjvHFuOrAAlgY3XyTNzJn3eHPTdYf6yC8omz+uEsUUT6rv5+18MsEzNBIPrMVJ+rDzj0gvMbxPSRHA+e9ukFNw0lPx2Lo2VOOyAE9kPvqd82MpiDaOB/000bQHFulPH43x5XMYg6BP4na+5KAY/HiGpNDLDTPyuwAdQkmj5EQbWchCpkhrPKeB42EfRbUTDjSlJ5LVWPgw2r4rxTM7ngsq8PQbAGboaAFgbJ9BqXF7udHoqu2Z84t+MOncbDVUeN8qKXLRknzhcHVpM2I9Hk5QTXFAXv49buzMCtRBbrQwqtdE2HJU7TjE4Rs7i0hM0AynnWwO8FawemLvJ+1KZuZwhEeff+sRZ4DdSuyjjbGv/GrzikuX/ijdqs8ahPJNPmhnwoVQi7m3gNXMTSpPG4VK2GCrxxkUKCpT1f6jd3sJAxW+M8fqiv93a3JJ7bToX96xtWbq8zHtpVhL6ECSGTAQ9lhqgjszTt57slcrOUSqsqWp4NmN7/7FyccP6/GVpUVC5CE4rFtkZnt7DxF0H2Rt9I8ANBVj7RdwFKKUR4A7yXgBZN6iugeDQp8bzr6m+Mad9g8T8x+nOeIKv3aefE4w9Kv0gnDrguVtf3wGjVBy1e9DwBCa4xINwYpoC7MQTU8Wz6w3oCJxtx3yWFUptlTXl3difP/dEaYZWfXuUtrYizCkltGp/VGpFqu2OFuIWfRc+7GpLK2Ct5qgvZz7aeTCfzf33e9+carAOYk9tju2PQ4pCxoZyNYnHv9dDSBGQmJ/kLv81zVfO/L9871MH621/CldvGHLMBa1XJMJvfWNeeE2eOHbrx3Sp1zcvG7GpbkzT21pxL2L3Le1o+6G52QsSQaWQj27ua4S0waI2EDuV3uRsCEH00/c68hsX/nW/hZw7DzBEZwBZ6JNREcciWHvs2WYoqh2tWgQzaYc6yVIh2AgxYpp1HHutm+Wsr52uHTLmz9gez2qqHk4QRuPlBPJjPAgU4wcCDV4IJsPxnnPhbNfggk8ihKT5TLq7+Kv29aDV/WtDKjt2mfruyi4eeHlZOd+RmMY/I24+lJVRBCpMRIUoHhmuSEf9q+cs2vAcXGdIlUKa5x0Dgk2Mr7/keBuxw9T7yR8oqpHvajQ6gWf6l64CH5RpQTT9Ks1gP7osUCIMr5BHhAEFEIBDzLxugxatCiZJGCBStL/+Zbi0HlRQpNJAZmmRmvNQy18SBawQL5tfIabsjdT09I9Edr7UbD2RZSgeE9RAeqs2oTz+6VyYaAbx8iEkNJXjoP2HAvacjJRXDHT1kdRT/nc3ixeGAVcFJEfpceJkz81J13IplnVfEVdn582+xDJTWB9OyVgFyf1terGDHEKheh9kJQrZwZtDFot6JN6B97ZrZkwikiZgPaH/rgglsBRLp1rdqXNL3h+RLpQotAN00mlV1iE1r8KsqqV34I4VRBh/2++VGQURwrHli7MpXR13JXs8i9vHUpPfq75l3QYkEUUArmjY6EGuVDZVjhZhNTMxdQj+rNf0PhAX4HLs48/2H1J62alNlw8afGd+KwHZ6VMtwaIoizB6CoHthjZ5qH025jQpTE83PmNtknZBhuiFBXantf1RUnvfvi0QK5xGOreu7mJPJDbVSbe5BxvBxoYw+suhxrtKIyeaU2xvUtiJyDAQvzo2klMDihOhagQ1ykQ5rAd+n+VPPp55twAylf91OtUzTioWyV0AzG8mUXeRjEyr35Tw31EC9Z0aOAH6j0AsVcJEyGT2Rgpch1d9ez95EL/imAh0GjYmSfmEDoX6QnQWdwUNfv7J3pCn1lUF+SwTVEmjWh4LPSCk0dOiJOCHXh4ExJ1vOGKHLzHAEKs91+/0/IH8Wee0JNv5Bc3SQHzJ5ks8VPMnqwRHlX17Nqtzvxp2OHL1rLBu5GqFumG2lLs0HwJfGVHfJhokLKa6osswA7LvtRhJthmRcFJW6qBQg2nBZXmQVB9dG3Mzwv4mKl50zApfPlAR7dOK3/dgWCM5NsCBXSzwP0qSpXRiKrEhv6dCa+1MAwVTYNRAbFm+hJRaUHUjmlcZnwQCejN4TsdTxJAgBWp837/pe4/ig2YXSLN0vohTaoQ2rCStxy9N26/uxnqyFM0CYB3ytpl2pjcILQDOOdq84Z/Qc4PnATo9mCFVfIq/JE5n4eMArqMG4cg3zPJM2H2p5z/rfx+T2PDKxNlULZi/Jee1fxPU6KXYpja8Qpk3ZI9GZjKhSb97/lWORn24kEaq4nUsUFyABCQSG5uteGsIQtVZF4M5VbjGiP/gbUWd2gxda1Y9tcZAkK6voVC+4jfAGo2Pnx/VE4Y7a+EwdzUP8b3c0zlbg6Roi2qC48R56ezeZcwcbZRveICLSXmlpi0zODE9adYT0yKfBCXlz10+wpfkFnBTr5iuWMn6xe3dcJj82ZDgj7VtVNfpd8XB1uHGAF27X5U90V9CBTtAnGkzqFumKB7eTEJGQ7FSLHJ/2onjwH8hEKdhXY6xI7OnsTNLKHzcedzb9F9X3hFug5SBb1ZQ3Xmc12nWY88ayORAnbpW+6ZYlB75iHYERfwAW18zzLTheUOM0NYjd3wbPsABw7b5Smo3tydfFDKTBJXu+F0CuwnYAtRNz1lzVMFYKZMXPAkrj4cEQ0yCfyGOy1zs2WM+lnWTcQrGX1HyKlq2xwnCif1Q1Aze6uqplz/1Rp5n9XzbSGaW70x+joqPYsa6p7QcL/+I/l3kTJV5+UbeTXBMMIMrKmj6URm3wSk0X/PBIBmjdHTlTekQERQZPMkHkST9IoY294G9TNiQObt/fwyLrXaFLzHGWhcuX6NlUWFolbum+50mI/TlfF8jgkZXQjujqHKCGWC6IR9xW+LUg6+eDIeHK9NSgr+RN6XKRzdhX6V08FUwDesvImOrC0Rk5oujNNkM3JpnE7rYiA1d0D6fWyCc2iKBJOZsiGhXfEp9Jpw3JImUvYg6hAgDTi+6ch2bdvZfLsfEMrNSF5/nLdbnJ3NSa2N2s7n3bcmL4wvrLp18Nx4WbO27zkH7nu3Zt9wTvIc61/g/Y4CrsSBzIMuSEboA+LGJW1ITPZbmlvfmd4ht/kOPiUGk2Gal12DXUJwmX8g0aiKIuIk0YQRB/JMRNjeWVunTUjcBJYbGjrgOEkJ1S9jnjGPLerK4MXKoiEQyJ/+HaWZX5KeSjAA9gPo7V/RGg9NX5CDqG3cP75/4rPmTA8b/HgJP/9Kj/+KiVpwlh0UHQcuRMdRTypqUI23TjMkmIVqOX5E/U9MzEWo92Ee+QS04GUDk8yMv/1V3UyXqVXhvD1wY470IACD4hqfynoa3PkLxerfnqu7LJ+tRXwMilyj1djy+j0TcX90BpWwdXhszTrMyX8fxqkB0uvBreG3injqleVd9o/XzXLSNdqOK2WQKTHBWOiuXgh6+GSj7eeFwBzaBnynWCjCSAouID1Tn2tCsIW+wqp30KiaqNDtHzyCtNAns1fEflcYSKwqqK4CWdLb/M+pmq363wZCnzhkXUa5Ju/xV48PXmDOvuY8eLk40fCmg1UsYKnoiK9B4/VgHVXwGHZ/xFUI9VOgDOqkl98uFmPRdS9CINTiJDxwURPSM8twORof4z8NKu/A4Kp1QGwDMiWMCTL1HN6PwT+8QT4IVWjG9DiV0XbTSnuWCAKPU+JLLGdSnQSyyAkBwkp89NEnJQGz1nOgiLujzlCDfdbUthW/jKtEVFh1R6rm7h1OgZNnzHvTbWEd46VTfq5jkybcWX6dKUi4AVKjvR0wAcxMK0gq9tCJRuMq1JFZJrLM6hKf/Yx3w4DLYPJXVp7hrFQCatizD6S1IuqaR/qozpB/T+ajWLz7eTMVCUgFy1Sktq5bAOsl0Rnqz1xH2VI3NWYg86rkp0xLMKIp9h13g3r3wRv0oxWWemDi8JUqB53sEOqu8+HYo5n9/Bkp7UpdwCJX4ek5+f+gcRWPUc2XT9rvIqoOYHxvU8spIDpaRjEjdZ57aIFKLQ4hnv8VFCYxWwS63ESQ7o9Iie/zhzVJD+p0MuEhcSEqcYYuCW3xXTadB/z/T5RPZKmYBgaFiQhrr8C99p4LKes07pil7ItNQ4abgX/Q0UkJ9rRxsm1re1C4g3gp0VpeVxFl2r65iOyUx4KkDM4MPbv/Ncs16tXdZ0nAza4tfQfkPOvluIIwcpHd5jKDVk6tSysvoJ6WsRohIzPyq6vLr4r4WyiNp1VoXbGlYLnffdNR7KVoqsY8p0eOhydIjB9kkYgeVxPLYtddBqHz/dbFzlpSNsZx7sBffM5vm2fWHP6CMs9I7e5AyBzsNMz6lghEyggE+Pua/t2rhmL5PnwgrJt/oJ511ycIOSirnPitN0c3PlSrBtjBTH6AlTmwgeaaOseYPYYc0Ytq3ArLZQVE2puu3PgkKQi97iMcArObxl2pciOCNMmGFmAXBnq/B88m/P0j83J/vTOfKwMyLMuP6bjyICYYaeQxQ2hkpoxLMMAmv2tmXFsDuRmGow9EpUlk2CMH8kuMTsDnv+usORzNgntX482hMHswkV2ogPSdxhwWf7tZ8wzVcR9KLZeeluHTpNixRwW3LOnjMM7Zu52LfpcAAi0444Wnn56N2M/gOQ9Y7rDtRwL8RZ3a2UiOTQvNrxjS3Rcxj+y0H6GyBNDNiCQCekA5LQ+v4w+MopOUW3D475WOVu9OMxH0mbDY1poZIKvRodvY53DtZhGjKKEVIc4Vr8+oOJ4+OXJMkScBSvLUERrZJzCAh+HraNqxizDbN0831BhwY/PtXg2o//rsa/SzYrX4hb/WldP3gZkv9u75y5U4116iHVRV3QU1RKspQ022ziuOEzbBzcGtmT1VPIowfF8gg800w+UxC+AYNKKGAIpGCb+F8xHFGwy/69VPrwrc70S8zJNHcdxIPA2nVMTU87gl4wn15xU9K9mnbnBGDLm46v4yQ/BEE7l7unPBhUobIsDQq//JR37nhayd26XdVk+q8kIHNTstIwdwVwBSnRtQ1ZbfxmDwjPNQsqxrZtYRoCLYxdWKmrwp6+IBwjHQBhdkhxyXF9861+7pL48IRSFJBNrDp6ECzEjniPlrm3/13iRXyTn8IjZkqH0LDKRTTt7GZd9xYYuzqp9UWDRHrBX0TJ8SaKdVEmBVcrPdSUYiWflx4UD31BotR/KRqhw5QfUZidEnZaZgb8zyg4qIa9IRpwsNcgK+X/SvqhfVQRRamXbligQyWq4QA/M3i0MEHgwy7Tw6lihZdTtFEnmDtHWoJlqrjyRN9UHfSose7GTKOi2qnub9WWU+3iKKs7z2vBlulJeB6Rf8Aco7mVRz6ygZfwKx3PAv8wHe3PS7b6jHIQMh91s0XakxjQQiOIZmwKaFytNRT+vV157ETA4hw8ItgQWOfZ87PwPXonm11fjZO4x6KeNit3BRzQvB6GNdWFbL7NfeOGeTxrWsXnMt5j7vhCIhIwhQm/Dzya6uEQXlZpyjdTEiQsqNst4q+HWuTsQGSjt8CN0dOHL818hrymQbtIJbYfw5lK6k4ZJzVtIvf5fgyjlGeWcWy09Opk0+SXq3AKd6+EPbnngfWMk48ir0Iap5dVOkoqJKDyg+RMI53wPJZ2SdJGeq3d4laJq7B1WsVmvvh0oYOcmAQ3sdbK4sWlTVit4cnu/RFjPAVcscR2EE1SikPViGDtU1W/x4FjWgtJYNf21wlYpA0Ng0TlbKRvr4WSvQpwniAqNzo4iQehOro5egOQlb1qH0v6/cL/kPdZbSD9zfKiFBJNixQMBh7A5VeY9MEXvj7fM8euPj4ASY442HpTK20vMWLKSDNtCjq/DZvukUaesf+LMwQiE/+fMGkOKCMR8m6C5DcPgeGvtZ4kGQV7zBhMIZasLYxxoiGip5IoTWmLrOEz+CsYz40RBZVQYIiA8sBebPAqXBNpN2kgl8sAVmVPGUUbc3iaZ1p7krr5gwYE3fNg6Z5WRNcCdexZtAiMJqISxYcF2NinHEB/e9Zi43t2faBHdpfFZIUMHkeemvh7G1ZPtzUIIybuHqfgLU6En0j5qPvbPXGuoUj+5L9fC1/F8axddAyVD34PgSo2m9Lt95j1WAu5h5Gt1VHcemG4Kbn6iEP1P9bWB/Xer0vJlEPykvpaWXzWWCr6qAE6UKB2ESixv4tMP4IamYmS7ruCocDG72EpsmjbvbA6qaapECcNIqtuomqY9D+uneA1HT+bCvUffahTQwzAyrnnqT7EYPXLwvnv56Z/HYBc54dm8zZVZfloI/jCcHtCfMTT9lHLIoeRZ89qhcypI/e4EynAIG53ga/jFfuhkuj9Qxg18fHMRfuluWK8saFWpg7/LfhxBVLLdD/XwEEIzT+t3YJ4zgSEbMz1sWhURm8JVSTmUa4i6ZmS5CNfRo40jBsAJ+hb6uHRYXz8WZHW2D7xVPM+ltPhtjc8VM9kiSBVANBK8FhtC3VjASwYEcoLEkA9Tv+lSdaqdr5dsbjdUcDzbJ94wVI4w3kwg4Un5Tggm/DMkyw3N+szatYbIYoMA00FrTq3QiPBMwSph5Iy3UElZ1bkfP2DDn49TuKQBcPGXbop0ymIHmL1Md0UOrqzVs7UKF5suB/7JTIdl4pjAFrCt2jN3im/w6Wm5P4mTiOkHwTQ3VsIcQH/l9G9B7NaGHt3ku1BXloRDJ83Wa3GhCN3Skz2GJ456kFNN3z2e9WmqbU2aJto+4PlCWlyFYNkbWPzS431EpLdz/JOToK1qh5f2MkKbp1oSdhBaYh8xym3q9DGFfKC4WRYf0C5sqXGUzONgdl9asLvEoV7ZBSIjHx3uu8bDK99y/vLlvDpHNYNXrllH6mZXjYoi0GoYRFibUBtdJjNNQhoRWcIaA5vka5lc4Nn/tf+n9sTDqVOWRJNOFLVXYwfOxKpoGtK5pZOmZWOcIkzMS/GFvX9ebYWbHZwVkP3ZSNuGNh0wiqrDlrG4KXMG5FFMeTH6UIk2KVzwwVz77n9NUEbydt50AC7KIQZ7cZYMPshiNnBVo3EZdPt7OQs7UYKb90s8tG+2XIGEDmxRNELps3eAzfwz00ENO71lRhZqJOK/o3W1aojKBshkYybzXhtYjahKW5rMCt6eWm30AJksnNknsztqLmIHL5sOTWsvpjrkAVtdfAkwxj8H3i4u9x0XAlj735iFsacCXU94P4sZ8gjynjErubL+kPd1Uh/QL6/FZibOBJqkjUNXs+zh8S+AFZi0z5+BcQ4fudmZ1ywv1F5BkZgWVZFmz8v1yobJfWUECXBrKMX4NfnLygJhtwFl7lJrv0WPDrOPbrEJNvTgfVkAlDA0jiMdDrl2JBiTSKrvI3a1iy0dictj8Zn0AZBDSb2LL4ZMp5y0nHuyE/keOZZv4FO5NGXvD5AgLgFQwbktXavt7k18bqExS4gTg3cL6d9IRVpmrMGgJazPzHf0D4xwKqjt3rYsA/WjCwbVD7P6EC+Fc4LgDGIOMqG82HCMnPAbG03WHQYdsYKvJ9iVLJ8i6heI9Ae3MXM7wc7Lb5upRzoOVKiKz4//q9on49god+p5+JA1YQIkX2/LK3WqFU5B24LHAurAbTh2YGamO8rVvRP5e9x8xUvHmLxCGmQ9IoKKZa17+FkPSiLn6vpK1pU11K4xM140yke1y0b97DCX9rtX2o0oXpu7lPbPE6G5rvnxZJBmfXgcNFmgVAA5AHz8JzshGyuQKXOzORs7z2S/GXBllWbQFNA4iZvVgJEm2R5zeu3fCl2oZ46+Ee0YU0dKnZhnYQLAq23FSwhoxMDBMF9uBr8yAcwp5XIwNt9oVUejiNSC8EpuMJ3ZdbtQsv4QWWuLP/ROcBk95H2CGDFeTNfw2vmR23WmdnN0NnqotpdfdzBL3nckTXhdW6RyjD6zwRKHB3yZPZ1FDlkvylKPPzS6AHZaOVv1JeT81ezH7n446gmvWSLzWid9GDEQ4MS+3o4Xkggi4q6bOFJ4a8ni5R6vrBl1JvZU85woa45o6upK9HFhXYZ0XdXRQA+eK2BB/mROCTrpWjyNkE3l2bBXxitjloFHvN0vbfijFj4hvUFg1MYkucrxAl8l/fvu4IcGfxbWr+T7DbvFBnVObngzBLqqjOv1rvZhhIpo9YK0wVJ1cPZXgKoqwYTWikSbHiF1p+gk1lyCOGebGrKxq1t7u1byfT8uGwsB3lpqKi2jCmoDQcwNNQn+i6qnKN/NkUvqyNe+CaxiKshXZWqjHpp+QNOqlTiiMfxpAnv7oCgtxFYiJcWfzX5pwv3VIzKL5lnxZyzihWJ1ntZJR4JRcAv0dASE7hCQvEbZCnw6uuwNxXMLgr0hEt4KCB72H6UQY7xzHUH+pDTB2DAIeETmkj71xi/QVeZkYimI9BwYUA9z1uCs9J+vXqLwlDIAsxwugykCN15T1EejT6ezIuoU1mWm/Sz1M0udANEgdTVU69S6jqS+U7dowbDGt3cSbGdIabYE1KLOGaTAOR80pIIVD6mhfqeSGQ8C9H4i3ljO8rV8ko0syQs6uvOAA8XnCzz/NKVHMUQmeBIRbxQAvBcmfbgDR1PMJ/vPhDQyF6O/OyOlZAf5XcSw3lpK92lDYDl8O4+e9u/J8IjVckq2bu89HQ3Xb0Rm+PQN7MfwCTsMjPUJq6pSFCE9EcfzQgBk1eMYWpL+SMCCCy5h56h5rlQY+42iyDcMqh1WWQl9Chw4LZShqrAqK+Njzje08khcqR3spnogXzUbbVmgC5L8gxWP6ULDE7iYu02LMXwJzTOubaWuEAewJKP6dZEovnLw80kUDsUO/D8FvNHUWUpZ7VYN/lqYplYvzN9LEECQXGXh0WmEV51QSPwRYGwV9vc1YPMtiE/Et2uHABS4xafMvfRXoJ+EOCB5+zFedUVCPb8IO6SEqysV/mJ7jagdp1qCQVhyCbVNGNEnKzFGnPRNmi7ZmjoGcRz3L9r64Qv8lJL7FcD33g7jGrrcgvIUduS0sked2bJRKO2B4S8LPUXXuEIk1ycGDjmq571d6/cKnmWS/yVie0aTtbgFyJW+CcBYOnJHVUi/LJnwpR++0sVjwEevsLKPDWqfraWtvZPveI/X0/iBww20hCtZfqb4ZuFwjcjoSpa2xWetXQQ6zdT6JoDEZi9kYMdV2voGHjFdv1QeENJR8yQgnN/Q4IitcxZ07h6EZVrxvKDYgbZ20iRaK9w4Jttotu2TPxfSdgOidCQPmNj0rwJWetURPenAIT0F7eDgJX1ObN6wR+qWVKZk/b5V4o8voshp5jx5vruWbwhesqTHBgy1PuJlKoRXJWWh07HpIbibf53oT9bwylG505ofF0hhLal8kpDGINWOgQJaUrxRQeZrCeX/lPXNfI5rpRaIBAf18VrRkhdukksJZkKRozgKnwkC9QWQGVzIFzNNHOrBpmG23QsETxHA9TujF0Y3gLoFq+1aPI8Z9il0Wu/nXCZfTnrfflQhQTr5R09AISmg/11DaMPppq5drcKGE6Yik5PZclYxEPWhDTaARW8PgQMRcpFbfNSN0UOXg1lIa3ZMDrUgYg3/Yz+R5nEpgasL54YdaJimFobRuIgVglFDwMlylsq9zXIYlrmj1MtYzWPJhVAi71ugR9zEUSdxNqfvZEQsKUnvL7Ww1ZP/0OkDNHf9ch5A0oLtutVt/qrrLfgeQmuypZDdU6tWZeEP15/1/A6Vq6QOXiAh1FbJEP2PidzBBM0AnI7VmLqSgWPXhFiwMAerL1nj2Uk5NlvNjmLMEnO2pJMg+iPHBYaW7N/VD3ikWhtLYUvjvCiiw9sVfDP57on2fICs9tvX9wKJ5s9AZyJkMh7Ce2bLcaehRNHLdxswvgQv3kjzyUNoIAPEiEu9iA321y0ovmLLrVoGyQAsaLWlfsRI5x/xf2c803vljZVBGS7Y55WeTUt+Z4EcaHtJqvysGfoVuPAsoQn8Myx8NEBnXbLqhzyPnMNfVLmOkE93sk+uniZeTM+PezfJj0p/eF9qXDghExZyEyRyAbG/76j/VMWWLv589t+qdcKC0HPmwc0LzxQyFZ+8SsU7+cHM+DKdDeo7rvS88PKHVV8FeseL1mhFtuAufagQXxJF3Ruh9TpMlOQ5YQJftFGodExMgyw3bqOINAEeJaZRKcf6DeUSUQWcJ3V0Iej1fcv3MSLAibALIlBuMqbAjODApsXEZ5Eaw3wdzCj5FvvwOvIGlvBHaANE8bTNf3uZaPxapGiCY2PHwS/R8KdRS3Za0ebCwlFbaK8vxzI0FR3L341FESmGiH4vZAjHNb/gsagAn4X43dx3Zy8gfrDGGR6jf7L6ec7ITmJ1oPE9pJ0bNnSHl6XUX6uY2S+OutaOB0T1EmPsU786k21hZZApsrfLkhPY0mrsHYua4QEgZyQ6TC4zrGGMz1PytoByOsMr5rEp9ZYrD1l74DUQ8f11R4CWSGPOWfT8k5Wx5TwsblNFFVualBAm34GjUW8Z90w3EuOI8udWWeHKvZ/NaLm6/f5agyMOLxniGI9Eve/ta+aibJTMeAH+osY7MkxtejFncPFHfABgMYdvi0+opdG3euZJCng6ThimaHv35VCaWlAHqE+hbNEs0Xx12TzbkjbZgi+v0OkxGYTxIf2EfCwXhGQFX76U4e5vh6HLwMOrz5rEtnNFqd6pF/DXV/VSBLdEgLZSdjvHKXawg5DUDIYSyJ5QcFyFJYJM8yLIzi26X3uLy1ZER+TQuEgHSncg//5qjwxDky7O3Xy0xyQWYrET7QG/CJtGoVEJuW9hJZ/K5xD23If8RJfldVX3klkUt3CEPCh1dS8GD7VTfAer4c+zLS8PR3VYjkeew0g3Vbxjs5mJuPAd5RgUxfGCSPkBLmOCl09lKLbE5WCHBPcoZ8swlc2igAiDh6jfVDgF3/FPH7UI+P4vN7QRn+3inbNIvbzE5rnFgyM7C+i6O3IP1F8RPiYkBhXMABnYslxJbIakXQre0hNcVdNhze2fYSEXZAQibC3WRlMgzuM0Juhu4U70tHV5OBpT+wM4ErIfTLYaJoZcriR1/So8Pwl30nXALZB+OO32L+yrOkWnbpQnuViBTthPdN3d6DUkYzJ6huHVgLUDjH0qBIkL7cE3hR2ujoLNlo1nC5YxOCaZUaPUde4HpfxVzWt6FsnlKTD5jfU87d5DW7jG0dHHelcSETOlbpEVMMW7gEhCH6Q2Nz/CLSETsDqgNjfir7yKH+i6nUwoIBPH5kIpCz+Vh6Riu5z1XtztZcN+Pgq9y6g1Rey7o8uE2JezNbLyykaPsRKVib6cIeloe9jqK+qB4Rd1eByjtTKF44WTOjdv0Fz5cZLHokFsH+GRTo807iKTVqlIIGRuT63WPZoG0ZUMWhH/I993FdNMZvld1qNxBPVYTLk931sdGszsOD4OW3lesQKgOmmYKjT0yRwvDrMqZSva0qSjDBxPrZ+jH4aTv9fUFyW3nhh2rAOgL8AC1/s3Khh6hk+FvDiLnAxsIzb1FyPLhH3rtz8ckARXZQBx3hUvwS2+CtpvJo6iiPUjsdAI/BvuTr8wZvUUlqwrSUndIzT4O7wB4y3Ukl8WVUZM30OT9JF5qmgCxA9i4L8iGbMRc+tZFH8NTJrYW1EraUc3hOwqM+xN83xAQBoMbpqjQGEBOHqa9P0YxJ3rlt2W1SDKJgMcpxV51PmUVq0vI5gn8vIeSdZJJTVOCrN0jS8l8/+/usIy1LnKKGc3e+BYvwaeEHBGAWZGqOenI7INfhxUSQy1N7L4dGE5AtMaqFH1VzL4QjHXj5KKxBz5FuRH4z0VLNtsRLvJUFfK49qW96db2kAGkcyh2JGJ4+bo2f3B7jx69bKzi6pID4FuYdAyRa1DGoeK1bL1wW0DZ+EXRrOsy7Y9jpYbcWkFtmHzM1cy413Umhpf1qSGLkYk1C9qIch50cEEm9L/VeUlEYvnUApAHeUsdtJB4U/lzLnRTRLJFtNMQYUzjNqFxJsAL9ImNHFH1Gdhcm9s4/QwFtVu8x+JktG1Qhi00cScnGcTYsXldk2ZSc5XIjI/tTxTeLICryB3kXU2lNUCrObtJhhtCGZ3/AO73pV94iL3envYxxzaoxQq0VNbpFO6uF+JJzpGYbtMgT4/bHiOMtfmE5Z/4KMoPfy5tI2wl3Izx2zjtnpB7AL6pDWRj/Drpzl+lOa8v3Pn3lkdG7PIBF/48E5IOrNRDggLwUeOg3Sz7W2UsBy/KbyWkQVSZ9lcl8QEBsxcreizyKrvs7J+vtiC+7tnK46vXdO4i1/qawK6/MsTr17K57lHXIyESQLRIpP12/aJHQixX49nD4rPSp7+tNkUR9hC64HhWa3ZOPIpAX30S+GkDfV1sjTFE5y+4SMXk4nUhWZ/EPrugttTW7NwJ3nsYwYUlURftGo7XO9LQO1x55ZoqcoQDeqhhrVY8ScA35G1dTGNXlFrkE/YWBZSH6FlSEEp/q8d4UOP2iUcapY81Jsblea01r+jzMjWZ9ksrrjW9fpccwcE6kPsp9AEWt+pHfLWJBvxXAULlk6P+Pxn0y039/ueX28evKpetTp1LI7y2lcmXWdc2fOtmEI5KKGiVFxEPucJRZzhy9639UOkwGdXd6BYUaT06xhG7NCqAw6vkpk31eT4iOm/s52KI5DcGyB+LPApCXmYGCLCy9a9rCvSR/qg/Jxw6Lkpa9jNgC1dqCjNI1abgw8pCBExHQaJp52jiZSC/3lsZfM87wYPPvZzToB4QU6nJCFSYbSIAXxcu1Uyy4h9I8ZG307aTvxRMbDve9o+HE+A+zS9rIhsxLo7E9devc/Tr6HjSn3qEBufaPvZG/djUGCvr3Gg75vhe2jRdWObb+lYF0FIAmoRILhQfI1wtCMFlW0iW/GNvx20+BxDnWQTKr+ZTetWxGGgaLeksqj9hVznlMQ/DB5gAt6niphTXGeKe/QTiqB2thmIR6+iO0uTHOeFM9XAnzJSQl1wNKwRA5uHqiqQfwjeNScye4pmgtiQvU66BkMg78aqfyOUJ6qwc9rk501y+ySLjqwT3P5gj4VofcO/A7/UF+JlC8jKjiOVwJF1smhbZQjLLfjnxT4+0nzgZB2O9oTtU04TO5d95WjW6OEFUwPSCsKheS4fnx85+ECPr5ktwEzoS9bREVQD9sWCmVzst0D4d13c9SZ3poji4CtyWaFKBpE8jamRgzpPdtp/8mH+dAyLz3iBegPMB5jLxYPsySXL2JiasjskKrkcnnUGwEUYM1HykVEwALE2+qQLBR7eqBCpO/fQectwJ0G+9Rlitdtq3Or+hH+9fzIEkQY9q2NA8U0Cd6IZczr8Foix0ZZfj4n1PtFTIPWK55lLU3A/TRJ8igkipZjmyyYeIWG0nNfkCLMDhm37fJqfRwGgS2Sg8Gws8vxVcfR/OhKin5x0Pdce4mx5DOtzlY0vQ9/SQu7zIcY81xB6pON2r1meNfBX0oHDzVcuYGK6qf8fAR+MBPwarU9jNXxI8T9V1Z+tr0lAbrHuQf0vohD9VD7u2uYHpTc7gZuw6e+0Hfrn1u2FEXmwdUDz+tqr8KLVnfnD6/E2f1I4CBndT8M8NWwSWFYl13jHz2+/C5y5GKhdXMk+miHOOl3rkQcfVyApXXV/TFwZ2Wic1ffTlPj4q7IyayvshTaiXo6B84tjjVylE0b9J1/0kiYVKv2WYq08fOG2u3ikxfB6tAC9Khdy6wq8f6gpXncdrML683Pg7tACEoCVV4gCIeiJ2SV+/jhDbEWCN50IaoH4O9KHr0w1PYOKP0AMEVwLzNc4wXkxeG6ON2F1HaJRLjTHNcBqyC8nbm/amgviNsw+zd27yIugsLPT6iEA+gB98yV6wMWE2cu2+Atc68a/rIfnaBkmkgKNV4kgXmgXWoAOv+sNqGU8xe14Acv2Q48vyz8trWyoD31Ytay365/WUvbpUqLwNSQ/0Yz+WsBN4sIEm/2YqB11s9tPloYfqeHqHx0a5GdEKNCWKcELpoaIx81MTgZklNQwrxBdAbGIqgh9Pteh98ZxyZjh5mYXQLWJ7C7qQAeUGk8KvfPbbBOv1XygbIWvYwZB9Hw+Y4qNsPs0WfEdGwucoylaq+r1V+ekTLR/GTthxFhvOYraPFsTnW4eI9UJuIWT+RmAMwt0DTsIVkL/0mMapUIpzqIHKJw14XrDYTPgzY49KV78Bp7DlF87pDmxwMPOpdYeOEzk5R5ybnXz6cv2U1ldv/JPQtLmqsB9ci3gFJIwBttny1kUsxXfYVRGj+Lb8lR/6sK8QkQfBHmdvK/xEnk+SSAA2TLHu8svDjxsNp4bsz2LcLpNG4PQ/m7uUHoCWLm0O6iH7KBtjjID6aRGJIladnHoIJZ+R7qRkW9BmmJevchZsy6uK30yyS+4aCE1sACb1TovDOX8NSndv7dQOP4gMqaR/Jb/qmZUPNEZG9Q7/RwHn5gJDDJjhVJhccQrAfzOkyuH18PzlrHxl45xhzo32Gf1vrP0YrQpgy/D68ru64sGIqiUv7H4/hqmbZs+F+MhZnOQGTOH1x3s2WEzT3W+KenxMwPeDTI5HZzNiZpcvViuHVH6dhUCQDilt4TK4qUjDjKyHwW3IUp1BpdZQXL4IL+oKBukOqrcjTFnp2FEF/SedsTI0QOl3DZTGl5/kJE2Tr3Ijs1xxc597YYrgybqnUsDQvVg92UiWQojdMN6ToRU0WLNkPCYr3itehkmIa97q8XOzPpCpN4XjZvMNaFvA+U4K8sad47t8Nss6619TvtmktjiBum6/OPVHGP+/0n48QAF1D19HktrjaCZfPzT5Bb5ifLaIbFHarMe6S8oMMBWmpPkzc/W3Z/PGU2T3XlVVheU2TH1uR9+e5scUHji/0MOzCt0J9Thb89siPaYQqT8dqM7FsLMCR2ylkUsGIB3hOP/CazkMyD/wP0Ni989jBh23ZCgT/1qt3jZBCo2f/IoODZKj/68CYND9q7qhppu3S19EKN+foZAT6zWic4mshhEIISzNpghabt0+iN4bxAOzTJFSSTB7/o5eKltjtI6mmzQXAVfSHXIpgZCISkoXdYTaeLOuvxy59xviiOhT7AThrHCH0zjcLYBlF3Upw2YqRRUK3baCcU8utj4NaIvqw1N335K5IFpNxsnHWKLYc8JCr0iZXrLf/yd64ZnGuWDUbNy+2WdBwKeEsOsKN2cRzA0jQAajeh6thYOxgpIOF9aleU5Xnl5DgU2QhP72WZ3LcyDCQpfpn1iW0stAwbWNz0UGE0Q2PkQNsI2CgQhwelrFRh6aKEIbfYVWevNWSDwDa7aekbW401veeRCRzrxmmb71nfDusrjPfeZjyupJtBdaf1TCDdTXHSjWTJXcJFaG7BNo3DLEWTmyVt7uVAVIlPWTg7/jjCMCCN71bQOek+kZ8X9ti5JEHAxUzCiWye8Zf5ddZpC5LiIkLuaBMJbWjZ+5/iB2+7riY9UdmYa10NUUUFlyP3npVHrR5la5QW+tF/VRARDxxf9fRph9+Qz4SMq7t4AVKNb0evVlwMZMul4G9KZK1ZtPY1ZmyoR0vnO5VB1xPBLypKm2rESdmMS1sZje6BRFtxptsfQnjmk9eQjMZYu9YcE4Edp1WuplunSUktvn7g/jIV8d4RXTEnksuWycLsBO03adezADZOuKULJGgHZ+k0oPgruHTgwrakcz6WqTsp7bYDlljBoPrAN40+4mohNiMn8B19/nBZB32UaKkU5I82Zds0MTFqu8JhJriJ9QipVqCS+Nhv8frm+Wky9sWFhG4kK//u2xnjwQxQW7a7qUp4qsV/aF4W6NuSwBNeC56tdJjbxPEMWsRM56An1VQ0bbRZkvSh7LawCbNh77dYoTsUmswXcGc/ycMnhyiiM1RFppbEkaWISU/IReGj+3iPl/WTVzr3pseMPRILVYFBbiSv053HWHQtt/DO2oJp2+CwDSvD87enGTQT1JK0uPA++VeiDVmWgY7EKs1Ci/tmgVAH93E8LHScQgjTJvMjymwcjCXKl1bbDtbCUavF6MxdwSjO4iDc+udW4uAT/TKgco+qHCR1igKN9uomOW9AEOcDXVgzuDHB91+4X76eG1hOMNzGAFjBioMnXb82hgbByWdy0VlrVfcWtpBlXSU1zjsoz0d0nrtCPnUEpO27590BsivU5YQiTbvcL+ElYchI9KmhTeMlWIA41cs1PQhEeKR9XF0U7iQ4NYNn7XsM1raBFd+mfG0LyOhLYJawicvCPem7KwBjenZ4UflqHDrJuZaEE5vwsJvmv46fGEGX37nMfsSYCFqgcXclGepLwU5fTOzAdwHRImALrho1PopuaYJZdtPLFyxU8DSXin9A29OVeZ8A9LtpDKuFWBRbgClizx90gojB0uzgl+vyYVwVnBXcl/bCzuGluMUh6EwgGXurHJeUXy/7t+7mweQBXlps6HlXjQCZcF0sxaiGT8sZ/jNH7XKFIopJH71d4S/9RABdrdz7mq1P6biMBfXGHwa/+Vdn5HlMoxdQuv8xg6Xm1s7S6Gzg7pJZHf2EcuaENBft2t1s5aDOIGuv9Sbo2f9tTg2vdK0EFpohQVbcTKoqFX8NBHNU0gOI9WIyMXHzSr/7vrooByIywRgaaWcfO3uwhjzxAXd9vLa4OCv0mP4Hpa7pRYHfrwSmo3u+cqB8QnA0WzIsXc/pP3c37qXWyanOEBIzIL3/Cr2aa5483YJO4JkgKF7PbWRPz/HOxUsmYZ4iqASdTa+BNf7SoCKcPpJbosfMuaik2thK4OUChnlYyBFnKFMRk1fif+ivECNjyZJJKXZZZGApY4BkXLXMDPiRaaDFiwnLAkAEp43AlqqEpLrnQAo6mo7yQ9Kg/tT2DD+FAmbcXhvx0849mfnBWK9ZTsf/XHYhYxx35HNSwTS6HR8TuBRYIeqwPAhNYMTwj9yDtJdggSey5979lu3c/SPcD7igg9k+FVhXg1RNyUUiuX50EAUez8JVmFU5oUxhassNnBHYEYqghji70jSayO/4Gl5a/09ooiVrN6z6PoQLM6ncMwJgIt/TbGXrzU9WvXArEa5XRQChMLDAmJcyc5AYZj42Qb68MFePcsIKAnKbkl8vRIuvsq//Xe2kgHtSG/Xqbpwcgpgl56egdD2+FxCW7QKjCFBLPgkItPKlNrYOUXQzVK/1N4W3/0nCualvI2Qo1JaGIWS3fHGX+l5Z+nEBRaqvx42POfL52E3pG7p2iLsdhZhJgHUp8MqjQpZhai/DxU0u++/MaPso6+l2yXMmp2kwAxEzKbYe+1cEmVp+ck4VVX/AJhaR8wRvsT4d0gaDSuZk4OTxHsBCpJ7CKpvXPj5xIFH2Kz40gi3Tb9daR96AYwtW44jrXmF0R2cKfFI9xz8qI72u2Xug495prjv2+g2tYW5vcks2Nhe9nmkArOaF7mdXVJJPr1oPMwn4ed/H8tzq1O2+BNAzMBAV8FxI3P4Xu7nra3S2145egbizZb+z7s8wVtUt23obCmkOnlNVDym7OKzMcHL/G8JzwrujqLuqBTgWJUnuoYXDEf2Gu3Yo1LeFyY3Tg/lQj65K7D4bsBtv1A6z1AdBjUQrYAwJonEyIYEjbo+Ov/pd8tMgHTBzGa0BAw8hL7btrAV1xV5qY71HB2DT0ilzsddrdu+q2OdntUK4bkXtEMG1f7v6WbMOncqHvernWOXc/BjbxvNtas3zIjgqMS0t500Xpkq8RrCbXD75SLlNJ/W6N+MFuWLRsULW3DX+0N/h8H8XYoypo01q26tgsKfLsMIBCGN8/ZPuAgCYQ+cIlk9yFZ/VW9baoO6FxnKC7ISiJ5QytWKSAGjQ6zpaRAeIeritRcigJZcol6Kt/qu2Z6+oN/L8Bnu19m/bcPpelF+L8XZKa0maFLWVMbfpsazXuKDtdj4AmsRZuR7wjLMDCgcVf9gjzmV6DJBUnyJwhfEaFA+6rtY7PadN7Y5ecYYC3IDPUzlYqmbQVoAAF4mmLSrXNz+ZuaO0xWaslx2Es7qy0sJjwSgrOj8XEvM+kNOCpBsYQJYnYkfnWda9gFHG8hA/hQeUcKWDTCKXid5Di8O7odeuuE++vxgs7TwLwxQrKTjxRtM9XYeFqCyx12C3JkqBoCMBtTSm6kl/9o6Cxp0F9+ct2zFgIx2YfCQHWLVA2aybg+6CQ624at0igNBCyFOujjEZRFnnCkcY7iWjZu2Ut9JZmM3+EfrY7PZ1LEzEP1xb1P6UeHiey+aLLUBs08QsjkvMh6G1T/le6xmEM/xOW2LXJtWjYNqcp58D2ThEDE8skAY8Jhl51Bbqsumw9D6ZmhA9QBeTq6zKhXOBOVTbk3m/VdNfmRTRUAQDZ5HYskjbrGE/CvWgt9E+U0MFdAVBogJqO3UCSptXVdmsbDX48BSECSRiZWj8wM0rgr2P8ubYdq/89mNkMq9YWC8vXIrTZYhc+TSZmd2k1MDr65hmx8s7VdcYQ/rPJK/Ui+W4o6zIdxZ6PbYYzzdXcEdLm/F5lLdzTlc6pLIEKpMw/BMLT+yViilq5l6GJCqIoQTDcPBZbjMrMU5JiSQRvxmUPch1DhQEJJFRh+ppCl7Z7HKcjDaiSVjyuB4MP34DFGINU02/CUiwRbGsI30NYjuzleZdzytbCvE4InDzuunMtuZiUDqcDJ9RiVvYHB3DanQ8MrsX/Rx0cth0Bu9YasAA1g2ZJumtMROR8I5ZNvFl5GdwDNcQVnZAffhDWCS2KmqWMN4teF+gds9WBdN/YrMbXvO7R0M7h226229+Nopjr2c653pe1V8xPSfEKkWzbxS42G9csrEOv0/yZ5rw82uCjnJ1UaXYCe1UMWv41DsuiqqNQqUiHJZwVKMjvVhlcOYf4ff7u6zQ17R3rsH/63VcrePJRPIX7PDFuCM1SvSluHCjozET4lvHu2bWOX0PkqQzPKmPSoAXRk46qJH2byKNK5FxAUV/JANJWnt5RGn+hs8T62Zch87DORjQV7yhFv1CsqAhG6gPCbqZj0WUWkFaueWtMuevypnpSb4LzDxoUefHDQ/86m5oQ4EQuS4RyfHSrqcnXdMypF0IwZc6GPEOemPOlkAPi+YY3JYCp470lrjkMafIyVfZu43BqDg0GGclhJP69Lh4D6RrV1vZLVMIPfllwN62n8Fgcli/2L3Wu+/0VP95joDDcVKY3abELwpweI37m8Fft5RjhEeaR7c+RSFBdCOTSLaq07yN0oNPZGjO6mBeQUEhCiCltnuF0r0DzTqJ7/HvLGDvKoXAAbVpqEj8yWnMBxOUTrXZjkPorSyuonCI+iecY/VePqmWFCBP1LQKuaF+MkDlLereIo1Lhgz9X4ommCpKUCzbHVmqJMhCBUMcgFgXs+ohB42Bs3TWk1fLDRynXLXLSNsoSk24NCfBGIhtbjTh+nC5J0G6dov39W0PXvnVy697dYeUdc1jngNp0VA4jbQ0jDrzLeiLfdMS4M3iyAItE7/KE1EuOhOiBEbWWS4XlUEzsdwTjjE1GkzT4GrGNbzG4FrpmKAY/NxXKZfjUqcwpQClIciaYPqz5yXplQ3rbTcx9SMi0CPzbL5+FBDJi1vVYQ74GOAxsGQ5pAVsJDnDQDGIvHcDD2HS1rYWxTwCUfrg1JzrRSX1fyObxM5xXwRZtZsbEY4/zEsmWY/syXqX2io9XJ1MqhGi9CpAcXJG5+ulDpfegByGbs8ZtQ4AM9MOylBX3N+LTSBMfBQlXdBlW4OViiFE40stXXGpbXkKs5uJhp7BstRpTsWsrIAG9pjHBniOzPjTAR3ss8o5asnXsUzv/RaNnbVQ0+cFxoaIXHnN3Zi7CIdYEt1OgwGZaHmJUzBdAFPnZrBx9EaLVhEM268jkaZAZmjqiuOJcafKaVJ4uFcTqtBcJRLu+wBdB+LB6ZYopcbfEPbH0bIsySFZqgwEq9nwUu/oMfF/2zUOeCay5GoA/lNQ/9dbvZ1tdHYf0ZGrKiwZlJ8UeZtFuEpPykIW3wHuAV/kTEZ11wr1cM1Sbu92ISIGbcwc7vRDfJLZt1mQhcFUkF41ClDLal1FCfOJ/zFof2v2J55iPZNVTyjNAyjp7EtxrVmDclPbXfv/0z1GBSbA0w9KgC8GlUvJsu29LvtUrbQnpEqq96GVNjnfjGxDCyuCvATMrwTMSs4hQ/9PhjO7LGOhGSKN3XAVy57KM5ZH3mvcvOjEFmSY4zwNEAGd8ySpu68rA0bKjbSpY0Qei5rfeHrLg64MP9SIpkSO5kjC+wYIgR0Krbp/JWTOfyf81xF3DKRV/dGC6+A4R/A9JHNL5YPiK/+FZ2xCyfNaUIQTGlxE9/d0mPDptBoZU3ryUV+TFHGNT5K/fPh+8B9arAHI6TZ/UUWoVNaT2d0pwmWtT2dqklM4WUwDzFPxNjp7XWQ5Z8ywCIc/g8mzhv2Go3ldVmxwhTgye8GfEQmJYbJ1Z6l7MRoLAvIKSLJPW7/0XcqxA1lXBVc94ZZXdsAwIjajDkoqJVjlWt9/Pj304Sr0JgxJMW6JJpy1NwmaDdDRy46AytTWTjFKt2DQKbxTLly7ViBC7aYG2mF35YZJASRZR1DVVrVBAf4ZRSWJq3r0FzbbVGCFgP+OlF+U5amY8wBgq5ZfTW9WJ/OA+LRea0gX0kUmNpSGEnX7c0w6FT0tKZAh4uNxc8K8WNWvUwEW12KSY+rtONJQquN5nx5FMmMc5X55ag8mGTkaYT53DGq74INk9vJMROLPlLZxPx894ddbapnFip/R/pg9n91+Sh8MNgkcFbScbGqJoQ/Wh/vR4u91wqlGvjtVAmFTbjUGWeRnflLF4vn/1Lo0v/W8k1Q6ebkJBlLPJzknzH5TD/RrsIezlCNMVONVJZAlG13a7K8o1n29kPUPLplecD9GxswTC0VvxgU1VGc+4xcJxjaFxhsBE5OGdPWZw9faY6VSrWlZ5uh7KsSPqRSgBaDOrwkajgvTuebnFmATZZHA0zqrjdt5yu71uxSyf8C+XaV/QzqTc/ekQ66NgZP1sWYd0tTtx+B+evgxswOYJpdeFCajS+qTKWrTjypPzovsCCXC3di01cR3jWRaVuUpXtfCYNHDTf26UJZDljQ9o4oR2zxlaibVwGVa1zfKvZe4cnIXvZUlks6UPtz4EmwiPmsltJJBeJ8QhzVAfsaNv+udlH5OecPxKXYRbCgswzE5V4pzqm8l8lrDVC5F1Xxap4lkZEVP98wPlRNBUkWDejZ62vQyBsYa0kDcQlvhxZk6ZWWiXI/WWZjQQ/cGrwD3tn5X2vGjwaXyIgHJLADdSpFFf4MYOVcliVdpoFnTmMqxSYbAqoRYuGM0zNE9IBhdcIIF3MFkKNnaVjrpOrWt9rVoMJr7uP/NXM2gzMJJZamNmv3jdSkysecG+DOl+J//1j/4ugIVpyJS3GN4gebQxGzFLJwo9kl7YzkFBGg1I812c4zE25Zw0uInAl00SdXBhE7eQdCrIYCxrQ6BP3PWZh5LUUr/Wku/gpmTJD023OBcdFo19A33z8mW6jzteU9gbszuXqn8y/CBt1ljWh8FmIvVfiVn0U+9RlQu62za7e0AFMf5Zi6PFVeHmMuAeIAl82EvPSxoX83Q+Kkpg/kNJi4TgJGG/QQbeDJQc2ApNy9GS9sx1OcBYDdG0CZOSzeEmQSSQiWtTch639fi+k22my4Ve71m7IgMSIrNbNaC7SPHd+9LkEy9+CC6lvKHJfxhR1rpOlTrMzv/dV9v9Slc0G4o2LFk8pWaF3D7pAjdJSlQT2xjpUcr5twv/hwTyc1zhWVLvRh3ndxj/lORn0EgBRS8M6mlkpi14JVxdrDHGy/2ABvC6SOaz39IBerzATnQW5o1gqOzuHL5q10ARUmCWMECH74Gs0euP/nMiCUDEA/NQJupCKNe1q8ifO3CxS4jgDfN4WP0zPYyGudU776iRgChJHAEtUhWTVJ0YThjoCAl5567ERUFaxerkash+ZwWm854SoYt+5/qq5bIrI94B+40hT2QI0xroBS4P4RvvWQLV06DIOtWEq+6e2Ep1ry4NRDFuUQYENO6vEJH+8RXzQhJp9w/luAGxudeLuPrR88+TAEWdjQ8WoEWJ0OALN0xyGeDj6oZ0UvqVq/BwtpPApAgdzJN+yfbG224KXXKRb59NGVtxmfen+Ko8s8MYViGdeBaMfFZFv+Xs9W6fYzI+GjJE1+sTwS5nSETqGSG03e796t5rsKuUx7oTKss+FF7L5d2AbMnEfRwL5X96fr9qy2jaXNDE7seF9BNsJ9UtNmeYVBlb9xt1RQFnhRIx1e37Oi+SI8vXeWV0niALqhCE8nsBNWONa4kIamEMJ2HVB0cMS50AGQpXyS3kaXkDkkDOcgUBJC227Hy3A3TEgNxkNgKYus8/UE6MeUxwHI9mfcoukAFyCR2gkj82MqWIvEUw7au3gQuqrMD0h1vjXuTGtsq/AsahGhCT91iED8cs8Amyw3wxRqNnXqpyA4SdOa+Dopor4i3kGwZjiRZA2qpY+XvDcSYCH1gw6qUQWYbF+u5RY9DKhyAr2vuyv32BejrZ9JaUv687MFk15nqXokNHRwG02idwZQavQabSN8X6DYVjDHp25fAmAy5WoKyKfCZkqufIzZEtJZGuH1rDLrNkFoFBXYT+MYGd1sQhAxHJlaromixSK2IMpY/z0Cu3IWd0p55xsdBOQgV0Al4mu+I1G3qGgM9UacSyZjdGUcA5Odl9KqFAoCXrEmwDZzGAL9F6taSNbjzT1D1vrZMm/80vEzRgJnXXmhkXteLMAlGpD/QR8mHBmDv8YfZfxPJsFEzk9QpEOWaljYTaBDPorpNwGNkI+IkWVK5sFbsPeAEdpWl7iF3WXgtP1cXeu4+ON0LqPyss1uobmKG/7HEojY0WIqwgHYz/T18BfnYjIjoHxeLWqmmlUrtBjsa+uablVT1tezIKpCZmAXxCvdF1vgwcRNIR8rP5XjUtX9rqAf3CG5bbzWwF80ZnhyDTQ0L3b6XRJeA19P2Z+hOV/beH9IcYy3fnwBBU/NwDEtY0HAOOWORGqWPJxCm4p3C/g/EPe2rE6BW6PJIx/N+3zHmfe9V/rZgg3sY0Mm0QK+WCXl/I72hodl57NlVkAcBgFX9+wUAPpYpl3rCIR3gUCc3pJZ5ZXDlbH7UQ3xFMEfL9rC2w86lFyLCPj60z6O1iyqZjwtx1DCQD7AlwaESs+SsF30IsHp19OAsHrJwqx/mhJKJiZwpscEUAbZGiz+pep3bOmQuUHLOg/8iDDJK7S1BMNbC2mzxzJVDPzR9ENdjZaMjdouTeLwx1i1BN55D78tyH6cfZyp8e0q2E70D6lxQMkJnqvx1TMwMpo2GP6ZnObw4YBPeD6ETO+zSFy63Stnqf0B2pN/s+jQQditR0Jeonh7QvtUePLT2uJjDgfIxcJ6V6N/qetFjYWiTofHkkKBYceA5g8dMqTQ0aGJwiHsJ9B21M2l6A8nVlfw3k06ek/GuEYYJ//3eBmLsuI+bWqwy8sufGU+Ce1ZMI8rn5R/12Mt3mmGm1u2e00+rhB85sOv14Se9jISypUM1Fj0vEJvay3+eFlvZp2PCkZT6NfOcF5fJFeCtKi4LGKsPvUrjBEXNv0KVBISAUWAGx54umEFirxbT1IntSoMwU3Q17dUEekQv1jWjMfN222DZHEu6YlGkYJUZPNaDiXSHZgcN7tDXBzYaLwSn7SCcpBYm8+We2HjGdWVY+7XeX6iDXtQaQwnWTB55G/GDCHEez16hyC+cG7x+Uu3GdEzBUnj5hvJWCiN3i5lPsdMT5MJUQNzmEA7tgANksVcDdvsqH4b+N3CSYeFphTXkUpxKtWgnzYBMpy/18qa0xykiT9nkEd9NtuMhNasr80mTBda5ognt5mjoNfax8UTSDdv4p9u3rvv286tOPVqfnnRTfcyMoDseKmXovT9di64cduo7PDfxqRM876M1fMqDmCaIgDiHyLI768aKf38iHWBXHIK/qW4Sz/7zYjiFzrYdWgon3pGMSskKlGVDyWoerfx3N59KeSUpJtqckly3Mi8eRdOoV3KOiOiBkUqvL8QZp8ED0eXvuIJOTP6D51ENl/EsLElfUaRKCW+wYz7NVijYK4aS1mVY3o3cWQnoJL+UlHY7fN3NOq5xKhAIIsmTEYp/Thrk5Fi5zDiabCOPuc6EmzFA4yGVE2QANqxSBpneC9/GaZBrXTP0LeN5zr+lkeg2o4hw8P24q4Ro7PCNmTgtK8b2i+GbmkpKApVue6FT84h6jN2urpy2abfd9Fvw8etDIKb/4z3dAOIVhJmANNqvANWju4Ko0d5H7JlCi/dIKGAzt1j0RqlkT3qNAS5fotVgtIqa1SQGdCmp2uG7GhjP5v+DnWHrbVsS2Wuse5Yv5kTnHAEVPSgFegeSpEPYzaAeU9Zgyxao7hQYL1fv6+lnc+wJTS8bCeg4QOo+8kZxAc06oFf7dJqWzYQWHfzdCZaB0gcLrXAkcHF4nguSXka+x1xkQs48T6ThaYxIveSiBKsjSHqnzvClpC1mC+RgkHhGs6cZSUw9Kxv645kiHDsr9F9XmSOSQ8ItS9Mtf+ZmXWzHZr5UhlBG9Eh/e6W7ncUzu67eO7UQTo5BotZYsYGkI1885ehRGkk8ULlh8ImhreRO8wPZSboLDEWvJQLKXAvo4iAwqoXWEikRNqdzeG7bFwNjS62Hhf1SOwbIz1EAyr+6wTOKq9PzAwKxW9N7+PgDjpuVo5uhvVJi7dOO6PMEAUVzuoQQK3a/IS5CDAQ5rZSwzWlG79CwBouJMWya0gxZoRSd7FnBrlieTBQ+EkVUiH1G8Axp6XFNEvBVROV5qDw24uWJo6iLnXwF3MaxMpQ7L9ryXk5+N42Jwg/Y+WXGEo0YMMF6Vt/TxPkLGBN1nP4r/ixtwc6AfBxksDFbru7mVyIL6BjPx0cImz/Rn4E8JGAsSOW44OC6HcXd3OAE1jxW1J6lqLZI3tOkOSpQRUmXY8c1sUmN/PH08QgOkLTWsNUE/IfVgneUhitqTHTaAOIEbyd4hwwDJKpf9pNqYOWenlH8pe/W4SPkSawW5QKh1xc1GPuUydFf58WC87xIls0kJDA8hVYKBzKOFQ7NDgXlRTZ8iXGxjrqccF3XJr5C1O2EvHvgGN1t9nl0CmnJMfidVkNd5Ee9deN1kwraJCrZnxQDATsTBVgOx4BXbh+dROxy9tVujK7usdnh/O7q86jMJXawalPYi+rCLlJdAAD3vvYHNIqvWkvOmYehWeg2CTjn4sywD2qXFx6TzjJLD55diHhvemUNdrHR/T0duN97RlP/W07WMKv/mZ/g0ODHbk5cCVObPhvh9hf3tL9Z0DDzDBhjjGudD2An5tIrm1A3Kf+5Mi7lDdi1vPwyEiGMKHFQWa19aZ26HXrWGPrfVmSqEIvoqrx2z8k1c+ZlJCSXeiuT6imtBuBFXsqABAmnEgrFhCciqaHBAWU8pxy2PWr8a23lcAj+znAhBMJdKoan7OHzg8kdGkEjDpAS+m8y40hbOvtq0Lf8UCMWG8zlUxDb63V0YM71rIlNI676EcV+lNjLYQhBu455BMB99/e6P02MzM7LR5Vq6XMPyvERtMQtxJZpTz3CDho+Jnlgx5LfwPpeIzlanAj7Otb3JJnwLOdcbWKXxSyvm1gglhPh1h2F/szz4lkkWIB7fQOIdCM8KBgRDCgsEZimwL3bzJ7sjo5w6l7/ZYfFD21l4cqYbKQ7DVaBjJAuoQPp7cGe4D4jguh1oai1WhRG4G9wiTmkKCWgk1uShfD8hrFyI7Y5PXsGpJlHmMYwwGWKPSbxPIIMdc2xvz1aYAvZK92BEf9u7kho86Os3CYOtN+KAwcBUgW0k/zuUlPDojsPW4nDRamJ0bcGsyQ5H4H+rhO7YVXVrttUFtZq7ALr73C89duwuHVr8jKSv5URTiN9HfLqPIXXEOuFmU/ZmZZrvBo1lzWQPlaALFPa0Mjc9GK+3C1Skh7Lqz6uYud4ibKF614uGXsMtb4ykUnJlaBO3Ajg4qObNeoXdqVC+AX97vbqJJchPdlwGnrx+d7trbSUux/vQajoaYlTAUSG0W1Fkh0E99mJ1beoRE6aeCel58fA6HxzRzOHDaMLLUp9iAMhD+6PezqXadxIzbkk7b8eWTw2vG/vMTIGqPMeSjxLwwKGVVCxY5JNhFnFiXiTYMtER36LY+1wDxy4g0vl3J/PDjvWz0BA/lj1uWeFMu/2ur5hh5MNxwmqv0I0TzGaJY7ByL431rP+7kNqMOSwBXQ8SkrPfNyqxRGMawNgLCH9mXauTI6F69OTTlxs58VGD4YOGCeNTX9xB2G+GodVJtWc1iMe/xVTcp+KsHUaqn9243ewcZ0VO5CpFlUg8whfth/a1CF/2IZrdR9We3Sx1KghkRLfQwCDWri19HY40wiQcYf4glqa0sACbLcs08Nj/DMRo5mevqetIY1RqWGcCkh5b6yUG0pMM7lFiSFex2IIAvK+3vyGv/UmPK0i340WsMZRXecAs8REFitDwhxeaI0SJfp/OlonrzHTRj/3hGZVKIfHGoeY9OHxhf5+GMUS5K2/jYj71PKw7fNX1U2I+jBacLNJY3MnQfQ4P9vT8KYpnOLtD3oZYLsGPoXxQ+oHL3yZiRH4PEQcrL8p+dUpjTVUXagM2IdpsYPjghW9d0mkKKF6QYIDStql580pQLTojEVdKR3H9g/mIBrKrYzTNnlV0sqwtmqrARGl7dCePO5jaKP7u5PPT4uoVGooIsnlGsP0CizMR/abIVPIk7USDCWv/7eu0P7wB4BOSiMWi8BwODVXC6qbLtR6zugqd7uFLEM8QVENq4DOxh9t+wWHfuq88OvSzN8JuzglMj4dVCsv/q7Ruf5kS2auKxmAHRgt2tCiCqPIjbVb9dKXrCyzlBg8chIiGGmaOfw6JgdcToMKrvAi9ybmq2rqspzXBhzRYG3jx5WSEnHO03PgcTFM2oNGTaCUzTigJszgyyaG2NX8ldfmeKM+9bhvmnuGruvZaZh+avxOy9Dbm6NXz2m4Haq4Qnqfo7uiN8T46JpDPbj6VI3tVaw9hOxWoGS8icKyPrtebOXaiJcAzgdJo7zWNAfd2H2zge7vm0PlCsKeX5dhEkYw5ufiXY2UTnebcrmfK+wO1Kwu2kjIZJUKePmm2mLyHv7MFyj9ORrGYOHo8vW1WB3i6fI4ngKPTQF3LAdYt1QAQyksrs1A+e8pH7LuLDRUVLz6YhZnjk9NXQWrK3mw1R6AFGc5fe8/TUuFYOovEc4EJW7aIXgcIUU6PiZ8qddkrP4R+otSY93WSXLGVmDwZxM+woiglVIfuFse/DwNqYu1IT0PDrFACw6RDCOEk/2n3UXSPveYx52EThkvk2vod4VA3xtXQp+oie2t4ZsIOMM2/oPEcyoDTpzBB8+A2rXDGXeSyZ9BVzlWit9v/1pQsjV4c/WjjKX8o0X/ImnSCilbStEkobyN0bGlODjzsmKYidT7FLZVLFa81EeC78d3xpaeJ2BKQGgG2mK67luew0pX3JMHFmuCj1VF5L4hcgvUIsKsPiNL6donOzrJ76VrBFc/xzbb3BtryS0rjoZlIhf/oaK7UEgLxZTUQyRbG+OmuLfKdyAwSIPmLXNHDOITfXWMUj595JReuB2hcjW8Qx3DXsTxrwzhhMKrvkjWpnrOxSHsAfBQTULSSuhyJxI8oQ+mOjEd7eQfQurQu7jkVBrxfadiIImt5bnCVAnDxZBsFa5gK+plDib+NK8G+wJyecgxnJwNOHyZmaCcGjWL+FKzRsTXS3SxqFK162+6Pbv0PECMT9ncuY4xQqxBKHFp3620ShJJF3rhHdMD4xpPqQ5azgrnc4mGxlTE6vaYzq+X8t6pcY6D+5PKWuRP28Qn0WBu7EfgYT0aC4H7P5oOW9SD1J2HcCh6gpXRteVvccT1/3cR7HdAzpASmK08oL1Ru2V9/ghea29W8kKuhWoepgkSQkZ10b1oigZkhUGnl943rFZeZNl3R8Lv8DBOzKoRPtkK/PnhPtjswfGD74c342C8VziSnMCB1n+yOzl9tbpjztbQB8536KsgZf+CXIpoE5dHkt9p3HGWfJIjeoGv3EkKqfmgIR3t7YisZ967nmQ3bpaG4DKp8Mzva3svzr/p/phEavr9kZSFRhZTlCljrohYygH+VoeGj05Ueffa1eYEa/NjHlfzgsxBpbs6mtRvcZIXDSOULagC/KGQ8/wLKIefw8YEoI4JlTQD8borr5REL+5MdPtrMPURuZBw+KB1zuEOPznSBYwwAbUjGG1lWDsiLBbR/nunmCrL4NwO4ifcdVSL2sUMBaUAnozpx6dr0sqGaBlaijuI9OPCllk4nYnaQYxSd7VHKmZtcee/yj8Y/G5/Kt2LF07AYZ+PO8Und1KWGpQwvpE5FTvritBaNZKlGgpjzBFXlRQAWOgODTCQCOCgnyfHxtopTd0J8ubZUxMSUWVYMhZa/x2qTB+DRsRAaO5azCsb7x7LK01I1bE2UK0N5RkBy+MA8KdHCHrSlGwb4Lj5qguxk+I1Kys3cY66bjY0mhKt2A+z+3/JDafwBosQ8qKjqf270eWraxjXotkXJCmayx0ESUxglbN3QkiCEMEqWvXN7HxqXfKwex8ImP1QsJl5NllF9C3zWAsXAgs3Z398exUDOqFo4MFa+jvpjx0R4Jm2YRaY4txBI9WxF5yeklGCrOFh0+txV3tx81MrxQGkdzB3pziwiPKQSCMLpFDCpFEuY5RbSwekTOQoWBG7nU+EUinKnjh7vXFDSskfPrA9ZhP6jeJ6xqh9vegLMXogdYS6rr4ADIoEswwq9GQBNLPo2hK3U2fPW5ibW+G5mAh10bXipM4o7Yfi0JeOeuGvhHZJGg2+tmtyQ3v1mmRHVQiwIOqayFM8o9u01JL9bf4DzLZyWnBu+AG/VyKEmJQCfh34jUFCR59pWequqnOQgsqgyv/Idh9xa5QiRa4c43kxpevX2t9tXrZrEEsFMXND81/xIBm0wE6iM1KxjD4Itv568SDOmQakaD4XW20eMr+ILqdBRUCvkmZVcWnNm+MEayRKldzt7w9+YQ75rkU79vEtku8It5s6sGAP1SqH73rn54NHGqjE5uEtnyNANyZHMabahzb8amX3GX/OJ143/30rwvMtZMMbH0lRxmT743hfbOu2Sgh/867QstwfjqPiGimpg6HUPMO8jh+7zvhxPRSW25XvkrzGOwSW42qPd4XU0XV21HH6dfI6ba2ZnXH/C/8G7ialYVyCo882kTlKg+PAEhxo+ONKoHUO1hC/9eH3Y0GuKUC2H5HhePgEE7sV2lfAuWrrV8U9cf5sHPsWjH7sJf9bPeaIlyh7ASFXBTacrfXKRixHilyDuaBIJk+y2dtX6KNUm4y6iDsF8TWeKKc0HMT9fDuI1HoAzlp1MMjfkE1OoNgbmINYgWPtJkzdr1zVFql1PKKRtcoPIh8d4TyOLkgQV+YsSvVgQQkChOQls5touRPx0WpxXiSoMeziOCCqEDdawmCtNpAKMTZ3CfBbbFCsRXC47gv7vGiDmT3h7SLXiXNon6HVK3oly55zvHN31/qS/Id8BDQpbFT8/21k9WAY4zEZxXNCvIjeXz6DPUnROV9905ul2Xq8qEmfdfwYQ331KxRQEAGtQISIXvzdjWKXunzc6L6C01UjapCaebJuXTlQQPXfXfitCe+xJ8a5Ddvaa2iktWbO9Grn5oSfargjdPoH86DU5Y2Fb3OPaZN6oGgske/ch4taeTtCjUOgg+N+wor4RVXsKqjwj9jfJCfCIAnMiKCpo1RfFWasUJYCc2qfR9inSwxxOUDOUd3sZSvDkaaz5Sd5gyFcbkKI3RGQ+bZYs5QxfVhZ9oVC6w4xet2StY1PkSQmiqu60a+gkTSvVWOjBeZY3+E8vulE73DbKtepWZva+WhxTU/QY64prZ5FnoO6APl82bEZJIcPdEpM35w6/csOLiIaT62d4CMkAY3S0LYarEl8488LeU1WN2uBJThDvsUFBewQq/7ZtuVglI2ZNnQzhXJRs33WPjTnKe3F5HrpvqurTfT2Qctpm0+1/J82K8AFJ737Vm8iBFndRqDPxlaTIcWKx0P+BbWryERlFg/pfo8AAn60Pum4XO1vxqun6zAkdtjchYIIei4vXuiL1z1pUDe/zamBxhLKb3FZPtmphOt1BGvEbROStbMzzp4Nm8+a2AN0iFX5izh74T37SVCP7lgTRTQeliYvMMyhjBDInJ9+RYJOvaliP627qs+RvjsXD1kK4lS6u7ptjdwIgsEFqZVdewbZvdE8ZrlyI7lyZIjxP82QghW1qqyQkdSdcXg+W4SvLI1FD1pNnpCHGUDWIO7E/JQjJahxNIASR4QMvbyYa4VzXuhBTIOLdfLK2dtgfqbZsuXUDs2tKJnNsJIeKIZhMuC7P8vpYpJuipru3hqT3jfTIn6ycXAePI0RYCr2OUcaTsZkCl9eWrrT4r/TaRHPr8OUpVM9Sxz21xUjWvPi+jnkJFHAy7vz6DeEWv3YsPUsK1Xpj3eNRXeMuzM2K69YsCa+ZyJCl/VVTzTssG8sAw1N9BpYCRe0Bdn9PByxaw12ENt/fE2palfibUr1H0FbwI5yO5cm7BUEy0pa/4XiNRDfiIWR+c4pNfXmdef1jIgq/pCqZoP4jSdEBgIM2O6qEK1NQMM7OyyoVF/oM5psOuSGCf0BUeHtPvQgocl/PctZGCImMVbNXa4ci1NYMyDCjMmJJZprmIiiARlgwuA3Ges3EdfTjt2xknKatYPj0IZlvBqvqYuxxps2vB9SWcvTb66EA87cXvigJsFFPWD4zxHEEvkQhB2Ip9/7wyJdUBw6SzIQroqU9gezliZCVQjHzwxXzLvaVkttVkGkd8/7PXwZ++XApYCVWUgev0WgSkHUJaBJyja0puOIQBSACGtpY2JqVOLuZGHo3jRnXnXNw+Iaidgq8TjaOB6SC0HRwC6OrHwd6XbnbV5hyW6OEZ3M1zAL8vIvMVYHJyjzHbfqcm2ShTznqgQabVcE5+9XfhypqR6XjXoDW1yey3SpzEZyy+uofi3MXxpbfQHBuX9B17dFLWmm/4Nezvg8ujPun8mJWNYb4jomnaVSCcVbThwgli4kKyNNq68W8AnGkbMu4X7uj8/1jUOMMT+8927Aet2mhnBkTJP6R6S6AiCo3n0jHQ7aW2RfTNQCmV/LtdIKBRSlpDNmCRIsKMQ2ITaOY7LaOt1bsfSsuNWL6jdtE2Mm+PThzgPDUj3jq7BvPDpdRRWc+7yAu6A7uH/804EI3HfrGZh0Jhr39JovD+60Ni9XrjM+kT69DQViER4Rfa/U9x/0AGrR+QpX225PLfmFy/JGBD+101LaWbwKEHztHa/BlH8JQE7oNHGa/LyRHm9lFb5XaM4f9uI4glgAEAJNCIgYzi4A0zSj5yXXUPzD7iN22TVz7qn8HkV3OQROjM6bZKa/p6KqLy1vMi9lYCdh+e82TIw15AHGPP0nrE34lo+/1DRrMCqPt6SXZlMW7rkCSB/optLVjevz80q7kFIffzAR8zWddmi45KSQl4EXAgjnsHmCDAfxz8kC0cXTtVW47lLSygUjMy+JxyYfA/t4hCn1Rduo9yhxmlo14vAFqQFTKz8CsmtcwECcG3dJBj5qyri31I+ezusqgEVSO09eaSGvn6iz/lS/KV3q5zpDVijCNw0cJjBz/3yQ3KI6K4+2Xc1CQ09eF3MBwZuzGiWgDOL/crsFwMKfo+uZxy967DSpOmw56ZbXb5h/lp2HqAi98UoBoM71M1nRA/8h/kgULABxQdzYSg22zDqJNRl/4GU2QdevqhAB4NzRJfLEd1jP4ZhBA0p7IOjw8lgSS7dUgCD9BHutwOawrwB3q0RY0BLtVL33Mq9AGu9/j4PGZ4uSwWluewno/6jJ9u2Sr+TvL1Xs8+Zr12jdPG9xmPQeLmsvwE/9VWlFNHk3M9WzwFy6yloUQXR7Jk8yv7r244QKjzTlICxhZHKi6tDp50JnvwYDCczICPOOPhFBnCtH96SBVSlmcK7MIktjYykuPXT3rgTViPIM5Y3wUC6WSxiYxxdAm7AH7EH2slQz7ZC5U+qTlXCeQyhy7O5/Jg61fxlBbHV9iTzaph1I4lIzHll/xqZ9/ZRhwCAVn2EpyhhqP63lpS0QV1gU7v+iTGtjrC8FkAcQ4+g9UKuZYrkXvh/OdwppbGdv4NfHWXClf0gHOEdsfp47l2ujd++vU7itdw23sDw+m+T8ZuIbxj9bGa6h2KZ9OJJTte07pwpo7YpPHVyJeCApRuyfUqg18buWh0JK5l3+s4D3w5+2tSOb2PSRiiu3abOqwQshjywQRnBm3LaPPLOih30QE2lg1mlLIRQo48GUb4sj1KbfKzXgcoNv54zpkOwTOHgtBo8vQexHtBoVII8u9i58sBqsElHI+mzhLKfoMwdGX3kkmv/VKUlNp694PwWBNJ0pH7mdRYPeOOsLL41HsCw/BlrhD/JPHAVjLcttTNgIhXsaL8FoKJuCz9u4SSD8NlumRKNPHAnKNl9ef4EhzUPr9lktIqjBNxW0A+pPY02Nj3+6CXv93xWJKRNARl6GFWQxNPHtzftg38RcF+0fP5H3GtBA27mzH3rCf2xTMeRq6J9ehheNZQ7M0lM6GX7E7v50ZdviG0Ozb4mUI6WHaitVUnSf82u+/5zwnpKT9wQ3Ih1s6Yk52Db1sGUDC+0v4j1Aai8/M4dJuCprxvsbxxAK8Yk+te+LyBnLUb16TUsap001xrKqDXlQ3nyEU35SLTvMU8ChfEoqypAS8N7TqagLzPk66hGYK4Q9tTZ9yqBZtmE5CF+GxNUEZr1LSWzpDIgo/4zJx2N3olXT8gAw5kNzbtLV6LvFUjiv2qVRE7aFMroTo8e9ihMilrel0obU972/qf4UUtkpyb+XtJ7I1961OLXCVQQDjNOwH7uEp9YBugbnUffdOqSsXlGKjt/HuU88TNKEqBEBlU7B4EE1IwWS0O3977Lzus3HvK/B2DrHxSxpPBeQ2T/cQvI6kc5DmsWmm5p09SPkysrGdUkrYeBHtuTPXmED8U00zKweu1kCkD/SYe6RvqavsoRkawcJ3wISEaM6nOMLmpgbS02/jPArvZy2DrjCxBDVAiQpKY6fFyC3agrJIRMo1n4eWGZHb0tscW/3UbYSJTY7RqwR0FWVyySK2j5nx6w6nOvq3sdrdVuBd0M8e58WMh/IJqkR9GiwSsiAirelwvliKWvYW5oQqeJly8Z75QX0Qi2814YRSTFpJvXkAuQ9cR+U3C7vE8zaRL04HTS3TIqc4DWpbAqN2L9OtKpFlleasGW1JEw4we3g9EQoAYON+KYv7uE8EDqUZE3IrMsqCmFUwd8aAneo5ymBaiHydD+XwW1GqfqOWo88pca5DQ25LwxSxgIFuoFBUEpdK+12Xy3Ih1NyaIsC25SER0HokqAyQ3PP3pzqA3NhvPoo7r531vCAoOoc8mKV/amp1tIsc3lF758g0K723or4j9R7yqe//okR4H1ilIlY+u2qDjKPeLeaTJRfq1PUA5htj58PHjRw5UgTz/DixeEikMuRdd8SrbmktiunLQuwiKsp22xYbRrrCj/BYAIrrIvSSQfwD/LuRMP23trttE0B5J6NRjSz32CxMNcSstANw7eJu4jySeHSMPLB490jP0HbrzoCApR8a7Oxg6YhMN9QfdJ4/F9IMZbs0SZSZVlCO/46BU7ihGBAnHjnV3xnd8EraT+L/HPTwGYjapq+sIk+oDtmIaHh0DVV14gj7K6VapN8ChiN/fWylgeL1eBU/NfA0rfRUCLrizF0OEA0E7xZFSZB+PdoCml2FMBh02V8Rlfo+UQ5zO98nkWgeUAHVS7Xn2ODIL+imtTXZv7xDjrHH5RHvzfts9V8F7sX2ShRZ8w3sAMr/PXz9o60yZLPiQPQuQC90FTxIOhbXH+K08jQeXbl6GeMJLc4NXmYjefganAYNHVHYOKNgC2u0nqHbuOpj2GejQaKKTtudcyPyaiPp40Q0sFYl/EWQ//VO+E9HEeP8nH62/wk9lgoZaF3KwDZkWBqdDKLVLOXCVNuxN4whqM3YCH7/bhqp03XBaTm6HlqKDD9C6ha2Oc6JgT0rdvZTECkkKdZbkMBjXsFZO0uZAO3dx2JItB9pHRiD32kcrYU5J+QHNyZzpzefsrDY4e2hWSYEgDYSKo81/1y/hU8Vgj5rLDnk7D6OKCGNOZxxgqAEu3qHCuGc2f/96cU5L/08cf+y8dfVks9uztz9+7cQR4dV7Gfoj84wvWTxRPt1tc6EViToZ1WibXFfbHGj8QhH7ZrDMwP+jYKTofJxTtn2Mgo4+P8DlrXMLjEb5vWyZsXwTvlch7qKLpKLb+ZlAspgC7mLJeggLB+ZR4WGZMyua40HkscwyoCZzqUUWP/CW2UkwWFcH+pQXldH7yvv7QGmDQULsA2hMTPiXRv2pzgMGZ9tMSvhcTHEoUAG8Dhu55YIWvdOJVEqXPzhy/qMP0OqlUqv8wS5X57mdI7a9UhwENWAyCijSatJHHnxMY+MOEqYIadE0yzoLnJ/QI597J8fZplSM+7ZvOTDd0Tvv7eND3hEWrSNjkJPdAaJUTh0p3wi1AoDnIM64/iFWt3EwAeHSyQ7vedAFHjYy9TwYYRUvZmh+U3v70ghOjOLYWJaUW8k/sL794rRM7h7gLBUi5xnLAZr1/Z2S7xUBoGzugvkDY0ASOBYnZ7jiFObcwbNy5HCC+yloXgm9WAud5q4tIwbrTPKL2EYbd0AJy/GIdHkNYZH+4UdE9xOeTsURdwXdcA7HZlaNryO0Hs9DiNjFNPmBE1q/VU24Nu56hsSW6njMhhmfbCFiCCYqrFZTlZaI/QVK/BILBZC4Z3tnnWUKSYKQxoLZQsW8OzQuOqb3hMn8aCuK7ykYPWYUHKpsjKR1ZnN/6YiafoBtKeb+qOHoHqrHs608s6yhgJUlHVEX+t3UXWTMoYudikfLiW6F4QLlNDqGS91KfttyykFHRzXzGoIprw450V4c33MfUeRECjBEOFwuz6lkwHIshrAYACweC3drQpzKHsQPmbm/O6S8HhG1jqMva8hj0iDVLaIRMdxhPmf1LoP/Ssfe0iAPpXglbF1zf98CgUVQRFuRVFpTROJn2SgOZgpWNXlIsZaTUABCfm6Z9uhGOvrB4wDKsHA9HeINN6I/4O86l+dlDpdvEuT2euJ2B5IjH2NkFLL3qnL4KreOhvSRgB5VTO8CsET+0x8/cPDHm2jaNdJAx1VYJcE8ZHoRPmxFEeUKUlXwQhWmUmUWcIwPHwZeJxy/o9QHpChs4ha2gl2Tk5n2v66tAHv31LJ74zvzdoTRe0DkWJxuMZ4Unp1OfhG+oSbp8r9nBf2tO20n094rDUoyUL6DrKbWRZUYnLf6g1T7zkVLNqJDxubN+fji+S1PbKJMcNZuL4/E82pIznANQrC242sZ2H5oXLBNy8pIw9lB7iZiy6fySjgf0CdR8jBxNc+qmGwftZpa2AjGX0xirCM1FPPQ7U+cL+JKYEdObfUFlB9XGgD5mdQpDVKP1pV3xLjwnZCTJS4YwviQAiHdSgByo0WiH0+Yfw8KNqLz/qVesYjgm93EHtA8ctqs4U1r52T2QWPYSiElucJZFH5KKzH2OKdpuJneYCwk21rU66KJkYEAy7hd/65sFUymQf2zegnkkuN98EpldtDI6m2+vmeuYwGv8fhUagNM+0c1mx2TsZ+EdHkO66aI3zOhFXsURoQYJ6/IzcUyGYk7aSY9VW1sDIxACW/fdqhH1KKQQzZbVuKUi6lHfCKUdw9GatDbwk9FySO47z/BhKksMnjvch2577VsM30zR1BGiop7MRgQcjfD2em6ErJUiwUrM2CnafoL7XjxdgvWedjbBjzaiK8cnvnPhUlsI/uWkzqFIJjXi6VAz3b2VBgOacMzchtysOcPzani4DG5LfnfLGLDkvah01P0kaN5zNxVAJ2ypcNmkUqF1q7Eb80p1dNQRBVn90SI0M8w/ORbPGF4JNnZWNoKj4DDMNGhPwntKcBcmKsCGzoFn8Ff89RmSJBg0YqpOU/Yhd+fatKkzh6DH5k81ICj16eANTwyQ/+/KC3cP3+jNIUT0kTmmp0CEtw9BXT8YXwPZkc/tQLAgOUIxSm42cm8c2i3OnIFoYRGCs9plCp4lQ187wGzBnTdIyPO4dI4p+tbNj/o020V0MsNu/MeTDBA03hyOtKQhASh+2cq0W/33UGUX1ahv3U4zD0yrHK8Maz4Dc0jz5qEypIT011U+gXczCcHAZrGvuOU3wmHKoMjInTvptPBjaY7S0VCLo5TAUjwXVHgictkEtUM9cSHXml5wI1PJ9eBBrPPJWyuQEfOr2nX7PR90DGV/7L1cE5in1NYnEsZi0qb9U6nQVWb9pP0L67+9vKN81DVmsOwx5P9A8GrIYNLPI0yAHap1fDcXkJJD+Dur2me8g01Uy30TJz9gH8XwLWaZ4ReDSfGLSK47LSZn+Y72acxTQA3Afj1mR12an1M9K1HNw6IVmXBSuQrIAb3ShWivZK20R6Ng8qn77RN425p5UZOgi7259ty2sST11LFJK2TvizWW2SSlK2RleqWAR3heQ7dq/Ptibob+xcTkXKg7cnjEkmOt6cjbohs+9eFFpPXJ1lj+6oUmjDHz8fUVYXwJi6FWimcwWZJMH/92hXg0QsOp7LA23vB/LPVp9Zc4xT1Q6PRv4sLzJ4K4VTe1oSDchjVeo3PTCzGx4SQmdATCifTivp04JaGUBZuMM4N9v5zICpmaB5+UtOFLy4AY014LiYvBiYoU75fkG4iuIKIjF6l8tRKXm7KJNlETUuSjuMEbCd4/C0i7+0fgT25NWXtTUG/34LwGNA8zSnd4ZYX97fUmhX6LrmYNMtabxn8GlXtBl9zSPPsDmhIlxw/kOmwIM0QgwJ7tqnBGI1DxLkrwi7dloIun45yeXHyXpG0ABq0HPNakL0U381PQ/mJ5yKUUQd2C5Dvfm6m1+03bzq4fYHGCSpkEPfWb0PS9u+nsObXyixagFyXg/KC+ufOmoUeKlKpzJJlWfhYL6rkdJnicNPcnwU5aQSR+2CN0OHgRTEL3j6Ls7qExo0M19L6EPW8XXJ3Zl/a51srbBTl8YdloBrIBaz4FaDh2VSwCyUpkvphZpN3KftHwJSJggaDJqRHviRRGNAgBQF2klOE2cI8x4M/xskZ5OLgFKSv/YAgceXxTdF03wQCgipO8Ncw1t75dd/hp2Sl1dgTLs9BdEXwrseb7UD4uNIMFkCHgdCMuuqqZLTmcbAT82FDIUFT7bessWbAi0FP+hNwAz6Aq3o4O1s+W6HyZcyq4WnqKX7AKj1zH62/91/TxapMiu1qPhomZaJld+OlQxInZDs1P3kwfi+dP5iAs/asgVR0OSitFbSctfOENIFmeYeTEQNUeiEE4KcwoFa9kPX9bn4QH4XHL6aOe5QfpQ6yvnNJxcJRqs/oggPrUBeMxiT/5LIGl7uKjnEVOQPnI/rJzn7/hui5mFJ0OGHNRv4V0KDd0xIUOXRdh6xd/1fVXmXAUSAZLAc34L4Fp7XW95nfXDua5AICHbwce3p0TTAxr5avvtBQdc7uBrVNY1t4u++4It0HvOD2DPOgaPXarLa7j97e2lFBO1JVoaoUBbVC6ZdLbSsUleZ3gNDT0VIL65SYlFl6IH71PwYzwS3emxYw3591sWR68x8Y4z4DrbESCg6P0qxYirFSVjCxTtDRje51Gpw0CGPB9kABFnHnNJxKzOyDvNCZZpah8O/cPz63Z5xtHH0suAVm9du0qAjd1n3/i4g7jepTlrJchQ7NKypBW6pbAjx0BtL50yZ7ukPi4ys38J1augGtfQlXwTCkvO2eZiksbfivN72ZuMrPZkDbsKoxC492JlaiBodlrEban2v1FD/zBZYvbBYzp/M12C1Qx7w7kBrepFw/F5VALWfWP2fdRuE605dBw+mz/asb1d36pyrBF0qrLqGwt6qo+ce8NTLWMfAYsQIh5kxvUu5VB+E45jV/mKiOF/DN3bAduE8snMuvZiVefSIBomsSENfy3JPFdR63+CenIKIwdrF7d2SFdUzr1qUQfY0UWelOj3y4xwsGsAdIkV2boP/ezWKvwKe6bNDWS2TdKsHC8g+oCYoklwTHTvy6cwe3PPOSjbBM3PnVh7vl6joUcgzeifWnfi2go44lC8ePacQeHysCq1Ncw2gem2Zbnab8BMwda8GOotAFfpK0v/CIAdCPQ4PD1sbSw1OnDBaJRQbp0y7uypoXHRw5mFEGAd8E5ur8P2+Bidq0YwVZERLBUqFnnUquekTjFtNMxW8Enm5aVuIcTR+ePeHELFf/L2GCymo+Q+6SOaHWsWwMNVVRkxmAQFAo8GMfknWiJxQhdNh3TVEjKzQEQCQeE4ENnd+G1Hm4PXNmhqhaYmelRC/uE5I46p7oMge2ezytmEUMRrSFaAeFkCn9tnbafdmFx1sJw5Y8oIrqwSZPpWj3MN7IqjxlV8o8ioabchGpm2LNlKGM2DkSzxIYBR4PFN/7eGZ7qgXDyjvO2Tj7WZ2l4GuWJrUTE5rMPE0JGo+O//j6mgWLtkHA4QM9YqYHLMU/8RIUDxiTk95ZGrINp8VMai8xwJmLTx+QyS0FmWljCrOL1AGXUrLtqGQ+vISJ/wagUkrrCfJwU5csRqlt+36P9WMb3dRnZzJMvohTfez9AwSbQT89sF1lozsAJBkNRevnOrt4zSyaHr63oN9skCJ5HXIhL33ugI6+7b7sYzdjZaOPD0ZcXGnVbxeljSRaR6i/OAsENRWK7ghN65bcKxJfGhFZWzSxqiT+XeQ2zQNR+bjl6WWqYwPOi4AQHJijqg/ADnxC1fl+j5+UxF0TlTnI1EtKL9yJQEAYlVz0H/9VnqWEZXHCd+ik0tK5RK+wHDp6J4cMQOGAqap7QW8zIaUy7KXiezlysmcM7uFgFN1wEEpQ0N/x1H1NQPb7XCGW4uYMCp0RKvZGt8FBsrK1m8IhnkKxrCYUsFtIUoLHPsGV0b9l5gck900Z5JMMGIPYRq2V6YpA+Y/oS8e6dhvX0e4klfD5QN9mmAxBhItS4Mr0k04N5OvXECHZ4LIgS7S5UlI0mae/PWRXjtyWIGyAE2KGWi3ZNdzKDYpy1enDidRf24L6NkbGBT0wzvOmNXWnlBRCsOpNCd5gnO3SMZUMxZyHN1o9090HQal27QDPPOlmcz7pa48aXtfBC2nNtHfsjfpnUVAo9m4i8l1KO1tHfbA2Ez1Y0sGfAWn38CKEGUsg8vaDxPm6wkKhHQT4O49zidDUf0qg4AmVZQV2RSq8I5zh4Lz2/3ZzmXJNQj55HsoySsvaNxtOUr2WJohI/z1X0iw4STUqCjm9ojlHLZgy+EhAUfpgUbACe7ehf6aYcrzcMjpeS6e9/yEr2cT75VXB98u51ksqz8KPR2ysxMi3b/lfMWZ0IApVKG2Szr4A8unXFaCF8JrCc/qLw+KBajeRVAABJjro7fHyNsHyIpiN8H1+XH1y5rYhiz++DNqG0Ce31DLa8uZmwHMgINjoHWnaZhWcauc5oCzzreveMKQaibZhCrCk5US+UZHeuogCyUa3mx2SH4sZymTrYnWl9DG8YNC7iRCPd5HaH15fXWWH6wB6DTN0K4IbQZ21eGqjdrfgzVVdHqsPuw6AdOtQBRb3Qfq+hIxdExUKOnfWAji3qx9TM9GIWHchyohdnVgm1Ch5/uvL2fZsg95IW7o2lPqr6gxHb5x7TwUimkjFcCk+E56qTVPpxOD2N6ul5jvzrxWPWF/+oXc0mm1GxMBEq6QqJinQ5dyQDCyH1QyXhZ6o6FRQ5C0n0rO6m2CIU9lYLHnJvyf7a1FvhZiQiqIifDXCXq177Gyv9W+TFDUxplb7umvy5YVAJsUo4iQS4ToxB84RxyCmy3yAaht+DqLiYnyNLKGiV4id2YZPFuMXrmDyZtMJ4Q23N9xMjY62ogNszDqDKJlec+6rf+k5EonFyHfmuZho/3mbz00WFbRWX2f9dPIZHEYzrmIv2Oht0SRkWTO8dZQqk3f7Kvq33Yxa3RkMhwaNZ+TLYN5rFTs42DjVCNn/eaNLcrzhITvbsrvHm5aFQdatKsiMWGyIIgQ3kL8rTSEJ7XWKemgmlE/jzkz2E8xarnLnG2LQAQBLYyTTQ6Q1NVpbbwyhBUf9mEK9grRj87DzkrYRTV0F1gGRUYvf8vsa36gkdhWVHVUP3l0gg2Mi9d7N1Qdf79M+0wYg4OD7xad3jGuiMvNj7cP4ES8Cqzh7KH8zCK1btPnAmpqYtd4YSMdKRpk4mZmKFiCkdLgZXSxuxrLnLci1vyPlgc/jyR3vKw49/S/j0oAgSxSwfdzmxUSUOeeouS2rlPcO6NQYEqmXuQcPlgQlupbCqbLMFgvStnOc2gw6wqTyh5+4XyN+Qf9LZxDY2wJswbVWt+tmxJQKWGA6SyHBFGc9+nlsz8TLNudTOpgLwir0WN0hRvDxKG55sduz06zWdhs32XoZ4DNgvxNjEkb0DCd3qEjryGl0YBkG1eFUSNc198NT87ZBtplQ+xw+OAO4PEHDye3/Kxtij73CdCWFtplISrJfJYP39RubJgytS8vWjyUEg5Hx//ULIz5BBftxViXEqi2cjsl4yF/YbmLsr6r1uqP47ufuALCByRWc71HYMhh7Kx4gA0ltdVsUCBF5jMlFmXgcNk2lzjdNuS77LZbEDiPeR3lRTZZ49yRhJpIeJyCk1IS3gr7xof0HpqqkfIpPhVqOFGvFWyyse9vyq9j7sgb298ushHx2qVn/qAScTJRYo0467YCaIyS0lKUNvXg8Ae2ad+DyDOX+7YCkC5DvhleHfVp4h2T7olYTF0d3y65hU3wOgO4tJsLpCcGSoUfVcv4cAy/u9bloq1EiO4Sh6wovvJNJSBv/+5SVubxG8bY9PrXRUDwoPvcjgE/T0d9WoTldFBc16ZCLuLcco5qFqQuqFQsrT43Q1i9bMJF5qk4FC67kt9nqriug+0rsm0OJsF59RALFB90KW96zPfKqFQrNJj1wamN9hdRfiRBkloRBpnuSHCBJ7GyfCq39+oB9tV3bFhgsgo80q2+x3WSDCSTL7D7yJRCx1nlfL4Tn7l2crVBt72ncx7BgI5TDIbz9gz8owIzAVZpKHUD+pQ444BgN0tGOIL8lgc2eUOkomWIXBCQVl5vEPxnPjS5cCEBK1jKmyRmfBlzEfm/1LSrTpEfF5TvIDpp4pxlPPn/hAO/n27XnibSdL9Gg7i8aJTquHe9slo1e5FEplh05tIxrPNfyCva1Ds2aK8VUfLvXS6OL4O8Oer7J3tREc5vjt/LQ4r1IY6XrTKi1OSTmZO9t8e9e6oWdP0ToFGGFR9MPb0Ufeethj5tZ2asa1jF/gd5/GqP4bD2wncqaWwTxedEykXiX0gQtMu2sN3Du/FgzSaeJsd2jSDOcny2etvenxO+EEkM/nO6l/gPW2kdTqqOO2eEIkTkMUwpk+I0PQ2cs72ycg29BSM+G+8Uo5Lez4fVIRE3MxmF8DuplxQUqvDaBznM3VmOxWNfoDYlKu12kYOrTt/VmulZ7lWz3cvnjuUEpjQ56Vaw17yMEXNLXVTChg02DU97+wtx3BvaYrPC5rIQdEoH76Kx3sX78/xc+yDnL8E66eN3IFbCcave9j5IRRRqKMVl0QhPmUdVs77QBT9E6nrnYHnF2+whlxHYqeBdt5At1iaJ0Jq2PIWkd+NtxPRMs8RvQtxJJjlte9UPWGNQq2pVTYtbC+xdAwrERVvt5lwPg3Ujt2EQNRrWeJTJ8HUq7Y+Y9xbUB1xi1oH7nTymmwjQSR51JyOsy0qIeDpOE14zOKMkHM+uvQrnDo6cykaWSEu1Hz3qEanTG36DabujIA2IO6EW+czU92jiG/IDyIgxbHOuwc9D2KKSwBd6I8kub3vfuU/NFI61jmSiWZQIyRtDTUiEi7xbYnRB4PI7nSjrz+C7aOVmlMAt0F6ffVqHrpSdRMMAv1FoQj8ig9WQOAlPj7awqNWZKsPIQTDB3amIFL7FV6GV9oZvuZUEqqtU4ez1DrllT+R/bnH9NjqJKkGTRtBspENJa9WABgHU76pIIlf8rR5aUNXR4DJexDepWw4ZSgocWda+dy+M+hIZT2gANEdYZSSlgIsRhqYVLziGxCmBmgdGd/CDIBVoaDpowy5w60CY/inILq/UW9Yxf7P2o/3N9oFx48lNcRuztDG1N/fS2Jb72Hb3KV44BOMsG1i+cwnVuK2Ln30ueCcJCudvloe3OMMIB18scG+caR/YtYR6WZgkIapXn9KTdsrORkFLer2th8XPrpRQPWZDxkwVgUt+F++1oYtVdApuVUi1jaUKMt/dsYhxlz8m6X3culawafB9TxKVSQPnFV6xzf/EfMy5lCLgCV8FmdGuBG3mxpYxranS5vsDtg9uFJCEBb2MNc+r1dJpduyU5aO7TRr9IAQ7zGR2GANamMnJQcDA6eSRr5i9KyfVlVZq+cPgqmjj2j11rIr3vcDRZp4fdogfr2bIlnxWtd1FFANcgF4IPAo0SXwEcalw+tYVeJOEXo9OTb2gVxiX8DKF9B48oRzH8oi3rSPZ2u4A92SbK/NrqDnBiE2VRG92dmHDtIEyLiMwKhjU3QQOBYkdJTEo0AQcFZYNyOW7mx7GcorzdTwtrnEqsOe/z7zdizOO5kJ7qGOvPKdE8DPqd0Z5lThYbMlynCg3Mk4963OvexYUXIVI5AZrDO4dwzO+dgbhYssq7aj4IWBpkd60LTK+gAf/pFLnNEm3gAZAmemgdUrgND8MtTmrdFk+PBuBaAIu5In2BiOuduRNRhA/tXE52cSHyfgIQjR3NFYtxhlEFxzfQFY8gMU2RO/EHIiyj/Woaw/czrfum4lwnmAILWm7Bn3El7QkjQ2qZ5NkZRtL/yt3Vh7D4RHoNkfgyIJSpQliz5GwGKue7kiBjdh91i1+D9yxfJPqDfe9QGfjXpx+qyMVaRXxww0bj0V0X6RFjvB/z0PnPX0Dx2KwJpVMrQROZhCcM4va2bVj0qf9bW0fy9LJ6E+S0Y9KZDj5GyUEIhDBEP0WOQEWg4i1/zwjCXSSgjW9NidlhwErj9HconmVhXcxHnKuujJUVlnPSIhaU/zGFEe7VBEH0TJO8mD9ys5PoJBZicdhHmVs6R9fRndDSsx0fqsQuvMj9OesXESdUpqpFSuR6+o/kUZ8G6aKYaDccw3Efzlq/jVSmi0e/dRXZGZxSg4C22vw6DtCw+EL2Ph80zK5TAH1pC/NvY8LkTnTEdeyaugs0ppqVlFagdqcOW0SXghOVM/fgDE7RyHtRISfUeqIv2xFLE+0U2aoemDproF66fjsq/BHwLMQxzHogy6DR0LCUnC8tGbXDk7d8Dmh9BYr/jvLe18P7iZtDg3FQZD1bRZdW4wQkvnzkD+Wrql61CGq8/i4HT6BVN5AG6HG+I14NVgRZPCPgRmZp1YoOV/6kSM9EcrVA/bMRwC58QmwKVeebEmdIdbd1wnvj/C7OrizZ73d1SPHA5PYANuS2RVWmtokUDuen2m6rC+83dfl5hXIkhDREl/1tACEPXfTPH8R+OmZxVgy3QyKwA+FHRcv7hRy9vqnEXYcU7r2Jd9MmoQq8eX7/6Cr+IUcsVYXwfXDdiagyNxoEsLj/uXiY4xoCKovlxdSPegRuPlAg2Zjr+i5lkkT7N7oycLHPSv79fLFpsrzPNZaFtIaTBvJVKsjerR1jTDeJWMfUECrKlrvQybfndVipDMD+NQ3p+p1mZAJKuA9P16vqWHe5AfjXt/Am5aoYxTX+Ur3HBcvGZk42rpa3SSN0gEMUyH6u+kZwVImpoKzlqo2RHE31t3FNkXcfgOEIGlwdCG5/GEaX82ctSTCcTNx0qfpinMEbiLwm1aDwQdeMMLc6Hs35e/EdJWi5f53p9NoRaBWpx3pIFmha9dP0BE8ftJ0Kv6O2hQGCoN97dxfH6Zrjgb2cSX/Fg2cAHIdxHu57biRvctufRz5YBqeHo0Ly0yHcLj/1YvfbrrVP13VsNASvweIhZZlzSIKrO1xcePut1Iw51+r7VCNU68JuSnrNU4o7PVqNV4ktLOnvs2TtEAGFKsxF4MNW4BX2K+bZ+nq4hoJnf9a36RAckw9EP1QyIZXxPdfvJ6n4OiO7HFqLmQIXgHpD65QypZ/cd1CwI+8xBjr+OgpW4/nEfa0NN8WD/ZTbsoCun+LrnxEzpaysQp1/vq26tqgGckNi+fhcHk90raLiUHscFT8hY8PTCb/dtAJN/Y8nAD3/w8aosIuVmxVLhgWQ1dqrmUAF7dVxQK0AAVNWxn0vXnQcPdD7YI/Si1OI6jDttYtI2Wt/8lDmbDEQDtZZ7zkaDA5rbio/sKuZ6DgxKi6hf6Dj6d25y8TAJO1/5OErbMD8VH4VEyIrIkkYLsI3KnRWOmcaUSrxue35T88curA3fSxkvXqg7gD7Z1acdkXyTxl77vTQjavQnzwBhnbcQY7DvncDk4EW951gjloG993vSlzX/Trueeg4SK/jGmobeOBgOTA9iM4twtyWbSGUfWdneCLHV7kMU/sR9owYEJEfYYrjrtP7qDrzNLogeiqmSH29uDQWictjgM1WlGjP0pfmLurr0L7CkBTBXgUW1RAw7RoHSAz0/IWxQ6yrjFeLkjYtxehDruiGlmfjUjtj+2Nx/f+xcSxI9G8rUgSmPDIp76p3cKFz/tIwrn5m88y9QpTDaqqVc64XLH6yEW7X6lA02aLNGZPCVo/7OnTwD/4llD2Pmq91YirhKlm7Xe55otghCCJoIrTrzPzq5s2pdqmZ+sk5LqayKNYj9ye+URWPrOWjKmPl0y6Lqqc6wPJ2NzicaLMtT+O887Gk4qlBJftRDDu1tlSwCTAFA/9V8rqY1b5MOApqwHla7odYzL6WwrpUMDqx/Qw/kZx6o06Iq15Fh6+zv9+cFpP+RYFcvvG+rA6MiODqmjX/BCbD8/f6WCW3mBoOICMnABRzNe2w+KS8K8zSVb03mTFVkAF35fw19s1X9Oej3mSQxqqybUui1R1FdVRU6VZdkA48h359y29KcX9Iv4xK/rmYMIDnMSnakUsdJ5uHHVk+42AIxFUkxYF231iAiBp6rSQnNx6KqoGwVBgG4xdxARGpqK+/GoBFyyOf1JVWRVB4jovEX0wpwngEOksFdVbbVCsYxdmRUFCiRNUtXGfNSYnKzXWIWGIYUuoIGz/V46eRxvloLdQ+OXlp8HD76t+oc5pg+jgx36hDkXmZWwykL66Hrffg/ydXeLhtYZyXTjh8zHH4/8EKFBMoJ/kOPXnBgyq1gK8EwdTCNcwJ1GKubYf6eGDP/IPmFoDBuc1aZ/iaq2Vez4TegrLRX593J21VOL2EIB8mdDnQcMj4WqxxYj3P5CfXNmU3MYLCl/mH0LK9KOVGqh3jyn6uYEuiSFbnocI3kDU3i/4Xpilzt/2lPyj1/ZNyF1neoJnzXFyTqkGRIKDxtqi2L4JYC0MV1g0kmB87D3JbhdAk+aCaaTrXzh+37UWcfBGqsPuLAo3h3HDP6zx8riEgC3L2W162y2jhlIriyJ6/XQk9Z/98+8uzv/9WCGZ96GYwTQZrt8+6S8DaFalUdYk4gVIg0TjIZIUyRdFin0Ey5uZ8I3TCDHIyynJney/W98cfv8EJX0v74fbFKVSfx3a5JzfyjcIBQIhTaDDbUDcs60itoOnXR/d6tsdb3afQVQ/FCx4XAZw/hNvB8WXcXcwGh92PsSdBHHHg1rN2V14zt3oRXnCN/GPe1ZhfphDcjmuDQoHfnWIw/hQKpALPjdvnOC3wofYjJJixSjG+FJQvbrr76q7eJcw/iMxhCj5M930urHNgaWfxjJdmiijLIdbQcrz/TT3lxkPyS/+NsJL76XkkAP1MXA3BCfky1P4NPYhdJuP/iAbP+AhdjitR6uMJMTInyyuv8Pv4qtGSn5uF34iZbf2o7pZYbcykQfxxNehCf1WMOrlzstTvQ3dD0JhXM6pbh6xTnf4Px/5wjLohC+zo6LiB6ZUDEuz0Wmi5c/JEP9TpnvBOVP7STYnzu2Rq8b4+3zePy1uRfe32aKsi6VKCg7/pgXPQR4hKANym5SXbpn7bQyRmUmlixd68M66k/gv0BLhvN5hc+3oZf8CNPCFjuOpxal/VuJFOwhCbKnypf1M/OnB5hboPF/U6qgwPbHFgyG9B7MprN4V2ZJ+1ISrUIsxmj00sODVL9iqrV/zLUC1L2gLovaKrL/OwwJRFyJJ6WHehxy/I9VEOaJ+Z1UL3rMd4JmikQq4CxOyHxHUAzMK5tZixgno3cdI55mHhsT0mWUrEF9OeTLJzoRoLXasCHgGJzknJsumdUqonCyGzE24nsDQqEioTJuJd2fXmP50jmcjsL3XMQPZsUruHCcMy30KWP4fu1N0FSDaNkJb2kH5WTdhWXYBPMJOm7sAv5An1nwWTj/IbDnsAQszpDQljy+Sr6W4Doc9/1uGrUw1TtzMDirEjER6Xn49gxsAI/hssH9BLYUVUK/BkVdRdpm9cN3yPM88xF/vq16VGmd+PdiB5OnufAQl2S4Gn3msa3826whLJ6wKGd4nTLY8wzQP1cxdOX77Io4Us+CDWeVv5/U8Q1f2bnK936o+QG41DFsMXfuLDvPmh7Ej5DKumy/s+xJnj8jZ9Y3tGZVqLFg4s/KYzTsMT9iPvI3uzFosaoRb++p6m9uKi20mKVtSOO0C4ajtKpMggOVds9r/gB/Wl1JjzakBgigWCQrFWnEjTOhPYwpbo4COvZhvr4jDtX97t8uRH+rvJyTaqIH8dY75oKEyH0gEEi17ZJhD58/vgHYCfrUXBqj32wkl0NS4VbBiUOr8ytBUK9k48wXyc+FJVmofjclXKRGg89nboBDMlDQJ4W1SEUIKXiT3zJMKUIPVQ7hky32YeWKHn2ya0cOw0kfrLxy87L3b21JNxJ/PERhx6JbpKLyaQUEGLOTgw3r0Mk5RNibABl1ajsIkrPXlZwORLyCRKdGi1esyPYysekOYemW7S+vl6twvlmZ91MEa6NJlyqeuhaye7TZann+oSk5lmajYMxd2UO8Iexf26+7fxrV9t/RtqsSBnE4ywaghXwGG5Da5x93TUeDZ/j/Z1bLsx0DzDR0ni8P+xjKn2lS1OvIG4mwyrF9WD0GNYPxn5TDwLBAifMgFLglLuDj2sczZHoYpWn7jvfQYhzZlBOe3k5CS6kIk/pOQULLt+aILYeWI0WgEjC/vWbyJVgtD67E7h0ng1U6TKWhjIqafiZOPSiVa5j2ff1AnjLKcygwQRS9rR7uAMpLd6xFtPxBlcW0qeTOF5yUVbYdhACFgFhxaX5CW7ITmuIWMq/Ws9j7/BXSjzD2Eazwbvif3Yi3zxCCLbnpmQf/Jq34RYlVyWPsfQ7uXQhWQe368FVFg2TnjMOYSqdgcyHnJ2Cu3hJKYT9nlq2YJA5w/G6JXv0PQAUefLuGAzt43LfBJcbBPrgykk6MtdcI7mGN48MBf/A43zxRhoyfCTDUdrtTrJ9IGRGIz99LYDlBWSre2T3mtbVmryFf917PT0EyeigqsgGZLaNiFdFv0hOzRDMyFeK+mduTwaLEbvbFWoAduWN42Hmveo45o8oPUpQJkh9i94Wl+Emj1JU++2Y0/GFy/AhMc97n5oCb++OMohKK1L+Wjf5SqpbLqL5Yppo2YaDmL4ZUn3dKr6dNgHuWKhcrjTAMkpzkEi80QbhztvKveLYE4Pf76qoSxa1R4wD0+H1IVVHvMR1sugW9unt8dR7U5LJ4ZBK6Dm+C84WkGyxxOuxvtoM89VX4BjaN9HgdY7/jbpyn1njNNkw68u4Wq29KdXxeqPw9ttgSVOOS88lMWeJF5Vpgx7Om53H/FcP/kyHzEYi9FFPznMl3WSY7Qc+/s+f4AX6x/92eZK5W9fzQCBjH4734qrvQ5UNP2qQnbqIpo+Hs3JQhUElZpHX4RyFEGfdkIgctFebbzDKtZZj+on9Y/kThneE9SP+Y+LaoRGtrnvZ3TwcgBChaQv7NQEXP+Ym6yLOoBAMoNhJCL9z0PAWl0+QJXE7PzLCfqiDHGzghhDndcMza50sFqueuilRZUFqz3Y5YOn2V7ijtUUD7r6ENr9kEIggfa2xGwaE5eNyE8ufK45l+gDm9ysIT1VQSq7WN20rF6wUFs57a4biXJrkzhws6NNSXRJJHqUIMY/mdEC2ikOdsQ0PTTosoxR60BkI5Smialt/b+ZpbpA1SHppRzS5cmZkOSnSpctT5iiHaIepaaGKwb7T0XkdimhXb1Az1r5HCvmXK6CHRfQeHGlkjB9JQUPz2NF1OTclaITh04Xpwo+octfh247DolUxYKuj+wgNllDvGb1SInvxz1wHvU0CEc39qzELCpPRPZM3e74mSvfoN/JA2hw7wITVrBk3Fzy6DAl9pKSkANxMMnjpxNfRfNqdxG2fuUsYN6Pd4si/OSZA/47yF7UY+83DbTczS0kSS5E4xMtdJqmAw14tuZIgvgLnuXZoaDMgjxCy0jCxO2jVMezvQ9OrdWnWR78PbIK1qn/WCK8k8a1jCita3tjGSXQDOsjHVn/r+dSfOCsTDIGCGXgqh/WZZ5OfaXd/a1myXtA6ZbtnlHqeFmu2+9VjucRnnFp8SSY8ZyoYUxHEo9vXJiUtAJhAXGZbwtzq+yUIYXRkx0v75+X8UgznLNaSPZ99Xle40pXUHvRJ7yGpLntbyhaHIRmdC82Ow3uJYdpYi7L/zAKQ+aT4LRk2aVBYoCli5exxQ3a01rr37kgnLiu+RELNe0YzkTH+jeCSMFnxQbHoJBH5fN+3IktyMNtgOj4aHkzHaDJqXaunwBLkzb9lCb5e4YYyRKFYX+wg5XIQDKe/aGv/TA/oxdr+iTW0hfPJJeY6BFiM+N1OTHpD+j0QMCVga+WEW9INcVqjXFJ3HNPvklb2+REsyK6w3Qvb1cdVyKgBrEcBSPWPKmEy0Xder7Fxy0y+CcI/vPDa3lGQ4tFsOtFLvPtc0QcYS6T7V/O+nKnDLi66W4cuh1Mk0DsqNbh9+rOMTAnBlXks78Wl++BD8XJTsoF1lpDfCLrPKIYG6sLpc1dfXShtYsKVRJIcVtAdxuCQ4Zwtzc4kibQhqRHFs68r/1E5jVbo7WjpiEbiP4MvfwPSIU8Z0rifnFzSkSH55Huqfg50GJhzerjFZvH01gwvg0zvHh3bpCiVK4jRcBieECVaQ2kUuPA30aN3vhnnboQ/EoIeuu9HsOdNsbSOm1qRFeqFpoU1LOBKr9dtI8H107LcIiwsYYHn2PLliDcomRW418/OD1aGCPKa//GB39rl38+9v/qeknfiLhz5clGTVnEDS16Dn+4Y5Eqe2MRmvqhJO6tkogihHnSI27EiJw2SszbrZfsJebYsU0n6imFJ1oORaUW8lABSp//cLXUjwxZXz7mQ6QVTjsSoXiVMTL94KYunKHDLxD4cCN2PohmLOjWVByywAY9XC3/6O/69CX6NGtYFrs/AlRVnHfBPWGzvo/JjbqIJIC8phJFhDT1VK1+skuno2rj/i7cOr7lxQay5KZDmMnaObprIFMwxzCXPbvwGdEBZfkxMwwsLfGhNVFHlWJ684qJdqQ0Vg22RvfUYYUTXlKSo/jMQ7JSZ5yuXEimvFMeRIIoocioYApbdhXYGgGmILp5IO1yjqO2iHR9OaSLISqGmbz9i++dOisF2ugaDKujaCsDnEKzJDFhdSiwomBqfOJ+v0X0dt6diC/ddm37pApGxgMHVlMt2Ltk7L4Q2lL9m+4gKZcvgNtpbKAph6GhVNAshiUAqyKwHtX+DuuizkqOqOsWJfLD/UcRo3gvjbFG3ZZYK22Wgy2mpkLPNn7nQNhc1m+VH3QymHmoGiuwCUm7lfIk/fwuyltOATyVDktEnlM45CWyd1IiHs04oXr1auLUxxEVEUlAD1uzcTgWvTI5ovnSRxT8rmbm12mn2M0X28IXkgYPVbrbPU7j7DkdM3xIaZDtykMvsjgBROZyLJ4XzaO4rlomZeJToUG9qJ0/GBCZ/KJU6f7aCurQK70QnlTff9RLHAtGvBq0ulVZVnSGgKyeurOO2SQlqX9ZA/EvHFNNcnhWY+XkkiwezWI3DMjeoCy24zyudfS/Ri70gCtxWPi67ARShvxoudT50VNIPWY6vt3lbgHonvzZMlNp/53gHICY+5uIgSpmAUUsjdqKEKuReLhv4H/xuUejUTVQhvynIPOGwdGyYkBk5OUmSm9eQn9gLJfdjceWrqMqwukUXN98fegHsa3k5gDD8QKvuVAUuLAc7vILS1zUSxKGBVtjQHkZXXxlPjBMsGuRcu3Iq7dsvz7TXsH4b/MwaeT5ewX67czyDkmaQrH9Llz3yp9/otZ++r4sm2Y/fHUwW1abDILptSrbDYr8q6mM5+KaG8cVW8ZscZV6J6/OTAcTVdot0hgbxlG+ejTtvaVnX7VP9nTs0hf1tM3QDcAC6UlW4EX7DLj1C87FSswYjpOyUKSQ5ljADOQqYqNZgmIzbti5Au+2bCX1GTNAmt0KlyseOkeExnKTLqNnB+yEWID5f7PnW8vu7OjoImM9fgTbVymw+P5ZwXMkkAp0pKPrFQw34+3C9qI0Kdv0H8bwF3V+NP9WpOm6pqrKP+JY86KyHoL8lFy8Buv7K8rUyRc8bwUqDfQysBhtMzF4knapky/Huq62xL4S0QbUUEciOEivObjVlS2ewly6znJYwhahxT0VkicXFH0pXpzn1ETWvy3xwca/RiXMxy4xBEBZt790TlTd40qLU3OgcdX1XjC7F2uKuZLd5o47RslJj/h+nrMCarTNFdTxswHDQHy2OXEmUjsgewJhuW4q9O2H/jiy6epzJW3o5sjwvcmfcFQVMii3mfx6TU6L05Xts0jc+f5R8/9BMsJUJrJaKOUmL8KjTYInkzRdwPJrUNqzicrUjbAzzwm5WYNUncsOjQ+FE0zlRlXPuGDBL2X3hFx97wa1GKFedJKc+VkTnNJj97HAQiaaPBK0oTsf3d0L8ODsUD3LTyfRJbRFebeyId+SJPUmVfPIarfxbHqMjBJD+3Mae5sLlpg9PXpUORjK4bghcq1EgTlHvQKlEM9ULJuRSb7Stlrt2m/0glutFWntY/C6ABhSnN86UJh1TB1wc5743Sc3pzOuUDdJO3xsA63RGQKgCd3ZQAAHPsvX/MpV08nPfd8zp9xQxX5Qvd3FqtNjSeBKegA8ZVAkMW/sP9hd6Fqq0bdHpbMfVgFHnAYeOEdBw376DzpcjteVNxkCuQUN1koOmbiSeMikncLEA/kU+rSx74J3ZNBSyY4E/QvSWh3q/bg2QFas50Zx6T5mq+v3hwRuXVTQBq/Hw/+yptmIj+7s3uIMJofHVzgErsv/fCkJyj4wyTpofxowwhzK1Y6ULoNnf5gHxa3Yj1x25mxZSL9mkOS8cQsqBNGLCQfiJCqMMjMUXzRYErZf2nTMXnfazzbyWoNPcXjXwVU8upOY4m6D9r2mKPRoWal9hbEhSChtQNHOoceCD19zdI9217g8tR0Gr+WUikyaPM1z+jhgNFbGx6RVRKoxlSpD42kj8Rf+xVlndOw7X/MY3VF1mUmUTuPEzhoiOjAFl398dLqQjsMhm87dSQIEny7461JZdBR4F0t2c4ljIzT6Xl8XSRBBfI1KVAUH3iz7F9K2YY8DmpSaKbYtZ4/6V4WATi0y/3TrU5MXTU/XJ51geVn/bAUyUtCevtPBHP7KbIVwTM7ECEeR5a8A+11y84AhhFQwxITO/kUsjPZpAw4VI0DVdgjJKEoGtm/NUP2M8H7oAtbkqOnNGJL0yRAsPWbdOD7UYKR74QJimUpWB7ChiERQZHApSy4nLs3mLUDH5tYKRToZn2vFxqHG9lUZvqkRG55/kypx4qIx+7juW/MBM0AOVR7T4eUq+TOLtFGedZchCilsXpQpVxrKKl6pjAVVIA5GrFAXwhdnL39EZmQ7I4gY9vz7A2sKZiR1Wkb5WndvoaHC5ndGevEIuTE0ZWq4uTZ0WYLDQb56kheCKhGksyflobLhNwoOj3VOfV2gzJH7sZ6AEIJbrEsRcFz5la6rXZQQnOuZ4tNH0BTymuraotdZ+HiBvw8hpJBwVjtIek+13oadd474Ojii0t3Ez+9IHFnnC6FUDOr34DZSLLnzoAtG+5zUNRM265SfkKMntl2IA4Cx7eZC1azOhEmN9+HmQbLxtLemS2khaUDSrMctjkqZXiHrS3aGfeCM7rVrVDSfDZ//Po6Uf1QUMn1/6OLpCqy5HovV3Cn2edgM7rD0wWxZbMy9tmDV0BFxHGURgpKi6CsuzK+IHUxYXg9IaGvng6C6YUuRSbpigUGF6MnUWswHNV1q4QbG1YWPdU0OhTAWeupc+Bu6dWPwP7uS+6Hn8/AnLhsry4pSer4Ys/6eyQn04L5gUP1V8BBG/+04U6Vuw3oLBv0ZmpUr97PkOD7V13vJs+1qQxNU99HrLThpZtKf2SUqnD8Wkk2NoILGwpX0/2VSme/a5BfXazTVOMEEcU3vlhXcjOkxRkGzKDUMvacaraV/ebqTDJHIaNgYfPpac2ucxIkJtNIcoXn4sIXxcXoXXj0VejAa5+oAIEVlLcRHBN9d75/fpMm219t+pQefTs2OlInCLXilEGXU+KNz/z2TGKnI/K2JZ9/kuLVGSHeuXS8gmUPg12g9zvnEtWWkcKIwvsJIFfx3J6+dOLFi/SJxziC5+Gz38sPVnSDTAwDQJykHIjMr4cuPsnSlWA/joHQRVMlvvpEf6EbA2wCK+/85YfhGRLfyVxHSrOUe/Y8hO8v8US3aKTxZr2a0LkFBg6MCLQ33Kxp80hFb5l4bKtBzuklAYi0gWPBsZNlxWRHuCWz5WDsoU+as29U4WOTSt3IxzNeBw/S9ywPlCeVxSDT8Xsd3/IoUCtSGMzdfV3FApJQOj1YwiqMxhooGwO5/gpbJqR7ZWIlykDHkcl7vULIZYVFxT5x931jcM7rWGLJhXwvKmw9YPCkuQalqt/eSz6W03iITXAmROd4WdcClM6qVFsLA87wKeTPyIy1B+Si1Xt+ldmBNpWvAXS60ncLxeQeje7LL1zauziQLxfvbC8EypWojfvCPACHwlHxYib2VeEWkEpknbs/GEVl5Oc1paOHy2ITxIjv6eqfMNn+6gWgOG8Eow6cnzozB19y902+5DMG8GzrS3j7DFWA2DDhHl6cDSQxMdnRusrUQwirtMqrRmuHq2ciu4l6DhpWZjnEf26fEJjEBgtJG2/Q1vMkojTC0ybt2bHBPruogE8Fn0HZAm6RfxT0XTPd7wbDVZI73aCNma7IwgiatkJwfOOK3VSb4R27XWs+vQnXlGkDayHvQj9md0rtjZae0wMC2/hRu+672pdOUXvrJ3qKaYTle0yQ5LSqFUha4OtP4Ez6qVKApTrQiark4QU/Fj0HRKESrZgHdG3j+u5oFFRKiPDtTrxD8wtQNvHdXLPuFTR/JoKruxOnZpupIJwh/g2k1CWOHv7gduwRwvfv1FKjWJQn4cv0hnRHLulWzC5QBdpDar+qF3zaeWhZMl/XXMZm0B3FgDMwGGoLcc8paJvdmb0yBfKoWJaH31MBoZdRDD79/SCbnxlM71ogbRNU8en/6LkGza6MPtCMZeelujdOjvJGmygtyA6ftTL4AKI9gfFrCJs8gplc7f6SDt3xCZ6gBFzNmLvIxuh5/jyAhpP2z3815Yn1uofYfVlgJQ9+au0xizLiNnX0xTLKLBldyFmK3tzccdv9vHnR0ZwMjRGytK4sVRYR9WsbZy+AsketMBKsmWXtJnoAvhX0My2P0UuT1L6t72CMm69y0uqZiSAOIt/qiqRTdl//uRHnoOSeKUyMdGRizpDDEb5NciKzV0wZheGHmkH24vDpSv9f81HgQzQUHwGRGCQhCd4f1EAa4bZjTs/XXoHINpxHCKZAnOus8C+9q+QZOxE3ehEws9TTdCIDiM6HNkVobb23kkZbGSkI4hl6O5qnQKpYKjN5VaZCYsEpshl8Ugb+nyENwx1Bw1q5Ffh53pxtrhXRKFcTdmrCuFIKD8/AOTPoR/jaTSGIE6WsWmcYXY3EoNs7kCDfG7D/baG5okfi7nBy9H3yuRGPJPwAA5ZNHUlFNNlRHk8ngsV8xxSjYQvEgy3Hfjj2vMESt3uxvtOl7OxpAJbahT1tPV98ScXhftR3AwYZ0Evg35vLJUSfXSbE7PTsus9QETJwq5FP+10q3ZlBLZC/nHECG58A6xIG/mcGMiREYwiL4tRin9i7m7deWakNtwFXmyv77IKux1ffvE1skg4Hjjwd7mP37v6xPWb0sRR9eldmAXy6DJHagC7uH5wy1CSX00dD5tBV+GqdvjQZoc8Pj0jVFZ5uCFi7kyA3JHt1az72Eo7UnZAYbz5t5G4o5Z9vD35iLa5HPNwlx2IcW8f7hJ+0ANjd0a8atzEeOP0iLEKjNacigpHGsrK9OGP67liyhv6IPmO0FFomcSVab6uoelMVaD8SHEKyKK3jW6DkzFsTr0Wetdp1CVrYZKeHh4NyW67ueVXEvLRwazEz3okJXAiuAKYZgKsmeSjubVBNpMP3KQE/uxMMttSVjZ8Kn0qon2e1+AG+z8uGWUPTY7m8nHF5D6yd0nJ6pnAFSTybXhdR8g0rTubxqlNsUgYnPDOpeifRTzUg3wB6fbnpGYsVX8olV4pnEkVnEwdwuz3LEouNScg/O/OTfYkPcqtPriIUqa/te+/LG9DmVL3FlKdmbUeJ7jG0LME0HmEF6ispkSrWvVN4G0XA3cmvi9M5teMmyKOwr8D33ibG6BtMtFy8wxBKPcxZvafCligCXrEqfZGKfxtHfP2jXpzAUvCB7ZcGxrHxeTukJsdRSUoCM9uCtstActtytHGNEV2fmAln/SxJt96/6t/CVJnEt2rCpIq07SV9ap+3Twbj3r+cfDW7XH/LJbvu51jdJB5kP7TxJNZr7GPXW+js2fa0FKmn70oHBMLmRqpCzsZrj+MzlUDm0MhuQYEyT2dmFj++8t/sb0nAD0GtM1MienjydlFeeF7GBCFIh5UgHONwMgFXBZFYTBGDjUodJAClp7nlKkq4Fn67G3IO3viWENy0/Qiic0GYlYh7geiCUZNTxyEoxhXcC2hTB5WNa9j7Kg7ojGZ53ph1N7/o1lBZnvDH8pjBmDsfHFjEjoe8MNsQ5GjNHHGXG59F3wUx3jtj4EExGC5L+FK8djeND7F4Mg3n14TDTdsgEMh1LQy1dXpSDM3HjSZyd9K2pZ0D+FD7rJ/saDl31lDLk5lw0SRTebHgQRDYvmZl1uh0lMiW5W/oW1vCmCNp+PRkYNsM1VfxAxraEXcUkA4DbWIWWZTR+jKNwhOnPw5Y9BU6bubNKmu+Le7+iDgRkVC4YuUZLNQuOmvVylcxc9ELcn5p7Pa+argWdsuKhkLzfaBPfh3TjimWRuOfV2D7xYWXC+ucl8iQGYDg7xkzrMKVflpdFBFezDhIQi4ute94H0EXtv6wHd9NSupbTnfDEote6xCnnSSmQ6n3VJiR+YahPX3KNhzelUjCbAkmSji1zcP9DFhvxChADdHiLX/476tTntOalbLfL+vUKzMzz0QUvF5EVtQDiLIDS1sAgfcTZMCYItw/qlTMn89IIV8/ovjuhi8RX347boXjkKT4xqHi/FmsJ3wAfysVHC6MqfplpJI9RxenopNkmeYU54xPNSMPpRrPecgsQmXujZpkbYr/2jfdMxIQjWNFwcDh6CXVdYz0WaMKqC25Ex2y5gwWRC9h1xBkOEqykymUDd9xktytQ44zOAlpP3Wm4pWYQTgh7jfdMfrAAo+MBC0XjxAI5PgTLTTC90nCfSKVRMXXtmkxxO0yPiI2y4vS5nZXQsEifZ9Ko0PaWcK8RE0vJyUf5TbDpxL735feJq7FqJejLvxiRwexQZDfWwSvrnd8x7WNK3emnzx1ZolTcB/FPj25wmZX6qOIBSxlF5RVnFW/Tn9MWjV362jXkDJsSEk5vMqOtIS45YfnemoobNnpzrFFZESYgmivRsX+jI16+7I7lJVBa3xOHKR90BKkwNh678iRjFliq0C3wq5a/NwuiayTM/Zp2wALsTCzHG/7UsZq9NVKvntTUnUBgnOvvfRVAA/XQ7fYT51Tz6TaW4dw5G9tOOxfYR4omJ+8I9aLIa9DGOByZNj84ZsiQdbj7abAzquM+uFWv6LlRwnCk+F1OLIBzi54gqyzMHqznzdqth3ki3X8/lC30Jay0V9/fk03ZwEupoz/ZyHmmfbAKuc+ya71UTHUViq3uPsGCQUZjcIXaILenzoUDrtec4YAzdTRaN7nwPBwormVI4OblDwFyB80CQFCBh9YMYF8ZqsY5NtEu/vkDvkZd/pqOrbWaeSzLgU9rivjGxCgmuW51Sk2DK9f8J8Qv3Q3uS17aznodwDOdvWNrTEapgIPLFoNxlGSSez0wJl00636PfzYfHMG9E/fC7ZadCLIhktVA3uiCvSWq5JAFEdQcoKbOfX3jWBLdUMgggHajPZ1X8z129Boc8ePNG7TIq4zO59owLlasKgFQF1UAuJSzyh5EFA+6xK2Vppn+owO0Q0hWRK99ok/bW9pl7UmZZh7iXoaRxq2rs6/XOIkXIpk08m0slYf6kVwosQsJZZXG1kSiS9ymauaG9xL/39ktJ+P91wXkvQ/cBSLEWYdq1sc+IVpomAufTgAcnXfZ8sGyHPvHjMCGy87ZgbkPjKnmguXrqtXbrI0weK0zBLes96nR7tSchNBssBgAt8+9d68KeBVxYMVDW5odNmjVFm/NNRBEdkrVnFckGpM7GR+d4SvhVmQywFU/HpK7MTzFgHSt9Un/24YmSg50rr/vOgmi3jHGrlY5/2JLBn3tmxx6I0vH7RzL0zAr5CPmHOZGSYg3ZUSBKQX+wdX1GTyk8RlwyoDC0hB7Xx96EJbhuFWLaEL1BH/axN7bH6w3rxiD4Y9JBPGPbhhMynu5wNnGlYnT4Qy49JgDz7Lm935QQg5qpS06WUZp4sSPI1T0SYWffToXOe/eMk+BCg9UIbjJoh7N5lsB0tGR+4cnllEgj+ne/8ZMIZlUICFBexuzfmMmnPE/8Bt22wF9Q6q6f+kavvmZXGj1RLuhOIB8Dpf/UJ9BLubK4tPHmo3ueMZbtXu/YD+a8sdM3Kvsov4ccHWc8TTODjcyDrUmTd2kwY4eHZuWs340Q+mtqqV7+8ZFoG5ZonnK17lLeE9Jwl8QkUronuv2Ms2P3xWcUOxxy/FUlEqr0YcHXHDReISXCa1rogFNwtqjliCmrdeaHNrNY1mzO1CM9viH1lpvYMCq5vGEbNSA3QugkT4ZiIdxg89t4VLsfdOFKNnG+9xg1fXIdUZOFQjEmKGBD3rUIhBibh+B1yNMz9Z6NuL9ViY9mXY79FgES+BjQCwV9ln/gW/hdoPz3v+dtIQqWVLQ5QOBj/rPW568SkemSrKj2hX+zHCj9bHLfmJZCs1FniShy6ZD0KQK1zUu0gBZgiGB6dZPvY7GvnPdQ0NJQwXiu9vrrXk5ujKFhRqRsLYC4B4EBYwvOcjWJZS36Bm9+/bTderq6RWWmd9oJXIagMV9dHVMtFXeQUYL2j9BXl8+5ailnT83BWq1VMigDY0NAXyECQcXkYkomZJ/Vzj7umVhdfho09XUyHHvc1Un15kTjKHZDYwCz8wx519dC2eGOJOPt7df4241qO632i+4a0kV/kFlLNb0rV2LXRf+42CErgbfNzMAtmf4gjSUZQbhQSLPpaa2bT7EATX0bS5wI1Wx+qK78D+Rt7s52xIvSlXPfPBMrcB7MpfHkBwiC5fFKfxYmgHPdUElolPdr82RYNQEmOv3qqyT/koORD3Gn2DAhlUe9zIHPxK/MqPJJC0JKdMH2RvoAOpGTXXMt0wdoE+mz3gv7CtVADRPKKOWhSqZm3d+W+WC7C0p+1eXR/oQuAYSrrMKOCwnd8UgMEkqhhM9HmD+z7TFa11eNTKrS+T0/1Ly4fT/18KLUqK5reGW+BRWye2DQZpXYOzTF4RSgXnGCnVU8ntWpu4S86LwNnEElQ7rqWwBdPXViEpPh4LHCSXgrPHMTY7nCYnBm9kL6Qwg7VLlzAivDVDRexaQrOEV9MPP8LMja3eYtcyEtFH1/8q79PVDl1Gfk/oblxvJzL5BAk6VUfeJnw2nMUE95NvuHB9PLqeGR2r4SoNUL0s8O1oAi1VI0BT91bPBW0uh5+jx+Fvah7KoQ55flIqdlXr6k1Bg6DtzjvGW6EX14y7nsY77Gc6y/z7z6kcPlhO0sQ8+JCYT7bknUak2l0Lc8RYxallX2LwC/ugom6eeRcHYiXIb46Q+oE3Q5ayyM8uKz1JXIZ/7Xt31c94uiEbwKDmhpk0NWTjoLjLfvdg9trnTAl6a8tqZj2DjGG6q4GH9v9js0xnz79mMqyl17qzTsAKoxupOyppocsnaX4Dxnz8Dm1MVHDpbixjUdS6JMbXkioi++xEyqFoLgWUXiTqtOV/exUPKaEZATovMye7sstDa0JkfmXdKMi0b31kFWvMHfxVO58aiGwufDxwCQS7Y1ZLZotUhuzMZ7MFodSGbMcbQU1j1IeIpdYhx+MnRumiYetepXo3LzvpDs+LKdmEV9J8ysBNB1Q4vChQWowI9HUBGfgIcrVB0JkGXZ6vMz85Gd135VSLQx1X1XEDdITeEpVhxF2hWJqUZivoCrm14u15kQpTucfLdap5Ve+IePVg9aw+DAGB2JubiS2SY4J4dJSNzYA1HLZtH29HdIarVKHIq2b2q8J7ALpNAt9T1n8rWKIZPoul6XEJbmFx2gkLfMJnzD1D4oJp5EumJAVvaiNCoz0mr8szcVdoX8hzV+8/GFh6Gox7H7mC2ersVxhFPwqDneXjdofQUml3f5ZSG8cKnbdTdGAk6Cndir5xj/gtckk9dRa61qhWeTAfekyTvs/S+cKGbTbpl5wR+GNKiJHvZk/05wdKLidHM3/1kyF+4ugHqZQc4gQmnsuhCNlP4r56tFGENfz4Bfzycz7ceKEMMsdRVlWIiStvcqeNdVdGTxIn1l5uIYLkLLfu0I5DLgiiYZ+LY6cl7rwRdTo3aG3sWUkp0TXBHx/qgySCi4jPySMYJ28HeuZ63qUHHpgJzWbbaN/K6LI2IIFUtSYCi2t8nqkDDmVug5f5YqkHH5MZEu+tHyAuBAQTdwq/o+fhYk0pEWmyyqqjHZB6rk65+hGtLsq8ULjWdN8A4D79fU9La4dAWDbpNzHYwVL0tShVX0j+5CEKTLeGTELcoMAmWqkWLmjh3kJm4jjxnQMXOjhs4DELS1sM5BfJ9I6GybzWglZFxFaXcqB7gJEFrPJAiHF+3DaP+u4GbdzKEABFV+UQvFwDr7lfqEEAejjBaCob2fhZmPgYt5WSryl8qp7rsjgJXXi43kcb4mhTPRJzrMh8vFckOSNb75LFsTBgDwzz441CRNeh448wWZE4UyrUk1gA6z4QjmHmi5DhlbSPwoUY6Bk3Qxm2jRQdhO9pWF38OLRRQH3Qc0H5BhEYZyQbh0ir6ROH2wm7fOxMQwCNcaWwGy1Xalhet7ovfqo9c+IPbXAa27K//L29tXeJ5/RKRKqlD6P33IaOGoTW8oqM2rsJ5BPmNLl7PXqnbrtb28ga2b9Hk5q20FomLt8/eC8jTAJHijjumyIIjTDiKEdid+dxvE1uovE09+mz2g+uBiVeNvrWQn0hZw5DCu8vzkVmJtyor16gnLZGMSKfcQEE8N64CXREb/4IbwyIRw/yz5/bItBSBT2yPqzOJK+jrAkltqRyHbEHOCevfMdE/DaGQaeWtFe+oRMHK5HrktUI72Ru3nv2wqw7xyKpW19bE9igzyqqUABYTlu+RncVJnSUURpVrxHuwhFSkNQhIwJYsdGnokzAwPdBXeo2aXb5hUyPctx+WDbn4AfoqqAUd9FulM/PAvL1+V/HQbrXgI1Lp177nuXE83J50qauPC7Caqq6KQ3PDTgYXZs94vCXbdtKngLlit+JYAkFqXTfSbaKzlhmagoPg0lY5yBb03h278c9YeDxO0tcKLqT6XxjOMUp6barrVrTtWC4yVVVK//APbVxD/NcczS0cogTSFgSHwUrqWwwoYeMiyEuYao4/LkubxCrE20zfl7SWHfqcjOgopT7mfB1z2dI+PYvX/MXpixDLFC0+oOplwKDveXGjfp6SscjJvH5ghSIFfdng9nURRKXtrGnSn4xVjwYuZslH233yS+EzeuTW5GSCSTe9hNuMCAw60tRNqb9te4PPKvlkBis1ItPWQ0T/5EJCDRYVn36FilC2T+iPqhNo2hJjBuCKETKcvd8lc8E053b8uac9OZdrBuRULpIUDIg5e/8iObVLaV4D+GL5HcTghaMG7+B6Wc7KtM1g4ltl2dNraH9EuD698v1N7vRMmfdgtLO/zWxpMoolWvH+WOXSu1eADcoolOcBu32BNpvUZE3bwaQkbzK39QkvpeyejYNHNjNypHfmcPXdEfd+WgkBspELkJntUkzz8XROR0CWQfR7GtE10GALMIAXXpWVet+A7mxKDh5UaXkId+ZKyHfutPQmOolBL3QqBJQ5zJCV8mytfsIFi5nHYvuWcC8zb/1lvLCxpIrB2PVxU0TmbaRXwdwi8le21fdn62ALBebNbhim/EAjob8jAe0o1CQLdmFePVsfpuJ3mx4gSiv5wA8TRSGLMZ6rBCSaP3so0/CpucsTnaYsq8JBo/Nsah2TsnV99dqh58+ZzXqA6Kzd2O01XihhafkBSUhQwLWltwnKjJMHB3IQZgQhdwizwuHF5UkPlACFe0W/2lc/dlIZGvjRulf7oag/h1J8klR+50rxLQN3TOL9XKB0Seh+xA4TGELSIsvYshDHnCUL/WSglCvqoJXdhJM56QOTHXz1Q4toiYsop/MJ26xx54LiU0NZ6ezJF6oXf2IE6h7yvJ8P+Khmp2LsUSwayc76EU1NfWiupNx8ox1TFS1SA4MwyCjD1FE005mw7kR9YKh5+U0VWRGQwGtJxjW0ffob4eWCzBTJF1USJ61sjmt4axqPJRH1KxE6qMsaizGp5LEvR4IfsxJe6Ge6/Z6s/2cybWw3jb3kk2aGGtz/EpskbrDIMKoTlmAetkOsqdhHNf5Prd2Dpf7nM92hmF+yWJNQK0Zc0rm0M8eQZRUWUF6H8qqYqo09KgF/VVLDJOETnFafYHJNP6CAeHHYXna3G8ZiOPtnSJp0SvzAwJ4KtcoKUtyNC3uDWrqpQUTLIxoJH2R6Pv+vWakhcivkCGC0k9/hiaJ3lbro9/DaUanXlW/twiR38vxgsVGbeBLK2AyPvWH7IsNP+8iKQGJvGeWXazzyp4tA/SsmUgO86zpjYwOhiTP7dY7YSTF8a0y8xAkLZPkUY3cXGgQ+vJAyexeBzssZpiaWeC48YQPag1P+c4LG/xCXkCLhdogA0wd85Ork2I9uueo485tMsbtXGlVfKpsbY282x5rA8V0PbOrTJGtPaJHo/5uCe9JgSEI+CCvsOcVqpo3fA2BfnWV5kY3hUUuyDQ4A9T9kYOu2DjLKyXuP8xgK7Zw7DjTY1g+AIxRi/48ccSIJWtd2Tsu3A84iMXMQst6MstVE2qG8LgvGayc2rqVY99oynEJMuLFcsFDg3ZGdwbdKON/6jhcO663xhcgbvYAGMvpO/zStSgq/uO7HsXBbnr2ttiuWG3ZLMQgIN84/Db26q663FkoDW7Y6sGyRfbeqPNSpVMpAgOuduIn48avZtwzf94k5+3EijMdgIIbIdDWVnbCT3COwYPdpWD+x04UTyDA9jlqpQMyS3QbSfYhymvLfpc7EB0kLQbjeygafuXOSGvjtz4JwvOK1ntAePnS8msZ1Ekh+DgGNe7rxmSQcKpTlD8A2D5lfZ4EugEpBhblRGgaeBqrdhdn1tTQFAzrIbaRhrHjwToqbi+YB6cXlkoNy6iX99XXKRGTh/qsvfo1ZnO4nnDDmDgFnOaz3v89iDlcAY6vpvquiP6bs7CCjxf7DthIIkGJO0QpbaGBDWH+Sy5goOti1OAo+5T1s0cjCOGn2Ge5qw8wP8ilZaRMDfy12tjpfKudy/SENvRFpbjcL4xibznnobgxu6YpodUN+vRtcoptfiYCUB1bw+9eFMEJfGNPYXy1lnSlSfOeRZKgSGl6FalzQ2Awx3xFG1jsZNjIe6s6G7sldLxhHH9DZnCZGxuQc4mKZ/3dq4t22u6R7+vzlv64t86rOKmyZHtcVH+zmYrkNvW8jXRSwuOU/WCBrp4JxHKUMbYyB0hJuU7jn26uIpFLivt0g0pB9KYG55kR555ClYKozLbTg7oDGGC5PJ4q7i0K9PuHj191TaXE5kiUuABCy7x9N2sNWtkPNzmbMBGQDo5yJr4U9ddyZhcOZNILA7M/Qgb4/Qvma+uX/RFrAKUSTgxZWJr0j6VT9Cnv8PBLcddxzPgQPmlvtSSJcapGR6i0pRH3ox2HcomAKU3eVlxQUVIqjexcBDTilzvmVsasoFGnNbJoOB30w1KbRO/qbRDiMnG3yx0xB4M99vekMSEPJ0NFhAgdDm0zJTP6FI/CpezBCOyZ2ql2YDAywd564p9/s7RR4qDT/zotdWTsSBkDwgCzlilbIiE49betnyRW9oc2ZamoLrcKWEnZUa3TFQWsdl6BFG6QVK0J+P4BHVyOOhuqCMT0ZFq3eynmujcVsNVE6eDW19P5j2FWmFq1eMAIxIsTRm0l0QqfTetK94GAWltQ+rxpYMUvMF0f/mkyvXXbiqpRGaKvvmd92RXkKvvw8UuikXSHMXO7lPpfEgBbd+SygRwNbEJCjPQTM1SH8FFE7cXYet3PT+fMnq7p6y+b1jyMySevLPOxpvWSPtMiRWedT6oiNt/3ZkSH/W5mWWsQhNjWIFQCs3nbGxya+1KYwG/HdVdV6kB0zN9iaJR6yjJYZb90mi2kYKhx/Pg4AgR+X0z6jmR48qjgdI0QYXqbmfMS4jWTOFv2cQ7UPW/Hqcx1nONnJvrU+8Ujo05pDGXfbSSK/YA4zKokYMCXi1SLb8dqnG8gW2FI9IJ863ORWbsoaIvUcWr+KBn0qnvbnlDrmSHw1V5jZKJU6p/2Q1sbEXVTYKvOsumrImefCQdhucc+T9EH7EuyJw/H/tL0VFHIvUAJ59shXYZ4GDQ/BwUT/13DRkelhurTpGyO18UPZ+3XMJUeELeMhqjK4jKpMKaDg3mvZb+aL2omYltWkyuU9xAg3Fl6woA83fMhKYJqYSz5W9q+zVPEX6IzYExLFO0k0pFi7RONezRUmuTcOYcPm1JivXQwGT51qegwkCoueWr5LOV+gKVop7Co8Ow4nLPDOAMUZJnN58J/QsDl9c1HHefvrOhi81tWLkF0ld3EN9bcIMWKZjEuEDXzZVJMdPnJbRhCN2omuTAGaM+AiTE0qNe2fsi08LAVL55W+Ioa5PtcR72SJpmyJMexuExT83VFJwt46ayIM/yMZGV1eM7PFWN9NgMjCri/fillVkhokK3UmkG48opUpG6F7BUDzR0O4tvUjM9X6WesoQzwa4oyvIHtl4eVzMR+Inot8YuRP6/MUSwriJTifNfUQFUGuSkwAoK82nEU5bmhqbJf1RFHuYrfZ/Jq/JHGyCXvFSNVUL/csbAE7jtF9ncP6AJuZhdeOquyjVgzYgqSMeyL2OO5xElHw3hxyC2Pob2cH5h2pwglMUkhH1XRv1e/QbcoOglFZGUd+reo7GQM2dcWP9W7TYedzVgSVYfEZyjVwW1/7ZH3KOhqRE55brt0VPCpU/Igx9pETwDjA6Ek7RGwekMAmqcqEJFxDfMBP/mcj3yrPBpc8bvBVTGoIHZt1gg63gQUqyPQ5ytnf2V3HNG1tJNT1oYhuHqaLpqz4kF1Md0bOzTp3N3jTa7PMpVEzna+iCXoX+VOOYTP9i45QxMXmCGP3ZCvAJGtV5oAb0tsdX0yuPHqZ6wOmRBw51q/rnkIFYt61j1SPr5CQql0pSAfPfpYtpjWW7RK60fzhNhvNnXwKR781oFsOwtucBhYwAafSehc9Nd1IcrHsRmW90fJaPJL/5sYzkuDZbMSIp9oDu7nv2HegcCn4lfanCRTc8606Vzo0McfaDxKNRu/xrqiuXrNHKdmMYTC2PtQK5dI3u6FSZXXB4gP4fOCOFFN2ruO+6DC92eHoTZ8fALkg6N9uwvrHpHcBOTGB3Zqh0iDCTbVjzWC6ttwhuZAJEeMLUuQKFkSX3j4U7BTdEumKJnTQwgwgdvOlxM2Wge91NrfM4XdrsewUZcbYYciDDww38SbTuFiWGNdEzB4+PXhN0jx2mDRPfflS0tHF/MdyMFmR/sU+aS8y5cfD65FhoTpRsNwiqzh6kAgI6Rl1jaEg1u95oI65uEB61gfUi5W/R82uh/cxlMi6calQELf/FrKfkoRW/UOaMXK4jnyYL3qplAuFnu5a7YR2KUOtZVzP0fwYGOBtljye1VT+KbJ2FQwNzxfDS1LBWJLPsbjjc3XSCwEFQBkQALB2vQL3QQrjgvTysMwXfpfkIxPWcklrePVzwE4Zz7KTdgb6zkhF3tfF8OBcU96Ea/XWBKPQksr240cSLHVi1sBYKyouSuseRhYrB7VZONA1GU9imOZ7EuDIBvLTuns8H6wG8bg6ISoxdMhNjwKxgJaySAT1lDlCKbBVKL3LTpk5Pd8fPkz3HfnkX9v++qlyWUAxMC+G3Xl4q+HyvLgD/yGcGQb4gEJXhDVJD6J0TqiEKi6zNq9JQBD+jJAxZrA2Wt6oxw3pJh6zTc4miCxwn/PTow6EIfoz9NjDVx88EU8ZMYgfCWN1Rkjw+1623IquW5J3nnS2/vtAR7rYWa0YbXsswyxFWmTA+BEkrxEdCXjvqzfqMrc2TMwDPkm87qcYkvTLjWxUvK5CXOC4aN3tH5/HRiC9n7k+mL5alyV4Ww26Dtx3tJfpX/cQ5T5WHXPqKYt6ibfkEn0uzIZlTx2jXoRhaUUCdFfw8GPN8wbbi/JVJLiuhEhIFOzNijTGGnpXUD2gGH5sIYjpp2Q7XmH3jyvDwJUqxOqpqWWIPvZqgDetn9P6+Q7oSkJ0K15ZS4ts/8/23gtPK4Sbhaf28lvKlZ/D3CmU5XdCpdbA85ZMPoLjnrJ4PB6en4sjREcB1Lu5bUb6/rv2DLfvg78fmZHhjNDBcekqfF6q7LKqstO5M6QdcyeMARvPpPhCuMEOwYRXPMvcHG8+8Fe1unPjgYl5Qa2hb2JitWCkNrUfP+VjpGlJUCMqdWY48bBFjbS4kmPNV8WIgS1jFV4lINa3Hc1b8ZUmz0gvEGbsQK3BeWETqx6K/uJv+8zOtxI8DYsQEW27rkHYcHuNDTQL9EXTKjBzCKEWX0qS5n966v4o9ft0MCnPnjKrbD3vnVU5/LTQA4Wo30dWC1Anb7LFHuQ660aBvWy50G5PwDMhP/HMj7Fb28Pp7gN7LgAPB3NpnwW6osHyTlF5U2u8yunhIgPN9wLyRSPxcPSdHvhBw1rzB7p457v0xZsDldTxkNqA29sh7Gkrj+pXMQoC+UzQwObQxUdv0Mm0stkPvfhHbEJByBrBcvEdZ/EaVrROMbYnfpLpuWd5/di3hgbQQ2/HxzCfMYrzgoptVEFwGvFDZ/5M6dOCACemEM019ur8q7J8ZgcfK96HwHtLEJB6fIQ9fhRZ4aOpQ+bcw8YUAUxhDqUIOVuX4AHT0eXsWb+c8HLRNGveG1OyRaEfKYF9CeI9DgyX4K/bpozDYaMR2cctzia69o/rwmr8DEVjd0jnh4aCTGl2qJzm63jp+/TdXLEVQgQF5Mb5T/zwXprkLxO7FRGxfHz0JzXJgTegAie/wuODkzpE6t+yOil1vB5HQmk04UPU5E1II1eAMTS75z+khG6zfZm42CZ03PW76teOs9JGDdIrjH6Rdrm37L1wR+mEcKX9k4gDC42CNeJVkhCg9ajabX6UCoiWegJWedgAPJ6HJ8ulud4OiWMYKLd6e02eDynKNwmI9f3JgfEMVHU9j9s7AgVcYU9YnMLWQbaPuR2sFYVw3GU9UhTZk/ap3WRbvBE8IKQRtBnRI+rTo49LTEash+po8EsNqBHZGPvKQ/wu7hYTrMfnPyA8uhVEj4791aH/MVRmIbgTtGzmG8ZzUiVHsQil90XaqNbRR2HU0ENeITDDCxHye531DedrAsUOXci98boH366QQ23UcnVe6fNxkAx/SkEpYK9K/A5KLcmYO6NbJ5J8dQP5Ykx5MiYqKKB+/WL/dV0HThexsQptaGbMrcwZaLjVwrVhRyIJ84UyAwzD1EYtOVlEPfy+iceMNcY0KD+AsFZokJpAG+3Gqg7GR52LpeRMvEwKRHUsg2uhxS7DhmUOpw70UbSFj72YceD8r8tfZmCqR26vMy6ymttoyCUrp/XzKYuQX8AA3NMIZn4qtOOUVHgW7Kf+63fxamzAWs7iJFG52Jn8HnlzGm+v9VV7rMhDMwFGexIH+85gCu+90vCVKzmjh6fnnZ/e0nxFlG8l4y4WVo6nAsGrSgjYBaDcJdC8xNcZEc0/0PWF5CyiYPHx7RuKLGJvaYmO5WLcAX35B+uS7/qrE+jYR9TVDbU4aU/h7nj6Cq1SHKWfqwu7LoReqkkU7We0FIqc9GyGRqJB+Q4jv/h5EPUQc1RkmHUbbMyHjEC8tPcKPDXzyeukAmIiZ80U7/1rFEsxDfSgjfYM2iHjp26l7CXtNHJpsm03dX4rlO2sDlailG7py3dQWKc6m1EN0LvFR2F3A8Yk8MJCteSZOvL7hSAzNydGJ+1J65N+5O5jQqj2TA4v8T24OqYJOwzYB45GFmUn6uEE3YTGiP1MrBxb6VMqtkqOhk4KGQYmMpv7F9X0dp2Uy29dWnihHSvO6lMpw/BLp2EAp3fUFn2TgFB66nbP7kTRGlf6isKisNswrE0j6fW2/QZtcLwRjHvftAn1VH6d96KJg6eINL+OHYzv4vvdTRS7hb/1iTIEizVNOAnYBLNxKxmsvwiS3QAwouiAFU+8u80xX/BBQjMOYqp34xKcmHQ3ZEptvs+Fnfwpt8audvj+NSV6UGAKAxuHzYft1IjB85kAgMLpdnGk0OQd5trK7kVa3nsS8R8+uDOsYTdEHhwzO7RsIzU6BLuXwr6+AXM2mDPiFrynemeysqekayh+ZlQAH3S5/kk/scFQmPy1PjxNjlxS1jGtlslJj877hMU/q6fnIHF42JU7O/CAXOXXdd3LQP1EwxP9ycg9YHUmLE+8EUKH6falY6KETeFoXagVUO4AXxis4dn4VK+QI3tc83t27oT1kahUIVWIP5N6gAQpFTANz7cMofpxVtv1fd60omNhP2c8OGHhPgQgYwCYzsgrDxyaXyRrvhrjoKw1K9ygx1CF8h2HM7DzzxFj4c8RwcO0bdgHDtfDTHXGFewZYrL4WLzrgImUClxirgob0GcoSUy6Yf6UzGy81qU4OXJ0aXHTi+hyfERCQWsnkcVsyJD8Gt9qUjAAzgsrdG8PYVbhzkw65a/vRhmgvaimdnVXK9sU1Fr4GF1VMlDfKD4Vu/OcygOuVOd01iTi8JAXu6CnfXGB+ShFKlfm0pgyLvotZwgcHJWMpc3glLrNEDZfpT2ZktjggUW7syHUEM9Gc2VWO77EO+Atbs/GJqgFJ0AwVo1lESeyjcRUlIh4/Gpmdnnc0i2AEXZwBzEI7ycFEZEeqhqdg0OLS6WWlOeyRKTRTJ+Zpwp9E1XhothCjIT1csqJc8ShnuF6ZfNShbpM50OMDPfL8jAGVYq2o9T21BShjVeZYnyqNu9rWfu8egKbP1MUQDN3+Ht7U79lxkcMYRpJPFvzbYB0GMPOQRDKoMz3/bW85OIxghF7VmhGWgHC9KOQzD81QP+VOMHeFm4YScTgDduNG6a8fiHFW/cQEyk9Sf2UrVjnf0mqhCRKnq/dT9e0gCwqnV1/71oNo+S6hbnsEJDejD+FM+tS6ENJpoqYAiOcyyGB4/gdYNOKpXdrRKod4grfMAPASdtZmN3eD2rfUuDk07o5JMYjcGHFr2qkMcoz4iGBGiuI5+FyMKVaBjV1kAqkPAdb3rVHWbXmoibGRrvPfCstn/jID330mpOAIxRlMnQb+GSZ/N/MKUalj3y2GBXTvKTYof7fEDmVpqKDj6VOC0EQvAFJS58Xo/BqzTR1TUpSZxETVXhwiI4DOdZw4FU3RJuT362xO2Za2mfD0xffYByDoKuHLdw/wgyOI9fJSLdg0Uke0SWwMT50INVowhRm6N/mSIOhJJUu//bM470M9oo6HHrmICwtBD95Cr4hz6/MjaGQROcXSKWoybnmPoxz1+8Kg0hZjni13gYTkqFQPbuIlmp6fSOC7fJfJRNe1n2un0sMe8nbSUWiXYNP2g9GgMUKjazCSCtgKE53Y1HvWtwJiPGBnOlfEjKjum7StJXQB2P+d8ZHMkruEnWBCZWGnUE3rAtjchq6HC6spHJ2gsWnR6cb5FvVyj69RChBuKHc0QkGK9YGY9LTu5i8w+A2qImH0D6ujfwpfupPzJaoEczwwaDfMed7STlezYNCXqIn0oKN1zdecpCzeIX3n5NJscvBjn+e3qAXXFQv2vFntq8aWGDdiYSUqxlIGiO6T7jG0Qlx9wbVyNpgMg8ZdJjcc0bbVeSv4YzvQRRKc8QHfYBJCpuRSSmbPwMqdfOQDVP2JdaLxcPE/tBrdY8mIZQVvJlygB59nBFmtJszJP4o1fa3nNHyWT5VcFScKXl+F1QhQdT9V/KH1HXR43YEpvMqXNp7TbV8LNF4ghoAiqjXDHuzBGh3LhyIVR8SJ5GGroXNtU8dWTjDRmrUCCIhueK7ywbu78lLIpnk+ol6x/pclQ3e0xxE/TtrAX4oi1u0db9/jPfd+jnrB1UDu0+bXWnL3TpMCwPQxlolh0qPDc/NJ7RzqwQS4heJj9JadVoItPmoBvWv3rG+ZpU4G89XF/WnLzbfLjzi2QjF6ukM7CsZ77aTOMWN3eNiPGAuQEzqQaXw60wyFjuql3fIrMrWNcgl9GXduxPbqyVzEosD/gSKXHFr1mzu+Bejk6ovvd+XV1eeseUE76bq6IHbkDOnA32d4g44LSIGgBXYjvlcY5QOn2gH0wreFVbxF8YA/T+LTzw6EKhwNb9n53Vo2Umh2eiyfW5hM96cpuPaKNgMoFOp1MFeExnw4n908Ry/hg+Kt22AzgvkpMjAm4wWKhxazVnw3FoZETS6x9wlCRvbvMYbJjA4IcUhgDif6EeWLmAMUK9j3qKxwpLBZidCWQJDnqmOIegzMcLgZHWG/HJfrQV06lBl9vektU3E0QqMPzoCsa7xxas90rpSDihSoE6NtV9sf/qF85JfXsysGdEA/M6Sms0gUImO6tW5CUOhRVMYD4UEj7m2WZfF3nIoty8mC74IMiatjNYpadzJCpB9hLdGsYwWKIU+wUQ5PUtrq5TFIyudmJGk+2PyGlVpLhFiPuQQH8pqY2Qb3Wtm+B9gUAr3DSHMcsNqBNwKdtGflh3SFyzis6+FGad6AfyLbtqK+Ph0xWVFdjExO77NBZXnKMiCMzPIkRVI1PSeXbyG+NyUjBg00Q7TZkvHfR/rcK2ZEEWa/U8Lqoi0MxLzttJ5X7Ib2P+RqdaZUdWFbDaWZgxke6oMWzJZt0ncnh0qFEvKG2Uj9hRiMVFMfPuDdT3CldjM97jKh1VqsnftxP1c7fGzQJXpT1jHKh5wU1NUU6jxZcpWblmBSuL3sorGpGWwJ6vn0PdQ+YGhcOD696E0nN+5Dkz1lSjn23yyK2HbXo3lvB7MyJ9q2WLvURhLKji5OKaZrUY48/aMlASg/KCpqIvejJWsswknh3bFtPTvitOt/fVX0sN09l2mUVtRkElav44wl91eFmtBLtbatk1/Crk9A7GiGV0hdv0QEyzVZdE4ZxqQSMQZ0/4cH81f+l2BVkGfs9YrAPuQ0Y7T5rCkjLOg7rWBzwYAo6dsGRwIRQ6Jb3ffVTTW+rcVqsGIdnROF8DwFJI/q70/S1kaC2NutrHp3jIYPzF8to6HAe6mW5pjxxE3O0HUjWYj4srOiggdZc/Q+YkZ07YeNHNKamflwe6DiS5zDiUci9cnlRRBvN5DadeW0xj+s6AH+3E+dIGzAhAv0UGffYSe2BUEzxn6hR7hOSkhC19N88YJ3Uzilx+GU6UBEEWkVqEWPo5j53dtV5dhnqPMGK7l/hI85bUuhiGJhjbOckvT60ugsIS3owZyX6Izz1vkeXgSKki0txm2gK9d+amCBSNnRFhUMXvu8vyc9VsJdykPXgNQJualfmesMwqqnA67+hCtGaVM70OpxdHooCSmT9ZDQVA6YTxwQwR2urHN5YLeZSfqlH4a7uU6E3DF1KGZsWUn6zaIljI8ld69PJIUrgMBGXyTq0Gs3xuPLSjzF0OlLo1WoAgnPNj3HxdnQ4UK9gZqweyNhJlnN50ptq6mGSxXtX5/ZT8XSVHxM61PwQbeV6Hk0f97X2JvD/pt/SlR2vEuwpYpCMTpfsvPeVc5UOxlSVEtICqNAW3brWEGqR6D1NrzF7BydFlWeOL50XfjbUlv+q205wqxv40lV18EHF3iZvcmlOIsxeIOnQNOqmkYuAqutyihQBCN+BAMuRGMqm1ouEVda6IH6LclQvm+U1/51tYnAbPSAhQtYvsRd7ZD9EY4PqrOtc33Scp2QZQUTWIl7zy7Tgq1Mk52O1fE2UmeRtPFTpYlORCVHHSUFVbI1kx1nKYrbngP7dT8QM8YqViJuFu7S+UcKfKJmHFaQT2L2CyjGvdkXnXJEfLNCSkdkmF76lHG4FwFHc7Fa6zBRQ9dtnCSxR1gJsPFflBCJdofJbooDaPq8I8VS55vITghpfAjButEb6u3BtykYjmM+TrSTeyHHKDQMpqCbvHIVIi/9IkytjNlF2PIARuMWH//jqR9w3Bq5ERgsdpYkXgqJS6QGDtFXqLB4JCQPBpL/pb+f+qSkFk4v4756WNCAF1p8sqyIoknqTnsFmPmBuEEkaeHWbUB2zRcOKkvT3txiFaqCPfSA7/vjEM0X1BqiszB2IyKMAv+MzdOAKCvXWP473uhKLh/5Te1b8N6asWAoGffvtnvh3s8U85pjvUSgybMTz0I5iqShi1ZGxzaE8P74j+QqH7XIV3c/TwXKqhyO5PX47d4N4VU2TUFyDBBq26u8fClZGB+62Cg3QjcG9TlMrxYyX+IUkkmihm6k6QiuJuESotHQSyayOp8R4WEwDy/lRvofrWuKupmleAl+AgDzAzTjEuNhHNVc7lwKRE80ONqQmASnj47MdjnVd5u6uTV2LE39b2VhJ6hXdx90HLMkURuE4D8c8F5xowhVNWUufguxJdpZttS54G12JFjWq4YOa9TqSWmFMRKrrgbFBHVirahggqIfFYzYojrmVgVUMn3Ja5wEAtLCdpboIBmWp+YmdkEXzaWv1APmSbP3jmulo/wYREK8yq6ISYO418+cOvav7S7Bo5tccwtkyJRTy9FybGsnVzNkMsFuBWQiQbg4TP1XA2yZIdonet8JJZpxBklzXqZrN1D5SERytJtVHfD89/hDaJE0LZxsWSNVunuFd5deH7sTy6GSSZA2Cao3XaeHn9YcYWaOL5MU79HSa0rMAns3AthkkfjcfDUrWJIFvExcHIUNHUBxpxfxYXGcENKW9ozXj/e4w7YZPBuBqM/Is/YCajvuki54pgKIQNFeEXngxNAb0jZT9FOuBNsP1w6QkiZWswCDK0sEplSP7UGwiDG6b0jT1ViKRBc1kD0gJ1HFL5JppJBgSClMEm3a0G50y3K/eI+rzE0Vg6PpP9GC/2Y75kIfdK6Sgopxsy5QFmOIUDG2I6MB7MXylBZsdWusTXgGcZuxfFUI1h5EcLnX89kR6w6P41Qyi11lEvAqL6RpiVyoOClZW/+MGJCqlrR5mF6uzMuCQOq00ulnTx3Rk23TAqmGHhzNdEWVzkv+yIvw/mbTMS0smQ+RkHFTYWer1Pvh1Ql6hUFD6BHS1+pRE7Au8wXAONK/gcu4/ptvXhesa2kvzjU/vHPwzB9vFCuOGrjr/Gqqfa1W6xaSyuExBX+TQHLVOljsmbEtS+COShe3eod3LMTlV0UhFYOjmS+A1VX9u2Zi6fuY1dWSmqNEwZymMqhu14Q3c+X2GpQtXmgLal6+wVzTNbMyWrgjqF7wxhNDapVszsJpyJCTLEEQ73kQcQy/zs9yEWu7sG6WuYgv6wp/E9bP6QacxmbZi4RctP40wpbqeB2Nvzql4Mh5HubDff6ilcPxt/+i9vLfun+7uOD0OyxCAyuw/c7K+Hkplua6E8ujy+jnacvni3JVlx4c8aOcGJfcO7xT7CfLY9msOk36dzXDdjc0F1m5H58kElmh213jGTW7v7rCHheaaiDrY/kapAkMjADX1xQTh4K+Mv3VfWa8f5Fu5WY6fqIfijabB9AuMSHLQU+lWi0v3RoTUtbd19FbiNALY8EHAQ2XXm6tbmCFkFanPfPDFn3bj+NB1qszY55U7ENqsGlqxT6WgE5dqXJ7tVEesMIB3LJWYtQDlRGVAbdcAO+Wt3KPmS8UdLw1+nyMHqah8tyN0dyh/pIvVsAI81UxJGp4s4352SRmQZu9pz2zMQi7I5hnzxLRJfZvttZInoT4Tbkj/nogO+VleD80em52WNR3jfog34s6zAee0fbB6Of5+O+A/L1zLgqvVdhA6jSqKnb99vThmQAIXBbfDyQ5gfqH1rQA8pDW3ATGpV1TyY16fTGASCt62rEnk2Kkm30G4sSRKfYFIXpm3R3tBxA5R5IJ9qcOKS0U8AptmlmSKFuhGRtdgsTTQKBOWw5VDgJkw5QRU61R2En/BxuLWvIQNqSApY5COjgrkew2piX2LpwRoz52osQPokW0AF4Ubz6+yAdu9QTsPPaTLQ5/WzI1B2hR3N8Be26+hCg7Jn4pP8xCg3JH4vB4NJb3K10QtYOqOoribxEr0mzKYD97Aaovg+i6v+HFxnk7ds3aUScOZv5YGLNDhDD/GtWa91s3FKjcf7e1o+xFs2mQcc8hU8lna199jT5Lev+rOQDBbPv7FjdD+2pfPcAuse4kmgGfEYKWE7C0VDaXrAfZDobAqYNdjAXryfyAKWKqfE3Gd3qdoAvEIqTD50S3+qR6KSo4ZxGr4lfWVhx5nbdqezxHRFwRgoWJwPHpFKR9nlRtPJ19D7DpT2il1hsrug+SEEAFIW871WVZazPuvlcgl6jXo8Hv16Z2X+VJYIMooU8A62+6/GQbXATya4eypNuMtTSais6wv1jTNXLRXPwr2rNvP8JdZOWyneFCNZFwAydWQPWL7DKecLMaGrsV+4e253ZQpq/IlcMOwjhK/3dKrrDCmiaU6Da2PX2lidxj/kxxvorVXNXNpQMJeLJauMiHP8KjIDc0sFPGLIPd0tcj46xx3MTAXrJpREx59XqOGh20GE8R6zkOcyCWh7X8qsfUfs/qRAX3e5Xwo4irC9NRwUGZng0FfQ46nhx23RxrmsHSYnn3SY++PUA8s4KOfI0V4VxaVHQgk3fvaTWTfkyvVisCGEOYFMHTxtYbSL8y7rC6+qGSnnlV42U5ahWaL7eBF/vkaEaERfdXc+GP9ah8/l5UFbhQGDByq0zalPn/2GkN8M7Mz1JkHoYzHCEIFrfWUXgYav18glY8YfGDFd5WFA+uuJC3VB393sbbRwQHrNEOX3jZ8kd8Mu0BlfraGJFGF8fJNgcPMZY8Vc5bWB5+ocGCRogzgbRQu+yZlF9A9OPtDyZatxOsb7V7k+DPiRP84Fpk5YG81KsnGHNAwjJ7miZd/5Id+vrrFyDl7rTdXtIo+hojOHVWTXw/DrNYpVpLWWnPnWvc298HobFGZ4E4Bfme5cLD4suX3YeVAILNI048JUEmSWe2M/5If0xz8L4uddKdYQJq+LUGn2JEsJsbKPacscl8ON7znfh1lsfRFySLfShm8rzR69ocyw1AoANx4nWNOy5HoUGkE+aCwXDkHN9L86NzHyun2tSZHBY+Z9ot5fc1X7BU2hP8Frrk5eozZW5akIzxNlGRGZqpd5u83nc+cLfHBIoIoiSiFunn0bVNwn5r4FHPW3EP9NlvtUT4JuXdYYM8BPYG1oCFvIrxesZxGFTZMuI1+q19Yow3foQrFw+2j+bLBC6cvpJB3t8e/pfOrxz/HDzOhGKjeQIpFbu8eyNvbkqtLLrOeGPV5ot/cyCfFyem0BcKSKSMqIW7I0vIKQNEoEdMOh+nD1X1GI4NbhabrIamlWb/2Mi8fQwATOeNFARvngeaoCwT0CrBWlrqqwV6kPSVw/XOGKuIiw5Yb8irp7tFtBU6gC52gDHAQ7XtpjnSgiERA39HcIBiAhoZZQWUIrcEim9D2mgu6c1oXE6D4k2cTi0OOI+6/SFz1BG/mGZ6kEIjUVQQoIL68iEJgqVQG+dFo00MzjZMiRpLN7UgyioXaLs+BA8HXHfZoFt/ucGMDnVnnInr1ex4gueCVRp1tnQqkEdD4AqbGE8675xXZ6LwasAdGggz0q7tYkuvQlfwWRmTdsXhT+jzcIWnyuZblCt+0JTXKPnK8Of1eA8u3vlP1Q5sGayQTuRa2RAsgqsuN38kBEPmiR7MbZJe9IwvUErKJeZurXrkuRtWwnIs9BCWieaEu/SgI489t17WO2w7HAYoFIu1YU5tZiHU/h7udkYWSLKNafA08aMVwG7QShhQUMchxaun7r+tQr0AuNbqg2xqY2BCGEDxs0QgE53fJ3Qk1oop9BqhXlJR2ux3D61Drzl+GbEKUtGlr9dk/kLsj/8QVTfwT3OYx5mHSfSgpjbYtTDJOYGZP68EpvKX1c9vfYbitG7BAcolu/QIU8QlonuQ+jKNJMRjtnNWL98GRIEm2xl8oaRx/5E7tABVSaDtHd6cgaWJl+xQ8jpIHykEtQg8Nx03JEgihAPfpxexxt8AUbmI80CKn4yGXSj6dXN+fQyVJYJsNoNHdMGQWZ0ImoI34vHnIW9HkTwyAZ68rPIvtD6S1dgLz+73QuxDGJY6iL6fQIHcDT4OoYoYoSpXl73FP+NbUyP3mpUW4+OO7B21yiJEfGiUFkIE343XmDcq4oTEFoXyuBxhk0CkAxVZKNDDlzU2G9vugvhmeSB26QNc2evTOzbfKvy+g3vxfr9294I5Xd5Z4/iv2TnSmgqW8543IT+5Rz6I6MMOCkDaqwzbrO/th3hN38pffFrtg+A20FlT1moAQBMgTF89r3U0kMjfSrtBBbZ5jMWPvTmAF15467OEp9vXshm5S6NRPaDTVkwi0GXznRwdph89/q6irKGFxaDWNoxzPXkcZ00HVhRLK7v4sBtegNnMzcl8G/rLweFhKd3G/SiRC+BflwQDxja0grIkyNwVnfEE8nNQq6+MkQPziPMjExGYwngKdhTLQyRStYz7Mge9jjDm1hAAapoteklGwk/NDX7Vh+skPcfvalnO7p6jKU/7jewXcc4xQU+Qn0xs3lgU40piahqFCtRM9opZIHWM/lNrMK02UQqEd7VPYnXyHBio0pKiS77C6WqFkCEmboK5bWRNBhS532rZTUTHi7ywvQIlKHqqZaskzIlP1kYwzT0UmbZPqFRg4pZCPq14tQDwNyxVnnOR/pqnp/8wmnUJsSew3ytdtzA38IInvL4zLS/tdGcrUV3Ik4yqGmCFFtkhG+E2Wz2KmssXEK4QczJZi/2dGxAhLyjjj5DZy5+AQuW47VJ7NkmFxP+6RTjZnEqrXAam9IvpDfA3ajND5dybCeAXbYk3KHBrxOfZ05gIGLQdqVr7f3ZTvTvQs0QfN5bPSu79MtzZs5RvGatltBH4PzGpXfZWMJfxsL9BnDYkdkwTpZtbDTurhaHGmBv3VJwY9LPlU7j8F0x5ro2Cbt0asIJ6xmj3x/qnFgsufDeIBs/kdid1qWi2WL3JplQXL/hlusrD0nGfAMhsfip37YymXLU0uO2eM9gbL67Izb3JzveM6z1/6MNpyr5rYVuupRHnxevMCbzjIWIEufw0w7sXUFrHLYpawZNgCFasvRF2LY7H3nQrdgx9FkVBr3hdlELRJpBPU6kBkf2095F1mmDM6CSCK3DgJxTAfHmF/lwkYKrz8gIlay1zcHA9uFII+WwBgRCeF7VNEqv6/tXWD5o9roGZoVJYrsyEfJ0d5+YMxlxi2mYeD9TfPVWwXYh7w/SOyeB4pvCT3eIg+7MKzQLhnyi5pyG+U7hYo0ZyUVEkFjlD8A43E41hcXmKSUBX99dYDm9xDomSpnNWETa4dWXwNWcG+jq+8AE32nFtISW1gc+jmXh3LOEpCYcwTV4v2ec/j0p/n4WlYwxpOAIeVYbClYuYK47l6P0Nij65XPBmx9a6ci4VDPIl6+MdvuUtQ8M8Fi+GhGB0vTBiqgVA4P2Cmsi3DXzMiSCVV++w8eurI0zFq24ESW7s0WPkAqFwD3pEJGBi6V8YgzCmHA/k7Y/LU2YOt6NXmxtP24keqJo6Icl6ARtYAu06qDATUA6lQVMTVn8tYWGDkrQcl0QgI0MD54NZta3YiwHusiLEhZgQdAk3t9SMt2JnI6suWJVfrJgRCDqG7PVn2APgHUv3eMcZ/DHnUqb438b6lWng/LVUMmSe61zZ80hT9+iWu6bEBGwp17xZJJx//O2MNU+XalhlOjbKLUS//oZI3+ynkSW61N8Bz+XHPu7bQceGFX74UbPHQfpJ4WZHQWv8FHo+R4w3/rcGZMjj0cj4fJrZXKDmmFQhrj8iQUfFik55y6UN3Jz/j+AfgIvbVI4XkUGhYAm/H7blg7PKoDQ56wY+qgGGKRww4ialW70UkVhHRnLH8NQ2UZwM/FkKc/27t6KKjaU/KwBoH0THozQtXUdikMRgqPDKbebTn9FM64L2YLsK5dJOwrzZ7Yxa+woYs8h6e6gazas7XEjJ6aBOpYu6v0TmsKnsgIN1OKB4YZ6oQNwKgpWhBhG8ozjmfn3QPtU+8DRKLqdRop4ZGOyObNOp/lIFgZpmsE5bucY8EXhQ0ESeCJdne5pJG4DDiCgHyovChainNIsSWDM47Ifj0srBC3UvQF8vhcY5cOK6DcHDQjoDZ81x7sRxk+UJUQXVM4E5JJGPoSHYxqwyfX2G5EZGrjSWxfxtGGMWqsaofBLLS4AWScRF7YWhla9yKKJxH3s880Ahl28TM7UeUiJLQz4wA0OPNrVGXxzd8R66zVpqRTldZO+NZOTPr+RXVOqYXuhp2+m42ezmNLY02b57+Ad03uG9bElLaUixcBjyxV9j77+E4UxycE/rVbjlU1oUDXdqc/cUkNHezQFiwgYByqpQC6vLvVCM4RTmY46Upmugub3dTNUAOMsgO9/MieGVDEZVX/3hGl75AFy/yoRJT1Aui6iav2fAXkfriq/SCtTPcgcFkuCup6j4iBDItDIZlaiojlehlyJYs48m1wYcqNDLKn9+PkPyn5UE1LgQDitgLGdSKWTFk4qR9U5akEttqQJcYOg5oenPm8uIMBSU3mALvp0NQCbskmlgxooe6PP3xX0GYeH9/JifFyuBAoeavuqrSjjdMrJwEVF3QVo64FIFGCRSBi5wnNNK6e4WqJ41LKrB6/pMy1hENtmN+j5HRPf8KmOufbLzMSiPvuLz/D9qjtCXCMRcoXaLGiYooUGOi+O82aEFoU8RoHWtlYIFp0ZSa30NIL+Nza0thU9a1k7jcvC/JFYJ2apbpnsWzV3oJ+wVTN07/nDu6XWv+kbIOlu4IeZSsg2zM8V7BrKdAybDSigmtIHrB8lFFLQQ1QGrBnYuCR6I/ebwqxqG3bFRppndqYHX+8FYKQ5rzmHiCakZf5f2hCyvDW1xhJssvtXmieb7CwZjcyIQNHiw9+fk6UQdh4nOZHLFdzm6w9upT9dBEbI3rCWlcpC+KuVdTKbkdsvQfpSc4IlHrdcb+GEaR8LSbVTy4h323WTdOkPzEdGMgohOOqpBDxdZsKGMFAG2VYZtDkopRw9Vp3k/FeDGkOlxggDXI1iNFP5q3zodgOn2qsiicE5xGH2Hr9FtMULnH0E14Y6/jl2uYJgUITaQ8OtlLYo+hV+G5lvkOM/Zam54NwH6pO+417+hWzc3u9pyiTrxUhs8HfjvSajs3hI+XUX7TU9RU3Ws9LtuC311bZa/MdEY/9t0It3PRTNyKWEAmKpNubZbXN/JpHdCDBdpSCNPJHQllsqCjvmQyULIUZEkPAeTQmmT891Qdrcbj2lq6bPoPw2aPyIIUrOvmGwoFodHAORr8in0GRpxL1uWJNVY/qoRpcjvzGVg2k7ZdIrwy3nyP8vscfru6IN95aBTsITwBbfJpLLP+O9LybolIzLH+X1gWb6lzZaeitYWtAU/9ACPZKDv9Q1PUIoFkrClyBEBYFCnLVqVjYrluzEHxYxohJJEqRQ6NVcdipZlebwpZiB97qKrlmM0lACw0F6rkk7FaCrYtRbEWjMmM++pWrmnMObq7N2giHH0J/f2rvjexSRO9U6SRwem3J3/YAqNRyF0ycn9mqobjx9tcC4JFHir2gbnnUwzzfz/Yu9wwnFa09f8HZ8IKaDi3mL3XaZu1kw32z/ryvZPz1BOh4RjoLduzgAwGpxxMPaLY6w5xRbZTUpBGgCoxfwu8LldvhpCF3dwFQAl6x4AWezqd3SsMyKfQerwW3y2tjO8aYFwh8uBp8qgZngfQQ4LLnN6coQ8kj0bR0+GWq2II0tVszJMSBifJUt4rtoDBqctBY7TH4FfecGF+cmLB0rJ2ACn4YjBRbRZxcAL8ldE98YJqbF6r1rNTskiabp1BWsqyGI/ZgCcj2xjZELOR5pUtKfexBJ9mxu/2eVa43quf9J58Tz0NwWNVEMYJxZt1O+5AuTRQzkErVZyQs80n3NC1K+rZLgVp5LX94YmeIzLtg1Rp8ZixGidJH3pZuUbQEEL1r8G1tGJzQni/rzkRt2MtnyhCUeU8SYGGmlgfQqHTtK4z4kPvG5dVvPKRqNzKp+OQCTaCVfdcevA/T7e9qGT+MEizmSrC2B3rCljn0ZLy8E4CpIkxkFRzXV5sk9CEv2bXKtW2O2DFysWVkdoxAQjvCS58Pp5AgUAJXhhTLbB66Nj+3laXjUKsDrk41d9oISu1YyPjVsSsFLcF0Q5YfGFmM/KwScXSJwlNRr69NsaeDknJY+a85t6IVKACUY48KkyWWsV1l4zOIcL/G3MVFCUZfwD7S8c5LZs3h5Bp1pejRT3Q32R4ERuseqnMovFizLmMYBdFbXp3FfxNZpxoDaK0bT++dxLvvxRb7SRVgsWtbCBxV4UM+e3Wu2TEX04maugHFKyhzGH5sykrg05J1rZ49NK8sGVCxNKLQUl9ddG/9er4c2TTSV+ot4QpufYwxMq3m+5s4Pv02ACN8pZQSIn/CwmGAPTxSGW9n+Ai/bar8OomWBHv82AFWmavIvwmC5FakvKjYW76zrUBAAtkOeYKELYAbPD5CepY5ZLjPQAtl1ldC/PQn0wpl6ifV1LpDxgehcqRaV1Sv0ufVrsFDxoJ9VMTiF4A4RCg0BB1GoTMURZ49kEjyWxnjVqgtS3BRaA7REMPXqOVnorzdixx0ISpEcczb721UmvWn/b8fElBw7detX0Z5jX7dpXiN49Nzxs4+QuIHjqA+zfI7fmDAsax9O1wc1i25Y8xqw2hNkMgLuSMiwSISPFGKQRkC95yVrkFY5v0HjjfYakVJNxrKI4Xhzq3W6hD0fXRxerAv7MesMl9AYtgpYGPxz9+gO3QUrlEqPgNGgXADEyPnKZtA2PHgR7CRBkwWikbnxkzrkL65GXlpz3OuaMMwWkLTkZjXXehgRplsb4dwm86+t5GtVkn6EECanU3QtjoZtjampzJ+YngXGpT3XVG3YFw957ovqXKKx0qGQ5TKaxsP4CcxhLgT9UqrIuvfa0JFw6rUME1V58DVtugEs80Q38xR9mrYbLREACjWEg9s+VoBSmQu+IIXQkpxj28GsHmoUgyhB8rbyt6nf2jAk5dcfK3EKka+pbd8/IJeHSQgQqpn/9ap2GsyxUQckkcTayFhDxqV4ndfpi27GIjGOl9WeqLldPvcPufecd7IK/LkgzUm4+l95xTZr5snnwiP7fUoyiwQquN7xFzI23IJ700Ho5+uLVk68zFai5C2SWgruXmU0c2Kn3WdTseP/wSh4vNn/N8AHBpDkxxxlM5KEgRrdZLMUQhxtVvokOz/UiL0FKGribE47SA+EoaUb83VDL6XKBeStFwATkxbBl5vryg+XQmgxikv1AOZfkbc2VhEt/jvXKQ1h9+KLOGSrw0ROgL09aa5GonRfoaL83x6NdhaZJSPeZU7DdxJdLIzlcL2EOhtan6rVygpSA/P795I4QlFmdyvQZxhPr3NrpD79vz166AO5J6tzKXTcHLshVS5BdexkVo9pMAMxxwPCbGS6+lIQrkbx+z8DdobcRdR/ikLO14PQCq/5uUMj+8I2fUG8RqbI2+rwbvaKssqvOnQu6Sm8rqo2vfKdw2xmI1pBYuMKV9E075bR6W7YXDV9giK8Mi7sbxC0QdPUCMx5QP0/WNXyDAStqPVLN/XQu7SLGKBIWT9JmMK73RC8rrG7/FEUdOb59JpMYbV1RKdDHht5eDVlrlSS/8JHK5c1S2coQazWx8ibesTKzESrCMJKwEUjPI/NQbuKlnsIA67bE29d7vv52CCi3Ruvj0zb2ISmlDG8ie+20MSRBPbJ5I+7hZAbe7z2kybfIczfarmTCVjY+Cxa+VAc2e1hWSVlg6nVvMNUOsMCmo44EK4FUqUsA3cDlXCik+JC3zMYsCNX3JlvBCxuJ3l3BS9g1R7i0CLPBQ4BHsezBRZ8vRr6wQVPVAPnLdlyACARPFRQWG6ZGaWHsFiqXeCL2XpnsxFdvaLhql0ZCsBma4hTeGfrb3maoDFeGVnBEtgOZnyQ7nBIaq97XiQ+FN3JB8iur2iQYr8YeTdxIfZdZ49ZZa4eryiq47S1J2keduri1JqLDt6j/ctZ1xemK511Aw6DRcowpVzKc1Ndn4BJ8Pnjn9yw3ToBMqoaFiK4Cbn0gDc6zodMulJhQvR7yYsyN3NhDuKotDRvqJhXgWvjojZ4BtbGm0M9TLQedNga8WASIDyZ4BkawB4lYhOFEGjgMThW7YnCCYnGMJzZBrFx/XbsnZBupodSNsvalT4LEARSZIa6OdnFRK9fZa4CNSSBIBo+gXa4/oTKpO6CodnmqFaofmP7FOQZ60sWGeDZU4JnclifDOKQPUtN5FI3uqPXUorPRuPIbys48hFTA+SGzLj8fBN8pRAfDL427omFHrj+3jgaQkB3QGKxhFZFo3bbsj5PLiYE3toOAyBOp8WPIutRFKxVvVR9BG6punAKrKAn436TqVtMA/rgDCZFKutv1vTmqxnFf2mqKlxIybhBOlcQ7kp+j2Xy2MVNhFnWCyCMmqeTN4GWGR6/Pxf/mUfls3WTbXYGKoDDE9s/mgiZRWBBmytCvEMOCtFI/KDLL+yEigyD6ynGWVPcxR/TKPl1RA0uebZw3Bi9dZajP/Z7kRqTgQFedEwCpfbIxWScXwywPhMjvwbOY1PnHSjOF/0x6QDtTidnMnOCsxefaGGALw8P9Ck9kKBwXyxHuzlJoeWUQRE1lOP94rCRw44FC8/0vQpEgh5byaoU52BasBmD2pD4NJkHWTyOcQkxmhe7Us0sDY35HFOsCSBGX5Wcu8uCC2EZ7UqpmDRqZlnTUu5a2mE2BNKD6DrPP5gxezhN3jZXEAkm60H0dMZMwhBd5EQVrCtSG+cQRGqefsrCANzAndRHl/xX2EU+VqKkwGGLlmBSEqEtc2762/m6JxPbwfW1BKlhph81rP7TMJuhF+sghMDKtf+AjDhuELbt7InLMldR+P9KSaxRvGrKlOkxecql1/jyOgr2PagHDeXYxTNU0G8wL2tNmvHxH2/fjGhp/+g7GzXRfo+pe73BO/uTbrkMAJEENG2PlHkbBKsf8s0kFNHATKgpxpi1M5RfFO2NOUBmAKjWvvSOv43rZOdTFSsKP/i+e7tX+49S3bdovtRkIw+/uy7gK1aiaBecNMV2sNnaCaf9wuxqJhC4x0p+jvdsKWlpiwZ2M/nZ7iY69cmQzPO7uRiTdOSmtw0jfjbVn2S99JbSdq987iEpiMZM2YYyYM80RZk6s1hPgoN93gr3Cd2L5DCxvIm5ZLbnrBayCmFPIst73BxO8lJOQjB5iLKI2TTOwSdClRpwnIj1gkKffxS4pzCBB92K0Vy9h8zrQSk+wVKMorez1ZKYVNw2aZLJILW7y/ZBViOcen4m6+/S3K5/YfpsmZoK5wPGa8aGZFEIZ4nFEhCRnvJqK96EdZXPmHZxPByTQisd+71tM8l2TRm1NEqyleQ0SR8Fk2SZ94HlMN0EGmbJItI6CF6sPULN0ynIchjX03F5Fd+aseUtRkJ5dhVCIZO/uzh7npZG4ZCjwmdgBKPxCX8kayDX7UT2BtMAJs5Q/CfeDN4Gf2wQsT6nKbjp9uvndtxIRILkLVY+zNHuEEJGDPCtjny0HxB6ZCcCZEY05E6g1W80f9OO8XkAsqLc/DsY/jgRj81vUsPD5390UzUOMUFZBnVTNfkaKx6LwpvsU7vtJl0t4VBr3ECMNgDKgOzrDJHc/YPOVu2mH9Yu3x8u2pGMzEXr/LDB+ZNA8LK41XQhWIj6g//Sl5uPdd0EJ0vj3J4vxYVYm6CtTewLO6yoLT2Egs/ZPgpYGygmYWxNacL4cZeHNCP6b9wgGCcP6Tmc7CKruDXDrkxFQmkbRwicVBVQdeRpHNOCzrDj5nobXVtgqpW/sk/tOppA36ah0SjV2LYdGtwfSZ52TvtkEAgjcC1bjM/CUImBzaMyxEMDFJHNStmwhjWfHjhtZK9SFEhlwLKfnMFYuBBmrcyBhkz9I/32szEOgh0qbbOmL9+PG4pZkHpJW8s8IeJ//B57UCutYML27Gb1TAFI4Vfy9+GCcEkvIigtosCSb+qxdlnf7y05wM6HJmHY/SrADWqEryJsJWqVWaH0ZKHNC2khGyS/JUseG8sQh5tO9Bkf303JVb433pOUBB6YrtcVNbLVd0mjhmZ8RALHmfgCtGzvBOyHihJKjL3N14/8gN6GORJrptCn2G8s5MJ6RaL86KQYqUwLlfrbzlFiToC/gajSd5mWZzUyU+34Sd4D5Nea10XwQQ7TM4HhHluNYQ6jtNI4oG6wrtE/5B8FgJt+Jh6lZxfj3jcss6KP2He09mJOrxcXb3UEagK+0onbYO/wyQCgaNfe3Z0kLGh7kMNiE90NaRZCsO5JkNexWtbYH4uXJzFqbQcGfCme3JDgwRbkJbCJd9KgxfjnFIHAX1VhL5Vp5JQ3kOUBsiv1ZLlMfxWJfCweH80f7hVmAsyHEdMUeFkRX67mv2MzELEmeBmHBj6eZOqVfqSFSqm06clRkj658jYcwEuOUo65ymSiFQeuk38262NApQZI921WidkMVoOfBbD18l03eWsL9RbxIgtV8H1NgzQkHG7/2BbaDVDRQmeVr1qTqFlnvzM39ceoMX+azbSKeLuL5jYIlDnPez/lbC7AVyHlstX/acLabsUUzl3u4LKZlJkcxfqDIIC4wSiUk4rjRQjQBfP7OyGEXNfPGU/9bWDvDcaWh7RXjHf2b6KssFpJ/Z5d5Ox1nCEG/mep4b4aKeoF2EbV4iF1Br2bR1iHYbPhb7APtbIkp586Gkt86Brv5OjYs/Vi5JJnDpKZVi9P7mlz8wjya5b8NmQrN7K0u5ZV0J4AiL2/3w9ZAkLGEVV4M4uTDmFtxjLy3WcGTVJdHJcjRu5sDbmjfMXACpKbJRLf0vhS0Xln+dMHxrWLxmVixnOlWcF8mkoZfNqAwl2a5ECylDLrL7vxUqzEf/uhq4gKqwCoJJj/eGW0BzkX0T3KU9zvPTd8MVu2CYMyjlnW+W2rjL9iSmQAc/yHpXRBgH2M78Nn4OWh/mx/b4hdtEjn9Tv/loUdTkScPLmPu4Jz5S6zu+C5ppkW1W59F+iQwflbnD+ttiLdzdV5fNi46LJP/gHZJGl1oRGFy8Whon9rocFovg2UWND7ij6DcS6nT+tkz7McJa0EuHGg9+fh8rhx5hZhS7mYCRUxmZClL/yU1iYAo8E6H2tAqWVPNK1gkzHvtMGX3f4PtBEyQ3Q/yw9dkSgAir+wBrkiM03DoC8gtM/cIS1oJc9IQw0VQZ0eSxdkfqoal5Prs9XEXJ9wDNUo7xfV/uo9G+GFz8uFWrBbuMWclpxAgmkk0jWCc+IQfGMUGy9tPWqtYkWn7IZ6uIb9j8rK64xGjcqB1/xuJNXWbGmuc4xwogqbUHS1m5fJHlGYxzNnLQvjYMNkNkI9Vz9OwJIs9vEdmLnv/X51e9Vk1rwmXaIr5Lgih0Z6Z6VsmAUToQSddeyclDY6J23flH8+ITA+Q0Rl7tZXdbEahIjqVwER9ECAh07xfOXipmVzCbutwx2D4co9ce04i/4wByvwjqk8doKbd01oKPr6zqmUK3ctYa1BEyjh4qW5S2wIzoU4v2HudoJZbgr5Z+SIWGA3Qlm0OgnwEktRZFEczM1fGmVT2VwV6UjxU46l6lFbStkL5YHrucE9FVzSdtIu9Sw2lJ/dS3rqyHc7vGrxPCcSxqWF+ywlQ7VXErfu0k1NyEHW+akQpbCXQZM6VtWFDQXoNYlKg2c5S03N+yAhyPvXSl/m/1A9G51SemvdgFXg2KmN54dWELNFK+nx5YefuNHmtxV5JdtWohG8LyerusZME86i2WOQ8BXQg26uFwzEqTRIlwpWy/nPDYqO66naTZ/9WV7ogJgG9b+S3OLr7coegJRcIBmovSiT8rdA5vOM7DNINOHZtzfmEkc2YMPOlYTD65eij+9IncP8kDKslEBxNQCsfuD9ULPBL1aUP2j1rsJ0HkAJB9/O/Px2+8CTd7DM8It3oL9jRHNR+vWHcKOgzMGebeDX48F5a97q1cAXUVlbTBNOj8Q3DzPrRLJg7EoXWTSZlagsOpXZEgeyKjNB+0pXg2OCjN3lElRN7q1zxFs9NTTT+bTEAv2j3yR5x+B5G1DxV1Foe2njO/vpnGcitl/mloEgzQGLaRZwjZZzab1zvvo0ZB8oEunuco/XB/60GRxFQxuC/73++ib5Fj7AEZUbcvsGQrL6xReUn7zI0UHqD7bXbffKmqd8TmZahUBsER+3lhC1gBi6oIML96UpFh63rKIXPTPAhzIMTn93Hje61swkfDlP+YGXTgapxfnD4sva7bGL03kbB8jkG0rq5ZEMvQ5XmMEnix+mwLNqPvlSPTs7aSwtaDnsMqZ7ZEy89mWE7LpthSYjQhQ1tkoKa7+ht5u7ldq6r5W7R0992sFly76wHE+j7vaYCocknx2W5kdh+7n2g3EB+81mmhFLK0LaY3FMU67DaQVpWofQOaBF3b8JOYD/Ip4y9eS2SnbMV58QZdRqjQRBUPr+JldHEiwR+ifAy4PLClmYzehswrh+jSjocadxLUlAFNRq/OMMLuEQoihH9/l5Zdt4qjWXIsO6mQg/jvZpjB/23q6zId2JTjKPT8YtVfmVU+oI0Gzf+evuetr63Tn7cr2P1vYZeaJkC1TNyA/14KI5yv831DMQFU35DyxWlqgulGVl4d8IobRv+3ThX33WVFmcjoJd2q7l3PzxxzwWSFoTDm2QqTiaGuu5iqIIVNM895vy74nac+TYM+sj/zl57LJfZc+34TSwumpa5x2lEwiiG4mqb8HCp1PSRbCQgCJLXLPJ4h43JDSAzyr33Dro6alct7iaUDOZhfSu0uDJr1MMyu5e7v7oe1b0Q/ut8ozmwlMosrjk3B0TIhg6qB2TidYAX0wttsZu1muxJrEpdqM3JZj6qtVtsc+GQxwekls2zSu35MBzr8ejtlEOpV/JQOGCvOxWBO9kivG16AY9Vd8oAwydu4r4isdID1pH/cR4SC1OOgtnm2Gnlo3IegUDVlpbSBFYC/5VDdCdCf+VSjK99DueuJmRsLZ/AbpwJzhpKjzMRd7MOz9AjN8RVnXfidrs0a8UZrpDc2wuh69HYvaLSz8DUC8RoMvpY5E5swmDO8Utl98I8+WLS36RndhI33CvoAy5bsKru7/efRZhGx8rlGi1U8rwYCJMhWQbGBaAoeP9FbX88OYTGUubiUwd89ejvm/uyPuak4fqKKAF91OR6u0aj5fVwFaSKwfKvqWfoxnJPrBpaWPzxiUGEnDf/xvoN/Gwwidl/xThLsWRZYaVfvPyaf8KxZl05l9VzCeAhyVcOEwJ+kbupRTdvhTm7bosGWDurmGAhuw8Luxk3A30AqhhWoudWDmTIshayFX/jNttbXjKsCbZa+VOkfSM8GCAKueXbGgsnekWkTmp/+mkYXuY/XHEcZVoQMy6Po9/sJUJtJL36btUFxI4iDijKUlDLT9N4qY0cZrgNAOvYeW1Aw5D8aCgQzlLEG6msaWP2Poj7PYuIJPI/5/aYj1J8aJecksgJH7Tn+23i6MC+zAr+1bK/cXZNYviK/Gr97U3MXYjkIDEIJuFk07ZIDSwG6oExLsllAyFNMYkBocPVFJFsLZ2NQiSHyIgxxUGzJzuuuZUmPeDQIb1IHKl2cJc8ls083gx85bzS7wqDj7JhN/MusyR7hfTTGXXZIHy9mnNaXqofAqMxfp+nUCGHcjh340ZBDsL0s5n7Vvu9HmiKegJn7Ld2N4VV9fU1FoKbBG+dJJ94prnAXCb+42W1/fjLuA1GGmp9RQfeGvaSLYmLij1NHU4bzaaf5YD6eSm4GeBskFSnIVsxNZbKFPsxj7oBv1Py5R4XASOXoNUPtKaP+Odsn+3nkVcibbQoUfecTFZBtXGfDmV8x7+WKuuNO32hINHuYWuE948V56UAsklgfT/9DRrAlwl/ZdQTBEz7EOtGhM4vR42Td7GMjx6Uhg9tEk+GtqnvPbZZ2QV/LQTbID+EVvuPFiHYRE9xscprRzKl3eG+psLjqqLhqTN9JzcYEvDJ8Umr/WUXLoPHsauDQi3TeyZTgAjZ2Cyi2g//fGVtrLG/rYIm3wmIIyzUohYVEPs9dMsoD4joG3j4bafbODJpX9gWN8JfMqIZ2VUmfplT5LPEMEJC0Vhwpr95WHQ1rUXotky2VLZzsLs+LZDA3jENaea3jhasLPtzb2zo3fqgnNYhwpUoDqWQYuuXqM3HRJWFD/G5VN0XKsBE4kzu5lDAceuv+TEBC5kDhmnKn5/QBo6je8NfbP6XlAmzHhOtArsmO6+JKJWHMcu8ZvOYrDR345GObIMYOI3iptXVatT4Zs5+HyzgLUHXJ3WPA2CK1j4O0TOn53kKLD/bJScmyDgTla1jA99v9aH+5wmzwUm/n6AZN1Eo/i9EWlZHOOaeDghWjgXYObup+JLkJ0/k2twdOK/Nb1JNmLxREYD8sHy2lKcAFAnJlY/BBkXx2IdSyeykrRHidWv2Ozu6MYdgBOuPrW2/I2Nl71o5IEjmdSbIpmKkcODVBMkeyJ03isDGjoGrW2RzkD9mxPTYXRiYEPlrrycSzYUTMZ6OO47e+GveijwogGyvYUvpxQyQP4Gk84mor5UnFhBP4RbAk7F0wVZe7XYJjlJPZi7HV7fMQ0AvZtGJMJfoHj+sB9z1jq38CRz+YL8uHfOecpPpNNZ7gXk1J1UuwKU+a55Gmj1Q7MHJYUe5hJaKRS5D6/Hqw1nDG3iVKRvm7+bBhp27i3/jEmACKj8YhQ/G9flyWK+GEiMbdy6crnk6SPkv4GTzwvxCmTSEExqqKnY3/UZ/yJOXu3nE8+vk1YerSDkRWnMT/m4ebILJx5xMQZBNgkl2A/s5srRHp9WDJbzsupiMoDF7lTd3mGn6L5F9Jr07yd2xEGcp9AZRjsJup4JHaPTgZOHUR7VnnL4asAseOVhoyrcsC0t4vDIbDHaDsBJaM8tgZFH4dk/rQVNkYHlTqZJp0toc58oH+tUwPaZzTrEjjU6TmYkBemQBbRk1Ld1ewLM59eoyagbyFwAGLL8WzwTLHUkqliKSO8XKpbrC5vgZJH6MMEsY6o4w9PeTtBiI7iHJNa/R2SkDu03W+5vVCSFWxvDydWKojrWBhr6eJ63cclXRRk5qmfeuyVAnEaCgDb5z4agmShYhu8MhhuuNbV6xONKhtPgGj7B/Ot+uXxtNr95BWyyeJa7HOWncDLWbd1P4WXj8satPOA+CkX6yQl4vFaxb6lzd2CAb8xsyCfUkdW5KJo7lnpoPwLDp+eTsb9ARdFFtesaGrfr9Tv7cdyZKHARK9A5Gg2jiBn1LX1DPG7mb/Yc4WJpbk5gJR4YNrM4K3TaOgkBNqTUsNNqELuA0DE+PRgM2+b6ICxPrRGjgt0kT4hevgBw2zBMnnKkrAOxa5yjMpS1SfRp1JxCxGRe0LwBnB26DrXqAERF4Rw+pUwQY75ARjSpdgRDp5ETjwauWoxgc/Ptm0JAk50DNGVVUOgr5u724yRapCrX0Aht/SI3C3rP0Z8xwHkxp1EMGyrz4bI/IehvZfKQldTw00vyvGH+w12kWhZOLOEHH91L+5WyrTcHLP2tOokP9IlYfTB8UlueExBmN/LFE0fAk6ww5JBM/pHrs55RkjReifDoY7mL0dsgyf2GNOOs+Ay8Ayyn4TLu/BfE8aq/yDi+Qccqpybb/ZjHIAFicCxD20RpOx9GCP5DY1aOOy5QoQHrKBM5J8UldQLToqD4hY4lUeTnJQNFJoGH83sg7ESs7obj0xhsOy5JZRIbK/5MCA8jpGeE1YP8ldUcwqsm+4VMwMes1v3Zvw0Lz5Vy+YUUC5BnM2JROMUo3wNSPpNLgX808j6h5WWb2MxwxW95D/4KMoa1Jbqsk1n9CWpZpFUItKc8ZAxeqr7RRdgSOaYwVNzYoJjxD2tYnrNoSDlh+lkJW4TJnrxoY9Vw8Kq9UTb5xNEHqL8RJ++a6ZHZjKIM+7hX72Cdq/A0kAnlUbvM+E2cEmq2Vtj0+C4e4vaZKn2M4MukvrR+k9rx1paFmpt+bAbfgWJIZkEZqgtc61b7tOgRAQ/EH2VgeiHh4+DoK41oPzbCNxiuKiAZpgqlvR/AMMSxYYK1cy5BZ0snDNcKSwsbIGWLGbDtYV/y4APXOPLCaepYUtBjy++qD+MkHH16Z5xWOTe7KDtEf3BSh8gWnMn8SYPjzsL7pofmNAC5jVhNhmPyvBJ5Gaii9SZ3eu1q/G1TK/gNajEM0to1U459DjT/NsHmZnyMSjQhfUPoQ3FEBN8oxReVlRh7VWDJEJxWuV90+0zx8CjNg3+c0X2V8SwwOlpcTvVqM/Vk2gQcWeVyEUqUHXWYHhLEsWEIMFXSnS037NLd3rGukbALsYPxNn1QdmVHSh6zwLZKeK0vSM+9pQqJahPL+RXx2/VOOh9w7i89rBjUPvkAcsI3XqsZfHJ38HZxVUNuKBgnWbL7Tw5LxBKaqsVQf79OhHRNroGpXg8pCdlQ74Rpw9iBwNG3hnl3GPWEzdPaiD1EM7jQUKJ7citMRz6DtCQLbPE/2wlxDDBhN4V0TTGQl5L8QdWgMYSbQWZ99yU7l/QtbUldRU3SKpqae+6C34DO84ljYx9PORRBGDqxovC4GMoTyN6bx1LkkogbspFK+XN0YnqfTXZXVUM5lu4EhmRuoyL7AqGtenR+FfKzEsGW2uv1vxTxfLsQN0dKDpsJ7V5ia+LBLRy0Cc9kntIZN839PhLq9hv/bmJZ5qD/650wBDWFqPEJeQZlTQjfFZZhDughMq5t1wP8vPZWWHYWfUm2y47qq9QdGNoPEr4OJLsizpISNah/8wZtU8pVb2XGjl4i0QgzTo4ijnUTfIeutxk+OjinkryLsr5rLPmBTtkMaHBpPexKaEYcagbHs+bk54lK0Pms+Ow3afZDFkiH4GY9W3B4hZXZ+617GWGR8Z/rvpV4LS0xMDFs3hQtwl5SV6PaltTQ4mlsXppYGtAwCP+hBM4HcAMo1hjRdywK533HvzuoOxS1cm3IBRhHfIh80SzJ8UVSEWNEm84srarC4I8gICNHghfOgrFcwvw1ikip7Flzge2DzO4mnYiamXg1stG94xf4GmzuwPZpqHu4hy2id+3ZHAALV/ZyTTz0xpUYhRmcR3DDkGe/thqv1NubizoSxpD9xfA2w7epBJvYpWurUisYRVG5YatL5jZdXuvDlwP/G3A4c5JvJSHuEpWgM48tJCBlD8MPK2i8x6x5PRx/ZGRb2u1GR/qVirnWHoj9cj/d5gwI3khwB3gfGfMKmzIB4Rb7rewOFsLryAR3jH1j4watQbYAe32FQKJbjlzWAHzjZM7EGm6WcOOkorFpR7L6yWS7YbvBoKLtc62ayao104h/Ygswzv9+r4SE1umAJIfI+Q/3iE6LgGfkxdhhReygN+zrGBw12nxgLNhItWYrSN3b8Bwxn/VEJSJNsKSFxt4oHLjx8SDFHFav3fqppfmSQDYcWSthKIUNpHGR1Hhk/+OKSxfIywMZH4bp2axTpl36iUr+t+bUK+liUZrZ6Jox6BhOhYBCQZB6HI0jQwW/hz5bO/f7ZjXa0soWPBlYOG7fzUIJsGyX1YKNkHviYRphR5lWDOhuuHn0gIc8j+LWNrJHjLnQcsXU/0hNbg3KRiuTqh+lZ0GTFjJ4cqu2GFxXQef9TnNE9UcxkqDSYC3jjc6fI+c1MR0wjr/1EqzBf+gkizYH/N7iI3MD3bUxeF3mjmSRG1fBfz/Lx55TjC+0Dqtk1LpM9Himmc7t0OFCukh/YsSeQIxLD8y0aMHmLvTs0xgb1LWB1HpMKqokXJANaZtNg6DBYdQ8zQjlfdX/ZxZRTK3TmroMaLULc/6GTBq7Ug9+sjkiPAtrJ1gFYboaULE7+LRerTeCGsjNG3kZDuc8B//mcVxzXlwGNlrftPWCJD9Ff7gn6nsHAZvhyXeF/ocBP359OadMwIR+6MDMLZCl2gFH7XcZzdxIXx/vLwHgSj6VgyU3XA8nVxlroWmg9zywtxBbbgbkaviao8cfnYZhf6Udfa2SnwLfyKpWAwgdTsKxAJLdHBmO/s544ZZ/CppbmNhb9poAEgJzd+9oXrsd6y5QiDcDoHcB4yNehsH0sV4SHXlXStVcW3Xbb+O+2cvmV6+ts/sYfAQl/uVImzO6miXSpsspRmGo+HBbzyM+KyegAv2faSPoL6cYAK3KBfW4DmsqmKODirANpaxGXJofFFmDZ7sonKFz0n1i7fq8kvhAEe086oAj9Wa5qKzK2F4jAa71/J4mA/mIEOvmVjJl8AIx/w4Rs4c0FFT6rT84ip5aZpj2dfWF3utcWH8vNtACoeewQ2X8GuNlOvUSVWlmeWRJjBBSHGpcssse8auolIK7/G+RufHKfabKi46qkRGaXlc7dtvI8NpSzcH90ngYUUv0qEPD8GCiSYGSThZLPRZJVrvcD2zed5drJ9COFxqGDB4PH2Qt/7fO+UaKyUT2MhkOieo/9bwuOhoIZQIMJUKQIRvF8qIrfYMJxKij5gqcw99azpH/b1BwWS2UaT1/3oh04pmL723vQwE31GA9NfwUiwwvOZ1x01Fpzmd9bV2rS08TSiB94q8zkRklVHrxjCh7GSKbF0Xji1jv7d2MlHmu04oh3N7Z90maTrKQJI9iFj3X3oue5kpikCFNUZDzZE7RpHwgC4s1fKInKHLutXIcEX3/VnM94ubfU2zyyCYfrfIKUScn37JiefLVvKcCIQjqBzYhgwA0GFwcakBZQ1CSt7dDFKNoRzucgsn3E6NwfVDapKR6aaMvQu80GjTUs7o9fdmBuGKzfGfaMyFERGJFndacETc0n1gq+0MQMtcd8raYgv27qoD+6BXrmLeHtXd2Uxa/yA4PGyeGDbmJO5VJFDYR0qAYMBBxwEtDQEtLoQaSHZIALtVHue2yqImtuGGHPriEfqF99mwkmLXXolkVzw9yUZWH3dzFMw5Ej7k9g5dJj48FSPI4p1R91hKDVAcf4+jkOMzKjpH753gheee1WJboU3FzaDakQFyrmA9NVc6+u8P+OEZ++7MSDyaTm27y63LmRg5NZFiWdtiVcZKrYkN1H1hhSLPSMScAeEXxw/OZeRH+CNADOToRCmIfPHcscTSK7bq0VfB1xS830dApgIK/ZzgtD5PDZesm+P5q4mWkGANEOsAZwYVQJg6t6eHFema85vKNCkkuymXt7ZSaOjkYmLyTqNFPIKR3hiqh+pkm6IHlLPpL3fFw+s/VBhOa/dHZasyGUlTN/19JtsCnphYPHgBwKQzkQ6Q0P+t85dU21qN652OtJKI2keqvyKInPCDXKekciwajcyzUIymMQVAK9jeRoKceqELCsbyrNR+zsS8q33YZKjoHdz8N8NTmP18yuo12n0H6gQA0Xf5fLGAzVHens6NsvOevWMTTZ7sv7kEPFqFG4K4q67h+VlJGgHR9W9JbTZQ5rZllqDn4/DsngiMnzePPag2r8OmyAn0lt60dslcfAE0sRYubkVeasTz37wvv6RGgsPeDTyw/z7cLMEExz0hofI720nXO+2qYmaWb7u/zVg7PQH9OGdkn5Jh2nrRqtinStJu8uM+W/Dr5rr8wgTbLeKiDKctGZkObcYl5sX5SzBTs/H0KseWs2hglMfknXKpcbxbDYN3/WtQMpiJ39wpnMBnaw3Z6ZNdRZAkhgPEyOwUujIWTX9pXlmq2FYhm9Cb6Y9UZqwnLw6W5eMzfL8wZuFLBNJFKuEwQ7B4/l8X6nzDltQqT5o7+E4IwaQfPbxBWdmOHznAPx6DFSB8V3OpKLiCgu+h5XpQGpCpjOfgHo6wKWsv33QrIXzNHJCcZVZLaWATWiAwQDn8hyj//lUWPi9Mde7tpatr83efRwIxCvVUL55FJiKEFIe6XKdwMp4UfWoqhbgK4Hz024Y6VGLYtcLdiaqfgj6DW9e3AwZhrLlRwtNa4s/gitE5ssgm+CZ6qL4QRKprhvpnupc0uZbdUhMa3zeaPEKpXzdAl5QQXhQqcst/LKa5Dakg5SPGgSZ6NmrH51HMsZ/ejCEgFF25VKvSYpRSiXLpn3fzo25OxR40YBuE02+2r5cmaAuSlJ+E697L8RLTxdxFfTTISKUFMMx10RdTmQmxEzcR5eZI6d4sIbAVQSaPrlc+qiYUMhlIbP6swWmIG1GQNIhX1twC0Pf9ZCpCTOsDUdSCQr1rKB0cgn5kQ6i0mn7EjzXvYNnB5AcfatbMhIcrluk3Fzub5d6FmHQYRDFqn31gK0nx27IxPyKo2C3gHvgJikAKlehSbQk+l5jyaz2RlV5008RFooTPdFqC9DhAnsXHs5K2/OCCBuz44IUZTcQwnM9z8hu5IDg5Cw35kkwxDbj9v+SXS8qX4FC8q53DOMBCLRsxfetb48LlsdrhG2qJOEC9bFvjlIvWpfeX24zrORQi+eyfsQ9zhuhf5JIlBmDiZbzOkSdvdaG9RV5OneYfDnX6hN2Bs6R7Vefq65u43Tj5BMqTjjRRGsok6PiEvZdMWcDtq8VWQXUzxRZ6sHYdpCb5keXTMzwRRK9M3488D4tJ3cLl19WXVOoWvAvTUdlkg+zRXS8wSaWVHnOUFEeyZenYsu7mTUu5gxFfQ688E23Az/EBt0K+3IF79kBXO+8uyqVIfaOzP/w4tkT8wHlDq4UhkNYmw16ddWv4rI33pSy/J+RktMRO451gS67v7oz5Pffo29lndt7LmWRFUOwVLsJ1tRCE4Iposx7q6O4UikijSRoOhQygXKBR/DuMLY78Wjg0RKty8flGnuqF9zt3pEyy1lzcwg7wWThce6+DJrih+xHOmxLBERA0WBrK07R3RuOG/fzo9UBflllOYJUNffphqMQh7lpmFILgWw5AbVajbprvanUUDa66LYRtag30VOT9EEuUTXVx/yRzDZTEJRpsn6VEH9e2vxkk08mmGLdCDJGZ/rJHqmJXlOIeZFx8BfsdZnexQ8joDv2A8AFajZ1hAKBItI0jPQqy1H5tehprYR1jwdKlm2G4HIRSQujpgISF54m2qNO8S6rnWMDtpvPC2zwZCCZytrsYA5XEh7VoNAffeR6WDBWfWnWLtwqfKcgOklDLGAogpwbB72DA2GUw3odAnxoth0ZG73Qk5X48dWNuT88BGAN0nbTd6dwvDWNlPoN6dg8AY0vraQryaoaR0yrZBZZ+/apChVG0DIfJ9FS7ahp5iy+KT3C0LkdTc7F2Y4lkmEA5FaM5hzwW5ekX3yYPyc1NMFIlG856pTsx+J8t0sF+kq7sHzRkrL+KXLv2ua2HiHV+/79qzjl+Z7ux2VZC1OJHbjof2oZMlGsrdR9MAXk6U7jNw9hW+yrnBHTTlrpmbX+StWr2rmPfz8oumtAgj8n5SoJhU4q9fhibM1gTEHvNEDqXrC9d9ue1Ap/oubBH6Kf+nHL0LY8QsDyV0j7B2ei6pdnUO68sVBuZ+4nl+psuxDKbh2byEZMEH/oQaS9LiTBcq9xJM+je80l+UcXrVHUVkORIu5A1gh3PfMklr/d1n2/DeumLAZeR9TfWk71GOPLoXNUjeDUpKdMkxBOT4qEKt8H+LJ6kYl6iFRJct4D3sOqLLuvswBEqiQsTRe+VICqvkpkfF4ErbBTam25MGN+rTYtZAyQB942KYI/uXTuDUBjKshZU+kBKt9F8/dhT7eEFO6snjAewnXIQqyWbcqehXV7E7KHIymrIRXrQ0b31fEj0VhWsKr9wpWn3tHxZ2xfIdydjGABA1LGX8TIFowDb0kwKZAn+Bh5YDIBkH4YbrVyBpiDr758dcjeFOIqJgvHT0RIBLaL9YLYzfc61uPmvMK7pFWzMg45j955eZm2OYUr7gIXC+eQ4F0y8A2ixYVjCdxjrOgJq0jjkihrwc1PBGyCLULHF6bUBI1FclDXrhNyF5mZ9nu/t4cwFzk4CCC33GuKsgi1jENJND1wbIZOxiVmwuq0sbKGQm5+nnAG765XI6lA0aN3LHjTrdyfQ0avNXz9TLnELOnsbze6xjvnLE2iocCgbmR2/9gQRFnSJ4jZ6Iew+EUMzsbLp6dMsgXMtbEFvvdNAfbtgkUe/CbQJS9fOks+ZKgtCYbwGRnlp6QpsZgfvWngIbkd7n2OnIqKUIfpgXa73FMzsFchFkSdRO0XfViR75SugFqRzIE4xsZLVywavRKRe+1yje1Hwv46wkY1APBOb+lLIaiCnjlGhRhcOjiV2azxS99I3nQkiwVMvtG8z6AYI3V3oBpLtA9GPaPUAYKmX1wmk25g1JMjBpbef4Ql//hEtKf5SsarinQUnR3rKAp9MqEMguDlzCqwkuLlO7U10uugmpvj5Y2X2FQvFPZU5m+HSewkeO5JX1b+y5LHldvwVOGgS/79U9CpbR66IFiZKE0lTkBrAN6KF+0NM35emFqg7MhivUyWVz5lwQ2Rb0Nvwhcm6olhPTgV/6aTR4VFPw7E1OKH0Z9U4PO100Z9ynNbqABlkNlLJCxmEjyYtQDtlVR07Oe2qcoXFLPhCXghzJD54AtIS6bAUlxeVlv6m/mYwd9fTX196ytSPfL1ofXAiuOpWQ9xBfmlAuYPzmx++qz+HZTdadyY5Rloyzy1In+SeIuw1ymPYPKMmrdBpocFLnYFgWhrSjP3HvZncFNAcE9LPm8q0NiBn3KjQrHyAEKbRxvJDcOX44DbCzMs6r8r/K+LR5Pi1fKVX5k2yAlA5W3HmX66HKg33heQsGOlKTm09P3qXpy2BQlwKzGTb1VYlZR2pSunjR8yxHz+IrS94AoTKIVfKpI9w5ABSbuLl19EAFOenOt4Grb5KjdmnI3EJZK1RNNhWAWxhJkiqQnaBfQ57V0lfbQx8/r+bUOuaSUIpKva50iHD0xP3uQcT0/fEBCrII3igoE71J3kmWhWQ5pM2xnMfZyM1zBnRf0rw6fQ/THlYmMlEsKqAOMQB6Rrt7LDj9OzMW7363uvvjpQNq7+o8+6osyUDSu2UUVHTMzeBQ0wmw9xLah8uMkqAXvbyHnxZ48pqvTWVxnOoPdIEO0ws4Ll9v+9hsf6gvYCfnmzEuWMQPxyZLUZiZ1OZg+KwgkYHOKHXwB2Z5ZzVv6bBgg2oQV8zGzOJ7XJlE2FlcUTsqDKbqbs0wTUQ5au2G4j+ywJMqvgIW4GipK4hx4mdmHx1GbK/c+k4Gx0Hl06/7CbO6YYc5Oe56MMnY+MObgA5bpnDuIfpHXE3LWM2Pjt1mHv8Pmy2Jn1n2dfM0CHL1N3XpC1MxsFOPEu5FFZN+b10+JpK8VZF4ptDln7QAu5Ju1iYsHvfcn3itzXcgUvcrxdZxMr6YVn/kdRJBhIY4kFQbN/GOkeUaOCiXMFv+BD8HdfOyrFLslC4Lf2BJiBDzENhM8d/SH5UGrZwcEIgt6aV6RdpiTxks9E9NdaQjgjD5ejfub7/W2o/kFulisI+wp99FhM2YdEbFuzptiaDdcw8pxuCbmNjLSVoYERst0MyB9pdaafIVTs3ToqZd6PKoMYbKJfHD0gXuGCs9e6EOrpfx7Nf5rF8stiHnyArX/809feoF8LY60lzvt6W7QJQklzo7WqwMu3Hlh0sGUQ7r6u6HGyyKQ0Sj1UDijX5rVYaEF3b6Kvi+E5FVWUVTa7jbp4UId4ZHJDSbonwqaZjAKRqmOndWCk9X38v3vzMpNqBFHuKXKl+CVvGpnq934/7quRPE3BsAz1OEXYRVyGwvLxC2765XIiMdsJTWRsFM+pzPcRIMeh5v5yhUIIVP71F2mdF1RU3xPXKKZUSaCNNUpteA2XiXY/8XpmGtZPH+sVrqSapnN5e2b+saks0zwu/iI2fAv8gZIFPBjAdy53r68BJyIEbMZkTzg+fl5DWHHmn4quI7jidN7ZIGmuoQ355kmFmX2NB46EsDlj2qGYeh6rYOtkhfek+HNT7bjjwrBIAYtB4fqOEQIiTHl8Us/e9pfuIHa0zZU5T73VEFinAO/OwVOpyGbPvusgrvwnwgQhdWxDcZk3EeWOj0WoqIcDbGYHVMSeZF/CiqB6VDuvoey03zwVTZCML24N3waKjnNrEcq2RDTBAoH8ShWOpNHULchdrUnlyVdYuHuKygfRti+df3HgocBzFO1EQlv0tXOT7rpo5RfHh/R9tKhfJNotQ/UlvazuOOeRpontarcb/B70j6Y6k1kBbcO93lQFrbpGZAP+w2U179daYmoWkITbHS/yRpl+G1hxvNsxbJd+xSvM3sGY8iJtuO7KT6Z3xLGt45gkYDr5tHlCKs/ss7TLp8ejUXPEPedZxGTiQwQoXizJqS2o46q/SEpuW15s8XYlhTE2FF0sgf6TULf5+QzUqF9yNNDG4VIHJ4f3txXlLRsa2I+B4FWBrpPmyJgsBMl9WX8j0WiRJBfPaSOMnZGNxBvDqpduF881iJ3eEQpkex2DUkyf8rMB62PkApAt9pUeSL5DvVI/OoTIMAJp7aZXZb+ESNKuWsBpOt9ti1fsFy1uVScz7U7JJ0MAq0EUe1dUj7eHuI9eMBSJZliVGr9YWAO0z0G0R1VEWCHviCh+I6apQZFJoqj+vfVI71NMdqdj8hk9j49DsPikRcKof5Z0qCOulA/YThiyGOql4+yPoHgd7YrNIft46GFAsEIbRP40anJcq9904vc1Dqc0atA8UnRzq+Z8Znn88FjgVWU2Teq3RuYNkSLFiGowPrPo1qdkcIgewmWdp8aLcePzBf6Yrlh5U97xRHVLwYKd8KUabohHrwK5dSk0xQVnp8KA9mIhXOqEmwzfq9ZlIRDkSXNSZheP+ScwqvA9htfsgluy0fyTHQvyQFedtjwBwq/xLuDdtdYBzYPVvEj432t9ft6Bfz6O/vcdvGFll98TgidW8D2SqB5Q68SP13QFcrApXz4Cr3Xyl72iccvXOvb0NQQRThCADmmouyndyvhd5PXuP42ns9M+nMOlksfkmCWLFoIdqn/nlt8Co5B1gQkgy3AY3m6VnAXdiM3h1/8OPUTByT8Ok2OgVOpui6mtzwwWz7XZd09jaEyF19FH4vRtRKK3ODUw02oaOMhsx6m6hFlWOjkxTkdCJfNUEvo7xJeGW8RxG3smaTjUQO94Tagxz4Y0gzDo8XPDPmHxUuaDmwn0llSRhtO4NMd5oh4fdnORERC8FG3oj9XLKn9dlFRONFcnTeiC5AvG5HiPcIPE5pQROXBkbrEmqu8h7D5S+rkmysC8xkU0k7lReD2btfVa+y4sqg7KeznNYithCbolhjr6beLCcUN+l46c7P4vwp8bRChJdcDCikWc3A/deqfAUaKDX+K0cn5TtV8QIGb0EQoYzKtERiDwKwfazeG07O9rB/xBoOGIPsz3WH3wdADIZv7SGPAut+8zNyN+F2VVWRudQqFx4Pnodv0hIQ+U+GIq6fUXskg0jwqR6DKfxYtDhF+OpvRnDH45Pxx8QhaEcN4irI67RZMjgTQARf96HwsktGD8wY9SYyZeUrpQGhPFuTA4sFHx56uE6yMvJPp4KZomU1BotkUOgu52Fay8Bviagpi7iN2mGGGMhKmlm1fcPcuTxKZYoK3HEtDi7XLYkP/FnPuZ393B/twVBuyDdIdgps6J8bx4bKkTKmAUL2Nrs3LeDNOp05q1c4RsTsg3f+5DAp+2BUOqsx+lQlotiHQfrPMkKzQNkfKhIuHbsBIM9g/yOUNUTRL7zzKGxAiw9cQHcfP2AeV9465d3tLSmVl47LxMbYXDFE18+vE6S18+f7GJVBizNu8m6OdYFWaAjji1Ee2CiSLbkZpuzZerCxbWbUMw3pJdc9N1gvgnfF8JJSeFMGehpuK0aHioo1xff11tLodKgxr4haIuLknwbV1bjfLUxbQ91QfuZIVthWdkDbMrOOo0i+IY3RKPfZt6wLdpom+6gz/wY8GcKnoTJKLDbbDNcfVt8DH1hzdJz3cXrenVa62c/opxHv8Y1pDd88F1xgSqHi2bl0wWMY8/j0P5YI8ve7FLNa8xg9rMYIwqpNbf/0ZOpcGOeybSzKOjPywQYrdZwuWGw5TIqYk+uTA0TW1o9uMuvaMRqnc2QGquih/5sjjDB968Ute7vVb3xzZVMJ9tiFQHbyx4Auv7PDCPpBMHiTGybpYevcG39fgYLY6e7oFlMbCM0u6MZArRXGDgKbDSnnGFNCrWzfsJ//lSEymT2WX2gpXTIZs/oP10xFl1Di+AoLaWZjBtmZMjlPRjgf5d7c44stC6dEuVNKB/a67NbPl5V091fnLWP3Z1uOhj057D03K0QwBRCgjBrspdzo9al5AZvnQ28G6IvmfLJKCNZjjlZUyUuLdmj/Tu8oIkk4QWE8qvO5gQiQYqjr3Yz+mz7P64TaBNXuUkpsdPiInjuRkZnNyQFVmiWwclb4/fDFDnDD931KTjk41IHjfJyd1b/briULWewnUPbYMiaIciSNTG6hBFDwT0VMrsu746QVSFklJP+bliWWa3N7wbeE/rwSoyKtzuQagZIRPdPLd126/QuBCLhNGd+0tqbj1g6D6HJXycJu89FViq356+CuQuDYGZwDPapuC+dIkezt3b/O6yXxcJMsPb3a173mVe3ttMWG5198weziXk4nsCCC/+5GQHZDMmSg/NlmCKgXuYDjYzIAUfRodSIOVM+j3jN2mu+zNJRw1nidPC7gLZACEzil+BJ0CafAqvm8gqpObgSxHdA84380ZzT47rcyVP1mQDOWwqU3+pYAHDBVUyTngHgNI9L0BnF+Nt5M2inQveIL9NRQVl7r81+jUzwzVvdF0c9iDfW1R2DlFwC8LP2ex/kPsBUlYOC1Oh99dLw+Ej+yMPKfIzqoJjle9jiMd/Kf2RSDP+9nll0QYpBW/PJTmAuluXYheCBEZ24EGB2fmYWjfwrGQGl9zgH4Nttyet/V5hkpvfl5hRCggAdLFruvzA6bXC/zeT1lGQGd8ByujdsApy+uerN9ahaRrVQRWBS2MSYMr8pGXGrfJ/oxK4Him5Ce2vlCcxXBKPs5zmK8VRmZRa+OG2819nhfgunkSyoy3xsYyA5P2QwWGybSE0Gb/33rlVjNDJqkGmHngGfpRO+oVv2Vg4EnwVplZ46vf8u59y6YVxyr1MAY05rvjK7UZoLXckzp/7RghmhK0pRBrx4B50KHjUouVuSamdW7/4kYT8xYW2xwWRvkM7nZ3K7LQSb0PIk6VnvLnjoY/liDFnsdyA7Ovwgk333qlKI34Yt8bEkjY+kXmy5Z0lWjUuAzluKQEnmW8tIU9HPLiykWRo1kGe369FYPHF7tWgxrj5nsup9iEDIkFYY2mkWslfBMROAMVoDuf+INM0iUESMScHFkQYk61KH9LFlY0qWbXqe6qNickbKKHxUiSexi8Iyqr91/SomH160gcLDLh+7vrU8ZOb4EOLuND+eddaSk8N4S7OtDa+UDZsbKv30LQT6E/XwWGQkAvR6xEAk49kPakP0T2+4OTJjv3FMsY+iQLk2vOL5LIc5Oe0NODWVZy/kjwFBCgXXpYOaxKrrdysDDzoIMKin0WhYb6ynqJ/QlcvDrbRsVzoSj3iCP3+u6RGbkx/rf3prsjaht9fTkubQSg6kVwZ9/pakYVnGZ8dBI4z+11ZUfpy3AdD8w1IeXZj7xkTGSa6/XEFUxeSrpf3698CUtYThMnGgWsbLlKEOUalep5k9kcoW5cLjrPayUJt4dcQC65TJF2i3sHkFZd0JrmKPGcPhpN0L17RcU0luvNLgFNkRIQydOR9haUDN/LSeVfuxMKZE3SnvdIM/VA2gpnY5WFU06+KL/hCThliFrbRr3RrIIGk/uqkJZ/7CCD6uJr3dmo1OaXKJ3mTQb8drFoAsKglfnJADZiMOwkVQWqZ9QM2poRYscnmNUq/uwM2K/lIDpLKApXAL+dwoc+iRJT5fRzaMBbrQDi8hbPLICn9pWlWMn+VJzDbY6c6BkDqflJv4YlxDzXt4WIponHop+gSr5Lxqul/rOvQ0oH8FfVnmUjYjLtZFjNvxpMEf+nnPWsFmcEz+l7N60DY+0lAY005BVC1D9ns8h0C6oC8GGiQl0gGOgqXekGEd1Q57Rm9GDWY0ocoXmUI9iR5OvveCbHCYQf2aaSpZzvJc2tU2PlSxwEpMkNg/TVCP19TWpGY41GJIxqJVf+9Mw3T7p3YrVoZL+0lVyYNYsnS1z6x1Wa6OzqNlD2NKybAGoeVYP0kxsz5NprbRQqtP++4FXtQYz7xBG0/j0K1KclGwDlDaUjfzBUjxE7j+MzEitRpWXvT98AwDfuvGn1O/zTf2TLKEsFKZgxkBYqPvBirSEGEK/jA0dwzuPa7eA4aoxoHIEjKVDSB6JpsuuTXvR+y4zAoUfs28w66HiEHGpL5u5/S1LAX5TQQvRoBrRAp+Z0srqM6+dVEEBfPbfFk4taMPPDnRAMF9xwuR2zOh5tQCaFD1goI2Ot/WMtYc9t/wO/v7HDN+9/aIUq1hTNsJSGuZHR2FvY1zuT2Hc3EOnKmt+MZ+MUXy1wbQh0zOwJrpajSMWnv9GNJqbrU7p1nXwtBXKQuFnlVY+mG3cyHKe78mh0S9JKqFv60R3dOClLyDzj7Y3oBAcOPtvJpiGSTVN0ntnOl5mj1aPYTpJ1fafTID9X5oKDiht/5kabmOT97Wrdpu4wQ4A5HNSrOWMbUcdgNWqHimPCN37Nbb5WyOke6JQYhAgIb4KsfL9UbcQl+rALVCtgG4lilmCecqiJX7om+0fAsOLMMFM6vKeqM/IJhxhnrCsXyhFd5arDnn8cNZSMvi/X/9aatuZjzWShB4eyxy8xGc5HqvgfbEYs22hSSup3y+j1P+PN1MHo6j7vjDMDF6nxXEVkwNv7hrGVDKMvpUb/TrCVveaJ2jMgzZg1UWjL69g9YuuEqeVmMTksaz7MLGbbrN1A/2dY33fBlowzCRPoxxagor+r0bQc0o44DXLIp7O8237bQZVypNSO6mfezlbIqnc9xxdFb60lW7twkmuBQMnHgbjSjHRzXJzrdzPEtCm6H3yW7otMkkLsJjD3oYChRN2UDxHewcuIKrCFbGdCCj+N60XAJyo2ioFlq0JSMAOcV5TlyuCSdypcZ6iycLMZRB/IWymCZOlwSekNEkrEA6jqM+nLOQWKd/Th4sgV4MCYVX0MTuvVHd9foHuoy9HGbb2dbVIb0AWmBB72huMH6IuWcNc0V9ajxYCU8nE/MUrBW95eBWniQckWvCSO674NDDcgcIEI25BCnwFQwN8Ll5ltTxWsiVdqzm8GEmhtQ3n9+8AkIMaxejqobgkOKnpQd15VIAx5WZGrPKU4DT2KBJD7rR5VrClTRCOG0d0rdHd0JsRIzRB1qMRJnFItI9tqMtOuNbCWz0qJ2Y8vUSLlD0Nk68NuBf5f82IOdmwT3w1y9RNUNI5Zn1vtOOYEfTCtKolf1BIHW5fgd54Jv10vMV1BMfX9lmpKUzddEpMsSbWtpHLhJfcT5Ulqm4rAoJqe+u/jISerYCKafbEw64pEK3Zmv34kZ7z2K42/UCFfOeq9UaLFuLMyro0REyOqNznJpw3McyT7zHZDK9BdukcugGPJHEJY8z1PjPLpL46ZGV2SAEVZFlFL1+xS87T+vLR5INyhKRXjEKaA61a5inHiaR5QJaEg/g8f4hoIVV9SYIzwV6JBtPUfcENPjdhUl9tpEd5bk9HdiOhPGh+7GPF4rSH8xq64GtFVjspfA62Qo//6FUABYGfNvWUKdEBaynM3WvrgOuZQEfZ2dAkWW7mDSK3FhY7mHlm9BfNYPHgOATLYP3p6b8sOTOiT03ZKGUxOuItYd2Q67lX9QSjLUv94pmkNDD+r8MbMwzR9ubvg4e/ADQrsUPtFmsd1+z++/J8PCdsL/x0jh612jYbZx2nOctPjcY0Ub2oCS+SmZll1LnjUvGd/CRXui+QfM+3t5Pez4x1PVDXBzwZpEIP1D1wTxhW+l3KaoX5v4u1hPiZxZ+OLBUuaioujpxT7me/v3uMaE/rIyei3x/eK3cZ52fAWcKZzagB+agQI1DsmezkN4Mrr66JXEZIWcs8ybfPHdCOD/ThoabOVrGoJdy6eRmDq+tx8FcmKK72vHHFySu3D6RO2VnSxrLoltl7bfUwq1AHr0CTBBh9WE2KTTUmrZVJtjjWf9joDkiFPaP498wqDDEnQAGzi9RcI5Xxk8u4akEY6S5xFeeCJ96Zyv97PBPhx4dFSosmgnYrSS3rkf2KEZ2Ga0SMGSzcJs0lbFA+U7k7en09h0JWDSlzFdkjxF+O+zWaEi5Oo7azKKKAEAVxyqn8cTy8sI2M0fbY+kon7YLJCEoQWU4fevrihzVct/aDHKUGKnsYvIeiS8jdslLb9z6rQVySb7lHYr/A3Hd4hg1Ar7/fcyyrfXmI/k049najSp7WIIrTLeFUZDseXu/QEIEzdDnwh5WhTasBXNOYp7dKoEfSev7+kV9CtebXDIe3h8AMpjXsoEw+7fS/QvH+SQ71iL1465ht1qNZ1JF5eGZuPWKPwTigJ4epXLSWTkFxePRsFaQRePzHtKSt7iUe5wlzg7bHXdyk0Yaj34Q/fu5O5FsLocTYtCOzrhdECKXFZz8MD3ZGG3MWiVgETptr5WS0FIAEc4rB0/qpe/CuEHJpeozG12wKDDcF9ij/q5hUA98yuRWuWS6agRvYQMaQ4bcVoZMBY4CYEBxXEreT5q5WuTrbvvduq4gHNNFHOnrLGZ2mImUpdiPjEB36bI6njJnanJ0K3qvoW5hvqmiao439sT8wzdnx0tbTT6yQ+TiBvLeqLc5ttnQfp0f1PHLVOETTR6mBBRfPooQ12ZxJjJyNwmqbCpJVGLqzllw9wvvHPGcT6IHDfPaRCXBQc482S8DAJaMt/YqOPmJCb9QlqvhYju+xfN04RtPj8Nkck1jxAVzQ3Aw+2GDX5SZ1vBahdREniBmSASXxUI4rdugdK5K5lkMlXMi2/a8XEDp/G5VvfxFFeIdOYMuoqoLl1VO4BAe2c8GeAhvY+gme5sATCtWQ5PEI3BPypcBO07pDzzQWj7xV/yJ6I+kfY5JW3fRDo/X0C8r7R5PX1AH2xv+ZfygEkwrkgYBzsFMBkW2AoZmJfCJ+NV9Fjcj1aT+FkHynmoK9pzxfoF70zYeNgEd+v5/ooKGLQlr715qp/X1KJbjG4wMKxeO9D8DFTZ9/6T5H5Il5bNK08DMs3NRLQKuvzRIAjpX+1a6B9CHed3W1lXEH0jcO65yatvDTsSSC6745TooZfD9LF9SrK7H3vnQd2rhtW8+6FZtS2jh1BhVTBwUynuEhwtiBS3q6lJW0sH8s0qmVohxHIxWq8BNWjK8cSv/vbfYjqp4fpQoBjh4EPdx1bn/8yx50VAP1aY1WQ6AwcBBzkP5pOMxMIn7+TCndsmsDXj4znDESu8f3FIx7lT46E4Uejii+qz2mRL5bWNxn2ETFlK0tLueK931TOf53bFVA5ekJNUerRDOxiPxIJ3noT/VJfycoG0G2TEilKxK/g17G0PxYcrMlx4SC+6oxOGYlSYhdZ6zBd4bvz3DTPtVSP6TPbUEChxiFsd/S1/VjKIBKKqhM+pTORJmPi4LFk0lD3SeEPhUraMnlOjGxtGRUQ8UW6428Uh4E4utVKNN8VXqc6DAE5iEQvA/qONenBAyiMQ01eakdJPQqu6CbiYJPa3UIRd14OfGNUJGaL3IEh7TwXOV+FrwZBOrkuMwPBewoAFK0KyTDqDqNLoumtpPTLVhXxOVxHZQonvJ7x3PCGDNpLeLVuXr4igSAZ6reSFQOMHEGfYWya3qcFjG68oFpKUt9P5bJlSOIgDaiPrrFe3LA7r3wtGVvl4A75hSP4Tbg2uuIfQ4kWx+yTExHQLgEnfL9zy47H52MPFy8NSEOtfmj206nqNuxX7bUiHoqNB1o5cmkLHpzTq5V75MNr86tOThM3yrnznpW8nus7HG83FTv+SsHgM2xUgfsxjFUAuRUdukYqv6PxcpIQf5dU3tYWZUsAeccajjy8Gtz057yBF2LGi9ez4N6Pb5n2DJTVbGP+oI53fvztLSy1badAuVtLNSsBfIXhPRAZQzgck0uOqNPqmxzp7n8yx5jeKH/qJ9D3K1YypFppRcuXXUI5c8MZx86lSercGSX+n2/m9hfQ3iuygnYk85+AIGKT/kQg00UzqCv7Unom9g1qC+w0/y2+YftSb58vQzIqTVRSC+DgNYCQHMrWrveNyM75tCBGKF9hfukm4HMxQtDKBNcsFqZ8J8eU9A1Jseu9hd5qFKTak5qZjuCEgAengD2qQr3XkjP6qfm5sQlglegbuGpwiiu3ftU0L7zw9zlRxtlFervSeu3SpTXfps96OLilOOOVYO2lRmkT/+fICEOrR31AiH38qhfwTIwgXL+b4TSjbCqek39VTL7jLM9bQ76tY60fAhu4Gyd/ODlMbfOtOiJrTdXtCnLIfeaVdv43HvlmPH0NX0PUvL8JeMqE8P59lI5J6y+WZwivBS8kWJ0UpgbmQO5XxJmR9CVUflHClDNVdPxz1R88hDgCBxBI3aBQXSff/HsdP46xPG1QKxRHkWR/ScWwdnriPlYvy8Yij3izNjFHXqlojkOqd2x0VIWZtyqmCuFN7he2SYmhRMdctDgMio6Nu/phGOl+n3znDoQCTvP9xwPelqhCngVmKlpYxMwBEUsbxZkgeBqAtHNa8Ci6T4aO9v1VuBGy79k5ESlMiaLQDU0Gp92xGKsq9ngSiHND8IZgFzMSu+37agOJX8F4WlZRi/UoUw5pRN1s2t5lBJZSug/VDxvsCyxejVu3XHCPIUU/jc0bQ6AyZtSxX0t/7yXgNEKtT688l5FIKclFXTkLsVr7IC613IleljQdX6vLzBd6+BosTkPF4EmixhlGre57MF8UeKJGf1CW94hse50RwxPxsBiO2Rt3/ND74tkePi0Jvru7unrO6/40P/8yoC2nMXUZ8tON15zjSHgu3hY5UGAWr/ZJvNDKTtYX570VOLg933/VcBhhi2eZY/Hg97bsrjLMKTTS8mliH2q3v2qavXWQO05ycyd3TStUO9Wmiw0jCrnAkig/BMjYnHK9yQiiFrhEti2vFSN0QoNQLFWDCVFEFOteogl4ZGSo7I/ErESzg7WJR0SsWUyt7yiCVVY9LHJKWulQfhdK4s0gWpdWeXTZ9VefdD5KamZRcC5j1goVgea5ZaXMwz1EG96/NENMHYsS24rtaHSBik/xnkXGlvsMBQjHvurU0NauffPxfViVcXoKVMqeGatq7x3aJBHEIO/qUCtWIdO2lz/KZoKB/KYoaEeVLXkYObgeHD0OhcFu+K/j+S3VVtS/P9H9CSeBu3H3f7tq5Nb5qVhH6CwlDaECNYwPYlMvwodg9KAeKexGAjwDtyaaYkqLjhBBz9x0Iub5BwJS3ij9/tY90Syp3uqJXHnCC+38hsftBW4ADJg30Ybng2cXcZbFBYGdA/0EboNlNzowVHWeirCfCkhoA8u9E3NTPBCrmiP3+PuBROBXqZiLYy6IwT1/WeTdEn0G+zM4gahQG4reQjtP2ynOAeFXftCm2LslUSz4ynZlUL1qpDtQ0KgRY0LFmKCxenzATesOTK19di0xVJZ8OTRgEoufV72lohJd8O2+E6KFiOmmdZ63T4ou3t7QArI3JwNbsjX8+JY26zTZGb0jZe9rCUSZTKwhUWjrV7uvHdyq+2kZYYdMWNwJJT/o5kn4OGbc84z7XxjXiXXOwZx3mnojtj5YMpDG1shm9ORJbdana7/MSgDX3AFkEAQGpDZuQiygv+WB+B0Tjp7jy00oNjkwYbzF33IZTFZdpCoPwvHQxg9mUM9x5iN4iIyIPok6Hscuk4AIJ/bFDTnYVOzNRR7tAdlU4ecPEG74I+L+j9uW2UWo9/Ni/3n8R+oud88/q+LUWJIzdMRY9rsLJ8RjDlliNgW7mvU809TSpU/dc5PNODh7svbQNwp8Y/MM+zRFnvX5YIf3eAxFDY80vqyTDCBmgjXjLPCTeVBBDmUmAaAOKpmPS4OueKcL9EiOfIQq7EKt5c0lw9fmnIPCqZJjHqHGwbN65px9I1RJ2eNr+zALYF6ivOhxWHhCGi/teRAZtnKXZHpizrMvO9FGFliec/qEX3To8cWQ3ZfV7F21Oi+W2+OuUtc3m1Wa5gLlNjL7rt3sgpRPuhkogOkPcQssWfN5ua0ECT+02gutkAvPFfGrFKzK8xPkP/OFgTMvnt1+tURwP+m1CFmHqqFZLR9zakKYXHtXB9WCcr7VO66kVc7G8QJ9m1LNVmIUuhX254kqYI5Z9t6OjQnhAnPZuqQdEvUJNBY9EL7UielVcEy/7ZfWolUBgQtNHo9uII3ShI00XuFspHdIGCg1WhUAPIH/UTuEmqVaaKiOzDsTptqFXGsnqMqD05QakmM4XywmOxY/uNMWyElzQVrSsaA0fIjid/JDYYgUl8FqP6JMVOLwJsCgJ7LdC7KZcpPPWhuGrFzrNYt0tCDyK82azglracsuhromgg+qpe+JxOdm2lvrWnQc5XwVqjgTKlSw9EZDhnjPMAEQciBqCKy0wZG0e7OeLIL7pCIjjAYl68qqIIoDFQmHWuQm0s6B9N5yKdzKiFu0ivk/tLHrbsefPE78scxjBuhMNKYLB71Qp80gA4d9N0fPMKio/4kLclbMoq5l0xfuSxGCY0yXezNIu7wLQ2PKZwQTRTZPfm7iws3t9IYPQzLQbGBeq/0wGw+97tR78bS9BW/hfk9EVDDpbci1B1kKZ0R0WAz9t0oMMMchC9sM2VmgLqFH6MxEEdNTw9cr+/IG6nyXv0wzwRA9nQ00dLJ3V8aAECDWNyCRBZdYIWcvjVgjsoNWh5/my5l7cBUK5mgZxMiT57CmuHii/PwL/4ed/iIJjwsTcliF/UJZZrL/7ZhSN/0BU954ekiMhlUYhaq+sSC1n4mNj5ZsjyUf/fOkYLYZ4HVmbgWM8eyZVL6R4oaWaDc/RAzGSdi7QVVovKfKp2aT2t0kQW00wPVbhRACaa532hnlFUMmsbeRgnXcowY/A3DLyHCmAO8bF3ZKH51YSS3zlDuTU9Y4X7rT+Ax/aIwyZSTeIRGeZ/t0cddxWnFAPGrchNBynIXPUvTp5e6lxTuMPRkguk9jnq4Ih7ariVkgN4T2rygK9cx6jdK/xgNVVcQC0rKoJB3ilap8qaJlAundwmzpYe30e9AKCjjlCEas96SQNgrBzE7CDPpKDXS0Cn6XuI/XsuxsTFYcLCfc9K7OHRtiEzPG2U/TZMWFDKbE369SA9oIyzPXwLuSdkNgAadfFe6Q1dA+0Ki+uTuMuwVyYctuLWnXnY73ecOa4KEW1uoNyFMl7GEHJyab1ATO5VycmOqJfFkthNXFFR2SlvJbPOKvVbB9spy7RFahZ22Fn26Yx4cI73k20dOjVFVsgHpdZNVXgzrSWPAng/bfDuj5Bc+CjHoUmDN25jzuq32NGbfaH6D8hVxVtNo7dv08Jl0K9fjFCHlMdbbg8o9fn6acb7vwiW/StShtz/oCr2KGSdCxv3OX1om6DcwpGwphwGcL81rUedObEvtjKkoUrvut7XWqK/aiHd81ek6uw9FJb7rPTiUulRU4iWDrS6lKs4kq0dY5BQSTx6/xfxTEM3jvftzt54tV5nIc5YxEs74UoKjYdlQ9FWrPeb5qLCc+VvehU+gVuhwgcyJ2Tj4rHyxlnmX/8cXdbGmMw9o0VLmbVukb3Jd9M5F/kNHTeqLMboddWAF2M44V+HgxhPwNuw77b04ovzp6ndafFL7W04C92jZYBkVNRG2ub+u4gqNf8a9Wai0sITgI0hhSqvH/Ygarzz0zuUCgfoq7iqxX/HzJ78Uo/4H4kKZOvG1JMurLEgmJ5CirvVNtvf6VvYs/dH4miS1RdVJhqiEJ3hW1HZoijZ9Ooianuihbe1rROFuxQKQ+FJ3imqaDAJSVw0tZSoH52MEOAxXo6vuteFf7VvXG02OYcpcPGK9ciesMgHFLCHzI1tl1giSiRju48A39F83cfo6YP3nQiBIcNC1drWWkWdvEfKp7HLf6iKojiEreXHtzVLDoC+l5CgYKxzR5uO+xvMTbzd5YB7JHVX3KQo6OEkiTB3AubrXxAtUg7y4k/NdScBdhDlKaQhmGeBjllBOP6K8hfy/fk4Qy0JxmuoP5zRLRQCsMkxaaNv5RdjiWumoGaiZIbuCU/5Yl88JSHpYGYeXnB6QqcfV73O0uHXmi9HNnxGM1LrzR9xwsXMz6GqjOEmI3MAz07dVYN/byX+Y5ZwF9k9FWLovxsDogOSvbQsLi3X+3T9K+qnY0rO4KT5MZm600axeFsi7aHpyT1uJfeMuX5yDecUXI18owN6HgekncMAmC6RChn6h51EB8zLoyv9LntGthG3Qy6BCfRezeftuP5D41FUGv8AdfJy0B2cYZEKQnlr8bfBfRGEf57pjg1WGPfZteQZRL8sVVlfTBosgqlCly5Aai8vMFf+heS5teyZpfU9xc6+IGflgt+LhsBGWRRa3AoYLlTh89Le6W93L8I2JtCcn//4LmBk0pjGksmxvM25bKs7gTsDeqpFIqll/l0pu3vdU1TiMeLg6LhLtVN18OQtidxZ271BlxD2ZMlaBDbRMdEiLnNDRr4kvLyNZsp9WCqAWvcPC/lvWaOSpRm2+C1d268MqUvGt/IrGF9xD0ohdV5fRxwas/W4crv7gfrghNmCueqNKZH0jr31Xdlo/bwfBRCtFoxirS1omz2zCSdxLdB57/t8CHm0r6Yd7Pds2o94nvxn/CsknuPvTCsT5w4T8aYBIcFkhU0dtZbh3mJWccl87oqgbbVoVLFY+Aa3oLxSlkUcJj+7izaspOrBYUsVsWV8FIHlvuBcOkPiwfu3I9ad8iBiwZ9Ow03dUJ/YErJiK23HThS2R1gqWAXuUeLAxKrxlDoU12DBDDncrXPKLFhuOcN087OAX9T2d5SNYW6exPYBiO37tTPzgR+elPxAYQylRP/2FiKrWrnuDL1ESkK5K6ZBqHfdXhEBrkPBW2nk1pZQVsTOnRaBwXDvVDSD3RyIKg7n3b8Gs0vwOAizEASKXqKFAaXs/x7WGUWUiFrCc9+OIQa0UJRnKfYCEyHNYjtgJrOJrEf1+CY7gsoM8w8BhZjACbYaKDcmZR1p/iiNtladKNYzEY8fDUK1LAmSlYPfhe0XwHZpF/2PgNVLfqYLdy+G838BhBHl/6DpIkbD/mITijPd0sd1FSeTrPVUhmaPam3FCUdHh22wspDzzkN6903Z8zgCo8lPmBFZbamOqBpgs0khNO0Cs6MEQVanG8X7k7LldKrCvw0NcU5C7dan/Iw56kBInC9lDOltZ7rj/wsQiH3tc9jRPBfYX+Ujt8HuZ+lcwiInch48DBvb5nXi6gz9KV/B45qzIIL2FhnKswCV36UkYBVAoWZTWn5pZ545uK1lMsRd41+T05hH0FJf0zA23sWqBYSnijuwpDLv0VyxeRF1OkWPUZcPLwgD4+WamRIQfV5X/0age+s21fcDt2iYX1gKB9neMf+XhVPNiaPWy6e2n8/zwRmzC2saop655odYD5AQihxXSJOU26z6FWmrnVGhHQZCg304SrYDddUJD0D8Ybe20H9BFsi2zdcwQfgWmRa//mRD+s2jI6yzrkuGUHwttzuCW+KMWYYO/R2gxdXLSH6cJEK2jjLA82OlAb1exdU5UEkRu0OHpDAt7F3ijhttws3PyvmIKzNj1Yr7UKpCGxROViXLfknsidYRLqQc86+JnxxhhaWE529DVF1H8R3s/ILB1t8JlL/M53XlYR/tOJ6M8uzgCONM7IZMvCYHWKdyCDp/5xQz0qX7fuYNuC/bT2pE3OW2XaMguLj+IpSwhvlENCL3PaiHY5kY7ReARm9sLk7J1jK26GvGAZTrBqKECE6Wso+LFXCil0Fv28085H38/Phnf62ihvoG/vA5by0yatyof/H+TGI9VwDTVQyE2W/2SvEHRvaQQx/RZdQGNJ22Y4gdGDm844de0Dti4Ex8TnNFG7yeS9EJ1QIRy/c4CqD92iwMPSE+Yo0IWG4c0xWozQ2s8T9uyB5h29qS7ySXJue6gQHX4RqJyqu3we8+b3EXZSNYxuFM0gL/SRHOUY1/1R7GBhnNSDKRip9fyn3QhEVhtVMgHAM5Gtfz5bPNvvDJVPx4TVuGFTNCpVqpIsR55M4NM3qKnVajYBHyD3cMuQEYv4QstWQJTUSf5Ml2dxKt3CG9p0u5KajxZXvaA5peS2EIShyD6gdSWk8yU42WDwdewR7wgMTOAQHBoCoMR41FBObCqbvdXnsa/L6H6wK4jMPmGIdZ3EURN2QLW9hCgC1/YeRm/lg1+NToYIzAUv1m7gPv9hH0YFdiqw4lpFRZ+dCM5udGHrP0T6BS3Ofx0bIz3y1xXcLr5lmdjrfTO3I5UHcHzIpz7jk7RBAi9CeEwAKCAoskCIRXmKot9SPj3qtfUTcvdyEG+OQfxaID/D3ElnASQ5ctPOmjLgmaRu1saXrkhtw3yb1STIu/exsekybADjvXZ+0IP9SM7KflrNU3WIRnWq1WHC5AxV50IEpMiteMCS7wQqe0E++jmFGHiRRm7IpJu2957joDopZlnCNnhbF6yGwanoaE1QzCNarAuubUfdXnKq4NTtDx+Zu5Dm5JFReSFHpx0ntFULlNvU123FVJnXedSqZtzxHFk6WN1VpmApXK903hU74pxjjZaG6qqZxc84znTk6fdgnoBPrNiYX12wa9bZgwQM39KFho5s1/RvJL+YmzlvFPt8Pm8L3PNn49K5mF8tyopZP0BvSHAmzitxKVnf/oTf+yPRDmR/6rCn92+TNh4SHPHeOfSlAXT+7gsw9s5EgEM70BTohWNRw/xnOxdJGnpeuw+f4KLXe0nNKhSPNbEm3fD5WlW/LtZmkvfxwli2fkVv25Xv3QYHFnNSltYf/XlvdIn7HwGQx8IQu34XaQDWRJeVbvJ6O++AinJfDyFFBCSljDppYZGA2MXxXrM0eRYF8dlDGJ0ODa5xlv1t1R12VbtPnK3FbFds8pRem7fCjGGkMteSlMQQFJKt1LP7Ut6tpSscOYu63Tfz+q//sQnHZSf91AJM47j5x2nOIDY7B3S5vhvdn2XX2NVC2WwzV0h1ltxRcB52tS/f9Ok+MBEGeDXe3/3Wekbgebv/aBERKRmOHArLCh3cHISVtBp5z72yf+Mnl0ETmm1vRA2BAi/IviiNpgs2DITS+Jf1OFQDdMpKdQMnDtdzXwhFjhiDHZ3taAP0Z8oRFxjisfMj43bVu+k50Lx3hE2tBmSO1A6HNBKaWWXXb2RmNqeHVcxdMLWywujB+f3+iXx2OeTup8kLStf6WL06yTb9QxEwIEKKKmgDPdrGelfcjirtnKeF6lc7m1Drx/z7KjLeehbR5C2TfTP3lyaz6zqgClfIk1pYJCKDT9Cbb2lkG3fv74U/xHUOMzXpGGMKylvF/CPcYQSDxWlkHdbJteFG27bjNu6Nqq7dMgoY2PJR/xbKxTu85PvWfk8iQsKWTuheJeHpmh+Fg0x4rhKHzH0xYrLMxlrC/FPcXplR8PZy8TOTViXo5x6ldnPndMOyA3LkKOGMNRkKANRxy4fEYDATuZcir/wR3hlqmYvzn0reMTH6UPrwNrzx/h4WICLo5JE3cfhDyq98NQErw97oS58jtKO7+dCn958D9CA6+1ZgvSI1sEDNvzgmGmpJYj2z1V3VNhGzpL/LeYwJopZkyO66IhhPJ6t/rg3pvv9pVIFon02r8CJfkH0NmsyXEICMPqDwuH7aE4nV5I1PRYHlkZNQD0yrwH+ZT7DbcV7nAG3ljTo1OZ2WvHsMIcRGUw0+7jf+h2YxBiC/COQZoCeq2m5dqmMEZ8VAPm+yy1TJon5jUKxW9VLHOnxtWpVEKCRmjiV9TT7BtHAPSz9xoo5JkKMHkkcFXcgu8BhohH6lYKz65tE9SL0Ah81XpgQph/42eiYpNWpXu0iOhTThm2boL2l58Df0gd550A2tWdOjiWL8ZdoQTMmxg+iIn0CTl+eExgibiEnX/OzHOLNdjUSX4udSjF4YZYShJw1gdzovsiAPzJ+RrJKiWxaEWJcQFCXSsXFC4kvZAcewOxuB8ZC0PuVeH5XaFFOP2x7AA5hq6cl21aYKJpvpu8LnKjfGwzQLwVSpbRSRBfHeNGh2Rmnqoe5DC0vTUFk4BzaU1Nemc+3YROwadW4XrBMYXNYMNfkqTYWx3en2QBkg73bIBEjnfQ1PrhOuFnwA82szrRbslMxpiJ9qGLF00PQXXsCv3biF5/ezku/ENv8dI/XY6d4HhnoQZ00WVdfKLX5hBo6g5zgxbBKxLINJcjxMFG9uDcsV9H1f/ARm1tO00EfoCIzygxercTAWNLXKfYl7TpUgsgL36LwHbmZgImOZwWatHfiiQwJXDSMxCxvtYTG9ScCdAz9vqc7hhrdwBpSngaTzHeOgczdqCJuK5KbtjIruMOTsGf2KLbisom+Pv3lXOgyhio+zFuIwDW0f/kNDlCqqiPY/vfVybso1DUQ87bZOJGo5lTWkuF9vjRNwRAi0p8P5YiKYDRlQ4LfHmJe4IvEJg845AcnXIjdCp7TKFFlTGcQre5BJKdwFx0qlWHSDfV9SX/fHjKo6KRN8hlD3jdC0MjVpiJYie0lrFKm2mADdY5FdRaapaikEL7rOWt+drM+RGjIQBz289eghQ7pedL3NbNt0LArwnTGO2mMY49pWO6vEirElVFDQcnTti5UUwlNoXyWNq9osRgbNd5Z1opAFvPx2Gs95QgbGLRNKyZJXf1/kFxGazj4LKnIHly2pil5bUhPvZFhydrcFLPF6FLetoTraPFC2JVIvcGA7Ci0R26woNspWEwaCHBsBT27RApzLcHD7jt8XXpS/Zq58U9HXvFERSdiax2k51NUDpcKJ5JF8jClNQ0eTf6gfEnJopTVAGW3JxOGsWRJq+akpHVGgEZf0/pHp6zWftSrM+iqGkrCgDI+y0wUjq+i6Xu6lfYmxDuhhpgk1x7DzqCWSE6fuwV80J/iUaezn/kL+wzZ4JS3jg16c4nw3DBB/tiEHNOH8tH/UiWM1TiEVmvmHYUPKoBu7BhkBtCSRkKHPAlU7K2rwY3npdZ7FQjVtia+rNP7NsdLhQH8LA1R0B2GWhOF/OjWURgnFq37hdoEHvZ7ipf5TUnsdIfzXYv4mRMDGTCUd6ZHuUgpCOtHJs25GFLynocMyzBkjJTmJANVkMJ//EwNc6op+1BlYhfuD3BDQig+lCWuIwStkN4+T+pKeYU2mRpYSUYHKzERLljTko3kjyrdhEl4Cnonc4v/ItpN9rAyS1907fO1GtrgIdthsD4XZwHRA7PJhLIxgot+i+SrYQsQJ3OkiU8PIIHtoldB6t8G/tzkNkdMa1FP5d5P8sj8xJeWbDALi9FrKOxA6WYarlbrL5Mn2ouFY0YelLADvV+RGWu504PAy1OK4X9hJ36n2mQqvaXtzRDjscd/BsLnjMfUJyIBWV64dLPGj8CLE52AjfEL7N0fhMQDBNmN888sAGKCLLYrI0u++1wUNz79sHs46DVXsMM25n5RaZHX/UjsrMfyuPldF+IN99z6q9IWg5tG8LelMP5Y9LCpd4cTb53lu0KTzk88aKdjHt20war4J27Ia0cZvo3JoM3zNrI7R8mt6I4TvpqUtB/qZAGU3jhlUbB7R+fdfdLiU5C3AN7OPhaovmIzmxgsPlb7hlrD9i+wfjTUt61/Qbh4DzlZNk3I/X+lkOlnf6m0lqZK4l0MMbxUja4MNeS/D5cUZPDTM4A0dXQnAx7ewj+uhS0+iwfYYDaa4o4T/r8WEidm4QVALohSpktrYVIe/dsByGPOIqES4Va0gdL3ebxHpcy59UpYxQbGwj17iFpMHDY9I7VkYPDy/XAVBYCuv/LGA/lZMRjRMuCuz5+O8JmxlWx0/BF5g5uNZ7xc/6iT8+LhufQJwRtprwkKQTaUlKwmwgWXXkQye5q/j7rXfi87qpralIzRfBPgqqN9Zgm5L+deRiTsxeV4lLr77E6sNUtgeuGMZhTDGXGPs1yieI9aTJF+hsCR26qZGt10Otq1YTm5sFWeCEA2MC1A3dbhoEtTzN7Qdg5i7qbjFmwk6TOab5GsYhwzIE3/9Ucjb6z2hH5yzLTNpU1JDVyLDUNwukSOfQ0BXuPd4F2GlnHfQYND9HwfJtu5o60FtGkAn1SG8aZiz0SrU8xZihPXohS/igx38UrZOYC6gyo8SX6pLT73euVBYvU4U2lq1/V8+WXirwZAWYl5yzW6I4oE6NdQuntqIOfI5tHUJctIhb5AKC/WquxAUtCXQqLwSHTTsFBOVJlNcOydt1+9GITPLNSQptyGjU3vb+WuiDS0LPxLjJmGWu6kVu+TkMjO1AQZ0l5OYMmxCz/cr1kw8H1h3e3ShuemRYbNJ5lFA6omBjKlk4MzIQ4Ck22uWqwQXu0CPzN91VidYKQLwGt3OwxMKOxXuf3T0qVvJz5TJ/tplPcgeMwLCTZUwFtu+miYbMxwyJhoijbZY/byj4m4NwREqAVgwWmwFAk0dTgIDKW5DZfZikRpPMihdcNv5b42egpvcAKMSGsWzYtzyl2FV8uWE3WRD3NVUwCkyDKv3r3iFzIyPSBfQB27EHAZdUZah5yWZnYQxsssXxDNfFN9YV/BH1EQhCRPah0qDcd844HUKrGYiN0c3FrUOgdQmSIix41C9j9f8dKMmc9ygKBC/RwiXCuFklzRE281izYhgqfW1pFKi5oocDTe/rUDCqXHiCOigbEV6ro3/j6xraFYsmn82Fm3otp2o64pgJFhl6ay5lThgprFuN28rfGLXSCR96hSR7WmzhPJAKvs15WPcnehCb8BAFd7vVnzqrIzNgCln+TbJ4Z3HG2xrzJOP95JIVVFJd3BZGBfB/sE976So1mvXBskFOLdvoFS9W5tzSbWDJ02DO3i2RlqGAJFuHuzuEHmnyqPaijG5HdBOuOgLiPHj1vFa4KRdxt2LK4QeNdeMEu6rIf4VPhAGsBM1qIsGwn+nqu53z5o2yru2RQD9AyBwSYhyLURef371l5yjGQ3mIXuY08u56vaZh8O9rEnF1lV56UZecfXw9XlyM3mDfkMmexOr27Sygmeosiml8c48WiL5mr1dHNZw2uZlZdsKDynavWr0iDuDnEXvIYp/MvxeVQTsJSXCnn+AEUcasMigSnyA1+idrlelRdZpwQdq73KQh3kBy0Leyo3G9Xpsk7MmTdMR//QvIWRV1IGQVX97RiqpBJ8I/kSH9tuW4Go47BxjWz/iuuDwACNPqakwSxPXOQITU/dRNEXZomHVQHqeYhRKwqFZh03r6c0n17hemjmY+aB8zE+pNe7LgD6ldViJ7qqttyV42T7k9L6MxtdDmVqoPIFE6NOQixv/HpgQ5J4sQLz7Inm6AyNVcaZ3FM2XfQ+MpWJgrdLWObvWDWlnOzCDjl0bcX1cXRfAbpj+1w2jJ9/qc73G4elUG+1TqNWaXmQEgFwj+RmYdQK3qFFBC3aAwLc6cucgixw4kd90k7wU9lM77NFnu1uFDJ9fIQSOuDmwJRAb58SjWdzs2hR7AZkVdQncddcCVSdHwMlOMBXrTO/mvOQJHu/NDgi1zlFF2yNcdR1sHRPzsLFWHVic3wt53sW40id9NtnvlaL1o85WGD+dP1UmGXx6AHLSrUBG3N/u+pCzytxTzFZcqMctvRDJz9/EupUK0I90GUKFLPYGPIrmV17345DYMHgv/EEmsj0w2i2AE/Dj5YEJCyk++mjbdoxLXVmUPkh5Znp/ewTfWTMxg6IgI1Dxo9rUDOw9OxJU5h0CoGe0DYVGg8QWlqEAs2+kNCzGNZLlwE1N0kfhlP32jxe3djr/ojMp/9sDkGty1m7YIymwclurk9dn6Q2o8VePNYE/DGjBianPhQ1gf+Qj5jguZZ0QQjbt3DbuML7e4liLLK0E9cTAGkPQk1OgUWdl9d5jsjMiXa4JkGAHVXJy2qDt8O58Q0f6axxYiA2Ubh/m3sSuP2HwSVvh3pa3E3W64U36egT7nySFa8YTflh3ZK4ktmSwOcrDOarQk2LQl/w9BoCUdiStgt/rZEQn4OyriT4p46VX8VuDiBJQ6r0UTTdX8Trjbs1Xcsiy7mGUG8sHx80jXAaKdPYqz2/5THO/uWJXdZ83DdTROINDfDfMe71qDZyfKSlwmM+11KJCndas5uoqwECFyYtb6IrgF0NaJD2JoWEeYQHZLa7NEWTfPwuBzAniy2RvnMyMj5Q4hxmxSbHgVYkSe6GCodu4wMkw7P+X/uR1MqnZu/xJlg3QxTj165jrfwqMAj9nT4T8A3uggZGAPRG7AcDDeHpQj/sqJoITftKGevu0LFks/LbGDBhFdKy/W49ua0tBo/DU8MqqKLbtJWYCNTsGRAnMckKxMNJ1Uwk1qM3gcZuWZfP5zBVr5YZJsT5PoPcIErIPK3+4cecjD7LtwEOVJtefcSk58Z43x0hJ9uy0GgUBBHsFKf+3E5WmGXuUw/YqyHhK0RWMy7tSg2y2bLfndUdL5oeFgEr3Y/k2b9xlVn4x/z4KNIrqkBoyMSTjc1GWK9vRxg8/op1RD01PQKiSZHF+l+sHrUmFgFe4DdSAVG4XaC4IqnMxNAGli/e7u7c7bcoOPEvAQjQvR1M/5v7z6F5j9SJCoudCHysv2132Zd0eCq3MD7q2vccUYqLDOpsL5R6uiuEPPdU8gFSCy2ntEuBVuq22zPf+bLuxSUb0VYVd2hMzHw/qp0fhqHDb67DWt9vb4Ii+siy89dPCDGpr4vlX1Mr3pQtr2mnBDeHpjdu4mmWBnrqODjSXqUvHmIvpVgmJMKAgVAM7FmsJtqKYUIkBTJdJNaa1R2HtXbTy0RESiNP7HI5qIa7gvyTnoLUOrJf/SQLryNTsi5AL03S3o0YTJF+MnXHCpTmwG7P5+i+tLU5MMOxeWdA2Lv3V0BvpkK2gKJp+cAQQhv+61dQCgL+QkwM1uxS/F96pX1VnKvs9rmX6OH/Mr7eeIovkakv9bKDf1jWLYjOi2fMV6iSy2ALmktWS6Mc9mkOMq81lcgzJy4mYepA6VfGjV1sJ/IY+yOeB+nKHtp3NSKaPNUtIqIso/fUs1eHgEYsEc3DaRQV/cgfMc2cY3BWWzx0FfUmkzjUObOtWFlrDOOk18XXNQbeMzdkFOV6x9+cJnpqVMQ9GUGhnLCeBRb6ZskHxrLs0VzgpEhRvBCGqiuu9IB02fvuPUQPZOLV+hc9ir8xO0mGcPSkUu4QZGvsrErcsR+7V0Sg58qiVpllOxFNcb+DtbUj5UzMzHj9QB5fvii/o8UMt7uZoIkz7ZvId2VaXY6sH/iEbXUwrDl+hv98qhRbHrmJKW4rUt1SiDSjjenhc1N73E9ydwm5q6OIzCB5Gw9j5Gu/lYZAaXnu5o1FJxmQ0slBBAiGvqoxvZ4pNVTOEb4igT7kkAKi/wxxm87sGP+fnoTtO5Y/RobOPAaIyyKTeYj9jSIrmj9GI8mWQPyIWEl+IuSyFq9IYVXQnwoWfqAZJ7ilFYeUYcuBm08p6MkqZ1QsA1I2xN8DEypiwFGEHbgYL/FDpBZLBnzIBbGycj0wjGBGWismZvdJFuwmKlS0ZJLog5uFPZQ3rhp3o5cp1nFMBS3ByddBxSOVbOM1WsoKHyXb6tZUQ0WIVFurDkkYtHTlxhipSOXb4acoLD3cXzSzhhi3Vm0egl2iALXQy2OStUaWpNejb+fNY5WCtGUNR1pjsB7bLrgNoFgNg1urLf9vshjn/3NSR9rcNgVXm+a5W0baLsiSmLQtERT3HciCZadBaIFqR+n7pIDO5DpLeSQcVxyTyJhvQnRLiAouExuKJtBalZjVYx0DUw0OXfR1YuOHrt7XsGX3Qd4wt2NULKU7x4NQUkzStQPxSaDiDbEdV+reqNDLe5S9g6ThYpmaEUbpc2Rj2OZ/ZgKWfl2TxmsCjBFIRYEgLCpTdNauLGZ6GKZ3zh/Owf3owxMfTxGPDm2SIY5HAjDXVm2fLIssQOLbBMAKL4N6C0+Bju+uSj7BiG7XlRsgELQRHyvu2BL/5iWCtSyiX++cXCfNB8zJYw05me2u4HTHNO1QE30f41NjTPI1G3/js+tN8a+hVlN+PA9GgOCPrFIGaPmE2JGPcX2KDfxiEM+BXwG5Q54OMJqshmDwxazOgROm55gSWwf9Q1c4GNV/oe+Q6QitqmxuQUIvISuEQ5FXchKEMMeaUi2FxEDXMnll8N9cdhipfb1l5EF7A5bvhz3zpE8aHGY7v9VXqr+us1WBTIYKRDeieFuQApreVQnChLAJ8cP93iw6nKdZ7VuSZKkcu4esxaYyBIXya0xCwnHRuYlIDHxfIilFRaZmdH+bw7B66UAcvNmZJBUUJfuy3hO8nUvnkaPYJnP4UFEXc5X6jt6HuaeGhmRxoR1E63jz1oYw1CVdf0+PoIbwCDCAxn+TF0bCtA/QxBUO/BPkjL8G9GXm8X6ZZ5F95I5g1Cw6lO1G0RYWpAEy1NIeWv6fnYZlAAnzv2SuRDdI2Ab9yqgvPLgmW9vRDMHKZp0viHrwObbqh3il/wNX6k5MKXleCT6GjkEjmJyZx6huWptCHIvldX9JZWEFHnSEOXwJ+a585Gs/lKRPoxbyzMyNVip2NDe8Nm46H3nUmfdKKwTpPx/5SLnhuzgKe4gD1PDmpU7hjd31G5DYpEumYmt3JNRT3CoDKBE+hC2fvN51Fuhu0c5wYzVWBHRPCCGGmypi00XRq28BR4b7UG47WquoraPFYSr3wHXpfo5NKUK0q/VCumrdN2eq5m9Kef9RAUZKJeMjgywAgrp0qWFVcsROSPNWSoSZqli0i/vI2ncwxqCJzntoWVFWwcAiO+Lkiz1IaF5l7Dmzf6hJ3GijhHj4WvNU0mEhhepTKIzYDtqnDzZIm5VKZi5vbTP5JHDqjPGvAF4MiaZxPDiuWR4pqWRbhPtiWi8pFNdCEvpyx1ChHqC4V17HDkg9kzDHh0BEAdnMpEbx0uuMle5mJHUcrctkoNnnHg8fCDT4G/kouvg7LT/J9oqbmNI1Mgp8GRHamoO5W0ccn9C1MbJqvKAABTFWf4epTI83k0lNu4lXPDZUEHEaedStzWng0CDJXGqvVjWiP5MmAGMm1ozEJyUSgoQMYmdyaECtfQmDwZdfMmAZRwVnai2woFbmopAdmouPNH5is8jmfUI9ik+8/IsJL2r8OCHmA763gNxzIGcXXDu7AU2xsGlBb9KwFcLDeLgm2wCifhQjuouC927L8uuf2YqJ2GkTFrid8w3SuLABlwqy5VBTQE+lsFU6AminnJs7QfjQ6dSV1FyeFbKD2b/HWECKaoZ+QKNP7bd8CJDa9OoN6uJr+8zr4gZdEWNQU11aAc/sRk7mchetqHC+7qEN93crnFgoQO7lwkL6RciprysWitjH3l/SSEUhfLgyR/NZFUisHx+VqueD4Hd3XNMkgBJTeK5P10GNr7azFasUGp4TxvEjVXRR3IHA0hRgvTp0PXbrns+1ikLk7gRRI15i59EFT6FtI/dqaFm0eByA++Gk32DMLIKsDQIdyFy0b+hVt4SS0BxFKl3ibiwbqtgtH0SJvzawwFiMjjhU7E0DTc1ga+LnipRBXP9yWhibo372Z3W+VdDidgpkh4jN7G/VKRZ3EiGpQjcGwampDKHyZsGo+jujttkS16Xj1+0DzixE9lve8k14IOAlYSrwXwkiojLsHB5HzERxIuGoB59lcbJcg61qVG/8aczQC0isu9HTGnI92eQS0TfFUkt5ZryvWO5ZJcaAI8VScFqGby7udDgGuzsxV7Qxm52MG2PSUFDPFAS9CsYg0QAfIsV18BHUYhUbOCinCJ7sHCgQcaQdHDwE0aVz/qAzuBDPC1k+CmVrj3oLlM3IURuCnJpdy6WTfB/h9LjX2hUPZ3bMToddrof0uJM8zEpzQWoWA9Q/lAdTNOTxPZ7WE2vyXuiRMK4T91wy+n7ZyEr5e9KZY3kSbibo8pXOZKenRzViL6G5vLCkl1I5HqqLrJubIpKi5ujNska36SKRY84VFJK34dscyAuWtkEM1gCzQwAnK5dPj7XW7qJ8dr7h4jry/CDvtbMt6yuOTPXmqd9VNRrL8D07StdD3jGK42ZQp3SY08zpZwg6cpRAS6KtwUvK28A7YCUNkfDAGlxgotAwvH8Gzszy0XXxcr3jHtoiXQULzhpp9Ko+qPgy/ezGHWGhRL9uc+1GO6mbaqSV4vQYu//fm/mB4IARqDgmJkx7yqFE35j0VSuwe5paD/J+rEgcBWWA1KODlvdbhqiiUw0Snx2IEaC6pCD2pjl9Jc7YdZd/MiNix/dD9YrS83OMaN+CXgO1fj8GK3OMgonRZSx9Cd+/Qc2rg17tzokFBDEuTyZzis1LUcGUC/s91UE6lq70UOqq3ahcE+c4MFqkUAZmKYqipUO3WIai8gvBQWQ1Z6J/VkMrpZEo4oRxKNxlfTvJknHg5vC1OVBPJl34mb470EhIrPKHzssFyVBj70oOBGlZ1K2CkY/n2/EdC5Mtit5YZLyyqcW9OucnhS/233v62d96Ur53tu3UyVhIOVlR6F7xJidk2uWerfXQF21DsrjqxpbCzwptHa0xMDHMMN9+ipI8HG20MjLqQP1Uo2pb5b3tEWjNThQ8s91cP9Cty/Mf9GWRrEbhFm94iUpH+dIVO42zZ7SZneN34GQFOAysyFfsc28C59fpLa8RWjc7yG8hLnH9QXKjxMRRZMLyZQZX99DFt2UTF21tP2UMpf3bTUK6/5e37pwhWdii5BEofLSoIzwVvRr6Fx6oDtmVWMA6+6dMklGrXPKbGSw4wB4mxQjOX3KJXkVCN6tm9VTpcheLE5AoBypob33jOnEQ6EfkTlfRhGogiH2XnPvKhIMBsLTscnhahgxZ37kGI6F84jutGyCPY/5ekQqNclf7mAByQZJc5XKD/vGr1uqQTwNNdIHoE/WrBdW2SxQNF+I1YdwfJuNmahspEPxciiCTjwr5llYlwRNHtuU/099wT2GHX0zRDcY1oQjjomT62rrqPybvYBtIUGS2w/2pdvBeGczdGBtT2zyLg22T492fSDI6GftBvOspTQSIsmjMPpDewltikh6sBRwm+jA+XizfBS0qURPJ2HjniXmPdQ9cys6+kCKap63B96rnN5Wxx3DAMjp6iwyJaKSlfXrFLAdIN1QPDlGfTzF18y2TNxQR4m99zk37TOW/AosX9NBcDY1WoaC1mZSauomMPQrmWuxa5npo1oTmjFcYD9yibI+xXQSCDmeuvlMDhuU4uRE/YEfrpLNcMKjccFd55isrky+FYXHktBLZmKal3azYkigNSx/NiRsC29E+LyCnx8uSnUV6UKtsS+o93gwRDgfyeXFL3Z3Uk5xAvdEts/5Ujx0GTZOxkTn6uF4VLJ+cTcxY2iEi5A7Rux7HF0l1K7LaIydF+P5IxFeypYIyz9L3/7MuTJnZFou+Qc73GGoWcFlXJ+QpHGgwsL7kmeYVTFwS2LjFqrcL3i1Y6JRAixGL59l+vsbA+mXb+1T0pz2PZOr61r7+N5Ndi16dU8gNrb1cxLaXn+Elml8feZXxXlUzh/zE1C7J9OCqfPvutHbOkF+un4Kfdfx+n2Q4LX7GJTyp2xsBbpTEBN++rEaUZeDquMVEamFtwM45xWLefnliQw2zW/9XXDvoFZR0V4fMlNhsNWPKFjWpyq+Oglwi1zEVInUQEOcA3ZwLaEHoaPK3ar0O81LLbly+O6CdjXX57MSFbpy2rB6v/HiiULDvgdAslULyZ74qLNi2TNK1Zw/MjT4C+zAkoZd5hcadYtwhIMUXc1ikvRoVHRVYJRFQSVyb05XlmmF+yB9O7HmZoqDUQIWGle6FZIC+0qxN2kFtD9WDf4715wiUW0/IysYQvXdIx+w/ygwrtc0xkvelZ6ueQUjeEOMM+M18FdsBoUmYQdO7iFkzxBtrB3vBTk6FaVboazZLD7RxNLWgkckTp0Cilkaf20wJAqlh3qNu/jqs8JnN/zOhgV/Y02sVfzgBXXHYrwc6B0EZPB4uXd4NSdoP0ulD0yPL5h096KWUuFG57YZP/eQT3Ct/qfB4jo4AdrY/5vKKxbK/tZCiUF0pYeVbFfMwyANi/QtR6D4qIJNL8xDYNJFUxF85tTL4jCH2/zXfgjNGr+Uk5OVMZZcfFe/NNkctuolday7UZt6TXbdXuQ+Eeh/Qm8CUeoj8xoB1ig2Vrv0mAj5q58qBWol/J1jeUrnSvA6/4E+NtxhzvoDVw8o29QfFpzGUPEqOHWdqM+i8pP/DM3qxhNg+aX1+tseonrRhshPdFcYhEHUEYzUsytklD9T2yV6OsLBw0mzAWyv+6WMjOxXail+/ncOnpCNEidrfEgM2gdcJqq4WFaxHfMLErxgHnIz56EQx53uMskE+KfVjQvhVxpuhVF2rxym65l/EDvoXRLNsUwBEHDZ2hMQDzxQAwy7smS+ERUK0oMNrouPvy1EzqNdjrCvz66cgXSMfxADxEKwTMppK8SG45N0S6tGLjZXB6JACk6F9P1nqn8LSc403El/Orn9OON20vov+8E8KWJ17Hee1x8j1X3M7LxyPwuv27QkWvFu9aIqKRJJAOeiMTspm3uldVVpDPtwD768hi5AkvkBDELdMzzR9c/a1Bed1wsTnT3hsu6fUZrVQ+pw+Z65Qb6+5EPZHoKd7WOxsGo9uLBKtD7BOosfH+PJqa5VsqQEUUZUbrwKzpg69WT3IBFHU4yuBIhDh6KXAjvMYfqR107m1GY5ckAH3sJ1Nq52Q2WnGqFNGOYhCIZXYJPbchHfbX2T86Z/cyiNLTfxlYOJqjjKqqZTrxTDXOFIwz2tsXgbaiK4rvs7NN7UU2EcqdePa8De1iHOOvTa3HxqHaZKGJUq0ZiwAUfLdoqqQMHuZZRHGZiEyKhyWtpAzu8YcMHrTDqBHpydepZqXRpHxI/EfUeh3CCWtvF7jUj6CzHrDtsTNfTkKeemdgGGkj9XmIyHmZknycBByr+yXLASORwvctg14KVXKVy/En/EEg8Z22rGG0pl8mimQr+nunwsELwfL0l5fKSDVabBqv+SGSKMBrm/n5RGQ/Bl6LODeUMDhmoLMvmIO40nUeY8kxpL97z+DK9byC1PqXO66juEx0sCEGPd5b82/0njrS0x+t2VA7xTbbprsv/aT+tXdcumMlEy9pMQqS0D8C3b7e3smBztg8flON9DP+EBaViBqQZTJGcq8UXlslp/tJn2u2EU2A1TsuS9hppf6TGx3zvcUrUKUXT5Nio3huJ3jty9swXUYlrhZDaCF4woWA70+974HHUTgHszbXjtg5pOxjpNufIx8pdzXIawG2LdulRR5zbV1zDoSN6t6CfZBamexrjevMvIuZVaMmpwMAxGcOQsQf55UMmRP2/DPHgpVKIdVScn6mWfmKTOHD9pTvDKGOx4nPV7OhGfjCnG4fU6DSk+94S45ucWRLAZZdMr5kvbnU7HYT5RNvVZYSYJQO/GnszLnFl/3gR75q66/eEf7gqwEt+bIVLfAscxAZvWPPKF5OGBpmrywHVoXE4S6acfxVrftYwS4kLB9NjaT5B7p181KcKYS7mOu17vDIXa/bfxqG1JCGoYfiEg6q7vegOwYOe9qGiWKF9YEibhDkhq+Xf2j0SuJoavmUnlRVFoVBsvf9cUcIrZSMLeU69iUQmCKaIH1lBFMm3bIps1QDBZA5R1BPZMBKSssAQn6O8NG5Q1guxxF8OaxYfzbUXE6fW18Tnp7PW26ivvm71MVT+Rgledutn97qe8kbHlTPt9QTEEKDj6GKKlwN5Me1mZZ5ITdK8b6wactGM/qJ1kkeXHEHdJ4RjGu1K0r1WVwUSOYmZMrxRkKZKNzwiIRJ4Y7fWzRINPgAaKe7+v2AL2B+5xeIlZgyu6coNPuyNymTfm68UdKhCLR50ZSQVVLeG3EmkWavp3VC8BsmARladgIfgBGOlwAMyT5I0VaAONPWIw+2pP+bFnqJSExbdkC2Z1Mk0R0fApb64VcYnXezPoDnKQp1MwFG0OIhfTzN6JcS8pBxPKOWxJtCqJnB2RG71VlFonYF5XIjBr2ZLwO1hkDth9GUt0cGABUjMr99D3STJVaz6gsKGcXEHsoM4g13SJs4xkw4IR0s7aZer+OKhQtPSI2BldXFxv2daYhSRT/UHZb9UXWJ5ttb1wr5L3f5mZuXflBFQuVpomyoijOssFn8b8is2eW+ha0LjNbHhCJIalEA8D7SNHYiYixTcJIn6uOD4K6vKweglTg344oWfY22jnA61lxDBt5XAgqcdSygze5oFYkZ8f7Xq48fG7KGz6/XWaynCWeb/5yThndi1GUEN5sX2sXyLHtIcFhMXs8inyMVToEHs6l5nznpvwejZ+vb0S+fFQCaLNOjlMpWQpXjEaGCSAtHDnX/6+PnzkbCK6LakmDPKuetn0LEc2SdsWCm3IaEj5V3APMqeJmco7RZUK+a9btFOD4Ol/jm5ZhINGiwYwyQHHiGYsuHrL5DpBrjedeIPrDpS5eHrZ/EVVXqrzotVtoNax7Ioh7sGFOAUSeq4JmqRxy8JsI6Ay//XIa0A+l1chVrfRWwBtZNZpqo5jWBrUT7ZXNv9xXMJCxkEofFz1Kz/7toK61bfCTw6Y9kBevdZMEge+0CtQF5bUftWJFDQCSb+mRYHUwqbASEi3W7QR3VpuSKjnV8fBfkSrxYAeQL551lmtqhmqsfCuajB/BTjk6noTJV16bR90qTNGW1q0XZcZcPbJ/DbRvRLNI3vPxo97ItIXgmtWFJLs+pl4CJ7UO+f3SVW1D8zPObubnIIha7jC8VU3nfnEmEYDMa8md8pjoxZYcCaoOmCm9N8aJrKDmev0z9fV7usEmzOtLtZMvgKh5Zr5FmJHx/K09Q/o85PGQTTB+A5O47WveLwSwVDwdAgbfX2uof9iEXK+LT1fdrTTPwIAzb0X/AeNbciBTJJmBbD/Bqd03rg2B/NMKOLFCvNMil84ZXhvxSECP6yEfOjANR6PZ7dpbrNLShlI/o1Nfjn1neV42lhu+VwI/vcWx+MlnDvc9j5ltPChkGp40dFjQoMSnTgTfzyKU5dU1mLmCihIuJvNmqymFeyVg93hQblRK53jUrSJ1OzaZe84HBfbfnadEumVL3A/YBtBmOofKl1nISz9Te/SxbbVr8/qixRAyMYkDOvHrNPJIrJNLzTPDkUiU11ImzvH/jtYDGfEJGQ5jwDIqjLGNnWT1F5EzHFVPQCxovDboEccqY5pCVqQ18tJg8JAK5qDZV0Ltfd3cnswHATPwLxbhusNVYSOBO4HQJqsjPtnopnMejWBDjypvTJgMvBhqWodR3ABjxPY4TOJK/S21mxZC9mx7ZXMcsI9gHZAEhM1Rvpw6fdUixHz1vAkCgFv4t++C/SQN8JGM5BgM8tAzrbXqM88KusRyzdFZGfg/woe+4VKLWSglxhKFln9Meidpj692xckSlFW5cr3izEoXevXqdjTLU89TViTotq01xEEhh0QmNMfQb2Fron15ATbFKPhnT91yaEeMWAVJ1rZs+5gEJVeFFR+E2qrPndFG2uIRJn+Di3fuIUxMQnrEW0lODXRoiCaSwIGg4DKnEsh+r8qR3u6GDR8ITI2gWLbBUYFKmfUAFoe4mNEG1fIxJN0Vmhtm3j4ZcoVuPUavnumMjMY2/7/sjPhZJ60lTLHPxTOS6TOKJJpRdxy6esJ60Wt+ctuffx8UHQKmLc1uyYLGisN8uJogCxeGw7JUOzzE+8xI4CaomiEOtRZAuU7MHTe4fztBOe3Gwbr9Cxar+1BvWjDwaNftH2urmTNKZthlcODT1gMwzSCd66NIrJN5rQqwWGa9gFX8hMsXtOrkIVplIovzgnR5kEGrlLtlx84TjMfQfC92UHDQozD8rEFuJmR/XA6eR2oNfk8TyqBT5g6Gcv3mc1DiF1SeBnPCwD32R24K/+bVBlUxBhSzlev1ZOBteXNajttB867zT69BeVjFj5EifzA2Kj3VYehA8bYSxSaR8OE2spjoVbo34NiUw3xhAtalnj9WZrauyhHS/F8Do33HNn5KdweqOykSZ27kLooJlfgcnpM7ELrf6vqAXLuTAyOq7ucwl2x9GoN5luBO46MBmoIAGdz0jbXQMTaRxeCZRF1K7I8fq0vvWuEk15IF1SJ8bsLuNObt3d4l7JHMv+QiXeLQG+/OaAlPWtBe5+TnLsTv/ZnxXaxARrUHHEnRJ5rMOjFqH6bgXwacOR+S4kjEcd3cdrCRJ7dkY84Ug5pCXL8mgEKywg3O/4uEWJTOmvyA4Dq5JFjqof6pO9npLq4rrxN8R3Qj/gvXuWifs8niMRFZ+MpAsBcIIf+/46j1amIpzHFVOx2q38+wcAEEFnoVdOxyVwtxAesbL/KWS6cqKR5oHsa+oJVuKdyrSB8Vto+hf2ZUYYvBDop5kLGE0KpOaPCbsnb/51nDgN96i/84vzmsTVOueIfZVZhqFczSxsQW3g4OW7diCzv6/orClVhWLdDVyLeC/wrjurtQtRPIoKEw00X4ebkBg1R/gP5Iphes6ocpNLPnxoddMrkH5YdAZ/j77mmtlrUZ4nfSy4SM9EteZa40lHl3l8/Vx/rWVat+mQjop+ysteiw+ShoiwHUNaKPxcIaWZgZSZtUG6Z9JdHftMyN7lUpb2PV5lHm6W2CmqKVKertZ+Z+SBS9JnS93iXB5NSqY1U4Eb3ZOEQQ6RDuz4E1nrBpB1+iTSM7doV8h+Qhc5/0p+MuYrT+JQBPRV/gUEC/mK60GShMVKO8TSLqyJmp966ITSZTiZSGmKZb+JSiSthbtc8Mu7p2YQmrhsI1hoUqjSSON4Jc545loTL05naG1cotO+dJpVYVwJ6Bpvu6NZVdTP8aMYZ5IWWFvpKhFNkCWXqCPSXCd8jjp4Ik5wnGGqJ2RI3oOvo5+P7rsCIWCOp0UZtI3yNQmwfLaYXpxFDy25oA50L6J+qYTOgJTg+E4Ifr4cSQ4SOuQILkGz9N75P/hrtrq3DX4+hwtbHs+4hkP+ZImvf5PxBmvaD5qxLgyZ6vjViJ04i5p3sUgMpANr/HnZYwl7lod+7AyHD4+TQ8WFQ2k0jSkSuJxIrZLuuMSUipJ32YoqEDTLTewO9knzmT6P31tEDQLLP36AQyVkrTELV5leOaSJZunZGL54p2Z+GVhgyt7Phe795h5KbbYH+boD/79c8mRLz7M4ZbJ9G7/xT2lkD2lBZkG/7kA/HYMTCCMcJQz0oBL/z3xYFaCk0SQJUEtrEvX+g8AyTyOJaaeiRVYdgYg0+py7NCdVkXXnPFdUTlsl/cSFfkU/a3eTFe7JoIKJwwjm0cwElRYab+G17lwE5iF6E97Y3Q1hufbv8fNlJGp7sEaj/9gkZ+d1QYlPSUD+0ntoYcx65vHGmcFvduNLGMQCRJA47KoPEOPqgwUoLmyEFnRhjutW11gN3lJrspzuJj4I/X5DiPaWQAwkR3/4l0cH5Bws0NsU3d+IkG97Y9Gg/NU2mehfDmDNRDurek3eR+8YRx4KjchnHXwnGRGFFz8iqoGpmemzzvAhTolmdyyxQOtsUhH1WGDf7h+aP0TH4wUg/krtvX0XwFDW3aeROOlJJdpBaazEzaioCOGFQUD9s5z+pF5wzV4qMt6F8A9cv+2YlEMABggMcfcG16Vy7P2c5/x60fzZVAD3jYGUvPGlcVV+9H+mhMhqCRQIEeiI68tTNU0ixO7KJpYOlPz1yKyzvRJ6ThpYoBoIQ1+fqQmlm9jchiI7o1UkVm/u5dh+kSbMCapA/yzDzIGsAncNE/WXeGHA13jkeqIqWhBVrxyVQxWfSyp0H3vAhz/+WUhEJ3j2bsNQQuFksCO7bmEO1V6U46UB3kJ3AbQIDW8y5pIZsz9r1pzbE7D38Jq9fnJ9EU3gN7cXe2Y8qVr9nVv98xvYUqdYwX4CZLFydhmrLD1KSl4bKpuTRUib0CrKlnWWQFApxKhaUzYcykNg4fH0YvbfZ3rdObAmi02OLT6s9DB8Qs6QCFFMiUXw9XFrKlr5szyNpKaC9d4jpWwDOAKrigduIgRdxPvcIEkYb48ZQ2G7aDjpFokZ5o4tuSD7TnviBzvHnm+qm+1qZ4G1XvHqnImmHW2MngFHKOZe88EU3xi+Ch4sx897/+qUXm71UkdxiLjvSWLCk1+T4a9py/FB+p6rA3/fzBYpBZYnWANXAOnH8xLPvpAQHScESliEeNv4UAeoq40Y34eC3DTUqLb3sOG1ZfBHJUT+/AJmF+WJcx4oxyBOb6Jc/m9CJ0L0wkekJ06uhWaz4wB1ZQ+IglgrGvJApEQAmsReh5wwIBHTtXpOkW4UDXi4fxH377MNR31NrupuEIWdD3X3Exx2Q6LbGaDOnODeXwAIWQKtq2lho1UqKhUVoT3wmDVZ/AaOZ1jubJ+GwPJetrpe1D6UwXdr3ckJUuNkYnTBbUSYQe21UoYhTZl3hJpyT7FTqM2QFzvBCMOkwgTVtVuTu7mPPcAyVYbXc8uzl5mXuvJidzosZu8SBPy4rXAWfDqpe7c5DJHMtk/lpQuYEw0eYCoWhtc7hItGbwdoiLzGpmZAKPTEeUQyM+6TaGwijXsPhbpF/cPTPa8yVqwboIys6gBxmssqwAoce5mGzqyqxn4YBlWPTN3ZgKjHEWBir9XkbWSIA3zqbc9M/11bVePVPr4MOr/+u9FYpp1pcwxSW6AJbe4MN6708Y8Hv4v2lvNOve2Z5ONDGtuPNBmBn0b/yMiqM9bg6hJPCSYG6b8vD+wCb+k8APEze6kFtTZxVyG8eiSzvPjQhaEQDCUzWVAmFtAACkAr8Mg0dG3dQLqns+IpezSLLS0U80P+8+sxX2YtCJ6cC8Oj3/fLeBVh/kPugD7z2kQzSG6zqTZOXOIU9UjfsVjm8N5EvG5RW0eqIdP6RToweTUIUVoFLYEWXHyWaO7sW7w06bHg0AGOKya1020MWdHYgpkfaU/rCak0RJs8htC0rSmCrWXdEF27Vls30q/NuuJhB5/ffhRk2nIcNMkN/BUbXNfldQSpGRxsarp9jCSZua9EoqHYlROSbsHemdtDVJVjZ1dJBpJS9xjN1fUBGNuqI/q0nwbsHFNW2fz5UwUKE8ukBagqHG55YbAZx2NFujrUwE9vf53Em6FWf6Na3jY0JixeJ62W5DrOy56EGe0RQHTw4xSl0pQzp2zo36ymobowkj9XOxADOy5tGitiFifMLWn2mJCJLhW5HgpPO1J8mYn5c2XvHlTDrOU2VcyXHnKD8PAUKyXnXWSVbO7OUzLPj2YOTB24GBF3j8hX/ykO8YQRyH3vGNOsNl3Na2lpQ+2a7ij/QhCbIXys158ry+IhlzQBz554xC56h/sXldeg7iPcufPO5D3MKmcPeaHB3W+DTvas75HIhukyygdf6v99msjR3q5Yj5GrdOUFUW7uOSFenrCVjnvUqlMm3B7CAX8Wuw7vUy/ob5kZTaZQ+jNelFZ7cMLcvcmpZGjtroazKC/l8Gn8n26NZkawzi0vbDtAIVuyA94RQSBm+DGMPeRwoBZzbe7eMwOm7kJfSk3n7rkkxsKmrNS+L14IX84VDC/uTll7Cu2EMbU6fl1Lo4FRkt0bLmXR/5xEqgW3nimvAejFMupZNJ1xchK9Ve/in7bUJ8VKaHukOa7TW3TmQph9FaxhOEdDIBk1TsOTDXmiduUWDDZKQar6PJ1lLX+V4gbleLzkA7QxZFWvF1PG1cMTXv1rJJIyCrjZ1cqyfwvFsl3IzNbE7qAEtN4TAFkuv8chMTlf0ClEcj5TLyySNB/CzBNY7wXyPAxMtQGMVyZjqnZRUGiIPZYRm4sc7VbUTOYCb0CwPP6CdxdalBzdqfyIHDDvYxI4CLdgihE6DOdLCLheQ30R9gwmxsKMdUap1tT0XO8YdUZyo7o32ffhtNJYxCJyGkIq3ehbOyF//ynHo6VoMP+s/VBBWJmYIFN63HZFwplcm0O5Xa1LzVqw+Z4i9EhL3nke7LGzlNDtzSizox13dchqvGhmt72pORdOPkRvFwbMR5tMg5rYQWtu9UqMJzlIEKY+DQM79ZIlgxOvW0mtcIW0sheWhB8Fbk7wKRcdinWEdbM1d6Maj6pGdcjohwCpXBZgoecsR0iFRtr/J8t0vcBUCpZY1qAJ57gnz3y//hYDG1TQ7VLNfljtHOthZlnWxHyYkYVLR7cCzWn7CHrMy+R/A9eszjGqzL8B7ghqjWRUC8nw4XrKUMM7C7d+2jW6CvkSB4F+0WNKVVN+Ws8yvjTBMEMZZkaDRCbwmYU0hnFlMtGue8ZTDRObKbJ2YDSynjoyVPM+uFxyHwifIfc70U+qW3tbR+1NzgWmrt5pBxiND/srRpjQI5rPsiM/P6t09TtW9uE0dYwM1zbEmzQdsQdLG5MzhE8fhEmbW+zXwJYwBfBJYbnQ3AzDAXR9g1MJXcqE9k7kDpKwS/i3G+aD4euT1jxjcGq+tsBx7hkXFYRrRKKyZWzGfebFXswjhxhkPY0YMCoWeMqepZ3unlhoR3fV/TR+nZ9G+GPbYsXzAVTHVI1Bfznkh0rSmvAQWhNvlDy6rUVmI+3Z4oErLZWIkYrb3ft9EkTeHOZsnMpoD1+x8HoaP3VyDAYmHrbZ60Z8z0yPN8HlfcKbJD+/dwCPjtKaV4HVaRy0P4QEM1j1mHANuwLuc1ix8bjfOVQ1iBCqxVCQ7x61Al7ZTYyeaG1bjcE2awYKwH6ihBl3vpXxO5jIBlrpYfykmLdPS/7oOqiD/YeePFZ24pg8+fzC2WTN0k0HcHOO4WnfpPizHLVU4NtC+18jeg/Xzp+MXg476vB8Pww7/KskjC9lYA6tARPbeZF18/YVYVC+ptVWKt5Ec9DaHKqA0ybfYS+CCFxGS5h/CpznwsUA/8XPgUp+SEd2G1RPsbHAv5zUxLMAKJL6xNoLWc11XbtzD62YJib1yWsAD5NMDlisvSCeT8aVrUfnmdS/fct+RwkFI7CGoMysDndrCELJpQjtBsU2+q6UIZj1a1WfRPRWdKwNIv7QEwIeTpdlqowwtapdHnTEz1zj/haBY+/+hG4SNlcKfgGugMQ/i77guH63UxUfvEdvbUx3SoLR8C37LDrU3+X9XuV56b4g5yEgLaUfxbi/NpEt3nBLgKZOhXsc7Ya7LBNAaQCpgs8RvWpmOQ9Qutnf+sW39lXZLoluORD48r9raZXFjRvVDTUaA8YgstdGdCbSZfE/F1l4elV0nQ9fXQhuR8oCQlpR3IVgn8hKaVoKJ0yb8kbICC9WF2sAxx/quPNgwkH7ug6STB4jZntubRBQ41nnXj2sr1nQPfUbiHGnqKdJVV60nfhQ3OPoNnnsVfTxNFi4tFr46EyMVMdA1PZeq/qx2+6dJW16khyCX6vuIe1gOXFgVlnOfwnxXoZkRGttSSUuxhYI2nnbhVPugDAtIPUcSXOiZIrcQUIux0s8k9DTNqot06CMOCMPuJXEGQEHUm+Nj4uBDP26WJpYwIvmCkLjPC/VxG6H7SkDd8ZfIqjU/tJ9nZdaVo2+fWhXZHjlhZGVXjWG93n2HhHaIol1lmAIY1jLvLJbicHbomUvnGiB/kl2BFQcDszRhN8vxIZc7UFoe0td8oQsenUSyC0xKAMlHX3g8VkulHCUmCP9oRb/rGgGbiVQs5yNheDYx2gGILEdztm4U3vnMRGFUz6DuyAC+64Jq6KNNGmHcqCzC1wtP7ZUUWEJLet1w1zytQ8bMmf5bl1aT6obC88vF8p42tQQZxNefHieHNWOcFfXRbz2SnhQdmOQdomLgXD8E0RYRymP4Car2M2qq6mzHs9Z1rTNmCHGlQeEtFAVgCIpZFFVDtupOpmUIrZ460FbGBu247I3dzsGkL+h/cp1llyJMYDY+Ft2+TB3Awio7ii2j1eSgoxzq2ACeViENGNvBJyVhuZ040IZyVnmBrc+brdABBuyrL471dK1crpGdq8hwwg7nre5GN0jIQMp0egscgHGI0fVOXpO6nGzcY9tRoF8CVog4JtJYMDPgiSuyi7c2w3zTkmucInjXc3QjQNtWo8jho896BDyTzt4X+DvrVJ4VUePgBVdeAgTPneLnwLLyx36yoEXOiPrpgeA0sG1aw5fIypL4/A2L10IVKiRYoduCNifF8y4DePF2Gy2G57cRCMmRyh19MweKvW74NDGE6FB5L8el8JQvDY1PHAYzaPIyGlOVpBaK/sQ499ZCINDF5XsdazgynP5+ZNygzuQKCUOLUl1ule9+EyANx2bE+NOavGdfh23WOG5mRcWlLIPwHKpc+59Hs7qhQuWogiqHGVXuOAo1j/rY1Rwa1V4fgNLT4QGKrjFTmk4mU5lUVV5L7Btt07Fh/NeyMJIS2I3bTEE9oXYXNu28zaS8lZpmFu7j0AgA+LWCO0f4j5JVW4820FYsTGzdXDaqhvs0whnCy5RRsVXHijbbfiaAqeyCLKdte/HhSI9DfAPv1TN44NOzINZbR8DQbs+yVW/RcCX9eIaYMwDZTdmb4nl85hA3CStPkSbh3x5StNaQhz04x7LR868i7qosXzbDKr1+LqzE4JYvNeN+c5UZBdnFOFrsao3Eot/V2LVruR1Oo+KV1TjUMnQUXp60APEuAU4iom0aA/iBEXt2OJkPnaIchKzRXAyP6mkzKM8rmJbaMJnY9JyG4kGy6kIdYCGLloDI6lrdIvQHIthfM5VYdJ0Dd6xY1yhWFqgafjJhtIx2egWqGpA6pH4dkAWQG4slp97F3PVrF6WIdofm0p2d5oNL5TGiCTrooZAxfGjP4A/8ndmtsX9LNSbAcJMz8QvNIeh3jku80DyCRTr1Xp990CRKcgPiblEx29uRgUCUtggk9dWZyPyXc95H7vw0l0DAYP1JyA9r5FfvZZRGRPkBgvsyYGjwzbloy0ub275ZTPKGnTp5+6zDRJ45CwmwnmWeiMPExmPU4cWVcSHRWrdsWIR1LC5h8Z1SRB/CBIq2vnPr1dbAPctKxSBVNP6Jg57IvUkWrRzJhKqWXW47g8wYUUoAK7DvqqpHpKdFs8qOcHVhdNG7AiLVy4YblINqttLEC5JWW8zuuW2PGypWrbLK4YdlOZfQOcipaBuQL7V/T0Kxs6a6ZejGb+QePSEvHJgJJAbHn7sVO5LZEwHB8gXyz/+Sj4+eyENkVHHthWVpCM0D9FYYJ3hcz/0x38UUVH+Fk0D+tnTAEOLqJqE74/H5oiaRrlo70omuKC4PEL1c/kLV8qrcNouAd1UEJy/XjbSR2XlqPSbgvKPNyfYuKHlXgXeF+HKHINWb9My6mvzOjIaFQ9zVcptXQHoHMzZxzI7N24lDPjmXm2Trsu0gJ4Gcntotfidwmk6C/bYC2nmMxclFRNtdKwViQovLipHUt/PzJSC2hjMC0J5sgyh7AWDv0VX8ehA4lyf8kt4Vppyn6utf4ilpbbekp2mZRzqqI1B3ardaSRCs/o9zT/pxfBkSxAKLQ8bVyLql8GHqe8AUkLbbUNvYxQtJTUc3/WAEqvvakumYDjr4rsFTzgA6LecIj9tF1ZmgkxWFjTb6sYtacx40TfCz1qn+BRI0wDnYCSAmVlLXiYj8CxLfe6VjzD+jV/u1QhOMrzk91fZu9toXHre0bS40ZbJdm4YzS3w30ZcLLa6jdJeHy0Rz4NVUjn2wWq0Z4HPdBqvbBIbaRQtONrw4VFKUFeGMAWCHb7g9m5fD+8tD8fPQ37IVF3U5ckaNgdJ6r5daZkITAc6u82MSrU4uREyFdNfcbmz3tyxwNEOlnHga29gBqI37V0uiGAGfklVFt+IOl/Nt0OxY9R9jSQfjJIFr/GLeNDEXgNLrVdDkJL+ZFQlfXGW6z1iTiqQO9ENlDLt3OvuA40ti4RTKsu1N0ZVvpA/kClfAcrb/KEbZesqWH7xO2YHQcg+JBVJevgTMV/1cmU3SnEhEFVML05044khfggB24lCLU+tSQTydg+5NmbLwz1lsA6jUciw9+3tgfjYuXnRmThO0t5G5L+LmeAxJ1X3KXJlCqrqCJYq+W3cIpCVS+p70/cpYjDdBNr0ArlVvHg43wKappz3pLr+lcDb2/UYInnU/JmlQ0YgZS9Yi43ZspcZkVu7G/3caO88c9A3E6fE3IOyz89+xFGnGjHmCpU4ugTg2FasgZsUjyWWylxY9DX0oALBl+QkR5o4qT9DxKAUPid4RG1dNzmU+loP7ik+aHIDMfoM4HOgqaKznKrXJdWDojbpWdtPbcunIR2wxEWgDAcrSuauIaQ+LER9mXgIxKa7mCBptji65cLUd1UKw1O0WFSkJHwgxY+KC/OU+EIU3oddosWcWC/4RyACib0FPEek0TJXjpzTPZXqb8lAWcplLMD0L4+RblfNnlxGRVs2vbHJjHUFolAQfyzpvvEeOjGYSV9kA+jkgzDXr7wgvBBlgCHu8x/JxuTP2dVn5m22O4RPYBRoM0ctV/itWhWpkLP3kQI4JyBv8i7jq0LsHsIRpDeyKn/aSwna6gUqz/KmbJHyXn0l0Qwcp5a6RR51spjLRM3KEt6UpKud+RfL2zCIjX3G47CtGeaxkrily+mCWe0pkwoE1jlhb4I4rBgZwssqc9Ox8SKwBPDeGZDRCf++ZwGbryagXyhipG2irSmvmRbyoYtJJxqE98kr2okzQbZzfZxcDveyRkXXzOhKZ5jAY+J02bldTgg9N9zhTAIt/vbMw5TkPn4dMmvtG72gZCfOgJ88h7fw498VF+uqCyhhx6MNVnMyGVxKmnpyh0D88SU1B5fU+xg5LueW/o2jUK2+ncV701WCEhBGndfiKXSlRPY00N7ARer+mKuApYDlOgRQgV0MiHbLl/TvqLo+U0Di+w1a3FmneJvncPLUsrDkekqFHEkDcDgX3U83t9NmfpRZ2IBHcsxvVZ4mQRO2mYsFDBMd0+IWs5olIG6KN3djCPLiGZVLHqiZGaGsqQWOYwh9lz9oLO2URigYptg1JqA8GMe/vyThKDbO1Lr4okXhUs1ewOtDOfQlNQikUORQr5RbKPFNVjlKf6Cy5YrOU/J1UaB/XTeQTmYJrRCQPtBu0/fm/f7HaliWhYl1k7IHBzO6nTrwc67voUzcXuFsw1AluQKxpPBLBRChh+dLENaC9pDqjo4zTrFhQ6eKIyy1JKyqgt6udUuG3IH7Q/2W3wHdj+hWsjmR0OKlvTjtY6Mhg7Wv+jCj8YgngvDl6IluRp/pwFjNBRuTXno47Sm+w7/jWlxYDxBULYms/qJ5hwLcI5hAL+MdIw7IaYubRBHkfTKEY99OrSlLCy8A5Rka/ttJfIsLsd76yOj95HZCAY6v50JcS3zk+NMRSYgvbwBBJeygjroqF9yY5Xj5cpUyltRGIxfYuihEqVzEEzwc4p0V84Ht7ckSmgnJPHzffw95OU8JWpxw74I/OT49ljfLwT83DJ8cSpU/XEeJX7VNE/tdg3YrfH5IA57OaepJ4XgSvK74jnV9oYNtLDqNAw+glrS1mIUicN/j7Oyqbdq0HmDmrrd44JBVEqHaHtu6FnGesRd4lXQBzsGuncp4QdsVk/3H9/AUHPDPk7BRwV2s75zTkbBZY6SUJ5xh5m9f3fYP2A6JAOZdJ3r4TVPq7Rqge/lklMmFzJBJ7frLPFpz5vtYqYTTQ34YqfqFJR2TbwIrMU9ANceGubpYGnLwmbyywAiO/ngsfRWDrXtb1JjS1M7c0Aktv29NgPV7PPcchG+htm/73YA35LnQDBZONsP/fGvbsskSWmFYgryuLR2vp0e7TfPxlwljnnWKevUSLH3HxHQbIUBq+2+MBrHs3vxzqzSkOnWmMqbfvRVbdjA9+bYXlIvitnknelm2dl90MZeLFDpWb+x9v5SQEAwBZbCTkHo1aehIo5WgEcsnyhIYCxXyA2C24Iu5CBmKJ2FTfRqo8ge2lIrXhbHnvvV2c893xVsvBZqbu1/8nO5WOEm5C01RXAKJtnFv4feOKF5+8XVFBEBMnmAn/Lny0Y/97TnVs287u4JkhvQf5uEQq3+diTSiC7oww8DJJhWrRJaUprMa3bhMT1YfUfFGe//uz0vD3G62qwVksezBUKqHzvjipVMAxE75urvlvcEI5l2/e43AvIUjhwDcFerAyZNb98tQyj76u+BcTu/3SZAhpmU6Z/qljTHof+1IQbfye/H5r7ZAvfwH5PqyKnKD7InhYM5qUGk3/iiP6FWQ3aaIllULj2wzAJWQIn0hoVCRKcs4aFm8cUI1YFl3YCQ2IcIwS1T7JbUEZ3YThQt3feCTFnPn8UJy2bGcTxVmGlzG5zFsgj038Oc4U+/eMXS42bpHUCM77RWcAbTpxv9JSZ8XqMOcdJ0M7R/x0sjMKyM8hnGdvXAjcBbZ2zFWDmHSlTM3PKHzyQbalFAGbqxAD5KIlNTlmDOQA5TsADCkTStxEGSd9o/pCWG1xeOYQMQ1PHQ0v9BUUCoYlvHpBbsl4OONGK6EpBbwqH5Lc0YcHvQtGnMKV3AhQ/D3eAiEAJdcRdOCxkXzLOAnGCg3INNGhb4N0iR26ssGSVOa+D1ZgQie9fEBbuWIju4DlVJ61eIhJvOlfuFPL7LpavcUxXM3heQPkZPHUTtKDQF8WmRen0+ruG0A9pFf8TO5TxLs7hZAe43cndKnE8xYyFyPFmpzckL36IqTgTbKTyK43gUwEO+eEXsEhMqS1TYDjMiEycurCujYbktj6wWa/TefUw5VXQ8xk0aYcT/GyB0pKVdIoXDp2Wo25rGjL0kPOWfbtmFnvHI3rc4YrM7zNtbnbON3yCL488Ecl+jiOQFJyxKWnmqvXpCqVI5Ld8Kj/rlktiobCgB7BesI6vKXxFDI0MJZZ5F5rBGR/M2dsV0hH978Z2y9kH9dl+d9r7VeTur+qVH27FupM5dI96WrFyV9UyEtlbEGWfkrhzfWxpO+jVBC0nju6eskqBZ/yhGwcKEhl/a/yh82+T5OGZn7MkhEibXQrZH7oc83uCHGs8hucJZJogf9lZWl2tkY6JosnrDqbOqasuQSK9r2AnvATDwiDOR03KQCOMYRLj6uFdagwdXSUIqVx9lu3XmmHe3/DVBg41ZOZJ0rRphoe06TU8hVCnT5CxNisTJTWqIXSJgMxQKC0IPMNgeQ7YcvF6hhbqrhn9z+z41Q+6PTyUnu5AcAr/q+LF5qM1fLlGqnpd15wmjBZQ/jmsCPsup/bB42B3YHPAYb8ry/SslBa/qfzkd/CgHpeWCCG9kzbyZCy8Ylgme/mz9egB4Z1Y51mWJl2PM8HjBK92fgHjmLM5nYXcIgmV3XlJ/zyFSkftois43aF5v3xcRwcNEZJbna+iJHcLp53bDoHy6t3ojE8lVwWX7IwstrNEmILLHjTLspYn+inbjn0arGkV0k/ZK82BLQolNHzHiH92pQeOpIsZYAb7SxpxQQnymSC8sw8EQQPQoH97W4Njlj2vxUgUqLrSquvRANXVR4y2VdUXmaaFgQzQsiUvNWsSL/8A6LXRHxm/kq0lbU+mq9sAMX2XfiWlIFIZqF1i4Oh0fFIPeY2Va4a0KK1hELVRJNZ/TEkXjnGjsYpTTizZ/vh/ZAn7jxoKr4KYgdpPF82Txv0TK18KZPgHkCPzLThyRUdx0LOcKhsBTrZ5IXgleU41ruRDJfNkft9miZxVPgGq5uBAn2A2tpwrb9Udq+UZ8JgUgunQ6tVXM9bochS0IYOPHjMbGk1xkfyQH4iil8wRzhoqJZjteCelsutVBdU5si6TAMgXdzMwsEcvvZS9rohvylLqyxsC3duc95eqOL6UWGYiC0BHT6HmfeLDifyv/+3gxD3ACjj57Xa8EpRiiW8uPmksawC9SPJeg8PKGqKLf2NWC558OzMI1/ruz3m942YNFZcRmwoB+ZQunXET6P9dbhQs//F7cdFbOf/A6MWuhwhP04reHoqNN7eJKDMNqa1mydj1s94MwftJzva9pvxtmRKnN2c68RJNmZq8TdeWT9CUKrCpQcf0+eOTbrv0HA6IbEsdWC++PxXSCYvLf0BsOjTMOT402CozNGVy7URo9zEuAWp4VyRk/T9DXDQGKG+VHYamszO2vE86BJZyoCaLDUGWKaj4YTrnq91iDkMd6E2V9g0q7yieiz8caQzH+f7iYa8kABjK6jCOsSsOGQrZP/+yM9yRuqqqG8mTmDK0gdeoHHPXq8GmX649+D0KLYm9xJUOb/4RZBqF/lLEUxKUUfC0Tb9uxtheEy6a/K87b8n8pcwXvxE5vYugYJCHiYrSrgqZJSj90M+kjiylcMSwBNrwaanL9jaaH0gDKq27X1FdCgQCbVSzKERkAud/rXZGVXcvlJltqvxKYxe3uCXVKmtPcwpL4S/KcSFJVypDlpI8WhNczsV75cjCZdPKqmYsv/6qpTRhSrL8BC7hW+CeenfEH1Ye+mKjPInZWwRoOjzGjiAxlVAZzHQwamSh1QPFb2x0pzp8OiqyJBMTXErd7l8Alby22f3j8g3q5ZUC6iVY0n5e7vHldOGbJcjmV2x71Zq+r8EGQ+MoVYZw3ZxQ84RB88w/UB9rtJunQPUFaDku3UElo41eoINfgCYWs0prwvRR5dYle9jzaaL/0B6aC4eg2DOFNVNFzQ0Eal4GNpUZjtTEPn0/2ptRqrzcXPzR+O9DaFITWgrPvEdHbGFD2W6W5eluXYmB+i1gHiMEgLcLcBjeAndVZ7oX7K7GPJTvS/ZNCOhbsJIXjpdvn/3yGKcX9LgWFDAuw4k2x/69RwqPcUYfVSkpH8pw7giVGvHWmOwd/meeBgWFUz2TO0D3cu0I/t6FMDMgSbpaFryybCMDaiLj79a748gc3SqaAUo2vCwe1sGY2QZeGrFgcLY6gEzQ+7iI2s1OoRqCxs1nITl0BXkCsAOgVbHu2wq6Wx564OOivGOCKCtTE1hXcGnWp1PMsbiLFz8D0Z2lotOPLFdBNBWx7zZhyS6NiNd7j8AXSpVjsP1uPz4tuRWREJ5mmdHXU+Txrcf0iNDWyekJG38FDGng44XR49FLwFGQcALeCf/u4/10OeNNT6vScTAFODOVJfQY+ibc9SWQhhC/9yg2Sfblm5a96cKvkGKonEjDe4MB3dR4bzA/n7sn1qt5xwgnlTRwghFRBffaV5AUNrR93uhn9alP4xElQzhiozko8RDDCjJCRX9eb1hflmTQQJLEr0z8IB81Fozm7CQwM/c+w6d26S7P0w7jxd/bLfr6G+EcFAgD2pyGru19GiphE4PmFumhsGbB3R4yHsNSJRxkYEroNuI1DjNoxgAXInbYYdkXHETVy7ClvCXuFqdDroLQTUv1ZuZHJ/rwqML9oKuoIrBIkEX4U5Xlm2Tysz8bkJfGVGyUIaI+paAk+RnFPfdRlSINvUbX+ZjrGvl5fc5XVuU6VVcyQdd69ySDlvzyqVFE5JxxZYKsEKdENpT6j0yVwUVum2Cf/8roL1tHgDsEzaR1UwtAt1ugyZP+FvVQP2Amx8rPLK9ErelP1azml7a44QZ8QAAZHVfTPlZKXM7kC/9+EXB0mfye3bi43/lKhEErCjNgOan1W3w/WbzBI4nBXucQnkomZXzU97e7zrSJLeQb7HmfWZi6YTMib2edBzayxBeN/vICfYk4vxaIbU7e3/lVMMylpz1dANaFCvetpG6nf9LMVIixnUNj5m1lRU5D34n402lEXl+bh9ecToVWqZQ0KYyzXZEStL7gzNY2Gk5/2xN+GsTBVxjVyHsjDXYOQTdMgijZOMSS6HM/mTGJHSxMzFVFdHeOAQHdZiqLesGIVneu8c30GT3qMm8piDOmbJ3pu0OxALS3HdrOSzAc1DPEa52I9PFF/GBnUSxmjxQbCMVu+WN60t+QnLv6en9Ut1UzW92MS81u9Dpjsg69CXjc101kcARQ8tenyxty0uCyfsuFE8c0FvjVAJpMQTt+ddlzUwNV8SAT4OCKi5P4zrrzcdNQAvcwUnxesCIFo3GpFovXDbxvbs35CnsNlmFV+MPIPgWJ5zD64lKeE+ly4dkc6Vsb10KWFPfI9E/eX/b0xbOuNg4P8VOeMU0JFNmvBhXQde4R0b6FdJPM2aWlo6MQ/v7Wuy430ns7vHNeG7uLN/PcUZnNftyb6IxaMqRv3q88T6s6uDWJvaPT8uZBLVSZH0r+Vp90xc72xaXFSNotXZW5ZVoDuHnFtA61WUqfZJpy5eMrfMHtrIxbm9BjTFjLAYc7AJCMoIpII6uy7s+lE/sN1shTk8p1+PHSUKR/iKMDDGerYnzEwTqCks8pOfE9+OAbbe7fgk3A/M64HN1fCuDp0Vt+q2SecQ9myert86CHlUyZXqymsNKMmiBbICZKWgmWWEE0omD46V9WlkbvF4buZf+IjuNeQUE93vnZytI9RYCnnSgvBGzxDf6EY7/E9IXv5A7/nSuskt7RVXoreo47CC7w9DG5VZPmOM1eCFMbFz+4ezgNAY2GM8nbjJY4aa91uB3cOpPV5ztHtGJ7fZmO9orr/m6H8nUayAmeRKhINIeFSs5u+h1W11X1+gjS+wpioi0mvxWed3wB/XljocsHjHgcl9jJLvnkHsD26LNUEL/ri+zBDMoyP07ohKSfEm76FSEUZf9z7/WFsqyYjhks0OKR1rVI7IuG6dTu11zAhsNt9JwhMHP8UftWrSxDm5sOhq/EpwnNv6Y/gpqrSdKyDLUs9RcD2pD1CJSxml2q4yQGW9YijxHtYXcK7QoT5rmKlSHcHutFFNpDNQCC7ejYddC5S9/6mzCpwoLCZBultViWlC+5fi6C/+GDVjpIw8dOT0meKM+CnH3e4KXMC1THooGxLnErBsmZqUlzEtkD9AVygLFZa7StSsV5lDEmIkzKyAgzipaK/S6D+5TdBPHBa6PIHTq3iEVeGdJOe4j1D9ew0FUwHLtbkXNN2x/V4E8GtGE91Uu0vq10ZOp2RBiXw3fSw4fBrGKXau/4i98eftNS3AdV0hxawsuInUnd8XA55zscMGTE7cJjYhKLDcg+etmSrtVbylYKy6YL1p6cbpIbOB0xY7HC3o+2VHgfgd2cGFUmAQ4+k8f6YssI7OutjMFKR2Ex4oTxSEYQ5bZG3wAhJHZS/RLGxpiLD77YaOTKkwMp7ZQK3f1yVG0Q0XpxUKpGU76dfAAgPxtpAmHuGmEYc8LVDbx6ZTd0pQTwTceMB9HVvmyva0E3XT1vRvGMGfjXJDDk4Ra03G8zRSCOPHl5pXheysBnPt+cdZtP9UWxaUZWHoUN5QcOUTohHMg/4vV7M7lU9qcGjFtsrxuY4fN/cFzXU5whUs519ARcTb2cMbEAHdIofzKXlzYSSqQbDsY++KeMV9Ykwj9IwfQKRD5QDRizOqIWo39vbH4lAIfQR3TxO1q/mmxypJcIsHKOXliNyN/rZVn/s0e+7gwlh40pZJ3OacoUcYvAbzgeG9cvXt8SkAxpHhW5xBc1+wfRXmtMLvwhkyYfvtLDrbDSCJPoKP4/K4ysCmeg7HB4X/QTVp19wzdu0xHTmLp5GvY/qc4EPdYkE2LiqCN2854MFm42zVksh6u9GLrrckrb+JGpE0gkxmVosXJd3VqAg2yk0MOFv97AaiPHpdDvOCgIzWMRs/kvwBwEYvGclXLcGtVbgJtI+aikNEEBY19hpzJfBD3URVgG2/vfEcnQ9FZqQv/KKr49MkzIxBagmyadrmKspqRoYR3t9fmnNzzq2yEN0CVfVHq7+iJOMi6CBfLdCBZwkrhBIsAt/8rXrqceI6rFIsJQe20NZqZgdq9zYatxO0TPTNIjp6NjqXvTLnnLy1f1z4WJ4OkdjWCOA4AR/1qfkxFwbs+67i809vWSmd6yO6lD+CrgG8cid6wl/GInUvuIUvJLkteRBofJXaW+4nYFsJ+JQdHKXjKP/6DIycdFoQrkdRsKG3lB5laMpQ2x//QjZZAdupG31xbhcnpjjZVbjBE5wTEI1dLJ6iukaASv5+tUB6YTHRYStvzpU96VkrCmgbP1ALd3iei6UTHLYqhmkuK11SJPChcs1i1Af7eOf5CYtGHn9Z6Q3rJ6MyIxMHLGt3ZHZ27k3LvNBZ/YGEsylGVUuJg+Kg4A/Ik7SyIAJ2v38/wUFpbE8eoh1rRPG2PxTkVC3GzYrg3dsC04H75k3oSFcZcV4aDYd02T4I0oRiusjye+Z2X0psdYwX7LsmCVgNIKFwPMS5QueJB67xba+Ac7+9j/2mv6WQKGCKJiwrp2BF41k/H5aSbDsm/YOZ5RQUn6pEAH5Y6NW2B5EvOuLO4pv0NluOOYaHZmiECKcNhwvshe8j3q+ZtoJBcfgXt7RI1/grjgRU4/DflQEvPxAb5os+HRHiJp8D8wa6Y8zH6uc9NIo4waOJpd6hDNa+EBvivq4O8RFJF0dm3d2qJni4Lj/ujPgL0DsdyvnWp2j3bj66Ngm3Od8xrXaI09LIb4UMHyr/wGXbSHdUfzdX0x3a2yM9qW5Bi37pnvbpZnIi59b4TTNvOQv8q2TcfqjC2Z5BiQxwU+7ky625fZVVxs4kDUwA4XyG7QX+JGjksxw6vs3ZNH4M00uaOCI7CBfeve4jNBRBIj+Vifpz0rlEpfSijxN7Jih5TDy5GT3WsJdLmi7SUcZ7QHPcP0byYp72BNgPYx+ijBP7gEhS08mECa6Jje5PZWD2jQpooqIkpwL3z9OEI3hnBKDYXFoFG412N6LyRb0PiDgIXXEpJHbv8jJJ25tZk4FMZIk/94G7RhcYDEDp64nHK2qS7lpRjo3Ik8FTCW78+0KMpSIfklr1BcD9e7W9x3KR/ZopkjuxXv8lg3KU6FD4aPLRDWjST11TrKMPsGZOl984h5+yXK9+j5BowwNTIc9es06st+jIYteycrvq+aXrBT2/GeZoh8MqCpZ+AZGZs2eg0qCCNxm+/HizQYtqJlWPoYSIjQTUhmaLl3babWY/hnXLPR9CQO+7jpAxpQLXiEgrWUrBIxV3ROFsBC7PLLQ6s0dtewZrN13TvdHnM4oLrDvPEBEMQx97NQp3vV+14dIR+mjdk/KoM9A8Rat6SR9ObKyx7u8J2bB6CKP3fy3C6drn8K5y7HfWgOgQZiXo01DON3e0Ws/ntuJOakeXPaStIiTFereSmZvgFxBr5vmXGb1MyBJQVxuSEOo9hctVfDshMojxpp1wt9n5lQ/wr3bitGIb/6nyoB/2Mn1DP+8vveSxA4qDBDZcuKG42lvyxEtbl4GAE2XOHphimMdLbKshmQHj7dxWoTEdLckKhFfB58SxAYYL3OPYTwWh7a9LWbxKOlADG439K4ZxZDjRqlaG76TYQIsbgy+twaus5RzZsfBk4skeqWvsqCEkPUsbMUNK5s60oS+OUmeLQ3zSjzddpXZOK03BmyxHWDsUzwS68bHtZdL3URBQE/l+0BsHiYicFDWszVQ5C6JP0HFnRhyGTa67E1sBc14lKpde/sZjZcHbUERSFMnK0R0Eo2C1JFDv72wy/GqXKar2Z13af+zHlS9H2kIgC+tkeu8lBXan1p4qkmMu42pIJnUucAgAD+sNyuSvVQZB4/vKTk0He9SN6WCdochyP0ALTBUxnWqWQNy6m9XKQJgM1e/ZPNjfPSIGeB0/yEEG4FMfyxS+R8tJ810Nqns7IwSpQaJDe129GRCsnp5aVllTpBN1pcA7DWJhQckb7dtHCpCapSpczpWX0iJdsTLJwNVGO+wrvdTaiz6RbH7WDuOs3NcuEGLery4JKSIMnXFoQqBCTG5Atx/u1f5bnmBftZm10RldaI39VtSAiByOiKFvUoHcQkfNDSzKFIDgdNFUJ4ZXw1TVXftmaZlykxDvVGsHTCuy8X2ZyAgvXNQQeCbnFl6J2P38W04q3UlSDz2ElYw4/5GdDjCIeB+V0fxSsiDEVeJBXilpxnyVFeeszMnwRcz1wm8gWY8XrgE32J99aaeZ1sKD8F7V70SqnZr+NjXsTNHYwtk3fTLRiSzFNJx6DC9Ec3KlQhb/Ypqxgtz/LACSBuowHR8KrniM9mBNTycV5yWkrAapU2v8pxmUvIg7rn54HcYbCFCCaWLnRKxvdlHiSQ2Rc+VqN+VT6NRznNlGyK1wMx/vEgTfgGNUD/ehBClGd6tDXKVu30RoQqbXQxvYSBOVjbGL3gODYkeJ76WzZWCGXu8GW/Zkhy/GKusSjYMHIJV2Cfvv+VtX1KPh72X1YihuT0UWYvzDNrCnWRq+yitumdPhaDKj6ovMbUpALpBNQHXosZo1B7vOmn2A2Rj5ysKHo5u6XUCy1cdCvTPIloW/L987oyWmhoi/dPoi4vnN9SRLuApO6ylCT+XWcQhRJ2Ivt9G2i13F50wgoShnQ77AErpWT9fuFoTLt+h3cJg5ZBxiV5UuugZTmbGvvjOdKvhdMTLf2T2J3SJJOMgovJIS4TbxwzuHrmwWgqHJNNv39izHwX/rO+YGZVrRjAtQ6rogcOzguVc9sNhB4lSwuxMQQxtiQ3o7bFv8Z+sufAt5/CiHj3yFFhuaCgm40rHjUJCcKe2mS+MoARZ7SHsHFQL63uffggrgyD8HX1JzT0Lf3dfVOKJNyZr4dNHIpgiHcMFHn3Is9RCkkh5L6fiXkEdBP/bZcTdvpTtjfc5i0LeEWdvSGNXIK3wXNTA/KucjyOVDFyQVCzG6hYy0LSnPrjq5VJ4c8AEnT6nMajj14NMyNO/XKlLQo0TPflje/wQVf6qORc8iq6T53QX4UqpzOEU3eG+K5jjIe8Oc/8iVpm8ksnf0uoLEDqqMCMld3MJpqSPibroMh/r6mLTDlToL7qXoBJZLbaWl7032L60fzaIba2iMwsh/hS0Z7SzahU2+4xIZKDuXpIGq99EzCSnJdgwHuEG0S3W+l57ESOZY4qzaxdL3wfHV1r03y5hPmFtt8j/Tlw9i4Yz1keMsJswkXlLjIzS+igA/r1Rw1HuZXeK4JDgHAUcAlgPO1bC8ffDHevRL4jXvCEpQOQ5+2M39dBDtcH/if1ddQolf3av/hgWw29LwrWWGhJdSF9LhxUjs6DWzrL4H2E7qgu7pzn1h4l4Zl2QGVg8CzrC74e3PAED5RPnH6tDGRrO0LynLlHbURmLC+0o4OdrwP+P9e5r20Hyd/oa0IgFRTpbDwebHOnl/mbiuTl8b9AIHWB2t3/a/yspjqkRubjGFbufFEngNF2rNlUZSbMscm54iebEUW4KprA8Kx32ygCWV+acDQdP4i4kBoIttTCZYnyUGWYmUFKuFNvg+INAy3TQSxtWhwUvo9EoKeO0Yua1yRgzpaNlh1RzREtmhPHpYZOqjnIrmSgj93pUyzR3I1HegoyLrDEIVWa2gAF1VJwx2xj6GjJwStxz/J3ZCciANiTJE0g5pdP3WPHHMxx5XqgAsG5F7602V6G+M9vYCfzf5sdZOxLwKAdsWd780KsrzyUZBdqkOHOMrkZYd1K1lesKmDP9LX7dJ7TNubPzfkUSzGq/ZmaDfMOk0UcQJezcfNKQLgLZ//u+9Oose3WtPsO0WVSrpL6LDZXB2iV35HVtcGU3x+DMyhyU9W4Uwj3PBs6j2VuBlziE5PZYwk3YuikgsDgjjrypSP+C9Jfs/PxZXd6EqYL7ARa0pIKUHYl/ujJFVHbT65JIfjEdV98L5bN1lN3p/XOkFaxAsoFuRwlrej8h2d7zWYOzKb/xfTdrRED2/DSH2VqTzjw8UWpr2ZI+/k/Oa6RUrTfld2BA7hmJRhRQRhAXs/u8harDZF6UlcTzyD4P6BjjkCMhqiAo17Ajg7JvTueNBh25ZpBCsipgJ3xYFFsiHjF1SgSPDkyZo1Xg2KySz8MU6A7NTUP1s2fUig6MB1im//K35Wj1XBTUMUqFXNH9z0iceKrNFIRFU6TxZE2r+L0BvyzYEuWlfnnuY+mEWCLpcRPZK098XEZV1Y3uAyif4czIqUnOtgZ+umcHn4KDqXO/IyYC52ittJdGlTbWmNw/J242E4CxSp92JkmC14/UXwg50ECqJp903vrsyzMz/CH0WVHHyfMDhDmHWuqnVXhB0wxdE7rR9DQI8+808/tIvrWbUcnZzWf5GRyDQh+nPJTkubqbVywmTF79hz4Px8DrmAIGnAI5LjOMGdgPNCgJkluo2+VUwRJcAmumPqNmQ3iGZWTfm0tXSR0y6oTIvdHg7ao1wGSLMOsHad0cqfJXaIx5anufV9mLSg0/EFwSi1QRoRInSVslnmoChGKvYTIBintwFaV3bOAtcyTToww8ZM27y7v/tuq0EMMD/eJIJNh1tmyjVk4z+JLbsNIh7WNgsBUe0UfAGdi1gfiUT28aGSHB2ytkcXE+Bw09UYyJix/AjNkzadDN49FJuFLSTss0yjy/0+edVZ19Apw60GPASUCvKjgx+/X167FdD4ASbIui5cF2BZcfhVSOHqNlv+dDmGKFMQmnBU+7AxJEuwHAc5wKJEb6N4jxaNGjTpJDSVWFfWaiF5bGHL5wAyK7RfBNwg3m6gH48UYCE4qtSkaTrhp0t3S0J6NCCzFmJRlB6DnW5mVJERwQBqqkNm/AF2s9P6Pk693Y5xX+SdGE28oxR373ceT1RkEcP5Mgghm1SS3wzx6p0owOX/KFV+AGVq1Jr9Zxdahr5AZmuTUK7h7MsUW4QE5lvvHn517C5ckOVQ0R2/EHsQz7Afb4N6yK9gEe4HNuJ9MNh5y5uaxHTjw8zk4kaQYQbWu++ZTWVKGCdKS+PbE3EaGOuN7ISod18x8Q2g5FKq9BhYQ4QLY2tZxpSXyP/uxP83zEVmtAAFo5yK7hklQaQKZAoE4qLrtT/n27t9dUk2KpZXzuVQTuPPO1bP8GmmZo54O0tvQtvcEfP3tmSNdX8ybTg+yhJz3ZI0J9zfVE8N97nqFm0aNq89vwuxD8AdPWnMZ1HrOtd2ZTiGv6xT5luT7ZtHU/Y9RwltE+BIeE8pPpo3ovjseku/Gkuwfjhzwt0TnWITjimbCOM9A3vnYkr7LlTQ8wNYhGEKVJ4Rca+cJ1odG3sji5q7BTO7hDRPgAjItshjpUcWhwnk6ubdLf8WewRa1ETCbG+q4hUjc0tZIpUOc///Ji/+qjcg2T1j6qU7tmoIzMlQ7am973dsOVGuL6/vJp6IxOuwI3xiqrFI9zv3eZmk6m4jZEXz3eg6m+q4FkQK8Itc8MWHYj3IHS7hOtvDro8gZjxRTIMN0PLcXKv9nDa0Vgd+4DZDMJTdnCLxmrTnMreD1Tp0OMOI4uqsNNlkQMmuLS2i/3MqnQQwqKJSx1Ld8y4H1mUMt73NFRrqn1vJNpRQpLVKBMS2iPGpWL2s9sGix2MANKaKof8PfWcXCL7e3y+acCBrB33IBX8lwuPQCIEp7oMD6RnlUzSU21qM5ECf1G1r3tI9ny54MoTrMhGyfGo/aLUEkdRwLKOas9HXTUweV8q8AOM+g7365E7R+0J93Q1oufeG5nAqf83yjBwIdj+2w1wesewau5MSYo/BBbhKXO1Q3nNOJLxVic1AtMymz+auhnkgpC/aCkqmmko5I0h69p84yTEsn7LDzANgluWgrgEGxfKX4Dh0DnN8YGYpWAB8AQhCMpdwuha09CCJWEvK8IRpg5XHOSbDbeneVLKaMvBLw+/Dhjp8VXEif1OsNbVswgiWPgyK7Ug7+KcHOGMn1up2qbsD33gyE8jWPnDRGOazTHeZT0GbqZS6mmFi5edHfX+hpQWrsP3WSnKf2CD7DjAm7bAS6F5sdBe27r+PBFac9a4RfXZCZbfeqApRcuRxROvPzmV8xilvVEzbSTB+w1ecdcv19BW+mgVDMH2HX82YuonWoNUS4hFLCk6uYgvAJllils2svnmMTfTz/18SxWHXU6lZIFezlNr10jJm4hb+n2pxUi1l9e6PrQjz+dhqZdG/sjvE2tu+Q1F+4U0ZVMIJjeBlAGYaPYfAIsaBUaGW8UrSqSi86n4Nu2hD3clfVLHS5WEE9ddca4WlTSHZMqzmWSSIelqr1aZ2WPUyrFQ+uijlH1MaL258DeuFEWitLNlUmdFkqzkIpN7nBreGG+O+T1DOzVQ290HZmScSqer/WIpr1XlDoEM0hDHPdLakc/oLtCWhJlIL5beOgh5RiNdZCeqVrg6b57O1DDKelfaaewHGAhcfHeqUko0DR99QI/oZAvXznhDvw6oFBjYTOOrjnIMUhg7ubozXb1LiunOGdlj0vK+nfMi61jB8YEur6WgeUbd3KA1LPq9C3sru8WuQZc68imOwxKz93yw1juglG3IHfY0fhLKsj+ccE5TcGWBEclEXPQBmfxdCPINBfBYhyWFHhSS423XF8/Od28UK41eL0nFl+bGordivqGaY687wsosfM3oZW+g9zIckZFo8Y2/hDCdyP4j0Pa4/T66JKBXpYBWj1XwRk80vjLNcOBtwKD3n4aO3RmEi7uNcFDl/3+rIqkcoonO3GPEyrZBHEyl7qfswRLnSagwVYQAIFZePmAX9J8ZO1GlOwLcE1f+XdRgZCDbnrZJbP+oygrwNmQRln9Wli4LV01wtjuhh0u0nYpTHHPYyB5EvVOXNyiXXc2WzUKWIzWdlqbLuQcz2NsdaR8Krlj8Cccs835o3g+u2G2gUVb+JItLrc6Mdmb+QSZI+6ne7qehywKPfYSx3cUBPa+CDyQctPcdDNpJNbxScag2RU+OGL0kHeVu+uI6UdyOQrGBgCHjCKLrRuKZ0OjVp5xhdj8rxZhRb5TWMFC2h2m5oqcJ/xmqiLshv6TEsNfYb+dmi68/SQKKmtoQE0ceXDKQWO/h0+X2SSqLPVlIxf8VhV+cRQuP8u5FRezy/RAMBdrGMnAnAwrIHElMOSn+R+6Wv4Lz/ilfkOeJ6NX4F5VAWBRt4lBFqAxCLIkyXHDO9hnf82XxC0OEQdUGD6F/nCUiT1oMbcJIre1ev/80E2wuTaVZpmsTopFLRen023hXjec3S0ubMoBTTfVjAceVm6/UusSKwQbnJObLfHGP6e1UYV8cp8QjGfHkBqEyoQn+9vLFNQBzrxU4DzLh8kc9hy1yYAAT8Jy+YcTbap5mutVe/B8SFzaYYI2wh7D3WwOfqHU339f+uEoEoK9eIC27H61deMfwTt+E4rmUSFnIqZn46SPFsnMV9OqSme0qi7dnf9bb3imM2PbJo+M/L4C3MsWcg/P1j5FfY14h7GyPV2vv2a46gpPb9/D2Q6W1n1hTQJkjIar2gbF2sEYbWLDSkclaUfaqqs1EJMTiWBz3EGrSEFEwOwbS0yYnJeVLQ3+kBpJ2pw9SDA7GO9/NQM7mFr/X8duhZroVp/pwmMzxWeSkOq8uS7FAcip31IeK3c2UDkOT9cHt6Wy0DO/W6+bvjoE7zYgKNdmvoq1TSIesDZM5yCsiLWAjALj3f/l4p9oLom/v3KUlYER/2yqmbkocF+5XaUneObklJLzm+ykSItGk19xMeHvCXTgsD27yrBLnCIXgOJd1vIC53XHf3W8WUULf98ExFLOUYcHMjo7evLPEBvmRoL9wP2uWYWck9phyi8WwsTvZwgKNYKiMXSobqoOS0aG3qQ19GMakroHeB8MibLcgThURMBPwxPDaWDmd1Mz3x/oyTM7UnaJmzOvz+lH4epiHQdt5Mdw/ENdfk+XIPI5akq2OUy20KltAHLfnqOC81Okj42IURic1TjTyz5pcXTk9Fbu8jMlhYJrbDQr90I0TT0e9Olo8B0+I5gWMOzTY4ZruvRnczmRHo5QQ4r5b1ZK2iV7BrsFEvW6s/QDOOxFZ7kxvL/MVJGbYhgWcjBl+0gcg9KJP8ReUr0Rx5CEb36nlqyWicbMeVzrhJqE4G8FNj6R0s6nlOkO4CumQCkTaWBbc123TXhP+g4+rKGYO7cG02K2lfNN2UIX0+2wlMGU1FtjEB8afc1oPXK5Y261w+ZimUfHBbvovalCuCJRxlh/S/AsU+zy+g9Bj5wbUnpaZfZtQa2UtM985yhSro06+zIaB1B36UoilSfPMkHVH0Ul3+ftG7Z8perrow8hlVqaovXu2JAQOZOuRAohgE+n2gF1Dd//5rX7RbGXg+29DwkVxr15Xed1MHpVA8unUwrurLQWxomvd75XzLtdN//TDFQlgakmIwcwctM5xz6DENnM7dMVLwLwTdob4I60w632rk19vJTK36axNbNC/DuOywOTUPs25fYL/UAexmqFS21J9pOFeIcqd0/6J4Sl9mFRkQt2yVfJseWfzNoBXIgRbr/Ol0/PIORuFd79mRQbjHrlMRwt0ov9Afb51ajOQ6KN94xcjSE21Pdh6XgjyT/I7Xf4LSGiJ2ulJPks5k2aIrIb7JzCcpb0dPwb0QGpDvo/3+cZUthr8imHp/HsgtR4QPIbpjNZrZ0gQgRNo6htw8lfqhAJa9ZNIGF6koNqaLWukZFHXtJDjjd3WpofzFYatL9gsh7bjFwYO5+xeGetkefGFLSNt99S+eUbOQ9It0SxWO6xIOKIrhxSzJVOHnDSYmDTFBq1ylT1/9CztfrZmu6Ma1vBR+w1MIzSGIzztlkd+S5dkS91tZZiEwO0j/0tjgkUJUP/KX9iYILTsuCOPCTOystPGGAEMvNYnzsIirUaMrWlzno0pi+BfVBRYpXgq8GxXvaSd2V1WKYq8/08frGNUm2W2hI9NfI0XxDy3YHx6YEM+JaCacYT77JKX4MpoC1MZMxpL/DTdp3Vj3zXnyGRf0M1PMprk9kK6Pd8pga9FgWiDafHVUKuRUGX/fTQZ/Q57b1nUaAPF1picBKfx5kE+DXPs3EEJTIF7rAzogdgau4xYZ5bTj7SJkP57yfh9GycN9IgjCGptd8b7atO2SoMlyVDwRuUG6X81vUAXpj7KkfAoVYCi7gVaJrmMMBFACJAFVYjEBYtAJF5lgKd+4bg3qEyTsDo/DQcezOMk+8jovu3T5TUVTqVyGnbSLPBSY8M6jymtpjR7E1+HfHy5VdJammf31cOViLG3mKSzlAclCqS5ZGb95EVH1kP/gcGJdkVP1w5kwmpJRZeyODLDSp9Y294FG3CbSfiyVETrsF2JMJcDIk//bCf9Urc5SM6IFEMt8epfZCSKB6Ge+jFRnAZe1aP5rldV4j6M9QuNGHqn3zrCBvGivrYvaR7H8Y+O1vXfRUD7RG8lb1Hdpf9nftnC0B1IJdiy5sE4radqlhjySEz9onx0++j9kJN2Y8X7JbmHhjdXKGMvT+Q/EDD/Y6zT2a816vCPAc9p4cPzhjB+Q2PZ5dq7ATQjqeZbQtZAsCEItk78UEFPql8zEjRxz0kxlO68QXyoZvTz4WYemKJZXczLrCvTe525GUr0xz3hS2PJRrKrNBjWzkCDnIQ3PyVX1vRItrQqKnI59jggqVSPuL8JIk6QZPTjNxFkvIxAaWSIpx6BF7X4CgtTGyCCK1E3IaLWA/I/5Heo6TlcSegn35E66gTkMWLxF+MmaPHG4ZVCdRaiEVWa1epzix+jo/33/pryTCquxV1YgoGyVWBT18FV3mCg5JsH2/zPucx1H72agBlGokP2H4gluEv7QyYXhobJp/HWdwsnmjJIksyK3D046cdXuzdSJUrW+r6ymYomNWWGP/znhpf2jzAUL0GEJrZm9r9mOWz0Y+UyneqSMEgap61pJl8PIuN1iR9/4+SGssXV1kK2vgc/qz8/xSYcx0apdIekolmouiaCZtdgAo5sn24aksZeB59gMTtvKK6d4iPi7A2KEFElSio2cTia4+vMZjxhWYKlFLCoUXK5R0GKcHriCdFwntLBqgLRSxfd4VdZwa95GORoq74ur0iRdNkClCu6RDdJY0llXwkufcLsBeXzEftiCMKDc6R+z7YQ8vFqvqt3U5ySpzw0lRtFc24xBc/r+zaere0e45LNk0xgdK1KrHizJYP9Y1sVPJ07l9MGwKwlpdbuEO8c7ZP2iVU47HuIbwQaWiDgotoMlnVDP5Qn2YKy2nl6VIG7Hw2UZ/wHwyYyStrmlxe8iGh1G5bd8KGrfmRP9Sn+H6gRHPx6Mmq8bKNSLbLEhXKFBNvRc2zGqv1RGgcGaidiKayHn+luKAEZtHCVmWbL1lT0xrSZUwW48WatOCcvgSPgRydXxKVIJ8CuvU74svqdyZ4OIprYJJyCLToyV/GulITn5GwATD4oVP+QsNj9RXf6ZUgvQg++hruHCSGSdlKr0lFs8zFXQUQ5NfNNUs0+jo2nD2yu/XbdOVpF/U+ymHh6PesXSSCHW8qcr2JAzHYGs1qB9GPaELJwwcpqYm4NNmb7mW7LWc5dPb/xfyd0C+IN1W3CGEsRUiyQs2c0QDkq+tXEWnvYFDxyeNz1EWvzX4eKcPQU6t58Gl+wsblrbvhALWzC00Ow9yhWZyEdTXFvxbfqT88QLNDjvdvXN/NZ8p6BwJchE5EYG0oeO68iK74GxcqfHnC3Ooz5TSso10YzxXsVH95/j8l3ZuMm4rqoILUewg2/oagMgzojvSG3gFSwdioJj8ygcypEKjhXSFWflIliJE1XZjkZeuVwZ6TJkssJ+0VlnJ5HMT8BsyDxFTCE3S71QnLpJnbXfLnvMfwXe1TW92HG6VCAcHvb1jnOC24zft6oAwBgUmmu0UkTBChRfpOvYBjzhMNOJpRCx7JaKnk4cLK7ndeZQs7jh71qzyta2yeO1PaC8xfMXz07vSANKHk8YpQW3eaTRvethwRIS4sUY3l+pYpcG5TIzUUZwe7TM66knuRrHiZaczvwY0XOfy+EpWH0YGU7YML8OASX3f8zIGDV/NqMS2zyUW6z46azaC6m+cHzLpcUUHIc8dUdf6TeUlmkAyUaqT3PcBSTbSdMYGmlFrsUZGSo0rZ2MBLGVFPy7Yog7FHURQW9XVwe6+IIj+l3ioRJYsJFMWMRx07QhjxO/+WmGSSQjCV73bLoWFeWyn9C2eeZkOJzVfX4f0x1ESVhiCbq8fia3+W9vwGFQpc9yI7sAijfFy6sXMP4tv5F2DTdgEAwOVklrY4nM9s6wwO72XIv9ZjciD7n0POei6/RNGXZe8UuQgcM8dZoeRYLYwaaeiW4dez/Iz7Tohh64SDMEqdJ7RaxR7LUMSheUEIminNs2ECFXhuvvYQEXLGuskmBWx9Fi0yIV3aRVnPic2hQJdoAzJEgZQ8DpPpgya/OtN5ZRpUzXsQEdP8u3h1yu0UBiPVsmM7OYb7nxNBsPvBasaZHD/PMA1L73SP9eBootPI1cAiA+m1pKaHXp6w86fl+BgOrnkj3svytHdU3O9vmLhzPzwnl6G5ytRixA/KMhZFzR4/AvpftgvRYKu1fvCV6f7NWZIFAHfAwyu3K5ZPsYDntzmErJmvsvgdOZ6V1ALoNkUxgGaInrkDRl96YGy2LTUoLqf2TD1zVGyonhEnObfJgcaQo5GHZ40IknGaX1Stxf1AZhPtgpcXcreedf9po6JX2R8nTWR9fS9wbzuoNR3ElNuRgK+6+fRk4zvhSa1qZA1V+S2lnFAlg8k0NF+A5n6jzb/vbjXZiJo+2E52y9CHR4BVroErwPsaZNVsRFBDE5lGdap2blz5f7GTgI6R9xqk1KFNYemaE8m89S7GgnMzkUvEXukbM0Tl7qKGR9XpiVWOtL0A4gQt81ce1/onp3PwcW69TiyEe9zfavYmzrt0uLhSqfzDpIfRz+oNMs0F9lnAPQmdHFMipE/EpBN/yg1tSSv5zcvrdEuCN0vE/A7E1eIFyhoPtGaBOfFlUMqH4r+SUwlc9k8u+40FPZFyaEgdoVIUnjvb+XodiLLjXvu/C6GFjNd5UuwOtj21VRRwecRV/UvfzsO4JujzzxTDWVf4+AV7eROUrME52T3DoKRC3K1FM2qxRMAosbi55fFWIm7bjyaR0j3VGYOS7ddRZqQ6JzmmngMbjYYjNyKscuDAW9B2okZfBgQND2Jj0EewHCG2rjsmyAjHnFn/Z0XdO3IAJj31yoLeegveBFk+ZCe8JxELL7QClsYlGy8gkbObJa2h+d0pDGQw5MCl0f6DahmU358dm6EL2UoF//Bll6Aao9iDYELkLySOZnADZiSaa3NrE9DVtLmQH+chXEwfFtT6Uk1o4Im0t63YJjxmxXXjBRVVpGbm8d6TjFrdxh2epYbMWvIvS/jRcnVTKkUqmLFxL1o/zp77vvPfREkwcfSKOV4J6raJacpZ2kpA7oX6QVLHdf9QXTUby0c6Yy+VVxoz5sdZyiIyoW97PCLHcr1gvND1k/hVXEMeBO+eRDElceuvCGXRTToAyrOZKvMezS1Es0caxQrOX0T09JN3PZaXAbESMGNODea2IA6EsoYfup/fMMv6RSKcUXg0E1krnU4uucwahue83bU0P2+eLBLRHh2075Bc7cbckvXnxTOhZ/9eYGcBRrUSNpjr+Q2/0Q6NOueXFNdd/SYAnXOLzZU4+eH2DH2CEF2YAQw2tCqqnKDcMSl1Uls4PhTpYbNI8hegYBNvFScxS65UNptQRvOeoE3WaREnnhnnUtUlmGkO46eocZvEZTuYENUoRALQOCGdSXJQ/JeGDIZyg0NGz3SwVMJ+lR3jVZAogbPdgftuTTiDIiFQiwIEwVJx8HV+UGc6+68fzgpax5awTI9l8lKOrjKNVQQZYiR4O4V09cB+UqUtjaPR2kWIuWvmQrG/C3HwipglFAJ0xu4A08Qlmo5sVoIU9YVvAJ5QQX7exexIy5oMBjDS2O43OLmrGIHk5RAGBzTGf9czt3AVIFZMggXQQCijPLjdxCgbntqEhHUW/h7LZz82ClCWJVY2BLA9nJbJWYK/JN0VZxf1dukgA86p4qBRG1tXv4GXt0v2YY5236nsplq4o6F1TSKD7dMxFUXh1+bwoJCYPiCBrFRF8yiqTG5CygrEdZoxBBRuKySrNcHx7XJhNsC54FYTVkN0aWVndUG07awhkwr7iNLM8X8KXITl+DD4+UXcnAh6MuUqjFP2xInoNJqDEM+lKVAjTtchvVokSCjjbK8dk9ptSEHaB6m5qJd3i5HVK0Jxl5KJS3mhyN1dKvGMcsYeewbpLqwtk1dGiG7//husXjiJxEaC7dwdNHwr4cMEuo1EeuUwngp91NVe3y0faNMlehhSIuwnfgj985wEDVlD8T3vRddtxcapEcent3k1m3pGvsX+5YaVkRjh+7v75qrAnaSK96Q9L7U4XQul07TpwdKVx3usWEbdT3p9g7RM+LTuONkE1uCpY3FRmmDFcn+Ub8NGy+Snp47Hrl/UXdbSKiKpkXQEZeyAWVTWNs3Ba60t84wfgeXEYIUdO2MU6p3fMsPhffwbvZR2cn7pVN1mQPV54cW1CyTUKwZLH1Jd4Kjyrj5FMOTjzBG6p4rd7vqVCg+3d9+UVI4h0YTizauj6gRb5DzOVF47s3STcA4hRq8yAlMMPIrKa5pTLoO+ZMbPTmGrQdiYi1q7J31jgy4C3/vQeE4Cbiv7SmQzJGAMeauEXEWCEOQLwdBxRynI80p6SgKffQ+NEFvXausxZcFgXDtRnrQ6dth/KAF5W0KLflzUA8YQn2FJRqU3bBFwFkJ7DvzyKA8brHVuXWE3E3PdTP8cizzcNVKuiFRE23d2GeNfCOhNuQgKA0r+lVB7zQBTNfmlWbYZ9POuQmSMjv368vNDxKs2XXINtKSQsln0YtCXi41uhdTygcwDwqiI0HyX30fRuNEyQOl6BY2narK9ge1uRARQkOXy9AMcmYU2vILtCp+LWW3z2VmJYI7zKLcq7TitYIIXXGukqxI9fAUSk2GtJFwCjVGqjb8vUwUOXTnPS/UnvHx/9cL3UsLBjaiQzqZOGfsYg6K4udHQyvpLjt47mquWUsBHQ08u3eE3NEvy44suoDvVabjCGcCvxDbPWhexFOSN36g1JdxauvV8JTxILZphnQXNL6XTXwMT8AGq1tFo29BUkMnFXWsiCoZSFMJHux9ZJHnRloOZRZsGBUioZjAwhjb4Z8gWkHeYUY8NyhzZVS98M50Kpgk3ttmdpBJaDIYDSpyqBSh46mS4oPeXIZ5qTzApuFza883AqDBzxdBXGNysP5pUL0fr/C1bVoPEj+Iwi4GNt/EvUHZmcKeqJ4jZHODqIkq85TyznCQfAYruIa15inSFIntlJhl/2LDtCnFf0gNTctpyE52IrI8AYG98RuQZesNNc+t0mkh2x8qJLtMsNAiMdAv+4KNnU1V5bS3+yqg+EqdECpLKna6K0AFd6Th8/JnInxOXWldse4zCesohbcYCchEk8jUja/hc+NtL3RqqlyJS7phu0GBQAH2yA0mkMyqT9FQVw1Oa8l1PEJWg0AmFr36HBB/jwxJnddZWcFUsmRPvGursiIYNCHbg0JRYZR6loykFZCByA7ErFrnmYJafYg47OoL1sWz1oqNKYgB1bt0Nc4gF3ijH4dTClZAbIVzeo2mzESjp4JxV0JnnLbKOydAGSRtN7J7BZ0hYbQ6WOI/5Ud9lbHM8P8AqzerHondhaD7baVWE2+iD898FOfjgRVKTDfsNh8BbL9rkM4s7qPLe43dcFzpRBTQ3FrLnO70JItT5/jH2JOaTdJTF7PcAnbPJF25SEhBabZCZ4brg6d64Ouy79PqcWny2ivKWL6QUTjTmf+gqxtgAJvDD3DoN5dRLRSDQS5SCUBBWRR6hKiIneRGtnmo13g/tpxjXLpIM469faRH9xbEqJDF8R9QTFFNa6ebWjUm2f0hJWFfML9ZChN68XQZ+aqQbcGmoFbvLkGwTgEG1rNa0UGFiqClPJhjL+VUa90F2hxA/OJCLl1A4ALQdVzeFZVjCQ4md2Tc37tO6/IxKkoZYMJ4GT9kSZJ+PTFonqB8/FVh9RwZNmBmEj+QqjZLyyYSp11p8n7yWDZUtyfYVswWsIkYKH8hr3BgqQx8tThaidawDDOnfMz2D19r5qmlLrbKSNCXx7MKNeOlxV08dWXLftdw8FZVve0bV0x6qKxjsrXb952YczymCS1C5wpywdzpu+axNJ6qqA2Ykt8MrF5nydtW78Yo2nOmWCQkBPmDNjVoOrPng/GOO/SpjsKM6hRHZClGLt6/1PFlzzWZ9jnIjP4X75+Vu3+XOTM10C2oUZZItuRzpCEM1HManQfXrvz/FsBbSAgQyIbHlxjg+G5rhgfEQauA9RjPTy7MOcVJyi2sqjOBTcAEDlgFqlt2eq1Dr/C2+Er9msqOJTr1WGkzZVrb51d9SY62odBy3EiLvYgZzaAk66/0u1u4OSgR0kde24oE7QsP8vwHQwWusILbAM9wrRO7h1Zjv/y6DnE2OAEuN3QjryhKP3vfjCKu0tIlEK3GTTJVKofQJ8VBK1rNkuPIg/Wdi/FB8gcFOsc8RBebwx23DMVaAgLJnjur28lEzu4wqnouQwAoX0laZelVdwtTHq3I6Sf3s124CwRJ0wf4tT/NtvzmZVn3mLovRlBOhpdc8EAODsr41fkeuRx/D8S/zojD3rAfZ4dwcscBSVKYJQ+9JvBi/3NQR+5Qkv1jAvhFUIIwksPXu45VOviuUvmX9tSFwlnoye/hAWDgF7X1/ECwwesFi6rzictHa1qBItafFXK12TqZb+JSzKaMQ8KnhXpOg3mT9AZj0aylYMgWu321FvTHM+4wBgxM6qTkzsGCSARWQrA/e1DiJQFBXJP3A0yTBe/Y6EUfgGeLjjFbY8xWO/igBwbRE487pkf08RTzjeZeN4bm3oOYqk/gzbmBTebkpmGN7J1MmQBeqfXK/wEQ8zqFFSSwUoFgLe/BkeUku4XbljeKzACGcsHS7KaVqF9qiTgjxuhic7aeVvaphuV5x5U+YITnMffQQ6+AKM0wi7pjF9l0jUaHuYHwpMTgltHUFuhZiB235ZhP9rvfo+MafJvSsACLu9WctUvlXoTgwDlhx02WGraFPwQxVcc7tuidDDwlpmZ4VlAtHxzw3aBG25LVoxUSJXRjTtUOOQIz/vUZ9FgaX8kisef4iH5xIadGGK//HUeMBQf15cxhIrbdTX785qaIKj9KphsEBOmuffN83L9RIAyxB5ZygnwDDfsrC0e1qtt7TqLyDMJddDeYpWJ5aNC/iQHHwVJLH3VagdWmqvK0iqWDEDNm86xhGmrgoCmcObqVkcQpLhzPwxydHWziWTKiTIotx3YfxaJFr87CU6LepHCdiaxUOw08XcuDa2eNjEGNAbuCT55nhxBi/9lz2JzctgVBMjAaLUJR7w03ta8/ADJe9W/kQiNF2Nzq9nkfODhSYWC2ZYZTRI3pJb+ToWwi7PWhA08SaYRPoUNiJDZceCElLR5qvKjfz8nUndUSGuiYqE40PFku8bC6L8FkCEz5OMs6NuvZLs85YLei6utwGfZsZDWJ2Oh2Fi6Ct0l/276j5oEwEPB2657om8u8GUrotGx4qZKUC2N1bDAoQEPkykdgVit35VND/5QCkxGY3HQITKC3E5RriRWhKemsEqol9vjDD2OqotnsGICal/VL1+6Q20dM5EuXDmdtmQXY3+zwxK/QwIc3ZqYaOgN3h4E6fD9W4NZR/2PO63V/V8gXVy1qKeyHmjNIJ9qQ8l+/GXtNT8J2K+YXD3fhdnYQ1+pb9438fQ3z/ZHCr0SUYYPwqUBl06rpVX41d20I4rp07iraq9BV9oXfF44LvzwgjWLKnVqOFf4LfDAvR6mSml5Siw5TLKwCF1jCyikXkCEso+azN9n14KDjPu9MERqdJh/XHnsfX0Y5SrUY7cDzKSS16TlhfHskiS1xlIC1wZXpNXp161FjIJhjnCb5kBLZopBDMKMX5iHDOEY+lrND9sFJssAHF6/1IOBVwOkKrJLqaPuBX6ZYq4c8m7xCxFbZV8czFCoHxoYFrRfZEdXK58AZH57WpGX02fcj2LOL5NLuvlOqiNnCD/IiEHHItAeOZq4NeQlDE90Rqbm+hG7iocZh0/2pFfxY0vTTGNyLfY3V8fplRlSc118Ub9RD+j2EbqSdl7ic+APfd6PC02Oou3s6HvPmaLVVNsUtbU8zfsVhu3D6XBfmd6wrghMvRl1usos02Og93OpgqzcvY2u4RD4+JOIamGSj9aTfe4I7gh4OSMbm0mX/9r0hpY7eDn3GHh6NSktyD//Ejufyb9dmE2N8FUTVIXrFMOxdYyOSmkopq2+V/4IDy0YKJSxFScPpcKMCZH79gdgLVKmpEKvhbKV4YLnHh6+PtgXSaWg8lZiL8a3Yd8Z8Cnl4ZC1GLuOzK0LoCzhT1IvFky2TymKzCBskOxndO4eU/mtnaCsgHc1/zUru6ECYs3MFwOeasXSP8qLtSEr8KxLJvddgTNZXKuUQ/59pAFhWru5HcXxUP6i/wr796HH6TQYBroGxkyGSDTvL/tBd0BmLtekKKfzPObmfIiDGbSy9jP6jvxMW8763jCcBU2+elum33HJo/QLFzlhDtLGagIuo0KIAxD13w0XfVDkfYzgdVt4g9w+rmBsmCcqkuFTcn8vbVnnvvRTSyavSfwpTjrfnj6Ucd/lBPIWx6/4hOOZTJLUqg8TE1RMK7odBYjz7GM2lUWSLniGZg9+BiP3XCSDoOZS2ccU1LsYv+SBdzTeRLfaHFEvs4VYAhDw3ODfCP5vHVnYbd+C30YmC60XI1JPNyN0VK9D2A5OZQYm2TVU2Gy8ZrGYm9fcPtu9VhFvC7bevz1SdKUnsPl5vXO/rWnizQBB2Q8/TEj1wjMfqfkYL7EizJxzXs2fGJ0tNHrd8a33ZC/3HYNPy6QxDnM3St+4t1GCB5oRR6WyTdeG30zSifJq+pAfZyqXwT1b7zCgSEABlq1Z5ed58BvI8cJkcpq59wZ7qI58aiVvmcGcuH48/P6vkPsvARkX1fA3yQ5imasiL2cc4ZQDH7gr2esWNHxTFBQC23KAfDFSor3tLERVz2cAQ0RPf9lE+xLiJtYyacjb9QgpwbhQdYmTjulrjPa9tvxUhHnctMkeBxv9oYYhgTihBkdZm2zW2RlC/JXFqBAuO79WXUIFMn46aPSgGM3gYayxHCryqFSpfApxNqtbzM65XV+T4u/6YpUn2KheyyeRLg/9+sepN0ryEZs46xTO5wFvKHXN9Nrc0TKU0VXQPu+U06YCoVdwRfPihStpMIHqzC6OsRyOZXix6FAzgvIfLDt4mSrBEO3pPTwKf5n+X757JYwq55YYly67ib8KPW2/kAOQXjo7y04UeZ5XyvjoUwjnPWIRc4pIPLDAvRMbs4SkIazoLBy2w3fuDkY+yWO7VuHxTzmNXrmzXsPxmn8LgT0lImylEYsbe65R1bPgTarpxSonwgmz3Q4ZV6DFIPXx9XxOmFSwKY8EuaqfVNrmU0y1b0/+Xv8qOxS7pHmSm4j4vK8PPBDlXqhwMEGZWPOi1xpH0OwT0FCDxtZu4su2ew8Ei2dT21whml/cZP62+YRzPX4++bZ/0P1P6vhbXX6RQi5T4uF7OULNP7xfBPyUvYNDCeW4Krw15lGmtqHpMbHJHyd0X+YZG+FEUf1gZ/y/pYN1AUinIZZBFftYAqrG9x3+hwWA5NsErlN51Uh+gi1MEoE5np8GTsu6gklPZPY6hwF3C73RZCNy0h7hNpgVGzZYxRYJ8MDlGVta/r73ag82JhJiSb109+YP6rlL+mSSKXBP7wOaH7C5StuD3ruURxkbCgyWKU9zITU+Qpl31PV9oCvqG5Vk7lW5rQhYBsJpl6wMFTQ+peDoU+Dbk3/rHcac0IyfgkjDgi0YYIrUYZTfF5IfN3H1IGMyIsYu8Xq82Vl0HsYJYcGBNjMeSszWB1H4V+rY98az+77dMM+SYaAiwHjfH0TiInA6g9jgZMIvpvlKOfg4o2teT1q6Mqd/kbjIP9jzY6iTvTKA9cwKqXVl8aOhN14Ip2YcMI1ajgLanF/ZrNV+VOA1/LYRuvTlHFBzxsPiX1gxj9YoLDYTUTa1u2uf/c8IngVA56SiqYs/7yvvY3LS8FhCg0iQzQ43FgfriDdXBOGHXayJvx35wbdRKoZpwgLksp2iX5sqU89TnbOhgdknPEtkfck1O5ynk7RJT3NkhUK9tNtcP2kRmVV6SrDbWNylMr3gHG2hjq0zp+0OXXSwrwydqBJTM9S/3IyRhK6/w0vouc+os4vkMwV5h1cxw4uY3AdmeoLCts2nDn/efI7q5RRz9aAA6ixWH84Tqthec7URQQyELLqZrlRJl53Eg+XPLI2ogR5YY7v9XPY+TwozSQ3yK/jS4V8m3y+bg0aebHIubIAn9Dujn0VSPHgrUAdNykkV+6pHE5D8JR9n6ZyFnq6rV6Hzbo6YkxeazLpaJZ1jakYJCxSxAcqUXghXg86fFad2hcUvsdmejJLpxRFxsUY22Nb1pMEMGgOevQQiURFw+rn8WttPIUvBpDvVnljiTiGbon6gTKzoHtfqhQefo2mCtGSrqwxbf+BmyUr0rcl3d16zb3kOg2+O8rct49FayxKlYP/vcF+UKZPll3fVdWbQaaQ0AqxwNrgxCtAUzre4p00WEA1x/wsfGIMV3W2EEiw86eefxWDf+HQdjmX5YLIzTXAGkkm3bmXAeWfQxCszT2TaBwIngEOnWy+pLnaUIDM9GzBZ+akVub7anmUFbXtjscYpDkxynOoQFLQRoL8awAVY4p/5weFCPnRnnEeKlFubxOg0MkNrOd/EMDn5Oz5AwbV9MJJ8oIDcovpUlqzdlNtYM5uW5Oc2hlL5jLrv6i83XrSDZ/xUSNijmlLj3DWWhrIQBPvXxgjwQkJbRNYZMv8wktiItGRPdGrdxSJSOh4BETKhvhZzsLw9OWd8018Ep1/LDYFud6RmP+yd3ch8zwEERRsG+JwVNsI+kBUN2UMpTnFU9j4uli4sfaw4v7tkNXzFYn6iNgijZij6Ey7fPZQW+WdrKh4xw9MIgq6Lk6cboFTXbk96PnwAIjDH/eTUN52jjIVTujOkSpra2jbXmOA8e8Q1Wrprp8R0odTWtzfTFaUM48nSPmLApM+TdXjfp0gJxkOjghXI1HKFki42YcdJ4JXSVq/+iuuoVWA4p28JemZda+VzbchNcCD8WDG1B6R7WcNXuAdGfcJ7KklRTLaDSdRulIgk1NrwBTckG7OWFR49vhmE6v9EABPQ0qjFgIb1vZQ+YR5tQWI6YT49jlGF1Jt2kIxbAh+cW9PrIAcrgbm4cXnSWzG0rFbBBArI/xanWrqTJokzoOwCkk6iFdeyRZZNklsH/i1/VXGg/ZbA6wTqESITPkWGLTP+47iOAxy8o/lXmeZ+U1fhmHafOx491Cn7VLpShN2RS7Nz8JarkUlAW8qHnlbgkhFFjR88JpBGBPhB2vaMZwe0szrAZEtmM17HMMbl6M9cDBe+dqWJJNK5TYhMWtDlk8yp1p6I4FbHCaagoVv2t3zmDgCpmAbSAid64IWPPhfRWmYE6ndeBEZsNxx5GKYzGUHNFWNZXLjUBMtKNdtGfnjnOHbAVFiS2cUZ4I6NsPOELPGcRxnBj+qtz8JT+q1INeYyrd/m6dDcpsIdBnOTsa/Zy609LvhdwPslGMZxYhxyr6mP3n5k/i0M/p7o7RmWpfOPWPkdzXQd348ouNFKf9FOB6BC1SD4FrvT7vjicSd/P4leJby0UFn6iE9OQyUfvQA7LiCUOaBuryhIuYFqCXyFSMvMsiVfWG95EqPlAbJWFngZqjvBFY61TYKFQzFLbKH5HEomh3ECCrqNO1b48L65JNpAPFFVS35g/OSVx2Y6YOZ1Qjkl1Wj5fv7JvYxntTQ5XnaiOUSxQXp+W1VnRwezAiwxwELBZjSlBD7gnwVqR3PHFy1XS87R3oijqVgx8DQW28LFMWxolWA0/6juXDBt1oU+r2s9BRxDMjjxbaqXC0ybZxcP+ZIzXQhn8Kpfw53UOXl0QNfdnMDNPeMHmeyef0luuA3J2Gz60PFzSKe2lW7pdJ+eqqsFY+izGev4m0RNdlxY93sdpStLcw3E/jJHEdcYm8NePXtP6D+ZuD2POcZBPVyHJsbN1jrnMxXQidPsodypwauvQd8DbJ9OI5SC/ORmOyTQiV2irc8JNp7V4S16N/PmOllUf8Srbkvhf6ZoSd/P4b9FMVjAFY/YPE8G9JkiUR6TJRwpSR/XQwqfTWQc0xlZb8ynAU3TXF7P3FXV6IhMC+Z8YwDfFJBzFhRqWZevHizQpI9xJstwLPqvO9MN0ITLXQWbnUIrvvYo3sULNZpw6YpWxedYP5FfVlwnvhr/y9uCWn1nlH2JqFZHpWOzU98tW/GQdQtkYD0oVwHECkEu4lPmXMuhZnNjw7vbEVEWgww7wvV0iO6m7PVEnanYlpFX4lUohfxWHIbu+8IIhwfoXSIP3Ndp7lEb2y3Y+O4QTBNPs8BS0+Dpj2kQiCdKaBo5eQgd3TQroVprJimUWwlkwXLYAkqduXMlU4ONQxzIs5X9pAyduS0BOywvJNNwEyC7mz4IxDDF30hMyomCkgG+2/LqqvT4eAvtRxJbbk6/lrOeSwJ5QtjMNxePaVDtqV4RWKMXZFjuv46bnbdsXw+VA2LZfReMrly2XSb2UX2OFOXl7pD+zFJDpaSrRL4rbf3U8xdvtxUBGbtrjOcVOIqoXDZfewXC507LI2D0Z+eOjoj0UTmvXmBsbk6wRHxPIyKpS4soHzBsu76NQlemSW7bK+ECoAvgwXicaqibyLqmZ/K0l4h//sQOrRGrVwOaGSZvd2XHV8jj44YPsFVn8OEv+jigpN5toPQnlAOxUJkbRd8xzsIXm5WymUIX8tFsaN5nIVvxhhUqTeAJ8FIJD+fQUi1qaQpJng3bK4MtldTQxDn7t/kmLVj3+HRuxQzguF2lPtJbx8CMCOv/jWsWM+RBC+5uX7T02YBFLgqCgTuUK8Xqze0db0y3ZLDnnkiM4FCetK86PC0UR0j/tGAax020nJW/rQdysEyAnxYXjsQTgac4nw/KuZ5FicqdNX6a0dH/Yl2Z6j2F+0iPjyMqJdDaTSd1X+Ohe2NMAoWc5VUEYR2n5JEaTHS2dqy5ma+z0pVeQjScd8LN7WpxbdyXh4J4mmMyqCq0JSHMapAcH6PJbKFsPa99wRUmBIYOboa8vXMSvJbmHOGHYn23367elakrr0I5t59RgpBJdP8L6YTK+1aReiG1nljw59I1CHRVg5up55TJnGciTk01pCohQFVFD55dbSm+/YCb8vAxKwN1E+aI+Silt8qwgBN2gXBrbwUzJG2jIaMRMTnGsLGnZe9XVWXtLwJvd3iJJueuVVflJZqwkMvkZCarnOnhHKgloNbCBKXYy/CWQ9G6GwFkcxQHl6v+ZOV0TNwPEWNvxZeTOpw81kY+hPvXqNhnhzO9I7eWFhjSh1oIDGdn2VqEK7Jdaau+CWV9R1tUPPo+1eiyci2fTa24ZXzZMXcVYRxfjARTLmppN+NACDHLOr5cPvTT+ac88IiCoS1lqZg8PWLZj1tHlctsAq4NvdSM7S3ilzb3q5FkJhB6i2tbgITJWAfVe4A+WxOgQ4+hxwyjGUWxzWBUbtV26r3RARY97G78zyHl2uVjX2E+0fC8VEpqB5zrCVG9zNCEBf0fvjzur7gc9gpvncl0nIhoKm5Rpri29nFmCNjpZbr31Icttxel4G2cZ/zeLEQbxYCguigYJh6cZAwtBjsIdh7v95KTugwq3R9IMapJ5y2KmcFid1M2dhO77TQd/S/5O+IPy/h5C1wqH/JX9Uw64GLjxnAS4oSJFHoFatGQT3RjGukPQxXLAYdtTJhPILwm3TX78rhZnBowU8dIi06faocAbybZuHm4iWC8NpDFP2RpdbmXmbRrFkjn+hHiTYhr5/4fSWTw479wk1jI02Dm/EnUJlq0QNF2hWK2g144uz7BEYjcGOeJ6mQoMNqxb3uFNQL71RyJGL/zmq+Vu72Vz850ZUqb4WErqkpDOE1UTvSOLz8Fy7u08oDFqC0126EwfT3hFFc6ZSFKxNiAwVRTWRi8Y1EAWzOoM/a05c+a0m/GCsMJLH/fcsDGv7XAiNfdp39TeZrsLfYWqwU3G2GVftlPhBeB64pAh/uQhYHIrwj7qe/EQrSrboY2lNwoJuX1KnSCEBS4QTQd7Xh+HXpscIQ89entEcz/SoxWhkjuEPE3nUKt7GUWIfUXA8oGzrv9zWMcMvGZch5UyPUZPb5JdaCta96bCLIomVPv/OwYZ84pGaYo4QwKAB/E+HjcXhPi26+0n0gOIafgIkgGYBRoM2t/02LrcynqjpO3dRYItqhBPsxZQmmAOqcW7O5YOK5m+CyUgCD9LZJGlqYbynOK1pJClwyvPHZLB1eUbSSOfwR4tBmzEUOX5S6M8ZpEGMcKKMlL1o9epgFsnNgquTkvuv/b1GJOOCakrUr/6zIflKkz34RStRsdVEFqIm4Z71Q27JuudvCXxaRvWQ9/ZVaB8yYTImpKzeTUIfnrUg+6dN2hrfE/1iwjVkEp27heLGO/7fMPi1QHGwg5BjJXz/tR3qG3LDDPRDmKiM7anNqkreQj9C3AnC37IIH/hGGGal+uvrcbh5pKXwEkr7eRxccSDzJurnz35v2QEhRfHLosEyRHftQzquEK6sBCLS/nAJGg9AepEIbeSSDVwSUMr+mwWB3c5YI56fzJMIGI2cOSAQboYFW9McZCLSVs+Z0APxI056zZjwLpuWuLs2b713safPTLz3YFnIAvPDT8TWhj8qx+sc8mNijx+mkmv1kEsatMjLCLjC1oym7o3txia1NxfkWEa6mH/IEeZBTlkVaP/kglg01Qqg4pINrDTs0T1OyFsFGVlu+CqjLz4nnw1bywZpArDKddSb6TEr/6Dp6llt6xMom5rYpcF949gR3zmBP3wZop09MhjePdumMxHSQYTw833r+DNxcqYOKORM+K7z7kxi/5iXRj6sNCS8f71OaXbzHZPTgdyzIWDS2rFDW/5XP66H1mfVUyug1aa/oC4T8yWSZAGeJXH1P2xl8FGlO4Qcr2h+EMJ4bRHWHzsPqmc3YcW6z/3aX8iBUTBYgBIZl4Lw7tNrztpkaQWZdi18psgf8KuU0y+H/zCUJn+qED7CPvY6XtbQVc5f5iPO5/Rnx2kSEGlv9MGmNzvtRTzYZCBlpX7sDKiIGUrjJYxqEaG6l6eb8uWLXU/bbcS4b7NbRT9lLdMTHU07ZnBXULCd17UPQCOXiuxvNUQ6JyaQlaEW9WOMy3MvmZY5fPRy8NEEFNIA2by2kp0/MMRNT/jLIvrjCY8MXDDAT9DG9RhJRBiWDjjNMSFSmDEEJV83S788IH4PvVk85A3TMCmFrRYWrp15GPeuaXPy+y9kst8RhP8GtFQx2S5ketoYn70pKuY1a0IJKMw8+yZ6AJixMLVm6oUxV9+XluVZM1waHlSRwF9l8i5FkB1leafXabhKudbxKTIZDJb9rmWabtqOdxTw2uWmFFbfWrDIJp3wv/C3Xo9Kc1rCTpOSSIgK2+YK0Xlqm8ASOeAT78zTNDwd4dYIOyZZ+TZQhQ3cW2Bqf5w9+oLNbLs+d7hcduZebA/Osi0T27D7WNcmhcIdeG5UIuK0Ti83qga3sKfzrTqBALKySok6IGp2zY1xAoJSnmyfJ9h7/JzD7lZHs5dXMV4w/aEVVxf/bzxQQfSUXMQ9vtXwSgYn3qJvL7M3JqiMFlwJ6cJAyOn21y7QDxy3xt00H5fX7rrrSyBrAuC3333DR7zNNOi+WughAzzkzcQB7q1xCs1sqPWmxGfByiGDA+e+Xm9bZ/ocVDlllgGVBnrL0MWgzYDaWtdy2sJtj0GWWCsRRruaXD1aZF9K/QK0+ts5KbZQO4jk07fJ/uMrYMa0bM2QfYVKUk1UREAbm7oW+z4KsKiQxepBx7B/N/zqifHDYW+MrW72SC6PmxHM/evq0HBvyA5Ocm3+Aiton23FzrDRaZkCOBpEqD6e5h1M0o0WbkGG5VQ47EkKEiMGjHOgHDFCSnKlBYLiQaQup7lcQomvUwrr/Y4SnjIrE8/uGTGvBFAGBgGb1wmBD7Kw8J4jz2nJr0+YYQUE5lCb5ntwJNl2kSQieorA34JFM0m1lLWNX3s+OV7lcvlL+uChkaf0+Bc0pC6Brugu/pP/S4Pg19LrprpiUnyx7OYN9GkXirr2JQs5V+LaPTT618qP7v2E3Zxl6SOqsYX8WJDduavRZpxX+YjVJ7CGVvGOUou7FnmrMGR1+7jDxJy0fwAS0eNy6heWEUg3mEI5NvbXyKQh5M+blWtV3RSyHXvkaAe7pxKhT6vR9tHA7w0PT49YqOGOUPQ1JkNygSbSA9MVMSMiV9ils+ObPz0LXXoIwo/g3WvHcMW031BObfhiiQ2v9NmVJfpJ+ajgDYQU3KMkYWz0XucxyKtDie58puujmZYyOitlUl+eXukx8a3btOpoIxodMjZiNopTukACIxJigh6N1JpaMBcFUYevlXz94qqwV3sRtwm5Yp/Ty99wowrLomK1ucRH9jCG/9wOX7UJVxdt32fAL421FT1PIryxmUsMujxKyoEDaW32iKym4V9P9Cmxxw8q6lIm9vZHqW2Y9X5EnCceLB+JHwGiWVoCdjF+81lgr+L/9/fTWaKTQrET1cw55ySwFACaJ96TeU1odq3mJNmImLxWWFNSSyyjHObizUIZuqi3uZ1zQWPTj+YMJWyLAXxwsLcb8R4mU3wfCrjA5ci/KRIMAhjs7qGIjWCgsysCQF2iujeAuZw3X9rgSR76oH4iPZzPgKVn/p7/py+dAh/6+Acd70cwpBglblKtVfgzV+RsNzWq343wMM0k0LBSxWNGLzuczYfT+RLxsBJpN/jMy6o/ifXNSGSmXg8ci59FA2p6kU6YUBYu9mnnLiWasRDHQYHWUA+JhI0GvcVgodSscfGiM0bwO5pmDQnBhWSk9crg5zGByGAt51twFNqqdNHZtBbkWCmnmpocULF9vu4ooiNBFgiY9gr+BrEAoz7D5ZoM6sYdHK8ms1UFy8sjmiCGsIn9hsfMyeMIRC/E6U0uk+ThS+xfyw/bAuhdowwZ7wcsxBqN7POdQHnPq4TAiP7cz7y6Ag/qwZCQWDuqzpCFTQqq2ZGATCnXlkru0vp39KnQ6UOCRN6tqG7dUu8i4CaUOTrcLKxEZHJIAItUx8XUtflkm61PDLvLqtTpl/g0mAgBhVw0t0fsYT24ouR5k4j7cDGuGbQuz+NHqUb3hHbBhppk/2GRavqheKxopRdta1XNhO7kTXgJ4MmsPQclDH9N991iapj543lD+Gw4Z5fzEjnh+h4BJ4vu75YSvHljMhybV0kFwiOdks18MFPjXsl/uOVzos0Eg7YhFYhVU+oRU6whv+ZTi/WKnpSUOMvA8FV/T6xXH1shC31O0I5ou3UvYSwzLNgS9mVQi6YpGNu3NWKZTiB2ZspD6u4VYHUlhjmQlW+FmANqbXcALROeaLq17e1fjrCjw3qNJbBkCvFKLbMRrBJrwL1gFS+JGjLdYBrjAsASiihH7+x4UdgB4RZ48QykhCuwAmw4HbbyXyhugoZTOAI0GPrYAUrrydiMp9xzj1XiKYCH3HIZdNrbHyulyh0cNJOmpRbe8ivr189vs3a8i1w1/tH2YgDuzEjkZWLN8/CA5KhmDgiT/clUPthscHXDdbdnKOVlwH5ovI0YYBbIn38Zd9J2FhWid505yz733qFCbRZ6/r/+fxXVPWUYuIBTxzWQ6QgSCmO1jhA0yXYifKYlUW/mZKNEAxWc7iegm5Z2NXkuFwG4wdgYmr5FVq3M7hMLh9bxdEGTD6jYYe/nQAsqPwO4kW8am+ei/NsZIFDS7Lw2MTW1nb+afPTVu/eGqdPh2wjoU6wXa+h1/OYGGyzBp8P6VdL9F+9Lc/yd9Pv0B7O2iaMKTvj7KI3sSCmC99FQ2p9hvc2Ng9ZnEZT/WVI/ltq30S1EAe3dRqaiYMbt4w0r94+Kba4XxM0UkJtSX0hYnniVNjIwFUAUVdAkCBuTELs6jnUzdttkvHAErJRAVGtGDXcZs0AZ2TZ7saMkboaK9AMeUsDZ0waACKblUKZht4GdreTMroc61OIt6YeGRucjmBUPVdxsRwuoZpGq/6oTxnyQY3bP2f3DuZyP3lJdHjJnQuegN6A1nTabzISkGB0kMTH1B7NuVRPJa/NO13zhEbboizVivpV5HV1KlRWtArwKyT22Vsj4Qimw7Ej0AuNZJs6jgnI7bdrX2nzaHJpBzJWrS7j5/N6P3RaixkTTaAvaoNT0fVEfsYqRe15jBmMmUvALi4A7R/kYkUTtfG6bUT4En+Dg8JKMSpV1Xb36gAKn0z5Z74D4FA72obcZUbE+ZH7CEiKEmM+0ijGlb14yqcHFxGnhpEXnydBguWnxxBqzvVHgKL4vsHViuEG+qZK/xQVIgkj5eSDW+YWMoOTOyEW/5dA/TY0n1RGWMaUG2f9Idl1iZqKIkLbPvtggv68KfQnFFDK4c+vuGEWNbj7QjMOGyHnVEEcas1+jNpvIVbc8Y/VcHJ/PQHO/+z3PDzlzrI47Sb5jsUqmVVrfxRmOQnwfpI3DvzwHXy0cRjQXtcoDpnZYRLB8tq19l7LrQDzzxFbdC1ncmzZPT/eO+WcM2Hu0qlkBQ3lOKxLSKzmu70JaWTQn2Z1lHYuKTZoWMWOIcK3AvjZQn32HPep45aH2jgs7ae/VzJH2uB5srYpdcAxprtl/h6XzZMLVZxOrr9vKWAJ3+lHnfHuA6LtTKJLEtr6tNO51ixzCc+HWHlaqmrVUgW4to8VJDQ06bb8snXFW+Cy/iZk9UfwjQoA7HS1DacFwLT66Hrh9r99IrXrMtcvbRWi6v//bLoxjSonm03KQJ4usR1dwQ53TRbTAaiK2qas1Qlk2cR74j/XcHrRBCjtGXoP65E3OTDcbvUcEVtr2vn+Vtl/kme20BMmdfrgp0W+VxuFcP16Q8lVO6O4soqjCMnzsuMOB1K9A93f40Rz/3DwqHyOKvhIYXOveoUPt5XwPlW9EUlBa5XlQDXU6Hp4sM+JQR7yi8i7nmlaonLFXspa/rAbkd3+fhva4drA0h3s3GLD9phAlqb27deKmQugNaAg3Pzdy+6Yf7zotU9ASlQEFJuKTXnw7hPn/XInxZhMOHk5T02Lnb/PIIz2SRq2dM0tAcwjs0OJG9l9guFJ2GwBkXjuDT+Jr4qoEmRt+05ksQ6rHtUttokSAsN2aCt6cFkahHXO/gh4Wq0Y+I/akkMrEMK9aPvkVnK45MPirQx6Fu+6ht4nE/dcfrPO7x0vIU2UIfcnihLRtMo8jh5DHK5Obtq47y3gHz5S5SBwz+mW0d51hCTtgVP/+qcMMGiu9UrCB0AG3lL9yde7XEPy0f8XJANYguVhB9YJKNF8RON4D11KDOWb2g/0aPq6YpdXfL4uxtYatgbASnSucZS4YORQTAumYXNXSzZVI/Nf2sXj+YTtpHVonGEIkzf6mbl7P/cVsX34aOAKnBD0/HJhGf6CotEnekeMYsG4Virmv2Ivw6/WmxfvIm/m1rfuuO9ZR+6vmfEK2Y9lrWtE6jUQ1Cik3PhnD+HiFzbKsS1LB4GXIvyWi8dACbbawAoyySZEZ00YCU+K4/WeWVYPUC5shcvkomfK6q9sgkExzQudhgxFepCZ4WvFhB9K+lq222FL+3Ixdl7pwpLHWAzyfJfa/QY4PdmFlawpl/6woaKFzBPkakfFanpmOJiO6eaVjCsgggwX1rCXsf5xBdZ/aOldNx6dg13Cwu2e9cIuAwoj6WT1LIcUL3xoeJE+Clph0BwCJCM9WRfF21Yd9lRWaM4jj56ztDdtRFh0MLjMgx0V5b1lIUdSeqsWkA6PsYEDbSOGT4fGnt+cqkItpwSdDM2GRVhTLR38FX8pUW2YAA7deOe0AkXy5oN6uOUazhsgrkhQs0/K5k/tql13iLJpJMFhN++JFIY+bCUOFYMA8ZvMf0r0T2lec83W24srT3cFiLu+9JexQvEGelQvus5+5P9tU2tzaWlqwOGQs5iHL/lEFl3c2C8f6svODo9RFubbR7hX9H6omEbdHo25Wz8Vf9ZTeQAXJ9O0YJn0xhjjcN7NeFatzhnPZxHBHJGtx1Q+3OqaUIoWTlqLMf859fMnrlnpzXREJ6RC0rjwVRrsdkj5+98p8NzUFrlxHwt3M52myKI6uks8Pgow1jfzWL880DnjN5TMPwx6HNAmzh7KsSVJ18RnYS0HzfL5VTD95xLRTyftfh6UNzRrv75L8ff1/b/QAsa7LWFPxEXk3QTHT6sjDiJE6PNysgLIjD3W7SAMdnL8TEBMTk9RvIksfE0YU4B5s/lztsgENHREj78KQcSLVQuYiYmb97swRBTG+Itrx2sfrEJsQgFStFXgbivNfrvlv50o3zDK1Z0R3SV98V9MGqG0l31Xc23lHOpHX8DHT1xA1bALL4peHum95n0pHwQ8ygixhj4Suy/Kjf+wYMv/53mSGBIbQgYDeXNzdmVYjVW/4HrHHKXop3pdOdTQHMLbsLjnOuOk9lkUBI/QOMOvLikHX2joEf0Thj4Cey5apLtKKx8IQXOlLYRvwjBMSbrVeUMx3zi+Bh/YeT0PckiYsjmAJqgd1khiZlsfb0tbffiD6TtPGJLe30eJbja+27UDHE9f4uP1rfB8ILEif6Sc7Weu32Zohm8ITzrUOOb5RHUjeWPxcDIuymWyQEcE5xsJZlAbgBCbbhjmUJJHuSv7qFEJc1T6Ocy1pDK6Vq82dbzap8APCaAGNxq5i75qQtLrLbH5FZRK5vY88PpOlxf+uNzyc1+oPzAs4LFXRRN7k519MNsNy7x5iY3epCRZKW/MESX48COarnfNdtyVIrfNxkATWtWR3ruvL+iPIgeh6JFXVIDNx8qILgdchLYXQAJlBW7pw7jjjQoVF5PgAedVg3EolAzqTSPoP2qpIism4BUF4f1p2HGvwh2Tm9jh5brO/IA7QhONfJ5+EgE/X1hTxu2fX7c2eZUtPWPWpbq/EM/VMEus/Yl3Zu4K7nFdlGrEg630V/bHS9rn2WsuZRsv5e/obSx6HnFTf7dpRSiOylwhPBYJdv3hS0vZWg5m5AH7H9HIbVpuCTV4nSWkrNbS5Qr9U5TIiVQuhfLvd+Cs0/nXofUEU8Ha9T9vQhN6x/7ERbsftzqBRV8XM+PD1jQvz9JAge4CozIh+MHtsJ6hmN5jCVUUEM3Ld8ccvDfLFrDpu9fXciDIe78Whk7ck93Ni11jjVhIS06368arbt3mQXgUE1uHzilXPNKzFYZ2Fx+1s6smKzBLQXxopxCJTlUWQXYnMzb+LzwnUgHYkNeVMf3UbqdkcDPu7TUq5IBlnC3bOcoCWVEWdOw7y7HMUeiMYbKOdGIof9x4vD7ceUrEl/YbQZpk8MDaZ9dm3HpTN10MmYQLPks0VM8SoEXHKu8KwrFPUtxcINL0b8zTnz9HPLirs8eoMlNrd4K5kanNoqfa1up4uqpexmCCPLjwFmIG2yLy/aCaT4PD8xy3mJM43SjSSL2oau6MHCcTdf98rtsf2ClffzvIYGGGFfHcPlux4nl660MTUQE747v8ic63G7ZWuXh/xulZpBJenGgLFfIUtm3MjreI3HyD3yHIapDuO0914+KKX1b6Iqvl1OCGnc1/h0L3k9I3R6G8Hvvy/ZMM/3RPadTRTBhd6iLTjwbARtEAXO+biNG3ZbhKepCyZ2CyQmUY4vu3OBz3cSXlMPYwXfLjYA6Dk8iJOQLPBDpxbr3C+7PUnjCcq6qe++mtLmQJqsoHLKQj44PvDOsjJ8eN2i1j6KUpdzXtvgoh2OVnnoWhBelp7qVG73rMlXSf3UvGVx6Cep05XhDF4moeJWb17Ie3RXVmovaldbCSUO8RMZ9+AzKLAh4yLzAL2brBSpx10TjIZ+Bq/NtYe8rD71DOm/q1mzy16sI4ghXZ1J5CpMWp3S4L7mjragnCt2KcdSRbqtsRr/0AEGPlxI99OiDcUx4hCLi0GakrG2IBkAt9tbn14kpBUdWoaDjR+O8nv69t79lys3ToD/gHpDW+oJboLBnBYcaXEq60KyNidFux+E2I520fwR3dMvv8zyO1P7tfubxgY2mi/w2EKpKRgVwpzHu9y/rA89z1szg9wC0sSeP25vwkLAydrRu86mbj42CssYViSNsscnuvd/J1tAYsxwytIAp91nF0bsfwDyMY6WXMu1VwbC1T9M4mxwdE8aC/v37ejCP7SrV3bQ/Db6pTx6SyJ9sIH43cevbby1eIxUYIbg9/RhiEU6f2wv30TsF6XbNeFpRkrCXDCednABmVwdJc5JninVkRH4QL4XpFLish9rOuBiCmHSekCQAihMPx65ZP1MgMYI5ZkV+D25kjha7i0boV7OL6cQmjYxAeZ0mAWce39+BPSW6FCgi/06vLa7muULHIMboqjvPtjJm8gTM605aRxjl6MGW//DXUtZfU0fjpHYGObcUtva4ScUQ/WarP3FaQbo2K+krUn5UMPFuTCDnBA7e4ffQzXzYnZKLgPByvKYMK7PEcl8380NVgGtbkKcBcUKTBCdx4dopOEQYJ36JGf5OHkplZk8wU7pgpEpYdYM+VXky32HCP1YalSLfd/cVPbTpXx16LxO4ii3kAqhXKkGDKg6XseVlgQDBSyvi+8N8Q+Pp7S7HrSRdF9X6mt2ZwYzOjUzlYaKO6Wl5OT204Wj9+aLBJF1nMdP0QK8pz4DFP926f1EYfWNGQ7FSf+a3p/9+OXJK2bZOSdIDyUeXgpcDV7+cUq8q2mbLWAoIGLqrh/m3g/dxfls7BBSc6jfoFyqkulZWHxy+kCzjzSnBRCPVhe/QF9FinX2puILEu5LKOLIv7BwLGh+v4JNFlfdBI8LQ5Lqa89xBGM5NwPapHUhlkX7uTM//tZM4iDoRNe6w0/R7wYLBdcq9XnMo5BhfNoPsRHVkZY4aI2qK7QhApcZg/+MsMdu1rTQuvNVlcMBdpG1BKE0zlZlGihW9RUqabhRcnZf4vR7mEUGjc8bbhHGsSn4+UzV8N+r5614kBbHeXmlxjHCguPHg6QqTVAIwgqKvCdRwgqhkg2Z1pS8rivSE3rkd953pH2ZOVk6Ld+2byEcQchWkwF8HKZaisqDo6vbRsvgjrUmw932nii0zcib6CU7j5q6mqoCK8mHEi/b2Bf9tgEqI+AAdjdp1xgbq/dGJYVgIiVaOtc3oa9wfJk5mHUdG8yr6g0PfhwK8S0Xf/wLge22I0KpNN+wPY7QJULJJGOBUhdb57NBagelMx+m/fdzfqqd9s58gqSg04uw4xAlEqD7HCF5wI+wq9QLv8mcs4FQImuINwUIIMYjABeIvscgbQIlngBDpSJPfy/nz+jCkvDD7ywYPn81q7HTmyEZrAwqagi6HWGz9dhmO41qi5W1Q/k7AwC5xKNycudc8+T9OqiWM10FZlOWCkSIC506njfTF1wYwS8WBkGPtI3IOTu02eLarEhju6B5WTpJPvtfwg4HNjxzxc5PHtWJeCDYz2ufJR1eO2zFQ1H83qpTJRQJ1W7R1AyKo3l+bKb3WvpOlPtTFgOFiJDNIoCN0OSgnAxKaliOWGIjlPYmD9ymj9Qh4gLtspF9+FURlNd0IASjQB2bOg9nEa0/VlSkN3+K6JQV0aQRFLp+j+GNz0QUntu+QK0PySrnQ82xLbCyMTokUBlHI13Dy1H2ZDBsyktuSDErcqomQuxMlqyQKoC6hEZRxBBbsFc8qCVH2hWoUoLeSoyv2KtRtnYWa/hLes2J6hc/aD2BFOhpKanUclt7h7UcmUY9t/d97ua5tjWfjngiUM0wV2RSRS8hJPfB/G0n1ynmeJdvNJ4V7ByU0/YmACgZhtu7Npd6u5McCFqt881LHWX/ie3SHz0BgkiXJTHeilEMoM1sTckxrVR6vPQS+ezQghMVODZSEQ5W+Vb0Mp/HwNq5QSpiFj97pQVqYXniLqAWFnX9ngvZWJ0EWuJkRSY15D3/XIuD6V84CEakf1gLdtKnIuFL3rbB/de2S9D2MqLM2canXX6ucmf4qv0NBU7HS9mHCOXjTOJbQQ34lzkWOqsrbvR6qYGISWYL7YNRJ2rheDr8Y5RI5pTBlXTRLosBo8A8Iga66mMkd6Ws/PhByI3fVF74ld656MvOlKHpAJmzy1bIJAQWbV/EWXZiDIiv5G5fUSvlb0szy8HaySN0CZkrtC1MWuhk0FeYDO3lO5PXUINfs79K8eHJ8KK/CmI1Qc0pNaWf5DzjT+l+Hw6H7qZmTFsL2ksWUlNFxwPgkE6AwTg2Z0RaZpeC9cK4l/2I704BVtsIhpP25okIHvxp16wrl1LLEkYDwIp3p2US68h1N1KhHrjzy2sQV+5wkaYSwGoaQxdS0BK/1Dd+xWQOQiDZAPFFxdHXosQ7zJtJHQe1ax9yJhADdy88RGSNJcAOPoJVAOtxYx9GgbvGoXaTKK5uTIQzLeZeWsHv1Iva2cHPj79wYVFR9x/CZ4qDLA4nKKCYNJNuDOJGjPQUo7R9oIm4YpmcgDT1YRdSTUaN3wdZKUqUMyiGS+c52Wlxyxmw9kuke3RYiytVts5aJIQLz/Hd+etEyDosFbLueLm7P3nZgYKCbrRoIH6bC13VLx4/RxSqiMEkfBPmT5FLPWyCu9M7NNTkv2ygLLYHGVRv2fhs+12ysuf2gtUXR3lUNtMc1JSnuFv4iXqY+o1LiolEVjg/By76qFAGOR6OkYrOD0Vs+TDLFvLME6Cs9VkFuXa6JKH26UegxWmf2nyy++GwTrpLtHNcK//4UpSqwXhT2FuUz/SSlLkVHlWRwRuNb11+PMlFY6i7tmX9Js20f/MH8VDDilkF6AE0xNQRDV9RTeCkdpK+l3ZuAb6fNmXtr+IOXGLvcYMTWmr7Tb0mWzrEDz4s4hxHgWEg+UIw4Cx5ImpYM+NlImFz66RUkkIwoQ7me45f6Rgb8ov9ck0mENFSqkQP+/6zTx+sXHzRdJkj5XgBe2miV2jjnkNghQf+C5cGUOZqsZdLYObGQWeCDX8c1yZezjX7kAuCcBA7hUwluqH2+mfp1as7Rzuens69jRuBrOQ82Prr18rtWJUWoGWzwIE+62lZYMDFIOTrfRxUZdGQM0ccOPADcTP5bF8zgFGHdsOMytqmAg2o8CI5sX7dj/1ielD//O3UNzCp0zd+X1O6uJ6AH3pAHbJzCtbLxlBXxiXHuvx//AUML9sqbIsUosUJOdu76K+6SFGCAQSXQ3T5YwG/nEoUTp2gqCWEI4wp3YXZYlFcuwxAvs/tTUOZ1bX2xr6kcNPAjX63byyRIBKJdKEomvIl4oy1hYys1F1ZhpZ63mKE03oQuamcjjzJE9Nv2gRCMLTmafLIuXefUuGROn6IaKqPd5qcufcnMm0D1CQHyyClW7aAjQPlvmcBZFab42KOWfvJjdbb/3Eg/AGZMy5IwTi0Gp0a5DyjZMKInYfA/5bfAdqD82bBVG2aE3sFRcZAXsHtZmZwxBDV3ZDICL6vZDnsvs7kW2Wa4uPgemPh5QP16jH3Z42SQll88v6AdfPsv8Iex19D5YDekD+Mt0Li8pvHpQ214ce/CEC4tXUlsgfZZl1S2fqzBb8NZz9r/W+ZqfnD2XUrZfprHPKGSuJ+jNksZnnGwBOuPTKEyLUspIj6R8zeOjn20KXCgRnpwVYEKK+5anRs43JJocAtqCu7gPJU2toqfvO7HDu/UwR1fk1U+cVd4NQHnwAA02pYD10XyPHQden2WaYkkeIwZhL8Or3sv9Iu0JA3SRNJBZc3zJJv660d86zFLO0o6VBKhVgg6HREDzmkc8zeAYoUJdHOSS+LaAS4uX/PdWIW8FyaNqPzwvS7BkC1qdRy+gQmiTWWyjhSu17sh2hQCmPBAO6BCDW6n8MaKpj/oEw4q4A0oO+rp1vXnzjRADZJpCJR6/H2V/27GUrH2YRas1eF0qGZJZ/5bQv4/Y4FNdMlk/AqT+X7GYz+USugY07XMTcPWKZAUvsqiOs6Dt5HBAyidXApvrgNJGVxcNiLSzMdIkU/GYCjcpLXdNSMu37SnSIVJTjdUku3AGWLyCWGDRANZLjDjq+5Q6pm9WGadU/k00fKIsnFuYGIi3HTIlw0jXv1Kmb4cQ8XsqsJsX5XWVjfrG7h0I21L6FrfYFCyUWNNIfpxhNS/RhInKmeijJt5XkxTW6H4iy+FK/SBs26aowS0yCq83NtbLFpgW0+u1vHjMV5wTkUSoufHkIYGBxJlpSH8ERdxWgMYMUpAZfQNcBL24UHwNPY8OeRgszWnQ9ySu2q0AH6XSd7ju821o3zsZxop9ENg9lZq6S1dYsc5zwCpMZIkLROKLxLY5TrI5JEAoyvTzRD2hlYZWWYRrBo95Y+yXUuX4GGZ8GTyN06Xq+9AMsRyALAepHES4uOcIRvFL4W4J+8SdZgILkqv1Kq0i3md1R9hps/8b3ifOmbOTYm7cX90mblUh+KYIISWHfS98b0hoULyS4wdJCaJEjEUrslbvPPrIq6to9w9VMKupElB79aww++tDFYTbiyG3J0s1dZgH6PiA6tP6Ktnz9mqlZNCU6Uc06E24mcAOtG2DkQ/EJoyBIBK6wDqRMAFX+PpwenfLz6bZ5w8zU5bnd05ZIJbR54En+HeiNv8dNrMUWzny8w1AnuK3BWnM+kfKrQDqRUAs5fBIZTu4UL3fmamkaNG0Bl9hZrSg6FMg6z0yBV3coIhMarDKEDPMCEx0R1D/vxGvigfs90L6i5up5XA997nlbjkkdFriErjcPTU7INEkvWWYLH/KMi9EtdcWsqV/EQG7oZ1riHf75I2V4GfFeW7DWBG6BKxohmFFVypOk4gEblpcSOqHILxCI7n+FqsivAv5HO4F6l+9AtR6291JfVhYUoERWy4BicuDLvVP0aB1TRgeYs/5P1gQI8qdwhVr8JXUwD/J1BCrIgS0e4gSyOAaFBgmhESQrVEeNTfYCiuWZrgyJjDaapM1i8UsBDHoGH+SZX70vRXZd7Ic/KXvtwNNsE0ETIJFrQ6v3o7TvhQ6797mmvPsuAAmDmGDz4xRIMdl1RWeWsKJ31UlvgX/qIWfBSAjvuk+rfLoWKyV93Rr9pxMMHBRg6QqM6F3R4jfuPWKWFWnEVEw41Cmp8iGnh4nLgyKml3k05YBXutSf5casBgBoo2OFLGQk9mITfDpZmVoimfI4oA/WAl2y/9+9SiKgUnCopjY8tTrLtmwFhtKLGm45Q4u92ZfU1Akj+iOgV1GIlPbdJ7PrQcbHFLVJwHGDicE/GF8pfbXthL5+ZNTx8t2ycvfTze2zuXZ8H5ELs43IEleNX9FmMlSdsvrb4LUNb0xjh/4UUZQo2TUS1jWp3r8gUbrJGFFMomYUY5MVBkvBlXmxs+6wpIks8XnSDkRufoseyh3yCYlTNfdDW2Notm3hLW/GEbbPF9MV72PhBq9f/zNCSV9fKJW4NGFQCDMP7F0eaEeT1N8qwgq7OFrZH0JPMC+vNW4eY9DYLnBKZc2Imrlx2oVkW/lujYLOjHMLvXBJ2maQUlin7VCYHEaOnZ2Yhe2D3Ga3FloAH9CLu5SD2roBGc9KncMTnzzvTbyqA9a5LM78mMjMZ0zFTKbFos2+N8pqQqzaaqEaJr0KJ+cYHp3LviBjpPRw5uzaK/RaOjo8h/pJXiIXGZ2XuHvBTmSLrR73DTuml6qiHAtS81+w56E2XatOvbxumWHS63r5L1DF7TdzMO6jAKYry1I3Y1KGt3cEOdkS8HILtwrs61ZTIR5oz1oMnGKpgHS8V9aiYuEhA3agj5dM2VSpZYSzIdonRuIPrSYh4eqeLIY/GyRGI6PaRyt35uNWDoPTwHf2DNRYzQoMVQIAD9TzZK4vy6FtwZXqcR16KkBRgiVscMj/R1y/OUlU5JDlYVgVVZsvyyNrsU5iudB1AmhL50zxOIJfjxwNNiJxvXPCn+/OrBalBD+qOAGMaT7eLNN3r7BxeFhrj3KN5w+i+8NS6VGu4yFHw4hgN6x8GqSUH1anL2e4rhVsRCiD0ne/qwQJMyAS7PnxMusFuQRLj8yLubX3kvGfSLZLGS4xGJTOOuBTkBe4AGXcC6X9EjM/xlH3EyjPPuLlIU57qI/K5D97cpKFuR3SBk9nPqqkYHY9uuNOmxrBDDmzZheCy2jmehboPrQz+IZDsDsR9SiJPvmvj8vD1GyTFHMia5cmbcHnL51AOqmAH5xyCSj6d4za7uQmVTkbMRRf2s1c2JW8H7HtneSk54UFv3cGJjtoyz0Y0CVUoLXkt0UaRBDQXoMJHvjo4BUCTwckYXaIvowjn3zSrx+564+Y1sKuSC1BwjoqUpC9oCO4MeN1ZOl7runQ+gOdyOSP/B8nri9R0EJa6JPx6QUgNMhOw5NHN87mpo5i7lOBdPl69m7skHGl2nmUsJhUkd+s0ULThhOqnvWxg2xjoXw/s25Nyk7riiNwWkYbiytaMu5StgBTaUYGD/+xLFlZVusqw3ICPYSVyaKPS8NoLNdS6B3NdfgQuUg9koEL22nT0K4HQZeWEEMWAVsOKH87TIEeQeYsdH7mbwwMXjBlHIub88PG70etyiPNNhOSBmV8xLYJIojCOju0mrWCTnb37lvcda9UFWKf/FXI7x+xkwRIA+Ivs9MuImoapmuJassVegSwDr2+Ds9S0UeGwcV8ipTNPJpWv/YdLt+KWWci1Cd8cHKYtbI68Fh1lJJEXpeMQiGxB4gkXD9+nIaEXJVwFmxcQF+c1zcgO79Tvs4sM4TuB2Lug2xo7EzgVdHIh87sso/B/ld5TJmvDM9HJuCjYZH+FYq0+iOueivBf2kvgzwCJpAfT8jOJqyXKr3HN7FAZfJ8Z6IRNhpKpPDFPf0kPz0SQ/8UpNa1TvloTUBxJGr0CGlMi8HuC1CVk+x3FWdpqgVn2HpK2yOM9eOf08Pem0wV2c5bjflR6nS/mlCRXVzFT6rflGrkYJeIgKVJBHhyA0dW5UQma1n7Cppb0CAE/9Q3Wz5YLyw8i197zUiBVCLhTscBLU3UtSPqME1lqioTdWXGOMvYjK/Fyr4zgt9NakzR+ANZMvqqccyJ3vWQNCdy4rinS47a0E1aR4ru/aXObpQijVWpl3czI8nys9vJVcWZ8um5U5ouLl5w7Tz6jlBYakXkFlqdoqcWk4kQJ6UaO0cP3t1JhbY7Voxd+ejqdjIAXRP/WKmhHIq5lKOLTOWQedEgUEWcOthbqopsDSvJhUex7aICtpIkki/ip6WrnMvOV/lji6nXr2XR3/vE9dte+9g/iMRCYU/eqk607Y52REkwqSQSJx5b4XVU+xKqx/Gp5WICzfBcC3etn2IsYK4HkhOsWH7fqdpN1tBSYRS33KJwzaVm0HPsn1QzOzn/WyDwqWjKIPchOtW9F+oPlzq21vFfNSlgyhtAV/EjJcKvpjNTvg3URaBUnToCOW15xx5UBT/o7FS53aN9vvcudpF+1/e4JOUqutKLGNGw7W0jX2xeArQaMTcWW21+hA1cbcOKi/M98rN4MJiWOg7Hl40KlDSIxxUYFpNMrJTcPEDc+/ZooYjWQcyoWFNdNqEvVkLTnILp+iLtKApIDdNhOqJdq/FiD3FYiKOdBfk6oOYMueUzg6aqahaKO2+9gszQuTM7H5K7rDYeAmI6Mzc9ciq/TWtOvqgU3QbHqJUeyiEs1Z6Zx9nSGOuP2ja/62Zw7EtILzxWHTuiHbHnUozdntX/IdLkkAy7FNLarhmyWBc78DlfUh+sallv4qxonL/1GDe0ixW8ADuXfnvzBaECG70qhe1dzH0qi1fMtGpYsQqUo/xBIlwldxiDEZQ/UB6p9uMAq9wagvtJr40OomVXqywC0VCJ7vZ0YRU7vSkSVJBci8iIIDWjCTFUYIM8TVIrBZI27cz4X+yQKGq17XkgtlDjMU8ydcEDNlBvNz4LgolbPMKk+BNcjuvkbBw3vHXVvf1z90jBmLD6lYTZ9u3EEUElJ1OQQzPofXzXTdUAutdCC/F0Y6UVBFaA8KfW3lbo1B4WpBU1KQR4J5LbAb5iCOF0yNOMByc+2GJOIJb2zVKhVWHnSmzMAfqzR5Um4/AtUq3psDBAfk4K3JFGFCdr481986tgHURKcoZWTQ4W4/fMWp3PmYApiRTFdwfYvz3+AIIbQjWeYvebPDT552Tdt/J59k8MBTm8U/z62NWq4n31ej97mkK4oieyzSHfE3lJRHfbWPWfltalGjpAxFqoudEv8oNLg15HKXwhUUI601vz5qHQatl9Rl+RB3rOFTRdizjOXj7ex+5g6vPKv97T12GechCMxIjnkOZptJJ2/47Rv0X2vlzYVrOBBt+YRtj1FOZHj0rikta47ix8tO555Q+HFbS5n0vs+IkihrtS8qlEVa0dFMoRjRMUZEprGJZfudL3TauNVsFzIJ5fZzpEtuvRFrJIyrQ0ADdSf7wg/b1G99z0WYL/dQM2BxFjCtkU8j8kxwpxvcY2X9bw3H+U4fdZy5dM30WCR07eWc0Sdzh+giMUBFswz76eMRj1CI5cx9eiXc07huZ3tKeNxK7bYPGx0d3N3zQTGKuAENPXv+qcsRuP7mb0FxNOWP3SQGmm9Y8vpEt2wY4Tpa7wWH3sQgFnPFgvXO6pSFrV5ybCLZDfoq3qd682ZndL0jDeeL5zod5oz1uiQkgY5aPx9Dmgu0RiiVn9IEtx23D+YpA/lbGy1pf7oamRbdbJjoTSAHbFOdIoAxoWrlo+GRt6UtgbBWk4p3FZCGvkgKnM3Z4Ls/sQM7tsYpT9MNtjJSczLysOJOcgdlEhudpQZEoOX5QU19OdHHGe99j/dGo5KwCJE08LHHu7ZpxIjLZfwuhzJsUf/ItraAsqagvFUnBDTAdo5oDx8vlq7mtVk/xwO126f6BOVgm1SFtbJzGaWzK7IalIbW8o7Jj99gbvV0pPlyjwd+Wn8Rbs0AKcou6/ti2coCJKhPeiYBrNpuC6z0XKzFJ/KJ4syW4HPkyOrSV/4+Hnh9D6fzYcz6oeGtbRuoa2OGRlNt+RTyH7g5Bqqx4uCHDq8rKvBxRj843X/aJ3y/rQuaC5FoqnL1rBx6y/W5oD+yMowmD9siwZMNC2ynNeDrcCZvCZ5qswgtFj3lyKRtif9KpOe9G8agV0qburWRECm8kgZJSNpFv3MSBB/pQp2sFE7pzKs0leDnjwPTKHo6rS5ImBWWcxTGhnbQ/7F7mJHXtuCbIElG7KE8CMvdcHT3ewpEheaKuExzDxVbdUH0LC9AiXhHGxQD++ynwGULpLgZdCl9OQLm+jJQU1hqkLB/sHYZxfcvj0gRsr7/0SnW4it4eGUXz1Xexse7t8zQPmiW3xVaMwzZ7g4G1a7GKjGF92c/kswBZXLQiWMd6gZmKf461KU0qTK/k1gkX/hiHA7DWK3UkDM1BT1h9QSY64Vu05DViI/Uo8GzMhjDGiIgGYvmmrUmUEGrzcIImpNni4zz0FSvI0UXlEkci4bCFJj1/DFYSIcBzqz4qamjXFxHOnxn3L8cJ09NvF0aFCGLyd3oc6fBKKdh/g0VJExrLCy1ehFDrlQQ56afjjw2YRbJuXl3ZQtIHUIPBHijQoOlROGmoDryrNV+DnNFwmOS1uRWtXV4PMK9mEzx61nKEFzTztW50JA02XCWy3gjKz/mWsUSfO3LI71TWVEXzACcQelizMqoxJFjbTXRG5gKFc5vxE3hU0kVGKwmJ0YNKU1mgD+E1zYEOPJbjQf55AXhMZMEcsiIUujBrmhluwNoTtCo/u/yUSSSdBrTyqxwz2ijAoZBg6xM6toRB5IVCHoBC6dMylXgmJEVyZreSAV84A91fYgVmHhInn2pORMejSn+XxRkIBDI7A/WxlliMBAFzrXPRo8fSKX+ifV672Lx7JNX14oZhfjJsOFL9akLiXEtYak6zMoaxxntV21w8utoSLwyczGSRVLhhH8hRIsdYO/JNrcT7yRe1L0EmM9NjKlYBHlF7OTcT/J4RE6zXZ/w+8EgtDMvH5qShLdAX/Tl+37I6B24SHHVCBkWyi/jja4FLNwdSM2Ic+/HQ51/pW4NQZuLJqiZ0otjDEUnRDy9sgfdJ4bFuGI2BR7iY96LFkwLDQtAiFVs0pvFDtVzMeYNyMcLr8mutJlLvXQhq4LKayYeVQ77wy3XGLEupWW3v4PykTKliJnyKb6vs5i0wPrboiUrk/q6KkkPWA8g6ldGD3tGfp0qru0goxGU7snTuWpYGk4B1obPKtE5bOWW/WvtFDv+Siypn6Q6fdMeS6bzmw9yDRoxg+wS6Ri/k0UN8PrTyiCCcahCQHttbHipEWWPIoMDnTpxrLKNyDU1AupeJaTbhcnG901wiyj0v9u3hTzGYG6CLTtYHgSpjaJN4aDoewHyBbn+Z8r4qNEn7VbGCyXQiDFb2olFgzJNkVEimcVm2ntMscbOHYYZuuYnN3w0+mjVe0FeyDfPmQ+5fMZlYvRHSIICP9TvzUCGLDnjN3fZ84ZQZ1VOogFe6BAs9TahxJzvCQwlkq7EyGSOM8ULzVFyyVUqIuHwmXWjaE3vksVWNtCV3l+gxgO0qwCcea3K6DeLWroYJJfQtJDOu7q1m401vkBjx3gfiAOK8YzTIgEHLPMIgBZVvCddmIitQFpORWpVOmyWFeeTeD/OF/tmKqI/5P6DQsysHw7ScOUs0cSImWINLTH76Y6rWMybxUjGBkfezTC4uK1qP9VYQdxLLdylnpw0EpuqerHN/j5eX7IdUGcJqSg9seBVgRJiYQJDZ1fiW/OKiuamVVZX+zq9iARCEDlSwyvfphdGrfpwVdn1udGaD148JOYCEIXPPff3wsrY2shV2Dilp9yzbqjLcvA8rN3xYRfFkWQPDGLBkmR9FCon173RXb2JyrCheAbQERLuxAvo3M64OnPqiL7+W9en3SMbBG9tQhj+HLRBYjLljHYu7J8UANKnoPyQjhzOka3PaY4Setg30Eg0cejAbE5MpE0QjcSlvMCctqeJZDDOkDrc4POW5AmlscCoISXDzV5dRG4OrDBVbLGeOwlgZ2VKKRk7vT7RjEUiW2+HpQr1u8ZmZv4r+p1TL+A/Sn+Bwzls/Jh4F27UmPnq0SCH/RlFO6l13bMQ9+NtmWLKYhKwGu0xGWs1klEYYh8YEMyOHk38OUpA18uDBL1o57bJEbOI0m9AbtXkwl396p00YOa1n2vDMZ3OV7/cTYAAhRa1Gac3qaTdu/s0O5iv11A2JAtUthNmJqmjRtS8IzC5S7FlilMXaDbNc2QTeCtWePNJsZYQ42AHYMufat59pyPmcadGQOPs3olIUPD0km3TMIzbaxiqLe1MS20lwoR2tEnbgBPNwklEeIxOH3/TOUNYgb21HXdK/KpdX/uFOmXUOsyzd7u2Zl1b7bDBpHdrPkRhyyr7LIogBGmenFzDlSrfUMAEMM5cQl8XcjmjyotGTCXsr/SWFtg2j57h5YvBzJVGH43wxITj1A5uwyPdImoyr9SrY1NFddQLplXt1Vw3Wf7gEeHbgcm6VLwwV+lsrwUqsJDhVBPCs6JQTzjFGWnFiPDwXHi+nw9q3bLAJTvyVvUJcF1qPHJbRivZ11QgxZiF6Ve60PH5AfJdHzSfY2XmnXqnpOQmlso7H2zcRViRIg7r2p1sftoIMar2YqKdB98nMJRXHZqDWXDUzqJlhQ1Ct3j7S8qkn2eg8TZVh8d+xucJ7Q1yQQPkQQ+JRyYsHZTN5UA33+2D9BtUIg0yKat8DhGQ43dLWMkjlV0ZK+O5WuzWn73eqAOUpQcQtWnf76KtWlcejh/p4EDGtxvmn4HKLzuMrpRdFa7WR+QyMvDT2aTv5/VC9ytL0hli4G963JV4ymPHLdpmWh5NDpwQfdmO92XvQoDAel1a1X0YdCqd8hxQ5qedgwpmB5RBjdmzod+AxtOKColJJ7m/PHpzvBTi9cg2UU6QJEc2Tvocih9gI77KIgmoLxY6wHez91irBBB7ZY+2SdwqbSFVRwkmMJFui888a4bhvDm1c7Svv0BKg+8454I6cFC/B7NlPln6U4yT1g8yfXv+E2qlLb5U75qgZTxgDkQ++fs574vHngD/6gjofnZ75O8Tu/y4nryKy3RURhG9oU9jjeZkUJCa51m8EUVeykWUu9WxhrSIwv+YrT97wwXU+K4Y82JZuica9PPEdgtZzXsEXA85o3XWyCp1JKz63gZgDIhyMANYJAv/Ztb3xSQUth69yADuAknmdl6bl8xIsdAEQKjqNxjjGDMZd71MkePiw/2D7xcz4BQyDzAOwiH09NdqeflM1ji87UhVMHPyBoL/9UL8ZFEzcAjBG76TVc50+chrbe8f3/sjHPW/9rN47h7/BwFD2HZ+MCfoShMi2/SsWuMD/vzs9V04ftQOhRQCp1YNeZEOnJGkPXrjInSo53xGdfV+f1ZnMneXEXGJebMLGG7cHBB29GVNIumSOi5Ky3aEnqr9di5+KnXpZr208HqcFRWQzCg+hZESCypvrIt58+jLwyLOEsWA/MKMWAdgMbV7TO6tGH3oD9g6mXvXfJTI3jbE+4KWfvl16qetB5I0/JrLLQQvqIZZLTDrHbH0IqiXnd7/NmDOJfD0wAFexVz1sL1z7MtUViHdEDp6EsS6UI1mn7mxgJrylIA5HI+oV5bmmg1bRxLmK9As07hGYtWs+H23pxUDk1FHP7ihtaQJJFQCMYFMfylcRMTghsozD5mc1QFd9P4b+5uiPJDHr50h8vHLGCP+ZKFZ5fU6zLUtfIAnQj/s/r/uUi0pzVAh5EfEahCP3IruJwtStcQwmpJxJPThliF/Qy/Ea5+J7SOWlWHwjUim4TJqyghaV4XAXFAtPh/PiDnek5aaGamUpxfkPGuYHfh/F+feEpZH6oMit2+BrBfCs04LjrIq1srwtBL7IHB4SrraBRpJfhCraHn61dwrXC9gQCwL/bk+AwqgBq0RpF+uIrODG0W8u/Edw2LkbLqOKiL/AJRetkwQZvlyIixCdQCQGZCABF7eKaQe0AdvRz7j+hE9v8WytrVdUMhVQyRULMxFxgjkd6H/KsmYXtjKGqXSqh7tGzxHCpAyXMgfKIvDgxIdhcc4jdryAftCv2VgS129GfJD564tAKE338lP1wEO69jqAvZfd+65pDkW8PEGE6ZnvUkE86IOnnkIAfPbzlQMBvDQLrembE10kkUV7NW9VSWLI2aFOGCcSmcEB6pwGLrh3X68bqqSTkERqHMCYavdSkAb+V6TEOnIaUIe80CUFjbF7HIfKfMSuq/ZqqHvHRxSE0kJKEHjfTwoA6L6M3hFVLUV4gZCcTR1VODxXGCHkl2ONLoB2qAW4ubGhCU60ZU4rVorlQYSSf3KehObNqi3K0r4PMpeDdyN7HR+/Tz+AscIz67dX2D+bm5vQCiXHF6NAWnfsHqyCI8qNFngIDkiHiKFmT5P8swXnATfuhXEg6LRCrh5paJzwVz9EOLbz1I7hak3z/zXY5U0rMDLY2veZZeOmvi2KH7PntW3xFfyoIgMMXFF8u8Wgaxr52qC58YSt3HfLTKvyViyT0tJR1KcD/z2sPghF7JPTP9XZHzz4erCMY2fQ3IlCeO6A9zEJtWkWTQYzwM2OtbpUFrMnw1eRdXxiTaJQYRVESozlhxlHLe7C3eL6zFaMgqE4qTLc1qyfCXOILTvgdRMDJ0ySzhYsZA9HEimRMk2cNMxVncKNlVz5QwhjZe+d8jSkb3S3i8Ndy9Y+Sxt9209DX4mBwkhbDCQIkaSMnE2L8vhw44SHH53EGdX5xcR+btlLp6Fme6vCc3ogGErb1WW1H+Tb/HMAKn1QMierp3gEI2N53++WY3H8Cok/2YCpkcFQruNWTbThrFDVn/ljIb59yLH8HxkzO4Lv0a/Mx4yLOTgQOGKr5uAlXmk6GwFp3ejwa52qQWEB9RUQQSxDjf0b7PAF/4jTm50iscoQ51f40NjoM8/0sYOO6nDsRTRVye6HiibTQUtqgoR7Nor4xIuhGNLWKiEt8Q11mNn5qgDzqpMNT5SM39ytKoxXan0O4raD7CiIRPJyhn49EQwTmDyhymEEg5IBSaj10EvSxCIwp2XmL26F/0XzV15e1h6KFs4BiBYlVkZQ6NJpOMSW/UqS0Nk6FAnWUtd4uZDWVD4ZRuXu2wA3Zkqzex/fjTUxnnruDRjA8mxDV04KkIC2WaW/N7xkDYkVDrqE34gpadCuCuJI4GpFbYnhbLxllt9PRrAtOh2N22VkbyrVGNa64GJBw4yLcAlEGeQDxxQ7/eKbUZtWmOWWlEiK7bKcYBD9FRzAM/32yaVbcY75q/o41ugSVPGt0SvCMs9Sg/mOAqSmFN9kUcwnD9kXFdRKkutOLzX7Q5VEk71V3tu7oe4l0kOiqILstJy7NbTY3vJ16XG+6p6+EpT8XxEfUMLqBoALNmRiGD7uXTMVQ1Z6PMZAdqIQNLmj7oBi2D5AeTqGdSyU6eoXuFSQHJaICi2xqR52sRSYjif2/ioAYOm76+O961DXW416oRidpB6r7X8s3OoRBfoRWuajAO8ID3vo1qJRJRFEvqTjoqvePR7JODeMPN0SmB/NKANkcB3OWLhUfB5WRBTaSUiQKYpbgU6TLgEwAnXI0N/ffvMAXhqmaFIJ8xoDAA75Liu9ReO97dpmc7NCzBHVaTK22tCwn6SRW8FipRedf6/lEY0SPehGGa9ApuP8IJUB8C3u71yyeURwkLpY6rZ6B0/olpZgh+WDQc3qHQbeDN85YTEBG0jUUrN3PrCSjKCIC6TuaNWTCp6t52nmxVr2i3pZNzdKyjO3pfsV12Svmtb5hT3YBsIr48gxnRN6fTPpuwfX8L+5s/WS8a1Nu337McCud524sC78h1etFB1lkS7XBHn0wH0V+QmkRxRAPIcA7kjw9lLfAWqtkoolYEhgMMiXIrmJTiBIs63H3Dp//dD81acsGGEZM74xYg0CVevCfva7/KhYwXuSJJTITP5Ipq4lKfMzVuDW8S3mV+hBM2gGJ/RItFHo4GXIRgl4GfPsuSKrNY9pHK0MjMVPXABPk+VD2c/bAhkP2nRecTh3pR+EWQ0/8vo6tr8a/TRWsUVT7mEUSUu0VQXp1NSwfC9eOGZECVwHY5zV6TbhyAoRBh20XtfxHOxI+3+GENtD3dn/8TNJt/oT2QwkPN+sF8nUFYjFbtLHEmyt6N/0Mf/DdiMilN5d+jBJdhym9PIr6EG/58Vc/PKA0kDYcw3OWrxIZI1cWXofBHAFZMa6Lmbt2BzDoufiLHmNIqyJ6G23nwdvQHdNnGhe2WY9GxHs+R0AXAYJhg1QYF5Nx9k9PrGnILQzK7g3HBxCKU9fhoAot68Ii/bMYoXh12L/mOG07OX6Ce9ngCzWAHQz+6Euo51CxYwEV3EzfoaAUBdV2fRhDXJw2UwdZWf6q6h7ZOTP1hn+DRtpiLb0NK/Z12mCZ23gfqBS964YHXBJxzH/QBG+oJOF6qnzYTcmuHU2YeSf4R7hGpNq4LJy2+wjg3MBoOSwxlqW4vhHZxeygqmKaZ0lF6pjhum6eHDwQ7EHHSrgw+KQUAo7xP3ctTkhiBQCxvXPu5eu1hSf1yMxGDgpQprlvjeF/0/XSLFTHvANbs17wlDKlgmAlUzI7XylnJ3UamH6KLB2e/yrxXpN40iyzVQEmsrTkE8c/74wFY1j3TrzdcNfFObwAhs6fiE9l0jhDLXvA7dqmpGAZ/z0I+2hhkZBKpEKpBxpwm2w30nfQECnYoJi1SI9pz8JmEytV0G2nMqlF1fqO1osJvDbVBRr9198+40SU2v2S9osDwr4iXIjNyY2SCHy7Zgv7Vtn6e5cy80awd8L2X/kaGYm8qWoBWfvyZDwTvX1go2KDbrlUv/Yi/1gMxB2G1TvkvkcKUGI3H5TZwJ6Z4Z8Syv3/XXtHdnqxQ+uQiJwIgsLayOSCg9c1MWQzBxVmg1JOB3or397IxPG2u1YnA5B5pZcJMItNQV/X3qpzWiont3pl5H2V4nQT4Oxdkti9embQxa3LpjPe5++OTt+Rj95Ap3zhixCaaaa76cA0Pn5RmGG6MddcbFaubUZCOTxeDEuOF8rTfHKxqJcF/SELYO5J14TVSQTML622rZ5Bcb30GPWFy+KDYFsf9tep0CkMtRKJmzncERbrI4REJ2FOqxjuuW44deomKxgyPO/wOIkfSOFPh+sHqVkmdAxdTDcBz+i4XzhIi7rmqqF08B0i0e+DiMuaNWFlq4y3Pw5Zfx1TuNRHAuSMdK4OjgTXTwqSvKTfpC7eMIQhhvy1+EFAw53bCfBcs6JolwDOVjcJiggYXAWYe00F15rDes6EwCoMf674d5n2f0VrEbzTW2LECzzrZkeioszAeI7U5YSIyZfzhInttnwO0alIpUYrPjvI+wGqgl9XOH2GHD8ouHrHsVoR6I9a74JLmBRmyy/uID/6eLK8iY67e/NfY3Mn39cj0TgMDCMk2uMXz3OxRyPR6ou15ekxbiRS55QyOaLBnE9VajTkwfmDr2PU7ttlrh1H9+33cEfzSH5XHAPS9gaxl1AnaXtrPgoTaVC1KBBhUcBWox/n9bC6mEQMAyfxOk4xXoSZzgUHbKAyqluVMrXAnBKJ2exi0FUMpovrxwgmFTe3iJghkM4cYUsNnKk5d7wPB5DIxR+/8REikPBGyjPr2PMtb6gIAqZp0mKnjFJ12RmMZ/t4FwxZY++lbd8k9gWiozyNqj+jhCcRAXJmZ+j4xYJS76rZqbkLm/NtyUeJu25URyK4YFEnMRyXXxhy2My5Bj+rQg+z8vcjfso63WjXDOswMT3U+JoR2j3hw5NISdojfGvZeM+bwphiB9KOOYwGm3/+WVGKI4rbUYFM1I1d5qkn8SR46Kl1ZyuYkW5Tgoh7tbuWMOZxJR5Cqtp5LtfNLpR5aYTGKTvyTtjNNs66N/LSGPIqV4bwuDwx7QXiMFh8Tk4hV+fvczaMRm6ZULqvO2bGRFWz7svkoPgWCzlI1UzEDA5t+2+bZfX3TCxcBOehBdbX03UrU5PdAr2/VteuPiFU3UGfkM5AsWlm/IpkXE/j0d5ghc5VR4lVxUpimXOyJq5gIbWm9d6xPcRwVcIzLmdKCgIWIPaWvyv8I4iQJYbBLcKvSnzWvOvUrYweuE3H8E/BD4lZc6MFsvFwW8BSYhCmUD5a4V5D4nsgH/X4aa2gpq0UI3f1s481WeI46blaqVS+JiI6AnC8lKzzfbMVvLfY/GepWGNJC/RVeHASl2eJC/XCyXV+RX01FbtxxIVR5ReW6iJphywQ11x3yoM22O16ZJsFzx0vFFyocWZPM5OV4W1OpLxtGtTJW6iNBIlOI0G8fdRyDielpUUwBcrszFDFNarnV3yyxfg+xbYWiJhlB0Amt57yrWInRKkMYizMwarOhKLoXnH0Lh8hplyAg/0aUnexlrANXJyWgfxFiGJ7MvOkKHPFamHyDCQeQjeXwwDozA16slxet9J+YBrHaT/RRVpjqD8OWAVsCZtkQuzDSoGOghb8xDECSDTVaNar2brbQqcrVzfcP5wBzWjYvvCJC1/T3hvU2TuMLAC5VlYZouZzesAU4W3doBDnc5Lm/KPtp0TKbvKLCehnnvwyUb1Dl3qSyJlJaWrGnsnm9RcKAktsgAfSN1bWjEmxPdXQNfqmKu6BFynrwIwHv7rKbhKMg53L3BNfhR64+C2YM0feabA7H89MY1csJD9L2Ko7ch7g23YCs7jIHgSygd16zQiHO9Hr0Qe4CGcSFd7zx4++rS9HhMKuESKI7cqJitm3R/BWniRpsbEijZK7iyE4Y0/h6BrRJq12pYgI1fW7zdDLj0sXsNlcWm5DaonNXeTgm2dAgn5YTp7cQHGjfQ+OfeNGIfVc+sGmtaAf29cC2NL39TuHt3MZwYlU0HrhOwls3fofMwbbAp+4ZyBJ5OR//+IiiKMVIiVNuJIeLoim/Gjl5xmhB2CvH7osGXh7rbIUkfYXsiA/HG/K9SQq6gFbupNCpfYjsIs5XiCT3NIPJQp+o/zS0rOrH4Qna1Ghq8y+Y35ZRtpwb/t1Jq6UEL3U4861wlQ2YGsg3bO4GFLbr1/AAKRnUdUXDNJDLyAbV29oniVqa9lmRYys+pkUCXfZLKELq/+Kl9CcuqEGy0pP0btU7FOq/OpgGcY6OPIqx8+7//tR/HXAsEMGr4OSSMXZaL/708784hPf7yM0T2wWPvN4y6aktSC+7O8O7BS0GEbjf4/IQUT5bWtbkGDumOhzPPbrL0TrqU0bkJFt3y5tIpEfOnzrp3Fz+r1gv9FesM/vNvllh6LL+aLjI20w9nnz33LuiYKKSSiH4DWTAEADsZTljk0Pqk4oGgsaA/S5nEJ8OKtcNhfDgZZ+Uc6q8XHFXztz95vxQLL/SVaH1f4ByRIUAkMoGeZxo7qjtvPNoQxp1faVs27xQnxBu7uo5B2ZIAyqpOMrWZC16kDIs0Raf4+D6N04jhgCIvZXitthajRcFxAK5oisJDDo1jIoDPVSWglrsCkexah5brSf/NRaDq8w/QzhT1EwPzreA3FscUswDPChqGGJya/X/bqeYvm+0h7ZioQUUwWsPmgC1LFhfanNAVKRiKS8khPx4w6NG3ajUOZ3kNEq9+hyNcBeJrs/U/9ow/oiCNUH1Zdh5l7zdwswNrqtMSLcbkAMVaehmZdz3MiTqmaq/ah/WX0EwV7JiNocC6SkLQQBJsKbVrThA7rFLB3bBUwfHQzQE3rNAzkAtxzBd+4hW8RUxRnifHkNwemQNohRx/545JiafArZWWTrUNBvTaTS2cQ/Iv/BHJW7HeCZ6QJMX84fDehfHsFvP87OGGnRcGdea1AcSTlVqxCYpz08bzOTI5pPgrZMHnpZpq4uQODlDPKAtDtfNdWFLBGCuysAIseF7vinBuTDMN2oJ51xH9dMJWJgh+BIL5xBJqggPZgqeiH+zHVXufZlRV4UGErh8J1hvwUafsDE+KBnK6gkcal++t2TJsgNpjPlJzdDH+Onwgs8BdL+EdNfisZy5VvjRyoySIebpij8l5FnQeEYvQLB4dA+MDWtdU5myPEmkwZxZKQdoxVsDe8Zg5u6M4kSBMa6X2NpmUxVZ47wIqrBdgP24ISZ9AGrER5U1UN16bAlZ3RhOj4UY6vaDSXETUxTB27vG5iTWTLEgZwTAr/N0pWZNZCWEP5izgkkITGow9NE6NQjwgKB557DWy2IxtFiedwrWZbYzA8zsKpELGiWzXZ2ePQrRuJEgtLhYLCHTYErHoLKojAxYAdfSojXplWfhs7okzxhLO94GrTjz02oxZ2sbP+TF/Zp+k63ZSYkevpUadaHyZLcsi1ZEQ/7LnGSHBXq189DV6cm+8lRbU5SN3cboR1JKNFQAvdH5noVX5TFfcg33fHSLR3G1Xm+kEK9zeJzEPjTRSxvn3UJgrk3fALJ+jLUoWMjjo85ClVOIF15t+NxgFefoL2Ppgfn1TUs6YurUTB3IrwnGyB7g0TFaYi1+xnxiy2TfF4+e1UIHbL3CXaB5FL4hbKlPPj9bu7KaseTfKuxZTGqRf1Pt1vycAa6r0NP+eP3+wQx8qAbbHf07MghIBuF3OYwOdobxi7gt9jaSVJDnHrASu4bSxX6a4ohkVmNDbzaIenBs1iEdLwAv1ulWddkSWgRE8VpCQANXpSlzaFDSlp3NerFh/egFIw6qaVTiXc/vNUM4UpRRP+9Srz7pKDaPk23ddPDsO05Kxx9+RYLkYvlawcwPnT9ijI9uFnY0dHzR3Ga8euwpBK8+witQRYAtMKt4aCqifgjor7ZzOGnmDc6Dh1CEBdhOFTbo6tABkF2vh3hPFAu5EeZiYcXdmgPgjQdYa0s1eFPhRQVVfzrQmiZuSE/ZeryDlYyGeVeeqP/4hJrSh9+iF7DbPvqtLsN6dWBD9Xc3j1dM8/0TI71xMEkfNVw8wpEZyPeCMIKLn/++9c9bgKpf/WhbCZsDmQhd4HWMLPH1WU0o+y7GsUO2KGSHE+3i+DY7S1nW+qudWw1yxQY3pCI/xj9UJxESoyRtrwLbDazgSBdgeaa1MWJM7o0lgnNo6fTfv+y1013FG+sfUPyYQM1H9SSe56tKlyMUWAmKgMffoTuxehpkWnb+qBXVQihpRwdjSFH788HptIJ4NLNGCFyxXkv4fAwq1K3mUcRjXfualZU2joZPgVYZOQ+e+NgIp3RJrvvN7jkC6yodhDgEFSDxPQxLHaDeP+Th+sYhQnR+0o/Zt8sZNjlFTDRUOrqlRjjLcLmEkOGr9awmea5sciqm5eth656eq4WGm237LH2LHv7Pux31BA/1LHRS7mMsg/9l9aKjUhnTzyRrrh3RyoKFUsr5IloK9hZHFgq9kS2o2QPQLuaqraUiNfKBwy6lxUqiRvyoLzgN11dQ7kzpEWcHzB2KACgU7su4BxH6MQkecC9xGFOcjsfU29UZntlrG4cuwPx0Gjb+C1IpYPzJRaMykXXDb/ONx6rSxSaABu6FwqxLHVBuZ/DZjE5RT+d4URRu6L9ZRbtWtEL7CRIsUM718YGEwGpWFsyDUrdnj5TpoWcd9Eh4vyYzUvRSE4//ZA2rcV9Qkpi2us35IVrE+/J/F9r2KTnC76Zdk+LINVKrPHWrYZiD7qriwQ0HMt6DdRb3R4yYPJEg2EPj87zMgiwDyI6FHU7qNBRiqxhLKrF1TMqqMGgJ28lcL7CmMmhVj0xCNbl1YbMpisCvrEUfuAjQIlIMKWFaIAwq77mcjdnt26ppZVu8ZSB81AxgjuPfhmftnvZ51M2gs2cJK0xQ9iJLod/rOVIqErIQpNlU3e95uJhSMwDTSq+/CYCik3RY0IIHosSbTSCRW0oXbJCzZyx3vRsofNdnqLrPy21KkC9mNIgFH51AEZwmfUeKEsClAmedEmWR8kX/PtD6CQijMo11iAU7SrJUooGbp8Dq7wevpqP7RgXKfXHx1wRrT4vpxRjBCZxkzOOoafxM/di9Sr9hPd+y3b8RcQbZrYbZ4ZDwpvPl/0H0TP9STYvVttjEOrEDFNkjJ/cGNcz3dFK/ImQP/Sckv5XkArYV/96bwaQWy415Ef3QXd7KmAvDJM/iA2E16U9a+vN0l3lC/Py8DBVsUB5MthZpOV1S6wVwLsgffh2Miw8v52K0GBmo53eW8hOg7vW1ELbysUyjyUbLBCWq6UVWU9MVmqmT5mhT75FUtR6OPJVDmlwr/mg/4+hHZbuAKeKGE8gGTBMJvXuxUi9I+iiFgqmY0/YWyOxC5mU7K+ACr8FnhqpJP4onoYGSJXsuNckKnp1/EIjmMWi3RSK4eeW49GuIt2TOUPtqwGRtD9jox1kpZTqcdIPn52cS7379MKMMnjQ9lLhKyyHqBORoSkK/RAIcrEzc3gfCnABZqgSzlYJnEE90S4UlL8HG6alxoMV5gF2VjIZ8K52HgIdVV7cSEjT0jI9naQ5ke3KOMhTVgCFy3VMhQA+pVWlhkRBfO5U1CtisU67gYWHm7OYP2kdC7v2kAdejpjAL0fJHAtFlbRxQluYz8F8WcnkBcI6w69jLC6jPSNcJINEAdQR8fkonXWNQFkxPIKNv2jtaIBTw1fVMLMxg7SpO0Q+MFzrJl/4eob1CP1ZyPWJjdtRRnt0G5tMC1Mkd76PffxRBJCAGJrbG8+68QCbDt1oZsCRHlETpm77IodIluObqJX+7cDCrlZEr2dZ47irwl8kvMAqnTdTjN/x08t7hyIzRXt+BubctMZXHj9OKUUThNKBK6wGXk/bW79YRoUWxKI4mDzoHQ3fqrccg1OGWkztqGgdGJYq9jzwDsgabKhakLp7rCLLBmAbzajOi5xnIMeKjBR0D6OMsZcNjcyoekpzpakblvObAEChcAlmvquvEzhwGmMh3GU5oCc0uEhyTHtZrwUsk3w1LOsvNmKo9+HuCXznjSScNI3WoMntbz4C+5+Kl/fc7JtH8RGnD6KhkQt4bQ4jDh0ss+kpqZGmnRZtSZj9dGDG9qs+Uz7szrMRaO+Yc2S2xHphgRtup5HgEePDaArCu/DgJNuWRnENdsZtpkb9cdDtQuquS1SS/bGu68UCD/skXNr6LpPTARWZJCqODR2J7ZlDxBbrO4y2PnVB+Vq92V2+MnUTVrCTXItKwhglTZ5YWAFyT2NGzCNbEQSyH85kUBUkQHJs8+93wjPl+VuEl8m45uPbewGXoX2qKqoK4gBEpn5oT2/QM4MnpCNxvw5k19//ObRfBjUnidaO/m6dURR8Luyf3u21FOp57EuZGAZkbEtBKvMHVLqpBoAqP8lvBGhBnKrjn/9qaQeoHv7Fqkhz9ZYT0WHduPdpp9fuLW5+ykercXkIajv/td+aTczx6GBnxOqgs+H+8tBFs//O+w3ElGehDWNiFO5NDYphN6XlvC56fyTPRzIwuQLyhCuFmMsVQysUL3eexaQDDtkIOr5HNfy4zpCy9UrfntbvEdS1e7iOCIzmokhOlIsSbLuDhOgoAaYOT/7qR1Crscvx3iZKX5QmqTrwq8+5P9TFEVMgzkx6VZnXifF5cK4iG1TwT7Lz1fKGfZqXMWtKUo7QtLyC0vLne5sMn/2RNmwHt4G9uETmtpMTfFAjHZDrPoNvr7+E4vrU3gyIcJ70FJucgfIIsywdfrFGU+2fT1ru+O6ncr0OzRPmQNZ4SlK9cXndOpU2pUc6S/XcH2aU7SlW33hdWCK1iySjXbhnyNLW2RNehBff3/Fb3m3Fd5Vkrf0soFFKNPOzMH2sEUawXrRJ2lx/Er7gWD1bO3dFUeNBY3RthRRcYxDAug9mhFcHTVO9yiMj/JXMDW15qWff/19pLQqsgi01WRWR2/zdBWfc6PDSxb9CrFvI2IZFv2rJC4eanyVov6BFWiVv7pTUeY3F+vdJMcAOJe+QF0PVjsLqlupwbjeny7E8/zmV9cuxKlz9cXU1Oo87zVoR9SLI2q2KNYSsJGMpjXJUhceJpLWwXaJEaNnEgYA6ajxD7tseqLRCJ7hFARFyE+wa3psGu2BLJGS736KIbM39hY/XrhahIWLyFYvjSwb7V6YaVothT3ykNVelPFFyWeTEukRE5mHV3/euJK5uD631WJHy9rf/KhAhb5TFYVi/cTsfPrfYs+vJmn+tDgQ1SpiPCpV50Jzd+uZxPMQ8fuStrY/bs+KtNx96HhExsQIlNimPB/dXIoVZNBirNWDqCRS0RIfgLgnVNbVkZfCgxfN4KPqDvMeD0qzuIlLTKRQK/OahHMt017lPKNGMJeGi8r7bpT4GWBrXqEjHmKTVis9rITBVxaxvORUVZQSKDPTwXsMmL1js8RSE78rF7BOi3SUN49RXcSqx2JjLTj8PNjhhuzb2f/Pa3wt1OIFmhko2Hx68QYqUV74zofZ/0bAdNKF44ummuqgEJhxL6gLCIxk+a8BJfdnHOuogtnk+ssnD2uiIqn6zUPWT0WI381oKUQ0mQIGU9I5zZ8YTltm5atbhajrmbv8pguqrZf0MrTJoa0S1hUozc9PliCGNxET/i1L1mjKp1zW0Iu3DQZH+zDnJAIN8yWw07/JXRtE8XDzz6KdHQxrptAGbrdIE6qpSxP3WmSNImNR71ZPniixqmdJNh++aD2lA04s+TRuuIhZyYhsMBJ8mI4S8Vr7FCwFQREQ3tbhXu+fTfbU5nIabXX09mP8GycF1A3iVvzfvza4zVzLsocgg+Aw5DmZPU1wYFuoUH4y2Zg8BjoD/RDJGzyCLFL2XZXglblwgPuSu0wM+0fFJ5ZvQoAYPN81U+U8APOyMjz+9jEWZn1OxPARI6RbNk48pMPMVGLbgf+Vbuhcm0XijFNnQb94vnD6OKU0XNguf6hb9SwC8TvLqux+sUNPyRReATGAZOArbxMsc1sYb7a4W/DgrIPVi1lABE5tc3M2AlP3vXJM4LGbmUZyDl82iky3wNZhzb2G9MMr46f2KM9Q2XfypCKeXoO7WmHSDscNvzTDDqU1EtEzkzjlW3gBt+8uC/+LWj1zKy8wut+bgYN5G3mOrk12eekAvUcSk3VRmhhCD4ZI7J65dvmgHL3mDpfiLI3nCFRBsmKJRUr80+vZw+oxIejsA54mmbs9IaOrI2S9I6d9wqZYE15UMfNkQ9LUDvTmRpgqvO8lmZxLh+b0CZk1Px+e2I2VjoU3MFEtIocZloQKbUph7NDSmZy4O73KBMmOdMYTjhTdIJzuVz+9qT9YeZEXxXGA9+8J8KhWHHYailHXy2Lu+UwdvyYWXcikrscllpSDCRvFw4ezbSS32nxm2zBVQ/ysfiR17aLXMRwos3KZ6PgMYGzPxm/SWisVS45gMY/feAQjKdtKuDEjNwJkCr2C27oJivuqG+0/ewLvpgeXqmuN8asvI4otrq4oAofeSadxw1gGTcPsRKi6m5StxVk5ivFyN6uQXygJnMyU78kT+wGxFYvO6VM5wjqA2uvi2dZYmLH35qlSfHnp6lxSf+rGiR4jLvjVO2QfWxM/3xhaC8PL+K1fHjiyH+UNHC2ACPsCFkBjJz+838T9s4rXmM1Ugfmj0Q6kOrl7zj2g5DBTFVembB5QqGNpMcM0U4ijDGA9M6RR2vsw+8S6tz6lsXGyNoCgGHG4LajUmO3875VhZcqSTtYhRmoqaU+bC80FdrCwzYsJy7/sVOVPxsPNhl+lSfNHKG+rpkC5t8KIHLcnCY/InRStuUyb3DpAojvOjdlbDAuKUreWSh8KKxayCh0OYg047mzquwV2nUWLy3VMe6HyXj6Ljxw9xj+blSfgguneXTnGQ+t1H/Et3OmZUZn2c693qGUKhQqo09YE8tR9RceJxhNBzlK+Uw3qXIK7uF17CFK6uXM8Yl7U5MH3Ju6FlsgStWPYzR40gFe9WGTqjesdevtIPlnIeRsAjc4SgH1Or86UCe1/GRsq69vU/u3/j2/+70EPMPfyaVpV04GwuqEJA8uTOmCoPWZK+82sTZeITBLUxHFFAW6A9QIXZxP0yg8ByS11OMS0Glos6s62o9wMgWkqvGEVm5LrsPuSWt1bre6SO+CWjhfFB6vUWPzwnOpo/cNyn2hf++p5XCZ/JnquBAMlAaPOyEtQJ7CKuD3DZlzddoELQy27JMHN9iCKDuy24OCW9B/LArUMH4QifQfvASHtCrj08vlRegGNOYdPy1rK+sHiSvqH3qbTyt7bbkhofMhPr9j1nDsRAvUrExlBWuxZARyefFxChPWHYuuUAit+0M3B6/6JBK8PudvTew6XrFoiNK0LwKfJFs+vagjRh5HiCCB2WTsGR5pOxjcZJQ3Dvc5GzHI964Xs302lY3IooGgnFPdKypb/SnxRN7bSaETcL3NBB71Q8z2WOUE9IZrw1+TgLT+tRS2HtILQD4uHIfxx1WLBNVPUozGwK6rr6WJYYSV3aQZDE6QRcR6RivHgsK1L0RHwgj8/wRbFJl2LAHXIY+pc56VXRx/1Um6Vu/FaK0OFUPt5tI7DZ1B7TKoEfHSNNr8gl2KcMq4wrMSpIPXPmSRSgfNIZbkTtQOdyyCwT1ns/U/EwEocRXhFJgBYxln97JxPZv1g8uvOURbvbf4nPCK9l4Mg5g5uUk0Vt0jJ3pos5X6bpxZAiKstvxlJkx8y8gjvvVKBoOYW9JpxkUnhcvB/Q8nWQs0uQRTCOvSi2IYxAJ+anfd3hshHv/eLp7Rdo1sRbW1yLwrwwcjggvC9G778wHB6KJOYZwjSunU5oPwnuExuOA9dBtIVN5Kf98jcID6MqxvkOfkby6cjahU/HZ+WXh6xxLAnt4z6HBVSK9XqD1hThMDDV7SrFjxf2Kmu6jNq3OGkOlsvJX5QrMSCplrQvoXwlNuqItPqUuaFqsh5Q1+I2A1b7ya+4z/veAMdbyCRn0AD8lxNA4f3vnc/dPTeqZIRR5PCFaAYxYZ6oaXsXh/JEQT9V26vfok12pDdHTeztsJMeeJzEXfFfvPvTLHuLbQPooWe3/CY08kQxOHu+9SnvR0elteN3j11mnG+0WP23mx+OV7RYdr6Q7d5jbsnRIU2isqfJ94TWZgnB+HxfDeGW2hdYhX+EqcIdvw+xyGg089YPRiBlRHWRk88j9SVG4JK739bFgpCAUgnA78YAPFdJbU3ZsfHqcDnHpALcR3+I5fU7Xvt1OiJQsVRxanCpgbcKgp04xCTVIK3r86yiIobUUtPjhZBqEhtlA73aXotIzyzi3TsgpzQufXo2sVRNj8kYMzflVSPuweZ2dY/8vlDPcWi8UEa1uBZFDNDo1SplFYsStLkyvKmnFo1drlNDKzZR68DI4HnRzhbTtJuVPpGZnAlRht5z0IT6K8fEin8jiHCmBayyNrn+rt0gsSrmSrBiBjYx5Vd09Io6slHD/+SCMM+CXm/ukMauBHIQy2rR8mpcyt1kggyazoiFl6+fuSYmY5DjlpO9j9YrpLZ+j/PrCfRj/RrUbo4P2BdP3NSBN50BU0nzBnqrNCVzL2aZKYPn1hwb3UNQxL45KW1RIGA/x7RplibWlzEGEYMpulR0lwGWPjQ9PjDjLPHpqDX0cSG2+CE4bIVsl6pj1BTcyOWlE8oqNamFimUCwMB+ZdwMd/Rulp1aCIskaJJ5vwpByaTWgFGY3a5VgmwgiJanmn/E0cIttU3L26FQECnkV9daMFBQwFacGnLFU8XGoy+ajxEVdz4P9wiWuXRRdOwtV4fLGfVvxUf9OMmI8Ys/mpqYPuY86w8ph4LZ/H+gjOVunLXWglizfwD8oFJwE//P2nD8TXEWyT8RzCb8JEzOEPK+zNxARrhYDURFi1WBRwbOicEIMJfFfvRyHV+0IJQdoRCSwo2k2nhuLbNV3JA16rL+IfCv1HDPIlgUyrvAtGXO6Jepgt13DEtQT87peK1vYeBU8nBnA2nxx936s3MhATsYjaHtoQ1zWbhB2b/LnRsNWQPKbmQnqF62b1x+KG383kQvzvMI2QuRjqM2+ji09S9QRLq47oFei8kXn/ppZB0xrE2L8FUhPTO2HnR5F1WT0XN+f/gbpgUskXH9HKyucAm/pWqbW3rtFL5nXu5rRvfoHW8/j3FHEDn7cDa7drnHBQCiMWv7ZgacxvZ7FAlig9tjqGrv4AYQHTr5mULwKUDuEnTK9NBmovW3Fdsp/mpvufE3JHzNvkkkE3h0/32CMBaaitRtKFWzWRtkgszfwjopBpO2zW9X587SSTUmhQr+7vCgKj+ktbv+hs3gvehioW0xNQ7MEP9eyg75Luxph+xNKp7tphWicdMSJR0GiK5gH2rQcsHbXuEtwuGrqRaajo5gMFhSYdeNE9Pe2tPOq41OancUMB5ELGGmmJLEbCODKnG9oMPys3Gv51YvP4DdBTPO7Va58rUxoJO7EZ1lKBa+7d4Rpbzeg74YB0XB8eXCmnAHrWDW/mG/Xcum8g8J29j/tOD37L6q3amn7mOLAhSZznNGoct8ACSN/AvudQQC3xll+7l1hg0y2EUQIpUm4kcZ1Tz7bVlrB50JanPj91vGFqCzVsKTQ2MrnuJ+ybhuvfMCDsD5oSjXC975AGGsZptsWlG7jnZ0X/lOP0s2+VBZ2YaoxYmLWrP1QfSQ4XHvC9IERoS4XNjbdWS0gPcwdJPRcQmswRvKfspk1zQrKhhZ6LI4u1Pipv5fMirPfp9o9IEkEhSd7oL4O+sZEAF6HPCX/KF2zURnDTvLZ8hs7hM8cb0xlp48QKGZ0SWSvb4H9/tHgArXqWXOuAhG9yzGJsk6IgVxn7Zg5L+PpMItu8b5+A1oWNcplWjJ7cR4UQPYjOE3vVeBgle2tyEQM4eFXitEUDNnh8x/5H9DzybJOu5U8Te0xCLIqGMY84/s2Fj+YO8k6QelLEl+/srDsDlr6AoyO6M2AooBscPQj0ohmKjLfnnucT/UvFhVyFxJcfhQSRlZMNSgWQyEsMP5Cz4y31hFSpmGKDPiGvkoGho+z8SqlbmWFl4Qf59fFZDklvR1ebnSX8sA9y8tjZlaPn6VqkkiRdDOE3OkVUS7zw7y+Tff/oCZgNbWZPKIx2LaKkJWhXEn7MSt1t178L2SWQ2163uuocSORJjwj1HYXRja8PHPmGwLf4Cs3lsRwSiImXB38hTVzsvxIDb3wpDqsgfaMvMxdfVTfeRpmxnx92WmUQgiJv6lyil6sKndSJe+FGeRw2brcn1Zln4MO2R2sSZPzvHiLxpQsLdanHzDxv2tblsx1bVLW+RPKOXqcUKt1/0psaT/jQky4kqGtIO0JOlRn0bni7JPMMmJhgE7cpxKLd3TOOuTo99SX0XRmo+nWWKlG5IAlXLQbUt/h4b+UVCecwZVLudrdsn+SbRO2sLNFjwps/Vosw/YpjNZAfHa70qMHLXRDsLWtgQPAMc07fs/ezBBooYKtqT1a/9H2ixF4/8U0ZuUqDW3oAIfdbLjYFLefdy8BVRHhrbdKmxcVLfTc0qrovew0nZ8arOfgselTdXu7QicRxCmTF8Fd9VPZ1+J2BpbgRZbbmkkFTtdfxuhoDZJUrGeQXrl8d+4CdMxtYPNjMedlBZJtX8HFnl6vdw+bcJt8hVabnR/dbyfzFei9gqxJYzR8L1a5+fNgjkSyPSj/RqgZkWsgft9a7f0rWR6kPvWqzdiGZvgvmY2w7g2N5TIvlO4lvDo6hTmQQZNfeZpSRPRG98FrZiJTGAoVJcGOYaMJ0BEuo8CRdKXvrwbxnKEF0DPVVhEvDgsk0hD0hQ1wfOmE1V+SDnm4suuF4av57rDDNTwvjeSHFFfYfg8ScxPR+qvLt4L/R7L060U6Q5Y1UkNmgV/m4EXwuAFBiNVzypp3cvk9n/wFk6b95VjK6kL3A05a7tOSUCL1UyhgtYMw7sHi2lQ3BWlwzM2CK4hCiIymJUIVW6SGKx0e4/COqNovXXh1jCw32jS3VBM0SV22n+EzfsjNMwSenAWO5MpZ3YyTa/S3xtqG0TpjfPSrQ+IRnNnpI07EjW1HLi187zu5Qj27RxYXPrxzvwTOqveiBRFOoBwxRN8z7mz4uIQzZkhleXT/i/k9cH0HJkBL70Ft2YFghlvB4jCsVt+AQgv9PKralOOr6IGsgEKooHBHEz5XSaJ1YSQIW+TJKItTNRsE01dvHJkY/VjLeRIC4DDakt4Md4j0gZhVETnpH/gYbAHPdZOti0A+Shiwa/XyqZoQXRj67BoAUU+b347Mzo5VZYEtf+S95fFam/haO5mGgV+p29s8L+66XsYai6JEj9VnzkIYXQeg2BEp3rV7/3dK0Sn9WmRO91rUKm0v57QjK4AiyecRRc+x74Y9m9DoE1vO5trO5IpKtg5dQU9WuCL0hHkeqVRNQ7tSBgabD+/EdnTdzqF29VZs7S7+3D7eVY0XEz10XCWel8r4/UCnJDyFt3DWR/RLUAgLHJw3tPxrxB080XXszfqb8VsYM2jf5zdQhm3zzA7l4gLwLx3w5wd++/Lxy4EjGVDfyZ5qwgU43ZoSlS1BJzafjAobTX+ASEMlKx45XCOeMXIp7ALqwGEf8Oxu0odn6AjMWicMD+PCRm2uLSBGoOhHrx9Izvcl/SqOHs3aOizAifnZLH7DmIq3RDV1DSPsm9fRsK64utyIJT8bJ0cfUoe5lDGdbIHRJKDcjm9UtQ1ViIvVtJ5z7k6fgfH3k276JZDYqTFxzF4NNhmMT7tX9NDDeG5lLZKRhsAP/30/gbjeYx9zpLJ8XxzoPsNqMMS2hszxUABQqx01fNOAi0hzO1DijB+TJ6nsswUrawK8mrDFWSdCmilvTCzavDDsLgHuNLsIh7pQfr+jniPfk0DNCP4FvxOFJtyW3LGx1XbOfTfFFis5QYNCHgG5auaG4svhtx5XccFj+KetE+MyiMduTeh74EWd4VwKBQnj/Cbl5F1DgtCAR1K+kmgQIyNQLmIbW6HuuFeiVefuw5inbRJooYjRrS6cI4ID/bfg4p0Pu9ECYr5ANMDJ1y4xMJldA+FffVeEqjYKmsSUirQm/htA4YlDsFZeK3Gk9d856HGFX439rcNjkupLbqEy25SJXLiQ7koTD/CQX5+m4+nmYN+bzDUnVznITdVroiMDY2W/H/fPT+tSMS3hO48xSLwrXze6LNN2reCOHR2RMC0QV+3H5jG1lXvhKSr9tOuP/wLR/0QCqo6SyVONz9CQU/8txLJIBQN15nlUdFxiDfoMiwSRsWC8WH9c/IuO535xwvngM9CCGFfYagoV9/XSwerZw/xwjmCTnsdwMIQE7RWobpN/t/pmFb99v0ztZKQri+pPWp6xyBHno+qPs9Zn8r1buhw0JSzz3OLZt7bgSsE22FkVd6sQbJNdufzrFu+5UhXyKV33+yy0gQ3orHx7ywGNNYFvn1boQN+fsdkrPC/6+RQWHPFayPhuC6I4zPykHHZtS/NpeR9ysIU8Jw3NAOu1+XslmthWLpoDmZQWqGFZcovHGNVzb0iPOsiXTTY+UhVx2ewMIHsl5WfUZ1CgflErYVJjyKs/llIhsgafTFd0kvlHAAKawrGSLtDUu8iA27HSPmxW2IVcHepAlBuLmVwLFBVZjTns0Znqmbq76bffYtygJ69S5pV1C1jgv4XhK5oMzb7N79C3D5NYXijCjqTDgC/Ck+KeFQOarC7TiGMdOoVAj19mA0WxdyJYE+/juwhn/GL6npZVaczRtcrLlpKIE1mr/hkFyd5WvYs3gJKWHzdsfaj06L8+/qXEjtBhx+swlTD7+YmLiid0rnW0W/83RDibCCGDaZ7xfV1Wu385FHNRK9Gu61INQN2VtvcNkOe15BATzv5xX6PoAXSwG+oqsvxqesiEf61QN1VX7xEGr5KMo8X5wgtJH4kD7kFUWsqGkg3ljuYsqtgWrQzuF3sHuTIVCC8RuXHxzMJfuEyrumPMqUrDLePAzsu1W67aUTpjM6M13Rx146YbZyQsYREre8P7OvWt3CBPUAkqnNMOqs1lNk9FwlVdO6p4MOCZ6j56k4gf51BC2sDBPEd7psBCzBLH0uEkbTd71ayEITGMPzxQsYMtd9rHP+a9Y3zo7EqoSj3BMc3SSRRthp26/+Na+irLYFUjfoKrltNp7TIE5V4imythV+E9Qb2ttVI+0JYHjrUP1o7EkKUK7RUeLpRk1cKmxYu3u8icUifqB1sTykE4FSDGXrnHTuVJlMXjhmUITOn05zElZWIXpU3C1axLB3usBCrF2tpY48YXABbNKjGBNZyJsMldKLH+45MzEqMirAysEMeMQrwN+UK7pFHrMM7pNk1pnYpN6KsqNaZhz2InJ5AQ8PnVZ0jgbJgxPJp9Od/XsaW7mDn3iKXgRhxJ1lWSNSM2yjPMs8DssS5QruZGvG0NwAGMM/rC8Z467bAHevbmnk0wPs2Qo3D1/Bjs4O9+6YdKIJhV/41JK/h6VshK5ej/hcLOK5Jm27hKjixRKaDJSdCutvllvr8epppdllD0k91L1oLc91qDztLZSHMLO9/RWJfdcWwUJGxIKZE68FP1g1WyRZJGN7T7+7g9qJZ2SayA8zNHf3ZXxogNpSH4tveqRbXJHxw9Jo3szBoRd/6Sqb8R3egqknqcqgWOP/RfpWTv3khhDBuOpXmqKbbwyqdDoLMZeKAmIxu7PEZ61aytERxK7WA1eW4OBOEWB3ipQh9SFfUGiNUV5y7DzBCkE/aD6mI749/GCqHPyPKyjMc2nyyxV1+E5o/ClBx5XDbGRWe3ySQJsYW/vUlSRxmNwSqQtlfQjV8GM2b+DB20SJEt+4BQjzY3KH64AwWUfGCKG3COggQAV6HmCS7MO7EX9GSN2VO1DteiZjzxQ3waPfpR8hxNmPQOwVU7Ml98roSw2VbbDa78MaE5NcuTi0iNAhT96GViunyoQ7hmdEnBUfNAZlkJrpGIZCdz86JTDikLNGiNoC1QDOfVAbMDuQ0JL/1MU8S5mJzD3HHaPO0dQbr5lztE4VAY7GFwNUepNGkLMdibe3GNWguZfi5Q6dKJohhLb+v8CmC0NMCphyk0iqtLw/mQefbeVmLVekzWMa2xX2aJNFN3iCLAvpid7uUym8irFPsUDnnQA7lX3UyJPtFmYdWvNBv+UTQpTi8gG4VWud1/zd20juMPUBN7rXieRjJMV1huMTxLU6E4UaaNs7XArP0jMmGnP3+2StMKhhN692GqbjUTNT0snsWEgyDV7oArFJIX8ogvbjuSIRszA2fx9oH4CFCs8yCOCd8q5kcP62CIQ01ECq9LM0K7GC7+Hl+Ot/LZ8gx+bRgC2kC2tiMbVhLi/KQ77PVrAFbHu0GE0F3ps8h3qXnoVoqxKY4rm8JT8+693kH5aDprsUTIux64TvJwbn06nLI/VLnjdTxnjQ1zY6pnAcbWgMICj6bjP4yrxiMDpc3kQrQGPdRS1+itOE6+jdJdTrhLy+24xx+GthXUKr9fURNb1OHEqeXj7mH4G6P7ZmxYJazIDS1S+QE6gT/Y3wdTIqbVf6VcA6QLyoA7Gd4ULmAH6cMnsX/gOR7Fz7XkQ9/hDo+ojwVKta9aXzTcC0AqKaSCDWjZu/YKpusfwk0DoElujZgHg3p7XcikUrpUhxSQnK4qWfKJImL3AsexoI/320+JLD/gL9O61xk52fcUy8yK1PFlNzWqBKxhx2eKW+fqkCvDno2bPBBL15qpVfbW9mp8LftJtqEiKq44YKZVXGephHxrucwOb6FRlITUV1Y3Hs309lIaG2GoH/ug8NZGkOE8ZyMKfFvguHS/iEpE/RnzlpKwKvHoUrP1lIidDsaYkzXUkkoP3HhgJg3zWEX1+wPnqWreiiW61rEZFoaxM/23lU2KdfNi/g6Bfx4Lz4V/8VTKxNxz7mTyagRQeINXZBkMII65m0spk2UHGupeYdvY9qgiVSRcZO2u9zor+hRRkGyzqFj7/LkjwGblO4rfL0fpZPBsbgqoWeTPQzGSNZj6c2O/HeWxtzYmejxjBVqDS+Fhod/l0KbaiTTGTm+77Add8CTy5KdmVIJvhYdPevenCej/JuwbrFqc2o8ghYAGYEjaZezS244PUMQeck8bSTZf/j4/EB84tdggZjd2/wq+N9DDulChi9EHQV/fRbdwrGDRmsEe1ICeK9Va+R0h7E94mIigrnhIPf1qLoIEYR78cdGhAouK71fkWs0Hf6IB9Fsta2lkfqeZVQOp3Fdo1qChICD2/R0qzUa3W2Iwq3dzs+nbz+f7cvvd8xnNWvLGi7lAz5HCiEDv4LI80cR31i758Syu2dZZHWsFsq2RYu6Df0RtYOuqiUqfupIJ1gHX8rSxI6thiV8M3HVbTI5X8ta39IoMZdTgwFGPfZSY1r7Fvey/AFyXFPsBky1YnNrys/33khaKFQBzigAWpGouDXeWhu06oRx4nL9Cc/YwJsOpZPCKxx959MKR44hIFzDkkO/rDQ6s8vPuJS7n50pEXRjOHfCJj6h+2BcK3A0018aG0Rkvp3q61Xq6rEuwUc1b0ofW5V2trPxroBAhUzsjngyZOewR2v7gGqWS3eczUtoU3lEprm5x8wu5JXqO7iAyKqMztEnWqx18MXGxvtZUqL/+QExSbJvEkYsZqTjUCS8B/JMnOEQJ88ljbHci+nXqdZ0vgMd5ZtCTSS58Dk+ktj8Uf9VQx8r7ZNLRWgVajTvxNbbGpZn+CT+EezaYEkX/YWhgh+wNwrHr4KFpNpIjCaV448VM5cG7LyVTU0DMoFOl9xDg2pN4xikkYP/OWBuBTABoetAhIG2vThRfI70iw0MZUJX2uhHU2Ueoj2JuaPlpGF+pTeN9cvtdztTdxlTjl2YqG4G2rivzarw3sjzoYdD6l8cxOb9PoJNe6J+foR5BUTzXYv7Y3lAwC6UNn3bHGDY//EYhsEWZuAtjkYFzRrmrSa2hg/d0M39xZW7VUvUqW48PxyJEPPj9c2hgjeaw6uncTRWTIk23d2+JrK6mPvhO3mtdPfLKyI/symw3ODBjUoK6N3Yj2Exe46CnMOuUOsn9UXzp00JNhXT281VuLk/pKgjCkB9LDCAgizxJ0I8cANq9VjRyLMCAV+iNqgfow/w6k49EplP+Erao5JMayekZZYRLTe6UyHrA3JY0Ej/Jr/49IsqIMtZqsq7CqxdDnAAJjbfUpTsT6Kw5wweS3wm4tjGmaL06Ohu11RLq39RdgBnGbW1OGkXSmn8ykKhB69+Vj3jCMkvR3e5agei93+jR7BImoxJEaaH5fzEbgQkylutm/CGFr0S3N0Eyjo2cH7485S7QRIypCdK3ZUZTRVodIh8hC96xDRC/rc1PN6OcWA0iJQviIS7sqgtyFyoK7LjypBR87c2/SJRjVmTDko8r6py0WG2iD0ajDBKRW1cYG8ZORYcY/w4I6XLqZwny4g1lATY/u5PZKeEuQqT9E9802NWCsM9UOi94Z/MPOGlZSCLllTIAzO8oS2yrD9CYDiKLd6c18K1fhUe12+28FxLpzjamOQHyWfR8lFOOuDg35iaWJYvJV9B03eehE+kWc12cfwVaveuhW0Et0rp6V3Fh6OgDlmG0e3nXHSzJ4VdHTVC7lBh+Bj0nYkhSL0kncs667p8heuv1KtdXx+TzcNgIPcZOQ0TdelIp39xvg+qXGmUNeld7t1sXIuk8skiNGM5O7x/RqNOXgQByJaCv7Rfbnvlv2NNS5+OdXTAD3J8609tE0zZr+e7GXMou4OhM/j5Rn6AOAvGcVrMwp7qJ3zsZLc1AVcjq3mIEUyw2znSr3U8gRZskHR5GIRv3X0oULIZQWQmk9cP/m7JQKfBVB92gyXSvHClDkwwmWQKRvk4C3ZI5tbNDs20yh/Ccj+uR4TbUJ+GM5GzDm5IoO19mTflaFokVPXwBT5mhyyQEJ2PLsLI+lAj47wC3fItbFYIcHm8QxTNdZIGJeaRBkOzo2w8Du7nqa4N9bc9LKpR2mMWYoOudkiXrVsYjh4IrYU/sQrRti8unKUXpVYHRlqy14aiXv5NGAQ7Mru92PsxHpyUVhiAEtIclIdNcX3VQv/hXVUZ14zyGgZAI/HF1CFXnTqcSFLGCtg55u+pVdZexSjjHZ/TpIhImIezQqJGRJqUpk0vQuU9K5a7O4oNKxbrSpLqqdFKu5GmQTFIqC9naUlvW9+yZe6zdH1V6ccUQAduaqR3Fv/iYvJUIGbQpbNa6lMmldt0Gt2upo88IXmKL5+ZB9HK/4BisVUEh5LGfsdsPV033km/0jM6BtYZxJ+jKPBSOEsPE9C7/U7IS97daPy1F0rTi763A1YH13KEcgrPA30Z15jnwIOdjxkhw/PXKSjIiPpHYIJIwuJT4MbA91pFjlE8LBxAg/2YXXpp1NClxD7rRi5KwAy5wdReundLXAldGvHWJZUBRh49Otq1xTmG7rj9uC4fblPh3L0sGX1Qpwud2xEYZwfMU7ebEOSL+Ojtl/kbUDU3yuhEXqf6l4a19xTKiZb23Ar6/s43I7BlRmc+4tOQc6G9ObaoTj5vKI+KcnN9dc6kz21Vis9VX05kp2l+wSSgAVQoNduyxFMSbrtc9eEf3rSDF1f0h9J4gCPHlotiMsUCyM2wgVEjZbe+cB4WE7tCSgfApARI2oKGEyH6ZiTP7ZsYjCZuMHDJ4A4lvrl2mDnhJFlIb5RObZqJEjAUCf8m6VR9LrNbRgtRNsiAS2i8f3By5se3eqwr8ynUoTpdeKw5BYq4UmIg10uPvNV0D/tdsg5E8fJazuf7EuvVYaE4DcQuEzvK+HaiUJ/GAbfbIdWHDVpYADqwTNfwbanFs6LEA3dZDPS4rimGHVhc90tlSFoiuFcgoEAgX19tq0reiZtoH87DOyf2znDYK4mEaIfQjflWXx4Xs0oUwnKnsSho1SKKGqP2B18z83GHl65GEgDU9J+9d3I7E9nrx0t7vznba940H2DFoTCOr9tbtbmjeqfvYgxHshDCnQo1aS1eFtUv9uTyLOaOvBGhDo0cKybp9lF70Kyc7m57VTqJvEP+7+XlsMoIdEerQTtZlovpfd4x1/JujmIBXUYlefagZRALKuBoRO1T83hh4VifX0Pjgdo7oa3b1U2DIC5/59VELq1GKFeIkMLro+Gs/UojI4hj0N1ttER1DlMtJdqmdbiSlN6StlRwNgQTSHsQzlcv2NoQsHlWe90tdusev0LlKX3LXRAp1HnMl+6PAx/unsEnJQ/o6fcnCar1Iet6Qss8vqzNy8sVc76xc9vc+5loAzhDRVXxnhMptzSmdrctVuoiYFLGJ+gGM1fkFtGCq1LRCjZ3wZHY2/r8D9DwQO/Zmzncwpxn2jXVj3NluJi17tpyM3jruxNqeFM7X17g/ukuLrsQFg+vzNVar/8/j3s+NYnzT4gx1ISUD3RJoIqgBXJRul2DEx6UK59nOypUz0cHdtffjcgo2gWDFnFuCZjntSpxqEzxsi6zfZxtFkgA4i2zdIr0b/Shd99w9yQMeY8LZye2Cc+wp523FY61fb6XxxmTBJ17vdgWXbv/UwGwS/L65neZl3NPglkbcfPUbYBPkg8LXYliRdI4eKh9v1dOS7fzgdkc1iB6OJKKL1pk+LXZmnq0HPISYEH8JF27JX/skZljkpzz5uvx/Mj7pAMlBJ9oERxhhizWXjH02GCGgYHa+m5cNRNV8PD8/7TSsiW30/G4C2+d4fDI9y4ELYpWyOPqviFRlwmy1cwnXux5az9maAW+csXDbaAkpBGkp8a9+MIghu6O/yJReJGr9qtePAZ7NZSoGB1ZAiK1+NUik9dljql096CTSiTs988W47/YVm4bEHXwlhEwwTuoenkEMIfD9kTqXDSOPtd7qpzTN+rggxtlj+eCGY4Q6MY3QVUqbLXQRYn4jrM69aN2fDRvN7gV7wpCGYyjzLdRqdzVjBhuZhKegxKQw4TLR1sYtXnEWE1pMCS0I5SznuFk8ympjBH3HCLiy7wyCIOWtDLAiUtp+fHSaYHFgs6lnRo4+Dyms0v72ED5wJ/Pww8xnkhWiFCtbNKtAaxN1LK8n2V1TlNC/08Vm1RkgYuZJwQx1y5zlaOVYtPdkHJSw+6ZGPUWkBle/x43Dy5p036FVmqLUtGHsuVkKAi4JjeNo+TFhtWuMYM6WJK00myeZ45EgDPwROaA1C4Q9ZJgnn9gicVhSgjH/KpApHdgokCo00vh+HIJ2dKDlYP2iiVRVBY4NsOn8old3PaT6bw3lZaC4z9i0BOP4heFHTX+SRG5yiqy3mxetvgsjKHeObI6iKMzxAdf928F7+Ab5VFudGcpKXMyUEero3EH+fZ0ntPeCm+yQNoMj6YiaLemjniGlhJSTdIioAoM2n6r0i/P2nn3qfiZBq/GiiQb7xyRHr97WZrnqYBgCJpPcFMF60c8GePvchklVUxQntcA3fOlAKMYl7rfBW0MuEhb+Pa59StGMPfDjC9cdMAoZ6L5VhCEcLq+h0S8MjfmBHuNg7OwimZS/p9wfYD1vgJd5kMHGykZ2ZvbjDqPxwfrjtaK2BP2tjvucwjIeQsaScM0/dV+BPiPs0RyAbRytb1ibHGhBhs4m4Vl6ofYoBVc3Mnc0JVofaqwVDf8rsHSpf4z6mnK1KCm6tMU3atMjeO0rY+WOdqlEnyk5UCPaOjj+L1ZyBikS/DGasUunE/I3Tm40y/PPkB49GB510xHv5xTZyP5NySgM6hTdb2DCwebMl6inOUPTyOe5sNFtMp2EOX2c61gZzW/Ij2X1/kOqqQs6Tel529j/8IGbfWo9Dc1c5ykFwx2bU+0Ihxv/4gXRfpFz1aS7HYgvekG3BbU1vp5vCf7HSbdRlNHeOiDTGpjM6OnWcdH2HTHstBF0ZhcgLeWZaPoqf0caTczYS34fJSTK0xLmkHSeC/Rpw3ljcxcxZQgngkeJNtJ20T5eNDeJL/JT4yqSo7EpU9I2+YzfzrsLsTxLYLoaCre57rTtZ3FAk7N9p50RSfa0Kk9Km1Qrgj00gkvtbWBgOY47UZageLfD4Mtuc51KUULWFVUp1itIuk0tWFquqi1As5qsLap9s/h9WZhJmP1jIrNbHJvVimacO/IBBZXnEUFCjc0dkR66zQlE1u9vtcQyyfWl28aI6SmdSbp+aeJRzBuFWDaiVQPbIlHd7TCZUfxZxU/TSmjlUP8uZ0bFIaLTXyfCghVFFkxJ8/2O2UOshDRMXufrp6gtwxzI3vYfFh/J0HYaYXQMLD/tioWu/j6qL6oAnE7rsz2G/Ngi4841SPaC30XaQ1vYnmZoThbbGBPc0+iZS52gz0soRMACt0TZbFT80dF1CBF87XUvyZg4d4q7S+h8FKXa7nBp9TThHFxeIQXmi1F9O8gFxsYUgAczswNzRxmsih2II22B6KqyVhc42lFIE8KNC6eDDnWUSbHcfQg3i+TchIEGkdx+TGYXbmWE/+c/ywzwEZm+xGNMVyxe7rD9un0iHEEBMVFv8b4ghQMWHIah2A9XUL1K4Fb+g7+MS1NWDfBIh8o9pU1lBQWGEm3DPtHUbqqsRgmOgQv4UgeB42c56qR1a+TSQb42fz9uibKOzEtpOjM8nnnxYz1GM2ltwl8dihmIWZg3/Ev95OBPZosWrzPWpuF4gaj6cshq1LL2sCt46rqmpqw5LDlXPlu6KF07u9ZpNIa7wVSdJCOxMakasKe30brq0NAsREICoAcDKW957S88FxpTt8z8cKT/EmjdCcqlmLd33Hd4hq4MjjxwnId6eyiZ2JXs6qCOsi3yaurU0ACQnYeKTfJ66SoT3sbfVoZhiZdzwIbg7N0U6Jmg1M/K3d9PctpQCH8mDSgrw+rEYnQ2Lt3ey3atnrR4TYWH6yUMdCHb1SPr79eMdMJF+31bW/c8Qv1uIlZvnsA11dFUByM7nRmG1E7aZ7CE9/YHgXFMJBaE84gMfXJagIsznvKygCv9NtTxJRvs0ejLYEx21Vfu8Kv9goCdmpodDHTydSJP6cauv/u/FJ24MWBJVMC4KoVV1w11Ob4OqMZ6wN2MJs4rcGZFJxW2JgAWZta/CEtiefrfE0j3ZJyrs7gOCe76m5NlsO4biGRctjx9cOqjPEvdcUyHcqFJgtdOG3l6viCfKFiiqqfyJfySSooynQastT3Px9fYO+e5IAPx8gcNvKMXiaefHWusXGSragUtfXsVjULgBNYciM39yKcE7sXvCBHcVqpuek6kO4yeGVOvRfV99LYpbPVlwfsYX9RD1ofiyC9CX1SCOuZJcuoxIw+yK1vAnjTXDlcBNaiwrbZZID+3Rbl/4NCrOkdhEuOB2AfLl56yPx7EXtZsB9PfZo78wt/scbDcCgupIZVPQi6HXfV/Yq57tDk/AsUc04Cncdjh81K4JrfaaCoqJGkF2mTsPx2sQMUWQlQ8IRnXYaNVsXYQNzQU7gM5f3264NaZNQ+SYB/z2RdkufZwyvnAnAI+JcL1tHZf3AHZDFhqrBccRYtsy3VjBCJIc82XCRQoNuMw0SO9QNJ0h4+CIcKkQ2zJgiVmQQAWsJ/NbgO3f5BIUK/59foNzmkO524xRT1HAKQ6N+XSy7hx9+tB3Mrr3RsN/6Ji1yaTweXUHiv4rr14IHvluX5JECQ4PIx+2pFhnI5AYQpHLnd9XaxdgdVU1tsE8Np9hhzN6c6WCW92g6wu+q2vdgcxJiwbVjTg73eB3AFPaE2ufDXUOIynXqC8UCoG6b51fNxyvB6m37UepmL4+79nTl9cgydy5tXHSEWiyYExURgb3VOOCQMLpCWraeL3wA4b9FHDv8n3ev2G3FYcZONncVBHfsvpO40fe9srdO2rDa9S/cIqdtalMLXpX6jz/2PKYhdh5tVn6rdSrAl81fJk7TJdJkFGmHGXEfwrURfAm+uTM/AkGjbyO8i1NcfPwkVZrMEd8fVtxvvQDpaPwiKJY/JOf5me2NkqcEF9vPbjxAJURH2yOSNXlwOwl0uoKZ8EEelad9Pv8yt2gSWrrTuvSZAgcgNPpz0poKlUnUW2gUY0lABmUba5iyqWqiZKFrwZSjkg/RTcltS/ODxVThDos+3JYjoAKzOAAAoo16dGSpLZrUc3Qov77lxjl8pRnF3IxLFeClv0NKBQUAing3T2vSv/GqaavU9iOKspaNjkMG7ddDCkXsloCHnmj7ZruPmPz9sPjtG7EtbZe2xEARwuS4StI/hn+1h6Rwl9NOM9ALAUBa1J+4WBSpTwqFf6jepeSz5xDBo2MFKDTC1YQxmVo8Jg/pmTN3k2mn7Z3pbGaRJ+H27zscIczuL4DtjY3HCRWgfgXR0nGB4QUuNon2kMVIyykfSBq19MsR7qH7dVJiTnCf/9+ymUTkBuD4g7uJR7qXKJ8DQF4uT5KRF/nsTxR888A1ztPOfJw0SNA9qMCn1NW9w9vqJJaaUua1z0fjywtDjUBlNGZOVU65E0RjLOzNCCGzvI90lRjFKCWB8YtA7XqthJ3JQReKzKgu778DoY4WGJusZUjsRkzC4F5j+7YnqRRAEXLrlY+9nnN4A13IInJZywyy2diAa/wykIrCAF8f9na54LXOGOwRN63ATB6PGuKVhpL621erhPt+6UyaZZNuDiSPdGopc54AkvAT3qO7l11Lj1i1EFDdg+9RgimDJsGKRh3WM3cWrKR52oTsZRJqS9u+7J0taAxClBV2trk5d7QYdCQF9CvYaFoUU7JTO7n6talc/tkHoCnodRQP1RHPLlpJewtRBpOpjj+FHLN8VJmMuIT/enQJhkHjWgYEHk2eJOw4q/upb3LnSwo/k9e3nzsP+iZRBU3Yy/o6E7Xk9x5GY8Z/7T/e0JrfG47nUUwgDNmGP8kxhIgGp9YOxhnYtJKug+lWP5Pmhio4GTtdhyNtv4ukRAJSmYS036EkbxFvAA0L2e8rNJzijJ+z3F8HC76R5G7AnM1t9hHCl9XyH6qLYoR+wagm8jucmjxCQ0QuJ30nVvhPKhkVs8zX6ZC5a4yoG5QAbDSjDLCRXzpMEBjr/CUg6RdR5TMFGa8f3Zlfe+xDTkFgoAJxZ1jjse8xrt8aAIe5kIZEKTF5bnp8DlDapT/s8RcAguYiRMi0jZOExuxpuoEJ9/whe8ozaSbLforN5nlV9fMIcSnAiR9+0s9pyTPNx7DyenqdyFzetsXYsk3nW/13PoF19sCaUlv33B38zMKtmV8W+PELOCWiB4jM+7iJU8ij1OOTy7lb94iahpt7HAmrkq+UBqvlUZ1f2Th1DwtHtrLTHfOApYK2ugp61RKDXW2CqGZpQHQY3zWUaMHRks/rIkhRelUeBIFZ6Tvhsexe56A0Gy7dp9LTNqSmUV29ZJ5fR8WS25Fjah5PVtfkA0j+Tgr6CTa28hMDSLm3WhyqAtod15B6HgRlDeylQQzgphZyqm5UqQ+YjzzRvJtGR8g1Kvl8ik1uadQKqdtb5PGrBwpX8Lk0lahAWWL+CZWsaMDigfHmzf5tIC7M+MD3hhE80ce+GyOwpakE+iW5fI2gnM/hhvnpVatsz541o1dTCIK1WynJFj3Hq4NloCBwrWhV0MjT572B3ls3+ulqP0VP5oaI5BZWKD++f2WfzcL6MrGpqYT00cHL2by0smWuqKUL7KgA80AXYj4w4RPkoBAe+a3SdQ5YayY8uHAIx28GiY68d/H1BBozBbxJu4K+1XH5hPWz0dHQjc5lF1uteEzZGBqKVeg92tZ4IfKslR4HJ5ALHLn47+PSl0IDOyRcSPDZeilJRpiFAoMW0/JIafVYGxnXTLoO3PTOc+kFl/TcL4N5XVTIUAlfs6a6C7yUEBeUV/DAMQCXV8dTU2lPNxj3FsVwUIUiFAXfhDRZnVCIjB/1qHthRLDcdVHLx6jBo3Qa5TvTG4mmLWt1ElaKRD3VAp8qyPNXYg1kKEhDgvw16vC7Vfe3tVDh0hou17L9LodXrQ/O43xpoCR2G/Z2ofXC/qVLcgMZMlUGlE5ykm/9zDiJD4BH5JZ0dy9cJ3zHR9/vvhzfHAKq0tmPanUItlBr0vUOfiVmXQ0C/NI/B4ACS7s84TNu4Wm7skSmJ6a1oTG7JSTMcpaBRCkPHRYWaFI+4OLyv/bXyVQsHkXzOx/HPScuoEqmmAKMHdmgkMMt2yzX3Tt4apwHt8QC+PV66ZAz0w0DdJdTTywKXewgXp67TYvpXrFlp+LMi4rbFyQEVEo0utQy1vlKZqyOCxHSv/WXe5Sjck36xS7ZrZ52ojI5V8OhuVC6LUbiYCz//TS/AMC907Jk7+kKtkKpH6xm4+GN3EqrEeMZqig0eNkJF8QhPqUtPmo/6tu0i5MrxhTzNHwZt15kymDZQRTfGpvvUFcGv/Ib1tPRnyRXlCBhavQ1aEeqvSxdaE4uEGTimck9jyO46V8UI3VsUey1y1kH5yHzOPQUXiFLHUFCkZIaB0HH79ZnHPzPbp1JwvvYYO4DYyzFwhG1Anymtv7Fxf5ESbP/3TD7047sjhfns3LLiXTd2XAkXF1PVcs8kWKDWejf8C8iM16NNLMTrN3R49lDqMv0yziklsFEH4H2m+3sbs3zO5g/CAbQ7iKD0xZNVT71kc9zlZuhf8Og/at0t12uokG+LCrm2TD0oLSlUMQAB7KkrJS5S796Mk3+Z4m9+uFCikd+VREQgTY3VsenNZkS5Dps6TjVfzfjcXMiLOewfdIKN4UqD9Ft2gmHTl8io82q7omC4jLc180UYKO1Fuf5BgmcR6vOzc3j26oNx/j/DA+jLwuTNBwqvpHGi44lZQRYPj0lPNKxhPeT970h518rJyCqlU00+lXkQcQyfvqgcgchj9S1GI5pxFfHhLBzOIvcJcifcmgUI3f6XcXOEA1rYbVE+Kbvnw7Yvm7H6zjzobtIO0oXJyFWHBk4NbS2QPiJJjwVftijNZzA9q0xujxY9YL0us3aQXcgbVMjfK2hfW7cyh1LPU5cl2p1z9kKAA2A/j/RAWUrD8BEH7yOpmhCXiJDi+gO+DkbGjjeW/03isusiSA1VMUqdVgiQaT8jfbeu9l7iFv/hAmBXYnFktTVxX/Cr3D0S2wwVJD9yqCnl1zNfu2emwikXhafc3knEOf2fyNM4w4dnBsYXmbhr2fzph06kESgexvSyLHDyTWpcvfxqzwG+eng3iyDJmtq0paWME/R/RqV5Q/NV411KWubfdkxMC1Wv/Si5nDgYS7SzYoXNT5YAP0vrb3jouV8/uKdoubmfvUd9C3+EqndO+cQs87yNnz/w64nuQq0ewHaxYENhLHDv44zCSRCM7YMdMOOpSp2uA0fUFSHiE4YDooWZWIwvd9GF1x5kVyJfyKy3b+ewJQE57b9Zyyeyw5ooFCXSkrGOPyTGF0SqR8Qz12+Vye1lTFc7elRnjhE4RmDqlGmtTR66Y50RknHU1AvdZiZZBpqNRIh3qXt4k366RfgF8CSyfookpyQvc8nyrB8OM5vuupuNUNN/tAZEEef/XtTc7BS8G2mbuv0KuHnLP1mb8wxRf+SU7wwKNvimtlWhZD8Ey2bAW5F3jjE84m7OF1LojaJYeWykCUrb54WYllcAZ5V0Et4dRKDKQtLvIWK9rEh9/OC0IJi23uQoM8fgcSJIZe7jtzNdQrjEMEQ34kWoaVyQ4dA9va2wIE5XpdPLQMvBC9rEu0BNSpLoyKDbx8QcHpuaJnKrVfLsJUL1aX5IxkMUyJPMh9j6ZgO4PzK0f46oOvcfH0zK03WEHMyoWUk9gVbZ6OimH2Fnf+p5JQpNgoY2WkNIDSyQExMswA2slkxI/zDp8CGeVAxV5OEo+64lXXJVGY0DQw9fuQwAjMyL3CluFRcwvJIT4XCvPmOMCtxdnF5KpqTDj40lIhuJH0/BvOnt9AM+oTA08sCNhbdju8MCYUxqIV9buS+jRoOaDOGMxT/xBI2tpE5InQGk8C4DL1gJ3LJAvVK1i018ynkLodwdrqH2G2B9yhkU+darbi2F9yArPP+tmee27g650z+WeODqaoCNOGFlrphhAqvo6XApTDlI5BC1pJ6CdTHFDNOycJ6V9ltqNBl8QZ09TRpKafWvxqmj3ImunXajXyo57IVGoq0VKePZFIRYu9++YfwFjZQJsZAZgFeFKOBkgBa/0F5H5OxzSCr3VPROk2fHEtPOglVL++lus2/Suj68MNpf6cu3lkwuCulslmYfBDeMX12UEZqJ7dUf2e3d6c6LOeDq0UCPmCNc5vKFaf0D2TJdDPsJm34ToTf5egi5bws3c0a7maMq4Hv6GtuJ3zoF3RMEVhlKE6cK05Dbl6cg9CDycAfzm+AAq2Gi6ETAWpMMimuVv4Zv92b9BH00csFk2audj9Mxe7WqElkZxyWX6UZD9XQpc8g/2CunEuBG4fML7i3VbO2fAQP/QAIPkfJi2iDV9ga5a3+IQjslucgeYtF/BZ+SbW28A+yH/MPsoqZ6nTz591hk0Zwe0rFY1yhK7ku+ckhCXBlB672lBE5zK4Tesy30hhnfBEg1f8WJJKBIxRFJoLSJGF/cg93b4+M0deKcG2ZEAw5Oq9t+aHNBI7k4BhRr48a5P2FJH6LRrto9dMCaaUM14BfwPHVtGgjJ1SCzzN4D3PO0IfIUh2Blek6kCb9oW2gNXJeWEhDjXLn1f5l15LoueC7hRemQOjKoM5Fg2xDqNc8j/H3jM9edLo3TWE5FpdFnCs6eWpopwPKASZxqwEfhoZpypo6ukia26UWeIs/v57ry9KNUoyobSs1jFDtE9c3YhqlasMfmESzJUpEeXytxbGIUbE2l00ALlUAv+aPFzFvz5dxibtdX+LRPgjv0Zpw2YDAZHKiNY+bPeZWn6+9iG9XGE8vf/71jlJqFk11HUvXq/QeRCXtJP42bkHV27NnSZemvhbOmWCd/6NrBVrlJJ6PCqgLIIJ7o5B+YTV28Oe5/6ATYzjEwfT2V3vDQV4ZV09BnV7Kun5D6847GvQ0IjziOh2VAOeMJdPtHUNreWdZOXGBa/erroi3CE5uaNE5LQTfOJ4NJkurjjcXgRU+i2ctGYt8N6k4byU+JsoDrjvXmIQ1mLVL718DvRvNaaTKcHF2Ow6QO5sU4z3Xqlm1byft/R+dgt8+qqS4MsyqW7cqdW0qQdNUsKDWEIGaKczBd2F8mY+5EQMFMHz7EflbNC4XAsm/M2T9cVe9RQ6++0W22B51ggOb75wgV2Ej2PIvtbnQo6qXpkpx6/L+HyTYbRCayeBw2OfaFuzpb8tZsRw7cIWYaucMyyRDFy2Z0qHM9aO0SkiNdpcjNCTNkQSMqlQj8AKzsE7S2HDKjPoNovMMWFBEzzmYWMjsioPyohjBHVcoCVDHWqDqL5/+rwkAhfcnNySia4ri/4XM2irYlISXXjttcjS774Y2kzZP+byYcAc52HjonBToWqKRPz1AW7jBANawah157Qji6++etaPMBPeN3StqWcXoA8d5ErDRMfHwBw0/9MHHR5qBcZtq1/FNs0m0R5GP19GDsmfGXY0vKA4HQluMFcoJTSc3woAdUzmVce3ZvHzkr3RL4okJ6GcL9FwERAfIH8uUdn8m8eMfIaXOhV3+lPeIKt1e1fB8MzhmJ/XS90q5fZCCxQHXoquTptcBYNUWZBxZt1wIHgyQfayuzlJBvlRWAqZJxfIq66Zef1Emfil7N4WGXUgNIqoPnJjJgOGbMTQ72Kjygsu1oXfqzuWl6iAjkb5eCTFWu9RBFBKcol28oLlGcrN7cR6tdICmJx7t5HvD9i59mWpUZlGlLhFjl4qWjxyyg+77XySuGwdFnndLPfRBLiQFP22dIqwT3bLFCF2onTtQULP/NFyqLORcabyL95s770/90po1BcpOPReoWYQAd9v9S4v3wVyr/I5T/oY87WS7IBc3Lq5QlNCd0wlP7uJWWBpiv/ra6/RHIhHZnRro+oFnYcHY4Z1UeOEPcxfZT5wvM0cykWUsScEFg+XiWJIzHxosyXutj3ymAxHiUbq2lCAw25Rf6tVuq/XJPmca3P1WOAkHIlHkBOkDi728QVVPNLSS+P2d4GkpolKdMSPfeFHD2FKVFhR1SZdgp1oGbWvOsYoe5CeFCsEYxpAlHY0f8CxaZ99KZks1Pc/2YhsMKu9CI0pAH7MC+wZ3Onk/Epx1gxqUSG6EbRo4aOSCHa3tvCWxRcaRA5ikLAerrHcfxiYnHMiu383AY7EIPcS4FaAJnUV731MrmerPQ0s5QpXt5sVvJa9WW2dp18xb5KByVtw1xr3GHTofrHGF2uA+pOU/uuug1/HfSvTIYlDMumldiNGb7FbArmDdczKo+RXRRxt6J4lKUCFhZL7CpQ3O4qk74s+64GJIOhwnnVjMZkJ3ZwP4UNMHsS3rB+f3ZIq532GsbRxzIbKR/BWXVWtRIPj10uoD+868FiHor7CLJCc0EhGnpv41PCs6Ci+LsogBhQYZvOeiVf1GqB8b2AngnFc9JOJOJVZ2JirtWNN4toJdo9hQTxoMfvxjqb/hPpelVRIs7l2ht9sPDZO1ecB3BaLGnB3Y7d6OkgiBEwrff7BG76ZQF72gsHm+gUuNzORVlqOl/uw7FCRlZwaFN+dzVfW4ALAzSYJblFSB9RFDokT8Ag34DzPlk1MrbQyh50dGi1C+GtSKOZfz9b6uT1s1FfYXFhjyTtyBS3+NL1f97gGxEE/TRfUH5tPIbfbhHwhuIrlbHqjjdsUWsEevB9ZAtXmQoHWBWqW8Cln2FvZQyhS2B9T/RBkOiqQUlHzJukMpXJguQoefG5cn1CCh43JZMGKyDk1T6S0WUJavw8oV/YUJFz8bUoZ7ADZYCU6IBEiao+VmJ4tQLL7iEXGNkStbkmGhNFLPrToEU0nXWh2JtNn/Nv23/Jm2EcDnO52o2c3t6VVQmhr77TBaYnATz/5wMj+n/kqrO7gzH27vQmZFDosLm03clXc+xsFox5I7IcSGu8pZKisPi4WrRx0VzHiByC3VF8LO32i2t4rfvE7vsQ26W4VcNiOPOPYDq1pPCF9QMp2uAfMQRbfurPonGpOSs2k+Ol89SCwzC8FZctk832lO/xciMrF6p9tWTnLniczS7D0iqPMwral63OcvGlMWo0Wxu66v3Z6gk8ow2e1ryFsgTiv2BGQkMcSw1yr8VJdtpNSnzq2bbV9b6gHdfLEV7dOB/qRS175piMwIMHGfCB/NgxjGYBO3j8vSEjuFP6B++rk5ouqfiZdd4Y4VudsWSwGwBrCTPsTJud9sYa8NKbe455cIHLE3y1F/E62Zb2MAZ6+6Nuf71/FY2xJeoKw8yq45rZiLsH18iNtx8D6UPDLA+tQljPygeqmqJkr9AVONCLBkzF2qt697dR27a88vKprMpca9jt/lHB1aHxFwpGruES/faCgxX/mH3FoJvQKulWNjXVIfGMjRW0ZUY+B+vFJI0u1rAQcCPg5SOqrjNtGk6BbldvIYwhdhmxr4crtvzNl4QLLuFEoCsm3KJSct8Ktfuw7RvNyk9jX+34W/YPozvICCZHEqT/EEkND3DjuwDa8q5fzWRRQQS12/Diphql9gKHc6b9Kr/l7CD1xPWC8CtjCTpdfSPiVUFi9J6M086EGoO8y5LMXN9VPvsAf7x9GpGiFLb9/im9gy+xuGSHzEVqUbpaMcMkFKcwGaJGvoEiq0mKDisiMT4MWHjG3pEEJ2XvfLHLex7KFtBWR+IG8bdP2uynszj3q4Hb/Mlo2x6J8RUsAOkhSIzsfXyy9dzLbkMS6VRtTVx+iPgJ/0QdNR3KtizDUdzYTqRO1/JfkeXJLrZSh81T1xkBfLcSeFapTIHUR6ANlGqmQcs0P8WwTaFusm+yAnYX63J+LtasgnpLkHxCK6vtOEZQX9+zOIgwV1IVljEcXogitjxuf+gGE3M4l1Ut3odPukLd1D1ZXKhC9XFMqNOMSohgqQZNBkWMH3PpNi58uHDe8kxEe8hPn8PSmw210ivvNI+84ru8t0IvNKVqL/QJR7EF+0Wd3EbQX+LZyNxeV3Oxtkt6lb/Qac/K7uj0pFKJ0dRjfPRH7xJHYkOrKWzD6NkGjTB+Qhb8IFvwc6+f+lfn46QikI0pmUPD+Xu9YkwCIr0QOlC6mrlyKduJ6ZVHq6Hrrn5w2oT+ljbuuVZOCfjdnA9ymqdh+WLijJc0s6esLrCneegCnWmwVyk6GC68+r4hJsiB2rLc2cJ/wGbb6eGNo+FH6nKQEZcAahXrMhTh/tVxYdEQEKE+fiTre+S/w3l3u6PNRkMie9UQ4Z4dedLAcUXGybFwiX0kHmTYrq0Eo6SfODVzOi1L4WYSMeIvysmPlzFQqRnE70HN9fninDOsZKEeVh+c/JEvUmq4jtUIUYMHxHSBBxFHTV/PEr8zFLphWqwsA4MseOo6gng6nkOvG402OeujQ3S8FcAdc5rk/yZbfjr1GcqGGiiccSmA3CjQpN58ZR2/7ajM9exGTSK+RAZ3zgJGrkF2u6MbG8OtcowEOYdUVwXEcaS+JV8Vn+q8V38rh0PPHAD+p+87PSQwDsVH3FAJIrZC7pdMhD1/e3IHFTISIh7WHsafJLXgvYyNcG81IL65pxNW0K42TRq7WLZ75rKe1xtdc1J9HGijJA9Y4VQEBL1T+of0a0PTaM47UNoV2PeUIleCdbOqGIaHtU+NgrTZjav62Myis+vjZk0/OqOL8QxM52bnZY7SyhaNiblUI5DAXM0vxfbWOMmlnW2qDfr2iUnB2gsbP27gHG4gCdyIDiDx9oMtJjsXRiLZwsiP8jYLJ4BDYxYDSYJ4XyuKyFOi9z18Z9d8RSH7Qg+TNWTDy0m2wdHrWVJUOyVtZfoCLnpqgD4UpFX96qNJBkYCvuEa06B/ONFb7LOTrhd2wvvb9fFhNX1PksriKqMcZTmBxFdMFpTlktH+WWOfbZ0Mo1v6PrZ11PbNvAHt/Kzae8iYxg7Zv1rRt+qTA7jdWg06d1o3FF+qbIn4wGflhTTcbS7UddI3mXboFnhPFmCuC2cQvLqMFeYpY9aYu0r3Wq8AXdh/gbomUYC/3SgKxfzWsDg//rRQ+2iDJicEcjhltknFjW6M8g5wyaGkm/iD/aiCWwBPPNpPKuoT/cXyhdRt83cf8HVbdz1gQzW7QLgORFn7aQKGANCKk8BWEEX//hYlSlEZ2MflCaAsjDekaCdDy4LB466yjdcg6ooFcJTOdayO8xwNGWvQ59hug47r+hTE/Qb7SZ7OXtpkoNDNplNnpd3svuR7GJdfC9T0aDApt57mpUt6rk+HXDnmyVYzjjw6liArfAqwptqivjbrRuIKGjIauVYak3tIPGRg+5P+eZpR7WdYK+SiPFpGN3a/c+Ltj2Jdtd5/tOT6Fi9ls03hwEesgg4BV6BbIxaBaY0ccRksQZRE4v06dihkxtJa8bgk2nPQ7pPKRQup0SWJZXGH1AgVklN5WEchWElyRU/l7y4x+rCFeTzJxN7GXdcSlAz+WW7huYgP4t8SRvTAeQE0+FzXrOJwCaXfSjUWyxZh/iWqPah3KNSav/15jXRdTQodmpZsZNgKcC7ivKea4nfhLynsD7LeNpZER1BnzoooA8IqhA4JW6Neid7c2LQ9Ky2GxqPxLQp/aXVVsef7JFmUwy8oz8bc9HExLzIOvQwPkreYfzexK9+us95BpjWXHd2ckvKj88iuqdjI01bHY1Z0xiIQ7jiiq/9A7h7BiAbTMKxxx4oXDgpaGLAd/w3PGEk9n/VDt2wseyf8AC2Zdn+YpsG3WNYDL9s6qn+77aKn03G1zBf3NWmCH6/U27XF3nUKnWKWMGgGI2Wgmkunz06DAtYn6STRSLJ5IVWf6KVhuvTkcSlxs5bno5bZ6BURu8X8lQ1w4Ti7raI1blmXH4uXX0miFW3G5sHE3Lv4BQkUBbeu7c/bur4V1rguZ7iLUYM2Zx4hHnR08IhP/vz6/XgNquOT2abGv9Xm4ynomAaMV9AVhs79kNnTP76NUqBpzShL108bhS4PqATcwswkdzvSJBKaUciHi1YQ+9c2BPaeHY7n/V+3Q3Fc8LSbakI/DsO9JchuBdX8lu4voE51YW3ysrJrivfL+z8WergmNiottYZow1EmTvVemGjCOefGRbJH8hPdvtufvjI/K9hLSQ360l9/xZA6UZCGdp8HXL7xXN4zad1tEvM41nMuccrj2OmWxiOhhRm0JoG6NOmN2P0M7J6qvf+PLrNqK3zpq+OV/ws7E0pXRt9u5ojX7mFfZgNM7rnHZFq0Px17LqVDVHZcnexDHVdtypEgDwOU026QHdoOJ+Yhx2S/ncX1N7/Nhki0beAIa0GynbdXhDBGKwoBPPR20tIIQBZT/H37SqDwCPP9MooRz8e/RLdDKJ1HBxEHC+nlfCN06PmWsItbnaV8AHyCkDjuge3sUUC33tAnykFt5S+KosEP7dTIA1Gjp7GTaVkPwxv9OMZN8amimNQWEjXOEjlJkD6A4NpJKq7Dhi5XNd7XgvxOBprxvqCzZ/iFmkyhxfxQb608v6Q7FJfgAqnRWY8GDx6TH++UWZrU2Tu7lz4+xXBM27IJnCksEP2guIHAX+GImDNYsNSoWW/8K5Fej7RIx6wOU4vReIWnSitWAzL/3mfchZMHWPJcCJhpe7PMuC7dq+dpSQcIPkr8+jUVUe48zUgDrIC1lzbVwkj8WOyj5FvYwK+BhdP79+N6XpumsloYG2B71HHyzHwwTVpAmlDmMayHgcviMXjjaGUsCrsYfOUvm5obCakIl8akSgloQN4tVhQ5DL35xyzVioblLlsau8IGUpuTmEUsAqVfkBshMqg+mZQsRvqohSBp2oV7J8AGy+zD/mhbo4RTmzWDmjgnGLZFomEKcO0IL5WYqisHriEnCD1/j6t2odzepT+YSwpgwuxJa+L/xI5p8QG/HQy9l3FnA3mCYTPeAWT5rB08gsmtoGmn4WmkIP4PbuSIRncX98oEITTvGKQlkxE4RBVTIZs53tL058RlCOx9WSFSZEBOJnMu8eXbn6LoqnbEJO22K2aDM7tAi76mLkGlImjeMDEEitjFoV3bWhoZxvJ4EgIAPcNyh+a08+77fU68QQ0njtJNiRcK8UVMv5MADZ45tvHgpPa6jDBZj8V4OlRVhhsKBv/kvxNdV8ejBa7/2US1dsT4lcur99QgTJKSaUH3BI/LityvKoxa/Q0NgzBBV8HEs1PjrRZZfGprPmpg+GtUSJCaUSG5pETioxhPnUzaP7RQHVo8rxaCIZr941/f21Xddt5dJULe5rYQPNHXh7aU4huvsT5bZoyyjGx1Mx4QB83OFwCIpVfrNgmTTWa0wXO+zkbblWA66N75sgk2y0jsYwkG3eL29TyIdLhd4SMxFphuQ18dAz7EDphXhi6brEorKhw8s21uE8oOgAW0HVUhEtIeDs6dz9jjM0SQy5k+UWO2Dq6Gi10MCXhKNpzsJjGZLqDVtQ6Thltr2NG2eJWyZKDbsIdc9Xe1ojGrhGnbK6/BSHmi2PtNqk7YtOnTAmxsLfFDFVZG14Zn+9h358kjsxmxPS4wOBR+oi7gsU/4mzIQ1jKRPgqeF5n3BwCwhO8cmPPAVwcl0D9PKH9R1pkgdyIQO42e7Eusi/Ib56QfgYVbCVeCX1N0Z0TMbfEAHVH4LNGDL1uNo0J31aoAa701y8iC74pSg3QHjy5A8dVs7eP85PEB3PSv6tTBmfFQ7t4WOYtBsABTAPq0XCGPLzj4BX2cWKUVF3CShMkaipOa7nDhoSTj0al8ReyqIefo4ywBJU1OJKAXj3zR4vevOGZjvsrKFpHcu5KUNR7mLVv8YhGwzzauSgttO4CuPtcEj/QaTLKjyYEMUIGjBEWo05LcMe5DgiNm4ncNj2M/nDz4FJTqr9YyEHWMEjGZtzptz0B0JgrpwdhWbmJ7cmeWMgbwDVZzm8tSHemeJ/ePMDErIb1q8h6/AUIscP8hSLBCn7qmvKXf7tRpM6SKdJONmp5hJv2Sl4FzFpyR4dmJ+ei4QFA60QgQMpnlYZ29UwllBk/KRHUPSKfFbelpOdt0OykFipJOvevSuFhZAtKcZ7HugFI+p6DFvonZYyAmWlAm1SV0EtnzZNw0mj9Vrf0gkD5YaoGgoiFJIxygbV4KKUVgO2Q1IhqXXkfX532Z4e1Gz899oD1DaB90FxHvyBZyg+g+HlLNA5l1f6JE2Pe+AUn6iJTPgFVt3d5Y4rkamIl1frUKyfvVQW0qRvZQfHTeWAoxS+qxUjqyDiTXhsGpVMKd7dzQM4ntAS370H20P4hfLSTRaXMkqqMIQk105u2EJB5cwHh9x4GgtSc+JVfTO0T7aH1JLFc21quxeQJJpLThIR3vcl/Ma6avYXaE/GdQKBUntNCn5cOTdUdjpr7Y9Z1PKrVksC2KMCoqCFmKj6ZpSbMuYorf1yTiOkqE8TR5ImQ+YNmswat9ky8F4OSdeTbFRlOdoAxDtklnXeUnhNgw1IyR/EfuSAEFegDMqVwVMGEwBRVstgfykRxVRfumU3G8jQaxbSHXcCoGsdc5vLDtDtBPwDNKgMIdMsqAiXtNp0bmuYA1TSh25bstuJu0/D3QeFJDLi1vwTqDbf2eW+pDnJYal5PNHyFfxAp748nXD8E2lTY1u+HJojqnYqJ1Q8E75TdARXUjiQRhOuX6FUV7u/2TLZheveq6OcCIa5tZe73Vrd4Q+Ufg4gRgJJ8H4a7DxRSpWe3yOP55IXvQtiH4N3f4zFrcnOrW5UubTjbQubrBtC8S1ndjMs4mA99oTxE1aAePHv5wg39FOUjakqoQ622oHppzBL94/bmRCPG2FHDx9tNNXxJ5ybdzfJS5u6ZL1Bqwp35by0gcGvfoNvvCA/FUrRTfsgkOBuiKaywJga+V1tJLtsy+WAaQflXHmgL0iX7su/5fX+CejrdYBGddJMck9YSZdZhWM6KpSSF27BunVTKZkkxbunmgbRDuRSoQuNSHSC5aTUa+CWSK9JRVkW5DwRWMyqKzSabUeF5Co70C100/oMpUXFVcGDmLekwMvWWjxI2MgXDgSQRqOJXeL9yq9YdOjvQOZY0hdzYb5N+d1C72iWCA0Bq+J6GfdSQj3HN8u9JMje+bcFS4K/hzk4lPN3LgkpHU5b6PTAZ/iE8eNI5BvOoCP4gKgYrd7eHvpEghmVlzqUUMfz+XuA0DATKKR9GAUm2+Zgj7q0TQzmXAQ9ZLDTbNId5XEDTuOu6mIqlb5rXEpxuPbgZbkolSH7dITEhslPprMo8RskxMGXjVRVvGDRQ8TFh3XSk6ag4DD+T9EH82/Kvt+oamCsxzNinCFLb7fKbLREKiXevgkYY4AT9C21PETf+wQ0qLgw67J2qSvGs2BGa8OlE/RFeKJqmfERu+gjrvYU7dbltflhR1vgfP55fFN0hTfd6khRDHxPQlOkUpPPMvMBVLO6t7Zl56uCEeuSxForzwPmynoxtBNjoDs7UPHLQM4XiUnfV5skTjsQ8cSe9suK44+5HR5W+3dsD/urkeQC202ZGphxZN7yYS64G0eZqNEK8vBYkSV0rDBXOKpLYmxj3owL0HWLKJ3pLqqKTQUBTKVUDn3ga1L2Mbc8T+PCQFtCvTCtzxVRSSUPqo4frnWyz6ZqYs2RtKL+AooPeQrWHpUBTz4FW3P1lG65hpM8a/OppgRDqptbIAAt3PTUpaD/11NgQ5XozHv77mI6J+z2f2lhUOPX8g2Hzv2Pf0NUC8/tLScVeCOFg7PE5qQl25gX9V8qvn5m3f+YgRDj+WdXG/2zxvmh3JXsh5rANKfOXLHuTLYWJ05vKLJXG6TU1qUwHmoGdbwMB2GllWePXNXMpNcAEQxPegNh6+uGW/OHHxFqaeo6oDzHHQCz1wyGJoQaAw9eFl/dnokTG3znb8yjHJ6KERmE9v3xyQ/0hjGhv+GlTLlNDI0Z0TLf4c7BJJ68G0cpOm2Il/Lnjm1zfIFO7596wcT3NDk6zy7YNNmgxEEg2IQf5mcVSmXcmlmh8DVrzeAxxMsx/AgO70CuP02m4kQk7kyooz2eBLHYaZ2sGPrJ40Ik1YL5ZR3qttMTcnLK/tzIZc+rYBzgOtBiQG4vwb4aXdc/W3FLaOvPUZ7EE1ngX7hBquc06NHkSGTvIAztXT3IN0qtjvOT30TLy3rF+M8rh30Lp2pRjRkpoOUhRNlLvt4M56K1onNkPMYFWWwiATPKfBtqdiBYASMJ09XKdbJQLfyffeCeXZ+A/Jw8yUuZQQ0O6BHU9svoYxujisSp4QYwg6G4fnfQbSz0h1W0OzAl/3sYbNxqS71VSVRX3dzM95RgWlC6oLNYWxwSGJ8USGZcYR4d0RrfjU1rrzjbH5EZ33d+l2lZZAOoKJtMnkPafoJxkBXR3PsWxZT5aQcQBb7ss9kSRBMckSiSR+6GK5gQNLe/Fo3J+/y8zc+jPZT3diuwNyQi5seo9DZofS9Yril8e5HqB5G3c8K2MhLvTb3qhtNdtUO3znoNlWjh9GFQhUmYuUjONgUt7Y8qEYbUTJDwjRv4bPYTybQQQulqjyR7bthX5H0FmNu+Ub29tHE1QZ7izCQVjiVRkIZ0Y+sCvGuQU2FAq/F7jku81YwNACpL+dGXlOuhiGXqgSU21BnRHit64dkossYxLnB57cdeuijQ7RLfF66m3M1aCHx4GsHDxhLjcBrGh4eCOLxmKakTJ/IkfmOCtdxtUys8lPZf7GPlSPEGK5Gg2dg+NqHZd+Ds/zH1lP97AYOQWQ4kTcoNgwvR67FjwnnO+c48jOkyoHevqsHNkeCnsfsNo6oRbDjPBDz5bYflIJ23x96mXf5Gz6geYG5vY4L6CYPoyYl6Pokf8SEQOFdYzP37D6aqhqxBHr3G8DCP8PusDdr9xFL1Z+5MqqYrNWl6soXCX+xAH2aU78YEnMlZAS2iseYhOfEuXAHp/I3R0YxCYiANoBhsNUz68qTEBIONUWaaScvxlbpKrM8XE62s5nMCQRHqElBTL4cgCjC/3XBgIw7QZxiB4uqshtrfD/+X2wvDLM9g1pUb99WSzYvZ5ws5K5qNDFUInfvQhJUfK7ZLW3oDS97IYOS1o0fcSxIPwRbWkYHRDbW0lfydP2XVywHBpsQ1Shp0wmdKojf7wdhuXSeP0WNXYleNB116F8FiGd/yAsvE1NMaagV6pAPZOG6MbIi/+UX59wl88HTXRsBZ3c/DdQNyvSTbWKyb8z7i9iT38wItQvif3VTPuEUHdDFmsRMdeUrTdkT/zYoBggaVc9qhIQGXqIct5izqxK9542+fCZXeOT1+vz0VAV3yML3e73EXoaC3SMlp1BTjCNEz45EJguJwC0vDB0kCkgOcbv8wEd4cxwesOUTXkIoAx9ieOzm27buxm28Zi7gupQnzn6pXv8sEsM7a67TnJDSVmBqAaWaPu2+4R1s2Olj9T9eQOW01ZSdixccU0whybbbyhWm7AmAR/eJ60HgXdh+SByEuzGLD06xRB5VSrVikj9SRAUN3WafY/ohQNH/OqFK9Ieauwddb/gL6cxC8YpI51ED1dBnthksvL1En6jvAnOT5tUMzb79kY4RhonSs0jLbvJKT4qFRld35iVYtF/idlelyoGYs229r/U/bEsXH/jZ9jxa/szTSppGHCDjgvxSdYE0A51/LMujvv6gSnxoEwaRfupK/cWHqsVb34JmbsVg5xMvIKy1qo7fR4TGNv8Q0cCtisNVAecBpKEsh3FiOJT11F1hW0IYY9mDT3ZSnqrOP2LgG+DCSQI6dAy6wy+tAQPG0LeP5m8EUNRx/9AFTGz/LRxj/pMkuTAK8WT11swOKYYnipUhkMq7PXfM+ppnl4AQIdQG+gg0MVlKGHbR9kouET6Fx+ygQKdLqqptY+yK0VK3zeECfUj/KqOqvO/ux8B59Ff6crsruQAmHRHIfCu7k7GdwZkJblwzFtISPRsmT5X/eO+6UBaZQdWKoyAXl+RGvCnCcMXIjLIKCf5hxO9tE51fardXdAHIDJ0zUOh5MpzsobT6YBvDWWR0H1RJKHnjG4scG1GK0w8iOvkESZThwf5pI7SPYWzGaXShU8jAYVyDY39b2+XSqYJJ8HA2YSNbYN2MXnrD4my979+ntlpUNe4juhB9tkgQDjmPUc+8OnwLqh0qc17qvmeo2TPqtgJhMxSarTNGqyIvc9pkmVUY03sSlF8lUF7ovI0FVjkQrIFtscCp7Q+gcddiQtlPGNbu8gB2i3CdEst6pL/SRadkg9sCNScY8+TBswH++dBUY9NF3djKbQvQrCvhdvsD3wuihvYyOUlWL2xdpNnceAm1lCtvuwu1OqbsOG65erf9li2OU61Vr6xt8kau0jJB8JqJTBfJkbJWbofq86i7YHl8ZuN0Zwov0N8YOvGMny3Qp7sY+XNSCSUrp+hHC2KxW07xBOd1E/BWJnBbAQuyVvy+xNehg+IbCWyNvNF7QcNDBu+s/TIhQ56ige+MJkbMgtXteidWC1U7q2+4NWaNAKCeEPMBr4B3BPyHkcuXs/cdB2HLUJ8kMxxmeO+Ti8LdF0zDQirWjfOnZ9tAW/kf5RRCBPNlJHC5XUulLNfI+3d6aC9tAI5kXO9gSTjwoekfwyAFrotE36UgMxkXseTiRwTn9P5XYHay8SYKxkRjsclm3SjPefNMmhQRT1BCkc1oXCdSP0mtGmcF0kQ9v0tJCjEg0g2DZFLR4TQpmb+E21Gsp2Fzr+qblnePO3pskrencNo3LFZidKzf0Nohi+2Xlx/wz783r8MTov8Xx4IW6glj+Vtnx6lxWOlP4oNFJSqbSV0to85LtR5rLZsgvQ8q/MRh7RxfVr4Ve+VYgyABuKeFnCdmQKMUkVts9YdsO6MbA5SO4YNtpBIBE8ir65f64CM3c3iyrv0V67/Pnx6vkoW/0s8Qv+BjAcRS8+k4C4RuoMJp6UaDTZHbMI48gxeMs+R4toowhponRzQwyh0PaRToqf4HlLNuno4gT3HcfDahm6iJHfqC/UssaojcZoffdHNd0YF6Je3eEXhEeNcFEp9IvigtOkcwpJk5XaYAz2oh7Cg/VkP6fU+y1r/ZsJoZQ1U7Cs51FAohfTRrVJ9QJ3nRxP13opTSCrhnSuIFxQSKUFHzwcQL4xLlxsR6R6oMTXieerbEm5A07gjC1h0/qaRIeYRp0wvW2rNs/HjfKi1z9/Zy6U7koPeUdzFbWb1INXT2dBEhXvkTDlaPoZruOwm6MwBpZOwBJPPMTmAfEoEGTBzBz1k9imlybABsKW6MTrrsHZ9LiLP26flSg9ZQy/NpVFLGdyCiD0rL5S0LuH5fFQpyqTyU6m/HYP0hITPDDDD3qJp7aZRzrZeeZPFfiC3blX2STBW+relsc3R0VfhQNgeX7VOMosykEFFtK3lwk+Ni8+T4MfDpltzUkBD7e1U3zQVEVji4Q5ZJ1jU8EI70TtyK5/npWbhuZNd+9eigNK0KE4Z4mzhUymdq1JjE0V0Ay/tqoO+vr+B1h/9bWgkzNR6GG5fuyswSMK5jWX6s9I9gzQiMzGlzv9VmABV4kJbbpUhyrK7Z/k2O9UmAHVUikdxsVqOvcUiFAWBwkAjpiYS+B7aGz/rIi7YKGFMApCZ8TzVBCZ1WtWlrj3AzvJNuxDecn4RA5W31U0CVL1AhOg4c1XTYk5ZZZnfESKJ33KfFNniNuqV252OvF+kt3NcUc2qD63OHHshaph2omzRybRRmSFKNF0OgZJVofDe4u/O6DeS1pRwMYsVLFfg648kvCz7dwckWwgrn1fDO5pn7lxZQXOB7kIuEjz8pWZRGBotnDxbUgKoo4+Mag7z5FXvUrjDNOe6j3W2ZZie5Rc9RgU+3fO8Oj99k6vcZ2zGwaxVsZkFJhHrIHkRaDUJz/BhoK5TZP2dqYIX7r6yF5ImDS+hQLA7vqh0eOyDLiCUA+DpIX5I8x912QDnV1DqFqUUUfjCY5+Jlx+VTyWAxzDxhICEw8NqYeofoTK8l+xx3iaKXow31LcrWhHGy1jN4p2dNQ8M8Hyfgpy3l4CtEIzgnybPMt8sQIUHnORpgeJixEYtAo5HD5F1GRXDTej0rRFnu9ejxn/6LzIGgHX6nA7jnqt5X5P3z5vKS3J38sX6NfaOzhQ2kXboBkmX9m9AxP47f7W3YuUzmNj4i2MmPmUBt91a+7899lGaJ7V9EF6Ir0mT3GivhBgruT99v+HCvJf6nz3P8/DU5/f5vFj8GHNdW67Q345QjkfC+SKC8tgZeyRgGTACe8o8/zjY4e8/2Qamip4LY2k56ofuN/w5ZVKEauem/h2CCNDUBBshgDRT/oNI95QL8orhX7FphuUpMc/h4jWTBW3ewAcJrWvZUs9oLqyA3GMSdU6KSZFwre6iWV2Pu8cg6EE1xT7VsZdtI9izHH2GWtDRBnoajLNlkcZUikQUfNS19XXY1xFCA06hNr8rVuW9TMckhPG+J4WmtI86Sctjc5aBIp5/n2ktJv+nx8fzaS83YGqEedbtnTdIAjocM/+swM1lhjw3N3hnwSb55E2Dy360nwYzTH7mBRvfHUS4m0ulIvh90t6b1mBGo4VodGai1dukMo6GJcugi3RTlI8GoPDuzvcbAE+WCKHWm9D7WeJNpbnhbiXuI9rVAG2jsIMG3Cp7oKRpouXKnzxqG1P80MHKJ8Qclg/PhUAmbfNXd4KEc14wmPUKWRE/39XwssKvwgY14d3Q6t7ChwKMflagZsYZOnKUI1FEVkpDHrbEoUpsA0Z7v1Lh5IGvRSyCS7cchPiPYr1EgJ/lJq9Vyh2hJ3qRP5fW2LJzFUeIazvsWfs1HSPpTa9QKyb2tqIk+8IkLa9PLWKg3URHKv/A9CAFv+835sHpXiQGVd6qr5wn6zQtTCiXFD55L7rQEc8h0dOVMUwtWvanHtd0gF3gis0zPnRtqGmh2Bowr0KzwsXWWJP6Tpv+44xIVeTrTmobJlFe7+Y8ivkIT/leZt9hyAKZ5fBVaJ0aFvTMGfWx1RP035e/1Fsqbi+Dsb25j8IYVvdqKiAmPh20tITxBY53u/bx4hqv3UnVNvnO1kR8sxrxeZKMnKhfKDuzS6BokfR4ybgv0W+xHMCg1la7LcAUft4Nt1irW19u/XG4CAZxEq8lgD4xperMPMsh9WEejOZyGLRaTcccAp1SRWmp9+to13rN8H4popVVKz6LtSzaYQ0RvIPWHKXWm2haNovtmiXkCfPCJea1i216pjX1K7Z5YYDVb2n0nwcJSADAQhP/TggSrS4B9jR2LXQLt6um2cMoJ++BLHwUZYfhYV1BxGg8n91pvp0yuEE9PNpB/Jh0iZAGySCPMn+6WR+xL3Hp5ogOs36XZEZjl+hibZ3H6JCnGAB+DTByYvo0f5jgQY/nq++Ua50FYz5KB9VJG7oTKASTLjybtmGAtFU1q8iil/Drp7NJdcUywBkA9k3x12qE9+SY2E8yD0PLDwyy5/Y3fIcXTK47PzR29ZeynzZ2rbPy04SSQWE91N7c1I6AjAejV6o0y7PMsLv39COkgjwqGbjLE6+EByhWBB5xqdqO8yihqEvQq+/MPJbUrs+ibGryrWqop0CHbRoqocte/hxVbGqmdXaKsvSx/ZojMzMo6sRy8a+yN8BRjs5H/N6LCQsZfKWgYVPPqHO7F0YR255xNl686H64ubu6zQVehw33u5/BxS8KfXoDW/WFPZsLb5nHBnWlfYiFYd/XHs+vo8vaCvHHQtZvqUBmW8HbmdIar7vt9Fpr26OCrsE/e7KdYwZT3xyG482kiVO4HSSwIj0r9L7Zpbsf+GtZvhCGbUL8Q270gnCgGIFbbbChpiMMRDwk6KJ5CohXo5Vd76oABdyoHCSNK30XveVqSiEUh2biuVq6SyinF3pjwYr1TjofH6BOTKFfHedA08PNdR/rHPv0RXqiau9mKbQcDIf59hPwWvWcz72vPSDfguqee+lNfGYET2iFy50fiwjCs2Zex0m+0VH7dThZ2J2bG6Qc1nE7z2qjoJYGVFxr8ocmxqIG1EgpTLjfPduJ9vgjTwpnyF/GNc1isv+dvwMZi+eduOP4YtSS4G17xI9sf0p/7jC9LI5cVMVmuej8TXg7uw/Xalht4s9Pl+rQyJUW2b+lRZT7Cf7y8YY6yRQGKX1YLC41pONz3Jjh+eirTH3coIcNGrM1P+dIGpZRdWb3W3GNW86du8HU1cCKpkxbEuu6UpW4CXw3FivA5noty7IJbxmxyx8vlHbdGYKPqhsE76Ff0FwDbzz9jZGFW/d/0+2ejpOFqelVuG6NMS56h3IITQwW3FCWfAAZVVKB1PXeAPLvWIIYcDniEOrmK0t9m5l9B4ZWFCZGxML5i//eyyQP1coz9H/5GTZF0y2UvNKLryIu/FZ3bSVqV7DwVtSUicICdZ/3sc04tbWiYMqdzNWixDnPGjVgEz+G9YqyipphnW9d5VOUnkLKFo2mvqCM0SfYJcQ+zSoNau9qMrvlUY8bWu7ez+2sO7Tb9ulAueBRvEyrJUKCWoldxsc3qqOii++TXH7v5UupW+l/Rry3NNp6FHSOy+Kf5iJHRN7hGCAHcOXS0rkbJFWdTBgT7g6nN9nPfWIyZPqj/mBcHZPcag5BiIrsrCWSLhEZAaifH3LNazIJLTyKSWOMlHyhpPUCU3Y5qTI6FGKnn3UyPR4Ey3G9wSC5fY+hqBVTY3z29gKLJAvK6xTKAl+q2lqfjDq4PJBcJPW7q9kbh5H0Qr7s3C8gWn0nrzwxvLyjP1jg1LixubERb6+7Vp4hbheRwCOqVKRLhy5jF6rUBteKqxuj+dXWeClkuEXyvD8u9XRowlV+PiEp32ABhP9vIx1P62jNUre3XlRnm1WeP/CyzB1uSre0scYmeP+cnX2L1YMEAzzDZQcLJ1j2LLEy1nD9312Sn0NbvTtUABOvZIUASavBiDglAWilFwnyKsZVmfZo6dlyv8FjjwsOznhLxkh7pKVEft9bE5UysKG3OxijA7103pjKDs3H4hwQKmmncGzg+zwehB4sDTnezfFE6Sbd8U65hkXGTRgJN/6LUmrzLb0MdcD1siqN1ZrM2OxcAwDX/v+BfNVe6furgfO2/qhFMPtLjBhbQTXn6EUpjz2E0M2U5MGQszxxYVgPNAuAxBI8t1kVSy+QaVjeq40Oxg9OsR0ljoOVqRso2P+MTCkOcKYgtc3zscmgEDsFmmHfNBvpgMbjN0GcgB/nai5PtuwDHtbyrgPyplT6DNHp+IxUqzDbki9LudTg4spDPsc2Gh8UL/avVUqVKmxOHVdUd6CQYrnXPzA5E9NgyspsmSAMydjim5ghHhNmREA0GMegWzFEVNSxY96pdEw+DEmd6GvwUkC8xBfs2vPDO2s756teLf+5DU++WtgXzBcPnFvxBs/nJCsMuM6S6yqdFiHXa78s4j02vQX90m53+ve3n0XfabqW2VvXK/JevMtWjXug5m9mKfgHy9pdPGN0PKslB2esouBYjJ2QnDXhkoCwL5eTWlOJm3xK1ApvsQjXI+KJfH9F/5PFvs8wSQurz/H54/BA4896UJHxBThmGJQHZlEMZDFahbkyJtX6ICV43EJHTDoaB2CqwNBP3ROzWt3XWYmBtypbLGctGWu/nyAAhJO5fGf6demXHkJa6+0OOqIFcwH85w8jzwQPkxQOxu+4t9sHtDQTO/S61XM3lI+hFL4nhzPO1r+mFldWtgbvYZkOe+goACmKMV1rbzU2X4jfra63ltLhIUIAODI/DgpB4m25/SO8iGY46CVFhr/UAiQv1IrOwOVag7DrZ+pZYSQm+zQhhVwr2JxmWU56XEOdim1QB4S1Z1X5oM7imNqC+HgH4FvDZsBLfqw1A8hYooeqdIYSNfQu18o7LeC1P8izhTCka9TaGD7o0KOfySFMtNKlJt2HKi0wGvrd9e8ElFYfWLAo4ii6x94ZLmHcAtVSPOL0gdWwp71ZWOTJcfeyecCDoVpkZlt/1llsCvlUZYpA2ezsAUJ13IajIe/rEYwQ0dtcdiE5RkIMcanMToZeRM8nx1YJpKv9ccFxfZNE5jXLb+zO+UWAi0Yjfq3Sx6jw+Q+/RotRdxa0KcZgal8yZcmRAVszUS3sURsd2dY3pOKM4mb3AbaSMLCcBxkl048z0aD5PkJalITvzxjyZvC9zn1nXFGPQeBiid4x1mysFodu+gXtNqkP2tJkgfVO1a1XxXMNzaJhjSi5rKdecQy/VwWR2Pp2SL5ff0ZuBqkSZZ2htOj7ghqU3rtze836XYD/M/S46dgtTp/4g7uv/xIbxmCqhS4lgqrHWw6FTi6PlCkVTpHItoHV9AqfDM60xM6n4kjpeFCDCbA/pA1dZl52zBSe1Cuc6v1l7SpqW/A7hPGKPyodZ3YIFPOXPIpwWgMzZgOYueHahOeHUE7+MAkAus4O8MMcRq6iiaZtZ9+T8qlO/xGUJWhhVdHUMn/JUAhSZDesnGGJJlIDQrEk61a70cnOy9lSVFpX+1i2J7pNST0eXJxiT6RBeBzt0nj5AJvokVepjgnhLGYIJatba++jAWbYMn+FD1/2of9CVf56LzO4wFaqUOrpTmRaGsVmyhmsnUQ6Pv69cfelasJWUrPPRHn0I/MNASidIp4wAHD2Pj8cI0M3hDAOmGeKLOuUAMIIF8DmZw4HnyOJheEGKpIRXxyvAzbZYE75pxsEixgagfGOI1LmSms07MnbFUFcnnYxEQvU14m1I+zItNGM6DbUdOgnLokezuxmiQxk5zfmxrPXr9Wv+xblfVeZ0jgmfgTB4zzYGgPEtqzP8pi4dk+sZ5ZuYuBwbtu9f19ErT/SJdTBBhZKKYYq9aUABS3Kf2UUDWZH+f1lLZzN/SUSL3+ZQSaUnw51fZYWRttbQvbKyxol49MeLegCQmShDKWicvMwK3PrYJNXjTYH8M1XJAjQzKOkmsS4FdK1J0SelwlHdFAMn41c1NUC29AUa0hlHcmpvFXsK7HbAvef3muTLafktwTyfWDF3Pogdo9pOmigMblDd9PeHUOKOuHGkPZ/htX49cOiSAX6pvy6+RjMLo8Y2PCQB6KG+p5U5fA05k7+wkT3ZpS0v2H8Tg6Rg26jL/ZvvaVlPny0FMSTXtYAFlJdhZEx/zQmM4mEtJF4XD2F2moL8qz4M9CuLkEBnCb2omW2P+Zm4RePqkmfWJIRbcTAcd1pN8V0d4h4j6ew0umYzf5+B72gLOmqx+hRGL3HTu50DUG8VHqUQtwJz8tfJ/Ip7+rLsVjlPyB7SXHM+zeqsifycr2s2Cvz2gAHyrwr3hy+P6ovDl7TRdJJhJLp6b+6UbR7xvE66gqgfQ3uhcQE79RqhlYpVnzIhz6tMLzh8CBA6/h3Bko/Pm6ynmLQzaWPqMSBKOR94qiaV+vEON9LJqvdl/20KlNEDCzy5nBmZ/nylALpR7tfiGMLyyoW/y/5PkvRaHdBv58Fb8iEfUkR87rdZJAyqJwfCYRCrv9rpQBLkIBQ62ACNsfL9lxRNNlTd215NoagJ10Q/72YrSj/bpQl2xFinwlm5B2GSv6cSoQ6e2Skeh850PKlToFeLtdwBqeKz9+2HzSiR+tBBg0ZS+Jc+VlkbFiV3/RkTnUPml5aE7iizrcyc/fn6sv+0h1kpe/u+o6rWhDuTJYSuEk9jgm+ywNNrybpa51tfFQ7eQDuizfyI7wkWaumQYm/xZdKmeKFuqOi0zmbxN/095tT0tXaUKRbEChOjOKmnqZoo0Ztmr9LlB6LO1E20Y5vqPPDXx6kj+iXoWzOjLICMuoVZ1ns+gRSmdCwsdlIf71gukdhl6FeVdkMXcmLPOFbKVv0JsYYMBGcMsEq3UFJQU+3lt3/SYtFGlKB+dA+5fvrJ3HemPrPlARsC9bNa2pmbnrNau2vjAoSIUSXiB4+BclZpMcIpkrPJgaj1N1AsgBlcophrRlzJrQq08HaiW0y9G/afb/91i0g3N00burYT3zeEYLQZingVasQ9FUS+bH4bZXMyZZ3jRghB2Dqsfs5DgJcGdCFhe+JsPWRAME0nu8bG4jxgZbYWoN3WxFGdCIJ1GHeNsB7qVbLL/ewmNE1rUWvHkhsebaDD0/OOO9Ok4AE/O0uXbwcnBKTygGtb4MzgUZ6Q/U1WzWvW+x6Gr46b/FsrzBtTQJuSB86OTcjY2tjG6xUW5Q+Qf7qAz3n0VhtjbA0nCShu3aXtqg7IMWxarXpxCXz+jyhz5XvV3s8I/gkeMeY5aAvBcyEg9TzYw0JW8Bm4F1SLm5TwgVU7VSI10j3jUM1i5WFwz4nyE8A4fD29E4nvxTQ8HKBRlhb8JCMvrig59MBXtGHeSfWSbBqADmGg2ET6JCEpM0K3N4nYdYYZLwaN31KbtYt/wqle2lNw+Q0AsdvI7g+N0NjzSqwP5Ed2SHxoGaXvy3vl5Yai0Lo2JlO1ynDL3dM4FVciOcfwYLh3GI4vJO8Eq90p2UNpJfYdrkgzSH4k6u6mf63yEy0bXsv3WNlOxYcm7TpZ7osYW7xl8YJzgBuzpAxvpSlPzaTtGkyKCeUKQQJBiXGA9NXSNhDshwWjRuvAaZzkTHI3sf3nLw97x3LlOce8TpHXz5sW4Nc3nbfjwU67VSZmLnsOFCdm65wQLi2ZGpzp1R8rJdrPOIqfTCz6tfiqZn0IVfB2AhPqAL3ftamIBN6ejzbkaS6U6j6EydoiMC9ZFEXPySwj/VI1R48Cs08vGjyLASvMzT2MR9htlQD6jGksDZPsyRpANkBoqIJJ8ONjNtbsCjmo/4pqZHhtr3rod9oHNXTD9NkMSeYyt3jk7LqgD4BHU0pXGfdX7c8l9l5YBLntqMG3S4Rcq4Ez/fwG5PAc9KWV/+jf75TVqzgo/x7n7punao+mGc63lvbxwLbp962SEKr3bvmlqTFGo16Kv2vTfHmAOZR6Nxwt/nnMGlCQVtrLDliT8dHHwrV27ExEnGL0q4qlT+se4WMRePkxbVozXX2ScRM/u1KWx83NaLxWHOlwXhzEmh40VF+NszLPz0weAhovPbz763c3WvDZS30/J+xjvEtJ7q1Ad06MNNgExTo3/anGWJaplpZH0KYiXHbKZK0eUv0gb2JOxy5G077gNKtzXjbsQndZhMjsnHUazh/5E0MVM8RBWcjWfmK3+xqPamRHD0SijvH4S2N3vBv7/9tWg5+P+QzX0nLYsvg57DRVMpSubQlVIfdTAEuHttXJIRNzo6/50AwprYB5Nh95sJHNgGLjRAIvrpw8IN+u4+Gg7KQmMxMCO3AM9OIpoiG5sfHzp+alCXiCkKSzQpZp0LbFmbWAyPjGdHtK5MVn6QBpT1vIbDi2ZBZYqKDG662ffq4MKpOfR/vP622zhVU3pReaBWJwBZ0w/XyKjklgLUsdi1ViBiuJc4YabGDLhuiMYjTGvIMqFxHkFbdVXLutkcnT8Zv5I8UyoNb7Ma08ipCcX+1jHsADe19hHTgalnRckaQProjcttGsxiD4OGDVY0TI8nNpltrZV0mQpqBvqsZo8Ls4hz09qoMjY38ssJzHGDl6+WRQfzMl2jkn3eswWvng/0QlXH7NNOltuqlBJ3mc1wWfKDNqkXNTrpucPtAnpN9OdsB3zKIkcqcZc8bMv1UCuNrxEnYXYx6grKULbVq0QX3Rz6l6aQhfuk+HUGxueGnmO4VTkRksn3Hg3Roe0P/Iv/GUwAmhZ663X6MUPAKGUfmGlmfvZvISHMBHv78JL5O5hydpXlrvguA+kdbnJHI5eBL02HiQ+GPJCtshFHxdcuNK/mH0cg96hUVDJkrYAEIQ9llrHLqBcojqDK30ZDjG5ev4CfaJrilaqtBk+2M3t7z8H4cpnET1SCgCV+OU7uZbcD+iHPcxr9beDai0OVLo8N74qYR8xJf5KkroRMEBs1Ian7fJWjIiTLtRJ0jS75qOfkTt4qP9j9TkzP9/zwjwLYNOx1cMQqroBkrogiazknceB2Tjgl8FOAaXIkztuXu5F7fkAloC6vQh6mzbx3tAlMVCNAok8N6ONPYy7Jdo/vTd2hHqJ0pnNYsYbpPXU9EepJzY/HwuwcpYI7Zzd0fh/qmXsrBg89/DUyQgWfF6o2KTN3I1NNoL+ZsS21J380Xdbt9UKKvMW42OKPlspXMqoGAXVa0fCTFqG5VT1hm//r4Y9lHMSEVZTjApM4sOCkvGit3dl6yPCLDZ4IfMQB1DStuLJkHnmBkkkPmtKhQW1Mww/5n48m7dNBeOCK4D3yslGa40fzzdxccN7GIOulbGomgYLJzS2baMKlNoqcySmrv9J/Xuogv7Ke57WJ89PB5lpHfp9tcPXmC4yGvl+axfCUNcF7EJZdzpwsKmNlErRiSEMksACPomL+kus5HgnQSJYaNjEhzhKL24Y9B567yAeFhXrfFkMhqBa62uBefh/QcplJaIOeziDqfMoH7MM+BlxZ92Jp1sK4rr5QmFGaalLXxDDcNr8gjQL3ljM2Nule67/1YFxcQAw8FNNy7+YwaCxSs9ADW5nIT67NZRUiONlNFkTlgsLX4qz4iRFjebkN3oiOQSka1INF+ZkkBHqkoFcTkgLW7RcFSRySPKm4L5KqcL0quI1kAPi5VeNimcbEczR/2mAmD2eAR7I2WH2KZKVIMzmthR+Dkyox3JMlWl6/JItHio/TMJuQnOoYtezarTVZp9v+1qIJbLsls/Gm5AaLdCSdaImsG9o4xkXTD+87sO5joenaJkogFIQ1BBGTZ5t5wK5FnSECmXrGaYCQ/WS9+0LRzu5eW/fQp9tZexBrrLhbemF27Yq2crgg3gWjqMZtI8iOATd3A6xdzrzJaFAcYIHV4LPDMNZOBV0nf+i4CMp6gmMXlX1Xuk9ITbjj8/1dwVqWG7zES21hckM1Xkg64pXuPMkQ9GAi8LwQ5/wj79dGaAKavLWcb9IW4OZvVoGMAQztKyK0YOr/X5+vzaX8D7Y9nHup5bANXoTBPjHb2dx8rhjsCrXVaGW4X4LAS2vnu2woLWfo+vBEEhsohqg4KYv076FmuSJaTU9L9/NQAhvyvOZoJMw/T8IOszRRzYKQOom9R6BMU2NtZSkgkt3D+Vzoh0kHOWidwFH7C45qUL1iFxzURetAcf7HEmF1bwHRIj92Sl1o+Uc9b7XVk1fD8oZTzd/PuCd6gGZHT8d0/xgI0wNr6nSqxpPFtiACsbkJpR+LVqzbFKAOMBINbZsV91OHWnkLhQdaZZZy4V1AKD1FrB+tccly7TrowZc811muBx+n9FsWZdtE2z3FeeXG/veQC/kSCYUEDfotElCAwxUV2RBR7kzCCZTuzm76PuZ9OUzGgHQhil8JIcumDzhO1HQlZ05+8mkulFKhCb+/k2AgTaKpQlmWAhSQ2Ql1nbkiTXA2rAplNk0bi8a4nS7NmBdwEDZspCbVvfLefxEUK0CPCp2VHsbuqMrvzD49k7Lz8gh7xKRRuMO6Q/s4EI7yVqZ8ldT9Fue7wi40hAP7LZqb5glXguizccThCk42lpIIl1htijDVERIl/EbyKvJIC68lGAEcvDHEgb4/5OE7lQk2bQZHGsxfkAARuJ9Ax4rydzDifRJBxcivtQzhuA5bMY89wzSxG1NmVts2qTdMcXPYsMmBa/kWpk6kAphOvzVxCq9o1ydDDBL3wMabpuad56Frs9W5sHtEj31IOQKeEm48XEsAY6yfynMH5d+wQnIyj+0RhY7QXZEKctQU9XeNS3TkWLGrkrvcVUF5hHqaO5Jm4MHaI3znlb7pUsIH1rIwPqMJm3MZjAs4BVXI0Z8cpo71/vxZvRegAEGWC23HcQWXfGzulEqpKnOTAhklcaE2Jd4sAFlocwHeWeCowu4HCDzZy6WzbJuBUK7sxVgQ9++DCjYmhzVg6CoNTYo/TKIrozWGFEMbGxaeqLeysnl6AWCRZ3ksm4DVTNApLCeF8+056HrL8rrLZjpp3Uwc/eyCGPm2RHF+gPLFJwcRRZSbiIu6QyA+ImE3jkU+emTMPVwOCsuI9TBuh0hOmX43xHEhv58kvMjzaTeKVo7auf4zRD54LTDxVT9AaM0ioHGFA2UIBmjPHnevikFMCSTjBw/ElxJf8okFfzrAztBhklmaQ7xW2FgpY2sYy41aAOXi+6BGvuDkxdPhuf7nGgMp1zd/cDwZ4gvAzmLAEwS8RqtIAQ+uG4WfLno4/1uC68qhhKwFPCBBwo4nLpaBBuANCSI4QLDWAiD4jYLenOAdzoe7gpBv0dqGKwv+GjhwR/FXVcC1hEVK+/IXEgHJnToXhTUo6pa35ukClUny6ZcIF3F04IzxY69f6rUILBDLrl4fq9j0fmroTVwAmge66tg66OvdpGzq5POWJtdNjuQEbVacKGZ2OcEmJ6eRPrJ/XDKxbNXYI4lx+u3FQqGyZ8uBbl/h79jNGQyvK9Q2zbSUUunWS1z80Fb3poLWWyA6GM3NVMyboEqlzqCWAsfRCJaIKruvyeusTNGd+YWRrhPrNnWjCjWjkk4M1E+n6y9Ka1xftONE4e1z8KXHWld924HN9PG+xq9m6e1sgASakD5hkS0dZQqiB5z5GcjM9ommAeG6P8wDtnObp6uG/k70d4cpProMYis9Hq429yLYHjqSxWkjC4VelYrXQ0zGH0aviKCEHsKZ08IZ2OC1u6pCmnVTije5hgdmHmXnWEZuLbesXhJ7VI7o85Ensoyf8icrDv30/m/y+nOio98lCjoYLENGbxDUakmuXtrxf6AOq2gTFAXrHRrZLaJIbFzEiHwxH6cS/T1YPfhXcWLpGj85VwPNntGvqBN3lTgg08kcR8hcZoF3aycyYZugt6eFUlde6oULJE+12+TNNODAjSS7e/3tgNmnRs6AngfEKT6lvdUVTS5/La0m9t5zFwli8cTP2N60QaGLYp1KWHCvHQRd5O5R8iP19Ss67B3VobMxFhAA+Kci753Gs8vXz3dB5iIgmSjE7p7p0iIlOhJYZVZ/lk5dtqNYuW/KmCimaNuOgQjl6L/L1z7pNhY+FHI/zsZZ6f1dlpxOlCWqzhMjv9jK9JQixI/JK90tUeEJ2hL5HMPQuh06eFZMuf5aM01rTD6bSRhk2RbxNQcmdaI8U15hATkMs/vTS88f2EjKowxmmuqlcFNMJCgyq01v8hsZKCJIQwXJr3UPqk+yXCeJFpBdeyKBDbzhx7t0QI97TFQfPKEzrfnrz1u+4dLwpuuCH6Ke+9xNGfOtADBfc/Wubupy0JiJYv/y31mK6o6lTnhSb7hwy2GOZTNJvIAaRHaBOeiXPeMOrTAbqGqRtU3F8mJiwvSgUWIhTkHxO28Yys482W+fFsYYDgmqcfsBPoi5bv3zgFB+ZSFQdipQuS5XL7WHsWO2OJ2tx46WWgKVkXJlD5N5nYJFrrvd7jzR5JzukIAyBw7gSFXgwaIyDkslKosB8xivQUzfGoXFbNEXH9MqY0TjR0vy+G3JRt1xp055Z3VR5Cw8sXKwLOn/evZpKwjGVLBXsQCt+7uqjcGfJlRAAhPitn2AvkbPMxv7hKCUmAkslfD6gCjWlOhpa5g9RO5MdW8TuP1+88S3rnBc1Rape9bVK36EfAanTpowIm01JTJOvkiliorK44GuZ2wZVOA1kV3uq7dXeIS4i9csRnFPajq6T24dOLX877xJT3mXkLv0/T0cKweg6ppz6fsJ6BXlGH2OBlYRAujTRmOD7iFRLtjOigxafRlWLi+zB3frGCoKfvFsiWez8HSEVcbkWeu2WvWaMTF9JexTAwn193paMtKB9f9qYWnYF/DslCwmxbn4/UAfDV+pNrpOnwMJEmu38q3GMYgpe9ZrdYYTEgAlPGuPR4gIsI1AV8MWTsUCuhUzzJ0c4mGEy9NtKxEnOJx48IQpAOZEjV/Ws+UPq97OZdwqdSCR9XOfUryXRUIrNWadxYQyWWk/dY39Iu+0V0XRDzoChQdBZOZmlq+PObNL64FA79BINCExlkpXiNNKT/65FZJR4Oz16rxyJmrPz4bHkSY4sGY91ejUeV8fqptN6HPDp4e1m4j7rKSzeA1R+Va51gZ+Uvk/aPfS+YXc2AlaEDa1/ubFg+lDgrBIV7fVVLUnVQ1ssTjSndLpsvWVEvlsiBWBSpgtkGK0Yz3QYjynYO2pH/SdD8RrpmXdvvBJOfSQqcTj4MbYR4vVxy7gNRP5c3Aj/9SDGJD1vLtw7OsPF9VPGjqzU5t3dpbgfseFeCaxHVjR6N5Jl7hrvggheOGDUNKQ5tGCfvBsrIgsR2WWwKv0Y5/m8np1/CKw4LJTbchabONV8NfY/wmyrpBW+k3gCaVlhS+z+YJpMXD84FPk14sKkYgId9TDpgDrPiGcmRQLocYXChX4M+HlhBfG+RQReWbyKuCzKIVWD00/3yn2lRJCyjFGAtA42sTUOksescxsI8K/NlOPESNz47TUPXl36SnUfwujdnnJuBvHnbAMsT+KN3W14Ki47zZjQeIhTbvKiTGPNXWhHt9NK/cIRVEf4+NpqheMrYCPswWu4bruEvfcStdyxBPUUlZ8Zx/OHBY6KNgWMScdPGr+fMHKbaybbs62CD3HuPAVbMl8Rr8UNiQJDSx8cDemUhXq5P9y61vXB5G+/Bni2C25VCRosf+2yvTjXMOxw8jNF0B2LKu0o2oDARJGbe6RdHOv4YAMLWooitRvf0PBLSB5lapOd9r51Zl6mEYIL5OtmZ0Ae+NcgP1sdibLqUfponKrvEdb9E4qYluvE89xMFSY0/nfF3WEQDjV4TmegMAMZg8k5OGYATnzI+MUUZC8XZLFSUB3ia/tt9O8EWT0LA98yMLHTZJL+DUV4yL4DKw4aODpaJ6RfJO2RyecsoCe+g7Swf/RB5TPgTANeWV7S2NWpFwU4T9dvoPy+lRUMNh/2zCzc2fZN65NuojjUUlFWj6EZJ7zKjfSLtC+oY77IL4/Fb9cL53PBA93JkTnQu9Kq3TcWD7viYuPQpvVu3cz+bixr24RALmNx6d72f1a8zzO6mrr96dDgbGFKXz0Lk0rbbQLbhiy0KZmIuYHRzTMTbvXjcEBBR632SocEjKw/amaXCL//jgmSwKTRyAjOcwDg/gz8YjL47r23WqLiGcw+eUEuGYqZ0kzne+PlfyQD8BA5bfJ47Gda0+4SWyOiquPUgUnWIaJ1jyIdKFDtnF4OSbeqnES22ouEXfNqM6I2P9K/I3vYpGVVlbPxwo7FDs0PDTSkCHjuwaufrgXpN7YUFThy/jn3cxBRP450xDnh2tXpefBImF+V2EV8h1twHZAtRAJatQqmTuVBMfr0l7FUhZr0Vs5NuDPlTsFjmEFB+NBVxPDPLRkMAAd898KAucFPRxkzpMu/nbRB5PJ3yZ0N+78Zhhp7s93L0MrH7VXiyU8BqNEHOFJyG5ZWRxDWi6Qa09SAWEZoL7lovIdoANyjmT1AzYsOYgyU5P58yr8kf7YWbxdVpOz7YVFjkjT/8EJxvPgfmXxMK8+kJbs4VDYxh438s3Jc32GQGezED/ObKD9R5Nbf7DuZViEQMi3cbsklgL1em7CbMC0c2jcD3gwj1hUsm5T+Gbyr1Q/1CIW+uTJY3zkohdYpbqUGCU+O9eufEsHvD6rmAdNjNbAV0KIjGVzHSZSK/p9CSLqiRvuqp5GOAlUOs0jRe4KUlxogL1ozYaoJcDvYeHpCb9VPv5nR7N19y3JzCETRtfvvJxU45u3LP8Xwpn//EcZMkl/YiTAzGq7ZyU7r4cjhtPDqlKEquwyPM/kx9VzhFfAzIssn7DauVXDJVfRjpmI7JcLVnBC3Ywv+PpaOFeeVgO/2ZBif8JnG6WeHXKVqeeJYb05bMOCd/39Pj11gslTN9qfL1p0U0EKTGgeCH0iP8Sb8DL5iihmanh03w8g+3OkKh5zfKMcjnvd8T81NjNLxF2iybeR+RxvnQ9A0ifAd7a9rM2rgNWYTVB9S5m9PBX4u+uskpbOKOGqtzQFGQTU2qS/LTVbnSke1tUdrW5zClzDvjWmYNH0vsr1bs/eduHwdgMl9MZSar+va9Grmua18c6+RimulOS+toudTlJ/zYYn+GO3BQinTqyfZbxrBgNletKcFV8GK5SOvWGI+IX0/9fufBHrO57CEmzPyS5J2NPI9l3RgsiNr1wVMFouqQaIrPT+3ffcOXnXGMKo8djRykGwBsw3Gh7wTCKQQWgCUU/CN5OeiceYtBrlnSih4T/aRnC8IpJLn4BPofipdb/DUKP9IaJqF/XfXtTSBQUp3Zz0yZkHSbuZQDrVuheREOQth3QRStgaJg+8ambnpLU48w6Wdtqh8YXblyDCHtsg8wLsCSDiWT28CGniJj8w9YV8b93Q2cjRetRTM5O5L8tOuoq4Y+TErroVRbQnWMzEPZ29ixamB9hwks8jsTfFQRQR9w5fXsaZ25jt6GTs+65Aiefsvy/TCM0j6N9eZrbqwYBwn4KgZLdTR7c8HqHiVsMMQ1pMmne+8fQMNQfn+Op008V3m6d5P7X8ScDK65vqHUhCVQtp71Q4WPpHjxrRKHdEAG+P/X0BxZWGSNZNBa/SmJCCpiZ55wlpH//YUuwB6EIheOe17y5ViG0ESspdJAs4pQR1l0NZwNBKd663yFLr3qqr+HP6j5T00nhRd8AiQbKG0wtgavIa5jpHBh1qCdQQI6do71rkrO73uZsVnIfQ+444T+tIAi20GVNKdcEK9G2muujevQuVyblZEwn8BFkJ4dMcLXtZzZcCNOMuI76DEfEbNuGMzeafHBq3XWXW78SHEFQFVcVcWXlOSZh+4W0ZlXnbRD/z+4kkt/KS+izvGRWrRDwbdKnWvZjxnILAcBbmV6LHt5fReoCZhBLMSgu2UUAPLR6PLd5Jps+JO168ozFYvyf7bY8dN3zbtEjfNgU4yKDhr0u9UKl6GBtQ/ngx0n1o8WI1C2oJdXyF056qTor6GIFM10FVtOB/XfkHp72BJ987PlTN59q4AJDdK7KWVtFdd70kcLo/h8idLnSpEmW7Xkrs+XG9maPrInj1+JgYEnO01HuXjkNvzJ8YQLXlr8EhjMv0yO1tHJ1u4p2yQp2A+L128QpOjXz6t8GsSKcIoGf67FlHEO4qwnE46ALZGjHOkyLkjvXp1X/71er3KTzpCLti4y4Ix10vgqPp8PPCosZ8xZS+EnEjehmA+m0uE8Uw2JapPLsHyE/SD+7q/Vdcv88DbXTc3t2NOs83p0EVzPG8pP7dnFDuzEvKWCaScMxsuG/JgKUaXGDSvfD2TH6C6tj5C0SA/ih6YgFpHYDkQGXTTUkE8ykg3In0Nlfmy47W6l/MKYRNXcmV9cABiki3z2NaWJfgrbNCL5AY5VLOLGC9dumKhMe7cIiss7CN12RIy7H9BvDBYD54XNWbnKO4FRNuwBsoIsVMbu0s09rArur5ayGLgKYfqqQYhOcQt4bQFzRhSKNRaRG8tWx5tcYU/wifsNQjWOlvqFt9qbtoF90ND/gpuobmYXGKOl6wUKQe7KAMuZiJPCA8zOhHzZBp9+wUT/uIdkDRQeBcSzxdwv+wXnr1QpqBSRhwSGfbci4bcM1tMe0pwU31cxgKlGQt697ra8SA2ICFBSqGbrP5HezLquPBXipU2ekxmGhYiG3+VplPveKJwEmm3pue2g4E8ZewwVpOEo/PPm0N5G+v02j1tCvwYo/4LXeECW2vLjxQKmgd9GgqgjJPF+i9yBXH1yMyXbTggOf+9LqyVbqIUWOTvjzIgYzu8onxv/C+t+/O85GkdQD4eADlid3lSDegj0BbSmzyS/mQj55L7gubT3KUtwNW+1G8glT5vqLHS4o2IRwI3Tav+E4DKE/3Kya9ccmiFJ2+S/Jl2SVJIX8E/Jj8BzzXUsYwfNFdPPy1MzBepnlKbDZaBak9uutoYaa7vI68OiQ0cvoLV9xnRJJ/19xgaF+gG3aIIawby7MEMB4neNXbWnpbn7mkolGE46qofijiOvRiXBqIXonAvF6D4+mKnA10Ye4rQFb2uxYfYunlannltlXijKlXtQBud7UPceSoLcoapHeMdE2cJkBRmpOm6I9FoZdcPc7Q2OZL69oF2vNvC5NduC7anNwRamy0bA2O0o0HDboa/Wno8IbHE+jPZ1LqzQIXs86eQSlRpNCQDAqfmV7WD5rQzoOUr/3TmLaFEekNPiFxXuV2S06IhQXc9f3f8KCyhzHb0NkTjROwqzNnpF1LuvnWO0sRRkeSv6qOlkfbp3l8+/+yXDFLigBHYJbPXnoAIvEtXlWto0vES0PCnKo5dthPgcreRwk5I3UQVzxeNmGW+F8zPH090AY97RYYGeagyD0c/aRIBxgh98gkYPAOntBBwvKm+z2znQ6SaUSps7PUU7F0WQPDvUI1m0xBRDSBXp20GvCMhEbYRigvu0hrClj0yCr51eSh8Hl4hzaqhPDET1EtwvYWLCA0LtG5wFjHHJzRI1LgovHMZ3ShkQSTb1JvxIIrZEK5JimtPHDJc3s4pQhbie0gNtlVc4cmYkoPSmgB0JBgzs19DDzi4ed5aZoGSyhqYQYJXdNi/0sZaEnPr3dgPcSF58djXLSyvDNUjRhPeT1GUoHUIZEeXpI1s873rhib6ivbwbw0ciyIWE5+c8iyqvDu4tU9bwKLFa0QQBu2i2fLzgMg4aeewir3cYDwF7oW/JBF5SrJkXGQPPQvlrrgoBl5GNXBE8wlxAiYS+vyibpvSWJoAaThvVvTnZHcud0aRf2m8pzFv0VQPWFaiATcsZKR3KW+JyqxvqmZmo8HjQI1NfLeNIKCt/rEhMR0b67/WjI6YsIZtj3euVOKcJxkysICp7mMNjvkIMRMH5I4cgzWEMkWy3dko81JMKLwnvqHrZ9CKsrrap7hH8z1Et6gUQwr38cPAzvc4uO/S6svvEVQvQhvtqVavIvleOn2bxohqSqsKdasa1ZrP+uXyHuc+IjtTJ9ckavKsOpcvb33uzMXigClgXI9pF/ledz2vJyA8fxS4T4nfa1Y8b7qRzcm/RG4Jc1t9PwQSiyQl0JWgFNqFZ0492X/Mvf8NCy6yOCqB7h6W5zdMY/mN69XmNXFDAEMsOr//l4rcgZn1Smof8HTtU0bOkbD+SNFBJd/W7qbiyxLvUIQfRx6pHD+IhWL+qCmYgA5VZZp9RDhIkUGHx/MLbZCzIKpEDvyWjrVQ+Ef/E2dsKq6weGdWxJyHFv6B7DbxvkOcacKW8ZCD/rhvQsKpkcee6xhO+r4t9NZk3+5pOLgTrj2AV1kQNjo619q9Ia62d8EBVNaHnoyC72h5Tin5VaCFVS2Y7DYQl4dhEClmAr/CRlRaEuhgH4PkdyMIzZQCu+2gteujevvxazYf3aSHnY41G2PMaNzL/eS5QJ9Us3Iro7TjMfLNN2RpGk2+y80AiqeDuybkZKM687SjI4hrk/5s9FQlI1vNMFfJt39RsWz+h5H8qJplqVT/FNs2e4+PO4Y+JME9ltEqEv4e76SEOsDpkcPv7FLiD6nrs+L3p0GS7nqpUl6r6qQfWnyTl1VWrgvAgBiY2OOx3Zd81UBKUNbkuaBwku2r4eTwzgRJo0mQfewfkVUPTb/74KHHfl3wg84Z5JOpGwKazX7CdkXMc1iTXM8jvZWOBy6CzqXJPJto9FdYHF3fl5m+6Mrh6EHF52ueqB/SeBa5jlxYDTHxb77ghskYV2TMwHxeajFvCtcRXSrrBcgDN3wz3voHS6CPu3IsankOd4tmqnrGO46A8FxXxDnh8c/IVKNWz8el4te60kIGJoMYWlmLznJOucVGMjBtNmUd4cjTuUAr78+x6VEv6mNS4Tz/APo8AHA4W9x13e3DyVlCYtC6ygzR/yHFtFZNtHrFm1zXg0PJkoh4XwCHb2cF1Z/cbFGfkwNH8Fqt39aiqw9u5MNBsE2SuPlOUoez/VET8EqdqIsbx1eGzI9YadoCvhDb/SNt6Va41MqfkKwASRhZcP3/9PBVOSPaVGnod40qztxBDq9OiSAm3Ae4HCUHk4Lttwf1FxzjtSthE4HvbWJHdTrGAwvRLLetNa4O782cLxZ3l9CQ3RFKLNvDHBdh52au5TjhEt26XXy7cbe38Ptmb1nnAta6agjiGOByVMEls7yX/2MgPnBznk5ascorYyZeoGrS48pegJC7NYLdhecCrBYgK86tVZjyjleXeOyiVEogw+JfaFK7IhOvhoKoyJzPLgFfujogtT2Ej3Su6LURW9tPZW6j9RhfDgYl3CqCf8DF4lkTgyijLzfcKQrx+SawmAWPO2sAWw0kX9SoO+ilzQp/h1sIjRB6AZoa4ufmSvFEUD3soNtHL8uUND36bcf61W8cak9H26t3tcYpSqdj50LpKx2zZxdoKMHVsbdz0w57kTpmMPyuMLq0znW7pvf3s7tAIY8wLc7E+z9zwx1Bc+G4jwuo9cC9NCJxyNt9EQj51sIbcv2ZDLwj3dWSD3fRZZiCvhZNz0T8tDh2Nmblqaxp5Sbl9JmHRkatK/Ma05zoLN4zhKM15RHgaKSy8hBmsxhYuhJWzeMzhhTQqMI55+IRrosJHAc3CchaNMqxIYhdM3y//SJPd3D1kY36zdfFuX6ik9eON7W+te32Uop/3cpP9aLa+6FzjNXK03q3mwiPgruq6VeiL32CUUwUuALKf9uv+P2Kn7huI2xGJGR2NtnsYpmazTyWY/pIkdeeiMpCm6zMKIJ3Kuhxp8kgy14J/cu268Mvr2lXWU1MLPxfGPNyNo5aUqkyBmS55YJJ6i5ot/nZHBGoZlstyMeUMK97ZImh2COLfcG3s8QoVg6eQNy6e97rDRlxr5rRsmjPwRurKa/Ah4pyirR29mX77GZlfgJTuo0cPnjm5jzSzClZun01V/9ZFxzBzqIFtpAqsxUT4ng+ybilWpjNNHXo1kl+U05CQxElD3+LKhdau9YZAO4GDkj0ACkZEea6oEHsZ94Ih4TB0Nt9MFjrZ0NBvHAqZQkB7mLI9k/Y4C6fQ7EbhjHGKO/pBqKi8jCX+nqsjiTUw1ftuCkIvUKnl87luQZwmndPh/KnSYmspkdIXSlybfAbCus4FimvBG7r1JuR7+HYChGqM+QnVeEurBAO8Lq3zRyCkLRl0MNV+A2vk7ka3Zvk4s/fLbVyl9x7+zmTRsKWscCoOigqh3NzW45stfeH6qZG/g27Y5sv4ZChDDrJO+JHpUSARzPW1H1zDml/2DfELjCazXMCNT3fGAI4iqrOcHbGQypg8APjtU9IaoUAztstjNMlTvk+y/41KATG2nzIPJ5OX+dD5uCdXOuPAoALXfSYb4z8nvqPgzNUWNZaKcqHqUlyMcDTK37l5s/eWbdp9hK1EI/Oy8vzfAxG7OOO2URUYwuXXYOQV1BE0mCo3Xn+j3O4M51twLn/6wX5mv3GlzTM8UYrJ030j7PCRn9ujgfI2yLGjF/Lh4vGVbLFlowYVE8oG0EuT/ofFnSLF5X9a65LEuCtarrGhIZYjut+RP+hl3uN7M0QwaTyojh2LF81OSkAr7Ur1YYby02ChI6spEi5WtArU6g86r8UokyFPi27gCKWn2BUYie9wRks9nZCav5rCoYAaw8Nze0yUySoCNRBjmh3LWoN+L4/u8taLIuZdGsyKyJPytvol2ql+y1wxvawdiqnhXjM6tFO4WNrJQGJqPxN2mYff1n/BdhNrKdWGgeeevQD9V4lA7O7P95g5QBLTgaFQgYr2i5zvlctjRhCG9w59bvkYcFtSh8m6zkyh74AJwuW4EIxp3FoFCBB7cfPmc+dV8zt6oewPRhXgNfYhOhpMqaf/POyc43zw22KJShZGn2+QurC/VL6pkpSavwol9Y+2/pD9/mz9BAiVszaQmhBfUUM1CsHKZ/flk89UXe0jj0sd0nwSUn2YMpmDXnbXixDC81tpO4SKImTPga46/dKWgmfc+bIxLqQ9z0zkbLUGc2z0vsR39DdmvFAdWW0UKs+hK0FUMIwH9o+TQfZuogIbTDEh51MQM3vm/DpDQQXFATmf3d8eyPkKbHfOD1bzJ1OVY7m2UDsyIRBYNbKrIGdasY9CTi1ceTL2jMxwZ7yDK0pgkJgGje3go1w5+ezItrp961JX69ClPh9CgIPvWNhxmxp1iSQKwl5dni9MRd5kPGKseHpWySvPDOmFud4Yvhz/ofP/VZR1klgL7YsFZSAsBKv71se4w0pmqgncRjqKqjDRV9gT3hiC5g+nP6LYvO2acN1a6Emj8sppIGmPZ6HlAezV9YrFN3/NuhLdfcHSRxAch1NNfICdshidEpXfWJ4yaBiija2Gp/flnrLOpg2u8PD6Oywhnb4alqWE40PnQG3ijiRsDIeTVYmf8DR5j8fvJOQERRCpzKfrB1QFzFLtYUPUypGWELW7LLpT/8mC+nNiqcvupgFczNwJ9447ZefV5V4m4F/dxtu8MhWcBYB8B85QEXa4KlgO9EW+r6lmwW+tpNfOILurcKYGRiPqwguB+KALJCFS2aq0xZyVS1OrLxElXXfC7iNOU33mHh2hrRyc0bRXPJ93Z5S7EZ/sxpClQ+CGfHkmjQOwh0UqTzrPLtb/APR6NLB5528mRnMdaFRyWNRD0hnmNuorM7XDmpIjcra6PiC+XCepRJAWlRmPiWrrHxUuqQfSaLDhKZPEst5C2NTKt7ERCMTKsJPr2o3RdVfz3zpW7qdS+cBKSJWiIu5ZV3btkxGFO8Q17ohAp7WEl2Fwj4ZSqmCxV9t+WFtQ1wT01GydmR2VDgXDZioev2HAyUKvDNSBML5AP6I4FpmtzoSPBmx8uvimFmML/ctiNZSXox5Ti94FUiWBydt4v9mJrEkhXwUpd1wxnX1fvMe7777Epik9lDtGFCgG2t8hztm2d4941tTsOce4fy6kgDi0aRTzmpOOuFGU4v5rZXA8gA0M2GZ3OpwzPOLcAI3bbT5IIG1NXiOL1KKlnjY9Mo4FX2NZRSoPlEu+qDNPaiwZkEXsspjD5s/PcjwWlTsWMUCvHDH/jWHRQ2oPQIDOd1QelaqdSgt7qDuBv+fg5zRlrhhLA9OALwItFK4udpKypC9ZwuuqNQpAY8TRAPHvLINurC3QhkUbLWLjGun8LiF3ldhzq4NatK3pwxDEqNg+FpIpZxvx0WaFPjfEMdwxh9dEmZU7nPIxuBzv12Y2XNrawIJooeCVnz0xpvd2peANGjPFKNnflQKNiLBWPwyO9TvxFFJzdZvy1Kg9PCSk0ggvrFdWSKuMJpr26CG6devXL1o1/9ta8DDkdi2w3ak3nNs/weIJxO+WYEYyZXXha56+0xiba68JZr1Lm7IqNzGGpm+LPC+fCQjagEjyM2roaM0lElTtYotaxDSHmg6EEydlXqfFDpcCqsw5jQ2yg7cq9N3X6uusx1f1Ncs1aswe+5TCHopAp2yQN7GP2oiFHH/n1WrXub05QRRTbniijHUOSsu20hKqY6JrXToHTsECuCVcrI4/4ud6DyxwYjMawI3gs1DvFBFA855YGJPZRUdtntur5UgTNbxLNtf8INmNFO5ox2nQTnI6n5CtasAmpCe7TNaSkH1ykt3BWXHje07Qt3xvlr2lHoqteGF27HBYwfscZdupQ4/DO073mU/W1gp7gDKA54xvZS0E4eyr7yatGVzJM2J1v8bJo2bmsrvLx4okHIc8FoW4gk6lD/3D0M2Vcd4zXcqI14yU0QVl2mfIquzjkr66q+B/HK3RGU9asrglnR/kTkbC6sVfnH00K52/gLqWl4z64LB1ImT8bchP5QiDq0HuIOXOoUvou/Ma+W68kwDyNuhhaPIG/3BfIlv+iYRx8gojSBoPchAq9oy8qGYDA5KGoXZZS5WD45qs6dsNwXMciO5yaFogo/KTgixQ4S0v5SJpfk3qkTHJBdDdLKPHTlJhhyNo/GnSC2cyG4Pv27hymuRO0iuZujf8y+YLw+zbZzOWa94mZmKxeARe0tnkvqafwxcmU/aOS7woOv9nbBIYoQIyPB9XMLhMDEVHhElu8WsFLBcsV+wSEqFG8pwYqO9PoWESVCwA9RCo4qCUo0iHJquz6gQuLruNHtQ09d3jmtaG5teuDiGkq8mbewH5sOmd1AZ9eiryObKAO29wKbStV3v85z9iYGIQZhi920uDmWCobjU13ja1fvVy8240QpQPh25cWwyMHWWn7FMEppWmqMweDAYEzozYnmXrsQCftV6TNqkC3k/z78VLFV73K8xPWAX15fBSWi5g7VALSXDylTrtJdsiSrJYbx6pMec84vb9szw8LRajJi5WfR11VgR573FbzlOZofB3kzWQyaXDhfOWRkeqjUb+qQZhEQ0GVqagWdC6Vd41Z8eDp8WyjCqw3tn40zammBOVPy2S9j7hhwzFLlIhGiHAVh2eQk6JzGJnTBiZlMi5aR6XIvQ/cWaTe5/GcjDQlQk63GOF0SlrE/MbKBpFkh43fkCTJp/1DbNRvu6XDECqIZau2DULvpUlAhUSusQlD+XoBG2vXPMVol2mz+RA1w5cvXB/nAKwO4zB1vc3xpEohxl3ySbO6N70V1+0jgWZVma34jK7/c6OCXoKaLrf+mao0WNyVZxJtD5N6xHgxd39CclN9iqpaf9EtobM25eyGQU3Q2Cy+976teG5S9aDaK3nzaL+Lt8oBKLWYCiOOHMtnJFqWR34A7Hq1thOa+11hceUXEEt0dqGqyg6fMvCF9tCfqdtoVX6iCYd5qZbI9dBac7/GmIMR3YfWwEE+1JkP5YaBWpQtRQFukTta2eKm6NIAKXMZvH4Cyn3c33cbT/WLdVDcwC/Cjd8gkb26bmrH7SqiNcJqhCeCkFXFUregxvWm/+HsNvjNDM8+Hd/Ng0ldu5/VyjKRUHHYihsccjCf5O5359DPVdOKXMaKwd+JYetjjSq1tPHwdO7D/U/iAaC6prtG/JDEmEfQHQXPR9OyiXOwG58Vo6JkZS8xDD/vJAHy1Bx0UEIGxunu+xiShel5h4iY5DTPdrEqIQr/ZtdgzgZY+D+z/GSQKgAIsUjYJolAmp7c1Nvco2f62QPj7DBbV9rjKXiXd3/ydYXti8A2X637WACiTMaXhpsStx7hdwHznQhlfxLNaGZjHchLGlvbp2gDUnxj6+JRgzL/1Hb3hUWpV9fc1FPt5V752xj7yef0Vy6r6bzJExNt1AQumrHCwkKtNtNHull3doBVQVVALbgFBOU9gK8eFjFO/vmeUU1vd8dhExHR5y5nx4/pe/eJhQS7oAG3lcKpBg4TaPqudil/WWMrOzq+vMQ65LlIM7WhJLC85WgLG0EnRxM2JRDXal7Sp0QmpWUF+bH/hafChXZAmQxU9POYd5nJgjkMpz3bbPXkCsaGfH+fHDoSp0FcHfF2k4sNrfFjnvkZ/AlBCHmEr/5XA/Ip6DCu3H1ZLf97sEOajl8t4uEPWHS4sZ4/4WSki/1hzVOXjGWf4gJsMcIZWMYSDiA+jOPNE08oFUYhVVUEZ1uaTEP8roX1pIUo8OuolpPBLqyXeBFVIJQEwq/XPIDE9phfov3TN9dtLY1APAdBGAFIffBlKfpFU06fwsiSI6vO55aXw1rnNkyplOEXUotU00UykgwwD2yeuQ1bMya7fYZ3wNPTvFWd1aFLTVbhNP7unmq5lVDN58WBJ3xpcvMp1hbYDEVcxCOHV1bjLBGY4OUt+0RYnKAz0JghUCT4pvGcFGQ9x7Dd/kvkni0cTIbpEv4+GedfQ5d9q8SykbaTCnTL6kiGg2YV+Ock7P6TEdpv8fNQid1UR3P3BrSb5L/rCUtIphCF6nxYzzp31rtIPRyG1A+bxGO0tl6bhGKpvN6OFIXYcF7XKgrl+t8qbmdoIZb/BHG+7Ho/UGlMMACpB1esCmZBfkSgbIU5vNcRqj1xDrCcb3RZZeZbq/PnF3GmTUE7LGA9+WHDdDFwoXjpdfWlin0QGp7uelXDxqQiuY5wzo8q8UTHSTvDo0ehjsVOpB9zofWHYc8KPpcyh2527dAZNymwubqJwbmkwhM0S9xcLcRrVsX1Mi8JOcXsv4UCPOKR+JMhudtoueQDKI/CGd4v8nNcKtU/xVc9KXHSeVSzrfSR36cqGamlPXxkxAumKx95DjEzytQOpAeZpXjWQZgzOzwiUHtULhNetSM6WkQ6ZAE8EO7YYGuS4Y1LHXJwD4J+I+8Hc4yTyZsMsablNXeZg4vnASnljWQEkT+F8w2ikAoqS/6gdReXWrqN7riJay/68qa9RcGcaOrmJfdQ7thQeHSGivx1CSYT0ZXWR3gLM9HHxpSMUtc88tTLtmqY1bY1cif0u3i0sUR7f+xEGAEuppaY83YgVN0F9ajVxuIWpw2acpkKmhSBoAGpmjCx+kzimxvlN8IN2ExunmBm5mjt4rSJn19Fuuh503uFz21w8oIb/+sfbisGl3EpKbksRnIvgz13Cxiz8J6N7MbHsmIgJtIhez7J3T6VnieM06jrs2qCwAsx/7tTlBCLX+nzw1WhQ2F1kZhtIJA541jnY7+2m6jlYLegnzEYNTCrUyhCh030Oz/jFrfRMzWwdq2HnAwB+zvbU8Y9LvIeeopJUkd9Ztw6+5rleYh1VsLQhnDnf+em/d+PUCYJ8LJnhuYm+i/oGLH2Y5OlZxP5gL3U6vAuOuTCHvyIdOxqSASWZ2V+vaAuvwNJyf8Lq5ykaYnk7OsKmTgQvpo4We67uTlJNINamWo7hjHhqEHXKoP8LnWrgV6o4rAVLwQY0Xj29/iewOCe3YUWWtWb4e+hFmP+m4mqQuqNrctsWwZYgfOPercQ3ZrrewivR14GPFT9p+ZORxvECiq16ewxgxbkV4iAFyDuJh4ojS9e4R/1tJTZQZiKn1QWY9JgWvY9HmNvgB8fjQNHYfXgxaHzEXe+2yUTPGfnkifFnn1Q46iPuXABbzVCWVQRHkBg22eWrU+DjCJML7kcW9K42vhTbsGzZZQczK7Rz8JNBXmDR3He11SrapEL8IViNol1alPstlP3tDI0H4UzBObeNsdq31d0eAgLOlZbKe53q/BakgCBrzV5Y051lPYQTw81R4gtb2uJpY6LgET00+s22ejs2rUsAUpybO6We3PWfoPfocbPiaAmDf4uUV4/lyAA5ASVN5tUp0FY3sPz8JKk86q2DTdm4DRZ9J584o042rGp2WQgx6PIypZY4WRhbB/4HkV+Yk3wrOMqE04wwS9ROkiFU512jzdRCZthrua8R52dxmDsOGvSnRAvw4foCKswBRcXwcqKQtsi5OwdBghYpTZs5d2PhlD9aAdCm7nQbwwtqogSzbo1N4UU0Uur7yD/8e5gqDLcAMi+z/M2uSLacJxc6ih7+A6MLxJWTrhDfSmnqkN9V4fPy0x2hbMQhkoEJzC+0lU31JpZHNv0KozdeUIdTMpgnHK+pgKxPgUiyDYDM8JD21KPA79l23Ygh3s3FkG6VcfQ6DxPB6/tTwYtbiY0n9XUobOk8xBqpbkyN6wNQ4oKgP7FqSJl6XGUJVF4mN7LFtyclPEj/zOBOgcTkDvzzwXZwN+IoY/7enOaPYQlTiZBOFMBxKIQbT5JwBuA/PIoAC3UXjhNLnAPrItXE//0+jhV7aS4sbraSfH+Bt+Qf9nJvh3jZYmZBr3kCgnfyPdyJSfRfK689vsPa6Wz+cHeSJxPOq/1ReFqeV8VG1bcY7Y8TKTGF//Pn9rJCs3YTt8JdUbg999M+uE/NgDnH1xG1IovZLwb3s9ck3mVk8KKVtG/eXkj5DpGUsBSAUElEY5OML5HHbzObqGRvJCqes8/1R6txTTY7hyaorhxatx02uu308DasFc1EHcWvDyAzM0vJwO6laVjPysQfek7ZEPE2qcJJa1m1sEyBQDkr3ntlPhOzVWWKsIGGl4DLryPtw+Y4WCwGOgIG0i6YMIPRUuzNst9K1ktvTc2fmxMUDY6miyxJnc/qCLB4P3w1n0xaOZOmH2+FF55rE/Vl9M05x/FLfraqVrtBNLFB5ggdzwkrbpAXfFOj9DMdkJhPvnIqdN4BFfl+XbUlNTRfly4ITEsF52L0AYFUUMxvYGTod7Z9ANbasUj8e1jQWXRhoeBYZcKb9821c+3t/Md+sOyfAQ3G4LrDBqwg50/+Pn+ZzCI5VShsVkD235XkIrJBuGMAQmQL4L7Wo8+u8zBjgBaTcNOw9mAvdXnzyqR7Clm6LSqDQYNW8dsbXTgpkXR1fccsLYPnxq6OLlf0dJDb/D1OZXp+eCTv5YeQfM7UPYczaxDQqR7V4xfRgddjwnQn0UbwhFS1HA+LoPFU29sJudRDf/nFzB4svlFp6Af1RV7daWQXO2yLVyiBqSGfeR/XCSECK2RE4I/Y61tbzEfud/ONKkDbMCSvpHMKqvO0EbP+8/RaR2EGfIuZMztye1gWKYPTJsDMH0niB9wh2t7GmgOUMzGjpjZ92jD2ByDOlWHOIJttt5axM26UYD4FkSyEr5adg8DLmlsWuhG/cV1B81FfLgY2B7iNl1DOcNghVKZcsify5q4SzcrVjl31USQQAzvQCT9xnQMs24PrWdO8UaTlQMRhmTv1tWrCP2GZOOIuvKvW3i7p+84jUT+dtIBGBORHpG2d/efDA0pP5WELxiKAhfEL4eKIjz3c3S0cK+LPg1X+LGqcdD8+JKEG+ckqX26rTU9P6vpfMnk0q9WaGPtpvJe0n5J48hBZxLt4W9g5JA8FKfe3VvYzokX4+beH2+MnjGoQ2YCMt/0AMQiUJmbALtJQxZfAAtQzemtsH2KNAhduiM/ENrOhrzcO6HS/LQXHzBzQvDzgaoP6OOuXlphp7Pb+mlEeKtWFRBPbh/+iXpGky8+CHxDqqac/IUfJb8/slkIazj37Z2z6R4Dc6I8Gss9tOfGWkznLbek86r3nv2Nd8tkz+rPEjnKIRZ8RA5j7Vc2aVkcpYGeHRgifLV4bHg0VnReMQA9SI3RtduYBu42ahPXaat/PBzDa6ktT8Q6U/9TZcNrkwRogIGzOffnVGmZ0Yh2Un1veXaewMHOkgA5s2OgbVohIU2Vq95Pk4hsUOn+SRzGf2myt8UOxVf9kPFHLXafTfxmX9z2eQXOfS9EoFby4joVgiHlGb67Yg3qotAoDhEXST/MPk6OqRQDBA/WLOMS0ZA+Okpt6UuH1bRuw3/Sm9XRwfaM5LhezJQ9accwBaQ99cdu2DFBQsw+YvR/7FycwvcJ9MsgYw6NtTMzrf3FLSj4ozumwFEH2UeqwkhNUSqDduS1Ur2XNHSDhIZCmJ5iek7P0ZEGJhdIJT2Qntoaj5cpg1cOkX11+TKLZ4tBP23LYe6AZPRFYl9C9UPDvC2GMMW+/UHoK4ZLzB9AjTCxy5VJvFRk5kW2ZWb2cITdG/zHotLhl6QDY7dy6j/9w+Gqm7Z7qATuKDbo0IKoaH4MzBOOFI38vvlsFam2AoYoCZQzSU58zanL8c/ZJnOkPNlsgszJQqUZWiwLYLIWFK/TyQjZXvTpuXlmCK4xHA6Pjwcea8nq8G5sgAQ7Pb/qVSFBBw4/tg1CsrGtT8Z00nK0trAV2syxERQ3AWs6u54Lwu8ejhmaH86Vq+DfFZUgRSL5OwW3WYKuMKnujgJ44LcfakmU9bQC8jf4qifVga+O575SvL+wqzJZr95uAmguOwYEaQovULdIZIYFvsEajGNJ2xUljhkbpWV+GwgtgGxxANFWZywiNhVM67ib8BK9MRigvlnSnLgmuFAxUpPa8dKYrAE4jnDRmjlaBjpUBNXVhEQZ+YK/62/FZAMmrTYYA4yxCM72VYwF0UuO26FMGyyiC3NBWp3kTvVXHldcCryY270+T3zhXu2e/zlTo96xLsU2LX7AGToS/QS0XQxVG5EDlBf1wjqdvPXNAk/CnEJNs7bDgKXIaJvDfEV2FipqgC+6L4TUeM72Lo6uxbxZ6VseZxjc54GEf9DalQTkyhUg2HsGsATRXeK47F3mFUShfoeqzwSIVjzNYLCk12iccQcqgxZNPCC0ICXCTL8M/nl6oOFOKbMDYHP8x9mL69ybN2uxLYO3uMAWFfxSxOkIJpMahhw9x12bNVt/WaZXNjlYNQgwGzA81amyBBbLF44qbbnVgoxeeTg5jvuYr4ErQa7K74tOAuT+woAUg2n4S4sWBHHW5Be8o8DqwJKSkL321kdAvucDmwPW5mvWRxQBa0OEY9lJC/jgLVgzf5y3VzIDkxBcFEW3B1mPmndwMBehA/VGKTAU4ozcRmlffqCPRKbDp5oyD7A2/O/MMDAJYBmSi2fvgF1Btph6jHFxnL24vP+SnJaOv0x/J4Ug2nSvBO5VRWL8CT63CpfpnkNp7D7ZddAMdBZYhHtXz1hRsMz2oNc5pEXm89iS232wF3YSc7FuMmVpsIWkbWbr67Payptlb0XezcqIo6d1fLvpreGFhacYy2NrSwq6mBvNs2Gj6KvfSGuJ31aDbLRNGi5RysCvCXcA+sY9NejhXeFLZbStEenFagsUOfhkPOiZelyC4H5VwjDgRJYM3VU4Taky878gP4x1mfGx2AuWIG2tVqWVWuSKwkKPcBHSsw2gkUme0EON0VUPF8Qa6VJsKEYQiEpOJuEE2qshzy9Sj5WaPfY1ykhjCSaTTp8vRt/eroepfw2/MJsfi9DeuvgsKe4hsBkWeiF0FSjdPKfo0/Z63QxkrJlHbThfDuB5ZXf3GsKm0SSziIwnRK2YIPeUUEuvd+VJ94+8emAeRPjoS4yZzhCe7lkQQUKcqEOHZK7pmnrf46qHaySbU/5F/nIi6DpvCYz/w3Bg9ZPlTEM2LqVmurNFWrMx4EIxkqnKohtsNcLXJE+niWR530tAviNifvY6uQe3vwROiZZxOAhrjddXK87MXeUwGCKw5HOofkF+ytDk2nlsr0BwS3zZZryj4Lv8FMndGhfo+UNyCVdbUcOAFWb2eRgu84bCmFHF88MEoA/5VTgrjITg+0GukfRfSI1HARoSJxPoOdvlxxKZlcc1ZpAOG5t7ZO1ZFgyCn5XdcqHQOxDkX+eI+O3o4+CcmATlJ5ZbuUKltjGrZXmCSqcPN60q3WioPUYey+gcr9gLDw06BnNpXo/nUn8RkHAT7y6WHt0UDzD9ppW/S+VfJAOV20ADvsFn9JVUjTS8MLgTeLT9bC7gAstd1X8MFrCJmWRGxkj0zgSYruoaCYGg17IDJInHBZ9qOX3tAZ5Em6KP8n8pdS+sNyHlsVRuBy2plqGdCdGd3/kBSXSGEYR7QCJiIiH4H6T5EeYvKYSvn3YErNQL3FpglmkB5mY8GHD9G6+7pD6FJL4y4Qa0PSMNJlz8b/KzZokBg2U8vKzymJKwexQBtDB6A8zUUWpObSk8HPf/saU7JPnLMSlenRFaOiBPJqvAc2lBn/N9/DsTwyfzLb0/S+ocHOmtiNoPjz9mTKR2U/Nrcp5dcpB6L+k7VlpkZv6P0LL0FT7EgoqTZWTl5NFbxKx0GkRXGemioVaxLjrpBY3kNhJZuto8Iwjer1sfOLyyPrFitnIwwqC3tmIzc31XU5FC6lNFol5MHU3ZQjazuRv81KpA41LCYwwxDHAIDH2xgYrwvv5F2LFN9dtEOQd2V0lHJOumgoh+2Z9Iorchu3Uzj9/g3ADt9pHs79yhs6DAXIrJI6aEjXo9znOp7U+nYiq92dRDCSIOhR76GPn8h3TUhUBdo/vPAJ8eDr7nBvl6PnddSGYYQMuFrDz1CrGLPYdLa0jLa56pgtAS0Jxi6SlL7NKPvm2HC7T3QmTuT0MGZbMfj4j28UQm8Oj9GnyjLifoHBcQCOwr8DEA4oGap9CK7yYUBzueMX6kPk/dP3gNxFSBV5uA6eZLzkMS0J6FFohHguGvBbFQmiApTlhybXR/i25vKS976XZzINGJC3ke/fEB0ZiNoEFKpLxZQrCUv14xBMeSkTqgBXY85usTpFSA3PhGbLKktYSvr6tAW8TddqVmuqTGkugDPDIzOq04/dl1P9RUjQGkMaftG7B67xgixgve4pmfiKG/BBFUDmxFRvaeHC9UyhmhrUltYwdzdu3PgIR7OGXG922bE+TMKOB3jvIO/+lUA/RX9pejbeIKnUaMq+w4TJwfyWGHH5uGo0apYVgpaxQ17VWIrIC3AirjQCN898xI4VeHehBNrNIOW4Xsyhuqhf8jOvBey6iMF1C24r20/7VntXLzR/HiFgqz8yKmuqPduR2JRj4Pn95qdHAw4h+p9w4BbNVnNXlPY7/jB/TDgpd9fT8pxlXokqtPWHd4EV+lVcyMrhpzKiRhMCbLwn903aN8CExl+VCizJ+TaPtg2smSRx5nI35yn7js74fCF26hgFgO6L3uCzLuZLHu0sNtRn5yltWQgPLaeptmrCohN7x1ukmHPob3LA+JDupAGlNwGkq2uefcX5ZDEr26HeP+cBBZlDnuHBzdOjfhH40QQxn2Hvex2QfHGTctFOJlcGdhCmdQSmDO9pziIJ27gKB+SXpAtKME0SWA2mPBu14KRNX0p8VJKZYKb72spUtEtNIeT4IVB3LMXmsUuhfeug1RgPt+sg4eWKdhLmbIpunLWu+pzKRH8EqTfR54+GnXwM2XO8MxOM+OQOcFv+2vMriuzY7ue+8BjyoUyhxrK6lewd5R0GR4KKOPDgrndQ6LT/Yc25z7OznAMRdn3qbn6TcOo5Eo+LYOay3/T5U5DPPBdOI3dnxMLZ3NMssD3uzYIlDCx5oxraRV6grG4bqDv5oBqpuAYvZlsowPSgibv2+paL8twbQY8UnpXSOJy3DuaS5ihsoU93WpaKTOGi9bvbiWVvZzLcS5CRS4YpOZXEUZ0HAb19lMshEQOabcGlvxJ+L7EINSV3aS1/hSI6dFvuQhDmnDTOZJHjTICE4Heq9YIXk7VBjs41fE4B5cji61ycO7pV7LJ/ReOC9icfTTL6Ujb5+cNiOU7+8B1mFq0kHEIy78nQqYbGZ2Sto9v13RW1NOGtocML62g/8srhVBXZ7pnTrZ6yj6lJWvpi6bS7hk/32S/jy4VmQf6U0XA7G8LTbjS2CYOy7k/CKIXn4oLjZu5eE+dNBP9kYX5VCjwmegGcsa9UPLtOY+T6X3TCc56NpEXxMv2bQeGJxY9p6m7raq6bhH1KVGFtj4QnjDQ93l85uGesQbfIFs0YpTwmLI9Xicdoiq4pNnUEyop6MjNXTKU4Me/3+6Q9tpQPDUHNEeNifnQx2j8qNYj8RCnb37Rz9WKCSpjOOc1dMiQ5NGMIyGObCyxBVYb7aCsC4k5dur7jVjIupLXif2mGLOZtQaqRZvlK0TvQ1E7boZzg6D/ns+bbkPQLqkgopX93JgRb8LsF1cqw6lJ4OdUJxtgm76+SfsWhqqpco4CgvQcHzvYNhYSJRuEpucxk/MHJDBB5qrqmrIGAWVh+RQI8ChE6/eXnPDj4aoOj4Gl/KhUz57S+va7xdi4AhfC3vxFd5dDAUH4LvWDDN2E28KDUl1CBxGqPeBDCkiqqiGBwmeaAHcPgyMytuVpX7JN9AfMbkzPJ9gTYz8ehKPmPIVwHxjA6xa1Wt24bYVMSa7yrZDAVhnIvLbxng0vzOGfeG1U5eCZXlgi74vngg/aRL28UHRcCT/Z2MIKisCoCXSfpyl+Tq7pg/gzOIOhenLfQ9nb1poBiAUywDUcD/5j6bqfhOwq1qxKczvTglLsufKuADOLGxYqScScb8cpJlToU9xZ/qbZ4ntwo5ECiICsNXLzn8zdNw7dnt747NPTlLQKFbfXcr0N+I7EeNM1P0BU/B1Tx/2T9a2n3o0xLEfMTNpLhKIk4oORJSSq27pTEgbzzsBGqUuYf9q0URDUTBvkj+YzE8FXPqu90ELE/ogLhoEmM6OF0//fuC0GdSiMYxFLyyn5Ef56Laze6rScS5uTMchhZceAQwtgOz2zEQFGvhU+uxkPZwtKrr6vbOgbzPaDgz+bnBXd2EXh7+oiF9JVdpauqIV3KGcfg1z4skcagILMFFS3lbPjkqCW/ralqM2r99R8ZpgrmNvEmvAYruGZvwAkVHFp52KZagXvnkcb6BxFVeNbet7ligE4J4F0mi8BdaH+X5rzH35i1Y6CVrkFLHFjNLBnQFTtvy5lRGcrLT9fgUoSr8zKl69FuIALejTKxkW2nCxMM9w8DxHL/l7tT1lFLB2siCP2v1SZyrifctUGWyAlMLp9cUH3bM/tfno2SxwBFhKwWcpo6lOxi8INF5gTaCzYmq9qDUa9QEoLMV5r8d/B57h8Z0m5K/HMxIQyQqZa5JO907FPA4Z6KuqSrhThqurNgX0E5ce0MJKm+tTqTkd4EJSOZnJzAZkmcGYIUBfAem9tzKHh0/BzBR9UdU1MKn3tiuJRR9ciQ3lCZeIG/jaeCg4m9w9gExlZYIQ3Z1eRef4Mots/8G/nMX7gnPWz7xLtqKkJooU8mTsr25KXByP3i1bYwVGFNO82fy9csDXce5wQYd+uTyygJL7EKZYljj4FenZMCH2S1I4nA5dp/LBq1JTChIs2BDtOs+CRaaQL0K/rydmRIsZxqJdoO3KXYd08ZPXcOPfsn4XUd5wJlBqZ4OzSyPSfbLdtDaY384oqUkiy2NnM5mKOhzKRXywZFJNB2L5i2pvbxUOBx4ATWiJoIXH5S9odBeeeiVgDZd/YVaRACgOFRe/FzD1l2CriHPIjBsJ8HNp7NoWRZsm1dxpobq5yPsQi7DcxFw6TBRs6kMHcaOqLbb7OWnf3ssnF7poL3ZIs3r/lYac4/PAFnQpvlwfv9TMIMgKTZStPN8u6Tdo225igraOPZFoptODS8+P+u+t9J265Nv5EacE9upsg4Vd+DT3iMwxcxe+oabAIjPsZ28u1mz9u46/MqXxkGvY65NO/sEaFnjQL5wklUjpsr8WNpuNiKQjNgjOFumNX/5USOPiU6vaLO7do/wsSM++o5UnWkzyCtXi1iu3pO/FCI/Q06r0yAHjU2nFmmbLAtV3y6VleJ++xj9Jpx6tVPnAvRrD5uNCb5Y7iiZesvkQTGwB2SSyW2FnqnOBmzNuaMeueM2RIM5YxcQA0+FO0SIpVCmKs0t06AC63NVGEag5PtUna8rnMMlIEH9K+DZjPTogblfAYT7fzToNk0r1kIBt4vSYH2Y/a1uYusEbJHTNz0mNkWjWuAS6h2WoxkHhe24693MZaZP0w9uM+mdVu6eEjOVVDJzC+adgCuoC7N/LoNeEvITV4fFtbGurTDu7q4R9rCaJ/9hHIVk3uZUMd7IMJl56+XvK029n1qtAWlUvcROUaVThfXJtSDDKiHDODs7dpTAANKXyIPzEwfxX8U/K7Z1H/XqRxFAIBVoBTsscD+4QG7c4pxAuxDxdcL/MmDWUaWsTAMuqiHSW5qNAI5lYQQO3ozXkuNnmlhALGS1FwZKCg3YXgOPLLcd4seuUV9gaT1wOCrhmfWKFYFOHZcXPjqeZ5SqcLFg0tWK+FlW2ENq9PQxLf4bMicZNm2wqutwcRT/oPSZcbThUGhmixH9Hu0st78cC6Tx/aaI7hmDnBWdTVCHAJ5EIDYDpMcuTmV/fLdVDU4UIxLTfC9YFalQ98DdU7DjhdYQC5cXz8O3rMekNbe6VKG23MJCnywTLAjT6qg2YDXy/Iy/xY8LaGKhI6DRMMGRiHlf20ex3fYD2zdnyixeaQh6yASrmJ2FbOIIe/lHu2ty/x3EFCeL/0us5BY8wRB0r7ab5tUMbk4s8kz32xdjtfdijSFCApktzX6zGV4BU8IwTF3tDEdCr69oaS77RDAn/aKOqWZPrSlN/AeUSKizfFX3WndDgFnY14glmrVmCTcuEwdJZoxJsA6BauIcIV25utipGJG+t8PA1uWKP9dDUSMZjf4ML0umwGZkX/klZE15klXGR6P0ovSBzDdgNybyTVIdMO1Ftgnonq6zPL5w8Fx9tbc4GjlY7QzM5euj7nP9bxM8o3rrZSm3UOA8m1M9VPbMWRZv6Ctj0ZLHPXZnagaBGcogOsT4mdk8TFmPI5aCAPZOtvAMcu7C9JgCLv9YWMlqw5TnHHyoVgo5ogapFTF6G10EwFUzLyULtFWQh6VFI5mKpNP3fiEggaZwMPxOh7rwVa4VvybqGSa0BtRFbaBEGjIIVX6iB+zFvCFT8s3iN2qteBDCcrM4IWvrgTkxea/4jHPbften4Yuj6I9ncLWPac7jRscLFv4VDmHTZnykcRToVXDAh/WnUT+wKKPmG+0/mjubIYYD1HWzi07mUjhWjL0vMqjhc6D68gQ/k//BVxl8hL3/8d4LajF0nt+9xSFKa73FotBUpNJwQ1HEV2Nnnv7ipsx7au/w31tNyM2QSB9e7Jvqzqi1AHySe7Ffa63Pfb7fRrMHNdGI7SPwblza1r5Mq3RxFsMFzzLpl6i3ZTNl5xOF3DUv3cELYuVwo4CtM2HsKWpb44wj4U581DcI5Iaq1OlQf2ZofA8yj0Se87ZeovDzWIhsfaWUqkwp0z6M0yZD9sWLp0R/27fSuoWWGuC2WlEF3W6nhmElLrE5UM9+Z8cQp54FhfbbJ5w9jwe4OGL3BThnLLboE9gDNbsUd1mo1Wx9SqOgR4Vr8+MSk6ItvHgT8hHK/bDFikb5oJp5N20lNgPBqr6ctX90Ssff+3z/pWZ9if+aFUgwlajOaAXiNUDOQY7bZEAFtBjlB1iq/bgfjPT883vUzUzoudx6TMjl55YiUHFDKBYz551/3GJrCP48jcOBJCF2YaVF3SuWFjhnHUVIZ1nrtdUMFBQSYSohwwvzvXVbekc9v8iuEbCqxysphtvFkK0VY9n79YREoRGIDEFw+Jl2162wGeEJluOxbTXvjIU1tu5QtYpJ/06gXdgZ6c507lGPXgqXgDekAW3WLplaiss/N3/XqyH3D43/jPgHd+G9+LoyU37kVwLwx+gUcL2PlDm1p41af7AUL+cdWjA/oMYszBEPsoK3DqklHjP4d5Vk2NjCMft5V0AQAD3uiaGsbvNGKJALQrjfAR2nha1mbQy5v9CvNEYns028U5YXE9VCOSludXETVzhFjT7qrUhCvZ/CKYTre/wwqTb7ACH3/KT/Q+4XLonkVbi59MZXkAYiIz2ow9XnZH8AcflMiZ7s5gcSM8FJiJBSxNMpkauUTLrVdr3xAVtoex0A4rA2+sjtTczCq2jWAgAXJGICzNwCwUUqlL+0cGKzUIUGEPbAxOiZNG6BwfMb5ndTQU6s2hjmaLQXWm+ahS1bBkpyKUeNFLC9sKgcInFR5SxJwS0JgRT8Vl1yQm0bytDiuDAuXiSJ6P2UlP//JnP81XnCFIMtfPF1rARZHOA6mA0jTfoYH5OWB4T+K733ifoJ6fn/JWv3Y4xMuTpWl5s8Nk0EZ/neYCau7Nkat8luMHw+rq30H5droklcbMRuN/663MZARQUIMgOfiFeMt2sYOyKcFYw+So3ayt75VEdNNbLUqVa9jX9Rey/ibSypF5ivw0Z9E3ciMGzfQnU9cyI7oJu07PJUvgge97Bk8qfy19FaaVmUq5P5a5wDZBCgO2b8ZLjhD7zTcmA5rPCvRBGh/N7aotA98RXxyZZZsv1SAbvZIKVwwUugRkLX72sKSVRj2REXQqIubZWPr1aSncMaT65GntozoPonKWt32zJAmhk8C5cwIFtRJDf1nXFwO4Nq73Mdi91sVdi9dtCseeTP+55eAkuhsisvZOsO5y37yGJLn9RkkeYaFa3TaDN6pbxIgIHNS/iqsNZ/mRcIj4OHLxpwar6nEtXe/KfDmVJjLr8pzB/BP+Gnnhycc065J148wpcIdgVTxMJ1POzzcxTBUs/l4F5TggQVf/gjlvwOkTeIBECydO5naS+3MZm/wVJvk/c/P15OkyZuXgZYHhc/nv5wTsXAOCUx6B4SOScIbTpbXGtVlyWRa9rlSA8+I23qGB4aRYVl8BWdbprDG5aJqVvs8HoPJ3g4RfYDomoQljKKsFjlZlqZRiAAifqsEq8q8O1hlImt3vgPkz5nKll28z36ftfXnXHQL7HTGzioqAJVmLRAeV+8/3i3WPD6yANSz29I6nQTEJu6GjKS/steLb0uP4yjAjLMlkyeX7Ja2d5lgfJIv90z4t4sgHDBFQp45iKiWz+zc5uQUaHRCIpLN8C/waOWTijfmgqka6Sx6liL0yKFW7QAcFF73Sbfa5ZcINHuluC9QWO7zOzk7F3EG6ZeLCruHk3LhR7Rbl5xhd1RsQYV0pcTJoqLTsu7iOvaRCFIRT50+RQ+LaZXha/OSLQmCQtbaS74KDMNzsfD9Okekx7GZ6x8eup1ZknMlyRFSqdWOhYMWft3+sN6wzgC0ZCaDL8LiV8kzPQGe4P31P+NDEgidt0VTlsUOUINuQrYJPx5cizdfYpL0U/5XjFitYoiikLhhttv3mJ+ssV03j3COMdv79NAEg44l/6f8z/UKTRq0lmeDI2FZFsJbv0X+DHsLcE4jULuDrBlYyE9tujkAjpSj5cUj5ldNZWpt4pf9ZtodCDtEtQfr2y+xnpiPQWkOouf2gDU7dblOhCjwVYeS+Mf5hek5EyxRS9kITF44rnEj/l7GDpketiGG3o5UtvFtIWwGgQ9PsUCRLlvWgYFf/1pilwHCym5og021/yl2XHn9ek4ZHCsI9Oj3XDKpUNlJHf6q+DFYlWkPq5SyiJwPyREPbPljKMtf1RljFkf8MqgbEdiWb/3undD3hcn6L8ou3yRiSFej+uevBQ3SRxU0Ieom8djqXqeV4qdmXtf6u7hOSCthu3LtTW9UASfgaFsEX9fugUV0iYXI6+cM98ebngby7Zjd/851F1ZhjT5S/iPu4ERgbuVn6A9VHgr/obyo9oqXjDZ6o4+07+mV4VlZZTT74HHZCZimA2rbVrum7iTDRNgL5hwaXYPbNp579sIfqmzyF3hKn0BteyWSDuqRFHf8sp5LWBTxAhdlOKCNnRsPRVqnuodFkOZBW7YQFPxa78Om+0qu0o6XS6FnK8mCJqIbPQFVntXZkwew4dmjYxeTsu3DhIrcDOVCXfZeuj7GONvgofIVgCZY7dT2TOnE9FnKmyHfPX0SF+cobfnwCU9zTbsi/UhAd9JKXRWHbAvMKzqmz0BZ+v8DZ3RuG4naiG/OlLzv48uyUBJKPn4FlbHepJHCS1e29nFnmrnPmOePdzNGhgupzATVs9VqguAb9Xm3mFDqtW7ZPHu1GF41qs/0a5/HRD1n8yLm+pfIqxsGoYuwVY1oxZQvCc3DCLXfDx0mwKpaVYJIVZmiOwpgU15688l+yhaPe+TyfbHaAAnH9m97qe6YQFyPFdA72AX2/Yr5BsKKDPkeBrkwFLPvYbHBWe583SBhYRAKwDhQ03QphU3Koq0GYkHuh5O9YLKcKJhv3dylcTpaIfudmaz0nVlwvom3+VidKeSBquOoK+85EkZuIUG28uLnLYPysPAvVGUmRdK6ZEK9p6VOPzKYdth9h3L8i0XLXvImNmrkW7o0Uv5KduV+FhYmp2MFA4pD9Tg3VotTW/MTyxf3F5j/JrnXd8PN+LvuMEg6pFaYW3scACz41XmNdxOnZ7qDpQt4yTifAg5rSjRdVdhX7HwhOJyuyPFq4ebcnX0jkMBA7COezdSLNMpB18KzERNaMFhX70fTd5qmTihyKEIToHzm0X3HVCMfyW8l1P5XIVgYr/UlYrL0F+8GgZBVxhSuMMH6x2uO2MdCpCDyXdNtFU197xCPTANs9u9Yb+7BNioHZc7EyfwOgO7hcOOwJRWYEO/0AWpytf7UtJLf1sui5DQTYVx6HIBGPDTvdnyeX5YsFP28oHI3AIDpow8WLLokFeXnxtYASRBDqkEM0ss0KOqlXlCmGiATfTkQAlPYCXJbHA/i/+eBxWw5LjYrJaSpkCNEKGUqfEaedQSRplyubtqG86pTbixiUrN6XK4BZpYBneAjfGRzmP8FFh3X+NVJm8mfsNhuJlmdtHUOEtaGrZFJAMlxlItboPhPSDRQ4uw0sfx8M2TagZlXpkkKiJOn2TWKa2RflbuxX4CKk2qsWr25O1jXP8vCBC/bx6fRIvhbko6praCDXDdoLzRvKO1A0nUfzK345WhxHwVblPjLpJgdvoziB9PL7jfdgmsaIBJdJ4OqzwznMVWfD9sPQjmy9y2wY41OEjlMU/sDR+osgNsp9+s6OFUJ1cwRLOVNFu45IG4ptF2icYwqnSnE5JUMvt4L9t+Jry+Le2mMiBjRO+skOQc+CmH7vhnJZUNBGcdN7evLXu07b7dwYH5B170/bbzQ3UxFMNceS02A0l7UYayQnpOTrS+Cwdfx8FjzTopSXEZKgIprjAoGDnNP1vKoM4W1dIxdGRlPl0n1CziO5+j6VG9PwKR6Pvqvllb90XElk/LnJ5jY8ZJd/HmOPf3fXLAd2qoTeeDwqwbKFUPwZi7T1UiW2jMM+iQeKwA8XSDWUG4Gkx6Xb2U3XFrwwsCHElLVT+mK1CmpnI8gABB0KQ2/22Il8UEdbNpDFrC4GFKIbXiQp0XrkJr/3wwfWhddoFHbg+ZCcP5MSBorgF6M5wdIImKvsrxI2mC6M3wjo0lLNgyGRPu+FsuV6PDivAIxfjIIffldIlxCMNpAaq5P2JQ+NYAekTlBhe4r5KHYNZpchRK5qHg7VHgbie22FjdXvzqZeSk/Awcc0onVMx7swUg773ZF5q/z81XFJ5fM7+vVNIa9cRLlUZJqLI/FB5lLskUfhLiMsOL++C5lGbz+ZrGikD1u/UbvhmIKU+byYXXvEu19J/0yxvbKDY0Ni1yA4DBcqul6oOsG11p008b19hCHV2fB9UqjV5AOeZ4aRZMRbt1A3NeS2v/fHRSE5ExyLVuqHNZYYlrjLZwQre8qCkqZ9PgMKbhYdE+sZ/0mmKmB9TyXRL58rtN9VZWwCZs6fMFc69rjvaSX6otdwxefKG3RLrY/mGbK3N/k2E9YhUygks1rXgUGyjOSYt1AQFn6k1iK1EWH+Tol431lnyaWnyfRyJO4ql/YRrPug7rMTLISdYyRtugT/71W2bo0oZXfvlcSX1DcgPdv854065Hfel2AedJ8iQZ6uDXnrd6qlMYColddcGWFKAlcSHUnjCxZtgxNnRtJ3YKSG78H+bCgfpcIcFVF0GDYHY4jTcQq+i7+cjsEtIwE9X/+hbPb3hnug+YT1Ps5BITF+O/Kte7URTWKKT1QfZxY4m0MTKkQrWC+cNhJw7y9kDMEAFt3OKnYcg7FlEe6rR7zxhZPSSHgmx2fImV6MRd+8vtgVpRRSJwYzvInZdp8OuxGIUzoqGr6Fu01C6wf3gaY2KJYU8ytBPi2M71dDnZaAC6uNTn8SPhPgrB3GugF/euHn+OXjAQRYnAYuXIup1+/FtT+dPpMEwZ1NYI0QzBmujM+GVPBceaGHXvAAjSH8IdxL/1e54ZizCD7i2gKlzKC3ja8dfxM/R1uOXiJx7FciBBr+A3UOT4oq8TnFs2TDNYIi7UWVKoF19eK/1jgDgm5iaNj325xl4Qi7DR0VobMSYAHJVEIFZDOELsZc1qPGnm1AaaRYZ566OStQ1rUe6OTn0kBzpL4t5x5YiUN/uN6NwgNH8ayP9iozmBG2Aq0IxluvNHUhlXU4waYBXd4uJ88cg6bMYc1FDDw3Iohneva3TV4pwTxTDfe9FuwnBE96BYnru6hHrfNdmkJhDpLcFNEt5QlDP/9V9vk9YjH/llcBPqfVpPZQhxGKvB8dyRE1iOO23EWpwXmiqENhGBEEea+ou+nPI0CSUCOtCuvcS+wXdLAOrH63aJd6pn2FOOnboox9MYEr9HBWMo/+ajzVIk9pDzb8ga/7ZbBXRzLzUJ4OT+8etg0x+9rkD1MYZrZBXveie1JnpC0ILodCPckukPjeQK/4cn692anLj/m4YC46/tpcJtSgl0uF3GXy+YiFa0buNK9vGlqQCQdG3+31cgfT3b7vBe1EN/oAFgYbd17bJ+SwU4o1xlLudcg9brmLuthaBdcZgd7RnMpSfp4zKTUk6ZWrWwZTFK4DvQ390dHER/0x3I62olAMVMlqdstQEy1zNpgISa7ONcDnWDGU1UAneGynbiC3r0E/hJjiJJea47Kn9yljpmGnTQJ2YYbR9Nsn3yWiMTgPxP6GRxAVOTUrhX5oC9p7WXfakos3/1+fEsBH6g3uJ1FV/U2bp/MucmVLM2859PRJ7n3Q8Ngl/lyEYG1/v7l1pKpf/fDGVVDyB8uruwzgWyHTIFyxf5uZ3X1a7gayiKrVY3XB8XnGRE63yYq+7nDHmZSy/H0yjyQa4Bz7JEaug8nX4Z9lbDY/uYjX4I1UdROCrkftxr0RTfe7G7w18pv5eKEHTFxHD6bGA7eATPAFfZU7bVaiATJ7DlbPBAiS9HlNguF42v7HnN1kELusO05Ts7hPdz4uoCOU6r5MHXg8WXVwlGTHWqVw6G3iIvQ/OVnihlCwdKuAPrpNOFmWGlj39CGGmV3Rg6eFz6m1M7B/yohatJ5phldasqbeS1kn/7aWC9JRp/Ok6Zoy9wxITybMhebFazjZcVSvRf8DUBknQBMcQYzvB4qQ+C5Jvd3zbHZOSG1QehRiKbLzmzMC6LT8uTwVPS+4sbIlL/IudGGScxKbx8e3uOtqtjE560AV8kkFetXrfnhy3PcNLPiKvC9sYsPCz6e+JYeom4XXIf5xqFEW9yFRYFHp2dEDeAQiqVUjPK2T/iQSP8vWi3HMN2F2zl5ujHh7RdgZ+80PyqF3PfW0lBaYGU8ygrylrUnSfx+FWfBUv/7DHRjMoQpOegkdMqZjd4T7CP8tzTcHhSdZAxQtHKOQcJvOA1jbMUFiUGTZa9tywhMb6KDB3KrvtRTmuT/lF8aDe7+bznPahqnbdNLyyaR0uKseIfUgQL+AtNdGNoJDb4pmdJo0xW8OSz6+KnFmqfB+3cDzCg2qYhTaP3fFM1erWQZHwjim6VltaOritmPOK+HsPu5D3dLEfIRoVEM7Pgdnw45HBmqVHyZZBWcQHubIhwsOfadBZuO9v2C7HpHRwS6P8PveO83JwI1YRoA2P88Zhu0bTk2dgnYFiHymNcAAID23nb0T7RbqdTlkNAMac/DgbIwzNJxjhiorJupkvFIA89aUiaYfVAkUB1/L5Iypifb5r2ciGMOip3PGNJ2qnjKGFmTBD9BRb6+MXmMu6ej+YtOTzrNzzwMESdZn6mXkCDjTvNEw8R6DfX9l7bkAHqVvvFkUU+me0pWqsNIQ1HlpnDzyhmOC73LpffodD2SfpFy9wdv5TzLaFmLvr2JoeEIerXO/FtWumTZePcR1aFdNatmw3+3ELR+B19MArc8DxSMgnOHSZk3HL52q3lpuQtVoyqlOag2RR8wbumLKfM08RhE6Kzdd64oF/i5CxYur/mbCQOomWXijUaSp600Ha7GghJX0dD8IABmdEYwAH3WMUUH7SS63zx8Lonn5wbSkbVolRYtiuLrP3scE7rJZkX3nI9/vMNxuWEwIVeJstjtLerA+v1u840M1v93OPHkJWCcZ70mU5tHA8QAMnTBKUKaOltBB5KsGHzPo2/NafnQ2C6NYZtLfeaBgKM1OdKO8pHMS+VvTLFd16LSp4QWoC7TOJy5k0qb84hwIe246OWgo35H8GGWKfIM0nYaNw/rcDvGvWBvaiVgZT53KTcKyY9ga+ou58iiPtBj6zwVOqV5aiB6yEh9TpbBOF3MfH2zJYTvUdeUrRle2RgV0xgfyXZcZftLjS8Ab0ozs/OpTseWnJg5tSuddk8ZHv2U3tAIV+yNygWGV/j51YrWJcCqgvituuZ42OsE5/pI2D+dsaed5sIO/5cXK79qgVS3VdTlTAqqwsjEVEKaouMc1SdFXU4XyDCLkhqIKkvRCQFdq50iRiHq01Akis/9r1B6TxaFcxaRGpP9p76qjyKoQQkL4P3uJwSt3LwOktpR7mf5dvyBTgFkP+UBhUnmvyDlml/ofNTgJoP+3V7L0UteAReCkssG2/7DuWr+oYlQHztQm9oF53sfI1i2Igz9wM2XyoAXdH1uvNiNrEa5KEQa4N3/RphlzICIlCP+Mt0rQEU35CrryL/8QpCYn6Q9Af89KCRyzoO82f2XtoQG/AF+0HV0L/L8ymfEylMkfd99QqyXpV3/AOjIAzI2X50w/KoTA88YNLbVfYSXlICnn5GwXo0TJ2qCzn8vZ8+aYhIyNGYWlAxP64mnVm3whFsTOxK6TVDMuPZoMjW+dG731sWu9h2QrC2IEe5caDFSZL+J3PHjIpysTs6X4Grf4SC+gJhufnCZFirNjUTQKCRGN2A5iw7jYtlA1QI9hxVM909pPw8dyL7VltBZFlJ/VzFIdmQlOIK/vKaBp7Qov4vvYvuiIsFaLbUsV0yWW0SZw7rF25pFIZKCwEw24NEfbcHXpI3URjdDftGZ6h+FESVxODR+bQe82Gw5JvcJ6Kc783VDEsPpmJgyRpCQmY7XcG0lO+1ATylZ5870Ot9w6KHpIOM+tBVsVe/QRF54H7fp9wsSdyDrQQ3rGXOsPoTIYyfmXGfg6jnxXI7TxvcqbFtmNoyDEgAVPOFYt1jeJiw/CQRAfKDhNRR3qEDSMCd5e+CX3d7z5qgB6GYHnElX3aLQOKiFZSsqj9vWXMMA34f5l6YY5j+P6iIJoDk02ApLnm8xqCNHNx1QrewvqsuV2d7de6GAMHLvT/5aw/X1Oe0/MPNtnD9kcf0pp+TB6luzcG4t15m6ET4MHPweqzsAtIOU8nSuLp5sSzG9zkfhKTR+KH6eHAxjX1xnSwNnVv7jyxwXK11uN0LYsZWdZpNOf6EbmMkVgUhtex4W+TH7Nc5m6eEteelyjmQmtLUZ366DzNYrE4DxvYmF1lC0o+2OQ/TKRzbHzjT0FTnSbhtgYhBksM5Ka5M9wIxNujxG8d9VGmZM6CnRu0M6BPcpuZ1ks+l4Ew4lEmzEIKeWiof+EqPBjUq5SUWLrWGUK8ShJyjhG2by7KnMwBrYAhtZF51/dPL3X/FIBmbXgkp/fTEq9Xez7t3I4UN2I19sJn4KAx75yeQ/0hVV88x92Pqd5Ztufds03gRsCm7yoftqJP1+quAeTbeWmuRgWm6NFquWAvOR6vfJZcN8I/hcaSqo7xFxDL+yOFkfrIslimqVBgLA5r2Ab+q6hyzbar1dTZFJfqBeS2E13YuGAMXFOsLWq322queHlW/GvndIU994j/uksMyt1DggLlPM4aKgab0qfoUTwsEmQeo1/94uI/rTlRXczLm4RGdVeNkAyx5UForI16v31EftWw3ntQ3SJBT9RpXGiy6M808EHbSKKR1tdWELgs4+x1DlR8oNJKcN9EZOBwhbE1hzsKgAkghlKzzDOq4ZOnIU+j7AFLWl3+KM9VgwwIPgia5dM2Z2drzcS/eI5y36eFB07mPZ/aJ+9LHyW9gypj6wK3CX2U6T+4h1bFADruYZVtL78onUSAH227EEno77Vh6Q31tnfQFdlMbbis4VRCJ6joENBuWQVp4Z7burbicvvRI2h4hQmT+x42GFNO2OKEwoZrHrNYtngoqZGYk/clTPJMpPara3clszlmf/J46PWJpq3RX2z2g5eARDebLWVD4FAM+kAQF39gJDMwiJUzp6xGJlG+0fEAhVJcnnNY1OLH0fECq76tC8Gz/MZ4GIVUKUGGCjGFeQS/PeuI2s9eRUvjgX+OQzQLE8898oCVgUN45jyiG0EYdA2V92x+26v1eKpMjdb1pOrIkmEaY6qDHaAVKOxE3UWfXpJny/eBG8sIPAyGLCwGQNr4Xi0CWLdU1slP2tDElQtNtZyewdfT7l+Sp5qKMcIc33qCkhl/ztaUkLbIG/WkUG7+JQbWrhf6QbNfhj+h4ZTNKEyN5PVhVMpaV8HeqYeh0iGg31BEiQKe5OsJuz/kU1X5gqKHRQK/AOmktTKn1RMSbLA5TGcNpfpFdBNu2jJkDbasyc9sfUOhLCAg8rada2shc9nynvkJE2BNc2Z6rg4eEGg+sYCr33dpnWZiv9Orq8wCkyunhAaV4TwnFwy203QXCwO0bfrcW6D1ZTHMPsdUYxC9M0IVfcKSE1r/dryziDw+B8RYfWUb6I9KjavTbx0RYyXi7aEgHgNyGOQ7ALYzsoMfIlns/LhPnWLg/lYmX9Q7fTVK0EfQD88Ak5czXuB4jM0By4w/RigG1VzonYGZPGkfINIAYkX+v9ryccKWrPXJCnFjo7JwVP/+swM62F+kkxgmARE5MjZ8dBhyN41jG0XNY4N9cRIVy/p6DTES483Ee1vgmE6mVjuj1RrIt7ZD2jtoXwb4GHv8a0DMmTvRUXr0rhTKb1CSznxqR4BIb9Kpd0gySkGIVdov0HmU4a1SEmxrqEknjq3yGvHMk/8SYI0yoWYfjMGyyauWdppAA55SHsKgjyPV9ijgGHWapyYtw9uPOZRZ1KYEUHm7ekJkaaI4yu+I9fqjZZg2xhtzukD9PqmhoGm8C5Xc6cCnbHMc/AecrPEBR/YF6Uo98+I+h8JIYQo50xfKlc6HRH4lQOVZZ86da/ovSQ1US/NwnoJEwM22umpBN8fY2KRE2TFjK7hdYym8HOMj/+1WLx1mGyZ4NnBZ/ENpjkotXlTtmt6wupyB/iuKk7RiF/64HH1fA0ZAgGVx6amY4RY2OcFuqICL6inX5XM1q855bNXzlsVYWiyNDRKrqFUHvY/vU3zsiHfhVW3aIwdvLUwrhibelucKZlyKPhLWSPH89XOI48uaFmEXozwgtYtI2HHqWgVJ5BJQklLZPvRqEunQEu+hxmxjpormlS4NOYl83xqeHzt9PCAptJ3ETQ3y3Dz7g7EtxxDxAT2f4T3DFXffvahs7jA9e2haUoeFe+ncF3qnWXkRpkifOu/8XlqCeqAcxYnQzTswNixTw3UBynWAFtwrJgagPjQFJWwtGwhkE9LqD7KwtxQbvUaVcUO3M0CyTwF0WDoKi8SuJ1UUD6BmPdwgNHoeJo0JV1ARoDvC5k4ROe0MkhLPAuMGaWSztzIg6m5LvyDjSn2ul4CHUCWMppEbo0Tl0IaYkI7/uv2Sm56sQXUDUuhU0Lw4dilk6p1/Oss0iu0gVhgmhNU9ZvLaG3qZ6q1tDtps1Fdevbo3L2BNlhABOKgbq2ikDiWhAiVt/VWygvaObTosqsy8Vu5Zd+wPDDL+v9foBdTcdFBiSrF2E96OA2PgmZJkQmftvfI1RPFWf2kB/dq0Sf6x5eAsdzJqxOw1tDKQaa1e/7nPh+o01Q+SjS9nrXmFeEnaYjpldGb+KCQTZEFeJeB2dvQ3sZpPIv3zJFLeAYGbvv/N0YNUYtcbkHlEgqlc9fVcG5x2nrlV+JR1w41VLGmLCtBh+7DvOCTpDQj8ZLtg9bevw5U1G75i9vvvOX1cyiUPdEwnPXoWG+Qae/cIBwl3GwfLmzaJkev/TCFk25rm9chte85sVNwdxOu0OT1ExEzaAUBp5VGUb9Qk/fUMrpioVUpZggyN8sS68HEpQ+J809qWFUVDJ0+5jJa7O/Rj1cbv5VXo/h7vyxMBkBpuW0lK5RNBS6CTKJpDs1j+s7GVaeFYN+1SodZNc3LphmDoXS7czq31pywfBpKPLNSl331gBWqKhrJGIYLWpmdCyHh7piYfNM2m0qaQf0Rleds2hivBq9x6QUWz23/GuIi7hFPauVwESknq8olgBe6pVbm3VbbOygKgaNUmHMFVrgF5nll6T/GcMqvfK/43Uwhk4W/81vnAmsMdCibby/C9ug6hAabZBsyFkOTRKJcQjYcSWOX4gwp+HoZBXbL2gcZZCKWPMNek/xyO5BZNtuTTDFK7+GR74hhTHf9vXgvrfKXzW4ZglDGJj8VkJRZuZeGaEeb0M1QkVpyu3fJ1Hz8B4OtZMm9GQhE/qAltWDJsNapqb0LfVqrPPTIq5XBBUKl082EBycyiQucQL8k9Gcj7/ofI6ZxZPGMOcuRQzT004pfGeP06LNTAOrKwDZFEcPY9LEYOShEuubnd56Tc9HR3iWCJipflGgYA7iKNtauu14ofOYuQsdI8jWRldAqmWROgD//OIvk+jBTFinQ6xsLQjghD31Mzk4FQE2YYoZRvUjaqUENGfl2lbO9KyNF+8XR4CTs+oDan0Rg42pV9DMF4PC7BD0qz4LKPY5qB0oS5Kc7aDleiaHe7JR4TBIajK3VaHUbEQM7mk02GlMGccZEJL0kshM3P8XIteLuH6lat6COKzqXT5bywHShZKoEJUVCTAtqZCKgZuiAWE3pnnvX93ns0H5WjyiCFkdyTIqijnpL0dD4wTlHb5NvhF14rbRbJX7VUhKIOYANovJzgTOLd6aZFWQGgtyaMDqMpdA8KMXlr7lorpHm1k9/XYvTCl2PKUKBIzr7Tl6y9Yex3J9qWJe2ZvNbJ6KbEvQB6QHQ5FNaeLwT3xkHXB9zE7Srk9WZZlEsv0X9NHCYpwN/U7QlKwrQzgXOWv7u8zGxl5/HQxtYJGqqWoT4wmXXCENtCIQc2kTTkkX3qOxLCJX6rVmcPE8Ph5UCw//SrxcQikOAPFFQjnWZyZtp+nTG4LbBDlrjq2vzwKGjcgtVHBQqQFZ5ILpQjR9bQNbsZwgwEknDRTcXdmUEXPVS2MbcJI3cmoHCvgk/f0nn1++tUb2NFvyrhS1F6VVrvjVp70Yy8DU2wCYgeEEoDaO2T6N0zsgDgmAJf4RmULoL/bZgO1fGTLkvZgsQdMlDiVzzFZY2nhGgZA3Br2DGKQqthDV8T3oixUr8BTJs9tGQupshfxaulBNELe6hRJNjcO3dCP9vswYUTK4TZ26HDihpmFNJyNj+GbbGBAif1YEgQ/5QVIpZmgzdq96EGR4Zdfd3DRpRQv58qDDFP25AWmF7xBY0MCET/WG5Au+tJJfkikMW25NfdcqlpKDPVl8ienawTwtU//X6jgdAesolfkDkxOKOW80iJTh+PDvdJ+M5b4nDhrZ68Bp5fehFscXDrIy8gfdD/TZtsn9mIgWDVZDXzi/8bCiPXB3yu9O+gNePeTFsTvVIrYDwv8djPkhY6qfKddfseuPLORuSwk8/dTnmGv570cMnLShNKMDqqgzhZCrUGeIaL9ce80MRjLqmzMn4Ul4tyqn/Y5oagTsyHMFUnHdNagLmGmFm9ULole1rBoAZgvLsyaaz9u5kpfFqllZpQmERgC6hnctIWPr+zO1EoBeJrBW/qinc3jrXd6koHqWgwLBns8zWoAHTx0e0fjw8kqjnsrQFyGhzuz2KKwktr1OSzXaWIbE2puJTy39b/8hjFFcJpJ4DWyjNgTyj8KAOIlFIFFAd9vqwB+Tbq3tLhTM+DZ2mDupDptY/ZKDPUUPbID1DrJCXLcrHm2gtcxBUslX6dQLmBtceFt0PxUDvedtnUVbuYu+MvcuyRTFbmjRuu86kFAwn5kQd8LUEr1PuN671tpz+ymvy/OXeAsnmUCa0S0QX7DcwIq6a5A1y0RJKydGq1Rl7zWPBzYxB3AKSGnFtsttUrYVAJpF/KajjqOfNRPu5wdpnyysecZuYyz5pHP9wP8K/yh/MCFghBcNaJU0qzn1Lny4J0D2Ss27c5g2ocWMXG/VQFEnZ9bXO/erW+zRyHxkSVxDUDk1mi+uV60zPrQnX5ecr1YD0a5VLSEQBmdzzwBw2J0RTMueM9patWDG8vGbEQsLjBgcBtHHXLaeptUc9HdFfTmwYdw6xfxYvFWUSi7mPwIN+6KW2bKCKsRClo5IhR/jg8fCD2lMaKEp2rpSaNzbjId3tffAGzSSi8yOaIv3EV4xoxzNn0kbwJO9Wer9vtHTWF8UfYsj5oreXQE9Z3PszP/sd5Yf0VXW27mka/4Xl8OAQ5E7MpzIVyB3DP7Lq2tAJmoy7KYhaaR6mU4vmoRPdlTP8LEglvegosGROD64mD6/nehXUZocYPpj6mKkgEblWos98OBkGcBd1mxVLSXS+CXZV4S999V9TYD15+bzTYN5FRgzAG/epa6pgpyZn17B9JvNUhbqESd2tepDLH/ojB7/OAELENx96dEVmu9ndCW1W1Ch/pB5erp+tVvgMq8AFEsoe3GG6gPcEGZCDatfyiL+4UUl1CF2dorU5tEE2gCcS3nkrbA0dYdjOXc/iSinGPcP+/sMkL+vyhBODw6cSM60kX4CyEt8eRcl8yhu1RtVfig8gnZYlB3ip5yt830UxobU9QcEDdSDI+m/0/tN9IpxGWS/BPWrwMe5ziyDvU1o8EBySY+GIGTkN5CIE9k0xHpmqjotZwinH4HCecRFOR8Rpz90Bu1bxAE7fzRu4zxnAWhrJW4QJLZRbLrcBFCnIMGPc6lEO7uo8sUdAfOiRg4MAn3eEVp8F9wbvoDd9Ceom6Rkyxhf1vjGxKstb8Pd2Af1G3Rwc6+qBOm5cVcNEVWe5b+YCgwHU8Vy7Xr+/S4sjbRoG6r9aYosqYMtzSs2wfCw76KprB99dTrObOHGYx9oSodfd2gSoXF665AjCid9TFMW29d9jgWV+kNG++bYFIUtjHGT5hIWDNQi7L8Um6etfaKMkmHmX5Kkq2JE1mcAN9yjzPAMwHolOnhpTRR2iP7bp+SrehTVGPCl9bCq6OGIk+z2um12G/Rfk5z/Tj5lso4F+FvOrM62Kqec4lsgDEpY5K09xlHSJwtqBSrarGkWuvLJsPuDZN3L2xDTuutAUNQiSW7AKUVC445WFhUK8GToEhH5XUiZLSbMBrmu0f7FebKeKJgp5uDELMYW/s+WBtfryQWHOnTaf3/b4pStiiNn4v6ij/DZs0JRlafVf6oaHYzZr95gI+SdgegcFe0Onu86zCIDN4PQXOKyaW/1pXw9Jg400AgKgOCFhWDKRmRKYI6KryeXZjdOb0Qfo8uGYmUB90WpL7aaW4BXXtZPNgaMbIFPDaH63IdtDk8basGSf0nNKw2CCX8avZG7XLCMqna/cIS8Acm4qYXn5GqI+hRFaJkY4ZaKRv9PQMOsXfe7FiYzcvecqbQcyq9ZlCOHYGHeeTrmnVGnIcjVegQKldhHSl4TUodCMsZJAeT780LsSne2Eqt0oeRVEcOgQHxoRb1mDkO7MKBtrjf0Qx20PlzI15CbD4kyHM5almTjY6suQMDlYSY43uXzp/eMLb35XW7gWMhPjAn27h7fZBhYpNzF9IN+qe9/lChmc2jpJV6S0aIwf/sotHMgL9YaXjPmV1jyPzvEbDOns3+Ar2oQi6T6sWVqSA1r5FogM713G+2zyMh/Dbi/A0fjIQWEHF502Qzkbaw25CSXosbd9TQI3RtkOIuWqebGWTDL/pBS8ZZR6a7RaimyOXwTIYY9LQTdm/xB0QAIedc1Dz/6of7DOUR9iDPSra7LkNhKDqLRQLj9Ywybp//dDY34wBpJq9kwA0Klt/v+Fo2EGqahZl4yELOpAOGdQhrmrVcK6vsqCGdd0cTNJIXZFFwuE1g9wmpqvXhMxkhfDafCwY4iI0FIa2qPTT047R8wu44oyjB9JdtJS/2qNxqLvaQ9h/XS62ycFGEJWUgrvFMnKY9iLt4YQ/emQ9RnNjLbD5uJGgRRhl0PnihXKLhjn1YaL8CjJb8OX1dJunPtJ9BTo10Ln64Th0NRA1XTx4Fq0cFp3jrY1vxSQP587uLv/6CEbvNDBlEqKVP4y9979aRa15bNt9fGuYxMtLjPTUvHIVsZdc9yrh+YJX7FCOfqB5weXwCYC3xMm0mbHRVgsz6oIqNjhWlGmg2E73SeN6Jg3mkFnPoOHpoHd665yAMHL+qWUo5U9BAB/yIfdPpsQnHj/cX/c3IhHEJGPXxDbw+PEAAEOhQXefDBBBhanPk7KJgyXXkmE+VtAzLoa0IXCU9REKZDGOuk7I+QUGDTAWc7cu0z5WA6doisJB7g2yENOY3BLjFXSsrtL+mGLwmfikSRHJ+vKJK8BO+4wNYLi8VHdroDD0aUMWUOtn3Mz/Wr9EUDwGoWQd7METqAS/Kj797Iwl79WN3g/pghRCwkY1sj4KafG5o9T4vofKwX5xtm/VRKP5Px8VgcYZzuJZuKd+mZKiRwaKiLPcs1GQkdUwdLvQ0XY0/7gW6k5d1R8pIMDHQvvV10Ocq4xEWOzRj24+gUb1RBeqQ5EFei0gBIW+AmEMczaF8To7KYzuxntxczwq0itR4z48J4M41RxJIk1cajnD3VOkBBMF45cOf3PyYUiq0OGZ8LH/61g3lDKOiWuIbvIcB1H45WwFCGGW+eiPXF4BJy5M1LDC4eFK037eaWPwylRk9+E9hfmf2ADnSUyWsSuzE6gSSqHfvvjmmat/Ce2oMeBWyft7/+j44ZK0d/lHrBwAHQM4fiCkbeCLRbE492MGs8HlgYGueSoZd2eT43RGKp7Y95KUjPGQV9B7E5PZdE3Y8bBPHUjDBhiInBhlTXs1eGhfPIATgRJCqueQ0sraqf+oiWP/kdlj/2BfVB/GIjgIKxcAPSO/yMGqXak3d08xDgtckPS/eMRA3P1pIib/teMhT9Ygi5Uk6Ed1f8HbNCfuWJ9QNPZKrl6qnozS8hCqMwhMkSPWbucXxGeXV8LcX6TySbEPaDxuIAbWafVXeooWwScdkw5Ukjd5/GhOtjAzk21qDzT9IS8wQe+QD1kC0X2vn9IIGWoSEu2F1+Gfr0cOhQ2UMDA1TgYPwhjEazaFaFXLwp9M/JJfpE0YoiXGiTn8FYvyyHDrG6fjMF4ckf+n+k9S6xpqYGKGmyxrC2tEPsomgyjfkrOvfojJu99hvY15TPytzu0Of7WxXxRMEGtnf88+hlwL7T7ip4SbutR2IhpmpkvRyp5aDoUMyOKUVSM+4j15tTbbMu612jLWmMpzzF0tlZahMOPLW+BcfwuzW3EyHt58UP9dLio4o9QRrbdzEiBPkBTI5ojS/ep0KkBIprK+h+YI4qZl747xq7JX24LI+lfiYVKOG2zdsCl0j9rSvYjKkX/f/gwyPq77afoiAc9ivcElw5j4vPxiFiIh9OBjb9KKmg4IkdqWpIMI3np75jXbDYw9Ij6eNjqmeBoiZE6ukh2pfdWHeoBay0K1NpRuyy4+P+c0K35dS06Ezg7DWtp69j22FRpo+r4cTqkRavuVvgioZnP9UGXzWq/uoBNIv8cPrP50Hvi+CwW+wBytPOHwo+gITuaJqjC3QN5PLGiAel7j2m+NaqOoIdrxkMl0Tk8rgF8Ug9qDhTfBQYLvG6nvuXZR1JLthw6BvJiBhmZDm2TireLgfos2e6eGcGfC+2bWA695lv6/p1DqGEyk1QLyzmZ03Fbr6hJaADadWz1k15C6i5qAy6EaH1VYupskwanyLoF72dOH8wyyNCUlFfPK8awbWxrv1zwsEWVMCX2kzlTSIAzwGokzHNvlMS3dLKVLv9G+MOJBcsIgWgWZDdFTmODAJzsbIZRvEaTHhlzSORkwhBPXshuynA4rR32SnY/UjyYHSOi7y8CfqeIiQvSNqNNZ6Lz/cHokl/k6EWrV1leUwdzRD5TCKks5IOrsgH6XIduNPiSp3dFCUIwReN/QRxbxHGC8r05CS+qWGcI2691Q8SLDUyt5dyV00FFsvWdSrgwx0Qp1ZcUTXd81o49f6LTf/EgfFOXrEruOr8/HEUejtQPpAcZzoIsSwga6AeyNx0JI1AuYw14q20UIVWRV3eZUdjSTjoyALjzaBUAhsTOhIqGTNlmKbLLkOZmL5UypaEt99hSMwCnnRKslYsTvjXeo0zamfYDtkphtprVRGQFc7XeMjJlh5s3M7i9Uc2JF6GmItpyxD14G0mGq3AY7VPinGH6Nf50Ka5pLNRa9BLnce+SWWTZa0cmFh1H1sI9YuFfyP22HQ6fhmrZqoTpdaXgNoAWjX22M3axkGttAKmfjE1VMC54ER+H4NqFQoHTokHGm1YCD0kTVfQIOcUekbrp0NalbURb2uGPRHX6k/grET6spK0lRuTOw1YxR1ZzCxIrYpWATMlnoD7GAKLjWU2mOAYtHKYu6bZM4hr+My1rMr8WeyUwOe15pWVCtmjG2hs0EzwUXDAEAcnXwLvIRcRdb3HZcbeQjFsc370vhAqmY0vqvxN2EcCMUe3opFxYYLA8IHGYUhX0P79ih8bjxqJMBbY/KGgf06gHm5UgEVLvzUdZ7QPpo+pcybYeEfESgh4hgenxjk/BOKVmdDVQeiW8WlNOtZUaLKuM8WCPfYiYiFU5/XhouJ/zUnMJcKIRKPVLPkI/KASaTJJTkq07rIcsG8lT8r2cp7+adTv/ZF2fdTp/TK/LJFOsgJfLdomevBVU9dJfgrB6Czk7wA/HpRodHQBRYYm7TrN8XWVDjOupVDvhlZ6ck4qkHUs3M4UKuFjrlEhy6qrApPAe0WT0l4u7iRMUgwDkUIa6b0u44/CpgMr++rxQSs5GKax/4UAmQSGUdEc2BTkVbjZpieD46UYcnL8WIUdMAGwwgxNot9fkVj1kdIMrwZWzhbrMbCjPJHAFlg86s7X+LJYGvKaKuwiH3R7yKRDb96KvMVyJd1iimtQ+w2aIdqVaH1+bbN6tKVA7IdffY8NgOTbjHg2DpgoG3NjodPnUsPqDvA2A2jOelMgKz/Ey0ZNDaPNgmIlsOCT6yBBk+/hmYQNMj9kP4XcSjmhmEe/Dn5+Mqgp/Jibcg9pQv9/YqRaBL3bmBOSSm+xuV5f0VlHMkuX6X5ybBIxWIexjawaIk7owDLY0ms3fxRBrcSPYaKqq9mf0KmlmjwPInSfM5TdzOdHeMM2HtSjBqEwLYnz5wrCB1TCqdjOcXRItAV+9x74/LupAU9P9F5wiNvwx/lm/JlL1aqKBsLIBquk3sWp9XUC3Ty0vXIV3pX5hrspjSjBWLqsmt8reM+Q83lYtg0KQsN+2UmwV2lpS35FtVBVNqZVfCktjDBLzjViAa+KP4ejr1GdHAK0r4jE5DXCBhNAuq9OC6bp5W6BsqHnlFh7nh/6VByUgQ6KgOBzcaZ+tznqx61m/sfgLLPYXoKpQIFedz1HkZlRK/Luvd7PH6YxEXesx6ydmLfr9tjoYgEl8MHOty0t+UoVs5EMVTm3VFaV5jvELObll/FuX9TonVrnkw0b4myG5soL3504wtnJnUfcLpUmS53tNOy9SVUDnULzUKymY9y9eFHzGN7aaFo2hFI/WBLiZqtJEtBsubtXBJb8I5uNB6zHC5GaH6NqPQ3QjS2ow3JuN49Q0fk3DpRMoNaD8PAB6ljsW8WzVsZhWvhwFryYiTzsWR26f2JFnbKa4P3Q8XpTey3m4t/odG1UnAzBnB1UJKZ38iIAgMhEUSBe9DZLCDLQA47K9Qlu3QJSSwwzMycn0iWrkH6Iw+IKK5bYw32qFgmWedjUX54IU51key+QcCQql2m2t+woDaXiFrsZ7lHcpn4d6+bCFP3DtwP6jW5UzT5K9zDQ021swLa5rr3vxTjfSVFGVvRfWxny5cve+LLJt3Cokn6+pLFo4BdGcFIzqBtNDxWhV23FkeLarXYv+ftOxLU9n5lmE/anhoFouFTlbGZ1zRtimE0/D6A43R2eJ/eyf/Y9M9GI9p7E4k+ZbAoeSlVJymZLK41TOuognfPvOfYoCvUiZ3C68MwDGkobIMXnp2m4t3bcJlTX11vnWocWZ046149gO33KsgYSKdzTk+Z19SvAffKlzQKWPLI7sNGxuIm7Brvam/dLfwo4CC5zt5n2K+xPWLS/mv5J0ecJeGnZwvGHbpuQqbEhB5LJgyDWJj1sR0rf3/IOyKXfIGj+Gy/Zl+nD8/xqwyHbI0qDhzobSicTfXNyeojY7EXXLM2LBNd3pFeNO2ES/igXfkY4+EhXHn8wy64sjEKZmfNQTeVhpbWsAXjutW972pPDdHX7I4zPYisDNlLuKV8ay/uFpYtZyAsty+tr+DPBb+sUhmvzIfTzikErKw99iFpzi9hA87h/YJT8WKOwCuA4ixEr+zGdm1n30KutAWiozaQB74t2cm4OD0QRiWq4HTleLJ7+dtV+WnU4QRf/eM36mIMo/P22ighauUm0J5phXIZzTfVTuSLcwhKMVdzrTa+iCzS7z6PSDFgA1Vg42CFgHVIxuW4Zu9P6Z2/wRqfxbEW/jUndhYr+k1kGR53xMfxqTldjPuuNzmyCKcESjXVxJi+sMFi2QXXdJ3yzLlhX+sLcheS7RY+rT7Xu86Fi54L2AZRupUasIsK09Lb2mpcxgBEbr6HHTKTNPdkfP9uYOqU8TU1uurs9lgPUmjV/d/XI4mHI1IBJUQ90oXk+rKxunTESY1KPHzXyWCo8lLTZrAlGkwqfs4VrJbRgBsdC9DytQzm/bcnDCm5WBLZqUdNN09xV5n9dzHD64nLG7IJ/ibprDG03YRR4QH9Gyen4B2LyoA5W3dV0hK8R+Qt6le66qESl4eMn1oGC9ra/IFhBhNpbfpUaHyJ0TidRoGnk2nJvfLDf7gSxBaHm6DrBDmCsN2xt0HwDW7nt5NlHOEXC94OP2OfUsG4Cpp9s9CbP4K7V8tJPzW2FJAmZ/egs8HR0fp5ef7yTb1hlIF1lBDLcSTtBx2iQtH/LIIDl5b7iwbuyNPkGG0QrYi7uFVeUPeIGfVWhQEg4UYBbiP0tXU6FMSwwmc+nD9Idip9EqzemD+uycwM9QyafQlGn3aBNvZSu6qkAqtokN1qkcjB/hSoqQkyKvv+AOyepxUxaFTLKw85ypPX1PvOxBhe85dq2r2kKv8R1vuf+uMvHvnlfTWrr+nlmaQK9R6IBK45y0DGgRvvWb5XQ4KkSLBlxTg3YhUW6vrVxNpcqS4ezlX1zk0950m+2xW4GNfE2KsKyTFmetfkRhj3MRRKhkEfh5bqwStKIbC18Q6oIekQe0oSqQt7aLY9146UMI0gvrm6JFSvTUPcmnJdAvC8t0qoOPZ2wH5epbwC7vSDfxgfIRxbVwGzmlMs2A9usdPPul+C8pF6yCXKum/wo10PLw4VEkvBGxmmgE6jBo6C+IXb/Lq6YmkDThiJFt+bnzD4ZaNoGcd0v7BvjidAmYagTbCBaoqLbOIRFlve3XMAqOuNF/8Em37/CbSNTUV91qlfJ0un3npdhAuHcEaE8wmb1PXSpnAlRzM2XDhplcSANF5wKZCOnVsyZDD+ygia/9yOVUWRKVzyhp9KLqx6lnRaIEvVhDKE/DGmVHDD/gpXjOySIQ4+OY/8aE4SzmovVp2wVhVsOQUaHYYq4ZpMA5Afn9xU9MZHL9c8Zx14kVArYvKSoR+pCQDFWYo2ohyQseivGtGTcZxdCfAIRj4eY2t/bf3ke83TW+dWzvPueXZPOJsRfto2UaoG1KaguahcjYY/Cr0FmmIlGO6GKvUFtSA2uhpP2lcXyvPekWvQRULNdiuDGY8ipIXwdwic1rroLheK6CIu61ws9/SbepjKgf6UqX51Z2cYtJ32LRCKA0HHYocEa9Lt6zpkTYe9bZzH+Su2WpJvR4J27xBqKMNiVnqX8yTljmbR9HkP3Wd//rDX6BdVFPSd19DBkIWzNQTg5J8IbeDvk8inz/4Du63P7LtjbKYuYEi+d+wVmpsDxpRSELcF63yhwJwdvFrGNMqSAeye+12s95gRnbm6W7nH3AC/2Tb5E87CU/G524fwtZMDBwxd8YLZ7C4b1p6816Wj7gjthnJzWG/VX+QR41e5XSdTgTB2qrFu0tNeIDDzdpsQNcKlH45hErZPrO0chejflllgjjaTqTpBTSpIb/fZ55eut6Rv1uZQl3vwFt/gK2HNC5aanUnrW1eKfevVkoF/YjBoThj5pmbiyBH1SmY8Ps/ADg8YBz82HzQJ0VY/6nCmIezGTUEacqIB596PqHos+4LOWFDOS3u6RzWG3J/T1Y3YGlmK9vz24rhpgOpRAS82TbaLMYalMJfGlCob8SkGOJHRVziH4OiTV//psgENyuCR/EaxQMjBf3kYxdO38ADHdlButp0Z+d5uMk3OjHbsjTvRN/Adux0iQvs+JVMy8QIKDi7DWETEpJ1eh4RIy6ASqGEYMQXJ6jY23aRNWsml7FLpatcuJZs1w3Gd/ubeChi877R0rNyzGwKUxUC1a2Cu9f8rAgNSprvfcol2i3fTYg9iu+Se8K5aUxctKnbOpKfh4N9aofzMP2jE7H1GAdrrjXmroxhspejjpvTxXnqDm8RRGktk7arIlLUMiJ4IZtAQSfnZIA8YA0zlmiTsoRo8fNVR0sQwqu4Q90XbFrNiKaAcvVzP2+1WNJF+Y4DqGxqPi35KQrYpVKRc6pJxUxpUeZTTrcL5xFSonvWqtizelC9NyqmHPzW2UbP0NFKHxKAOoNOwPHiqLiVZgwlymGSbcjZpwPn9rjC11bvuWVawWSw+rHZmP8yCgvPNSDiVuQ9wj6UxKcmZ6TVmXwPw5ktAeJMFBdNf3MvFS2cAWzixJZcoLmn8mruV3UhK1b7prIdd4wE23Y5n6hent6CMZC7ibrlisPdYHqvPeC48mTCUKVgw9CtCrUL/hVrWIlKNpg5u1tz2AO75m//sav3NYomNDeZQ/m42nsCx8ALcyKu+fvg2f+8dLjDu9L1hMvJ5XsPmA1WWweyE3klyGYeQ6ze6QIntfMCrSQDzTLWYlbvO3dOgdqxrHX1X8pGrxOt55dTOtj7xo6CuIiNOSh54d3A2v/a/Da8/0hq2wruBnkDj/SVSupsveQvbVmo2tNfIJaQtrLqCsfnMC2DdXRqOCK6dsUkqtEdxpUyezlairEFzOlpe3UMZlsQbANhwOQxemUP+IgQh27L+MDYVOyy56PzF6wnuy4uVCG2z/SKA3YYQzYAtM4iv8u+4jmIJY0AoyOcfMJUKt/6h27R439S/Yql/NIA3Lhg1+//mpPxIugq9Ddc5eNj5DU/GtTzfPE5TpFldw/U6K9gDdh/pZRqFUPFuY2f9juquDt9BLoYIIWTGPwC+02aKOYD3B2FjZrYXXoJkgam0zYjPzF8lt9ulm9uzk6L6ucU9kFEe+Yxjsv6gwU2z++rmcmJSx+hQgYjasBC+be7/T6MsvCnjOat1Je5Y3sppReVVqzEXTAlaYb/ciR+3CrSG7X3ei5tlhfIrVHhEOnbVWCwOSqThVVYXFz2XgIVkI1d+c3o/7q8FW47Bbk3NZnLx63+8fumM1Rl6LrkaMsungHPbzuGTpcD4BEzq+i2pHIuNGfaBBJyEVuoLH3kRjBf1k/BV7rMHEECeG/zY1CLVydWBgb1Af9a3e1qAUMLTjxM3TgTuAtaRxriW08FZ/diPnKQgFYN7dXgYKO7n42pM9x1JA7PnNmX1WXtnUoyxO0XIdm/13zAk7MWKV5UJX+JXu3kumOcPtPAOVTyaezGL/QLHzMkjEYXBj+hz3A/v2dgUuykafYAbToaiSvZIcrFiCu2Of9m8SFxvVqNfK+y1T2XEK9UgB7Yla0eimv4ADXJVNUb26zCbeitpADZ6WCutfS9pVaCIouv6cmwv9vTU7KURkCrkSYQD/Y2hTBua3ElqJNAcwzrRBXvikf7TGjzSxydt7tGZLvBGZGwGRO0g0Gi8VDflgmeZpEZHSKVHE9ElRhsvn4MG2lv15bhrK3V0U8OVuQJUr7nN8NJz2hPhTO3XClW5NgQC9M7Opk8o/Uka7UKjrRGmVwsLGRVxlmSNfW8ub00kr7eJiQJoxWv96Nmlhm4CguiyYR4gq67OSws5FVabillZ5TNQjOd8Or9bveTeuTU43wxtYtPKN9y4KuGvQIUqrcq8niDlJ8OPevNDII7HnKEup/0bHCgD+LF3+ccKLmJw8jZ+5J1ia76UoRjfal4XCAcDL/DA9kb8XOLhPbpLzSTJdZ6C/HuWIR9nGV5ATPlWVPiUoIV4xAJ5E0Oy8lhXUkGa011r9s/AP3H1svIZAAwmxNrAiwxEbT4uhZ/ZuMJdBa17aDobPOMAGa2RN/OtT6vvO2MjacmgDDcZTqs2lKqv0o4YQ2lntI795rb3lU35HfhrRFDjdlzoGVVWWO87FcNyND1sQektQ3BNIpRk2MQLYO79VjHw2ejrfA+VT3+e4/omvlyVjKYqt5O/WVPc22n6oLEvyR3Uxd8/RpdsnZs310t/TECZ4IB0M7Ki/7AqT9v9Egy6APsLAQillC6d6BnHg5PqGpyZVLv92DNoUaf8/LBefLw+mJKN9Ve6IcuMu0H4sAV4g+j2ZutIKuM26V5qdx0XOz6FOSHztOSHULuHFy2oiF+Ipd3deif6QLg5Wtzb3SZ+qLu/fAPQX/z2Yz0BA9cWBMKpuqXIgUWihAy7yd5R38+Gzo4h4d9+KIKu1CUsRZUdS/RXyiwOCrinTJHZwEWSRV2hl2JeflzSa/c3uSQA5YWUzr37kX7QnHepJrc5l8NiUH36TZ5Xp3blGjj7okzR/6wLAqU9DnesMZCAkqXapTnB5X6RFChw1tbK3DUcC7NgsEeWJgt2gS9l2fh+zB+A+4l8zqMtknehFvijo+9IaKKSpGqH2MeEmL9BMwtIJV7MZ4rC27SO3QobPW5Z30FBBpEG9w4TPARTKFbW5++tczhiRRvl+VNe6nbM3gjjICNqkVD+BjHQDyfSnm8fwrhop8NeH5f4wmeCc4WWUG0M2XDsKANliuuPp5d73MsTF73NET9q/5DHxzwvhq9h6L4WDa04pNEGmWFvEWRtlX9ucaqO6J1+ut0GYSsCfRtJpfcInNztg+ndf4HL97WqeBgcjC3iKTJ/ERMHXeoXC7hJlAQA/GZDczcuV/CZ78PpLze51rTi7Iay7Ok6dA/h/zO29mgl85GtPhPUlo5/B59UEHQCJzjO9niG/GIQDGgPTvA6XngVBdbBqtPmhyDH23U1Omyy9a8h58ydu2U/sTDaPgnuCnjYnhZJRnmdmTRhWDvZM817jtEDv4zuZgac2MIMxY0LEdPWweEOcs0s2C7rV9dJwOW4L2qxeL/c0UoDQ7siec9Wtt6wNuFKhH/DuVa8aAbj3rxgtCdCxYa4lZUVJjY722OvvdeVUZ+YxLKyuIR510SCnj+Oory9mpbYl5v4SkagWg5Ke+dCXe07XHnpXb62FJwLVisuXJWSzdQKgZvhMRhd4XXP/YE3RF9cUWQXHkk/f33kIomfisSpH/OVt5QZeXt39e/zXkEF7ti8DxQteOQBLVDhoK23GIp1EivaelTFr5ZHqzcDRpvVBtYbdk9Fliwlj4zDw6BA3M6FCoPhmR+mNHgGYrID/h0aunSE2b4XdZ5xHdtbhklP0y4TcFaon7iqaO5no9gWKBJr9nZ2AmMfaKfAh1YuidEv78PzAMFVH074IiGbXCWDktStiudtidqJhHVd1G9ay9Ht3YaNuAGqwVp4QCCJmaBQ/nOVLXiKEwUMVGxPP4fdn2VwD3aFqg1EJny0uzvMBVGYl8y4g5rmKcktz2myf2gldHd4nylvZq1v0ctQcM1iIpVxeiFNUkwUc7u4bpc8kz14w3dB+Ks+ROFMkiiA12Zyx3hlHywW/UtJzUFh2Zn0YDf3MRm2C1NxBzU0mSBKi8P2oqhS0hlB5kksD5uiReKA+IbqIsnHsjgWJotCHTfZ3a5DIDLuxYNMZb0EBq3uygXIlCiPuONouG82DYnRi3o+OAjXx1o7cGOy0+5ab8tSajhWlt8WM1ZnnUNOXITAqR2wF31udBmJNjVI0ZF5C+c3uT6Feqdqs6weCB79DZ7IcEGtPgPFt8eDts9IkAOGeZNEonLU8RAPnmR5Yzp/V/vlwdl5NLQ21mz+nD2wXtXm+59/bz/TgC/H7PaZsOwgdjVC/TtamYKHhIWBIZATXMLdG+X2RDTPFNgM+te2I3BnfFfEmDdPXy/J5k8Xn9bAzI9sNwKcMqAbAxtNUwRGhCAnWd/eKNNFFbRBi0XLT8W2NBNX/2SY57eTfvtOBfB/GaFlNS+O0sYQAYTE85R1O0ZIEB8T95wAVaiHZpdQyx101BZKafeWHlKqREIj+AW0JOdjUTISwlhB+MnwKz8mqQZEt+RJg70yHeW+p/vEa3tlBkCKjeJmyervayCCScYke6bn9O/wnUxcnbQeSTjmeRMKM5wspABdsrePQx8w+D+hGA6e2kq20LU7HNKal4uEpdH4zEO3lcdTRuLB9TzHKAVJcSfTQv5mKy18nFv0rmA8+lY9iKSV5V5cATdJkMHFD1yqqswJUxZhWIz22CKavCngojhWjUMqQ1IhRMUZ3yk9ASheyEfM+br9ZfaJoAzNQHEuUemYTXtIKRlOgK3XDc4q+3bSoD/VK6QIwS++PqM++d9e5KXZhmlqtUPVt2eZlcB4QIRApijLbP5ORtkbx3ml6Wrf7y5P0zhAmFHGBxa8rkZ9LAKa844rHpyCL9pj9ahm0eI7MhaWUpf9MpL/t7C0K4lcz8M19G6V5D1yIYn9IIMW5L5D3+e8P+K52V6FJTLSbaXM47kvokNQbFzqdkWm8D2CMsc4kMck+gez8227CECHGZ1KUuaDfj+NwSPrNtWA4IbaFzZTUAAhb3OPqb3WUrWfR9bEqVaiB4wSBfySHUjaTEbo2uDbG1mW2JRAhmM4pKXjN7wczyk4rAs4lQNQkDHvhdxUyc3Rk5cEvmUda494esg4I3Df1lMtrYxsU1LkOb+NU+nPo2N/Q8CUjLusM/NZEXEkFPhtZluw/6hey2Fcipb3Bx/yYiVuB9icjfJwmGBaq4b77UFXlZIFojcNPNHIWm6LpTo6yCPkLtupIux6RGKLnR4efbXvOCs2e6deAhdKnRJFgv27ZhAVqWtdwwoFP47OY/6FqBc/dnajhq4bwsCZQXDFBMgHnOibzwjrvjcqxf8FM2nX4srwv458yGl94WpY/8YVOk5oNU1yrY/EHkJtGKyhAwpr4EPwKIup8Uu6FEuktpqyP9UHXKqzF/utnCZF/Sl5OjBy1ipz+Qv3XzbYvPwa+0N4cvs2t1KVPdr8Qtnib9om8dk7L/VeonaA59NkOQE3QJRQ9QwqJzL+9sMHA/bNCyuXFHzW3L2kLkhlQl29RouIjL0SewiDbpDHARaNvQ9nbdSS8mP5/wUY/3smgPAc6RWI9OlQVDBla0Fy2XjnRlVIwcqU3mc8GHebHqz346DttLaxEzTjKN05Zy2L4BtLN7gZVwTnubZNmgNGmqG5NmH0pHv6MfszDrV2YJivMCP/MS/BTpVC8KJl5VA7H1G8iJLiT4dqazoJTsFNowyfrX140LW1vRStZ8d+lhputhHw1pjL08tIvYG+yq+LkCY5McnQpED7EEVPJhwrOJ+GiuMU0LPR0DpFSwZU/IqjqmGUwFsMNw78NWl6vvOaQIQlms2MO1ZCG86cbdPviEGFwY1CoXSQsDVCnAT2xFCZsxijCiyrORVTmxOkDK5wz9TUPg5NUPDrsSYM9oXOBIXHsFXo6QfNIENADbBhFQdjOW/M8vr7a0wziujaeS6OCkAyYGTzXjKMRCaCiepYl8iRcV7dXvgEKxSrpPCbCncLbag3cFrLi6+NziuAHJmMGA1Jdq5WEsxpH4W3xlR7OWqWgtjaowwkMJR9CkX6yiO790zo7DUE9krQd3KJQiNhpR34P9mk0ZVDMTgG0y6KxP/HzHxyFf4Pap4kWoZCRqY5JiY/JRE2rGYXIbWAsbylXiDC03LgMOFqxXO3DuLHeFVkVIfYH6Y7c5jGgzk2lfclaY06GkcmmP3cVcGzOUS1AMbx66oORsxZ6VTKHsOava1vhGDLLxx5V7ydbdVRpGzd1rA8i80qgXxcd/KnW0gvP/K8Gm8m2lByuUKnjJcjLP6aES7LobLdKOKYK2M2i5jA6iE4sF75FORX1YnWGq4NASbXhGMQ76Zq/kuOnPzeMdCAULo/LUyEYlkG3NZw/WlQCVYWvQJLfVBh1amFJRnUA3DZWW76FbCzba0y1odsdVaWZpk1Bhj5uDAaUsZaEluqBPxmGLHoYdn4mpTbJy8p4Va9KeBh+wTfJI5Es4GRX5E+3hibmHf4RQPjQcpUk7xf6lzBYMR/z7051bqOQyYdydiq1pkEyOH4SI8f1d4VmypoxnTqFjka3UEDb56JPO0Cp19Aeacmwp7oJZHmtUOudN8+ki17ODZT9T/uZyLIdRBiwTQy3Nh2gpEJs1JHskfk/VElrqh5xPlJcX56daljJYViajuCiZLkrEe3UACJ7n4ohGTOwbQlsye5NTzgT+LR9VSlS5FU8/EMzlBYUkaYIFwxYo1/TldQv3fRD409+Ls+MHhdHleVwH9xWHcJxc0Vj5x3F0Xwh3Wi5HWM3iTnkTb/9Op6EzTqV+BgBoC2E5lCkXM2OmmYfs3V9iU2gzQNFkgmTRpLxLpvOVRJevgd5XW7xCKxeoCz9ljR2b1k7hGqVVyKWvUNMLsWoY+4vq1VMwDsLL483rO4TuIUmZTU81fldWbUmVWq+TxGIvK2sXzJS9bLzDuP8qKpdBbotqhAUYT8ZrKa/ncxtgC0a08kiZGO8jH2Ixz0+mambUvs7eJ9tJ/t40TnQblnFLSdm1Kfe1mK/JJRS9LdWJqYLrbzBLzL2iZAo3jIpC3eFB2m4tyb3Qvoaz5hfGAd/rD+50WBbGP5mMOB2w8cSOcmS3Qa42KzVRcSBnyr299CTx6ufR8UW24gCALEyoRwcxay0ne5+nPeFxWOJ4epuKhiLchzJ1GelQOtM689o7Eg/q/ghpwgHYH0NnWPZpR5eiM5ghiLu250F/qJz9RvE1/q3Jf1Q9dRBNg8SwggTxD+PveNbPbg5dtlJt4toRXuvhp8hRvzbF9EkMZwaty6ZhikF7TutohJ6n3x/WiQySI9P3Eg4GxqBskzCRftb/CbrvqEEOz2D9Ha+92m+7eEfangjakCkaapIFccbI6Mj+MbS3m+dNa11AEuFCKQHPan0nzeF+GuorAqCJAqMewjBeQbSsQMxHKRqr+O0wmFegU7B7JM7nZaOJgjg2FJ+k2L6J6Rpp2m3IgeRTwz4oXWVuZpzx0SlvzWPCslXhQJ+HqOQ37RX1TWYQJPUFcjFLaAaTdHKvXt9UkjoOFL/P0SzvV8K1z+Qm5kZG1JhNyeTJMHVPRS9sZLFKptBz064j7bZAdPoR9WJ6dikBQmyNjnAFgVZp2709ZD1vwdlDCe7WcxzYm++uhyERrp4n9oh7n6TRCUbxaevD+h//GjLPQG9RAeGNLhmT7WzUzY09IjJ+gSUoBvSvtEXVk5QcNmuPUeOMFHHNuVystUkJ9LIafAj6z7Klk8NPrxFksFx9ghcFk7v/LH6H1hzsS5/w57sMfAObaLv65NcrG5up18hSO9BTN5Nex2bpHG0LuSsqR5TSb28gWlBmFFUqmevfOYVeVlSGRTfpxvuZQ5mpcSHYDr+D+41G0VBu9BncOqqMhrI+8m+pAayhXPq+p4zmG8wATjHbALhO8cbtvdXZcaeNc96XjgGocPrXAEgICLpaLGnclXU13eOUOFUjwtV/JveuuUCilO53qbjs2ZGE0zij1sbhq+9JpsbuvapGj2PaGF+UPhFspbxowgy5gLEOw5GYgWEDN3vWJy+XELq+ubYBWcAd2ZJ23RpaQGJ2tOFcf8og1sfG/+S5w+DBR8vCi/BdSNLQFDIV8bZF+XLo/URQ88ASLqoIAy0lWmU/pGPmLt0pR+OLbKIIyejlMqcfYE+ZU5YUn9A+SZGcW8mgEus5EfMPZGtqx3Sh2vuzGyuyG0E5Pk40s6XL/lPitZ0aFuDB85X4tImapCQngYIEwzcdQey0srW9TgphS1O7jXcs0cVqxrLZDNtHut5LadGwZEkQbhlAk3xigBH6FrkDWUsQe5vnk75nl3CkwMp6/UZTR7zmKhi3YIGqBwP6e6t+KakITtiXlzzhAumXjtjtrECo9KS8t4SJwaeg+KWwSbFeo9UzTLsGKz9SrWDxwzLvpWHFKFGV8IAdlActvXKvoIZDlfAxd/3/gUD11sbj9MfzGgIQqaeSw3TlXxEhHTtiQGcC/FwQDAuVuD4WIzJvUsbQhNTLlWTHn3dCl8i/juQb7t7dwMhEzozu0qO4N2zJwHBLsa3fq8JdOB4KoIlcarfi1IYB3FHPaCkVrhUiC5gqL/wPwPpX4ieQNI0OH1LaWttoRfw6xlJGUmXpfwZrljx5ba2WyKdkmXZ/STMiHGJnptC4gDUjizI2SD8jgekwAi3s06yHlqoEs+GIjcuWjrqGYS4SD7OXojTcFhYca5Btt8Bad/4yNyEpyHKIhJD1w2NA659d8C/CiovqzbPVhGakUJmNqN94YZ5qMTaBtH6pxHdb3/z0Lf+6NhlNzHlOZ5xY0nMWgL2TGOdKbCQCVddB+z8P5cAS4sb2WcZ1msnwNf6KWfSrC1jzNJBhZ/QCXKXUpR3z8ibbt3KS605kBe1gr7lze3hek75BxyklyiBTr+6qn3DvL1Z6GTl+uE1aTIlhp7FejGTiqVd2nZaTaX3ScHsQHFGtA1LB/ry227V0jzkP9hLm6ETx+8QSkyItSqwNGNZGM73coPQ4HNJ9A2LPaoZIWp8hC6xU0xcpRj4is/8adI27cM6Kh+I9j55iqCgslvYM+6tTMURhTQF0m6Kq8tgswfaNneI6TDtMzWqkd/ZcDMTye3gBWxMQOcIKu1w3ESEfjUeWfcZMASAF/JM1WDrQP0Lsp6FCXapYc3custmd5ie9kA0Jmy7orAkbtr95+4dpERoDnScZePQoJSTAxoiA9aNwFUyMtq8WbjXwyb51Ie9XhcBeWqEbD7MZ5Abmfg3LnAquYZgd8xEmQdgWxGckI+7r2PVVv6ktf+Kh1Pg9v9xSK17gASPMWTrG6/P38eAUqiF1INKQyEbcTQEeuiy9VJIz9d5IBJs56MegKoXlnRgmJMlROS4NLqBjJsAP8CXN22hnvwX7dnBAMyACsqXmP6oQc1g1opq5pxSTIjDRybn9PoUfOqdUy3WjFOU4r4HkBKsJ9d7G67PLo0ThRMR+Mx4mcL/GCCY1UTKc5/4Jj4EgGaWBTWXVI+aYHaFRRcGll0IPfi67z9Lne6uUhiL5AGOM7YQJGpJJbpj05GR9SyQSGH9YQx8i1UBnmMKGRM/VxCnJXCzjRrdEgZiv+bkWq6EdB8I/yPwAtxdM+VCso7fLxCO5uqE4h2Z9E4kq3U8Dkyqes6871O0q3NLe7bweZhjrCaCKo5SwAK/DbdFWKqmS3afBnEXk4G7Kqf+e81UIPBd8r2pPCa6TfW8UQ9L6QhYxBAE5+RuM9KJQEvjZbol2rqZOI2W3PEI6a0K3iCKpx2G0B/xTw07C9XAFL3ruBDcN0Rc0TkLbmaC149sn/hN+E7mt2NkUDN2POfrYu3egqFU6Ak7bDUL5oWyOqHH5e1HIh+lO2bUPRnGyZTEbK67f5cSIu34ryVsZzu2thBNWLNoOqgUth2YxR9baE4Yj79U1UV4h2bFv2KU6CVUlSt7oG/GgK+tVrX1qxd2GHYpcqfBVTMFoKBhsRsHfV83JiG0eziepxrbkzxRSGbSqytCQzY9eBWHDEF5KuQHcnXCwzQhRn3hfD3lojOQityazLokX4/TSafVsj8K2sk3nc9Z7nAIFHBKG7tuorY+L2M/Fxf0WW71WnH69UfBHMZQr7GjYKhFRrBH/xG9jhO5Lp1sc5gbcNxrUebOHfwg4dkiO4uBPJuKDN0EzmONnFkmTF2PVIhAWqeoaiG4MldmEGdhAgyQH4s+qRxD9fNYZxZkmmKSvc1kYTUIbHp4VHWMMezSHi0YfFNXj8wsmUfQO1zBF1MNesW6XUqGzxdZVBErW220/V5kfgFBNkjEmqoTVO/opX+Pxscsqr6KvhJvUBI0h6l0trWqTcz8RqlZ6CtUw5utNZzrbz5bkBW22qaSo2NxkGLywQddT3a+4DiYi0yaTq+s/qwrA48VQuKbhG5wTLeor7VnFIpuUQjrL9772juGpm8oS3X89vefKJo4JA4+Bw56OCV9xjda8eQTGuLm8r8DFI4b37Ohgu9U1R9On+pOSG0uwThyu0v90FnHfoe3RSEarMOXxi8AiRFLZ/j6kT9nqFwekgNY4zbVlyd822ArviCo0oDbZAC99DeKuYL0gQDZXMjob61qV+jlINTaPMCPsM3vbS+A3TUYKZEwjXBFgmMN0q8oNsX6EsioWiXo958fTXfgWJsJtLiKCxWQsOfZUGXZQ5ZNgu2dMkgR7UgoQwP9uPk7DfCJ9Gnpj2/357SSknLX+PoFpmEsXDSvAWhp7fR5hRY13spTaFHvorNznz7D5i751BT2Mq02by9Vs0AIK4sN+eb7n6KzGAE9JynmslOqpCeYdRwLR8nGA5mkr9J8yy0WsbcWX2ObyXLGJBWKg+35NvA/Vrf33Fc/JjZSX53TyldzKT1C9hh4j3Sz47AYQz6hlcQrxVkxQDhVOofXu7hebC8wwvz/aAWSLOSvN4+1Jekhaf/GFHbPJKZRM/DhoEnLzacJKRe91yzFQIn0bB6Jr/Ek/zGX5jZZOilUipeJIwH1oHeWjCEpQBtSoBZR86+WoydmerEF6CqCvBDsfko+LRsizUPFz+tE3zyXmf1ezuy4Z6vVBbAgG4GzrxiAy43up0acClLx9wTH3T1WGRWQMOLMtSIAwnvzPZZY6zybgUps7w5obLb4lIvGOLEAOYpkpr/cyWCgOCMyRRdwoJzHQdviZbJ9ngDPz++em9z7RT73MWT34N95RZdxPMcVOKeRYyYYBRfS4Hwmbx+Ky8AFabCTF1DAwiQl+plejMZ0b92oEQUDlif2GMNIvDmt3u7JyPeKHBescaAaAToFyIZEj2pT5/nTpxBevsIrGSs6FsLaoNu3vBZa+Lfh2X1WOkItM0DNHenhNacZIA+OpGUhuJY8RzppOzWOkjnxew5NvNf4u4ZLAN+LOSbRqu9wS93KGVh5kU2PD+iX8N90PrgcBydnZdVqzDUg3FXquA0ec+UJS7ZevtuQ167qkJjH9EtLNk+hzstNiP/PX3qIzHREVjiDW6GXhnok85x2SStwTgiNg0QD+QgQbINlblDkgxFievt1MSN/2KdN6iWyyjy5lSWJVR//hi136B6rclvv/AkgxEafxPxpNG30hAXiOr4c9cIeP3S2KW6/42kfuZENV+c+s4bE1+tGiqx1PUuk84ScG9DY9LOfV5dzcK5Xrwl6Ck+y2Eacc9fsxk87AtX3poi0ocyjtRfUqdfRK8vY0s2eOyGcPlvs3P7JI2PrE+8mrkWd+acFa5kPAWOnOz15NPuf0lRhCBpOoN5QyiPA1lJotrgiouhjLeq6m8uoyOAMU7jGhypNNvQQGQqyDFYgZwmLngcplxSn9lupezTLzvWEQm++GFuKItntLBnq8s6765KAToxcfNN3Y9JUgbZJvDqVh2hOHlIEf/ds/u4GiOitYuNvknZr8C7D71mOkGdncry2EhO7lgBiUc0g/N2haQdTxhGeSCHARsxtgdg0wYECA70+9nnf/zahnfH7a3UFZk78l1v5rLG8K8446bvTaze8RBqVZfrj5lggsIB+kUQ0vYCN4NOJtzJB2rsf57YEGy8Qcy0iWu+m28BeCo9FVf/wy71jdQlDGVtVqtamJyekx48yZemMilv8p+9cnJSDgrFJku1MtMl/98dzw/6tYo7h8rhrcLVH1SoLzSDEaFedDOhX8QLfM7ofKke5NyKnzYYNE+dC7C3n1X99Wj5HVsdzVmrMIINUrXqun0Jadgi3Zzt/YKz+hGWt1efv75vrUm7tfRZG10TI1cPQ7lBpMQt607m/kAnqIpPkNXDbFnqWQfjoFrwi6bQqZTRWHirro2mfgGSs5oMcsPh5X4lLvDofLgK6yNmzm84sYcuJuS26hdLTZppSWtSs26bX9u8G6ByotWx7YWV0uDjRI5XRVPmjPebxBvIlBke9oQhaI6buiURva9kkp26PvsYHfMyG1VT9dIy5JKobmdONoD5OAH2a66jXla2MybyiMnhAaFcEK5p74GqT4EoAdjbjG2Oou6Aqi9Bvn6JyPxWAg0yZrbzQc01WFssfMmW2wRIYxV6rLpdPfOInPHvSdcFlHwxvI6AiXe0mAR2Z4wcDFfyuc+hBu5piBDlSXE92PzJdWyE00ZnDiYkPrhPX/Njnn0bjLFcmUvoEnMGxWk6zgL12fBPpz9mbB38dkpzVxxljjq39BmYUsm98WYBUIYw3yqxPN4MQRLt1WLmypC8HsbkUjb60S5rBKePxsoDzNJSWCk+f7QWWqmQGNjOBz6hpuXqRZqPfwPyPWginJoTMs8+D0QzMikdckI9xG6OhTbJrWLQvTH4wzU3848exhkqez7cdJhiee3fZilINzYAzTfRO9ESw9aiz4/Wm6dVFpy8s0nNuWiem6nnx5ECq1e3mDZ6shL98XH/T5qV29ToWvgjtFBPXJkesSl2fzGGy7hF5J1BB66UwpI6L9lDX2ukJe8jigC6p6lJVoVDeavlN+bu94vvJA6pSaEPaZVpoWKlDZen3w2YmbA3nk2V+6uip2+ZlTOH6n/ioUXX3c540XXA/Pb1uEzF+ihDnDumeEL6gPIvu+qOkwDaHt43Tf8qHH1lfvC0Dten/Njb2ZygwvVs5sCGnecwtkkpS+Ha16L4ve25zzDtxCinUueriYHMnT/X+WOSwqr6A2UFvlxrtD2/mBmEDUvcgivL8hqz9swoD7NGMpGiRqbxe+mDqbT+Zl8/M1nrv34wu+kRm6gdwusxBorcDfTaYR6apkkP3HiM2IeohhUrntBEm7Moj7oP8xS9KX4Xfubqg/2O3MlmcN8HyIGNGzAUDHJltkDQeUKPa1nsCenZQGltA+ujtX22wnToPa3HUP3+e71mmD8gMyS5Ig7iXuV5hBlZEZA/jfHaX8UtOgg1QsGWvr7nnzEm7DlGS4m5UYhgPXcG/lNntL1mO9mVPQi1CXikKmkec6PzDw/rVRchwfUd2wOMFSJhrlCbjgLKOzsg/OphJvWjLYcLeoEA8ZquDCqKbDFwSGGJrOfmJ2Mrudt8UkXtNXvffQIoR/kudtXjs8qgC8sTVTWE/NCaCkT2ZjD2ILqqeVUi8MA78A2CNlhQjLtLquY7fNsii12XV7Ecl4+t9by5EX7A88eLzYKyTR+Vt6yaJ0v+QeqpdbD6HZFNKfYSg8RyGa39cedpjSenNjWb45N+Eiqyln7Jauuo3Pae0XtJd0Rk1QYOyvajRhl4yXvDFuM0Q68mEsijMeYLBNlvxadGLOHe2NPLSH0TaOGgA3vdL8rh6OtJMYBpqHdksECB4pYs/1w17V4enDOsnFZIbNxZcboHRxG9OB2/UL3OH2jXFeEYpxkVKXClJYXC9kpqG0YpwBDqgQtoDWA2oEBlYudmvRKvFnASTiW6RQXaPGZwX+VXL8ijnfVCdWrYYkIhC634eLK6n2vf20OIxCO4rG7auefJzoMItEkDt2voiMz54njbDM827RMTr1gv8Tk9eKHVCMRPLvw650+B6bQ5MreMeSaMtM7FXbxvUnnu4Bcw2dXR3ehutBApwPDJ8x/koTPxgAHLnsOIsG1hTuqkRVuSO9GKCO4WnnXclT3ri0gDGPdm5GpNtQiBiZGd9BaOlKSpv9OGxdWNeYxINFhaTVjOQbfByVqYtAlzw7g/bp5QNfpOQiKY77xmEypcbp/QKTm57fQtolN0PnoVY+bGSYrIq0k1bTATacqZ0rZS145f18IxpXlaD7VMHtIjSGiKwN9vpKngOgIoZf5o7FtKbWwkKuJ4+AHn/DrAFCDaKpwokZWFv+zuw8u35FRF+gjlUG21iLPhYwlggtfLWdfdV3ZSTxyIO6FUG5RFfrh2vjIdW2/IXkbgEfP584us53fJe++H3TZHhCAi2ARzAKJr/fYpsga0wQ2gYXtzaOLU4VFLEhC19mCQ/tmvalDWuJv4hw60a6LLd5sDasQLJ2/uB51sDU9LYg8+SZsdlW4Ua3zvRKkhJbCIAi5rGOhqfHsFKNsyuIN+qyP/UoDvvqN904j+ZBUcQEw0VOq4j9UB5bQ30xSf99XtDi+Xjnq1WMNmZXGmApfHpF2u4+GZEJkKv3uuUSuH9zA1T/dRhcpIhI2Dt0c2RCpjf1oKvLmMVFBRA8MoLJVCWTP/57PzQ0vFqpQ7dZ+1G84PVjgBGYXOaIJ4XlOCDIvcx4iZtoLBYg8L7HraoCOla9nuDdeJ12tGU1Gnyh79SL4SsqFiplJjRR4pY+9Xnm/aJT8HAZWIkZzUnAD4yOZY2ts9EivqBcuvT8U58RaCGQEaInU4zMv9DKt8CU0oqN58KHtP17WJxuyo6zlj9RIBUcj9f54cDUxN8OQg2cOeKmOcxnpqaPqFbgE/Ajm15Ypa0fF6Tp9cxFksSoAI4qe08dJYb4z68ArFQ+ykBIConpqN99B1RGZglZZNKLx8fi/rveZ02mo1VIc/oKUUg20ssdm0aA0oHZuagY16M80Imc12NPHf9r/gLnt2TOtzDy8onVrA0sB3QKOAVWBxJFDwOKv418AIVZIZUimAfq4dVj3VH2Dr6qege4hNeNNKefj1lK7N0GHYEUnY4cN6Mu3DmEejRU55vhJzOH/xbbl8RKOe0lZzK3qubme5GeHfpDzXi/Dp0sh23gl79oiQG1KFXFcTKpaeRJeFHUmJCaxWQ7dnHd2rt9/Cu6conNLsRbWnKCP5WUCihbXYLKIvhj6sJ/zat2cizkcP18Manwz5jGL0KCQK1e+jo9Yxp0ddXESa70uwStQlXZf5JVY6y+FuC1oEg5K/sg8uCXew2+76PMB073nYXHO9bGNxIgVuTUcQhw4PC48Ao+FWH0sfxruvPmIcC3mAxxfvBuG4vIF5K263ACxe7ZUQ3RthAsZNfmCsfXxo4zb1YUHdT5FtPdrri5FA+7xQm6p7crXjPt1jzpuN+IVdiFBYhfILazgQM2MwcXMysLfPqvOgiF8ajfP5J6F0hcSUTNjBBW4hc2N+Dqv1lUxd+zJNPm6noyGqUH48UZTeXS1IbuK7e6d8Th3Io3xAPyi7oZVq/T6N7/PsIoeBnHBqKaIEMbqcplL9J+MHxZe9CTnvDR6Yu8xW7yV1XaSEDNjXVGZJAiu4TYkVwblmte081j+8kXVvLFka1yURqDlDd+YsbRmG0BG+2MWJJ91yGQsGJXrRdqobY7WN5vSZ9RcErooPoRRPg7xHWlp3jCOmlqZIPH5tXQDtTrOCOKbuh+MMEd0a7gHIDXS3z7TvVwbIf0X2tOQYq0tXON/TgjLlaFYuj9V5urickrCZEeMIWIjcOjDpBEbs5q00J4eCFYUqLDhBstxH+L5aEf5C/lDCDFpU4tM81Uv0dTRzInoH+gNqBLzoaOFyucX+YtLTfYWgPnSMjWAPa3JMdzINs3ckCwk3vWcdvOraPhtbQyHWRZqpAEo19QglRbNQfbD7VanhlON/gO6gTwPQS4FfrMjUUsBfpjit2NMqAwAp8lRTYilMPH1OZpEOn9M0UZ2kQjI14pM+pjr+uBwJtWomH2tGC5le7Fh6sLIFpEqpGxREDCWYJ6j2EUJf87qoeXEvZWYDKKSClDL+TdAQl0Xt8wQNXV6xFShdPS5bbPWzBcCAYUJyGBj8WmPs3wpbcbseB/Vu4qm/pa6pXDGxe1AvbN+7wzLeWUrAuQbmXRV/P0I8uJrNyp95puVYe64zTsynqLsg2771vuKEPu0AVrv3o4hNdrsonmAHKw/SvF0JwmCel8HBULKpA4UMgtMxH8uYlfbKjWLiiUwynoajFn3pun5WaVfOnpAla0z2BqX6Fhr+qMyh9rIeUD5r9Hy3R5afkk7Cgc4ZyrWi6klNN5rkclnwLfDAzN1DlwIAIIzFXhmPxkHN/MkT86VDobGDn6oqMjoT7cIwY5Gcr8CLBbnYAmIdRc4YZem8UU1vUuK+nHaJ4dZhH+8OxwSJop0+vgVLE/wVZihcuHPkJc5TMFB2xHf7fFaq4+bl8Mb+GfvISb3hPj7Jt4xJsuoFRb990DReESLkPZkK2Sd/INap2fcu6fgD+sBTAr9byq8vAsTRObXChWA4PT9NPUuW3RR+kGPsIk+RM9uLPhHc4VfrFFjJMp/yKaa6puFFC5DqQahyqEfdlGEeQ9NDQ3uSM0fudzcaEwJ5jz7721+rwdRsg0CudoRQu8nSjBbQnoV50jYfGA1neNeblH1Jxh9ACgzg597CG7wRMJmZCgCNpkxX4sQXR0y9ffk2Zlna5Mnqk0xQbj83Ck/Op4QApo5szf/MtdaWj1P9fI51YskTP3rOdxFeXZvjjacmHZh0bNgrZHQHxF69YrpEkw9Bj53iopLiuwUUV7a/ZcQsmXZoGrW13jMlxzOYM8F9owStwRktv7QzXAaJK8zf4DX3SEBjaQFBLQ2dkw4xzsLAzR1vn64OTNkUAwlARu9una/iaiYDV8kikAD2GoNGPqw+4vZuZbDp/ieCDd0GJ/1WKkaVRxU9M5ufaW87+RWUjV60dkjLBwNCE/IrFd+VaYQ96Pi8VoUgR43bmTO5Xrj1xZNsGuowD+d08CCRdBpQq5fsZHY2My9O75wu2rrVCXp3j+Uf2F9bCy4iwYYH333TWh5t1xO0g+Ow1EuJexJNBFYqokc6veUD810ZMmHUMC3dwT1FCBG59y4tgQ8o3Rvt3kIo+mda0AZSAAAMoM/W342keyoxUSiCXLzAg5mJquLAPQ3tsJLIOL1x49xoGvq8h3uGKyK95XqbEn8skW02bjcssK/yqokFd69J482sBKpfOOQKhh0qMB0aMDNqqIpX/9t0EazTY1ucHXJngIQv03HkerhJPut3rTcsR2rgmDnlLKAwtPZnPFsJ/Lswu04Y1EVjxEmixYawrciPWKH/Ohri6+mUTdKX8hpi4MKSCRldQyethe+LMGCeTngW/3+TGRMlu0K2NI6MWxESuattaUQbFSSevOdRWRzPMD7G6WpmuFRWdSm99IDn4rGb226vbTQlHiAfsJXxn17ci52l5P9ph2tP61Kw16lRy3mUJ/0vY1cMKeyjsszuS7eUOabhWTAy4s4OnU/hAz2accqxpY5j7GUZWcsRMT76lvXvtyjlABfqhp/yHEi0XqOXtZ94RJOyi0dV2c6/hlHGkyyifWEfrctOq18ChSCstNjD5udd/ITX0KDehH7oFE4QCLCig+M0NHIBWNOg+FjdZdvkc4sPLsmW3mglYolzbovRV7X/QUhJuWWUXapXh6ON5FYtMjoh+JDsXZkpCpCcu3fGLIxBhxTUj6zG939u8BOLXUjHFtKMnmGkHqvtQ8TVPLmiLUKVpaN0hDzgQO6lb12E/370U3nT9mUC3PvOUlAwB/tZ0qG716w9cxIPU1FwmE0HWMBFY/QEbAML439L+O+kzCn0ObX9HkaLlMX9/upeUSgEMI5B+18MaQNKnq8g00DfyHQ8BSUsp+6non4Ao1DtywJsDNft9MR2fz0H++rEMupKJthtN18imQPWIVSq9L7HhkWF8miVxu8IChiUdgMiEM7GruaS0aCHIVoc2VreHp/8sjbxDTI7aNOS4j71ZW3qabmGSX7G221HH7zZaovgK4qrQr5E/XLwgWltbREtzW9t0wg5j2tX65Q77SJiFAjQbcoa1M4uZ7ko32oYGZnZA7rF+Zab05rt222sQL+8Pa+H8ovKXYmyJ/DRnVpT5erJr33Hc3cg3yoBtcN8DW2L9xG3gAXvGMJrajhK3jabknVFEnDG9iKAVV9wR+TytstmD6vXTn/Q3pVm5Ngleyqc8DYxBUweqFrXLfRTX+s4nKu5nnTvddO5yIBKFTkvJF02f6N+pcaCTqnIcihaWDn8V238lfkK2ZuOQMobbzgTxQp4FA6JJurKAnEZsR6mq1JNmt4gfSGEEyYVew0vZpy7fUXRlRvUGHXDeVzHA+w9b/KbewBvH5cfqeaBFn5GV4lr2vPPb59RuUFF+kiaKImKs5CdSOrkxJxxKY5425JcgiCWePnqJPLggbAjaZTOC2p+ZYossBlZuxD3A9mpz5b1kmrYcEi1X9w+oWEi8WIqsm+L37lwEarLQgiETDtEiXesOSvqsJ78lMkfVXyehTiJkuXgjRv7+o5mfc65QIpOfm9HY1bcucflGWT/UxPcSVOKsvIqKb2227Qk2qA81PS+9fxcLJAL1Qj9FOoxGA2APxBj3d1bqljIerI++hH5+jjNj82FwJFWejIpLBLQhqhrO1uSZ2P4tmL06r5nU6W4SoEFyaxPJN0H5m/fCH6uIsm88OFnQssRql3AJxzWJEonq58DlXsneJts0RLivI5JEjPRLTG6/gOkbAvMdHBgmdXxZ09ZKU7+pgUdxG22SufB2cf6QplHMsltla5t4TOfTpQlG/AyXuUg3pu6MiMvV4O6Ww9dRrH9HmbGFBh4uye5VAYz7JpUKimpY1pXuZhnw+xMhabJHDNVCg4hsR4dvn8nPdnJB5M3eJpaZHABNhZD9mNAtvIQXcHO9zpO7WwM3v+J0UDVFuNPh2dFb5Ggc4Ro2Hml5Y1SNiGlGvbXeh/oGPt5dj79d4M+CRkJxwMVuL7rqmDvDDKciKpFrqHrTJ4zUq2AA/4T3s77+0PAfNo6QaI2wvM7dSReAoIzME3SJidmKol04UJir5vMZ7baE/sCv0dc3VdC/o3Fgle3YWrxbVAg89wAKKjiOUEEkSKX1X4NtMyrYQGxwT48cHkEcwxrU8CkKgK068L4hGa3DNUf1QNrKNtMALQhu0lB/wZ55J/KM5AJPXtUDxkCRY2KM3EI0pWQdYQiZYglX0ufKeC4gUucz4fkEivpSWdtON+/NMysfCJaV+QeKiFzztylSaErFTejxyvfNLBAnzpdm596dFFvIJdWQ7HNcWW/DJKNWpRAQzMyKjPXhppuIhCUE6YBCu16LxplPJcNZx6n4XBReDgeZ/A+ThEh3aAA61woPxh2BI1w6Dy0/3+Dzb9wmoaRh+SPmm6PyStOaKuMSEz+xvprf8Vu3col/Gjc4VNSVpunGoi/XVRru8qItXlufUTTW7s+LA3nhh2m1DoRapS9cw2nH5GkDEUOOGLdIqc5b5ZNnu7BNKO6aNpLRQAdWn2RcpXdwaLt+Jc1KpofM0cNtE9xA3Y/9E19FepXpRfvTc+1eddeExT7YUo4CRbKWDOE2tUVHKvWzv+0qumOPMNnPDB3jE0HV8BGZ0zCFZmt//BqRLZsyOCLKupm4HAi2kIhWSWdhcC2BcFfGO4AkCB78p+E5bEhjiBrQ1ldo5KUfsAvgTjx8NrD5Li9uKdqdY3l61xneCxq3bFoHuMvrAeNworBUbUOHnjAqJiAURqIG8JQmz01Mu2/SApSDDvBc88BdrPadia6vAoi9GZVM/0h5ADPWuPtHTYBVKKXGP/05Hfdjam4XYh/uNQd1xUrba5j4pJIh7wx9qIqllBxRA1/ljRZ+xCClCkD7+t7cWgeb03yvyH1RVQLATwI34htMqQ19Ujo2rehUFfr2VuIx3Nwe/3uiv2BSc1wHAlpeYHvi6B+ZHGlqYJonAL4NwaZJT/SoQvKde4z+ECxXweXk5oZIcn9waGWANfCn9R/Jwdm899T7p1a84ZoGfztBTofeoRevLg48PRnjKtgMcWG7qsX/KNDUP+h0LKo4NhA6YaC9BLKcjb+nxd1o8uqvDw/LtscZuwHCPRTx+qJIUTzG/NrV1eHEfi8ipAu8xSG1NhQe+0ZcisHciCXQfIwxLWnX+kCZjwh+VMZAl9dM3g588MJhW78MdeIkqNdqQaOu/AZvn5XP/OsyEz8BhNYY+dQsUVhWWdGSrzc8xs+8xtw7wy91RqrBTl36uRfkqKIMuy/8ZBNA4oEW577xryHEEZ1Dvov6aQVaDzkdftQHHayjzVMkUNJfq+Uo3F/m1ayEHsSi+5R6Ay/3a6upybZj6+8M/PxE3rPm1zimSUYZu/gvybff3RkTue9EYVeqQnxyIy9CfBMn5lX3tmQCX94zb0Y3wVQ5gOd3ce8RV5bRVPu4zoE5MIkTcKOwEjT0flZCk49wopcVI7c4ineXZR0WDuUA07VeHORYzEc88e80Xrf8ls0XbtRJcVB3L6nUQ4E6qtCKgFoAsNmwj7+j/h76Ocbenbpzwze7zmr8iEpo159bNL+tcAytFPjfX15H1xyws3FgIcvJ7W0VE5CaWiD67N3+xjTdjVhM+BV0Kkcn2fUAXgBcpBgQlDZILcAHFbn6+fRjybHK3MdXwG8+g929EDwcGpyL/gKezwnqhMprzr0EQJSDEVW73cDy0dGTZZoDAFjTK+bYJfsXBEzcqhOqokJz33mLJLudb56aqrbmwHR9f9CaDs3WdTEnxPAqU9VhBi1j/4U0rDulf28z+FEUxcJ8sOwScKHbSnV4VZprlG8MDDtiz+InN7TriM4nimOl1AgCYB6T9XKxhVTYZ2zKGmvRMQeQBAkwnirCfip6ZirQndzEy7D8ohrhVZpX7E+CMD5sDnPrvdsMznC65X53aK7aU7BmIqwSPgcE1ZSoPv1TsAeuDo9t8x53py2SRbjUAfwr3UqwOm7no22HgVxDS1qsLVf6Eej9AQWu0umHcsuExDFvVc8uSKatmJbbAO/2ET9ZJR05xvjz+ivLCINoBR++ZBqQBcFdn6ss1W1Q5IoBtv5siPxuCCBxvp4r57TgeoDh+RfnWLOSzgGPBHE9KtCTpmk9YoilLShnhKEGSacbLfLpCBgzWesqfHUrYFaIXUb6xMQQttjaw/eAduagNZUUHnHVByLYOOs9XGOzDACwZdhgSSofxesIoGDo5keTLK0LgQzxP58sgxZqlUwq/5zexskLeYw0SPmZePLiUiWc8IFlF70OasEtYU7XyU4oFNiwEEROt85B3TtXDsrky6k9mXjhnHqCkoxh39u+H4fa5Za4lKNQsQPaUOnejUszHVXj61foG9nnzJauZYUx0pdnS8H7noEpecUsQoXFv00Dn6m6fEjR9Ta8+RvjAl7rfc3RTQittfxzWQmmIViCh8V6fYIiZVbm7OnkEHDweGdxYZY8bS6jBYJdco5cIEVM/aT06CjiInfyFh9lsOBRbg1juvs0sJOziA9Ti07uareGIe5FZLXJS2JvutwO3ps6JIxAnkl2f2YFIHpOUdpPLbmJxKPw2TUm+2x27LCGsoOHtouZ/nKma7h26rE2pgxcxw/qcdTiMt/Isdi+ZGno1vEY2BI0iOZPDkyuDcjrZhp5bRojKCVMMFybvfzaeuSWKwfgYA2NKuwZSuhayOSOQSra3lmnFptKexka4QCYN4t4mT7udRfBH33TjagxFPj27AbKC5RQ7qyiG5MnJUULyrgskHm/eI9iH5xtEwSw3IEi7rFZXiitMdgGxJhRyEZihaieAGvch1J5mAEwCBw4g9g8NqgUGZA+WueSPPREXS5XQ3602/pOfRtg2zi4Cn6a/XUypoZ2ykfgetBDhEV/4WCZEvjSDosXRUz08avhC2g8PHsXBUa8CLJ3oAdheSQpaT3md9jrNd55s584FXWkpT1NrZHQAMn9rAgBQK5fJwhsdeT/88B472cswvagkfYwND8D/oOd0FpAe4L91sqXsKULDM5koZXIwXz2LpibwAs0wAH3gvfQwEPlqywI/2/F2FMJBlJEl2CsfNWv81wIgMRxa1jc8NRvSTk4Wpmu6+oIjKSYqEysDJe+9UmHnj8Xw/sWPNVi011KHmhBlTOefXcYvq1+ZcFqm8ESS4TVco8ybcAxLFltqVkP9YKHojYrwfZEMPiP5yBWzYMgJW4Tvn2qbMmIfOtgGRBVKmOyOtuHbaiBf7Im3ZnobkXjsklxMzJwp8D7vjSz4mjDLz//j6shNi99QNQNsR1JzZenagg2TpK2wi6g8DWmZdi9ObH/ckBDWhNGW/2LgiHkQPhyr3u/8UQvV9tEgwOneQ3rQ0eTW3nJNadge3pwkF+SDai39AJ86Sbw2Ybu9n8bW5qUeNVnY6KF1MeJ3iP/WjOya6FP5nV+gtWx799YUNL+ummYeb5sQnUinFTdBhQCG1IyaDWcAYE0MGHojOwQuTm/dClVmLP4j5aooKlvBKOVIp/9KMDUuBkUorwUBpCNd06tLcBxkKWcLvue90RNqsLw/9Af5Oz+lHmxLXmriDuGuMnxQHjSj0InjHR7jmQRO9Iaed9XtYT71zH95epSZWFxsfP165SGsW3fwlcahjP7kl+VxGgkvgsQOZar/s8VwYQd93qDMlamq8KyJJNFgEXL9wwgdYczV4Jg9biDRR5YYXoZ2dp5IStpiffY0z0tma3JZQTTsacOZ2QlNorHgwAwLfeVJATaEor4q5EQMnFRa6oSmU8Z+mPH7jr8w80ng5JBReWrvZFGPy+x7cB7qjijttVz5FpjXIXoRwoeCRFvtahjxgD8wmCJVz/22Yi0wDmMF21H+fJaniq0MnQw3tY4PX/BdCYQ0VZnnzItckKcckNOfes+sLFPNeSOQS1a/1r6FY2T8h7af5iQz3Z636hr/s6br44Y8EDy9ZTQhZJjZmsXpMdTRpsm+1zLNfCKWs1Y1D7Mw2UIyMWtUfAQ/VbCLc1a9NNuE8Qb+SyjuSa10TZ4UIaw8H5/yjyOIFt5oNoaA9ON33xzWgKxVYLZJJpyYqbCSDKbr1/jeGyw/XBT705gOhattcVhRrqaExXkwbK5qTgVmhXcS0FM4s4OHraHYQiJQUdxVM7S09/rwe5FbEVaRkjmeIR4vgLqsQKKiFvNf4ef0wlgZqQv9oxpHIE+Cp5b0vHkxHkc6qNaCWTj9tcD9k3Z5k26NwrQ4hc7cMHD0eCn6H/4gH7WBhvIqTmKHJb1vWhr+vk6La5wTR4qoE1lGv2ODZ2T+R7mXhDxZJYPIDroBij89w2SfPLSLH7a9M2aFcDL7TnF1vhenmTDueRwhb+fjf6XJBe8/cTv/XdUN69JrDYRgbCdL4IehDmpCu3CKAlmmLCM6ktHQF6HOh1gHgOC0Hi8SS6UPk91NLb+Q/Vg4Y0exT7w0jN7lbCq1sfnM6RRwopjkcyu3TtSVP6tYQ/eSPKwFhMduiSaCMAOHN5bhx1EzaCmDgF7gJ+LuVqfa2GMpS+BrGEHbADjHZY30enIDIrN7A4f/0zp8jFv6tzJS7Vq0TS7M2DaF1hKhonjNBBR4mpQyzBSQfA0cvhkMbYg+fPfSbmc54Nr0Txp1U+N4QOTVlrxaSc0EIWbswM68BCPgx677QNRKiJgsnpT5BL2GD/YkwX8fNMc+2/WDvMoij3N6C1C5LFdMP6I7lCyptp+9727qUMYU3x0ENcjAexRoclUefRaElLh8rsvKr8iqXmANvuSozwWfmFcq9H3F37hMkQeAYRhYKDsbE3P3CJKLTevHzNC463/bAA10SetNHEQaYkqIJ99hIRlPFO+a9wgpBfYZsHFsoKYHU3DMYQuFFGK+YXBxq0MaJmxAw58jpO+L9O33Pb2xau7wxFXL03uNfLMbaG4tf/SESMrDYdQKlHofPXwgwvvTitIlBxg5YL9yOx++cgSbjPaRV6XmQt1HZliPmnmd/yAGkCtWi7PRLAYAuRx6RCmYlepnLmXPt5qVTGsjI0XMjdbV72dvnI1EPp5WK3B3+NOaWxsnDF5fuHqkdD1Pr1+1yMzAeMvSpetUYJUj4Bxu5Vz/xoFAblTCyvtucg4Vc60Do3qUYX1pj7J5EnG/gKqxPPWN5GoyyopZJxRXrFHzH3jE6S9odb3HmoKN9wUk9j1z8OeGjCSiLSDbqYogEJVJZrIzauxW6tGTaTib7UDxFMIDlqfXAYM8/k8IQQhJIz0iH7b8N1O7i80lA2bXbqwvqwsV6Zjwlk0bOlb9p0XLE/hnCGWcsl8W7Bx8tR/JvQKW1LBLRC1XPl/FVUJ3Szk9nCc1an5C+UNzs0blQ+HuC6dR3gif8p0g15g/d1xACC3D1mM+3iKooNaHV9xXndxb1uPYDfb1giYX/Jm4lRNsjEPGcYTX6LVSI3ezaTNoGhwxGmSmCBL40C5KIYcnp2pTrh24PnsaxqyGnsUmLzM2qQdK8dowUSBM4R1GY5uHooe+FzwOFhdELY4uVhyANEmlJppyTyyUXolOLmd28uZDjnpoKCc2jtdPSStQqgdP8pIHR2WLQ557ezOB0joCbmHif7gve7s84ULxHmEBMuXzyaXykfICIeYaJLD85+6oOH76J6u4xTfzvbPyU+fnCH54/mWPeEXPp06japY7oP8RYF9nYIQZ77JIvZf9hMsj/vQpx+R7yEK/yGzpQ9ruwQ1qPhCCqZk2FSL+1wBIKKT4tDx1c05whw+wUqzDvB6gJvIFWvakZsMZh8lhXVFdu/HkPS2Z8yFmyoItc65Q5DlncZ1bTMB9Ano66NK+qxHu+1y2P6zObz+1a1Q64z9nWaxyV1xPD3yMFMdGRdkZOzMmjlTYaNqyikX48Tx1TTxbxJ7E/58S7FT/GNVkWLQYJVH9H8NBx8J165MH9GNb74eci7qg37fEbvnpcpkWu1+DIdQ7SNpNKuLv6iQPxmZIjE9pv8Ya/+dzqEVrkkjuU6n3OY8/i/f8mcH/MUwDrYPCWOyO+zJA98JLOZkL4XeXz3+7Lf5AC0cUoiOLqPf1s48H2pXJ/0niCWWuhAO5sDKtx47M/aIH6ITNTclXM2QxI2Ji8IHROyi4a9EQgN9fOlwLsiFHnvY7yuH1m+jhuRjAZiCggAumv0bZozy8wem0Kx2/1y/Y/KTFapWx0oBCW1ptvFSgzlRP3JAUIEg7ZjljJkPKafvoX/uDf832E1vZO9pm4gY3R242sZIRaihSKG4brimq0Evpe4s7776xNIEfxNAG3nddLx379j69qyIWLM9rl+5e1IRN9MncrNhfDCBFIwbG307QwUimN4LBUAXErlBQAikyoAznJk5BU4HbIYCH6WQLaLHEB27haybyKqzYvZSi7dxtGtoHx5QwVIMWegLYvgTMJ3+nEJA0sdmW6knYQlfAuzTsUvOIhRQ2UWVMosXUiQW5ufYa9ek7LvXu/MMchWnBcQj3m96oF12EFqyoDp0qztMlg8XH5vX9k2/F7TmEnDiBc1qfpPHF37Ftj5cTaINJ9wSi4au0AUJ9709IdB0bSDJ/x50kFqbn3N4PzhT3mTw9gJkaV9jXKeoycB5n2sZmSG7bzbS7IxAObFnKqhqYRjnO4cVHu2nBubg01AJZsYL9Rqkmajm1F2TnxdPHceD2NfdDAtRHGU9C+xkMPcLG/+EkF/qSRSnIy6TjUD7wysRzoyPviv0728z2JrLaLKv4LxSUB/mFSp4MrTqjOVUqtTBt0m82IWDmBoV9xgFhSwMX1CKX+9uI1zaZ9h2jQCGXASSdCL9AcMewujCR5DM5dFYMBWv6qnw+HJMKuFWnIpig6Eg4RVcwF+2o3OR9GGlP57DaKp9CHhYC57ZfV3nffKjDRV2DkEokoYp+JJd5ayZsb4TYOL0RU2eub9JrFZzGcWtEjj8qZB3fnyXYko+kxehgIJpp/ncvcUHSZbqu7VMsIcrW3ZVxlJEiULWB67/y8VEJ/q5nvRTklhVmWbPB0KvFyYk5FMobF9HAyUivuhG0w/1lhFEOL5YEYootHqnjLr00jQ1edlqBonCretPH1Aqv+6339gK5rFbaZ71xdO3h29geCQHzuGj/lYzW5btxZNi8ij4TuFd0DbCNoogyOEEzwfav0GgGqeObdQO7GnIGSsN2m/gFc5ssTeBZiRHdT/ejGlu7tI46CB+5JO3k6zcPlyoRT7HFlOnYiKTLEOPY24jNhHGWJIK/2DBMyqMrUMzo5JzSfqsgcHIORHs5tg/8irIYgduHMWGkIThIFLNxcgPOeldupwRrT9xfy94N09650vxqU3hYNYlOfiRizAM0gAaHZyvepZkEFZJ+M+c9mOxzLdgt7hjqT4lafzVik834ayBvEmmgu+ulr0wqDGSdq2cEFKyGj3uTKDgzmZ6P4KbEONaGsCv8cxTPbAdFhxuacDMmq9Pcy5ZBVAI9A14bpuNi11nEsxsnOY1GOT78/L09KDh2f7IXrfZO2DP9E/COhwfFLkatvwMfJqrKyEZ9xiKbeqSFUcvs8AXBIXmm/xAIAOjbZRhW3S4s2t8P6CizJ1nuqi6OG/4zQTg+HGlIDOumiGQkUBaxA0cGRkvZP09BEEQsadJFkHkltx3JqKhafkIFdnEYRnjNQgacRfY8pbN18Fd/hwmzv65cuLvNeDRIRb8pqWVFXrMV2MIMymPt/1DBdNgNCUAOETIIsZO0Dcy+o+QFO+Yux2hCRh7uLKEJGhsh8BGt2Ss1AUTgrkTKx1nobl6dCuiYfK89xkr6ALkf/tSJBTyPcvooVpBeFsgvBEsk4ivSqkPy35Q7RsdoUU9aXw72kpJroAMrKl02Rd/ZqzXfLtdbwDd6Y7eNwTKj5B5iAtsLh7C27EQmXR4fDL5ETK7swkq+4OqoMHxHnUX3TEOuUi1K1voIHk/EUuRIYKZqo+uB6R26ODfACl8SdLXhqn65rpgWBNbbKKV13JGbi1MaKvOBquI+PgDNf/WNClC3KQSfWS7A1UIPjp1lFSsaLb7y1+ZjIiUxhl+H6NyQebXJufIaXACFJSKuP5/h5+9ARXq0265q8B18DPbs+3lU7zT85xda+37egpsX8I2BYDqQItoysI6NieV+Cxw5HptC0ttf3fsLt9Sz0cSrBLKUY92kFIQgKNj8sKlzHyEI69Kby0RhexrrcYHh9Unkj4SuUDYelYmWIrZvUGQUG+TRMyuu7h9qPrGdCdXk3QFcZGfxv4N6otobC/sGyCYmtu3IoTqVwV+nGFgQ1ZlzbgGwrkSUU1N2v1H/0dhL1lUAzd7XuYrngmYDfkVdJzuaKM8Ax08WerAEv0oVP6GNJwuyCNcElxC3YrFNdorZn2r8L7FUKs/cHaMYPx7vOra2qME7DNXLSUyCJntwO7xl/SImQpUkzM/h8un2Vz/C+vIZKuJvR/tCr/qCFLjKEFpnu4hyqWf9hBAVotP2m+tdyWGHf7MI5Q13W/XSW1OHSCmIOXOJ0PZgJJ1An9YlAjsxF1UU1uHZA4vwYGfao8cvxQNcryz+gBBXqM+O975nY1gx/ctJmu1Sy+UoxSQRpaDF/rBRGpEsGnTpvrJ7tF0o+/8mXfNfvsQM72yvEt1y//5DN71SgGNdx+YdU9efFlFjS4x2jejNyMH84b2XbSjgFJ75ss0+XvjEmecjfmFzDkkt1Y/eII/29qY2DlzuvN28DHFxWbLmzovhu4oS+Jx/Wap1wVEzlHS4ecF4y8fs1vvgxSyU4bWB9dlzLhOSUmC4Aw1Lyb0LVe1fnfqPdpawlUYwrOdXgfshK8KgUTUvVyz+G6bIuuXrZK89MDRdki0f1IxbG87yweTlcCsxfd1yulpRemPeJXijvDmMSkJ8rZQQbCEGm68CJL1mccylXMcLRGB8bs7ldN68nfthcF7szXI1sG6aDsDlI+J8Bl0MJRB/7U5cG2jbyovfwcc8LAlQPLzKA5SQXHMkBGdk5gy0z0lfZmerl10CL+QR2WOItbfHpGamR5p6BEozuS3csQHupqO3blgMNzQ2vxWhFqe0P7XqQ765fjEkR6SkcBvnOPtLGVdEerfe/8XnZH7hNX0tiy88nXCtVYYXbosn5JyGY4ZGsWemODxKEWTvCcCHMVBWIluYVEDStAIenvrYfTKu84diYinNFds4rOf6YFihmYGzOgOG/nZAXH0Se3sgOuBBHM5M5NH0QjpAaM/DA3fXP5D/yg7mbBVZbJojZvRN1O9ZchWA9fU5WL7ytQdIh34BaDrev7/bV7UX76xFDGHaPCBU79J/APJWLIx2HREwXsYGg4ZTqo3MIqJ6SeVGGl9IptkM7Pb5baBpHiGtEixaf+/wzxhdOlHf0FhC7btyw01kEN5g0RNEc5O5qt0MMCiLiS2pSE9NazmhVcFj90VMqLKCIjJA7aGiO2Ak6uehe3wJnyZdknxoN9RwP6wORORWAN0Eol6eRC7ZFksUNx9btIX2CzaJatrDZwUfSB6pbgohYrkOhuxBJ6Pk47paHw/bnC6wyQf6N9J9u/S2KqtD4oeEj2XddEUS1PRLU2eVGK40F+886z1IAa8wso/bfm+R9/sOLTlMzktc3Yc/IFdmogM4UGiM6mjFFk4Lm8Iavj/QKzXgfpZicr1jCGkL2RLTzfAe7iX7WfYHjbg3VYLN+3OjUeMmsK3LOBi7Jj0AWEWJ0Uzs3roKAuZi/4WYYuyattAR+ruHiwxu6qGSSfn8KIi1x+Yi1sdwJgNbbL+YJngViNV/XJbrdPf5htA/FS4+JeORUW37RheVTpKJzC4rVH/TsdZtOcDiqpIe05VJwliFPurSWaC8YAX/WIdktXHDt6DimQmePHJoX9G4yXLe3+qa8hUQ4MVOFPRzelNR3PKVSx/lsiuIkCV53i5VDb2x2GAQ0nuSTHqchfd/K6qfACNyYJ4Dl7SrnaJSLFwR7GkIT/AEP3qF6tdgLFxKtT/yyyFwAglXME/byfNNLa7l2zJDdHQVSSVLSNTzvuIUgxSe3LH4GrwXC5uQ9v9CUYGE2HPnzI5zNJJlqx9T9z4jSKn8aMVx3UsKqfXkb55zgHcpJ85/9ZjxusAUOLKNGpjHfCUktAlGMNP+kLJnmDD4rsXD0rJU3yRFT5jpoh8gVYNT2fhhQcCv0VKfs5oCijUQC9d+3jGyvVNGnOopehxZKiy9fFjWZO+SlurtBDTDGnOJRescU+h6+1LMPFtDQMjiBpR9e0hcc35Q28qMj7WZW5pnp4hRJIBK0s1gdvkd15qu2Ih7MBgnXVn+bhFuY8DcWUyChnUcNTYVkgeeUKvQQK6fbEjbaOLFPPwvhuLkx3pD68j+dj/bihsvJPzBxuAmQ2ZmuCCkaluG9o/7v/JUYMK11UvkeRPfncgb05F1/9jtqIabkUsQe/rMscNCye0o/v7JiHrhoS0QvwKFeUahTIUW9CFBfKWU/Mp71yBJKoQYp28z27OQ/Nrw63FzWi7DIJuFO8vKZuPCEAc5nH0F/D5gxwiR3vMX8dfF3E9wiH4n4If6k9wKVQVOqfy39u/NWgPmKcMMkA4X5AP4CeI9FT4g9j/tacjIcSi5dBFrIiy8SJ2aP41nycATz9YVyPjyjAZfVQVHEseCJS7i7nrNvOLk/cZB6zYTfeB6C+LUzhw6PMYfWzbsAaacH7Fox6mrs/NjROhE7NWGIS7+uuL90aFHK/DScub+8x1u6CIpQKARdAFawDY4jxk6pDBha3f9Tt1dM7fz3ceICe9GUO26073h91VKpjPmvRhcFrKD1ggK5f4NTwGNbcCAi7e1Eeqe9PncCqPok2JCDyprmcWT5iw0Hj7DlptmcKWuCz3po7MIuKhpyrbuZBQCj8ypHSKj/H/0gd85SrEQRcbXejDyWgijk3prbhu1SN1tzKEVGfrMdPmyUHq8FGcJx4XcRz8DelIGtrJZHBMXAXcf7i8zDaEs2UgFMLJ0ZzzTuKFQnJh/gxIdoln3aESyLsq4WbMFFcmi7xWmgVDSF1js+v7B/qMFtqAvi2OSRzrbJrApjPjK3QzjNF3m7DSrNC88p/rNNAHjFhshYboyrM8Zy/hTRPEbbQRj6b6Km3zOygvT5xlNM8uBOEFOa0B8tCl9hrW3lzRN8lSe3yA8c5Yi2KoEOdREQIWDsxewgMyFfXVo2GsExP2uN3POF+J62ajAS98RF/GCsVoIq4XgoQMFAAF0VZu/AwefgzZSC3g+VUWKwgX6n4V9tlnG23YWcdjbcabJAuticCDHZCOGTpQ6K5PH+5AmFYrle8eW+r+618dPoPmbdwVEb/914nywVaesFXV1NRlnR7Qp9yFu8bpTcBgsyLQrY3q61Pb9jqDlzQqUB1kwmkwNEi+JVvCl0DZwtTlxcxJM9O/JpHq4NqB1YtBJcqCfHg85KRB0R9DGaI45XicE5wyhdUcaRI5H6DD9x8x72697xDyTnHmIDu8iBHjObdhtreVIKvwhROgAsckeYPZ9nwES/VUxnOSuDkkIoMtMHusKPdRCDVGGEz6AyWGDMHX8gsBUMaToIaKseAZvACGgFF7u+iVHLyUhH5/kXG+o4E+oo4vhk/6GD7MkrueP8ESHL+qlfQ1R4vvtvx7DLcre3o77JLTpEcIOhkR+WqfQXy+4hwU0eVB8wulFNRfz4o+wYt9wOrwygeQIiyFCNfw0NiWsZZO6z+0bTXV/xP2OH29ekPECEZ+TI6cXfZJsE8NF2f/+eVsNmJH8wOKVIm+OiLGSuL8DA3RNJYeR0yrps6F8SdZtw8U30c0k5bmLz6Yrir9gVXIUU+Yq98Xkuzv+q2PvpNjWdywBUfXyOyCzBc6T/ZgoPFs1l0J350NgFEVrcTpLbIFND0NfK+2Qm5gV9bDYKYu6pN3aaIerfSpAfp9/uDXIrKKNjDO5bvMkMh2pXVP2U2f5ZWZaVgC2muuwaBGurygZ+30UlwWDjb7iLrujwwOwqsLwUNvXL9cQAgqapxuwjvICDMMyCL8fkRpzentaMiy7O2qwjfCIFXQXmsb/jF9EozBbz9PudaZJz9wkuX4p8nKfvr8rgnngwFQAYHVk/jWFaYOoAPg7QcI14cnB5/k7OAJ1Tk3Dkmkn1VPgLk96oD93L5ltNftmZUsUfW0p6ImPs/81z+hGm+6Yvbp00hF4K4pKm7q7e+c2efwL/k3s08YiWhDa2MMefM5JiaQ9P7eAzaVB+t07BwAT6z6iePrIOeDWEZLuJTmf8O/zxPk8F/mJqppCY154sHp4RT5eBg3F+LIJw3QH96M7yLZBNuMwlvWoJYXLGYLIyh7Jn2ZLFn6C1A3PMOIqxAv62Fxz6+WUKkpsYAeOKah9Qlur7D9j6aVprJq30FnGbYEmS1YdAgWHZZBwcxZP1To0phrtdhWhC5F+vm6I3aEg29adwqoiPxBwDYV4f/tqh5cAAd3xtD0pjjTnIsn3rAYX4kaPb8gEGOnEyj/xawVVVgG/NZI18JWxBGy+MFgeFO8rrzWKwtJYzcJao7U6OQNVNXw4l/4zncxOtqGMEU+tveCVfGxc7ho+TdCNcHQBClxHp7IsjgEfed2eLW37A0WLEKac7TaJhv53OUrZIJm7FG+HfUpGWsLqm1KDoBVkltct4bRO/0o5rOyLB8Ku9p9mXO6YeLJ51VCY2xgSXNq7iegHohQABzybyDMYLxzCxyxPbyjMSPdB8/hDA5BcJH1sOSvjVuWnnqGnU0srA9cNt/cL5o3T5zW5oSTsYegVIHnwhJKbUmxHFeIuC3Rfh/3I+odaAkY7+6iFlnZXcp1d6iF4ueflgsskyNGQ80+Py3VMgMsfX/Ti2wiPiu0UFgOOZNXh+AGRktIPPhNotSY4jia/9SF3j/AN9Qijj3KjR7SPDPj/Av+FpNHPiQXq2/TQ8lVVSBlZmiB1EZcg6eKJFG4PL52nz0HytluuXUzpQdGZJdaa1TmHAutVA5XNZ9p0wsjZudaTPRpRDFQWDvAc6HpMbljpHUCperiQFRAmuD+aHlT2mVQjJ3sIRNHqj/NthiJQv+orIdIcw3DlZml9J/sDmi5+DdwkSXUg9j8l6ShIFqHRFMkILOeRwKeVh++cuMCELSMAJdFO2uJB8l8a2uWheL2+bRI+IDZIOuHhMEJqW2y67xSjHkNPdunz9BjW8KipI2dmHd6SrVanpfFjnQiEmfiT10e9ByUjcVGEXcdD9Sq4dP+nUC1SNBSwAVlfH6CNyE6txfPH4zVpogw0k/5BU1uBP/6koldR/AcjWjNWfJoxu35Knea7V8d+Ca8UNkPBNGAaD9quglk6ROCNGWA7znljtnypXj3ZopVKHw0WsNI3SVZFNIHah0sq2DdTnUG6y8HZfaPnKnEKZqQrC5CNM70WNtY6BnZCEn9RuTLEAzy2541VOeLbCwZ0T8OC7xcYCqNRbWepJu/hl9Ad8xcz26rz8IIQro260qnHzR+fAj/CL0KeBJYLbqEvtHuSClVwLFI/TiFtfeTXqHERzmpBVs1lwaQcQH+23IqWnWtSjg3oBTLzeVKPJSB764oUCW/n9900T0UFdUPeAd8R+Rf1XGlNrt5EJ8bU9xzPffro0isg26/tD4LrGNeE10ZPH3mEu0a2iuwuXNf3Nob7ZzfWSqsjdsC73Fs9Q+11B+SwkGnLxO2ZcMyk+jGFG00y0ZWtCxrUGa6mjthBt0R2QvXEma+eh3J0thEEIAgffbYaKSOWpVnp99Nw7wMS5kMqFepbC92P2Pg5EU1YFAR0fG5826ObIz4S3X3tZuGgl4tlUqIvf7nyinfpriFlDRwMpTFA7B/1OdPEVGUsDI5svo0CVZrKYJmilFBV8l5TIGaJLWitEuNEn4aXrp04vpekixq2Zsh0YQ28yIE/5FBDsXOcOEwsoOjNi5Lj2IOonAKtt1kHLneGKj5p07mkYFMcYBWwi+s1DiRJosn76jD8DE8g9fICjfRqH8aidb6A5uqM6n6JibhX+dIZDRmIv4Hj8eKVF3K5l7OD9H7VQfYQCaFCmoWInGxiOCGYIoMuOEAFy0PTquK+9i3d5tCWQXT0hjMDQ9zWvWnNQDpgzTXmnQSDOF4MirMl8nQFUE4JO/+rn1D72AeHpMxKAlylcVMMvMEqbVK2Jt3I9yds9kZIkOna67Q1jJ19zxZAex3soZw+vpJVdMX/6sLsJ1wsYmGkY89SH+W4tz5rgW76z8HIjvEORuQh0GMjq363JTJw6c0cJ/Q8ThyHmM2+y3D7SAc6xiVmi54GEYo0BbxuQDlke7j7qjWPpNH//prkt7MKSSJVbvb8hIxRyyPvQNwTOqTjfufYU7MVCDwfY2Lv3Cyw9JWDKKg1cxIyCuwVlGt3QDK1Z2rkQsGVXK7VIxlyXhVJ8O5047HdYaj66VneHJNd/hz/kUFyYJoAR5SczIrGtNHr4WWcwGNZwWRrzbrkeFvXrE7NhkdCXtLLaz6zzkeG9C12R733CS5O/ADNCGLWWFrhuCmKHcp+mO/GRvjD/I1KHWlSP+9QEn0F2z6XbHQUsitFMtvECieTkw+fRwPoPy9QZmmNKVSpA15rbG6zwkURMvLGYdXn16wqIq6DYlDveWVNAPyWD1jQRDccLEhxuteoFx5ZVBCmZ6+NL4Do82P/aEAl0FAyiumY3iWRXLeFjlkDAqTyPFpYYfMzRd8AKTUidLfF+/SF2tlGcTy7wcSj2FOjjPVfHEkEol8so8IF6KsvtunWSkz9v7OlUXT4yF2STz6Fki40BcNPCYdXp4+cBw6RnMk0wZLBQQMxrbgcDZSgJFjL29El82xz5/Vr+0HCkqeBuuI1Gqr1CF5r/8WGRP2O+EgUICxMCLXT19aklhW0Vj04+H4o7zpAobDJDcx/W+fKhT6A81SEnemJ59ZwtafbPIHIBfSa0H/A59cYfE3QDiFaZhy6T33BG4U9TlzX4yQD3nfa7+FOJxoTDFLnJ4mi38BN4EWAVhYNubbUq2FeX3Ut2At8vBfsJIMY8Aj2hEeX0sugBUk2U5edxmjl1/n85qq81NhimVAaiK1p5MBcXzWgH842mptzEy7LuJtHk/AN9PSr0LMY05blGRkuJI9i83zpOdtXo3oRWOKzUjJLSdIlU8IpkLEkCQbCZcAR1Fz9Rcd+jKX4CzDuYfCgZ9FlQWkPR/yy4KtRpxMZvY/1QX/J3Bvbw1bG5UKwnm6ql6H+T8TP9G+dVSOfhJPyIGZLwsKlip8zQYLwm1pQWwkKVJGd3u7/+szMnFbA5egmDcie2Dt643jg8jMgZgpGybg3XFu4WVeoJvv7g40ibqAzdGI20Mqwy2S39/6fXclh66i+Ke5ad2QtEwiKpAIK36ba1XrstqUz0b12+Dyi/sMDkEHC/ynO8UHLwWyOIi7Q+AnCBH9RvCdQf3BenU42uiFl2SoP5FvFH240e49k3UuyYBbTCvXGdABGZ1UL0fXHPq5O7FHVOavbfE8uAuJPkTmZsliY4vDm/imGD5wCH+hE6o/SrBrMRFEFG+fRmUqQV5jumFRihUBDk9KBfad2djBqt/5JqVWVNpG4eLcnu2n0eFg/KnRkGju8Hbm19tggO3jx6jmU1eiu2v/AN+xfmUX3FOC9k9aLEzsMZliC1d+E4nK9PXSWYKe955gWjavxklq9sSg4kkqDmR+TDcK95CJ0viRR6LmnNq09CR0oU2Kte47oLzrX65zcd/ZjDeemIrvdHSNLflO2NA4Cs2uSZHBd9FXyk1WvxBzNY331a2CiVQJgfNkhBovdF2WXqux1qGQr61COW/zv1NL3DZJkMWhccn8O83Hklmrd0No1hOguJTr5T57TbNcPlDgyXlKRWmLjUtlv1pRbJJNYnO2iRmKJW610xJVm/k8zrK48U1i45FnZcwxOhqTDCFF3zqR5B3kh9jHjq/Acc4VmUhKDr7Sa2rDe1vOoMspEndvL1UqqOQ+PsX6kaJ3ZubYIBrnegSUprFwcdORU+A2G+0aHyquHuegysX0jG8tnf11k4vzLZ73P6gL42cP6auZuQCE708dIvHECyaad7ullJnoO0gzHQ6I+Y5C9grBLx3Js5v8U1p3kM+pehwoIlFjpUfq55Fh1O8bmQxURQPtOThyYNlC7rwQk+3Lr3d/dOzGjCeLYId9rXuVRsjT7vcK3mAOgEF/g0e8I8hkFtiTYkVE+54DCexXIOn5ibzPARNLGwfGPC7xc372EuHW516+YxwprSNFIYck7ePI9yjA77uktbR1Q4rOSieFeq4yo4jQyMNjl2WV444V5pwO0LSNeK/4RSbnzHhqKkm6lsOJu0JGNG8Pe/oDKtuJ7uREvTpPAOgXBx0TIzqig+q2fcC+Zdp6GAt7V+h5fQf4c7WFRy3vXzFxmjrsOK0O3pC8IFMEQBDrKuwxuMtyBCOinUp5ikyrAln8VpZwG2/b0dmQC4YMS6FBZtCqt1cY9c1ZZFViZRjkvRT9MwhArFs//oznMri5C3c4cwKic+m4C5t5vLGiAx3d4O0dQVHf9wIflSJs7T1VTe9ojw+jKC+k09XEBG3Dgt0SsXLBAJuvOLb6mqmDFLwpFgBW4RG4nTwXbOJHUXPLHZC1jmRnDaL/1TAxCSt9UwkTGD9gNrBmtyZtPZoqje+ZqIfJr8Wqabiay5sKNHFQTdreKxmUX6nvNJzU/GkRGVa33wNSqJ37yt+khO7gry79VNhZwiEoWjf1lig3E1OEQPU07XZu4GUd7sQb9bawM8iHqi3y92Ydmx2KPMLFE8ppeCz/fMlOTnHeGer88wJUBrBFDBq52sG3zPL9GPugLaC6utmmtMW337GHndu8MZylnKMbU+WCyP2aW9LgTfdhNVzceKF5dYZTALNWeq8+S/z2otCCAedNPaJ2oJMM7lmMFLEkAnbdV+ERaOczHysg7lo1nqncmnz6iVo7IKKQYQN43j+59dShl0a2033JnNZG0PwT97IOj78gwWuoYsychApARFaN2Qitcu8pVaHfRYUWTtorBEv1S6BLGr6MGcOeluwvMNERok1QJ7Gvqkv2oGA8cDJ3IGDKW5w66JjnQgDwDHo+EV9YNphkpfDEMGvEeVqemDYJMrum8gOasOPQCkLxFK4ixSHwRWElUJOwJJLlMRn5ocqVNzS3aicyz8uAndX/eUkqPhSw2hQtdS+9Bk6zpSob5cv1Z3F3q5nZweLifP7lFQcZEuiLWry3wr12rpcJ3m1zdMEPTogZyA3GzkNYqnRquwVRj15pfg0S1CMPJ9XrFjd8Cr3RiD7bVkRefvYnCxrtsrEANRV5ePnIj5Gfui6makLlIhl/Wt61djRxFZzGIdAmNiS4jujjRZQbE8n/X35VCU+o9mJtViD9l5RizRW8mgtK7/J4R/42SrkqcvaHfzrVaDHl0c6Ibu/0j74/I4R1Kv3gYouohJdRV0SSLJUpcBjIGfZMGb9uCWW7PP2cnqNTIkroD2ZIL1yUgPwpmOwGZxfXhMD15FlBVwjIxyPEMqFTPGBoyIBd5uTR/PR1K4wMPaNZKwNapojqn0HagQngVBbD9ido4EiWvmd9HkCJS5wwumPNOkOpyaMa57YTZ8MJ5ACNR8DKOW2YvOCmB2Yeuq3MDa0UT5h58VkCFr1bRAwMtp+/N10CEggjm/XfaKhKGWeZVlpsfSTsMRurz7KBB8gcriMF7vBh64BoM14oSjCXnVUOywItdYypTHWbkquEqWiY83BeuS+TRpBmwKhf+oBPMl2rs5b/2HPPOAjl7HGk/P0h2EHSNm4sYLKiqN1mXqkccY7ZL9W/6GKCbBo1cTHR0+4qXTKV9vNO8pNs0f6MfwFFYWDMiH+NGuLO29mOUXJzG0aTV3dLl+aiuoXybTdKAPh6GbQu1g0jHkv0WAYyCZ/ettFZhAaGuOlRDBYLGjBptgA99/2/8mmmyfE7D9+mRGPNTuIipkRHuXHF2E20UdizX3NhigCFfNbUIBfiBoA+RsgFbsmnzLwWKS9TgiN6xHPx2lQbveQqMA8U2z86bb47VG//hEqtkKl6Vz+yzr6fG7ZT1E5pRJPdtV8Cv3pLgc+tNnDxkQX0PnmnkGH7/Zji/AvzxHOooNI7c03aBDqvi8hX2VBZ7OQOrp4NXhLUs+KEeXFbDEuiayAaSaZPjLVAGcKY6d1XTx/CBJ/ksiv77UUNLCR6uLnJef91Nmi0fNVRTgcqz+bmrGbQ7CScAYaDEHAez+aPDXernw7gqKO3A2KGKKYqX8/zJ4nLoCHTG7M6wwfRhXg+Km6y4AzMyTQYop7M/3aoQIa0WrQ99bEGdC4hCNl5TvtvIKyaJSP8gIQdvUtjK100ezxk7vWHfJGt05RXhHTh2fgpX1skgwHWkVDc65+zMmhYyx7K6jXZaHCZZEFkUEPVKfzVhZGunpAKFYcL1afH2PhBBrkWEs8aq3HxiAaBhU3DySt6BkbDJ8gLZCTMX0dTbG1s8695GPwNmPaUBjl7Cyqf7UzNm60ilHejprvi8YTmuqcRwlXDOGgSUlwJRQYM4sMiKJEi8a2ugxli0bkaE12kenTOFvIZohVGIFFpMd3JPlwYo9vzf6t9SIfXDd19iGGONklGdmtysdwXfYxuJRVgZrw6WuFH/5XACpf1eVqMicA4a5F21x3SMladmyG2u0F5BdjW8kHy7bpDQ9bOHpTsSSEmRKV+Y8yZp6mhcVsW3AUOx3UH5HGbc4yzxk6UznLX7RrsOww1CuyIL55a2FLhZSnusaYwAhSQqR0F0p5uTVo5r1fXITihpuIAo/nOWVDL3W3qk+qPIkrBCZwb+JcWT9k/G7MLuUR6GTTkuvccH4i2IRlICZmCAeUO0sFuCL1+3BXFf82U7b0Yul4DO6VUBK2ZSELZfXVpwtIQyw2/13Q18O9h2k5K9pL5B4G+I6Jv3+UIWMg8bV92Q1lv7x5G5txGYynXU2IRZ50eikQwQeAa8eZl1xwp2FgG7yXwp6pN+76Hrn4zaZ7So3StlaAYhbWq9ttLYlYXqDwUq7AZBq5Ygqv8fVoc3nDJA5tsaiC5oabX2I4xZTzb9h+CAcoEotPC0zkfilquKaAbHoaXIXBvOofhqVS7faJ5rY099w6EHlJ7UVBlQdJ5SijwnCrQPK2DkrNKojgIG43ezw+/xLmYZRFtUxxLdI6RzpqmsHC8I2XuDxL/lNJk9C20ypnMQh8uFZVdTvp3Mo26yjGeIiOjhmh2eyK+e5xr5ZrNDMjtSkExC2Nd5Wx1uUuaWmHUjy1UXYVACbMU11hbua2XpbhCa+AHrB5cWl/CAgNH8Kz6cVQJO9TwInSlhYttMMQ5JYnkSsk1n46volP9Roq6k1VdT5Go5677C6Wq71sO14bOmKGsFbzkL1RqF8l9VIMD7IXIIA6inU3hRP/+KALIgVqJVExyJuqitdek1TdcF2e+Gf3ewyCridTM1FOEjhQ4hxWZi46APS4lEsZdzGxvycDqfYyL6k6Z30tR5gRxvZjYN+HkADocF9mttgvwrCicEoZiwYV2QciCZVfYypo7A2UD1938iGRV3HeoZOgLA07+TnEGRCrspQ76eGKHHIMOgLSTwziTWCuW9794+UgcAUxNq/9hPiyxI9D8D7W6MLhApeXdDG06FdetJf+fWS9Vnl3jJMYYJc2/NRX4zdnTNqS0NPAcF5qFzrhOK3nM3Efv7Su+4ezl0f5UTsK8Di1dnpoHYpkq9vzJoyDdtHmgCMtmA2eris2PoJ9RucyH4+l+XtFTfJgHEvi/jlkbJBoiF6TT7EfCp/N13e/4+b6oNOViLA60aXitXRtjL51aioEzbpHjky6dDjyLf9AxESZdBqkF8i/WuLLyqpZKzp5oeSWRX8ORuApg472fHnyFg8+bS/3uQzeBEo2NyegR3C4HWY8GdqmEslGQD3La6atyltEJx+tnDeiJ7BW9uJ6NIJJDn6KjefI1n3zdN13c8jO9shHF22EsU+7lnwGtIQJ/GfrWSJ5/c1PPyDM/sHWMn21YcQCyVgdqPEWC4A/kqrVqLUfoGY1Q1F8vlBU4cnfG8XvjuY2GE90QaikeJscLAWQD1NXEVCkmILMLHL6Hnna2aGCqZQcE2DVAn6O8X6ln7MrhNfSmSORCNquVc+jupgCcFX0M/J8Qg1EiD1D+fEjfce54XLa4SbhoBPaTaEP9/pSPGLXYSWAXe6ZOg1n+YNwOw18n8j03XJfV1Rk8fCheEZjOtuJOp0GmNyCJONITcOCKdq770GLQHgtMk1TZaSthr+6c7A2se757mRWRS5+oZ74KS9MuH8ajDTaed/2MRpw2zoAVG3+Vd5/3T1JutqnhxV7i9oxe2MgPKpGy6Aa/bXXG3HE8o5k82PUounM4bmwjy418jvDRKRzLFbe6Orao22pNZwLT/9XAn1ZGN7GtFwHjaVWrWBm9v6jC3ONx6hIPaapSKsY/NbcYwQwuSev+wyTFQAj4gO1k4vioTGcogkZIb7OnTpyi49zhHtq0QlKikTlNoNdZwI0ew7QG3OAROfJUD3Zhx7BOEmks5WsDrMsIvJV/co+cQCoFnRjyyVeEgGArjqz1snDcJ2YpHxwuZnaATxGN2s/dkKvOlTZVeWDpuCIK1y4h3uDNUWVKjKne18WxWqq7RwW7aVgX4jMliHU8n7ATJuZXRDERObCfYqds/JA+y0YnCpcD8n1VyaGeNGxM9gXyDo/pMQDnzEobpTBcDwSn75KxJurV9cYbLkes8+1rBAZ8OISIk7watVz+vfPckADzWBSy/EbMF6Z+bHUZxPug5Dbksle1+W6/7Xv/kE2kN4QbutEXj6+fKIgVe5FOZ0B+Z/U3V8U4fzLR9myrab6J4wHyV7dNeUUxqSEjqurU57anpUhargC3jr78RTAbnKd5uEt2Jp+OKVc4Jo25HPfD8+/gOj8jOFQcyryNp2L7aBrzzGJiJGF20NJDMPmZiJ3QoWpuXxWAX0a5FzQdwBEXfS5MyTmbHMEiWBfInosE+i2KVqqC7HUpXREea4oJzbSPy3dq63rcqHEsHMKQhZpXOl0XFtfNK4RgxMRaVflpAMrmotdi98td/WifRXC4rHWxkI+lUKx3bFo2vA4s+//aj2kMWX5s25xpgOJagCMezXQ1kCOntmYaKTGE/jdjsIGhuTFrMn1Dt/+YoCg4zFClK5lAjOwOKi8R9PjCjmqiiYdyzjRSxgZfbf+tdte5yzaQqUj2+7fYRIVNnY/FuR5q4oNnopHuJfYyUjIkayzbc+61lExgLIHd2w/d0hchPcU5T6jRgTa0hjkQk6X9e6cHHcyDTq0eSWmf92qbi5KcOnlQEWFNSv0SBkj/RXGKNiMDARNZnSp66uWMaIKNb8AjjsbAH9D7xg7e8t5lmxD9m4lpXgfTKFiXKeeGkORXId+rbX8pduIEDD8l/jYIutygD+dM8vpbPxBX/dxHKNfQHo8Uc8jGft8y6WB64KyhqTowFsKafFBNi/DKPP01AKuZofVo9q0MIWgNXj/eWcErlEImFTNnU3e5XvPyvFpNCAguFzXzyWSTSnTiq0iimFDBWy+yhDuGIRZSUkI2fGm6w98dx8Hpcy+NXwRwMITjveBSc4MCn8Om0at4SQOGQx4x8AUJeTE16KZzEfqcah/1Ba18iyNH9ualFndbac+dOO8OIKE5Rp7CN1jivxfcPMsIfKTbTpi7klVkiMJJZxKQLAUge5GTzfn20SOb/qbpnxNE/xsdpjHj4xDMdoj3J6BuQnCoHrTz0NgR8qxdEMyn3zhgrPPejR8/iXFCPcKnTn8ndUq9FG8DcLNDaRj83CIXpSVo2k4j3zk6GOaW/IcLYgBjRJPDMFlTGEMYz7bVqp5d00WvExfrpgCrGWIenIq7vjmsaVpan7KXs2/wKno70F7KcjnbYxZvpHSh9pedUb7tDxKPK3ZzjHdlXcXZsv7Zl5Q9izw3jBSYJky2Q8cB2UYSzvVpXF0GdQaZpcLWPn9akqU9IWNTEkUCtnQ5IU6beqWZPaaZ6UNeIRj/uF6PPkx63jfne4+ByFD09uQ9ByTTCul4wkwuVmJu9nl33nTUEMdhRDEfuquEpip2A601Y6BDhwiEluj6PAQfx2sVaaXZO+gIsZEdvUcIdWeQrL5OPnv4bjJRcSO1LJQdae5W8p6rhotDtJzQsRsPRZSo+YwymWLqZsMrRr8LoORweKa1StA0cHy/pGTIT+fu7h+0rVeMaDvelDy42yipPdCwp95W08XUgWYTaWmB1JO/GCdt/tzBDt7tiCKzxP1zOtRVGTFiuzEABQVVFNpJQZX+429CQGb32TzdXinjj0lEkLFF3kPuNwgowOj9OC8nM3cGm7zN6DOXh2MjJ8I67UpNlLT2TIb1pt7VreLYgXNO2WAhqyofBU1po61nM0++/AsCxDfYpZnimTpffuqzBwqn18PPp6/n0jhAQG++dILKPsjEOYkf9A7rDzOAJzGS0Lp9m0bJbZgXpedkx60wYbaDvzQEDUrixapViap9PFWZxltIDIH0FXmwjLhr0Yp1boufmwTbPj2avPM9CkjlN5eTnzasmOm0SabWCICqO6eblu64QqUv4uo70bjZSbwuzeZ22FR4CYc0pXMfdr7SLPku2wXF8rrxPfZoCWETCbPuCJslo4Q2IxkfdfOZHxAUxZDXnUgnR8v1nCh2C0FjBuUu5iLMQdoZtPIWsZE2K5gtRtNlGZ5TroQpyIVy20UHdAD+MZWUaWLLHu/AlRmVImULJK7KLqWcUadVk1+B1W5g0CnJTBcRyDyTxHpNeXHKECWUKQiNyIRIyDFVKgK/2rlIWjQ5A5Yzt8OqPGJegAEsHsOp2zJHLgsWLX0osiUSTF4SlTJt3Th3Waqdos2QxC5SKWV5yIIbtrVyMHqzz562gOHRtEAJN+oqh+LNLveYBWe+JAJCD6haRfOcI5tDFe4H5o4ECFyA/mYaDSI4leSeZFwSnXbVnGoOtz1cWroFpMYSWLaDyX5GAlUmcow2huQS4UGMkFPGCe7bePAAtBVAABd+uaIeP0x/FczEHvXwV8f1VzKCCJN0fl3lf/UnD2U+1FKa7ZdvU4Q32FPsBj7K87/FqD+kQAYR6i4qJVoe30HbvZm4xmxvJ+jBQntEJBLCiOFB/bgUjCbyBQLxy/DWS9nMu/hz57m7BkSuhpxZNkts1vM4dwLcyFp4d98ixLs10DldWJ5hKRVj2rDFAaeXt0m5hjjh6+ZrV+WSxnofH25PlmSRVZ/xtADYsxQcG/D95GKHP8++9EyXawumh7TEpY/wvkm7kUiVCgm9uB2st5OW8PyhrIt1Kmtoa6Qu+5KiWNkLzdmNhJR5ww821mkz/Yd4wKeYKhwGo8Xd/y0lTCeRnrJs957ku+AsvpQPfvXN04N567zYTJE54GBXMAQ/pKbtE92PLZTCMFRi96lpvO+SF97wzvUuy+ynZKN88gLYq9zs465tigqxYEvDDfhtXtroKnryIYi5qqe+dSE6kKTuhzWHpeu16ZF/LN6bVi0Uq7rUgta6EUxx59Z2FagtMWz+XB3ZJVUXG9hAmjYuTLvI0d0jIoH9hU0fE84UaPzqNZmcHcKNvVGfCVOuTCC7v9Xxv5TT0scGpG5KTaNClJMGVIHzSJ5H/FbGDDC2OWwQHTsyeG4hw9Xvky+8yDIusrHuAxNvxWYviLI1KX5JJzEsxC7CUnR5J2B4RZqyMNm+9Ae60+mC8NQ8BZHXjVaoCwxudwM0IOPLx+/BDFxI2+zKxfPjiOeac/x1vfsaqUJ3EKNCH1QbW6+O+GTlwu3zKv+nHCXwKxetXPyHbyc0OjM/CDcKR7bRfgvN+H8UnzwAoANS+O0LU8loTTOwdpKEKvEUtvH6WWm0v6Ei1Q4DEWcK2JHkPXb/02ltc00iCaQklyahrf8bFpQiomFhpBsVYEDXec2bGMjpLFY1L3PWjOXJRmVAC1/69JuoYrkXnMt3PAJL6NCHShnU7n6hioCFncWSs/xuFVHx5kK600rO2R66JT6XJaA1V34cOW4NbCsCEgP/ogbB+P2s8Xvh6uoqPg4QUBpR5aqgo6nGOzRAjFBjGHgEK4V2n0mhpGIVLw2ZdAW9GsvVzPsfWK8TyexYss5JKo6qppN0Pw0I5To8FCh0QDoup/qIrrx67OTz/qrtA72Y2yTm2ou+0pfl8l8DAZJ5eNcfXCsSFxqIXtYFsWgsmTZ3+8KvYC9RpL5pXedJhxf5c4xFzKygoWAm7WA5DpzGMAWFCFxVhVdlUF2ffGIawUDVxeFofBvCqFhyV3Jz/uHIRE3CsfMQccv8yVVR6RTXvQY5ixKouVMp06s8/GnFyslSs0/gfgOBkwhxG6JcCF0q9Jtsdsy+3wPD7O77RRKdyFF1nPiw+U2WJu7/DOUIIN0Bwj0iA4L/fXfNrLPjGDDQ5pJn9zxQrbwFPsCtViG6t600VWnpYj/zug6Q9OQ2sDvpe6GN1uln3IVwfISO9tygRFGha0gPbnsGuzVF7aKuZD1dl34s/90nhsVkIGU0BLHd51IhUP9dYMVdMesbvEMWRkwXdTK8eMgy8i79+tiJSbojfKWxdyO5uPR6FHoUKCx/cZTdoySITuYTnZcNnX85QbF80AjMWDwZXnnYQDK13daRl2RKb/Hkz+i05y5xhlY293xCNoi6vys1IMuGuNfa6YwLD8Q7lo6VxjmJSik7QRT6sOzdI8i2eeVGZi+rLW3fEsV/l0TaoWUOBuGjl32Bk3VHT2W4OPEWDx7srhIjVPFHeL45XfQKQwRCBDIUDRjid21v9+nr39uYMOgIgKsval5w/pUDUXi/56VcR8zTkHQ4w8VGuj2cFrG0MgJUW3ewppogGEg8a4QBoa/M3fImkZtylGUwDmqM+aML1bZc00VsgUlTXmfZFe27p499tpT4lmEPJDKCMLX3FQfZ5nqpukJKL/csmujoMZhpB0D2w3zWK9VIrQx4y5FBRQGgwjE+6A+F+UwRHBAlVSKwf2LvA0EuFs25HD4/NvM97NoX7H39pZ7tb5/6+ErFRvEPH4nvYlP8HgT6fmPptdQP6UdMzWSAWOeQscWMxFqyYD+OJ1iMXeGdyylfqCzRB4nUxhzDMEVDRBO5vKmisXC1E+EomOrxMoBIlyMa0Wj4KNX+bq62sDS8pOkGlgkQpB5JcuRoVXwifsXT7UoWS3clyL+aS6sKpOP2eIuCu9hFsy1xeDv/cwLYzG59f8S1Y5uN8NDky2x9QMRxCqH/NZ1iDDJAmVe1X3GuccqeL88ns7IpPReRy84S2TivJMYFARJFNaIYwRbEg8uEEZeM1TB3PY/GRDP4SpT0Oppy3RMdTDovWFNWzyEXNx337cEwZaJvCtsQ8e6hKpzmemvaGILNvgGTewtEk1WEqXVDHLFVzVkrQTgdICkibZUac+g5S6XNez61yfrE3KmG4GKb8DRRTyvXyMe822nfq5deeHr+g8rOzJLuGqJxADJoru7a/LcO86REWhGEMIvmXFLSbDdRyKBiXYrxG1m7ygRm1xEAw43GdZVFeH6Qfdl0Y1ky+sPcEGtYUrydR3OY8cxm6cKWTuygfd+mWoU/iBoT8o0/vOKw5LFhZ50ccKvA6u5Jrqf6GbykzqtKPibrx8R/YxUyLmBzfCv/O+PeQ24Tcr+Qfvhvzi/0JKg6W7VmoBRyuOunvPvVwOqjkB9bQ/7gFod7sKOR/B+6yt85mf03SQB2ha1ggbKFiQMvp3Y2oikuFKK6/ke+g5HNQ6mGXUybEjtKbKFfUv8bjneWmAmnQdvkbWuJe/3JElhQlM8thbwbc1wZcOF1kHxb9xyLgWvYS730gGqX/Jk5XThDHX5r7G6n3xG/yOocU6s+DPxub5TfC5eJf0yPoec84P6yhd1hc8J0IeUoCLLTjkPcwgSf1J41evw+sHwnjLdci6CeuY4oJ4BsRwy3lW4t3ZY5hJe+JyZRfp2VCljAR0SOr3nvLSfSTAcE3c95ER8gTIPJ8vj88vxaysi77baCFNUI+uZmNQWt5vVRzUMHQRianexiGFF0vP7qoVT/5JuPpIqCnyt0/puod0lJOACJxIsejazYenOKbdnVrntWEDiWDeB4GLbay4MMNq9gLu0aEFfbzA1n2MWA5S81ISyX7b5Pybz4/ts/7koJfncj4fXCY3z/9aNcWjlbClY9yvBYtmhK8QPogKfgMUjnFH+e8uyB4go7+147hVOOl/d3W2X19/4m2X8uqmoUhkl+rFYG+fVYvdQfO6MQHdh6N0WxqmInlgOmEZzA3Iwd43y6fYX5Za5Ioq6AiKg6z1pSwtBQJKHv+VRJC8Dm6VbVTij820hxQk9CDPTlR20iBPqCnXusjNQMcqN5ef4/fFg0Yg2h1qibLpfkxEMVIdi6qzOC5N5RloWZHZghbT1wDXD4I69GVnNltcEofnGb3c4hblDlyoG7t4nkbFYMWBk7uWUpU9GzeiZMK2VpxgEag7hXHCITIFs4yV5n8D0Qv2HejYasAx0ozdp5EoQD0wTmEPpe0zUjozS4l0f9Tu+IomLRlECPDF2UwEkeZd/sYV6ujEYolNR9QP71Y/jQ1rnk3xv34A+oySzRMI0VNRpa5AFrO+LBZIlom+aR9BC/irsPwvF7+oGQhmna69io+6pMByj7SypLBWHqW93z+68dRdOR5uFQMKd9U3XOIIyop2h2xVDx2NL6ziw89o1tSlFfMlPhUYjcErDyauWNmUFwv7W3ouwj4oerWqkMmsSxv9j9hkeefHzFu7X3u9UicILX8m6PO9fb4nxAI3oAbTCzK09Rs3D+MJeyCHLhVVBaxNkoDJafYWMVFGdmwM3d7QHQe2v82UdiDDO2aiT1Vf+1ghvctFxxdaOJW8dR3w2ikn+Nn0yIrenXKReVy0hrZJczj0eyI6V8FQX9wQYDnIrOKUDRVnwiach53hi+PFIBr6M2xvjIVT1S2H7EuRaCNLnEhVJLR4PfSCaUBQAgs9n8v/79IJGSGYblTahmvpHJE7nDoFCm6htriofApo3Bh+hK1CwnLzmmX3nc3CeDpVbCXE/7Fhy+r0J/wK0scCJuOQXPWJwCp5Z1OpKuHCB3cRLrrbEG1fJ0A65/ArBgBmBTXvFkzsauspfSDc29FjfPHs7nCj6VqAWgkJ51aruTJPFYPSae8WF9FEy0sMvazJDPU0Z7hNHVL9jg0m2/OCDzhufr5oAmgtLGIoSJWm2ATUzxxMjYk3FJT1HkJaZDmKsXG93FR8zG8nghWbWFJxFlr3lB1LfPerTHAdmCyWcsLzyO60DYcAptES/zGIB5PqWA67cDF9vyai01jNdaDMAkPYCEKfXlq70aP6a7LaFhxSw5migyGG3zb/PppKBIwOGSu7jVwghpr0qI1j6+I7sFlsFNsLEXLRmShDK5Xg0yTmPvPZ0deQvGOUqPx1/+eI2Bx9BfZyile+KZ1yHzDz8c0oZu1nqEjh1MM8+Wt0n1OLKWbcYBeEhPcCcdYdKFtFur57AhoP8x9R9nx25TpQL509pSTy2KB+Ln/iKPMOV922m3LUMWcd/tIu+qDkRAegR8JYyq4go2yzXLD69gT/NgXplpBxyESwLxo/i4FNjFJGBqif/Oe1zuvu7BWLlAf/lBqcFv/TysGdHA0I2LutIa76+Ze6YecXH1vdkcWxb+hkbz4ZN4Y2kAta0bnpb3toSRMai7eaid3acYCPffb1+kPUY94olhqYOICB/s7AQG2okuEdye8SRDv21d/KkPltTCxVtmBq1HiSshXpaO3gmz8EYZlXBNTX0nQVPMUK8FFvZTLWjhY7XH+Rq38dZK3X5oE7fcjD1r9V9pXx9SiLArq8z0lK/YGVvOyi+n75nbfLM4hLgruKwgD+P+Hn42hyAUtfGGk644/dXzPVWjq5VOIKyIC/4bZXLZbQCiFS37cOO90lgWkwMPSA1HOL6q/QxZqa/EUmJ4Qi1ezbG7rgbfel1EGerrZNmyzwVUVg8DgZdYLAIyYmf8Yg2S9F/x6p5OwZbRDg2I/hFPThoGaJmpxAO9sYhGjRoFOHZOGuNIjyCGFO/79HYXSoJXZ7w/m/DHMe9mb/KfEida+MlcrNOoVQKR211ecJFMqLMCC9diU2CzzVwk5/rBeVAoedlsMQuGILIHUWfYeSHpYVNbxgfBiMk0f6uL5STcxtRUe9iQ0lXQMCAomnLP49sM/fmbizOd3a5aDS9lmDZG5SmqjXlZOdOZpjV+S+LFyQAQvI9/9mgEnq9JQnihIIpSS1sQfP4GzmwXKWZtxGTTnnoCkQwCOlW7FAhk6ekcZHernuKQi/w7kPFbP6y/2L7pHDgpKTH2qyHTqZfJR1ct/of391cIzDrBPgeca4H22Op0EHTn7Cn8GoqZ+/CyuqDlRCsCa2yK+anww/rmvXK8n0xWQp2m0WC5zo18EhdyvIi5odoOVAZk48DqkyTeL14TNAXj++pyYR2tbDSN4zP44hyEBl83cUHqu90/JuLQW8qV+QGE10wzJb+GTVthQGpMR32ex6tEK7PiV6zOoZ+psCLNHT6ZdZ1d5F066Rf5iJOH4JWs3rlmfgLWI1q37w9trkRHagyLqDIlET1POkDjbM+2IhFVdvWT9ug3eVuFwf+qZBaISbLj4yRxKpIinuXC68xwFpAIo1Diekz5UoQgwiDfmHsFoFW4aYyF1/Z+JGewuvi1s3wvVckVOkM6BL/3O3UxgQ5DbF/RV/JJU3B85nSaRq9Ccx1v70xCeYX1wYO0pqUEmNERbXeOsuwBP2xBYoV0FwyID6PgfIcO/gpwLkx4Ayr+VX1Tw+LBjKSQnNF03po+EQwDc27oo0THoxrM7/+9oKf26apFHdngGd5br/piHZIvdCzAgU2iF87Pz5jdkyvcAgSlxJfQJRye8PbINoiCoxv93ExzIsJiBSxoAoIM75Pt+GTpzYw+0XIr+iI4fjXQymV6STIvVFLpdngfv2fgHMKb7k3JJSLbUXABagyC5elY80IwKz1NTA/FIEjA7+AUEPnw+sIbcdnoatUD61ZVdj7PFzUb2Hb06CrBz+J2/MxW/SDfcE0n5bKO4K7RgjdTSg1of2hMZbpWTdSnJbRuGCfdbo05ZaOwfBfZPgnVAps8ljXUS4dr5UJe6W7GdZLdTZFA66KQk7v4YfW4OQevlIscEw8Ytm+1gK5gQoJDjq0j1mkt8BFLEOHJLLzMIArindyQQfb402JSNRe/w+/cWSUxhlTAFDcoUgU896F5rcKIEYsrz25MraDdTZLhQM1io4CK07GFcyXW/8MmYmKxdNb5meCEvsnduAtsEYOyXbqsNSzm6xGSk7XFfw93EMXRx5ciDR11NMQO3xuZELNVZACAHKDCCZKaxEWG9ousr4DK/XegSm0oh6Hg4OC9uOkZDTBN9NTP3bFbTM+bMCOluPCVSVaf7gxJhru9LuQFNwXC/hj4cuhJMa7TR8Dk8KPEMiKCiiHoihJk+nDP6smbo9NxtKQ6GwcF8PUYm+YqQAWM/EbU/3W35wV3qfMagxj76wfcHAN5JGudZmNJ0J6PdIGdPRLV5rD1KaEdfZ79RbuEQwHAjuybbMK/WBVO+Ax0XL98Ei6NlvS/ObLwNxEd1CQybHl9EdHmz4TSHZ8w9RzCWweOGvxq78ZejyDVc/ebEDX6gRljf1nINPF9lc42UjC6ACGY8sZin5yZp9jvZpgO3hLlIp2Qzx3DUS9JbsW2UBEQotdnbNe/BaqdDd3JvfLa8Ba8mCisYEou4zjkSOAuPWQEgZWGq+86I3G1oewn21/R+jM41too/8lrhwvUYDID81vTzAr+FsV9CBG4fCPFaQVElVxyvW/jIxDc8WLDvgYxAkPYyfBdK3s7T/dRrk0ZnlyvltM6CYnm97jwtxTmHZQKtIGBEsJc08nVzugzf/RjeCwwYX52GCviUZpesuuv4vvsWTJh/5sL+RE40DUxMuHKUfXXreaAxUPABgU7wsHwa5RgErqhKwsbd6EJ70c+Q6zLvRWrZx5dXcrrlyYIbQWu3J65LtlS+buI1Cp2k3C/GY6Fa4kTHMtI9lg5k6hhDayIXvR6yB4GlwttDd54ZJsxDwyZu7zZM9sJ5FaMt9GiVK727EBsqMHNGFsEbM0pNtCd7s//lY60Tpwlal2bCHwlVlIIxqSw3jcmfnKmM1aOV4CayVW7qhgBiVlI+jne2CixS5GIZ4TM42XqocJOvlP3phX/7ODoDFDczUrSDa12Vm1EauRDRuf9bUY4U0A6gbpP2bl+iySXi3drZ1RWHMf0Cw30noptofZ7ePnDJ8ajU9W0gmwFQKQa5RwEJ8xb+CzqpB+eALoOdU80moJcOIt+bZyKJsjSU0RDPYipwllAs/1t6NC5N9bDuFFeyFsNhgb0kTBuZNnZs3sVyvuaAuR1y/5vNcCXXR9hbSjKDYJx8uRdfzFRi2lpCGW0VlaIjptHYh+qegHFhQSS/YLF0WLjTxKciNMszMy877C0/LF7Opc8xHp6soJc0PiQr6Eyh+uXzbzh4Grkh1C/mdQ6tVMyay9fKZRYc8EcBm2ExqM4ZCy2sEziitCxtoAFNvS4qX529s5ZbHZ3+wZ40+VqszuIbgKtmC9B7jUSiId3MlJ59E2fJxLbCBKHeHG1oRy+daTZWL5ZnDpKnmsrnKDDDMqjf2doA5kL898OjpSYODQULdwy8G8Am8tIHGkolnOixbcXHIvq4VVCS/r0D9WFLK1mGaoW9Ui6pxp1x5HZBRLGHLGEBmgJ7khFfLJqZGgO7C8HpooSMbIoqME9fYZ3Su0e6VKO63gD1eGlSlxmcoNqILfRpAB9K5sRKRlhZgZKcsfQYVJdhSFpABzNcAK3peVdWtgJSepQaDUywMFJ1tjwUPgQeAHGVhbY3397syQGVoLEZP0GpKUUIrgPwpNBTnvE1cd54mZiC+dYlkn0p52PpDpuXZSJ1lenxk3+vUFUeCnx4XGrLcbgTnoKXePjwbCnU5QN5VyoktAhUiEg8NNYmvgSAALVY3DM5CBEx55QO99xpknTnkC1o9mvJkoEFGEo+BCNBUUN2lL4Egilv8PR5WzhILO9H74MjgwtG9DM3zXWDIuFUafYm4hGKoChexUKQZNLpNWpkzjyKpykIEhhXEUGld2HrfpXt01cOkmVo9mv2bHov6ubk53xgooedPEcJDrK4uNygvC0rSm87ydi5LD/bEWF3MCb+6CCT+2hvhm5oD6bZCqiFGjZqlh4jS3bVX4qYE+jwCRpTmY0NLX0AxJwoYvtFt5nMZqgnNz834kNoHbuj5Nmy0LFr51zb55/Up3U3cRRQwuNoW/thz86C1/2sdo9rvQxORFhHMzPeGXzeOuVedpfayhnpkw2lVYvQxnQnGBSl0QK4MQYD3JJP934B2Z4v/Q74/FG5gVHEZlpBD+Dtm5g/JBbpRrlN/LXz6dCMbo1VdyeN9jIZOlQ1YIXaPK4swDUK433ly2QKGQ05XR4EAXSPtG+rw1X302aOHAn2+uyJxCXbbZap9NUSTGe1rrIlu9HUW8BfbnIYz682rJ1I62n1M4Hcg6VNac58NA/4mh6Gtua6NEmwYfBBEtHkNe4HmND8QxIENUYlMezsLor7WN2pahAEFXlSklTealBkuwyFCh4uXMeQ7mgra3B3Gw69s201n5TQM3NxKjh2sfVfcT9u5qX2yzU0kQNfr4CM5V7EYKzsZ32YsjbJxZSRQAqx4sGQtxj6k/00S1Vq0k9V2WnC55L2ughhQ00naAEmEMxeRiHpsTwmK/o/XOHBqBIdy1W48fjV0P6Mryv5dhg8M9ECQTEgjwAfUOEVXtH80HMWRW9IBIVBKZhwK3MWNjiirRtxyT5rXKWvctz55UT+hk1/0BQAbYrVTBvOAfB9zBsOkYNjdmnvFvKeepOY1SZqsW9Hr5mqL7l/cunucFUG6Rrieb/yQ8C9YCsQTEGdKuqv1xK82kY6WGPPfS+IctPZ4pU4VKEXSQfut2D9c1FOfap1VfjjQdwG1JAni0WF5vnok2l+bjZiDEfXrqeFXsWAEbzYuVN6WkUc9MHGYdTjjzsa9aSD1bgkYbQgpVjkAKi4KI1KxPvD46aK0XSeoUt0ySLxpRlxBL54YS+j35jmpum/sTZpO9hbsu05TqCvbpDZ4UrmTxTxyplSceeAazecfhnS62vDJSZtpoR3lcDpykn3bhYtUkVaBuf3tN+RMR22rq/Uu99Zz5TUp9oa6Ix84yNWSx91Xmd3u81scXIL88dBo+bNOHVV8F1NM7f7dmAMetlIUCiyIMUzb6Ho5U/8+8Z4r9qdCQ9crDHdPgvuq5UZYENbTOGNTX/9lW7jAgqmsIhxaRNitQodoNM9/UtAlToK7adg0gSQNqrDe7WVknLCrZQoTHLSVBddfDJpbCVltos/uZMRLchLJUMq7uigGLage8IAlIzbmM4IdwjbM81gNZFZTjaZ9MZ4tgwMNwVNk9r5GLhah/gUy2j3SNvjyjgD1Yc/zBo5/St66JDuSIil0+tdN2jySXNdjiLCsB3d2wpBym44gvFOXG+HlwcMAZG25/uVS2SkBB74lo5xeqoa6qDU0DqiDYPuJ1HSwctXsEk+WREp/Z6VZmYDZ5nQmJGh9DpT4anPwBZ8UUoUpcvNi2Cnmkiwt7iPsm6X0FVSMmOMazYmEoIMMDiOTh3ySxvqh97gnIzsQqqaoPCR4BN6yltgbh+2sTSi3anoNOv2ErTlOQZronzxnc2W0ac74W30SfCh+y4Jv+fqPUrBB3tTBEsXNgpTqgm6/LoWeTmzn1+1OOvMprPLrm57XI77xAdCeEAxiqriQa3TRYFOJQHqEYWBY6wtLrL3QCxKE3ehHpBSx5OLfQtoHCzXMQtjex+HcX0X+6r9qrcZ3Wt1e7FVbLHd6s3nwwBue+qvcgI8yw3KW0ZcVpGjszdIC6or8mtYc/lSHM0t72H8B7KB1tGfAJZgALoUXsUKdTcIzulCIBZFJx7/ev/fViYejVgTaSH82nTeLOpUmBWy1leqjT/XENsmpMP2+sOzN7BUWy1yYpmfu4AoA3DhyWRm15HTFtAM/9NJbv7fy/h0nJF632a+/9zVJNxyrgv/lMW1Wr+m6zzOlvZc0v+NUakZFVi2M2x9vlHBr3lXPJvq7B27Yq5V1sZrH3QAyCIdo5Dmy0tvAwa4Ax7nwpHMwnQeMp2vCYRCZpIYQUBwD+7CTEWfCwVbg70861bdV6UuhPPMsmIFuxwfJ1sIYro8eyvu495WMpF9LYix7sKXtDVGiLTdzZEDwDmDOYrijj7X6up8guwmeZXfcdHBkxzlb4dDR1TSYZ6DKSi0nhwvs78pAwDhLcKqiDBHwkP604aNsPL+yMR9rjifqqixWgNUzFQbUKcFxFOLUnrVU3dx4iF8JPk2xNcznVDV35Vq1HXZkibNThSepz++1jImP+xC42YoLO670fY1UtLNY7Lqt8rI0PJmpYG3qyJay/GZhLtQ95VG9/hs5NW6n+drIwxmGu0sbQqGFpHCPFTZJ3ziWClGqRVWdmvCJgdBqpE2CdJaZfBiIw0XM+7JpkEq6OzUahlTlKF8er5usVpEI6mqLaSoMTlj9Z8Z+yJqvypa729Blk4QToEpGTAcXtOdnaYvGWixO/0BMaDfTQEBKHpLUK1qib+esqhgAqawAgsJBu0JhQ/uYCKu77XkAOIyI8aKqNcMUZCLmJiQmrALJn0k2o1kIYXno0RlCjF1/KcLWccndsEyWSfKKw2R9D46iBJ4cHt2qZ7rRuHxWNvKuem2RrqE3Xtbilp25+Lq+L9RpFNv9K56XDn3YYk1aGK52pUFbPkmvnRSGaZOXIc5LbMhyXkKexEAKPdiavBb7qaXVtaW9T/ZaBAYHdI0v4q4l3M8FNMB0MXbQ3+dWwDDeU9DWLztWHcmkTcUdIRV7bhTU67wk7Zh3WqBhe4xowjMRVo5PgQsPqahkBqBfuoB3mUSYf3udv3ucbPBAF3Qv9Hi0PS+j0CRC6O3bGNxMaPFKwATqDPE/95wDEvllwkYLtCzK2KbHxfEK0NJaMxtFpHaCzaWTpLK8FO5m8J6GM11gXcJ7ezfKNshGHDuaV+fGfwjC6FwnK6XIpFugPwX247pvDGZMXe2XgJB4By1RLLVzVrHkULSQ92SxQ/+RsiJlaRhNrbLhvLOPxeFUag688PC9h4KEBHk/et+xlPsWK2/b85nEDkxRKscGVq0PFJL49cInqhzPpJZqt0BqXKUmKD0x93LyKZBo1fEEAD5mQJ45/6gu9AGxbFMJEFSKKXGa+MBYqnjGp9aqQr9WrVtbkqT4MKdukPZmuYZKidHdIhnERZwGdu4Tz77vuu1FpWmxbBNq8fFoLH2v/rj9khYGvZzc4fd3Wx4C400LgSVZzKRVDkMV6sVKmqwMgor8vGBnU6D5b/mmW7xC2KnT7yKseradNpo1NIH+UEkZmOhk2r4vPxilXVaVE3nli6y9P28+zPnJWrmBRWTkiT64tjKxYSjGzx6+zjY7sj5BTD06Wrnsr3c63Y4rYhXB73S0PdYp8gefFOL0mBsSN+v6z98/chtXTqEFk9i8qaFFMtjJrgfJRYc+NwEC7ty0iMRdku+yuOLH8leAIbiv2yd3ictp0jlVRPUnN2dJy1s5dXYpJDBdFGq+FPoCV8fzWnu4R1LHQqIDrqbXqrNpo+5N0Wya+6QMjDE0D5FMDOD2MGQpnw4B42LTeogtfSrHWHO2uRQh5XYHbDpetn5wkZYXBbgX0fJtPaRGXZglpfRvWJB6L6v3RxMOQpBes29OWxzZbgOqMGwmwnR6Gm7dJ5CldWpsZNdGQ1/c2xLfjhQ3f5gPuQQHI9it99NsE8w9et6a32gQLDEcNK13ka1zvxg2pG4Fip/SfGkEUenvQekdNJ7AmKboQpWFBl5yeKY5T03LD85mDoHiVIitL2Z0N9x8D+zmLDxzAY/ewrfHL7hyW+hUiCyM5lv1T5OEx8SBfztxgYbehkldBAWx7UmzyGnVntNDY72PpnEanY5FyRWDsr1cB/fm7uvp8RYXQOZUgrtn5F1F9htTs7NtWrNhcEOFARXNKp37eyuUvh1jhIXJPe0x31gr+zJuBF+xAj1IuFqWuBh1kIPfbEXheJULiyKnHrGqwoDPQ5qbo/Gw/VVWy4BZRAy/I4sbAGZLwZ7YEPiqQbWJFzz30QVjaOEYEZce6u7yr2J0tKu6EMIqmGStyX0mHzc2Qe5maWco5zfmqOA32Sk6c3zTGEpOpkQLs7hrGwwHOXVfVFe0ZW29sMjT4MQnFkSfhuh5NQi2wxIK6ZuGNIA0PyysSqobe3x6qrdWkXbjeRUoY5FSInjxksxhicqJAgAGcg3fF8lA7vPI4lmbnVwM0tYNP0s8TQDdpsTiU+em84+bsSt1fpvu3nBqyrKSleEJXDjm12cysBMeFhEi70J7LQB3MswpHsTZxfSMi9bhw5pGesS1TsE0fei0JkjVbb1K5UT11LsBa17aEWIr0mSUKWZhBmXPJwZWqPp+UYivMGw4Vo+GZ9TNCHH84/DLhjKGV249mMGDOgn8e9ZcaNWuGhR1eCSEDc+mklS6W3Q2fTwDU5IdSAy0Mg0Hil7H7MFVxGKbyyrCvymFNnku9n+1ZwWkHOfP+jwe1an41K+e5/Y9l8QR7v3PgAiFC2QpR3ZOsWJo8doElImJ8BIBXpqBrKM8Y65biYP5nvjiHM+5NWdvW84tn9Re3ykMNH/Z/+QCI15X1pUV2nMBpV2s0tVLrEMWlOJ+CLTvNXbAKyZtVzuBRlOj9Apf0Pp4RXXpuGrAmQjc1YljE1nyjoVQmiQyR9h8ZEIkXJQu4Z8U/5ahMeR+bi6N0jqNz7FAQIGxe3B8BmPSyEZ4D4FlyFa2GrR3y1bDoc88xIy0qy5qicc3cFmD7D4WI1jsOwJSqev/HTejuaSw+aO9phgBdEz48/yUQqU4+ActN0GK8qeiy/Ox6h1jNrIP185a2L6Xk4NID3mlCzzkg3cDiLjYLqOafR/bSi/61PfudS0TkyDCkUvfuBXmq4l82axiDCdX9itW6Ie+lwkJnpcAnMoP6Uy2C3yALYqD1RrZ5FZdVYMDgkixExC7JGnAStIWOvOHrVsrBePW72+nzz6qNf/km+VsaL0BUvzHkbgpRmydhgIhSQAoPjqJu5sgBQivtOFRgq8DB3B+/VksDtHuxl3vz3zbMlEiyUFpxeIB/bah6/e0YhPVi/5+Ifi0gh1qwCztHiLngl2SQuSp8YWxivPK8qRAougfZPpBltFDb7GgVlYz2CrHMvgkgag0QyjtwEO6KcLDE3jmzPjK1cfIKigr/mN/oKwgfH6MZnEsQGDFKTcmx5Wx6f9qfMLCFJztzpJ9++dJVrxnzD0IBGYPUrfLF/PK/oqKgHvVu4lavZ3V+XHIU9C49jorfdhX4OX6iKFCn8fDyBf6tFIM8Xa4n2Nx0u0PJ8LR+Y743AAa+z+x1Pxyi3CgP/3fj9UiHCkiF7Xf7k74DCmtYYylYqugE/RolEFQCbuNNTfzyOxKswhSQc19+mji7Ezq+z1lKazBs2c40pUtVnlCsHc3ug5qkODHGlkOb+z62yUfyooO6mqSWFePtpHgGmWhk2mswSDu6sXYG2w8A02SdHwCGqpoiUct+WvzT4hAdnXJMXYFeByzGU/3b/XjrTGTb/XLbXk1ohJfrfgN/8ik6dN1+ri3nIV+Wy/LSqf9hBwJHNH63qpaZiBNndTZQLZbuObjnFzCEfqxgqkg541TRfgaF3Xsr6pnO7yxklOwEhu9njERgDohDqIDtvOS0LvcHp8NsiqXcnEz4ytRYn/WcECxB+9SY1qBPpuAeEUpWcZEYIYX7jzG0os/i0E0ZE4c9m976QoNlyfE8djYEHudBL6oOu9drI/RWZeq4SySvQ93QDfu0/qiU93COMeUPnikaG8fR0sqNj+sGP5/dX2Wx7nOmm24UrvPWXcuI4CwRKRPuzpNX4ZHERCJcZ0YrPGMV9uynh0/Cvf3NOtqmTDLFg1BaUUh1exyRJEu+6zCHV3rR4wSxowZfa+6KK+iqn4nXA1rwKDEZiUhFwAQRN8IDcWcwu6T6Of4QD3s7fAPZCyqbzEhVsQ1OiNQsA9L1bqsd++QjhRLi19FaIrbk9WZzMNvGnA7wCfmyvXH8nplwUvCVjYkqui1vkw/0VsS60WSeIVLxbSGZ1cqacxxhZJrB6an6r3Q0fWAVb/jruwB5jW6LI8zXiqT6KM608nxjVPTVKx8whSRnQtagy2SxPQCqfwyJb7IZwdoWu+uoJv5QnX8po8Put/jdlVpKB/arHMSWBUtr1pQ1mjx4x7VQxbvzfH0Ix4+ht1TEtbT3FDvvwkCWNtW+k6yS9M/5Tj7U7pNdysIlB8lTv0aCE/Lfh7oDfHhN66mAP914NVw04BEUYs82BHStUuHuZYLoV2XTzB3Lo84BsL/ZRTkME8w8J13Gvqk47sOXrE2aTLjJ/RpUkU/Vc4mwBTW4UoxwmBslRknqUJXv42adlvOD6mDkd3kAI9E7qnUDWimYhAtLxc7u1dKj1SUHgFerPfpjYYkNwp2pqNsn6cAIm3AttljCP047idVLsAavUpHS06tp0iypwmWD3Ux8dlMhdKkN8mczzwjmrKD6UutJcWw253JqbCLggaFdgR94Ur8bKHp6bmnImjY6X/S5je/9G73i+NZOiiMm8iDxFqbD8Yj9Tyqj2gOG5RXGO3eqiyPyTK8JEiKA6YaeMNGE4u1ZlAabN9B58uM4/MVCodHgHWHrzSxYmj55kQBuw7PhbOf/RxHpGrCv+20j8D6GsPPYa+OYz1Bg6MdK5nm5ih0rq78kWbvI/KmONAYV/FFkHsI0UZWr7VKDfL4Te4szbVqsrZ779MeM6U+X9KwLGeqR8PFjo44C9Re7iQTL6j+Fqys7PgPSk2sWoV+1TgwfGzrBjyr0Qik1lThMxiMI1gKlx50MAahBGiYnEtmOXm523YDaONrDXNVmWyfc10p6IJlhPQyU7gXLPdV8W+wdnD0cEZ6x5pjAqNI5ohH6One3mkbs2rc7YauzRUN6d5Bz3R9b3X3gK9KhMo6o2K/FNo6SqBFH0wAh+TDkVLv2dMREjOntMboETgpdCzdTHjmkGLKh7mF/XBIV0Q6AlREWBQaJMZJTAK05s/HHZFKCnFyBLtFHS3KyyrFiy+kItGSq6rBvhmh6E5ZkQpOwMZEBTn8OMClAI/ICWNAvBxSVyEl0SkNjNbOHK+Fx1aVF5sREBh+UiZCKAeXY5a/OJqlufU2FZ56LhymF/PSQfrRXvg8nmy09NhgCH2VtHh+ckBNSMCps7kSmIAroi3zbHt8TR3Y3Bu4m/ePDSVlhCFAKC9xsNg/3EA5jrkSk+N09Ky4DDvfhdxVXa/89+vT3MG/MqzaAtq4gwQnMfhrRtEJpGUTDK9e92EcIUYo2bdLdCHa8BxYXfK05R5KKpzcHtRXa+8zeirBnWiY1Pe5bl5XgNsd8PgL1dTzVnsv0zrbzekrATwkObcHRrDBHaPHQ+G7wS7rksEfTaDynoz5kIN7S51MVhiMq/J8fnNBAcriRycpenv++BvRf1PE+gaw+nsTNa3JoOBwvVNSIivMsAfsrCDt1I2a0axYBKiWqnINrNY5z7cebaelP8wLi5i/Uf8DNIf9bTPQdOH6q2uFp1iofC+2F95+EkgWTn4V5RxuMc6jK5nTwjTh0+6mEzeP1RwSFV1imdQ4KRbF0KOlHTE1gj7YlPutRfDhu57upl5LYPo+uXU//D0L3d3O76EYmMNs4/CEMKdJ8lr7IXp9RX1S6PND02YMfJcCU7GWd1ta9XEogHQpBUMNiK5r9DPyrOTg1R1Dc9op1LybgL8gsipGv0ecPECRpFnfUTkzFtxOCIElkh8Wp+Rjh00UTYTiB+wPAPEI7DYhHOxlomZ/otsbhYVDcp21YNTlqZhFmnb+IpUTUPApaRd3vPOD5uye/BNNqSll0B9l1tNjWOVPShCIUSPRRfN8W61QtoBfdtbqYFONIl7LjJ/AjzbWpCRxzlRb4MU0UtnhY3KKlSLeDtf+43kyIpG3zCFx7bVodGFsBA6obRxyx4zD7/oAZ4JVdvqqm0xdnP8C5fn/I7qkfXdvkxJ9OleJWRK+c07VMFz7q4ZpzL8cOrQz+9ZI9pQM8bqomqNVeIpSx77h8ojTydQ+M2eDUYh6bszMglWu1T4/khcxMVIicznTAV5ongEjMYttn/K33bSowbWRMtZgNALRmyhAYS5zVY5HcCtsLuS09KAPQtA+owb7XUrYUQYPom7fPjIqK1mUHZgAG8fEFnLVwPJXNsooj0hB2T7HXGMvTFnsX38KPdwKHQkWho8S9GTjYVUEcC7m5G4tvOppjO273pAgoQ2FQ7qknktoU+m9JU1Ny/CEi9o3kRKRl3kzFhjhKMlFjXErQQTnpCRKtBf0NrjMnMVmU2Fgf7tQEEpnDRxcRHb1OBv2jeeK0Oun0AeeIwnsvdSAK7t6D7u4ck4p8cV2GMHQdzNrOrOtojgnPpD+SoxeumIln8jQFxEo9H6iu7HzbJ7TisW2lzFx0wrJaO6C+7R7jgF1fkPfiL54TVK5w/DVHypxEpePoOlWxBqH1SABQyCzRn78GW+/HEe/+0xdZR2LDxxEY+2rm1u+rpINsVNOjr8Ig7oq7As1uqlGlZFeCdbBwO5CuAYr2AA+UXZ+vsRVI5Frpsb/mROWZjsdCdYD294UjPMKGDzktIiFwHOaYdyLXp877Bzbwu4DRx59XdjspBXpvZ1FyYUifv1GO6XNDxVdnkVRK09qeOY01bjfZv1j7BFzpDU5Wgz+oBIUbJt/D1YHSIjLE13j/82WwUugdZC4OEWSSkh2rxfKv6pasygvWYBZIodKSjYzwKyHpAFwnmd5R/4rYlEzrITyXEBMUwNuwbAgq29trc89c63Flc2jsQvSGngnUy2mX81OLF8xuSg+pEm+Vlyg64bD0gfh3T+bEXA1pp6qhcVFBV3QeR7AfOdDPqgwY7INWk6FadDS4iKhN4kH265WtPAER7C3jbPIb1THybQi1gv5WikI04ZdioK7H0dX+P37E4VeqtAYOw3x/7gb9ttXQ3z2mYvXruK0Rr6b6wIh9p88FDdzrX6TGfPslFvS9xF1eCH8yZ1JIYBj0lgWZIwlRs3Lck997H+K/CfQu6IJNSUWtuN8QeY9pKmj55z3TLJC9IWYF9rFl5sum3fJi/Bf/bOQmxTf0gjDIXXXo1O8W1hlmhr01SNDz/H5KwoFggjSZMNya3N7amrxTMDa+ObBFbOjJDumGcsuGxcgI8hrIaLnhXTH8c69pE2xn99KzqO/K6EGP2SySOjE9OLq1guXiXw1Ks9IWfpLtlltaE2ATSJoY4yk3cqnGJoqPKE4dcYU6S8FnhWd3CLEbjQR0Iiio6YMlUGaUhD3OTdt3XJW2eSVJnq+ZNEOpi1MSQQeQ9ctWQyqh4LZ4ZBe1aR2eZKprKr1ZAjcr61TYElX9xVr59OxcozJRTCQPVuTCHRJPr3mFu7zYplsyQQDyI6Opt7ctYwhKcv+lsj4PGzwAz/yxxCxYIg/+wExlzz5faarxTg1Vy8eobU0g71l9F3aHxt0dgC438SLN7aUvliv0z4DvyRpZ+1gykGxbzcDNcXpENFo43IdY4/NgPjC1fhbCwJejDYcHdl/4MNZiX+pC1x+ZIOLvFRXozS2lhSROdE3NM5ku2TC0UMBvkJ4bVlikhHjvBDwSckx7qwlfHwzBFmr3p7MyOq2ksCUfzimYwC4WVOxheBn1dNUD0zMCiw2lB1po7l+gBy9e5zlXCudFSTeR4nBm7/LkP6KseODeT8shGzs8Est9JnRpqenS8wqBzHDIDZIrEU3UPxYKVjlFxA6q6MfjiG18sJBssIkvnenO22S8oHnjIzJxbG8P9qVQs1EUZsLeeJjwaP2sUeDZZNIbNW32kwz1MpYS/QrVOoFyT/h3XVfaKn2cMrC/Y478BAQjRWdDpFIxWbb0Pm2FrJnohnyFn/hRb1U4Eub3PzN4RDXeYzTuar9+xXR8iRl72HYzIFvgIOVRf3dgUH+v10rzOmVYBEkyENdB9+enNBkZLbl62AqMeDml801nstiOawAlZDCStwGkipya2z7L8RIMZDLXbJG4crLx5VEPm3DPwqQpmXf8nkI5usr7VbeC93R8838qRDGurPP/duqwJcZh1aKYNQV/os09FL2fxFGBiWtwFBAKF116xC+2EJ6QEQ5NInZtR6VKfCO3aTSBrxGDBfFqlLYBMfW0d4nqIU1VhNnqTrL8WbGb1liEkFjZS3vudevbSxVvVTIH6MnXdESCb2aHJrjSZhO8PHwD1TpAsYlRxyxEGx2tTh9/sFytDiTGb/bbkb32U+Z+03NEdYTPsGQY75Tp96WjveNxeNnAGYxvTYfWVDKUGmqQJK6PrXQte8dLxUQfSE1OGwzRc9kDb+ckN4QJvQPhSh/DBBhc7G1eb5wESW+zfDDyhm44GTp/86Z6E5AC+JozaXSo4U9taVfQB90nRlhD4HPnrzV9/KFACBOSQfDcfXXyP+xZcafQHwbhVBayWxhEI7gu4FpFh3CplGuDakQZAo55FYN1cyK62XIB6x2zdfWKTr4yK44GDaiqGg5whAT5r8AZ3kN6XmYSEk+YeGz76ge2aLhA+pTAO05HDpekdJ08Mvq2qqO+H8TrAURuqa9CdsrNGqbI9WjVZZvY+zYZYrZT+C/pWhkA7ooKMZygGrZnAKRFXfyWSGrKaEOAKulDmtRS/Zam0fvSz/qggWzQJIdaIrAbOoPGD/1V2/kLvoQsJ8SckP0t4LdQ/F4NjiTWlQ0wQ/Sdx95LxOMn9tjc+P6Qbt3Kk+Gz18VDsPvEZTZ4bu6ArpKr9rsSLvFRg2b90Oh+9iTDkeyYH0TiXzI6S5c5YTQkX/th+2VyAue5PuPpKQlxpTnpZPQ64bHWIRy8bXmVxyhsS7C7HV3CeowodmyS08scWYcyCH9vsIeGVRz7KNklfzKh/tktRZaW9ThW+acHjTZG3YlJo49DjMByeCLai6dDpGsC4k8D5hx4m+nDTuBUIH6nb/nP5aM8L2qCqH54xaG2k2iTQrfZZEbTPpFWRPlnK2sI4jZXan6Ww9HNbhP0pQxG+6dxzmgVhL9Ga2IfnGbkDpM5HcPtvP6ijLb2lsMJ5khp/6zVfCZZzB8XnYm+DpLQqTmcR9KsFwKuagQtxQJ9fsqQ7HauYt+HmvyfAd4U6+0Uu38Wixo3EEESLRQd391f+djOm0wbYlBgtq+64K/K0SlFvqHmYpeUy6USspDESuNqHTRa57Wn9OtjfeIsAgltkJUTFUPasG0RMj43khaFMZxo9aZKasijk1Jt7MUwmztGVtCbxRWYshKm8cNbB44NJxPIQbsYZvZnuXwMwY4bZvzmrGH5A15UdtRRKU4N8Q/zk39rrZPuvECEc5LBCkaAnJG7vfyf9qEjqkUL4aQekV+8EySDo+u20D9sV8G45NSpwWmEf3noDUNmI/OYti079kC1VZFAFxWHCauCjKx/nrVOW+qM0nT5WZhJJX2rgZ4FT4jS03/STlKWTakgkCmOLaoMCf+SjSkS/OhPF+pjXPok0RO0pxFfut7yeKy+BFekmv1d5aI9nFGNYI/UYvU/stxLhamMCtIMpAjpw0HEm0dVXqFEiCZqfUZZsNBBK5EjYG/ezU/q/oMQ6L2uyQEG1gyUIgw+Yi8JaYXbthuZJhKEuRTlb0QOL9zbS8v9ZyMICq8cl/sLRXwIt/rQx4WAliyj4zbalhVS/di/+npZHyA8R28gKHNKM1ybqFFfmpUqPP3qhQr33yexuBtg014AKlKWJblgg5Rl3oVw3Uh2NFndmb/Rlto0bLD1H66soAgKLTYaNxYhfcE23qvLplru5o9dVPgsJspEVxCR90u+R5tJ90oqe5Adn6nXGVP73Qk9aL9aKNMgC0ZS3PVTXAN1gIFWfTpxRGQNsijJUvy2wvgxvPtV/UeIFmMx3umJBUk2KcOwh8/ZTJWGUPE1TIVpZKVmQdMrCDegiZ6Zb0Z9r5xPio7t1ieTRT5uia4N0ZeHhsiCFi3I1nbPAtV8yQlSe4GdD7e0pvuzcxwj4joqu2pI3Esh7G4ST5hb2YmCfripBTwCQ895U4vQovwfPbWik93Wo+k8U3PZGHKLA63stY1qpE1i3uGB1k844GzXbDUrcjhemZb0FfHOlfgfJ9NSSZ8+SZxnWACSWEinYnrJ+I7hk24PsxfDrbmnETBFB6Nh7ouYJ/rR1XrWuCkfhgYEBpsUjf+KJZfekNKi3tZRAUCzkffe8mOOVRZ+NYC+mTwghV8Q9HEEWKFaxiSsA3PjwJGrPYSXjRcLLNzJ/hATWbXmJblOwPBH4P1LdAZK4jmJ9PVIMaZSeuEcMcMbjCoJK/whpMFxgEV7kWOJqhfM2M+iYXjj4v+UVi86dicJFruN84xXgHAGIlkezJDlzkwbSto0VeuKTmkQm+lQOo81FO6xzdAwvaFGdfozTc4GQLPlWBlsc4JlbUb5tlXsy7d2APd764ce6CuMtbJREn218NsElWlKlT83ar8wAtmwv3w3HN05jmxkSR62oHxDJZaFrhQl+oNa9uB5HqCwNZgV3SfVWUGvrT+q5FVg0nhUOqVpY8SQ/efaHOxCZwmQ9b3Ajcm6HVrODGJrW4sz5VmkYwiJQlYkGo2KUXBzCXYrllk2kJ3Zt/lLdfI6xVToEsLRqSM4rzxCpseWlc8npu2199HbUjOjr0JgQaMw0JImfEvyOwXO/wCyfUQYSwlTAeb531ILAl6q0fB5jjtHUAFEXLzI0HSTXCe5te2gkS3OjSrnbVQNqqeERRdl8q0aspddp9pfmPu0LRqP3vLfqMT0BW//6oSf9OZq7IYzVbfZ+SRjitYGGQNwvPf7N36y2YQ10ehDGxcjECF/PAK8v3OzXxHewy6bhvHXMxQTt3AsDzgHf4IKcniEfy1vkLGDGpiZ/rBCNFJGm48OSksbcPnILh2tNdr0/I3CfGcGG1vsCV05c1YHvvwTwh0FLC48AbOAJfLMR1OvRCFglQBJPUGEYFXJDlTh4/IAZQam1vrYXO5imr4TJLTdqU2DdcQSfk0bHSmPxszOvEsjt+4d7gcP0x+y8yE0Eir+Jw4UAGdobsefRCYLTktKq1Icmevtizu644oPpl6nTslr2wCdrGnsdlpDIIqsL1e1VAo+AOs0Ae+mcrT/FMhOOcGcYfgC+DaepZysu0KJRTXAz71CCoUvjvz3d2XFE5EqPk827Xn7CDXgMzHSwTWw6zmsDgWnBvuy4cSQZv/LvgC0uWxCLw1qr8mhagbfKMuGE1SiGE2Frbmjr/s2PtyV5wDGGh2ZcdAFT6CdrZz5EhqV8hjDp/sxvQ9ZMgx4m/HoCac+5dCcU4L9WG0o3UuA4IcDLt+eoVrvxGtyd7qGntkbR52olcoTdA3zXPa2Y9Vgc+bVG7ltFFASvVQsnifhgdlrfRmnDHrHcOCorM/ZzS4qX7Z38HJGU00n2Z9/VS9XHv48pP1TJowtFNuiiuyCBe8tAGjuA6G2jUNs2Jseu74PRkswtT52wbmbpTj+IK2PK7tzoyCuvKKyaC1Z/RSXn59gJARcMFEzSeHuFxEuodiI4DGjBurMbeE6fX2J635+U0czO6GtCJCt8yG6wCgoGcfvlulnsPHKMqnOByBPBwLC5bAV/fDcf/gq6mOcu8o/lh1RG5THE084byVFDl6zI49HShTO+c5r+UIELZ1EC1KJ6fdR2kK+D3Ukn1l+LyW0hZhDAHdTkQsyqXYZj4wH2BFyrNuzjhe0wdLpyk4b753MLN9d+MHz0ZOsxBjHbpW35Z5RhfdCbnMqbUQkpDzI3rZ5TBFaCatwvnuX/ReicCeZam9nnZUy3Y8jmDCvF/cBA89MQn5B5ZVfmNBPPgm1nH95R3zQXMkkw6p5nalEQFCM73Mt03JSALQFn2zppGloqg6PETCDMFR4VC7NhYBLWwMT3x3pahrB29ImtZ+bbylB2valYsLkZFaYKIWXAn9z4bNKw/0o1WZBjkCYde4BcAZtyZ9+jmXKSYLQXmpoLKbrKGVVtfjfrPB/O6PF7NGWgXSAc+z1Ygd39SNr2IFK8OYkBtXBOEq4kzAeIll59Xh3r/w3zuUHcSChxtQCqTFQi1tmBEOWBDmdM+dUmjzJCZnZ7LKh0m6VlDJURfoM7YT0N/Rt9PocCtlnfiy6jQU/OI3qVn/lCQ6Uboefb3fnNIxLW9LJ5n5ff0+swZMDysbGGNYvAkdx9J/JUcmPlj+41Nrw7/58TXEuoHovBaRixPRQ66i8jCtAmblaFMTvfHkB4PTDcrSLO9+xY50LE5+nwU7s/DsxgGxYgrKSaPf/ilrCdb773xgQDl5syZBVJCEh2hU0+xniYuIPgbbDQPX6MqpWWwTOLBYmGsF2T+gYx4BqmxO/VPcO01rVgwR3J0qal+AuJyaO2gYM/yACxczhKAAbYvGv2tiAaTRqGn1ol1oaYalz1wY7TLFbpB628mzrm8pr0poCpHxGG+n6nWqiwTFxpJl7qUpZ8G6NqCD66HwV8v/bZrI1Ed5y9NbwFZPLAY0fWNOAyBGBLuO3Oxp7+J1imeKnrFAXdmdRXVKCxlzkVsNFalQ3/IoS0/9oPt37kQqHnk3CPWThaL5lg5Q7U47fB3o7SLcC8tzpBglcJ6HnjMZSSzOO8bMaEeA2ejTfDX+MjRg2S6TcR8gx4cO0977xu05wr2aaDIP1+j0QyoAzQR4QFiNSaWmVBC5yFbTW2jJeGVbsaV8p6Zcq0q0ZGE4Q3qru7enhODOhZ803+ApPhcawljT/JIu6Qr1MFtaV+3B0GJvFU2ujfOg+yRYYPZDu7Y9swnOC3x5rPsUIFCqRzEiWCPv39AUxlrMECqa6cLUh/tIREBwhxqalpS7lKMTl+Tui6vOIr8A56iplcsV6IOm4rGu3DCe8k8KcwHBd3dT+szUsELrd5ZRuxugJQjuwYbud14iFg+PGkoEBE6Le5vFlImf1PgtnwJYOILx4bFa1fxdIIrBzI85n9vHxfvYxfMprHSD/EfzGlgCizKBMf7Bzoz9pZYTeKAotDi29zCV8sd+liUb+rINUu3+G/7DyIUX1akU6iTJCZ8DDGhV+If9zvJa5dqCamkVLhfVISe1poWcusXLu4yWV+bGxPJ8Bn8QeBMSfX6tkH4SvxfhNS8u/NOD3wR2l/CnnHMfyrYmYmjMsNwA11JpTNjrJFIINDDs3X0PhrxpGiNy4XO8BN4VPoH/CHeZDHDX6B34qNWMULPxH9jzHolijk7gro6WaPTTm6FYX5OoXeyVLg0gKSj4PXaaXYHFY50NgckfqZR1dIA4dQ6BS9QCZiF42FpxUXGDiuJLnLU+Eg+Q6sEbZupSvS/ed88ZoeYXgyPDGi4z/l02h9ExLE6EeFwu/Ixv8DhK2WEtACpzKVwbaVeDNnrcqJFaFPJWRyz5WKk+O5PwEd2BhJp+mR1YXSPYl7FjrPg+JPhd3SsaUoKjSjf44C4s997kFklIWtgfnV4LIa7oE9D2Dl5MyIbsKf9cTSJOfuMoMmEPGUPlxy4Ue0uSFAsSndz0hi5ejOgrgNOyTb82mYh4HaEwW78xqykThtno2RmSfUxdpHdl9SVWfeGWwSg0GMaTOj3DqaSXl9Adlk3MXVw3cu52kphlTlabQAzd6gZpofMyCkXL4VcI44wPSVQy/ZQ5BGUG/4+gCK8BNw4mH71F+i4SPDTcAb8537nzbRBOiPDqvESidlvVc9SuGwaFPPYjrrfyh9vug0Q2dFbXH7DAJNoOLOo2dTq9IGds+dA06Pr8z7V/k9JnbH4W0duQ7Gdy0+r7wfbLUl7AnN6ejawZzMDJwbYlXZ2Y0SCK87yBsx+jSd/Ze6tQaFL9zIAgjz1h6dvtDKWaCYShRwFLNUT5TOffJil04qi1PF2Z6RwvTaxin6QtOC1BUXFIAAWG65U0YD8cmUhTW+LSyubL+hCB++i858oh1LuycAxyci7Q1c6hIB0KI0865XOS5oDOqqijJTUore0Gx8MYqdhMbzXjfG9aAB45/S2WGaYHQ8YQ3ClVqnfulYfrq8BVuUkUJHLjLxUZXNu76ETrIHzTEOM+BzhWY/o09ARkK14PW2PnvaTqM0onwUuXJNEvglxlIoXquo0/hbxMiP1SHap2PIoY6n2R8mb+yShPaf9su6TcIqSPvxCfw5Nv9Kde+mlC3tXqb+1urobNpWZ3MB4Wu9Q4mtNNH4H5fqj7ONaR4w1ql3xdhClSkl48oCcbc1gJGzTZ6CyMwficEgrbnIKwyV7SswOqEV92nM4EugQzPo7RMp1kONpvnTRY8g7TeFiBoNS/G7JoFrWDg1WYsrdjH7+PViPEc5Dd6v9b7CLZKMNndjt++aKtq51xEHX/0wysuGjGXkoRGoW7Uyw9fN0vI2lFCRb2411tqvsP6tCEypuukbN8fpOzmGcKTln8LTTRCNvUZq1WpJO6Xo4WgU0SV43kLS3Rtq0uKvQ6wwNmDSxSyXSi6DeyINvCQkQwXDEFZvFSTkv43Tn9ufNtfX5kuLqsv68DIffSHNtEc1xuUBXj2dB2acL1H4gYbWy80YeBdHB32Cx8jnC8axwqOwek93z+a56L4DmMPKM8SVsJ2p4oHa+mBV5jDlU/wWJmKXtEdj9GRQylXJ+WgBfMAxxRu8n+8glC+iJK+3apDU+D3SytVFLKdzmNtq9DYrZQzvDQeOUwBnVvH3tfbtrbN7XClluAe17ZC1Q0LVf3sgLWQ0HrnuGe5ZPbXghym30AVKKGzxCIILZ6EqOca3rA25eXDfzo+IPow76SMlwNBwQS3+1vQOH+oCOVEJet2UZv8IB9wXRKgYDbF6VQT1mV1vXPuaUvBXroCq4ZfL8PBDUrv72uLU/mdSG6hYjpbC2xzb0uFEYP3QwX/wHCsR6bzKFaQ3Hm/efSVEXd77Fwtzl3IyJhATc8wSoCI9Mr4OhLYlP60UX7eprsXOmk58QU6tDFGhB0Gk34LKR9s2DOyKMGoihOwWgsIUp7AeiBCAPqhaosqqMN5q553Wghz0F2i7eHrl/ZMlwUALIGwS/vzm4Zu9pDJVwkQB9S5jMbufP+VzV/n9H5jGmz+bSVcke2Xp5WK1vykuX8+GX96KUcFKF0t4j0WlvHE+PBWeaSl4Yjn5WtJkkxXusmglfqn7v8QtpqDNwT5M5ruP8tIc/nfd8ebFOwwiBwkq9WQ8E+8TB8jLTapNTSalAOuXqSSDH+1qCiNcGEuBEvrO+YTt0tjYCjX+BHCldRlKKAfld9Ls+2yABXvXbqiBZ+UlOIcHvR0Bko4KM3LWaROt8NAyJfHwwaP3srBHfsZHNJw64DB3zwok4MvKUWcaopaE70ZeSjq+IEta6TD/Xuvcp3NZ6EWWhLYzW4cCIaYk0TLEjYA/BxWfvToQcspais6CTPmjd4eY94g/xUJgY5hKhrNddkHshED0pb1crEl9KSu3Fu06qI5cgNED7moMDchnzKxA68hHrEYD/yriuA63QqplkxeoV9F2UsJSc+4YCoGBuKpKa5W/5RgUYrXBkBrQyTtTZWeHopJCYAAak6XVyk57iYGlq9cERHTFllns4EKwimPQ/Wpa/oE9u+XJHvuhNRo0PxjxpPvFCeHv/wELDMYIkIp2f5duv/OysAOTlt4H/rSZlmBFQ5VNudAfZ+GooFoChxbgGmcVGOecGbz5hF2EdmYDKthrqzMuLxUSgWoAgippm2hCE1I3tFufNrXap9kZlgtn6gmFwxWudfY4DL06zIEA5tim7/dPyRfCtO43v01tbQdpYBwFCZPovCMU5Y7CJiG3Uw63HM44ZsOpzAQ07xq4mgTxDZ+ca3WaNpOFusu9m9ilRuhojgWklAiySYZW90D4XxHnu+k3GYa69VNyBeUN0DlHAjleu6SzmTCb3YS0+xfSS1ZFSvt+/nHlbN8Q9VDpuPpg1U0MhGtmsSvZYIOUbmBM4rJz8c1Bho18AawEwAv2qmc8WLECWJo2e06bhD3t4+14tk3l0XRKJ3a9BvHIxIbLhNnoZUU1l8S9VqpV1SW/oCP0EWvv49en9Sq2WpVMjF2xV2oG4JuhLshde8riszcypJWNDViXQKKLv7XQeduxcNKP840WgVawLS9fDe3+wDY4QOTyZju5pQIupZeqYuiACyewfOiroFGnlU6vock2qSWRMIcjIgHnigeN0Pj068hVXOYsFP+NbnuoOtQtTWg3YF/dS4aafNt2imgUlMm1IL9bPfvN2SOFNA5a2eyzEetusMsUBY9afI/6wR+Bh/w7UwwdAHsDzudOh009AtAKoqcLTlh1HTiGSaogKNhr3u2zJu03BS61tdT5G6dFwMU7BrkLeK0E2EZyOCmK3K0Eb+D5xviTlRJvuepL8MrnzWOiCd8ctBt4lMR9m/H7WgyV2CNi/vusuoyvx2D8+nOCctLgvteY/9g84IKIeliXqldEAps120AFzVlQDsJFlaSKlZoY8EwjlXqgeG8pMJ+fylBXJtd1gP/9lXtMKcHySbPezA412MSM+0fCa1Wb/LOGm4ZoLFZV8OTFEDkM3NWdRWHnu6f8cccH36y9i1+473Fuj6v0z7rdsTNtaDeH7jgCDaVJLZzBgKxVnhHKZRa4269DgbNYqgw/uMNXRPvp337L4JooIzkSFL2u/NMs6qSeNY79Jw4+F2+1NIPcMb4c/INQmYaQw+k5G3Eig9A3YtcCFJkrSf3l0djCw334Z6CFyCaA3TSEp7wAud04r+s8+G1cnstMUVg0G6uOLSKtMLVqV5EXvCq2GLbkMJNbexfyvhJABbfJxPB+5wlnaPaGXQUfdy+RaI5xZr/WFM3iQDYxhvLukuosMY8FNKW7Z3SOOnYyHgEwN8i2rZslx+7DBaNnPtoXso2Hl2DgfNkDK6PtqaoToS+9BcDjjWIeCaJzc6qe06XRfT+WXCBIuXGCNzse3Va/+4EUCq+g/V7Qa88LYrOZ6qot9L69s6T6Gim1WsG15EXePOIsBu8g3dzChnqE/g0gKgGqkc0Aa8qkkixtAgpy/x21tb6vnde71/FPqGlvjfYH+aHzopaGsozR6Ie/FfaMCaZ629XGBEZbypvf9PbptCWSQoUMqPF6LuXSkZdh3XFQyvbnl/f/UjpGDyH3Hp0xyeYR6vbFrVypWrtYaCeQAU4Pta+DXlXDcZBu0m5mwpT3frqyNlV6OR/OtEjAmX9Wf+MU8+MOEM71/aAxHgt7IwWFAFLNI6u2W0A1e5FHE6uaZ111bDFFB/15rI1lv4Y9kmhatWTLZPsEAARQqWiAw1ZfLkNKSieUamJvYZ2TX4soyNKZ97ffvqp89Y+8wsEdnKbS2v+KS2gNCDCU1JqeyddJ94XS1/OYv0A0YboJT3MJG4QelUeiqcU/k+CzkEKhGr9pcOUps1c5QDix6FQAugutQ1DTqOTd5vYG6Cm+GythDN7k0YhVtq+yVJ9jVjQtrs8JHtxZhkr/gFY/TJS5PgnFtQHY0AzWxhT8KHlAA9no13gtpgNSs6NXtJUo+LOwZ5U52zJgs2K+GS7w6JYXa2LD0kibb2Uu5wZdiKhn0H/KNFyCqjaT8Q0pfaQLqhMKlvnis8BZn9xURguyCfet82hA+7BMtNqulFc/LalL1eDQpBJmrK9V4J24IcLbElAnfrlLvCgEtPsg5XhQR2EzqEv11exHIQ9L8Gm66hM2jehPWCFh+LQbusuC5itzoyTPB9uUw3rR5fRs5ITLol3Nn0P+Nua4MiC17H6Ec2vXFX+QtcnbMGu2rqXWfzqDmxNcE391TJqIJOo3hCSygWf3Zf16Y8+f/x8EpJfYNAEaPmlv8E6dfT6R/eigvzkQHKk761mqPZR4AxXsRQGb3ivckfMr3iFuTPFg0GnlcthnxyqhRUyklEVMwisMQE7jZhZRMFcIqOIsl3a1uEfJs+l3nktwz5Prz7mrjD5hJphj5+kxsRSdT7LuroZxol7vqSK9o+4RXUI900UPS6IXwaOKlqDOmNRCi/WKf6Ycg+TgkXnsqZGJXfT67m6of+pHzGTjqiPdroNc9PywegYHqcYPgjXr4byHLU3YB7oDLLm24sOlqOfl++yjKl5SXWZlilnYo4Gmku8O5LLms0syZME6Lgad1tYm43pkw/6Q0JRzS4c91E5KoEEqskmrHpvSEr7NKw2zm7+0bCIG7+LcFb92lt5mIBWf3DmKaPU7TydHAXSESMwyOQQBFgYUou26SWmAu55VmLNZyUTq+CXmDudxswT9fcuAFUcWg6txGTOULfnilkj/xlbCqC033cKporG3PtwKYW4EOpIET4+UTbmZcogrXPLOTdpSxc4JeupNbTr4I5rEMRhpSZzvnX2IcAxfUU2jePZJ+i+Sevw8qj90l8Hs1npdMOcr7XeQyCCBmUUDsLChJZjILivrMZxVrgxhyZU4HGYA7PiKteFDAMhh0rZWhshPl3EomQJViluTIFh1Xxl4eZbNBJqeyjZay0G39U/6poGWzlPZlGkqNSQQj/2Lo756vae9s1PI8krBMDW583xUB3g2VNt0iVaKF/Nz+/goJi371WslWWqlkIEEO7MUyHReOLvMtTbYPhsg1iSBVlXBiSgd/+oTEHs4eeJ3g+J5Lz0rhyLNjS1pck0MgTugC8CBpRrkoqZVZDxLTdN1mDqHoAHMMZNsAQ5v4jo9L2Eol2Qa0hOCSZTEI8cg0kFRDAFw3G9FJRTN9mRMrzr+G165wtF/xSxD7+Z0+ZhGI32UIO50pZWmn0Q7bvckv8kJo84at/lUqEArywtrbDrEYilL2ilD2/Z/pki4+p4wojhPEpwFrEFMo287PDB+P/Zun8ekmiStoRxCpWRiMVQ2wKkdyAhmP+w2FyfbAz1rOoBC4cTd7moX/lz60WRG2adSVPIGq8fRRu8U1iFWRzvH0rEd4mpzI5OiZkQgRk/8dYu1h5BIXTaOpm88eA/8UaUzz2NUxx28o9G6l0zxGSjIzeToc/fgdDZTXboeVOzmNfjM2YQVX29XawgmhgQXxlsjWqx1q2NoaKaYBlNc8fDD77cab4Ze7+wXa+fKk/B487z2AKXUxqEn1JkLCAfLnthVdVmnK1qvSu5uMrAL0Vc5fkEz4FF9xLXa1Hw/I239MmOxFiIbaToTKSoNFQVyo+jZsVr5jkg8bSzJ30jT+EgSeh7LZ5WDfT0dcD4W4R/OlKXi7az/GV5rRCkUb8S/LWr9wtFV8sVapU/GcQsrghh11lLw4zM3uvVD0GmH/7FQY7WwqDKVgA7ZLZpS22GQc8WlI5jYDpWGyr3t27NIYrDrDQRdj4FVa8gsYVF5nI3U3hOvSu1ynw0/EasFA4RA9ua2TX+y3tMNZCxn7nYL59fHFGSTW6jWq3xW33hYKh3WKGLdxGh3M2b8VCF+t1qJRlwkTyMpfV6Cz6kEH70WmBXj0j/oD8P0uiGBTBFjfZrrf009WWaTSZWb831vWBRxXKwa32abaq6N6bGAGxot80c1bh5vWSYubq2RI6RCSwR5vKUF/cmsyM4o87DLh2DOHzeERuXW3n02jkc13zfGADGVDzYiLmRV/4D/EBMnRbNI+stO/n1Ii3ltBYPI3isk2WA+jZ/iINQrfoaKw6UhV/ZxHVNqpZlflME7QzkxoocT0hkPL11VxjpMROCtZyzrfN5ByHgNXu10qCNArHC1UrOo/ND5qGQlfnc4vhAEneo7a/smOa8lkID8aHNjFLBh7ZEKZAW/eMOVuA1bgGbb3kMLxhCtiWPyzkCO/nidjVSkalF3+mgNMWiZumS1b4A5OVBc/iFneP7AdwftcVo87lVphqfEx/ODbE0nQJF8i3xGqv6nzs4cuWn8ZXLGnARnWBEigtC9vVa+uqCbFqCcrvCRtirMPGUXT1m1zsDBtUZ5cViXVGyvRlTGTiowudMvQoI8W7D5oO+tfZYFBrpDv3orygrPNKsWiK+swpBQ7Aet2SR1G0046AjzwCTvsIicBSkMW5MU8fgLJmVYAjeuFYImJuIiNjogtgRYdeuwWzEaNjKGY7m72X2/E9eV9bn5AlI5O/yolCo7R+mBrRg7Hj1bQNT6ajfvswso8Iip78awRMaBv6jK4sJSPt0PHyrm+TYoVvKug+tMbUFHK/V4JNH/6BGQFOeul6K+dA/WpD3xAeQb5nZAfmj0s22lk5R5bHi0qoskMi+dRTO4HEqkrso7w7fE9rTzGc6Lgwv3tKE1PkwHeAajZt4acJwrIv1Dd9LA+1lZVXIUk50CIHkJiptmo9udvIFVIJI6omag3B1LlzHE3VprlHA55tCjK0AxnrPgn+1b02RIQVrrEVhErItKbNgB38kh0mBxKCFeeYGCc393Ze6HqtRoRYYPzjZYbeDPAVYlwUffq0/X6j7SqaSJ9/B2ja++7cFPhKfu/khKb3m8DLDj+c3ZqMAyiw277f0vPuHhuK6xURy61iZNSnCFKdu2byQnPOn5sMBHni0ut47/8RB60K5aKAWZ+RDNGfILNchWirAF6dgChdWfDlhB0pn9LztQrjXwBLjnMOAGVRjIxpyovCegQq7lHQ6s+cclVRzBpvqAPQv3eWw8WDRX9VcUwEr7JCqmMk0UMSL4GTmSqLM03QaRIaZ9lOB5nOWrT50lRpzP0atiW3JjYMeeBaysFKEKKMrWWArzr7UyRZxL3cvsbfPcLUOqKP9+uk5vKXfMNQPVGC76PfB6VGdyTtNrDWkxpGSDTz0sBAqzR3x9lsLjBXA1tZ0I7+OXCr9tbKRSdOmDqHQX4pGl8xBd6yZ9TwMe/g790u/lA28iVtPqsAI4xjIbfa5DCFScL7NsyOZ7LWUnyjIUwfAAv+Hms9sWVhz9jlDDrHVnxdQBVgjfPMfe2uk26uB9hxx96pa2Ekj9cCTIWkXV/7Cdnes+7Gvl9oeTvT1Yx0X2SIOjkYRuBSH+8/QRIh61N0EGxWksNos3cJD6gBouDf7NnPyO1Lgv+aZhPa2A/Z2gGKZPCiCOsK03Wxy6dRlastily5E1hcOH+LPBu/URLNFs1ACEkqaN5CLvaU1ZgiPY67Pf6vET+CJO+cr6rT2N37itOD/5jzIKReBupnY08sFmGL2cmOCxutqOLqDd1vlTUWjYgjVZnKlxZ1Nqw/PadF+aR46NSmpk/N7C/BELcvNDnYJkF0HVnhRy6VzM7zEbN5RTIM2N+cfB6YLvrjVJlydHAHgDScCCd7lqynVk3ie0Bn6Ve++pnqShfFl7QmJnTfDBegMTgaFGU+Dz1vTAk+LC2GwChvUGi2u7fCk6LVZNc0CjUnSxNFPHwS5Ar/lc3R9WSDiKJPXfowALRKpiLxju0xsd05kx4OdAdItV2lgVIpKwa7++vdkUUxJcA/qXYJlbMr2IWkH1Ogza+3PqcDchq/ai64MOUdfVmruPqPUFA8QeUTSA1eIzRndChRvjfXJNkEi9mAnUqWvXE7sXFpdfsy8PT2WCtuOU8ZqU+AzziRfaupiPUAmgxC/Ss66iAnF36yToLhagZsgwxwjjK2T3gcSD+e7R8iKe/MePrrqkdGy9CDUQ/7NqZe3eOtKzaYmmDKfTq8NvVmfsMzO4pAi/wmAK5fuJB+zfQ5v/uBAYD9nNZQXHM8SVJK5L/V6qk1djUuDOtqUq5GRDUnahnG1NUFdrqder4/WtVf2A90TsOySlaKasXnE72lE7b8HtCy3SirvNY7aznfYWGDF68Dt3tUWZb95z4eUBUdk/zDluDj+i4ye7x7cjrNAotoVwhKzKvhNk69jav/tAZ2BoMDSpWrmGU+PFkwOHw4Ko2eGAciyhPgI1jrGWTnsUnKcyJiYkIt694VXAZgUQ+7y49FKiYAW7pgvzCqRLIPJ1A8Cc57dUR3N6T4mHaoWITvWDMWyIyRUGG2qbLSZyiDh7hhwvX0+HrS46CtW+j3eIaRud7TEKGSaaSgIwmDt59NHsaBrc0QSjqtk80lF6CWN0HiTC8Ls+XKhMWRQ3lQE2Rbc44U1G6pBNONhlW7Jl+hvqewFySlZvY4PsCgldZawhks52lJTDV0OdMJ88I7IJz5WdUShS3HZTeLeLvv/nb9Ry4CuP4WnLvijuwgscSb6FIlpRIHIDg8MqWsaWny7lK6l6idTaXEE+ZD3eD/vnvpH2qs1lZxeFNrY8cUywK9MdkvfX4vCArJOdy9VI4T6RWfluSjwHsZar2KLZ3UGItigR2N6uUIPVzEGVJt2471C4q9kcZvw1YAmfTBf5u/eO8L73s5IpsowB/voDsis91e87dH7znLmtIYGFq/dGCGCrGdUj4x7bbUQmwP6qTG/YKVMRA5nE980udQYe3U/6O+2wH7kdJLlKYdQA/pBMIGBo870Vzs6UVSaLWO4y3ZSvKruNNmu3PMzvLJv6gVhO1C26zyOPer/d47w7WhxzRAHxxFVrEDEE0wTw4ucJtHUyi9XvwHrSJgCcbDNLdMi/j53V3kuM1UhJ5SJv5XZoUWyfI+MqcSHW4Ogplp9islnFfS/yGkabktB3n2+KG3RKDTUAQQbJaeuNXH7pcy9Qx9VEBSm6vgMCjIEf8yEZ/xJYiiwQrFYc5qI/KNCmQbJ+n1QRWfX7aynzP4GKQTycLZFmi6w0ZXWIhKGBIo+w8OJICH64l3OyaVMTWpRfv6L0MEufuNaIrPRW782LjSHH9ZiH2VmP8dZWfjHnlbid67cmLK8CCyBpyiopWO2ZkhPS6oe9GcvnaD/MlGi7ywEpwS4V4WNernZRXrrIQT7wop3jIDAyGbCHeKvgAxJygpYyJmzJpXI0kSR+/6xmQ4QCiS96Li4A+GuijsyHKM03UyrIvoHYoAkFssx73t9+aKysXDAH+Bp7N/W5E/ZGJhDP8QlD3wad7rl54qUkgEUcJhQiHlIqiQcw/c9a4L+H6vskieYMiNe8CzDaQy8pvqvXgxgwLcyR/3qcg4Ld/K78qziQYGCQ9/hrc+uWcrXG3Ji1+1vbfp3u8N0pu9ZiOkpIsCpYu2Q0zD8GoC+V7qarZ3trO2UietchWgpkKhbe0TBAdf63zWS213Kz4k6i0mFhu2lcK1DAb4LzRD+H0r7lPcwU4XhYyIuS2z33fyU88h/6f+M4nSYgcIJyTiWsl2mUx5xY47OsHmb8Y1lGyPGeeeMEkkhOa5an08ipEH9B1CCGtOIHIqYQxlutNdzIbpo2I7jRNKUhDSDBeWzXiDlmSUJLSp5zmPi6+as3rYob7rTam9FZVAOLMwXH/3Di+JjvU51IziMyBJt/2Mxe7KpQrIY1D3hG4pzeCqUiWvFiO9bETtEArQYbD7Wr8bgiIBz4dIT96QE/UH4knyD1/KCk4fps/JR4iDaT1wuucfD4uiz/OoMXpUHN/xrL33NVS68S4zQZyu2qJIk5gMVBtGjFMjp7oGS82CfuQiM3Z6IYMizZyCEFD3yWRFC1hAYQdBW0xKJF7OoXpWsjO2QppiliH1/JStA5g6Bl9zZCoKMGfoTGRJ0s81NcuHRhfR/O63yLpujD71kXCfK9DNx2lXeT9ufZc8OWeYLyAHcJmkU4jFIMZFzKzC+smZBXbFRw2jF7RvhmNy6fjjXjuVHLBWSASwvdept4uurwEoM2zvLtTp8DWUK2RyWzHKxdB0o7eXP5DuBwH+eKD+6DESrrvmav5wJjJmw2A57N99LASioGtEqf+XaFXkFJqlyNsuEQQyG9bjyFdEGCOUaEoYEL4ylWzjywA2tK0l746b2jKjZFYclCnraqB+dxlvfxzcuJyjzYUV7bw+C1peYqnmojK68gvvTrKWyppx9Or2vCRhA0UZcCdRf/L9YYxAFElehiAb8Ig0XAf9ArhRtSC/UMAFHghva/1Gx0IGiAV4/GW4KqRuzsxPlUZOPO5DJvODtd0fDVDR7qPJC8M++fvbfDFVksqlQVnq0Uq9UukQVOrN95PQzd5rHstAfbiLwN8vSms2ubJcQxA1oM0HM44Rp1IUgrhhXnz1VnJqjZQFdS/rLTSzqu2bXybj5nZxwwZeKYIXLorJ6/qdH1HgIUseZVO/p7QEjh0g0vHAIC2tkVaXWqHORI00H8Hm3VWHifewkuLUYbKukKgtAE2R4wTr/typfjXbvd7u9ZhhQvcZU5q5LsWY5n6nJP962uyr9+AotetnsQ/2ZP22ITah94sImgscQvPF1OBEOjsx6L3+vITx6Ukd9fjJvikjaHlDAyvxzUh+B7QcTBbYqXzUDGmWiQKyaEuQA7ZyMVVkNE6BJMuMPKOTxacR8l1+Kl90MQrQG8fnE7IOd42MKQ9hSHcmiYdrxw7MmYoNwcemDl4cVO+N2fm1HN87a+XGx5z/UMN4s49lehvilpLu9JsTfVVBDsYlMEcpWaPptIthf8yM66WgaOv2rdlcpetnGLl8k0u9GvEXOO0eXcdlm5dBZYniR7mVU6C/jpeIGG7aOrGXvpYlBsw/EWeeawB7/p/KkIEE/Eb+C0dRpuXzCYQPEravfuoLthMIVw+qvqvL6qNV1St8oKJYk0i4qgv1PGINmX2Vz/Vq+5j0doMDvV8ncwnXsOTIA2GKJZ07NerWIgDorMTS6IM3NXjgtQGdGsiAkExNHEjLL56f8m+Dfrnd/NOnKvLz5qBX/MBdWAz7I5oBrKUKr3rJGk6bebJtE8Z+Q+v2iABEF81bSJbTTVMQpZwKKpZkYi4U76NuRn1Gn7nAkVJIPsu9B2WtVEpvKHh5L0C81G9YzD3saB3H+zRUvbpgqZZCygXZGffuafZjnV1qXh7v2xUAtkEopwb28e/CXhXvWRaoqdj0WOqHXArqdVRtJkzNOL1O6jZi4YzLRpeaAc9GxfNPpD5jBooxmEUKEc1vVZE6FihSWDP9G89HfS1IUDjq835wVWAmbTKRJI0oTBCCjMCy86ILtbnCFqMSyAIm1rEX0kaDhssjNDY7JomcNBwbip0N6h1kCY91Dd1Em7XT4sJ2qEkfToVmc4LLKFiDTKdxv16E+K2JmiBTz7ufg/X0l0nMUbbuOjpjtMfTm2uGGS8htdTJR1Gdo2Nzhfar7YDd6yNqgByJCphoBQK5qPZWRIScsSpl25ujsr6WB5dMeGt6j2i9Ie97VmcEWhDrDLUdqV2UsjPg9h/BmhyUxF6EDp1l/qcanZGOXmnY9xn0pXwpd3K3E3jzV9qDI5LC6TG2I77I6x6yuaPd5wdd/PylPO2ArxbVsRPinht2Wwt+3W5b3rTDtWL0YGbrswI0Xw803/6Qn502JhWbzQyk99ZSIoLLXAFHvIxvZ5sl0QnROMX5RKEy7u1ftr/o91SGEPtbCdqlIuvG7t+7m/v7MvEzVWGbNHQpVEY3QRgg9q0nBxQ/XY8Low+K58YvuTPhEfDb0Eh5gHZWpCH02vu2VlZumOKNdwJQ94A1W/WpG5xsuDTg8drhPx/keM5f2NxD6BqF2S9f3TSDDi6KlNnc6jRWsirWnr35Fqa4m6w80TrGReADIvKTOqyjjmizS3BkGMa89liQWv84u19RtJ6au/0fiW20sT1+Jdpzw3fMvi9vQ9RGhrYhX9y/DptbQoXFd1PvcimZ3BFmePzOX5t9GID1uYf53kBesUV+HNXfH54RFTFfFK5PHnkcp3WahLqSit3xQIZ2K3JKJRNB/ruu8uFpj85MCI1fsWAuxNq4ntaHXCcbB761R2isTHwyxB+RmyalF0GOSB4NbWj9ytP37QzQ9Bgpni64CV9nnaqsgHpe8vK4UW72h6V2pyZQhNulnzzwfxmjFDJveD9DqUU9VH0zb6jEK0rxNCDy94Z9DVo2lAsybdTJjGSf6h05VgWKc+MMdx0hiVxkiSg94EeTE2Z11efdWrVsZB3r0XbsAqflNSjoqjhdkOrEppIgAR15+6tT93UyIBLuzVUG/SZW0rO6TrSDZ1+N1n81JFDJWXBFiKAZLSAjo1Rfin7RwvwdAMRGuKGAfNU4XLCvhwpwrTCL1O2FK6Te1PNduvu5NSL6YNX2QNIg5Irl+XGJ3Ewi03OAVWaNVR6EgEUIPxVdHYMijGhwM3Q4jOGWbdli1qecL1U9Konregd5188Gba10r8gdPCxNvluz9KNZcn36KDCTfzYJdCKq5/Rsdutel/pcYW4LMKq05GFtGeYCS9pLyAunZg3P+6uYHQEMiJUSYlATO2wjXdI7gx5dbRpuOj+Me77Dsw+qExuCt0MFg/5wVZYZwQlPbSULI/U6OGjTjVzmzBlGePqn0pjnxX6GcXOLcP71yy+uo1sbbTkNWRfnaCPq3y6n0pSTQthi2QWjiXerYzF8N8rm4lg+SAcZUWJP1US+O5Pb3oFWMzAemftwHtRSfxHuxjqGWoK48Oq7E/R21C9YO9+UtzV4U9QEeKZS/Ubah+6xM75gzfwErk77GZtWFroqJeUCoeVg9YsCwZ7IM8WZ93RrIQZwmyJftANJbKf+yjceCDLb4vexvN9WCRJCcV3TH/GYN//Vqppa+QWQ234cZ0TyEB42Z7nBf7943ymNGE6T4f2LIwlyWOf8irca//9AnpG4xbahAnqmf3Zu84sWBPKXApEH5c28L6NJrPVfDa5WdoY0m1BLClUXHyjF+3agR0JazaFZQjxvJ5YR7wHJaaMH8mTCkCKti8AmnpFDPWnIVGEV4uMvX2pqgYg7PzIYTRUenk8jSlwkZpvV0Fw9kc+2BbWKgSajRbSDKlu2SztukQJk4R3sPij3qTFu8YJn4yVXDgFIPmQsDMjTfN961GzwwPgkaezUyZS2yFu4YmOr0T1Acjxnr89PU7AzpGTLwBswSlppO+ZZKPA1jBHYUspsV0jwgFfW4Cd0BvodcX5hVdp+KzLZdVAsLpw4Vm6sVqBlmm2giKd7qZ1Owhrg7CDCL2frn8QF5tcyXPPJ05BxPPjPQK2RLPT+KUF030Y2L8BLx4bAyh9azKyLhYy8btYyX9HB/h26VsNAiPASlg9BMRCfyHT+QbM2FTzAC3SncgQH1OXcNdbDjZsT4mBZv26OKUpYjyuMTpRrZmYCgmnCxEA1ffLNCon95JlpxMGcB+Blb+tyUd+wLpwMZVxBB6EVmnE+OX8LiPnYHhu/1dzLLBRgcqMlUkhzRO5axEbqGX0mkqgdR6b3hYRh45Kctad5n9h+1hCZlqzS+xEStUchTb+hP5T6C2S5HVol/GAWlpcrCREzMz2BJdd+7MvOCyrAPavTxXmUT8pxF3gV6ay4ODjuqorX51CYiIS027ZR6CdkeqxKygWC02Pt9E6AJ858DuTTaz+5lgMcn7wFzP/NduNakyYKHE4CxaEPXLjZQSKWLLdPnuUPrn8UHTk7opd8Uu9dFvu8Ct0dDOxQazmnUJzIogfi3uug9jCd0r0UvosfPzipQXylAxij2WZCVVJJQLiuYS98HBqLRgx+Cs/xgWRtRpkgULTSLQVFTmTFYc8tyij+y60AyYnlLH9/Qo0Xyswdqp0V2VgnBkgjwAVXkEf8zQMYQ6waDB6Oi7pFOuqpcwa8wQNs5QzKqHE9sd48w/hQj+hMCnj051HhJamwcBzF+lQCf9x89iJ7VIElbMiJcaczJcPp0IBWRe5TlfLRn4oKT2daixxXW2DpjvGYW/zERJxHju9jO9in6AUJL/g9zV/EHkGEVKF9MqwPMpQnN0eT2fgdmsEp1iZwS5jrV4knp64wXAz83FV1m7ZOE6iI6EMWI6uCoWINNrDSLSQO6YdnjgRh2+9MS6APy59ZJ/xCle1pbdKxTafxLRGCfwXEpUXLV1Obn2IIieTIgDgNUPrO4VIS9FTW+vD57FXOCDOiKKzwlfQRqm743Z/xUbINjGwmREgLwVECdW8eClA+5tWAhSYP8JEyxwYQCukFfcNyy/IcPCUUIQT6bShvMcbpei6OlU4JpnSGf/U4bMNFfb7RYHG0ZGUdOgoe/VGGO9NLFGhFnif9njL8tAd5ICFQ4/ardh6zj9TgFrfLx1D9CdFeT9S3vyndGLJNocgeNPS6FW4A+38i58ezp9MWFYahHudoPPlFjm7zp1/tI9H0Fem17X0ImA83UCL2mEm/J57d3j7LXuRBs6sgpQbSSyJhFd/0/aDeS26si8dTRfXV2giQFYfeuLV4vFXenbgauNvR4rslTX7fnK+oKq9xSoIo+2k3PNJcP4W2rPjyM+Kj6GykyLLOrBKmmrEMBmylGLHhI6IFrfVjA+8IvM1/oczWFSQ91Cn+z3BBH0hXk7amEcbpYFqsS9TPyCJRZk6LPitghbRdlLqoyh5nBvWd2vkQ5C8OV2jVdEoKV5XaUNSgDVqZMshD4bIBaKt+xFcDL2Qm8JRslj6pxsfrebkeOiB7/g/VeEdpcT53EtjMRaK7+orFOB5qlHo6sixQlHx4hD1iX7OJNhh7A+ytbVIRVrmL6JpPEqAWadYJ7A3llJOFWJBwX/+PamDDk1WWrUKasyh4DlItqOmRyy9lLgYvbr5yWxR0d+L+bJDoNwEU4/nc/+mLOG0UJOEzfmlLiIiOZHpPWnoQjxcodpfQy8GRArCxiSj9WAFqITQ6M/2YyaVcCyvo4ss82L8wa/Ed7FyH0pEt9TGBhIXUdta5JJ66I5aFUqTsEUE6pwjlwl8LJAxM5LW5DLgkdQNHbdv9ALvMT2AUw5v0Ugw0DHNPMJNG4FgLXqppk4EF5sCS1WirVEDpudl+GcpWkTo7jyOXQGjnTK+XvTguLEJiPqwKV0WhbK01ktYn33ITL8KwarqW07mLIANX+UslxyGsBHXwSs1fNwJ5AnpA1uJNlV3OM+T9JJKkF09u46ejS5qlXvr4/nB0/o5Lx2siLN6/p+eQ7xmCWKJ4bTgtyF+qa3Hzaw25ZYvF+TVwHxi4vTbYKfdRn4/KR9dkq5AEIztCWsWTOtjblZZNfdGQBQb16pYk6Hqf1n7w/rGnfIQL0W0bK0fsWHJEr0dxHAPfkRahZzqL4YUMWyR7KJC5Sz1fmpG1Gm44Uv2Dk0aD5B583gt4KR0Zr1oy2VJcImiBLKeZPuhb+jvTXBkFO+wAmXJanosRHf0gaVxPSZUwGp3UhsI/4AwYdwFd/KD9sT+vhiuja7dBiZtuq9WYSk4GbVzWPRejcRn0tEBR73Lay31On17qaKBcacSXi1UjJds8j9sa8DuR9s/VbW8GBYsYbFTBeG/YevzBNvaTquH4hlpGr9CIe8tNXfbav0GbrBbuNQ3TjYjNAIjtpPXACv54Wuh9e2lHzQxu/UEbBhBppWVvl4OOpQROFAcuhx9QFSj6AjmUomkEHBXSKQk7XnC3mzyyNdpQjnTz+C0e0cgLHKnBidl2wpHW48KDButtgzFFAqQiGdio2Hu3TOZ5+omjWn+0uzVtOrHLx9FYfCVBRcxMuxADyDJzOHZgaSkq7Va+iL3hX1xwhhi9afy7e8d1cdQrwyubfsHaTJf3X9f2+Fxk+xmmVxbYksE1vTNtGX6EmwXtcPk5RWIAJ9rqBwj2jHc0R+7e5VfhBcDJQZ/3fxYH1pDQZcvpxTW4ce/hLrnp6icT870HP7UPuv0fe6SkgcUwC04PCe6MfikuRFO1Mb5Z/oCa+Unec7AfnJRVXuN94ZItshpkj0OQbBgnjzp97rS+VxPhhrpAs4R+wAgV5y6QL0GTBbXDHp56NmXdVl0XKhzI4kzEL+ya21Xs6p9Pyof8gzk2nkbytNfpnhkj904dCiIupCIsHaynzwGEltgIUJjM3J6NwnQ3Exn3DxFHB5Nlc4cq9Cd3TF1XvfWDDA5Yj8dn6xCOg1FzMovSbPVekZvuUQe7FLTX/e9+yecRO7EkJD8URhaONzrAWemLdV0/ydxes+0zl7JQOYYyHHcuTgISfnxPjEwY/dkwP6pk+0eUW1qmmDVJ6qxiIS7kfUWo2T6lSzKVqlL/jowHEaz5EAxMUUChzTkgTFiVBpaxZ8980qHN2edUGyvq6SJ0ckP4ZfVTQhu6M83TwXL+ZDPXbKQOADrsNxp/E9moD3oIJFAG17bgAp2Ril3wNopN9suIJAc4ASYmVrx953dWtJEbzMYQjXjVGnhAq1C2CLT+ED0eHfRF6QQWbE7Yj20qi3Ny5oWeFNp3T62c06uYivMjP/hhp/5kOkcRAiSn2r3gsGoxk9W5YMSJxC0IfsGr5JPoEV0vaS5+4zrIELTaWAmgHq4BsjrbEVAVAtPn4Bu1s2cZbOsxC6dPtY3EGNWoXwGERCDY/Pi2Mya2VrhYooo2rIFPJ4byldraG+1a+lrhOEtcqSZlV5WjD7qplzJFA+QljgQZM1WP6w28uXHE/gQw6dSaWE7jByozQw4wAcg+eA/PSskRURvKVfgbSB62xNuP7d1Ie91e2YTY6wneaZ0NKXC7pEAKrCD+NS/V/DekrnYxeXDmh/07Jb3efPxZ9pNu6jjyscittfGEzma3lqlk/M8ZXL4JXAMxKbHTupgeC7e3OZ0wByEFL4j5FvMQdQfEqbxPu9OWWPI/Sg0NWgdtKCit6O/n1ytpRTr99ipXaL3HsdNhqsAaj6WXyVJOzJZbVehtousHhLq+x9oEJ1sktXO6A9oxNFz5QrJp5OFNC1hAVl1AZcNat4RY8KoU4WPRlHOfF9GBoVqEgYa0XIwIkrm9VP9tnMtSt1D7st6kwYSN/+RJtYqWFE4ZvuTyKIo8CE7bwpe2NxAy7/saBhoD+2KPGBvBqKjR96/fCi4IdJPXwRBRCXD3H1WhOHNqxvcM2SR33amF9ypAgGiHJa7WBbVmGiSrWP1BfGNl1YvONlmprTnlQc199H9J/WnJZUsF3Jj2sbeMmJKDk9F1ZD+wPFxi1tYQj49xILFG83UPLIjwIM9oLOsoz7XeWb9JDtOhENGA4RS8QxwYitmWaNjPpC7vjbJ4cST1AnqDwvPx/NvoMoRM3ETj8P/o8tECO9aSaD1C3zqelwE57/X3srIDE6XwjVd3X+jT7x6YnxflM70GalhSr3eCSByhnfs/1a1pC5Ef7u1tSWbA2NfeuS2JM/NPogDqXNAxcnGarYsFn4dHIdDqLR+zFgmTcDRpAAdtwGsvtbsU02g/REMMBTT+0P70+31j0Y/UkXuPDgA0Lp4qGE+8xUieZvlCOb/bB+CBZu2AfTHbIz2N5/Bafv7HKM3uyuoFn9BbLJzIYRjVCdQ4/YHQpeFukGt3M5SzNQcPVEZCK9kgLRe9R+6Y1CHw7qeShh6593HV0U+YxWcRdTzyfOf9y4qZ8bXFXPh6VFK65OfwzaslGcgflGZAEfv703c3TKtmz206A3umJqkHukyBJuVvQv1KHNONnlysrSJ0vllBme6nBdtr8ffLkcSPjXtfPgQjI7Z/bAT1luhuv4GflzJwzU+kGWcon7kPVP3T9H9PA7zYnPbc9db5NAlWmzDaJJVOTt+RrcCJDKLuqPswofds0v3oV2txJ/HgapvvVfWxEzv0aOKy6+pNxdp076EpmTxFApDiO/punRnwhCwfMoku+6v1IZHy35UYgt7f5laeaFLNz/dBw/c/e1+0M/B6hb73Idyu+BdQ1YPfJvO4+SMOZkLUSoxsnIQApKzlUF4QgJLM5s3LiV6RTNeOIOgReojarAr27uwZdww8EBqaZYKOCRZL9qJ83iq0kSLdGcMNlAHbPUh5zAY839H27AAsY8vPVe+MNj2kx2CyV97Mjt8/cYu4S8/xutUmHPjIjBhPpsTgb8vKpIrsJMzpkbMn3He7DZKXT2PpM3YPanqb0MrD0G3u+89eUCjYOhd/jO1E9f8XLb1Al+xOwD6hRV+TiFkai8OywrF1Dew2fLXH0iXGAutWSZeF1WTQMS/o6C+nua6tcCleSQ2wVW+PTMHASVMzrTnSAqLOwp3HI4jDH6UGS3R68uTzbB4sLZILlURhYvsjRmlyqNp+6JxoH2gnIHt0wMrAzBHwlxFe4dt6l/PRm48dkKVOwSsI10APDxgCBl94zAnaMVGi7a2eFpFixc+cb1eimY1B2XiEVoStFvhJtHRFl+hCAi+iJifEntsWterqV+yO0aw1e1qdpGZV+KcYEhzZq7oknDCLVxkaa6I42/BGfI4j8OHHLjc3izAokA57GxQgaojqVq251TXDJzqw4Uqtg64lLHWplrlq+Vw7D3WzBaiXoRNJDZjETx2Tva0ZoeTfL+YI6heNzF63ON9dQgdZtKComW6aEQoS3X+iP6mdUA0zdS8SXXlM7Qjfgokk5GJbqFEGTEOsze+B9uHP88Ane7X9evObVdJw1IR845VMAZHblRqLJ5dzj/VfHdBPChKQ09BtDygrn4zftEwEg0WATdBvaYT0Of1YFxLJgBw6ey/aJXmxsbGiPrpJnwRJBKGMGfvVB+jUJSomq81OEh+VE3FWuLZeIe85IVurqfQzY62Vf//xg4zM5fGvJpy6uWm4YvGdhKa8arVr4kmjit3CybaNMQnj150MdHQ0sLDpYQMSN/3jeoo0iKbhQqyeBL0U/X2wx9tnitk3+zrusz0iwOVFzAeMTtmkZJyln5poplAOMxtqMsKGlOz32LxSTBQToAAs2yPV2/7pHxB9kC4sSYiJGWaceTqk8sv5iO6ldIRNgf9Pe7LpqIzfcwQBZoN+1S3HF4NBD/WQBMv4YI35pcaW7BbgrlNhe60CN2WuZaYKiOnPzXC6K75es9MiSLnjKK5L+Kb/8M6t+PU1JAhpr56TjRZ3icgJfd4CfkrSmEO3eX5dz1kMsbdwqq7NxQnA3cuAw/momNqQLqz9y3de1NUiySZ8AiFDzuZ9cdZLcyoy6TYU7Q9sZSDihZTqNJZhAWzKqBGfarlCbCBstQ0S3BWBpMXzazlOrn5MgjZG3Z/0EbYLqqeqbnrWhTrvuBRMl8xtoEYTUESnqrRWxy8QAM5RdjptcB62o9Hrek+7ypJM5IjwMUT+ay8EedHBUdM5eFI98HcW6dHU+UeHumU/idcxbmOGkyikJuf/bWmxFcLeNfS8LmTifMeRdmzrlzU+t2B3XVWjsnPRTwOv341fDwCQ5i9ftQf8yQR+a5QjnRGU1cL5xwZWjlT1c8EJFmtUysNa0w1CX3KbB4VBE/qChvjQ0+pe4I2QmKWCb/hmUXoXCaPOGtgPvZQbhzjwpUUaiiPs1/Rgagbyj7wmGUeu9pQga5tBEZ3TNfNSx4HtuNlEFR9bcRjbYfdQfMK7jQvMWrO4MfZe3edimBRjpz5XjqYpllyrY28nHnNzWV5kMt42rhJjcwN8dN/UyyZ00NlPXAJuLA25sa4wP/1auajW7Z/lMLscyQ6/vXdX90GdQBwtaj+d/+dGGYiCIW0qrvDTXkj6qa0r3N8AMpmfCwdNBqQZ5YfxAxrXpq/WB5uUJH9pXvz9VWe3mu6fXOzFHbe5UvZPz4iu6v5d0MUQyznq3EdQFMf1m0US8bCRXdhQIr7r9jcCdFZmADoG4BXw65uQT9LgqJzhxuPMX1KOnE4UXXM2ZgZLJP/icPyt4YKmEeV9vbfOGa2fR2MbaLAjd8EWJF9NWpxhBNLz2vZtZGOGX3xM++fcmjkgJ3+jfhlEoWUIO4HXJgt5kAx/CkiZbtHz9g6cwJjGyQRi5twBwhY1aSA2HeIezHADc1c03OMXiA2EFuqqA884cAOUclf/mFWydS3yc8qKcP127L/lTWGrNVH6y5nApgmGO0cUB00JPXCa/TGA4xapW7CQCOVwWCuSAX3rxxD/iJWgIBbuilLQ/CNEj3cwtX5XQMv1Djhygp4ZXOrYm2Xim5YY9ntcLNs+p8GkzvtZZeo9W/cpIkKebvoGy+mCTt4fqt/zty+WzZiU+eSRGm/eXiftxpU/xPzWAaMpU5LQKqb6ys/49OrXMY9TSjz1BzNra3O/FwKa68OfoPmQjDiEkVvpjWlgxdgoou8bB6yfi3/JxfgjuKsRaGyZQ51reLIBzFjoxThvrpdZiTPMXETdadZfIO7V4aGUAFwKUhzwdkSwMmJO6bDCM16TEYHT9wAVDmRG3xlzEdwv+1+pG9qqnT1lb8cUdexJQUcdNcZ1oog6NUmeM6hhdw3jO7vC300Yym0OfaWge1v9OLQOEVZikW25MT/y7qRlP8Ov+sqZytc7mRHEl1Vwy9pTf3poW1FlcUrFh0BCtiU7Xh8L8bCuOlxZCwznCmqasMoxKyMtKTOsJzW1FTdYrQdDxCkYyPP+7JwHJK2u8zQ9kRABEmWLfFDSLy6F9SQDC5QtIMLt3AMvuFbEMpV/DJryirNYD8Bswte31+WW5uyKk1k6qOdfgO4/I/AEY5dARAXrGlITFm11wO+c+lEdB0LCjkgf/oMjQCMTVzrYGwx43uP67H4QUfCnNAjTzXx+b8QE8/2fIrhym8Rom0TDhvSZDQW+FOYi1sEvGPqXfD6uo5DFbi189eXSH5hBfKu8HRW0pIAy+E4o5P9A3WyaAS4uzPh2tF50um6HZtmM3thz+5jl3dOBs9vSVamB0xX/qdvA5TGVbev0MExjAXQTZuELtvfnMDM9nNnF296RJ11jQ3Ir/V/3+6cXkvdqbG1Oooj4hyV2ZXOSd/ci2WP2BTo1EeB7ijnQIKa0mHY1j5hJOu3itfp/fvw6UJkx+GkbmGMjjr7BbhIN3BDtWGn9ZWnKTF1MigMivGQylNuQrsOwQE3kx9x7QwUyN/Bu4EgEurOBHBnunsHA17mjDoFnFs7YxHMLCegnjxiuA+SEwKnkh9JYQYsSGCnEbIMjW7CWL6X7Su3TUKwZDMg5SB0a5NJ7utHUxRYgVwuE9Go79ExuoucewemTSJD3NxcyA9VfbxuS6oNaUJtlQyMHMJor58pL27BeZ8CgBQDIGTf/iR/UGI+9FPmmKHAZuc4DWVyjqQYN+gYv10lSBbyM0xDKN+RWlh0SrIr1EAeDitBLVb1EsE/SyeAfN01FvI/IGKcYmHiroQiz3sYzrDMcuZ/eTtNbKHfASFfNLJTd/qp2NEqW6PFO55s0hkAw5LOQ9LV81EWHfTSQNqcrMJ83Ea3IXo4Qv8XX0ijjssBTZSxuw3+Hj3EXprjTsz5X0n+GeZ77prDYsllur/wNID5rlflQWIpchUr5cU3f4fTyP6AZnyM4RxsObVAphMNHnH48YYbpoRv0B9tY0VICAcZSJy9MadThH1a4remcwDB0zhj/Z20CiObsfSBqtd7ASPrH3mAClz8gIiACWCZOhHDHiN39cjn3x2MyMYmLWxWtNAsFrN/LDYK7m5WdgMVvP9tdpY5Z5co3aP8Dz/4I9ObK8ctkoa3u5gAXBwS1i0AJgr0ZALjH1lCgJbWUf+7QZ3UY5UEEIZD5gO8+KpBhET9C6GhqAPO9v1Yg8J0qPky+yxeoJbO0wfxQpJ3FEZJZrya5ilSf/K5zsH2tnXwN4LjPMW0KvM7dn3x49v6V6D19HGq1Oz6a68jxDjE4GjWpP6msXLSMrZIjTnzIKNWuJCJcc3awX69P9LIGVCuTwVVsApVfKN+WHuIMiYgDqeMa+ebt1j7A3zezaDDQGAnYHXsmGgYdVqXzg/bd3BPkHLnHcvLlEGJ9X0F3kYcFb9X3WJAWa9MJcDHDv4r+/zdrHYYoYkqlmAJrpSILgsxmN8TICO8j8Feiu9bKYzu0BFxU0oOfhskZibEp0vnQR08ak2vwEWEmzWnp9NYXWLd3hYch14/SyFpm5EWWGHMo0W6xqbEjVT8pXGEYq7WgTZzLeaOCod07lhlyS4f/RyxVq1RL3/FHV2yOkYPCuOwZT0ANT3XcQuLR3R27b/Fgdvs7NlffXQ/JqD0GSOdpIxUpjd267a8H424933+X86f2tWSkimirN+z7opDl7JPFYwQno3dwWkj0ag4gmamBlkUtLPOrpXcy7giA/wRT8c5wX1vAcFk0JzHKBb9hFmC9PuBMAPQRkQTOanO+YIEoY/KCIALZ6aOXky7GvsCPog2M57iFIqUxYWws0rqsp1Ru5mESYE/rbvW02p2NxZeGhV06H/Gq33QNvb5ZBIJxP4ZhwQbb1fUphXe91BfC+YG2Pj+Zqm+XMAXHYfBnd2/4YanF85ZJJEsdeyyW39/CRiCf847vs4u0lvyNFgvGxOLbxnMWQnde4MGcWIsg9rk7sqkkAGo51cxdu3Ek4SVJrzw2qYVGmPouUm5qOeuRbacgT6fR6in9KWH/So2BVvCJXp9fxU+8kK0Y14dut4q4WEoCArWtYMM+Du0MUyxxSkuvaYLZg5Q9N2o62LlVl4yaJ0tqkwDcPKc35d4oo56Jkhgm3nOSwOGM7TPEQgFrWHOWfB3NcOFArHcMsLQJVdr2shDFWN5z4y878ei7zHi/3nFJ0uR71PGE68ui/EHMznOOX8V0Wvaev3MX8xLIgo5ItgaVmz3dTx9BIMuNqTZ4a6lrcaT0y+a+7XcBvhM6HaAVcyo9C+lDzWxfmLtQ2L+dPG6qKADXMrmbfpKfumcAGM5uIheiNeCIPlI6+2N5qhSNLvJB7lLaqta4SPQNZc0W6b8EAfluk1rSf3T3AajBLeUJE/0fnn4lc0SXS9JNU0uF0sZvtkOmRerwx9STnAMxTYc7QnCTPG16NRavMxl4y0MmE3HrI3NFoMKkTMwHzqMRkRH2SwEL+10AWyaafg4N9mvfeuwLPKAvv4J4rWvaxHBMcH5tWX7AIiUwDfjWqTvcNOYmSmFJrDru9dSVTqHdn8Ju/qQCcPlbI2vW6bTN3nP+Z2Ap8uUX2iiGIfFT8pplCPzORka+0QYuhjXnD7+KO7O5p1AB4bkCGOMPef+8mlskK+2aigr2WBAkUbGz9P7fIaPZgJ3EwxKET56AiLmdEgPq6lN0IhlwQZICicaeK7KplhiszdRuuqoSDjn2HcZe97TRLQAgGusmfe6QTiZ5nPwCKe1V9KWqQRb5JMzktDjlwmGv9C2u57EDCWY4ojbKsBupoWlEfrESVR9BXGWI9KNCFWwYkhMXlZZ/qowZe6ul4ujgS5qW5OqAQWQyLv8+QxZJpmODWKROJ9XsQm1NVsX4KJiFlH8MZp/ZzVDqkuNavKGiqLakcpG5DORoad20iHPaLGRiriIpFsBP2eZhCpESk7/Ux0H8J278Eierh+cmr9d9PNLkZmPfqT99WTso8qGVObMriNNEvY9fvphecHoV0Zn1qBqyF4OVPzCdkoRfUvgSrSTcpx0yvXzyWhSSHnT48mk3HRsUIiPYAVR7UhakyJjO+Cb4sQU3T8gdU/f9LQUvP6k/0Yej8nKu/bG4QzIAFHyvQsb8f4dP1logPY5PqHCoBhvZAX30VeHan60AvNV4J55W7r99dFgH+h/SQ1Ns8PB2Rlq24nIDisVepAq3i0YhJ9APcKO9Ef69kuGTBBP63SGEvptVhuXjY2QZMuLKyY316c+0RxBfg5+78a3rA+a2pVKHp9yI7C7SLkeeh4R4aeLCISJbeFVE/C1lbigDEImZLBqNzERztFLwzAycLdYUE+NtpooFfhlyGqeAF5+WXHdJe2uNA9emm7s6GlRaQQ1/M7VlAmNw/mOi20zaslhMSgHuGdZEjFQxwSzPNMQhrKE2raiVMUNXU+jI1+ZEJcPhs/h4AMyEHjFu5UCwUf6aZgVspYW8FRiMSFdzolL/Ul5TuBYo3biqRqjyPDr3xYMKsBEXunUK21Yq1ZGVsHJm3BeVhMS0NFT8sW4P4JrtKdCcc6neDh83VE58PMLz8S2Wpkt+TnObTu2Mowl0q5AjmWg07tLmVB9dFhAtAlzle1ZCEm9vJ+Jv3pIAtE1tDkBD9VjiEVyMcfShcwYKYlpIHygorZSC3YzUn7DArsa25U3Ri9SUdN/hLsD7Su9U0iOqVApqvCkWfufSs8ZIfEd9/YAi18DJuGyCEtee+tT9DahfCqZdFqErowp5yT2nnGsCyHNrWEuLvr5RLHwY131j0PqOiIMfn2WvjjlAPvI/TiMyGBKTlhYhQ55V2Jdc06fcThIXwp5z3j3IBzaquUBLSkmK00l5nAOvWHWili302t56VU42veL1S7Gm4iahplAq26mQhQJZbzX4sEnVyzvTemVQ/8qEZCw5ZY6BJdiF4/AhyrV6yuAR1y7AkNyNZproYtAERfsSTTR6hozTsOl1ljXXCRZ87yPxvCbyGJSHREwdHNQLgz0uRmhqmJd/DI00e16WTLGOymr68sNas3sOuDAD5toFLjPGaOXt1sBY3U6bVr3KkX3opyWeXOxGsKne1d9l4bXCs3PqwO+iLt09eQILCF11GEZoMWBpTO9k7ft6fYGvObj3rGI9BvF+xUrN2uivgRJt1RATYL4jSrCj3UJ5dQADV+0a2X0MDzBb/AcoXy+r/mmljL3f/0Ot5TV4VrsAo2CBCwZcF8BWNqM1QX3ahX/ZAnal7XAiCq+ITKUXuTh9Uvin/sauonkt+FlkpAkjdWvxf12uy9WXi6ffO0aYHOsVqzgYfRdFd+5R8JDt2BoFypDNIw8mUNg5HA2Sbqd9at8Q1MinGsiAXtbd6Y1QN1f3jlSzdKNZd4KjOcPm8wvrUjbjR41ADGhDHHdMoHNiSRYQFbZvBpGYp2OOhd8V983pWiK7FCeqz153odSWQA8Lkz4GVXO4Z2RsJRCYiFuz2tgWxzuyChj6ZVgmPD42T5Za5T0MHHMRMDQVmpTdCUVo+OgFMwtHIuh2qCp5tsMoAX7LXPfqbX4DgX6/Fbo3oxuYuQUUgax7L2weaLYszFnEbak/m93uoL+TowbOvB0u9KXJYSF+FzO5dp55h/921S30r5W0xFdaWVktAPNypPRxsY7ShfiosycI4sETqj/QhgqY79qCeT5U+l0PhjWZ6znTL0mjBlXqKMWft8WkkeJKQtbY2S/TAE0sD6sbM1j2fj2UdgvoXe6UOecQMqVEzXR52gyPWMSuRsMm0WOkpPKC6Y5kko6+4S4AJfDgdh9Ffh7J9BzUnRMDsWOvdG/QSXfBVClqE6befnnDsaDchvBidmcXRrJGZh6rOU08kVuf8T7QDLLUjd2Iajq3hySthJz4pAuGo43JUPhLPpLS1s1I5135QdmTfE3guXvIvOTVxkI44tjitA+RRebrjlqCioW3NXcZoJiT9qEF345WiwLQ8Y340e8ECHl72yOrIotVraVSjHaL8XDrs2sCenDBLs6b2DZB3vSGq7V/VHzBSZ8BeNkeG4KkzfZkcMNXH3i6AWWsx0UnIqnL6Irm2uAO+DUZhbK4jFlQjiscwkQe/9TJkzLx70thA8yObia90RFwkdawxPmqgGPPHhx+sG+NpOa7ooohQyqvDNyZ2adjLEsgU0rIDa75YG6ycmf38e48ZLXWSP9EvhdNRMsaYwLi4kN9d03p+3Sq2SGjsz+x1m/SYK55oIWaKFJ5h/Ktc3DkDAMY684aJcuLgjeVkzWS+11AttLvdy9it3rJA8nyeu/l97ikQchA6QwK1vyugBv+SJgogzee6v3mr4CKZ2hybVtnWUg2eyK/eCnLfy5pkIaHR2wx5kr6KMBIDib0rhg6l1pJ/NugWnKgyXJxrdGvVR/hpIQttrpOLY0E/N2l63r/kJ5ATqA1LorsQQ8/TUEQOEW7EpA7TsFrtmRW88LElsrbYBOQeOItbP+t5mxAf6uWZffI35NPn8usIH/Gjlro2EaSDxuVYeHL4SisxcgEK1esvQCDgQye3Q+THfG1cB7HzUrj/a10TuFAkz6NB9a6ZfCB8YGAxoT37IslDYtRA+X+rXcOmNwRQUdkGALRod57zsCVhwIIWBx3Fzrcbajqh/TGUOLXNx01L8zEZ+eW04bA1RZE2Jcfvo6FHAynTImKe2BM7C1r6SDsbF0asZ2vGTZ41kj45bk+DX6guYwXDk3XhioZhcd75hgv82eIt1KJ7KzEr0mLQ9Q9GVk9TLydu6m1jVon0iqGcnS9dNV9aOLd62cHiGW/awZbxYt6sNG3ZLc5Fvt/P8TWrheOnhpEKD8qEcZ3lJXbQ4Mw7cSrmb1NaGyp3tB3mlw0EofpEVJZdfmrGX6oWdiCG/AX+TdjWEr7d1s4LjhCvCfLyPgfGlh5AITxI9f1QWX5Ar1xokET9C3E5bP5v9nCTitNuZQj0p5gugAONYrh46iRIVoRO17nFK3YeTW/STXsIxIxylvYFc0E8WELYkl4zCuaVoEvnq92fn9s2b4vhQmNFW9NwwWy2n/9IHmlmw7f0sPS86Wm8yxJWYKVFn4crrO4ndUCIE47YvwccMp6ic+SIuYmdBsM3TJ39CpBYo25GLfd1JCTJMLNG2BwKwzw9UboFWrQKOVrLJlwwJZsxR186kGtuZArHD24m/1gjlSQBU4LeEdPFBVli6KQuhTJQ9PbNUFta2NPqkfj+ZPF+i47X/YADpNbns16jvkIak1ipzkpk+7eqHm8H7pQceqjNIGrScMJmbmKMrNYSGPjDCoEAjX2VX6cgyUz5PJzE1HsJvdZQT7OcFaXXhv4uMzqmcnJ7TCBM61CusZaXpktNwjahrV+AqVRcWYx/DXPXsCME2rAw1e3uNuHoSY+IyqILZZXNm0ED/pit7a6aB0G2UaLY/atcarHsDGhuyJ9CNbt+QeEZPxEtkwvTHg1hqkDRgcD5vP9ZCEeDCyg0QAof6C8VvJvb2OPPeDksv+kM33/ObtGeZM0aPNBzFbIzQHObsSkViI1tB5pIF4UWl1bsrRYsN9/Ta0jMe7WlBzPFxhfSwj6lsUtziZuyqreKQEX1ouHvYVMDaOTpLa9XOP0Lr0XzklhN1usj8uB2Gx+wrNUusvWQe3Dk0+dx/XNAxJ+EoltvrjkG3Ndby5X1hkK7MPAaCG53Ye4mwW0TvzmzNqnowOis74rv27ibAC9hKsTsyj7Zv/l3FnjaXk2LpIRZsDbpx61VJUzHC3mgsZoGdYVJnvVsYtm0oGGn2trk5WUHD19DQY/rFZKawMbEhzG4/+w2Y+9+gLSgqFV2aTeppkTQcAp4zlNRkPGhpyZ3DjZmybPr/hKEUcnZ5XD6JW0RPTD07Y1YOOHmKVLOkaesqyVMuUsGbvt2+FOh36nZ1zTZP+JTWO8atr9rIpDLhhnoQ2u6RxOD9u/JUDXuMMX7M1kTQUGtUQH1s/JmttVW+U3EH0sYda3BL0dgxYlYMEU5JsL66uF4l2wwu4alHA2jmEZVJGBcZ6JxicotbDzo+ntzwDlkKiB98g9MChnagOdDGVx+3h0POj5cj+Bmubff4YAXt3GpsPU7dXVagY9qKq54kIqxELRvkoCgiry2+fC6PfoRjaDc6SzGuuJL1c+LYkVZZzZ/sYS8EHpRVQrwxvE2xXmdHuFamHRzzDXwepbxu9RBuz2zPUN/wBfYMPECIMpjPDLs/EcrTAJwz8kr3bOFGkyLAZ2QJqS2ks6116Q2uu+HY7ifDPulG+1bE1+31/UoLwJ9DVH0S1gtcsnR8jgsvogeutIpfkdu7rwNC9yYZ4ZdmA3cComsTn9uvZ21BCtTcvjnjU874426UKaydwCNWdFsyq63V/6bOgZERH090bVRMpeRLr5Nhi4o6FSIkrxheXTzduipwsEbxXiCiGAhlFoQa8u9wFzVTouX8+4f7s3vY9aEpudz7f9yTOKAW+wU2boXrkmCAJ0BC6g7ion7kVqnGU6FJcl5kSGDnoad5nwQ1RoRvka7MeMuNZKkRayPGBH4BzUMkTeiTP2o3wwtb1OE4WU6ltGUFcdfZDgDAXhx/LyemxmqeDaPf30A47pJxS43nqdNhWt/0EXkj+QDx2+4Knpzv+aO3wYxvTl1I9OpL747nRIpxl6UMLpbr/jv7y7TQyr2oDtutOwzzmuKub+dHPlpH5cpjAU2H0ZDeIjNNbwwc3DKsja4nan3/AyPWqTpadkWxPSgzAOQbUKUyIxfzZC6DVgD/H/q9db1QHtfcrB9FCPG6VmT6GJM5QC2u4b5nh+5zUGdIlBYJkFBbmi2FUAjfEbbAvgMfRljbBog1YhajL2rQqvIiDiw68fRWYCeJixSa6uZKXwlnNYAAZWmsYgBE3us16jSBngdUReNeii3CJInvLrfCUt1Ep8B298SNMkt4gUgL413xWp5qE5nmKVCew911N8nhj2G6O8D1zRLgxUtZCzMvFrf4cv188WvGosVzWR85rJHlbcTyD7w83Stuhf49RxqTtUHZqHotA02orok3goYLr6A26lYVF/Rui6DdBYb+fN8sAx1ATwocbDXWQ/qBp0rQ0hk3oCw0y6WCY0WrzpuSwsUCiQfe+wQkoontL7+oIkxvocq3VxriwQBq7LY1u1CdmuIybShJMuvZiowhZdQI6UWfupijpnyOwqPufV/Wi0QB//JlkO2LSjYlvY2wpLf3EKpejUbHji8FLaxHP/HbhcPST5NhkTfkl6t7YE37aDZmz75D8yMyRSVGrrxWJth4XOQCU/unllRXByUaSO3V75aFLgOahjIAQBC4bi32bWTSLLkqvexb0nRmCfFNLC+DSoJ6IYG0wO/aAdzVTDmNO3GLzZrTGHAKlDanqXXrzMhqQzLya+xFyDageXrBKb38b3YmepXVKkf2eisTxlIVNkP+jnXp8pvYVm1L2g8JwkTUzzSumsxkCDonbieI3rBw8igMgsWwvebacHr7Wqu1AigRlQIe9ovS44gi63OD7cMSffx5YRux7ascoOkqkhcgmLoUROHwau3WE9BDPxB2JqOfzrWcWjaHkuiF8JnzTXMmlouylFG9RIyH//BznLSdfxon66ecyQmsmpUsl6T+GkXjt5Gdt/rZeXYZCG4K4qkHjWrvC9u8GqzkvfckhyojSJLyIn/zGvVsgOMWXcl+V3bJFjQHqJn9WD4qgRYN8eqtN4FbmcBrv6DzDTgbgI57yUTuj7J9dKkwXpyu/NhVyrfS8dYr//e9ZrFEVTb+rSrAiPz4IJLinEgK4VB7D0XB7sj1PzFB6C/jPZ62eVnL2KFLEj+Pmt2/akIJqabsIaykQyFtx6K5jCMao7J0Uuw1QJUWNyWKmLeRYHTzmoWtFeqF9cwOJoNmUcPbZNxe8XsCvL17B1lAZUrNO25C0wqG1HmGa5n/4zhS6BMabSjsTtiZIDmt5N2hKbRMEztelwL7UtvUOT0tBULhlfC14w5pKYVW/cpnUevUfE1fb7lSiaoAP3AxvDuGRBMNKFJ/0bQf5AlB+zZH5UBV8LsJgmxFHkkbAF/PTFi4aHMuYPWswIEVGkQZnbDHfKG8vqSxVU2QKhmGrFbh4Oe4uo6ehUrCY/sMZ+VrjDOK5/IUPiaR1SaFvpG0WC6rlHX7TXhE/eTRFg/NVh/Xr7Re6zvhaOx1lQszXrZ1tnllC30BqKSvuBoPBZFHN5A1MI/eiymyETzE3pT1wIR7syABAwdezMLkVPLxXrcloEgabZF1Ni7ZoR2dSVO24QVDA4RNgaJ9xYfZAtpCq6KD3VlQJmGMfAZGhnizfepDPB4m/C+kw6I7bJsgNmaWFgI3AOMd1ZStC9SD0kgVN1dPf+eTERUoZQU7rpwJ48Gu6dryPWLbAY03SmOHzbR5Cq8STeSXjoL70Pz13FdnFAhzaU1N+W2PI86OzDQmkc2ptN7pfUuGO3AcKAVVzNiMOP4HuqJ7k2Kmb48gdBSKwb00NPx7Uk2lxQZjmUpd/xk9owuuwYadvdFsE/EOLN/thKTny6SLeCSwLqCUxKI8PvqNSl9toc0i6yoBcHsyAauQHBVqcMIFP+XvyT6VtLtt+enfWJz837O+ooTJY9C/c2QqvaZJ9/q5jhbBdlBPKUmz70kDuOOV1HIrCdR+ayW9VvnGoZzPr5lSLXZ2RzoBNkQwvVXBDn5HRunu94lGhcCueOMXkASLRplLseVuePt83iZVmwkfWbbmkp0aVEel0hwc/nQIt6WUoinJKGWr0KB2ni6s9eoXlRLen+0L6rOLjQN9ISC4Qoe0CgCWiSJSJui3+QfOnVMcM/F7vyIc8JUwnElG9WuOP5WfSmm9ojHc/FUiBlL98bOju+KdZvcX8+uKS6Xz7rp4kv9TOxB78D4fl+2JWoDGop3ivBh0xhnSz6CyO1BntPuxyge3ns1z8S2nLdGet3y3c3xnQx8gp4tAEDSZ2H0304chAmbEaB9w5HiAW0Im0gbo5zXcU/n3RQnKCcnyepVKezXs8oLOIUK/vL2YIryaYgE+Wcl5TdkdBa0Ob9ixNAtkN4wvlZdGmpiY8/18XseCHINB8rdrrtmvSYGI2eln9oK9sQHyPe//pogqlV7XDYV5/blTpW+iDkFYlLwF3Wc6f0nUB6pigLFeZCf/6W5UH9cTAb15Hf9bfJFw6v86PjTNRAAooJb/BUiDT+PpxBXgMwARGtde4cf1tV/mEcliWv2fBfRfKg5zLQ1k6sXxpxIkuRPNcVUqJ4e/ZHkUtmpRbLGJ2knFOib73xBgXPe/HPK/fNkoG+qykhyeaJAgvdd+aQRws4E4dSgSPy/zfWI1nTgPUCxwU8aaoZGBdd2ip2GKE19yXjp2IVb/a7VeerglmgtMDMwZk3ovM9X7xOPTXql7GhFZB0G0EHKrMBI4wn+rvFpZmMOMEA1m6w21Bq6UHv81VwIjwMV+ledBhFNU/PFFVfhHknkmBX38erk6VDhDlA/MIQ0DGg9lnPKcI0jqnWsjOE376SFDFWI47jz5fRUM34djHdWE28V4/ACvvuYxrBxWMbrUR7b3MpWX/X5gx7/Mcq1LwYiAsow+zxvpY/fzjum7lNmsgrzlLPpdei8d712mEr1hK5BXJ44V+4rUlCjmBM5sxOIJ5IxskuJa3VBtngnkAMmgoReOzdNUOu8Zf0FlK5LICl66KH+O0jarvCFDNLwEguT3LEYBTCf3ITlXPBbu0IauYrrMwZJ/Gf9ON3ouQ94I0C9bVtlzSiu/BvIfhAn2P0bRZ2/txiI6FVNl5eUT+676p3KEczGCCEVSGO4izAPgeujmdTK7NN5PUds4KRw1EiN4HDK5VdqDDTyH2HVivsKRbbxNhAlVaVe9Bp5pfUrUZcRTuVKE8HMnJ2SvlwY59H2eNyg3MVpZuSU/OzrBSBbfxkpXr3b1KQn5jjoFG6rMkVdWPRVq34ArtcV630ixpAVdZpPRI+e81ODq15b+u5VXKYrbD+BhdMMxQs7IXY7dCyKY4/HJytZayQDbF0zWvZcG7wpMpNqAU+NxxTyTavlCExzov9Dy5Nm3E5pH0KI5Sp8p8y9ugGe0G95Sh0lzupyAeIr1/SaJ9xip/+mhUjDcuG/Uhvp42+POtFPbUMqV4VDsd96PaxRHkjfxS1tVyqnP6xnRLiS6kk39TPkSYbw7506yUKm5kkfspFDUeZTSWvp5iUvzQ2eo2+JitLWOTzmi7/H8NGFbhaT4kgen8p7p4BlVtmosOGjEnxBEe/2JMq1fU0DUauawYLxfrDKY4ct0qPiyZ2ueJUz/A7Y5MZWcufZi22xbN36ys6Wkw6DhChDFbu4H4vXbD45LOElyeT+YZmz423BWnzd1n0l8htMEqCyvyhICiCYV9CvZ7/YkB+eYB5WZgzrYM1yXlklNvpVgKNNLPhz4hQtdbOSVYJu+/1umGzoLAmbEs5QkkLVY456bRVneBUvGO3wbxAHvSdCgV6EedVfIKFqYKs0KBwIUnJ4RzDfJRmMWztaNPnewJom0y5ZyIXhgq40879UVYxCNq0r46WGtEag2SaTwW/ALWha5NGS64fWc8Y8zrBSTfh2jjFQ0NNqDmY4s85KHlwQ8u83y/Dp/trJxZ/3Hu4Wvklq5GyjrkbpjoqWqvk3n8sf2oYfg5c8tnHe/VUwSvaMKlisZhUuvaaFEyWDiwNe3eiyYOegKHg18I/f2Y1cl3L59SGQ3/WEmqGpnU/sGqYoOEtLFb6rJ2prqefXuFaIWCH7p7iN0WuQZL13R7GRsWKeiN2nVb6eu4AWbRpNIq5h7Vtc77gnYRHHeUMvpLTZMk4Ozp9Gac/6e0nCeNd60gSyMuSu1VZ5Kn6wcQ4Wg7U2NCI2cOJ/te5pj/FcYzrczbZaMGGJR0PpQn9UIYzmSJs0B7thZKfjaIAz6OHIpWe7A4q9S4ofB2xYC+dwI+/3eiWOfmjEKBWvFcizHk2vrzYR88KVQlUAulIxFZIBoVbfCRk/TGRC4Rp1l9g8Hlf//8SrgmnhbojKwPgwRP4EkU2GECiXUMfMiI9U5KPtjZOEc5Ejce0+diSp+tMpWD2sul6GtHP6q+G7m6URrqmd5irfVxRvbbMrYjtWmWyvKrHb5ehPf6OsPEHqXqVI87iNAymfnhpwL5AKaepYLMpK8wz61SBI3ozSHUSvN5SxbsmY3nHQOMlUQlAdKLz/XHoicOORL6dTnXzSjPoBI8Eiu3WCIyPBZvhg31VpTJ/skD6l0mumcoMKE31jsfm34vTDgCGxTof6h+FFD9CtMsvSItSG2bNkdEc6Q/2Ny2i331Dhq4b3tKdyRfYH7r07d33wr1M8DoJEMp+kXVIYkkamoauj3ujkYP6s1wI1s9AEqmhP8FnBsOqG0cqvv1+bJ8KTluF8uSg7LXK6n0OrEMNLvkuk4gCIqz+Az55mH7oEBYHcRv8Y9Dhj2OQ/8cYNzk0FsX9v4BGNqSaTxXDlio8ZXBp+RbHDVA+vz2bg//wdS0Ca/xiP/gFHeXcmmcnRXz7eJw7EDS8j+ktqcBrE56UqJ6T8NF41x8+m4lYyOtyjMw+u9kB1dgMleFiPtxH3GQ3vBczSm/oGcu9aO/uVpNoIeEaKiojZJ4Twdpu9uJMKKJiUqJ/WcwPW2FW5h/dSvk/84iD9fQRTNPiAxEKV5+HU7pg0s4LBxD2LxCkrf6PFurosbcgdr9j0MBrRY6XB7L5b4ooGEpjIVVDjd2qguvL775L+SKzGEOuFBwEYYGh3ZORB4h4khhdla+qH3rjtEfHpaecNSH6I7tiCu5/i3mC+Xa9Za8VrdRiZhlRitbEbxBRAIkDblKwmRPseD+JO4W6suACJ1Fq5ZIAO3Rh8k5RKIjtnKhENUn3cG/+o+0G7Bdv/iAxyy9UX3VCAhmua8hgdWL7pc64mBu1+U1dAv87A2emzZnlA5i8VNKZ3bRoRQqDk6tk4OrYxZsESK3OxsdS3Ph+bfKzhxZ23YFjURsLD4p4X7rFUH7PyXDxwbGjOsZHNnZP/FQY8sx+fiwM2b6bMWxbnVH0xpK5bYtO/ntH3wiAA/DG+DP97luTcv5L3WPtHKKOeYi8wi9pXpbCqzAoVE2miS8JVre9SrlKrX2RnUrVLHJ6KHrucXYjZLRLmVuJHdEZ+oqNhqN7bztIYL1oGiqZC4KQn96K8kii5NO9kcdDzZ6qymLORg449o4emM52ed5LFM3+GyDMECqjq6PJuyxUHTsngfzyVgDjAWnxUpSaL7sMPQH4ChcABLhrPP/yWKC3kKB6VZQ0+6RaWzDGuv2GoQNxkdFjva4isPTG2hkqfo8HifDNIWH7y0+QNZXLmDAeP2OZ5GrEYdOyhw9rFfH9MkQRDmEZipV2HHkpd7Xu68AoOmFrnWw+HBLwauQuIm4snKYgLDzFa+fXQt6pM9bTfNQ9mIREWsqpmXFYttQtbFYIuCXvbS624AcfzJHeHbaxIJ4TtwPdoLyFOVptjQIe3s+1h1cK3qxr5ODmYVxgnDbiYR/4EVSPJ+6k/526a0CusFJFxfyicPyw0iV+ekk+xH0G+bKcVGbg4SHtBQE1PXUmlt3b1oyjfx59vVJXN16QZ3jWjV3qpj6Gp295qfDPpqzzdR5LhAEGCJT9fr/36EZbVFtOORafg2c0rD3IADb4yqW35XrfwV+YSxWzGjY8oP1XhUhGVhxx+xUoS0YH2ftyqQBY4ff4lHYjZtd2dL9jjvN4Ir1QlImkZ2OKVhvw9pdCyMu8vYSoV6NRR0KO8nijuRTuB+H7+qfHf39nlZCyPjWa5Jojr7j8anN4P8EdABVNxWIb5mNW+UNd4NpgDxTs1Adq0SQ4eRU/EXHmV8RxCL9ninYZgG0iKVdAEkDfUUi68NZqFOH0kst3UEU1hzuMNtN040jMSqqivW6cJOBgwOLzSjZqX94WbT7sLzk6f1EP6PPARyWxrliyddbPg48ngqY6d5XIyRbToJVQ//zsbqJ34jqvqEmo3LIa09G1XWUhmR6Y1U3CIfHONiRfgZTscga/+p5o02FPKzlvSbKjDiuH1xp1TYqFR4Lg7L0xBeqvp5JonQhNqUvZtc2tj1Qr7GCHJYfTboXn5Hpkm6rFsUoa7xj8dyybPHbz5bJRAlRCa+fDM8fsTyXnb7TjBEISmahvVwl8HnKY/ey34Y1zcmjLrEcMZ5+rO5sKD9eeEh/PX9XT12FLEwRHYrtC9AKZJIU9laoUZYlEmFGzIYcOTHWP1l9Ehw3Oi/pWK4IVUJNZCoiVB6tKBSEVsT3YrbMJO+lyUjcuW6jGkXZwlsLT3XCgkDK8nL33dPSv1noo7DzDvEXL4m2k+PnWzwaiyxMc0OaqoznzrgbaYwj930VQNXypW4fEDn/avMjk0BEyTR9WgrFpqRS70UnbWXaNQkApwwGFVUX5xRQei2B7P5DDo6gLBDGBIQrJazdYyePNn7cvoF1AGopsKvPue6tPTcbq0WZkNnIGCSo0N26Z0iOdgxj2OaTceBaacb4uYaeFUefedvD2kVMzhYferI2LmGNqn41pV7dvTteTXfODcDtWGNh8lCYQA/S1ZxL7yBqV3bkkHZmCs8Tg3JlV13WejeV8O2L/BOiR+79D0+tZR96zXrd9EYaJgWLZCEjT9H8YAgkDe25r5IbTvELxv/ImiuX/wtrJiBOljJxs1Vlk3A265soN7iBWVk0TsG9SAm91S0SdMHgXETPnQaqt2l1Rp7c8935GaUZVJdJgpji4Azc4YXKxU5AEpQu0zqdRcYGvSVjGIHla3OjX9ZnCUZ2bQCnbq89NRkncVY1RhdVGLOkxR3j/NeXXf1zy6htXVAJveGjSpnjIl5Z+HE1eHvLXVUXpmMjmEmhaIqvJUJL87ayavoLIasNa5IEqv/qBHXkAL7atI0Efo+kklcsoriOZt7y00BjbCS7CFU1uasPMBFNfCPMigrl3C7DQgXDOKLhbaaF9CAp/aStAE1Suoar8nNrfNnPvRsODu2riRFaa9s1b8lg2RIj4bQhek4IYUZYkwXcSk8b2+loaw3qDp4y5h/RU5XFdv0+0AR/qOKAEMyhcXPrfHTK1utSBLWYl8Misj+f7+c0rKI7j5Y+Tl38h67Jy5KU0eyD3OX58s4NrnzctmFQdSJXlbc9wFCe2A0lC0Ox5A8UDS7FXHg2p1Ks7Kt3U9+ZzQG07YlEUgmhYeOtvsRVQ28p9LbqTL5Sxc+KTbn8SQ8T4ONL7Krfs+0EgUJv2hflGCdYvFGCT4V1oSGzOsXU0i4lrm/BDB9MCBWRoC3IuPH3MdjUs0Ubo8dAGYo4IZPJ7pWdQ4raPQWT85c6IARtxO4SR01xW9Qhpo1LRlw9BoinTLmzn5PD+MzcYskvO5g9r5cnYjm8ymy5nWxTLhWZTp/TRrQAd0Stp5KJQdVhrpQq3yL7aldm4/2NdjvviIb2Mbsy/iw/QnP92xL1+Iy/veLUhScysVENQ3ycFV6Htkdvmm8UU4MxNEiLzQgiqCZqdUvgzYEMuPzbQg/P/cK+nAJVMmJI6G+ZlJWN5WLIkbiW2pfrTJosR6VfACl2D9sIoNUW6J8FPWZ5eTzV0rxZaK8uZZwNsqq6VuaNQ+I1XuhQu/gcwIwaej6zMq31zIgH4QEKYGoe7YhlUEEIwBAdjNE7J39FvlstlQhiasQS1drA8M9Ps8TNrUijv7+FHvQ28n/SZcC9MXIc4F65l6F/QnsPGTkQbl2mnTslrAUEDqol/tm7fYLPfcOxKXcg6WShgTk5nZi3jF4pk8UirrI7g4zb10D/ijsI89k3sbEq2Rhc69gS98S6TScHOt3OGThaMY2O+G6sdQpjU8mbmDQ4zBeqLBf/NBczYl8HZ8suc7nZOkUDiCRmpU8uXcTnEKccFQDlYPlomXZJ0Sh4zRrt+ZufynbXGaSi0syytAGJyfkmR6a0gxLoEdHZ4SxbmRT6+GzbsPZFiN0zfkZIH2HCrSbX1/1YWKvX/VOeykwzCjLgFNOGwg2Vlmxo130PuQjJM3ER2IvhRRnuqUhe/nBI5vJkNf7Req0d5ipxC5lcYMHNbni+rjmBjoAFHPgSutFLAO2EXYf1drqcfqJWALG4mZ972PUmyc1kiX50JQVegeLyG5HgLqg+i6TpWLxJW4Qz61jx2jV9bRrzB/7LdsW1tc066mEaEsmH3VmFpk9blV5v4Jz7UNvMp2ILcwUEn3wnJfkBOKSdptOVD0ABPPApWnlcbS/bLhY7fteiSBGzjsj4v203IX/IewSDXa54aRluqzxyPPTUy801/ESaMMCM+5ZlgYFE+qBlLXS7g+6jRZIQaAmiH0UfIrxO0c+lJz+DtwLHSs8WfE9O8TjFrIEOjqEJ2MWHd2p3W0eB8E/hBwULq/b1/06SGucmx5r9KWW0YY0iwl7U5f+oznZrXI9mW05PEO8Ki/3wERTZz3J7FyQgf5OyUymdO8n1RWsRVGKSssT29DRg7vy2Jku0Aavk8wPFpSwFKks8o1A+mI2KCfQ7iq+4Uk1bgC7ZI52/NSpbC3HgAAZTJzENfP1TD6XDrnf2DXahUKtCkJ2LT/LMCU9SZBbtMymORmx1RlYxuzH9MR2gr3gT7UZ9Ry75yPvkzZWr4RL5UMlLdYGj35LwCuay73GxPf+HgRF6LXI4Ft2tL2/9cMxUdTDaSqVqb5cB2m5UgT8UuvYkuEwdrZZtmVYmdd/od3u7xQPuu1pzbqeQJ2VpYLms4juDZl6eL4rJCjkU0uitaHZJ4w4ITzwMiWryXn0luFqXwNyQk8sFzJfDszGodSd+UNEHoDSxgox5lUMAterSFZkLwx2yihPbICtfZxPD2GIAIjrHrNDgjnS/w1JB2iGuarlwE0Ty0RxDLF9nP/UBFwTY7KdxOPiRltynmW3UaM+GEymxhmEEy8jciVDg8tMowUicjom+hKhBqxPs9KNI0ux5hprYPDhB5uxT5lxZWwCHkZY+Mcm2h1jlEbuxPxN+fqn9gayZy9/+oCgdT1deebqH9TQchw2/+AGxjxXt/f5izb8jPlR38HQb4MqfaPOjrW3ub15eC06a7u6QDd0cNwS44QHumLQcmIQIjHGVpca+rQzx3YPNVLUcVUXlM1X/hSndVGN++D2GCt7MxcP9uXMFUIWxWMklllOmHlEr19xFrqvAmEfAle/iBeWmNbbksZpzz9CmlByYKxPOVMjFJSWovJDPa/CXe8efXPcLPzyokZbe34EmP6wJfg61HLoMgw6sjP+BVP8nInruJaapfdm1m+0UIdjxcS4V51vbFsXZKXLpIFzu/DzHAi2Q3S62nqY1OL9tw9bweAr6ghf/lPyg1221e8eXcD+c4qy1EagyimES5zw90LBo+ors9KW6fmC3oCb4+cuVb3pMato1QppCG3nPjCVrF2ukwlSi4uoUvouQw5dQ/z6drHshe0smBXP3SyL92BDOj4m9gB9VPUeV/u7d020iAOdjl4saYJgVulqL6NpViragITCVkpCfMKTPkrrQph7m6lGzVskTNBDYJl0A9DnLPFgiCaBvGP2zuDppqbtmHb8yYglaHttrchOw6CwVkyhv3vtsOZcVGOAQaIEeTsjTL38xeE0s5lwHoWdhuLClTP+ozF+CmBJA9kuSmssqQ5GDNm+rKhvYl44jGrC5zouEWLaDgiXqDb6GuUgWhuM+ybkAdO02OvR2CfXxhWETdOl2PBll3EN3Q6nXb2DW1L1tZH8JsuAvunCX8bUuJu97HPVrCq2TR+CYABwaXKd+zl9XqEav0V+dCAX9CHQmNtxK2LpqeNIji0DwxasNg8NQhiV7V3zRh46oevNo4jAFpdjFC6DNZbISwMWWI/dGTg9VdfJtxQ+GWkLyg8YskayDmk5Mrsx9ct77UnyCy4szJFwx6u2Ppnll6IyQmQ6ofuOGqSwBrgDPRxyzWOmG5wdgvHKu2HBeoZJ6jc6ALRgvsMdez7jKFTUb94xcYG6773qvbjuB1R/zAgy/7AYkgDHJZnao4KdMMBc252saELtIO6yg9bvEv9Wmqe3ZL63MMbRVxQHy6+Zfshmtf7CzntkqfmB5K/iHOFUiykRvuQddD8lnhmilKogG3kH7zCIhsWWXftHcWgK0aGlYsJk9RnOuuKbW1EMgL1AGf1yQlTszjh7+46OcmhufHd5MVsjuXbUcJKRfufVHpRDaWt0gveGc7qPLuhaC7BiMSoJARwDXJpt7RZBJN7wjO0iU8vYaRvomy8AqxxpnOSuPW9o7t825UXV5fYXIj3BJ2wJMdYiJFzgZHUhFxoiObKsoErCO0yCcRhEpsoxyzFUOulo6hy4An4KaZTuusGAnN0pZiJqKQtv5DFHx3xtiIjgxTLnuP2TUtTPSt3II6SsSE3Hqsg7+KTBFqPSBB9d6jWk+/EtSCcbynsXu2O8OkJ1HQQE1P1VSO2smWXxrtYgs6yiK4B/aqwJgZKxdDfg8wStESejI2oZk8Lep30L09O4U9myYaCOZM1HA5SmoJacJcLvMensyghY9/KMYeh9+y43i/VV8D0fZ4kacs2bHF7UtrTj5Jy4WtfBacl1aQREZMWX5nAdJZwj2iUiDZ94IU2ssQ1EIee16PjD3MrK7ROCWirlscHNEAoZKBdSU3R6GD04iKVan7R8/BgtCZyptMQJx1EU4tUwIhFa0f9p/6FRV1Nl53KHrXt8tVBzkgcD9Do1onj9QUmaM4ba5pHg9RYgIc7XWYG1Ft7FDmhREDtgneJfpLbYkEeJjFhsbOTdaOOKdn0NUpGppewDIZQAw2IB8D6mZAwufqAsH8I7flZY4aLmP2DgGM2if6iiVnM12M9BgliaflYyXIb40e8AbazGi7nnQQn29XoItsyZlvpsNbgv+jCNLm7n046zNQbL9r6WfJOKcyVefWa4IPKj+Lw5ZDrJcBGnM8YvHmiOXRLeXgdx2nk3anNKRXBumyTddLkHOBzKe0X7+LXeuUp6a4bv8u5rIZmNWkRtev0+0ojrnoJ+Z4BQbkJUWB6LKaQSRdbbK1zLugR8lb2L0rY+/rjZW1j2aJca+3XspHOcvmSUa5gZt6oUiciSwdcNvs6FfQqEsOTwCiHUfv6K2JTlFX3668BOh8EcrdhGwiYKgJFfVz4yTtCCP8lN0/EDfAjt8ElmheGCnUrqNmnuESZWQXURG3wESmyJhO1mRo5mDbSpDNPx8pOyf2bMQoscbZ965kdrf2PFQGyCtwZuQdDQEn9HkEv+5jiJKKq3vuVyivT0daF/l7V6leRjpsC30sh236gNg0OjzapBx+CvEaZ7PM1OfGnGmygFa0ToERJaBDAZhKJmfjaOxF1auf6R+4GirNiS2tEhgt4N//YvdYSkO80GB598C6PV31NZDp/bRSV1IE4DcCR7r88Bs4X3qZyxcCRRo1hVBaBd7iCXFfzPe4tkheFrO5KGdV8D19SJM2d061K75U6UBxgCDqoQq/isqPxyF4ubvvjknbD26JIK9teUdNthCnTkGfr8Ah/H3fr9DE9BQg/UNvQ2huOio0PvKaLK7GMckQvrpoV3YUk07W+F4Jbo32s9mF9+o8zpF35d0SS2csIrHWRmr6HnAriUS6jeEmY+P0/mA9RfJZTCUczXnCbkgls+13nvGU02ZSNEteyoLzqnP0UQ5BNozgROEPKrJsBbNi+hxKNkYzf8UreU17M/VeO+Bdyh8b/zd57R6xbAfzNptuT2WX0h94CWnQMFnLo8NFqRePbUyrypoFZWemWWMcfzX3B1z/r057A22rYFiaxnqPk4RrGBaAHRS1iVQohYgWfKNJaWeNuIaHGuEAu06AQj8OdfP7oKVPgTlRco2GqVS11V+WP9eDr7VQ37RJ1CyvvhbBtzGpANuPM7eZFr7c2WM/pEIp1HCQqV/rO2FjFGHCpLTn8H3xgIchWkrPOSTx99hnFKOo8M6cV/kmjqkWmU38j/5abTHjyH/vrpBEZYv0/uX36vywtSMgyHGyrhBCDlzOER3HH9CefaYoeahj62+6DoCa1cVSaaqMjpPugTCauj5/KCSl6ngaRkHMVEwUcmG7zWIbWBdndV3pGYT+PAxllKBIqPVD6sEfYIwi4ltz3POHkL7b9aFjVpskEFq4ttXFJ4HamwL/AHRDnJ91LiQ306ZfulXognkFHEK+IUHhSCnD97+tgFJpL24IYvNzFsU+6aIv68GOP2iDhnpJjdRGtUNepkGWQD97J5ZiGfN9iyVdI4ITIOVLVJ2P6XjgrHAbByXq7TSloglKW4Vn1ShQUErV3xma5kMCavdjNQBVva8NPqgPDK3Fu1fUaXMGpgmHPstugAMS/FJ0FsZMJZB7iH5rvG52+KFwacgCAiMCjOH5mw70vbA5hDdS/Vv6eSDP020VqEtcXe7NXhiP9TY7YsNxTRKObVa+lnACGut/xvO80zbGbifpgqJCGktV3apQhmxe680KKC6MAi/RThXWoM2QNfoUzHTnZ88j+YQ4FFG/CCOfrc1ANjdaeAOjjEEav63749OujcaCnE7Kw3KScEf9AGYpktwuTA3+atf8bNBuADKzP2lVbXxJuN7ti6TIUKtEWTL0VTzJF29/gxQOEIEKw5YW1JrSj/SOf1GebiHsgi+aFhcVDH35RgkGcYww/gFks4nH+lpm08b3JY+TMmDMUBRBmHJaK+M1PCexiuausuIMgKLRcsiysTTzBKPGu/y5QLn8fO8Ea4iyQvPWr1C/XK0RFXAonw26JLx56ssX9PyXHTponZ157FD5bXe3/wqDHWu9mA2MI3kwuB+e859MSLjm7gKFZizVr4Wj0WbPt/x6LY69ZJmToOwUypihd/SAXQq6GcCKA2lY+8VTUfPxw0COIHd0flKL8ITiExBQDdcSgDzCmMHXye1QIasnGYD0tgEGTuBhKsZOw2OQCnoUnMc6+wZRsfVgd016N+NZRfiOK9KUYWCi5qXqFzj3gU0dz7iPwzFRgBklD1Qbye4gnN+e8nzbMYZyiGfKHJO8Iwo2D0yvbR7b1FYYhHC/e/3TMVGhGJJ4ktTve63zJZ1EcH/C7LxNgCA56AvN8DomVFV27tqxp/CGmSRSZTMg7Op3AgxXT35x1kT/Dm9N2aT0yP/Np54PHw+sZtEPLATs05Hx3pr4M8vfM2ojvB4BNtnAAOFsrlVeFlflSAtJ3wx38YNUcoM8wOdWG6WjdPsTwireKUb3/mUqjLe3V3fuRLz9dgHXQofX2hCkNG+mfipNAvTerJqwCWkEwzp67NwEJ1nWQ0vdHbsGbaM3CF/QuMg8JFSeyiLpDekFCBLUosDHZHu+9X0/oCcWxXSD2v8K5nFZVOt0AWlNDX0UC6M3SW8/IQejKG582AhQr6yTdCOsAJAZFhsN7z8VjFq0tBD2hu7HniIw7/hA8PwxbS3do3/YNsXniI1Uk2e7btuY1wYyeUJWgYi8vDRjhXRf7F6jqD0W3cU8yn0idzPD3AqW8uqFyQ0YtH9F+BXifBXpPwlqj5cJfF1nE+OXB9liIn8ruH0AM3AeWMebPgleP+Q+eMYhldgSkKeBP3wnU3ESUBYyyMpcqGexWGvyAqOCouQm5c9GaMh+OP1kHtErTKzz0F4fCt+ov2yKEd7Ip4IGo7SL8PZ8MereBMKb+5qYW4UeK65PhpfAviQlnOY8bxfmVsbOvb5F/lGdfECZf2H5oGthoOOWaJOF6fAYN/veaNX/TBVoN9dnioc6CyoneiAJPcbAfcuQHh4xO3gOXJrVsqRt9h7sD/MjSSP8EnFTNZjMpao4yd2yVkexDp6MdCNvlOwNZ5iyZCkR+8JLElhliAt5bOgbyxcVpux09ErHCt9qaE43JvNb2NwKbR6qAbY3LUTZTHJeK/yW/mIib4ABsP3JC0CJxb8I0KZ5j1OyjaNLu+MgHlprfvksPBqxJPGP9A3gUhSQDNceacW5gc864hQZIs9Sm1MOL8G+5LBlLuDZ028iv4joNWMYh7QMaebhKTll5tlxPi0fGEd2MCOO95mhVt88w/f1HEwgtnBxCFm7AspbNVmQe7gV/O4e1PtnlW27JAz0oI/CtoN/94+1bGp2QdyEpTzyxWfCYqI5uE+xZm9MOpLAf2CiF2SyTeqQYu0V9ZTQGvK8wTTaGKtycuGXo+EQ5ZYxHcY3/ft3hm6nnImSRGjRYhyVfHV4RPH8ug4O7DdQN4C07QIk8t590Qbvgr64PsOlIcD/kFW6RNUk1I4o7g8UfGpA0+4O+hQqHHVbW3Vam/imDZLMTALoTGDHnIp6Rs2jy/i9WOH/i/t3qI3N7H6nRNsIS4/GdhxRSq2C2RsrAjc0i96JF1cMifSmn9xBUn4h3Io7eav3U/g0luXhm3X/KUkBL5QIzMbfE9c7xqYuU+ymwMxUZkCnOImn3Ftkw2GC9DNWf0x3fRfrTNvwK1eXJU8uDEwA4f+yCz3s5dAffxIwgpKwXKBmFBOfjz+nFYgBQc0kdiI8KfwNuQSMHB7K9TpujsT+A36DjRbAL2mpJmlgsPnWLK/ST4I5BBDId1tXlrZ3fYAq0vs2nMFASwVJQmqqHWSR2v6YwNXopvCiWYzwphoLkx1M4+fPMLpT05PmOQ/GtG3+CX81CiCWYh9nDVJIBnkAjmKvP9mnEmnZLKfHi9R/4ZyoySAlrz4yDE/+YQjORNgPU+CwLR5MCWiB5WwLcekkICPvu4V1pKCK0AOxgX2P5zwf/DZLxrLmRZ0cbo90G71bqWBR4HNSLOXT/CTekmi9M5avrB+7k5JqWkLZjaoOQpeez1fKM2IZDXO+RpOTDKfVxO+LI2FBJh2aFdLiBxMHM32WetYepci7M5yFvPIY+jZG3w32HzgexqJcOW6swle3oydJbD3wrFT8/srAAs/vIMQ77DNHhVIdsGKlyXZdXjOaYO55EgUa0oXpPYIMNWARVw79Aoor40WR8GIZfTs0ONC0FNvXSut+fGBPG2GWGwTTonWog7RL4an4bOgwXJL13x0cr71wd6kBzkpUTDCukJXmpd6ynhfoppdQd0uOQmEyrcMJywpzJ7b+8vZA043MDvNUdZKEwEhwfBnfKCVX+2fOAd5+KFdVacFTvmfkwZjreFFY+Wmlo3jEdCktEnSO5EQ0c5EF2BJ4MPMydhNkU5eMAanFEgrASQZsstrOlKMo6lzdaWjwmecfuSCflgx53jRsXy1LlcPxYLYGaB0Nhn2V2q3MKBzJSMMG+GgI08tG+3jQpfhnksEj3/poY1nyyzMychjBQxfj3bgdeM9QkuFpQhOnEkoNbZvuy/8sDh8/GGbYKTL3/PE1aTFHTJ7hkPqSi32MErv2GVmc+qo7Lv7KpzrKjBLSxWMbopBchj8xHQrGtLtEnhQZUQwUWaoIu7AL3/bDqpeVZiS2ZtGgWrvuFgSludbFWIFZk9vwaiSny40hfdZSwuNx5xcf0dNWtpbxyEwlCrvAAdFLBqkqOqHjuwQifFfU/LSchUHKIZoe/n2p4b0Qn+zpIRwRYIOaQZ1hbdAURWdx4nzx8G7Ow2wNTiZMUPQcSLy5Pu/hfkRLhXmiD2h+I+CV0uevVl4OHsQb9mkqfy37dpZgJbb8oawH24bbuZhE5IgTrhh11Dwz1qg7MhgVQn5x5ymeOKh8Fn6OuPIBpZ/PNYH0IRf/DFn8KxFODnyLTLL1bj+C5h8JvZckqsFxsJjHtxUvuIkd2z5nRkF0TROKa9kmAUd4vFxWFHksxal+REBvDutFFQkVK9FvOo5PQeKVZfOP9OTZSPYlJgn+gUjkBB1aMbt46z7Wr0AqO+sdHbrvqWaZeQZbalYPtQ/Z6QssmodorrHtdbNik4Zx2tShfek/FNobOtb9IBy38zVzq6LX9XFbC5BmafTSrHcaA7SV4y64oK7bJTtBnaZEJMRUGif+2ejUaVSfoC+orbFceMewBbie689ztMKvp3IaHA4psUbDNcs9oPyQrEPCLioff54D+GPzUZD4mA0IXQz1gbq0sntWToH+Qq4/TDUXMXD9xntVIH58lQ7fQbfp4RVWzenV6zPfLDalfEUR0rPWp369iZgHCTLYXOw59mrAXHBk6UNZLVmbgMAVs5AgR2Dsv/uTbJAwEsdJOYPHnbZZjSfULwVVa/zbZQ5/1CQ14cCBWtWEZh+WxBdpmdxZFx4PdsZbU6QjkT4i0O2DWPyrLdBqlD6Tsk4JqXqDen2LdyS/0nyz49t2qKN/Ne4yLXSLJ3nabDXIRPX7BL7R/wdtuwVgS3y1T5GnCoSvlzXgM+eEVTjsD2xd6DC4bfohdGIdm/OpdhfSOpl/QQZgNyjgv54vjFq7jd32JbNpLj/nPmz5uqYgR7p4qMkUbxaIr7yMlY87/Fp645yIA7zyLZy/8Qux7k8TYGt4yEp+eLED/ZV6hTMWVEFgnt4VBeWvlbqJMS+91xP+LTXXwu8gmfRItkdBHZ4XFjp5Vi9g/objCTE5I72F9rXeJWX1chWBrVEJfdTsjFH9cge9Gt3fkj8KLs9I4YEsfkyRpCWPb7x2tqtfPu36Po4h3VOX+gWDnMXuaIjNUHemayFknOfLjn5be0b9v089mxM9G5NuUiogFi2QyJbvtkUkW1D0v3PV2UGoAfkwwsuQKzkFjdJXdltrNaphxrZydBqhybPveSqJFei5Mvo+U0M8JAju13ODjevBnjmctx1OfeMUqtM1y2DAJPz3CYofRWOQ4EYDRfs8m9jWIeDks7YBuehHqlMUlkjUSpVv2oMWdDT3VWnGE/YzyhQDNA1JLKsgWltcwhfEpsjVw9XavtVBZAzNWU8OKZyR9kdma5NOK7GfRvs1kBA0/d23k8BYBl4m1L7uzGFE/hxfYpdf/1PH/q3sTqsoFIGMRaWCbWLthtgHtKaEpi0IoDYrJSk4BsdMmGT64Mw+y1M1PEHydYYhgdCS8/CB7Yxikd5ihVZcmtkjPF/sVVFLnlAAU2QS9Ai7lk0lUCoIP+jAu3XBXIr4IcEdqirQsWKPn+PpdelhobIdLfEdctVuIr0hCY3S08ijG/47IHDFGd69lMeWpZAUOhfQPOcGU0tJT2yvP64h0QusfuRMJQ0jTyGucZjb/iG0vVplBzEZja1I0saDHBTWADIaVL8QSPYrmv7NWMDXS/oV6K6AbQ+G7mCc9m5gRW9yLTwC4JmKHeFpjF3nL6R5SPJtrJIiBtBfcOI36eN9i5/3VJkunHRJFObFwzl+6YKkhrxLCU7joGUk4nxwoSVzUUUjSPmxo4I3mbXFkqCrfEo2IojQXNmJKrflZVK3IxO/zwXj5pthiw9dAYXMwRn+Y5XHoAoGcBBroGJylmyqaFkun2zSjUr/OEV9p4KD+LFU6YM9yP6MINSO6R8aZc339hAl/z4q6WpIySBkrmhfrUiKh7smfHeZV93pPokjlZrD8DaypK8tojtRZfljyIFmM3k3dfd7vzZnS8JkMtIF9DJe+QvrXFEv9p3pwM5KWTkNJqVOiNWzLFR8C3fmQyJPYzDwg4Bx0f+PW6tTl/Sd6yxz6/g2D3vbOEEHTDprn0LV+23gdbKiW61rE09OuPi+uFFTWI5+QiCVwh89VDQchBBIxyYhvPEtSJsFtlmKxwlSt5xJNmJIAXi8rLYZlLMOc3jrZQFso/ocmHDUCBf7QTi6OHaja5fQTHIx4S1u2SgVFL/FWZHUYVU/najN7EkeVnyp9Csb2xuH1OwLoNJcreF6ZZlVI1AhIF84lG/NgveH5jf30OSdeziSdd+u7/JdKYFskcjVSLmQdCJSgdp4m1aLkIAc0YkgGdQaUtJkbpEB/uKSUpNLnawFDSgmavnUi98f97PADSZOKqov5emxEfmUuP/uSKJLLCBNllIQ/AwVkcVZg8rnkKsJIjlXP21UIJPZZwlSBkHy9holUjgCwYHKvVJ+Fv5+o8BzGuSLw0QbqeWCZ8KJRH+k+UW/WQ+tnGqJkQdaNC0kSQ587nt6ufFQ5vQI9GS+ZoyHsqsa3aoDYZ+le5bsVS/Vh98TKoXhgPNBdFyDXgc6gwK+spwWitCvP4xIbCC7DsmrSUvOFTGzBRF1GC7wRAw4YTGZ2SksNPdcCoo9vfXQhyxAjPx9eoKaG8eq4f4gi1vcFPcMnRyPhTbdSqjrf0THPi4glXe7qHYuo4RmbgUyc3hmrWpkT0g5l2diXMzUYhKAiSjb4Hp45s8dftSqMjswYyCva2uA7tCt8YMu6KvO8XS7HnM8f3jE4ymvATVimHt2wRARbg2GJ4MbjaSrn8f6OItpLXzpDAtAxB+iPiVq1P2CLmLPqG035FSvCcblNZ5EXaWyZpIRZMYaKDs2GcMoZt1JL8uqLz31RDTCBBlVMLu3MaIvXLlcK5R4pRAxOFkfJF1GAVVj+miICSqFGMLZWfI1Dg58qWET9itzRO2I84P3pmvrkJ4ifGECESogoF7qdBTqBavPizT+N5U6eRtyAvnQRsu9aHtf+xOMrYBcmKm75Ads43R2IjG6GcU8X+mp6P04gUBBBK72oVqYLp31ZrJDk9Mctb94WBT35Pjn6U9elvCCT+KK2qWpS5JaZeXiwSLrzqqPFytRszSFD0kjZ/PWvyuzgv1AZBpq6Kmj5SXUAHhci9ubqMpHLZECsQhVb5x72k31dmgqqnXNstbC08m1Dzlq/Bsi05K5EdJnv0crgRvNXmphmBHiT5lAFrSvHsggsnk32LVnEuxGi98PqjC6QHQ6KkKMxtU1T1AlgfLBGmUkV2Q2l6AOOtbd8BUvX1jJea1zhklJyZw3tvTwn9qdpmNlCEQU+gdPKoerB7Fg7hAq1/AGP8RYu7z/DeNIEfL7rPpQ1OqmG7/kjKPBbfve+UKHCJmuoUjnC7A5XK9sZmlDWOO9U5eIpSIANlXnurvP8Wwd98DAiHjYHMxd65Y4qFnadoPG+gV2KnIGGeaF9T2j2GCQK6AifSe8IXXPiT1bkGpv3/xIGzraD1Pcs8MHWKXGgU9QcNpoo+Iv6JZUp00U2S13AjV2WPZV7YltccbgY9TSIAuBSydTMQ4Z4L7H0H6Tyc2iWRlMSrZI7/Vzf1WooNHmprqF110UWmMhRA68+oXgDpXv7nM+n7olerBaQ5hY7tDbQRkEc7FYPGy/4ko5iy4yilzUYlpWxJb2slDCJiFhnLgEPTD5Nsz4L3kuSFu0YfEVrwfuphpd7sYzwbsXdHbeTEsG9vk1TC48igvBOrp/Vb0Ci/3LdmGkQItcd6UFMfpz423bAhmEyiV00awDjBPivvOinOko6jVcHw+drsWmuY3wogB9fWxuv1uS9SF1AGu4CT3XliKHMoJIdw/FN71Fq6auv2DTaoJhG3aaeBhWEps4XD3SoQ+PfQ/BRr3kuMwiCjak0EExSnaXUYSmS41k8N2y/26nSqOlAdM7CpASAEKzJUvQoo6+0A7fdFeOxMWnXGS8fHJKXEGWBzsJ2oUwGAmXrzXw5kG6EUKo6kta66X9tsqZUB/S6BGWRpPhjHkY6UU6itl0FLWthj3ovRx96tszYCnTFdg6HN1SvvazU+8zQmcd+QWajjjhYL5iB/2e9agmra302n2TyQI8A+En7m6ffiJIX1wZLGSIpNviet8lBU9AqBJNF5dKMD1FDUJ54bpZTToxsqI7a+03WALTxNdlK20sPUPGghRMD+qyscC069DObo7FSwUxVuT8DOsLj8+wQEod25dZoKTjExKAzrcqOckoaGGR0/ZmJ227Pe/NaocgkMLBm5NGv5QvPBRiCMMowZbLzWWzhwc23PcrU8xEKBvlyuxKKXnmJTt8VzlS7d8PRpk6yJElb5MgStaxbUHWL4qOoSUUm99I4o7goVlg//K2b/+clpD2SE/ZiuRjY+AMGUGXoWqxb+rdtZWD5KvVbiRiVQxi/1l7X9lujdUVDiHLPW3hL4/P/TL8WijPWP6i6rDuF82NL3owkxilORTKHVLYE3DY289ZATVd54S6u3dj1NnB/dZHx4mBf4IwBnlNBpYEJROA/5XLVYOJdwUoP2z0fwjLPak/XvTomjiO+oS2KHKNNHtEXOoK8bEq//frKs4E2ehVHzkbZVXmmgIWrGToIqEWUMwENgOri8nPxZFFZn6vyLiZZF70hWgwZvmE6Cx35ULgcsSbPrn94vic2v6gUcCpY4bYsNdwvRnEYx7oG6CrF86wZlzJCu8DK4JhXymWW3ZCCi5MjkedO54LJMSTDk9TLCN8ZyuslcFWsF1CrOtCo+JNob2CkL1y2Babc1h9ey42xVGDtE+QUsFE4IhY5U4LNwHINjXRaVKRtAZjqNYbFTJ8tYDGxZPi3ihqef8Shqs8J5spD+8Eo3uvvo/ysQaqcaF4qNEHdFs7PXPwH2/j+r7P7yHs5Zsdic3DMXK5TrZ4X4mH0DYu3S5LsQvu1DSSLdUzxVpHIZxEY2OdTleWpyLDvB3xi4CrKBHcGzY7z6VCCqfOxzltJXElg6TlvI41gl/wX1i09+G8Et7NI0RqRFLAhHNgAMp0SEr3gtVh/gVS2Gu16omghhSYBuhGj1qaAsziJWnGfDALPSiVBbyxNpB2Zt04ujXFXYr4hfhHqj0VKP5XnbYUuCHq5QF1Md6xIDIt3vQDAwlL61tOjuUQQlOXSibXHbbl/amHa1q2RB2YL0OC5/J1fL0FjnjGoYMIbGCZvEYr0PL2/cDBk7kLati667yaGI/kxeDQBKRA6Y4yTtjj/fbpa5FDnppW7je7tYc7yiKFa8liU3m3FPXeCChZq6UgNwUqdxFwa8Wrodad3DrvzIjyhH5zBL464L6OoHwjmvASvWWt8WxRrFAl6tYG8ReRYwzZUVxZu2l5np41FeTcZ1ipfr5Ln3Msl6JfybnJqK7N5hw39/iTuWQ/zXL8W4S8L36pGoeqwUWWEHBuBJRk7oLAA6ffk+V9pHdwpEWpV4ObV2O4fUbaGGksOfeMzV9KrPJkZt7ExIgrPINeLCwIIYzOjSaPh8GCpBKeL0VfFh1K8B1qjGXY+73iiVXyvloPv8/3/1AfWh/bfTaEvE1vXvv3bcAVbWZnZVjCP/9C7o4M2tydbCfd8oFuQ9Wn8rkMn2Ouuo30QUW3xkghYYUnnLa6FS4jkHyYw9RLjZOg2p48zuujAKu3IQfKgHiW8/vRFG7gaKCU0Vhcyw59brTkSdWuTVi8mBIgzAtSna+xZDf0DW9R4789yXoFIbZQ681biRPFFClk7qbwhEzJXrAphX1dr7b21JsbisUxU9KuyBV0sNJAYjSenl9WOzyZCViHbr2ih6iSeAmeP4lXFxhlmu+xzWRqkWFX4Tt8gHwfYrFF6uz2+m/rkbsHcZJy6CwR6NXi2PZ34LPweHzYxOFVhC14k2JVHLOfqHD1Yg280N2jrzH8Q6DDcnWtSl2i5HmiYw4vZ+TRYJCS68yv6Vb4TGhGKerPfi5hwk19E69a09tmeroLiXn5EJ/HBQBMt+vktzbmPIyVnucQigtKw0GNMIiABH9tHq8bQWdMkZg+UCIFI5++cX591A8f4gkQ6p7spnE5coQgZkheKwD/qVJdhYVI27NUV3j1pEzYB8r3D3DaA7B2s9I5cJ6nyz188RBFXdMs5B+lERL/sRkga9ztdMV+Ml2/8e9gIGS0x4heQllY+VxtqnU+NgHDxH21zv9wZkaF8Hz2cmNV0+mpBpKmfWthnBfFfzbJDueG8IsaHpt/V+1H5vPpMKmQyOgjNFg9SL8rDlNZT/5ajZY9zfWUHbD6GRkiSVBA1XRgyV4djHxt0JifjfAMD9wnSQJoinGsvqp3d1L6I0Roa5helHkIZQS3HSRVmD20wdzP4MyWXnGH5IgJNVxi+2/217RtBB2YquyNMMwoVNC/trCMUKmWYZdzAGh6cPSRSKRgwIMJOfKmyKYq2wGxVVMisuPrNInVfp10Ha0tcyjmnL7z3qYt3fRJCiEYvNWjMxasWNrNhAxAJEPeItXUDc4aEYKDG7z0bI8xnuUztWdr5x2dLW4FzHpO/pqea7wqBpb4WNx9j6jC/zgO7Vf+5UH5/dZIyTWcBl/uQLHlBFs29+ay0Ghsnn4ju5e+dH2+9uWTotSh1onluJqS7vgMLih7Cb78lL0q79pLqkBY8ivdOQ/DmAFkqj3YtGjPeXvP7ZE6VhYtrHIlfuZDba3Aww7xXAIiYkGY6a6YvpZvjtV/PRIJQcmUj58MOotdgV/QEmk44C6PpQkoNZ2pZMSAGGQkRBfK5gaphctswTd6NV5NbXz7Tf02RhFRFHwnkjTbmx/pflEgNlk6txk4CLbMlKBPy2CP+xQem+44tSkiYyvtzGqsid+cvmVV7vUVG7UI9lYrGzRkVE3I9CtGidraJeH6NPLWu4IkwxdJYxdUp3aLFqE1Oc4LdByfihMBPsEotSj4ij/7J6s6F1FgxYucMTAZ2tvVT2p8CdCKbECSqoa44UPMbn3AYkUur3Cq/EDuKhXuH9KclIk7+ZfqDEKP1k1NaC3wLA65nizpnpjSXZtw80cA8VMYwFeJpCcLGHYlmRNI6acGgXO8GUTF3QPzZ/qKsBK/8aEr+CRliRhQtKVAH5VeXbdQq6SGG/uWBonYtPQsNGrVz1yH2fhpyMNKqtgv9iGnTlnVNGkqmZiCIqVUIy7yOHiLWWaRXIKSMxzspmOp+4rue8kgF6xQk2dzXuUyA4D5g6S+aNV3ZVwv1OFUPunBwO9zKZZG8irX2PF36IO1v6tq4lU4LcNvVaZfYXdwro8VoQBuLzI5Z36vdcX5DhTkXDrRxRxypzeje3GK3USz5oAK0EcOJppMk1MWGqeCW5d0YXcuo0jdbkJZKInqzEMgGw1YlTAG3mKhDqQxL8/YRZZmvqy/G4zPWiJRsBd6pvTkln2ugEFcXxavoOQ3sKWs59kU/iMnsQcTK4ATx9pxWh3T2B0FWn/D5f2qXCVvMkU1d+V8Ve20yg3WuKYFQHfCMku956qGeyYJFjM6g/+gZjzBrq5kKwUMZt/vtzQswvSzy7eVIx0DAkkMLsSHDRK1LMaKcZgC1dG7/+Sbv6jtftHNr6TyJE+zKTOHA0bzrQvm1gFTShP6f0CzREGbW0Hm6WmyACxwab78gJkzp75hwVpu8Za9GmsGp2GDL3bvlD2GdoHvH8UyCJ3sh7UjuPKdDPqCfo6sMLEhH8vPqyDQgFoyzpH+oFNMBcunJXmGmxpYAlLFMnRD7VDdi8debq/WuxrJzmX0QJ1lo7sMyjFNjQ9iveI9mAs1zNdqDLz5ruB+1cr+tbaHZJheZhC8irbWV9CbrHVY2gBt7kI2xbKWNoIYfXTmPdiE4RRWIdVtGc9UGClgjT5XSqoSnRVvbwuMROj4ypdJzCWi2LWa/VA3c7AlBcaGgythi229B4fQqYY+nhYLuyA8erHseL9uvATqkhx/60PczcClIeLL5CvxfkqCeAPzEEOCqc7XZAgw62r9ugm+9L3vs8XG6XoY/Ok9ZzgUWjNhRIb10F1XiwTqeQGY1Ads1hXXiUu99jd7EjTstj0wF1eYJE3FiPA9XganP+RgzprbvgCA8FsP3YaR6JtwdFAkpTFf0CfUFm9SiNRDMmsdiSDos5YB1mrYCb4rW2ni9HdjsqHAOTTu/zf9+FaNhFJm2ehw5sqsRNLLmQ+i1kWfc1x9dysdc8dBzrSI5ZBT0wQPc92mm7tfJf78Wl3YxnL2z0rGoOV09M2G38z7S+U26e+PDa6DlK5goxLXEjQFPtkjocZTTmLEtYxHMZBA7UYjNR4bs4NlgF3hQt27uhKudAAtT8BXl840MN+UAUp/GDtrA7VQN7r0DOZ4Zr05pDItbEeC+ZCBIZ+8ChJAisoJZcIm/eD0LreD5flqbahrLYuC78XR7jriBux/x9GEr1FDlGMRspHU9KiPS4nMFsfkUapuf1+HD1umAxibD7lS5shMur90OH96uGwNWKdRMavVBCvcT362MLBXGf/lTVY6+7hq+AkEb+aS+0Zh3ZbAJgBF7Q9Oe3ohhtnV11d6bcXAx13eJ4RSvfMwgz1Z1aixIzxdQOB7xqH2BEj1loj1A5jRrhT9Y6dw6y02kI2+m/YZ7a3m5bl1kulCnmMi8mAcykfZwUB0+rnuVyeDc+fLdKwAwEiWYFJXMPijdwv+yphZSfwKd/pyNs0ukyvtAHhh0v69p/kHNYB3jatz6IzsbubL9Yzcfo9tk/dJDZKKROPbtqBjtGxDgXWPyvr7iXiZdMLmhYkWc/VsBpyvkCtYIhZm65aAtr7Una1xqMkjCBgWmoddfD3Ho1nrGesvLrazE7Kbx81TJLDR+FEiyMD/o9iusiijx7gzsQ1ySVMN40eVMFH5eXeUzJwUEJzYHSB8Bg7oE7Gc7QE7y5zJDarAInfDSqWmwNvu8yVRoMqXqBiDZoP3tZ5JFmXgzxzCsY3LeEe0sPA2nTxDaSImIXE9zay1NQTD+spVsE+ljDQRKYlXdFBeUHyt7OrmNrfWC8qWfdC46kq9TawS1uLrmVJW2LuFVEoIx8NUTDZe8KZuWuwFoxHORpw6vtWsAZctP+GIoV6ndmJFal4OBGQrVvW5ifF+4R04l1Kp/gntpYqk2UFViO4tnd5q0kax9NMTHmq0RldGLXOaDzARv7am2ue3MEw+EQkffBR4t+Vr9LCyuGNWw/0tL/j4QY5kHe4YeHYDKYWvOoB/XJDEmHcUNhK6e9+Y2ARcVqD35Kf7fdAG59Il/KIOwLEDktkwn5LZco+t2n9Lq35IxgdaqSXmiHLu+vHG5Fv7uZ5P2bqM+tiOMgxikbFJS7HOkYwpj+63UoPdpUsL8cF04Cz4dfLn1qHfndR17QPchgrWvCCyJq4NcIyaPWe/gEkd4NOoj4EXN88ZG8Z44zkmI6Aikh5rmP1GOlTodZWZvjGu6q4JlVO1qKqGKmRedpE1bQyGJm7lKvrf/wUR97m3BwT01JSx+CeSz53IJJDjDXNqahPSYvgHoICuxi5X01JGY9xaomQrlobELQtehF1f+Dk96Nin56jSO59mbENUlUavXvZ9PGODEBCOJWF5F9NBogJfrvBQ5my2EmRiRYm06qRS9YR+ypgbi04jyXngdScV13J40aFarL6gM07hW1sfhOtTyE7fKC98l2NGKFKvttRZho4QjnzqnwjELjPmkQziWq/hha0WY6qlFcZDknxonfWev1bB4+iIzbD0wInbXn8Ol3Op3St8SUWeNpGfYXhxigHtWWiNqsnkPsCL6ya9GnL+Xj/CqqKfZx2JAvRuH9/tWuKFASeDC5EJiz6OIA0Xl/itVy1k7qg3cEqDU6RpiC/ehp+UiDYH7OaavyECyCmN24IENcPd18QUNnLFIOxQsbBBwvd4oV+ZhQuvjmrvG2NfVcM3pY8Ow8fOXDpY2sKxL9MhO24nI/mgFOySdu2TxzThXYeJDpV7kCzkgQ+XhNBqWYja8VPRv4ngF3EGmgkaM1T85LcHpunDqXQVmpKPDvVJnaI9TZfsrZ22oNl39/GS/iFW8rxMKZJio0Av7a3Rk6kRJknXUTy3Nd6Lsmv7/YGv/Q1eXf2nTWzVsc5ZKTVflKONvX2rdrtt6T2Dsb7yB7EKPWN3/qEQWNDqrxqMeQ205NDjAdcjJiZv5Y3zCMCsn6TGizXhT2TYNnxf7/Gt2mNSCyo6n2ehcqfMhmRBJFxKH1NopuGePV5EV9vmUGMlgwWlcfO4be8mY9N5oiK1RkrUjeVjCUpuat1r49ZO3OJiGWfC+CwBBZE0f3ptVfacRoP51T63VxeQgcNV19j35q/NESfHO8zLQQdW6xtLQAMfkW21EGv21WPvezWcAosxf8KqSzUNuquPmK103gREZ8nqGLoYX6JMZ9i8Ba5XSmSkCwR+ERg+cdFKq+7OPGFJAiFEjiqNgVM3NDJWZZVVmhQrdYr8k2172kZzcS3bHKDXF4lyNlhSG2G7+X3D0WpbEanUEjipy3BJqMcVCVtP18IvzQrbcVmyS43rt4HgwLROVGjAGsQEIkumyykNvo1VYpmaQfEtmfE7URwd8SHZnpPzXhGsJ5cgMup+wBCVbZKz4jPthK8+8mpqAHouNHmTvqYlrH4IPiq7M7n+qeUS3+5HnrNSlU1y2Oc/+7xEdvzSJucy93W+bY+c0NCnWmvhY0zlbnoF46Sk/rWQE4Q+6vSTjjVxnLZqtPQqGhbtbqqC7RPUUnUJBn7F1Wvg64WmQSwuQzkD+qW7KFEZHXN6eiRyAUiiriXHE1MmgU+Y3vVYI6OJ9Dzes20MD7eoTRGniWPHQC8YDJ+2JRZLaBUfKrcImK3SAwfr+dbuemRlWHXs10Ov0vckbphS1yMV6I4TVFEx3lstkLJ0U66O7xayUutGK2soULaYF8t8qPFC9trVPKjzw2s9XbJcDU0aiBqjC1lcx4BCRmdzITAG92pfBPpCAe3KS24fRrgfdmjoHowkEHFufI3eNRufaW/y8pd6P3mFc/ukjZbJcBYdHQJFA1s0b9w63BpMjZ/YGvVFiDsTuBIs5Wcu2cwPuM91Bmx3IAj0lslT2q2OHesmrfGLAjtThkvdhpwuAYN8Q/7N4fBKFefYtPZRcMucReFVmXULMl1KOvHCaA5JYtaoqpbicq/SnAGHMivO9mAq+BJgqLd4a9gPufz8hXLMTTK12i78uvSvcuh1nDBQ2EwNT5AmjhZoXKbtg3DZLTS7C+Awj7oXC9IiVl/J1NyBB6os1Y5wWebYDiXPRg3/sL30f5ALVkjGOAfQpj6TtAlPxFtm7Q/ap1tE6x+tHWbxyWEv1DursNsM5vnfyNluG23tTYCWHDi+ereP2Rt8gAaVcblgzRjtQ43sC7lGAhYw/9EBCk79lVXEIsuH0eKy/53E8VVA1M5b1SNNPW8gGL2hsmzzPKgpfhjYMjF2jri6EfLar9lsy++5zwECyEo2d3pbJt3ItjLC/w0R+zdlAI9AiaqwsFGa1v0BlfGHvxbRrQtuLRoO31lvYXlCVhxsY9k4iaEASV74Npd7i+0TdmKlvqyFZ03aoX86N7UsGC45cDnZyJ7pek1vOdeCmHRBA8uqyHE6GxGKWE5UX3eFiCXsz3lFtVf1V19bTAszI/X8Uw7jkTe9nK4nN0E6X/dm8SOYAfLuDNsRnibC6KEmrKRwVeKnqhB4qZKf/Xv4ZqocVFuSrXksNIckO47OnlHnoWK1eLh6+QDfuT1BBU6mc9fXNxlLDyQGmzCUETeCPqdmVzXuRQgExIqBP7a7bpvZLOaX+euByCkkG/My7Lh4LQYi4QJtyNhwCbQwea4ualzt+khx8ObJ7VrcIAjIm2XhpdUCX3axrMiUFELeZnGyinpRY3VuEKCUiTdgMg+wKYA3IXM9ADY9dvO3yiIKrgd7EnlwtSsFickVGJ0h5FGqeTaQ5azXcoIt9BM4ivzZZVA83R5Xko2YLe4urZjZqhjKpapTv/LPnO2+Hdm9vuLApdZUh85R0eCnAoB5jMJE9aErUdMs17BLQPwZd9T1i+4bahWSPjXa9+scdsdAgQFrhltyS7mk+9DnSqzasLxtpy6ZvP4Irp6Ecp1ywthCI2byerTnYow+7W6mr7MOQqr9mswOHGasA5GNGUMEpNG0DoaZNNRGCxjFK1tdi7v8HjrP9jLkaY1ckyVc6bRiYTSspbJkgemBUrP+TK2tROeI8bqJUqBkmG2s+IOHn0PBHCrIueEQ/SJhUmGSKiJ8xqC77BoEGyh7p1S7yRGkMvj6xjiR4jb+0QVKB8JDepB1k8zpe0VSUN+VU4vZDtzG9z4iNy6xs+ZYg4iKxaO1L5ACBwWgrbsc9wCsQP90zQA2+YwQpIF4w/gMKOw4rULsFakwkjOvcDePytLxDhf9rh0Ii6Sy04/BewYX6WhYYWqktf87BQeQ/Tb8K1UfF/DG9zR4TONRUpUT3t6CZexEWxRVvfiAH3hUKAe8iqYCUhdeHpaEIcOGVKek3TnUkPAjq/SgTGrZs0mHPz08OniD4fxlMQgRWj0HrfClnynBTOapORe8obRIO3TsZaDsXNZ2IR2B8Vgiechgo2F6Sg/AxROZLv0qVBdh/T9ZaslUFRsgub7qdZAr3XJhMjq8iv2oD34X0IMytdDaRiJRyRJoOdQu6TrPKuwlY3HtkDGhN6JIguEM4CPzXG+aTqP2a5EWolx82OCf3VPkMfn/SNLmXFrs323PhzAPndG/ZAYIf7+8izKoQjukmu+VoREdDPGFYe1dluW6ZjJjOieLihGJXkgsva62l9iAPBpB8/gacxGrTgR78MtJ0JaRV7FMUoeOgklQSD+DxffTwhGn0nh1hJx7xQhZlwWpctJt3T8FOY8v7gPDNIrwrEYgoi9XnJR5iMyR8OkIXkrIFnqHKXxQJK4VtWhNV1LVQSqLr6Uj6nua3jjXLrBnrJL/d/JRPakMWl6FvJxg4O5xJPLG8I3vvcqFkp45uXdOlZQo2f+N38ua43Z5oPkVs1cTEiHQvOJT3uizefVfWm9jWqVNwrnewmzHIhdXxnbjscOHqU0EIy0f9OtJAPiuP7dPVRU5s+PF91j2Yyv6tmxWVmOOIn4KLzBGD65tZIpmLi7igOfRs3JhoSquYSxdnsh6fklpJqgEz0+7iuLVXWY6Qu/71tDHKmo47yx+6C3SDAEIBsbmrjZvKWCvPAKbfiQu/nLbgge8athXyi9nK7+vUY8GvOP8E1Oe+pTposEfK2tCpfwSjGwtfORddIbSvwwKa54pk3E9Fx7Ougtqu1XmH7bxF81Amxaqp+fsDzNST554UON6RQFajKHlmpmpmrph6h4gBkIKN0tDbDOWMkhhrqgoUWXPJfqnXtlNZ5A1WMFcsmYupnjtV+v6Ozl8SFyCmxq5NoJ9wtjLb5AocfeQ2hSTWazYsdY15IYcGBreZrPkJXi/ihlN5vPwI4KBUme38zk1UFlPNSR7MPSlU3fbzCXBZAJFz0kCWpF3R4AtvlOfWo8v8F7oVmQVbZb9i8uuxQTLTh473OMWCMpU4psVqLVQFInD9EXl54iSlaJn0X96ei/E4M0kc63F0gpoT6/tA4NVHlXjLYEuqujOukMb/psFDrbYuyI1AGGkkigXqto+1IOJb/nmMHcKf2TsFhK1/ZeOaR2XmRr+VznBX5F0g3hoG4zG80aJrTyN614AevLApU2tsJKriKHkYTrfm1ddVp5vl6l030KGaL8BcVnLnvf0dt0I41Mn3IQDQI5E9w90htfLBKFsh6oTz1bY/sdTd9MQ53TT2Im1abYU7yiY0D03jxVhH+eY92MPQwxbHbC/dMBgBBViPBi2pgy+85RK1R1cTORCP5FVLUPhW/5eOEDrGrpqEodkzyfYAz38nxsGrHQO661SNeHGsVnQ7UFf5FzQhpJ8j7xV8NHjs305xfgu5/xun6FvP0qgtn63Nah5tyZbUwj7IO1kJqTL5PXNRjpBE/dravmmN/0Ii+KA/PFjNnyyLODibvVs+KWOfwFLMhgMzQrV8ZZYCoXGHA+Jk8HnOQiDp/JrIWowCQeTQTQanaz04MHqNEzqeXy4BNmhm2d8rzEzb1UTYr4PnnwDTSRRegrl5Qkd+OI6hCGPRezm2jXxFI8uRBgIqXRqtzVEq5+16PVEP0AJR+t1zhkvagpAdfvbqnJ+lee2Fw30O7ovET2lh8GuYPYnlY1rpXOSkesuZwR+LYEPLZTPlvou4yfT7yMnJwOeiXrr0wuJVcSVAfMGLpwymCm5vF3msMO3KJ6SuX+h3djIwh0X1zQFIBuUqagCaSSbvluziS/Rak4/iM1xRwsr4Pzsts5XGkGIlN6p5NTY0ccJQT7FPFTArS7I0PZIKuPjI5XHPDIdqz/eg/TUqTHl24H7GDir5LQl1NIbrkMyRl9y/GJA6bxAH5XHgtO8L+KM/Fdt/RArZNUx4Ku4QEvBG1wJI7oq3KoDuIQjjzOmzgc333a3JfDjkvJj1Yet/MC9fNDGDoifcGPS9pdpZEpC1ekxXIhJMj9kR2/MM4snpTmOr55/Yzx3Q7JLkGRmBngFbxCNTm0DRTQIVm50SNJgJ1DfSx4k+OpmLLIc5ZXiJlfS8TXElvwDL9WG52baZiePyB4gq6DuFvOquGtF+wH3DA6erE/o0aFXT/7FgeAZ6l+0lYjxmxppIPyqbJQOEuchqC/8Ig0RjQRIkeOE//79XJgX7EpR3WJtdkpCi/NYrNMNG0YmsjHjRj28gOgLMZCQqiHzGaV2/seHHgWBv+a02Zacqs/mXhQ6Wc74a05eDXiynmZyG7f1IcSCg+qDzyrkDfLEzNTOpqjRUehJK/c81Ccgf8uSg+8x9SnlFSXRt5zgqVwzoVHLxqOIiGtk39owy6HsgUweDhgRRBeFac3IT27kZ3szkYODyYG2+AXbqD5PdonvT1XabcrntLYhoEVAyD4ZtYfQIPGmoT4shXq3Dw/yIzW0cuF3uwjp/S5vWzNcVKOl3GH4NHH8nc45MoNT1A9E3lz2bLcEwDtJmKeajg4c+9hcpii5izPweCIPmnid2WUPwJH+QuspCI8ZH94SmXJZJP1lmBejm9a3PG2PIZHxKLoAiHRCzeGPl58AD3+qsyVMOqWOjH1naDE9fJRQoF9kCvSuWdP85IR9JzzxPuPb6AnQf9DuB+pOgxsGWws4WYaGpIlEwIhci32+jHm6FXWIhaPjNm4ZSJqemab1rxTaBmnaEq7wMpnpUe8/COE/CNAJNNCSPqxGlTDf0NN/WYrPh/oWfnuJVxTZC8YYL6UE30wRjtWiNacNzUB6sF3ZFoSXYkB8UpnR2jScbPkAHhsE5GAb5W2Dm9U5dR3HdDPRDHUdJGeANk8ckctd8YVXghO3UxD3WWQkKTRS4g4BdAqA8JEPiQ7IpR2LrkP1kg5QBhQOeREIkIpIYr6W/FNLtCu1KnGl8Cek6pRelxv45YryYFlDSXHXtp8xXXV1lUIAJu2zA73/GeRRuFg+F8suZrSJdvz2truXWgqUlp1MY9E7ePCFGegUD3Zw58o5IRf9zkcq/FaFUga88zDIY5LzV+E7Wg+RZavgs3ELW1jQh12k04uQLObVwVqyfYRne44cS5h++Xno823V14D5sSxnfU18Bp1Cuy4/vK9kYswpQJVMUq1gCq1tVBrr5uBUyD6JL/SFdwBpKk+YZ1PVCxRHa4ih2V1jmbrZ27d8epxBwCaog6nbazNn/Q3JBz8ci0ofPzKoy8l6dOwMz0n/l5zCFCxudjBPtuBlN+Mw8u2D86WdFIEhakmZZBx7cHjm2eMliEetuo3v5g0egjKYJYl2RlUDzGp0fcmUA6es15ZdBzAexcki2EAhYmaUhBlSHAdRw/1+UJAK8FYvYLf4CA9hxoz5579BpHUd/0RobvL27Ru3HIwk0QZlU8AbLoDRfrN35zVsTibWtt4scOB1izVidgzHvrG75Uf0TeCgfY7AUbmSfnByuPlMQqrTqYJ2qGtqiHQvNpc6xsZre5O5AIlguhWZqm6291/nUpSAzjNsz0VkKAjE1/RLdru1085hWWJRhNQDZ2i1f2EF5FeL3ltukaQQXYIzfYhzjS+qg2F3oCwcbLPamJniFygfqEjdEXUkrfFC52Fii2beknXjc7tbgpDp0YmfLKQG41wnO+d0fhyIVMA/yPxmwwrp48oVvJLTynRauXkH1VPIO4GcxlUDQJwxU4dt6y+1BWxvEG2A6J/BfM4lqmT9g5cwqrg1mWKWcjscAUGOan7jf7qpKSJLtxHyLEuSqvzKTqLMTCEa8flpLGsoAwVGeJCZJfbEy3kCFx2ejlFKgi9XVUh86HXaBUONdrcwXujXz48O4Yk++EJvJ2CvEKAuqexHFphMs0w+meSwKgQEwZonEVGFeqq2Ym8lBEX+IJsd8rOvJmYWbjgKDFaP9hmm4gUz+oKr212v3tj2fPj81eIHsxtSJt/TX1WYWquQvHKTr54cWUcmOz78MgZTBGXmoy5ezG7AWcuxbhIxBmDl011FXaElMe7GHgB2uVeWzYA0IW4iiFrdMZh/kTkS9Rm1NoBNBg1YE1U23HJz8b/Wsiu1dqShFqncOqxl4VeH+5IUBiXZr/wxQ0omFX5X0Y0EV/tTsqoIDu+jkxee4Di//5O3BB8nmq574A5a4yMK6EVpFC7yH6kkXqkyAS1Bxdg1QobE9InKbCRoeNBwzm28fTqQshsA2mUHIN+udE7ydxSBk6mg68vh3qLjvl69/hX+3RYxn5qX5HlFQBy7nuBR9wt/HBKkVX9nNPZFqwl1mPjRY2/8zzUJG+TItn2mRnTI/+AkzmnRfn8suz/2N1t31k4/FiT1mowJcgc4hOoXk4Nflcqip9sQzbfS7MvZLUoW0v47jszxp5jPxpyxTD0CSfSluscv5VrkQatvFVVypaOHNrC5DjBPlYCUf2lKfQ1tDqOdolod2DVxHGlZ7VJLDgyryCvwkw1LjLCTDQiuGU989n1A5TDkyDSEO6whjRmMuBou3X34l1vmtCp0euq8jhOAD5y2GXjB2IqNdS0L/tuSu2JVdR0s0Kvx/MPbm9OIi2Adv5MG+dxzkcJT7tN873ox8B+ah7/Twqyfy8fKsZYbCShqPptf9qQ/+4aDKeHtB8wgnYiv64tmS5y0zyhu7FR0XtCBv9Y4ymM1BMBkGQL6Sr1nNB6ITNbR8AAvIw5pVrLfffo3XDsZufwUwNoNAgO55QlwiIJZzFZBeUmq0gbOgkjw/syj70f488ht+AkJC5YRjlSPhDSB/lgYMA/sPY+TkyS0HIXY0PYtxI1NBFm1ZNMkuNtqkhriKvnWNJgaj3BYX7VvIeHAlxiMwAhwqe5Cg5wBTNTXgJgXJJtgKBPvlKFyDNfQL0xxbIEIPnhlKi6itINfdZuU+cjB2/5zpe63SOjLwkRRXxzMOp1GI6ymnk1kzXxx9cAi/8tcEpGo+JIDancIseGEKQvRQ6yDjVYeq2lywGoWHE4crNWD3U04nxDSjOw988JfwWC/lh4ND+YLGEVQFeOtSDtkmKhPayUVoX47M4Re25mS4fbSGlJtf9RE8/bgi0XR29sAMsooeVIsSzWyalrK7Hb0BK2vgDvPXXXJL0nD9+uTFDJymPW1JkOteuWRGHBueGIYn/MoBhEUE9WR9oXDU4JlqMCI5edgevenQWDsovmhhrQcyYRHiVSkXMtaXuzn/ECuRPNO97fSM9F+7pNRRgYkDUuHAUCi0OLPx4sI7IiNLlZKwcLSnCVF7VVFQGOdR6o1K0g7eORZAYYiSxBOn0vq3YK6sL5cy/Zgxj+LPoRzRkvAuMKSfeZLKg1GKcYooDd+1Y368u/JcqwS821XSoTem7+Rw5jDh1ITOte17eMb9QYCLOIlxhA/6HBorxHKbNsGoZFoQKMti3jmeXAiP2UTH1EM6499DD/Le6mrAEkUutWkKO669o5PNIv9d57uq3kdVtN7jth/iLMFFACfMLpAEq8FQpVPlOOijeTvgsWIYFvB+nMjgXZmNtqH1WaqDsQf1OFb3WItgQnUuAE8nV+KclCLqrkV/1RS7DDlOmOkI/bYwBqqc+H2hwNmwAQPefqRRdiDDt5otc3qJDQELt5Pq8fQkhgE+KxmW87DgclSOf4dXKaPMl+yxFAZvrlRLTPKoNwJiCfno1nmBuxCD6uzMjfBsmkYnGnQYhBfPo4iRJuYHDaefCff5/gmZnOnE7Pnd57+9WKE4lz0X6/fw7ZGtR9rD8cHH8ODAxS/ZGPvAePn5+UCOIchIxQGX5b9LZLlNZHqgdOUFZzsFjmpG95C9pW4z5AOGGS351QIYgWrB2PFUCL4VXH0oQ4+OewGTOpo+NkHopO4BKCQ/ui2YO0M47jPmb8DatBEzI5DX05syTRazGCjknelaMQNKuzKTpNGFX/K1Xb2XXszbTPTfq4ADUKojJvUkxCyvf3VxcpOlZknwWzVKEfkeMI66n+ErvJvHBhjoadD6qiTmgKIXft8A+hR0l09CB1R+TYmr9qEW3ufaAu1mPObu/5BMsBLL5EUso5hhJj4giY5hsQ/dXW2kpPXjv0wonkn5jpn6oJG9yeAPx1N5Ssu0dcEoBmYtPpFbH5Ue8Qba4um1VdfXoaYQ/zjaXwI4IJ3oUCmd/wk7n581qzZLU42RwbGB+ptBurY5Zry/1L6OoLGFBU/06a5uzfs9kahilIiHtW2wEu8tjx2scpPOQ/4DgH0SEq2njc6iECrxxCWpvIjr9KKJ0YDspm+D7jBgYefgYT6Hqh8eBI9dEpZnexITueILw42va7hqIGEEm5uJKWPaeTx1RzvFpCnpNA08v4xuN1qxwI5qMHeajNmcPlKHmwHxS2WYhrHt96y3lkGnSy3x42ba1ozqUlnALDESNRF8iKa3bmoZXkkkArke3H5s6VvwHnJ47tUsOe+eUuVNaJ9GxkJ3eiGhr9rbTD6DpoP753kg4IkcjZTE4o49LeQQ0qDsVr6ZbtEjkj2i3ez/LE68yGy0eDP+iuMg4Z7EfyJqQECBrplwoFqIll0QbkulkIWx5rSA8nQzFX1lmtpfZP/tpYI/nk80DcLRSKQMdhRpR9PKyDyUZPHUXpL/Kx2YDLxbymOhCCj0qnPb1IUHn9HMgqb04lukuUSi9vUm7YSqXb2619qlvt8hkNWyajVUbaNRW6TGBYhsl7BTb3+2IdPmUgUnubvb9IkrJ3/2vetH+6fQBqiAUzDsPFDbjDVqg33rVFNZqkxpbF3xsxIF1PtdFAJOZrYuxbpAnSX6cKqbgXC1UtLd3+zqYutVhqVuwjIL74Vtowbg+dUUF1FUiwAyff00W2Wjezkg2eDsRuEunh3nWHauZDuVqAz0G8RloaLSPWNEup5L6djGhbGjrGhQKvkC01u1rp5gNLME+vfptS/XeezywaT1P+iU3Mo7TNc4U3s57tthmr5iMLj4lorxTIxDqe/ZxmC3KxU7m26ztSPrENe0xWVek9CRbuGJm1H1otpdkOtVXwEJiEIvgeSnaIFTG/prGitOg3PxE+MC/OgXtQfRdi+JUa04Dfg8Aj22zYJxGL7MmecfpTNXDmJKIM9xvm1hguK1yrCVsAdGYUeaEB7qonLdwRPPAD4fYk4xXmfcbKgPC86R0LAUGhp7ef+CxjMTkRWwhqJV+QbBt+EwuJ3vzorvrhdLyJFumDZxE+4xPd8ZZHrHbQhblthSRQZXUuKPfd43zztWEkMb7u0QB37/781TPvM1p3ka+8YWag35fmqHJvDMzk+DHhTx49R1Mmh/J/wateFsPUT51rlc1c1jtQ362c9En5YL7lAE50icsnDwhOvtoM5QO7+EVNSC73qEjn/sBx2fJgIHu4fZ0EktRnYClTmTQ5NDhoBsBDKLdHDTtZfLaddIr9Pe4RbOJiE4rdD7t0b3EJwyCjk8JeJGGGF6g7LVdlt1+o1KUYYZg1q/zF2OX89UzLtHKKZor+7+LV8S4seAQGg3+0HaOj8Gf6s2dxHLwFsqqv2Ocrn0DDL4FzCnuXZpHFSAz0vBI/NQbMxnQeE2/Q6ccga/mXsM7+Z1VjMpV5cviltKhyogzF1SrarXHiDlhdlS5L4oZhEh7L4fGmRol8uknjeX6+VrUoEJdgiNVCJsy6OIxoadAtmBDFmTplo/PmyymS50EnkVVtXf5Ckd3BzpW1vfNHwQiHHRE1gL4frSpKdW14lJYdH8xVWUaKtsIpXFKNqmmPBZoQOZBgtylGVua+UaExan00aO5NqmdoxU9EVq+BRmdaN1mqJQbnNDMAF4fcOtYKUlBuOaOjk9K0Iu35Z33YY4HLz9GRHfowDaIC1gFNwu812nn9gnQlA+dDEgB+0bXWF80nuStG5+IrpnhCDPLRmK70u6Fu6drTlSxDs6bIapH1LmtF/4f2Fdeeq9op8Tn8HLLJK+If3OuovM24lVpbzTOQbtiRwQIvxtiQAhRrX4+LOrhJW+orkQbDpXfKAtGwfQGtklyQ9T7d2jQru08U6nGpbc6xn9us9OMXkKUIumqwYK/Nt6SPOvGTSddby7+dUVcs0VowGorKmaOGc2boZw7c/kp2tnp4HOP3VsVemIQd35OuylnMXcNl/HHMjwytCdqRQ+BRz9AU3eK+BMvnZcJcdJwG3GMdZAf3b0I1cKpJvsEPOWUQST0tP7mFJFGoYaiwW/3BstBrpz2OwGLk0tydCd227cRRpTD65PZZofrcxtrhOmAceOfTs8/TBt5sL/mDpeEi0/0a8ohfBrW1gJW2Efg3fVCPPVZV5BCOjY0Stb2iDcizdJAlVpLB79sYRJaeim2/otGwabr9XbaMabHFImB/ZcOkXN9vcy0QE6FLskmBGTz+CIDJ9VWy5TzS7yeoaGlNvvv4U4cGnipmC8u6pKSa8XV+txRKuueUlamRllbVZXLLrNaD5RM9cSbQ24TSdlASN/6FttteZOLGdxcp25CllWftn7EVGtPZjB23fSBYmegn+y+csO40VbxhzK3CJ07ixYKhxJNIoogWufHzdS51xuUNlphKNDUkNoQvEtBkPZCVnBLKQi3TTO64vOO1tbzGuNOcvdSJvFHCxGK2gpUNtj6WIS3xfQVWx1TO9g9Jdrw/PBzR/3X5ztPym9nt1ReVGfL+3z5I1OOww0HizJ45n+gwhl/oXkTuKt1PyvZ73p4VHlUBCPE6JzN7E+oKGinIhXXlNvEPCJeWqMX3FToe/zLvWiO7p0ByDE0fnObPKAYkPRc/MpBg9C31N0ultTJsaNsGZ8PBxHjUeSe7tF0WODAzlmGXrq/kze3lgrgD1zg7RgUWS+wnq43SE1kxucKqQ4l3S6eqaAYoj+kojtpw4x/h8RUG6xSF30ZzBP/Wij7vBKA1+wu78HRUkrOEVWSmjpGbfJc9fmtzFw59/iqMWcygkN1RmGNbCTnhwVNsXySxXqtOfZ0Yi0xrCjk5nC5+v4Os82dxGCUseysg9VqUJe9DK4HJC25/vKxdNJIaq1v2+Wc/bLBAUoDuQESejPV4QVDArQFGslEyx1Eicg9G22KKHkBfa8YkUMOeinhMr7jUrtVo6ruS7pCNMCUg3SGiByz6JhOBxj8B1QCs4QxOMisp1H7nzJFy6LTUsKsQAfDY7dirWA9D/PuD8KXy6GuBee7tuTwN629hlUdmaAoi5XWt519/N7XCxfQukIfnmkjmZT7skPiUOUy3uV4dRqbi4yD3mqMNbQ+PG5JNwc/vBIv1DTie8gAFIaXb2o/9/+4FlFssd9DwCdGRaBpgcIwxdeuKKDr0sWrfjF6xqEFs93QXhQX5kbWmRyRsMBqop6rDxO4pY7++VBGCwm7DgJ/whJ85pO8/ISCz7vCeQBxwhz2Dgz/I6fRNuDWTaevbi5xL5iyv4XQD5hrBEnQHEw0oDYmXYiKjxsjbD8xKT5jXN4P44dbdYyu+ssfIrXdolj30oAlfVl7zXuMeY08VLRK4va5unntFYw3cKHA6htCZ1/xcjfl1bEzmsP3q7hucQPIABoHaWCeWhUAMVNU/ZslruyFeyveFPMNmCJiOZX3+9aH2VqVAfBrRVwhzvNlEY8fjhCjQIRWPa9NQhQVq4i5NAifhhJ9WtKATpkdaqKEKWCyAh6aLUSh4oDFDgRgQMzggNK8MT8n2lep1pkp/J+Ly5c1/jGcPWz6DP98r+RDhCpxR32qONYzb7EB+Br4UTDZ8uhuGcAyY+g9aOBCF1JaudQuunwvM1JhpI1hb8u1C8x/jllHdQZ5japXLlWjfV/1h0qboshmopKHWQhXg2AWFSzaNjud1smvS2ZmCoLTTAljWw9g2f9cIBCSwhZs9zlbfdMQx4MUSf5GSLEh1Zi8tvT977RBAtkMWzqEfR2bhHckUGnteDU8yXcqwqvPp+FFsi2JBJ341djOSD2JrBsmNpUDBgeNyeiEDHpK3ct6igdmzVyck3P5lsGsLmvlv4anWFDlGmIei1tlt7yQsoBXwq9OLEnZv1l2Gz5VSzkgZqiUdcu7HcLlBql01s94GRHz1JXcH0wg5Z2P+HkHu+E0sAllWrkZ60HPqB/rOkSkOvLtTaV43Cv0L6Ct3+giBSBU2IU9MLhfPsoAcu82KVfAXi84N5hnUSKI3misH5qUow4nzIPJmM8Fr+ody1GA4/w4gzWACz27VMMwDMAGIOQs4JkqfOKz9R30BQxbetAj6ZwQeW64IoKT1XudoLFrL/ekOGpdwQkZsYRlMFlnsIYPf4a40CKbVDJddgWSoHb1BFf5l0y6EWRIyu1Q3kLknhn/Uf3e4Jtt2SnM1meiuJg8E318X1Gh0oZS//VM/9Tfh2FS9SKzbXlcFPcRVJ/WLOcooR1jub+2eyzdZrDQqXQ0KNY26BQWWzddnoXRF19t0xleauff/loJSYFJAOjaoGYRetzGriZIUlEz8RsW3Bff5a/Ur0o3kmEfmf1RILOvpUFPsMXzfqSSWobN86xY5mUG+jPDbR+jTWd+hF/RclvXI84EwGWav7H3ncMo16JiCMipw9qWvPqTK6hNlVGGr5pdM7QAFwSrPcmHCvArDW/ey1D5vX8Qe67C53neMYJxL4ceI6odNDg5JOF5T1SgsqneaQh9cxAZMWR0RHDU8YeRm/yO7Lnq1+SfGB5hT+7Y5A+8n9bEkDDe8/iBl3vfjtKA9MfbGKB3A9ylS+Oq6E43DY9k1O3hv0nbWJlG6OhZaTuasn4ZX0FcZwdoyuHIzrWpe0VX81C0t29AlnUsNqJKCLKXK/nQJc8PQI5+y1yhHyglWWl041JrYLfVrsbsXiYvR7kAwIMAxItpq5/30hPmOG3FSc/ltDE9cEgG4ON5QGy2VzWRcpvDlooYes7nKwl21b2FT/pS4gdhFiiv6bxXVwEh6s3LEsw3aIZQRY1k3Kjtx43dm9BKXhiVD9axphgRO/XpWMRAdgTHUVQ53ZbMiHgoCjgYUayhAfe9BvuzC65mBlYLfMiNE2Mvt3REXr4u25n6wxVGyUUDLvblU4ZAYDyjyH/Q6wxWd4h6DLXknX2S2+4WgYQjV6cd6rRkFif4eN7cpBtY/CGxXa7R//Q65Y5LIIl2bnh7cbMqUtJ21dYU3dVAJmz8GrcsS1aLivWxIr6mXODkjhO6LwuD+G6Yqsn8LwoZ71R+8vFyJU/xFPF+yIANh8sNW0EsnE+RmmWrb3IZJKxL0t3+rb1BW3rLYPWasPucVfzJ/fWX/eWgKjWyJuAT3Cpd3sGqcPxUjxyPx2PMnWmqvIl97vNH3VAmLdqpm0lQ2RnxJdSIluUXttM/WT+KFmzhYAdbJ/dtfKO9BYvXd/JZ5Bqrz2AYcLZLzh+NMMwB1z+4SBd46qk9nltLL0f12JeZFmHDk4X/zHrFhNRFkOjoG8MNgczulZemg4Dy5EUWXYr1jy7goah2BMbEiG9Mq8AOtsNmkqceVOStWSOk8BVX1eb4tAIF5/kJ5DyifqnZX1SlXQO0VcvB/hD6zgEJ6xVPa+fmu2mhtvl1PAkGlDgwEWAnhNntiOrX91bW0D9e2VNuTZ36HV3b+B1QqdduQUpzi6w0gND/GF14ex2F3eW/xD/Hb0B0lHuGmEO4oL539aLKJh/7KB8vlxWG01AqfWaUDpTdVSMsbv5PbDZTVqezzlSs3mu8huTpgdKC2HeG8Shf2l2pR71rlzST9uNhjGhV3PqxMIMsaLFgUdrvdKd+9dIV346IpFDmv4V2vfZWCOeiCGQaNG6/M8bCYkwzRxV/B767ib51ofhd8Vu5iJwSpYUp77bokiz420CX1YA7lLZ85ROQfMisx+cDGFN3+AM7ZjsTZ3WiBJMDDcpIOzYaMtMpZR8uzEUBpXMGha/ME6a6yK1ZCWcfXiAQR7UoncyUs2gQzpWwQHvKHQHrNMrM5VeSmDoRmArZnyJWRmrRQFiNeT0dMC6d6aQPzhCdJbgL3UvRHOfebEsH1ALNHJS7SBzICYhwmmxvh2880aSz1cB09mNI7rf+sVA+IiX1BsPG1K2dADO5ztTb61Bwhr8/xlc0fwK0ay2Qciz31wAkMmR07pfls8hPI3ZzfZ4ddEbzP3SmhJkkVmH8+g7CnzMrpMFQsmxoY/TgNUp1r2LH7TamGzTGtayNIJ1zgXWFwlsl/wTfmxn5f/15iolPA8lSeyRbIQEYTaVjVrX8oucrR/FqgWg1DsrfRBA/YUcnUBYDLb+PbBOvvShYsQgoYODN/1dlJ1JBaCa/TJqEKXi00o5g7VazdLsMtLJvbWC5IvArFkW1f4c2RQAvkiueSwl6e3VpjR2cak+DZi7R2PwzSw92cCvUVVGNU9zp8MZ6FcqZi5lGkRD4IQ1aX5CGmMaKsfffAgbUGyUuD0c6xi6GrTiLDo43nIBXIrlQjfAb9++v7vZgXHLjN2eJcFrj3CiBdz5yJyLxuknv+3W3GV7vGacsjH4DJObBiS40KLx5oWGybtUfaQrFbeEEu/geMwRuaU1W2HUQXxRLYh+8iMasDAxd1Nd7qCDRDPzPeR2yQREKNJwddlUoYoRjrMeoM5Q7EzAChLrPjBIMa+ECLzBBEdnbqJF7Ktje6pgwr6myooD0TSGFBILb0rIBDk4XrtvRRRE5emWwvDr9C2iydvp7Na4vTNQuqMIGIr9upXpAZtlreIUNGcphz8cyqj2GBRYDkhFY4xpxOKyV7C7VYcc2Nl/UXZC7kySnJ6xefRbc1S429GFu0FUrkHjyLqa9p2se5r6KyINGn5iOPyVfqY5zHixT4GvMLQk0rhuIKM1l0BU0/5f7PpjnmA0taKc4+RdjoLTciQKVdeno2xC79rc6GxtnQrIm1TB5CmOcWeanifBLlmla3W6huC+RCT3IuiGdeN2juQg3XGouwenMe6lTTV/kc8wI1x8OkwCN/fm8pvPlJhhVU9FA7q/+zHUR++JHrKlyGFkT1j8rG0kwOPoKPUQZbemTMCctvi7N+sp8CLxK2REHBrETm7pvP82qguggMXzQMxy6j+/fRDeA/Igf3qeAEZ0d6p1zGATUQvn4kZBjxxFZIn86ZAjaOl8KUoelRpE81pD4vDmYuvOYjyK1JpkaPRLnxPXLZeXcCK5dMuThezGQsP7x3eXeFrPQT20J69GoEhH5Quizb4lDEhILBP9Gj4WSLj/7xit6/g26YaqeYo8uj3qbit9C03h62/FgizWNOtKcx14myShlg2NQYBbZo9qq/pCils9kqIW5svSgIa+i301A9EwUAvyBMOl8H6fFxHzJa0msZhjBSi7IFNLh/N3FGhFISfSzfICYAnwQ1o+nFUNTjZM3Bppir1juAGTJ2I8tm0q/TpWm+Km9mcVoJjhZzkxdNIGs7X/itoOAW7MuB0KFjrfCfK80HTfLClsp0QQHq225N+Pq/HZHPodGbPvrWX1/IgosAS7YeuUedAgtaRiqBjRSqyKulX9n9l08USBUzUZbOlefJ+Ras0VwqccZNkEcgsoI11pMa3Mf95opV6qHB2oF+xBQZXIWt4oDnnwB21ynpXFMMXOVrLcmr7Of7/bx4Vz33o4o0RAjAYsrMibSZleVV9fIawohZlk/ZRqIKJfiiElKarmaIl0gqqSXMWx6Y64b0H7nVGQhn+QmyC/xyQghac1S5JjAoyOfYEQgqG3/P57PjUbc12YUcvEbF4COUrtTd9zzc7ltud5vebzy1v/S/x49RoA+/knsbTI9ZjC7LzdfjjzHMaVvBiD6tMiooEAlpRt4fwqvqxiav6U7SYMihoRdOyLy0+kX8J0WhR4SBCcWgw6xQL6KrRGVcuDoB5z7q1MfvqQjglBc2NbeSMyNu56rW9Fu+EeGipMBbjVbBd6sCzl481jDBM114hggOgyl4FX+cal+h3I2R8itE4Fmb1twcHdfN2euMy0pRxvMsWf+WMh8CHjBnWjL5a0PceInlgUJ0uuh6HWMGOkUpCyd6zJtt+YWgEOnjIgNQ4pNyaguVetIKUt2lNZ3CtZQAGFHaqiwGndi0W0NC8EmS+tD4/ZNb5uDtMEMC7cyud4zHOmJxTkWRxBj/ajwSfXFzwqZybgkYjWBP+/hv0iL0kLKLiV/E6416lEBzjVogad6l4g1Q6GGL/8AJJwozC36BcH09Ff3LrzUJ9ZK1k6TBM86wnrblhsr1VvuIJO6TP+KyQLKvF2FjQmPRN16SMlJJhcAyZY/DUhivlo4Jj7v0rNZzwsD6O8Ou+pDc+57pFv7ITuiZfcZCQwAeOiBbIUwfc7B74AfSTuCFbaMy+0J7IM3JJ6Ifu0lV1wJBcAttakmkTdwslcIqKuHyqWHQHNCfb6LZuDTH12hd4wxAdy3D9juq9zpwLPe9KKYy9oxOUYhlSnNsdXHFavyVue5sUODlMHcScyYDMmSD5Qyiv5wBfZ5eTWrSh6O6wO8+IIZ4O9f5UHwyAEBzA+Q9BiQe3uKUb+jNfA0oh1tY/1HCSuWIIGgRCnPDVxwM1WIAEC8hp6pk74th1sRXgHFQ3yiruBEhJ6xWlkQ10lvQMN1D8rgZGtHnaZ97+8SsqH4SHAaFjGrUum+ysArI++kGXVvnb6s6bMyGt0bgwlT4s9WaN+k1EeIBIYd7Csxcv7QMT+Rrh7q1D9jLwpChWCpr2SWKd+TgoeBg8srWgnvU5BRwTj7zwoKcEDdfLDF/3k3FqLREorZR4AXE1YVN7zvsEY0svWBxdCrQXxtjd0TXs2Es1fQLJk7SglE9r+TPgcmH+w5LSbcBy5CeRQ1VdNvIFa0ath6olywstMuUd8L2/EM2x7LYDLRXwwlzj4aI2zVB7o49kCrsvo7AHqkmLMuquqnmXRYO3d/OMXekjYfKP2qAzvnyHRZflGrnVQon6iVSLL1VE/57Ws1P6RePLxppcv45WfeFNR/GDAeWou4p9W9nFqz3czGMGw6sAnhzmfbCYaHWdd35bg4hrfGOnK7TABuvaKfjXr5HRUXw/OilhN9j6d5bZquBj178jIh8deYdgf/up7lfsxJMA78ePaYNTjI4vmcpsfrQLAR8UHPoLeONTVu1S745E+4mU/qOXyfoQPRUat2zvuwgCmnBo01nW+UTE6f2PZF1FhuYQMgbvpNHjo5oUc8QUaKrrW9QtSbYJoSoB1XrcKi/wuW862xJh/NZKf/Cr+O9++e/IJ+sT2Baw37RIdli3xjvDH90h9fqs3+kY8eHXfHG7jwkIQb7ycp4vGCdLcITdi6QdB20a6qa0bAE2xjglXVYcv+1Cp4x4Lgoa0d+toUkMskMkqh43wfPEIx6nHxNEOPMujbrg2QXD4kxJdAGkxCgLZZuxks1wFuFaSXJ8q3Sx9708mktccC0v0MhOCH29GYxAm6qvt+f8irEYDNSNZguofo6eZ2Sp3wmPq2Hj1CiVv1U6aLLsA84QwoytDjhUcI/6hMTB5lRdA2jPlfh0hggR4gEtUtxAT6LIVeNbHDIIB5RyOskYbbT0+3IiiEINbim44Om1/+0lrUJfzqD1VjLs/N8A/h4ypf36E3GZ7sUL/oc9uLCiQtUCyqKazJgSbXM07VOU7Uoz4HOapxpfWCNKzcyc9BeaMGs3OvG9z6ucvHwZ3tNc2r6k+HAjBMOFwZRL4nDIpnwokEN930eb0sSMHAgkoe/3yX3G2O+Msrq93ZbrHUu/JqhgLs06jJ+se0KfmCImBZof+wLm8wmONVOh2VpSpSxWW9tnrfcuSgpocYkZNqtVOrvbSw+BSlWzNSr4KqAPQ4P4s1bZCvaIbFQb925A6AIOHDJyHHjDugJyaE7XFin+23x97gmEB9Ezq0Fg6eSvF9OddM8Qs7ueajjc8IqhErHlQAP8k/YNwfdsjZmNg1zXDLe9NiQV7mWuYRJYTH1ZZqzcBUaDCLtsD0J06CFzlmm7jegWs61SEgu6aheb7wc4rPgc+ATtssAvtLkFAazRZlgr1TBaNup7UueqCOEKEOJHE0yncnmc4LYlzeUaD/Lgaj5N8SdtMo8LZC7OHSGcI31/9VzHpGeG6xHxeP9rbdJWJc8FJQTSkzGNAd5JoD5zW1tA09L/PkMrIICuu869iurnHiI81jjEeqw3uo28oeDqqcK29MCQpRHuX/D8hcBzs/EOIayQFKrHv1vk8hsVVB3LahgwN7EymtMlPgnzgTx3TKsFl0CCCsM13AvYDKFd2PA7deOGlyl4NeEjM3gIHtm/3MjXwrztufCb9qmHtvGCq5JEOeNEXrlruKAoL94szWrUUxYFyy0SAG1Qbg+/rOQkZWI/ZMC/sUsbD4j0svubIJFvqCRIMyLM8Y8ojI/0XZjE6G+c3aGpWbyKGVBm+OmozNsrwMcV7Pk0RtZc7EWiDx9h7PxMgjnsFQ9vY6agi08TKrBZ2UOifuYTP0Ws7FHYgg+YI2uJB9NDQ5VcysEdBURbbXlW56s6PzKmVDbyPm3K0ognCxs//C0MuJJS19kKFIgDBKL/u9G9FCZpQAdqKR1G6cVTrzBOAYp3zuBBgl66jeORoVXYjv7ZbMM1hsUrng4QQA1IqIYCisEN9eEGbVCHa+iTmFFBdIklxiynEzSF9tW6BqDAg/b/mjkWBBekchD1k1d4dBY/XO8tTLbs3uAJ00tQ0hneSPus3axRxGAqg7cqvmTRrIq9BPCXuAiomz8rA/czwdZyP+R+n6R/qNXk+qHmoZiJ5CMMyhXyzCPSJQpzEj5KNx+ws+G/r9W6tV7C+4/EdV+PHYQ1+zFcrJyf6mng+rpHllLYDcCbzUlrRT72VADqhErIMXDT2AB2n5ZHrkz0wmXT9ZOWYws9wzzbe7nZ95NpBAQF84Z0KXXqKCwwR7kwRATfQO0K3XRLVWmcTelPjOrG/RmYCrlqa7TjrWTOjNiuDt7vDqBE/9rQ/iyCWKBrdaTEbq4g5ITUYboku/qXUwCOhqCWQvYJMHaAGVGTnJFvNIgAIQoRaeoGMr5YG/Jh30kYWiLpHZxwGYHK+N8FsgT2RhyaUtXio6La1ANQLeiP01DO1PAjO9+jM+9/OlGxUj9vr2iqMefwj/jG7cZweBl+e7DYr8cNbEzanRDws96oN5TUuACkIYXBGUgfGB4fZoQole8N/LxKDFKpbkBgcIe49r6PaY1enSfyTznbXK4Whns5y+nEoQcwjGqSVtBwytfsbQ41xLVi8aRWjDeV4ez3xpR8j/ItZXWzdqzBo0UwRmPqAfne8TI4C01EkkjDdyIBQm1xqnR3UCd5UcYg4feZisi9hKG14ZPuxQ2Sq0DB0l4m0+7whjtlpdfwjmjUTL3Lw6hn2t1u+cIeTr/O7HptCPVk7Ut2+EB2E8FcL5QUwKv+T7duJ/vmEP347IR57ui/IdGUr65NvlrvS16smNKHaoVfLeWgi9QN8qBty7dttQ5N0mN4JBaXRr8UakeWS0wm3yQDbQvDLueEMRHhkYXkW8MUW+2F++lyKE64GG6FlKg725XzJALXICbTpJir6CuBXoZmBjc+ZWLClKaXJ8pqJ8wWld/CY9rMDmnGZDoB02wPyeMKl2yQxFmQfxyk0HpjnMhjRQNfa/TMLaxdsrgoHGeCD5xln9PUcM35oc8A5U1SP4HszsVmXTwzfRbdt4GsQVJwqPjkN9MjKVHN+Hq9wufH3TFFLVzo1FfdNHU4yCxQbQ0sznJn/ILniGHDBikXA2ufujIV3wR3NRCISBTfPHeaSge3mdaFWNzO8recAop0QGuNpKyNZVvQfsTJrs0hSJdIlVRWWgnK9it7EoEcWKvyGzzweM+YZa+A4mQFBtKPFBwzr/umvD4PL+taAwladj9LQtbmD3x7xfbqLEEH6hfo7rnGXGpa4TcQhqQyehCHuDpmdPkRTlewYdhF5l+ueYAs7UmmvTdcUZqyr9cEVFG+9nRxSCwoqhLaHcfexznQm4yxEH5hOGwbQNWgzf0UbwrwQX6qcMzHswrPZk6O5dFCXPMjkKc/ml1i5Hzj9VHtQtRTviYhV6wDW2tyMt8+gCusOVcHuOWJYAvhn/OS44zKopQvV96K1O53+u+OKKeN0ZK//LC8OZx7Hy8Ub7FAUch5whRCaPCiFwm9S4niaGTHYG+PS8yfT7Bezo4iJ47kSKL1eT+RW0f+6aBOMZ96QbyphPeoiS3GtqyI2nz57nuVIvG8f9ZxIP32j8XjfDq4FfFYUOjn+WE6qMylSU77piifMQtsIeUD82D6kgAPg96XhvvPHcZNt61ieEWc/Q5WqukfCbpaS1JacRdu9ijC/8OUSmdhWbTWAhGYepQliyZEd0OfrPzBZkSaPP5wZFU8M5EYVx0+jw1MtWbYbSnxQCaGZyAp+xfOXZPNPsDSuNL2qkoxCqQdVfSt9XpnkYh7lRtMOWLUO6mOiVl2D77uI+LQehh1xfHG0ze1HBfRsxiEbxNVVTF24dJlpbU1XN8nprKa9EAAoCiCibsj9omDvPGtFEeJg0xm2ZxgdgeREOeoX7QDZa968av0QqfRriCU/Ybe2n58TYCXefSmEqyOuezeZwSuzl+19JDBG5FBVXUs2/PXek6Gea3djWcq7ATMMj3ys/G4Az9eRPP4EBi15PucFGQwwjz2dPsntSIBaN7sFovDal0Ylap2thGSuDSqmHjWadRl1Jdj0jA/+Gy531J9WikQE/sP2Qzzu5S9CguaMcMKAjwpTKsE3ll7ypme3/1mmKVrwMP2gXMWx5GNLmdc2Ee1GEEjXqkMLHdISXZe4XMkh1aigihT4uWUfGQRxyYgcaSmTw9C2GlIQ7owPWcLfmoyht4fHuGqsx3Ba/uFGttItPulmNZik/qrtUZ1JcOn3ToS/WMZZa3a8MRCcJ8O/ksimd8932HzV5wKmnkLOZ+X6VeUZn3PJdNtBsCVKg1p/MVFP+9khSMhB5L7IUN5oA3idhiH+qjfIVi1rKq80RC1xFbRrP026YTfQD9eyK4ijjhF7hMdkQMOM+hg/1u/IaeF2Kx/ODnqCLHqHhrSM6SV3Gr2bSfvSdtGOjIMQy+LeBO2skn7aKp0BTefg2H6KsdQmemgrg2jiLnAndTR4B8p0h+M/0pMp/it5e6ZOiNLUGQfe2p8hJrd9fZP3yutHQ60+2GhHc8yNP+sT9Wbjb59HfVIYGwYXzfdjUqX/SLCTL38nQ5qx0lTsyb8+xXrcQBOQqtXxwTUPgckcQb1NCSK3olMhcxTtDVvxeulFsxA6AIDfKZKj6L0r5GDwkjxGo9SyDCLiJg7UMHIjw7Not4OC7DXx6k82hsLDgu/+3oqbJqyW+0boJzaDE2a//Y4qbQHUOOadlvFLOOgkM/bI5UOQAMoI2KLA1YIuKkgRPr4u9PZfea10ERuPFFgFPszxFTVylyQu5pUa3s/wKuGUe4Nr1gGqHFVAPqgcOEK6JmECvlQjBQEP1/vqdrBMgd9w5JRd7mXptRB1YGgTU1BpOQIQZI9NGKo8tcSYYMbuJuAT8uRKygCvJ0PEJP3Yhmd6nh+DGyvHi67vblUFNwI7JwL/tuTade3S97bbS+IM+7X0VoY1vTjrdLXzEexRKorrRKnhwNy3Y8uBnZLjvqMfRQhHhqZGD9hZQ1SL9UdVDF7Pt7+9oceG+ah+rwBgpjQBkb2IdGqRjOUhaa8GOU58eHasaJOio/AJJsrxpYHCtcQhtyDfWf5uY1WzwV8O4+bRywDFwHo3qZCgAmMnmgdCdzlmALo+WxG6QwG7ZBOceeaxii0UgDJ06tQcunpDt3m8w2lhxDqLV5gw5X1ij04iKWkJk36RVkpM6Ng8KFYZ9xL5ewVKV3EON5BWWsiv/X2dJknj+9302SPNeNf8cdzCCjlcrwp6+hMCB+HHCMG9Sm2lEZR5zBw/Yq/bvWrD2OOk3U7bHyt11SB1mKewjhTYHxJUH2vB6hcSQSiVF08jTvwftiV4WsZu9Qd6YMzPjWODLOZIewgSTrjrxtfC3ALmtbsFa67MBxi7yJJ4FKBloNJwMT8DxyvQRyO9TTc5ILEj2jerBRrgDLQBmkAzwS8dHmdK2PEiTemMr70iD7hvgsk0IOgFIeE585P4UwQsy9gY4wVY8WcMNPL5C+gPWbe2LTfs5q+IXjBNzenCXzghyrrbVeqkPu1vgSYldvMB+qFdz7qliX+kiNk26ug7ci1SzRb6JRwfGrx94G/zlLZMxtUPMltitgoUL0fVNsOPuAUVVgDrvcUMGvTnDnaCnyEA1FowxDmTgM0GFp/SqtFTUymqslLvpjoipZPBBPIjfZZyL2eaJLAlQwnpbipPeicDn+EUEMKyRUlK+DiPBcVPJq8fqF3n97M+KPdpiJoPgI5eVN/tM/fGKhzJv18CT80jpZfHd33QMW3zKlfuy1A2UwOBpdopwE77IBD75AvPx9nO/6zUJI9fgOsxvWhf2+Z+5zUDcYnuz25vtcL40bE5aD45e28xEEBgzjlq2vkp11KSy93e3MqdVGx8emMxHHyCkpeWEJtfCUoUVp5rapT4kujIJ9NNWNanFf1jYVR2PtOA4HQQwuGJAzeSI6IEGLGWGec2B12G+oKXPrQqDed6Oub/1Jj/WCNTBfaxgaIKeyHq4hnVfTQIfRzPJtj0NyZ96+7jCuLbawfObWsMndA+ZZeaHdcg1qykASrrT+KAf3m4nRAkSGCJrMx26cNiOuIJY2WoKMcDQRAMAfbeRQoyOwgYF/qsexFegSDGHD96YjOGWJLg4vsjnQA6RckIq4G/n5Jl1poFl6gCOM4DXJKBQikyK1W6Y4VMNO+ngVQFV55whPmeBA6MJs8TDEcQP3nCNYj4yHEx6LMw+5vRBpAxKy6maqbvmY+IL7b0i7sbeKLVxjPF2Kx6HUZNTWLBIAh5UvcMxG00QyIvrLYnT11cDycYEnpBnTjP9Z1VYtRrsK8HD2xpj+7SGzzv2k9akgGPUMbr2nfnmD28St0AlLYB9CB36F/NLwNDSWz+yc6H7PFmJvedokJ8NzMFIUmzCsysSf/oMCRlsZoiGGq5SuMnpZti3m+/0DbVEw/kxUWNFo48OceKSh8on1xVhYDWP0n0rrrei037xApYo8rPBJltaxRDboxPLl1RNugy75fDMQeEFNy+iBM71/hnAJjiTlHTC+Q/BxWzRi1R0WGGuxCuDDpnL0cRMuQAi8sVkCDaEtaGBSbQuD2+w/r9bIRIPOW7z+RfMk1nIolovlGTWPNza+vVTbBC0MZ9zY8B3IZvQXAMCdZTKkf/epaJSksEiGCKMcPYbKRRGrT4PFIs2uPx8nLioqpCaBDZgQXlVSDTHqj+wQPhvaHmjKcYFLQNob5C/5uNVGgKJ9Jn6dnrsydR5Opj4APQhpgPlKF9tILJOKGGzupkrVjBbedzjvpuX5un0g0O/GO4I7baZvjz/b9JG3XSyMJRA0XNfDe/kvXLvw1XDYcCYw+canznJpzH4ImGUYf1o0mbIC5+JxcUABW/MD+GUGC+/mA7ISmENmIJ0SoxeAI+h8VYlaj2MDWCnC7Rsr4j4CNcgcN+dgeMkNDLqQfynuTRShB+TXaPYBo3w2KSSDzoJM02WK9+UKkRJBZLq4czk+ouYI+kLWL2D9IwJe+yHm4YCYm3Q3PRzAioR/2OuTIpijxRmfkfd4l5dASwlW+5uo6viWPvRiYl4nx0tZgr4pP+cURjOBdZKCxUWoDFKFTMtQKY0N8wVIiJVY92y+XpckInMOItP+vYvALiFYStH4aTJ+EvYHJzRydftdSgrrm0IwnntM30aFRvyy8t8ZR0+uKDC2w81PGmFOa+pn1KXyIVqir+fxIs1Psgrefu9fRsGjXiUQXyj4klF8RplsWFkvFz/qm9/MrdSZNf/XQhSm+bzQ5vZZOw83UYA0t1G2fDgQ6yuE61kuhNnDYSnmujGkiHsTxoZtuUjCG9hQuf7qs/ImJT3TbeD4VJbEriiumKhc5W+qhhanqj4UnWk4NUNxjWtUbwWlEoeW32u6xsfJuoJg+E0zSnWQw2MumtFZG/HIgDcQ+mcQdnsCvICAyELBztSuoMouDXBO1CxI54xk0LONPZvAyJO+k1WjBBuMYBLd45lSfI8G91qsowtTWYNlsQfUHlsiTBk3yq4bXUJ8NV2pCnrMJ0RnGLadel0Dr+uF2AWzzk1Moj3aFW4Z3Jx8NjjgbblSp8wLK/x/MgLa93z45EdAtB+avx2UHb3w8p7INsEdWn03ogtcjqSU5QbtLmKxIPaonupv7GwxvOQ61add6LZ36WLUMPO6cgrhKB3vd/xuaqgqqMSqc1IZYGStn9TPu8jYKo7TejKyRLW8a+TCOIhFlyK0YzrsCNCmglZbhejL5hsX7NnFlUrAQwQFMXrQ9Oj9r/Sdrz9esIpWTUIJtNy2AjZTI2G76fFDcMZ8M0CMxPOWYu9uY/55i3YX3SlFPTIdafuKLjL4U6kju7FAM5xVmKHr/hN1tm02YqDmgIVm+1ghlDPZHJ3immtJrWTLr1C/NWWSoZ42cjICDzmkeqvqRsMX4Uv9LwHBO9RHd5SYFBqg5AundXqGYm2nNOo7y/lCSxOq3q0cVXX4uwroL+yEaijAoDHfL3KyB2MqaLV17PCujXKLhJlGaBEwYsmLLERTqauWa7Bcj2xBIT9B+91Mt3usz7/jpGpNR/6w5CKf0Evfj1s6wG0kSUkH3LJtlfXIIlG+R3X5PGJku/hwGR1FjEIxoVRB9zAi+cTDzcyKP/KFOOdXJaFJ0ooIqyz24xerO/RS0t0/hs3tl4dBoybcvbZIx3HP0ymyA1ymS/WsyBrOoqq8hZa9C7GjigiewpxYUMpZixoS9Elox9PsgI1DJwZHwA9cL2NiWsiDRavgCHHfkZeXvZmLvuuXqSeIoegm54FALzri6JW8ZnsQnWsHYNvKPBXu8+YHLqvFs1YPdLf/xqIQv/4gPxOn5Te+tkWHKq1Fbw7SpBwWu21yfg+SER2664CRiWoSUh2Ax9Y63OrptS8z3oxc5ImZQMsm6kMQk0Z7CJgnrXVqMAAzdflpIHCxtOSAMy+LKIpMuvC8TXhg1soxkjYClUIC0tmN8yRdE82UhSfjuQA3glS2F5IEGhi9283GQO1fdEISWjn2YDdL2OduaJcTwUjwx1JWnH5RchVMWaDqM41hWdLsDt8GxnA9U3mn2P/juztJZV/FPcRVW3yuK/GKVTxb2lKLHUXjH/NrNyAQA+YNMXm/dmREweMXG3VSuh4rxQW9iHhJuIYT8bI9M2aPG5ZPWABOvfA/EvPe2kd+3Sq1XEwAYAmujud9uPFhs5Ph9GfeA/imggr+xYfRd9EFf+gli5gP9CTo6bBh/ZvVbKP8k4zKm5BAfWT010ymVcqPxpJZniq5PjDdb2XaLaefdbkiNWbSG0EApSVihUsx/nmxLpuLFIArR9bMl9fM/d+9YvZKJX91xhDy05esRAeeaWj8OogqhHB7NyUfgyIgekOeZ5b+zaAVzox3l20YsDWi2YXi4L7pNmxIlqnxjmxwGddeL/bXr60sCE0y6VyPEDg+yGT7/kjp4oSxXDwcig5KgWVtIFVILtz8ScoTT9aGs1C1GSyNnCZkQDHK+0kTu3zVE5Q9djcLPWtgO4QjZtiZ42f16NtRCgUwSBkln+yk+J6NShWd36ujPXXMNWSAu1CEKA702urOHuzmupeGz0N2FDcLhIKq3twkA8wraLSghGh8pcUKurBebHDgE4pvgWXeXTFM2BoeUEHFP+Fc9oKnUIzjKeZ/KRwcTnwfcNcNXMM8u9fn07X3EbyZFMOYy84I5oVOuTyqrnC0vXd25n4zTOP6RNkxj2CH0+uRecLP3AweEkfkeCGn41VXOmyO8m/IcxVJROKQCQnIuCxdKHQ8+rbBCAZW1XdvRkOTMgHgYlJgVTrvV2/0QJ2qnyfkYFDGmh2t+3nihbQrywfT9gvduqkrwCeJUXmsszmezluB4QQz5CZQxEuyZAMYKw04l/fy7uFcFJ8CPoDVu0JcPhb0cxS5kq2ay6TfyHqLA+8XFPWKze4/s9D8r8tLoq1G8fare/g1qJp+G8Q5Q3fzLa2BDVxvyOM+DjH2zprbwfBWDVw5jq42YuubBLXHaQi6XO7ZF13904nW0A7i7wZdbydB2hqby439BzUIm1swtz2CWzsuLL1jrNuvOvVeKSoJswlOwhpxmlrh1LpdvbAKR0cjFK0zVUdX1EH/f/aGNBwe5jmBI/iav/+eUAH7F/M1EA3NWHsYv3xYRvfuUMR+lVWgcI9cp8RSRQrQVfzU1eKhSi7l+JkjK/4c+vVMjO9muKYR+vlKfqqHzh+BdXokFfRX2b5ZJbkV1pDKPVDqz2/p5hvJ4xh/62n96qOd8Yr0eLfvedBOM29SkAahnnIYnjnC8SwYIvvZGfz61Z7RlEpz3b5lTaY60lvUgK/4VRf5MyFifSrHEwHYctVMoULUhjr3JxD1AtHxLFWzo33PUSyXWV2Vpg68COGgFAnQRsDzY5XRBfNXhlaiBT+P2jgRT11slrWOGFVXRKJmtUtjF467omyerqejBm+2A+JS+ES9Zz7e7oQN0MQJbebkBGI2xNcQPDqiNK7j1NyLIjqBjXXwUpQxMjfQM//9+ZL8GI9Tpdmu4atpLeoTpfW9Hvgf3zxQE/J/rwcW1Rqwi5GsuW19wIXCcoUdTYnCI3FeCJtpFfWZnSSSZrxsI407PjViDgBCbDy0ujoi+Xfvr3T+E+OJkI4Y0nSr1v5e0lIDxWWZWLSL46IMlsawp4ZhmSB2jXQa4gPvIucHLC5TctV+/xb6/hOINp8mGpIH69GDRodCYnkqYm1ziQKgjd8Tc61JCBWJzcgtJtyMBB1MwW5JJyst6YdjQGpTYO/BJxa5RHneMNGDeAThBSFm9wmEdkvSuVt9AZFZ9RZvj2jQB9cJ7mXrnQtlUPaYk6FzpUNk5nGb/qOHEMvHNMd7tvPh/DILnXy3zun3skIquFv2Et+mEBYJ2qdbiHx4Y6y5gRRnXoE+10Locpmet4yxC8ipsGorRetwtKKqYLi9tnyaoheG2a2VLHCaq2h/lL7Y89Pjh+hgthY0EiX3Ac6y1VXMv67AullU6t6mCwKhpdzLYB/IkOUj99gTT0aguMDEBIJO8SC2pHKXbHSCFarsCPCslyhDr0rLW4zkORcsFhTCyTYT/gLwD8IPXeI/xDRqW70BovA1hFuaUIKKtXpmfcYPvT+I73HbRbOeToIX+Octhoy5QVnZrdHBrjvL8ltnRJDNAeMtCPwEEYIhgTArBiohb/kx3PGkrQy8EjJj1k5vtojms/thuFD0rxzBwDsTXUaMQQ5Ys38umnLFzuTsD84K/4WPLBvv9Y2lWPwfsARyZbkiC+0s+Jd5ktH87xSlZbq6pmB24qhCeU1mIJMDkIuXO1eBGNbuYzT/2Pxy2511oDlam0cRQcoTs2YIt7cJ5Hmfhi2Myqmf70hl/zLLVd2I7nz1XGgGYfbCBPw1R3CCsPDGOj44E8argDyg3YRX57xEER7+ZquX8W0P5ZxGHVTYbpG7O1MorKZZzVITk6xy/g+/k/IplN+3uM7pk/1C0icatVg4XSASX+fn56zKtXojSEaZjvaQr06YJpzfHfp4r7d5XyT//Igmw3nfg0eoMzYq/RMyFDL+z6mPJjPZ6gjTGGcGA+NRxuhUrcjXSJAB6VJWwZLeSPsBFa/ppgZ9Cvu2Mxfr2/D4dvahotr1Rq06vZNcnACST/YwUOK8E/9J8xOM1QBjMcI46eRCJ7+lXUq4tQ1m8Vr0ZzX7D0SbBcUWOxs+XlDUeEfpl1ddZUYpynlv3Ej9FhYhZNmPRUWfj5/2nXNb/36gCiSWnutof/4ms6BbsBSLkSAfDGHKmaSzyTwVTzvrwjaCkwb76gqJSVrBWMxkFW9J4QNndioHz6vAtBRXPNPCamqHUmKW9AJ62G7awaxQUembMQVnPhHY/uq1EYZwAz3sMprtXCPNZDpYNGfB6Mg+cBQWgxgDmGbgOUbHXsKLk/XQ1It0TUpK+IY41onV+bNeDoqX0dzbUeFtB/M4pa2a8aMIz4ZaF+h2qa14j70OtcxztxI8WVwZXq2hGyq6H80lj7vAXJXi4yS7bMEQuuK8uTA3vvMo12+ZVyqL/kN76NCwF/sGNO0FxvFMW4+bDeu07vdDxvEeu2ASz/3myG09wRNe5myK3isdlCxrxZxmR8QPFByuy9P1ywc1XpcCJItLzusZQSLCidnBlHdl9O855ny0x0kIaCEE4myoPV1seukBouYYp4njJt3wOvPZ++rsVEJCj/W9QgAmkDpykOCqB3uIDcommZxYUD1kBQfk7vQIP5JWVE1iFYUAfuN+MbniyKvuinQze98LQhzsYVLgMdVkYMfkhWnU1llakuCVvVB1L/tInitrK5QvZfNaXlUbfV1ewlbRBknR1X/NN+a+hh2Plh+ULMjiGnStCl519Uzbbvv5MM8kI4MmAl6SHjEjkt74wZcWRRTp4Bo2UrgyWK5GNADNEVuhKLDLnOoinMBzYLVMf822dIeGwwi6OhqBQiF6nk0ij4fuLFPDVElekZfSSfDFM8bXsbte5d5HT4LBkcwHbE7WfIWNVOWsFw7oEHB7fnjO/ZRAI9kzLcgxFLYSMc+At2ZJycImFEkSqYpFwwINhE8OuwKeRPl3wSPi6AakSjSaKVG3V4jPiGup7xmsGaX+eGoNGiu+TIMMJagTMDAKQJtIRmc/ttAqiZnn7zx0RiXVcd+FI70TiEw3BKvlZoukyvTMuqd9HtMSRUN+EwlsER3fdWrfbOisxnmvhBlSxMYLAK/hKouO5k5gIU6SkrfgRVhzjm6wG0rkrvKlxZnS8GT6+Tcm8rTZDp6M0/AiGmFdhMBNKqtC7g1D+nhOQbkYSxvU1bFkHSqoCWaLeiJsL2hfUIkB0cMgph9Yh3TNKudS4Ebr3luXKai288/PMVf0vzmAOCFDy1B5sf1eTvySBQtZtVvBD7OiWZea/XhFk0oveQRBuyqWQEgLRjlLXjnJbDy6KBSZkbLCP00zgnNekBrH/3FmczxDnFLfKSSQUrfuoIV6MPmcGT+1yrwGzd0HhxlD6y7KYJHFiQQJ7tss2uEA3GQ3IbLJ8TTiHymIo7gLtkXv9apNeCk0eNXQUuokGY+Ay7BqNznOiyCpAHoMsov5B2eZEC3RslotYJ5lUqPADvxXc71JT3OfCnvxzzNs9EkydpIk1tdqVl6SdJy6oyskB8cVZ+9UKKgz8glKrii31RmwFMFMYmj+Y4JuXb9feYHSrg7knqHqy1merGF7HpV5xch37rCxBFhFL61zVVRDE2/YLqi9CV3tux+UrQaCJXc1ky9w5/HpMDkq7I96HXxRkp7+JkRR1/NyXJ+ifyLET1ZrMvD4Kz1mqT/i9p0iyDDffHDNaYvSnB8+p5LVt1tVNDyJ/vZQNpYLpI+o/3blqB+fgzOIdsQKekQFIcd489R8mR1AIJ/S/2qUxpZF2V8y0LcCxWNfRNazQR8VK5dYFfChmNYQL+KLezxA63MY77xBTg6ACCapNoYpQM1DUbD9EDbXrX9X/r+93lyrkJlUxyvSIilHjPd644yXQc6VrqXZuS+qCBQ9zeC5bDmBdNeWbjfkL7vUpwxZYuepyYAgk1FHikrGu4RdMCvakU1j1Zj9zF4qXvsNiBUtsDZkY5owJtyTgt9mlWW5d17E/KpcAbabiRNnmCbN9vDKmVnvnStcgjBqw+cB9hgliNw+lyDg9TfrAhqRpXUj1FxsY2x/RfCLSAkYzWWbE//KfIDSktj9IxEj12YHY5JLVPcfRD4wyS8vSfWAztXL2q1Zk2wjYRBF1GBkjPbTtCK+5oT7ABSU9H0oXj2FnPDBARLKhShXHAjIjfyHXm3ydpDCEJ3XyuQ8LB6vSgTORQLOIgPf0Uwg1s8Rh/tXvo4bH1juhYP/COojBx2dFX1jXv1944C7gh6anqOCYp1Fx52xgynE46bususgr4KXHeVcyn3KIqU8JgX49H10txN6JfKaR1Vn2WpHcZ0ux5aWoBKLo4ij/QQPw4du9ijE4SH2OBzSHxgxHFimr8MKGahoxzwXyD3rAYN9LSfWDiaAsuBj/IpyaU9hGF4x+/ByEgMsUYTd/gStPHYRpVE9FgZDuAkZvYB+sQUfqthyfoQMoKmHdfFtgPSSEBySTsonSBfd+GF0O7nMQ6NeKD45lKkLCkQaNbPPdFHV7RzvGvcqCncuAvaLZQ4+gvajs5djNjgWDuQ44iaVH2ajeuqrh26vPnLW/z0lTWMybtjtrQW8Q/sR5c/RKx0VG22InusdFSBHcCypthhL73s6UI4hJ6dT6dws6pUQlJ40a8Kkw89IHZBBZ4sZjFhzBp+Zh/ojGQJ4qR32O32yKvc7psbpBxshqCswDNZkla4eQclN24XjIauNVQXpq4FJaM6ABe23OY2nHQELFirl7QO/p+89IXF/5gSy+uMz907mn9e26zJv2v7yQ3jqynQf1yuxLfDjiRxi7L6ya4QobCGi1yY4QhImcgcFWvTGNom5wM5OcLU7HuMyS4+icFiXZwLUfCdI+5NxrkWMNqZHJtXe56fGanyJ7D1aBHPh1zJHuHZq+HYcw2UPl6Ch52muUaooIacvB26vQ2dHEcLQ132//x+vKfWf2EIQzhb+aSe+zrGaDawjsga82fKSoRqDf1xiPu2k90XERhQX80wom6XH/p2CV3Y+WjG91K8ee4zMCmDEhy6Ld2+Gwl13KPX9sNFZy5gr1YAOPjXw1GfbjyQLlOrZxZTB+P6s9HAnC5lgc9LKc92HuiJ854BY17qNzKVKehrk2EknNQ/+jRIEDSK9S75v0exGRbSuKkmqMotCgk475sHlqd+SxRGj2OvqkJ9SBPgpwYwWuKvfv+nynTgdqQD23p8PQgmzXa0GH+3lcgp1B45nOaaqECkl3y5lsYB92XYqMZBoEGWFqysDOYWtZ0NjTzBaJAuR4XIWRTqVh5xQpNJxZBtofPUjr+1zseJLzH6tNSPgWOGzjZCfIp5Cce4W1uGB6PLxNTX6/IHiIOCrdMfW49gXiq0afjnz4PtjBm8bKQKk/2prE/SPPmuuh+jY6vysMYYtt0csjgpmuoVpV5d7miCgeZ1db2Dv7mrSz4AWSW7Y9mUXVyjnowTLgkpuGQ0ndjbl/8f5eWrhkCAJHWR8rgRfUCopwBMzA4+ooigpkr2QT2yk2clspKY1YuuvSrJcgM8viiQmEPFffDbunzkh2XVIikb/uvNxgz1A6xQGns0eyRNlqnO0vRIgj3/+GpLSdKx9xMr8PSFdr0QOH2uihxf1jqXJxvpr+kFKXDNOVcXrr33tbieVmus7Z74PVa34ZEMRBlv+Hj7X5g+zUuQ77Lh3wN4r5FLYyn+4mVhhXaxUoQBtcMDqgVQVpGGgoI50nZxGjhmuOOE09NpxhdJoCN4N4SAI6UteiMQXOzW8NN/xMLOn69kNlvH4s1r+5GTw9KOVzTPr5YU5TAQzUf3GbKlb7V+GRIjwppVU+wOOOPZbSgeO3GdSCCg7Z9Q9Bc19zUHqY49Rh0FVL8EfW1CE8uS61IHaU9v/mSKYbjAabXlgLuv5BnvUG0sBU2VMMhh882irKbtOt1EfZ1DZlHQEk8obV+bhdGFAWeMw8tijB19Qq7ILKq2jmY/IoGBs9RnDUvN1sGrNHH0pAjs9tKZS/YURBX28g77mG0o4HESrrEtRAfIystw5wyvocQ6dGc50Rm9OsQSA/+0gm+ldm1k3BgXH6yAVBtnZr52ZWN4RwMrtWpD/iNVVkyKVlWk4WTKSjjDWUqKFR/WE06qf8fmArZXRAURsSTzCS6aX80FSeaQoi210vCioJBOs8q6mj+XMubSVlOuHkDkcJCJoleBPBx6zFpkiZf+SH8VfnBIwmWwahXbwTe6zFraoeERfewKtNdsdNLhtNqFBpyZ8V24veQv5UJs051skAAPGfGdKeTP8FGZrKCRuHl+OBhwWaEnSsvJMzBZgc/zpo73GXyPuCFRF/3e1ynIo19Fv8ssL9/OV2mWw67ZjJgV5e9EBcCNTgvOY8t6Zx9PbGbfGNHdVs0J9d6lQOM4/hkEf1Px92v7LecG+gjT4PRtH8HoX9re67l8RSYk9NbRASYObWk4g32uuoRUjiRti6XyggDX4V72f41/igpUWPNSxGioFAymigcNKp5APY2FERHhlWNMsiixVoRV8F1ROLFD3sqJTdEGA7OqRmEste0aTPT7VNSeVNi7K+BP15d6SkeI8CU4/1I2jRtHtCyid4ToDbcGph/mzYSUELWQLaMBAfY3TDynxOvcjyY+ssZmwNyXoluhodPSO3O3locdRkwmZVvdz6lRJAvvC38NHZSgOfeZ1e1gKFysAFegxE5nV19m+Qai8WjbPrgvUPJcUYUrBAtJ3NiHiZGw83NFM063qolB6afkAvtL2xIZqmG3/xLjNhAz4JtR/Pt3di9BJqc3piN1vhfi6E9kmotZZ/sDLKBkE047Y6e11ECV6GO3fhQEnJOe59QGn3heJi9wQc8wx+7ooGn2KCiH0LtU4r6s+9CoPz8IcinQLQglTXLiHT29ikvloK/XiBKMf3UtCR6kedbUfI+U0YgHh4/5wJGXyqpPkjhoSksVQMhx64TGfHpN+9JjAsW9ffSirH3PUC9YrOkFKiLlPc4gfWITRud1iEOIarGAghE4Ar1tFYUMgJEZ4SueRhR4k0CxBzCHSuz9RHR3XXLfMwkbYgAtKkJqvJSTb6PlmdgyDJRem50W4UblcyX82RRpg+OhnUG1YDMUCWZzhsIYoLQ+Nls4HGwy11VwCRc4GbK6j/QNe8dRPqiK0h5cGVR+RbY8BdgB9vS5TP/vCkUBAW7a/d5pY7I6O4wiv0FLDv5axN2wZGH1e+rmoGK9brN2JOeGTnaeriweWBj18r3iZU60XoQ2dNi+CbejzpWtihXPkHpsafz5wLcEIh1lzcbrJS5X1D+gzlE0Qr+aX4kJjc/7NBTT89kcS6XYEU11o4zakSRKWSxmbBdjCHoSk8NK361U2jrT4LeR6p6WGe4VdB5dYN1F2LVl8Ls5vamCMzZOK/Vzi7nUjUuBxOHbo50xOjpLCfo2kMjaG4bzePFyeXpBm6DB8f5fZdwYdpu+GIDC8xEroe+LjFNfmbNFoDt2DI9BxHeUJmNBZxo6aBtKXXNFrwwM1GDwkD2uYBHQdly2pQO+2081Dfm5It6rqWorfzM6ZNifzgNHnI8Jo+TN8FA/GlWPcePYEfkGvX4iwfSVrDvSgF1ypP7y3PK4SEAcinajjwMgBtxE6lMKR9/LvteaLi4qlkZ+m75lHd3/S+7hCum3Fjb0DfF0MgONzhyqqYgQHJBDZEaTKHbJc+XublyVxj/F4UGLeILSQUlDyr4y9JUdINabkHc2WJ7u5SLCykOiYhRJZCXQNKyYOWWj+xUWFW9zamm4bxUzzVp+8Htl7zJx4WZ68GcNknlStJkrpgx36KdQ5yxWplarzVnsKmF/j2nAo++kkVsZAdspMJRu+HzDLTiFBqs9CLN2w36Scw3Cg4Lou6COplQ9qsNrAVJf41YpHElke43o3WxMlPHJfHwVxHCaQugKtvIkaL+r9fewPmV+UQQI/uDuDYHGVHsLyhVeHq5v4eOe3QHQafkNs7JtfB1uudiqMftUCWbI7Q7vqUMKpJ9F7txv/kQSE76hUS5hNTX3yquKuMHXDs/jLQig0SHWq5nusOjCXN32Z8fhjeak4O/PmWdxcVgbMyfqXASr/taGcjfxet9PzbV3LdcvbXwQ24oD6x4R4y/MaimhvQrzBAlDRVmBVOW89JBi61CqrVUZd9MDcweu2aGeEdwhkQZyqOueSKk+24po4anpQyswNJL5j6j3sT+cdc0BghkT5Gy30e0wxQwZGyYyJkKffNRtrASByyoFRXwiKWFnKZFfdvGY9ml+eWXUtvqbGVTjqe/z3I9x5Er6OhebG1NMPxT6UC/0Q5Lh1RxYTfkHGcJKjK6Lsxply9e0gCFSmdldTbP++t+Wcg7bgLOMtyQqbDmm1bgl7iz07x7GEpxADGXEwETFjvoXvSctInfln6OVviiQVhdAwivUFirrpPo2DWnWXdk2ElTKD6Ht/GrbmTWBUrD2ACv+OxZzGVZZ6JYDu/H2zyJzpoA/sJzhbLY87TfVuB9MEcXqSJRLlSVd2JufAfS+TaIRXpYrvM7qpHdJ0M980A7qLFD1N0Pqz55Ts0WLPXaQAilJy+k5qpmlPIYgHcsgd1z5pknXZTuXW//Pwct+kCsSCHh7XJTic3jS0jWaTnoy7Q/9gEY08MAnK20ygQ6DIFNpOOdqcKi1t0FvlitltyarfuvSAAiCM3R9QfK9YM1g2qkDC/JqYr9EtGOmIw8Uh2wjI/3cwZfbF3CRfwkFp6V743k8vyszGDsixrnjZlyG5ENM0oEhkowdHk+1au5pIoJHcDpZW6HhHd/ZHNk3ACn7p4OejbTn4fo9YyulXZuzgdjhwrmdjurBcceibCpuYaylL1PwI1Cv3r+kbyDt7rJx9wcBw3ZCnMc3CPu+qlKQiWGpDy63NrF5qIYdWFxks/9jXmYiuhNXC3Y1nDfgT8fA98djbSBEgLu7i+wuutYeR2yIf29iinsScsuZBxYYwaITRroJHyMfvmF4XSS+hrCUHrFjtPgdJ1daJDuIQVnRqavPy9oIb9OEQI9gs7wr6SY1x69A5gHI1kA+DvXv1XX4nCsutFb3QTCnDauVoUH36h5f4nMnOQdzPteaO1m0W0lZTR73ivd8QuDKospw+gt/qbmhNJVbJsfAQJ+kZQ3ABAAMPnL9w7gwsqD1thmVkSnGsg/wp/DPxvS/E10PV7CfbAPDEwZ2kGeeNgtpu/xvhYwQVjETyYgpvDlPdQONSBXatn377KozJxW5R6zKWYBaxY8GauCz5QPJZ4JrzXB6cTY0sIVd11KlEjCtDy/Al472G+WdKRhBTI9FaAor9XPxA/IQjYqjvBbDfBh2NyhS7VscxL3yQJbDJmItSluWa/gZViVYKR2Q9+sXlUGfeAT/wJ1tZzFuPkH1ZLrSZCBcvTer9e5/OVIp7KTR61OYwHH9+Z6eyA6JmNIJ65XWu22k/F9ECyoCVu6ke4xC43dZ3RJOoo8VGE/sKec6o9NaXcKkUSLypRTaKfFNcbOWA4UU8wHAksasd0ZWCPbysG5fvMBBnVmeds2iRdy7Ghcla3cwz/f2NYCl4MiQmTl57hkJHAcT/M1+ND/6Oj16tuUweyP7cu5qlunztletNrIZ4SLr+t2ip4Y+j1lY4c9csFnGvin5ffPH44oB81Bv3XOR9WKnwAexszBfnTi6tafr6CWRpSN0IB1zWVcMGB8YvyQekREeElUuAZ0dsEECK30eO/NO3kenRDbIIgx/WdxxQfoWT1jd/8H7dRgeQHNDtqK26KALX5Wq6B3WXMyXhl57+FnnGO6arCyJ5bXase2zQ2C7FgwCqy1PJ4xprPTQ+cKmT3D6HNfcYxXF5Ga0BjtsbLo1vrE1g67v/uPttMVQL1lueGpx1Ounx1sBkaZNIU3wZjtqFzMacQJuBp+L7yZ7ZoKmtoQ9+tZJ70LglWDwWGnyLJaT9gYgwqEueA+4jLzs1ONHtkQUa/oe7wy+4YKTGU9O5RDYJmJ+bEPg4Yf4PNTyukJf3oqdyfd8URHITiVH19r3qc4nTH8RSj4aFb/DqMGGkkKkzpDjixNWpanq/TXGdYzwYe9Fxo6+ujv5qq+AYxRf9r2MiFzpRbFaymmdHOooR/2qGqF11P/CGOYZ18AyaS1sibox3tHoJmD1t35VVh6CWr9lR/KnhDVIVP/KWk4z0/xZESaF4UBKY6oKGEWUTMAq0m0kEGI6vynzeb9Au6NMi+/ywWphWhA0Vs+5we8MK7yMWs3o7DR7619mV9hnUXpc02tz5GwrjTEUlhDnhSlXE0wp2j+e8XJ3avyD7oFCInRh519kt9M/0h3Y/mZm1Nbeo95H+2fvxK7+sy3uajfqz95k0Rdb3+U0cYjePIBk5nsVbQVohAe6nNxXmrQiAYeLyH/Y+5iogxkKb0oiEvooJSFLDSsFLCTKTQr5Rf6Iy9s2lrwAjYjVYDVcQMwj2nU0pccCW6mWF67UfFG85WFEfjVDjOlX0LTlQuJNgDlK6EWdJrz2d/Z6QLXqA1TJgnfaehpPxpAoeZ4DVyvQk4XaX0jgarx9fl2KpNi51bHvyoZGWo07T6734JNNJoNcD6Y8UphA3R0J7177s226KNj30vclWwD8Y+DkL3UeNixydoprWH7xhsHZrlv5p49YRrqv5Hbkj4WXjKXYt6sAta8E8RkZ/TjIjR5xPtUtLmxK3+f/tA/TmTGjKCuBlPYGM4DfRvXs0thkA6pwTVqRNiLbX94u2cY0M6s8GdLX6hsgvlRlyUWVWlFcK1513IqJzxkTbhknKdiwIiT5g03EaNyECnpLqtCttvRGrptjnyKEkxsVE9De05rPF4VYL4vQTztK7CRxdws2hpXKXf14c0CwmAq8h3G3/HLNv/qDilyARFIm+rtvDmHyIH9imYWKvGS3dsHLGLVb0x+DqSZri/bIbV/dumvEB+vt1p76pM3KF2xAhZRg8eVfvsD0GJWyeznVSHOSpwZlK2Zk6xeIYAGZ3CFZfW02iAgOzdv7q+JOXf9uEVLwuGIGVoetkQmGoc7ZFXxmQ2JXBTnBmIT7MbDkGNlervzOk9KhAjUMZzXHc97Vuq8vj7zaqlPWcCnjwdN7JWnq3MGuj2h3F4IkdR4idR62XZd362REMlRFlEwu2oY4GIq4p91Q27+aywIPrrB6Qd32rY9QgBgHYE66GMRgTKWXkOHImq0Jvg3hCghT3EkbgqHFR68o4sh0Hb8oh5EwoXhM7gUyQio1M9Mj0jIsNZC8wLwydpautdbx9lNkHmvhYp0Vu96RMueSC0UeaKhR1w4C7wLHzZYrJVaWkvmzVjKmea8GArrrzVw8w51J/lJWLK0BDaGNn1bENT67bDvDWo7DjtCy0u6V+r3FAMnZF0+KZsqo1pE/uHBBsdQl9BBFqmXByYpt+UtgQKoaG4ZUKz8EOW0g39APo55uyExCspFneSEhS0hdaU/Xbdgy3aznT4smBsj28RA4okq/xwAJbQYXSdtyHsQIPxwTFJ/JVUhJ8D7pKH6ytbS5fpjVXpgsHuHDCLZvJ7tmOfz7a5cTKS3Ku1yuNtdLZkKJei589JisTLUXoiq3BLj/i+diwK7rfJVYksvVi+oynFIkD7BVl0h4Mn01NfTTAAzpmbY8mrfWkLJlhvRn6u1v3jwg8dMaA4/GnlSrKhFwZetaChamfabXaL4FB+C06k/TwYPArfdCYQXvvQmUGAVGCj3DuG/Lvbo7p+PuaKqlQoCBqaxQvX6HFrZ3ZOXYwDmN67vRipwm0ROfdp7ULWHLS+aEQ2WtIpEVi3P43isYZjBYxD2+Yb+7ngGn55PVynFMW87RSknyx7zsXa9y4AouByy+2LOX/zotTbQLrOxo5bIrhd17lLgeNBBML/KqASEs/Ps8FrYGMCjeUCqwt7dbuSCgapFRICJUZOhMfCOYDd39QuVBCPded+gjDoNXNkOkZHnvXG2HL1LYkrNJRWqSd8okzpCxLH+16ApnUbNnc0lz0w3A6VInoO8ZS++7rhyU4EjLz5rmaMa9HHtVPjWOV5kXRTSzpksARgWS7XOGnd05JslJAkxen83z4gDRBOlow5UfsQMCOl3Q/sbb/yeya8CCU23S3VMHV8QxibZxvmRas8Fn8ZHuMEouSPqV3NGKRqayflz5UuJqI9tuJfywb0OGZnPaDdh19AzoC8Njm18LaXKclxrXtbMuDtfYyFWArC92AUuZFnUNX72Y9g7pFxHg77vs0o4K+vCaG0I4aoLtDtc0wOOVVBT9k8k+Ph+43K8vZ7m/LfSBoW07KVPth/7Fi23lLqVT2PuM7ktu7LQ2S+uVYrRN7E70QlVMbxO4GtwjmP2Dnw+8IVJPiDRowbZUzz2u+c5uLLmbDS4Lq5c1enA3kvDmzTW6RZnhKVgmbVBE4+nmsl7bgmzMOfYsbtRwoSAE5GRTJVXQYX/bnPdU+D37T0WcAmwuAwfCYB26GBmY29gqbqsCwfe0ZUKV4PlszJpepjQ0GwD928WaO4ola849VPPfSk8kM6iVnqtbdDv3htkiflPdQFWud3liuZJjqEv2Tf4BpTpVkAcc+moWIJfcQIgZ9RLANyi+yrledmKm5o+OLlGTiXEGt1bcjl59hig3pU2yr5KaBeZPI+r6M4aQ+d5jTdUYuYA+nGgjzDgNcOSZoNXR7JV9dU0Z9OFNjzMQB98IoXrPrvB1X9PFcTmQwt7In5oCa/CunebEt+B0VrEcBKHKl6SpjrKPL9fgF4GmAB0p4HTZJlq/whJzDD+4fNw3r0+FY/JklRQny4ZJHHI2rqG20ZrHzmA+J8mwXg7BtmE/jIuChP5Iqm0nE+QmQNyqnWnPHJQWCtLorwJyJy7vAyVDJfaOVAUlTH0DTQzuxoysHCoccbxkvuOYevd3RKpj8BslhW6tZ3Iatxm0OTYM4DHg2IB7jFkYaHN8FaAKGAny2hFbps0fDrDQqP0diNoXN9LS3GZmeu0BfQsqGRw7hCUiorsmUqgjJTnsIVs5HF7jH38Rq3ykJtn1lTfojgtCEDEJKKOwniErCjt0nL6iVcpZFsjrpfF6TxlwgbfHWRc5feZwL2ZDqIk9yQG794t6JyD1Cgj6BPIx6j5Si2xb/3+XczhVLOPNfYShETSpkU1WMYoSWg8s7eTqS7EPMqdneaLjmu+BQGirNRCzv0zhK4Hj/ZCHKoissZqQMJT2WdrJA4YvTnDc5P0fWZZnb2M6iuwTWUbDGHZV1x+ecYZJ3XiS3NgEsZHZiKFvPbPQhTKnJaPPk4OXDYsNwR/5YiuEcNt801UeyFU3N9f+knzF2hsGzXl6xhKEsc2IeqW8zeuCZTiY6wjzK5QLjv5w0SAP6DS9Fd+s6iZ9QGM4ROiWCZ1WcghbmqDZGpayCbxwBy7BBqoAKDlvn/orVxyqCNprmLNE5sJQtOB+tAhqAcuUIkykPfdrPwLX3Lp7vdnQ592Tl3Dsl9DrEfNIsDHmhPyI/dEU/JyrlBFT6dKv4YJ7IqiEcjDUktVI/BAYbN+oMkjokBXZ+KHiHrCLvuagS3G+2qGcjRjNZ9bvx9AkTbIWiZ84SoRyrbGGh49x7d2ZDByTzDciAwTW5MuuPZBKCNOImuMH0mdOf1U43GfUjzKFvins+D74SBDAQEuw8lp4q3SKTREv6qLHCsVDvarC82UCb+xLU6jFMn/wUmSQHGD2z48BH33iy65PwR3YEjXJUjXDyLhPaYIo4awJuG1doMTV9IS2UWKYYsb7NFLBU9kd2hImaCwVCV/oInRkTtnDS7m1F03I8bKOUkrXIm7PV3dVd6ZbC+nwHq9hvW5WagDy1qcvduVpVF6fE5jfIrJSq2l1idX/vspKeJrsRjYQMz9es7aywWbWp6QSz1XRVeVYatf8OejUD53W8t3vtWTQSicmVhoyBcYT4WfwfEnvErtVmnvj5A8rLYg8IwyMWOmjXcPNEoep1ftn7CvrrC2UAWnANN6J0k83e+uf9acxdHjbWUgbINfELFIRl4HsXKFg4mWQxt2XkGqGzorGY+6lfeFsTo2r4QVc5uvN099AqE0RveQThU9/VhDOKR3pQr50ubtNdfRIzuWRfpD21Chbz1VRF1UPW2XR2wShfP6FGh5IPoLbgeLd/No1KpzfQ7HJiTtWevN46m8axJ8DUnuUBFUYmJge/D5YYKg0uqWUZ5L3vUxaD+dAKfIkkpuWz8eEqRxLfyPw/phHOxZHd4SavKqyhKasTk38fD0nhw/GP45BXHKAAsQTejh5tTt9Bfuj+O7v2+4N9Vb2UAKyQUx/KdIhXPX1ueVvdRWttRsK3soXEFngwLmbB8uBNnIbJFt+ZairAtzfieYCz+FViUG9CBt0eY2lx+pJt62NvJQ4Oohphiynuuhhftl5FVB95BH47C2bc8jaQ1XT2NhPigu5BgqIYsDa3s6v7O7jLMDLhqOxW4/02tAJ56lgOOAcayOfSQj/Ww/dm1O7NXps77YnPn8V6ULbNLKhOX7VLWqFr3Co9fE0FkBphLvSlObRWTEpN/VkN9djbQ5iSNngfGVyFrV658NvuwBn1POn/hIocPnPFdvskuID4A5tt31Nb10SrkuZ/q7h0bQffv27TMouMnl6kLSkGMgfSDMH6zsBfMubAygnKUNDgccVTfSwddwsWFCihpiPoR6LSU5uRMPhiinhqbB6wZRcuPokaez7pruHgqo4FXXsp7XN6qLIDNRq182WkBFs+IRvC5UFtYxWqPe4ua9QPnOOglWOscOrW4ySLUNFqP1F8qpMSlxM6fnnFkSZPa4a2sLkwIWO01hLg5Jv/8hLB19kLNywjD9bbTjPJDjLI8nzGgWllLIhNkF+ysS0ymJ7MIoq4BbAwp3Omq2Ll59ZfVgxNq2V9CGI/tgkcXZL/3lZNeOQJ0bzi4spKRwXdBe4Pjptm6X4aNQp580r6IeQI5aZ7N8QukY7qAUttl7Nirzx6/v3PLT0nH+iyMiNwjVTGk0FH4NHnunL9iOVsuHjQ4xVceiCfd5n2kdbfr9PatCQS+kjHmpuYlGZFncUhLMgXlEelHySgm6QYALUpr6qlG+oI1FRL0pSgMpzXzTN9s4ADHulyakGzbgbfDnXZ2OTA7rPA/K3iIts6WXzlDAUaC2+RnQ9Hddkp5qCsRx21+Rgm9sAF/geBr2Yzj5l7GvHjPBIXqX9w8vA8Z+W1aRcaA8RiLnyCFxxqchJMjCqgewN4NZQv1VGpqVIYTCpnl6NxMMWCvp6ckuAOGyhojL9LJwSwZO3vV1J6Vh6k0Hl2ap1Cq6ZNTyuk3trLvvH4Op3xL4p2ExdOe0ZDwsfidyI6eY/UGaizHxOJucYC6Q6kYJBCZ8KLNUwiJLZKGUZBeUwyeY/XQ8NevusVKh/lh5cA/wI51zVABaQ8+Mjmyl5Ye+GpCjO0i5UTLspe5VAVfyVRNLns51Kh0dzoVUU0dU5jRHd4GhU5JW7pNORyYEBLU1E2UCAzh+na+oDU/iNStfHD7tGWc+b8o6B//zL+sOtO436thEoIdnJZrI688XgWGLt2oC5jMfCKpQwpLhBsXZ7mJrvkexAeemeTqiHKpraoL1clWoGiAp5Nj2AFTYWR0B9MmdLGBA28YQ4hi2sIfWqwZycygSlvLudI3EMZQlvhlxpEx1UP24vVANrKsoBWut6danwDCd8XfydedlD7XNVkwJZIc3aZ+X0uxWuNPzRzym9XGaPKJLknxwF1zkhjgFivG65XAFEj9hlM0OwMF7vyuAPXFzmL6+/+mvg0tM9s3JtGydAl3dRyn0ElGS6+VMqXNsHrfk9sA53IiRA5SYg3n3k8lKnMX+2LqLFaWuUYnfuvuKncu6puifnhqZgb7lEHZ2moy8D4uZrS7tXbSX0QI97NGXG3ZQInNcd1CwUPyV1HhxUegZHQHxX5uKoqI4tXfVUEL6e4OP1+DDaWeM3LW5BwtXB3Ov4ABQ58kJVQWltoHLIfMyKAkQos5xRLb3a/NyUX55VEtccC+Lkq9QSvAe9wreMg8OgOVsKxlYxCwfNpnJBkrDVHaO+jecAI3WUoX4MwyHUl1diDy9d5sIch+L/GzXh+lm39eIfk8zKN6G1xf3VEsFHjmyJ82hQT+02zKjdj0yvNi7XL2dtbHWKh+5JfRs/7AwAr9S2Yp0pRyamgpsOqksG3yaH0cAnJGdIkVH2FRAxVWvl1a+RC0ZcN7tI8m0cCYdmtgBcimLwh+fkt6oJOceQ73IZ3QQFyAdHN6xFUIGfxsdd6ASTrCxUzmEaABkVn5cfgQUP+w5qhsbm9vPtwNhM526xC+BlswWnZe/hHBYyKipqIJ2BnJcbm9dZv/h16Qk22rpOJFvi3AkzV8gEANxLgNISI3FIWSF9ni5Q5iFMNkAzsFXmuYRqCSrkN3OrEfzYYi7myFRA1RXv3FDsekMme0QMQgrJ2nOj4Hqd95hwtNrECU9bn2IlWsqaKg8WktRxAXTqU/6IkDXrgWYcU597+LLyQhexCGon+iSUZn7J1CT7U9364FA+LN2vz/gbVD74rZsIrI9ae8q1mO2ruvUj445y7eVBEadSIBOrbQFnVFXWRMKv2YhEeAQ962o9pbAkqxRN+L6Ltn0hOvs63IoSiAg5777ahysm+qSA1QQaryKNYUjXlt8Mdgm0AwECkTHBvLrdMK2QjNvUjxIq/gv0RqpNYJRnG5wzBy2FRjRyYrzMeFa3h6HWWiFhl2LDiMhCugyGMzdfAdSGkjOUZjHZoGNssTKxRZAs1Hjkci1a1ZvqaWPrkDIdKkNcOfbkAIrXTRFpKgkt5FYSY0k2ygybMdSG1nPnFJa2lATxGMa2lOOqGXvhAfGkeLzrAu8zY2Q+AHXKGelPLT5619bxXe3bhtoIDZRFEqwbTzHFGuO3tYzVCIGtB+1PeXrYODrgrgHeyxJ2FQIc5Qw1ENGIavpkmm2CvsGCaAsNctK9YRHJQwB3bYsqAAno3a20lCE0+3PQBoIAj1m0wzVE5MIlEgc9cV5J9G3FoOIKWDJeYcDPJsfDnOlb3Ka5Gs29gNEfEybrE7sdXmHmrQI76+3vdokAWc9KAcy1ZkMY6Fjt3b3f+u3/V3iSSmEFKXR/odM+gVk999gj8njcXqZLxVZ5q0iHDAEZiXtC30u+u/7KzAFX3wpENRrdjXyjF48qoSz71yeUCPwwEEz3DzPbFK4Bdap9MTL6UcsTWUDO0uy4+USS486yAcsPta2NeW0F1qY5WhawZqe+mVqyUo9l0FZ1fIxHqNP2+GTGvT5UcqWGBFwJJJ8Z7UopFmhW8FKNEhnk2JtMPiaVPQSb/6Pm1hA3salF4xxQorTa1cY9ICwe37bg9wwFiwXfbF1WdIS/l3es++KyDJa/yXyPj7KoY3hXN/kyCc0/O/Zaku1rY7QKb1FFBj3w6QUD+luQDuMLdb314suNFCVAC8Bqpls9pMhEWbQ+UpD5INRXyTD5p/auHAVxpsv/iG/SMgTcmV/lBSHmE5sWoyOPzmbNylXoyQV27LtKYspjFQmnMzy2DP4dsIOqbqmH9GwfYzhKqZ+6sfnl0c5WQu4ZJ0dNQtlhbuO5iNMQyWHVyeZ3619XksMbC2JKi0VE3izar6s4BFwHAmwuh5p9a88Fpy/PaxY2UPisnZRIIOTdr+GDb2w+MyhElMFP5bw2wmmIzpxFMaoeVrjSCre7e95FQoygt0H/e8r/rVBWubAVg7A3Y1LrGCbA9Cuc6ZIB7tLnSxdXrZGI/tIQKqlbAmLcKwbIwkxBtewiV/UC0Hgt4ydIfkWNwqepct8UQk5P1Y9uAFm3bfTiFkmXIW9Sws+pBfmHQOBuS/az5O0/cnBcj0YxGUFWFi47+4hsM2UoBrEjwq9D3IlkNT7XtzXXXGSNor/NhJTyRQ2Oiw7ukwt5NIKRvUDBVr4kbvoxTRnW03KpQ6kss3W6MuyfGp4Ae16JEZTNSUNewmwyTjedeSqMeXM2TC6bPf1MZ8CFqSN9s9QCr6NR4xU5DJkVCXez7E0ilVtH5iZdDXDyb4hJwuEjnLD9KPFj2IzHfDVCrSqLG5B+bLOYPWZ9Qc6gLKBLoAMVA5qwhuWhROuqMLVCwcBltaW9LmqRyvWz6UsDKPULdPwfrM9KBBmunyWlvL+OuZiM0Tlv74bSMiI2Reun5KV2eouTIT3bQ0NoIN1mgsWGnsw974oCW4BS7+bvWeS6Gdbovm/uPVgXhuPhg7PO0/RPrhloyEcxixmgyqAzKXTLdslmBuLkw2ByupVLHHXLG17gXjzC+Vw7WyYkwIILN6RsPZ2lRvfVQZ1FRoTk+nMk0f4qv1epG0y/UuUQ0dzs+dFfGeiVeX8gTJsgMe0EuRk9ARS3ke/+b0trCVx5W3txBVJ21cvDNnmQYE0QjogzpqyFqsXaT9Nux9pEm351Afo/QbbGHn4b3Q+7XjcKekRJXEpcjoJpt3hDnCFYFozd7TelA3EC1z80VrFFU8dkuDf0emaBgMdKanKWaS3WVz70XG+fkwgjZT4SkCDvo8cWCXngxLfLfIfPqecVSWARFAkbyoib5QjHW3BaPMv4g/0SbFNoPSVlcZZCRQV8P1xe6GK8sVqjQXrTQZW8coywuAjzHE5yERHn3TKK0PFrO9u7RLrJvKwCfc3J152BeNx8htLdZdEbtMUI82cgsGrcvIR16kwkVlK79o5mlw8+uas+Pk/q6sqas6lbxDQlaO6O8OVf9cyleBLLJKOKuB2e1oWgqJUn42V+He5T3bAkrS8T5RUFPNQhU6DeYBKGw2Nl+4Fptz5SCANlJa4kTHu+qNRyfXMN2bKCHak4Upr2Lpp1T9uXDDhiwXEzhOOtnNjnKjSdXfeQ4UWhzrFamY19o1mTdbEv8LRvAUya+8+OEGTNCdNrsOo64B00jg719ReelUT4v6GyfmPgRSeatMWZ9ZqBNveT3EIWjhEN+YVhww2saRjk7nCUQbFYpeQih6H9yp/8xxv46W9KTo3FJP0Vul/narITgQbiSkaohOgKxDTLCkrhGtNw2CbrzqFX4uOyWer6CvFPIkwrDcWfM7jP/jZHxbY1gLnZu/bS/fTf7hgnqyxfiGXq+2AanIM4A+i1WKz+aPf6vOmLKF0Azl5qILkPN46rQQpOPxiffcQ31gkOavC00JSRpXQ9bYIA59XUtTKo+gikNZSZ6k758mLh8l1LF7MRMere6QYQVrP0wfhR5BS+g9BJljAnrFAnye9zE5QLfXD0ojkEkH5/YbJdhTWMDyLULzqMar4ixOv7wtu+TIcfEBxC56/xcPISIzCzWV+yDBKyOeZ2ybJWOee57Pgba3AvQaVYUQBqxMsoy7yk3tldnuq6fl1oV8SvEQYavoyS1h/qFrPorRkZ3NgkgdxO6zMPFuNY+dy5tfT5NO9XF34UAJDsH+PlUdyAGoLRnokRzdWFn5X6M/NQvvaifjw+mvcBOHE9uJvBYf4rUNAuzxTUaIUYMQbpEJymcAEgN3DYYHyqe0d1FPqOx7/lkrW1vB8/+7OTXSV9j++T7Ivqf6k8YS8ngAkQRddm+fKmE/lgbWBL1/cG6LmmpgJnJGy8RqiPXw18rVpZKlR7s8iw/3VECJCl7IV+iliKrNGFi6b29aeYWeEzjjijHaJqT3g95+fAUk5dBLOObZJkqiD6+d2vVm9jucOyq6HaknPOw4Kp2UySTSTroTxXRYBaYWm/3sXqMzrNLUuh3THXZjIJmozQYHRlS4/LShgP0zC+ZfmkooRT4C7uaFXGvZk9p7BYwwhLnhr8O7CQwsajXPbgt7r27y5Xio9eAHkF/QQnfvdeFUVxX+ttaQ7NBzfIus3KiQOsvnEibj7NwUxD1fg4Kq9RX+B/stIyUcTkRM56T2pobHeCwCxYSMRVKzqSwqpac8zzP/TL3PBmw5e7tSN1MIeQVN/b3HR2oGyIAT2sRfNF6cB3W4rl5J5mG3TzioWHQUA+Tbx20MqTm5aaUBiAsNHWbe0vQuQGgnwzH3n48G+vj2rWWnkfhBgJR/be0ByG06HGSIFRlpKmiuGxXAYaeefUebfJ+0/QBPBnbMXMAUy0BnJEn2nKTTCacxHQWktjI0su7+r0d9bkbjurKlVnSGxEJAov5qHnAcuJNtdHwddvGwGE0yohXiVNwaCHXI2a649rVLwkpdRdf0ZKYm1JRiv/38ZB1PSwjWSd1pdtdUw8O9zbYD7oYrPszeK4AbdlAg0dTtmfAZKtgIQEf76KvgD43LjAjZ0ZapUxHx+KFsuW9iAqbpkIl0UFNHUPibOaoJ02096l1Um6RJxfeUNX//t+At+Tr0ghTStnXszPskUbpBmo8LJR+lKzMLPUJoYVq//6+38ijL6ZMWXb45g1zK6kAf2aQh/tBK387wHq7IuNemQ2Ugw5sx2KmRKn5gmlynzvQjX6NV6YVM0SKjAMmuJDLrwsuwnkDTxYyQP6egIZLy1N22MjgIoRnNykYDVMAgML1SyAY8htUut0STitdJ8NBxy6b+BhE5IaJ/1+KbRitzen+WRqIKrC47FqMnFDZzDG9oEixX2iLQj7ClRs4W1dyA/ca9VTZSV3XAUl3LJxLY7C0MPrRjWzlclDcuBoObgFRqN79sfHWYWbnkwYqieL4DXaZfFFvf8PtVSPAjVPv6a4cNuoHO6vtyWKDDoOalqIRtfO7LaphQFSPrbx9KEwFCXq3ZdVgHqkuJGJzgC2/FKGRnwmj63RnKNZv1mDoh6sX8EblsSg4UqxO2V1pYYdBPUk/Rp5mYCV1PqJwUWOWpKxgmlPORrlZsMMhI1PdRWZJpQwKOEmWkcyKofoVyTNma0SwTWOwZso1uvyq29rdXHZWzwfoBxvUXWrk+nUSsXKUc+b0nvhYuN27ndpqNdQrnwgXTYDCxAjmEq/u7Q3FbKBtV3wowrZ/fV8Gz2BRCmG74mNo3Q6kalsKKAk3qsOcilweraCtuoPujoV7gc1fTdGkpdPeni4naTdeOy/rDm4KA7capnFwBdxSZED+dHJrVhw4zqEN1KtNapxFKUpST+lgW0LQ13sJvqWZ76LTrWt3agBDQkfvOwAIQ6XT+rRVuW6J4TxTv0bciFIJn8va3hbzuHCdSvQWgg2DL9gfo9w0drTo3Y5qSWb5snIy4AAle+m1Ebxxq++BKJFr4jHiXnz7YCFKo1xKdcBjJPOIhrPd4ocEMj9q6zPC7x0j+rAwI4J8CXysAWogTDIF8p1SsbhJy413QMDz6MxPbwGdQwMLX1LURbBQ6oPIeCNEU4OOme5dOxBSBnCVxE6cT4aCE8dUkp5f4Ks3Dv6u0IFgRDfEhEFO1LVpQZrn5f5Q3jKnmOrHEX6y/e+5rUZ7VVB23BUYmovAYMesPW1A5nBtpEoNod/MWg3o2lLCo/nTpcrrrV9g7Mvb7vjylZxqXuC+w00DIJwV5xTamEDm7jvYqIgBW3uMWxMCMMUOwt+lsxSlbzXZ9tmryxGShMkLXdbvnn7llN9W0D8Qw/oF6J6DA64qhC+4jBHn8teRr2Am1O7DV4QQb9JK6KPlhnfbtKcfQbIuc3bshB8ndMCl70mHRbCizE5AkQ5nz2sY23IyOXfAETY6pKijGeFuw5BtPZumWRIvFe5lAsIznHtJgrz8kL1st1oQU9wpk8eMsr6uHQvhZ6tlXgJ/BfCaZfXK7V4F++gmLBjUPAiQY5TroJ+CbIENO1IA+ExArbPlU5ohhzsQoGhTEd/r3wJLu/E1V4X0l97QKZIBFBy5f58h4PMkx4VNeqsy2L6HfBKv/wvDqJOxj9J7Z31KUxdcyQA1PmyoDhIe3qyChN3l7TZhUlCpmiSn8PGbujzRIqobJaGGspa3YLQxqZ3X1s0JM5VcFVR3kzOH9PffmypuFbSJa2i6atrjwdZ9gh7uXCd89Yp8Ku/Eu8YFv06Y+sHp8B6q6/jDpbLscM8xHWxLdNq4DYkO9h28U9hy51TG4+J32n1nbcGo8uAlth9gKHBQ4C8oMKh//ZXEbromr6akNGPiO4LXwoYihaoBMSPFxOv0bzhiIDATj09dZbrKjcYxVz4sAFZ/B9VxDdNXvV1/tNE5OL5YKQjfeQOh3EYh5lihla/LqquwLlusPZ4ZhIGexNQ+5OY5X2k/yYo02OjY3u/j68MN6sdaRaiHtfL8HbQRT1aWqGbPu9BxM6MB5dUpvw6K55aS/PonMlBs7KzI11H4n+8BoK8DCLVfcY7NWw4eJhzVdib3QyJp60oHKsmwTnIv3k/L/2WP1sfRSLt1F3ScJAPCy+X2i/jYkDE+OIKd1vowuJu4ng0GT81kJ0wTAVVx1mzxckPVmxwzSJLkzs6+SusKQc/zcNXr3x5jNSUbGZnsaEGrzu69Gcu6q8ovnyuuCLUnI3oc8gNA3R7hJJtNM4W8zWXMkVWvE+QWbSi8CThKIyYaxJ8eWeaSJ8gYnpMKgW+zZAiUTAgFY25uDKCnWihdflQaeDM9SP0XsVtePoS9evN8X87CW3fjsh2cy36rJGZ0LoUUu6tPirws07zldNN4T8ZDVK3vagWoV3TIMo1lHZJj2q8eKnHO0ItXHFVcb2pIwzMWg3fo0eG222DJQHSSvIjG/T3uyxyfl7MicMylTgizQaALh8IjjK+og6CEnxsZyLZboirsCYIRVxxIOlqWCQv1qLWBHwi0YFsKOWt+fieHTo1lBrwb2qastEDSsHwmfkclvLlkPrLrrJ8kwRieNaz83FGV3pPEqRhX32qty6X8JxqMgcDrtQONTVSAFj2QFHwFAreyfdqpzy1QNWdETaA8EPt122u+SZz+thXI2GvrM2DDbb6imbttw4JxK775//TUqFRrxpnNA6zIQiA0QoWZmSWEmiqCO9fJup9k3PLFu+HAu4ygSNV1GVvkannEUaOOlyaIs9CFZ3Qvv5AdEcOFRJoHqCQhHtChaqgWJHN5P6olk7hI2EnHK7u7GQTJfhCmCs1cEXi8gOJtIB9G35b02e/yVa34QgZDQzATguBQBcCq1Ysi+trhzeiu0AdzY0/ne2zpMyypvh4Yoqfp6y+F2SMHBt5wdfr70/i2vOsV4tA4HCQ97xIK0vxEYKgaja06FxsDJoPuZA++QLuj4oqdWj/NvtamUWMIGgq0Ru7jE6knNI98sLkYx+ZF+VcCZltLfJ1FTNYr5XmQgQkv1WYrkXKSig6+xn1zB5HgUdT3jXmyf3PftF/JzVTZPCNKjKzHU+NWhBShXhXMFwBLqgz9UVIL/08b9C3WSrdJxH4lzzSRCnBrW/+xVdIJQucZA2/n9hZhYOzgEscy65RDRGTdp8o6ssfZBIr6MPseJp2276npIc8TJOlkVb2k7APwKBRNGDNDbi4U06LDp9OHVNioXcWoTkA2fIpfzXuBmynQjSVMbrKiEThy28o1CyOu1qrnULD/NsWfSaFZw3g/v1VluPleNIvIDl79MEUk6DLMj2ownKwDZaCLGrNwKhVzqrSSmtMAB4jJ972+x9DoHMGZLWy4NvdPmOz4gK4uXZ2fYEWNwe4uXZJVJtzy0kBx/0DyyqDiLyRg761s+y1uOfFcsJd/sIx9iSxTIU3lm9OnJul+WJkJYbrknTroZjsFhICMb0MnfptMcaQ1qD56Agl9V0MaZkbLnsZBrTybvrZ4Quh/gEcZ7rJyu1C0kC1vaR0v1IgNlfR3vEsBEJiiq3s8l5wHwmtGb5H82BYm8L9cfSY7LeBrOw2jPHhx4o/QLr8eRrxad+0VnHG8XM+NXU3kj9OunmYH05PqB0DOh++3G16zyGS9TvePcoBlpKcXjIX8xVEvXQM1kOCDfNmf9wJy5pTZP1zaZRJYXn/qeLlhhZyT5IPzQq/Hhf4cdabWBp3r5sW8OU3xt6dANJYHzzyQnMgCR0KR4AJGLSpjWzpGk2nHF4a8X/ziYN57OpsIzyrDZpoNPqueLshKSVY16VSMnB8x7rcYr/RTU5iXwv0cL6AjrrQdtx/oMlT0lCnaTnWv3YISUetp3MbNtlRkwowdtS5ygVO86I+Wb2EUn3CvWaZWpqDYO7K0kMVmUo7VHh102AIWITCThQEeAbuFCZMXTQQMK1xbAqh+CEuov8EMoLFB7k9kaXhGvTr5ADy8x68QLjt6IWeGOwnrQVcf+ctjaa1gR4RSLP1VugfZODQ43errI7dX4D2el6IH1R9WIzcuuOMCAyo46G7i9Y0AGr9RYj4BswxGH9cdm7jqfdNLeHP5/yLzawdDvpt7Wk7e0fyMUU4gKpKgV241YbLmA/Gu3IRkOzd+GtPvTL19rge0Yuyt9DQq1i9T5YpAtL9XFNXf63XYP+14jxxrmW7FmpwHLwhzD1HPtJmXKyybNYdilk7Qjwfkg8jK4FN0EjmqKKegcO5Uh0aikJtJmZ/bIsHrYWqZ9HSpxCsggqHReu6CWHFopG4f4Dx4ToweHNNJ/mMXgxDTaBRDUo6yJXJj3qDINAr71iYjwsE8k1Q21RxWbU8thxM4a5gWEiZU58kZVfVoJ6tFhUXQTFOUpeiKOnQuIXqaGAPJo3CbfYkLC9sDuvHqmC4CXcWqqzMkAz7PkHuL5gXBdTTrZ8+7RWO/V6VYsmWQ/AIvz0Ij226Cvwou16aREslBq5wTDj15Dx3kjBgCkza93JRuBysYBvoqcx2s9OHqJYzE1/hI5sxETulK1APFk8oIpox4LlGzpa4m+3ZOZJou361kxMKdNOCFnpLsFKYpsnFUtjXPpJjHAdK52sxhOBmUOL7H150pDr8Z8r6DCAT5Jf4wxWHbwGpYF+Wh02IFmFAVSxASzK3AUYFWe9bcmnkaLycQwL7If9RuyJGo88pZstFo+PY9kTDzepZC69Wd+nqUN477RUl5nZoqqFeT/b4It4P6YcLXFbPTm8ATVUKwPPk6Hc1aukJuqFXR3bw6mabkVxoO1w6zHjzJOv6IREdA1nloJnURHCPWzeT+fuEeTZ4jf+/l/m7vT/thMkzTk28NUc+79XuHX8qqeLJPc7O0obK9T0t9yt3otFLSATTpJDBApUhVS0nw8gU5aOM1UjcXW5nW84ANddzGAIUK+scLKnggYFEW6IdeDWEd5dE7JOCWkrVVmSeOVB2bu0jxUSqFXnlafbsI/wO4f3b0GfvAgmRHDRzuobTna5d7cHxVRYZMTBaxgR1rDJ+xC00AFHw8PR7aWCIyfd0U0HCsWhmiYz10WRlsJcuuhXvcu96k0LwAfOqasaYPxsNTikQiiEaZkxoVaAqz8m9X/il25XTITxiwLOFf7t2Nuc7sgaGleEP/biz231K72PhDtfsZLdH1eIBkfGTIKTJlj0EMQIg+/xy8h29Rk8/EcIFF2NyqT0YTRYimNEULwDc3NS7xjzr2ElJQ7Z4Ac0ElXWf/R1L7q/6q6IavN+vP5n5Ar1EE8vTwm4eCqkvrMDJ7Gf/Ugh8Wzv03zM7S13uN5L6I+s+NWRUXYh+Yt/64PsrJjeZwpedr0I2/gKWu99UMxqhX/M40EyOj75s7l7snD0GkNCjWEPgRZ55W7IrMZzNtGt/X87yAldr4rtRb3Ni102bkzUGrJI/E+VXTHXMJJrS+Tg5V/smdYfVAp/tC5pJX5Q93+eQuAOW3VhNus6sC5X7h7EYi7k5+efeZVs6IJhDI+xD+fJYlymMkploaBEk0ZCKbCE1VtqgklXcr7n+Ats9ZTJ0qpmY8vTJaTDRSgiU7iXCtAV+zisk1axm5TNXxjjvtcpfcy6HAw8Lp4GeyLwypusSD+7VXD87H31djriGoXJyrozRIjzS9DCw/yq6Fc/JEgFQS24o4H7avTwfaAllpULDQq5Bk3799CKopkb7wrT5YbIyS8jSkrbjiP8uKLnRW+JoM9xxyCFgjzSUn0ywrNjC0YaP97mmod1niLuHms/bQ4FYwuWF3UjmNsfNY9ryKRCvRWtYJbpst11EDG74TN5aLYsmfclyThEjVcZZ2oyT1ECoaSZDOdXu0AzDeXwv7WNpLY3F+zvpZpr4LUinp7WWDy27ElkK11MDacio7ndFmA3pnPASPqhXVhpobBe6q2O3/wcm4OoBnlSsi0zIPv0VZ3jHxlB3Vxv80Xe9r+7sf8TQrp+knflPzcDScI413H9A6LNohMQDU4oGIKnIIoyG9VluDuq7Fre8dozviPlK/XFxudQtDUfYWWhy+eN7uXE+Wk0S2HVqZFc2pMp0JnUj6tL7GFRRC8VYPP0lD7CoR/+7SEDdzU8GzLQ99n+Mjig0tGSPHf82rjGOE+tlBb9xg1DNyfOiObEbUnvy24M/2lrcnuIbW1LJ+Bvw0PDfkPkMlMAcG/IyzTCtqy6YmeJSJETJoYDsSERvpydx0rR5YSXLufTO1U/I6ar4W1IP3bMdY2jikUfD7VSCZRmpyB8YPdUcKZBudOT2dDLKWEZJNTYOwyThW5nZJYFaqQonKcBviHbqao1E5HGWUaOQ6NQO4OyNV5XuVXt3QQgN6juIZoMfCpl1jlHJW5fovzPexk07PGofR9IjBId9RIgcsR2lSl+9C0lcsrdHj0AoiYiP58PGGDIL1EUh4TMwEElxuD5YqUVPYxXtdZmDMpwK8BetkrdOuGoA9tEB5xOwdm1HrzjBHJkoGLRYTIk2bJbDxnro1HUaYIZeRlsmxjrK4Xbc6KsdT7YAF6qsXHxsMYCwxiwLTNq+0jPfeN6ZfLexOJmJ+yfKViRFArjb08rlKnWV72IHYTwoS5HdwIq2LoTfNKdb1q9QeWzWvI7EM2zJ965OuaBq+vYua5aE/i6MqfQQWabr+FoGQDxCinxKZPrOKSK1OBd/URU2EtcX3fW+3T6MUnzQ3l4yOAlYZlzciUM9Tyf6OjvWXq0CeWA84TNuJR6KEY/t10lFSUx0JkdXA84mS/+11Mx1nr6OY94aE3VdGkiJDhdCev8VNP6dSZSt6Q2VnkaPVLH92oKvFLZUG/SIilE4Mih48tbc5hjP7l4DfvZIB+WYQMlO2/SLWF95jHOD2RJwbRN9awrKvQCjlH5O871grg6KYws8zrZLz5stbysMZcJgIdXiaGwxj+9SNSYPnn/R/nCc6B61mWYJz8c6wgLE/Xt9c4R+Ja794YvB5HirGWoUa6SrYweXZFY4vBBhn3BrGh3nd77sXyJ3fxITJoSLy+UEchpJvIQ6MEoNdc+eybb2ogwXmaMkEOFCV4brWi02SflEcYYVmCnJc6rX4sjWM/+Ly4hnsJyYrgS8PtggX5mNIZntRGCR0KD5k/7YZTWFjS6mou7afUQsFQa/5GEv97d9sNFDBQzyFssdxuA2Qf3+1vf++uFra/kJeGl0SMAToZR8jpj1glXGfCqMeXcvRueLVTXfjNf0CRuaxImdY3Uibcl3Q9JuQi4eAMGy33oRRYYctkf2V5AfhYhYSZ9y4ZfQCawXyIOeGKy/dE/QcfxcBptD3ycPkA1ndgHN+zQw4Ng77W5o0XbVDSla7UU9Yq0un3tbnOTms2X+QP2NFFQs7B6guftlWPNNv+Gx1ioxurAj4nN51Q7n58qv0Y26Nbj7ZchoXQjLEUbiO/N8hZcAvB9O638BE+ifytD9eqca42P1OgLR6i/LDVzV8TVjuy9+Pp5xaMqFVEJIngmvNu41lv5LilcHLAHLw6RW8bol9QfJIXX3be0P++j2ZKlnjL+Dc2RXRptfo/z3qUtD7c5QssZFAd7ZL1mLrxc3JM8HqLgkXv5fGcuxXcW7RMlIMU7D+x2tkzLFmcrQNe0HN80+suTVd3NVCoqtBJuZKOwPHX86ueSsBEljIoevsw4gvCwUue/0B51ueLPhwxZfsM23Rl2q1ntwV2aWF1wgWHyZujaHov2dLo2v8Dx4ow8rPKS6DvFcEYFhZ121KNoAFVggi1mT7/qCVRV6txyoxWPruSb3410n2GEigkqAUkja7Xwzg5czBcuhVhtAR4kRApo4tdg8JdPrezjTjFVhK4VNGFTzkJEzRkfHsfdkZfbJm16YauNHpFFrFHaUgED37mpDErBQe2gO7pbHrGFgq88JOvBbDZi9ZJtQeGxpKq+sktOWiNyXo/rQyaQqqf/iej2jUESeiL5NHYQiSv9ASN1DmAskytbXmLmwvzQVYW5euWz589mxObE2uaErj8guHcmodD/d+/2oQEZjBkN2APZjaKC1LyhUPnQ6XDLdM1yueVZRPkcZ4T5JIvva3YpGA3jBTUnEtN/8HHZwK/FTBOziVPa2BB2xwS+t0X1fuU4PpUJU36C2rhzhSaRq8QANxlQOI71ziOr32G8uDxlaRn+Z8IKDt9N/WnGQXOOFyP+C+mVE5tdknlwZ3YYFFfQghDJLV+CXocQEpnVhsV+sGyH0T3k7lc6A1OVqbnMh8p9iuY7cZE4o69ocY7K1tmdsXJyFZwpObL2B0j49OlDOJ/Bso+uw3od7bTEb77huMbnLTVQrPSMBUJb1WfpTjU2Gniwdszw84OX7j6ImKyGPz4AOaeAh0GRfWWFAEF+re8htN6WqEMhrTpWUP9jSpgBe88GY2TMStzOxZFWzBuEgONT9EHIv1mz0fYOt2ohJqFd5XJVIIsPYU8JWll6kBA1y7k2D8QtntX4ktPv/G0VNQD9SuZveuMQnxAclmBSduZv7svAf7HbiFCt5loOD0yyVOEUs1QlBYMeRf5iBg1xDiNUo2mM4QjzQvI3DNSiP/kpTYZ7dMmVi178TIM4h8Ns5yT4DyCyE3+fbCTqlch/aWfFn7QQZIz8Vw7HBUrfPYjqnJ5Z9r7g8zmgCt3IfUoED5cYXnGOxFstF1N/lnPZO50ALjPbhe8t5yV8elE/buKv16epFT2wzptxDgbjKgYMTTMUmnb9L2F5lR/bf8KGWtmvL+z6JoYEkwG1RU5JrLWY4QuImjRlvwVaRqey+0WwbnB7gEhk5qLWFU26hnyG02luPrNtmoDzWV3KD5tHr8kuB+NfDH//MkZ/vS0T68U7XqozkOycygvGv0PC7Zs007Gb9Kmdk1icgi/fA0Ab939Wgxo64Ka7j89/QNbTSK2UM3hy3H1avfQD9BcKhRaUmf4wXiEOm0cDniTUjspvP0QtuMGbXXxT8/Ul0UO2Enp110mxK/tySlQKXUgYaz+YE0LPWYei3Wy1RMXqN6PkpweJu7lhnp8CMSb6xRF2H3+qXPcVrZdzk8N3RXOSx7+N+j0cBuA/dZOVaI3OJXKVUakYMOCxNS0IiS6UiIJSLUIjhG2wfZD9D01mKUgceRQ7JG4UtsfVXKOZwO02c0dzyizStcZybTP6bcGZXDS2z6FL3fwo4mlO7jFli6UpsSjg7nYn2rbG5OMWjpZtOcvVcUgKBBF+s+jsRH2g1Njsn7YwsLoIabG/df6V17hn9i4Vwg85iCxeBhgU67D7vk8zz9xhhf9oot4qth2rZ1z4F3gE2LvzZqUSo2C27O74vFZ7IehdSUvgAFfo/QT2XsKlU4eq/VyLEDzmQK9hAzrvlmcsFbtGfXcKyb4oalosWvGt5BA92OTCT+QjMdFHvRfUXMeN/63lM55QndXrYW84FtjIuKxIj1N+RgrlaTOuUL2PscWrVptXBOmmdAsuruZHLPkzK6hhWikXGY22BZlf7MQsvhDUTzUQQmkBZhsyjvC3zKewjf/A402owiLV/9/xxumfF1eIR2js1CS7vbX78kqkkqmfE2Uxw1627n0DK77cU90Mf8iTcFDKPUQNNdyl5elU5toVPT7sXOtKSjMa0S/3K/vxV0wgj431e/TP5TWaJIxmBjTF02oQe8tXIASleWvdTjYdzApIvaq/gfCOqYzyZt6S1Z4iOcqeFFFwBnfUK1aNw+WY2bGLhVaAB3DJodbm2P70k3LpL68ykU27yIk4fLJ22NlUBNIt82XH4RA/LOMtRKMrhG2Y9F9LWQQ5NFGvUhN35ksOkjvTJmXUgxUzQySd1bDhuB4xxOuFqpPo3FBscq2IcsrjXBUAytQRMfem04ATmgBiqKpx5u8eYUSNX4iIq03bON1SUI5MZBDrqxK1O+oVPQd1p4tor9ALyZwmOw/ry0jLun2vC+b3UdOdSW9GRUb/Z937GZDhJmZ/KSHrIkvQYRosRQ4cCGQWS7H+AojEGDzeXsF6+c2n/Bk4sVQy0OCAhmnvUzOzQlOyk94V1HF7bmSdSrwbqSKOMMgWtS4nGLMiQw/Ti8QhymrwyUkQlIgTJ1qaBL4Qjoo4ACSt7H/+tuoPPbpxexmGHj38S/v4eb97APYPnpx06ymCJhJxoBCuHIp2D+TBvE5yHJ9CC8Ec91Qere/GMyxP3c8lI0H/i17sl51lq2px5hLcUorcVoqVXo6Ku4ANt/Ow7oqBzOSjet6LB6YZUe3MOiVzuNSojv3JOs0c83QMyfQqUpluFJs5bk8Tgk6jUb5ykeIXg4F+8x49uMyqfcvJfTxCgho7v97eN1finebSlPTOzY3+wTXhX8TDZolTxxyX2JMnU5u7kXMoRb7o/WGxTn/sk/smy/XQ72+mYQaivaK9DRmxyilMaNzDHXAO59Ba3lR0TNn/NJJbV0In+z2l5padpSbB25eOaVUnzeDe9XM71wHCgm4mreM3o0yysvr1DELVtSOrp1ipfFBcaQOmc8PIouLN5ELIvJDC6TJvcuBnpv7aoU6l8JTgukwVTN8TfLrGtAnpaqCtYkfB9/99y2PTwmbKa0jIgpS4gyY4e4tLT9dhLYUslFNienTL7RFYn0vFKU4b6kBuXxGJOPDyQItAp8M5ZxPum231U8pN7O9hfGqwImkZA7CYeOmdacclIPJvZ9KdE+jcG7fze0JF6tzAy7hEL4J/Jxjit1L5JNpB/rN5U6KQWOW07yH/6iNBYKqagx46vqUayqlhskZtBfcQnMFY/VkzMUbEoXno1VYrAbdSQJS0fS/sjki+EQ2Zy26RJBSv+oVY7Q2AtdfkIwZudiEeisGBr7X6MPuo67MqrehZ9ZrMuEmhyBdFRRB3nnZ0LsjNMvVA+EpMosGa8+4VziFhu5wxwmmBhFL1Mnacy9scTZOVzNjncVIzNKpHgucRIRGhJKx/f2dpuOu9cSM+CJFq9LCt2fjEP9EQV1dVE8bVjdiiS5NjzdFTt5YcZzUfa9JDZxClJmo6AHbKe0E/7DOPLoNaHgzH2rcwcBF+MQRkZziNKt+Eoy8Tpmj623JTGvh6egjLjWzr3a5Iuxi+KEw3pDtKR/rR+wsXSgYQxt53FPND9YA5PxS7yAmNTZEBDFKnhMnO6I/cebq/sMSsKwSNcHbvTUctaxhbPa71UKf0aj4ivp1rfuuxXKhYoQl1WRMynybpAzqsh/iRWVvwqGOtpVth3bPN/pJGgKb8KUDDZ+4jNPs6BIQZA/65c4UDLhDnWb/MeyZMeVouv0QDyQFUhpAQQmzi0oIYneHBisL4mMJZgkCiku0/F3HPobx64lTFYpGfG3yKBDx9Pk8wxDGjA4gtgf+2ZYTnHVEXm6lFHojj9wWc/nqFPOZu2MiqdpapAMEfv3oGVUdOoR2lCk86D7waJIiByEYuyeFMMPLPUNwzMVDELINxzWc4vznkntgFxa7B/LMuPjbBvcUvBXep1iBs0Q7oqTrTxY9jsVSaEvuKkQSSddzboBaGFkikmqPvPDiiMmBvJeocdK236akuia2BYWdlDCWIArKDdQxzdfp519OvI+sDI+auvrBuCXzufJH4iwxpzTkfyPXizFuTBW8L0VnCvrW5RjSCPU/asqpRk4a6o6UozuZZtPJlyLTZxL33DpehlanyqvZkmcmRahmRrPx16khlX1m/1JJ/SdZtdPZj6lTIUlg3NK9BBG+cylKgTnSTV6kCpjGi+hlIm6OutWGhxUGbow+wNtBkLk7wNoegsiUmFBX2HKJvBirnKwkpojk3uq7bud3Ia3j/alULoxej0BUe4y7ylhhpLerHeqzPwGFmCuLi1L0mM68LmNMARNyB0S5qwyRGT7WTWT9UvPxLS8UNea50N98bUcOVFI/knhCQTFcI7a9r3lWYOi+JhNtpqLSgbMkFmVLudny61yBngkxqO3wRoGCvKMKY9yaG2dzikD9VXJXyltHpMF/KmYHWUaRq3GxkgkwJDFOEOWxqDuQ5f/ViVGFal3r9MNeiUQQwwYQaR8d68ZIaLCOveaW8nRTzWNx56l97m6ncuSXO+6jqCJiGlsKIY7H7PH61rrqrSyBMA13AVJyrMP4e/m+fUjOgTcsQKirSoI4+H9CMt+lp3c9tVBM46atFyojdNC7Nz9r7eYWfeDYRSBzxtrHGmuId6HwVsrEeXeOk7ZJgrzTwp1JUGsiVzq6jMgnM/ybMiUDK7LNe84fzSdD7uI8Cn7SVBXk4sJHqNzrU0Kj4/gEQ0rarsGrzjE9CnNMZNogxL4r1uFrlA3EkqaegjjS98goEkNl9RswO/9uZmTXov7MsAoaIy75RD8wT7oFqtkvxNIIs2Nvm4ZrLnGBgfxC46qmtTyLKsO5DoNaGnbud3Hw76FhSwOa16UtqEzLpume+rqCF20DsldGC+LGHYMVZG5xXV/tw0jNqadxfyXC82oeC4lfkxoBlyd6gE6A3Kr02rmK4GeVGqtQMvHD2nDbDmkghzdyB2tYJnAJUPPBtnEguUGZD83Bc2EcYnX2Ybvlg8H1gKbDigio/fEoUVx4oZsHPsw+IGbHQpqvPGy60acPTxBhy0MYNwBTxhweYi04EieowENg9gEBxfelO97bTw+WAKzIDHvzYjGhBxg9tMokLbQ0tXZEKnjKkyiEkOmcmzSGd1YUu7laEK6x6iglmvwYZJLjse+I5WfPbMDIa7/ryRGbMBSFEzJMLwRENOXBbTtOvgoMfyTEcFOhJfbcB1CvPhpR/5pOkpw5SSiGEfwNyqvnhOp9JUcf/LnRBDs3qKJs0846UNMUESw8yPx1DL/BqZ8bQ2+JhOdxuJG/qDRu1hoojrinHZWjpTpmXizJByxvnob+hmehfR+d+tdzpLumYHYUaOewI8q+1C0hGG2ldXBpsG2doBn7i0jPqeeWEmnFFh/HaEGxbWrgfgRMbDmYGEyQkqr6PUDbBlIVhi3NluC/umPH25oAlCadbi1Jqe6m6gfYEJtmUKzJXNGDJ0VWYpHinfpRFvggsGvLITvdy2UkgTPwlBGunpzX3NPDiN7aTBHmSLk/g0TQ6me2rypN3PPlYmlcGm4d62AUkxMJ9J0pn1Jc0JitQyZTQ/sYgaE5yGD+GBHrK5n0AHfzLhzbRnf1yYGV+ujx23o8QxeiErzCrXrll2TL9x4d4V800kNUUjwzNIURdWP41eVeDX36Eg/leD2s6tjrpfRwIbHY1ijk7iQVDBesyGfU+lt+BSNLADr/+Ca3ZiASos/DzoORFVGIZkJE28Pbqb9PI5iVHaotaUC6lLRMmQms807fV7yyiJ3jU+CBkUh+BJdTF8J+Xvj/WnBaltfLQ6u64P7GUHSp/dJP1FBJr5g8GzW/X78P1JPoU9vwbmIIsGgsP2LgtOhiBcmmeJ+He051+q6C79CoOMJIW8i7Wep6ggtLuXx5LgnLukvjIrdyqB45R9WFlaYSmDH4jgRs1J892fpcdr7Sz3AluHa4ecSDhCXI+LkGMIHl0MUhqrbJZyEsYp+CpBbu2hdzr+Oxge/WpMDYdM/7JS5rlFpdcp1XB+WIYbnvfVsymVIfwPy4KwSZnglcXb7nrjAHMVEGtB81Ikfj451eJLztcIxMT/QC/E4euWomwPzFF68R+vdSCp6CU1S6+NQUJ93d6RbrLMus5b6zk70mbSAIOD1L461RBpL4Jr1bVoREFFL60LCwU/jSMtt1d/9YcQeOnZmrT3/u5Ozr7xhUH2eRXgBzZWvTf2iyD03yncnj5jFU9jzdrrHvpwVFg8/vNoQUxrxR8QWF3Z+VHyTG9Eqgc6OtSo0VFTs9oiY3G1lC8c/MbcKbyCKQoaseCNpg4ywRSCoVUTAvqG1sNPZNjd1Pz5ViSF6lW7sOSKwL8Koo/qqkhuuIjTuvINv21fb8J0TPfYTpJA7OusF61VTXaRm/G3svtHHJiSeM4ptHOE9IbdbIT8U4tK25d3Z2/+IQichBB/4SRtjZ+cXfAa7qatMYAQfVIOHNYsoB9ZfOOEXowTn2qoWSRWA4Opi1N9jUxdcNNIXETIrJQ/niFtZwAX0PBmgm7FWArrFRj4y+TWOrK0QLUnNRYouPj7XLh/HQBltGqSPE4WGgVGWKV1FE4kJRfGjFUM7yX8VCFSrgILvAoSxgqbP7oaSXqC8zj7oaHobhfbz8nDxolIWcqqvUdxhDFFjrpyHMNzs3MOmzx+4fLblAxUmpUI1xuUadcqASC2Md/S62G9OfPjPhr+a9MGqtmtb5YN1JK5QqzjlXMDpW5A8ssh+R+oA+2MZlNxXbQPa3rO7JK79Z1SqeN2pG8eX53AXsOR722Ny0vwa3JHPBWfSfrgJ4oXeW4kc1KFUYw0jKsgzsi8EPMOiZ2YDVbHEdK/e7nv/gGNrIw5gtTYofXCOfi7V73PdwFJGcDUvzrP7+EaOmy9VD+AEO5UMpvkDCju2NFN2D9YoBHvrk2G3637FDXRAIa6UsUbP11IVcxBj8wV3siQHoFx7ckW9awvzoSCUwk0gfUQUIy/jtLt070Sid5WLSBgCiXNN53SOIQv4ipOnuTTNURO9JOEUphuApwsg8I6GS9B8or7fE4qJqIxv4fZ6JU80KTHqB2nCEcZebD5n8+KzI9Sq4N55D9rD9+SYfKJxSYPeRqjjCDtoERTzzIJkQ/T72kSIhLis5QBf+zoyKr2z2A7kN9we2/VJyMhOWJ/oSvHyj/jzRJTvUkY23uLtfzcW/5ewoo2FvvNdUl8ZwhsmebjZUzeHPtjyqYCIkKoF0NBARmcBn5tqJkpzVJU5MSI9O63k5YOZI8UFhAVTgtZXsh5JOpyoMi11A7EzeqiScLBaFaa8gQB/dWQ24cpnF/xCljjXYOZUOrSUO5gEp0/uY9/AoYorKjkJt+mM3UoLR56BcuCodbGc+CQa/PInSlwVJQR1cYFD3WAq4dqea6NwYcdaED+f1+0cSoaDOvZIplKhKiKwXbHSWnMrAm+dQLgkPXRgj+PitnhNORQPgju5QZxqAUEp9Fy055Bt+CA/C+qt+m/lkloezOva9JPRf6oPXf17+KoteMWjBKrsB5LBJUCr6g6uS0JDEB0c7/VnrizTy/hPGzKYuUy9DQFAUlEaDcjb6pLFQqHoXZdG60ZV6wDRSqqZftOzIrz9UZkqN4eL9u1OZOWhshC7m2OMmAKjNmlgHqQEwyTkywy7ZdufA4szWiw1wu/SZ4s6jUrvmafNP4hhdKTA2QiXEZhAINN/zWmKfvJBRLhJrM48JZxq7x4H+WXZOY6C5BfNynrVpnNQkN+o0D5loYnUqxODMjIm2xuXPvXNMQYuwPdyFLIuOFzPVYyv3pXBMLwCH84NiZnHKDlGv4PKDH+QzrXG29DvO0BLhzJY5sa6vjvWvA5I7+lhwUWyIg7QzC7k6cSpZlsD1AxbS7u3b27MusM+i3HSksJsO7dG9joDOGcqwCKvqO+jN8Cgbt2p0lplFXv17/EiKxYt6Na+ZfSRY0U5ogq+vmhU8DF+HC+HFEOhCZluM1ADad+EvG9kByfevlcsIpHVT+TtHf7yvTqGWPhRhXyVjagxlbHqIVDKNgPcY9pz2bjUyNTCcZzWYVc4PaR9LerAaIjUMXEv6gn7/FBBqHMqBtSVsW/7gmHNW8TRszCFtwDo4g1XoVTZafqZ+3X+WKvSz1vZ8/Q89jx0Uk/hHTnbcFC+smezQgQII1MxjdKxfsP5UWGl46O0zi3GWFAB0BBCzeOg+rfKBv6QXhq5UCtBkp2fdfftYoXpDb8Mb4HrS+FkHW4QbP6QVT42CLvxPjRFl5hTEWqPEa4gnPF2K/EMmeP8gFelAnyjvnE3FCsI3q/8Y5lG+RNmz1Z723WWHBCPOmpJzwSkyJqarxkpCo1BUjIP8hcjhLHJ2gUWTxDAZ2rXxmfBgDrReKMO10QD2P6w6hCfQ+2zJqjGaMLvfam4L0WCISR/962y2xFkgX98iiOleAhKF6G5T2UBCWstB8vKoC8seylj8E5JNIQ9wCwl/3azubo0QbB4FzYGM92EEhfE8ZyQpW5dtVagAHIGkpBNSRphxLEXZ+ApqruMZhTcPDxtDz8qr6NUFlaaLQQMIgMxM8ua6SLd4Tev+ubVcul7duIcoaeYg2TfsWS5YX6fqFa3oEfdN7BV3z02OVfzVlnvDxBb6BiSZ0Ua4Sx1ilsW2CPp6K5FRVmwn8A0pnrQvt3UbqgpM+18ZkZHN4ZPKmAq8I0mgVD/DoszjZ1ikx4V2lirCSxwuQOacGlTxeqxY0cn0VnJh7NXvCgchUTgSidSGzTj7DWusPBblUOq0F6sG8fyuiJ1jst67BrYMaE+TD19xTRwIFkc+lpzRmlfY7JrodF5Sp4hXZTuUlC7gzlyNRAdH28VLZ48EqnB/fumHnjSPhBDfNtVOM641G6n0tyyAEa8vtpkg/5d5fkoOd+GHs57Vc8CB6Zlr8SfUlQBgALLl9AkaT1bJMAPRpyqp1FpinUezjnXrucXszbpXghcUATpzCi9eBldab6egnipPTkNgB6NHO3IPbpJviab6EdAutEJaROmU628bp5KklSkZK62nxafOFpsybWeX3Mf6qnDoslqW3NqY21SM1oz2Q7GHimY0Low5PdEKMaD7KT2KJ2J9C7gFltL5m3sdbEnTNy2LBRnnSmPcZH7a0Pw5FMHy7aLPq67u6ObOCFEiCa1PYWjR2hG/ICsFBS4LqBYtki4S19+5zdVWZZaWhpsH5dM2o6GwohuX21jgmr8KHmgjyrRQgqv82ls4pyv8otoWsXPMuroOZ+HSjuAfQTWvsLPNy298P70OeM1JTWbXrNJTa9clbR1YxSntJRUP5Hi/r+A0iGUsScZpaUHtZTqrEJbSyuAbyKuh7h7dB6tDaGtdw5mns7jBf9IB5JAJR7EZeOzQmJxdGch6+uicyR6IxZ4u4G/WpHqWy3zfm94WF8jpvaC4vBGHCF27yktaSZhbo2bJdQaZ/zxKOaudnSu0GmaUcf9dyJkS8qwKnQRETGJeI0PtjfWS/TGX6vr7pqNrFKlRhzZfPtFJ3nh6o8O46a0Ddkb1tZbVLBTW+M7n2SJcDxHuFW2oHxWiThl8wJ1Ksw2eJz8zgdJCm1NLaoGkQeAHmO5A5dT68DYTvugisNs37Z5WJL2Y6EsLO3PLHGJntTPUOS+VuFF0V93WyVH7r/3gwgEb08SAi8FK6yCX1I5RVpL3IItL7NVxYsyqtaCnaC+xQm8Us1jo2d6azlsh1NHSfZDPnJaxVAKvq8c19uQpCMFGjfsc/nuccfUhXvE4O8/4zEgPpDU4GosfHY6a2fi8QwHmnOlE1ZUOGswI/pdJ/Ahk5s8ekBwyE7/yXa2EvUNmYvtsWBvrkNiHUZkAkWKa/+FY32cV8TYJyDLOWicyv9D3uc2UCueE1ZkNeFZYH1GFc2ecJkjcl+1t2LWEv6WdGacKoyg2FVmTEN1btqGAvDwe/sThMqwlZYfN+yPkaQg+VTLAOAwxTojeg+kOn1cKbKV2EnGFfMfWA4FBFeNA0U1KxJHcqogHRnghIHNShRU6L0xGq/5kjx9x2ItScblQiQm6VHH8S0QRP9WMtpDEQYKSP7rykzK3zC8+1fYt9PznM24bbMoS17dWv4CacPvDkunzs0km5iTCIK+0z/sgNkTbLIozDFniqTeA2uIi+Zzgzxn+rcsW/WY9opGEKPNvBoEyMH6Q+t+0u80v5gC6TOicTAc7zIU/OR+O9VNkGJdLAZ6he+hRJzN1QmqOKETpolh9MxNDATUJ3DZwOhBZ3Bp4ocvUN6qlGFo4qOqf7pHoV1xOL0MdAYd9bbpv87fwQ0GTTOhTybyUjusa4LS4y2mTuSNKCX+nOebzh/ZY6YTciG0BNFF27cpaBy8SPshTyggxAsccTmHDudLC0hqsO44oHFPfknt/E/aP9/ZfUHuCuAcZEEmOSR5HY6++Dj+KczeuTuvKtuxeLuDAOTImUhbIvH+LdpFPh/D2vGShO5WTC3carpmJxyCDAg8rZLLS8XoqvgPHBsQnvvqoAwAMvOKnpy9XIJsYsfZUoU49CztNAa7u382YohPAvqFVW8ye3AnxvAwKb/BFAOl4h1B2/lLRKjb/ASvNFsW1Brh6x3nabZiXjXZPYpMvgqhxg2OQd1p8pxRo8Pzuv2XcL/txQsijpa8E59Wu1bRq/98Xf0mjtAULj1iSMIOB/45KZdcKt2Q4ZB/7dl8pv1YFQBqs9v5Asq3YEZ1pQly7PvX177RcUCFj7IsAGxJwNkNh7gr0DxXymoTuzumoGAv905BIiyIrgMtcjqmJsVLdHuW//Bs2+wwHJC3deq/crjDB2SBYfcq38YXZV8zyH+hZu+3FmZyKBnRXui3qCYPSuyU/CpxI1VjZgZ0Oief3/3FsbtxdpiRUHLfwgnYLW0LgylPG5Zc+lzQ5i4fMlJLkYJbS2ylgcrewjVM77hCfcMhofqF+ZbMlkFH4BsUNb9KKAIryk1rVS0XJxO20IxC5kHaBvnnfCEJwBj3eMkUSi30fHk+GwDpuhXBJPOR9ujlMvU5e3ph2el4oe2F3mw4MfK3k274tt3B+OryuLnCX5WxSSKQz/Ycf81hyO4rml42GePoEnUlAL40Y70dd7V9XPJE4PWwe8HHdXNB3ZvFCh1w5abWLK0cAreWhPesbgu+tF2R8mMI/+bYA7+/NtkwGg7zdp9ZpXIMuqiJOEj/N1I91pXX/MuDtkHiMrZnJQ51PZXV3jOuSIfNQxnn6Bi7OseKgd+UMN4icOZ3wVKBm3fwb/nCW3rkktUAftXk9wHY2RV1oQLJ0xumjOP5RFK7FkS77SIjf7I/5uW8ih54mx/r4XNB2tPH0zYjhEcx/0Gaxmic+iQ8Wkcx84CNz+7dK4JiMm9pc/Kie3VuhQjIwS3VpPcJahAvkWoQ2TRhjNCOx7QemrW9ZTX1i9ED6scQnPv2Ce9vN10svnZ61FtfVhkke9gAmsp/I1tmS+CjQWlA8cMCR2/HzGCiao9b4R0oRuVhuISsSum5f3fLn7IoBJylLEbOHXAEbDCHe49j3YYZpZ2P4BeT/bdicuK4FazZ8dPl3Jbpa7aGhBRBrQzLRQLRfzp5V6Ms+LrFXBZlaoFrAB8zEd9QxRrVLQfGc3+n4vBApe8eU+UoV+gQGpfDqHY7zqkYcUE4jkRh6zh+t92BaJbvJR/tUWQDVlBMJhWzHoA2c7roWfXSGZ7a6HXH8BpDTyHMQ5VbESzRkzKL0EJtaYLmQR2O3ljg6hHqJQboQuZpBEBzs3RrBTwh0J7j1fj0rBNnOvCZKA5BDnEfHqWVZ/KOw+AC5gSF29/fINd5ApWPHkfLIH2QShTfVN0RjVVekPdTH6IkGTfz9cONrMWb3Ohc5iz0Ts+yMjSZCp1/WANuuInn6Ok1tzcJ0eXlyFTvKt9JrQxYFqa+9I5YuNVglP5ZBWH0jIgbl/MR5xEGbXopiQOOSBqn/PI5pRQQsDicRuEF1PUQpIhiTWLKxOuLjgX5lVFStlEtJkMo7H0vM248EBx1JhjvTfk3W7+NvTudiouvkskxFPfPEgbkOsPftE90MHPtT2dRttN0rS3pmj/jmlCOrmWdclYxfsOo/erR4KhEHcXgkphY/y/9ENlqpTBZXMFZpNOSgGF+nFRhenHNjKwTEuGkr6sHQXI8+fNhj5DUwkU+ifo4kJeiuOVsSlcR6mcN7u4YmOCWZPqhvbsARu3Zr/qJJJXaCtDfV8t1oKltSmKGQEx47EVBOpFq/ZbqwNy7sNY+4Pia0gb+seDGT+mWjct3Bu0InRlz0idqv3wNHnOyNkl2buzczJ6u6KxXnb5U6NRwBwTXQ1QQ6lMpkC3nnV0OvunoDxUYp+KPG3iCicfQjalBLVKbqDVXKM5VOZMWBMg7W7DwzcoIjmWNWzP+sejt5TtweNfQCn/KaFZIyCHzdMn4rj3T/yRQCOQTmzpEeRmOIkr8FJZZf5qhV48D08c1kK3ybpWan2cGOL8syezMJ8rFYCRBTq5J9Bf5iwfczJZE9/V2gPat7aj/UgbG+QlMCCQSyj/KATZZW7pOBihTBmwUGGNGqrGYk+wuu1XNmMs+SZXb5EnL1vxefVYKYQGnEBkFIa6++kf8v9iQdOCivyA5Hk/WCGWPRoU1jcGa/hi3hj20SHHRoiY3cjCUe/HXAk7ZcthXOtul1Jb5KNIsHrkT9EChgWQYLYsX/YLrE2VEstThbjSEQu+MkTaZrIRDGUeQLsSjssCF5j8cJchwLpCbAo+xnu94akC9XYV+p8zoxceJpOtOs6+RvDOxi0ndAvztTW3lFnV82wsiLnUAGvAiQOPtZ6MfqWWVjOTG7WJOSdSHVrWoDHGovnBIqDaUOvGadcqcUcFPPo2HAkOv984D8f2jHnSm9j/K/1hmoetBIVgJ2SonsVU+wTyj5qi1dN7eukG8dneOH3N8sbaoT004qG24CC0ytFKAh18+1l6IdhiptV3meuW3gvs7Jrzc7ajeB5VjVZYQNJACBLizhG3qu/4nA/6uXbCLnaIfdr5hWdIO/A+USvCLpBvr0awdG41La9x+WgYFjO6qzMageriYSOdVCGe5UFUn8/LmRafjK3RO7GuU8cZq+3DOAB+kDfqQaEmOpglaKJYhsqV9g1kn2G3PEuG+A9QTgAW+ZlT3gP1v9p1t0AIfxeIXzyjudzYUiHtemeWg0t9btvGO/rPGpqj6Sb2j6H43KNZQI9RtEXBVD/BQaGD5OzmxCegUxH4wSXNy54x4Z44hEjxJmfYSr3G2bRqL7imTXBfOKuR7phDeGSoutrnhnrdDKUZlCcQch/Xhzsad1LOyDdRy6t+X2SqcHAgq2/lIpA/1S3qE1oBG1z5AY94b+2D9VT3dThGsWASzaqJ6cnr3V+UxM6OOiMylZHODIZABVleZhVx3+NE9sev02QrySp4yC8r1T8YK7zbjPZ8ZQ0oon0xcedKYuzEL6AZ00KcgCd4gUKgZhde4sLz96Zbu0Dy98k9K90blLICPQhv83n/l3XzKaJO7UQ0ImWlRBN/BtxOIrRS3Mt23JWICSeVYDOJLRa4YL47C0D00bewrdzpwuPvy63nTuhUAiJuNrfgw+rvfoHR9z5dl/nQLoh4sIPYxOZYQ5uX6OwG0zLTKeVXlEGCjUTn0FBP51qgx6mEm+wYZjM6AcgZ5GK7kgk2ZmdDr/fj2i7fm9nsFtVjhqB+uy1oV7zTxXN7eNecc+gbpi9LvDZd9+oiAyTRW59KVsxMvtQY0kus1FNY3cy6sfEseKVmsNHbbXQij7AnfKlrvGrgdqr83RzSSY270L3SYrRPAycifV+1EGKr0/B/qEOIuOyADsumZmyER/NrREStgLGDerJVyH4N11ZxAZmef4VH1DE/9xS+GTVP1m6EYmL1j1GY+5vHlF1djLohht4QDLlO4cW9+SFGzoWfvBlQ8as3nwMpz7DAWnaNXlOtPsxJE/I4PFrhPzqkfqu6yTDMRhddqfwgbtuajB23NqHaVgqG7l0lYee6ZEykaf8TdS7UDX0nLSBSBJpv2nhELJ5jcGvEja6ODFZZHNMwLiDodjXCHFzQ22p962/4mWrRed4ld2l0YiQxr2XO1IokdUuHybCPSMWQi4VtK80qbIDOZOLGxi9BszNuSsYvjxNclueBAX2nijJevUUAX4WiEfUdhPoM8QyXHod+g6Vul2MXRW99a2uI8B8+kvTtdlw6haJ8QsrofdKB/efLTZ4FXmxYoyF/c1neRAADdUTj5w+dxWh5CGe+Nd2wuh7Fu5MPkM16YHRw9sUVCDgPcmu80eF3ZEbn0IzcvXAdygFH4moRx7lswgptAhIg1n1DQC56iTUEspvCHJSHn5d3mpKH3kgkfMdNn8zkPeBd8viWcU6O4NOPIsMyH3LR3rwkANCQ4wdbdw82XMxCtg9XbZHWh3iFBKb9b0N/8B4doUHuSnpUWZRREYdVe8M92/fxdqlmNqkb3q6b1UnUxEb6slliKdSCkirHzGl9hXyVGsCuG+rIcN5+M8KN3kuEcHOi/Lv4VSQ9ThOE10Dvwh7Df8ISaAeQ+Zr1CKV/S6r9HRiw2rshqzfjx6jIPLp+ufu5tF05tFHfe6jWEigLF9cL8RTdcnIwXLq4pDJL1AcKjlT3jR79WtYIRjAaEDsSIXmioN+LqIPrIfCvVlGudXr4AbRPiHXHBX3swhHC7gfeplzUniKSUNpSXTB4T2C2HXREK0tVrkCIPF/fPqXV5MZRUzJ/QKM+bB/zeym/oCjMcV0brVWdodzvjiNJ08aXoQ0xjW7I4Oa7ojB1FUdSWWThEYhyUWadEjFkJXbUTcbZlJtfu5yWN6vY+08GNgfWseVm/GPH8GITlGPJvkzFoIhDuyaUoVAbITI7Ed7XiMdkd0v4MSptrLoTkCKQtBFMFrstfV31A9L4pk7nVil3TZUYPRiKMpH9wq6S+NFzdOAI1S4f2C4eBxeOjAEVwhXgBsFo0NJnAb7sBYEugG7aGldQj4pRyWvn7UvmjfopzxQ6oFNfufqUeO7AOmXGk0yDwhlwHShcK3lLZYlzPPiGB8nAH98LwBqVYdboSoH0IDOBAvOHJSDbCG+LvuKdItrORWC9/XCPpKzHudQToTspLoftg6IEEzYpzSiwN2/87/FpdeBMRIJvdEUuwPbBWUFnrbnZoe9V1AtdJU1hzV1Cjm3h4UM2qrdsnOJ6PaX5jNJusyG6TFSdVKogFO2DE4pX0x6FbNGymI++TnNEIP6IUV0lzN0BgQiX2xyE1JGCvJN1iqNNpPfqANRwb2wqpiU+nigolD8OgcyAc9RMbdZJFMeFw4YmKgeCihHh6lh8GyvAH3VNFPmEQ/G2E2e7n4ujMPxRDJIInUMrT6CCj98+E5O4OKCjMK+jIy+FV2/R+kmyKCJDTycK6wCAsJ7WnC3hed4gwLsbHSDYe70AfG7IDozg8mTEPLeUD1yujzOr3WY7OgV5msKG+kV5JJTOcOhHFJVr6ZKb+N452BspkZW6gfbWoTA+rFJOAxJ+g+3b9PgyxP9ji9buJb4/nVdYD/XzGUeJw3XHOZIAuSalZldrB51awLCrZECUUWKSb7BIg7FshhL6YZVSPYWiG/B/NUwsNo3b1lxtCFPj544naUt3ha07OB7Ks7PVLMPAvHApq6tLv7ZQV1wyNMJgdTnLCUCDTYzkShi5f039wU1dBi7GUXX0+UXmrbE211E8OiTKn0rEArfjcGz1y6d7ZALaKjhYyvXWI18r4sNJ9tdvefIft2WYnHrWvGASoSZ57cjPJAmytJLVKaImg2LE/xxBfWwevTYhi0XtTCvIuxzU70Q0tPtIGuGiID22IX4zWVQyIOddwFS4nFTQRiZRFH9HBqj0bA1v/tKburNkbOFMH5Fi8K4Edjj9ryEkljq9EHabxXy1SEKof8o8cf6M7I78d98+2WDpSrj7sDQ0oG+PNjuUexMB5r850MGsHEJbtLbdqTy4bDEaT4CpqfbUL1MGcAmXdeS9OOymyg/aMfbYQS7fvqXk0M0YgP9gsIJZs9uMRhGW6wHFvU2BE8vooEA/UlhhZcNdauyMhnd6M2untGyA6aDSXpX302b8P/KgU4OSw7QAAhymZ9UqmspsJdmvfswekdxk5LVi4eiIY+jICSW2BqVGEl3CUOFEAxVyWHRJrN79Bbns0Qq76YjHhZHqn00dpNbY3Rbs72fAujNha7rQklMTz2vIEALTP+8IQKT2ylDacliLofC3he2lc205qae1BSlYeIj7ZknDNRrshbQ/uRZlq9yPGuh2I7TWywou4RbyQ1BDixO/guULBHW8ghkw24E6ch+CiNv1Xk5t1dYYrSeXkkdPXlOtjTMsIYzwxFOYo2QtiIuq7ApHLR0XFpZlAXqN6a63KZiPE1QLc4i/WSmNQZ2XZe63eBaldc/shtVum4+1S9rLZM02VUTkhPA/w/ZpIudnTShGLzTYxRdwK2RbeciH8BkQHWg9BzUoLnTmxpfhW+wqMXjrxqzpDpj6KKv5zMsiXWuFxt2f+harQbuRQF8O9b2NtAIWVfAixQqHR3aXLsIuvz8UofQ0GzgOPF4O6KnDY2NLhxiIiIrdQ0j2JqgCl0MtEQ+cv5/NVcmjcRE+DOlWCbxWh0ksYCGWUGxV5/olEAvq/gMe0bKgVCg+2phdfldTJQCxcEytnaVX2NYw+neElP6sSC8Jqsnik2Bd2WEmSrouHeyW53X8S53owxUf+bbQLuWBz7SV0aJpJoSWjP9LtzChMzcp7pHf3ls37S0LRsPk2KDlzMoWNm9FpUUt/m0I5Ez1xGeXQDxCg7CtyN4E8rVgtMOjve9uI0R2aohB0I4V8a5y1S+dJYvq6NVCn0yhAwTcijnIwzS6ru3eKBvi9o61Lm1HDFEpHyu9i6JFwG2s4EGJFGKYawBGxOB4dEsQI74psUimb6VIDPTh1lim2bXl2IXcNVCB/NOhxlLVznhfhq2Xl+RyFMjvkOhqPOnDrAjcBLJxhgRg+QiqROEot0rSKjRJVsL9eBnR/NTWQd05DyKV+Yd+1Q9Yl2s3OnlvxFfltJ1zbXt4x0JglmrFzdQnqYIj1bcPzxusXruXr/a1Yew8EYqEXSgDm0OftOHWdhZM1Ywz+IFONu46q9zWS88cRap4TQcb96mFBlEMLyDeZx6/HpqcZ5MWhIO/OiHpDfO3OqAeQwHVrPOqvHayDqoQ+gFjf7LqfWVP2/t+woiIAW7BeIuIyPJ1w//EZC9omEx1HXZgUGscnyZdRMJf6mTjey+q81egZclTpyV0Xhynb6PAD5FnqrWFP1VlmMbnLxD6XhTc3w+1xvfI91sEc3+m81cZc8gDFSL25Ndb+6tmD858yrEpRkygAN9otHgvUp0Iw+QXw0ftmoLUs1jzcvyNh5sKEhc23MW1keHP+rqKZ5Tg8KoY8xQKJXc/KJjmsFqR5/ofbPoP2Wz4nF60qV1yDmXvU2X+5NY77d7RsKVeHP6jmYXxk4fHdxOaPX7x28O5O8SDBAVMvPenUsKU9OioXQwSCli4enjFfvXILo3kTLawxTbRn22bQpuMvb9hZNmYSIYgMB4mVW6WMDbpV5obLB9117rqQmSQQtm6qyodeIVhNGfq6Fh1zAlS3he8iaq+CV/RGyweUEgVwRf5ZW6Q3o10CMqiu4jCDE84YVn1baONcrw2mWNvxA3KDclM0VlHfONyyrCVzuMFuBSTxLTwFtwQiNTjNTErj+QX1StyRd32irNvV1wpYTxZkXuWZv9MplHi5qR67YwHuJ3l+FI34O93R4xtrOIgBBQ4I6d66I3Frg1FqsgBH1opEsC7QDqye9ZI//P3/eT+yT4ZftUW58xW8GVJhj3047Qau1LuYh7pfpMfNWYY4qFSNW8XBzGpwMRQCXeVivjslCyMlBf1hd99LervU3BnxxwKIACJ4mIhxITbtrlKMLvFarg54aj0+/0/vmo4fobRN3U+1jDFOQvr01IxtHcvwYMaMDkJp6OdY11gsGZ1dgj9aQXuE4RWtmUP7+A13dw3elAWvzUfsa6H0sJ1sa3zoPOEDo3u3MxQqVuzIBL6/zEc0f8l6tMcSymkFRGS/mF2JyumTGo/AFaKA5X/GB0+cERSfY+iRWY4yLFTb/j4k3akPT2YBwoyrV6v3uwQIMvEBWJxgHSHlF+ZA2cCHS1UpD0fUycPs+pzkccZJAzxepiZtVpkMKTE9Gr2Hw1FX4VmHFpwOkbr1Yy8jwptviOyZkGNT2DtDnOZUPgO/4PYhx43YzqhuQf3QeR/qH+2Y9k4FnOfhcLMT2HY1+6qqwdlgpQs16MnppZPTDI2niCJe5do0sMudBTnHMPGgvHQRQTzt3mfaUk1zIfATWEUGqCSIlsbZXng4jNrcCtSDqOYa6i/MCMQR82U8InGXKPihAqUyoNRinD9hiTJ+26aIYNR71xXgFOAifQXgi6BSTyQLrkVa40VizJy88txlUqhGpo3BLLEVihB/iqou2SlajUYVmkMgGptOAFZ524eB99GrmPyNNOGxyhzWx6XQsVpTPuC9qIIpj88+FQeRhKB1Lf7TBdmBRdCwT5zMZzMqs+GVpx/jfpiewruVYhv8XFQ9zb7uDh0K1LbdIVdddCPgSY/sv4IvZKFKb1VVXTUkajTCwubCo8E6a8VFAfwARcle/GEiJBLRWUa3VUu9fvmG8PAs79qgwRzVSCNMHE9lR0grpIt3IGypZZldxOHIhbIZ5oemtI59fwM1sbs5fjnf6b05/36XjXINxB2IZP50qkYeC7KcraT5qkX/piTXqPgME0VSvUqZfUrViLLpHiEZo9bVPgeXqDrRKG8F0WBDi9dFTPKBbYzTJ4xmpH2sihBwm5qi/4bPDxAS0ri6zNnDO8k9VN4do5akG81gCHKyZs+cqc4a1CalLR06Cya2pdQ/Z8g5imGDFTDy7SLgFYTWQiNvHcc0L1tG4ZaXcH+w52C5tzQujk5MNGQQ9C0N2Ri+JSlJCHjkLe7FHdh0heQEZ6uwgUoAstE71tU+P3lB+yM82h5zVpng8bkmlUZMeFQMDHIQFYi7sT3ZQC6OjrJI+qVphzyBxPTqYxE8C9A65kE3tz7BKWhBmOnhpC+W62U1vqpmp5Erd9ulBr1sSrtg4NL2Deta25uNsc6+FdR2Z00jvrTpeRSg821WWJN/jaSCjmE/e9K+lwwUVAukIar8Emfmj1zvUcvaeNa1boyUsaiAOCmafq/DQZuEcsqSQM6z9sqVq57va54iCj4lYF7t42OLLE+9GCXb7NCGm+ACf/3p9iBDqjkVgYw6R877tFsWliz5l8E79sLZJ+h3ZKxSV8xHYaY/ovAeCgNYOlM9mERrO3sENxf7nxBRcAsL1Q3Z/8o5xWOBxPvkx1pBEuYLqdS60PXwiatZV1ku2OcqbInyYHPOEwdjeRATXK38Y9lRMf5h81U1+M0Z1SWM1uRPkpu/dPNi/kvMa6GZr7KQz4R/EPBud+NUbIbwKPhre4PtmazjWfqelxA9IaIupvxQtKzuhAjyHj2Fuza5OVsQod5d9gHKiINrYjnygI6DLULPd5dSQeqnFY8QFAKMeoKdF+AGrQzHxWdTRkmga8KZvPbElJMtPHvjBLFGwqwqdzaCm/x5iW66hwZ+JIOVPysu25MpDMssFdSmXLu5s+cXyEhv/4alEM3c+ugjgaiynaZhCMEo5ApeeoV5P7cQhgckJspL0/CcTktS/wxGNpUHEj8BZaJ8M5zxu8R6t/TCseipRb3USfgfVPKWUudjtARB22GCh6N9UNkV+DaEI0D/ZfJzfBsYxaxw63vFmbe01qbFMvX1cPm3pJk4Pe5ZIkNKB5kOlfEKTXSvInU0PHb2LgPqZErQxRfv4sRgiXQIJa2y/o/dlIFCko4K8oIQcVnjcN83z/d4thlKgXXhkBuC7FzA8g/A5qDk3C9LG+yQRKIjPX7XJpEP6bGSHe2ldieSpj98RFYNVro2IUOq7K+Msre0b9dwhcYMusn0snqD9CZvi0dg/FDrWtHS68QbeFaXURl3yiWopcFdgWn2X7FZzOalhayNu/KxR5sVDBhwCFnVOGRbpNv9aXtRVRxFcU/VWk/+ci1Aiv6rOq3c8hczldRRde1mS3GMvTzdieHKTgkNvgySqDg3w/sodrH55LCv0ZQzpP9iC+E291dIRzUxtmg8QJvkuq4lJUD3sDcm181u339Dc3xcF3QIQDShAu1izP7t4eD549s9s5P1kmG1KlrSv8XE/rbuEj9PS2REsGHO3/0MWF8Vjo4Wvu+Frtb1q66HXqgAQHSWZ0HDwYfxo/3fuc8N8gas7f2+YgN/fWHOxryALryLCQalzHWlDPNqkahFX2cKjuDQffB6kUEFisEAFY64uSyT3viZJ6D/9rtv0ta/K5QN4mdu/rkkSxQQXhtaislLRMtlxiPKBt7ouXViXTOO5Jh4/KerANeX3rq2Yrvup5R7UrHv5cjSPpwhJUShClCiOCNyelkyIbuC1WWPlpK9YwXXhOHRFE8+GAbc8NijnFk1lb8I+4pMBUlwjHqfY1eHwrNGCOlrAR5anNmjzcwqUcp/x/bDrBqcweYkYpglZuNjPqpCC++NM8/EenEXx3UjYwhoWks1w2Qjdj2ap3jQxSddQLT8Tk/2QCY1YhazbpwC5pYnE4T/G0orTg/axiOjnh5mpgwuRgJcSG1RL3lk+NSLGSyPlu8F6tSSsOBYMig0JCDLYhbfL1pXhhK+b1afSjMbKo60V14nK1JLsq1e+8sc4xYVG99sWxQ/SdbX5J4eO73WPzJAomYwa2eNSkDET45vM8NF2ZHpLo5512mnkEEFavwTP71N9uD0RubBrHWxXu9garI/O5u2NyEb7BWYbYF9pmSZ5M9Fb+yIzu2J7mGX0MA9z9rQr27FagKyVgaqLXxZkgKrmVorGn2iOeP4YoM8bb15c19t/FOCygxrtIr0A0HANqDuGRud5UIAb6WyUQgcYKqecCHDfjV4GxKrCbm6IdpDswIspn59cTC6kOwf+C2fYo2Ckofhm2kwfHCg3YYfY1ipisjevxxFCrxxC84mo8aTzWiwXI47WUnYMB53v5ePVoIIwBQS6gSJ1XmBnhQmqkvdVOq3v3Vjz1kfkz2MERtRnOe0UlPIBilNOCiIG3boRbgAXQssCehGUiAXv2uxXc/JbQwfOy4kI2JwOdRqG14DBuzFlNrFLXWWC0QxOzOk1VX1WsW1Ri3U17uhHnx1z5pMPkX2NnXOpRltFPLLcOxMWY8l7a1+kb0QQOOql/uTrJyzOYqTlkPw/ihPOLmgCFoYcuHFcziGkzLlXujLcCEGRTERWklV8Xy1VXQ/HwbBg2CKCzAAkX8wXSGgeBlO7xtQxDktSANCW49Axdrfb7T4REuCRUNaeCUQjfXdrHJKb+GuD+m0iELNQTliuiz1mKhCgpO+6Gje2hFmZphIpck5G1VKQm8MXLxfjmDV769/0aVOqiJlhzq/0NlYNSV8FIMsbfbXsQvAAdtqPdYInFFLCt3fkXFbmdCIFPTOYC27YGuqrfUrrHh3/SywyYADcTfUMdtFoDVZTyUETF58S19I+ULSGPCEliUsdc6sRg2MFENbfaQxkZeu86nIRV8PGZtQ66jM6675mQsiUhsuNc+eLu4++NsT/b1TOgQPQuXSfccVgb6iaIxFykSHqp1N3qY/YZ7AocjrUiloxED8+qxVyU8g+GPbCLRAKRY01qnLZTootchpMvZGNcT0G2ev3lmMA7xPmg8TytS/BolS67PUcNhzXv5LPR2S+DqagBlgLhok9qiTAe3tiFZB3GuxfgRIabeh/nyCfdfIis5MCDYp3dPOWed+UXm3e+9hw4uYQr5gDsrwkYQjjBLBqxxIC2oXzjLcFne/+aWua9RAtGgs+8q/t9kElzaFnkJOXLUtjSbCq4tsN7wtb/PUSNiO47g6tVjkyRepUShxtqHdwDysOGTqneEcUm2rQyckBanAiHlWiJPPe/Qdn/2VH+zgeSUF9Mn1MoGzGB+rO9WsZ7UEmm3y/lQAI4hzLDkry0yLEl7lhsMfXtgWC+hGWymKITvOGJL+8ezigYUU9uoEuMLQZUOP3kjl4d+v8FlQ/8xpIzx/kFlfkngi18KwsL7SFE8I2++ANzUBDtw6HMaxk4cr9Hn4AYfQZo5ewgcdb5OJmq0+o3u0xZcAbwfRj7Mw49xvGbek/HdNVnSoP2wN2BtDATXBzddVeS52jY2kJzqkcXZfbiNFuuXVw9Lw4Vr8z/nwHqxxHhIEgIejZo/xDMTk8IDvveSUcHu3fy+wqChnmr4w36iYIK6/RgaoaZUEtRh/xdH3pSspcFl4/JdfrgMtnhyC6D2WIHoSRHYJq1prDIjYrWpCf6ZOOa84LXw8M4fzy9xvUrhQQfrG7xyOVof2RrnJqMWP10cJSrfvFrs5GiADqj5JoaUxj5ARoGahPpnzA7PzeJZTMbfbq3EK5dcCKXN8V0x4KBfA4nGD1meB2aQY8nPPbB2QRHTYg/f4glPYzCoubFyF4kYgwrYPlzGM2V/TxsIMpTF8pCMJuI2l9kWz5HiA7WvHehuhRtq5jfVR/NpMbpOVOMaCwVRYbLSCE0FoefQK26AgdFDGHs6eYDuZLiUCC2SHGH6EiGXQWSFsoxMpJDiQV7zkNS8saV5DfvGcpXNjkr2P7+2Jj+2MSU2tJJp9SJka8a5CArO4tBlKu7F//rx2jGbl/yOVUW4octvpUL+Wa2CC+QDMBNPNwVhsqTtGVM9u75gH+0h6xRKVRCC1KeCoUC799DBPpBOXXZbwGrrPEuOE1hQm3CtG/Cvrl93Uhr3jrbI1YYsd+D0z1bow5w8STuKu4UiX/8jRn3siUPnJTnhqsqGBuMh0EfT27jCi//PMXuIBkJHcwoSD1W/tk9LsMQ+3nQ86jXeFDezM4eAdRC2itGcnn9+ln0gO8iysyJWMrfj+fbjTQxRfZJI0csvWIr1fQ0hitoczIdyetNLSEw3PpBot2brU/AT5s7jBn5WxQrWQg89BuoZPX+KntipOtOYdlUx7ekgbldyABuwjdMU1d/dLs7mIoJPZeIELgX4NPfShOFAbfUUGj8EzyYKX9QhFDzDG2yBQtoggIPrNVaoVPzbN6YUNGNCylfPcxAeHf85axPY6Dlc3+9qy6J/c5Ix6QMHb+C02kW2cCwFZzYiwNtQUbv4BSkm2AfJqFjjvyQ45b/6r04S40LdB9IeBmvAMxZeeVWEp/G9InQTfTXL/AmuutN76yLDdv9xY+O8LueSKTFLD/CteTZHLo1L1MI19pf9vOGr9eui+jBNJU56R9SNMZeCY+EZGPq12qnIqHf0hw5QYfZIXTdlOQO0uXzGjU7NyQp5SZl/fUWXtvlDcrOi6cBq5wq3ZPnpaj0j7IVF+TBJTEPWRMERhuiE+9rL4ORqfOmL4+ZBDq4PfeMySc/gqVRDZbr/MLGYgHewkCHjlaDOAe+zrSe429jn90mRPrfk5ORYWAODnhdHVIXJ+7Ywvt9xGxUAMligbd5BPHu/ZF4Qd83MHFgwvAB5PltRhSfVRYe2tZJeBxD9bBVqjEuA1eY17BbZdPlpne7Us3P9FBLiBpN2DXo8GCRS7J7BuVynhdbS8gBSD5ELsDtUgk8ockrTbVH44JMlKFosz/1m2WMmGQCzVqiOtomcTHFKp7EkzyB2MT+UDZ9DyoRM9NKFIKqg9j3ZyefjYnYa+MlrW3mEsAyQ+ETzCiyVzGwDoLMagHOJQs5jBjIWpvTNChkc7EO5oD7Jg2sI3/mwBHxb61/HcNGVFreXfKQDVYRJFSJ6eBcCli4abec6pHSWbuOmtFmmtdXuouOETK8RNOaXsQ/DV8D3o9BOjStsmQxIVragwX0J/Ta9o/yJSmWUQq/3f4KwJWWFiSm8HSgZk3id0IvytdSesw/aJ5VCz4ROk0OsmzGwJzSxt+uN5xCj+asu+CAf2ujtROsLFSYyTCPM9dtHPQlGmsWIG/l3ui7HtwBVc7L20d9mEqOR6m6HFN01wJw5ddLzGhr3NSnaWi4RATTMH5TvR3ss0awbZQUv3x+f5jVQs5ev6r+7+cJmOac3Cyvefv0foJEDSm2uaxFvck0kiiuwvcgi49AQQ4SNGIcVtWP0vc2C97grrpA0qw6wjMGhgU7I1gfGELJwGqZ7JIz2H5L01QWT9H/pyNOS5tGClUTtPJU1LREb4fKsO3CetOU+mxDmDFoM7JcknjJnNkydqsncKdA9YKgltH9Vou9F1WrIB8DT6DuvbWtyexveMZq+jxJAlCijIekeVU7LfQj2yhJQScEoA8OgogtyHxo2fdQDzg1olxFSNceqCTooCEii57TtkwZ9RL68c/oY6d7uy5erpYVZgwyFvhF7flKcdebBTN0LlnkWSET9KKKNzEg3u/lpLJRF+j6+R9fNKeeyAaOGtL4zVfX0A4yc5pggVw5zs2TQMd+JAH03YfCCF2Irqu8DBRpuwMZYtHHnvi7EKIKhbqFcB24+aQ349RwuISq9N/0AmZ1twifyZmicLfAVS+dMNfRUf4Nipa3o3zsRoKu3DZKh8mpDiK5zVgXGgEg9ckqdtzWoehWtazPXZ/kKMRWrI2eUUwo8vXDo/ubI135uOtqol2GBN6fLzlOqUt0NuOEsn8dJDNehfdsunBUsjTMjobTBKQjjRTW+FR3McWcoqLddT9cvKTAmQpBV312rNjz0dvEOObtBNjqv05HCdcqBHh/G2K1b2I8fL6PE8+AG4hXnjWqoOE69fqH6MoYTU413K+jc76IfgayGQm9I6XlKTLrpia4jwrTc6jaIrCE65akE/HQ74TD1hon51wUPHSWVFwkuXLNLRkwyZeVX8fL97x2/RJFho4ZaArMmZ8tRw23RGSxYIwwi5gtpNz6t3rxIHjeUEnhrJJInjNv9wNaQc2ZBYscblqK13W9Dw5cnFbQpSEo9Cp+QrhOL0gaSvDBnBdv81rZgxm9+IJ4NATaB8/N/5EKZh3JsSZT98Ht9Y9Mh5YPXqEQRZdfbC47zl0UZwasGTcSnpuW2HBo6LipD6ebdOZgxZ8IWLzYz8kvmJ0wQvh05n8q+dqy8BMngJhMqnMhFBNuKeXm8tB2hnfWavJLMMcXxDlrAPaxTxudpT3zX4gO7vLtswLu0Fh1Chj/ev6npvW3mLTs4B1MQy6xlRdH2YMbj3guhNltLeekGOUPpaj3imM6IENRkQjjPqFMPNZU3aBRWDp7PHoAcGM2Yy8KxHwUCVBLRj9L7IhU35+81OhfX31/Lthw4a1IjgmcO/NlpHrKyYjzW4PkmkRseuIOzh2VLNfdkMderjNlwqNb7VBr+rC1frS+wiXuUbT/vdvh6ph6rMRGuBPQOYEXJKw0opnQRGtisMVz6gRUj8mKGG19S08KA1k+EvAJAjrNl1q4dXq3FDwEfcWVpKtNWa2gSSH76zoGIPMhkF9xJEtC5BlF5hO0PTnnTwU96j9Yqolvvejwnn0JrHGZLGsmIKIfQdcarhR9+Q974nPjTXNnMickyoxNH1CzEJlhOLUpk6ElgdNdXIp/2betdBtqeteVc6GDvNX23mFZLE9zQG90mCSqNA3KJKrTFPQTASa0Tu9sau+aq3Njfa/hSN9gg9mCvpDRt9yS2MosJOF7gGDZ9yF/pH1elLvILynYGrzaLWiSY2FqrP/9U8k2NJ88fYDU5qwOtNFd+X4Z009X6+5TQyEG/KXsqmpHe73Es+QGdx7d4Z0C/8YV5iurv96MFpR9dcKIfKGBl7Uub6R+S+crbGmWSuWQLab9ABH3cu3e3dluGLfRZ8KaPPW4uO/hV/8NOBnk7RGVAdrxk57R51pktqCmTrNV7gmTEwwDagyMuIV++ZmmmDd7vMUsjPvZSBoAhq97m62qt8bMbqADm3eShS9oFF3Pk7BXmJjY8SBiY6gYqEndKqqCy28qMlfxdje+P9YuELltKLiVOqxIrxq8/RzVTXLZJtpqLaSgDEJGVXe6mzq1BtdXeZMlzW3dl0VjsDcPCiEmtdadv0nidtXbBDzHMU4DmJdL3CjOtuwKyDT/c9Z4PfNjhVf7wqtTzJQ1ZGo9mH75GRppn7LQ0mZtS/v6CNJ4FIIKL80ZKpjknPYdB8cYtgzCjxwgluIZjhSLsYZJi8OR4WkUohCDTJn1UxrgVKWMq0FnDwQDDZQQusyunXEVlpgZHHbsjp3QJ4XQZVZjxDoMCc2kLN/xDUgLYF1vNZe/xylBmFXnb5/eVx2D+x9lFBq2tFo3mgWtAhzPYUHLaO0VsqMXzF43WExbm2yU0g/HijTyOwwMreBEgggoxjaLMO31EQX8fqLIF7gbCFeHiVeX1sm4F6mWPV0hRK3KS+rece8lP4Vfv6RgabjvDIqF3gS7kDHIkNnAvSfLOAoUiJanhyVBTBQMd3qpY3CLI2ZSB5NqhwurNv2pbqEDkG5mCUfv8al95tWUt46M6rNF96AkX6sZ5go9JudPKGTxrMkcjR3AaT2qmHOZV8VsA3vj9AEG1+y4j000lCeSmrHQvCW+KD/aja+EONbFa9riNGyI/4lG2IM9L5i/7jJEh8MLp7VH5sUeTNT5x9FetKWvvomMqz2lNeUrBMkcehNe5fjOTS3ApC8N85f49Jy1wTN3hgwXmoSJOLaadppspVi263kKyfRn44CJj0bUXrZW8vZan3jDsxRh7dfCmMt/NebnTHK1FYtMFW52Ee+XFFQXL2E7rJpWOsnorSjC7YPtsuyJD7BS5I5NFlWTPco3JowQO+XKOsn7DJ6bc1i+hpzy7AvEkoSYprO6GOscZCVTt9sZ/cuy+woMNCqMpmNtYyvYi40pTQvy/xhDHwtLCLXFPUu3AiNurbwGJQfzia+QWX/jzzvn3nNr1YH6MXU07MF9goRMyFmDXwNYc5W90ISKRt/vd8ujU+oKCTjmDXSZQX9BIgMcipu2ou9xZho1WoqFw5UNaOCg49ylD1vv5CckR9Cm4SfS62iGOlRPYXDiZiF/T/VC0n+xLnjgfR4qu6d5AEiJOnDVA0+EWSR5EfhzAZd3E6QY48R5cqSgCnmW1sIsGbOLnVvRY+k7YBN3xVIQqsFE0UJp95Ga1yQLpfd8gudYTZ8fmdIB7e+/Jrg6SiaQl+O2tgtwqSQWT/r+r6LONEnYwiZ3NCMWY3a7+QEPLs9KNi+URr3UY1D30usceNDOjx3xkWujVIlYXBDzws2WfP0WoteRsKqJfYmMVaSY7T+pKv9GsUSvDB5RmSnjgabnmkUZFv0KiuOFQkgP53nxdXN/N/ykN+Y/G6X5uzJB+o9Vl8zLaXJv6b32DdOZSgl/CuNnmyU8NCnLJP18omn8COwb1uzXbFT6BLmIeIAZDDoDLdYuqTnNCpmhqHH/L90FuwtfLnVvlxFWJ2YXSp2C9lffmPweYqmHAVDy6FFkr74SjqnHzOJ/zRQ8XXh9LpZAR6iymw1wMV6ZrnzzDaIZEy9tYGMs1jyX2tnLCd1kbDxrxsUpK4CUioW/vKqmO2mJtcp6hXhIRboin2K4ngSt4tNsv22DNZa+6sxsChyMt679M0ZSXYLseFvB11MzZkIBcIEL95GT3WEv46tjxRGc7OD27CsN0fN+IkQlVLiplntcWYVYfwy2dyO4QLCCvEFOpLIejdLolZloiz+lypLkEvL4zjJZGuKWyPD6TI42FdsRO7+tcsfCEaAsOSaOLNEi86PdBEgOm4fyz/8fBLhcw8T1AaJ63TkKYkcG16dSIBor9ti/Yis9Vm7Ma+4z5eW3Wag0E+WACwlgt/FfecnQOKUslEubcCXSWtSQwZxV3+QPSD15es0OmA6pVckf8sngZTvQay5TMaX3qWB+84b+InTbLlIAk2ajjkmVmHuz6JGuKIhOalP3D1irZx+iyDCD2zbKx33jco/6tlSIfB47BsopdjKadRciEQd1pNxCOtCC1FuxmI3nFBv40Ki/FQbBi0D34kg8C69NrKpuWVqBdO1p+OtbymiV7iw9g3tCtyxUHv5AnnxpPPeoTGq9lRGo96ooq9n+8VychIQuYEetJUGo7wHR29TuIZ4otcFzXE0OK1Xs4IfMxmM/Yq1XwJi4zH6m/5xDZnKfLevyu7PPz1hS/e0dbu14UbT0M5VJaspZjYGsUQ8mZwpoD1T99ouyaYu9N3YZm+f/lCL+kPq0ebG5V66/piUn6v5pt+DA+UrrTVUEvkFfHD3FV0YCOwpaqzKdFPzvmr50dLNm2kys8ynJ1STEsDzqY3k5Pz2PYWag6KjlRi2fTe9HjM+mcH9GkQgnQekfEEitRrIAWU3JDXc5XQVRvfqtVPSMjjkCQhkZD/SQ0hCtKXB4t9JhoKgs9WmStidFl1huepQDmrY6lb07+I9jT68Iauw6V/uZg+0y7I2iCreSUco3FfbsRO5ZesuvWAWLZRNNWkLqr8Fps+yV2ZWmDw4c8Blsw9iJhG2YEBOQVqUZoFG6hmo2SZAAtoghhr6fC+728f7OFqGLDDp3Q2wWEkdRmiVuIAWZsjuSIf+YWT9oZQiSFYHnBCPPJCcwuF8LDpPuScjxbZKI2V/oSJMZAn9wh/f2hns5BoSeeambY1/WB4Ydng0USvtwbDnKtqHrPF0Kp7N3ZDvy5AkuhZ+4Ob23CPcWTWw+Rw6P+Ao+LDQVlmI1grto46qfJ1u7UZzPECw356so6qERE8oGeO10f85W96SO9V+oBWZbZGQVKfyJuZu/dnhZdV4RJu6JyHw0b92s5f9056ubQRpwQN9YfcRR7AoWWE6GZRrMAVm1u5JkkLnDz2FQVIS6djup2zbg8OwYl6BZmFrhyWSeRJOJDsxGQUIxeLCwIK1/IaZbEqgfWdmvdJ0tsqDWms0pS826SGnC6teCZTF4EQnhq0hoTlk8nanXDpLOkPDHkc6n9e09WZ+ruvf4HXuISOGXmK6MRUd1zCrWtQZ++E/7kK+RW8Yf54IqkDfUCQNq4fTVZNTPyIiX1Gi/470glGLwz+lnxQLn65IxbtJL1iNPgGU2fqEFos73g+qBuVyo7N44yrP5KvpO851q+Pswtva1BCgvHEjVOMk9rR64/BBxUaJFGB/c0EPNTqTGNdlxwJAe12Ypb/yiLKgXVDdRR2WUgM4WAcJQoOO7VpuGXReipSehFbpuMuZEB1UqasOn/s1hJf0R9fNkeVZigIRF5riuEyJ+l6/bbibinuB6HVR1kNKsp2tXJv4quCTfLDvcEMuINDYw51l0kuA3YQoGhpWvfKOkfUHt57WbWTZJ6X1hoDNWNnrdnc42bFkSipQtaZc6qY+WjVKOFRTWH1n9Moud1V8UFjh8LGzUeFSY0eypQFZ7fPjJR2Sg18v2gE2mAQ7nxaLp5UrbZYpu1Jw7JcTOcWsShX19phHNmSmlF2YrhDzmSuHiLl3/Sn/OzQau+ay/fCYZ9OJuwX5Q4WSEwzVR8YO8AzQfBNmJQ6ZRWpFv/InGegIMjGrOmwKqDZDumwocmEjfx2Ee6YLyS4rjIhwxPpzu+zQddG5idX5HgHR95a9vobcwGyG9aUL2whf5HBIqVDeAk6YYsvb9t0SzdSaaxdav4jmpeVEVC2nhc+g6usadDqg9533IBrEvj7yXF3UOMVwFqHsow7uODhFkRJI1NEKI9gxdlniQcUSONE6LjFcgR33s2TQDNL0PGnnVA8FKxl7pO2OpBaoGA0AtW38QMAGZJAzuc8EBbcrETamu4qAGJNmPzkTUoP7MDftrbNJC5Rs50Z2VuRmfq52HMz/ens/trSSQrVDDMRLAjSu++MDsWAn3eq9sE75rLCC3gRDNkbrP6ckP4RsuoJ1eDu/U6vh3brs8DgPMkjl/+tDnHtY62gtHbP3K6gaBWTXqGkTvYQQPrv96w79m0WMEOT7JhPGuqVqWM7mhI2vreYcLfZoEK0XWbq+ny+RNpZK5xi6MgDCNKfFeSIYo0w29KbFTzXEncu6m62igJbFrZHYo+yk1eUoEhXw+hh641y3Vfa9hDcE/gk7eNOvl4/5ag065ywz1VJ86F3otz2mFeWdKjDTrDWzpHsMjb8DsiWYozYeeoPaiOFgS0ON7fKgUjM8QoFz9ir+P5/n5ptJOaRw8sWE7gQ9/1/GlGNGSr3ljiKzZW53sBUdF1iZhI73Je9pztEgq2h352eXjoBs5n891EB0MH96b68iXUXQk673A+81DWQs9zoyU8qlRsySV1/V1SD/4IUBYzkgQA3NY3kRAhS0QJ39PtYaCOJpgi48WZajSXVAJEG6qdKh7W37/BNFjnlK0YVzJJ2LduFZbhpdmBGmyasqIM0HZAXsH3xtoLeil0zmmYB+y4VUwbkPvh/etdA6YqI4xCzVZV3FCpgRRhwosA/6jhLZKsMrqEMrUGidXlvqhrCNdEtyik2cbHs+FPOrb/Y4rClDMCsZ8agi3U4moAPJ8n4f/wECfTE7vAeUZ4IpzUJPbPqFREx0DCXJxvTPMMIFvm3a7lcw8HTJd3Mz4/5m+R1e5YaVyrHJRMEif6taxkuVUB4Mr0NYAWowKlQPs6jOFa92+RuYn2AeHvQzw8XdDmUFD4BIp+K+z7BplY+egINtWNrhrzH7XRlo8+ZgFQ2lSsw//U7SrUAwoYfDWjsJdIsfAanTc9oxBiKWcQvrJiS1osF8zkrg1CwOvxEUT/uDALLrVWVfFv0tGUzvBgpg23YH6QX71Xwe3x7Re7MSC6awJ5GwZScA4Se0gi7MiyuCspxnI253g/PEV3m+YYLO4zU20PnIW5X6r93otyc1OQByMCMnw209ysjQBxjM0n3TEE6HSMaXzBcB/chnb+8rMNMQO3fLbZQFbFKk7NwlyRcThfoAQ4MvtpwbG5cFfOHacGFOm7jA3aMy6iA9Y7j/CdQJG8ae2N0+cFjjTfp7QaJFZzXCwPNHHmddC93TLFQ/YoXYOZPYugnJOwJwFbWrQR1JVhkBfY876tv5NmAnmItTNU0Zw4fnuHiwQghd2stgzkwDTXDcI8HCFrdFoqyaYHwkRVtpyRmqLLCTVDFasd9hB/n+tES/lTj4MdcDT4X2LrV/J+uMG7F8cJEZZrIRTrXI7RyQcl+4c4tOdFvsBbkrTAXIBoIptoSRKppXTQlyFpvQ4NKf37TmXFZqKSDHNaa7LYGLRdPYmayei/wuu/rZSaydf/v9XaaM6AhDWcc8YW2tK9IXpDdsM0IeQiHzJJCKMUPoaQcYtmzK1D1iHrpEMq8YInz/gZIKkqXQxAJIAjtuMgT3Kvr//Rqum5IG501M/UoOiSYuHrQXm9j72d4JCujqiFyYh7WjJhIespinYmLjed/ano+5+N2tl1td8TkmwgsAyjwLBLAXT4fQCMqNz1bmkyIvSI61bWE8ZruuXLDUKIUcbMS0aLFPxJH28iZ3ouvxJ3yyOewyNKnP7VBtGCHTEG9NTLMFK9eO5joA5ymyHQ2XDTWsuVhrF6e0GXd+BcwBLS2ut+yzXp2wAyO7XiXcqNru1/xx69ySfd1Zi8lZF90H7v5juS59PR3tCuNYaErE5m3vb6O57m92JEtiv8WsDF88mt+fOX1zweRqpUe9XBfGp/GasUP8zlnhk2zxy/ETVUN6oI5s2n9CwJPczrdm6+jY/UDje1GC7VKl18LCj7GEEmBIQ0N5r+J1umJ1zWP5T0UrtTvp6uMvTjjTTd70gdWsExTuiDmxvsMGuQ2yO78JOLwFCgFfugnuZ876U3GEWua35ba7kLjgk0NiewjLFNxhsUEUgoOo9I7PzRw7KylKMFL223jU4mO7+a1bHL0WSC0lDXBvwJIBinhMNMVtpZFhrBaFqISVt+H1uMBXTmab87dswPnrcE1yFHqF2u11/fQPedAOkENqAcHYcv/ZdPlmof/u+VDyG/3zJ8t6AjjKdIiDFxahUr7y3boyTYWB8NKAWX62qefoH+cruK3UVu+D6blO8hDVVChWiG2gsSYiXmrjFDcswrNXt9ReVx+VW998wkL2Uy5J0xTZHGmkZNmKA91sBwFjLKlVdlm3OewbN21jL6bNQ6tCpmy06b7AOXoHLvXsH7OmZjexdbrEKs0RV4bAvVHJ5G41OW4SXB6mtCdOQ0+Rp5VZWtsMpqEk7GKVvnWJc5nk0zQkA00K2nGLc902ZuK6w3GpVdrJ9HPiD/hwrdKpukMRE+n3/0lm6CcydqROMbyPhx5bhVJ8XPAvUYn+/3WKqk5ZjnYWJboIvtsDfIuIU4g6KlFB1pmMOBa+4UHuQ5XpD4f3CwrvW04L2iOW6v40dXcAlHJc5NS72XJdZlQ9OHLZwDz5FeV36mqRHBHUT75VeDdiAUO35ZukrSZ7d6yadDpOHBc7aJH3nSL44ixkCnVhUyOogxHkWU0b1RIKJYX8hWAcHWnia7uLgIovDSHQFO2JBpCkH+I0UG3l7EL0RAWIRBzy6rZn9qHb7xIMN2BLl935geLVz6s9kWss7j4do+g80xuX52aJEFdepNw3wcXjAQ+7aB0YnDPr/7x3qHILcCHMYmo0VrmerkjT6E/l4Rmxe1gSZY3GpuYwZFq5Jk+7IJ3VMXF265cam0U64Cg1LW4aqMwsNHeE3yglvqG+Ig1hPLI6ZrIX4aHg2KNZ7k63r3VEkU46np1jeIH3ruF50b3W49fMcfaP2xcFLRJlR1UCJvWezA4d+WUvWeH7wib8m8jiIj1RvCRTQdrVLeRzqwOgYSFcsZy7KUNO/kJsk6q1mmlLxBQ6ki8+pUJZV4T0OABffT2zRCdv7FajgbpcAO0vxKmZNENvAPN3gtmiJxRfT1OHAyadLQGamDqbNRDjfnSFv/XfW1CC7vaqcMzCw6xMUvnjQdkNO6XK2mBJuLt3NFMQViriPAE8KwovvZA0J70F7QoybYVXB7c8Cra2jKg7v+wmGkZ4Ws8MWkZ/TIT3brZl9kY90BX98Oc7VkbPk5c0hGvBV/ypAW/CbgMXEOwIX3NtfyQ5v4GrIqB+OHtpeudlpYwklhAFiV6nd2RzDeziFs6PpJeuDLSIojPmSaPnrkOjEbL/wpErQls3wDAFA8CRkdr8XChCIGHFAjUspI/8d06EwpRxlRi3zPudT9mTPOj4BRzFdfNhWUejNZ/nzVQ/TrX6xMNsEN0kTMYEypZOtASW74zDT7yEcSiFHgxlwdloE6pc2oA+UR9yTJTJBsxzoOcZLbcRtw96cv4kqDd/vPyzLJ22sOhS7S/+jhIZpsSWEXyozdRbvd/njVmMjvuddgSgx3sSWivLZz8jzjgl95L7O0KS4586G6TdOK99jbMF43qOWAeFMDuN6AJIMm8j24X5st1X4PcGF7psh8BL6evES842tcvIpKkQKvThWYVtAGcBXbZuW9c2ppepMrl+zKVaW75XLGYqFV9JjkkLZL+TvGZ0w2JuBgSYyq2HSzCuCSL8HAsTGAc6N5bix+cCyvickTPJVfnhMS202IhadMgj95uwWPQSWyEJ3hf98TZLRhtfd4HTGINDuPnE6+lV/RPthcr6r5bIcTByKv1JJWjaQ6FlCsLKPs1ZU7/58X9MV453pR1OAe9B8wFyCgf8rGKhSprXQtmtlKWxWy0f196yiljdt+VX6ADMcuVkrJDansNFZtE3Qzt+0vG9gMwEMXuH+KRrmeKQfUaqKdIwX25jQpo0JgllGNmN5RkbwjpmYo9NBnD/0R8749FILNxHYor+NeT7rHElsP4vyM0Dcekz9w7rTVH3tSwAX7LKNKHm52/HP485DdSHOBJTA4R2dupziU+C8UnmnguP41wtjD5fCnwYM21f8aH1ZonzCieUjn4rG/7gQUYJ53ZkbMoewuDzMtMWRFrgnKXRggVcH4PSu2bqUffNqeZcxCbh8IKeUATsRy7KG223RLjnEBxS4YpRYEOzUaCGZOksBeGlLiVecjVds1xR56NWsPmrbjB+7+Cb65U92frPanppOfuiR+5SY0dV4M8nd16E9ud9UBhhQnqiJp1oemsKN6XytyGvZmVXZNfWAc+77Xhp71HettqsGlukdGhIgZwl0eqMo298vf+rmoMHTprkWfGjV82WtaPHdPb4S9QwHWpa6Lem5aPNMuSeALV08QU/eMWQymV3op0Vs/nyGGHkcaWVHX7a6qtImaLgZ75u4LHry1haXGlfZntx24vbi/SDvog3MOzKPJypgDYQW4y0/+NP8lNv0HJdzYwtRZd3JHUDpImnKq3MSD1Nys7vcOsFyIs3Fams68DdDgbgNXRN+3KGO9bibkX9/8EfJi1+IkvJVNF6LR5MlTAm1r38RHfmzUIPIcIAjSJIzbp9WdcWIKFS2/Wey0xDbFN3mUyGr8yKzTGyuNT1EFku2rxqH4Kk9ybN4EmOytU9o4XTjDk+HTzGHROKAyTZfqvoHcnzwZMLvzChNH+5tTcTaZbNW24oYE6NUVc8RdGvFLquw/bfbSxKE8RknEhvOTDkj/Q3fpZsUBfLye8fYN6WwwCZCcwQZJSJP/F8q7CWqp1wmvnIiarlIn9fc7T9tFjXFScnVFi+I7873UHpWDMpBhjjAqucdrOj0L3JsWkVxCOZk/u8zV5AKvgZ97hzn595wDQgczwJXI8LVZIcnUZmZwLhQUamM4+6yKSFvCGQDeUFjYnZ0Nf80oRDAUzExglcvJD9a48LzwLD8XKv2+7BwYspytkbYL0QKW9CLSEcC8x5++l2Q7zCLnj1Ci4BimUaed+jk1pCNdtBvxr8n6E/Dog+BkAlvvxrXonmqIh4QpVsnFmpOxv0tnmuZMGoMbKO0NExez6481l5deD4wN0zt99/k1XElgKfIwZo+kxmCTBGawDh4KnSQbHLVS1KS4/9kHQvon+nWLnz9TDF+ZrubScl6TIOR+85DAq6nbiL/JC0wFE09LD4LZfsGhPOmYT8kcSbwoOP9OAqFiWN4w1tb5Dm6pHnwxhVDpIBxK761x/i0vRqw0Wob6RCD4HOA2YiKHaG2HKR6G1ulA9FN8Dm4titIWhCnzclHDE88NCWHD1gYqKW+2pUd7jktjij6y4U80Rih/ky6IVrw9OXo9pt6jkMgWVg0oquzG8TJfSPH/daqerY48KFrsZB3IvEQ03qMRXXRGEhB68tJFxwUWY7CzLqNxLwDeshBekFp1tDUa+IF/N0kP+EmKlROZl7qKkmHJ+AO6JS9UBs8F44FDJL0SddPPn23K6fKj2OZOEETtOPartp9HcOC5QQNRFWnc2Vn1nM+9XjVFQFP4SSzgjzkRnlAdK2mBaL6P+1YCsG7ErHra43yK0SFKljZqk9BrYLyCxvAKfDpu5griPZp3SB5HuV5xBPmIpznTdBVrItCNCMffffgHwmSF9L7s63hBdRvTgo4NY7IQ9iGQU8PCbv803JY/GuDrb69LQLrOQWsmuRGz8dUkfAqSHSRitnyFoPE2xXD5KH1CbgJo/V8kiaqTlzL92NbBWGvQUYkNc7SMjx7XZgD2Uhal289/P12411YuwTM/nYFn5zewpZ84b5UFlNU9yWig7ITCBSqaak3/d/GSqPafpzVHjc5gMOb8pQymDWtEMdcArG7YmG8XTNP8TAB8qEg38RCoKT24iMandxq830jGQmGCVdSSeWuca/GudQfyt/TkaCqMwwMlEC0OKqRgdXiI5YYLe+MnFRv5wgbA3cVoo2Vp9LJkSZY/Sj+fb1dE1BWUrPz2QIK4jYLkTxZglGR12Cv0zE3x7k1XkLrPmKOIWviGtUb40vhqGAk4GrUemCFKrNMYvwg/iA74mI+7AJmajnk6JEdawUFvrbkG3711hwUlDpvVBQwe6mp6w+/gF6At3+1oMLNFO3D8t4uiwQa09TYfpkrfY5C6fsmVBI4T+7+gN25KRen9WJkocaLmHZIgWzKXyGpPuJ407bcvVd5EmIDMY91DIasmTDd5NDfU8OrLGBqQ4fQjES2wOr+LtjkxuwDkfj6GIx3ebnxr1BiMCRDqmbEl4Gmh96HXu02xkGVniSUYzgA9OCHqTepHfUKIC7pNnkAOr6cg2jIAh8TRPwMo68iNe2kmHYwBzguG2itCxclVO7j1crl5jRDCcisk0zoh/HflVlrTH4+shBtsFzNhAp92NK7cALbr6077F2bIaPuvJ6pcQuCriXpi1z7zb1/E5ic+/kVkwQ7QCdUocLBtl50TplGIRDgEFcyRE+A03dgv4dmOTvQKUGS00y/x2++j0Piill/xKVqqwWaAFzLWHhCylifm0/ffBYEtdNaurHtC0NyjWwXXKexvOqORsN7gcrxmfZvbI8WNJFCUBAs4FmyryVYMhhV+wf7yUjIVUGlByqzXZEigjPGcH6y9v0MZSH57XEbbMkqFwFkL5Jhp5HrJ8BTaTRoD9xwJhObdqkYcTLhdMO/7tPY5SyPyD1lrI7I9a1aiPD/hmHFo08qeu91JDziGHtr04p8LTyX9+uOIX+HtzxABPLtURwYAgwh+IV2cNRD83ITdV1KSVBegERGmkXCuFbc6xhJHuztPmSYJNAcAv7cL6LwVDyW6f0Q9N8d2Sck5QFogfEEIr5qpDmYnzqO7SbaniAdipzSmSpb/ODboPQu8QLC1IbM2fodNGI9dpU8mLgFhnEfKynpIy3uPpvSyD/QpUWaPez58ASbtpmbMSMtsbNGMdGSmZvHEZOdriTwI8hyclu0Pd8pUXR2ZH9JqWJtsFG4t6AKt6nc7AHSO1RYI8z0TgY746jKiQBOeOhYRM1BAFOCmk4VK10IQuW+ZzijzNrkcZb5u9jeWKNryz/5ZVfe5HrSLRI5NLeG9cC8HeA/iN1qfJkitLP8KdYk3CFRDwVs5Fa8nCLErXGt7/O/g5rp7d66PTR2OficMQmF9Pm3h+R2XqyNw7YZqkh9n/jlSMFmMmU3iaA7hUlztc2tSHmV79Vaw5TpjeEchxxKQRVf/ddmfxniyW9y1+CeOz5m/ZdSX9u1wngkI9e1yXq3DriKw/w32dePh+Si9r9VRvDhWhA79MyXnBpg0VefrY12JVdpulxwbcUQTMtcVpQwsZ3d9+w8Ls3IKpH9TvWF52MppJdalomJev5jWGyYPhwt7kBqZljNW6v3mVLn9mkGt+mCbTRA1hPGcfuscSin4AXuI/+E1yU8UqwPKYNrZ7IM+vsSGcZ1LpZH7KMtXmMvfWEzZdMLqtkxHxGVtcstYJPjlaWhI07g2VvDrPYU5c7bZyUemJ5ZrxYOy6xsmGE2u3ffJwB/w+mKATIj/qV7nBRgaEpAYqgHgnUnVWWZBa83huv5DFjxhcgE8o5m6sg1e5Ylc6GHXrtxoZdYfD5nFOyd2dfSVSF1ViNZ0vzpM1pVQHAnHb8TaULTFk45oZO/d7GxlNolWcqEKXwVKVDtG4qO0XBfM2x6tsAsS9/CyRXBedzscxaBvngHxPthkAjy22hrSBAT71aXWEZbKT18+eyj362xvBuT7LZNF9t9ElPvCjeFkVFQply1bEEQ8HoZ5gz3+3IS5r+10rCeO2COYGLJQn28BCA1yYla2GVAlmH6l0VhJ3ruul65LakmqZM/pqJjeYYCm8lYk6sTEkF42AIPOXmwkpkvhDQX8OxG6lfGDsSaZcRH41NsuOgQxZgGCJGnzXMM3sASSYZ720GDSt378QvcwSLQGPMrZG7eOZ2Vuqo854J5rrcQitNAMMSpSdNhhjHnPl/zQGnGkuA4p21laxgZUmr7N3POJAEgq9NVMuOb8Lgl+qRi3k67ScgfxIhpk7Jjk35Oc6CJicY8kQSCBe3NYBXNlEMm32MZMHX5JQtoTAD3WAeKQjS5TGiZas0Ol+iNJ/T2O7ccQ55u/NT8DxEc6UGZJQwTifGbphmcyac3ObRUXpsFk9Y14/g3+DRr9PeOT3YmyPSHDo+ghnZcotL6HewYoP4SVZqgAy71kJF3bwYdyxajOMPA/FFBiazm/ovyCVwtMOyc2gUvqNbjCKD5VyyYegcT7kDRahHJZSTAvIFuSgZbEP+nimdoxudjfSTk7K3J3qkLXnLNjAB+8e1XUGXvpqHsf02gtgGB3j+Oxgp9VeicazCreAAk6DfUPGwbboojvGVu/myw915wc44bdTpir0UiU6CXFFTr/bIhVncr/ljxNhqDFbpD/lylJYiUIPvicxpeMIiqa6fEIkIFq+rTbbEy4GxWzLAI9GPS3MNvSYYzpHzUAQIfkWtkyX2NvMIl0zUH95/lwQnTNxzguvIw/RM0quBIkNHQnLHCBNbTH/PJ0Baz2kfRa7KnCKRTkPRpXEjnZzd99TEs+JPZy2gt1AgKNfAk3h9DV16zkO/U+oAOlp4lKhldv2QPwOLDSKVn1ASwYi9CtxcxBPqmEqzxS/lL2cpnifs+u3AebqBGc0imXlJaYSPaIQoubP0IrxtOXyqcQp8shO3zhkrPQQhlYGtrmhrWTu2KNW8c+5IOCgPQrFAkl071sAIVgGmtZsVOoD/Q1FJwIo9bcBtvfgZjFykmbkfuHCSGzW3PMwZRXZ8/hJZ/mtJ9ZcvtkHR2SOwvoq0pqg6VQ9X8bwvtYT1vHKJrenTyk20AMP1zaltFwJak0b7hGq+yDWh/97vl2FuZ6gHohqW3xZmpeP/OFMZ5RhRTYbhlGp4tUefCdt8/+Nd4azQ7A8+8n335XO+upzmz52AK+5xyUHjqb5LtLmYMC1l2X91CPlU/htN2y3Q2FT4Oc3ndZdL3Kw9xWPHWN7LmXboKgfR5Qi40wOW9hVCv9nlHT7qDgNhTufBZM78Zc1Q0iAWUCqIo/Q1J+lIota6lGzYsB5YtczRHnR4LXCpIH9xNYMUpO1jG3gz5xyKck1WUVDq7hNU4oB4Z38KjX0jKhwh/hiCOuIbY0V7lEYaUIFpnWxymkGBoR553LpL4sboF0j0LeR+XslCJqSowfBoPz/PrNy2z6MTur7I13b5xE2svcQ2rTsW7ht26sSNfHxpPAxVOyNM32LNRssHdQTNX8cv+gkzP7lYDvcz884dN0KxDaGqFmHnQJelp3LjOze3mXw629i6QlPQOAJkCc7SIn4iq/9rBgJC8jMApaveGNhf+CwHiykpDQP2+l+LiO6A66wkZdvdo59iKpqS1i4NRCu1pzYySrk48+jmcKRzdXxeHSjJKqUnJUmSK3unDpMj2eDfVTC91GfXHbqHPRZdPbznGDgj+VgNKUF9RvaT0Ce0EazogIz8cog7TjN1cQgPd6ZgNbsoNwMNjcHcM0PCY6UxQXYfcDGJ8fPd9VeGqY3Q3ywDqyg0/I1xcjVMPzGrZc4ZMW9bjkbTqPJDUTAWhsEzrxYFXz0+7qN4/byAibPHLR59Z+F6dbkysytjUVSo1+a7bDMjLZ4ChRVEZIbuH0M6Ti1yq5f1Y5oUiOdrqv9KraJUE7GelGmaXWRhS6WT6kebC8EiAsKmCJ4SJLDP6P4YOqWJ6KKM0qayn1Ad0rBH2RZCU/i7p0KWcyBbrvkXStAx6OcRYc025nFC9Dg5sC3tuAWCnA930+mRuj2VBH3tIgAT7IHR03oNKtHXA/VZlmr376OcBRvKt0jhQCBdNbQbpzrhGXci+oGfQByKSh86FkDHduZIb7mcZmrVXgoGwPff5z9fTKxfr/QB/Fgvq2qHovFFW0s69rp79Fw/zdrfz3ORtdfuN3+XbgLErZvkg4TMJyL2dfsmMeg9DLluio2cgILXRN7NjmtAH3/6ZFBAlE7C+k5VJdwDaz1nYPeuku/2lJsBJjkTsiYJp4bd3ODIXQCrW6fZ78VbMcVZVdd32nTBnKnNmd0SlRVfzh7sJrECD8mkLQJdgR0dPgHQ/Zps52jxt657bASQbaZ3pZS/bxPeLgVowdTU1DNEpntUh639Mmv/VYzaHPynqMKz+o1TkvPMm/Q1DfvGCfJD1bHp1/5e0jxrpQQ5P1H0/j9k2372Cm54awn5yipT+bMXoVHgGckK5MaD1fO/1gYNAo7aNQnZPXkaBROHSN05/J+95dtpLlukzvEmXGnnkZrJTh4OpAVTSRJkc2Lr0bWzR0ppbRCbIP13edQUAZK0IMB/xvlokjqxA+8DFz7oI56orBblgZlCF29b/ToSmNswvm3bWluS1q57ID5mjaAgTvGbDFyqn2sq1m+GXdNNcKecm/XK7qXQ0WWq7SvJ6Ks4PWSzIGtkd1tGugYOb+H4J2xkJcLzt8z9PrRbCs4nu8XxaXsQQXPaArlkBbZeBH++lS/5oL9e6Lyg+tK2SgNTBGDAtDZ9mdGMbJAsQwvHoSW36Cbm9IYgjtKSPTV+nUfUus99GHKY+noTMsJqJw9H8ajqclASOm8PzBePUxAbBj+ShitbXs1OuFrKC/dM7hXmyTOGvRsSFhK6ol4ZkdRADzv9ISGDJ9ghlhZhWKlf/XsCPxwEkuYqMzkgX3h4ibNzSKSrMSk5s1zssQH6DzX3ndTFEdk1PwVIRWrcCNC8rEBfNLyriEJ1IukMARBHbV4Zkf09e2RthpOf3PxANSQWnG91gugv2IMyp+Pez3MdTixhQWdh1YLwd50hOl7vGX0OJXszgzJaQbpbc97KOl3qnnGb/4V499YH+St79og4N3JekVXvCTEOYLyJWkwPrWX1hOXjEU5/V/TXHxzvmOHWrN7VFP3AxYO3Ul8ppxuHT+0CI2KOLzrAQaez42uzC4p8n95/F4Ccln0P/3e2LKCptqthQjeWHCpfeLJYAp2GPj0J2oVbu1msJ+yMHgA1E5zJIn/JrpTG+63zNv4FX3Fl4fizlPpk+axEQHiJGcYuZJPUZw/3YSSOvxbHrAJCuVkw3RWbvjTC+XQ6vCtHGjhjOM7EHGH7n25QsatGjCMNGPbfcyVa510vWEiAXDxUw6x7/hyHlst7ccJUZpqJGueqV7i1if7MUZSdhVLnN5JGheHBvHnqzrZ1JOT11lZ5QbwWyPh7ztK1qO/vaFqEBq6UgFXXzF0q6d+5BlzNmbVBazPztR82/xYCrZVp3l53KZBThNzKqtopiB5oViMT1YSkxGKVR/Ro3aFrLDzPskcbmJMNxv344C6GvhVkIJkVBlT/XsvD8G65heUM/rHq8nbC+da9Lcb+Tx7jvOaRn3Yp45xHqQrFtktIncVglMzeLCFA95uTfkbgeudR9CB0Ein9hRB50V769Nvqgc75MVjdWkcHaCzitzmVcbodn/4PUTT1fs+VrMr79O5JS8OCjswrTDJHT11JkJWevsg/jOaL5MGC54kWx8S21IJQuJzVZ0TsM/6/V16vf5Rr0tsm160ggpWMh1zBHzcLPtTY/fggWDgtJV9JrYa6v3YtdjuqZbR2a4myIwftCkYFgzzzzK5bW8P68joXPvGv8SvyHM/9FEqZ/xbVx7u36vy7WLBJbmWrXcU0G+T/TSFNThHwDZ21W7byI850Z3Lv2YOcDYrWvplqdCkhOE6zx3xu3AfuhTElKSSOyY2tBHt+L5/PKaLrMVno0urkDn+qeBHRTZ5hrNWa0OxL3zzcBZgtJ8gDYJkK0W3aVRRMD3Fwa77PDezjBCC7XbMPFohjneMgmF9COOLG5j3rHRtp95gd8UMZJ6C96gn23Xoa2kDgy/sSTJkXqce+OcOz0i1yv3XyE8yhSjYD+4PV4jfjqF0n/ADSbVKL6kO/5VVeAWIS/rgt5VVqS4l+MswDdAIrRlJzronveigO50wlV4wNMF0yPsLaeF5WljGsrIr050xpbh6w57nlSm8Ynh8OUyXLtin/40sPKpvOBdqo4Zd8tm6Hn9E+XTqTBRYXOAuGu6jHqb3l49wugsnt/3hgq85AfFnJOJMASB20LLCcRipdf2agsqTAEY9BX4iqo+YhNsEcKC7k02CeKdlhUKn4/CpKqn/mf2zdKU7hB0SAdRiDMovHP0mi+iusT8FxUlecFJEV3D42RdIUbECnS0DElZAtLYA4OHu8t/0SuvJgxrjQ5y4yLIKnCgTzJED2ziqcesqEmiHxeuhvhpoWxC1SpIp636vfKNa+86aXT/XxkZY1k2Lj/96y/EtVDa4QlyWBemhRfzk33dEk8mY9TdeEXoTA37bTXlPRv6WSzr1JAJnaiY88hzWWgoJuB/2h1beICQ6G5bnlTEwzDyAnpnpcBg4XPFt3CUjwqhiChXA1FShcf6Gwdmz6yCIPMFLq+JOtXMwoSGv9w9uQ/6qsjAVpUGVtA9lELZHMwAFiwqtQYLIyTI+R4GoCmQroG2Cs79Da0aAXBsIJe3U0QelLyvQ5HJ8820GSZwLMRzEw67NWhLwsLeMfReGVHXiHoq4kSMrkINsSrbJR7NZ+XUHIkJwDo+MtIAW9tBaBjBL6rJHdVU1TyJ5m/3IhSg/02Fw/V6QUrREa2ae1n+dMdD++gVMFigJx3wY3Dd35g9Aov1kWbr2fQaTx8GKK5zhdard+AHwmpx4Dl1rVUofmdibZMUWgpFAe5WuKAG3q1snmiwR7mC+uy+mdkT83px5P/EvpjsTdNjE28gNTsm6SeVmhZ3+040mfe+G05Bjovf+jErzUHClA85UONZCWrbbqDBIGT2lEboD4qruYhai/tNSg5EDAFk06lNgt4BCwMHhhI85JTsWgzdS0uhJ8r1QdmiRhgyYaW7yYs4JzPkZsooZafqSnvC30gmGKAQXeH/ib2+TVZeBzrfrS58CpUvGdCd3aTbKbyI2EQ0M5QqXTOF/9cMtdCEbSrCnFNerJnahiFCtECmEZniXIda1cjtYxToIVvHJ9A38zo1xDs1EqcGr4LHLiLNdHoLt6+s34GsYb9SXXCQEpAmxXha3kSAqX4RJ8Yl4e86du3LQW8kKi/g9yW/BzGp/WNAJUNc/x4fUpRrZQKDI+7fcj2zccBNa8yEbcGeQUXcFCP2zA3vWwdeoyYE/8VQXH/wL2/8YAzyNaPpBab6lbsRr/M8BTLu4BzQhpWW3ekTXRH4S1k9CxveI+qWboXZTdKkd9OUQtQR9ZW2w8zrVkR1qGX8a65NukXJ1uK4pAkGvKoEv5sawKzY0eixJPO+JL5+eL06DOeromUhJ9a/+2SV4CZskIH7brHfYGfmadhqbCzMpMykCA66gaT4sqgtIz7vCx1LZHmvOTGPz75ufhp+dz9SWkH77Z4+8y9D7v2TUKsyDpxdVQMOZ0S2pTtsEIQ3HuLNU30BOfOWL2dafeymZeBMx6UohwHHzLFqwUOT0UoQiPRgapPEKYEFhufhBiNu+C1UBmd8pS406eVlM2nJ0LiSvQfd6Nv062fD4+si4EDKXS5UaTwnVTZchv2SartS22JgdrVrY0LZnpjihU6zMA/zllb30rnrP5ZK13iRt+F2naL3hMiFIaZziG1i6R3fiXSc8ffb/YU+Bv7f2L0g8V8iPxA1gHVuuNLYO9piIGXa47kLv96IrhMgxySowg+SPDJqs99jB6+HQyaM8hLCx/I+hH6817RXmv37oQPDEtSEKRAmWVUNNSDbT/APZUwoi0D0NU6jgm1QtvUsDaNyNQDGYgJojxa5o3+y79UC9w88du7gE4Y1ZjbgpWS95oLyvJNI9O4NarRlH3Snh6owKSSZGHTrdjL/U4WsstKLxgtU/cM2gTc8rT1KdbMlSEMCgamui3zNOYYyBz0R58DRBWqPCK3upH1EFwVvpRlLsRTRJqtzNGgIg7JKfs5EG95qp2fGHVoMBKa884lQgMd7GXGdISupXBHxo3usOD0H1RPBDfaHsqRLk7cnJdkgq9qwFUajIMniEcr+/s6z+FR+uH2jOGro+FL+oNsw+eD7Jjs+Q6PP8wlkAOLril7K3DROzLFPTDGtcpdXRkX1/7QxgnWd2wYIjpvY3/gxEBVTO8GU+Bh+uRldGDWZruw7R1vplRVwbrgBKBENnJPn9kwe1V0yICvGvdBwaZVQSujQEBkPqHRU0dkVdOf2WfPOYD1b8eXEtRkyQ85oojh050tTc7SkkJ6loUOzsFB7sBds0GvmOyDrL6RTl5IWdmaQzmjDKV11hzWY6D8LNE2pdRFDeUShatTFq8ts4L8SPQbtj1nyG3a2euMlFDti8JrP2MEdBhekIz6ulDKXlwHMxxfXrIve6HQ6KScLltCtpP63Hmd7HixrJgEU7kSjyn2/C3c4npOE4eSKUhAjDFyP48yaP1my89qvOSM9oVmgdP5W84HySrzjbKctXdEOdjSRfDA+JLMOqrst1PmndBTts27zf3FrawRcpbIQ6JNJU6rH3WAwO6R4zh6Vxwav32UiBZgdHA/7q7giPh7BuFAvAEaCYLS47zvjwPAYimwXMzBOOKeRH5pGGPTttCrL2+Qx8QbOcnxdxwBNYoPnDwmljZohpoxyk7JI7G9O6EuBeVagSqHFW9v3+u1DwtHkJS948quG6LpXFW/7+DtFrEfOt3xmiM4sWw2qK4uO7+ZdQUXoI0kEeon4XQVe+QEwlQVUx7EL0/Xlzeu0gmynk6FbGCOS7YVwcXIrKPbQkU0qv+E3jnJzc98XaQzVvxjiVwjz+QUHEi7XSbTM7V4+NKzYFrm7iXl+XsUmzLjkfyG1KSCSm5EqeITAC5Uu0CnwUDDGp+CqG8LyLe0pa7vru+PAWEXfAzWNvLPNKMdZU2pondTiibncopWL5CtpMEVGW/U390Vro8SzofElKP0Xxek9Kbov3eRRkZGrKs4e7LStGEcwluEvLdYXrIJbLlD8IiVn4jadPp/D/YfbJtD7kDOeywJQrj2Q9E0MHuEMzi3dBkUU2dY/kKIoeFKxL94JuHXRcwz1Ro7x0QkVCizdZHF9VicVds3A8HRoDCi0zqgMsesQL8Z9gzTBdooQhcGnpKGdKjwUe5KKfYMfcFmxDk2IznkKQ8H4wvs8WUXIEVU5fd7kzSzEVjLT2UmeOK5uyfmRfSK3qtAlORKKDzX0ZWVsfw+tAWGOgJh2/WuFT2/pblRS+YRF7HSrcWKjyaS4TE4ybOLhvZjzD9WVsmbBl9ZrKJAohsDrm9VYLuVpO1q2cDq7jtmU3jkJvZ+7lnAO68KTFc/FZj5fL+i1DrNC/rZ6IdwUKBGxB9F7uX3fiA33PHLlPDhKhDHdsDgt5sSgmxeiOT+fi04DCSpES+ILVowDOuRFjo+BEJ/XhhKNtTlQKF1z9klT4IuLfzdd8haseXNdWwRcpIfKP5XE2XSU3qM7Rl0YogYCHoouvfWV8sbZ9SkTN2XuIyiQNuCehy+rZ8Fpjpmmb8PQPCwJ6AUD8X8VSOeMeldP/naYOlVvjb3l5O2bF0jFIKoTX0UL0uJGhlsIui2hrD3dI/23yzbq4gMhvjBUNL4JNi/FYyRooSxPBo+0q+3WZJiaz1Acrx590qAK+zWVhDKpcbpPlksDClNvvbk6RFaaMV78T7a9j3WRjrYDjItzeXJeBwAT8N7pCaG1MH7YiFJOXG7E2fnUIYQbHeeziefIWMvaskMO41HqGpqUCu0J5c2lR3yYR8IPzQ4lzmZqKPIG5mlATPXfmf4EHKN0Fna7/3AnrppV6U2Z+ZfcRXkUAwXbN6D4FZLLJNFt5BlPlNVJMn9Scx3VBe+5FAoh6ToEeuR/Mnwg4jtSq6b7+54es4reZSR9XPlBxf3P/1UvVwV9XRvFTx5/Yg/Bfm0bVkjxkDMUuM34bxTmAeI2RKbccOJ0KqkkAnKOZ2w9MYw0dU7qi5HLHnnTUyYUYCUlcCg/OT3vP/vlToA2rozpB1JIG1QpRMQeYnjQdAchO1uHbVemSZ/G5RSfpMqNBMWEhB1l2wB+1Zrok0c81JOAtm7z5985WG3u1q/vq3mqureIWPKbryMH69I8DSlYHD78RyYN2OBeGhFRedXi9PTr7ymtl4L/IvqmJe56Fua9P6UA8W4Lj5jNoaaJkyKlt4AbQBokGIU/uBWTBoV6cwP+G2wjohZi6uSoyeLonW64hwI/z0Kpj//vPGYNkAzFkOlrjFKpQZIIJHdl2qucU1Mvly/t4MAHa7G8+K5UqtPG+Lst6ONc842AWi7f9q3BMP/Iob0wGJB8i9FX/pTCl3+O551FoBBgQGuzPBovIHSR6YkOTAaRGHYnd8ByD6X3QN/dHTA7OseUpoIbFyjAH1TOsgQQklDf+kZGG965BglSSjaWZEM0Z3/vv2nlly4M9i695FbAib3jYY4uqh/q757A/+5B2IQyQByskew9/oZTq8apZJKwPeLkSkXeBXCRw5jqblMSXNcz/+I6rKTdMZUF3YxDxnXPdtSEBc0NjTkExEXQliXrxq4f1Mf1grn3lAwVTR0ev1pczvj81gyeOO4uvsqmcMVSOkVAcvXdGz/zlSeJsAEerIrbTAKy1pZki7wMh9hoYFbZoxzVlted8Vk/JanqJk9Tzoqegelw/IaIWDAEJ69ouA6L7QUhfzBbq9p/0S78Gt3q9cTOhDXfcZYSyM85oVQRJsnlSjHZ97e0gNz/mTMcB++/DZiIEPBZWN8+TV6M3oSbtRxOAxHWCLQVHe9MJUZTHxSyxS8AUNgKwkIzSOeEi/nwX7n2REWysowKzmYVr+bYw75V6w55HslDBBojS7zOpLnIM3sJnpr8+PV5mhvU7rVj9tsppYZyH6m78SyW1+BMBAS0EuD0lklse+6lWi6G806a1EJIXYOPCGpIngdNbYG/EbtKzRuwOp5n1GR6rY0G05SI7px2Dv27vOq8KK5+HB7SRyKHVYQeNSDYEO226w6DNiX/c0GVSAQAcO0KWyzsDI+eK4e4wAYXZ9vT1FuhI7tAUt0ow+i2ha6nwgg/soVJNQBJVsy1qZ9R22mpO1maSK19kXwlv29QPLLDo6v3uLG7Lb66Q/9TU1gQ0N/pOR09UUHIGThIorkGEv9ZlJiSPy9oO4VMdtGlsy8Pu3tLgsYuAvQPIs8XkcA4x+3mMVu7QrJGDiX64vYSbIbcXYzJMFd3fPbUmf+Aj+3LHpjvyXE3YyfasanjSHOc7iZVZ9iTTHt3eJxsBUl4HV/bEtAG6PqpPuUAt6m7LMneejU18AMtHAtiqADJm7FdJ7mYZcB2xv1vFaYtHodJ+nqtZgZ/gVPOea1d7Y9Pra1/3zPf1MVzCd3+ISE/RNL5CUi+Sln84bU2teihq74zs8UYqut9ZRkk/MQgqPe544RKH3hbXnmLgAj+qQVO8Gpy6E3cyYF5DfGHzPBFi+024ljQt9hRbiLQ0z2j2YXMSufgkG2u6djnHMNMcbtpICIXrQXVrZDn5qE5rb9pmOM/+CkkV2I5Aqqo/69sr7VxT0icDzXS8ktZC7fSHhpsIvw5VFutC8w7GmEFJHrrCxIp9J4rtxnY4rQ9NASeDDrvgVZMkhHi7l97rw3iXEZIN8sM818eOIz3oMKDFYurBrPHgT+ESxaXEkl/60oIfR/+4LA8jpJpDAjBwZRJfkE7Lf9gFcKoI8Bc3CCbXK/E1kVoiuKHqXWUQyF0YCwAfdPOvhLF971Tl6fxz3btlXkAcXeSjlbbORcr6Bkuw/oP758IqNRxthNR24eoWOOxfU4ER+FU2D/6MjQpnWzoiafQ8vCmm8azKaQDpevFBg1dRMa4SrjTuwQP9NxIU12C8oJTNdhlIHqakSh/Ovpm66whOg2yQMxnLmPwhjJ+EFJlmI4SF/Feok6vyw8gd5sKzjugym4b5a+GZo9f1t02ushlcyMI4pxdvomsBre4105jW2Ns6Fy/zcESt/V2MZ1uMYTl6IkkCp+BP5r3nIPKBG5Ri3GK89CshijOFgepEy5oktQo3esainVKAF8AcFU1wFRuZZNdQRJpnXQA1SPQArRObVKGB4GHw7z2kViblfMtISgbQA2hjQ/79CIt6O8ebU9p5s+lbhaPAmuhP/SdZ3E6NdAsBA7+FvTK+7yRIJ2/EvJNWWcJ2k7F+yfZIH7RiwynoLTQAi/RVdYzCtvkHZm7hYf2YedeMdQGVQzCVp27VNglaWvFgej4oZ4H46yI9Z59iTRiNTvzwY+YQXsAVBAwXGB9/ofoxPZYP7o/zwOlnLNzGfuqqyJ/wIG7RGZ9D5GE/XqR+UeTx0FRShHjwVzr+HSguQQHXm09ckZwxpamQIQAfTbNIiKY77bgzDjjrU1fmdwDbUdkpYouqG1y9zBXLrm5djBblLNFWtUy+QSWL+Txt2Ig5YxP12JJsKFe1xHsdM1vESwS/4NoGzGgroUPTYEvIngTS0h+bHMXUTtqErXGX0NnlEF6+rc2cwXfyR06oeqd8xV5uPsKj0/tDY0HKYUZowZVo2ialLlN+YA10ibrKenlGF0XGcZ4kLVXbO+IEKVb+v6+R0VwqU92LKTQQV9RYFDWzle38gh2P0dh1Ppj2/pPZwTI8poSHtNVPIHkxNLmij+NabYj3kBvtPkIo8jnyTXZZMLxXOfdfbY7xKw8nCuHwB1a/ycP9WGPKkDwynWLWESCL7QxiJQlbjtTizrp/UdtrSowKzhAVCT+11YswWHFlpkxR9EWLweQ6UE/cVqty9C4eRy7doG19mp9sc7GOeiEUnmHCYxB+4Y/gVAs1GdqcLj2yAIXhc3NG9zZ7KPeNeUagDVRJMfkYvjhy48TjQkvKCaC79SidjaMbD0Aef8mT2jFnFU+MVN1eZjDvIBExVbk9dday8zA1AgTwH4FZma+vofSOpZ37DFzl4eWhiL5lfh79n2D/h0THgBj9J1Pw3AxXkQAmProosHL9ZB52ZyvqsNBlAJ8rA3H4pjLQkupIXYBicNSTbps5ICw1SY+L313OgoMn9eXE7hHags9KdagLSayzCml2jrJ09Fnmu17TfmMQCY5JjTRqamaNJs6j3a/BL02gnA7PR4o0QRVMmwmVtaWvmAETLQtzrlidQoPF2rtpPDLEC6dRW2/F+zTMbeq0oBu8AsTbuGJIGDIjmpQDDBg1WGiN7ZVflkfU8kpvQCWpCNT9xcdAnCKvHB0Dkwc8bQnBisn494U9RYI4n0AgnH7PjmLrHRHnkw2IIEivxvxqEPNF/VzvGFHMsLOC7OfeC0AqwBB1c/D+0hdVh2hrm2UaCaW7fvJhqHNqJ2RI1WEmzdrqp9qvP1ETucFEgBoGzAwfsuUPzPIcJsOPyxqDJk9/mYCcRvBygatfN7XY+NiyqIcJ6qiF6GguVUouWeZELXSXYLJkKRE6ZYr9QBWX8X0z+gze4aO/0B8TazpevdhCKffcf/Z97uvNcc1fo1enZF97HLdu4XTXIFzFjFuHAN591FCMz1P22Z5JxsgQxRFtZkfQrozj7E+sqeumXM04FXtKbpgClBIrjCIV1WjLI4SD0islT1n2xxMf+d6zQ6AyaUm8gnGrGVL/NIg5tlQ0SNOsxdSRe1ojthAVt5NyLLdN9nQ+x5687f5MOmDU4khKP1C/Pme55Ve9WGn0iz+Lf1LiY4JHIpF9D3TYymUWztcVxBtOBvkLzmOtiaIixz9afHZF2XzTGOZuc7vVV8S+cg93DjOfGzgmO3t2to7vTFoh9t7EjXFnDkOy94fYNfFaNLP3c59v4Wnns3Q175RcT/MMaldZovrAxsPRyVncrng0PC7s/i9EW3SKHDLW7U3TF20ZiofBTBDM8nzA08+gcDGTTvJ6YQgMYtd0rX4rjDWSHxerHWfGPiDxRQVawd3FRQvz8fHhfJO7avIlg3EK6+qcqdvawheAnn3YsSUfjXmqoARmxL53KVRtGiI4YV1ZuLBekCrknhDNODFoNlKk0487G7YKPEW83IJEP6nWGgtAyxnMRM/nulJSl2AFQe6bvHEODo+b1tm+2/9HPebr5gTf62hXmD8dXMmI7/RnkM7LS/Ppa4BlbBr4udy5hZLNP5VYD1bK/SK2Es05JR76nbQFhWvMRnTHzvC0jxYkpjwUwJ8PAR/f0WaIZdU2JQvuYNGm3V27XOjZbJCdJ1Gke3aLoeo8bZG/k5Wk8owMZOobNcabvjOChFEIqzMUTYBOlzl40nK8bRScNyaDcfBfZlZ1lNO4T5YnQkbGwdM4wqhqI1EpVSu+4IVUqfdFQ9bHHUBu6+PqNus0g6uwpsHCUHAs5qv0HjuOANHOeXAHrF6AaDtBtLV+aj1Nle5zS6lEWuWqCSA/eptQK7CIH2Gy2mOHme+PKhQKQSER+iQN0Gmx7Pj3vVqOpEO/qmgLbeXSfRncGv9P9xOoK0hqOlar7Jb2eOZylQiGlSgqsffx95Gf/dyoULf4Fn/CobfPtYLLrglkwXMzfKZ9n4/HcQoJy9kW+kxyz6ngj1px1aKW5FsAY6yfajFglnqeuB2eXOaxbFPd6TpN9jKGA6IB/Ny3zxV+MfReM53i/MwWecaWz2I5tDoAKgN9g7eaJOgcEHSTE0R3kJLBNPKv14AsclFORTRcW9DJ3KTVFCasv8yiDjC2Lt+7ih8wRGYcz8qNIC2QmJuZhda+bQy93bNEeT+IoeXZRAJTe/B29CuNU5nBS8FHFeoMUE5a04np9C9CPdn1o4G+GpjeWnmQHNdzpo4lKA060f/TLgCkZcqeTiHQpSEp2SGNvZPXrQscTrkrWWNOVM7qL36sKXV3gDGPD020V9GM512+dAk2XQK0c62SAPfv3k68Q3Q54S7KN5sVxbkMDKm2apkUGzJFBSWOfE7ANo/clItY2gD5iXKkjOE1Qy4ytaC2jLtIv8580vqttxNtTn5wtq39BurnlZ2/oDR2zyB9hRkO9wiCel3JpiuBL05fo9Xkr2zOV/WIinvKLudtiEPphFNcP4Zl+EQ7+P/a9fg4ydL+FvcmF87X3Msoz95vGDViUiyTrJKj8QdT63/D1d+6AsxT8OST08O3bKll1S/FLHW6VMhDeZjCn+j0gzQ46kqlsbXWwcb3wGkij77rdd4BlrI7elXW2cZta4mS1xw/Wr1wNdKVund2EZIeWNa2ZSQY48FO2E41pli7phNKwY91XKHN58hFCB40qMd+7A4nIe4KHolqn56f+CneQjrvWzwBeedhLFVS5QNTyb/Btk2ICjb/llbzYnYZazvSDAVbk/zwTihteJg9JP8260FSvPLYPBoy8CNtg84aqc7URkB3VE3eg6Nc9zEao+DQSHCVG/3jUf3tcm84SGQp0scZLAqDMSi5LMXARrEAiDIbFYu3YtYx7I/0EArGPniEvKwKydCFt79jHV0TBUm1q4b7/M2tScH1tMXpLssK7FZAGpqh85NUrqFf5VQdGJUIWeLbV+5wb5dZLZMo7wkrXvGJNlngCbYxoDmxUVpT+URSFnDw8LXRWThMi+9BA9hCiKBF128clTAbj2uIIu04qKrlacnQvudsP/+NTNljA6kR5/75O+W4PPABBefL2FSMH/SFRqe/s7ePhjyjPnAZdPR+HjCvWQEMt/HCkUpMQUiJqrdvKOm7kbQKqtyFTg4xAZVUMJ9U9FKiFxbFSriQMuATA/OJNAwPbsMeEefuEkQPSKyWmULM7AMng36NZKamt0vzklbt3sRQ9ENhjtKtFE+uFIOySQE0qHy+rnEG6SXNmbbN1gitV7lzkLotL4f7ikBpaGgsEhnRIZ+msFz1UNnJJ2e4jsRenvWxzqDkxr0i3x2eZ/T3WUEycWxLhAItMSNmAwxqEKlXVeOVLne9yB1pCux1lHMRT8L81E0uSnTsX5sx7vowMcIBRkZ3XzC7XjtwjKfhpgpN3Aj5l2L44wRxuAIqkSLiFhcqPkTyvP3cLKSMsy/VwPZ7eLhsMZYLORSR+kqjifcaHapQW9MkZb32SSaAaMpKhOEpNoPvLGP5QThHusvP4j/a5CxM6KBhqR1dd2v+nWcHek5bvjhWxSe6qf0YeL7ycWi5DmlpyR+3xFkG1q3+2gvFu0YMVmBT4BxLg8XZKBaHDImA+KD1BQ77Qmu0VgfVJNeXC+Q6iPlk2GOYDLk2KHYz6AbF0gZmolF1zw7UfZPlU7+5sGtfA0L+xbSHWks6hhcremthWPnn06C/p4zfXg52r1Dwn5Bld2Yw4O9OGKmxEg7YvQiJqkgSQIcDgZriq2qXozAWRmLTbDmmVIQgqrWEYKUetsqBc+F/kZGYprA1kqBh3AwzxFEtWGbJS61P6AxfXltpaYR5i55ZsCVRR8CNVuD8eiJKoh+0LfP2eXOMaMAoZgz3QnauQCyq5iosHA0P0KsDw7CR462hg86eZvQoq2uW4Ug3TrzVptsi0lWF7pD4vQa9BUY4m85W54dgzp5UhT9JaUyXvDYYHMhDMCMYNkbQvKI3tlF082BT8v/ki3cFRlHjUZ3IIruBt8yPY2LgyBbHGbZUWtMn5jqD23eZCSiV19jHJfgaCuYJASHdaG4zHV0Z89pFtSnLpb9quTLbd8xfnvxeaXB79+54KcT5gNi8RrHe4P9Vff4YwZj/A7FLH6sP7dtYauehAPy4XId5dyOctj2UgzmzVAc224jtGiCEDtyfG/+kCbWTJPmQY85SBizfIMMpLq7O4n4WDaOP/kabKnpjNfxYnN+zihFw0f3E2+SOtefqCc4W468l5VI0lZlCs2brh+S/FYf57uYrFHJ4Q+MW6Ev2ZRkjHK7tfOLlavXC+IxqIZlA0MMfaN/00aey5hhwxDJLvNEHqhaYMY6bbCGGWSeT02+qP6fEQViuAATOMlHFGNOyRhp6bWGbNp1NsSwpA+zrBvagFw+RATswdmi8QSTRRiSZ7r2jxWJhTRXOEx1FFvHtBiRwVyALz7ov6eps01uV/9EBc3fG4R4Mhzv8dcB37dJkOPUP4xN/KSdNd2edp4roCdcO5nYGyu8WTB4ZHQzOn6zTbsDHDshWv7KWpRkuX8q5dYE2SBkebUaQMnnigEbUVTL3FEaqsUgq8q14xawx0fIfyDIDok8y+AlqZREflZNyX3ioMZaUl+RuL8u/i9+/1NjdW9T4bcKyFXgWaytEwiETQA8e8Kfx18Ztz72a7/QFlon7vR1C9HEC0sX2A1HrRLfnxKAP5WK/s9i78NDas/DI9WlMX+LgA1HopSRffC3zLvmEpsrhMzVfbld/TiQB6FUhC3RrqPR98Hm+Z2VFw13wN25eqiDbk/R5HWsBnC26Yti+KGC7fLAWvZ3Bh1Dfj8TfAs6aGzLpqOrS40CFYKPMBkW7yeimzlmhZUzVOxZTGTg71kCcgTSOY9DtAeQXVcJq9CkEYsU9j+6xLnapNICWZ5Q4qpn95vpP3OeQNVm7rLsCcrt5vAmbAcPjxe1EPW5Lqj1A+SZm0Mty/LaBqV50d3/ExAjsmklgeRYihvj2l505JDsF7n5H+9iiYTKLHm3wljC2SO9Bz430I0fNmDWzBqTBVMtZjT6diR3+GOt/82FBQmXLwolVycrH7lrwcT8N5XgEaK5nRB53jdgjh64oBlpN/eek54KGZVNlAK/ahhEWX/ACTgDUv4GM3mno8WTX7ZDPtnJyeO1DzROvfWYy/N+44BulcYJFUCeI+yRdZDUxFnDtnzaTWHd3i9TTcChB9SVfEZVGPZfeRQnpHFhmRiIonKIbMSrXoFm98CV89bQZqPbefKV5xm1IZpfCQgoZUQNa4Hx0W6a0uNf8rMRQRAJO/0MHfnpGxB5+jbi8k1qELKTaIO9jXHD/Go2cOPG6qTvARdt2DTPc3q1Ylrh6z6jkrpKix7H8wmy6UFyUYILbdPehFjfPWv6Gdsf5ovT6xeS7d2vXCqlrH2mlNmYqYffugCWDR6uhsEeeltTyO2LG4BXRRF7697dNKcauQJL4o75UTMEHQqtag7uV8R9PeBDWbkUcLF4Usuw99Iu/6kQIxCUNa9VmZ/O1rW0E30qFsQMBuNSpfBbl3+z/1zT8fCPukE970sRYnz9UyPDEsdz7pwC/tgKKre7fec2F2xdmjaZFou6e+OYonzEjqRpTGdwwcH/iKQdeIYNnMaIsACa+e766TNFIbnKU46d2rYPuScJGxCHQwTO7cXkJfzNok/5Crl2Etf+hQ9rsYiuTcSo/6sWcmnWYAExokgxv67T0bgEQ6zPTCsfqNV4b0pVViPoerbjo3SJnbAcSB7IsQGVfv92wAj7JH6YOr3G0sMErfseN9xkgZC2bTO/JLU6et1T5EiwVTRs/b9wq06Y7jZtvlv1bIbJLqlk7k4gbM3VMVfZfsc+5zViIpM9qKWCMPr33nTkqS2KszDf3UhBb4ozL9ZsFAOUaoCAuZJmtqIJ0w9eO2tFGa3/JheT/B6np6c0BbxifbJ+rTNRpzqjxJ78jRW5ui5OtCtyG8QaI2rjtBQ7XUBoiDD7N2O5vjKYg+Jqt2m6TMqJhHR6z7dkqJFGKZgtk/JUBL1wqgIog1Oo0hPbgwQouIGBwPLcMtcGzf+EDujmxKEQKBzXkr74rpZ6adnfQA7q+tVvyWW78B7o6Rz4NiR5jjjw+5Y5V9Tn0bHKxn7FT9Xn31w0pEb2NVHMG5LfY2CjzA5tBj1mvXdq+YgLHqWXyVmJQvCqIMpV1dQYnYi2LiR/quB0sx+L0mbFh8pd3qOVNNj4Azv7yqrsLVY4OlHbFkJHMa9AvZM4/+szPGtVfxlaagr+riFc12wGqYv8BCZK13SYFjJwg/78DyjHp9TlrvDR3P/SzjbBSojGYmHqVG8Vlb5NvRoI/tmo8w/BN9mNNlj/0yr+Cfyt/wXaRsMum9iL0aTXklllATXn5xYw3jWBdC6knnWXdKK6M/VDoX49/7eVL855kdFQsEWviP+cCNamWbvRSssvvfPqoGDangjZqrPmkLY4KQoWhYbWVsf+wVYI/K9wU+uvQWLMCYeh6v+66tV4fWJTITFQbuIcS+EPQOmmhSST+N4IXKo4BzycQck+Rs7cLg3GAgcc/APwa5YLMCbninoKJMz+ACoUIfZVZmPR0Tbg2ka/qjQoTBl21h3jGUxImv3Wx2VQ3P2cS0jkX0DaEdL72oZIWWrCSV+AHRDF36XsxeBg3K3tjGPW4zRTQISQozSHvOKkTVbFklCL5YF3TG57wI8/Z/V8UYKBjeSt0GY4UJxULHGxH7F6eKWOC7sdOW2KRIwXl/GH/Th2ntiWpVIKfGmfuUsGyOyHCT9+CWR251ZMYyHMs191WMaQzzs7CBNWhQEpL1jvl0TxFTCeNiAqoOPFg9xGVgzerUFZVdFFBUpLF2d9fmlItbEsYy0C+vb58s8ckmcvM+TMVoaPPMOGVmvylIVr2ngyj1dx9pSluPQ4SaqsfOXz3da4JXXUin7fPLHCdMbjSKnLIDh+OvWCGBpBYQ1PdS2b9UHz1iaaX4Jsyxopb/br9TE7hhJHI8NPUFc0tv1Eq5skbKa2gX94MFadCts5QEx+FyORbfDxTu6hcnjsn7ccGIJGsu/OBrdaZh5brRWnJCQH46vc8JYJeGWrfBsen0hH+dLrcBAI6FGV83CKVCZSaAt54Nf9hbCKqP6ABN51mDk/G5drhBTruAt4/WqpEewkY0k4OMxpDesz/xjpxmBdGliIZreObIqGXoYZCSkFlQz1JkAnI9cddj4kG/K65KB23RmEiFO5go857sJEugFINiyZdxan5BZljCDI/GUOVA7w7pyKqTy1iLlrcGuRl5DJSQAvmwvKwkX0G//RqRKwYM2un9fCgRVBSk3aNaA6f0DQKQyhTmXa2T3TTfH7n/cnKS7DXVfndWAzlxoEcccDVmPYulkUOSblLP1RlrNASLu1EerXt27SQmLTpAFvEtDSlFRGJk6czoKOKI+Ii8Hys3uhdJZIjYQFAhWGOrtL/qutngUU9Bf8y7X96astO1EL5Majpt7OC35oCn8k4LsskIWw/7YCQ3/9s+EbirmhzteEOqAzivXbXqXavmro0UbFE3lMOWBs2LEzHaiFD5d10G2kqO0Sf4qb1bYL0zTj9Fp6N25WiZopGKxwMRCQItYhuBGdzZdfyqzOnDKxNwcxtDMchjvnHR21UFHSdRatVj94a7mlvTGbLqpQDKf+KOll6b/OpPqeXaIV1ebx2P5B/d2mQ+ytWUhB9WcpT+Vc2XqNtGM/dXL96tAdlVeub7apyE57PcBW/RzuHEGbRFRwJUvTcjzazOQ3JdShI5UA8tYjuzHg3MXFm/wdt6YXXGV2nH961ROXMk4UurmiC/9b9jHcSSEZt1YQ5KSxDD+uccRUvm04NIBZs4FW1VsUR05lQ4/Un5IuuuS06uru+DH9PEbV0ASc64VA436cK6pCAYgmpTY3obgdKhTEYNOutGVUEg4Dgbv1R/nJ3Pqsh1eeYV8fXRZDn70FWrqjTx21B4ctt9SnvJoPm7C4dLRFobo/SSg7xY0sq0kXvna2G1H1HqORYP5qUJkRu71YU0e7wjNnjyuMBDQzb7WHy9DvuRem3KbBNTS7ULitKLwVYV9BqWCuZmmvQMWGueuaYjkUD8bwNZzBirLTmVrVdhqck0bXQ6MgvSfKEg5Q6+8UBSgpKY66AkJbumWHytO8wvvB4cAD9iWn93bAIueZodNmqXg5il/ySdFVyj+OvK4C6BGFq9BJub4WuJaEQs3gtOEfVgsA5fyFcrjsGBenVQuMK5Xc6+sL08M/Ln45qTLk4faxIV2Vob4bQVQ44NltNJy7wdVePBxh2gPiDMgdYKY5Qa3cM/TD2UZ6MQiZwJmIu+SkudW5i6KjUfLNfm2gE6pn7LjH1xY6R6uQSeCdo9O6hjgph+bDZqqGnuh/kR74LdqYYVJ3yMC85LyI3R7NbShtL4ejRa6wFDoioJErqRzsDtl6S1yPTIVOkZF7mAj1aSIm/NzVIHSPGc/HcYkQSc/PhoB9140/TKJc6WqGrTvqHbI0WcKBRkKKHmtRP8xU+T2SUVn53jmzXOWPmXouvbtWlvHO/S9W0HYoNB6/8ZVIpjRwI7rvtsj5UEfpwDQQE+BH2p5trsaHss+I5t0Bxl/Vg/7ZGfAHwXoYrQknZhF4wj7YqvAJ4bfWlND7rskoyyWT+E4VgGkMTmcGaniuBxKR/Z6sDG8PmzNIK44AOvx61e5kEd6YXrlqzNvTV94FUCYCZBJj6MYhCfV2t7t6WqPJ7P6R2+1qmLLsNKcHnyjrvVldHD1l46nPrQaXuvjl8NXUy67wDdlBVViz2bKGlAgW5WXow5jsIL11iGdvMs3wQh5MLbMKc5RCta8AZFED6v2KYepAFk2E3gebilmyJ4HKZirl6zO+zlu3MiX0SzSrznpMzQvQOFmm9Nry11qt9lLYekddeehzKRJFnfDt1P/g9LrSmktlrxXLbqxdGiLrOwT0UFNtgo3+bflTvv47jUWwdruAsDRHvL76M3jM2Ur7E436EdEab/fN+q817iBfFFOKPlA1WHPfjCimFby4NK3bHPehrsvfLjjSOpyZanb0jNCBvbVEbcr5YN/WIbm0bBn1rVOrxarKinaSO0532y5lY1/YcEh8FUthVatLgopokh8dREHqWkH70fEwuv0jY6wMGQV3VQREA1lZidTRAhwi+rM7qt9v+PK/PjiJW9b5Vw57bOMIYbF66FDHqt84lmDO9ZVRoqrJaFQl0YL8GmVlSobsSMdzK9MW/46SX/H+HnOdeert+hj58zUF0qCeTUmE/4n7s0cH27XYSGhcaDfZ4Z/1JnWz7bEQVYgoGN4cyArlorWg8rWOdYt0/n1Es88JmZxEl8UuVmvGbwm2AGiaECkLSq1FVMuhlHLva02VYA8zOZgA+eOC1iGVWQxSpIYMZE9xd203/Phzw+YBxzEkye9I0rXfq4zNqzM0vkdLq1iDM/+R7IokpKAQ6JFYBWhwdlCdurSm9BZkP7yrzSqJc4ttWWLy3Hs2D/gBgPEE5EhNAdvpPEzr9g5CplGqAAebHwg+0LKsxQnRjz6Rx40Wn9+2abSMVrF3gjr2FJkNB8atVps7fXTo4Mpy4tLn8ENV//q4Qab5M2tzayFcS/OFcCVntJEGlY4ZrNlOKPc53Dz5eZoYsV/Yd8bVkh4A/oioVOjrBP6RjVt95OsucBi0HYHu4e9srCv2Cyvy6gfCkAb7G8ABZUkoUx6R6VpL6GvL/sdptnyXeRho8Y4lNNO4VmgC0G9Oma7kDP2HJBXCmK8HL+oLDkhzSRWfbfrfN+vCyWgq2+MW39t1fjBE0HZhhTYKdrJn+ZMcTnRf3C/jPFxXCZ93Ya46n+4jE9TYIVBixW9RRG/QE7sFnhR1PbE4r687GOWWSBUAjzzbdia8HQIQGNPt/OXijBjnfEDldhavI596nCjj1cITG18ACZUmhcu9QgtreBSC1p7SuxZQjUlKFY0ijBHXe2ro4PA2ZA1H0dJ9r1vT77EzQVzPotxvm75f322CKyW4shgV+uyxJu665bBq0Ijn1UeDL6kVxe50Jrf3cwSrE0CUUQ72A/nVOzN7kHxov1D8s02mYs+3xSf4DEfnbVDS80HoWbgq0SXNhrgUNtV7KlvF9lCyZVkzsMHShmBpJ25EXb/Oi/k5gT7wG9YmZTMuVGUJDnQOF73gf9lFW8y9kO7G9tJVdLuY+03i2ly/LxX2cwQYXFpWfnatqC49gtESSvRaNdUb8t3SifOpznBVTQbFoiW35leKJnhN4RKwvzrcQZ0+BNdLEYIrbv3h7lUvSOYQ9fzYfKxM2PcjfCFW49pq13LG1CL6GANS8pXvRzUtVup3xC5hbHPUTn0mOxqgL3X/pCtdACpdw6WpIVjt5dtVM8u7dlRd2UAlfO+VU/C4O6ROXJt6hFFW+lux927st3GXO7rN+zbrLf/jEca7935oGYLw7Zx1MII/GSStf4CodNxFGV+sPcYZ5M0amdO6mCcoQNMiOUwsoGPIkpZnHz0thR/Z+7wHwjEDy/gK0k4JCLBPS/e9q9196+mVyz06z5f0qFrHrIf+/U45beGq9JorKGIcLEEfGZCELAtQ3xyefP9VoeDXYX8XyQJetB88uPxYEeRuYfMJK0Z2YdpBQ5k4+zwpAdZejjWGjoTo91FvcEyH5mapNU8ygaPoBYj5y6Uye2I3LxReGNQ2suQNzAglknut8ID7nVPW+rJIo4IsTXYVBwFhTp1Fab7UxH1Lbfe3AakXEJzSlASUWbeqGamfCQgOHUELCwAIxKmt4iL3SW5DOK0CkAOe2keRjubn7nBe27Wc5brmk9zXS32ffmlZiOel+SPt30Rjt7vf7H9MtIQPkfZEoaZXTv9FfAeIoNnR68jTYpUtQqd3oLyNYdIB0LmEEVYnyv+w22cb8nLKN4/zMv0lx8S4EFxA5ESYTOnUDJj/q0KxwxCeZrHOWzlFB7AEI/YeyabHAVyK6icNlxlqbprln21uwXR4d7TldLx2IPy7Z6TbaTPmQGJQx8a2Tm1jSTxvJLgC5x4MC863QsgKJQhbTBj9qVPANPttAn63//BRWzFiTe5bZIBEEgfueDNEMPKm6GM5t23j96J+hRrEd813U9Drx6EwKq6oFs1zBniSYNm4FhTIEQXOXcBDJjewRAN31t3+k+RIUW+YmIc8hfE0qfm7reDZ6rc6iNI/IwgQOgJVcVggqijw0tbL6hkCiDCpjIWQ7pmYfFC4h1UKJRE76owgn409olPQIlemTKf/V/qEZkoD64rVsRWiC3B2oHZoJ7nFVWUA7GYUmsUgEaxJ+yIpKszBLp/qU7hTix3kfaYZeQ+3ZiPVRtAOjGEnYQy3DOi5xU7kfcan1XYSgeU5+hkApXDFStT1N2WVVe6bA2bMOUTnJOvaN/9KYR8yP9wEwIexq2GjS2g/UQq5Kbtu0AS5I2pRe60kcHFjIuE/tQPQV/ae+PiTRQaHIyk7iKh1o6AxNYwH74ljh1qQmJZ88VC3Ze7GKl0c/1hFy4ir8VeCcSosR0RuIrWz3R52lzKr5Xpgi4ab+mEL5tTjyUfL2kS0/GOM1sKl6/ut2ZRI6p8LFT7JrxLr0EMDy/tn8sjWuLPydBYGE0CL5wK8AYezx6b1pCSZbDBbLU6NqlyuLXjyOwOTdRUYJFjhp9XoGwyW5BN8z6k3Ykhdo7uqjGGDDpTSOeujXHrJGwGZcsnNU/cCVaOSgBcOaK7od5MqKhXdbRBKUnDhUy7RepM3EfPU6E4ZtfbHNXC05UpBj5YjdHB7mD1wbQGnf0g+e7BcfeOGkrsExQ3huBzv0GHebUOGNKyxbLQfRZSiF8GIcb8QE7qpujNUMZn8UZrltMtU0bcT+fIe8W0t4WnZjhUUuHvaertpUXHP5xIzGqrGgmMuVPs7qRNem3xDWgC/b6OoORyK7BNuDMtNXTR1883NqTpmrdAbAEL6iSNCPKX+nfEVhla04YzlC37cnbKgP374RMNKgSeddV3pPXL84gexUlG7ZSmSaTgrAZkbv0ylFX/ymL1rNqi7Y5g5hOhuKAuXpS8jgIAxeUuwT38n1v6g0r5CMRO0//dR4ZXma6qRMSBx+fhHNivPM0Si6eGKNZPuMAkuwAjvknghSG2g58UAPrM7exkUCNI11I5KszR6iuHf2Gqm+X846E/VlPYmcBVvC+j/0QkPuKGtkEW8oBdKB55I7zMOEggAdL0ToXDWYgEvt9HbC0vOF1alfaPJEwiS2QS/pnEa3dmqHcBTft5Az8xfItnba76gLKaJNp9okaXAq0UQqWWylwr1CAF5mgi8Xg2ciWj9BJv+lPthgP7gAgmRFCRbTFTPzfzKozZBJq3mZGhZG7kVNJXtVUjketTk7nuajszBtMHCyCh6BCnE3OkNaKCVYlatt67nEAph645vOj0OzEh1IgUFhN7Y6EPnrxUAFX+IqmA4bKgxo1rTSUhG0ijVW5cwi/2u6/LIY7Mupno4EHvEs4/E3EK/b/5u9GNt36mjlEcMmLL7QEmh1aIz3g/h4hyyOPXfweZHsXjpcX45PugMZ/8at5ZZ331W/NgRbVIjp+BY8sT4hkOdGcGIkDKcxbquUs7UewFv/wqe0qDpIPV18uHh1HrVngsAQwdV9/Ds/jYU1PxtBvHO6JHWqCd2eZMkZu7QCZRrAu51U67xc3/RnKLJpz7qJRurUnOIe9uXVYNrJC7OhWHop37U85E42WayhSwovigagVlZZeipStOYG29nGDbMcVqv1UPUL7SHLkVWQhhbCgGxVn82kDF80n4U9NsE8+5WNWNt2htd9e9To25AeWdAZISGicpbQ9CFOrpn+PWQhxcMQFkGAk7hb5T/UL5l2XpIXSG9suUsFWeYJIrwVw2VxvmL4jE7WCEbJKNUYsT9WXQK5sv4NWVYiCZCn8Mj1Jm+J8n66dhSDe/Q6S1WdR7fhA/wFHfDO2melJfFCca0+38/qI3rv2LxbFkjGALitCT50LHNm/4EOo4Bxpaut+vsG2bm7wWic5+XrjL2Z89/MbjIqua7js2l+YMGpJhfcvjPWQgv+mxRBFCvtxgABY46z9OwWlVNEbRwHTgzmTtqt2WqiWceuBgiE15kQIaVV7L+XTQQuKOttWIh6UMAyC2Ww5Tfen1aMR9+TNOvYtdTrgVcp0CzR2RrKsN1Erbmz1sz7rm6N+yRSi6vid90mj/Gy1JaC2fkyfXbhJVS/fpBC/HGucljYAqzMYqYJsdttq1TsNpiBT0ryQXFNzgQtK/MVj9TtCr1oQnyExBQqq6+B/ApG4NbA1P9ungDWvFkx1c/+yTsjbuj4EgBvf9CYiinO4EUvtYFW5PdxHTN5Fn46P1OQUTH57dYvylggd/Ju0W7jj5VV4zyGuFIiSaJCgAmZBpHUyJFSqff1T0/COfful/g4T9AegXz8lSB/XzutlkCtGkCapjaMO0X08MkckyFERVhRSTMEwPAaLgF+OTi4n72p3Hc38gHB+zg7gm6EurWyPGf+PdO6xqrQOBx/72OSS7Dn2VMZoS/xw7fi4fN0X9cGJp56rMTn6yVP9esFRVA9olo0Ya2U8OhLNyMfJl/IBQHF08vMvhAOBblWsmGwbfTg3x3fxQN/GVIAKdQmf44ShbgOoqxGHGHoOH6l92gGIrbTsoPllbBvJPUZ8Lpl6LWEEvGtPdZVkf04k405Izw8Kb3VDFRTtKL2Y9qRd010gVp7dpEuK0HgFkT8YZ/Uc88hwc4QwdJcgjyTbYUQaf5KVPC1GQ4pz7wTuwpTsVn4lJFqqVp4S2JzO6HpnmVbbPlBsc5zEYds4PIMB1UBsjeiJbsckh7y6hHUGZaitTSOhDc5WqDN4VNS2xzfBvB99vQOV05Fkq/irE9Lny2k/aMoQ1FEOB6OwAtn83XB9M9x27Brb06lcsXzOS1seE0x7VKPQtxRxtO5u/NBFv8KuaMo4S6jHfoHLc8YeaK3s7mofuiwHD8Dh0tVV22970vU/tyY+xpMIxZkbYOOAx5bU2GI76NnDYidMsw7WQ/X2Mus7DZBIQ1euJbN+XdZsjvBiXZHV7y3ZHIEDbxUftRMr77XiE+8AfzfS9dcEQc7RqVic2fgOP4kQrIoefYuBEs2eG3Mx8mHvtD03t8CHv+nzYRBHt6mF7xIDAeMSBgT0iCPP+jjFabbBRMCZC9MI29fCzccn1uOtASEKH3fuHfX4Q7480djScvY0VCDqYorUr11leiODNGV1qWFGfnIGyM9XzHYPXNlOtayklj732pEGf+Zs9clK/u3J610SJPonP5DlUhFOvHk/pJXUL8DocIi+gNSxcvfQfcdC/xm1WmmRWtLsB/lpmqoRBotvCVt5B+lrDckQZ0aN71P5wI0g6WnEB+c4hASRW/A8WomH1/EbnB7ZfsDCbze0grm/euWwjuhElyGfJ0rTz0vuOH8f10qwUZwx2V9cY5rRU22nx//ASZ/ybLoGeSPG3pP+iNFV7DyB5nvBrU3wh4tyOZ3IGjUSrLRwLmJqfaldIThqVcxq1AKEggi+XzTfdUdBbWOSC+JXu5nJWKNXpOkktqCgTU9xZ6A8crmnFBhFo4hdBmemWr3AeZP5I1HXJGq0KLsrfLssraOl+rl0/4AnbcVlAu/KC1DoOFVlXCfk2jO6JarekuTPH2NnskGL9ok75yMqicp5iyNOZpIgzc4p2cO3uO63qFFKHPsnz4+DE7wAy3XfGYOd6VrcAnJ63jMQCLNw5rwg6A3ZDxfywVc+3oE5FFS8IvvWgOVJUzMeQnocBKHJXNazg17cX4Km1HmIKb6FAunQPEq28h00OMdXc7UI2xuuQRcyIVMtQr6wLVbjs5L9hpSwkLDyN5P91IC5QRE85dacLOHKXiX42tiRcfzAyak184CVzLM0q8XwGcT3kQiKVS6FKglqkOGMnRk63IAEaYdX7/jrwJUb/rC8RxyQqLxeSkDqKlHQcN6HCGs4ahJrFBi4EPAS7gqr9mKk6VA2/OaKfPd0tYaCG+CTCPWO20jod6218DOSp+nj2qAdV0QkVGHh3QXJKvEJIlsbgY0MzQaXXVMAs9nIEfgto4DFk6/VaIOVdTw/ZrPZNKQL96PWmSIrbHAuw9t9VxhPmdOU6Rj5ZSyNyl3Jopp5p/8mWvZLli3qSqFt2PpBPcZ1/VKiZtYP6NmCYmVmrolVKtIHuMpYSzDhNoNMHa3suHb1nn3xus0Nxs54z5DSsth6dGTR4amM6qzdumkgW+q4Cl/EHp5oZ2NrjgPntZ6ISzcSJtkBZbchV8TCiMrMr+Y7Om9Z9jXXiWnOifrIgf+9ErGx+A1rU/qUH8jxLe20R6ok05QcPZ0YITH9G9UOo6uClJpnYpq3eWToMo1aCXr/Gc3LZxX5mWHc6BJhNrlVHxpNyRCSBMGgg0L1nRjibuw76Pnf4cy/+7iVzZF3USkEAy6k34LjM7mHzaCrxCCoCP93rXTPsEBjD/MY+1zdMgigjCscm5ZUfhE039pfQjV7/A+ICZKsu2ic/re/zxaHLHkBlrQb2kY65gjKLlvKSaEud0397niAR7pT4vZhcejDNeudlCc9cqn/mcb8fKpxnMS0NncSL37H377Bs+6Co8PSAljx3ovGezP/3Sz9+odVV80Eacxzh6HOGff70kG6dCh4Fsu1lvfEDIg16iMbtfeAi8tsXY7FwNVg1CY/2lADLfGBv7cdYct3tP5SP0WG9UN2A0gfFeQYxpU4jURTwA2Pi4T7qU9rLel7Jo1jYTDBmqx6KFkYcvGWHS7qOltpoA9TFGphuwAe56xFPtKiKsWxI2PAFlBKDS2/n+MNTJaL6Nd9pta6Z60sp6NJDaT4wcmh7210QisdjqGhFAb0oWn5+3mf0CwJwzB3AIJg5qTDlLSryM8fUIPTpjRI8VBCX0pgrQFCNxUpunOkFhJhAklk12eAif7cKLYNBHM9+eHLxfVjEnbSC4rqWZQuQzhaKQwiJpRx9GSzNCHI9iF0e5pbq+lEpvuJYGi9ryvpahUvwBkQRAq24SEkit7se6Fi+iCb5ew7cgs0qL37Sz+SPlWmjZFofXft0H928Eufgtx37Ro6q96SGAJtHNDunZRZFA3IgwLTLJrU71cxwFS2M+izpvP4PiIEAaxVfBIKlI53TPteg9di5VTuBuzefiC10AY77nLuAUKSoCFRfWgbDEier5nMTb7Gby2cqWohhXZhk5qI/AFA48pKZOeSk8RNP7gr/mtR4LohFEInaTKd+Bd52WBc7Gr4Og7T9jBH+ES5QWaguZHTH2Rp3xnFkP7hDW1jAcPvh48aiCBAMYtqhgw8hY1SPwYv7Ffl+SiwKrEALm4pzrXPme/J8C/GUVYyqnnRV38kc7xtDaErAaUe2yOTsrMkGgx5yU40H6EISvJU7uLviyDG5Ysjq9mIADilRw/KzF2sgnF4Sdqf+LHE5ZLpCvxKY5px2UIa7H5CJAky2fONknSN/YtO6n5kemSoCq/ocotPkXwU9MUIfK3wp6ZCZhFQQJP7db720BnuZpKVvH/CYYfAfjtFZIdPsJclYoqJQ45amdQuf7yO4MJck84sIJsYAWEVxPtqUT7JcEPX3WyV5aPGtnEy4DWztpp0JnpWzaGjkmL9T+XJ6ozoW/BKrmFwUKlvIw73OJQFJ8Kd0/TcKcsKgYZ1eK+Pz91eR6b1M2dpPMyi/8AOozOI/dlkhvDJTvZDioLJB8ygnfDY/aiqVZ1MvfINWLLxUDDfEga9lFeMzcMHIdYr8Jx2nI7OpPQnSW1tXzHbfOcbizGFoEPNAR2828KTln93w/M64orLCt4GQnB8BrqcihDOVBIrTJidHTBWjPOExA4AjkJkNxwKeAzS7HzJTftAIo9KPXEvlOLx3TR3cEeEZZ3lZSVy6L5zCIXz1gki27BDYkWZHhqRVdIy15mTHbps6mOs0q94pZb6VCsM5X8XvmAgC2sg0rF1O7Xm6gHl6lIfP04kIiSNtl9elzKI+cSIq0KGjAX0KFiZi3SI8t+ED8LEDnsTaU3pFbTjMFt+kM02UKT7yj9Qti2W3F62bFdK4DcSvENYU8purpTlx0cHBTOwojQBhW65IXNFbJwOTAzNwzdZPIJktDEcQnzDMVHYD6+FdFB6i5mlNlBG/aWj5K5iKNb75y36oKTSeO0rUqOHizbAS+03rY8O+DsRJUVHAVh+X9k9FREMsFMg3e4kqgAbfs8pwbbtQcRHhMjMypGGjacd9epSPWOC4YAbIXIQBXu0+zeMcWRYXAc5gT1yOTJYDmYFKho8SlgeCywxLruGLZ6VFqMOww9xZY0iDxsLMHezbXld7GDJX/8ErPhV71nYZbsz0ICsxfz3ZMg7HP5nlb3kWjg2G2ZuQ+tLb4Io74GGqfP57CE/yJTUY3MMBAcQ6tzGNKJG946l3H0HpoN5nGEP+wE4tQ8fJN0kt9KW54ZyRiRjD41i4dM0Lh63CI7658MejhebFMQrzCf+/msPTOR+5jxhskCn833V+H61hmez7jZhIEElnsIVWAsP+/QYnyUFQStJLSddXFwFJbKilGEQXzZXhuiev4GRCD8+OBPnmA1+GuMxlwCpZLgSamSoi07/9VaJvo5/QGVfDC/714loMcoYdFZi3ppgx/zi7lc/j3iM2aM69VW+MIdszYn6NnY3cXDBZxKbWnfenf62pC70NypBEMpOBVSdZbBCVlaKxrL49QLaAVDu8crz0VEvgCzgvEJSawGONvqXqxFKR550D4pjllZI+6ih2ChMv/7zYraLpPQQydeAnzLwUP4n7CbliXuGEUK75aIqs9+jmChCtwCOqRfdbaeF5kvJCj4/e03tHmh5s+WQnXPZItQh+uMyPXawH+pcVOOYBHtZEATqq9CUYbed9gDwEBF0qIKeK92iUGLuyrhlY6DTMi0WUHJFkOlkBHwwLZlVTz94F4DVhEgXtx0fOJeApuo1CEdhncl52nGiX9e/t8cJER+TIBAjo4BuuujUQk6Pj9+GYO40dv4s2oFRtOUraYCwNL1fpgIAtHi7PHYHVCqnZNt/HKzgzYuF6bJxcf8SPGDh4ClypXRjmxzHMqK+2sATAsaqaZ5pOzHr2lF0vhHi3BQeGETYUP3Osv4gaf3OIHVanqXOFxzi44Hb58RiuXdKAWDpyz4njPRZxTDT+K7+NS5Y4YT5BU1UjcisB8rPsbUoDvGHMyzxWU4LG8UD3m1sYg4UtIJYKq8cu9IMwgZnBUVYGUXO2J1vetzxlU88B5MSZoq7F7QZYx/9tCRZNHLohcPBOaY/qKw78pn3KVVnxLNb4UUJGMnK5CMCqg1rBursc/Z5GcJVMBXQVWmEx6uJg27+n7kkfNPE4rn0Xz3VpzIP1v+e/1NKKqD3MkHOb5P70jfmBn28jPmIWXDFgJ6nGha1fS5fefF71rhpbX4L/gIlcFtIOAYXrEWP4ZMxZuYPGu+7bEvaMJpr3Xnysm6JzXoTTrIRiVcm7XAQnYMjwbXaiv3sRmyLk2E1PUqMAQAma4aw8dnNJI8fFFMzB/54Z1Ra39LLZD78Jb1d1LgGi6648if5urBjBEkiyz/d4oII8XnZHMkQqmT3c8INmAjMPAaz825Lj4J3JL6AkWSw7OBA2jQWjnY1AkZGuC9pfk0yll3Fn45XhtxJxDj/qiqjhh6XkaZPLiCIaJPFAA5cwW5vTVKylkCgMgy6lbR0DfZNR1FObOiADU/kwIExmmJq16BMDOtlJeR2R26Od1GQeCSNjIDZbsSWy6vizZv83j1Ynjj00sVlwO4v9oVsa2Wl501CrkI6PV4AwG9CIBo5QUbgJf/6sRWY50XLZ/fjOQM9eULZl+ggktAvf9Bc3O0WGvzupSSSk7z7heyQGwgVVGhiVvticj9dTWRZ1f8pgZBxkhb41vDMWjvXHYAPfCwa2CkEd/wN2s0N0mMk3SNaYxyUYsi9GAPa3XegEeeU+0TQVwUWUkXKgnWQXVO2cQn+yJQ7rOzIV7bh+RSZdwERd9KFzrqWStGofFNcxJJyZdp95Dm8yJzkZ6NrDCtHHtIpmavLBfaisE8RIIFeWG8FMwmwcPU67fTRYrgeztvrGJ/bmZZ6xK7qRax6rPFNxqmP7ZbFQ05r4kDk1HIQYPxjMuwWE3enu8NGpEV5kGThgMTxXjcirxDH+VuQ5lAJQsHVRgAsRnAIaaJpFZdKJs4h1lGijIUURh8yjSbMZFFHGSndoyY4/AsHqWOEWr1JaffFchYF2/NT+C7ob6PQewxu8s2ctUG9+Hc0X4ZwgHqK6vohTS939UMGTxAwC5O583jV92z4uzsku1SSD1kgcCFBg9/M+IV5pXegTlb2zb4af9BVXboCFbawmPgoiLgd+LElFw1VVUaOD2JUqWj+u3A7pnRF4kzRpayL56uo0TfPJEFshvbS0xzPrxp8oJe0QUWbZxJgH+s6+C11TGr3xIdsJcA1ILVo1rh+F5KLRkM2h/m5W/Ndu3RrZ+NrczLDNcABavmbE7lgwqpK00lWWImIm8x+JvVMAq9vKy9hEU0LH5FOu+N/jckQcPQsJ+7frJxLf0jbYYt8mlSb2oWr4Sdl9xQc/y2zL+hGxgddMjRkjqCggtUlB7XvrhWtffEW7Df7jYkR9swmRxWwEmmVP1+4tuLR4VvCJdonzJ+/fUK5hyiFjcs/sH6HLduAb+wADZrs2t6LRa30s5F8q0nkRHxD1oQmvOIYHBJLSaYgv8cZqD7uVnUWOMU9DlNTK1SQJ6RsmwimfPEwxniRTTUcfFjD8j5Jnld5480DugAA8GNeS5zpOoAnyjH83jMdXMg4Z3OCsY8tSreW94V/JgUjEHLiWG0Xt5Gi8q/H9oiZRmi7nlE1rVtYtQLNd9p+6B4TPPWtaffJVWPn9KZbUHex8OUfb5a0Cwc0voAb2Czu6TAbcMVm9G212NmX9twVuFAoLNeSnROf0i55KG3E502PKfxT7V5HY3WAPkAk2h5/SX2X64l6K6v86zHNJDlmEtOt6N0Rd8bjMZ/tqdi/oen2eedDrWxRV1kWc0OaqiYPYJHJZsUNO7F66FoxGpwAFaobqycMxVP1SLWYNDI1h57Ae9/epJ3xllmuMlEenA17/lc9ZrW6QJy71LsbMoO4kMSkinCwE1LzoQXtHQvXLhmpw63ULwxcLnw/7fTeIbX8W/zZ+I4Hu3hJ3b6rQFOeMAS1K5CiX9jPBISxj6O5f03iTQ5/qdol7WlgolMNng9l4I+NgLANKvUjtIAC3mm7xqATnP65m1+b9QfZN/FLtz56wLZtvovsfRP0JknyX3H0s0Bu2vjfzooPfj7JecHpBrTBmyvt8GaS27GgVjAtWjJzwgDwEqoeFQM6ouu84Wf5l+yLOZwF3SL3DiBsuQ8PobIFOdcXPOIjl9NVunUJoyEZ1rLdsRr8mztV2RDqQ0SDTw7sdGrrttVLMA7G1ipK6ZYVFoq5/1zH+pyyWHjmvHY7szjw5NnCgsmJ8il4BJg5VmwmAXZPuBW24cyDyLaFIsDW03mip1hbyN0vEZLNmPS5RgQGw8BasHot68EZhwMMlpqDFRqTLZ6edOet3LJWCBpLNuAcsXHA0z7oaPiodBA5nd4YRkMzdlRkEeTGnN6TxTbqXTm8KQsc3pZM71OmFDY3vkyEhQwfzx2WUdK8TfSMp43dB6FpGB87nkbzP9PKBbTAv7dSZVw73FM+NmCpA8pOgTfvXcQfknU2ukF5Npfp2h90i4tV2cAxBlRotGwfX5yooiskgjVH68nPVV9DKqP9xSPoN3/iCR8ZSvPEXGkmyy/IDs9XS2I6bSWQ4VHJMCUamhEdZj4dkcIwW7rDdgfgNte+VfpsobyzJQS+Afn0dMvY4v4y1hIfaOGa9t0juLDROxYFpMXD3qi943VHQuX9ZIacSYFKy4JVazG/Yf2P1wDUVk0VQ9K0WbCObcxv6u5jU7ergtYtQbCL7mp2nV5m9f5nYNcHw++QOcO8+mAzsiiG83s03dc/XpxMusavTGZuXRWwdlL1KaDI0eIwSwLGJpz3ix1MIv9SP2FWvkRBBjOAuMfpw+M/3pE18kgvB5Ee1nmioMLG6rf3sovE7ouGoJVSJ6Bc8fiF4gdIZ0URuvp+I+o2kvdIWhyxjLyYpd5nq6IWd2+Q2EKSga2TzHvP04Iwvb31SF4M+12ZMk7gj0sMIN3MmjyFRDT5ox+3oZokkAJZ32cz4gwEVVVZpaaOdadzjDra4jtCgpLkLEc7KTllw9pLb198Y91K2COQWIIBquIQHMrlkAiA2LS6PdmK1j+DDCs220h6hiCtzv9jrxNpLwzBeJP4p/xVpcF+ABZUyn2D5MBZ2lZl/Doo6g9Qq4YAm4gL3IOTiStOqjFYw4JeUkAwCG8hBy+Tw9EZP+FKRbfNihCV+Unrl3iT9OBQjcwKdUwz7Ub5STTBB53kMSmamccRmxGSaVX7Od5t+dRUldCBBnes/dImBA7hXHRb9MvTRwxjkm9O3XwZzHpEcAZiSqaPoISTKqqKQCdX7CD9N0mY4AZwf+nzOOp4btqn//tA2CLW1nLnG6ceqW0myD+3z8iyZtVGC+jfyoBA86mGBkbRoaxZ4pAwv5Zx5i/i9BUgdvOrmOUwchMGEbnyN2G6k3UqnBl69S3yNezzmzSTF9e70m+tNWpKeLM6b5RGRqzLUuPtHWrAB8/nBwzB2/2LMarUBzW1Zr/7VEJBKK5t/2HZnFv73DvzfXZhNVD0uo2w71tstbb4cU6S016+J8nkH2jU/b9vIxn0BOscFnMbuBolcA9pLSePqrFv0i0lR1Tsd3X8SXg/C3dFrKox3cdHMhFAOtSVlA41ay70O1zDbK4ZGrBREEGzEU2JZ4KSLf1ft6GrH20jxtEbTeFBOI8UFUbLTEw1S0EdVzQR7wSyMtcoMtJPElO6iFmCKFYZ21cqQm9UN1Yvqbb347w5ipqziPnz1VgDZgofLLl+AR21ItdWekQzP3ndENY0JOOkEfplvekn/kSiwyhCVUBEha8F4wW2DQorfdwMUF7AXUbYAYnkcGEB/vfC16m3uhEBBLIToJJn6uf0+f7C+izxzbYTtuynkBNw/pSVGExeKJyMOv9ZQEmoflyE3xn1ypwYNcT6nGmshfkYJSYCzL9aDbNT+lv/7Z5x1t2gl5RXfJnmdLyi+v6ls+/zBJydKsiI4eZY+CyJLfBekbCGTMSfU9BFISGsn2Z2mp82g4mXxrU8hXvFVq/V1rCkZMZrPIA2PfZk9U/Dcj8YfZw+ccHq8JIhXoqWpAFO9g2jmwr1nR6tDwtQdnIVp8xg3IjvCe38URPmwb3ew+ljNc1OKxs67O0NyTbDSM5bda5HdW0CuSzTeZ30go5kGnwemHtsW0lYGdSZhMPliIYvebcU4kfaha+HQj69uSz/4NxhrMoKUvQPyeb6iS1NbdoVzjNRpGdxNOafno9nPpWjMPgMs9c4TJvRPD5XZogkq8VKQ/MR6qI0SOo4TMLMfUc5EZwp0d9JGXLEf0ztM/5Np3PerbIoNePceaD9RKGKl3WsAXheDlbzVogM44ZB+NIUFWnbdy/dlwhF8P1WX6wifPwRREjqBeSd8l039z8Wf1eyqSm4JMlB+18Lrv6NURDHEVviZbrC2rJWb9vvgDdrAEj7ULtdJQu2YC6xFcJ4FoCA+DCKlSmCC3c8vZ3IxYlMYA3ULTySwCIyh5uuIiVJ6YlJ8hxSQhj/OYF+rOtrZOg9ryvZO3DH3FRXFIsNPeKsB41Dz/e5HTWoxbkt3JLXyvUmym7eDkcSiBhX1Tl6FvOOlC4lN2ExgC8y1t9WlTT7nXQ/3nPwRKuqQBRZWiZKyHLYk0xAtrv+mOFcTHLGxkA+UnAHnhMiDS90a1NUrEkpaFia1IqzNKw+z58HNOzPi2jujkgigspQ5fXvHxtmHXY5Fq6vC+6AaUH/me6iSEAmwvBL0mw6+g2tc8YLu0CJ+oTIxQHnX9w07SGWpHycBh8t/XE/tuDkTT98Q0iC123k5kM6MCn4oW2oOnB/qMoyN7fz2Dd9o0nF+R9bC4QSVE5kUlzMBDV8bSmjd2RgwlFlHNCv5xZEK540oTxiTw43zczJSx1lCRF8et1C45X+m2nuv1fM5LEp6MnYc52SW++LY883at5AYSYTfwAkMUayac/BUMOS8bX9fluIB0PPdA+9c6+UGqYAoswrskTGVgrYtUl2UPf/fOcmzQhm0JpBJpHCeCgehDLC/00nSoh2nITngqGWBDL6lVkbbjeOzrxlj5tzbCfFi1efvfwyCccy2fMwzH3Xazhjf+d1WHSwdnk0f/nH2dZEQXE0r/Mtkf3H+NV7RiyhrsE3cowMS9lxFapTUyj1Z4GLiQEImBrsqE6HKmle3wQVW0Kj96i048VKYUVJhjbmNT0zHD5OJQdukihw2hL7JaA77an2c/I75iPPGbYGZ18P3yxGp8bzT1Q8i886GSjoP0ttjj0EjXSIrRgRYLWa+rv9gG9WtkLrYIqJDoCXae14aEpKfsJ1mRWe4oQF5Iup9JCd2jpu+3sKMsLbmpN+kChGy/BiRzMN4ESnYgAP8rgTbgfqBOmw2a84oHM3/FMwqwoQMHYbXyJUzOXcv/qjx8slueJhvIV8iWM1ZrCq6PWqhFzk67rPFQQp+gaPDQBNJIjlMSqcY5JtZP98J+N66uq5Wu2hXqlXS0nrnlYeKfiD7WWfSunx9xbdybzM6smbGUDll9rR9zROe8XanfwDvScWIddeQQLjQnJy1sq1t4tIz2jfpsQfsJZkw/aHzdqiuP4NiN+9Dhq9hScRtxyFnLebN3/6C6FBeVozsPwcqCPOmuInN+e6+17mLddMXAJCz74or8puL0GhUbinCWXWGDDk+uy2wkBKRfvUviafd2L1sMPjJ4TbPL6oei/+p1ar9F7CjjmHubBX8Wu8BWxS65LD/p1TeuQSQ6n0jKwfm6d8ew6KOL5m6/amvUXhiCO0to6Zv1VOpDQxhW499bFIWof6wF0FpKClER6k9ZANOSdur4bathe80NbatDYOeQjEjzOSLJDm5x/yAqkedc0ks69KovovC/jXfxqt4v4HBRxTv/OUVrNA8i7MxEoM9zJqbfpImyFjIMa8lvvQuANlNVoi7i+F/2nC5FFDfEaSkERM8aenvucwOeKMU77TgM+rE9vaPrvmz5XB6rWrWNHC1mTcTHxB0Nfx43E4HHOqkGvq5K/weQ/r/dViXYRwLNW4EXppN7Z0jdQndA758QBQbxTpDnaAFpqW3xKks3coQ7NwYXtV+jlE+9pXOUJ8UmkEnU1RKSCUmEpdex7dDsWMGJ1CV62DONjizt28t5fN9FEEEKFQMt6eDXWy6R3qN5aeeK8UJ3D9iTDnl48/9NoO3+igazvWkUsNfmD1b6p+h4R4c//SRorFpPmpEHTWR8wxNi3Desm2foxNZwk0Ye+biQewyQAxOwm7QCoLDdgyEFTLa2f2L250Q4F3DGx4Ar7YJdWrjWYHBSWfZtLpPW66ecKd16I60aePtSLW8dA7P/hc1do2GARAqsBMZ0/amLG/OdOSzNYUrOCJBVVdZUHF65ZMM/TWfANgOgUCbQ1ZbYNlvUdSV/cdQsJfUEpJbm3ua3Fvmaw4/XBLo+a+KPCfvAgDDJuWxTeZzPA7uLcq7F5yO5o7+3hfE2LKBTCtxDB9KRdOYGZ5E0YJtG7gAYX5YxswGcVe9ztwjJucmHzP09RjXINEWOsHwjd167/bALshAg1cfKicguCoCz0/Ojv7hHGYIe6KO38NwdAjGDiTIwKdxyekmGY87Jyyl+Az4GXiE/jOtsSwwYwNAqBMrpsbtRiDDUbey5KAu0WcbLfa+iJ+YsyuKbGRzh0eaCsn3nP4c5sxjjMGInjZtfERuOffcM49CljnjLkqleg5uu/gPXOo1PBSAWnFkY0mlw4F2Rx48JCLU3U2XiYZy4Z5sbTXY5Lx3jufoDzmB3WolZOHm9SLR2d1GdLVl+wwSauLQRtabK3sMohM7u4Tqlyab7xvbXUQUtHcWd1cjgsusQnyqSp1IBUDr9Jv2RHttSSJ/j02FrB8/V7ud+73S7c0Nsf3AjaU5GDwJvYTbRADLPymjfswEL4L8LHkKURYyK5vTvGBhICgtsF5bQBAzKJ5FQAg4cmys5JL3OkYMARaXNOqX0tPYbGWxd9CGSVeo/x+Ce+yZNuYc6azai1lYS4TnLAgeRh4Us8a5VJUKvPiky2g1H0pfoQEfViZmrDFCCMW63i4+NyPy9afY/xQroHvp2YfmcQP49cpd84pWu4lIae8HRWGVqdeTot6LkaBsY2UEUbiiHWt525W0H0AMJIjAAzo7W+tsSwIkY4X6tSA2dRg7cZf589G5aNoIg1GO21Y94wgGxXbQSr7u34pPmoaQNvoUVUZZ+9juJQvrpQtw0CFp3xFj/HQdAUBu1uQbwCBD43dcrJmxOT3tbHRgmpxXSHaWED5S8CWsjaLFqhvfJvlLRlRyIaVQLIjoRr1KxIG/ZaLTJWhQMbofbsiV7wKkMXlZ3YDlh1JsKqIGc42mdo5KvafKlLTk5UJyk1SwhhLQd2vccxbfXXaTGbimonRBtBS+mxSf9vbg7DpiA8e9iE97ngKKVBc1mV5R6YIareMEqEcU8vsFEsr4kgERLe9DoPYitV/8tJKnG57jB3ERp2EDMQ+1jJ7yBnJ3GCJQBxOik0Znc2hV/OHomGzPU4kcIDsUIP6gp2r14bs7BrWUMJM5dfl5FELfNS+OhWnc/nkwl3fLWDkRtXK/CugjyuS1Jr7vn/PrxQy4b7UN1L7vS5Sns51qsTDbPoW3BpDDL4ZBcS+/YDFiWntbPnzdX3TXsGHF2JcXkxSkGl8KJXVDvSuj3JD5eFOd/pRfUB/2/ov+pK3mRCtYoq3iyHcYXar2FnfFAsB4NfefHvtg1T+m5yvi8tAkshqZG8I7mEXV6LDVG5PF1eUKbYcZX790FZeSDQ/IbJZS6bDLZzvEz/3q7X0CCBb38mhk3tGErQ1fhFquJo9cOeW22y5iOoeRLr8sAss6Y1FSl6Ot1wwjgrAcLba7gCAoXGVsqVE2ndc1LW2I18INA6pxU4ceSUQ7Kb0S2QXvmSyZwGvQyrtYKVsOpEGQS93NyjInXGmt+i5wegkOwf8IIvMCjRQhSlYXaC9O+v4P1YozrfcDj06sizVdtDlnQheH9z1I4+sAg4kVJVPDynGUOoNPxocSgL/JJVHOgithxU0ZdrNdQAw4ETNK+LlIdc+UZrUdNXrxrnlJUS4sbyNQDt4fLmGL72UcO/w+5LCvogulTpxDWjFkHoDUI9Nj/l2RK0Gza+OFi2q9GpxV/Z0zRICXc/U+r+8fs7xltARDwhYAu7AzquuDI2q94MXI/C34DngFKWNzzd3znUlMid1lLwgoRLe4KvX/vUQggXNkOG3hDKhoKRnLsPZgEpgm+heFL8PzYpSoThEPjNMAJOAc1oJswn0T+SUW+rDaz/jg50bDGR7o79lltpxGdqtq2QVcenb0Hugpyj1mZslw03KYAGE/5wpQydKGcDtGLLF/YuTdUcHsYjPXabxif02q3G/jBF16YOxAMQPJYjxr74z4gGA2sPOHiIoRv68KWHUpg/VCY5t4biT/fuT9djUStB8nqffm5EEsun5vmKq8TNSKIlR0v2zlbpuda3LC7EQfZFUF6kLGs3BPGU7D/hz7J5jJhgmBjkq+OL1bVAfunvgSnOVhliJ/dpEMaKMsdWj+S5tgb+HaMuoEBxyOjoZC0ytvkgcI6SUyaiVT6IdTEc+OhL6jlla5BhSGKNMjryACWRux19Henbw78Z8U6XkJz19Sr75SazHTK+hJdpQm9I1bSV+Thsuycjt8mvbrl0KHLymczmHu4IRaayHdWRVGaMmNZz+/O3XLbzwZ2haoIB3brxxaIzVRN7kEU+F7NuiVVENbyRg3ggEq7I2Y18CEimNsrNyMUn5SgntVsvvTNbfbI+/9IMHMMXHDd3cp8dR8NWC42bqDOw28Mk5q448oNdzG5lFMFVerGfTfBM1ylp3BH9fx8DNZWZzko4OVdqq2X9tS7jvi94Y0uh7tGkSqEgJPz4VODEkSCXpRXzP+/0v5tPIFLYmZiu9rPWFi0V9RXy/g+Iv31HToaSanFoIGQSMuW7eJKP2PvCrn82igSL6I6rAlBlVV2X1ZBN6I/AMSeTWSTQ24dRvDuS5Km56GpCxYai+ld41MBOMYY+30HbEwnFR67MP+ylgkmRcbfqLwBj/DZ9QqJanChcm1C+dK5GsJod4fTlLqZs7uWswF/8ApJQBTaak6ZfOgiodJggGgDUbufUMK441B7/N6kJfx2UBhWCRmxjt9YV1u2Ykn0gpO/ZEu7trtbk4nHTdpZN2iusJcBQCfTqNweRRmmDrwFc0pSqX6SoVF1Inm6uofUsoGCt/umq9uW25R3T8SrmMaOFx1j6F0X53nm4JMpqNAQvVfnl+RsG3X+IMFJBklhYHZGpiA1ipF6Tg7qBEeWpMAsApo4B5fj4ckl5UghEHpQ4s569NRFJ847iGfcVjH3RFEmrTx7o2hnzK7lSN2x4puby9Pq6XKXg0mAkuiRyS0HpBztOZCo0bdMBn8ix1vvFCJm/kLBvclaFgLdjk31kWWExz+jF3B/DIIV+YEKxVlmelzcNiTVswKVUktbLa2uBkLVSBphed0x5pQQDFfCyGw73Fr/5cEPFfjll5H/vUxKo7K88WjBMHOH36DtRPsnDtgOHeqPXXJaNnnHrg8R5jKq5k3C82rTBDcmTYbtK6IjS9fqHpUJjTUxX6+nZFsd+P5L2yFDNOUARnO2NoFxCD022F1etvK8Rfq/wkdOv0wJ9ak5X4rvdXjRAqSp3C98OCYQl49jQ2SwUXVp6rsKhYVljPNo+SNzdMW8Ud6mBCV4wFyftDqqPetxBbSfupk86PpDm132GW0lMMS8HTSFyMDbGfs8VjPhOfGVhFjszP31cYkDDdrawwAJxuXIk29xGGvL22BLRDVTf/NPr/fqiVJOyFiKx6hLWAtDwasyXNaqlmMKjSZkItoQ77Z4hYuy0z0x3eK3qD431r1vnospU+rBb31gDkhbN9GiluyGA+v67bDygA4r8s3l1duwkmHyl1VWP5TncdpVK70kk+X8y+8mbX2yMryU96/bxQq1/TAHMEW+bJJqwUyc7kUNft381/QAQckuXf4eq8vyQK5kdsSaNzU3gf41g2ionnh9HphSy92oHvUZ9/Zdm7HJhTbSuBcVans5OH5lTqq3Q5qcGAQ6kcL2pHmdevRRTpDlspH/I2L9oQ5CULOdEHQz3cMQi1QlfUlyjZhNmssZDx/E1IxYS+pqLSijj0YjR0yviINcxRUh9aJDQuKFmycYrIzn4zZFQCZxpKCYyNeX0iP+GpQx2CAKJtwi9U40gZPIPjgLbnYEbVfq8rS6/2OtxmXuU4f12imhdea5JZ3gvZcCrM5qfx3Ab8hEuP0nthPp6qX1zb0LGHdzoECbhby2dCJPp4TR0wpx5RfHasnCHC+PVnjSB5ScRbuuXiRJ8HdkYDmIYSFZci21pMw+0DOWqXj3l7uoj7RjPVv2glUmmotJn/H6iphyVZpoF8W0hb/efnZKBVf9xhBz4uaEeFMbkqsMSHw8+OqYGg6MDVcvWyiUjz+w1y2t+QGNcKweDeAtOiGZZVd8Yq0BJp+49PDSLtdXWF42oAd+aOtncGD9+nPjRXA/DrkR1OCzDXy+nyAxIVdYVwbzNip+BgwtLct49zTTrpGCgMBmkObJr/+B0l3NEAEhllihSwEwFEO6vzttx1BgeWnYvKG0gd0LF1esO4GosWoKTz6BhKu0cgsj0eSqgF82bnFBCK6H4HWJvXPWKSJAY0lnD5lprLJEpxFjaFlKz7zbuZX/uU2EITINmysNmor7Bhxq6U6avUE47sf/Pi28SrS4gGc0knw9JBAXNSuJZqaYMF400qQKGsjGbUlKO4rGXADxLh3SbbYO68LZm2piVe8u+4FYByaPA62Ks9p/RsxwVFgXIvY2clsUZBhYKxz32XFdEZefQTg0QocNahhuacIzoTJsPJqSvh/Perx5pOiQ1JnfqiN9uQW2jT0YrG4hLNA0FU9bHDW1kN/rAKJNURYO++7yGdw3TIvKTJqs9jBkUkOeaGexqSxOFVgmJCWRieZcEUP0siWBCiFt56IyjCmmX92U/3tVPzMOzEZPz+kmYla7LliercLYPC/3kkQUyunsNZrTc3bOvp9gf28ABCsnOCAKbQ5lOOItltRx9S978nswhpMwUljMxYUjCBjciA+OPL3S3LupsvdyaDfgLgrcbwGhxY19InU58J0/yxFeC3UVzRA/CfaPFjUnwVRY8CNWnTQwrFZiGj87snLrOojlVCa3UaFHyNR9V+NvB//wqUD5gJlDrdbbE9jwfdC9KDSwfys8aAUXm1DEdWL3jNZSsiECPTb9L18xU+joskP24F5cIel/3pRVRriIlh40Yl2z95EsROzgXEDSpEz2nJUt5HNtuxcJWhi1kyiuFRhogkJyx81KYlpZfa7fWKrh77SdadYOt2smoRqixlnFZWUq/M4plpxNSkznUNKbrG4sq15UdeWYUJadbXrRNK1aaDEKCdmcPBU1SZSb8OtRMLfHpsOvvnMO+tIBcaM+2IEFDteBel3aZvW4a5CIyNrue7lTQNLFZtYS52Bj63Fsw8Ez3hz8iwgF9T/Y/KmEGrNwK9T3sm6vzwudiNv9FDcVGCKFJ/PBOl2MdEowBommrp6upRL+exqUz0AacAsAU/TzUaBOG8ErZ2I2g+cFuoXAUhmRKufo5htYUH84zSPVjEOkpCzI3GbYZIwMIqtsR5RVTLj0XsQhVgtQAf/VQjAPSFV9MoIDocLcO4HuE6Zrsdax4qpJfDhtWh+Gy0B2NuFQgOb62q2KEtwARJKSiLnGKwie0PAsKyMfbtZfeYE/iSvFyc7P+DKMzPfs+a2CzLHmPk9xoOcwPgRLqD2d0LdFd/foG4t9gxFkXGd/SEWfCs1x+2GGzicgEzleDJKjICNdGk4NYnFZxBJMXJyonAb7dq0v4VxXTNsMKVr/BZ4kTtTS1d0jfCyXjoKGnsyycnzOo88BYyvEciQtsy+U6cxmeOZRa6OQyFb6rDKKiMUhSoQzx2VzLSILM6csaBsJrc3591EST/7YPFg3rdeJnNMcZ54M5MoBTcX372EBg3B7fyazjCj+n2mpGvrI9tho3BFhFq/ABgkfiVywqchbgxbyNOhYYssq6f5ClQE2fXcku9lRDevUIzww+JG3nQ9RicynwF6dosHj4DZDHIfcJTFAUGNROeiaeKyKt6qibixoQDLxZekjDIjdeYzN73PVcCXGTgao0XFTZCFV4wZRtJXDZlQ1SGJO2qnMZ+sFljwRQirdTtbxwnmMu9EeyXetoUttgWu+y9Gyp7lF0Ugwwc8/GBAAP9VRiJmgOw742pp85aeJiPdgd3Kwky8VSlH/Jreb3zPOyIeuwing3XJJkPWCqs3plPrxGjwGUXXYukfthQkDU7RCp1JOT6cvn9jbuTjTxyClrfKeXyuXdmpElZNAuMNqueFq6Qc6s9AfQO/7bdXk2EOPqq/c1+hKjMLJ7iqt1N83UNbybKPmGKyw9XpaCoJKqfcGxR8rPj0LR31s9JSf8ISpkLd0BNGtUzjOw+nb38vOJ6tx/Ww+vJAzhOautO9x9FVjJVXylZAmi/DpK57+ka0jNiIyu5dab5RZqv0CpyJr24k48qnU278ybk5ZtX7ITuTUDL4chvTgF37ynMg3FJLab/mzIjGRHwwjP0CGXLiYRRQEyWY39SaP3958gn/N71y6CsZkJp9tRk63p9NboAH+PMRfMhu26/2yD3V9odqvTHKN5DtKgHMq9JG7JHThja7yBTU6wbS5ANlG0iSZeJcL1UrAo0AgJ7XAe0Z59K9dRlPEu+1f+awP2N1kLEAgKcAl27dfcfi4FFr36gwFoyTv3UMRZXAXMISAGlny9Jhhwip8h35YtD1kSPXVnwfozp/B6jZFvJPNj23hVdvkiljoTdBhVMzTCQsGQbHDljlgy0E/eOqn/gqdEwXMvA6Rr5u29iOVk3yrch9qVfoJbNqce6RLOjUtzKrAqHL4nfIr3yOIduI1hT5D9ko4p5BOptRUne0rmU2NPb32N1NwpR2+X8+LySMXUPDNA0btsqd+pS5PVHP+pbn2+KrBENoAany6FQT9qiA6R4Xdu+t7Tt/k2Mi/is3Jk1kbaWoTq0tEOYaeJVdkG1eicftDBiL51k+rPICJGtgcaIZOqqnCo6AeGztkiqOghHTDoTHQejO3Y761katKESItV7KuE093+k8aXpM9h7gAuSG0UBs+2s64UY13DROhuYphD2toz5GYyQsKi/qPN74JhWC3/4++D199DmfYlw6OnELX4dJEMvTZtU5vzv/yjhGX7A1EDdMnXCLJjH7KIo+RnR7r5rPJnRQXyfHnK25hB7NES7+1ANDrar/8dSYGm6VbNArLnmzMF9BwUDs9HJigoAI2R5iSmONxN7T/pRV8Q1yAxJdnlhIa6xM1zWSOuDsRq7V8fySzgAFfReG3Dc47jWscMIGZWgNXg6hQ1F0SsAEGIZy8ITaa6aMxsI6aen3iU1AB+rhWbcRRmMgjnRZyS/deSCjrG2NOjOXR/SMZgnsdlwqk1+K4I6R8vzMSAN6i0DTUyO8ljPbhdHgWO2aNhbTRdEZmXli+ZNKRVA+Pu6ac+QL6q0C71zSvN78tITrl/Fe2JqoQ/gbhVZVHcDFOnvxHtrweQ2trCF4NABzlC9FJtXzySyd1ATAre3g4YYirzzDohNuAdugZzgtneGkQUO0BQ0wsdEzhICB7dUgHKSoSSqzCAs1IBEZQixg9holLFqyq4eQ2a5WcZ120yEwuZAiVPWkEzGIa79HPXhtUa5WtTmEjwxeOOTRJNbMxiA3L9+iu+3ASW95ZE9kNkL71vXDGjAbcZacWbLW2PD0/3SHhzegbf0/wnVWDFteQsRn7R6+qnFHsLKWGJVU/W4nztynb6mFpbfHsmzi6nPVHAvlzDCUiwwyZM6crdK/APVNEZaMIutEYKMfGwA2uvxhaFuscVF8pkSw99pDJVtw1zJOHAIdyKxLSMpI1KU1HODssQr9b1MoM+ApEiNY1VRBfHVAzYq86J0ns3iaqwOYhP5wv7UQPkmsA3Euk2zkC6iFYkWnn51xdFykgXW38r9UYy/A6KyefQJRbuzbS3CeqUYVHUyvx5hcM6w/VoPuwai3RdQn6UHghLGS7YGvmYmP9faDSvfp8FeO2nkGCf2s1Qm8uQPzJAq3SRqg37kPhftwOhTDTE+S2HwspJTXPpSMJtkXL6uq/kqq9tPkGlUP56cj5CpuLJlTr8eTDmWh4RMgJzat1KCP2SlMd85IiAkCcDHAheWIZ0zQAvxyM23lj+DDY5biuGtwrZcf0DrUoDF+BuvPiN4oPcErnAsgyWhcJhBq9qjcUiUDNaSpw0Z5fszpgvX15ZDK4b4ebRYunp7HuvY+ar3SWlczHxV0JHI4m9q7sU3JDpJbocWZzior2I8dTB7GeIrumbjfZzAUhtgZqjB/uj7XNJl681BgcgVgHqhsr22tfBU9P/NufbihCLkUVdimOsQ4BhQwgaE+ETbqvagOIUIOcSnMHDecNF2jxU51fNz+RTOMPV5MQiRpV1gFVTNmgCZXVbLFU0qaQtN2ZzCpwjWDFUdzQesucVnyGPtsBpGlSmAJ1xgJo0m1CY+djU2wixiBdiaUP6izjA61HMVPBDQ5xC+PWO3aFmb3UtJTtPCEnMh0GhN7/13wb9fbZYAbkfiMkldc1JG6wuy2PmFjpaBaX+s9OlJMmSTLwReCvHa7YleoeAGWr8S2bJ9xVjgCYJ2VIfhr+9GuuoC9RJua8vp+cQio/BrBL8ooNMJML35Uspgc0XzK19HtNmCp+A7Tg8XjpyAjSgeHywO5qM62EEQ2sZy5EegC4QaNAsmuj+8KLa9Lgww38svfpEV5Nkz6EjTOKX5H0HYClq374+tiaILxAymm8TieMweD/df9BPy6f+QkvXfHnJnAmjkGqXMdHmJQLMLGA3PpORwCAEQ0CFHpAdbtn2GdV8+X/dORMPHv8lYxXEo0r4huch78f1Mr/+xLeUsvtTYFz5yVWd0atRr2rBR1XrRQSvFnnLxvkVBhZvxe74zblzzyHH5adKgTD5iiI7BzsqNa+JR4rqfGdu8nzoGAV23VPNlCUT4eFt4rJVQ2QzQIYX3OZ+hVJviuZb4M927FoISs4ZACU2eCX6j4mzmxKOcRKntcB6Ieo65GTIXe+lVF34bJpaeNtns3hX1H7++gayviJCqL14FI/AHGZQmFVJTYIEHThG0bqjCxBfwzM/H1g6ys6bYHIXVfsnqsv0v2ucD6/fTlz/imhzdjapS4FZVzSBKj9Xr4vowxM5bVem6/nGE7MkUTp1F4MM0TYT69M4W34u1QWRz7DJG4o7+ONwzwFFe9zFdVzTroBHI1MyjQBXyZZSER9HsiFzHLAjMmAygSB1I0mjH+fQMXY8nKkGEynOq754wYN5C8dtGLIps45Bl40maUBNIhhGlu4lYC7gouMXHx/9gPWygnh8fSnbWe4idA3wvVKxewsyDnj5RAjanMJEATgRqv8yDGVQzYSxJbUTmnyW80wuEbMN/cufprvD237Ys3njbPzwRQrqzHjFIhTHQnD2hBa8IXD5ppDsnIAwT8ccs/HDqtvZWMKO02zIOJEOTnhG4BE/0VeO5CRsz1DpWBojd4W4QL8hYPmETdi4jEfYyZ8IJekdkM2KviR2aUYDunqiFwGHmxBvZ3NQVCZY4PNr+K+ojpR/em5r/18MtYQRL3UdxyBT5UFfw2J9f6pghv4sX8KTe5+z46dRBc/qp+EvcRb5iBVaVSUx5vjYO6ZkjbWqmJTs/lDt4eJV2Ojlc8L9fh5bonEUVZQLeV/5aRk2fHK0+tT2OCclQxjh8YwmxxEAy5NXO4aEBzaspmCt3IJL9sWVwZYtDfa6Eam1Sf2s6elVDPZ0LU9zCETIG5EzodnG5LM4v/+T8m40x7v+eW22TzpyZOLpay4Asi/3wER2oQGyN/MCWjLTGC8DXk2E4VwS625gHskXxFfeWKTqAC8OIdPvE1Popts0ofoblqjQ3DM79k8xQrbyD4CQuMD43v6wJgdK0879ymC105NBeik/4OSdh0FohnRmtvmc5TBYDK8VMFrqdV4wFLF9kL/IZPF5WVt6YKCAGsvKvIDkm3jPCz+so4loStZeqA6HlGP8Wb2+w6w3UU/vg2WbcxszmuWO5TPfVafghA9vS7N8ocFi7wMpUvSkMcaK/Q6WAsHDZ/iJd4qaD7XKlFaMTZmBj0o4DKuUkOp4ZTj+AVJLuEPmX0NI0d05QA6F2j2oLYXdsYNAxTG0rYXzJe5LYg2Pne2xR1katZe1qCKQvFJu78JK5Aes7L9b295YsKS03APCOQ1IBUBLmyAtQ36udPMm1bxJzsFOaf88UKS0kpgPTtHMPSIWX0wjjwpBoVAU6dN2LElKyrqc6vfEw3okHWZpTQPzCLFDgfmeCeP+k8yur1YLpvSaAQfs1yNqNZzqKACmtvOooWrxlWm4h+ZA+sF9hE3qDRFNQJ8LTrntXVy3nlZ6KyaZss/MApaZE50VZPffJL+T5KyEMHr3LxckcD2ANXvT2BkR11GLhCHfRBsvq1RlsHHzcvKdcC3FblDUkxwvDQtshuY4wR2HtSJCPHF8O5KIzird6OQtRmYRCTXYzS3UPMu5KeeckCI703qo+GhEDFHtt1zc4mNKdCiZ2w3VS21V3mlDe7Rr31SyyTieeNLwybXzrIjQaNZb53iBhlNT3BbMeWnJ1RCIUvLYpDQ9nw7tChjBBndy0pNAJ8KBcu+wJGLt8lqNzzjj5qy1+xL5iElHqE7mQUJew7mkQ3RiaPTJXPINPtkXlt3b5Djg8xceFL/TGt0gZQFrt9+s0AnvqlLNroHoT5FsJWdlooU9bf9tuSpInwh5b1B9RjLfFQTok+UaLWhlpQ513JX24w3RjtJz4BrGaSmd1AVI3AhNjRTdnMNRwsi3hwkS8lzxbS+N+G1w8qKCFFq8QUg8v+ruZt0JxHTtHHIBykB488Vns28zC8KBOsod81iEOJfMUTzPh9O6qkDfEMXEqqE4X/0INhMtIyzOiUXvZ1q71dw9w5sLkUPHhNb4UYcEoQ+mXZo1a5BXHiqiFK/tdCL0XUZHVlV6tSydz6oJd1ThOti8ti7iVLjByR8lMv/oFRrWynwI+fPWjSor+o/ekwFhl440A3KR8+bGBwmQ1qvOt3XqNMNGWf7bYjugjmlCIAYPH3Si/3IhuL67UjAUTDtHvea7dLUbUsD+NgHr41I8N3B6Qs8ImGpZf55448awGLbrCHrQ34hjwDeUyi+xJYhVReHXFpqkboUxyhUkA1tvW/6BfDfZHdtp9x7QR1Xn8sdPM4GA6f38UfDUiwUwKYd+FDp9+ndGMkCJaYbac55zPPnD5YrXfN1SDSsN3YJhGlUf6KWLGUsu3KpegGmBmGTeLxz2CpPtBs4SeQJCzgHBThldr574J9DoVlOrI6B7D4WQQFdxh61bE6seoo4wCaSCeS+SpVcVN7sMYDwDzHul1iuzX41DDH2yOgRppguhjLENqnofywpNmrdn9FovZ6tbIYNsdG5/mH2mQnFN4T9s2UqRXyYq5+ZsD8/ptdWc6Beyuu1w3RGnPQkCMMk2aqmwL0FDauhVs6xo+uN8/u5flPGWzR9MalNkXUOgi6G8yoWPAzv5p5BUB0UZBTIuytj5kw4K4NbpobkLPpJDj8T5wngSYptEf3uIX4cdxlZ50pGyVV3ThulgkI7Q6O8jeiAtU1ninHjJkKnZ3LaUQVPS6q6UPab1XDdd0mmh3npwnQDMOxtvTLUSIvnvJxRniAZMquUlX2JoyZLht29U80urBhvdQaMWfdtW8GkByVms9ICR1umttotmXHDb0KmkVAIISz0RDSgAXr0CoqFDyDrjE+FB/HyLvUFBDy+Iu6sURp40KEZ24kejSHJ7Y8QWCj0KC+OSunq1GJ0BeiXOI9ZHlRAvOaRKg0OdlXvfJ5wSI+wOgUR1gac9ZdV3pGOvQ8vjZCyFxiW/zA8zy4QtrKpYj5DAWulIUmxne0xH2hhDDJ+5TVCLtSpRc6qxzWLEaQv79AKz1U+bqNMGM9hyw4k4VE6oqqS3LA44AB58OqkWNtc/MD/A8cMOU9Wg1Qz/pD7lGScuMctqRfK/WCEog9Y4g7R7dd6uHWoWfVtnZPyyuV70IkPBERM7FcXDUNz5W9vB/Ak7F+rQjlaaAIdGucBFCPHIsZ3uKPQEg2EVrfDVkqgPSudTnuY7AWtEqxLFY6pbnhTVct7FEKnohYHugpMbp01NqIbfyUT5p5ap6TdvO8xaHLFoZnpcCcsFEKVZ6+p0WAWgibcTU5c3aPdBqWWiBIHFZy4tk5fpqFQhxcy1kNSVxLSoqvQhEWv+gmdTr3xRKt1urnIeuSUGjIk4fSn1i1b3pMUWSCbCJ8EIaYXZRte40TbZ/KctSjabJkSq4nftWPa2fsLoXH2c2QDGir3aimr7wdxPTy24yMROtxw6SvT1GdCLsnvQNajSoTYoAsAg9YYlpx6OQ+mVt8e3cXqTgAlhX/HJ1YXgv6xOLNkfEavv1b/b02D70Yan/7ifvrCNnQX/pDUZR0uI2WLJ60h83JYDY+z4eQFdVyB9aERjyvkR9cl/j4zKKtziuBoM194af8EcMB9ewLMGO3I32uhqr9lDTICPhRPyEmBB/7fzFtYJqRLsbOySk4Fkxl+EQWmj+9xSJCeO7ISY06c+YQuTenWOh0qh1iyZDkJJVVQUo6gLyY+WX88HxGX6BX8rI90pfHgbuYrOT3ZbxjbJsjzlkPWnJNuDKTqD032bpKVi5lDAW90S8fY89/j7gCdDUxQgmRQOqyLxQlmioGg7pSBDFSX4ulnVIsJNEH1r4Wob8YFDu8LTtgsZ0EdL17bBjVpirrj6wKu/KoSjCKo+zUlLY+zKUaGqbh1V82VPGDeLHiRiU+oDAnqq1o31a3ASP9T5jN2mvef/WZPCnWD04dcyPbzxA9QbgDNev+ivMsx7kNPsytJXbbstBbcuUFXPhoFb5mcbnBUStziD83cISjvgPUxIybbq5S3fYtsb1uK3amKZZCXIT1why3xnWvm5T3Bb9c1o35d+D3n2U9vQSXdD71aVF+Zcf2l3sHaQ/zBoVDmf0ahmmjs3HZboHkcSBtGtobHhwpjxX1PH/x++zgYuZQNYvySPDtEzqXKASGwo5w5uVtjuxDfmB9CL25vaSNOxKS++KcqKjI/Rp/XWHxulB4m95Bov4Lart4pPpKF0stPcFx36sqChbQj2SHDN+bJuRZN2mZxrnURK7TRfz+DWD/m6PXNYToRUZ7WUeymr8yQaLX0hwlOwRB3uMUPcZBQgPK1ZL3HqNTQQW9sTGINJy1PM8J79Oaejy3Njvlq81ALS4A9vMuo+j55MPU3dRVCauKn/rGVCLiIM1kkXRxxcCOdEWXcSUdKReR9ruEusCslT7yjfU8whG2sU1UQH9A93tIvFjqxKgEguxXHyfbi1js7gY7kpyEwFRBZo/kDUXvgOV2r29Fenku/gKq9mqCZ52vNqfKQoJH0Ale3rh7Et6LIyDf0bGSRtjoiYWE7AMFTrJNqF//hmC3+blbxPZOBUYhu4jEGYSXwHqoJzoh07fzARgfhq0JZw5elMDdqh1eRSWJORseJfg04FNCObnUqcR2LbtJ8m1nwKcrV51awLpAufmOrYyFYQZpSDK/klTmHwzokW331qskftvsqE7zlMqdZyUVNrxhtjmMyGFHbndzLUJnfhJ9rFnYI/3uAb+t3iZbtrtwqJ+GDwBe5CKJsdM77ltwZRzwG5zSTD3+WYSX2CGzihgQQtGBWQtgED4k5Da1219bM50LGRFbEcgnKoGQbrQ1UEbWfboJ/RzrhDd7VD9rayIHqTi4TvylFignvmjmGEVxDn0KIiZ4AWGalQ2tW/yBeCJSubodxAoUrpnrUVR+ChuF8nvE1WxH/sHqt4rlMSaOVe78LGNkWsb7Qfb8tZUcLnOfpcAq/hjj79iAp6BXCqMPFL451S02+IVSzIcplaMH5WTAgd88w63qsZwU97JbqmHKxqEidalhZvx6mPw8dg6UCknmWvoCbJ89wsoS76i+ViqJm8qYNQznZ8X5mRsDel5SRVQAVAZaFKU+2T00oPU5jfg1K9VfNvJQKSJdH8mIq8ZNbU5gsHq1ZFMkC/IFyPuG4WFNtvF0jFOylg7r0nBT5udkrM9st8jF4zDIQOQqKG1PgsPvbabDaye4/6S3Enbe1kvJR3zOlBPpo4z52bEm3ebojuPtRkgFagKMRDFuRYGm1Bsd6CkDCJe/FsqNGa3if2QOR3gFv6d2nVfkhbGlRdP2/n3YnlSoW1v7bKyc2qDWGqAeXNPT1dFRnK3VJmnqdPIiQZyuSbVii81T62omCEdpkNhu4UJNeYpZ93OWC4P0pIh9oI6lam7/WvGwtL4LtzHkOmRn4gzOUmLM7uwqzkM7fSxpE2urkcHcajAR8caYJ8vMjAr3X4euTkrKKu+/dECBCBFkFunDq54dhR9b3V5FUfW8n+uWT5/t4CsF7FPJEiDPA1agyoWHFS8UL64tlYMS79cuwzrnm7l6hG1DtV29G5nYu1DNjgoBlEiVjRE/zdhsTY/S1SIshNn99mA0iLuV2PmZ7Aj22j0sqhpyUF98OWfo060cf4/2XLhRuC6BNYppl+OIOzi1MG5VE/kYIfyRnF+yHl72bAZjlRg6ITkPFPgIPdtS8Vl3VX67py6aXoIC/RNJUlpEqnIDkGN49+p8JgQd1vhHpqmP4rc08Pcq5GNJ8vbmVc0T5V1pH3RlOUEslpbZZlJeg73Xj2sUlOBk/UbcBYdTh+h6p+CpnhPxSevYCp39EGV3ScU88CPhoAcscEejqbiW5m+qm3Fi4DlF8B608o/bUqPCvRSXvm18ik71YadsS9DsFgfKwdwQfPVW6/QuOEONj0BbHsvSAIWt4E7fTsonSOxb1cCcJN/zNF+/xJFlq+HUMjYDXw8mvdm4RozSMbUM2g6KZCner2tPE0sLWWPkgDU3zMJKyG1BhtZg8EHANGmQdP9yr0rsDeows79AbQ+bykw5dOPWnmSAhv7wH4K1OouRfv/xdcgVe25iwSzXZlWLIS5yqMiqkT4tyuhn2qqOHtxyd/ZKmNO36I01YsEYgs8+2NhhDUcFjG4NbfbsKjQouaUeci7WRVxSYjsM4Lmlpph+j+ug/EzeABeml3UGF2cBs7spvyOMZ+5FrMA0fzg6uXUcur5SsNT4LiM/QLEY+24Va0GWOA0UfzqFF67I4DpxVxJuzi6x3oAhf40SQbShSMxre1tue4l3z5xBxJSaiWPQ8nJQqahA6Tcr83CEy+Gynbi33vx9fLuzLCSN8MwucPDCV2VoyyqN/TWo83QkHmhHU2YfAE8FrRot4KXF187+ryC8+zmRXm3THmffgj6jjIKSqjp3Bq07RWe1rhRLjJFS0LZ94WQC3DYwFtOokyGW6XfYRQ3UHBmlZc2Jkv/BVYk3TacE+ZOG+E8JgcIqGmpuTswu3ofQgIqAmOPbubyH+TeyP5R6U2LsoxhA67rkYvGs86Oji1ynqeOXwXSBXznN4NQ6u8k3Zkh9Bk/oAtVpm+E5tWGoyLFgti9MAin3tI56s9SwbTzKoYAjzC0EszFUdiNN7Bfq9yiGpYGVoK9eV3FAAnVxWn9b0GQiFjtbSTRIxr6ZpbmyWK4eoKLgkY4VVbQrp1N9KdF4oZ8aEj7Xc9bmqQ1TDpnet3QeM0Bk179U6cuwVMXrWmqvYNtMHJaK8Vry3XlrVFSVj80pDVFrzXotLLTvFHYNwJ7kXs24Bw9rHm1W4E4UNCuaweaLWPUEyYBNtgFAke5T3nrpD+LffA2j99+qS6GKaAsrN3AeHo+a9fHwxZWeS4aQMwaPgbQs+uEHs3SfYv54x02jKedf/4Toi47nK1HkzqniDDILcDoVTZElChNQBJwCxIL0upvbj6PFpxRcdJFzOEf3gSA2s4Rw28Rfuhf3V/VCvuYGuP23GBimv05MsDWrf+O+YY2SfDPAx0fkZHFUumQk8FIK7bfiz4h8hsQ+JFhnyGtNiRWKqxPf1+vP7LACrtIRyn6uS2/wD3gZtPBbhaLY0QlaOEhMOOtTsZjZa/RixEnw1qJ2E1Ld+aHj2ZC32NGTkqWnc9xoMnahLqjmd0hjFuruZsCv5ZqZwr7lygf9M2WnR1b5azLdkklfUPK7MTaEzBq4VPM2c69kGMx/2N8bqZLXcAR8K4C9Wg/RXWvx3EBY+wFZClwKGZicpbPFC7fTuK7oIePoYagEHKrjEaVeMWll5XsfC9UBbXd6+NmsE6Wqi7sPaXd2ZOByh8q/iIVzPM3C0tyFJhf4XwWyEpLIdyto2aFxSPE8TjTo+lKt3o6cDggiDZxGJoS6BM6nMZv3lRZkA52X2nVwIyrAYKpvV/5Hl5D9IlHgMq669INsHtL2QLqOBfDj89sc7wpCff0B/Q7MqR67YelDj4MCVJWBQ1wAuFjL4xHkxfVNOpbvQS5Y1asIiKYLK+zTGapJmfbOPO8da9tu3lB/4lWSW0QYGN05V3hYqpiVt7qFt4L5rk/uSBQQmOS9FaTl5KPNhwZjzoTMX9w/LuR+LpCWPi7tqTfYuCz0FeC/QEoFsNNf6GOcxrC4okDAbtjugFpLSeeYa7j4JObtM2YTQ3TbGi8Ras2NcjL+RIW0NC/Kkvf5dAmsqcAee3CsWjMbvgjhKGj1x4T6IGU23m3LcTyMDAI9A5KdSvElW2jzrwoHjY57cef/hgijEcbMLdsmcoZm05BLBD438Tkf6Gim9nMYYifBBkDTBO3rvNgW/df27ZQ3wAfRDiWFjrmlVTivGm+m9zN9gaGksj5NmXvweCR7E9X/O3Zw2dLkR9V9xUKGciphIKZTOttUb3kJik8Ud1wuAMZEcLulzspNCQQFyjCgG5uG1RKpPFJX1lmzg8Ax/eezzTTGtH3R/2EWyAYXU0+gOQNm9erK2s3I6Qa0D1EfsMOv541o2njN0tMG0VvOBZN//vwTGIUAKmQOXseqGQ5txE+b2xaw38U5siKL/WnDwIkSfxgvwwbbpLrBLn4HshiosVCuvls+FEss0jPfMWOkn/mciZMzYQ23KV6RVi3o0/+yCmmHQR5/QYt8Vvot+i4B3vkHkJU29BbG4ZPyfBhleNmveHEmg+bVAGoAb06U/3yExDEzeFLd/41DEq/vvhBl2Jq4WKCrDO67fJZ2EJSPxODHxWhhFeRB1oNFMs1sFw03M/Pv5h/rDE7/+fAjNxPwxYX9qAg4TmYnk+EbXnQKP19SwYH8rn9BzVtAbuRJ9AZIoOPX5gZ2jglSe+VkK+h+rCJdj81uCOu8OV3fX4nSfyyIzSBFHF9O5DQf7gPJ03wUjxmKys4DqYIHO/mbdNCn3twPff6p1xkeNRz5YbnvWbhhjtzuWtqifhUsOujG69PFiEtwEZ7xB7aMLQxXQYgc/IAtvTbErRzBQEK21vLnGPVg/DUnoJSbuKHJqBoLR1SBsaM6PmC5wjVH/35Asw3Rjgc+YPvgSb+eMDnoUZEYyznthhaZ2JG4zY3RH+8f3S6goYPdji6mwy4Q8xc0y64Es21ig35bfel5eiIhCatSJDUaFGWllhN3q0swQJKb6K0nCoTBzJf45oFHSs1pv67qkkqUvc6yPaWLXS3CI5PjqHnHhGfTca453JX+tssApz7XWydYfTuZQZvF4Vn7f5ZSA4JOIlU/TvB4MhGwmyAgAgYCQarY8PEpatJ7XFOfFxiAYiFbrQDvW1KeEgKPNPlbApFGaxWOdYxV231eOp3sw+YlNXd7ajt4Mz+G5Huir3IJH4ODP5kUiDm64pKIRvpIIzoaTzVUCp986bkr0R/dwZ3qI0xXTXGokzTwa63atWVR5ytTjR4yLNCCfdirMjZJ6BUlNtVy6xAh2vPq2o9ZxxiIHgzZ3g/qdhDcF+blSsJTDBXP4p0KWt2janrUfIb4rBydDzOTJ5uqFLhWvfgU2IBUrtJcmEWNv7rZ9D3d55BFQwO8ktAuQnAEr2Xr1N7QzXcD2YlV1Jzxe6TadKRGPG1JodTVZ0eTubGa+AwVJWFrvx4fGOLrLoDb8NtHs0Qqt3073qg8EyYQwaRA7Lmp0bAeM0MjHl5gYcrpl0OtB7+qepNGaSxKJ04v0xTZe2m20nixTvyPNLPaESwQWls9wqo6eh9DjRCUM9EVIpKJAR6ecJLPekqrXlNj8tq2KtTcFT2E0fILbhSjOMYAGxx5pCF0C+oYmKONVTn/UVUs0vH/byWP6Zf+gZOqNEKWhq6+rqJJeV4g19Ht/dATnYLIMY2f4dJHybMN0RX67yowrO+Zwnoe0Am/4+SF/MIXD3/26sxdeO7FKLxe9uJORBiHmCHdH1OM6QyHmnW9hZKo39LSPskTt6xJN1Kvm1acLNMxSN9G7vQjO0xSJVbnNZ1aDbWIvRKwyVx1JLtNshJSwxbtld7t4+6h/TOjd7QtUSVnu+YuXiiyiwuIYxoZnJz6j8m5VL0UZI0nZjiRUExBNiYAMx8N7wse3mzyzpXkat6EguZRzAL7eJSF657lBQsJT6vUV/TXh18Mmeci15hxvuLuDpYPar4ktAPpMMd17c8wiIUDdvXqyM4JsYwbFq6+FHBDKyJNESbu2i7cbhM+v35GD0mmR2jqqXP9y/Bdl1UM133rsFZx3+0n9TweLsOfy4DeVj8f54iHwI9/cg1KbGP86rq4kq5EZq3dE9RJZrH7EyOIGH5K9efndXUGfjITUHgcskcOWTWMWkfrQRTiIfdgpdbUxNjMzTvvFM0SQzhX8W0CnoqdEOJTjnACx9D7FmVqao1Z/bT4voTIsMQAA2hY0aAP8+cetffRs1GiFwknOdrjCw2JU6Cc5JWaBQbs+MinAkmz0R3lW8cw06lWfV0nwdrBZMQcDqRxwEtTQYS5g3yoGNRTKXRYCOeoG9f+rtB5qEMWekXMIlxJnnrHePtsldglSAs8He89EGV7vTRSNBB5BzAVdlLqg5LoWRbu3Z1K4sC39iopsTe0n8KogEvzhc5Ftix9edNRpWjlFY2RdznQcLnpVvsmJGVKUyo7ayalZXloyqJid0zKhMZWEgaz8AQRvsuM/5MnZlFRm7l9RJ5IFVnzfwJei+N0WfVeTzPQKUbl9EkNfkh/m+6rB7+Xli+JcSvMXOmNIaef3wSPDyVIEEQkelA8rIG7BD7s59/8gOKzb/crwK0wF5xPIkz7zldvtHgBIDQra5eGQJ9K0+/6qtnmZVKcY1yZonndLFVARR2AoH+vYMW7ZXCTc7C2D4Ku0vyulByNkLTonYVVbYACLjbNS9CS7YTvmdn3U+Ad3ll4GVJ/zTlxvIEo5NRwCHoCiiy14+/xMfQ4oUFWmtTr7RJLkiDYXZjiNfIgAZZ52doR7/nBQzW8J5Tj+g4BM+3ClvjuvT2IViVCZb5XeFeDs+H+6ANlpGf77oi/t/1fp7JvY8p+YzqhIXtbu9SaWx5JP4IkleM/kagp2JLq139pB9a6pj6D766iGhJhBTKWMH477O6+jQ3ww3XrMLFRPwesqmG0C03XmRrguu5xFaOhWR0ONjMTAG5mo437MuWlDms52bkP36CaJGP6hKKxxG/O9Lu2BhY8VMAYrrmRjTgMB0uBJ5AOCHbpsmJyqNW6HgAIW2sFJHe3WtDC2ehdO0+0ORq84PxPeeASiBLZxCDkA7Fz2BSKhVWQMAUaxfG3TOsr2lYWCQ2HuXWw1Zuc0MnnJBv6wSI9g0HB+3FxdEaQcwg2wdMWhwwiouhm8frO+4mdHIIcgmMLeu8gps6nr2LBp8RdY0pL5JWsbtSAESdic8Mbr1s5WBBm0ImOxv/VD1CPwlS+qfYYi0aGGg25HTXQGuEK7MplSeXVZpBR5QuN2NP2Yrxh5JTJx78f6a08H8iqmn+cS2EGkllxUduxEufQjmalWPX5wRrXZgqYi7tKom5gXAuHFfx2eE7tm095Yy1URh76jBmJbPXRY4BU46yXa9hh1pUXzQqZzNBNK7pFOt/aapxPihSmHRgudOa6swkEt2cjkJn5BfoOScUexaAJ++vn67KOBsHWwYI/+2jkqoLzUX8l1rdgQHtqCmf4WM6OnNqz0msFMbtjNxaaWCHTiFY0JmPcCpGceE30ODgO9+fsOhU7LwOmqdlCyr4AzsfB1pzyHiENW0CF7nQ/NXsolG0JBXrr/Fi0ALQB/bIh8Jusocn4jTkRMe5wocX902MFAgGvFWLQt6bh5gtQ0K9aOeqtQWdixG2e5tlM24o/lP5FdlWzt1P56HARYA0sVyeR0RWYPyBRvI+6qNAlTQZItTuonlIaeqjShTK0dksXhnNNeWKpv/W8V2b/bgRJRpexN+uPhNHMhbvfvKCWOspf7m8NOWGR6fNnjPrPJDjkK+pwxln3eLlNhMD5/8YlQQQwsbUq7gYLrNXL7yQ6aWChXL3030mnWnifFx+G3nZvK+uir+oKD64LeWb4FAlb7pnlMbSzrYkZRExAfk8Uq9x0G/0CMI69eBZ1K5+1T6la4PZuJEG5tbskLWzGmo5DJxC7KuRBG3RIj2MX1P3t2ESmAtNHiVOfu4DzzAT7ZstrH+bDd47vAYHYp+H5s3RK3wBmOZkZ4N/lcS5uMU0T193GMRPdvOkst7G5Ad4aC9D6FebIC2I5aFYj+S9kNAAx5burOFmDNqrmw0SNFu2rv5TJzRH9LZK5Dd2ro1kQG8Z+1TILSBojd79StyYjVRb+mxxcpo9/JC4X7IkovKZtXQodqYmmIWD2mrZ/hvlOPwI14up3ptwbXURiCa/+O7Abo4ZNk3zqYd/Y8GLIDSy2tjiSXWheccUm1bSTycbF4psk2SYw9wDbLtBnENZDNfpB/quEtfTQx2aityzIygQ32LAZh/mX5Klzr+V7jK98/c8Jzb/+XYS35lsEqiisf6s7CcGJVhgJrUyT9o3nCDz/piUthrKZPLY2issCn9Yp83pzYynJjM+Ni8jihayWgKHFLDWddGPx1H65Gn1X30z4JeOzFprvc6xJTdJ2h2oBJxlDFVEwIRGPWZLhnSDKyn+gPQHLqk9PSjVtMjzjtKjBorX1GSZa0glDSjga2wue4XmVY9qlXszl06SFlyFT+gm6FWwtAMjamQk/VSQDOowOyGSaXpQM7hWEpZsgsYATJFfxcJib+oQwVeYr5nWLRNaMCXIP7cDzjeegvLx424npS1+ICWucA1p8yUFchn953t/CHHDVUu0GlzQeWpAXgtIfHc4HMQGI9hngvLIpMD4jFegF0KXSWVdRYARB7dshqRCNXqe/5Zf4GRAEB3FBA2RCv8ol1f7Xi84FuTgmSMOvcUMLatBjFtUyqU88LCwGz4rQ2G2ZC6ICYid0p+mOEpsSrcQlqw2FwkEfmuZZvPzGJ9BtMsImiS1hOcn4Gz0NHzsifeXN8oYBVF2SxZ+EaDcKd+QyHF7+LnjTAkQqJTQCrSPKBKruxSOTjJUa0cZe+cjANFfAbP8CVw3RPmyuPV9KRdjTydrWIwUvZxXpomDrDXesdlUl28xyWWp9fhzJnwchC7r18kNhNTZo7R7rh2ng1z+qKmjI7pTX6m0kgz/jSQA19JSQ4u0QdhFefyYwMRwV/aWLowcgezNqwtzl60FVVqC6VVJ2ColaUcL9Tf8cetfduKGY+wBVEEdeD/oh1afJgEW1nD4Wz5jreHji8vjvbvVehR9xexIPX3ALZIJdpc5ciykSGWky9GqC2cCjio6Ua1OywGQHsYxlkMep2+SzcTX9tlGb6x8rGBkWrZ3dx18c021wbsfVOS72N+OKTB/BwQ3XMSBslRPQrsG6hqBsLI+d5Wnv0QjFxub6C27gAXSE6c/pG4cs2t36cslfxDYZtYln+da8K/S6qV3C+vJYVbgkD22OpfJdI/NOJjjJ++S765DRUwHuZxsPcStqxHunAUt3kM5OPutvTdliF8ArkhsSMEGy6wYQ9YogQc38ggDEIK9GY+u7rjQVqOdAxxcyMY1satqGs2BI/1s9v778qHfqs6NQJhV25+337AZZNHQiGkkbgk9deK+jNfdEWt31IN9XHYHnN+OXkzHfmPrzoNpC7rOXyqXL42EtYemTrrgLZ8rT7z5E0nduuTdsBXBjmfzIFAIlp8UIco7lb0BshA2jB+vkNB2TRXjsVlM2kjLi+YHequ2TutezB8znptgQdXvdPp+dVsi9qz9MtreyAntGvKoGoiRxWXL/s2tZBJLFD1aRLZajk7+NtYoCKzeuSXg7OBjMzbrd2qgchttO9MEuk1VfUK5uVsY9vAEuC1xHj2mekKH9MMZQj7qsiXWAAw2VuwN5pJ7IB2YyTANV86SrTgXQO7XluFZ15WXJG1hQA+wH6G+0bwxUKwHxfY2HoMkFp4Nhugajntua7gINz0S9gtOvx8/IgIknG/Oru/pAFBxMTOKc5n9SxSIMFa9CMxD/W+iatvSTdZ2yWNIA9hwhcUpx1ELRtmjdltm3j8Dec5MOimHRdjxssToAYWbywdQ9bXMmKhnELZlMv/epwPh+LLeZ41pyXOJcKiPVw0oZlcga6EXHLnxssT+RpcCvPNliaGodLbMIun+9Xvs7e6vHUppPZk88K6DPJj/4mubTfqZ+Ng8c57b6EAvZMFYcVHwvtPwQRJVeunx1QVlvZ/kQiWMMarSxcA6sj3vYcamtSuQ1dlsdwWBHwtDRZcKZA9w+1PUg4NIMKBcW37b969rGLVecj+wcV182+nvB6xNvxh2nkzdXmF9fqITtDV7WYg14qvsCkOS1ypgxE+W95xt32CxxKGGe2ypKylqmce8TkjUOXkpJGColfv/4Brr/567BjaBuYJ3QIRbDFCDV5t9plR7aNt19dK1rEKr7OOeZv9X8+7PNiEIp74qJ+6aJnG1WBFyxnA045PwQwrwx8TcQIwGlE77csWLk2OLnf6JmfQ28vv7GwPLLbbFboY0lPkIc9/zuenhqbB7IhEatmW98qlaApSqutD0nD4Pl0i646f56iiDvJ2fWmKOe9FfH7mxtZUdphregkXwxlTTEew01+jK9F/ncBEFhV40S4CGv3Yf/ziBVk6BVYqzwKFDdqTDIdpUHrCqOtDSNAL9pLCGp1Vm+8xYOkwQ1/3/DaniwFy2NgFhAkbcvmHxpm3e3epMNjyTLY/oKjgnAY1Bj5OeS7DBpmDHHkMdteZZvXzEPzS1TAYO7NjKRXk/HR8wUwYC7mLC0ws5QrLHs8qik3lAEaJbSQtwOTvHxECYB+F8PilB+0Yz06pm8/NMCNQ/ki0HAnJCU5ifBEmSZw99nRznZptr+MWhRimOKCa/2FqQY45HSxiTQDt80bazyLDBvK4ZsMVWa8iZKNIFJIMVWj7h5v5fNN8+Ftm0aN/trZHGBxgv/5Pbd2nT23o4hgnj9kgm4eCKSdfQB7YTL21Uxo/agNfQaocpXpyQwirHmCPJwRI9MX7Cv7+U/3Tid7IdGiK4EOzPUOnsYYtU7/iX/zM9WK75i9QZO0nGYAeiCvr5lTGtLXpnYaIABXZHc1SVqmeRELwVih0LWRx901b3XB0hcCLKDWg9EYM+kdBUtb5XExWwbN6OBdcKTpt6eex8ussGY9Ov+/8NI1dt6D6i4jIgWWMrQArQic+JInqI2Tf8Laq1yqDjdLZYJLYHJRE91o3OssstO+Qy3vrmmpILMUn5zrXZWFBuyrF1P2tQvTimsbUcMCKRNsByNco5Y2YuTxayW5JrMUhhZjyAON7ApBxbXsJcdRpZ0luiTpG/brbdPQn4gjUhSPF5EH4ONod1VxVOXwYgIjB458MmJVU7hTCyzzm8tfvCO6RBFNOrAbJUYA2p8u13w4WRyyuQVU6Viw6byyFS3nUc2n2ynzWHkc5X4YvXK8v76yNIHE5Pg6IynD2BvUj/9Vu1GNgQhPHpd8GDy2mhi8+kQhzOZalDOkvCI4+NqNI9Fl1pQtOz51dGppm/P/r+v+8GZo9vXaAYdMqERmz78NCrtDksokYO6J7bB8Z/zWa8kEo+8Hvbf4femVRSZWC2d4zA8qeLFKdPmHVBxHlumnkFv/7qBhiXwy17QiFS8rKxBgJ5swrs1asefbprFo2DwQ+O8UliY4BPJXTHxI2X9XTj0PsT+JtC6Eh4K0bBFFs+EeIMrctSOWLQaNSb+F6D+M7J09VlcJQFI6ae5gMHL1K5htz2bjgNWCZglZxUSk6AFOQHJ1QnD8plCJxvhXLUlfNKjtPd2Vfy7JEmfTBtvDVRhZXdxJ6cppPxM6YFfsh3ei+Ns0HhV/BFoCe923clzNr7aKB4vKvfTYMjeiO/UxZyyTkQNhSHU4q6FUMlMlsvnGveFMphG/xnwUlnF/UJCDyDe1FyDTYfxhRErOYDSBfzmPIGCRlgHXBmoWqOew1GLQyLDST8uKx4xJHmzdVhy90v78YBiVdMeFLG0zJAIqeG2ll5Ii1GeTXmYtDt8Qm/M0Y8Y1tdWvvAGE9+SR88YtSWf/x92gOnjMI9t2XXpucwlbOP3qxOi3va/eBJy069qWK1AktDx/62vFOcoohe3sP8k8ZQiTH3ealG8FJH3x/r3gnY1XIsgMP3/56Rd/amIvwsH8aPYS8kFZaQxKA0ilOjV5eOjywosZDlJ5lDpw8AqjxDcnCQ8fc5fozkbSWQjY3ejUdInVxtMNEExbuS+Ok8EJQJQ76zmdhlp2bYWr19ap/9luqeRQNOUGjJAyQ//ofoxxmk341uGuGM2VEBRdXYRHRs86Rojn8MByFKu2T7L8K9cNXgU1/7rpcVsuONEFTk0eK56DxVVqKalqST/4IjEizGBM27EAdN3vuhnVjoYWZYq1nkcUEraQRG+vgbluxxEBFxPUD9H9fJDM5JIsPG5sWwDHUwCBLb+umX1qqMpFjvJDnsuVFI0cKbDVNlAtAf8RWQsR2vZmAyNNPAwWPUUIBWXp/FLWApAyjk8U7OH3IIwHuACPjpLwpQa0UUf802ZwsZBkh9EbUBVXt1XUFr7T4Ftko9MF8jrsLgcA2XtBYbGw6A/5cxFXTSuqupInYyHHM53f2Dz4g1F9nkMI8MYhmqQQNizp5jcWgCEn8Su7meDekIX1XBkKqW8bqGdP8iE4QNrxrRBZCASQ8Z/LTTp5v+P+kJrFdu0eRNzKpvvB2iozU/GFtFLXmS9bZh4TrUSqoABA7KEsd7O5nc4TFj8mtne/5CYb4K7pvw59g/hKDwdSKgJP4XXOERruSO/gIG0dlz8sQ0GTRYLT+pXwkQFaZdIBos2b+nmtUesyWG0NOlTF4/oZCaW0LcODGnHFg2oUwTUnkQ3a6IBOuX1OaidUtlSfp0C0qHpTItZy8yT4HkruNh5hr+Oo199SRKmwgCjMTDLFoaJmZ6MHAmYKSuYkNMYIDK6LhUcwmurb1n3vIWv2YVUw2gFbFXXZ1IuNdP/REJjVfRpGbxu3lWBYPwoCXkD5QqKddp95eD4nqmn9DMVpvsUTtfizJxV2wMaaNBYOcVlG50QgIMh7cXmiakSvCPwb5RLM3quauArjvaeyrrnnYK1R7/YpXW9Z0T2rDIuTmgKV7A5xeD2XkHUkoGnyqKFTeMGpwrLNGKx/Pwmj7hJm7ffnDfQD5CuA5zCT7MzlXoxJeTLPx7eEyjq2Udo4eTNBA9byCL06Efd1BMO1VADqWkcFquNQQvb9iLIfTWm2ZAUjGuLGe2Tn3wmsO7vhzkXOKnaxbJEu9xAt5eJhiLDE+ZcmIqEguMZ7jGTbYGHVM0XxS5yfracAYVM3hXWHAMR2DooxcOnr2iwyej6UPXswW/+Vm88Ff64A3EANjXm+j7LYTpuct0hoDMu3pVeZUPIgrCbSUsKgB5l68LRVzIf81+yBkcGpFj9J0rMLN8ZHZB+YR1FZn17y8U5fD4ISdQkdHQCNxdQ8FmdRs4A6v3A4EOn4Mnwams74+bVn9hLCWenRnzdabJJaI8H/Z5C7tUiOknVKPUJEczBmrh9RumAadXCd1uteH3UwEIeaSDR4APq3uBWDIGV6wYd3D98YbKn9dqpi0IY9FNcIKZP5CgKXyP8ytlMtuyQsJkIhKG6eWnldA4/291UfAjGb4kAte7UVh8xN7sQVULDvFy6y1YgOXw83P7VSdHJ0orUOxDfbtK2HTzfnYc3bKE5C/Lnw4FfdCx3DAX0uvOjsXurdvmvEs1h8dECzjHqPB2CNcy79jshwW0LNP+f6SqDwnB73xVmjlDXKK/Nr73hH5W6755oKPmZVaAg//ylnO5rzNg5LTrDp0Z3+9zCFOs+ndSeylpVr/9w2JuLuB6G0CqEDS/0+zc/nxrorAJIA1j1CdO8ZQwOXC4XoIDWYWTfoqk/FeY3b/Iii665/zQdKXDKg7mGWaihvFgXccR17/cnyVzSGL1U9RWXG2TgqaJfgZZFZJHgZltbCbbCbPZAHLjcZI8B9+EEuUF5cGvF9Z99FMVNk+NqqMlDxFjtFgh7jVDgq/ZLgjDrjBASqz77D/WtpLb3NrCChkO61tMb9uv4lkYn8o2eio48iVcjR3pVHiT5FFtINIHz2R5iPLi57pN9aKV9a+MfeUQJTCZEWXoBRsgjvDfW8MlxVoczyMMP/iwuyiY/zvUnz7pwh8ZFfjeRK9zResnmUhSvGpy5W/08SVFNUxWJdLlaZLcCnEDlHIlw/ghKIMgK76jYRYZDlT7LfTtH15xHoHYKjsTyvTEunEuIJ/JtqnqHAnaS/RAl6B5j/eyhPupPmCbIuHyPYkBcjQwuuAZ/gk4i6t+gfmTvsP2JGaKlay1aDvvUeoakGWFQkhhE3/52o0VOU3jB/Aob8TFTsANAwEMVbodQbrcSHeyHvVZCIkJSABFTj/Jkzsun3HfrpjsMtyTKL4DbNdHFqjxGzqV4cWrr+Zx7BwIPoB+k9rH/cRogGXJKs0ifpRnSTSVT1S54cDpnoi+N1Qdeepu/CdjGllbvvTBfPjDCqkCQUhOV1n1lw+MJoKDkRvRJH0pLmae+uOkd+W6lvxuD0cb2NRz/kpzYNdZ7/aNDnRG01N5Sl/FjJcL9yOok4xlE/tmCI1mqyxZ1Qgp4DZsgITBP0pXaHP42vVjfTt6/00ulKPLM1bKD4TQZH6xBuYD6tY01m4/VlBib9Y+K8LsyuDb7raGDc2FCf9WNdu2GQO7h3vHRGAv+ADTZyAkVaUKzlVXaANyQey99WM1X+/BHfZU2NM5C2dZE3F7vtas3OBZjWVVur/N4N8pkaUHqW/vq/DIRGW1jm/lrFK8igWhOD/JOA9FzQnqN7PqAD4YkKSqCF1IZUZkwPk6QeQ//fDnnlRZRIjIe8mOlFjL1tJpdSHMZOZlYEGPu13daCOmArIxmNUPGcrPHulYZwXNtg1PZdBEKUO9fiHBxvkCXTX2tU/wrcyy6jxtGon36KgBC/+yO9if2RXUCkdRVDEtiifJ1AprwocPABM4sytwfoVQHejJNAyiOLKQgQOe5folT8K/3a0tU3LoGsd7skdSeq2nmXc/t/Z26f+vc7CE8gU46Iv5e4UPomRJ3Xe4kDTJTeYzqv92yuUECwUtkT0J06rj4e9y28j2qKhlyjxpKp4hnLtQoro7XvI8eZ3woH0mJzgq1O/O2nDuVT6YQbRen2JiLvdSw1CuNNrov+0paa1lrvHX/HF7wa/EMYbcluOXiT0nY7jPOHNeegZSdMAywlLYlzVJ7vGAGbM04nMf1rEHzp24gAgGR08ftGn3VnkVKqDjYzyX1v1QeWJKHrSJapP8xEMsZlLfu2QKlVdFTrMfPEBOXdQ0PzTlH9lRU3LBpzS6Xuxv1ypjqeVWKCc/Z4tqQ6gU3kVS+yUG5QT+RgZ0hUtZjEP4flW+Ludu+AKBA5l9C9QsYDc4l9f/qZQ5Bkkm6uPsbS6QmY70PHcg7+Zf31E2Kwr76An1dYQ5R3c0NiWKy24Pr05/qSaKnfEJy7wChbDzb1gMNhJJpJNiRjxfGAHWnVmcdWw2aecevPdLot5Hfrdx4u7m/8ungr8p40YKbnl72Pil3g+o5WRAXN6ZG/+Ujbo0z/miqke/fRdiySKpsnRjIuWCMwCYQDr/N8PSFBfaiqGndfJMLf1Nlb0lOF8svtzVvdmY+7MXCAmFhogf00ZtU2NK0uSAocQmKpcb9FiNYvFR732KpiAuAiwTFSzznv21xtlpz/i60B8cPcL+mJZKg7iIPNFMluRKaB3d1KmE9+iwbLhUKmBKsoBGx/7z8OJVc4ECKO9QTeEu8otnz4/7fBU5NDqxKy6fA3Ws0vWf8JWhJ2zydqvJbkg8/1E1aD0Ki6mS4zoB2g+bbJmQV6IOKuitlR7sR4sdUnpOMQcaaKyzpXnlrDAA9sQ7d149ZtkkaXvUOXXAl0mMx2bBDmpOgSsCAk4vuBOVNVb7r0JEP56TXBCvx/hBhF0/KOL4SD5R+gtEB/H+aqojDwgKYKk/+VaBK5Yhs9lmIxiu9R3J7c5l/xePa7KBYsPxoJy8Hn5T/dJl7GGDhrShYGDTQrHJB2JYSPBPIeiy/6ogTcbZDSj9iUpeqtjuVOz10MTKOgWMDSVGceu5YYFcSkn/e6EgxhVM3eV+nHvaUaep+nBTKa7CgQRnhK3Yc+Vhr0XmOsDYHx29CdWxzkz2LY7XTh3hxsd9ciuZR9y6TzsIZCfAs59BgPbeSp51QMBP7h0MBbSSeOEEgTqX/IgOBgDiYB0Km8CJTacoWbaEVeuLMiT4G8s7dk7FvkY1KIKcWT1fWfQn+ZQcb+e4dJ4HY2tcW2ynFWEPZ4J/bg5I0QkJ3b4ndKmnEzOS1zbfoK5KgvlUlKraWCa8SEYmKFVRxeYfUbJXMyZBqAYYtD/+YsHiB6FInTt+sgyrCYsnGak46ftyQ/OD1pPB2UCfi+/vyQof3pxQhKhtjcQFQ4cosGEyR469c3hZgXYPvT+6AaIgKotkFWp299BlRrhQgUmVo8n80FDYUT0qOYUIUJkzNg3HYRekOVFCqraRiDdjPcsHYD/P4UlFLs3AkSZSf+WXyfNRGIQfr5+56DcyX/1gUg0gEhm0Zc4yT795CGGEXKkqKf09MRgXy2yqu5hUSf5iSdSIS2tHpyfMmMQVdCrjFNmfn/3pNsvnNBDEfiL7KnhTJFWlmS0iceqz3SkwdmfRDRksxePxxQkUiBSRmZIu57ZcZJ0su9nt7rjJx/4t0FHaO9iDr3ltE7bPRYzAk35iwWcXz5TQL1za8r3aAlLk02HTJl+weE3UfbZXnAcOFCKjTWFFFgRH5O+1iUwqZEiLEG6KOi8FGxuHe0/B+kl/ENK6Ve7EOdUF1r9H9eBGz+NlbBieqrsH6xtc0bhGCyiCZ8hH1hvY9vMTyg5Ngf2NUM/7omGi2ZflSMz+AhjvgKzTjLW1+q+qZPAP5sLpbe5ZjQPpUiUvS1KTkly8zrqI/ffvq6BKWrarVw3juiWU39rqIb7F6v9XI75RCJuQyoyiarC2eyGWs+tNI5BIxKvnNGE3aeJO8mjSxNV7evyKbwhkVefU0gYKHqGm1bDPHiOI/YqJs2ceDJcIdYx5pTHW6L5K159HT1rZo848HgmfOaVwRdm9fyXDZRFWNd3SZ9rouAwTuRwUspFrN53IWYBP90U0jXtxE4gfcOWjUa/sYZztn+5gaMj8j1X5/F5IpxuI9sFyAI4LO8J2GuDKgIUiKyFRvZFhvwKwAlJS6d06WwOFN7W4/ri4i1zdi4F6FlCx0HsjHvSLXqV+10tPxrMvN20Vhvetz99bhbT7W5QdWicFfOXeltrEH+4Q1cJzBmI8+qzlclGkH+/K8pJV+n1a725XyIUjcg6jixxoQtG6o4Y5w3dIrWgKfPdal6U+jgUch5zc4NThWZdklmK3aSsIYbZki6U79oipKqWnfXYxj2kI0Ktcjrpnzw6QWlEiNBJbwfPf9zdlsSoslaD0v70URx6OdydZWxCgBZRmgsELSATz7hFIA2tD89XGDCtw0yx8iWlzPUKO6OY2PLz6n2KbKTtu9c5xniS8X0zTgXN7IjdJ+U4B1DkZYD8OlpzM0gw+gIq7vt3eSHCRzVUqpn0nZy8uu9xe0pjY2OhTk92JTCts2DrJ5hxKGpJIee19bcyK042JQBPoRYPNNmyhPkMsWIu7r9v8jIEaY4XXuKoUPIgB9RuKNUqy2IA3oazrUfgYEvsfmNpiLSmG0X8CIOaO5WI5YbFc79CNBP1tj6VsXdO2qfqKcVqbmMOTGzWJOLhWFTPPKWJmTCHf5SO+vXEeHTjIQ2rID/vIQtihcE64vEYReuO8fc88XVOvwP4PBpCZdpwliNm8cBj+m0xh8dQbLoU1rX7m5uk9mjR/Etct3gudh7SmEttykxJgacOBE983ZochJ7C4M4zirBbfET6TunjVkfPE9vEXPQbrcpmjxmO+5hh8HQ5uUT14dzPHiCrmaDBzGmPPzHD/YipTzCo4GKpHarsXOTLZ7z1tqeiq1AHl0WDos4RtCnDCA2q4p4H01c9xZGtRPYfu/z0VKJ2/jhA4mOs0SWQCHdgB4I4qii8x42zMQ2Wi676Xf93CZAIsvSjD88gTsJJ9XspylHwIYMiFnHTJl9LSrFyeOOYJa2oTSyDceNwWD0pEmsJ+Q+tNc3WZwZ6+Ekbf6vOWtHl8iVzHLvqKcJyztCL4JTUXScdv5BS55e+qEptL6Bj0Zqf8inRdQ3ZgvEvFOqSf9BsNwlOpbxVsBEQo1FMQ0bVq8IYJgnxVDYF8y/U1IpCl19O8Cx1ss9Z08Q6Z6XQEDTf3+hU8oXZakEc675ppiN6KQ/1YidgNSTujG0Iw1mnK2RuPUCV3Q5bC39qEYB2JDbM6DWyxdDj++/3O9ScfbW6ktRQDIJkzHs8iAGTZpVfJw5ngRReFgrZ9umPeFsfwmSwEy7oIZMHIn8C4PCRBfvtFjtwUFcd12SzXC5XVv81dy3YlouLIxlB8o//H/xBcYrx5Zt+lsNxwXxafCFqby6gmNExnVpObq+5//YO/JWbadP1hUbPYyhR1BSFbckUKnXERqBF1viGh3G5vsIIEQKApHR7uf7tcxPYtbpnXZISmStZUzgA+qTNhpgbAwTWf42qZpcuHjekyPmg6PQKgXyp554B5Dggq3MK5pPcm0iXK2UDeLDmS/wOUTvUxQdaIXvB07sSZbW83riQl7+sLG35KfkKF2UzvPlZQ/7r16ecaOAAlPRuX+kOXmeY2yIf7uCyibybLYw0oD/vFlLjLdZ6ZRO9Ob46ATzGivoHoe849TxxogFhymyy8Y0vEPTMJAjZezdjVMB//B4hlOVhyb8kn5E23VkQVi1Lt9SDr52ZgyZEzi7/9tVP3G10rSzhdfU5BefF18YoumtG1X5mTgT4BNC6wKaBvw4mzrRjzrQhU14hAOnlvy0gWO79PXivcdKJj4xwoEG+iNxEJq1PhM/u0GjtPCGnYV3f7CsCLHQBrMkofO0d1A7tsftuxc8VHylZuHOnroq8IjnH5PqJQg9qxPoQJqSDiDKcKHcjzpojNKTer84pfiiVaihlTtY2nWEQpa9Ar6gJ7z7vjAA+FP+CCBsmylZmytp3S50+647CeaMROPbGSzHbjsvgI+abWtK3pXTG0iM3LlapeLj5uNZgAU7afnGXBh/U9y3HEsmsrSK2LUbRKxoZjtnT09liOGbDrNCOVwotzaW1OT0gKTQPogiD4tfBS72QEgxbi6/J+rW5Xpjb8fL74MHqqNdczAk/a0gAMx35EedzEOIocCnhwunFdl+QsB4P6kRw4hW+sdz2R/zSpRjdqZU8OCYvu6qP28jzxniyqHrJBDo8qOt16o1kMPCKffbxTpy3xXpMWQHlJCAjPiMge6ZWGbhVt/F4VUinq4byuS68UjU0j9V6nYmHyLIX0bdsQihv5aH6crE9RgII6FpNIvzLW5IcG4dDJvDt+AqykV/UpgeaV+ezQgOX7RsGf8nbXZXdEYsCKVL20Pvf+06aOynK5iHxac6In+Ode9LsNNTt4K0Ww1imeEIBFSsw2GUVQV9e2m2F7C68kIvUJq9gMCbYitQJZBk5thbCDeaR1xC6IiD6MfZ4pd/LGF6V27rVDBMpHJ1WM98T4M/DwLzQLl6zbVQiG/2L5/1XDUZWptjzBNDOUuS+tuTsDgrrNTyqlm0Ji8Y7oypHJ2KWTPeQiyTFBK1Taur/U35K1CnbV5ANRmCdCd/mlKVPZUUApH+2BkE75U621xZB7yWg/N25D4SjVNneGeWfPUJTS3PXedVZ0TdqjQsl/cB4DO/dfD5DvFgI109/EGY4dR6wPffCUTQd/xLwC80oBuZ5AwlXS/trD5RUI7PMuGMJZviFbwzwj1bqDRzv7OJaWKTifs8JKNIKysfL9AKqk0wLoF+lsHw25+C7SAi3Uf+bFBKzHCLMZCS08LGsuMNnvh7K16xvWayxLYTFANxcHmk6e23fwhEDQTMC5Af7yaBWRcW9yHOU7qloH5cUjkWY+qQlV0hlYjImG/8AYARz8FzeGULrJ9HgS1cpeKgVT5lXKNmeQOeuySc+P07iLyBjPRHe+8UjH4BtGSO3v/7EHYI6M1MbphEqSDPtdT6IwvnIxBtvwYaQ/Svk3jaHZT8maJdH1swfu2BYeRGLS+uK9D2Y5UUbzOMRibQOc+LY/fSLHVl8TRLpRdQHcRkqWeRK8HOs4k8fuM5l7+be7Fvh+IUkqZq+iXsJ2v5XJw9IHE25QqF5bUK1L9nia2zfKJwZLxdC8KGf4m8aaPUfoZDV+OZ8bJ0HkQjwudz+Xr8HrLordCFJYUgqneJiqpGe0otapa3FAH55PRlUK/j+SDhdHd9ycMtwgVRt7HAbu2mZru/nJ3n7hyKA/eZYgXuFlS61ocjpGbqTtgMW8m6B9b0QoiQtgr0l/QpS657FiL+QjEGVm9cgwwTTrxTvSgzoPXlE12OLsTYm7NrotpYEKPfYeedBpUINg7AH1g4jiktBl0CTzuFZvKmM7K+NBomCmTFjpUUJpy/qaGscizDpkkEBisNyQAEyKbNofslNcLMD4gN1DhiQlUFbCu1WFUgt5ESrKU800s2EVn5UMq55jo+3TX7wSa/EM+NK3ijg6LX9MXn2XqT2Hi9ArlCnBOuep6dy2flyEioiZRbdj+0f9/zkOOHzTtIFdNc4XCnX+2YvOFHQLNDUQdkf/7z371ijeENgQM/cBH9G5xd0ADcwq4cRu8cGOFhvbJ12TRarIWdUkOYmWbckKPfZmBfnwtHbuGIXjTOfVHETtD85OPyWRz45NctOTgWslGU9kaBu1hQ/yBU3thCUbxTDdDQWErfCXrFAdWWSHBDvG/qWcs7eQexxdbPOeyrhbG7WHZIPGkWWnfe6RzS7UAPQswlKrAVdHrpwRI6ojsby2xa5l1zwJboRxzCxaK5wQNv9WReBc916QnuhJ+kiWSBjlTMRFdt2ZFX66r9aWxKidaalznpALcraH1BAigphcW+eqgB4GGFP5LuQeW2DQK8iza+uMBqfCx52M7kfgtrbOZ8wP2Mh4tvzqGJnt9S9+aIdyqebzeO9Rc8crirbAMot0XQ2ejx/r02y9RgJmsqy2NHAYrw/pwUOqbQe/t5hTzZXPTmBOS4pIRfb8hM+0bYeBclFQUtQF7R0lNluS3AIVCdRMxfSBBwycjdQmPk4zVDrubmwDUAMoqmJdqjhLlGizUs/pxjvrchpCDXJelcTHy8X/3QifbIar3zIiIM0/uAI4Vm0cvPV+wIcr2two/XUg+mO1fG+FbTN6J3NbIuuJMrp33lCFWE5DmefNzXGYj6RCTTQ3eExIAKZs3QRqNm7KoylcH5csT50UNy4iUJv36Xl3hWrqQ2hscMBorqCgFZn443122k+dBDsn+aiYBJGkGuXqqEqkYCNNcRRYObyZqUKCcQXOaGOmyBXwavRc/VrfjcyBReVRUIfVTlX34kf/AcKOCg4TzUFUPesTSLCHxh3oixYRVhOhNG3SEGDqCQCmYdHUvevxsyJWYeMUAEvyQ/OygJev4w+CxbTMoGL2yANmDX7e4I+eYMIS1Pt0ZgLUB2vKp6psd9naHjGOyK5hNa5fWB/I967fUHv9h0zUTXYmntn6COMbT4QhJJkamWWSx1Gqym4L/wJ6+PWbC/lmwjbH4Crb88+HRLNPeXtXl9yfxEFM92izgoqUrRR/CUq4MrlCiqkE8/AUzjvSkQBJBkTmc94G8OWLjAqP8gKLbsv8YkhaNaxcJU1p2cYnVEUypJNpbAkTn/uc1vccfxDQpuHgGVC1wHLx5K8ymAHLkw2KWZwwtNjcUA0Ln4cXdPE0lliukN2kS5UvI3OgssNhzzE7kjO3GStMBHvOu7kLdMhreGPPzeALpO4/r2dGA7EpsgrrZvEav8iMxPT8MnA69yl1y5BmB67Ha8aXiIazQzm4oOY3VQDB4w453cPRQm/TDT9tkxlNMBApjSO6Fj2pLvfb7zHqGctiAKPEP0glO4Nc70h547bcu/vi83NkZ3kBKT2tCgv7qMTR/urdnruSIBM9zKa5xqZjkDBcq1ViOBPnDH1AA7xmlwxFr3Oe6vGYJGcjgC61Hag+RjasFWa6D2XhM76WppwWB8iRoe3oK9NT7aHCK13MSAE2VZLuhjiB7Lu8oy69Sq9IuCsFSKN3Zf88C+JTOsnSiqwMMA3uQMBYnZbXsGfAWkRMk2RD7M85Jg7q5LyXM5X887PZzFy2CPsv72I5MIgRM2jjOJEUEnPF2h0/BecIraUfJ2mW6pKPxJ+3W/ykPI/dAfiAJA3AUyPQ3SLP6Qs5gotP3uX3FTyKUhGEQvs///Xn6IPmRMl8FeRPSFBr2hsToq8RRlS+l04WwbPmkVaUtiwluDBs77WhgDxH99piuAtj1pVnJEbCZpRl1a9vMy9oncaSGAaaXqxGsLj2QKY/eT2XUTbd/zAeDhuynEd2hKZkoXmgivG/dgk+yGdpFx2cX1Tlg5R7RKIp4LdJYtPQ6S6SJwQkoSCvZnbUsJeilEXGVzYZ1eTlLb49MFWLcz1TlfcgYn6AJIhDb/HEVB5AGe8sqCB+y86b6NGpi5iiqtE0tq06KQHpb8k3Ja/wvmFztLzRMcFMNIDtJA6Lvx1DlZhH1Rbj9wdS/IJhsNlR6qh6SBbrGoekxE+UdNgy+upyxW6NzKSKSuu0BU9H4iSlsAftlpviAEzWU37lJq8m14d7+Yu482jd8scSYBhYXxP5xZ5PmHrvqPpMCaS41sbPdJxfkpcQwTekkps1Yt1RdZU8eTkGGrNSkZOKqH0uClavzrS2FC42WPIp8dteKJGqO49+UL835bZiCPpgdln/YlHfNVinTN7BMW74dTxjyN9m16w62HvXLOExbJckvhEgOrJrOpmlXWuZIqsTWN5K0NR3XJSYuIML+V/RUY+xQOdcufdbi/3g7inM4ta8MaT5gabbtxg2xxlN1RRP2b1HNszKAEvVo4VdTkLK+ea/jRsVj2LDPV3Lp7jKsemaP9iFAIOhtPyuhdmn5+CZK7wIkD+KK7olxFez1c8aOu4ViGljo5PjFuslQQgTzbIGlOkEZizss4SkDT8/JQ73JlXwD6dmZyVthEitDVSdvH5ZnerlD4ugjDBmeEX/YHRHc0gfZbKym0RdJywbVfZPiXcbjXF1PDaphwU1vq11Sx9b70JlJGoYS61W7W+56PJqaZF2pP7C4bFOdpvJPFvBLFBvLdb222Vpl6dswSoKEWvq3hs7Sru8KGXuufH2Er99OyUCfsDsPcDwFloSNoH/2nCUt6E7r5R5WfvGt6xyxUqybG8ZQs4ipFdhDjLovvjiUPxwjNcbXd6zW/VmlWgIymCuo9ahzaMRRyo7E1yiIcORDETewcHd2lcm7SLVjxgqSNFuX5tNvhQtn3H45GtgTEMkEobABw9hLMHuX70p6jWEJ/nmEqGVNWqYhsJg50TASsdFtsZQWPZECjrzHsDmovveTXv34QX3jBHJh4gRpYYTARZzkyq7XRyq83nn+8N0x+EKM/44bqh1fmZtyQzxJFdsIDMRBmJ5WK0i80ZrofDc3khdzfCp1Il8M6wDvLSqrGTCVAChpfH6zBdxZlnJRQqbgrKkpPXQ8mKGw+aRmBFjvzIEglPtmSBcFoJciY8e5d7YmVU6DAQtzInDX0liCnax2Y2GZnDQdBYpSBMmjyXLMR2mhggbKiY/ug3CccgX8wj3pb65rsT5EGO4qI7tfULwbp0eSxUijwKL+W67EcsNSYda9rBK8uXLd719uRGPZojyelRBFpc/XvHjh/4FHd0f5/WvDjmQExRZc5I9l29G447lmq/x8WskRWOYIXGT7KBmYAua4qggDjkU7P7/Fnq+forEW+iRAcfrfLSjMvhwSYjgU7GcFcl0T2ZOeouPl1HoXKjarjepvhoUoAbUsA+Qjg5FcINw+f+C6y46AZ+SrNuBj/N4iU4NrvT5xl1oPvzSzSWbToXhitd2Y9M2QmpWqBU3IiJoN52ASqDu9H35vMof518iGzgJIOZh2uqFA5mU4JTUV7LHv3wcgwlWH4awhzEaWDVFyzWQKhWa1iWcH3zK3NP75ToN3sOU16+TTHRB/TBQZgTN81fzwPNXCD3nCwXVAtdAtAbe38DxkBETA5uQmdOqH1dqBFkLjKpBaxyLEGn+wDbJ8hY/UebnL7KSaQ7+qEbzZDqvE8xM7fIKdRx+SZgzk3b9/qtRL8e7XykMgHZyYQlJTe++dwDSD77zvgazgKc8eHSZTL3Xk7+ZLECEGymspTw7gfsVRzbpdr8BES19f+L3gXnEONtUEOT47mmXrH8c6/59NA12g25iZDRtoD32O4/3GRxSTPScxAaO1sFwL8tZRschvTB5EmDbfeOuLH0Rf/HDb79VR2hwuD0h8dfh3Yo4YZBi85lnZPoHpi3QUYJZFxfARzj9atfFQqOUbIBO0E08dznDVXpoQpB+XB86rDAIXaJs03RMJLMT94/E6jyHov8C7o1KpHv/VpEYzEHISq2qnWz/LspF8hAOLxlk2as+ADl/Ad/TtArOYUHNrq3VYwIujRx4MgZcAqW6OM1+aoyzLRfvZIFpDYMowxec4mv/f8tQxY0gVDqOMFldQYc/wm25d+6Gg1q5Y1wg4U5fYl/fNe6TQDMC20ST7YE7PnyED/QkS+zaA1TeW2ZNqRUFbjSAT0K9u4kkwrR8KPCBwiGE3QByitVuWnP9VSBC3EjXcIxyh76+kR7FT4uyPdV0Kab+wwSbd3OFGGXnpI0WMl4uozS9ULihhk1FifMtrHexnuFlEzYPcHcXf5dRyl56DbGMACZSYNBizVzZ7qVwGS4UmHJuWYbiZ/YFuRGxM6PCCrt4cXTr7O/hOLbWOEYp2hJTfqvDSwAHhDX9zXuQd8GZIHrqcyNCAnlubANZdJ0M9744+zbjp4T0B5QomBKwrb/D3E/lb2AIfoBsL64/Zh9gPqD4LEiTqt0VwR6zN36VKrdeIraoy/pvn7fYfxxqJEnuIJWkBTPhSt39R1xzt9M/JCx8Mbc6iehAC3GOZ0KRGViiqzQK9btOBarVDCgq2nP0WwG6bW8cHtrukP06pTdQSsA7be9oei3yvWxUTfl3GKms7wHi1bbcBAGw6IZSskEo4JuvNFxn3KTWGg2EknTRfVY74Vq6Gxpo/dm0XasPXGq9OAdbVqo2ZkuBf6XA9eneBk0nZDU5EOGvN1MPdwFWW7ebJ86XDTBFtxtt46JDBs8f4isvJY9KhnEjlYM1/DeN6O4urFw4PQItrJLgWYaZXIxN7WN0JlbY8crJoMr8FxFou4ECz9PB5IwcEJd1pxzLnpzzZtbyXswPZZ1Kp94dZ2BvAwxPhUJpfKTZMeitx0ejzVJjZlbdKH4n4BPLir4Dq8skWebrld8anlbGswnrA17xKwNXdkWiSXsYTyct7lV7uTKz6SVYfJFc4k16y+Nr6FJDR3jdQ3FydOcG3puGGZpqMYspnhWQWkGI8rsbiHY97YcjhyNFJ0yHm1gS7wqyPIhCU5nWRzUDXbgNawN7Flb5/CETLvIztAn1yOjIQ3b1lzj0mRBlWLn5JkwGBdI8vZf/TcBmIRRaCB2dZB1Eo5K9+MGHGykVRGk70Hciuglzc3N5B55ouXuTSTYScBJ45GJbQ9bQoPqwEoutppHkxGw7cTC6gytaf4B7p6pFZIHpis/lrXT3S+W1TKN09e/Zn2e0djTcRYnBOa8/BVtedmD9b3zXVv96xijOVjy3He8Xzh2jzkc0qHMkctr2jWBZ/KG+hdrcsrvMaXGpu1Zno3pS9bXigReJj6YIzb7D94dA342kDA1wDPLY6wSG+e2WLGV08xc3rUJSJEQ19jGyYdqzB4HgsRsgh72bZslsq5MujMfuq8V82Njly4f/NDAjwsOugmxxDbPJyAa5zFPJ5Inm6P6RDQeQHVqkO3vN94nK+DGQuKYOS+gdzwpu46/d+N8hdMeJOwgRiQuIGoK1pMunfjSAvY38KLKeOB+n3Pvd98PA0KVh5ZvP6n3cmKuqrViMNUpsysM5HxpPoCxO+l0n0NbtB5uBoM3A9RXqcEJTUPUdwhpS8t9Y/lt7gPLDSduxURzgM8JRtZWk9wcmTTqhZSEYWql6cPY9d1Lk8UFqUDF+NIt3MA/uY5Y8CKSHd73aNyZVzLQdyktRoBCcnVAYWmrCx9vzUHz9gunnQFbBLgyjsa5Su85L3+6mpx08lgTeGFWhuigBPwPTe7DltbPZuPb6kYxvvyDeHU1zYbyeme252beNdW3F2OrVsXs2UD3Dqq0Kuon/ReVkHuDfNbvi48ryLHZF68KG3nKoJwDj8kwQKv/tc43sxfyzSRdAd76yyU9Om87BiKiXoUeXLkgjbAe1j+3KqZH3COFcVj6FNqSTC1qSO53AIqg/CA76gmAaoO+muTxujYM1fDMg6NT+dUSlEkC+AxLnGVqYF4C2BYu+vWLhfqMaHVBGRTlBUGzH2f4NIaNtqEZycmiTRhv/ZXPzteQcAUI+om76qGOrpV2BMshQp++4pzubZJ81FfS5/kg1aa5d0wdGpXj9JstdWYT8P16usG/x6nDrWp9RV8RJM4wH93W0+yyuI+wVUr9ghbCrkCPvtux3uDK3BaYzsBqxPKxyRbDpqk6gTbMWqGVXW6r4iul5ldzg66z2IMpo1bijTWvUdBUZoLz9U83RH+ULHJufhoRRNEg4akPaYuM7miTF5a/KuH9PBKnAegvdBf+GsvIdWckc74D6v89PrWBHXnE540uA/0ncOSH/zFXFGemRTrnsxOE8fPziGXJ49s7k8+WQDPgBohZz2Sz2sqolZS/wwXb2zDO22r67yafNM2Sgwq9ek0H8NpExsBl3VUqEFEMiK0X4jr+8uFEtmFAVnHXNisFy5oiABGw5srjnAiYIbcTk0wCsQtDAOSebOnpW41ZjV4BEZNTzaXUG/CmDoVS2MZslUQpoxRHTiAhMqJUsqGai5pHcwJdmpEJgS4mqcl4dn8jrz2SHuLGS7mN3FXpbsk+YDuSVKOszz2dOYFuqYbkPNOgr8m/3RP/+4Aj2BfX/ZLAfIgxHY80A8fekgOBDrQsTlHeTFg429QHWSu5BdtGc0Q+SR8E59qXeta/y7DIQIAoh1EN5ksdPmmDFkUAe0vXv8a2hjaLKWoHVKZQMwukqX4Jk0Io1EemNVquW00+bU8sjPWxvpVuoTDPWwpEYSlBn1nPLEQm1InOkuOtuf/C/cHSoHjO/ahGicelB+Xg2qAVSIumlWr+Q/OlTD/LkY1rM/hsdH2Q/+XvK+PMIj9vVHfn5IojRDG1xUsKdLgS9WwxqdwaFAza60alad1bhUiVsDXgxRt3ndFXy8hJjzNd8apnU1sUF41ZTFH0aWGeHwy50EC7Yio9OY3E49pQftj08tYOxt5KkJIB0rxWMt8khHJ/cY+QPv7g/jXVv160L/DJM5lRcgkSZsg7MgkUK4dQeKnXQp6Y3QxKHDyjFOe/EMnjI1TeunmNquWboBiuhlFBq2VZjhTS9MgjKcOPm/NVbwYzdtXPdGk+Cmz3q4I9Lskv2ExtTEZV5hC7ag0TZbU7cl4Kx+wvSEFG+Ygw+LeDkJZat/xVtKHAOjzk5gVZiy0oRozM34p5tcBlm/NhuItSrVPDljGQeBwwVaP2gQyWcOAAwJwx70DFdSg3QfuY/UNEkfLmh4oLGhlh/tXzncAEsWyUGc1giDZ5bSs7d8NOyikM4f3LB7YvrkRxlOFciIzj/tkwp4MYEzG0ebaWhS+cffAvoEFNnU198wdYjVswBvxu56irWYm1IRtn3n4vlmBfI008Y8PiaulTq3ZjgzQ1+i1yWKx8zem5w3BPpgDqrCJTFtRjfRHXVxhhkemw69OJsGpHx4SEDKgdhOUkMEtap+Y59TduX5iruFJRiyMq/OADWBsW5Vfb1ERK1Dd53JAOfQDPG4G9WwkbKlQA0Bzt7nlmuhyT+3ulbgUml2F7YnCFcz2XSVnPjk91COOSxDYsn4u8DbO/X/2r87ICZpGQS4IxJbw5QqqHZG6xpK5MBPed9Qeuw3WyesY7o562oCz0plFCImlqjiWINRhGb7+SjiGxgu+6zxFoXaeJU6RR0wv66y4JNNnsDybBN8v7jAvVtGZu1otAQh93B9z23nTvMu2mwvR5TZ2za7VISH9U3C0qWhjjWP4djBCMnMqZrtpGMl1tIxRCVXtbRxgM/jT0RG7lhYva8QfRW4fBU+ZxT0GjUJgPDnlbh3RW35bjWhfVy2MGQ3vkxysuWWyWEuzcaPbQdfkIHWTuji3wlXIzlfIlN8So1FwYlUsS5DUIz6J/BLmSpNVWTm+3VnyoHrtuYrKz+C7ObNYLw84QTdWeD3I3yW1O9vb8k2Eaa6OPOg5EXW73RAbtgLdKQurhzVXjdsk4taODt29PP3+rgHApzEa7CFb2tQiGsE50urbNwIEDbu9oj/3WwtW3ZHSNVZ9DYfUFyMvq1651/kqgEm8V2HeLxbA+ETOanVtlOAK53icxMZRnu0Qi8B4xS6depgEu+i+NcooRk53TKmOkeqaTEtFE7nWKyDZTEkMsABj1F64HpI71xBqWsGnGsybbVuKpaZ1ahPujZIjAe7qA7R45Bdn8yVoi5fq7HLpeQkd6ULRF3suCowVZl3akDWw4jXor+UbNpNQHRaZk4thLwo0EGdGnC+vFd8dpAeY4z0Elq4Zt9uPvC13/XXhEPmsGaT0zMNMWtPXABAKtUP00ZfbWZSqVjW1TrnYY+ZXzqSpfHsUCvSNOAwXPPRpnAuoh8cJd5zWE/gBbs0j24xUhJpNU1HZxmcyS+MDtgVYQy+g7hMFOyIyF8ncA8+KniChAZ46Sl6KWj81/mbxYzsRj5NXN26NO6dKysFsETquskMHQThTDTBLb4ZGLYaU9IyN+AIr+SKdiQcPktLSymiXljz4UnYTX8h39FTXPmdiFiwIyLbUsvaXnUTBwuRLHa9DhcUw20s/mhzqY3FyhDTrLCzMrBIc5MEzkdeqafQbvVq6AzXZqJhDw5OdC4v/Ld2+nGzD8M/2RJLZIBI/DXCWOQvXjKPlaBXIdeP1+8i0b5JSjB6zpRbwsqGv96E42EK8RM5AhH8HhOpPfwDTwMGSJhRw0G0FLx6qDvLpaRmUCZ9oOiGxnSxLyD1rAPiOTxjnrSoe11hc5LPs+XWKEeAUufhwrae11Bdng3eKMXptotyHUjEnO5+oC40bU7/ndSdQxho9ULuiUDuzoSfCbpJbsVfcfuD19IoMfohv0ItQ4m1uPId2rSiEWUvhsWiD57NThMTYvim+q5DBPByOPzbVBAHklzuuBpxfqOKUhuhS+ezlToCQgarE3kRZo8ojvUOwnpSlpvxiVLCSi4IxQU25gPaAZs57GNpebltt5ddHJ/pl4K4q2gloGcmwV/2NHbcBlCS05Fiw4TE1pEaKlJZg5u+4Lyz6IZl7i2lL3pv8ZfLMoGL57kvvi8dzCv9r7FAZctcCtoT/l35WM26fdoaGP+f5WIsxoCSiKKQIuNEKl/wQtipXnl5m5PPbYWifPeS158qM8zxe8DqrhccgST2Ib2gvBsx2dW4r9Dr7DXreKmfFcVykKRPItnalL/fb1BqpemLfm2UOYMjgiGxouSAv9Ruzd7rl++PqORQWvqs3ooHP2FaqIm8OWalGAVqqfsmyGfeo8Txv3kO5UsT02/tdKusaothICimhxl+pH0stODVBVTqOBwpzn4T8pPCAFsYf2W7pb7+U0xZLLrohw4Q9T1ff2jqMJFPMJkz7vbndNbekJkEULHllHnlMY/IzVa81MId4oRl5I/BGX7T/CfCyo1tFH6+V2iXRdgfaEX5n4GuTsRrhIbryNUcu8L4gr8/gIvZ8LiToU8mhJ4FT9MppRijlU8invCzMFKSyWc0L/B7CFW4Xm1EKwUf+ftWCR9P4bMoo2KvI2I8+LQOMQobo/b6pWGB34UxMu8Ge5+W3baHudt0JE+f9FNBq57iVDRQ1+k7HG85WjkecUvhhqQ66X2WC3mA/vrRoRQElb6C0WwScxgpKo3EP3qJXyMlaWIdGyrq3OZXI+9civdHIJPkk34u6UbKbJW1a6BClsgDkMkzJEL7rZ/pKEOfZwoVVQmbcLwJiI5RYAwU5k0/eA4dmx++wEpUrVh8fyBM3Go2PqJmxRvspfn7zTADv+TldtcSSqdEFGBgMexDvBfepBZL2MO1a99McTI5bM24rMKqFUCnMt58S649Zz6vCEEmuENVH0aONcvWMZBYo0GAYJ5FItOMOtjnxYN8ZBvsi7nrxPODharf03w03bOSYpBVJ1dZVOG4I9QvQK+tge1GzFBas3dnO+Lmx56GuWxor8izH6K8eYSf8zul8n7VM02MgS0W8arj42WGRnm4uq0UVhdrXU4jvnE6r6BfJOScALF6iRh4p8WJ4GfW/rP1nSCrcSvHIrjaZjgLMLjldUv04MQsGt7Vlt7X7ZGIr9fV1Sq4XXM/yDxoe2dO8WHaRyKwm5XYp6BoByoHoUYJgYAs1EjHAzjnDUp4llkZp3maO/BzU9FBT1HiRKXN3sv4YrK4kt+N7EA1GSYu1Do0W53NFkxcdpSIrKe5JbGfL++Doav2I3YnpoKGowsinnQcXtGlzwOWq/RhyvgB/QD4exjwFmhaj8yqu4tiYi5A73etsU5el4bHQ36662MWYbT+D8UcRh38vcJHaYW9+phVo8L8Cvg9mW52CgLkBMdChxWZJ9C90xfrIltob4uF319dOEW6dbjja1c7+AOBeNiL1DKzQ/kB8Wg1zDVmFuVpNKvhLNj6I3NmcmH5lHTibD+A1EntkgdmAAABOye/yH9dvrVrRZeoSMKZJxwRGILE8ZU9nhvODA2fEWzCKl5xrFn1s5lwYraGlaZmDtseqW6LnRwDzLkLBT3CR5Hseqbg6uPjj7SZAD7wpDGywBmaPUjb6t2NRVl6GQiS3PHiGqsaug4lBO/sr1HMTRS+kyxOyyZPy8UFUbMET2UhIa67tFyJ/MvlkjDA1hoGrADU7lzclYdIDlMwtDXUpYSMHMJHcTDS5/Ncz8A526cTHvs0GhpbPw4cO9zTZGN7ouKFr0YdFy8swB2gzmu+xrUXwRczK+d4ikRCTmgg9uMKmpB7cdyhhLmkFJfBtvGdB/9igLOXm+o2TpAELtPo2BnLkAR5ibVJ+tvDONnz8HOQM8V/pIR1fVw5AsVxxKX6hX+BoNsCxAJdUeJ7ES2RWXKBcX03cxE5F3EAvlJZOs7dBv3ifvh8QMdX6vfhYkRS5PywttioNHAj7qJ3gJ1oeonsOze4aLj6Q0b7SiXoYpJiTlQynmz/599rupPetrvaeA1kdO7cDRC05Ro6o4MbAxvvJsAreql+xeYN6RuBabKZlLXtWeqLr9cDDPTf5cs8dboIJh1VyvnWfB/cLMyLoMk7pJgwJI0Icf/oymrokOw4C2j9YhnBxe4X8gVOqcRqaq07PBMrQseLviLhADi5xu7SVUsKCe9GuPVQamAl/3yJUd/Wm5i45mBIpz91GdoDPGs5fyd4Wss1iZnJmGFb8yYx0Fo6lq/URQrgeFfADNipEFO3xt/fpYU+KbDRIzP+V1i6fTBTmRN7vtLi025dIE4olSbtHZjilQYAZqdh/sUPxNmlk2glrn0JDfkNjGwBkO//iJ+xZW5I5BaXco9VWqzeeIbsMqf5U0cdcA/NebGF8a6Pp/4OKf1CVLyG6ycJnjvgEuuHli8XXT7z/2iwJ4JvVB1sUOI7HLja+YyoD6lJnalvcl5gPTdBYpUCD9HqaK7qBU+tPaCbWlBsk23a2yYv7EnTBtSI7obU4PwrFjBuhF8qz0COR9hFbgF8NAW7z8WKAgndoe+VLJqa2B53m4dzjDuF49ZXLNVWqhvNL4D5MZAwcbyoefKFaFog487rKfu94iXdgdD/3aL9zhQ4NfLdyb7KniBxhqMlioL9gpO8V7f0Te8iHcKB/xXZT3c01+M89+7STyob0sLa3llBupOcUQH1jUj50FzSpKop6LJVImgbd6Q1S3KZ6YkqlIGQlEC1owSzFE4ChdfshYBG3iUJf6rFNFOq0ztzznoDdx/XD5xMhxSgIBmok1lbpNT4X3LcBaPmKkpRCVIsBKxS6QNXOxYfKARzqKt787V5jDRzLU1q8fvD9oanXvlBX5i/nteUlrQ/EuFjEa06moSYlcu8R2T/Xl+eO4FSAwF83BeAz0/+1wajIP29qP6KBtZzhTl5MeV22/nAoiz3HEMb8dkDpBJKJ+ruT15E3pKNC0q/PTgcRhv8nRXJ1vOxF8AerQ+WzNQ2O1DtBtbyreKXehE8HX9ThpLUhRg3L/MrxuffAv6/do6Fj+Be4VpK93M+6ZnhKcX/vHu1VnWs7WsCIrDCm6MZZE/QHq2B3/bGEhuT2KAazqhb7WkM4n/s5iP+6E1qWae/yn8QADpUe2y+KpMi3TkF62ZotZM29M6mqSKbO9XmI6QdQzGnjs4zGjjg+00ICxxiF/eiWeCjf3pYfugaeAwoGhqdK6EXdikZyL2K4SZuyiqxMw6zamCFaxR3G7L2P9LzcE2FZcKmhI7BpuhWx/Cc0PcfE5JRsttpbTArftKsm2afxgeQn0gF3mgK8Zm+fDaCvy/Vw8IIIuXo/rl+9rQYSEPMBCT/GTnzIgAi9QnbTL56v5nop1NrfzEW+GcWtGcJhhvYz3Cs8FVabOJQva2fEqciDt10PKvbVbQKX5dyHWq3n0ABNK8ehH6tdepvwFJHxudWR+oNIrsdEcHdMMQ/u/sLWjZeBM4WtJ+tca118GrqpiVHK/C2jZ5SWq3762IswTE15xTqxAjBQHcIii3/FvnzXUy6BGzG6/29ffA86A0nLvzwCg9XUKRnZeQZbvo4C4gSkmCSQNPLwzPKCvm9+4wwoteBWRGUv9m8jjH6y45scCGtiIedYFdZaH1Ah1rmExvazKYxwwYrOlQZuu3jcbriq2SHhd1MMsh4gs9t86iAy25XmjmTldRXIqxH2Rv5jnxGU8isQ5NHpdRwfNSEqbNDIczaCG0qp1tw2Nakw+6r/XJiZC8rMHCiT/qJzvkPrpk2HtOGEILAs1Vbt6DjFFCKSrT4i+GEIyCSQzrjNiD6rEMVOlEuv3F37kYZrfB7P3q0RTnp3SHUY0TZvdKKuFxyN+EgjJeVEdGHe2HgCNFVdQfRPDw/QcAs02KS0aKf5K1KQmtGr+8V4jZy/LbHrm+N8SQEQTXtGlTruDSxO5vFIm6cF5ZgA/Jwf2IX0PITSPFBcPrxtZCEaWkO0ItlKags/q0vaz07y+tCaVcvAJkrBwBbGt4fn3H8Bl8UmOhg/cdIU3opuZVboXQWUJx4sLl+tXi7hfKekkMpbw/jA/+OVHTGtCHL+B84GlENFtPPelEaFnLo7PFepJsa3zyPAsSVcGi91bp6+S1vxz7/u0oRPxGeiy20oRuk3HlBtqhrHW24ks+2IY6zpVWpYBe8jwn6xBTFbWP0l3S1qEFeFOHUBzjZjS0sWJEzd0K0Wq/7h94pCcRA3TYhxnluAbKJ2a3i7Vo5mXOAT4mBShif6B6GBNfSYlGSwmUM1mApZFmdceq3pZxLW7VvXEisFyqa2z3cSugzvEk/y2whDaLNOxUs0w4CDaHJJghe6y+L9Mybxi81r9oDj2ilyLSJG95f1gtuJT6FNjMXML6QnXFXg7SV6rO/rCiicIQgbM0DS91ECtY8uFn7MTRrYK46Sa0Iz8tw3EFcfu3IiphHVanKMSAXtvFOjLFkEO+BPLf1EsoJEa+aRmB3EgMj6ZkDP28eZEnnymLnU7gHvy9kVFtxmM9IcYshJaqtxyMsuJ3+/bSPBsE+tS53SjtAacGrCXndeXFQypagrNTtU4xdkqtmMwSNup93jwTRjCGCDLBoSuZ70hPCtjlPjDWXnpfmZIbFzyUkrmJTdoi2us+yYPtXFNkeCblC2uugUIYRIvIOUg4uuZv/4tdxvUmlk4Z8PFjlO37JIGupFmVseIG+uv3rw7CQ29DLFebr+IMSznyR9n/KOwNmW6yKggkMIfLsR58T1Z5LEOV4qo10P2y+2cAg/Pe8BUMQlzUSKrrRPhR3dgHIRtEGi4eRac8qasorkR55eGKAeCro8QURhlXxwAOX/VAYQE0j126rPjLN7H9mMpG2FUcHgokGryEvl1dcVFFpxgzN23PBfDVx33TK8ws4mmI7tC1uXjj0iA0ae9EYO3vOdrsKmNM8hvEy3oVY0p0wfHUdUWJ10BrAUdZylTklzDNqNxt7dqU9iz2rYnRw6051ykSCyOow/669Iv1ZDx/E3HdhYZ61GDUvPhA1EDVTKdQOuZWnqagqCNldK8kDEsLgZXqFhdOE8AsFMfOLQm0zJuCkjTa+Ey94LwzNnZpTPojg/TrMbvUU04KWx+qOtKkPzdsCiej1yrALHUPJJ2mji0cgAx+TQHPg+QFl3Px62uOfhbu1pn7FTIGDcadbCfYj0As98TbhJG9PzPEJIHXOf0Z8my+dEoBdIMPcXklmmET8xhOXcv5Z814Y5iTk5Y94EBnUI2gSIudlKPu3xeBHRwch0RO/D12ABiZRK4NU7INnV7WffI+7RSPVrVH4hbyolUpUQCsyXpghsJFY4EJVseviqJCeBHXxYVG8nGOvBGbgaWH/NcVvFiuHUhLNWzBEtu/xEudcAPY5THqqmZLnSZBG7v7Eeg61BwtpXypmarUWRn1f2UftIt9369huRqvMKqhZ3kfVZcBDZQ4F80W/sLSrThW0uQMwYQ9PzlbJMaMwYRfQSP90cE8+NNSWlwNP/tu6YuD8H72EBO9lpapc99Hx4KaX9PBYt3fllb0uulr1f7QBkLCDtvChRgXxDjVRMkEDxNc3k0ApsAbWfRy74I7tSOL1/B9xv1firW0dh5w/x5UTglXexJbqf3xoUIk4ZztpZNziEZiSHxL4veU7gcyDG0nARS5S4pbBC1C17Ug2Z/rDrbhOfZOJ7DdV6AvmAXj0SFZnvwsixZQ+Js6JECu2Tmn76NMlqY6l0hJA/xaVVrOFjRFTaseVyT5GMl+q6k7qHASnqSsflahCndsaR8dJCu6+sfBuQ0+ibQ+kU50vtNsM/K1715TaFetQ3kPhuyX3O8eZnmaQQ90YP/BItUzQMMQSd3LizOgfWvgkbNr1iAhgO4qDIBNnasRyOlU4k0BEejluuaz/C2QVifPJycIA9Z+2aS2JwqaTkV39oJh5otGgQ0LgO387lh3BynelML5yEdrjuAJcRt84BywL29KbwsE6YNtWrKXIc5z/3kYqjCyUr8uwE0MUrJC1WPsgHYnM5M0tzHUldCNfZMXm8Uzy8DnX/asGP2NQskh/Upsb1yKsP/O451AHcsNK/Tdi9tIJUikExa8DUEpM/nMo35KVhYr2IREtOpRFvwTW4LFhBuhqf9myH9MDuGsTdJjojyGTdCg4CBLOHN2otRQQJ3hAV1uLrC5X+HN/oaKb6ndROMPMzdxQkA27SYouYtkhLUFzH45mawwTn2jYvWB66fFh4Rtb9DjwsDwEVJMP+vX0EzlCz+ZwAgVg1QsneA5pBz7fRUSsGjtMJP6h9JVmiHuOvn0woXYJHtO9DbN5MnMKysQRujY3Iqthk3/PVgofGS2kXdNJPY+O6MS2BQS/0Z/fym5iq4IYqfS8c2GYVrYcdPrOLK6J+uFJPK69F8PbJ9sizpYhXbE9RyEers8USNOWoAB3KKUdyACMCf2fZ8hNCrNHqCVxwOQb/AnnThNvyHlyBzUo2x9bit8EvlV0fksgM2TulhiTmsK7JLfxkMsbM4rbp3I04bHp3BOjiQ+ZvCAZnSU4f/lFae6R2Joa4iaWRCcCiTesrXTUH3biFpc1x26yoovcFNKRQrhFrK6M18ilM3aOG3ZONJGKWllfWacNXX5IKUB5O7Oqz8G42awEwAm7eIDqN46YdZQ9X2o9BCR+htNYS4a+iG057S/PRK6KwmIbmR5n4i9fQtk56JHsmmweijKDUsPj6pFTsp67hjQmaOfljja6oa4N716/3GXKN+flol9DSv58rb7A3IG/8A0wAgq6kfUSVZDiNxMnPVFUtucK7E//Kfkz8U4vTYPuRw3HZvZ2mk7InU4N9tgy7gxU9SJ9mpSfH55kNhgnjBqNtktjWDA+0IfFYElBCAGPfiIy8nGE/zwbx6Ztqr8r1mPqAd6CzfSQi+UZJMMsSB+SOUgirb25Zz5okWfko+v8bU9eU2avWH3RVO/zWpm2KvhNtd6TYZPyNpmNm4NIuFw0WHG2rGMglLT1PMtQ3i/Ll2cB7VDXOkeI2A5QNFiZ15zZUc/PeqaUeOdAF7JM82rVKr2YfnsCUFX4WOAUI8M37jGcnLlVU4FdIqOH4suey5a6gOA3b1QKNJd3GvZNI40iQMGYdf1W8/sLLt6nu9u6HqligL3MxP8QPGdiNF8oMU2/mqxVg3zi7wwYiDf/GNx5AukDIc4f0qT8cjVnZkaDxc6+DdaJO7PUyEnudPzf/tz7HlpF3aMyNpTJH2pyeef5F66WTalFYGlC8EuNyFU3YtHCQ3peVP01Ii4fo8Z6fx5avL4dAZcXyPI1FUoyIMwoZR1zOeBdTStUWwmA/gZ946PW0GdoR7eXMl2Pcz0SpLnmi/rUUBzO8Oya/2+r7upN1ZRKP/DDg9Q+SLVHHxs3S2rIMX9kKL6fKvgZY2Fk0ONsJbCiXRkMRsh47l2+cEkEucnL/A8EEQNz2/5t7rI8qgMh3qWmYoAfwZ2/lh/vQV7lO30ZRUnNbXFq9t+7spj4qpPI6nVtsePObo/IZ57HLvmLZTipavVTLw4MamZ9+dy3pX6A8CQZbmy0mkR66ImUNL55JWsrfMpWiQZiTCsjMXjZy01S3kIhJGa96Sw5IqOXSuGbCqUCqNbademVn1J9fQO41fAJQ/fq1zbR2WOnoy3Bz5W698pDA+eeQVIiujYURgneiSX2dp0Fet6blHPP0fEjhuBz15Jibks5BeyUd3smN3XO/lGu1Y670mdNxD68Y6q2GaJ2IJBtcJnBf0W24QDjk2jmO0a0cjnoa4WrbjvMn0FrMLTl9fTdyZ5Pu4T+e8kPmL73oMjCRYw475kFCipcFbwgpjcjz4cLFC5bXeLlvRpk9AC6WjRiGH8lnliCOaZOeCn7O8O+DX/ZXtF8oH7ytJzg1ZuAxu/N+OjPa3Egq5n7tA6js/9NipzefmmsL7nH5W/Rcuoe1mD7W5MD+I6PRzv8Q9s1dMAaLH/6ngEHS7yxNIMSJ4zVxsVCd159oNKSOPAnoI9ULt5I6JbrvuONKxltPksnPJykISvM/mLRCLK7l5eTo0IDOkcRKN91LmCHMkv7fY6RIBwVBUNAihLbWcdVVHvQstnHY2BxjYn1FfZj5uNmiwRsjm6W3FS4wM78LndkKoY+ZCWqTUkCUGQITctzg8wcNyuvMx21kC8vUf6IWzvtCF7mJs7jb3U1my9dECAXpaqnC0UKHh/f0O9CC7awkTVgis8BQgOVYQtgHAsMYUc79vA1j3wc02feDpMgp9XrTeTM29hkGAhMfK1yhxWR4hznxYAlvwF1FASTll3gDk+AfVrMMYKL014NlGHwithskZppNEM4jn4V+ZnCSovJHcgIfJB/LVODYp4E7qH8P8ily1u4wLCOKb5K7rG4LUqRunW8g6MMksUyfxGnzC/r/toVgSVVSTrh8LYQt3GKk/IRGzojbCNolfQ3AXT0jEbInJEdy8dwOmTVkS5+UsZJgChfjMaNkG7X1mSoKU2u5r9Y4Pm2KaHGYYEqhDPN5c4bEOCoGHjuyVwXd543ywGYgi+113cn/1YgX/lFxsBwu9xTgelPb5orVIcIUjuo778loL+YaaRJxOJ04rWSNOaJar63nAPjaKH9fjDYm+UhIor6XQu3hegbsp9d5l8z8EEzPzZC1bJPJoQt7MEHSK/ZA1CVIm5HUL3ANJZCmwQ8iuW13x11LK5EAQESHmDwe+qehdXc0oVPG8z4DoWKktdzDdK9bxlyXsM6fFtAHnpowzkDvxwVcxGhQtT+rwlcRaALkx1exxrUNEzdh8xkdQTIver/67fNBX6fo7r2eOZK9KVRmlckpJ3FTybTr80sSJ4A+0O8T/x4bWQ+jDvyHwy1+B/2peSN/NNVrtuQ/61SyXX2HeG0SXiR0RVqIjYM+C+tPRprbA8ZgPv/N1gRKN3iAC+IzXdreNVnLvxRW4Sk6sgVgJgzAywFbUvZBh7Vr6MNB5A3niYZhK29BY+FQGnkYC0p28Cd1xlcEaM8bHJYlRPG4Rx5/om9sP6k0cUwAe1hrrpRooot9fmTfYKNa++Z8TNodpXQerJ0amY9TFh0u2LihnYbeUI/3DjS4qvW1cDWU7T4z1vlpapRxzHXn1wZpoLmweiq/LSTbq6CAQBR1nsDY8nq0JpHzE4xk3FD9mWX/+H+DD081OmT8zL7dH5uF+E+ZR2GO/1p4M1ux0WogMqsOzxcwF2s6p92sCaNwni33gfNg0ZWx0sOnoRgWdfRXQQHpm3gUMT4SkXhPgkahVgPTy3eAKcVVDUKHC56771kUqXJkMsQ3QXmOI4ftXLDgppN6rlesLTAu62GejhhNgW8ahjdNrFkgvVm6zCBXvglQlHp+iUq06t8WeN1v/NXEVlSKXY8ULcwkmbZtjBFTlOYX04j0N9QfzBYabmf92fmY9mVjPXSVuDy1X5pg1p1UK94P3ZjFuiiKFaDMK9ieUywnlq5+B3FUolaoZNuStcs45m1bDgbPz2oS7Qatf4gCv4jhNmgiw6gpnpyn8SUuxCXaHQ+JAc0NVEb1dvex9vF8kBAY8PkOVvnDXuxh02troBaXr2E7TDIFoc8KEKCrhn4OnjYIA0xmClaU43t6Uvf/e+hJKI/9+WoLvguKWkd5WKdgNPX0JtdqL0jkHbkeFtcciMaccroQtwSwOfxWEeVA7vBbwD9pwV9zrwTdZSwyOf7Allj1uEsQniqKxMl1W9iSW1bJe8Edt3rANPBO81RScc8WJLF+3d1SNT97w2DM9S+YtunVl5Wo/FN1uEnSRq8UmSOmImPnZvvm6bGBpR452FkA3XQmg3iP+yDI24Nkd8A0zoO9ZBLjTlTEd6JRM+foZRaIkXWlHxmdFMvO5qcYQ7T/phT2P0vrViu/Tq5xf0pHdzNchMNO7zmss1H+afY66nL3MauxLcvrfJG0Mh7NRGw7C9dZWlUy/rzXzmtpyQnR2UPYTvKttgw9+vYaUmeaqBO0FanpIG5W9OX9Gr8ny4AxSoYq8k+Nnj2nIY0P4zHUqlscCcnOrv7m9ZALBDVjoWNkD2oQDa6dTHcZXLQwA4HUz8+354L/tCRyZAoramphQCoD2P39Xhhng9CECaL6NQqyb2dWj8pDNG1jJvhOP4MyH2la3fNHFC72rdRbp0X/K0/XXsnOcARtAz1XZZI05TA9ztwG9V7j9EvRwTxnKYD7ZwmAJbsqpIeLpyLTYgvaMBuc1LAy5bdUMlwWzKrA1FEdycf9TkpetUQdhwlDuQrb0QkFCqZS3igrstwgDBPKx9ayjyR+B449JsJ465c4qh4fQEtWko6ZchoHTMmGqFSATqg76IVSBTjOoSGpe5MUW7tY2nDwFRKYAnIlVNK9BlfcbiAXrXU3YFl6erctjKJJTtRcnlH9lojTQjDG4Pfv9dOhUIlXoasXpFX9h4/YdD0OQMbQl5qh0o4HLQPQKlP0LTDCr9EgsZEBoTPvhIwdBL2tIGdKmTQbn+8xzJbWQ6eIjJTZN23dyKDQ7yPtS6sGEv9V/pxfcLdsHivBXWEBNIFi/OvKsZABWhJaPvUr8h/5zsm+Rf8q6cvUaFDqq6wfQnESFunvBeEYehAxFZpic9KQodWFHWEbN89kK3GR3Pduf/hvLVVldQ8YelWPeKZ33pbcyP9B+f+P79xWsDgC/pEd59M2Nmg9J4x410cpjePuzbiQkZG+D3s4jX5fsSP2wmZWp+cNWNkzQuBka2iTtGjfALFsYIILN3mxIlGyqKQ9dn1QvmBSlmr86iIlgy3V6nFkLcnRacDSRi+H/F62gzGVyV5yLgvdnUMozxiBhmXYkoo1lEl13+hWYKByzIGXqjCtCrz8i4/krKe8n6xsvYT9AOjNCgITronBZ51FPiQasWPwxNw9Wi1o7m5lu6opFEtgeK6/byzsaLRGuzKccRaMY42uMFqXHm1hecXqlpg61HjdInx9JW4b4Wku/R2k8NB4CedyzM4S1DkjMimgDiHhTLGMJe/VvnXuLuQdBuuzZpCqNjiyYO6zLJL3IfY/DAt/Gnb3DixybKaFittNPKe/htpjP+4POsmHwbBu7UizIRAQ3LWQE5iQrwD/+X87J9PVCZY8YfeFiqwGhH0oKhPH0xGwoR49v2sA1rsbgYUewUUjw5RunKeOM7n42KszdmrkhEOZ4DxuT66UC9n+yhDb5x8c2Eux4FrqfE1qqIpY64NFTJED2TOr844aUpwgqGeUtouEcztCaVxwwMoyF4XyVH5tPy57aAjPubHfAsUhg8XG03E9oYyqWt8+EkNaIc8+eO3siqvkiU0eRhirolk7DjM+7q89suKJTZpi0Z51kJl0rVETEZLa7XbXni0F6/xj0s8oq/VKlQRnE8Dg+n4SBrAcm6QTKvEKkhyn2yVWw7E6eUNlTqrh0MUZxBrtT1dIAUKxYRySTNj/4l9qBPjoH5hDfnE8UPoo4rEr48f46T0Q66rgOVbt1SQmHE0qZ+V2cgeb/koKIjzLFBXccFMuyGi1TQJ8+lVOkts9fKvtu0XHWkw1ilvkaPjV8uGJOF9nTIcqN04fQBqQ8hV+fjWaGA2CcfL8AZN4O4uJrbs4meMp7UvF68OXz91hO02fL9VItyOC5nTvs/+xl/2f9WCeXaMoh4gQ0S10S5wR1cDYUSJw94kq4V/6FxxrOotGpHvCZo7warXOu014OgxVhk7KPTTKTZk8L3CvlRR40klH5Ucyp/E6UM53JdegB57qy0yCK9EezJIlGdVjAAqjlLZGxWasOs7upn96TsRPiO5cOb8ytJoG4N6N5/IuEh+guY5Tzto/mkoRreIbTV/lysoztsc2e5EV57BMz3fcQ1zoD3UnXiNAdJ025RuGC/vazftlY00kjfXlFvzt07ZaoKRpIjIulxVyOKgb0bUR8qCXBp1rJnkL0b6LDMOsrnmDROIcT0VDKFda9rDyNqtNC5eHlQZzMUMiL76Q4VGDE+mNhaMfmO833PcuinDqU/8+HPC1A4t9nkCbRHicDeG61AJzp0tEma89SNFMBZ4tCqv3R4UkRBy1dNWSOO5PTqOOetbDx2Ny+sPEpXlDDZfClz9joFGTxZj1sRA5sMp4y7hEq//GuH2A4BMTxhINtN4kiXHLe58ObE3lz5Dim2rXqNWE5BYEjLSzIbjlaNXvvurW9bMhAm8KTEd3AnT3iGAA47lQQnmPn2HRgV1OPFr7GISLFV+cwA8YZQsJvejcMnhk8IgYR3UlBtWtXDKI/5n8EEp0DtoszQg21jHsz/zwI8UJSJ1iQSeVZOdiLRpp4UVEnt07jq0Drj4O7wsO908fnuF+/3zZLbHmL3Mm4dZ2CGq1lyykQcfgl4BOmlGgNTn3oAutIkK1pNaiYPOy/bX0OC5vRC/p90ld4wh6AdjxTybsdKiMJQqcHTOiQxWzswfNXSv2SazYSopo1FJDtTobxhuy8CuHHHhBpL377T4O7UHg5Cx8qd7jBZu/GhX8jmisU30jQm+FDuacBbRcLv0S72DkSdOLkdFQAFxQwKqfMD541dr7Dq4kXd3fGlMO25qb2FIgWzIZ3yzXE+uDdZZV0aUWhDFgO4mNjYl/MV99uV1xEIWtZ4jjSYFU0SMF1xgRBVpUscTo9oSIg3QQ4ZZ7118D44DmC0+J4Kd6eid3DFZMAdP7VF+0oz2ClbOVXN6jVTNbxl+4Dx+//7K2MiVMqL35QvJ6rMaKdNiBppQm681aRNfNNb8kcI3rTq3nkPNa08+MDGYuxsJYh0PAfa3V7iOFpYUtY12MbTOPdMLgK3acgwtOL3HSmj3/NbFFiXxocMvKIYPBguudQM8FhMikaZtVMcTADCnMnN3ljHH5VhBRugpvJ2ofEDVTJssEMcuYR5+lSxCdCDJAzk4hSEoGPAwtQFw1cVDpbZItAuEfOrjQRvvOexpwllYfNbbxgxScZWvyNdIR56lD2VSba+AhdzocKJTpPh0GyjN35pBJGKXk+gRHZkQTR7sfKy8CpzOq4uP1dfXwoVGI5SeKZd6w04kDChvymlQm7PKCCxJ9s7eISA4t2uEO/ggfoXy1bA3rfteV96HMZ9rIS/iNneUWu3QEQL6e1eYbD5oLrBzaI89/5jjrURnyxgvykHPftr8d0Q06ztG+3TZGvhUtlXFHoeWOmhEyjsYeYUEdheLGG2qpejh3RQXSqjXBwwcWk7hZEp6wKorT1iSSD2Pwn5g9WPWXbk2Xr5a1knpbU2UT0ZwjpeMA/JBn2KgPj3qmlXu1NBI4pcsdjYCbniPOJ330Mj20UrthiirUh2yOEHEMinJAfNCpwRarvwSCk86qtvUZw+HaxTag1IFEY6q7Qv1uqTyxLEz29rBSSDSCnIO1bEA1CjlpzZSUwoFGjRgAmnd8IoMeKCSj0H6KSkTu6nlQxLz19lUUYr1oF/EmH79E9MHps6GiTJPGiuRkiQHjt528pe2Bi+FZ2Thfs9QZ4uY9lDi6ZJ8zhghxFec7ehc2XFAhd8JZVJN/e5achbqeW+nLvPndgUyKfNSCNbOUSC5R2xGjT2ZtWQSk6EowDh5UfpQ9IMQXjbetwCZ7J7DONcLO0F8g4WWAMFG6PjhjuB6c4gpXdldqKwHcAiZpvsyggH8nIJMkSqNFSqj/lPks+PPA3OnRFnvalE5xr+BfwVSJ0vX1xr9V+jPWHnewz14wNozeK6AESJUx6RnozhRH8gBapNQZd8PluM/gJ+zzIpweboJTE/xTdjL3sR5+MMga5lfJvQRtO0s9tH3nkVOZ/FJSrizKlOLExeFb08B4SbjVhOcp1mVmHCT4SMF75hZlHgbSIfXNAS+0dTyBJbQ+OfvM9bB6CSZzjz4a7fjrFPg/VZl74gYPbqUAstGK0LN2HYFUwc36gp/EmmMnchPbfJ40nJrF5+xRfhHG36TJ3aowzYAVpapPpkxjroSmbDDe7LKNGFDGCCto96QA5Pisq4dypGsRNfVJWy+cYKNo23XZ3MYQlA0AG1TqojcwZXvQPGFffH/ORxgFEczcDCxPANSKNBlpf8NG8KChLVUoRpfLhekM/1FDKqd9Ma1CvGmx6ATcko6g/WfevW6gsIdiNWkdgJtoOTyHERkPO6ML12K4XEr1U6zSewO/T37Er6e2c9PRhAzFmh+vicrSeG7ijmFoeg7b7+/aBZhxN5cUjJFOwh/axABuet4zJllYpr7wPadCwJwJ1Q+frQ6l/fxeY1Ac2qN7FbKSXsHSltnuFxhIKk+PIpYc8WFQQgzb8PgwRoW87ZlFcDtuuUJkUb3WERKK5qASSRCLSh6kvlyi6f1ll+/NjxFCHfU/HBx4pIQzHKUy+K2gFWfnC13Ntyn49GAQ9T2b8yDNNejIPh/3b8AO5iEpTQ6gNBA9aqD85uDmNennOC7zvUiTa9kybChjUUn/g1YC3NZGXnoHLCQ9jW+Ye7AuWnQyvsed9h89qlWH136aIvppNHh8ZVExtXf4Oc7a64hOpnjDwYAaKrxtSdmGeayyptip+PNeurT5cb9rjlP2NG6sc7LHcbv/scFubGBZrUefIlHP+NcDd0uTPK9OA737Mh0gSIB2DXzyCxJi5jjiuBBeSYwjkezPz3w2lAdKN+fIXA0+ozqkozTdvNe2VnRW+8mnsQYTNhO/vvd/XhAYILnGz3t8hlsB/2knY6t31gms2SYSIE72ym70xa/M4rBIpTrfaqjEUatgUkRNE3RbQyyUobfulB5cJcqCvgZUXhe2ekONnmlf7V587YMPlb1IiQgyYfCFz9NO3fwM8hRFASMCrpvd/A76IOLS13lSEaKOEchNNCkwIaUXxIKmxskXgVkF0m1Vp+V7cpAhcnAClVt0f7QW3eiMMuUnpa3lZTMjYd9NRxKC/+5jgbe/vC4OAIp6cWJZilieBQ+gOZrBYLrfYUFIybURq/91TFlIWGr1evkyVrvqJans7wW8OAVQsAyWrtX9YLmlnBBM9gbl5T+lOa46jBFxFZ6D/zVjBs+ByMD8b2iGomvDYK5lHyFBE6pssp2ngxdLsfY1knoIGFCpJwiQwv38E86Gj7FJ6u8ssICmS56RP3r+c8Kjq+DEFnsbmM/RIjJVkPfmuK6jkkEhYAEjxUFK94SV+DnMqjsKaIpQ6W8ZGu3kxzb/QVwIV0Y74N5z1uRdYqxLUyrNqGhCKEc71axftk7jI+FaPDSIVwnzCDLP23JnIi71yjGoXkpu/2cj+Q2m1p3UzNp8S3FqKcsnZcupuW1x33z8X5AIOV3N36GxwLDkqi9fdBayTwlL7BzjwzxlF9cODPnutNwYUVRP0M2PoKgLvkS5Ia3gmKYftMVFXV596u3cTGjM+kBuXBuM6JahEaWBtPBi6T6Q1JMad/zMfMToOD+bzzQOUN8UWNLAzDpt02hyNdv0YiiGYrndGUbQWldS9FTxwBC4y1ZyZ8clOXCqSiKgXXdyCNSI/57S201Wj3wUAt7GWcmMR+9bWRW66Etbpp04YL+dPZqWdvbgMUbi2skMheswXbViWRkVpHjVWmbRXqZuj9AKCYnspbOutIjqHliYitDgeph6QTA9mrFKFOLAFYWVQq6tAnTzGhMgSlcRP2klNtRmw0z68delcrJHRD4NtFHG42+7RL8bIjJOF8Brg2k24OqZ8fRpo71+te3rjIIo+G/LrA6LnXusPp5zWckTNPyK+kWXY+0hALgc5f805/71psMqyQvr9rEN4rOgpDGjFg14Iq+ogKrdIExtdPx4RU7AaSSczM70k2SJoqTNr02+yqDnWAeX9okK1T4MP2WVGULuXy7fmqGmPFqYv8Fem+Jo3Ty4/owJh/fiGoZDzjTbrs5mUAwxF9WZKrt/PBXCc51/I7k8za6RND7iKjxMzuvOhW7DlyGXUztmBYBAS0aEAlxucHQHLfnVbV3FSKR+ZJ/XYp292EYS/gCFg4gSKT/aKSkn2DNpf5Zp7HmP96ETOTikGS+r6R4o3zAFjiEviLw2S3gY7GM3pjGDxef/MMr2MP5jsm6gfWiMehA+y4J9QhPueOx5nYyKOCngV80QT4JskpQ2z7WpIkq3Ts1Mqx9UlHFQDewUWVjkmUCYc8ImZXHlFK1jIbzDcU2S7MdD+Vbe4Q1TfbB9E3qgJZtERHqyrGgs9hCwOmqcjD9lPvaB4pQxGn5FPC/sS9Sdz3tA/BgUH1q0PIUAr7so9W9glH/8fKdkldMejuSL3uLKZROQ6Vem531DQUN760idd/QuwWrE6n4JxFmtKojyzG27ykH01xh8d/jqdMdvWcmLsKgiTNd5pQr6j9voWJODws36V+MvJOvXe6iULm5HTl3elib2YyrwdpgC5sGgUUr9oI0S69+AwsuF6+JSy4dnpk6PCurZ2J0G5DzCmzk6RKrNJt32hWXHw87JODE9z7atw8VwDn9CrgNMN7lV2yFi2yAXxYHTgbIRGou3HInreSYIlSRyQfVzz3b1qHUwEJxMoIQmLFXofRASS+YVqMETCDEvrPn+EJyY1iYI7I4JlgYqVviWuKQkBv+8aYlVSVg54wgszC2CNLI1rrT8wnqMB8VKwbhnjpXrv2Gu7ixTWjLdqieYZcZ5FltWGkKVLooQ/ZguLnegTqorgIO0cCYEDAls7SSJntQ9/7EvcKoW9h1h8lTXyBOnRZr2VVuRulVBAFR6KUanmNNGHxOimtpsCXwnvL7M00Alv7Twyky7KSizfuaq39eWB6vbi7sVgwWgXV28cQQ0jMPXmeRRW5yy9lVVa4S6hFivPNKW6+Nb1HG3nt6T5gZ3ZUTzXJkwzhaNQV7tAGFoUZK5AuWedGcil3DeGgpZ41ukP+NafUDfK+gHyEWsWi7r3njdOSJXxydrEAxHy3lRgXvAF3dmEJ46RsquemiCqkDV3Va/19X1VkjlPtzhDbcDGubV2j1f07QQuHPzEJjee247ypxXhuDGveIee9vOV4qgew5AxG6T7DeyXKW/SiRBdR1v9qA9Zfh8E+Ea8lSSej5kBtFM97vzO2LtEw/heDSKDgbQvackZ3SA9l6Iyg+fffVveRTUOQkNSFaa4uYsrjt96E/bCQpqIpOjFAIWjXctaJ8QahyDxg335r+eNlmEImXSrTBM0brGh7ImY0B7M84QnkkLvSS3upnCh+ajluB8RlVvicPIEr8ECvjoap1a6Eq4SfOGYj3MzQ0wmzjCUnEcc5qR9UzbVvECKDj1T4YPKDWPUf5OGF/GG0Xf4TBACM0ZBU1+HvyIVFXNAQmp/IoUF77javI8rcQxuyKJu2AMKs8TQAfBp7JqeCdgQaOEIYBzxGoOF4PXaGX9omulegpALYMSX9Yhwc+p7sEfgCnddigwX19Ywr0vYtX4eOmlF9UGwt+ZZZO91sjieWNdvDMoFNCKrxfyxcq+enHBbWmlD5Oc8iWBAIHiThY4XEUqvEwKguwkhnfJy+IrMx4Q//oMDyki6zHnVF4dNJ2bMSC+zeZzBDFAN57BAAIbFxgmKsJGuwmQ1lItiH+LZvs5/XuDawDFelfxrkDIHLmr12xHFenuCI74uh5Dj+ZkgysQ1cEIGBANIprdQcB+gjrUPE4gSi4k3rvOjc39JVGo4d3jrJpw1XR5JSb0DQ5iiYU8+frGUMTlqEMY+emepTXC5br/YRtdU/poLylUPcJOsZGv6VFruBuma8+e1ggaHh8Cf3NWNB5lkeN/Zbalp9N+mngMZ9CZgQLuTxk6FCRsrEkrsfhwi8AIdrfvZUyRc59+QMk/rhCS/tODC28+HFUvWI+At9xO3Rw3fYrRIaCifTwUJj5nRa7dpJj5eO3R6ptY+RmCv0NrzXlMN+qbHg7oC+7cNf2mgxJlw7g2LWY31OPkUbkyldBkfYE7a/39I0KSpVZuSL59+e+olKQmThvm9xTLYXPUVyUOSBkGxZ1PCa51XsK28ASbWltX3HK8BE+maFieAe/rDK8OsHW3yLMq6r4i9wqmfWI5X+CHunZTt7pSRliseBcAJQ8EZJvcKMI7WKf+3rkr6ykE73it/V2kfaIiWpQ7fF3OpcsjNTroDsfdWopiRzh2U8fU+M0BD8lbo+rrICSlmM7AM6mKQ1104PU1L+zXOySBRIDdT8n7cKgMZQabU+iAtQsKGH3I7bI7SYcibvLiALEBplHtHUe+JQa/sLfh1ZnnLGi5oLtVp9MazxkyjZJyrDTAT/oisUmrz0EadPTXqhwK/71sMS+dlkp4+M4qpuRpBaM3R+Xe4FLb6oVb4zpAs8hvE9FyN2iMFWyoOd87DJ5Lhhfoze0o4CGBCVN/9ms5iysVlPsiiv0o8e2bEJeqJ8C6lww+yAsCAciTSHFBk+8KY1sm5lEV9ai/k6i6WKxK/y5Nj+9ZlDrv0cAkr9y1ba4DOwM0KxAGLzlKNKUexLf5MX3UadkEZCuVOMeNSb5jvTV3Lri3JJTHJC6jGJ5QWq95UtBXXV3nxffEA+px+037Y7AxaRKsyeczSbrXJ5bYoOjtDCc5gAhjMci818kQaxlt/Kqfgn2EQbthPeRPrlvmLlQxr6oGnJHo0GefK1z5aY9XLy0BMYID4lQbegbLNmYtDCqN6HYnyTIpnWfaQCIdPhd59xtBQv+Nv1AIrMOFMVldBFp9nTfYWL+yp3qAREtPfReFqDp2ZFcpWayCyB7bIJZHw9Es3mPLf4Bst0CVRYD8jDWLDWqxjzv9M44UpiiDc8bLl/sdi6fF8eHHA+V6mPlNEhyeKMauxnGEYQ+RJBw41tYshKXn3voYIAu1m8OEwqP7YFAiEpt9k36mHGsq0v/vy87ish+OOioARdMEhECHAljXCdGNSiftwG4nszgJscPgqLOa1QdMskvY/jSrVGkcEU3nDjBuUU6dykHgSJi3MmwnvL6LOs5Vs6RixN1W99Wmyne+vvAVR0QX8jXZT3Wx/OhpVzDk0Nj/GXjdpy1zljscRd1nzxL0m5U066eBxEjHw516R3lMury14yQA02gtRRUmBZxnqAYV4zraPjczd3v/wq/okXL91cmSYHw9mGbOd/uGYU+176IZsFTy/EsHuQd3DhmfzePxvjifZgclRp3zVIZ6iRW/GSQa9PVOSHLAjDqXvloU23eNHnH3VXex+evKJTOejuqEENbcdA2aj3rfVr0PicGeJufiDXE85/pvav2Tx6QRJIKqlBWqd5br9JYTq1LocFV4NWGZwisrJDExQDVWwfwYKM9oDhG+Vt7SMGFWGHJ/9OJwiwqQHWc1R7hKqHjSgOTO+98sgDu1ISzHtSnA5NicvStpAFKwzui+OxlkFxf3+gUfUNWZ1rUkqwuH772DPpMIJDrnZa5pVCD7K9eIC3V1tRT1tc9WCBmdo2D7gpo3EUVh3NgCddd9fhkFvOtX81VzjwaDD9FryUSig3w6m+NYF2M9bxrdmIbdRO+bcu9zPVSSq2roIK8Zb2bMe19Kq2xhOsqiPQoReEboglbRyIa8HkwseQK0LkryvjbcZiSofGFjGuQzZv6ePdiHwbJZ20DM8n7wcNxHiE6LW/YMReIOhV56yV76Imjtek+K19w9rGPUMZ35b1Cz79vlsXmRjUstAd+be002PPAHgSPeK3YLZx5QsDu6C/SxOHFxSEU+LIzsmCHAOBjt0Rijl0SFiLhcMbStihXyocgXa6QvEPI8McIbsfT8zI+TvTAc+PKzbxIER9ZiTFc4rH2L+3EICryKqGWftDOoZsmvz/j3N6diFeIMZyr7HYxMozCuEw596tnj3i0VefypQK0nrIstUcnVZdQmu79QG/b4VRNlLeomT7+y/WljchWTPYRnvnJ6VxCeROWc6mUegZ3N0muDsNlHSZnOGVRZ3SSTorVZ8MYtgQcvSCnTY5gFHSxtW5S3Wd5HABN2r8QJtFhLtLFvTKQ0IYabqG9BBFX4iGpMdHme8dFtifH3c8mayaSqEBR/j9lG8qWRsMT78anAYrvLyqOtoMkUNN36wEEOqzBeGkx/9SeTk7b1Gta3myiGc1fiyD7Dr5mlGWxsLGUVGHByyPcJcPpx0fJ7ZwJCyIPxa7kT8zCQw0oxdTiqoIwZ6vt+G7en7j9SsA8j9V4T+R2LC7iOH5Q5CxOby3IykLN7632mpVTVk0xnYK5CgqweVr8efg+KdA6HA34HOwp85077ixIJHLnMmTgBlr4jFAUvO1dfQtdn4i1z5Jv50XpSzC+ul9a2bRw0/L/4G0MV0e5RPzryS24kaHaVwKMLDutV3yhyOefOD52v08annVJQCiRi89Lr7z+wM0CpvXW7LMBNeZk812Ti90+KOZWcl7iN9vvKBGSBpjN/NTiaMo1HbhOcJyVXZ17IYpXjlrVyu88H3CDGxukiTOqTIO/CawadzAC5qTFpmOztvf7aws3L5T4d1f/OScIQ605rGblExBVyGaXDR0ie60fsQ0PPqIe8lUJnhFvtDMB+yISsC1+Z8EyMk/dWk7CwrjvQaxk5sXi20kfIO3kSOAETErX5TZdB98MHtefidJF+ohi8HSQ/p6lWTyQiJDKieiqO3RhYCp7dQSOmg87nN2EBzizz9Z8M+r03oliVASDrVcif0kxAraZmiteUFnNSFcoZ3r7PMcDzUKGuMyZtOxspaZQkxQHHdzDY93N0kr991sQPb9DKL7bbDdItQUsVs8libJyzsYamloDWj4pdCONh+AKoLIMbUBi1CuMV/VCIV6y1RI7iNJZ26VQBUsXznRgFItZzpihe/q42TeZfu3vj3mtChLpdSpCWVmrIFpwz9msTMGhMzx1yMLzgVzA6utd3iit7V8tMNilUokmHGUJP3KyowWBekOFAYpnjcHJN3FKbbo1oHYZePlhV3z+6+WMC3w79kBzyGKqmY1/vAhJqfKUHjx1a1fCY1/tAKQT1bHiWnYpagRUF9pbiScaJzjQz6IiMgiLZDHaH02YG8VQMDxndpC8kVospnXAskkZmgo+hkCETTj6WFFb/AqlHi+hN6Me7m/Ta6paceaXvDKJNaaK/XgY+ekNOzx4LxzVIkLEmdwibI8CtPMRYHmKl/EaBV/0jjctqId+DtagS//DTt0zr8KvE/WctVAGak2Cd/P/+svGdxdTBNXlBOUITV0EQQjC56FMQJsCmdgg4Fx0ZKM5PwuKcFgyEA6kGWd3VM2uGn6QAe20J4zJ3Nv+qs1qqzENrj8VDi/dlsmAM8Q/+5c9SNENoZ03UydlGZHJSnQWysIfUtpAWY0+xFr/BXgLTW73957GZg2TpCdrWT6NOpN3LGMvCY/hZF1HjBG9vdB/j0dTGX8ryWB2j1Nn13M6HZ7JhaQbNE8+UX95aKYzB82OgtLNgzMOzKZC+bbC6poa4oEgANSpskmD35bMjpYmNUr9vGl4CZpB5j8cuUY/AHPemdjzk/jt9sK0lwz6fQg7EVmgD8UNVjhmC69QuW6v3V4yIXClIAxhTGEkRH7Agr2OT3M0Q3QlJmywB1Jc63EcU39pg3//k8wD2d1ThG43QyZKu7dKQmUnCNV+/Arf3uPQ+hyR4W/+AUqVHuaKDi9W/C5ah4tiy4h1CizdxcJXMkU8IqKlaWTw2vI4MvO4Y3I90vAynJV/u5O0iU5hcy94lIdnHHhzjjJMjivuH0eRIXh6sbmEZXWLn191MGI2KU6o9N7SAwu7pWnDNYZwV/cPFEabyCTZYCTqtoAh8XscidiIC+BHZLoiJnRLZKuC20ZLWmTgtjlEMpBmxqlfgcVRBzblkLI5Rgtu1mvf7EDvu2G5dos04+EIliM0CdGi7CUNGih/uSlUdMFwM33QYXcEfLoyicbvmk3QVXQzZPNJELXWo7f/FXwGeIKbVnTDf/zogs/C3BwOHCMpYu/CzQ6eGgz/UzPOotIJZ0B5iisak1Ii8fFRzhj0QXup+Zh1XHIi4GfvIoOC81K1SGhkeOHgZnNX+6i7krLLk8MGpv7gYA8LY8t44XD1Xs5IGyxQkq0z7B9HZq05OsdXs+/QH1/khrLcXOMEDBXC6vcm+ZBMYyLcqU6k9R2L4RJnJQ1qs4DI48IW4FbJmD4wbn+IxSoaSgTsCqh5Hq6kQnguzuQogjChvoDgbOhmNlmzzK9x/tkvIhvc3dsfrM/ckWNEBly36puX3nrIfFr+6kWAWxblgYOHaxFdVkLCMvgjygXzIfbN5g4INyFbOE0bUut18MP+r5ea5zKmSHu6AMgXXJubctHDim6uB6+PSr5LOT0VCjOFErmthydphd4oOWxGwQkfLt9BvC1MwjaGvYVp3PKKKqPK1BvJtf8qiDEEu7HDFKczD5XM6VGwv/UA6yxhzIoyCTyyRbTq7bIW21GcKaHAGGDcHDxbDadJ/Js3hh50VtWNnirqeWCdeQ39ZYgadJEgSKkZLMLTEJmCIsqPkz1eM4ieGHG5Oj4FocD/w+CoK4J/u+eSYvCQ4djgxE+98cwM1yN9E4TUS8Yu5aw+8Ui/cIuOFmLNTdDrc+HXJnsfYO7NGLTu3KuDVuEU+IiO1BK/VdrSvbaI7chIh44khsuwM6ZTquDPNtFX/R0ZXwV8PWC0LMk8feg+XQQw9vqehnEOOXvfO/mSlyQBiJPg26BBZ3IVjKH6NLf4EkRMjHeyPry3q15mTFbCSTDiU3cCwl9zfIRwx49zgE9UDkocMFhETyiq0EFGEOwyZ9GesF5Rp9QuxEiaEHOFU00jBY2Dc7pkuNMlkMcLemYXH+pDkyvdETNp+D3IakBfRFyKrjh9Db8sSJlH5d4abZpCJk7Ap1bwexDlTN0sGD986Y9jAQGf32Bob2PlNvZVDLEEKj62SLnsRk3iBXnKKQdeyO1mwLPcI4nWd3GiVGg7RccsGopV1xd87s3PIMFfaO0MxVEusYyHPBRf7Hf2EBvobsobRQSJeQdYv+f3D/hWl4L/qbJctG/Zp0rtUUjnltVvDHdyoGCWHnDGrdBa1jcXcLn7GedsaT9SfXGRc0u4c29n8oWnJadZfaTWm1D6GpZ//rsadIN/pJbfHH+i9RcMEaFRPALmJMQdG+m7FZyplh9XH80jl91o7Kv/jORtGRSYny6z1l1SQUfpkaujslbyTv6cZCmfX9aKw5XbuCio0cjEyB7NEMTW/QFxjy5JXb0R6FhbHZCNR9/U+fmOAYm03yqYCFSBXoPPG3AH40YKIu1DBuix1jI/eQZua6h9AS74+1PNMi/MK+uBq7VElQtAMpko2rzYO5n4qDI0a9m+3Vd1KSeTg4Npb1y+ceGqWdWs8PoyLx1yN/rqgleraBUJ2wGXjtokEzcqcmEw5Ioj/RQPOeTluhCC0eaTkGETfzxSioGq6LL4JFj5i87lE54HyjR36UhTybHseCusQJSvXukk7QqfP+lc7F5wD6tY7utxRcxM/Rkm4PyH2FjDPa+/SLCu9iZYhTwD/7g3NmLCPUeutfMg7CrTiSHhvuur/vwjLw103jWiuMObDBKT3mXcG0UimjOOIT8ugrSdIYaC4u3Bi/8oyY9tRCdPEYaH7ChoKhwftrvT+RMtP/dLFV61gDh++Vp8mOBWoFfEgOanzxoJWZbDxIH56B1+NdDwj+S7IX834DhqkF1IgNo8BENy4PSovo2PjA0ONVbFNS+3Q4LKg4JvQwg5BJEqwNXxJSxGR9sfjRxzL7bqBLpDDdcSHNyL2JWG8vuwzqMNJXFSGQYING8DrmxxK5RMXowFJOt1C/Ym5fN2x0yOYC8VXRZCo0oqI/ZgCgrgq0JQxFp0P2yiJMgE545Y7qVYXeQJgXAuTkM6PrEavaNcQ+uSblX6i7YKER+3KOynEQrO2a3rLSYmUoObBpxUl/EmQDDtcbkJbpUcCmMoKk3go0FVKG7Jt6anBEoEMwmXfwXCI8cVb5mNrOqkWQhbHcH2FcQLIHDxHKAnJUljFJnHdcC6BqZpWnoVzYSdTJseUgkhaZKWvXZPtpiQDzS6x3vueVvfxO0sMWls8Wsw2cL6UVOsakMRemh9P+vL+oPBffI63RSDj0xb7RzorQSP4UTPyES0yZ5L5Y/QdSh+ZXViBDYlddy4OJzZZ22MjKQbyMPt55wDVAUIB2GYhlQIKtJvAIsrfMVvt1Necju7PygXaklSAfzoOoNpXNVTfZXuOI9cSOXaNQsAXIBF61cWzQ4HG79jlRNwiCtiUQE5X4EuzJw2ka8GcuLMBgPBYDhZn54QpdCPLn6hxH0AqXkYn6mgwt1KiuZ2th3Pybv3Wmfz+95WVKX/Up6sP96wWFxLVhpaOpb+NbmVzBntJkb4iRp+v8njWtt/0jMxAeiRQ98PxqC5C2yHQaJFW6ojynzKCxkN0Y6cBptPY3lcDjHybZdotopKT6LKt+pbtb8TQ7LMr49mk6NZH9O1mXL0wsiUhHqrIdXr5YDHja3CBCphSpLMHm1m0pjgCz9kLm8LMiL6BiM5paFFvlFixOIb0pRrOnYrgG2IrLtfOkVEqjwp9WvbVTzrIeQ65wcToOKak6adckRnUt33hggLmphcmd7BzYXLeETj3x7pGsn63rZYhn7VDG0YjwbgqxSKbrCLHIwRWf6YyYSgFAZPxzB2mQ62DJoABFJBHlebaSy1JbfMpnNnEkQzHLnkDB2KWFRcwSeIDjm5kSHfs4EY5uyZZhyZWhbWokfU8yVrUdQVkMRhAGDSf6oiYMcQcEQCnti6QcblekVAUTrrZ2jIRVpkIKoRTezfYdU9CtB7kDNNuJxElV2Wl+IzN7IY7qdDbK/0SmKsZ7jD2DVOtalhWRlqoDK8NSU4LauWOL5wcnisrDD64fwMyHo+4TOe425y3PCK12b6hDZNZjVDTwf1GRAI2ry3vOFWGHwc92B9KaOma3NMuIwtF82941wruifay15TWUKHbUHSzwiVnJ0Kp9cm4o1FnQzWIfXOEPLPcLriRjRsh1QIuYPhjtU8T1wZYCYoPsIXePUhyASxEOOrWDwY3fM/L0u1Vas1F6s5zXutjeM9RMbKXaOO3t33SWE/16dUiHM2W0erUMuo0PuebPng92y6AyfGcRPCslCf1D/fgOY0gzwXqzZuejUINLsbQuqqN/oNdCDEBG7CaWDYGThY9KEskdsqGF42HFVQlIJsUQQ2ZWq0RaWJye3IUZXCA0tTlSECJWWykshR8bXNkUOklPHcwqpcQ7NM0IN+h17qj7sVfKKEXjm67v0FcBPkT20Q2gNUwdDQMisZfUsmlGRTforCU60b9yjtRx06GlkS62iSOXv5R10p7qBRU4bReqKijU5g7yL1+SnnHXnpUc2ACaO/Ne0Dt6sZEvB0nqv/obJwKvKKAVLMa/gpjuEe+d5VTwGLiVJTQpTyR8PdziMLgZPwkdD1rAbZYxY5AHn3XjpLFryyQplAraykzZzJ3od5uuh7CsT1fDS5iGW5rsTdomdNbMLjHV+3kUE4YeFTtpGFl/0ZYzfRRPDwLmuLQxOzPq41naQQbhlNwIMevrKOaYqbhdDMYRNgVF7iWsxRR3tnYZMzNoPBThrrtBdlEJ5UmsRJM6LfPErujyoWNwVW/hPFCWFuis9znesd9JHtB2nTM/Kbk0rvnlABZpsk4CoBbqDVblnnyBPvaD7FL9DpbYDw0OXxsL18xG5CE6LAIQVB78plZptFZukQUJOzHCDo2Sb79bcCA9O9s5NZXCxKShhgbGOySsNoT1qjg9eheZRTBq+s8LIQsrxZFSbjlyRzwlTO/GSMLZiDgpup9LW4lScJK+XRNPIdd2HcPdsM7i4eellsAli5FIYnPG8AdZWSSI6LQOYinkJy1aIT9rQTeQMNarzTvJrnmVj/o120R0bH8CGWXON9hJUtgJCih+3Zjjm0C8CjcELq01Zg9Jxod7vTJ34NjWQfhi1aqyNphP/+Su/TzyHUk0Lj9zaVcTNersZsH3Ri3PawHHPqkMHUISeD/YlG6TNzf/rU69u5+hX+3jSoi6gunrDVGviH3bXRUP9tCj7WYrhpDtSLguR5O4/BCwdZuM7Z7vepJ9QFx5f8uI4KjIoiJKWm0OHWApKbqUUyBAuJDRetaz5HBzjxnQSWceJrcuuCrvFYCc9XnJJEJ/ksk50RVUZokfceyW/spfCC5pHGH6nI/YTgxImPgAQvLriqnFJaX9k26fVmzTraS1Snlo7ccR7wGZvnN1IHVUVYuw2c3XKMF0Y9GGO3GHez65Q11gyAX492jsT0huqcc0l0yjX88t0qfXgsdV1NJlS+JeYPBsFwW5h0D33mq/UN0upqK5HoPlCam51ATm6dBm2aG3uhtuWZE1CW4qV7dR6gUb2upqaqNP5kQtAYIt/qmAA31WJ6t/vmGSxZzpVZSt9eDiKt9T91xngp9ETXTnufDzDVAQc/M5QEzx5AERlEETbVE5xKk1DbnS/MFUerkfGsfTlK8TMxhq7zLGZTLuerE8gMNd7hPNC95G4iwS0Ef5Qqbf3Gjep7YuFo19p4uhdYcWqZhWVVtnIOtc/574YXtHzXnemPlrrNffZrPnPRqDyeMkD9D1Za8EYIxvxSD1BzXh8qU2ngvGp/zel9kslu5IBr0Erir4lwOK4tMPgoBsPZjTOPGTZr1wU/q2X05ZNMSNST5m9ZVWuq/UfzijvJw5ygdndN5yGzEdl71NMA4+xk9LfmTe1cczwFDQYT3g6af2mgFqOH9uft6PsJgTIzeSF46E3TZOfn6imR+WjZoeqBF9WaYFY4rNOQiYWBOewXkT9f1zieIB9C6Eu4ZUeOgOkhTnYMpLBaS+OHqsqDU3Dz4zBDGvETDhszBdzCcgH0dpn7MoMYPtd4A7CMl9GVL619eWjb/QRDGG3IaxiQWZm6+ooZHRyG2XENQwYrsr6jfEVI2gpg4o7EJ/Sd4JuPP+d0dzwLwgOzMBIQ9Q2yIry/eCypnWTGMsIGpK0Uc+sk3Pr3Hx3ox4M7ql5Y+qqtlB7Qlp9WMMwGcZy09oFySWbb7W9tagfX2U0l8g2Z0cdICy+MWf8JwQQkQoLYqTyetBb+Nc2OXvUpeqPRhSU/f3A9Z4/kTm5rjPHZUqk9pJuP8O6LC/4lN1PBbgUKeIoWVM3UW9E55AO1kGVqU7lD7jcRKjEmCEXMjgmUDck0V5m9be56sx0SFMpKY+VNgZFsPwMgErOwme88q55LtWTtnCw/9qAjXoCrCMObY2SB1+jTZWeAbyoNZtctIs8uGBN3oxEy0kMxLhw9PxdaSbHNcVyh7Co6d/DzUJr/c0VW04hC1N8ZoTb8rK7Ju0BlQXn7iGfqKvT94uullFp1eygF5SVIuP+ObTJ5G4uuYpbOWIxQwFWuWuTzirLUZ6pjDXkIXudJJxySacPiRxIl5sSbgf2W2EpUbDmyL6VfR21ZziRuvx2JiClrQW3nAV4kYAKtMZm8z5XF5QedoQF3WmJN8rE9Vi6Y/kFqg0NopjC0lk+KKwDSxV4RXnhM3PGqrv7YjPO2vxL9r/ZsWj+E/O4e0a4Y3c1O9Gdn61zkt6cMIf4oCuR2hXtNvgPntkQDaCE4glK4FiWFD0eYYBoUWnjxaBRNXnWAeZyMAtGbP11pXrL1a0DUS0JNfYUk1bcjg8XvFn2xcNKkhSaSGXzYo4b+L/9tMqpB4EKTWnZCKZCmknJ1zoppIY78ZRknESFsUyfAKz94KIC02iux6ahILUPKd2frmR6RAZfE59ljZ8pH7ivpcpxT9anqk1sPtqQ3OAdFKtyHd6bK6aH/jT88QsXtvk80T0BxEujXbrFksqnXk4RGVbBjmI1BN7NLofPxB2ap0vd5/2HNdr7eatA2o3mocHH7q9jolYTYxK56oberw1oY1HAzO99L4LocZIe80Fni6YEe2Gpq5SLA3deYmEBaAFsGfiwXJzHO0+j/csc9wQT6X/w/r4ptaSCIdc28/lm+b3cE4ADOc1FeEy0MMkwjJdQ3duPSBMC5nuEIyeQYCv3w8IV2ykidnCe57phkRLkY5ilxMVHadoK1p5HVCe4YFJcLnq5f4enujfFoejbltFnyGnhSw39p4WlAn+ozoIyPzz/vDbaJ1J9N1//MJMMroyJ0j3YJESYYdMFogO/Squ+Z7uuplse2JqJTbOcXCqHSYpuKI45E9ENOAlQtapxm7j6Z0e62JeEUGfKLvAAzbay/k67VaErLhpBxqkNrSK43Bz7XEPT3zDYPQ0Zw7wEVsxU0bVhEllmVxo0DOEfP8sjFa8tf361p29pNym0ky3+STMgKyCxmuBA1m1F8hIlwGBCd5aqfTj3N4h7S9XV3hIaJK1AFi78j8cZhypeUCR70qnDwfcKpKZcR2O4ZO2qgVWoclmShWAg68y1hDWXHpdv/ohB3gerk1TSQEcz9vMfLlzCFeAC5hpko/VPoXwkzPvxEWgr0xJ12M1gv2dn4FSz1i2k0J3ZaNG8RWy2OhEy4haIkllWJU9AtEAJrhgIBOydk6gwyY1GBcmAAZ2XZ+zVSavMEQK8Dzb2fpwiU9PNg0dj9iP4J2kTAPnQLIb1ESLwU4DJ5cixdPpNKWD0fZsSkVDL8NZGNsassYgGVfGzvtFmTHKCWKWkxALLrqBsq2X5V+WKcxUKb5l7d0Mg4tBglu0jKuiVSAh2lkA6h2/amS3SrO1OC+hNxkTdkkOnvdvzMcIL5xjf5Wf3Qe/h7AhvY5h9HiPEMMcxbQPvIyj7sVx369gaM9CQC34FDy++fJ13NqnBgh04Ur7PVxsND1ZDtXXjwHFd5lgZQy4QoA27jhz2kByWMMWyYPV9Xrl1YTb3Yso2rRJCq52NAo6eDMc+fXjuY5kyl9RmhZMo2349Tti5E3Ri9GUtQQpAHPyFD0DejPYW9Rg/4Fw2PCFdE0qJfvsyBAEOFouuPVUltOztDF8ZJQ3M8BrtwJ7LFVRTSJzWaI8/jl6D/pBJ31h4XT5YPodhsv39yRLR52mHcZCEYXNxAqwx37VCjM/cUnVK0XzXWUVOpyczTo3fUoNbCn+UPEZq89TWpn8rnOa5GfKkj9tFIJ1eKwjDRWafysppxXreQTx8Sb3ZzlmgeCOv1bHTW/KsUKiQrvy/ZamdbBi0LShKP6jCKiVru9kJzyWl5wtYY6MZ/1VLrOX9dt1U2aPuyTRiCn/Yzv8lm0afnPSa75kD0hnQKwRpFC9eq9S3OF57qvD0iUqyF7LyRMcw9abfslPoUz6nIdKf0+f5iHs1UtSNzQ1akR/gskQfYQfz8VCJYy9JAsqbyVYyq1NWiNmrnd3U5jru2ohC3nheQDhuBk70EUGH9tJhiPsJmtWo3dYY7iMm5au+uRDGgN9evlBUNaK2ZSxhohWB/oMYmn/ZTWO4BW7J0LjLumTBHvZy6rfn2USZ9uIKAivyA7Civiq4PYSqIEPMSI9OwZKS9J8FyiDrbVtjji9P6RSzfKVKE4cAmypdJvHO7QDk22mu49QbiB+jDHBduWhSxmKb9v86rl8On+7vRDfbjVPy4NW7kOnwIDwCa/199Uo/Q6yagUFE5K6pmOlDznjpJUx3CFHQFxtt/q4rLyoo0tv0CbjQ9fmBvNvLxnjYuntvfXh0MzbxvHV28mTCPahJBwYv9Prq+p7HM2Nug3c6R4gPYkvwTnXMX8Yo3l4Lyv4594QxR0tTasAGQ3ka3mrtUAHL83xDi4aZ4jlshWDTU4eOwsR2Un6e7m721Lv9IUB/ozItNMKFHi/kebkDbD7MkUXyGm3TUpZK8Z02jGDPDlK5n+XkBrVig6h2aUuL+f+Luy1OfsPuSdd42gtEJqwTJrApKrtTztbboPUhzwQSKogPdxDVR73hJMItuoacneWaDHvXTG5KNy1X0MgBCDC/4N49IPVC7ZoVVXU0aYMl+RmWrQL6lYBRiEMcH3jqy60gwEWY0PMH97wC6Yayu9GXlIyZLDGIACtlaizzBf7cL7OMFbWavoHtRlzn83MmjYkwRrbpz6P85/fYOHJI5XOTX2uRadNExYeopM2+Oqo1paAc5xW/lNnsXeSzT6S9zKIiMc0+8ntRWoe3b4g8ib8FXQYPCJJaWVV1rdaNfOyvESiTffNRmV9KkfpyYONZaxXoE2wdCvBQbydow7qJWMQfqhN7TvouIttmB6ksyAXGBSfW/eWcFVeQfGP2F0V1mTgjyyiVJsHBAf7yXieehvDO9VMHn244rStJPPQ3fvX0e8GoFEvktrPPGDEdWVtUAeS0Rv2NEXsjR59j005Io+Ux2qtnpG4a6le2VJd1H0BQD2GHsGCA57UAKIYPuWFxXkX/HNagecheTAmeFqxb/5PyKNJ4x+xzIP+O3ewBnXtoXb6NZIFgQtDTJJUr/X1e++knLHqDu7FOc1sKuDGsFgrvCjy27nE2Vi6AybzWozFwAKGDGcZJgx3B0uPTlsFSzVuovYRYylm2wuxCD9Xh3dlzgcTxqNyn073qXqbLxu3XagcwRofEYFbAqCHQC6Ww9PPwIVyiZRLWKTfj5mnrqiwDdppOalueATgBLhFjQ7uLhMx8DL0IcCu2fU7g1AR8ngO+a/nxDKc33C5gfJY3Mlp1mc/RDLF6ymVy6JXEe0ri+r8KWWiA2BZCp2uSmo83vSVkRnJApoHbFhMKMCB57ZfMRi4spM1MYdMuXo+uoIDTVznaXK2neyN2h5hfseIAMoZoPan3aPYP21XWjKRpW8RZ6pLBUAfUsX76IJIWseSN1lodDefN1aRwskoomFxtJd24YV1A6LCVG8GUtYpVI1wJ9tPRKwzhAEqQLY15/NXkhhF0iGyeoLvoE8dwAmiGeK+CUFvGFEMl1Z49u2peu6J/MqH+iRFYV88ixb7ycDulYhMGnumrO/8jE6APfvvhHh7wzC8dPvQXJDX1rOh3S+jxNIOEHbdhA3xjz8VYujPrgLYndmMrzgMiLvEYDychPDVrNzKlHbEnCPk9PmkwsHb4n7y6fmHffU5pSN2uSrx86GKowSGrM6dzwxosPY51ZhX6tp6l7MWzq8KLA/lDE3pjTZ3s5dB9l307Gw1kesmSN71X62T2F57BKZS77TarbaNH247GxPfm8PsXdjiV1yu6zqb4wp5zUirWNZtaNwBwfMPaX2k90W4KAYj4kihdxDujMSsRQqkK9R0eQ0oXbUN62tSfhjinIQDkl1xh8hS1CLY863IBBXXDFRpGrOH7JiHuxrBxqoV1yGss85CRjztP+1VcZrIQQk147syXGWdrpiuPxn+ffdbb7kJecC1+6tuEMbfYSYFv4AmDYlk1zknqYWqX1UvrJJFsg10UlIe0V74AHK5UJz4JxG8Wqbr4Wn8xPAqIl9hacpGyU/peHUSPhB8tqZRFkjNPKTkALykelNQrLQEoBhXUXUoYI4aMj2dQh1kTOE2lWATGU7e9aHZyG+dpX9RYiDPJDcDNTxk6dqXBK/6d7mxGsIwxIBob7Yp65UbnyQaQUx80IizTunNKxOIQUvueycGL09cj2KuqDiFJ3WMlBT2V/TYGE5buhBMqeu3a9TS5TqQTw7P0bWgV5qMcGR+IiqUQWlM+KImTN5vaq7zCML0IAmkJbduoi4ZefBdEA6h4txCWqr28lV+TrX8mi33WPQUhnAHL8IZIETbHxo0oLXDNfljEKiZxYVQVynhBGE8Z8OlRqouvEQzRo77wenfuFrPVW4JNXEoMyWDEl3ZCrm5vGRP7RFCxQNNqW3/u4SsKhxczVKMWmYvyaNNd0YXE3GJepqh5xjzVw/jhDC2u0IhLIfjm0DM77jXLAbFuxu623Z+QIiJlqv5ztf1bv1nLn7H7ho88dSolJ3UyjEO72/7H3RTESbHTcoQ6Im8K4Wm8qJby5v+Ww9NRQqpdIpJzwfPnFPtKIn+17vlojxpLPHMaPppKIiEsYX+1qshG8KedSdYlAgrJTeXSREXAmxzgcyCtDVHdxGDlQBDIttEpcn869tXa6T7WS1kBWR75uuw+7+hSsgHtSJzqQYllGaLNy2ya1z8J/oUKkffDN5MA2u07xDeYwsAGXtzjf1eTumiHIfHSJBTIXfTiW28HWBriQ3m1X7o00WiZ8NXcFQirFaPHDDbY5aq0huZmTd5z8PLS78Dsrr06ddKDmxGwxSDjHos9jo50A8a7EqN4hZ78q/cB9w608nR38SQSk75RgmpzLbw0J91dDXkHx+StzApxanKMuCNRyDrhBbFuBlz2ZaVKM1b5JWG9QtPojOLDNi4zLJT35admsS7zGTolCVko6XmXxD+lYfic2KepU/Ni6WIK9f3qEfe2e8c/O42qb10hMZ0bfKUiPU+w7DrFJuTTJxqw6uqUbeM/ypkMTiEoAPAERlLk8aeghb6FxRNYxF1b72KtTxVmnDjeU585ZnL2giNMjiKA60L79QOOO4Pl93kkOnl6r0jEQohp9YQZivid+gdGRjsHVEI7GGM0erM7j51ZwkiRrI1kKeZAzqJ0Klre5lf/sPCc7PlTJOaH5Ms3Q3eH/Ma1DXWJDQl5GXvB4sQWmlFfRffka3v9K17fidatFQMTLu9RVZBxtZAmEkQQnzLssaO9oaLAGnzLIGs076MCAPs3hgW+MoTLFWjKza2WPTpEVor7Zgo7tgvv7+NBCnldoJ3SOy6gKWoQ++oOIhPFopIs/pT1x8PPxmIw4oKTXohzafVVpbJjaqQoMkxME83KYHlzqfa69oQ1QwPU0/W7Lzc8168w5VWYftO1JSTBGosRSbdvL4+CnNIUCJVotWyF31jpJPFMvQRAiW3Q1c4NC6Oz7aDrezde9NIOoP7NMVDiwDtwRvMJCkb26ckHqSg4qe5ByNvwdz456QdwZrxukoYAoFLt5IZIoD0OvqkNde8JB9lRAmyLS0JjiDgmwJi1h8rYOLcADeWcdIETq8f8wQr7w1qa/PY3XQy0eodKh7IXmlNUjhZgFX/nMsdG8KKMXcytUnPhuTdKwait4ZWpXt4hdi+MLudk2rH4qM12lePES5fNUqCzTzve71O+++I/P95AtlpxOg28SLGBCSDZFM2yOoPn+6mQcUvLzSyA+4kXBrBTYvryd3zQQTX7QDVj+XM99pz6RXcAuBzrNyUI9ATmU9+BL2EPzEvFFBberArNDLGQYodWX9AzrNvfqNk5wYCEb6nYodh/9c5e0F9uiG7zSappD9B4FTU2IilHpYZzfd0/+2pX1viEYGQtdiCsIt25inahUJdJMfvLm80X6aBfSXmvTArVjmEw7uoYjoQVkBPmLhqLLlkjs1aAmE9eE8N83RcBffdybLksmFRVJwHx7YaQTWEh9bSaab7FDiTLDoOZaHd4F02ZfvxljseEFb8XKY/NnNgDS3PsWlQvq0UHgiwsHopIlVD7C3NQ5qHsvKh/atC1moREZHEv3O1i52rXIpnTGpzDr2RAVCmLKR06USX77G73fvateqmkOHdcCTghCSUv1VSGGDUuKbFJlHmKvjVrZl/ZUl2plJVRvUPJKtBDnybpXwclE3nJqDmrCnBZEiVkgwfa9SoH13doS1ni6++xZszRfW1AtYUISlLYjK8kHOaCdTUz2fiGJAgj8HZqmtcfBgzGxvZQMIcQjB6ZoDvwUPevinDr/rEYz5rGSTHjSnL2TXiB6BhPbT2+pqv6LV3RPru65Rb1pKkZB9QFDanM++Ayk/LX7pw9lRF8F0mMQtS0O8SyS9fcyl+qeBFqiAezlBiEWsORY9YUK1GG9o+6BMg4Ag2i1wXMIs7Vlhoz+WDnjKiJZB5sxFzxgDHpPkrH1el8doO4/g/CDQNKJhiTg+Iumjdb9Ri6UNPzdjACeOmSWwhEl//4rkJvLGP5KaPSV3lIGe0lcHlpatNhpHAhZr/sjeu8q5KoSUYq2Q2B7nWy0pZ8zACcjelz0RW+HArzjg/1tZEaUUTFQOnroXaLFKtHD6nK0iDKY17cRXZfppFT+0xErj5EO13zIFjaJvh8me6vTlqP6E87G/opsT4VWlhmmA5GIOl3g5jEQTi1tyxagUNu/CUlQcWG2F0dtHBFYn5UlOVPaTSfxEHqS7sYd8lkqgI4BVZ/7QIdUg3RPYlZbNwGhdjGxREAwMzc7lc2MNnzItOJFxubPRsfAp9zgF2Dz9fzVx8Bc20U83XlIMLq9us0hg7/TM3rTRpvEbWBjp7WXChn5HqeQyjng3aiPf3sTylyScQwxmjMzUxVJDdf7iKNEGnKH8swT0IkG8Kh6l+qGmY+EwJZkvSv9BH9vgr6N0lppjIu7gg5FvOHc7bxYT5Pcma50/hCWWoHxCNBEmsaf2ea5t4WGEyvcA59d1K1W4WjIGpcWI8faniqrhYHrQPqu6ddc2J0dNs4o7bPoUVA3teeDSf5l3b26h73ljvMgo4XeRYPlgqKvTInGHjXHmcF6wPui8P5E+95Q5bUlWATZ+qucNY4rF1tBV2HFxzTSzxn3cOH0zl6tJC2ovyllD3ZG8tT6kGpdUERCBex70el8kQ5SeJ9Zin9MVMoeFW8mi4w1aVFYvRD0U9url84x5OQIEwJT8AolYMBxr6oslrt/K3DdW/CiWtmL0uyHlIbr0pkwMNpXVFQGOdmT8Pi7iRFdfiSc5Vq+HwpELJfVwuWOG0PhzYkrrcNwDHpe5B8w2iV6SoYP0LBlQpC9Phl76yjozJw4U0FloMzkadZoW0/itQ5yT+isNZdI8I16FAllfWJU9N54RyvIWo+ap8lf8Drs+EpCqq5pkN0xArMzbR3QWKsAnDG1Lpku0b2nkoQ0cW9OyRQVw0J+jUPMNXzPnBn1Yv3brgGUy+YBCx35AuaxTYmP7rE5Q35WMJbeKZmuw/+EOV1CdmwidReApeuO0lxorcbB3e10bb1LjCgkMUCe59tNcRDugccB0YSRsh+CYbEd8cqfYLv9Ou30aBpWLo3QDtE8I2lI9cu4GaISX1lnNmyR0CnsaBhegeBEgOXpZIWHce2v+jCB7Xc06Fg8uizsddH5HjjTDdK2MWMA1Qd3PdeDod+S9XTpdV9pQbl8LOszrYVd9YU36/3XVYQMaPhvAi7RL2K5K7e2v9zWrU7nrtXWQYnU8EA1JduvU5UNMVLP6D4wHqiLTG9nfhg/aeKiVFq22PYH6RM2beLoDrtLve2kQN1x4FdoosyOg1CXX72sjquZQzs/GdxecER6yCAM201ETx7i1vR3uJXCnsjN24QYJH6XRD64Vf+Vy9tv1j0aSrdBpSB7QZXX/sSLrzS+7arkUQhwPQ6xkT7Dz24eAI9B/hEHnL+X7Iknr8WcDNbgK6Kr79knikIxl/8Pp5bDqJDSCSx6NLFE1tzlnyPb7kG6s91S3l777ByUrFdGAVzgkLkdkf4wvKSnYsv21N7iQK71u1B+m9mBDedddEO0ZLlB/DjEd9pnK2tQToKZye7SChEaGq95griJUFmiHJ2MgFKtEDKr25/qfnKjIDkaZFrWOhrNjXF11+N1SlkSwa0xu/QSMqRi1H+MmR5rLpiiRqw6XmlEFLaAUTPw6ze9NHqK6zuDQYfVHxCgA2XomwuLLo10yxS1E7Vq2eFBNTM7BKP1dmsArl0PSKb/vH04xpVfgHKrE9ELjMLwiFR/bcSmLFChsYzgKpRRBlKDqUI3I0OpXrPQVJKwtAv32LSeyjO2PGQm08bJ/+ZjlYsa8FRtNWz4tC1bTP4hvTuEZ1gF7hndQ2gycV7PWXkboCUivQ4hLwLmMtAfXHLDZLM6h5gc0qZMKpZ448FNr8f5EHBotmsLvbYZJithamGJ7CLoq4nBMP08jAYpBQOSm2304WoO8+kkoZejd+IQpzH7TRxWSwOz/8RxtLIC9s9g8vARQjkT0Og9cSTEa9X+BM1oUNAUYiogVYKVJo2iDCaKh0kbOSkCMPX6bknR9z3r3fMP9kckuFQO6n5vnNdK9naLNw24zQMwyV7Cz08ElyQeKieeBZII2KCjaVEepn2iNEq1Sg/LzSuTkKaj3zlMU51dmurjgvjUBh/oJWeAuqikU0iOUSCS1MEubWN0A+MkrH37C+0GaFUJMJKgKsNi/tXq3p0RwyUzFPW2Z/CtxY2bUw+gZV9kOYF4uQXbRk1w4QZHauId5i8/J9bDuLEBQBA32qM4ohq1bOlovcIhvzGFe5eAacIdVsALvlZ6GHiZIgy/dyGRHxxzHE45pyMzqB2okB+MsjjTfJoqpDOCs3Or/RohlnkzKx5xyaAoDRuPzM016K1PPiLG3AccyO9+gaSSgflYtef6lnZrrKazuddBTQfl8wPkodgsu7rg8dorH3yNOCK2YBMXNcnsUuyWFTMPzMLATeOImwhkRwff230/SH0pgAG+RdRGdfAbBd3SIcc3IZWTvMdXzZ58A17TtSHnp0vne9Y1k6j17wxp5fxSAwS6M0ofJeP7IVFSjoDQ4VeeZ33WL1xgF0R8FML1TMroObGHgNO79wWWCswMl6sS+d86wghx7MVQnA5b00WtcEtLxPqLsLmBsjEfA5P1jKxN9+e+3nt0akisR8tRMkEBM0HzL8MCFaxMjnjlZDS/55eKRknew/rFLWEa7N1aQUp2bTmdu/kSM6EIW3wciqwqUlOUM4akc267TUdZm2Zqeo7aBEb2WP9WE3cfTLCNTiKRtcUs4hKPcDagVIDUeDk1OO4YkFy2O82XFMaQhxc9qaF4KEXwZBwJgPPh6nI99ZmSbRa3JuEOMwgniwBkoJyFqYOM26FJ28XjzdLDLFko4eVpxVNcZfr4dQTOkH9waJCoFWK5OjIcEoEODoy+eTgSUGfurnsyDO7C6Ox7pEh1ZbVGIzC6I8rAczWtgMTsH6+PenLktkgOMZPTB881v0WLeWrvtCR4wSRdlpOaD4c06Oq2bX0Lotc4cOGyOo0ypkbqEu8u0+kIdzYlERFCsWmY+gV5+9mpP16cbH2cK24L9M/2lkPb2CwXoOPPy/nsKd6026diRkVNYXURmK8MQClGvT72ZufdGzkitk/LQisie0Jy5ZLqgmWUhuu4J7fE8BR3IUV/c79pgz8dvg5gYD1d8C9QEhTgwNrfrszPE/Z9iXKPFsaqA572glWpg4vjy14OWdbw7L7ggDwq0WYvFJTu9zszi4bP3RuyRnivtYDy2t8407eSAXz/QY5SX0Ce2tQz8y+DYHua5d10eGuHASCcnPpdkfuAHhwSNKgJ+8lUt1gUcwC/IQSpWc/ouxFhZ7Y+tLMztGBA/j1oRnJ7fBJ8qczgwxpZQqkijaHerUFGMoSW5lJJKz7TgIeBESGxXyrxbbzEE/2qhiW3aJ+hToBK/IljDDbnxZ+oscDzuV/JkloiVlnlVDdiBtDxV/C4mRvE0dq2yfbNsAljg0+TYhCysEs2ViBw0cm5ib28djb3fgiV4cwYFlqDD6ooRhl0DYPN1ywvj+1Ay81zDjNHj8cUzXxBu5BpZJuLnzGKfEtsgJhGNaiNMbQ7aoHpuCdS09/Ou0AmmikPDK/C+w4FMTk9f8W/QZTfjeeAKOSLPwe+AmV0uI0ZmiclVf/A9MBmPchMGafX1KlqQfds04RDOuqy1GXpZCGn9dZTidhFGNosib7fv1aI83UD0hGbhD0T+wH7BVcHVDWBvYid3KdENYvuvFaM0nU6CRCp9TBhc/FuZU9642GhUYahlyL6ohwc6v2500AqkatACaokt/17eGNj7FntI7OtsDCUCKqwhG4eOxvUJ+QCW1VGOyEwZE2B4OYQDchHLUzkRQReABEIiFu5E9MP6c5pqypqHuDdHH/PTXxun5y7/KCrJB5tU9txYBQhp1MwFYsSR96X/TDAL8sPbxSIYlTGigb2oFQa4NfXv4vQHXQ93cDkCV4xSkGZjzlxYugc4XS07trC/6PegUYBxAjYH2igUyQMD9WGHGCnL3rm8Gu4ustcUKlt84FSkuXEVS9oEgDLWjbLRGpeftAiOC1qSBBJDIMNpTK282gAuFPPjeRIs7mtOsDnI06hojHUnZARJb7jTsgr4JImPDwKPdgvbTGiJPm2WoldgtwtecqttF8am35WcOZA2rhMVJLQAdZQ5eCqgGgFDD7UenwGE9JtoaxezkmRjBTAaUILlyFzEVPEc5VqJFd+QmalrJup3OGDA+ky1YX7TbmVT/uuDeDyjSHXRiVQMitVF/RWDXW/z5jrejiGEha9WZJerpzKjWAyBnWQ/2B9T5wDltxahEUnXccwER+gTI1fYcsegNKSMbzI4QbGnixDQUObehUSd6Jn42vUqcEsP6YiIf0+/Y2NgVXJwKHPh4znCAO5TN9MdEVrocQ/Ku2rhFoPDIi1fTSknt1iICw3mycbrweHZICcHy4bKl4u/YUupuT7BUpaCSsiHSMA872v2nFNd3Wa8r34wkytbw6bnTgRBEPVUwK5BHovIJZqJIqgchBccW318BN/cGM4j8EInnUDRfYsISq4H7vs3hFBIijb4fe4fC5FeGYjYhXwtoOd6AYvTZKmTipU16HYxvC59U3y+DizoxWd7o2I+w2yZnSgcta6rPMuzcdSe5j9Dv0xs1KkAXg9roxWGTQVDzEviikapu+TIbIkhKy/foA2+a8oFFUVGpfZzKAxNszqe/qen4+OY0P570uL+bH6nICVebohWKbC7i5P7D6BDInZM4G1mV2o2H9AMnvVPt6vHbx6k8AzVmlqe4y4LC0rXKslYhl4U98CqXbAB1zpW96X0np0E0FrV6XcRG5kaV/XfQZnZG0kE2gnRv9GWjMr/oBdUsb4VtngEHKo/BS5gyzn4LQf2ARLeeRcaPlsj022mQmq0OJx3sb4Lz//AA5rVS4+ndeFrfXxauR6hoWaFDwpIm/Ar3ZGRCPd9PCSCNeX9AVuJF+Levvjq1kLe9MkvLfa8igAvdyZ87hMVLWwQ7R5FvA5nSssPRVND0ZpsZ15WO8ezjnkH0gjadWJab4TtNx4S7li1zhUNmRRatDCvPwFgHgSt6yTbKIoc+aUZP9ALAhzlPFhlw5WdmxTM51r1/yavBOsK2ZZZN/b9WEmfRjmfkODeJNENNIXYRRL0Cv3oyibd9XKkvHRG9yrnfI17LQYcxJtE2uRToCfutN+ylhCHSkMg4MkWcY3en+OoqmM+2KVBXUchaLwJpbE2wKGOk9R5Ovm74UCTeJNDfOiNaNCjR4J6SaKHrDblKyRukyj7YxDBjtAMg6EqkdcIawYF4gfYvZuyo+DvDdItPT825Uq6MLAZ2G4/ijnDBSBOU2Ny/IKMFUefxQg7qWB9XWOj9oRovANvEQoTQxOdlf9KDPh3XZnS9/uuw4KvFTKU4ctOIs5xbjvDEISt34lbVD/BuyPwh7eFHQxD75pPA/qHn1KNm5CidL5cEzsuJF8IPaTGspV9UfkXjuHPDCPRc/F7DHav8+GcGMPFUcl6CYVxevqiAgNDcjrJEh/4rpxrABdcxfQ8Ak6igJ8T98YszsncMgR1pEUCVD9lREoVjMkaQVohrFdO3nIYTegfXo4ULq3f/ZExAzroIUVARJ7ejcaI9l7baVxZi+kCTwpr6SgPd6Lhk0EdInqOQvatQ7BxBWL0hb9gf3d+n3empnicGguGj5fu83UDRmTpaKicK37wt95uJtqQYom5s+Y6FmWL028oZYq04Qw9JBj7pihsIRoenWCuMswXR4IGGVl2IZI/SVc65s2NWfxxr2oX1OTH2D6itCYRPZsRYU1Xm3w+L2MpIGbR9uJWmy2eWjiUMG9hhEjKUaDurH/aKNm5ANM4EEpr75up3Ux6u5dy0Co0I7xmPZs/DPiiPw2yS84pG7OX4KdpG1uHfaX8AlkYCe3aUa383DPuT7qIx8GE4+YDpOBk0ugNni21rZ2jjM0t8rBQJc3lp3tKJut83GC1WKCQeScd09d7RXJitIRm9lTNLQGXleOQ/1GwXV5bmnTWIlee0FWROD+QLuHxqc14fgylc0N9UnAqgAbjsyVp6uIFgvHGoGCl7D1DvuSVC9wr0GO0wrnd9pkgs5N7zhLA9dH+KPEdsSE8twJu63C7q/Dnn9K6HM3zXvxuWg3chMBxsnGmmWqWuGb+uBKvk+AoexKqI6imt+a7mnvW0ex8y5GHyPcxfhJ8n42nrZSOGLF2IFI5zo2TceXifphui5t28kUFhHsHoNb8he/IDDm4/sRayZ17V07iehhxBuwM62DnBhaahGWisU1XPX+nRNzrxCbAPj7tz9oqzJHWMrahjDfD8o6cBkXBJksLdoZTmK5L08hwrRWLxFe/miLC7o7AaFPP8zWScfbjJGAdeI2Tk3ClZCN5pnbymf893eyye4WZZk9JSQOnCL5oPitJskqFX5TbBCysX8/gcjOYzgfNbUzHqt8VOmyuhxWukjniz9gPOhWdT/pXb6AuWHT9+m2AYJs3HSncQBmJ2PsQUNeN+Yvr6cZNGvdFagvF3OlQwjpg8P7kd55Uj24+d4CBBFa24WHGF7HpaLBZRa9qrJ/oeFibLJnK1xT8jWNeKz3EFeYfJePZS45xbvNXLIwCoZnpb/TWjW4ZHOIIMPpywHXx85U4FiOXf/nFBqDRXaQWcANyHOIScFtAxbKNRtxdS1ZOeF2mzDTlNQlmysHvqHsEN7OFakBVprxqZhle/XENDM2wvJ3rEYIIvgr0ukx8y2X/chx9h09r+b9t7h+pecpQFX5jtd4clAiTLXD/g5fcTXM5kCCVgiWWpMRpraH6nzkkzGxBvziOtwsjgIpZVnrwXe+u/1rl2RJssicOcgD34Z01c4EiP2j9z4McSH66hY8kZDZk6+ePOuhDFEq6etTiADUGXR326dAKBp76oLbwr0lDoRufDH99qc0uUnrzVHgZvltYaYTYuNr7uhlfegcD8gOvDnDRQgBfkdUyPIVRrcHVM8rtEiIHIdXFcnBFzjYm9QoWRgu3lEmx0DAyTWDiHPk8RCtIsx6761mPWRAIZpab/Lwj9qKaFm+cm7TUlEk/mESsf/OTqZAJ+FXrekoDmvoiUtcuk6H6Z3J0IUY48uAhnw/RJrLDen3TTbO9o8HHLQVojOd3E2e0IKGj8wevcSFbO33cM5V7ecsKT/UyDo24pUIdMdKEIopZeyqa3NCRmwduC/0ocbCpeF2CHbecPGb/tugexopULtMrUsmlPXK9QqcRkjEmSHWy4ZdFLqNeKHfL01+eExq1Ag04vjcB9nWxlfxrZ+3NscE/zuZQPvyW8ElZW6cMDKsp1XmBv7EK/KJNPsiTe5cRxCYjOeXn6jcG96qKcciwU3RxDFebEQyrlO1/Lj9B+knGXwYw98sSdadY8CUADiG84Jde+Jnsukj7VeAEEzN2LJXjXNAybR7MgY7vwNuOIaS/MPMv9JOBVzfKG+xWTZ9X81wPN5s3Y9g1ZVR0vVKShX+JvzYpG0auIjgl/u9TEeNtTMzw6OPCiNKYYrdYRnPL+6E7/YdFqd51V7tSVi4nYJuNQQw6Tfh67dORqoiSj8KcLp1F+IMDwVRAQxv8AC45ga6sTDxGxOxVk79Bzqn3JHhDpumF6ap+xRf/jy09ZNo0W/4WLH6T6uDvMCj3XcZVDD0o6Lq1oH1/9LTtPySArwV8swiAYIubYwIZru/N3vRVXxAH9qQFr6u17TRIT1CkZV6qnmSI3iWUguQwRIDfBiH3MSk/4SYQwpy+nHMtMAF0afIzGwEsRJizZwqhm3kIknmrhptxpEpJtR42te4WIavBWPLrncOLhX9cOAXjpFwuHLVk7G3k4lDKtXakv4hoMdX1k9HRAcn5Pq+YmQ+4ukM+bu8LT8kT9fjBVfjZxIdLpeQ3gyoEcWfnge5EBrD0SY6x6sIfw7aQfeBAw8vNt4IgzS5Gnp75ZxYHdqTGzotri3ZLo4fDdBX2bHrjOAiEXulcMx+y+Z1NrEFqO2Buqxy4xtSuYueRCsd0yCOJUYbeSp4M5xYERKOG/bggDUOkOJnFV5kTQ/a4dVf9IxlyaDW66eNEXCdwREOKJC8ABa1oEgbtipJ6o4KHGTo+kyxlkK8YM6qBKtIyu/lTiC383kc/jh56eiv65Tj8fD3FtvImydSZFRZolGvrOCIwNJHCY8FMUW3mHSTP7q9qjMSqxnSgpBVpciHKtpPArMU+uion3OOoI6/PDqx3Yw/H9kApn3bsV55gf4B5+Rlz+W8uKK0jIUhfuLXZ++a5GDs/CPppnf3cRNZZpAZ8VNJ4w3Y+U3OYTdvZi4hHDnza4FMpqDPJM0rtDxE5dMyPsKdpoKMOVfTDxY678EuJYKB9zR+eij5Oye+5XOmphz7edm/HgLUwQTYwJR6J7ZL6sQtlQfcrhA/Kv+cGsEVFdNb9iKNTqzr7pJ3/6+g7weVtc38IU/3A0XoJcw8hE25V5LCpW6eYPj+M7YkjWff61mmFB/RSeQ5+1b25tRtjGF0fNzz8MXDPxLCsy7MGIOtTbzBwjf9G6HhplZlLLA4vmN+UbBN8klteR9eC3igXJTRCuCe8Cw8flQc4R+/P14q25EV094Cc0AsQAo6YGlVYvzik2sbzvO5JajT5/Q/iYavZmM3WT+iXfbeF137tgEzHLOV/AnzlRVdLx8+ZE5N5xfnIRZ2rqUA9t9NL6bqqByxmQnr9mKz7bl/0vMFS6EjJEy1CqR6QcXhCOLa3IIGh2MrBc7GIaxCaUeHIWZ6O6aYt3dccV8yJdpkzKY56jfizC/wNWiMOoPZ9Q0wRWqaBOMgfZZiBB/FxMttSibz5hVvO7ynadCwuuKDYnbXtjGsU1uvwDfHRuB3dEj0xxRV+iuuiLz/5bFrOW3NCHF9RpVz5m2Hwm5XF7J07cY7bK5ey28XQyWomI3Kk7zYvhS+HuRGmtlF7rGr8NqyaJpNTvxBzHEcPh02Hiua+8WTOKgiH04uoTvElteKhjZmyUhhlo1i3Aa5NfDH4EAZEQlr54m86vN/bZXEtyEjgdjAmGtpO9XuDTvauqXDj33386KR3D9vkNQS0JKMl9LlgK6d3BiPzk7R6ET7zG6jf3QGqC608zpQ90Pvw8YWiZYOuaVS4si/XfRPBWRzd6jzh1HbANSy/sAQstj+n7UHIJiGEos1h04CajeMqL6FfQDNmO6a527DfvCeMdHeFIzog0KFv5jpUNmNryAdZ5DJJ3c5Jvc1jBYOGyquRcFI1mSsofU+yJONLiFsCwwrJLlA4wec3UwQqmyvaTyZtEL+tGTg1K9WS9/1O6e+wsVPWKyQiGh/th00MvSr8O4amUB+cR5ln2JlU+CF40gZt3dRTEibrBIDF1T7XzSXUar6/UICLx2jNS7nDLthUBQf4tZ6ikI4sgrNiRcctwrBBZ2w/pXhEvQYHC30nmdgptfic5OIEkAWr5F2VxhIzdOWQgRh7B7r84pY0naFCU0DVVjOg3K+p5WVk6yTB4bjx+1fClwQmI39pHvN85NylQtXyPbIORO3Xh5zKemcdw6V7bJBRVso6YlWNrxjMHOxvtgVeLb4h25W0CSEN88JNfZxu5b7dLwbwKuqHe6nJE9AxJACH7seVd8t9pZKh7FErO4CcRT8sIFCJYIfszO9FYBxvG0mfOw3BY1BF/kPMXUZ4yfN+Zccfq+L0ZTauRUgwj/W68/eBxu8kUekFxWEuAZLGF/EVUAl6oAwFO3dC+WHQb9JlizlzEEiEkhd/SKeQ2J2nS8N7z3xE7PcFMs/zrDoKjKm/jjESkL60DF0cgAsL1Q6nbJ0VBsdY5EhQGiFt7IKAhm43EvAzBmxPsR0bOAZLL1BvUfmjt/4D8vLrhk0XZvCPksFiAsSIPwLmdtHGqe3Z8HwEmi1Zu5NgJ87wSjIKgKqOWuAHOwZ/CWGIpXjPw3xjCcAbinIehddKN6mYwFsGbrB4KvgiQGIUFO0FDWJxUnwhj1HKgOKUbxNCWVpTQAwWjKodSRgsxnJOe4I3dtKnSrrKZl6MNP+OSyncPPI3fTxuGHHnKjAzxBo8x6xC61pvGjtR2RjOx85Uwin4v5dPL+JxN8E0Eh6SWmlC4MkVB2oNLhM9laLa03oE84MpXxWJUldnQ7u79w6ZvK0iz+VGSa5r930Gygxb2OMopaCb4ruNaI16IBCmNEJuZ1Eg8VV4vxMOzDCz+3UefCHTkEbB+c+cslkFw5EIRwjKjHyD2DIhYz3irYI/gju6vRfAyMFU7RiNv90gEVfUBS9ycFfmLUsXSJRkohiOYVjVq6aJ0R2pVlJ/vRnC70MLpvVs6se8ffxCaBiEqYe+0yqsdHoyJ24f1/kLYCBHIyyFOFypEerVER1c/1BURxTzIgwDrPZ6d5qbGjGqNS4CnfBqyvtq5fWmDAjjqbiuYq7vkw4uX8CdcwtPSXThyJ51rbtIPcry4ryUehv7UWRPvrYP8R0A7IyaLRBZ7RP229vc/HiZiIWPZPxf2jVQ0Wkxw2/kKEa9yN/6IOWdVZv28wnkNM0TD1Y/oBNVt1fbnFzS94D52qcwjbGknE+DTyzX0qO2Ujx7Gz4K2BVFxOrlf7IZdOFdISmeQtQcBajCxcoiOu0vES86tqOfzZwAur//GXuLeB9aCvVDzphlH7gFpAdeC4JcIX6rsprHod8MQ1jP2Mv2tLeM1aiRLSV3DsseGtf+dRsjbP1pZdgP8txhTt9Qr762Q5kdSOwUErYhC/L3+txzCzojREruk6jaiz9s0EvriCsyD3C6nH7pRI+DAMxISR0Nb+hx70eogjycSsHS8cNpOVemyjUmJ+u7BWbSNCZwKiae/OecOm414PIkhOF0TzFTgebJdTSFo4c/OaO2N/2QaoWpSIYEIScK3XV+hrEhUiyWjKxM2lSnasDAuSZeCTj1ujzLfF458TzBWf70GJ47R8vORs9h/T84Arb/UONCg9Qg4RqlR71SmgOcTj4xYcTvZBD4wiLvfzqir2tcVUzrrmdYrvm6HdN4AnUYDkfF9P7efpkcGkI+IANwKmLUGXffSW7lqZHkl8XtPRlMe0QkMEwAmBSwt7+whz0viWhbVgYyY0j2NNX3/4mYGUljlddi0mQSwTdFrQvbiKHep24s9V1c9DQcWL1+0RWWe8C/+hkaOMgIyKtOiMvBAcNw2opTADo1EJ9tv2LppOztSvziLn09vfuczrFrEDMV2qdN9KkK7GES13507CdeFApG52xQFKs9qHnci/IrcveSXOnzepRbcOLlJUM2f1RLEmizuoiFBuxFuoxo2WxDCRSBmJEa33fniCjz94X7Vg+U+PM0IjWQ7fvkB2TF7QWwMzqqG1IRqy7ZzkJ0wwMoebd96mbeiuo+rqZ7coUSAMA4nEHGEPo8g3Mzn4pl4VBTc9g11vxRRIx8HInlNlTcg8+Mufz0qtvo0gAqja9ukSwYnB8NUlx/jHoyyxCozdpHQSzGW9lcqPKZBZa49SoJPCSDN+6TQp507Vkz0PcDoIUACjR6UB+I+epwbzwrVTGv6D5lksYmtzWS5FZatqMDupuUo23EvzMrRvYutW70ZCTMnKTvPzC+aqe2Y5HANFyPK9EnTWvyNmaCr6mzKots+tSvwxc/a/99AHuL5pm30l3hAy5ZBTGRsE5SANmoKLpmLpTSGJQhXDAlrDv/lLeVE1V5mgH/dt0FLLdEHhRpf1tzLZlXqQhTzD8f75re1pRmc+c4Pl7Ecpsi8skALFy5S09pw9jCEUIGbq/LHjuqyGluTpN+ibsSO9c8o6lmsefQmtjXP4jtCLGYCGJKGgEs1mCxXQgQNpLmfSRE4BFJCkVwyELkB5orN3vxZAGmTu4iuGsWJMS3VfT+s8VSHNfX67etzEJbAd0bGVX1NAkjIy02zBG4biaAvjJ8D4yqMU3J8miqe8UIsY6gI5FzYjzF08DWRWOsxi/ZgIpsha0TXfSRlo/c3rHY/DVg0ENGQsbESElpnep+2t2pnhnaYV2qBOJSoNs5ZKTbbp6PQyDVWoZTQZA3HXeBVh0SqfmPEXwWdIy+a8boW+F5vSXD9iXEgYRo5hQXwrBgU65RaH5trEQz/yv7V3tbL2YYO9TWHuZGuL1wBhFAFqwuXSykwR4kVuzpQm417mxHrx/onwDMxsQuemRYsujGfBowCPAV+saGWfBqm0by6bNkk+FfsjdOuNTkGax49bsfa4bkhTd79JbhA4dg1ahqsxSMyzC/ZnfZKCz8qh1Q3DySONe+PuSwuT8Kqy0TZnMA5qPloGPFx9lPB5YWR3N0iBBeR3AeawlgB+poTkGFoVUUph9BCvGxAS+wCLER51+y6DABkQbvzQbRcOX05sM2XU3Cs7EtVpeAaLkk1CnJ9dekcXfzUGtj2qNp5gQp7XsgvnzW1eS6tcxg1nuMz8dAm/exCCFFYpbmA1WpjsjtxYd/xPh1cKaYDCsYWEOe98QDQmVUBwKhMnZuN6EBdV8V118czsnHqpb79mSheKni3mWsiYkKHkM9z3IrP3EwCrk/mtVllHOL9I2ZaOCrqiFqIUryOEvoGicJuD96BGpJ/WR0yepVMxV/X0MsDoCfdiLefixzdsefh0cdn+gWtVSUI9dW9rQGr5rh84AtsQLKlSDSr/ryDn7eHHQLHq/mFzIHhi9sqNkp90PxVhfsnZZ+feetmmfEi0gEaWq3smeKg97bePyzpalk4fg3UbI/gjkGserhGIxxDxG+txW9lDYXaYeHwsAQBQEt7BH+oVW0J2Ce6atJQa7vzEwhl6yVl8GyE7TQb1i9Ui2kZX7nZm88ZA0AkjQBN7xEyWjXRhc0wuKwYdXI+8AZ+mbA+1QgFtQ6k8DG0dJVHoMWMazd7cO91gZ/9dAw6yEmcLsF/OMEsf3UlhhyaCgS8+2pC0eZ4WlmPSh7aPU6YF/jCfTh++/2IIyUeiiqJcQN2uoJbdA5mMCxqlYTDAk+Lr4erJUeqbybLheCmf57ve71rSVgtRVVWUTIDgsa9CUXa9pCxlhZjA+FFI9Xbia08U6N6pLeD+GRi2UxX67FO5TDMJSX9y09jOqz/zzHnPPaMC0rh70Lk2ZriIpBdkG9/TUpDutEACpy+y+pjTRMqAEiyOjAAQsNFCqSs3p+HV2wwhj465k3kHCddsB6954axV79jXJEmb10jEg1iUCgBC9Nm1G/v/bw2DwDvIpjqytpJv3iQzceILNs4noXrmfFhWOZG+CGKuntuXSNu9FDg04VrZ0hRwpI03u8UvIGxLl1swPqnebier+g7g32b77cIb2HczYr53fL/kc+yrmurPj0vpvB3DTfv2jQHpM43lV3zhduREUmBIJrw1F0KjiYkkXl/AWtmXoxz9TaBH/m1OiJuCOMitMNTPmWvYHWRjK6sl6FUMWqHqVKt1JHF8VwYlrEJFQfhoTmf/sZ9Zpre+ihnIgIEUvIDYs7UEJT6ub+4la8ijBGOOYdv/cf4Tyi1Zn5Ziu+LC/ML/EwzNgWVu1a/wKFR7VKnK+bAcB2WUxNeG8kLa3zbJPG62P5feOVuRs5rWjeYD/ec7BRpAtEv94e8Iq+L7Yc/uMKY3BVSyV/5lN4pOzzenanr9t4UMCNDKsqM6bNaOSlj3jBaDdmKcdlQBP/JqcAY5tRWAaE9HHpskq6NNs0FnuBlW9sDCsYGyqmfZpsOQaRyUOutuyWXsCllFNk5VrDpDCOU93gcfrXVOldtmGaWqcmIySQN6Wdl6hXb6E/EOifIYUBOb4Nc0KC7uMKM9czgNEBwRxHvEwWUpTdsY3g8cHGM0057m6Ml+iePa6Jvso2vKu3lQGuJkuf2Cw13ojsBzfOWgxHwc59MJtS1wYRORtT7t5AT8qd3/jianJaHM7qrWcCVh1DdKlOwfPVzhGLu6XBBKhWu9Gsz8PefQqCCDRriTPTG50/2fiD12tkIQ9e0n9msTRnjm3cZNBkzi2xMCiRkgnryeuL30XsMme92OzfFFNlcxR/jdOsuJ2NscJtnGXbMgurPfDMxB2uWER3ZbBZtW9NykXf4JUv4VPFRtZrMSb0WWniqi9iq7Yi5HlD9/M/JUPAzuhSpXUQYh+9vWcLAgjnbyt7zV3JwRC59VFbQdePOIJimVyZRzW6zip+StDUxp+HMkPtuHpYKA510rMhGPpmtRdvxDPSqa0kLoY/EsDKBtt8j1kuF5En1BIo33Y5zNuD3mfLJm/hY+W2G3LZajFPHafqpFu590WyTWfALQ8J4AYpZlaoYb6oV2NdrAPPL8iQJFiFoKKVQmwFZhu2fOCxyVsufr8ms6M3xLSv4Is8SSsfcPjFe/vJ5prLnQyrmBDQYXaz0S6qy4TCx10PVSsthxW1MGzL/DyjEUrp/Ps85VuNZ5+UmwCsSRIvIT5XqIx7lii8yquqYvcmi8G4JGCGqInsgMe25Cduw3Nd6csCgF3d7nm6zsxJXAufZEa5eoaLyGPWMoCkPocRB8qE3niCE3mXtFOmsdmOiAZIdpr1IVeTJboa0549iV7KGcNp8b85+lQtiakowR8PImvZ1Ab6Qwt35cu2tVmtvUDFbfBdkYbTGm0Uz6xKGz/jufZbEK7D9oYDRialr48xIpfkZXHIwNSTtgMXEo2OLnbo/Dr/SZ8qLnQWukzBH+sS3YjlsMj2fd8KVVUQjNcOtNnfJ7aEjQPQy07ps7/DcTlMZOMbtFlJPw7HSfApe9RCcaPGcQB07OyeRQIQ55wrvarl1jAX2d4cNhCIDUDGTUt16Mgiz5FAzP+u419NDaEeBtZikOdq/KV8p+bPuOxsv/RowLOzpTHxZoPJJj8yq6E41SWjxtioxXohurDqK/51ktHcPolGMaJ4/F7Nvg5MHF4KAAzXIX0I5hkw3ylvZB7C+UM8u4QBaNeAQbUpP1NjRz87Y0C/4Hp/gdQXhG5R6OTfFZ0nZ8I0F1m9LCWBxj/NWUfiUrGrGr1eH6LzGkAiWxgePvtkhudxKN862ti1xobd/j6xKjmgLWGlzieicPyClQvXKXZ3A4MiYouXyy2vWewVvglDGmBsC+x2R+nZCm/MHeA5qsxUMOYHtTtBkgNQO2uRVEWp3dUHX6RhENXVJe1yVBlJByXmkHPqnRVwfeTxrPpnyb88hm6fx+IuznqQTCkCoNuWsGVVOZ9vKvTdnH20pcbTaGU3A2W9CHIerxjAKV6fWR1LHDA4KESKoCKe4/ad1NUQ23zNC6SMQD1Tgzg9cvXidP7QY0lmeX7ZEgFGKJplWmGGBHyyXp7qT5JVpcWG7/PEYQN2DY/MO05xz+p9OwuKxDrep6YG8fPGAhK8x9wSCP/+LelNb4mXHlZIenWRpZ5XTE4dL8rj0ZYc0HfY+nyoo+8pZ9HFdTcThx2XSsFjrSFA1h+j/gu46+MgTVTyUqSIp4HocrjN7AhKZyV9r3pDPtYVvgMjYFMhQepmxBb1uRvq7mYHhFAdp3J/+sCL9K0Je4dbqSXbygXikzdegl0aZ5rCdlvtpIR9JyjQwq9dJNnEFCIPJMwLu92hwXKh3JHFs2KdGi4aKkxH3SsRBV5b4QeLrsxn9de0ge41r3RafdBViQEignkKncwOaD7YgN+6Uk18ItCHSixvabMAfuNI6hNvxzJcQDifturSdD4zkPnIjm8pEfrNcRRHF9748TMCDpRPvHLu/yIUb2pjTShXGzFrMK6I0xW4UnhSnVfUws2vRDs0LLOpBwMKnw87ooLNx8FTov9GycR7BukBUVnd/4ZXoWY+X6NcU767cSIL6CUiWWj9jcZgXBpLRXNSN+IlnMaM2BV5wdwiRvPhtXnzngAqQwEqPeXS0+TYf2RMpTCyqpR4dY2r1haoEzSGmZeOd8QMCS0EyH04onz1MGBYt0z5ge4ph6Saa+Z1f9B1TE0cx6Fav6BNTr9Uyow5QBFtyIWA/Owy02oFRiC8D8hD0C5/0Io4alye08rJRocDn7mH8lzTP54auTxfcqZhgVBslqeAOlE7o6Y9PgS2Fsult1fLu0WEt5ztb9XrFIkbNfXINEojYMtMbY6o2/lOaEPubrI8jr9g1c68yckM0gKHzsX22xY6HAmAXgywHLszf3+s8uwmtKpTaGJ5CgiiGtxBgkn4OvdFRHDYLG6+zeuPJtYoqw8e+Sl3/LRNn5fzUHjOqAj8WPApfO/KJ292Z6lgdvMoYqfBn76NcaALOy41eqg6JYKleb2L/B68s14HSjTk8ck52oWV6AYV4UHqb6S41UfPnyl9WXoLK1la/D8GaZUHDh7YRRQnie2lDXXkBBQ4aAgdHJ7OJntZ31P2foy6rEs2l1Uu1YR4cqqc8qRJ1XVR7Q7EGnCeiVGEWH5gFHVH8LWaSq9MpUIbk4KSs80ysLPMudhRPGGUPQvJedQL5nCd5LSWZCi5y0EGuiWTnTzgq1xsj3mfGYNObJx1tERyRdzibOS1HJxhGQZpQM2TmPaDacqVIOGeEiGcGM9V2aIq5bol/BJ5IldiCyPcepW5Yi2K5NIwiWZsGStAcu4j8C84kCoxTSk1pk/zeDBxTYQs13KMb2Cc+mFi/vm57iFcZ3xsa6/0S14DCcuMeXI15GT2CYWc3EKqc8azWA1xXSNeo0nq54dVFKgzjAZ9A3sF38sDE5ZyYsXl/RbrOx4oV7ykvfdbAWpQmxCG+aBZEky61dKdZCz/XExeeUec3JClDjgpHNfnDjmIe40XWY/CUYwoRD+vkjWnQEWMORT+esVDkBEPqdfj7ONPsxiK5R/aKGgIFffwdYmobgO75rfxqqCbZJepLIa4aAGj3GlYr1scGZhaV6+9TvQf5hpEJjenozUv0riE+cOIhMoW4CgBfn/uGhbNynMK2iNoGXqEatFQ4jQd5GDhWKPcQAL0QtZtWtm4/QUVOOHWCVJM+5lOnyFQIhlGF7CL82j30HRdziow+9Y6y6bB6SXESlz1zUl9dDGU8cvaMwabv4W+vRuUy10OKagbvimO8TjAnw+u6DrCUyWEWh3uKTBHR0WNgXWxRYQgtTPp9KNa5Zp9rG+q6EK/nIhbhS6bdehZlCjhPMT4ey5LAFKQIPHVlQlKK10LQcSKPXFmX6MqL/xk+HCEiFXNzJR6Nl7LhiqlsN1RQyB92g/e0Mhl9BOayS/jSCZh+jWRUObm+SQhma715Fdy/hkhHan/UEav7oPXcKTE2OIExc6u1JZrBc/2U7weSIxb5P7QGs040utO3AMkwOCX2Bj+c4+C6t8jI/tQ+b0KnX16lvrM4hszGGcWwLNeemJ1zK0aayZsmJlyRbPLuRLprRKwCgF7729oWrZuA/0pYs3KdZ3Z6QmR50K1vSXslvUTNf79dyC+UbCv7JAF4zq147YCh5I4YxN7qkJEzs8lYmgZxE6S8H9Dyz+qD2ckXvUo5OcXfJemUGPODi+M15++j0gXuHisb+G2KW1OCDiaJ5ftGcS2SOcs/gLnJ289W4n8uvmXIdjzSYq9aW0Dhv0dCHALL5BHiHWacDOvxYKJKUlqtlNoX4nS16MNIkNaQnU9kxaB20/w5Q/MeY9ac1VLWpjvEAPiHiGEUReLD+KjGr6b+SjBvU094f4bIrVavRhDftQ80OBxPRy6Ak3cbiz3aX27TzT57bAEmvhnO2cXlXNpTQLZ/kD0WLMx6xFibnaB0vycGNiPfPaXY80+9gUIm69nlpDvmK7f+AJ4ydfzViq9kpm55soD3xsW0SJa9PC+KWyYvHV0L3WX35st/AbTZYR3r1XVKJi3qa4pY69+Ykp6U6AFl3uwm882p5T9LeEmufsx9era0WJVpurcK2Q2ECDWf+iEOhuO2NYBSmpyW4Q8if1TfPbrnEc/TDIKxDApCyZJVWe22Xk1oxmo5C23mQ3GxAVTqfolf5kEtUCVhAB+F8SEmake9BJqDJQMPcNnFw2JV3jJAGAbjmZRXW44b5suwISUtDkbLkztKVG6h9MRh/XBJouIWtWCkIQfZDEzzdpph4SkC8CBYhvLuv6kXclAW+WDzXs7kzLjS/rvKXT5jjYRdWJFK5m3n7tM4I6Ugp0ncSd3IqXUrnRerswxMCDLCqANuevNvRprTCdzkwIFHkP9LzuDMZkYTPdkakwYYJ7DV6+QomxBfiBnUHrUmAGCkqxf66IjNuV+JLU+WxTeDlPmJSqMCy+2U77gHMYxwQbdT/WuOspGdRhG6ZcpCvUQhMkg/Y9eewRq46aHxKoxyrQS6Hgt5AImQgVka9WuZrJlLYUAD29MWsYB1Ke3zobuBswi780yTn/pueQwkGdA8p5IDQTZGGiq9w0ICr6SCLppQ21os0a13iWF3sEskBxgWpZ+7iyf30Mx8ALFwwJG7SandQW0MNo4V3UDhUMAzasBNWsL9UZmz4456UZtYzDjj7YPig5cyP9AYLnWEKlJG2TzkMaBljga5p8p+klI6pzzwbpYmxrtg1RGEgNTBq6oWJr9fNe3fiYWCaDintj3QYzBr5NWdPxF/aFJX4cgbViQ71NV81f3JNZnh2Fhf7GZPs61vbB4ogM+v6GmdLxCsgu6JZQFkJ3DNSZgetjHASnk3YPQFIWip8DI1ADCNrtDd9cfcmeOQKwDiP3tvig8VeoymRukiBxQAKhTgz44FV/oa8N61BBYIcT3dNvpg0f6ryO2CE1o2pgpW3ohZgqw/A/6q7Gc20tQOb4moScGpG97XY76rmuWChAzoHII9/9ixWtUPrL3usOIreUYc8lhx3JsbC4ycw/R0qnc99hM62SygrtzRSoRXbfLaDhLHKTP2mwNmTIKnTmIiwtN9i5+wkGr5vQOEd7BP5SHdl0ZtkGiOVNgRiij4QvxJSEU2PeqjFxyMf5TgdIQ/yLwUDmIgL+6e5I7mtoCJ8YPZlE9lxKnJVphlDXVsaezFz7DvriCduVVT2CWvsEF3IJVWmC4gMQPFjx7xbBDh+gYgeUP7iDmzYWAHpIqQ9802A36B64MpDXMYQbWWq+J3kBVm0NmzyfzHkSg+8i9yoosYKMl8JyCMFm46B0FLEr11EBjwbSXs1dAnok0zVepFPJlK3Kvs1du0FQyMZpKLKy0Fgo5gVv66S+snYjOBBkh9+0HLFOXxst5pmOz0m2D2/vVP4FFKUwWRzGwv5wgPv+s9C44GPVi/XcI3IE7RCRHrNC0jvR3tJFX31infhi2uKtjIv8m7988TUDt67t/mLKfa/ZcxWv+VslvKDTk4xT8tlSoU9IWd1ocpFy/f9jwyqPXDJIUPHkJyvJbqqjJylKNkHv06dYJW5JDzzmFEW4mwyrC7SmQDEWU91EkXuerrnMctRyEsrjXNI00CiHUUJqSFgWyOgo4uHdBVJudObwn3w9KWSl9p10NHu3GXNhUO1PEg37YAlfGg89nsIREdbH808rgMhPYO7aMo/4HWMy2MLP8k29j0gUaKrmnWei5JGZkXFYxQNfdV3bHsBqmhSshjPmrPSAYoK/9R7lAcuDQWrjBfwfzQ7RZDPP7PK6BhOFtwglj0IuK36PXwlAYlQFGU7Iqq9+MDNRueaxYimVQVNIvJSuiGNYCrMuD4zV/1HmfkeWFOzt2IngbvSbibH7eSvdDCbJAqoc1uh7vUVrajqJpLKDik/XpXN5y99Z5i/elQgdA/ArNl5ctqtsAzSdywlM6L2PyGZs8tPe3pAab73i/JWF+Ngfm/1tiLtQT41TFAabWk7WOCBt3F1/RbNuVlJoaWnZK8mTYhHAcVow1CflLqx49hPVFr9P3iPSg80kMINUuapwyFlwpiyNhXVBp0R/wgX5mot6oD/MerwYvPNLrQFZNTQyDh1PbcM2JCiWVDj+u13xSbhrxQt4QIlkug03PInNErRSlvJa64QPp44zrsj4oYVA2PBmS4ExqP/Wnlb2wVKPiOZHMSW8fbnKw7WV9j/iOTNlJPws5Ct+JteWTiXAaFQ3woO2lB4iT5nduIcXLnhJdsaAIPIPmTXHI4TV6f5XlBvqbJyPNuticKesvfY6EaW5P2pcpL+Y13ATwQx2jIgZA1WiN+LkR4e/UZC3WpR1h1NS1NDn2hcyJqPr/ZaiwrM4zXw5j/J9JCaPzBVwVCbmB8uXS+eeNn2b4wwv+6qsjk8HM506xKvNnC27d5iVWIgU8dlhNf3jk/ix49htBHVEZgBO4jd1xr17MJPriE9MpMo6dx2QPQV7IqowPZSbym1fh985akQZksXHvrAfbCiD8PskBQSDNODvNJOQeuaTEt2WlTNcnsJcjsQlclKv7E9xCCqMvmz2fLuwDlNbBcdmq01J74/LfLxI1AsgeW7UUuYCL4iMzfDPB00B8O9+uyhnczjsml9sjW0NgvdRCoYgD0WeOQeYo1DqPiOq5RyCXaNKIJuzkz5f6+iuOnQiDU+PyqSSm6jNt5FYZDDGUzf/Q/2+gMy7URheuOzxFPko5c2vv+H7WXFtRCOYFdViO7weKiNo+U5ZEiWyv/BHKP37oBSbXimH9r0wBLSssuoRNFAX0TzHvYCHEEgh/i7y292xAcKYkvRyz7nLHTV8FpWtQoNMEHq+c8kwDYmZAieOuVB/x3teZt6Z9ZBlEmBerJ+4oYmlwyQWH2djvxNxSkU1myAccrOk0f5vbIyUvKpeTpydPn/qr846JyeEHK39+q+uJwOXM6y/hnpy5MhrZ2S1lnrKkU0aipCKOCIYM+SLrb+WTmAsKl8B+MFWaOGhmWx7oI8708sLjH9UeIKUZnzhGtdVn7BzkEK4KVq0I0hZ7xuCC7j8vbyC0N74tLWvYMOorOyxb9UbKhDUKAh1athCXbgIf3Z6e2fLOjSdbCE8Gqp6U9mBqfczae5fLj1kMUbvh4wSjxXBgobLbYZ2YzPi8/X90GF2FVb+ZMJfokj6cmz2FSQl2T9RhFDp/C4uEZFnevWyhG0HskN1OpHMPIyEOtZmt5xQ7w5xCtt+rEi2ohaoGZbM67b0Ez9TnK4l6tKqRnxyTrP6pXz0/B/uKQ6AFcIC3ULOZDzKNPTRNm4KKTYIjqDxxdccW1fU57ipnT0eK88Z1A6QBxq6BNVYPP/v6v4u2f0wy0Gr19vxbpngjHNl9EbvCMOw8j0pEhl4lKTmX/dfLWBMea4K+XnpS2pzrZ36Pf69m5p6mX2LxO2WgBhrsucrjb15WUc5kxnKm33JzYWIKfc2NR/rPl2ZBEWjr8Lj8xr2bncWMBiQRa+43lk3Cl/6NpTSQ5wbXoIR93WbCLg8d7HxSKgAsrCwi1APifF/gHDTRk6rUX9sxtUEaa2Cfb3/npYLaEz9cQi8oOfZqYRU4yzetjkZI7zknzgRHIq70bf7j9QJYthXW3QIxDEzHKJBNhg8hIutuqK/x+uZrIeAjbnmcO/drJ3WAvfBuWaPNA1+wo5GZw0eycsyc6agcJ4Jyh0LRwWigIXrg2HM8LeWAIBQH4sxO8K7hLtuV01rdck/JNIigz8gB2oX/mIDF9HwpWRatsZEyEI037CnBRNwOEQY9G9vSIyp1DKapuoTzI2owyNaVnhcAGAv174YRzYCqSb+pDvzIy5ESEdCGN+wxmpF/BsOL93PYLAc2/MKq/nSljfOr1HS70fRMuqgReaPtPhv5VSp77zTvmYn1yZitOU3Q5dQ7iraspCLQlbemsz03z0YlFMHc8YLQNJLCBvzHbRsl9uqYwYMe85Ye9tHHVABsY5i6/XjTGottaJhYLvbC9E/UCDSaT66G0i/6BTA/i0bY5ur92MfUTPvdhqcOv+t7CWjo3KDb7IT9wx+BAPz6fiPgRuxp2DNYWlaaQ++jidkPDjBxevyaEK8BqiBjVcffQDGBeJjM9+C/lr3uw34PjruyESRnIgYz2NiajGpKhFMJXinqQ1he7WIGzKRagsFq4v1HyHcrL46P1ML/nMgE7AVgnxrZkZBsQKo19L/NM2RPwASXnSEl+vBCPNpf+tMILKygPfESelC6PMLZV3c2CsNG8RmnqwsSDP9qcquAEXRlq9g60Xabv+TcmphIPP70GpHWBtKznTG2T2hpRBFYv9Fef78pG1/cL7ipb8vVJ458BSi2ilNByGM2Wr8SXOcTDy6iv+oWdHWRlN/yU+lNQXPxqH393hwkI8msKUKRlm7eytuDEs/BqGrVBzonMnF9FXryEmyvtyawv4HQ6q4Aj6U3LSEcreqKP9w/SzlUIxBojF14tPlt1RoQOZiylCxkVyLnwecVvnytGvqQzmKotdxaS267+ffolGw/BDAEDmvg9dFhKt+TILRm65NgeTBQdLic1BIzS+aLaxrKv9t2c7SmwlUhmA2HzTSZMtIq1pdkRmznZFsiK/VcCA6dF0Wse9OpGsblRQcd6sKlp//I39W6m6V9JgMKTJJmdBMti9OVcPf6D+aK834ux7XQhagHh3CxfqVkVJ8L33DPBRteqvTNi5T4yCxQfGotDlNUyDsXfV4hGZOpmq6/HadsZnqdInLbzgpm8afvHS5+c/3k8rRKsJI9GtIVOMtmtofWEswhRXiB5llrqBHrHvUoFNQp+T88NX8Plv2+LI6BZt0o32Jyt7V7HXJ5KMfwX0+3UfErVYq61M6Zt1/c9gsILgvDifiIV8l7MgXGBaO7fsthcCsS6Sp340W3Fno7OCc8247w0lSIE4wuMKJezW36MQSMBvCMHBETF5yR77HyOdjsqZkKSe2Xj8uGz2Y5iCeA0NJQsyW8W9+owFETEPuB6MpmnCAsAqg0NlH2zAe2V9f1HZRLD3B2rnmD0oPjkifrD8CTdhSZyGZj3OrAzImrqw5VSOYWAwj1WLro4WA12V3tgJU0+Y8dfJ5WUYuhDTQCf1qutiEp3VHrfKSWOHSlgvsPf7vwo2b2gAUkJ0h52ofSSShVjnbJ+oS6oC4RqMEtzb9K03HtejNspvSVQXq6sMyH6rwlyrFbvZEPr6iZBVYx2LpTy+VLpAh7awfTtpzMpzgh7Q5f4wE3ME+iYqvGifiCsnQHBPrwumJXp+ojFxvTOFiHLHJ71vKwcxG9cxifjrI31NTGk+GklaG9b6UkCofJq4yd4km3G1AxBuZmuefgeubxYEmcf1IuwecMBLjl0nsubDEkKhhSvY1gfzBYUuMXlUQdjIZ7J9UrIw/6Xr2EQpArWZ31WTxycF/w8VeCcrssNhwwX/c6yU6NwU/YTUyfyZbB8ojM3JmcHHzsd7YbmVYjTwYiu1agxDPUwQsvkAiWL36+gB/O/Dpc3EJxNMy6mSNokIlfmYTH8zKN353YQLjIW9IITywFln0fsKS9xxE8aMmyeiutV1M5UFr6oEmeY1VB6J6gdtBNKOdNLiGS6ml0D1Nlyg/FIzCPQP+NaYMHJnp1SBDh4s7Zk8qPQ2oeUOEOWFzSq0BWKWLGwfmZs56fdP2eauXBWKaYJ9ThoUA7pxlmj0oWxlNktKTxC1Uk8iuTLWzvJ5r2VI8mU03Q+PO0ZA7vlL3ch0EEo7KcF5AzZP/gfVJnMqjkigKDOhkciPtSEAnY4uqSvY4SPZbqU9Tr34EgUbaCDBrhxYL1uMQ55AiAZubQTw8rJ+iW8tTejB7FmIRYWxX0GPRnYaT1ob83d5uKngR2aij7pQYhQGNgaB+VPF7K9iPwn6vXMBg93gMG/XNrha/3FbWBUYzvThQSb9nCnJ4LlycqmLzv+M8/p60vTToI1BeFwq3Cs7yvgutyAIG+/V64j5TlhHg5kARGSCeHNRS0Fl/MUUVt3jqfazxiTUDnAKyaxFOmT2xZIMwQ+WQp+n3Ido3cqEKUFf/a9bvTNULtj6RrpzftetxKxoNT/Ze7UemlObo9xpXytk4ROEltoRW/zvPpKT8Q9B3Ji0nFSm3nxH2laMIg6r1TPyPlForXv2AseXyKTf3R6tzXzQKyNQu7tI9J58KOOEtcewXSK0BmtL+85o4N/pTQ+iEPhuW7gbMW94n9lJA8MPDJEKPgpVU8KnZvVegx9A6+FD0ZXen62oXD11MpDmFLaKCctr/sFmJ5Lovpebgq379dB1vbsmo2t0s3gwY0X6/efUNT79M4QOJH3U8Lufi9rr/4BeE7S83HP3Jj9LQwOZm/7Z+ofHQXYCDgK9dgHAzpdv0GSZErOQj9aq6q5h0BX39L1nVPFuUa9SMsgC2q0+U7W+RsQuOyQaenrSRA7OIEF3VoEYJX0QMab3kqaEYN3BoJeYyAhVqLec5bN/Kz9Djo3IByL8w4t6KXv8mi7ifC2Hq4siWWbPwVIeZ1lexa4h1uUm1Rztbkr64rxPREDYcarlpMoMz6tSoCMabrsWT0hBcV4kyPjjtXRVDx2IVA+A/1nHMaDHg0Mcf3XDSdiyI0uGPUhk0BQ9KKVd6CY0ZblnxsV0yFIkpHvgwrdNU3vZLpHZLchR4vHIhdjEpuBeJViSemUQ1fVvwHuUc0Tnf6VP950oKjRVNPkoEJ5QJaAjH54rK8S1fdhfcyhb5bOBa2UNFj7A3mW7LnEdo8/GVJN5IqzjGp51iaamLZmb8t4Vv7FGi82S8HG6PCnuA+uAQltDvYAglsrTBY5BDtV1Jrv9+9D5S7vxhk8hDuj3GT/w69b6L/YAeYnJssDdFsIHzB50UgGa9VhAPdGhJeG0QJqaNneJbb73x3YlT6In6V6Qg2Z0E6ZAxvzBeDiZs/KWWNWwQuTNfMLbLIwOE5/YAFYZlMB05YLVdGtRHWmtS7Go2Ol9sDkkJ6eTVSrdLiHW1WmNR4jmqXySO+qSgwMzW/juagj2TcgFyhB31P7AGOIkCgTxH6hVckn0AhRtUcLRqe6Sru0XKrleOgYa+fY13oJovVIiekv7hobN6S5lTDAOeKVjdFpYC7w1jgAgVIuyCNtU037yYBEPm9zgk0p7qGC5DKIC0Qj113uaxvchEm75s6cAJ8zHleGDEQavvYSFF9Paw56IcM5GGPIzL4Tk9BiNCNtU69GyMB6zmCYrsePBmPZMOIa0IqKvvh77d3acejO3iI6vVsKR95IB6wyqkU2Pxb+7b+SIu1yqjRTswd5d+zf7pEK155Af3chvX9LAl0RLMqQEbRKApsoqlIRl3dhG+xIeEgS/kbPAYt5R+petnDCFIMSXcQJK+usSVMXu0l86geExHqRETmT/NZw5X0xS2zu6Llw0G7GYlf582xzA6LYPL7xJTJRV4fNh2boszpgrG/6BvahCXsSVab1+vyi0VkLCEp/yuoqbKp7okQTTIcLbz80qCXGIl4caVDMWnFvZ2PFe5aRpyk/kPhK+YLSp62UxEIsrooL9pibBM0wYEfim1u5XIXLea/SoDu2G8nJRMbjr98++j5mfTG7aZZxmOmVAZypu4IZfAblx9JbG9BahUrpPx7w4EOMhMI1YOdW3bEDI6Qu4aqa7EckPeTLtAmm/RASnL4Uw4Qc5tC4g4U9pwAVVkZ17IyML+QnhcQxDLuOWbn+2VRU7NM4VlC11pS/89lb+smyq8u680Ej3/fE9bpPSZopJ9wUyUXT+TbPA6/rHInSbcyC6bAHjg7A5etvCPP1vFMFUEXhfbcolOxxuXx6FFejiPwUpJlqKtioeFRoWxzlDkoQXsTwGBBAmCI1gs5D3jdjSUCh0uqC8jj/iSiPemf/uytMt7195+ZCMBFwraQbqHDtj1FMErZI4l908RECQPk4QQR7MgvTzWtWeGBex54l7CScLatwYGZORZL/zveMVzymqNAXN6/WLcUZg5/Ia+gqpFsY+dIsc9Q15x3IWD11JCfzgnw0Si8ed2cAk8jG24TbynfQHo9KO5olr4Q7/PSTPdl5XCWkMCX8WzEZOi8mP2k77jtUqO1xhJqxLA5qdBMdZhbcTv8hy0cZacE+IXEgWaKrsCdcT1UXzvmbMYjMQnNlZcV/FeeKrkRyJZC65T25nF3wzn+jNz63smIJwnN+W2ur2sdiESsGXrN0r5kdfnTQ4O9fQ7ZpShjR61snaioNIvIe/ZFZmioMJJiFpQ5sYWgYqeqtUS2sr2ZTwez9kk3x4V39XnTyAL2M0k0bhNE5Glfi8qWanb7TU0AXglo9Tl1u+ymkIpD6qYQ2u48sMvMyHolfNe/IpTvRsR0I5F21we8vZLlqleLVu95s9v5srYmxgoNlOFoRJk4zor5EQXZU4Z5NrOD8OnUjctQB0TUju8YA+vZfItcwTwlBo1POFLzH+J93ia95C6W0wqgOieaWIEqVV5lbBM+oxH/xiP3zcoDNRgiEtkZpdrKNsSTvSORygouivk82q56cfsziDRAj7TlefM5zTZH50U4rt6s0b6ziKKlu5u9I3hozcsAm2Q+bT29xeJr4XvN++Q0wwSiMr4X0geIRLY3k5uzmMx4L/C3PpB3N64Ny5m4flM6xfLTz/TGfAZuozDaP+8fFMczDPHhSQoPWWWqdU2fKeGF/ed2TVQ1iQNv9+nqo7hZJR9EeYy9UMeckCR7Zf3/EA25D+1vhPf+Yld9XIS5JdIHIZZyaqb88HVZ3wK5+YJlu66Zev5l7I0RwxnneWLjrrtHkgYsPkw2ccW4zxxNVyWWuoasG5gD5Z96J2dNDnwbLLPwXSSruYYN6bRZAiYYPtgN62TIE3nEzYR6pJR91CZpbFeGe8meekPe8p6FLhCJczyZ9fHXaY9NEjYwvTuNDmOmT8zA/wh5yGpzDD5cRJmw25Z80A3QKXGo7DLCT1Y0SGEQYxazgQ4EYlDSG4w7vRPPKUbIcML292mHt1JFTq9578+rS4AJnqMxRWnOSu/jIgtp5OLFheL1HVHErzPP/2CgqL6vr1dyvt1MrtR5AQS6hab95NYVRPHo1qCZCa1qjJTO8FlI31b42erLm/sLDAbXLpmWy8c58YxvlTjLES0M876zHvKRUidz7tnlZJ49o9WYAxcg6204Ce28pyZGGf8nRkaazird0ykqufZSnpcqAZ057uUb3zCr+Q7PS8s3iqjPeRarX3tTeoNkOExN2RRk9Uvg1I6PkmqqSom8kfVUi78jQY0zfHMLHc2nbSZR/XKpUZpemgwaHpeGRKf01QmklZwCZnZM3jO6OaPrtTKeFFnawt2O5vMxOf0RnRuyZZREzWYgMnbmQtGojlMM4trTdv0toMmPIVx69YA1E/Mj+oin0E7QIR3Bd7pisk8o5JBohZUsYWsA5/2V+sA2pUQaMtPqcIIarDoiXNvsujDEdajtRs/2i3niRWUzZLr3PeGU1U98xOKzc4JZjlGV6i/wpapGRWLp9gmp3dr8D09DyOWL5rCNLnRTG1x1xDIHjULx1HHZmQJ6qL5xU48AUfaDMWYXm9asNbxowo9ie015060KrwAGydqRUkfYu6FypW1OwZ2PjoWqUDv8ovqOwa9kU0gXxm617GcHihbbkiZizjvOYg25nI9DK0TG1Xi4t8/gHqhTAvFxbjGyMCtFwvhKBF5g8rj7qcM41HWDzio3c6vPPMIJ34q3fqu5pa1VD0sX4Hk7l/AxQuYkQgCLuHRMiH48ZlB6pL1v81kdMVIGDTR4ogzihyfzPtUI3VCKEVZIAdDV7o3AFUfcBtlwrsgPKN/ujLMm9+FS69hI3YzkT0K0Eh6aC4LzO57PMULBmbV0h/8YWky9G3Y5nvobUFHAkApWpb/FtOO+JznrSesbli8t+aoq8XRiS3hSCcTgrf/fltG/BSmdYhrA3MoAszXnHed29N17xPoGhEDizxgNgSFiNMR44/35b9eDAnvy3EvhtImXLLH/1otVWoo+mquZfE1flHO/7o59fTUvFZzM5QzFDSKUINUZGH5gWplNh4Dl/bYtGzOtq7WZ+6RTdRwN31d6YAX03d72xOFZtujIOjpn8KeN+Q9Wfsg5qViFte7U6WWMTTudSTh1Zx7eJuiMArY8kj6KtWgwgTLP08KcGWSbRg70XPFU+CMLtvaoNBeoEi+K/D1/NqWERqIzZyodUTsdwjNfx9t/7vQrnLvPQLbNCU8rUdld37VHSj2ITKH8COYxiwmsmMwgDJuRLXTJ8NivO8XiqljOHtVih6DWzSD+9kl3wwcN+c1GTKb9QSMCRZvzBdjXsEs+PyTEBuyETpj8QiADBwgjUrz0M9cxBGr+YjDhxyca+/DEECG1c06U8weav6GUP9luFqJS/jaTrmiYYz/D54NhleY7vqzxCvVr0OrT/oQT/FDBpSznpz/NBJRhjkLnkT5qQKAx2NMoSrkGNJqDz/PxZwvtMeiLQf3m3t87DX3KzkzCjy4dPryZjvXAu5feRQtRMddgj2j47nbUiaGmPj+6zsKqF5JEeJZ0GmbqhqiB0h78QZM43tHaMa1rOW9EEqJQTo9cfbOt9WXM1V4ttVTg7PmQzxo7ko1eRodpyit6ZS1hrjNKo3bJMprm4yVUXknyABKK/oGPhUjrdFxMmYqn1eIHexKubyIPTJRLUIFlHs8LLH/H5m+vooikSF+3FOsUOBkSyZUKe2ct0+MaOKTqtMZ3L2Q9o6eJJFKyavngjL25Mi7DKCEcfqPcahyJIwQiCLBKMs17mJr9Bro/5rgVZoN4kYNNAx0xyoG9ga7Dc162OazYEgzF+qoNzrRZdEeEWp25uKfqzBcj/7KdT9EaEJHUXN9oku4qyVBrub4ifZ/YRsQtY11dXMd3BqkOD0kFQWV89rpsFFxck5CtxLipZhIrgBwlqw6w+po1ga0HT8W4IlNWVn4cwDtd9Rh2F//R3kjT2Cw/NetV3QrEdYnE5MJPkZXBbPc75ND4TUhcdWmWqaEqsdIFAWHd5Z7zOOxiPqFC0LqyJtYyCMu2K8FjbBVZMhEKRMGNEOB2hRnpVGZ/8QGoZYxbAR8BQN+dmLqeYIs4/MCWkAnEb3exgqzKOEiDz1B3+LtxTsVCCSYj0llN45vZYMEwNqj+vDyl6Sdf5wxqdmA+7AEczN3pqp07hHgo+5HZT/3EQK9WOVjyxYt0tHbdem1RtD1D3y2swxEYd8lAkfF5XuqrMUaZA06ZmHhHfQEzMNnvbCg0/D9JtKxRDBwtNgaK4EnP5Tn8cPvrXrxpXA6SDcdGkRZ7RGa7fPbSzDwDs4lMcuK6WVtKb8NTHpasOB2jWs34UmkUV6tBpoImn5LIrhM5C91CDDKbxeDto5ByyrwyrmTfLv7EweaNBG8DrZj0irNjYkysn5CBixWx1tY2tFwsGDLXMImrqPy85psb1vYUv8cY8HPfVbX2mn4nil2zAWCUnwt7VM2ZOerPQjHXywmOFiZTNqQ9EEuMLsPldcuWZNaikBCPTxSjvopcdzhXFK0hF3iivbHcdNJkoNSjom/iwHjwlSTtBvykwIPts8nOs55GBDKNPiSmmEFum0qj7LL4s1NewjKesh2gfRi8J6GpBqAcTbIpkglWVTqIESh7F0RL5e/16TU6EBKxorwobVU5dO1F4hh8bfAr85kQ6mJXmRbFTtQniRCkKBcTbTjpvB0d5HpwBhb7DYWxMC6iqUY9qNbWSLHhRDjkrjfydM/R1otreyLxcjbQKg4p/8ay1PQ0mUYcn+ldDQHiuLIom4v23Wrbw2pScpmbcCasoFiTnwijUTf6qrzZ2NQj0q57MfceyUv/i+Zz3juk8kgNz0V9ZQLur8HJtZlpHRknj2RpofVEDmwzwixcVoaRHG3JGLduJLIZfks8SyiiiVwqMuhTqafWLmE6XAIpm2fcigb+pxWJc9qVq9Y7cRo9gcXbE2H9GdtpdX9MM3Z/iM+whSWAJ9tTmJFE1JTBrbpKw+kIFPtN5MNjXH/TIpe+3M8nsSEEu/UN4Nhgtah4cUm2kATGQdmb/zvXOcFbnk/uFwT3P8Q+N63LJGhn2pn4OitMpD7C26pOMRqVB216YNfxO2J2LMr1VUWDWrktmPWrTlAlo4/z6lP9xDTedkzoE2x21OQEVAd4UwdulqU3hLF+WSvpvdktlM9DSvH1vTDopqI0xENVkQw7votWIw2VS+lEtgBEqWsOT9c5+QYjwPVbG7wQxC+yogMid2zuhlvLkhHoh4aMntqHMsWuLWXvj1RUBwF42NcxCjsyjRsSxvawI9ijfDFa6apXuBcN1Di/I0RmSJ9+iiniBA/Uf+ano7O/T3gPOH5iUGyNUFNJfnEcd66eojK1zgA+VHj9lPmpira0qUKCzXjPqclkqtiOGxbJrmeCaBxwubuIc9xEICIpHSnU/ZpBdyRcxXOzANjjN5ytJQSXoimrGa6v5uAEp2UHJzL/m0eOAg+mzLT4HtE5BcRb/wAfKYh3HbkwMegVkJbPnZ9XtAUASIWqcZsRG49yND/NK8jw2sqTXEJlaPP4l65zy6R3ROz+NcKXtNT/zXA4WEOR0wcsryOZUzQ2l3tqpt2GqFHg8C+yHK5oN8XvdJgBpa1+pGwTAEn/2WeLvoe3NgBdjeU63RmKzXQH1NC+pljlPaHWKaH6xiJkyHdKrpzs94XcCfA/c1lG3mqm6RVawMs2WIMzgQBCaVnr0C2Yx30o1Nfz05nStVF1w/zl5dIgy74Fhmwbn8toPBZHbc7o9GJ7BQ1vQFAK/vgEjhZyCuLi2/kabDGAM34pLaXKLIEaoxjdC9SrolezPqK5wk/HuxuhZzWGucX/UyMeqPAlOBnW194kgJlKcrZEh/YkLvxIIymDpkO+TpYW6wjjz3eGtfwJDtQ9PgMx1kwUlvVHjddjp8eh1kOJfE9iSNBOQhXNSvIl+SEqhQkCUCZxdAbjla+eezIZI4ocQNyD2aE/H+J5cyrSvE205pdXSL6K79aR0ybm5XeBPTOnADIBUNPPIN5IxPvWrh6u6EUPOIs8Jr+GD7ri6ejz3h74cDMUcq0j1+khGEERlUEXTh4zufFKpb3/AepvqUPX7kEZ5sQSBhi5/bL8rRsaikjUmg8BqaLO/LDe6sJ2GX/oDKtJIQ0uxaQfHEaa67UJ8meV9CXlI+IWB6L8KjpwWfQetAs56OZhl6nblvojjsE724MCfwfkPAYN/TiaHqCCl5qV6o5ULDgOghRkqaB0iaxI7goByj1XWlYjC0jE3G+MsM/BJNLwC2+n+OEKjppdTuxdJdC5vGDJZF+MVpJm5cUsO1my1PhCDhWLi6NUSTEP7EJguNCiBMcSj1Q47ulLz3NcrivAqtt2LVrqjWcE5EY12EdRJbox2fFVibfGAsuDGgNHfePXeydKOLBwSCy+6NRt+nvMrs3Wn8vAwYTVoB8+5VrROW/82zLMm5wDjj0f6tYFtl0+RFNZEqD9sam9bTSyf9NyVaXJcK/6C0diFhXl64BdBuvrUaY9yqj4wxx0MdaZmEnL/K0YT/1TlVlO5K8Jj5AlQHD3TxpqGP6f07afroolKcK+XLXkGO3Bj0/GIy/ea4FW6Lp+2PQOuowDxomwLAy/BHOIqjeluaY+pXyqhBkbViMG1YLP/qL9YvuELBLIq6CTwbsSaBKZMPy2K5AESgvDU+ZosVRJXP442SpMnwGL1UaAp398umJRATFqg2ltT6P+RsbzX9+7VCra5iT86CK6Iv5zwUzyVt2KPbag52btGsFRIko7dwHu36dj7zo7R2on0l9UqLEFwTRjIMjvtKq/4WTU0SPB4fm7HON5YAPEUNES5rY6EF6PPwZKzmq6SR71ZI5Cy22fRdmUJ5D7P91zhd9TEZviHXFcjeoQSClLhnTv3NummdYGjagnsQDbjg1XVG1ZkDRtJSk7zRbICTZkigPxlBTnyww/Ud0fv0gNrigrVQ5StUgTFQADMOGh6uNKxrFs/vYHvXgesiBGU9e+ceiAo+/zCYHwOpyNfJ6dSldpv1tY5R7SjhId9Z97YXErKOZKZow2uqyooFF1RdMH4OOsntp7CaygV9UMH1pRRsrJnk/INvsMKYe1zMo6xaoMNjfkhccAmJo0azLtWGaSHgmwDblVQlkvvbtzxdjrx4QrHy1HLP6gK3FfAasDGtEf+q9Oa97vVxCQn/h/MqEbeBGvYpqw60wv2aRI7QAm8Qq4i4/rvZjiPZIal9AZwZJ7bbPGKNOYmoEnIvRUzSzUS/lsnFWUMAwhacRwpy4DQ3kP3LmLwAqBs2Om2venzqHg6J+s9ApBU6hP4NBz1DjYiXqoY+N7rDEUn/czSKF43mJE/A2jfTKShbNM6VS5JECbbKbK0kgT7cbok8L0gQnmZxR7EgcvkhqzzPkM7Mk+NNVWdc04UYW9SLQH4dI0j2n/LYYFc4HU/ULXDvI49vh8noJf51SYXEMD1boQuFf2l5Yhu0OPlF/V0z9PFUFk4/qAynsesf+07UCsocZI897AM/d6HSzDjsXCAqcnt6Ngq+BEzF4Nw9NLH3UFRntN/vtcIpVgClWjdSHN2YuPU8TLk0PztRMIg9Inq8hI7oq0knlslq1U/P4GPiZAuLJ5bf7vLsSsUt5dLzer4kId0YD0gqYW0DVSmsL8R/WTErZEUlTagzWMP4RK1Z3njP44v74SzVCHwWDWiMsmgwdiI79kA55TCLbm6Ca0mw10eXN44ZKQ3Ve4d6UZAzevs7H0Sj0yUVMkXnzvM1BGaenZAE9q7an5EKJhvwwcuJloQ1xE3+n2W+isrF2r6vEgL633h1mc6oqrJWr9dTwoN6C3WOnySztM8L3q2e8r7smbMT90Ycpl2Xy8mcLyu0G+gZYjABk7XWBJdS25slAXoAKU73qifKcQrsXYx6sBBWrjghEIGxWXoAm1/9bgP8ElXx+gbUzkbJLYQivppmry9Q1gwWaOhEUMlRWY/y12+OsYZdCGeOhFZHYIFThLwEbdV8Fwg0mEbO/D2WEj3WYTaWUq0TgboTDabwMfKTEwIRz7+Ek6PAqS5N4cc7h6J4FEg/mD3Rpd3YTsZYwNkHcGLhitpWc9gqSfpW5/z+jNFs2uQ2Bfq7ptbC3s2H1Fu9yLV4/duT3vmlccoGnlIn3bK1Jd03ol5MquIZjwH/apz+1krTM0jqqOh0McXNIvZPXZwwvgKSgqt2arLoqKRCWtvhejAZaCBS29aScJ3w7O4SqtPr6H0eAWvxMmYDNB/djQEB6Z2zq/n32f6Wnh3//ZmYVTGu9jSoTg5WOgie5g4/po9jwef9RW+4NK0Tf8daXzMvnXqLGGLsaV9vrMXHAlhaLLKKxlNDdeFG5Ye9CSgkz7nx1Ez92woWDIKuOQxCswDt1cCEi4TOPKzmSkETr6a48FIK1I4gJUZe8XnaYRK3vrazGME2PZ6U7aEHnOeJO7nO2GjMslQecJKpmJfYoKt4MAtmKJs8vCgJHfebFsAJBuOz2kX6caDgF0Tke2xmF9N/eNq3kwHfh4Ej9P0AwHy0Je9Di+wATfG++OF4Y9XM0a2ivxlNAGpWz926fN7vNi4GEqDZx6ouUNyp5H8lNeCiMdIlC5UTw1/GFqn4s/YpRoC62Hn5K8lQh1awyhYPTX48f2JrOSzDT4TfvK95wDc14jniGfuH22nl3Vh/lTVkbmtxeSP6n+8h8UvOBUgYIpXO2bFLfOPMoX/gPbVTQyvkCgyJapGremz9+NBCsdCaUA3XP9Tbalf+RUPKRR5eqB14/e/5gU6ew7uknnI86oH+3StELz6Q2/w+ze+EP4Y06H9FsitfzDU8+jEYPB05Jqni7fKGx8imetHFxM0YwnoBla2Z2xwc2nOk80gulMfIBWQI2MG3co+GR5ETXVQfpFUFR/ZTCH9Ri+/7DIBcUJ4N+CQp3PuNIJqnlQhIS1Kq6weeomWEWDcYG7bAMT8Ib7oS9rskFa3f12AG6G1QojE9g6oo8jJryFPxBZZ+RJ2fDvVbohf/dOJNiC4o+fEbV9UmM25jEJcTnPwL6DOZWf1nvsrPA0mOirCAviGAYRNwt6OBCYyVbS9dCpNdOlOljgmiT/8Xgv90gmITcw7v4TkOqCe9xRaImNfYYAUKGyrdwF8izu3q/pucsf/7sYrvONPjTuFeuoU5InUm/qbMmsi3NHLASGkeoU6qq51zLphCYuXIFG8jo33P9GadlXV81Pfi1uL6z6bsBhvyyjTMBOvYcLBtsIA1I6czhOLBzooAWFqarkyONpch9uYBK2EIOovVGzSQ96rtZFYfHoe9FwHeQsusBmWfB+syod5YigA2PSDJVtlz4MD38dGKZbmG0fK6otN45zxJ8Yz/p2jaV/ncJSmcsq1tk9swghLf9muFoweZ2CpmoQsJQ6EsJUopSwC4+0oA3b57ZFJWhaNTutPPVCSEongzGJGWqLPasFMasZaUbAUAwwXsJZt12NEPRN1I7zpCsYpPUdpELiD8AKmIlMY8p9jpZVIOgs+b5OyNCkOrGPQYnKW99RqT1xMAVUsYXt6ljvejwJwtmRAZrGi4xOi6LWBwpQ+mG2E2I9xTp8uj/91d9rq0BuNfLxHJ8WszEpePXXVIZH6j34lmNmgAdcKMctJUghWstA1kk6drcL9ahLudoRxBmCC9F+pMdfGqdB+tdJmPWSB+VmIv0quoGxLq0n9gg7CANVTBjfrkQUTTKyCRivjjCJBYbtP3HUfcoHbIEhjglAEWXmUB/SVacNN5bfnkfiEt91BDzg/AqunN/pIxlc5dkqc3aTm4USGKIWKbwp/gEIPNbs5FMdw/nhmpulaY4kyP/eeOZzVdTxq7HBucgrWipQtFd2rlgc5cZSaSDmpAZzYOZ6Syh4b5KYglmQ9YEMb3vjeM872cJu0GjznH1VqvRiZ3jZSAwMvdMZJNbamjoUkCTqjOrW1DRJTcvv6K49kEcbgd9vk+iiRoeBVqSeEhX8Ny7ChzsoRB7qB0jxbxcelrOkhapJyc7CfKL1EL1Zmuk9bJe+v79KyBEdrGwS9x1UF2Y2swNHcSLlfOW6E1FcvPEITTHQdX77F3ABiR7SUy95XxBE0kUh8ZLuVORbDXxwQSOPlCbP2320Z36sS+uz3nuiwssOnFk63Q074QR1kldCB+mJGQ4qwYyy9Fjfqu/7Oi5sGskAF9W/p7dV1mYrRoTaWerBxA78e9NNDYZ9jMfWdoDS5ifLSs2FseuygffRzRKU5UMZuQJpAqObx2GdxM3Bp3BGAnavgQdM6WqhwbwvTgMP52oPl6BpuXC31jN/mwED4XvpzYFlPtMutu0H21Oz9cQ6O7n/hZ2aRjzIt13IlEdtkdHwaibfy4zGH4r1athEArX/67QjKYtvxKXBMlRhlFf0U/MZXXdIpq5PTK8vFfr9/IzAHTKhhwr7H024OitPzXf051lo1LipGJ4OHmQbDZZaHuJf28AthUjk8pknQl2lb+hsBvKNb+L1B8FD0M5HgG/5N1JSJaf+fe6quOK8wa7RhmSbStqRBKszmc7eWh8NtEeAYHuFN35TL+S/GwC//EUEdUPHKdzQXaqPiAgL7VrCbusy2i+8z4q5rD5yuQuD9sNqlpq4rGDlCWt7G/D17S7ZRgnF0EnIklZweV2Ogwx3uDuFAXDkvbS30eRCj0WmsFpme5C3Qck5CZW7WlQMnQrumtkQclFGlui9R3mcy6eyJEAYmjyeXdW9tI/BZ8rFaSE0VKy7e4vm2akDxLVcpn5Fb4BjYDCVQDCK1REiztGftOdZ8Ed5hH/GgSaSxjnTRnsaV/wN/e50frBJIgSQdEUYJWBYeADzIIc6d97mvRcg01LHA23yeEY8nTTa+bGh3P9oynbSeHid3ZYEzF9LRjk+xC+oS2YWaj6kBV4WhkYydoP89gL+0UzbBqbo6EtJ3LaNCG2fgLhRJYpY/oFFjWqO/Sw9CXIkJtTUrW12IBwxW7AlFEpD+xyEHCnHooSaoGyo3FADO+eerIhO4OziBUqA+ouLb7DeaPbeLcQGC9DBGRuNBqa1mgpeMN6DbRwGli8fY/L1xVkWnHT6rByZNnB1KciHBuyISdlB66eqFSxf1zikY1uYwWX/ltkr4IkhMVz3Dlo7gU/UBasnsLQB8hIwoPDORXfWGCrYrlqCBZXTd7hasrHAEAfyPGCF63HVUl46bcMeCIkbTC6MTFMheUHg/RgnHtR4vNycuokaUyGyGHWJaKS7gY9AMHCtsHWr5frMU4ibAdtYlxU0zuEUixKUFmYiq/q8aTUrHKwPPOqIFUNLA4tbpcx5CFAiL/8jT/y7DyAh2hRyjnI7YSs7lZTpYwfDanlvEYCMzXpVPtRykPnTPOcox0nXfUtAQAKjGxuP1GQ7BKEHil7x26jb0CjJPzG93jNJtRki9p+Woog3ZuiMjmtPWmjrsqqM7AL9iDYPyaCvsR56jPBjP+FNUeVHJlZgw3kODhAh71+ohSnzOXQwfJPTEmWA2m/wrqk7vSlVaNG1lHolsFb7LUE2aKVlSrlYfWaomj8tFZNSOjXrLK/mQyOr+uuqQnOdH5e8jE7vTY2ootAj9W3Kn/o8wALEzHFvLShaNvzhGXc5VVjC6lJTTQdniVj/q3jBH7NYgB+kYeLluoShw9yztAtvsQmCzZxNCR2XGhLYJqJyG86Psw5FWuaYuIGunlg8gtcE8am3773NK2fK3WcuWQUSYSyFQQOrMFKN2GP5QXI0/sXzUovnsioHhxBjk1yc9JMi386ZCD02q04+1ivoRIm3nZM3qJ7NYM4ywEQniqC4ZeRQqlrDZVreMn2lnGRVNz82sUN0+Zqp+JhJF30YuMC0tgxJq4s3n06LJ2U9JnV5V2Y37IAwl8qtHo1lyVGgYz1gd7y1KfLRa9vYdvjGVPj6GqYChRY3S0ncO/SQ9krBs9GdFRwuTXdW2vvXGtJn+N+wIL0VQXM3ZLH8UdlUONsZaVSB1gZOcTmkbDbFEI5mZlWyU6WWTGOC6xKiu2PNatQM974/EyAcuGTqG88lRlYjjw0WQiqkej5G6YK32rggK28szNCp+uHs204EouwI8K0ZzW1/Groz8WL3Q/vHwWqCPj/UauEFPOLgRM5c1RAGmZHVclqqbGuN09BTrgP3620mjpEDQQ+tMcXaO5YcnOs1nwLTSOo6JTDp6kdJuSa9agh5EHAqjyKUYrDni/W4f7e+tc/ni8pSpCcwmFXotfuAZPmAUk64pTLb3vknutKP+XitANbKh3EU0sga2pEtcF8oZ1gOZgcujGujcp5evPqyegv+zZpTaeE+hRNxYZ14rtSWUVvM/TE7aor0AqT14hfDFJ8USoCs78SEcUzWGvHAw1qMlJg5Yk8wGKSF/QXqIGL4ELTbNOepwD3hKQ04QH/1YI9+yN2xxFCu88SciUWHdoD8o4bEpv9LKnaOH3o7py57988VuRXvNbY7DmtSS1i6Hls+FI5vYNvxTbGI3FAkZDFOYI5lZ6AcUg7R2GcgFlUrZBnz+rWyUsbmVkT+nxvaE5tOYvD8oGLUZOrcOlyVYaE6WHtBaGLIXZ6gHQhzPJmVIO8b3tMFyrsZJat9SJwCyQ3Uplmki61A/9hwc3id/TFaH5tl07JPKE4lh/4uLGo/5BO7LGn7ngZ79r0slp2pDPgP5/FdZb5geimcXxsWRpQIQ33KH4oI0RX4Ni9uKaOusq8uv0nS+d0WmICtRh6J41UmyGYadwXwMVAx4mGyNlLb+tgNlwz6xO547v70nIsQZNX1FLL67goninPFrGK2zQXR4u4B6uGkW+n06Wpb2asF8yRi8tRptG8dXEn2xoo1iIUbTGg5hTGmHEhLYe/NG2hPKoKgJREU3rMO++S/nrCt45lzICSesN8YcB+uHt94sci0jnUecv+KFo8KLNjnhj5adHSFKR/DRydOS5LsfH6f7Qld6Es1+GfRmDqd6fpVziI4uxMUOCZ9jbniNhSShPC7rAxsZMVOth2irKjg9mIk7N3s1SHPPSX3Yvkt7pc19JkyBIpBEnlP71xupR+yJ4Cy63oFjPJV2FFGL/5vwPy1TeCbgeStKxiTFudzj/As3wiyq9veTCKRO3IGJS6hcOmu3WYUFF+cT97Kh9/hM25jtJ2gkV9Ml6EgE/h+V07aj/o9GgRUI+0xafpDRDE9WofjxwAu/24wZPinhyVemH5eizOS/+4Fa+E+eathm0toybw29uiGcI1qqN33aQqA4tgyqGhxEmeoeizKqzUUWRVCtQiADNNw9cvYpqh1IMBTOtDv8aAs+31MW+y2TsqIX6CVjD41ttgRbaQIGLfal7Ykuo4xPflXs7xV1qp/KIMPvjtRrMlRiIp5uyQPTGdgemmSwG/n/HkoUadbjEHdsrb13RwqLIomE4RJEUh7d6suGSB06hMKlwKrt7ZA2pNddQvLyCJzpPuv3QXN5ZR4wwHKJ9cCuRTVGmJcl9QtV3gWbXexucZk2ziE5ab0hwF4gaCSptmD+Hqi9gk/ppNhWeXQGvyfM068a3/H0r/rN2pHehSJ8HrIL7fD4m8GUrdy8Ag81GhiDqGT14DUjA2TZMvVA4teTZEKKozhoogI2GeMDOE8XEH/S1nkbxXYvMMyp9wTWT8Voa9Xyk9kJ+0HcVO71lyRajFZeF8FSR7WGehLwY1lhShZ1VJbnr2tAUuUP3PpsDwMoDes8OtAxdMK/pGXKeDh8hcRJRygfI9rvu658i6JhMWmG0MUqyQRKSesQeZo7rs3D3GeNJK8CT1LFTXYIWtn8uyda74z/VVLmF1Infk/HflcvoPhyddmXkuj4hlyq2FP1E5994V9PwoO99Po6T4v0CR8YHGIvJMqNCg/RHOKZWVEwtNCrogwJIwVrU5S3Wy4NXYOOiZWCiIi7aLfAzh/Q0XNKCxijqaHJUicgQIHb576uTkiwy+BSvwsD6eyBCzlEgOLpkvkjVjv0Q1c5afvYlBD6KB/Hk2jkCW8WxYadCBEDoDVAYoL454WOOoSgMirRKCcc0wbPWbBmkgGFoif/852BGKzm74bqzUngxYT9G9AXWq/c5ktnQJ6er8LR6IDGk5faQ2d8fiomL9R4rrXnJEy3PEQy0AGs9+eGX0x0FKewIwZZQ1QFAdJM3b5jMHOwUBpVOrR4gXOsUk/ZoFWyA6HG9Yh649HIwQ22RtkiApIu4d29oYF3DlnvuwLwYUoUOptGEqnsVImoil44+ROZLrPbzdJVwHKvHcbYr1z2W3pQJC/Oykvni9MHYp2x5p/myZI6pkka+FJ1FCqIv6uIN2OqkFbVF/z/+8fNAtfTQtZH45U+ySbTW491AISYAtbesPEujfS80d9j/5uVjka+HhiyoNeCWgToZ2kj1FKjdDDqIjR9JCFkd4ynfFNXEApcnle9pTu7jirnoyy711bBptHk5AnPdHrB2UzhZ4qZu1yP9R5AffbAZsqrRMaZCSFAognblK9ZWL7/QtLtFItG6B1dHkxxiDyXY9HMMLfD3k8IQCptmxyy6U3MnO6YxXaeaZhnrxj8nis473TsJcvtt1KKX5EYT1jf1OmZWO4p83XGtSwcw1eQes4lGEfUrYzHhYf91v551hGZMPW0kBLB2Fu29YLEzfXG6IMwqU2IpC3ZHhXnFz/dw7/wX8TfVlgn+umyhnl5Vq6B3jjv8G9TK2U2NnKcXW2GZZb4jccs54c7PIZmgyK/p65UiLhzQ20/DNAhVVax5a0tXI9S+GpZi27CsYI1z2gb7iODMYab32NbTvI23HY5YG2pvnNSMW/dPyoKtskBpwAIyGcTCfqsGLHpbscmiZOOptifUFl9Pj+66jovFQh3jj+NrKlD10JkHQ3dc3H/T5ixrtj41kMqecCQeakX9qKPiNPZA8fy2BplGIOXJleWs6QmIOH+Bfko6Ts4joz7zNDkWABSOMZcjxaQEeD4oxyV99WI9yKcwhMr7r978qJJZpKvRRLqCl+nTN93yfgzza08t65bJHtc86o4n8rMJKjA7YI5GilOe5Iet/8j5g7xXc2UP6PEElbHxtIkTOiUxuQC7D0YYnhkQyzNimGrTU/1tD64aEAgs8XvBoXnSJ1nENdbKIzp65SfQchbZ/dVjbqMmu4QydtNEERKv08ven/Q87Akp52ZbhnSRvRkrJsJ5+fY5dFnq5xcJgbjiwIjQQSYbblYmc+pHwuNSRolc988nMTp8lZYg/fbURilBQZjogmfyVSHB8rMaCo8Zs46cGa61QKBZCrIc2DfbtyFOkNeIm57fUMGs0Th4C4tPlTDSdgY+cHdOs0UN9BgYXgksN2kdnq810ZzKv8PcQ21IEb4uvmcNsPsfEpKZkpdYN6d+kmuaJkWdXh5jfChGP1v4xRNAYXL7YOQgNCmtmrzaL2ZWIwgsaDhZiGrX9cWUqffsDZaERNoT7UQmJmeQCjXM9qOTh1+HuNDtazJPaxslWwFcW9CGORbya9mY3FwJxi9y3h7ThkYL13f1CC8Y3IYLe3VjK3IyFLgBcg8WgcB+x8WA5b+P5t67I1vHEB4nhysya+Tcxp0jO+BpktsupR/2efEgv4NwurbUj17WU8C4nPbJj/8UVGrRgo272ILX6bnuCfQ4hSPFKiXJoOaTn8fgMtrvDDMV57Te0w47I/o31nXvRTSUevyQ6QEeujs1K5oN9CiLs/8s9+zrpC+83JefuxZgbhcoAwBvsWuYLZ1an1YBbMRiaeLE+xK38TeKA1c/ljBPIWfw1oLaJHcbgLS9FY91KlwQVIvG3HgRaOcPrbd2ouGS5NPdPoUWK6cAQ+de9/xB5eaL9S8ykhwb2ZUaf6qQlrwSy210lvrfL31xkm2OZN/GdaV9QRQlxQHUA8pCHaZGToTTPjMDQBvfOch9N7D57eL02GuHl0XDFVaTNq5uyNNwGOFAJVkJw8hoILH+wuRXbvDmbHz4gX7+sa3ZWOvACqZ/rnr0hX8BZVjdFT0nFbBiyh36kxkExZBczWtbVXEJHX/h3b8G6DdPB9UX9Uy+VQdInea/Uw3ypXEP+WMD96ZLW4Mp/n8MGLUk2YLKQenuLhO1BKhOkN4VHKSDFo0dS8pK/w0POa5y5bSkYOkGZZzJ0Pj1NAx/25Y1kZhmeGbNZiLm5S1XlXy7r/noEXaEgXFjJWu95LbVG7j+RKLXuUTmyDTUbGm1ygftv5Id2gJ3R0eO9dlQpW6lLvmENESe2oWvDXJsG2VwQ0NmSudaQMNdL3KwEHjavfuQKClHeOQ07P2zI83KcG7scbUmZhY1Od3WBSogxgGjaxYdP3Ue3RXOfsW7p8ZTvw9q3N4fROP9sANtdMYKES8tLsbIDF2kJXhluRM6lJTua6n/tT4ar8iooGIPeKyN7CrClufFhQNfaq28qFH7NnLhuxG3POGrXDmCI5DZguE4GTPWhyFKrktCBBTSa7uAPYfpkJLIECSTuoob/amjg4KgcTlN3+n5B4kMM1oEvccyFiglsbzB8K9TCZUDatRB9DEK/jVvbEsbm9hg6AL7CUYSyGd49RUF3AGanZ1rP0PzmCZYTS1gqQgwFRB7a8oSEhwqxdsMgQa9ajIqIFx6YLFi6y1byyUeipbE+UJlu18ejwNjFqPda/CehejeYr3OHN5mzIb+n2Ks8/t6BSM50B87bSHb171JZ9kmjzaCoFD0jYGVKGeWlL4MVamyac8KqpesKzV9GbEhAqLsEt2qfywJGWLa1g0QrDsrsNjyarofyDNO6CzIrFOsFr3VVmC+fcXlp6uMa+1oq2gK2j0hhdmzOh0CxUU3gMzWY47o2bYnc4VxABCwjHA7voyvyd0BbhmjOJy5sV9ixA/3vQP7DtdGG4805nUaw2eXrDFdbNnJaNcAKLpi6nnDL4w5EXBXggKK5IPZNjEzXmYrd2WZeoE/4J133ttJEzKSd/RmKFnhykLop6OYlNymtTtBN50w3AtV94pAL6czJ7Dpe/4HMUzulQtfllLTwS8hqLgZ9HtCNgx5/OJ7CrJgDpx2T79Ab2FoaBn5kYdTNk7vtmjRqNVKCLzqvarHpZqw5YJ+Ra6VYtBr36jWZjjB9g94NrP/6EiQ/34xR+RRzgF1SRXxBg5LidanwymHJr+B7Hjltt1fVdZ1SbgzYCksp20sVwid9uaxviHKJwlr/RoGFuOrZXklJJMc7U2dnnsQ6gQDYASRAAFC4Knr8iQe177Rd5bTVFgdQb9M7hgGJ0pZjQzI1frf4r9DmgTk7n4o+k7V/7D4+6yZvzKLAXZ5HJgIecfPcoCKKG4K7L3PCrxOiC2ml5kRYsmvDKuyuq+gCQwbaqfvjz568Y7t64YOH7K/rLt/h4/3psKrjq/yyNMrw/e+jGmyUSGZsJHBf0YzIWRd0JL8Ucs8RSKAMhp5Cj+yjiljJ9yBoJ1sKSQCYGNVeYgQqELKpXL3PrcHz/1v8Dq+DOG57uKfsVJprkcTkiOFduUxxfh7HQKF2ZOfyqQePbzTOO/6ZyvLAPgeEfpD1anQFfiZXGnPoorSTjHKMJ5sKQ0+pSfhATHIOkQ3+52n58DkgwMMuZDuAHaqZu+vfGO4IXwFntyxSzbhjJex11rgPEC+Ay9OAUo73aWaH/0H5MWCRyoQPnQh4HlG/Lza45eoKs+IliSf8L8euYbqBfvq/ExciRepCXyJA5zoo1MGTD24C4Z3XhHXfTNS4O/kWp5BHbFUUp/odaRkiL8X537K+obLeOWyPi90JqWKU3snwqtwgLLOP1pd+CAIF8lH4112EAGXSjJinmx5ojobn3MKTKHU2iFEYhXSJDrGshoGfXptxPzlmFqDJC/osZ9RG963Qo4gQTuz/U436Kaf8aIlD9ljz0s1eEFHL7ayABPnd/AIEcXg7/V8J1ZpS6GkQcR5i/8gkmrBNaS82RDvwi02mTUAk55fNWxjWMrelA/7chZUZIBrbT+vuPTgKpYBG2W5eK2ZdJmS2M8uGhXpS6K7V2D8GaKHwit9RUcRTztscF6niokpBt1dDbEGUOxQVR0Y7VFx/+MKUZLnRqJBeJ/JZYn+/775g4A4uG1JxKrrR4RcYs5uS2D26UYb4ct/nswUZQ5/spQz4qziInLcozWuiuxloimtF4RzVsAye/db/kWOCReoy+tT6SEIJOmcn9/VeqMfqWxMhwIGrbPS9fYJyvKYpBoAYHCSByi5QH3RVTu0kDixSKxiGet0CspLIljUKpLLAXC+sy7cbrkRuzTNYqUouB+T99S+mFjCmWKGqYZ0kFs/fTc9isZZ7jniHg2hiGwbIiEKlifDj2BAHPa6VkG/RbWfb16BZJXDfPT/PlR8CA+TReoqE3ZYf9sKSeTo+1mPyikXaxYaubVBA1pzFUAF8Me1c/otUKsl9TeUDKGZiVSkXq3GpEkj8gT7WX9Ve2Wz9gI0Csx2Jo5t0CrJZXb5BPIYq0f7XIUNC4dvFu2QJDhEk4i/PTiDYgP+VqGY0KldTR/+HgyiyVVhya+7sxD9J5CmhILi3iaDfbq0kmWOYCCJgtcA+fCeoaBaFibvReEWlcAP59ZX9f5maZihVCrUGlJW4hSGqw86G/H8r0RWq/lZ4Y3mdMEPrvwqjzAKbOKSxMBPNkaezOdC4adNmetPzg5a8VRE0qsGwC8XAYkPjyMhSiuK2lGteH98U89OuTo1K+d4AEMIALORuZMxl0SkCx1yxD6C4jTgeP7CYjWuCeTu6DLBq67bJhLFH0Qi7BRjQxyTZXio0PhXS6sdzYnDVlZS0YZsA6LhDzmNp05xjIAboCoqT+eECx1iAS73EyDlFoYEIbMenKUn8fUQu09dgDMjScOKcWVhgcOazNhhVRW53FvRWK0RDB6dGBIjVRLEXNZKCUr6NOoQp32SAuUvt2R6TrOoNypNjcHqJPA/zh18GBXXlgi7UdLTVFUSGoXse44jAxX5Qsh0dL6eLDWb1Z4zMpypBJNy5vzgaCZA2iG0yyz5d3PwpxE3UjEBWC4ANHJj1OATD5ovex+r46yggOXJl3sIcHT29NZantk7nkSPd54ulB0Bp4Xl3LZ7UWKjNaiAEhNNTZLjmVo/cBNcb2LqREZJ09WftlDfF0H7H024LgONvfxrt4vK/8RoAUwY7mSMzCXxFMjNZE2FrcAVUGQy9M1cxySN4bBc3ATqaBFtVSR7mW9Cxcgy1iijVpVWntr3AubcmUz1wvwiknqAj+GdtxrlWoXm/KpfnWBWchuCDHa1MkA3GRuFDUFdhIbE04FznCyAeLTJsAv6wpkol32QB8LgqkLcRYHBKRJ+WZ5kvmHF96YQ+sFQL3A7awRmIg6T1xnKRe5afQPquvvbOdG1MY+fhg9PLRpvmt3UqPqu5QaHwFW8zo2cNNk3ezzQ8SauvuosfhNKN6oCap9wE1dMLQqYYJi1BOEynUKVjLINkeiw5ICdnvvGoRMLnRa59Y6OT9Gj32UZrBUX15jezLpnMh8IIKo89X6LvUfyNf6PIKRqMfJIMzrqWJZBjTLwN4XKB+SCUrjJ47INJJ0mdLM/DWdIppEKc6B0t/bCdSzsQCKlCDl/3FxGezoUoBBp7Nq+6++mbDAem2TBprK+m0EWmj+SuyD366duqvEtioNY4lhc4DNbcHpCMlfYwMNArojP4+3n3XcGuy/7L/V8aMuqEkh+jwVDf8puBz0XE98t4Ea4DeoyL2DRl1oVp2dY1a+03eePZS4TB0uIQFbOo+6/tHi6lOWA9/e2mzcYLLThIL596w0R2zgeu85A98tWT46c/XJIbI7WE2kkyYu9CLIolJ9PCatpuZ5dOLiWRdbFx2Z/TToZWYcWFBIeT1fztLdhjhHH4dMxilqkBNK6l3DVaZnY2vT7yeyv0zzS2dqbY7zgVL2Y6vPqA1r6lCWqV8kGwxzVMPesh0566xp0Ur0SWFq63hGpk13QBVuH8+FvUYkDLdDu0iRS97FRQ7sBYhHTr2xrR733VrkWJQE+v6jxBDWbaXIcM0oYMEaxp3N240SZncgGK4VODTlwpCGvul/5sEMQlfjz5NKN2grlyk3xacbeiNJcxz6myfFLc7DrSNxHNaK4ERnzAnxuF9IR0SoLWBHt80CAO7x2CThPJ8f0F06G4OR50B8RnLAuAnXqIyxqRcgRmiGRTdPhyBtBiHkymAR3EzzRenXXAPGkuVDHsflz3IpRTA4WUtGFOcGzkfYdKfUgIGqUGmEL712R2kZc6JdUMQpE3RpriYH3uFS4PGeJu26B0hymCmqateKBLXEBW0Qq62FTM/wJdOLHMvKudNlQfhFgUV8SRdhRkUErWWrllYA6Hz7g14bRd34lxtuX1nsI49DOTqre7mcCngarvAuR0P5YhhtnrdTk3RdzDGEAWWtUn8wgUc0jOYQn3vYGDL/j/ziu1DdCH4ZWup7b2xg8RrF03CskbSie1CC5EBm5aizGyMaN/8zsYIzLVBsC1Fm3UwOEHPCe7VWFeKQ3fTzCpZg6edZ7f1Shxt3X3wC4CA7iMTWZWosARPsLh4TQp+QYzmeXdUe7eZTAtt29qtHtF1JEv879cr4yCj/hgq8ylkvxWjzzAEYzTpP1bbxE8uCwmMVc6HYDfPvrq00AQhFRxaKcAVbpDjiuBC2eujTv1q4f7761os8IHUyV3Et9OR0WrCoA3oUIPYY75F3xBuySGA8wJFVW5AzoHrmC8hrgRh5goaiVKEr/jqnrDQ9ITezGh/+OMWOnDT8u9MNOFbZO6mKJJlP5Yj6ic5c3a6iwGk7y8r8KWF26TgMGbblA4ySfFhKrxbSCTeEVgem4TsA42JFfi6acpii/TojuFMgX2hcOtZSq9a3GDAJcfaEsAHh8j3O6z/xCFLyoAYICUunyX1mAlr8MPMpsALCZae6jLVP3z6a1SpaBjY1IWhGREdC2pNZDw7piKAD4m6L49+wh2h/gUnDL2/s4Bqm0iT2KRfpRUShumGX+yC3AS4RrTed6MbbDKTfTPera7heDmUL4f15hn0NTBgdKXC1qkdc84bcbLWKjC/ERF1IQiPtlX1IBD1oHIZ0gvwoqLr5Bd7wzKvT2fBszAKluknpN7sDx453cxpAjHLy+AEGWD6UbQA5Y7RYasmCJyLJLvropwiMk1SRvQTb80oqo6jtTNyqqLORynfd3K47At9XX5LfdiBj1NregngoSGophwnY63kJ+bkGe/4Xljg+mxxOlapIb8H0mz4T7l8psMZpov0SEbeD9YnumNc+Fyww51ojA7ppr6O6/yas+7Vq6r4Lg0DqDWE98wLu9SEVYwLTGFUOge/jHcwB8er6ls/ZTlr80p+zrKu12GhPDHVSFEJUcxmJHwZE54/l9mUns3unP3pPYHc1F9YfhvDN9IRJ7m5A03M0SQ36wEj0NVOQWICO5xmlg3xjOJFWBkD0ul4sItkb92jTBx8rjdn4OVbB89yus0m2Ves6suQkcc3GLFU3yrWoCKUjzIFYXLDUC2R7UxHI3sg34e/jynTZXfDqMj4jFfV+gmlivXbqiJbjCGBcxAUl62cuYfkbWmK/iqhfn1ZZEx3HXt7+G0fuUM+4msnmHczSeJqfZwGowAI4tgPzwbAawVFhWrYH8FTE0pwcGmUpsOUrdzAxrXndW08DBGqsq2zIfP91/BynXItLjZiIbIwLrBFQkGu3g6C5s1ZyH+juUAcHtIxXFMhdrhgL0ycoDaugSjtd+DqImtVwaHUDJ+gSqjaSTYRszqzQt1B+HZJxV78E6CcwnlnaddZd7mSb8bt8V6uFYPJ/BgTUiRUM71S9OQbg6HRAP5hPIvzjysRIb894kZ2QSMgwKBnck3RA3V8sxLK5jejr2Q5/5mWF4br9PFUlDoyUYgIWB6AxObtHQpo5DKpeysIobX/Mal375Ka8ppI2ANehg+M8YNHmn9benTFxDveMfJCkcZcrMmvepOOJvA9avPqUo8Ou9ovT+EsXsS+8ZNuI72RhKaJ9GFIWqk7YuW2rgVfhTFxKWm7DkVh8zOok3xFY7B/t2TIMAwNnNaJDHr8ehy3Is1cWEYIBCaP7djT38B1nfga77xZh70tHPC+oMUc830ljEsoNkEJAubhvJNLs88L6rDnnYLNzDO/BWapCmv6Z5AgUtd4aS1aJEh6uJ76gUUmjxM0s/X8lPASOX352Mn/qKbO9RmI/RJD6AhZtwkibqkAqL1d9pW7yAFeb/DKtAUsnb/EiqgYeTvP/RrT5FysWCIl4QnT51x9dqsJgLpnXLU2QWja5QItvSl5s8dhUkawiDLTPFAu/yL6/NjVkhgbtWkyHJoLSFXHbN747zcG7Z7HKbfT9aWRah98LN5QrLdHyAGRdxuD6YyW3dFEpkU1h6jQKYfTn7WbF2PTJY5WdXr2LDBWSPb3gmc4tms2pGil1H0H3lLeU/uf75VMO0EtHKK/Kmk4IJuTD7DgB5P1t2IGCPbO+kNp6NyuiU9nMWrSDWqc9digFRh6IjobpE5mut91l1K3ak99HTi8N1MThkDy5TVoKHGU6TV7ewpaDRxgQJTI2pFU3EnfXEWcsBO/d4QTFrz0kmohhkmpfyrp/Fpy5oTyeOMRV8OFYa0ZuUl9yNuUfOsw8sVgM3dGu7TGxrZ3ZqFQKbGUax9xITkcAYHBfEW60hn49f51VEi+UW3qzXAyECZ5IUHfHEq/CQ0QlcOHupNBDfCjTE8iLbCVS0W59AftcNWb5U3f26oeWSNEz48TwHwr1DobHQYSiQDxAvWAsv0q4CuG8O44C7rShRB0uEhSkmTvnWMizzQPxuRpWzyfEVNUzeTik006MeQAIlOqAtgSX88zIgSvDXO2k40/dl5JxTeWSFOn0lc0stfp/J1wTE2VlzjLnGLlQ/htLdPpBTy79U1sbTFdG11AW6nk/jbpa6oak+kQ/vpY4S8UranZidFQVRAa+A9dSvXdcv4fcFkiuaE9KhFO0qHna0JxggAwbZtzy7wxd1Eew34YOmwjdDTvuTtrbxMTmyr1wTiw4Pe22cKSHkuHWE7mQYzk1QVq2ZZ+qGaT1YwuChsPdnf51qlRd5oWpeILz9Q/ey2bExMdyWCYgpEhaIuN3X9KR8JIQ9LbU6beKoIBnpqhwC3nEz0hRiDGHUVWT35wIkfi0GOqfdb82Zp5zIntYJItYgLsbCxxPrzkrQm5N/N56QdM1nc6mnZnqNdDOUW0Dy7m59FUAcHp7ZFdr+bwSo3oTOB20iiq7gxPFU0h1h48Nh8/cr/cQs8/YhV9BVti2MJCdFXRCaIDv2YJKmNoXyTwggUCIo2xc3/gGxi5MIGIbrO+Lp4j3OUiZtkrXVYMG9PxOX9SKBENTPUvHggHwOdTfW1RR8mGn1yA6hc2Lmlp/ivv7FYWaHIlpgVKOnQPOEVCLEDbvkSSp65eeRmKvY85J7A7IJwGL7wUEkSQ4gtS0QIP/6fQKoJGTqOkm8mTSJrmvejeAt621OuqAbTn6dE1XHWniPG5QIJxHhrDplI73Y7bqM0l1XHbDFIOcOK68AfYV2lSG9EzlCNylplSbBP/H4fuOM40VCODXLsgiaIbUEw2FP+U1f5YIJfdzdUOpBrRRAucriyDLlrKoUtHF7XOMBrtB29kI9HqHyHIslUk1S5OYuY0sqEFQ0u748alGZY/Zqbt42nhY6CcSlQmPs8Z9+whBasCqaaB5pfTnIByLufu4TKgXSWsPLuvP8ms1YGa15TIlzUm00QKEwWN3gpN4n3Kex2GW6UWQhy+NmW+SgqOaPdL0ju7mAEAK4r1yMV9m8A2imMo2drVJ1ZxiisIZKjgofasur7Zy7UXDFoy9UlYuRPG5QzB5PjTnBsr3vsyGhTxNd7gpyL4bcb7AcpmcfyqPt0UFuKNRrRPSVr8MJkXlxb3gpHR8OHWmkh96ZDn8a2N1POoQOZRL+/GknwfIImNsbsxprB3eSY7kcsM85nCYr0HqkIssQmjg/b74NvS6mm5LsAtzFfdkdPDVEMi3AQEWb12xuHYdHjcU/aFdFs64qUyzH/7RnNA7DeWyqIxNQX242i+G7Xg15LtS+gqSsfukCHB8F6m6s5fhdytWjU9nc48o1WOkYmcCQiyCvL8NkkH/EJkcv65uxS6eEH6hM62Nw6F329W0RDz0H632xLIZZri22ZxcAkeTclEHX+NdwD67/qcbWoEz7iIQ88tWGmit0E1MHRBObAc0MKT1Q4o1Ll+mBllPWBYX7NwXGI1gO+/pUQtD96EqsZ7uxG1W3WeZJLaqfOCEHbu0YSqyEJpTkisE3a/Gsf4xqcySiMNCiY6k+ndL8w5C8dwMAKStgFjiXGjs/3/p3fmnfBsQTCjf4sC9t3w51Bm14GUmtlvvEHwDRq1QtjAf6KFz23XMEOOoXGMb/RGC1OJBjWkoLz6oqd1TCAj+QIjWKUDoUDyp523NfaPF398ZWh7dxTKBm0y5Lgcj5rqmrgRX1K4/dcxWbkkUFadW1CqzAjH7I8KCYYC5o6lyBqv6sXgH8PDJHEJ+CCD3mwZGaG60pOevvgFyth0Af9CoMUMi0rUUKFvb8JDq03AAPRPEifuPVcpqIYi+8rLoqVWcyCrC3UsRaZ39Y8ZcXBu2JpAwlyWRxEV3orE2W1Zb78BwQ3iiRZ30VPnsQNbVhA6qCDynvPkLdcWnPdJn2PwtF8vlKqJC3LnnafRMwD7SBFoih3iKexv7r3ftx8XMKBXmGBGRQeglUddRCSCAv2ZNMEvpcGf6YBD2ivshyKDSW25ys+fu+eJ6u8k00WvHLEXIYCzuQyY8U/4BZmYwAFX8g3H0iBWwZbDWdhBGTZP9QYcoQbAV9NnbL30oLZl9dqYsbcZm3ctSq2102tat6kMURbW4FNwbLoy6bVjPCtolbUIEjsEot13rh2gxp43CC0LgU1Ts49upZ+A9AqG75TaVYrJCMaule4p/XpJtX4dh1cPd7/TXxbkFj8HeD6dgqu6/kVKKdx8peuIY7P9pVwB8tvtFClkqe2oWz2jMM5/nqfk51xgsIpbxn0rcIzW9EB7uGMw3nN8aMiNgllNSquDn7oA/vxUEXdPo6pr/SvxIlTcB5eQ3+gPzoN1wLKsG14m3jVps+CbIuF/DIDKWOxeVM0IV3GbxrLJxibD1oVnruYSOoUKsOJUppvSfkpHg44kAgOgzt1Tptkk4M1D4v2ZWz/xjPg9spGDNMfsDEvOI4nAWSagom7Ohvx+dw6mNikIwvWPk8TmiTE4xmVDcaSeOVJo+n0QgObeLc0NW0vhiSDzNHr0qyzCSw6QX7bP5XiW/DBkYrChfPAzpqPfvwzrMwi4i1nEaZu+PpbtEWUQx0MsQYNgMQCAKh2f2jAzFgrUmoEMh5MxXkiDr7uvRxIVL7LfZzKLKLn5lHp9RDKkP6wUjcGS2GsxV+EIStBSxLhJNFeb1wiS6LtzFKK5AluiCr6Ze3KH1H8XAlAPTw/IfK1zeQFOVkGskSy5X3kOom414Q+0cN1jGUuTDUkE66AZNM8v2Q5OY8KqlmMwRaq9Mmm/K8QoWPZrrpjO8igTNiuh6tjmAn9dVD2hl7gf8hn13BDI2+X9kyuYefozpSFF3a4Y1xMZGZ6N1jIBTvIBg9gyZ63IBdY4Ptn8QsUc/6imkVNpR/sQXrGzspqItL1AFEhpox+FZghesIA17+Mq9dZPMG5Q9vD9NBHehxZpDBVxEgMgutXZNwF3iEabSaXNDUb+y5BY/wHmhCywynGpOigCO9PnQUJfaWy+dM75lNEbEZIxq/Ll7nY+hBjU1j6ajqvDUHo9SO78FNfyK/dDh6EudQ9qjX01kzzux/f+FkNEJXqBIVN1S2vmVJ1/MB07FeH33WvukL1oknc4fZ5Xj3HfzZpvAlNkZ+/xfLBOX4Z8+WzlLQCIHkCwjeqLpIwkGvwdk365351WZMP13wvzXeR2YzOISaY2uxJltTL9x23F0ZjLBMkAmnHXJbJReS/lzvaJstSlMoQYUL0dtlTbGYY3LwFZhdei0OZWxlhM1c80Y67mXYMGM0qVC3l5o7thCDmJWfcLlARCAGfhiDh+DXWy2/Shglc/YuapEj2Jcybbv6P85rD2NFvNvNsi70f2nCC7mblqUGuASe4jTcTU0KMY/y5DXvvp9dQY24tJuj3o9ahbgrVFZ/D3kzFLLVpDo3X5VOFMnebK3qplodtU9LeIG/XTzmnDRe12QO15WVwMdBufjadtnLwFIo93xkd+iJu2jy4JA9y+S7cYbMrzxwlwrnnoc6A5YIKQzSCxBTSWY1C/3vyTwokkSWroNuhqhpC/WUnK1ZSyp4+71ZBJEhDm8pUidQdGT4nBl2fOfIrpJXhSJrR96CSMnA0CAJtlVCzZ7iALEM31Lx98f5zQ+XApNTm/dx6AK9SpMHdosaigjBl/61TFpy6/qp0hK2V9uUIoiijAt1GW1X3OhjpgXbq6WfITss83dhXBC1oTbxsRhu+QfmGZw3zfX6vqUS5Pi+kTQjVXLHpscnBJbj2bWcCEJiQ4C+Smim0XgO/EtbuF7XKfurmoyvQiKNh/d08pfcnfPWT+rBf1+rCnM/J+hwZ9samXarSNvmBL4eVGrcZp1WeR9DSJmbQR6TQCpx+r6xa/xJp/gPvj5yt2AYtRT2tce7ENpNnU3g4OgGBYth/SSokde07c7VF688lWfQaV4go1PQyDgpaSc962SzJck7w59xkdik65WhdPUPKot3TbkJoBeurObBm64KP2R3bF42uWOYUsYa0QKfyQL4pi/iwx8E6RpI4bj6NuWid9RrzJMDjAWURGZ3LU8y9n0AXWAIKzhnUcLMrV2zg4qf35Ql/qYMllEVPrQED1KaXOeirAem9ZWP1/FMullZtFGQzENtbCTeW83XmLlfabxDKoSim3/3hiD7peayKrF/1uFxGhbHF0VXughvQeAnobTMQZAulvzYo7GToRJ7rWTpYOoNXmgiTnXNTfOo8W85TFRiSBG4Ywq3Pu18SDlaUP0SvcnjPTlumPQyUKAKNMTp7F+J/pF5wnJb8FCB6bFgvwS0GPS3JNDw6dXfse7zPgkUdXNmALNS77C7mR8Bmp8IIl4DYzUti5UBtruQuYgDm2EStnszYCRQ3nBM4Drpb6/rmQfrO6BjTDeiBm7ZXk9N94//h/1KhtZ39ofEei56yrmJSwwNqxqrDFhnvKsFNDG1RhZmWzmgYPVzM1/OuCRLNvCn8eRUTejM9e8E8PjmXKhAK8HnHIchKKPmGQNd4umf1knpi656XhgnjwpVuZdGLp2zETqt6T5lzr3H19le87DykD/3XYD9Yb7whmAC2oIg1toEYeUlnOFgjV2Ne6Jo/AiUqepYMqzDILxmoQuaroBT/jE5sCBjM/firWqjlIux34kgQ1IzQ4gyG3AlFo6/X2zvcvaoeNvIhD9A1nUbyj39lkhe48KJulPYqaMg5fuz+X+X6Jrx1EP+h8MuSzsZ6TcXP2ftk4aJSxiaSnP6MqzGfspplNtKTYPGTkpEWHtmgnn0PsL/PeoxsNPP/8b8i/VS0tMYNLG7vrRgFPppgpgwL4jbjZZRwjARoYDyU0DyDTm4lAW0naIXzhQ5T4cA1cLeIWHJPyxAH/CFhVhGTh7wdP4IkSjsxPa57XNHmZouULlveYvCQNbnzIItjJN9JnpF3rt40DbT0abwUV46F+H/U4oFQSK/pK5jPriPlLRjunVFdS6jCqrmx9q6yqHgXp52tKnCdF3EgOPaRqdIhDU5ZaTQ52JX6idz7//Jtt9flbMuYLbkTRjbzWzQi2ds58LMwjpl432AU+2NT03ETK5n8g/2TceTbtYioXavDrx6rEsLXYnTlqzfFmXCA6x6no2W7hn3KGKbrcjmIve6BQEM+hGKeKiWHhGR7w6/TGmv7/y8tgBxE1JInOa5WR/rgaB8Ss/+cX7vmPYsB94yEVzs1c+Zz6WXK5t8UvCn/lJFARmGE4LdzFPHvCz0G2+MDrnw/BmyZM9kRJkDqbKLKJy2BpGuaFPVodXzbB9gKqZgESKK9mGuAGVRJ6o01rdJEoUylqlxLOtDQZKMRzQQX3liabByeTddB6ZeZ0VPxVRMeYFteHiAmNCS3+UJiUDaA1o1atU2QKHlaP+DU9GLWydhCgrZdgdSttgbU012orZszpkPepT/ebI60nlgYDNbbG8gRA+47Fjlm66oA6H3onynazINuGRdrYhteUBIUh4hX54OBlHKjEtCaz9Ny4CLCfVc44yNjn3SZi+kDsUfnDbldaEH3c2syn+WNEvD3i0Y/VdvhK9Reu0H5hYeI7BYHQn9+RmDKjc680Hm/dJtpZZdOfxMraNGIg45wATdvsn4DQHbAeAgunh9COrOY69WE+cTZ34Sv9cuLK6nlrcrJRAS93Je6LMJdINdcaxFhBdv69ZqCRiYRyrwZp1VOb2VzPDUYuLYJQ4SSxJxfFNx1TJTD6DNInlbrzU3a4+dJlMs5fvI6O4Dag3B7oEfAQ+YGdEb3d1TyAyaK0QdFv2AWJrwhX9IqebxLPqQNQ3wVaxcvU+q6wcgYVPTFL1JY8zFic4+XGuVIIV25NcrZXcrr1uOJFSRr3YEswuSwvJfVHgVDBSP1cC5g+h7xESNVe662IHVlH4gFlpyXEQWSFlukKokJg6izOi46IqkB5HDKpgV/1MFowf0C2joXTx9ZsQXLWlD5J1tAeIG+mrY3g4Dham+Biu5pZPZCEuPcbsvokhMGHg5cG358ZgcdqAJ3tBHx3mFzvLuH1ZXzNS5SUgx1YXSp1X/sIwvhSX80AiHrcPxEXLUxwwt2bJpvpLc4SPe8rk17rdo2jdu8Y5YFTKG5CQdsNUqBqKh4wpBljju++7Ykd1m0WKtXUqTpFAEcDfbT1YvAmLUfA9ajoHWhj7njOhpstbSmLRQi1ccchZstt/xLvmPE4uC+1Fc3Z/dCpGhVRhoSNdvxKsD2cUuAMUOtVmg/4xYSx31phQDWLakwGBZY5FMIWBKFsxyXVOA8VhEs7vFI1iPh90YbHP+Q6KI5t9kbp/3bU07bH76vX5feMrIM+XUDgLsn0gGKWgkEeOKRaaBS9ga/kIUUYPtkb7aAt2s7OUktfB6/p5L/f1Nq1xYAUqBeVNTr+1EtX8wFhb8NlHkkDRP5knmhp0oyTggAWsM0CcKH2cXKTtHfkLEwQmr9qr5tkt/u4RnhjlwVq+BUE0N5+cibAqp8FmqzYmoKKvNV+JYusl1DXgjXoZI0jI/NXB4/Yn+Uizs6c7ZyFCsYYM7MXuKkAFNkedmiIOl5HMCi5WRAJiDNBU7XlhaVX2IaOXPWLERLS6kMvPm5A7AERxq+Nq/e/NR7DlY/Xe/ojRacS9vrILhQPH+xByhkXyB7dxPEBsVxiILXOnQOquyEee2TmWsiTK2jKJlDAsfpXkuyvSMGkr9xO1glexaAMOJZ85TnDRjyZD42mALtTHKQCUkiS5cfN8gWxofwcWakN/HfID2kjpURnWHGORAQ41h9s1HdmKzeoVLjCB2M3G8RZLFH/F0/ApiDGyC0MtcopiGJCjrlMkenYSzG9vSzIr54XPbqAe5gaWXd4dVnRHec2wZ9zO6qpqiitA8rZsH/CoF/FkkHVod3gLvt/mSQx+oElUweGTT4sfGPb5Y4LvJXvRjeAVi1GzpuX4faxTE552Ba9+P6yGHrf1BGlI5xgys4CmJklw3vdo61/mW6y+0ER0KT4jQPiacKqRxN5Pf25xXUnr4FtMWClXLkhX+emih5ElKGYfKfeF/5bgKN2bzpOQx2yid2YH86iWhrbMGcaaurGqX934Thh+vuuJ3kt5xPa6CGBO9xXLZ2ogubN/I+qSj7OmF6Ciulir+XyccCHV1gsEI65IKT0+HRoZBjRWT1U6UNNY8/h+hnaMjrT8N+jLiI9yqJLG1ldggvYV+ARz+yewhg2ReoVvyFaiuT7VvWIxad/CuCGm3m3uKCaUR4iZqTH8UccNkHmKcUzR+v1v9ij+qY2MHCrY98GGBsMKGfNm9XKhxExaIqumfq4w0NfW+XZDvI8oS6xmJo4hGDLvT7k0Cp8UFvCz+qScefynp5z7tqkrEddynwyNk1O9Mksn8MRJjRJn66dBm7PbZEpwr4D1YygOgzQ44bafL8mdZK6UQ4DTaKmOaG3LOV6l5vn86oyiKjxj7a0L5ZRZyQv6sRE3DoTdtbYYbCg25uvXix4iFdLfSEyGme8gC5Z+fCme2hhuDUVyTce4KjEJSppdpkvKjRq2iGgITaiPVTqkSJ2h0xLTNfjQgIs2ilBNGwax6qduG4Ebx9XTC6eGhbb8wl2XrRrlMP0Ghbw2NoFWngc6Ehs+kGi1PUJlLJlfAMr9bvBHavVQlmVE07CJW1Z2kQ/T6eL0xk2By0gkrASRJZfIUGDASgCgL8/edbT23QPLtwbYFukRQbXWiYAxCCIFw+r4xeLBdd186+81tSM9YB7YLFkduzCnO4dqHIDlbAUlkwXNycuAYbDTnRFeIBdfIxkCTXCW8TyF6TJxIollIs+fhFRcMOOKFXYTd3NNzbx+0GufkcagtBFBhDKIsEBnsN1NH76RgOZ53b2BWecntYDNglp+7mEz972jbz8NsPfT3IzaU3m/5Jg4TSkWgJZ28pJSpRsHPR0appU5UlpPuQPzQfGmWK0jLmoqinQUq5SjlPGblnzbQXVVkvO7uhsersqGu8o7HsNsL51EwoH/AnpoqDA8VJnwUpiWR9si2iLxLJkvP/1DzQ7CZ0duIQs3/ODP+viKp1VyjtZJamWOtCCOK0c3vyfwjszN1G7VlTnjE9XdMmLEhIyQk2cab+JyTaYYxxubdhhJFWRb61jczCyj3QudqGEf2epJN93lGOrW755sHLBK3l6ZNC1wxc9rdxk2TFeAm6NQavSqx8eEUXUoKC3XVp8qhvshuQN6+r1r752OmjRhop3w9r0J6FALjlIRFd2l8d6xH2VWMEUD9W+mlOYNmV/J8AJJd34+L0j1NRGSfyacZO14bS2NfBi6OOXOo8LXaVJCeWcsOSLnrABI1JtHaOGVvrPNoceNOAxkRZRPmt53SiDlnGp4niUdzCyuvcVRGB9Rd8bgvdbk/VwNTt5ujt50QRbB8xnlZjdZaIxN/OzZ09S2Hp3jHpBuwWHvyYImI1HToJ1G76PCGOcqBfus6JHok6L489bXJ/ObuVEv3zWIqgJvt+IXIuai9zug7N0utYjh7x+dXzCXpAt4YFwUWxM7u9gzyFy4KMpLApeVRJ2giPCFSZ9v4I/GHY++QyJNfFi0YeiwD1l3Is69abyBM8F2PLpT/HrERrnIi46Wt6GQAKhxbNoRFdSzWVDLb1s354hLO5TOJQUW0WGAwY6/j4RlsEChlJlN/6NB/4ZaILSvGiKWjTd+FSmmr3KVXhnV/s4XLCzk6a/bqr5PMz+MS+wr7rY8TKBgoEaTn458OgmhxX/SNrXoFFY5nOYz5Z2bVxYKGEnxARC4iaywONOk1Qoefq8rSYqOcUVfLKmnOSkbWJoPQIs5aAY1eECn/XTKTvpSWEVbCw+F5mHxfoA9VZ9ELd2NxPQSKV97qrDYYpcGr1VlfrPlJHzXIkPvyd3b9XW1B3Jvo3Tm6B9Dfxou/yMGdKIohehXF0feKwd5rzR1q9AEyVwIXK4XXy2Wg8BrYFz3UbW841XRwVQYN41AXguOKhENkJaA09gHbi3dQ/CHNM8IM2FAco6UUmnJEfsLYRfSJwtL7lp737a4gaVKrfJM1E+GNrA/JwnYjOq2KX0sQMu0InayfH9QCn/7PeZyBSuZ8LmA9FkYS028oBt2eww0Y1UHR2aUKhrZSNMqAw2shAqQx58/A5EGPCTzdpLVmNtdhkjRJo8jL6B57cx5NIFdo/GfySN3tXdRlYmdvB1z2dvIZAmHCjKmo+6WDekoB27AKV+LNrBIrAAUeb1WapwHtcjy1MMNhecfVjPLGeTpPe0MeTeTKHgj2VJ1Cv/uWeauyvZx4zxLl2bxBjOKaBYnxA9x8lFLTV95EI5LYU6MTUi79xbjoA3n7XfzErZciqdV4vPZP1a4TYMddZL78tNpyFC3Z8HDOXxO1QJmUC0Fc15KT+G2/0Y7xe56u5I3qwTl16hSdPi/cNzm/ClVgnE7EUTiGOYsVQl1MFs8XJkSJqhwaVeb2LQL1YmqzZhFCZrRroG0gSus++eHddV4HlRsZFnMbtyUAVssVPHvKag4C6ZYjfjpU40qUDyjyV3wV/pr1YcQnT/k78zODzMYYe0jQViGFUOTpGWZWXBKOA6xFpsdlENIVbqeUzlxCg2CYibf54xZ0fGrSo7pfwT5sKnjBEkGsLKZEgl85gxej71cWQqyKFbGLW7cWhmBjKb9DGr4IXrTpHKLL6F4fm5bLaQPt8VdM6fYzNN2pA+Y1HRXqfUmPMnsJFsLA0olw0W49Gtlkxe/CDcYYvkXBzkA4iz9QBcikLDuYwtA5auPWyl391AEnZnrQYGZMLktAz6/mkNm41gnMDEvVlf2XFmQxSVZYJSPWMZNdp/Kcwp/JcV9drL+DsCGtuUr05OBMH2NC7oZ9YYVvQjcKj2uN8butGVqh8A3JHuYPF08LlO7AVqHUX+0SfYR+BzD//ryzneslkcw5m7ozCROW9Lp5J2ob/qhD6vwxxs0xeSriNMaU8eTGfiD4MG3rjN2DAZ5GE/Kry6Aa9ELttXoEH0YeoUWcvH3Pnv1hQAvQ/ekmsW6g5GVKIuHMLETkXCOg0SzXpHxR/yCZJJvEyChF9ONgWk9Vmsl67M+tda6LZUchoBIc5gpdY23FNp0ldKOqji11q2/+/jYi036Mb3ya7qKXA7o7uf5bhQXbx1i6l1lp8ijXub8io2vJrFERfRh5B3pNWNPbd4tw8QaBBnPrCsxuMJKS2DRdvcbu21tH8o4Mz9nsCDoB0QQUuyEuVVAk0bInvBmeigMorsfUFv3HwYXtmcWiwY0GVKg125+69Jw/T2EQPbV3VnNaUaaJ5e3WnFCq9l4dHYk0/alQ3GjuJH9sXc6koVFmV8lnJjP69MKWyglyCBWNvyQAIkR8vbu/qdG01xqFbHNZbbsYEhWR5kDLj67IrmZzSKRNYuUFr+UXQDJw7CWGMsmS/c7soRadnykysSM9ObU4vJVhk5Xcgrs2HIFslRNL2WwDZrzTQb3vKIAnA9ZUYCXN7r3SZN4eNzhGLGm63R7wQwrAceFQKrMd7xmnreSE3Imx290dJYtWi1grq2lbLh9X9MQeY9+dbtMEbkan4InU8hp9PBfa3gv+bYar6u4ET0gteyMv2b9ieqZ1lKLsIS+DyBWvLtkduXLt/0JY6sm8STL+ddkRjtCVFWbNliK4m1wr39dzHjeh2OiHjLv2eEc39UOuMD8Xm1KLpAspweY8ZE1RQ8N9YgvreaChxqiT2rvOwPDxDMFlgXtwilO3R9O0f2zWxPDh2SP3pgEhH+yMWygBG8JEmVmHkCDu4BGyye56HUDpMQlnan6ZVM122k+ms3C+8Z14xmSWxufEQ7XHUfXFYhKLuTrcCbBKa2rl4H1rmOliZiEOc92DdhdDvqKIos+dT9TlkU4xAJlN4+5Yy0P+U+RGaCPY4LKCCPZNtHs0icpSyNUOmKF7kw3kgk7FwgrqeA0Ik8FyI4zP6JkEILaNe6WdXdYi0XTIaOY8etD5Za25ySsBl/+YprkqOtZGY9YGP3qI+W6Amhyfzk2kI6yYY4N92RsYP5HGK5ZG6T+Xxb1DOGk8y/dkOwRTJrQk5HEYG5TQUnZent5AMp+GyfL6AL6HeX7riNmPmMOXRq1I7LQbVU60f8F4NF9hUs9A6GJlUlG5usrp0wt9stYbZtV5M9jVLcy3dyoaEqvA+XiNkaCbp4IsyVdpr9pM/hZ+lcVhjh+dOYIcgJed+Z3b+v1FNlU85Dq2qVfe7gS/cx8DvmE+yOiZMV3wdlMjCF3ADdtCYA/BMkQqhx96r5iJ8aMclAUULeA1ApCAl3fZitvj5o8jr5dvnd5f10gUtfC/UoihbOMNzcc2hBbS4ntUD8F3Sd9MjA5D8RviuWK6QBUGNEso95OMZJ/LygH3QFM63AoIbEClSxZdb8iVlWzNdZZF4XUxmys149KTQDuX1g5y31NKbOV2I3oVu5+XRFENukT05UCk2HAetwiZzfgkQGp0oWyEPaK+vZwV9Q2iJfMvmdAHUG7BCnXWJ51yvMosGEE9wehZUAWQHuM42lh/e+k2hPPqoW/DUR6ZckswOhaB3gW/WXO5QzskCWBknxxxgsidMwA45T53trs1d9eyWSsbqDLuNKdLwPDetgOb2Rog8yp9rm/mGJ9eRLHLzqlJGgtqHBu5VdPAkPDmiv1aXSXwxmrb65Bk00vTSp6YtZn0N5yNpUZr40gndcwSmno/Us4l1fSdO++JDu3k84yphGu7Tlr/Cb4pF2q93KMQ7qxjnd7GyoIx+hqBCiP0DU+ew8votPI+EM9xQizMlLtRdq51cjeOzArn6p5rLtYKDy/NpsZkFzi7AtASklEVQRGI0a5TW3orqGq6IeNe4vRSz6U8sxrVInf7niwELY4j9CEiw2mYJImM1Dfo95XzxXcjU9gc8RkeT7/yPZMZYhUHWZVk6TNf/MBUpzrKYYCpWf+OQe7h1wKPhNCn9prBZ6VcUhY4vhMicykVPAzK8KTGIKuCIcGUcZVQFb7ftHHO5SF3GmxZH3S7tagn7WkBdfsic9IxIoMWjE6pjceqdwp9tqcnQm3TbIH6iXdoU1FbpkKz5gWaiu9dJmPbQ7yJcz5b9XwPBy5BCtLgvA8eYlN9bo2EOW1DEvrUob9l6W174SwDay1Ih0/uNCFXotERUOMt0aMZZ2eEhR/foK8N/hPWa0+84jGSKu9CbyJ7M9phZ3tq/KbCre+xkPBadRsabiu8YNc97SeTtUffgHcX5bCO7FB2f3vah0A3aM7w4NziHr+wDnfONOFPFmGRVKCpYI8j03AN5QAijZW3OtExCjZSx9LJAznUX7xWzN/aDWeoCwylkCJYdzchRZh494iJkOqHNLAyDoHrMRPkcKusd1NzzOvzAp5tYFnjlQ3x8tYGsWbEQmSaCoF86mAuGdVi6z2lFwgqHptN7AKj9kiezM7vIfpve/iqCAbrdrpn3Z4cXTNK0RJ1r4HllpZq0RBcXw110iDEZoLPP7Hlfy8OWD3jbgnUgy02s1Y5RGWG29ggesOg/1fZnV6rdrIiShrvPBHIyTDVgjD9MoBrES1UGVSzA8rlFpxYlOTDj2FU9Xi3aM+Lsk3w2UvoiXRniQxutZ5UEAER0XKErcIvic3NxfJozp/5g2UWsmCGPE+Of7dmY+ZcVc2g71sJo8QU2hkQGRrwWCJLdVJu/TN3nWhec6XJeZcDm3sN26iG2zYeiNMaSu7qp7cArrz+XDUeDMfDwDXhpxhgeR6KMMDPfuhiV6lj5CyGPNQH9yQfdThup/nrVi8t+f12H5n2jDeqNASQFOAyL1ZMcj82xtYDZoWjUG3eO3rXJULad1alYDiFUjpQ6AoRWdM87hBeePdyMAMyQVLDrZ3qczbMnUy3aIaZRxj+RnZanS4apgZBkDjVt7IOnKAZRmpwWO+kTkU41iLRE5b/hlvTc+bYFANOZgGcmLOaFaiQhFjdD+vfpRJo8wuJLC70+meGlX6wdHr5Pt8FSWHhIuXnpGNTMUKzMCRsAmpLBen/x/azTJ+x6MYe4U4Pnu9l9nhTKhxqxuxA3NWHFAGbdayeeZ/jmZ2tUd0idhsOrAL0uHVNl7pYyzEBzmTll+dpCSxh/Eew5+vurokkjqerWixn/0HX0KtJlrqFsl/UjnqZCvtLYTDPHGhU2ZJETafY6J4IGw8z4Hlf81j86VONrmL6bAUsDHb7cUsJWDxx0FpRFr2/ss5fUQkl97Jr/GfEti35Q0PmEgvikhZcIUT0X0lfLhZzn3npzxU34tdRolD8a4bKmShf0d/xO306bL0vCUEytGE06U81tp9Mae8bJ4W5z8iUJcBca96ntUOyDyBG2HAw0GKaHOcvDT40M3NHIGfDPKd/VGxXVMvX+dzmll5bFUCpjVvgVPMElrc87b+hqG7DCIwey/0QZE/JsBoFauAT9QixMwwQavWPaYh6YcO3s+z/f+FNJ/92JF56FM58aRRLKyKxTLB/La3GH35mGt/wFIUwGkhjYxcijNbEpjDLWgawODe4AZN7PnTRDajoe7JzYc/1uoVshux5ue7HYwn+b6pkIpZI712lpRPM0h/v0mUSzW6ICxlVevCE+/g+O2TBrkgcUf9ZYOLif1Ur13sZlo+tRP8eRWAd2vvCza0stSQSrMrYzrcgRLmQzBig3Ccsc88KQGTukHFRoKyTrToTOo7ZiwDToEM6Sp7LAb/JB4vJJXrzjcbLXcDPK6T/r0t3V2NoQtS+K+OgVqauY11NCtPdG0rX2vbQ8F4BdZOGxGSDY8wURBoAH70fuCkffG6RI8Ybuz4CB31ViJRFSsZD/xOHCXxkSSlByRL7TdWjQFI9X9NBSG1kHitvvI/yT4qYDQO18nupaWdD86nO42iJ4+sSY/TNPHAapXUhuON53IGkeW42wo/K+2U3xvQl8GhQ/r2v9X/9udwlPmDZDLPBrnpdG9QAYbpdDKVGhUUt8qX237pzIUn0VZtyLPinYVEe351UuWPbCKRY7OGdJt5l4ciQTPc5ysySj3nPz4oOtpv+YbZVWMd5zViTa1ZYQWi82aFnI6SnM+CxwHGevhmIvGkmWhuqvO3FLeKeT4E6ETpVvpYQ7Tb06Dar5uHaAoTlJkTu/35XgbYy3y3zJ0tWRE5+iGqDOqNzDPNLcmcPk3ur7XEe6P1ZsgTOrvGVRMPWIBE1Rq1810QAlWXxJYzF4S71hGMZ86cXfESsj9pisoTAhZK5gCTz3jaEtDeiVwmHKV+Fxd5CfeLiKSBVZGDd0UjqUqc82keKcHMaccJnWe/F3S71BoiX9sq/l8e93V0LtjSfAjAjcp9IlUN4MORrCf9pl1ePVQU38hMuocxTzRP7hU4K0DobBCzc0KgGxUmzyApLl1kdQjD89ImntZpwCgLvWlKDFo2hZl4KqYKsXxA717o8uYqBjg/OQZ7VujzAF0F6OoVNp77P1zuBHTLWEkxiy1HFLwPUGWZE0sGz9lPvv/dJWkkSBeWfXiUgJX8shsv4ATJQxNtIvPRqtiwrejTF5zjTMtCWB7Wvth36hviWQyGiZOtumGQGqeG5bdym9it/E80i1rhQs0r/VsOzQjhwuSd8Wyi4K82LyIaMqx8C5iDB07QmdsAbeykbuXhjZIWyNZw5NMAnV5bNTcnf3XMCCdgAdXayZPFKnN20XMD3IrojzEgAUEJ5ju6iCRB0tQhxmpY2JWWM/8XC6XpDvigFI8XhpvyX3IvF7k9ORocR6SlFUcnACMVtkoujGD92K1XzXPRYLegaqJTTBxoadphQxGxiUU1cLSTHzJ9ueU1CBfyT6exOzlzoIov0FhjzQYfyIhVE3DMuU0xiEsOBRiGN3w4+ztJvaVUh6svcisHmN9RVFLnvVNk4kPkc517GttaaODQ9+UA6FOeRbjFseZaND5D1izjzI1EvDRWCRC6QPMfTNLQ+4lhHXoLBH48D23fUkiNJhlPLMKfC9TOcze9Q1vi2JFPOElHaBZ8oKBHU7s6VCVLJGY5IpkI41Qs6XH8/N11ngyhsW+NnBj6UWZWs1YLQeHZjgQx7wA8Rkl4oF0UFEtymBTLatQFKq3r+tTqtbqVdlFPeE6N0JbahLncULb+LbkQ9lXAhzSF1CoBPq3hIRIsJPG1wxJQr3e1+kpvtXZK+QZ0YfkViOZVml7Ys7r2615y4gWEExfidLNgbTnZ8A0GkVFexNn0yIHDk6dFdAORdYzDhX7mxhY5j+PhqlwxrfdEchLcwRXDJoD2q7shSWyUDuMh+0hYSHC72RFD+tKDa2aTOL5ns+8lmSGFoBwXHpoVt0uZxp64NK/9FrTFAgJEFBpehJ73YjJCY8Uu83zsgp5mVjod2pptCicl254yimIkeWNRx8j+pmcHTT+KBQVT2xXQCHoZv4ehzMkWU43f+gjQqAdxUu7PkU2Lz/++L42VJj5BkSvPpoJMU8zZMPg16Th9anzlMI2+vuXGAuRfx5C6zPWwtXE3ERQToyJTOqb6fOhKeolIwilI71cJcHxdXiosQ1bv84U6TY/eIjsKv5E7byZs8fVFOR9Wh37NQjcWOWa0DZ3FgvfQYhnEgwQdFWGj6Pp5u8DDwvJPwRWgavboIROzi04nQPFsbRpn+bghiqsWbXVAa1ordJKbhJvKbwJx+FJ7CGPFcogp4w7i5ZpPixNOAv6L79RaIPvCFoCpl5Z+8yAVQtqtLd4I05d59XuB9Ww5lFhpuazmyqr3vgBh5lOixmEeKnJ1INHQcPtwbCSkN88qGa6o95BNodPjKJPopsu9m7BoiMLXEKbSUKsZo3hIZseSyFvzQBxlFXmdDGoPnE5SUN3OuCSBgqkPaccFUrwOtMy0hW/fnLVJ4da0ltTxeOFT1pDKKzLUML7QdDSCNCtjgsJ2ZMNCdFVOUfUt+CdXs06AV/dSKfRteWQtuX/eRP1WdTgWh2vGbr5u5cklk87NC6QFBtAAaEYppgv9z+5ChxoFqQgroM9xMfbQQkTETcxMM0Aja8X4zELW0SvfWzLh8W5UUh41kkzCGtNDp3p6+FqZjU14fWsqdnESTusmw2vG9ts8wcF6/jFRbBtovLGeiNRmePmm62Kkgfy/hbGfoptiF+UqWvq/Yc18g8C4X9XyvGaGTjr/qTrsbw91XPrPVLdCZmOydkJNrJXxVJm1zJnGITgZhwNf6zRZrZMWK05Qq0ihWnElSX1fF5Rb1ZMJu5Lv4JIugO5kTSpsbiArKabUc/KC6xlfxbvJIcyzuP2l70cJymk3Wk8LziijMtn+8dAPsVVvRx4AFSjwBYs1bl39MWj4vhnDFGkuFSg8Z64Ow4XFJ3cscAyvjcFx2ICEMsjGEZnj+ZCS823w+8eb6k6cX7jeydch82m6YyASBA+Ju6vRWPJkyYmDx3I3Gd3JOvsHVekMqiu0B94eQV6qTj9Hxpbd7ISuTCE5QpdnJ5NzjCgt+CBy5Oy0kgcWECA+IBdWUTIW58cskcw5QSP5UWAaf6X+dOcnI1KnndKjelIst/rev3RAv+OKJXb997xsnftWtOULHyfEbewjSw2Ct4Xj9EDZppN2uJAlPn471DAVNkbq7JRQzxVY7cxBfSAy8PS5IF6Jy99B31IRWjRCqrpn2Kt0fFyseuQUGGduWXGHhKBFxVvFagVqDs2c/Pw3/cV/4e4kYMB65A6QiXxon4QKO0FMpAOtWUqOEp2UOktHY6fe2l5HnbvMtWg0pwy+qXJzyifZnb9RglESbJUiQzv9VBMktbXgfMeW8V7unM0KLrDKp93/VJ0a2dbOGCZR/fhs07rl7E5pFWWuC9KH4HWGoCWfilqDpQHs8fn6VXxLc3maSZNZLAKWr++Repsc/0rAzJBLOKRw747yhDoujvufPjSXHhgKAapustg3MzjN7WsRMMZOMwutnrfUn+EWBQ6ZBnVn7eqtRoPnPrE/5wIJ/6T6qXUyZQfpmaDZH5Q66y5PFzIAQPwtQuj92VluDN0b8uAIvRZ5Z/iOhi9A0Bykpl8BMDLktpGFbDyAs3fmFKsQLjMf2EnuVp6VyprXLpyCV3uyEgNKws+Kl0nMgGNCpLoPQ4QT6IP5960ZBQueADd0+spaeIRJCsqwvlPl6RmPceSwtZ0S7Ju3orXtpO3ixr2URSTY7NqVySetQeKK/x6VxJPOn7PKiCuVcublEUP2JZdN8OEW7H2Bzyc9RKS2/3G6nT0stwLT5qWcV5UxluLGb7CYXTe3TDDSDv3J6cUuqc+em8lX9jMem82onqvd5zhMBbA2QVgdTnFYXKA8g8U7YCtaeCmwGNb0Zcr9Bx3mZWmTCBP2pKDX6y59N2SGm/74fUHyIjtGWbVDlbnOY9qvTuXGfbr/fzjAnikOl7rAb0ZzNwHPlEixmkM1o+vJMGLWd0a9ylWKKCvwZXOFRqbUCIJYfUUiZtWPkBRuAUx+2a6ucUrCelRn/oaqPA9xsq/zWaXscNXB8WcbdjRoEj3ZUI5EqUXb57ngFBuQwR/DT121+wRmclNSGLS8qYI8C4+dgcprxBLv+5tAh7Bxekx9ABLDUHFDsK+JQCFiojTxfJu072Nw6qTix/v1kAzFxQ69SYs1s51Ds6UwNp3s9cSyQfppf2RaIlIw4cgfv/O0u9HC1EHqdYX88Fk2IFU25JZyqeAgl1+IwZb8fcdjGIpaa/mEny3zxHqrwO8VaZrdqyQq7HDUzNPMm+X63frtEC1Ol2bQ6nqIEwysgbgnBmGv95vLh8RvvvME7Ms89IuqThQ5MrCGkWWG2PSemcGbmsD0LIw8RRpdHusBltX7pnZyJd8zkC1B2aOW57jNIw8LwXaPyZZVHB33+FOgelJc5fFJXVG0TvVnChW/lzhAB7CBwVvCmaWFOCBnajZABnP6micfx0VAUuMXLnXwN3BSmnE6Hj9Rrj1RcQg5705rWy8xQHdMvDinpawDFT96NjHzSzo80usLcXrYkHN8DCIiY33Wzm7d51W/7Iy3LKGWd/NI5893BZ2sbgj/Ifzp6sbmiNAch95TlXhaiuDm49nbVu0WI9d9IFjraDvw1bVEWKcmuSFp1aFy2eKzrst1/QJg/6pF4YCcrG8ZrFvvb/wpoLB29NQUvINIU9Bh4Gv8oEpn/64DoSl36e3BYu4vkVf/ZiNEIKOFacFf8F6FCsOOdYXCUhTUI1ushhqF/pjDYdS4FBoueFsgIAkQeBWTcTqyzcLGBU1ut+RFIm40cXtc0Mcx68Sm+HCBD4DEvCU6WBMbHUbPnDBfnokCub5Cm3IUWcyao1D3Eh1keyaH5//SSvxHOq6qwqaotH09LVGTeFKgp/qmIEffv/uET1dsoiQMGH/rgDjO21u5cNa8dnRWVR6M6xx+QE5rSWKD7Wia46z7B6Yj0AOvrEEPKPXTGpL6MOBxEXTH9n74f78MaGXxv7D9DKq7tglijw9+TiSxaj59h+mFs/n7qWOz2uNbhXEFXU0Pj8OfOZBNmMyFybIbUHOEytcA+ePTIf/tkiPOucdpC6DDAiE6RIRWYbk8R5jzROPs5QdnOCdBP/meLwirYF+7NzT7llQvOp6OpNdVBz35COVBYXOohXDMWeJqzH45k3NXQdEyHSTN6Kp45o7RmYnVmNawD7JvTQWuIbsFSAPRwyWSDr6wpZpO2ntuBU5dFiSqedh0s+GkPTlRQPQtQVTaZuFymImwN9TgOoXVUFg0mybAld32oAWjOgHksV9sb/VpAlin4BNQ8mramGfc732EzTBpAHdVdPwbTibc6hdO6QwM7DqtxChD8r/TZMBJamDHObw/Ga9ZPhOOg5hMXrf1dYp0eIBnJ1ZTt9BOkRdL2aU8FLsTjmg82SYXWFtWtwQZqmFGF14Mx+pFPGck9AxP48CR4mwfrcZp61SN0c63DAqDa3tbJ0MnnfYSemFxiIom++nbaS/pDKFUBSZ8vdYLUkR+L043bvtc+0MQ6iUzq5q1SJDzcNSVOQpeyLFoHCYR08IqhohZK/EIareJXGbEb+wtCi3hwhej7US8NChXCGmBync+TGACUkdxfdwqsvCZ0y3C0PS8EPOdywz4IQk3gCrolMfe4hOMrGN4QM9BhaN4TerQtePVnSiScuibp9k1zBtJP1ur+CZYA/8VssKpYFLlxdtfGxC1DIhxm6a9yrK7wSFfzDChcaaJOrvL+OicYeoD59BXVAaZt8Ov8Nn5EXjx0Q0efzxm1vnWfvw9lFEWXeEdCgb2Yvnr3pBJcnFH7lI/hJhz3Ihtgn7qAYNy9+TjsQ1xRe77L7uy+6hpHnKhJPc/WP99yFT2MMGy9LVmaldCEu5o99bPj5a49vJuoj6aZP+XLMSgItCS3rVcNzhWtSatoKMRqhfSk9Ik4bujMP2PyEbN/uoaBmcPZvySrGiBi0iRASG/KaQrUaWkTEWqdFV9YFJpb1c1PtPT7EAD+PPLsGVwLgUifSI7+wa/9funq5WXd0VxGqWFCQ4xZGWFRtCPBH6YpheXJQci06pPuoUOI8WSgjamaGfGtH5BmYmvrZ/EX6WRSZPP9+DKikU/a4UVQUI8/VTHruMmOPe0jSiTYsI48pW35VqO6KqlgzVQUw15jMCD0M98pvzOcjdTb+Yysgz0eyTXedaB9gPZvMaA1HjBPbplFicymOdY7RYKYGzr46BgRRh62Q9VvoIHDfRtTmVwoyFYnKpRKIya/gbBzPyXgOYipR2TmaCZW1CD1wbktT9kuDd2LMQR8B6WoQFPpeYfFl64lizksSHJj4qDaIpVv+T7MZ4x8lVstY3SqWDzwiu1KSjp62hsic5uUHNXOpoYxRkdKL83ZfWGsIxxMXVJuVnipbLouu3kdMCbbhyN6WhU66G9vqAIv7PiW05o6OqOcOA/y125F3Idlj3z9zrKClCohJimr86zL4Tez08wg9ubXnkbdjARPyRWpPUZIoWT78RBSK/XDjTzuGMCIJX+RC15n+tvu6coV2BVUhMu1sXCGza6voSCpZxFeQ7KxNiE82HJ9GUaPMMq+3fq3iJOswpS4AhLGZGckuIBICDQM7mbhDEN3h6eSogBrdd2xRCzHDSDmawBFz/L9k1PNujGIqrUEcnSnT5YqUp1BNTa714TdH/ZNExUGrq6otZtCocU5O8Sx0Xwf28aer1L7wJGl3hQJuDA0McTsFecyw0tdyWPlLqmWZiS8ibIsKbPW6ljVdkEXC3MUKWcrd5wvB+JE0VP2HpY9XaK/dQ+fd+Y1k5WoUY1pFblO1ljjFQUXIfGAu3lcmrJwVLx88WpOogDU+uqKTMRby8ZKcAAHrmHw9CVESTkeCq82NpVhV8MToucFXNpZcvuLeQ7q4i0eg9cpAouAENOM1X99y/woBpMmL34aZaM6fm2ueGFl1aXxv1VfAvijtEfdCC+4+Ufae5loLbsoMnfOCFHGnTRkUz1k5l5dBYMaII+0LHRNDUx4F0NSmxHOCcDGrv1LdRs7A7ubX8vh5io+E3D8DfOBzbT6qxOhQoRt10C0n/tOXd5Vc2KeP/fdH7/I8h3JUyJQum5HPDoIe/rIEriyPjp2rNbYWkD4dOwgEe8KU4mwOSDj4zcsCjwlTrtH/8BRcbi1ePhDjxk1Ci/tdPvop5ONolIESSGVL+NtQ1jyT/04BjawB7H+eN68HpGLJTyP0kwuenvYtE0YJQCmyRV8A0yfDXUojAjxkkULq5F9C2OYWPO02dmyUV8XQYEFNo/OcsgaGfaGYyOtVG5tQE2eoFbS96wR035YLy4YlBISyJufUTwZ7m/XwhnR98I1k4lMcJcI3R2gG752gR+mhGb6CvLyfmwWQMWraSO/dmV37lnA6ddOcr7s/qMyA9Rc1akubU6MhJwIXt8FWSugyfQ4DZM37rT+jiDaWfUHOxwNKz+S3aN1Sq8458IA9dLrctOd2+jRxDdQPvnKK0zosmm1xjptQ22Tjn+5N4cNjVA0G4mQRVUwjLBrneIaIhj+rcuvqQ7LKNVYgriro8D3CGcflO89f4aOesah5Z77DjW2RuCpnOIg1ThTp6tvu4hmpfCA5RW5AFL1V4eH1uYPc5iw2TY8Y8iPAVr3yNzB3ewTqfq197V7rQdSemME74VMdzFfT55ZEA2yVMBPxxILz9UxrRUDZ9mojFgFzi9Oqr14lZbjDdRC/JD2SFJncVlRmv/c4Xyt6zI3KvgT51BLCfKY3/5zGlvkBXU2j3ABn0j+36AfyUHSyycIj4VXoIG3k7IhIds6WTzlM2D39OP+S1wvIFiWC1hd76dYRarpRG4K7ctEye7yMEHnECZybBYrvOG/kj+pdLNLIprEB9jQBOfPo73Z4fZpmLcOQwOw6tUUb9k7T1YKM7+UcwmcoP2rwDrg2P89L/0ATjfjYyqxwNs7n9ps51jUMkODuaG0LiB8jcMCfgDw49Vk8DSxhaZaixKsib4yy+iECcnboG3k3BDr+GS48mwSauYLerDrznehxkd7rfOopF05kXeS0bi78WhK5mEAXzD31DXBTMrQfLTyJER2DL+5BZKuhC5GPFIuMxkIVMjHD5dDk2S7OLKTJQCqeL9aAod2TZW3RLQuYSgmT4/zr2TJNoPAjZqJgAtBoH9WYrSupxWxXZgVQdB0Lm2aF5N/jD/OmcvXfjq1VOIUYSB0/Drs4GtGQqTEjDItaNoAotDmdXcDGs//F1p+gtIARCTgNG3QpZAFih8jPfbzbX9xvfMniaGFEK4qWDnHuAIB8Q5yZ0jrlfxeB7wOLjXWhNIj12PuyXF6OI41KUZwRQERpAfgVP5e4JG/6ugYfr2pHTuXNNk5K8B5Fab5bQpggMgAIQ3nq6ljQSda7Xe2RBkLD2Bkboz2+/od9UvhDhAQDgyc1ErTN2dkpTDfSaQX/hA8giwjxAR26zVqQTAs4i1x3nS62bcsarFKTWy2SlGPJBXctZShxI8CxG6G4TQ8Uvdj29ylu2JOF6Q/fZG1ky93WaDwsqHbR9eD10oSQK3ov5sPEczDNZoxVzs63Spg9tF6AI8JEUAKEaHIdHYfAeUde4MzszvBxqqefR3WGRTbf4YNxciY7hrdlYC7t8PUeA1owoQZPAL9R9cbRWIQO+hdASsRVElwODRNMtH+0h1rubBcq6YqPdE6X5Fgkep7Otnwia21kCgXhNnAl6O09rTAfpwDFg2IocE80vAuC5twANby5PgnAa75kCUFEGPEdNlAVZeOeIJzIkNks6yq9C2ogP0D5130llmfChCp88xuQZlYW5fEev3sXgupm+2FiC7MwgcO8eVqqNQBsnnJb95prFbtyNJbs9ZuSuTo4d1IA9YLvEWxWNivXkprHPf4+f5gVi/Uider0wdPlsaCF+F/js0HoHvuHg2TqqU/ggMBa1t45CMQLJeR6frv/L2aaJ0l5wnzdFzPTh4PKf0Q0rV88g5WHqYN8qmmbJNWVE681oYIAEOdHQgycBg2ZTcmyXP39uY7iNy1YW8Z1KbbeUZ1HQjHzQrbniAIJhj3LeM6GxEzv5AmEqqU77bSntCo5C/pU3zDspFV23wsR6p07j8OfqQgcPKZqZY2lyENVFH7Lw9gwxQQ7m1Td9tSPmzsbi6un8WAFbWYbupqqZdf+Q2kwY8+bgdLzZYWqXcuIJ9BrqvJUtkL+iByCPUS3L4vmg14Bi6Js3SzkZCdO2hLkFtABm/MLIU7jT40JV0xtx2fED+EDcOvWl2VB/RispkXxCfmtrxPj5wwObCzkFtRCOfY724K8megkO0BZ3GxlMPBu5nuafdbJf7Ct51ZdPT+zTQ9fUNqhKIt94ABFPXTJqYPzBuGTIvxlrsArqjLGMvnNv6LjW5pZyAs6kz3Fz8aHzaBdkAJQllOlQA/qbH9lGzd6T2NmjyiFSDDByzv4GbifviCZ2+buvTs/c/SUcC6gL9QEjLHIZjAn7ysfvlxYj8PAvRDNmI4usDqI8Fr2mgWZOME1wjyb89YqshZ6Ls7rqxh2d7FPCQ2w24+tV4CM+BmtYf9BqPrQEBmOuZTMg4aqyK/Lr/YlLDC1iU3qU0V9fAXjJx7kEq3DFvTIB0SwlhtFmUkxj4b95lJLHkAGNSYO3f+14wsySsW8f/CMcUYPAoAU3LNJZLcyUBzdVwO5aPNl0polW/WLXK6VsBIV1KYM6qgbixKuIFEo9idPW0YE2eF4wo/iWQx4vN0IqqcuDZpHGaR1zsbUBRaWIsjTu/OBHOmv1wFC/+GhDzNGi2VYO0jdXGZ183Z6z3vcj+iel0CHRsZmpyuQbSgcX0F3EP+w6GQvXYOU5WsbwzvxFxOp2D8UUZr80p7+2zxKG5sYlNwcTkkNmxaoRPUW//oAQyWmn2VNqwhJG87F9lVjbvN+KXVQKH3pDsQc7jwZERlr2O5Bmh65eedvKQwfItQFheAf32BPBT4OfnO4JOgPhR4dPftdxQEK55W+a8DGVDvyZBKk9qSp7/aW3zJP9KVLCQPSzB53OlWCRnuo+NMXPW9TecnjKm1Zmji9sQoUQ4Jv/fv06eY6FK8oe6BXTa+XvoQQt0xX2jGLEyTPfrI5Lk21KM9CTs8P02193jNUCymHN305leX3NKJ9YsIW7jIzZKmPG+7FlTPICcc/pbp81NHViMKMciRoBL6dfjtNNK5/rNxxe4/edDcyV0R+38CjmYalfJjzpTafOL4kaOnUCkgi9trpjM8tAQY5JqWj5PgJC2GWaDS8m6xh8UUuJ+rz9AEJ9LlvexQuVN365aq0zjaDCqAf6NUDSVwmXYEBjpWzb5XYkGTPMbje/00CFpoOjYk8vVJfNiXOTynJIb5MdgGPit5y9//b4qiaH6TLV7S+g+TXgjoqNsTK4VmHeBkQwF7aCyA1/9L2qjbgsrnlTt/SIEoaJ5v1A9Lre3P+7hxE13y78pVXTm1/yRzFX1B7SxHKm1ji+KmYIJKrZLtmv59YSlNy+8zcT84zGARiOEOacfsUpg738bF162Bx4MS/9dQbI3pSAIoaCco+xrL2QAkM5rNGoHN7e53sodiQFxqZ8ogxL7MkrKcjIYlw1SIo4EOiE2paA1LMqXAmZjLSVL80ZQW+dZl5rKEA5aMKVb6JEeucROtbW2ocWnhATBIthlbM8oY4fyMtxm7i3u5pibYPMtXKcXH9z4q6ZLG8iH9THwz6cpq1gvJY+nvYEuxM9QaIeBSr0CobOSIO8sADDJ6MnIxiSah2o/084RMIoCQX3+RAcsMYShjDNjKRzsYG9zRWYWg2pnI9niDRPBb/xZJg5y8d8egwHVWpPDOkTmfc4CvPn2ICuZQejpyu6F8BpXfu7LR/8dWYguO8MyxRb1klh0+QvA9SD0S8ixp6w1UJ3ijGh6rMvkfBGAUFmcbq1ZRikfxSzpLiQlGUo0Qcz63zZo2mIo/ZthP21r9D/FDzadNzP6kfM0CBFDpIoIEEWpEH14NmKWVtBmjfv972PSdCCsIlKIZL5YoD6wOJFDZoGkRBC36N+0RQu/w+9lYQ2W2wORWC5/+KCiOIF2ZUT9hEMGNRwnYuUN50xCEpOiBv4gT5QmEXLH3P1gtDlb+8iNQxFvolfqJNX677YdAJsAhPXwZxigwasRkrqUOF9JlFw/6LXPP1ACQD5SoEzs4FAFZpZMGt8c5ST+bCFOspZDPBJk2xoVQHimOWpcJE6b6BZ79issdWHqxmr00h9rJ0UonqBqGJtxJ/PGSur002k2xCMstJaX2n+isCOZew6BTpE+OVQvls6UZNdFqkhJxaUnrNPtUaYk9nL50ZEjeR8aKUKJ2sESIcUfkhq1qibDfZ1rvYQHZad2TFgizo24CquE1f+PzK3hwjWCI43f9QnqBg3ImwYujg2Plp/6HVPQkw+oCXAJnP9jJYvxRTZ7iiG753/AqBCU0JdUKUCKLlgjQGd3tqhIOHDrKfJ+AShgaX1JuUlqXccPRy04H3o/z/XyvPY/X0U9ElGui9F/HlAEHcqygVKSnu07a/NauzfO4xyOKEDnK3FqitjDOW4hBJa+RMx4GpeA55nBXlioZLb5o1O+vcek3LHnfaX7beXajXLC12IFWyJzsprJLoIW1Q0WC8tVJFOJQnyqiFfIVpVzNz614Z8m5/IQisBbbrbwlGiAcy9wG0TWb7IXf1uIFxojWrdZa20EYcxXD5q8iaENTcnilch0m3CP539YFVZ6eEstB4F7zxGqYyYRzfljAff/hh9+9jGJNUAF36+uJtH5foDxduPxVqrnzqz/n0ocYH+ccHvY/T7jvymEcPg8RB87IRmqWXwMTwDy1M0cNR52EWaDsbxhsEExvssL59kBlaK/afyzB0AegPvr6g6X9JfMgNz20wZbRFsWtxDG20t6Xqt16M5YznI2+fYVYro37Hj/EvhsKnjatbH5SNy3vOxH5H9gwdGS2Ko+OZtQ9fPRjsoF6xKplk9+/bvve8norAkY1EjsHiflD6ZYabqY0vHdncNXtwaYmhDakDC+bsmsSGbHbvVvYCbbwT5mezWVU0Ra/yW8IEM8nHkgWaR94e8PYCIMt+jwYPK/G1ccaVcNoA2XCgZ3ieXIHJDweNq+g1a3EZCVtq3MbhN1/MxYKueGD59c+cXsTowoPSsDS6P7b8rEtoRty4elW01YCHtfDMG9hazK5jcPhW9IxDkhARgsGKzHbHh5xLk08RXPo/ShKBEPMmy8n38Ck9Gi7Y9LRix4ieSxr6voi4zCbOYUfxa3ank6WoYHHdDNjk+D2xAC6IWrAFnAuNfeng6FhpJROaOn1we891OUPw16Vp4E0/6V7w2Q18mI85xrg93RMJlQCHqygGiizDJOywUz+TzBGgnaBC33r8Lh3nFX77kPJ9wECSJcLVcMuRZVytxNHIt3LCEiblrYFSUA8RNJ8amMSSpoB/Pe/Y6cXsUYuzNqbJG7FYviPvtTZIYqeMYgHfsVu5Skbidat9jjIp+mEThwIVm8K/ImDdcMckV1Tav+5UBN4ql19YUOG7oCj5WThyMAPZKFM1kwdKZt7EmGWKe5LZ86M5kpmjc4GlaIvneflxJy2o3ZyZk2zi/GGoXDGfyA40kfrJFWb4N1ltVLzTPZwiKCnlp1Tn5khxw0FLPPmj1rnhlUguyzkYn6t7ewViZFuDslSVpfIwoN2M9BOTGbJK0az4a4HBxshoxXyeeulDQLJ0cipp0IT9mgxQn0AZIOJO33hZwxzTrpNvmIQqZm5NFJ57vo0Ulk5waSh/VdUHL4TV1yYJlk+gWsntMqOHxK+6Rz9Odie0j69vgFiA+dHhW+k74sN1pINOVSyG8Ebi2HBOGqlhSF0T3Gup9gYLPqPR4e0oWHia8icd4hkfkjYqSBvijOGx2QImYNzEbs9kMer33+AmMO2eZtUkIaTce4uJIHPPTZWp/pRU5XdNTfofXUodIvhutImLROyYtUeHfhnyKmXCK4/rj7LTzsWZerRrco+BVoGemkJv4jvXKhDu641Y0viU+4U2SNeFBHnR9VP9Tii7iW1QAAIcy7zpAAhUYOdJQplWMUPdaadMdn50xS9IPEW4IxKmIns6Fu0QKtMfZKe5KCBb6SHbeGBZmTnRfDFeoh9D6LRUmZeEtZMVkqqSQ468yWk2vDrScA8RLxBgMGVfgVkwmsEWtBWiRWBs62b88TOUcQYunX1dhKKS7jwJ8+bHlYXq+f4NI4YmvkA8uTCy/Zm8RobooExut54VAx9qtuHD9bdjNFq88hTpJhwEUDSDa107iivEy0Qob7aB2VIl3eC16RPdSHdcoXoOLv0EsvQ7FlNSsp6SP9/E4u70el7Vfze7QUhoBbvNOctMWdALC8ObDQmUEUguINC73VuMRZRQAoOl9OtSsEwcgUc9eciv5kkvYTG3JBqZV0Y2We0cSuaoMf5xYgrXQP42ymeNkOH3hK/8SGNC57oVDhkRSZ3d1f3RdxrCHqGBL7yb/qvELieXEyS0seERS1syjHsJhSLCAklJmW9bVqsZCt3kA4askajsBWCHRaRwFoL7mVDiswVlvpo3dkGsgsDMgC44XKLoL04wKyr6u2U+KAAxRZYAz/341Of4VY3aAg306sZ6w3G6Az7okI67Kw6tfroXT4oZL7mhgp//vQClG/vhtrwz4Uma9SJ1ZeNpunx99PZ0HkcKNbGzd3+5cI3n3ge9LEKKJrzfvgLpmmp0sUw8Iat/TYBIsw+iymwaK1rlF8JXdirUWimh/QBwiH+YhvexG+SFvArcrpEM0Ee6vhGrtruJzkdrZZU2Y8u2VZyfpUvFmmN48YR4fdXRmnySW+8iH0G2wRiedD4Xw9qezUfkfgHJp1NEi1ktVDOHbzBdr7eZLxAwr3u7nUdhsU7cn4n1J+XBFcYEdcSgDA1VVmKXGrZYNyQym9B4yhbDaJsC+Zg7L0MD6eAjn7ItQI+fXyfV7MpwNKoHIL6jfFmkd4CPg3pGIr42nm8Mtk96bUuVpmJtMAYqetFw5Ys1UNvlJ4P16T8u9Rwza12N0b66sX12XUhI/tiKlmI2OB7HUKlITZ5/u/rX/PGwriqCUzTgu/KsMzcYDSbhmkmCrEW4HlKcNxDI0CJmqxE8KjUlD3mcfjZuZUjUIXThrxbwtNYQ2Q/eKXMhB5dCgGqMXon0ZpQZwASWHWnX798tHufXiF4WWnzHHUq55V1BZlDRtU601bmq3zaQJfzfWU9AXMfbTz4xFD6auEfr9fezD7ISY2Uo323WnAbuBog1AyED8mCEAyGuzBQgRgvE0Z+zuOV4TTCkUiuB2CSYdu3gfwWG7vGRFHwdVvZqj2x6Gu/9yMzqORuOl+Su16AbeBEd2pSxPMUz+DJIAedVflLIrPrHss87FbH3N/pxx0P7lP7Xjhb8wYFGMoyXgJBtH2c19UgpW0IRblXY1arEruCM6QnOj6PVGr9Eb1GN8AYVfRZB9WE4yXKT8Hzr3XWGBL4qmubpDTcJdYZ8s0iL51iQqWUvjyqqqYqQqymrCf8uqd+UdeKnA4a/lGKHXEHz+PuH/t4DMEyfRL4HomukIc1d9h2QtZFPjTzCAf+qYZh8za8TGy/YpKL2LGpJKoyZqmFywrTDf+UEnvOXdNgTYqfb2CAD4iqliYTsixt49KMToFmf/F4npj35FigBHpNp5qjZ3k2wNPbVvkX/81nh7ZBb5r04mNzV4Ca7sK56ujtjUQagPH/DpO2T/ubTKOSdTvqTwYPwX3MIe6kjrLWQPw2qYKMYjrwxSmHcfk89tSTLO0IdGFwHlbHFxv2Py12gPL7D8ICOR2xAs1BFWJVoahWijRkTcUJPozmWCh4k/93Va8Tqrnc2yOKpLBz+U6H50c64pwFMt49Jq+FKDQN2UcWO5NXQ7dBUE0kgH4wTITKdA7i33fo4B6TH7uzDx3Fo35FRIWOGgLcb9lnxsfCxZgDoCLyYsAuag+m1dibR+UYGWQ+h58CDw6m2wGE4gHdVXnhGlpiFO+9wdFzCWOdElsFYQZyoxDG/yESW40erIMNJI9ACxb1rN7HGkkI3NJ7QnbmCffDsiLgJyvtGlilTneREmZ5uCFmaz/W/59loKG74m/VU/DDohS9A+sJF8BOCsZg/+gUczGu3v4uOlXGwwb+2tenK767IgLzhMl1IcyoNFAtL8IBBYE3JN5PVQW9hynnUWAEvALZwGAXVxG3qWqC6GVsDUl06uP68UdiGZIvvqf6KY41exyrgvzOvrr9Z/C6pB0tf3tUtLDqO+wExwFqtz++mUBax0jtjdzaa241XlszREr1+O4H/1QW86blNa0o38Nhm2KNqxmWY+St7Yl2QcAbB1Cx25l6DOTmXV3SX06uqerc1zpkzQpJd/ZWPWb+Knj4ZmmW9ieuNYz0Gp8Gj7AvDXoPOe5qrjXtri4vmTvkVXzKcNVjiQuRswJk2XgWcjpsfyZ3hciD+UAEuPl7OnOMgNy6WVND5zf3XsVr2Tdsa6beB1lsWZCjBiQbfW9EJZr4UItdnPCYYm0aA1pQ1E6KNCKOcowyjPNvbeNPKI1YzUBbu5FiAZCZInbsXFYZ3P4zYjquqY3rBiIGaqyLt2cJSHqtJXiYj/K8H/DYS4916wI0x0JoRyArtv43HmsrZF5gHjbNmwURM3puCKbqivWicr+QEbIXBodiuJXHMqTqbtIfpKQpbbNiJtTu9Dt2zyi4rnKWyyavFsczG8eR3w0ocDtBV3nP552gTYV6ruSgUyCwtSIJJ7hjuHTkyDZrQXRzOLjlv5VhJoD77dRWrRn/r+qMHh8haBKTdnt6p7EGNzKUn+NRKWcxwIEpXcNmUP2k7DrG3ATiDA1UEQmike8JxsC5I+htWLnz3mlTernaW1cgD90TtWQ+fjESbul4I3I2ulIUAWBuPtWt1ldxNmYHfLfHSl6T4QKxhkQBTOOu7zyEoWBFcCrY1L8NFw4ukA3be9MAT7++B2XOS2e8Y+DmZ4+04oM29I72RuDWDo2OWxAddZ7ZLpy4AbJZg7bpwlYl0R6QlvGk0yOzXndyFxao4qjPj5RywOX5cAnJvVwjlMdDBKghqyTazyEsi847I9W1zxCRUExrRPHJuJMKCdSrIqEknSx9hIFiVycVX+QsVT8IJi4Q93J40GrmxiZ79lzZ8WzUafAuS6qL9zIRl7mlAS2PqgQB4SSnPCAIw70KdNZW+PWXF07WbioxT1Fj7OgVYVgCYRr78t/DnZsMWMtPfZf6w/eG9J99wwAjkevX3HcebvAlHuAdv0AfKCHgfOj8AIR/UslIWZvRDoxikjZYNSIuLmWvXdOHfgc/8N5rXhUt7E2F7pH+uDEYcGyZI/EJ6FC8F1umu9K3NlSmADCP8k1Z89LG71GNAu6XO+0LdPXVpoQvcpRbuhgI2HlOMe1e5iWyfeSv22GzFjNY2yOD9oeDfYELGMxjCCgbZYteUe5FBb5O8GjQSQseZev7e41kMcSEBXuMz0kuF2NTu5GnBUwFh/ICh2KoAPEdl3NypJ5PUWFUn16P4IPU+o2RISGQxbKUA/GaelvbJFPpJnDs7HP80J3Uh8DO63OrPkugdmPAqeCySi92bnjeHI37cfM2lU33YD8A1rG0nNYaXcZ0L2c+S63aFhbVXuRlZelHo3rEaidMkfOX4pBcSgPmqoxkYpLfwmVcht2LDLCn/CPHAHRHptllBamI+rA4rErVZ+BgEM2/tJixh0/VFbXs4SMXyZNeExOW/oaM4GQFiwBHT7rw/byJ4wctNaCe2ZjPCg1g8PpOV5Q/vfA16IfTfNUWiLvDWmPpniaHVfI0BGvA1T+JJS5AsGfd97xzSMkNiR5JOCPOAKAb66I6vtNzILbw+N5i8j3tXLGOJY1lehcVb6UFf6Z9sBJcsAbBTH+8i3IE6b8xL3Z2G4DP95LMAb8gIiX+L1zvV31Cwj6sqIgv0jM4qEmU4Pwc+ANeZ6xXVsMnR+Zk4MWYWbTgYmIOtyV39ylo0s0Z+nZSkD5+ijriJyKPx+oD1TCRKYHtmbNZEWrAK5wuqNLVYJLT7CftS6AnZDlo2qgDIZK6urUoMIalXvJYbHWXkpnFUwHfJZRiTBkLrXPPtW4khocXUHy3Ebidf4WMkZzxJx4mdpTV72VFbMYTPGelTONhZ2HpbyTSFfoybYOsRw4rr7ugAQAS5FPY8u5hlgZlKHgSC3+qLKj0mVsHoRFQZLz2H0bap5A+nd6pXCDUIEnWCvix8Lr3DuaRav0DBMMcM7yFB1cqcXEP7ZDPHG44mmBFVa4OaIGQED6J2jDQLwOUXi5t91Hwr7D864YCuVZfTPgiFV2uDjUeLwrezihi2LG/xKJ+0KRGu1ncgjD4X7BTJRkr6jtM9Do7Dq6Xaga3bj2pz0guda2qC0OPsVP/EMS6ug3dWlFvV0yiofwF4/Oufm9kTqvxAIlRUFiewYPsoy9gJJES/IsGTIAX3YxQVtwOj194DAvn70lAvYRgvQ8xKfBw8Z731H6LTzEx7BwUvpy/rejMBQBoxAuQ7AgV7aZx/y5p5Gs99iidaUPj/XdKsTYoCpZmLe08RcVKx8SFNd7G/lSqt378+NngYNqYBY5c9JvY5otSuUWtD2qfjAdmFchpG1And68RnzM5kZa2cNUhfCwymgwRNcc7BM80Tr4eiMkxYOcJ1tnOIg40k/wzQXf9fGIOLdJB7058xi3PzVlkNmPMCe1hWknBIdWm+iPct4Hlkj2tuX4u9YDSswqcyH0T/8Fii+PjccwKtUe7Utp/hWGaL+8nB+JAKzfVLYRU48RbZPt3hGqg+wiSuS9YWt0jKbHMogkFGwdjholERDhDi3oc40U7p46CNOBd5j9WiRlmi7LNjdVrHCEHCpsX5kZh9s0Qjcd/seVlNaM49kDXD7Jjc8thJ61TQuFgw/ELFA5Vokr3vNou36R5fhDdjHJ26wj1uEkVsCMU2SU2NrF9+stZjrNxHJTJMXSoETpthUalbh6bIWtsm003aZcskhg0TwVHAr55hXD4zUQpZ3jmBxzDHJjeB4ZoXPO8LKw1VPg4wgkRp0hc4lGNbluRmuKcwQEe23EtpzQS9UC8XsSyGbUJd7H4s2z7FIN5X1GwNiJ3NWZAGGl/4CBuQu2od/P5u8KyCVj6isjyBH3ypg5ctQNxlNV0MLu7yULdknn1a6WC9F8go28+PXV1y7ZnM+GX4eWTelBksWzbFFQh93KG6+PRXeUEMi81I1fAvB0/cpZkrvw3QRoECxdRje0ZoL9Enp3afYj9jyRj4DN6Svts1SnO71vibDFIYotCAWDlyG8pSmi6BJS5Alvc1qcpGIOhSfFtfBQiRWesTHGEoU25Wl6PKTAh5Yqeqjou7yqu14jPVKpqYT6ado9It0iu2TbRVTQ9ktG4mYmvGxvoGqUcMH70uhgosaPel4LHALKWpnvIVzvXIDWXq2nleCYbxX76yyxInu+f7afESq7zmk8fPuEBubMcDj7P1tb/MVOzw4GdrFdcndtcR2iaWbXOA/28dmvuUyUTUOE4J5BxN7Pnt9YQsD/amxRAbwaAjuTGyXLApK/wdBjPX7oNxX87tE1mnu9TN+xXFLyILFo4wqohujbUz5ansGFaCF8XEh9z9ku9h6aBME5R4JVMBpj/x/QAxzcvhUrnxV7ZkERjAXnNuczOIRREAFzEMm7ENn9CNlDKvBL55i/JWBwtQ2xapBlDhKd5QyazZfTtgZ0VmSLMeceOhu02thG5nfTitXfL5M55/N5TrIhxunpyZuNozp6R1c9rZcTlf8CxMifkUbK1Iz54STfpE5JrOivcTCH7CVA8BTC/nSGSKSl/veGvV9OIsvMfhqVIG6sy/LuQjT0VT7oZMknBqV6u6fIKavivSoWggKm9eZExrxipXGlSmN9ghwdJfp98dhahWck3BQdPTyu63JWRgxlrW/lYM/r0aCuqcxeSJhzC/FGlKjwySuaskfD+0RS5RvI843rUpli3Jf1QhBVa/1Nn6uUXDt8hUp/28xIS00PHFaB+OG6HoRvi7Q68PaGI3SteRz7KxKxp3hnVITYh9/0RZseRDBBaMQRsiVYMkd/yFe+p8NhApQYmhe9enSoeGaraUxKB8LZjjlfUQOJK9no6zwIOs/ZKVnTx+VORTH6z2Lv3+VhbFAyOTgLxrecaDGrEj29GZq/BlLAhch6kUgketjRWIyN1nkTh0xYgN6QoS90JSF0/q7mVDm5a/y8i/tP3weH6W4VmXkS/iqMBgABRqvqNQIdU/B84fsISXiIt+TGtn5/KPw3oq/hvkjdh2x9tO34/lOdJWBjgcK4OMQCzS6eqtw8yHnnZHcE3JC043GLJH9imRgjFvqBNa+KbFNV71g5CEgGlBk++MBgiOOlr2kQVQuz/6Y3KePi728yPqafsiLJoVyRa+JUQKpnRV7wPUgxlXF/75kRzNTTbENbJsr9KoenuRraFAnvoyVv2DjhyXj0gSljfXZ8huItHAP0DYTgzEVp6EDyhaWFDmqdLZ0FexVx9JmGepMLmzKmDVPzMgxm6NIXc0j+zdRocnNu71i9WRZkOBzHKesWreAno60PP7Qruiqk63ygj8A+QRLW/oKK+XRc+vKCRJE6jEMPADR2kEmtnPBYGx5r1Q9491NE9Scmfo87H5eAgmkZmtrT4qR47hZJGc/i+We6hk3c9oEJDvLfy8zNP1tnF6p8QdHxq6aRBeSdYY4kpsaD6BPB8MGhyjuXylYrtH6hXRiLEcmzCgx2TmY5nXtaL6dYlMKy5/037UvNDbNOitTVg+LgTe74FMqGSrpozZskme33lVU7C/FFZbVWnRrvsa3UyQS95oZu4ABqaUiRWvV5zbqjUUaFsG+hX2FRAhLvyIjcyArEapvXRe9JFF+WI/qn8zutpEB+yH9yizIRjIJYVFqkbP+7nV4DK3rcdNBO18rWsniDRaAXE7eD8FPC8hBtZym5q52KBztzcdtVVCQLTw0AnGIbOdJmYe6W4oeTnHK0I50+Z2E1L/s4W/2W3Rle55jatNlicUrudgW8ifhGRzsFdVI3xhCBe/Z6manus5KBjLRiCJ/ls117Z7sLf1AL31bl6cAs2qDnet17Vp1tWca4jGqWarv2OpsU7t9C5tDweLfxvYnse8BEPOEtKrURsk9CgGx4Zg7a9XQtdYjEY7yNzPD94p6doQCJp0NwWgW6gdSwF8yB41gowLmHqrmjndfKdVnskwO2IC+3W96lQoz6YAbAGFbITkj3iIa3Mwc77RzBdcYYDrmu+lAOiIkehnX/BeQiM26WxXksyVGxGOirnkBQjW+iEEuDL3FGoRWfKJppVkTmWwFWGtzsqR2oAJA3vCbpfstWp4DEW6UZWn0LK6/o5GUwjD3P/3BpBYFB+BmdRA80azHW3bCXqxCjao/h+k/PdMwZ4/KOkPMJdlur51lKdxdecmyMrf25ZfaMUOKoLcAbs1682Tm7FwvcvCazCFGY9U+wRIHJmNa9A3GFwJejuRrORFheIxgOIhvT2Fd5MYfrMYmC0LXE8eoqceGevagZYVBy3kc25f1tddvkvR7Pv4aClWvd8zAz44AZ/IicDI8zF6AmaCE3Cwtc4EU8QaPrOlIZaOBK9p3J0yWbdUiv4wgOAzZyrHDqQ83M3NEWb9e5kWpgx5xAWnZkWlEnxLAH1W5G0bnHqNWTyBKH5Ee2VxYOLmlfwZ5TbZY3XaeePuSG9XCha7mAgstP6oHskR143A3h4RnNGIa7qKDZ02XRn1xhYbFEk91W3gpJ/J8NRuJtyMF8N8gdAeINAERJ4yUUL5XhOoHIqOqwAsJiYQ86Ae66cggK5DDcnOsgqGh8UXjfcVKvWFNkIWW7e2dZtWcxLDGxvWR1i8VbzaSqVtPBgGGgy5HRopfDsVKSfa2t+qmMfsPVfoqooTb0/S2mhYw3ZR5YARUrprEk+hnWchoKJGq4AT2tcnHYitp+/et61WCjfKynotUEEx3AKmkUA59JjjGiqOtXOMLE/gzmWUVufbTqficRLGKHSiHhGA3rmgJ8wCpXD3hsPptAP8U8NCELbu5CYtXHg9ar1mL6hvhI+BqEUArJmf76mLwJx7Bv3JWHArxYHjG3OrcnIbm8uG8ZO2w5yQnZayh3oVT966npXJe4UnWww8vYNtR9fU1716K7Pl8X05hxQXXxabloc0CUyOPYCGJ91LH0XhmPRE4GtH0rYiA9OSOhOLcpKA0DzcrM4ijBs0diNXdaz3EyBKO+pdnEb8HZR+rPRBe8zjHU+2uWMWrHVAIgOqz9GRxyWwwSRD+AtmK27/b8DBUkj2Tj+IhLX7DFeLo3fmqqH3RMe+5NQJf6A7PRwpax5KDRp58wM2Ds9PEMkeJ1Z4Hnr9NF1NbWzQH64hEN9HEyJacIJUtezjvWfoBkN38cB6kXeMRkE7r6U4+YRNLJVXHS/97lqiJ4rBU95yN3U7JvnFLAwWa7oEYbxzi4qvY0B0PHM8B6S+DKB9iARruFb94UrGWrUKnPtClgrUDF/GwwDeaMJCTV+W4DCi9xMsKWZZI/S5bhPBeP1ih7DQ3MyQ3Q5Rpx45TlpYP8D5QN1r+tLiKzIMiamxdm6i042RpyiXcq0FxvbeR7k/DmnmoAsT89eBAjL/8FJMCYW+iJ12Ph/VN/HzpV/q1ASrPKupe5LKimWjLfnhLmlariN+u6KytPi+i1+JRHJdLUPqmaE8MdD+by5sFgb3++IlG6mH4q+XcEj1HI383+EsKiOxQmgenLVPugGtW2ynAaUi2I3ziMTEISuY06tjoJ5wiwhrYXjTsmyOnJdjMNL+A6LddTqQK7nz4iV7tdf4Jrkf7QesW0UK8qjbexFvr2UMDCoYMvO5KvQqruyPOBaRW2wrpd5ozqpHmHgktY9YBQmlp0ZND6d6D1l/FfyV11lNYjPHcy7I30G3yUFkFdnIo9JBPF2hvsnFprlDYMDh/0xh+4ngu21nyR5nQuv25/HURL0HkyUjzd5kGxiFDb92Y2plAhyXa0tH8uB0YhI0muqSub5O4q/mXkn8xzUjEhw1mkHm5KbjJp8texFwOCPjE3Q9aUXyXyrImwxPgRpaxCE1fkpOZZBKw7hNlS2VkVVDYog33gWfAdIgRFqnV4eU2bo6AXNecyEPoTr4Oh9pXJ2AMolkvhEWb39fu0ljbwQPyupxpMO44yI6e2PXg+UK7bfnRzT0ZOxwpWRIK9eLiZ7wKhKabJlcJe1gP48Gz19ZwbS0xz9RvXqGY7OAlBQjOjhpBnXIJwupki2U0fk/0pXVPeWu5+PRXEvkXXWOMuohZQuZMht8QQK23V/kZ4+Y2pxbIKL4qpTumIfewJof5JVdXYcFk6tHthp2XvRi7+xXbsx3V4JqSwWcJUdK5Eepe+LZ1l1EGoHCr9Wi8sIsFSt6zkVyz7U5E9m/qSVFEkLnZTUYpwNkrhl5kijCkYpHvoMI4JvkAyfd6CBWHVVIzmjqej7RUkBeHlc6MPfbwB8gzJWZ2PgTcqY7JF36+EESXifsSWPdyhQspHzWLArWQQDGQunJ9chl84+2VXszUfA5HsfqFpMIK4k79jq+vvuWrrXM4glxW5OGV0OOudMrKsNl0B9IMLYR0yPLh9Uq23Irq3MY2uH1aop7oufYkksW640iyokjRC20j/fKxOoa160gvrYJlshHNg7Wt3gaf1sto6sUpwRrCdv9aFXfTD4L+cuku/d/pAvQTLrIooN7F/kH+GRExgO/lliBH+FjSfLtJYOa9N9RcJJSTcxNH/9/GQ46T2Ir1LKzTpkHVUG6C6j6AAbSHwOuADDnDV+cZC21MIrGUC1a27OmXM5Ut0+Brx0HlX7E0Q3UKr6n6oQnar637gaMOOsbg5AbNVa+1IPu6AopkovI/Rbh6JR0AqsoAJD8yal0lM74+cxj8MYK6rGucUVoxsL7HI2vsarjcFdooO43kRfTK7mXyKu+aTv85XDTMu68ovoOthSOzujkOxJDQixRZ1dx7ppFHD2dq3rSnr3OT41PfCWDQwH0nxLMfUNy2cJwCZjN55b1Vs6gwck8jEj7e3H7Fkozbjr41lekgeIXJsYyJ94qFg0PY1cAul3eZOKAGF0asJwaERRlQi0ec/wBFe1Elu7XViEgs8gKNhn7Dthdeedb1BJDriJuND3q5zr6ZVJBcvDbRd4rWPbMFsSi3GYjIxTrz4AWjg/X2w2a9HNrAw1wDH02udq+HRtde9sHk4ZSGpEEEQ5nE5kwrsh9/Qs8Ucd7/yzzAe8Dt6Ka7HIaBzmJZuxn07zVk09qLd/bER8JQVZW6Gr/aToEQ7sveEIgA26r1xcUbt8D8eexrO/DF7YmxxwMtf9tlFb3aEBQT/BjxbQyot01HyhjOyQY0uIO3eAmKcpXk/ULJeTh5Abcf0d/axRMi39amgnz0rhBnC8xY69oNk3JF4sAe7p7vgK+VHJSuImnMR08Xc8kFnWjrGGHscORUawa6eryNAaajG/Xvsl5iR9WM/vPTkxzLiC8otkioMdjVrLAFM6Ot/9bNvvIk8Bm1StnXDgSeqhdsyBWwWXopAR6JU65WdLnnvm8d9x10R+ZIJQTStsnXqo3/tV7DMVY5EXFmLcb+EKrFHVPaVXGUe5UugEiZVK/enpTkXSLuog4E4VUqpAOJEjpbVWKPoltLJnEvyxHfGGZDxN1hVUcqCHhCYn49TXvcIYl9BIFAu3e8jpAiAa7/laKfmyznnOvgPykcOv7ZnVzcStk9eMHK2vXBvpWEWswcq/8LT97LPtULjFbZ0bo1fSZSnBa7g+sibILFr+qBp56fmRpUuQCtesXRoB3br+/TqFUcy0GHr9+tOqenZUMichBRr+axRTG6nXwvbaj7UseDi75g77V9jNdynYG8S50372qKhuXMkcrSvTzJFCC4kwQV3YqlHaEZOynB6hsQsLelrHjy3h2XtLXCENaX9FpAtZDvPMtEen9eTIi3GWCIbYxl8BqWUhyM/TYN6T5sPdtrAu24bm06kk2mzUCgksTWXk8AoZRJUBgNCAqswXMRbftT28UkLUElFZx+MMlFRCpUoCDQqF3gqEl8T5u1yYfjBaKzYlrs3IYQXMJaRnmm/NL8BoOlswo/09Vxv7zsF6H2MnyxX3pmhIFWDDv1zpiV83OrhL9uYRsBdc4C77UjG8KlEXKcQYR1AdMB3l/k97ifTfdeiQHyHcHhOL+TZZivZUUypZbl+HJ5Aau6pceFGbjrKB2gLr4rnpJ6dlYqbpByCoxxY/oP3AKB5IyQEqvRAfBKmFmWECAPX9ox6o4stNHJsIgJlRRoIxHVvBt09zDeOyxjtGyvtu6s99lVn9bWxLrmG+uEr7FGeY5WtUbJrIMwegk8CpOvIUNQMJ750CGYlv1J7UkuxqspfVgvqpdhG/jv+OhuaBnDnub/eaMCGrnSh1VeL95MqACwfpdg2MsGmqQcGdS0aJRJMMViVeFNdjABUonFV/KF3xQvKsPuT8ddAn8rwV9uuVD6z56tWOejs3Ns2VYKwBK0G/YeVYD2qMUeRXvKUrr69m/Omr1BaaH6En+7lxzsl+IQtE+/PyQGqcz62VQiWAjrXGFaAMbP+4yNuwWuKkIgZ1qHlVLmWuoCLG+oj7RW/pJz6ER2+u+Jk6M02PM4qSiE/5qvl0HrKkuW01SY6MyB0S0zdn/8JB6//EBeNLVY30Tp4vO0TYrFSUTosG7saZxdPq7bHrH7fkZrzvvFmuNzoR0A11RkBa43ft18YHuEHUYCkoVuF8fRZbqHrp/YKXwsj9d86vs4TAVooc0DxHvGst43kye8dJLZ6pi9h4tLRUeQ2JQO6evBfsUfqEfmW7Z3lMqlqyRy/kiVorWDt6L7u+8qhMuVYI+SdWP4s4Pw5L39jLcMpYvX76baVoT8Ra6cUnSvveJz/0+lQNr5k9UyfJvY3Xg/xSnb7DR0M3Fp61i072EL2CkFqNNJACwjpV+W+98h1iSazWg3bhqh+3u8wVZyF7s13MCYBCWPLb+vad7q/AwSryBNy6m8FM9fmxNnbbzqBE0Cz3seYc/qwAo0BQc1OxoAMP4wAV/ZItRe/Xm9v2E/grimB+TzubU1uqMLSia9GU9VmrBtzYI3iwlohOlAt1MC8Eue0fJFAbvfv9B89Yf4fIIARVVF290ANRiiD5xDi4AIhJJdUe7ahjNANy8gIJ02xB7UBpjhZu8M7pjNDZ8I723t0THFIfm2TNr6Pwvmpy6Bpp4qOqwxBK5TuMQ0Rr+H7BntZzc4N46+femn4kDj+RP+FehU4kbTk/xSSnnPweENJw5VrKwSiemfLcwpyAiDcJo3d28NaGtri5SfBSr15qxHREqDix3q4jo9ljDlWelkQ84dRiE0IjIHo9AwE28GGjq2ZOBS4Ur0zJWA0hWmDg0b2y41OEdXzrXdrONbqxMb99Cy9z9XJ2+TkuQZXYqL21u3PywwkjewCNOxTudGvxGxOVvgPVXXtBNcDh0SonccEJolYUeFictr9zDytr14KDBqAaI59EGQWatuPvLaJ1i01pNb51uDBsVa715cecRFsO4wdRL/a4OnOcMkYgwS5Qja9EGJd5GWvyzyUAJeorLq2RJyuZjOjr5Zl0YKrHuJWKmmgXyzmGQ9Cscwq+q8r7livpgE1MAmC10gugLk9vn7NJCyH7wu+eSDp3BkQPeqqiH5QfiU3O08wPHn0HTReImr/YUgNtrDT4j2ydY0ppNzfDAdW7gjkKOXoBdPlODFOP0yyDW9v/lX3iLBn7fGe6LaPpVxOdin62rpXlmYvMYZlSzDw2+o+xPoi4elEzPMQADMAH27zS0f8HMZdOTi/hj5EZemhdtEZ3rPtdyEGhxApu89k6o1zgTSsh0lmGZBYrK/LyR37RmsQEOThcYhrRsw8wYhL3xqTEpMp5hQ2rVHcaCTJ0b7mmHa3wHbedHtsrEHfg9B1IaTxpsPTaKc2+xrKJv+C+3QP5nnFE2o5v4sBjFhDQcwBDuOzKY17vOkQejZSsW42oPl6yzIjZviwaQMDIZUQxXvTI1aWCIUi4DaEjA/9i6ylgEGeVA1xtz3yQa87a8BwWCVMBZHaR7vFvxPTF4XXIvem06Pts5lfGfpC9VxuJmMcJp9Jb41CFPmorn+vqqvHqR1uoYcdwb4AhRYXB5p6kxYTpmF4nNaUIzq/FJeUDtzoqALQ4dCpaelq+UovOPluRhfmlceBmw2jP6YS2d52+vbsisUG+kvbzXJl4HUC/VHqyefFIM+0GM+ETMj/98TKxxYa+AL2j91vpFF352F1hImKqE2fMSuOSuqN9TPZmr6O5+LzWlLxu/fJ+CjBwbkmA44ESEr0AAQ3F1nc91HlmcpHUpXqHi8x7UHqfIWPry5VbiArVTJiq31NMK9T53QsF7u7W1eqsvwDxqV/yf2MpF99GM1Vaj0Ie2pPFBviU5sj+3EgDqfqmLBDNFWDhRWbPKJ3D7BDYQT5f7TDE/8fGjIuVUp+iteCDs0KbDwNF+k+hvSbLPE7J9PXaeFCTMdez7+rDa0oul8mTixY6xQCGPQVTyC5mUOMc6+4FQHQ/MPzZmCombDK4oQYSm3+shZLlHG1/hvip5iEbfSpf8VBF9HChZOEV1sXJA+15Lz0NJeIwma6F2+kuIKxwxbaJOpzgfkykk/tX8UVQhIJC8B5xqG3wAqhlrgV0THQATykUSa8hRa1+kdoxedS8Rxeg4aQfFhcQJx2dzfeY3QOsLsUsZBrjX7h3vJJ21kvjXAfX4l7tTu5NbL4KlbAXJr8Pqq7N6BtSO7gIiHl12jzDe8h6m0Gw0dqzfePiAY2WEVDbxAv4bYUP09oLkOwmNQGq6toY2xyPbijdXWv8PafQ1iaJzsJD1htLpJUAjx4YaB/u0UDC9/go5Ogzc4GEuPtjTd/nGge+p0ZxnE031rmBI/92fHtqnAb3EUS0jpptYtkQhf0Xm42FzOy8afjvO4Em8NAwGMWnQCO6ucMibCD9RlBjYUjOrVQoR48+gW/NYg4qHHeSNmMbT9vLCVpmXvLe96lCglRWmvNRVGOnzcWkv6uf18fW0/JtrVJfEU5M8tG+2gBl89d5I9SUeECU1MMpgsYz9AdlhvL0gwhC60eMfbEnjYi5zzZ28jzZmFORxrCepLNitrqa0V0+wPZysBkk7mRikyBr6iCl6SnUqqWlkIXwg4vRRxWZzTS78zHvvNJO/ZnFAYI2wWmHVjTfRoKTQfc2hQTMZfkfs3zYdwNtpqrztVw7ZkEbCvF0v8YGz1D6BSIq9KQ3S8YjCeImxUr5JPoMQrhky721stw9eyKeSrBEbQNfMwOLntyaT+7me3n/mGHX+CM2gQZCeInyFTwvWLbvhBmPWO2QQduqakz5haIX3K91Ab0yKgoThsWslKP6hYVG2FugENxjNWiYORtbhYdQxoer9GHvONYutPMxu5l0qU1SWHdx+gzX9VsQsgnXJKomlTPPouiyazVl3uk7pSQBWZFO0iP87SpOeZOjz1fEzYsOJ8xFR9Gt323bi7hBmMBcmYaEojC3dOVNCE7psi3ofiOn3eViPP3GIaTvY02EkmHWYG/IqQxpWrzwaiob87QwbVc6FcmbrkFhwh6gJz5I1ftpria9dDV1qaX8CqG6ztsmc5cmpQspkQ1lE8KrHkvey7FZBH2kBLWHVg/c4qLV1YcYFPSwzHA+d66pvuAyiIsbq50hLfNQxLXaLcd4XuJ6NUyLKkhNFbHYVX876++db1Ofbe+Qmp2HpTzowCVWt16ULagiR0Et0wEBQSGLJ+A2wVJaowVA87479Lv/AZcWYdJwdtyYAK20r6QdjH3G/sXIKuD7KPw6EYpOuXAQK6cdr9D51FB/VJQL+ED9Pyw+Wdzyi+9Pun3FQ28VGU00BAqCI6s0PTvrGFSSnUeBhUv8+NeyE5zcFJISlgfcad1RNTCMR2XkIQREv3eK1wl0h/AGvNsEMREzX7ZYQjJG3KehSigG01Y2lAW5yKUKuGLhqQp7dzNKC+0QwxYOcGvzzbXwcEqU0bdI45Uh8qk6EhqspBy2tOZa//eEY9WTeduQYBLXnTY/twhP1ZvIJLqCS96o3UoJzH1THXvHMIgL44aLTJyAmV2Ymrm8sQ2eHvr/YApj1wxwftO4v5DGGeOExvKDHhlEfHKS5QtHwPZHblD8ErR74z/uptOQ4aNC7GyB5VdBcLn3ba1LKri8OyGnmXFzmw5XRbh6DLQox+2Jc6JW9FU80T4gk/QMvLixJourBGZBH4FcqMviULoPfmw2MpFnXzGlikNUqcsbyw7Hl8byOBbPYkB7DiFWGge/s0i8Zsh38EEiA9CurTpWhAinPb+DuZ/1TZin4G3S2Yo2uagS2cOvsGmvla4s7bQYzX8TGMHtdszPCGVyq0czwBibA6XSO3dyAiyr4Iyyi6SmSzl0N94ecn8patLaesDIKY22PzN1tIl6ImQfcpc1G3UArM8B/N+WPFdubjtzyjJ+pZC2UntB3SQJ/IhW0owaOUphK3M1gH2UoG53NotdHek0EqINKOgWEJkdTtYybHn414fCD+b7C1V2hoLY8EikCuHtgORWUB+gOTfSyRJSsvamUi4PbAPIIyOYB7LuksuSf76vGocHAN7uqseM8DrvZcbD/JYWvHOcqbJzBc98pmW4X3WS/N6E6W7vyfCJZZD/btA+oKZAys25nIq/RdLoGE2cDasjlqaKEZa/WVopuk/JqRLlGPCxJ7R55Q3mZ4OT2quufJ5YKguaeEbIXodSza0p+fEc0C17DJkdMy3ib/VgfkzA6sqlfhSekf8lcznzUGlrJnp260pCPCnH3eN6ds/FhZPvL6kg8kH65LqvllkELqNeL4qhE5QOvbdHWoDaMGSqLlvWEifuye8o7x+2yJar/beu/M9d0iWD01PEFhH06OfU4wqbbu2tUUv2Nks7NgaSQ/zNk4MoTV+jjIBj+GKHu1xebr2nep+eH97AeIUd/e37nrpPUFyIGYvdqDF3dsLSG3eKqJ5mrWJhRjZB3huj18sYGTd24aCEhbrskEX2Ymf2JXjdymN24TQ/ZuZ8f0Sdt+Thf8Dl0Mxf3pDgNKI98YG5T57JhK+n1NtJgQXxJggfKsU+lqqvIaGoF4SytgNin7fZoo3NlZi9vcHOz16Fov70rBQBFMpwx9PFgsObb8cJr3a/oXtyp0kg7rAYKBusSPUqnKWx/cTAPwtFQJDawBdRVsjIbG/Db5UidZeYzqLHfQ5DvoMRFKvvJYHGom03eX2+3XK8gYYZ/cTmxjFNYQ0rel5jWTKx5b+obiJIGuyxgcgcyA/4sFSSP62yoVvcdXD36/Oha+ywDtVGxz081ZEk0Q8fWG4adJ/j3Bj+AqS9njGV8Sb2iulmk57UCArefpG6S4uRW5LKM9ngfGHhRQq/nFoxheOfExd6lZtCH0I0UbdkSUpnHjPZo01/6aQLQ3M4KWm1kkz6OKDSr3UY0mMDki2HOdsTRBsrAe9EGQLc3IPEx5zqL8v4lou+uzohtwjjjMm4UYPn1u73gvFUByz6wr5NCZMW7+3GCRVxgKEHn3Z9qUnpZM+sYzQ982kwuWFotAEeNvZN7LV8qtYRyqn608ZJjijcCTxBwh0lxxlsdvR+qng0pNayWZvYXOmVS8mkNfkh6R6W3MOnpHrMx2/snmk19D272fU8UHRF4lG9QS12MEfuIIzlEd1e5QJ49LJUqaPs/k31WXrUXftAvZRm76mpOtbcjC0t4ngCCrS9cnNbrRlolCs97RGhoXwiBID88SaUonljzEv22h6m/yRSB/sAN1jddA3PdE0s5g/WOo2RjW7ZYupAdQqN0XjOqhjXVHGodFcdrDkL8V+NiC3iLC7Jn58EZMb0KCXL8iiSRu+B9gndWCFOFhXmjRzebzQa0GUBFY6aP/rfoWBA1QPHHlfQ8Q6vGZKMSp8FdrM8IL8oHxLoYrjw4xA2M8R/SmCSXhJPZ3WNF4SvPcdA9/48ADGN0fj57sKxGTm34Ke//xcTTFYrGl6m413moPJKKzSb8ie5DE06EdLsjCnRysOovAvMjydocQASe2yh3YMflP06mePVq4BHpm/zHb8Ep1+4paQ39wfgQirf6naGB8atxkvedejytqXaMKWpo15dkElVYWvBMstvvW/JdUP9cu2aRJfr/eUwr1CKtuhxHF/kFfQl5B+T9WJH4H613jn8sZQRkuRZfuZz3mfUm25vv5m3+HKyRe1/MTkuds8i8fzUjNpehEK0QjIUyif+zo/NVxdQ3/qtSrivviAYIU+SVc5hJMXAP2/4yCHQC5KzhBRsdhwK15ROKi0Cdebne8Ku9ggkWXWeV+9gbyn7FCSIdX1O0OVcCwAGw3TZSEPTqmPHy0manQG4S+Ujn2PXjq55H28KolzG4qJ5g1h59Flolc2UjvEe5cmXJOiuUZiUHsLE1jm2t1iW/c9P0kliMGmWp7aJxt9LgNPKpwb3SY1uw5WuxbHnAgVcpGZ2gpa1ZPqECh8HrRYHiBC99lV+lBQqfGhIOZnbNR/u5Z6IS0hm3vZ5+DZGiMyZ005tNWFGD9qFWhf+vrbzznyAdN63eTlEeOxdPj5gUuCkVNTOz76N1lyq+jYt5RDX9YppH++I3P+Uj+ppimS84t5DLWC3SxmoNOALEnJapxpzAwVrfALFZwMlShjK8RRsFr9A8Tu1j58vtOxDFUx2v8es9H7TLe9K8/DvgnBgMXVKnqYrDIRbKVCWC72GQybNa2soVCWZuOOID2V4HdVuzwyvunKVQwYdu4vc2Ul1ZquSREORiI6ZYvths4XtCsXAbxxKiJ4CH5kOaKEtU1y1GWEHLRBYqaIBiulP/ddEPEL6MDW6VlyXOQY8/xMk9TkozdbLq5AqMEN1l0F6M16wLZCDlxknE1dhfBHdF1Ppp6Coj293FzIvwEH/k8bxRRvZQRW+mgprI2IUyhPqDevQ7pIy+IEGRkS4heycFHutSdcJXDzBxfsvx/ZjiF3ED0iDa7HFlRI1gHt6ry1TrLoCsWcyK1oFzEIKj9Z1QxB6ieTjqPA5wmuLa1+2fYkFafj0+ou2/qgwudnE9UrCNFHysrr3bpBRezWZxe99N30txwdJhfBuAsIjwp4QFpt93mee7Q10raghPgIXe6oQnQfPLqucVVhAJwbgJ/7xvFLlblI3yOQ+uAE6DucAhNFZ8k1xBncz64hwzABJeKzRU4aAvGC841mBnNudnppu8MMPGqLUzWEyeGtU2j6Rcm+7utzJ7tRjeu4P6J0rlATQE2zKVpm10EOTumD0+1vBrmzdjsZ/l0kfUvsu7dsqSW8UoE5U+YNtAJItly0BWbzKa+yYblT3OFLkP3BmsUED4CWjU0C52DkF5hvNGPuEVi4RUthbHA/efCod1Fp+sYefHAKnZIBFcFDcIfn4lm57vor6avSpScGEz6zpbd2vL53N+mp4m05AJI+f7Vsk0El2p2zFNzaD8Itu/WpGhs+blNpxpmy2eYimDFYR75hohL5zLD8lwBH5X7poRnWm77noHwPPAHWTWhKj+YMJmKetPvVOPiOHGq7lcRsszRqQ+5+tbihxG9MBlmkydNectV/YgsQL1c0wSASWBZi9jruv130Xq1YSuMbGkvdjxt34zw7P8+ZaVApX3xho6HXR86yUlslsT2lKV1kiSuUZk0XWE5HLTyr1mllDNBpXiGeLzjAU+Lv+daL/GG8SYKi/7/y/Mm6DRDXLKIzIajZ4pbrVAKNPmm++BpOXPXGKsiLtqmFp71IoI/w4UEZ1vm2/HhFW45PwDk/yU8V9ygUZ+4DytWyhcOeIybUDZwEPuktnjiqTuKNrGYjY8fL3P/A8kwScbSNlJmclEECXhilWT/EHHEjL1rYMMVVNy+q78giTG1LZ9ZDFEHUVQU4pN/Y/8zgUk0FVUgC0D4dbBQ62/pQz60f/75EyubrNI4I4eclfufdb7gAMsDDx8+KCMil7TmpTm4hMlUJ1SRzRGCOPF4hwHp7lOBbQG8904nYSVWE4WlSOHEW3vH2+4/hd3ACekOn1Ep2CX4D/KXPWxWy/HLZiMsTRVSqdkA8auj0hr9c2+DlsMocsdH7Tfa5xuR9lns58qUkhMQM9iRJJa704os3c9PeN/AsadpGXP24mYK3Y9XBHFmciAv8OjO/3jxZ0dMq6ldN0EmYAqp1y2qMgm8MA8ZrCRVUjDAucw0MMeUpwmQ9PJbWYHrxHrLy1L9yHuPIit0efxUvoVYAZXpLPJd7HUK5DARljMMqyZZ61JQHvHLM+0gAw027kQO6pRrjW4DWXsDpPDpN/B8k0aH4l+ukTL0kbl5aXYPwZVpabqJw82MZhUKfrDeRnlscW1ZIzvuX/l65sAtc2r28MP2bu2Z2VloTyViU4NqF0kge5W8ATMhDhPBKguQ9P9yJ1TAs2ve++0F2XoopFE8kaPgb9gQCrtuPL/sg+3jeLHQVbLnfy+ZKE0hloGc+jFuXsh72dm8Uvp6qZiwx+FrcjNRQd0o4u5kN3wSSzblhWeYj/PqNLR1QV/pylb/+qonFCO6D3E2Qz8Mlz265JUKbhqB4D/s9SDz8DqvFQThoped6FmrgtvzztA6z38sEmjAbBzp5XX96ZJ/TpjfBu+NIAX+3WbPaXY/Uj9sBCFsS3yLhH0tBJOG4uJg663kNl8+QUbwu+htr7EVJQLUSqIlCPneBcJtbH4bDWSurAKHnT2H2Cj/cmL0lbSPbIZ/hGTeHanHGFlpw4Ols+Foe466az78ZZbZEr0AN5H6I2lCaecHc+06jpGYo3Mqts4WnxDzDQysusqUWcxCvreqav+IPsCG4iav9hbKRR8YaRuQZ9xXJveRMWvp2mYkPixIIWBgRf4ifi54LzeDYE4Rvd2YAcFMGzE4MUsOVVINiyi7f42ArtgqANSktgV4tKIY1742pBjgK8n/DwYyrTJf9VCj48ay+oHaZBBER2MjjIaft5kJdz32uExJmHeqQlubRBxERoYlhvoYR2/SGUMH9w5PTI8NKhiZu/+T1jf6szq/9VLp1LCSb66ed2oMu90QW5pMy0pVdwcA6oYk7MFbi4yQTjrfihIOVJA32ufJEuX+Mg3liy8x0jv5dAVhaen6wnxYEQSCdnc0VUTKrNFRT9A2q0QJSZYawsUvydblICQulYM0jw01FAJSC4etm4uTjNYiJCZlVkwZRLfbpNydRzTubGhYT12LAZzJArAuBse/osXlHZLkzLyFup7l80mVDUaQuisL8xm1Cct2GQQyZ16ok0hBkYnyzDmsbiUGpFOJcNLF8iZEmU5h4gzEtZlR7GG7XiNujLqEjc4fLKuNZcDU8P/+SiEUikexnWjTWaUYoepRSMuMyscm3nOhd+smgq7nYG4lUeZuM8mSwlc0Swr1Wj9DBAWJSu0mSfPNkDjLpE5r7bY+rFbBcOuCfru01s8bwLTP04Q1t6w0zjVwznC7EChkoJfx5EBpGr6+zd5VtI2kHZDD149P4QPhlY9fwwT/Qhsoy/V5PP/O8+FlPmePkVz4ecfL1rgo+NIsqW+jvfgfx3WVqg88xvzXeW1x6N2SZKtOEg3PL6uGG2oomV5saMdY1wn308F9UUgieg+p3oPT5XdNx7LXMwBhi+kdBmoBIqspmThUR9cek0B0rNEyKICFxKFyMjrDht5qnmX7msVyruHFIMqywB0oIyk0nfwoF/RlPOnwuqIdb54VjLyOaODpyrAucNOB/hbcX+O4FiAuwXH91avew4xpQTw+wt+PMPY1iuKsD6mKOvvpScJ6PneeIL2foPFbUTFepGKfYTtjnfqXXMKsQKEMYdfIDjpBCELBWj863MOd7P2dglfKDT9I9W6H6eKhBiG17I4Iz2IAYw1X37qNmacLfqT4ke8YrmLu3AuxkvVXbamU+1NEDJUCTkIYGFjpXSUUNw185mUjWimddlVLDR+xPpNxzHCxcaXEL5PUC/o6rF3vR1FNQ5R6g2LiecnOMdGwiChC6THgbMHtCU8biTQSlZ3iRnFskyyZqLdlFEJVqOp5BVMoXYKiEsuYOHEFqnSjxNsuoPRRCDkVQ2dQi4EvOZZnS5e8Jqj5OW4aNAy8zEGVwX1+UPzooeSKviTUrK9w8ltlYlV3X10rINDUqDYC0ZvU4VISPmKc+MSiuXdLKWY0jmowEn5G2R9pgcTxjFdsDEUouesHEqIj1EpyY23wiVR6n51Ga0AUyGw0FeGUA7JowYGrjedbybEE60FH+20fBt0I1N3Qm0SW1RT/Be8zXT6yVLhs2K7IUdx4XKrfU6Hkv23gdwtNkik+VrcpAZG7v7wcUioAYPCgVoX0c7xxDPrLLEXZ/lrpAAuhfAPmI/+EROt6BJbwOu6QigDHD6dypWWU93GaOQLrr+hGr2zd8sZF0LPwRgLuBl253a4IJwGnOI7a2N/c/4aplZN5pVroP6kPfcnLghdO+AubnjGJoLIllacDlOFZ2M1Q2kEkfp7SWqRsj1yyZZt09a3z1HEouKVY6h2GpwarX0DQp/Xd8mnJtm/iCkXEc1kXxQ/E9n5e2oFewGaPNtkgqAvk4GMLS3G6hxinSTugzrohNAXKRgQvgZ25IMOkkbC17I0fapqx9fnyUUuRzBY0SbMRpbPVm+RjAjX88FKNEHTKUZEeMAPZWJRc07H27F72liV7gcEIU+rbwsfpSFTE7DkGgYdTwOZdzOxF9OLvqVSmiw6yMKKyUT9xEsntpPc+nhYSPRkmTjp9FEqq5n4yjyH8kpXWb1yipfcILLZQj7NIcfVgYyGZQoryiA2ht0DAUULLWLMaz4vdswXMr9CIgSUTyccOnHLozmarxCCfYJyZsuKVOinUkfFU6rGDU0/66IMtTK+Ywk6BQBMJGTP5+S8oUF7bSU+G1S/wHyRLT8TLw3fk+hjPscXtzq6kNSGbsTqYKd4v0y4TmChvAadCE2o4xHivtFRexRvJQLdWaJ/ExFRtg9DAlSzf8/yJyUULTM1JoxixexI1z+S0ADIeClkQnFQqZomFF091eUHajtHWrgZDQusnY+6gCDT9XLi/I6tZPdfFOcT6/hQ+oT/7iZs6jGcj8pslDUUav+2TrHNsgtfIv2kzsLCruJiNaeVsq3qt+hPu9tn6A8dJpRFBGyLMK3Slb9hKVzeO/+rmoPsOZTlSEfxrVp0EsdAoCl2t3wZlRsnxkzK2QZUXvULpc2GhXyWULAdJbG6fspI6tBPzDGFYwEO5f4znPi+qedidHvbVq9+DCVW0dhpFGDxmxOC/RIaZ4t7d+mTJkRZrvsoWrByJ3VtxPPQZEcXt3GOAKd4lIQcwxEaL0yuUwvYNS7Ckz0nI7zSg8QNd/HCYxsv7KUiGLLai3zPaQ+g3LyGfTxFVzdh1V6US3eQyRpJgQEs8vnN20EV6JHxoSz498smahB2SFSW3vZlAaS33FjqFsRdjIn9veoGEY3mGUqaLl51c3RWqzQ6khvXsVXAgHszYZNHqr6LB3CYZKipH+f3qEBq9zBQKwvJNQ60ipyo+KTB9MU9yVKVcHUyZzHgIcSDvYK+FLqxzzG4V0ZihTXMNct8rM4v5oORtKrRSFhvI8e5mQQzOkZvHiOkEJaKS7SisD2cKC4Jpc0jA+85Ii9onm54yFH0xq5USqH4NbaJk0mhxKoYI1BvZL4aQ18J1VJqnnbetJ3c+fzNjU1/SYID/ZiN+GoblJLvkTHYeMMfHSnb73SACvBn5c48656W6YcGASdZALDMfQ40NUKWWy8j7Axs2O6nOYu+JWCsv7v13rvAe7240r2yKCfhh1S0X8bvD2FH0rVOoy1ocUEA0BbPOVNLjAUYmhH7FiHjLk+26+BNLXRh4LcG28DxTcdGnBI4nAJGiqn/ZcGx+zVbTm8f3mFsPfE3irnjRoLRPOqjO9c/eQqles8Y0Ny3HeAW1b3rWSDeyiloSjt+aHgABhXYhdf0E/RwoUNZwQB4Cl0NV6reRsgH99T0IwTAGovAXOzCrj8lKIQZnsUcLDluZXvxs9msPRVqp6gBDBJuQbfN2HD6qOY8sNxmH9IiuzaeZwcRgSbnmQIOwCq05i5VrxLqeVzh+u5iL6koETwzWE6/1MpNqaDHCPa6wVKxnX8rbBDckcH/urgoX9PJMCainduGq/wuA0fFOMzGqZtkBwaEUfXGH144th4TbjBIJjeoNLrJX8lQeWS+m7Ea9bZzMv4VnWUWtxc7cEAP5ufFQSS0gk6o7zjET1GKITmteDwxyAI9P12dPQ3tPwwp/GPIo9JCIyAIvqD++dcW6YG6PoWGX4iT3ySUTn/kzpayjt2Ih1+CoGivRMAz2E1kz7+SJgJNsg0P812StTPPSxUK/xvSTHJhIwpUVtAQFKoYAHg1p+8VdF9FCBeyxwqB1lxpaQ46oQeLnoUNyRKp9r3nyKPacl0kkZH9FamVCoGfQq83yrUxm4QFZwb6eBG9W0twEmoPpJLaTnQWCI2ohgrdVOItn8kh2g9iunoBGgRy0Luw58ywK+Z8PQJS+kj7ZWb7hi11XL3oukHu2EjHnv6xMkfCGnomc6MB51cfO+BeXE9bRX25j2zFSNdGPRdghNakTOWf9HaY41fj3VwQ2N82Ywz7dV52xluDdD7ycHNpOc4GjymJGslpepjaCoKJHU9K/ol/BLtiNs8rcWfsTpucaCv7xpjRcMWPcGXOhrnmA9vFBoArYf2O+WxDlsh9CXCBbrASNQmLmBH5r80qqYgQ+OmqBbe52LOl7zrTrz6sW6yS0LvxJdR3VFjqXwjbBOzh6t4oaRf2DR9H+LffTK0xnoN5vYf8Gl8zCkwnokzHJed9axpDWkUPOX5IWb9jK9gGw1Gpev9wB0ZWafx4RUvjhqTp3oHeswbGEOOJe3RU2iKIvR4FGyr2wNf2oga82VhgSmkkPGGekAUK97hEHKYIzhG59l9vNMJ1OA7hfNRLKjEZtACJyHY3wpBAyxyULNxcVg3JCEa9rYt0Ic3vWE+hAIaW2bUTQsHJwNPimWiAioveqHDlQHIjTw8PsuUVVj5s2cCjQt7s4sLHH/KUHpwzcZU+Ge8i+fDqDtpNSIDeBiUGHQIMMYvFz+mJmpLMcZgkhU/Igir6eB/r6gZwLmwOrZj+L3suxPF+w/baMYXWi+ClCpHL/LT52BKg7Slw/HKa9W2drqGlb1FjP50yCyVhsBK4oB1wy+8plMfi3YcCI4fIYsPZqpdHEfC+Xt3kwWOana5nJ9IQac5S2l+9V9p58k0hQXQw0Vt5HaR/pFCltbecNW8fzNbGQhA6vVNKonbX+1wy4ec2V3WUhinowPa257N+hrIwmKAUldTM6KTxGLGPo2kskriQlFCtt2wApOhq8+ixaPANu7RiUV41blvzwI/WNBzQ4pCTI0TZvnNBI6VsO88+8OMvLdO4E1IhoYobfTBrf6jlOXlU6/ULkR+m4rT8RlAbQolaGte+k1bTRFKrMUrhQown9B1Qy4NIDsJEgHpwlIJyayEwFy01qDBcrtrhSUZJhCdEPFLDTPP+h3qoh72ca5vvmvB7ImevIu/cOQeofHWn1HOfUXnZfeVlYn24DecvfOlj8EjEPNzmbTmqar7KU7zdeosIUuNr5SaMpAKlw04H82vPBTknG6wM7KPIGy5foSxV0Lvdgp7UP+boBdlerdN/31JqSrU+WctFm67y+u5f/Oeo43FJ7aRMGWYXfvqCoegPioaQZLAtvCDxHNtkk2cnj9u0SyLLRRfe6p7nsJX+aiJ4mqw/NiH6Cpdjd7bglgZLFMBklPHnVD+1Q+5KnDuzgVhHoJpaPEg8azKRa5E1M27GBw+IMrLFohO8Al732FTsm/EaxQuOIaubWcewkccAZOPaYmlXPRTYvSFp/bZe/8d6PRWQ+Hc8U74SoLY6HwfJqLbmBCHkJ/mn4chy81Dj3wtyn6SKdtLI2YgGR6sinPtnPRMgIiLYjVhr+ARiXhBj7CFDFleMdg19fXHIb3Nbv3FkNR0RwqDJBYWuzIxiDBLqrW+RA7o5sN8j3zAh1HO3BeyZiUBwoYdchp36xGXfczxKY3GO1yy50ti8T6EAMSAm0+9219CtHWt+z3fKkMzd9NGZyKfpIccJvWq5wV3myx8ISijSbn2lxprqsnYIRc4KGxffaCsP40J3tgrYSJviBELnychI55/x80EBN+cn9gSa0USXu5nv7ad0m3T5g3ZKcqGJTutw65slZIj0MDFeikFUm4Rk93IS3NMd6K9q54CfODe9a8Pv9AYYHmBBjmIFcFFebz3ydoX71F/3Ow7NOvjIIXUgOdq4ZxzPvIZqT9LcxsT+YMpYT/CVvJabPpqq56O8Us3qyCfr2aGrFFdZKgvwlIKEPB4O6IhufcglSS/acxiybmwSlDx/12Q74XZvUXN+8cUdCKap+jGy4k2t3MHzlqLgObp3knDR7RfVfskMsOGZQW4X177H8k0yHt8ZzGAxfA8W8x9kG+FP+NGK3dlWsCWHjO6Oq0fwqVNVj3iDrSkOAS4wg1DAfk3ztr01MPrNuA5NcilsE5NKJPAh6NXuQNmDGdtMl9fSO9A1L/a0GUYmYQXuv2ztunpUd8resdQ9gniGdtn3cjF0koFUzstTQIZLVn66uh6Jp8Up9B4Q16I+26Rswgampi9KvVsoLBBpT0OqZzVHg12wvDTSJMDkjaYJladS8Pmq2DIqVClbgkQvJCwfII55Ie5xswBJUYcvzs1z/birf24IYpadMBSLTEjtSeqShXD2MMaO+lb2rPhEtCz7tvuaseP8OlRN0psigKVhE8ddDZ7Zbt+W3ccqfqtj5fc9rO/cf8mQEqiz0F4i/3dmjnnsUOi0AJcsUsqADeiSJ8RBMR/lxGbTcyeyvP1s5whXik+lAWq2pQsHAIE8sp5/EFEbONqhiQIXodHlRl2H0/sm9S7RTMST4hQjFAF4ArLi1E3B7eeM3pEfqzlX41Aqvf6Hz2msSKcR5hukMoS9guJTgG7slwpGNKRMoSjjwvoeeHMKk24peEvZ9E/Dx87xGpE4o5fK+b2VcIb1dGKrcmiX/yDogmUsq3rVhQWWcy6KqZeX/kw9LFwIDRahSYw+5/7z1JJfwNncFzzJaObkTnA+VNkblJY++Xq3AhWKfE9QVkIwYwwuCfD4mfKTzM9e1TSaVuXxAz7Z96tA/JehSCQzq6kjtPqrVC7uloHo2+JFCdjK7KIpX2KitFX+LoXeSWLpCGHHVb477I9oKnlJfHwKmNMwzNPCt9W/C0ve1Ng98kf1WEZkLZzLQMxaqIJobgDjdOr/uw/JzrRDy5EeMrjWA3npUbzMvtqMrZCs9klY8Mp9mp14bzvxPoU1YwI6SqPpe6W26mecB9dQMaOuTt1i9ktFybA3X+mPx43wlHn/inU7kKcjFSfCkDYwruMBiPyzRs6TZSoT+Ks5xoNIKqYsj/3Q94qunKgfyLLIQ8jDuEF+xqoPgfUJgl8d3PKZpHgiruirPFdoolCA2qfAesvJ4GqXL9EVvgfp5z3wM7NQzOuUNG4x4ZLJnIgp13hCjSnkEGBJUyVNLsi4opOd+fwS6V4Z0Khfu7D9VaVItw0aFv5lBfofbKd34kkZ/hssxV55DEMmfnQxaSehsiAioOrG/iwctlfdE39gZkIGr0wiHI3669kK2muz+Jfj8w5ef+g1OPZvtfr2YUyA34qo0vh6bCXZ6+mEVg4ArztUqxb+PoCd2dVk2tMRRXw3+hBwiN8GqHIxnwlAZC1A17YcPT/MKDfhoGg/Q2XcOrZGSjjPvamRBcgzOOlqMTetgY/3avtfJktTKxYh0R/k1TSXUmuyaoJdOR+GfarFMFqISjx9U/OjLVFiiQinUqUQBOKOIHIjOp4GcLGURaRkLxf3a1JFEuu/t6KNXxmgJwvfpUhcP4AJvTRQZcBOG4dRvLj159PlvlJ21XS/4UQuRFgXl5Jyf3Q9K/hbPhu7aEbWRj33tM+vFQWVg9VazJe5ksb1XB5Mvl41hGEzRltLQ4ULZiJDitMeiXdHxdQh8Np2aKfK32BKHPNZg20d7i8VQCb8TBYSskUW9SriLPaixMsixCevMNowQywj35Ov96ZPRudizaT/BTzG85Vr9wpY0dIraUSe1ea4xtXdeJ9DpL7rjYK/ySsKUNXyzmlb2TMAdtBNlICDYjKdR9FV5phsLwXbYt1HF7XwKCaQQqYfqSp4L/wIX2pkMAJ122N8anFfuBE8dpD7FGNRbocLtyZiUBtBCXpYjQT/khj9eYMy9CGHLM0g6H5zJINEoTCdDpcd11TBIlFFbidt3b0OngoFqq5sGSDqvybGDSidEJVJ68H9iGijcPLCpgs2iNkcFDy0sAuHTT/3ALljTouNedHTbGC6qPeyY0hLf5MDQB8PCARnbT5O0Y6eBQq24xRFdW1uI2Ed9YeWUme9LEQv9ChGAcrB09RZxvg54oxQOtL9AEeEkvGP2QhDDMx/o2nyUN8Bs05l4RH6dqVYbMXGux77hvyPiKDv/AmRBnka1PmR1FTdAAhEKVPiGRC5QW+E5mROaA/dSrgduDLg5Z3cF8p9oVwpPNZsSaTMDgWkKoDy7sHjbJ5ACmxUeieFr7+T+pFKr+eUtzDKw3N8tUDHc11W5qldVfu4hCkSdxa61mYYwgVhT3mqgTbVOQtdmAHqMKwflEP0q0Lhp7tFvsSHsG5CJjF0XsTHrnL0DQ3OJ96To0KGl8/XohaLLZKcvP/t2AO1fy/zHcITOQtKjK0PKovtlKBGfYePV0xzeBAkm6q1rbxStWnUxCN+KUTzL69/obNEnmOOM5oi4+wUUbFfddR97zQ35/rApV66goJOyShY6/+jomS9+rg+mWZa9ODiaTpwD09T4WuzPo2tDUYdeetC+xj9MK8Zx3+Gwjt/w+IJuoqEHUXhSzzhlkj2TVo0Pu0BRNGUIO1rRtNkWcBYcRqoRmwXEJssTLEn62F8tU8u2yXXK18P8dF97CSn5oXhMit47tbu0FIi5qEDJ2GI1fmnbEXhJ6JXu2URKFvN49LFLzQBFu2IX7EY6HIuOxM1jBJDc/tu5IJIt67/q2cGazh47GoDS/WKHjxxKhpPWA8j1NbbDVUJls+gJ2LbFu9o6KOBVSx1wllbI3KVFrA84CxEvlojI9afYAa7MNHVrJpqJiO+ni3vwfhsefwKpZdaVt4i8aHAEVC6EvN/C8HRndJBo0v9NKX6hMR5PXI1eysCIWN+2qHbnRO2iG6WAFBrCYtYb1QMBtoU6l+F8RVRIYH/fceWyLh3eoxtZ70arZb58SAeduiSa21SVwb5VC6mkrlQt1DukOEjWku1uu7Z6knlqUDTL+rPbv+GC6muWpNTLZB6z7g0eUIpTagDYq2XP6VUtv5snCjgy3lU3Wi23FkZqYnUW3DwogPRVEX+yUsbZIEDFU82N/19TYBlqMsVrLcgMDsYJyfzadxOfCJD/ZH/wuToaz94MRgjWvZZeoLaWozuEZdwJxkw3Pq0Ovp63/Y8cZR+q+7AnAsZdXet0kj3GYZ8aQIeMI8kL02gKPDE/8fpsUIjyQdAuCanGvJzQCazw8+H5bszJaoZWy7XaEtYKUJ52pvEfz9TqNFEuQAmNYCs8/3bw5gc0oG+cSHiU2/Ew+OFpwBa9haors/vehHqOv0EZ3S51340YM/hSfCWLYo3BYvh4wrrz3vio246CVDo8qkSFgMYVRG5kH50LbEWdklQvwXSAZA0hi8GSwbMpCFz50aUI5Aykn8e6KKvzAdf7g0e4VyfKJGx5DQzIAKUWq4NKL7H+OptVxEInfvkUMV8RMVBvGNeLTOtqYBbg6EYcpoj/oTfza61vOOLVGp5tB+kfTgO5nZlzbAvfeKas1mMJpt9U1HcVF3b+wd1wJBjx67Bims3QDcd2ueVP2RFiJrKHXbsAqvpYo/bdoORnbRjIBOKD4nMZI0d+ooo4VWEoSVUIQiTN/4qTIb0h7RrIwiS5XJwowJNwKdIYvrRcVU2R36dep5xP3/O/YqHFqHDio26edqBwcj+Ls3nDdvdtwgySkkaHH/GcIb7VKdh0Zl7J1OIN62U1UJ255NCV+Nqxi8Wh6q/oH0jrqjz1N6gQAYBUViFTBCcKzq8Sjfw1nsu0fEe92aL4V7BBGS4UlqWcSRPuAZ0j05pu3BJbOX1nL97liWPk6lGIwJG+tBuUxstXvM/bMl5hQAzQ3gsg6wKTxN9gk7h7kofJ5GOICzwuaUQfmQvzdyJ5oB2Efm+oYqGa/MuuNbhKdBvxDGUo6Fu6SYHX6RCL138yE490Y8MdPnLtM5OWF+kdR74A1jR6l/+P3HycuG7RlgNJ+v4xscp7Y3cyhtRtfhwBWzRU4lEOu2E9zx9xdv+FOIX5lrsAm0j5iIYMZ7BssZ0GvakaZyWLsGopMUv+b4QGuI8kyOx/h2qARxVoYZufehFskhS/Nkp2jAj8hbxTRNI2i6wtjtLnY0Jkr+Myio2meD8qw6gWAARN2IrzMFa9fc0cloKHdlgsSLbBPEm8dVT5X9msiVwYVwgQPrK/zT8BclAJtgUFggxWGZPhZLCEZ79Gwp+BBZFNpx3AuoLyv6g/uQudA8ktEZpT6RiUHW8Pj28He+KX9s/BH1kA13texb3zcqz5dOXqluGif00KuEqSN2B1wTJos9uKo3uBELSVCMDvClyDXIlSc2nuPOZK9m9jU+sLTwnCyyDiNk0SvsaloG7LWbwB1gbJj19Zb1CHOmP0uebxEnEold62QLjJXxSUpXywLrW08hCjrLWTewmk33S8WCmtDTCYy7xhqqd/ER7TO9arxQHZ/nv0RgTxhvGz6ATdTLLs0Ttpwn1kv1gKoaxbv3AghH1Ohm5VOza5bsDjGrG9qag3W9SZkOQKVmGsU2ukAqDELWmlZHQk9VfYInbG8hhGMo/RffAj3ZoTgxx9gFIyi7BnoHqP1zMNGh2LBU3U5Gl+tLf/mSEZ1KoduaypegMi44263T5MkgxkRd7SvSws/C5+ddSV9bgH0b8o9kXWFO/1ofWX5eHAKUwUzxYxKJlx5PSlEoyoBUcU8vkqmR6oCvfMijkS2koLS3AKfVoM3+XnidBlILmiCffh7OcWd99RPhoN4y8vPg3zqOx4oPDZ3mwtFclRaAeDGI8Mn8YK4JmwRkDmoDBT4naB/AkG7PVKAGP81OcoOkKw9o+WepxQjp+ISk7UIjh9OMQvwXVG9f4vXHJ8SJV+u1M+a2GsbH4ivmxoCZGs/8cAfLP7CzlNJW2JeoLUh+Ai0y7padB0/M/QlzyKCP6Fr53GUsTTRyWFiak6Jr06LMDmjnWBezyjJ8tUWQaSGt54LcLsWl5qpPTOKSxnDiPD1TFe7z85Z9GvJakclPXArFEW4vfY+48DkuN+/Z5+nsHzlu8MYzZx1+xDmxfEJ809pcei2h9bODDRPKxvHBWS2UE2gjeG7xiVF/TnYS4KjENSvFtTm6RpgAc4i/hL/QJZurGi8kOSE4z2g2XEJfPfUnXTEsUKo8Eb8qoSeVl7/iq0190DsXxiNqGCoPt+wf+Loq4enF+I1C/cReXobkM3LghOvPD/rTKANEhcJCy8b+tVRWGOl3dxVwgwwR7MmFkVN+YY6B+X1gLHszKkEXFvDkZf6lnxtyQHQUN/TjEUQaFblmY3b5QWLLm9G3dkNr5U3N7PU8C29x/EMls52zL7n4R/LCjWthHRT24Ef4Popdx1GxpRm3PzlwGsHzklYsPDc8PfOqFl/O3BbLEMRBchsZOgyF2NvS133ZyidHYNnk87vVBzATQWjCsWPxvfWiYk7N5biprOBsn7xQORcA38nW3pvZNfQ8aNkMLRT1cGI6VyZis8QrxdeIK2OL40Kn1cZJ/aqUbwDHVW/aiFnDlkCtByR/lSkeuUxgVzQjY3sXYuIo+uMzTTw1xDiP2rLi0bd68FJ2uWOuNudGYEYLYp/sSM4qPNKE7c2ZqRRWFf7e1thZhLL2IDt/InSXWeokQtnIVoN8PU4Uua/WdXjmxAa2alk1HDX4GQOewOVAsMKZ2I3mCEl7xvUNd24UDxIphwqfwMunkz9J/VpiflDHgB22Mtze9t3pcLDFtZ/wWm/TAz/QaTHpPcrgl7FrZGtKFpWUsRHL08Fqtf41gDWl74mQmPb3zWdoKUg+eMdSHgwVabxV/oUDicBdd1RxYtLmfA6d120E3lGev1NVBK3840dvhE7W2Hd3FFyfnRZ8QzyNOfDE5cGWNweJLQYrwl5y3+kZsK6yhLO9mi2in5iKIikEffT16ef6NwI8wRPDdGLnBx83DRc5WE3ZID3E8gKCob09AfizWda44F725FuyzM3o3N1XZdONw1aKGKT+nfTgKdZ/SaLL3+C8eNggRBMUVVsdeDhMgxYhdrIfmg6SaV86B7v6Qv1p25Q5kLpStvr1+foFbKpoPp0Q9Q/U4bnjifUlpPlL0ptTVGeLa3dyzxqGCGOwY087APUo2qK7D0m2bk4eO4LkedXVSYajMwU62+dpXDHu1arHUAoBAcZM1yyA/R0iyL+0SVU01IxmoDP0jnxuJ8Fx7Di1GUn0CE+LUovAGNN2XNvZb5jk71hz5NwQ6HUYOG3v9B6eVtpuTKrbusIrPxbNRga2iSJWZoEeuAn12tA92EDhSWFd6LNabP3fHUGysqvoTjVG2qc42ClAa+sasNgp5C0mIWOb7tqzTUyeq+6a4ETEe5kXboyAXjGDmVUlcUH7c4hu9IPysHb3nsE0pLTiZcyVzQmB40jOb3zaxSw6S8cpp1bk28+qZQFLlWzajD3EBsnrHZQMzpxWedpkGkOYxxZNGgDZNtpAwJs6ikDrFwUL96MvasoHvw9exKYiAvCEQox7lXPo+WV864p6W8CJ4TbxbFnM+o1qho7yeUBfXGpQnI1oGdhkf807DEXB2LXZSjK28hsivFg9KbNFJ4cHPP8aQYLdqbWMUTMnO4GeEhzJPqulmRJDxFAN8+YyYQD0zHGkjoX/tgiqb3pyl9okXRlsO0ttDfrVVmgEZDw0uHnflNmEjQB58/Sl6FihGixW1UjbvUFF2wiD7/B6ylLXwGSRg6DU83hsLAeF6LP4IOYdjdWuvSxDDC9zcy5R9pIhW3OM0Rhl4LN1f78VJBAgoytnOINgaZWnUlB8b8V2wrwoeVk5deD2FK9KyMfAW7D68PPP9RLzM8Ypv3egkxogcXw0VxO/TETvVakJL2xyt69lyFHL46BFdzPy9/fQPJPNzX8FVmDUoM4+Qbd8XNwcA71HC/B2JUSjOVu/lFdZqzj0G9jytZ8VNK+erSyZ6s5iS1macl7/3ieOw0b96CDG3nE/BBBrM/VkqT/wad/9e0qmvl9WY7aRLO/BeQ81TXhunzKq1JQDs3qFMlh4bPXnhjBmZYvyBr+HtQJBBiq70LA6eEiHusbp90IbIAKpoJaxeE+frexL70njijfRHW2hoABZvzl/e9cx/vrbBKG9CtPNWcWAvwANmJQacMwKomo8Na3NR3u1YB6UtcmX3E2twOJVInYW1RqBoNQ8amXnwka+U7OEboPTPRkKR+xOr/qoaNBMLZQJAsqvFwz2jBaTxbWP47cHi7mGh6QuWNUmA0KS9eMPF6FmfL6GXy2icjhcBv6+HzVQvRCwEro9/6tTRnAlcla2mTW5nNn5/z3SXF0UCm94mW8QhhHPl+cA3uKG6zwjuNeIXZ+K5Sxxd8jMfDJ2bFO9zxhp6QTp/OkpeesBO8Yz5WpMSNDX2mCDe6EbiCbTjKN8EbQspESBNt0aSE2d7gcMnl3eD7Zcv6IR4/eWNye6kp/p+Msx0T+fzFKjNgzxsCmbw2IBfA2R1s1cx/7g8j8Vk7u2N6TZYzNP7zlM/ogo4kqo03Sy1iFI1PwYIBjJYM/8DmE26S/nEzwo+w/RofPRJ3dRRiho72RYpa7W2v2kBw7jfit2lQD5Uilj4cCUJgu9syn5KIQsYK1wQ9PK0AzdwT8xof0UJ1B22t/aYITsyFfL/vNQacW3TJG0JzPLYnXWlsM0CyBo5xqT17a0NveoM/ZDPCWWIimKAEt7bDTBFLbtf3MaiGoAyc4VPnsibiTh2j5ZKjbGwci2m7gn4a0ys/7VdUNNSn3BMP1yCQ6I8WXTPUVC1QpDOgDt9kG36m7UZYU40n9ItYHCP4XFbrivMFCm4IaCh5Jf3wRzca5A4bXeqnlemag/OiXJMC/ph8yrYRYIBoqkR4sGYR8txUgvXr1n+zLI5roqLW2CwOEr3ceY6odyjDP95/LDiv6UfTGFbXvj3vgYr166EWHNGFKBze7w5Xq2pSd+0HKTP9FJQggRJkmtEHhVJ+UyAqgFDaRMjxAtFEMnTKevlkhB4aitrKAtkmD34WQbCGI4K7I+n2LVEvyqWoFc4tyXF72vsFBYdmmMNyx+q/DDUxLy/e7I9FXn43g6kGuAVZcbBPZy55iBkFUA+lKCk6M9f2dkK7E03WAjntCKQFSqu2H8FR65f+DZr5PQ0Gsf9UOu5kCObvF5nExKdHhK5Nl71W5qga60/CEsA6fOPFyRo8kCRaxXhJIiJAlkn3TWuJzgXjcDRBCVG2U9awOzXMYuWSWgOF87CsamQFWoKU+eviaZ2ephAxtI86YBoHkdDnZ8t8x+iEGc3jn2SO2ACmL3x8zwIKym1kSuF0RYD5SJQsyNRBy9CaY1NRgNFDBmNy22sq6kz7xNzvrnulJ9vAk8vnOIvkemtUr2+hj4wIFOQXsygej66pI8Co7Mids3YY1yTtjr8FwS9cEIL1uEKFD22sOF3+B8gCuZA3cA4EnZCoGvt79i2K144vxUPxeX/9cf11nN4zek7D+RcvVlRuuOJdSfVu3zFZ+6/vDJn2jygRZfW7Y9M4tK/UqjnptW2vHvRZmGdZdKOi60Zb9X8nIHz+3ZvgqUfefElOAAy0BG9o/4i3JhJ4p0f2zKQ+wIC6JpaZGpeZCbN/8VFvZuLFIMXVpmjcP9xEhsw5zKVKeAx3gKDli2aQqmbcYEVRmUyvlVDcqzvKM7DCTzzkp+PA3yU+9JetO/e2sSY7m9dUpeGAKWyV/kfS55msIM3Thk50WZI03prIh387o3BCobC7g8NwR+/ov4+ziRN/2BRDkSEdW+kFY3ex6sEA9yXAOxRzE0YOytTqUzLTFYy5P6a1iWJDZ8UEoMeAlzdCziBxbpz+SAD6lr9XJ7qtOSxp4bPsPY/MExx63op6OpvImoKtn5q2CE5pC3q+jku+vQkL+iCllQ4IGrRVnICwIl6KVRJiTJe14h1PR4hr901jEKpLFW743zlzJVMLPBWOR5Qeclf4/O0Y3nkZaYhccU8OAj1A0NVGWP4JVc43YZbAvF57b77l64YmV8IJ8eO2I9YB/TMkzkNJtoEW3JbOPtVEbbYWGx5Muibg+essd6dnH5A4XAXX0ahS3bDgb47jat9U2kXhGwCiJlYlcM6dwAg5OEBAKz4oRLgtAXrt/vsc2+NCddZaq6NnOuT/YM74mEy/3AWUfGMCtWLHlXZG+hH0Cr4B8FzkQBXu19cfLjRISHK5opV6hnOh4F/uoMaheEawASHQ/1Ra2LTQTD1sQ02MLpjDSJEGTp7j7I4sU2DBGTNvjF87ggynoolHMJCKPBcpTUClXJaDdc4KTaUsESHyxyQt5lNPTV5Q9R4wrQS85WSae4p8+7X1rCOXRW0xcVbO59QOp8Ag4meOt32Tx9M5G6RRpgDaVZifW9b6BMxNlbcwJ7CoNBLr19th1afM1+Bfs3d+xiaI6qkjSxOKz+ghHnCHOrvMz3faMea7nF6GYTdUeLJA2D7JbTCgdxPPmfTA1+k14GFt0q1jkTXDuWDPKgww3EuRnXMXL+bLYm1Ctosl0eY3fIR4zGSLK7q+zgbPyXsdk4au816ez5zyXC/wpNGrKkmhpksuwCzdQbgw/sDhcfKyCMuTwzktP6YY7L+42pBz0OO2VR0SsBA7CWAVNt68eHs0ucOxa0TVfJvqoxHCyUlxWPK1QfloEFJNiUA2+fjeRfjwkSVFL/Swvy6JOds3R+xvx0EEuNF0W6QmN75BLF3/szz3UImVryphHEQg0o727tvsYtC6jWs1SCBhwnlzIVBpmnSE3TCYCrdSSlSGenP+9PHHUSJ6ZPlX2OST2WydJxeY6/b2U0dD5AxpKzUyJiL+ZOb+KsjM6Vyx4XYjcBKzZRSOeuXJfiyyzKeNQxzZn9K3YK5kcjGJ13D4LCSsxAxXI5q2kEzAn7eg0OBZSbbaXUU3f14m69XP3AdFVR2/8pMiGsVoYvyA/7DP7wkH+bCwbZZZqzjJLcqO3LLkABfUWbnRktt8xEMsD/fTHvF6sKn7uLa02p1shU0ftUSekFQ5jp2+fOBkndANmWw/NXZcexl7EC2bkey/F1NjfeevyCV9Dhuzgxje8bVk4brXXHqEcqxywDgygPU9avoqhIisHtYhbONPCL9h1erTq6UNPuTqPuR77VNo8pPaDMm8j5rT0/JEuvrS4ozLgp921HYe52ES1BaUWrwwzoSgg46hc0R5SUrXK/WaGnqlc8iTQRIV4XybGNHF1ir7Ix2CtnIpxLMzRKoo9zg7NuslMYpHX/bHO6rjwGHCeTvhulCLZn+KVg69iDaPcEudDeXwkXCInbNqtchIVzhfWuoAXnN7ADsx23qIaSo9i06KEnL9z9OxArAvtmiw6vDVo/n4kE0p+R4jCMNYxGENjITLY0h17Aa2E+PcqNa7kWzHFdxsGp7IH/o9sTXsHLIXzEG/FmGcGaJdCi8uKkAu2x3zOe7X7jOONTAi+HO+Yl8sd25MX5p+9wUgNu2uPM2aZQ7yQ8Tw9BFHzfnWfJj3zxwR7aMkW+1Eny5+bUz/bzLZQl4mhWhyuZskMrP3bmv3GN+Ef7gNFlJOxlsLhJmVZ7U4/RQze5f/qHo9wuBN7U0wJsOsE+s2YV0HY/VNn8m8eSuG3oeR+iG4S06C2Mn9cPAfVjoUICibpx071nz1PcMbOQ4W9az1rawvqIswS1uhuyi+tPf7V9gAXhpgr6ho+OTyQKpo/hupcgdlfxBa84daDLJaL3vTPVVlSntS++nplXwF9qCrhuLYZ2+Rzb9+FV/hP7cSeWCfIC/YmrEf+gdJwEECg5PX9GTVkrvNtDjk/XmqvxGU55CXtFwKEmjVmKVyWgJll925LvvR26rMvhw4Lb+s69+zHIHh/fP0E6TvRk5ANkUFzdPmo9GlUV0VHLNru8W1BmiFiY0WROYn6d6h9KWxDb0SYB/v1eC1dbnXKxnq7YnmFyU2IBl0CJ4+2sSJd1pdbPseVx43r6gIOT+9kUfszBQwIGwajvbuqkoXWD5HKNtfQouHOOZh29F64IGDRyu+K1lDhPScbRdzmiUpZSz6ZegvvlIKecxAWCYWieDHw8hJIvJ2HbdzjQoRZGc4tEjIeqwDlANpw0kamousykaGcv3AXBXtm7QujEjYQPJW27DGMJMJ6YYZHRSFiijI5W+mxgq26q8tx/7kWnGM+CH2jEhTu3bOR7BZHd4MKoYJtYUz0V26nphBQ0YVyRxQmewrrpVqUJcu73uUNIec42Mjb6k9nSJ79EcgSDPOQbRrVxhi/pR189kYTko01daQxpnLYTEC+sYcU+ZTZYXhd56kj5ehtl5WcYfdox90JcF+3PRe/ydiowErroLv9sPiAazyRBKpRWNcE7DCsCeMUbeVE391a1ktiApcPsbxVyhryG+5s4r7fTds7qyHFU8l+ir8XsztlFA1dGGsKPsJlbhn6U4KVA5M3O5Zp5tsgsJUU37EspkYtlDRZ54GcGmABIuUVH5fZzZTBX68sWHGl28w8TI49S3NcKGD68cQVSf4QZSd76JHbYw2QgR7N1n6IQlswACgVkaimT31HFWcSDwiRbAN1jVQsp8duIq1aoFWiLu7YevmNX5xhqjFt9QmNuxXN/9TXV66GAVUfiIaZargqxCn28nuMnzI3lRDbddFo3pscEhhTT6cmL3RY6pRxvnuXl+RREhDt6P0+8VcXM1PXx9XB3rqlvN/igC+PSiMrvxZzT/1/E/nY2bcyAodceKopGO9I5L3Z+OUbGk9JoqVBt508JAoAZuceHDPLpGAjxYAZ8uIHN7DuOMG3C+75tu/cJHunFnfaFKsIC8FISgyPYMmz/z75w1Nz7gRkRngiGf1qMw2lRnf8XD3v2BWGSGuSrZp0MoBdOwdrhrtCLbfwt3n+hoWE/r8m2PAafQDUR706A4S2dbM9BWBoFyPAD1ipNrJubzMvoilTBmzaRKx34Wc6GZkULd+/7PH8z6PUCgmgLAD0rlYCGDVCgOu+5rI0o7FKrfsLb9p4HrPMHRXCs8akrTmXqHWGvEIJg4P34Nw6hG0pxWtwFgmKocvRT5+Lt+cLymx9eFjk061K3zZq0vY1WUTlOvpbrogbH5NSNOXjZnr5zR6eFkeAWm6WEOEbW1XyC3pZT+w4rzLZqbIrVvYiO3CuAWaxYWBGcco77Ggv4qUQCN8gEvKknk4oDQz1r7DgWbRb/nmAuwvi+TmIwyZfyxPkCfMSlwumKLTx7J23rBYux1Nip7+scN/zSUjjJs+KO7dp8aYJv5+WlFayTLHnScKDRNGq5v7Q7k3pkTvJBLlblmOYOQhDMdylZ0MgjJ3tz5MIkrXJFlS784WRrdHeGPR1f2ZmlN5Um6RrOIBpttSQeAyWqKHDL007wC6f1Q4GKalvDORPj5PkhV0RJvxG6bmi4HBKsgB3r7OaDsAVH1D+GmyanDAJpN5PwhE9IITMSjIKzUMOfbp94eFJtrvupHt68lmCp6N1sAbRTtqoSXxbQ44dTRRLQyRJ9oF055PLl4mWwt6HKyVgq2AK5x6KOXnU1vmJ0DEcNrqyvQEwKTsB+jlsDHM5XuhO5XeVgJasszYbY1/oZgPcz3+96jvoudV+6ZlTPA5+S92A/bNinUwzGMpTQd8ckyil7Jg80NsX2zxAqCXZSsyl7+WGk4nC/b8xnYiKP5PDVrQp0GtD1VU+ahtf7ph93NWH/e1MExYKn4BQbArPQGJ/a4YubzFkVu9ROO8hoV9XUkxB9qTyUKjFWkCLyinOm1R1j99IBXO7pTCwQYTvNzQdgkUiP/F1jWBbatbKaSzvNUz/wZnHG+QIIGZa9FRSKc4IJJjLTdt+AKVknRWKrLAwNqdctUq4WNRzrPM513Y9N3o8vZa+TD33dfyiUEKJMREZCKfcuGlULD950g+Cu/Wmdmv+wM6I+JSGLq1UqE410/KcGxQBGxLBcSVFKfwwzNJmQCDHoYASVki2jvSrre8S+MiDGTzNWyDwKZUoPL11iMC0tIN8jzUnpcROqT3PeLv36zt4HMuaj+kThx7mvbu/7CGqDSJSyV0TT2x91/O+0/JIca9dsrLAiDvXHu0/kOIMS7flxXtCDI7ZPa+8iX1R5Lr9D6MiF2JExNy2Ko4NCfMQSE49l5mlhEmdJ5x/RHr34b9sELJh+seip+kdN9G4WEaymJ9feP1phPPC1s75YUooee3xhON6FnkCk404pv/N2suCY5Ag31Ewi2V1DxqbcAUNZp7bPDc1ALTEwQBs0R5RntVmo58MnRB9V2XwtPLciENlz5mQAJ/xRgNjE6/5L6S0PVEsypEO/eeP9DdgIz5fRdr0k2rd38q4F5P/Do8T91nDbrBf6k5PREbCFO32aZnHwaSCBJWa9SoDlOiGUb26ApKaLepwEq0T723WyGhQKytJVe69CEJ6o/vR9LJJA5F7rD8mGtnWsUPiBCDE7giJnt2fX3QuqJRiV+ag2mBoPHs7y1he7tvix9wMgamYi95yGsF5LfKWUc3m9yRYfbs1Q3SJJ/LqteB6Lwf/vuF3ZwvW1Xnypb/QFwoKItwTOYJwCj/Zfjv8jRvzHdGDVPKGbgb8mVmHX0nsRNYyBUtEw6+E2nitItWirRjryXW6vVu2OCyfjwdD58ycdjPUnUMVDvQaocBx5XtND+RnyZxVNjr/WtlRFN3X2TOaoADm0IEnWHczRoI6GbRp+vOataRhOrRDcO8tCnK6M9HasITy3pI2Gix9bJghVvTc4SSWeRBLFwX/4WDWr+8cBkk46b2HJRm0++2FCzukTUc0Rou2OoBGCYjGwCSLpTvbTTN3ikaGVrkJh3C6XZbppMSayA1n0T+9h4J6Ny2vwGRSCMltVyYoSrhrcrrOKbXrnJHHjwjKAMgOqCXloF7an3oNtShIzAhrnEzxRqqRaytzFxavl10ctuzpyj6iKmSLSfOqiv3TKZdxQGLeYIN/QmfHei2+CD4p3a5JY26IHg9X+xARmdi+3js8/WHPIMLZtMrlxSNZrXxpensYHMWS3wYg5QP8tP+9c9xEUuN/CLT2/0gaRQWrO8eVb8hpbXaN5L0gqT6KNTnd46XKRY21LL5RlhHgLqe+Yfq3aTFhSy2XsD6YRvl/TRZiqM6x6drauFDXClhCN1xJsjMeP0sp67ZKyyMQfR0tZ9O837y9xN633/t4DqYUp0YG9lRpYaivfIe5dqHDCkOYlF/UQj+PArpugvsHVG4QV24lVJGYEcko0C/0GI6EXHgPte6fLTmlxR3PyBVDGwpqGaUHUun5Mwj27FZ2MSUeXfUWL8OGGyevcjjTNlnDduQ3CQczAzBWP61yAFYRc+HpWugszuMujPk0rEZdLfusdMqPV6FOCvCtcZbdhBECc5ONpDB7A8AFV+HdHg2yw9Yx/ALsldIwMntPoO7RUdxii1au2kTfqCog/VxenVsJ358oGhMGWi3VKpiyJlpaNX7V2oh0QzcHJL0oAbJqeMZA/831teBF1pgDQ+ouaB/eI31DvshDgb+8Y05in2LlHn6Pl1Khya73heo5zncN7r3RQ3xNUlj+pAaY6NVNNG8qVaxna8pVcCuionFZCrsg/zR26dNNhG/8YhYyKcUUg4K/lFosfz1p1s8lgBvIs7LmQWnteFZ66R/wWpGA3Z6DRY9VfMexHo8MW/2f3sQ/3mxTRMW7+QJRa0teuF08aQxSQbO+tAr6roRjqMyilmav4ja+79htLeglHFyrqht99XRd9L00RMACqFY6SzNrfvdp09RNm8bFNohEN5oiLoeNC0yAXhMyv3AeSkW13pDnDm2eBtA8IRiogwzooxP6Z5MyHMBpk8u9GYR/P/TFRJmf7fH0xuA5jFS5pRhqe2x3bdAIHmGGZBJmDvYjQ5FRRzl5/+2hDhsOWL9W4MHGFSmuQkmsfhYkCRrfce2UXbjr7xiO4sj6BJrZvBFdGoyiiFMydkfl9f1QToSCPUVB9yIgFKQethDAfnj2fz6xuppq7glSZ0ZjWkBwR6xn/PlX/S6fm1goOMeV2ZaJ4QctBt5PkclhQ+Hp7zTvEqooR2M1aIRJ4IAqHXQS0LWOdZyE29kQiz49w39cRHZ/jb4UBaXB4bOHu5GY3zhGrmMqv1Ywo21grX2/J6tgRR1oKWAaOHkQpe+9bWdGiWxz908pm6sZSxQMMF/s7T5O5KSEhjU95H8zHKOXIYPkQzhwfvFWWDHsiIK0br/a3XZ0qw3EMWiG0ZduotBXVsPgn0qLcjDK6NXrzh3KXTt1kL00QXJLxryYcPo4H4iCpuMJx3yEcoiwyHv9Rt2SSn6Rk+rrv6XmpREm22tRS2VZYH0R2nSqzG/E4gYec9c9E39K/gV+pwcbjh+URDLw498FysLaAp83fQoDA+BwGWcj09XHkrkoWi/WmO/exG5YdM6MzMikmwk2DY4Js/Ei2CLqW2cNlUSkPYQX806W7QTce5rqjXcYKbsvDtmAhc46MTQYp9VAka7SbJHF3yT0ML2Mssm6PzK/itbkTx9VmQ/CqnVqjMNfNobD31P5VIVV9gAKlrKhBHdl/IT3F9CjvuQqIXFHQZ/x7Sb7yNNNvrFzkX3zZk+adIG3EnSaWMcosOkgl22edJ+FWu0USvZ+JDGoEvw7orxEciUW6rY8R4wQhss0ggdNepWuIF2XulrBHp52J/SZR/99hDmm/Tos3W4FX4Di/Gh+rDQ3PvwePpFLm06qkIpUdks3DmIDalBNtrVMPxOgjHf20DLO8+cFzBD0Jl3pz0lyMILpGFnblSuygq8+XfIKZ400UBZg/xVr2+PWn12VGt+KjZ6lTkQtci6AILkbS0a1LlR+bf9/Nm6u7p+aLOw2dpW7lZOsrkZmw0vy8cFT0Ev59S/mqS3l10SsO8/9WfSpAE0DSd01kB7vcZF8liqVBneomqBQ5XvMQGFQ0xAOCbog1PobhqDXCDzXDL4Zad4s0RI2sNu7DZsABiTJOTqT6c16HtZ/lHu3mkkws4t9Gz/PvodRu6t/Vo6EFbsJEkk/oV4AIXZjy6JyUKFtGfe7dUpva4yJUx/To1vtTJqmuSnK4CI4Iihkd+Dr/EvXRYeNDbn7+CHyK+PW5C1zIZegiIVKHjJBOdH7QR7ZVUF4eLRX7xoYZkLJjTUnw24y3rSmIqs9oqx2Vf3N2T+EAJeGHWsrv2kCPe31XOHf50MvBpH8oV8oM3h64v9iLQbeezfHHmZg3LPSPh7bRkKpUmnMhmGkZ11wwPgHrnK8tHMZ7/nVvbPNUrf86UgR4B6B6S5b+9NMYRSitawIHER0u4tAHiXc309MlAxkGLMNU1G5dttGfuNTA+y5N3+9fmEgF1XccBq2MY3R4KytJrOcRPnuNMj99KB+54VvgcviR8BW83iXMEA+/8FfH/KMU+Ei29TptD6Jml5eWaXALEatvK2cilDZCjnbquvi4ExMx1zVlwFyu6mG65wDS0X9d+JP+Aw9MiO76sni8QiZFx4xWkR1plI9TrE1QLeWQ3W9l7guqELLSD5SQUKAsiXX3/mAM3geCqsZGMr0EMgsQkg6YNgB4mYCx7d4JH4Rl/wqyHesbBTAc2DiVHv+1grgxZlUieguOdzuJ7pBelyddz5nAvJuP7S9EGLw41HFFMTUYqVCjxC4HHYxHy3JlTv3qL6db4MxaI5vQNT6She+UIJtmTqVtIIITmR+fNnJP0Kot0I7Ii+MP872xBqw67NfB/KMdrKekTOWfHj2A109JKnaQJUiykSl/L/m3qla2u0HO90AvQN6fY9I5DeahglYgiXZBz393dPhs68GFGj2snK3MmZYBSvhvcKPGwTLBLRk3V2xHc2yULsQHdT/yDLYSTwwx9nSCE76UjelbijpTxO5UMFRi7N7KAymcs9NkvPpQBfNtHIDsNi5fHKZ1EESbCTj5sNKevtdaHreRXysuMAg9WHkFjI5YbK1Xbrf7QNeDOLf67bJcMJWt09EkhonTV8/FNNbjwSOiTBIxC9SWJiQ0OZ4AGRyPW37xEJJ4xdoQDz98EA1G7leSU8KeHOBnf23ExzZx/C1KLtAeYaVtYnEGFjZy/ZhHC8EBv2OwVrJr/EYebkivVtyQlDOmdiHIyMuRi+9wDpFOmRebi5zKWNXWtFIZncTLn6/xvHBmbdwBcfAPUmYzhZX6ZsP6eBnzZhOkdXQabJUIm1bDO+8HBEwDBgu9TXaEI0/i0NjHl+0aj8d1gLKO7d1556KWbX/Mzy46FjDp/T6XF4P4vLuD2RFcYQO9tztwOtx30aBolH0mHu0ViF7iCgdUsoPDg1lZ0OSj/OsfAnSZSxQZZMS7En4eXFYk4feoHlS1Pg3bQJyuV+eVggu3qt6uBeVd6XUfGqI9wMwj50FPiFYo2SZDnSjEDnUienJh/iw0ME8IG/rog819OoTu14rQZ2bQ8FqGAwwPblKvfAA/oDyUk4XRzRTKpEug4wIruBtmsZhCVBPO2aMZR/HCsMuLpp0Hzx4Bi/zr7Nw1MOqu5XYZLkqCldm1f92CaTJzQ1Clx+H8+dRN0DMnGz9/iFmxK4r8dzf+odhmgz1DVJZ0KLKsqrhngRcqPcH6sXen4VqHqo2B95+nEhVRS4RdOddqALtxWHwlWH+bW1OWdUf2n5WZfn76ypFpyigTJUzaFD/X47uPKsS5gS1eL9fMY5BgAI3NGDeScgQ2adk8UTsHWR7CT0rbQzg6/7/Vvb32FoHSD/WWahtNnFIFFp58mfG8x4qubtxh/vUNMnYglCmEXb6kdZIhV1GctStioImrkHsfibuxNPyn0khbDpyZt7whygPcOCw4jNzq+V1Po2zD02LGoFDIwxW/PEjBXum7z7ppjt3gs8vbXm0uvK8B+/ojP8cxhVUQT1/DylJuHZvhZSvDIuUpHtVhUDzIuLjmhJg47FrglMTdudrkbK3nHszj3ptqFQxZ11tXeGgkvjjf4uh1ahkq7jZ2K3o5SS9QgNnYSJuLZJqGxYl+nCAjbUHVnzjYuziAjchUYRdkhHBjIsSZLijrKCen52hrEVXdfcaS/cLgv8TL4ENNx080BXpo09zfRpr9xYHt8HCR0/IrpSw9rSd10WtK7eZEa8pfR2gLu0OhOYcgE+A15WB+T+bDkksqSpqfaPAMd+tHJtFcXjzazVxR3YOLQDQyNIiBL0S8L4PG6YSPz3itMmyp/2+3IswYdnGBV/nouqd6yU3akRYAHtg+s8YgQlwq7ciCMCl5Yea34A1npwNtq7+aD2P0funAwOulOx4OwXJ9V0DCYgPYSj37hFBr6jDf11NxfbfRFuE8wPilGf68wRAt/ZpcGgXm7V3Eq1T9PQODhj8VxJfroswYVZcjiCmVTIl3YA3SkamOBRnbYNZPNOB+lH4ZcqHsXndBzXt7la+HDlWsC05rWU9Iwm8Z++lZSfl2Lpw/2w7pvGDwjaZLk/QxPDYhbbsXDpS2n8w2PRdSXCr3LqNomm3wdM9VppbepG8/0MQPaGbjfSt6sjZosFCoCSopaZ6Fkt53IyG867u6ax8Nuc/y5YZJSum3FPPLxF+ICIh0AjgOrXW4yyQ1MfmUxpdAifwPjR8/iVPOSqXhqrtY1q7EpbbAU2hD//3Tr+YUipjrUSlUQHLfCBW0U9/l79muisXsosTyqzjD7v4OLQqi5W3IpqciMxePzJBiKZ+mEzqUvX/2nFmPHa3qkA3VLKkVBSKeGzwIC6IMygniprbZG51sEPeK+Hk8zoPmOlKU9QkvkGOBepPiabH6qrwLQRurv9RN8xcMSs8yaxEVz+Di3g2cdRCEDrvHReBP6wC4Wuia6FLFc0/bHbGsvA1uo6quQM0rI5pz8oxHYLR9Qpn43XdgN/6wyRhErA/VuY02naeA6kmQBjmAzkfgZg0rRCFpoMK2rz2YT1u8y6BVN1Za8v3/abDxEbpLZbjl+j8Jk1Y4MALovdkjGkwbz/fNs+Y24rIMqSI80lGyP1ddXNSqY+IMtCdZYJU/ewOrreTEhKX4TJ0uH7JVh0bBLSeBUoX3DaEMaZGEQrixMMZMb3Bz01qnQO2oOcl2fqo61FET4fhrpu9dbYdy+zf3u+VorV51JAdVQOLXC8XOjnTN04aiapMkIZSI/hslmth4RCUEsLiMLlG5xbt59P9UZr5ehLfVBwlXKoOt/yZ+t0cYDSkq/uEssJ/94kVShmasM8p8h9jFHNouQzK7okCOVvg6NLvJG7nsQ69J3HUaeg2kMOqudklVXYjJuoc4uS0SZO8o2FOc66H6zkBJMcS2jMhN06UBXItqxGmTPYna372lodkus/BgVCri84fmV9619p7zoz6se7xdvSDgZb0CR4UwjbjratCj9NirJVnAMHxHTwBdY61XSGnGuyxDXBbC880DC2+2KaFykjK728h6rsRQfkB6TYw6/68chfN43cFb0rAsI1aCQYjntqRePgErsdV43x0eVzvYZtG/3lC0jLW67AlbUUFtlbVCTcM9PJnhrqtdmBWMhS98Z3w4Ei9K81Lo41Gm0nEnGv7/n/IrvRKJq0g23XFEgE+KAL3/CBirbA4DAmSEHgW1iX6PyjpIeVTxJf1U63ykGpHxA/HsBEj87Mg1sLs9PkmSSmSZEmR+UL486FVfXh2uUVYf1bLD9d2WKim7GUkLC4LT7AtZrZjcJ1Un6L/MLRcm2/oU1anQHesxJuqkKZswmWxWN+LuCHnvm5/az1sF5Jz63opf0Db1qOEp0gZNROBzoAgpuS7I8WQxYpdPWN0SBb9AebKfNxjTo7lSQa2/TvHwm3sfd2OOeyNtsnR0VqKqQ2Dy8XIIN1nbbmBdo8bNCaR2ZVT0+YR0uWOeQAUvzmZtpkUiNGoyX1ddpkvMNjMIjbhKc4/Gt+8cWMcVnJ4V4weLjt4DUSmDNpqRmOegk/4EFMrrMEBlWSrakFUn6YI7jKPEmdQJbPexIVMQGlewKcdH4C7udHBPkgjUs/HQKig+YzDUI2LDUUo91m2gsuwz56xC9Nh6xPU+euJS1cvUvDfl80WgzjN2Nc7vnUUCcwsNQ+KzFoa8mLeXpPh1JZ5cmRKx3Mp8BKJ2XL8WI55iZZVPYEC12qR389yQzOurrjEGj6sXeGVOr+crOUaS/RsJwdgZ+gHB/lbSK8lGRFydspkLhvrC3O5BSyT48tsyXn2hv5tvjVSs9g64B7jn8nY+IANFuycyMcPf/GSvDCIcd6bK9aMy6LKf6EuShn3rdW5czePL1qa4pW2zufMTpYoEuiSxOCjAmYUAcQ6N3QvPS+wNphqNvjOqp099/oSaaRNqR+GZeBvXGB9/3/PktGoLJNaaVfNwXK1bWIbCvUAljJPRmsxuDx7h2BXJsl/4J6UdJuHkIvJQEQHzayuMfq6RIuVEb84CYW3ZoitgQgpyiYKA8MROzSSp30dYRbqwqiZN9S0gAj7Mpfba6kRiMo5NJhARm5tQ8EVXjhgLm5ro7PxhjsN1kSNBiKot2eEmnQcidPyN7ZGlsLW/yCPIN42WyFZ5E68pW1kgIgok/D9hsBkxkHgFZEcpfIboiWlM7TozBHDcntzQBzufwGx4mZMXAQurgJRZRljQOtFDwr1o8oKiws/ewJ6lZn9sItHmnG8TuM4wOy/IsZyf/O50FKyiLbaC6WmWF2TRQzknW9k3z7G0FkkunBun9m5wE4zxLdmS6GdTVmmzfYzKWkNlLdYzuFM92gzgdNEPkUKV1lu+w4rEHH6ARfmOl4JKrHtbmyFBeB49EsG4MB8234Y2yL7Xc/hEGbehrqPdHZBDXjXqa4WAJ3ByOA3ZuoJKJbQDA2H/bFUOUl+BqXwZW0ouzxoYZM1jrUig6fWkAAYCS9q1ZVlnShQ+s2sQuZct/Ztasb7jmCM9Y/G/bI1XYSdCo1T4bp2IV5fsexF19DtBnBfDRWC1CAd2u0GI8wy+UJnnFN7PXPFVtwEFmJXpJcHvtpBZ3GxHVOkjLbf7n5jPLSZjjUHv6EgYLcSZFpmEFgNDQgKWYeGG14KEhOSBAYj5qKxI1kPK9ZyZHWForwIMZRn6uO03lRv/71ELnbFrvDHCwb152x8BAHtpEUzO+Bl7tybbUhdNOneeEyP68PbApWqGq2s/bXlL99lTgRZXte2SeqX1ubzsl+815DO0lzuWLaKkrwc/voh1rPvGDslO7NOWQfGH2yw0m4Mu0JgpYHugNXc4xODsh0/aRDfLe61w1XfW6L/Kt9af2pmZz8w1fsWcubol5LDQXXQhaGt28cHvyeiVUZXfzs2yotQQZu5ZEWLdBunDtONJfUO9GCA46PiiXFk1qDJ79BlFUaHD4gmwCjCoHBfXcA10NLY+ks5cx9Jj5/4eyuqjkCVHu0Yip9ST17B1fVxmXapgZRFRicsIYnjmBht0jBUga3T72umCRbe1Z1MSmwfm2rHjW72gfwhSEdpsk5toSUv15sGcS3dXe+kg91Wqh47pEXAoyJtKZKALz9cxDU6ZB/RvKxbmgC20bzG4PqVuGmZyFuwDXtzkJCFJh7n90WINRrM8qstTUrfRJ3/4nlcgo34/G4dCUlk3Jsx4aYdTRnSTXJSz1lyPbH+um59sgnZ2pO7EgxEVntAqy2i5+O7Wa8AXO+6ybKcqJT6oT2+/qod/PnDGII8KzQm5gKvsti8BIS9OeVG8l1MxJ66DKchd/x4CJO/SAxSi8btWgcPSeGXbHXDzYpi7jLYiyynWiSifjAul3zsiPLpmjOVrpAol0pQNfAXEgooXd/z8f9BICnRSdJhyjhb56HtmSbLSBVJ9RRPf0FSWipBAja1mtAEdayAPSmartxzm+RYc9Lpz1dcAMwY4Md/1Jil2oBz837TTRKtYQl6hg2w5NQax5pflHat+GASr9mZfIwhsAEsv5xZvdV/dnBvNVc7H4oJ9ljgPQpsaUgsE5xteqrymXAh7pTLPRcXjd6FZzyTrJizLpXoBiXrEoJhfil1E/egoIsZdXWhWiuuqEr1qgs3K94QrIhyIL8f7KVzQf62k63X6kaaTGud/bo1JHxhUN2ar6lloQGPpNo0NzbiU4L59VHNE5ihsdlqJ9gdlvYfdiLo87wCrG21UBiQQqxBNPYEzsuBbZbF8NcVcwmh+WFTBRbVE+rTlE/ZnYeFzlVUQab/ywZ3Iccnh0/vrci7eK+fkcfwtIHTyIFwHlLRAofzxFvZ2e1wUj1xl+WqO5Ui12PQ4YEAj8rqSQsZwXR1jY1KxhyE1pc0jHEZuHhkfXFKAjpnsDE38q5EvImKVdsg+yJimam6ydTEB3eiviAZWGp5+ddeEqfXWBioNk6CysswFPXCEUOJH98tFpWgag3PtNptcJHevbP0bAJVxGXRmAza+bmxvL3A7B6PqnH/HRCT/kdQHMJqVo5wSRv+ywWzZqqeniRhxzzYhodmrQwvtlKCvU7PxATXVJqbTISUTZFkJffgvrpXnA/kno5m9fnK7nV67d8K1TQb7WRXLWZE0c64PYdd5eOjrZVYBg506a2MHBunsxmRrOxOTpMIwIdRtKTBURslFOlKQHuMHZl7TrCxQwxFGPEhilPF+kraaShckfxksdv6e+EyxBU4jdpk3dnWMRzQ3bH/0YeMHCknXEt3BziyNqSQHe5DblBJ+bV+MVTK9mVSe9ueofNzaHSrAV/mu7eDB7ulns609vNGDLoKD61URsfSxsewHcW47CX5Si4PfOfOakCwYdlg/iwCI34lTO+UfFzWODeBLmhsyPNWidYWnrh7jzvMyeIijaTlkDqJNLnlVVWmix1bgK4hwCkpftoEeNJJjUoeMsK6cmOeg0OqUMq76u+++rDExd5lKuRxryS1EM2TFvxGrNwbMFP9B92eDdOJsAprtUifQFquSViDocoTK+iKxkvmcFe985OZ17j99uOqp1uUzbFKSDaa3dmjCzvCEiFoS09FJggv6wdUa+5jS6E9qs9eYk+kddrMexLh6Qap1ad0VDqzLEFqJ8MyWck2/3GVmIv4BYba/1sZmbXVJaphGXrSCZLI7BotqXOGCGdU4Z3SDMp0gm4r9Y5fwBFJDUF8kzR9Sy8nC0bSB+hfv0npN02L+fyoQYPZ0y54uJ3awz5U7TQtqeyVlEmECEvOdxn6jTbLkVqBcHg5sm2lST7W6bUs97gVEwKl/PFtOqEjq4BIoTgXeDh84iKkN0Kg0rMIj4+35SLDExGqJ9rjqP2aVTdCwSVRLj0bMmGSX3lFlRadUvKqNQ9JyVGl5cu4sQt08mf9UXFR4JPWdZ87OfPSlxdH8RYLVE6tMwVQ69LSVss7rX/6VT6fZ9/pczOi1KJ8vsn1m5p3aZo9eiGooMMQuFMPws9Ufl1qHfQHdfwULQ0cqXrufTeoLWTizdZrkzVI8Ttm95dozo6EcIwT7RemPGlrjhx6ouUMKTpbzM0TC871pQBkKLsad/7lavlvO6RtAY99Cr+E4KuKO9+veei7cen6nFLmKMdu6/cG+dIwm1JUtlGeC8HNvlt6+WolpPiX4fS3mSvrCZ5Lq5Jcht0SX8fpVbEp0STTFjtXy9VtVvtjBZt8b9w5IQuC0FMLeY22+InS5+9LB3uomu1lQPT7yLy3E/3W5TWnaxPycqZhkhz3IUD4Vbg59ra8iVi7oX29yOs4yaQ+weivW6Zu/WKJL57C0FXcCjbV/1lA6XpfGiLI9oMdbamG5uA8SkmTZIhpx0S1A7eMV9qf9L75A7ozC+sjm5YvucA8CUWImpQ+siL6SZyPGnYZ0eEq1AxH0hyFQBtICToH7DXsLd/EE1ckPtgf6MBmVFH1DqQto7Vnwq5zSmPGxoMCognl6vcWbhYn2xSx7tizb1ncvKVfgqlmpQn4AfMxVaYn6d8RJH9BGIp3Li7Ql4pcg0ndL9POimh8xJVgsziwQVAd+7SfK21GPoBEmZLBR3OKwYsghGmDmUk6rZvcj6ial1S56Wh6LAPkFMpU9yv98F5mXjnYd1EDEvEAZAtuvRp/ZPvZBIojhDCcRx7ME/WcuN6k64qT+1HrCIq1m2SGxfNa1hz1L1aCeCGBXKjFOqZEqZkg4dMypcy5CCrorugEoCG+YsK+YDJd94FaDv5Zokrj9YqnHKdLDCODlO8XrlweDa7mfxwC9gy8bmnzalu6SV33e1EM8lsJ+Os+uNYgQ5RKeGndDOnwAL3HVQF1BPs3PJqeaNX+B8NQTL0QcOmsdcKS6Gl29eLR42nm0S7T/aWH5ayb5Csie6wMpiBV6l69lQ9pxWvTpZvYlfy1ZI6IsMRbHkOmoh0QZnQYETcuAPuU2hI432Ns8YDyDoOksbamOBQ8qnbc2ZmOPcZaX22iHQfCzvAERV1aq+Gk+7DlAeBrgy+uE6bn23l0K5c+35jU9PY5LAg/v+PCCE2RGENNoVE5d74o9Wn+8hAZomj15IBB8NvBboe1DCL1A9TE17Rt8l9o4E8Guq7ymAuZjCbgQmi+5aetH625vj6jOkksOexXTUq0rZMzB/wouUMT/4zYTUZPCYgnLnhON5l6yJ2D3tH4+Xd7nKTzfd0jRChmarOkOfNei24zZHkwd8QrXzB/7gc0ImpCi2SxWmlmQYFNZD3vtdPoTgIkDarqdWYuq4wiNAj9G4QKdpz5mxQ+U15mDJ6n/Uryvh5K8IbmSsv3RrfR6I0dvjHPORJIkcT5o9bShUR8mWzX5UvTMIGJkQM5ZgxTnZ4US6T4PjIq1Js/sTAQwr01xgKI2ryVKLoWOKnlaTKtyABObKuwqY5KngfWi4GpgGZKJFoBAk6OQu3yJUaTHtXHhXXo+J6KoSz8J8X1C5Xh5MnrJVTbLdMzklgrLycLfV8eZJB+hrkvfOLGl+ZhSm2STwzCF4sMoNxbXdzVCSO6zca4zp2VY2Ew5/1VEfY6r4h/C/sHPgXGdTn6kWi7k2oKRCfx1qsfM4tcBtBWMSKyRCxRe0/iFMZ1RcKUt7IEIXayy4iyK9r0ykcli7wZjy3HtWweIqG8O3Mxx/WlbmkZIeFLSjB0g6744sjWAtCpZT67LO5TibMLLieioVuxx5P4Uqhw7FECQcUBj9Cm85FeLu+Si/T8p3n7taJakSZC8UrfiB343lfXRg1c6z4OuqAkva3CD8z60SscqFiibAWOmXrhsOiuKZqM3fWTOddgdAAanWovJ4WJ6Y4FEWbf3WfWcj7nYfVRcUl09kgFOmcxPLfrIIeBfb+AeYHqNNsd1b/BYOpw/fNIXiEcb+jpolLQOaLLGbFZQ1dFEqY9GkWkV24HOQ1Yy99ub9PmDX3PsdODYMB09XFWEKUMAZ+gSaZ8oOqq8eUuOJDOu0+AgJfYwB1pNNSFiMgZ00dj7CeMb4HTlOMu6BQgggpr6iRvrHMsefFVVbOLY8nxE94/MSDQu/1UwRqR6igJ0EPhcXcG19nN9vbkpSKZPaYOkofqah5NhvykoYcDKTmxt/mhgyGjnl/kml6Efg/Xrs3UnC9FFGxcYY4ABuddaaMEyYEDifrDoQB8yD4kW83+Ek0nLXfJnPdWIIZ6BOM7N0OnXOle0lOT9qN7VRWWS4zersoya+4oRCukSeilq3orJvHVqcCZ6LhS0UEkqWT4FIpIQi5B5bZNaSb8j/nRlw6yXy+XJ4zch4sFDyPZnrNo7rFg9QZT3BTXVDsE1Dx1n30qfv2gMFZjJiI7+rkKuf+pNggeHo9tNImVae93jNrls5JN/hhwlRcwq1RPafMvAXP37rhVD8f/b7MiBPknj2SkyevtdUDOUEj8CBUvjGhYSZDDfkV3+Zwmf/s2yqdeZih5PnSY58tzCSfPas1oT5NxabACplsY5151iCTVI0FsczbV7RHm71drotSB6A54SbvIHJQV1GPlXA13p6kwZ8frS41ORsUieBaMRfXgqw/ZAzNEehDEC+2erZVG44N+FU8XIEVRNImkFqFaNdwbXnKHpTTvAjiy6L7v37tpva8M11aB5Npcn3GgaT0Ab9zpoOFmhX2NAWF5S4SuiKAWvk7LUPMBD9bR8UdoyUSkfYSf5UShW7KuuBSxqnCyL1iD1a+yJv+7l0zFLR2VUgL3ktL+j2GuorpirGXYwPMIlI7sJw24AakvQUxdI0ZrHD5rNVJhDQwa+2p7yfzey/VVNS4UBosuydeKAhvJitUi/yKfiktOchCrQ03FYnJaLqX9K5aec9KAbSmTiFYV9fjL2QafEOzAlnd9lfi87L2dXYJ+gZTrM7S5+s6ueqFYi9J+Ch78KiaB7V5PPe/0Rpj0ijtjD6MOAoelbM6L7V0QO16LlDXk+KbV9pZxOsgekS/W04ghY/Vmq1tziv1PwV5POJ2M1MvT4umU2qjlS8jrJLnPck3H0HzQ9U6O3Gb049xtXiKVMAzxxGeWM4NCy1rojFMaJAJWd6CiBMRjzZYd6Mw3kym3hEOEjOMCX3UlKErKcVzPTy8Okx8BD1XKbky02s1ttsBItc1UuD57zs4pahJsef7lzYvt55Mg+x4vg2yTdQfnlE1NcLHyWjtL6LLalHsU91zUVbD5sbLhe54JoODLNUgZCWEPY1wnMbQ2/pXveAphySI1FCqRvwpTPFzGbgv6G8poeoHQeDYMkTokWkJKop7ez9EHKQOt+yWMcg/L7g8Bax87YBgOOIMHcdUlejsIAIqYU8zBThC9v5/tZ+klP6vqtAu+3Az16PBndQdtAhe0+eKkpqKWKZR2NKznh9ynaNnUf5Yyskhh8+ACmXwlIECsnar71p6zyFqahruUk6zNTqlkRn2oyc5Ts9qWzn4rSN547wx9Xu7XSsa9PDGWBHNI+yFkoQ6z2YUpw8cldWY5dB5BggBGvUN9ptTmk6xKXfuEz5S3HyVciYgs2OccYUrlKBn4k51NZjwFus1RR3//7qFo4/ZOjUsIvkmrMCLO9rM7yPNKu5WsbAL/eBRsPWC+N/XaKYSqxbzSBxePkxVxiq4kvdIzaR6DtK51NPlHKbL9La1VY2+e8h8NagcAYbqLhkuuL+luq/lzVBbb5TKd50cGfqCNa8hvfB43LaHz69snJYje5KojDpwI9X6C5JdyX5ct0TQoft7/ddlg7+8jOlU1AVpB9WI+sMU4lmcUlPdTyYRsxaXTQEfkf1cW3UZkNespBMwsg+B54/7zcxwcDccGgb2D+qqkFODEiin9OFs0za8TRPMeEVcw83gnKoaSpTJihinqvBST5pUhEApNSrV+07ZNOOdwgA+CU0HCeUh33rTmA+Uo31lFdECBEMilloCvjbrwa8EP4rNidOs3SxF8OKVKXhQSHZLcbEr9N+D4s5dsm3ME3FZKjUgmsdx9LfKwF8O9hoIvy1JjXAG10REJnBklVA2DxvkfXe8/I7BPkluqDs2ABuF606o1zqZbZZjhbuSug3GeC1/iuGGahDJ0d5Fg68E6aybNkj0daEpl4XBAKMsXaYzrnXNKeqs3Se6pZvhkrbHzT1E8wt51ZziQSBnXuxWXKmv2RJSBN9/Da7LoIC+koPTe4ono8vGUPSJIyHGJPnshRlgH5pI6Arq3NW33K6CWwjSsycFVIsJiAUNG86P78J6ljl7paM9y3IP9Riuek4sacGsCivQOjXmuJdkpZkQwyCLGItdKonFFCcCX3sHVTjMqWEGPOXBWW6zSPHaf7c8KgIqSOqguVOhJ2WEoj0/DbLFBsEktTQRMTBVUpu5Q2SHgyZNtLa+b33GIS1vmiy82bX9AEapck4w9UJXUPsAzZbZ0cpjv9r+JaXWqUbYK7uxhe714T1BMCnGizlmNG4Y1E9RG0n69cq38aIGPb/ilWD91Ahi09hh6/HgcV8qGL43GNaz2oQcKG3LRi82Yp5vqWmEzEWp5kqAh9yURtc01Sm0djHzxnbRLTuh5H4Sq37mTuHVSDV9yM5Cvg4KImTLRedgZyViIOFD7LFfNXfQm75hkbebyX7jocMgs44EMwrxyfn7rIfjtTQ7uDgWsYFj2q1GZUVFXEe0YkwP+y+TP9gOjDBKHjE81udg4o7Rp19I+Og7iLlwvWFetETz3UesJ1lLUm4Czvy1cB2pqc7nbwhC9ziQ0e1gIeGXP2Rs0kVsfiV6TvTRfr1hW4L3xT//TowW1MT6bkVFfUDUCviecmPHDa2Emb6wlpC7EpmtT/MWofA5dIXZIww5Te2Vi1N6+qYpGV365Nkky/d5AcU3tPRanGba7cR7w7K2ZZGMRyE88O+7hJPPC7Xo+lKhDZL1PFDhWFitLRnFqUu4CHb9A+wRTdJv0b9KZp2lVJM8ZNmRRqUx5q1kq3iLlX6ANConTZmto/Dx3PMXhzeXYQXHp08Iuhvf+EGnGfwWPpv/a4Ebaw/anWk1m+NzZJdMewxWKQMD71mgn0ephNXmWsowiXsJwQ61zZ1epAkW+nYhmslGdsjnu0k8+xokcnrjlB4VRMO32cxRxCnlCfz3iB/SluM9/tWnBxugbEEWaemVGuy3lrDYBOZJ7VkJ/OKtVDzEobrbUgWVYLU2qfsp74uSgGrlcYNzujLzJokLDM4P1r/+Gr/iaG81Mk8LynuUYVLgPmFV+RVt65n3veOmf/Bg8kIQlOafDEMFi/mVr5zcMBYc1hTE8aqo/Q7d6Jj6mMfloNeTA6Z5UvLnkPXtUQ6cwMMQHp8dx5QvTbl+r0JLhjupO9kfCdaLsqtCq2K8ehHL1H1sdnI9HzyfpfJlCFwZxqwOSHSDQXsf9nAzKOwdtIl+ElkvGI27UDg/J2ZGqzglHnlbkWtomwkdiu8Kpzw0LcmwXmi9qMF5uBxyH1hJSPIWIHcqzkAJfzaPvdoXKks/tcbBk1BTC0gLfmIUoElf8z9IiEy8O1Jm8tkHAj6Rzm2/xkVDBgLBarQrb3fhWMxwFSo+2TT7DeAWRYhhpSG/vPZJVbUWLAM5qmSInQY0ZfKMgfS+SmX16DDyMMtrmUsLBodAzi+9wZt0C5uL6B/TMeZGJB+4n5HD/fY7s96k8k7wxfsIkpBkIMOCdT0OpH3iLBZNTdPC7RmA8Org5AiHJbfnHcg+OvFHg4u+loWdqnqeKn9jdA5FqJvhuTz2ovVbHSebpKQ0qvOkVEJfZF2u1zjmA6tZJuYlG1GCqoEFE2u8KyQP3LCA8lRBL3KbctHjg74i0sKthnnvvb8yJq2Ce+aRBReKuEulfejm54KGDFL/dyVBmcfHUmYSoIodjjT4LJ45EJIDRgmOi+hpUAqDhs9tawEKvWj8xaW+S4zmgFhvcpRYgeiT7gR+PRmN69IOAo+PW0yrKmzrq4/C+ZcN7IxO68bTJLlX2aVbaeuIYFqdpXFp9iPEbaK3JovSmzaKa7+Rm+liFSZHo6hokrxUUbtThHjsAdQooWnaPKE2L5qib9Pi9rxiVV6U5aB6nQUgW7jq0JZgUP/kTmW+uwFuyHLWA6LXEou45z9kwBAZgDd1yTW3Dh1BduSKBRBj08YS9XgPPzp/L5veEyFKYcG3B0ozOCoMxnnUFdxYdQGWG0QXVUJNbCcCZlWxlQAIZvlRYYzzwqOyj8yIZTdCFtoQgom59Cn/aYIa5pLvjsb4UVkuqKF+sRzM/UXiay9hgiq7N/EBmGxq0O7Hzch2lT7m8Ii3sSxxbeSOqtE8yCKAtJH0rrQN89JqRcTeX/pb6pu6DyDwX1Cm1FpV/2pQOrhGSGfQOjaQbFGrZugxfPTnmtoCa11dubHbf9pRRPWAg4h0F7QD+qqtcVBBtwoZ0DSTRTpmRnCcqkeUtGmr6WYH5Sh0haFd/wIVHl0+pmAgreNy1wFSMm9MYpUploVLbuRb0/DZTcNyj4retY4AxSGB4H9r9cdq2R8d6HWIpo52QvyRSRGzBqkYhYr++9Tiup00OuFkXGrYNy3AxtZFEwKKDeHt6/DKHHe2LYVz5qn4LG7JT0KukOmddcA5Vnugfd+YCRJ5hTa/HhknkdQyl9Pj88zgFcwhMqOHiGwpLRFOc/222gcmLEk/+1cVKwMEkinbD96qXIY5Iulrml1RdfrT5XXpzl0T4s1X1kiT/O3QPm1j7SHG+zpBNFQxSPwiGC49GpdxKWCBETq98q3Mg2rww2Ru5fcakdKaq7n2JHYC/aV4Bqtir+hRL2YaEogNn3CiPV9+bFtAqUs/6yfsx6wyn2P/j0mvPX2engNBGqEVhsZgnh7H1vFfO8HZNAHNFKO0WcAh5N8uXvUFltvyKdLG3zLSd+IydKH7h9dSpvqezcjZ1tEiparddv2GmHXvjsyX+Fbd5VuBiOlKWD0OBwvt6ORjmXdNTlQm7Z+5H9SAVoxJMTxl8T+heILw8jMrHZ8ZX4rm+KN8sB04gwmn62zB45/ZrL6aBMot6VI+YTdycOOkcu36BN8v7nnT6hspcsV4vhwuaqKG7rQCwnugkmF2j/oAyU22IbrScojNG9+b1Hm7Kv95FiewRe9tYYSfgvHoFk0TfHuBy0Qv8LJyJ1hWiucHjOg+paZYPjgbyC8/siK9FWsbiV8n9vIfkttfspYokg+hdWquwlYVCnjtK+RzoJXJQgBUaILbdSh7fOPbHzoNCqhnqv70BaxF0/PhhuQfgqdnOrtyBCuTteoxH+uwhW7sfS5qpMBuuQANVqPrjEIWl3eb2ugLX5CY2QNBIzU7YISPNMop8nAYVr8tVRjrXkYWp/ldBdq5OliJB4unaUSX5n7qcHR3hUvg1SYG+MEr9jAoUeabe/WrLcQyx0F17ofAJ835TqwoXrWbK2VX1rbT+1qwEHDpn+oKsLqfTwO5HYxBNEhPOjIxsXDu6F/zpUmDrp3uM8Ddp5gEGXp7lpB3qYDQoXQB/7jY1B3nsVZtGesHjitd0wTaN+md3HT32R2WkGLnjD4AiwmCmVI6Mx4PpMU9V8H5jdremwHrQFisudHJspk4iejO9Cc7u7Y12RuQyeVMv6ETarFmElzJ+I/NJYAM29u3yPYF2Wev8pjgbKxBTo3p62J7No3vTnywaXEvAfWHsSItF7UOnVzw86nwNLbDOcPKqgbeNPu3j2leYnf9OfDbFTO2kMtGQr3MEi2mIBQa3WDcq0UfwvkKWY4977QVgp4tmm3sEHXahJPQe3GvuhdwuTRhNT74149ox+Q+sYcIH3oj3+LwOvFD7PtyTVFcgiXhQM6XHwbND8S9tKzsErNQt38THzjZVCtQlEQrm2MmKLoNk+380NQ478r7xmlU+UEoMfSBjPYP1m6yuOp5XChZlxmIH7s5Svye0qNSGY8jc5mndZiOZl1XbWHA9Imk5kPLVyrC1fBihnVGp/qC5+HtKPuL/saC6RX5ImnbUeVXFu94SPrzxONAcG4g/iJUuVS4IZmmI14Ka2aXB2J5ifAkfSVJsEpY4PUWWqnw9Bb7ezzq21LzcJffHTyYPXcp9LBupmEHmIWyS+b9srZS+6A13paH9P2iDyUk/xKGhD2d2XXuexhK+lShfZXJ/2M+Du3qO2hQMmp5B5Kz4LphaQln+Iw+k1WfKtjinPV8svYdsZh/1OgbOx2Sk6rl96FRigyR5G1cJ+cPBbHf9+IfLxHqA/OlBvfNmppwHYfX3boUhM8s02rzmrQP5eL75qlIaOUSdVrZYBsZSisEOo7qnhiwYlL1TJB7e9bCKjOWa/wyW5Lb2xxxFExC0XWkIEcyqdHtCpi6zzTVEMT+QDOsUHXo1kb+sIalDmsiM7bqTgHjiPSR8r/FV7CtFcHlYqXvNUuiHw7R3qgfCjaU4s14zQzwpGQeYxBrtcmwipzWeApMNSw25L1HtousSfGRtX8N0r4hn20oMR/hb6uRROVdQh8rFQ+UuyQW36tsvewgYSnSaF08tAnbUNJ5fJq+lBLPlWnINjv7+MymrUnkZWL/4w1tek/6EvL3qbcn2ygMM5a7Z+ZV/NXFznGjcpdPyNjI3Ga3UrnNsQDskLBpKOaAAa59RSUyO+QyUwz+PXNDk9Qs5at6ZmZAvh/R7nbRxAe01WqZWMMMRRvQ24gIvaaK9hPUuy3klSjEq2IJFXlySJIwyIJP1DMa8HkcHk8Wlr9nJsBOWl9dDmPmuMRoPyNAI+2eBrajRcJqv8hY7emossuAFCK2vMRDgrB/Xtj/I2IadvvwYIlT28gCun6ZZZCCKzkpcZSE4VGwAxd/ZyNh5iUfwWiVFOYszRxyfQOiQQkyog6fjBr4xlJU45XkbIfVbDsne+/fH98lOpYxst79HM6Nx7jwFrLRHQJd0xs6WTzBxFdXzQJED+fC/llB1DXB9wjIZ4YA7AltbYkG3HIdiTdDq+oc/IYOfAjZ86/1MjtW6ptSmuBZXlShmkrHqWjAvLLug2HDeeDKWTlQlfDWUXFMYvNSy+u81VcaSaCh/Eqw+4HGOs8YsTioQOBdN91UsmrJEsVazSu79PRV7ZAqjvMz0QDrXT4HH1u7oIjiyrnEVoEnmyTVS1wUExwpU/zAV/L6S3SfZGliEc/8P2VnHtWD8HatnwvIptprH6PWM/WQgs/sf5AD+JLJdmZr0NFYAeygmkqKbJRSH/u5s00Mkre35a91F1x+izGVYPMilq+qkZTzl9n9f3whQWHpbU0JuU3ok1tXsgUVEkQwJ3IYaN6Vgu0GfIFIeP/juooOQmxTLh9886FYhmydzjnWQu7RnyvEOyIRXTRQQEpQPaYm0zJf2hefq7H0KOacqWjO5VaZ3a34AkvvCmdD0RST+mT2KzTSElklC+NaUmtnxmwMrcush38we/ZeWJ1z3HoteRjMXDFqOcHcSX7SgxOMHTf6bIgrZ6z2CeVxTmRJeQtUBmtc7vQivQ94Ue6fmKEX/TSJspv2gPvwlEecgTtIqD7KluieOox9vb4rEuXAB1j1gtFsZD13IBukpA0DyeYbWdFxSPsjSwmpcc9YpQuyVy1p+LnDnrIIIlXlIfJYH4mSJI5BiLKje9sjAVEcnOb34q/jKE6Rjw4R7LlDnxIEETO1WXhlSEKTWVnbqEnyhPXdEfiKxqekUCMjIUt3QtH8B9f5FsPc2/RhHrRZgFx3rxewanqW3hE43SQNwmAs2z/9CoeNbBS6RMdBqO5M8xEfG2D7KGT+s+tcHAUUkuSyIIIIH5b3+F6fdt5hioARoHK/mqujEZrIE1gyuIDyYw0H/2Vs1oJAs+xNsYGSAWRd3x/Y3+g7mWKwu0wEERdNOfobUzWxrVbqTIKru9Myzk5Krmyl73/ckulyU5Alo+sO3r2DliSOdBsqDBRqaGuxu3rnb7Xz68Fy6u04t652w97eIBAPr6qxztXrXUTVBTuZyiFX110ws9MYyycpOuYY9rLAUvO1QsgGh3Sf1gIsKpuxrQaO7AM5LfjF4RtOnbeYiiw5lGbebW2Uw7vvp8v9ZMLBhbdCuKTRo7OjuIEPRN3sAT/6bYRAJbkHAUyV9HP3Xg5k1sJyggGY60RNBH2QIBwHrphE6fR61j37HtHcLsXcW1pIH6qbBlfYJmPPwAL0Xmd6nd+Db3LgN1aLR1oKGn1KmpiKujfrVob6C0f58UwUNr1qrspHZMysryIRdRlrZCqaBBSIrDG6RFrwq4x4o+9/0W2NNzVNgGI3GwzyFcaFlM3O2+qDeKmWNEQb7Q0Aeq3Q9ZoiPjgsEz6FZaYgZ/bGX9jxPSYP8jwQS5Xl/+LIAWelg4DvyStl2n9RULWYtNwRWLZvzA7UnSc3yEJediFPVngtxPUgA0oPIjF/UQMoXFmhUiU+V1HE80sDCil21h6USWnixFGTCUbdvDsXb3wSgx7HBJgKPlaQcUh3NCFuv72Pxazf6ApUGyj0X4/TVB4ak0HsnRWmRfxY/ce9Y5SNsLV82O4LtGmV6lqiJebm2Jjc2l3+h2ZJBbdjhJa7YzBHIfeTpKBvTxY4r4RS3rwIlM8n9EJ7AQABkXI+TzZguHuHeo3+4apW1EyXGoBgMtR738WlsC+J+c2wTE/Z1vSFteuCEubFsUHilv+f6tvBNrHVi1jNkZxgHuaaX/hf1nPk2g7a+44n99r3kapYh4rBAuc5xzXByXtgyIXFdPxON3kx7YRuHnubgCRRFxtTnqLy87D4GmJ53ntTX2xP07MsoLCMWWZFHx5JV4zOKBK9Hv0skKWmjVPTkZYjZ8469fsTzCvrWps2W7K2fyE2/Ocg7T1Pdrqd3LI9kGaNA3XL2pO7+mP76y1kmkf9jECnAOZjdAXoP/J3ViJCjzvfQEaB/p0d5Cc3HO0qvZ84H/wjy/ugL8l0EJPqEfDO4Eq4s9XO6clFI5ZXShOYD822YqwMFRe5N6opw5jYBuw/7niPmKd+RRecuD9FwBWXEbTzN7IaTZQ0it4KC0AFmlh3NmAOHMLu93Wmo+y6fBGYg3Az6e29xIhMlyVher7pv+sV5gKbfUW1iyNK3qOd8SWFnxwurj6oWmX4Cr7pymPCp0DEM8ZKQza4ho9m2MWY91hE5Aw21fR7tyePgret9QdPyXZK3KJfIpGTVkk+nsXlLfpNM2d7pdaSfJVkSBvf59+JMMGcKyTwEuWiibd+EjfCe9L6Nq3tIXtmAcdbc/GMupWY/VXwA38hKsTY4abObjc6rSJzszkBEDKJpwoDpsmTN0Y7r8dtL5kt23LZpU/m24n61m8z6csb0L49aBSi2dw+AdhTMw+wPNAJ/Ns2hXi5DPkx+otPZKIX/ahor7+pKb40L4P28FLbGbXwLFEJBEntS5vfG8JdRHE4i9vUzQN+OxJwXT7TRwXX8eqod/LLzNavqk6HOYxkfVLlOTy13SI9s7xmjgsqv8WQ1Kt/U2HKTc35Y7mMIg63FD9vISme1mb7c6A9O6cIIGccEy463AmVB7mol+eO5RbGXCd+lNFINfm8KDoambWpKrXWTGgRdtbblAixGLF6bHVkLhHHk54zstxzzkl6w6N9Ssocopfr3F+gKy3NnWnGBsaAOVyz3pi22OX0aKzOhvZm6zfID+5ICuxE8OW0G4nZDWayNLLlV5B/RquqHaly5+ZyPlo9IizpoFcKXubhvL1TGEGJ91QdIOCqCcKyURoX20PeU1XRrlF7G57zYsfxBTr5fcaG2RvgBIkDuWeB1kld7HA8d2RfiBYCWvb04pULjsCFoRUZBF63P1xEfwe0Wkpu0f+B2pKqqQ3hF0ebmxi5IvBDK9fygfnamK0wCjHWSKdIYAy0X+gqykCFM8l8jPPeGPrdYvG0916I1ZAv23gdy1nr6tCBKF8A2PLwtGmma7rhpwoDDlj+EBtb4n+lW5EjRofCoKWqGaabhXvaeFUEiJ0EduP1kPI4kf3OxWsAWA9iWj1rJr9BLS3Vw7D1TKIRVDMrfqPJrk7uhY3dtEWMQRGIz6EYjHqvUYZmlPP+LKHLbExZGVmGXOA7aJTSCNZ1MmHYYtKUgu+4RQySEAwdmofxM3sKvzODbuTL9dZzZIrX5ovWxPtiqlY/HfI6qOLaUrKDmlS/5vKB8dnQhWAv1YEIy3ccebbp02jDB4xoo7yRGekK6pGEFKfg91wiCYAxLloJnfngxKI+SjyetFB7S3cAlHqqeXC2son8QY0N/0CcpPH7SqZVNCC+7JAj6ynsLwfCy8aL47soVu3hyADRJ3axMWCEhmZUd0w21azy6OtEJPry02odYhmNdDVqHHd2UaC9K1VReDqgKVn7XNvgH7DtVGBOfSkoQDWZkAZgpwsk+8b2/ueFjXITlRQ0Pl7JrWLVChbnCYmj3+LlW9ZfZlQLPT89PQpTppJRu95EDTFlY1rNf2pvK6Ok9fD24D3lKrmWhzS1c4YJnF89OkOriYHhv0GFmVvRFGmOGn5VFAhYCH2w82gHDLGWBjqQ1DUxFTMuLn0C13dLWBEE0RtEQLwtUrLKusKBQrSPv7fhIFnMYikmSKDvKXCy/yjB7oO67WT1pqQiYauwFz/egTTM/4in+JAWA3QN7P5fW9NdHTYfjNdGHMgi6kjUo/+gA7wb8nLwmqZgZrLeQdtPNeNrRgndscB8gZeqRcOdPlggWvu5/eMf1ci/6804Vjtvxt2VBTGrpfvTsJwFAskR/4qxtElU3Lez6MIS8ApSlzFkIxvd6dQboYP1WW1B+tzgLCSmmZ57tynUdaEazYi48nG2mXxqIQeSnr+rA2HIwqOVMZ7h//9PFPX9BmcPiSS9zPS5VIKAo1KmcPOrkY7aQmM8uigR35WjM7hR6HbAvRNkAOzAQgj3uSYDi9WsxTpah747RpzQAPPQSCdm9A98BwkBDvSjF1O0BsK/F0RRmURspSQsFX1cApM8FsvoaU2x5w8lBCGya+wJf4rrCgxrW1K9nxSRL4MVeTQ2t6ITi0r5mmJilFxRytK4AHKzmEHlPckZymDytwtIwEQQ70LyPHPRdu8jng3s01x96KO3OjY5vky9EuOlII7WT2RCk2wO4U+stjWBqkb0ytnWdDgwbfSB4mT0vfXr/rAN0wWi3Mo2aqUsHj+ejH0/YgrDlz/nOKCU1LYDXixgUoFy5orftA24CZwLUtPdlfFjKBqFv9npJu3OAb/1OhGeXEXAbcm0NH/yMlI6miHEcghJW4RovquRqrITe3Ge3PwwCDdPjhAFFN0o6k/AhxZIGRiJ0qUKHdpjdggtqN/KuyqbkySbWWHyFgZRfXxa6GwyYE5DBri3f0yLd8AtGcZ4J4MGRVkyDKktisD9+9bgkUZp2AcTy87ELJgsvCqsgwLo+IRsw8qokdO+SWPNpsAJHaMohgrBL0MuklF8qymm6H5jM1hQ7LoD15K+jmp6AiAWofhPVfuWW2/UMScJ2Kexqw+K+PDTIHn7esPd06iFOt706uyrBZBYkCaVJ4DNSBHwHKL+AjWmPWq/fX2VJ8tRa9ttsnosdew2OAsOYR7IbOIQqPVm26I8OM3Gli7Yi7O17yPlgNa7xG9C8O36wTixZs4FkEr8bCpIYV5S1QUPfQZkg1rcTvuY7p6K0CWXBsULlzaz610m1BkgNYWZFSoL5sp5veEfFOq4bo/ExxWnTPgbuEPTXx7J1SPd365Zk75W0MQQfyuArUTPGCNvVwEeitgWDEn4PUN/pEFrZe2Qjnshi+qux+ECb/hc6qOU1tBddAmjDwMF8WxWB6fP7UQxlaoCQjWEHlg//irenDsLOZ7+hl0l7akj9CyP4CXri8pKGEOtCkDXgSS2qcEatn3jfhPypz8KYkN7t/v+a/aXeLFBPusb1rSukhQi7m+3OOY3H7aFOAcbd6jQQcKEoW1OhtRU+SoRaO1KhQB3Sj6/lxpYPD/VoVU+h4gTPjU3V8M0Ab4Gzbv5Xc37Zq+Yvvbpqbc+qZeHnExs2Eka/nAPle9XLKt+DdW0AIjLAwvQcYTfi9bw5UYBM6gckSgyJ4NImVyBw1wElzzODwZL9twWTaACIbBt3oarR9tw2OUG9eCU7TJFYr/fCUyNp8Hu/93eqhPYqlWUyaGlC/26suKGjRulI4KA8fhuukthzq9gwY4OIT4a/L2TAHWMAJwUb0z5qJCy3hW5l6ZOgS7JiLot7pJq174f+6W7lZzuch3abUuj+IR2mrDqvixz2WJ9hsXcRZcaTWCyG7EZoiAbBrktLTMtf3umhGfn5TAlCmTK3piKtZnn1C7+5bMJ7hp5TNa/wiJI/GJonpzdDp3pi0MvGcz1IdC8yFSYdJAWzfHU2UnNh+whRMnkfiRrGVCWNCXYGOCRomMS7ZU641M8he+mP7wE0gNFFMDjIyU//9uq0jo68cAO5C7F2rmb+LzKXxI9hFAtBasJqTsUy4l4QFPy2bulYfpvOR+SrNu9XQ58LarzkWBVgDUTbWcSPSdvLE38L2Av4VbtDE6UGhBH99Wf93QVbx60KBvQxBqKTarBtXviEMr8cWNB66jioo+E7FGRr8DuTaLUkXB9/w3TIafmOapD+UJBe+XjNBNaOEFZCEgsevxTH6/MbmW6/rN7KQRWV3AjqoYmYJNP14Xqs8z1YbelNoF4u2G/tdanOyPZOYsmSEkrO6D7eNJB2nlENiqJPpiRaOfk26ORO+H4Fdw21+JXMK9sIjA/VgGmtua1MvJ1WhZVicFc5IYQzZpmFrQukPJMqAB4A1eKXsLw+PsWP6hly76oZW1+bkHZgmL+iBV83O+Yah9VKfkFGdeVchNsR/SOpbPzAzdVtKTsdRJWy6kNpiiCG62I1DOKZPXvArYtX+/iEvRhacePCX50syejbfS9+050NB/kujPDwQvCm5+rlj+9mxNHt2bMYz2l4+JZNFPC3+I01vhclY2vhHnHN/LKsitlJDTN1z4r+p7XmiqTC83j+rOE/VZfM7mWNtpOROMiPbBdg8P2d7LXv9xKbsrLzCQalTKbOTQJnv1wuDt4620iqkFUkrosWJLA8ZZC0Qq6GHy/gkAI75Qz9nJwssX2Yb6juHdZfcE84gEEYg7VwDHvzlu5fqfaKDBYcEGUrBTYwjoBh0UoJTNpUXBVetPN+1srtKkTXs68qf8W1NLG13DXiX2AiD+DDIwDuNomqc2ZOHykXvAMElM40s+38eFAv28uApAGZeMVQ1x0a5UUz+m1tInFnLpgzi3Dn+ZeqtvGHL1zU4xfKauCr5+QpTUO6HO0YPKVSfZy7RQfqecJBRLe71s0sTwC08pGGdr6aDoD88zo9lDi9cdRoUHAAGYySE4IPT5G6/2Zp3wAlVPT60DZTPgXSayMNA3bMB1znoq62LTi3wr8jUkFI5wZsqWVE7AfhDcsrOzslGxdACeWkXHgQKLRIwWHx3kyHkupY835t9YtxiESeHV1ygvqqmRRG+ztqsE8lyLDxNUvKikuMGlAfXTc6dUsbeUknl7bCNVKPkA0ZyvESgo2fFrGBTgfFrIYqET/JqQTeMskg6KlJl4wLEed943lo0xynIanxRdSf0/zRw9Qs0HyHAJunhLyd3/Ofez2+zprqmiAUrsKdZWF+X6As+tuiKTEzPhAH1JaCkqGbDKrtRNRfSF6p/TFN3gVOwFTtUZbHqvvThF/zTLOp6RgBeG+EBfD3r67kAKld5RoN7anmbK5UH0htSeOxUApOb+G9bCdxKc1DOd3DPjTgosDSmTQDjHCn6FfGjNrk3uCI9lUJzhf5HuHJ9v5I1E8Pp0Vqi7PRpcKFLXcFXsZngxtfdULUSbOOJKeen/mB/NPUzkn2eq4ppsFsiQsd/rEa4RoQOUvQGGrrxo6JvFtS/uHMB97Z1be9n2otdb4AeKN64oGyMuJ9dY4MRJBzhcNaRiGSpfqNsAoCtb3HHoUQWdOar2QQtdmmFneG6KjO5S8Z2+792/5+Uk5cCNi3LfEaosFntfM1q/AvDXchZjSz6Iagq/mj8t4dd//k56s4wrLErfKhmc8Bb0fYdvYYa4yvWbtthauneo045Bord0hMQPHVoGSijtnTa0nyawF2upO1yw878tPFFYTTmxCu20faYGTiBXzf9pCOuxpvxOwKgs0S0MXLU33nmlEnqvJUNJO5kdXmeVtXpXacVmppi/PEQsFoIYjWvJQwIo28CUNPPS8AnFtLmUGZn3l3bUwRJATpZgym/YQRmg6c4SiOTUrstEVk4/10bnwqapbSnPRscWH3uWYUGCnjMkdXiHNwcYDiv3jI6Qlj04JZx7nyMnGVPkegCjMPTMWeKEDSVdFwBLYkQgwLA4uV2lQ2kwSf+8IMqryFMgeymGhZ6ereP+J42jxeHXPRdS5JLGhPcq8sAK1WQrj4sUQUDQ26pdYznFtP6QYec4DZBTn+kcm2+PnNivibc3ITcUhihInCXXpCy5xaPYwWzi8JhIkwmRDj9g/h/rCAHkiwFGUBzHsPg9qmuDZLSgllGgsf2fUHGYTOzJxcGJKy3p6UCRUmjTsE7rD47QB4Zge40uE8NxaXUuxcOUX9wqGRBP/qee+E7fQOwGRrWaJPg22IfDrEKp1biuMKXo3OCDWfxSGYuwz14jhagcKGBA2oVDqPCis40DxIIoLeGo1ATtOpWKMTJ7gr6J++PlnnY7fGThh0/l4QRMA+mgaygkWzS8k1mg7yzH61DTLIvKK0C9yTELdDCqrfCaqZJYjju25q5o2E4r/ViQlZqKR2MXCgd2XgQd0SYZcPlEn2JfohoOdiC2qcn0K5RQvjiEsFzYECZ7l3LO7lVIpWvQHwCWuNXvtR5jpjSSfruq+vnIvMjLCbT5gjFjHMc9K7yH6GUQurhs9SqxCqzw7E/NC7zrndi2DDCZBjemlli1YchZxf9L7xo3gXvQBM1crn+4WWkcglSDEKrdt6Hmg/tvts4OuzO8EGNlxxpYFeKmLvziTbAXxbPwvnrRFqRE7w9lVdT9moof7luEMycLG/2nNXHWUlG7xkwi0xCZ2Blipv/9xhWJhSE0bBJ69oXIWrNc+ZK5XKbz7fUlQWmnupleECk8R1nnZbLdohMP1zZO2sMVD8ZV0d35teNrAS6CE136YC1UAzUyLPENdlmWvPYqOA6WRB1LbbXfuUgoSqEh+MiuCtIkI0wnbRBKf0kpGPfeZheuVlFGGONMiUnwZxTCy0JID2fSrNkNdo9vf3Wo6DTBa/S8WTttvap7TWFtEna2s6if67s9rjcU9m98F4A3xOIS72mFfzNYSVz58EnqYP4Huyi3ufb3SYxRdQGsr2kqp4GEsWvNVKrVfzcw04twCYdAqB12oQDER6xm7yzC1nlfHzb4Q4pFwoEkj1IQ/sRnH+6kI/Uhr45ucUhowT3EZqI/meTawoMibV9It0CmbsHYQSqUIlTRBmZo50zCo+2yMHn3nFQ214CWXOjJW9C+9L+mCgzmPLacguS9JpbMeaJ1dY2q5XVVIeOeeZJHW96r2Yg27/CTMgJ9bIjPhoTt1rOmdtM9ped9EWov81NHojBm6yDylebUm9wsDgHp15kobSE+udUJrniJmSUjhSB34z9Zd8vizwFsLGrg7+BYg0GsRk4QnSqxkh+rt09By2vMzAuCjtZtPW3BDyD1I3tpKpUj/CAedXz5RsD9eoutOrG5DZG1/eAqVFM8luKBZk16vLFQsNRXEj9EwbxgrT1ksDfG7iuhXqNoeBqZx+gijadeykgXdSYcw10tPSTzzZYTaZiJLZG3a0LRuXIr6GbffEBz1D5quO4YK9PvVNsgEN/rNVGmbMuMKCxXBobqX4JYnXWrVzTzw7jtEa5OOVg3bC7rJwfZx8w3zTLqi8MFHBjZu+JDZpv8AYZJtnxVj5mUb9+bip/XzK+NmKEPKbVRIJZ2rsMukb0TzmGbTTyNQoWY+NJCF4wcPBMZ9myY0ocdvRPtnfYLBpZwCFB2LCePsuLZG3f91m+yvWvrzOnJPBPOT9FNDpO1qtBN5UHtKq3bSDJiNVn3V/a6od3kbtf5RWrjBs7yTWbcl4wTalde6BBXoSxCqU9hflJR5tLsJBGU1SmLzuhApcGZeuQ64Fpen/wUU/bl2n/RVy+n+PP2+PTox0zyzx8LXG98HGT9dDphSbq/gVLgcwA0XnpURLA6xvtALOk2SnspvFfY5PbKn6G0sxQ+1QqQckiP2IL09YTa/q/NAbw18xhEDNZ9gWUX7ACJ4doEBdg6sNVAcb20tnkLrYfx2nrQO2C+wG3FdT3c1M6E6zFDW9NIOyV/uTmmL7oA/r1IEXIRQb8SANz91zRfIq3VHF2LnrTR7N8cYpOOZaBPAr/aE2sUonn+4BBT+p5QRF0uMEwWXA1RSCTAxJ9GiI3J3MIS1/eNVLDQRFt1A/UexqaJgsGRxfPPZY8w3ekTrIccLNCaWj/9edodFd+JjgkSv4n9yMU74ioKC47f57s6hNod5oDgqGLZ+KZE3mZh02srn7Sxk9QKzAyn7VHdPTvy9Ha2ti7UiVBrX7oRphUHUwC2B3Ty49gA9WcPvXRQcVnz3kODsLHfphQcEYG+DnDDsl/k0uDUGOPCvjEbM/nnAJYvruyA9kddxBm4f67KgYg+FuZ5yPxg6MGxfLlUWZPFcQGbcpHUsLCRov5m3wAt1vukIGwa+45osL7lEJLhFAkS96ombcQGULoVez2XTp+R7yNgcTdqhWH2+jhg08LHzH0Hw2S8hkYH/82E8JdpMg3sYvlWH1SVeFuiF0xpOUm92eEjbzYMPBMgwxLvQSNHsZ7z1rGsynXgE6V3iJWxAjj0wbemkgbydGzNbr0bHNEDoctNtfuDUkUwlIyQsEFDVmATcy28ERXKX6siQQQkloLySu0WV12cyV03vrvwM2Srfiy4Czzm/dn0oWsTN0v3lgEOXJna+p2uDYSpKginDVQ1IUby69/Pd8Td36wHDWEkk4Vj5Pn4HMfa0f6oECM6mICVpczXfa3Asq1sd3lfME6n4G+rouwDOfmWH150bM3mXJVW54zD7vgI2pGqP41/0eLJjVD/6B+44IU6CRrCiBzGe2mYrQzabcwIsu3QEvSsp+YVtUhI46WF88Ikb7iubO2KuAlRDuEkt5Ye9OWmWBfC3P/TYvpJf+HEt12SoiUU/mtkq+UFJcOWIgwWohUxiVvUHphC/XlDpV/i+DtR9yJC8gW3Nna98Nkf8CkzqwmTsoZfVpewq3aLnt340hrBCqxof+HymuYCxl7MbIvJMHvnUQhmTibXuabcHBzcWfiv+0L+eEY1muPpU/DfUBDOoIMH4hW/nM5FkJsV2VPijGKTm4F0ttrecXuhKM/Ei0PVfaU+17UkuIMdYBdQxNhfU0W0s4qtmpp1pWSx3P5CnL20jejpwxw4AMD5NFouSOklbfabOXww1n9xaaiw3i+xrkL3wTwIYai8IstYD46oTXjCHyU1ZsSnpTt8hzYRUCRw7BhJp1sGVZJK9X7CiHqT98gsCKBfiM+wk6i39AGJJfq6tB9lm+yozBuzNJD0CQ+iEeKVzl2W8PMPVxtwXKoAdVNkynKpxFdFOqncUHvBz7wj6QpAaRgm0S8sdJ/eBJ2anZV44BDyMZ/v15v3irtl3+jUqRow3dLBA4uHa0CgWn+d65rYKRFPfJIgDJMltlCm5GxYlIrCzNfec1WsnwcAkQ5E2pCREn+wxlK+xZdJS954p8kvDCvxzqX3ECzy16Y+UubvPMttZZseFAH1ckLSFEUCZrdNuhj6gdbwloB3Vyp1FDXtU5/uMUlfmEhQuiMWtJJ1mgcJzo8lP5L4DnJ9LGAw6KlnDMaGNDXoJgFqs8KmxwX8j4mZ9avwGRpTnUKBVa1xoOp5FitHlmKyiS4UzoijD2FVk5fspUfwgi3zORNc3iYDAE7Pqrx9t9Kv4B7nixCWhrQrAM8mQGUzxeXVhuCSR8Y/8Vown55NM4/cenM/qpxNm4wEB2ZanDZaPZAG5GLU34+Ouoqow4G00Ctm2N5IR7zW8NtCsNuBb0meZb3UjzN2P4NryBpwxbPyFcYfs6kUA6e9GpHrE0D2zpFhisBlC1QndOdzQa6PRmkR0eWb08h9C1zuij3ouGvw5Lg8VKKD6xzKDRArjR9lVBAAsbsc5JqmPMRYgFK82ayOyddbzB+YhOeYHoREJoJ/FLFxQK5RDx9JwZcomlrUMNZ3vkqvkdI/syDtP0HUb9DhJw7qo1mFaqxySV8skxy5rgTqlopW8J/KTQLhsQ1+80UQeCXCPc/ZyQglG0IE7WIn68LZcH/CID7y4K/bgYmkLurGtpOpKYhLTJtKaagaAOKTW1QoyIPVfFoNevNdphziQX6fYdNWWnUklKLV3MuCAQEyLoMLdY+uBMVbrNt1wBq08glMoPBFt4lpI1L2yHOfavvfhgMR3MbwaFxo1bni7n5dG1CHdJMKqs5+2sRhfvGHA3G47eJTsPRRtHBGwbO6lKh6IrY0L8cqzvt7hL+5juZHzTs8ap/UxCGspScvHQEUzBBR7WOi7iUZqCnx3AroZWyB1X1IPu278J5oNsTif1aWQPLBcGpLsTGXoa/GqcWwfTQoI46YggB0s99mhg5PDiI69CMbKGxDGY8eUprs7HCstc+v3HqOHBPbyCQv5/jUKIW22a9hbMCr+w58fJFEQsh2GvN5J28aIISPYVnRqGpmGoL3YRK7Kk1NV7raWCh8uschKTXmv4yE7u1Jd3IfhbkLnH06zupkw/3KDbni0fkp2HEIh8f8t5x+in8tAg3kx7rYms2MgO1fuhgiD1pXaAgnzdgg9gY+O0vPiODbS+mZwIdltSWExjgrkjYaNmV0qnFLlEIU8BP0M48UVlzwXj4F7XrXUq4Jeh0WYnULTzdcLj3E8ptt4pLnq4xgxSvOtbSrbVXbq344skDrEwe7q/MqasVg98duP1Z0PIXZvJJKv0At/SJ1VLHLZSCShQmVESDG6ag9sEWZ8Y/V4NgknMdCRgNvW87v+tlU+OoxAsOOIpBYyegZK8sNKIcSuXyZ1BnrBbzfG9X3Pe1xaR+rS0OVcaTKsKpFAhudWK3ZHDLqHrGFt85CqshjikmhkMZM70cxSv6otTdP1PC4VGrcQQFPjMOPntCN2RssRglxTKOpnchujWTt9zChpKi9u296BfTKjxQW9moyWbUs2rH1I8M8i8NTr9LemCc8Oylk0IzIilFe5lnvKaY8sLnZTZnJNv23y8+NyxX/71M6A29VUA7L+sYUsOzfiSo+9vbjeNEKmftz1DfOLRjm3lrhU0E7fIFMs6XHSgbDyNl81NcsjAaoYFHrb5m2p7e16xhnCFu6yTqHPcYSuZjKt3X3sgEcVCL2sIkRV67W1ZTqwQJvrEK3PyUVZ55qbLLLkMafAVu6fw3HDHgWP8YWeaOSlYUZ1AesUaR14kAlOcOIjprBbah0HPtn6Ef5tvc5kjO62xPFqM6swhxt7K0SPDFGGdenIUCUuwLZ4K5HZ3OjtDtC6kIUCJSqqEsexayekyJ+rbZUqQKx1X9ycE2O6Th5BKMyio7rEKOxdxsZ1JfqREnaZQoKxz5C++p+dJA3FBxBHYMLsu9IIuhGo+huRzxh0qSw9/di6NNXL9KIYQasdtSPeO1YVVwjUfAcyjf/p2dzOaDkCUhvHpvhOwu5zLCjG3Fv2+R6GGAY4hmoaWuXuwxdyY+bSm7Mc5M74X4y14j4nupjsUdAR5jaZfH2tSxDC61d+moyKZ0tzdxP2gYLt+0eTch5Rbhz+bJ2U0FsM2ihQ5WQOLLhbUi8utNDWfuKlHAj10y7tJHU4yM6tF+aEU/11lg4r4pqeOzxYu7F0mT3y+DhdhLCmeOfn4+mZCfkw7e3vqIF1DTtH9GoaMvitWMqP6QxEs8KiCpOpa0+md4P9pVOyjdvGLjaQBp/4w0qYy5yLKfiRu5fSKVaSiZudj7bohKnMxTahrtt3rFVIUCURTwH5hU+HqMwD/6j89+hzbwMI6XXAmfFXR70lc/AEgVwwccJQ7n/um7sfJBTpF3t7HkcbNV+fYK/uE+dWfS+zAGJI6WGhNKBhT3UbxHCB1WOgX4YCJhGuarIuTpr/7IJF2OYZKBLVMvP77aa3uUFwWCh7jjocOSIEg8rRaZ9NwS4O8syD7+9HyS5LF23LtYd+M3k3pXRYzU1lsRtCjmbb3nU6hvbc8GgV2tfpydAmDBlq8z2dySqMus1OIyOBTmflVxv0A8rp/NoMvg9Q2/YxsO052oXNHf3N6k0mW9Tz2s3LgbNJJFom6EIHAYhRAwo6uc8gYaigH4GHAUniu7ezyoj7s0rnZQMp7oefR62kzNHV7LXnMLi2rwtkSYcE+3hX58zc1FbhrA+FpCwrFJJzAdGqW4KG7AYD/LnRIa5We8EHivPgMXnRkAomiQh5sn66lcNE5JdGBKinal6triyo64l0hXqyLdZX7uLWKbAAgQd7N0PLAw1xoeWMGYn6/CB0N+U9hd4cME7a7sc+VoBDouHx6S8wW2AzPEExljCouklqhJTmKXOKDvm6K7u3FmzolAF0tbb9JrhJ7NSFWRkebNQOr8nuTztm7RkNH7vpS0PXHCMOefGL0J1dD1tIOXRMf73uMFX3XcGW6fKb1XnERZMtZE3ANZCglmqA72bvbKf8WcSriqDTlX891EFlHGmWKPK1Dh0XmonfxnfY5fg8RGoPCyvtTBTYISXOWGtymyXh8ie8kAwgdCxxjeeGVr0kHOy5Bf1eb+SjEojDQnGCrsyGiaPc/cDldIq4/aasMNhJuZbf+kiTJCMoYP5g2rQnBu54k0CtDsi8Vg3ifDG7HhO3kzLMPp5sPZjgZSpc9OmE/sPxOA+OJsXw91dkYJMrirld8hAh7K8oD5doxRndvCbiGkzkkmyqT0TeMbJxOQKYLkGId8bsO/3q8wMn60ODyliXeZItUKntxzMxx6MkjLPLHp6+u0uNN884qjpxEnZ38LPUyD29jmFSdvFHxXXHGOdrZdYyEvpqx0bfa+tdThV+WpO+cTeXMeVPYXpSQrjsratCpeBA2RWyGDgYuMND6KbwCL7NwgP8w521GdCjTQUwFzu2hlXtG9jMqOJkb89KWDtv7pJXJz2KN1ry6wIeTRXVCLF5NpiWIn/ysFOxUdQiFHmdiWczFWUyD+F9r+TBh1/cvDnVtyOW2dwUwgjo2KI3HM/NJCa+VA+MBhyIoVRE0wwkPxpDVPCHHoiGyLIhH9hGmL+3uvxaE+jZW5hKuWimLCQ9kJFFpKPCDlJE4gb7+p66ee2g/fCatZ8GiUKWcrkD+yXtRb15SyZi0bGLBB0WhbI0UgYtgaGFQp5X9KJ8t68QC2+s809ZVmcuxaLXyC0J5T+thtBhFL2fCCJ7CiF/vmkAABaQ+LWFGIdekt7X05iYfUN3jhH706Xiu0c5kamq2zX6orJ3X3QhnVDb21hkRNmszySqOVAg/2Nhta+hR4SMsMDqDFYYZLapptmDfGJ8nCtYE2WvpKus7m2vePCWKL9GJN/s9NRnMJGcrTdB771txttrAWuTF8ecglZ7Uxj/TCwN43RpoEFa1XtjacKyeKoNs9wtM7kRPv5iqVIDCBxLia6gjEx6H+u1Plrte+WmS3VL+trL4MwDP+h98yRkg0JAl/YtRcvroNnRVyKOJWwZ6vZ+3Uo3DVGNc6QVG34HS8XWWgIGEGWdGEEjAV73/G0j/egcUQBi1PS9sTpuDSWmRPykoua5j/PZcIhdg1iWV6/meGpbsYZiXvAJWUZr1TNYq5zxZkH1F3iMa/GiUm61Rx5QgHgbA6tsLLA7Dvkh/07XUmaqjgngxDbYJX5IA0fR+zc21BtHjofgZJGVef9YPayzB7NAuPi2kn2uCUK8n1S4MKvPihWtofkHPgecE1UrrxSgPphKAefoSCmhK63R5vTF+azfUQcKg8KOvAy4efHkeNARzOq9bfxaZ2vvzIZXTUI2sm0Vf6vWpKnA3d4jNU9k7hCyFDGYhyhyiECRKS8FpMfVn0yotbh6ooITEn+waXBOqUdqKnDpLYMXKwRb5gBBQ6ob4dkYhKXgerV/XnDiCPYrZkC0/mabXlnLzvNnswp7U6bAXilXmklEX+yR0aBg6zmGRsbVJfn0Yo2GRT5uB6DnPMddzz8FVu79ZT3i8GSNvGqXE2xUcQj+u2FVHFbMWQ0Gm1pdrZr5KgmYp8Ll7eEmobD+YMDcNyrlSe414IYGkZmP7dUY8bvEZSBpKUWd2hCiFzo/tG2Z5DxokkiRHxgDdE4957dF8/e1Ef0ml5s2FurHMOFil7Hhev6HXkH8a1aPv6PAVwlgzBez0rhdQ62qty+CoQP6YbnBMI8mlY/Tl+OCvDdrh1S1EwJFMDm9XaYmqaDBBwgJUZ0ek7lIINB7+znXfRPaEhmg16EnSMSbNkbCxgpz6vdt3lqZfDItAQZLYPd7ch34zC04fNS2QFljIB25zTDuKSgfrYE63y1OxqriCpeipi3QKvR6WVmXo2mvKwZiNqcqsZzJT4BwWaXACbikt6mBAgeziBDGsSaU+2CKOSb82/lb3z8f4lXz2F2kEf4KhfAYOSx4fFpZWSl4L/4doyh9TfxIgEQGjSGhlIhSU0wEmgoF2en/DeeNNUAarDKBtN3a65PHanD9x4LUboNu67CLilcONWAKbQ7TzbGteAaVd9ulh+D7NfNVhCANMJRCbUpusnA6dhWkSnBkjDGi4TIuilygI4q2NfoBwn6FipyxJfGe726BQeklxW0hqDn7aQMW/0YeH5EyZ+5z1DcZgiClK3zvZUgBjr6bh/c0RwnWoTA0fLd9lnsTougmlpOZiyBDYDSV4cN2Mzwp3mb79kDYHxkSKrp67LzAzYr44ehoc2XxieJ/RVsA0CpOo91CSFQi4GpRH4SF6Iz4ZCDlpeoqMm+DmRMX9BmJSSOrd0/FA8YEuaAXftO2qPBmSI5C7WA/HLGZ+jRI1Uu5wvDX8Rc+kh9+lqEWgGPAsuvMuN8sCjLvXnlpaiU7PwLHe0sgZejW+VeTGYD+KRA48b3F//mLgb5SNh++n9Rvj3cQ2z0NKvSUyQsbqo+cZq3E9+pF4TlObONdmSRzIi0a40cF2KvPST9P4Uke3Ju/IRmsXMPtAH0TrdA+0TqOGwPEJw4AyJ5YXEmj712hrULM+lzcKcgK6KfFl2dI8xzVygFHzeAi9oOCbvUQCjV/1mfZHM7rYWbS8X7+XuwXD+80xya0Qo8sZSjjilQwCSGkwmrAZ1SdUd+GRQikGfPHHWfjqtoSG5QJfLPd+NSUp6Ukuvxlr8YCY+QNNwK27hpLvIiipeYbCTuVWwbPNitK7f1ODdR7U9hdnA3L1jTG0hAC8aNDmKhx9lVElxhdV9MR6kBgwtxp1LkrqlKNU43aVvToKyes3/gBGX46D4U3pkAwze8Vm7NvBDxNB4GmtbwB2vinW3N9rOcFHkTJykatw0LFn727MOpabgHUSNvUK7zpCoQl8JSVPls+a22sfR0t+eD1e/re23R0XucnlRgUuVx3xl/LJB2hjqzEoAhFByutNs6sva57Xo4qxIIvIzfKNWgo0YhblJNqx2OaIQuZwn0x+RLVQ5aWB2a3s2edX1WomI4L0EuZBcrYmrDYq+eVKME/y6P7qqDUxBz3LFCkCUNyUp3jl30JTKlIVpQd/r+uquedhYScCLQHfPOvVhAArxD8BIO9EPUcFUNv6SXRs3BJoU48wlzVG+JrUvSCEJhYuOekvhQuNGKgEuct5LkSXo51mX8vqwhY6LoQqrKm+1fQtssGQ1hiU5tNGJB1e1Xsz2ouGzVdN4FWhwuSntn8aupU8MqgASLN5QP/yguWaVwKIbA+qeU2eHJAqsT3MD4I0dGdEoAD+NNOobFDyrUuUbCw0Kj4arU7i0Y6SLyJ9qth4KzWXz2SKnA+TXJEKz79NF6/nWWrmNLg2/jH1tbrrSPv8nBrmz4pAgy8n+qHCu6dgO7ZJD6Rr1YLUdJZIB7CyyVKD6IE+lWCcGq1Ip7XdPalBDqrytmC6LCSj/j5HJVACctm8dqSYfe+qV5Lx/O0xj2rA1S8byHL4BZK9X/fQk6xGGj2J5LR0OX+SdP3VLvnuRhWmv+QoKnnVRbZJbAHcAym+TrxTVBPY5rmmrwR72OQ88PwYiPmyxLECQjq5NuLa+M/jJx0ClwN22yUOfgZBdygV68J4mvtrNEy2ifz4IZmiyKSHwhyLqe0sp5XcYAGctpGtiW2ENUgcBz0zUYPqptlMGoMRmuH6y0cJVUyEbuuWEf9yIdENXRUP29PW6VygGU67uJ1sqP4fPgTqiGwaHbjOJYwerdNM2FelOcWg5g/GKiK+sDEMqSMBXJ8JYpO0fY9bqNImB4KBrtpswYOF2p4vJfhmRo9sF1/oaEeusyeWywGR7BDoMzcw7nncMHGNiAGYQwsJQnbNoIP7i+B9CEBMAWiHTISvfWreIF+FYYPUZXIM4ocMR4Tf0XgGblt+lSPtrf9FfMOlxGeEMmXDATKagHG59N9SFtsPij4UgaHrZW2OKfiQzangWn8tE5gN5uRXT+8uTQXvMPt11jj3iZEr4lLgS0+Mcwi7jW8QVwbmfZ5R9HfJ/aauhMVtFcbdF9xj/BUDmTQbJSOjmitAS8NhS+3IG5pPXGZXsI5xIdHbIUkLqSPKAjM6fXAwRgytFb3qUdGrI35empEHCKLbx2/gS69rNYZcJgfwBHLA2byIK8d3B1gqIT66Kdy6mlW1k/uQ8xUwoHCR6eI3Sh4Pm2b9VxuXk2eyGGGDfaOE+o3/c2KVOfBLsVyuWKZrJGTPncTHb4tBCexBxiCYRHxIbi07GieO13hBAmL/3kmGhAkuzXXOprSpKbjf6an9tXYNEaPQZk+4OHADMO+G5pTlhu5aleC6lSN55xkA3sCNAr0sU89tqucZXSayjg5CBPN44jM9CHliVWOV6Rh/IRoNFqm4Z8Voq51yIbU8EnXLOfXr/cu02dxzj1VQnzUisHVFQ8q4ZTV9HbvYwbTt/L+6lgNvIarX/GvXX4x58sVfJNZvG7ghekJMCFwG4W/7nJHjU33rXEPUG18iUxdYtZumvD18RuRycd7exhKn8IKsZ/+3MvssmMJ1lDyf2yXOjvzi9o28Oq3K3eozV9FDSzEf9a5Ul9DTfCzDEw1c3jSFoCQWQG0EIQswS+nMHDjSiw0/IFTN1tCRvgJipFRI+A2zXCOpLJuUgVy8D1WscwLOE3WW6uHN1Rucy/P6lT3maEBBgtvjmQ8ZAHR21sMppw35lMSIlaMsumbG1zGQcHveAyGpg2dMuTzb+3nu7VP2aSGOGNmqUAHEVCirb+etNJrRk9JGZT8yj4XbvbNKbLJdXUU0vG1zQWnCFo/+VM1LyCr7Zcuwqucf5ylOb5pbwDkFxVtuTauW75OxRWhdygVKyEvOcSzrUXb6ZS69pSAdsFcvenM9STCHLeWV9A5kCmJicyU1yXm1ez2ZiCKZMoWIxbv2OiA3MQSlkyjpxvf6Oxjpzxvrnst3wC7OEt3k1QtBUbqCPMZDV9AiTJNAH1R3Etqdwof0EMWEwJMwpJ5XxjsbsHA8j0u6m0Xhm4oqHGQdLb0qQNmv4DmlglC2Z3ZY09W3AA0Ib+cR9T7dOqRJ4CBXINU60lA20bqCZqjxSGwSyLk8s7Tv324EWzbfXGb5CuSPFvqS6ZDHQsxw6PGHlr9Kq46CErN4WcIgcQUDkbBJAAub5ztagskiwKAjjhW722Ipfc0CcE7F0J1aFILyXaaWGn6kOrAfIzvwkwDlaNszerz9Kj+yjFqIC0R23dVCWqiD4NI+EFiXrpx3pGaQB9INxou+2IMGi0yd+i07EgqVB+o6p4CtBvgEbcc16lOcuf+r0VZxgjp/frnoxXEqGNSgH65ICUBz5068uJ1/4kyMlxx9Fkwq8cjlwimg60TvEdyE/Bz3VWctaQQYNNlE81wvqV5WB9D4rRnsReHJNd+1y0LV7Ef3Hx9QX6PatIS6xCk2ODkEYDX6+zqJt6TUv3dCR1tWnySpvxXMWNoCLLY+eXvDWT6ea0cYUb7Io96c8RPRj32/kcFB5lLL2zM6GOxM28Q6PnPND/nsZR1fop1wqMb9W2a1TRDSzRUQ1CBtNjn+Jy6mTdK4N8eBRzo6sWPfwa9f/2S47EFlYde52j/FoC5zZB/eCrUhUUZmt+6Pd1gjjjcEsBbFoHgD6DdjHkVIipG8J/W3akB8ySXt+y8hyOBOhKoNCR0jSzcOhuwwP2bpyyDQknLy1zhA51R9GoJTyLkFz4sdBdiMr/FHJStf+hHBOk9Aia8vOk62js1rwUNe5jdIbgUemcd5w+XFW36BHEAkSwPHATZW0eCWhzNFvP1Xxa+Br4obviMXE4CGsfkaFtGt3p3n/pONyqcQSi7zmVFpyrOPpwl7WcXt8pyIpfE3jY0F9iBeSXZ2i8lK6qJOMWfHX2CCGltalFlLg6rZmwUhhlcdxjxAx2mdvrl6dH0vt0a5s1JLlvYYe71lZuG8YR9rEA08yH3eSlsuZre0SK8ZCixazpeukX8OZetDL/EuJUUh7BLoglnPZM4FlIZqV9U1qgkndhKhnJzU9vNDVKmzlVJdFe6hcZG9bvSbf4TuH1Iqp7gDF30Wa6jc+70FunbbguQmi4NOhDWoOsPmlmGIKFjnlIu37ZjB22SRKDI9RAd4nKAQAQ4YNE5CAeeT9WQ3JbmB4Jk5A4KXoZ6JiKUo0yeSV5+fEc5yZB/6ezLucDK97FzN7c3csUVtXDyO0ohjHDTWV8dN3LTR/VEkiD0Yvxi+bMUBnVmbE6cmr0Qu9DqxyJJcRe6kHLBhI2NUYMiPSn8g7/XgU3yJ2h/FdTvuNqdb6oHtbr07X2z+l1CvHGUJx+sdwFLOWJikOjeE5SfmoU77nd7A8DBUdqCeWkg9kYgJGYMTNvQE43LPbUUO5mjnNJN8eIvRYP5SdF4OSdWjsX3bIMY5F554NxY6TIJ+N9U1ta6aI+OO8dQA7TOKWZF42Os4mJAWMYslowAr2qEDvcXwjKxxCNty0YDZrwYUgjvt7U0CVTWpimprZ6YrIw2tfolXPQZOyS17ZY1iVf0MooADqA5CWpfl7ba1fl55zz3ZVSxssGrjFTJ3U0BRHEY19UP1BokndBkB24DJXCPs5GU6EhCescnCJjAQgoXwEqNSsVcw4uUtU7lt265wNcY0tg+63A6fLgpo+ifHYb+gb/1+JO1v5HoqEBL17X20R5CyjrGktks0Gp0bLG/kJOTgmV7EeAJevGrR7EJA4bWginfCjl17JCCvpk0q3C+eUyBe24KesrQmIueoKeIKMFpdsGgoe+xfN7Wdc5ECARbvcnN9Y0H39vFQFR3AJwzEK2Fdtjcb3EtcoZ9r677b7joB+CpJFnJwEyrmc7VKNweoCfE16gXJXN3G9yUX9dj/0ZStePIlSYvChDa0P3EVWgUAb+urHKwecAMAE6lTI7ABY2+BYl6ryq5XaHGcv7OlsilvDphYMStOXZrtmdMkDrElEjYU6qTzZ3b95N+65yILqWmMvE96hmNZbmIgxCab4zg9Xpit4KnBNtN7ZX1kcg8n+UWS1dDXivGun79AtekVCySq9nebbTGf5w3uFoZtPk/W69+uCcFE0Z9OtqZPlTCOk4C8uc0ePttdaLPW8ixPlDE0ucQzQq7xUGPhqBM2RFfVcl+9759oPBOirwtBR5NyxsBts1H77T+pl4zOCb492WxTDsC2N+cT8dfxgwCuDplT3BLgU5Qpeq23zlAZDCdxv8QJQ/T+W5qfeJhGt0YINgmpFHuHqAz+Nsw2wAGVsYTT/BrW8cKt5jQL1BHNWHmuotReiu44W2dbS2L2SIz2+46QUna9pikOqZYaXTj06RyTU4kisS2Tw0niYCKenGsiHaT3WtAQ7j0svPWJtNktZ+OeOYrNqGropznWUMp/eDAu6i2FONGQ6TSOYmOn4YCuE2ustmhCaeZdd7yxuFJ3CmSkVOVjwMMn98K68Hz6Efwa9OeVkmLd4FRorBw/Wt8Mji7/tw5ql5lKtcCJmxZJE+uJTbqtD7GyqcoV87qImKCLqyS3pR6OeaWZx98g5+Qzii+ZwAJYiQa2FQ1o4Dcg4TTBIWRqiEUf6mjyxD6OT+Qhv6O8dN//39piLNNx5n3cp34gmYm1gxH06AhNpSDRd+0VLraosmGLJfxvn45IXVpEsiuSSpqa4I5SVsW1ZHUn2W6TNNTUXL1cAKy3twtgH0JQFdj3NR2yymczD8KDi25Ns+DsqFfjOQH2YFm3Duus9SJbZqP6qt5r/rk++hrr8Um1yxFL0/rb/vf14HYojLwMGn3U+o3gXmLFT+19iSFM00gzp82fwF5cgGacOi9cuJ9NT/d8wel9/t5tuL9HkGyot8/vWLxiAquOiM4I6HCVQDkdmFiEU7rqiyUfPjaLleCGFFppOPHxvXmk+zZsH1vHdU9zkl5To+CFIVxPXA8xgKD6TvtF4w06f7f0PBAY4mWqNBeX517rdFZTNqf8cdn+akHTNUFDQe10ivy+uynlSIbWlqnQedxwiegNi0si8B/cc9kyrrJPPPmDPJo0tOAyrAD7hn1/hkB6kqgaM7IwA0pFj7XkZzyoa6cA7R4BheEHF8lg3g05dNLOIaCeCcKiuYr2l2SXEnGY6F44t+xXJy653EiNV6INZ9o6D1kpBfDeJsnehEsuoDoo8NS6kHhN+pJvnM5uwIRyQcjNsW9Z7mlr2/1yCafXOdlNWqaPYCj9adoraQ/BdCrq+A4XV6ybTcLUOGFBwZpaflEcfIGTxC3FtpyTX4RW2kv1caM+himcYT0NUVFALDmhdZciNLxmpBZC8dT5Hq0UfQtsrYi80uF/hommjPWbPQdmO1abQfCXSBj3Ozw9NKxhVyeLuSb9DD40LAJSKp4Ex3cOzqvt1NRp84nJKIXZ09fNUPhyZAnH6iO25XDmakfFRdIfOZn7v9mELouzfbWqrHBSBXZCHp+2wFoDNYXewertS802PELDGGSFzPSqxKeEUSqo5q3Nq3E2+iKX0ye790xaxVk4UYKSOI53ZAraQZtXzy0QWYPUQ7fyaVhGXWB6ZirbgVcwfzpXseB8vuWyQY5SQxNSmXwqoiBvxt7Q2VkRicDqmSouPuACPoPlN06EZxyOqPk2UeH7ucciEqdPbiaTnXl6T7ZyV6J4aT/xjT6rohfcKC1Dqf9Uhqh6zLqcYsAsvW8TVeArNnXj3t44Wva1yxYmaxr/xYtq8/ZPvnOhw2LPgSNfK7Zj/YJIXhj2qlej9dJAfuE3xQd57Rwhol1thwTdIKj8XRlYV25gKPGAz0z6DDLY4fXMVXWDWknos58CJ/v2vcluYMLDOA3Wn976cKIho1w7flEFkURhwjA5nngROzE2C7tRABamCo31FSyxk4Svp+y3h7xC6p6LpdCFuM9CIVN3LeJ1dnK87YcmHorXJrjSL8hZ21OuPzNh7UIpAmcdr7pBVPxao0oe61vbYFe6WsXpmgDB8UL+Qt0SmBzom8PTekgD4y5r10tkCGC/ztzelqFOajEDhQh32FgAK3dNQi8L5zAkXQDRahlpRXihMDnA9Y2bFeCEU4VWNZjaUNN6LC/mkuhC61p1Ex3IdsdhV/SOayOwCXSUD4Gu0w1WEIlxaL9pGnma/ncadzKXsy5yu6UXlV9xpiwPTiZobGPWcmm63waqN/BNOO+aMJRi7ah98iHI4uQYyza35HioiSPZbfQVVg0sj48ImTP/gn1uTGXm7PWKNtwdHPGNKkO9KrhFh1FXu9tZr2SwvLPzBujb7p7SkuwuzGOdzbeVraKlwIZw0QvdscAUXezt82+/M6nEC/Bp6Hi/2CXrF6fSridywMImwm/TDpfCC2M1OysQUExXgXeeBtGO4PHHqaOt9DwxKKJqERBzXXZ64xzu/XF+w1AQUYLmrkPHfJ1/SpAe5hvNQOhWJQp6Ornz8OIxFb+u3fKLMsij+BCu/kh4Rj0Qt5R46bEJKIHT8YSnC8VVf06m8tK8uk9gZRfRxmK3LjzxoNrJTP3CFxZsSdnlTkevj3SX0WXihE6226l1ugD1I1Ir1LAnnM6KlABOwePxaTt9muqIB+x9WAx/D/OYCkimaR5hKIdm8qus/M8YiitDxzuZxQQAW2fTrNFR73flstw4Mh3tUh2f886dRvLirCx9IHBAKDYdh0RU4uURPx+JQicQq2nlhrcLUJjkPE+iV9oUjFhp+oefyMoNLJ5cTkJuew0Ov+8hno+KlNIodhewSYKAwnD0M+SQ4LchmyiBNY7fymsrhyUbNSTYxaXysHy4u7/3kptm4/31SweZCDTTBEfIatczWa4fE+tElnJItg/G2ewPOYxivjwabzzhQpvR9PmTaEpYKK86vUJHchXulwu9CN09rIdSzHzXBMS+dtDd/tu1O2g17qf+CUWPhwjCEQOul5F3RziclFS8WBZKnpz1fyDlinTAk1JhaIjOBRRybJKYtComuQfoZFCcWx2WV+6gNeD9zgDbOkAkXgGNomh/WnjDFU5YeF7j/NTyIZFl9leQBIYWFIZ6vSOCpU1ZtHTf9wZCob01UjdJSUvtCR0OX7wzWb2rqeg3qFl0diVxr8FzY6qU9RdcnVOLYCrn0KOHZ2akE2fE2qtvS3Jlk0icpl1SOXFZE0WzNaj+k4G5rnXcwz2zTTMdCLTVwEdXr58uqp/Ar9gtPLaKJEilW5u3X9NUgQ5BDd6GOFLn5IHm67f3bBa/7v7HYKpSSdMdx99vulxwpAd2f72SuWu2HPFonsOougd2kTs5KcCg4abSsJVA54D3LE1RT12/mDrvE6qP96eG5qHG41hi7CgoGMhqIscAgk+i574T+ECV4hkf572cuQrMDDEWz11JsD7GzzunO04dN1MrHdDZIo5bDdp5t11PEE8bdUDKCV1SntxfugvAvSK7DyNNw6JUe+ctXlqAmx1ztJc32hKTEqcX3/YcNIi5JXF2ZWTcs2vwBTpsAo3GRftSObd9BXtkj0iBdFqLVsKG1ybTGXsF6kMy8rIQaBecV5uvKYoAb9SJwjgaby7jrMY4AlmkvrZD/MX7nMcU284aaSidnjbM9rI2HZcD40dXqbAm7hBfuA7r0h6hdJ95NOxb2NY53nFZ5Vx04azEv+cU5uURzpbbkFvNl6iNU8KWnBQQnb5BDFrYTuhmbY5NfQpSmYhnu+TIT3SBzFA/RIp9rAUdV++A9qTEVxy/29OCjPEeZ7R/xJ6xcwFouV+Rur+JJOJ5KR/Mi9Epymig0lkWaq/kSUCdWNz8g6MfO1GdaAfVA9GCQ/HZxGpAyqVVBs19wRmijW0EhslF/raaycZb5OlwlWYItS5t/dEdDGsQwzvdc75qYwn8bdYW+wsgK9GIrShZILTqPc2wc7HfrkcoQVSklgAxmJg0JlXO9JWk4G7PWDRVCNO3qPDO0Av6XiCjKsxrYayaJlO2j/LS2JxTkEX+5fOgjPBBBlWPVnpmOW6mWBpuXQCLbTd8sTccLHYVqAtxBc4cweBan52rl6I2SSbIC8nLViFBV0m4EkLJj9X0yNqMmCZQcBORCiQQgzzCax/QepYvy+z+1/sq9Oiedafq0oU/d47MJ8qJkWVaZj83e3XLGknn8rQNYWTJ+9kAdbilPq8tuz1ywfP/1fcYfdtFsfybKDnuPXr8y4zieDIKvK68oTG5VgrJqnaGYTo5J50R1wJQpeQwoaUKqjCAc7rlmNsdfmv3Gl+DMMZyKhkDwOjeeN+E94UOEkAXqDnrYHLQkUFP1zzcyrlXxoOGMKo9n9BFJWFwmelmJHImu9xoD+aDyrFusJkmSR0jfKYjQq/7oM7ggyp9V6KkZ53B2/x2VsPCFUTM6PiZlqpbAIYvKnMTvP35/cWKHOtfckwAvn6hRWYmNw8AjrkPR2+TsIiiqynjSwbhc8v5CQs9nF4q7RcxfBr/5STGtLbAHhfDfHYHuzoZjcCC4BHQPWx6B0uu/xrNUPRna1rSHapV6YcT1ekq94Pl9kJ7Xr7LEhjXAFBvYKByyAF1IV7AMx3wi2XJxvgAtBMw+od1zpkuL5InrEJGSJULWZr58nOzswBcHAMdTgFhn+60Ikpv+JX+HQf/CtSyLmcJ3iVAuiNhVOWJi4nfVQiBDPj7kqf0rqIMlno29JoTYx2lGO9IklWU8iSV6BhzhVWEnTz2g/C9QMnFlI9c38dKLAzYnz+eiRgShHWxElitJtiEyNXeXD3xaGm4ABrmsvvNI0OuDsWNRTiGm1WmjTPrpNUeQmDafng3PaQ3HbrtihNxbKi/JsjrAcUBSRk9SjdSzwHnqe3lkTj+5zL0Uktfg1nmy8mkJ2dcevqcBH5bxe/6kWIIp8x5GjKYIatS8iq9Wc7VhQQ5lrcXtNMwQR4u8+spwjyc4l7AUZ8cNHonk4LRjOR/tmxmdC+LHWNCd9lfhdNLnlCKrxq8eTDjE0RvCb8tjYhYNkvzXvTGrYRO7Uj9vLO5qRgnvnBHmetvQXoogISO2CXZkVcHqsrWvnOu8rGG4KkCwo/WpzjFxGac5VW7MYbDeRdrZlY7KOzhSjrlwRsR0QTrM4WtjR5f+PJs8Pa3QbfMoT04b95/0Tdd1efQVxn0WD5MWnLraw9bgEq39SVFhQn9nWSUGnTxISTPFDAi2FgJ9SZyNQVLEq3KPqqbURSex8NptrAbHX1NwKjNlUKO+eT7Dd0M7yJKiUPDwSB6+UaGXp/rAybQHbhf7OcE+2Y7j0HhoPTkV8Hqm8ZghjtBa73bzjhOjdLU5JqqCLwgJ6sBd7z5WBthPXNCLGdo93qx15uoGLj5Qe/VgbmOvduvaKYCbGMzcygF89ZbVbUclZwk0EU1CalAxdlhucEq8e/I8dliCPssCeRZ444OhvIdDzLy9o7JV/Q00CF4y6A03OAp5HovzonrWeH3JVAHwusg+IsuM+66H3cIDkLRNnjAatq/+eu60tQey6W+K5nmLbxw3mN4ROKdcXluzTX78ej+pzTfLEz/+dC8wYhHArwpk0AjKzUPnlSv/IpszDZleRVq8gZCutIuPFrKWTtDWs1IL044RcBc/SbSnDOF8K1oqrwVrKBaK3bqiupUZnknealQte+86FriteEizpharSO/8etfhSZ1tNs+1U39UBAYciTcCJLggZcBnxiHnbkgwnjmNn5eeQsj+UJLgomBMML5Niy+5BhhwC1Sv55uGSkE/4YmV8Re8onyzFoSx4C1fyelDio9FVd8LxQ7lIgIaGXs6mD3ph3YBrSIHUy10M9NIMM6K23lIbJAcdfqCPeuDNV2Ba4t0xYTDqAg1WYrptx25Qvjt78g0v6WMi//smG96gIwYyL0Ym2cWPDJgrKGlQ+0IS2KvUUxxdP3ghNbD1ilWNCRoAYHssLFNmHV3UnbJy3C8G4PadeqKiGaHhsNeyr8F6tCDbYRXMXN/xbIM4QA/9Fr/gTZSmWTd3Xj3f7gWQavk7K+xXD1SbNfyFsVCy+wjtJn0yCcaB2CMdGeCqQFHV4of2wFBaF3j986ZaZZ2Z+pwgWoeIKo7Eod08dq8tB30nwn15+IaLtjIKwxBnAq93IMGl5+nFhkmrw5a1V9nIDqdu7SbCjPJqivlevl8sPTscwM0bh7MswYwUv3Nr7NMgVgMqSNj+Q2AWjxIaex4jxctlRQkNrkjp09kOqXaKT5HqBT72a2Df/VlWSRRsHjNgDX1nBGqgPFQBLSdI+/OBFDvsN0bJCP/aIiZsZa95+zjv3ms3hXZVr9WICURegJagk4j2J4/qTKuv3Gq/vsLCaGIrM9G88udBzoqiO2XC/IQylmmq2tF+m8sDN/r2VNEX7xZwPHnWvF5vBE2WvPiCKdlA30Z81fbHV15dYWvJqlicU1LwxTTnIkNYGfKhhIqJieGCct4ICHGcVPNsSDNZhl5XgNyIvxJHxMAjpOZK2Q8DEVAGfSDdzW95ZpzLvLbcy6EDbnyeVvcV1VzEUiXct99alvgFi2PZNAzGEp4mya7jS/wDj1+atdTI3SVhx9SB7OuZSjoWijO4E0nCMjrxYZIzvoLOwyjITgre1mOSJDAo30XxKJvCw+1KIcnZIlgS+lg3vfigOwofDDju0nzL/jE9BokrR+sbk077ku1AS6v1ErhL8kM/XTk5S3LIp/Qo4y8D/j4B2k/UL99uHjndrI3FU11LyshIPgMHop5y+pyrsf1U8Xl6FSXyLQ35GGeeJjp1/TQAXC3TFxtqBuJGILVQ0tx1YMWH0XeUNXA8LJHSsuK2nYXriLrBqnCeIVpfWq6Q4K+1m3ZIIR/DNaf0ga/2l3eUfXKUoU45ne71ZOUb+bw9VFSQE5HUcymr9iDsmNvLujvC28DA7tELzEj14DPPpewO1MvO1qUCytKxssYW/+WTOSqyJRMgyD1d/6vBGNFYLIEie1CTjkE6zmsWSAEOLehqaWRwkUuj6d0atH81ZNggFFEPxoZtcpc6awTmMSjcZqNTifdEXgwwPe7ERkSLaPDF0vuS/LxEgV6FWjF3abqNrsGjlAuoWjOMm+unk6EFqgQNICkMRkk+uzUcKzsCH0UbPTDOze1N9th7X/asSJRhLPa7Wc9gROlzGJ2CtTUylzJ+wuGMoudRwBPVLZDcba7CC8BF7DMZMnjAtdeigjR+rFcWCI/G7Ui0NmSrQExAo1Bz9xemY7xXkKGbCXj2zFbr1+aGksb6dPUJ35ZgtiTVcSXraGYsBnv3mrt78ze6CKwTyEzK6/NNCFwHHdMYZlt1jXezYUQyQP5UOJushFMsTVMTtIUFBOeLoWBx8Immk+lLxrLLk15tyuptemKtgMea+o8v1dxCG9HhQQNWXDKqZ6+Ua8Fw299NwTTppBZd/1WMK3RyjYjO4Sddl0fqVDOJTnC/+lVycAhvEx8eq+fjmmdrRTb+5jnaN7TDH9MrOtAQV653TjKoxS/I1EtLz/BEdV/664Yfy72hyhlIw2Nl6UjSd1rvUYgCeXtWZAsL4LKCjAiFlwscytiNhiaFwzcFg331Hl7wPyLqFTe32z/9G2Odm+KYygdRPNIF8aGvP3YrEh3b5DVJG7iThB6asp7jO0MSmaCoC7z2pmbjm1X/buVBnscOsqoSLKdA0CldP8JEyT8oS2GE30wiYa4unyhDGsYqcWM7nuCQthVpH148HVpAqcv8okBYfal8G3bkJTiUqvheE2h4oNaDK6kM/a8t6AywLd6gFN5MVfoHcRWRAQ9aPXszHfqouiu2HyLBAMXTzUeY/ATZC2JcbbXtkzMOeGidm8HIvkzr+Otny5XJwpFJ6fWcB/noUpxDPN1c8esx1xNgVYFZKOJyUnSRLtIYQFN/6Ik30BzMTTYey8bVRBmvKvxGa9S8DdA/CAtpaTq80w/H4MMJMzADkb+U9lAky5GL3eeOCOd7cDWVUD/Hi7LoWqTstK6l6TUdBttQE1uZcxl8Xqt0CbGxKkxFG4PSQUrmvhykB1bPsZyiz8LyZgXaaUyFdESufPzqXi7EtcyiRbXDTlJ8ZcXe4aG02Wbhm7zHoxxOS0Zppf9B2PFvoUyXUfVhi/HjLJwlaO8bsYm20FS4Ehnw9jK3udcdGlpDt/Vs2IMONkw8En75dMaynFvgsRL6gvrhaKpS/b+7dpNUz6/rtUhQWZUiE8SrZ7Zo4FUEvDudiQYkoJSgNB603rnZ1ZoOSLhd9tEBXIGfJgKBqXPsJkpZwZuTjGWASb5GNsLHTBHXJoOP66dRVN7Rq9c+vtcYXLVAqSNbRV5tBT/zIVHEfAxrL9dXA6VgKJlEOyh2cgc7354txuHBbRiVnTbuyaaplABEiGHvYt4Y8T8aJ8wB/eWkMlbqLE9vztoSq4bvbB1I6ErWLwLwJtdIim8PuqSy79QtuwEBUKvnSbImh/AgTi+cUycpDVJgTsPJSLd4FaGmvlJk8eqYBCarE+5QcvUTYKQrXfsgML2eyRVRbGtGeaiNaTGgIjgMri/wlMnHAUnuvoW3Ii10EE3pC7FK7nYmeSmE5dpj//R5ecwmYz98voGGMAvNGKWBMs6ouuhoMBuCrB9og/HoRDOs87ZSAz8GmgnxONHgAKoEu1hMP4DiMyMCp+iVRU8yl0OjTq4Qi4KqYEq2U9bZSEdbHXRjHTTS22oEuEONKWT/IOks1kl4iDY7tB39+yG31fQgVRRH82GJxMhe2lji24e2shhA99sl1Oo0cn/CmecYOA4QTw7FMmKMp9IK/FjPLix3sNbLikoyUSGq+IxSqXdDDZEMrdB/o2wl7vbw/MOjAtaD3Pnt71/TFjVlILrhFiC55CuoE8EPEAvwKM3pMaBS71TQdvdbUuPZUSRMPfd6UA8u5ut9O8RyA2gdDzt4YCqnmczsUmQxzUeCMjMwBssNjWmK94YMqI373EgY+DZeV5PyIr+gveDGze3/H5c3aY2BV6FoakO9GLbwDVtVFu2LJo/k5LMSrwHaVhuIZllAMqOAVLcrOvtaD01Wh4w3ozMFvSy7i29IRR29UtgYEeDj3r2gj2lpH6PJtzJamRTUlta9l9PcxgvITwbSJiLMB0ZfPcuMOps4SGZ9bOG26Iz21K0XNx79pEPXiMFQZPzTlToLKAnJbIJjNaA0ePdQoGKkWt8Fj6AaTw3eDggKZVrTj/1089HGNdmuXvlpwKf1GvB3XKJTORZr5H4OvdRHkMkvqG6OGJMYX+A1ljZVYEWeSZeyoDWo0nD8eFkqAXNx9q5tyO2q6OcOUz6B7lD4y5kp0UTrgYSw4zQyddLMQmsBJqM8hmwIiIUMNYWrxP2sxuM+ELBU5AaWsP5HozCclE8HtrUJDL1oSmE81gSJMeLUCRMMIAK5gwMbclNwLxi8Si5U25NeMeopiJBmZoHPFg/EhLAbZ/nRsIm/YHgXZc9CGbOCYL+xLtLHW5m3tYRaRrbGGBbvdqOpUtlLeOadxjDOiBo9geaKgasU/vOx6AEUzdiNTmSYJ8WQ8dwuFxsDqqtQR/1Nc2CpF7PuyDNQsKuVMUfKh0IpJtU861wkACJl6l56dRZEJ7QrbhHAArmzN8jUyLmCNhhPu9mOI9OFQfujxsTJzj+ynCPN2Mn1n8bVmaTnNQDHBmYVUFEI5m0Ph0ipuIZ6f2+oZpMOtreZmzHbRH0Qi0VKL1QnqYBVScZDyiuS5Oznaf1DYG3LlkeUfql9lHn6cHQviccYLn7MAcUEVTeeADq57xGsXRr5MjFunRPQBbbNJ8OS8Sdx95QxGAjNDsZnVHsVQ8FlV273zPTh71a+QezJtgkph4MOC0rWM8Fl7a+xy4vi73qlKRDGKPM2bZ863j3xPK1C453Zv6NK4xAA35mPL7bWS8WKuvzleHog7t0ZUrfmbXrosgfWP/mi2uZrFd3GoPek5YHcmMYtdUzCQOqCXT9eseIrHtyj62unZi04s7l/x567IJlsQTCQBLLof5iI8L4doigbLoX0sbJlCKaYykYj/ACEgOm8DPU1yjBX2ap0nhMZigZYjaYqP73Fj5t0vNGeBgZoY9dYy76uC28MjeuKQ6o/14d+I9olnEUTGHzkpss7zlF36TZU6VDjg5c7eOfewfgIfxgXjznI5B3HfnMgViy/N82Tk7Foe8FKkIwn1QWRPgILV/UGkJBkpyp8vBY9WB5KFtoXFdHmi5F+ecV2LvaHxQoGAcK2wglKObBKGA7KZfsO4g4Sv1URiodRnb19V2Q/GCSEP1MgLMLWs5SWdECAtEM9mlNNkrp52wYUqvr5JbgYBBlbAXInnboyNYb+2Iu1Tmm1FZ12nmLFbTWGN+MDg9s4ZANNbWdFDLcy1xWV0jdH74p0avK4xyvF/VJBca7vz81loOfRdeerj4Ow19Q3dthjHoOE5/9NLa6p9Pp6kt51nADD0QH6OBkUFhZVvC+O30nvNd3ROko/gtj1lPSOINKh/CvT5SWz1lxqBORmFitZxmEzmZCsL6knEB6pyaTuB1DvLyYwhsV6IsEgG2ayYcNLZqQP43Y8Gqv7n+beBmFV206N322FoAleOveYE9dVg4u0w9pAvsQkJdVsK15i2y/4rjxUL9lyKCr90oBVOH3/hZAGv69gtlxIpeNQJEePS0eR1dsUTlptMTALcPxb1SFdd9bwNOfCvhfC0Skl+M63negcFiKh/o3SGjIFdiyGISGyFjS9AmtErD7Up+T16LdfFRIzqIkDS0cjhTqX5Ikml5ip03OgmZh9FDxDt8krazs0xiZjHxy7AOoe+LidnyDHIlQa5NKENI73A9Q4hkg8DWBGR6F7+arb9QwzOygjvhg1rFA4YN9z2frNi6fQGs2A/GeOEDTeyCrJ7+JISzlCw+IqeG5dCR1etbovA1+I7Nc+uyu45d0tU9saCkbLxIqDUtfq2Iphv4aPY2lfyBToy8iS0fud8LOKC4JNp+13uR5lU87D9dT6otN/D0u7/MZ2+GvZt4hSpM0ekvMZivgeYL5rrnmFlINRtl9XfC0jkMQDZjhIxihGM42/i5yjar2s7t8tZIEPYDAYqw1MxECxJf+5xUGlHdLj0pNY5UtrddKrqV1vCcza4fs/azdvutN13hlDiDMaxynAgfLEYJagHYbWh6mNtOAkUXsq1C37vAtFmUECCrb70GHWpbnubf0J9ixZYGb/L5lauya2eKN6n6qnBHBBTIjLfV4fK8/9u+xaoH+Rws/KCqSMkDaWwvhMvtuZ6/QUb+OmSI2j7EtoqWCVp6b604YNy4pbjcmrT55ZOhgGrFWmtKPzhLL1VTvkS97P5vF5GudqqQJX6c7GayFpK5WHbl+KjS/tiuNRCQDVnsGXwaLuW/J1yiDqCVNFIDGlEyF8B/jppa9bd9j3hM+Y5D4cKX4g11xdXu2Y+7xC+5t6R+BuCWZTvLkREr6WcjmBKuWICcgdWo2Uc2YvFQnet9U9mWWN8CPPTPAbV+fMsO1zuW34av9UOUe3+/8DThAvc7aPZ0AFGKqUPb6OZVikYy6vihABN3valTgkDCJRnzm0ugpMSB7clFlgy7pV9IUnhExIvNrlgVNo5QSTmfGsguEygd20FGifxR1c+DEXArhMTRleEgLElcdhqVLYpXXt59ROkm8zNSZGFumAVt1cRk6ffsmg/iYioN24PNlIvd63YvtEaH+VBr4UMz6s7Yv3HYASx51LaxsD2aI5Xm4boMnznJBzp33xybodEE5ALEmqFuXi1FLLozyQcHt9+tGYShaMVL7sYjtUsWBgMYBgcp+rV5otscoJ6ItvIQPgLSIN/+HiX/CdhYHI2gtuwEBSo85LqsapZ5j+RnrdgnYwqkLWAzkMUlx2BBozkvx0uSGIq9WWi29Gb6DQuzUJMtZFxg9xU6FAnAmc4gETdlilvRd8tLVwepkfZxsdeo3hbPkUDJvehQDSh5hFp0G/sdnQDwHPI2johHpD/KQOunpwm6jVvLoyFAxLtskIh2Fnx7mxZ1BrrnzVGFIYucBeT7mHxWXBwOs+4IKNJAqkUiG//NlP8oznuDgeW1M58UnWiHO4a7KCfrsrPCokzbDaGd7dby0Gop6r1tJn6opiaBz92unmgfU2aDfrZhSzRYyx8gUFBBxBm32mR6seOMrnUFxf6zdy5JtJ8x8+uXSS+fZGsaPo+8SZ/SgvwwdkJlwg+rdp3K5OJG2rOGilz1HJQemcLGiXeJdvKhPSCMDD/8TvC1Id1DskHoDV1ttv8cNKyf7cEVnFIe4r/EhuKSFAIxROxG4mhFTGuAQrdBVoVJAa+ab8jhnwhiIdQlyPuc9vIBEjjQl7b/ULUD+11eUhW5TQENA9kWf71V2Y5PdAdnzFuOCKisCWVL7H11p4V0dKyjQB59E9nP0RZsJxcxYSZxiPuX5K1+derHcz6rr/PN/uSE081t4DnisT26m8KZw+4EwWmv84zr6cFpb28F36//O7bpKSW4T62IOOYzatX5GgCfmVP90KUviu6JTZanxP+FSAwgS+KRfFWAyhNhPwDuqVbJreCITXaUZloDeKCwChvTRIRgdglL+eMo60C+VFBxWced/ivrUckiwxt5aR5oQXBd+2j97UIJXI6YbGSU/W25AXzXG+vuk5pj4fni9jwuvk2x6xipMEiopKQWS9i6j68M8XH7nDogtQjJLL5AgBtAv5aEjz5dY20dw2NL4FCEiUaEmv0sITVpXxGAu8T20NKGV8jqhvRdJUFXKZFql6PECisk05dXwKE4vf1Uo75l7fKQoKUgFOjZ0tfB3irmcfpmPyJ9eRDEh+kU8U+C3VhgYVy8itoOORGYSiBNnUBAZ5uHgtQbhJ52laZ+l7AGiEFERyxcs72INde3TrPQvig4Ufi6Pypg3XcpbG3fobhCd6nZfrSjSmr9yyM3gEvm5htb0VBqKvJgtYsKY0srMyXvcdwluBtdZmsurcIFxWD1ChycP82dWFuz8ciTCAzupVJLNYkLsTJ/+efdSUb2BEJ0I2sbXJMjZ+hNqvAmUayVVXfLxEqeEy6Iu0goCbhcBJ0Ei1S7LZcH8Cm0BpWQTTRX8pnPEbr/chTfiknbIe60BUw7sDL/ST6vSfbs5MQwMpWDEk6SNUETyvq5E3Ax8SrEksF7Y/5Rp9T5P9EHcIiEsV9QaafJLAUQqlJz+8PXapPDXBT5VQdfJ9GRzR/rfvpUSi3+nxxFhMvlXNhmirf7oJB8mDMS5Cz/mjRUEPu6c4tR4ThqOQ0x7sXpGALSyzPWZokKHbaqFofCRgcjKmR1RIx5CjwgwXdEYYhg7mJ9QwONghLaJnoNVhHQiEdfANre4WPxy7TTyeOPpKT8yiRDYIYiNIGnuHuTBOMa5XZMVsmHb33weQzEnZhSi++m6crQwOO2pAo4Pgq//Za+5tX7cRIPVzOXQtJ3afnxMe5ODztrumA8Q1UZAUtq1q79fZuFooFxPbJcvk4H4ev1ZguUfgMt8CpVKgsPIg1k8uH6zy+CqEw2+ZIQPYhQ5MRNZKfIx/sByARDyJYXPY7zZ+28cfZJgv8JWtY0LNLB7Lij1devfgpwaQnWdZwQvCJQ6ZQkYVrdval4FBg+CfVRlzUGiIjUTdAh3lPL4Nbbmefc7IbFnJMXPJZBz+bovTXp4e9Z2tXM7KaCTIUqgyrohoOQsT7YohP/iA0Y+/pO29rNiKQTH+qqfpiYKM3iU+GjxyjdGQAShGFvlJZl2RUE+R8sBflZl5c+snpn/FwV2bUhtOcmjQU9YMqV9B/QkMqnIJvoSmU46+qfuo2yZfsViGqXjXCvZ5MdsxPzn4RiMugaibD2uH6qnmXD3E1uGh5rXepq+/kEJt8uvo8RtffOcR27q7AxeZzt70y9QU3oB6OTIUiUn7/XdXTCBZ7xokLUt3tzLa7muhO1fEA+t8BemUCDHNvN8sCFTvI/EcIYPZlotNb763/eRp1jaRD+OZNsRFE3BMX68z+b1sMqPzdbPyMRrHdXyk+A8x6wi9S6IMOdeyZH7Tplg4EOZnUBxqjNzF04Z9nplg2aarKpqMPcSkHnFdASl4jSyCq9j0GhTUVLViSHhK4Zg0oac6k64FIyNJZbq67H/OrFcC8ms0JIVsQ1jXXd86CjTLWxsskJ0toToWndibEoNCLsSSskuoFGU19idqBF9J3S9KpM2HyNy+UsLDTDggPMztjM0ZKPFwpiby9J+3ZlCiNuiNbIL2p8mCUJjU1WnA5n2w4iqeAdxXkMZsrBns5+DHFZf5m0wyNtfOjayeyizaPPhM5ZkvBW6h5el/TAG/P/FeZfV5n2N3jRDW6awA5eicXr9FVnTupXvNP+AkQvVB1QwnSpPqDqzKPsV3aiOsrJ0F+u7Sol3CsqbCC+sMNwta8du5qxrrbSHNHdOtr2ph1ftUmZvZ7PgUJ13fDclYyIjcKaJYm3gouzcNkWmkTcuQ3Z4isweADCooifww7acwWxSqwhBjA5FSLyiQZmk7oFZ9FpHHzfxMzRpOiIbMbQXNUDQONcz3qrsFaLpTqYrEDCCpzuzaOzfcxukoytKVONtAvA5KWxOlzCUSBP9ChpbXJXOB9BA4bD/xN0iWnkMehxwsC9pUt3lSrtsLQjVLix3/UFUHrC8vNWo49Mt3MFM0/g/efkEG0vQdi1dwcdq1zq3WX3PhEmSQdBJ8PYPpF86JAzh03rLRZCAi3Ea20G2G3sWrhQU0lkx2HQRPppNV5fFxNMfXX2pHXsJNZvlafDEVC05ZKFq1A/juoR47frpFq5tXfNd1A44ULiHBHFRs/+8K3mPhz8ToA48jsfOXj/JO5nDnLzT+DQE+SNDpj7i4ju9Gar0g1pB3hafWzHat177ys3Qn+9eIOhIsVsG94uXqVK+Jbn4VbiMnb46UlpGzqYHEHozIA5UEFKsHVarwBU3tPZGGX9ZcLkuVyJ8buMu/HYLFyZyO/BejB8rAJ54kvMtKsGyZr2a8nvVOe42arywUrb3VwfwHnaaxl2GQb8oQhurMmaCNmP06CzmQ1fQLc+awGsLD34d0A47bJUVy/i7QO0dd1xfV6XCRtTjmW+AT/AVUjbwg8nhnryG/0xOp2c/zU9eFHo5L3KgOkTDansJZH7CXu2Ku+B2qpEGgdemUSOZN2UdJJtQizZxJ7fZmcsASKfYJLwVEqlpoWPF1vTZ57n4Y+vrocprZ4MkTUXD9ZF8Cli2WokEML9kbwQ0u3T0xEeRIvLAPMqG1UHuYV6bFd/AKZ7AMBrp+VT3xLclXng8yzjKl4we4RO7XI5CWU9BU7pnsR4DukJixx9n0d6wEPRaklWdZW5EnC4GUftrUyTTjn3tAP8937zpm7811RnxeLuowzMkiVBntAmDDT3sDhjmF8Q+wQ9X4pSK8f1MUkEOrLyq1d3r0uN2IiiaxpfBb+Vl+4R8efVrroPAr41e9Un2qAu53UstHYxRMGJPWlgwBKpkBu9QFxz/QaHY/vRMFIdRbrz9yVxMP8pxmdzaQgIjl1ei1Jb//+eTOUkfYANOngK4ciZfcnQRSpZ7MTG9pjSddkjkf46gzQmOeUM4mq3deDIK7oiIk+ouNZ3mxDkUI9Qqc7GLuAiwnbLER7KPX9TVsTbEztVQtkWrH/R9SQHYtgLByeoSlGZWAQ25vXxcY1UIOTYT/hhRMcZHZ0mvuuQKoBJpoUO2oEgIOif7s1ZWXivglcwi8elzhI3EMkd+xpE9FEI6fvepxjquZQwatSRs1yzFv/QtMpsBB+bUMJjIUrIbO7sD0kBDZsr0HaxFEr+IOmEfNd32FaLNuKhr2ksjAqrDJ24+5srbS5+O0HXA2EmkqRbmUJgaRudKVARRCK/1F/tdx5Lf1Ed+wwzORvUwBxYSpaJkLDPghPSqQMtP+zkXKCiGXCRlYCJBVgn7/PlZyo4xBaJG/cKedc9+H5JEvFo6x7qwTb3QGfqcBH3lFLSx2/jx8HvjtmVzGev/WjA0SCXzyjQos2BkHUBEMbB15ZKdMupqIZ0vKAqp9cfPyOWIxk2pnsu/Zd/LVRhjvW3znhi/73VgWMpQAc+uKWvPFtWHFXSn1+xDb74w+bictoJCZ17q2x3MBYt3zxFsiGQnUBLnNrL6aswEJXV7/ORfvtqNaDIFb7jZTVZE4Ua+jwZwTL5iVu7SzW6/FLs4rPqRo/dVr7Tf/jz8aJNhw6gLUsBb/1/T3rr8I7dbygZYXgvW4Ti1+DGStM6vrmIVON0LVpL173TDMy//XM+7I86gN95f4UHJWR/+/qEM/0L19ep47bX7l5gDedK+sLkLA1T9d1UfCdS/DNTMZBgfBiN3EEPo3NRK44s2zNRg1PezGJc92mPdkzqrZp7VgmdoSYPu7uvF1+Jxa8S/dR9eRXgfjOFpiXwLr1buWsEEtW/smYisnHShhIRZqF+/SuBKmwxWyHaGw/Wh1HbSpwBPufl222piFJ0djv7sfWPwC65dB/k7Zl/ONkCYwfriVJ5eYwIRVNUd2kvlotfmVeOWZBqHWKwnu0B3tNxthndjoPfml34IRurXo9Cp540dDo/vkF275nN/2ly9XoJUcnNSbFJgNVcIw3y2WNQwjmJYA8hdTb3+chZNZ6oTIKe0HHaqbvA+Xnivg7rVFpBhP/M1ki5XPnSIWRc+/YgPK1a8PjcPDq90r8IzNmSPPvtUYgZ+0PBfet5quw/Rmy1BCJOeO+pwg4z3HHtQiusxK6w8D6OuUTpGeKL7EJKBceq1edpCgEhdSGmaY1mqQq2bB+V7JbqqCG2lhBawy5U4ABX6EJrc4z1DZqVfi8cAkYh9kWpOfEVsnQQWdkUfkQbX+0H8fk5Q07Y6YzSCK2vjRqAXXdOXOi4mO0ysk5ebuSOPySjSYnYZTjzD7qxI2K/PufbKI1GwbocCMZVmdIx2wrSQwAExSOTRdofziHxrClJsG2l6Px7o04EQFZ/4df+nKrhgf/1fHJfzSDq03RAPl7k6PZoV9pOihY9vQEzCFI2Lm0EgYdEihWAPFUkFxqT1hTmXhu+F5+0w6E8Nt9ydy/B85s/8iyMqRXywH0pqYM98G5DII3/iuAXgJR8C3hc5f5ikcu/o8sVQDZFteLAZcFuFzYNTE3KmS+Ti/M03VV+XP+/FtOLpfW01wo6+Amn7N6h5QytQd48fixIhbAODl/61lS2XfAOmOBXJnZu/M2Z/U//41pME4bQo86Vw8LzMKtbnaAW0EMMKsjZtI2MFMbtK6DzDPoK6CFWj4327DHm3LMZkyEA/v6kVzYn4I64eGvyMwHG6sFZR8H43tUJUiG5KYJ0dCE4XekWTIX9fMAIybD7+zc9koBHhrNDkN5YuaszzlBv9dSpIcdphsKCaQ+hIm3vj2aKo78EuKJ/fcVQJzd6Nr8HKEGQWE23Z+3H1T8Aq2fce6QrwNn7bC6rwDb8BRGxs2wBC2Tvf9LRn3KPqvRn31BIjDuAMUwOBva8Zasooyw4u4maSfNc+XyBN/vxa/zLbUeBsyHHuHJtuJ3RB7NdmqSa9i8OEtYO68zVPQP195Z6XfOPIfXXvQ1wq3jsGN1QfDSKcyHDcVdylvcIAmAb4LtOzVy+z2wrGy47RZ3YViCKa8obcMAMBQ5H9PovTlVJ+pnXYV1THA9VjRkuGOJtwRwjdzgqlKUZbzFxO8v7Mzk2jpUaFjmLR/ntiMXD1uQo1QC+e7i5dXwLaNFHr8LBv/o8M4pwEUPjoydCYd5oPsFiUkcMqqkZsggp6JUAuD0GGHfgrSpZt4+HCPp5rrZ1U8yGcUdp01iO2wUwkGdk6z+3NoGQ4p9AXEV97tztq6CVlRGzZOqRxJSDYYxlSTBLUWRqGOU6VSrZ8APFFzgZ+DNGh8gZZyD88ph+9tf3Q74MCHzFPEPjCT0YXDjuhdJFgTGL2oy6UQUyIgbUlA1t2XIPlWlQGJK97qHfWP4W0K/kSTiWdY8ykkc3u+q5DWBses5qUoltXrXUJTHT/sBZl1LLoswo/q/YZelC/Yp41SMonUVdpxXkYEjJsJw4YNKGfVoa/aRQzlLqR8l5dr7eUFYaw36CQopbBJFN5kjngwcBdpLs+9nUxRVDgt0hZsfDlnwD2u1JCMyrZmWnUTFV+g7hXbWCtKUIIxKUSDwZRB3rgs6s+RDWCkyB4SFXvazA1fEliV9q7xLs9Rdgo4M3JkHGwnwgAtWg+fhVwQMlWeU6j4jqUcnVZE2UTgdKaCWVjXB4rrYd52MiV5KHi7pMBEY1VK9XN0YU6pwQJqBqNibpb1UKIDCA+MSkixTx7LcSODp38rd6zVh7diljS9r4eno3b1Cn/6fzOFOnpHxGUkkfB8XrdbV/6/tseuN5QaEGRa4hB0jqy0lKsSNYaBwXHn6JTL6LYrpcGQuC+XeZ5+Y+0LEf61ieI8krtn/9ui7JJ+WMhPUgCdmoS5VTYH+aDSn0P6Pi5Kfhh5CjJi3g/0tpJB+LJplBgvUCZNPXkpLssMDpjUFyTNBCuoh8V4fympQ0MVeF++Mrs7b3diHEyHIiSjGQiz7fuz0ObTxNvTM0+fHnrL8Wy2cz53zjRoF/690jlKNPuyttV17LdwN40PVyZGJrdL42xH9s14tpmLLfMVWNPuEaO84GrWPwsiWRQ8Y/xhBPuA6NspeqyDCRRrsjKRae4VNMZj20ORQ6dZZFgbNPLgAoF9grCTiZkHqVMHwzAcFZl4k/B9dZ90IdCZ4oVTan3mDRX5wf8oaM1j3Z0iNl4gu+4e4nynLlVO6FUqtiSgOepgej58wP6wCaDz/I0Tc4no/oZ2cvvZVdM+6VHEwLHrLYA7Ea6J+vdiHkrnc37FNxSFPNFYS4SzsnJXZ7WyQRTZlFiyDd8ip00KdXxtxAI7hGNnTdFHlyszozkmntjbZ7KlLLIFqtwwnLo7SXETD0iax3T/lF5pqf/3I2+Bv18Yh51yZJV6nbqcKf7evRODD+Iay3EUffgTmlcuxNyY32iBjy1xgLQ0g7dxUiBKOxLj/Rh7PuZPRfapFPbaKJEIrrkvcQD2Dw05+d8r9oK46Moftl8rSHi4fjz8ZnHMQ7alYslLhjB5DkJbqKKgoBrZLSctPQz7cJLkUdZkZWyUfqCYZ0VhXj5ksTd8ZQ57hoJOSAbOxeYcVle1jIFu+a3CF9MOg4kJHyvuIRxwDsrzI+VA1fhDbXWqJjnyBHPXoaM1q+PfNSpPkme/RdpBH/kMJU3L7TtBCTKsvsqsZ4Fk7ucB0ETxBZkcCaHgHBo+3CXx8Hzv1gVfosGg6mqdHMeLYvSjTx4OaE6FFJTU8U3xVSHvvs+WesyH4w4vWNxY4ufB1oiPl2EV9Omigk9x3qMBTZoiiELQknhL+nYl5Nm9yv5BXRK5P0rep4U0Vbpl1XJ5H9izP8FOKaHXNyPE9oV2FrE25ZEYZWG9JMZQ4+Dae71j/lNhnq74J3lGJ7ikREEYvcZyjE8kIcIJQaaAcxVMIoF3c/r0bnhUc8XksRy2ZjxEKqlYOWLh1hHShBYqOqqnTZ+UphW0zyAXw1yPPh/O7hzMn69h78neqWmkG+5KZ4xlafH38FdneE8SIuntknyaSRTIPxQYrB8/CtvsuXgKIt6JrAM0uuW2xzQXJmnNMsqdn2E4eSbA3qWB8ZUVfKtsvi7dgwTw9Ri03xBRBudLsDVOiYoxgtIqAEt7jG77K1vkvQVHomtcMP3TEfCgY5zRTgPvg4b/XaIe5bT2CEetfbDnXSsK9OFOnqPWlQRULYe1B1rz6zs5Xay6ner6oGohV5sAHb4nhpStuS00vkRbdEcgLiwO94te9+X4yAralUeXTQcGe9glsggvQA3+6zi7npI/LvNSTj9jGghu0MnileKMfwXqijLlnifcFIe8L7cX0e//kJ2s97q23dkuHUlANDws6t0qMjxm5EBhUX/hLAK5xgWDDHSu2T56mgM4LRnfbJ1OWkK50B4fSNgHfUD+nIfhIE+GOg1VL9ed9xDfPKmwXCUeN8/FfeeetFtmHOmWXeDCR8VAypQ6HQOUqNL50obBhY75lluR4oi+vOTHyUj8KfcSH5TPDpo9rgxdnh5ej9D1mAKgd/uHXSqeSbX2raMC57wFga73loVaokivsGnv0kfF0/I8Tpepfh80vbzJP7F+YPm/4shKUvM/m5JO+aHYrgZ77BHK93YP64gjhl89stclkH7eAz3DtF/zKNgjSrOHNqVNQc47Jvrh2Q2jUwx4U+BBThpWWtYzwJYBoneKQkN+t01rRRIiVLFfZj6cmPOBIlTzY6qnLZ9E4lpGVQg5Va6mhovWvzMYT7qby6j8/nzL7Iv/0MGdVrFBC18yRgFXR1q3i+V2y9pDh+MqbAQZ2YVfvp/Fqu7+1BJ1IVFuL36g9eP1oSM52bk8xlwb1hp9QNW4wmth2pLmmDEe60TaOgElOw6St3wHyum0G6DZpz+hzAHwsiH1YiNlsnPMLGq4DrVHko+bziFxDG9wM06gSVhynjfjr6umQ7R4NZeCPx/DLkYwrFtrbC9Wcf64hCT89WKMOhsArw/umwa4RwVqueXY9jPeH4C+XOam5U5LQz/B72q3yHbHUSN7DH/kei+XPRC8NpEvE7LVS4HH1PC4NtgdN39P4nm2eu7ylxk7fU/913FTevf1vWDFF2+O1DHPjoF24T7n90wgliksa7SqPMih8FO7MzeyO7W6LlshbPFWhpWu0jjBwqK+qVwCHVyKXkDyMfVoB2IDgbFSwVrRxwGVRXLfMyJ+zxgQ0K9knOrWGBXVFi4qQdgkHVd6sZXtBVDmeAjgqDvJqzDALPunLMskuMoSzVqNupvsjS0O2rEk/6+4Y7UCKQIRDjl5NQUhOIkpeYwVmUN2ADuijU8DjnMpOTd2NY9+Iozv1lVnB6ngjDhHA9WoGm2L1JgV+Cyu5RLiQlqtMLLJHN3c9b36hoUYjHopuFs8d4FsU3MdGENAE/fRi/ZUcLcuDY4yxrzYhVMpX/2ZRg1ukKI8xd8AAyjiDMpIBBcmu13K0q1VMNlABOhxiGg4z9Sbwx7hlioEY1l4kbGDY8cFnudR+62xv7aomlNpjaSyI04SROzGHW/bfb6Bb1O6opIa1jOxXYH/ZEFCpZO/4YaEBnySFz8Vk2b03Up085AHwdOKUydQIwEC9B0e0dbdvLq5Grf5se2FucOhm8VkaFTQgjLCeccQbL97tC5JCacibzwHIw1wAyhAhUH4uiTrBI4n7e0PYsjRSKiXRob6EBfy+0+G7NeprE3zG2IEuBF0OU62FEhWZFWokLpKW2wmKbwFMOIN4y1qcgA5cbLrkPYRwtgptfy23TtOxDqAG5ZpWR0+aRF8APV/znucHbBzHyM9FppiBTpUFM3IMwZlHt5Ktn6Xvj0AKvfM6ZT7t01A2lPnxnyrCIw5jpAYCYM05vBaBLo5XisfpjxFOCEiLRb2pgcD+TX7p+u1q70rqHuKglJeXeJj9eP9tSWY5wONDkYrIUXhlMg8v+/zWkZAccpJVTVJ+WMXexcBwVwMwLudfADQWA2/8CwYzpUFPqqild+KTdH90uMhUM/9UiKJELZ7DURDv0XNQV5xTa18aKS7xERKKSWUEdXCkdB+vNZYsKjaKf4UZOOYzEpWm5xhoxpQP0DYhMcFo0/bMj7X59l6PGPpA8bLott3GJTAMI6/ODYgTWXE+axnAHtqXHUcKoZcg6BIZ9mtLsPx9nqDfKoXt9/Dtze73JIMXbFZyuLmo/smi+oQpmBVwVArRhtzFB4td0rn1d4Y6TC95kKEefs48Z2DhfcGj3zzyPDClQtOzBnGy8wPfM5IY7MnuV9NKdhFvq6RqxOTaniSAtO8XsCkYNd5T2Ify9HYOz3cZhQRKWq1yRigjYb8vba9FbQlbgNmc4Z3aA2GvFETECcsASLwyBLsXAFNIY2D7rvQGs0y7sWpte6VUVt0bDQxn88XbSRDM2/01DFVU0DKbEO/1jF+FGkQjFIIT+SL8dvpjqZCJN4PftIpkwWNxjKiZsI+nE+YW+4rWTMsHz3rBPI8qSEpWyiosOSoregKQOZB++kxGjKSr1VHJWs+UMfX0GsVHtzqWmEwpws+BdRRP7DHrByM/mm/ORLmtla/g3f6l9ctFjx3c7thODbjvCXaVWIvwEbGLaaXVhyb8xNZ4MU701LRltqtKHnEsJoYzYOmZRzQOONiyFeMWeYa05ihu4tlPBdFzl+wPqz1N/knQyJA1soCCzZxQ8ln9qDeF8p8EVB6pSFzh6fQKTfF4lBjFCXCfw++ZUVeRhwe4/Lnt1y0Abn5Wwzy0GpMMp+fVa/IaeSqK3IDCDdj/l4Jfo8VX4vw31SaSFbwB0XtbjHIRgrTGoSziRhsKGYsu1p9UHnczYQxFfZTuB7uJhgR13ax8APjlUZC+44YN1U6CXCaLv6jYsUZeSxvxh5M86hC+cls7pg+jBdy2TW5kQcGGBGM30KMmX3F1NvBxfA1j94ykd/DohwEhwvrPKbl7KCzNu748HzauTy9ibIFwCSMCkl6iOE4DaPJsTSrGRCZ5qK6M1T5CmPDB8sEpuxT47xB32DF6RKSWJqCjGFWw2s7dNuSOnYHTiH4RW4AteTyX9Jx/GLzyPvSsdTpfluFx+0lj/OwwUc7hokJitYbuN0IzhhfUUhSAnPpGVMK3p467NQiH0fCtf+vdGR4N/thlLaDtM7zXjyB5N6YQFM3mBqR6hnmAmxrbiWHeQryJSs1VMmDxrMxlouzrkMeI4UfXUY/DhBnKs56vaWKYicy7ZKnloa0+sSolkqsWzHW14KJxspK9+q/vo5Y+kqJcGSk3ke7zI0p0o9wF7hVsPAkHULIN7RmphCNeBCkyhOXIhp75IqvwR4BL2ZxHG5asU1V/R6Aksv+C+xeADIfyOwDHX3CpO060sP2t++FU3s0M91rNkjdg+6Q9sXXMZp0xpnwoAqfwVLdqbz+H5M7Rfm4+acIpXqJyLY2RXVssuuu4QJ/oKi0Vnm4SW8Qj+vNPBcodrIHQWdZyNTQVs4EeQiyB3cAsg3h02WJ22wkhIJbs0oDGhuDfsFj9654LXmOCJ3UsEQs07f1+S5o9biC+bO/d5JNGVC9xIz2P7Fmy9Vl2gbMwXa5KmM4kWojpuNuth2jtMEDk8aW8yHmOIqYn73Pw+GYH8c8ktBY7qlj5WKlyCIhvG2G3O6PKcDDBEz6As6/6YqnFbqhYhTLleVDxnZNo97cZyi7VuDTIpxwJ3z25vVptJJmz5d05iiLZ7mQLrIZUXev8CIFOaT7b5N01u44mq+MBugbA3oLZ2vMFjHYHwd82SsNpOT9SL8ZwhP0iGlxPlK3YVMqD3tjqglh/lFBbGu/xqPnQWiOSu3KizC6Mz63Kq40B7pET8zrAQ4qQiU5v1qhRDeJerLp9fRgnOK13i9AiGthbWvdkCr1c9FQPagW/OpDlckpbMHH9XTTxnQ0VZrN/nyIwvnPdbtlNd8qgSqhdwZDq6RDFsvr4H1FsxO4IHEWutw2cFN9fbzu/xKq4saBdZ0CHkTN8Iha4vhEM/rb3Xf6TveT1dowlgdFWTmwp6V/9S7c75285Rv8t+5mEoh9odLRI9EX1UuoAlURfKDTK7uGMcZLdlpfBVA+c7UO9UtYStT+BZ3+M++ypjDxTUmK00exWgvUHALm4bHbApOypvOY98DjHsj5UrJdB8gPwbJbSPxFPWxjEFoaR/6UzzLG/IPjs98ifIHo3vu+q8aG+etNdI3hIl0HQp1qiv78NnCKRzLSE76U9WvMrxg8mj5fOMdFg7Gi23lNqRBTCDadS59eHGF393IMvxHXF/LfEW2VZ0uYaqeebzy0hr3vv3brB63CtKw+9qku2UK8ShHt0K8c9EwV/tUMuJCaIlTSJSTLp63Cq7hnDJSYqf6va4nP7udOLopnvmRwX0hIVjD9gUQZoaEePcOVmpsZ/rM5G1rkUs4M/0qp/iuXiAdOGPzO/whb3Ry1mVpwX8v05j8UJtxXayyHqZL+UeICXD0dX/84hhbGpQhkd0NhnYP9Yjibxig1Hlbb1HSMDvp9d4HBgrtk81Vs0hZPEI6A8Dw1inDyXvkZjpXO5YQ4t7NIX1yQwN4PmGz/+mpYkfDLrZX9T3xSKOGQ7kbPf4ZIXbOuPaIzWM1biSb8oGh6cXiQQyUycDpItu21QPB1I/Gge2OcnpDAF7stZlNk3gKmrUJbHK5zdw/vM33yNrogpLosuICi32vEE/GFe3M3KGHEY0w+ZFiWzpVtUH5Lwo+Z9Fp52EEjCJG+HV73FBJ3vrsfz4Oo3z07sBbBbRb65QmxQBY+dLLf+zxwlmB3O7FnHiOtUBb3tlQYZ4RrceWIA3cieMiOQUcl0TtNKYCltK3UNJ4P/ceB3zWRzIY7HyHldxkSHr6Wb49Lqen2Y5hKFTCdvf5dk/e4btuDZ+KvF7bfchIZzKll82t/AUq+WnZ06IWJ/zOZji80AmgB6YuPHmAiwVvj00gTWivrHHvXfD3T6YknSa3ORA4TgdTXMibnjkbujLQLoAKWHW+9KSkbNBVjIazBxNDiR2s4+NxY8+LjQwVln+5/TOHNvG1fqdhL8D76+E33r/2odNHTh53FgtiNmssd+G/Pw4lFhS4+QA3MVRt9QMgbJuY0ITxl6y9HFSthii7bnIJyxSPF9Cau/aK1tWMm/Rbu75M9J3wzqAwIHC7zB9mTGp/MzCno8kgQ3k1ExAs4NJOfJeWdfs4LzK7aITvo556OpccHRjGMUUuxp/G101LHYmhoxBihRFBcNG7lafDycMEizyAI0r+w0rU8CF5s+tZFJA1VzPdKuHlwLCHimeZRM8Z4GYfEOC/byDr/hd8wdwyj5OVDTmUDDgEteDJpnoAW5GNxCy9T7+nrc2d3v5pRH8afSiMWBTpaRVXf7wCo/RLmDcWNtJFufPSOZoGFYoIuf9u20AxbCN5mTB8zTe3vkdUqMYFmLT/KxLmyc2AGv7zy2YQLM1BNWIpbT+q7c75BSc39qb8iOlRouguv3WGBWcrvkLZYJjg1vNysARm6YfyUsVLTZpydvJZEXVoHSWorJ2RLrPasPf//YHQAstM6H4MoknIs9SDUxWMBXvnZebjRvTvIQ+BpZ2jJjEpBDQKKfIt/ChdMDM1qg2zH34DRTQTS9H6Oy/dUBja5bNugYWBNFCYrY/qIpFNKFCAkkSz5D0ZpQ20TXozdPpe2fRH/9tVGyBoePUQ1DwEx7i8jMepogmlyQffxUm9IAocgzRG24JLLFfAQ1NKEVw1ibAdvhklR6J9Z1GG73xvctynatCfdXm/g6gLtJw2TKfSau+zmNYCw3B4KsPZJWggpVoHt9X/TbtFbsBJHB41jPi7OzNWvlT6TVNGDT0pIZMwW2rmqK+F7mYLEWjPm63JLlLBFqsledinyQU+l29cB4ONZC4133NsZ8WlojxjAqPdprncjL/IGCGixeWLVjZTec5LjXW9hxLZZXzKVsqTivLWqGavOXC2VD+y6odGRJMgq1/irOyQxZqqeOdfqAEeqfBLOBeqLcsEpkIEHvk9YVZVHIfhryfMT697VKUCemHCUFXB/r+1iemC+oJLp26PUXefnyvXcFzgsY6vst8CMjBrZYp2qLmnC3GRB3uN0pj3g/I0g4btDeaaaj4Uhjlsh25lB4EkQk4fDJXI1v1cm5Y+xveCEoWc0TIgj4N1Gg+rF8iHAXIq0dlOAO2tFjOf/JXuL6iEQGW3pv7UM4nU+m6TOnzFm4y2W43qLlU6jDRucBDHxCAePl5C1+AoXLHYHES6OdTTDvmpp2AD1U/ZoHh+O+xQYPU43Sw87ZIvK/Glc+mPSOdQ3WZO62WiRwBqwXoVVYrlIqP1bk05aKNSxuPGngVVJoHycTVBMow6KczW4sT5NSWNnsnBJNzZ9KqwKJrIHT0Ka/omVuvLvYD41iGzY8kO6sQV/NlCQagMDfQrUXQ9HRdFDwrGuxCrCRHVW5XGTxrXKiBuQaopgcKRjs4uV8WFa+7FZWQ//D1qsHc2sN4ArWcugs6ua0NWvnhx2MAIWkZevde6J0BziQJ0AGz1NWjhARt1p7+RrquIzsyZGKaKelmhfTaHaXsWo5pYmFizTZUScjnOHO/40Z8ZfhvN0CjTs59BMF2ND0gjOWxldAoQemTfav8vprvSiMUA0r4T5gxTYEJdmfGFFSTRLkHIpZl/PH5+E9Ua0ortPHu1UYF7N0KfdrBqoGRl9T9zRYuSvr4ijaBOTGJ0QKJmadjBITLkvWDTPOEhDJJBZUhtotgNSAAM5kltQ2ArT7k2fz556iin7O5I6VDMDYTDMh5y/n4gPNX7PjugrubwDiOM7ZKY510Jwp9NjaaG6mQ/O5KqjNrLPEAul07EwxbZ1gG/F6jUu+MwGR+XQS2nl9Hnaq8FTGj5P9x2tTr3k+R+YyvoIo1GuJWdvC1AitT5kvhLXKOv0bmeNiknbupN4I9SJbOJ2N3gG3nrDWa2P167xi5hsBXvZA1sX2vVtYdCCKo2dmRleORUo5Mkt+AZs0eBW79jI9aLXzKVqbmwKOkaOZRZIcA4OPayETvmVWKwlhdYWWGVw7xt5alXg0dLg8+5Wv/4JPSCwFZveasno0W0CQ2jzsexEiitsfT+GkiICGV6V0r3IN3DMFI8GIwrIXqDv+hNA7KqjdhOmYQTPK2qNBOJBNelNyTMiAVxQehdFc6C+s0rTdj57PcgxKu4jRZ9AAZmdFjsuSlS5K3Tv4lmiWSU3BSXtcLPvrWaFUz/+pdqWSmC5tmec+ROwOoIoK4ViPcESFyIXuJ59Jl35IBg/dzbhUrxbVY+eGdEypoZLqZWHyBMLtK4cGZneHtrXBDZDCX4/2IhY5c3Ihjdunrd3ghRDMIZnRUDHndBmDgIM46lOjPGJM7mYzoO4GKvtk3gMbNeDJQysPaycdYfeDfwvQRQXorlmgIeZ2myfYntljoqWIiKUEPElK+KAcnswhIlIeirYoUtsv6l16mN5pjdgidcJI+r0MBDNCpEC8zonDfecK4RiJ+1P6WOJJZsSAlAeyEJN/qH/ODQtHoseoUtytEi4M8ME6iLoH6CdJn6mlj62SFCoUp/6OB34UvZdCCjcfkze3636Urnhk44UFOdNzIGDBZWyiW2iP5Vn7zqfbxXfi3f3jJioCfgwy99p3VQ5pale15OBN4O6BhMvWBwib/95W1Lv4sy0kfpYtLzsDp0GkddhzH8i5UAAt8AlEw43b1L1H0c904UQ4FaR2YrozMJ1UxsS5PIt8nz+rgpoPAUiELNd2H2kzXE8JsWIMVEDF3RH/dQTPeNqbcI8vqHYH8Jg4BLmEo6ph+rYWJAc39MwmBRjRoamB6Q9MldZGgD2vbZoEoqxWo+ASRsD6j7+lwD6MEbySk6hBhR4HAOLk96dQuUqr5GftC/FtCb2p4byhYR35QmAL4EsWYCHIWF3ip+lDTgeJ/1hgDK/Lt4ZoyZaE1DyGxQ2YJR8f65n2wfToqPFBMfTnUCLIH3Z5GvC1RhpSblUQcK8+TBfPuvf7XHC5zD9GjJos6xo4rDcuoK4FHe5Ivr8SZfTStlL0GhPZBEqNIJuxpIdfYH4n/M1QqG2Rwq4PBVaoDTARAMMJh/XctEyUjM3tLPGPWs+Geqi/Hmai9O1OEFKC9J3AlcN2xfrKml4ig9ZcYbP0r3pQ7JG+6Dj4HZpU0G6v34ltza4eWcDxgwcIv/NKMvRM3rh7W6A01wRBl0eAPkg5s0CCaY3RG+swn/t/odrcWaUB1bCEgoLbSY5AduCGuBCGFvCHK8xZcFCsZUENgiAtPwtBiar0+FRaPg7s/yFusd2ZLF9JCpIaVy8ifjJE4Fvixl1u4OrD3nbyqQrsS/7bNZtK2U2PAZLRg6NqUIwCDRDXqLAVlmlPQQaRnIVoKbgyPC0BNe1DYmMyrJj9dm48oeMC640iaCKmkw4ergYMPxw7XKKYVyPXB7jJKL4h06n/yzKnMxxU0tdQiqFNGHEdQiKReBTYmZr6lD4spINE9t2NLWP2E3CAvIHhIqvmdzOmAHkaZp4WFUuerozGweolIu0IAa2BjGknHTavNs9vi3eyFoJh/pv2/+KJKUKhRcW+ubRnhOrEsFGe6txo+Y0i99iv37q6nabLI49kISIvG9/6R58M6I+gcZEh8ppmD9P0rZUby/4r8+BWOH5Hhvy2UaclT0qIsozNxiN2PnsyuM4XQJTiq7skhJdTy6J8+EEKPeXUVrJeVLl7t9aHNOfOWugfeObOm8mOCWreU/tbLY0ptQnTnQ4f3odgVvdsqjpDxVYiyOzxzenW/y9+uzzFCjEBwRsGWoNNj041UZuuj8+Bigpt1SC5QZlw1sgoDqT0SyRu2CISJBUZeOEwexFD8s2mQmwokLivzzBoMWHnzq+iK+tlDm6cnfKaiDUWCcZYo9rG0LH7jnRb2eUJYx4ikLgckasCbxCJU9llDTDLGHEwrITkzIjdZHO3jixvds5EzdRdVOW45cn622w5s0X4akdnSoHuHqPM1H1veeCL4qjlO+f6O9Vx63VJKfhMNSrs9LgdvE8v00/uBx4H1dhTwAl2FHdv8jntNyUjQPLYBm1nIf+zAnvzYPSkJdw7BLiMfF+I/5TM8Zs3tee3fluIwgCvgKVzmjJOJfYCQmB6O/FTNtS1IEYXWtnPlEOaFA4BI1gCrsj7wDpJ/YahSHrGhLvS5WSqSJG7YT2YG2kaUkjDXUOrOXRob99c9GXK+pAIBGqhqpDcSWyb19w/vVmQeO5Xip5tuxDwlzqdSFMOiEzHuhFSbf11iSH0GLJxP+JMt3Vu1eYwCplGLDRNfdngEB9JwCxqUJiYfZNm+azOsBcgb27xJwWxKZaCOdYx4lCIGwmP0sTR+ExqmGeeaMTnviDbfYZwj/WXsJCB6d9vw3HayuLU5tAsWjU2julAeys78gUWy8LWANC7FUXzquczMJv/5BThyIZO5tF9UodwEO1DhU9G7k7lxLHxi6Fc3NkqtZMnVNDK4jGc+5gTsPV6C9TgGMrW8TOcL7SNwFieghtMugYx65Kd+LzoP8HL13lYonBFhdTaOBAGkVKa/INoVA1/YTNjI9gP4e4Wft4VgQFba7PPwD9R0w1tXZs88UZ3ipiFdISiwI1XXhnj0uV4RTBGSsQ19gbWaN2ccelJICLiaCe4qmWSuEfTcCWAQAT3jveCw8ahWU03nwwSn1JrYJTkHzVJfwn9/3SQouGt3scYNtpPoel4w9Ejnfb1vTZMSBzl9w9kuVbaDkWkD8U5ctc/mrYFZBKC2SJ2i18w8WPA2ZMQVLhqbvNaX/Dvi/2toR0bRL6DR4ZxAdEyQ2y5zSVIfpvP9Xyt3bNlly+gM6KbDVCw+WxzYSHHC9OACiNdtdFW/bahH3iobJm3X8j7+qCDS/xilJArgcJxQ0r32HeZmWHsa+Dqm10s2yPNZ9Ir6Y6IV4JM/37Iw7tvsHycul9NE6K5FZ5Qto4sbg8kFv2zQaJL5Y0GgqS2t1voKKHS/eiEqVZbn5YxJFipq/875hlp7owsK12EVGQj9I6uLKfhNXjsAyvB7Eq9A7fj96yKjvT/Q6yerT+RXXWZSl6PM/Dj2ro5tzbZg/411zlF427T6niCuTxCs1sCWtfDPtKYkbbJD+vlAPnRtPfY9Hbrkl96hSDGtxq/81wMZmVZmKYmanDv4Fnch/T+uP55b7rb/IsNRN3PFwZ0QPO2jycuIrFe6mEYvjEQU8DyDtgWJlwX1lgii1byriGB5FyT+5PIAisNjh1JRvUJv9xgkYKuGGc6fN+9SP9cIi8rFIxYJ8dXubWZ2hB27EnzAAnDv835OmD50cFVFTa8R8T+5UeENRgizUWmzTppsbvVuQ8XQDaUuejKvnm14ZYFdE1/idKbgEHJbw0IQUUBa9LEiEY+hhK0h21ZZpNZ9dpNbLeU7CjVe9dWDnYmpjQx+F8fxMe5rYHFhmANcr3idnO2+F3uMdJzVbn/FIA6/yFsBBTIdFOhtg5tXSaNWxn71FoNyWqAdb5pU+XrBGQthE5/ALtkTBoCSZt01NhcUQt9bHI+NXkT4L5Z9i2pXVqXA36rvJMHTiIjVy7SIyCQuVvyjiqK5h+GOph0UDf40eU1KhghJX81eDCtDUgjq3+V9TjGZT2wwkorSj5XwrOydBc1dhacvGJqvPZ8Dozytlpt7BLi/UbjuXB/jL7JuI+ab7cmbGWA5UnPgZXO5kS3u9NNDql+Nf00lpx50vPWPxUU4iaHmYsiKTHXO4IRMPCIn5piFlzGiNt6ZogKIYMDoEuBh48tF+Z5I0NLFoubsJ6ykDXbYYigddnhVhEJ0/m5TblTnxta4KT9137IHPzteNtRvxFPN9U6utBMJRBEqN65vHdqcRFpQZPr4thwlVrZE6TNxDgvND0Th+nInr2zaBarIRR+7jsnEBdRQ88Wa+m83H0pR7n7pV/6q02Onf+Tg/iTPlvsMMS2v++iDica10DsN/MJ0Y8t/sS4cpiiA9/vwzoHDkZpkfOq7fmrf8oacFbBIblt0tdtjzZKTTyZBdJyohUB9r8WL35+hfsBpuuKRX2/gYMD9KcAsIH4OBZy3w/WVvPU3mA/f7H976FH9/zQ2R1IfcO9dLUIDh9KXuez16Vp16Y7j5HRG5RpU66nud8OjNDXrI/XV4RpH/2ohWob732dzacyotD/726vMex7fRHbt3luoG4GbrmpwWerll2+lqEmx/EImBKmUnIeXMkBBNBbJbVUfQdXy18J8JlT90lMK2rDOkwGEhfW2arDXwu1L1/8e98Xf8W/0QTmu+sqI/E5SGiH5QOGAzmyxZpB+CDj1tjh/kDkrf5hC7Hv3V5K2vzsIoZp1lVHAVHLqkdCsYw8d3C8BnlhfgohPyfKA/P/zyp+z+A3Squ/J1r87Io0rdZP3+yyp+bfaK7d9uzLxpSQneVtpWiFDVZ0T+/hz0R6T8Mjqscf0I4Hyyh/FJeEuQ9mmgDWwzTnSTJXYMY7W8qEwUU7ek3IFlRNw4GYRNut5tAsu828ctZ65e8vmx28J5ZU22d0Mnuz7gmawDGYgbBM9/K1LDQVZRpIW3MbuD0FLdQOpdbuIefmHWIgO1KRjtY7Uzlwvrvn3SCWKLZIhAxb+QffjGthYTSgH0jps0uv8ptDrmGb3Cuw3axbAKDBlZR5jNc8pIj3nFiGAEVMp+DlPwF/Vd+tH5XxiZNw/L+IaVsbmyY39FCjBgIaQoZKpS4eWu/Q0w5KxYpX+jEmsP5n5iLlVZhq5gXV1ssCD6pf/SN4Y02VRCq4nKlNIclJUC7Otr65eL1J6QwWReKHMgGenSxvZHjmH0We4V5by9PHbJ2sahJK45yVHS4G51T78N1Y0dsTEGKlScp0i45isVi4O0Sw0SKp30Dl2lhNcCpNeIZcLkcsZ8NvqYE/9fyy+gUXz40m2dMJqmkwA4ZxpjfvckCAfddVwNeweEU+3dx1xKDigDEBGb9FUSHDO6RYRHBhKoTNk/E9D0hW8tehz0vAQiqibQN1xPeMAqs3A0/aDU5vkPZyoWB/SOq2r6p6PRkvzgnKBwcsUAhiPORkfrxXQjvRkV8jdIi/LNxzRuJKkVu0rBBtcaPp2wv4iVUWiCYvjfcukgJ8Bz6uQgikLt5PvLb+w0Kalx+4v+ZSZFFelrFwiKOQOiSR2QNenz/35GszG+5OS2Cz/2J9STShzjj88ywCqw9EYIs/u0J2neq+d0jdevOmXMN7+rsh7JzrOtJTRvn0ghLWr8MX7yVQbkDagQHVrHMvWFISkLwi/Fk/unzrtitKUy10vSnYlF52lvWlNkqjnb1d+x2aSNgghbWi/Jm0oLbyg8fDGMaCyQDDAwSsC23yx4aAAThMfviXndeb1L1yqB+7c8LSMAAgR7Fu5nG+PMVKj0/4bzDIQ653WHt2l3+NeaccsVSfxK2ppieynMUEG1+Gle3KJAoJ9VgLJooxz0OPP5ARZY6EwQwubL5MJnIFGPyK+IcLQLtu9H+4OePaaXT13hcNt3D8Q7pJMTqxSrc5YOBGmufKVwKsEfsjTo/sD0SzOiDbiuMTfyofZF8f6bXU80oWMPFbbmMtA1BkCpKX2zjAQLUef6PwPHSC2W2DiioKtAvYCvo1s8xhL8ZqC2a/pVykdb2VvMXD1pNdtJ7hYc5FHMJYhnozw2dQqbV98pne69CsT3WsXFzZ6ivY1cmnkK9/P/Fk5YiTPOyHgJZbJtXc2vQmGhtqUQAFEfNXqeMFnZx1s3Z0Ze3BZNAJyjxkT77Bn8eW2+GAV8vgy7ujUtJcpUKZIj/797E8ooxbHYaMysbwc0Z/5F9DOCcljk3nRjfgFL5Wo+I4JvjEZ55zgafIgtZm4FO4BM7YGYmATtOoa/4Ha3TY62V50nnSjwuw5u3AEEIFn+kzItgtnMYg8f62/osfRiu1HDqaG7IFMBK4yYSzwdDeUn4692xY5dtXUJJuavUpZt1z1pMdQmEnKRa9+RVW3mEXrttftGkOg6ofbRFdRakCMXHwQ1yKzVU0or8ftYaCKXDKJN3bQIzEmT0pnW1wVZ1mJ1upPV+htQLF8d9tYPOMluGUk83s2u8ia92I4bbCiIdIkieJcuiyPChHjSwd4sJjy3fE4HH3BsCu2EQqkzkoBZ4Z4nf6CS7ssIgc+1JF+o74n4+hDb99YRzaVhbfTd/Cm0iFkcWd2tv+Mvto7FLP/Jq3PcsZfxOWjN6KzVQWkOcEoLwNHxyOirsppAHcddfLMfBl9A5WJnQHyvPmBrdmJdVxYTVU29FkgCGOGfKPpBvAsEmhA5gXOj2weqCSncZ6cVooljWxAIHXkqeJuynCCWqwgVdb+YxAZNOn0PO4DLnoMUFlPXu/yNu9B0mAF0wF7am6fhLHpBV2MVm0gNzVWeafJ8MrlkWo6yoZmplBEy41Kz2ZKKMHe1XtNK+10s+MYqrRK4LpMoD5936zhbbHEe4lk64GsoVXHwJh1mya42aX9oU2JwTPysZR7uACiPii2Ctz2huKtjYIQ/d7vyg+kTsn4zDuHVrL/QCDVMvgGrMourqGdq2pODnfKRIOa9Joy8gPcVWqpggq4UabG1mipLtShb2HujVeWKtsonC35LyTa1lPO2QcIlOBsj4ViwoLZlvX6g7O7W9+SxKJ83b7XvdigVPFwFL0Vhepba+LOSyR67rIfXZ2EuohwRLkGXokv/j3P1ZldrmvZLYZp8Qn3jV+YN2weOIA8/GK64lLAi0cK+ODSJ9bVa70PvRGzQeoiLnseq8SfZRI+KMYZUKp2AGDcBg2g9fd4mG24onCH2J4NKlXJXSnR8g3lOLyQsNgPhNRuRu/+i+c0qJhDYAMy07mmGZDsX1NXElR5sSt9CIWqy7eAEBph3j2ODmdVD91NiEg0l5K67DolI0b0ktjZ+sq6T5FSxB5GfROQq6F7dCf6bgT9mwqqOk6uDXp0SQ8Ukg5albiAgWHhDvlbbSGMIYSRJtmzzQSqYUUQzyn4ZFE9ddyR63+Q0dntYc3hpLcgVGr4njle1B8rWDWxbNQrrfkwnTFxlBCqMePDnpLV3mmMsPnDjAesiIpa10KY4QNMcP2duymIX11goImV38QKdHLAkEywGsU5qAPC//wkIxri9lq4sx9QCCYS86TMymO4hRLiRAVQnfSQH5IPFnDSiuEvoKqZADXaLa5FO6W1zXwpWvMH2Ec9Kpuuid4Wb6+gI/MmYmS5dLica/c7mPQ6p0dOB6t9MbXrYVXgT0KxhlWHx1EesCmIQ9W2eLQpAcq6kyJWEoOZX9d1GApB5mDMnvF6gbFeoPZQc1GLR28neLi16QpSvrlzcsL5CvxKeRzH6LlFHDDj21LCzha3n7NWXtcwb59kKzPhYthCMRp/HcyIy6ulG5+qLK1JbsqrDcLHXOXti6wl2t05cw7kHosioA6Pq7FI6HhMGk5oGRsUou2IghpW3DDndOTv7RYxXggksoTu52sxCjnei6SQadMzQzY83DVakSmFgdnsLmtndYRwE1h5CNEg1Y2mP95QuUC8SXZEp6KGTOSONC8YFV1thPDAlRN7pTDUTTXhnod49phBrIf5CBmW7uvu9nzU9smPn0gg8cfQ+rDxl45REAv9ezntJe7B7g7eGTk0FE++AYw1xhLcEaR8NreA0POpD1n71iHGt6BJ/FA9kfyxXCNMnCKMZQ/06szIle6Qeh+s8KzVGoP7mHtgwY8AcsizExi6Ps4oTxDDMZCkvXYsjxhY2NkAngX94xsLFdzkYvDL5rzhogXE+yhE7uQIALpcn3qV4/3hcW5SLqbgUZhF7MHvav29j/dvGQsfb16j/HLdmd1euTTqLcOfusPuMUCsfU9OYbCdzsugm0oHzeHdWbbH43b+Fp2+9yf29VJTGu6qp0LrK/Xg1vTcW4qqCyuvNPUa0xu7cmaI+DklsDfoopoFNlblswy8td+H4cz7UnJYKLRGrShPxo5QcAz2A4lLxD1sCnE5rCx6uqLCJNBl1DgYfNCfEu3YWVpAz3tjmPPbPOOy68/euiFeG1JEv9F78wagXIX3ztPZ9wpjiaBJtN2aDvGpoiiV8mpdMUI4KFzdxfkv0H1LGlMxDI1syMMAAnUMcB2t8fkbxTFVzYnNXRqzkyHW0BStb6YIcj9bc1u1dmDCS/nnOsRr23sqk+w4+aOnbuvD5BtJk03LlozBvXLwRX5gk3LiPv1T2OKqslRRYWKEdSveR88w7TrFK2iFQDBgLvCm3DEUMLwbEjVVLyvcRqE6UpSzktiq0zaE6OorR8jKvMfI4I7SavCjaqGA3CKbWIDnBrfD14ujVclGsmfP2FLZyHqpXbia34eaD3loxHdJdOvXzjqHr9rCCjS/faMRaZ2q7kc38td5hhgUjB6lT9CjDfD1WWyvqV6/cA2JhdB0kATAujDZqSdbuFdkyjUyqdrV4pUBKxF7ZDe3tn4reaYN5Z7mH3vMiCeEtBccjBC2G7dLAvpCa/8WkZ/MdiQMPwiJAiIDi0006c3iHNv+mzC/lKl10fGsBPWmmJoB7NV9fA84+lUx5Z9Ayc395ha9FIyZBOpapjAkBlFk95ODfIGlzPsHRU0KfJIPTPdEyxhYbVdhXP38n4jJxUCE43PBuCbjcKneUCPB2YFXL+uTmh9r8EVbrX1ESDqG1IFk8wRFUMdiyZxH/uY62rpXOWaBPvXdInXFHNkuGtwahMlM0LDYFAIO6HPBjUEoaBhYGQjfW72ZdlTywM2hc4d1WhRD1OjN5EZezMJj+4bk/6tcm+lAhf6roJaPelU9JuNXJtRkyogw/m9n4H8KvOwqAI0cX9B94o0rTJ3hvYgma8T7EYne0H7NxMbQRIPn4IwahmOk6aF/LO1vDCHC7l8IWUjOCIOKLa/sTbq9gABMHz2QKRodoxGLVDX3Co6q9qRTaLyTcq+PLKAKdPoSlTaJm3MwLmLARH3dmE1+WH7l5DjoqXScxGOG6wRn6HAAFp4mZQ9NlrHnMGqi/5tsmcDtR2dY0IInmlJpIZHyfKd/DEX3dJFXCdXmJSvn7HTzdv+9CsFFCWlq1l6LQri6/oI9VYIYbCWSUct/uuB8njklHEhq+yeP3oCCjMs5qEjGyYXlkjT8/ec2kYnciEUeJqHR/yMp0qxB6qVzM3BMzGRKezgU7AQkyV7g7Mm/c3AIuaHAMA7E2geqbF813FHU5s91/PpvO7gYZOmqx/a0HwkwRY5En+Ng2AjnRHBHWfU6JYrX2A6BMka25xtl9X4I2my5DDKUaZy5XCaUBp8eU8p0ULUxL7oi6EvXf+Qurlki7x8LNjv10VAWHpF4J+7MLLCFT2YHhAIaF7Uu2VRUnox/5UtiMGCRvI5Ix/IrInFIc8uFuPlus3glLTQriANMMu5aDTLbBKoM3ZlpV4mOfDVB5Gk9zXH7v9QP8SXGTlGcUwTxsKuu375By+hAkYQ308pG8HtplFzXSXi7D+MOnv1N9qBwx3m6UHTIFrAVqkn1QaUEGbk5BA/bx7fePhbxTKDYKy+0ShbpXfIHibWz4kwyunWUvl+3sfivtwJH6WHvno6U9YmufuwZNQZfkFhXNXaP59eYO9MI4GfhsJUcoBL0V60De8eNDGRT92nSCyTHZ+vcdPpCC7WdrRQvXuklLbbdN6B6PCnv1xTuVEXwhaYo7uJyXAhnkLkrVJ+vJVGx3WJNUZdfkBlRMw3Z+/rdOZUBFkc1ubjHhpSMaDmxQZnLODtnxkcd2v93L5fARD4/OXSfPJ5UAb9VMf7eW6diGcfRCqyjhuHXNqa4VBZWbNiD/uIE5OklPBaFbjA8bP3+WxAS3L9MBYbGHOhAIm968usgTUl9XQY+/RKdse3kKsDeD5Qik+x7gJ70ZKmryMp1a1Ffn5Bp9NRMJwjZCeXUNKOht5JrvCjhjX53McawA/Szm+CXfFGXqIY51x3+JHr5HsFQV2gWAru/PDIbKdpHAqPLkzwRtrFDRsgcBiuwwaLW+xtSCLzhsjoMz7DK2tYKqzXTcsWRPsgXX+9ZzoTpg5DwO85PQLBBuwQ9CYr8zdvMLRdrZCFX229glGW31HRWq95D68gy4cx+hhQiR5OHH2b1PJoLEcV++QbHhJI7kf9m45Ku+j5+UtxzkC2VIcBbi/29rYXUzPS+qcDrzX+sysidkuSoM9xGjA4jt4bQ7iHzLM2esXvos7doTuu5daIDH0Ws+9A6QiIHGc6pw7uXjbXVtzvrI1ZvyMN+AZVB4ddOZfQIY8m/40OBEcGS7O4ghfqmvlnhzbB9ayoMPE5KUdlLUp1BQuBz3QKcPlkFOeD63rh9+ipK5+MbaBz7bWKIa8xLYxn7EQ84nmfz4fDSnNkHMNGzGCbPGkqc8i3+TBPDgzxoEbbKh3oqlCaWz3c7y66yJOsbc8Rzz/11si1xpbEPWSBRzbaoAbJJYHzhOwpX0Z06Xd4AqjOyCgCqn277N4QE4RAlp2MyvcywFfuU1pKysK9o7R6aYOm0HMy2BDJp0/JEZ5WSNFUISBzSD6w41RdgqySQnU5rwjaPzGhPQ68nqOUObryOdeG7c86FWOih92cWBppda3MJ/AqZ3volPi+SEGWupwKHSmzXp8mOoOkOFQCXdZ1DUhqQT8fsuC3bupDc5PsEy0uhtbjNFT0RqBJKukxCx9EvZfItPI5IuGSkLLjDUd4qIOC+YNpHcbNs01kEjxt6y1h3WVJf+QHdj6KdgwQsTnpXlzNH41lQyrKJ424EsLL05bDheMIlyKVCJOcr+seRjHLyuEJ3yy8AJ3H+ipHiWnkjeBKeOixskFpCm8XGBJsuiqhbSR55+806UcF6VHPRusnYbZ6oKp5kdqfjL8PNOjdblEw7AFX4P+GbsLlaFliwJ2qhtoVPRw+YzyNWTO5VUJQj6bsBWFHGjZTOa9gRB7z/yUiNdu+dR+PR7ueE1mAOGPXxD3Lpag4YOXBriNFyNlHXP7wyBxU11cgzl5VhPldW0SPP+ZLBT2JSttnPLGt6o6wps6L2vdkACIyt2+HjKw0q6Vlp0fZIKSJ8w15Ogn3K+euLyTsZu+UoTkUKB4F7JuNElv5ZKQUR8QMx87b3TzhNa5/eBO2KKJf71+Zi0wwkNrmLFvlw5YRp40aU3+RpCeKZJyDre3vbOdME/PQLO8HLZm50w5WzI2UQ06pCqgjI4CCuqLLCcKWtq0ugcDnvUkrCL0F6IUN758OIMQemschaYZYAV/ofUaN7yQ8Pg3/Kivd4VBBT31Lla4oSIqa5S67DdRiysMKjO4Fi13WkP3ptKdCyMSkNTW/vt0/8Dw3pwLPj5ZUT66meWqMP7dn5Ut2lKdcx7DYtjHFrodudAI4G8WCCPr0K9TUIor5+ND03ldE2aXtfBpcXhv/cWRdIKkI1GhM0I7ctGzGfPCTKPASZmtXvTj7pt2PKfvgW9ROsjzmvIQK0n72ENg5q2dEpN/2mikQrpoqfaoEc+1gqFlIe6tfLnXLtgwAZEBznbvVVwb/IetHzJ8JpJtyWfltsSdadU8qFl2f8PyMo58MYjC5UsCDxWfCwQ8GzX6fwXJUOadH9NjK7Nq0mxg4bmwRS4E4lL08A0sT0h2Ni+M7cV2MATxIGnwHOXxP1YpR8+oQkv61UjYOOJryMz9NbqSnZUxCA3+W60maPndWGGho4wvO+b5D+2Ckkc4s8N+83sOtkNAkuZ79C/RS7vWCypdEe5Nc/n+GIWPaPNO6HUbd5yiS9mJxV9fpY34VJF3xM9he4WiL2AB5dJWAgnwz9kbHuKWjr4+z15TO/T/RlL2QM/YV03aiG+kFrCVttFBhlOmnkpWKo1eiBhNDmPjCDu9cWyNN6DdHMvW/OeNqBOWccHwF7eExmRtqS4ReroYgWjNynABUh8Ox1K8umwgzOQB8sX8YlSNsFWSv2/PbJNiWsBni0BPgTy8EGK81VwuaWCzge+94SUIWiVWqi8Q4J5lm2mckZMoj/rpnQFWis44lAoGJq3jmyZv2VTw6NFhOYruuTHoTa2xiNeAX9zhLiwGjw/hObsJc/tdAd/WpG2HHfCk8O7dSpTRVL0d+oHlCcLREr3vIAL7Iipy4jQVG2Z8vY9vqJCKMrHt1yeu0+Fb1rMahmBUwyrW0RRqy98vc0pX0mEZmCNxrT9klN+Zbg9/Q33bIIh/Y7hnXEt8ZTuzT93Hsc/PwqU0zVY8t1TVUjx5Gl4zgLPHoduI0idyQhp8MxXnbEl0weoM0s3Utk3cnCFXj+lqZccWqCXXor6R5gurN1V6EqqbuuBsf3/GhlptqdwWzduq4TGv94/ALrD7ilKddc5dsR3a8MV4TPfRbcVRbY0cPdhmcc+G9X3zYMs5c5RidIGM6LS2JH9MiUWV4m8gmLybKCJjMdfQNaMIBkRFjnvtQ3+OWCPPvvF8B2WRzAKr9CkW14A4YoUuUmcJC4zkn5b3vazTP/X7T6qFWT9IVAVVo7XW5W4VJDUR0v7aXUiFSzNnCJgIOdOLC4UrWsc+3ZmlVSr8aJKuaXyxv0PX948hVoRD4ag9ZltxVFC2KzKBu9r3EHWhqLBgi9JjWy6N1H9sHodAhz1B6kcyiIXtHlffVNhLHcQ6MveiR3uq/IOeQzV97nDlYUhXjiRj7blkf8b1dkvOjE+l2rXZjQMQVTxbmn78Z7ybF9ujo3MXan5s0ZUliVG9j3HlE4IzWJLywfegg00PNemsAeIcPs0ONOqWE5NTl19b/7ibCWyc+Ok5uB2+WO6rnyftofock4eRM03suqCsBYk3ZZ7pyrd7lLvZa+h1cccxKLptLApMLcpoqh7Vld+K5lxNXnl9WnmRVcZctz1eOuqfYZWtRm7uuyJLNQM+Or3068A6xR8rwFs4GKsnw95ULUweANTvBYfjBomB/OyMOkGyBdGNO6KJpGC7o3RhzwLD2NwUmaXkJnGsxB8yD/avrdrbj0jaSeab60namADeNLs/Ee5OPZG5bdwqp1oJHMyJmjNkmXoo/YdjJ0GhMwBvWblEpmcRX7KkYmh7Y/yYEGE3saChGuNSnLgzebUbeku1kNpKa9ecBSOjxoMKIDB2X9nDqhIrUSBJneTHnfDpuLHKu74UHPuV7vnMqERrgWPIBsw/cUKuYVlddo0EXmSfC2zf4LE+E45wKbc43qQEK0rQzgb+HYG4UTrHy831bYPGXuZUf7FmV0XfV392jWvLp2MOG7FKAos6up3kOcQ26pvMI+J9dLnCXQM6Re0QrgfE60imKJnPplO5M/brqDNkrHZU+nOfgvqPC1M8fRivBUcf7Rs5wVL/+/MXGuv3Dof2X97Tu6piDtGKXXODbF4bWMf5GaAR2ZQF7MqmBY+B5xX07UsFH+O9H8TGKxFZb3oPa8IQExFO1uTgfsTeGP02RvotJOroYjDbFrEaseoFMxAycQHTFbbdujKq8cmpemoXQ5FSOxK8IQaJbLbj9Wwb0qcSKePY/No9WNfcfIhjo8r/3GrocTdQ5pNIEEuyAfHWXyJoyl9kBoRERWDIoGAiSsJyjG69PBSmUlgU2nX3jg6f7sVBnJX1+skIKjxQLWnO7mN0GitMaaJQ8+EUFtzMNT/QB2gmNPGli3S1mQx3yFcT3FErTjMtJIlfwtw45MIZm1+9ZA0PvsClJ5IrdOuTsQY0PVuccZYGEmCQRfRfrJQRP9TbtobcdBwOZn8rx8XRlos9yvByummpKNTsGZkcvFi7HlyTV7wjFm8mU+WdpRtvL9y+jk5Ut5MwoxQnoHiS9qC30z3KJW7tZmWtqAdVZkARGLZ54KteJ9Qp7tXZIX+1nW5QuyjbJH6YUvEVj0ge+KfQCt7hIvugoh1zpZ4H0l7wdN2151v7kw8wbmbF8jFZrecySJp4zk9LLITDmGqkf+u0Jf31lq6wvtJb+2nl5qeNRuFhVlSv+0+3ecCnJSfWxzA4ukaoGfnUC1zl/qMIrH49UrgDAdOScdXy5PXfdRxx/LqwszWGMmxn3W241CVHZTpJ4owje+SH+EHZI/gRCPZf8olvBjLmQQKNkpNDc6TFKZsFXFcBuaXAmPCwptkqB2zUfr94mnOarEhsnEckLAm6jxIo0KCWQ+YBIbdp+V4IlsbU5KWCvXnL0hUkT3Nt5nGXhk/0Me36BhTYBNM5zHGbLeRwN1suYWxNhU5+/pz0XadKPYb0k+iRGp1kN0rgKf9c8NE5PQLwlEaXtxxkX9yFaRIa1NYy2SnUEn6YIqzp7yK3hkNgSUmq0dedRrFqd+R2B9N37HWeOznb3030XEoBp9wnFnASbRJFzzl3605MQhKjgPn4yakA/yQpWlkm4lvLWlqQ8aEAA9mFe7p1jIvRbPloX2kIQWWh5erttL70NmLduN0an30YwC2w9eWihgUHnjYf2g/+l59lJPHlDdGDFbEt+zZetIPI+XxTX/rhbKkvDyEvq1MNgBeIhsunSlRsRApvdIvfdrVFPiM8Jx7by4dxc5cDLBdSvuUQi8d07Pv8Nvpk2sUFS2ZL2sVfDF7adQ39ajQ7PCV4dWv7dJLP7umdsu1jeTaUgjr7H1Gi462M1oRMPywBtWiQa2Vm+lpItQthr/FIz3g7+TXxU/FzbDn118/uMXW8M0JLGTf2hPIrj79K2QDG0N0pnveNEonPIlFUJecVy+xZlwfx0W/FBYTzf8TDDlClH4tbxzAn9jUTfSJlvSsUJghvJzDygSgIMOn6k6z0d4+WmbZZTJPbcdkMtIk0L2iUrpIXYDm4wsX2veKxnWhOnLmizgGwZSLdk+8ODQ6SNLsbVWNobhT/PcabQPLjV6/SbR1Q0uogEzBllZC7Gbulr37oD3qvWNy+JhCtFV+838IbUOYaOe+0RIaZplvMLbiHzJY29VF4QwpQyNuAi04vVNIevuGht3IO5l08NshaHM+iQoz8MXkLFjk0x5BCqJqA4jMZoRtlbXrjCquuPPKV1ug9xT3dcrazE3194unFH/GoS1IzdIHXNx3kygQ48AvmqCY36vnL/2ykzSy1Wxon+h+Hh+w0xyixG/AG+4KSlerSNfPHqxwJyBIVUHyvMqghBcz41qlsa6AzvSa3zL9G3Pct4xI7IroG13AyLToCqIwC2OeQALkaofeNvCwbma7FEUbG4ECc2LI8z008V68CjyqQlQKKA2ZkPC7/nrRpB3smV9URY4FKN7UCYCaoL+YAdS7Y59NT4vCTJDXAM5X32NLYQOwPZ4oCqxgEkZsFJ700Ms5Eux/cTXPZNhKnfbxRtT5vJ/4/JY/lz5rdr4uizO6oxIv3CxmydQEWzRniandVXWduJCov33HHbeUeLLgeE2UKI+P2YtYfh8pX6VRePuVCqXnz2LPBIIH6mCQuDjAINQQLWVg8ik4JGeMQ2YtX3Zc9qhlDU54gpszROy/2e64MXok2rbT2NSGWnEmMAeAdDr80uQb6723mMObsdOLT7KZXAGfepxF47OeIy8ph8UNi4jreDH45QdupGD8ruqT3jM6zE7m5dKzYrT30WPcanGuPnb7BS/pjGS+yP176gz1oe+6qCt3iZ+OtZsm73VoalrH2RUzOHWqzx0NJLJemlsLhLUvDczBVN1EwIeW2VuRxVnSo65y1gIaFZgNrOo032jDXnte0HkzGEMf1WWTEUiTjfVFo/lT+6Uj8fjGSn72dZZgs6Ns9o91b9fKYbbjm1PpoTOYsQd1Jts5a1GSCRJv5vc7/36SGQ3GaDZ69oBF0u0MNHI8fzEm/qcobliZ/aHRVQVQ+R1a913hdB79ACWgwR9o09WddozaBg0ODSBEfN4PH+9h/sORsTxW/avAwQYwKVN2wOXNphC65Y2nqaogS+BbPk5bZ7SB8RMDO39qgGiV507UTDbD7JiY1ANVrxdJWT5veHbINyfkJ0b0upNfV4zx2NFtQ7+myLqDgot/TC9AFuAE4dW1R48PJ4INyGMEujUsWwGPj7IbWn7HMvf/cZmNI2yPzIAve7EllqCQMOr/wAKWch+j+3Hd7kqgGzbNlqmCjhMB22/uv+dBJXlx5vvgz39OMIkDbQ4KapbGeSfeWE3RsFs6Nzayf/fHrbrsVMCutIJ6IqWqXqg6DTzwg2VF9t0J8NVhg3V7YnQ3e0mvKJED26duvAi8Bhm83eEfQqEgM+eSgzCJN5s9Q+aK9ARDp+TVKboqIRwlj0TAt2QfDolKLgfsGX24dJqfjExri9G2aMr0devVbTAKquTodc0FEoNaPbux309ioKKHvo4iVIuAeDdbeo3ppyvFdZmyZxOxVyNcZJ4gq31Tiie8EyxiuecOZ3B0J99tPaBznTdTBArPrVshkojNjSVsZWhxw505XbrAx31Kmwnr9lca+jHSzJ3JfWp23a31nOm6Jq9vjKV8Bq/FK3jRl1KiHlEwh3BfL7+tdm2A+E5QoAbvdeLm3uU/nLO2OtM1qt1IXCxIFwqHspWDfiV86dLj1llTQl+PXbJm1jlmRnisLIoBlHaFhsuvBw07Tl75r0OQEPPJsyDAxSKEpxjuBNdMd9p6nkU/3uq3UTldg2RfHj7Rdv6mPAtDQqUV3hy7OSNbRCQsGf0La5fP16JyWDoTLzgphjzK1nQRqbMD829v3rbkZVOSejp6cDo3+kPNY6HdIpu2lpbvxYJhp6d1ZnDRekgOL+/ZeNLStF3WkBmrY0D2C6Abz4xcoqM508vdAUqFfUkyo884C1RivrGWpaBNh0ilGE+jWD0a5s3BWBKKVCx56QWr3umnS7UiM6iGbP/lrMx4F4Yf9uoo3CitDt4Ml4KvUG6xBR+Qggj6EqFlb1L98IyL9wuCREevbeV7PLq6h/XhZnQY2hRi3P4oqmicChUV0YAeYG945v2KcRfmLkxlh561tQy+aOSxcOMbHGxnrdsqt32OZ0OIKfYw+ou7V+YZL3mD9HyV59YY5avo1qNPO4tiTc61OKtwfHr6+ApvYL+3Xos6ElU+22B3+b0dlX7La2FNyn11WDIuQ2qMGuMMclHZWnvH7vSaeHQueEB+HAhvZS26T9C0R40daLCIfxQGlvVU1USxJeiozlI4CKvXp7yxlKRTY5/PQW9p+b2N4azlyN0NQ3adui1J/+Zm0HLhtcEetMqocJtRc6joFlMrBV/oFiI5l2CYJKqSN0s996yTqWKarfNgwLpRsWtZXiOXmA92h21DrTd+/DB/n8FoApnZAmDPLtQQhA1LzEbbxRwTNwN4z6yUCHBrw7C3oHrqsWDjzUq6XoQQNq6HtsIUifbkOQLufylPaZO290i0r3diH1zv9THDCy+KjobrHCqA9bdYrWu9Wqu3m4QssVn1MM2j4G2dpHhIXz5CIFQF2kLbf1o+C3N3SSRqbRxoqKCqR1mwwRKOHtqxUM+ebj1nDaRiPKZRw9V79SEmLASWg3fOkI4DO3Jm2CNLAwtbFYOVMTeX51mVObTzuwUtv1IIJfmHwVhKWhumlJc5Y0IuSgVakOZc6O1EUzphwaQWa03mT56IYwd4/TbAyUdFy9JlZF2xxoMYzcmB+WvXcitOilwaclujR2iceNzu/Z5ztUe8vL+yJtyk1kneX/DN5MK2RwQ1URaP8BrKFS6WHSpoGMxMGHhhv4ebneCSjKQUjL9HcrF1ZmSjfLa8FSa48TLabFjamq1eqHWIepT7bmOgqYfbfXP1n8S9vALn6xoQXtXq2GeeV916qZZO5vnVV0+thBv+A4FwcGOZG8OyoAIQfuSasmJw43YAL+2KYqZJnP+H/fGaYXB7Z+uLtfWwpOZXqYE0D1AuGAFHe7OKxUL31r76f475oj9wb8EoAI3yMIdn3D1ysmNJxgSP0Mzaj8iHF84iiJW4ruV20p7k0cBs+R9HevYzapjMWeQ0ychExi4idRC6qZUOaNL2uAiKt11n7JUL6RG479zfHzVA6xg9aQUBr+rtFIpNrcgFYt+DVHcaKKHjk08LHbwI0UikTM9hL5+3OqchSGbt4i3sUB7e90m0uGvyC/QO23wfOQWuCaBoil1nSHkkrDB1Um6RJcppyw00E4VoiiaGMu9Yd8vmmOECYF82Uqd0AdKuC84JhM1RvLZVwP1B8IWrzhaD2ox0r0J1mTwDk7LV9pQAsqeVVvGddw9YIEQ4AxpVoEishE7cySRULW1S9wEel6kRZsnGBTK8ZnnAVIeCBR7c5UVjQ2ULBM4QZ6ekEC1Owx2UtIs5Mr6nfemi8v1koGbGDy5VS0W7/SerzswmhmneS2KbMrQ0eEjykLMGdczCuiHkfZW6gx7/fCfpJ5dkKHvQiBgvyTTh4E+TdeUXpmO82gOk9XWULAixrEQRdJ6aTpCnaySKRiRyWZqUyhtT+aPPWVsJu8MQWqcF97sIN+yzYh4K70eThuGJRBJJgEOfbwcOrGQhhU998o+c4XwFEKVNb7mZSpr2DsMxmEtMHBWmcf88lKMrPYeGfLo8+poZa6hcDsFdlG4F0F+08XVZ4i1agGWFAZCmRW+TFz0EqCH//p5hl+9eFdsp10MoqMC/sxX06eYStblEufvnCwCCt0zLBGptMVdo4YZGFMu+5kqReZfZR3QtFldEZMOlqRDYb7HvXKHexj+QAf3cxz+ruSC+ZVbk1vCl2Cnc1EOiJSayMZQPTh+mjjOXQiYZPA8YiCM9uy1CGi6TJUrHFNUODB+WY7BniFbnPUcDZTAGesI3s30nHTz9ysL3uoAPgwXz5XU1h3X4fBMQt0l5KMv4QcvKhfEg2T96ZHV6Qi1MfNq6/eYNj2/q13eEW1QGtqIjPLCir+zhNPOlCwTTW5jfTWCrCAuvt6bE0/961y4HSxjp5dr7CN+4kFpNkLONlc/QIi8EVL9Jp/ht5vgqiFlEfqhkSx8UrQ4m0o0erWo/PwTWZG+JV8EkqH+sRVhc+tYhUbJpduC+t6DPJ9BZolY3Kk5nh1ITYjYRCBSsAAYi1HD57RpPAGjVNYMZiqK0mhf9e7bvmL0T+PhpUviMX8HJrRW/5GH1VlX04VMnymae9NipauJ8et3Rem/WY80pSExH4dDNzji9NawpVJYUsfDt9CMSfXlhotiyHOy6qgQlzPlPig+ccq3bYzsPviQOb1XjD7V/cS1lcNXO4ob45hnVxSjxHg+sbT5FXyeO0dp9xCzAC+FnaJdiLG86B3KK6VP9ZNxIHRhKdfycDbF7v8ZqE4EjuAsG9vMgM8j+LfDjYvGughkZeRkcSjXZU/dUpbOEVYi5FNZbVjrT7g0rADlXdiP+heaHKNAUf3rUfaee28Z9bGZz2gXtdCwZaj+NsZgScpIU+pAmRoLsrhDkQjb9YFrWEew8QxkvAh3jJTXbAdk7bXs/j0riTpiHDQd+gVRnWDpDIwMbttiWrx2EtrQJwQAScLVZVZLxiY3XcDaTqWrN5pUwMy883n+wSSOjgg3kXKVFfFYGs1ibi15JoEngrhLihwolrwFxchanyEBQhLHAk81JqfF4MxGBCxmHQAQymntr0aiRID7WCXv4XXezLdTiYl1e2yDaMcl2JwrZ2Tm80AeMgkP0BM5FLzbOsn3O+AgIb84BtzNn3mDuKNpiXrXl+s4C4qkNyMFg3nHaP0NR7jyondlRLbsx9vk6jyDeN/wntxzBBxiAJtw/m2N0LPmjsjtxIIijMZoSAx3QGvUK2ZDNqocJBtue2zq7IRYozuefk3t7XhF0hBNQsU4+j8ukfirZPcowq2PVdD3Ny5gUO7C1dEP13929/zFvRuSsjOF31sjJyEow8dOYPKxSd8zJ/36zClD8tqW0HVHR6rakpIGwFEd5T0iO72uIyGr8jisZJ6kWkfilUMCAH54qGNAri+l1+dgolrL1cuKwya/sLcePxjX2MkyweXpxPfMxGy21/5urEycPbig73xzbFdH65B6bRsQ5KZPRa5KqLfzxCG7hnz2T5fL8LzqRFApBE05Am0HZqwGS93+hMqTXz1LJ7+CmE4ep2Ww311yjui/pKN8+6kNyjAryMAM+CIzwNZd9LHmIEXorcCBm5koC6Lam/JsaeyV13JALR8UrjnDPH6oBN2jrZTFyEQWgIPvdqPMtormVnPAOoaAHM86UAOf77ZYmsAJ2gr57TIjo5RSg55+juNBPV7KXKdmqig/w4qgBaV06B9Xp+9jScljLFkcGMBCyk7MrKux6luGNEx3MuBYPk6YyfOab8GOpEvMszdweiooiqOsxfVDryy0RVKJ71wI9TLbQfdjWIN1IK/78s4Cec6KpbS9zaHkKxtwkJ9V/3Sg/QW8QxRPHcqRSemuAK7+rxwrCWnBiiuaChvIwkOrilL4dbKAar/vnGjkPoiA43aENRXLOwo9qznDihoHDmzpeXLmKdEeoGhfKlLI+KK7kZngglPMGd8iLZUZB3sTLDm32ir4wwtsxPGN48NgYnqdznQ4uZDZt7JNv9Os3zhBrlc3KRL7yWiTWpRuvjkCfqKe0w1Tx1B7fkioTTkJOUHDAfv8PTYfeshAlsbB+q994QcYHzK1cGkkJ1sLpH/aZpi1jdUYvF0lmtUGN6MfEtvwyv3CcXIeRWtOe/xVxqUi/+4+Jvls0noHvI9dBI2UHgxGsuIsVFq1gpVIl+6YQB1gMfj3+vNr43/+MMNbbDHTeGHkzDiBVE8UIsOFsNxShdvymnUbgK2gNrDCkqPr2Esp/O1/Bq1TDI6MZzohReek52sxUpPrcG2ZR7yP34XX03GGHoA02Z+ZH8V6dosp6SOHe0exzPJYK7zPFXw76zYZkb0TOq0Q8hflkmGg7OLRaCBP2h3kOFfP6/Knlb4kuK2k2ucfmpuWft1Ml5bnhZq72wBWP81XF6BQQX7jbAntq2S1U1pgZHy6qzo+ZWorEck21DCaa65zTWwaNmuqbFusTfXWNCGrfHT4RX9n3ydWSf0sH5iAE8YW37/D81eqDFdcOb5eSLhulIBGp/+2pZe/qJ1BNm1RXWy+ZxUmxILhW2hXpguGZhMOk1Q+iXvNSj4pk5CAGhDhg4vhrVtxhZYOLsh+7IXrFOcwk7z8OLNRgHPpoxQNiCB57lvPm9XVyWBP66WO272vklymWJ27mOjhCsV2KdGFPC8fqXLiJBR7lKknPcrmM94MlKbOFQinfevx37VJVVo3JX4mjhwLj3sa/ZF9cfhYv2fdL83XL/S4WWuzU/ngyf7o0/KtTxB1n9Mmm6xgj1gNj2ck1hX8T9+qYrcfvDxl+Vyhut0CHekUxHEn2PkdS+PIC3QzK91TK9S8joGGUFZQHU89/u/b0s1WFJ7hIxbN01Csbi+IyGxxUsOJ6OHG4zOHc2Uqf2WOpxJYOD5IhS83h1DOuxVj2qxdl0+IfyREaMt919mnyeF+wN/PmejrArIdWSiFCe0+mCDzWJfmWEyItStnB+8Fr1gmDL+TBpBpblPATKpKzO4CQgPK67r8IQKM858sK+NRWgdoBsK/NwlVTahTvRtLs4LboL5fd1pNyctn3oN/sFjJ3YFuSoUmWPuNq6be/4314KIsTOv9BX2IXKXOarCW6PNdumlkjlC2q+KhePblWEOqMivzTlRfwdm17ADsMDQwVSbK8Ev79X8znNKl6WJ9v+p947O+wY2ySR4RwvKn1mASpxji08MhKJRC/dUBanvT+F9l+1j/FHshXFRQvYfocMm8Li3cyzIuDaY3hUYgvwPFD10+OlvKyRyDJRY7gd1B5mBqK9BCRUhstBCT9DMQYId/pkKZZNJBwJJqD3fRSx8yfXZ9eulVGnmWqRggFaWpCaGb14XkrVXCk2a7kNc+z35SJFevs/VnNtpeO5bNoLPVjvMH3FHgMSDxsOCX+2zio6PZL4P4gVM1yEdbahMbtvVnbvI/X9h5yH6MexW40IKx7aVyBSRYRIAwOLy4zEtGbja8QU4WS/KlYzXlnVcjY0JnXETPjZ2ImtQdnG9/0boD9Etafy265swEcEkV3y2KcnzcItf5Rh1QhJPzOzqllvMXcng1js39oous0sRGyvSs8IrGt0MdBVuDImT1290UILPg99VK8ZSqVY38R/gi5M9cAvRZdJgrooQdfdZ1A1+OpRkh9uYf7E+mHEoAG55BCKnqDPdS2oDW3I7lzEUPgys7AIiU5XVjCBLrZ+NJLtDDlbB0TT31rUh49JeH+r252L9qz4xFwQyj3pGVcVXAbCOvC+VwKrpw67+01lPtzAz58upR6vn+Y9pJWHPFgk4bLA+kKVzZGzrfNL8SK+ti+ZFXfxNMbn7S0KQqNC9B6SvG6vY7wZ75AGRjYnfMtM/2lLRqrliKZAXCIFDNfX/piLfVhsB+uJwlXs6MnwRmrLROdKffSTbXT/XhvdJudM4JHvWJoI3C8p+dGe82Gr7m5yDJtueLu2mcU4IDXABeBCOPH/PtyErOyTo1G4L8PglRJB6oY63ey0RhYQ/rCoBlXBJiXuctw112nubhdou3haUQQ/ff52Fu/9S/wUaq3H+h+qM45kN9cMb0Ddu7/a3qw92apTgsXhu+/gI4gtX4J6YDyaMS3r9pu72FsLpaRJJZ9KKwuTmtxtJDsWpfKPqK26om498HEPa5qqvlUYyzGq7Sx8x24CVvgvIjZfK86pOE/iZV+feCCU740nzkigulPCCJ1unQuTByG/nutNnpfNR4XjB5LR1ybpI2ir0Xdc7hFKvEmdPv3iwG/4dUkANB13IJdkBc0ZVFY9BzyJor6vYdrRxlFsQL3mpt90/dlY6nz3A835PGG4yBpqmGPm2SL8Bzg2KpYEWErXK2Mw/4PP9S9S9h7V+PgzBmuUZK/iYY4kb7lQmcthpYikW/EPD7ukSV71y6Df9hddawVZL3zyZAgJNeKuk01xHMgfKwpcJBEogBB4uJanH/Qhbkj84D98qrf9mvK81U0J9rBoPLwNLDcAqToUU3j9UFVCKN3lDik7CAxORGCVji9XueaHuxf7cQSvKW5FmqYmiWmHYmI62eZEcg/y4Jp2oN/uqN703Ga83KW5N13VvhbG+BxwrX12lsfhI7QNunJGzlZr0fU8QnNcSoDtE2bl5No4r45/aO+M74qKLVfQqpKODut8E1pdUWguxgC+6CBRucR7wMGTuqzuzGQLvHXaf+22PVyJjqgooyGjJdytHYG82SG38vgl+dz9OpHKE7imkGHD62zzFjpvXNlMDBa41z+nNKV+3ReVncmPgd7U5VOmNaa9qfM6GAcs7nAjvLIw57SdPEKX2ZvmO6BvfgO8MHq3+lPZELxxxEAFstJfBhlU3GKhLwd5KPPgSXNsWsnO25q5qDk9Tqr0Ss9Az45JD+QRPCtNHQlMaM8HlheJUPUwhg+srUlj/r0bTJbSxuRtg5iSBOnsSFapqwZUq+vEUtXtufEBtiRdHd2m4e6Ur0Ja9WzxFIExS7t5LIaKPJtEyUU92wEsjPhIsJk1cH2oOUtDfx/Mjyz2mnUz1pQYOacRNMYSwyIZheiORU82X+CNxxthBgjuJtYayb5hqudaiDnmAfMvAGjHEfzv+gni40tR0Z38y113u8UB1SIGUDfiOUNLUYq6qvAiaDln61/HqqHRpdiLy0OpuqZ+qp+orwjps5NHvw2JUphHIRfHVPo3lehYlJ+6e/61lFCcXTHo2zerRKhfzKLeGB4XAzFxkQQ7/hc8Osm2O5x8sVzPI24CqkWIdu66qvXTPmaB8F8EQYjdiURPhmSBTbJ8MUYNKhczFhvCF1wlOD6yl78YbNQBuhetgKB/OJKuj+eOehNoCWc5wiAh9CuhD/Tqu88O7D2kYtrsjo9p2c5xM54g0Fdr5gJij4WAGLk2AkelkY77eBZf4M922FfPFABoU3X50HUifHzYZl3O4jAU/u0YNUp0HT5uXI5GaM6uPcSIJh+6BHq9DSbhoZgH61mQBC1ofFbXewaUbSppJhSA44wefOPC8bomVKL8brweRTPF1+ZhgQ4KkdgWxDgCHN1VAduhk6y+pSOEoO6ubyNXrryi51ubWJLGESvr8mDV6f22pUzYubHwN4N5B3C0bnu4wkfpntrQ5bi3LXCVHfdEDZbR+tyNtXPYDRdohLNqymkSfQgR34ZPfO2zLIVFWxCYA+xFskR5TLGPx3ITU/2MEttJAcx6U6C1kPYG0Fn5zyMDkX+UJ/bhK3n58pQDVFyPvXhOpG579g72fnHGLg5/WyiHPLmqE2I03hHfAs3RqJon/NbQiq0A8//HtrjFTCs2A+nBb6plOO/hUkFcDT4hEnUBeTDCDgQpm0Ugb96ZzM+1EUCcjLaYmGQMLB/oOdUfHlwqq3ZwSem6ji7+bae+iS0xZIo0pfWA0HAabO05Iu3YdbzwyyUfHScE15Z76UUaKa3gLrTphT0Zv7CJWOw7hKWjihQAz2uxLbKlhz8jozJMdFlL2OYsmXikEOhPu+a7Q6EGRYOPyE+2931yTZOYWkl35wGgBljmT9/mi1go/G6W9+7WDJMFtKnDlbtw2AXtrVXBP7GsdJfm5frk6f/QwnkXqZs1jQCRMJ7D5+6809JJhEw8muX9dTBAVtKxoUjejsaynoe9LD7/R0D72bMNnOGKFBZ5SqBDBkhb4+gWTbzKqFkhaSqmxaRQ1Fj0Ci19B+XFnt858lqkySCfe5RBSnns62ZyaUdJYntAmypgE+SAFglkHuHOI+lunRhhdaTYYBLaFDKE2yiy7b7KgmahefcYu6qNO5FMgER5sZ7IcZNktJ/MXNYY5uYow0cGh5FD7L1UZPAmMwQ9djTQkiN1BXKUot+D2WRA1HjlTPE1ck4vFFVvQi19v14jDEJQqOv8Fx2HKT9BIcuV30TLidg9N5b2oShM0Q/5PplQbkdQ8Pd5YCvxlfmVUixLj6QS6iCDPvTiNZRBF2CPTLABRRhlej1OpU/GCNGcg29pGKrsiZy4RWhMAoHvsgk3wCzYv6Yu79Q8yn6xj6Vzd67SMW8zKwo8RN0UNrSsd0rHKbjvwbyIL7RYrSMnxEq2tvgOWI/JB5DK1O+QP7+c4i00WaDgrVcMMdo4x8x/+65rK/MxczT/C5SqBUFnx9pbek9a4DJS1uW+S7ObENZGrnTgYv5NqRucHmR+cWFXDd6qw4ChRMuKkr1QbhPN1PRzBuyvICgDbVGUNAbtxdZWafswXwl/tjgLALvaz1kxb6hsWg7tPJjp3J0C3C/V6NZF2E6p2E5rL86V1kGeF0mn9cbQuyW5ojZyCdMTuTgWZ3tXJeKfB1Q2FcZXK7CVFWnvD48McZTykY2Evh+GvcDcrcjXJYNMtCWhzdwPpTL9eWa1C00WlqQgqTkU3Ir1Dw+5UwiJNrysvaUzKL1J8C1kprSu29w7fw+HIsWoW2e9N44nnthf7lDP53Ze6Lb4cmmmMr1+VGWNa5zi5tzh9gVUms5YOvLdgepABgsGZak3qrLYnevvTqZqeqwcH8fNiWNlug2m+GRuag17r0zERaPUP20jET8qs4UMJfEPNo7mcKPwJTwTAnnO8J3M1EKdkFgCF7M4scRxVDxBXWL8RZT367DdTrsUtrRosLrJSaBJ5OQhB0Z0lZteTXMVx3rDhPCZCk9lSjdYrzQm+Ya+jisU85CbBDEokQY0R01Nqwnnft0VbCY11dQE31DuaemYn9lj5gC5OYR/Tk0L5o0DGp/9lVE1XfT0WaWXVGm2ArGmwrbzqQapjDGLMgox5r2hD1IMU7f3d0i2g78j7QLUC03XhWinXjlPfyL53fDeYmkmmwENMase1AlBsb4+juqQ+sBgcWqI50h8GegHPrxqlp9OPx4yvsnYKF1GOs7EUIjIW6Nugpw0yPHzcm+kiKrKJ5cNo4f6GPTX7I1zRvmtCKco9S4kmfbPaT5lETDp+XRtmYZuQvJNRP7tZ5g2G5/Rplfr10zKEPHxT4EfZGnQSw0GYTx4nV+crIoS149EmtSJdJA+heNbK8iJcyZQfItgqVYtzZv39cn6Rp8V69DFRqGL5KLPYtbx6DS4+l/DmiCekQvOUk/zVHsH94+AbPrDZQ40wnJ1foOtji8rLGcyzMuY4OHwqzPFo/BxA4UrwcC0R+i3r+eTpRthiYJwTfxAIHWUa4UHjDSJGr66QqFqQlnJV085eUW4g4UZx6biMXckMccXOFw/awiyiLgTrDy4ZLaX1WiVc3d1Fie6w6DCqDqVkZGe27Lb/PaHw2xYtg/SaBmkLynMU7W1hO37Qusa0Hv1K1DxF13epoec7kWUUtxQie/YarfJlZxPX/DKy7/MC/dsM73NDREPqdHByLLMfT4nMg8k9UarEiCCIpPflE9HD3FtuyfGXUABHpBHptxtRwdQW09qbw3yO+ZKp/6Goj0ZjIIA7h+WO8g3J6qzky9RzFbwNi9WI7SsUXprm/T/MGLGnDIF6VRruthmFutooOMat8q2rk63LPD9bFL9M7u9oZQ7V2tdw+ueyR7gNv+qyq8HYZSKTMFcnkBKEm5NCr0RdBHWFDPs4WHULOic/BcO7ENjbMCd4Ufbn684uKiGxVkDxKJIbtzuSGEmUrZcBgD35cj9tJF4D+tNhV5mZLi7/NLelCTKZT8Fw/HUiKF9iMVAtD99fxe3LBEJ/r6r5/Cl4UgsCMvwj7Cx1WVY1AIrFKnGrsrbakDFz267ZhbLVIaux1MPCmQqEVm7Bo9mEFNCkVX51vCMcI5FBta53hLKbJaZ+3mNvKS3B5ac+Mex7NQYIpqt/cEfbMmoLCiPLOzJjvwiFBBcw7CBEAmPulxcKKwN7nL0l1GfrwuCWwvtSxKnO7ILxc70PXrvg4+7mGAYrZa+uguaudm1vJaMR2czji6r5Yig81CGF9tCpa5MmCSNU+3NOl6kY7Ucv6wds6AlRO5/BjAivctdNfcl49u51t5eQ0vfBoLyF+T0H3JOVSItpCEXoZurYZ6bEPPCPBFzgxJZzxNMTbRFsIThqX9q4oIpBBJxR+TDIdyN+L8QCudeFRVNmPZJ/2b3iVLO6Xzs+XPBMZRROH39dr7jSDv+hOxcxguVu9hhuiZ46g4o0W+iXzv95PKqIwZwzKVhUYjd/LR9QU17/cwoRVHVsXeRIoLRcRhVzWnUWKmsLGulRVbeyQajAOvF0K5lDrxog6m9VNwBQxCTgprDhPfBQVIeCRym21BVmkZqgYpXAJewBWlPKBw8xxY6+aJmrrTo6yzCz4zF+uK6HNVAm3DU1JjsAzMaE8ETk5VKKsCjRekZy64HwzekKAQ3VxjxhmDXEagFWvubmcrSr4RCs9szy4n+xIfN6+rcFsYsc2f6HIxTLZD1uXlClDLPFqw3amt/MDmlQaSoBUoS4jJZgsDoaDk66rTLJxx8wGhTwcOICmWIiEe6sZWTqzwY1uQoK8AZPhDpirxU8ztcKGCsNimGxZChll0NhZzpfgTUHUjMWc+8XKrM4Nrby10b8y0oM0iM1GJSKTnXziw6kDkv1Iyp0OSMkVvKsBcXBjdiZyKGSYh+r8c5LDmpTNtSojQ+K/KzeyazaQ102n73WqTLtuZaGCGeMtrgcWb4+O/VbuvekMOMWryQYPqYey7nI6Hw0NVPNd3JmPxxkfq1v+wNU9YfkSfJPeasvG5OxEU12hLC1anUbpFOGYJrKaMrfq2nraF2DsWyOjbyerYGXbyhi/cHIv7P4I6PBIntNf6adHLZwKhjYdmtv8Z7WCd7tEPTPE2IOIPaYDjlQ9ax/sQmAHhCC6Fod92SLkQ1iXWxyJ71lC0LCmmh1+efvHNFCB/Uf/yXieh5hdF3wKDuOMXSCNRUo5Y39itvY6dsoYGkUZWPrynfJJZ7cJzuqGI24hyPxbIXGFH9exNEjDv4rhc7lGfgzSC96boAxw+3ZY9W9HZfccxlTcXy3ESvtphsLVB7ia6AxeQ/i4NDjCOjGILaWgLg4A+iz7cn6HS/wXQB+qMVwLh2PexpMQSoRV2lTSwOGWC4V/xEjpPT/cgXLpks/EewEcDR35ANzNc0c3Nbe6uY4XLKoYnd8N2ytZAaIrzksOzTz04Tg9kUk458sA8f9xZmR5h8tSRCzGyk9RszsZExdTaZDZyk0Eav7n6MMyCM5eK+xkPD4RwYdNIdMHozfPAoB5a0RLNq7d0N89cD/bN33ATBi3zFv1BFWA+6grqjSgmwDVKD5QJvJtS0uFPZ/ixmLOJ1FS9GfJ0wxPTL0L85/pKvl8gdGJoGPUBXYqlrmVv6Hqz19RnC/CrB8x+kf0Bgt4cDG369FqcuVeph8FSm/i40IJ4nZYPk76u5Uh0WRWRmm82FX7qpCwWZm6E2Drryw/7HwmO2oNi3Ykll8wvhrU0yElc3KVhHd9ypoqCqVP+4/DExH9hdUfqeJZWMIymgn6VuW949xg9JqEB2NEKpamG96bdh+5VLRDNkvI4k34dJIAP0xoj089+aVsI6kYhVx090FL9XY2Os/kvMUkpJyTKPE88b1eBZyEi1PNwxcyPYUG20Pesk/n1zGb7EfGi7Il9g6vpfkYlZP447r8bC+4oXpLAd8Enfca55Zfljo7ctTMvCGLo2IDofFTVEnGLzm8gSJe3jtNK/LupzX+2QAO1Ofs4HHWyR05bTjZBzlbqxx4XV65gqxVbPeoiv8JYQ5pphE/xooD/I4TeNwC2EDDCuXMFPZhnbHhngF0AhgPtepsRwmP88X6AtLKP4FmaLPsPnfXr4pQzir1yo1mXIiGNvom/R2GQFKUtTY7gR9VT8yLMMIl8WNaJcfM71oWul6aF21Z/4qeDjVZ81EmnE6UIVPe+LSOn0YlbDNhbJWx5HqNUnx9EfEF3lJgSOdrmymfyLpQXR+Q9rf5h9hU1SEGLCnu6eG7FPt8hHLB0A9PAdoAgwcorGvTQo4DB0mtuH83dOVxRVIqUoeICcnrlhrb0g+NLZCKjOvZaGb2oIXS+oBnjHIJ1bgu1OENyrIKSlEOELApwgKqWGD864pd07Od7tTNdVetxAx+cmbjsb48tNNoLmWJ2d9x7dHOY3xYAP/kuPakQxYR0B76/7E3TI/owSCIUnyVYR3HEZME18w+2kcUlxf4uC7zoSy/iuuiwztewf3KOn/UNyLhwVdpvnp3GnkNBnH8B/oUMWaANs6o8EStI55O9zRrIU7AZ+75dVaV5ckuh2VxvWRfhPYNZmZ6zQK5jIj58f1CUynRQ+kYJ7Bs05EPaDH4pppxSp49TslWfp0xA5CZNOYiLE+7jweDspgEExCMw2zftwDYRm3vDgjjdDWOzWyCm3Gr9hIbTtXynXjGaHlepqFD4/wICUwHr4aWEjCF9Zkqc7Arq2Aii5lmTsEw1h5R0rxHGWl0ABperPjZpooPmpQwQkiiIiGwGBjNY6l3LpltdugHt+e2YKygCX1QMCSw9b3DzQepX8sky13RGdsiFLgI256usI869LMHi/p8Vjwp5uDG7xKApZ98OhLyEUUq0yOJl7qW5C1u+ymZKg6sGEMc68OC8rddRUMtlo2uKYXglwddw4VfWIdpwvLlVdVR+p/bt0dN/n+ZJUvU6KrsHo+GKSV3MShXBQIfcRiGvgFW7pqtP5OnUbr+YNnzwdWNZq2Unah0i+2YZWJSU376rQCx09TikhAuqvWWs00jeH2dcWT/ocxCkeq46Tt9yLG6YkSuHl/YXPvexnKI/QVggPPwA0Cz35nkOyitNLVFYhOr/1JFcgHTCYzEHGMxB8ellFTGu8y0b6RAr0zTqk8zhSfSKEowueFcxA5qt/+9eVqigrZzPQDcR4A0277exReaHo02wvyC0meXx5cYrL3JBoGyu0eVCI6BRY4sp4Apd9KTMu3+EMehztlh31nQUpuQfIKRgVRQn9bzKteJN9IIdjj/h2MHNMMJfnLiGcg3S+RxnRjxPr6ZgMeJ8TWn9lvwHiGbicABO0AVpIXtv2t8VWryM+3XpiIMRW0pK4ScXxWItJ5JDNyOZtI8eetboFeHXj0FpKCTwhocwXwZqRXBrl8RXgeOw0uv55qQ2QL3TyiT39BG0/vGIh74pSSlr98UxzgRt2jcsomcRU4p/EfzVUGHEA5L2CT9J4VkmBU6YeuZOTX5qPSPhEYCKEZEb3FvuX5ZSsHKUb5dtCk7vWhunxdIgos4Zq9G3DTmX2kSI+0QIySec84pekJJVJpuvlsJcxcstBr2aFb4ELeMGQ/pb7Y3Q20s8hsKPSbeq/MOhzvoxFyHF3v9iRYqqgR0gZMa9/O7i0b2JKst17Mp8FxboACFnhEUcXeS0FzCku3wc08abeheNETQyrfAEgCUSuHqghxygoM7CrYxOQgu2KhU8UY2PYbhck1sePhsBEk2t2hvzcZtEOmCSppyZ4B2Pso87ldL9AJWQD0YITHlI0es8JrD4pRAuGW5YHbSueB/4jPB09sHXVGueOODQDRf6druibSGAgJ/5ZsDxYLbwWE/3YSyimf0aNXEae3+YUC/wiX2r3+VQd5s8cmjY6W8fTE3sKInbqa/Y10ksC0WdHktm9qtIntophn3P6LWtGOyScxLzF3M7lQYnhDkZVJrRlZzTidOG0I9O1ckvo24En2gxJF5t+1hX+fjAQ5/5+Rxa2tHtyHg3EGhb191qxEg7L5Nntuw5YkFblRkXjsSSkcqUSSOumbn5O50pLbiWh9zYOVJFnfZ99NSn6tj6Pg90Hgv+amuXxEK2ewbMe/i1svic65TjZYw+knbBdIVknRBIjNvYVQgwqVAfzyNavzeCJVSzTUr4+hf5OyGYNZDw/flH1uY8nvvnpzMe5BU8ruoSUhkFGjMUntUNgXiS7SF11WvI/6yKWakPZHLX/sC4gDdlxSLjG3kXaTl/gBk+tEGlg/kTSiAHV6qQd3n+3POwfRj3KRTl3pnVqU/5XXr2+/TbuT/365sDF2CusXGupYO2jMRKerfntgFfOSaybVomSsp5j2b7tjlZHsD3S0SqUM7KHRh6C1fHK4zFMwKfPkmgsqsqS/qJApvcupqR4If7sfk0uCHP6W3/e0LcevNPRqs7KU9zd2EVHWXCqTlaXp688NI8PMa4YtHTRc/BQDZfgxE3N7lLHd5iiJkij3R6qtRfjrKFTwkr6ZLR0qGj2Bd7+6J4/aBqP/fiDtF4oQr9WQfdHV6CvUzP6IQTj5w7Y3VkOMsg1ManUofiQn7mgrYAKjAx20EXl8k7SeHJGxagKovR0vPSfycFxGpB++Ma7bc/b38+bZg1pPhE4x9Wz5DUdjWE4632y8aLs6G+yq+zazJy2BpQJAdEWKpgG7oSJ+rFlABIQFdL2jg0eEq/PQcJpxcOmuni+8xULJE5NjPWeu/lvT4iAhk2HzFyFPAye2R1WWh2CGHTxSGZ9DlmfFIpjiJ0HyvkieiyEHT7Z80njMEVbh+/Qdk8a6XDJ2qqCsCbZZ/sUZTBgaEotLkfqaGpr4bRj75gEL10iuE+J5ixEtir+W3JyWHjSeTRzttkvioGDZyGvJeLVcIxR3vI7xVAt5kEcgznfcVOt4h6iKU7FhPP4/UHURQlwa5mHAkj2VAZnC1dX/n95RCvuq58sEARrzm7cJcdIwUUYRAVcav8brlrWyaHkb8RcONNovbG+z7MvPz3d66/MVbAvXsCc5MLdLowRGegTyFrU4hOipC8n/cZaGHKlbK24+jXotjxmLjEpjvPI1GgD1R3C0MdhoKUwfiXhnJ8uJIYKukok7HjPYfgn5sdNLHJdcOUasj32QI0Z1NaDAQZqQpTvO51tngZt9scRE0UH7rpWwFTfqoyfTSH6VqTBHgI4QVOtdV3SqZdJlwKCqUR3pN3463VgNFPEaeGtTFPQpbXRzfgvo4b/rfuO4rlEWlMKVUlyD4Hwo/RI+qqLkNe6GzU+62Ayzo4VZdHlHnDlIEWxLmUeVxE4bt6fTACbWAMT7zLt92hWw45dv0+8rjr7/og85GnbNTvTAKAbdpeILZm7hjgnobVVdovedeYPjvjKQe8wA9z1YVQlZ4pgNsCY7IBpSXxKyaG5NiKfBZ52QmtpedIHzfM5I4vqT2xqL7U/1TjEOnCR3sLO2qnjeEXcw8w+ISEKX+gzG9+WY54nfI9HZQuGtkORDPAiOWC+zpoU1UKPf0jRTNzM6uFPKXJ/1jHcDb1eIrSI6ZdYgpaUGzJpV1k4qmcL7KKx3NZI1m6WQVDQn5U4k+ewcQ1AwuE9giC3mcbBuRyHANuY2vh46axM2cDImkSS7/7NfxnKTeIhgnq2P2+NWGBr8A2rOYdd0hFo0a1mQF1luAQqmBtHImt8eXDKYcJIIg+Zi88A7Tmejs/VtnbPtbR7PktVAJeVcFF5YkF3Xgw2+swqP69DiZDmlU39MihWJrVkKSfBNFZmlhqkQh01Sb60djNzdy/yZBSGcPxsQrTNIGH/yPmA74kOJoN2yYLO+h+6DoTzK9HwjA4FIEyCFG87KyvDmVLhZnf6/6WwKo1n5ILMPm0loj2cWYqOsG6ldsESvLiIvqDpc/nnwxjaWRKq1JeWqC8io1lNiLM8mJBX8sF7bvXjI0OHbA7lEi/HwOleY1oPLQ06yD8MyiZs17D0mjaVtrDZw25vDtQAhBnaOcnP1VZYKnnqucljIDvG90BVhWUBe9EEV+sM5YA7clmWT9RxLRDBWOygQhzJ85SzyfUg0i5cn/xZjCR6JKIe0gbyQJH/0ZM/DintvRki9Cb0MsGCtTXYFGHosjNhnLFcY+BDHaV6RnpzNsoa1cVF3cu26B4GKPDgID/zeu6b6D/xejHaV/t4JZNdJ4UBOKPkg+bkvq2VL1pn7dKzZZgoWO0AXaX8OFVUt7iuafaw2uD9ZQZM5l7OYCrrEPMa9AVzltgiYXPN9iGH+ygF4b/XJqqd6xpgiZSyA/wiRsKv6gKwgAZ6/NWEaTFbacASJbFZpwCgcQq4UJVpERZd9DbkwuksKR0fMoKdyJ3+10999eG8EfnPpSjMMbVZyn+2ajwFKcAxZ1L8p9+nGUmWDNilcY5BSw/ZbSRVLLuQVTOkiulOJ0GzpDU7xd2aIoe8OXnWZC1nUWNgR4i806g9pRzdolpeu+ftDMMBT+aI8Ow0G5qmwMN3CFbPsVhHSN7vkIWxLHQfzwcQNyqiJlRTofo4DhSEzb64FdoVmEOjxOEpOexBj9GZhfAYqgBqE6Os7g7WOfnGjGGLQhxrtkA0xbgwfr6CIGV4iyjKij4YNyxJejm/BXWI3dfmtFdZSRTJJyU/2oAZhRjhoUFuM8ZzxxNf+w4yhfbvFezXdUk03ZJ4JMyrBCM3O/TwQVVua+ghB8Ad6HvWeMsPO9LSa9HERpXh88WGf1pq53iqUboZNkDhyCtGsES8vfCLHwm/VdaGUN8jjrd4E5U4jy4+xQx2e+bgZ6RnUpymGnX/4RekTxwKWtFF2wgDqIOyXfR+IweQjbyxeG3K6ipqXCBGhuzNAH0ooCrvrkH3DHbpdBAUzUwl3f9rSj21lFRFah0PzF1v/+pAdG+Boihr4NIq8NJNUp7gerEjeaOmzXQM6kMs3hbM5xSLtlaGNrRbg8NdJ18jc/tZtBvB4XnWBW6JBSdEe96UQVCzyrpnZUju0ceqUK53Ftn/KTDRjGwKpk6/DR6Hwu9c1Vn7TI/bLvRLRHws41ds9va5qsSI/r1n7wxOGPxM7HNM1Z341wqPpNNp+Bn/VbeFDzcCOzpzx17puerk2C4yc9fatvhnnBdIPN5Ur7gCPJWIpjLRcVugAiCxWvTZ9Wo64HTiYspaqC4kHR8J4eY44j7qeoYqJdkvgiYNWC3fzu5PTE48xL6YGD/FHlHWcvG9dNbCUK6R+ehfROHAUPLzMta4IcMJ6nMs2vtRaH44E06bMGblwG45teFOIX4I2sCXR56X1AJm7OyIni3+rJblKerljUS230KgksJOpitbUMswynyoXXWe86b0OUON7Zbr87OOkK1uLVHj7AMQ6fcd+gVuYfHOE9Uyp4gUg5bG4aHPwzb/8IZEfbTeGrq6ivt2XpQYcAYGP3YvxGPyP6w2FX8I/pgobrWtYM6+ZRRCnqQrjC78wXeT9RXp9n5w/B2Hikt5nkEjBIPU51DDGwGSrF4dfx9/NEOxJUA2l6s7UImFEqgrmIsEknDZ/9PRP6phcgjf8zQ79g29Hh8Z/bFgItpitCFCzdNQObgtAj3c8vhYMubQMwYBY32ubrrl94fvRE2UceWln54mD2wRHyZ6tAQNidWOxiTTYGtJQ/kw7RZfI4+5PwONJr+eA3yK0ukHdLmkwV4MwFrb8PWVfc/Rkvdl6v+S5FxbHPhciBgpiVjH9KkEUmxSqEZKbXamQitp2FMfmxHZm9CGlkLJrmojZCGVIrWVN38RjPl5gMKZdsg2+vSk0eJJ2VGxUhbIGwNoL/lyBD2HLqkYJJK3Pa2ewiWV0DWkEGmb4Lmuoddfn1vlJuy8Xl0zR3gU0DIHh/5ajoM4nnQ9L6qtkvOaxOJUpRSqWbr5izsBFI292esXebBPeX1iZ8rVuOetMHmaGuH3xR+YnrokPTlopzr4VMzKF8+NSmh1cMmP4ANtrFWHIxMOjUX+NKz/0ux3I3ftfhNe3tpTwSX8PgiTTKCVSFd6otmGchAMmR1QSRMNnibSfiq2XUM87G3mzKTA0jEUXWh06A+JNjAjgXckuoY1/7gi1EKmPsCDg4CCFKfapYwXG3b8cja5L1M6mFQ1EDsjIjcUddMj7f9F0Djz+gpz4Y/7OpZr9XvuNVOISYvvfinLohL/GwA/VxRwqOoyB+yMucKs5nGWAkU/IIfcOAnwJ44oulEBCg9VXHCJVxuI51Ualsjw5UvR6G1DAE/KOSmgp4ikEG84lrBf6xcAWyoErALKIisyFA9dNJqFrp3GMvS8UPRJIiCbCu/lay8bwJLvBGPv0AAI3Sh6We9FYIhbn2vsJinQ5dojVGN61ToSGnlMZw18FlRK+f3bdsKviI3ySzUkAF4FUlUFPDA+ojnbmFeqlb+0PPYH7NIy5e8z8zFcFxibpBg9pysfSpjr3uznUtcbZb/ZRH7qdVJ1Y+Efw22J6Hzja2KLVZZGYKLDI0JXTXp2/toyTBubIhRZi/3aRTYjiF/F8ly8IVnnLHvdNBH26N9Ci1ZxoqVYsRLwzTL0fQXDGbwtEXg1KcaTnaqAOeQMCax9m46PC75fR/+1R5wRXJTjzafySD1Phufo7y6zADu96+AYCbSlt/hnJi7KicNRicGdIEWkIbIcRX6StRiftOe9i/WHMsyWdhXIx0DC+XL3FCeaYKB/myioKI0EsbhbSDNrxqh0gkrkjxjQSnW01TL3LMmZUyQp3+BdT3MgWoMTxB5HsW30Ph8dK0BcJjcIrA+dfnjEKi6SsnCU0O6ZYmQQV1h4yc6IqTFvsyELSdaRdjA6ftINyHu1AYrfelRQCgeWl8Uv7y6SXVn22Pc6xx2uCKblV+yTG0pJsS6JjkDd+WVzGNwVqRRpnAMyPwxYY4rHSZccLstj4ZQuzye26Ema51myPFyfK9NON4t7ZXED1CTWo25rWtce4zvrgwuHe8v34opUuMho/9mEhrINRLJBHqqGgLvgmk7sJXzOnOcfHBb8bV/t5vyw8r2qIC71R3Mb86yQIpJc+y4EkAba9jB0s1SvZUcGS202fYKdL3kt8ggkLQwBxMHzDv+HON8Auoq/XyWcrNCNwCojLAky+igpBHkQJ5oCdvbHEZjRZz5FHdjJlssPftzuCNrl+uGV93s3ExMAcUi3LUhzGzGQ+c/0xp3jFe7YR2bHkpnjI9YTEsfCZQ0GU7+huivFYKe6zI6cC6LhgnKNE3jiHAFmlljfpBX9dk3xPTW0iKE77W/QSdrbaY0sF+QM7/0nBagmgD5e0f1E2PM/jAbd8MTicpJkLhgXAqaRJ4sNZBYBwlbiG9Mf8Aa2N5x+FZB5JcoCiaTbTf3W62AFWvEF4C7fGjGDbctWt+jNdy2CbdfvPcTCNWu7yzHFUshdfAPO5xbl/v9t+vngKl2JDjHXVm9ESrNnPPSKnG25tGdpLqQvlI5uf/4C+3datLxVNlobWGkO6s+FzJimvsnRrYFqUApQajlTns8AU4oswhKkeGrtktR0VOTueejCoYlLo68ym262OEyi1S0bg345cw0F0DcnRhJKF5RFTD4/FV36KabgrpzAxMPTq6BSDArB+86natblc1yCaxPUsUo8eKeZEKDfYA5eiCPnxwdqNsUDQfUrgVaZTLiX0l4xoSfxntchMsTNMpX9eXLZgOFN0hBNf/r7jDVx/bqxbFuPPFMg2c+53z80o3qIbvoHSSGBVdW4vIEojrz4kmFwwaoMyzZkbcAd0mm+BZdlJ2CrlmDz3B86H4h9bSr7cGJk9wnAkxhffizZd73AmpCrmcJD7wrUt0rO+mn2c9Jh/hQGRlZzdxNVVEhR0QIpNaYzCq8z5Um66iVD+GtSgJL2Vw+sZo+6gyJBNccbaH40L36favpIZ3OIb1b/G3qCHMJI5CGrUpZzGmPU88Nk9SSa2FzA+wgmY+mkuivWQ2sh1XgrR3ARuGxZK0+8o2ddZNO28awyTAgdhjMRHEAFx0u6KQE1KPJg51N+OmH23JfU/sYg9BetAnYcSv/W8spHPAnPDUkmhPjNs3qZqfS+cQIOew+qm9GgSrj+oCyEm9cmqeKnQ8Y/cTn8riEzPchi6B2VZPByJZ9geywNG//PHSTx2cbGkn7O4gN2ENN+WteN4WT1bkI2qgn56Zn/+HSUjY2YGr9NwHOr+gF28yM/M11QtVUPoh2O+Enkd9Mf2IHSbneoIQD+T1LyPSBf5yVZdN1S3dL7leBja85++aFcNPt071e0YGSS3p/Uo7OZ/XFlDBJTP7WZUBFm8RGXwKHPRJok3M1+GSzgpq6ScKiY+ab28EIuAcjTSH6vzavFhAGMcX2P7xBibbZS0nDn1uLi31KFHfzfuJdnharawEcIoGnmp+2/xzFSUwSgWLoDM+jcJ9qxukXPNVC2Cdr8EcZTniJE+AgjNAY6mQ1biccjtPYjgZQ4n4NUUpKWgNny6OOyyczXyRADyen72escpaLjzrepQ9wjE4SnkLsB0zGj7ATfsz/lbJ56G/BPDnMV2HqOVIDz2asRLx6fRkNTNuKrup1vcM0xE/HkEKbyoGTsPR/z9UDrDXhxkHkihkMGa1dXjt6ZyExJlM1qDRl658BCDbo1QQwYMP+tElHlK1Yy5SDGFqJSZcSHm6yABuvbSwD1b40BbjnN7f1JyNs5dqL8SkprI0YndRWsmSdqZ0cVQZrAVfFZb7BhQCYY6wIyTUp+4H3NYEwXZSRkoNxmoOEbvYAa/tCowh+ygipXI0plWvnr2dV9ihRQjQbNiZ8/Wt6itqbUXmjf0SaHAkSm8A7YP1uAEW4CDWKnuTppgkeVT6ktpsW3PXUTjhL1+fMeDzWEbh2sj2xFlS1aiCQH3jzorWJQXYp4l/Knv9+7S4fTpuBHNQWtzyYMkUyYtBHHmC7pGkB/sYOYgVkezs6oKpLgqHNgX89LSBm0YlDCNyfghNiPB7qt3mxoafEfr9GdGvwP6AbJcHKRYFp19awHUYgaW4N+gDs+zx1jp1/UzoOGPCil5G6tUnef/MgC3Bc6EJmZpW6GT1TU13cXpTD7UVctW2lNsbHWf8dezb6cm8uSyuP8C4ncax+tHH5rs+KRFkOuHEuM8D/GD1pN3eSD3eW1okdT4qnOG74qM0qswz4lx6aSjpEN/WtiqbmvSB4qt+XM92Q4rYOEx2DsB/yHStM+tNjMS0gXPQRi85OaxpwkbEk9VTyWBYVH7RXsL4SidchyJn7LE9zjjmjvvST537nhu62DuIk4BxbYeFnJWFncVHp5BOm/1gNV00+1rIAev6g4BMoVomhBiTdBa5l6KQ1caY8DDJJryA5wws9Ce0+Qk1WaC92A8b2efHN5/U6g2zBRxT6SEy3aqycPlbXlyODU+8RMrmNjFdWeSax9Pu+cPPrXFcXnyDl/uDUT+SM/0ZkgJSxrnFtDPHYC8E65S3RYOwd7+8hz4A2wLrIw7oikSz9yGT7iFIVAOwzoS4+SIhn/UGL2Ca+IElcOgSQ9kC0xL4DT7ICSxhnQjjd8vBMIHkuMe09rUkLWiAPjg5UYuYSvX2chXqVJvYB4YpirKiVah0uSqBeFzJdsf4ysr2v8fnSRFrJeEqHPKxZyrO1LUCCURzAOLUm65ZGW5K4aQXgFuMnpfWRs/0fD/0G4lYqb2WWAUwT3nNAs/MXF4GfNuP7SEkdc5WXcww0LBMlT7czx1j3TVJk0TViC8tshO13Vb9wkUg4sO1ItSmOljrM0lufk/gxyi2gwOC8iLs7THq4O1rpaD6yrgQU3Awof0n7F50mFXkX/yLoimStYLXF21ie5gPKSpmcvjeDxpUgKqBYfgvwMOTDOfVpATj6b6ZJaSXw7dpKfxacxflmROA7uzQ4vx7kopUQBoMj6ztw4G6IABTZnCJQr2OITW3NzOkzeKYEQM/SjRuUejhOj95+XrKSSwta2wFqw39GttdfodDxXdJLXLI/r0AZcGFMxhDGVGLJd1KNHvx1Wp1jkGVjmxmdS4+JOsdZ/npDvF1M2qGeE///kwdfaJb/EBJvAE6yZ4e1eJtDQ2zPdEzP3taUK9SrbNINgaiHMf5alNrLRZM3RzaExud3PR74pyDt3nyN2QZsRC2ic2ME2pP0viGMyMyNQzX+/yDav4zk9hV2RdihOLjwGM8XehKVYxYVqLxYwVbLpQgO7BvU4dE0kB0LD5Kcm8Rkb5e5W6mYsG+pGTq/ATL2Oghq/FtdXPw6dQZ8OlH9vMdcS6qSWp4AHJSxvwIzjwsc+kLHYE5MTtKl4yXhJjyL4DViqaSY23iWZ1f22M6yq3Ata05soEZL2hTo1A5vl2jnkrzjK+Ly2EOPkP0dN6v14I14AqAh9ZnfABmmw+tFyGeePR/DGv3RkJ3trvR9qmMQJGSFc5Dv0XSGIMtF8NYNkonFRSSrEuzk1mnP/J6cYG/JyLj/rVMBed7SkLd7PA9uleq0p95UViLv6C4RRDHJ/eHI9gaSYbNt9xk+OhC2uDUgHQgK2ZhWhLJFFs8WcjeYALkMdu9lRYFJAMwgx2l+45kHga+44sDb0Zl65zgSls6Aq2kx3tICyO9bafb6t0uZHhfHE6vCH6VCDN+KCFsMZa9G2j+28ASrNIe4i1C+5f+7YNjhQNlKJh4Lxt1xX5/nJv3uQptCJlf2sRbBheQ6ucHZ7NKuynUSgiTFYaqtckc+TrCxxQWwy0PjuBrfg+iC0Ii+XKZhIV4LmzZABGeUcz92RiS5JD0GidDWVCpXPJb2uuLCntXDxqt1IA632RkeeDIrH8kc0lWdDkAuFlgjuynsrVMQqcdewB20vDg6kfyFYcGimRMlX4LdvOmonVzRZp3gP2he2AreYy64csYawGTUbyeB5zIPXxFnakkp80PJnw0fS9qf6PlcLlfGtQWoRCKvhdB2wDl9LM978EjY0w7nFqkr12tgas9uJ3/uVtKbGNlrx5BbKIvGsPGHobawkFxUW+QuFJhaSbg63bxuqKGKWGeAErgT/CPvvejX6UY+8zrPL9b4sFd2Gf/2ll8kjc/9NovsZZUvtZrrCIknJI9CilDHf7sDjSsK6P0Hc3xUO7UWEF63RJ3hVgD1kclWC7MKV3ahargo+96kaz5tafI6Zv6RT9QgDK5u3Bknmped3dbBui8kyklNtDAbsrwIYxTnFW325QPCLW4rguu9/JkSjdAt1o+Lxi+Rx9WMGYzcBcG9cofj4OKpn3N7I5R5pf8DPk1NYZ4XNIuMRHXWXEpgCoJhdfoJTXiK/sNqjm3Ie0tZ2FqReCODyT3ZyISqzx23UmwH69RnELAzD/3c/pQ3LoQ2uq47qRJREjxjA2lhtMklckmvdC3Qi5LpqNN8Zk2IgWNyayEYL9j9BehOJA9Nf2D7TiEi2Vxzpk4TVgOtMc3sDmJk1ia26rHl9tDlUdYJXZMFZjSKDj8BCjabeF02VSPCB1x8bOUQP8eIpwbZIjqqSDwtMRjX1+mhgHlxZUysfB9HIUQthcU9ScwkUq0W8dmZdf7hqygtvFU+O68QZvmvJWI224E3dZI/QibambdIxsHkF/dcDx7RiFi10VL9TN64GKLzTqlzMmEiPfzMlGwYgFxPPNdwJYBGImXGLfQIJ7aTToK9FPypcelCipMG2N9bjOnLMFS9TkfVVxx6nPuWdncv63E152sT3x37kzlY1GXo5IZ7QylTZGMtC3G6OTdc/YrTC4f2hkupOQqrOCWGgcjKmecWXDphvZdEpHjjdJdQwVjkX3aLpaAQdekTlRk6XF1sTINnSDFZSnFGlxkRFO0csxw+/97koUB0vaF4BeIXCvWGLlCgvCBhWd9N9jM3d+Br17Bx9ho6gL6tlARwcI402FdWeEOAzjKeKrMPnFhcafQp3oXGWYSTHwoTysdkLDvGhmDkfiIMOCT0pRCkcVZBvqKVTTnIpNsdfgyoEL7XLpU4pc8kxSly1EMHCHO4b6N5yQJnMHYaptt5JPEnmZ3U5rLAoFe51Ul5gxbegRJAjLcb7yOq3lIWRpB7VmCJi7bQj/4xFMH3Mrm/l4ogyl+bRRzwT7m2Sa9zvWPYkN9/3uxS5Qsge49MhrYHRpppISf/eQmvmp/2xxmV2JxZAi6d7wbGpGakDi3uTRGJEvZAcr7Q+49a34oiKFlnpUJ0IVQsn7qKwbFbLkQOzI9KOyuhgNz/k5Wt0A784cCj7yFYLDrGUyx0b6OlPayYwv6SqqFtRjfh26MB2VFn58LvHjipn07qgm6R03SwlzbtvNanOgRjjkiqcuTgNbckHBGeg/WPgLk4onWhaaw6AG8ogLHtd+dW/DBQj94z/Ppx4QEfh1ZD/89P2NY3zoszMQp+WoMrxS5Il0Kaxfyo8dupd8TOxU++5LrJ/LXdzXgH9Kh1N1BSK6OP26WlKo4yPwrslAC6/CWC5eJaqCLM+2Mr3gIxh7L+4w3/mV8hHAOtiBSVbVpRmnoDgb81V2oYSrori5Ob7TSUOG/EBTRWrYUyZ01juMKVQ7Q0uUUdDSJU2rV5/A/9NsyjGPz5kju9Q58LqvqstlZiNnDJPtfhJfeqKT5xP7T7leWKTQzxqjbS8vnklAmttUTwCJNbKxLMwITHyZd38trHDku6m5kyVcPs6hHkVai6rGw7aTrBtl2mmiUIKeEXI6svhsbov5qJFK/0Zu+a1ipMH3YVwkb2A32aFvZQDXRuYSjnQLf5mV5tXGSkUP6O2F0Vj/o5njEGVHMBfdpDo6LupHt2JPGYM6Xgg/0YUbwA7Z+5rwiQRkAdt2evAbU6moZ0g3rAbZUE8GuO0d9ly1/A6X3b1wTZAZh6OtkZcA3cpmiq0c6hkGKv3OEpohrIMHOgnZTizKS75lSHr2uFvfj+l1i3G+VioCReHMFs35WE1ui7llQBdKfIpjciPAC67aPaHK1rILRLwaQi8QoXyCu8hxrvvgblQbfiy5ReWffH09YffOUbt5leOYatwj0Ed877XHmAKglaTVgnBEGL1joQtLgHGnXP1sqh1XUInsPNokW+sac4tDlVEoc4N2o9/GdVd8NxuuGExFjlz7NT/0piBgMLU8QOqp1tSDrpQN0Tocu2kIB0aERz+5RRh7SERzWkhSNlKSaUd5K8RFRVMxOlef56XCmaHxnl4mR1hI8+36jLsCorwBHX2allKlavZJmBtydhzF7rIJcukbbHF39LzbX5weYcjg8up3l3WZSxt79obwds6tQzu2UofT2oh6p9u/fR8v+T5D0U8u/6Qyj+AgzYX37MxkI0KFn20/eokhhnqpP4oVDmTTf3JdoD+efjIjHbUczgB2mo3rKcGGlcABGfjzJMJT8KG//aFdbfS1wr6VW71qEij5oauwBCkKYpo/HwHni0wohDfHyl3G+8COrkOuTlySdF0al7Tl1rjC3+N/Oyj0CRhhwWObWv6q9R49JXa9piYDwrZYxnzIVyOr4WVcjkTrkdPMhC044IYDgUANccoenyOtbNQIZ6XrDs6Yp/N5vfSPvNfeeOUyp1UHyiUi0wS8m3m2aDFrNaLxB9SHq3nxzQwx95i+TObNGsIEpKivukLsFd0E9JDZbjte374zf+2ExkdMhLO6dpixAecvqXvInfKOgTMbgCBltN9nhgAdL+tGcvoERCPnDphSXFpCCD34eE3jEPnzW1MND2g2yQYXB2g3w67QEIeu055IAskWpicFarPe9qebTa2K34lNi4h+xMZC2Avsaat5FNc6E9OaXjFtnGJ3ywg5+/0dlh+hHZp+Pww4C8GKh/BXkIToHILE/ujqtLVAaJiLgyw34sHop0jqFa1BUNZJjpSQja3t0yFIg8beM0S231ZzhTpDd1iyvuTwJIT9Koo5O5JkvbOsxzbp2wnP1c5iiqBH8rQ3DoY5XayH7D9kIjhuED82w2PCl8cS8neswaN0UvX1IRPHJaI7qZB+d+/sWyEwM84Es5q9Hw9+icEbSK1cu7yGZgCGhGf0IHiNXBna/6K50fF6QAKQB06rD6rPY9MVT3ar6VdWhsVTqgWKJH18e37UMIVyghAy9EnckoaBeaw1Blf/edvTNW2pU7+DqDel4pVEbmAaoyDjBQnqTzPqitobfYzWMpd+ELm03AD8qUHpOScWKMiema0uKl6g6T+p1kXuCGNtRjv72LwEDTYjUsnGS7MKGqxe8cqRqo06KLqbA4Nf153y/AI2Rytz6q6oESJxfP/I4A1W6yOheJ2ZbQNwJxXryBQ+PPvEOHKj8paZMpBHVWMtT5sRuGXfdMiB4Zm7yZSMGg7ujoso6jyTCSAy/wDZLhJfCIhqSYN/d4c+8lgVl7d4uU5SYxN0/7g6YTN06kB8aX5QGPfmS6T2RmJB+poovEneYNUyBfUBji86Onh+CjKYH/nT8a5UtffxvVpWymT4OdMMAA+QfUcp0uVpwkDsrXntF7JPRHlZb6kAyFsOLoZyDWIFfXwG3HjrZB/9JI1tCQfdXHVOp/EqWlGysXhCUTXv9Vcm+Hg7px3BU42i6eJepkcpkkahP5RLdJCbR+9BiTlaaJBocFU4Wb5O0Nvn8qwdxiSnaCYnw/hKXQUK6XDi+uC8769UeoV90Bn98xlX/W5Xfm+ufGwuUrFMKoMYmxEZVIWAm3vJRgO5NHQmG6oO1MkQkbs5NVKW2AI/g0eDYYcBWX97Hx2FA3IXF2md96DfUuBxUcyaDOdAslm+MGuXreoltlS/BgoFHYgHsPQGmo/1oMXtNJ4gMJTKPtyWOA8j5HggaIZCyuxQddi1hJWNNHIMOND0azm+JFFa+HPsq3lENCiptmJ1IY6HvsbdzF2Tdp+z0yj3mlOxV+MGjdM+dJo+dER1HNe/wQwl2aLHBs+7w+qNvGS7a5a8AUCuH1KnvzfLV60zkgQk8n53F4kShv0GU0tUcO1hSQvpLivgkryiVlrluflM2xyH/FZE2F3qH7qwLyUM0Ap4doPCogQxqH9bna1vfEmyRn6UkyLf0ek2loyJhqmlNpq34NhrDj3arN9lYMTgQiujZDGah5ZJZTgDQxnvn/vTGKqu2g4C17x0r+ZTaEgJcw+YXX7IBy2OS1T74CWm0zz2m5eRJDvreO6wHgQ9NYhctPpSansVg1dtI6YokjuZlKBFX8i5YBPjiwMjtCwTbw4UVEfc0a+n2xfIZjIbFxJINK27vaG8KSbUyIQJFp5zVAmNobRAU9lDlF6LEKshMlexRxf+iV4mB6++YnMg7QYGwgkFwLHLE8jtMsRruDjv2C+VQzk7BmJ9C/qF7OV1n2qpM6mTqPA0NJY0DqJcCbSYPKpHahpIeTinZvajOYLZToaoPkwDwPe4K5LnH2EAHk6ovPp4MeyoLNN67KK1erhMUZ4vf7Od7/CRyyWvLDidoq6rYBNPJ921g+8rn8BevS4xg1fFTBmornJKXghY7E7r71sjKEot6B9d3i/JqSlzJlwa/1I3Q6OheaUybJWiI0iU2pimXitvAaLlURcBt8+MIeqri1cupSVkzPBBRXihPurBhs1H6V4cj8rxy5PEr9wYFF0calOQD/Ym6ZLtbTcCzAs6Kg0UzEazlenQfGQ0etMynbNa4WPrMTMwceBb+VByoCHvp6+XSvHEsWWPsvoIcYnrQ18vrmCK9+NMFqPHSJ339z/hrzd9kmgYVrMcJ2hue/fd1jyYqvlRHzGsOTRFKMTA4EOY18gijZhuJQhbuabUYCIjESWxqaMoZTOQ6KOVz89qee1mV8oYF6WVVsVds+Wcxt0InBPEMH/b5nSj0BCF/9sGCK54kI0Z+oZ20a2Z+l5AyOPeGuRmMZ+eTguNgeN5CmvmFeok6Onek2XnCm9crnjxsquxHoxxgZEGN8Fw60d3FmSJaW26bgmw0mr7F4WKvXa4z/PkNsKrzB2OA2wiaL/C3NIaaEB4rnGZGJsHX/DfMRjPynuyQp6DSdG3Nab+MGEuIbnc1/hT+PZldL7QmtPilhBVT+EK5wJ68f7wHjzCP5nxyiOoX8EQSdrMj7cY4czGneqzevHWRjvu7gvEVXJz9fZudxyUW3fRkQv5gRQmHeN8A0CMvfXorz9NIDUdA7NPV6GoiBgAz27oTenwLycuAzn3rxWuoGEbMWu4D4CJWtTTkRasdJK4QjfAqxM21PCrx9DKxHUg+MQe66HQ125fCXJNLRHpyoTpaw2YNUJLYm9DqJsq8hHziJQSvpQL/GTKYzJ+CfX18z1uTFm4mtJ9CwxM9DwcXdRKUlLbNQtVoPBzLR2YmkAs7LoFQqz309h+wvzJ9ePR6lkQ9cesCxTe0b2kPHKNaohW7H3CRiMhH52fN0GIjGpHPX+KMDM1gKH5cElmAydvB/a9I+/J2HhXbmABzHvs/Kd5tdgluCiys2PZ6Qhpla0YxCKHDigrL/kJnskPfgQ4R0kc+H0xKyEnTIUgvN5miA1TfG+stlv9q2ScTggq6Isl+rOnlCbl7VF0Uzt1Qa3WZAfYJsA86ZV5xXBs7VVmSJoMAYr/UMftHANBvhnRoXL2NeYH41eNAtp6NrkeFKbLSSaFcBixEaESu4bIOpuWO6/UTEnXaUpimgYz/ZMmQSdOjPnv88y/VEXuw2KyZmGpuTyvYnv2h+u9G3D8pP74bF7u/mNIaAfokS4ZJ78uUIBV8OFxY58cEqUjf79it/oOKKzqOnpFXKUkokfwBC1r4wSapwd/nQD0nMADKXaN+ZFuADXV/pyXT0bGG4UesnIFca0/21xKVJPA5fCaHLFcrG1CiFcL9IcFqg9FogPUoJx1FwOGkfxHoHXpIfr+K8cCC7rEgGlFBMHlZNMF3anyFEaLmh8uBvhuZTrqD0OHsjA3TVDOd7LAVEuIpCzNZaDFpEfwqzzH7ihlS93kbco+G4hWeC/vHFrPCJqCmeNC42OV7RLyRArKobrT6aTh1XcVguYnxPwI6Ala4QZ3Pkcq3SZYjS5CWB/3XhjePn9Y6qAGtMRJeeWyuq7rpULqRwb+3sh8ClAKnkMirsfX/u8A64ByjrqXRPnM2Fr0waHFmibWbqEJ/u58c86Zemr8rmajfhTUw3WS1EI8EV8eKMJA6v4cF8qK8D5580UnxHy2an9ocZbxLZ2DTKBbUepvQL5QH/EuPTKg+7BlP45LlhdzIBg8G6alKwr/iEfZRisnTEkTUvljuy+J6U1zU2l3CnmGXsLjZKqD/QlX089+ny/JpmPal26JoG5k9eVetboYaArFT6UtcRupHLQr2z3d8XiQcv9r3XAOgd0Xtz9sPmoZTcvkJK8C+bh23N47etO2zlWluty0jNaJbYe+5o6MqzJvZqpmZ9oX3gM6GNs1tziFscDehrCu2l5Q+5aSyg6w1g1wkgUlEKAKaebhpQv6tHkp3gNLzOMSnyPta2ziqehCspgjsZToRDAOzJ0rk17Q1lAmEYHUfNz5D93bneKg/pF4RRbSvDazpyplVisRbeHwVcGZnXCpX2buqSU0SLWMDIR0mXTO4ka0OvnCodKiyTuRPiIAGRtlhMrfdMVrZwk32axsvaM6Rlj1akwEg+IIi1zYtgbIFhvvmHXcRscttHvjG8YMssLoUgvaB1tZ8WPTBnHKf/Uwmfi6Et6opGEIRekS01tdlmTOU6+LspjHvvzJuZaQFbKWCwE0LdG/2DJ+cu3WoV1ETx5hcYPlcWy2Z6Z3juvBWXGm+nhLZZ0buCdkIhlmrtYETZwIoF2m3rY4otHusik4k1lowmM/0yua/MOjJswjwOW0og2ka+0a7TMIh/p81inqhXADyMLVyeoWBpaG+ZBJ25LotEQs1F1IXO9s0RBxHSbfqoNCJSEQbHrzjzmuPlwlRszCUBuA/6wkj4SR2X9nj8rnpS1bJCgU4+s/lauRyw+Y09Epdk2sm6VKveZRConcouELHkyjvgGlvoWV5ddyV7bANrfwJJzgEWAdA+SksO0LN6uNBjKFz71J5Q1MGaw9JC/Z2rfjI8gBNkHXnbQPXNFXoB0h/kJ0TZLd8Tlp05dGKJP5Av87r4NRXe/BBPL5LDyFc8WBserMrlkHjx6b9xZFdZcinDkrQPHJIZUhoakjh8V1uHDYgveYo9zPr00b86Tv3Xtsw3KYpu5jAi9GGP/31EnDUarQ5Eifo4oXjLzjxS6Z1jCCu21T6U2Rgc3+4Lixsmuo1epjl3Vd+ulcdSIqms6tsNjSP9A5YiWdglVqQbxXiaFi4SvPb3kwrT+9Dl4R7ItvfuO9pm//VCSAbJZYc9kU9ev7HmygUWHpqOJsx9Uh1d4JiRLZlRz+UmrIFcueSxZwJNZK9k3qk9O1aFEkjk3rNmVWpNlNjDvJWx65dO/eUST9qEunYxMiH/qs93mEOfwR1xgrhQJXKrY6ijcT15iXP2qbcnoX3sJJpzNfrMFNCO3jthcfx45xizs9+skPqLb/HlnXbii60ndhOLh6GEkV9k8hz0U6cO+LFaQ7kWysUvS5heG79EC/q0VBKGW11TGvJ8/v10E79q/jRDlj2OOzhr8gL+ZehPo1yLcxvDzRMt2pmomjMo7368tje/IGZWYCfHzyXWCzYORkgVszFilSXzIJ99TmH1QuoSgr6lDESv3E8rCmJFaVyxwu5JFgTM7sG6wuxQOClOZlQeZ6KbpDWB8rQr+E4EUwJwhxHEklD74cfogLMDY+QxSGkbfCECn8BPlZRoo/WoxBQcRkVpHB9sqEtZz6Avmwy2RJQuQZ/NPDSWd3SVcJ1vVxSTr9MBaA4O9TGJjQry+DFUehl/EOhfLoDsGHP4l0ngawrm1MA6UkwpwcyvxJwdIS4pj1voRqkjjaL/TBU9ddmJkBP7l3F+teDoc8xWZ9pl6EJHM5ryWBMtiKWho5Q715wS7sijnpbuRAnCKfZX2ypmpKHpBFyjaLmmvlkt0exlRtZE8Fbx6sD+M5vLt6axWnuxm8+xsqkb7oR8XnCSWtZiRc/JSOt9pzDoMTN2Hos+2aScufNQLKkaHbtRtk9fDmgF0nu1O0XNEdhNxglH8fx2uhy/G9O3atUVUI5uZ9O5YmGbMgipRtVFSLfpDyGd5ozOmvxaIR3pxgx2YuL1YiVJnHx5Jv8gcOWbZ0zl1ZMOvPg0Krfy78dhoFl3I1wNS18CUflhsgppYJE/sxkVC4rltLtfSNPKe46rALIedCWjFoClbBRE7JpratuI2iTpcolipaCfWmdf4BNskF/w+CMlvsFb6sKH2AK2kdCMhnfRFPOqsSQtkI1bRFbe5rZEl+T6Wl/O3FbqNlX1mK7bMSRbfTgC9r/vty+goZNrGieMd/jHwNczEpVGWBbw0VTeubmYvJ2ELZ7y8wCzBB4vKvzjX7sqO2DaifJKGFKXhNm9mJem1j6Z8jzeDC2jyF2LlCKy8lmLz5qwmsUl+ckVTc1aY0dJqA9W8txdKi4qAo+E1+e5SwWBD8BStqMg9t/Je7RFsLDq0+oqOPXrMgxulDTGa5U0gSg26ZqFl7MtU0RdU1pHIj4I9CVC4+Q9EsbzE2zLi7fuOsi7UQhdsQfs2ncfNPexT4CvkGYmLH+PAZ/XM7vgteDmR4foDOfCrkuqoEJVW79vXeVNEyuHxXrm3Na03csXzSeOlTdbxNAoJ919glxlFZU0VwTWLzjYcSyyxPPGPq9TNO/fX6W3eAaJIu7JCOpM48CCz7GT0U7nv4pgJFeq3mNfpXPTu5L8HvGnwcTJ5KO8eloydJs11c5qgE4xrCyWygEFSm5JeZvzow3tpqHDjP+GOhGLZpYhpe0F2ZslxwTomJIlLFUqSvAv1qJmpfFJ4l3nF5gfWM5yMTj7f5llBPGSMCU15CQIcA3BxP+nGgqmv+Va4pMEeRiXht+N2lO+Kzr8ybGJLEf4FvfVkS21YlaHf7LGSTFO3qw8gND+WYS+/50cipPzCfpZN9yLBAuNNv6hXeysu/GvjAbkWQDZz4GJUs6dGZDXs2KlCXEpDcDR8/ib3+lCoTJg2pGId03ydC1BJ9WA+a9yJVVy9RDAgnhrg909FymOV+poo4sgzojh+8c8G8F34IR8wuvUe5EKyPGSpuAwPWlHIkGiqIZJamGGkyYRiiGO5LahS5s4n9+mNUwpCATL3AxqoIbx6Egq23QLl04/tu/4imjAuIdcGmr1LEafM766JGk3C567daJHfGSBM3xnVNiqEK2FZSDZxFyMnD/ban2AG+zDrJQAISxy+ryrLhQ94XUTL+Zb2Ke+/TIcaT/fEYrmQ59qubyiE/FK/WQ7x63Uz0C53GxwYDV+3fGdBR5WNEv+eBsxCWQi4xI5v2hF9EP39ETL7HVI0LY51zYUizvjfs4cyk0dTHemsuP9CniUxNVcV1Mybf2l4P1+mLioOyIftGu2EXBPXy7H6khLNS725xCxHqfr5qqUH6bFDL9QVUsuexLt95fpoCZaM4xe2TYNPt2tFjN19b26bx94QJbDdbWlFIjfvttS6l6pPYvcoxocgc9Ll22W76FsT0aTjbc561fvzhkTPpOoay4hrVoPHl+49FNx+MyDpFp0o6RBO9BU8WT+dSNxQfqvTV6n8ZLSTPcORB7ny6a5bEHU+zrYhnAQZTuMj2ffLSPDNnrdsutByZYDq1KWRzsLB40I3Jzl4m2z6JF4cfEI5DuJI5NAq1MY0DX0BTPbblkQ8syzsQlyZq2bXttQu/L7Y1iLELqjFPxknAwdcr2XUz1pHVbzJWznSbVoDdd8Y/+g1awN9d0kMDZp/SmEIK8Y//G/oX1pEpK/uTdSgZNnxa+Lj2Z47QEC7fuFPXiFnyGVhVHvhtTeZcnR2MWBvjSq0a+OZHanR8iBqMJJaXYUduRVkunW/QKBIKH9IFoA2rIF+zs2dzO57klaKQrtnBHqA6Xr8IF68RtqDrhcbQg0Lzuk1TdnUEngEnzcwLV0Xf2cS8ls7oi+nbjjdNmQdCeaAAAFBgSfL986zAsWt/XmORqtbJf3vsL7AfiX6acw4AXuIBVF5/eXi3RYToB2rB/6NpbZaEinBjYRsB+sbzHX9QuxqCmgNcRpBOPufhpPsQQQgT6ITnD4zdgflVqkH+6xV+2de/HXm2UJGS4Jv4ZBO/hveqmZJy1IgYr/DZdOelCWXLlHAZPuNO6/HKs79f1FdATGMERaWd5niPZzdH46eFGZm6NToUddclV3yd9yLQRMh28LyqBiv0RhgUia9GEBkkieGjQclkwyDioo5xmrrYfKI5rL2BennLwqXto3GMFOUv2jImVqxny7FaGGtp8qx6Ad9GrkXwJlmItWn/pWb9HvTW2PwUBCKh17AZGYNRPObK8SnpQ9A1CiJ2qqSfMFWa0djDNLQHRab9KadZU6ijJ2u2zzboFg0AVmOcD5WruNJzbAgWrFk0C8CjHuh2GBu2x5P1F9ZbeCyMi825Gd+CdF0kvWQAa19iYu7RYz5FTfoVMRIQ4aasbW+wqCxg/KX7GwOH7sxaq7KTfSlmaa55fXE+8fM9f2zVk5vvJV1h38Ph+uwhHk+4xykj9fAq9pmLR4E1SY1K5fjMR7JBVnwX4ey3AFFjOGyCVwKipFgZLdAYBxwvR6E9bM6stlVKSS3QAY5Lc+78uxDX5OIuP9CsQ0xabAVw0FG87z8+285wcBqezoSQD5K4rKieg50O/WTfCzLYfhh6QJsquHXaMu4b20U/nfhvI85fysJE3lKX9xAo6GxT12xluUzG7PNnGvj3TtRQpI7PcUHDcixgBBj02AW9m/7c0DVAKm9eFcg7l/L8+iDlMuJYUMqI6dDGD/eZYC65LkHHbrfQ8v01wsiAe7S1C4vc8D75Q58jEL+fx1m5GpEj8QnOIn859DmOvn1cgMeOT5TMY3KnmUIn7ISrAX4AiGxD1wE/e2rfFd+OoGqSd4Ab9Cni32TChqG6diRjx53Sq9MTLgxmAQH8fkqiTDxMCVBdzOUTJVGJ1LojZeyr+7k/1MxUTjL4XQSuH6BwYB3/CjsN40IawXcP0y81LlG041Uhmd2jHRIZH7bsQS0jjlomfizmJpGCxjOHHKG5uteuxc5K3Ed1LLeH+Qxdd+NBOfOTHVeMkdclm7V+eSxTtvXlaO37SGl/A5rvP5YJO0YAOsCIRxo2dbiMaN+P7ykwzvlhbDDCLXDlu/TjxA/r2EuNJT/whI8AQ7YqRIRBQrTelOBAhTmSuqd66XtQ9LnSd6NiCu9ygPJD3MKnYtlW+HL301+6ZD+9uCr+I14DxYnQqI6jDTvtUJulG6tGb6QKkQrkhH+uiVjFgmUX6pWgFkNrqJk4RieIjD5/64Y/QRFnzBs9i1llkYEn3RXbTsLkjIMzpjv3Y6AI8ckYWKtmbCn+Lbk6qLPt7HW6AbDpzQtCR3w7ovQRzi3sI3Mo/fX/G9Zmjmeu7l26jUEq3V9f6FprGQDKU2+ypbspaazrAS0IewbM9KYgML/9WLdPwieWivfTJPxh3ngjKFFgItgk5+JYkqkqqVvr/PyCUX/EtAuHmc1olJkp7zRg32MxRDT/JMUsWUs4mdjfAMnN4SDOln+mFTJZDN1xGxqJoHl7VCGz2BfqBw7J9QNsh7LPRhXnh9c6RO4SeBV9ApVHMvSbUGJzHwg8fcqXnHna9abe7Ygp7uCCEc7YAGXxAIZJwFuA6mwZqRJ+HHwsmRkb7xcqowzxGJxRkeYD4jDnFWFUgOHeZDdCOvTpXq/DyZwOc0bJnF8OcIRiC082YPB3Oud+1eduAOkrMvbYuMX36naNBfUSBwGoJMahXy390eJgRrFQjX6Prc3BZrZmtoB3y82UnAwDt6z2gK8189Xc12ZrN7MIUHsIPAHTj6FIkHQorqEDZ/jVondmeiU7g+malDWnXEneaLIrYGgJXMG2w3Y+eNCV244xWLpSAIYrZXgeyu8PJ8V5yOF74+1Pf640SKx/UQ6kcH4U/S2amGqebmjEVop2Uzzy9Ynlgz00lmO0cWgRJaKzWgA4rv2dJvu7btxr1EccnUY8vxNIsRvAu1kLmCViJp/of+oR6z5NmmMqg9BJYNKiOdcNsoVrAwPUjixaGacJLkUMyAFarosJG9743GicJ9jC6oPpo1PISPDmc23h5qJJuk//oDq+/tIP2dwTjEa8opPgCn0QslDJdPPl6Ua1FHLHDxYL5eea9VUlSiQkYLA8u3M08Mn5zGpR9uIkct32s525RI25LHuxl4aEw7uPMAvudJZCZZ3AdsaQb6eoX/6HSoI41M89u0ijIjbB7zkVoNssx8el7Da42l7qTda1J/7FfdkuVpRDYh+MFTadgT/opQa0gnd6H+jbBIgg4BHlkwF0MV+Qr780NhvDVmm+kgXDM1UpAfFGWZDnIXSzDrM4DqyZcaKnj2D43EfXpPz+9MG+KKR5RFQeDf7miXXSqEcOdInBCBMrrn5yXpHIILyA4BH1Rf0/z7aV5SFOzjEsDT6Ew3qXOcQb3RhcewS7rngTFchNdjT2suvCgFnOZXNHb6KPaftWczj3zmAim6eCW5GitLrrdkALie2uQTsiAFXjO+FI8GS45ZotDenDpIB8bgAYQgzs8WpGb6zQsH0a4ezGXcAvO95xWlUC6B4ZkRcxNLtNf1Ddg2/dXbEfJKuCZuEaBuwak6oylEgD4lpzBb8p8wmMDkrpOMpV2dszSWYkZUa/zwdlYYhff53jaD5BxLk9vPTBlLxErF0sJyY0IZ5Gvg2xPU91NDQgbnyqF+XfjPHZpKLMczIrQOdnlgukebq3TI8qQWM4MNXMp/QG+v51O1FbMtHHxtK1s2LuCNn5JyqV8dls4gFxHW5QAU6Vg0H1KRnmryMRN8BtA4EZGxM4fwSYo8z94GB1ujRsejeDT5J8DGzYZ2B89/JlYwqd6RBRUYBvbnNdt84ezmHOSJBUcBFGl5wkzIaZMDDgvhTIBYIGXcVjPfj5ZG4yqPAreY3RZLYTnIIy4h+us1ra0/SiH2ppCSREGyxUmWeKDizIdeF8MdoroYOBoyNZ8gkqRWq66Ip+NxyjIMdROwAB6D9srvW34iArGniGh2C0LWRsms8gLVN76yP4TCmMzQKze/Pxy9r0dowvZcXp4x3fkB9+UyednUwbI+BAjIFgjJXpXRZO4mIGGLn/nlGWrOoAY6nT5I52HBJ+hoysti1x2TdK9vqiCelMFRx+migdA7V2JcpFzNqOZAt9Hy+tFEnUp23sD+B5Ja0fI1YVuLiXHcd2E6vACT+jgNbYy2/Ph0GZ1fcDb5J2hK6pFRFRKWM+TrpIU8WiIZkxtpLWJqdzBjrv9CaSqN2800hMGQ7aVTCPSr3dvukPUeQjCsU/56xhhjnpl6ZcJ4DaBIQF6iBbzrwWbUdmblWf+bkAbc0q0TAdxQB38tUODTCDOn/7dq4Jy8tbIXgvgAggfpukt1jEe7qp30L5e3JZ1aYjG3bgxiYrsKCVDkseuS7zPFuXe4KoqBGLdzlhKPpjWTBCtCCzxJwj2w+5Qj1ZAgR/RThM1HSPd4lQgyLJUfJhAI6LD5RcDBdv0HnfN2V/O1CnIuuGAEcWfzywUJQ3F75t0hVXJp0AFjxM4P1U/GPOMfeBkXptE9U3JgrUCAgamx08BrNgu3fHDJxbYDejJyIxeb1gWmGWeCWPbfawDLYQrGvpz/FtpRhWLg2zBD516psKcPpIumYuuaT2yt3KKuYIludR2CsjhHnRsGXz5CAZ964bO3lp7Na23V0Yyxl42+vuZt79tMoouSzn3IAPUj0swumk/e17ppBxwBj//VmldL/BMjUQ5F8KRBE1wwI1IlNJLR1RX1sRpQHhwHKuPqE3p1pKtRTm0fbjBoW5MNaWIGHYnkSNbYy1BhQ8QArKOyVa3gXw51LJqPjT0gqMf30rhootFuajKCvKIpYxHwhIskSDKwNJb4HoM3OV9JViwvZffdOmNCk7uuBMukJzKKqiwqPiomG7sOX2k/B2RGrbkP0hbP6yKK7CfxR1MrngeSsnKJLEBUuVrbHh8sByD5rEvp/OCFzAQ/tBaatuMPl8+nvOztQYtTBgIj+Vykoebwq70NCxZrVn3iNoHInbdFq4sdYBTtLr4jEP/Onc/hDFfhl8LszjvsRC0rxcUk7SuaCIvotZkWj4nUDl4C1nLIuqkoM+9fi0wAtRLZHw13wQkdIrC2AkVeSWuBj6FgbDDcHj0pkSj68bFnhrs+6+0QTZ9wGuhjqbqYiPoFgLFlF9TdfpSofatMn5ANA7WlD+9VJzCjpDOsdjSJnF0TLyVECUivaRQkqhCHE8PjotYG9uFoi+E1cBn1e8dOUcCQ9ZniOAvu46VDyDpwjNqmjFe/QpXZc82zybmKqzOYJ2paQd6MC/JuGvX9C80YFmM2/uvNYZiHHmNTNrg4UWoAmw8Si91V15FG//rS2R+kx+FbycMjuXMwCgVuaUmxyxt9QUS3SCb58cGVGURgVw4r+QUwLFZrRkQf1hxP9pOdo1Fu0f5lZnQtvjvqG3614wj5eEM/9xmeSa5E7EaBluH27ziuC0kkGPrXaSQH8euTeUgianToxrf6unjTa/lBF/0NDm7pZ9EJP8sPooc4ymN7trkCOdDivdc3LZfPypskwQDLUvqWt4UE/W2EZ+/nCaeaXNwPPo0bhrRt7h5VfBY4y/5dcr+d56tfuvTAuqhLA00ErTMHmdZFKds0KHa1WrNTue4415dXgbKHTNT38MBpm5holuQMZXswiP84aPYDbryVDu6ofeYlTCtxNwlsWRzQkY9yqSHFKtHROLU9RsMzJKSS2jws+SX6yZdzBtQ6/9U+R2OaK8zMQskqMz3rBiF12CKDZoYj3AhJp/Bfs2tsSuaxKYvjDNk3oYK9IC4CsJhaGTdnY1QGEv2CD45MXZY8IFa0lba9uRmrOWA6Tog/X2fg1N+L4mKiIawfY3Dctcq8UwWNXfBErnvzMEhBpihafXTM6ODzXT6yX6kxOEpEQ/qoxOl6hAKKahWRds8z75QiYf4W1ACKUVKBSmqj0JusVRnRS8a/Rh0VnkngC0MQ4oTBhFfC6ksKHVMNba8TT/2XmaE+Wgsjnki09DdMtv0JhxEeWF3t8MloFSrjZMcUt5DL30Yq4fACYLU2lq1xK+CRKEGngZRE32GnkVL3q5XedAp8KFUAj0x65LTnsz3cl4+3I/N6a8egPY6lJGv3MtgieHwMIVQVaV1Lwf7I82cJfkWnw5q4Moz8VOQxVTpSNSwE58KHoOFgWpiLO2UnxCkXE+Id7VpXS272OYm1vgYACal9X5B8JXI90SEdkNnGboT2+Fppn8/ejnWnQMrk7aRR0ZE8ayd+qUKevNqKP8kHnHnlhIIsd0IMo7GsRrsiINBW1+7996Xq97R1sGoLZ4bD13Yr5C8KU/jtnd7LEThiSslvpddIzSKuiemKSQl6YQUZQu9NbO7K4NTsF0v9BKwhWzug8Vw4PbybMi6lUSemGHwcrYdPFLDWeowEbNgPXxR9KhoZLkY270zpZULAm/z3jlh0gTDXaEWUZNLuuhKFQfQ+j0wszd0V4fLWjUMnvuyeh1U++alGYtFlqB+BIPz5xBZJIW8hS4KhSNb7XzZixzzQ4i/uAGCCk+EZWRKkcwCEgYXEG5xwi6qQQMphqncwdFW/b81Z5SCctD4OoKNmKqWq1YLXwkBI2l7m4Kaky7dtK6W2YdSNEBhnmT1ZEa9HrFSl2/wSOvxGEaxugmhw+nLiXhPi/znr6O/0YUe8543Qsh1fS2FtFQ7IPzxLKCYtp9ywbNPM3PP49obM5KkpDrVm4gtZ8EYDPqAOpbQbKRv6mFqysICuCnMLEphJcgZpKLuvcrROZlmawndFZFg8CSCdi6PTN4cqixQfrqYJxau+Da5Jj6G9QJ/aMISCC77hyt/0CGC4w65g4kz8zaKHD6YF/0uJ07LqC4ipRZz+OocdoohZ7P20pVknGqoCe4MFB2Q2c1B+PJTQ6hg3Pdevcp4o17h43ce0pDrPTA3/s5u/lFINE+AGWoGyE/SyEZnsfQAl0O2q+rgtKeKHR/2BRiMaER3OhF7k3FyqscQrSSs2Cs16ipUAzwQKuDMqzFSZ53qnys3gCWtjbBakyNG4jqFd+UGnfObmZfjnli7zC2ZRnrLBAkBLQ6idoRO+lQ+wmbmRIpqcxAtEq6uWOQBsve+7vQSr/l+UkcyEPd7KHuO8cCZ7iem0Fwq37T1UfQBaBhmKMFQbHtXemXcRep2Cc9J6kC06a3T0JroEWBj0ZyzjooPNZeaqiqigwf+jcuUjSWP7rl1bmM6mJxDq3+xmWTclQlIarCoHx7Nr16O2fdSE0K3Lrj+PhyHkff6zE3oNnfg9XTy0oiMokvwo+8LTXatCx9lbhOy6e5q0F6PlpfgDgwmUoQvFSwqBJ14i6lqkoFBZ3lHhVqnaejHEZOxqQvOSyLsBdDJm8xEka9zM6vCA/JLJ1DwOSkXoNCpN9fVvGJ1Gi4wuopIAhsg29xf6nwMSmFNUQtr/NL3tUpTTEa7vuBv4OW330G3Iw4Zi0XFk6HV6ax6EhrxMqe7i0a9xLSjhuSFY5/hQ8vbm0oUI10Yvyja0vKVj7JWszmtlGgTCOXRbRIZDW7YHrVM+JgXeGjbjGxABxV/BPM/IIYiYHGhrj2MFFJgCDwvQN4oSxnvFu4SYZmmT48TB7CuSliVxw0yJu5ppkmjVMs0qBQxBbFoX4I3zctY0Qm0jpW/tB9Jd1X6+BcLso/Rf5z4wc/1hkjU982C+4xdv3KfC4uwTmYMstiqSPJK48Ftv9yVb+vqAax6x2dw9oJne5qzwBfStBm+SBZXluz/56n4BPUtgiedVysamYdefdNHx8uUwCWxdC1EWJsOGiX98HkF1n9DjCibLWtGvuel278y65rWqLRlJpkmGe1jSE4ATz0nfgZwf9dqAFd/UAj1t2JN9d2Zzg5fwGRS6i+siY3pBYu1SjZajWZNh/lv6qpH8umNKD2HQYKCr6MUVQIux7frAjAYMAMlnEIEm4TZlmX+WBjIKBezudB7EmtJRZPHycu8SwnuxcUkVoQkNvjcN6g0msCvA2GsPb0TMppbOGfULFS26gyNJwW9dO5aQpr83gCq8ZCCNIAsLR67xdQtMkbjiTwa6S8AOQqQ/NCpakdrr7V9KsODbyuCvPo4eD6MJwWeVFR46Dbrj+VHHMKg3gNkNzkpXUiO0vbQEoS8XruveA3GcU0WUVfNUg2SGqmxoJkKwFjthQAMe3bw6GJhZifDlZBVwbG3zrQwRdIWsO8aS8R4i/6F5897UJUlehXosO7Vm2YowmAaGSlZTHA70mwgulMIzcDHPBb5z9LBgXdvRlihKO8/mwDm56Yimn7NpWzzeWvqSmHiWHcjaS6t9vWOmRn3nrpei2SYN19q6iDlCREUhcBiqJIRzJVFcuwa4RjIctvia78HWFA9pjW3BFhnG4EVQSVmxkqEJ3ehG7J8lFKROyQmnZPQBEm9hKAnDYfoMNHX3cRdlw1sigjj40iNQJI5owZhOXiztY3SR0flx8FyC+L3J0GiCKHjyR/4yH0aZM+Ac0nAv/RRa41LvYLno22Ki4lg3BaI0s9aE57sYY4xm5Opm49jhHw8CFAac+KMxKaDckf0bpaMSa0AF/lwTOOSohXz9DyU7GxuF+8TFJ6yhchEc+e/iteGgnd+8kS49uAyoBRilrOQA35Yr/cohsZdhyOGRRRHDojV17yoRAwey/WtKOxD1lvVA+XHTofCVGArTn5tnJkHR4HkMy63JKEmBPidBcOOMHq3LzVoWH1jfg9U9M2t23tNJPvRoPcwGb0hyrdBAOaj22tk34fcImOBKw3o+VhqMLL+Tp3+YZKOcOBfqdgnJmx71QpIDB8wW1woeLaOtSBN3QVaxYvDpD6SmMD4US1D/RCAY0/Yn+aolU2PsdJVmoG9hRoe1nacsXjiU0L4pJw12Txdq2MqjCiQS5H3EL1kIoKHJ4ItUB+TD1lnA2AGTOJa/jssmuZJk++iItjyb9vaQuTZHTGryfOHerIFfa2dBEupRbhJQ2yhhc3J6JfIb4+p371mcKci4e17GXGgllfFimTYhhscYxb8zo+zLqK4i6bWc6VwtcikrRORrTkj+8eicgA1Yq4OuzGuejHZa3lMrNc3sc5VxV4ykNlKC6NwsgGxT/dES+/P3Cz2KXZtrqnstUCRkjCWvoVNfbdMmltsFAV7S2TYpvoziCST1NgK6uYSZu29q/+x2kuPsEroBmgjut64cSZUnaBzhioWaJhRTGgtZzX7lY2TxY28C/XssLurYNrw8lplC3rkSpXyzVP3Cbq/H0GfBg/Zvi5zCCf1iB0dbX8rqonrLikkLQccCdlNVHqAh9Qz+M2nmzCWZUpnbUyuHbVHqlWFmmER3vlWnQrH0QUZEaXGUFnqqqyz99KBJdMT8EviZw5F70NsJAGPqHvQK/wwEW93G2kPUGpEIfLo+/ZXXYs4BktIgsMq8B3W6Uq5hDwvKon6hhvSdismRPXz29jH0rM/mksPZa2HTyaxfD+vY0zlHnL3CeQY2FSFkLSOAkRc1LBeW7mPUJgH40xxLhipkFpCkd3Ur+Pn6F8TwOYlxPCKE6sU1s/ksK64LeuGMLy6vWVcd35jVgvrkR43VeQBZ8P03X4MB1N2reAa7DWTOZE7LvzP7uF9hJUy2s40honYqZkWblr83fjVg1cKFxBWpF7AgppcWeYnGJLtXnxjf+q7u5a12S3qUWfwJfMmWxPchY72wOTYNlb8zrDaxV75dPjn+kB4CQ0DDMTt5vNzR7TnBEGlJH+Ck1TfXtULrvZJj5YdrBZkVriYs1b6BjfcVzkoo9/R6rm6slh6yVRpAbNKi5a3Mu+74t30f21lJld9m4mo9uXoQcz/yyQTia/QYENRBS5zr+nUgq2eKHRuSHS3A+ENClrruNgnM+df4KIwlFafGwLlLQAgjoZ8QgO7eVkXj3gjS+IAjoiHdwu5AHb9CEnvCRwsM9e59V+We2R4AJK2XO5fDCtheU7MI09pDqOgEaZtff/ZtFThtLUa6HDq6dx7upXKUBxhNrMCgjXaiSOlv3lFF9bPFvQbWLBGd1pZ70bcZ6qyszFzec1sMn7297sbjtHPdBsg7AT4D5YW60mdyIfcmi0Do2Soq4UBKGXEIUhEuVf3bYl7VjZNrAwyhdU0bqMiCvqERGPZSAhEHoi7gi3z5EhFuh0JxVpy4J9srA2ZhsI3gdmMVUzHLdNU0OZQBnL8GDkUNJ3ftg9DcZC+BqAmXUMPYO/LbWCznCRPgWzX1LY7LUhWbYMDCQg9hMdIm2t0gaVXkwW5093vVAabUtBiKO8YGyvr5cvRUBfE7sZR6+OxqzlPVdJexU9ABHNPjdYr2xWWhPuyOw7htTijej9zK88lHynkmsko3QctFr+0PmHTSicc5FnrinnwyR0jET4LSPm9HhAYaIKoCXlBqpaUE+60Yy/8S2tWnrKl17EN2bHSxMBF6XV5CkAzdjAfZx+GkeyE/JVIn3QreIq6oh/CRnaUu/nkKZtruC4A4149jOqsShYQzrERjX0x5kokc9JUOx5bcdfhpv8MPw9hC9wfOzgAYjVmB0UJZ55y1mhtDKlXbAWaA5NPaIFvJOtPLFvYDH2IHhfgedLrJnhBL89WPQvsP3hVaAsnHWmq0kYlGFcr3JbuuKWBZH3il8blRsqaKt8JLuIw6v425U9Rd4REhUnzyPgy+7umIGyOows8ZxGiYnnP7vNIrg8wLfqzqdEQZyvuLqy96fuTm4zNxO144ffRD03p8RlQcKpavNzr2PeSEqi8fheR4vy3YKzxkj9QKFrjAXeAROgRxN+m/2cukOLYDYYKLtTUp2Qe7lCn1CpCyRsOW+wnGK7mOv782vebLLHMpZh+xzFKOiB/mxbdqgcNbR6iIQQVMosmMuszOfO+YNIjYv3/fGBH9cbbIDaZI0KLn0+iYVo/yx1k/0idFI7UfY7FXmAVpghZyZEuaeK0sMkn4SY3hPBk1XWjuowohAbHiDPehVES4IJjS3/Y3Nhwbw11d3cVJbqP6GMOBrl9ibLbK4R+tB/jgAKrI6eEHOXFfDIHNQy9I2QYeCr71P+mxvaMgG0BQjymfyCcv6uegfRW3fDhUdb64wCUFkql6mDUJzjDEUQl+Z4+u+FgHSmpqb/JZAmhiuHti1gfLuIeJcL6aF7kHXZ5gd8s7C1Vu4Jf1Cta+cYWu0s+1K2olhDPcNZF2inDcPrMwH4Leu68AqqyYsFmWe17KYTV/0c/sGk2xbkqUNMd4a//NIf+zx8xiYYNLCwZC+ztIu7icAHukeA/6Hq6PzFejS/Bt0ZXQF5PBe7GKrYJBkXpj5+4x4pQFBY29m5RFfVHLsHnUd5tXKN236OUgGrgtoIxW9bl70M4DG7e9HE4bZM3DvIY7ZNxPlevbvGwXGRc2opg6rY/QC04D8ZIOffrPD6Dy+t/hSr1wND5vL5RKSTpnQiQVnbYUJsbhqKBc8aKqEGYAvFWvJ+IgdcemjEZR6LeIK8dx/wQYQZo3Z50qSi+rL+i3QxsgAokMzbS8WHcJpOWr14j1QNqrTdQ3tdNGI6AcYftvsSozZbxQePKn5GWEuafVYG5FYDXX7f/2mNv1D9IKJp/qAt+W79QK50rK6R0dcJ7+tHPJkcic0gZSVH+yedAu+BXZcOO5iWqTpDjsvtPsjLwjCqwU/b7xITURYUvkfDtSo/fIA9VzVlvWVWuWr8Haae5aQ6MTgOUu5TbmbUelpXfOaFYxqYciSxB+mLmxGkxdWyPJJjdS85G4gEUvSqh49qRlIpNcViruVrHIwW3mLEQAv13IYoFjtSwQJq2/4Qedh7VORyGvUysvfJIj4tNUl068foGGLwGHlj/Oxo2PZZl7rW8oipfyrMoyqVVXhQrYPrZ8yc00Oxsf6pz2Z2gkeAaUkE5nsxWgsbk5hXv9abq9SFpvIYRG/drhIHecWwACj+SUrUf9sjD13yo1AWmkrGp++PyZbz+vCj3z/SsEkvRmbmGVfc8BalMN5NjUzxM0rlEMEoSQtzAHyJxpk4cRF3JXEzEMM2iCTRVTuv6e1KcZ6C386LMs3T4t+p13wAz4Zp1Skp4eVEwPWo9C0sXSUlfBl5sJO/jow1r0hDI0A90SsS28ZnwqMQhuTwZeFl+5IMduUCgf5ILNugbjeNNdyQ/BhxlAH4anK8byUtRc1m7yBsahJlmcNx1nRRwRbETTkhZ51cigsm2E2sI7P1JX471J8v8FJ1ildwpRdFmvqjPL16ZKXBxbnyQSHo1k5k+N80hLJ5KyWcyci5d6B+eLtvCtIEp+saZwu5dhGXelsUT1bOxZCVwsRkZ5xhHBYZvh+eOk7pPfBNqm266ueglNtG51BJy+e1rDLIvPi1EWrs456buIxOKVgVtrYjPl6ak5N2r733JXR5Edj5HSJsLUAmSk3cQWcmTdp7Ibts1bOGd+7DAGeU8EkfoNO/lobfB1K6s/zP94lGOaoiIdQl3tEBPrgafcm8dc69RnwAGY+8lwwTV8hFtVL5FpyVvucZqWuhCTlYqiDYOuWzsdB7DRnR/Sy/t1oMmANioNFWCwgafweZwbO1pU0FKJcMno8LP9Qr9ewPw1ZoWhsOD3znY3bSKt3/UCn/yYL78l2xl+TlYViKOysp0bSkNdbAilosXkrFG9XGWg041ri1I1z6HM+h1SL8/FFz1Zl+jPIOf0KR0sv9h2yUBaNhgBLUC4gT+sN+7eDrFAk+eDWpUzxfjkoIlIBfJ61qKgCbLilQS9xMr3QIIm2CoCB6NG3+tmbOycjwLhi4lOoL2Gd3hA8N8ypU2wIE+dtaVxT02oscUnTkeJjh2AO3irSrop58abqUsmcjy/41tU3z/Apkr4RP81uW49KGx6V6HBkBnGo2h/wm7+F4iq8SXeXNKAoAqFKvYF7QHRnqncbQ/f7sALfIoW+UPqdnwfrqlgQ8qFgX0DAIGcW/IcGSU2H/fzXDq55hAl0IfekWWMELelfbdXaujHHUWj19WBulXgiwRsi/NCWXMGhgxWMU2680wHK3p0U8yyhgyUmF5Ughfnm2hG/GrYCCrtIJ+bY3ba9/+zpBiwalHVzg2EMqSKzHD1TAjJFjUkLTd+DzDKia2V+OMQC0QkEesXWH9ejCc37ZmT+quaAH/cnfRiG2DUmvBihnhmPaUrRKkUABerWNZdsMEuICl5WvflY7K/A/KQ1GZfYBt8zumL/pNTBRg3AOjCh78IAengD4G89u2+n3VjjxdNjNCCBehTsJAB6MlwHKjUZ4nBHbqs1d2wzOIJS/jxP9sVQsmHiXcgcPsTpYnxiCmzE1qvIjVjT6uhALAt2HAjWLWUplnx/FeVZTps01x0msImEjpwttPgDRVSThNPALX11nQDsr7d6+FYogkfx6CQPbl93/RTByszO6JuaRgz1MzGcAVOCm7tCv9ni6lr/5vWrrk41kFWEBRHH36+ZlfmlFZuaT0ZZPWl/cbYLDLKbaHzlCKvhdEUvMJus/NbC7CC/djwwBipvvNbdjvX2KpP+BL+t7ThbCmQroO6AM6h+uNp0tIvsVaXYsZbSUcz2iAomI5SbWUNBk0EM01IfzKkIY9P5dKA4PHqrpda2nNatCGAQIsHHg07r9MIexvJM8TOqwehVIcYmIE9wABBBI8OE8Sr3oFpz7vZ2hd4G3T5/2sGzCp+7pFzKTWRZpfKbGlQcHxUafJiNEE7zSfLUnW5g8jg2GFUz6ECWuByDJJmpZGPsQrOXueggjuPEwJ3MRgwUCuEodpN42XfPetAXtZCDS6385pUpDMXEh75w2LFcfXE3JMeUxjBfnJlC6ArB1pDNGs6xGJ+BV70zUTCiiaaEO8coHI1wxdaQYnNniZemkX0RMDUujGuBQ5etlXEQNO2XSgVAnQZtA+Z4Zg+iwXXxef59nxe/nSme3MwFja7UwuSqqIhXHLfML0bedck5H0bcfktXjUq9AHb9ArDqP9++OQzcNrXrGtUQXKl8gT8HZsxGvydPeJxF1FINsrFLAUFQE+Tejm7S7f0JVYJAATVypY6okRw4uNR036MlM2dWOLgnyhxMMrKpWt31+Zl7SleXpUioAHHtGkr0X2rwhbcIBf1bDoH5dE1q5ao4P81jEB7NmpLcuy9uqLolxNxFlYTr24y3nliUng5Aylezlf5vVBrEo6Dsitkg6DCBRytGUD+OBSapAqfBDNS+tyB1urx+M88sVHnTLgZwxZSqyt73xkYuEmeasCdIzJhtI2QpkYiRhiFpks25OrCQnk+MZz7iWzbs92t6LQGx0ozDtqzLBrP1Lnf21OfV3z2NxaK1tRXJutASm4OM1tSEIGFTbZqPXF/byfTQI0htL/0d1zKGOyOxPnwPYyUE4sgkFcLIjToFFJkToVtfR6RD6nJeh/jgc8wA8nyMQFZBho2u4cEw2AtRdtW8gTpLAnAnOvf5Kyd3PVtfaYamZcmYImGUj823uDrCztP7x4iHQq2MvN0Mm26ZRwzkvUCZWY5/hHPKEGrPR4ueCXZenK44BlZvVcgDPh4nSANH90iNrh4KLzvmTYrW+0ALpiAL4gpzQ2eQQEYNYPoMXBTDr90o384mWVTpZ+l/Cp874d0Xne2VIC/hMePWTCC8fJp4mI/YDiyVU5Islp4NI74zahceMbFetWASaS0A+nUZoEcNYpZGvI5XioHxwrhSf1INhmrqFCjxvg3zG0g2xrOWkukzyDz+wH+Yx5aVX3bhgN6U7hzF3FFh71TF4MLwisRBzCZiIJK+1VIg9CpZGCTTfG1r3H3ych7EM8LM/eyaT8gC8+58L3t6eTG8wIxyoZywWxfjYmA8uzx2Sw7QFVvvZOo6QUeU7j3xvQzNfabKrI9sv+veVlbCsjvDpfmQiWEpKOzGaAcDSMwASdPatsJ7pIfm/k302fVLBNxWPhv6NvgbqNFwpgvrYg3iK7hyPb8sKkYxdcJuzLjm/qjbSyxuGDkVl+IBFiFnTpHpqki489g6PQaJ4hBb12rSy7SS6XBIY2JS5tefi9COFaEcq0pG4MQIH91Xdc0zm4+ldwe/vsxTIKtHq7GxId1Dp2qQjGN77atG43itUoHa6RZPyBuRF9hojmerAA2quPMEnYsxjqLcECLfl6WSCC1qHY05xpgFrKZZqZr5AiJhTOUJYQDZYo5pVqtxUix15KQVZ8Vk9EI216l0jtZ5R+Be9bnQJ5Tc3boVvNggPiHewsNKOVmdG9hQkm5NCHVmMA7F99u6+bf8IABqknLFkxGvCB83/7aQ8BglnNTpyOfqbyNsau2qbwrA/2njzN4k0hFbYD0wZJW76TRo8On9jcGfV18M1Z0Wam4O5vtwWMC5ty9tjOHAAGHE+9uZ3J/DSDQgy1CybwnO9qu1nDZdHDd/6DRLc/OycTYJnF8TnUIhAWQ9C1S3JqQzDqOBY7YEdqyQYQhfpbEz8rG3xsumnTCM+XY3Rlj3sCqCpcctw1pMZVTCnYn91tfE2WlkpC8geg1y8v4pN6p0MpczLE3GNnJWt2hE9ztRVm9wfp4A9R01XaJXnswWrjz9sgTT/EP+XR1YrS7sRAzGadRDKLkh2k4StpPv6Yy/K4xemLQTJqHO7tT944jkfcGNMDkKhG7mii61zyEYj4sAV2DZ16UmRZG4V+urcS50lTuwOuijH6a/MmywjF2fBPTHJAfBkFOCzqHxIL/9CtUsLycP693syw7UVARaxAeuAh7La948sV8y884uD/ExmR8jeDcqecG0vsr+sIPL5Yn2QfwENkeVYYIyIcNBQaOAewyc49u4kVlEI3X9cDBFIUSNs4cJCq8Qez04g60nsFZUtUIqGFy8nUrzCS6vDeM9pZRIXZWEhsL12pVT+z4NAqRU2VvaOD4zyhFiHNh9XHXHgeT4soSNRFbR+we9phO2OSdOY5gA++ck+o99pafROTRvqJCYbMpLPak4Wo6I2pJ5tjVbXBoTcBbT+fMYL1eB9AYVLhy9X8OYbOHocktpBJ1vewQVTcV1JbGKmnN0R1IEMlxJgfIBHeoMlyg1CkWd9j3hWinVz2fDCvRXs7OjL41QqIXOK68XSKSzGGyHuGdJH1Co9hJUpc1exY9/bAC9jODQ/1fmuk9PBKG/erkBKkLMZUpqC6GqcXyHw3rdhdt58VMXxYmpT/QOdyVGhg8xeIS0vswqOFPG0Qt37cZKVHkWXLiWYk9WNl2EdR+Rn+pwB4rKeuktmf/MwBSyJb+UIwWiGI6R0OW3vQXVWkLrMj7xNHsvFXkiDusB5dMAgx39jXC3LUSKanphmZSLKIWP9r/KBzPDQkwclkp8eK7X6FVdQxJawNNVrB5xQqniCOR2xSEVcO2s0CX3tOystNc62opuDanHAhtvYOu0CAqbb0rjqEXbGVan5KPY3lhEc1hoXZJq89JOjdhuDiO4t/qvCwOCJMReFm/FrpaeJlkp07ydgBrZ60t943RHuzEY8FAp9yQl1Ogt9ps197SMjE7hD+m9YG3vgXpNHe1yT35jwMzXMct5eAdn5YmJBJiM0hDW9m93pPJ86XMHgU3+qyPTzdCFBuDEdD5WSrKP7EHzTledAfypvknmfo0KKgCXFsiMtz4FLGNFWFE1B3pMe471p0e+N2VHFrzBBCBJd31vORJX00qPcak21YLBEFkWzJzY/GxM4ARJI72G76CKeyorCWRyy/mnbhfhzzrk3L5OLpabB/XBjVkR5LT6KKF1qXHkWEWAd0A7TdNKKGEgOHowmyDdgNSYNSHLJrcdX9GJIqqg8X9zNJ18fMiTNLgXTBND+CzJLehiLmbwRikAzlA3oaNsguRWTAUJh+dU0ekF4BkXLk/vkGizUWG65uDMNA2T8i1vtqH6ubKHckVqnuXZFqqs5pkBc4BbJ46WeGw86MUlVaVR+FdTtJ16tD0dI3iVZl47pxhQjxUiGY6MjdjQp6F9Pw8MbPkuPqgKkdmIV1LHOG+b64nlK2CHbndaEeoxQrhkQikqA0FAQONhSwyRDODXzpMJIvJe1cNBHAGPCWM2E5pgNKC2qJFCHwreYt8LAkUoxJKf6/p5dtx+5gAufIwu/tEfs66SVtEFEGrZ27tuccdYUiuxZRmziaVxdzL7d6mPP0R/xORs8Amxrs2EHIgSYtG42PNkDxm0jxCfGR83gVbY5b5xALXB658CW8kzhumE0ce0liP5bgKwf6WKNJx61nCk2+mdhya6QTA98OWjxE75kea3YRT1S40KPgDRu814BjMmbcVW0JuyMxg4Lb+DjJ4n1asuthGl/t+wORNZKJRAsXYgbr6DHq/ZuNEon2G6remVce4lRbM3G7hTBla578W6WfZsBhVVkIhm8l1tkSnogZ9JSbx3J9bQI6aDi7AZQCaQy2OGxSKwnSRCFpEYcFm/oopj0p5apIcHo5s0HIE53KjzRQmSg3hrdaiqIbqxvdfpZb17x3kYHkwp5Jmj0Y7P/shlQg7zg8QDXKheIPDioF97oWt7QeAzNhEpvmX0UB/ZkLB17PTV8o/THtvAnGKgXxx4ii7lgbmvsqMoTP8nLuWnClVuQv2t6t4bVMUdxjfhFl8upqkKhvHvjNp24INkYWl1lNJzxxBsZM8GKUAJfR+0IWyO1PbY1qlXKhmXplE41DwYPbVRqch8P+L0JzSq+SQ5NbFqIoeJpGH51lozOrON8d1n7imbCXsfbWiturcIm5hhd2cQb4vS/HPHIYw0Xi4fRTVSAExyOJq7FYM8nuARY/N2HJdFCqsg8elFAYluSFUbMZO65SO3X38lOBUEFTbrnEhKyuGInQNay4bQ+/8cUqTaLq6qyB8XulbeXqQs0EQOLNh16CvRPO0HmYUWCB+lndVxLp1HJwPtEEeiHPDecpsLvUo6agglwrr96y25Nmp6OE/t6ICFriWHoc7Y0CDeRrtZj+lvm5JBQq4Srnms9DrrBThmzbgXUeoUCZYEUYrvWXTv1E42rIjhEbYTq+ZWUCuXJtofMJLw3/yUU509yvfNsS5PEuNX/oZB9QyAAQ93GsvwsTg/rfFtGuUi0oWIfmf1NqppjgZG7KAiJ1fjcFW5IOBT2OIltD5VUHK38aWovZViqQnbQZMmz/SyeyzLnwht76KO3XvApLIiBoJPBIB3Dxm3/nDg7U5MD8l9KRSZm/EE6JqrkNbU7gDZP6vuvtEaaavR2ONKkHr8cz6CX/od7VJkNyIlPwrArqjRReuQUSypRpsRMtKGmq4ven+P3nruKPOUGaRlCe9ZNqX2WWeG7at23xKME4RXi12l1R9v95V3Ku5uCOLoOwNZ2YIp9IXv5vVjI+L1pX9zI+Wk10ve12oT9B6Gu9aoPc1mCvxyzs7DVdtdq2sFiB4NxAB+iKHdFYRZ0xF/wjdHMhKM4oxMrs387QJ7cJO3a6JLy2Ayrg8FzAx8vn8qCIctZxn/1J2Z67Ak2GhYvsp5sLHF2mTpL66Q083gtKhV/5A5AVW3GjnhWqrNQUsyt5ggAolA01YcXOTbBHb7LhDYldcf243LQCYnFa+MoKG9XvUMdJdigcv9p9wMlIXf8XNJXXHw/wsS7Hz4Ugbjbzo7DD9492Y93Rb6KHgdTFqmBi9iRiwZaP35mEaU7NPyio5jQYU9IEUkUQHd6AXe9j/k2+7hcc7lvhW7l9tohZ7fJ0i1t8par/CvJ/yFCSZTXg9tyavI2w5WtWqbufHjdPHRBuF3XYyL2bZ3JLmTtzDQc8PVK3JFRUTsaOvG1y3CwRFYGkMvDztYOhfrgVxn9iHS/3SRLaPRombObRP+Julq83+3jiBBOBxUusaG8cuTMTeTMBM4m1HJlL6GCCBX2pLgPaBbCWTZbPRQZACzt2bSTxZdJSbVapw/GT+tI9xTpSsrO8DSzQTkGsQV5ctvGdrZNl4yq1WvN36iKVp7OXSz4Y7QYTv8qH6eGoFO/YQGu/8w2bSBOJKsD5nItY8IWSevIlDhyFvb4X0MVSiAKKVkouBrK2YPZOy6lVIQxrV64QwWZvHoRjjlMBfcU/mDm0Ev2/tiVKGRHFtSxsXltKqBMcxAaFO+qoKX8CrS1bGuUppKyDbUi5BZXspLH4yDV89RVkwDxUg11SEhurkutHpFU+dao3ualq5lDNsVopiaHuPL892KoDuFwC+Y2rU/Ii13IfheYJJNFK/8x3jqbz0uh6NyUfIXFZx2XwXXx1YZQ5s8CWqBaNAtLx83sCvnhtM2obeeRBrZonR0dG6bw0L4AiTTrgXYNrARItV633pT7zdLoPK+4e1Ut+u+pOxzMSUeo7Zy5qvdV+9PJuOqSuY4xxt/nX7M5mp52uvQcmdtmnsFrD0ws3T3OGrhTeWcYW+zXfObIerno14J/di8jb6TkbJd6XSZ/oip83aC53NN9n+8psq+ID1qUtjyRPl5xTsm5bVW/btsbtWzyLS8E0yBS8oci928E5Rxlmy6kYr369zVQX/O9Owa2weSBSCFuj5v2gwOejbuykUFQBTEQeKFE0Z5qslkh/MNep4Nzh5xigpB5eMknhIWOL0PqxLRT78u8obXCE89yrRx1NrrW7y9qPxK5guuTqTyf2INZx1XfY7Kbrx2HJOSDEO1c8YMOrEczhNB7F0+JUwaadMmWa208pNUO6D6CpuJb+GpXEHGxvuufaK8H+eOfWRSh4AII/iI1eQsDBKbpwe8XAArGIUjMEYSi0WC/T4JiEhWPOt5N+SS3o7fYEtcaqeugtSaG/US+VU76m7qG7+zB762RMWibQGWMKjZ6fr4KsrCqotK0kngSuWrhaBYOV1a1V3Uuj3MpMrRFJmY8n7U3AiiN6vtRtgmRROzCP3aTO6TdW7qSeIEJXK+T3T06dKbx3+qJv7mM0onP4oUyjNLHxWZ/AF8nt3cYZQ36WYVxo+jXBtUaBuZPUTUtcuWbursFDqHnrodNV8nMGwh28k8D6qQtPduePrzby6pO23aJRa2cl9/zB4TGoYwoChmbmPDuuksMFso44n4ZpV5K9n5NFaXaSOAZP/raA1cj7e76MfNRyyFU1ezXgpKhnKFTFhNCoA8pFPZaf7YhuDQytR6pXP8cjA9vTpVx4H7DVHfDHGbCeH32qE2ZSyGXzzwOkBXa14xafbCct5Rb5mjaThZ3ZCYBGV3UPKgeN9W9zpfhLpb2EdeAOxuS7Fzv33lnQcCL1QyhyCj8S1k7O45k25ma1AL7b64+vg7Bk8Vi1OxqjhPpKxx4P/0Ds/6CW9zCZpraVTZekZMjrGJpKMafGnbzPU6T/8a7EBj44xfu/WIX/bCbh+v2SEe+l/nnXuseY0IJ+9r14NvXtgINP0yTXRh8jBRAZZlntKcUz62TRWrhLHb0MCZvB5hPJ2dQB1QgVdX6ZWhVBJVtunjdouMOijWY9zSMd/UNT8lMvlVfY9u3FIiB7z5M+BCU0Mxu43MBdfunckNfjkSOx1lBZ7FYYr8nvKOlpUuA7ml7RsxTn61PHoqiEe+XFVBOTNBu1CkBh9+eoPNv5S6eMExgA62IRx2YaVVCjeHfad8R79RxVJ9zjjcXwQBvkeD+feY9FWcrQoxzb2ZzNAU/vydP5qoRI5zVomGcxLFxs7wM0Rx0K5sXsL+d+bf6Sdl3ISjNnI2jC0Vv5MGE8Ggvl+AECjoegmkxQmi/IY70JkW54BgCySEaJpBPkh+2zfmoBtzbMcmSlNmIIQThQT1NOMGliRrlFpeSM6VzAQ3lv6HPRWkavbe760oQlgWC1vR+yLfup6GAlCc7WwZ6XOz5xjvtLeaiRrADbhMtwTz3J6ZKEb84VVWJOTjA/x1uvSy6LjFip8viYI0jhZ4geEMJ5ghhOafH6y8oHD8CsggNhyw9Po4RRXbWfX8FnZ7NARigxzYH0F43l3LlVPeKkXfJoDmfhEIEjQOI9pcGppulJA4EIMZ8jyPGhVnw+6l+p4Vjryz9kX6Hr9qoCcjmqgOtePnFutFS6Vu0H0BibPTiXgBExBbcJxWRBVbz87ZzxmD0xh7H2Wqg3UURDduXuUNS0JG13nU/dTkShMaoa9DdhETCW+SXNvWSacCPmX1/Qw9dlPXaLb6iL2EjxY9MQ1G25N+U0TXk4jFMkwCoiywMcBZv7N3HtSKlPrcitVoIZTW2UjPdzlB4Z1Kh7D5tSJCl/n+v9EoKENU0ZVku4dfwDmGrtN/uugS/97tEq3RNr0MjsBxQzVAI/gSZ5qtfzOGY7bPCHPQPXYhPNyCef41GahsmbH2k08gJx6L99yTenbZo6uUjLLUhxiqtCCnAcY+fMGjOowxsGoWHJ30CymPIqbnuaztW/+Lm/Yvl817E7yqqkPKkKZPzxqkWjIqN2e2FTkR+a64ulZeF5oy/Ps5fjCzUfpt3b6eT8RWlEXlr87K/QftHNCaaS7VpnCcrXkChcMS1v8cbgvZTJ+yw9iWn6a5RrqImwHdVoKEN11vEEFfz1oXB8Q07DS1sbRNvXwE6i7RApW3WZSO2/0W+oBm/jyh+02HdvTMsjv3KtqSTNZLbua1HkKC/df4neSc285HzWm7tkazau5zgV3BugcOnxjzmsO0jO+UqYvqJpS6+5xmJttVWoKrWMlwvtciw4fwQuXzKezA6w8fRvb72szcJPS8qq9AyFBETXB2W0xBMSa9woanPqdkzfqPgdxWCVe1xv7BYr2uuz9M1Q4DL9QlimlRBwqj5urCdz0ex4rnzXuNASzXHHa0C3UGIT5ySi6Gqf3nAWFM34Hu+0ENmseO+KVzvX3VpZu+md9bV2hgWt5zCIxUd2HMTyLMTVl/5715yutouTIHwSzN7PD8JvTipYoNn8caKMp8lfpeFnyU8Q9+2b4tg8lDYaIA9Otv9muWsH5XdAB8+lEB2wNPxkBHHbwQWs1LCHeBqZEOC0cGQXV/ZtItQ4C55HNKArbHcP1naU4ei5HbyQzcBeoWUyZdY8WG4z0G6ib1YrV3h1thzyUyvN0aVAiBlCpXKsl4TPRo7AGU7qtZqVR9MN2wEIwJT+ZWHVi/4I05JTlIPtTJVEOtUJDI7cG02w2q+4ZayZcefKoTkp49M1tA09w+aIfrM/LzCd5KhJpjwPOe7H7jgaTVc4/6wfI7DzLcw239jN1R+AZ2ttx9sKs5ViaciTXg94ZsLdhAxXCIMmJkDiEEWDTPW3YVjOfxgKPOb13jDOsnHaMfmfoOjQC+sEs6B2zWz+mmL+0dPt1prLvbNPrzxLS2OSacNFHNHPX8QojJnmhdtAi4xFKhxqdiPNei2OMrnhUA3avMIQsbgllgiLxI5kXnoxqhLaSVNTmH9/XawxtvzWMttYD2n5k00Pj5sQAX96BSu4ZuDqUIC16Js6CxYIrG6qxMHXr8fVjmkGUyBum3VraCPrTGkg1178yvnSsdAt/7G8DH1FxLO3JCh3qkqvUDe+8KS4u/0IyXIz3zWlE024CUv0X2HRWZ09fc9pTnVZv1vRBYELndYa+z7piWrhw6ePHwxci4uTqwFXYf1sRx6ik/OLBwu4WDI4F676JUOkBjEaw60Yzru/f861uD4hJj9QhNNBT1ufDjsPQf562TLa89iDc/IQ8uJRrW1VLug1uojfOsOeC0CI6gYZcR0jCS+hGVJwMSyB8nKpxQLf4+CdjhglW+6c300mAsTWd+UvojOetYVnK9jqKu3wVnpyypSCH4Ah33YRjAmBuH6uwnkHVVIukm9QRftSBT/29tk3qKtDQgZzH/mtiYfFU4r302XRxGdjmpkL3LrJDtM0twIc0//8oaMv0nkQVQ9tX+ON+gXxhknexRRoP7he9yvvOnasLoKgpmAB3098gv5yalFHOik5D+nNvUJ5EV0uj81C+aNZ1Wtl5i/es0yfWlyrQ7FhKdWLI7Cyq8di/05kD3JTbzOz8WxoSwKkFomE+vpBVafPLlKL9mGmTFVGcR+Zm939qvHd/ASgAEiZ9XhNTgvC4OqyhxmuXaCSJ0qEw5VR2Z1hsYHRqG/5I/ANcxmHLQhgFZj2xM5HGNN6580rF4Zd7QuoBY1sKSq7zLcHRCU6HJ42U5SlMP3hyu2yvkVlKjtR4pCJJ6+HQ8ITXgmMqUeVb7SjNjC4aBo7slCMtKFF+TpoHOolEymp9+NHAOXZj/1IgvfOaKwgMjgm3mVS1Ybfg6bUE2g7xNjfG2L9FKvp+ECQV/ZjDld9u16LJ7ELeuyRhasfKZhoV1tP0Gz3kOEI999E2cB4hekdXvqiX/8aOpZAAhN0wxHsuQ0lEjglMYiwf/2gYEzffqMJfKw2VcTB7ilJbc89uHy5xiQMJFD2qy+Yjc4D/qyS6Hsnr31gR3O2N/tb2Lr/8oIyHbRO89+T1JNPp/qot4PbWY4zyWmEjdMd9KQ5LoauTACVH1oSJixcRO20sE/FXTwgpcaSV/Z6kEN2WbBvyvtnI3FYWJ0FAlGzw360VNTghRdNwS/Vdmw/GQWv+5UBiHbRQQTkqzQYghZdaBwjDorCoS2Vh0whUzqr2nJnS6rNWGTI0ml6HwksX5H1R6bVOBxRuxjXYUJsavQf7XJs3eh9pGyxN7oMoFOnWZGMbgfcllslnFg1Gkr2H3EP131XfeBLasKuUOj+dPKpdVfAM920kXJGWDEiJSi5AoFvILxmUt6XIWEkH861RYMQSBZREfw4KGBhbv28P7aflrzm2TsyggRyY8adK8C7vrLiceJQmHX4tJ3ey4odjNeROiw6PP2MMyqNnwRcm+3gmIJB9+ceXMqmOziLoGtEP8V1yFZf4HtY4C5CKpo40FY/RJup04ZmIn3xQtAwaW6H7QXJ3DEI0+nNkhHP217XYn7Yt7iqWCr+dn4UDTf9WIp1lupMfj9TtINcNnDow6R9YndiZKwAZx1s328c1WJf+HZE0cCycMIZ17bApy15oRLm23zh3dM1aG3ARnDBTj9O8JBj4QYPsBE+xsFCxNYfKVNB5VvNavXk7nVMrSA26jZSRj0kmRP8D/M2e78Gmxmgbks7VYgajbtpYEEpKiVo6m32lmg1zJ7ciulg/bxpUpjbvaYiy9B5b/ZSNZh4p4fF71PIFtT2EHPyD4sEqlrj557NqQgL6h8CraV0Dygd/pMow7jr2raH9UwdQbn1X/muNy9bivil20zb+05vYMr9srsmf3XSeE7o0nylCFgyqD4kU3FosbfoPrAWIYCXajLgV/OMxSgr3QcdOXZdVg/SE0PnqzptH6JdRpvhvaWKBx9c47TfehDrQ9na2uvj3oRX/GF4JLytvVBFirehYj6XOt2jACZKv7mJWQuGoS2uGb80SWpSIAECc01gijaxYzEVIPs2T20Ld0aF9/YYlkaEB+UjXqvHXiduPd4/Oz6U3+Bj4kE0BGHDvci66BLP1cFOGKTl3J6+iUxxd+UoEeXcq5YTfb8fiBdZEljgO2rixV1I/nS+bs65kN79lG3cPKvOHs4lxl1cvf9NJ5RITc7npCnSTXmRgRnZhevY2NaZMZq9cmtUjhC7yiSwe18ksqaUzZvuk3e88ZoHVFnXZ2qy3lxqWe5l8eMwTKNE66VzrmH88kaGwb5n1pP/xbayf3RHFytjtf7qxd63QLXboM1y/ZsoCKmVunhyn6xtticpcW09Iiq4RFtLu598BSP4pDUSgSz56lhWE7yPLwLw5AEQtyOFdHxHxZqkh3aJprk3oOEhdrMGoQ+jnkJsAQuS9CQDSS5VHZ+syt1gy4q1NBfA9atC2jYqojaB7u9DqQChwgT/cn5puRmzjOHQGP/Sv0cGU7HM8OXSMZndlorQ3iSStXZl4jhqDrmmwk6CVphK+tAmK+avc+4PqeCoT0KMD1Atlss9Eud8qwx6zmVKpj/muksVZ39sGkk1LLHooiAEO5jbMOW0HoWNxCgNUqKd424V6VzRm6i9hZcku5/3V07ZQSH4CJmh7mHs4XpVciltIxcnWM93Deg/EWRGtf/ljpQCOL2RH3uOpg1h3LqUh88p5CZwYrVivA43HP9OFpZGHAzYsN5OXH5vTdDWlVzZgfI12bNRllFzHvm6pTAJVjthlxbU7g7mCK1G1dKinRJjZy1ZZcXLrxS51mzDgF1UoyDjHgw9I5OQI+Z48y9klKQ8+T3CGSiC0o1YmU9l7nYWG7Zfln1aWpwwd8oJ6kGu3luJKSNXyMTuFqRF7ze8WdjvJHgPpNu+CP7FdCJNgBntZga37nw+wfsCLrGAplml8cQ2fVIdlvuOBCe3eY4hkvhhozJduITsWcBs+0P0fOP0IBxECGGxelTmnyKo6j0ZeDjw/Jo99IfaCaC52DFGA2FuGXRTuLhihboOtfG5kleHUxsrFnwrCa7yZQwhYwyLqWEkOMEDaJCEAJZiKzu5pfmpgeXG7/XXZiV29qJ1VwcroXnFFy0NxGY5lpxbol/4zk9DwRhJFCk9RZ2LKYZneeyvoslgLfgA9pI3U0PwINWHzp3gpEG/0BAuLQe5mhcipETR5fDqLwlh+1ztwrM/7F75SqN2R5/crBQVTNF83DKTyug1AitXN9qVO+DvT4hRbrkEWKVF9L+sRYEeI+7g95hggV+p/kLmTEixagQVYFD58weAHqA9n7EEdQsKG1VytSi+G/ZOZXKODksezkQ2FeLsnPIdw3WtdeHWGyqw9/F6WkPBmQ4pe4F1IM0pF87lJ+2pdvTAyCVonFh0a1k1mlmfVEVKzQl14Mk8iAClOOyDSVXOmlXr48WUgRsJC9AiI2BDpUZb+MHDv5vJ6UU7GDZAJtnlfcReKBI4nS4dXhdw9/rBpMkxyv+kWmGuxCnNdwG95AIypo6nlvJaEP+bcssJ9M+4vtOYt+mAQWEgg0y8zbyng2DDNzMhp8jbSe2iZumMfJLTXSkNU2Rf9y8eFgYmhpdMMLrVBj7wBeQNY46bFipyjSLj4aar7cddZsTAiTlr+gn05+d5oJuBfcZz4s8I/EeWp2T4+EsS6th8zJPsChYq6NXYB8MHa/bRBP3shgV2N9ESP1w10JRllIFUZqP9Itja2+rHWCUeBKodsq1p1q0isM1218LBDmkWjEv338quiwrJgypDBc6klfGiKOkP5bq0jKg/DvauwzJkdR+nS8qpxXLDYbpwYDSvwZS7jYGSLO9kuO4eNC+/J0KygDi9kmeMc9pDw4ekrSKF/k1gpcuPPqlgQUAevAy4oHDPT21awX5NV3bJz/t5qQAu+M2UWme4YsnMtLTaL74wjTlbXUZUYfTSi+alGLReOX+eg16C3ciqeDiFN/wPdqme0pVRJq+3XfsH65/B5h01Y3YPov+imHcy6Qfq2gd1Pb2KyG4VQpjIolYemohFrKdjiL4si1Oeo6VkTexf+DCXjDfQ/6Lp1vwJK1PEiscdUQeqa5FvFtvLvuf6b6Rar17jtUqa+sRqFdfKCOH+mzQWkWwGMceVJ2B2qR9fAWwmp9FBNpGdIW1f7UE7fW8P+g3/OoYUhaBxmjLyXqlYcA3ENDMMMWgZ8/di1DPgXVHQrXoFXVQrA/63nFS7OxTVDDvaMQFruQa6Yjf4sEICf4J1m1xZJDoffBbjIKWI3WubDGfSSzV17tOXPiSqKxQMpQ2atvk83uekt9G2PvvSAZ5+mKJSNl2gHhKsPqA4hAO//actQHTk5I3Qr0JpWDuLeuX6ynDdkevwcZVY69hIrTG73yFG44c0vhxmZopv3evtNgo9Zxd+YvLQQWvWPCxOyGFJQCOG3y9IjxropGTih/SBxEDnbRfw0sMD/sHJ9TjFNVzJ3nC0l1EzLRB1iu4ed84NTctxxcPGq915nkOxn5J7He9kbheAr5NThWPq0WhZsBnCqDsyJG5ZSq4NEkyi6ZulCT3MV+kxL45r8gVMiPG9BfF7w0bjwWXpc1wWN5TRL46pn0frHt/xQ2odYH6jwUh6tBO8L8FgsjivhF/2qlwnYtKNql8OYM6Osxg1V2LxhPtVAmHWMmAP1NY7Ab4sGRcNoiAkpCSIZ17/HwrdPCBjqP/U0988Hu/kgGIc1Lb5nHXrrCMaXH/tKI3mxJTjF+QPSfO5IepmiBb351r3bdBLSckO27rosJPVC7oWr78pIuhY3Kyrlztilr6i1YkIZkqPu3ikufXsAvrmuUXv6d9J0anNaonNR7X9LPt9XV/dAam1AKlC9TcSXZiURznWkWwEKs7bGvUBbAdgxNE4lj/DMesvOcpoibG/swtQBX82F8ULQEcu1BA5qNYbL+lTJhyquuYfArro9Ytpt4sRjc6r58O1WGP3bo6nk7fAiMPqDQr1dX5HPb8W+PqtAcInS6Fs8eimWed3GoySBuFPwkQUsVHiBeZVRH08CRAxoYprVBq5pi5oe6KfDSQ/3rz3bvGUcc67I/EvGwhboYov6IUmNQ7my3upNpyigxLzXOB2h4vPTLmrDzQVFEWluVxC3mwwV6uzJpkb08YX/sVwBJLRkYLMeoEtxcqS0529DBmIGDcNPU7eZLXyyYhkLigMjb+h9lgMCnkH1by56aY27fS1HkD4wNUITB5b/KqVWOMUpaks3Cse4T2TrFi5Q0Sfz6OJLYZH2edkeF2DDGMy0PM/f3x+kFPH2G/RXmCItY6NimXvZufVvKTcQwZtL+GtVd/ybR0WOL5GevOSw9Fneaeq0BT3NBZ0x9wcS28XhY0MUusltpphC2epfOkCSJh90mnPyH1UfuPbOSJOIlsVl7f3LCqV1TooUzCEQTFVyAit2lkDh326ExF6dRJBbLQU5g2OHPsdiYgjUF3gwkhsgmRWLED+LSYMBqNXJ+uRvvuRjrFXyCEUi6ltNtE0yl0q4JwvI6e6qhDTz+Dg+DKsmxCzlQmdlRDqXICQC7hAhXnmybKog6TGHBqTJEadGD0xQOsbAkK167hzwFy/tomb/1Ub+ER4si4KGwjOJnJk6lTtOYnuN/PJqJYi4owe/5oWhBNml6pdyvjQAgHhRgQXSTG14aCwdcj3PJWw4tFAv9ysvZQbIUp8n8T8fIFq19NmmvjZNIEVwgSGr6Zn7wXluu0ujyhBSa1v+Vi6Qmr4dAIuOqneR1VAwqEY5qMEwyyT0h5NtJUXjq7mtY60vMswF6fv8IQepFqCPcaSiJSYEzki7nQmkP/KKuVPSHIeF3x3EyNItNHwo9gl0+ksHSe3i/zLn+jlEICcxvBSEHfN/0qDNg/uKSmeaAFnAlMn+oT5GfmFISo0NVBb0iQ75y9zWEsJilDGfv7B/+AVWsDm9iyAUe4OnEdTrSEIDCZsl662TnZrqF70wuMr1jeNylzUWfBGkoL5AHQ+79CVXLGc4DH/U3lcQ+bAXrDNz13YvZ1uyb45RAZ8qDNjWpbyMRmnGtaGiq5ArUsLJRl9yz0+mZhhOg7Zk+L5oRiVwhwIqH64YiEkcT3rJvsYgbW5AWaANmbLLOoDwtTw3m7TBTYb8UHe6YJ8fclmpWuytJ+LbiXhG/k4gR+QUtDhQc7Z7t0EuUAXiIkCOE+z5yVEikUKm6H4NaJRDASAr/Bod38tx0swkOfs4Ew3fg2wqg8YCZqYFUCKLfV6sEARSFPWxHDPdQaLj30bgbpKvZxyIOUj0zvEBlzpxtH+o9bh7FUIbzy24M2JqYRcLtK1+r3j3gC4cxmf0CIMUKfTLQGYPToMRDvRg1Fg8mSluqUyf2o+r/8FXxm5vXr+Egaxhbs9IZ3yHBKan3EfvT0fE/p7Vvi/WvykXGgSL/ZyMuIvx9L5OYHP2BvH54vmw1Qpl1hOsRHrLauMiYkDfHsWtdaUvwDV3vg8CGFjtFvLe2KDyJ9yx7KfA9Vaktkf+Al12IVNj/yaY86IWymDxxe0fG9enOZd8t02d5qyHZ/+jZr3I2lf1bQtgWKUOtqoQANTgn7Fc1MnK2VaLtAclhdT/eQF8xWiJrQrALBX79EU5tdE4V/emEeckdo7lKm/dnUZW1h/nbZ1owSK4u08A5LtC2EwYnW+TT91XbF+Iy2SsRA4BA55nehzIGoQBnXdWMZoUv7ZTZ/A7gaqPQo2FKtCEhgTbKErm0xIkQm8yE73+ASTwBGW5paYddv6Yiq+tR8ULvFaVohlk33Ua9ycmoqahEd+cjakHjSubG3k1qzukqixcLqDgaCvIcYwkZHDhHcPCQY9UKH1JQe2VrlYU5YZB/lFqo3vQ9k2BhrMaTWZaJikD7MecCEh1ykN6HazSKETAhaFeXuGN/8BUy6SnCPyFvgmJkSCz4/EoosKf1insTJxWL8DQkJGXnkKDqdIh3l9wFosphu8llgiTropxoU+R7RmRWJuj70xXr0Zawz9rlQYWoc46HL9vFl5anU8MYk35Iag08Dheh2g8uR5+cPktaDYkHGljeuZHYEReNcKEUwN4yS8KXFt5PVuNPmzqwynba6Xu+2n+RtFg092TEz8dv3zynGzflU6O8XOlYxr9UTRrgF6NS+N4NTBRwkd7D467/HeeZzTcPpP4LfpIoPkl3JRUzqA+WN4C2GDthHMd8Jasv9/QGRlSP8AewfCLwfKRdLChUa6POUFvocUED9r7ibqaguLIPdY9JIUIbGsGTB6el/hOS3FkNQFM+m7od3HEZ2CUSlnWthIZjMHIdKrkk7y3CABwjMEPLwesq6S9qJ3plIuu+pUcMZZ1VC8sSMEHx5F994YdcmM9rOImopyxjiTGCvOlYgkQzrhZLcCs6vdUkdqSGZhZci+YFnzmJq7qb+3fPeEx6wU5qEHqzgY+dgk2NihUvZy04AsSnL7ehL69rc40EtkWNf9sheipqj5EaACrHaRr2B2yCnnzoBp1JdUZoFsNBbj3L6y+N7JSIJPsOwqHLmLl6uibaBmlfcFaMIZh/ss8stTBRlVt11+U/gvZnDwJyW9y9xatsbth5MYS7uR8UL1qm8KP2iieOD1v0KU1LVHlepQ1iFX01LfMmZGbNZcFAy4VdOgTn0p9KIamhdLmGyjy+p29gIbpIEK0aMOASn9gZDVoFU3gknvwqUHwbvnqlJRvBm11IHQFmorwmFNn6cUYZhBTnpM59ByRCn2/Ru6VVfkrB+lJln0i17Qn7JU6OjhqF2V05sj3z5SPUJtsuNjX2ejNn7QJZCUwTGph8gjweS8JTIg2KIU0UHwCs6IBURslY8tOFk1og5hL7cENXO1eAxCG4xzBY7X7rP9sMyXncGJgJWfabmT1pDQgYbD4+PvGlEfWxslSRWB0X7Tmj1gI2Pg14QDUBcBZAjipMcMoPnDcA7bh0szjDrzafg59HZJzO7EMOZIbj2p2x5gXKKMnOHs7f6SyLWbRAp/X8Z+oEk0TzKxCck9DFOI3IUcc5h6z0P+e/kFB9Nyf+z4oCB1Fr/HYfi+3krEdfD8eULI9RgYXsSqP6rEXJhac1i/x3ze4jWPlqaPC2DBnW9lSTGEi8nIThEc1Fah5ogfgyd+c8w5XdHWSLNMh66fJtQkNwLHpfYfWPdI+uDG35w/ysTjr3kadhji2rTnf2vYoVOgKxWPzFDA4Pz+mn81lUIbNgYqDUNY7ToDHcEGcGeAegjH7A48NVRmP0gwj6On7tLpNbvs+gb17nVN9oFCtI+YXjjRMKLBviMkMU47qu1Nq5mf4SdIDyc9A3ZRt4G2mgkIM+0VuQEAk65c250cTfuCVuVcrD6xtn9MOT1q7ePB2T/Vn/+hQoUKMPPYkaiJM9HD9sDsG6nZySMWNvpm3a86lZglLidk+sW9nvX179fZYyWMKq6Mo/R65o3D+ALatAkG1yzngyCC5efUUBqenwfGxpIbFVm42FIz1ssBj9M1Hi5b3xVzUvcHkkUzXblWBP5FY//qJvYRsWED8KosUBC306ZIOvPjUMuql3QSysehOZeI/Y7HeaUj+Jgg1YW1IdwWW6XlHGzpddhGz+Pu956SVEhHx6zapMPxsu6nBlalt9JuO5tULbt9BUjptC/mYlmeTqME6y83A3UglpPklyfdEgWgROyrR/sZOuDOBIcVjxhY1KBHroQo8Kx8tWsa3Ke48KmD7IsTgJGFXuhFT+wN5fxaRoVmDo+5T8fK3umWdnD1ijAuT9A8YMScGrragvYmx+KhV1XGgbPbYikr1QHOWVPEJJTUHynfZ9P4uSTOU61q3IoSaSDMykq2Xo44UGeEz4/tJaxMg4IVXjttMliTm3CJvFP6aAh+n6olrpkyiNk1hCRSJuJOYKBhj7MP0e7+GBKheqmLcVB/i089Um1HfT9PrqSbjz6j991zWMGQb//priGXpWlHeHjZu5+5xBcWpzyG9Bjsfiha+3mcBFMQ0b0CwxYygJEhRXt/Bjt2NaVsq94jr2CS+6ifrFqIzIIsqFYiYGukyBap2uP2jbjNdAb7xOq+1RGf9mbuN51D+5wG/7p23bihaTDSsL9xTERSuvtpar5w/Zp+aC5GR/YHrjhoDeV+VtPN1TIXF2kzLKGNXgVMwFyjVPKgr8kYahqBoqUOG31dmvkN4FJhbGwNeguNXNgBuWHm02CTgnDr0I7Re1KtRjjMu+727Xu6KHmTb3kbpAP6OzKHOEeeYSPWU1iVCtL7zyIM3t9Aot2pdncpYUpY6ZVN3xLgo+kyT/FSUGnJ7PEJnxe/VSYvRExRF7OphHAnwt17iL2K92bL9HT1BRIq6SXJldUov5cuwnJhfg94s6IYiGhL3bac5Tp2g0qxSkNiuUeEobLHX9rWDgLyQboKA95J/UfNquJnlcuyOklo55hZyfVE8SDFKwpjwNs71rT8eT/ZZ1tZ4KkSV7DvgzpKltkaEKXZ7s6RfGacwWhi7k/de1RuKgqPgxbS/ZsCq948QoTOnt0ksiipSEw2uKz6exzm0T3GZ+ZYWcay8jtUF70dhJhCvGGQNfMYU2tshOI5O0dF0vmAN6U43AFNCIxwTcPdKsYOxqjMg6T1cI3JeerVbhp2eTv/nTwByeSEODoiyV8kIUyZaOgxnrqMR18sDhDQ5JQ3dlt94gCUoBVLroex+pkjWzIx8UxGqj3F084yyLDAjsNvKeZVcTtm6tt1DSIGi1VFryR2rOHiWWrBUdwUvrRMmV64Q1qnNqJ3v+3QFQ0+wrDlMjMQQRyUIAHTjhBGjo47IvvkqhqICcOqXQmL3zqBAErDKYB1JrP3p79ncus6oG+LiLpnDFGsO9h8zQ29q68Agml6RwcGGnVBqZaFbQZ4s4JpD4BK39jVp8KsfS5pDGRZQU4ukrDJWcpxaqU/BERSayZjv72U7DtnC5YnOE8+eLeilc3cRsz42ZzeIUVz/4P4ELBrVNa0cz522+m2ZBYX2R6vYIm6jxM45Nsthu0zI1KgxgwsULbFRPHtzkqJ0AA6x/aokUKe+ZqWKLlV/g+dBd0Bgr+4jRtZ1GhYvD2vpYgxONVuyeprw+4bsewvcQlu/bmClIx/yQt60VRE9bC3dLs/I3Jlkrk/oVH8TpgtXHs0eNQFEG7E4ANP9ucSUi7Fq51vv2CeGR3dhkZltCT+6ODfLLWRq/XKLJyX9YTp7GElxgzBEXC7iskJ1Igcj8LnvzCLDhOjwVpdV4B0t3TcRTouK64XmNj7tyRnYtKPZ0mK8/4/xIVNQOfVXtaOX8oKzEDHir7OmDd5snOHu/R2aDVRY6oUNtP69lp26CLmtI7QX2/RTQJGou+3sr8OYc7vflV59jiY3TOfrhEuU4m2A+tz27v8Cmdkl1lsPEm0fLl41gqk2b0ONbrCU6ZiaJiIp4GPIaMYwhbYrSxp4Feyi6DZu0bdGGFGlnRwYW+9iyKzRRLD1AxktR7V84KZFl9ENtdHA2X5gsen9WaS9UG/+DymzJf4y49wYyAIlo/Mm1gXIT5/hHAVf5gCFiu+cB0UDeQeanmQ36bOvhAZDpFY0VfAShBhmMylgKDWssZ/k9EtgIj1GD1ByqUBDp+cU3ckE36uNTeP5YqRd/9wjAobbK7gkwmT1Wd/XPCVMtAHYqv6JvbRIjl0nu+fg2tgHVNa10Oc0d4ebDLOxgA6UT3lV5M1izyvtooUOZtugsjMYKN6o8YH40xY1+n/ZPUrsd3QNxBGHZqxSpdLyDylYNDM9Fue6WSx4kYheH88yj3OZZvlhqVcI4qIZVgPA7hp86D91sqS+R7XhL0yq5oYaYgQy6qgSvKcJ0aYweHySgeyNBq8xexd98j+E2iHlYeIClMg5q1zusBkdFMUCpzY8hV5a3N2+E8qQeFyu3QC+N5qr6ysNiKdZb8h0Q2y2RiuP+qMDZ/s19Ejz0cXYb0FocnFCu4tV+z72KnYIUKOOS5Y/VwfHK3+RDaBMamaXD6+pu2MWI7WTvWkA3HHU0nA5iTrI4IYivROtTQkB1y7qIaTNXoCvZqvXBPQuAO9YeEVU/LmBvLZKYvANSQlfTLYBUiErtTY9/7ak/RuekEbqPknlAYpU2CcYwswmdaFVBt57iPlflT80V/jwfeP9Y2D2jAODHAfCMdl+K7LVYDDTWCePhdXXc8cxxNbeiHL6neNgTcmo8P4Z1Dc+lDSWwG/E0eVXN112/U6E0hWVltaQRsGiCBOmafilMB5fpqFnCxLhXPw9gMnFf6c8criuuoEH3SCyOG0sP9RERmz0kMTM6kmUA5D23MqBNdG7TnmVHDUIv7vJfUBa6MiqeOnKUcwVIEoV3i5vhPmfpLnkzNHCs4n7Rmvc/075yMex3qZUeBKB7dKNri5grzHlNNaZwsBu9dHpatsVN5XvqD15w9xnzWLFH4Yhlq+co6v3gv2CZwP8J7h9/qqp26xPYsm2lPl0rULojOL8yhnEJQdgT6CIvC2ikrKmdCSHxgLSBrOEDJnXP26PSpTRFuxP9/FFYQbe3+VbuBQ5hM1dPJAiuJ6ZsfNARL44wMOwJyMDcot1tNT3fg9uhdMao138w4KL6OSm7UbQq92pzWW2dKA9e5PrY3hqR0IzDjaniWwT707skz3zHYcCnIJ6F/ZnB9tN2evTRY3LamGX1SatpGbLjzMuznGxrIjIPMrBjqpbpHVwu0HszUcN/nqWGbR0B/jAaBxGmZNnz5JQX4w0gGqMfu3XQjQDNl+vGAUqLQajOB+a4azNoZ7/Bd0FQhLx1HECp/iwm5jrVy83G/fdDFwIOIJckklhrdDWXe3Ls4yygzjcw9wvklGP1njb1ssXNJunOy2rB+x4XV9HJL7gWsSXeHtCg68VFzBQq4ZF3W9SWbk1DZ2aA2oL63BGgq5Af98qusxYvs5q5JLIO7s+plK1KANbTAz39NDINAoP7Ps0YJNTWLIz/31hZEVJRxNmYfMAIbCNAJ4i2V9UJkz4H+rvwFdAEFoAOTm7yP/0LmZY/M8gNOu+yu0+YWNrNxCHk3wBMRoUdUADOinB/UpXsjZyMKhSSr04TSuSZ7ukrqA3Su9wdhj9Z0ahjIR5I0M0zskkr9V4I7y3gQ2FU8BRXbcE6MK1jmw/wTGkj1Pi8ERIMRBgarea2QOFqxYBZmiu1cqSDaMFKg1lMI9d+AkgVyyRk3OuvIgdui5OzO2Tzec1cimHBjrPy+XUWnz50gJaTre33ieT826JGpFgy0NngzNo4wDxi81uTZd30x0u0Fw0iCtxsUDW60wiPrA58lN0wnb0xWkUeH++nmX5y23XHrYeAQsACWEvttuWwBsPk/snRnAr83XyxaTVyoK+UMtHeSeMD+nXScLwKX2nLM9UH1HBVi9PBq//32IGdTxgHxJa0fADCnu28fhp4qL3KSjoUeArbrsDr5QtMju9dqrKw6PIEuWJyu1EtLunuv4b35lMwOCydsid2Llz3zlIcjEBkRezKDONu9SmrTogHcbHIdefyspXQ2BQig0Y0eprJ61ZDeIHSKoLr+dA8k44G5sNJRq2eQiTtUCkPHhw6R2cLb/HUnuUSybnYLPUNNDS9IFv6QMEbvLqHyo4ETmqIv/lrRuT++1HjlxAOZeNptlphBfcy3CSYozH+YL7wEqtXDVuuPmOQh9a+zLP+mbUlCa1gj3l9thx+e9Z0xEDSJunthDaz/N5mxSZdNoaTIjjZdj3yIyv1w3BlSLMlGIAEkijnU0v/kaxdXXKp9/zyGJtk4ty7FAb74o+fC14l9lGOaHpbGyTHFuzQwv++pdKjmoiGIBUp/xLddqHybylMheQJ+Em4cbuaG8/foRveUUhLWyBadtkIIJXfPl3UEPUkVZziqFXUP5IIgruSfFL68vzAMmiGVUlDvn14eNd+Jbk63dosz9260QD1SDeje4ci+YqcvN/wHt4R0whf85chQ3a4K/d42v13EDDTWmY7PBkmG4FtRtvfP+PF0PUjPQfjt8bqaBZjSGPLxT5Q0M/q0WKP0SpYpGvyprBedVEGDB1pZngVpsGyASyDoAJ9OO4r1F7RgqBmhIHu39Sh2odt5qB6ZTiTRhTQUuD3qQsYauK//zUc+E5306NMuBOAO5rswPoje8WjYeaitVel/2B6vLWqzKXYhHyfxz1opx0q4ENGdSIYIAhP4Ot6pxDRJ3EGjZhytSX1gBPBFAjK2sJe5YzftOjMH7J/bdY4f9E+FW3G++yHHllKenRUXU+bHH49CpjYWYY0IIbDTF6lIDn1F+8XL1ctXbqeu8fb4euGhAVQZbBRWLE059SjXl1X6P5duB0Km2+LQOymGAVatyZXgXxmDQCiVQn8cytMPzc66l204SfiItqReD2TJLB+kYTgHrkhINOeDIoTAJzBNMBLO1shBqscHWbwKAW3a6jfS9SHEq/CCohmx04vYwNT9yDgKimyU7WJ92Gd3YKFoSw+wpr487FAwxrKRtNoniqWuYnbpU+kXIe8CCihajXXgu87KToTbXrCMZzBgbUlYjpKM3er7tqZ0N0gGxcJ504ljH+MjuG0MeXaDoOM38gX6lZoC/2RCBx3mTYTJ6mLR7BKdJ+fm4RY2O27fzYdye9tQs51cntWGa3rVY9SBmth0U9Uh4YlxhAFZnUak3B1nipSW+vT96O0WhP/DrXlZ8m6uUzFQZmAuzEMqEOPOZJ4yM2seRGJztydV6Afe1TYkDCpYi8HYO4KrBLPeiOT0cFlIjyXyPZtXDDjPtFf8SW5Cw4ImZUwpxMUv3MbosC65G5ghLe13ZJpY4w4DVfFXv9eajAsJZuvdoE5HBb8T9sjLwcTVgEy4AbVdudX6P9DAmvrC3jsiEm7BV8/rxCMT33aynfoyFU4nboFIs809iZajKGXifjhkND8Vfq488IjcQ58LgNTdkTRrKvTFZiOT2TnW4VHmOGcyeBZjGAU48MeXYPEcQJocuUZg88hazASl7MRbu4cMCjkTfyg6Ymcueesd6peqSdXYv5NCacJWLBuf9SPAEs6q2qoAxEt1w5IA2f0rFYJUAla6wF9pik+e618/oA02DrFn0PUp3pMsbFt38YjOg1KKrJ3c3+J2/Kg1uzqiNI7ugbMcjrLV/Y7fud/Ee3qW/KH4WHIJ6GcSt/ur39Z0zH/nVzdRKxJY13KPQOWoD7ODKz+A+VBeTc+jrCCQ7zwujdbOgd9Fh18AqeWcN08FtSbRRynhGXQuMwLgsT7DgUPY/lkmCoZVAkhmbEe28Rf6fF3mci5dtdj8ZRYPrOusnCzMkOf4iHy428enoc4atTbdzP+sspJfNk/djfQrf+glk62zrG6frXx4PAfjb3S/cEfbXkZe41VXI6VFniYWhnzXX6Sk+HTSegvQS3fqDd7NXpqmyGfXhnx/Kmt1B26tuVtoIPt+U6sVT8grnaIIUoW3tlPqgVxpJPPDBEdNaMGwygao9PFrsr1R80XdTDxa4cpwFoKwoB32IONkQtVQIGi5nkl/jkV5w7hWM60BJYa7WgApKW1nx3a6ReCrDqY9tORmd/ImnEU1PDBmsay8+q0902wQII+/25NN59dWkidaVh9Au2MQAOZJVJmSnthF0kzdwkLx1y5IIcmJyFoRg8+UsBtkUiwa6JhdnFWj5I2cfPfT6F9o5JeGHHa7qxCfKf8grLJrLonAuC1mHhQMeZpS4pQh93HZImAm8L0/EqDXR7jxuiA0mCvnYP82PZ3qqwhVyStl7JmbKGZDs8Zkol4Z5Vtk9yFLnGS8FSQoAhwxuTXSH2oJi+WPQBfxBTBVIb6fJoVbWfR2cnH1HMhnJBvA0Ob9jCCrxQht3dAL3j4v5ux+4HYhPpxr8hefkZZQBW7A7j5BnJf7VH9ntTa325mnHHJLfn5E7t3y7w7c5rupV6kzLRF+QywKoJ4dkhFeMZeO+LDvtlg9qUn8ScsBKDoGq+q9yYQAuYJU9GMihhydczGVj/iUn6JJROB1s5qo8HN6CR5cw8h0DoGHLtvmYbDGVeGigiuqmbLQtc0f2DYYHC5iOlVIPbYzYSbllm6v+180p6xuH8vuPMYN98bEfunzxSErctE1LbxIgjsvstjKmoxRsn/yLouj5nt1xw9rfp32Pm30LAl+ooh8Kdp3R89EShn4e0PJOUffgAtN0fdoPTTu6rTXNsenMQIT7uZbiDz15XdZstZHkNOu6XMmzaD3rfX9Gc02lRDIAi14Gm0ffS+jM+SziCvQdc2D3l3d+CQttCZeZggHOwZAbuh0AgCnSt/JYPM34ENK4wvCeBS5nddsUpdXOuSRzevjr4O0/cQyZeycr2DZVEX1d5jdzOyzdOtYMIRiKzXCHGTOzCgkhwEQxMoIumV5dKxG+8AfpEhN0j3PqSP1FgxKVxiUmULvZsrDlrwxVKg8OVml6SNNL3TnO8JBSBBkCXQgsp+R6cVEUG0zk/nQ/+CPBLbapN8Bv3MkaFCOEi5Se2rlYIm9i1e19LLcYF8vB3g0wk/Op0cMhT+Uuokve3FG8f4xAzljfqXUwjNwnil7P/ZwTVxhggb5tnRpB/caaKO/B0QpC+jDkbDeZEjlhnpD2A/+0HaawjbJTYYz2t7xN/HfwGsaESNWE24eUbTvLq+sfbm1YVDy9VndHLjepaL6VVqbukJjcPuxRGZR+kEmraC4VxPKyumGIrqfjmxxLUwb7bT3l3y01YmceFQMvaFB0VOuY+TJ744d+ONOPENq1SBwZgyfc0CoUxxM93Oyx2o50F2vz5lGdJjEHM4F8BeYh105mYzvLAyMIk7fvrnKTRRx9t7lbkiXv0Wh7g2W8h1UGn6GafdqA+s+Wac9ruVkFJBNw+BsJ/awSqrFfpbpk/iy+5zAFB0ao8XoIMsuDKnVxCdU8ygV7ZcRmTha2BbfNogfLsmMOxeqqUTzlqxFyaBwlg4biGkW7TotmbioRumqYyHhYn/yPLLQzwCIpgJb5KEfosrn9cuv7eRRxj9eh0pAJ+j8Foy/gVJZ+9Z/5gdplQ6umXowg7lNRYRmOchI2vx0vxdZyjyWSbMplJTT7PgKMTLCQ0+zUMlmSMkjtCqrOApaEAiHW/jALF8gvXXUL9dcaSQH+JznrSrynb1uxY+vsnrFHROjuKdv/+MTXz4AYdzTFzQ2a6XpgiIQgRMZRWcZNEqEmgsN5GOJtKj+gs8+jzSR2p8SUYrHeVi4bv2xo2V4AdEJ3j8sQonWig3l8XBUhlAGPhIbvwX7h277cQrzeHU2JGJj4hYcNFLt+weF84Ldy9Q7QrmIIo+bfCMSrflIC0ADhZzOn+DfxKQ/SOOBxy07D4vIJf9AeKFLVnWUd8vST3UojID347xFhymoxpraPn+qJ719rlf30IQXw6snMmg79Fi2k96jTpsGw9M8lTNbd2rD/HYz+NFYkJ59YUQbypEGT8d8/RbpSmd5eA7Us7Bdr5NBLsaJVNNiQ/zcGQLa4py94pj0gEAmtqNdImAQO2U4XEpG3Ds6nSwfh7NxFCBbHjGpBTQEADy3WFxCHwwXvOowWxn9wae4QDpYxZaP3ahbuTKE1XdxDRkkYyBO3uGb06zVl1pqpFx1XGgReJ6puGOJblV8C4mx3eU+fcxixryF2b+SvvA9kDajDcRB9FjzcKqtITEivEtkbTgla0bwbuoCnXYPVu4Ar6NdyWYF5N/XH6z1TS0GV4D3tLflfGf4tNa8M+yRa1S1hpd8UbF773R8S1933MAxMOnIlge4hD92t4/iZCaK5AprWriRM6UFMczx26iE32UJMp+/1WlGCXoK9k6FIJc+YAE8VIwv2oUCdbIgNc85+7YQ/690ozh5C7z1X4laA8Q6Hn70VrIANRj1SHM5/ygRx45sepvtYCfWvyaDNtniGT8srNPBN4p96ydJMWWPDiW60LlTKbGUbEfTfzMnFmGwj1E932WYJhToUmtePfU/xCxMUpBzRNI9WjBsYkv3TZahpjqKS3+1SZZ3NR3XX/cmelo3+vbwHbHtJMzg4VQDT3P5ubZI9JH9KYTZKWCmsTxWa4A2wC2iGpOOEPukyK+rYWYnAre73Idzmh5YjzUHMK1OLEww6xyMst0SXvwSweY/e+vL6gbtHAdfAHdAUQJqOUNQAPh2N3ZbK0azI/2/M66zo+4EHVf8GQmzHHCCZ6i91MELO9KSfneranyRktTQMn3vsuKmu34NLfFrpDOAZWJ7RBlJm8xdXEtFmsoPY6vT8paJOdZV8VU/SpE1SJGqCDYyMwtmwB3h5GSr1VnKgB0+TCH8hC2Y9Ni9TPBE2vb5ElTKUMYqkKjtQGDyI2aL/mBT5mDxr2adCkACEb1oq8FeKTcUp9rTOxo0CX55h7XNVgeDsP5/KihDjDBK3j8vPkKNNCdv4sd8EqX8bdqtO6kbtpHGm5tPfmS2y8oDJjPplenHlLkM0L9M5UXKZYmYOCJzy6+RyU/7XxYlnHhG+Foj2Dn8JcMNvfYVgWGkGelvPzTtMjEmdQONx59JaSCs3dsL5jlvHsPTLO4zD/9RLjGTkjZuKuF1tXYl7M7xUY3LCZuR6CnaC0JPxr8robbLixLl2uwbDY0/o47OI7OYNgVsVtnIihC2D8UwUMXcFb/7qdyNKg2az3QdV8HEbXNzc7DoC+xZKdZQluaHW8RJ903rqArtgl/tc5dlANG5+PsiUoRMJAtNEINk49HKohKJyPTkw4qHL1qFSbvjYdyzwjDYw70FBDPRZOnPQqtS1kJ3nlfo4dMUMhI9JIdP/DP9Brpeui65HakeDfjnPJPymP9ZnwRwnvhN3Azi72hVl+82K2TxERyvqfXysOxXgKanqQc1VZ94ZjoZG8aucTX9Ud7L1X5Fql2UvWXnwDZbRAek3sbAh65lWQVj9XUJcWuSIONkUwXz6BWHPKOfPuaTpqg/CaR0iT7gJWfhz9uONnm3nOb3xR35IxsKPheQffLFkAnO5b/cB6Mmzy+bDEHorUTooWvB5fKYpPZ+ykYREEX0zzSMZuOQJxlBdjgqjOaV2Hc1SjjtvW0DVwiY4SHwoaPKGP+M4xKkNyr7RnRnHRgSLmEE7OI6EVFZc+vaBdW3XMdYyHdnI4NxDy2QHlg5jqCTBIzQrM0TTfBj65jnrONsFXlgHBge8n6SokHL77D3WXMkkqu4K6fTObdKVmvCHd2aUFfnV5G/0CkV7I+FvdUlggrklgb574kCq07O2LdtPMU55IUyhfaI6tEKY3phvbJyQS1UpdQnO6xIBO92Il43k3oqVkjxcAG0sNVkPTWoRLgg+JDzfJQ3Lo8Pf+lyK2Fs/bdkFB7kRa954ABHRQwvBT7HX2fCQcqo/MWpT4E2WfrQ+gPWyISgIZeNiyISV6pj6ZdyrNi1lSi/8C4ACrJyLPQnIE8O3s5eSXKE3WRQYgNwa0XaRS+IIGQEyjq3Kfh65r/U8YqQwNM/rGQa3UaT5q+vYS/TLCy0tVqLZqn5IBJvpZJen0qtn3pItybQ/CCXWAjQXcCmRUPYlzIdZGGYtYcDiNoT6UdwE2LviI0H4yieGC8caynFXvLwLpfPiCp/tEjUJEWivjiE1Rs1b/Md+8UpLvrlNhmFmsglvx8ktL6v7RVR7RoL4mCIJFgG3DBZHu+J37GgEaO/T1XGi0iDjpizOkpBDQPd/PhPgHrWRGrfeSWwURRVd890TlAKmFUUV97DZ4jS4Znrg8GiqJ9q0R8yCF726m8dxubeH4sihESzokkY1Y+yfxPfjdmWCE9hUA5gi/9IHps1uW8vTKEx13b8jL4EAnBnOB1EJ4MnIsEWiLtP/B4BtgpMrbb4FKD5iit6tFLNhCvBIe66cIh3c0ahOpfvkA6HuIS/deU2XOnXPdm9BnSksJuhy8ek/iqG1lJJ3VuSOO8/pxkUTtRjdhKf7sDeNtHGY5YYKuEQAm4IlElyERY5/MWla9GhUK94Zfov1mux65gHQNqjdmIRvuFTimlOV8yndtPR5QSsK2tf5WQNORkrCfSezP2f3esmxrwAHA7/1kCy5I1NUcQanAkw0h995ElELuwznn/6H9NidHFN2RnfRX4qugDD99RnHhEy5Rq4kKNIhfB14BP7CIDclz3IDiFwDs8sLfx3cqej9c5OnrwqSXhNwR+oA+xsebZFegk9561NJQxlHVDSOJXQJE+J5C4a9IVWztI6e1Scsiw02V+0OUNHxB2sf9Eqaof4+Ad+ipquZqISrhhJIm2G45ne9W4l1AncXt4svj+1gJmSHrs6Y9dA6nWmAWVMhoZ2v+hXC2d0fQDvSNXaB4icucVklL/qOG/kYW1FfB8YvhLAWI/uPKAUNcsfXJy8rsDObCFkbJVz9Vl9Z1KB35gUF5gA2LFpz2/+YuHE9Ea732+Pj5ozTjL2Vv85nTrU4In74vX5RC7v7nyl6dgr1gZPPtxFwaueJ3vzUkLg/d0ntlD95miCp0ZpfEc3s90ukVywAP0vgWrt7PPMRXZNS0aIe3qGdpygGR60oRTBG0kUbchNZsMrq4QzT6F9mPgwNNpev+I8SPCtt85txHkds8vhiAkcvm3+L0FfHaisQtMPWqTBn/aMuvSuf2JOdQXXY63efHrJTnevwAumpbxCOtCKKBzz4d7VuJxhT9am0GXTFMMYMpfAWc1l2+UpzXilXjTBj0AJsqdrKotiQExsCwNrd93TkThAcwsfFGmvAzYxd2qqx7iDPP552hI+KngZrPyUwhOjSRaJYcI0Wao+NhX7Zo/JzD7VZFz3aiNoUNk4SPFhKg2YnvQ4Vtyog4E+yhcCIwwWRM/C4cXQD/wZcDiyzfv+kWv+NMAjqMQFd/3tEzJ30XIEXogZFnAwybxnriFt9P9MY6pnzMPOaG9/ddBqyXxD+674n4cToQQDgtekKt0Md2d7jQmGILB1mMJgPAvQUScI1tCEjMAkEc1kZZgQ/r36eqzNqu4b1BDn8dij8xctoUI9++32qI7IDenDik//iiVL7NYWf8/qpVj24mukHrvFvnswAq//AOCs1sF+eYvewQTorEs0JQSt0I+LgZi4tcZSq8TI4SUAk3OJDI/XXdMlbDJlMd8mEgURy031XG75bd12eEFGSi1uypDTMUeNsxq+7Svlt54jxjU+VvfU6olZjTglwoLtBGJkZu9VwB0wXG8SlipbSJ+CRvXtpqxRuF76z4wnHUJcCGxV5q/YnwD2ruNLV+VdLNalR/MpGN9ehPyGuYLfDzU6QLiZ3bHjZ3SOJmd36Y4MKnWFDguDZihKWjviY9/FrygIcIO+Eh7ykL8ivZUdyywcilb+6yTBpq7+0D2lcGlx1RBea8vkoMZLfMyp2XCwOamH+DZaEnh8mwqxR+gqWLMk6KEDRqJy2a3SB9CRzPbzSdLmP8mM10US/KigO3oeNJfIt0az7g8yEVsiDLfXv7+XM/Qsoj4S3o/9aHmIc6xL3j/ZJ6upDqkUrlllNstuh+YS87g6cfZxUmhtchWwewm633xGn1WR1wCafP22F0s3LkL7dqw06tvZ8MSSZAu6BqDIKycYEy2atbkLOq6GRTF/HJCUv6fBbZ3NSPo7d4yalvkDBSlNJCtM8Ab+PrgVcTpVeae1gBGBw3t7+WK04BNn91+tZqPdI8BCir7zd3CfMn4VguOZoC7d/Vsq0wACf+HBiUroGA0JYF5+mZdvaGsDm9tSmzyBwVO92NETYyKzhSl26+pfcNQeYLfasgeKvKIQDY5Rj0ZdUWKtfYrIEIM32g8R6vjg7EqaZGMDyEHRaK6ylYz4MuC95jmfyL8/sFcHDfSJNP2VTF6eNkszfffwf1Cd7dLXlYFwvnjnOAOd1OVcbQXqnH63UOHZjUSIwazEMPu2ckxYaTEe6zCwF69E/gvL59jD931rJDX7qZaXSV1MkGl/Gu0SALyTM/N89CQNgyOF802t0aQcL2laS8TQOztdkY0rt4Lp5WuyosvHs+tXoPg3WNfYf0ol9b7Njjf6B0EXFmSDqnI7QHajlt1MXZKt6Rq+b/h0Cf3Zd/wWBU4NiiJhSg8mt5llIHwluaKtuTLU5lHPN1Y+p6ObO/4iJBOhIoIe2VxSFFCVEb98b8nqX6RUke1Bd8hQLMNgvDtvADk360XrkOJR8HYV3KflvaGg8/IOZUj2mzfsUIM3hj92MGC3iD256GLcMLUGD2NBuT8q++a/ogSPlZ3Ps2TY5KsazsDsyu5rWfbxBMdoMilOj9J26NptqO8pzZmDirhoNL/Lcwd7mJBygWt6i2kZb8bSUpr5xfggl49zNyWBL0uS3VIf/yRhDvw681GaEBIlLsOwiESUJ29YxcQANF6CcwoYH+Ks1OqA1rkaBXGsSm5P4/EX3sz2eDWvSDxwgpHQewjdSExgjK9rTXXeKVj1HxuWFXYZ2BhvjP9R4FtMb2ZzGJmGzthFNBe/he3sIkz5FFSPyu80e4Q0pm6RiW680ylbZCHX397sFqmJwRdwLbkI6sJBADh5H7GfZDu7hRfPp7RVCi1XtGckLXzzLximgqQpnrCrokl09XYRa6ulD+SgdL1SJnZHdR7heYQZ593pioEBIwl+EUTV+1d/987oJHzUF/TPmFMYN4TDrXrXPmOE5O7/9xw8zuK2fRLThRdRBMgjHz3f6kkcIGWRLBCIDjUyVESDFv2G/+/V0of/h2OLWKMXGsrm6rWqHguOSFbBRekabB8d54sKqUbqUqwoW42NIqFA50jdX/QuBzngkw/bzvSYX9uiMebUipsDgDDUAz5h+ogE26EJAaC6yRqc2LW/VpIEOellotd82dVr8EYQ4p+g5ChAvxBcwLINCH3QGMA0kH9IlD3qPXAo1ipprsKPkhI2XZG36jUjviLUnf7ZxGx3Z+nIQp/m6LEtCTiBqN9QLBhWwynz7WSnEVQkVkhhYy0BnSYyzS6mMyedRfrUw3axF5L26AQyGuO01L8cHVlS4jpZCS571XzD61xk3TgCLfZ0076EylTjeOEqF6LfG6yfa4QCYBgoyNjL8w7yVU5fLoSCf2U409iHbTD1V4B6m3gmWzbGPaW14FIWOPtPpP4P7jfoCCpWWnIazwY2fqr2ScBOxRbecPHfkBALM4Gwrt3SQhhSYiqbkpGlKh8Tb7MxUa7iJEqSlA7d087RrLYOqAcWRbvXqcImX1iC4Q5XdztQgNEGxNZNAAUdMJ/MdMMZVVWnqMBJhKVu7bruwW2162flJ4pjgxMKCh1E2CXBHsU9w35dCwudq1XkPz1Z0kharapD4wT9Iilvn7+dWOhwWw5oc+aE3lSQFPwnxWoT08k0WQOKlDEjRXvlsVfa+o9vPAVlqyjWGha/PespYhh4PpLpwUQDgT54VBBGTGP4zXd+Pd5bppn8qZbJ6mBqLouurnioxuMowIoNPWUN+e3gtuOi4qkzxWA0Yak70/0ejQmxzQhgyoLrfKJhfqhMgeBrE1qtq0/msftpEp/z7HWo3SmG6vPSP/kmRG5j3DCI3YJX8kATtFBZxqKgh8bTHK+v/CQL4EctSCMzy5vHQ99n14kFzOvQmvnLk5wRsd68vnRzTT8Dtw9GOrgAC8g7GQ2GDikIXvuUZ9LtsEB0/wkGBmAoSdqbnrzccS2fUtVGw1ToKAzxgUm4hz9YEkKzoLgNc5Lhpa3x5teMOzGKUwR56yLgxEWZL5u6faiVKVWP4rEeAoBiKn5Gq9fdAYPOjoRhfz/hnpVYYL5A1z4TvnJgYkCgh58xr4yw6uPMqq5AAwDQAr5kGle1vouNudlPLAo6iEYfGK9Q1zmlZ4hH/0WksmtalxFsiNKzF8EqaMRdFKjQGJwJLiO+4fTSpn9uU6mqKdB6W2O7rmNm/gI0XWyuxGTSO7/jAsnSRR+5Ji7XO1GyXAJ6RlZCfZwTkhMDpGWa0LzmMQG/MYXLPeT+WDRcPzKM3aFgh9FWahlWCsaBP/7VB8hcEEE0KdQfqjcWjgYDOFXhWysMsakhuNrvZlGwcnpnOMgKp6xdmEelAvqdA3q9G8/04jpukhi7ovYLKkI1hknFR/FZGbWmlGOvVJZQwhDDyszVYdea7/w95Gh9sDM3EU2bv6AYYWpzDHWtAw9uk3U/LD10aWKGfUH0QRF20nmNN1xAinGej1p9qaAP8HYqYPeom8nDQajyruasXkzenrgnLR49zqma2k6qFkRP06ca70VMp/43lMC3B39L36FBAtX0s0vYsBxZCqkhnv48NwcOx99ScP0Zi2vU8o1ItCniLvroEArI4iH98UOKOUFgkzqU5sFIlLTXxsQKnKGn+GQxOrxbtdARD+WZIQEl/4HdsdypDQN3Hdt/cqv+5JK6kLvN3tUyF3AxaoAhaqQKHOnLYR2l4pCXmfhpagjl2mjidZA69HY57aqeys7OpK4IvxrfPpk4yDmHKs+hvGDmGnCQ29NgnTQq4kweKmJqRG1LJtK1eFgd4iCB/es2czOchd7HFyANH0Cuua/DJPtrwXqr95OGDinpn/1wrADWTpg2/NTX2L0dqkNr6NE6V1zUHJRz7nBqNtxr0BxWHFS+9DltIGj62N4ZVufCH1J6dLKsw/DrAvympug/qoHneyrXxAg254SPnXfpMb3aF4moQ1+Ahpp4bwI5B3E+wocPFI5qPqjbCU/ovL8mRh/zpR3dGaADVHTpKi6dq85E2BQHpqgVNLt2t4wxh0aimF1kqSqMGhEsVoc3S3WBIZ+Dd2viAiGUOxk5Vb3SEMKWhXs0OqUW5dNe/DfYlZWCv5JVY0fnGRZD7Nnv1iJftWCTy8eNWiZjKroc0L3HAf2HynRqX8EqkLGPc9j5fIe1VkTW4q4dckZXWjYy5eoyurz15v5Nn9LXajIPwyogh/+J2EvKYvsw7dEoWK7/2NummaqBygw9m9g2FsUBRAmiu6NPds9+YtMQhVVEcZyG5P2A/DbQqTy+IM5xdfXC7y0w1QQQRG6VUgeI6O2WvFv1/75MQzntKQebXEMSgAq+MIoqW0zA0a2bAqJ+cnfex81OAMUR6qml8cr8vcIe3LVXk2quywDxU0kLVUapqUp00BmXW8tFjixugUA8jCuLuLRadyyZMbjmrKgS4AwSJSoGkRG5RWfTYJ5oatioqqMjLxsWFBECp4ReOOL2aE4SAArx/+nj5JM1bdL+94o3x8/4VjdK+faXrNW/ktdXEcTkfQ55Os890puQ3TTGhVDJznnN3ETKG2FzQhHWs1VvQuNUkG9+4LD2Nwo4IdpY2r84P3w15Z9c7gUSWaK002dTz8Wrqh4j2j+pATtsI8gYRwg1Dm+ur7GGu+YjucZMquGmZedmtKz4u9S1y21Ko4Q3KG/RBMh0doEuKjucNSAAt+RykAbICLOnXlQS6KQI7HlTJcASirv2WUfS+NabNH40XOMYqmVoKGqt/diBnyszv9js/+b/cijvObxvSI/ScoXEGNtABlUJKs5qaK06Rrqt00Ml8L8CLkTGLOrsQK9tRgIHkVZYLYLSnuQdS+ILB2f1Y+NQFNY2/RxBBD/tKomDsHw3Rp6PCe22Z+y39eVszzWSnvkj/HhIG54x+X1EjxUNZprUxx17V0jVE/KzYrIZ3kSJCkh1lgdTYNO9t+wE0Qx49OfMacDnB0aBcKyzri04T2seEn2ZZf7ETGtFI4YmAoLwxFI/NHAP4uUTIqnquSUc74ebjjit0PLigAnbbFpRAPc+5Jh80QSUUMgH1THurkKKp4+Vx2yBQB2bAzLVZhQb8kzGm/Vh+MTkxVYQ4b7fm0DL8ybNMyoLSMw1v2IrLo/Mq1nc6UwDQkWrso+cB/r/7IoRRgoc/75rd71btpZ2rEEtdb+tV8nMTjy/vq1nbTNC2EL+/2P6PrD1mnf/K8RF0HcRW1vxz4jDaRGenL+OEDvopSvvCyvfnczFRdeyD12VHf0MUdit5r9AG9oB6lDzix76tE2ZDZQ3YExFvw/527RQPu/FZso/YQjoLn9iWHAD8nCpmAyyohRgQ5jwRK0X2MV1Af1RorqaRxP7V1oU1DrLN7STqdGez7IrOVrM2EuRccCwuGbhQVlbAMbfPQa7cDfN7LPby7yOf3/GimLk0wAmDh2wd0fgxDYZcXECKTJUAkXyH887Eh15jTInXkHuJHIllNlz2mAQFfrPEA1GYHjwClcADFS5aFeqeyja8XBJaQrsHJ9whUo+cuC/AYlZD/R9+Y60iJCzYdv2KPM89EO8G0glV4xPVQfyQReDyUPKIyfnFhIHnDQ/gCKpVHiz8nORaGLX+bWTeZMy5VPIVxGXkr9GQdg6gVjYIavzGm3tUiFc0Jmn/gUGJaxlGMUjdKzLnDBN1hJkZNawBhCWvyR89+Q0BYm00nqCXGCcyd3+OK4U+tDqVcucMebPzqtpS5AN7vw2jx0tRmUcURNyaf9tKD+arZ5oS2pmcT/uSV8MFxHkAJzyoZ6Vtl86N2RZtekpIXde6vNM/PcGJ5n5xU5NVSfqlk/O+dOF+VWJ4ELcWD1Ygh6/8rta3jzjxZsRaNORfb4d3Z0Sq006zLXaO+0QkaUcxfGexCv/040wpWXtUN3LYPTI6pIhCnAtLrAQWfY9DCy7X1a2tUwRnpTVda1TbX82rKlgqoQtuFdG9fmkSSw/+BCI3fFZDfpwICe3QR3UQu3TmWh43M9Ty2EEwuT3ci0ux/FVgJ9PSYRe2KkmvhJ3BkF9lx+/DiWOmPdI5oT6cC71PaWC4qAoERzEKyviVOW/S5jAx0uo9NgPjVUJbhSRWtcx8WcZt+dl52zVrv761vTvWLQjIsx8Df2DabaQ9W5TRmJY5xUT3nQ2Z1C7P5ci5NkadoL25Ib7Cz9PjYa33aMoaHGpbB81tiY71KpDiTDKy9+aYq5rF38l+rlK7SZW5vBIuRPWyKrazN1RPadVdvR3AFi7syxaEkBfVeJXS1MEltUFvsGI2vnqYouIxdpStZLDdvk4XMOPWSClVDQCzfne3Rav1kJUBBTFO78+cNvi7ZdEyodPofluUkNNXWc2WnSDx5G4FRamAzx8yehfXOdqvPbNZZxTLJEjAFQ74zRzjEZH3K3qN0Inx1F2gRH4Qm3WK2L66YAphevXMMyF71paMjoxV6H6P8pgOeymTyUpdoq/sRx+EppHzyvFxp67k8jx619UdXAhiXHrcLS3xXx4mMcZRsEGI3KYpzgIWBrTpbdhgJixoyWcUKDyMDOBkwFld3O9qCNsE2PAsWpv18+qnzch+jeu7JGJdyZ6KZwtML8LmjXEo8fruU7L+q3yu8+LV9UP7sWoSQFnYSert0f7f4lwPs5l6uoS/2HNxSoId0vNAk1Kep/Fqr4qB4PGq7vQhjDCrNb9n1ieUe58nEt/o6NUnIUFbOGdVrNwFiBs5/Q02Cl6ocI1NxYscdWf1l4A6JXGVMBRID0s7RsZsR0NboV+i7UnQD7+64VJ95vM+dZyA5pUl4X6gNzl54bqfTbH3hCkfqKshDsgyKvk3NOOWdVygAwVU/MGEo2qsyqNIEpRSJqxhzd3Wh0hOzUBH7w5ocLtgqVDfCmnASbJM8rB4UxRQr1b9sZ4I0jXAMBHWOGS70BMOf2ZQ52ZpIHrFEn+9OlwIlp1gxB5EOkfJgBgXrQNoo1YnILvHxyMK+2PHa7cwoxhw+RpI+bkumdArss+AuOguzERZgjHwPPvjyoKUXcgb61NBouzRjCTCTQ22HWs6s2b+7Fdu0vOn/kvv8FKi63lS9Ut9K0FomnP3rBd2aiBzWfSazyaJA5A+vKIkDWMVKs7/pykKf1oUvVWOQkKDZbGyt2GE7cmqUAewjoVDOseApN8bufxuvD4FaKZbvbjYW+GE2c83VtKDUsiKzUs5bUAbFi8qNH/M/jmY1Gd/lzKt42Mfi0n9l7pWROjD2EedfpC565759aSsYDQ6ElPxuLgiWTj+C5aoUY7qjotUKh4Kzx4ghu624A4CYSLEfI0ZgdIjLqIcRPAWeXZU9dWMR6sIwQx6ALJZGjPOJP1ZYmFVCqbNCSFgHdFpsnT43zwnGZ72/hG6AtcgktS3t9Ajg4Ojp0lGNBW4XYeZxVpvD0OoIhkQsGo90CQGVMLNm7XASMI8LsIMrI4PhEC0AsJgo2tQQYoufxVx/t2EAuSe6TzMBvX05gVx5RJ38UOQArGC4R4uCFhINAau+0kxgi6HlPKvgigtei6dWh8YlVtzPgaXfAP+6mtcDyZjNz5XXohjUx5FMT9t/qHe3M/PBHtpHPmhfb1ORh7j1/kPo/ELfav65JPx0ihlnM06LS+bqtQ9ErzI+XXWwfDy+ZdfPhf+ZbGaN0zoS8iSCfzibRnbOtD4JKcgEOLacJDJQ3SmU2pHyfqtPo4yXWU2EHSE+NzMSGdOdL+AJdn7oS90AS1P93BzpGe5ASMifFUvmGaJ+h85LlBXtC/wLI5Mpl9gdf8pr8vQzfw2IT6qWsZja0+Bo1qM3xE7zDYlSm2p3j00DE/r3Wjud6KJKsGXjEPxSgTTSqtLXb34fAb1djlzA1NhXgt9NVWiBpXk+FAnkb4jonME4aO3raLLlWRS9C40vgrvUPcG6bRyWUMzTczQkGOWsa1xqDOyVzSyQYOdMvEGfMQfMswy+sn7gBgSB2DrFU4K7uff0Kzyv6nJPY+wQ8VGIdsGCSH+VxzTgIdpr3zMB9DkGGwggs8wH3SAysKCG3iWqo9UR9B/Er1tyiqu2qz77HAi5kyGXmVBEaVKwnp9I8afVFzDX+d6k2j0sOCsht6sAy148Dor6hsDECtbRZq3sY2LEEvdDnTsni7JMgtT+qOT/CYUu4FnqAjnl9qzgbewoUQxuYNZoQXIE2ekpWAxUB+ptG1+T8J/03eyAFhKT+klL+tS5WQ5oluB4ERtRKU1HX5i4fel8gnV83LuIU7Zzxvyi9hwzFjLY0tUxfUlo3QycxfTxBhoU+qKdF00btLSoUoJsp1AyezQmJnmBJNlnsGK7/gqQvg3E+XaoFXR5BjM+QOZnJodWHSZKpEgnmNLKeCMYZrJ/Sj6Tq+wUDAncn+rz76/Yi7XKs2faxT/PaRBA00d5Qk81McK/N2bjmdIO16/NVDdKHRfm6gi9nYV1YPytw1t2iplA/JLVZ1Ej1mQOx2AQ3ha7V8SoWbwTWtpNL6pHMe0D5MyjZ2EpyQpr2VMmmikbflTe8ck9x3IDYakPUYlsK9Ph915qu/limFXWbQKluOxIpmoQRChoTZuNENHK52v3EuY7o9YQ/noymZRdkFcBYgTd/39NMuszOH6+0ETZ0g61sdbODmzlK4mpO18T2ZYrvJfmyGKaRKRQfWBa75nzCAoETN1Npy/tsCKiMFhLF9ZZBV3CNXG3qcCFwcpsLb199UaUrAUMj0hsz3B5XbisVr9iZwSStKNuYl0jRMU81Vr6lcGT9J9wN+Q0xBHxlRQ0S5oCgu+/r8BG+4JWv17jXkjv/teGKYbyVTWjIMcDnJYz3h86C79FZZw8Vfxf+Txe8yk+/j9jJMBADSaQ8PXd0mvjk1WfFf+KUKliO4y85U1R/D03A9oHNgMdrmnpCOQdtv5OJrIhTklyEihM+FdBFSvBIPdGOe9x0m7gbf4/12Jpd2z1s9XkjHyQ+k135SIMk0Rrr5e+hRKXkh/av8wykeBjjVmjtOlhYdeyphoztCFnXp5levb0dkLJxVpzG+sKouG9pg83oFT5aCRNNPLR0aXjYRoaZpU1xsSaQmQ3FFPkLJZ+Q5WofvKkUviU+ppOMnPljr5DklqFtR/VO2IoVLJggBDYurJ4nA4uHtCxDZgN3CyfA3sYj2T7kpK/jcx/UL3hQXhgrLiRaOh1tauZ6e8h+v3UkAMBOcjRSDhJCkgJ4lVmyxySLrXMOEtJ2FZkaIXDeu94LuyYrNRfaOlr9nF4mPw1lfqB3UuCKLk20o7uHYm02Giz01xhkfHBAdBaq1i3khUR9PZySp9v2Dj3EwOtQtCL3XwwyUJO0YS9MUio32tnbzy/jIWuZMyTfiIgTHaNJwRpjKjzMKunFgI5/buQNThbcpy2/4kh0KND8motBZa3Ynnf7XF0J+Aq9FDjkr6m22MDGG3hJMW33eyspFE7AJuqwortTaZjw8IBqMJPOHyObTwuVGBKf2aLWa7ZmTFlpbqLT78pUsfW2tyQQQtugU7aBty0lmN+FO/jp0BsKJfnsyfZyaYbhzxAScramVWayBXe+6re7QeAN6EjVELjPC25mHYJ1ndFGG3FgvAcDEKosAWorAJMFSKbJsqjSaLLw6PdxGp91hCS9RntOFkJ/HtVseQKEZrVaFYEDCKhipo90W4EDvKSPxDzw4QwaSDNYxKMHyEGSZJTfLScZtikF4oYw4CcxoLtR4ey/Ca/6RpHJEXOQX+dQpUvxMUmPFx4wkOm9tVdBkFqo1nR79Kdw11bn5S49omKmSmTz0ovc947YKXj9V2inJFl10nGsG3STc9FYnupDKVlCWTljDZaa8tS0R/orJEM7SJBlS/NLUt3svfqVZr8jAnXz7gRgm3vIkh7TAy1A5+oUzlwqpdHiszuFaCsb/nHIrVF6JTANtMrakbPJEqTzqkEbQXjEmJ6U2iQ8xDQjct8n4V6uovMYoiXP5P1I0G7PGEVBZRvVd3lI47AuaCnbuqm8QNwfsIvCy9ZHI63shSKGSoxTo0+boils8igOAlUoDJ7js98yqVuI5ed+Z9hmDVFVG5j3pjVK1dmcoEwTpsvvm4KO0Q6wENzqujMo0Aj2m6XBrtAn39lcnrMdzdZcV7xfQLJUgerzNGw68ZE90IbSLoL+pCkjxdAA5pBIJj92SSlHN3DxfMQ/PkicNDMcyppRI/k1BsldqaJZCz8I7TMsJCmFBi0WnRG0yCarI9ACBp0pYNxoPGAMQRtK3KW7gW4TBkwoTRJ/yomC36iMA9UDM8OJZPRUmcheaXuBVyImi+0ga4Qkl+Tsp7KXKBNRTHy+saTGoWcUEcdszoGn8Nub+BeF8y+xdv7S/m4L/Nhh9jE3BYcirzxKrFDgYGh5RMEt8M1/4+8bRIDv9DQCXnRUiSj5Q1gOtK5X6+THUy8x71VWIM4MC8uZUoNmxcK+IcnSR08BZaS8phgj6IHIde5f8UA31VwQZwecE6b2v7scETocEUDRt4jEBrp/ZjtY6Td/zx0WiIk5mw3vlBLKlQtn+W3byuYHrDwroby9E1uEW/0NeZIGdR6xZY6UKY60a2eiuD12OudYLIC8iIy5paYzsk/eQL4VEZ6h1kHQniCUT5S7NYnp7Z5o8fvpcsLQAqoH30VScrec6FbESfSPF341RypXEjQNQJWZ4GTUKSU+h2nuQXKs/vU8s/5TPPI9+DxKAZZHfrOhwfKh1qgD3b8WxNPb+pmPyK1mdqZV7zNUZjd3yTthRGNsMW1iYcp+eTBwBbtvwuJFZdQAQLtShzLddnghz3mT84pWGtxdAq9Lfj4kNvTqxh30ZRmL8T0nPZ9rHWLdKsrtAFXOJudRRlzCx0oas9mp79zflOdNtfKWuRq+RQqI80+fVvwioEASI9+zenyByP2MfnRJBrzicHb3ZYBSDHosJs9zebr/aEbX7gI9qDhxJWhObAIuHKHJarzjZ5b23vnTOEIJ6rzSvqZqQJ+kHCsKtHJAgg5w90hq9vCq75ud4yzhq2t2AW4SkNxNALFY3DRWOUe2h/wha1mTxkI/h5ZDVDxfZ9zK2kXqWY9Ihyz8mhOUKVuNDhDdyTx9t8KZiMv7wQWIzVBSRgCY4EFNPo+8o0Zh2e80aru3NIxwZtqSAU2b1QZhKwnfIAXtSc9qHujuSNLP/E537scpgg2RVJIeFw5U2prX/3Iupn06AAKCUQIlX4A5J/g/JPWqawlA177bzfrazTdFmWqPOwfO9JNG8YTu0pXdwEiSCumPZo+/C9q80F6ts8CHNBTOpxsFbLZGJlK56HVGfo9YOIrGOgkuIjoprZLBb9aDzTDc6RESKK37AHBWalgFeXhK3y7ZTkIf30/f23nKjgO/HbXKBS6g8flAubje5s6uVbuOQI8yTEXLSa64IISOKkdxbPSJ7qUxtT1DMxj2wALTtBilfTDuqsThwEU/lLZaqsFzROGaWmOYZCtUv7QrtKQBW+H0gQ8ddEkELTN6v4L8oaxVL1gbHKMHgFuX9tMI5ryDSX96fMetMkTViYEqlPYrvscQQTutKf61uZ6MjvuB7MxwnWF/jGac0HJnX5gtLAwRG42jS2o9ajYq+mGuU6aqpa7nS2KHeHy6uMD7b/33oT72u7/NPHuFswpDvmiTzRutbRcYkg9nbENS/2d3WeNYymQ2bmoDpm2Y7BAogrqbnPGiiY8HhG89MHAmWBSQSIcxyqAR5h3C+bIULMe/Bxeo60bovhvgMPhygHGPOdFhEMqDHy/VvuqNQPkLdmv/LcFNNefK/wxemc+XT2sMrncPRbE7Rbr3y+M0+g0fJnJWOe2euYFGFmZj18Y4GQu23J/kDWGwd+1Gby2rNp39w37ugtOzJkPd6UJAlSR+je0tHg1Z8n6cSoerILJWyIWVw+VDQ2Vovj2kB6ZEv7Y7l1nFzzIn+p/Ue2G72JaJvQ+p0CcK/oT8fCpmA0qTwxg90LTlrl1hIwONkL6OBnusQPToPDrjknKVussZICyGyrUTR9rF6GPt3kveOWmkkUfmu/EUsCwfftw/3OoLOMk+GkzfOO5skiOl1wZH4hxW2WOVlwZMNZqNL/1AwQ61xxdRLR266TyXCJvkhw6OcdjzWkfbcUvR6opaLn6xh5ivjdBt6B2ViFAmlhHRxUzCDpnKIhBipULoZnFT/2XnRwJkrrPwpolfKb1oKgz4XaKlzt/RSAd2OqOV/bC1MTD7Th84XPaa1i+aqYeZcIrakRXKrUfn/6qz8kagpAK2R4/e9nfGaua+0wtd5bJDoiGGsXcu7zqbxItskkjm8N/GG2PFbi0gOqSmlW3rP6dGPOv86Z6biqFlt66v7LPZmH9KtpW8u973Gh2hqX4L2L/LmrjyWLD4og/SPa5J+AJkoca75hDS2MWtW2pcjlJS/PKXI/lyjZXU213QeUeyxZkxJrE/1w6n99hMaD/IyeX2VEKUrfsQZ6ccYRYrIKxguXcO7ejBLCt0qhbi4vqIkyKBzUzT76pSSg879pqgQCIAbpum0/rfzajKjfBMULDTYMQ7iJUCH/JbQTkj68XYIlUaxSeXxtEhJP5vRJIg+HiP/PjKeTJZGGg7cIbvfLDwTxIFQJRyNk7wnjW2mXoe276RX/mPFMWZr0Fcvnc8mWGjIrnRQUDjfL7hJPYhZt1pG3nPSAIIJCQLnaiPeuHDpGo0kAZ9AaXscjrKmgZ9SuP9e1Yb2V/AFXgo4hlQH+bIBHAZ4NO5S+4t3KWb1jx61uEEB/5krByGlGsBF42nDy8KNkYGW2rR91nJDF32A/GYWiZH3R5+hXaQXK48K8a2saOd6/dAtO5/IV9ZQ3EInA9H6dX5safpsTQMNOwqOAhQu/k6cut4TGVNmqnwwKTfZhPz6SjrMET06uulBn1/ndrZC7QaFhFuv+F6LB2MpaNOPSlprKRHPsGdes/nMxKHRIxMiYnY95JgwB6h/YvgHbKW8vdhYwodrlcI8St/+MSHIpQpc1/qaXOrguz4ZtpaSg6FYwLH5/OowjCKD5E60+d99aQV1OHYJlhZaWI4272jopg5cwNjiZ4b6gvlkz2nDbniwDsa+4UAhudlldmXr5vHOmQHgJPTfULzyaOWRU1Jkybf1hwllHfAswk6vQ4PUX+9BSiwxXq0igSMBOAvwX4i71DadP8mux0PROPns2jmoH6U9ZZZjSj94d/LTlWhnfdYWeR6QFeZNyi7H+sibd/sfRtE1frZRI+oc/RBVdPSE+13G+KuXszUa/sVrniv/lWX1jiEUjfZ9q+BwYQWjgw0538vR+Aot/gRpOx565Hgjic6C/tbKUNN18FhkrSQGs2TvOVewySEYBT4c83NE/Qd00izKk+QtSkndm0Glw5NzfE5g0aqXOPLTKH597i08+MfIWQ12qtMl/ZLKvjdxTyr/gVh6KzeTFauGT3lLo+PYfFPS3ZR219NSnYa8MyEYqdhm5wM9fMwJGLbclZWvpK9a7rJb5iq+DZ78Nwy7Y3sx1ZSPcFdFCjmsmVhliMfkJGCc63JUQ/SZvTj7+QB8v7cZE/rXKMVtn8ZtoxS4ZdZHoIlcfMkPZw/2Y79vHJs6iHNjk/w3mizJCFub3KjCPT4TnHxxwlZwibm+AUEUYjh15x7OaUEV/9lAgU8C2nrWzDub470unBtpilNcV1Fx/iEj8tPvRqySKlpNdHv/J6WKZlS6LSomOYVVR+17mkFNx3SqrNgdK4KIE0jXwWHcvXilj9w5sbDqOgKLAPpR9d8YEmWQ3QZyoMC93C2F+ais7zyR9hqH9y6HMkcmh50Y3qGivHUymB7q1LTRBjUb2mE5gjG6xPc3SzdeX04XVF77uiqGyGTjXXmcceS0FPEawFh1KZ88krtY7fvK2yQE43QuY0GmjiYFG4Sa4cADN+7FkdLTmCDOHwJN+AYU8+/squyvQfD1LFPONOag0gGaVvz2Sdl9z/FFyc3SfxBkis057/6TSw09C57+wzLjqcPzs2DAqRlr1rBaiOEvY2AA2MdudbuWniazxy+8jsNQPH6B5o86Hqra0bvDJkLqIBejJXPTMZoTB/TTSyaI/LYWKkjPHjZ9MP8IoOTfCX3YudP2anHvGnRkkXpKtIIUuxahjH2IIixjUZLydIIwv+nVCmbypSvdL5X1aB11Z2nC2V/ChuIhEZLJgWSd85mFvkrkYwtVFy5QujnHdtk3SBldYQtPz8GOaUqh2pkgwb+m3sBqMzquCqthCAezWEtf3W2f5JNP2lyTRcZIYD+s9Wb20W48YyNXoH6fHRaT9iGspGCXIl+Pjf0sF7SQfdWRHyfRUW7ns2MSfmYfIvJIX1ImvcsN2OL7onWBftRGsc5HM2qDKRrrsm1QSZxqSx1fv5C4v6xPPpie4JIW2rVvvESjM4CPqfNiGJUa7iFYrH8rLDDRdNKj0anEO5QAHpp750K93tWTE63MPHwXdtIrWKMblZkJc6RgjpPOxJnJWYL8Vo4uWA8StqreDKBygJ4dY88rdDfl/WeRVJiD7YtGQjkHyo+q8rOj7OlEc11XL86o9gCeyUoRpRqblt1ymHQg4wdgRx68rgolvS8DoL548AcwY3hc/o+1g41ReesmGCF2XguWrFakIvkj5qIpMhJOZTJ79DjexObYeRf9Fg7knClIdb6/BicoBoxTiFURiTLBAKIPtLxsOUc+qM4+x2484QXNYTja6rLghn4JFH36DPo+oM1bZFJ+0stBxUVqeT6h6S/moi2ZuLXk58P/jxpbZ3wjXU60phBKMZngNkM+MtJkztyRMyMXg7zKo+ddsaS4OzcSjqO1GtE0+hXM4XU83cwxEO42hRuE+CqeyIycnsz8Pp/7J6TH2dvEbUkXcvBnc0eIEoyD7dmZgWRDOFqprXqis3Bzi/XJ+KHhmKlulx9GHDMN/gPbBpsIvjz8s9Y4qlB/UI6jOMxpObz2/RBjCAkotiSAa/gsCzHNGh7MsDpD2Sr+nxikxQJpPncBhV2fTjC4phMTNHx46KGiQ4hi/L63FB5GKBO42I1lXbJiTUYnyeftlhpc3WPCtusN46QqOQNoTlPKNDhMVRh1W1wtSZPmaIEDgFeOobczqpOQrSiJ0nFv7k1AD0KCwc9xuQ146oySioxKE17s0Bn2gmPdCxJH6NmVyFLqaymVGqOaccECEqdwjuNul8a3JZvv6dAe0b6pffRlW0KUxR0CpX+WSn1ZnVjnW4mgSLFD6M1YBOYbspvsvaMNB1yCOZnQZTpYfAksWC8E1pcNhA9Ch3dpp97St6dz2lvd8znJ3gyA9h7kq07v4FFEmL5eEDtPGEmrR6xdtXDhHzqwRBkUv45eTyYF1tKsZ9xx7E2+aq+tHbb/UbgX7Lv3OU84wMBXea4w1H+0kDhYZFZJ08yhVNyQiGv1MaQi8qwdyNAumJmCOpYVsPI2L4DKMErdjTMozczBdqLaFIgn8/NWJ8DLWi0kygEUfEELmDmPLvSTLACwBLuktGkAnpHeGcow1yG1cpiLVdlmsWeCxvRco2emTJNHRMflp8LHDZnRcQzmgKzDctJUTdg0T8XWyBM++6wXLUneWZYjMT/LdmR7UNHt67eRed9O95RpzC9sOvJqiJo3umLIi0dkRQ3jPrpbEj6/HMUATvY2uROIH1S4T0RPwMVK4/1rSgaZ7HDyNWHo+a+AEO6xQOppPogkoQ1RC8KwSHcn+bSJLQWab1H7WHJVwRiQtaL1gursTmWmc6g+wxo3m6mFbn0KrVSwLH2jZtZMV7zuIP8suC84wSqe0o1KXiE2WXAx2qlCAQ2gSdsrkpdt+q2rrGYiJj27Iz3zNrJB0gdeCST1Q/B6PhXoNWWEMy29u8aRKlAUeWZxmdYnvb50UJOyYDWwv+RpKh0sr5mIY7K+c/7WQMHUEFPHS0zmd70L9WxsEh+ljk5pwtFgQ8Hsag/8Qli2Hn87eFREy7AvYm7gZiodU/DP9fhoOtRMZJrSR5nxTtB7RM0qV8xzRAcABSqp2HFNsTUpqgs5D6i2+dzgIaopLqjogV5l38BsIBRPzBV5D4wHyWuU9vGuuA/WGPX0ZKT/bcnOHb68/ZEsDDGyEkJOunRBKlVncr26moYJqX7fUVc/+53Lhsv9xN8vDKYeZksdEggu8URj1saPKFcfz1hWPuVI1GxQlhMKaf/PIJhNA51/0ZE+8M14h9XC1lrsqwu+iT60p3AYZemnLiyaxVgB3FrflTUrnNfa3b5+5LTF47TMkjlloEazwY5udldAuLk+EUzt/R96ZgWCq0ayTOoEjhNUkO00LWL/r0EePyJjGuPiEljxxLPS6yH/IF3jmziZJgUSuhVfeGr8L360ocRdRMwkStp/T9eP0U4YU7+xPjNfI8bWuWfntZdPchVKltRy2KjFO0Eu1oO+lDtjeyWZehxqSPUsJt7PU8fELI5PW2vjwWY07W/BKABYZSOEew25AwQIDO1nggE5FZo8shcEovtN5kmAyPxnO/3wJkwLnbe8oeiQSeFUFqzfnte9h67ALv/yOHers+JiVtjlNfOVLlk9JaPSobGGu/UEZkn/uNxrjmTrFgpqVrRS4ryHBT/GkabuMpKApcJeF8lrZl89r7Q4FfZYx5QjwZQXQMdooZzHvx915Vqpg2KC0t9bUrDuv8GiDBfLImrfMRu2VthDcgU64xOJ2EW1zjMR8jjFMcGmF7IvIDUvJSMkxGC62jMn+LPd8r3VUWy3Hh0mM79Pm5cG5Nd0e0/vBoLhnQU93030v0/yosTX3HJtV6HYf+D8dtJGazNVJ8oK/uX3VN6zxovKvKcb/7MYJLVj6gJTHl9sO5AaRut7ypsHHNifdJsEKAxotPxpWGi0iea7mz12BJGoMz1bnnK1/gRAIFeDMaakWiyMGloX1k4pvmMu1i/bT/L3lUg6VlC0gwS8k+ugWEhhcytQpmMbqKrMtUB3aevpwKGBBM7+KPuflnoJo+sKs18fxFedvnrkq/IQhKllP5PRYcZc61lI+dTc6p4LlP+iSK0IJeVwFmJYAESTORlnrh2NDiqX/KJbgpZvJVlwU/KC6EFv7O3pJDaOH8Nd+BbkwSV/yvtTXJEf/nfidlawdQeuWit4EdtKtnqcmaO24hyN/++B/8uN9QZumJc01sZUH+8PEYJ/zSgN2QBGOhufEAYgl6JTObmg05lZZI3ma+euB2w0dDRyg/CLp+eyeRAdiw39QqzRm5PQQEoiVfRNXjx+51yZMXMaJiFVrszihyNOG/ymQA6M6jpYxlkZvyA6ChV4G8u2DjlpwZDYZSS04r2K7eI09JXUA/f8auwQnJqS/VinXJtKs+Nr+aMXExlvhPsAyabpYfD6MCIXmSq9U14grj25KIJyvmOlx6YEJe3ZSad3gaNAbwDvabgeIUI4WrT8gEZEqEzUBsAWgKIfCvxoczAvpkSovQJ8NdFZNtzCDRG63aga2UnO15QclNxouNrP6KKh8PNhYQQMp9lezYLilaEacW19SLXXT1UJyR6nbCrFQNnb4rBf9hxkqlVnY+EoLqj8eOAuABn2JbAtNN1gpxzHIwJ2EmeOYG8u+rkng7+Rsb6vfVAtjqy78SfWwt1pbqxyhIQ80/f8hoFMNbL8yiMtA57fpnbfCMnBcpLQEOSJ2+z8ocbTfgHJv2rSxZd4+61FbR1pxX+fACxnxOEOkqyX5A+B8rLa4Y1/B6dQvNEd8iykYvr+VJ5HzcIosugh2FFItt1EChw1kKkJfeUv2eadcELnJv2B7UL56vRvagmMeZ5xhDcvhtPh4PO3R32ZnPoN1P6a/Q16Ttb6DH2PRda95hVjLCzDE7c+gYvw7OkFcPRAdXPz0MVbozlos8XVReMI2Vo2fWMWC6jIplYUcrnHZZQGf+hsTYSvqk7W+y8ihYMx+RhntxyM3vs1viA6qKDpl5I+oHprkW9FLH9RHM0gpOoLzPgWxEaLlclI4RwU0txTQAP7jFe6w/TPfXZYz9V1WnhHr0ZLPWvdgsS01B5LmHvvY6Eo6Om5XAi6XnVZYXhn/HehLeL8bQvIFxnu84CXrDi1nUb44tBI51R2R+Ra8ULR5kgf6+FBJlSE0FtseLKyRThCorI52NnwYNgttE368qettw1NS/6isRk4xCT3QoUN2x2KozZF4Hzy6ZFgTUULJWdMRhDGP9YilAyjfbmvozxX7T0hpT1hWJXiPMJz2W41hgJTNnrVh6KjMqWicB6/f7L/s/jjWTHkta12DBucReCt7JqGaFdj6ObbPAndX6LUsH5Hp5XKvoqaLtYJ7xDgRuuvm0c80wQdi7gYCs20rKyw2XBao+BiwMn0/UYq/buVQM3z0r1PG7GdYR6IA2jRzdN4nuzcok1mu4UBOO6xucHjpF/CjZd8VJO3fbKA8cvZvA/BrHUIGbPoDQ33jBVlHHfgq+GcRZKSAuTLuaV3kKLsfimY4ihBwIkP+UNhkX48zvn32/csdN8ZeqkeoeJzXbNp7xTTq+TExcXQ6irSfboevHaA4yAPtwrsa46u0yWRFVO2AmFu12IIcqGvbwsCAAIT2WSUZRmnJ+Ht2aqFsr8TlTF/Hx2i8pzrEM74s/W9VwJwrEH980kz0u8ptvmUDHR7YyD5CdinhXheidvgmPI4IkodNEq1GIrGQt4PT1W2Se3o7Z5Tapvv3HJhXn7F0C8nlxUTVZRHurNIgNr07PROENVVZ2E8Ycg8hZXqnuMWYm8/Fql77V3+B4IgXLm7qvv+LK9BlVEhBZLs9SuDQJFrjxW2keA0mZ8tVBfJTEzgjGUfBJobh6GhyOKFFIgLn2bp0CGNbZ449/wA26KhYpUaEEAQjHDCvAIymA7fYOGhWpFT4cEEcR+ZmaZEUG/m4y8FfPCk4Uieag5Ok7hYwLmrDOF1otKd9FrHxl/Y8vzlial2jEuJehhMsQ023HMasC10t6FXGNEoTN5HTQp6tfxGzdIQ1tVFX4Zymiazhv2vBeyAz4w3fqFvuh0zNGfLRqUtyxMI4ix3Z8OBH7wKqkNj0ufehHTGTUQrxQMB8TXJ36hPPGSk6fWRQiOutMYgKAsgMS3dJKSsHK0z5baBjKtA67MOFEahZxNSKrdD3fLmm/a9222it4eueN3urBU42VTLSIZrIyng2xYHiSQ0HXMxtHlnuFVAvLsQfWxEaUOIbbWOjRyfu1sp2A+MCeulPL1arkeh9TP9LLRvAbslFYZFYIjiACegddKpmEvrJHt1Ztjm+EEGOCRLU7oyz9LnxN9IfrnIssvrwhDkjLzKXd5LMRxSVhmX72tRcPEQQH6LXfqXMXdmMN+cAMLcU8xx/BJeCgTwKfSeDwYt3eoBzsWy/21TArkw3d73io2Un51nR3FsaoUISt8gsZozq40M2OJ6NnEqoet4eAqZhH7ut9eV9J5ziQnhvGrg1uHnqgeHuEsolFP1X8kvhJ6G6gM09Jm14acqv/TfE68qM83uTAXrS1oKgWd7echKj9yAzBlVy26BzFRXimfnvLRYgh1Je8FsMcCIWJeppXLBXUcpifvgMN9MyJTLYiSrIHRJqJs9tqLQpkEbfy0k8a6SCC6X7W72RuCbQ7RIvrClvFf0oJEtLtgOVF8J7hx0P4X3tUvTgdFotNi1f3Kqs77WBNRNXeZLnexCVQ3vb4VxhRBF4OtXABoaaKjulreTRoDe1/pwLRRt7sotwOoo5KM8nLyXdk/5oIiSK3bD7rtd3a+oTKgm+qPeTHkBkC38uhVXSCBY9Ud2Z7NwhPkZt8GitiHGvHm0LA8pWr/DmmPXKWCuv8EDpqNBiU+loLUaCsYubdVPC6SHADO/f5r5aWCVqk+8Kcsl3a8OifM3Gb3UY5WhP8ELrADAlJGNpoqDJckWOgdrnlN+J8kWjzAAQu7NsCHE5kEEb9jFHT4HGHjT5GJYQM4QxQ+7+DBO/4wjFzeotYL/JWEzuTfCdgYkj7//pvSw+8Bj6aqiyWhFRSX4FuNowQokZLRk7nyi/bJvxtoPIl+KxONnQRuPADxnAlKBHFDHSmnsNp+Mdp7FNYEYaErPvYmrVK98zN6bJ4Wh9oeD8rbkR6yBdD4CNsZ4L1ZPRMZa9/JIyhMnoIQ6SF8sRBf8msfzgTmThz6HcnBZHJH+s4Z/8tvZVOrHNBmUj888217GpWXEIAfzcaSH+qVvayZ1nuobh63XP6WCC6bJvX83prkAd37f0yJ697dfh/CqzE2a6QbKWmpNnbmmp1mjN6ZEVEmKfxioWtatDT1208idFM85+ZwmJfABUfLaf1pNcc8gLcak5GVIec5laMi3v2M/c1u5NZloXfv+TI2CQsgwzOqxEQmK+m6dn1mpYA1dLsoRjtBSCR8UKN93hi5gGhvvp+e3YZe27KmlmfJ5/HslcpMQN0Q/Ka9yQct/FQtuJOjlHhABafsjWl+y0Np1Iudex3y6b2n6ULKiWZd/CgIgkrGKbN8HVmXwUZSAMF3QwGrg60ZrAtXJzF8MU+WzSpcwPBDG/V53+4VwBkHHIDT/Z1ZAEG68EHNlP5uxN6DFe+iI5mGgpFqFr0jHkAquQ9hpxLKz4vf9NWEEnKjEjzYdFxe8NcFBhxFsSouZ1QHvYEMNJ26Q9yZ9K1Rzes/5C4YYQTNilZFRWDWzpN9maXSPajpGU4dwkTIPFekCVDpTuNfaLGcRqI0m0ewasYmgrqRJYpS7V++XMiAx1GhvPlm+L4xshC/IWcyPpzzaLrBBvvGiDJQzD0MqeqUZLqSWKQ0U9xrW8t7M3YE6u6Y2uK+VEJjlEHJTFStvxjOcuRwx6wM9ZopprzJSSzoxGGsTRVNrYagnMogw6CGkM++RVgZONEsCQpHdYYguSEETodgwAaf0Co3xlUpVYqfb4EDoxoPUOaA+fWMvTIWBN1wwR9YOFIxM9RzcSltWjrejmI9yclzvLzD0YIgHgRme+pIrs0mfC94Ctu+/gNz/ipMOAkFN4mevF7HpquWSKE9AM2WkL74aymv4UE07vs/t9XH8YqpRlCs6wPG2Qp5UVLCg+krFcGmZA8NU7zXJ6l0d5Q/lr1WgX8FcwcztVyN+D7nw93xZiz9r4noJ33sxyZug29p7PClPWUpHVyvsM5f7gGkbhpzsSNHzPIM5pi6e1nMQ4nJIy5C5LmM1I6xYgnKLl+kcpm2RypSVFjbeg5sYVW6kp4VoBFxdo5I3USLfzgkG7IAOiaqhneyYxtwgqkGUR0C2WFAJk+fBMJVWgaxJEMb3fYpJqLZDYrhsMEIHatFntEILv+fCAVZIPmErrFSv/ALmOrJekNd+jxkVp09HAE7AFiZ7Pt97Uy2TOppjHN+vSdWv6AHhC7T0tGbWJqSomRgcbgvK2NHgssgKlgHwggct7kO4LOGoAr5+dtQVDbAKrGsBAZvD7sS43/M8uh6/k4Vi0AVznu57HQk4jCcTFYCMN3rTaFyzpEJITQFnk0AmexdaKSTIahVW6BB4RL6dbgyMpp1O7gCFa5OTX8esjNpRT4clZ6GR9HNX2PwxVtzVoIkTva/tsbeX6KnYzy6IhZJmawd2T7N9bVgUiElzcocevG5263YfAfGJiaVMznMHxBzKf3APP5Urq47ZdaAidlf2yTV1E7MjPsLLretyy0ZqV7T1nP7K9B2YgOEHfRXSm+KePexPcxtHAsFC2sPx0Em1bAaSodV2CY8OA/j37Ux0wc32yn/N5cdacARlDpp4H5m/kwYVXqu5QZMJ09Ywj35htKvxFqjleGjCIdfN+6stusHl7K2+4N1lQagdXvaazggjho7FU9ZWkzJa6U8Qnx6D4bw7GWLu2bdEP0QUFOOUpeR2Kf27k9cuV4o7Rh96UZ6FQ3Go5pxe8MCMFTSiRhEhCjrmQT7nHB0td+AibnxO/lwHB3FNs0MwimLk3gl9sAVnxRhCGq4RkMWtvgJTA60sKez11zJuLY4lmJCwKA54Eg2M9Y9N8ThG0iS0VK1RWwI2AScRxKrMhTf4ASu4Kqx16iCUoA+scAy2LccOeuDoK69mXayoHIamxaaOi0qu4MXJbsLQh+C12Pq9cUbMYukPJ/+ueRwSMNQ5OfIpdxAdEmauOYJFTeBWm2wOPi77Qe1/xq0xdhsmeIP2W4+t+FYzQLRKgsBplMGD8G9C3BbHRvD4buBJ5f3n9q3fJX4Nycppae4Wuy2KseYggfhheBK6Qne4A7j8qxH8t+FigxO+RXROvO+UERAJVqqTap+U54D6v+MhDRVxAGIbI/L4hpB6SDhnbW9nczZnr9XJ+uGDUsozh1i8mmZPcZgB4d5R4qkESfMPr4NR7PUEJ0jRcQhO25908M2A4+DNnW7CYMbCBCRgEOhJAlxpSIihIOnc+EdQqs8UDdC0XjUnI73rchLyqi4t/vzJTfHa5JWqKtYw5eH6jF6EdJBCKIMYeVH/CkWvtcJPB9uADioL/BmnGabi7HqBQrc6ZaY9kt+9argCYAAiogEwPo+7GjINfjq6zC3Xuq1mpQgSgiBdTJMNlSZ/NtMuLHtxQWVchp0LWCIhgdKq74XcA5fig91yTVC8LQScovnduqB6LX0dxAUSJsXUnGgnpjyjuuwhCL3rx+cUqozzaNXISs/EbFhqIlj7Ryy1quWxq6dPVIq24yzhRk7ITWkNj9weXQSYKCzgyM/80jh42CICT17QX1WHkK3742uQdrACntsG20o6oMtJsNf1Ij82Himdw3RSHhq/ahmsHP3C0GTHQhSzTB0vMOCy84Nn85+yEdB89lbaDcWimwr9q9vWJWaL7TJCgUvFTE9t3c0L6flNNpiaT9L4KGzcwm5E3wtU21dPVxXDOSOyKADCISXn10IXpNK6H7WTLIEDdfAlwc6//v2i4tpI7X8gn/0lzkz7bFrT7xppiMJVMhTktN5pxJ+sIybPPa+pWVhROVMyo1MHWprkri9vVYq25R4fUMvuJbCNQdE14igUKB5M0znjgOBuI96PJl/j+44SwHuc8H0Vdch235NPns1Q64cHJ71QRwcBGWTc7RLB9tUk9FqMPZPuTJvB9tTiF1gCPDw71kU68W/+wcer7Lpnwfa/bTjicUywxsyv0q5ecLfLikZEnDUTQQrKbLokmISgTl71RWS285EndiA5SVeXN7w0xI/P5cdO9RQDcKc8Noc7Q9UqH7PhWu51MkSvIiDlhcNF90Nuy9Km5lwHlRbXxYKwwxM1XUDN/T9vGFOUzW1cC2UW+vLMvM/5abrbzgwNxyGQrL2UU/kYdiaZAu6DjsKfDGDkMwkHxQkfHFozurZ/jK5qn3eKXFthE2T99tVDz4AtUARVAKSQnEvYBP6K2juc0YXFtWwAfRfq7zQPhWyON3Z2dlY3T26ccuai9tqvLq6sijQ50ynLMkvyG+Z0yXnZ79Potq9HAutJmIYBAnWcM6jBzjAr2AeP9GGH0vzR1T/CF2dz6C5Z6u28rqZT4SDPj6sofr6y1fK0Pqm1FSvNh0SpCblm8VeA/pFb6w/zOmDPKkx+sy9CE2ObTUYx+wZ6BypRUFgpfOCKeqZ1zEyTu2vuClRQOxrixe4RYN7MnX+Itv1TfHFDv65zxvxzFilgQfAZbgkq/lu0zmekuiIAsvW+kuDVHHMaAkKrx3BSsVN1qKi27vuAPUC/dw27pvZoQqufTK4r9LteS3TpRjtcXyRADDHI/fmAWIpQKEpFDiyFZQU99FgOlUI/OtOWW2ZVPmTGadjzjQFmRdWUhnOJOGolk/Ldt3h5d4Pl/c7ksRrG44q5rJIP51ATBs2/oFXsGonlCqiiE/PoVHgcga39Q5iY+wGs+Ky6bU9vjWHUqI5VVKFguofJt4GXqgeKvgbEZ9zSq9u6Hwwz3/kFfYL4SwoLeMeuBre5w+TcA+EhFH64oKlMi8w4sJMWzQS92HFFMJgPn8j+7q9NsIiO3df2/d3++n+T2qS2vbDzqYESQpalKf/fdCyiNeEyP2takUv1ClVS/zcM3rxZ8EGueVtcqN+payt7IKQO0+q5ntxZoirEkm4m6QZSHmVPbkMu+dKPdhF7yDCBo9wQ7DoZ1e1MCTMRtNlG+oRygohmC0AaFOcCualGLuFgsFBqlt/RkmMS/ukAQ9I6s1zwUIx17PKISRmi4onQWhtq3zyA4tMlJLYqJ8azyQrzOLw2YhKlXbEmgkhPIHbYUXC0bs7D333+K4lK5smek9/+EHcLWxa6IWCje7bAKH6/RuAyO1mGki8mC2yytBMW4kYkzWjpiZx5F2TiS+15D0Kn/UKsWgD8pUQ6gW4G4XCfzzVADSpXiKnfUBsrZnXlSFpaH03mH98/DX1VmokxMmWCqxRrDdb+1QbVAtGMQ+qfXaxXV+tqizCuly4dEqEwHaGTv+K38sGyZsJIp0/t72XCc+TChN/2QUL2mqSMRmVFylrX8gBHnPgRWGG0XLhY78KsUmHUUvUlg38FtiilRtepKk0oJyru1nCxots9LQrJu8DMwKHjNLN+zMK2dn+ZbZekY+b1ESXf4R1la8awldY5OzM7U8phezHMOnE2Gf9hD4GOUDYW3iXQ1IRMcCUqGVqTn3hERdUMFLSHRieST3sOBmeUvto8IJrHzzj/b22RMvBR9M6NAztCXg8GXAkVcvNFCYS+gsWnEpYusEnn2xFQYax5kZHBpwNh1WtZXQ3A+AtTPy5QFynZyon+nKIZKKcpsCCv/GjVf1DpwOxLey2Y6lrM4yCzVdQBInkm3jy3N8LgSLi+IYRCgUqe/s4JT8gp0Sp3q0ZboE0Wg5Xz6YJ5sw86CNV0eVaB4XxOTlPX4ZO0N+2PqQ3dv1cpQ45sxZ2x80UWqtGgu8zX7aHT53sGVp6ShpzufudYGpRypQbPwQ7offnD1X+Aa2VlxBs2KdvYubl59dj0pu36sM+kBP6wt08JV0RfM3z9nwzzXV+4KUcr4gv13AQ1d8HFsuvDvWU1FqzwElw+tER7QjUUS+AqAwf77k0jdPvviOsm7lCRmTLFeoh+0Bx2xhy7LVWr+RMEAgu0NMeA6Tmtoxke1jUsf5FEDisO/a7BPtdY/3Y7Fm5QPQtJmI0aR6wPoHdNBGWeIvHtF1cUGxxBjrsA8tPAvvDzRePVgkujc2vnuTr1kbE0JPYx9N42Nxh5aw6XcHaj9pG02cgpkfE1JCNCnYPKE+2kR5NDYwFB07mBa+flRt+iS4J/J4exC4zBOA1x/VyVe72TZbHtNOZcAKFEGyEdX6pLw202/vQ/dHD/tnA4NC7Mkj2DAnLH2qyvY8EdgEu77DoTW9NnllUuG0cEZDOfXqaamF5kDVO++Z9PCMPWoTSDDxYvzpEfPhzjFtc4t4PFvM1uRQLTc1iPE7SxULXCYMbeLH9who1I1aozZd4EjtxAd3OrtidQgdS7yxo3gn3Tnlix7EAso3I3+2j61izWOr6SF20+b8qbG15pCNcxnQK6WcKAR9YdTe8ZdF1cNbh3XFAwd+pjfKEtYaolMe0CRisLQIM2fsSPg+sHy9JAkm/JnsRt0oM6rUhivqpPZjZAKG/Z+BXiYpaum/UbM7WN/E9cNNOv2Ci7MzNKuGejf+OOrQq3aqprDRkrMQRcC5rrIF6g9xKd6856/2cSLeTgecYRVeXDIdl+Y/CcaX3fQAu407HZFmPgUFsIIck0tokQ741hGER2abUcRGdgkiuUyNBfZV+Z5k3jqFSf7YML76B+47x8Spgvg3Br6xng2/2Wn7FOcrtf1qOoOXt6qvIepp41t2kEXW6pVTBv9obL5TaGSRBlA2Q24qGJbk+bpyC1cK66IL1TEsOGdnfVG0H6uELcDi+CBG4sfckOLbdPIbhP4YwiG4zHVqusxYd+YB9h+d+pcyHc5SD7ebot7aTiep2wNzs78qV99apvEHa7fNC3s/wAzoWGRmiY84RpbiJkXMCYex8A790fWXlG5FWhLX+B7QpH9eEur4NEZY+Wqw8cKM6h/GqKvL+TAywkkvgcuoxe7TFvpjdnrqVWKLDszQvm8tn/++j48/cLnZ/m8QM5L0OJDBRfzPIM2vPCD5KNVptuvMYVwXkTYAs9hIOJV7rJPMFJI5oU+WY4Adru93CCiOQWfV3EZdQDHLaveIx65/psEMZioIhfFjC53vQuHtGnmbmCexJK6MY5vl/66EtMl2wI1JKzeU8dsIiLszlr3ETv3+89eu3l36EGicgZUmCtsvxN3TFCcv5ru9ZhtfWg3jgyYYVEmj5BXB0z+z6CN8m5Ve272BCCejjrOBam+pgwGTLBdB+z3RBF9+ECfCS0af/GIk3kHvpY2BNi0zAHNV2NLIfKcISZyeMAQFFqWyBTH6P0MgDss1qi2q4dfBBJPgl1MeyEA5TpgkYkBugvJKxQrUONG2fzrillAOjcHFM0rpZ5BgFEfrU1071BSYgOUxtYvuz2tLcwCrraOvmP5jpKJtP0fayhkU0aAyXG5oOobv1wI+sdrXcvk5AW+2v2dkhym/iu8lhE+jsdRtiz3yWcQYpcit9AsSL6jzlY+ZsTElpnR9PerNHSx1iW9NQsatrDxsWfB3EQ3o5FVOrd4ncNmHQkBJZCB6bSTNG0lQe2mQ3w7Nnck5wAeeUt1Ydi+uufXlyexnKUo0C4/ZFzCQBSKng4SIScJe4P2q12i7zjqrhk0PTWgWJciogDPf0OoOWuNp4+E8tJrQ6PeJhPFxS33XHpAqbJBU/p5deLd5LgQVoPxpOowWmEHdEjR3dyJNpalQIhGkIl1R1z08GpzONKOpJf1GKEE5RCNXICCmJH32eY7x08UWu+ggguOEpvE2KqSU1xFyPGUPA58P0OzsTZnARmnlkQZO4GTvFZHhy+pXtifeOVD33kPcR7DHHdBRaMgiRzoIKLJCeMkl8o+kD21q6nj5gK5BMuQUDnmXPinQ2PgqHiVb6xSO3Ty30RaHysguiyYUqkMT1kEO1UQPfWdbOfLxv84HyoZQLBjrD+KcLFTlEg2UrEp2WflmI7Ly15mrZi9jmwWCXfdMKugA6eFzSwP/iFlAfvD0K42Jvmbn9fptnRg98eD30SBMArd1eayl6najGvVyRUXRvYnN3poqgpU+L+1+ldvaDCmJatSXGP+bytz4uTv2FSQ/75JUtjgZticfn3+YbnoLFwdQ1JyFNRryeab0i9l28qjrncCKU47Mfl/9s/XLHx2FKUwAaa7ZtaKmogcgPajzGEZXO4t72zSKnXRN6v1ku1kBJdRfmRKtA2ox2Q19b66F0ehjeS6mbzm4GirkXHggQAIO6PNge3HLxxPGxJaW4SK7KeXK06xPfagNy89e5uaWuHRPRb+X7avEyAGOA6ZQW0/MocQyy2WyCADgT/FzEOSw68lLne0dEQ03N6stTEW2MTszWe5mKlvRnG/w6UN93o63XkB+Wg6b+QxTR+7LssdGWpd60L+dQGxyI7cmVwdPNI32xDV8tZCTUMWRqPvhbeHaFxluL3c+Gd7RjmpxGPzAsELR5A8jqFqzxf4Me4V4MApm+aBGayRhvjIUMQ6zqarSBpMybz93h0MCMX10fa7t5Uxs9jfqh1LlHdy1d+wmHB/0Fp7XJnaKM6Gmt8KTY8fe30/5+kx05W+XDRj6SHLksM/OdM5lcs7F6QHgUl58l80/O8EsC/MkAtcy5ezXuEmrEPDWtmHMq709iyWwYhblexOpU41T2XZCM5L91G43nvhfmTO8H8RUVYtnrZpzf9ByeB7+MG/gwU0mE8TSg1ukdf20fQ17zAqEEmaVX0Yt3l41pXzOoXvqBYUgJrVvdhqBiDwNdoijqv3KWRr6o4tTaacAGMXiZeUSiUL5pFxq00b+sriWNHAcNUqaQPBwGdhOypAq2bQWkLxoaRD9Vx69MqtLhFa4YBvGE5x+3Nqnwy1++2gLqHuZ+6iZSKk0fwbIUqQeixxg5MxOZiQI4gc+XN4l5rnkZr7Rk22IYTw/Qk0dBf8+RCWv11mFZ4aOgK2UCcllmdh1slzIuKl+8GWZ04PPJg1+2Xg5EdWDCJD90mzZf9V6cXWYGMlxGuHatdsZPHHbUORuUy7bejeWZwXoG9rc/vsQxltqr27xeZq/8DhGRCs9lwWtG1+tnXh5CfyR0OV+Tc9EIRBP9xUE8DTmHTdIPmIWSFWEQBn0a6OFPyz7OD6Bc0xhWItfggH1bIg1SnoozJ7CNrf8gurBJbgBWdeOIjkV92xM8kOrWmWrHA7Xn/Zt1jM7mB+l+gwc9lzp4OvGepFJk80bzI8S52HStbrv+6rKeNWHR2IXoNDjFwlQeuwepNuid0izxAyckC9wcqCDrVyzDoZTh10OU5REugz86LdLlHQSSXMVZSW4j+uQyEKPIhh/on/2ilJBfzabR74D4zGgCcxpoRCeQfMz4tXdsCzUmjmnIzDm30jTf3wPVSPYtFZHb4miir/4KEGfQ6tSng+rVYr4zBbOeLWVD/MwCWb0UTBtoh9vGvwkz8fbQN3ZYgA8sRkFTM/IsjA0SvtX7WHNtyTibm5b5ZNHJ/mqgfO1bi/BA/IoeAZSAfgLpsam1qaww7qf5Oq6kyGsi8C06mq+7vcOedTqNyHmAkJySGlzYMpzX9XrZbd62QewnRAc8mKe+7h+X9rvNmc3YpsrHyQE9D8MOaxCcXcsK6A+/FF3PRXyPz+G4ESjBISxTrFdz1+kFVyMpLJjPiZazG+sytEZIZk3A8O2YvO2epxQc5EAf+Z4IRHq2pFBSTcVSlGkk5/lwrVbj4UTdgzOnmveIihRxwOh8/xzuah/QV4ntzkYPRMqDirtobO05UeofJEepm4eomrkkkL1+JXsPkdvzv6L5yHgf5v6d6tmoirBsyS7SjK9ZZdz8ddwFKjkc110zD26MTC92anr2BknESsbEgv/g0RkbDBjzzvJQTccM695QYUa9/vi0ZlM+WalR95bwJDSzYWafnBCOcT/PeyI+Kmkx9KO+mLF22wm/UxnewXEF+cq+x2P98MLWEjJH5xwxK6bhVCg+o245vvaY3Eq3SrKfezJ9yA5qlQ8xzQ8BRLGHqhxDXN1tDEpJcqHZoYoV+Egevs/ZLbwstIUQEkawcY5/3zUNsOQfqgeNFKiOg4la5QZZODQVCC1zVVg+dCvPkGHojeKD4DhfXB15rUE63w1OfVNVPhTcy0Z7bDJWyHsZT+m/0/wgA6KQdM9ODX9orPjvoBcvY5E+0NkAR0OZSdNbM8BHa9rAmpu+IfMR2LjWawv5img+0Y7435481Bhch23ykYcdNscotxFpDHDSHOnk0KqBZIeu5usjM5bR2AeIw2HWYe18iWs6pRAle7W3zCflHpoc5GucuMLQtxapxozDxnlXyWcTpGAgsVwSHIrl/kN7xTH2B0sUtT7tDm1psrn9NgdyRd2cNVCbOypLby6i+Vklw4o7uA6PmfgOGiDtxT3f8ACHOGNb+FMC63hegOW4k/DvJtork8PDp6Tql2LkAB46JhbmshIIsbJbrHJtiiyfVL0KWZsI5bJKixSMY7KhdnLQweH1P1n1otCZJPzpZk6Z1o9aZ/U3WUSqPzyq9407AeqR1VmRnPsUMdnJYsgstlGDEFX48RGKQE3G8KNETXd8z/QvjrQEB9cdHE5f9fHhd1DUGzjkyy1krdaW2sqz2nngb5Vh8YRUWnFN+pc4Vbrsz2SiFqymIjXxiH6IrOY09EFE7LHFxwzorbmQNlvdeuWRdwu040vGnCwyT1pAUtxZ/Xb6OZIgEgi0Rakdd4eEcOg8zr4OUtVqkw9ENQ5ZF8s8aNHr+A0Oa+RViKqRc031SwZ3N4Hdssf88NnNktd0w28v9Mg18Op6X9c/orypvjrtpnbM9NJrOL0Pg8C5FFpDxQ6CHZ3Xq8JiaPQ0c7SEwbSjX+g2sh95O2MtsWYLAEVQrzdlo150LZsphtb60ig7RWv6qyDmpsfjFgQJ8ze+3eDCtyLkM+n/+16PumoePAOuBlhdR560Eioz5raeUC7HfAy5sHlLSqMaNLyRw+V2LomchdPQNos+myrQv5adO5P4Mm38QUhXR9q2PJeL0ViHaZ3KnBks4wlEbWTibqBFz2yWTjZnmC+fFMyVYEBKtGF+Fgx/2y+0kkgN0r3OQQAeygGivH9ceLwA02t51PycNZ3IZVa9PC8xrR2EEbPtYdgAyoBhSAPoyeT/Pul7PLY/Ofn0YwwK4GaX7e14QtJlQM6sE6PX5pI9IcMmfnKK3j0tJJV3dTUBNQawnPHbQ5sTqW8+ajCzYP5KYEaMychC6w031hysQL5SAPf6wgHGePRUfQVQ/mzVP7D8CmIlp/Cr4ui9/m+9UdXkLbTDuPm90CdFp9hi6vNYv1xyesVN/FdKQeK3fxas8+pWWOn4ec7ZAi+dPsff8KOZVCrz7J3BJkDD/e1j6r0eldkWsWRV7bYPeAXVIaaz9JNGeArUSdg8yfj4W6S3tWgeZIPv78PLzmTpLBskYg6g5dOCT6ySNBl+VJ9gZW1Di9Ri9veVejDR1NvstDdgX9ebYPx0CqZXoYR+adN3JrxbIUp1IxDPe4fnP6FkjHcQlOyiljZtUxl0DoAYzKYbanJ2bnaLZSiaAgSgFoPAZzfLdkUk1hmIK11msOUzPZV2qmMM0D79mhJsCMdHXgIZ5MOqCIQwWh1aNmQ5wcloHIKonR8mNqVh3D++foOiyHmylCoOA9FNqUKWlRhDeCPbjJJKUuwe8gXIucEyTvWO2e/oxBgLEaMoINQHJhYAM1rclHts1M7htFVaCE3PjXVlHiJ8jxP6eT49WpfwZGhFEtFirDwhQH1vuqAFOJaBXcfXSiNsmy45v1m1ghHACmOW8PylfrjOmyCJuvf+3sU3FsylXe8Zh/J0Vsu3D/x3g9dYdiHGPpPyNYuaSRe3T0uJTlXwg+4Ee1vNHeazKUGt3ntoWAdJMeqBTHE7NUCemwBGLK3vOmzeM/e6LKl/AUJgnfipo9qBEgCNA3QYezioNaLDSf67A6X07uc7bx9hjyVVUQAvitjqvNeU3yZTGrk1OK5yf5tj7GO46WwfV423N1QFgSlBfagFUYuIudhqMXKD0s4XiaHLtYnoJv1LXe8NisvJbUWsE59D2d2byPr2pApZfV4aEBWSF1HkuK3AbomdI5RGzQHt6zMvmYLvaoKIXK6VVWBC4HHpHnmjRfwTf1cs5POirloHfT2SevQiOFWDzRjbyvq2JnLEen8D7x3ZBpPp6vkpzjLYdrKKtbodnLZuZwOC+EA79sZ9q/usIlr78H26Cpo6y0aEHVxPtHRstCdDxE6Emk6CwYlja8zsENdiOUBI8s8VccPopbnIPlwiaQEh/sYXsFqOxCexkMujgAb/Ap1F/1S70eEM/+SSfYWMSC8XTpWI27x7e9tTa181K1GDHgbDY38jSDpFNchX6nicJflJYUrIit6WvvNRdZjNtKUZHn49R9DqY1MoED34oD6KXbabfCdoIRJn9nn6fuby5BeHZFPJsM2/R9fUq2PXZxxFSq5H1mUoN93mxS8C/DstdWPUzMoA6ODLZ2DKnkGRLNIk5oQFx7ok16IH3RbPdK896su/zmERGWgxb7zBCZfvnQ/WEkxYC+/GTcU60mCowXMoHVorBgJt4PYFq7O2KmkiqLWnJSAv5vR+7MGzB4qf+eeD4u5cDKTmEdouJl8sKRlj9V9PSNmbT32/aD7R5mtAy2bPp/G/hjGvgTz+P6jVjF+5XYcPj7VoevY8oXyM/y5ZDtPBwL3tiSqauzV8nXkoF5WVWDSAZ/ArmK7wJM1bC8PbiNl8PhMyApc7jhj/EY7/etpU38Jw/18B0OYGzUceihWxLAr+vdEJTIlK805wp23/a4gAQ4N6gRbqeHK/ogqcGE5DomGZzlaPxtahgPZZh2NSrh1gFON/j3RaMzin3wLAGVk+d/n2cKJ6PdzhWwpMzWN+X3pl2lO0mWm/CBfyQ9o28eteZI1+ve28dkWmEE6i+1Sl1GypJVf5MffKuxe/TkqRKAavjtTCdjxc/sUjUGaaD3ZI1MWkElpQBNLLgcsaZHlrvC4mJozo6WT81X6QnzcVfY9PvOoSjbkwQpAwjawYJ/lxM3aAvT00JOY9UYAz0pzvuiy9A1VNY+iRnHme5Utr4mf0v+yMC1H46714iD26JOaS8nZzDUdBeZYoN+sF9ebDnJ/PhyWnNqvmAOXeijG/RHHuS4xfdRgdN34YW2JSt4TDn55tUhLHfMpnAYJ2zgg+h+3TLPdJmKHHwsEtsOApCaKVKnUsso1DykLcaLkU7JakZus50/wgwxHpXEqhX4Tmmm07CmkoGVDxECC3P5g6FF+PmtzOd3uUSWemmjwOyAmpuwgWs1Yacj1yw1zLyALLt0VSN+RFQ/EMGFhtEZ84E3stj67LNS8j3o1razymS39OSzknML9liTgOmGd5XNV5QG2rlFr/V5m92JFHQv6jT3ICjyW1/+xgkNK+4zZH6ncIuSEhjqb4OU8fbD1gYUrNoYcAsyLw7R2eHOAUiJl9aenf7A6+/R2+I4dKNTrcZGvwn386BJ53eqevtBq6uaHgB5jdu5jh49N/wOy+BP8kyC866EZ2Y/wz7xONVVTjwHGVYMJpnMRN5AM3MRUpTiemJRKhUsP3jwbjxKjOkTv03VeisZbLCaqRnsUH3QrLjE/g2uHsbNmoLkS/27ej0rhYbzqFjn1jKWJwz+e4AkuPY6nsXhErNZkwgpbqIo+yCcyHWXTqckiR0csuG+FoWj/OMbOC4ffSHE7T6ljULnkIv5yZuuIaP2FzII46zTWLvBN0sp+XVtkxqoIXuLBAv3x9VfyWHsgqvpGBJgpcl2+fEUYqn07UVaPFREIn5ZVr6c2bK0v7Q1IfL8AyxNn7fl+g2ZpwaA3iInzi2NX3jH7xx9G2e5AOMz13m/ln6JeE2bO6FtDcldqsT52eGE8R+1RDi1y2NsJqZ93iAZACyqsYF+HPMoFy5hDs+VsVGBZCQnm4XqKPbLHK9xoanNcxObB1D+FieeCw5NYZrWcNyQPEY7l/pa9xwJNUjqM+JRTDFpJloKc+DqjHDN+0M1EOznqaSSYu/y6AVv0ECk3HkN6L3ETtVsgzrdv8rJtSYukttPQqwV3QeZ0TJA95gFXQWVOAhSSK1MOnHNaXtG4V+FKdsdJTVDbeIO0dvGcuFHQUt/ZJFYHgY8IZO4oLYnRduXP9JrmlZD2iB+bR1cMTgBltMKyQ+cFJwdlfjZE6fX+GhoN2DVUH9azYAKWrQfLstxWnsyWdWiH5IkvrNcQs7mWLAfIgJ6g0nqP6rSxuRwwJz/3EOZm6E9/NgoGkALCxt55fcVtJ8SR6H9YyOndIBOPoc9hHipH0+U4q5ZRk/ciqtLPJHFGCTtpG/ekcYWbJynQaZX/MtzhFJPl903FxyIq86rIj/4IPIecPYmtcm5pkWZK8UsD67RbZtj0Z+89gHLbxl/Zg8lKnZ8inXogRbCu3Ta6u2Zj9aqfWEAKTgruYd+fYqD2gIOBoL/rZYkHCehAezoZ9kAUjbZPQc3wiWK4chCuXoqqTGN8nA+r5Wre9UgVVDZjK+HxUzFOWslY4A79tsQ+yLquzaFoCyN2Lx68mCG8ob3TeBqu8w/Ba1L6kU2rcMh89zYp8dwOjkYERJSyuo6/hp9SkoVy4p5Ms34DGRqmVJs17W0z2GIoKotOzlEhOAhNFtJDSZGO8bzyo5OqY4/U6lrvSZ1Boi/qKCNU3NM8MjFG7Kmf6RmM5oW8aOTjOgnDmzU2n+b7LKXz1Jqb/EybGTfh1ck54AOFNhMx/Xl12Z3pXHdOJfcahbaMDkXGJNSEBQ2XqVC7QyiPIvYfkIjkH+KgfjO/HR1JxpOtDb6oQ05J/B63J8QyYo4awbs8MsQQYUj+ImbXiSKrfcQKBUdGm0azYl2UdxiUJFro4NPsPOs2iTfMTiGVjmkC/UEVTSrdn6axVKv2Yqi/apGNYgjfw1O8PWdTpB/Rjp/OYORambekd0mUHm9G9Ao5rn/u2ECupeIhl8RHXDW1s5h1/3htRrvSpgP+RjHPihJBRa1OB0Z0LOX8QozsAIAhBtIz73r5AkIC60HRH2EzfesMKr1fH9QGRQQZSnPc4hSbgEcP6Nyo/qHjcRcf0+AqeP9eTFgMtPjItJcIPoQpVzqNOXme9pQy9SQsfDRsNTMB6X8LdYd61QqoRe4d3fQmySFbBChVpPj0Aj7WP9I5Ump4wYXEXSZ0oiX4U3skIpyh4i0KtZn3KdRcv6GL6LxVtDsy3KDMZta/fVFQpLa9sBnFgQNoRzgbHBQjviEV9Z3QdkFr2CDxAsb1abfDdgtykjt05lfC9v03qim4knl/j4LlAJWgWlCj17kM8GwUiNKDF81mHwvdHgbCQJJchT2LaWlddH3GRyPVsOPmm32yMmSQbDMGCHn3yInaH1qUiDk+tMbnGerFagI2a0Yv/Z40XAkcqnjhYo6LmfHAq5EbGIrGSfaRmP+u0L9+68zculZw5z7/0Qxn9F2F9A9e63sUDwijModP0FCET0lasHGkBkni9+MXbH4dXhz3NbvF1AIwYMm3zF+Ym9APXiH2cjb7R1pM3+diSA8ivn7Z99Pa9zDS/JD0lYtzvZp4zW1oAT7rr2iCuxkdsE2B6GJ6AdtS8HrB8gqYqNmWmdwIaRLXFZ4v0PUE0F8bCqungVq4gvuT/WuApLKoPNYg2p3PPZmHzPBZLRv7iNvG8/hMPeI31UQi852CLkWx65PJFIKrvbX/+sbx5hX7UmcxzHu1nqENHN9zh9vqExnZNpPSuUGbS7V+4f2Fy686goEiXTjkmU6BdLVXcsPI4XWaQCdeudWcVbXf8v12XKwpiyRs82R4yHJmuvoXp0J08fhOIXRXVQnHpC04FZb9Y7lU5KZeiHObc9tM0M1jvg0VkeoufFVkTEpcbHjv5Uik2S80ovNHvolFKuy9w+zA8qB0ur4mWI/IDs9vJt3ly3oMqNqCOpF/fVxObHvnTspsAjlbu5bJDRly3gp5vNjup1ZCRcdQqGdiVTru/UGhWtqOpwV9fX2AiZkHjjNoJ4YNl27mxhICUck7LCg9Nzuz+3g33OtsHe5EuNWPwNIJDehV9GjKvl8NUxnyrchfa1fd/P+z3Oe9btiXnVV7QQYln/vDdAGw/Owixxm3bRhmsUZc35x92S7Xq+q/tbPFKcp8TsHVeGCmJo75X+vQWUwYr3xo7wR0CdbwJZN7btn+zJH4TDMg5YTWbl5B4Z/u+LXRhOI8yHe9h5mST2Vy2ERfj+0nFBgP6ejy/FMWiSXydwXT/OGCgJt0dbvZmPMALPoJ2wEjf2av7FgLG1cOyjnYMym6qNt5y8oKYdkGS6LVS0IiX/V1An8Yd07qzokb/4Ti7t9cfIx3pMP3BTabhjk0+aOEBr8R2CWJnuC0BVvgd6K2VgMh8maEj+d37tl4stY8SfGGTXBa3dSsKdMLe77MSozZJwv+CGfuZAdBFK78r+e3/kc/R4jTbP5o8bM1JgrJUXq4n21sFT8KwbHehxtwKyKQPaCBpgZ2SJTAgBaV1yYnnOakgr7TpDvscMLaiZ4oeFQf90WYmUx57rQDaDCQ81DgVCAgQLqfrHbtFt3qd6ckk8uSKVQJtjLdV6hHNAo8b9ax9yKbApPxn7+CJste3mUPYVZqsUYgCVZbtSAxaZxMYltSD/X9w1z1BBoNusB0uXvBZvVAWBhhnuRdXgZuGgbcjSq2CdYlQWErwDnNMgQa1rX2ZOxQTjMtaOM3x1ijJ7P8eCJBjuVId1VE969sGm6DQYRcGCJ+QW6bBMc0P1QnoIa98P0+OhWhUcKBJfnV3RKkdI3oEuEmNabW8eYgqqWnhUMI684x2QG8aC49hHKEXRp+P7iIgVXcpRhEs5TX9zD0uXKCXjptTruOl9u+vPdJRFQNBjFHxgfEF+vuWoel9pdGuCqBFBRg+Wk8JgsOe9rPQjCQ7axMLQq/fcBC8lJFmNJKCZFGkP2KTu6928Fmcy8vH9Gkyj+knS1yLugIfleRAHoT38EwkTuBSxWJVpiZmRLZNsJ8CFioIgvlxApYPhgc/Qr9BjiwxNP/qB2HWwo25Fq9JyNfGPSDqwk6aWhOCUopHs55941mdXxRm5W8AF3jyAtlRYWa7YLQSe6RD5woqDmOq/k6QeV5maWU6Bha8/eRSHy5yPd9D8PQYL1/bBUP+L04z43+58+LM0+tIsgAM1EPKWaMTfOiBr+i1ZkqZqCr6ppQks76wPNQuO7xlWelX0LRuWF9QYBD/YswDSuHUEVSSb66P32CDyEx5DZHnPPn5+4+MaT7Dqd6lTj3iNvrklsXvEyHmT8cCA5I4sf92zKYnZp0toaswqut8XgD6MmiQy4vOuu4F60cLFpmsVxHCzcvuIa/h+bK6+6CNABhpH7PpxF2MYmRHNUp5CitcsbyCVrKbyPEzei7AYvvt5jV7WR67+DKSSQEnr8Zxj9PHzhfvrR5MZj3XwpZ3qtaEl7A9utLyiVuroS/yFwS98uvPpGv/YB4q9lY+v+KgTMTkfTPEUGpsqhKMLnNvV3WS3NVhMaci8hDuBv17WbT5FALJX1TKJooUYuc7c9jVk0t9+8/7tVU/7n7wqOje6vUs/ymFM5A0m7oX/yGGaaDlX9qPGsiKhF7YR5UWfkCVMOS91RkZu2V1cCrMP8wemXshWSuXe9wPZe0PHWTz5FD70sUHRnwgYz8D1RecBYM/jihFndClw5Ycb92Ax/XH2jveWBvXHs6vH+BYQ5znFo8l+TaUGHgC5Mjsk+T4uOvQxw1XTBcfJxa6Lpy4bA0zHH8O4P4Cyin+jXAF+9xtL/fbRDhOCJaGjM33kFIwKS4r648T9u4qaTTUMPBqNcrSf2FHu26EugfEiUFKEkQXO7YvbWXUDv4735wBq+1Sb3vqqI3jAB7dm9odfw9JYyiSGdFcJzye9qpBu8i3vCO9QLtMLdn9h8Wl1tW6YjcD16Lk0KteFUP5H7Chd/VlY0zH5hNeDAz7AMaCgp0SRmZt410IJT1/32Ek7mCVTEcv8hKORdm8ttVRh1Z2DAgFSmEchHwZPzw8nyeNkB7zONzkt2Mz1+wUvc16XdGQlcbZfPAs1TOCvqb68VnG3r45k8bpNT4JT66mipB7W/e1TE6D6xfN+mS2XvugMRwj9SeHe+OFnOogjE9c+MaGQCzPzmTsuvJbmJT6Bd6KQtVFEp9k+j8o35KPYgSXJDNB4l65buGTeb15D/5J+6dXDeOxzReb5yEKk6mqDdZNUQx75NoBcdh2RFGHk+velreH0L0TTXQShmmpFMIFd6ymIRs5p5+vdk//dAwajbZ1cCOtjneQvqHv8UVBUtnKWNy1UmqbxxCVcECRGQ8WdQfksR3kMSESy2Nu16RoaE0VTr2cMQHJ0+UuJ/9MkfajhdgNQjhroQyMHZ4crjZR2Tj0THkS+F+vPGflxa0irl657CucsqY/jsRIFDPrVIdN6ZIojiImx4bCk4sGQKQcQUDQNDp/SPltRiUAr4uAXRrvyrP9yunZO1GAks6GtJB+afoiPGb51YRPYsWXz4dT/z3qhUC12vgQ5C+QmKCg/EJsMUXestXd6rrFjrFD87fgFpl/h1NJu6oPtU/C6WATr3rjzMJxAMjhWHUYGs+xzAvxsR9xMAvykIje9HqrjNqM1pYGm7uLdpUR5/r9oRVNn6QYM/tqX6xgDzD5TUDU9S4PSmFZwvuqYhfdWY02uG/GT0PY9AxhWZidOggq93N7hlVi6nlm7IjUjOd2+tq5YQXBEfdHSG7n5+ZzpIIqSSWK4v9VR0CmfG7YjnUiaUU8187DZDoYc7rXTYikjY1GS9QMEPhYRq+eLSL8A8DkE0wVe+Gao7b/VJGQyIIwu7Guy2q18jCxB94UGYBCAHzPnuKX9bJ2bx5s4pblgVcPHbJHKfxQqyMnnIy8MJ/bor1yd+oa55QwU56flyS+7HluEOuSQHRT+jGshCQc6MWkIuhrF5/N2evSigzOUKnCq/bvV69VX3dGFX6YgZzQjL8eL93j4ogHsW00HsIoHX0N8rE7+Ra7BdIr4SisnXph7BGYwnSveR1RSf9dH/fNnvMD3soFRT6apNEEG1jia2abT9c6+mOAEumb1IEknQEBCQviMKiV9V+F+2HRe9SCwrkMMAFPeftRlsdzliFtEovvVmok47t4MjrW9cRwHgNfj9Qni1LerlGRyYPW2j6IPn7EWMMwa/v1QlV/i8162sQ4+vAJ53AhApNY8VEXGXec5q9NOYz0HbfVnRwwOX/ce1KIPf7zdY8Xx5bKXKUa1gK8o7vxsG1+yV4KuEAXuUo4OsUeY5Fcv6iTHavCNXjwAhM0OufIj7iCfRrlnwUgceZM754FxVY771Zvu7iqKE+uZvn8xOvrrgEDMoUf23urZVEZoZqDja/9D+MnvOl+gMfWDwnV33Vu0P4z+IChIAa2UK8Zyj8JBQSGfbn7VmlQBWesKjoKdUgjR3RMlvQ0L4tjH0qkwlQFjtUs2hRUGAF6tPYdh6sLG7gq64Trl05+FEN0cqaZIHQnccJL/e/L/W4+lQ0M8/RHgkhs8XlvWeMkDKbnSAMOgA6xq57Xe3QlkTFXa1qa3lMKOJO/wfDo3yfUM98+z9vaZ3AMZ/4rAdD387Lu6NLz68iuAHBs4+huBdpp012yO2TEEW5mEcShUXp+fTxCfo/zUZQeTzLQcqE/ntWOwl5Wx2mjXgIOEi/bJf7UiGkTyKBzbvpYxPlGvdMnZSfoXRo2bgETVAh2XSl4aQyjoIlilSlenvXxV4L19egRiUBL4o6JxzP/AGQTBTQVjQkGRYlBmxy/eZSjXrvtyQAwBDlvfPVl5PlE1tGT87RqwCKsqiMkAzeoxyJgfshhnxxjV95NiTMl/V8QuUX6IlvqxjWHN+q9Pdf8+hv5pZxEXd+f5ZFMBKQuzPMRPrWWas2Uvbd2/ZJ0x/7M5nZo1Rul+51ew/nKzKl00Y8g5rqM3TYwFzAia1e6Si4dxadLzmKFLLEKE/S182pjCfP4Q50o1wEYHrUBlwdvDmqbOeRk7Ps3zc+sZs5xu20IlqXwR/y+YyzSJrm276/Hk0FSHucPVDuVtW12QIl90mudQrCnb41qZKJJU/16xxqJEAKpDuLLzoAVRqrMLTuq5ou2bVMikbSad/yGC63Py+UlAJi9wmOjWqkWK/djjWPwUr+qRB93wYrYgosDUEtFgy/KyredFoF06otKw7aRGXP3iiqwjFERDAaPnIodWdUXqKKprHugy0EPfy2TDSIb8Llj5IQ18biyrvmEXaPAn4g9QK+k77QsRJGfaKwjf1wNP14khHCGuqzJYnJooWU8i0ro2GLLxXgn0P+JtHwOxStJUqVspMH43ddL+13KjPSV9tMkvl4I2fhHahfhRji7vEAsZpoJgnGveCPnJNeodqvBEJ4hDpg1G8vGUDaylHqEA2zpOLjihYFgOhVeJeNfjJYXwif7FqSlqUdWvhCb0r6nqFt8wZzQjUS+2OznJRz7gttfSTOlivaNu9RNCPgLI/jS9oYuC6Kt0sfXGBFYs5Ci113f2NVmqhntXBRyO1hr22dhUI0iLKaTS8qMdaJKekUgyFNnN8758/zsDP+X7UqM0gugKMlKWbqjfhb1d9tihc2wnjsxfWVDjz2/i90YRIQHujzvM1UEBOf44NS3A4yHZkeNu/9Wox3BQR23fXtjEf6EDuWwOFedDWQFYMCU9c99ced74gauxbcllSWdW4iZI5QpZ+n5RDO3HpUOHRylk7Mr4+CFyasi1vNspQQ3q4vkXJhppBC9i4ec0xHhqo+YMA0rXtYUMJXG7KVfAoESu7J6tdfyrLkoZuEaAF7rde0GgRb+0DFPJcS6dmcw516NJ2Kzmw922vPBLaX4w+kMe6MwI2G4bTm9PHGiGETj9F3oiceGFVMhP4xEPCy0wRglAJMR6W75bVyK44DgKtSqtjX/hUon53naED0WnTQ6epdkGqU4O6BflARTPO0MTglGE3Pmm/NSbA6b3u78ChglLK0B3xpYTPcE2OEDUuJgbwDcGBFifXgRlMRsPwUINa5tjZTwngt1RDnOj+NJl/upkB8ato5hjtF7qxYfPfgwwnIzccC6uPPtf8HQ82I0wPELiVucmh0FMlsAamyKSsKAaRwzJOG707VEGIN1A9p6hGG1ufkrPvJcX9d6zR/vdSMMr2E10pCp44BJotGmP5zALcOdWwvNXr3mkdG1ExmBEtJvq19YxWsSPjanSrHcEnceKuOUlJq85tmhNy9V6RppZqapJkiHliJwBQjj/nU5sV33zKUqQiTmrBcoKpigxohgPJRqHN+hc/dBLg9OPVtXnmxNZuvbtnM/GStDxadZvZj0rfUtF7SjBPqLmWNSUPhVTu9mBphGo62OKI/nRJf1qLjIsq90OrDKTQOFfc69aqArUcJuwaRG6ujOTtyp+8NpVy7niB7bG6nV0IDQsz4N9ufMnxCjiP1juORrdGCNRRSGuyJdbnGXaK/KVDrtqknwrwtwwrZ8ulchoNPSODYwJHXjhVhY3yw+JqjA5ATT/I2+id+CI36IkMt6bvaItSIU37EzHMtOGt3Cxe+IjEjsfBRJezd4pvz3qLmi+t48jSL5h8BNmOgROozZhIAd1/JIx/V8l0HdwutciAofJOdXk+ESp3sWuD+A8WaMw2r2LTHtUNoQwJxoUEJ6Xnc/BpypaNbe1n0SmDluzyPA2dGBa8VLpkXxywC73LGy5qwRBWzHdKYPBuh2o4OPzn7PDdskJAhLY0BA7Ytln7hg4v9dEbeROWWmIyesUwjPiN7y0Xt49qBuy5FtK/Ma41jof7R4spk3q75FssxupMvoen276zIFYqgOc/HAZnHeeNiazDX3osVi1ChkV6jeWbmvbFiYGCB4AaivvldvhqCRKLwD1NLNrp4TES3ChpfRA/O48Yg701JSEd3mEhb8EIiuY49OoyTe+hV5KZrdLbAJfH0WG5hiNSitMSIJDaDoW4FXa3hpujTu7gFulwnkgH+6kKX195JY7dcHObfX0o1mq59wVdf7S65/B0asq3K36mHx6QcKYe4sJ/Pfy4OTNZFvTxH8PRkRWDxjGIAJxzv1CXMvq4rwrG/MW54DLJr/MCne04HUKSj565JpXJnFrmH1jIHRcXp5713QkrJoFuH+pIiu8cqc+a0anllCBz8FtgIG9EtKW6ryhIMqBS980TUNJbAbymT1yTkOOuThaIoNN1sHgzPpBG/oBctv7UYH4mzfEAtCMaGLV9PnRjR4FW2xYp6+fIpJrU5WQmnexAsdYdTEmeh++xUowUooIF5b4eEFkKElTo9JRe8rfp9ySUHbFoPK9xnsVeC8AoR2fgKL7qd7j+D1hrRW2tGLql0luzRLsrfqyjpXEpQD1bPl8QXaQyGLTgooZ1fDGNYm+YoO5cwJZd3nkXsTV5dYzZqN05WhWeOCeND3WlsG5mhU7doYonv3unRfMktJiDPX41RbP4gc8gGr4ykOqFAmoVdOF+kiXwm79BWuhkequhi0e9fza9rAPQ83VbVl5UkycJoxxRsqhR9gVGJIGzaYtI9//GF/bVLU6+YTEGBTRGNz4SQUbybTl85Q79HqDnco5enVyNj3eQPjzdQMpRxNzAdPfcrEGI0P4Wmtjhh/8oF5bkadqa0rWAmHvtQiY/d8Q+zcvKSQnqHF/vf+/Ui+V6If5Erj7BrYOY7gMCLDweHx+5KlbilztXancHJ9w+cVhiE8fGuS5CzF/Jw0du4U7+6CLJTza0X0kODNlyso+XYu4EQ/L1KUaVaKSnAAq5vmWPAru05VBPYj2/KSZH8jRIjKS+JkeLzPGqK1HdvTsV/Axm8JJidKq6b3GfdE/f8SnKO7wl8hXemeM6yFUHu0PeODzqOIpF8EOyvJPNXJqur0vYBEjeVl94CUM6gzmjZOcGTvf4xGefYktSjfECP+gXugDjxzWRYZRKRREWa+iI3ApaPQMlQEgPnwBBFZ9SeHJ4LuTcZcHgFtfsyXaYOcBCfsxi00OruwaJ69R0xHoRM07r6kh8i+hxfmRhUK7HFBNoA+S1T1JWzw1Xvx7Vyx//Pt1mMJnBWT8oQUDbsUjmMjveAVpboB9X0qdM54gGR/Msj2BOlfuiBrTSexEKap/Rfd/CwfncQJzbsW5u7Z8gmlXNoFBFpxrp5alL8v3SUymqbWxWzMnEw7EOW0DeD0IF7h5sAEUEXi5xG7BMr3vBCIX6mhU58b/G2GOYlWL/9ovBaTytUA7UGfEUOZklbp6ytv3nfG81FBJiRmDBJKGSZ4XbQgj2QXXFuRXkHyWrYCp7qGHQyCkrA7BEvfEcRfhwMeo1qPT7kZnHtymG1ua5MvmV3byc48A/+E3paDhBds/2DhUlhvogegoLtZZ8zCJWuZCbuoSFs1QQu/DR0WQMJJD2ufw1eFMHqQcvR5REIgiouS/9YK3rehrFURUj6WiRcTxF23Nvif02sVT5Wu9B1D99YwzWIJDafUstEMe6LLacT81w3sGyp2j/MRQYJGKELyXphEy2TPOI6ZrZaTUi+Ib1MaLtx3rAxYMn4HieOw9w8X85HeYuMLwOWVgMBGZN/heWJ5JcS+IE1O4372r0wjFc7/KFfHU+qzYO9PAu9MesJdZj2yRke9tcb3+StoyCkWJI++MecOi75ZkszA3HwjgnwGix9tVlmWj48y3zYKtYphdIS+XkhITnQEUiM4BAtub7Ch2g9B3/f92ROf8zQmIWcyjjJqa4LFcJOmkjKEHrn69IlfxVQWEj+pnl+03f2nxAxCvEAvbOMrmo/MrKPdjQp0/iFdp/g3ikd1YTdR9pZwjmUBxvxAFTwzRpobc7LctceNacIlyJhouA/XGuyka5BLLduB8//0/tladqK7KOB8X3Hdf9l2uMIn/qw4TZYLPsaOA1nihQV+V9zMW8GXy6RgR9S6cSLTQ8Y0omyJweeKoAf9M+oGhR/oyvGc+FuGd016Yx0yhxCnqhQp70b07CG1x5MXsgTWg3MM1Y5NWtEzixQkddmodifxpMkUMsp4UPWc/Nu2Uq+X0j+GhvVtYmyGNzmUyiPPMyu+oAEwGQMQyNScLTQCkr3/dEWDIR0czUEjIL+bzoAXI2Xf3jNwDbQInPw2tjIj6tuMqnt3sqckUpLCOqtKu4ERhlNtNzfCWTMC0hzRRFAziC56/Qv7jW4ezti4h/QWTXFxaTWkyrxBHaB5DGsyhn3JzPIM7TRLjwwYs1xueZh3WeKoR1V8KKR0nUPEKrVq4GCGUAP6Mso8QBVO94OhARc3JUcL0r/uIfVIKXsWodqLCUdUqQlY5dj5h1UJGje3c+ieEP0sEiMWbwXE4HzE8yz9/RS0zZIEq2eO91NwlzyGVUbv4EvOe9WwXuwHLLtEiQhsB5R6t9Q5no0vWimFtJa6NGFyC59SP8MGKlDGBZlnchp+zVNsv+BHHCEpoH0udkMr15CUdLwq+bDmVHNJkiNgqQ2akQe9pAUaf5QyCPcuduTF+90GQW0eO2WXlEETfJ5PdQjE5dL+1mxWluRXufWwx2vkHhc2ti1dyTV3/G7xw7ccSQtYASavpk9dMInrazD4EbVYm7NVlelud1PfEUTXKewwO4T2vH7dIn8OvQHVWoRrPA2W2sYv4tf/jb89u0HlKvBKQtnwIMX8aIj9PhHCBRB3uI6iPphLpsAjsAbCgtu31cr1uECCRTj3PMjgq751DzXw/bwLbP8IkoQi7DJ6yIq5mu52bIGZpv9FSjdWzMo/A0grr3GZB0ATABR24VJpvIyXK3t4I5BW9Ne5GQ/6q3ODakZU/N5sQew8MwKfMcH8I8I4BQnzLHXCyzvMju8cZV8h6QNw6hO4zY6SUjQ/k0WbRXFfFIkXRIYg6YXdsJOZlW6nlkKeou+AgxNIPvNtkHvBAhK9EMdF0v9/Mnlm8rWQ2RAqIqnfcQELiMTABHOOu19sfujKMS+S/Dtsvb8jzOlokQGbbd1+JMUZhQ7GKh0uJ5UJjppl8c/8u/R2EaL7/VqSXRU2v7FQgzF4kxk7v+f7olceZipWAq51PxFLFzvIwEH86t/+f/MAzUSCLMJx0g7/b6wWjltCy/IAmR0E1bUH+a62vY13tgBW6uGpsxwraV2jc03WGIQLsZYDqZPTyox03J/kiBTWAw4kl+pybW/jDn1OSGvQ4UM1FaSW1cL3z3H7/v8qu8yYlTaoUyNbMmTz5SqdzxI96Oj2HacRRDmAUdvuJCWe5qzA5XlrEI2yf4/p5kwhHL3mHMeO8boZJgS7QaTPOTPrzzRN1eIdjdYVqO2cHiFDM0vud2I1000eH92QzZ03f4Vbs959m3gwcSOlht/efh1xZtnoV65drZpuefcPHe3mKdtlPDGzIzCOLqmuoY5USdmNa5LKWMzwaiBuQEIXFp2HrXTypcqQdFnhBKlJA6/1V22FUX5K1X3A3C0msnLJvcfxXwosojU8UHvWda/bCLIreBQvRpOulLz65T89h/fqTe+DmyYjGVv6znDTr95w91Du1CKNuDcbfWKRNEoB4MYcYOHqH1Hndz+7o8me4URm+Peuq+gZdx67K6BQ7ZT/KbVLnsbjx2TsmzNXgEYmlffLez/iQwk4g9oqBTuYfY0dy7TepXVQ0l/Yh09Nf57qaqXTy2UTOOMzJZXAX6r3dN8kEis0po9QEcK4qGc5ArMuAhRNK0FubnxgGrL68SP4KchtfTWauIsyK5l6D6yqXG8Wc16l4CsZJTYysD+Dk/z7ykqLvctcRK43IFz4oUqC6QsCpB1PphrOAjRlVpyIa0oMxBx6cvRA+NIY1f2uKcqiUNMYqcal2uXaCIIPfWyqqrUMS1KOmq/Sqc5BReObE6zXpWkU7aiiGq1IOHPyPOGKNzq1qxZO5CaeXEwwkO5CxHXNri2A+oG7bQYbCUSjU1U11Q9fNEZGtb8r3HAmOpyJ1KZTRb766ui+ELyBacNAJ3zk2t7E+1vT09VvycHCKyUKvXEL8XdLfct0c53fltsNtrnLIdjZndg1Qr9dSQ4/UVMY1sDbWOp0Fy1QtrqY05rvJnbRf5R4yMwdp5DejDs9ZHR6xJybD6hO3BqS5HblenmKxg4sEuAWr5v7dcZie7KBziNlMdiavGZ/U/X/PeENV0NqnaNH0yekLmb3CH+EF0hi1Pj+DUMhzxNIPkGKLS4cyy8DqtvqqwwwpQAnZtN/Lz5lHggbh2B49LOFVR1yHZFaJ2/2petoin3qR8SnwYWnFkbhaBtGbE6Djd9PneymJ2FwOXFLfa3gQlPQ+N7YFbUQ9EDzrIhPJQq6Jf9X+HWgfRPOo3mv3GzJFJxEmmojvkjx2pS1FULdUMb9XySxrItJ1BUoDg56lBFKm9+uB/X7k4mCOrGwOzve56z2HtzngiF5igpj5zIh0pG9d8BUKQUE6owDEPeE2G+4qDnKK80Z/mDkmYtEIvUxU1TJj61sS2gYXAyHLPkc05xDlvV1ELaooI18Q6dI5hM2JRCSHzdbCq9XEdpPh/fMDJ4kWimDfSvVl6cuWMlD+eI3dOWplF+vh4eNGcSO4S9M10PB1TeDiSCFr1PhE504dX9v3rplGs6pItMAfneVXV8Ei/SmmxmQ8YQpQhHUOw2CjZhD6ppEP4Ep/f6BOzd7kG0kzk0E+BWR61QvzAT1BrC3MmAtgNarLvlwznTIwFcQAA2pvalEq6zTxIH1xKfxo66izyK47DwhHWtJ4dGtlmKWPB6sc60PEnAP9snsUaNfQUTu67+29t7KhjtM7feGkGH5BYSfra1eRnDvKWtOo1bl+6TwxyGrTPEhY29LSTzn/3CNWZeWHczCo53ZQXoNYmrDKMrO1gMmiuk/6ugYEG1pgib2KrE2x9lSJ752nMI3ObApCURceF76NXz7y2hvpYMNQKIK0Zlton8UTbIf4724inGY8t+QNKTIQde3T6VfMfkKZ0J5GaIW1bebTrteIg33CvyWAtYXU5fM5kX0g4ecGawNs77iNhEPiFhKGGFg6JWcqaEPDzHVAL3v5vqa1vJK2csxFuWZ0kchvO0YoZfjRZeFhE/RnZsHsuNJdTCiWTmpQ44o/6nRTiUhPfclqrL120fddyt1vUKf1yhVwYHqxrdcEJY1JesuHQeCxSpuoqiNi/Ssl+GyMH4GAG9TX+F/WPNmUHWGPYkO/NjaK+mfDmBD5aRm60XZ2ntq9MNYDCbfQS/cUOh5pyFFIQ/equ7BWEZisOvSrYiM4CHUOzQ+JafWQQd2WbkhROXVP9TLjQOjC3fKFWWJc2HoOiJpK8EdUHdaoDfs5IElAwNe7UdzokoVx4w76HQ+CmsRgywvRRWwvGL1FW7P2rziNQ90Usgwqy77YU1glRkUAH1bukXT7KeeXOGusAhcLCrBPLucGdJ4b/hIpbJK7iK9SEAqX66w6YNOq8HhcJ89HrHU7yhEmlFNuEd2DhWhqIxKIfRXpHKPT0yoRroMPc1wYLNIvpCz5vO2LmxmFA5ZVqfiTdWn9YMuFBIZpDyaE28Ysa9xLQi9VOEjg2bV+ESp91W8pmXl5WNObI1KoU06dLr6PNWgn+srXmfIXeHPRGmfHWZz5YWin9cph0AvHCieCPCI9LO60TshK9WtPVZyzWyHoXZDriQ57o/bdiB9KX3xv7SLkms+ggZVV79b0biD1VuC7/4ag4ELN6wrlWMLg3Ldz16I2MC9uVyu8Z8jTXj57RP3noeqRxiHVxICQN1PS1c05HyAQvsWu3kZa/Ub2GTMUV7ATYdeoD+uhN/iEcOhhrTDHP56k2bsY+j2gRuKoM/ZTSdQZELbX0jqtRyagp7p8nSag12L6f5SyfQalv4P+p2bkQt037k30AalnWveKfKR1fS7kKcYik0GIw43kAFxCuyzNXJUrobKHPCJ6shXWRW19FPgx2RWna+5Cy+a5yBNqlIEpmwQJs/VQub9tf27SAXmDsH9QNz8WRy61CVnFCmdA4jd06x+nuTYBK+n2SnKivVVdDj3JHSoPqUIWYGq+yv3UUECcC65dIZIavGcs+zPL5MjwGDxLhJlr5lWgMcQpjVx7VgSoFwd5mZ9MitiZ4Fd1TNfAhJzjncHbU8s84ThGQ2btAZXpm0FNe0FSbdvbPrWW+J/C5iFelAdgak5qRjsYqeOkAJWGonrFxHu5sqyMJrJCJejYe/fH+FTgHYsCf07WG8dx29NV63bBU7M/vNvNwQeNawXqU26f4HjErLmogQr5P0B8lBKdtzLu39XGj5Cbd4MFutcHUk6HU6UCjFHtCRsfkLQgX/dBp/FfkWVXmu7AsJKqZ6+l1HuDHetos1qRJ/K9Ye/ijlfFflXdbRyZAS+ZkEW7vBRBJPIay8ofxPNiG3CqJ2C7Nu6Auu7C2b/kQbD8sUoBbfuJ2iogqD0DcNrbGr9o9bpELeMnnVM0Zyp4FFXUJtUSOUCNvVwqfqzwi4Vi1MOAEB+/4doh1OAu06MYDw1KV7ryvjWos1F9h9OGyUdII3SQ45z4sgTDOZD13HRtN8Iuk/7lHtWERJ1+tDrJEXnXBSmAzLTA9zhFOlkEM8Gof0sTWgZ9xxG6DHXW0IEaW0XSLluYb85c2x79bJIlMt2JblQgmGw8Djy5hUb4djW8o/QiXANpnKN2LxkH7u6+SbXStD6s15QnX7oxZBgBjINQOx786sX8RiOrypVh2Kvy2T1ZDhsemEFhCVQWjU2kYUhWEMgIhI00bQKNQaZ1NDKo+c3Q8jLu6UfvkCGm1cHRoVWI2atm8qaWTSrarAbya4gF2OZU5wq2jDIPvN75e1MYJLH6vR/iOu9Ek6RziI4Lu9EdfgFdV5idN/LqYwp825Iz53Q+JOFv9QEB6TKZG6orHP0IRlSqevdkkh9sMKIQfba6u4oIv7k2QxgDCMLJem7zQB3hDLhcIGv77aciGBGHaZPPEQzpg6zv5XTtJDYQcIUrYqLNwL4q5B2qrbiZsoHsgUg0M7bdt+io6/YyNnjYRgA7zvU6VFk6x1U2KlX+DroBkek21GedikEWwdoFGEyZuXACdyp6lLPC11EdvOJT5dE2gL6KjarZhDtrd5q9r1N6vMwayGE3MTc/aYHmdQX9cxSzsbrxSfb9P3V4Irb5P83KHi2UbWHk8NnNdz/a6SAjS35lQtFUOZh5ispWnIHwcyadTNcwCw1yduSAlsHU/AcKIPuxy10f5wYVCSc3d488MEtmI7dvwsM+x562AqS30cJecfR3r67JLqbLtXjGuxFlqrZ6/7234vgDux05h5UPxyeo/J1c+2HkU3gItiNNOjGxuJVhFK9WmTVVSeH/UMN8C3U5P7VK047zUPrlaoNUaTgrtEHvzcwuT0yoSP7mO1saHjlp6nmC5wbJZ6FxVJnpqbw7ktdioO3y3MLw0ZA/b4ZHVQwsfARObM1uBcQh+q5EL7Po5ObZV7HvYAG81H24jtx6ScwT/qiPZsTqczL4Z32s+gfT4n0nl4kGaE+p+QIIsTJF3RS4syzOhXyMkoeULtgcpy0jCVgI9lSFM6EC+4m296aVQaScR7H7/tk0LFEoaF148bt2iFULg3r8pAasxhQ3OcOLNtvd1YWhi5tr2Kq8m9jh4RVLTvYUnfl75Ese93AuIzA79i8vZ4a1CDDNCNg/khCwDQhlIYMlNNSHtTnWz6C/OpeqVxeGBesLTtW+IiRwZwhlC8iKqecf4iVOifjr7UxfM9Cu6Ns5dRuttCc3rFxVNZP+vcNTfxXVlCgW2/YcmEiVQoYqLXfeJYrhWTK6VK7eyj9RVc2TCQbDQNxm83SnsbCGQsUAke5YaqBRyKdxN+Xr+o/CLdyA6nxUF2tAx5FQkMbyiHb7UdFlPNgOqfviFoe4H6ynoVHDryCz0U/r0mLBxfL+CgH4Uj95DWvPtIrflGE9Ei5BCU1y3flmJvlQ6IkcJoYed+CZxSPfzdMmRDPJd9BH5DdDA1hsEhDwnY6X8VbooU5F8LDtFND/XVC0LGpK1LiR4wVxD5MQQhuTj8skD8u1OZdmenBazAqXt0wQ+jsgvL8sYtIhwhkYAmxAR8QMLn6UWUv9tEJVG4V6Z/+7aDqqb9wgqXANG5BkbNacwv0817mmK9au3lhw9Ew7S/ju6k+4MPrW/ThCy5qaDZxp2LsL/eNGR3UhZS3rHLuVB1VdgY/XEMa0plZuFgK0rExl3U+sieE+Tp1kYyDlzXJHR16vG+sLjnnx4QVWzvZr+cZbgYTGGExgNg3dZq2+VbaY7qZ3C0FL/K4jVALQcZzWKp0BEhJGNjtiXlNa4anv2xL0VNMSVALCG4MHCf1wdWBa0QEdv0TGWwRhC5p1+hQppUfURIAYNP9aEnnBshcxaDT4gkZUA2kxFYk8gzxUxHM8QmMeFLcT7Jwij2Niq6ag5bU52i720BHPa7MNy42fpimQw6csTP8CuT6zNh/edjvE4hdmKd7ZUgAsvV4YZpbvWQ1M/BDEqYAcdn8XmJdE6pWYOHu8krtZdI47NvWKUY0RMUpAAaTuCK/1hx1ENHdxGOptlCV1BzL5T7RqqI+11Sl0q2JkQthQBFlpIAyWa0OyMNoB0foJl1xMi/kiPVnwj6q9Q2u+6P9ixxPZFUq4RnWO/ik8AALaqmhNWPqsM1EG5gQnDwDPffqFymkAPQDQOLv934+oXExBA76ptuzZWgWOjxvKEhO7F4d2mPHMVMq4ytDXdFbcn8dNoE+3S4438XJYTMjY7dlARrxDUJU4ROAiVs1nTREfX3/46MP6cEp/RILStexxYJdp+G6Wl7Eai4NGnsQHJ0pOrPWciXgOGsSf9KnOJ0j9fattp721FwXFxpxvSODj6TdckuGJTxIADkcIAW9yCWfaCX6x6uovzWjf/FnIeVq0MSDscp3PO5VZnPIZ8Dt785tMZuj7HJHWJFwAz5hkOfgoOGxt3dcYZQ9skWntzx4qVaLfbaCGWP0hhMaiDGnh+XXWO3iZESmi58eC6gFNV2fiAVCq8f2j2+9Hv8yMyDvEj/U60iGAdWgW0mAwwB/m+N/EG3N9veEFC4OAlHHhhp86TGUSBQMrCByOUDrqEx49WObG+99wdHqsTg2MYvyRFsiG7+MKrwqYh6uNB6sWkFyVGg/D/3n2IN7q/08rTle7yfFS2ffxT/ME7/CiMQkmWaAVe9J/ZhqOrunNkDIrt8QrEEYsjQNm53PmOpCMao2YqbrTLzU6DaNk8lDNcvimruIy+O3FN0T/EhKoik6UX1K4UnBp3p7D79Z5Nb/AKK1o3IpGNNnrCAYAzof1/An8SKEQTHAnESUke6gvxaFKbD6OHlSbM0A3/qDt5oVOrR4gY+QftSeAdb7Pug4AksEd5kewIIy4LQ7rJ54sfLK04nXsKo2nKcH0GurYg2hGI8K4HYVhu6pSHW/LcBPDUY7zPlXifV5htc4uwcx0AQYejtf4JGbSCZqtIgiy2u0JsYbyVHyK/uqiwb1YtmVrqZVQAaevSI/M1EjAFNgrfA4mzhhPtV7B8czKRpJuaxTjRjGbdfNs4NAyU7yOnaua6KXTOyYqkY3ASZXFCi2CxMWU9J4w7t5Jo2l1WwCcpTcZM6g+ijut+9wLfYZjB78kFHjoHVXMBZTNZLry2fZmFNQAurnY3TK83qV49l14j5xBWGgXi3k7bL1p1+Y3g0YKxp05YKqGirV/qiaU62/FNd9yAjdRZFWjV7r2f6ucD4KqgdrbeUHqT2LTAJAFe82x4/EAxhn691DdE7h26cS0KCEQJywNvWXzBnmPN7t2B5nulJcsGX0KbzPXQPZVH2yYS5mbtsXUJBa0ww/vbVUg4Vf0SYMKeZiWjZjy+sifczpPWG+p4JQy/0yvXm6gv3qNdUeeFqtLsaCNNs8PjLR+TJ6U8w0BC5kWh55Y6lfIng4HotVCuxaWWt9xpKT6KrC7Xn6D0LotGA6siE6xQC5L+t7bYAWIdqXNVprJKZcIOV7zP+jzL6JwaJH/wem3ocJF4jL7GdHOB7GNtnN6+CC4orlGJde+Ky16OSrRy4aINNk8NUu39xauIqm39yxV1O1Y8L79fXk6NArNmd5vMzffjttjo7TgtDQcLkjchCa8vMIWqtSPOSEBgYAT42l6noWCozXnDaB1+EY/c9pq4+NoxHVBcYthjXtenl2M2YSiDYmhaAetmd8pJdXD21x8LBt79g4/BycEO9u0WFI/6bjioGn2X6XHVIl0jSqu/qK7CXPjCyt8mK/MdWeXc8q2qRYMuCch3Goua3ww3CPhT0CIAKGMJEwOsHvz1kYnERPyJBS2JzjrVnoJV3ko8o2rvraD336dUqd3mXiXGIzXLyPWR4+SvaasbeQ3TQSSC/MkJwkudpmSxsPrU+Xi5zgUaQ/KF2IxSaU6xs41GJ+2b/Uo2g9kIf8T7ic+aMdjdn/hunLJNPg0vfnYLRcv6k1YQ+984s6XY/3gYj9LFgeQ9G5EYSV+aAhxhdNI2SsJc2pe/j8RY3bvKhLQnHFLFJ+iOr8keEkimEKss8DK4PfKVIbuWIrIXfxmJUYhjUIuIzr/tk2DeekxhU4No/Db5MCZ70pTUKxylPxivLD5Gdd+15DvqosOjwOUk/GfC0uRTLBHEX41tpBsTv6TF6vUWZq/rUhhz+U+z9UI4wYhqYFmZB3txTwXTjqrXSxI48t+XDUSTe6U5+B0sspmL14iXmYU210KEbVuEkNLB+XqEIsBhLTA5ssww7rQMxXeA3n9ROrou9byW7+A/vQJvS2P67SW0Bo3v7PjwtBXCXf5mCi5LdPXiXTpmtLHMLXsupe86UJa9rWPWQx5TWjzPjSJtX+H/MY3CnG3lGYnhulfJWJF7wLNXRrYOjvxfHl9EOjqZ7upoU1gH4GK9gN4Vb4N4O0rDQetSDP4Xj/+gjdTWuoau1Ma/GQzpaqiJmZPnZq9WkTEdDbLb/AtT2Kry0jI0C12SLaZFCOZIgZ1PF2A6+qfzn25FDif4LIhs6Ic5ze7QVAU8dOXN/CbJP06dpTz1UAUdJM3M59Bd1ekRfRgT/w2dVifC8Rf8OaUv39OSBMobyCiDZRZZ2A8W40JPHCddQHmPgcbvdxhaCTHhxKypqlMfydvIDnRTjiu820aqMPjPkpYl5KfJ0SKq+S7UULlKSUvT9l4soXcmsXNWI6v2RRafLEE99BfmI2pkdf87P3Kb8Wmy6Po7VkkQIkCl5/cAkSaQTdndmhQBp21Jr9TQKlBaqfFPgtL85BZsdgrdWF+fIxvUbZzJvbb9ZLDSUhMOtbadqHaLiP10znrVVznHgeIoU7Hq8LFMwH6H2I+9NZM9mbtA8Xpf508qIOFFJArTHbgH7WZ74nYz7kUTRc81Fu6LxtTbylKQMDK0ijnXmrTZgtsL8kgG8u2DkAwzEa7NGDzWSJvWmYliT+3YQ7v1LhQowlDB3BoDOx8HqY+dVa+6KC756+4ST8MlzOUXsIMiBzn0zm4EZ4CW/gZV272EfXkJFVsIT8QU18oAKR9+JdUHG+qKie7cRMm4hVEbuIkW6Jum2c3osuSt03UySrO98JfJ/9PIuVQcm2442EHJK7EOXtzAAxOqn+j3No1iHc0VmOs3QjFDTvtSRkVdNjCRWMJZBKNJKNibxINTJt1nKYJpnm2MIVbEQri7RY3HENgR6yZ5Sc0wqCWnKs9xGqX1nThow7amcgJcGH2yULlPS1hFmwIkfUfuMSQY7F78F9+ArmYHoTbMJCg8op0PMFqovvxMZ8ZEPfg5/hioV86VyAyixg4ZKNmBbaa7fe6XAm+D1gxMLNPR/yFDwBfruwNBXUUiMQ19TgIOlopFEUAedxdIUgLiIAkV7ICuzx2Uu10DOrQJLdc5yPG0otuhuwuXedc2PtwgXO7GPD85tYmuEunezGC6s2jt3Oo5U+Z6Uj5h/sWU2/4dnxfmpMga+KS+bRS5xY35U7G82TqILkZuCxMrr2hMF4KvjTutUVIDb0PDxAWp70BHA0WfjUUhuxeKr8zwSUFk7T9c9tlii9a1KX7WwIzoZMb92ncFmkamlcBxc71XLSF+3v124tEMYrmqF+UkMRWKO/k6Kz4x4dpZCzqZ67/DB509XRiaQTzu1UDwv06hl8ERi2M8sfKLnYQ/Zg27CSE30ZAqxFoXlMnWx7A20aWW0OqiyYXSffSULEvtdYmt0qWl7WJxLvTuvfyxv+5dRYeLG40nbhWgmsJ+Wuki6s1DlvLQXXXwHDheSVCCnosIu159MFXdqCf+UmJCzRGQDDtsi56VsfTKg/6cZ1eCQB/XFzDcEveklPkJISVdFwl5j9YSvZQZnX1ss8xYAYAfhfyXJybWikIHs94molVHBkblBW2OwvdGRTiswck/aj7SioflzPzhGCOw9OzRx1Og4nTpsZCaxSW/O/VDMI6znCB3s7wUnSlW8jJhQxpx7nqPsKR19fUaNAy1rX4WsrFUWimnyfm65I5NHfICeZV3AZ8CDcwFz8ZZFrsolnFVSUdBH8Z+Gj5gkNwDs1yoDRXy1xs/5Rcbkacm+rrVtxYHecOituc1JNvOTy/OxL8oQWhaKBoyUZCwrVTIlRVhQ/ENoEU0gBkDYcVgbZ7xZp99+A2zknz/k5n3K0CtBq5kDxjOcrpNojtJcxs3s0U/GloomSB+4KHATtun4mEeGSFGXe7YWlFwZHfIWirSKZtm229hEh1ULY/HjK9xW/R8Q+dygFonCDsM1vBrjwI4zEQbJfteK9X9IStuLpeWBaeFkCht6pll9ulrjuQFRRs/yaM2t+QRPnarnrkGMb2mMiYdb8SalSIOF9k4gfljYnxZrayemhrHFCF7JCsHalVP+jceE6+GdqSGhKwTwX+Gtj+dGHfqVijA3auXv9akaISI2zqWeXPJ3VdJ7tlqSVMm5bhLF7fkbDkXWXCtFDZNIzV+VAgD1QaZm/6oX3KmhpJKrrCe/A3MfXdJrNuxJjQHwDz50J2Hm+EuQXH7R+z5g1M1Tr4ksoHRj7tSdfxazKxjvzCRCYwgqkzeR0x8XVX6qDhU0mdl3rqD/1S+AoEiXGYk063G8ICXCweEA90G9pWATH6TnISgew2tRXnqsl/rVl7Wz13CusqIttkhxAHV89qCpkJGr66heLnMYVlyeIp+xBrqEfgVQQrq/RKYwMGOyjYjHnQckkoh7W2AserEvHNXuvxH1PFNC0cQOKdYhw3y+h0lyxO62iEcxKoOkP1lduuE87k0GhxW3U7b94FKlUcJCRA4mQdIjL//ALbBiVkujjKJRyT2phJvGjVAYYkOysL9M9AQXDv4GBwMupXt5iOx7KLPjS0ze3PW8Xgl+9UK+RvVzI/4g8jD/69UJSVn3zguxQXU+v7A3vYV8AndAs3vFF9tgbhKfdHfLuZpk0sCFJw4jQ7vh/9S+NfekyIW4XNEtW9tZMUlzGBFq4pfbslb9bbiSe6G9RIGxqENHXa6t2f58MCHVW1fdXSQU/DxS89vTieoZMgkjhIAxyD8xYkv34mvBq/9zO6VZoF/LBtpZ50aURMNfxCV79IjggnDNC0+ZSxG/n3TYN/xO9E6R/frRStdEg8+fSgfCH+UvhEgV8vC557LnAjRGHa1MUhyBlipcpdJi9a1lfUzKuu1XTxZw+OiPt9f4w/K+0nhoOK/Na32f3FtMWkQrlh9c++JJgG73I4xmmVYEbtAdm4/j8NAu9kiM41rfN0slLYux0aSRjvi5bmLuQqYRoFMlypSGaItoCmk3Icn2qyYF/LI4h2cYyPdvXgTQ7rxKiP6csadiptrHDUF896VyOas0JvQNtZbedLP9wfa76FHZOFV2LOO+0foUUK5O04GzKXsMl8Jz5fhtJ7UFfdjgcjpmxrYyqBOSKm8ajX8RLszrIB/lBKO1QY6yvyFPp78aQ64GeEeQSulKZr9AqueVZVYBumGhIOp5473ZubJpVL1hlg+iYZ64Xge3n9jm42nc84cVgf9/QqdMnV4J+wl3SB+OwtuTHILNy+BGtKI+/TxH/4jEDA9q7d6VowA7uuSx/rZqkWbJuqJ4uhwq6CvZVNHunrAZkvuEpgSqwzkJ38xq5bWkkFVHZdyHmGpdYX7TWECsJY2KOaFWmX1/xdY2VXB1grMei98P1U0Tc/KP1hwwBDxPdCqPrn1bVLYX3s6+KV+tEX7EqhweoHF+jscxJ+b1GHTuCkUKfb/R2sOWES6UK0yUPx/hsvYZR7mGh2NLSdwsS3YAQr+p2I51V7yEDSXeshpZaAIq0BenPHsOIsucAP4uWK4WejcW984zFRFhEjAN7XmhjUOhPJlWK/XahZRJcbT98rGuNtfJJ/tZW5aSKeEWCFDy/QczqEenSLshVk4OJ02P+1JyvRBGqCtWkGxu1bzUjx5g4Yek+pZTx8SbCgQpMeSHYkcQRnwZX1PaVdgLrQG7XaSi+H8zyBTvHI6ch2uPBm/Ez0fPOYqbW8gOk5bojNMCL0IYEfjMce0fmdlhb20zIQvUHUn7UYmipsHvOb/626NLkhoDk+wUlzxW4B96prd9MqnWbn9gaxUaU9jym+XGLZVSPhDSFdpSZIbB9/xGCcG4n9iQ13hhVwFdhwtQGBpfw3coFVLaMygB4bnGtu774qSyVrh6JelkhWLyc60BSa3ZHav/aT2yXrEIepAZiLRY5xrWqwZxJPtFEghNABWksm1vfzyNFDZlEsG7YfkYSir9vZLKHl0Bjx8lhLsnj8TlpLbqWy/GWyTCf8IujWktDgbFbsnF5kb92ol+4uKVUchkwsqfEOxMzIGRpjlK8Y7z/9nXN6dOqiN63u+ey7X7U0eXl6qTvkN64ap8kh5bsVAITixkEviCGX3+7X9bY1oTJeH3hUc7DHRzWlogeQhQNrZgmOdm5tSztmJoOkzz/LsWbUPYx6GfQI9jhiDyxNs+ViSgeZ9uRgdKcJx6aLtl4wlWXQzJxYPT/iOiVLRg6fyo0Lo0XR8KUgyDJCGs3FamkC32equDX/6gLivRu99u8ZzVk233dUFMl2xYgbvij+npoV5Wp0cYYvzVeeDijEL/yau/F8KatixmFov5vC+LphEQTjGSzprcxh8C2uPlpw/ybiLxW5toD5lXII0FanVWq0y7XYb5DT+Pw1ceMQd399TF6CCAIqQSCluvj3vhSX/jEhVF3+A6hEtnn0wW2p3wIyOBSordYLikzvE0CtF6gL5an8RfGvmVUl7tj5DRBnEeLXBFcgKekjBAzEPRxOqeohF5JsCloYd7jzp7B5VTsu3hQBqyQVuy6rekuyEDr7bhbnE/PMQNPRWpcoBTIJ3AIfhLFNKGoWWp38QuV1acZ+fTfW3PZJMuITr3qSwnXOoWuM+PWOJuqsv2GF4z3PqCkVGGEVG2r027owQPBP6w/6/fK4VslbxtUUkyMnwAsR5ONzVn8Q8fiJLtXuxiVwgaOqc84xOkEhcaSEV/F8CMvoUIog30DXu5Ec6grQHUqFCRsurWxDoxi9KL4ug7UUHLBivMOIl6fIVbFLZ737Ivn30uYZB811fkM6lpKTYM6tzYBjxx2P88XxNUQiierNEvn0ClUOn+Q8hYC4PKiO98SxNo2XYeEMDZm3XnNExiCgnNQzfL2PUrHE9UVmFnRGILE2oRtmUBvpOqsVKOj8VNLprSLC0A5Hw6OVbAZvAVhu+5HiSpqYmYy8DmWTnKEy3jI7+kqP0/D7UO8xD8TvdwiRebJU1yHTn/3r81si6FsRYo+TCfvsI6IDcsx+JgKixTCXVqe5rplp2C9avAyiJxZTWXKtKIMQcwL3wUdPA0pMz7+qlgcia9AQfwIQLh2fak7sVyov4/hCwrThdemMySTEnFLuYnlZWYDPm41Po4OcNlV9f2kxvdpXv2wz2vsUzIs1+gPIWOMXkMZZJgvUX9TBL2DDyqrPyHdcjOQIDyD1uGu3RTAUUGBNwGb7r6YLa8y7RkZwkAM4Uc7SNWw3mIGhlMEIRwgG986791LsCYQlO8mkltVlWJtmT+w3JrOdWiGccAJETvZwBqrbb5snirGMK0s5aXfP2v59U++MUhmF9qCIuFApdmS9rWS0mqDUTFXxMPjG2/qnXBScFoaNkA6tYINwKFzuEL+/7nvdpPocsi19u8XHb8Lb7rIBj6BLJmzaCgTJGAmMV0WVJn+0uwkYp8aBYc0ff+2vNgKqUMzKM+D0LxuG2FKv84PWNNK2oqQC+9+M7pAElyKRrHa3r3BRK4qINOort813Dx/QG2CFvxYm58um90E7IeR/FlcykCHgWe3b3KamVbpOtWDH2s5MlVOtnTMU/3WqX/RsgTKdO6gSyPr8oGoDkdC+lqPQLRJY4jg9qeQ6aOUj/aMZQg1CDr8OPGnhtxvwmq5E2tBcTT6VQ7uQEgQHf3rdwCNjnzIMq7EzIEpO1vsThq3OXDGDM0c7uSLCtEu8aOW+JxwHOFKOyY31dLFr234TPxoJK+wB3vY4wzO+txNhZYqMI9l5F+wwNvXFLCQiOmkD9czZVCFH+TNEdUr1yRytNkgMRdG6MTm1gPWovwGmrB5Kpz15iXbUAPfvL2Fh7uYZxxTVKIbqBmlsmZXuCAqCpMOULKAY6H1Uf1zFJI8+//UQExxqWRBa/ULsbiXSwgH6oepLyNxllFLMYPfnjgRHk49iVbZ7P8TufWX8ptHO8XDDRwvNmfDZvRQKS9HahZ1Ye1ibFRPYJxarxP8Ggi0U4B7iuyZgov6ViP22gI1+3lquE3vqn47x5HhWzss6FPoL+QUKqYtvZvln9WZV4AgYPff1dbNMhlKn4mkdEegO74sNs9i1KhZAdHzATFTKQzypUowKIpszkNjF99Sgja5bu8xwd1iKJ/iIS6B+bAGtusSCBwaLho7f/jJaDYhFzgpqBRtIhLDOUnIcu0TZZzx7mBING7DD+Ecr8gppO+5IXKVung4+lEw71uxvXxe2JVHdvvMzefOC4+xhy5y3kDlCPADK5s9TWH06kpPv34h3brm01+UGhYtKy7zgbE7vlGA1cje83n8TGdJOtbhuUh4OReyU97udGUw2HqQfcIWh3xir8z3amqnUAfMJzUogKY/ssIUk2pvdcwGZXFWQGfD4J3RW8KwIC893Fv7Tt2pnqPgiQqdm/Qf3sbEHTG3XZaeiaPthEwppVrXqsn77VLZCwx4MX2Kesongcc9v0p4qVWPq+m6x7hVjAOqP+5ybzuAh+tRLv33YsMfwan59pqqiK4TuS1f5AWYU1TAyUHURmmXmpdlSWijKHf6AywXd4nR1f8w/FPavJpRSifoVdLA9fNVIorslf18IR1Yf52Lrdk896OE/IfSteS4jkinOjA82Btqt5QOKiEehq9JsnETARB3EzfjSQWy937lBWXXDIAWuBNP4j/0jyDPDECjBuiJSZeek9zxvYIT3FnMrey/JUI1XddFBEltpH3u5YHTV0TdR7tuxhW2036fEXfVz3k5FqYeFgdCvtHcLqwF7+VkxD4pCVlIWCFXhCYhVtVdyNE4wLHHAKY+G30TmokU+jcD9J09+UJqtYJGjGCkZdPnNOGAhVSkHs72VZpA31S9o20lXxaKlDYllTc+QRvgkQbsVsCPk7zqCpM/iUPMhMprjlAfA1vNwk3IEqOh9qKgedvKRQIIFqrA+wurvdCzFypoVi4EsaFd1k2/1zvFF3WZ3z8RqR2HM1t2EL8dyJ3FKCk9UvEuuMTwdB/7QPkjY9cwajmdVc7gdh1aPAVGpd3iTdn1U4SDta5FRGaNHOdsdCA1Vho21nkCWuYicA7QVly6TR0LNsiJUWoyxx+qkECbYNsAy+LOhzcBOp8Vuq/Zt9J5+nW/sdXAVuS93nvOO4mfOn4yPI4f5nKMC0/0TfTaF285g9UQ1z/B/ei3JNtRf60piNCh17DQQxjjETcr8O/5Fdc2xF/BUFbJlGVFl5aQlWgkLuY/Cl/ONc1rUzy75ygb/xhcJE3QJjQX+bpa2YNtZRbnUVG+iNooQYfXoDwSZcgyWR2L1lKyP7YMf3PvUOW4nT3xiPIOGQwQesdXXH9y0GtvtRhVj7S1EVKCxOW7V9wsOIFN4y5oCp92OFr9GG1PYZz8mur+emvG0aGtmInn/0qH1AvIMhoJ2Kg2pbnd++ycHR5AOhsKQHHXpemOT0XnTaCkiJCUf/sI5U7LpMw+jhC4fv7mpLx5o+n8p8ye0ZYXMidWMgAlu78iG1S+7f2IAAMGGoRsiowPyN4kjkvj53YWHslTdcxz+Q2UyZyNYmpTq57i+9ubneOpP6L1jLUwOFZZ75O0Rz1VelST7dMJpz/R7+8aIqZYnHwsheQUZXFFIpcMZ6LWFOuuw17hhjDnqo3ef7+OYO9vmAvDXRVfKBstssGW55l10FVM02AcSIj6QKTFdxaH+IwrK1notjdbfzaHYJ8WQsnyabmFTYwUnqVL7K+bHDznq6VFGGMo8kc8pc7IE83SIChlA4InmOfZxLIsBbTvedBScsJk0Am0YABLndpbaflY5hp1hNSBPibKIs5D8Vd7NPcAwXjs0v+EoZsViU51zE6IdN4N6k1u+jEfjdqQubq8zX7SiFNS/N9olVXHxatE85dEtRA1XEefbG4hpSh4FiwIy1FF+hWipaXCsd1/eYWkj9whIbGObQdR5qhRlHMsLPM81yyCukPB6wAe8RlxrJqzXtK/7z5MHd1hsxWqeYWvTDxFYu17J3M2WVEOWP7QBMHopi2eSuOHHyKc7FvI8bdp8JWoe1wAp7H1NiEoqaoviAyerAbT/A3fk2wsiJwB306ziKLcFfESunCno3R/N/gDDnJ03W2Psa/7k4etL8PZ8XesA9voAH7lVBVDG/tgpzqPpF8phQPRu2MgKPsrJS8SDZdezJ4+W9Q4ci+hQglKWqJwLz0P3Kku6WhwuqKD4sOEexYb9PRTcEddgUJB8vi2L1lePH0VqVLAPDghy9SHPT0qWowa4frmLbPFW70guKeJRPrVrVnkACDvrxL3o5w+Iapw7k7UEj/VMk3LDrRLyn6jxp1yOZSA+jnp7gJnopbnB+SYa6Qogt5jSU0NNPVJrThehHYHtslrdB5XkJJm+V97uCzAUuCDCtuRO4ewtsZSwTd4RekrtwlfT15iMzVB986vmL0+UjNBrvl0tQsxB4uRKhqRUXPlVPgxqu0CZkuLU5xK5xH/k0zLGbtfXHnJWbax30ytSHUMyP2wcUEoGi3s5CYQla72lvv2TqnrgnQwJpvFbcxBzLIbi3UvywZVbbLxkyHzw8ENGQY/cmJcyDZyzVHUEdp3ghHrMcuA+m+zjKoMQh8d5wY3XfC5Fy34W3mAWU07jbrOfe2rddrL0AxZoJJN8F+gUSDNMsaGY3l9J8Jk7FqrtL3ilkuVSu+p3m1hsr9iDmPiJs4Ni5zX+8d9TmYkiD9OjnTGfWTvE0B+wyzmFQnk9EJ9P38nAFJt4qcUStvwshnKWAuORS7QkdKxL80mWJfsgA3WdA48cCvg+8+IZpOBgqPMpcnEFu+Fz0yyetkhiK9Qhd7GyLRD7duyc2DzPDuoXpz/eQU53mLCJhYEe8dwqyj41IVt6Emnrj/AZGfeSXF2PXpcgYRI/LZiAo/VglfJPWU+hLEAKCZjs5URiQcOuZdpYjzILR+XUhWzS2ltVLDgC7TfEqX1l1XP073suzi9PMvkquKyGK+59m3k27VehVOD/0AxixTkn9PKOpBFQcfA+6Ykb47DnLtYpLgUF17EfxZ/apkXvcFipuU4LOIhaj+3B1Mjs6XhLoRWC9AZMqOzbjrNSWx8eF4x9oSRkKmwRQ7hjaaVWt9sOTZBmq6Ep2Dvi2rHJs/U4N/PYFzUrV4Y+j7puQjX8AbVnCOPWMU4lqxv4nZGVn9oWg3b2u89Rr/cz06FZp/geWjp+HYvtd/SMISn3gHbbi+nVN90dNDXnKlRDTCQZuuI8SOzCLFtxN4MFhO9KBdPXZCq0KJ1w0rmKY/hTfe1pBSZ1+EbRZq2ra/iUT4XByJ+cyqS6wF4QuG6SZY6Uu+ff9cIStT1IzQH80dbctKcjS98nSfk5/iCs7LMF4BuTAOp6XnAOT3Wi6tTjjBf8Fn5k06RWZv3Ali8fPBMgzVtslPXZDGJa1qVct//I0j7UKqW9z4pfiL7VQRsLXPCas02M5d6fNtDN9npo5Hnpx7y4wfcAP8nnmHMCQj4HEdeOKGUk8U051qL0jbMQv8g4CUHCDiHyvupinWLuPWlwSWqxUBRbAPPySz+wp9hMPdbbCrD8Rjna97S4lMLEKoGl0p96fP2B/9Yc1a+Nb3LvV/wifR0TMMafqtUg+8JL/+ca7vZdKxFiexUrgY657Z2spX+KkHPKi15HZU5Uk1brJzafTowG9QQpulZuotNwsjJZkwSjl91jGnE9K+2DZN4GYT7IGPJuXcWAdPZKnWpoEAvJyjY8phcUnb9IOoXhBWbyykSEAsV5NGH0aOFjg9iZ5OBiQd7+R0y3hynEsrm5G/skiX1hWKGAIgMlo8p5Kl0pODe5AS+AcKIpNWm/HoLYpBrnWebJ+j/IOyZFjtyq6P/xa0+4LpxXpEz2JLmXlsdtF6XIMvg25Wts7gMGNKioAxxhz5jylmlxc4lyaL/V19ZNRxoZ5PaRUmGl/ECsyARpnu7pi8vtgKGU5MQn9q0BB8l/QwgAgDRQjT/bY+2kavvCztyPWBmdjR67bcAOH7+DVCn9cZwfYXMN/v1cEsbIvi9OrPtIX5YUo7qmb9AdPHW/4LwdqwutlO6T2GaKlrV3l/4hwkbHLH7tETOFHyg5B0xv/jItglm6P53UnnEEhZNYFJIQ2OMkLNjQQQHSe+SOClqs2b2JveHwTnJo2bC+axkiCpCJuN09Cc2PTCgo4g6tC+2PBDDwh7wYAO/WBvZ4NwtmQc3C0AW1Y5ijW+Q8ZVuOyNE/Ug/CV+13/VlADScXNm48xxzfFA5XzrPQ63CWZ5MHu4bfGAjx2J1086ORxH2zNraNWUiy7m63zWrSqS8Y+ElVSATGLv1EnpWKdN8aANOyWpN2dFgOWtXrSA+hhAa4oFnxOfeZhcixehHvfyMxq9T7oL/Q4FZN7RmgCSY6wNwu4hkuVgz/R179mKtcOObiEDTKx4gYkEkpo6n+Manf12FFEDvqgfZBbnPKNjjQu3Fs8fCLjXcgdVEHHkg1DGIorwo8h3hb28wRm8DTw8IajfkdOCPbjPeSFJ+X2IDtrjmBV0d5C17xp5f/x9kT3eS9SGtMeZoqvfJks5bAfZKCkm1xRglo/tHY6PnK5Y6hpyOXEJWCHpWNQAjgZJN5l3Lz17enHvuRkmVzkGKo7LJX3cURWG0SCh/378xrrcuKJLxZcaREwz7iSIF/44hGs4FETbGMhEWfvL4cAJPWKfGqbHGvblwLz4g6g+XaFNiFZ6ZzXEwOG9EkSwX/RS7Dm7Qg06IbyWMTXg/kQ8HXZQW3z0beewin1BCRr+PJoGxXjKB/36X+5PcXhpODzd1RPDrBRrbCgrF3q9CM8FT3d6ufPm04UZHLJBF42CgmVYINo39PHph+Mm8QB8/aeAryUrwEjf+Sm+vJcYsi7Z59iiwxNj84CmKmrXY6wR6GtzIv/QYvCjp2NtIrphm3MzYUBXrIgE4/ojYILb78jxmd+7M4TU/FFJBqTfUrXOyyRawZX+BxjLlPAbaN9Lr+9rZ0OrGHdugZNMcniICv1EPuw+JtFdsPBT/6s4szkrhlEVM2tojEWALwcH/Ue8He2CX8NYswV3OIuA64COy6TyLF51UME+4H6JVXAUPS8eqJ9x4hNSt4BHQdbPxKp5Vm05zR9iO3ul9sErT+THQeW86V/bttUL1sApfdpbFVIW8gLmbEud25F9Ws9SphMtsPaOioS74VEdQaJApjFj1doYWx9P2tt3AmO3yVzZc4+yKwcxN7GTlWOiUH+lZ9KaWGcoS5tK+ZaFFa1aRJ3PLs0F4kG0lIUwrwCWcW/62xniwj/8JMaWyNW3QACtX49c92b6w01pVaT8yPulit+T/RSEnrH3uYdgeAKXX65KklbuG2XEnV1IkYmw2rRhNRYZcvvufrIr40LTTw2KZFzlkdFvbkAiVDIewkRa2ctGyfZQIQQPaCxaFv4OM3xI7gTRdr73JLXHQHxSdH3cj3PJg9cEAJlfyk5D7ULi/tbJ2z9QZGVoTHVBip+DWT42mh0H7zhosjttQYMY8wLr7o4a5FqgNxjyS2uS8Ewx4QkCcmWSh1QiQysQEs4bWEk8AKS+Fo/2QIGAiNN/nIktrm97+V+CFlUe46sC0sLa2x15qA+6h9HqpKfSTZ0joo/27UK8eiJnruIVCTyAedDPicOzDQvoHs5DYwuYg7c/IPRqVeuVx/nTvdUUHLvGF/GRhjWW9zf3ThiDYW4muuE4jRGF16vTFvwPYkv+NSK0VMN2ul2qfCCoV7/U5mwvOQFewg65u6iVH29F2SmZ9hZp+sIfhNJOvSUJsxhoCWfAfjebzkfM+MSd0R1PT6WMzulnP/sPong7NQ1kw/AS4yd6imQJN8bYTeR+qE7PCMhNLtE7e0nkVbvlD1paP0NlqtRfQz5sRLxd3NEbzGxwW89CoGKJR8kzqaKmtNgtAx1w7kZ1Os4BHB2Y8IWuYdPlF+js6saIrD8ItAmtG6NX21Sy8EKTYt1vdZsvn0nEXUJXKUbnLbWdSG/0BIrEdK04GXn5sfxOOZPPHNhr2iI4NbnmykhwhFqdyH3mYSM7Ma9WWI527Z4/B4bJ+KEsavTLrCNiWQ/UGX/nzcEv8/GflhsAnAj0nHmZusjB6F8M3FlFMAT4vvwtYn2dhaviMENwIFXshwMAASUa7Ss7+w/D1Cu66wmJDL5kUZBP7GyQ1QrEasmScV/+JylJ28tbM1Ee1ups3bitc3fEH/sqa2bJKBEZF6JcdhxODoS718INjeDV15H/jwiBqTbO6OCAQCV81MTl+jpGzu8rs/2JQwavKPtRcgOf7QeCoO73qKpGgkNbYecGdf0WxYPEy1Zq7XNmZ/eX002aXIhgf8y0O+OtCzYow0VP+lj7Lgege5UIVa7PnO0gIqDyOjbdFob2Nh4jmneFtHJ0Ptt0OPelICFyMiJlQP+mO0DZ72UqQhnO7sXoklHXD3CMqyGMMFlS3fp603HV/3Wb8uTO0wJla8mGvFgsO63xXkhJRBSzbrKdXoV1V5DG8AF8nvdtfAwGtnm/2zbDhU8N+c6Uv3SoOyiS1WwS52tWNY8uBFRKCiACE5X1kppZCkbmaOBgP2XaamK3cVnBcIc3iKW+NAWTZNYm56063zGEskGBved1tirkuLmJThH15cbqGBQ/jEUO90FH+9iUXl1wl2trdEf8W6/kHd3Rar+sK9qfHCL1e1B1Mx69uUd1anAaiPvhHZVgONsmmswGBW7ToGGsWoCHUWlIRpGDcT0WY8dr4FHBXrsVVL6JeN+jaLQu1d0e4JVbil4UBSJdPZOnLIySlrdIoKcZyKd5vZD4YvVPJB8i+c4tdKtRZCuDzq9cRAR5KHsZhcXBcYkNaU5FlYaP4A+vp1/VVL3CKsdBKlChjRW6WbIKGE5NRQhh/IoGKLEa7azimBdbENwlVmJrZfa8haLadl+WPLlW/rEpO/L70dANWEJ+ZD0EyQ9T5JFFKo+5+IHg2CvX5vln8+XCE2ZEFO7zgD8k1+8GjufnlS5OQMXKvE/3ijCNzcOSKd5rRQTO/SKghOZeE0Bw+4qgR6BN3yEl0IaS+fXBXe23virD2iw6ky98JBxat52l3xIB8qdS0f55cs6ccWFlhXf+Cu7g07qODUXZxuEKNLgut48l2UH69nCTbX0leyOUdVaeLvyCDpxOwNY7PnpOHMkSOAP70BX/hag+PNgyLyg0PT0hF1ovL9nt+zqA/IMzH+Gxw3Q9ij7bicGoqKUgGN1+lxQoUj0PS6lXrUYlgnyJL7Kbc3J/5O4DJkYp785jTm3+sOn3ivPGPY6kgzkrd9ZWwUoUhX91WAu6f6ky826e62DgNQMidPioUxgWQf0EvlT19bRlXXTO/o+XOXkd21WL/v7h5+U6G3nZccGy2MM1h7T8TlZ5xKS2pISEu13m+d8cMtdk+Km5mA/j1RKJpKkVNJn9WI8vGwPmc7vk3zem66NwL/16q+o2EKUhE2oiZJGhnlISORtyX1lNmjWfTEiXgs5F8A8JEPH7krJEOkP+d9vWhQdArLYY9rvQGe88Li+paNNtCdhOZJfeAJroSo8fuTWCu3FIhtSUQXug0a6Q9bcIGUYvDQuUqBSS6mmzUVAzJy7KWqzHvz/oeqiqN3GGqVM1cZVN+L1R165tUZzPTJJuGCrEoSEU7kIm9CAGQVh2SsA1G6LJYM+Yx6Jlxqy+pBP6Szqx0/3Dzvy+4brumcfpjr9Ov4iQY1hdC6hg+Z8YTk5Lq0zEH8ZXs23t3/uWgBhBJN48NBki0FvlJsT+Z1U1Zdghi84qfwds2db0iSLaNqL1wPbgUm4bLpfuu50n8UgitrlKZgyWMksWbEjq7JG/3AwHwsQ5voNxp3ziIZlB1Zu9JTbyClnOLsewCtTekM1cnvbDY9+8KCEdRG9vcfHnXQMyP9/DmPnDia4Sd6GOzEuxeKsnyNwCmLwXi//xZkNNcxSQUeu+NGTCA3+IeCCTUOWfvUKM47elxXJ3J2FNFszsVd+tWBZS2zzie+Ce7E4uA2v9SUtq4SEhmgNC8q2Iq2HmZywLCpuII5/0cg52fDBa6RNisIQPc6vMqPdN0Qo1hmBwXPawt8Ju1v7Qmku48tY9DbUkVWCB8EVvst+fXL2FQLkcni0wxt7O3p2oMxp9AaA7LB4daDc3U4ZTRYf7YUlrRhNb2EBTbpN3M7Kzu57y3az9A0altsWEkXpQMuEUoGW9cQE+EU3KhrMtzMTxJ3IoOf8QirxqtH5/5UcbTfZBSchLaMNa7x1VJn9ESXflQCmReAJel/gX7rY0YFna5S6EMX5TKcGkeiIyF3/d5AyLVs+9DZ2B3cerN5FyxsZV+DH7TASkxDQch3Q/zM40b2bVVRakYpA40DKzhylfpCeeJsdwVz1p1C+92pDnD8TJmxPkbwFFzZ0IvPP/4Ak12/iTGskNYYX+N1M1v+RowDfuBTXzv8AJM57pSfidVGnIJcLv6t/w/lWOkhn+x4qKDGJqOCDfjGt5Qju4OFTz9b5PFqJZ7mxbO2N88VuxY2jqXnlOEs6Dumc9E8/kMjd/fDoW5G8pqLGz0o7TD5KnIYkfMWmva57S8Mu1Adf6JRPGkGxCf9pBm+MM68IxRx/eYIrMxTAYOuXn1A1B+qFlo3GBn1aNe+AXMKI/VODSwrg6IYikxToPAPlFFJP68MX+NTiHFsmcEjFOVoW8UlZl1wd3wy7TAsHXTspt9Ub021qDxKTTzxxRuFI7cAnY8+/td+66PqpQHXEfiVNsWeIi7lyvdSN+K29exRAksxtw52y4wxRhTzH1pFIuXKHZyeEaOpAb2ToUeKaL+S5gpZRWFLVxmJMRL3bQuDVtteaWolaN+neEvJvEpT9zE82GOw5hUuFio9aqZwGbJ69diPJnNSse8zrpktr6ApSdBddKEOgxxCJitP38JEOmEGOol+UDKI7ZqMXqQbeFkGW4a8BFYnhs0Swn6bSB/ImEHNFcDHYRpY4uh/hOM44noj4UqxKkoBIOyU2UKIutDGM7OX9Yer1YKrnKXOOad36ADmmsHs53NbK3B4jvlJMoCLLilJ+gyVQP56n3tZKj+ByHqvSQm9FSX7I9gySN1V1wcZHaYC6gP08tCTUNfHx/xZGACi9wK5TrJWiUBg3+MJ5upTRo6sJKiQkwS0W2YaZZAzhwqik8QXgZhYdi6c45qloBm+2d4GJdLW+c9akR+e/WhoxNp74jHohvFXMu1Ef2pAZVh1CCdSDjk5f7NdukjmaKSrZj+CvmsvebPPk1gZbLBka5LmqE3XKujWHxjFIJBFxM+oCSgtkuhR5I6y6cmCBf2BhtvEjLcoITtUhVoPAZNwoNTI/7tkh7dyFZ5aobMDg81/vOG64n+NV5PIvK5R/H0lM48axtyFKUDFn/j0IjgK0ohu6mnLmGL9LZ59uNltUrVFXYA+koTwPEn61W1kP/qTv6ATln06HyV1bdr43yBEnBsXyCNLhFw21AYoyWwgjn7KkztNap9n/N021WwKIIqvSE8w98JkoQ2wYEsD19XPjTJ+AA6YdsIIsC7jv2IXl9qxhG0N0iddq0cZhmW+H8Md/iONLX9Ic5BocdVG/+dNvrhAd2W90j6MwE1nehOmvG3Dc/2u43MOQP1Q9KVHLSRzZ8XUFRPyI8fp1vUjyh1fI44T/3fl6daW5zeks5J8T+MbEXBCLOOBgzNTDgufnN6evXFtRaxiteSLA2TftDahooy2U9YoWD87FxtgINfr3aUS/RB8bRNQ+vLedeZbinb/3BO5m59lhRCKdaeEbfisYeh1SoxPT60u1ehYyCKwQrSxkPHMDFvDhzVpJFrzS4c7j4AvPvdw0JzIT21Y0RelUttJmEXC41LUTN+iOdwUCB4W/F6uNeSW4MV+TEc3sb7rYPhscYy16dfT9GTeLOJ5Cad8MkTna3rPPvbHIPIDaGJIhlivWG6QHeRV1yjFfvIU4HCHw0fSe+eJ9MuQQrnrnlAWI8zdqisObhazVTJTf3/265F81R60ZKQOP1cbTkppfGh3pMAC2KyTr6OvseZmAccvEw/ej+kXaFRjRtMRz+aCgOFXU3LJb1b+1MLShjd2z+6cU1s+eHC0KjPP/ybjpHRCKp9DCsvE2uAlNSIjf2wekL8pxxEOObiEOKqOu9dwiNGdMiZP55zh+/QMUrQ28wXLvHGkU9BK8D5Bb7Wvh8nb/4d7hEmfQFxq1r49uuuubDMZd6sLimXlTabm2pBmHuCzQHVfVW0s36Tx13WQ7vaucBAUWDudW48OCjV1jzGP/ikDNBncduDjLmSk0ktlTra1gUK3dyhyXWPcHYDwXvWAktDZ9yrQ71jyKcW6NAzgpA7hK5yVoLC58Qtt9K5tKRuCsYcedeKCLjXUhd+PhWSAcmTYX/I5Npb9drCaLVEqiKygYQ9XhKXn2pqcmrN/ZnzISou7sUzkq5ZeBrKti27bmdpaXy6x8YjnqmYLJ+7g0QoFL1XkbZnjR/1Me0FegvgvuThwmO9Cj3/eHsuNwqzKq2gh9YuCj1RUEQP8lJFda+V5PWhbICxff1yzuGKKDAwKcJvWnMgS95IJDhVAoeXyo7HcSg5JA7VBivmvcEMv/vN9ejdAoazmkqr4Z4yDnZk66zmaUimU1PnQo3mFE4fuhuMgJyG1g6C15MvyL2UyQK8tnHZl5EyHssvXX7hSo1nQfQPW9X1KxtIvsS5SDoRyYuDSMKVuChh9GhMwX2pSaa6t8cyvnEy7VAR9ed4yY5xs2/xJHim2TwOhVA5IUJUcF+HerrSzZut3HQ8XE37hMIzkNO/iim2bqzbiLOSdwdCgEBEhIAcnxwT25T0aWB+khbzPZZChgsynKmMtnAxMjI8M0TS+v47d75esaJQjx0xUWeo0FiguO19QI583vxO9f+C3zMG5xzusFwg04byKAhkmwO5kSJopj0x1HxJvaUvWsNu6nc4/JC6q8MyW7Pq4wRH5EIFHDwwcsEAac3Mu+Pz9HG79fPptOjoH7Umm8kYrESYz6tr81hGvBpR1RWikWL2VJKKS62GMXRLfMLPyZi3fd4qzO21NLd76yPTCQtBNmIzXD+0OHH2SUsEoH4y637ld/E+Ko8nE5Idhp3cQYoILB3POCc6809NqZUy5KmsIZQazgTHMAlHUPx3njp2ijIdtfN7R+lR/y/lR+/r1zbz64aUsF9CE571dvgb4FWYnePFz8TZFv0Tl4sLlH4qze/9/TBNMm6keYCz/lt1wXYNXF4os+8wz8Yn+kX6O7/1I0/BNRdNvNtaGGHGMCs1E7eX77ZUelmbQiuTEmq9iKqquQsGBfvFobWfKtBs0uhyKGUhyC27bmEpmOiPquVNhIsh7qXGKdsDUwQj21ya5P+pdtiKWhtrwpQTJEoRxgV5P7G4ZKKNYuu3lY0pOSCtTir9Y3BFmx7k2bUCekbcdSDc6r8haW2pOAs3D3BfcTdNDnQGFyFU72Jw4M+a5D5qxxHQoZy4P5WYVPcWuohxEdk8dNo5K5huP20sf63uEwXLHyEs2qKv878+nJb5RidTIk2sgjmatxbg8m/jY1ar+lbqf2YdNYArjoh5E+MWDOZCEsOhTcSYZ2IFP1d/bdRMNF6b43ES8IQKgQNcAmeQfAPDJ0hv9l34BoMhq1euQEmh9EGQVym6QA55RUN+e2sF03f5N9w3Efb7mXYsjXES/wq0fJBWGZ9t9dLLJ2dZJ2WW0reKI6fnAr8NYAX2N6Zn1rFMVtDyy0eFp6JO6rQmW930xUDkYZ83z5NpUGe3sLC9gufWOrbrvh+kC6gMmaqkDfvpm2AOhKTMUg9FYjhhNJwl2662sPbZf3lJkF+H5RDs/eV63Ap/q18zCkxZRoVsGBVSUjS42NHOraKuwinwd4A5fBSc4dM0o56l4dEFtdGa4gxtuVjc4NIYbDSeLojfnzvyL7Fwj8J1Sk9XRAlqO22lN12UK18ZBekJFdMTaG4Z7aZN/O8Vti00rPHilJ8/zRjEkDaapA/+jBnbKjZjCR0efllaKtExfZz044/HDCjxchYKEfroVY6vEFBhWNdOAgmjj/ry/yGhowWIGoUGAAERFZuTQ08gbItOn66iCW6BwsPr/YgfcysllKTLMs48gSlFdoq7fTSLsgvGPB7Wg2z+SQ9M2rlNMnxiz9gIXpTQa5RvH74y4UMb13/MWJsSrPtrTm8qkEGQSg/QiEZvWPhL7Elz8/oXanOrnenKwvmuIV2BktdaH5dT4mxN7RzcPB7PxHmWlTnGSdFdK2znOGqn33TBjr13fpfjMGvV4F93VFckK0Y4ODkJhrc7aAbLddotHwGZicRvT8mqmYV5/rRTYLL7iIOQWjO7i3bYYi+NB0FzvgPLy8bQi1XI90TyW0IXpUv/BiEHtsEyXfLXUFfKnmlv6LHvo7U6ta78BuICWrIzv2Vf2xQb3+QyAz/dNiQWj74Q4h/xnz5NaEwfbY0u8PjkE4H4Z2689UNxAfS9SWGm/nZ7EorvPcGkuc8T2SqvXtW3ei6exSVXyvpimiabi9A89Zkf2gm16wYtEQrhRGlCYgUwwuK7wcbbeFANgINGJhqpKleKgLZ+wGLPmiCA2jb37aYFEUtkL03l7HlUOzQ/Kyi5UBNfaiJhjex0L4nT2yT180nkQI5Y8P0Jjx+PgY0UFd0tj+M8dXdKh2j7HVPurqVQRUWTsz2JXVAimJQknbXIVFRtKNpS+aCC2O8QH3CFLrleLsmV8topKa+BfnL1VNErvX0FULbayKNaYKytsUMcqc563sYZ8Qe6cHB7oDj6bQbx+GHga1flp5J/UKW9EJdIWyzySb/t2fYKWEqZikdJmwH/qEaKNA/OhJIgpsLxFJMMLuK+ggfPUqrT79QKMBXy8OaAoMxq5t6vRuy7Aglp1nfYequDlTlov5b0Ly1PqXrEVg26fSqxesFd55slsElCuZx+bg7hREME+AkVAEsyNM2WTbMfdgOLHnOYPAjDgyM+1HH8Ba4gZxCabiZ/Sh0ealvr/JXdzIYisQFO+wDiFT1DPIfM5llIH8pkSM96qCY96NWUjfFgdSNj6ftxTWDFgtetfMIXD6W+ZVfhXwZAMy/lB0xpDpvg2i8UyiICv/kp43/UkhcHklNbPXcrPj7XkIcVy7Te380Ox1eQ00xZi4Mh2HhfwZ7sVxbZJ+q88o8K0Y6/T07398OSf2vHwRB9o8Xiv7qDsVq1MXxwHToMVCQfXv2sHsIKK8cMi7BgfhGJetyBynX73Y4Zou+AWufrhMUBtEJ5vzebMwLOp9ydpdENkN7ENiH4kP1Hd5kioo0GxAaFXW+OKAUwiF6AZ15eljynmSfh2DLtoTUpDg60inE0AL3L661BjeyAMAGQ3VnGrd3RLwB2lq9yOrvdOJ3a3cDBcQzp3OLn5Ij1QsOkhb9jjw7SQP9rUdfqcQ7z0qdscjVJ58hHWLOFHvv3MqwFtJXH08AHjUE8j24pAh1f3FPX2WrO751byAon+s/hHgvfeE9oR3QjLShFhQfrndgQjUGlE2GBwzmaFiIF1sLiFCV0O4N3JSf09G9u9nTEq+70Ig5yGqvxnT+HnQmgmAjM8TcfRAhlzNqhAVLYwGAmW1LxyuB+mBAjUzojqYWV5DWXoirZ8d15wxaYYwv9KeZHX58jSksTrXeQ2Zt3AZBZegKF01/375rMXfdzV6y9iChSVGhfShDcFpZbZ0L0uYJyoI7LjcMHeGA6QXiidq8FT05l5UTQZfQPlKxiLWv2NyjXZL9sDfyNsj7F9duvRSkGrWP7dXphtZ8lFak+mXzWnsnjd2PjAxCKqP+QI8gQxK8vyyBcdK86q92CyVDNy5R29xIVD4TICTpp8R4sj8HMF3/SasWf9ELXcro02T9GGNfgpuARGrAKpFQ87bAkvW8fj580ANjXWHkwcgQo7hh9tYo02xgZH/mrzF8jBchKaFzs045y16AEdQ6lnpQBV4qYaklhlGQsXzD6uddKNUYurUTcT5Lkfpqmp67jJAkqTqDdxM/0tszb9cDh89KuNshhFljTCioMNa76U3bq1YYV+iyTokLV0asm2glvheHDxlM+taEvaUg27x0yh/S00XQ2bhnjYGrrjjvB4WRmKLbp5D6mRNz8twEkpY42+4XJsW3dji99lYUZhv7lczdSU0nZVXtkcsp70y2RCwffseDFPOtlOf1YoQkRnInl+QLsNI0fl8zwXwMxzhZZ3vfO083k9vZloIZyl322s0HpVRuAGg/3VI+/fF2Icd854NMIya4cE7ZKW0HkAVVycATxhcaGxdfuH7FhBR2oHwrlkDHQNyXvcKGUjvcjJ/c4aYvTGs6v8FQnVBU4Kv61FMnrs0YmTMvFiUeoVrYwIWnuTPDJYxkVcWJMOLPMscYDoN2c8zMC1XvbbhDmgXJWSD+mX6GD75azsM6ENN81juOTobYCUth7/YVI5a4NJ0K/FP1sV+G64vIJoVugxKDaaGLVXQjV0tE3J8dGeRMG3vh08hZprmAnO64Lo8hiGQKMARLcrqqpQgSe4yHAadUIaPlXNH0VCJ+FQrKdLuHpeHGDNd0gUGY0YZK2FgTTxVSxjqDy4fKRyNFOHYWWAwc6U/q/EGxjLKotZt7fqLWAnjB6zCKU/VmIBXefHgjsBuQqigATFggojaVlbum63QjLPOQi22PrmhiteuApp3eLQdn5uXkvpDWG5zAzNRWN3OmJe5B0IhFc1iWN/X320b3HeWgILWkXpOKLPAbhInn6A4LruENBCIbhGC7uAyax/1mkiKzxCmRHpZ8tx7NG4YtqCj9gtbtAdNx6UIURqFNKuRitgpAL9X516ef1k+YwvDeVsC74M3Ho8l0GVL6lJngngj8GZ+PLvvQ92Hk6txn1bL5QU/p/V/xPCRF7P/PgjvkM4MhpUhkO/9IkI6Mbhhj9a6Fo/uoXMHb5LpnCUa/TrOD6VWvtxQdx/wu56SOyHDoZnQswbR5GSgfqaZmv34bSfYmB8IqonT91v65xez64VS8s+Ch6YvhkwEbneI53+pVVHt5rWzFednxC3R87iCaGrEw7bE3M/Ia2qN5pJ1b5OTXSdiL81jAE6Jf3Zep7LvRtcqywT9Lyg4joUJrMrertLVZmJbzrDIL1zRC9Zd3FqUz7x7YjwLSUVr87CQF7LPruMyafseUJs7PevkFXA0LTIaWBOiswAdHCAzPTvEdOzF/m+V/1jGN9iAwE/g/qvt8Gwk8S2iN/Y57EILFwgRMwB8HW7WYmSPDba5MXFRu4febFoDTIzL+Gwmu0vqRjpoW7if8nEfMr1slBSByAtWMNhDgtshqIXytTP3XbpquSTd+S5hGWWXSmOE0SIv0Ruh8V/fVFGZ/uF5aQf3a8cZ4vUNWCnSA4xwfZ98zbP7hjrcjyRb67DIXttuAm4iMgVrUK5UoT7okOEeRgIEiWhM7PyDLg16hgKqJEgK+P7T4ArK81eDxNj7oeQetmNHNBs0fQ/Bh0Mo/ReRzONLVFk4/y62//f53zinhVfgrfmfUsK8rbnMmWIkbeFogtLAAsMpaKjMQc5Nj2EIp3OYVcdQ4mY9uxidxwHRVlaPGr8lNMC4/kkZb3VJSK/tbsTK2/CTDXkI4voe3YMR7KKfPFSRRsMbF8DfYLEWtSoMws3eGGIO5Hri5soIfbK/KGszPprzd+mKTD1u8BhWpobFsiNqaos2rWC8qSkzDl8HUMUbpjF2NTGgmKOg4j4pbw9m1Li5sO4nJss2RfwbNEvcDVYFklbvKF5u5qUS814UUkXd2xaSxv7eJxXWa298OK4uoaO7eK49XVnIeb0x6lpGMfv/jmbiT+2y6p8CeIEtEikFsvr/faPx0GH99T1OpJrvrk3MrKQeSrBqvY8m2mil8ieC5sdnEWP81+ihS859oJQpTCkRcE/Zj5VT6Vav75bDX5k0yyGhIue7HZkI66wd6rFgDib+mHd6v0uyMCNRdXMdVRl9LiWkV6L1tTU0kuS1FppL8xbhU91YLunk3zyrg6Fk1zTIKG2U4tpXZIT4v70FBF2NepRd9w7I7NNri+QqqF/9Seg5bpth+5AuXq5QCcZUq7R28ZDDTCm6iR8qOFcJ0koTiK5OkGytwWMQpkMWwRTTaq3489o+kT8A1+nltA0MPwm+GyGO68kV15VT5VoLADvkGoeXafN+GhRL2OpdBMQl1aTnz5KRRhS49e5irsZLCSeBMDcR0KE6IOuTqbgydr7sqVMim7vrwX6WO6rJJv8kdXL/mvLlfjHun9pysb3p2BVaLC21jN/8v8BulGfNoi/5mnROy6Rojdi4OWEKugqbTDzlZvOsoM4aZbK0kCAaOqx/aKErvets5rZTJJiMFxHksBGCfNjE3i/Ifdrkm2rTGopY85GjBaIF3qhYXbdW96EtjOp87TqcxhsicVOjSfqZsi45Lq4OPAOF+qWjP+yeNe28b8HGujyJ3aH8ERsdq+WpBpuxitWTEXWfc7kIQL12+dXnSeGTyHeXy4Qlfro5c1N1wKA5Bk2tKgrCbww5gVVMjEldzRKXQjifBeghd7DHc20ApSrf4K22V0zgXwsLScqsI418RbAClDmriurCAz6JPdLVwWJJOTyuNb2/4NpGMQW9+N7RNMY7AJWrnoJPi33punz0u+MDMQaJxYwBdPdswGA87rwJtFKN+hwUvUYeyGm7x1+Ji3j/eKA+A27vyioxM+Qm+OFwLzmLpb7Y/JBV1enYHL/xzKp7lfO49R+CfoI3eedNhwbMl3j7RYgf35b0tfE8O8+3UlNKMGXYbQaUdtacfKmbUJ9ysPSkCh2iFTjLRotOOasY5KDsXRFV/bC7eupxJu1sXX5rExLST628njMx9G5oERMLk1wy535d0K3X9klEFTMcKKRCRwgm31ZJglvDQ0rz6iNCeVwIRAjeBgtP40Zm2u8gdmST/llKs3a5ZLcfmyWIof3JSNb6Re+FG8gBmwNxPDRCUcDZ6nEMKkF2UZlyvk8thKLLsjdc7gQlMyHAkBFa5FKIWJK+dsQf2pXssC9+Tf61euxWgBvm8NLLlgL/3fjigOenACqPp1GzXqT0VCvwniDrcn9n3z/XLwOYqxp6vgH7cpIcsPw3O8t/TQI7DGtRJab1F6yr0oU4UcHDqkc12c4YPsPrZr+ZM+gWleQCmU+QuZiDkYlWJTuRZV6GoVoXzaqkoWtmUyHXD3tG1Vfq1V68BXDZKXq98PLRU5aXelsOaVe9HosZmrwGWnndPnNrIl3iro1zeL/Mdv/NKnOsXx2xPKTKydFcdNJvIBqWc/YvL2zGx62xIfOeeeWMAsPqrLEk4z0seaMN9LGDHvcd/DdblaMFegMIxZyOvEjE0VR2p6GV3FxW1RbmxyuhyPfUihJ3pZIOYs2u6kf2PS2arRdIkRqGqbaMFyRbv4xBETPTm2OR7d6Boooj3Jr4h6X/fHvGFLexhsOyT7X0/ed+ZaMf7iRDHvNdjE+epy6aiyP+SS6J/sWadt4++PC10pOgctO33rH3IStS9Mr1NH9gBKC/17VkjRmZuRGHW+kYTL3bypND7l5/l9QQJ4wtgK0Lo/wcQhdT1AZMwdi1YvoXbHWt/ogIpRbObnLgCOzGP6SEPg39lKFbFQeIt5alv2LX+T4drNnKDrH3CyfQJK8713sXK0P3pcmpf8P2YTZ2WmKLJqDHcfRItVV/v+190FyEPZ/+et0pq4k+yCaZmYJiQ0NJUlDKrdudPZl1GfPocYmfS8QYOmtigPrtfIXOxnRA4U+05u297RXPbXkBbBlD7vr6DhgkVpOvQJ5Y3Wo1C9qweUid5KR0fBA7CIQuakPk1/ievo021vji2kL5i6oztroWFVGTRWGHJIaTpJQ2UrgyQL6J5ScDnnP5ndRjFqtBU38wI7W4iQQbsoK3O32K2uSnxMNGrCSwBFYzO/nLrkjvD9JqFCeUavu64pbdO1JwX5hUi/TQAx2fDWXSDgcbo4ptR/9HYMOJIgetGbhiOkoJTs5mM5ybpvlG3CTc02kHNs2l0e0UasOhylnkZlsmFEMHO1P4MeDX4tXtWX22VA5YLjOS//vB5Ys9rRh8HaA0LsWDFqSnwxgLY/IhcfGciuCeJsPWbdugzHsb0uDiOChl9ISpzsl+cV02jyCRVnr5tz9B2j935oClEvHqKZ+6lkQnUpn4kyvTJZohFRRzjM4wUux+lqzU43QdjyGT6mH4NDbTLGoIZReOba+J4/fZDoLtHVVP7Emf0Qj8a0hwbkiumrZaEbT2d1q+/sZzdnCY/EfJbWuEmK0vaqdJs9hpYBQtGHLNuEej33TR/3BaUZ0nUrxSfr/CZD/tkvn1+KDfghnSROn4qFxli6rvEPQSMKig/bFzaDSMAQ0KhSyr5jzh5V1fIeHLZT1wBTf6Hofg68HRF+F8WGQ28kNBi/1UzPZDPAGW4Xw+yJH7gfYOL8AHSV3wjhgrROPnC7VFQSVZ6IPsrZGyw+3L7EOq39w/Hq55FaDltFu5xqgkcpijvdukHMmr6x6oKnQPqqKSTte3hNYDd74LhZ9GNnrohAyBgG/7dyJDQ+GkrPxJGBPIPSEWOjqSODkCJLSZ9DXXATe4q5MmW5HdNlaBo7x4A2AK9xL1zHj4C86yvHadqnmHY+qVlc07x0a+hZGSEDtv3JBiASRf16IoIAndfC3/3D7SBOFSPlZrSQz0HLrslNBnnyjaROydiR/gaHZpaEd7dE5KemMrBXgq1AjburiSOo74YWIb5gsQdyZUgFIMI7lIxTEKVVZTqV1MVRubp3VTrPaqFl+l0XjvWeTmimABJsg0SerH1lrMVqHeWbGy3C2RPuAPZeZiKhj3t593JuLvcwC9jj5MoGq/K2Pgv9Og93NyJQIZclEoUBOiN3TN910C0OUm2PNI5xCkbgLouMsHkCTdv5gmcuJvMiFIuriXofeiv1CFWHVQ39f1SxL2E5p/nvaf82CKv/01Wc5Exotld+iRXNsTVm2A9sOq7ysvbSZQDGWAyBstGy+6/Sgxdy+L5I4nQtYnb9fs0RFurivWL0YbxAOO4LDXdRMgkzIfLX2zBcQiTS6xXYlqRSOU019e3L6Hpv/kJIRb+nIc9c+LFhhchCX/hMTfphTF+Cgdroqm282T7sVI6/D6+vSbzJFuDEZE+NuXUyVI1M4EZr5aORJqF7kpTxtGzkceMcxD/4Xs6aZ9HMCWodE+VTyVgFB7G8UNd0VFL6aomyUyJSpiSmF2MSn8I9SA68cdVFu8yoNzj72ohf/c+vN/TDCU7NBE7FAwgmXG3bfrbQnXGVfLeyK0VAeX8IPMIjJCMIsYZUDQTs/c/bKiYck9DAHIb6HWu55qyBhbrIwJEFDWTyj1VNQck2SbJOAWCGRPMMhEECnL6XA059GF5vckTxnSPW0NVnDIurl/vY8rA49rfDQTfP0Gcvhfga09XoRdUFGmt2ofULtl/R3ABInbvV096B7hrrGevKifevLeVkmbSfbxN5FNegQ09IjXSBrqHPLdk25aP3T4ZNBMLmRDzM86+LmdONjVfVi2iNnZlsv/09ozzaJub8/JK/mFUAhpIS9vEdTchu0LIdWXplIPSM19imhI9Kl1dfdEsZGUuZfl70hyQGETahr33CmUpVQUSZELxmBuCo5G/8lVurGStrqDSeB3VE7PVh9i9iLt8GUch1e+BzpQIFvAZeUJPskxs3weshXzFfwxHgg5iRSGIwBHuSD4ZtkAz4BbIjHwvVkuZMRD2tFEeetrnuOV8IEJIDIWoddWjMIA35jTsdU3p3eY5jAm6tzSydE8jbAl9RWOT4sd6agSB3K//5wd2tzSJzp6y/7fi1Z5IVRnp42TCJAyOGGKclcobuasWg18sepSpKq+Xaea4RybjmFJdN077iKC7SKxpZmU356ySG2U8wpzZb7yszIfsZZi6RaTazhDWoLYbZEbTnytY2ZsQmgn9+WhPrekOCE50AArkNLC0k8Ns4NAewn1caOsZXBaF5TYhMHwYgjHJU+Y5bUcD0Pq4AwZFgVRWPPTImBRsOQTL7sSdUpooTfe1bZ8gp58Jwy9y1Taga4mNEkEz3YrAtjyq3NQWtfbyVka01EgjDzNdCA88l61JcuOx4jKTzKig34Pt69ZMJd2olhs5ZQD56p72XyCA5mDQnpTyPkCwxu0Fw6LunlMasr2gjQmkmIqOTRMlRJuUiUePVkL9BjqmWqcCcGFN2vJQxVXZnTzdUAMfcIe4/HAsBj3KRgN0kxSkZMY8MiQ6lDcpxcGSDcPELWGLpG12fGTVmNY96dmnBlZNBuUTfC18fKg0HhFek1vA+Xjd6WEMGieFd8p4S6uhHdLfu8LWsXUlMpsA5iP7R1i2LtFvKp48p0hjKy0tupUPHvRo5q9gFAVtcJa0+4K1LXjvFTtxy3aAYYvcigcD8rJUlmu7PMkEccyeUMKKwh9nqTEnY9Og07abitejjpO3YEjf31LoBo00MBQ1eikOlC/6xchTnIsNe70OAP6Jru1QhnyaqYUeXg/n61Hu32Ojkiq0V2KbBVD4ncQG1odcJrJ1hYaYGfRfyqXQtUrDAEKAu4Q9JD2g/4fVVpFLTZw61qVX4d3rDQrCqKzz50cmbM0iF4WHzMkWJrVG3lZkgC0e2j4dYJ1IivkQD7hQcwVpmSchMciDu5mP8GJMLIXY5GziPGFqQKQ1BURqb/8m+88akeIQX65qbX7vjxcWSpeCrgkpLsW8tOvaLuR5qMwcqI4W9C3SIM7l+rZs41+mEEU7yxprkcmG+aZMGfzZQcfHDiUf2WVnfpOBQPNi8STg/B+qu59JMIWY7c52XX/7Y/aqZpze7L444NQX28pHa+NLzJ5KotAiB5+06vSPYziS3svLT4idi/Zs/jMJcQSsSlFVdO1Gs8tmYrQj39F2uXGvaouc7CMZHMQ/lQ/6+8wN5UQ6TFImkwQhHDtH4DBgXkjO3dJ0ZV9+lBJa2xKPfJHc+zykcFBnGzCNiAoZQ8UOMzYEJ6ctYDopzH95Z/IE2WO5R2vaRg8HYSl4f/jh8RQVPwjgyZWUl03wohAfiqkkHPSQoGtgIN/H0bVb7rym6wj6V/TCycK2bjsmBWtmMQzlkxp6buxIt+wQHa/PS6TEwdT6GL4UbCMrcm/xgIkuaD7zAjJSs8wySgIB7EoKHq0/N/0RypRw85QS1VX5MjUxMcs+QLuN7QOm35JCMWfO3DfqvpsoxmZ4n7Go1CXmAUslqgNNScjzvjnt/u4KQxUh7sOz7fdbHx7hgcikbBT7vo+LTBpkQ/3Fh+SXPohaQA4D3t4XzSA8gN4Oy8Ml7m+h/q+Cxi0DyajtaKmwGEWLiXGEnY7c0Hg1osIWgOPedeTIcsDxvFD/rFdGnF49ePQTqIn9wKufRwj8L6AajQnWzYdVvlnHI9hQnoN66enh/EWJBT8iHQ4ohAVNEIQvrfDCN2MVcXestmd9zr9O6abXSzCRGfDeGZpUC/fD7ENMJJ9jPii7pFRe4sJsHcozUlvTDQ1pjI4CXpv0La9kTUpY5V1IJoFcg/aIMCpOI6+Cq5IFMSAVpODp9IhC793TbX6qACov1eAq1T+VqCLyJCZfEo82BXtF5FFHUXh9rD0ksGN/F0JBsoRUVJuhSm0GOK58uJ3bZUTBKVVPEsJK+o9ed86zVWdESssRm0E/S+tB5St9aMhUjujg2Yzgkwao4lNIsMxsaTGd7S1k2HOimmaONcDAQT7ddDaBKThUml1fQnnu0FvxDHOjF+lBgNr86PUTPuFP+QRlo0dc//VQPfcLXE2T+bhx/rK3CKdX/298/FRNZVtPr526IZMm5DuU1Kq+1XTaNKPkf4iWphvDyJxV5aAxtzCuEJhYgSUaUgLrpaR/CtqRVyKONz17kj5n7Z5qcraprUGn85eImjKV/1KAIGkROW0nLV058dqccwHpMvf6ty868WLydguluGOgyyqyGG1smhPmJKyx5QluOFCepiVzC4gXEiEBGJm8nmCZwA5OmJAYIWQcm/xQ10E4TyV3iy2A5dYUjXciUm64dOPz1iIlxSSYk9eZK9vGWtT6ziSloVyFvIsuiH7Oc+T6nsT+SihAalgTwoJo4xTug/1/JKcupmnR7b2IQ64rmDhACJalXGFtUoutrRDwZq42CT+m1qOo09bmesjxtUAXeNqLl4J+xcHwf+1tEQve5CGsVRr0/Xv3o8nd3xvNgP3LaGiX9vY9b9Yc7MZKXgNzI2XlCMxKrH+hthyZTBueEkcgJXs3UUYMT3x+ckai1jvllZVCPyRuuDKahiWTToZyctW2v6H3HxWdZCp699WnxmAGi1VkWE3UQOULpvJTPKtaonl4EpHPQpXFITPXnI+07G0p06mWPTqwJb84L1X/pPRS0uV1CWATh3P/oKP/742oFX12zayD9RtMLF0nRZFDGk+x89um3uNzqjciXtr7BlALsl+Ro6TTGVjCLlQiqIsxXEfZCAqnQ/8C3SQOrFTiCLOmaNOS4Y9XJqmtfnz7jxKP3w71st99p/jGcP+WiH/GZueyNzKwiF2Deo6hgFP6pinRo3Wz63xlQTIOWkrxOGy0J/quvVuEijBYzPyy3BmuSlWV7ErWMsYGhMAdwgm27lvbTY5hDcOhVU3MbwcfhPZM6BDQ1/vjsQkyCeFR9Fu2spG0naLuhm5YvM5BrYIL3tiV2uW/nC4FAced9ZPZklCgtzLMXH5W/XlaZpZr3WIsuW+90ux0iGDzV5xlOsC1msKom7TNwJVSRfitmkoyHdwPff9jAqzAi7c/mg9DjrAK4uNuyD4ZQefqBSJPv2h3cHM6YG2Y99lURzZD2GYo9qYNij7F7+mcX+EWIAHnKy6ZACxdADwHeiAXoKWcyK5I1CrvOt/mRmctzcw3SsuNwaD5OT0ANNob7CzRj+hDPvOuxWxIEKINATYhTRmpTNCq6JecVTb5yBMWO+0S3Lm2LWFfaNAa03nQxIHhP+oiRqxuPjFAYT9Xw+ZSs8b/SEdnnBdx8OQIMffAxZaH7E+8eL6z/ToZwDs8/5s1Bq4iavVLy5rJbx6xLg6IqDnhdsU2bh8y3oRRN6pLrBi4zIWraRVbcYM730nNccUAfxN7NI2/EuCQM7YMxHIo5SsOZrAHjBujGXUFaBRrtGvXaNx/fuTcyzNf7nL7pFmRv4w09x0GuaO6jlK/ZqHsiu0LWE2che2QdIsXejdSfxIZKAzjnHw4tD7iu3y5qZaKJGq2cWOJCIHIHbYqTgPByiGfwvIvKgsBw86CsxiglxvHRB1/HfQ0PTKtaXAcrVYzAjYOH69FvgXFlo9nwt3K0fcZWYbi0iLKaQw6QUmoYZZzCStK9/Cl5z9Gbzi8WDiekXj4gs/xpa0H0KyHx3PQbJ2LZKFsnVX2PUoAKgpR1JiRq4NeiNbEEuSoGnQ7ZwgTCnaWDeaMtFmK1dnhCZy0zY1qgM88ddFPbDKwsvSFfxTD1yftHsu0H6aKf2ULcA/h/3ut7zOGayJoNule15aM/rl9iixrzeWze/TjtBwiuVU9ul2q759EmPIqxwTCgwR9KOvlGYz+isJqTilTXbzskxpl8ChWkvUKYuNZkkZxEfIpjItem3ZvafjcQTmgzoitnglhjR+64L3+8hysNXdQcRXK7M0XmjrrDs9NUxHnJstyLLOqrd5Unp4LsLlECvLJPkN/EEIbdNIarFZaUa7gZSFRnenWJ4KQAHkelSbvsRvUZTbT/4nntf2zUUSigyaff3aQNn2F1pPKgVZcgkzySnqo7XMFsPJlHTNAeXWnPtRO4tuu3W2IRD3c+d2rlkDb5Jhs/Y/hnbldooOPptcpexC/7mV1tymLH229tcTx8ljNdK2EzinTxX9ebnpCzlCmG4CZr+aEhut9veK1zrcmWhDQG4BjhL6FrV4NSKpmObuAEGSZBrgazsn+EsBw7wqbmCEPY41jfIw5Xunbg1V25x8aezd3Rbx37Ofx+ZgqR2sPh1ot8VR4+LiHLMh/kNLw6yjo1hm96Chj7TwTEQ0458Xmj5U4DMn9kkqONjIcoEBtytH7DQ9cijh3aIAkqyhnQV1L9qhUmCC5l1CuByACt1Dmngsoof5w6XWi20Uyi30GDnX1lH5nCk3xe+RavhgyTR2QOE7h/VvzFlb4JDMmx32ni22R8MG6fvPG/cticIrb5x0eqSNz5bfFofN7OYeArG77upzaGBZgonCJqrcuQHvX+GGLXp3U+BlnZPblXLTR1nu5qyicIskKX2eoEJSbcQQ5SnaqwOZX2Hxme9dKde+vxM6bXE6itj7It6XjltstWXkLDhwgwYh7gpDouWlcmv4IJpyULp6OoDGUBV6x2CUOKQUtH4YS8ZO3Pn4gg0EO1Ksr7rLEdxih6z7o81rlnglgNFwDCfA2q00eaFXZ+QTYgyw709xbeYE7lUKyAio1skRqqC2s4gSnz2WRIIoCVbv3v8qBRh/sTdNu3fsTwHzDJw7IY5O8s6oRCZaHqRIXZtcAr5WDphjf8ZgHXNNo3Z/fk1ipKOboqZiYCsXfTtIS+0bTuOMPL8aOiN+Yz7S32mMKfKJI5ByOnYPrsL7vDRSLZyPe6jLzwnZD0V2OMl7aghC/ir9JepYZSYm+Rx2AxYFYRUPbfh1DS5I/TqpIEotjIdVcEUZeaVL5MrK+arHDT+QS1NU69hmRxnX3+4fBPcFEKmaBryb4/TZv/tzeYeqQDVC5UP5DQ2kO63N+7gh9TwU8jbLmHwH1koMidrfN3QFy9pLDoco5OZGg1hVX8nal5IjKefFr1yOZ7aJaxN7I1Ii9HKidHZhEkxhKux0oHwYJdoPbijraraNaLV6/wlBySNTj/qYOVqOEdzP2594ycomTloSrUocuKHqUgSgkM03ul/uCMNHN0PePfH+HIf4QIcT4zJkUSrYv0UmoLKv0U44+k54Ffl2fZUc2MRWeNYwVgoh0dfOKHKhAHnkvfOwbipx7QirinHQTINg3oVJcPZCagNMKo52EM4YcZkYRbq5ZlqBLk1bAgvMl7wc8sSKg+/vu6vAi5Jp2GegP+yR+XdNgDYdHget9R3mK+/hW8Ovm6qjLdRT+UlBvoHZF9HGz96RgoxihDMw7yR34mFvocBCc2VUX415q3+riQzJ/D+7VcAzHT+0SgNGPUDLiKdOcZJLlyknTPQ3IKkt834U+qlkyG5bvaDM0YeFCIL5MLY3qSnDP2tRbx7BNVe8xAnt/OfZOb6rtRdp4TxQ1pZq6Uy2GxZdp5Homc2C59NkD94ume7X7I7Wd2nuiWfb3Ub8CsAR0Ex+rPWxs7vHpwKyLydvzRb5BU2aZj1OoIFx67UFgI743U4JAEdsKAFWjo/H6tL5jEud07sD87no/ugkXsyMiLKdYaizZNLHV55LfeTupExUfDMlpo9sQBRAoX2/5p2ThfMFdFjEx87fzdZEjNlHwCnlnE8jRJlT1KjwHilrIsm2TyYOhuo5HekAg/zAYP20dJIgEzO0K664jBI+n4IOzyqfQrs2cvQn0zGO7XC/Kxh2zFubOLMZbEk+Ok2tuxjraApZ2TmCZHupygdXThGWQX1NwvZjgsYADvzGilZTtUSxXti7Pcn270jsLY0eM8JKNqdXXSeOYN+79YjBlBiqk4NU8h2lCOej08i4+BeKReSyB7c0teX/Iy3C4V8+EDoOFTmMgeYmu8SHb/5AD15HYg3Z8vR+Am13YPOdr/EuR2hdFXJesTZU48DmfL2vyqvuvMeba7E8bj0Oahd6PfgqmIx5iPsMxnkh1UPvP4QfjyzkAd3jqqpy86DvVqBI8r4qh9ZZqATL2nMcEPn+W6+/nsaBbcVQaU7st5rXhSIEje9XIwXkHw2lkvvTA0FiwRsrfRFSoBLh/dPCK/39h5VuShRQRUR3EqozqsAFsCcH8h9p3l1CffhGSAUjsm5MGVTOfPkVeIM/XSt+lHgc/aVCCQZ9cMSYx6Xmz+LQ/Xajf45OComTtblMNSboLtwPZlepHln0Psxv6BxOt8Asz9W5b+9qWyLWw1V718nFtESvK7/j9BP6CZpOaskpSgsoqrx5Xw1CKaYLEIxUzohxjRmE9+fX2Mf6Q+zo98SJ0QK7ttlih/cyPU2JyyvrN8lY8raMCx6c0sOblgGo3GZ7/0SOJpFu9bNWu1CYfk1Uz9BKICcS/MPd7ceZHhlpNIkQijYHYEjcr5APWyIbN+wVluO2Myh1KHXwx0XW2RSwI0EKzGUdzCEfbHJDtPDGQLGMoEmO3CZ4UqvIkws1PvybS24CTP1u++yza6dX+qs9PxX57K5NMRgnosb7XrM+CipUPK632sU2t1uikwoDR3PBW+sbZGjaFA7HE5Y8dK8Tgvk+a/FcQnCn46PNXb5fghr/H37AHbxGzw3fZ4wUOAMs550ntRp/Uf8NH5Z36z2OJvpPR+V6+YM9wCcIDebQZ9MdoXO57JTrL0vHIntJo0puCi0vfkrLKV/NUVzkNtTxeoAWnjTk3t+H8Q1FpixNUhNpMy6z8GnX9YSXjNPMaYO+C4n7UM0I3gi0S0/Z1CXjcNr66F1YcenncDbRlF0RbJyIAehhlRY7DFM8yaYB08M26cNkkTqygoKOXzRDtTwkvyTZXJzCIofzybBryulpp3A9cHUv1RHrVLw9EK3bParmo8iCLl690tp9Ww+tibeAMeE/ebFKGH07qtZdBWnW8o6GREl91d7U3XCRq6IAUR1ZwS4uJE3jsPISg8SxbxAzQcKhxPN9OCDPaNiLFUzApKNsZsRGivTGGdCmx60wY1rt4QBL4EuY1QNvjBX+1x2DHk68vrwb6xIwBvcRB8fv8rzEfjcKKWwuxO3V2/axe/Lnmmuaologx3UtoY/Oxo8UJ61Nq03Rd/odhunzFIX3rvUQAJgdBKFNtmcdcGShw6gsGh1MRECIbp6IJ669xLPL2GRcFkRtJL4zs/5fDgYvt+gVBoC2yv9TWKcvZGWpswY81LRT6KubBlu8Ua8BV/g2IUebHusqPQDwYHjGIoA+1AOBhjTBseiLzU4GTMN3SGhl6wWsFUSGR8kQlTO/n97VDKtXZlvodTA8MG8HhHrqXRMWpQTfRpaV1jlLKjM9LE2x6zJmehaio+7UvqsiuVVYqvJd3fbbhcdHD9qTA1rcQ7qxgt/IunZIftMDtTyVFOfb+WcK5N/yS0W50epoYJWlEgKNQ4IQMGt+rG6gyEc5zkLzyB3Wp3jYvFlzXqdRPqI8MpSjYttqigcCvUecfAoukgMhkTb64MR5nKl+taDsBAbogsMZZumaZTJtdTb0qHZLZ+PyLYJbtndvDGjYJ0PdWw+AkxOO7CzCSXL5NyKMrhWFIdz9kI6K5Aeq8b+mz81wMWJAqJJEELApnbx3HxrcnbzL0u2HgOhMIW/3ca9DgAqUFWWIY/aPciyNWGprtxan3t881URVcObFCHo4BMXe6uQeYUq5No4/3WFlrCBohGWjoL6X4hIU6PSkJGiYD/R2ruYOx7BD9+S1NT1Qfjijrefu4cmQ9M/bYHAaWUy2YWzssrUlFwwkP7N+IjAV2N0QZkLZPbGw3pLPoJCnSCsrNg09W6ixUHRa8CAB3qKOg5YCF647Y3UEBtS/1VOnbqy9xTb8VD1CaMDEEaBIihT1lWFZhsQaAnMZWf/GO4kKlvyRQrCVXW/GEpYNe9gw/KP7YRWDSNCd0H9krGRvS2D/SOlVgq+SCxxs4ecbwNOMnW+YJ6i1zNfZuHZ5pTtp97xL+/L+HKYlTBjVT6nsM3V5W0RMKZ36+aGcavEKBqSOJkUJ5LGy2aDY3n8fQMhNHntaUKg7M+e1wFuVMr5zO3qPIZ2o6QmxTnRnkL1k6tSAJW5PkvPe0QENtfEuHoj09dZ24UhDN9YSzPKecMl4+lxdYWqboS4zlglay3KmFZz57wUIgECshub0OzmeXZl2WJAhxDhofbAW5yJdysGaOliv4nBiy7z9JAMYXGHRadrvq0r00orPbNGsyMe5rlObfSK11oJ6ElzXn8Zf2tWoRSqAsm86j6WcIefcWSauNO0UP8+oet+q5fxiYA0kiWTtZv4Fv0kOZmbGQhfr8REl6zOJNN+BtbI+pYp12pZZGBwwHT6uwuhC+51PXe1VcPVCZac0eIc8WD65aQFB7AlqjuAdyPpDCz66lpRFrduMgXF/XvrFjUQL1qkQPIS8jUSDHDeP7oFIS9iheABYWMVkiwSKFrZwIMEXdUMioD3vn+o+UW1uuXfhmkwQ1909cKy44kupv8Q1Wr9MKZ+9Cm/WdM5H7zQQvPqOkbH2gkCr6UhVsw5BItENyxgvC9Fz7GAXfeuZw0nvzE518zCyRXAotqw69LnviCY0xk27r5Mr3zUKcDnFDLxh0kHSYGTfOFiNkxg5QWCHwDc4r6RTJyRQFd6U78o/0o+Ux16zVVvwbNebwX7JHO3hnxCx/zpXV+QThJl0qgQIjpHlSeQfUJfnUeAHzjtgtr4SszS2r4i4+nRAQ6lexdh9pNwl1ilRDiffcH9f3hWwr5vq0vidimXSyj/YabmtRfjENVK9vnEylKT5ZU6KvFgW9oYvs5q/nUZ3eBcuzotXs4N2yLD0OHBDy1bEP38XnfTJcnd1XhXoFGItq6/2U+5mbAOJ18w/niirFicp1Vv1UHNXssZxPhLufBdwIxpHqmcW78it38AZLrpDMVztf5SVtp8dDK8UCrcyzqn/C1yUIoY+jeKN4Wo38218Hs2ghgo3WV19IQhVDgRzBN/PI5KnyUuOWyThaD7hd6U+I6MOJP1uKvucmMOrnd32q4CdnbRIBPDTYi+4Jvb9jE5xSC2kh0pJn0o0auIhfK9tMP60Tvdd85JvzrelDaM9AVfEuCujrv1aOQBQyn36IiUMJ+zMyJWsuZ9hjhu79YKz6Mh1Lq9ri4Hzo63b2i7ER2fBWPmVmlRN3nemQ1VUjt9+POqQW2D2XknvOJjsF2syOoavy1XUoCYswlNNUNh6t9wf2cLN7mD8x+J20nwjmvJCZ7IFQ3w7GYpSCG6vdpwEi+hQ1kdK0SW0Td3yep14e/pAjH7DGq68MF/16P9+of+7QUtzu5YHb1A/W0VdLJS2t4iqF/wNg40cUheXKrUGLr6pBaygKgQT90uZKcCOL1dopjRpiGac9ewq0o23W7MGCME+rOQZg8p57j6xW6RtnhkerJK95KiG8UUs+WwM7nOIWtKe5AFLZcaBxchQi24gy4JjWNuzk6CIFUuOYq1nTAKRoD/h2/WBw9uhYOLlfGhxyowbSZCWfX4TmLk4ncw1HbMeuXlAstbjF0MkcUz3zl1YmEYQI6ZSjttDV9H+nM5YmpxXJS1HoEXIjFaLSBwhzWgCxh0DphDSzFWrc0/gyOEAi10a7Ya1/kSr4h5s6J5YjKl3Z/ymfZ0c5nYG1S27Hk3AfBZKarZdVD0USy9bVFn8cMAQQpyeEC5Fj3g/O9VeaJGr+QbVvMeFnxlT+OFMUk978EBmBYbyRMf6W9qU1Vq3Ibgw9F4dYyYPNqsZFN4xGN60OgG3j2qrfP4MoyLuFJSTgfPrHCX10xb8Fx3oL0mw2gMzZO7GneqD+y/Fiy/zG+e2iApbzGrfug8okL0mOH9SoyHrlDniCWdeZ6fOLe+6i1bcQ8VaQKxWBn2y6oIOrWUzTBWkap3OwVCLwfnM1ORBJdRJJaikfs4K4UpBmUxCr2JIAZ4i0bvjgoywSb87t/FQe+03a6YSpSlLXe4FCp2eHIF2XOLeB3ldRKbyuWFGFCdcvt8DOfMdiuS/myJyrc1FIUStqARdqtaL4DG3RFlaxc45fEPwk3CBqWGmi7KNKioPu7dx1CYefiTGk5zCo14ak/AWPuqNJfIKrMWdCR2xFuO/JHPfObucUJWZCsaZP+7UY7LcKfnRUhg5tt2LKTtFPoEX+3iqQtSwK4d9BMNgCRO0yFyeGjvuTzr3lMelgmqUZRWZQz5ndPLrAUhABXRr20S2fTiEwbLe4AAejTdtsU90EtGtERjLnxXIURi2BYA2tCrgCzYcIYtYnO8tDDi1xYDokpbELhXmTd9j5dGhttA7vbmjyOE89rdf5NW5lpUHssCyE+rGxJhtlXlKySW4Ycws54z7Mq0o5j00IihnC/lxVDJj0nnewAhefgmdOEw0SpjNtJN/dGtO01+MJ1S38wI8YIKnMy5WinQ5ghAq0Dbs6i1hz3bdzCX8Gt7S3UYbtmaLLm2koXs0/OZwSC1mTZW8pCcqZ90JjCY/6qoVJt9On0iKqysHcNPRQatwOK1MO6ohjAB9DkE2BbrVxZH1xIozzH9ZwpjxPbCDtp/S9GEdpUhlFKQ1kwRKHrU6yblrvRd68RUAnUaB5BHOOwq8b0qNQr3Yyg4/vg0olWJxYsUdqzx3GWLNm3cyyrWu/2dXuQalyK24FSoVr3wSvPN/IK6ZQlB1YDJRWqVz/9Rujja0ir3ih6yZxvvFl/niI+375iLolP/pEJfV6k8hLDdjqRaeVJupuxnMtnleDbIBzDTsYiJk8eVjhPdHZSs+87KiE+gpoTGAV2qaJg+valUFNwx8/7NscD3Q+mPxUPapO97gOJi5gRVAWRLXlY97tdyPpNIChBZxVWZlk9Ptamlo6o5e6A0wkVppofez8eJILdmankKdxXntJasAB+yICLTInaHmo9zLokmTc6YRaAaROkxIgBc16GH3MZ8V2B6zBjcSZnWzcC0cP7uEMJ59BxBRiuNM7qqZ3X3xwsjFJddq2as8e8doHP5JgJKrW00uMIjLR+cWg4XHM5njfwV+9eTeAw9VGJz53qKV6csAxPtzyrLrbgsk7ZbKYN0BYFl5iczdh3z8Q9JyP9YS6WdyEsTvEoMFGWlXWRF4KOb5PxOmSchYfbN8SafZLivs3myBZgIunWG+4pkkYpcO0M53W2HzUArQdaTI1EToazVydD/ZkJJ/YRHCj6f0oLq/aUq8HbTOAzp29JgKJnZqwuM+9zkJ/uJ5N5fSr3rQKNe2Zp69vXlolVtanrTkf271GKT70UptZPDX4i/yAfaLU/6v4ucfg+tZ5lK9tTKc0+VZHDEIwL5Gv65K1EOLfmz8QKZEd2xfTwjVK2j0U/0weuI0jcAB28CXik140Xuz+gRlccdGSGJYBzbNgpxLzUDierbV6KYCKChlQ64yBp4LVZuAMF5hXy5SFqbDjgn5kVNUFehLf9PNX6LgYYwMdyU0/XjYhAhwJpk8SpRZKJIlolCIznO+TGAqZCASMSEB0OxzZeAGzmuWKaPBv9wrZNEuVARK8ktqu2x06G2pry8XY4bxv4TApq6W5Bq0feCcUN5Pm4IpVULBzb4JwVTuF+fOtYCRnzbuiBrX6M8uYMJmkq4Cbtik4pv60JdzpWv/XTo6p8JU+12BN1HBoj4ObQ4TiwAIH3gkj61repatIGrx6hN2Sp5tNe1CvvNRw+7QT1jfHhRzxcDKPkTBktI8C3PQfE4uvIUwdWsEDrCDVuxjoaddeEeX9EFZiku1fTlP7wuE9hYdKXn+VhyHC3YK5uweYMcLMEnJzuDJmVk+LaC81PyIXTXOmA58y1iN7/TMNsJVcMQS3A9WB46+Y/MPc7oGMHEqupz1akTuCPY6+BO7msuXG4kDWWjsQW5XlZCE982nhNkG+Qcp7ckKEN9vezVE8cRwnqI5Tde4ugYEGf7I1UlcT2jahhx4s8hN+/PjwxTKFLMLpSgEbm6rQQMug8O0NMH3clbWrUh+6i87j6LIoKW7EO+nicIPRPzL/bDgN/UOzFg9lsfK+we+cZnH4hXCTQ4Eu5HtbOe3oTvDaFepa+rnTFna1afFpcLF1NVcNzXXBFeeH/Y2rmrlVJGdNYqQyrazokQ4P0e2vks7j0kZthtwnfgJ8kSrlqEpqu+MIb1w6Piukx5S8aiOLB9RTgkV9arLFk7m0KrOmaKMLhaHxhVIiSLC1pCT2qY5snoQD68vxGBCrDkDf/bJmyWmzbOimYUR3Wv1EC7HxFoq4XeKzBKvueRJwhH5xe0o6KQ/3tynKlgIPzR8e85Tm+R/9j5Et7b0/oLBEZ08B1oGxFmU7R7Et+zhSm2bNKsbMKUPtyNEn5juhO4FXlcwwLVPC5lpc87fvKjYMIJE0aAX99WjHe/WysVMW8ukLPIIQtWGfLIA2N4lhlNFJazpgebFxbuwlZLpBgQuDM8HlWnjSWO5eMPeFZAsHHcjvcJ+AgXiv81WM93nAk9NBCXYdI9EOSFA1Xvh9Jl2GB9YIc7uZM898cF3q3WQDM94MGnQPf5F15eOadpZGaP1UF75Ocb3qYgpjCdQjW6iH7r/uTxA5v6UFdlyLXMyWbmFQvkfLV3Gm8M+u8L9A292y+VWmKvSM0XNISUxU0kV864EUA4M1F0f0lkK/XvfvOp1SfDQrqjuvzhZVEk2ZmFeFoePNxzp2BvqOO+TWrHzeTNMtoCwQ6RTWKXXtdpxKhLK8bcc5czJzhJl3AOZJcuQ7+jTKPABfN4/p6O/kLlxTgqL30/Zie9EXJ3RnMsGPEOj3BXKzc0VFfAb0EFLzMyBhkLfJmRgfBxojOr7pVogElqcdqIUswJ15tnL5Ka7ridX4ngjxxccFPtBMJXxvJ/wjABcvbueS4OkawgGTWrKiObfgrg0rZULCoCXEXWj4L/nR/iN+RRfN38ZB0/VZPkMYS+LC0lWd/IBSnUOazhB3sgqHylGQf6j6dsdayJtGunnF29tgYU/OWvle9g/qx298OIrw5WmU8P8r4rQTAu4X2Uj1V93f1IWiyf2myv7j5+FEJT4IEJ6cTlXI/N3JZnfDrtUAuFiuXBn03xAgv5yKGMpYC7nrce3nBBuD2gRVCMzxEV+ayj7PyH2iTk0bBMXDcGXQ37h0PpYvRyOWRP6pSw5lePCmHs6GfeZ7qZmAav/PP1Og+Ci1eEuJ/EZsUlRbjqr0M1JTrleb+UkD6JoLeMzKsl0rsFHU6LdjDCdS5Ijg9Hz1Ay3c4opDyy0CfkGqdWHQxxBfJ8dyQWmf2cUabxBkZJjhL/rmmkPNR5f45EBaSK6Aw19iR37BrMmyP3yOtkKyCYHfCajGepYyQHF4Be5wfpKMC22wbQafh0CJjS+EVTslEW6/R8eSI0hrRJuNapJRnA9wlgznGViXVOCGOJe3RE8bRo2/vZvrUsBLdPupdKPp0mqcx/cVdVEt2eYom5r1dM5fow0TimLAfDXsw4Khy7AdtHlr0TUH9iRZT/NuXfLQtrQrjHjjXpFeTVRc8AZ0pRQOmRAdH39KUhaLTduOD3+CvyZVgv/f9HAMYmA37GthoonHoJCSZPNpEzYCdlIIIRS3AqJ6PgwedxM5Fw9ngrY7GGv773RvN15WSeM2vzqPNjqQsvzZJQXdtz6DyNEwDgmv7aD1pt8H2toPnSHw5J9/SN/Ruc0TmbZYyfDKBMNhwctZ8YqUzsjfvfBYChLLHRHLGxqD9QY2g4pqVWhRcvkECUlAHWyij+dIl1XbH29pY6xWe4uIqWkNiylnjRxRnULdKb3wpBGxQ6Km74Y8DGebtQKAck6sVoS5o1MtfF9jXj9lIXsnH356nO1IQRsVyH2KWDVclHRzNb5vB6ClpLNSanuDZjY6Sg4YZOL1rAKgWtcIP2UBzXN2iWR6dm4B7VtuZd+onSXA/OZbp9uVnIbkgTaaknQ8At/i5KDD5f8v8w2QsmZZgZtpi2qkuuv+u0jleEBiWxy8jCjHB0sntCKY3K6sCns5fEThPOOoJaAnOlxfRFXqXxhPLxKIfGj6q8egPbdcIQRGXCt6vuRDVDnqDnlloHL2ijG+Bj50NnH3vuWM3rDnRE6dBnkKMJsnzm9vGnifV//Ws5LgeLsf5XJ0w4cLV9Q8PlNgc+OvQblRbHk5zVtnBqObEnkZzClfjBQm9Szf0c5JGYskvMsbcENODGeO8KSAi4TnrCKj5Liv+4psKRBKbKK0HE5ipGNHitYqeM4waSpnHXczL8QJ5RmoG/+W3mWtH3u7DsLEQdjcZ6oofzCrnlX2UH3UVKH/Nc4PxJiMT9YL8UO2fn0bNRV6wFxKkvZlLMRG/8oZyBuW1RUx/E4xraO3IMW1Gp5l+WF5BoPqqO9R/twXSBmfy+5b33oR3GmR0i7RSvfu5AJ2rIQLlCCQ6wrzpRDh4/5UOB/YSw7mXkdcB0RUHDjgsz6PvJtGij6B00Rd5G6oCf1nT/3yrxohOCRhEYs4nMCIeNnC2G5fz24zk6fy2uioZnPziUoDFd5bj74dG4exNkB+JQFJgxgryMFLOATzHwV9Ua+G12ODvaELK4MPKkYf7qZ7mncFsF6bmonqe1f8WXoIqr6qUeazVg59ExZnQRabZx+Qn6dXlndXpmltRhzsgA0O4iqQdyruuhdDLDNqYl/QEv411hhvaQErhEuu5V3wmx7vjustzj7JLRqR8MMle4cs+/K+rGJUJlM7TW+9JIRUtuPqaKdJT1Tej3fh9duU+F7I4Bk6vPmeIP+RzDx53bo6Lxs2/zoo/1xdakpnlAgRI4jfJR7MomQQc9v50th633eaifvh+2DaEXzBABVZx9+IqoqtcLJFrtaSYRl8L1Lsbw/dtGrLoefL7ThBkOweQ+Oe4w8NdKIa/HuPMf2v97V5CBTqZfRYoshc0UxYAHcqC++4RBJnnpHPyUMPaJiMC4YCmO49U7Bd0wHQihm4+xutnDGA4mZnS5aLSS92V69gnnZq7/GikGnGESsLnQgjd5+jhKZYuGzOBU1aZppqBi3SGFDk99Vx+QxZYAfRUNgfb987YwzAxAOTQkjdnvdD3+T3Mne989Du/z/VqDKElgu523cQ0bTzfYsVmenJohqjWI0nvuoVGsp5VdIrz1IWdRsXXtktMjtXH5/bi+fyVMyRX5xt8fFnU4Y28tEyOhfozgY0ba/xV5LqDU2K9+PnurcOMNWIdDmZIr4QXdAQGGvfM43p9OWyJKwmk/0QqDM+e12/7qCgSrcUq9r2fTbhFGS0lTOvHYmjFSO+9wrnLZYDGgW9bI5vsrkgL0aAMjmeEqNyU3TzoVn23bLpijfpwatmmM+bmRcn5FiO9XbPBelSGRmzyfCuTJRErApp5owfUPjHu9KgCjHA1I/aB/ee/JENYcsMStwk0Jke0G9jMy7Lpu1SJPTyaRYiNtexk489f1Bv9JwYF+GwL+56j4nePDhRsU9MYDyCncG7f8AzqgF9YlTyH5cknkvbv9Cv37oO1M5jSXz2opewok5JNw2OB5xcH/s9e/tQgaPbCz/2g+Eg/UqTN+fcqKE24IgIm81iRpvDq6y42bZM/1SHEaVZzfNuAfUl7ZACR6b7USH333h+GJCfod6p+7XR2GPgw9DCTEItG87O7rDOwhUWEqHnoNxDISv3cRfetDcWd33ysX9r86crVPECmirtCkm7NDPUQDRr/u65c7bSyhY8+eyI24MA7dDiHvnJCJwXcVuGESsoVFLpZxxv8P1cgRS8E2852Y29990J9VMg3aW69zl2aYpu5v6EGZj6UUmpoI7AdkwfPDkOaVtkoJKiKiYRinN51vI8eUsDcjQYZsSxSRP1Xy7bZxp81Dqnkrx2ZvzN8pExlW+yw7+H4zSwFXBojQT9odMNvXdm+UbnaOM8LANj7MzNtZqXhpouA76lkbFqveSGAxsDI2uMHnydDSp6fB9n3KJH1w01U+xIqcXNOVXtofSBEf5kKOG6arzeHT5BVIx0G962oxA6JAd2hVFwRS3h7icqOrNT6+hDad4wzJh3o55+wxHhIennLXoUEFmAgy/eJHV84o9tCiP4JfCYD0ojYgBDcx8uQut6U+w8DALnkedK52hj/TJKNcxZlXh0lfF6FhznL8cEljVDAWzOLzREBL2Gnxy7NMxeTzIn97gexFQE/YTJ6MdooD1xArq3ZGIYX7+7wlpHeRW11+qIwOhMT5DOn73eOKFBccD3mwdlbG/yatxpDZunSSHQbXWeKrJjwkjsTUyXsUhR3PGuQibs0NJkOEYLv2JZ7HidowV1oM7Z2WK3P+r9zJk8yZcqsA0udzri6DfhIjkpp91W77I9Evyp9OE66w9aX7jTjUll79Yfm+AU/8dhg+ibTjdHUhmFEm2ozbc2swRVZnPwZjEVzND3lQigHON/kgwUm6pgdyHHSoHz3q4tzBKLNpmyLcL9QjtWmcpIpSBFzC/k6bfUVEORhp97Qyz2gQ0iRiNxV4S162iXvGS2P/SQID5EcbpF5nW+CCN/rNMuuHXNTp9ynQnW1LbN3Ekidm+nE6hMs1ZGa1pOV1ibqObJ4lzh19BC6rIuAmnyVTuXvGkwkQWdzRCHSEbB6b7YLbaCY9jv5LoGlk0SETyldEYzK9KOHK4C4+y4yS2fAzFznM83kDr/3zJepv11AnxlkmUe3rrhM8qSP4ZdVZaHM/2N64aysMjTWDKEaTGbRzvEL/stsBfPWaLxrTk1v5do3DnXUkc/g3qCx7Mo9qFRmxY8Ct37fKltPv15B0Dpmjg8tZ/E2morA62PnmlxSEbhgT8T3qsRdRGZ7aCo/Y8rwoF+HCGgu2AlCKq+6Yt6jEH6X3u0H36fBNzQIDZY4WIfq8rp+h3u3v8FcKk2Z+IKnxdRh+faym91vpZ5nrGy5ZYnzR5sfIiVx0cZi7s7XO+VqEbEHrxPdaeSu4YBaCW5yt3cMHgFX5jMQcHz/bzetL8V5fkIeQwrGca7ayXgdsSZ3HigIK13+OhmT92q7kbDhqZsbUiAgBVFhlh3fTr47HOc8aRFAzWnlC5n8t7djFIisRHlJSDdCCdZfYkuFSWz0HOQilP0Bw7gXp5UjhwCMkQJlbLxWOIu8glb+y+U+NRb8NvIu1JO01SbGT56UteQjGZorBbG5ZOZDvlujWiY6uS92EJ6JZSYNFlfQtelBhkjGIsqKHia30onbG1IupbolfQy6gGJzGa20/Dc7WfGTE6evLwgtW3qhPiJUID21Hndemtk/f2whQMcGo4tJN+R5S4RIQtm/1/OsINqFpM9vvyrRvM9PauzjGHJIZHCYZvUMoBo52TpQfuWhv1zRm9F7CNro3W/sW03mCzBhAVAOH2lRchKs7AIHySJeP9RO4QFFnZMU7WTEuqkMhHp8NpKYhlVyJoMGu7UFBHksdMpw2i3gkOkVfXMEm+hsDnBHkR1pZOncjsaxHjmFYV7TKA2PSUzIb9LZkTsF8q1Bie8Vlcm2cf16rI7YDxiknVXLJTbUggT4E0LtZdisa6tmkdPk6wuD6iTcZpt6VzfkOvv5sy88lq136cdhOwlifNioU2BZoUcXAahEsVUvX/2szwNAqC/nd6WpBoQ1cwSTlI8l/95YhUvDchNE3iaCCa3BJAC7qndN3vOmzYADJd5qIIBzcrZQW5Is4t+mt6A4AiJVujB1YnXhNYWLpIbxKkRJ0HZ+YK3Jct+cj8PXUgnHARuvH2VgxDf36rH5v7TylpNzRMj4X7TVmzQfIkpj45OAMk/N5OwmAhfCLspR7RLB2wSQIbkLWX3NgGtwdptMPM4dFUhCGNeCFDsGNUhF3dknB31+LWtHUBwn1uvImGK0yP7Ire/oehdfLm3DwYWu4wbqqa5vorcSzDlIzs2bbDHDaHyglSL0O3SRL+Y0Wp5zLzF/TDVQ5op3YXXdHrKjgJcOKejzCtlkdLH2Ecf5ZwZmf+niGm2b1USV2YAjQnUl/+aJwWbh//0Ap27ppf9zhzUVQICnOsA1TZUsFeaYkhDoAytm7xCcATVDt69dls9DIKxaB3QgydjW/AOXlTqNLRAIQ8zzG8H0OtAENPc1NLGoCyURZliv7AWlSq6x/435yNpw69bEQ0BePir+M/WY2fD9gEvk+HSD00MTDfh1wH0JurjsbzeFTzeMsjL6wadMpC3yiY7ZDkPVELY0LB+W94Wg4yjKaaeN9oHu1CEX2fREZ87ho9jz83YRaONF1SO0iBIVqQ/eO6QTanpIKHs26d3GvbQ6qpwV1A0hKiZrE2ozqglXCpMFM70mfkiNxw26QezQyTmft+Ieakct1KFjr4UAy2ty68pitnlVWSdUTCMEsgzKKawyjmnYqvC8JL5UwiPWu6agqsOnSwG2k1A+EUtajwLPdJt3Paa6gigBONmVecYnc8ZaOq8HUIA8H/dZgcABQU9ZDGu/dT69zo+Twqf31786cFl/0FGAc82ZBZnu/sjMgwoK89QqJ3lrgYU7ppiqMld3hivDGJU52Tc6SmgAzTN6wq4UzK4s3a8sjQQM3IUIcgfHPautGqYbqOi9QbkYYykOv5V0/CX80fz15xi1RXbyo5RpZdmNWQnfg215XRClbujLXz94tZzgpbHX1/K8dTisZUqiL33RDm5qeZhpWwUwZjE/x2zdtodvZ8VbH0HXpoyMW6TsRWIj3gJPegKNd1kwS2xHzYY1ITva+xod/EZr+fsjumPDFCDs3ZrNJ59n80G/OBRl+pCKMLaSDKSf9by6iuj+NYQFHmGUwYk/qfJ1aAsJ0GMBuyc8rXA8tsmL8T9Gss6nb9ntffkCxiSqux1Bb+Ug6mKBv2so3POASMz/pjcXXqUej+qhlZ5IevUiw/rXXrZWiS8gyOm9Q8Sj2mhwczU3lu2E5LELI0w5NPzujdfoN+RHtkhIKWYX8XMJTn/lODiPPOv+RYM8z5ccRobyzzX7hOH90XiKPzPBpLpBDXZy76Si9UfQIfsoBrxCEz/p2yVzi4w+ixAXM5ui9x4jXobd1yJkTgsN6Xiq1ZtB0l3ihD0lT07B7Do5Y2Ows3oLLosa/6yiy7a6NvVojxYBviXxyJ32Zomf8D9tkiTyLwKypHm83kI7qCjULNNmunTxYT3tUpZAYq1rp8SamTEO3rhaZg+d/vWFboIYQkVVDRdA99gTl1+Kjqcq9STE+Nm4OFca9KSx4rxlnHoTII1kHLTXvniC0AtMbKhOYmser/OP0d1HFB4mQGz+EYGdO/MOao129sOV5ERG6MEw66NwGyf2jm1mdCkeVPHIgH+0OLejlHrGt9lEUheYPrMMcT5bOR9lhrB+QnhYpunjF3EGSaFX0t/hi6RJMoxJJPkdhmlcCxJN4lS75/Wx1yO9OdauYtr9UrEJrGjilsHRdOEiNW6KwWYnM9oo8Tn8Vx61o3E/vBkB/3NUR5I1Hf6G/xF/ss3LprweGYAHJd3Sf80wa44AzJk8gXo7NeK5gBA+m5Hg6QbOPuMC2s/J/sKT5KLD5wH1kUae4oB+unYbgLjxxdx954wD4KeaZp+6cfRbxp7LfeuR+ROeozhfrDIH2YGXFfGDeUh0g79+AxvX2afWTQUj/9Mdfg/sGOIf9JQCzQjYxog6fLDD410PL/lisRs9vL4eUdEEcJ4OUrB1/dVq2AIB9XfyZ0qyLjwLnUpYdrPtoIluFm2FLC1DdnSD6JpCL+4SkSHL09t1/w7q+V7RG/Jx+LZ9TXqc7YX1AtJnQEQ4PL6kjPe/0O/tRot1BR2fvEh+Lth5bHMluhPG29IYtjWvurlYKAUv74uUGI+kRXC+dd0DZJ4QuAXFANDJTXjZ6d9LC2t62AQI6IR46veLxcHiWdTUPWBr4FVKMmI5wf81abRcKx8TRUAIlMROVilMPmBSyAaDhPLVt3gEwExZp2ZKzHVzcKfyF74I5UO1v1KQN3iwd9VnBy+GxVvFMZqLGFaDJWxRqXLpmDZbST925eNAdvQe4pmEinFANR8rR764FT8CVVEmHHZ+9TpVZIu2ruz0dwrjVAYmtUQUwbG1oIxwObdv3EQmeSMhLf6xaJDQJNxoyuIRm67mV3okfx19msmss0kR0vYQuBPVxXcgmFxJ/Qe8+oZqGkZ4r+xeJL7NmHfDzOzJDj0b83svx40OE+C+Y4DeL4pnEBWErdnQLeXBemZqWFIS/VGmC/wDJ/dcoVTxNPJPqr/41I0BcyjWNXVeVfYEHU4jMvRh2W6MJe9E9NYhoZTYHbQyHWl6q1JuRmoN5czzJxRwotCvTYtQeOOACfJjE7atK0KYj/DpyYFXs8OpK3Sfe2zD4CoI4JtByUx3NQUv36LaJGSGyfEBZmLTxV1P/GbcDdiEeaoRu4oR6352lM1wUdjYe5HnLRy3wNDE30qnBZBTxRKEFFzr7yP0YLepuGtKdCX1xsG4G+bPDDLIHyvGJFgmh5bMwETmRE6tlIvfMKxaSYnWQgJasOyRqn7ny7mZba2d9Z2bzBDoIN/aVG5/u7tUli1pfxp7vuMxQvSRh8QEmnwM1sghT+YX+r3S7U2xVIafiobQ+z7uhEY271s/kWinCZABDd/YjSQ831XoJ/avE+Kf6X9kTQF10EBJ8VYe3sAOMN6mMBYfx+zTx16vvI8ZPkw/6I5iCVh6JF8pVK9QqK2gWZC5o1hmfl7g4KoPTaAllrWRjZiPlC4MN2Ei6wMbzdnkhuJesV16+Cot6+KKBm8kBoClBn0lx+rPkalrInjDpk168PuAVphKkH/odvmHlrJY1Kg11imEx5zc85Oe7vGkyjX6j7J32L+BYflkG6EnsoM4a/WghoQASJoIUfzAv9GI4+/V7QasCzi86Rotk6CB058KKzeRFq7wgBBmHad6ZnBvfeJNWRwkWjG44FdJVAUN8zM/fTvVVWFcLmEellfPGdI0MPvv/tKeelO3WiFRSYxjDf+phNi+Ffhtq+9ExcVt2BXKsh9kBl+pUWWTDLpj1frfogv1jL5ly64cuzKww2AcZo6DqQjiJd/yA5l4wkBfU7xxOE2I9BrpbxA1vR7XTdQaF4dDilsMAtWI88kqCKC+yUSg3eLfeLl5yttf5V0lDROWLgcBmuQLRx31MfuHmv2FsZpntWT57byWUpUEQFbohLeb+AUw2b0LlKUw4gOVbbX67eki+kp+A463gS3tMq3e8kwyBstoNcs7uiz8nrbpDnvppGZMThktZxOl1mzFqe6CrkWdxktFgweQBXBt3NfrzKgSI9GrdGwfyy6bfuGw/ER1Xx9W96wsZxAHICMuPHZvBCwKoI92ASZohYRESthCUg5n4FfoQU4C3c2DyWiQszKpbV8re5D6hpI/7l136g6eIUp6MCWxRYsvXtWOBEzKjdglN8DG0vR12JOR4g8z6KjTfmLuwbEPo6el6CmTQdA20P9fLMoBO28iDWL85JySxbP2ptvUxfOocITN8mh10N/VBc1XoboWjJMqSGap3ra/nLbNnlx+x1KqH+Y3OOBlVPhY0NLqewIPE1JB8Xc1nqWSZ91MQAFLv40xBZt8Ml4BKGVuIwBzdxCofgutabgZhhpealbfWyjLoFfYXqK7BrWQyz87ZJLs30xsqriCjC2PhB2m4Nstj1RJn8+Uyy5d8W+mn+zPWmDHAmCZnZOfUjzTlLMckFVH9ZP2XL22FC66Bd1Xy0XiPBUZ28/0qLpEhJp13XeY0Mt6mPBczoqknbPPe0LHGD4pKJls9POb8KLF+S4s9diFh80+qp2OWx8Kx7xqbuAxjWdIqKjMZB7NiQkbv/JTxlYtLf9mahRD6dZIzjGfJyA815y35EQK2iInNeJuUcoLSjHDxUcmMTfDBaSyR7ra8rF6sdDsT8fDMe1z8vjTD9dCqWtmYiYi3ZopEK8kEqoENLss5T7SWDTFkmytBYJ7t1hvsvTzDGD95m/2qFjSCIvMdLdNFJ8tmf/d0CHWNzML/WRWin49l0CqvDkwqb5GtwkORC4HDRL7JWdLVodKnu5lJWYtfYIcdKM7zDepIOVnofTQzkgIoWbl2rOyTrq+yUEVXzeAbKe6FFJW9S3/YAALv2PzO4hoeIvnApbTDYKj9kmKTX7dI8I1nyqZej6rJMazHcmtPTSYg0KnJ6jMkcYOKnDWqufj+iaD9T3Hisw7JD4+SkZKUgfdtfLXczNcx8mw8P5J5Ti4m7pVxXtSyHqeUJlGBG5liIGWGveYw0NHUW/TkA/nNfoSwpDcNRF94/doSSLTDSL+vf42BrLAF6gI21EnQxD3w6KqskjvrUgPAcvA0YfBpUbR2XvJWzdi/niJbsE+Vrnggmz9cF6lSVLWwHoE0Rb+SxjbPRKKAxrILjkDKSMl3m+tiJEUj3mC+h27Yc9NLjC4RRkqYD66Bpyah+dntgPNSIkNeLsk6oqfTpRAsyBZyrLdYUe/3I2LEACFxaw1/QYNFqF1cDhuLIHtER6zrmuJdnFRIfglawjFt0TwBKF95yr+1htlaq5iy0f5Lz4qMX5ml/iODar+jXTh4yMvsKO8n/P2JgJkUjLN55Xmkx2vSqbFiW4IWRW5VmwIkzKMC2rsxW9nErZKYMCZwN51MfzZfoKbCUsJmeDuP7kwZZTpi/sFD1i3Hurq01uP8XCUMKNSAwCFpuFYOvcfTMYJutHqw3II/HAzFfXd7C4mLEwxTemr9HEyedhC7mftn7P9xZliqEkEHg9NDGuLqY7V2AJn1u/+NQwBMlOEUmhLDaxHYRtA40PfBi+jgeRvY9fJOmRZw8IrwsU10J9Dr03aUICUXRFgPqViu0JhXcsu3lsU7pjkDIp2bbd/IWJuUMJdxp2GX7cRdMk1dOUMvRyU4j8z8xb5MWEOdDsqFLhd7LAG3K92koIYxSaxQYrgus8yYD2FMPuHZ+b+c4lapbN4Cnm+cXXShGCnObhR4urum6rTcrAMdT5mssn8oFaZ9Q3zu/Qt6q6vUQOR2AiDZdKLldkYd+0eCudEaPvrk0SzI7Nczu8HXOEk5eFg57Iki4iWyz1M5z8CWPuBLM7Vw8ieyuyJED+1Qyi7sIdDoXLQ9cs9ODUOqiGQndJdSETXbY0vAQunmGJz3ccSQ9LmMrGeWSafo2cjgm7ff+pTFC7ApgFtI8+HHpvJ9C9Ch3DfGeuBCXcK9nxhNNKO+PdSb8roLqWiNQh+cI+E15syh8hE/p1sicAMAnPM3F1IgBpJVofGrfnNzypOPGLaygLUK30mgE8s3ij4i8ihc7yuLJKIhgmR5+omlpqk0CVCBMIDalNfEorBOy2kPJ/JM7SqprzYUoO/7yUB5iBHVeNKYezgvxCwBm/cN0KmIUho4kIZm90ee4qExEYhSuZ5VVKJLYc3cHNPEFbUNnyMZqW1f+JByLqpvauLfWl2KwiQK0EEoaqZgl5AqEeAw/Llx6nmvtEm7oXhMxAJlHvRS6481wcO2skJsPvEuf/Zie/9MpKxl1Y1eb5affptJaVDnce08Go0TieGEIMhJtuhkJjHJvEdWl3nhrLt/kQSuTH3D+mWxKKNXsxQDlWqF+sqJhYVFG9kSBaRO9zcVU42UOvrjKcVl8gGkOgroz1Zk87x8H87RFmMe5L969ipUKJ9vlMt0nrZLFHTUnJLsH1PF1VEZzOWZ+twInWLZjlR6UsStcUv0J1fknm/Pqb8ayr0LAqQzlwoVOJoqFli5IeA7xtpb9qYLWz0W1rqY43PD3Yg+qpG37U6WO6rpBol0tZn1Y0xpxN1TjEhAqOePFyB2ZRJjPEkkfCnx8OjbrPEbr/ObgZLzWKcGacQ6iKPrOy7QQzfp8oYBNZkkF8jhLQAZFDYJnyE0Z2SjgqVUTAJclfxqkaIfwjAc5/RPg7QJ1O/oCb404F8NcRCuLk5jbSJiQ7FlB3mI8s8nZTYB1Lmc53Cr5HkPpvZdTgIJFgBkOC6sIUg1wC6X1SM2efnvVpdWhnkWEvFtjjAttONDmj6lXGg7r7v9kgWJ6yirqClDHKcn90M3Fe9640WHVRepzVZwovCNNRuq69hDXiVPcki5UQ6G3YiFS1LbWEAbHBz58nG9OGgEaCkqQq6rsVL1RMV3ubzzhxGOhjfmk6G/+uceSdBp9xl+DjTV01u0Ta1mnLM5IEaIMUuZBeEqyvvNKIA0IFzhkbyFgsk2xpKOg05iegEA958dVfewWL61ipzcr+b2A4om56F/G6pb/orqHeJJAnX2Sud/csEwj9AQUwnMn9PxC0km79Hbqmb5tOlgai6MSvT9y41s3H3zpBedmh4gBYwF5RA9B//PuzmMH8g4D7R/HJHzqUzRmCrxeJmOpUyjjhxndqD0TytvPEERNpdFi+g9G1vG7++FCjSe0Sp3ZlZFOZve6f9jdEQhn0h8GWZGlC6y7T8N+nxX+2R9KiwntlspSj2FQu43B3wHs0RKwmtF23g0tARcgLfcYPfK3YoXsm9s0Rpq5LociGvqmWrvq69ISrx4XaRGHgSbo3YG8mRgv3BJwNz1hQptl/7irSNVx+QXdUWU6KbKF/2e+LS9tQjvUhSOC6Wa2fK8rMHcj/YdHhZHsVRg7eKhvsrPHEur1tn26S8oe281/1TmCZX84VloPoQH3mzVkrtwxXnrS9cHSyq9/6c/5gKmfChPvHnIkIzT6ZAbm1azw/LCkqncdPMG+Y753O4YyZblPdsWVh2HsZ2Zmq53+Rlg7JEEaRvM2qwtSiI1uKUUsle6a3gLlptVEJ6xwGaFiPwA5trLUekvPl57kXLD9/Yf708jX9UiY+84/avrkAW6mgXEiUcLmMdsnXuIsJAyeAYo0YyIdyXq6o6hk/pYN42i2pm5lUbu3TPKq5M63+Tq1/ia3YNSzwaBNbrAdj5ZknC29WRGBBLbv7sEctJXGZ811GgeMpIeoeyvHyDZ4FQ8ICL/No9vOMlLFJNO4tOZ1hSMeKgJA2q1SF48/r/cu8BW6wbsy9rBGiFXMmeyyOvXuZAev4XZRzf/SrDRKgI3SBPxUEMUxtXBPIb7DUeLUFijSQjLomLynSR/qlXC+KmrbYwNWqvxQfZU3PwT9V79LRHvcHikg989Rbb+HypUfcSJpZuEaFQmcjyWIkGuwMM6v5JKfHx/BdqgJniI8mmLr3SLLnLEZ0rMJl0aALx3HZ+MwcioHG8V/fA/DHXzbFSE35YWTYxMct2dUUbYMq38DzSriBHrVj/gVier1891FfMOdSBnIsi0mIkSggzkQSjJmcYM3hl65W5PIXoPu6w5KPOM5Vfy9d4JHoVojjX+ryFUWlEwLS8cXdRLI3ESsFgLgVm/nlvIYTBT4gD7CBg0rIVwcr+S1rgCSyRe7omL8syBksxOpVbhaH4GtTINsT4v8Y4EvCxYF5ppVIoFQxj7LjryKb3xDhLma5AMqo8IyrKzp/Rj2988tse6caloMtqVS+cIe70YY2yLvgqMbBLln3IBpnmtJrUnnDZDLnyf4bOkQ3zxIm6QKXIs0qxujiQgZcZdfetL+QduHblM4VwAUtJlmpfR1J3m1IvHghQTubSwixiSLLIRi64A5arbYuP7kkLxshHRe1xj4xij731SlZR17x/lcjSRPa1g98ko8hobQYAULMC/XwGfHN3OB6QDtkHzwqBpANF0XDehwUhdf2rLn2Hg8Lhi9k7kEUt8qVVaieT+SYxNvGrutnEyPpbGI8M4m0udT+UFAO4DNrySO/KT1q4dyJZ4RPZCQbj4GBQEr0IhwBKhCsrqAFbxoWW6P5RWwhB4mfc2xsAwLq34CTWmqMIsjV62TKUDkJxDwJH8dtDgQfwJ61ezxZERpelO8eXvHLmyqj5tHji/clN3W+SGDJtmQid+h0Jogup+94mLBImvg7pi0zovFFtRo4RJxcFPclDTNXz4ji0xJJleOiq9UNRn8bFq5Nn5/4qQsbU4IWGcIE5UEtlA1Dls/2cuUf4tjgw51Z3ApamFbPI27zmeivqcZ8P43/Bh8+c/oNlCvEzCkEd4Kfxn5xLbXOPTkjSMZhFn4cbVkt07hV+71PmH5LSbvU39NPDXEfGuXJOvN3Axi17kh9tQdHHhiLevtkrVNrpcNM9g8dWVEU+L7tKZJptixhGjpwEx456nuttuPZ3EAyy32F9/eYaEtlsGNh1sDKXozH8o8/jkY1qv12OnjiNf4LIdrHwcdyhKciw5HQyhJM6ldX0Epcb1Yhq5hFXJjBGnke5/6Md21hUlaj2sJVnjVVUU1cmlKRhIyav7lfRpNjfN/wb4eidES+F1Ysrwv4PvTGPq5sbpuJ5MmEdXyo96Squacinr7DihOPJhD1gg0MVn/94rIe2lboLnzrOtQuwCi22pTDNBDq6B8MyJlMhq9APUV9FR42IVERc0PKSDlNhkTci6X8XMKFn8bK28BiBETXkQxo2w8/WJLHZVK2M6aNYXMDGCVnHJUXtlfvRDV6vqCJ1cfaeXYPS43+Pd98Sgjk/cFoh9mM2HyEsaxSe8emPJ8Ofan2+AkJYZqE2n8lpHHW0pbzXZBVEj6fDzqjdos4Q01lCgtno2nYozzyGMK3hIwC3gPMA8sP49VRovUnXrlN5OvA6+KKtMs7LaEIIR1ViZtndEKUdzKNBFwnDesJNWPIt+03srq4iQXhedoL6e8g7SOAPDBicKr7vpIyylIRCOJiL3M7qO4sDPaZ47j6Kt8JCYTvJi1ov5WNKLZG64vcC+zNjdji8c4+xP5dD+fndgDH11iQ1VO/+60ij/klhsvZQ0Mq8aovWIDJZr0Xzk1qapFRwHuOFmGp/vMZpaq99xGIPXhJBC4RpOC+B2E/R2nzvYl0IMg4+IMXATs43wrsk6kuYtSnrLlQm1sI3Io1x9UsTfPgeQujddLKTQJQY3CO3QNEW1Bio/SpoPIK8GXb/TZUHz/IbDoyTlwN1dll6tIfkY1Ctae9bAV4xrcD7G+C2nRFSimVPZnSBYO++wNu7Syco2hf9VacIOT8cyMdK2ntIE6Jqve0L+zeV4+n5ysIz0eyRWEqTSKkPbULhfnkfFR/azh/yM6tgxPGHPiKvVP5HgVJ/OCKFXLZYu2ncndVtTY3IJprXS7FgOjX3l99+7Ymy43YYd3JWUUEzvIQL8R/uNzItarQah8agU0cnOcefZFb8/c5d8DwuMpb8/3JchC/NvlIHaW6Qt4HlnmRUECVlIHc1RXzaXWEnb16z633sTdDn9wNgvAa1yp4nmYErarFTe8CwcXpD5Ehs913XFC4uGGc76nNVDk2QDKGoy9sHsHd4ah1kV5/qg+51t5TfgUyglJ6ecDM3lr62w8DiZXuVQmk2UG8qdJ2p2tQb2/rufBugjJlEypm745Qtns8oUCZGSvJvHWVHvRg7oT7zNs0gj9JHON/5L+RIs3LB4wWuvlsyoQmzZK16deHVVbczzfIk7W8kYJ4edFPV+hXP8wiNfW/UpboptZThn+QtyXZ+rceatjnnsKV9Y/3qfI4Yd5Hk7XLGVA9aYAwDrTvkxVFPYIoseMTPNibhgPZlN+lUlNHY73f20rqZoNAU3kgSkE+WFxKCXxKlDqH7Yy/uP0Z+QryAfZ7PooEVB0kEESvzKu4BY/8qisI4hy3NXvb7GMlDLPYYggQWTjPCQUHA8UeCR0proOGR9+5Tn+Z3S9dfpeijKxT2yGZr2lg/xri6w9pt5V4I7ww6SZRqj6xF3T3H5g1uCyrDB9NEdhOfcdEqPcJ+xQIxb7gIrCOdUFf3H/DzglzquZxXEdKSos4a2VFYlzV27pftklLBcXVMj04+3QpxA5lVV0f61dpXG24QybtTAikcehfdrS3qmiAdbni+L4V+88tbpFBKSuAez7ToagmaqXQDz6hnaez7MKNJGhC07TmOLrRhRfL9ZGJhfU3Ui6PzbWMZOKY0AYY9ssjUNGaC3J2gHfJN+xjmmI7YuLbgu2O/5gMcnbqcgl0l2fhFtr4MDIGT+PH3kyvxSaN/qbFZMTs8zsdnb0eB1hGlsa8VcODr6uqfLGBLUtgvIykmZvN05EmoU7323erJoIOYfu9vhwRYmDsfb1vO9DinblXkg4UT6oeZj/JpmKxLArCPZw1w5/ILWbHRlv3Ymp6Y5DVJvFjtD5un2rSGQ0YkoUpvNxXubW01jVEzPZ+LlZK4upO6Askii3RZzDXnto0oP+w/ABvmK1MnYt/h5v8P3rJ7CRaGtywLRCQj4pRiKQ17CqJhmG/RP5PrcljMGP1IPEKM4ehpHbDCM8QgeY9+6xnAZ/KWr/O2ZjBV5RtrA367b6uwTtv/URy6uEKT+heKbGbWvsGLya6i9LyXyOjEsP/3tqtaRWQ7J+g5cCKBLnftcdQtRQL+HHcZ2o9lSxhXaDzhgCHPgN0i2WENapjtje5JSB/Yk4ZycgWG99Fy9r6NTnhYEb70GaGKvDXOOl9ImeMU/47Md2QpAi/wNDjsHVOf4QxBt97Cmfw0iHlzo5isZSarzWfc7ESz+s8l86ooN4jfvVfJnAaPCMmf2rEo00hNzDiPA485wXjg8m0mnepw90cPKW7BTLHKCbQFG99Zem0M3dPvGuDQat4krLamQoAMuWZIKjtxO1iMGZWVDiNYIcVFRXKF05SlmmWXxGIsu5g5CnsfONoUq8ZxoNzEpMRJax8wCz65Ji5XjTW4yBqBCm6BMmbPV+Z7efPTykuSfx7GTGeEgXfc2J4YH9hxOZXfYZDdUUmbcAEqwJC9uuGk5pmQI2RCNmdKdVZvdDABC2NiVIjCFlDREFBNuDsl3/u7jLkZMPNST6DU8oeFblNlONXDHGQBchmHakXIUcL4/i9XjuIP6k/vEF2wHXHmZimEJw/jz0bDO2+EqvxCuinpSf38KyV3asGXuRUCTM/3dmIEpzTkughjea55iqOBLU0CWpyj/jFCuLgXNTunudlZNu5U7ZojrUgauVeTen6zUv5rnHYUZ5Qg35mfDO1Pry9N9ra/XV6SjfI9MXLFhjlEqXyOYjxbnZY8Zt+eOnIBe02j9Om3iUTiMqqb+buNM7pVnfpBJZ3hkf2DQFat7mh4PnSzERwXwjb9kJgJVWiXwkQxDR11WIopZmeyAt8ZLSr7MgsVJJ+02jUEVdYME+xJhH68eVBrzSy6d6rttl25C5IH6OyjFj7X0dPwOAxRz7P8cOESUoi+z3Ekq/hl2UxYTjKN/J5GggTlewbUioui7ftsoj6OTCUzEYL18t0fklr49JtcRbv76HBVxhmczBoaZdVhvDEomipo0ETMpvCNjKa4OXgsdxiltDbN5LeG8P1PHa5dwJ0uFeouVoAWjssAW4UD5wA57A0tcRiXkOBxJQk3FkLRHxAh1qGIy5HX3p0aJAg1+b5Xu6+DsioS5UpdD2Zm84mWZC3LMh/MZL52wRvJMlXil/hN1uUxffCEY4EMs+Rfqi5QLE2M+ZUKN9aRsgkxfLWbWdoVTFEfcTQ/N72ErhXuklockYrzO1TPLLp35kVH9/MwtfH/wFali4OZ6CvhMAJABlweH1tjGnNtMh7j6QVsU8t3k4b9e4HxdxsyYDjroscLWmhNC1ztJuOoqvKB6F+vsxChY2Xft0UqNDzRCfaqlJPzJhb/AhGlrp/6dvYFr5IpsYL85GX9229dsFpNiH5qkZ0cgiTfZ0wZwdppStL2sZnfi8hj+Uq4Kp27XJj4SlNh6Rxu1CG75Ox9EChyw4G/IvKnHmI/fS5QVDMaOCSvTWbsirXRhXS7tH891VmFHngfddpvzlbDWqUuJbZhfrG6pvh3XbCeNYf4xRPcwEixoAcKd+XxxmLhirR+uagEeQjIcm1ttPtdRJIoOL07XMU1IrOPZoDCulpyoGmKKjB3LLPlhkqCGFmj8XkeDxpbnyxbJeTT6xawlvixCT3eA4jvGrTxyBtG63Dv7EFc5C6COkjvp0zQ5uFBYyWEl/Tep4YotlptDSmzdWq+zN5AiHUkK5Hrvgcq9qjz6IXtLhdZtTHhXCZ09GaSGQl/hzpqwX/zZ10WTAw2eYkkrHqzfF2ymC/fpR6wePrbPvid1vpIgeYY2b7Whj1neQqLOWBXH9rNPy5xhlBMUh28P0Yaop0F66UeYYni3lV7fmS+KMRzr2LzmZ8sUlZq0SCPikIehyxfsb1dbmQauBBOF5mrpVsHRvXyZ2jr9rQqSoKPSlZsG076vLJDis5vQ8woonfPO8lLabi5lkna4PpWZOUKWiKr62k/jretGfqmBnAk9k3/nl3++vX4HT4y6y4UJqUQQU7Hb0+XtTmfhUGS6rFaIr2vltMk9is0gmDjKJKoN03t9LTo3fQVSM8DoIVBwbfmxqmR4JSvzjhDJyts1Q4w9tWCozHATCik5bWBW50rONLVZNTyX5HoOpohcDCKl0bizcRRiiwySGPmAT5VHHAfLzivaf/CvOY+FrjnhwNpXtFvzWrnlGgRvjUVC28+Q1bADnRGDJtqlSDeWN3lKCzX7pEZWpCPTEj5ZvbsuNr9w+V3YNfibURVpJe6Jnhdg6n8umZ5hF8CscvldfJ++5J/fQCeODBmFokCALl1iA/fhjfECtINTS4BYqdvcFVfioe7HhAG97YvXwGMkSTzvWV/WrrHHJn0qwyfZMbfLZTU2l7/cLWNlmX9qjz8MUVLaZSp6Pf3iTUuYBOnvjMBr7UqgdGcLPyGesL89A8V/KidTFtNvN3jsyBhmAhbPlP96rFxnLWCMnF2FRikpJIJ2f4prxjPUk+hGenpb0hHWbLUvjflUsDgn42cJulj9mPL+KzOFhd5F18822C4gpdou7ifZrw5MRvkfVHFBbc16CeNAsYAt/y34kssZ5t9SmFdDgDg/V/oIvwerdq4TB5HJnT19IhwA68lu7NnpUtK2ova2EUjrdl2XnrPcVPtE19NXbw0cANtwaa3l2BTtqUmD1OEegep00xGoyXDHx6c1iz/Ts644/MeXNOhZEsafYzJxDJOUx2ROlffQ6Kt897kt/2nHfe+bvbttdrfwiG4wubw9tbtXXy/olNaoDoe2p0lobA1PoM3t4NjqjAUbb+57rtTR5fHqem/sKVX15RCS8lMroo8KKsXcJ2Z5ZiNg0dvqi6JMeX2OJhAa3C5/1KBZ6qctff4G2QXQs4zsCrNothXZT1QunGUYIQzwIf8qfe2EtIzBeI51aEKikRymJb+I12+pXuTATCwCry8xERhv+Qd8daV+0me2SWN01XkVwX2sMGUWGqDb3NSGjhPvQ8oGv3ebrJ/ozoh0EZXO2GSKfWGHBFnO7IMZcwfhFFsz6+cQrdHyUZ69Pq15y1odK1lw/tF6yQ9Uj5W16WfeGoHjs9jW/Xyqhk8cS+7tEBoBB3n7xA5kaq9hpYkb27XZd5NO3lesp7c2h5fxzvFLzbFFbgHQtZ8RK9NOy0sOWhjmbh4QSNG97tcdM/azm35Uwg8YNJUDCNeKX0mn14a5stv5ztyBHvB04Oay/Sb2nRajgkb0J+QnO9LjS6oz7y2GHrTR29vb9cFj6YlmCMH0JLyZNKs1RmMzDFnR0TUb1SNG2N305JqsokdjtPnVGlW/cFxjiFKyGYLMJkQSuWhQ/dcceV/8x49WH+/Aq5jNXQ6kr/vs3C06QOlIfgSYaOp5VfNYHthgBfwFSt/iRGri3vGW6WnrGPv0bJrbxm9wiFPvcYFsCO++N0cSS3MQwLmD9aZYLwV2YCzqVHhw2kU7lH+rWXO1I4+1M8/PhNCyWkKw75Sld1tuCesSj8F1vX3fhxXO9nvCGqpXuq2YeV4BqZ/U/tP28xBNqGqThjbNP6kk/G6OhdPjdafuiUj3dt2stC1p6bKZqZg2FxU77x9vJzeH+3U6g1OAYtFJfwsQ4foBSiGrUMJIqRZLZDB0+TZjZ9911mZL5rI1JmHfKfLoynTbwUVlK+ATW55XumI+mOa0vWh+/l/SpdROJCYN3234V2FZLMW5gcRfbWETnVv02qP6iq9PesglDmb/Mrju/QnucW+uG8yeTmUwc9jiU+5lP5IDFP+LYPTyxBXzf1RhSXv+Pqchx4JPqOx82QUf3cYSFRqqTizGTAE8Q3R1m61PmooC7wLjzn1zOafrkTzT4hxQjEhRp89A1EGH3VDhyEJuF2bT3StDo+5DIvEQiW0q1kGKJA3tTH0QUu1fRQq6FiLBp80cPk62VgURTc9PQhRmt/8LnvHDABpiuKFFtWCYme9vP/acpg6pIzjph9XHfCwwxMqB/gqQh0NiE5kivKanpn+xf6E0HIN8lnJyi+rnfChrZY3CmH79Y8ktgB4QavaoK06wAPxnvMMfyurHhAt2/cAQz9VdehIiZXePL5FZG3nenHQa1S3gJXMnf75NmHFNrY9WXq0uGnYj2ylrwNow1li6hPiIemqVTOjpKEGbskmnenPORuxM351T2dcwXJ+bqGPUwJ38z8MVKbLYx6B63y+K+3psuPI5t9PBV8o2iskOSE4C6ipbxbV0Naj+FSa0Jd+YfFmap8MUyFbLP9tDPGjuo7k578rzHYzFacKkHjMT7rmpyOpXbK9xcO26b62XEqRCQrh+9BlvwoYZymAPpjAPxvxYwgNUo4mNlOVZDje9uDMAkkGb5OY+kChowblQmhckYOHxPvFFnqstQHVOooan8M8eWS1lIy8jPFwYXMf1efB4lW0sI3gEcolKfoPq51ECX+JaHCg6yItbQw+v1/MRvmQRjvVDquzMPFMEs1ll7+IXsrsTJUyEhcRPSYs6TQDWV+oraCqOjHYVcNpzezv7L6/ozGzqdOMPBqiGWAw0e7D3zmG1sdh9M5Vubhu/Ipt1wU5ZX9Z2RVgYUidbUlS1XeJ5pIfgBNJLX9zmxnlRoGJg8WXNZRt7Mc2rqOSqbrfZZ1gspRRVxyZOMGTPL17UIqfKa8VAPnK8Qg8usFe9dobLLgcOECZZFE4GQHLpy4JZri0IfCqhQtEd48mwtgNLTdoQnG+xz6QL8yaw+yT3RssyDdnKcFbvmxjdacaN7JGlMBVmBKJfLfIPRsBa9KLLsZrviKVBfRV6YIgXDxBz/SL9iaAIBhNEizCQ7VAyA0ukIgiy8dq/AJ+vsKJREiSnz3s2jggmoZZb+4/L0UD3sDXNWl6bIzjHNL2yMRiaiLN7hv4202s0CtLaohQXFqPMYNjtFFonOHMEXc8vPhOIeO0SwpLUAAUpfq07PkvPMBdxNkWw8GcXa/KSZGTos1IWoXOU/kr4NOVfk5Adjbm6fAMzgh3ytHn/TQshRemxTXoOjTiAQGLyiC+5qgj67NlzqXcXTgdKqEEbDu+YH4kE7pZsOBibY2oh3dUsJGSLnydo2Bc7OlRhMdS8yq3UCK2lXPCZ6diu9mB7LR9VUgqf3Egi6kw/BpEP8lt6LoZlfkMhc1SHe+uIr34YOE9r46tZITwQlRmkpm80tiCwiKwhxvzrpNVhkQes5LFrwe4PfBqfHNcv4MvqIjf7Vds7fH4vqQg2f+n+zk6JC+xY5J3TOPQxOHjvEL/mlQ/NVoaz4UtKWjXQnJOE56H0pIdn5Ur+aPIia2oqMJSD3uk51NXIv+s67gOWez/ubYmlW3YRo2wJkD3aW391slSokonwoTryJqYlM9CjgkIiBsyi24ZuhyUtsk5nhnML3F/XoMwJR0M4+Chu/SKGAjMnPdHcVFhPNrzeRZ2SP7D8PlbOqpopKNPyufvH1uK1I6sHKmf/moONTegY1cnU8R+vhbH8UbW6K2vdot/axE3ZH4IdkxRRC/G0acSRERosjWiTNb69yrqfLZmNWeGBTV+JoqbYwXdHc5dIzxfShQ1STAQv7DAQSfibm5iinPq9RsPcTj/ee8bP4uOymu9ZiRjMhsDSg+Ppsm9UGl5rcSNZs+8O+8wuSU7ApEg2ZX+8Aidww66ErM+RwotYEM7L1oyL3/cBq0orrOJ/dZGpqwyEAVOLca/aPLmP7TU5572ICWZygNHi0cVieKFFRJk8Q6a3eHBEZyzMjNdZ4PG71JXYIyP9a5hL3dP8PUpgUygR5yNI3cGbuMEq/RQIB7cz1QdMpLSBdZcySQN+93niMJcoBEnvv6NrFWjhI0GSmScwDq13i0ah4/2Bc+7w9uN7IVJa/4T2TBcR4OMjDFfVm3fgEABIT9QKYizHkmPseTjymELI7tZwpaCDdiq78ibPNbgeQSjYCrK3pFkr0MCG6Dp4JhVfDQikO2L8zov9xbpNofrCLKCqaozd5ykiMdUYOr9jMz6q1Mnk8py0zCV7S1Ts8vYh1iH8LALJoBW4OslFa57fPTvLI2KzEZRzc5nhFOK7k+KZK1MC0vZZt2g+7ntdLLjC44F4QHP325T2adfycc1bjefKgrPBVdfVGBH0JYhxClw/LWiiIomlICQJxi9rBK7LAhXc/xjwGTtvYaSnZEWOW3/bYaQPXTvzGngqKKOn9++ZcGdZXOrDYOeVWs8044SmKRj15NtmxBx3fNrlmrSWp4fHgCoqeqjU/UcitOY4/aSsJLWINWZqwBuNjEvrKVdHPAJsp6+JsZkTOKK9E92Mc0WGMESYkKHbZwscNxuFTQ92OBqfu/s4DURBh84UybPL48tSTJKk1wuzj37qHTBYVIr5xE0UciHiOxXRDVIzgeW0F2z63fTjS5GLR1izfS58qkvhFc1QNtncCUcaon10n7FXtJjyCiQTGeeBI7ooCfVnD0TG8AEXWmwVAXecmL8LHwGItFOsUZ0F2jG8ubWCFfHyw5DZVkBX79ogqW4vHTaVqgINALyAunHLpdPXOqwlHT+uAzO6veVlNDmgwjsdMvjn0FQcOvjkut92oGXBcKLUWdQVh9acai75MiBd3a5APf7d70kvci0fNNFS2ZnOUElk2da6sjdYB0PX48U26VIMZTJvEGSscrALjtcGnG/e5zRE1FNWeNbygVAjPqlm0WtI3AYB9wPKU9QMO2A15pRmtfIfxGAwtVMA/+yHzugiRAeukVAPYlSn/drqEKTvbQv/MhMlFgqIKCmdqYPMOirHDa38GtEvda1AMtLoLQ8vdPB8lejBXPHy4+DdzLj8mZFnTHK/DcCwoOHFbsNYR18hLis7cefCpJB7G94F9+povSCcQrG1n4hv9h4v6zgjlCxZODKry8uTaLU3sZlaWGrN2akc6ENGydpQpO/aUOnE8GJcmQH12G/NTdR7VC34fVRxa2vP5BZdjkAcK5Rblq2daOopPKM9we4azG+JcCPgmeHp2qw7kYLofdLSF/7tbDOJi14xywge76dC4GXs6Q0srohyDen1QrIlUMpy8u5bcGmq2AkKPUEwe3N6L7DNzEhKo/cnxyBfQ9cIhMGrz+hN5skj00sZY1v7h3fygAa2qc+soIhA+0hAWo1ysga1ECS7FmEDDhFApYbr5sxP5yo652TujXc2HPPPchvuBeHxjtBU/Loxu2dMwbA/W2G7WMfDBrzVQ2Dihl9X3os7vFf2Z/ffA14JymwCVnZmUeMyul/7DJ0//rS5DHqzWiwUEBK3MtT01vQmVUDHUa67xbnxU4G9AaiHxncI/NlXMNlluyrfPN7Tii6I+Okb75o4VHo7ymDKhrb8Uywo1i1n++4eqRf5xY6Z7/PmWBYuhRHb04xV0Ywxn5UDPwlAkPzMGqzVhxzRB7n8Ds7PihRJz8sYyashDKjLJWUYosAiZRuWla6P7G5yT7rxXCizMzVGJ2NoUfUZN1i43nurNuSuIbP56w+bu5BZa7queuwiv6abHsTSHyqTvz8HVeHDkRvyTDWmq90z9J/Q/gy+f2XrYLl7Tq8Ujx/5dX7EapbCCcdeWOW0iRMGJrpdpEty9hiPtMQY6n7JMEMkXJ4039PUlU+4TKpHKCuLuQ7xM4iIMFdl7fE8bd5zthxvyqZvrbhmRK+IDxADXNhqUu4CQkL0LacgsdHmaZm1igwldnsL0YuUk+7CHtirCksZ9v0P4qEsG6JoD4sL8ZUEq34cOrqgrwnqeRvBBM1mo98COa6zvqueG4jq03LSsx4CeQqyYXHu7hMrrmVYW0hBit70ZttErYVlmdLjzlj+ocbokIHxCZX2rN+hcL6OEW5CucmM41AC8pE5TbTHpZFMxV4YtRZrmu3LIAdq8JaQYY40alljJXF4uOEf4ABsXPL8QNpxD5VmP0u4HnlagvlOnX4zoiJQ2xHzuLPOh94Qz/+gkvB1E4rAobIzz0I4BOR3ZfpcE7Xo3Go+F0KRKvKShorpfSPl/xrzyfqcXHRFfAIPN5XI4vqmk1bKKiioSDVTsQmDeml5pTQscYkFaxlPd1Ip96RF+EoPhcbKH9oufSMRIsTNdm7bG+VP8keBb5FEJQ+WrO8pF2MivWziaClEX5Zp3XluPLIZ6ipKqFIt6JByQ4ylol6b/e46F2NxMfhEPAj4wdRKqV/KAdtFIVo0sg1ymIETtkHOP4pkcgsdCIWCe7qJCiRbboPeg81e6DiBOCA/ZrP9fBpRYsAzJhoe5MHr3t5IeHwVSFAJJ+7ERlN23T97qWt6WjojxvxsT6kJbh2mE4U8NHjfj7OmPDc5g81lsQ0fjZ86nFl3z/12N47NW4WmxjE2pUXMyavXCnqJDebYH4uwxtzUdhmmzd8gi8aIbIvubkFXTAhCRt6kki3pwRQfZQx2z43iyaRaABV3TKCDXefnI/mtOc/LYCSqt4NVvEeQHj0lz0NDO0B5x8ueZjHeYqMJjWorEAlqzO0iH30WU2n/XoXt11srP7E9ggHtSVD6x71ea48azXsK/qSqjFWQBk7bYKt+naCUtPL1CTqm/OVTkl4hQTzUjT8itka2b3/sOmgpN6Xtsb/6Uewd5sZ8SNAjp82H1ChWoQvKf8IqyfLxWK9jf07gfJEmw1la9OzsI0aqWJMVzg7uHHMSaBKIe2OrqwXxcFjVBsBbDHit/SvYQj0ovTUmRAUR4qrouZjYAuyrDbDs3tux8dafPM5zoHu20HmjETzPNaVzGKm4e+I3mQKNdNQIHb+KfkFfV5uNvjMdA8CgZASBk7t0792GCsu5q08iE6imxBDrNkUvjq93+dybS1cEHNGKlzYt/oO5Vi+BwtNe1RPM9Q69IyEGNtYmUEJ9fqkm90zl6sMdRDg777bqlTbqtSOn5NJTjRC52Te9Bq6QJfq0OF1Wg1XzXeg8+8ZA7WwRjLPmLzfXvYuR6vZ8wxP1cOw80qi/Z/q5/WEMKksJ39KR8U2leCZRLtkP8Dsmua9qASDW9GMesg/w8pcEIbV5TtIHmzPJqDFpPZSWA+8jfQpHCMrni1Iwj5/xgx4iOyi/mPxQMuhu8ZRyQjTT3lgCHcGW7/JrGJZzZlzPqrwPu2fYKk2KvICG1l6ivs6o3GyHQECloh+7Lr1Os0PxoNnTkwIt+iEG2xQxYoV7gTqSTkfmfEw43kk2WQFLzYTUl+cNNPOI9X/wDtYsMm8rD3ZqRME5/WiRJ4UxNmAtyfQ1Q+H44kj8Hr3+eYelA/ofQQxppxz8exrYMMwXsrs79pKl9UM1wIt9HThthjpRZdhsjz01udf35te28/+9HE80eM78R6Kt4l6t+iVqLIeTJDs8LfgMWWniPit5ocKA8fjTHKoinpFIC1w1yZ7B9gi4l7Y1q9rwwSaE1L2UtxT9HQ6CQMKejz32YLI2RTeJuD60kbfR5ee+UMgGh/Zru3kAGLeVD5GWmQksCh51ZxqapxuLPBcBc/8qy72NhudHnjOX/LCkV1+LnSISibXsG8nkXyZobs3chX/6/4bCFNWbQCx4diLpUdoTlgf4vTPP80wKCTksqfwPsU5ugSVNHf23HCHdAnYNoat4tTEJiEqftZwexOu6ienNlRdy3IIoLSCVLlebCMEMR/punAWfDtlOt+v/xbS7T4My35qp76APBUvaSL98zLIXpIe6K+cRYH8buVLlFpBSY2y8h4NciJwMYmNhbAlcc1dxEzcaBz5Xd/G5wlwzdW6Y40zTg2w3C09ipZkO0xhr/ri0MreAPgYB13HjlXrPvX1aMFLUlpxmHS+4YzMswAxbwwlgdrA14t+t7dNgAE5XwHtzwKXaJD8E9qM6uFWUsxWaZsKpWbrZH/hFqzV23gdqUkqI5nb3otc6VxsXwc6neeh4RQnuKmK5km+mAHi4oob1Bo4eXN8x+JisleYpZp/NsxCXIJJumL24I+uXDTK9tejYHVdhpI2WxoIbaEPjXlV2MzmxmRdG5vaH8duKazv7PuC1aSigz9vBCikhWIWUNpsUAj/Wb275VV4f0fWSkOsc3nk/v3P32NxQUgoKtqdYvPQGBlqXGsn6lDlJhervjuRdObHpPMc+Uk4RQtbw4yc0TSRTrSeu4cDQG2JScMykUjWKQb/3gllw1wTuC33MU+gwhuGzfQ4C6RwzMVrWuk/6S/sT7A7urvMz0HXjdNdIYLCWR+IJ0JQgkB0sYUl004Z/Wby/0wdRqVgTA2YPopA2UWJIIuaYli6lrKy5RIrfuI7xJ1KO+DCjtkyAupCNay9MJuJZBj4hWcJQf/AXr6x24lQRhh354p10U9JdLZl1k4sdoDyPL0C1bH3QACyk7faRkKkF9LMCkPbDVgaxz6+85vL8aRoofPKHNEK7wbypMBoczzYj1ZC49DWK1dtwavF3Dk8rjx7UVresf5uUj8gZSOPHptxtUBmQrHTGftOCsmJdn6kC+HXcWLHyf3s9IUUnhjBg+eMaoqc0BBXKxcVnuqHLZl9SZuWluOlBdunvhSqRFEcBHWKqRVFlVyfRnyyrWk7JrwztqlyZfAXQ6FV2m+NiAzvePSOtid/HK51hTB/2ZVlRC5duEzoh73aBbKeuJFdUtFVoshtXqhN2knu0C00Q+ZyCNZmWymv0CUq7HrO+bW1SfAS25L4rj/3Ok+PGucVRE6MybehN+pT76CpbttOO/T+LTehX0YWWh9F4IBvTQTsj4/h7emJ3Ma71BkY6dWctAdaMJdcKb/E/7qbBYulGimRNNzdsJo5TyzNY/mxrtwJMOXiRIgwLSJE1JdmoNKChLrjvsaZJCKqy4SQErZT7eYifpz5El6PAGcFLZ+BqP4cf/cbtz7Poj4C8f/PZrUcg5mW9js3RT9XrQZUkSRqyAuovJoMY0hXFjWMEA6z80/+dYcgQB9pr7lz9vXURaTUXBe92PBdH/jXIKdBmRe7uQ0p9qWop4Fu0H81CmWGT4G5SNaOoLfjEWDjqAbxOGk8qNp4vRvGaJ3KTlCdqIoghdbH7UFrW/F0gzH2CExhI4MCSatoIfmQwyNFGehtk+tpA4KbJIYnMPZwCB6bf8rayToXHN0HOdSKpf/D5TDU0VEFawrfECtdXLGXoVcKSoF7s6VHkimdBjzOe15vHV6Nx/yGnpeWvWlvvMCUN/zTzE6lCePiw9TGsvweIu4Tg9GBp0SA1xLCI+kdJeEblt/JPohkLHK8eS7ZCoQaSZMfKDxxKX1YuYwzxR1IB/g+kfaIpTJchvOPc4IVGFc2QTUG5x08fDxm5+HowmniY3oh1/iNYkuodg060+I0waCmacSzsqvH9k4RX8G8mQ3aPm4Jnv3wGKIAVHeCJJHXG2GborjxgBpQijdg/TvIrk86bOdTX7Goeco9ZhKIb5lMh/IAt9g+3g8ONN5s7oKsSmDV+KAMfPDcn3Op6bXebt5MpYUElrlB82buZaQp3Ed9G2+WE2Q4Kf5Gc1/JXuwkUfb/P8TB72ME7nW6qgnv3P7SMmNpXdFCfZe2iNH5V7UqzRFsQdWzruASLN+CoFEYSlm1f7iu3qP4lY/u2wZ8/HSl7JJ/VlNiUUBm+Ku7PE4dm2Dohw/550YWshAsWzCMs87uoULp1UE/DnXBJsa+EWTYa5mnwATui3cJQapRtKrB/Rfb7lzTQHmXR8jut7CZHIj0kVRyxDGAtqgz41jI5yMZWJEsBQtw+syzBPrzQ6vAOFpbcubNr3ltPv1kqS+orjSLKyU6+dicOgjfxQS451UIky+kMIstOyauk/TQjb2dokmo++QWjp3JkYcmnd/7N+xuy1iJC1+0QpoLKZhBg0zN8MrwVoZ24dai3RUOaPLfgZHpHy0luRzO2IpJ5SvImocnfg9p9pDlMwp20BwopVXvg1G6Mf8jkgXNhlOvqKEmJu9fXYpkmMu4V0jNgSCVksJLWXmsAva+0iIi/XFQgmmWnclqWq3kt0WaRG7pqolfrhML7JiIh4fHYoA7nGSsz7sQsAOEwRvG8mgXZ4+QRXD4Ff0jYqYLOO3dIuSIOEF4USlq0z8A97G26di41SNFfS955RykQO8X9IgndLvEpzDjSqnm2s4QUAtcLMp3ddcgVfIQjvdj4qwyW4Ls5kqzj9GYHKtAbVv9WeH9XL/M4iGbpoIveNlpeOfLTP2GGIrSVQGejeFwiyB6pAstP6t3nmAxw3909q+A8YGgHltzIfiyx5ssR0z997DPLgQKQg+yG6fHa6EYMl12Rad2ByFCRaSA9GwPO5LQv41ljiXOdsecv0znDefAJkw3CxCJwY2C6ccFWeu1WfxJljzXxuKywCg45Ujk2Hoc5gNfPkTMyN0ooAK2CGl8rLUoSlCalOz3i6y0gcIgbZKfmfAn7FPXpYSF+CFW8Yx2PyxdWN8ghlyXYn0cu7L3TXlYBZ/TBOYDdd2rui7py8BImkEBylFosfwZE0C5I7je72OapYa8PReSLmkvSJtJDyBBkxcRSUWs8nmppe/67A9/DBudfcbAYS2ml8bJRKNkR/GmqLIYRyZ81ml3kMuyitgKV/aA5/ceZLRJaTJB1/Rd+Ao0Ng5I2NlZabzs6Zgglh96Hhy0ezqyPdbwUa3/VZT+HDBMG1dU2bhfj/SduZtsfEKCARKpo3WYPqrNV4IbS6tbRfVdYyKzQ4ehx9taSoDxs6mYGCwCfN2o6YWZHAJ9fzTBIm3Qr9KAjpPVBYpoqBX70XQkpf6tqeSIoHqKykfF877zh3sTZzHEWmLWC7l1hd6mQ/KEmaL1AGgcx66GEuCDHmGBtBhXhqyOwlmjwQI3uCjg4PdusNFV2RQ9qSZjh7A/BiL2FYZmBoKcTmabXhfmKu7LGTJTlfzGw0fjT+JynBopiTFKDnNvN3yHq/ASbsXgPShznDJHur6OvSBChA4zobuYqxm1nUapPr5R04Osqc6wq6W/Z1piTU6nAV2c+g23SG1KQSMRu0PMDc5Z9r2uqW6lDQwfCMJuyjhOHqF/+jPZVaFiCG49y4O1XJqESUbr8XwfdgGCUZk28qDXMeckjGGAJyydCBznRO0KBv0DP6r9IRHXkP1MdBXZs+K4tyqa4fkFmmtIip71tef0LSdZceukJjiUN+WgVXkZQHts4jkagqm9ZECprG7ESEOCFt0Ouc74aFDWIo7yDghPg2XYipl5AW67VyCRm2wgNHzjhbEIybE1PRaVj2R81v1oDOCbznl+ubtTzFYAKW4Kts8aeIKYK5fQcWj/9WxH0jtTnOmJFXQe5s2yzU8GrsoDR9ikjRS6u6ekygOixIU5RXo5A0um9vjs1VbX6JTSGLqoY4ayAt0yJYAgTVLsqrog6HbwbAizlVvP6gTrgtILJduuor9NvhHsnsqIrK6QPFCOfSTQkB5oOYHKKftTKxTUzDsWtweZMYxbBnAzmjNuRRiBcedqcHJI2Ocs3pKAEHWTYIdx7IUF2dsWTWmflbKw5TVEolekZ7kz+TNVNo8Oq55frU3ZDEPxevKK7ofZFspvY/vwXieLJ3uB9Ay7i4c07Q1xifQBkvoQkGRXhqAKb2NtM4z7NqNcc+73QjgaAEywr7K556yKpm8XQ7YKdCMeBiEz57WkqiwJgR8Q8HxXIfKiX9F0DJBDyhSLeEn1PnAdmPeXiL+UvTtpw+ICGbcI+b5+/Ryx1eQ0mwP4uCxuNZccfg9buQmYm1h1eJ8pmDlVq/0XfARPGYkYisGhsgi4fZd7+Xr9OxTF1ZFLyb/j5AMyv3kNpGi+URLHSIfOfrRhmonkJ3cewKem4pRDkK3oigG2vKooEO/KoUdY/xhGAkqzeDv44dvcYttfG3Tv+AIhY0GepC+FB5wGa4/GDhFH2MfNF4Tb+/IzdiW9LNTyXC6ZsUyJYSYuU3iUyRuTADq7p1JKI0y9rBslxnu6GpzisWx3OI9deXa+7GD8Vv8fgrGrDnEmZuCXODxAieeoaRwHb2cqxjDcHgDY8xDh3EhxbnLuspnXukFQp6vqbYG3jS3GFCQ6HmARf34+oWaSGDf6GId17c0czll3UmEDF/p3gTS2BhS0SEno5Z7hgSAhNKMT3oq5RyndDDWkEKJfHcOXtxdFNnwRsUzlsX5nq2az82rfu8/gK0dMRIpVtk+PRisE8d6p4BI6/FrfjBz/LzCcoVTkoB5yJBsqNf5JKJutIFZgACEGaFnJAt+MXeyh716kW/6nD7HFVP4AFajBdPUQHMsRgv1UPmzVUfdDdqtCU6KUfTl0f0vqWRPaAX05ITjtQgwKJGW88sC9mzR5eG753Csm22KQ5/V55wtYc8noUQkwQcAItSQW1Ume/2wHjOhV81TO2kd+wdjxHTKvUCH4MRA1HLYGtM5N4jstkZx4sGlslkKJQ9iMtZuwX6VQ6TW8bzdoF77y6GbgI8AQr4ijMS0ucVAGTnToQQR1Pqv55/3YzoZeh8jIcabWiZhenZtorQuaqxLn0L69HuexMEGsyg224pHL38Bl2Vjh/J8JBSppfXeKRTw3ceI+yRm1WEO4+cKrp2D32GbA+ZE6MCOMDGpGgKSw1dXp+FsABf6XFmQJFzixqQIgyIZIgDBZqhSGeQvuFj0S5EakF6vrHaVPxpGTxLUBoeNgMrQdl3k6M3FbNtUTOCFAY2jgQD/fKLwnLqBLXRZtB127i5IrQKYnrKDAyGmNOOI2Ip3JrzS1wqrixTY18wh25AKwVBbdK+fMzkcDTS7J07rN7xfK5B8pxXZclwymRwREASxAcC6Q4kka/qWzPvMRAoP8XOzvugfT6UMcgx7oqOJ3+VU8mZQ4h0vOli5665kvCJiRq18bD8rv67wVysXgaLUyvBLh6U5cIkUutjGGS6dueL9dQi0IeFbSL0g3VvvDWsd/cbHEYcYi/R0T7nbvSzOKr3PHtxjVi7oIVsbXz3MCYboJI3PEgxm3LQpSrSg/8UuU8Ogjocaoi5j2yejkln/DOhwutuV1f7ONdTK/b9QVZMJMlFyAruQq/g8+8Qk3KK381JjAVo/tI0iMUZRwLjuLZW3Z50CmVo9ixSsP1imhe+W9Jq6zYRB6DKEjq0uVNZ+2EnEmq4/ksm5nuLpqTQkYuGptMCu2Jn4vH1sb+uq+7C1PyP7M4QptZlUnaJZ1LS/9FASe4pBJVZkkucUvZypxQ3N81ZiAGExCRm0eqYvflJpQnXuBbcN9ti8pSE7NEaemWVoVMPgDINXc2dHip+0d74WY1uECrEhG6L5X0F2y59fO4eCysGGf8Y19pDa0DmJn/KtzGP+CXnxgn2ljM+l+OpbnpgJBViV5s97S0D4gz6y+KddH8PJuUI9bb2dTDa+VuYwcslxQBm7cH1UQHdpFRFDG522NjZ3MAxaV1WI3mqoroi6XZkWGRI7lu+yA7Rlm6igWh5prwRPHIkQ4IZ39m6ochInGA5n4z3aSf2RyaU1sqt/asLd1v4+rpQK3u/RrD1FCASqEV4DIFuLP7GijIFxgByKau2p4NI9dqhXW7wlQQTMb4HuuwY3WNlR0yYVttBxYLWjVOeNOzHM/fLFnl7icvWcBolOAC0NYvPvzP+A7uk0RHuC6SHRU40L3XZKLFPagYWmu9bqAm7/VgQUz6gutXROk2KuVxi92LAgpk49hGsKLjxrAUkNpnAf/xyyfjMhxb4S82XH+54x/Pp8c0W1daAedk1lWNf2hHrdUrAHlZVPtGJ6IhGfWycJOphPs9mQIeDBbviC/Q4wmMCdYF70Yfshu9bPgFVP10fFT6mVSEUhQ4q/JPtnFNkvEJ/K8RkrPwdOakZeTN1Ji3HvsoomSNNeJHZ2YuZDCoRcqRJURUJrfSeltmVIchPhCz2dacN2wDBO34T4AQC0lPb7m8kfSeRULSYtnEKf5Uo9g0VN4xnwMlUFupZfWZ1TVrah9l9Tf2N5SiHA8c6YBAS6fq30lbpSb/havSLnNEwfLCQocrww+Kf9/YkwweVlpZTvdoby6XWfjlEKw2VFjmxE3yEwbFr3qbmRPD7czskX9mQ19pNmYFN40lCt7r+c7/1fDHAn4ySe6PaPuTzjaY7BsbriifLoYDOOJkERJkMu1Qo9e6f8aZbE7aTu0dRDcTbXjmH9eAxfmXC0hnHL2kn5a7oGYIIolEUVlxpmRZ+Khn0ok52lJ1PTvPBEIW1r/786JswQV+9rAyih1rql7WHFsz+s7QCK+h+/KRpyVBDf0pzqHhnIukAXvdWjjet/0YmnkOGF4wGVKMruNjmI6OdX6NuY/gOnN4EraN/5nPZ5IXOYT7cubKPYP2q/O+xoBaQFGfIZAbUCpPtuzKLfmmfZ3xhoBZhYsK/N1sVk56ywGUTPVVsWcDTC1aQov98NomFm2WMFKhNhefD/OVeujhsMsaSM1fhIEFgbnemeGOqGakmsvGcRn9cm5WHK8gh3p4m/Xf3KJc7kqdNuou1O2vi8I7+Wks8erRrVIjAmFpBDcaJcVQvIH6pJiboRbN+pmm4Rband3PZxR3ZbHVCfbgsSnolNV6JJL3nKuM/dLvwlaOErqprjRXSGD6j0BYZ5+P5qfRak69qQC8LG2LqKzqWvFvWNuqWSnIe8j1ZgF8g/xE45qNZ0BPbPDDeMfBJHwzCCfD/ZeRiu+pt4hrRkEeax2SWg8SroXCYVEQSlpsOyBXxMK/fUH3iuQ8e2lZyUsAB4XJScfnGpEyypibYj39vYDlpJUftkfY0DkX9p4/N7+eWYguWTiRwUfaCm+BnZpAFsNWtf58NElI8yQdj7q/cq7S6qRYzuRUzJXeRChXaqlWGZkg/v7dhtMaFRnhCEgY91+CHZZNLJumPgydxuFMJ8K1S1qjF7AOUIJyQ+sU/HtH/v1kaZefGhZCyl4V/+yvkGB6/VpHCI5cjdCBdIpX/JRNKGt9Tl/ijSjh5qv3s4Pslo+mh4ofM8DqGwX3kCCnJ9asFEDWih2NZzmVVHU36xdyqdwp8d0c+RB3nnwEQRtl7xTw9Ld9b84djx7jxiHTFw4Qh2C8MAy92wNqgDb3kmT1FaZOVKykxfNzjdrZtHcggkowKJmI2AM3cA0UGxhufrfYTMIW+mvNP2jEuJdgJQqOKdU2ohsOz7eHRB0MCqQYDlU3DZ3+dQ41rHLfMKdNyUVvxEqXYTzNTp08q1cFTPI+BooZkBlwWzFZVt4oOWl7KiPp01Kn5oBrZ+gR1jZ1P7MN8ZcOkpj9JDdmgNgFrDHpyFMk9SMHFEWUTNJLiy2psFgvLcW8LoMdLcC1u52PPXEH8cHonzWoNXA8ENDkALPoJDgmIIMe18oyQv4MAM9Q4c/rZLwvlY/IpGSSAT0XnxsUqkFORabKoc3HKWHqoyTMuTY8SSrOGeI0hHkDI+AA3nwMEqubAQPTyZ3qAfFHwVp1jInvkmH8fbvpL5Kb39vmIIdDD6VyBlX4OLbbPWPZh+Tojl+c0ORy7vo+kQkCi3dUa/y511BKtEKZyqCB/YUL2ceHwWuQud0kuzZzhR4tX3Yt88ip1W6VN2dubsMfnPasH1DSLH7TiLiCq1vuavHz9Bv3bPll842nbCquK3sKGtIEu5nOLFFfVhTDDko8umAD2+DcGLsePDpW9jVcnvHGQ6jp3JkC6uA4eJDUnSScbjgCGX/n0BOHGIyiujdSLCw6jN89vzjmvzvhEesFa0GxMYRJVqNvOjb65rhgrG625bQOoUc7SkgrDblt3ANFPe6FshqYr3tMm+Xbt5meOnIfW/JzrwCkWSWKj8ohVz8yigLobf5tMoKF56GjR14SbcvDZRe781ggFl8bLVa4XcreTSLT1P7UHKLLfNw3jlh/LQh4rnO59nIH2TJbSSVhGg8Dvq8o8fLTZLx/gbj7fOhzL+MwoiyxM5nAW31cYL00u5Yv92cpWzuSPILp9SEUqLeYAP5kMDQXWwc1BRbAobo8BUyTE6PZolnGev1K8UJx3fiAyzwMPuCGvMPhGtJ3t09EsGGgKIW9ifJZvMSurqqejdgPxLVo1o6trJjj6ryM/H4382BlZJpvi3h3zatg96alo8NwJNB5E8TpnxZE5MT6m5+ZSVdmdONB8bNKRBTgvVdXcM/jZCMTnCOK8kFOzpvrPy8OWo6pJLr6ppc5YyPVCJWLecyIefaCOrVeHlKnCueOe07RMXQd3LplgRpA5itDu2CKi2UWvRNYdljI8W+05x/HvsQ4CC+sLfnpqwqvKM0gADDYoB5swLTiijidCb++JoVNsIwmZOIEwfNU0RtXCgqfUZxVP/ikYoHZ16aCLppSnFOxYZi56r3ffd/7GZseAl6i9HmnbncyUQf+Q3n9RIoQbCY0KqXUiDTCSIsBFdfaSwqdi8AuOO+FvJz+EROW+T1DCtXR/eKWQnmz54FPoiUaCQO/wA7QwD/EW2X1CyOXC8dszjWBxZ/YGFfTGWSmWxqcaYPA23rKnrHz8zRxH30Z0OAFcTmFpoCSFCeHRB0j5nC8brL3OsD15bb6M7ryEIHTsU/byU2PGKMfcsBiKst1LWsyMAQQgtUV8SXv7aCpe363IEAUelcRJ1VXuVVDlRVbBLQC8MwCOwv+GZfNFOZgyP7XAMOsgV4zil8R7rvdCU0egIaIuSYN8Bl6WzWkYb2zRqEMugNqQ6g/30efA9B6PAxl6iNYlE8+jPZwsFkzC/8bEXiRPCZmxlyaiGYg2HDsxGNDo9sNSvlj9TKy/EOdRAfvVkux6NeyrXZrEvM0HrQ/1NmD5lWpVKcqaX8+nSMYIb5pHefkRnV1fPPug3siYMF42I+1nZPSpy8N/2tF3gRtmTQzjNoHbzfG6Skz8jmY05ooL8o16q86U4YJvo7pxg6tGOMavBK5C33HdjjiZHh8bWCklWFMXS+v4Rx9skMC07nrbF+y6CgUVwqBITBbVRuC0n9TDyL1jFxifNVxixz0z8I7euS3eKGLAZJGXNj2H0TNV48yCGZNUdGDvXhS85Yn7sZ5JQ944D0KK2n9HsInisH5d9DRz1Z9zTyLaN97Qbp2l1jlGSs8CVMH5BmdFXkP1WvEHpm5Tua7IFfSXbBWxMlNaNCzwnpzltk4g/x9luabe1YJue4yUn4gfT42G1uIySWwWvunWtGV4d9NdvwOrQBsDDKNBlpg4yEjW/kjUtxdAl06igGYNPIM7bYXLw1BPeFv8xA3lsGRVaMndOJCk9hBL0XzsRdfqxE6I6ey+G7vWdYRZMfuUU83qxV2XTGMlZeTZ5Gq8XwTytNP4Nnwa631z+xY6qgjx0k2uTktlytU5CJBsocVr0/dHVC3HylFZTVGY/DGJvPpupEJmkdTltuAbha0/cB1fwUpwc5M/Os9IoCamtry1tJ3ax3uvD71VrE5rVvbAxPoKBTL9i4S/YpEICo7qh/5XKyUGVwd7T8G8doBETUB+snD9ignAjnbjKTgJ6Aj1de70TElETC+YXQpsNNX+HPW/LbKKRbo+k25ypyMbkABIPJC3m6j7rsv9l7UDSxNziFbh1AbSwEcYe/ID6nGwAbhXpmmsyHCF2aVxsHrZVmUcMBD6Xn/Mptb/+3w0mXyeFWpnS6kQatcWXMmTHUZ6LlbNIAN75bBxzECLSUzVk6Z+RvVYfRkQqfv78NagX9w7BQy11yFxZW91WqK0CHGeZm6cjzKPW7TMjAW/uayW5wJ8w1K+xxbLWsTBvfBWoQaPEHj5w6qMcSHV3fuLB6va4NZDeXnNUudPxexIDOtgwv0V/BgfX7D2OidOydFCoZ6e9x0aa9TZEs0GwdOrxkYVq9e60bT9/AYeYl5qV3iFozz7oh2mqAJLTUVsMpgFuvU/0Gz45OXKvy7zDhRwoCc6gS6HAjCDAjBZSS/nvGTQan4A502IGjYWcR6X8qggX0GAlRjM7bWEVR+ccZiGP0CbzykMCOTtKJQXod7hsMm9VdByc4GJzXqD6LNpmEl+t8AKBCqwBZ+IuUcB8yOot7MOQfn1CVOr3d7Pqp5mtegO3Ct811OrgT0iXL5t6+l2uNUtk/9zRFtRtALM6feIM7DbZ/qlrba2kLgBWcw9XjCV4tRUCVhHcMFbi1zBI6k7PYUjHu5tQJ5WA/pq408M75YTNRCeq77LA6LHKLr44iM1kGqQ/b3l82lMSjwe9xsymo7ZtKVwIPVzK5+TFDY3NslIaWQoFiL36kihM9dyhkFR6CSuK7eRfQe7i3L7Z6jSmfp2xPMESjk4gwedXoSXN/D8BtFddfIikAI0Fk8uJnNsK9N3F3J/lyJaJtGrwTVQd4LMBOFrGDsx9r+QbT63jJ5ZMDMlQxu8BVSCZxbrEv+Ucy3Ndol5/Ye3L8HzkglEw4/aKi+Wc9IxegUKbEsJbzyrmA/7UKXZ2tEtDtBS0m0Tb6bW0G1DUkbRodV18VMkQfiuwuZrgsVoIH+vv3+OzUmomNu2x7ao2x05R/zxCKFhiX9SSCMMIw+AYhJDat2U6O27SSdjpafR9NyAKrVO3GBU987jAy9JIPwIDQ7xlVz5zu0svBW4RirW0g/4CP2rTv7mf+GUaQuuzaq2ZF2wWAxmUFf5nNoTI+gGMGGelA+QlWZE5HFDIgXxlMl/PbjIRAVB99/SYYebE2jabMBKa0SlD5hn28eqBxYl5X597fyHYBaL8Wis7s6IvKPRA2t8VtXBAmEsur4a3I9V39cpPr4cpesFq7Pj7LMaC9qHYz7uqE+8V27qX/qyuF9ee2xt2ipEdpXfLcvPD+0tkIgW0YAjkGG1B0oSbDcOBg8PzIjLrRlE+dNG51EsrfMtBDutClDRIoHInoLtWVTizIUTsiMwHwkZdNf3m00koXTpr9CHwGbKV5gcM7RPREWo6keF2TYtej9YOU8ewX/KVOXwBV6Sy1+LX0ssrKNx8bPuYc125WqS1YZ4lDpGugK+5XCkmLpWINj9SLi38U3RQy6aSQ+TNgtec2Vzartohao9brt10rH8cwZwLJj+x31VrGy33aJpQ+BR3mKO80oOMPuxlglwxG3ZiUI3oj6HVueqxzMZ4kJnkMU8lt/iRP99NFP0EP4MMgkkZJS8pKKCPMTOmTYpFJ4Kn4PbaWqsTgjJ+7bMAeGgTcDK6k30bOIoaqJ9glcjkm8Amg5vtIn8FRr9Y0IPuUD2/dCexN5ZHqLofgoXnJ8dmN+8GMeVoEX+ewWpqeJJwBC2X24HtgLgJ2uw2GhXeRTq4oHlUQKyD3PCiQRI7T9SvyDca9WWzf3ZHyfJsfqReuFuPi5aHD3KKmc9f+d/TLnA4LzvpaBxCy3pBX0ya5uZttotVmMCSKz9E7kX/8Z10lK6iEYRp6ixO1tjgQ+EiZRTYJjiOEULqWLIHq5/fMatR93zEv6TD98Z0kTPmpgnmjXLWoCrhHs2TD7KFCN1QuE8paTuswnDaGz9X9ol8mafkXoDrnQsPQt3p9crmstnN5d4ZLxzy7xXTbNTUcYzLHRxwGjhaddevkr/n+8u77+JH5dDhL8BooTp/53bp4Ufyhz5/FWGvcsbwF5Rpp2LzzNqUlDb6pbcip/zp4eT1o9PbgaGczMEo3GvkFQjTNv8Mtm/mr3ux79Py/giCJrmA4rkHSdsxURb1xC77AClvhnz0728NF5hMhGYvAUPO8H8acphQTIv0DLOt0SPtm2/BkA8lNA77PaHC6LS/kEXeeNLDsx1Q+TApNhv0uFFsHOpj2cj3j9B3XrXakMlWsnY/bMNaUflQs8MpLjt2u68CbMeVev1Ah4giuQskrGqsQPb3++Jhz9J4Qq4uWnQrGx9q76xqxx3Te+4ACJcRN4DI7odYXs+OxZOyIxucWbkpfK/9NpR+yEz030JVyvXk1mQvXWhfvGo9wvEPXlvyqjCdNvwdxb+MYCxYO01UtaKk2o2AGJStfu7IsKxhvrLJ3w+6cAGJ+VJYWgm2s8713gek+9V+SU6F3iFEbo8Sw8pgNQ7E0s+HkVA7a6ZZLVxfqX4G0cgrtFCMYUVvY127y4pPn/6R4f+1fTtGkFYBBTDjg6VgFqw7wO2G2nWDKZWZ8nD9NV41fpwax6ANGTdJI2JotFdCIZm4L9ncMbRp4D7+rzosmJZKgtc6ADkTGXIWU3uQ7BHvpxJ2jttc4xtlSSCPkPuy8MxqCBcGPqOzWOAE6ABOLqH640I2u03ZEW/yUclpptLLC56yQrwTWqHsrBSNjZlTrN0d6Y0acKjHYoU/D+G3Sius81Xids/Eh3LqzwGtjyIHNohIguv/mEOC03IT/iHV9WePkKTrjnSAMqEVlUcSEvQv+Iilw2KjPpk7bEf7d2KQ+DQ4hTpmCLftE+GQajj/0lRP5wWMeu00sxK40NgypBQdEb09tCV80Koej5eLhPbzWTM2bXFv0N6MBmwpFyeIGS7nqlct6cUmfeMs8w6WsnqH5g1D5Ko1U4pp4kLb9HmrCwNaHI4W7Crege5HAT0mVspQO1e31eoCy7hnXPNJSSXocCm4IOcAVJXJQj5iA/VAudfA6naqqVemwg4OV3slDd67LgJjttFWU5aiu33VD1zEVFmstQMCD0R3LEzhiKSleSMauJ0A8zZ22Kak6iUfcLwIan13xZn7SZ7KJ14tQGPs5qKgLkpqPL3TDHI8S/zJYa9laxqBFsmBC+rZ5h+b/nodC7udAX2VUJ+ANkjG2aNpZA5/KJCTX77ydvWvakx5ISVnSZ9pK0d1uEY/+tDiGstKay6tGauZVbU0XQvApRxbWUb0CDkg33QU0cSSQl/ojCa0zpPL5szeLYbkPAa1dUnJaPkeL/QN52dM3u2UZYRI5uGEHkxDy3xrpnBNW5REyC7Mz1RhD0jPrhcVutL4kSbgEtsZQkVYUL6AW9iS6SAxEllJK3YgmOAdhoGI71NxP9dvfUHBxvYPx827HDuKoUhbVdkZL56CVXAww7Vj9CSdzTHG+TYdJ7yxryE31admrGf53g9EBHATKmiSX52zT7HT63CD0CykfjZWy0SDjSP+6OvxHg8WeE4oChtgBTeBSWJv1jR1yYqvYZ79pLkmR8VspJPglIMw6b9LckEiuB9Pl5JorhB0Xt5d52qALIKzK1tQphbTqNn95E7y54+qkdER0waDXTtJdRvigR3ng4akv3sKi2Afi1+M6dCeIW2tmYUdMePl3YDDDoY+GjXQig8am610BBlGG/YgaeaDtAEF6+qcNtbLFPCskHK1X3zPWVivN67sJhEc5d3q1kXtxYLJzGCUFJDN/MXBHOYiDaIaRscaqGqpHH4XRBJeLviCYjY0wUERI8MBkGtie68dY8oSTLmRzxr4GV6Pc75dSkMTgvAIZM5cfIkKq4sH91FHl4n8NVP44/fRz4oTcFQLlLVOE/cuwg6JntAankVQv63oJIhJB/i1kZLVYklqaeJsYJuYSWOrDP+J8IAAxB/MnXVw7rwsjsGqCsShQDkmLlEmnWiKgrZyRigEvo+d9B4nRcNHHrQXScOwsyyWeGK7FZebK0qdBEzs4RwGiCTOcBvG/OrD5CNTmUcHZq4Jq5YeDjHBUCBLA3TVQx/35NgCfJvQYf+5TejlFOEp54r0F7vG4qGTCfFZzix0vXtA4fH9h/WFmwDcitz0XVGEbh7qgPSnhUCleXTyhkCtJftjf3WNRf7Ef9tKtJBplBhdxGdGYm07iCtBvEKbcEA43Nl6zj1lSh4JbW6APPfMCpGrYub70iKjwBkgZdQYuIFvS9Lzjo0Z4WVnA3onF49i/Pdx1iRHDpHWgsv2iXaOYxBfuRLfxY0lSRsrAVnQhxeoAJ9YzDUC86zRaDA4XImOgHWE6oM04GW3CxML5/g9jD6tKdG13CNElg7Yf0xlvGp7K9glhoivoqheUzBHZ685rSNuwKivx/g1s/6qealN8Ap8JOnx9Hn6GDwq9p0AU4q3fceFSw4rFy7QH0xiG0JfgMntOY47AhJz6LvtRNYNrEbylHHDFoz421JdKWECJ9uxqt4HaHs/s2H3vBPyspJHLcMx8Lzrjx43TkHxfmhXcUy3jd3+n/yXTIHZPMmkuRtIl6LV5IX/3x8Jw1mCYo7QcVNG8DT/Byg2AhzU6GMHyK5S7ihqnfcS//DZPJB3BQvJ2CleVH745s2CS7DMwa2adcAMwwp1wspkzBjp9o4gmUEmCnH4Tvs2+vcTe6ldVa3TxTCKxjWi4Ep41ugouY7HZm6tkqr+bSFT6HkGPfCj3qEKHfLOXzGP6Vnl7m6Vodhho/Cve8OpiST8u5xa1yB8Q8L66sjIFq6qZr+fQAIMvUpWNHgXerHs70pfD7x6p+nOHSuhv6sYPZlT8yfgtYf855hm30l+bZ2B0prZXB4OlLYa/KKXW8uIaJe8ff2EKtRDmh3nJ6Jgy1loBiIVoAN1iRR6H8MQ7TQ8k8Uy1x2+v9+PA8E8zH9IVWjFhrYbWUSh3UxxdwHfjWfq9E5C+wfGaV73samPfc7QCtdMv77oSFNk2UlZmMg/tdm6Ijj36Ctz5PkBJMToobZyoFDhDTJU17WWO4ZDppA9hye0QPXSbHxYu6piMG9L1/rBjUA9y5nCKq/6ZLZOnbfp6rp4XFiHXpemLGVimhjXdTwRtjH7+tH3PsMBe6BnaN9g2N00DSLUIrfyck5vCQX6NaNiED9Pu3xvbcZHj4BhF/fZaC+xVjC2tPFuS6omyo9OMJvHXCD5I7ryDsO06iu5PLhMsZWMgW05g8w3IzWx7ToC/PGP1nS0riiWkpXXJXGlDq6Z5XKncwcVhSVsY/z3ICzhlq2mzzWdh9m58YJCJdoooO4DTHb6RLMMJpqnt+DppEq97h+qR+Mbm7fdYU1zTCKosrbvAmsgzQCrAl5FFVw2ThD/wJUd6wZ1n0nIImyoYn2ueXvbJ2Fyyc1eBv7hgSbki8N3MiVl9BUXgMbOrde/mt42qKLhPUAE/kdf9w0rUsfHyynrNE73Y5GcoNpd72Oz6DwhlANV/kDxEDYSZG2nxqKC+0fLuuESn+SMyR+S2LtibldWoSpdapzYPVu0wuSYEQm0+NLjwHHXvGra/nmdiuG+YCJaFjpJ8yuJ1IDCclpUFkobbB1RZRhOs4Mi+4EeuKXvofeO+zt0hYBNLmlGBW7k5+Jq5IPHweF+V3UZkZsQotmBcTdAi4ibWPT/Qec7Vavfo95JkYo/qxYUgYNmC0sHaqW3p6ImJzwhij1LL/xCo5U9WuUa/EZ4jgKuOqjwDCnVEDYt0uRjyyGCYrLQbVvLXbSfIB9j2VzpVR+Z2H4nEMP/r+rWg6l2GzYkcMfu+Dui/pkDgn2+fQAtGgLgQ4Xck2mKgfi+sShg1DtHS4gjXpwzRxnMH69KeERKhIk0gOUIa/CX72tm1PvM/6LDbCEATvMKmlD+4JhyBFZB6TGr5Bt1wgQB+a2JVNLd0qOTwWjPJkCFHTvYybyAbw+uoymUYEIyxMpa8b07r+fNqjQ1eI10ZPmRNmHbi12ya8sjw6ny2JXVWz04zInGNLJW0jUFUNTfscDfbNugQjMpDUS1KXCFVW2437I//PCowuGkzWkmGBszg2legY6MnfR/UEzzAa6p1MyKN8f1LJ6cPefaFYa/2MGVu/3u7AfxkxPFsnB6TfbkBgluNwcslxTIriWzikE+xAY5OsozWjKFTHzy7TiEJRrX8D8FEQzbIpm300X0QDdl1xFp7gMC1mI72HTo5yKXuypt7W1/F3+ejZgaij96rHdVT97jZtBw58A+zWesnNb/2vvqBCqpFyzN7hysuy8L7b8A5fn6pZSe4cJ7CbRXtvYayYD9Bv0lYlHNLmCKhuP0AclgZqTN4KY//yGx13D0Q+zkiFVf4FYhOaWAxKCT3Zcsdc/izwQaz0zMKqbHDJoLbriOfbbHf4hWmS2zQ2qIpS3beXmRghC9ipJf5kXGXrjNgiZJwt3AVDLSvq16crpxjjgPQ144DplY6li633lk1LEUbThJnD95u9LU3cCL/4jEw6lWCxDMttLoLTkbpKDSoavdYVtKRkpmJTUBu0GCgF1WOvUvqZV5tF8a3aGkQd93MJb9J4abMtRyUi1rLCN10HFHp+Qe85OU4PihEJO8QFnPtAJbCLJrYBekr0Wsc9ynQE5g1BXU361y5Du0MjhWcF3lRpM88ru6yfTsU+qXlHoHOKOg7Lcp5qNg8cgoAlxmZ6PR4+V8vvmXKULMX9auvhrArIePhYDNUyxcnbN3ks1bjivJXkH4Hv9AD46DMqMzMT50oYPenpCFZs9mzntev6+rOjtmtxnOIGLJVO0vT/GaMcgIC5pWLbKEByWrxZoDyop8wLPLw1NFgyknHdD9n/6EJemukPCte96oxyyIbR6a6iS2zdOPXrOVdPtjvngXBON3h82KSNSCmpK4AXWHYKbBEA4H2bmlaePk6xoH9NIsHyvnenIctQll6WUD5efP+/xswkM2wI4yqw0gbv8gInFhs9ljror3TGxipXizqX1AlFXbGpN4sAHWpyVSrbnRumJ4bm0GX0A4WhfITprdPK20gNhb8J/MFbWB3aOVprVqwHo1/VRTakmrdbchZqkK2QkHiw6754C6BncaxZtBQitsnvBQsu7QSLOwSisQxotJclpg0ECqCzVkEh8yekNV549TSYVJim2DshLbP+/iou5z6vs/fPdlYfpT4iC74lKQ6W2x5J4Cu7PBgAnc+Pu/bMpRrTcIfqYrXOolvJtfE0Bt6p2+Iw5pnkvlYX4Y6QciL+ZIsvaI/l0vHOoCVQxJ4TveXKeY7Kn63RZxSHz316jsmDvby7KHWcwLIFlZzpKVzUpuYLW6Z5XwQnOG3Ftj7Jb7xYSsEMrvhzNtM+dz8YDFx6a+DiuvQbEkfVmklALvLRmcsMkjbdu1yfRXhT9OuVZgJFYn71yGu671jo/UGFtbOk0qn/PpjNBSAeF+YO2wpUa39m5LceWCI0FF57pAA1fSqvFzYDgu7OIze6ol/wtfG7S9hUUasIYts0FrHy3PwXcLHIfL4SG3hbqh9JgndjhwZoIvXPVfrsVXNQmTW2AyqHRIBDxHJJqb3aEhm/WQf/EFKSesQUzMSY3rDLcVd/U24/g6xkQygjkJpmbkwog9O+0VQf4iMgt8P27jcUOByhRPUGNvFmMuavPeRwWEiUwxhIMbU2hDidh9e4wryoBJS6KOXHm6/tIcf60LX+eLeaHfInDm7qqQVcsNC/3bItoR1sgQVz7Ic8LZHgl0092ca64qtnlPufiuvQRDoTDETqvBYlCvgmz5SgVxY3IiMLiqYLKqBV89lxldXykjTbgdiayqByj4uICnwgtTT/Rc5SfPryk/IOmGjILLHEDj5crRFooLdabUbnkOUmlLRMv4AER39DawOGlmZvBYgqu8XgOOdIuI58bYUob0ti2qu0Foeg4YvGtSXqnqCUgd7hTWeCZVByUn7cwwqGgY462sppHUMU55eLC1c8fDjeFQiVHuZAeTz4ExX6pBXmwgLQXyEP8Vq20yzxoY/w5HrfSXhYO+uuXSfT2neofpggQ4CYMw3jeAzyc+IAbylBAov6RWhshsnVtJrlpWlfjxiNObpOT10LN8rUEdSMz/4OuCisxpuUfVqUmsXzdx2TPHdeACe2l0P2r1mAVgxgfeGzr15M7z9ycVvSaYy4kFsOHal6FXbdJUR9eWVmpA8fbH845y6kJOXssJZaOk1awS9enaMFW1e1TS4He1HD5wx5ZmtMCY5NisdAYrGT81Rnox9DZkpg1UUZEFKugpaUzENL4+oVL/J0d30cmzq86w9oNQKnZSkraP7gDubROhhlXNFUWQeV7BsFH2IsH99PmTOzJh/I5dGbXuEdtdlcHtE75vG4mtPs51KjPOfu1c3LFz/8XmVfS9qelja2Vjhb6XMacQEy4rIDYTk6A3IPpViq8JagcmPZqI27ZKSf2mLRNpJQGkegIhdgwiXP/9GvSjQqTvxTtlJ89Ijm9urs+lodmX2uS1mmUUVK5DHWtfnYw/NG5daBzqTZ71UeVP+NtlsRDtWT4ML3JlZ2y9uEB9GYfX8csDYagiTuBTm6L2bhL/rCMAVx0Kv8TZNvLHxGpgjs8TRSe/VgKAAq3bYkwB1BeCisAvkGrjGC/kq25K3jtAZvfoF+ydUmIZlKLgyy6ccMO7OoE9lA7s1c33+70Rk7SolbHvQaSFvBQmQ4R4IdGdj8JliNQn55evdheEHlEWH68tQR5iXtafKLih/644tsS2bOLfyi3KWES3gcYrB2RmvLapQrNYcdj3WSGHbulCemI7No6x5Ob4VmRjkN6VAOir3kXK2CApsEfNh+BI+fq9jksiSQShEwuVk/M2rVXO+H+8HtJrUA/NfMNrU/dT/XOQ/xqI+53DSEaczXb8/jp7hVfH7nvVoJ51dE8Fp8OPvwQgZbsrmnOMja8VtZaBmBr7BEzVyq+TtW9eK2MYVWOStYUcsxnjSbUtMBOsVRDhQiHXMJmtFv6kae+cqpI8pWnc3DawGitjXM4Tsy8DDREk85UZyFWjp39DB1zZhaC/a7FV0saub05XOeVaZu3QNl9Tk4/01aJXlxmNwhIGPEuX/gbrdovz/sPEvzjZaiFMm09+zk3VpvN8UtkQqAQ0vxGxKUbNbGqd8jUvF5UAHZfGozotu2/RQ1Tu1/mf4iyCcgyRoIOVoXjyPm5AuACwDOTIUsaVSMzu1W+QOwbOQ8NhnmJF3qpc3AWIGXVBsiTrvJNkaC58wg6Y4pFZ78lIL8cyNU3sFzO43uj95xoRwQQ8r3n0EWecXaDrgRB4SHs7ZKDftT4+uQWZe0XraIgrQPu7M8s7UWpR2JeMH46E4+uBZmVuWAKwbHOayRAvXy9ajmobsd6p05fAKqB58n5PFniymae0Lsu6CAg4rH6KWm2M6BrfXusoBFcdErRXPf3HBUi6IWjz2WIMF3BlkoCf2+xLX/6j74KJe8eyHKmAljtKlyBAb7/H7zKSiybpKZ7jmTeIn1imvJENG9JCXFTOHg9jTETVbDzy+7FNP8rzSUP1NvUb6T4yj7XVrw/uU+O67pjEtzRH5zktRyDJE9HWIYt01sjHj8Q8CxPHkp7grgzPD8c/cXQgysIzXsDzB5Butl9BGfIHJXs3De480bz1INtzeWQExOvAoDgL31nbivG15E4vzSp9G9EU/IoHPZnM8Dj1YE+DDcYr1OgGuEwg8Im0JV7djgbi2IlMk7n1URi6M/whGppr+tOlfEBL32XQgCMzHLvpsoNH8Noeq1P/Kr49119Mwk4Ms0EgX/RWuTluVc4sVmt1YgJC/7yAs5rAu9uB0HzZrj90HNoebopj+xvMezwIcDYfMPRcZB92HNoyKZPtEkgz7Gp/TwY8LP18gn80fYr8hchRfvf84c2M5q+2VSi2/N6fXi3YKHocxv3js1LhPqN8D0QyeBqYee+sEdnCKgHVq9xth9Za3CPioUWa43qV9B1v2sSeAttWWuBeK4XGFD9+C3etKJGmQAyssa48rLNq7Js9WiBEjv7aLb18EEZoxajd6b0BnBlcRuaebiuOkq7DcvwXImFDogd8HKA7gytM1Lu/1oL+BVN/XBvtWFwEkv5LI9su+0yuEBkWv9ZcE4E3FYpd7ohm3EtFPyVcoWnvZ9knD5f4W9+yKUgOmHq4JgtoFjuR9cV5EKDovgLq/HvuTGjt1U1FYggWiRvvFA4be1cW6DW5goIP2sOyBN33OYQgsJv+ER4qDVySeQCw58+71ekHbWyWVIrIU3LgyzaPqk+niWYJcjh0bs8QU7u/P4q7dgEGMAuwzWRl3yLPxMKOgYiDmB9qHPKTD/hYemL4gpGCKhR3bdi8N7drazD7J2TNvaTbnqBDcgoe0xAOXwj5HlnCxK5hmATq8ovA6CbcZfLH13FGeuNGdkCG2+Ohov2j3gYidjHm7YfERU+68nrATXlykoIJQ1SWDJtyU1wThQPqrdzWfKmUG1qWyDVfEckMfJwIRpmIlFL8ercUsw9i3GuoTX3qgLTqrwvzTD1mvPkJhq3KdNgt41/Xw4WspiDo7Evgr4tKqGnjwBJr2EecmpWzYi8884o4cpc7eAXID2ykDIjhI+VeNMpbRcOHIOpsbEBKTW7eZPLzscaCdbeMhe3+vM/ptJxcecxOcGrAAqcfdCydz2zsHN1uCNr/OIZDLy478Ztjh8N26y8fu0pTyRw3qVck3hgyN0lOjCPlmEKzNgYQ2TnoJp/8FWPW1Dj1SGTPhlsTNem2laIFHQr2Xd/eOoDbM9gVh7Z9yjPxWW2xXDJkMWq0GxapfP15PayGD5P6TeD7zZRcCf9Pe3VwjSWolV1wkWaQjdQrTNTAOsPp5oVt4yd6qeUBqYVZve814xKthcLNM5aQAABWvgCnnjEy9Lv4c/YkuVLwv2eNCAuAJXfP6+Onb6ZxNgyfSW3WdA8GaeDFdJMnM4uVhZ6zk1w4q8MSi0hV5Yv8m2jCh6lCUPXBCUmZg9JYhK3mrYgm7vSIWMu9MZSoF0eeNs1Kj+Wlp2ahF/50cmIgcn3UqzBES0o3mrwbJOZHyKX+hA7k7Pq1GjP6UyS9/azMmTEbWN6Cdac8kChhPbCbjUpvLGQgMs4pxJWBboZWo+dj/P3yctMpuT+lJZQCP4OLG38AcUsR5ZqeZomHwgY+B1PsLENfKS1ceAo1baCLdNTxOCPxLCZSw0vPzUeZHfXXe0ctXvwEVLEpkmSPxalmDipszPGSpSHU4/jtrhcELXqguLNUUeW/HeIo2spPG95hEaLrIsN4+mtbZt7wcGZQyP7p9M3TmyqEmadBeITsTNabb1ifpu0cdLG7idVvT9sFxXjUpv/fsH6MSW3KYQrBzKm6AFq+Ws7yHqobMXYF1m6FRZ4CVBnIF5OIIYPE4ROr2ijJ6n4Z76CqM42yih6mmWBfaE7yhH0BLk9SUXRDnvIl3c9UJb0LtZ2i9gPNIfNg8NSKYNOpx8UjlWnNErnr0LJGkodPRpYbbUmDMrtPseBgqB9H9XHuAO00dNcGAynsA/KUXLnQsdY6BEMhPEcB5z20InyIwm6VFTxlCi29aQc4615b9cSx5agQL5GeVUfvN1Eoiiy/mdmvBfGYsy5SwtfpBdXpfqaHdo6AZK4C2abB5ClNiYlWWO80p2ByI9CTsV/Wur3d6LVCdZJlIUWd7opFKAkMYd1hgwqb5VM5JtJN/m6IMfdLfGpPFylupkbQEHSRbu+oHBO6R2/VypEm06tDK+66gLd10uj0MUGE62CF5hhmsu8ZJrLF3+IjopO0Q4KPyE5nczJj3yzGcA8UTmwtUUlMn0ByyfU8wVObxS6e+HqHxZcbfDEcAZqRjVvZoYugO19KDfYi70vjeWal/uf3rn7i4ffZx9xxwSc41waNq93oopZpREGVj++kx8yTmFUHzrGBqnqMl4AmX2imWaSaK7c+zrYSHfOz61QAFCC32uYc8MaW/vw5veDEHdr+gUQg1v7tThPqeDgILZEuEHGc64k+/rspQt6lb7ZUXRGDHiWhHIdU3w3aWioS8yTklauCIoURd4pFtFxiYT7kLmLEPc2g7XFZdd39dyisT/mEDGnv2aP/TC3XI2EIXWqz/j6YYaK2hBOHGePtHN2oyK1/bSa+VLlHe2jDrjZOMU4U/j4HOd1/H3CXUXqBNtTwjJZyS+3rZb1ZF5e5V/e3xV2PqhA+8Z4tGRAnyl7aGBpvH4XzjUyQauy7WtO/ZpLGS0lQPJxzqSaTSDYU/r9ExUiTSdMOMVtgpXH5Xcz/XfT9yYi4egfQl9/IVKHY5a5D04+cCPpPj5eaFaTSnW+tj18KfwomhqrYwtlmLM/yJjSbhoisW6cWODXSV05U+bgpAE7JiKNmnkTU9Ba05peqA+kFJGm7WumKt+Km/6mcOVYvuRHEXoGGOiOY+lT9PHJ8KHpFNQPHwn0D8+WSr76YC/7h8ZG3O6vavnEW2Phw4hfR1SgbRt0svoKWWe7LjBoOxtafd0C6az596wSErmrZejBZObkr24szjVR6aXk4W+RRu0U9M90Wmi+SciqUqrKX6FDIhJfsWZPkT1JiKWESXrAhF0kdJnqPu7eZNYheq1uA38x0Xro5J+ABAFBpb7mvgxKIyEB2fBmUcMD7XqiFfsscKhoIgT4RWcUlBRHtdOAb1CN03SR5ZMMQp5Y1/vQm+iapg0MVoNxqFhp6fbUweriFKyj5LBvnQXVczC+QDhZEuxmxewRrcl6eiPZbmecFj1+IbT3IiqHoVR9bjzcH3p9ODXWeR1Qr3FYTjEatO45oFBbA5vEh8uq/SmOLj8RGmqVPr/L39C1lRpOemf3a2UyQ/AO8bqHLKibm9POim0bEmIjRDvPKwFmTcT3ReM6kbfFU16eQPexZnfmEoyF76pcPXyQm34in2GBs/2HfetIqRlcgTggmm3aL6q+FWCMFLIC8cMqKxOMp9sDqhQF2zrHDW25i+Cc1JfrLWJvBgBgDm9IZNL1bmXbBjCE2+OW3eNiIZWkaFlgHq4LdfVTdiJsCnhyBL/P3xTuI2ASL0RC65htEmdTfKWNi9LNjiU0a2Tkwam7c0mmJLB4g7ofI103/qzA/SkyjZZH8pKFRIe9DdjZRMwNLIRTi+JLgYDxEivHZhVw1il1CeguL5EYd1DcZl5tq/tw3pPGKjtRNgLcBXSRkHC3xVQo2qFAZdji0FL3R0FSYUuwxXwS9Y6c41VTmej9uWYIYzveYKSGb7DfjqIoGFpmAH72nftvpGyCriysVCfZweLOdCdacGHbB9MBXogDuEnhJ7o+FSIgWeu5bQIhJj79CUY/2BOs+k/+ovSDHYLR4xTt03DhLWrRVDQSQJ70E+Y0mW7p+j2Q94/RAIRh1nwnXHyNOGXNfIy07Hyk1gAv3nCfu0IWb30/wi2h1jEJCZ4OdNyuo11zggE8uaQTeUkn/dXfT1lyqTufN2A14QA9DGVIWjTmH2nFam79eA+uqqaZkACAT6zXZOfhlgwluScYQefKOTdW7NtPh/vS6ExYkNp8ICyLnx0OlWr//O/VD/25xFlWvRjaTz5iCWBnX0e6zaATYAeLW94tJX60OpsXOAD1EvVS5KqS2kf7h1qjw7gdFDJRrE60JgQ8/pMGlm7uDopRNhEBOPnJTmsl6UIGg+eaxKJQtRF1hQSjOedAf6QXVp1Du2lNe632oo/x9H+G3YL/MnOXVfsy/11Uq+hTe5Ov1Jm2LAzLknjtNpHSPbxjHoCrR3uWy3cVeHmJ1Z6ryfkYBipz9zG7CWFXkMEwAG2Fh5mmgbZYyI8Z36x8fuQArSI1dCsxmHNMMItuB/9FtHrtMPR0CLU8oUa2rAnr/r3hvo2i9cCa7cI7/e27Aj6qemXQ3rHbptQg+UERUbd+JiwqvbqqVRd3rFVdz60pAFNLDYrT5+r4CbIHRYxyLisH+BcFBEmzO3QlXrPboGPWd+ujSmgPmyK7caU//Hji8hdjz+PUIWmAC2iVfrY/VDoG75WfgVqZP05xTgDoI14gL5M36ctkrfgjCIYC8reF8tv+DjPk4nh0AlkfbPDhYM638oP+b0mGuh8mbXG6wBodedoH3sBpbmfSkxiD+YBRVeDEYGsP59Lste++o1y8dVLQS9Qqq/LEWWuSab6CE0xvHZduWMzUg5K4n8OyCR5gej3V4RcAv3Df06iY67+XR9A48rQPJxd/yBnuDndqjHb3uJSqMR91ld012OoXp+v8mItVPotUTyxXA45+IGrH7LNyTcbV+BhmbVI5Bw8aoPs02YbzEJi4NcUo517irq07eoWsqAhUK+vIJ/Fq1+Bbo3vJkIOdsTQwish4SJa1H4xvPbLdj+xDo4u0q84DkGeRRmKp6diORj1g4QX8cwVj7NN5Edac9fFoSa32aEN4wdmvPEHKC4wKRmqQz/cgow8GP6x0sVMRB0Ivq5ySbSbHDKa9Nrn3nZjwHgaZWKa3BdPLwFDK9BLUpnJ6mp4Z9rkwNUWygeMsW/jQSgFmqI0LOa0j3NAPY9QouG3NKcX9oV0lfhcEcqdmozv5C5i7oKwft/B8DkYl72V9ramORLM0fjr6pbetUcC0PMAQe78QfL+Mbpk4irfy6AQ0SZrVO4oRUsEGeGbLHi4565qqqRvtyLUV0in/4BkzH8gWInjhhKdQRoNl/u3JK0TPVx9v/hv5BvWb0Tbgmp2BwRM/jS46HY+0DhdMbFWeDYN6f/wBRm4lvBBpLJVQj49t5WoOjeDpMuKZFiKLnJ9l7adkzZNPfydjeG0uhKMJh9P72hd3Tw1dzixllPy3/BH9N/jpHzGoQ9wdDGnVDcfMsiInTYuVhaNGJ1YJ6usFpGJLHJodyBne1EaAzc3ZyoVizbGCpuOqSFCaxb2PLH7tHGVdaVDygiu6Q49DAxx6AEL/Z3QoRXDtV1Nvrv6IrcnCt7qEmTPiaVZGVyJzLhOeCT7AQRIZtw5noqTVY2c6FA6VrlYRBsHh1vlfFhMXs0Qp/i8j+R5j+bW3REZmcAJcL4+Dg7svY4Lfk/4+7Kod8RSnOfmrjZA/1Xpxbc3/zX/wiKjTuxmll1Ok/JOS39ZhSHf9vweZn6PU8mu6jsTaaxGjj3BVkFwaQCTqqLmaHQsZuYxU0W+ftnjSAYYido8hUFmiCSKUr2UgNEtJ+EUZ3B0varjx0CsWlhjVgkckVrlM7exzUSdQd8iIqSJ3b0InBRifPiYKsl7EMGyY4yLbOeh7qVE74L5CUY9uac3G902fIm6IquAh86fvvRIPwKPV2FNxabUHQm6DJVSEvqfJIbU2SxR27T7evgEXnqyx9FpfdyQE4hSEC74XPCX4bQL9y5/G7jqRuHgEgRy6qVQ+f3huToC8qDO07ke/0qNcgj/eOG7t5WJ7aakITwABQgLzx/ONBykybl8stoeeG3WTiz339NnhP/9bw2WxqV2luXXvrKzdIL1o1S0CEdPiJ26k76oa/A67plvonLfwiMaYtJ24ph2lyxM0+B9LlTUEyZnJzdVSY4mH4gHt9A8zAhBxmIzYtUlRYwZmCW2dNA/DIBwnoGB+Fv/QhtrkIwLqbbUPefCZrnCYzm/NCRZgTNPypXjBEEnBN3V7jIQSf65UDxivtq6E83MpvE0637Spn438DQkUREunPXlAi37Qa3oVbEK1MbKqo0z4YmXdjFEMO5fwy40D3r6Ioh0RAghdbFco+C51MzJbHlB7iG1YC7pkeZlMoi4Y/DgAulHBFrvahpEh6rkDujTEveZ2xMfYl1FnRqrNstgOf9/x2rLj/E46FJYATaq8QFFM7Dr8gXiov5FcfGZNmyQeFhO0MzMtcv9WyKtJGosHS6xG9ukvpXWMqbN+q1WJBEFI+TVANwjh2M2Yz1qzjqg6Bdof3F1BMQNIQFKGKbAkiJcRTSHINlvg/xk9qp3EVJf8ryvy4XHiqmSGKBjD9gOXwe6NFrXyAhcjGkv6ntd+Pl6Fw/d4Z3UOCvEMMMHDN1HpXZom3abG27FqwE98gYFBGScgJFjJKR3K1KlKJVfcQ0gkPt9C/kd/B7EOUKXojdQ5r66Y5GyHCyvgvqBOpWjyCDRHapvQpUnswi/u0ieVgiuiSwyifqHFgWuQCPY5Oqd9GVMCORqxdi6mB+nCvtaGeQw9kDvfFm7GFX5l8nXnXFA+V5uoG7IBYIj8osALUxscix+bA00SWgW8hJInBpgIUylttjqqsYhFLAbOuXIr+wwBfLzn0+iXnfkWDtzNNUUvmyi4eXfJx4ypHbtGpuzSxk6P25m2QqPS8h0LOZwP62V0p5llKc3iEIyO667zZk7AIgzRZl7On8lNfuWpB+0aJdsw5QGv0d2fDBtcnhLv79AXvL0b2/D2gDEY6y2uho9ez7enwNSGMaBb3HUaoffBgFRCKW03luOVA4ffyQSjLgo+Xwikv8iNtdJwfAwTaLYcITCqoMAest1kyiZbNyCZovErV+vtQ6PTFXNVvjzRYdRz8pX0/MW7K4RFFLLi25puNkq1kBA8EyocvdUobmZmfT9gBm5grG+dcfEE7YpqCI/YEGOwymzTyrMEvsb5SMUvo24qg+2Wyew7mXZNtccIMUZKkQ8j3On51JS3SKxE49kAaGoAnVVrQVRNsAhlwX4jhNN5z/xJYBq32rqlLhwZholcyYmes4k0eisFnSB0NGhnKZul0cYFPCfTj360vz+7tSRSAcgMUR4LzF/h1nNgxyx6SYfUkta8PHbSswtACxEP4l4hv7S+MWiiEjDuxsB+3cWRrrh4/ieakstp1q2NZF4AUbYTJvT5mlXjtx0l7Gm4zw21RwAg6wrfUe5+6kjTVZC3UHS8/39ucGFltET7NPE28buwEI2ED96Ez/xqPMP/wHV8Hjj32Qie8qBcI0NHperGs6mtue0ogs20JdC4lGxvY/l9nWlIUYn/r/IZHtTVTrKYZa/8Vb5YWwtnimpWWD+QNfrpxKYhqP01Dd/FVPlU9rUxhJcc9K3I5FxH8Hbf3XBtYTyE+ttJPPTbh+bl+qeVJnj342Fp+EmOuI7dGfD2AYQEz0oS8bAHTjwkUsIBoqQm1BRGI0Prv0VMvXgCFvHazAlm8kyXnyNdRSOpoGT2gNl1Oj1lw9qgd/0k6UfU0r+rBr/qikbfLp3z/7qwZod5oZ+3/H6kHDwt651my4nS+HcaTkhFr/v3pOCQuqX4D1tyP2gxIes4VYcH5F8SbMhdQ7DPYxbuwV2DrCbTxPmtd8XA9xlHDszYiT7EUErAt31kQ+dMhneVbertVF6G6n8REv4R7WyMcBCgW+IfPwrEvOGGeqpcY/DA1gGYJalJKtZIMLYiQIZPh+AU+Nhmx92Zi4Omk4/VMmczVFc0c1AjbfXzE/OkMBBoQa+mykR0i0rND2BixkLE3Xrg6+YV6iIjM599A0cmg0hzrHLbDlAKiEdA5KI2tqRVHuviPGV++IR4/FOCLUK3d4YgNilEKSY0+AW9Ab1wtA7cRWB8zt8CbZCBUeHlwjRqGs7GpIXS0G10o2jBPMXUpXBmDtFPTR7eL5qTpCELGB5dK+w1YcV0MwYIYXS1jOsbY7+BJnI/ZYL09GWyRLSZHBxqZzrXNkrVXlMbAVED2thGPLEuiY6+R2VlflIWKp6Ty/hSmuAxtA6NmpxjVKTOnu5NQbN2RRNWHtZaJoHo3irvogjj0qf4WuYC1STpK05g17TFlrAiqeSlAMGYA6Nw9M+zsJynnDEbuS/duwSIVc4URzYsLE1W5zWZtCp3NjehDxCAXey6g4WwBjkT///6t5T0t4cvIzbknUvyo958h1sSIc62yMbXFRy51ggRbyi1I818BdFT1VaJRQ+i21rz9pj4pjMhj/sCH9jweeKVQN3B+7ZTd887AvN/BhQyNAzeGwzWCpfCqMLO7A2+wnvyTYBupZMuS68YQH8PHLYmIJhRRlMH/TEi5jzXjrMGeKudlFhzqtj6x78Un+dAbHS/YR5PhLiTfWeRFpoZma5DbcewWYPsfTdtpArEwQwH+L6CHM37WCridk/ADLjcrcof/z/x+ljma5cI0i7rr6RoLM/nWd8KME8VrYkBwpfuXC/uU0xAQNS8xOyr51R2MSOgRYH3EJOaPeJCbK0zntmNDsw5MbRlr+vXQggzL8GZaIG5jUV2IOwf9Q8eCA3jwozCyG+OYy2gcwk97DxwiACYTmk4ClFatvP/mHZTtlGP/azmDR3jy71VL54zH+wQFv7x6YNzVmkdErwWEXIoH1a1Yv1BX6ib9Cjk5sz6s4Sx+9+EaVpROVUwJQQG/H5vCKh6Nx3+UC2FnGiSfR7le/MLxyyEEsvklnI1EFxgZvZJONh8Nns0w4SJz7dZtDImrjSIvit+MaV0C+2xb17jsyndqidH58CTgBzf11uTzVZCIJVoB/8+FM5+HjpwGHGm5Ll7BG16QpoJ70Ul1Tw8zEpTRDxmYLIfYLSqVM2OB5BnDLCvaVgjRLcXNZZrEkiPoAIpYEzUBf/rUYiX8gH16r566x7QPruRvGyqxm7BfX4LPjMB29GEBugQhOgTeK5nIbSIAoLc7couOK1iW18bbhD6xhElHNMk+ldDyWdjOHkQcwgivcfrzNZcEG8uRab6wiPAAmFXJL51FBkpJH+h4L8CIxsVw47jQon/CofEAUazNYJQ2OD1HeuThQc15N9dqwlmveNp1GeYCl777emRQJxyvX6jkFAqnX4vAqbwrC32Sfrx3Wwl+vPVyjxLrbYWbpDtrgqv72aCtD8EOxFqlBCVH4zNGOYG02fM2AgdSgpyORirxhlLgfyJ5Zu9T0eRhRIHeepfnPzyxrEPnPmD1RSP2f1IKY7G/aouX8Y8E2U7r6WZlth35QWe9wZOvrFkUP0bV5cVFCIYcZIIHrGO8tBtCDQFHWTrdPoUp20jzsXori4Valdb8ssCwrFlIyjABK4g1ZKRJszLPci8OWceZ0s/5/pJpPqU5vH8AsZlaOCAUqDVz2CL94wzzHhklbZ4C/95Qed8EFp1FYR7LvzHstvMV1w61tA9MmUhgIfWlbo6rj4zHHO+pgxNJ0LdOVG3j89VTMu8yX00g0eGliFm+9cvdrpNiC5q0h8610mRPvb0XHgrEhLBGwrTPwHvUqVS9jjLaO3SQeqm8didsWVy5ZQXJTF6nr4D0tjU3kxWXO8aipUKLK3+DCD6vcnxs8aHaA6+ERx+CXgNzox2TeyxxQXG40DQbz86bJYI7Tj1CoPRcuFs54wYA/Jys86KSh99QNLR4XpugqeJ1W53Uncden9sweh4h1epUUjeHIDlemdWMepYOmioX+EIRt5FORPxvrCx9/5A0UwD/WvNGgqKwuDoz12T77IiUeFkrp3B5HKWSyH8oeK1Iv6EI83Ed6Ve+6AB2yK40NPKrfiDFYTAvfqI+oRLhhDdDVTjB1z2Qsg9U2WtZPGN0WXCkbAMLL7Add64w/B43erO1vA4/hdTNicIZe9wqsNdPpTKGVaG0P5W2UBt/dtW0ELbkttP4OLDdBzCH/3muDBo+nPC7oGJtI74yuAwCuL7B68lKtyzbr43ZkZAvg9AAXs8hHLWXn1PGTXwgmf82P8FlLWHG/BsalxLrGWe+hCUF7IbGMBKHCSO4fqKe6xEQggdSneMpdeBQVv3Pn8T2ZO/qW56SxH/hA/JM/WPPVj9bUj/xpwcbjIFp8RVK3mYbAr6Sh2G9i6Wy4LFxqrbGiho64c9eu6WnaFG8l+X6FDa0R6lY3j2RQYU8U35x5FX4rC+lV2H42pk+q4yKFQ66Q9Qhr6WkcNMksS2LRC/dUAnEJPId16NAnEKPdtvkP5gxVsCRfK3GQdCK32WGGixwbS6Oj39yJIzw4RwcEhaRFCgrkDBTNVBoEexHCzHIAO+Bz/F+rVq7yT0GLf19A3/SSPXL4dYRdnJDaCnWcfzXyj6pLFtrri1szTngLI4DiZh0ay+NkSA1zTBK8elP6mUW8fsfKk4ZXohvTBFSpWKQ+VeFhCy07TYiE9Qq7YKxudZNwx3ZTjWWxASRapLal5xH4MmY9comqyvf+c3b2LzFt5HJPcg7vOilu0U8JtBKIAE3IIIXJLX+kCdjPMJMoLPyZbRlcZabS3fu+HiKEoW2OZLO8WtTUoo9h5z/e0WbQBwJvOY9QI6kHiFelXnZ7FF0yLWIDmmIEwDF7f1kg82UxVnRIBhtW3vmltOM8En4Okedknvnv8Nf+kb0fCxP1Vu5lnaiUQhZJVXTlGr207N/yXbGhw7IRWtx77dNJDJvCAXzFGKQcL2ziaWh00I/77L2N84T9T1F7aEML+a1l64D2F54yXXgnF/B1zsaKRAwC2gZZwsskQ/px4kPnBmlCbCHHNmZVXHc/ijLYDMPWpdQXDpiAw8yoLqooZF4bTvFbVCJPI5LZQ/eJWSq6x2xRHgQPclp6YWImZubntFcEpjngwwn4t+WGMZxXt39d/RHNLe4O0LlHPmxqT8iFq3idk2hwifUz6BIUO6LEMCIkM88MoeGM13wFdZZmXqCSAU6OAWAosa0rHtTtCfQ3eP/eYzTVLbcE6yyjgcnBBTAhrcwV3hWuBPElO8WAnqo0BpdoiRvo9+5mOgVtVrZM5bhhTcdNETk+pxKcOL4RKq+K6nwvD5Qs8yRUY88Ss8zdn2mEvBBkyVj7yarssZTfXWkIOu9mHwxhbf/SXGFT/2B6deTpum5RBnFmL5T0yrmOeBjL5B6lAhdeQuXzguHygg4Kv82O86OQlJW10lfiNUEFSpC73GLJBgBspkN2HrLanTZYhUrhWVsSUeWnAsB1z49jdgiRWPdkH/sK3GRQeRRDzkbEud4ZhlPsgZtljfjQVtyxwuB7acSB4Lo00ZdF2HUSvwKZ974xfFrbDXCFy76scwc5/VjXfUoQR73xunbfkdLCrzwQ3UzXfhGbgsR5BkK+IFTDnnjhLh/LcQiNCCcOwYHhFImPCzkDgRxhTALNW3EKE96bBA+0p3vUyhG+WIrUepol8RloexfiWazJwEJEi/YIwVm2YoEwsAR80bztJ/7dlE/YrW8Y5r7r/FNLL8hZfbXvw2r78Hhi93m1BjFg7/RDfaGAx8vj2SMe8WMZptryLodSRIE2gJFuabb6BGaKpRZTub0Wfxr0nSd2bJ7Zh3G/AWWyrxHkcPiheSMV6gBuPVf5DPmLIwJjcd7s3siLR8tQYvyu8uQV+JmIRditM/ti0Yk7ZrGF5OXXJvKOnfREQHwwtDH69kvx/Lm76EkwYrFFOiUxch6siR31LjU/FxylNESJPb3bgJs89szAF8OyYCWJb4ZdcLLXe8KR1G9U+37al+9asXpV5/FsPwkXGU5xtWH6hsKVJQGBN5VlYN64TkOQOiiAyYHv/wMR1RBgMifEl91HANvG7rG5B6RRRzExVHD4WBBFzfBZK6sCqenVQ18gdU1kggqtRBu8/BUfnz0DghscgkbamXC2ihaZmwenJ0foLrUY8I12b2KyZBgjAROfCG9z+3s/k4Vvp8Fn9mD9kLxBOgoGAcnoz7iAnhGTkQS3rOF7hQs60CIgllJq2k9tKHbBYxSX/Phw7ZNMXhYXwsvN6l32+6ELOB8EPDlX3ZnGYW1MHf4WRWCsvVhh6Sd/2Ms9PH3t+nCiO1Ii6OwVbYebQ0rPGaa8pdv1hnTEQtCLdizKeAluWnlEdW+NgU189BKIxflM3lIpRfVV9aR77HTx9JgE8jS6X8Ydt2YTWK4odBGmYMiSWQy/qjXy+1p7+qIC6x6RAi200EBVz1CcTmxCGw3pwl4GG47Q++1sg1JWJO5lt03XorpBbqOc9gnbMzz5ibKdYPEcddcSOdETa1ZKRxPrYxrAqbMIC/BLc9l301WJBQIucbXedo38KNp00fnhTcVHGRGcAMxq+uBVutooaVlnM9sVGWjpSrIHrvH6a6j4DEG+Fc5LhfCAPeRSu4zVgDyAMXXCHimeBFzvQBb4R4mHuG2TvbmSBD0gdnXqXqx9HpxZQWzZvsyuF38qz9n8GjSrUkJYe/j8KYuNt55fzxq7JoznBbPqqssxOp8e7xIGHqAZr0TQBjZuVICf43QhZRNtncF4obqaG6rLqbCfAyIJlFBJwKb6cWRi+0Ms9L9kvivSnvkVKfwQJ9mxnAFhi0UCcul23MBBsPQapFyokv6pIbbqH2Xa0D3qtBbWl2agoHVSNb+SczuErpS81LIgqOnyVsOc1bPD/yFNGfR7amdklG0Q70uBUj1sECBt3YgHBOWABPbdEw+SZWKywNGShJPyHTolVzaUK5GXAPqGan7ijb5xmW2jYshapYBVV0NZU+jOq1mv9EnfSdWGZJtVGu8tNzvl2JnT6kuquNEda5Uws9vO1LxF0YbCiPSYcJd8560XKUv8382n6bVve348VZW6ZBWbk8dn4cP3yHFyUF5TlTBr/EYDimlOcQzaQ3eZIoFhxALs2jlsVWO8TiFftBRScGwKNdPW+elbXpq2ONGWAj27Xze5Yqv5zK94HPgq93eZVRTXFdVbD7iQr5nlQ/HYYsaiO9nvXgtf/bHPaAZ3FchwIxImbXTDLL/wK9ApDnE5682xLjSXBy/lMrgCsdrwVc5fs18LnYqb2yfi8ElOZSZO9DjknIJO591XbsZZhYZY6szcmoQeD9HKFYotuS3FX6CRYSPsZnNnUBkwZmgdZlgfbhWytN1/9mgFDAqRv31+enzEUN4Th8r91sDY90a/kKd3sNpThX24xLXeog/3bM6jFxnX9QdBLbsm+lRt1Qwsf23VdOmomYMwo0yg+pKaQwIurYZ1U7lX7Gp4YblWT9RNE0VQ0AO82/PipUmkrMMd3zmLj+rk7lVxtet9FMAfeobhrSrfV1fcOP0iGe1Qu4/h3yPBJu/tOd/wXArNh0zYFNEuRP6G3d2XI4yRFJGK14Y9gMhaX9VWjG/xBlLJtTkickTF0KmcxQwBgjeaXT62j3mFkHAyXrrb0AW8hy06AtVb0PnhCLLC8ienarRHMzl5pB2N5yFsx8k1CZybzxCaL7b1fS2bLhgruTguBMmomH4IJcaA8eSzDcpED+DE0NmLcLkCak+ymHNC+R25PwSB87dnTN2DmcroYBxnMz4yDKe7fKH6l662L9dRNFqMb2Vx98PLdLXhTdnd/yrtZheqgu12h4urTS+WZQ7DBiEEfGQBqtMDbrmpf5pss7phadJk91gWopMBnbRAGc64UUd5uGsM10yakTGEZ0vt/KfR64FIB2w+vIEMyLfKn/keVqcicyWtXO9HZxFRLZIo8f1F7wruZzjWOaGOgxMyjImIdPCavGQb+3/PNQGOSQwbLepyW7KMXIN+DKMJWNqxH+bdaheMSGIdZNH0vksF7UEMA1re6nu/f7aCuag+pzqlSaG/1XBjQ4E7XYFRfF71892FDYs0E+vNeOBVqpEsUOUbJCyqa4U5IpZi80u/+7jZ1iklFpRG6x/BqLBFURYsDOHL1mJxQ05R4G5gHIR33wwJ+6wSqbfKjkc8b48LV025tBdA5S+Ku3oh7MRXr9iOalo1nGNhlVd4iFdvXQjUT5EFneluRLgM0/B24KhRoBFYk6saEJW/S+snH0lP4mxYdoqmA3nBV2Mqdg/agI7DxqqTxRCR3+aHEVuGj95oYjSiNxISLX6t75kq/LziZV8sYWXStkXILea21hZveZGzEwn5AxJrdrNdYNdXmN5JpVZ9Q608jSqiNE/kXgoTlsHJS3HM7EyqSmJiVBb3WT//yhAlszrxW4NNqKpvD3RQAdJNrXn2n/v1YWJXDc2YVf+bizuzT41uojWHuYOOeKeq3bHxL3irivubIE5j7HGH9bYmOQ7st8Crl1k4dH52ljQds7CIHVkzR/zfazYCB3hz/z+RX3BVNMRKe385MI5pQ04WgRs1JE18p/P0YaMJTfMVD5myEvVEXv0nJgdytPNydpXggfZs1mBv3Uf3uUD79tL82p/Y+S9379ToPWf/bupT3h7KxP56R5JDe9lDXfTSSGXBKqO/A5+raoCgiqYtaubqbALs1vrLK4u4ExS0j8A3raWiVHOrsymupKcZez4JhMnYJ4Mv957Z5pvWMht0q5b0mki3zc6DMZSor1e3jbM75Zaa+GocZ8DXKNNmlX7BB5AVY7jHiAQ4WkK6tjFNTS65rfh2skb6kw14FWY+SeSG8wSMRscbsSm1dd7ULqR5dyt3ifwI/HSmBBLiSv3qL1NxhmWhijhdX2isX7qGTKkgGFte4nnp1WxkNhhUSFTax3Xe/z4KUPyZa0LpuaG3U+DxCHfpM3XpA9xpllfM/sBehzojNLuW5NhUNjzny4ioYlNTlrMiRBzF+EyOweqm20jk4aHO2Q7FrnowhXAJpkzqRLzXkoWPkWeFdnKh/Qk4/FBX4NngQNEL47OOLeNYe7OQXpW/sz96i4d9fXt3VZxyzYzFkFR8aNZe9QeUNOQGfbvxhbLDOUqsZTs83nBecj6m2MhO0e+Ai1kgCvf8F+0N9jXfnb25Mu+nOsxW2xae4lc/lNuFf37tol/oP0UCj1N8e/yZ+C3x2xgL+hoWKRrN7CGeMhilDhCdZdae+65xopBtUDPAKzd6c9rknurcY4WuFpH1HAfZpGrHsWWlynrikoNjHPuihTwGbohRGdOl27h0zKKjW6rcq9pyQ3wzV7lkGR0Z2R4UKvTDZ5EmPuFvnZ9oWo7cCegWISyniupZOrQqXNWBQaJ1Dn8hPxKoqeasyJclllp4LCYA6/CddKQVh6IqxF2flCtpzrCvqdp3u3WMjNac3LhQibbEaEYhjTvgqfLG+ZQuSIgnp4e8EHOu25D0U9OMgyxDoEVcpksIl9SktzCyWJjkoE0p7BvH4YZ0+9VFD6PWzg+zpY/skOiR8gUjD7qYoo8vCI2idlDkwedBcF+nV8dbwROrVUXliuzvJ0vDzgdBmChyKrDn++xkv8wg0fVnkN/oG2FzVKpKeU9xnw3FRfB2kbD1hw7Mji6/RvcJf8LsqyCH/UonI/6zpDo86/Nm/ASezkPXfqQ9M3AwJA+0H7kAMOsGtDxhz+xNVgwRT8m8367+0zv28y9kmobmD+6NT1ffVAA/vSXlEA735zR8FWTuVyE+Y+VAmaXWYzf0zNp8xyPOvKLxYkSGgx3P7wMpU3VBOvfLM/RkwRg36l9+Yesk/7S168cmBzslaLuJbE6n8jSa6o+dE3q+cvQhb7LF6VS/e+cFzS7d74DKqqAbgy1l37M9DtLL98HfSNjWZtx7bV+PGRHO7DbLNsWYdT/DpgWQhcY9jV48p2KakIwjgW6iCpv3i6IwTpe416qO0g2Ke+dd8EHxHLcZI05hOH14omKMW7xn/nXdiidiysbuLT60qYXauOcp4vXR0INZIK2BhWrlPHnvjwnFJJpSaIZE4XQqnBbLnAae5IOgqodHvSKt9CMvp/A0I492If3muwr86278SO043TzocMMc5fxNjAZRhNGRpBOc6HKlZIBZKEya+T9hsWXSviqSmTEoCF87Wmlme7ZvAzhHo88VLvQ1+ntJcY0ojOc8rZ8K4TCiel0c5PDJcKeiSrMAwBZR7eX/ElTWXl45w4ORd97ZaHlA/YMCZi/Q7AhdCX03bKVC39Ug9+AluR68+5/vvkhk0GrGWC6rOOx9eS/9081KzWQngkX9a+mSlBT7Q6JFOYGBj66tagz2iKiBhv3uOdMT+D1C/Fc7+h0L7O/SsILszWChA5bStsOTQybRSCwrebKCfjjl8Pj3gJnzf48yf7UncP1ZZ66QDqm+tDWL5m0oFe5PySwuzU1FBYKWwhLGY+2WNoevDEVObCzwtwopXsO2lp8RhvW2B3VxoSyWSCV3URykFZNDrsCKpacneUhrwjNWqMNODuMmNG3pbpSa7s7F5Q5fUSApUh1EHYr7AC3rTt5gpwlzLXAbElKgqgMJK0DhZVydbsCrFOljmdgMlQKH1n86Le8lpKF0NimMmpxLKGdxGaukyg+H37zOLKp7unM/CbHiC6mtKLKLHPYUfEWdE6u1rn9avPJ1MvcFSNLHKHVok4i3fKRMvr7tH76Du7qMc1zSF5q5ba0t/tlkdaIWDRoqU5DUMOxqHuDLmc+DxwrVG5yr23wSvxsY4payTbJAtyGFDIzybb29tjtTRSVmnVlNMlf/RpOn1A8wESChfOqcoY9bQ6RgtpYzGDeU5bLG8FSNSiLT1jr+s20qAfPnGHjdCR56QJecPuzvI4rK5w3LNHDVm1AwA4EQ2bRMjqdLafeOeHMVo2i7WAKh6FaKOi9xBJoAfeUI6m4J2jWBle/muj5Yj9MgAHQ0q0HSJoJVEmDSpa9p61i1Sg7bDUemK7eVL45tNW023eZDhGMzo+5P1XHkeo0l9tqXQkQPjs0CezypRBdn600LVlrCUk8XWQJtfLGHC7YwaIeJdd5tOGGid5WKZcwlFGCvVp/pH6cdiyebz7R6PuU7aT5tevrsz0nwteDaeN1dwJ/pFHJFmDcu46Ma1A67GRrJffN2WO+HK2mpAuAFab6surgyqrNeNWZoS9fEKpIs7ah52VRyr1xzCsk0/WqZH/7qACkV6Yh8bBGOR/pZLOYIYOlZ+dmEmX1yjQ6QcUzX9rGe9EmlxT9DKpLKy4GukTD+ydk0uj2ek0VxqF+ngLrCMg/bpYy7jc6qsdQtn7AVPkZ+BLAdC73g3HXpA09ujliU+ilpFI6/GqelM4vfNlz45QazfJAR9ESZClA7c6K4eif9i2VIujgSpHMWAqAvCiucSfd1QoaeV/PqTy+dhAqmaMduEL9g/V52/F1n+vjKJ8Q7hdupCD8eN7fRtvq9wpvrGDHSNgATFbvsfv18tiqBt1rfwhi2A+8b+TUF/T0KWhazOLcMuwjIcrgvBWcvE2htmfOtI9WFP0XR9AB8HYXGUnwTlDTQeBQc410ocq/i0E9Nhf3IuiryNCLHa/Suru7I0CCTsQLFA6AntBiZr7ncNRt0sxwJ4cvSsdAoCjmyawl5YPHxzj/XpxquGFeTj/CybVSXh9uo217225iy4bfHtw36aWHkmjxnQnevgWLQQRyGwTSKe+dJ9kAwJ/OyVuLIKyc84Y4jXr7VSzO7O0X6koobNDFOh9CUVzSAfPJizLyLk2unyWULme8ojZA5RNIpxXZ0c3GHTm4A5pK6j7BfA+Q6eBLSvnZI5kfqBle68q0QNVr60II0Q/TdCM3JWuQ5vJzgC4P+XqdNYKUvD5Li2EnLGEj3t79orCGsSPymgyxDQ+8HvebwvgQhKVSiTBEVTGPep+JrEgy9vs0CO+oYWNemXkfB9nsB2dFMBIPmzZWWi0NksSxdCkdLe/UDDhrak9sLbbJKYgek5dxn2Uzp6fmL0SHyi0bAnJXVoKNT80jfRjB2JbPLv7mfeDBtCFqJsGyA2v3Km7B8gPQHP+jfUcE2WhAvRAWiM5aEmkaEReL3dbhBkL5wpdQwAGVl6/b3VktRyO9kcd2Zi1pkRLAAkgIh2fHtE2qaoIlRoinYPkC3tx/ARXmocdPHZvNoakLc6XiY5JWYv966WvfL6x5zt7vUkGCL1k+7nQMBL2ekWpXYkO8pifD9hswX+HvTF+lslGKDL031yRSSHjWWOtq2/cxzmTB7e4rS8UZ9mSU/44kwD3xPw1abA8YEMeEWozqP/lq7i/9Ne8cveVTybakm1FeXjNXTPfAR9UeeBfReL1Oc12m9FODwmuIdoRwUwcZVU/3W3/dQEAKkaXc6tlKsFFEtzfqq1lO0+UAGribOiXwpQeoSj9elYJZOoVemNIcvg+ih+EHbBZXEc14eEVQyY1jetK+BtcKRESeLZvqqqZHC9ab5qtnJ4kidD4Dg31mLdJ3pR4fn7LXDUEaqa5woJb7yORzuhQSEmAW3Dy3Fct54gX4dePjFVL/4+glP4Lv/kUrBums1ZadjAcDF5VT5DYKceKKJ8FnA4x7zm/9dI3gKa05ohEqBhk2UgYLO/a1L2i9GUWWAawnw+rVmiNguBayWqGYfoASxTfvbenVG+8MSvdS4oJCwm0wAftMewSg2QR2yF6EzXh+bIYQ3P9W4Aib13Y73qX7ZPbtP11M42dmEmXQUr9nO11+TBZfaG636ZqomY8ugOU+6QUzJakMl2wO6VG3HGm8IKrY8ZBZNeg+saSWekmaZ0aNwZSjARMG8bBgWaDF5r357QoNe/nXQYTP7iYPDvT3PAbGYTc/eKp8ho6N9FzHh/Fkl2kH8zyZ6KEpkPyTWavNqDeXQPJUH/pKnPk5mRxI0ZAhg2J8X0sXPHnHA08fvb84+Uprus26vCYPxIAXm1zHWKR45DLep3Zco0iLoVI6QZturT9aRiv0y1+qum58aOuKHkeYDclSzpW2xVNds37OhDtDBgUfM91oYmUMCaPp/p+d3NMa/wr5yBQSVO0KWVMbGgWobLuP8PMFU7OX8b16o61q2nYEM5g0M2FITtxUr5P8Ojmj+yfCo7VpAydOTxmwBUpG2bxbKROrXReB4zBExgKc76awHz0hWpYlBjoF9gT3MVagQKrKqNI+hCRQmiqjJ6rlLvm8KATOgdm8cx6E40htwMAJLyfo+UjuB8slzo7CakPhtvPiK9NY6YrRG9k5oNbURzypwm2fenCJKwLsIFzT54apceYjxPKMJgiFIfcAf34Y6hm71sDfPNWRAeu5Sm/laGeAMRltA0Nm22KfDDXfb9eE5oUCjAr86OocrPEegQlBkkLAAmPCRdLVib1tmzgrLNFEvYbbTnKJCyHawrNimKr5u2gMBR89k3TTTvhaDWw5Jd2nvjYcZmCootXL4H9NmWnM7v2XUDPA/tR9iLGYwUSvk5jfHAr5nYPEOYhx9cCK2yQvQeSKaALMSSaOBPzddz6+pdpAtEZP7GmH+Mq2eU5hTuIkD8CDH8zVn6GQU4KAuxqZfKDBLUYI4pCSFl1Yk9O14razXCBhtc1zt1s+9mx67Y0zhvV3GIb+j6RzKXEdFIJnp6x0WirsuM2opB4eCfMvsiR598XYuoyUZePu5YExU+DcmKBz1jtI9wfv5d4xd8r/5RdH42WbeqR8p3lGC+Ew5HJ8uPR3lLSs3boeaM3pIewVnMX1e1crqpUl0AlszLRz+Fc499mxyWZV0LmyY5WoXnlB/mXCxyJRqFJ7r8uZbE6GrqSSOPlb7sE3D7zG/eXqg1ZLFWwyqOR9XGP3YV9jIXluim1l2shizdBLV/+PnRaJlSEa2NluYx3x1+SR0wMRUWcoy249PX17IMLjVNFAPeqoMntWgzQ7be9IB8+wfibFU6NjyCOLvA9nmR0+vsNNxUaTGSupPncenAwHbg711x96OwoYmuC/qHKaI4FSmXnEohqxcepFUk28CsW1pR3gdzQXpqgSBdxd0ZaxQwuddxjTK0E74MnmmixryrSnbgwNW2mdNsbnhX+Oi1PZKAsW6zaD8cBTgP7BI6zPaKHqiFr3bI0/p6mt7b11Z4a8zEsjuo7hpBf6jVJvUyIP9zxWnH9I8kp4DBf1y1EHTwZPA/ylix1O+xgrWmfXtPBML10NFZxLlLTB7e6SHAGEPdt+JXNG01C7+tiUEkO7AJ29gTetDdjUXKJ+lf53104/xl/a8YIQs+TK1kFLE8yKDos8RB8IiOJy2r37eXiflUnmQMzf3B73VFPqBrP8dquYMqb4onS9tC7N/u/79ypdGmvOqNSWJv5hICTams6/ks/nasW18PewFXbvk5XjRgRv7N0QvF3xKut2mM/BaySBxqesu0sbl/KaJiZ4TNQ0d0MuBhGYpFgN8KR7oQ4lX/yciphT7tRs+EouxwYaRfBd3AGxtVs5UeD4cCb2lG3CgQNCnNQK6TgkJ6l05o/9bkdURSG8RUy373GRDQzaOufty6NOfyKiXMBI6ybRgkLcFniD8lQMEtqfGpOHO7IYauUrgunLWyv7a3yqupzjmPhL/CVs39lJWmKFj5pRe9A1f3rv6cRS+Fpakek4toTimseL/vd7jZGFqujVD0TDJbulR7q997YoGHEgK1Z9D/4XsccE+rl6fS/fOxpcnr0wYnbzf2vgweu2KOwnkGndcomn9++clAZf5Ypma38KS9gXK3NC+qaLeHEmAOnSvN5kjZPXt15czrr2/uUf2fN35A0Ouv2COqIqoyQ2WP2ltbRsWZ6UObCcLCdM5DfvKz/ZU5kSEIgDKheyLE1V/G2UqAksadXwx7934tdtYlfTDP4xSX+1pFtWhUK/DP/kdmQu6MY0pZZUCOgllrakmmdLl/1sL8VYGHiFTRPgilmCOBiXIZIUSApaKqVXdQkHth05WnBGoXOLyejNZHd1burZMNdAYRdGhDXUmOCNG2jmiM5N2O5rCx4qIwAeOTDBj21AU8u5ymKhpIP5va+P3Yp4eQi7PUxXewolkfemd5CzrrihLnOkviVAqB6h7wKtDcFkr+JDmvnyJ4IGc42CUd8C88a+vyG2n3ybZt52g8dfv1zPQOPc5PY4n2QE+8Ke+ddB5JvkLDox9pheDriqdMVvPrd7pntei434T+ozmgciMbD/ETVFj5pTFpmEesOOm05v83um9ax9T1vRp9j2jmVRVNWTziNM2eAcNWwv+P8p6ObEvnBxr0BQ3NxIhR96asulQ1nZfReNOY/T45w1U+j0CszM3TtKuRaChj9ceInpLRJCkkrZA7eTR7pF+ImkwynxjWYv+/BfLKiFMrUTMUrZ5hfIszV+lXv5D4tpmW/5nuiN9ZLb7ojd2kCXTbzn2wsgnv1FPmsSU+zotUYPknwROWtah2OaY4jpHJvmSRySxsQI04mg+gvon2+mw791SLXHCJeLnwePhGgtskKBCK/VoG0YTJW/Yjt5VMAmgiPfUl/U1PHg5cHu7Q61hBJf014Porye/hASiQCEloOxZ5Q8PWcymoL/oOW/eqLnNTI03vcX9yZ1b9ikHKOj06reSGrsvGbKG/gCjKU/Hrt5QVji3HwZ5Jhu8Mda1pM7uC36InJgFI3QD+AxWsgqGrInrl1Wy+w2ZKagrTxGidYBJQ5+YL2SKhjMGUbt2tdxQqptJnO+Ka5qAJjt/6yhIPcPKDC1BtOCYvcUZSqMClPLljBg4VdRarhNhSvpQ5Thf5NNyI/0E5s+6Aw3FvwM0mZmSx1UEM1ugSRuE3OSBTaM9V6yY26DTJ9WnuziWOfbpX0wAS5V8PxuqwNXDcqG7MYPOY0J+a5GfcLoy9KS6FWtuSqFJXqxgFbOCD4F1UD7IlnI+C+g6e+1jgfzb9mByE7HwU3qO5Wuf3TCP3THKF9h8CY8bk9VEgCoczchYeNkiidQXF/9omFo9/Anw1ToV1jIt4FNADXY21tpSbYyHPVTeQkf7c8PsPNg2of7W8EjoDMhlwBAFhh6FGWTzEk49lgzAT+TD8y94jvmODqTO6PNzhF6xRXsFRzJsZIjWmTpOs5pisA89zz7iYpyR95zxOZo6VsiSZse5ble5Utqn/Vm4EjLZIvTgXeUQPhW51FCLpmdxJ1Q2mCxYGOK6BkgAZ+nM54YTPN3aubelKBJe1ZDfPR5x0Y3Zp7olj1Q3rxoHFl6dHi+0JlqUCMRQGRg+9IWovAAp1liDauHdrq7JieUpccxnjjrNUHnSt1/rP5GFTF6/GcJAKuKLNs4PLxySJUnlHQSRLddlPndnnHjDZedE83GJAVHEJyTgmh7/Tpzn0kdps+A9bOC692YpqlrrkmTOJhHn1OrziXFX+MjrGzF1wTT3ERyHD1qLkXbTXQtVfMTWFIOdnEQ3+kdLeUZ9rE8/A+SlyAHwC61lgPCrwvkr531ATDX9uPcYjLVHmGAlMhVbcvjv0hiERQHb7EOw8r+60pyyHuV50zIBB69A51hySWM2Ru6ctGxQyWTEaOSNIsrYBnhhaYMblKpYJqfk6QjVRR0tpx2ViIzZsJ9+PsNcaFkseuZzm5PkKM7W6AAU3qp+PVkaOZGbKvCG2W9PDqN3V+Y5jo1X5Y1GKtBmXM8Jp4n6vMGqcvFty/jZg6OHHwHKS7jhsDGqbdfDI4Qd0wdZ2ovmLgux6EdyFU66R7Zj9dIFk56/cnjZy01W5dNFWRkx6WGxLSGeuEaBn4kqUqPCi5QqZCzsNugpP8POx8WN99d3fEnCVyhbLXrSyJ7LMIjP6D6ansqVnovVemf/tB7M8jU6rK9Wcx+spF2vGT4F6KeuVJn3fjkuS2sw4Ry6GrURL4GE3mk2nobkz+ogTg4xNTiSAz/hlDDkYQAB7fhKPwkdjgf6gqjSDUkWzgkSUT0T9ipFy4V7muqprGWG6ieqSOXQnI0A1mb1OEP+t696oUVNMCHD0jVOqsZ0Sb+ic2bGrbWs42JZfAmCPBYOOARs2VjI/XTkidRM7TJg3b2bjkx3McSZHl3bWnROK88Ke5wZtMSGp7Q2jt4p4qqmoEjlwubbrDSCN14qhzMv5wkyxZ9Cam7+8hYePg/MlbfKm/zz1SIJeA6H3MP0KVHL74XOASrGOZaO3ynlU9LtVhXG/xmb3jrdt0Q0C6Sxutb2C81UNbYRm0DdxOHuu6F/JCduYOudXP/8DYQQ9PGMbCiyJoQDpBFu13k7KeA/VWvuS691iKnQiPQmOxuuf4ruGPztckS9Vg/MiD1Sv6yZDoPhYUe1xxrMOBWPiP8PDhjtNyuv+La2grJwIPfBrfba1a+Qm2DjVFpZOAZIeuiB+w5VOPPulFSO1iHHTyfHqO34O+YvgJGxDwvzGQbfY/VYxxJDgyRVdRLbGg0u+gI2M7/atoot+yaZ/yE+EEALAjp1rWw9taOc5BNsh7E8bNjgiTA4zOoDc4xEWFTYoeSiXFEtHUk1hJfFa7pmrLMpJ0s6GBinizdZ/rN0utNqrp5d81QmtEhc3+l0EjsS5+J99N4YMikm8QcFLDsza7Me9+3+9I1hIaY1nIby2ELaEMIXZizhGVJKccIRQUSRKCbtlZNkZjY5YhvgtAGZfEhve3CpHLdBitUon3MpUITm4YLntuMQ1S24ge5mm6+7W3oAi+rXxJftuTudIfXTufLVM3e0nxnLCO5v6nZuTgj4G8JfNIgCLZMoZyWf3fUHWk2lX9nzBl4nR61FzzVsp5LvzXh2ixBCqDHMV6epArk5C5Ecz5tY73X+hxMO/u1i/+6Dp03uLdESgGhgpeUNqdJrxBVfrJAF9qIb36tFFy4NlN+/daze/3DgmtcuCqP4Ni20Jc61VNfD34bmWig8wIQLhY+6TlNNM8GBTqqymTA5fI38n5DyeiKDGN4QGeTQt2ElJGb+rU4DI60i2clwHgWCSJ37YVOYqLdGIOKdWffQfH9nWS7GdKw5eyIBmXcOv1SmCCOelETNteKtAZZkahQlqbtT62K10bRjGQ2Ax5yE7/Wd7oQgwhYZLMxpTM1X0VsyE4uxMudfJMDY1GLRi7+OqLbeVcrHeFqg28N/hLgQ4sg2ws6jcWpGXfTfuo3bT7tO0T1EzHYW3O3Rd2GPAsXdlQWHobbfKjVdn2ai/5u2meblhtPKrD7HVBt2EOCamQJgoOlegaYCmM5Olpw7ZcDgIV4B94mzR69IHyAmVDvnVUNvIaPzE9dxLLkJ0ePsuyKUJTz0okFoct2Ybefcx/DhjLeczajD4TW2Fe2RuwVj8gKHdnW5eLujL2k5x4iTQwafGj38ai8rQKxKOeETPPY03LjZCfoIc7FSTF+tJPs1A4P2zupaM7ClOCphAAfrJkXkxKX5eetnezV+WEn9TDcjQ7e78pApsSXY2vg66uNnWf2pTKr7JW913MTB8ZgsWueXhmTfnUuSSlxJ/NIhusAZTM5+Pwb/dndghR2Nwz6SS3pwGrP0TBl689ojodqwcUJbhFQcTXuENf5eZK99i3E4DlclZxQm7UkDOO7qIHWUoLePjSDUnd9mt6v9RnhJW9CqAiCB/oex6MAvz9Q8uyJw4R43Sga1rWh6VoZBSg0hWQPHnRcvvBHuhRgj92Shc+N0ZPnEqdTB5pyTOdVdCcxBnnDyT7+151ArbrbDblZ2LdwRu8cL71Qb4RKqS8re0Gn5BXoXl6d6RQIqXJUibOYpEDOyPkxLbSnZeNeye19ioCKa8xT5dSHMtut9/gPYQ1v64ZtHwJQNSKgobJ+tk1Fk7UBeAjyIoZUZSa1+SxblWHZ43gcrf3DoHT1n/JgMWPa3XOE9TEUgFpgZAwph6CJnPXvOjwwPp8hQZdadOqy4NXs2zKAWey18YXFvNDhOIF/eDm9/0gcE+y8diekL2MC8pglDKbm8Ym08uyYPKd4McKBy9p19qidVxz7BNrrsnyJDmGZPpluA5snfH5P/tdEAY7uS1JK/YaZpIUoWaNspMeLSEQG6H8lCb3gveQxSBBA8uZ61VFxrp9DvK5QtjP2NIhj0kpLWDZ5u5+K9PpYibXVR9uu7CBx1nMB9O04GSnHB/dg6NslqhFQivQ+pqouwbZM9UbTNCznuaVrgj/s0fFmwA81bHslP8aUPKUZ1cDzdJTdJaNdHTd/zEeRajEoNL5RyE6STjPOfO0nGXaBVwDWTFWth4KPQoyVxstct8xemF/ggCSyrk/J1FfhAhRFIhO8+fqzxUNDu1b5joQivZ4AdHBfkRPj+t24jkj3JdTmb+vYuT0Zpg5A5evOPD2ZGARB5eSsr+TZeavDgwcnmcKYNtqUaPnbEK0gTdM1bOFhJ/dgwI8opHBO87MBOvvDkN2BTizJ2YPd94K6q0qSbj3CqtK3rB86WLDfesFYivsnHaSP6LPzUygNuPvtqK7pVjfplum61gQFwaPFZTIP66sTzPNnvwkcjdLhKt9bkTOv+sR5xYoAyZnfs8J3mBqUYTVFhGWk4PC4k8mD8w2jOWp+6h9OU59LDOSLj1URdNHYZjqDYOjt13Nzw+wPnACdfm/Gztc4UbiGyfo6U2QN32KmPErsQgGJv1E5HfupE+5nPYdugLm82cmB/qwmrMiJG+ro3Wl48LAsJqboHIoOkipIE+RNE1n7JhxQ87AOybppq85us6+EbKuXtBCFszOuYjwZuOc8RR4pTxQP3yM0TUSNz10GeUw9xGN/PuQ7wKt65BJFLe3Mod540EnIP9P2YFruOH/VXtgsTD9tFGgdk6bSfvuXbTI1uAKNBapWwe3skAhc1D+9raLpmDQDdcUs1FoQcIyerO1xnaayaUsCsBRDzhmkB4gWOuncQswX0CysOwXcUHbvL4EBR/xEsAfqozUzbKHjEMRHUa80jXr5GEUZ8VfTpqo9peWki3vOzQELuB2e3x8kakeP1oMAommkl2PI4w6bXiskKYEDbTcQ/Nptb60SY6OJOehEMYbLNDQSXUcLk4na3iR/WM4mRxg2ZtU4zz7BJX2urOVlSTa0fBUgUfCU5ncpENs1wTWHGJDIdBHIOU3U1qA1Pv2lNGmSMt+/a5K6hdrlXTKMdD6sBnU9JOkH5jOJJr6nM68NHj4BpZ0LP38SEdtAYSJLeHNDTeDOoj+QAjwFHhWb9hICi8Czg6AAgkQnHYWflt7CeRIyqK3aSW7R8FsAHHaWe37hBuwXI27Pnxs/zZRjMVcdGyBt3cHsAcOEvAGybWu5K561f4LRib+VLWTcELA2oixArbgD0nMJAJvWMTk7gmpnKdA1QYE5D88juxy44EjKFRXzbkTb8hys/FbA5kGoVlbJm9LQrKLlyaZzMObIs9wDhOIMW3RsesuFF3Q3HB42aCD2teXNhI9CMd/EbEZP8ku19qOBv//MgpHw6ia4XdduY6ASm9RpRt1BTv3zQC94zh4Fvit39P9p7RAgpjoEnx2jB6xQo0M6+XdbDtlayJGDKOYMLxRXv4RW32+LQvDnBoH24V/3fZhJu3hGqUfozuS5vXJ4/M5jXSa3lwSLyxB736cWcbpZVCDCoFllfB4oehOHfIoyTC4x/Gp8Dl9jiBeatgWsEHRUVu8E1MC6pL0PnNfhU2ku5n7MOfIK2IZUYKpPZbi92BQQ+JbTlHkQVxSyCYxVBwybmGbP022lEF6+/rbFr/nGUbIkUUirXEMuuO9hihY2CgPszJbyJM20W2Fdx/5NNPv3joU4VTcHNB09TfAEc33Js3LPTyhriolxSsIzxXzKrJKfVpd4f+jDtWgz0jRa9OjSGvYil5V3zg8vHhIv9hVOePL2yrluQ/zX23XrCsP2Iv4ZClbX8/TeIO2Xqxi2QApkjglX9M+glGncutO4fSXxXNPxA8CrbbNXbRjh8SQkybCUdNoMgPIsfdGXWlWkUs7EULASxRusXq9M2UVBbwmORu9v2re6Jg01mgWSbIuzU2blNc2/oMhgPN0l9HJOP82xk8vdjCN+efpkEpkExUjr5O9FMr2wMs58EBA8WfLWzbE+9OeJxrvAY8k3HbzLlFarqU3fBL4Ro83NKAodHSk1KEbPrh7/L0I7CzJOqAzCcOCM6likoLhYm6ozFRJx5rV+AxqvEf3nc5s01GGB8sx47/vBcEHss8zQbdkRmUD3YpuzY8pIxMjhhWzjFPPzJTATMJx20buDoHTqYlSC5x/nkTiXUgXa7BUEOlncb9ypDYJEQHXdHInO4LQ89NIzF+39xsgwKdBMAHA4fk/2lASpfiFM1+U0cNoXQaEDyCrHlDy1gI61Q6U4QC5h7IdigQmmNJ8hnZLUF6sDvp+bx89VgW3FVDd5dFHsvOPtsc1Vz4zwyorvyHcEoT1RDanWzgIWRl86BosQ8YZN1Q8bxpZ8NPo8Da13iy57N8WVZupopyLGJDlOHhy7kRfbP/xSaBq5QJf09YNxTunsG0eGLZsXjGIjnnboBffA6eQdZAlwL70U2S64oAEclplx57Yq78LUvkSOY6mx6qtKDzDilJcwvps4W1bpquMOVFknPZseMoTmOqovXDPIGnK4yzhfFRIGtvnttJD2FCLu/MbyUqlxzDAi8JXjsNklgoclKdcq86xy0ke/fuThm3KfIclB5tk7ojICUdK9a20AuDj37eGFdrRWwZj5AO2JRIzhGip551+ljV393oDnHGeMW507GReoDKupKU5VzjBMMcLnYaAOhRq0KFI/cP5727+WT1J0zYAWKWIBrxeZ3kSWSQ7jQdoqrehp6AAbElTd5HOxmjSp2tIL8yLfYrkpdIcAQiwWhWWm6moBFx1+YpHFGzUNbXYzuO7k1YDNlN8i8Iuo2FJH/EtDV4bYAn8OQuItsNEE2BxO4foziaBoJec6p3HSNWiRC3rhc0oNNh2HfDlSYCGFUjGEBOY22AqixaqOEs/Qx1eLyP8y/qSOluy64KgbUKffgFv6x6Xl8jCYb9RVyy5xO+UVk4l0jfTxHZbzDbmrKl2gxbcP3hRlG/rfAdssXRjmM07pu/hdlrhbF37s5X1RAZJnEtvy9GhnnrKjHEaripAyeq8DY48TXahlBhZtv0s/HsFtTcVLkkGPMtnIDLCdNXgskbKDV4Sd20kDMyItdd3CTlOezjy5Z3+AWXHERrfcK8uVkGpxxqeaW0o9Z6oLMXPFPECt9LT8YZuCKdxYUIJZ/39I1eHA1a10KQ5TCnsHnMqVOEOFSJsvK+o5Wan4r3yKHjeaveF3UXF5dm9CXKA0b9QZIi9sr4M6EApWgyYJ1nnOx1c96bHvrKCKygdxXfdW7VtD7AXEjGc1pTgzLMKs22KMZuQX7d9p+uQzHTDGx8evTkbCVZLrqylM/oezsiDb6io7Jo5M5SY8wggom0fciojXfdez35f/ejBfbYukO+RUd2pXNUp2MGcOprs9bzAYbxrxhAbs02EgEJQkeq7170HG0pLYuD3SngiTZGxtVQBEQEIVi9/LjN+jT/B/278A9/Z/o52+Oqy1vYtA1p2ZVsj3iQH4flUjOaxSZrL2KyynDiUDOUAsUB7DewiZe1fDRsxoHi4gdnnajHWWe9J1Y41pbYPPGl5+obthqeCkfGI/etQPSScRot4K+TNpwxhZPzqzhbv/MsoDjB0S8EZEqfDW2Xm/5NoETU3yDRJ76L/qRH5ck7Hz1I/VmnBEMVuSnBR5282h5vGX2AaPKpzVHQ9cjt0UJ+iB2wHtbddhHfOCCYBc+QcigDduN+t+KmuOyZIe72FUonorGkTv1asKI3xXz4Ohcr4hgqMin9d9OxXfu2zzVD7DarL0nzUKERey0gIe0kuW7o4jGaZw5wf6evVqBHzfp5y4MXScnl01A+Qz6c3qFu3n1Y1Jaoh8y2yKiJkGcmLZGuPaQnBnG9JnhsyxzLIwSei3d+PcPJqeiO8I50VlIPzrnI9f8ueZLKiVJ1MBuaHLk074If5/s01VQI9TqzD6APSI4EcyRMgUOuiVmTvVXdrvZh93lDxFad2GEzQLAomMp4inMjjoHWkXlP0/L3CcoiKx1E1ZK7FZ9VHhTZVon+vj7g8cmyHynXsRwr2laPAUF/REByt9gYlqDuoxKyZtMw6txWhxHA3E1EciqA9ex/GoIQdZymAFOV9XhSdacirhmuJBadVcXedEq5QMWEZmF0fOqqJWanf7IfAbOWLHZ6cgaGn576Mghqpc24rTcpD3oPJltSI7pX2JIPo7QTihc/6qA+pl03SGaek/O0AwlIVwnTQ7P9ccVPlvYZNoBvsr8j7nsBJxZP/XhR0LnFw4g9FBPxq/hZvaDxm4n7gWvXGCshvF+2+UJlftby4k/sB1K2gq933NVczFD39uEFVUeYFyg4xZlSUhOsAvxbLwdJS9005da4TVTb4c6YobT4z8cZz71i5wM8r2RRhaHqKITtbcjifaEkAXd5YFc0HmoBFzp/F4NUBp7hNA1ReuugNWrHgmVb4hzZ5oWUZ9QVh9n+QQxVxDLa8+kJf5nIXM7sIwvF8GMH7EIyk6Ku4Ot5RWQptWiHMdjv1F3MJ+GgrfZ7ZTkiqW2R3ndgSLa/4Dk60Wc9s16VAwMiDCB89hBdt/krl0vSW4Rb6lecd26mDTPIGpn5OoAr+DdwDwdHnvr2LUu+i0A+IgZGWURup76RkuM9t7vJNZa4UVzMQgxqb/cEcZY+68atY0But7nvKCKgTv3zzA6qbYv9FBU1DghFGYs3c2xWz6gDN0e8vPtWzj4ZySjEcn0KBz+W6H23rgp3m7JXETZmR+24vlISIXcf7b5o5xLReJzq3lhaapIg3CTzRYkJDODKqoIs5axg3h21JHq06uBBak16ck4HTpb3M21QpHfqP3g9Ky5KjJgiP26c0gyJhs8FGInUuqyuKhC26A/6ccpg9Fop0ZMYx45/F+5uWS7uYRLeyYI/LyVezVlvCfL4WdVVQ5aB2ZGsKQRNHS2O+n8xxsVT6PBmUiA0XGv++6u//GSSQCBWnbEpL1SRz10iRv9zF4+emQ4EbptyXwP9ztnCUYpxCHrw30JF309FNRq2RJy8gBvOKe+WstPDmP/51iIjvdYp/2CwhOOKicTvfy7F3u+DzwWzy+P4dTxidG2zYet/MdRvXd6Yyk0bXmJvhyXPdd8NxSkakErrLhNpETjMV4LeF/ZhnG5xIaiN28iDLm4E7BLtsfkI/I9NUBvG227WrxWn3Ec0RPOjNdz9IVMAVJG5i3I75Lp2J9zHJK5eK3iAUEcYJrgyWzoWt85h7IevSzWbxP+dVv7FqShYSQfnpC/7cqhWCkcN2nF+dSmchIZ1A1R/98Bg0zIuT2VdqV1VDmBvJGWGUdxTSYtVt1pgkuh1zPNPxh70lpDyP77WV0V7WcHYb9tMP9ZWmF4vSZLQ+xlNfubOn2lJt0uCy99F5zdZPmRktasZ1aFPO10W9fzrsw2DKTikHuDQtlAjIEiP/yn4fSlTbRq3NhCmMnD5zTvQH4Oo2NbaB7GhuA4X2pAyFQgvqkTHQExa8fgu1EgfaShg5BKvcQfQo26vGJafa9zR/yDUFFIighpssK8aKYJmgk8IosdfU72NzhmYYbjTYt4FjKAKAwxLFwUSaWs5PIFaAI4cjyO3FbJTK71QK/HUaLbTJa0lHbbO8jMeHX6lW8+EAUrIyS0MZ4J8a55foDnmt+17aw+sDkP3uzBrsBiO0oEiE2S3fAvmYv3rIUFOy72iimW7alv/UfbuVvVHHVB/fSTjTwfaiKSSABAyjdovC7yKHcSJbX8N3svvS48dvSyCOFjWW5Y9TNununkIRSj4EwVORM4s1MUoiddmQ0zLVPEpFwv0t89hYbESpAXGtJamcoO74TM1BMaZ358p7hcxiOSLt/HG5zeDdlWK4fBTsRO4umNLXK6o/EcdMHhUMXSUAKK7ncoKjlVm7nv7A5+62+Y52mGt99RgrNtWjCenZ+H+0ITTNjm0Ppk4fnMZ6MQnINLX2yQQzRiUNwtWWuFvdBztI6defSSI946ZffiN4M/RBo0z7GJ1UGoSu5/GZMyxV6hJl/PgwRyGIUKPWmtK2Vm6tGHPc639v2f8DAymJdvS9bh35pKub2QrrVJ1ATadba/l9/X9yyIxNPOWyKbiAaoe9e3jXHpw6nK6NGM6oIHL9OvngtGKHmrL5gga86oaPVhkXKzglzcIjYvRuFHz5Or0tRGdERtU1NKkS309jxEh8IduPfPjJnr7PEOjth+7Te7niqaUIOYvHmLKxEeu7A7/i2+j8JsirMr8nTnw/SF6i2Q0erxc9N7foRpDqcRWoeJ3MeWTxc0nwpE6TZmn8Z7G4fyxNRbzRB3xRh+gk8yryQL3viJOE+h0kdmhRQRxj1+menp2bOb01jjnEZw1iYQiQ3puu0B+PfUHpzTGqt7UzjcNBlOY9NiwmU78/kbXW5lviVIh8IieYQnsLVJinioTkTfnwY5oyTu37aIdDvOqWOYvpsbFVhJZJh4taUvGJIKE7k3AI/hejSGnqGILD3GBCGlFg4r4wuAtVXB0umN9Ee6fVN1iXtrCZOHOinQvy26dx2UCqINtg6x8GbKf/UWTt3lkJORupEA8NmTifM3dbAHQCdRJinJEPGvbSUZt83vAEAS3C6exd/YC0ZPJF9wAFl2O20IIiGT4Temp4NzIYUoR9dlSF0hwWt2/ZvatmJ+0VgkHfAI9yubCEqIAbsEYS48C6ynrD7qdBEAjg1w4MXQWNcgbHUx7VGZqByE7UNLIfxyNcCcChqeBzW6uTVf3wYqw2wX/ZSmNkHZ7X3yIn4RmCuoYbQiVEYcr6eyxJecAu8CXgYo805ZCOzfynmJoxmeFyB0Wabic24Q/AlCLphQZtWuL0Q1oyMNDodh3FbNJNatw+AmmzNlW0j0VptuKww/qdRbNeJVTjIbAP1ub2zHQLrpoeMPcBJPfZXtt2R68kvX+jDdfLVX6Al3QRX9YzC+dIbeOqbCqex8rwWgZosbwhmzk/qui9eKA5XOk08O7JSYvS6p1KZZDfiXXTkqiKiWTH4Yh8sUD50CeQlIRc8hsPjEuFqlVNRA02GXmH7jkp/WXHX7WDapjv01MYME30MreUyKBVm5n7XD0yazOF8btUv8HBFdcQrvw1uMtcZrXtIt9BIdwvsnOTviXYy53k2CRejM5St02EiMhvwmPnpwOlfjkFX1hohjLf2v/mYmNwKvln1aLKE0+Ma6Q8UihRsnwrVzrB5co5v0LWL2nvHtBG8rJlWhQMpfijSAqxmUuF1d+zU3zzkfhejf8Jd0NNopqIeaRRrdVogK0XMAmYnQawy0fPwJPLPHao8dwkqkrkh+wn0nSABFEUXGhXBhfEM72ZxpVcr675z8PrQgKeDjvGkjwps4H0l9SSGm4XqDJJerkI28me3/8R8iq9raeEX9tKlfL3LBKqE+UyhjO+lcK5QjWxoTdwvpAAIqh1UwQZfYHzP/JoySPh+YkYrrMvxC2qnidtRNxJwVc+ILtT/5UO2d8iRqynqBQVD7UgP1uCZZnZJ4XnrFlaf5fykBOvXDrrBpyCjAtPAjqxNl+Xw9Y1/lAdzc+c3k9qPn+qAptd2dTxf/iZ95mSaL2z044r71SrwO40ZpXIlf++w6q8hHHLj51P1DnqJBoT0AuedzyK6o1GplmKKASkF6Rz3jedvexmQjJvBj2aqtzEg7wSxkAXBCtMdzUo9E96IMrs0BJZuS/cnxNsJ+s9DsIvSA6LmMsTec/4wazG9X/njCo1ktb94hDvJIy2NJFi5bcFb/+UTv1eBJqmHh6zL6IME4J9keY3f99EkfY7JDups9AX36on3n3pE9n0WMU/ersqBFjIH18r8U1LSd3p6uA8jpXniSpvHtpLFPz6nAHYTJZsWiHmQ72KDrRcdlXrq7yYpHuLspDWI4/naTDp+CfuMy8zGrQfN4zNmtfXapCAH8oUk67gqQi9NCZTRYZITHwbZvdy5BLf58KgbkopyrqzOzEZdEm8q6chHgu7HQe84aCTV10xStJTTNIjBIJcK+nVNfsIHfKlMstQ1IHzuIhHA0+M48gjSvWwwB5p4A7SbAjZZor6FTVI/2U21+Har9MJ6Mj1mxwXeBC0gcnVQeuK57bw7fQZAFEgLCAeSHUI4c4fCUzhZCzi/TT96u/ufx2dqHeeQj0w5fveJQHNAQa1WEMmg5xPELbEhrM6laBTIGY6eoUlRvQn6ZZROC3LP7Mr2krsPBi2/3zZv70Ay7tGJ5NTafYYyBM0aB0nFQWWfhyRs/QbKWP6xYFLkCRutFodgP/ne6igm3at/1IJbV7zh1yVykC8QgcxSaJjeryZUo6PdA3ra/XRZ/iumq7PrWrs6FIlyA/KxS++cBu2GwOINshENg5ealQZg4OGxVmeitJ9eo0RU+mJWfv7u/y2NgIFoFhvJLSNsG/UvH44RjgudxisWQ/AiRgw5QJbbBmskSI55TNEv2lhBHffMNc1r0w/DUfV0bEE6930lpH606avbQXupzdhUcvrAgvfnNoPnpBFNN3Ft9T9r320QHAhZb4fdOGzdTFog+QFnjNX+r7P8QdrJbCMi6EhDZzTJXUNOq5MWAjbxUowETRq0iQkcH+6MBKRQa2Znzven9RZ27vTejqVMKmHKxJ92UUSwgZK/wmhTwWcOAwaNijSaY3PLyvIfWJpVtBwgTaHqt4szXOZ70LuncE6DkwjvjONUr2TJSRfpF7zQU6fnQGZSCLA7F2DHy1QsoBJMntzbhCeQlkmMjrxjZNyOKqtmMLpuNf9/hS4NT9hiiEYKblcDoMn8fYzBKZQAGUBJ7t1J42x9HsPFwEJIFAe/qS2vS47rPujvRXy7sfTvmEA2Fu7DXTZZlB0VZyjpyI82koiBb5wjzpzQOhauym09PantPqqRdjdyMY8CS2XYnznUnHtDF9TzCC01QIl/KtcpzKr+g+P34sCK1+i0/2UUFp466P9cJ/Gw0XZhycmdFd8C9EKfHPbbj5THhy6SQ+Ef1v0sC4OUweRZQ95gY9j6Eaqn7Y60vmONuUEVjcAQ+ihEzAV9qXtlG2VJPCg4VzP0BAIRDiO/n1WZ9n2NgnjbyEPLBaZoKHz7oHOHuCn5tGSNeiP7mZJA99aCQMRvVdlBDpOsaOibUm0xWDhZ4sSwtQljFleBePSBMVW47qjWUDpLV3ngn4ddFBtZK2Y5DGqC4h3afKZIgj+A0kEP23Ya0ISvdOwT7CwmeQ2sZk6fvRVdBIsBK1k8jStjVtY4FkqZyvNgz7OqMGN2VgpCB0E5UT8cCW+JPIZXxcg9nETb41J49rZlw/vvuwwoTKOETpDtXSAVZNVjjo61uBtaxw1OvOZ5Zdkq6sAR0+MJKSytSU3bl+rRfjDk8meMdvjua2VEmUjFeUrKZ6Xug7GH6u1djE3hj34AvXsPRGAIsIq2tSxG4UaDFzFiwblUeJwGm3NblL/ow63et51NVFFGtavCuvzY6G4T9zUZnO3tv+nW8XxjPaKsqXxfemr2A4Qr3hqmEXxx4VsCl+wR7+htK33nL+Cc78evOfmueIPcPp5YDc3sj3cs7WDmx6+ceCF2dsQzkU5lK2BYo7UzwEYHaxCPnqHhQiPZp76EcC+e/ycvk4AA9pyb+jai42DMuiaJiMInPSclgd4GALjByWo8T7tC1hrt/ckzrU1CWx1rcTmITJmbIsCJH2g+igew9Dyzy7R2an6r+bj04UWc7tDgGinSOAkv/ukKkIdjkVhOs8QDnhUPGEpy2wh3K0dIMUe5osAU8fBgbJRNanit13KH+qqjjXl8+4ZXm8ZNXW639IzkW9b9PmcMzCqtmUWFrjJvZnpuhVpdIX3GcOkg95+iy1O/KofhElkFzHlxcmodqIqsnvFQkG1mt1y45GIHYrnFHVWceCRCPGEayF3LwF9uImEfIQXQS1ZizbxMB4parrO1fL7HipM4dTRX23837dStKqB6qFAhLIJXk3Ja+wd+DsHO8Ikp/CLMgsu9qBNzn4XYFYh9DNLvBmdgGK8A8p/cZlRZlOLad4V8fHtlzSEzgHbrUhM8QdNAb6YZ34A/PQbbQ6tFyZzEH4KySm46IveAp3Vt1yLOTv2qUyqmm+pjvmRmH3bUaF2cKaQLmj3TkXMV5hf2rAxE5Puu04y9SLBXpwzMWc4mQwATSDVUQ2x1xcl2MEUZysOo7akJ345btrsPKF8HoXzlw/xgtnPYpjbbLFK+WIyQ5oH11j51ZJ8RQEHXBfSPENJffnoR0ukwTVMUFVbv0LpxE2UzBxqVhSjxSot666rsMTx88ltLTkHrSYujFFIdLMKPzHMcO1ASHtsXxfMVjtJUZJaJJtcS5GYhJ9rRDZk4gGp+1ZRid8Fr21jp7+nbHCWHEZ7drD9Uwt998bdMZzsQmVgyRzKv7sHW4rMdYst2LEZC524Js6UsAgT35w298JyOw9aJuEvkNHt2Bg1Su2zCY69G3rDluiUp0UonOlrD9jQLxgdhdceFSnoFAuoxJjQEOpMl3XYm2G1IdgwIkrMZOWxzNRwWENe5Lt6RAExeaa0PjZdKC/v5DM+4YW4OCBkmRvi52WLGoJ/830/mF2c/FnjGB2s+OiB1kKr9qor8e+9fCfTeJFNVLW+XvMR+3R43xqDmkzrCtULgjPUXkdaX6k1Q9tiC+fKqf4OBAzd0HmWNu5GbKDAG905tEaEvEzardWFL2nMUqilQM6PRvPiH+ggB65Zub+GDKhKmodiKICg8RaJyPOPt11ioejZVcS5lJ1fZ/Wrz9/yX40pW9aEVvrqab62dNubtf0AqLkWd398XKgH0aZy2bW/TvdzlElxFI8UkIe2zn7124qVF8NTl6ZYlPt5P8CmYhnQKw06PKAWV94jB8znHKoZ7IT/EkT73WK/yOvV5Xb1g1QkIBYznBiaaNKoZHd24v59nTnl42LuL/EMJsGgTgR8yQEFdPoI1uh/ux1mC9yUZXw2U1SKeQowKqrW4h7iSxnlG4vepFmj92dZ4UoADrOQ0U+tB3b34KEoexphmoYu2LKRznt1WXvFvpe9JGrmyvphF7utGdYwshVG8JhvgNZhpz6Z5e2qL30xemf4thbo82+Tm1TbL9FrZYVaf+fjKJr+b0v1dHwCVwabcGgzAF04e2e+9HNETLXd7goOtd8ZLZuFIZ/f8DXy6hQWQzfuu6XRTRBTJEEf0tCaOU6Yv3b/YMAcbY5PWZ+A++KylGLN6rgXlpSMtlfcGo/Kn64Oqv1PKp6XuhIYPAbgRavKBEhAvoDU8ul+KhoVD3PnarA9/tzKfiETJVhS29Y6+fmPWwVlGXPG3IXG5xnlcsqUS1eXqprf3USSyycEyoUV+stZypj8QbZaLrM5IJHXetKU7l+t0XadqaWAkXDoqJ57JRrhgeKqA84A8NTLMBH2vQN4nYgQBzTBhefAvXypTPpIaAxxS8bUrC+JRj8qQm+SC/UUDVjz64YQz1AJ+0oFxSnJEyqLxzu9pl8+my3lNYoZnuVTaUgPwNZ8HwJAOhh9voxpATds+k2okF6+33D3C7ju69nQTsnVK0GQOKpnv1cesnRNmdWt2pHCXxtzbOpBxUBmT4UotJGYwPZT/EuXfQiZJ/pRhtl1tL7GFVx9+JjkssEkooQBnGxiJ36AY8s8b7nPOp3hS5T1zEaBHNWrGtJm5g6WuJJiBPO2LUD2Z3E+xjVc5unjPLWTPZ56yOpf9uLzCB23gkGUBIc+UzT3VH1uCD9sENlP+NYRC1D5b7Ei53lt0UaJSpKZa27pRuzZsKUdKiwEu76sfqryOaswtJV9Vvn4HqSxbOsCNG1tUcXAKt1F1EODCLoTCqrElo653OMAmlYZgV3g6ovmMlQeHwHfnJ5ia0xHZX26Z/gN/97LcnPax11PwOrAgKVvypDZ5Frp6IL0pPkVdM+BVflay7hO4pU4Yb423VnAR1V+3KBsnSHn5eXFl1DlEL7+f6oBaTtA4PeP7Lsox7fLKxFviEkxZk9QH4JxYpyXRa+l3U7RcyTLk1yWUKCvZR54DHq2SuaeMlxx4USQwVpEURM3wX3VwkqHKd7zCh8zSl6xBk7UD9p4yLCGjof1VDJMtrc4/OX2skWboEWi66SLPBIw13nrjcn8Aic50xlzd3Crh9mu0gadYmY4/QkDp7/3UdAyZ1ckEQ7T11/Z3jVcdSYLJzELdlYbWS85siFk5YSd7XginjemUXM1J5TSiqRqKFdPY7tMdwnkGgWzytmztPKYYxOePmEqXrlHLTWpnf4jpqmS1lpzFzteyI51qgHtVvViwslkhK3+QL1gZvxLCRyUomQMWXb7Pd+oJPoUbKFGSWdOj9pzMi/cCiSIHOjey1CqqAlSpGL8GqQN3+ziYfrAF6xu8Wz5ItLv5nJzPlU5EMYyRE8ImlFflHYYTbsQiHRd9nrwxfL153Vr8vpmqWubpoJSJhguTAXx3tGRC8N/fGyymtBR5IZV/Y31efQNZysOQSAhUPQbz/9DqkC/pXWT20HBmsZOlzShMXOMzYWAwUw+rngYntxyiltRoOEcCXXEG0JpTRvrDOEXkTzqP1jtAHAymezqNdFGJXbrZdYv5ET+Hwqa3+8MbbFfXzDLYC9kbZDPCS/GkHHZd669rgXqb5Dg16yo8Eea7zETelky/rbQRFNQjtGFCllebeYOSBh28LyMnodc0TzFcsE98Sh0OFkNoasbGefKX2Jg3PveXz1kPwxOSpRKPvYUJXC0vjMEsSXN0BWlj95r7VsYnR3sa2p2ZkrzMig4VyzOB9XXSCKBQyKVCAv/SHuG8HaM9TEuteyR6HcTZgoMMy6O+NFinkZrw00yqB74hlivud3tofqexmzTlSCPbwslefx7wZJmYm9e2LOJxVgiPfhU77XDbPhBRK7nbo83nbEfhIKtsDt3hKhchEqAOTPyk7vkUrGouUdJlAm5IFawxNBs4tAIE10tMrykf8UsImY6mKzSrdDQ30ANrorJ3GGRG58FfOKB8RBASwGUf3Yfm03rm6ivrM8E5lJuG03Z0rzS7pg+JCQYnvIj3GKGCTKiS5lV1S22gF5q+eltP8LWk/wyR6GYdk7H2cVktAdgQgfp5OqBFkQVxOPPnf+PLCQjDJZ0mVXwvsxC+o4FMZkAmDa7ovwVkcaiZ6uipWxjDRQv+9XpnIgkz7YhwfYl8W4EpSvclRsCnQ/wefcI0riFXJec4d1xUDO2m285fnFIHqV1WNmbGUS44f/LgPjtN+wwu1RCTM34BtkGcTBhU3zI1dVljj0qQCDe1PXBiJwsv1VsYGUGVJJWgpxKWCKtyCXYvlxN8Gq0/3R2YOAjEEdXOJTThUKsCD+gPv0AQclTNHfcuO/bXGDix9T70mMP7mnGMrbFgFXeTdILSAidCRpMYjdhz+QqGAZy5iMGlcNi/2qLZxcihDND9kPm1J5hO/gdFjB5m4IcfquhO9qsjRz/IYehNIFSo7B6AqoYi7Po/VCDqfkA8Av/T3eIclncRrL9s4t8uBM6IAn/vQSOueZjBGdkVMcyWlp5EKR0U503JrYdaSdtPDkm96i93I4yyZQQhPxwDz0bEffVbKcdiaVFA+BujyyvtzPoWdrV2EFK87oDZOanNeHMMWB993amlMdB7g/C/zz771KQZEoCnMMhPslyCqdPJDzKETL/gYIyaeqBo15KeEum3uEuC7piBWZcvUzguJ2nEpGCRKRH0BGHa8ACICSRiUUkGf4RDtqHqyOfY6oK2pXW3/alyfM4wIUDCielJusCTo4Dh2rlYhOy/QwJOEC+z6AkqlpyIKQkmA8p2kFTBvnGYn/esoxiJSHyZ1fMs4FJVKL6UJTKStFf3wXFGgjfOcCL5VxFBuZv1EgrTTlT/22ckdEJFOV9xpiPLgBXmM/+tXygHjIF9iW5heqgfvTDHKsO//QTy0k54IEiw+UtKdo9i4i9BZIPj00V28jpbftTz4VraEheJahTJXp+V+q/ZJeXolzrB6fhnP6oHzZJWNpK0eMGArm4zwb/ThiAknp/a+ZYbatY+MPYIOXHQCFcs64xyh1FBOFPRejYBq3S4Jdokxfg8GnlIwT5aE+lE8wFxdc0QBIUAOlMiSqmQDTcSYI80qU9/tH5s/NWeI7hcP/j16ghsyiUhvTTOTyEnfHCTdlVjZlfKZne/59y1NY2cwPfSAcz4RsvftF+9ekZZhDfkjIJjcxWxzTF9U8O9xcYiOw652sbx3LvaOHdgQVH1VDHZGQ8hg1Hgt/c9IRWXqIX2WcLKbjwnQXb+PH04+uWlR/3/T8kW4Xnab5bQ4duXJnVBuUS9uRtrj50F2eRCS9Zxh7zZZMIh7pUblG98VlUAig9K8OJr4Tf7M0mK2QuMq2bESaidOkfpba/D+IZU4Zj/YutWORJnL0Z+v4c//zaj3EjM6wIWcytsi2AqfZidyBBgDXilQe6xm4MHmsxWfJL3f428y7MoITcR8rOvRz+ApykcN0UFY/Og2XkgP3tLroGFoyjF/xzo/Vh4AKOQ6Rl947nVRV4mMNgUgCUVwEIuA8oNi1zkv5/LtXYGALDyZhyg2+KVv9/i70JuBhbSO/deiB5jrV7iJwUxAKfrUsrRTUWJ202foxN+vxJZqSBXFlLuUoDD44q6DDXa5VUmBdNGSqoZvctAoW/NqsNHIW3bzHO945N5tP5K0Ui4025ulnZqUTwGMMEDAwBoXchVuwpxs2a5dXQLuntbyhvtOeE/XOumA/T0PubaRlr7cvpd/Am1RWqoIIc/pyioPlOCMycXSRSkww8ay7i52uQqL8cjFAA+r+sWfh7KOwRAl684Si20H2GWNbxLvbJBaKoXaZ4I7HHRCXuV2PFgHZOPTunTlE8jz5vkaN4/PsTMIdixsqz9g+wuyAXMRFV1JOa07/EthZakn25pk523Wh8A75r80IG6mptmHa6KMexflKfHuW9cCs4a2uvPhMFa3nBoenbMQemDgltZha2tTeMi8qLI5g+VxAniSDQc4x9ofdOYg4xx0anYewg+XJKvMfMVIGeLujcfdw6vkyuKDsrGTkd/Y36Bv5Jh/e+xuXurN/VIRGwVvrAx+DDdkthBx8Crtj6Dyd4Gs6/HvTLhSTEf5XkEfaFnp3DT+3t2Z6rffxMnfsYWu1U2SnQT0dFo/gIDaExJvFUO920644o9Hs5Rp4s/qzIxhcczF4OjkadlLwZKfP7rL6Avpt48ZfSBjoT17FJxPoGrVWYLqka9jCY9eGGYHmFYIDSGyTxw/zbCgHvFC4XKDyMzELhC6iH13ECIxjIwckd5Pg/rfw/bDjlT2D+HoXNjAiK4s6y7qtcwCiPPZx9tb3sgIx/Enu/qeJJNromhas/s/fZzwu32z7m6RaL2wF0p4PgwIcnZQAzm3atShdGgU0sdCUCo941fhRxPmsgItnhXi914ucZ0a0R9bxoQ4tC7PROlG6/J7vL9QdZ2p3EXRBFKXYBqU6OHLANUj2qrHm8BBLDK9pcMUczRToUoU0gbuKeIhyJrOEj85D6CndokEsRlcCdg7KApZwvs8h7gKRFIQ469YV3iSIFnofa73BjlLQelwIPirR15ANcJfURGA/KcU8Y03LJSgxnN8aLUfgKvWOyYdoAZSeyElHpBC04y2za8195v+lSK0hBOVUVBVT6zB1R0fQTwrC3QMxi3smQWYngJq8mIpF/fCsyPFOOpc4/E9xIp6bx5Ra8ZIBosBW1rU/tZsfqJjLuIBXvyjW2tl16L8Ya7nReomQN2sQHtXwBS5YE0Rqap7RL7OC5MQ7reH17jM1VC4mr14R+eQ4AzT91U9ZvcVLZ44BGNJCgUM/InmomWqbMp+JeT5AjoEV91w/6eoJiLqnbGt3M51qhgL/MJhbFDkWQXlamA4IfO/2DMv1t6nCT1rM83sJmfTqFKof8YdlT52UEezhFhX/komZYyLakupWsjhevVtEcmnkQknGvqfG1BNcbau5tdmYhfYGfxRn/+sDm3FV4a3kCoQFNmMstoGla7S4fiGStQnN4Iw0l4Gux+Nz/uMv8j4GtCDoFJn2fjbgAQngdPSyjTOWHxzBdZcyCwuzJdZZ5kq3jttYrRM8JGMrQgFQtnxSs1/WSs/cHQg8RsXugYKrAEXAegiPSWcvQVd/qplrnDEEjKA2JQ9Gnw4Xm00q6JtDiwWQF9RbLIOm1zpHnyRFRkSKy9tQTyfCyijiFve8R+nNvsOPRywzqxs02k3shClc28AXAKowepJMXakEI9PhA/Kxl+qfNfsOABgNXYU716hhtqbEsoVytU88bunNBDSSJPcFytiUeHvrGqzd5ZTE+smpzc6Kyhw34ztV4jMAFtqXH+EhanZM9dHQvOkWXAPlWXFUlS+EJaEcMu/0eu3K4H2dTwmIvaTe+Nj6mIs9GZA3MQBHFNZwf1cECsxIq2rDbQS025NJvy7fQFAfUnfkpAaI68Jj1Bq4leRQWiMJH35wnf1ulyLrkKOdnRSEWtuh5Sgx7KJVNwQUyfQELIxkugGI+iB2kBZcrdNt95ETQYhmDucqUjo2enYfCDdsisH97VrT3x+TVJ/qsx5B12cVir+UL/ZX8f9MphIQpoc4iDcCVHMkzchGnw6gQSNNrZTJGYiGdX97P2Pe3Y47m8xHG/71d9YqwJ5a8esthiXcN7BAQuzHoMqBqFSA2HxswI1opBfEYSGdLutQkhpGORCccLCmFkqkOGv7qm4TrfS5CrEyy/Q3X9NXd3zSKABQmMZBU7FPE0Btpd4yHjGwGIv/rxHnKU2xoQvfAWUxDvE1Yly/9dJ1kAioaAqVgeX61be8uuAUsVZExQMj4nBSHONC6miNIcuKoge/CzmW47CnlU56SkbPK4qkhc6jq/5w1Vd7Be+qf8HIhTBbbBzB80jnZ1j4IH4AV5tyGPV6fhhxDLcNAWSMf74juc0QRODWNWGhwAWUMR3M8uSmdnUNXQVmBekpiwgc8g5hR+z0V2jBE2cO2jNhAGQkxUjiFUA/E8njPQm6C7r8Y7DbZtnmd3PuonP7HVcbjuzR+9VLLsR6JBSs/evn33vdxlTz6d9A7+us/1y9eHeYSGEYXFCnoMyR3mMgnfEr/jbGvR4FTcXYhBPn/5RyDeids4vLbQ3AkzSRHQRwUwRAit4oLHqk2U6qa2fFmaMyoecpvwEs8NdjUNlcnOxm1CFr+n9Qkzy7rlZWqlmaCiEVxZWIBuG/yfHxFEF1qhGn1YvYo2uUyCpMQWd7Y/7HsyGLxoK9jqUYnz9PS1F6R71/9L++HKRE4/jF6KwpmH6+phjMSGPiE+ZKbeUN1kCmcbtLJJYWikgZW66r5F4wE/1FWZCUtXp1w3pFwd5WMgGf9EOaSKGf23nszF+/E40+1poTZjYAXQ901p9r9BRy9oZgZsKPzuR2M5UnOlP1UW/ZaRWaooY/SGIcnBBtzq9+m09SLGfEEZb3/rf56BkfnCcxvCaJxW4UaCoR67jv1dfg58GRnIgA/tZoxSxU1DFjd+1soQb7DUnoR2rzNn8xg7xc2NsEnsd1CBk3aoc4+xuZDjnbLP1YYOkHBcdM9oBEzmRPoL+ZgC99rs5JRQdnV54Atp685SwPbYfxq2dTT8sRnCjqc6/uYY38nCHANTq+qzYIizvrnSoSkh22JTvUPYyfAhpYAGdh9LimTZJms+/nGzRXGTxDczwpX5FKm2cj5f/Fm5PafbdyU8pNVmTDe7yzSvOUx2PxqF85IcuwbhlmXI2lL2Wnm3igi7pTo6ckyQhIbvyX8OpnB52fEfnmKTfdEGhwmG1XAvOr5aVaeGfqSLMtgLzN9bZIs9Rrd6rWat8fXCjYRAPiLRgzhL7uXVfxckjjvg6QS+70ohHbooq/2BRM9y+iV1juWS0onLsblGfy9ApHyOLy4CHG+AmLQXU2XuEnmA18wyzRJX1DhFA7mvtTW90BzLyN7skH8Mf07GhZVtkcLhOxcLDtqf1v5qN4DgQtEfEIDjWdGD2U+Z1qbrkIFF+X+mDYBx5zydfhjAGtafCzOxafOiu0QlkQQaxPJ7UZQncYHEuIbctZ62mgxJNeaOWPFI+hvAZ1ktAT0uAZjzTBtjcpVNY+iJLqaSbiLbOZ7TCZdlTyN69vZ16xFK4M0nTny5TwQkcf15hNTJN1K4C7i8sH9ZHK2Vrb7eta642wu2+gln5YT1Xz7IhVRldQxEdkoGWVGKzqMCTaLrWlsVJByzxvXUHL4U3LlKzED+kT33Bq3ZkPftkhQiZCjVIx73P/kLyA3aPPwyXvruoUm8ZEAmhBJurpsxTxRflbXfF1BFEb3M6Y/ySZvAJ4LpB6qPNUIog8vpVko/wfvhS/HUk+aRiftFFbSYri1pngHuvx2nOcIVaiHRGFNqtZXRsxVz9Znu65iRjRiIKlBudZO+LRW50p0avx7cQ7spouFdqiupyCLgNVrQKqXlY//BQbneXDgC0qxA2nVZQauOpi+B7ZL41EAWZ0ZupQCdpjCFFhFqAdysJdLyvxs7YmBTkbeZfeXpA9d9oaFG1hNOGWUuSNiJOo92eO5hMSBwvS39ytsnujx+/ikwXiJLNNj16+ZgTSAZQXEuibbItnm2zwexhPIvja0+zP2iHGPGC/Y9sews4Q/yKBd8ic8IuKdWtBC9pMinEDFmVjedKh0t9D7eMXF2jQw/T0XmNmrvvMlxc3te/Rs1fMEfe4PVMHEqxHlYcfB/ExviW9rHITpxph63qwnF3eIdB6M6He0zHWedZ1OcL8IplOvG7ZZq4S6Yyaohqs3C0/Qiwfy9lje4urnQ6OHC2jOHanpTrwF74AsROa1JRsx2W+zXxXmtXtsywHySIizGL3HL1FqX94Gtihj0PKyytw2QbJcYFY/ZWPbJ5ImTz1QS4NyK5YJQkIrxEnuUf8WGIMRRsZXhNga/VMvBRtjXPjdJgnZ85Tb0ZsZVHSmRAFyQ+ip02LaRQLPDpslHugX3wVpht385A7mR6mZvLyGL8gLiy9ungB6SoBaEzrWV10eB4gRx0UfUOxV9/kO3ZvM0qk8Xoxcgfnf2z6GE+Bqa6TPgeaARwoif05mRBkbVsyf9dZ39MRs3KwWn0LVCg0wQ06rIBT8+AwtjHj6FrhZ510WUdrgp5SzaS4WFDFNX7HUoymIMU95jKZcvTlOUVjtTymK2XjZDFpRPKW1tR3GKTgtGzMA8d7x/9dbI9NVMWeTnJqq9o5GQFmFsfJVW7uIJauSVrHTZjl8qr4WypE/y8OBmjuO0BtUX3JjVJGeSbAqZ2p9AxGdpZ52ayJ8gZUckCmzycTJTi1bwaDPM4x60wgnXWP6upA15sNWkCk7o0SWDu5I1/H7azemF2+4Vs9uRVrAmV3mtWiKjweZxMxHhDcLUS5frYfsbiVj3dH2zsowOO6kW7W9UmBRPXj9DFLCAMjWcLSjbJ1353Ip1nPdCBJp51XnBIsSPgrfcdmPHoSqIYSUc+/n+KPowSee18wSZB4A3c5tfJ1PxghDLkDzCv+hFTRQmiwWMU07U6iEUG6xvurRRB8F1KKqf390y6F1xTZO57Ss3d5jIc5BfSmhbkwDZm81sg55k/WfsfnFI3hKAEcqKT4l+TMLRb21IV3RHS337hn9e+0kivO8yUdgPp7LD7L3NAYk4wM06riI35pmBw2Vq8eESvuOGPip+DTsZ8mRJ8pt99yBQCcaFU84iWvmXQCtwokJwlvvO+WwMqbu6Mb5eu6m0ymNNtw6uUteOnCnMec7CUgyBHHtVzuo9lL4xWjPm6HB5kfnCnkJsXJZ0ZKa6f4WzYf+4UxkIefZDClusxQ6xNSvvrNuwXM3tuOvwIvw9upFXoGm4/cQVRf6fZ+XTyX2mt3YCWuHpVzjSOk/9LShQyh+ZvYHWHsMuSV4l3OAvTBc4f9Q4+5oXR2WmIa9XVdoNwRriqzIHoHjYkdDqsAtPIwwb6E3xbnR1KjRhsLRdpLLWK7vbTbm8yKGiHPTW4+Lje3XdL2iy1R8fjsxLzp7CCU2fMu2coTC0NCn69vDOxH2SB4vHH2Ymz+QGPUWq/CTnflDEOGtzbyq7ZLMvxlqMfqP2KYavW/aI0c6XWnD+CdrlpgtxI4SxGgLx7Y4p5cmurhEr834ii8f2ZgxDUNtxn/xtQ2wGW+Uw+Ttqe3c6IXr6m2FtuDI1bSa1GFnMXrATh0J1tXWne4PZhNdpQW/nwNJM/jQGy4pc4yGCQC8cAmW4ZH6cDiALR/Ex/+f3S+ycFeTCgkgDrQvAgBk1BY4DHa/JraBxnpcUYqZ0MtTeOiteH/5O2/HSTANXFrYYCy0XroMoJl6utRdE1VsTkvShzoIQuHwNekxhy8wnU37gCKc5OyiArQrHN/UZ9EuKB8DtrJcLx2MlWyURM8CSgGHaFUmaDG1z+R9jglRFhbp0AJHr6eqKGo0DKjlD3xghbIhDEXZWnjRs3U5H2zpIfmcZ/85PBz204nw0jiHwVv044dUmBQ6RYt+lk36fuI0zYalPIy1pA+1kIdMEkvOgLpgh9M2WoQr0z5bJf8osJB/m7QOfFO18fmCJaeKxueH/VUZivgeLpLtOBU2vYeNAbbNaj9rWztjD5NOHGq22y4dcgwuCtVtTtbvgvZOwG/UuAGuuegPkYSmB46C//RdWJzUI5pzYGWBEsMMFsBDbd9HkKP/1WaeUug8NKc+RSDTIBo+8VEzNwODsBLIlm4aFgksnUqPMkDDk3iI/vDPYs8I3mHkQzvweAJHeyd++liyH5IcF9rYHdsVNH75tpDFIeGyDDphP9HNYucoGDm34OJ2E3QDhUZnAAkevqHrdbikrdbWRrMXlrdgLA5U4V67/FVoFS8yeIXv3IncYa63USuo+nMj/Yo2nGqF0dKqVTFwF2Tf02Ni+BNIVuDWyAnFfhgdecP7gyLbfDfN/B6frCEtO4fUgzdaGaIgKX34dGG6rfupUfnKwuL3aJ3pjp88yYT3Ja0w1Za2GaljvJGj8QA6IMsC/5MFXplDkOQrGf6g/3qFU98xKxg1syaTQTeDO22p/O11hmEODx4MxToU6L9bgehmN3clqLdX8v3bK458Kj0uzIfpaUFOief59eZWA3HUa5t6w3lgc05tqikAP2TJOtm2On7xUBVuZp7SIjZ1qxOmVQAwaugtlML8lB2YgG+jI9XA6ehM688p1e1SjYB5NmGWL5TeDveFAbrfkd8JccW4jp4n3xaFaNcGnHbXwDiglbe4W4p9/neHJBe90/XRsCaL7fSfcjHF6cLYZ4dFMBsFi31K/XcCfpxM8HmBamnl6MLdIhqeONf+O9Gp6EMR00RrQRVIbCua9M5ufLUi74wRfOs1OMG+aR5jRz8wqyhCDJ3FyYynIcTsnSKYPw+8TX0gpkxtcG2UJTAdxWomfBRh8duFlnlPRGN6gkZgFOIDJrztmTGSkiWStKxKZ+6CPYGKwSXLeeeO+kA+hEj9EjGs7whgLaJhtE0aS2v0x98gSDmLoQjyiJmRBYsfPcp8kxXDdPy7gXot49Z6LGcO/xPM+D/TPTXEn4vMDPcK1PGW7A6NvnmrX9kAJ5icHBWKrvSbll5M51W/eiPEYzNOH0SaZkcGSyaOed+MENn4mVy6IhNkNt3UDm1L2bTasbpXgzUbgmZktS3i92zoumLAJQdGf6lpGhLTNjoyNF6R7u0FHqVtvQ6pphxYOY7VCpDtkLgLGYST2QiwyoNxSTvlUJVsB45oc67B2NRTz2OKCH/FmN5FKUhohRe8ptKno1ZKs4ppS0J24ra5kZIZ9azhQA7XB5BpACtDDi/juEN8pNG96gOXzSWRJBXJ9ChGstKrt1rm37ZOTGl8npnAZaOZcoSEjfVXpGMHPlGrnkX9f1kXq6qCktZVlm+2P8xQOx4bKX3SjvnMn+GbW9t4tGKHp56clmBZ+oEXmbyL3N+BTinRHlSqyIcfR/+4zRF7zq6x+ruEGs2UkjKY6Akisqhn3rsSSCX96ujZhvxxAJnBzBNZ/3UrxspLIteLRCheFIR/Tx3CoQ7s4P15tuXTqP+f709uFEya+JvfYSTXFEbpkapKlIEd4VChrGme1tcwzS6jrTDnIrfAwrdtMZCmX1kb9T28xAaRsLAYa5obbafPyi/U91zDc6rP4Fb54/NcpLFrL/uZOq6lTSvp0x4d+vq8YpESiu0/EmeFK7XP/eb8von51qzq1RfbL4pRsw2S7aGkgbBrIJSqTDxm+TM9zRHOveOveUwoUPrB04+AgTYxs/fAyR/4v76Oc5ALA+F2TShH5RLrAnN6jVQnSMJK91mhxxhE27opunvyzv0rXfXgULHWopxijruF+kzCalDc7p+wuJBHb1dqqAANNVJHX+D+77IxkStgLiqFMyXW2BhYNzcKpno7V7GUyJnEfMrmBGBDnPcjHBjaLchCpJozWCEtll7yr8iLXW42OhbyAJ5EJzu03invg4VUpKisnAdPZ2Z1zu1KkBRcOwwwJGpz4h16bxV2vfdaRMdz8MTiipE33J/vcBN8+Bj7Mw11g4a7pkBIH478JE2laEQl/62Ivs56W5LMYH7qKRyEopyL2+iLWY1nBx6VgZCVPkRugzT6bVVxO3bSpmYTIj4rFi8Tc+fayESRo9ApZ4f8sOt7bqXVIpi/LERhTRqXkUdArrEViYOnoeziRTAnFX9alIraiGx30Li7BmsLRqZ3J1jH571TiZYzbfGseCVhcsUroDlO4G+KYQM+8bhxUKlwfOMjmodG7nl/dBbCRSD2qAqyXKK6AsMIPB7FEPeswu5o1+NUkdnBloPvj+Ri3sjXXPNp3DJkb6879c5XGDd2EQLBocwqF0qGUxFCLFKSFDc4ZmR0JxG2Bk8zPNHASFOzjMbs1Ds8MsQTYgny6wRDpwC35Re02t1x66DmhsVCpW61g7wOppblEnNFWMtPnRi1xGyh+XfZ3/re2o0eh6+PqgXL67qha1ucBkw69VPuwAHOdw3HkbXu3julQ2llF2JLS5eCf2dynnBRf77lFc32pVUnr2elCAD3fF4CK05j2hEdzTXwTO6ipkYk4jzDcSCerZw4HjngBxqvAkqDLW6CfLtuUgU8sVEBcRkE6P/H0QGr93ttd4VNKQ3DH21xMRv+nDXkzV+b6bPLCNdtwkBL2taHi0IZgcErpGaKD8jKIja6Qcv/9JpDD9wWuiAbFsKEMKhpJdTqJvEGEU8RyHCROy9jvoXJGutuVt89LGIQ+Kef8QAdWttZGA8OOHRvg5wGJsQRjgkibiFsUbWpkWN49ouwW8ih4k6545s1AgOvYDpfDh6UDrMgfmviqASe4bnP7fEE0KroP1abgxyx88gwmHXOoVDotKx92QArT2VPziLfocNCK3SRVOCKYB6VXGfA54iqWTAPtGuwf0mGnzG1fuepZcmsW992cVwBBRrhTydQgKdcoIXJwlGtKiipEd+m4IzMDH7qkHwODYONpi8HCyctQU5M1Ds0REjm68wjYV637yVoM2Cb3Dz+eGm3RnVIIWULp3EvoD4c0sdjm5iV49wSL86bovRP2F3KdmYLPOc87aNBkzm3lJRsn/Xi6ELG8p4sonLrSF+ZObiLD+T49imHbuhvNHwWH1AZDQL1qvFPk2fGaoCG9W67bv+ZWFqy6H0a09AH/UGaiWrv3n2pxv/mDGHYphNxHUSZ9Xyo05oQLs/jyaUkXfqD03xfSqy3cl2IJYqGdkmeVQXK5piT8wa9xgLcuC8KLVUY+/ZsH+Lbucs71kZwlUDiCiBwY7rOykKPeVgBMIndWvPlP13ZIIXcX/kR6b0PySN1ATirZoZfECZZdeS7WPndOq2H+yMw4bzQJ/1kMSJnMJ4HrCK4DLvXAqiFqKJnPjcobXmrumqJfwp3rFxPfhRfhyEQabe4rb7BxA//qAyQZM7Ty4+o7VvWbGroZ2PEGiSogEyCXF+DMTknAeeEc214DCyEIzYBBAjPTOWLcV85sp0sZz49WGldxSC+QwCAokhz+jxQD6QbB9Uh4zdmW9QUzbufV+Su9UWEExjAw2mpkaCIrbwI61qyXL50hZOY4XCZ17hq5KwFu5vPVazNdi9o4yDMJsi59S/a3ZPipwJwDfSrTGc6+Tka58RGr+Cyp7IdLVszZhkdC/2zjN5mTm+j+NQGr2nesLdC9pvE2rkQwPXuByJhZuq7mqQcn4pD47VaQGgoBaR4Ia/BiHm0fgSDc7QVYHUZpKQ50o1sdYM8OLbVa4T9V0Hqakbi6sy+/btTG0OgnE7lJa3ndnTu78ThfosB/zHW2KG/uc9xHGyTA8CK3jdAoKbEIPemi4X86tFtHwEu8utCFtpcrQfjXAO04UyN2RUu+KomkMtZQchDUy/3ef5CBbGgzdruW+dF3LNqMpMF++ahHSf79fBP6/uG9HtPvcFDlJ4bVsDXbu6w2QUfl0r9zmIOwgQ7/5Te7R/Kwe++Q5E74V9vqPrVHKhmnqCdLrSCwY8wJZoFozLjvpY8G5o6mlh1h44Np4W1VM56oa6fc2KvGeLJKHSX2P/hU1FXz+filchV7tz2zsk6RM4LHigam+Y5XOPOrUrPVbhOvFXpeWwf4wriLD4N/NVf7rlkqIYOU1iXhLIdfkps2g1xm10BJlL+O5fvy0qtOqbegGZ+Tl4S5DDkhhMs/1cSnBAmjG7D7MchXxPnFsjeG1JGp1mgRc+Svd+iKt+shMTaTHL+WHgXY+sUszsuJ5hDxEGvRBKFM9s4YPIrb2Yj8az8Zu20GlPIXfz0fwOlMON4SBpUdvEDvWI0Z8CHW2K9+MZd3FTchSxFhlfD4eXhySSQfN0Pv0mwLxsjWFUfO68nZ4ErhCC38naIgTkgsU70uP38dOsi8G3Dsemt1mODet6qF3/8v6CooLXi1c8Su3RGxFhrl2UlL12Dta0Q2VNpabYI/mFHaiO448u8x4PICWGIhTGqywwLimKA7v4k5RE0+FhyHoCxJrcRlnwO0GZc1JAbdsou1QMwzaFjNBf9htfJWfZooDYTMdJNuMAN5P2EeZztP4XSwEwjWjigSWE3T5PzPOWSDmGpZZEe4mVrzmBewkSbRctV8AFcqgUf1OjKqjyIcW6NXOE4n+0rq3+lvnYlTHLXpZfYwKV0kh38BwZOBftwYSLmpFjA8FYjno9haflkijGWrhIyvZeUZ9C0ikl3ifObV5mj0oTIL+RiyEWn/TfB/rBubcwbYsoNYoLnJZbKkyXdwFbn1GoFWMxoNJaGld93jxLL/BHu0g7qFcG/2h0b7UjiUr/HEnOVNUOEYaUN0J55bbzXlvwd5dIlbAs6Jggu2R7Qh/K3WjZgc4T57AxQI3vR0Dp+gMOaMrILIWoua8dyLnem3NZYFFAo+cCkP0nCG1eRMgEjbUofUlmaCUenCaZz2pd2TMbEnwHjHyGs7SV8rMQHRaBQmL/OjzzqhbjccVKx3ut18YHmKWAVCFe4qnN29YHFmRwKCu61o8n6mwbZQSGtX+EpO1IQgRe/nBwT52bFXPSuheUiSezFd68ZXyqw02w88STOrXfuGvDdwjiXhGTRpdFVjVIaEsH2pbia05UipRaq9/qG43eej44tSPmllgL3lZK+ybk/A9LZfQGOJUyd4f9zbgr+8Wxuwwy2mPcA50RsWIlfx/L3xIfEJ9h5Ayy227d/yjz3BmekThUI3N419eGWCYKiomT/BwgGOZQkFhxndsFy01jNu2/UgCwF8XXzCQUBpS8z7IcMazkAN626YFJxKXBrV2ykYBnWl7DsNCpA1QaJK783tJt+uMVneL1524l4GQSo/Pk02BOM2yksVA9PImzj0nLHpru2l88AWTBwVFFVt6P8WZR3mS/dFVYCf+fH33Hn6UfzIvcUAbPIHqTIbq6/8l5kdcqnEOi1NDzgqyDh3TFw5RDN0mWU0H57iGr579GeT0YehRkNEGm7v3xMyVTiqzT/Le/QlVqE6BA5ivvj9ylNcOa4Zqh80R3SRjdggHzdzjfpVi8TSSzOWVtXos4gvFOodve3fy6x/u/n3CH8qcak6nRnPaUHiEkM2ePK+ysHgxK0QHhedcaSXOCLPyJtdm8QV5+JxZrEMNO8u+8tLRrBlfxriCySDHLO7TX5fV+i2WPo15zOiWcImIO0IoBQaI87cV8fgCjkujYaWhM/4LtaqSUDLEqRC/sGn7oRhXlbAmuOBSweqy9oXmbGCgYAcn6CO7yooo2ewC3PrEGSudr772APt/EOXXjXHmd6SNEOJBOCq5jzCmwjrxhwYrZkZC54OVdtiCwxG9SadlW6kkEWpkUqJ93ujPJSbRfFx2r2VawGMyYg9aLXLHzaKbaGrMgZtl6TtlJuplBJo8/FagymqpEjTf4crVNgjJTTdHoanC355GY1ja+aWuNq89E7WEx94BLXLuKllnStLmjxWuO7RQElkamV8jNVwWal0iPgkOdASjZk7kBJEFbo7xXZ6bTlI1Wzs/bpchcGZRvW2FnP8QN1SLRHJpdSK1R/sM9QTkiq47hlCtu6LJGrEQivPhAzO7RlOYsDELJ7xcz0yW76kHjNtYuknPeImbUXQ5s7PcGNE/2qYrqtWsSbVmTlMN51WreiTTCbB6sKbpeWav1pAVJ2sr39gsCeTn3mjaCBKC2Y2emiZ9jJcFWRrbdj0QjGCr/CBohvg1/6SheQynRHl1ctb+PaOqDmzFSAG0BOS04YgfdPgEx/Y7wXfyrqdRMuK/eTTH1KKAc3x3DQkczflftlFPHWdiEbBDHikYSmhz/EMeH+Roa/onJwUkjp+nnkzmhuykpKaXDSAEld9jSZxjQAfSyPltkucNtA6doYvVOIXMAiDEfr42erTZ9wy3a+wHF2PvbAKEN0/+R/P7R1ilmfQRMTohWLkvFkTTJKHsIClTgQ1ZHeHA48694q7BtyWAej+AcxdGGBMPrh9yYQwoqz2OYWbQEPdCiwBqbmJG5CPPwGudr2idhGn0dzmejxrlRvGiOCfPWjzxZh4EhRCf1Vv5lEPjdtyZov1LJekLtTucgE5ixGpKg/32arGzVUGxNM1ekR0OTkp11pchx0Ivm+n36yUbNKziIt+hdDiy9EEeOdSyXTtx++sWEu9sBN3YtZu4ebiSLT/z1Eu1gn3XVasFJzo8SYhHnhOsLIiRBbIK39/dwcGyi+yc6cGJFN9OgFLFCj3/b1ew9vh8XJuiMPB7HQwe591eBONaxLnp0FyzcTko3NnmrYEPWcmDzuQpMvTZx2FRfXJAEevoq8Om/CTMTpvmk/DMcj899UwoDHZrvoUvvUJqGefwdFVsUlPpt5rzpjyuYnQUjshOBzJgSuVpDNjxTBLEnO7Wo5HUnIy1M3d/wGDqoYqpNorMS/bbmcBs/ZBkSsuEpR15hWcH9Hh2+OrxuumTnJ4Kk5zghy/9zLkAqzoHwtiS2Oi3dHPUu3XYrLetQm5208stgzen13gm16EUkWrzj2bPgR8lyGdBT2RGhbBsf0gHcj2eFeEd3EaKtSCXIlo6Bcws/JbXNONtgWtOP2O++d/1JqckyHu3OYxrhhLhFGfhmSPtVg4dmrMWCc7O6P7gDymIh+eYpYH8emf8Nkl3Vz73z+J32TMSqR8TGhj2Y1gJvaCSWxYEmzWOpDDkV47IQP4UlK/I4ezDJCo2v1oL1hjrKmSxRCE6ywxsyUg+S+0zuK/IVWTG0qmL8qx5g20wzUtMv0KZbBB0JYpv6NghCdlxNMpgfKVkD2ZhUeKjHWrmrgTQoi2H4LyWPgQzFih2KWVmvoL/vz0SWwcocDykUwVR7OtYr2UIp017NXbJRucFQnPQq+kuwh442WFOgwONFOoIpooTGkj+sEFcjDTKMxENdk9Sj1l3CXo/F7XiYwRamJi5aMDuuAgwr+amm5WtHu5QGQwA0zPbds6XiM9ejBZiUxlpjPAkAR+lT36i3Q7DOeHOtFnZgNWqYEd4oU2IkaZrf7YEkHdPfcbmc9LTYHqO9DsQIoHJ8xksxz1HF/1SNVeqXMl660ah/kJysqmc/OWKFP7Bxa8a5sw2RDKr8WJ0XdC7t6YFSs2C+ykXJr9fYWu7yIRlJH3neuQarDTgKoZSkSVeIhG8ntCBCDfQFfI2n3JVLMB1/GbFyKmvaL2tC46f1riYkm9EUbhGtENLE5T1GGiSrPBywPFbGThwvcc0PgwS1btPOybLsgKzB4Fy353oIOHkTx8GUrc9DdkT1juTHMeFr1ME7pq/eo1upNG0Q27shM2Rfx27vse00ad3cSRl/yZKOWCxILhcVnrRPK3AMfSCzpwUnqp1VcLEltvikgOO1jfTbzym7JPrH4VrZVz/XWfMupcznKJ10CBk68hpuJFSHuWCq6QtqveHOOjMj2LfHWpPMI3K08O/mLTelDLLwp5a6uh1h7YTbvjf5Z1BWjcGFDeplEMT3cQlE+y1AOovVzHtJ4sYbzC/O/1r6XOyIPK3n5Q30Ph6459XP/4ggQBZmRNPImYk7lN4AHCYqQWWfOuKtkRgezlxuZ2vg2HpbOw04W2absGyK6S9hRYDAK5hd4TAdu+iDibOq71mGPYDpmvWyb2bXb0hPXHna1YSRExVsv6j/y+C6+edSsOaD1zzLOySWuVgb+wsMlaQ5XBT9dx297V4ksoZAuv+BnI0KF9JfY50YCbzavC6XPlHTf1tvbr2HEax+2e7A2qVGDrOMEDSVE2GmI65MQsOgGCTYeIkS8FmekATObUbjUGJ1o7oNSu6OGGNDoTiwIXBEfL9dqizODBwheUcNU50C0GvCY5oYgr63pWi2UHMJR0KtKerz+AFmKvHaH7yuQxodxMDJLuHHgQ2nLH+as6KZz1zrYKPhYEr83Tg3vR8pL5tpLyOEAUwjGzp2vRRQ/e3/M2vWhj26Oy/fy/fba37oN/j3BcimGjxy/7TrxWwl92ba4bU0+TI909Y1/uvMVZ26tSJSPjodnm7bGLc3xczYM3b/iauLfmrVgQE22ZYa/c6X0jiQsDe3GwHbYZnpVFdAS+abgrLYqTh9B9k9rVtVnL91IiSuKjAp+NRe6uzR/cZiN1iafLNOW3lCJBjEoqY/rQFUx/IAsV6w/ehzh4eKj8gGctAkC1xfwKkIeiIkxLz+/KggTlEukm12Uae5uQorvRXYddBVtl+soae4j+7efETrw14Qrmr+QHhr6xB4C/6SH0ifhO4phyerWIOf9fcEtO2sOH78FwT5mTnSHF7ma5oaIgfD2e1QA9KR/4m3fTyL5rZ0M+pS6CPqP0FOUqmxD6kLXxsotGzaFuTPpbSTu6VPSs2/YolMcBwhmC5Du0tuBtDOLc2Iq+ZiW+pbq2+Lx7dSrQZ8uAHFeU+yRaV3LfMuiU8aia7a1TTqW7A77VXJog7/7mczeQ76WfubzhXv6+HHO4Jg8kZZTyxmwiU7VZ5x1MnpBaF2g47uXLPElQMuedIVAP25hdcXejpfFPV4nSZRHoffooXwaFsnIlxH2wuDC4+4BPA4xIFLAZBr3relvhSi4DCpYZuf0W0q76OJsZNJDXQ/kNEN0u0M44ZHDhI+z8PSLxvJFmQ8oW10Ric4hOImunaiMe6iOPd4mO8DAarB237fPRR1DitBHXsG6KkpBBAAjHd9CKdjkHhjCtrTqXZO7jhFA2v1cSMdyPRKS23jqXDBc1mB2ZsKgqIuB1tlqUMJrdV9ADJST9Q5ZeGVVBBRzMDj7Khorg+wgu37iK4xIvLMeSKTJlkon4CDtwQf0g7k+2BRysujfNfK+rOyCxYyJe9zpAWk1B2pkmcxTxV8XMgVN/FLS50h+7fZCUnr3IZGVeZR+bKyDFMCBa821kZSP9qj225XixCUABqUVwOhMOeBHAydIgq/BSp431cALB4q0LXA6Tlysj5zC4N1YnVIIfloxBA86jtyNLsMIAWHMNOaql416NaBytiOAxP9/qO0hHNvG/iNlKKxhC5eH5T7fzau3sgGkyqbVnEeDNcquYIfgMBmlzPcs29SSYwZVxH2eg050yQJ01I2mSLVfNyZgoYUiI50PEMsQFiQMwZd8i2l683At0mwzs3HgiqSg0+kBTwjO4fIEwJU08KA6Zeo/3d5/tP5Lw9VtcHjokjziifc8guh9ZE2/C/M8lqGjw+mlNBoIzEhPS9M6yI8UB0/WLlU4JMFD3MpuSgpYbIBuG4Db35sCJf+Eq+P7VvITfS7bRGWD7Y4am+1yLxnrdxzKGLc4Rp51gIVrePX/+FyvdQ9wGAqGzBoqftMJMkT8/XUl/fFH/NJ1uL9V9yDam9+GN6FxDAp2EKlso7TVaKfjKAZ6zPiXffjPwpMn+VVRKPJe61PysNWc7FQz2ksEc8JQe8ZIjH7G4+hw7tOeRME6TS7arJlBKTJllzM/MKCEiHzF5W6M9Zs8EWQ0yC/IATkn9LuHZLvDq/j6pdqQGn3Xj2T8NDRx+sbALzWsTjdOxErkmRJ1AI7xR+WbzqZKIi5VlnApxZsEbTDotumnOraKoCvkE54snjiUMSF9kqPl6gEGZyI1i4+YwvbKpcSiMM3u3xez9Lc2oWCLGswP+iIfQ9OYSC7r3NM3L6tW2CCnmGu8dpqsU8nOOiR0H1IPbAarxu6Yop85Cxb+xn/iLGZ5j6qJFru27wFa9DM/RhZy2EH/HrD2NYoc49BjsAY7ltBWsl3CgWJZrMz8qj+W6r9FT0btR8bR7XTIEBMLqI1aN2Rt/etoPHU/qJjH5+lq0bQ0MsAb5mk5xOTFcBVSfqMscKRiOC24N8TKblEhk9Ga2AkTl4HPFFi/jpO0n/z8tc1gdKGHlV6N7Hr4E/F99mnFP6gjClpMsYfI3YS8cFhV/8FTd06ETYbnkoPanxoL4XFwpOR3rigbeKQKclGF5bFqii4HCxOGoDP8l0KrIijW3gbVGiKegMIXUk0RXWdCEU8+FaAcLYw5R0A8PtriNWCm5X32KBtFcesTu6cmwmypiTpo1VPb6K7q2EAdV6re1YP8cx4rJC5HHBx+S6+XV+KpiLr7el/MjUXRcRZoeoDx5RjO8CBvDtU3vKQNDV0PH0svqLEGoxtnJYzFbYNA1GXq5HsXd4XaCFO5pLTYkOfQTB0znCQk09nnuENJROJju6r3vL0UB4ppkjGeZJAUIyevCzN4T5qPd4XpoBsSiKbVZsZI1ntvCPr2s3xLKIPrKaK3NWpw8hC5tP2CjR9Op20sjyj3p3P6ElV1u3z8udMouoaoxJvGkiAOfLvnBEyVrVHjIjnnhUo+G3Qc+A+XZdCgv81I94yQaPlXXsjQKMDNsJbt6kjEHin7gvXkdlqXO7nMs+Jz4/7x8xrkPCJGw7jX0WD6LKwnecaTrNUpqGpui0bjPG6YZTBGn6P8H1qkt4vcYuHR8pRxVTHOu8fhUaGV5LZSS356RFhm/7OkzhxkdBRews3EeFpXSrL+7bKdL1i+SUkm3+/6oBz+CEPIfgxIO9iUMgIEUC97T6YrkDWAHbRna5FNJpfyp6LElDzioE9xSIAw77PmmXxoTfnTeNTtuoNmG8hqUl1RAnmEq4Whd8nGSbxoCz/TgUWi2PqfcLyJalmN12j2emiiwaslVi2m4rYEpjz3JYvWagQst4WxCyES/QevqXxetFHqWDzVf1wYp7nTa35iV7lHQc6szNK+mJYC2JmrTfNhFUygtL3SHDGzTxdnnC6iFp2sRcsYjh3oOEtBTUOSZrVZOcnFwPE3gHm+BE5IGQd9eeBf0Ee25WpbPAC6ZoXox1hIC9zepfdIKFrI4TnKx2rtbOMWUZyuHdp9yVHXbMJv1XKnxF2GLgoekXg8EqzkbAA/F7AL/C4ta3h3uFt0Kcgx8evIjyA/YO2skn0CZwRyS+H9Qg90oDoM/S4Vbq6tYDRMe967erkQjtvDg0uiMAwjQp8KesrakKm0OMKUykLwRcA3Jr2JcarEllVpGh40ZbNT0LV8aZpkZd+rmbqSH3ZOMdOty8F9ElSG2ZD+ugQnvBRDKD31dS41yIJg0bM7CUbUpW6a53sV6qxjRRoqK0a4IXjFHYkoFInd9wCqSB7AWmYuqWumC+rHjN/NIxw4IQ5/wtxPCtwNb+LOxRdBZ9WzfLKbVDY8kd4Jm+bFdW/u2FKE9jOoCoONPz+DpOa+JaEOem11m3Tao+wuIILPWHLSXzLqaTa48c4s4u39N7DsOCtViiOk34Nu9D+tnPKF7YocMP+iADC43b/aUitcTyeR0KL2xoYtLZj2Wzitrid8NVCtmIDeODQDMM2vahWdOzk/YiW++FaUKA4IPTxb2KTVNrHSPbfa2SupxEbNtWxXgv+nsZFf8BstaxsaiCwFGofZLv6ToM1I4bfL5w+i2m2KIBp3wKea5xRlYkOlKLZiAbWuPRqRFU2kX5uIaNsqtPVlPtjyDDSckLyTAiH9Bqx2PPbMJGX7EiUgzuwuyEdXRCfI5X5Ne+Y2PAWeKQ1RFF6+JPcIPNUCXBpm19l9mJUX04/juC6geQcMXgjVtAE2tvhILBH91hEkcJwW97bzHJq8ZWITJ5NlUilNiU4ctRryr5sWxKdcLBV0ZtOWabVYGAX+/TyqAvAD6zIgrx7v58w3nCrR/gEOfQaCCcWp6BqN0uugTaLfPXh7yMMGI+0WKElFpr00zojqFrjdtWn+8N9AAIYn4+OY2Z8f7fAHDRBkmZ9hWi7+4AL4k/G5pTBILdQCTXe8Q40t1tTVeyx4iLSq6CNmkxFiymOhCiiad0ntwjMROhTesnBCqHavQu5+dDKpLiU1CyhYcG4RB7aey+TIdWDr9y6cz/X4KsPgUfwD/b805Vu7ZHd1RcH4X9JZrWoAPTO5yTroY8DZOs6u/P0w4GMhLUE/1QTUnkZMrfLnItgtWO/Ey5IIri5CF+uO0vsJwN7SLJ9PTwwP20hZtOlU/W7VFjnHo0xxbhceVviuXPNPg49d/gHBlbNbBlgOJ7gpp8GCYy3kbpzDwgwaMSxYRfiYCF5oKqla5WKVyv/D3Rv+9jxI05WINNkTsNIYMO6fQvfNIdWRXiCU+WDxu/AKbelaQpGW3WSalYQRdKtcRxKnbO79lPpMHPmg9H48YKQtEjc/bQ7NXDJrV2kPfc/9vXvoIoB5bwm3NwfJ+9lnCJ1oisHgSyZyeVad/cow16eoTl77deRvuT8haHMRDwfAdLaScyrYmreF+bpM3M3VZ3XVm9GejB/qkur06w4+5qtfarEWuJleXZ5OHBHrDsjvm+wSEgLfVUFUY7rZm5+P7TIvHuqnEDOS2qdkSxbEgjEipe7rJUxzbqpZ7jDaoNaLxvOcqI9VKz/U3UBkJZmd2J94IYmu1o0g8HpTSNqttd2qs8Ay0keHjKGlV5KiBTvGps5LYZJ/o3YUgZUutMA1vfcsnr4lgNshauG7f/KTgjIQMcEIC+4kx2SGKwsbgq54tPjUIgE98wC3cH4FI1EXO+9bb3wE3iC/a2sIqBlHCi4mQBH2vroBKCnEYCzLSY83+CfXRvwWTsqJeS0Bp7hdZkJn1gWvteoE8XBiyAiupnSXZAilgXltfuXIjitEj5HFjZFBi7OClgqPWSewfFlh57Q8CXR3dw7o19EeFp6x7FVuBucs9Fw5++2Zs3GEmGyLKQbEuW05Yf1m0ba8beJGbSevoJpBIj7ERyH7KNmuvO3/2FFRGPBP8jn+tAJom/llI/07xW0YqvDQ8ZnKuh25Wzxg8UyNdJMzWSofSgX6gQr8RM/Fi1QA0FAJ4yqulsYaNN9PRi+wo/IDFIlBW+nafaInUARAvNaYgrWj3Jy55wfCS68C+bz9iqFXGMemOqc6aFO2E8JFfCPa0VctH/fhEkRVTmlo/QS5RmSxbXPO+4O33yTMHorexqGIHtkD1a7Sq5AnG1jsB7zmMCiXVMODggGaEQ+pZ062Hgs71miezYcV5QE5h1BBxb5xKdKoJT821MhfliKPwI+lWNUTVo7PvcLuzPN/4R99YVMmnElm8hgJpkbHj6FrTR1CXhRG4dr2S2yJIEu6mq6oE6rir6KkU3u8SWWg7jK5Dp/ySgZTzOrqatmToyYXimTPzXNy0GKVV3ARFN8Z4W6Fz9dd/yVSM8ve35YdQKAdXts2ySSJzdoHORdFn+cX/g6+7wfdLC+25JAAB0k2e6IRf1Adfp7/k3QEwd8ZqX260tiPRnqmccKBNhrBf+2c5Zof0AfhbHRe8L1cR++wKtF2GDsvGqcLphjtPRmns5rPb8wqExJCLILkGy9isLpXIdXIZgLUjKVovUY4hePthmDK2QRUpO8zXbwiGp68LNgq/F+WA+d64nTtJsz6WcGKO0FA6vmyQj4tofyZaYi5qQ0JDN5h2C0iugjhFM0xVNyIOu7htr455ypt4Cn0AX0v/B37UW8jz5BhSX3kPmlInpW1LDz8DEMpWk+88cOExc1N0/iRMaXI6GvbqD9FB0QNR8NLZC9alQ9/oELuxVX9QwdC/m7WPOQgAaqRK3HsRx5cjSS8jkV4uYekIiv8bYqoLWLF/IVdfN7bvzxGd2JZe/g6lXKLgN6sNDEBVf4l2LI9NU0IWymd7agfhvLwZQaBGaq1mwZz87pIU5UGkSsf5s6qspx+FJd4jD2JdIyEgd7fTRBXJaLy2urOYhLLOoRgOCzMR6src6tiWrVj6sr9gSCb2lDIcjfqPzJqBwHwP3+k9HW8PQSOyUmWMLqcyuSO8yXGnephFajZoBZSSb5Ml1PUXdX+507LbgOsENDrzXLJ8VozIUVK/1E98MO8Q03VUgYymVHSOr23fay7gsiOZ9aFzo2Nak4MvBCePkm/4b33lakqj8sYUUIwBGxjYGlRm71KpqjQeK9baoHZBlyWXGPurvmIb/qOqc5esoWYDkLeTMUrdQC5tJJyNoiU6rfthpvwR8zW2TSkYiUz2+dJpxfUO1PniI9bbd5rZOuZJCwE41flhVSg81kRdTlRbaGLsrgYEppkRwxGVr9kxA2OwJaBW7z4Kz6rsYrLpyvlF5aPoDlhOmoDs/ouZSRIrDCArWtozdYcHJtnRkeMYY3uMLFUN4dKDg6el+1bbadgRtlpI+jLG13N3NlDGUc5dn8jIHUF8xdOg7MpOlhhRRNzBl0fTYfZENeMk2muosbIuSM1u4NCcOsWwsyGv7J6ljMM4X3Ar7u8Hwph4+cctdFeRDQG9nU6hG5qL6UYz9DF0/O2VgjzmYBdpUKB5FLsiXl2m5xiefcRcKppAE7rsXaN+64iNZvRwYBcI65IbOFHmPqaKxd2qK85EFJwdKzYkBToWRTCCzrHJclC+oxSPs96RJfoslJy0Ey6hgoUrTg01ZSNPRJlV1cZXXvjp5tV2bkPvP8dK4RyqSfrCGYx5K56Qq/qvHzi/3L1hIUPUpi4vBdSZ+hdzDWsc2B/LQwlGHYmv7lSNwWRkLDaVgg4wsrqRLsiNFDnC+k4i64Dyi7AgsGatTLjKKPut8VlmvcSP1Lz45BtsJfwUQXfoEMf7P1UXSCAK0+vHl3k/DM9zGMdSDIjGphfRbYG6LJBsJ0pOsTC+59hEcewf79tIVoDEPV+O/sbvN6msG0C1gkoLF8bnpTAzqIaz3rf9jXC/S7/qJjesXCI09UxQWXlNlqRPeLCBaTXH1/24NVxa01D9R6JNouFb2VNXqds4b3GZimgdIYjkksJixbWG+y9lGojbyHcCGLg1vGoZs7GT9TpfESrvp/Fq2RCAb51O6qD7CrhdDXAurYelUQLOLYsKt0bEbkFOWM2JCXw+QIlCEYolp2EFIrXI4tOEQQnLW32b1K0olyiqKcVbpxe0abO7cggeKV7iWcpC8Ba7vbGXc/+/RupJIVbyvZljDejuDuJPCVb50qrZmUfVlf7mo4vPiDMLs/jdALhi+u7C8GD+fObao2mtTOqZcnZDDexSL7T3HKdMr7LOw1tFMgan7VXgCeqRSGrba0wtFVBOEGjr1oXtV0gIfxiuos2OzkkH+1vYg6iqM6LHllKNdqLPN1EsYAXRGVpy+WiC3rWY7YHsGBYBT/6hvgwJS8nCWmnoAp6q32r85IoWLLgZ6Hqbml2mSXTcplztklTcRQ2ydgGnLm27XGtnuxBUI96uDh+dxLgldntDS1h2I7HF5lfccp4XhTGOc3o3Ax8SJPq6ptjv5noG0GfBvP0h/NEf6XSg1Q0eRtNeJN9+4oC1Wt3Sz6y55qo3dAu89/vYzsUyORJi9RYvfWupLe3BBko5YOcmvK6xxWsx+rptIt+JKn3gsvucGYv/145BrbxhJuIZ8qNkdpRlOg30U6P88avZh82104oXvJVqI4CocGeWkEcI3ART65+h4DQEF9lOwQavKrhm+Janv6fsP5NVLI7T/7xvADa5Yh2eVZo8j++r3PUOmNMAMtaj01qqTHZxoaSbGXbJP/m8UgY2I7HJuZ+zwYETEJ+KmIeRufQ75ITPA/AW2cbrLctJ+T8g2zrH63GJ91j2DuLpDb165r+7Bqmv5sQ+tfYQ/fKQUQm7ZWSunJJ19/a0NTROUPnmOIN5Jo+++I3GgcAYQphVj4K+krIxOpg440t0JXS5dq6oy2XK6XCCyb4IyeGsewKzVn20AL1bX+myIO0ZTfSgXyNEMrB3YhJLcgyU5k49IMq4X1KMmxbirMdyZxgfGqRzREgZJV+izEY3NgxJIRlw14GZnEUPfkPpRBJFGO/PM4509EKDBnuO79/o/UfThai7+c4HWhUQXM82mJwmyGaNGQuj3UN1YYX3koVb9ffdfZJ+IDD2yG1Mw2JOASG7B7jtksIHLS4eS/fOeai5ulYLRzyGo7NkVEObSdeXpg/+cq69UYz713EPWoHdmWMVEzDK9qdMJrLneO4Bemz/xMibkYoqLZ/3VTdATtVMfXDga3kBpE7PqRl3qZICvULK67p+qOx9WH0JwhfTaRF2jMxDZHbQvR9g3koLfW+woQQvOFKt/7muroiIu9ZTZykx/g5NOcSTbRlS6D/BvuE3wcmnuF5BfgJpl7uwlyhP9NpoHgsj8NQTxKAog2wyGnISZ988tq70dnYGSqLOklLQoeMdgKc6BYhToNB3tLQbZWv9B50thI23PFOIcLKjDLxtj/4KH0f3dqvQS8BXAN+sOqh69wg4hiADNWVjE44VmWRO88lSSlVeLyJUQnvR0JbuWEzJSC8POVg2fZvMeEuHxjVMLG7rizVsSxiJIdmE31SGd6S1espysEFYu2wnQO2HHP/4Y/uF4CyZYtus6apuuE0FmRPMJ1LZZn82a/NvKF06UQc2OcLfIeiAFRsv0kb9p7mneAc7FGeVfgF6QTCeYpk4bwcMAkwU+mI8if95BwLPlr6LDNswfOE/Ypyo5brXvLihM659XBa/mewnTmnZqyMOeV4SjOuTQKm8OIB7v7D6MPKTWx6j34hb4L9W1tuj4wXib/MxSBylnjs1AS1yIayRPFxmWw2FsxDjUIftsfUP9JXn+7hq1XlPkuXqo1s739jC4gFS6CYuzeS1Y7qvqxGrSIqqIqBY2EHSCLP7rR9J7xOEVQc4RejhTMlmX0KKimCv6PIi5j0ua+j8VmB+5sOI3D0/WjNdwyp4lVUHP1/M+2i01REE0wrctW4dGTYGULbZED4YOTqfGrqBzn5sXrbWqVTS3B2oMxU45NBZJMdWHwgZuKKhdghIJrZHOaaZ8e6xt31Ehw6otgHuiLrXGCl67ZB2Twez3FOMt6L6vAWW2Tq3LV6XLHCQ2zTtx59TJMQgkWxF6tzw4+5MQndjiIZIvYiioe76UiX3UzCdI8GKM3dVsyZYXan/R1i3YGmPeLba99wjMyMz8e+GuBMIys6MoKq97SfdWsQ8hzFkfD4ST/+gAvURjc7mD7/rf8fpriykG36/DO0Xw/8fB5wJ7yWTd0fBCuvkZh68RTeqmou0yvMLVj0WJbyU5VqY+jM51sg/iK58lS/Fza2UtdJIrP/LfcvFSTQlOUsn6JiZMIHXCdLDvlJ8loPHAg5/vjz8N/CJkOS1Zd7tkJMv2sZuk6i70seQQSXiXOXOUqQXYkLn54E9WZrp0zovGoLtoxO8xW/Del0gyWmPqXYNg8ueHXHXe0lkkQIenhhw6VXNBS01XXAXn7jP1/gPXNH9dS6qtPgCAYaee9WVUZ1JNQ1k08f2EDYpQEx4pVVOVUXpUhrKh1s3c85zn45LaXZhW02uTWWFYcXjLcqQp53XUGEgUzMuoA8UbTY1u1ednyhJqm6u1jN/w8ASXAkS7BdZkalKlN4HBstu+u2XzP9MS/JRYzCHfIC1MSlGuxFRKnCbAjQOUhjiSPPJFaAwCGkwAM7W4wXy/7w9FUJovB5WTju9cmLZgpwXa7STaxTxOMkP9uXTj6GjXgjQZIdSZ6BhuVggtjeC4ZWclIu12L1BUNB6bVp6B9iSUSx2+F9GU/i5DYVYVsk1caOedyg7Rnr9dB9l94omF3CjwhkmttSrNvsBaOlzD6Gts+7InO9K0JswiD5Cp3SmYJzrm4+ymf3DkZ33K5c/b2j8i6o6rtQYgSSj1kX70+wsSPIPNU70hDghTwRTWvCsbF63lDowIR/00HinIvoLcqGJzefbvqv0qGVMOigTlnKX36vuyAKgyejKGHghVfglsOO08N7NtEIrl1Xjjay8vajDwe3VYAmvxfQP9TOZ9BbEIkmxDFyzl6bscfBBWuPy4Wrjpr581iir1niELv/uu7+skkg8geWm1Kjq7HtWgLTRKa4tYa7JKSHMfbdIArrGsstrFZ5AjaN4o0gYlGVmfUfDQ36vbgcGdt413L0HJZzXcEPK7KWIHOowLdJcttqIrlGpCM7nG4yC+07Cp24PToRzVS3ELj3hM3SLk45VpOr8VaVaGSEhkfuaxH64GIY9N8Yj112qtoke2oSIMTK6e0Dg9tjEl2dJ6A360FR5eDuu8ygYUwJXhe2znoyKxga+RHCVf5tJfLlDwitQFTzOn9WSPQWx2Zg+bZQuXHc4p+IMD6GxLCfjYF9S5JYfa91rhmGQv8QEcJNs40d9SkcwJl7bBmpEovteQyeflTHM2cJzH049SPaUDeh7GsbgsE85IYlgNJEDTH0IKRVAq/9OC/x+Ve+lQBmfE9R1KlZbGRaTxs2S3+gborr349kaSRNgkiB0WPfEHVarMJVqe/WWnYF9mapAyN6dVLNN86P+99kbRssgb9tDT7PIqP8knTt5mC+/uGSg9xTkmdhg/MCX6XeddOqArjN1V1pRT/6WDCPqud3XiqnWdN48xnAfEa57Z6wfMZz2HVENBVsXcWE3Jo0Z/PXAZ8l3TaTvwxEzSSSHUv6hc2HiJD7yGwfm9jZmuZ0ZaSQ1fCFC2ldxvdhylyjnCq6DIgbKG6DE+hh/MZMCaTVuLENGfmvpGYqlspq7YeQERa5sQV5l3K9tusfNb+WJQTP1rA4APUL1NR9pdWB/qX5iBflKkZx7Rj6ARWKW6MNoOjtNS0nm8fcsBjd4xqAOtVQ3wuv1saz30YtKx5gXCmqyU4oatzPkPnO0eejqMWFyOUJRXXVc22Q56Mwj+AIymQE5DakOoDdEvfd6LxFRDrav2ST3Hk31ysoVnmY0taveNCMFYpL+MDjkbJqR1DL0LHR/f2Go78NPjrBjLY3JpHWFiD5iIC3FY8PziX+2VdelHMOSAwleHNLvCrIBAr3L8Z/gpVtA6SKl5d2QKXw5D711rpqSfLMa3b7gei9SWTVhuw9BJeWfuNdM4u5ESHJmtp0sTW6vT2eeR5ZUyHPyfDvIJn1RBJvIEU8jHmsmThI98RAlMZdt+I8pcJ67sciLmnaYCxetbJLWD5z2EPTYpntbCkLyXQ7nSFrhK6xBHJKFvXk+ZT96kCaLSX1oODPmcwxjGFkItzPmk3a+wlUssU9OtccYY5WiVcDjknncX7bg9LK3yD36f3WRXXbf1Bh9qHGM2CILcCnHvN4qbkcivelVO3Q4QXssseNHRG8ysT5tVIbnXc+A+hOs9pkgQ4kJqorNreqEDoHovrwcgsjSpc8i/dvlJU5il/rnUvjz8zUl3mFtofDZyQOrdiV4QfVhzvhSPfU/TuZ5bTbw89mnqz+NIKhIt2lip123GrA/p2RDQIG2wlBKqI/EBwbijTbZ+mGElUNLp//1OIVfJBgP1QZfcZIrYEwYS5id/gOEnpKiz/W59cTw/VKcNe2SrvFoBChtjFwY3qNsfnpxWLZq57f6mvuq57aHrLwHpdXlv2SPiOlTKQLtEmHvi9SUpKUsutIXYEHcvt75dM0nWGj6w0AmDaZU94kbh9R4m1wCeg27nEDHV5rzEjoXYTsZjSQT1CgSAQSdbx5lK1id+eZzteaIIkakTYpId40OVBbLpj7Pfs08n12R4vlZdjVGpjpa8NnVLdnHbjiyCWJUDJdlI86dEqRlrY/W6r7fc7MVJwYuHGM/s2cgITrVQu4cTkIhcqYmnkbiQSzqnQ95cICbPkYM2qkJDTSeslTuGpPYQjalbFDMz074GBkr7yorVDAzfflvMlWT+ZT0mTKmKwNQep1K1qc/Xw6/2PmNP5VZDlOFWvH1yBowp2aH9jusw5VcDfjxz/OaHZFi8cG7Rqfr2OPfh1x+GuF/lxLbVgQ21fqTdDgGqJ4f0pd0A80L3ZaAHsYrdSdQFWhSHsNzxE3FSic2HVz/fntzgx+2n9SRuPpPCrHtPRMgCkV3PUebILAqq2E8cCYh2SNtCe2sRVSiphXvnRV4uDs+0SjRLim/GXJejqxNw0wTdQ+rMXKtR2pregz5jz8PoN+I2y0RPWR0WYg6a2nS8DMRMoIcLQLU+maf4R6UIuts3TEoXOuPyFnIRgLqr9J6oqZQvJ0j2oH6Xgaq6mrDvfJg1tWtMPh0vVpIN1Knh9SLoKfT5CGPPcpFhqMWR/usUcFX1+FcnXDiZERES+oOlhM9WjoC85rYcDkn2fcC64We5vy/dDego6kv05CI1dK8pv9FQ6qHNg0wqVD1VtwlOMv7F4eOwqld68C16GiGoPp+wD5zNaqRAoBbYvVneTFEL80cQyhsZqTpLONc20u/7xAAApECiVckJVAzLGPaTeQCIT+x+FBm8yDDZHJ6tOixiiPJkzeuwrvhEhXGscMEwrvTBgHfVkpNGN6vDQtIebhYtS1JxW04q8UKyw833NZpEBQKUT0s0W5WfjJOxPJ5zP9nqv/CboGCzZrVC1PoEKL1KGt+Ilr/X7BqY+1xjLlpb7CT3ftCGmqzNCkV3wvq1MAlDy/hPTK8LQw9LunbgWEFeRiYRCwRX/5zO2dsjcf3AlZqrlQM1e6ravSIhVwuG74CrGWwBrMbsbrkHgl/60DR3Uxdpek0NKS9WAW40uwucHrACZg7Pj1SN4yuHAepIsd0fCL25R/6Zo93IQJsq7r7azUyCzoxir9HUkGvmc5BUb9TIlm1oehQPcX8lVzpgwKVF++lVXAyIR5Fjb/a7fAoJJpSSiM6Y42spouxdhSsbeMkZCzigTokIbf406SBdjo6So2q1wIQNUBhPHZRQsjVKO57nIVX0xUT9llYbffiW1g7lyflNxrVsdNi0DY0UwYfT4b42fF9/2Mk/aTznFlFUtW2mG1IfU4B7WnkWwQI9zGia68eDGXsUiLzVu/q43KcrKhPdyWtHZTgg4FZAd2NpfeiyVYgEaV3XinvwslfCqfgFXJtQLgUJ4A2Wuz/binQhUFcXuXrUiQlC2Qwebult7Ii+UF/gHExcn/UT5PpsxPPZfaHLmjxG9nGdUO1BpXEVF9/slarIUAY3h7OjQn67mwXCXv65SA8b+oZmMizAe4OhdVy2dvAY6/Bd4MI1p+avyozVsm/SjVnx7wft8xoNsCRZ33t6PGhPi95QANKYXWAX4ft/6adCl4xCj3chsakgaP/v2tnbqejsghaLFGNcWsCHVcE1OVF6jo9Kgs8Qss8qOGdj6ERiWYdfvLpSbo8FvpU9nbeMA5+I7oPNUF4Xra0DMoyu0yzcvLKVuqLjH7Nll7StzLuXMd7ZWf3WGgSpUBlmFbeTBCH4MuNeXk/nmgExPIorFmAIBKKa9scMqAvnvSg0iWXiJrnHux4RCekzutaCZgsHCl5lLeL7NoONe5BQ90RBns4UZ+bwHJ8PERx5R6dD+1HFLd1Yt60yfHJZTLVkXAF0EeucUPTJcy2rzhPPnHdGrbTFc70XDWsfC9XSpLu1PaxKEs3i4udw62/uyKN2+Ap56lqon7qy9Jbk4SPok/WxcgopwlNSzKaalituHwPmfrtFNkcMgiJyBmWMAWYx7x/iTq8rDZ9e2buabxJ5xY5e+vqUKvmLT+kWr8IVFbsAOE2iaIVunegSsykrWIxjvso/2Cx8OVSzRy245UCVbO+bDaK8FK+S/jqV1Qm0e8RQ+O1HvVEV4NMUApHQmRK/uUoI/R+i4MAaxUZ67TJ/Ge+G7t8TQQVyBV1SIXe4J1vVJ6ejlYaSgGLaHJYozPmUqzcXs2wdjxnXJizyiYgC+NDfKBfDyJj/Rbq1eEo1TRZR+DsFVjjXCMB2mAwosCreZnaWD7CpQ8ads7KIe50qFTlvPZI3PWydCYfeOjx+FpDgTaZkNGfVTe0TW+LGTSlQhnG22KrJ0tBI+lnb/1JG2JaHO2yhhdMNtepElolaRRdF7s65gzYFyFkFM7si0jbXjn5LD6Jy9R9tWcoZqKCvBeCCru8/XrgugZ47jFgel4jwc8QbE3bqaGSWSLHRAhIpJn2G8DSnvoKXUPLrwssg41EAII6BgGKOawlezWlSIn/kQ1exF8INfoGzA3qvP/0vCkoTVMlzwSIPaXxw9y7yA7jVJpSs5yO4UBa6GMMyXlwIA/+mxnirX0x3VELf9fKSH55Ue/QZPoZi4zxcYuhsd207zU5gGiYsqemopsy9wOgL2D8m+T8w6Agodlytijj9LxM3w1UwfdqvICy9NSNZwHDXpdYRuC4E8ftfTqlFB5aGwL79PDLrnGrF5RqGS5hByLS/NA2dF6tAuTbREPuStUzxik2soVbJ8tw0aGmEK8m0ZIkrbepQuHqLcR7d4naDilpXfSLqEydIBRhXe/N5KetsUZykCilvlHUspwXVSU5xTvpUiMKnSw9JjWqBJIJpKGKLgPcsR5p/EDpl3o0x0SP9Jk0LHaUcNg1rLDAcPeb9bu3jBCGbpUo3QBM2XRsNGHPnGY9cP11KV8f/HNt0NpQQDmeNmgCPjV2LVwgwchsrlrtaqWRnFQ/3KHL2O2W8SMAURQWzQuuVS8t7QvWiR/OJSuPDRYSb0jSzyN/Pl9QiczTm+faoADv1aNSHQ4ieOrw8GKb2+7irJ3SmfjyGf7I2uftkIb0+Fd0fLgiKkv5BN/npJ4SkAIz/t9jved+ABefZeFwlIjzkwSzSUJRkNqVE4JCMflkZEez4RFY2m4Ba5NK3qBl81iXYnjKL9JOGtykjPYu2oOpLeefBBXf0LKNuyyMssdaiKRnGmpsbuXEt6qHtXDj1uR2SxXAtc9TCA1qZdNOFBEGyzqV7JNdQng2yZKD+FY+GrdewWlRRRrhP6mCrG2MOwtE28HQJo9XrKiQjBMgvIddTyw9tpYTtz8XbRAitw2CkADk0BfGH0Se1PkSqApsZogJpfgYs75F94PK6qdcBEHpdODv7mmh3THcqMNmB+bRU8SMZonpZBs1c4kG46gK5uUJtya5RoVR5m0VTDqAsOeDmGNlsUiObMwrpD8OSnmrPy/hmt5ifEUFQRpYU3QvhYzz8Xo2M0dv2zvCWkug2FyNH5bYUZ2TC7U/kU1Ku09GBmLJuGoM1rSsDSup9zEE0EJgsaj6aNhVhi8NKmYLUyXm1i4zp4m2GnMdvtWr+RRDCtEQe/yarmpFJnAix5i3sN+umZiwNLsig3PPu6BtXTTZMZoDYCU+FZDLrzO9jvFDsyxwEkgrqpnvFBGa8n6DXlqRHzaCbH8jaFBwtqIIv9ixhr0BMgN8rwFHPyHsYcidPVo7h8+QsUAh09tJlyjUxFEg9Pw+Zg5vpBrSX2S+fUoeM9QEHGRVwUlmA0nKgiogN+hPG1a43dV0qQS6ayL4F4HhnyXHooYqqjVJbBJ+L1Vj6EEyvysZOak1S5JUlwXwtKLML0OYNJ+c9iPnJvxjq0BklIzR3PSVfIlQ2HnQjcnwULyc7WFgKL4u+iXxLiO8Au8ZnNkKzNazqHgRe/ofuOaG67a8JHxL/0KdB8TncJWPUJmkPL3c8eSH6SQt/hzn2twFl4qNeKogUOQyRcr3pySpgnwIN6u4ezTutDgNF7WjoAEw5wxiSJUEkoztrAPuIBUfI1bt4phZNqrniuN8yF3mu8cftbrdiA5sV2j4+/SDAeMMXSi2zkPBdN07jg0y0EWX8N2fEntoCJhPzRZDo1OhJIDIPZ/u6GlORn/cg9MjXoP0vZpY0KhYOSFXRhcjRD1DPxlCsTIOCjr9IljVqavWIyQtIbi5+ao3vhFtyq7R8Io4kMqX6cD7aYOl1mFLmXBd5xMylDf+6LAYNbDwBtgU2v65W2O9xWd0HK8RTOCxCsdqppOy4xlb0FX2srBA7EKfdbhI0cZ0Bamp5fxQySgM6ZghCkyEzznzTLrXbi50DWe5EShWhmIbDXjyY18P3O5cf4dSCpXEU1gJ9zk8oBUimOPwnMLvse6Rm5PnAc1nMOtqmyp8uLjRDme9Lw5n3fsuYbYb65h5j3/B7OQkZRczkBNMMWis3YP4+cmEBENg4wyB250jBSrJ52ec+NwQ0vTIpoI2JQeihGPn2UgEDnofvb1a09Gf8pbcx9KesToUtG3VfeKvKwK0ScpOLuxBb0aHWPIFyra/Iu1g4N5HHljMxEBVdibW2wvKRR4sCMQytKaj8GWmpGVpf6/mLMtiel0+uGiVAiG1drDCWHkp2p765MtoJAiryECjAb2CkfFc6GreniNpQO05X8StcbRM1GZrwArIkj+xIjy+JWLmJ8vKZ87lsWaMSOWCR7ws0yOzuBzIHcH3L4VKWgPd3Y6w5PbXpI++ocn2nC/EEgOLmiq+X15oVjCs+TgCdjAHgOkMtsCvyca+Siw2yfUK4lOz951rv5qKzUxrJs0WOMmhyjHLu6pF3LDgBG/It/KTWEXW8+o/0J9DaIzHRCubhalclLU/wlmt43Wac0ifJz+7+lc0XuM2/YEsPDe6otLDD9KMMDG9IIKnBNLsbNqr0K83t3duRQ9ndOgF+7XpewSYGTjcNrHpZeWogAb+gU5KG5a7tnMqithwKMO6wgGmpcXGhRIqKHgifQh8+PSRNdYvCm/awhar7pqnM6XNhDqHmooMKm6fC3EqnO6pmXkUQrFrDPlZF83YiVBNRGtiAa1bJx0re4ysGaxuq+Bb40hIBrBkMdgNJFfU781nvyoPKzOTsvGzXekWlt39Z6kU35zzoubfipoYQVKm9Ku9woUi+crpjxrcvyTfVXhl8NQAzuIBmCF90pDavlCc9PbZGWKp9g+zkbCWUbOgzo0jSF0hpIQDNVYr6G5JLiXRtiHEEp87XLbA5BsS4aTz9KVRxDYWIzxUp66Ux9wzseBgWszE3qDzko1fzMocbLew/aNzurW/j6zeBGgv/bNOG9blKgHcmnlialBqMpXHH2P1Va/oFr0ogf5r9vX45IEk3sutT0t3fH8YWtrMpXj+31721MUd6y+fknkkL/ZaSA50b/9xVrvfLmbvw9n4+xi+mafWxz//B3RFJHh2KWrIuBSmotsScTcS1z3woO5dp8Gz57WmpxGkQApzB92mp8XprP6AaRJpmv4UXyXPYu7jwiMgdN+SyY1DACaGdLFOFlIXucUxMjVxPH4IekZAP8GFQ1nuprlSEvJDIzM+BoZsgp9z4XjHfnnv6JVfe0uZoTHCLR4enDvSSjw9KLWCprOApQlIG1acQvg2jgoUQBP3UWvAfIS7p+PmffZ4BFAzP9aNqW7s5bQ8casKH8txFbZbAU6m+P4i2jN2wWrB2hvCzVrCqLLfkqGuP8RkU0DRY2X4oQuTIPeLK6Yp6kdZPTFuZ6bQtqjh9dthdsMwBgPxKUL9l4Mnp3L3GOvaT5BL3TzbeVO6Let5EwkWYqXidUR0fXw32gow3/mT7io6f+lBVSQOhNj/clZBdKGq4IKSXP/45f+OFEz3F6ng38OHPqkbdqeFQwznEy4EKIDemHGEtpCyQOahaYScNm+Zx2Y1BtpPM9W538VSF2WfYcG7+Cz7L2JE2kr/ZsZTD0+29yXMUBIgW+R55fbkz9+q+J7BlxQ7FOhYZHMZGEREpCkZH11DJZW7/1CRQQd/9F2zXrlPsYruh5+TswuH4EIDKpK/WV7C6hmHF3ifaeVGhMdDo5a/9ftenz53MNFWqlDqoOeApP5FNLl4/Z46NVtvoYS5PzSxN5KQrH4fj8CdVrZGtxnkW795bhF6fqBz+JFgBoIW/Pemx0xOT3nBCHcV3VZtxTesFQwzSZ4VHLdln6y82P8fYgnB8LTb7RjJRPxiyLpP9fdZIA9gCYiiDUyEjw5bSvk/cbh9Sul8N7Q5bGHjvTeQtc3gOyhrwe5ZBFFXZD7QX5BnkObNpSDZ4TN3zpxEJom1l3HcximoGOiJRsi1wKbsPn4Dj+8dMns+59Ad4MAqVM49quoFvn+aZ0uoUIxV7RIKgUQ/YcZ61lEEUveGTYcswjhrjTtXKcG4L0Dw+ShA4MCoP9mCbKb2DPglk4n6NfztxEjqewfkVn3QR+unIDzjhrLXK42OAzPTgsGDlRup1jGaHz92PUm17ImlY3Yz9XNPGvLWlxF0XuU2YRU9gEZC7FSpy3LjefG7OMUT6VFNTyWD4CAR9D0IDBpZGBs8EmqRuH/4OpajRo2OrSq0USgz6y5qyt8jh5eQpXqSSOi7sqcPwAtQ5SwDpll1PdqSG1MqTmwdZbhlAoqLVOdtoQqu0hgYhje7JcHtDGdvaJqxKpdCPmi1wF0/fffMJC8eUq+5LfZ333exYNomJGpmeFdVMvPyGQr0/VFJYOQQwO+uBvrKKUt6gz/K5vxBgPpZMzKixzOpiTpHi3QJLyrgO27aaUZFlXHNYoZGTwgvjmFYUddkn5rjwX/8j1aBSNN2H9kM1X3jfzTB3dk0tS2t82UFDeAVwqBv5lObDHX5qM7IGLbI3Vu7dRjYF0Tf3jMVhqEo2DkSYFiv6VqbaDdGtvxmpF0YEe/QdaLw4fO3igLZ/Qv+osM0H1Ppl8+zFO/6qCrl2C192ABzoVJjlARTK1ZlMAEaGtAoMOzaEI27+/VOHtAF4siJ/TeOrUH0NHJ3V2Qf3XwvWzoVKWGlbwiv0DAzY5ZR5aezUZxzAPJIcAgOqvToADDh7mSVCcgNSsg56YiMO5pzQJn5eNxoNjaWAi/nt3V1B+dQckfW8qKZFegsyqCxIb9Q96SdLMNAnMYY+0QfHCTXMdnjlerFcpFRwiEeb+qTppzugKaBlyOqWriIhFdyONjPpWgjgZT3mHjRT45iuT0T6V6ekMqCRvWfr0gtvSxgFDmvau4mBNSnrCm79cu8Kv2suf9M1M6n2ZosoEA5ci90K2boxw9Fn6sW7AyYpw/xPjWnsdMt7pKijui5Sgavhj4tkGAyiZu/tiOULHc8Fzr/vpzcsZtnv4vm6nGcieVB7EIEw6GjrNV71IipSzFoyBwhrGAupRQLLhTq+V7lGDFkNXZgBhd/E//2Ei1LHpscszwf5CdhIuJVoo4gEbPW9xPrtrQq5LdDf4xqgROF/xG2ULOYitNHjTUQscwoBgAm4DfIS4XKRWQ892TadNJJcF5ixhcwURRF4PTCQ5RftW9PWJ6d+2GqDr7Ud9Vu/JgktCSNJ22+jDP6hbwXjkX0mM+k2eudKUe4kQtgfSV/8sOBy8KHt/ie+7vr+nCj1TBGossMeZNUlnfsW7RCeiDVycRjhZpjMc8TdvqWrw4g+OteKDPIy7Eg4oUmA38R6eKRpmapf6gOwxfpUowENPGHcaf9+qgnOxdG8DAAXD8oCk6mVJxsIjH9RK/8C79Hc7UAlhr/6oaL7olqMPKpbfnY3gqXMrehK+EZ4E0cYq6u9bq1O5JPA0SOTy6KQpFeyLB8bkzL8AkDXskwBXnyp2JmG3f7IkBUvQ/9P17ARjzbTQwsSXcLOeCllqP400zpIgFQ9JV/K2qzX0Kl6xawBSKZdZ81HKO6Q7SbhcVe2HRx+XS9VmHdLaOB4119ZEciMopnUAyGvxgGl6tFmtazvrbbeYdeheX//pt9jrnACMxnD9zARJWIoD4ncuNq2INscjr6/Yoh+17RT25vG3FtAxJa3+oLJpXSls8PFTI0fjpKQa8Yt5RO96tBhHcSba9SEjvvzxVcw9hQ6wczg8zEYiULNF2YC2DnUHis93OjgGgKVrQ8m84JSyTRv5Uf71N1FBC08jp/dGltyqUxYZpCNSze5vBDSHCtP7Qspk/52bKqGfMtniuE/RCQsbwjYRTNi1RMfIDHlbBP0TeOP1s5CDR9nrk7xQM08XBf4Ovjeur02yyX6+sHwb00rvQVO6zK+WVnCG28AKOCcLdQcw/Xum0+XSuEEHXphjiKq/wG7JEMBJwAU0VZmFdh8jgv/G5lInetYKB0azbcE/vCtHAv6HuebpBjXpnlM67VS9J4032e5epqV59iCX+QTiXQ+BBDyWmDGpYgYjsNWzWhxlNVQZ8tJbtGRiesZgS9xj60hkQyfOc22KTVcXvv9F60XKHIuTQcXaEvIh0P04onGoIQ7/vqSlJh3EKkbiq5/O1JJbhjbFWcVBd+EzhawJLAj0Bhr9ybS9dAt8X1npshudBbs9XZSWgDMXp5dZHTvVFipW90eTZh9/dgi3qu0FkFdCfueykphko5sjHJoyM5aV1gtYDb7SqIcVXT1RHksWzTAmsU/M6BniAWW741LfUUZq7f6KwtvXHbivK9XkVaqSl5Vuhnl0hieXMPEGDSKdOekahgw5yWLDRCJTtZqvRWRSwRUkNeDrPw5oBsY/tiNAlV821Cth2lTmPKSgaoXX8Enzq3AkMfYey/DsZyWrul3/rvT2cgtHnDpZWBHJusiuHV4EIB8ZH9+v4XKD3cox7jIpbuQaqYEgKAkr8v1aXTHPo9Qvm+gbVHychwYo/SsMHZP/Hq3giw+CV/1JWD+GJJ2qujDsej+JuC5lX6cP7pG8CTWKZQVHOGZcpW6BvkbChJELOp1QHybDrrnLjCaySLydIQ++WwmmIw1vvvwOUTi02Ga1kfspmEDAdaU2XBroo36Vz1sL5oHCxgwFllaPf831qa9Ezfe4XDvsCd03RlavFI0tN8QEP4+GA4qzQIt1h4zoe5+DzlxBO/ZaAs3QD6/N5bkPMNujLsdhT1wFqTsnkAEwGodKqtyEGmHgJafORMfP10PBZmzqNIrFKu8j7dMKRfPGag5658iX3BIjA2etZLOklXJg0L3Nd93EmrB8AQHDb8Y9gzpLUCUGN4kyA+5PTM8Mq6kv5ytQdV6GQwelwhRszBvzkNT63z5z8MOXEwKYZQvlZ4N4vPNJS8LWHw8sxwjn1AqD/7LIm+lFFvnDbO6NEabsVQYIGjWvi6pIPm84CrpjCKZbqi9KhDpm7q/rh4P7lVpNcHeLGNW8b/2Bwue1AHHm3kTuNXEiEf8vzUVkX0h9v1WNrF8SiKHKsAkYCa3Upn4xPOFBLNNdC312yQPYK7IyxtrgRKbUx8Uoc4XXc9shiPPnkfx1s2mS+OSBEvd21JI7f3gccbUUe6v6aIp4U/0zYluFrdb8dRZKTY6IFz3WWbT/FE5CgaZtIRKwTWhqonrrKBn51SR7d5e9c8n7UJkgxf9uvHazByR1KQZzCGpNANtDxDdwWYYjei9NfqsUVN54t8eLkZxI8QH/qnvUPq4rESTqqkuMSaPMXCpGOKjzDwkpOg0tQhyOevSL3cQ3jlYww1Ufas2+LC51sKTRRkYVtfMpWA119U1UiRXfxOgRN6JWWLYhH59zxJX7rrBkAVd9voETPzTBZb6Xi5rPV8rhjrJ/3XvBsV8J1/N9GvU79gg0EhCgPv7xnPsN5rcliDb7/Q+X+KGBUGJnsuKL2T7LMjCF7ORoUGibR/jwonXQzJSSum0Iu/8zOGCoV9ydgrsVdLFwzvdwJkOhSp5wMuVTQc/GVAeUFNDw+9/3mC02mPBQ+z3a1VGUGkrTNjExItUcWIinL7h8g7r7vgUuRPs8L3rU1v8SD2OLRQZquHZDkUm6NbYJzrvp3glLa1CIkHrraKmTIYh3KvFjOzNt2nctOJ0E6+ukqNjBEvyckuhryPcU6iNi8lK6vNtqu/84zeVKOJlCKLXF1mGiX9pksXAEJVHO3l3Oo7K19zDMJKtt7bsHVZy1I/ozJAIQzIpw/7k+sfTAxBRKTKbzf5RZQGrZFKT1Cca3ypLGr7nN8KiYbakeX966AOoEqgNL3JIKKP517ZdMQ8spH9TMEe0I69UGL2drSyxG+NwsxvP5A6CchVxc7aAiwLKGdqZnaGk0wMkvdJ1ZJQAsVaVg6+PGjvVVcBuHQ0KrgH3Sz2kBZ7GGZZseDCqCB8KBYt9R9JxP93q4rnAMLOPgutpbHcoDEHmy8mnRen5mIpGrpiEiMOmWlmLLbWgmRa1VtUrRulkTxn0nLcoze/qrko/gcYtouLoA7J7ovaxgz1HmhZltTwGIrGMumfFXeuro09yU73/lauhmUV+HIYeBc482zs70CSnqg01PaeTh33sZVvftCqM6OGQQ3I7+bupBvlPb2JaB6GLz7++Q66/LgAQ0tBMQpYe804WOMtQSgHolOFUbw9AygFXNFKGRz0TBUXXUpC69WR63jQATZDFgKkTyjPBCZJHvE9AW//8E+JczXqxhrAfXbbLYH3CwY1/fGuR0YEfEiRqhi6m7W+2ujQBBAaeamRKQN9Jwr9wP5fXNT1D9fOuq6v/QAMTOQimsCmuusOGlPhjrWbyW8BnJr5oRDFui/rA8DI/ccqXcqvwUQgbLNvrGdjBaHqjmAU6cYgO2XhUlFA05Z7DZEDG6EL3H+aubFkPNlG+d3QFob0dXXzhX8YejHH6b3mVZ/0xjMc2gnyRP3Jp2/iaBezuEaVMfL5mj/lr7mjbv7QPYvHEFTHrA7uessd0gToU959yQF7ZqZiKwJBiEV5uSqvfd0MYyOctILXtBZeamUpHZx+3C5Wsa7AO+FPKKA7rRvm+7d3Ad1xQ8JdgY8C2888u6C5y7bfcbuPjkjS7UBjqScu26wRMdXJKyQXYW1h9rK3JuDhcbhgo7S81WD/27GUkibuN27kac5ObTOSKT8U5dPk3QJ911ZQo39iv02nd9yzm+/3BN7gu5fzJuXVc9Cscm7uuVKcn5MeNawe/ZPglxXIAlN0e1xo0G5KrJUpAhFMSoU3vqSGhucEonRdDEHaaJwWZt5naZjbFNxK6Vd7kDXz/Fd5syDtKEGgOwnppHBlSkbmfw0pOI5Z79AqCiBZAQCtX6ge9tcYzWI3CeEOyw+R0A+HanWS7u93lePiBFZkDmbyPuBRwo4iV5Y9dx4bhpaAfrYNMSStQAOblgEx+6xCmAp0JgTh7gZOJaAsqcYzwRJNf0x52sk+3LkQHWLmSqxSJPRbRRViaUE/n7D+FJIFtrhhVZeXR16jkB4HbCp9Zj5JEedNBHblOJNWSLdBeYlmPn8sebQKRyJm+VuMzyTtAPI1xYxrdcedd5wf6Z7CXQZfdvcTVdCUeAx70tVntsNhHVptnDuSNDuUNWoX4uGS0G1KD3xvJk4NvhT2F33ZZzu3yyFQMMLK0l5gS0pGWmh7t7BsCZjZtDwDZaXsGxkOt8PRxYmMQ31Ll7h2qv1rjgHvrJOke93V0oFrse6bs5M38ZdQ2EK65lx6wcG3rPnVgWIiFNcEoNqaKdwF6zStQe0SI2Sxn0gYoaudtxMa4XwzezDFLJqE4wC+qx6V6xCpX7BIF7cEkqAt2dLh8OuLa1sthEqQC1q82ibGdyQ3hRzaN1JWIf2M2h7zpDsU8V8wUS/bMeSAqYN1a0KPa/x9InibPCdOrcgLx3sUtRd0eu305NqVMKNYx6W5AHxYrESbS5Sza3xGH7aRM0bChmQKNTr19Vopw1d4hB2nCWB0Q/RMnszxIigTEzSZw/VYI8TvbLh2SMPVNQXYUUhJUk6y565SEddDt0ZVbMSerT5oFH1Kt9t4DokLFpBCkysdUl45Ij1uk0GSXvVoiLEXORDZMccC7W7WBoMHobmHsQyoM6MakxRdwMpVTjP2zkMT1n0vFp8I92J0BRPZMDIAgo3orodZlUeZEPASGJQ4g4Sq7akGtAaEgJYOKJeT/WzQSfyzuLsv0RRxe4rdBnyjWRsf4pJM2sq8oy9m4nAx0+tsUmoNG9MX27kkHlT5wKnYzMpKLSe+V67p3g9JDfnAqIvXzUkQDGaQ2dvdQGkTZYmKK0q+YK0oUjhIdoVkSNaQETyPtUs3qXDMxD2N9nJYWrIjcRQvteNr+Ik/YycKeMlgRa3WaazCUlWU5yX8RghPy3oLALAHm1iepVtGdRBqN1/XKD0gIYWR+AP89zEmFIKZBnJkTbSWUWO2jbYrBokYdhxqrFFA9504QjgJzqahghEKxkRdD963/yH8n3aPiUScStpZdyntNSzWZiNF8oMY9gbTQlgFnV7O1OZ5gKpecB+hrkPpsvFetKJghFLCWEBkMqW1LNgNyQQGK2HOlnmivW4WsSIwlk9xWhGYhf8DenNkitOkDHVSKIg3uXW4y/V0zzZB/iYMRoUzrsV+LkYsslC9PWRu3EVhpZ0sDywMMTRdMZ4xn1cd9yzETdZ5OYk5g+gpqUc9ooNsA9sTE1NjcvRRgY30MMYdqeFoiKkqtyxwniAayCtvw83M8s4Ldo7NMJwslVND33FP8V0lbqMhBVwBb/wMtUmuWGdoNaJhWQ++U8jFCob2sT3yPdqub5iEUCtEWTL92CL1pMeDHjA8CI/t05BNNaRG+OPOS6YGwTSf+r9LB7HgsfxUQgmpkwqjhqVhVc2r2L6NvFsii84qstDVcbv8BKCO+5NpfNiBSHfWAKmNn0pIipHezTJNgtLfjs54QzQatx1htCTaGeyWC9gL4ZzqsYXZdNmnA6jCJF5dfKskdHlD3nMmddE74bVrEr2PwBOPtIEASvIQsWvzCtELTgzVkGeJuHKUI+rOyV4RcVpEF5rADhJVYt4YlnpGxHWFBn8GhemoG5PAHSa0e1vRvdd66w0iUIDPE1C17o6pkL5zHZVQNXwrmWildRDz2Hzxz69Nwgiro0+QondbVFD4IovReiaWnNafvLYYmKaUjOlIUuTFe46jkWNN15lvIZpgCVmvMV3DmAANAiwwWVNQM1Rw77R+rcLxwf3SK3ki8EdnLUirISS/Lx6Q687ZpesaCA6lMU7iryj67pHbFCQO3abIyQ2oFxFJ9uC1V1KVNEaZ+jbqHsPkMYsTh4/mh4kH0wtv+XIS4OXEPj07rDo69WYv/P6li+5xnrw4EABLMA8L0sjW5U+yAFhd5A3TKLxHTIIGpwqRh6afsXyxxiTdx2PAo9gFHlRib2t2XS654kftfhbGx6sPC0LHqz0a1rZAUqxtWKmgeAvaxRrmfReTX16dmWqrNFLAeCoR8+mLWqj6h+mMNeUyPq8vqcETB8bc76pvFVMFX6WiGia6m/n+SgpY+6zL1/M7KGXqGmF1de3eUQdEHsggyt5tI3MXHwjStN9RiH8SSJaZFIa2EO6GTIBhMfduc9jyG0dbqk32NdvJnqcEg955FW4dNFMcY1PPxvfgqMNsodSvrEpd7liu/jWDS1IxrhS1NDEJVh59bVgOfL5lu250hR81jFhe0uG0mLvW38Muk6z3Sjz0vGAfrqCAGVZQFQ7Gbs0SbgePIjR7u09LFx24x1FhOgJUYc4sGHqzSC0QOObJvUJUR3+dbh2wb9k36+Qmcw2560Hs+zlnQMyFlNgvda8c4/qYf0nQQespQXOniqgUJLWUN25wuIDWu7noL/As2Xdv1jxhrdOkGTj6HqrQKT3jIWjYhLBxg4QjehQLCEXfEFlN+L0zY8FojuvvPb+PP+bvxFbtEgjr9ucHv/0LtHkmhDZK1FHc0lypvldB5JUzi7Z+abAWF8LHqn0bsGrgzd1LsiqA+B6Ie1Oh3LT3gV/i2+Qz7kbghhhZFrsKmgCVv91uEb3WyNW6Hh5KtpyqRPDSgRP6zGlut0sFFoSciEPXVhj0Pz5V18zH12YkbgTR82jBRhfquV/mdGAiKvjvRfy+hJ4D3FiEEINPdaTpXHmd59UIm2JBAsT01mnCdvTV1gLYf4BEl3kee/hC58d/0unrpJldDM8QOVcCao3V9quRZFV2+WpWxtoysHbTaJDQRw16C/en9G3Tv2VCkiPxnkdNWcXVrK4TFi2d0X42GpPmpvtjOqGv3bTAlG02eDyeQ+4fN9FpAqS2dF1SUd/krKcmWMH+OxrRwT5TVLatbYLwC7+DawrMYAcsbOMmbmAkVO4BLGy/7yHOSKvyxwL2TtKA85oIXNKwqU26wy0bY4C9pHGd9NlQgnFx3re9Y5q1bSdfGz0UH57N56AmA6G/yfhBpXrv3U8F1R1W0hUVzklJhGDkbpG34yCI/v5JQ/XxT0/N0pz6s+4KANQfZ3EIgToHEU+IV8wjFQst1lsdV8GoZ+9dIGaoGikiGm4KXUz4otMEQ/Qg9z4ZW1TOQzZx4dooV+OmUUo3RZRsyg/tvesk5m7UeCs9PQE60aY4HxCkFagx78CpSqZz8st8FDUSfwEy1YeNLSACMYxGfK/t0fI9Ib7TAIxfzKb98+0WctGirZYg1ABftf/yk9Ii2X76y/7NQgx+R3o3PARq8+RPjZ7KIUzWdnWhEyOyhGMsz3C9c+hNVNRptM6SDGzE9ZHhgTI25OutbuUvSyjwqelOfQL34y8f+vX0zs/cFAH8g9KdKkrTK60EZY3hTe62hH1y9DlNJ/VFImLMzrtfBx6rs7+nOijW0x+ROj2aCQksE05wcnZZFUQZG19fRvCbtVkh0eZaqd0019pd2W8mra+LW/kUlNrfcTKMuglg7PGiE5D4oXVR3Yx5b0up84UldDmC75ncUiCSBNL3X8RQoG5AdN9PJLgegFNszEVnVAXzPsRhMqupkJzwQwUulnanUCxZ4f+P9Hvq4jjGPFBe0MKhGmC94ciFu3U3Qap/OA2PUzM7E7zh3LsvALfR8maaoVsBSk2QbrhHUwWFuy1fABnbbF2SQ4ccbh1MAguicxlNb4waVohK4023bBQT6Tf3nA4pgmTF3b+IXNEZx1Bjy9uXMSST2jPnBIV09C+4gjQmjdzG09LENbMvxqcqUXL2gHRpGNis2m/Swel1v0o7wsL2AvtYYi5H7ciD3CWCY8AkF4mEZw8l8eerkMyF3ysbLZc1nGe6C/AlrVDXaW1DMVH7cT3Z21PH1BU8/Ch5FY77HPNqIW3s5rlCIrK3wd2wjRyjOOUIyH8zDxsu7IITyFY4CVOrtpzAGMJQECodx5nSLY3zL6qFOL+uZqaE/KapnXSHGv3e29Ibou1E07UVePkE3e6MbjKrGsgAh9YYpk94oMWs+ONi4cj/3IwaPgxc4XQpYms+g8seiNPT2ov26l+nUmobciUwiAKV9HVxNKTdRc88dW7cofiSrcwmbcSjWh6ddSFoH6+CUVhSfH1e8sJNmXssEsbYZs0fxrHy19Y/6yTsreJp5fQyGcWnNe7iO9wjgsCyCC7dczuZnbMH+puDfPLaIJSlXmr9F2CgUmg3plq5mqBrnBU+sf5vWOf00LSPd7h/3x/3QZQYA7Wj4CcEI07/vZbjxN3JxkK8oO+wRsLCisjcAJpBcB7jPSgfgnDTnpVIltGcEmmrK9qmC2SOISuxpR/GT1+KCm3Z+YTID/JPykk0V9YVOIniRq8k/nlRlAiQIiDx5l7BxprtOZ3m77qGuqfQJR0s+bOgWt5Lm9hoN1wQ80P/a0bWCSBogT1FnhITXQP/PYStIopSC5kRAxrw3D8bwOhKKggawW5vaK9eAAa7b/ZLyVttYga/hbnSFgrQCXocbEt46SexZXV9PSqiw4Qox50wLGreWrGLgakyeb15qG/xBX/85xJ3nsg2lav2CZgWXL4UN2JT8B/qnxLsU9/swpSMkP3mLUKjdfaQuL0gId6A2S9UhRq/LAODhKxOszxucsA8yhQLlMixA5HLrw1Tvr5OwpwJPZgUaOl3BJTuDCKG6A49C5PmZG8ZGg0TKVL57+yxJhsW3M6LVEDL7VTntgtsnSQFJK4lEtYtIIWPboBqob+McAxOcGMJ3iSeRVIDHiEzqLCrWk65gB3udde2wMqbOsLvLPZ5QjE0i03KvZ6d7rgtiv10TgV7xBJqedwgDaa6lEvmENJWNyNSFZ+j9JxX9sb87dC6QHC6mK3uhs1o5XMZF/mwfI02B3OHiIbd+ZPDCJndaYVVsdnqQcAQLjMQ4PgOlF9y3N9owsoC96RUFDea3qnAKVjdZe8GjdkOfwGuWC4K4A9hHO3sluyy601qq8fUJqszV4fg3AbME6Qng/OFaeyJxxzEGkDKWoAYCSglTO2aG0VURpWSFt7vYQPp7hQ7HTacER+8Ap7dMVmoXSHOj2Z0FF0zURDbCBrDm0pbPf8+RvygLYgGtBzjyTVz3eRklvWOM6igq0s8WWfjj5wqDHRjoUi3/zMc2iAdHQRx9eFfi9LXfCd+vlKl5hU5EEmQRNDiOqFkiYKGR/KRz752JIQIxyOEwzNwAKFIGiVvqwA59eHkhT53L0aKcDUO+0otYCobfICg1q81fE7bHVPoYkbfvvlXZiZtLgrRKwJGRQPwlFbVUGEfZXkfxmDYPKasTGeCi29HZf/+eCPfSeCRFDI782vKFklVsDxLlI/h6kfw/G/KUMhMgSKK0+8VLwOh3lQDIz0XzyJEc0lOOEpfdxffXQdtcLa0fZksPyCGpA3O3h9LhrGkzK8+CaBvVq/ZpOQfoHr2W1DQ90ARoS4/cRxoD4w7P+XqQzPIF7nde+wesMowAOgawUYjbsulvpN/RN0UVzhMJrpISSTBJuqaJYXA7ZttmE7mL9BBZQBV1efTAZ6WY9IPn4Z9OEfuF0CzgVCCJZxzhGhUSpKbC+apHuIfNqRl6kDC8jOYwkSP+Qrw52/tZn/sWl/EouSIjzhCrv2GXRPmJeXS1GfhxnVa0wWAVDUxEZHuWI+tavWmcoAnW+DpODIoEqN87Qd+7+++6VgPtxR/khP9TtkshYVDdv3sDr5Oy+dYzidEFaT5WfVcmWhvVx20AjaC1/mEumhsMtnK1hlyYCIYezzvtrvHsUspPd+kBIrc9gW9cA0mVI5mz5EOuylcVMHRKHDn22rTGKdCeG2KWmBY5DLkg2udaUqTx3otPOM1wEFKU/aCr2e0Gs9hvj2fFInPAKi/wT1YvXjcbDoxOEuLhImt6n47vJ6eunVddPzIQi4FUmwTOhMqvoHm9JfWkWHWUSxb2Ay4dmI39PS3JQL0yQfBQpqiZYTz9fVavGuZajmR3vp8mhIv6u+GFMrF0O3U4oOn/Kk/zWaTXwWVgnilmwemHB/M7/qfzwFy1rTREZjJ6WEdNhmoMjra98J1RHc+CU6nylNCnTRGlANF3tmzGjxhnY1DiWmRQfR04dPZjb2qcmPdkq8Lec5eBX8xRWrBpPmfr71GCybi3mspcwz0b1FNVKawZiq3coPtCxvlK6CoPb9kz4pYgT5iH7kDDwcPf7ohQdgLxBCo6M2ZoXKUv6AchZXa9BmZb+ZCE3q58A0pf+chM9OPxEUeEq+KGaEUuBh46YwK5DbFbjjfHXyz/42OpLAkFMpzabKZqTFDYYTrgx8BH6nYj7LJqtEP1Y6a4CPezIdaVL/h+eM0b1oZcpkpSk5Em4NM5iRsV2HsqjzBwKDMwMZj/3lS14yB4B/jKHC4v8n3COJAIdjR7N8bgXmCptrx81EURSn3I4BEUHrxE8q9jswrq0teXan0CKBI0pq71+MdjO/W3KN5avuZzcXqLJ4yb+GTUOasiyWjEPWzbcoftwPRdYv8DGmVFItK+sXi5fjC37c8oK7iZjcM2ZU4EERqx4pFujpvkkZrwi7w2AqA1s0LqlZhuxoaf9ic3K02DfdkPdplM4S34tAbfrFrelJfT2/oQHypNh28AjFrA1qvNgFlxKS+OFgK/Ze1NkezzqCNJVHiLECnVtiaotnEKpAFM5/6WK8i4ZDPxgZpRCbbLU8+c20BNrep+I+/9yyBQZw5l0yhjDXd66ttKkd7XWjurcBgS8dC32/OInyLS94wxLgDSVi8hRGVPnxBJn1OU6Ca18PCtZuEWOVnCJzoCSMI0S9WgIJx3WuyZeqFDPv/EH51XfWlVDHjogs+W/qt65d7uzMhJsSEBLf7IVIlY+RF37Ski7REWHdL8itG0cjx90XXkYTjYgeYrEMGa6f4/dQDIeM7yJ/B0hh4SyhYDPQQ0Wq20ODE8QeGSUhRm44G7Xe10rILf4hVICa2Foso0QQwoT6tt5vgHsR+NPU8CHHP9vE75J197JeR/7/FTpFNlfyzffpXLa7QWmb+zoZIs9P+HpLH5m/VE8X8QxFQmlwBdmpHVqnobAEsgLLlkt0DPml9omZ6SFJr3vEgLwKh8fO6H6h+eaenXNJKluWVsUsaghUBNDB9w+OSuq+7sZ3V4Zc99mVlvrJ8mL+U1ER3PNwGi5HEpbMKqYww+poxwfvyCTcovL2HzDBilK9LwZGKZ51CJlLEtjgNhbzc3OB4en/GRW15T0ABUeT++PIOsmLPGQ8n+syO4cKFXLzqBWU/UnlhMvBYdo7QtDpiqZwH7EbjQc5b6Og2q+SY8K/ODoRtoItlTXaubGGKMT5ystKrW8PY/UPnLGb1r3LQbz+2ZN76lg0kqauCqW/gCbu2tWzCACG52+jVZ/Y/uyqbejoN52hS2B6nGelUJEXjGe2LXRTD4p6L5Vcn5uj9g6N8uMdoZtafAivKKku2Q8IrkZWbK0oF1zpjn19jyBThSsb1Wt0NnX3uHj+TauOVbm2CqOaSTqAZ+ViK3y0t99kPG0lp5jiTv8garT3Md8TO4EJljNca/rcOoI64OX9Y9ddj7O1g00XOAuTFkX8E6mrihxRBgqNVGt9F+grAdJf/owlx8pS5zBqymqu4yxV96SQJxHVWGA/MJ/ORHe+ndYXW/eOTsTWacAJnQcec0E3qe7gU4Hzuunw2JOuoE0LoYgnLSaTNOvHVo49OMW/ws4ERh5PP5j9r/U+tBjUIA1AgEYQ31LEhB57sGQVVM2Mo3cSAmpE25Qkw8IRTi80dORrqlg4sv8g2uv+QqqTZN71bi1Do6f9/N5RlH6Kc58vCy/xRD9ZWkfSWfElhUaGJQnZRVfr8d5PYAz+17xzi1xQ7bv5PoODFOhs6EOmHyWTWDi++oim2tezXZ1i5i+p26gTdTweNxn91wbZfXyjOtbUnat1ag31qMCwBdIWC+/C8ujKsyCiE+Buar2SAwHxtLO7dkt110KDWguVckGQ+T0FOSnPVFEFC4VtXZ9KDPhUvgC2pJfGg67f4v/GUUOL5QpZrsN0e+hUHgDjZgshaSgJBb/79ew6cdeqkXrGmEESPUDcYZnGy9q/IIhtjWqDFwgVO1G6CYHQL3tgu+NX/SrXuQTS9YnRedvXjVifyZTEiF6V9lDAWxBqfkhjnXgpbvJZuy7EXpktv6ozmMfZ/O5kBYtXWieaDcarA12FGBMHiVquW5wQMmxRfHtxvkKPa3jOLPkPNogMk67Gjr4yllsKMqiUOmlsx4ri6skrs29Io9lHuDG6CptxEjU044/HgWOsv0bD9WUDk0CEEolaNMqt7LLUyPBfFYbXgr1SDWdz9CLoi44UvfYdpIRtpaFibEGlvN6wpuH/ETQOOvOfpBd5TKgIQEUVTWh5Xri/i0KJv1HihViQeBkyAUSVq7PkFLVfndSdu2a3DPOTiKjU3Y06jAUSzuVTvoGqqxCvsSnuk/NMQ0IL4uiupvxGC9C2u+9hdw0hhuea7NjVD7FCOaHs+SQ6ZBpQy/rx3pPM5RGL1/1dCMcSwuZZVCJu9KLRbh3o9M8btDH8P5kuAuM945wI62s3arW15LlRWbWNoFnHuPWU/8GnlEsgd5b+DsvP9CJNqEqVq2z+XsWlthkY+QvfaV5TYedS7moai2qJMMLcooq/OQEXuud9i5L7bAXygrHXNG+5J2i1rJS6XzzEybGkhhmYukmAkSEpytiAIMEFzvS6Ugo35dm1+CUaVpSt7qsFV2jX4zxGYzoogvfK/GpLny4YDOYBLDVUH/b5eRhZD8P3KBm1bZi3n3s7d/9q+0V6rVbXtmHftO1RaXkeza2I9kTjWX6AuMu7sEYkM/pTDmL3U1chS+4BUzH+4TfMhPudlH8wzBUesFVkMFMtzA80p0OdZz2dOp9SYUP7KdvV7KU/caJOrU/kxtFXRdl6t9Ds6jwWU9UCnxXixCMQ4YXT8xjGxY2DVzjqxo8xC0SYrN+uPkXrlSrTVGD2SDBLkJhqi68Koo9Jaakafpoq+ENjteKOFUqCfZdvvZbHO9w5dHXMu8pGleL2yMGaZRXmDQPjSaM9myo3rAWYlQkGfYSLOu8iMj/PD/QR58irVzMnEdDoJwj6Cs6QlOnxi++lbgXUq30zyY8oXBG+allUa5h0qA/u6Gc6VK3b4QMy/JT0qoQH4Ps8J6ix2FREunOF9Pd3AfMGFbgLhytUxpSX9FgDhE7irT2i1HbN3U0pPTbhNe4xhVe6zl/OwwbHguneRBcpxHYA0/kJZnYyCpzJnI6VGduH6TeDdeY6FA2BeuU4MuVIplWovyDo9pTHvl4xV1VRoPuntVvDgBYiw9IvmqFIUcY6hfnK6MDxtdE59xbv7+Rhgn87DhQlPFDLGpL0i3k7M7rezMoguFkz1qqKags6VXpEgwB/xHcmZjuLBUN3JLxq3SJ9cuGjhJoTe2dJ//Cyj7bjdSW3UHqu3q2SkQMm0lVh4d5S5ky8BThBQGJIPKVwt1z1o5SA8fT3GMN8WxBP8AJrgau9d0IJkP+lR9ZWotxbxxcG0cw/+jArJs+7EQAF06U+WYPQrk3PwERBAYAJFZOAUKdVcIOyHEpZuuzo/MdQ/hWtk5hORngUrRPIqKQ6U+4heKGmL1B/RY4d4QPoEGMEfV5mq1PSF/x9sCTLoVI+1JaRj/TqMZaLbSlgEXp5ryTPfhuThIzlXjCIFLmvI+68Bijquk3uDiE7hAicAKs0KRWQx9Z7sD2E/1VBKZ4CszY/egvqwgKm1OmjEcHPCRWb+Scr/8m4u5tTLUO+95Qy3vnYBdkxJ1rXSuSH5Mwbvch2Ph4J1LNkIvfD2lMWEXqUKR89sZqF3y8eHANOw9IhDF6o2J3n6pFzfqcYx1Qm6Rya6JueelzlxYCf2iD089UyszONZJE73SZEOAksGjpQDMd0x6Igzw9vU5KIfJQZN3F/ljrCDiMfdT5xGPzNhuPzL6VyZFNZGgfHGs7PWTSAkzA/BXtTZO4zWWEWVt5LcQcgcf+McIPX7Xky4CJ4aDRu5qv+EaBMOyTiMkRbRBdVe4B2s9GJkuaFSJWsVp0DAV9WqX1CpO7Lw+oUssQbHrDTCNkH5VuDNnKQv/IdWxc7Cg+5yC+jeXx4arhgCaseaYGwRI6q/8Wnymh0bJ81ly9gB6pwC9jsXIfT4n7B2jatA9Xc9YND/0OxpfYqaZamfQq3tGnwdEwPdEvlFN7QmNpbnKJ0RRQ6XaUGWtOAOg21FqN8Ne9cQGAMnVkuz8hBGz2WUSxohvM6wii9hNnh+lqQI55lEr4Brrc2FH2hEhSiyDa2PoBbAenWaHjbJh1mx0T3tPinRvXosi1KA0OEF0z3Hfn2enLTWfzxZi52v/dqOdCGrmhy0/IxVZAeM3CeMIU5D4DNfXXowZEsM90bQzI/BL9QcW/y6KwJ9+Y+cG3ALVEQRDgH9G3zb+9F8FFLG+MZ5Xv5VnYId/MihTvrbsDtt7bUjdzW/o44aHu4M+QA+EmVYglHVKlTkJw9Y79E1HJ17lyHv0535GCajbkPIrF6DWsu3IMvF6VA3VacmFf0u1b9r6qEtZhSlZVJClUd7NxKLiGbvjPCT8nwCIkim7I3hXux6ftuZB+sHOAlpnOv2lgQtUYBKgikwaNQXgDr9OZ5IMhlFvLy7ptCFBORR9WOJdE6B4J7j9FXxWFwJ5KOog8A1zzujkueG6Fo/hethDe8mqleqj8Th+bSeF/q8bdECJSTm8+/0Qo2+eLB098k6cVw3b2makRSP06yq3zkRIJrFwvxaQrUU9h9oNAm5mHHitwLjpRbh1k3AOcue/EmeYYENkauM6K+q1NdEiRcha8nPQaVY7FLNxbLZ9hesHkJyWK7n/XKrjcKjkH9OKD5buyqyhTUzQHfHZnMyNdReUMtAywzLLLmHOOzer5C0EHDpbGl+AmOhD2LksV79QKBvopbh92s/yYw2+KGGXRoLnoLL4b6TJzWcZAxIcowt7+OsURHnWuwjfE6mQpjy26TPIlIh5i+kjrmnPpTZBjLco4jtvJLu5fPZ4BG5yLO63HH7rEhahsNOsFwj96hgBaZ0TlM/FkKk4tQGd/RC5msM69Om4uV+jbAGTj9mjVw0wN+KD5H3LSjjbb6vgrLof1DTKntQaaQNmCDX5GL7PCQAPKozkW9LCGVc+sZPqx2bzmPWFRIdQIDv0JQ5ZK+zSAPo9DnFHQwBrN+UyqT0pZTpvTpiLgC3DCvx+0IUNmiq8uI7ZNpuboBJJ5zaTziViGFRkaX+lIvU4WY6icokL98QblOliYTX8OeisDAhQMWghDHbuPfbFyrsslE633cg2y5ACzdoQhErgFrLxpFzKNqHQQvbeOWUXDiuDtzZnyleRFpUpYYsex/hF/DEqqJFFoXjLqpvjLnRyuqiH55r3ruthyIEXOSKeq+5oXlB2yyj/VXwTzUgAdisLDiXDtBJADioSCYOMMaMlw+A0dFCMVDrUEzE9RrRhkSPKZSVRkm+yAd+Mws0+aYWee0j4ZfkVAi/W2JxyPOl6e1OTIr3n9K1GFtP/I8HMjUaNrcVqUwmhSrIJBfsNSiMbBLMzRIt2FdFypBziwSNA92s+751XYhE/yPciDQdlBNHZNAu1S9+y+ILyX1rmF/PxRkuuceAmLM82a5hKJVXBMu47TuNlaNrpdb1MazNTdi/PpULAxIVODTyw8e54jPFNAiUGm59kstJmOC0Fy5g9PNMppd4EcbBg/aXc99kmDKmh+f9Vj42xF9eXisGaiYqiipnq5CmhxWz4CwCt366ySHCZKw/q2aOtNSREUUDUfL7B3h2ErDhoi7mJUfg9nFGXIz5cg1s7jLbYvHwonnC7KAqZamp3vazinqXAl95liZkaZDUPGqlwHpJmHtunpeNOxB7TG4actgHj01Om/Bu87CrZOoPcL3omk2pxggdO6WjeJu8NZ2DaiL/MxyxIwxOqo+8L6vbyROOthFusi7vhX/ib5+KWxG8zHgzwnvCaR/vpFDq4DsHbxKv8eBkqc/WZJEaW3J/JGuNwlTichRGqYdNqlOdbUe8X/ZT8jReo4HdboyWPY3LEhSDz/6fDpDctx03+JrrO6ARaD5MeT3N0fTGXCSRs4YLVJSSm7ZC2ViohleEI7pHVHpGbvFlyKak4rNceAvUN02C0L5/JzjcWrJQYvXTcfdMNCO4VEgPkzXvdx0y2YDXpv3G+jOoFWmC8ro380KCnm0wTL1Gl+Hxd95f7pchQhlGScQ3JGFWQv8m0x/+LNOLE8iTlc8GwWbo5tTnLVHSDZvTflplc3gj0Nf33OA2GCkYq72P8hRjoTyK+c2R9ALGNsAGvZu9Sb87eM9XH6ikNRNSTCXT6ltRGKX4LB8VIXrO6CaKa9vLvt85/r+hbRleV55/uv4rWkQZKKlf90bYIrx4KsPE+5yMvTxgsTT2xBo/M5IF5y/aRytUKOBWV1T/YlCfBAQlu4TUwg66xYAoBpcIm13H0QTqpDPLlWp6YcI1G7IXI9ApKTOaKp+XOZDd1ZKZpg4JX3pqfrpbtUa/7x9OXs3AGdDbIiScd6DOE4IFA/wB+jBp+zy1K2HvgAyCWgkn9DKXSIyF30Eo7mo3tmIhODMEHre6XXbtvqDMo8tOrzO7tU27HsxoRYQ88FLTKwq7BhdewNm1w0E+TA1kLIeXFQJpCuXkJk5bxAQh38uk/oiAzjRaRLhzqwy/rgqrHIHnLZovQLsuANfphR98xg4vTJhYE6LGRYWNZG8cIicSDGczr23Ip0QmlOLvOGBhieBrkS/DkHkmZHbuhzk484O1oVJ0M0Uv0Ws3G3n9iQafBSVpKk+Hx52nK68TMa9Hq7ri2AHoJASNJofntGmIm8N7ZesTTghfpYD1yLU9mV24zx3qErXXVJhVJZNI+P9lbemeIdywYNU2okd11URZchcWICbM5Pa2kQ/vjRI+GFSXz+GA4NAEzplORdl6qrk0adW6ihBK/vaQWcLjGqo6TfBx7QSPqvu/V5EAWd+ckPL9xtp3s+uQIUuNyj52EI/Fqp5MfN2GCGw6X/P2Mb76coqYoYBxQC43qZG0aDqfPc8FhAY4kMTCXYVBFi7pzU2QZBU6Se6eNm0ZCUDy2fjCPx17/bUJhGCAeoRaZJJ1EL8G+n7QRDwgDnhjasb6T2/EJCK2N+wyH3oZEWpT1eLGaMdat5EAV2cQGxjxOBn/RaGDLk6STpPgJ2nhw1PRohAp8yufdI0Fz+dqkwa0LUE/GCVO60RyjqKypcBp/fSiw2NvvldwSzAjBbC4kU+hmy/WQNQvKSQ5/n0RsutmF2+Fu22j1beV3Lzm9YSB7hnUt+6pIMQ2e356gP106AkRDp3YwQ2t7ilkECl5JOwrUpRYcyzudWbj++InmZfsETo8cw+TyGVUdJX+/sd/RsSL77QLRpzg9IgUER3ArFd7IzdpsV9oHBw+EDqdQWgMyjrkTNZU0DbRA5FJ8k90WT44hRHEbF/9CpVBXQkxIUvnRnnnwCgi2+hCZEA6gr1EOKXs6jLD515IPZOyj5LmA/SLecEPp1ibzp7DTcy/npHP8Jax2WIoR9W7EJczVK9HbS2QTpIaE23eR10e5TKDdJ9LcaNG7il3+lydvphHLF709yX8emPmkZSgLtpfk7nWkj0qLGgBhFxFZFXqbt4U2CnZXkbk8+mdVr2U7Ee2pYMXqEJu+5FNHSmbk+XQlrbbCTtBWlFLkpHEgM6rGtt/3Y6vhTjsV9nDoJi9OPTBDg2c7EvpbqIuz5+HktX+F5yIBWeTC4cBFMgVLa6igd3hMTcm+Dk4U+Mhs5Q8cLkYF9I0ugYboh75tb207PTbl99k3NHWNuztPI8S+06ixik17W+h2UEgXUAWb9GQr8qLIdu5g+HZDs647BUU6jF9V2UWWnhbDYL+2XEtntaCw2FTfLZYQWjL6SforoFFo2GyITZPoQtIbP9kIPgU2JnR+A4+3WveWOUmNUJMbSZhvxI49kNVUzs8RKP4tz2dvCLDK1P4M8r/WyYAtcv3nGi64Bnv68kLCkuBXVkPC0naal/JruzPFoMRwuP7sHLvjjlGQw/k9R6usV+RrWc1Wg2nGz6WS8smsByQb/ToDR07Rho3LfcRRtz0P4Bj5MzbpxNdE4xR7s0RnZ7XHO4Qhke1wdDh3VDFUKFU3jI+DdommouYbeFZIgDZ/hd7d2ZJqpZvkjOpQTBlcK9I1/WTrOiHJPcRcIEOHZfeuQWmapAUOnCfUR6INdLD/9MIo8417LqXFxRZW0wy/UIH0zsbIGldkEcKbfPxuhIL2BwrZMrBhs/IlvjnUScA4m0qSIcSp55df3EF99YcfkXJp7GfXNa0uGB5yRmTYvjcttGPbDN33Pk+eqsWtkL/lXNnSRkSzgVG5kQ7i5DC0X8srw9n8CYFxMKekmtAm8x8h8Mp3bqoBP/Tg7fnS/tI471tLE1SB1whIpXnKDbiunc+EoWxabgZ6CksLL631pSZB2KU3AKQydyy9G9QY/RvWTqFXw13SLUX6KGGrX4b5e4KGPPMZz1WOc0VJxm2GTHIGU95Gp7G2/DEWfq3A6aiIZ8MaFWRdO25RygqHFlVuEkXod5Rv5KFnabmzOa9SNByBdCFy21wNkr+EOioK/X41mKA1EjNhB0Cekmp6NWJfbBvG1907fgPjVK8ogoxgD4/MAMoXJxAG8CX/vFpeQtlGDYsmu+qMZjwUz6A/P6ESAHYMF7+r2fnxD4ENWrm1qJF3Pug7GBw1Cq2lhErNnLwLe7mQVv4DmhJuTSVCgV7FPs3DMnwFE6rIqMViVSeIkIlt46nzQgRZuOV1Oe0szbihB87igD3XWApkoQ80lowa490ON/8hFJcq4ocQs9rarL3Gi5XL8DItHvm85MmpU9ZLYJOCV4jKfF0ghhytpmw76DPOk/KlOWBf3RQv0UKvArXui8h4IGI6l5UGXdWJFoJ+OYcnHxLZbkXSHARUOrW86fcXwAnjaFdE939wX5pKaDOe97ZRC8L3W1ywhajQCKb/zCMbmdKwhXUfFXGISSKzbgDQxI3n3vcxGA7yEP3TnnZu4dypFOeIvaW+KZBHchsEHNr+mHigqi3AVUkFKaZp+n88/4KXej+xn7JS2XGnS+ye9/pZRqNa5khMTyFVEB68YpV5xRlILFfm26wduRWZGA/qOVDqHW7tmHThcoAtCRvhbThknixb/8eernSYVBZ0Cxfn1bdzP0xrheeB1kzjC8Ym/vd8qmzTj3HAwqGyweYZ301IvHVjhrCiQs3LW33ab6J1vB1ZCsQejsvYgvwJh2QNLHUb8dGQgyAO+wOVZ6jK7x/xnbtPccwywvc0z6PzuTOWuWflvHbOvkZ/QCM4xKIc/uCDe7Rv2I8jA+bmxn7cv6/UYoFL/OWZYKLh+pexO4J/wacZtiB/NX7qZprLCJS4uwysWDjfkd8GpjRL34i3YSkDtRI+qzPH/dMQvFpHk75S90Bx9gVFWU3/aT9pJbEN4yzntYmAJPRMXzONPFnHUuq7zdO1VTjXzRzciiorHpdLWrr4VLdx5ai3yasrQEdXll2zKBMbDBrftJOKCZXT11khJjYOPxX2ZVN4m8gh1GImixXtXD77Lx/L/1EtOMovApI7f8moCf8WvzTMAEAVRDGsU7c3ofia5K/y0N8HVpw+gkFp7ziSYunFY6KUbwqrcedFGWnPzFGjIXWlCsD9Oi6wntkseve25NqWy6WinSgID2VkxazgTfh5uN/edgK6SdK/qIQGvlAad8K+oZXCOQE0a5uyeE7BGdlxKI4l5E5IPATz+FzgeHCGYEAjR1IM+NBNT9hHK0erfoR/rzfQD8F2R/jqZREBepc2CDZO9xihVH4PUERUhe9zmyMWtVKrarA3cToZI7pP0L9fPHCNc8mEDpMRviITOKcK8WZ0WLFQnsEcM/ykENJWNe1exdfL83H7Zbl3XC7xS81EL1cJ2e0o9MQG4XAkhS6eQXBgISSkh/3ATOyVY9zzs0e+VpTbmkVhpUOdJMaj/TlbHygt3CT82aM/QwNkAmLFBsFUhCwnH4b/fd1dswKRK2V5WqbadyxrHM479B4Q+xnpsCpVd7lw54kYDi0w6ZuDPxJSxwyacwUtkpWKgvZPRUjLJ0uAU7B+CRJrCrQBGH3V335S23lG4STA6xoj6IrWWJ6kwH9SD3LNfakPYxkZl89TCMZklRqyf69dAZt9XTDa4B3pkSBoKYo921Jt1ZOgV4dQpzNDiED4TSeb0RhQFTrxSSl/QKm2aV2WH/mNwY8zEUwdQEuocgpR4eDP8ENQrchF+QQVkbJ6V1PEPypByYgBgH6HZqVkbooJDFflucQrX0rWRThu3M6/twPm1NaZiuAq46Mt8EyOsRAkgSGGIBAFKte87wg3NVYABjzlmEAMlsZgxsI1m/I9PBMmXRmpa5bpZRdK8o+8l4c3Zq4+bBWbiKxhsW61X7PcLP7LRVc3ichpXi/JoBfkH5TR99uuWqN5lRBD+6kjK7gQoKqvQpar4lhn0n10CsHVD5CsnOv/Nx2c5aei3TzV7noRpRPTGvbd41POUKyQB2CJZIw0NmltO6keb8Ti2ASNcF3dCjCqwuqsi0+KIef3lgohuiJXeM5RKsjyrmgmne8XOZBRPEAfvyDLi4AG3KD1s5GIMokdZoUqIgTHJypMMVwwpfvtgUD65Yv4gQtGpm+HRzwiaSGJHh8+8DnacGAi4er/1RHG8LD9UxBpVHwsHK2gWII8DLAWpwJU9MqmGHSRuP8KBmtPWbRt5sJ7HezhgVts37kXuYqx1vZ5jXqHci8FQqyDAvLmZZhvDQa79sAGAJGdGHlFCfiPlOxxus1HYSW8ysv2zwqfiKbKyjuT/B4RzyOUp9JGJGdXNCwuJNnQm3WZ1ZwtG5HsPWyLp6yApMySO5K+nTOKqkHHrRUm56LG3FrLDg8dIXyH5S3/MKy3CQCk0b/Lei/wFpGA5d8hoOuM+z11VesdooesEiK72ZcNEUxeD8cB7p1M+e1cvx66bEVlCqzfU1KqYzEPrPuGf6l2R/zsUzUi/FRDT3ObMXLDwR6ddOzHDjsmUUShmYw9VHuDkpvP817yPeYrjz5BwELoWkVz+zCoZug2NK7V6eNpCZEk+9wPkGtKDgAY+qY7lxCERTxaO2vNa1Lbuim2D1tccN5X7FJt9j05qkgYXNW4WbexcAv/hYR5qmDCxewm5qnew+M4cEbN+NkkNUGmeZVHT9CkrBLO4gjIUloCKCohJJEBe2/ARgSJUaO5NEz8bunGFmogPPTi0MmbhSoWuPICyCFbN53mm3KtNquTt2afBBWxFQMTpkqqawYuuscDto3XQTy4aurBt899cJHqGnU4h/KLxE0Po4Cauj9ZFdOjX1WlS6IcrIe1AugONCMqmANOvOwoAmrqTbjiJ2XukzQt8tJLtYqrLQg0Lnh96v4w4woDqgyE7Au4Ps6/dzO9A6JOW2sdRY7ia+jV3rLjc43zcZUbh3eDki211AdVTPOYTGxAr1e+s/B1NTsf2R9cRF0TI2sGa6Fb8JseOGeOUfvjv6DRRcHC4VcLIUewbZs/eFe18zQJMPH0iNUHiOuvKY2vLYJwf4OSDdga22pistGfIUL5i8fGz+YVI7DGFAQTLsf9q+n9WAN8xHMYobkvTrMYPZlTP1AFvJBZk/yufeczWw9uP9TBMzr+aIjJcoLZAswKhXruIXPzEe4T7UCFmRdbOKBEe2lxc10+2uwjuVWq/45iv2cNRyxetdCQd+8kFDFzo2c+IcXq2EByl1Mq+hjrKJl/he675d9iLuqQQBJIaPk6+WfOJqNz8VV1jRpi2q2Ny8gj5z01HUmmNfjw70Oaacp98AmzS/+kINAjoYV7ulqYOjqG0j9y8XWVdYMf3th1EDF1DKzuIf0VwvIxxmdNkjt+0XFCyB8gJmWMA0btEJHkydDckmE5pzuzHUMkOL+2nwuZchaFYoZnIpl2Nw1jPWkCigEth7atFeLj2kIHuprIE3itt+1GHPZv0c2oWgzdPuZ/Fe7qOH6ZJV5ud7osH18UVR6Kd+bSjcG0IZRtncgpxLiMesDV1P+HRakdoxoGvbOdquu35snQEcUjjA3S6Uow3mM1loVQCJ3/CjD8darwg4FXqyWu5dUDOcknVdCWk2gZI9OzEHuE30T63EFhRB45hkQW+1Lee/4Zq+CQJ2cYXKIajDUJS2BoXtZBb8qQFen3i0LLpYpwKtmWePon74B3RNxaqxeHrkeyp95okyDTtaIKwN4o3yYKc27gEcsE6Y9XTKhBAP6wkiWhWCHjQgaaaya4Ho304sxv4VwlIt5beXHbnlhupWI0UeDudbTR9sdniSWWNYlK2RSspiGIajssW+wwXu+JSNzHlC28GbIFK/04/Tka9cgPme1iuQ/khPnKxScKWfodmaUlZmEo3aKYYtcanEDpzxB15B+Bp03CcBRkPJbm6vPFR1C8RNUxUfDKYZpt7HqnQ3YLi5EGcCybCURMtN2dirxNRIbgRS+ZVo/0sYrnL+F2fy+TsuN7tvUHpmn9ZVM0f7aCjchKk8ZazLz9kmI/vWKnotlQft+iAqnVWkFgn0XGwaRksebv1HOe14zj7knnVDbmJJB5B5E9HjCNtyj8D5LKicjxzJhdVHlRjeZyKdsp4lYGvqd1I1ThBK7vbdYnTpjC6+4/APKdUK0hXC+HEO4ZRd9DUlf5Gm86mEDZi0GZwDby+DU4+Aj5OY+mfz8kI4/Eu/IpG1+z6esgYTGJ2l9C1QF6ljPIVtNVSq/e6fqjShT3kuAZ6U+eGE1F3Jc66duBJVqMTq+27vGvq5lW4Rw+hw+IARrzGf906dHcUbOfn66191pIZDIuq2oLWMhMVdCP8G2+PIo1R2sqI4uzh5yI2GQdgvSTqD2gyWViBFSbFUVe7+K5aQ+hj8nyAVgLlqIq9l11ra+UmHjvtM/zJ5Zo/b9uO939oJydOyZE+VNE8drF9DCFACGOmMBGeKDaTmtuP8b5FVaF1G7fSHdxOqVuHb8X7C6t6mBxgFmp5FEgB7RXLgH8f9cOQp+AWyv7HlUieJWXx2551yLKIl/nW10U5eYvmPROUMOLWlKX7hk6dEnSujKAJfOzIhQ3hi63rdnxf8Su8RzErKHOG8SlWjoKo8ncixkVodF+VeT8hmAuhwI93iG7o+Umuq5XP145ev0NS9oHzvfocZmQRRr+peXMH9DX0OGor2ZgtwUc7asE0cVAynjV4LcVpv9DceOYAE1JPge6LrNg/bSmROC9z8HcSwBOH77ql/QH/0F0moL7vuGE3swKYvKHpJVccZIA+bCcQv9rfN9UG2Pe8X5wDva71avTLYcxHhiB50uFNkie3ohRtRvVIbdmhTFhoYyAEXBWv/YyKq2O3b0TPFRdWo5JmOTYITRxI5saxgpVnwhoyLMzN6gTck53DTyWPH057cLFmIJaXu8fU87G3T3PO6MaSP/SZvmqHb3z85OIh+AfctxdJT0sOi27Rcl52p0lyhlsgjlqla/e+YtdkS6FLiRERvogWwWBsMopoEAfnrA50nJgmMYCkzObP/yNfj2B/+3VlYaADJmwuOfydWjXoBzXPA2lO9Pg+Bb7MYLypKsdQSjvUnHmrRDsG0vPNncdwoWbyRHLAvM24CvllMOnkTjeVIRUYBpOTuqeRE2y9ECqBUUuVLLIfodWnglEqPqpC1+FoARhna0B/4fbYRTTL3ew++us6K8SxQ1/8vknPpnCsON1neT33H5RUu4jbND804jYr48FITE1/eZGpr/jp8wZA2Au/yGDssetZJ1XzeFnTvkQDpPo8AYQJYbB+PxCzp3KHyTjcah9kN57fFaajj5d6mLg2wvLowpnXk1TUMd1qos2b43aKLC0rZb233XZVqW25lcpBzFrht4eGgVWxrN4CxupbGWzT/zzhyAfS4mWFkxwmd2jZwB612BZymoD0sPdoBxbS73A2lDhjvxddX3ai+SQIIZZ84w6MfW3iB6gUAntgehRfWmcmh8QuL2rmCsLSLOI0XU7TgsSmtRob2LzYn2/6FLiGsL/hZ8+s+/QWbbDfQdOzAL1LQdfEB5UlB2sAwf/VPqiawN+3CeMqXbTbPNuJpClFZVlX7wiNpi5+lR2PuQ98z7i0p0tBpe7ZIL5sS73Dh73Cj/ZKUwEy4UeM2NpBRCzZcpOayygYLyVgVJ5TPhyx3DIwVQxeyqJ2HH4d/FgfOrVoptVrhd+ihQg7RXKpJO3jdSlkFwOHdL+V/MshndlMyfxZN9ysIp6NTaKlk8/wuD2cQB/qhr0KHnzxmu1VR+S37WXkUH/gubr9FMmXrNKUpBF8xahIimPK1njpFtxGRl4zTmRCUE/rl+l++yF/nhr8skXGxDLlwuacXNSe38y/7+20wNA5nyt1EmZZYxs78ew6CHul42t48nKCAyLpVf0i21MYXFyll1VCooDtU3fBmg/fdG93QrO0x7VhxMG57ALbBqw4ee/Wz5Q+cFESx3ca/TiPDeGxiOXz3n1k9HUe2a3QtrALf9cCnfSgpIpvv4rzdq9Du45kdOAAGkQSQl/H25MuQFa8aQB6RWS030TFPZdcJ7klwOvinYXDmAlydcqM/odjV3zhbSjrt0YzYz33R0eEgq2TglvWY+Xr+cXv3LV3TLPq32E9JqDinvXtp+uWUnAQp4TZzvh1FNz0mtplGROAgCzaxpGV8vOKRz13nR+oZ7YLwI29WGO5wIeT44RJvsatAvfb9fNQ1pBg+cDhNcjEicr1LWBg4kUYk6LKNuWByYDXhAXKBOplzzW5NA1UiNJk6U6Fn41/nziKHgkxXsg9Me7kiqoETROcNFocWNsZgWiILrgdoWL3qeiDnszLR5aglMoJl76z4pR8NlaToVdv8aXkzUp203n+zTdbc7TWlIfx4rPSNXR64oh3SQHo3/dHkkPFV4dKDmY4BR9i+OAIK9jXNokNLhfqFsNHYBp5q6cfQre/z9GdVmNDBbj+nT+0ZzN9TsgPkZEn6xh3m4ooAqnuKAdy/Jb+e3CpnWL4MXeJeIAewbgvkbX/0O9OxrSg4Mckp0BG5W8VpJGEzBWCeirsuHGDmNmgBzFoQAI4/aSkADnxYaCGCI9ir37gUWovJemZmubiTkYI+Q4szcTyn5z72tYMq1+qOeBrgDDuBnknXT5pEK/sCjB8YOPEueLgKMgStp9NUFX/KNQC5V3C5OEjhxIwzBT3W4R/4Li3MlgytlVKt8nimU6WaOEj/JzxC2HDUV6qeHlvPFd7tsApgONGKz9n9GVInfY/ih5Sm068Acy9l9RHwYit7sD1Y6TDq1jPdNx8zZn8DMGfW/A0gKPTjclCEDX9d6DtfQnW0s6mMlvt+Q3THqeAET0OQM7spmFzOgzfYLApFu1/EDKS3OueO7DbElyQBkvpOe6nZsTdAbpADVAFjBQm32bvFUgscDU0ZboavnHKGmJ/yhskTqEYFJPzYG6jWJ+36Qi9pA4fyVnhoZ4Lxmy+6D64mD5r1nO+NyFpqXTSVstJxojAFG2SrlXd1BkqndZqGBS7URUCTSHmRwy+w7nyzDOZQatFoII10FD3wViQZ0rURNjtNXXwEVyfrdIfKEgS3/1BO2IqbsTcr58XpwXaczmpvAuiK2YTjz81UbyEVGAtBxCaHsHUcuca667vwFGG+ckL9TJuuK10RzrEp9XY3/CYO3bjDA+vMnajeIrr2POtWJJcAh1uEqbRd9/4KaqdHC7R71a+HPB2O8ujgV4yMNfCTWiesCxlLh0noxkchEDxgewD8z9c61C0f/HnlHYuAgMctydOSEgvqfDMfnXoMsdcnE4ruf7IX8aQbzg1BquRIBhci23Dncpalj/BW2PX+k20RVoa6bT6Osb4o60QJkjv2V01CVMB83QfDdd+BRNs+J3eJx92BywwVPO/JR+D5ovTgnmvWazlFqClcJsMAY2w7wOGeCW46vOChbZ1DG2gJoQsPwogpS1cm9q8MtKRL6p9GcjW3eW7R6LjABqvOqyBn3k/J04sdFR9/Bycb8vEhAsN7L/arriVVFjojn3cBuVo8H/QriT02D0h1JLsP3Tgi+MO+acByFwXIoPdgAdexBLRmziddy5bZH26kohZ/jGASkLVLZ1YtMV323d/s35lNy79CUZRfFJ8fqa8AagWxZsqHV8RPl+CYDElU7+kpu+saylximGIvwvGB6BjYdEh3aQMI+LyxtOqiVJX503+qnP39xZKP6rnPEpsGdQfsKx2uulJBX4HRVQFqfCr03nQoKoOfcMxgV91VLqctDUoCE3CbXWmIoFfaX1hQH6Gc402NhGAAxiXaxJL+NVeWmFzsZcj1FkMbqiHVlTvh5hx7aptCQqzxI/5TV4yIqk5fR4agiaZ5lE0llk82zvqz0KRuMMAFTjtOIuZ6gUqpe6GSCVieqFpju9onMyHydXT0e8N2WIOtGg22Bh2i9f3TmlrEcuwCMzt+nCbES9FuSzFjvKh/3Du8D3wKVoe/9xpJl7zYTiQb/SshSdC12HjZ6HthyVTj7RFlsDcM/KTq0LjfRGOIbzduDifAnbvKWozlZXOSNsiXhSuHQKZIPhQ+lcngOXF0O3IP261A4x2DBkh0q21kK1Bk+OY9DmAjR0fZcw71wlIxe/gYeNn3tm9tEnyd4oppv2NSVrCEc2W1BbZZRlkxTMm3nwufuvNP6mTnHZ7j1JpUBaw0n8YkiFJIhaZF/vu2cUBPAWPzEO+lRf1/2O/1lDNpEMzKJSsQQc2qauQwr/+xfmarYZMrnSEnQaFIqRA0tuUYmUwYYY7CXxgS+g5ottMd5sxBEcwGRMwzm5k1bPXf0uPFmdwjlUb5VZkVdFX43UWVKiPRo9Vc8QDeA0ZmbmfDsCA6hsk7GiLCOp5TM6tRw/tJVOTLKKoihPopvgGXKjFYMKOsPtoVCAjyMtcVoednVNiNFZyEIrCBA1y+F7RLUxuPUkDTwM/dnJWRogV7uZEhWfpQCiSI1+5sqndiQP2IZ1l45jOgucIUfBPOKTimtwF0bkoUmCKvcEcymPcPM05V0kNG1gTMz1YEIpyJA4F9f1diyrS2i6oCj/hpIb+JdoymisG1D9cf//JSz5fODbRvx602g3Lt0Zcp2CVhk4H7H/ZRILUhkAzJ2ZWOx3PiCbh32bE7/Ksx9r+HrMb5LAUoO2qE0N5RiPQTNoIL8K+zZ083VFhV1/qLGNt834/FB2kZyWa8yB6gXopZ8bEEDWCnXYJ4VUcfJK99x/kK4QvHPczd7Ltnf8JNZAWRt/emSHAolSOJfeejW3n0hfKCn63Z2UV3Ro1gadEYYFIiOH7pFPwmB+Ok4qroIxwlH6+WJsjIKp1O2LBWTQ0RgkaZwMU8tTXfwiERPALbUmeIJumqIaMOK9MrFaGfJUBfreu1l3F6qPCPog4gZRD0k/e/GaD++Oqaz48/8GauSlH1iBLhdxrvLyl0NK7ZLsX5pDhdvxXn223sG7O9CxWMQuZxI73Ps+MPbeJ/vUqNjVs/HQyxNXpA8shUMebgVM0knRGa1d7rfQXQHSh79nbp/K0TUxBWuzB78h3+OmJS99EbqvKviLVL8QLfkemIPCZmjuSYLmnyxwCRS5tgMiXOVbls+hZeZ1sdubZ1MY1y1Hs4KH0ScMM5sl4+iLoF0J2nx8dKesUR9snjjfLSvHHMcjceo69CNAQ58W90Okw1bJMBNHo8ntODm5CUtV4+9FVSg08wg2PARJ42b6FX374JRyyoT0YeUL9N6GNbZ5fcK3SWF201ef1OCBWN2HtSL9rmV1yLGbp4WLtnu1R2mkkrs7lRIucBpI+JRIFhQDmvDRXj+luJ9V9m5qPg3a+SO9rBz+R6nr26ut7G6eEFA8ATW9eZYpLbUi2coaYYt/PJlzzg2A+oJR/4GuTnTD2es1/9JknP4zgkeD+xCsyqRs23MXfeprSGsVyBGqx20uIV9xlnkaZeBk3TYRUfSpJwDnKflyZpxiYRKj3Xbx6fTROvc4hvGYRQqlr2PbS5p8Dif0RkSzW9Dv3nyZMrE2zeL8caW3/69VRKJk7GLd1nTKlMYRHq6ojEDg98Lv5nd5eR/m8RMvAEoQPkTuVafAf0GcoLP4yEXg3I3QxGpeYFofD1kRd3uXo9nlQ3mlu2WKyNXbeqawFXHEAD2XKuVbZhbwnofIo2Rd+QQRXQVzGUr9DLF6Es1sZsd8iQ/C++81uzkCIlgQOYQYkGciCTHcw0y0THMgI3sP6aMLT0SbxLe8hvzWatW5JVtrR4TeLwHq4SWkbKq76AmLzXazxWblxdiPycRiQbLLmbSsBbtYn0pOYsuwEzOLzHRKDQNzxy/qB8mlEZdcHXJAQxcga+qILLw11Z6W/z+qbWmFoRnO0Vz3t3qRo/XNw4JEbKgBlCTEcQCvYvmhQuizdfaYkZkgEHEMKQz57oGZMyDvSr4K7yr/G9vmkeI6/lh7uYsWTObS3Qgb34ahSA/rqgATsjuaWIsdXY6gs9ilnkxc6umqSbqHoJ9xQOasUMx/WWx53VgdJRIAmxI1fSn1/lZLOqLYQUZsXfJOsraBYkr3y9C25hwwtVkzK24/WjCDq25KjvEEBWsvvbyjYthPu6ej8OzHhNAIFshSJrOvJ3WP36HSEmV8L8jLP/CitbuJ9de6HhIVr6pop+fpvNH7c2TUb4/FQLoCh5HnCaRWns0umv2692mZo31Ec7YbIUH9fIkcoNFi7guaJVRcXDfdHL5U+vKZz4AZKmsPD664M6ATVaHck3/XLpSaTypwlGZAcdH8A/bOi/zDbpJXiFzwUxEp6POJ7Y/UaHNKDDUztKlsPu8sa2OaVPvnf4E5u/53sSFNtpWtOPdzgq+oS34RhEyuqsq98906j8PbuVXCZgUR3QdnowuSAK7l1jXVjmAPzxcFBDzNg0mS8PnI75GJu+UXlzpMuc8yzjISmQ0hHPGJjj3zQyNY9aj4OQVvh7wq59Yq4H6pp2fMovmIgVjEnQlGF2XgU3fk0YoM8jReoM0uqLpOScB424IZBhjr3kVFns0gq19aM7eD7Ba77usGdW85qK10wPmXLF64HrhRD70I0KzlVq4jqlkGdTQoWBJk2DsrUDDrE9SMz6egTJ2bda5b51LWmDQBsgp0y+GljudBXCRKPjX+o7mMZUZspJ7aTwG1DkfLa7qF1kLx6RmPckyJs+Wxk8bI5imKBoho8DNCt3LKG7O9mD7VoLfBOyazn7V1Xrd7xY5MibsZCHoB7Nyc1rNhAyJm8lPKq4ekGUXNYFHQTNJiWMTo5qzvU6LzZuD+PhfKnG/QeY+FXcjrIAvTc85XUciZH9+8764pBqlz7W7+2hK9A50oXlDcpEkUko+AzNSTxCiR/Sc374KAOfkfca1mEFmcMvYzB0gJoSo3Tf1JDaJrSxMxLvt7YHxJVer1ld8/C9QtktL2Qc4htdlSLp1TmBPcyRB2Zzhs+LEkOXRhb5KrOyzN44QtzKfRKUSTjVmNkTNPR3rBsVl2eLCQAPXjU5cYawkYqNJckURfZxd9SSV6b7M1bDz7qgQxgF0ovQ7xB5b+vmUJxBNUnSJP/XFvi0VoVd2yqV0/dj0AXrHyW7yQIHWISS7slzl4UjEqgQzKtdOxH9OSq+xYqM3lV+IiMqSlyamGXRUnquJJ0XGgSIynh0gqfZFmFiNbFFGrL13UJk8rqBAleEWkW3OfTc1z19UPDHzcKLgMLIJe50ysyx2LkDhRa6DJOtMMOv4hopTfSSiF+cJL0BwR5vjVri1g4QCx7QahIlH7Flsuvy9r8anRvy5JxsUf41z9vMuQJrIzHUSHcqG8kKuF1ogkE07e1QDfK1d5FziSKPhhn6ZpsBObbZS/bijt/50xYGrr7XAa1KKIPTl4F3Z8g1yvZOzI+9g0aPzjurufpMHXNnTrsGFEI9egWbsaOlc+tpNIB4jC9i6juR5M4BIqaAmFIBC3SCg73aYnYz2jKXk6CNhZBm0niwas3DoP+dkpmTOZygX+GLsQE5nsQaRn41o7U6OLMlDe/fdvpvynwYU/ORToVY1GA7TlSWljAeZue9NWNZM+ihy7pH4X7DQwzkZY6I2sWjGb8AdcBjzInxSQQzYEIYOIe5/bzigL3Hv9V4X9fAOFqkAp6Zxurd3J31SsCkpYVnU8ykMVGFGmr4iZW+4zmDE4/+t4Vj/Kx1GpZ2FzEhhx18ULoyQFWakPX44tDb5HpG+qKIKbchjtudGOUDL2+gwKEiowbI5ljTyPneNKhYeufec+VSKGE7+ROhQXwIdz0ZdKM1K85J1SeRqZHKflA5oj7D2pXyZrNPM2GN9iA1IIy+gS82zg7273koZnKIIj7verEiFxwG6pXgs9MWgsfCytuz4VYv51yjYSsY1AacrVAewSHgXapO5cH+z79jpps8OitMlb+TYCGcnMu5UPxiX6eUdx2HDi+fm6vY4TOetoBkGNrscboP3+LB8U3X9jEPHTVCzeFym0FxWIG1KL0j8xLaVZF/e/6LjiD3RIdlnTRES2nLsvzpIw8wQNO+Pru1JqRoSf63r0/eLMkLH7WanVVFZAXUlv1AZ7riE6H8LNiqFNnFbO+qxi4oOx8cEV2tVjApL6m+KpAgNBdNc97TGsruZ+FQDwTTDJGBHKs58MNoh7jlc0leZ8g2KxsRbcjcGqgYLmbZBcMezNucQB9M6ZLQHE4qY45xt7t9sUM99TKlh+FhVS6IUZZiLpLSEUa65NIU8ZV9VDKe05Ce4sxSsvblPcVtzZU4J/u3oXu1TelEhvu1zZf+9Cn7OWBrUdJvPCVIdN6eEfZ24RGbLt2XEJ04jAhQuvLlBgvsx8ShVWWgfbZN8ZoS+/v1ExJ9M+5XlS3B3rCC4axqZlNfB6p/Ig0W+Cfq5Gv1HURED7Kik/7se1XIINwG+lT2XiyyMcdumrGK3p63uS5uAtScA6PMZV1B+e8WZpBu1jn297zqgMwQfq1Fh7QV46LVzOmmjrVg/g+0X4STIKwU9ELybnmxH5trzll48jc+j1yFh1R4c/yNrQE9xqvgtxhTidRQQS8vIQQIXC7zGCLPh0eeP6KPydvpCsFFKowWx3iPSvYy+2tEaxU1u7JlQg/2GpQpzCPBaarC0/7wpaBPQLhWN98NioI+IWSSGP+qAQMEiYyGtqiuFDyHhuadAn7fNxxVD49D8PyHcZ2PQh3/6Kk1m74HIn8P5zIDp1DvLiJOx0339NDTXiWfc5yJYCe0lTj0Qyi1+d5WuAGTbCX3EvPxBzvovKyM2z75R3C7ar1xPdWd5w1ErUoISlIzfPCtTEs24JG/JkYhnH71DDy+1cK6ku5ntUx+zNhn3xNZp+MqRtUpuJD5zaDhgGvNM0cCwjGDnfXQRdDzmovkS7S+cHzLbgeOKdgh2vnc6bCs9SzIycSzw6TU7JDPd5KFNQgtZqj2bd3ehTmdAGN7XIQjbSpU2YHUzeqd6GluCJLV1esYput0C+KXkoO02ptyaBTn4vWDCVCHwDUPziCktDxT+6bIYGERo6Rhwxyjk45PYIseWUMwds7oiMtrNBRI+Zsg2LpZuSxAxCYTKdygbjlbKjZRX4E8XfxDqSyoNy89SPoMk+ftIk4PtguS8XW2Oy92sjuRUXjzP/G8N8wJah6UReSOuvp81VJZPN7V4qkhwLlubsnQfiK/AVxQbs9NnjtXAPzGbSbcI43sLaeMCYoPj2n5s1Nl8NUR1etAfiPXShBskGc3ehvaDHhDXVksV/9DFgpDmYKUqJDycN+oJ6g+iYRXUtJoHXvksg/A1xMj4mE5C1LxVKcmrRHYh/MDUyUw9jBi9W2jUzoFiJh8lb2Syw3o2JOuBHxXJluCLf3q1zL5Ury3HJCznr6ODJxadFgXOFo3osJUyNiVcACa2fnoVaxY09AAufBa7NWQjBytA5afJCk82QfoTNKW0/L7KCRi2PQ9Yvp48FrV/0JPmuWbLxkMI/Ef/YauhLzcCuY3wIPVx9vrehldNj4jaAt04y+T8+jsQ7nYFyV6iCwdL06Rh3cQPsw1wz3pkrtP1LvswGm8NhMCrMbNm6/awhvpLSgPGh+T6T5618MBFJqSHNjG+Ryne+BuJXbl9cQ4/ac0CxX4t8Jh+NYMeCYqLrFCNVXcQBzEpN/Zn3B9ycAtLQKXuWYe0eAziNcyERcJ25tfR3iSVfRvfPE1Wp7Jcd1jvN+NHDsG5rmbSRoSbyCfj9wFku/6yGG6qouwGIUNN6zhJtzGqDbFCRoWSskjM3Vp6GCa5XzxRNLrFB24RfnjC536gJhK7TAAlytoSKsEuz/wIr9/c2y3ijTsszqeP3e4lQ9VKYmuFbPxHEhEGg3YjUJuITB+C42SgvKRr9waUc5QqaLfAzLLDA7bwB/6tKi9/43S408V5y4rlmbTdLcltyvhtRQSnm08ar/0uxyY/PFde6wK2XEubajwGn00Xcj7WNxxuveSc45RDEIGnjd3H3mek16e+dJmSNI7cypbJfKimtU0xWJoNReRv4jsp2z6NsApjkluVAbnkKR9YxRZxLMaq46i3QRKhOifnRNBaQMT0j3PGB5M9AerZRumBL/8LBB/ejXIfF+1O6kQd+VmcQ3wHO3lnF2j9geDbaphKHQcdDxUUzjDVPZn5o6iCrzkUefZqOo+qKWsI/ckCEnndK4y8W0XSIN4I8NSDQok10RGK5/Jih0EE6ypmZ1wUUDLw9uhUTetCC3H1za0Bwgw0+t93KYoUvNT/kT3ASbhI8QfFit9hfNt6egHa5KhmXF56kbSI/a1lb6SQX8LxsFoN0Hax9BWHtftUuuH9uRLh9SMsAXKQL4DhoW73Y6GhlP+ftdQZIw1vcvePg+ff2mLNv9b8yjvDz5hU0xR7NTXvcd8P5sD1M8yCPHaeKi1mNwMwJLnekIVToqyBboalx8XNACsBUk2/pMfiTWte+7HbIfRUmjPWZUdR+AY8VozfICJ0jmle9DdcoN+5CoXDyEFwnFeiFbW2iOhoNQJA9XbVhDcQiYxMPwAJtAtiu6pb3ZIG9cGmYIz+EX0xhcG1n6LCaqrJIrCcuWs7kZsklMdhxznWzgmQH5vRweaseVnnmtw5x+wyvmIiKj40HeWCtYE8Dc+yJ3fXjU2h3fnEeiHi/N1s+HnrxnaWgpolFYQLBXTg064ub2X2o/AJLToopL0/joiwd32v0VqcmobO1LM2LU0vVMQSrSpnFoOiS3jYIONssimDYg27E0CETDbJhT/DlqU9ByFELy3YleC8pED37eHnu5i+k4Nmgoidge/AGVUStJi4BoYjEThL2LDxqarV1MKe1aYU91r9PvVlNNkODIYBPInZdt7dkuR/demVk0weAH+CQ3mQKc4l+2SP+mrYVM7eTZNJEwQmBhhfihsxARI+PU83lUpwv/JYihuB7ZzkLrHYqNn40MNbn+3rAW/bhcZQrmap5sMW3/H6N7nw/Wv2j20zaqbRHGYYG1nVOKKK5/iMDB9HIJx2cBCykTvBUKnxbKkcs6p4yFuHQe7Rv0IVJt0YoaatQpj2Xpyh5VO1RbY4Ti3bEsK9qxyXOf9lcuhjmwQyXkPtwRIBTQGtYQ6SldjD79aotblViLSlliQ8mkiPmGF7yl4YiKerUqHoHO5NelRgESZ/eSGRfyr7g7UzLbCHxSMeM4epW5Roh8nDAC45cvA+Oi4y/8VvCowjrWAIr0RmNKURIonFp8GqittvlmPdgBiy3eAsKID/SiUfVUlRPP/YoXLWuUrg2YyPH4xpX0rDeqBaCfeOSRdtCmAgaOpUMZNGJvneYyN70Rs2SWtgOXQwvzpM9ETXidEW+mum6XjalrlHTQF1FYQAoN9bJsjWtWZqS62Q94FSErL9ns787xstjGeN3pCE+yGowM39p+ck92f/1zZdbb446G8b1Js5C7UNLtxbpfQEH9fp7z/SBeBhrTQx95X7uVAdO5zRVqvAyNEUIXPaxW8DXTx/YMwtf4ceR4wPNin6RgGEXCtYVXgmF0t5P5p9K8lWMZ5xKEmuMQbweSGoehxGy2PTZZ60Q4O1C8o9Inn4jrYLVQuUA7ezQ/yXzeN40Lg+fb9QPInkeSaEJXmxVwYCBEmXREyihuFryOxlmjVhroqeA16AXF3KgbfM6uXytMmlG2IYWDaOpqg8irwz+99nFaHR3WemhKDiKobgJCDj/iow/kaXJ/W3Tc5AbkLxrp1EEsG5wfI9bhOe/e2iXGKmLK1vhoTY3BID3dM8vwREt0o960QlMdqM0RGnGgX4S1lU7Qw2BvkeCjS+3Oh3C0l7K0snai7TdXtel3pFOlMzdlOkLbePn7o94Qx18UtpXZF4xfpt7DXliD2pVnXqmwMXEE4tmiMlLZfo8dZc/+0LXdC0GT2wITwMzKI3j83p1rp5Shk5euMG94ics5sbo/Nc7ahTrdxCtI2Q0sHCHLShsuGnR9sOjDg9MxsGghCXgfGCXqDsMZB4ZLQDHqnX8kIBvmDg2Js/3vyf1cvKbeKedwyxDKZ8N3VJh8fxm/x2pKZoFPz8Bo/D7JdSp/MI35ZipMYTkN5R22dY+kyfj0XpKQf9DTVtlZKBxFdeZwkZJJKYCyP+cOpkGQ87817JBN3aYntHqG6J2K0qsloqGmdCPTuu115yHU4y4jMDQBDeYq3BejvFTk1vHSPJJdcnWqmem8BT0h1qIer0c9W+SgE69LvLGU3krcJQoGiE5cFL++QW3kCTEBqaiDHPiBUv1216bURl4Hv4vyQk+pkVEhomiGGOtQh1Kr4Aikwdk+23XdcxoBOuo72ZmqbusZWorv0OK0Z3t8AovVOhW2r/2ij9WWd6ZNA9yfCpyrsfpO0bT5PDoVruK40iGB3+6I3SXYBU11kjVHSJW5WFUko80CQXoghJmJC3lhBFioc1HB/vic2teRraAVMA4pGIk4A5+2akr1J+aLUEoYtTNaVI+jU220wAvrfhq9oDDOmMDb6IbX4JlQSGhu0xP5Vs0w9NOXicxa0PAhzhVxm+/qRZpYpQN2H/JUPBtwmia4jHC8sOjmWRlZZozeUBS6KLw7DVwOt7+5nlX31Gn858SFV7lYO/n2gLONvlKSSCHNayWVaOP7UjIaVvnOSBQ11biG2YB/X19m/0WKF7wMa+iuJpCZPWuAWekuoch7lNhjDf8CnaPJLFL4UL8+H2bI1u2mE6xnKZ8p8ox4+kRIKj3rWuo87hfoJOoNgrYwkQPGYW6OgxDZW6JveNV0FOrCU2rE6AWst9zAcMMKMHD6NX45BhOwPRplViLpfViSDsvWsXtg3mGPqUJXREzJRmVCxs5MtUFISmLIxQKESWU9WSUz2O9OCHSv37VoGX+O2315peFWHJj/FQLL83N90zLpj0nQaEa/YiTZAkkoDKpwyr2+aQcez8TBpO+Nttv8FqL0oc6AE5voUi0xxgW7cZYB0oF/hqfSrHPq/qZ56TJTtIu9Vjio2bhmExh8t9j/P/h5/B6qu25jtYlmcH0Lz8uMFb5+xYZkahteeaNAt5H/+o0auYF8JVIoGa64xhC5Y3UL61iwH3gVssdlTLTJWmeTK1Dn1LXlF/QG11AZe1p/sg4Af+b9I2YsMIcoR+5+fO1JDry3jVBFkJG7RPag8CfUjJrEVmhZ+gB3BAN4N4ma4CTvnaE1zzk29xc/sQUTN+N8Jq3kyzUjW4WEFiXaD0tfMbKlaB1ogBwGx8rKfG6170kw068D7hX5h0nzOBlazyaR0wIIKRqBgeDukwZGJ5SuY2nTwOv9FVkEPiArBARkaQxdMskuJ/1+XxLpg+SCNfNDubjpbsDB/ou0ZiA/KlPlik57RZ4CqRN5sHw8K3zKL+NovhQgSPvjWxtTy83tBkmZDbXZZ95nMLA3Js5OaCVMrt2/4MAGORkyNDKUbIQL8/HvIyHUEEgNEfijLKyc0FqKDJtsBSrncgINBGlt4dRRpD3yMBjmYeP0AdKvgj72PQIZt3XU/wzzfl9AVELQjqwaO0NhGIUSkrd9ZNpzK6b50ZrqV9YVF2rcWvwxfZnLcfHKtftPe4npFDgya88AxypTmE6KyLrjJ9r8q8fbhQ7vc2fmX9nFi5eMLQ9uqnJMc6wa6kuDiUEcsABTKxKqywy9fxdCZQQIQYPi1CSeIpkKI6DwARLtr2ywo9QQWzYe+fP4n1aoKJFp5jsS1SGVmSgYVXnul49Plwce5kRg3h8FXG7lKreayPmLAahd8LlcRVlfmboBKGh9lTUVqB/bRqCo0OgY9fiTQaFV8lQ579BcLusxxj5Wb9+oTPNMreduAwNiyHCNL7J5kTaHtd8FQyWFD0ixqXq1INcO2YcOY6co5pPcS6vfKgjAimxhJXQf6+pNuOc6nHNokXvFvT7v43+qnr51KIwphE9IukDa7C4u6IK9krEV9aANyo3RJmo5EgZj3LUmJPPakqVRXR+OWLiEx5H8G5eOWur76rK7IItEIkh9bBv1Mwbw5rM4MC2ywifFDZi1ZgsqUY9WK4C48PhYfJrsDCZHQ20yuRv+TxBbkMdG3lK/DYV8fhDkSncLgfchE8HFHWMZjNEu1bDTuD10M+9h3/vErrDXPyBARk6Yctj9FR+7MvZDDBKUCRKYwYqDI44YBFskDiT0fMrR/FFwqKZfGb6xeIFOI5cVVpCjInFCQAjrHxA/YgH4fZQX5acemMfLU1XK+iLVZ1aWNk3hCk5jg6Ukt0P6tFTZSoPzoXwMlxTUdD+HgtRgPO83MeuSdHfYRFDh6Y33F0rqL0aNv9EXJpuvM5m5Y0MZqqYjBKA4jcQDG9KN1ztazTqOXdafqgR4frXYb0NQ7ZiWsd8TNp5Liew2QALTp2h0IWAIGJrTYrQah4dC2gJHC1vxVourL85aA9gLmX3aMy3Ya8WlKczS3p76PDtf7IUCv4aFM/zZxNJq294IKN6pegf2+7/Pka58bH4L45P2p/ZkF91vwtVe+O6WwSQ5kfJHkEzMkf6vzVwgWf+G+jBpIMGb9ZIxU2WfXZFuQbACOAHbl68DHUs21oX9tts03WcLvTwoNhfhvUkWvQ5pyeDRggd/wSmiDvn63g7gRcNolWkwxgXURhgBfavPQgqOWxbsP+Lp2gRGh12Swol17tlK09vHr/jflcarNHVloofBApC999ddc/t+F4EhIPPml4ZPuLN66OyF5tGrOEPvk3etgFz4PgHNHR7bZ8+Y0IdAitV7yJqKNbZkpKuwJyQt/hw0YmhE4RoNCiKI5xjOr2LWhfF2faoESxKPCjPkbSDK69kbmZXOCNfgD4P5UpOhIuOydX9+IYcGhWkzWlThUDhRY44UhGjJRrgFcppNvaQrsk5UlAztEAaLhmksuGX1mxM52YwDNXrIGR35JxvLoU7GAINB/pLzO2AjvUmwdZS2wkcm4xpHkWEsZ7xjVk0hcNy9dIZ7oLWdAI/fGkYMkOxiMeF+gt3tYTGMzg5B5D/Ni7n9a5roEt5zVHKneuVRX0uKVjFfZro0r4CdjEdmqy2tUhd5GMlp/d9UTMrOQ1bJtEcwHJbmVNPd5qHIyTaBysRR4es6gKviwoPNvrOrTcxS+iGGDSNrrtM/jCgMdYj0hw2XtiIawd/Xq7aRTc3wo7L5OMThVZMcS5L8Vjux69zuCH/AfIPf/wr//5P6JLQ+s3Mpc4vjeHkCfggKXuHMlzliZCpMLWdR19dJ9Nb7uvj2wC8770Za5OfeCzRfvZDaKlPMMk9iFYjWBUcfqx5IEwn+RxunX56lIbJfRrNApv044SX232hghv7l3HgkOnCdyb1k54V6u/CPhwu2iQ80nRjrxHXge5Qy6JMrScIPjdI2YNY9ZpA6ty4KNjIGJdu0fgnY2/NaaEkewM1ky4ir94+E8fpSNawTlm1cvEEhmhnaYMo3Za4bY22r1Rq/x7MOInkAtgTZAP+BquzG7pp7xnO5CeZ4eKs/luVGpvYwyxylr6yQW3UMopTfNDeydBZXyTv77ZZmAgQibgMZmxNxUrXwL3jUQGqdYZ/e4GU5jPYxNZpoSQ+fe/G9GcKr3M6MEqcRCmHbU0lmCZZVlDeiA3Tfr3SlXQ50Dk1wQoBImITI60iZLuOl9Pc0z7Lt+c9WbYnySOQWf+ospmv7rLae4dmsGsM9FaM0tzaOdYsE6el7ewiersXfnstLrS58hDszgHmni3G/cIxjfSnv/ne1Nhts9EhY6lHqOIaI4sHemIqjBDgxj8hqqLgTcvMNAUekbwKpwqhmCvX3X567F3R6tUBU+hhUxk5SK8xbrK9hO/x+dQ4kWI6L3oO8EBS2fBzgq9V+mjHk70ragTqlSSY6pNEepngJXQ9HjIAPK3hNX1Sjt8XI5p9sPRrDab6YpUroS/LYfB9n2qew4Q872N7YZfSRquw9PFvgvEhx/pOilEay5dsXDC/amqqsRNRZ0KNTaqpPglbsO6UGmYEKB508xJJyaOwP664OB2F3UG3npqofnuZ42b5SeprLh53pNNKvjtqP4T24B/WJuZ6+51nxypz0/ZH5rkdnSdx/FQiYPoYLyQgJ3I0MzQu4X2MCGj3cBlSnAj/gwaKT00ku6A3+j8FEvJW/CGNZFjrX8pmbpYLRIEsWAGbIQr06sziEMw4NRbRISmGKCJPh1u1EegAIOuFAc7+02eO2KsJ5sppBwXsE8si028YScggvOvd/Le8i98uyYEZxiyI0JG2zzSosfZgCcC03gOXOk71AJZj0luTAJFNvo2mVBp2Kgw9hmIRA9E0lRcH6bWUuLI+XdKuwWPIy1nJZfbhL+zSmkZNITtyIcQvDGAeM5wqepmJphnStWjlU/ByUD9kbKs7Z6RttFtRFMoc0nti1qpQX51G8OeP8ZP/sAyWo68Dof15BJjL1geijIktOdfB4iwna/r45KIckLuotHcR9iXWvJsfR1QHgYafN0XG/yXOMjwBwFrAHEqqQPBg+7IHDnGbKP7be5DSurbBR944uyHTTfWrXWnqm7p+Py+ziRE7msWx9CH8g+hwOFYlMLEz0bzemW+WWq5FSXxWIECouRbRYTQSIPn/hHdBQP47xO0pcIT/H4yhT5EghbRtMVHFDADBEG+7UQtAalpd4Z4wq4KK1ivMBB5ZEC+dOnxv2aISl9hRfiFxKkbv3HMloP2QYsEk9A6abGMbNCHFhqL8K7O/5v0bWezbGR9WM5M2KybLwl/1pCujcPqo7tBLGVSswha7tJFPwfwtofNhrdLd0nsFL4yynSZSeFuQ1s/yCvSzK6ZGhpXE2C7Lar96Qc53gLALzkaxokgzT4hVEZYpz8fWG8alCZ5Yep1dOKyDE4rDVZzvvwa+/BAz5PNZjqzDgjcT9gZiz/b4KI/IeraVXAEsGLlT8GvyFb3JmHihwY5oaGUhP90hXLEMkCu5/vF+snCC1Y1xOe1S9mtq98W1Ci1myEzDXIwkx65KKEnvNk4qPYinaQdlJNx7IsPsJAZpeKewUnFNurs3BLmhV01jSaQIJsLULbU3f9uTEHQ48zL3thWRAH1ItPNukHyNFf93WDJdnBxZqzvf65SieShywthdq+Fy24mn7kjFbhFj5m8eK7l0S1qcYvDdqQaiPOxxHsfx9m5c7xQtBcBUepY5dLiICV+5uwIGYOO+E43rWc+lmy7PnyGljaxsrw9MCvZfjO54K7jJUdv8SbXtDdJ+uf6nsO6DqBgx4n/pZvKB1lKOM0HBwQeZuUktESeW3lVsaZ1eo+nceZ1dlBxhC86qV4fqeATbFQ18SRSsEOyMGb5opIO5QE+KoJ8kzj5fFxrv70CHyFR6gEMNl3siVa94VW1R/3jocQTlsq7t8eTDGk5uEIFQ9n18oC5aQ8juOLKPqOkpxD4t/Lx1QRHFRcoszsJ5dfTdQ2s7gl5RyETDVYVRHLSwVqwz+F5bmOUdgFPGI4Tzl1qbh6swzzybTkiRA8sQ6mSgo3qVHayKS+S+C74GBw1nS3jnUiT1Vvv60PpSNiLwPr71DxEq7ixyKFZQRZsQgNtJcwq+8XxjGhnI8TPsuWwvuCTbD8DxL/1adoV/DH5e3IkZ/bd8WRYDdiXXlJ3C8I5Ws4oxNOa7D4kzovE84Q5RRDPkN1yga4u9EGrkgvMV9EtZuNR7r8T4WlPcflkkeVxPITo9ExL4gcWmG07o7lMQMn/MOGViKWknep403xugespygeQNvUeM2u32snRu8L5j2lDvP0mqpkQKW3deMuYK7QzHHmG5ctWXuy/Qck47csyRi3LaUBQ/Vtzn4UzQtWDZ2afEpxeBcIiWqRDpyt85CTf76+gEx2sq5Ipb+biUSvjJBITI775q+rT60FGk5SJzeUK7mXmO2hZfq742L38yq+sebgPJOQkHlNkC/mNE5eKfTMRwLhj/Vo3sD3dedVQv8ERlfgrz7o0dRA4X2AMv8dHRcGAJFXWQ68/oj7ufYUNXfFAZRjMKso9HqDzet8HJ/yfqYQFuYSP763zo0+apCqcVShcAxs8zj3WsRD+KcRGKBk+o26I2vdf7TRBPtjOo27D01I+PBXRWKrx2yKDV/aRXQl8RvZ659GTWhd3nAhhNvjrKSviY4arF5/aFVkG/SjPCGXPLCe7lwaJ4C6yri/Cv4cMIPsw126bOs01M6SYhiHVAxwhX3DXFGFrT+XoCrpY2VJIwDKhADRqy73MfKSyPD2QfwbjwouK+BnS5Be8TUqawDu+a9k8Sg9Ukk/tsIIlHrYQ7QOAw8l4q1C9kJsZ3mfKm71Rrs6bj1APynfiSj0rXaD7vq919Ebi9NtHCOKTaJUWv9vwet43j0ZC1zboTmdU4oPNuwCixW4+l+tR4xNq/VP5p2ugcCQ/vgw/hoK1IBu5a9Y2eJzZqS2zT1CiEFzzmPi+a+1ZGel7fF9xzUmK6FguM3ClRZaEb1qafqJlTMiMRjjeqQJXk3OfKRnILod0I3Dfs7kSOnPe+yk5aMOrYwgkgXPFyULlHhxHzKspEE3G0PZ0pEbHA+2a5bahtoYaxz3iem13O5VzRIf8B6fXZUcJFzSBrK/IcX8mAmDAxgtdKda0ucQ8mRoP+nvACsOUYCKODacRKQzgGl/cSMv6XyU08M3zkNQtmt02QhJMgI1fdgitOdl1NYjZMQ+IhUhcoJaLmxdexm3J4DpBkm+qWANAp5bx4DKV5Yqa8LSWf9tkPO+blHb64EjvTdUGgJzLfEv5Q9MPGiA4i3bXwRzaXGMBE4wQ92EuLhZajheutwpemcEvy/vJ5TJB/D1Z63uNbFJEG8Mvr2ittWwdK7qMEkqnAwuLFL9tV3cYcRPnAjGmUIuTfr9AfJ4NSBrUI/kuY3PU8F82R+e9TLKMh3J1B4ZK/3HKAMzpjPHPA+MblK7C+DOU/ei5akXHoSfQ3meeL9nLSd47/U+C8S+RXYLYMU9ZNASuN6cd+LwSZiQq0siwisVjeDfrCD2teIRP3Lx22bXWxFmWS5YyVzpYf+HEpz5pvWx8FXxUFJHXZHsLu9ReaHYjcc3sWoWFGzt1bCs8gmHqBkZ/8U5k6uDC1oo8rWPdgwupFeQC2wMa4YGJQRi3noKHjh3ykUeWXB87kQcDcrNDsHqX6Ir5V8qHJdkd3OIhPX2WHumeqN5O5Hbjt5So9f987d2ph73mLGbI+/P+opQ6bJ755kDF5w4vbBZrZ3GvUYtcx8jW7LAnOa7pEkPhSnIzmqvWNeHP9TedKvH6iMoSe1+upNnmgeUeoXTLgmVyFeSUrK2gyrv5lvpUZaWiUEQJ96q1iCP8q3x9Ve118hc2knFP7Zfl4XFd+pxn3+v/3+htfyhpSqlHjDHnZZzcr0Vem49G6NXj3QskzXfp83Ns6rOd6jvygqwPr+Q3txIHfzsPrh4nxH4VpqEGEK+m1+RnVF5tXmFSLZZKggC6vvGrYTwM7wt5t2sKAZm3/aIkKIOXdk3McXrhpbKAXncUMoSfZQzVSv9SkPVTJC478BJOPnlEeYNbibAQJWoILGcnkJBqI2LPRdq1k6xKpoLym4T5/Z1paVtVyyzaJmvDpNM0MNrs72buZF7J3W4hLJvJce/3Htsrf+zVKtrCUvgCtYS/HqE0OtjZc6SoOs+Mdvxq9/lC2KlvTn9ApMQRPdDl36Mfxid/o2TjYHBoZjTe7r7NaPALEapZTUSWq/2osaKS+PcLra1SII+z/J5FiXuGt82oPK+xYV7heF5jNBiOCKruv3no6UGvbzyOWWqxUbS3GEfxRLEwKSqWzfovb4f8oUkjP0wksqEx7OlWzwZBPMRipalBfm4NUdYwxqttTKxBn6aS/2ucncJ2eIAwnzxp/r+HWpzVJVzBhZHuU82DcsbfjO/1Ka1mgkGhCe3aJLvxtLVfGm0TXuMCdBlRgpKRGXjl8Hw4tDaIqbrVVN0e7lsU5dZxgGcnBOSpvaKuGxuCedZ0S9P/mQg60H5/1z6c3sGhNfGG6THszGLgwdPuzEvkgxVB6KuDFmuGJckc4i/ZpgP3VnTvJaMqDdrlVfwIEtumtxb6OW3dLJQs8Au9yHs6QT6p6yXAZtySizS2Y+pMYyn+YZA9rIxCaUUUYRph6Lc/505v1xegJ9pVhGFJhpTfCY/Kp2apmnkoWwOApTqi11X688WXa7prcKUWeWw65zYgTbEoGLb5HAYePPs1EWFrEiuf7PJD9ghI0Ww80YrMd5wtPnwsNWOiNJTDRuZPk1CWhCN1hkCevGFO7Y5FZYdcXTg95PiQRedMFl/a9J76jhjHGDwfLqREa7fKZgKCRUHX1GnFDCYF2I494OGA/pggSc2vdCIgf+GZQ66kRBcoqjX/qsB5P+2TlDEp2gqjEV8zeBQj8JAafx7TyyN1vbzh5Q3n3BC42nSYxyESK3VR6dY7Ze8Q60Fzqd6NNNDGUkZrellYWqYCXRt2n0KwD6M1CvGdcsBiqhnNMucR18zH4AS8PZpIS5bFQGCbdF2UJTsZqUfCr4+uvirqTrcvsRD3fTKym42LtcF90KTl2byKWA72y2s/l5U8bKzG7VHhzsDYBFJ+smt0chltjEC9pMVeCNCTwPfonBsIsrcY6rtPKN94Ey/a7og01QXm8TsCm6tOpMN5EcuQ3dTL1UUEk/3bAnp77eTEeg+58zTCzWQLPSAJ1vOa7H2BwUhTKdvFMvfpL283Ae4KB4ftI4iPEZ0EqCH+1rU0OnEORsMjKuC5g+IsGngjXrjCcteUfO99QPVX3dbkKQ+0ss8NLmOMEES1x0yzIyCQDaIfBxsagvPSNmjQKcICZ1wJw+LQsVKZlEM41brTuxJ0+2Xz4yySSrtiOoAJrwqOhrL1wAqUbUmuaEGor/tMO4uJmLdv17H+PMWOlU3P31HYvyvsmto1jJ4c1h8gzxEe54HcShN/aA8ElKS6JvC8btntgMehlJuBvVKegkmsxOB04p8LxemFO3dWt6FWumh3RxPUno1iKVsWNHOSbtaKNXb7XDG58/3wi3v6W8Ql28MRoWouVtjaAZQ1AEEyQUFg5WP73Y5+wdUv8+qdIwkG4j8Chbh8llwq3jYeFmqk5LfTxfkLU6muEHpYZPVhe6pnnqdgU1Jzt70xvgYhAj2KsfKI+OFp3UuMgzkpoAJ2kuO9Q0Ps8LoWYEoTgvPXp7Lil469rFLCTioc6+A5t3OlnXjv06biQI8UQX8HLg0/DUU5uzaYRYBmWf+fNKRXE2lXRBs4U5mDQb50n1sZ0I5p89gQrCW3A1wPcU4ASe4vQGtkOSer0enjO9kxCvJ+Zfzl/5uFkHXDofBcc7Foz2U+Adq+f36AMTEcccAqFHibjoN6iBL9GXEiVi/eiWHeLpjXz07rGQJ9sxK+I9nSABk+4xbaSWXCncJ+ZfLvqM1GvtEAI+kLdfr1apnJerPK8QeV0MSAmlGp1/8/KwXWDUngw/E0Bl0jH3Pn0ooSptgKyMbJqPXLQZEHUdLGoPXYu3wm48gOF7qpAWNiG7yrWOXDJZNcvsbvDUMSnUIkKS5lHUJAomywc+CRKiij6c0OgAqX4i6D8q7J3x68CxOUpKKiiO1zH8xQi/+/luBSzI2TNP0/iR58pOWV8CgZQlXWkISzYkNuiCxt3yabWe7+vDmbkvIVC+xyh7WLdlOB9swFswSMUFvxtDBVgP9fpwGR+wVkaUpM4iv+vUPzNOWqo23hQywQ+CqB54MsPq+TZctSVMeGROIs6wfhHfu9mCxCjVJBJYcISAEOW7LlGI8gIOAfo+a5dD7Qbk+e5GIAzccNv8Khjkd7Y1zjRxQoBEsfOLet/qUqsrAzB+xPluXf/BSYLoGQWWsSWfXxgWwBZUz0FUqiK+xgpsQhAlliCe881kkPalvb16k2Oiz97erhk7kxgugW6/9Tf5R73p+XFDCwgiHJ6vH+rZGd/ZgfsLXCGWva8oFhJaa6w1+qHRV0lDTcMqU2g0k1BV0aSk6opRg9DGk9Iq0Zt3JrpE4Qm0iDTJ7J55pmM1PJr3uK37to3JwXJW0FUlVRsTDmetV8HRZl8kXKLXIjr2PJISyuUJCcNQNvFLuvJd9FDCbrIY9gbiu7PXWd50q63lSsGRZOkebTD+okseTTGY+sUyMhPICXy3T2SCN/6/EIGEWB69jh1x/EcCEuTvFELFxuBtey3mhGJq83zM/XAKW4FvCCxEtHqSOfxSf+98T6YRyqle+GCpXo/OzyK+7Pa7+LgiFCueK/eR/hfb4DAqSrsJNeqIkY5PyBiSK8+DANNkRjXQE0YHKKJyfAs8ceEwME/KC/B62ffQMrHbh290mXVi+6iUt1WW+LtqaDMWwsIkDWu7SnEG9/X3i5Wuzgg7hzn+qgt33lWEYuJnuI5pxY8YUJ/TN/7q5m5yUHLpnFYZIN5r4U+oxQvx6MfMZxBWoa43jVabY7tf9F0Le2UoQ2rLcHgqi8+tOgqc4aAPd8P0+5t9nDnDxjizAdJdWf6gIbg93wD3yCvaQMKObH1Q6BuOjJBARD7H9xTk+FZV5u6YFTuBSr1OJH0ymWh723VHV9PYTghUtwMufh6/TXPD7N1cHOxfsntVelbmjBeadQm6bh7NznGHLcsa/q8aIGGX3bhyQRt5E2T8YRYMdODHzAM2PMM8dpEbqqXFzyOAunUDobyJRVK7+aFRID3oVnBgE0/0JuoyktMcmjxgGQvl3iubiFbaKxv5yWRe/ZQST1mZonbn42EEdpUd3XmWn5yqwWSeWc6Y/TgOEPVftdR7vGbfELhsPSGmEaiJslWC0zmLztxNmuFqznHuqGpdPisFIKBe2teFkZ9Je8+nWb1kuSG7te/YX9euSjc1rxSNYtKf5j17JPC3ZJHrNjdG4oF9Sn9KFywJLoh7qGocX1YYoeM50Df9wstPLUamkiGiHhEZoHHN2A1ujWIUo9B4LOpbKYZR44iIOlgoC9ka+GLfE2+vRkJ1sJswiaTDB76RMdpgbZyXAYZSMyqVd2/REXh4J+SGx/HqByTrBjcvmkovcdhRkAf2jNr8f3NCCowNnhnh0MA+y4cuBojdCZh8qMjp71Mslsh01KUnziv7b9QTTzuJ3gc+5KG2OsWPGFQGj8rhnfAMSPAAdEwY0KJFPrrKQEzAC/chXcrlUgz8qFMVn9byyywtNwZwEjk4SeC/s7jVGRB3jwDfUje0KOmbGPZkgsug6vq9Hc3UzxcpaHfgj4NVqGlRDrwydh8Y2ANDjbYYoX5IkhlTXcZEyu6yMP5NBBXqJJIgUxvEyfHcm1qLJEx66zFwzTXAV7Axo4LluV3HirvX1ATwg4/kfsPi1OZYvuhtbw4HhnowrIj49ya7RqUDRLowI+tQ7+NH9bnmDal6gksIN1PwCzPplOUiwiY62gW9r9eTbNUgg2akpSh5dU4Hp6tbapn1FSCBxdj39RWbevSYmbiVO5na0Z9K4niWYbZpr37Gn8tmKgh3e0xvr9aL8Q/HBU190axVexVQdaFhoYhunEQKKM3hAfmcdKPCBbMgh9lT2UIuPAhH4BqBDFCUVDZ6TGLMOzDogid2dsudZvsKjuigZvUvAOYq8Dm8yWJhrO9fnxkKi0GrzRA+NGOIGjTkVfcV+CVH1faPlymMxvhGDdw3Y32L6clgxntbxdZvV8r3rfIGj96ugLtigXbkeBlDgZnyjJVN/ZrDJTYxvbN9gk4VxJH5PqklaT39CvXSODfAjwdjhO6U9YVb72nQuNQG/pJDm6H3ehy00Cb2b9eNS3uATXUKu9tRWcsjkCo9mSM4/ODuq7aMjj7IxnHuUjkyH1tS1mnzgOVInxSnz5PGnu7S223TPikaxRHVjXrdEuNz7MsV4Q2hPA8Kpj0Qts/99iYLxNt6SJ0ZWIrmLHVFfjhMWXPOLQhL1RdA4I5EEqnAhxCKhsxqrpnA8M+RPQeBohwZykhZPVweyRKsKx9so1KB/t5qX2gE3i1eb0QQek0KO8ByqyCOXHZbJFP/ZXJP++WIYsk0I8s2CcscM8LPi8WjtkBA7rUltLVukE94SFPsUVCt76mIaAGqzP5vD+ghHuaoqv9km0zkl0jAzWaKPyPs+EGkbHznC9z9VPlrXkilgIJ5Lg1h+F1yObOjbD+0Q6mbDW0nzub4hBoCQMbGrwGHyMffb2T0PfPZE6uamV8LYRzc93HCnrunlR3/jtl2eCH8mLB8VBNtacQLtYX4LVMK4jlu7y+Z/e4ecCPqfQzNTiFD7JfVNUucE66Yiz4SQ43PeHgYbn80LGKV2HKKCxzjbzXjaDvC3QI+BcIEhj1dTr09GMeBh/ZFqVTpdxZauzHlJ2nliXb6NIk87ofwcenq4L0vPI+oQPnfrm19/HZwZ+kY7onFHKt1S7DEE4fYM+CkXvwD2fIXWYjF5Za6sIX6i2Uw5plLnPz/XJvstMO2bCKu7xofH/bH4ZeNLvRteXwptdLYqL5EAXr+57ctmcs+GOHF/eCeRymmr/fjFSmEojJ+XhLfr8Y26dv2O162jX40X0ZnOTMUPRNC4WcU6PCSwruvmc6xVmruUy0S2JkcXK98I95jwVpGFODTs7nZ3u7LTwTVaNpy2jMkE+7PAXQ9MuJvHWDsC/0SZPm6Th8aplnvsED88Du4I3Hjaetk5i5MICGmKVbhNGkKXJ6/zxk/eWWHFmabYJluympHf1GdijIVXQ8pWhqLpA7sBiO9NVMd0ebQRT57ggpQ2LJf2nZlD8PI0ujWtBQOXazgoyJpDvZHai0zem6eO1sck8kU4V4ngMEwxJho5c8+AVnA9j6fm+sQo6sQH6+I/FIic8kesL1VtJO8W9GSW8w1B4hw93RNn3pA5A3EmbuA7J0CaBqgwgYBG/w/BXX8oG9ua4dWA0JYxSNL8eiU5Pm/EV1WCWgmp8z+TRdBFXWQ4vMf0CcXUSL5OPauZb6wQ5uwAAs+GmCS+4q7iWNn5OFokRsrIHb7MkJYuV6gFpFc2NgJkrBNACbQXYAwzj9p/as1ga9TApkX/wzKZlwW38XBqMI1yGs3ahFqYsWDQZmHAS+PBGzUSK8h2RWEGheM+73MXJiLHizyq4q3ZUF96NPhyOlbM1NxKyFdvoohTJyKwXIGEmrLxezhwcS570VpiBaCetpic3p/qROYSA7SppSebOGhtEuuqc40TXou9BK2wjT1V9OM5m8LtT7jBe6oqLUjhNtCjCBMwu4M1BLfd4edMcZGoxLeNmIIJQ7IRQhR/szrq8gZzpGkKzqnihB3ZG3q8Gu0ZAv7GQAr/QnYpkCzT6Od64PHwstY8Sei+SOdxfDiRAPaffY12ruaRaAI/jh/col74LTdRIqTvMb4+Cs4BhfPo6A/jrvvJnMLInV7fXEO9m8ad630EkxBA3I5SRtb3zpY3CshqH9eRFLS+T7Ha7HMUIYb0nVd58QAnL9oAwYuYnupH82QFFksnprLe8YXCzH4x/0+P6Livwzrm/iyzbrMp8oo4ffzBLSjXr2/vIokBafVsuzgUiP0bPrVNmRTTT8OyFXm34iAM6yTe+BrU8FMn9swHt5lDkQJpyk6DzY8j/kDTbeXULfEXi8H8/Ay2LSL7km/OolYCzWNX72KlJaPDUKQRJMVYRj4E/QZX10p5pwqtdZ2Lr1+87r2wwl2kj5PNr+isyChc60KlHa0dv66WYlvkNL5UF4tOz2+uQ8D6/+oi6SlSmLQoY499dlzGVlQkllpAI9jWg6yJFE2zgVofCnVN5wAHox6+Nlz7SEG0nNjdCyuV236k54tA7QqypHbevYrx3+g0RyQc7lrUyMT+uRccKGbHRTMAlZvaIWXKT1yfq+BKip700JUVV5/re/q8adG8Y6whqaidTduHOomvHi82/3jMysu4sl7gWcHw9MSN5sLSqEMRMuNnjGJhAihM7J+gpv9vKjgDSOnV33sq6eZiXLTV1AN7cr/vpZAW3eknIVbsoOuiMHWCHsncl+DUt2d58LUGcepxQT8J6fV8ZqEB9yyiI55x/Sqcdzuoa/e4cnpcYk7s7psj+gfVvQIxhrGklOl/bz0cWfks3UN7itlz3VI1DklTOBrtoDS9ojtP2CEUV5c3M1PhXEt77LynJxaH5N36qfyIGDQHqnWbHmvfX88NcFLCCGyPwFTsGk/9rcaYkbCf3VNPdWSs7coyrUSUSsH8Obcp0BLawj87J3f60RpADCcfbWaLgYu9g1U5MzfmHPH7K38dS3lh1RMuZcFXdR270OPV2fv94fxQImeR3EOXHRIW/pAdvIrKBh9pn7pn4qbjhL2kep8u88q4RNvM7NoxUJSoNkQ0z2cA9FH9yXt4yX8o6lSz6hEsZ1gRr0qncV7pKO7rNVTAPHVqbiab6FAYcejcto7evUuvc1rf0UF9uZBm4Hi0QZ+WTsRKRxWC6sBqaqNH/ygSXs1T1o+s7wpE6pU1T/rD63WnkfO/Yq1LCpHSYgaLDgUWDnPoOPn8T42jk8CIQPwLpbJ74UWeCN+bMFBwx0iKXlePBnCGNjFyt/yQBJLIxTgLB+hVX6zHIsgmp7WuGy4wZxvmO/C/3dp13ZISOAyFHEEGn4hzDSXYxK3+yxuk3mMYUgEiEGM0yYBi0BVNZW8dClG8O20YRcLAJydHO3JXw58RC3jyp9NGO2DS4sazP2L+jEVz+/dsy8vMPA02nY0Fk23uqqseUhIIr2S9XK8mWAkwemww5VT1mZkfjCEq5cinoUdPkASgOUSp7TpAi163JakGhq+a6VqZGQq5f3Qgko1Z60A5hmsALH5TwczyqKC/zJ5CXYCUEy8ruAbTjyztDfu3Llt2MZDmc49g2qbGnz+Co0Ehct89ryMuuzew9tALnfrokV2pdP/RSvEXZnrcS+U5uArJozTnlqtvX42YS7XA2o4szytwFe//00qds3zmu1Xp8NsMAn2d1Q/+CQK5tQ3qS6nXODOXjl1ebJoKSG+/P2kqVRqlOybj19tb+dUuL9hgIRMAope5kNVJR2vvnzPty96zDrWZHYXvhx3EtPAnFyQE4iphEm+exIZFEUdMOCRsSce8UJ+h/cKXj0zGiRYA8g2FCVocCwua3qp7Oyiypj9dC+ICOfdGrtP9H0ZhdNrcB4oMpW0geycW4POWdPjXJocj/zlXSSJQpmdolWHts2lo/xciPM0ax34VBUgK4kSKsJYkV5Z30TydFlN9zglDy0nypaTQtotSfSbcbNp2FMfdGXjdHtV2KgkO00atcXow6EFT9KTa6CpPYYaQOMfgSCuKu/3F/uYk7Kg3niHjH3LL2MUQKDamm2PU2m4iqkmjMHJS/MZwU8aHjZBu4+cqGA01nwFJ2WOS2T0otqpB+TsYFXqPUQPV2Bcb3D30T9A9V7B/jjoBd9rFIxORaIeP+y87tUmwacElCt+KMwNPtdML1HUI3u1UEh6jS8LujAUOv6oY9HKo0OsRoC117HbrkJDNL07PRr3kR3SL06N0HbgHb64s+30hu6zlvFrcrpMznuMCRoo/O+u2yiNz2SmGOu0WmAd7Urf4XdXiF9bvOhA1c/kRD89CCAm60rovAQSENnTC+t21c4JdijaUFuKodMQwizPdy7yIkbQWMqGtGPRWnvRsWlLvLKJnohENYpKf5QFV60DkpcJ/KLdy9E8Sr/74agecn3ieRtl5v2UZ8vFoyfQEGAmJTb2dPqD0zJRipNuboL+tsWAt0kZquO9t/qP/85u92PzqZnfBvZw9/jXi0Xl8y7xQWBKQ4taZnEP9NaNfeNHPaYWXndbk9Xpm9dXD5QDJ0tBu5uST4tP4ZSR2LY+prC1i7kZOmhQXqHVclJ3uOljDchWjOfxbHiHIHf22huLSUERsJmLtewFQfd8vX2KDUm1RI+mdaxrGw2sJJ1xaTjCk/29MfBqv1jh3yeY+5AznQpeXoNL+qkU+KHg0WcxkJQd7EqpVYxYWvdqVo6j4cFz40kRFntG/q+NkFI/dN7BpgJynl7huZgPrfbd41laxVKsPeaQbbiRyk9gDfT14M93iUVRLJg7R8thil5wY/8h9zTgaT3XlhLhUH04x/uF/KC6QmHGV6ibnG1vaWlSrnbgvBNEDqjsYLKVPsU9AmPS+2s4JE6bAosxIVu77HRE29JQmRZM9DCGL5ASX5uBT9whldzQ+ddd1PYynvWYqO7gq1DGfaShKjZzvmn3wTuLEkpLFQ0Cd3osIN3h2eJ7qnfdDPYTFlVCFA1j3FAXM5coka9Oeh9cdN03OMwxlOkRMoszsDtRQHvKl4290p5vVwS8i/QvVFBAK7ncOTdMMRPbfG+4wQvCItPAdQK6Z/CzRYH6HlzV2e2lOCPBZ+RV74Mk0qexCqWiiLI8r3lXqtTbIdNvYSYJFGgixSRjY6MLxICYbeo3uzHiHzIZY94xRp251Tbvu1g3s/4d5u5H/8M0qr9E3/ZksxaQCB0/z0awT9NXAo8jYOoPwqw6Z1blDySJv3QR9dWlnwNk8uxGvPTALPlIw8dSiNAA0q3B38wAocp2EfFuXzw6Wj+jcidpOyu2dhcAXjzgJ2s5FsPPQ5xngDzOryaYTjat1W+3YQPUIIHKE7m2BnqxEI2xp9J1gQZmxc3edEzPwCdHJonkHDtOJrK07Fr3AnDQ05kyjS675cMKxcKxCDN1cyaWRwVqWGxOQeLKXi5wq7cudzppv+TN+Y8bV2PHE2WSq+pfVLl/HqBtXp/dhrTUxZ5/EecLsFquu4MgILm37eS8eDMzR8qdxys2F4kmQ6VlLBJTB1JYLJ8PMrqSjO3WsXTVOUwO/FetBqertAAinC6l8iLjkmgAeVuOLDdSxj7d/83TyCAHEBP1XzLvhpHZFX6VaZIpSotEDIJ9uHWswACMYC0wg6qR4nNAtQoji/VkrGuH1grZjYp2u+Upn12aBkzYNhFDd6b1eTTZrhcEWJzuQQJgzya5JIf3z4wOBrxrMzUZp5ipW1QBXlXAfsWvyOmAmncRL4+7ADhicYv8UW5kyBaz2LihNTr5bokwfaLqG6OksRp7EkOPWmYnSNHJHWfqXrj/UQkEfiCEWQKMjnNfvKRhwASYn0njNMQW4rDK1xjCO+8kJm5qhgCN0Sk+tqbPDSszXIG8HK91QGXJIg2+w2EiXckyXa9xIcg94qTjquW38fVysovt6CMxLW4GRjpgv6cT7OqDa8kHG59yKpbDHfRLWO3y45yh14uTW+uqUpV4d0GezjqBBkPrEz778pd+6md7yIHP0zX8R52MQdhR/cOXbYuAu30MjPa3RVaFdBSxLsk4zYTuFpUZCG2wmn6VmUs4N7OpRFuXba+BoMJc9lgWtsJtbC4g8wxTio5wCErP1NPSXETYFM5fcJxl0bdsj/D1vhIfyDa7zlWH5XFvSkLWCwXihd9K+v55wcCndO8boFeK1TlJtpzCd/txfv5dEoa3NohkkHCHys+xxlRddlEpa+fcdxL6C7Kk7Z5vDRS8ldaCubVdKor/4mYsDsdaA8rR4bxOwUOfOnrik+bmWffoYMAYe+11OsP+0cM/FgqNXXzQjWpy8tTpID5vb9TR6TC6oig3NagZP292SM0/g33He8imkQlUPaqx059uo6Lup4EOeiSQ7limxZzPw8SgzNJDl651P+HJ3w00FllvKzQFIYxjUUOnGHXO3NCTwNBkuJtCN1ae/PMW8MMjVEg6dzLZeme9fUNw4nBhEIxN5JQ8o5QWHh+oGrHNMUjIM0jy2PeYvdZgLY3uaiEkTKF2+vqrLVdp4NMnllUJwKoTj30CXIrDfFNmGHpPYunPoVdwcJ6+CtRbZxkRW9RtrL0CfSsrMlbld5jM9poGQHcEFMaZBlCmGF2V0Iof0zozNvMaO+o7CZsUvlIPgrzsErann/hK7hY3sel42AfP+atnLbcz3Np39feIxekWQTZkOpohUmd48yKXEGfUmODrS+hWVrwNQHH8hATsnvoaet8H/EK3wYJdm0+beMAbqlytwfWQwwlVwZIt3SdoQAl6NNCMCI+CjipuXckPgCy4lp4Yw1l9dqvzFtEyqwvGWPhFUEhYNNvk+9884YR6dzIhUc5WWrnsHBkWz+JdtUYn5UHzUG0f5/MLLkWtt2QuK+oSlQaoZakV4UUEt9jqD/ie79nC+aFPDN249/w9R7qNe6RLmBh6gnZSW+mEUqFZSr/LWPKBu+HNDbbzhjdLqwSOAEDeTd6I/k8ZyZB0cDawfLI9c5ABprSbjMJuDoxAiozSY+fDni507KonTcTxpX6tfdIqId5yQl49IvsK+hboOec99xeL/OvdR9ESfuwu/ZUdY2ORoyrvTiY8c30ptCDp2x70aonIVsyU5Kch53n+4uPQ/Fcpm0ouw95qGkLnOKh9OsgjjWRSbslPRftz3LKuyDUAqueehxrxxVV4tJlFSvuxHLkyMzle4C/3IrIPZlOoiY3ZiYePqR5bX7ClQUc+S4x0c22mWu05CCnkL0sSiUgOu3y+u0SebeomBjh4BCwJtUiv0Dn/e6U2rqJfIdRONQ67RPAgFv4Xt2t4kE3KsYp25dR+O96zE49UNhDQoycnFBqCtTIaXerNnh6H9WPZHJB8H8N5Pk5ucOIBNigUqJbn3maBwRd3/FC84Kxxx5Ola9fYRdZNaxxjek3J/s1yCWxqJLgx2UNjxWf9DyCs2u9EdHwDtlYfiQXIJRwrtSZoSh4Y9DssTA820mIhSyLVPTOp1ydnQIx6Ksgg9YJTVs8U5TPPovrLfmG1sFELJR/k97MDnEjeYLqJNGOGgDmxzdsOpFF8LJ1EVBD1r1wKreozeEjyrkwzgkcICKH6c89OswcGDb5/TWcZ4ePPRpmjW2l8jhUw1A1+Liaq4VefD2qPKYOpRNpTl/zjyP8qCYKN5rwJ1B42+T2h4whmZViVRd5KLOq4xhja2Q41x5b/5I/AcIixEMeZFZJPPj7mSIQCqiC126jN20nhPws7aMsJ/NuKAO9WY5fcGNI3ZbPoGOmk7nTVGYgghn6sycbsZxvEgoSVKRlylmFO1Ulsgpe6P4SnPsQWcmNToNGxua/YUIremWqdqMBT0p2Qq9pdMeMxHS3U1rmf+gmtmYJLIkPsvcKYSkgX26gdlkJfhFVeWWwPQpARFwmFWjxqhpgNICnVW3EsuW7IGlkPsqIh/e+V3s3idPU1tekRyR1jId7kDesXp9qfPBKf6XTb+7LsYIhEs4Kr2VT7jL5bCWA7gk1OWv8rG0+kF2ahZ/uVAnhaPqPz+jW+N9oPSH2vZzTKe+qxIZAv4vt9GJjBL/URov4AkLIOmRTWOHK8JM9pZVU50XirevPrgNDNyzxlRoU2A4ArNq1dKiLfuBcSdZpjz4etj6/556L3K8yR0C2qpowpcNbgKEVkndgVF8Dr+OuY5gGDIDGERol8KdrRMQVXJiw30rJwA6dxwQO+cZPbGcv3pZ+hyHhO26UCHL8WTPNs0iCjlo1knZP1HvEOjmLUxiKubaDH5zaTLA2xkHt8UUNeDleKksslTdjenG0uffFAeOUbEpOW1wOTZO713wIZudR99Qi0X/xWBZS5YT0h2b7srYikLK7iRB8Oyr1lYzretykRkjiT7WnuUjVBuLBZKs1RizlyVLdtLzy0/FbsVBsVJJKFlyAE935n3WWn1ZNGZevE9jgSvyFJil9awYkN/buJagXw/upUUhM1X+FK+1z4TnkbLQFB/hZLpjU+2wDr6HppHtM9S5YjEoi/yYhp03jTxLg6l5329/rc/1cdMWHfy81IXVH7jJWnOY2HT+3peJpGOWFvvtY+TcsobEdrxzaDTar5D/LfWMz8ESdW6cYRHD2crku7OpjMZ4hKTcRXyPlKqraUt/8d7X3YiHLH7hd3VZO/KgEUPMgiIrpf32cURSWgzmd7FHyZaXhm+qiv6KQUdauK65hfWT+HUZP0pYsLEU29KMaq4A9da2ECK1O9PnQMdg2Zhrw/+Fs6hjXGxAgP5ZO6zYbXUv5ptt+Y6l9i1XEvMdl471+yRIqoyAuLY61erj34+8gJ4inKqVBxaZb0NjaELYhsupguNUWvNs+llJG8ld27QnE4P7/Y8Y5biWh6SBpyPtKghneKd5DT1m/vbwO9l0lTbQ6VQB/H1ofHEHF9F8CF9QCtmMDbQZdBRwozkXjIP+sLeLpDz4/6Ha6jiCVbUuw2ECQDRwPpKIpZOUlnAg4bfFf0fZPZE8DV8XYVWT42ScoygMK9bZDKevCLf1iIMDsmmYvpNloazu7jNoHebvTLg/ykzOfmUKrdiPNpwnalzTbJKPskMWgjoq6MZ+UPaUq4jb3zXkQ6dxJ6n1ME96RNqH2PDwxfZpaYLTeJDO1Ob8uG2iJWBpCmJYCjwG7jHR81rTGVzpz9iBVyGkgvFWJORlvPlAgYMVHur6mPwW7eAAd3I3EjPZK3kb7sGLDNJQ1bXojBpXb1bAOKpxZJ8jDALEPcYSHgNe2+2eIxozxzlaPO0IpFKAwmJEXnevqg9ug5vOyiT6wHlBoQ1pSXdO2c+NNNfMoSjjIRMlZg3h5p7rnnPggfvGY+IaVJ9Xmv36lF74zCN1TbvTqLzSLANWrMUvkkIvA5v17iPu0K6CRh2897gdQz9R64nFcNWYm/P5Mlao9AmhZjrlmU56kMN5R5QqLn2sHm19L1Bn6ABlXFg/pc+v0nuCXxN/v84Sxb+wLuj4w1M021ZRrhwio3HAg7xnhIE1BuxsFhbFNa325UIJHbMOm/Rsgef7Uhxq4BM/wtFIpfQ/zPjCf/oH2NMUBugD3E7b0Pa4dpfCKtLzYIo5q1O0K0rHJyYbBdA8QkyOzWmlYSnNsIfcVDe4PL6Pc4C+obCnN6a+B1hckggrbDt4gNfoERh4KCoVBqwVSQFO+lQBElrRYh/FfH9IPzNl7pIPUehn7QSL4KgqoWOrElyRf59NJUhFxCjYSq4L2lAav/eSbiscL9BNSiS7ddu1Dp8jKiNrm1LzVHbYLFj+kVhIh7GMhl846Vq6kOgwQ+AmGHd7CPNnHMF15KkFP0cC4k5NT8h6cjo36ZB0a8C1Np3hKBe8KI5PSABlU/E+CfkTZS1gmFbIc2E2/QKDnSPiVTFjWrKaANiA4FAqULCiQVqvdKMdpt8dLL+5oWDKkpsAd/m/IR7gd0Q7OxsbpXjB33cYBmFKT+6g6HdXYXrFITD0iJmnfq9/GePQIhUh82XFj8mQ1+g/j4fBfRHtlNDBFAAEvoj2lwG36h4mQUaV5wSqXnRCWpAOkVrhM2bG84SVGuL7JhRnXDhUMabLjN/Y5HrVct0lKPQqOtHE0k1j5Y7DPQ+bv6XA34JsiI6IVlC45qsLIeQ4/x7jpsgvtdcdQ3XxutKYIZHjdJJriZe8Ano1VoeHLkeM2sUVKKnQh/yZ7RV517thaH2TALlmcmV9WN6S3Qfj0QUmCf2rlvPaoGt33bgfHrDJPZD/735bUFr307Li5vNFrZziX9bHAWIFiI/tf4g2X8CcDCTCsOiau7IliffoQH5XgxJuwUU6C9tpObidsoj+YhPMDX/ZJMl8OQIg0jPgzjPwX8fqDPkeAC90UKBjvYT2HJn1FDpalPFNgc4vu+Roj3ZSw3t9ev0sky4GvLx8W5tClZvM0SU6VL813F5AWo5gh2XC9lUIi4j/e3Tid0+IcopWXPm0QcN+V/cawOGWQlhK5gfLsckBpQplow2GCgEtx0XEX14y7TgllqMagFvCx2f5RZsMHmCBtaPHSq6XKCFuch4kH201INr/h/vdXBRydDpPKT1XYKW2UHVwu0azy4fLbVIpxasO8mN42ztLD1d2HJndYeXXXMVFrgQzz5TRyc11IZr3Ilmsn0qw6849d1Tkn9OpVrVe7oinxx2XoIsgk872JFM80EaL1o23Y3cXjNrruT1qBUJvm3e6sa+wMHdQWLUeDg2h37LD35CITIqE3DMh2DSFQj6Mw5Ih+XgCSppb4QNQhRSfLxGyHHKYuD9hLZrAZGye435Aqsqfoyv4gEoT0Riw058ANkeqO+vDCzFn84CWpfXeWSyrPvwcKPlqUNg+6RhfTv1lieBVdJBucmrEUyXsvP4L3QtWbCav3pWSguiMOfil/B9d9k7X0unb+QpacsA+XcKR6hXSolmNnAzojycA6VCx7O2C4fS7ZYP8TNjqpDv3u3zwXzfgU6bU4CXhz8rcEraO9M6cWZUqP2JEUlaQZPczlCiI4o+reL6/vUKbP6B16IYhYl7HyzGNcI2eSDef98/7XkZiY1kkI8+NszwfxNgUuiX3Y6d4yvTQP94CtO51QrA4JFMvw5GkYlg1f+nKIyZNrqtAi1lnqKl6KVAXtTyF6nghpe1NRwlRyK7dT1pPdVaAOxeHUXjloyRGn1ZjtaOSY2HW677swhRJ+jnE4nXMEocbNwPX4ta+6DO0Jyc1Lk9gWdaCjO7+EFuOVd8+9qQV/YBln3ZxyXOKoG+TLdhrBcahwSL6ypDQ+JFD+r8Tm5pvp0ZhkhhAInkcdi/osg7hM5lsHhf+QFBS7IwiIyaMr0DN9TT+fEbu0Msi7LHBnczwXo2+dJNGDPzf5pNUc+8o83pJsiV24yETEeeIa+8ukS9WX2KAgAr0s6auDWLLVxg4KtBvdnYg4q0iiptqelCKd6Xw/BUFSbMh/cqLcS0IQ0CQCHyx+Ki/2vwR8ezgYw2/IUWo78kwfryA4VHOf9qXeti4UDgJ5ogpps3EViKSjCFBgsYtdB9NCFxwuvXnx8NsDAJ92e7Vssft0ZhcjcavmwUgQ3bXCC3/OifBQWnQZ+Whqq3iUSD4tVcTcrc+rJCq9RrV1w0lv5j02kHYRQ+ZsyhhLLoC+NRYgP9Bc1f0ZDS9tjqn6c4mnYLftkIE6UUlSJhFeqL5UMhhXmD8HDBzweDzownefH9UxSg3/YKqkQWSFo5RRjpvdmRQP5pM42ylQDFw+TsVzVEk3tUE0dvkkS4VsGTzjolxYrr2S1z/HeVUGW9FRiiU+gRptWuYz4f7wA0MUjZKCLtXMup5jbFQLnN3qGsSirvYY357lirY7iNq0RhOuzu3fLx0kwWZJT4psOLiisKELU6d5qnJBk4LUXzMW0ISElRUXfp7iJI6utiLl+R5/eD4b67qmEwVRGiIdcn/CTVEXLnbC9lU7oLE9ncxuhaYbqKRMReVGh1I5kT74BkB+Kqbf4BGHwFKmJmGb/74vUnMmTkUSHvra8o60whg7CyUQXUKxHMsohZel+1ZYukQzwB/5XF8z629c5Rej/hyINhCL6/2mFzl96e1/GHMhlidVCFewO1Ukg6Z+8yjQVOHtDnKnaafbauIF55p+GCvSVjUkURM89+kJtkUWIhVyQZEpdiIQYpzYt44i9QnJ+ZfGAsCYiGFuvy9pUirE5h2vL8iyBGZW/8+0h98Cvm5HMybZBc/b5Qi//hvoOnqr+VanbwyF6ygcdKzLWaEn9n0Dv7iTwqCCND338gpc6TCrbpGgtE+QBVLDXey9E0UORmqddsAwqHcni3IDHa5X1IAMqz5Jl42RPr8i0rqqIxzl865nTC31cGzdPlrgBf2rpYti3pZ4nNved4vOLv5/Dbo9alN/5UP0Z86YxIWFrw7SJWeDHtlbPa1tgNjHb1Qw5DqCr2qG8h2fYG1jbOIKN99i2i/SCgrwKYn5m6R+Knl2071G35hhfMgsovkK4by6a/HsMB0njR1N0BAlpT5hrYlk+xaISmWSjGvF+tAtw4xcwuA5Kt9ZMaIn1C2MvFuBmQ8ULenjS3tM1KDY1ON1T5S9waMMM1LNIAZQACZ5z1gXmtEs0ZKzrnKoUGyeDmZlyXZAhyNQ5B6z7Lboj1OmYGlTuFYT41WhAz4JHCVsI6sveRk9XVsJqh3hba+rdSNCCUZuyHTR7RThTOP30lJVu/P5XeVqLpgNFbJEqsaMsOBEarpEb1Ts47+hQNKtFlZQdc97DV4eJos/f2bdlFrohXtaSnKq8u9s8X85132I1aYggBrfmnl4wB5+mLlFcII8MxLxDWfhiznUQ9H/KJp+JEH0Yuw3b0xg7R9DkSgCqxSs1tGd9ax9ZhCyf0xYGtnXZrczk6HIadl3+5XSP+qSrc8DRKT2ZHkeg5K/QS4XdV0oBnbj0fLRggwzGfzjCFBtXEtydmH5thWoSwkoZQ+P3c6tuAPapopgzLNVhcVnCuwGPa3VjmhZ+Ue4F2k7pZsuTcNaha1uo7gkXKT+4PMkLh1XVEil0WS0h7UsfiSZ7mKsdHV5jc6cFbyyVzV8nCrymqnKA4Z/mL6z4IHy5Bylplw2prsHABDSz44+VIXlF9vP+mpZ3DB+jtJRIF3sk3xKG6MBPKdkC0Iz5jcigYkemcW35+YmiGU7BRh0M+om4jBVGjph1y/Cgj85znY4nzBjaYhDK5OvpA4+2pT81DEcDlmNsfVX8RtBpeNzvZeCigjmbCWP3AUKG513Jhk8dYXv88WuB4DPT0Gtj7Mrfxj+Y6258UC814CN/dYeBGN1Ur8vVcubYbmB+7hiNI+7xnYbPsdggzpANFSMFQP/Sucv2TrlUS2jol/Y+iwxwCgdvWnShyTOtf1mO6OYFxwJOgOw0QRxX0l62Z7TNsjB7X5k8EoIEWsQDqtwg02Xr6ivs63BNaywgIT4ac8/GUI06LbIGDfSDfFJzBTTR++T0rrEI5U3+bgZYQ80t3Pv/u9MAXVFVppx7+OOujFuNPBoqkaWQPmndoqe6ZmxupgyL9/n1UkKnJ1MnJTXXJ7ejQLl4z2a7EDXkTU0ss8YZHE3o+R9Gqpyhiyufc3fFI3hJEakhanRUJq5x0MT2LTWrLzC8qtXpAH/7Unz7UJGZNFU8jssYi1HHnh+Xi5xsZdEzgO0H8ZKzcki6jqX5jCdSLT9rY8+ZlEkHjll/pOxnV6bcTHA77C4w+me1vhScM+ShuP7xu8p6Eq+RLW2VHo0bX0xOqxDKk28J6dO7hfheuvkmoV3hFR/i0ZOYK4iPMllYttPoSiP2IXPuEASaeGlc76VaIOsaUeD9pgI+QX0S62sMo1bUiSpY+Xu4E3peHpTgYDq8hC1UWsM9Pmf7t2lekVk53j3LSjSuRtAia/A7b7qHKu2nwIxiGQzuiBdB48SIE8VwGen+9/C2CNrV9F2i+4bSSbqZ/Q7sB1OFXCJsqai8vIZkxDmJ9xITZ7H9l+j96SE/H27PBrGP3uWhiHD5NY3c/dpVIMLi4Xl1UBc4EnO3sYWzT0V0BDj/SDzHazTDjZIitqvjAcKQ/Sg8Ltp2jphwrRQ13jiMxlD1ST7axu/QqmEVN4dLs+Gzg8bY0V7jt6JB3bu+NzbuNLRop3IFmMLDY52+W0LvpNNeg2tmhm3KftD5s5JTZ+Qt2Pwr6EMbASsVjkoPAr/sXasTiW88dIzy3zyGgNKUCFYrXAKt2MCXMrrDjr07C6xx3rBY7fdObjZFpBaMGSarkEFMFYPXKzlyuLI0Iu7d7o6c86wxlc/uPiidlUGWGOky0dJwQt+BlKmff3fd7R6Sc3bq20Jk2FVVYxYQG8BNmHvFD2z0ZvvAUz5dgMzZO/PK9y9hVUQ+0pp5t1iFmTppEIa6bWuBK+jAlbzqYeo90ErpJI8UnajCdas1oMuK2sWiMAlXPu1COXdIx+l39webg9DNsYFk89GsL/FeGvzmkTPO6QFHdq6VchH8FvEkdcOAp4B09Olufb7nMmisyMjzFngt3zSobjfYkSmf539fEjv3vsgYj5bcbxVONQ0bWLaIp5bPAH2LewSatdwIOdm/9uDz/yeWtZh2WXTLEWtZmm5xLnGXB2OaK0dQ4W7CZDOGaLukNkJw1jB4+L9vAljGfky7hbpMeeynhiX/S57BxNNEA4SH+FWopYyVUAiLrxGq4w7EcDyBMDw0dhODm4W8wU+VkzMLIHRcS12tc0O6X05xsOs4/9KnA2UOFC0MWOoAkvEPzrkK/2ecxBaQg76M8SMSuO7mXqr9YOlIzRdQAGgzACciviHcMHzKeQbGNICpO8hdCmtFqZ9n45QoQUT7xZw8QXS+z2/cuHcd61T3Ok9VWG4KtPjSGLOTwlkuRfFAeqwr3RIB3vURwVZwnMvvAsFxiZUzUBO48X7gIFzif+t8YtZOJ7xENTmhQ5IBm5o29qJYjnKnEJazXwS4zJu6hbAmKnWd1uAtgS3wYhCN18MZkm0K2h3xnjRBw0g/fQMfnc+F3etcbWROTbxzgH/Hsm32dEnHs7E/b9eyY1BHcIvtyWcHWihOOYGIuz4eM0IkYfjs1fnBA8f112QGdtvxgTURaNqrJ6uoAdx2Bv21igxoNsBHZcH8lQhMXXZfGRvUTTfweqAXxBoIWroT8ETuGRe3M97NpTa3VPP2Q5HtK6E+NhccrxW795bBMr80qkMLlu0Xtmns4hKfGDWqbu0ltmkAo915cfjU6ct8dQORnQVOhAdYgzsB/hSFVEUfgnf8rO5CB14bwImrR+s1AqJR2hYCkAhPD4KoWRxbVeFj5SVcw5yJgGtUY2zlor08k0rFgaQaNM5v7bgwV20yScDzuYLhXg1V4pRpNLFc3mKRpsupbmAz2g6LUGwhxmO+rxBnWemFpycmErdP/WZ0+RusoyebEsgKHnzoMUNiQNntJGbPPYMuWB2voH1MskM/+b/B62WGdi5lW5vi/Zhdnw5w4yuc638LQ0QhdfsdSHMqONcKKR03CD4a4PChrKQ9BNhBxoGtsQdx+U/duKHvOGlfggJI+nr1TmCYSVCkWMUKxgiFGcmOFTpu0rGVfb/HvYZEE45po+IQS0Vxo/1BMQkDOzsTW19dgNwZonq/miSCQPjaaeqvMAg4iyfyB5bDHJ8DredfiktdQd0xFjSFKDUopAlxbDjsxIbWf5zRaJs8QwoOrGkDDQY7Sl+HlYfUFkbz3cLZd35KCFe1IM1WDs7PVFHRyAq5zx031/lESF8sI5wEtsovYCNtZtRLgpLtYRkdxsUbv6zcPO4zopLgrT/+RSFORyLyoj95v1BZyXddl6hxq8Ww/1TMK6Sl+2G0+9HBzVQl3MtgZ7LlN6lGu/h+/KsStclEsMUD5UlSQylneou9J8Grs2aQFMJc8hY2ndwQd4JabOBNkorJlF/o8NzMCd/iY0QTbxrQRNPh+VtTZH8+tMoMZYy/JCcLBeUcaMRidEdHnF0l4eBHx8oqiHKSSa2k/gdwmAmBSRd14bADYn/E6T/0UwkA6jhrEdV+xEdgJfbG+9Rq7dWuu+EiN1WDDvHk4NBVHtR0ofF1BlPUA1hGHqVz9XAqqbggAapIgJEVNcX+cv3IScaL3PJXEJxBF6aIBFhHprs4WhYeQlZm8vuFNTZ1Lx1/LhlAXXQ7ngWQAkbsv777HAKd7jp8OA5jeMV2kG1D7NRA9PIOB/jITWsCTZmJY/i0jpfUB5ST8mBiRzfbQL6RehDVWZeCaLlpZTpCp1obKYEvOvgtupP7CqpNIBSTzpfzgQ0039HCB4zP1Nl8s0HrdfxUDCYKhGwwQu3b8JvJb6JXT4/9OFGTHsE8Z39Bqbk/SOIHcqRp6UIkbwwExKq7Y/XhCwzRwQxPrY9gP10b4z0A0cw+wWAHWyswQ5UQY7pXgb6qCXZcMzlB6vy/KEtVw6CBRPJIvWFZfsdUb+u+nMS+CS5ATVATpsqo1u26Qqn+AlEooOLwVL/XGjrtdwNAEz+kSmnzvuuW9GnHGddbeuxKuXd1jf+hBKddmEkDRgH7LcZNCQFq6m8XVHE6mgkTFUfjgCaC2pX49LRCrPSoDK/dUIlx0KuFo0p+oV1TT+C/iR1Zfqs95GMBJ944/OyzfzLAG3xS7QkELRvQ4EECse4Ql5TqAQsX+lFuJwdcSFZbM2YICX6nx+JJjBt4AtJ+F99UKEAHoM9dUPbNpR8P/zcOLHHDa6FJwNhiLt54r199ENilNkBGvtUd7k8SFmF9fJ9TZY+pVKAIt73Gk7N5cSMnVnTHCjlxUAjUniXC4dkvy6+HlGC2y2xz0G9Z3H18bzcG7lt36H2xlTW5UIkwzj5z9h+KUIQ/2h3FvYlNo/cfynNRrDLCJupDIguGTy4r3U8NEIZRTGtI71jTbdCVP7UL6Q8/HiabkbZNGIuZ2ycq+9Bhyq7jOJdrxta0/68eYbfOLwdexG8vKM5/1padFJnmt6yLEP9CrHXQ5kk9NVNmjUC0sI+KCauC/Mahvi9rqUcoZ6whMSO0LIIO0xZrWR+KITC0xOYPrgy1Xskpl5rfMorOI/jxU3pD0vv4G2+wZ/1uK1XeBTia4zaX/cVar7wDowPF9OldRkRz7l/OgJmvVfK6nDxbDWX9hADtkfS1E6DvjCN0aLwJlfalAxSnliR0K3kkaE51xOeedzcGqUZihWyaJ/6qh8iQxkNpJtDa6OXC+EvxBdDq0ecIU5tTg+XQzhKJdTbKCWUgnw8nAWsi/PhMyC2v31sHa7iU5pgxQrzAvLkwSRc0ik35KB5aM238Ac6rPOmgSWBkhAj8dNKOqsmzQZl5tN/OkZJDn175LI8Fn4aKWuNnymzfTIi91NK8dpCBTJtQJluzP5nOpqkgjTQ9vkFh7epwK54ocKvjjFYZXcpqSRMzC9gt9WMM70U8d9ji5nm+jsbTvt+uEefpOFCF0P//0/RREfQdEBHxONK2BPmCR7qPt7wcDi9ikbbw7zayyH7Q5ntmWBmgElerx6tJAMxTO1cJKSd6bzgihm8m9QgSOF6krbwc4LVKy8FwPSpQidkqC3sV6yQ1t5rVuL6Y9PP/DoRM3aAheo/76puheGjdI5U0tWnDLzgapK3DE/VTMyQ3mJxkeWuOQBGD+dY7czYIgI2KYSvFaGNlH6Vsn0aD6svH9W4aT1RWZHtxVmNbAswBVYk52t5bBou0F07Dx9Q21Y7JLnQm7bSAA7R5k53dg1UIveakxs89k4QtGSs2EYrXD6lZHsboXJ7SPyJa+ytHZLgshYSVoARB9mKK6htlvbe4BNdG3zL6OJWbUEek/3Ti7bODnKWkYH0YrXwOnnvaVlIDTkdi/FmhOAryAPoh9hWlfmQnI2voF5REr4/8ioOJhLvAmSzNPVfELpa/Yv/l4ocyvpyhtGO3VvBn99tQyrrMt2QVJnvycZRgx4N8wA+i86+2emi5Z1gJVaj2qMFYSCt/8nm197mmFWQVdKl/NSvtDdbvUzkrPUT8ezYXLp9iYficnE+6J/ZMM8OQEOF+b/Vdp2gIRIKt26jILJXBtwlOL289q6uOgBKDVXtTdeTw/WdwP5CwUtHcgh6vqFan2JOYGJrwVtd9WLbO5SEminahuEjRMdmGx5YxtQQswRD5pocaQ78zvhn8kYRekqkXmtqk/huAx409+XXZq53AT8wVzDfBQV/frjRYhqlQvWKD7uLBOarcr8QDsFeR8XRG82mH+UVK08uarFgPbN8BcKN+yBzKfvbEdrMv+Mk53294/RLsq/tjiBo2VV2auByp6RSs4UHumnLcgVSyLvQNRZIEdpMrOS646vGl+BLTaxdizncx7YAZVw707P/26NBWSTzDVad6UejkcXT4zwnIsuPNgM/TIBNkg6xSJXn6YdhK2hH1T0hEzot47kuhlea/nswVipAB7q6CcqAOpTwYUDEsIDc1OOcdpxNrqcU6WrK2MDzCpqloCKq5n+U4zEDtNxdX/Ugr/LIkPDr5SBHAKJTTRKP47NPblPH0bcGuAPgRsrZJlcUayyv8qnmY05aTMCCySzhrXr4KpvkORWDsid0GdrEtV95jQx2I5KgAWcsRPt8IOs5vFxzbr50NUFT5j4DtadmrbDDBI1W1MXt7AMQUJZKDp8jLOqjW0EFZ4+PKVHz85wAkJeLCTTCwQ4XrHJUC75jKj1lq8WP6cCPxqL3S+TQ5LifpnEbIHQVp6h2XnRfNj45AAnulYGBts03AwpV5LiEXuUI02fblh2OyAw+Z43dp3GqH0aysm4YflDIEzQJir5kCGkdTRlhR7NHvsgic9gO1Vzt9K3ThTShHSpgoGtGuPoGrtAbUB3U+/tyWk8JZ9f2BcUMG/H48IJqgTwvOtKoxs8MzpoOC0TT46FVB/iFORER9jiiJvJDsSYg7F4hde0FWFjo8wRdQx1LWlAo9jMouZKdL3FjoK7ZnTG2xJNEwaGRcFyFOKmSj8aAWsWtmaejmuL8M/Wj2aU38z3DeqtvDXXIpuva2Wv3JLSpvCGpkhUCpeRsU4HoXOqjkzOfm6K5fg9SHVx95eIxIuV39d7qOyFCjur7v5xRSZi3kglBhKNBfL76CO7nUlQAA/8Tsy5UV0nUAwbMa1KR+bQtEUzEcTAmX8EhsD2965sOaGBeYm3tpey/L3gkI2HW/14/Ij8cBk7/dQKGJw8W8Wpuwb61qWUR8lBLmvrvFJxlW4krB0h9Co6jyArfKSw0pv7bTfEyW+XChpJ+GoKKuz4ZTz+U334JbPV4iyyl0pYhA0IzmmxgVijMSwd6GAPwXEnfZKAiVS1K1tjWSwelTNKbMeBWFAWQIMKjr3jcbtPyLuAPCWa+23ulwUPwmmCrZWdd3xZhAkwojQSfggelxEU09nZ72unFu4qS25/+3pD4dRUZ4SI7tx0rkxNtxnx9sss3a6jd7Hs/92/rNI94zKv3nENqu7UxSHWSCzqTqR6OkK/Tu8BUAVeu41hmxEiwDcjciPG2FQbKVmJlba+zT3lvIhd7r/49DUikq4mC5a4XRtMlkUoRvbFttS40pfL9uqB88aOqyeOvYlwFkA6xsOL6brGNzvfTsyWFmcb8WXF3L52OD8hqcHHOMN/065u+h9YMW00E+Yc5preeLvTX8uyTCulbPpK0+26YOQ+Qq+WErMU7MQMP06ShF1MsK81LGp8UYP7CKWJdJvdEXKs4DaSE4eeVaj78NSXQhfKsnnCwA2gFOVft1ejsvz6lpGdzCBfrundThOHG+y2fez67t+c0rqVnnmeJL9urhkNV4fO/+HN6q6zLM9DqxyOZBx1j5JMHALm0SZIdXNR5riSmU6rQgu2wBvoQt8/0BHdp22M3UAizX5ESFasuk1bnaYf1N1oN9E359eY5qnGAl4z0ezS4Hk95xr1LD+M+FuZRTXqaM3RHuw4usb0zjaZ9asehLH56i3PfLriywdCdsAGAFkoeBnuLyRAGWQ20Azib8nS2AI4xcSOjOv19x1ciFx2dFf28DiLW0jPOCk+dRR5S36hOJL8b2U4nSgTq1XH0X0tkKmsROiaytGNRVCLNu1sGR/YPKQ8fkoWwUi2Se6lzIdOH/Xk6DoK0xvdOBgpccHiu77TjY+RYeqIBI1HXGblr77xZnjSujCDz5vNrReK1ApKDLIX8MzfTb7ec3UWnMUeIEC3vdNstT+XUujDzgOegKaWbLwDOTLpvilfTLcxgvm9hNqbEKA6Liy8h7VHAT8vcD1z9S4F3HxQvhSU7SIAa1IHkm4hnlB0WplLlwOYEL+QAr/bEE0+lkwPDu3Z5rb89qdQ2jTvQdTNbpuzlXaayxV6mgMSNORZ8UrDWOwSKHhKklN4LsljJTYBhuZ1XLD0R8c/t1YCEVcd3EbPkDj6ZoGYryd3YYsru1ETH312g6uw/MPFJuj52Yv54CVf4qQmwcEkAoJFIXhae5PFbOwMlKbIAKRotJCjKJVTX3Mdq9HqLEmm6OKkap+rPD9u9K1eTA/G90k0VA6dGEhy1fkpFUef0KvhTZsupUQQ+nhyvRvJVbZAR7y8f3NqNy7wyF3NfQqLu1lWdffIuLoSBm2mwGMODgUbSD2AzB7zGBiDc8a8gDHZJkDu+aEOut97Qds1G40x9pMgRW8opDvUb4nBavwOn7J+oh0b7E22DeHqKLDiqLXsWOGmUb8xkKQEiFcWXYy+nuo/noLLoPMYsiX7xiIoknRm6Fc+2JCBLzUjKRYRVMDnHW4f0Ls6oU1rb8O6dO2yiQLpRMxSPVMfjarKNnSMZQePIxgT7UTFwfX8nUrs7lX3iQ42R35+TO/e83pJq7t7vnls2W8dEPyuEIdzmAivQpThBcxpBbONvAUaxzeuiZngUx10p5j8EoG8RMPf8bmf7jSsgxZy4wm41IrhGvLMeHeVh2u/mNNkbZz2j1qDVx71vYLGdpWl7p/TPCEMn01J/ztDAzL3HeGQGgR99NxzTM8W0yc2XQzK9GdJ9rAR4zInuzUHSnORkvYxtfd7AlozoWVNIBj2bLCkIXLl18AGVXIhG/ldEnD+Ka+Jm7q66wIVtRcYpxKaAD/JukdHfuDcXRRbvOJ3wSKc9yYvLEh3XLATMOZZ4irhubT5JgZH67kJtmvaq5FbFtCTq1USZRLrgu17FOhPSFRnd4VhPWke29SdRmpGulKorYlyeKCgN8fvAADGahdU/OMcrJ+6ohQWYguF61J4hA6Q7bMsID3jICG6UPrctIcyydvdLzi1nTiWnY9E8nn931hyH0TYWVSQJM06eS3l+9OIU6N+gPC/yyVjbskTjXfV8SgOey0tG/pzDHgndtvUnL1IEE4TAvRPtlfwtwcCoF7TJIhLno/XKRV06nnnwA1wV54q5LZh2RWsljL2L2PleZTbEefli7RPLs9KXVeqnCZQWWvw/TZxH9TEZSLRkPaH3iBbSDfHy4UcWp10fCXux78ZTSiBPBMiV9NDjshcIMiun9AdMjgzIdbPn3dvXxqq5qw+qpKrH9F7rRchZw7AwrrI/KB/O9MwgsjNnxytSGEVs9LnGvintfh9YUQDQvMSoNo76vct54EqLCoO+lNZuIbTFJjGKvQqn8PExZ25PhtSbg7DgNvkqsAO434axVPapOvFtIR8gXfGa+b8NjC2KxRrz2kwfnko1mVb8nNFT7tLC128e+dOXaOtYmFpuC0zNEiD3OSwM86Wu3iUQQXQC8kFl95iiwOXO7JzZaCLTVvsktuPIu7Zb/a7XpxoFJVeBz3KzwJBDLTDoFKn896ClFlISPDZEGEkCpnaxNtJcGIrUSClf+cXvmU6k4sfuepV809MetXGz3DEGwvDSbp0CDtuJkAi1ddZd+Ds4XYw+bGKxQxtqSu2HbYPlA6yZgqwA8TgA6cvH2bZDF1eHzPYIsZiLoCN7+jay05A5BnszvyS4vTFYj0wpFWpA3TRklQxzzK4xtomZRRXE3VxUAFsQSmQREhuS4UFM3NjJwijXZttfsbVik5h4kLi4EQbzVMuLhE5XCS+koYsARDSxxdzBRL7hpyERv5kfhetKytjtnGtAkh4p7g/U7L+awKf8n/ufdpHGzWLaUkJnLuLzRCAInP6Pl7OsxZ9RsMq6IRex0XH6zcIjPWLe44b9c8pidN0aIBe3WjIypMHOOjhJmDzKqFnGEmX770o+uiU9NafOe+4teeIFS5bEJoF3C0kXmTeVqX7xCf6A6odd8agAd18K6TXBjLYi5Nugf60415T5/dYfvNNS3gFljmpxtV/DgSJZ6KchxgE42pQvAUFL1P/7JsmDCSXRhsw7yoDQfyAuy3/wGWpo0cMRZPLORev3vnrwqCgmEnLXzpXc4MeFmVI2o/j+v8U8EJnGiyG5sqgufAK4NK+ABPH4D2PipWznFgRCTJv/ZVfGywPROlAIRnlgew1fwTlPtqKtQyxq89LdCyMna4CmeVJ3rx1xitwG6LV36XMgCR0a1QAIWuyN2ImUIipx231f3IEJBzwEapRqQ9+UR8M5xISfGAfFxFUY4n6GOeGajkna+fzKE4Kp9Nbw1tAdty+HT1uztzvLoWoeX0iYxETKiVU3Zfa/RmNr//4CSK/oC2tFTgD+nMsL2bPNPpVN9aU4y5LZvCNDvyUXDaC4Z0Wde57gYOIzS7hL/kTF123hdwqb3r+0Uvyz8lfNySYTd4Qxy32zQmIQdYSuiecdY888eC9PrilbHl9O5rXv38B1oRKoh/XfeaZEut3vpNHB6k/AxJZa6C0WSe2lYy828uj+OBmx0T6bqK0FLEUaZCn/ALk85xcktLZyXkTmDNOamaGDJaOwSzS1XpXXoer0anmveFWVTE/ZV3UoBB27jYQvj9TAfoygaU06cbvuaXoWDnrwUnuPECrG3v8ZMbsSiNWGTACnRC60+6kUOYvMfeeZZuAiZ3VH61ZxehS8BUT+W2SJ/cPe6dvKmR20U5GgzQpS+Eh9wcEa8H2sH55mVqEs8vAz7/2MAh2A5W5axp/g4rnp3Ub0PW52noycY7RTxD8qM20RrqTsQCtwpn7qaiDVAMAO/TOlRluf70FPZMJsGdA8cqrrog13KQwhjduBbjLpxTU3p8pVn59MeLnm2h3DqTLeoUxgtlSvLboNSQhmzAQid4yEqg2kp1qBVQD294FdoWh0U7592CGj8y/7b/4sIGy7ZDN9dW/pqNsOxHGH3NfJ5V/ExtvHqTLzuD+hBSFHTsNgKiUKBkNJUOKMlrmrWl2vpt+SMENuJdVs1IpX3lQ4jO03YVji43bzuYb0TB9QaGYuzHUCkgPQgr3ohtUBhj/k+y+Di9dStFrhnBl6Qqh7KmFmh8g2MUCkcFxnMp8ik3/12ShqlUiGHJ1cW+TtgLPO7eMUZ1an+YuXUO3lszfQAqxRKhozQ6GTuJe7GLZe2TQ55tEkzq6H++yLRHMR56pkh5GbbbJLspYUPH0PwKp4W1/OongGaXuB9Vub8RVls3WaYrR7PEpcYCKTzInkUluUuxfIzTWy9XP+Xr8UAMZpHt00izj+EruSK1pTJYTvs/YJ31jFSWc8XFmtykN4uIIKw10r/sMhjgMOoqKn5UfNJI5gj0VMy3oanvwxNpjkOo6H0OR76yCosCZxc39eiOt4ODULAtFUFArk0PyGeRdwNSZIN5czfqIpP2N21gg7PQNSHIcFcD5aWQdkYP7AnBXI6lwgtdj0Ojg4QpFIUNzEzbehvhUsNweWLa/QLc5xTKV0KnuG1u0TSxeu79Rg2PhVcxI9YMSSV3JYNrWvytbgngQGWmGmiyHXXUJM7tRqK2/AhjG6zZvcI/pkPhV0wzAfVHWiefAYJxq6XvUQKPBD4EMiNR1Kx2GwUKXhd556ZHH1P4Xwzys4q+O79vKiFv4aTEE1sLb9umi5lQstpWwehBGYm/+qY2LiyWqI7gQjpJfJsN1bFCpfrsiQ/0gQfJ+ZO/ltCqqG/YJ6TwFhm8tMt0PSp34v29V7JWIta9M61RQBDv+2sXZ0BPV9ezaL3IRrtoc6JVZdwfbyLtxgGkCwMyE+N8wdgZz9cv0GzInQeeIW3anlUZAqReDDz1NfyA11PhDmoI//UqUaJJGgBiBNp2Zo2D4/4ETLrWuQt0JH1tuo7ZHK7GB3XerQWPa8Led1t/Go2mT4rurd4okeJ5L4n6Wxar5YKff6VCDOy/ZJvbAixyI6fOu/56P320SHYgImGSGeH0sbaARKR0+dl7b7hP4ZVByZJl0OaWKB2huaT4DA+Dvc2kev7HYxjCTJmqf10LTuWd+G4Xq/RpbJeLQX3yB9AUC+9GDM3c8d6ObSoxDyrlg6v1XmBV9ueSh7PLrgofT4Bad2MtcIOZZiBL9nLgJPJHS+Jfy86SyiGZ8KlluPAsNylXxHGgk1D/MfmT/yA0vtEtswdiaDb5wXxevEHpWTs5TC6JnWT7UO27pU9zyMjn2A4WqQ/GC6Mx8QxmtZ5u8pg6JGs5kInyawFUijK62nxApbFkJNIhJEVwxoFudiDbV6RM152Xka6q9roEAJqPgRFUZOyF8xb66/8KG7s5PpcIekuAy9bj3Nd3nUdXNqLq9RmWRdw71cJWVZDZpUyX0RwqRuON9jCFlmjFV291IxZkiKGp8QalOM7BVLAp0t1HwrGNXic2cOKT1IQeb/qysewGdQL3tqV3FjAlYw8WeU8wtBGUf91uyLLnd+0zurRGXPR1EBaDBwfNPsXP3z0CRECu0+dqTViNm4esJFCaYm9wSvz/jq2JVorWG6shSGmNLhFVqmePCGW4tTLhaDFylv+X3IUu5FUOFxpk5MMck9pPoXBuN6xVkONCz3MEcBrsETl3ypETyBgMgHxx2TIqJMtgVtJmWZGPAm+Py4+JtZy01mL2OchdR3OhZoJKPxvbEid+KnHNf+xTV+5QUM4bZ6FIyk4Cm8evyEAqT3UUD0A6T8jS7rLzd7ABT9P1tHqooDCj70RyCAT9MUNfjjGfFRvdfSA/DtvPuz1HoRAJHN0tYIWTPA0iBXmoUx//NwwxZwYY0wIUHzpChdKjOTZYj+EDqLWHQqnxwoyk5C48o0sasc6ToXM/zXQouR4MxdqKyLBPaiPo4++hYXxPRNyNJKB6UNiSwNLLHxRVZM7QbP1J2xaLlXZLgzaq8qz2z/yPwi1H3fs2CZuJ76qD0cUEq+URCGQMUW+n5bvuHzUx+A+99kF84jtbT0bbeiwMY7lIOyKfMMWdk4lam6X/CwtR/CwFee2UT4vfloFWn8Jv02lgWr4xk4lmYUVzShKw+EY2zUJER0CyAqAJEMCHCEFGmnfJNFYgT9Py7ch85dHXb8SVTix9/DjnPaCru0p2jQPASova013ZWbi6XPg5HOnwuZaGuADX9kt2D5g3G+nb7C+bXYckaFlcbRMWY/xAemJQrIFQbHliKjZWbtqzEkn0zMQ8c4WKUPI391KRfZLW0Ym/I/KdrNpOCkUgxgxt1t3Xd/RMZS6uWhjHux5P1fQh8zajRK5zsOxeuy2sdacbYq+thYGZHcjmI+JdH65Acz3lPPwO2i1Xkr64z0PSnT9rgF3JgU3zH4wYp+2gRsEfOhtn5eqS0GDG4Ij3TgBYkvAdKpL9nMaZcCUaHQdOeGEEiGJxcLFLwqD6/QNxrWL/oT05K6WswuMFAnekvwTTdblVMZt/PCeAJsFselHycNxsncHM1xpZFQxRTYNb2iYIRTwKPTe53K9cGEcxs5qeZugUr9EgYf3fr0VvM/IXMWAayZ5iIiyV8hV063DlqyaxSAZ2odmrFZgRferqFTJtYyYjV7iSvf5spl1IeWBrImmc1c+CUNV2M3YlQkUeAOfKAs/btmMhosLTKC3KOHMqFfLwaDVTX4YztZDQs/ZKXHJ05kRvh+X3NWJDgk19hmKITkQ83eZrQHafw5xPUjNdO4VdBWVuzx1S/HXApq1zSU9Zq3uMmYS5r8YuxFYEJ7sKzH47QjDqA4plCywubF0yyODtLUvZJKc59Png6Vbk90j5qxLBHzhf28ggCYgkEOyVv0G3NGlXYHmBzb3kCTh64amdAL3HwCDm3rHh2XEetFR/gxO4fuwI4ukZn1h9CV4FrTlMN+d/F002Jm7jRwIX5iHwXdLf8zQDtfLmbtDznpKjLFtwK10nO7DoLfzegIBE1yHpTbdQCtgmnux/Ay9kbx6xLJbAf4ydAuSp4bVHCefXd6s4Fd2RN26lneiWrGAgyLYTD8D8gMAfh3ZlX39zi6Yos7KTdR7KURrqGOZlawYAh9KAvbybLqStJRore0JaxvFsNdv00gM3vbTPOf+9UydP9bgJ1chaRIZuqTWDUvBjRPmiMULJJDWTxglJ7mC0ulpsWYEuatTc4fIjDpnYC8Lvgja381wMf80UhT7KiCWogCQluqNkWMlvjpjfsC9CRnd37tA8hrkPyzMxsjybszY48ZJqmPiRezDlII1oROmaqr6hVXotjpdkHq3ZcRGgf3UtPfxkLeWVVBvUIVTjIYAUYN9GeZJfdBbamZp3Dz66J8Ru9jLpuBsn6fcZOiAejTURII4eOS6XgwhwTFElPMiR7M4YVt01bQ7QAo7sPTkweyQBjs0puFRhsgC098b7jkpxQjk8RWGUqXSEm9YwpKC9gDO8YjNTVSIS5MH4Kg1w1w565rtxeBC2qzfc2HO/1xU1l5XZoD4fZZKHr6jTIk/erBB3HUjdyxbpBOBMZo207oF0MgMn8JvobeKL9ZQw4hsEGJyDfU4QJl7yafjtk8KoScVQNytkI/1yT3jIS2snIAZGLLKFY+Ck8W7YPG2xqbR/nhmPvkXL2Vk01454WUOzpKsS8yb0hFg3A+IS+8URSS4wnryLygtIh9+WV9qxyODqbWMeQaFjtMnAglZjRWm6QRMqbYawguRxhzZfWZ+EEL6z0Dz2WQZoKvkmaRjO+TSyK3eD+GpnYoQ1XCqUYWikoGu9+zk/N2pQkuN4VDU0oJrrXqHDr383YwAYM/X/DEOcZ8aI7nrbkuHah3x+pqxTWvDNqj5uDi+RwfE93EvzIee/3yewnT+kETB2GI6JRNfSjMAK/IxJso7kedToOZpiWCO950LTjV81DgQDF37c7FNBM5rWmpGEpxhXxcNHqUMKqB3S8nJn2YymAhxrYgRK7Le1Lb3DiafMPflC5kdNQb3cJoeh/x78xVqWNaFbBbDa4ihmVP1oMMiCv5HBPWEfTvj58nZh3oNuVHBcSHjWmtE1W7nvsuMYxhX//lHX7s3/leluJfPjlmWuCaWSwbo+UOj2FUCE9aauWXaHgpcpURzrA2d6uyrSPeeL0djH/DoRQCIlrhnlTkaRD4XJoBcg6jzvHL2SL6vRw3R+dSIpTsjwQ/I3h7jO194zEkNBQLKszoosttJpYzBFiNPw/QqYKghgmJr+q7Xy43syquj+hQwDnEfpmiZoOzyWCdokmmsEHViU0/+xSbH1c7MBS1sz7CY12Jam3UoicewRL7HOe9Y3le+Sffkgskry+5scOjh9OyVbmNoRYY8V1llhxpwPU/SsGji1PtKhsH0N9gzC31qq2zie3luOgpjwfNgHfvXOvuSS2dLZ08AiBVzw3f+gaWcc30fgIkTpoKyon0mMGtBJaQkfCqghMiPPoxzhfDfn+es3bQDySfiWrCl0SX6myidUKoq1kOzym8LEHX8Gh9RBQBIILnB3uD8TkVOXSQiQ9WwsM1bqEcJktQkF0HoRQBRZ0QVOAKXNGmp2nh4ifaPakq+ln2OS6MHXDSyAJhOADSYUQXA10gplKf1BGVYBtrvlbGC/RR9qOVsTyziGi7J+UyPUVv+bIDlGSQ2zzVvUmaUy0iMjTkfvBhzjPRCnR0WZYf6Zv2JLf7ymW6L2/QMZ3Icx7ydrG2fn+XKJlBBArAqXT6j33Ks81OGyCanCfzhJPHCjjHPQUmGjFYA2Gtxi7i5EQGSFcHo+4S6fqyegqLvGbGYq+oTxVkq08tVOzGjGK3TW/+fS3PhZfsRe8GgxxXv1UeTCdEo8tvTuMdDNctuWpPZjiHdTcNs8m0AuQQ7NQRg48FM2s5n4dfV52gYx67sBN5zWXwSdve5lgdLpCnPjmrNdRXxdCNXNilbyeZYrD9ykqJw9IUiIB+Q9KgyZDErZyLx/6p3dCPBHeujagVImhc6jrr4pf9+k83o2hdHyMNPQUW3cd5jfe48VtAUp04MO84oJvhI0l5Zj5ixWVoFk9COBdXJ8SFTUIhmZ7s4u/K0928NxZBq9fKVxP6FkrjmVW3ZeN2WhLvsKbxLM5IHRw6i+gH4XV8+M4HeUnXCG/MRi/p3qF4odG8xRaFogfEQGTfdzGI3gXrJmJWAE/8D/ASgZxl8eQKLzmdXH7Wq2cbcFPYpz6cTa8GhZl/BOP4a3Gzjkh9S26cXRoOxF8yrgJzTdcXrYm6ZthOGU733Cjexjl41cs0yb4NVHszhPfqFVQEb1Ios+bwlSPH1Ac/XI2TEUJGlwCX9qv5E7TRJPt8HMvP9jAFKF3gs8JyEQ3fLM5Z9IgoAX1JF9t12yy21YNERgCjvSi665SR7bPQdxflpeIumE9WiKr8U4XSuvpD8EZrhh2QkVa8kTm7tohdltGVLH7XrRA31Jsc5VRJFycJ30ZLwZ0lqf4UU7PMY7Q1VnLjJvZwWPvGH4U07GYgnsxzgDB1wRdx8USqWZD4x2BSqIB1AYNQtyFBkNAwSyi9beDkKAnsN1sqVHGxSocw0Hnw9NxnGSVJ7E/OJltsj8VhtUOHDR4AAUbbzklmHoqgx8/NZZhHzsoZMxGTARbH9DXOcwPIy+/XfFep6nKQ3yZ5HkTcMMrUqrJHF/D47Bm54WE/S1PYJTBe3smJjuJ9KtQvQ5G1xYybbZI/MbCELjH/RIFmrXzGVdnuHhxzY4n4omsyJXXOb3B1jcodL+RmMleLg6vDcKKR5bUglCrnCYzh3Ws1OBEHMIsD+DDQDDJxHYFQugtscbq8OENwhfyJtda69PP9snRE/0yeANATXIi6pIeN+usBeN7Ji5sX/r2ifnp6E3xyD/b5AtAVeXP33ejBNcfVP0jImyKO45NIqPQNJIv9gjya3ChSnt76ClGgxBJhBu8RtHy+W7FEeK7F8+wknkmcCluS76+V4BFrDt5C58k0iORAYKQKqQef3JZcmjhtTosdojXR7I9jmMaEalL88qM6xWcMBgI4LGzxvKpRUbD1WzKso46EWqiOmIcO/4Zyj/RMMwVKbmfgRiX9TeYuneDtahUXmGnBhTeRG7q//51e5SdfKza3hAQTQgK4pRlyPK1M7FYiE69oa86VSSITIlxJWi2Q4vnF1cvPy/0cCpwK08CLhe8YPcuTp6RKoWXcPxioEVgfb4W8pf7/HOl1RFWwyENwhFwD4qwT3hPCbo/8zDstp76oS4/qCr6NDwXPVdwvOGMXP7kAa9AgVjngnsko9kxYAC4NUSDbfphyBzTTgN5UcUO1feYMbHne0WPyA8an5+xRfQhxuFsoHcx+2tMzTl39J6zcZJXHN5aBwFiwm/73F5Z83tdWC6folIQstqro4Rocybn2snScvff1w0WcVT+M8bKbv5VyCTFZPJveN+EpLbgVcvOMUEk/RqOI2uEqHeC0ACaHboEKBTtU9V1b4hbxSZiqlqGIFqBb9vQgxXSFD/Dt0DvqevdVMXXxdxj4Ie3brOhfPzjrCUET5eTKh4zxVW+0o0gG5/CsZtUfGDF96lLy9dOFe+TikHL6vL35mDvEjZ9NjDCqsKhusxPHweDwOD2Vy+mitm3RgWIC2xtYUIFf5Bh+Bgd21DApm2UIs9plASujCITqmbLno59ib4dMRhfwsv12RWwZ0CfEs1joRluTbZKIVPqGD499lhrOn6GLxQOZHmFOaOe4OW2XKy4myx4d9a7HpOaryrqtaNl6YT5MdyXMbxpjoXfmdXP/McB0WVusGtMQ/L47gwVhYxuPcGpO2HrmH9uXD9fr71cBBcIRY4NSbtz2dWcpI87F23NFNIEE8KdY0yputRDnfxmyVQ8zH8a8WD/jD5xhF2iNvX9AJGIYywQD5jS8aLuQJaAhjWJpo/mJhGgHaaKt3Tl3GKGDDaUeWJwQnXhJmlfUGtci4n9IYlXSw764Xk7JG7CjehFMgi6yWg3lDlMHW6pGM1ryh5V5n+J17txAqXzqfUDQRNKkdUPY+l480t5zmYoBsXU3vwj6QieqUy+kEOYtu5vADB5LorsvELt6xOC2mSaGkvyLkYNj8R+7hr030MBke7I1vLDzr2SoC3ewkvUF3GJINxq2O3PEqx3TglAkq3/+HK3CfWcScuFxSaTzLmB4y0gnjmCaAiQ/N2SuhN/RA5wJwKhSYJNZAkdm2OsIhQEwF2LG+2RqVM4Vety1nDIPyNbLRexg93vFjN14hHGRk0PPQ2LxaO2d4m4L6ok/f9TP7S+J1GZ7rjh9dArbtf12O3Ah1nnAQTq8pqEOvht99NDKeoFyOrXAN5RG9RF7lB5rI0eY4uiIr6Q4tJX5oY2lU/qqb4IAtbJDk/aTrTIzY3JRadt0wT/58wh1LrLFpb6ndAX5lXRCilbfyihg2375PwVtg/fN9Jo5w+vRh6GQMXCb4jTlfCqQmt4ed+jqBjccLq3GweyFL+7Cu/XQohZSZIG5SKlIjQmdQWEJHDZWs4SKfu3O/YCGA609XWDjb8TyNGSSWxhtHJ0fzsrHYK38opW2gf7AOrZOGvkMiZKtrjZtYHBbcZ06kSCDi1jo2uJJDLlJ6nagQVJma6B5JWTTkFwJFYWBI/4kSNbZhujbqofzMb/jhNKxqPPHDUtF9nZhrctdv7M9jLbPMoguK6PsTP/IEAd+g8QXSWFktVuywyuqsR66gz4tEOCvv6gMqcjl3aZiIvnHjaPzWMRo5rs9CJe6G41kXA5U3hrOt0QrbPKS91gUMDU4YSog/DQiqDzSGRS8vet4x7Az7lrYqlyu0Hp5pQhcywW8wt7/Co7Hc+SM1JSqu9hmpYOy1jI9pY3ExXThS1HB7afhYyXD4Yd9PUi/UxstYnqeO+DRjK/IUofbAPp5+3l12pr5qtMtA7i3BRx6b/deCCEaJmIrqK1Bncb9A5pYBKMsstD3AUJynBO6DmyvrShYvZVXGACqHFDh8GbbsLvE1epitt73zPYoE5mu3MHfc6RGVT1KrrJ9SPb9DM3T0iQ1ZGKAb4YjAmSc1+gE86Fg+FpWfqCAkHtrrN0Gul58T+Hyoui4SiY7YMI9nlpw7gDF17OKoct1zA6aH4rZSQlYCXu85YUU3S50mZNLwLqJDNiQHFQcfhpL6kNLH9eJRMVBS6WRWbDrTL9MCG3c/RUuc5D95GlAnfiCSWkMAG7ePxofmULzb1v5EtEXE31S0+eB04hakeJsxtVH7Zdbf3igT1+LayWvK4F+KFtfciFo0hEODws04GTt3a2VbZfZSsLhJutHFUy2aDEff8R8VlcvwNa3tORpXT4OLWha0gtqr47GQ1eEyI9XZ68AJd96/cneEzvEekMVotXQJE4kfa4NOY6TBBLutD0FlJoP1/bykk/xjLzCMGn+B9PTI6MqLooCr0CmuI/tpkua48ogmvykUkIRdkzamYeLzCElqOv6jnySzzTN+/gDPci1MntizGySuIOEt1/sBWBXoH+wsJhgvOlSR0fBkq+erkKN3m806/JMXwLlWY6vbBuQWc/+2kiYPNYGZGUt8YcmOdJiU9KWFaMLuv+1ZZ8hfBlpMjrTb1TfhLitmpMpP/NXRubTK1Wi1FCImTJnwpUZ/EWER7LIQ5doKMJb3c8wyI9ybh/T6RMB7h35e+NRz8tDAED4r/0A5lbUnHPGMLyaKdElgsvgRb7F7vIMDIWs4g0Bvsyx46NlEVvle9fGLjo/r0FrqFecD6NwP3nhsUXRZK4lgJepTqGJ8Tm8QFeJEGQiCnvZctgX8NvMcAKhkar5kKuJOANmncnQtjSrHBYCeMOOD+VQfSJP13qqgrV0guCPKcVU+B1OmWDh/gW4/qr/1L70+Lah4QcZux4l6TZgas/DnDg07FwFoVyz7u0mBkWyOAWj4CzzUwt/rFqMSRUlCRPcmuE725ICutnElhyQW3NsGw2ADINf17rO5Ym2jndxhIKlnccdeDrwT/ogNbSQWUN/ZqRkGNcYeMWKkg9DEMxereAxYuqhqNmCdiH4ogVLdynjhJaKiW5KmQb8z+5ZN9WdpKbLeNflkoidWaopEyIAlTRL/LDx3txs+Qqwc+wtdwzYiZu4DO13fhxFJW2d2vdXMr3VoAFrsJ9d6DvVh7rQGTLf8ZrOsTaMEzSa5AWhzAKVhsa9GcJQ3DdZeAKCY4Mz1VTiZ8RtP/GYlvlUMV+7tFmGpR05HG6eVzWHFHA0rNYvvi5JLE3TXzsd3aZ88pODx79S/YdkQNmhPLEbNA01lS2wa6JMC3IsBz1L5T17k9mLQqbkstEuoCNm8f5z9i5yECI9uXIxdPvL+icOqmdasRGH1NEfXKUTaliH7R1vKSUB8jhld0iLMkD3XeFFNnFZdWXiAoE9dv++qCBVDQFSwcGItPuql4pK833t0sp+iricIxQP8bySZjMTnACB5FS92ofMNrja6IVktZrzDmp+TRvb1WuzMXhdMQ2wC5GZwNY18vrhWrsVBFK/0fPYMMYHUtb4ykGvqUhwblNcHLHDoOimJwtplrrgi7wZJdcJE0XuSaHJWTKmGZ2lfgzkRpUdE/Fc1rOTt8MgeeeHHveR5apbWsvRkt2oF+MBRsa4U7zmwuLDH73j1ueXniScMXi4+mKN+jhy4ceKJYhVlSZ6OnlhTDWXf5jQR5Q62xcX+4emvUO7iKhnZZ0PvU96VefMQ6e0YAXwHK/hWsm4C3kMnk9CnS3BHSOONpbfpDtJBfkAv5PfJgumqyQYieaqmfqFmC0s71DsNvXqpkJRZpvAQRvgO3NvR8kD2Caipl87paDr+r6gJ8eZF4eYaTwiPRKQazJj3GToK+WVn/ReBEgxcqy29mTQ69e8erKaupzA+H0wGHUpZVc2km7CeiC+84qna9iAmcS8QUeoqA8RNJvij71XeQQh/bkKyMWpcImefHv/c+DrTIzjgjoGzyhnjiDMFHA120W1p29ktv1Yt7RSd+HikqG6lSfBgBqUFH8FK5xH1cbMK6vxzTunWE2KI46DqDJXBCNwXaqgfU4Ujd7d82+MyvrWcM4LjC0veinnKamHCsnEbQsQiDVHkgQWqAM2a1EK/u/HYCY69X5YVpd2ApeW1MvMfb8MXm8ts4rxK55UK1e0rQI/87L8UlY4cFPBWDCC37mB1hyvhqXijZcEvRRo1dQAoJh134Z5KdFp60LaIskPsaa/iwhcvZz39u4HtLtrkY04iy/mpXbXtBpPIxjdOrRtua+ocAhw9qrZjD1q0itsL0inHpZV+2KvHY3MDzvI0uxHfPL/HkK8diHAGytGRToIuAUYNbt0KT81L46nac9rEK2C3akx13OrK3bAOkcw3+mhfp9DAzznx4cJ0KDX7PFuqwABQ7CAOFcHSxiYImnPJ319PVSnOYi/JowEqtT7spxWK5ZLR4ve8bKBig6tlaDjaFBCqwS13TZmEFwffGGjAZFkMCkDi/XZLgupTYeuzEQc3n4lf2iEm2CMKZWWSiEw/miKd4JzrHxvhPQEtNhavL49JEg5i5PxQMW1m6ArCxUUTANFTNsNCosuAmvHvrBF7VnjtspRvNgB5QzMgOa3Cvs3aVchm6Tm5hH0c29CGnvlAzWpcv0GQUrxhqfnk/t84QeG8fupeapOhvpLrf4LAYKJ5NqUdfxFbfWZwEfKPCydxnOA9GjyMl/IZA0UgwsfzpQJRCUWK2w60b59+ZS2RnPp8khRrrM29MXoVl4E4Uin+6ynNANGwBL9+nwO0YBH0sWGR52MPbHuBfcwehImOe0UuEoLW3VyVXucLxJSxUGB/MpSCUA18Tt5XyJqvdO5QzDs0zNpfZVjPFRVpuIkC95C3CFAZiKKovSiJg37CfFTTrQ9xz8XYBSQl4giorNrEe0HxUrXEpEJmnVvbDS9EeAWDKLWS5wNdMqiShBw3owr5OsgYY0bmCYAF98y5JdVa0St7r+SyNd7T8HsaqB3HX+Gxo7nOMxiIxdvlo4zvtAl2xkO+tb6F3TV2fe/cOSlwHiZ7oqH6PVb+IM35baMtbU8vDLygNFuICnWr+UhaProRBPP1IcqgKVMHwlewQENWq0UNaxIbno/iQGgaFyaBPM5kdqPVTyBnD+gAv5KfmpXiEh4zvJdaQMAZWdChGqxgnZrOeOh/bRIMm4+vJNzS7RGAPr8dzRp7LdnI2NXQ6na6jzR7P035eAREKhDbqHRIKLJnaRH5rkI/aV1g5d1hoAKuMPOpgwV84nDTRTXdKFK13nc2iP4++Zty9Rw47kxR7Wg4JZEpHRYcahDnk41OvC5egIp7SIjBzDK4KRl9MXID86YXWUUg+k4VkpDQ6rGMAZhYlgrzTuBKz1S9tblUp82hm6s3fRBVS4XrtRw29Kxl7q4aJm6sTr0qFNhpqF8phE1dOwzITBxjiC80hBKscCsvJZ6SCec40S26005r5vHztO8h7NHsY0B8OLpuigIDVd5+6n12tf6QxbNw1aHQ9s74UXIoTQMybwy/dVq2i3pe6LfNbf38PA2Y/tyINitfgmwe27aY1jPl1+eLA9FHrWajQdsOWY4NQXMxmcoy9aJOXv1vFpqFkIhBMPN0hsg3h/QnKdTSTAq7zRWr/TUPF0+jQdmDStETifv7WYO0H6z8D++JnTpn6D5nqvkp/joVJrWrwDK3Q+FmFJCtyXmMZlrrQxZ8a4IMPLpe8WRp+YA/gK698DySRZ+Xw2WRP94/EY2aYvxFDm53RgS0gJQsaFHbHWVwMslwz/XKr1qpNesYTyM170wE0x/icftFV90SgrTnBZeUjTiv8X+VSoZUf3Ka+fO+P9U4Ebbi8FRQ6EVG+hOroRveQJiQoplxaSeoNc26MdDAzGhWm87CsGiteJsn66D2wJyfcZ+irUzjOgmNJK19M2SHGkzum+ysG+3bHI7VS/l4Oj1m46jglchN5vz1YxbOd6vHV/y96kyecMqXdw25qv9dl5Ze+qMRDKqmoxKjqcdwpxaXdj0RdoLESZCedLreBMIznjH135RWkmB1wKW9wRIaLFGu+IYqXtoExqdQKMaW26wjHbjCil2giGdG/3Nf4lcS0Zo4yX5CKwyuzH7dG98GgG/M9vfSP6fT7mWWwVhyIS4eOU15nXlMG6F/Vw5ElXN6XY83AfvkC9TDvx4OVPzI53EpjHikP1+PEqYV9KNZT5VIF3FVqYwyrm3ZV5j3wAeksjBP5wlvf5+6u+YksQMO0R1l3c0X1ZppOM+/t3ZZjWYRIbdLRfyEY5mPYRFQ/qtH4CG/PaQCjofisAeVvIHgmyvDqsGEVvD2cnX8yvjVVvJJ6tMYUGJ+Xak30RT0gwjqIfSZsfydYbQZ6xukUyafevR3E3QWAL50fkUwhYBu/ho6wPHThm3J7vZ1/dsvNAlDkKlKeJ4CVA4gBcPFTiSJ1Hz4KEXkWkim+JQFJNkG4B0n5H6yn/2LqhPynmtzE9dfgZ4rziM+P97DWmkdGYFEUBahx3hNvxKlqKfNu5ExwKNTq9378oSLBMNAC1OBdubD62NjMowVNj7nc+Ai2DSBCC8iEQ5g71A+/ZXTmMdQ9xWSu9TYppa2J+EVxQXT6lG+zDVdQ1iEmQjoIgGgGhsTXzzA2h6pEcSOJTJKYnQxeJi8utbce84KM9V8zhjLQeFD/Mwyj85xWWzjfkjnwMBShMWuqbO8hFoSOQ0Vm9fla3i6z8QUAvGePLWiaI4yZFlHNYQC0/NxGAPTGNQmHnHkMwlzNh9P/YM5AELp0tmnZM5USwqqsLGC8QGUxIXP1gG3irRYYZu6slOUalWJ0YPeqdGRn5ikwrB1tRpN8LwaB21VNZAvNzdW7G41Pm6rEhr/c2Wx8o1BVHhmxkYT6Sa9bth1Wq+m2bdF2N0FOstLVrQWJyIJ7hK59PI33+DzFAwB0NnVReDns6aNbUT/m1GK+mMwxwpXdK2BnGJ1PGliV4ymzdRvV6dimzt8g7J4jFebuyX3LYiPVAZq+HKXtyBQtb2NGPOEGEaR7IhyO2jPSBQ6Pdsd38JpDhLwdosQ/deWEi37jqcrYEJlyIcfBofjvXvrwiUbWbqGx+VCpEojuM8I205/1mA2Tw+eCA7s9guyzByQYYRDs4JB3h+ZHWlFf3Od97CuhDXvocQ0RO0UtC5ysvNxQRgmaXwr8F7Sxe444eCQ+xZcGPgOX8fF1F0MgSzFj1XzGCMmpNLOkO73zM6qIqrtdIfTr5ZcsBg7RiZP3s9v62XPXShTU+gEYkNn/RZ2nS7oVDKGiUOGC2vKaK+uyBpEuVV+Bf/KSboI7nUhzVvul1GqckgKclhnFQr5xi5sYobUpMgRc5xH2nddldUCkK/Z+ZXFLwM46OYwr6ADl/ENmP+/EPPzajSNXSKfpomBo2jqrJsuVWnlATH3YyUzo7+Ytx5HytrExOF+t5yODNKJobYPJC5oZ+em931j8YJWBavpInZNVMrQkA32ddoRNLD3muGjas0iaFJpXuRMjEgLqhn52WCCQZSg4ZAtzwT8v7fXNbokVrk8oza4/u7zCEUASI+zbDxjWAjEl/B37bfI6Ifh8rg+bcz4qAUt3TkFUnr9MgMjlBneYs9pb8spcjxNqE4ByXdPYHfYWl17AllhAqJfbRmbd4OA3hOvyx3yZFlndQuhZGadxSUhEqA7kWTffSzfmwLAN/KrkdblOyEYCBJR4Zwsa485zDjO1D1JGiothI9zOe+sTcy1FbafKWBkJhAvtxiu96851BWw4XBm9kRJdyVi/dAr9J0KQrCn0k1T7lnC1hbyGnJAyXYcFTTQg/ZiMZmuRysW84RZ6aAmyD8YgvMs1A9gPXy5yoqpLPhjc4/7DfnYQcINXtt1xbcq4UjXbvFl9HFDgDz7zcFA7f1YYw0mRcqLi0Lnm2XliCrMAljXBdt4neiB5qIB6qodyyA1Iiktj5a/gczrZPomBKMkIUmZLdQJtNw4HusTbjPAZdaI4EFMczaKvPFbKj2sGKFIMEcOEzV0xaSnwHW4edRQEVWHmF0GpHiwetLqC0p/lBQlkya9QynL6VBBaNbeut0sz7b95DelIP0dhg2uyD2uN+UwdTM29FmzTbGQ321W/Sa0+f2haWTpVTKegKshEiAhIwBQZe8wYd7b5frJkY/TYQyB7dZFTLDS55+5qwes2qaHD6ITBqLk5eFj2UcKj6p5fFt9soOSfydeK1yFgprRrgO3IYNsBCiVta75amROO/GW2k0ycfZhjFL2Gb6UI1OPy40R2iKmva1qC7LcXS9LapCMbvvtVfI7QilMD4WcqDNZN0EW8Dv62KOW+0OjpmCvh7EJLAO63Av1E5Fu1EB59IuRbuGrh1O9XhNs1h1dbUG+4/2aVNM3dOmkWPvQvXERGcs+Vsmmc/U6noI6Ul2pEEU9GsMonnpBW83LdSheRZC/ujb6K4xyn/dYcT2NomW8z8exoT0/P8pZvNyu0hx/OLCRgXj4MwvvU4C3T6b/MxwLuyUFOd0W1GofC3lyt89dfOsORNNmMO9rZ8GXsrhqbuqymsiTAH/54cUlquwsW9qtaHF8UlZCcL0PzZZL329/hTJ1WabvvhfXItagXjJg5xOgJ+YrSALM/hvhN/KzO/bVEMjf7XcPAjDGdzHG/Jwu1xjeyj7PHBUZ5028pungCBdS/yrP43ZbvGWnmIEEN09cgtCA9PMrXnYjUXPFDjNmsoPN2Fv7e/qeUHgIT5KFq+lGwNXgvoPmk3D+ieR5EUu7zpJgIvX9NXU+iK1pbd78RtKuoDSSpYmbuDQ2dC1F4KwSjJy7xK0atn8qjBfSaeSFmQGAlQNbRCcsIl0cPntwPvEH/U/GodTU1ub2o3ZSp86+qZ868AkNCJ2+GF4iwqxVHiQYcyEfvXHli4jLvxPyRUvstGZx97PTewX8Vnqvvw5ArpI603q3/aYI6QrTBtwYGYzzc/cmGeE+fYzjY2sJRGu86TMNWM8N0rdAecCNgGmRE8QR+xNGHwnHt855eCGx00QY7q+SqUyGeXSn0DBTrpe/WLdpAYcAtccIKrKB7norqQOTU/0w4PdCDbm2Mu6pg0Dx7n3ZgDFzWmi9Fhm36V16Lt6ppCYJ8CDxHeWv+7QXFOnnDnUfEUK/l2904QH3pYaYclZVE8DvkDcJBBkl3uoutOxVvrOrpEZ6J0xxbH3D8O+B8sZOr51UKW1oKlNRVxN+QWBsWsnFx2HEMmuZE5OGe20g5e1c7GePQE2/XLi8oHNUFGLsNbb1M/y2WpdBVJ5pWvwR4AWJA7UH6/ziICrwymqCGT0ALyhRwn9mbrihkjEbfKB6R+nmS5V/aSzjAQTTs31vlZd6I263odfdl5ByYxBJj9tF909VytuEWyiB0Y73BryJLQWngIYz9QiaH6QHKf+KnoukOpHWoJwgT1EuYah/wZ+WIhpEQjwNOBaKaARKXiSrOhSk5JAmEhDiHnXjCAA3VlLdErGw0/BO2Kxr44OBPyyk39sDDsogcCn0VfsLQ/oPyH/Xwpjoo0/6t86J7gTqTMV7uvNjmdckRyV6JKKiqMEQGMndoXL1Pg5GUwZe3ZnTlNatgbMMZ/W6gPAmyHnMdqgHA/FWHnQFVXIpMJcwoYPwp3rp1LRbXgLvC8ZHEuq6lzgc5xDabIwPM/CtJBKDyMeGkOhHcOXoUeU7QoIYBzkXtdLwHKl0FxwkLFrcgCm5AaEodomvEUCmGA0t/QjL4jUA7JDGPkHfUN2+J18FUVH5xtHVlcOdQ11RBL8K7vQn9VnOwIBOO7err6uIcNEGr0MFy/eQMZdYp8w/4kOq1T4CvWtgtUNv33/LQGOi92uZ29J2fHVN5QVY/Uv/tt6F/p88RfGZf0r8rJBmW4/4NL7ZK7c0MS4VcJdJalOozMbL0DYlpbKP91r16Gvlha8EmHtkFrRcPi5lQJcfX2MWhS8clldUNftyu7/3Dn99+A7NCuuuzfvnIlhNYO/c6tgsp8td2xe9o5dQDRDtXSKicVX5mwNy8jYeFeaiMZeIgs2S5FzGeE6K389R+YSjuqY0TX5ndBUP6DfeXMi4HJnYIKx6MWRvnjDZ9Ab/qUcj3hLo6DgULbZyrUiluOcGQgyB10s+Vsexndu4Ql+d5okfiD+5qu8xTwUIagyO95LNMCofO1echW/ZjwID4VbaGKtqQp7566BrwZ9o7SV1AZcozsbU6QwbzRS0tzwrWxyddkLKASdmpWZRocuBEtnS6s6tvStv3jfe0F3qaLsD3zwqW/XP5XS4zpNjUcyZDX5fEDchZdtJLv//ECe62UR4N+mOvrV2jasicbQs/2p0UY360A2DfnsfqkuVqGswh46ufYsMGTvgKi5X8caOBl43uLqpcQwP7UHFH4Us2dTjGnMUwm15H6acAgmYXaFI/QuH9o/TZxBOQTH2nYUK6tWskp8eqVOdpYIU/A1sImQUpfbQ0i2FOj3Fj6coToIneyHbrlOeolD0cbdd83XhkLOQw3bLLXGGzgcl9ZKQnuCZzUxDCbLd+CUthgHeMyovCujJGqhOLEQUmSX1arl9zLaS0AdziaYx/BtXHOgKluhc2A74jcdm53XaA2zrWTGCsUbLOzVb1FvsMBr87stNRakpsBm0qt/FbNewtaCTptai33Zl8tqF616abB2cLwQlhcn87OWQAt8IJvG3IcK3k9RkLtoofMSHRhiao1a+3+XiOphe6QiMY3LkiIF5vkxZshCyfVSsWjSx8qvB5JIHfmTyb0BLs0sg000wJb3N9069cIcBgONpTykd61NjLt2NrL/JG/OmnzVkigX+QibgqIfJ0MpcGUtQ+wCzktCa5yJrVdnwge0uOpj+5tIMKNUP9ckEYzQVKgJo/1+6V5Ry6SfMc7LQ6jZg+jgjkJ6O/FPc28LFQ2ybJMZep5ykJHG5NTmSgMyP9o8q4oxT1XCOA0EUxCYBsZZ/84vBtghCaka1FLC1v/Ghe/ZYg8M3b4KQSYdpOLipi/vtw+o0d9ztlATtRBCCd6r+IUlGxq1Uudf6mTHnpbbzd/XNimOooKDQczvUAcm4bCRiAEfd9aWu54afioXjcxzd6cjpMX1Fu6KbgLmtnhJTAEOxlzZ9e1nKNQonj7c90Usu7KxWgsUpfKdq/R55NYBoN10I+3K+9NvH9Vbs6KREHdjkH1LBdV3wRxRgoAOF5pUYsrUNLM3DLDAw7j4CMnV7DMATZduCjzvK6dcK8T+5EtkARsXAlgy36qOiIAQlwasuvzP1iuEWssBaeHQFT97OHMxpK88NCNY04WLCwdSBOmq9t5iuy+kNZ9VW5BChMl9EqUpsWE4PN66j4FCihjkp3mTbWC7+pZlz3i0tzImiERVjS0rBqmDlJuyrprqogXL7F7RBeWFCIqaRJHfA3Srsi185OfXfezVdy1stn7bE5WNvhNNz8DroI8tn2zhdjj/8CqdoeJA6wir+1dDBv3BLRrXMxVBwZ3YrO13VH1ZNP6vuhuA0mJUqegKX9cBznOlLCRH1hdoDdZIA2HXDUM2LfZ6CLhfqsmxc7tjdssmk2Mx4sWtQ3yR8mxYQqR1JIMucWPibbPUdmrhs/w6YER1QCiE6D+tXzzUnPQ8yszykgS8haQZx6D7HWskLTMXdjxIyG8oJiVZ94sX6CfsKFmzdwwXYbdYMXCdgmvkorCQYaBi4NCQYu4J1nSWn3BKFNSkTjOq8fZLcVgg9ZyHfBreoLYQgkhNUE8Lx6+BZ/bJH0qQrRwEKQjZa7Za+ayuOW5AfEa6GGjsvXBnKRMnCBUxxiJIolk3NiMDq4wKMUTv3fOYkh67nhhajy7BCItwVunD9DcdPQdFXG/aTzgb5dRtfIX7YhSkO2G1SGeY5f8b6ea3rKAa5eDrzVE7a2aGnyTPeiYeoRwX2ddnuB+GZJnk6mt4z/B4qSGkCSYhRNe/WVp+YNk/GjZt7nK7XN6wOWb+z98pwIbkrW5v7r0uDPptU92i0CfBcRJ1IG91EGHy2ZOnY8Qn38xSQHNlZgFKgLoYW4Hgi1R8yFRnfKR3h6g/5sXB9YaPCEdDV9L21q1hh2T4ub1gsC11HrPqFKGFoV16Q8AZakieClTmeGBaEMLAc3Ocs5r88XNxrsb3Ji8ZgZv16sst5Gpz6BhpuLo084JtywmNBPq8+wZwbjdQWcjH3i9IkMyyWZUjKW8mXyinFGuOlsI9xFIxHdod5jxtmyALtScMLSE/Y/S11wJo2dl4IfPaca7oCtpum1s882cTtZWeq01vrEkEmcFORxgl52dSEltxLUeUetD+/hc2fmihIVkA4QqiVAq+nzr9HPhR9QWedipwA3pGsG2KY+D2rNVGkBxYarImi/qa7Uk6CYwDVaw/doOLvIlwjDm+04J0qVpGhYQoK9wbgJOr+BGc7ori1NwoVco5GmJzpsOGqHzClpBe/GRAJPxpNjJfJ6PylGwYZIxY1NwalAvfNxhZgRN48O6Q7ZPzicjsq9O2UxKHGBaJ0XkHhLb+7oyVudEcFA4qsiC+S6vFMoSfO8VAVlU2Osn8cEfy1qh7ebFkW/2iizwUUTYbEivJ1QC17/2leCX8XnPpJFyx+05U6gDNwXxKDsFT7s4DURbcOMWtoXYtMDhXl0nJDwgvxOwMP7jWQruijqidYrBq4CquVJujkvKYmF8MBVuvswd6qtzlHapFRs7nv3qcsQojieLCD/s9Drr1GsJz6QUWxJgTWpPJodictHGOMPZpRaYczkI3SsYrLoHR6X4EdIxqHo2otifNksvcg56XOQDLbk6pGLkiTsltn1qnFiAUEmS1R0trQW3SR/TZTWyEW8hHtHuVQP74GXK3yQts+eluHQKXcvqaY7neWvYzfM0YR4CzniQReawG7iYNq1W+ObgEp80U6NHjR54X4s4xHEt7uZMbu4JGNvx1uoIsu5O/uBdu5bGgK7hqhNUSSONpO6Q2Vriss1bwUGFeBdmR3fAzoPslpHM2GqqUEvckGEZ7lw99eRYE/d5R0LPfbbvjn9HD6p9NQZrgL+yg3eWPtZV1dSAqC8eSQcWAThgMvEkVHu/Kd/AqnQa7iYdqeFWjnFnIlxGNkxgLm/XjTClV/4B6EQgfGS6KnWjDZuraGpdBUWwUtZAiAP83QXwUdTsNuzWv6w6J8qybwFEeDfY4lK8NwOfCrwca5Wkbp8A7ZWh0g+wKe+CtvDzorS6aoXMWdtYwngr7oWwVEDez0ILPOs0gPVZ/GMMz6mEJhwSlUp6W7mO+pY3pU6URmmYbAG/3tg35dmJi7NtUKn6gAB4pwogMLyFgCm6LkaF3VyF0l19TIgkUzrv1PKD0IPHIw11h2GN/e6aTUSm+wOWp+bcEOY95DTqJoh5yMpHQeipd4zEvdf8tEVjeTBqPFTTlYV1aB7whppBhLFdmlr9aG/lDUyrjEJ9jkj/TnJyhUwnYcMchMtEWOGZXDVgEYl1yFiuWIQu4cihpVYWjwdJFHmSr6pUxDm+l+oTTlf7G5+2l+AWNxD5DOmeG9hGe5D2HfY5VRMzcoCfpe/6bvW4r3a01hc6Pe0gstf7VnXb+OFfOpQbq5q1AOwwI4SA9lwq2x9HV17GMUBHJ1OFnbMguj90zmfV6PBBhi7BOYTpWobL/b2r7kYIY3TunvzXsHfRaSKbs5/uIWxzuwsLqEOEeNUz9jLf+KGkMKrRHa4I9+tuU/x1ezfGltGpQfVNHKUn43EW6ZqiMcqrbLwsrTjfkr4I1BOsbrD3tPpH219dM+ZHaTC4AKWiVAFg6N5gW9St9TWtYBk00PGyeT+AcSwuxNo+n8MljIAaVYGOghOFm80TKZTsY1AR6ZikAG9riEDNH9zStLV8R3Jca2VgHP9GTn81xFbcjdX4X7Nn9YH5lZddD7MU9rOIfrui3nP117D1StTP6GJaUF4Mz7qHsSrW0wj69aqXCKPRGBTJXpiKWgnguHqEbkx9zQBsrT4HfMK4cemXXnT4UlRcliUEY3avP7ZyM5KkTxRoZ4qF8VFRDLq8XzMbk70ACxTT3g/1zZRDtDy5yrGCelZxFAoNZnyNpqhyEGf3uBlifJM4nLOQjP/uMU3M/78fc8V2DZW1+AlTfShSjOrmfeRSrBh3q7/ET2B+0SFBPvWw3A35aMZ5Di7ag3NjYWlkaiX3Jb9jRLwoNNwoxROa8JALIyilBNHOI7s/0B1z9uDtC71PfgigzRR7cq3paQ8qCQgHAsNkr7RyWh6xpjWkJfBg8OGB4K1phROD5KWUO1vA/VpAXLNS4Btytg2TvBdjGb0o75cXdjC/eNG1H6V66R+iLsJGNxrnYnVAUFOi4WsVxc0svj94ostYkuOHtj6gMm606md1vXU0GaAVc1LCFULZPRta2/8R9VC1Imw3a60jFPJgCCHIwJTGcqKRM/UMuJYHRWezQ7lbymxFt0ZZMG1oZMUktSGamUr5fpg3iWx9LT6Hy9QLAcbsT+gyqPJTThm1pqUTmXtZlDJc0Ann8r0EoMNMJIyjxiafRrwtOuk51TQ1lZhB6EurtG1X5v4+A6UdiGCiMp81ZPfXJiadS2GMI+JN0HSgYtjWIYDPv43mZC6vLQdZsCaUlLc/DHINd6ogTtVdvI9JR2Bawa1SWjA15nErjxvzsiBsmxy8ZSb8mw0SIs/9n+ic061Hjz1lI04G2MrJpEWV8j3U52GcJ6HN2OptgW60XHN3ODW5wtl4ytMycIQz+sXmRNTgcTqpwa8e2Ydtltdcc6JLDMzDL5TicDVNHzl0BGW0Lpvd25vfsoNZA9gjVPgKV9aw4XdEvW1XLqHWHEX+VTWT53hOHggm7pePInNytxTBVh3ueGLgTKt/KJ0WlqEm/zbXNysLUkwSp2uQ0Vw4j+bhNkoDuCDBEOCr/Zh/E6EQp50fQIM8f/eh10Q4SXaAEj8rl3OFzx3sVTDd7P7JvgNemS+QzW+yI0FNZvAzxgv3s2Ypuz7bHmsXR9RaLidHCYja3TbIk7WrjyiQijisTvlxxoQl8tjhFcIkdzoWwPPROJa516OqRxAKxDTmaHWWCChsjr+Nm1m1G9/Nv9UNHWC+HOb8muj/4uwHM+lZZKvPZmMSfrgPe+uRFIgoow5ad0qxBjGGpSJKxfgB2m9PGOA6Rjl2N/Lsztux1ketYWj/jtD+eYOiWM8R8GAw6IS+I98SAZTtdrU8id0VGSHE3TsOCQhBgPih/46DEFDg2WPk9xAe7ubpHPzVVs70/StlhCqC69f7gfhPw1M7/PNLOQDYXwU2eZtHqoUIiFOyuiHDDCuXKM0ZudurrJEFAaLfrBXZHMYdYkW1LXbPH7XrwVTtTr0FCjze1BR0nk0A4CrdiYhGBWQK5yiX0FtLqrUJzCMXP0bX9e8az3mHsKJ7+jDDGthZwkCpIoJhOVh79ngRq2nH2aMvw7jycQLn/gz5A5FUpNZCGkdcULGx34aP/RRzE14liq2mvaoCBsIXbduH4ewC+zvsUJ4vHmELvzqZd0LcA4WZQtQAhgeLNQyoB1dqxDPMiWsKOee/2ciZtcBCEGU//N8kyd1KGd9jobH1+jiQrbguuh8YjkBoLVUqlGwahEStNm1P/46RsvASKSva+qlZWlMXzopcFNP/CC9Nr7fZwMY+Ln/RIOaTsWWqqAnmWfPYxu34Atsn4/bTksjeF3giIxCKmRc2KgB0J+KHSN3ZFS/VKqGXCfGbudse/eGs9R5esEVA6MlOOypNnysJeZ0U79S0VbFIPZqgkcfs7VZWYZbKN4yhvHYI+ZL/1Ir33/VacIRyPjPCeeDR6EfGuynJcmYl/dtD8hiywG+YeVcRT3Oc1gJ5DFUBBpHfHlaEiyC+GqxWRrNURQoVqIJmWbtq8ieKfoY4lbcL2bsp6KOZH6vNXKgAjyMwRcMY5fYoXV0wJvFDMRFwqDt6iYdh1Ld3AimWSxIbV1G3cLmXUVPlJt16xN93GyYr+Anfj0zJYh8zR/PbEt2PKi0oSIsO+oWs8JVdm/qzoO9jui/q92s6aMZ+/wMD1qHbBFed6bE3KYVaPSD9rfr7yhKl+AtPO1tjraqsEXW7XAAAiDqQPjQGnZmu7kSfjUnP2sHY2vgnzLdG4ewZViNCc+Rid09zEPwME+MrzAU6d9GKyU35eY+Lyg9b0a0MnyfBhOTpAfso2BopvcFrOBfT7U5NNmoC1BdrG3F1FHP9sCNhVwGmwzpoFOygKr1sewJxnpLSIbQKZh/VkVn1NnukjrzyphcEbaUCn0c01IOrg/FA8/yQAIS/Mqr5GfFAZGDI301NVlGpu1dHfTYLQH8+FSflralJmuVO/tAHryaP9COac0SbT0+uP8iezfwZIk31imTb5I+o3gl3+T24ixLA+cSiaLlI6o4wqs6uMM1Wto/nBA4cHxJKQjnwigaz/dsT7IpntiNfoIDBCTuXcn15e54awwxWVgXvXJYUNusOXM1xWDkJtCw2Bv8QlRiSVHI/I+3R9ot3G6AiIxvV0qxDC5ProoRPbsYQi9fVnpX/vcU3khG5OBIo6Vr+B2MV47d2+an9R+uguloxua357eeKHTrgsOjNLOAeXCz/CQylArsQYnPSrOuGlmzl29bLbd36YspukyK1n0RV64DHkViGcvM5APae2EeGK7TmAXUrQVPQcm6QcYrrLzftmhI6zvdWiGTfmDODx9LSgLHR/jOPv6IJilwU7WvfIpYZ2kc4qyxzMxq1QQQfvJCQqCHpK2vjQ72DizYcJJBHKjHHqm4NiIBgprTZYlZrAP+Gfuht4MtsZ/ov44YipjQVcPsTwaDlbtDOSb2N9CL1S46cIYpCfSOS6a13ytsUAV4mKZD6pCK7f+DhkbxEMKX4FkheBxh9N/72r5vlC8JgtVySnJsjvJCTTeyx/N1rv3k7pgOwYxC0uFD/oM0bPAvpHkZz44KbQ36IiYKHoVKaNHvI7dV/nfmdVEkMLqTUo7MbpU0wvWFC+UiaDXfiJhhYoI4tyDR5fa3F3o1f69dBBqOa8NzYcMyXBjdtXw3gjVMDP+JAunqD2RPUmNfNIi/RTailDH/ZqWsBu+EKqnde7a9Mml4m8wnOJO6PeKGeC2nhxQhduIZyjkzKAd8v3chwfkEr8GsvxLPV+I1AgoJGODSkue6FX+5ahOxT+gT6ORSKWM/AQm0lSG/fA0OQ+K9LM6zVMY133vEhqTGz7+hCtcV0Wc/E9yjEMBGRyJyMVF5WeAt03DsJ/V+7FhdRDkwSm67LUP4qPpWtIuP/KUFpf6kJBt5G3cuOpZMBD0KKVMqT9Gv68LfE9rU3+45M8T3LYIzR8pQS7MQe01Aw7sgaxuWTPkpbA+V/FubA654r82BARAQYXSZvT88bp9ljUeGrPQ+MSEkKmQL/QYvftRDv4KN2MtMEhv/UFoh0K48IwRZGw/VM2vqeA6BUEmgAWIGVrewRVAh8sriMOzvTKX95dBmQya33UQawsfrqvBRKnzS5ueICl7jFc2HTpHmzKW73lW2L2YpjDWHIkYSRktY9ZZkNLo6mcbahWOm4XB+a87WrmprtFp/gHimbWBrI3Ov1Yg6iamG13EEcFbgldVX4f7VjSw0rdPcSk2NElFMOjHA3n+dTjBmtzPYSgvy0rU5YPTDRCQx/zaB7WmRLN6K5u7A3Lo1G5b7QswwBZrhfwfr72ZLBj/Qeh5NXaLbg9LUYjMVJogK7RoAOmx4fGEyyDQlGJ/R/Q/3zO8W2Eqt7BSuNnYbJ1yyoDbGVxaOrAv+LFsg6qGRKtr3gdKgolHVBU5SeCTLYs5hIASOsHjyTvPS23S1ai03CWG10Rqs+1rGbtOCqYRI0sPKGjBkLPhvluYj0tTudYRcA1taxcJYIRgoLy6uXZJND0UScmT0MGHfAShsdXDWsp8P3O3iheYOwnfNIk3mfxlJECz4gOVchDsBe8YdGsqmeQz0w1kJ2t3nJOfIz8WEC2uTqVsGZ6nosefhYrYq0LL/W8upGM8ZKIvsQh9q6t4iaOfVlfR3JJLYVeis/Rlqv3aN0yZuNItM4MpISYY/KKpv8CTNEAw1Rfs9IR3yQbPHa9CLSzcvYjeQxRSRCs3jGC4QRWzpPopC8C0gcfR06d/F5lw/8sXVYwpq79Fs0bkJdpr4Dnlx5FyU/ZzcWm0KNiKSZ87j+Q3DQKrw2PbzS4jTFqK3cG3OtbFP/WycUDx6HnqYuDO2FH8SQ2vgmG4XRLDnzDAnmRjIQ63WedwFettyzi4Qq+g5dGTS9iXummTfHARpJDm7jCVCszQ+9cEk3XQHwBFE++YuskZVkjur7vvrzT7ZCfixMiKGd6b5tqEXJMKg8jEo0ISngP7RN+oxA1UQ5v7fPz9YsnzC52y8v1cJufEKQQQS5y/cVpUHvYaeR+TGtUCoIW8eb7/WymH74j0H5+5vSVAX9hbt+6s1DpSlqBF327EF1YZ6JBQja36/p9TUtL3oYWQhj/EO1REKvadfvMTmtKjFqOLOIXr4G639pnGjkSs1s6Gp1A8GELfy5XuRkuYtHXGtdojvnsiXUQBKbz407Van3MjcOZOtFJfZEGVUhgYFGTfXlmrs8tSM2V1OaWAn0YoSwkqqK8p1Mfli1dH20955QdVKD9p9uB+rTjhOOkJeCY5TI/c+anB+9zkM+3h2cEJaLH6Sh8tH8LQdx1ecnw21KjPVlA+UwsZWGs2mLtyMUYApKORmQd7/3SKj+GS5WzuIINOzwJzpV1J4FlvsEFtGWjQ4UVOIQ+P0iJVcka/7y0MN4YFpFsy7voiYe1a4I549ImY87K1IrH9zCLocFWJXmpyM62MMIkfjqbz6grMo2pWfmLVYul0Ez7V/aO7F2iKl11vCEzyb/hdVvwhvCHCW2GqLiMlZuXBX/fJHZvaGCKSmVuTKc3xz3Ef6N4+fLKQE3OnoTLoKsO91bAhbTX2woVy6bvFdkkJzuNsO93sa03TZ0Uej+kKrR6yo89DMaXTp3acA4J0m03XdvX3PJcetd/X7arscSt7mZfR3biEjrGyU9Vpu7HDqVIvCNA+6frfqHTQeUSkepAn+5CwNKN7mB7F0UT/KFQyuOhgEbOJEImf+HU2qk2sZ1N5kwVgfqFXBIwJPx15fVYrVoNy6rdm4+nrdOHvsI/o/Bs/y0isp/X1plq5Ve1elSUxOg/MNpi8vPJfg5ZOmTkx4V4EISNqCqxwgZJ+Xf+8b020edGSluBuoImNyEajuHCAKSxRFWzwnixOGPHM+EF7CcTtaGHK0s4oWUe9tLCwfSNFsv1kxKaXZke/qxQUgPa34gZSq4z7FHP04Z9mlI+DciSRJ5T1FW55VVnCDXAKgDOWmHf80hOfYYtZcXa92M7of6DKn1J3nw+xV9hiwiaRefXI/VLYUrp7ygFXfhqM3G82oUi7Xj2E5XbgI+PQkU+dfwYPKaBeNCEWlsBrUcGscmb3+Clksz1gYCa3UvTl5GXfjkZpGZLmLylUCo0J/aEP2HvPxjkuMaaCFl06SYnmFbNo2/oQBh1u9F3a136GctKrsSlXm17p6Ku8ftlEWjd+UJ+g4TATEn4ULKs0EzyXnu1iadWjCPIDb//OKrKtaw2RArZKu5PiNVm3/z/09/OXkiWxOwI+QI3XeHZf7IG/3ykKMpZXNKOnor5g0r94fDjFnewNwJYVtG4Aj7o9Z0rRM2uA1loOcSVUz8j+RsUr1o2XFdixANqdtwIjADO52/VQ1o/wnl/o8L0nHi9VS/NX9kl9H4fs/LI4tKNYnP4f/zFeZB1t39M78/1/vZmBGF12hWjbwdQkN0yLyrM6j6Mz7o6hfy6Q98FI6BfV1syZsvFGmKqs3M3rFCt6JqM8zTMoDZv35av4Fs72SiHXbPR+53JhyPnAUEASaiif37znkLPiEB5f15IKsQZYd0p+m2dM2QYmnLL4cZgANmAGnJ30Wzl4p8q5wGX9HBax965bA8LBqhqDGpsrhX7CyzlPH0bEZMRsyLa9DeptCGDQHK5RgnbmnhV0YtdpqNEeFaS9Z5+lm8B4h3UtcsD6sfKykp4yYW1mn27jucOn94+Y2JXHp5y375EENVz/WAurqIAbvq5JN5v/Mq2U9QSjQBdVdZnAU4oqx6HX46+zE0dLQz4OEGZodtmi4Nc5FHrURzuf+TYe4yJD0KVlXWElq47r9O8Fe2aRxIGtZd/XeQlT2Fzg/bmBqRgl/r7AHccPhfUOUZkSoXs03UcblSlfEsnukvVUAOKq6/MC/+RPuAUcgScHTlSnor8YYJapVlcEjX+UGIdVa8mhmfO4WiR7zp+cnkKIlh3CAt2ZSuo/c804P+6W3tlfk9zckSI36eZERsyaQfTH1PqsbA/4NUeyA3nP6r+FnBBArfwNAJFISBVYRBPiSm9h9Oc4s79iKxRTea5xK8Ia5aNR4L6EfM5vTQS6zCINYDpXsCgBggXQmqwsbb/d/43uq8D9GDKeNWdAF7c+DsGq1L3vy08jVDgIzun+d24TRF1+dUGGQPhR3uGvA+W4h5zJsXjEidD7OQcAihwnCbTexikLflvPdZ/ujLy69DVqFYF5JXXD89XhmT2OC+JZOrH7UTWEH/rlA0pOc7zOfIYoImXzlLOFgQad25xG8IK+WC1y5DCHsnJk8piWtJ4x1BT8+FDHoM55m9rz8VMd6BDwcFw+xX0tXIosfla30MM0a+am0Xe9U01EToBcW7jvqFOWDOjnpISzFm1Yfm03bW3HETOS0G5E/aesGOwvPM6QfJ/xqI/20U8Uhl+Pa8CkgdWBv1VXxKhd5G1Kv3DW1pOmQYOIPHhy4p0Ox2uRPWcjtfe9XSVHdY0aeu2qTKAw9xUdMXCiFOAqgvjKhVCN1V0kT+0t6FqeZhfr0M51kqKEl6SrW7XFlMa1kNE1n0KoMLgktDKKa3C7mADc9jlyJOGtZKJBtgrkpD+ITwwayhzPgqW8XRs1MdgMwt7KSCyrxWotiClra+aEeqOPBpxoZlp+N0C4nyewukZEM7IcnhOq+IXq1Lkrhe7yhertaXRB1YkPHDzw/PMk/HbRSpIsNwzynZTyArWhcjjgMDJCnvs/eThwRqQYsxFcmiIQTpO/C3TFyPKhs+T4DEpzdD9jFoxuQKa6LKQ6nlq6C5WOtFrDfJNyPAds9f8yMnm1mOpApoubD81t94melj/xgJ8XKKQQDFBBx+xcrTJ3NohRAg3P17RRPD1wKsZtTZ19VWGNYveFAm/YvxgD1JAcIHadbzVfEUMTIVxf+ww5eqtO2SP0asDI5DM02IxjW74+dYeXV0wfHkVGA8bUj8omHilHCdo9SHszUmAvbbYr4bSayasV4xli+VmfjqfR3xVDvypnSg9DCvUDk8QMo6iRFuCMnK7w0ap6S/atAcvE3f4okCVu+ra8q95cDXKXGC6bWNIFYh/TPFGhvXchMyexGp7XDp/uSwGcNywKHRWDDS4UWupXAA/Ks/VhPWrrEfTL1tyO+Fs2EEu36C3FY3BckztRUHnkJSGGIXaFWP+tqtdM76ydx2E/Y7iIi4cbtacZLfZoMefHuFsLlH+J89eWsDFAv+sxby/wHtEqnqCckvgS6QPzcDkKmjooTGfbadGfanBgrcvyGiuR6sL6kiknm6hPh8Bw6xpaniaDICT7zjakllWB+b10vL+Ill6+No+xNkAhC5r1i01uZhl+XWpaFCkxvyLnSfxNMFieofuuJ9auPVUe1gKHPap8SLuv0q7knDnQ1QMaRLU8lw0SOic81Ji+0kmhFspSUUJoI66uvx+WedWRAEm7vG6nUTOG1Y/TGw/VmsW+eG1ZLnDRwANpGd2Y6cQmqJO+i1DF57lwoTDSLVc19jIOgJM7j0mvFDEbAA15Bv3XaT5JhC0/3pkxfpU+bq7VGeO2KRo1IUf2Av/Ke/M9SmJA4/v2FsO9XWvD/vmeIToyTQXJQr4O7kGDIm1DdOf2eAhkcri9li+Hk12xd2qfRh0KitDs4/TNzPD7sEIL7lk+9fP9thP/YjSnVJiLWcUB0yOsYbtNYBeZtGLkhaXAnPAZF3xi0bIXPd7G+9Q0Vk+tFgsgHNWdj3Z3OQm8/8BzwiawwPmUdy2iH8NkvZ4rOJl/Ry3OUVEZbk55MhBViDXjYCZ0168HgcKDigPs4Q1UQsl78X1CMjao5tDN63OtPo9K43bvogGnrCMyTIJs1Zp6KETkC1+eAdocJuN4ZkscV9HMR1+L7V2PpUkOnRbTT56v0R+E2h7VDzDbmm5+i43xUnSx/zYvhFS2fUx0ylgmlNsEPCHp1czOy/sN7To1/xPRn/P9TyKuliojVjE2m67Ja6V99sj1SAfqkGylEfkd8wtFSaT+44ug802AmZ0WeGKcfebyYYWgL0so2zC5/dC/IZ6N621xx0Z5d+aMI/TdqJIdXVoipgwsj2utEDK7S0AMC7DDPqLPFV7HFAnp3iF4iMqZaxX7rPt+XMXMJFNE2g3VebYKIflGouRLGNzi9SAxgOI7glsRFkTScZ9nWH9i+8p+OCakKOaeDE+EMtJxBJzByjYSuV1E1IKhPNaEymahPVUh6t1C3s4c+kBPpWI5X/u0ZYDKEXr6xHlOCfi6hrLUVHurH2coXUyglNW3J511OHBISBbWFawY0MOobluFLJSh4CfmaBKi2BU+htLVPSe2k6LFut9Q4bSrccPxTvVfGu+KsR4fqzHnxOgdAbToq5XXgAOxmyeXtdT42EcWYKoFThwSed+sjzYU6D8Ib9PqmbIMIcIIGl6h2l6T4mUQMDyooj5G2FwHZpFNSUd/2HMQciAaB0YboyBdwRqlaCQ+kBO4Tf0egKsIle0sZ9/XrJpgwMRsW+UNzDv6yd9m5sOgLh4Z5/NRRveOLD6k6l+G/juMXW+kWTrqJ8kD3iJBKy3/yyfYbNW4cwXNv0bgq1Ba9xkZPCfYfDlYiBu8XfWGyqEzkBKHx20NDvS0FVVRd610AHMRW2e7M7ru1d+GB/PjG1UtrFMnXXMoOFHFikm+pPeFI2LtEVGCJbOJ/gWdraESKvpONfHOeZU1aonF3cNtzNiGSYkkjGFZNm9lVX+3QBvmZ83L4QpM9V2o+rbLGuvYKoHo2vf5Z7tqbxgL6p0tCs8w/uxTNKjyBHyPBg88D8YN196czW4XtlPcOTbY6eazTw89ueI0Zkv0zN1mdTh+BjDfyOk88i1Q54SIfD35rYdAxrZ9nJqY1akp1tvnO0E+h2+W3ojXVL28fHjk4+D+FAY+eKDjEiusjRj3VIDjVexEmuqYGm6QHJzDoybbaiz+JY91Hegj+zd8g7L5cmot+kGwymyz3MTWM1BiY5Pn/VGdRyYKd8EBPukt6pEx9tcD/FvTF7lele6gD+l3KPZ6qeDyUsYiWTMppnMa7KkeSGv5y5SX7fd/zxsM+q5WnKoRU3blGM8h1tT+3BA/HqOCud/a81vQQreE6M20CrXtEltf+8ZWoZ2CFnIVL5CVI1+ecRm5UK983HNa49j0oCEPjxef0x4eIjimYUpv+JejLUel/pJPiBaqMX1uZuxGFFr0TmsX3Fz5iMY/gW83DMoB5easRbyUOV+n4RcaE/Se7nU4LKoQpPNg2dEM18kgYY3L4vx8SRuHyxzBCIJzDRRxGShhJd7lBzCW/zGD7Ya2Ue8AA7s+HJ0356psXXT1k2/PwMDffkxUy7/x7URg14FLPhmqeuc33W49BiDcvZftshuJtWwKBMZ9ZjtMBTz5LNfRdeYEWsfHQkCJ3mamX+lG9fwxDYtspXOphytdGUxNf0GozdPHMy64raup9XA7R1erTMWkB9GB7XdNlllev+xJmJhV+PGSTsNTfDKuhIYRjrkh3qkiaKa6m8xBkQGKAjOXTW+uLQmIrDZYoaWpxz0y9pOhhQLkJttch27JqVM7pcE7dAU8htTzV3GNhKTtlIXy0XU22572uDCmyjGnMCdmgWEo/Q85EjTvmTeJt1kuHPloFv4+ydbBk3WKM64O2J1zRRf8sxS5zirXwL1g5mIAPpGXf2zRGRsgM0UoXL+xq4kOU/jI/rPREng83QSVBQDEjPvOY7o4wGY4PhflbZLLkcT350BRcRRw5a0ybGgouNy1w4aaNCZRrlOmDTKzkQ5EUWQxcRQ+/gYEGDoaE+OAqc7TYhVOBT/iNdy+msNRTXhKrkVUK/9N7eY0dB7fho7xmdToC9jwic5wdv4ue9OmQulNQwis0oW75jU3kXN1Cq4bfyAOif0PbaZwTRbA1cHWT+bvHGoDnCiYs165L1401gw4wepmjJe95hgT5IbnETZPJeYhSweV79W//Qt84FYQbzU1F949AeI7K5QfQL4BDct7GAyqGetN+rvr7q5VudHK4gyhPN2pPiDhvVpCFR8BCVo9wKHmMgR8b7XSSci9o6QbFaSOnhV6VoVKCcnSazV51F4X/Q6DRNUS5WKZ8D+Kh8HHk/KqF+aKSJJmiriPrownmMKpcxDqeJ6EATV5faVIqtBFpvD41VM/qZAClr9aO8+92PBc0hbTmQwN55fDN3bq62B8NLzLys170WndGe2CKCtswLKENFyxQKuzNovWFXahdhQpzvVJBdOeHF+4iptOTh3T8drQySYP/b8sybXbeIU1tDIPn7MnNyj2nBC+ucrdnE/NXCfw+BjLUMXmva261w5+rpLEV5ERT4wbULe0XlGUijUVp00C+uyvLHowcOuXFGpgd66vbMk144rAb3h6cVl/VG4NSgk424MsHyGx6M76KBMnpnNAwrDzcIgj22jEjj/LvK+7fcwKkv6PZ5ab/9ERbiRdAi4KyENVaKA59Hj3mr41OxsYb9z982ij/LwouTMeq3uUb7x9VObRBICVYnwgkRWIfXQSWBH69ghzQAp45/2y0f0D/SNfVkAQ8BdtEQw2yUlSuv1Bjq/B9cQyBnlZ4JxIk3ZgnbD9U3Y7vFfanGqmIIHi2v4KwYlUQaZJAiaurOPp6B9Kk2cNpOJ2mmYz0Lz0sDSR42qN4wQU+MSgZxvsgqN4fVnRQbAtwgNi2ebBk6iz7IDFg6p0YvPNYOz/wJ894oKd9xHlUNcMA1z965UDQzZpLezWL05YAMzbyQTdXo3E9CraA+WGOx6lHf1byjup8/JT7fE9s+iKVbgYYenElCRMajy7K5JKWBtfAPs49IojWgF0yU34ablVFT+WC0FHd6MJTDOaJYpKupRxX3SSN2dRryWuTK/oKRYoApayi73E/zN8QNbeDJHO4VXQ5HFpfeN+UriSiaqBCfXd/jS8yO6Wvn4DmTIAun6RPeqXPK0d5k0ZPX9qdPEqcgZrshOVmU4Yh31o4Q/km5sL6gg0b+/gzaGk0zYf3l0aKhNTsURycgg7yQ9e7LjzMH3mqfkH8pn/gQe/iE1gO7Qv4Qg8wd8aGbItkoRm0+P/khFcP7WJ1azPWuH3roZ2vlWfloEXr2fT/z0s8M/9ZqIqh7X+tm4cXB+Dvy+q1ep+UC8gdpGvbVh7PZII1tDpVS3J2Qqnt+FZy+wV6MSeG2Am79QuLUuim5JhuS5amBrvYtZWgHB8QkXZoC2CkF2i72ui36RXZYe1v/DE6ygBM25sufWGL9sAuQaKC3IEZPKodzBBJgzIrlGu2jBep9I/sfiryPLgG5PUa6HUbLdtS85NHD9tKY3R1CmwqFg405c3FEXwRkhnkQezaFK1xSC0okkT1DaN3J9VIwkcXaaXvEh7VO7XDk2oGOlCCXEWJlUlE4fRsD6S0L1110ul9jcOuEHqpb/gPu7+EwffKvZOTaZUUJPBj7JjuZaW3guTwkT6ZoPm0RsXAO8EYGjFp6PpoiB95oUi6N6J+HsMNVryOjTWBItAT/K7scUW7CCJQvpKyw3/9BTgeEiCn7LWjqineWQgg/dSX6J4lw8oX9FHzXVfIB23oB8MRw+4HRY76rNVguAwoyRQYvb5jKMv7eeLW+iyJSSV5k9PEMbAyrQDWDnXgfGcoSZ1nDo+TuBLIvgKITQ05As9/VjyssmKB0Qf23iYEuUrXkZItpmN/5W9iMhUlRHuZlm7Fb9JM9FD7hfPcEv63wAuxGODJWKdjDcMgEXQKZ6JUCEdZ0waz8En5Oi0Y/h359Upu9SndNS7ySUEgtxESuU5GIH2S8ouhOjMSkyAITB367uMO5zW6aoO4VSNBmV0SH2MjM+kcjmi6A8w1nmDplIcrX7pcq1G6jqdKLye5Fdf/XK8+SNu8xcpYkxoEycGKrUYEalNTinaaeFjJlg6EWI4SD/tJRwUCdE99OwF/sV1cdTM8767JVctn4KNkCpMI0wG+CQMAvJ/s4HAeutac5283sSl0GPLjNlWkoY1hcXzifDurVO5WLsTSK/mq8+pnW78K8HuxG11hi/NnuTtuPHYgQoICajNBWq23NZR9TV8r1hn6yPp4pDF1rVfvlQYNEL98J0xobemm8QtdME549mPdK4Ej6Z/uwMXsTm4FMKouLg60ITWa22QWp03jvyy4h03+3i9NkRw+AT8KLDnxjGjgldWXvLCgsIwqcUc5M+AIWoTtvhP+embJCMQsKmrHezCy6Xib1/HDq499F4iMX6x5O+0mK64tsPcoYU9ndpavn9Y1s1piqYAGgo5PoIehZSToEbk6o2c4uDKwREal0LAjXkxQyDJQh8CPhUsGyMenZBinQV8qbdmJ6AAkndP7JkUC1+0FM+9bZoGGjiQBCulRUhAliJTm8sUjt6/dF/ejEsEDviFUpXHENnfSDdd/KX5v+Ol6G8pI4W3u+Xt4apUITV17PDMdK2libjDnQsWZrVQGKA2Ta3mzlwC+5zxdAoZLgRaNKcGckqiZm8LaNYLq+nG9KsPIl4CJ2EGC4fRTnYjJyNN5VPyNXe/2CVHFyYzryxjL3Sb7fkevXGzogNyp+Oh2jLAFvCU3Ef/+fahP46HWZvpZ2cDWZcutwDYY5jN8JBB4+Cyer46HgDzU4DmkMJztbr32RfRPM4PAKziMnEexJpt51IDrnD5RnPSIEdiGt1bxPFkp78R5wIKuLpbIkS1DNbMHLbtqzmzNfYvRYMBqakNF39Z0AyCjsjitxic5tYL1hdpWzcnbJseCNFXJ2aR0/klBz2BViiv0KQCxzEbTWq6iuZLWfZS+qKfZeizGWefz1q092SFU9sz5a3ilo25OTMXlzkxrV7570faBXMQomH8wHT+L+GTKvyZnjGKpxSs4+cn+NJdQL+/bcACEU0jtpfkEXb1IV8g0h8ZaeG+C2UuAx0D8MD9RYZCYwSU9Q8gDZK5llOY2opjny7290KlG42k3/SHJGmLPysmps81kwoFArUhCQUDPWundZ8MpstJoeBzi5l3cU4+TY+EO9F7Iz2E5oIaLAvJNl/YAkIPQzmUODbKyvLGLHwfdVUSey0uVUXhRypbp84MJ1yStmmCumAURkiUv3NDLNEJ+azxsdI8tZzNN7mFXvl91W2NeVIwTBrYaEO1hNRT3yn1cT3WcKySkTGIiKy3cfNTl8544Sd0jyV7lUXlxCrbqg1Mr5G68Dlas1cZpMvUyMcUnF6WoL3k3/Xf7MEX6S9jagz9A8oO1CCmDqPsVufFCl6mvbH9ONlysKBBdhryabYkk9QIoB5Lo8wucW9aYcC6q0oEW1w2pmCQmRfQevBHk0nXpHPkkRzD5cy8gPzxgDs1BxGMqjI5rkRh9JzMi95vPhNt0lT5AcZf2+qpJJz+Ti8yuyqrBYJs17+5Av+C++t48IH4makdW7G8j7u+womfWu4syzBSB+vzxFY2Jd9jO0ondmr1ThsVnuqzuV6f8CyqiLaGzV7FScvuuyo3jpJ9iaZov7LaVQjJMIKi13Ssgo312weBzdhRlgT5GTkJ6s5zUJwvli2UQBrfYCq7OqaB9WVFnk+wa/v9ySxWhuXeaXngsJTHUwyuJJbuyUA1mC12SjmLD6fgotVODOBaZnTUSoUsDbzHD9hVtc3e93dUXgjKLTELmWu5gs5gen757OlmTH2pAn/GGwv8mC0z0rB2FwKHvvKlBO8TcKhcZld6t74Vtw9sYwdJeWSgyXPvqFHHrC+Cq+yYVmFSb/EmykwJnR3a3j2eQ0P//YTXWNq5O6fKLocGPyJRaWRBqKMjefWugUgx5VQZekEuly3cfXnT0TLVWixnH65YxfshxDVHV7KxluSw9E1FwfUI7qN+K9op0VobVE8ARuixiZFDynVjO+YWXMMg2gTLhMzc1ba/GAOB3QuKRFdvEfW+tPE+DWNcDYzrcYQHzPLCZtZHOatwAE/Es0DD9KuCS7AjHSEeSr0kU/6Pr/KlaqkqoTLnbz5N1Q99VyBIcZKIvJvDWadbrTEYdWO0xuRjIEUsXa/DopY3CRu4TDWI/EZ+d/zpK3apUK59ilw6D2UFjv3kdZtPF+SY0D2rrJI2fwJgItEtbTJY5eg8EXYDK6o6RV6S6p3tvMAOvFDEyxYEPfjAMULCwJMEG8PPxcboM7d1lJ6DkZlvI/sc40tvZ/ig4HkiM7uc7q5NfsFiAXiq+Gw0DO/P4Ipmk0uhMZOZJA0FQl4DGBreFSNdFj30/rS81HsBNbZtD5FjMf6UeTOjA6ZHLbwEfkdBWgPD7Y/PQ0x2gMljov1qruy9U2f4o67LI4/1lkEGlXP8B/vM9+/AqeTQocBVZXCJ8qk367UtPliWK5y8M84IxmbNihcxL0IY1KlSOelqvfeB9A5g4biPHrzHxpRr2low0STXWKBCTd5ANfy/23TDDKRdgipufXEVK86DG2XEC2D4sHLz/SnvbZA3dgB4RbSBg23NosRWs47dAT95CjxSZy1zeTlS7nJOYK8j3vcx3jBM232kT6hXwWYIXjgx/u8f11ecgIgu2R60yBW1Hb4Sack2hHHO2pCsOLDqZtIfoTZWkf+L0aOJpoRG5rO8bZ31I5W5hoosPy9CQLceW3hZyS0d0yiIT3XjGPFbSgXRSWSlYb/oD8W7PfANwpSgLMW3/wOJXgPDgfU5GJqxhmHN8qj04puJRHI9JGAV7hQ+OjFMr1xtjUKHr/bcYvZmbxAFug3APYCLS/kh5ikLuC1AGCkNGcJbS6pSFTn9wqFVI8IkHgika3EjTTajV8ooTdDkk5LIgqZizfHDNDSf8jRQ7MepztBtf2N760MoIKzKPEdeS7B/dHgda27BDuo5pBgmI0wwpbcwyqqO6KdzXa9225RrYn3Fi0kFVhEpEqnlAcIC4maDUoXtlAbcAD2FEOwPUTdg4K5lsCPWdGveeAc2FKOkTVoHq8/6ZqEIN5wPrERHXrPJppr/yawNa3yjol3IpxivjftHV5H9+YzNud6PLvVlRETcjVpm/p+RYhwGqxJVMtvl6a/1AZheco0PBVcTLax0QgPqnDh6qS5GdNgX96Sm3iOrpx4Yg54UTxXng3jnsTC3YmIGLFBOM4HO0BMqihAK8G5SBdo7HyETUjOSW3arW1CLFs1S+oyX0vAm0bBx4Ox7ExP+c066ElR6VLL60ujfH4cfMtDE+kLHa/RTbgglEoj9XWmBgQrxxKqwLT1xl1NWiAbyR0Tq9fsJRrnmozRo8SELBqXPv5Dp03IlPnlZFdSFkGOr6PnK17xevigtCmueVKTCZdrBr9OJsYyn+JBGBdrE5J0iNDaSAIAZis+oYTcb8bKfo2MA0RqW/6mK/cZg844+ZTEx8vu054Deg9jE4eDcR4/nLAsSCn0g9VqZBkLXpOGULuzCGXFgnkS8KpKG/UO9KCmP1ZP9J0tQMsDHkKwkyqCnVjY6o+x341zUdt0l7Odbq6fvtwEhPieBnUJ5QrQ0uwrXeiVrwgwT8eC3w9Ps9rk96ZdmOBkCF/WutXb0uQcl0h6REsH1Msl1nPCuufBa71alVpykGX0BtIIOBuTmQo2l0MDX2zNZ1ZTy3xnjpxgb0Peq6+5tfC+lA5tkeJyamuWRQ+do92bKteft9Fwja+baX+p+8b54yT91RIC33uDKjHI0XarEWJ7JmZsbeCtRYOVzIaP0hO77+y3Vumq/5UJDX5fxGyOsLkW2po5WVAXbDq5/3wsmmCi42d10eVCI/iY4KUyg2O50vCFUNzdX6YFAlJQ2D9ZaLKeknll+mBR+m/OpWGr2q8LcWt4ZRK4+OxhSA4cuODKqN0mf3SHnbE1Udhb7PAYhhGZQ0IknXYkOYjJMg/moBvTERG5L0COSQkFd9J8duDrYmiuPlfMgCERqr+Q3x9fQZpc4TxSGF71rGI4dh3cgXFioOeBVB56RVIsbqL6aJYve1V9WVfK6J9t2QgQol+UskJnI49GbtjjX7lXFRZNWqtJ46X86lDO8QoYnwt3514w00vLQfwJ98x7z3ztFfEL4U11Mu2mrNGkn9nQysJQ0HaORTIGGhypwT2XpItcFynNGqfmhGXbhsq3AynutvCE5zrGI1Zyf1e1FxmTvFxz6+yvKbEHUy+UYBS4LTLx/fsIJMbj0Qq3lNuVZYCxFsFp7EwXUWsYMxyLv3zUxrJg0BlUmFOgnu4Yi9vGh3EXxVdDjfp6FAI2Rq63jmFVNG+HUXedW70goJlfSw5c301BAo0rSQdKItDufrjfPJWooNU+HjQodvxkovBkSTmWbHQOBQj6UMSNoctXBx0jD2jQHxD4Y488LuHlOsShRro2rqhNsR65HtUGqEadNzhcT5eexSlh2wVZUllfzlnW2nzD9NNXA8Aw3s1GAnvUpW3bAd+t6G2chMfzoJHAoYnR207+fcJvzUDc428HZoi//uCEgaPyLRDNBOpVoVopYlzvUND1Z7e2HT30yShU3J+yO7zRlZ5/fU+7pX2RyIuixOvbdQjw7QQgrPkXVjNT1oXR83ZyV2oO71FhWIgcazhOa/phPlwKLj5Z3q5D06qNjL3DAX4ZfV3FDXR560k1xg6h8egaaH1Mr/0H3hNGx30J/dQHIu7kvpaSfapEL+nTBsOeZawFGZMtQpKmTI01yUzHiz9x3WpR7G/kmJZZXEgV3Nnu8KjnBhaeSA1O+a/oFE/5iNm5pMbAOZMoTIbMy+jTOh+mg8P5buAopArC0a+pVHhGtCBcBpMZav8plzQcqBzkdX/Sp6XzJsC4EBU29RtGL9R9Zaev3Xs4Cso1/NEGYDrqMsUYQY2tnzk2J9tCLDWlTyYD6r1OOK1FisZMP/FGlluf3ZGOQPe/ITW1X4QKvmz5BwxSeygjxMkczCgUquT626clasYV7mvn3G2ysBL975w2ktzAUrlNzFsCj9iTfYp9+qng6vWwR6Pw9Ms9LW0ONmZS7/TP+HYbVgNfRFuuupP3uoNJO4uDxsafughktjb8IpmZ+39zOonGUwZtNPSTNJnKMmXyvUA7uEHdk3vnC6wRb8kKgcjZQMFyMi3LbIKgJGG/cUYIbANFSZIYZ8AnR0p4D5FqOe1aCAjDelflAJzN6gKVkzhhMEbJlk6K3TUUAhxiJmOG4TB9rEIN556OLNLoPvtGJNHf5rfA9sdskjDRp2RjNXAg1gUb/WnJzyQLj0keXCtqkhwG5G87oG+g6ZsdYI0xnVN8JbUVTTvkLLbHAPrR18MkZZIBYXWo5JwWq6eTd88rloBhHdQOyZ3K0owAN4u5I/sm+pJlzdXWYsVT+MwkAiZ4e24IZuwkqr0G13JqXBwnqv8OdL5BwaFa9xroVqQ9kUAnla70MpbzriNYGDtT1foXeYk1TXkFx3QR5GGS11P0kx2xKCBF80hqRbYxQHyZba5Zmj15Y4v3lx7H1HGPy6qqpKnGU79TkB1sr4o+jNLOAWMVtk5vKxx25MfEMUUOePikUQJeeltl0gcltf7DjSvYnK6SUvM9Ad6O/qc/IV0pjkz7gu7SDs1H9FM+4rfRL2E0FTXPoQNaUcwP6Y7/MlCcSuBvvpUF7y5Ckm5g+aI2r8VZuKDgfbtrxofKB0CMhwldsSGE00z8JakdOhIvHZg2GiIO0+XBEJfJDfmmISLhyYo175Cg943GR6guVTThPXcanacnClRXRQp6gsyVsZUiRn/BF//yiIyHMSiY+OIdAppz/DO1Lry/7awvQNAkA4SPQrBDBe58bioLNNHC1rAzFLXjXtrIKcsDlWUslpMIJlr91ouGKAgRmH0nSC+vGNtmjmwmGAJwf3USSgW/avgG7JjRquw2KH3yPQlah2r1O1EB57tfymcG5pmEifcG6+64JVWzbhAmJbK3gNZqUizrs3p1ZQ1GaqGv7Qj67K0O0awFcWBDpU8BfV1UgikktFbytFvaKTVDia+0Suuc/VVGZd2JMxGoKPwE035aCmVMYPAe2r3DcWK2b6+JWpBKMgHkyqkBq1oX4Peh1gH9gBIyqnYBJOBwKQ0nii+oY6Ip9Ozc9y0aKznkTGqy9nBe7QaoUWhccfu2O8GM4QWDzcBfIrdaaf8O6CH3OvFNt2PwsTYKhJgEBI8ymkhaVobEZmkamJDOEF1bSaQ0yMLHj2bcVc5rv++Wfrz9TPfgsy5Gq5e0NOanOYwp+KXFuLjIIBwebpN2iovFtv/XJRNk88Hs6zlxtYXoNASKD1FOQwIZsVdgUAF8TbuF4CjUTfdP9xV4yTjK64uocPJ6O6FXcawdYubLVD1SvJifLhDCCZCnxNk3yVV7LtTZOWYzUb1VFp4S9+CDJJLBTeCxbeiER3vJNvM6uRWbi/4k2xLI31GWTxXGSrpImEG310DZVgWvf6BPsXypQdpXzcIWbBldds5hj/Xd+TZMXZuWiEdUQRflxRJ7gbRLCLWQAw16viuduMbIl9joRx+fPzyVdKb6nXy09MJ7aLaWGncaig/K0rzz7HzxyHw5VUWKkP9MSNVXzOIRwkws48bynrVNiUdcxQA1U6Hc6zktZ/2xBlvv++LVm00kZ4TzAFciR0qo8qWF8F+hQBtjNvbo/zRUb2XEQV7VvmqrcUDPaIzvGSBzKN7dARupbYUSNRf9wAuUjraquzrmtCNoDwS1Sj1a3MpjLDXjpMv2jornme9b1p6C1cFaQQI/fSh1pTg9eQ8Des9E342LhxiXqpSkNnQwTOaGiRHkH0YF9CgfbSqRtOtGKwXavApfPx/q320INlcR+KmCnjllyKiVfw9Lq0eZVQ5rr9Zf9D4NBu7T7rHwJOWmVRpD9lVZ4wqrhhS4DsgVLbgezVR6wupOwmqxoeRJVq+sUqOub2kahNjvGpkeiXjK1zOB4okJL13ueW0wkEizjewEoyhQ4nocH+db0Z1ytcDJA2TlSyT2Rn08HiqG3fMotWXECwycrjLu6QOhMDbFNzEO1zPjU/kMo6+OIakBT9DnFxtl+vEm7HMiHOQDf3iq4OYoJ+Wb5EXdIkVOelrWrAviAyoUOMn5WxLiRbB4dqFv1ED3lfajc6yMbXKv3spnko7M0VLl0CzbE8oKVRZMw2vC4PtnYIuyGeDgeiczr8hn9oPYN23ZA5S/C+1muB6m38oFvYsMj6yQo01inH/8Y3OO3j3B7+rtmKG3THPXZo0SqcNGinICA6K0abBTFxS14GUb9kGNQq0zjFCykrZD3oKWuaGko5BquSOLgo02d+YrdWPXgvvUzE+B49PbeOI/bIXMe3lQBNJf5szdb5mrVKTMSdys/3jRfQGft1Kkf/Fl35d2tgQCCCfULTWW48kFGAtWL4o41vftUPOXxE5S4ococvsmbPKmrsM6HxgSAvM6jY9GJYwqA5dyZM//7ST6qd/+V572KQJis4JQWJ4vv7WcY1s5Y8RkJq33qDhf+ZnlKO5PLuJMk3YDd9vxYOkSrh0mX7AhDHemxO/Bwl1Xk1s+WaEfSKJL67a3rwoDChZZPDKkVJqd8Rb0SVXYLWoUSGQFDnvpuyZwkLa9dvq/FYJb8iJIr+cNKTF6KsfLzusA0MiihDvsgkEDaa2qsEBeX0EQWigFPuuzIrMDBZ/YbditEzblX62wOszzEYXbrq0yGCqFMhoKiIcz+RrfDnKgx6bU08AwnIdDcppUWkSNMNZWScs8piZwLp0UeJXzsymi36Y0SCbXfmUt3XtohM9ANXf20OiqrFoOyLes6xC5iByLzNo05a/C8/uCcxsuSkX4d/LB4SPFEW3RAxHsNv/lk9QY9d9UNP20RGBsR7RanzMFDmHznPNDAZQtgF9NtI/yFTFP9gvI0zCBCPky2I4U0veMDOmAkx+9i3XF3WCi+5ru/EPhERpt2i+c6tNiB8DRr2kqaTaBGk13nv9THOCkcocXKbmFNEPJLrvgZh8xcOWCa/EFs2a0SNffUMtwQ77hx9rSsg8/yWwSNT0XkmluIp6xe8krqNEFwh30n/cqVsyCYCDza1p5YbHxzGWaV1sXFHny+bPSXAofi4ZkJEDOzC7s6qyOpT6rcIeGX/l7qofgEmR+s3l7PKLFdcvoWiS++7PQkHLdLM7PgtAYTEnLTuU52gqxXe0k9Rg460axKL40I3Wnag72W43KLdMWhfVNC8Pf5Ts6sutprMOV8xjB/3bH1AK50mj3tqak+csoPSdcZlB6tym9dQh9eGnFOL82xEE/xshwXZGUSRky9UeiaAHsz/ytnRCyQU/h5DZI+mwmICAnPE/GakFYIM1woR5f1Zob/ni27xo4CeCsyfUGd5rj782dw59Z5idKldrR0GiwhTAkY/aL8upgac93+9dPz/Zspf1mNmTvLHNBEN67n2/CxTblXbZfR8uCr0BWayr8hWGRk3JXvr2HRpIS33G9KZrVzqPuetos5dKT6lP1MEcNxN418MZI1vDHG77w7iXfoTDijw0EPrjsOmqq+p4UWZFgXcNuUBfpHvg6UVs81qS9+PQ+Dgapib9m1o870qAvikQ+lt1q6W3Ri10s3+pQ0uoqASHAsCrRBtTxuKG2pE+XPhNmN6cbqBzuxN7cwkB0B2230OYKKkqG8hZnnSggG/brC14F0aQJ86anZrAM5xdNfn+swgeJR7iS0uminxYsjtAliBD2rVZ6Z2G6egclHS7Et/zGin2KjK0qxyZpNHxHAUSbRJx5S+JiK+r/1WKe+S/Ss9JtYISk/SSpX+ST5AX6wG56LIuEXde5jsysTyMuC6e5ql9OLnDg3JTbIgGifLtgh6UZnGBLohrX/G56YlW0JaRaIT1pGNAtIBFEklxzrmSu5nc2IPeeQQyhWlOCOjsJlL8sIrkbcJcdAcPQSBLxTM2TdQK3qp3ASTeXOLpiYHJHziFhMfs0BPWITbOr3tCySamFDtZil4WM6VdVOC99AFXFDlu4nJIsm1F8WNPK7bFObbH54wZTaWa4MSDD1gCMvFEsltHwH05JqWEncQ0M1x7YxDjxTi6HkcU0WqzpPgusYfbAHxWl7oDzRG8kjkXvgKSJigHtI2yiLFULzXTw7fOP0xqPOoe/e3PaOpPwgaTZa4VIQkOHwannV3t/f3Z6y+fTcO2T+yapGBRC4/djk8j/x3vf/lhJT4qHcpcCW8c+RXmjeQ9xRP5yaCcFyUm8H0A60TvWOhVAbgaUPp0qNn6sX+HlQ0pB30IzZ/xQT2Rf2fYJXW1DdL3aAnH7rx+T5OZRijKTuzXKsW/Ge+FHM7N1UHkZh2YGOJlWXvnHx9LNqpirF9dT+oerb0P+clr55wvYTK9okU7M5VDsMLmNFfZHAiVEzFexp1LQ/i4uV3lRY3TU+Tc+/PApXUbmQVYr3FGGQrRbBay7Z9Xryrrl7HdHkCZGcgKAMEyPQSeMZgbRsn/kR+ZWq1NewZPbkNgo7l+VFcnTtv6eTilh/J2xkGU/D4kcrhY5dkUbiRkTT8606R2igf1qJ+YB9lLUcKIcqG0AwfdWelu3NJ1Enoyx2cXtIjuIuHUYFrAOisp11fJiTFGYWwzEn0efAnsEww4l1mZrMnhHrH+Jw0IbZD9B49R4dt8WtWAg3qGZEUund/Spo6eZhIdR3iUFb9cd5PF7JM2QdOZDchURS12fHn2UTHsxBVmNr4gq+erBh/5VRr767iT9mdVaaNWKMdN2SfxsJvFNCi8bR54dTZ8t3U6HjWqkOLheAQl6Simiw08kh0vlrUCoMMZNrAq7D00VoHmR9xQEV7N/2KU1blq42bEh0nBS4f2KaFeWvfrZNdq2gt6SwueXM1SB2XxZY3tVR2pgf+3O0ooVIE9HKcaAIwzqreB+i7VOQZPigxDRb7GJoORFbInsVHXfgXBMeiuYjMKae7ytTy7+96jV0c5b0npBaoJMOgz/5kjSAFckBLrBXt8nSAr4WuvgkmW8GPeubMeG9Sc4HyVbvMv+Qcb8n0oHAaDuFg8imx/l6IBTmFedy/dMqUcy1YXaZ7BUzKIJJ/qyrpcew+8hzXn0dhf7LUkNeNoRhIUr8jkgoAePQkC+j39ex7WTtv7I8RrPfYPPBNQUIhZRvQMdEGTxEt6d95yCSBiiBpgTGBgXPopg76rLlYL1TIyGJsR86s0T/rzEBSbpO74ERgtqSJs7m/afx7KrUEEmQRt9xzXpP89xRQJ/GXGU3ygZ2bNbwtkY9HjfG8fedwS1F4dCNEIw4Kr8CcfWAnTsEHWTABxyAXOjQTmthJu2QhAeQQOjEk6fLZlEHqy8mjkUUJuB1ekz35K0I/rxbpswTCPwsSS98Rnvi9R4tPXd184kuzjUWVz/dzzKHk/okUTSsLyz2n36WjiZffxJWKsYAluzdBUkuQlgcIOdoDht5AGBdd8rsHT9dVhdxDhOnlhxuI/QJuFhkZgAHewxu0RuuUdEPCjUj4mXKyhB9wOlEoCp+g0rh5VAmRbZ6F3J+Eyvk3GGDIPyTC4ZgS5ChwXS90xFvGyZzXrqWOY0Dhg3dWMl3Itj12/yuD2RONAucAArg6GqLkm/XkAoygv9gjhppgMzYtdXVexls06Js6MTpHlM3TXpwUCvdmRJycvK2QPkL02fJZwM1MpU1q8/IqQyXo7mjolvCzpJq5QBUKEjDNOLwIst7rfrSfwAFrfruQ97LpeLZZEyeef64+Brc07gyrGNDNpeY4rpkKVn2ln8AWcdm2h0JhOSvVO7FzJs1ceBnIBtTw/VKJ1/leaczxBqEgPCZ6EgEViH12fpxHQ6JqbQSbXooWTyO5B6nsDaSLW8Zcgm4uP+hie+ZL5F5Vv5DpK33+S1t9EJ8wh0U+4QZWOGdGg3tV4z4bknM77RfeOwVFyTlgyCc2GGju9VkqIJEVlbfYBO/ZOYWqOKi1eAAk9YrEWnkqgzvgjDc2eSM2VMQd9D+zk2xKJ+xH+m9N4AqMz4H556On8GblREPWgqh3pv/g5S4oAM9qclJRHuEZZB7cl/iUlkktvoYr+j/RQNhPijtpXNuQIqUmiXalXEiiu9Ybv0sncMVQeH0PArQNY4FLyIHpF1rmLj6+8zWwnDXzvfL9Z1LbUe/KVItKSbZ5pmGn0e88FHm0QT7A6XeL85iA0JGyj+8xhzDYydhFlKDFdbLVZMQsDF4IBG64o58F6nnqRCZ45+2Pg5ZP3SwV/ZibrlETTBhehwHNz3/d4ViHngC2phprtStbd67hVNRzZh+QMvt7aSJgbZAWU3fgAiokJPXW3tKKQZ+HT/RKw1Q4qVUjErUbVnytiyDADZeJSSKm3v+029JXgLBGSLCq3Xnlu5bU76A6YFARRItvdrnF2jIq2kBvNXb5OWUG46vcolsYBDC8olZnZPPCxInqSIudOy6Esx7OSK40+Ha4+aevyQfkfs+0YAduiByrbbNYa1YDA5n99QENtzjq4aEFtvLcu5aNEpT1zp21+S75UWHcR+1LI+BoZSsgUMHLw51y/BlV5E7DnVKymSdED2ciWh2nZOjDlNXL2wzHrchVBycnhtWmg7IsygRpvDCbwcLRX+ITYRKyma2+JJG9B9Li2WLx0gcrsvMqAr3eLMEr/aF6NgUKscQa4Q8rh9bZlWhqamuA5jpCnb1PVEvJ9oK5myYZGfeZDwSpbGXSLCjnYEJqQSEJ1x1330TJZTYpNzcxN4rZRSKa9FEcZyXBJszX+tWRLD0aGStnhN0S144i15JqlMGYMFqFlK4+LmrimmkgjTY4gRxPXecOS8wU0wt4nYtSGIzF7QPC1MN7K/5Q3dglfFEhffYhxYeMbO0ueCqI73x3UVM6LLiLMIrVBP6ky6caHNXWlsMqLKi/uDtywMXqskFjfv280vPps3erQputWuCBNcjfkiYmEP0Awzd6ujRuGZvlSAHYmi6OOqHU0SlPfjIsJv5mvKlDZdsE1q821h/eIJjt1yLwrzqizAd219JtNVgOuYlnSIgOUJBR7/K7EB45BkEweiHkh4V808udKH4HvG6W8KKsL/0uoXJaX/J+MkZDwIqlilOqjd/pijDCO2TwlLSDzbDZqJLIjb/7fLrpa3KyLPt/h3hxFy3jpTR5gFAVovfqdPB73jU1ZQa+6hH7OUnxSJmrbXWOj4LEvqQG4t16pB4VCevS5Vf8Pa/HIECkrZ1dIXP84zJf8loTZsaOTa4xyKLSLskt8WYAhvGFWj3JbcB0X6FCDKEsZprxnth3JuCz5QPgFQ5eDD/xsMfLOffMCRbX0b2CC1R8WIoKWkvk/BZtYboMs+7KMAk5AcKRGY3FjwYUbsZBx/5Q4za0QpFFOHqghccDRawtc6D3SN4ZYVKbCJIybwRSYDqbxJtK5qEDkNVx5Ldwc2aLo+Txko4eP3aofw9aU+sXVvh4LJigthgsYDlCivyAU4Dh7ipaaIPoZkUJp5GdfAjRat8K/gimDGj3/gXpZcvoUpaVj0g5cnVrrskXaEX5W3TnWy+DiRgm3+uG1PaTx2sqn+v1FvbMRt3FOa3aiW60yTqh4mWcwNHn3OPMr2CMu8WwLN8GhHEr9s3RCJtSulDCdSJDUaY1U0YA6K4d0FZ9vx85ZREFpXbVHQHBcZaa1PdnkZQPr7szmsxnBvO1kMVse/KNpjPZNoYYpkcsLZmZZPm8rW9raUIgabFOWHksVNTPuM5k+lMPugMn+TLJIYh2nYjeCMuujM/uGdT/T5pIiToWkTjdbAjz16R0UwUNkSO7Tpsid+r8KiK3DIaMHeDjXmJBuu3kDPcmkNmvF8gVE/yoRfDXhPssofbC+b/eWmOJ1gIizDwIY+h7VdRzxEaBTISnm4/wsCnUWm1Et66QxCSthhYtrOn5aU9QmidyhkKVdCIFMF+PONx8LdAkTtTvo2MhFT+ejEaaTrI5sCMdNHTCvXEvn3n0V3pSdGt0N9s6d/n12bxT2PMlAeAPbMq+MWpbMofj2w6kZncZcCZZeFe5/xJVBxJeuPqC8s1C7EOBiUQ8LvSDM7LPCEEwhkPIraaETTw6NkSrtw8n4NhkDPPqvX2hOfTCTCyBc3fLbC6u1GLB6Cu8S0nssfu1BEPXQyllnq2N08NUApLcClveJr4poEcHwknG+twYxBKMU1ElQ/jIJ3QJ1UH259m0h3iItv8ZxUO/IjTWdP/E2qhiFdlE+HrZoUWIPjHH/Y1ipBiZVYsYU4qzdj/A/Ua0xWzAO/aw7TzUPZfQ6vmThPm2c+jVhrexCjsyvLv5cFcUycHykcFhpuna1sSyDIRusNQE5Pkv45X/Ii64WbGZjxd6B1HaxssLXcHwMnF7RZ1Y/SLR4XLxjO2mVthLisDyNm/V5HXhoyITvvxUc4H+WX/Wp7u6rxHrGYHRy9kdJyyIsljv7ujHt6TDWRaT21wy0Qp5XQHiTonN8M2XnkEqP5/DMb34G06GQR1YZz+r3eRuBcOgQq6ejXoLR9T9+XhsZHguzjy6RJWkIC7ua4JXXDTTrIISqMbtp5l+pNGsLlsVzXDQ+UD2UO/WQVEGs0JL8qbVJZDjpfccCUwXUVFHuzFIgrq80X7Lau9zPLLr51J/ttQaChfNLhoWCF+hNm+PJzw6ub4suZoha9Iw8v5EEDuoRHaG0bI3VvxeVS3xUbaUr2zQvKR+wX/EBvM4qMZsFKnOXYCeudPPrTjodMgqvSoJY3Sgq02U1rmydWDx9b3pRVu6lFa3D1i9bO6zY1nCXI2zNxTaGWbrNy6xJ2oXj4aM4zRaC2vjdPf9TEVNwYo/7lIjSBIjPxuc6DFOMgbaAsx3WiSSDIn4Le128cqcSsc9eCTU6LFgnEdPQaPJub115XYjQHorG7Szh+V2YaFYSD5OhqPbBaaRLmMJCrVO8+rykple5GWs5BLolwHtVutLEG6TunxGOiBDcODYHimszgMNaTkAM+EVdinQZRb/s1OvnEMYHnX7q7DuHHAAOKuYs8XaHKLkBBKcE681cvig4T9IwqB/Lkia0S5zlaMYHegyIB8XgOrYh194Q1TK6Tcuz2X3+6dnsA4Kw3H9oG1dI9Y61JofOhPcdS4Ve70vAfcI/j5t0b6iT+lE9/fVTu/bjaSFxNHo/RgkeBZbxSYSwiqke4mX0mX2YOb2WWu3hGPzzbO3UIceMIMAuwBc7y/CGjH+ppGrMQGFGz9Zs9Mo2Ax2dYCnXzXXjS6mZK3S4VuNKwsrVEKRHnZ/782s+yffMTEgSjY6tYIvGn04fE266rDpegS24VwIkG5sGn0neiMpRXlZt4uMIcOtPLx1kXnqzv6zNOLS6/x06HUkI9hafkioclhTa5YCOujkQQitUlpuduJuCkI+peq2VnJaiqUBH5xszjWV8TSnFhpj/1LWpS59n8pOkrw9YqcvWUGNiokDYqqw4KgDuGn01aAH2GPdfTncTmjzsffFwkyrqZxRAw1ILEgggyVKvaVnQcODmwiyDIcgmpn7F5deiqrOOedmAOkFrYEvUkwQUjuF9YFQF1io26xrx2s2Hke4ReZADf++m6yWvjfERgBExRR6VVHKV5B2eutzzFX8ObuaRbtXHmPddm9pM1cpMZNiEyQqEuwM2amQwO+V+fB9vb+T8Hp6XEcfzbhCrB2MYwIA1Opt5CvdFi4IVOJO8RUIumU3mUWL5G7nRIaoCN1NNBHUfFaYPjsdj6VaVABggRcJgvl83IUgE+q4c+G6Aq+KqnLGceO4QlvJSTfM+BTby5eJXm4lljM1U17Uxd5iGW4aer5TgJ3dA0sFbRJdKjAKgFDXkuUpkVxyAnT9vy2WjalxMJEGKnqRcm/u0ugeOSKjEZHUtopzQgkZxpqmE2KSrgZQbSxta3bjk6+g/MWlUMFxqZC+wHEkTUnnLNgrm8WczAZJhOZuXNOY4huHO/6pivdieKPGdPDWI67OPODz9cW6pSdOLoz9V7u0yvYB6vB9xGovATNdpfxjHjVkwDkfpLr+yVSDCEMmd99YuvaICPWsIKNdUTrv+IcOFQtvKMnRIGFKNv4qnQ6TfahtBKua2pjOTge4d/ctCkSfdXyfbd3h3JHMzeJ5L7o3UIzWmnGvZzKXYjnRA5TXiDn5U1ClPHSKCwTZ9HM80Th9f8XJ0tQ3bdCgsBWeUjwohjaocxiZL4EZoinX1jemcqMF+I++tc4c5TIV+K2Teg8QfNivChm6Mecl5hDXI96x1sL86X5Q8A4aAKEvrNC7RU8ekTHpRiFdi+KlmyBHNt08MbZcaHFFqsw6Edv9V7vMC0a0CmSOmE1/MpqfkXB0NsL/z6MUorZQ5Qg/N1olsbDSP70s3PPUknY+wOZZ3vQ9KUe+JPDwgC15f01o+H+4YAsbk6iIEuoznUgHL7H7OKTsPGRKyF1+dT3AMIldDJziujZCBlS6XxI9phEg1l92eOcvf5361hZOFrKoleiyyXlpiBQxB972Cm1YrhAKahluqHmy5I0hZbZbyRqy/bTFwrKkCZf6xPJ6SOpv/tpof9OMM5X2/OK0oT/RD0t2tgY6QrAFi88dJfKCgjS95MsKAUOYmmw+2vatgl+e0V4x+tFtDKalUjPEsKOyRPnjo4tqhACzmpVQ8tQvH7wBE2K9XT/mY7ibBkfWxDzNEb2Sfz9+hQEwXp1kjz4tApfnlhM68rIHWUsNizbUHhuPBkGm/Vnt74DWnzleJW6DjS3haRTvESggI4htrO72ZQLDswAUPzandTv7Q/Mt/qN2xGzfmKDlgxzchJTr3KP4OnLsUEma+KHUBYZXO3J6k6aPovR7L4/IhvsnvquKz5zev7tIcgPx1GW7wLW4gea+ZdjCuHxhCp0FVzOGhiwXX82rSCbcKZumiz/WLGjwTNg34g1FqG4WmjG/2DJB+8w3Daq6Qahdim6qlWUGKHASJ5Bg72l3H20gGGxNcTKhhnaTuJPm9dvxQP4jBuJk5tUFzp5QHI3DK/+vKFn6yViHRzDKNY0SCwMyaQXjv16x38SfFM3t3m4YVCV6yFtpYDPyTYBEKUVenYFIKeD6Ud9UYyU0aanIj/RN/t9GW3nfcMmYpyNHROhOpkwuWgjQUx0k8A0GbOhSxHL+JQCNgDXmhrXGg18X5nX4c0DtBGnhqb7zMR1DPFsSR1GtXblUc0t89Wrbv2lRiGSmY77p/dbanVOiyf0u/4ujeCaw6TITDVFkIClv5I1yw/iP+cmHz2GbuN8n1tsPJnoct0e9j1bQuoEsk7uE/4h2lpuG9TeF+Hvafvhl1vLfn/fDScGyZH7hlMzQi9YfCvf3JbRKTgvO4In+CpkXlYXmETEUtz6mFX7tRDzS7RDrKOV9rkO7r+QmyMXK20ycdf2/h7fC7OvIxtJEX/qrL8erdnLwIrijABvTj3Lzv39Yl2812xE6yrijowxr2rO7dZ/NnnSP66YGJGwHcUtPUDBtCABDBkZwCSF55pfOr9tMtYwojdfT85BMQASpun+KssWDS/MYDNbKTrbd5Rxk7xyNp6AgbUHo3pWhkjuK5g3F3Lsn1s0p225kY1CqD317kwqJGFJNyFsAbY2tqItGlVsS3LOAzp0vD/TAKwxQr2iXppH6w1xmS+fh+ChuxyN7MxaFiNUvO554n0gDcuQMBkJB+TcyrieAO1ouRNuCRh5ebwECQG1zISRuEqj7Fv/Rum+078Vs4/n+JrWbqIajiTNBAQCwqucf6PjYWSKkzUwKclxUMZZppfXCHp5dDXRuA1cM1NA1hnhKK5a7RLsI3c1Nf58xefroj/5XlZkowIq0t1bPxQqCsOTNQwOL754DMzGss6BEPEtiYD1zE5xigAfxfGTltY6uxemGD1XZ7sEgaNH1laq6ri3lKx7ufGwVHccf5vyz75YJDZHrdbc+KtRTam4QUyARnBu7Viw21knUfpUj0Ejht4aABS6iLtrfsQQeJO5Obb3c+Vb9py+SeYNBFzyrjfZmL+ack7o6IE9isrz7/ZHTnAIDuThR4xyG6ebo8mrr05H0ygbKBdd6f/jETgniOSrz2sXx/X37MAgGkEhU8HWZzxzOVO435tfzy58r9BOplmUtS7UMwI/FKWmwr58Bt2tHAsEug/hfj2VVrqQ5L418IdwJSQQJkMKMY3xbvani0T9jEoiNFf8b45AzOK9UJwxHDmxsDA3lkdIS2t2+lQQ9bq77d43soWlEaKOfl8spu+ZadZR5Bfnyco1VPF0hKT9HFt51Veg+VRg+ZcwvDXodLvEURsGHTh3BFtWYekWRP+IdkiT0H/ufZC33AaOLbUJst9w4umFMZ8GrsJj7ZQHBESwBpQy/r/aqso7enlRAVn/abBNqlm33pWNdSA3Kaglm1/EwbgrbDWtlFIYYDX7GXDDXWOz7hVjoWUW9AxtWml4K7A9hTe4wwJXVeNzu0ZlTItXhDaMyCL5IxcARuZ5FrY/PaHkqy4QR9vwNE/t7nXjOfq9S+Nlu1HBxXh5K00MoiU000aOPgWw69qwqLPWvUpOsEsCIYzt1hW6nF80b0TaeMRPesA6ZeIhudiiMZNt3/7sfHBIllFTpVMKIz/P+mIxYiCu3Uzcqkm+L4Ktwt4g0CqALVnyxXPqfY9wp3/q3TrdRgIhrgrUOeF0XgzBniL6h4dBM1Z+jzo/aaSvZTCtOeOH55tLlcynjAD0ZmvQNmv/Kyj9gooV2CXj0YuJGZYZAnPQr2LXE/tc2W+huO8PWgBMPD2idK4oYII/KPOHRecSK0/i33blNTopRj6Wta+HQaPJWkpOevKlem07D9zxnJbF6zxww+iMKovhtlJWzHXln4T/D0kKJ+je8njXugVJ7USX1S1cpyci2FI7nqSmYc6z79kqgN7dHHSYbxSXCxXM6gt1K/lJtHnTD7i1TSeqmSfypQCnelFWd8WZ6rM7DpbYHXYhhN5tfzx0aKQ1lyhOIGt11FLHlndGqAqWijZig+/avTe6jRNwqbbZfek4CGQjuaUx7RVIl1GXpiVYcbOlF6ANF1FIDRdtiOtpK3nmfoGw8Ic3kOO7iW5kOlct1ft8isRx45QZkNa3K4uxReYfWyTLamTZvqXx13gMQcUaHTOi/VDRO5fMqceS592sUwVICeuyJa54KndCAIh/QFN8tME3kaIznAHuYlhwcF5j7+DfCeWUZ/DlwpEGyUz+ZuDpDUbsQP/Sq80YSxoK4ip9FUiYzGG0na5Dh/zAWt0WeZ5d7ENl8vOWiGFSjZ3H6MU8Q3GqCcERKZu+/n3Y+hPoS9N0ZslPUpdzwXYQUrG84zg71HDJ3CeWrBSa+Ik7JtlC1lemRqEbx0Q7122DR4/1OPY7Vq9V6g2xoyr85PgYg5MOt1duF2fpJReOszynFAAIqPa9aFvx9cAM7UEytumYf+j2ijtU0lK5i9lSDIB/EmaUl4E0/f+/x336veuxb3o98ZotLdGyQ/2xRl5szexUKYlnnzPnanKX2cTWq5xtHvdjvJPxXYbVmlzggJzN30tTodHrXLjT8nVTT3doK4/ZYZFf7kCkR6mZmjZLCZ7ecLLVp8MDMI9do1igfiU14Hj9AVv2uipufMCDemOM7mFs40psYxvzIR6eFmi/oNp7PFnrTq2a7JgndgbKIEY+0rJ0ChbOSh1Rq39lTRpAHa8JVm767IPftCAFeBq9LE2xLph0z6JRweFMdLTDykpEkFhl8AR047ga94ZB74UEmTsjTmNHnLVuZllnoL2HdS6YshywRfJQhQ5zhql9WuKpka7a+UdO49rxY4zzHThK6U0yoFGKDbJ65TpeDPVmg/mVU8Air2tsWVnt6ibEIi6KapdbHa+3iD3+2Dcw3pnNtWRiESN8oAZuKJotBDggjVXAJR3s5AKKGijMUg99XGf+aA+CFaTuengyzyGr9b8mJTf6GPrEPaJeUh/IVoeBHFlOxiY3EzCFTSdsNGess8hZrgooJA8y2rz6/fJkY3qs0MPdmEMtNQ/aH6ClW6DBQSzsN1eP6B7XGNYqmM+JIvEirEbBBRVj5rDcomSjNgGYpazOwEMDPBw/TZUg1tuh8K9ZwlzuHGl8b9PuDceXLg6DLgcQK8TQxu9vniKsjQMq/M6+2NT7zKzpPyn1m8Ea6LZ2UTUgKiPZTG9wrpe/uGpMO7cJWBwM2QKyJI/VW2b8IxirUT0UPeyQTrPJCFjotGrftE0bVh3LuT+eO/tTlW0pQxgnkem1g4O2hoNkVyVSi0JlJJnx27/0bRDVvpmKl64U/ey6MEezDc9PAHulsDhAS1YC2PPU9p3oYGS8IWGGAWbzFLKDzOR5hFKgZEWbu4I0crcSFBF39TzpgiPp9G9G79ET4KNi1loECOawdxZuFEjrSijyYAcaZ5wk2rK8l4EL33ArLf7HPHLxz05tg1pvnr2Nj3B81defWIaYBhma63SZnrYP8W9MdAb8/g99fyJpwqM9eFVtCsBivQFeWkVspapOU1sBxblmJkFAYWbCz4O+crn/CBw+3nmL7TCWG+QazdkNIqkTp/tPCAXzG5QN5IBtQQ+gMA2AEyirOk1QHTxEck2b7I57Jt7fuvEc2gF9GPFVq5TKBpvdQryYC45cAVAwyP54QR5OgNGw9rEw5v699RU8SRD1Ota+K0EfYYAIHWPIiI1B0pV77UNEVjIwMTaQ/Q0wvzSI5WNY6yaHLJlhpUWeKQFvHS1GSRWrCzAUCT6JRpg6CPkDBgoxJi9YnJkBFrAsmsDqBSxRYWFsfW4T4+L+qW/8CNGesnr1/318VoBxXYHjgS5yWcQsMz8PMkV7OxcDc6+1nHzQKpOsxYOA0sDauwk3S88V3vG3Jg1DIQ+aWuUhw6jVwDEddmmaRCc2hAkBcHtb29brFphEq+Jv113DyOl1LxYs3Y/hCzn2xcW3lFQoF6YgWOt7nLVDPWfyOWxwywgSbjPhtbTho02wWDiqBn+L/BYhdQdygwFggZzJldbrOD+EhtbP4GUpmxkhI20VgCIEmMFvSf5+AKIvY8uNv77OL1ZBvbzNqjGyp6PQbD9si9UYKgOZAiqfZz6hwkoPCFxKSWLQ3nU+aZuqGvagifSw20mYug7YhTSN1rUUogMgs7JgmyVzyB+gx6qFbA8dxswdN6jannxeAzq3+DOGhBUv4oZYsgXnka2C+5P1KCFZI0OK+D7tos8R1HQtXlbguzaXmzHP1X7zRAZETlAO7PzoiX+6dvWKTnG8PdEZOgTAhSOxRMnHBeK5Zns/h+CaLzUdSywpA/nyk5gWD6F9HbP9XTATUOHrFPEt7GlbZwDm39TGQRm2DYM2xTHyb6lm5KdXftXOxZa7vc2FPLlWG1DD+ag1hSbtbCpfXf7jn/HyTe/xkOrYlAgdhzPSyENpx7CkojqoCFKHK9AJcgXeQ2iTQPZ9ZqF0SrGY4NVD6gOVGExIaUas2rpOBxhNVKZ6uyBNbzpnN9AUC1ajpn9gILXg4pgsAFdyVit4hRxsAL6Zrfd+ArnyBMV4ZzrRNeU1timUDz53CozNsz/IbYCUHWJLRhDw2Acbspn+FeeYj9uUPrZhiKrBD4LqkdKdu1V6lgZ19wGpu26KT3tX3qS95jw8PiOfQ/HT97HtxVmAk0MWr9DeDzKmoCnme2HHXFyvWdiYR0qLM+DlecXklu5Pa8EiyfJ0wRJACqUfvfMPnaeYvJ3sHJ2/tTsCP1emDufIXHVjTMmewTzEoxWhZ3pJZ4jdz0hIv6Bo11tnqUHJQYxuVpUpNFD1T3e4hI/RxboYRF33gp7OwvGQcv2zxI31/HTIpQmcaZTSVwsuXIVilg9QUANwilyc3NP5TZPOKmEUuQZIaw7TLx4Jgx9/Cb/8ufW8Jbr35BEW4rhfhOsqOZ/mN5V96Sv7clcFsIuyUvhLpQe/+wsr+canXVTs07uma9bWWzY5TsuLr9mI9uzRE6x/147KNOfDz+5sn/f2B1wn1DQbJbcsyyPjRBfPlzxmWSd8L6pTdKjR2I8L3YFZTC29uxy69SCKFTjzU0aZB5SSdHPWqFGZmkNWTAKYN6NyVMT6XcrhV1n75cY12wnDHirs9qIF8oq6meuM47kEl4+qCITMJXWqjR8CGcQqEW/5S370sktwLjObyHgX/O3/Yaz23+rtudPppb1uyiepDNwUh45nr3xMnnQtxZRfDJsU23pL3sK1mGTUOryxeOepd8j8KJqcnaBy0qharrocOKH6uDvu7pjEhCjM+nWeG9z1fh3N+HNlj36p44+UUHA8Dq8T0tBXiMElnlo1hnvdY/Q0L2emsD6M7+XFh5awxJNksla8il++hmDbcxbbpsGDcI34STSjscrE+FJy03URRpUX0mjMG9qRD3A7/B2dHjvz39oxRRxaXdYRtwZH9wta3iDwrhDlqUYcXR2fI6Bi8NPiv02wrJF+6huj9sfoVqm/5YKJQoE5VFd5Y93xUfpmvunll2LWuzsx3lJavB44qLSI2oUF00PxCrHefkCUsm9WFu5VGWCaEYnJ2V+1+JlK0OFQ/aOzgL1Mct4xPvDdjOVQVTo8eVsHB23/qwh3Mb263JpOlwugfM7P3vqZxWIK/Do0VfjYJFszAd4LA4X4lhthDGPSpq7Z7DcPvW/u+WUylL/lTIUnfENYjbZnQ5EHe9X42OAzG8qa9QfQV05CenHklhvW6qsW7TNKltBvfM1TWR5GA5gjkLNkBcaujasZnR5TO2i81G/bF7aMJHVVfA0/1un/ZWOQx6PkwA+GMqKvPoS65BD8BUuNF742ZOptNz+R8UCvjjpurqw9v0CSTmu2V20v+S3UKvyyur2CVEG08wmPNIOqmOiXJHauffdoLgcLOoOOb6EDSVPUll++/exQmrc1nHPKbjqRSQ8Bv9OLDUoGND/ejJIoYOf8mmo6aBfla85WNP0H71c6ixgnQZW57AaujakWauo2YiqVmLCFC0N3ZcvPBgERS2YU7u1BwgtqEWn91/o2Y943AINT3hxl1D3KKO1PNH+LMKFnJaFGmVd1+CiuGkBubteMnjnA4IZNBiYde9Dc8JnfFxfP/WEQZOnXo+BmYmOqS20j/Perc/R/Cf609H4iZi4lqYUJl4khbvn86wPd5niJVK+nrSZ7iRCmRNqHt+QmDfAQQl7lpJ4aMkTHLZtKJ+2VOAvxD7tyK0BudZZ6HtAtGMbqu2+aeQYry86vUnph7f6hTXLyfsM6iAIiko58+mTpbHyZAZgX8iRtPxmZZeDYtRBTeUXKhWMvFp+yIrfIgXFeTEuM7+wJ7zingegO9wzqzGcKmft7sYKJFX0SVe9j79uHqPNjBJoY+nDFsqbnGI9pCzelP6KLqVG0ArKCbmZ7vPFflEhSKFI/RAKmjhabIg5B54IDEAr8jacBYPb6BUtd5INWF/2zIDPRX5B6YDmAmOQXWsC7mAJjG/D3WNlaX16Lwo4dFdFlATndzW8ozLTbj8MSE9vJc/U/Co+X89I5B7RoIZRmH8bbfzOKTAltS0n3+OXdLwmOk2rHkirAnwV5j1bzIwaQM7BkLNQnjuoGCD/ohEeJOfoF8Mm3BJcsHMdCp/pCojgKinT5Nx3DZx5SKkxh+mnPaoZCYiUITuk229+9zYlV2K/UDdpOv10eW4ahdPad0gNQkP9K40mo+sIpC090u8EzzbCO0Gb2wRYl119Y4UTO2BVup11v0IM0zUBhSSgj2jsGyTf+xD1pwjjOhWRrTyaEp66ke9Xjr53ZnD4sokt9xfsIjGEj9vWX99vfFUd4xDTrL0V4heERrZHRE0fgJfrRFOL7Eeenio9fUdmKv8FsieHhb2H6NM/zI/foDDLdVlvIatT2zuxC5N4gI6Jqt3qyknUaczK36ge0etGLZ9n7I0RzZLRsdCVoGFMyAoD+lwpHmXn6xJL9uy07kwrzNqyvqDg22S+m5Eu7APpjsJCuhEpw27ayMEzzN7ueePH79pmvyGvHkrpxlO0xFWVEYTM4XcXK93biKjZz4tRGQySqHH1sqiCD9GcMgbCKVLTNolmks0QWZyOEZ6LNhSmGMAFiDeI3zlE1sLIh5NGFfVaSPQM/RBGB1OhghfmQm8mn+6Hv4cJHq18NMf6b8+bEBW/SO2nu0/gE+gz3WlLiXlb9ujKvOitHSXwsleza7/LtfBtzPPgJrSyHbYf++B0QW8X6L4T74zR6EKpE/bAARRYtiEjMLhXy25GmoHwfr0ssjjN5dXgKkP7Q92fD0yN3kFfqRlD/LRaL03gAPytiguTnlTbnO5i53k+kOViQ8MJW/TYlrRnjU0cpQ1HSY9YNsubSm45SgB2AXHSMWMbEL3wBfKg08S3T3eLgkSnX1lsJRVHWrG3nPFuJFK570By2Y7Bsg+wxMv3RgYyolrWZhQvY+YZ//2wjIZQuxaXy5mpiKzjCsQVMPAmZZarhmEJeXEFbcyXdKmmMNvtnSbJhqC1nFp+D5CBuYCJWjyRoDkQ0VydCL88ba9ufxv8DXW4IH9drGalOTd0gQMmXJ9fMHBykNMwn7961SkJtsq9STRq9blze6n7uTlB/djN1qokMpbIK87ypVU1DjwG4dQUpYp9nuwnvoh5iFa56IxspItzYCj8zwu1YfG5hzM0oX17EXumfbxAhF1HCG/jFQYiFl5ynRt4NmXG1KcqwTeKjciwXrirE2EouktuCOLj3WhIZGrmTV0RC8auLlh86gRkUS5XRq5OSwkeGyv/866JNgHdSXLv5wtXVxcDTrCLFsKtCyv2/8VUnmekCJ7HQbf4iAN/tQAyYaYVkPBF+6m+jD6OXMQLA7DOjvLg5w2el3zI0xTQo8znjOCdQf8C+dv6yPFvpH9Gco42EPUpR/dAAqMo5zcXps5NsGSHpUVVTxdbpe+8Qcj8QRqKnyvP7wBbDfmHc2nqfAUUQtYMVDnhVqkQdFLnNhkyPxi2+AgYzActJArNtorLIDFkYVAmSih+p/m2tohDJ7//L+F6MVQJETKvRxaK2uA3nsfJn7W/tn/gkSy85AhSesJ2fv/agZjzl0tIVxfyW14pJlAt8ih5JDw9/HEtUBZQnL7pGLSXywM2iu84LcEf9Uet9Q/Zk323g6PUAX76H0DQ6SlnNLkueSjeqd9cwm08Z2UC8oILrsrRxtNts1RH9KDdtPc7s97PEFTtvVRk9g60GE1jwRWr5cTKokJSFt4DBEXHWEJuSlqHCHRxteZEQk3z00ZSqPMfV90dZsfRjdcGMKJ4SI4/m4ec5h3Kj4vxv8z0v7U+mPmK1pi+UmttN1dQn+pcW4LWHdRsJe6V6LkPZtP9IkespJ9r2zI9LVAMiWhJqF6FIDiKuMVP3Yh4ZLvO5vG+H7oz5sThiw/F+Oeigm/kowJGlwWahaqDF1AG9LanXQ+huJNmF8x7s+Oani3+2un4ZustCKG7OrGMEwcHZT3hmADbvv2Jbun2xFwqgtmu6DQ30p8llzCZbStSnPEAPrJRSKgsNXqWNeo2Wi6DWphjpHwEfJzI3nLfUXy8F1oidb89HYUDRcTY9dcDOrnqSLez3vodhTNjDPX92jeyt40YDEO1QGLpXEDqPdIAG7rqB1qL31gxogG/9GyQmqWbfAuGMP3QTrkCOySyN9x/VilYGD1l6D63TIBs+Tda638ngVPJCXGNruSIR56u0b9ejUbkNJJp2qgSwnP1ZVFX9JuwJCfJvp1f5C2JhtV39UpASTRsOigp1RubwA15iKsomV4XEaWR0y9nuI54T3V6J+Su7c6JroUJjR29Z4iH0NnGx+TixlnnhJAkpgNV9Fp20q7/qm0FK55qz0vWUzA1ijaTCRWGkPxOgYmbQ1nAbs47nTIqZgZ2UZ2btTRx+j5JreMEKUz/2JUynW7cEPpsnsChy/TDMP4WZnf8WIwD5WylQ6zAVPVOkiaCj0vMZpIXXlIDgrpgyciaIvmmCmb21/HBJwBbME2nNqfItQ54eE3y6y8gQVD0i4frJMcX55+rEjnBabWXc64pi0PXJQmWSsOVZ5COAniIG02qvCgMva2kcuvdZQTzsHY+sg2UI+E9TPvAV/IXPpoi46OBC1UPWFWzmiSpXOm8LG0N2qvWCm4F9r+1hlu0ewdhBPpY0vUSPr8vZYu3RQAf2BrYf/NSttBXuIHhCOVtCze6+GBhqMWmJs9ej/wsT60mwrt7gHMaH7jCynmibjp8Ox+UO/PbCBjO3cD5N/uEstAtrRF+zSD8DqxtV7MKSjCLXK6d06aLCPqolDUj9z7YlTN+VB17cm5LRIqPfxnrVaYECirjZ66yCuu3yAdXB9atalERtfJPY9RfIK4JZ89TPIN82BLnevm9X3q5dnO/OPcHgRHzfFXZBVk23kXEJpnc+XXffXMu+aioPvdhQIlq2f/PsQJn0KRXOFiZI+CY99EJyPnMIMJ8rduUHlUgsRp0LiFlAeVx3Sizw6ZFylHBPekSmZ46jrHVuhLJNN9boIJkj+UsYjFLjLzewMyCk/bXWnKVwv/jqSlBfSjf51l4+V3bV/Yg4dJM3Hj55AzPNYuzfQHl1/qoHlkHJP0HV/em0XY8CLmCv55+5CW/b6Qimiwk43AAwnDwnIbRe6+JYjkQrUFnb7m2aDJLCqQH/s2JzWtojCncTcpaPf5Pu7bLq03HTWrfvtbbBG+ZwCfhIvEGF6pSNt9XFXElvyd9F1DA1b7iF3Z6vOSehwOqEW/0WUFNSn+0V7yuCkqHm4kWhsZkDgxSdq1Un09xAOT+kKGpbVfJagBeJ2cnH1suf8U44cNug+yI4m5ZH/LbUWxtW2yXqaGdoZ8lwGZKSk6uMWCMMIQcTvKke2Wde6kf/LBjrMuDJGVxyLb45r9+TYnWLL2x/vXAGYDiuFvC5iATuGEV7XuIensLHDHjshJRhjR0+WL1CSJvmKyRSPHEkxpKEJxGq7RwlO/vnlRq5xjO9W8A5rAq5eHDZrUp0F7ndETY/WXTJw7BSxKiiSbXC4V3ALOIiWXIa4VKpGlDhbnzqm/wOL8tYaGh+weqbfP6gn7MMw+oM8JeUDVQnm8HEtAgpb3kgFz8uobSd2AKAQsmd89rqPslFQEGYVZ8m47addbKaN3JVyy+IGqQCNif+KUrNEw6OoX8gbgDTbPzsv75Zf2jNuOBKitANIQG0tUQKosLG+Vimydqrv9OPjYe5vtTe1Qe9OexOJmgQbNXW4jgX5HFEOmOnolBqd/VYfA4lU+57d29tZ/WorWtA11flm8dMIJ2YTWhmdZP/1b4A8YeE1m3goPin1pAd/txMk1Z6uRXHSFQVJvXiReNrq1ChofKLC4uowReh2CwKXowGnWKI3gJnEZKhTKQTgPK480KNuwKOUIfn1+cTqNDmgVvMJJ3VrylS7ft29wkn6Gw9DCHU6mVPmPuf5ZXIoAiXIY4/9Z8Kzh26MMZWk7y2Zjsw4XvYfILVIHXQoUdynWbNxA3iHe80yQ2Rsp1+mCyCIOHsSwfUiCaz3TA/ocV9SNnAVDjtC1XPuriW7N2Om33Exf0ZywFIC4lxZQ0Ch8SZkLLAhAH1Kjnce65wYyn2D+bgrcpAZMzKeLwNd8d9lxmlLJClpSTQ+/Kh57RvtzS39l/Isb3WvSuBXO+YIf00QPxoiySEskpWwh7SFw/lXgPb5GPSM76IyDgBRlD3PeC4wGQFqDcR8yTWzDwy2xVO7jgJDvhPwpX+3tja3zf7M5wvtiHNua9tPYtBZnZV4Pj8vUnvX+8+nJgBx2QMbELwjkfsEfzmKeoUPB55Dp7GjDfIKM/ezokx645+m7fcl+XGG5UwQl/LfrkgwN2Uk2i/3IBQZ2HaFcnI/CDukkvjLksak+6+NZrp5gfwjN9SsNsL04fwCI7JiANGFrluEPP6F63x12ekc/0ETgUNScPuSFGRjcEoTcKGQthZ6izuCbbVbRJTzfyhxXrHRDaf2AN25bOSExUQj+s8VK246DksCFC7jy1gx/CGO4XQvuaoY9GShNiidaMLXg+kocGjDacRJNjkoKJCtFIsa1LUkqGl2celLuVw87mDHTmaAOl3H7TN7ndlqxo5530YyRiPtN9mi9eEAaRSsV5XUpOfrsQTpti6MSjCuIaEzVo3ZaPzHKZFdRJrmCox5xiiwPFkYEs3D6zSs2H4ws3G+VdQF3XhtSPylsZ2qWx7Xoh4TqDYaelYCMd9OLnhhYzGGko22vFlJDUNimzZbFVgYcuWA9XkpauE7txAO5IxOGN3YA/JbfoQkXVOJDDKwyao/b8PbuX3S2qXVeLcAsQFRil85lNKUAY4m+rhUOE6BR80KchTkKrdUfArpXOyLNCk1WzZgGq/T8l++ygJ3Lo8P5457N3vC2GVqlkO4/JLLit/GrP8Ar444PoNQ50c1VOx4M4oEXs6VLCha8pxK48kO2fhOPK7ryILLV9ixoP6TfRshXbuJBXuvSL/5wSswBWz+mlJV5fM8KnzROUwmDdHwZGLRVffmmp90IcGeYSammN9dNJvk7s3BU61DRwDKdY945zmKI5XMr8kueK9Hcd7XQIV268gdQTKDIbsC8Vd9qFvVJE2B1ImuJHngJz9kKSXGqmdVcrAFhvWJUpvckJKO9W3pHpGUlSUlFZIwMM7GIYH/kRu2wTSAoVpBaljC0XNvn7YidENCiMHXGUpQZBKgbrf3out0EdjNWNV+/ZacfAll17YRRGBvFVwbQmhj+kLjAme1C+1cgRR5WpUlMa1siSpAN+7gBPT0dLaA7wFQbrQJ0BJM+xHyhxrKETFZ68eaegsK7PD4ogTChFteWGiJRtNS+DJVwqzv1Cib4rDEwXW3hZbfeP7fKgPC5HP1ocQGXejKXq9utSFTHukpSseJKTrVjpaTiv3YzYE6eC1ri3kXmMONmo114reyCMvr4OTkXnPVAP7eMdlr2yNxS/Jurctry8MtONn3z5jRA14UAEDpxjM0yebA/jcppNoJS4j01dKp+xPf8GZKnspO3gCeGi3UuTewlVANp/e5gnNBOgKSi9s6E6cxOmD70xmsXLJwe9pLl5XDjDO2Gbq6PR3w7FuqNXOPgQ7ppsc6g3G4xVFyr38euCfGjhfgJDv757X4NSJvLifeBaAG6pVIZIrUyRh2AvtkQo2VHLoqk62gKz0KdVtAz+Wr8zV6j3EYwH+e0lUAbBGvTiVO+IXBAr0PhKqoWkecmCW0b6LBi97Z9PfEM11kD/nETApWgiGuwXCZey4pRqVAnZwzpvxu76p0MwO+sBAksN+fr60wIPZUX4QbsCNSqk9sGX/YvUY9cz91Bl7R4EK/QSPbzCI2IK3HjJlUoGCIVxOFCZacN+XcSxxpIAv4XhR+dGa6uurEQeN5Nsklo8Fb8B2eQYd4IqoR76z3aPOqiit9Ca2s5l4+ReAZqZDsxVpLjlfCGJJ7x4WtIJRaWUBm5kFPFZmhCsq3xKV6Jhzg4gsB5Ak3RZeCkE4mU6RN0ytwoVOE44dJfKHC+CGt4Ml3F+9er9XDuLJJuIfGgGrcqFtmy9bAatB0x3vKCe/Y/zX+o6snLQZ3pk2JfaflJbXg5YhIdEZ0izSB1tF6sn5hvG2UOaoeeS2LWZfW62fToCCdnz/ZzgdR2FtqBiHJ0BnFAF2VknQbT2txIUJikyeQIXPdZ54n/QcuI1+lYdyenv0Q8QbfHx0VuvMZHKqo1tbTpD8fA7hTCJgS9zUk269aCdTHviLSeUp2klUqaaTwRkov3aE5VxMrq0+xr9hCgMXPz9wZc6iEiVRw0+6FPHOK9K7dCXSocR0NAyZ+PKHLfYYOTUhhVUY9aWgZxGu7NDVAAXBzoz7o6UVCFbU9l9B6YkPSCKOATFiiVBC8li4w+p9iZKJvNjwv+fxOQlkvb6XK7wUAOulpV8kLgwKX2sp//FGIOu2f3Fvrogww77gTGTrmIOJrkGuePgv+4uzsS1rBHeHp6zG9rm0DIOdMzjuYTkfp0iAEV+CEGxSX3xgf7llPaDyZpnsQgAGwKtOH2m+u6iZnNO9/9V69bgjJaqzjAL6OVcWCYFNeEgQBI+j4rk4Jt42aRptw52wUxaOpuZSMv7VzE6zxF5C7aQCsYvdAVpIXqjrrELHQydOlfQfx2v608vb0zEZT+kJj9OW5nUx/4wBOiHhvQrVklBHYt+MlfxFVv5DuhZQO88tghiS16GqG+TkrP/JVlPDhHGRmHoVKm6RGoy0W7vewr5EZZozPkTjbOCQpTu40Kp4MlXdMOCqJ1ePSfg6yAMrkroTsJca95eSXoQGJDP/s9J+j0Mdkk9nwtlpGCQJpyObylfohCnOPUyOaTFZNmabXIGRlGbUT+L+nmUcfQAw17KUsk5w1mUAui6bWpBnX82HxKToRQr8ssz6Gn13puKhHp94ktLdAei+GSJjij5LUL/BAP5e3eirr+lxPnSnoJyNaraQ5VYe3xG5p9i4xj4zOkr+DzCgNXHE6YVlYxMV+0rKBUaOzsD1rCROlWCJdAEvfpcTpFOjVTL76HIP0wWjjAU8kjklMAy8O5RmwLrOY2+lLGRhynxXPOlSr+BMnwkLD8bFXOuO4XVUSdmcEgr+Is06EreP48tTT0NzpVcgBTaygHDAdoYRimcujE+IkoJ9XNL9NwcucPtL16ti42dRyH6hTlnTF2kIN4wBVaejmE3K2vlVyuVmWO7ClE2f0HxUdG4d+4hWG4yAj0dk9s6TRcgqVyAwf/YLo2OlR+zCiiDY/G6bmPFYbnkFdBefc6eko/+dZdbMmFV+SprxNHpzMFkcI48ahDy17uGz9w/QSDcKtfTBHB7PI//gW/7PypmG/hGZMW4f6mhAUzHZNc3ZLSaTY53ixwwuGwVxJmu5Ff+T8uXnrLjMLa8d63N7D4Im0ANuy0d0G9hkfbfjqKTPXPJfvcEbu9gyAn6lWaFgt8oxxGcQLy9Me9EhksZ/21et/NKJKQy8luvKU5waOlLvfY0Xgkyu47ZYhkwg0Fsy7JwPUm8PCcMGb2Zshuj7M/FZ+1OTRU94aqNdo4TNQxdNFGbaLncVGF+vby3HPdywaNSFOPxrHFYHUkYhEOD/PWt9bjPfDaWeOf4QrJfZva8RpF2phPnrI2i6wdlqdDXndB6bn2hjy+e3zMoALc9pSzveGmPjHfVWrAOLmTJRsLhxcYEHqIZ2OXYKA26RFCPOian9gyxDT+snAJRWu3toCBSoXXbK/JzBsKn5ST3NbltBiP4k8RAW+V57waRK9IerayL0gf5wPNSPLuGU4LWdZIoS/cDjmbqqXjaQnXGGeT7/ZS5MCjodPEpvVBDdpxomEBNlksAg/OPE3pf5viDRCoKU3R7GfC/CTFEfakYdKvUON1MtsHHKtVSJt0tNWgwE13wt90QGDJjluMhj+kmIP1HLtbxZLX98WwGLJt5tz/sp4b7HyszQ6VIaUWV6FBgf4waZxzzXpXHXez8VukxaXpmN55L8AndPU7gJrEUM8d8ju0wIBxNONQPYKaKBXKyhvKHox3cvYXaapzQU03CoIT36JWuNbLFtPKPxlchbgyG3otIRAp9H6Ti+TYlTuN5etlGawoqEvi/UKqtvjJJDBZxPTcwhWB4Fsj8tDv5dwxaWSiCTD+P6W0lI0/Bp9tvALEuXLGR6pyFhfXK/bgJ1KH4diU5V4i2SsY/zidWSfcD4BuU7XrDCEN8qqxcqd04xEzkWWX1sIv3PNjhnDt++Ir0TrM0qRcCQ0QV/tlEGDipwzDuKOMrZuMLXZW7Flv0nJLc/pHGxkSUj8mROrwa+OqdUK0YQgvvxmruhH1msyBYAWX5WoNU/SuAjQk/DsZMeQQseR1ehxy8faH07EwWYwVTROpW/lkrd1xg++rOkfj1cTpHRPU1OYpzvQIxYMNyHpaHuxkfocYQ1wqcAfm1flqFoflg4gxdR+kNcc16js5WSkJVaqKyo0PkuqQ9gAPua+Fwjx0ATUBkaXn3r6p4lv0HOaxQFzPceW/PEkfloSKS++3vYGvV0Z8keCFG54SR5O/PHiDeFUuCB+uqRf168xUq3O9GysfP5yAV3M5P618UN+dUWGXcWCiFbzNxqVt2oLSJbtDUmg4h2qNQokvnm70QRs7pUsFpHbWXGBcddWhbjMWfTxP3DebHtQIU5Xn0zh9QBHdildj/G8UVXxgapfaDoP0zus9yq0Ufd4BNc7JF7uOGk4XHDUvpTqEboVurpY3qVPGKNrN7I1U7cYazDjqk31nPWESJzzMIHkY3n0eEBxEnZfmUrK6XLKpuHTKEhJEsdUH7Rip+NWgJ2vWx7e6HgxVqH2iuOrW2mb4qf4MHzk6pnP0HRUTflHhKESyhK26ATw8dsaLByVXKMhYWIyq18phUyPedLqysrXrEz02lpxWyeUcHNwjGJqwQSLtCPDwSP2/OvJVn22aGWALQSSR8155nzb11jyzaeZjsCLYxzdbO3/OwL+M5nKFJpzOhoVSvMiOoDR07TeVo/toF/QxZvrrLk11GQFkHXRFwCSGqr7gXvI0adEVPKR9rjB4VhP8xWJlp1KDhinlni5zRO7QTWdRLTIEFnVvuD/M6rDEAiwtW4hDbBCzGs+0T84q5c8BULw+7w5bMoHmf00wkMJAqT0/J9Yg3S52fJFACdj2mzdXoUPICRKGSVFVY+cU9mXpmaoauPy8kuDltY8J4GcM5pfgmX3gT13IO1XNI/ncy/wKmNlQ0w1AFeJgSDctkDiXcgv0uF4XgyZS4yxPjh0CczGexHMvN7UuXalsIWGvURcW18YYDj8pM9BQKs4BEDDoyrPv2xkOefqYXkSB+CRtV8aZ4sxp1WPvjEyLfVL2tpMsYQ+X51zTe7LkQ1xJ+ioKnem/Zzp/LD7D1Mza0PoKBeSq9RRp3tuq6cu447KbBhyvQYB7OvSDJn/p4kmVHBE0Ytqgn4fWJydF1vCGn+hnKx5GuyQBIL26SCdA1Qva7Bp/zHM70gkOfw+xDKlUyNmDjWRUxPFhd62n9NA9RCCOOL+DFy3tCqaj6lOqpvC1+A3rp5/de/zqM35znSfLWD3SmwDG9QLGgcBtZ+XtFcQjBFiKxkfCJBypu5iea+7xKVpuLjhcXVnVIMhfMBqI6qgm6WmPQrLaJ3XMubatn/Ibl7nH1Mgn7p0j3u3qb3FvtE1ksQvBh0YjXY5Ash/pGPVFmMBDgNWl6amil4/yAaIlYyU2nGgo80bq9rLwiXSSHU87bT1RB/9dVsG8P3GGu6NNYcVwAL1BKBF9H4NV2Ic1WgvVYeo3p6P+VhBav+pUsFThCCGQLwVh7/+ThkG0CldXLZX4tC55ElcKhApLpjKunuU2mUXB2JE+1VXoQYcNYI/Zxadf6/GHUpmJHbyRrS/6sM4h1bZ8OfFDKhBBE6t3CjrTwhP0nLYhD7xab9O+QSem23ZEPhzpG6xrdkbOb5AD/TtgFFyg26yXmp9m4zkOA1lIp9CUGN0ZaoZVS/BbjIO0zfhyGQFUpp1lBS54lguJ4CfN8LojrGzv4v6GY0QspkthesgN+QZfQ4Ruulqd8Wv8Bp+OOIv6tXvSKhyivU+NoF6hTOqAngCIdng3aWk/1N+iBjqApt92tr+K/o9bZNP83kvuWcfvDTgQPtB5+M+JruwwmtiS1653zxSqGvbj17n5cz6iU3vZ4Ayjh9dhe3dZp9oTZQQ/cUhAsAT15/ScQl/7elNh7zZMHmfAxN/5JloO0Jf2Gti9K9HtTROnvHs9NadLfkH4Lp+uG9Aet/Lpj0xPSNcKfoP6FNRFkQR73sxpdhCJIaWWE1udNy60O5tsAAPADeOP7nzxoWo8QIe4QKT59Xtb+iK+TZQ79C04QvesSFc6D8ZHETRao1BwAPSRzxp1IfEwbvojnL+9BXeVJbdctnYKCHOZVxJ2r7SVrzE576kaslqFCPfVRZubAL4HmXqR4lfMFXXXCHmVZ6QxxrS2u7jwkuljCm46f2Lkva5UK7xS5exlymu8nH9wNWCu/cNhRnsYuOINhlD7xIuWipcKJ9DicSa2kJ4ido62P/SsvbhpZyYphasrymewaRmQEQreJ0fsJVDzrvZUo1MGdF5q+aVssT7cOoEAA+0NTqrZWZfYbIDTa8Bn7JrhroSXlweQVKKFr/0/BEi3FCoI4YWC5mWEhwPgTWbOW1YTNuG3S7jdjEU2KeZJXvmukU2U3dlZ8bIgvXCS/84EoyOeUtyywL+t46d2ARssc4nfnebPNIp5hUlLQCyYEGrIkJG2B+9u9UjwEvD55kDf5EHZsw0Owi416Z9vD1M03mEj8uYsytyh2Uk/CqKXMTXLUXh25caI6hGSfoO5og2Qt/SaS+a9lPVEy+2AGab8yZm5mBPzgm2gu7xyC7Rot84ReKc8gCcv0DIQqLTizH3hkVpBbcgI8zk9+96DTJzbsDqMBtIGbgQIfqvPNNYsVtje+aJ2R4upfccsF8d4nUh1DnasX0wkLLdgNfItYGkACzJoj6jF/5v4ip3FyXdZarjKe8ASaKNtzhA3rV6yE3RwwYDGM2cyUrrKuwVsqRo9U3p7DtuqRRXKOsS03xYZHdRFb4kNHzE8fSGB8BI2Ug6n28AjEyOy4nVliWZXdo/KFs8lyHL5ka/Ea6ojZ+g9C1GBrjYyduJZAyGfxGMxhIWqaF+Qe7hMvnquAgrYk/byFhxLQuVWQw89E3OuGgBDkcOqnVy3iEKkEkB8Rpp9J8aRYckNRW3TXsaiL1d3grsVpiVi3BQ50Y/tMp/jRHRF2A8wfUGFsj8XiGveX4OKm85rGaLlgmRaeZceB6NSwVWHFDB6Oo0vyPcW08pZuNaqXwU4YRMY3VCUp6qs2Qzq/4O3qnnCiHGhyMtjVrdoWCP2PRByc0K8EAu+SBLk95BGrOWf2FR0aEYKOi5vGetlJ4JN0iOK6f42tcbE5Q0lVeUT5VTvGSHKh62pquFzTl/Hi2+j26h4v3gwNLfptiK1w9rtduBqEfNQWf6GemuTEACbnfWp2/hnQhZPVVQ3h7qxUUpt1dfMadVgB89reofAvBW20WL5H0MAQz0vNitK8tUqZIcDVZKHpuW4oNJ6YNz41Sd5KATBD3lopN0CJtdRMHSbK9guZ9YncucRStYiM5XEitjNIsFmTwhLOUh6Jzt5x+XcWBp+oGC6YpcJYuX6t3/fu6TBnkY3QP4Rssa7zKCsA6n6jSdRNMKc/jsnwY+WbI8DIDF6BBsUVr1nDxFg8dig2Jgjed+5qMTfEf9ep0IBq3k5qwjR4NPvoCLyvzddnXnF0pAItpFWPIpou20y1YXl7DYrNR/vdFmhAo49qN/6CTJc/vHAerrz5BtgFwrb3Zs48B+sFZ3ZlogzWDfn/eKVO+AZuMP/8T4yaG55F/nr4CYHT13mopPLYdd0B+LzwgAsccaLN99m2y7pO/Umkhdlr4tslmYNqTA9lF6S54BhSBKe4gNDF7OaLY/kAxjbst6qLGNOzOa0LjrJj1SibCo/oup0zrIPkdtnY0bJlZPG9oF206sX1Hc7k6XWr8RnP1qFHbLqJDJkl2Q1JvAUIpLC6nKbXu6Frlu2Dwy/n0mZZ7QHWUQK0/KJCXnmVpiTm8XRNz6HhwillupHXkA57RXBbIo6mkZSdQcBHlXZrn6Fhgj/bKJcIlIPYBVtSL3FPYuWxoLN2EsFcAn+5jwDK2/53YHHvgZyTytZA+4SE+ZEKwFEHnfsuNrNh0Jbnney7267rtcZK4Muily6wYkREUJPL4e33TJYtO7eWJbZkwppLWCvQ4Rr55Wo0NTdTHzbWDE7xxbCFidtryVtBMgFCp9J/NB3aoUlbn83c3z2wyju1KtGWvy7BeEw88Uy5hxtvnDmthqlK9dlCwEQE/RcZ+BhoDdsnwZ9Tc5b9vzTCMcz2bza7I5c6VsF2kT2fIKhhUW2rSbrANe61K0tVwpq7E5ScYa2PFs7ZDrkvjelgD2Ly2tToMGxwXcWJAVGf0X7Hi+mOjOy1ORzWgB6UqJA4a613+1veAguL7aO5jZSJwe7DrF8Hi9bak8ApchJztRbHFsEfLItRM2t7dPIdKigEAcfp2vkNizm6RrCaX4Kxla5k1uJWbRWeqSFC3HFJNK4ByBcgCx+0cVrtFmboalBYOCHfmcPkMEur/WOcyXcA+Q70og8kB5TWwqg+hehUdNpN6uMO9uf2o6KMbwq9XfdD0TYXze0PMufm8dbxKbfWL5k48FGqfYs7SlBW/UKP3pxu77/9NzR3BppDaIa/DmbY2SVKy7G73Lx4+CyZWCnaWFYKY1OLpscprif5ytYuLPveKL923EQxPjzpamYGmyfS5Nd1NxXLAFs6CaKbT3a3TpIXYlADik+qFEezKerrdTs+CM7SMsP6vep86i4fiqTfiQTtbPILqUMs63fjRt2yWwsIAcO5w3dtCNfXUXNVVkgkRQuewIgkXhS7KZb2qGAYpx7RV/GVlCZeUK6NO4jiXmCCpolWuORIUcg58JB1FlSRHGotEHibUXh2iRAOrhNgkdgdm42uvqM1T8fGXfcqVJdEqcMbVWXFZgTfQVS4ft74S4qPmzgfAxEQRsxZ/SrPzCO/iig53oeDSsUPMZ44nGoVYMztAaK54uCwr+sJfSIbFCvF/vKNn/xJoo/ZN219pWZ0RjgQgJdDFOdfhnDCbitw2Y2WHPbmvxICJRCvIIhYEG3qCrQgSce3m7FuX2t3wpqbzYakO03Z0HJXoZUab7KGu5XfXznvihneo1zv/bhkxZzL+gRjoPKNlj3O7UoFSiEaHLvdSYN5yeyE7dBshkv9916ph/Kr/vaz7Jma1/ObkfndUifEHscZVfQnWv9wnBeora7ivb6A6oqj9+okkRy7x7OOs8itnEQUnfG/ccBWJKQfUQC2VWPbJc2tElI5sVRe1sqMwanb4lQC8r95fQIMN/AeekL5SMaqo+Er9Of8YxIyEfPVy7+TCbxh/GT32qTGuOg4K2c9xnaqeYTAVuTPDOSd/o+ndHME/6SYAq3VyZ83vHYJjWzbzHE5TOyseNjJGvuAAZaxSNsu/6zOLbXi3owJGdDnvRvQov3jWiEjZGyEgR1EKFJUwCUc+EFRpbAUZxkhSzmNcATvu1x9Prl3ZxrI85u2KNiHUTEJVh8H4uZTIXhjKIIfJ2T9Nljhp4bjEdVIYTEv5TGmW1IezBk9jYhvaVwNngRXEVW6CT1RfPcgQmd29uwnFLtCYc5LHDpBSr9oK7F0QYoXDvP3/sK6wy3vnoKDUiIHirp3c7iZfgRwGt9dBBj4MdKtNsybmBQigu1XtJ6lr0dwVMT8YUpJcCkg+NlhJwRB9RG4bj4jHqXR2pNscq83E93BpRAwDq4wuwszcejTYquAlrADD9f4bWjbUQOD0i3K+fRH+NQS4WSr7+cjjmkYT2KvQTTo87/bBvMpHhlKPVASwugedgvujglbq+RBjIvPwWTsDvP3MgxMp3LYXt2zeIwpJgr78X7aBU9t7GfN5aAO/9ElClnoTnp5ZqjoP9GeEtAaCB4+cEzJLqiKvv9zeYj5Q0ZfWW/gIf5x52cLt9+ALVJ9MlBC2ZI4fJpM0lztNMQozQHQiKxVn88xeYDWM2oipcCWrov0rleuKc2qsIn89a9ttSbOwXiKppHMMIE8u51JSML4wGb/yxxiYY6Oxtbu5qMNvAtwLr8uxJjQJ2D+Qt8TQtUVw4jKthx7AeAhWD5chZNOgIGMtGB8rLDMaudUkvCGrAJz/MZlq8d2g5K0uBmYuTNcSNJp+720XUA5897dhsr9a7hG8jQ+I+czoma3rGBxSKfYx20Ol+b3uTrUp8LobV6weW4AiUL0cpDyAd52C/d+NNtKXIYhd1j/8BzFbiqB8x8dkMJ6mvswB1V1UBDTdfyyEM/HPHg+MvUrb6IvBYwYbI7zhFXNz5ifrO/V7WM+j6mDtxcJyVTvkAEKjG38jNIrifEMBLWP1KB+l+dRv0fZcQUdfJhGbudPXTeOUz54vT7Ia/wL3FBf/COB9tvSOrg1+0cyvqWHvWs3WyQRlY6jMmvk9HMhFK0OZA7fgZ3eZ6VR7WJ1WMH4jJRdKb3lo1PzDFuzIiODsWOtHLjEuBzaaLmN20SeXullNr9tffMc4k1PTw6UyDJVZZ6JdG1T+W4JkY+vCeRrF22Dtbjn2UUahlJMlqu1AWOjwP6p9A7U3ZdcIKOCgWO4anLjstQXKwnbgiIwFhWZQAiljyQgxGw5eYjvCKtW+JsHZh0htzZR2hiZ/HffJOdImpRo3ftK49BijbkmyP9vuyril/W88hz4Z1YdcrYemxzY7gz526n6x4bPzAj2o7ZWU6rnZd6pxSiqCBXoiMbq9rK1AR/ossr1f1P5CXUT0m35J+t2WT2QWmpDJ7al9geDcwCV4yFY/nUjP6ErfpBWOZWpYedRnwzcm9jLqGtrMo2ecsTlFEsqyQ5PZT5860lKtg3n8JO3bt6E8R1FmBoOeGMwxyZfRrI/lLVZAXdOfAKisc4otz20x447yN1lqvrSYRpYAq+BMOYBIP1c5mqqsPFH8GZc6Mey22dJZ3/kMW3nkwEJuMpz4a4yKxXhPullDe7sDPs3M5kP4hHkzwHdMQCYQUjKvspn2t+uxpQBJ/iWpGtr4Z2UmVq4SUmJfVT+NjQsnh7beA9dfRhP+alWoFsm2sQ2zJjXVEg3p74KLLF7IrgEaM39qc4Vmwm/+FTpQ/dOjh68Re+sxwKCEsyMD2eARE+V8OGeLuhLWjYkYhrfDu0ZGmWrJZSuUkS20tDRBInK2cTSNxqNA3mR7IaX3dA+2XAFaicXFHbimbA+/67S3/0PomBXE9JThP6Z5d6WqiA91XwYfJI2pCD2DtYvyPXPLwdbcZBJjx/UBv967mmzk2Qcg7l0VHm8hoe1k9kM9TflhV9I4qDEiGSb01CU6urd5AHZjgdeP9VLSwuu8JfsI9NtxLR8mFjlpukbmZdB0X3xKTNQuIuj9uAYhn57xU6JqhHfXZWTR3KWA34r4jYZl8uJHYPUNS73hQRJrMFic107u3AxO71OxQB7bQA6at/LviUprMtYeL9yLjjsCvvhmZzFfWF84umQBpuod5Tmj9PpJyJVA4K2G8RUiqhHwch4SxQENTrsAFAdvwJARPTfcwd4T6S3zTSKJOd6o2X4WqyYenZTONUqE89bOUudEQp8e8KMCKpPlGlLTf48ddv/1Oaf/g8A8gj0FxPlT+PbZomT3Z8j7kkZu+M0XS98BC2B3j9/8TWnwJSu7P9KikfVunnXKv0HM/QRoracpQCUrz/qhmtivohjHXuYnEVzCwn5wR5TU9A2C++jMR0WdpYgD1M2fn7JFXJL7xOInz7przKAxAP+uo1+tHWDw5P7Zb4K+w64KrST9XFtZ5K+tH21Ye5aBJwZCh4BqUuT7YRWd8W86LV5ib3hoQaZUKD1G1ioLm+n8iOFKwOwluFJKUuizvxf9ypTgqQGgqIWI7Np0jtKiduZhe1jIRTeBEnw/+UkXV/VsNPosQ/1zWWvxNH1Bmx3h3x3eGNV8PwHvSm2aW6epH1X+sPwizi8tVhkkI4J27gJIxArfVtUDpj7DdTIRmEtYuNustaMBkHu/raXIoZRQdmKUaHZAg9MESexOD9akyADLIKBUWEs4v172dVgOS6Y3lgrcLkEl2uLy6AP8XYz2OPaAbE/h38MOy+M/tXeBChzAFCzqEI9Zg6oRYD1E+x53ODlZfJIZFKN7/2diiHZLn4Lv9oULV3A8Yg6/f3G6HQq7q/jk3x3kOubaH6uvttF7zz0BQQkNwtlWXDCtCHc9KdqHamh0xSP6pSK2Cv0OfJz4J4P2WtIc6SRn2bj0xGoa3wxtcLnWOHW/DYJpPlFxWQRfq9mEpbqY96hQ4PN4sRzJ68j16/DpUiOREihzRQeAPbMkHkGtEhotW9UyFEJCwVZeRIdk2aHnXV33GKxNfkza6brzg5SQmJQsZFXScvlmnMwuvvWtTIHbJqRsjBbyA7OsHPl3IfVqZU9kybCCBtBK15QE25Ads0StnxUwU9kxxE5y+oiFUOvLBmDQwoeoUU4rUsB9/gPHiQysNx9A6ilirVfbiPCP7n5AKgzu2coKPFA6YojVBPtLWyfix2b8jsyyubhUIWcFLBi6v+U1YE4HTKpIdWWz49OpDehu6p6o1pibzsJ96LcLgEweMknR/4bqiCUcod4TeSJh7jJwtOPG70ARyvGum2gtOp6Q3C+RDNfMW2RpDWxL/QIy7VXgh8oA0fqX0JDOdjTu6HSaiVYC21LxzLCAJE/0ctnCo2prK8FQyKr+LyMvTsGUS9tRzZ9SWb5cfRDOyHLOoXoxvAMnpE5Egr5DaVyQ9ffg2ZgRSkusLH3pzKds3MN7ftZ48K7W7vvSHGnPZSPBTNxX1k8X/1/fmE+QsA/D9jFQt3RvuxGH9RLc3GRPCIfV+D3wcTuL2/GtyyNfdvHni/CdRHe9yIsL3IDzA7zZX90/Ouyx/Vp6T0qiXm0WkwwusmLYSLveRtX50luZj7P1mstZoVXRJJhMDntTdmbD38l9L7RvVPOOiNYW+hLQwcMmWt+rQWYrE1iETfgHPYDBJmJR8amyAuVKoF22i2bJudRzpUrsaRDcYk0SvHxtglnoT731n6MsvXkYdrFZPLlwh7vUt6z68IwYh3VB62+LcWsuXStmrsGoYvuHDxUqmO/hIU3r52BMzCpycJXW0PpS5OJrwdq1me2Sigiar/reCxtWQJLgIP+Zt7BjaDFILwPJmAD44wVXrSE3iGkd/l3rlju6kzPGqZ55lig0EjNgTQCEIjoqKj5cvx1UN5H+8OxM2nircJ1qriGU1dkwzrs0dEoPQHDDAHstlkc2gFmiBJbIdlC6MGROjesV4BGuNSWyfPZULeSvQAotaC+iSl7BzwYRfygd5Khunelc+4S95bScgAbeCuzcnG5lgC8NY8B3z+/UDO6Hejl6ITaFRpYoPB2CUpPEauj8VDSiy55z3aIzL/lRhwQC8ScXMVdM4Sla7kY0ZbZ4tb4X7dsrGMrYb0EQKwxO9LFvy9H+Pc5Uk18HHxnqsf7YdWagQm7zdYkvYf4MKo0Vt6ugpK5hSEVy7mMcDwqMMp/6x23k5WyXEmfgaoJigFvLkRzZNM6FnAwYGFYHmWcnQSHk/YjwtS8e8NGgn+gKIp9KdOJZ6ugtuQPvlIg4B2/QsbWh2YgpD30wOHl4N4Vd1fZjIA5zIg2gICElI0uZ36K2EUbOj493kQ7hIyvIJiWWrA4Ud55njOgpDZLVdve69en3YpkmcxYLRI8X07uOhg5KKmzcnjtsSGbFC6OlGJ777tOfQPOMxTu3DxgzYtWOncUvjEpdgKWcjKZO2h5HbiQEJk4/OWT7lQGGLKFjYvSX5co0uAoXS2gbYPXUrsBIOvKO5Oq++bIiUxVXBWE5fDzuo9qzAIw/y3yiHMJzTb3QR5ic7AJK2t1Hoj0NSgq59AQog5joMAuffuL32FENzyVlXWzTSBHqeAF0u/2qjeOTexQ1DU0wLM/2q67Kdf8/R/rkQnlmLYC5zlvpIk0Xi3Nzlyj7+GHBpQJtR8WzfIMc8oEsI9XLDc8vHCLH0Sb9Kcdv92Z8qDCPjxYhw0bdPUnfFMg9+My0IbEDicdVLHsvtr66yKdBznbMHL9VcfayaTrVwY1kw7vONJPtN/Jny1V9M/cMeCda5VLqOyJlCt7C8hG56HHdP5VB7tOpkY1d+5aNNHVpnZD7xmXpTP+Fk3esx6S+Fz3Epa2YwqToBIBPGXUUuqJg3I5XFYT+yzUf9XQQOBAXedZDrwFryROAJ0KlPm0l+nW35+HdDlLVBv5LLBT/X5VNY87BWtZEf/qWp64yTibFZxI7291aW1dmzpWct9olYlqhsV1TYWOViJ44VgG8pY3GvMfGuWMmj9Bvh6ZCoEPEVqBTht46rRXEYIrOpnMK2bGzXESpXkc7znARs91fMY2o4pQGc/lTzVXEiCIzPUlXa9NoNtwEiaYcABlT4G8G2Z46vtnkjg4gsN9LVKf8vynapU/3eTFCWUAkbQlQvYkqSMXWOLoEgcRiTXrDnBz+amtvYTcav54aDGABTFuWXkZ3Tsq7VZyKYLhnxymMr3I3ZggmzsNXKGZnO3ZZg5V1QZIQNWwh8kA975IEaa7bM14XtfEQpIK+N/W/VMbRRV07MXHhHqb6aWyk1uXQk//eTgREq1BpTsg+6dvn67EmN0saDcI67FRwqkxC7+UXfICFTjQpu+7KGxrnmE+1OofyftnyJ4bNAbcjNigAsNJCrK8jSaxsrWw7bW1umyq63dOoFtX5+V9KcBjkbjJreKyq4Jce39tYu+rLB8faeRQqgH5qKLi1gCTG08xGD5a8S+Ww1zBjfwN4Ib4/bqxhznNQGSWK7/QmziD93MGoVy/e05QHFPDWhMMeaJK3Y1nJcS7/W7C29tEXFmo3afYUGYqr/jcQj6S+wp7MGUHgQnta+wIfkwZStkuOziiWIRDXxKYmxX/oXCMo/EdJ2antBzSx1YFN8aDTUdnakmNs7ywTnNhz36P+CokcLHVzkQqBeWLDyanGZDIAFQm5kVteZ1pnb9rTysnW1g59vwLxoZyZqspeTm0PdONChF5PjPd6il4Ujr6TAj5WkUMdoGa8u+17cBL7mXyx0BzI5zBjFZNmEl/Gpf+3RFROZhUyXS7BJDemmpo2NbdGWtrN4xXNLO4IpcV+FpUuSTqehm19f/Yi+XT/ASEwrmm1PfadBhiycq8PVrBS6LZRaWbWPxo0s2Oz0jbAGUb7B6s+wrsKnp27T+L2JzusFVV6RZvdZ675FkX6+k/mR4tL9We90uN/yu814M/2fqZNkm7V8AHpDASIIfyH54L00eONFUIZFoR5rV1k0t3dwFPwNplaLX7pb3sDviBP41mu3jz/3RWixikYZsHoJj9tT3C/Mg2tTsBqG6dnn29BHMnLbD3UljXw50JO2BZsweeT7BNVvyaUkpppGVWNcelCWpzOPylktkEr4QT/KBYRwQUI/6VCJAT/S5swtRiZTNrQ2UsAu0/Owqq7hVeanHN30P+QutfrwZjS/xKmLx1XtPYuZE5fJPM8VnpBRRLSGCDvzwVXzQRNnWKEhKU6uvrMjpMZNiWqWcmMVKhYGOAHN0HQLcmqYJHQSLZt2TG5V2va5dAMZvgwvLBmPbWOXkIElPn83mVX4N7fW3uQuHEzNhFa7kjeJyTsA59hwdoY0gDwjjk0YFW22HUTLxn3jYV+Z0RxQxEsiEG2AIUNwvom2FaxRawsXj4WtFM5LTLj/Klu+LYtxm+9QNdiyZjiU9yjp8YklAOO5UWIvIDeJVemPi8wF71VZPD6YQ7CyVyapsYypUCxTSHZ/SDXrtlZp74XXQrRFrYjPY1PQv3ppnh7zEHndenFC8o/HZmy5GoueYdCFR4aIS9yjGiBK2KImcVjZDpnDyndjetTvlwxI0lLApRs3spryXRKph7VNZDXWtec5n/3OAKN6e8NssnDkiZShqpuORsdb2nqXZ5DKwXbZGXkO+Wa7zbtucXez64bZ5J5aHmTLkJIVl3UuEONN1DwYxWUmf8wKEfHPeWBrN4RcBr3Lh+dKUmrQp2k0YCeE9j7A+nItE9tjW0vDuXXIQZYsKQ9VMG3FS7bUArEq2+okiagWqy4yWHHU7EnkoPqe7qHmt5YfN+qwPIj6lITOe0Vcq8dSeoGjO7uDFB6oo4F9qNsbEuMENCjb1h97GQe8jOvH8hu5KZx6EmvWMinPOEAkKuCcmcKyPa4kK9p0lABE6pp7H6EdVOZ8QQnGR9SG10nJW/9Zdjbzi6u2kLqAk0dM3wzT6yalocR2xd1sJrKzpvDXXoOMrFarsCOhawT9dh6qqNFs4QaBqnxoXakVCM1s4CkYyheAXqpRDDpiL7SvfFsFcRoYLEFdeOhhR85NAyGsjjLyTe97ruzd29VY9KF8Ss60GDgZhJWK3conOsj7nRf7LvHBqKTfMLmVYs1g8DEhJaLSGMkqUS+U+4qyM+7pIxaDOtQwGh2BFF84+DVv++bFk0ijDmu1t7VW6pY63bFVVoihIkcWaWxJqzwGocIW/W3YZmgKhEi0qH9idQ+nvv8I1T5M3F/RBGTzi3QYVlPTNNZSxkXJFZ79HKh7xY+18FJ9SwL8+16iPEmYsopej58/zwJApXmv/N06+HCIulVlL/qBorwKxCM7efRZWxDFF1Up50PuR1trOftGpVXYq0q2c+7QRv37ZgtuiXBSVnwdVS4cmfMHZ7NTtD1XreJUA4Mp8PJrHqgQhkHQCQjlC11FO/qTB20jvyvh3mP466FHCkpxu7IYySZOpOcs4NJ2n2Q4RI5BGd5LPu8VCejFQt00USQqjzj650s4BDubL+lx1njCltILDkTXH7lLmwwJR+iyBvVIIX8qdxqrDg0kcfrvI9OoJCED64yfyh8Y2YUqGdkvYK/gZqxctS77HM+ABGM3iry5/LbIR6f0+t7TbzytTnYz101GLsJxbT59CwCYP1GHsaiqiy8ocgPw7EIDSO/MqgETK5DlAteQ2+ZqpAaeaIIbaMIHzz2lYUjRCSAa0BQTrOcZoUfBx5l9oO6KbwfVH0r8XBfEpCEKnauDjDpSduVbZaVDmd6xDmjNLgRoI5t4fCLx1izhZqTZEJ5c4Qfv6tj+0ANIRhZV44rRXdZCUp+Yt/v/lszkUiDZQDLLaZebUf0wFb+LqaYti+Pz7cCtNG2K2QzIsmBM5YLhU84mX/QDITwxRXC1w7Sgm06Hhd6Riny85TNBL1rrprnUfdLDiZDa5Hv+ctn0AVBQxWH/1YBCOojtVrOps7PFEZTjqRL1eaBFuI/aFJX75R/mshy5hA1T3xrk24x8pzWkD6ex86+VkfB3vxzfXtmaKQUnqz3gwWebCUqxwS4BzlVaNCWSu7O1+vfUOsk3TUiXOuCQqG/feikAj+Xmrr0pOqRdDqmHrHgFO19YuT5Ls23dIRPdUjK+MhoqX++M8n2hdiDGrbmQm4Z4vhGu7iNHsESANSJoUa264pHT3VjU5j7fifVfW3dQt+E3/oXJqyw0Ot+ngQ3nhTxjn79oogMGmhuHJI1om+a20tpGFVaZUx8TVOitmHpfPiwK3re8n5ROXaPRN3TNdXtYvJIoYkvh+MN10Gv93m/YVmGJB4whHAKFvlv+o1/KrnpWFMtqHlELCBe8pMrEtL8xBvQSWqNhQZsVg4S/TYDhfrI2kc888FenK8RRrPXEhsfadofX7xhXx/EzIzfoI9BTVFZMsXm7zzNiWpMX0f6E2hADbgHY2camIpI7cF9k/P3/Svk2DrmUeVjtr1ysQm4M1DTdmZiQ3AgDH4LuG8mc+jb6yTrKlOocgVDvTsNKtTgERvYqXN/IGgcbCFpc9NZTrUJf2ekxd+Vg27jiKrCnj4SBzNvmI+CCvdFbnuIuvm81ET2MHfypUeBQIlu8qZxjazR4tyH7esx1Hz1nS2p4t66+j0AtpIEwYzTBMFjw63zWXdS2YUFlzK7FyVH8PKceR0Xnu034WczZbopHyNw7wOPl5hq6p2R1Pdtt+8iAWxwgPrroJfQT0pRkA7N9HwCx1qED/vqQ1J+GdEY5fbeIFwr9fmNaLbaxIRsVhZjHacITe+65mq+ca2NBjQBeLd7KtIXWuGkbuqwIQauOsTz6mQrDUq99lFpile5Pr1eTsa9iKmQXPuCR0KqtbjicrlKVrCcLqCeHNHDurbYB05smIAO7dOvoJCwZKculYvIRwb4kQkbk5QsoHDNPk8TlD/Z6pWz6YdWVDhnvnYTwhQqLKXUISb77WVljdWiyr/jTLWVGopbiNQzNNaZ8GMdQY+4Yei/aKkM/ItUWo8D13oFKpkbdbtXnrUwReV58im+zsHpfwxk9CHJdwPA/qt42k+O094fdX1N3il5axC1UtUNOh27eE8cfdKlVzDEs+kyZ0YthhAcLZ7nMQGCRq2IgxPmNKilWcTsazZ7o3d9sHEMg5q0JuCgf3Uv2JGJBEVwsz/e63sJTdUiYkzmN6ROmBZMMJc7yI8/hyuk/CadRoGk7emlnrC7dhv1yglgqBohQ3tromimwYrTnedh5cJ/SeMKEDkIbfv7Ml+bkTchvw5dcGSB5ppBC1sV68J7qktDQeBL0T3nDULXAhSt0DkUPfmOGiFxqgHGgZNuHwvioC/S1ndyfDjbJsGmrhj/pn2KbcHgmsv0/iFSWsr4uK3P5haKyVDq/fLN+hrwP1NheEV/DnTT49vJivvVdCMHdLVbKlriPdjgLwufZjOHS/bJlh5Yl1PN5hpKNZIxYI/Snh82RKMwtg+Y77alPbPTSkM2ogZL+Jvc9ZapLq5e0tBa1njU2tSeI6p0fG0sTVC24oKk7y42hkTUjvsy6HOPwoETDjXvFErGk8mobD4VIc9bc4STqA/JYck7Z4C4/IZmGQSFoHX23XJEoZIo4sPneLf6F+BgC393dqZbCunPsP2EYQWDd8KvsyYFPbdvcooyZaHIinnPsLwHeWQpvAD7nsLD5/GzftSnNr3pD+ezNOeLXo/lPd5lwL5tlH04YK2Xeh5mJTXNAVtKaAAvLvIqY2rpILr+SjL3wYEwAmsDr71M6V0HYm6B+ZMvD+GxMNCET0T52QqH2ave7GFygsZs9WWc5t0QLbyqMW4sLDgMuM9Gx9mJsqZYoF4Y5fx/Way2R2ppx73T4r+s2gwIzCwLTpzBcr5NJsPccM8LV3CkrlRaJp7Yg4EQKC+eg/2vCi5y7q9auwWabaK+yRkQ+3RXBEcsp9oIuqRa/Rwvt1R/39TvUGygk+v59qarXzHesMtee4xodVXLLbTGB1gvsAex0J/MNsnxe/d3JJqYNIZByP8JzLQ2ah+ihuppAF0o/rsaMssviA2wPjLyE/HHf0SOjUM+vbK50fTheP88jfWoxVkp2STmwF+udZnguu5CtZH7iH+pWFedNoBTHFDR0fgNxxPjQNThmlnR/yrLA5+bLd49PHaiZI6Re+oYFQEva6k7DM4icJaSp6xBdZUrTB7pgnDI092mHQWMBB4UAhmmvhmVnyUZ0AnnbCfafdCMzcNWKmg61uz6jwZANBlphJP0tQ8edbLmAsk5TprzDX5kFW0RxOA9VYWly9sFDIo5qUDsh12suh4laYpKso3Tfumr7ePSM1XirlaP0iM3rzWpAkdRNNlIjjSOfg9ocfW/j5ORCowDRa7xoBwP9woKXrCy6V1sUfvX4lawQ4UHhwf5WKkTsScrNsbHFwWv6nkJ6ncZAZxln9C2Cls6hnRQ0Vd62FI4FdSOYOPnKJJuIenw7kxvv7Y84KPtZ3fuKPAVMndPQFD7VtChgjeLcw5rN2Pha/EI+61guUjWG5qN+N/weXobB/w8SZEJvaPZ4R9AkL6MV5zcL9I3jDVP8/HukVGWVFGt+GABpOlGtt/tYhOHp6GMABCrloMtbsG0SRRKzljiMIWYLSw66yLEyqPhGaw68g4+XCAcpQIgq7WR2q3i7yP/rlPVFisqWoUpGNQMCn/md9NSJLNC1m3bFv6aWlaOs/mCpHVj5qV4J9y/J52FzKbtR8pC/zYDdmrGzW3/uKjLFasaHeZH2kfbwhGUXh2tEVqup5iYUBrOnRT7tOAOi7wpv6nV948OzMFk8K2SYFUhc0xz1AsBH4gOkm/RevNNcySEs4IKFbnq85dRoQi4FHW6PnKT/4IRMpzvXexAl+vN7NJTJo6+1cay2BFK8lUpAvasK9UuOaEhxMctTPdw2d836OUeuWvvwB9bpFKpAslPNssIktVr3iQWpAJB+qE9DG6EUFxbmWAEGMi+6filq75Cr8qL1Ib8t6ACn4FvgY4ykcAkLe3xuy4VH5pyLimOKsxfrPG0ZVL50zCRAa9FsvYO7GXpzyjMilVVA5v4hU2tRgG6Dhy9HkwxYVPcQFNbzvRbzhcaNrzweqVziHaT5x/ooFDUOZGWUAazJp6oYlSBvpA91Ibm3/1Xgs2GaOBpa3Kx27s3sbBVcY5gUZKQgboGKCF5jnZdE0oRBEtUU2zavIthkdiKB74rTcZEOMUlezOVn9TurlfelNQXAISsklIHfu0Ejf7aUR9IK2cUcumIhJhIHI2BHTaIMXFuvFvGwM69YoLsZotqe+X90cDxDnKF029EoX+ngWHIRmRS5bKwCa12ihBR6Rh1hhdOr6M5S4ZO09rH5kx+F7MxFIK3iUh6EIKU7LflUW9gqNAsmVOfDhb6ZU2YQDAllbZmnYkzOfTCjFJ54SyA57g2wOdMexD/zr5waJL2ZaSEhWu97l/KSt+s5QoCXixnmva8IIvvLevXSOUm+6IT2tSwY6RE5le+x/na8PFmLCmZ5L0o4sY6sKGFtrE4ftiABDtA0H+BWp1W0RLTyrkEuhZNGp81J9we7amIIZhqmpKE/w/QcBje6Kls7S4Mhf6VhW/UqkzTfIrwFH1mJFhw/RFSiFfHLodKPIouGi1widQBOnt02FIPsfjuj7RD0mZpbkFT6NSYc1iSmQ4TKxj28fAbm2Fe+OTLXgzpZBUF4Y54eRtIhYURv1DLC+X68DDNa13pRtmsX/PSqYjUJa8Nbpl9ypMdwBS73rcv1Y5Bwhli7Xy777gAdTvE+ohszzkKqp/ovM/YXkz2jZPxEa7wq0zG6/G1RelCvJvIpSEyWaWNzNJtEXrydgG+CzF6EDtRR7Hi8EZKz36jIGXbsmyTF/6NnYPgRisgHcBQlssUDTD43m7WQdLZBizUlx2yu75Mv4iK+1iM+t7BOUa2C3ZYB5cG8UGWTFYPHupTpWDUo1rkdpXWbIHPT0pTQyHhci+e+kW9JpBD8mT3ey4NBa6JKSiEoQ2pvrTzdPwtJ7z8yWESHLpRbCF3kb2shca+OhI2baUv8Sj8CTK1Ti9uPIBaRBLwLAa6KF9h1rEENAEWctwcgp9rgeiL/Xvaigk1YUBvPVqw0esH9KuXIJrqNIsaP/KEBusmKzuPn9frlKxVdM3XcqZbZfVwrC+sBI9TIrohv98VAJw3itB5mBO98MLzuuZePaQPjjA4RaZrQ83I2+svM8tiy5JMu37sYf0hS8RFqSO/blW9rz1tzXU0Y3ApzkHSYBqntcQvBTYVhqdUptWIXgcrpCeW4Rtsr3cDo16YTHxc5Axv83cymig/EEG+3S7WUhwGwt8tTZiYsDcF0JG90qD9kcGIYP4P2YT4owwwQFDxdJeyiaVMBJhCJr2ArCgDaaeUJ9Am7RYQGAx7k8D/Nf66nI01JFdrsGWHq3MHfhWXFshSb/LJtG4ZzBEnpi4mJ3DP/2b/RTHeiZDe2I756bjgkoahSAIrgYiZQkzSVWXPpMG4GYHrOZVWlC63tiuxexFAzi3ZmXobZnaeFlsMqQU2bM1z0TDY6Ub7+tCt372o7n8OgPNinv+b9Vms+jHgYbt1JN4IQ+vxUn0VGVH6qPTHzC+XZnrGDJUX/lXc/FY+EUyoJnkqlBQYjWnv4wG1N+0z7qzh5jD+bAHLFYSrTu+QuVzdRIapKGPeStAmeyNV8dCiODnEbED4utl4+RzLKPRb8EOVD336JLWk9fOWqJrQv5twtkMHke0fC4S41CqMJtikYenVQ9xF6At57gHxTFXGAhbYy9QFmqmDFJ0+v0MiWpf6h4528uK84f3qrx+jq1FNo5DyIlBe1Fa36hqrcH4ygBvEo+Un95Gujf1QeGzKvsKv5oP2B/J/JHlsqy1bJ3TTIvQGg4R98bW9dhdfNXdtQgYeWLlMh8gvvif3VPvQW3wF1484PKY6JtI7SsNNRaoA3gtKRN2exC0GPZ2MWFMjbUty7FqbVEjAMaguCufQSHI7MJ9OXXWaD+/Rz7l5bOL7a3wV6iGP4r51HShgsniYTW7lkHSrw64DYRoiVHI3at0DeXa2OG/UwosO2R8FGA0Pm0Zp+gwfstNFI4O7+Xwcv7wZhplHv2epBP/EOtfMaqc76dDCIfSuecJFgfh9JItYTVZ9aUCL1JzxMnedX9WgKNp3iZ34cMXs/GrD4UOTRjIL1SK3DJ3zg2KqcOtCYUqX97PP5v4e6P+I4ubpIv7VeanGfaMG+hdzBB1yXCWIC5pjNtlpyP378vE+hX2HiERabE/2lMFRGsplCgOtNlZsyITmxMyb0x4/7qLT4C7rl0QtIpFRLhbw2FStVYdHw2WLiW5trPHgThvQj3ZNY9IffQh1+7EswMqYkzuQjGC+TGPfa16V4aenLgi8EIVoVNCU8vSEEQ4LDKquxnCeHG2KxB0OHx+1ZfSplhSUDOcxIyZZFx515c/rVV4LcodSDFFQgNf/OvCTpNui4y6mb+ZRt1P5ood7kOvYi3E0OOvBQS8GSKrFYW+//Xxvm7obHRXoHii7oUjvT41sD16By3PokcpqR1oNXT2hkz+QZ/IlknJNYAqCekqYrGDPRTpiQpWJnNhSRh8plWTJX8VWN/s4S3p6NTpoNIUVsaoJW93sAKgHXXlBdVtaLF4hrtSei/vWXGHkPanEddSCkfo8AIOI3bzGPaSJ+3XvRzBJDBzK1ThuHOYHPB8g6Dks8n4cZ54CtbAXvztM/eBDqNU8a9FC00yTzA42OnhRZQWLAi6kSRTogzN7KyzDc2MfthO4b453/ueOKYyLSVQ8AwgeFo9iKWHu0KKVOxq6euQaILNuugY9ErD3sVYIklds2dLL87yHPmAdka0nn5f+LmyJQPb5fbDlVVRhE+HmmIPbVI3DWCb+pKVFYX54+ii9bAIuO8RLh1ziAjeinuZN5o7lqMhRLQ3/zSSzBFtLjVKfMvOqTo5W3R8SRqzI/AlWUPE6dYBc9NtUFOyEfqofG4idRrFD47hGY0Ed39eNcUDEiGMTGrnWa76ElDvrrGSMD3NJ8ZX66tHYbdWcyLcfKaBacrv8+ndwyMmDe7FWomCMU3soUxDMZiXw0hKZgyM6RpRxKryz2a7xqJm62rmwAiqRsy5Ng8zbBHbvUtA5nrN70HfapMhfM6RHrShwPxqQTfDd/YyHFp7W99Z0Pebv1vHI1pfa6wJbQ57iJlpqxwocEPJ5x5flnNWJCqdmgXPMghIxF9aI9JBfoVaksm+8FdqQZo4XFv2GNyhRjW9MaVGf0OTPStBW4P5j6KX3LpXGH2WcSVpbDR7a1Jcahxv09OJI/yv7Sde6FxTJ/P6dhLQdYWl14XZcgdPwC6ig3PrU50LebLPZ0HCyH1XT3j7+wCaZLTcb0jcxBkgsQE/OTG9rkD+MJNLlJCCJBfLGwr9MdR5UHqHVBeo1wl3dis1OGg45YmDz0z0MQvbvWHMc4hlZ/aYO202yLTvmR1xxo0L6FMXt1kOB2uSbQjC/pCm8tihK9KaBYFz5XofRZVp9tHu2JGWBgoOWk51aTvGI0GqkFunU58liwTl9KvmrefH/PJK63ZlcVGW9/9OilLAjFzpRCtTARkk5UQQtL4Sjd/eUqyp/5bUzUh6raCBejRkl6cm+VNACGI/1/RaooVwO65z9Le5IrFLXkGNO6rE1XGBIHbJAjlpNLahuNPx7UHwFxh/LCCfmBEjQs8ibWe/jLF1ghZ/dFmWnSOwgKVEcsrjJuEqTSXPT86wOKoNH/Xr2KZNQ1Btg9/0arQZAUySonKMAqkcdOIndvybHxyznwAThp3P9w08ymurD8AgFIOvMYiRFa6bph0NuM3V7K8KLEj7pUbG5EQfH4iFehvPH2mvM/NrD0bYoCXrFXMj/1hxZra/vsoldOGFLePxk/0XZMwtRE4bqXE0hTg/8KIXtMqM4JU+D/xgGqjsxdQ0W2b4TKIg4Q6+vAwgofo6Xmyj85sYaeU6RjN0D/Rhfs/+2zFV/p7ig6XW2GJmqH73Y89Wxh3jxPe8+VhRiZBNIui3IpKD3JNidbRKmIvr2/OltjGdYF2UVxIXD6OIGUy7DQjLfVN0gwCY6tMSW+5aoI9AULHvtxP19RsdffWs2U6kG1O31fA2D2Rx+JaDiAWFyTKjq9nW5H6b/X3FZDuzaLspiphl/sMCvkicofZ1BNBuJTxUozNGu361kVRtCMAeJOmgHaMatiiHRBDeP7HmVEtQBDsoRpoBIvkFH8Tq5iVI2EnZeXYFFEUBs090z4HIWsX5Neyhz8ZNvOQwtlgW9Pos4Eqn1oN3ToH3LSZyJ4sKtvs7rJwwC/CMqBJ7mWN+VMMxexqXSJHXSN7VYYbFHspMTc2xs0ZBHA5/a4MyqkBjCtegK4NNdT9BnFCt4pWdzep1jFZOsgoYI3jxmX2SRN0QutloED6qjvvXwKfq9XLwTYXynjawKX8eNZCS7FQreSR8hR8AKoo1knsnAuac/8PJyXHPJ4I6zs7kq4HClIVRlKzU6+LMrqwU+bfddGtspRhL74KaG+RcArtbYBoaQfJd+C4B1Aguen1H6onvJa35NSG62ARZKTxzHtuiEEVNyZrTp7YN+o6NyrWFkrZj8AYZFopEjnzfYxjBlGJmvnU2MeQ5mjKlPA8uF/w58SCHBBmyuXJ3rb/HGN5+GlfspuczrTJtLFgz2Zo8TAiynShrNuR8EFF7CjIGf+H7QbLuLAd8zVDtbB1mtqIjMZk8SwJvTlUiYguCVbWk0Yu8llSaJfd6VK9KejJTvI6SrWXyd9D306Zsu0cdnbkvs/7Px+dHkZ8FMcROm8LCys4DiRdbwNrGeAUkWGhcWjiNq3bdXG2r9OuOB6jfbdiGKvG6/di2+vzRrif9UA2U8rfX4rgF/OEvNCv3ie1zk9j11swCdAN8I/4TOo4EM3gdb47KBEbUC7UeyxpftW7/zBhrUPTUNkd77zlwxsaoPjDn4Unf9UwMpkH3Q75LnM9fiHZeD/aXqwsw4jNtfyuqASdDDI2FA6RX7fZf46dJThA1WGpuzleJV3PiKdUk0fwQJFY3wl0LYCqDek6yRV1vvfjZ4cUa+2x9hkFoLqmxAw8mUOe7LU1JqHINRNAf5k9A3aHxaHKtc4f4olqN5Hd6y2lIHWWPdGj/XHQrC/TLfawfh9S+JFFB9PrkcPEJAkqJQQmZIxEJXk58QulLAUBzk/FMOMSA+GoWLRXfYxxkh1nPBfQyC35yC3NbK1pIN8xXiwDuxCzu32+zT9VIeTV6sDLwBMFIpZaCvVKTG8hw1A9tk0Xk71AjphO8fHrbBzBk29H/bTgFA4zh7fX8aD3CljlyuZtraMyUH/Tkvrx+gxLFbQ4GrXA/lf7BesFkg6YfT1p7jyfONCZMh9+VgJOXYfzCs3w+ermcjJhxMeJloHiqaEhKAdP/OynHx6KSKOP6jQDnnTHdCSCteZXWKi82bkUDUKygaGEjWf3QyvJ6dOQ3Y7OQ41crtRYvLbK7clyHTSasA6T9m9bSssS/BXxCMz/mjEsK2Ao6ADMz0e8m9nXSWPz5Lss/P18GohNM33gvBUqTqTN0Pe6v7q2zOHtKFUv+GZvoUXL/pUYvhZrKmf6SKkUYj8J+Teh0XmV8l9B5FoL8GwXqTHIS2DdO/ffaOQNx785iJ3MOo1IhiZaoKMW1ypl+ZQFPgD8Udz0FEAcSuuU5c4I9BwJfyVBp/1YSZTTx8/TZkSDnpNtSLXWGeX1sktxlRCYr+BJCrfF16g98BWkGVx9D13cRHx0jG5I7JkHa9XUCZG5FEgG0nkska4L6dBk6gbQXp4vQUdDG+MmBzfYZ6lzeZS4wqe6DJy5evQ57SBvgFy8CnTkxtyFi9jZiBL46Uhr1L1WB2m5/ZVLF/JxksrMQJLRJJV3ys/3T2Wv7ZVjG/74guEBV1a9kU8LM5ggB0s3hu07LrUZpZo5aE5t4T1LK1al337Izm+7/WE89zzq70T2tf/9UgrxzFshgDCFGoOO3romkvtd9jtG9N0tVEhgEHlDzRYWiDkeCqtLZT/WVsf1XPeNh3iqPqMhU+EhZoI57CAxbkEPsa22p2/jUELxq8QTB7zhgYvJKrOLkiRruPk53HRad/abvKZa3anc5DNoYT9pGB3MAHNwoC0rp5ssdwcGFgSQQfuGYr63JEjdSv9TvG5d/Mk2YwiJOFAoTWwgFezxrWwkg4AFqWw7HvI25aaezhygwiH2N4bfOp5+EkBi4SQXWAOdrVz/TEqjjU2gUzOH3xhRN9rXCYs+ns0Ptela5xTp4ci5ZKWjANY3V+ALDHYV4OytYX8s4iyqxcdAP4TPj2er+lVHW6F8lV5NLUzR6lMdZekFHYl+lEXoTZ93CRtzQ2kQUWDwQtYT3wYyPOXMk/JH0cLZnLXN5WWmI6+bAitXVSGDXvv/hwMib/vRHOUDGb5OcyXILBK55/0eE+pWbWW/s0R9nLy256lSteaXXfH91D4mqiruLTPAJm+Sm72sOwAnAADwB3oRsUWF2Whyu6hq8HFo2GgIW9g7c7TSnB62w3NzN0f+ET6V2hAxA04oEL9KSCTnzMo52qc3zENHsGCo9cjExnXxnw+wAhqHsFyMgofe8TQel15AdR5lp0PIsIoy42x9CkcaLj3yql62s3NuFnnQ6nCUlNl0QRHUqB/Wp3eaXOp3muJ6fZwRBN9x0C6hP0JdOcVcaIE1A743oezEWJ01YsEQhWhx0cbiyk5L1aQ+a9lBeEnJxLf0GZPh8Zh6EXJSgxa4iB11TK4Yz5gpdcj/Pj2U8LpE+RqHj0QqW7q5rRcdkYJo8b+AcqKZsqCuu+ESRNQZyPMZ/xxkh99kl2IN53SThfoh2OThZUSvnrRI9Xz9s44WWO5SkMx9V4E80S3bolmkpv398p61JFvLIQQfwPS+JULesl1JbXI+Io6gVrmS8cpmEAeu0OgPnHm5ZdsudNLChjcNQouvhbHyfoF9R0LBK4+ENmLDAqSq6y4RbyoF+XrFR/hfkckr2l/Rgl4ti89wkdf4C/Cnk6xRK1JkzRPWG0aVzJYg3GZBM8fw5WXXVTa+taWM1Q7MJ3quFdMM8Gf5fcN5t+fTNEmf7gmRZiTTry/DARhKxRqEHPZGmVCSZcmJ2qQaqcWINoIBNlfZFOnl+Mk6dwRTW/t+dCK7Ka/hzgO68fPNoadN7F7FrwzJqssNwR74o+9GrLkW7NK4fJNmUnTdm2PtPvcv3uQUmrGS2AXMjP3C6lfJa7eCWBiztbJpMlWRig7jSeHebiIQQFVi0BI61rfGcBYeFOZpunWfmGxUcKGUx+UKsv/djkIFftXwImKl8AfwGTnik5FnIEYj7KSqk5X5vhqsoOJ3rzJ4R57k1SVMrtHYAD7c1MOt3Gpnr/9uRxqztunQA6lLFEHFvKZlVW5Ee+lO9F/dKCqdzFhwdHif1UIaEfbcF/MrMP3Hoh1PJFidy/gcPrLo22+hMcdsFAuVwujqHxv88Mp4BwLsX4wdugco3yIn4vthb9xHJyvYMwj5YL46ImuErHeDKFa2MTC4QUZprDghSop+1eEnNoJ1t41tUaDUt/Xn8NQ8Xm/dUissMJ6T4TYR/sjXSwTTFe54YDKMBSa2zoYoOTogu8nyiK2wogoYKJYI/hOKZ5XDEtqlur0BfyV5ipJt1N1T0LPr223QeZqWCpr514zU8LK6kjIvbo4Wh6RqUsGEtrMRYD/z2IOZgDlH9Vn3sPoPBrdnh5kScbOySBKJY6keac/O8jwWHOsRaGcv2UcyJgK9Sh/Ugzi2/m41bda933KXpgdsWuPuybKWFquFizvTNgUnSzRK3ygMasF+S3F/72sa9khVv/uWklGlwmUkaBvVZTHb5dtRb0nbKqRPfUKl/uF1rzLpgTMhO8YFN/iSkA5As66AhW8d/6mcBOfYOABNgSTF1nZ0nuQvYstEmGhAIjdzRuO/4LwCJiFikAjgKQE088w61MQO2tESNeL6/4kydPpz4kuY/RAa4LwjUWlXHjgmG3K9KhmaMCUF3hHxZCFlMwtqJ2zUt2UFTb9u3vGdTNloBDpMb66s2hj2oiUK+72fSgxS6uiQwMUNmRJVfzxFtbsq9jATomnFOaw0lgC535GwHeDDfPYGvwdSJy58wr9dBEWVLrjDM3/RL2fF4a5EFO/gqcPWqL/jGjDBoW2ZT6Uwsk0yD9KAjL5bGJOPP2pFSMvzU2fVk6EyxNmaJsRdg7/1Il32niVTKIrabY+iMtlaTbuqDpw+Q4yRRLM8LTs4HfQeAOAs3H5fe74Jo0Gg6HlCYZsVuZi0bDfzxd8nBHN7HXTHMCCcrevuyZzaMMtjZ5E8iG30eqCQb4do5NiAvxvu6u2xUBHjbNUtzLViSYizje4mgtG2Y1eaoKptQkbjQ2c9OQFiixANtB0tYqmdQ2xNcnLBbAQ7f82qXrxNtzqSj3QIK7hNHuFCdGBJMgVafrb9TbB6GTNkwzjgDcKlVRbqdsDFeDElExeaTn8+8kCZupNAmEWpUFT1rF0DBF86rFQal310jdIH9thRcG80AVfrQqFzyfVGYwWV4nAxoIOHXP0bQNZgF3I4VmVm6n4MFDcmFQsguZf6P+wC5Dwcitppnp93PdcpWJ3//5d4pmkZ1ulVgV9nMAkR9IPBViVtuAipcR3hf7TNuTGW/ijwvDwCk8SkeP5vQMuQhOif3y19E0gFk7Ke7LPDz8TTBsnamTkPzqKHNe6bASzwZyyo6gue3ufpdwaQ/abpqxfa5tbngmLu05d7jU1Egv7TWTmcbFaHpeJM59k/lUZTAp12N+CmzYMJXvtVdyKghun55asQ96q/rQsj69QL5lNUHTqk0zLketgVItkWonMwNrsPzngUNkEMssRzJv88K7ZP1sNHbS8w/koiOCH4XjpyyikFWMl982Lkn5P3f1FLQl9T+BOubFDbHud9xhL5jNFYRbLArsXjXb10K8XHgEQ42I5v814Auqwg7wiPAEkeCBasve133JOI4wAQm9CkaExF851FB0MhhcU2t1D9SyRhTHe9olUT60BVVm98yxe10kBH/gUzL1TdlUoiPzkCt0V1Ixk0BJR1l9lhzCDx7QzoWIilGfVsy9L5t0SJP2eJfFDdVLQUTEaynZHpVIujpzIysMtwL0yR1TNq/POaUUxmeBIBRAQHDheWQgdy0RNo4X4GqpJOpylSyGW4juvU0/6aEuiGzzKvO/o11lxEMQRfLUAxRocwhIvHBSG6Fa5sgv4f4++1y2Ehe4+eGuweSvROq2lzkr02w2fSjwRn704q7de4R8DUk8bYn+NYK4m0ogLagORpDxpuqRRNUGhotpcRmveJ6wXgjy+A+iXyPNJpu/QaaGPPUb1PFrEcHV47uKPfzhZ0n6VAAmv/Y7O6ED173b8q6BS43z1tl1ZDFq9KeegSDEZEnnyv+emQDRzYIjLwrLR8WSWWZK9Iy7ahAkA6FbW7u8bvFZ2kdmu/EIQdSc+FIxju6cTT7tlA7t33gC7irOIhYicPknH9y8neRQyv1jOxvrSr0uzFmS7HVV/QZsXBeMS9jiihxF2KWaAvmEQZTPtFbfibR9rZ5kRKB5CsID+18s5LDXRviaxMAHdaeQ38jXRVaO3bBuAZNyAZERbbPgoWh9S8Cf/2626L/DXlIrsAtUb25bDEUM/RUU58mBAnL8MMCAyR04kBuYNHzx8p8tj4VJv/4rYA8pbtRi8Tb3bKiSizR4I0nop+tEw2+1A0sonyjAfB3hP0QwMl2WiJDocI/5JhyOCJ4+muDItaVvlGsxmz+5nNrxwOnaXevgNc0zOu7gOR2lqZGFRL7VBLPeoJJJwaMYyAjLwxTlQUrvpZfcE5ZrG7xMnl18FF4l6iGXcpegDkfAVMnc8Ls0dLucTkneFp5ZCZb+BqjcSrETZUDU1aOi8VTSV4CIsQ815YIJKhmVubsyrbJXhSd9x50SjmTi5BtBixJ846KCxwMZTVQPh668vpv5rkjpcFcw0lm0yyv85n7E+PFhGARjv+uTfuEjbED74vHGMhEoAOp82dT6aUbTuNXbjeCiaWSRxla3/23YcGN6NGqShz7CqTbc9IlR3y3rsGkyM8On3C1gAF0dlumHS2LZLC7+ZwKJXH4DXgAeF+HaDsGPkf1zEa+FVlsIUosOH5AqxFZfYtBH+2zg3O5w3wuSEArwIV8ngnvkuLT9wWTi5uAcQB/4yDBGt0As+Y5ro2HS0r61WOzopHLUWmsyi2PNOvxnNmrH1Ca03INogW212R2SzhvovAGs7SKcyUHFAI4i51OUCj+iZw3l192UPU/PwWJt6vR5fjvY9EfBxfc1VDa65uHuxlSxmuIeQ9cOe8D4erBMM6zyRb1vWelOAjKoWqnrSdikVCfJ+enI3bVu647w1khCIrFv0CvjuLOPnBo3dT4RalhQPXBkCWo+1gNobevxbhsiCoTXcTib4ypqB1TR4OGsuIrTBKTMUUG02tCruNoiLC9Pp772bpRqtrockdCxqoLoO31si7NXOkax+LKlFxH57snIYFNH63Mhmdx4mlnTSe/+eg4ImS9LXXNmt9dwc8QK4Ligdv2Xi+s6ZdDTI5tjl7UT5B7KBCHD7FIMGKbqMiSYuqjXQjER3dnmHJRiOUV5/ARnSCfdnKiYUPe0SHaSeJXKA2E6DaE+IWhVY4pN6WI5RLiYMHb7vFiDn5OWgUqC2ko/jkOSRq/kfmVHmVGxj5Xxgpvop+/hchMVFR82BbAT/WyxRqERfVWLBSMbWQmizPh5J1VCwWObPwH4vJnmVQWKRGgbVaV7PPYONeqpmYlsV6p1ffUq6t6jGvmHrWYvyySv1hEZ66rFaCa4t7gJvNuL3IxO47v020ZNaNVyMLYLCuXigIcjQ//AC24LKglvV9Jv6PcHSakEcpgP4pwvm1Dx5GAYruAJp8x1CPlXsFft33sLJGSikWr8B2tf/yMIAf5nwMAuvsczdcjLlnOaU39SmkfmfRp628uWGDNpJwQzrgrOGX/4Tc3grbz/Um3oOsFTSfKOWUEZrq8TDBkaqKxKErdNJtc2EFEOBQEMSmkLXIn9PrtadHuncRTSbtqLSmFSmJ8rzYbYPR52d/qeChvO9f0V342wU9xvMnm8z9eKFfH2HA+5VSiljkKVmvXhGhiT7EqqbZjMlZRAACTSk1W0FcJvSwafjRH89s6umkziG2s10qfSUodbHsN/P1+5AziPHZnL7SOxTIMk22Pm9UwGWRkb+jKhLyOmyUPMSYXudoHZmx+JqfdCgNmtonOwOyBU+wBl1Rp0XLFOxEWPXw7nKo9OY7ebwepPVMddV+/4OlA9BtKi3f/qjO5KzBCDhnafwacl1GoRvlPZSpCAb3zDMO0KFxLKTjZ20AJeS6HIVjDlT2UrQCF/XppD6RnDsls2sRCUIH9JwKStk4mYcX+N4o/exsLRq/ZVDDTh9QlpCZ4SG6nHMQLaxukIEFmkVh/ZlsN4Mi8yISQLgQIgwMtut+WJqGpy4IR2wxBIrgiMSN6AEuF0ElhuUEM0yLjGk3xR+ql4PDRsGQkhGdYXaXhmL4TZ8bOSwOcGA+ZqLjkjGLPjoeC8ih8fV5KhvQbA8F8hqVax9kXS8I0Kdq1ekYG8vz2mnlC0QDWWHWflXZQkeFCL9DJAsJVhhEm6wLgvtNFNqmEbPYa0oBQIImi787plHFSujXgFXKMzChYDkrSZHPIHoR38790amhfsQ0xKPuUCrwQeehFw2UD/Sa8OJxxOkLFr5t9MiU43I21prX6Q58WYtTFTWRn4TPPhgdcNLRzYPxRGD2afVVkNQtLzBdDvzAqN7XjRoe+PjikSUcXLqMi+81wCFzjAeKA+mD4wR6lVoq0CCwmGevJid15SqaJ/Su+dPtdxGmkqH23vFzb06FB0QDqHQ+d2Hczi3NDdGVN9tOIWyYUwbVE06Q1Bhr6J2WEYn2PuyA+LftBOByWExqLq8px1gaVoj0q+mMIWvyYWQu+soz8tDdJwt+NOlNpSqrHu1CPfuDsy6SVlxCZhXyQt2h1IZ2qLfoSCIyDXjt4i+bfDg8ajY2/pZlEg7L6Rv843izqTgnRTBmR7bFU41mhC7N1V4t6N3nXJ9L+yOYzz24X+Ul5w2nmhidIQR2ljc6M79NDeFEScIPAnCS5ozLy3vyqs66yr8RuDyt2qKNh3DqzkT6B005EDp8A5eg/Vs8+wGm0Ej9c6BTlgWlB7BeWNc8tvFz2bNJGMQrjpVTYy6BAk0w0vM3Ju+UagKbHnWTJTRdVjNXdgT/c36ERaHWLfGjO99Z3Qnev4BORnwPbPkjcnRBo0i1KLjqyoVUG/5zJ2OfWFb66jp6HJ4/ndx+PZaHPKMMgP5LUkv2C09gjqZfd22j+VaTkNXS6+Fq20QzxDDqp7D5wR8FqXKwT+r4WAF/mVST/Kffh5gxdVE4gKCwoifiOYohTX6kFPtdE+MU1UMSmdA320I31nU715TLE9NRpYS/fypunlWr6Vouk2ZbYffjQ9Kele70xVN5SrJ6qbx0p50BVxu/wArrqn0mjojXi02XdZILdDOFmmsqPlWgf72aofALQlEk7KJIwRP81Fz8kTlUx4+rCxBpCF3oDV5/ATmomikiYR9uxv3+r/JmB7/+o65kBeBdSgAQjuAP3QIlV0nTGBsuETJZzkd+XKOvlZtNQR07NGk2onRh4KzbCNOqYM4umjGwAk7//wn2NJ4AjugMAE33At97rRwDhXk15WxFUw+9n9LiPZPOG5JcwwTN3Pg2gCOsnxsQ4CT8Mr94tjzSOZslR9ezj+/wTuf15MgJ/mjqVQhWMJp/ryLYHhh4Q6G3pfsZmarJr1AbVaPEJXeWilGvPsvAvzyXun7TUf4tWLJq/RWhrP7ve+tSrJrOtoa0pJCUQhUbqQRGqH7YpAaSnc6Dto3QAtcFUBC8N1D9gqpdLAuQ5RNyefWRV2frIsUcf68+pKMIJ9wFClxLEbKuIJJsvCgp94PCj6WasxyiIJ5up7fLRpbsXFUaBSaGrsrqy/h2iZt/MHanKHBx7Z/JJ5aIH5kx/gsMusZ8M9Wz8kvgJAYuw73aWLesJAa1fhjBdMdBSGMEI0mE+Gob+XDyXl+NODWADYd8/mZc3KVvij+ytCEFCMLiFlrtao7YKvqoKcCpeWtrmjOBfvRUoS13qNS7BUURgWnX/qGPf0/KTgQv8vTj3Dq300oXdJ9/fBmkYfnh0a5oDOJchCwRmNas4CsCKC0vavA8TXJo9jcmgi+Ok7y7tJZluYdZWMPY2UOd88Wy4ZNC7aMfqBOTVF5YrNywk99SNaxsOcwcYogxkc7uYK+SmRYHQ++fj34ILjaSQnvy/yipex7a8uOcqsrMPJgPnuCrqCvCEQSQcOz86ol13O7e+Sdj+LSRNurlV+EzTCNT2zVN6yr2dF5hZ5POtyRHnSO/PqDtnnN6C9Btun0eVtFf7qaLmthiyexgS4YXoPmyPzWf1PWGYu3Ubznh7JknX77N6uZ3O0C8lOsVXg6CtJftDrxYha0oJeiPb5O9jN/W55BTI57VzHrm+GFE/fSA1ZDdh+7X/afpe9LOy5wtuUlesLW0YBjNAMGT/uKjsURL7e1btwjQYAXyjSp90SNYd/hkzRDe6qqNhJVdD4ci43oI1eje//l6ZmsoKs+gZhOPpQNz8h55OTtaGNSCJg0xnnaFw+NgzaWZRFrfz+G1eQqZMayG/BSYCJ8c4P1OA1cGvPT3nq6ijI02zOvCfZjp7qa8Usq+L0VplXnOwU6Kdfkyrw3yhaNcuPL2CHCOLNiTEwZ+1MyvM0PIDqTYFsEsndWLMNHPTn392nqe/68otBvBgqQZ4vRVeKLwMHY47kjz2qr/M49/nRdGytJoenEQZMv7UVbmm+kVWzyE1oMM4p6KpWfL989rOx2aq2fkAvLrafhU7yXHbGy0g+0ZSQlZohisglan+YG3NWZJmGPzB4+9T3nLqLLvHC40IZWI1XKplZhNsTYQ1yv7OlPvVacXzUi3UICoumh7exnM4sNmFWv7iXnOldJTA4aj/dt+7KAEX8V2C6HqTPPX8C2azSS25Ze/oiYe2MSpTINLw8gu5m0ZCQsGtzmQAECIL5mcezXNe8ts6RlU0013KxolRsEGwl6HzfBfjVSUOcfbK7Kkj0kE0z3NQJT1cB0up2dW9YQhD0pUBWKlelXFvtHXv+UIogRRIdvy1yHpX82+2FiZehobtU5bJsMflWNVLY/CRWzkIWW5e7VCg6AkE2YYruLnnlbxMnoXDG60u8aCntQGvvyjMPLcC9dvh6ZT/sAgRGQWOCi7OjEhBLY5l/Wpyp3H6zEdmFFNMjMlVCzjmkVCF7rsOrqJvTWFMTLxWHNS6MFT+ILnya5mkHMyG6G9YJGHKCw2Di7n5sXJJPYxhaH9bjAloc3yPB/v1oUqi8kqrTKzBoyspPyAaIT4LjnYdwEqjiKjcsRveIR+TG6zad30zFEWKp3gg/9gZlct9DCh11WMJqiqP5f7ae85PKQgyi2kzLKCcp+xfJr9wjhiYAepvV/npckgrims2FbPODDs68I2E+foNb/y4Qe6aD5+yol44wa3w3kigx33VJz6lprAooY9dzHBQpqAjnEOcNdPxrBW2OIthizhOjQduUkLzDEcSnp7c7ihX87U8vmzfF76bdxDJNwJiYh3tONSFL/BUA76fiKUuZmrFq0GOmM6onI2GGMV9fADNFKYm19g+6wWYjiq+bgfGWjfv/LV/IBNKpOgXtsDEw/I963bx3izPLysTbmIpjNhMGuv41jJG7u/07xoUBgVHu3sJBIolj2G2FlCe+ewJvmryg8kbP2xo12Qu7gikLnFgYTiu6wqvkCYvAJOYzYO5W7K57R6j62FQgC2m2KHv25L5InDEolMUMIa0GROwHA0/gKH2H+P01Yi+2sO9uOw+4enaTHq0wriKY39Pcy/Suhu+Fo777oAmJNWXKyKq4Up1GlSRhPcMG+/TGzobKqtADItrQtiXxq5J5biAxUb4E1pxv5BZuct+/hlU56A8Xc2ceaH1iyY1vBSjG5wPuzyH8MZ8SxBRcqgL4//2npUIYADiOlMbt4PrjFnnterx8WZ2HWSjG/LnC/d9vj77lUHQHMMwoWx7Ef8LeMum5KaNBTmPLaIenYtl7JjeTNptBlAjBQa3lzl6gEO2CBqSb+m3PLjdmLNp5fc0yNcaxq+sVwz72s+1efuPhaDF9JTsyvFl7Bfbo6LJc6ouYcxafkH+WUSAtiU6fUNlIjqVB3ITlnwi2TfAdZBrhQuvk77HXRJNXQAX+VER92YeM2SrveNOLXkFgThmfDDRk0rrDdAP46y2KgL0jczgw8kNIbfR4UwRQQp/T23IssHEdIchXBqlXPHa6AshMy2jVSfpW94bxwM8htYf0VV08TvLTUV1LW+FunJ0RZ2JfwxamAPuKqpgn/ZUxksaosiljaH0aCyUO/A7tK9Ets1p0XxHfYQzu5b8UCP8jsVoMaxoaJaPvpST1uFazkcy9Weu1qTmodx4q87Tqf82vYYNyBOLA5fD1kfRZ7zQC3fT16O10MGAB4EQLA2Zm5MkcqzwMNLX6tsU+leNOd8YYCA+h1nsSE4oB6RG2JgT1voEgCAjYMd+3jcvWB7tsYhTSA8KbEy5ddpJ/IwfbyGw3/aV2ValHMytwCZI6kZVSRBJz7KuKCu6pPDYjUyFgNBVblT3/5tKs6mTBezfwRX+hHz8r2YdggnJq2NQ1EKqBfQUsQW2h+Q4PqcGwlGqWtoKp6DVTiriuck/kwZbkf5rzw89kAzSZowlFGMlYBcUs+Bam5C+YFbb/lC19Mrl1KSzvlRwiwVxyiIyI6lHA0foDgTX7V+cWLKMeNRBDPisVF65hwWsz2HyiM8IBBjRmkbiGU9ppsaQu7CUR2OBYGOXv6N4eePd0x0YC4rFCxzX4/msC/a2/j0QyYN0wKYZfx7UMfJVhPzuzLxFKHRojOweLozJvFk1Chonygi6MtmjSEJMSiF8ZkvzE+5mf31gzrUVjSg8I/aeQaBw7GabseewoFsfkjyXhoIQbH1L/5EyFCPD9wDyTm6FtZTsn7lD/DIzMFNPhdMYoGKUf116Sr4ceH1/TOJsrOn/h2FFZ/Dmove5s8pHdOP9bQbELABRmY3KIsbDQXEjCNo+v8lCkSkrS0NQfaophow2U7CootmHPjN8+WveTL8nRkDcVolx6Jfeu4RmuGNVkzDuQVGA0C5PC5hUHc2kgP0OdnV0rTFA22ggaR/7d8G7CIAaKIByAFE4jW11GOQG9ACHlNrVOZT3HmwlBHEe/gnRwzh8corTDsMmG3Gj0HmveJZ9RGfx2dPg67bEMxD2iyAh+EFe1dHGP3CaAlkio0X4zhv9o3D6kUw74libo2YPWbyrI41Q7ztToWmKTXZG4DRjCxl6a5qsj9yY33uDVZcEryP1GhCMSG4OzfJNw9/liHxQ7DP7DP9FzIU86714RsJlCpECCfBrIUOTstegaKHE3Q+Hq5ummz6cvQoEuE2KUFuaPFS3KZI7dNA7/yTv1PMeHMQSUy1gwF7R5q9yElbE+jDrZHbIw5yz326kMOFUQa3VMC9u9G/2X+WLmbytbj7q8g9fIjhSQzj0bDRR9ls0UHwQDjB0KEFEIY3eiGjfHqRvflAH0wpYfUlevfFpSwbOKYnV1i8guUfIPcz9CDSSbi3HYzTSdMDCmRUHh2Fxl69Me9omLtkICbqkgQhxpE/CFgV4+MO5pYLPBhOUHSPmqqCldvUmOXRu1UC/1JVtJ0Jksm2dYWN28jELFErnvmgkk4c0iK58tiifYtskMAJBiJBef7AS2FXVbwEvCZ9foffk2vS/Q44ZFODt/+kI5jTm9hECovhNNj6zMnYXsmOrQzyQDnD863mIP7oIa5+6c5hkG3ytHt4MZIbUZE3tX23dKjTyB2Ax3GKGQdYiErliPAy7gxs4GnXSE/e0NIDarXt+XuqhzyvJQd+7I332QtdP1eKAk0NO0e5rvW6zHbHY2/SFhGf+2JRBpr3/GZtG5z680D96tznBsGUELOUhCfhptuzeweunqdwzuW8vj2pC0P74GwmuAOmZgvYv4WIjYi35GCaoxPDF2l0vO2wkSHsOxdP7791UF5haQmUSuBdkzK21Nw3Jbb8QS+lW5msHqxJXd3wsc3duL82pSap9QBBgbK1VKc36H6Sn7e3237Oa2o37m2BQU+FuG8KKwv5hIZungixafnt7huWCkMyKB9qpPU09LM4Mio5E6VsrP4SfUnY4xFKvnleM+DuAKfb8yub57QQAszn2TZRHbO1f/Rp8YhOQY4h0wJ/2NkWHr4YONMq2gJq/x/fQOoufBvZbvbr4JDaS7FNRdBQmdC26y9aT4H0PSsiY2QqP/7UUoxcmYjFGOQe7ARKqlsNnH3lUy9gydSoyWSs6AxJIbZ4u/7LsCSqAkZXlLcf9Ds34okONfzTLeUfVdbiIrFW3MjDgFwQP2cAYa3arE0aBabpShWiq2u58K3cUdKfKp7NwYNuI2X8bR0hDK1I9r1FovFeiZwwbccotD4AcVYSn7TYqrNR+8UEg9vfGH/XVDRzEnjDHNWGHRcy6SxdCyRWQ6F+mdAZBK3kZmh+SLXrjKfHWFeAbtOHIZ/UbsMPVmyt7zyMm8rTvpc+IXZX5HOQp/WS/0s7vNzwqVf6M8IzQJKPBR7+s6ouejC3bc1pGiW3TQ5gf+oLophDH2RjCJEWi4sJc9ARH2JNeilcXjceFmAkAnTDqL3wVHAF4O24G52hFkl8KFIqQb2o7qlheYqSRdMG0v7rhSIUUJdvUUB/JyUTkXIQnEgkY9666mt6o2nUBNV3JdNwKbq+TAmT3U3myIu6LjkXU2u0xY3q6OEYv4oA9lT7T4gJPSFHuTcKLwLHReH34HyzWhh2fOb1eG7jLpJgTLMAQ8Hu2tlxo10eQCZBVKeMcONNrIDUCzFlf7RuhwnpXQ0mEThO6WD9kdj96nl6AI6hUeBJNdQOMWKz1xsM6XNhu3upqTS8UsMEeANDK3TtJ+pwc8ZMFldY9mbwKdvtNu0VgP/fXAmJTXP5WLw5QXGYykyVzbhv8GwH8ypkHIS13dkqsgyjSd0+a33Ot7pkyMZXn5uxTiwK6NOyuMCwmhw/TJ3kKhXtglspNmy7CVfVcYsD8N80xecou/UmhcZ9RIf4PDoLj2omlZvq775s0CqCbcDzl51r7zWCGDG6r9FzntRFTLJUXEdgxYI+jNuEaGezXb3saAdlqspPtU5f/8hs4tOqLOBd2V2kjE8rb6bCCz1CPAKs3EBOLcafL+uytvVKXHz38CxYtShpgEDPdEiPaukvno4XJDDugXd1sT0X0UIVdoyh5TNHFaMnUTYRzWUd55UqE0MbFTrLeV43PetTsarQVZs6ypEm/G1q/HJ1ToClFwEYGiGkl68KHCGYcvuftm/mlPUjBZSgWQRICEowP1yLnvVD7lQOVVfCm5XqNZ/D7utPvqecm+9QGE4SmiT4cq1MOYgWtiMIw25FR3uiRQFr/1uBEXcB8RPCBYt1X2stF3IF0jT+cwF4o/DlvBnYwx3DCaJzTh9Hzs0SvfvbZGLpnJc6u+yXMwf1GM/hW6HnckF/OzXdNqSnm8Pr3b035YaLpk9iIbrO5usJPEpjfoHi1bm+ViLiWJQUYj5VOW0OyFsWZAqR7Z1+VUj1Q7mnpdG6qgXDqCH+fOZPX0cW+67hevXIhufszNIFUMDbuu4BmKzklxK1gO3eYHPbmvnYfZR9IBI0Im18IregryJbFezPZ8DFxqLsMkXynPktrxIekrvotdI8SHAG79HfeAwVrROL726O5eNzCbdQOW7Ty+xNOMxqJ/CQHNbJzPmhAyH9WYwFn4oIKUC3R7oR2m18qWXsIn16zx3VTCFL7js90saunNemSWX7QUyWvpBcM+/a6Bg1ecs6WrFHW9feUa4BTgwUgAXHy/OwkYZIi/INxlq+Rc1LwXUe3Yg926Yt3Er1clyybXilOoVUp+20qptcQKUzvwT3PaOwBYYmk6RkTGKyVULqtiK5tPay4AXhTLcaNIKPgeo+dBmnM5DjKNxxl6URa5PWqcleUJ2KRopop41O9d0FCtvn7u1BD2yq+NdfkfnDvk0g8nLBnRY+bf6lQHJTsMeq8DhYvAYbXmudmRa8pstqJG/ii8A3WmzCeMqQRWqfixxuy/IbWT2kBy2e12ERtzuZKgQ/CsmmDai/1nulzDDxj1S/rUSTShRx45AEcLuYG8kTOqdPzD3n/8Hxr6dVdD36jZlHG3pEUdoFw5FHHmgqVSjsmUkHz4DiEISIA9oWc9Tht/nZCW7mjWSz683deoHkNBvG+89dfCAJyjnyI1ZMLl3hv+wp6jqKMF4PskEfz4wy45UuEl9SCNG3Ci4Gk4zV32YmjF2YdmMUEXXMG/a3oMYsiJ4dCksYeYH2OJxsHt0DqpWzr4DjcudMlenVo5iYOMoivF+4/76aFeLb0Pkg2uFM4adeEncA1NVNYG7MmhL9YGaWk+17LySHeQpYNX8JGA8O8eCKSsY7BpMKq+wI6NJrcQPFpULWrKmKFXto9mlU0oYUHUHfjbZ5eSYKFkSUmer7SmVbFtr+uCrsnfkMPFOd4fAqo03SdBkxJAkESZXYbirfLB/R7rU4WZt+mDSe5GVr45gHEZKjjR+WfP7ZjdkbMZPtr8pP8MwK6/Pdtp7p6/3FOj+AHWkcEIVEUc1DEnGV1FmGjX9u1c/CmG12yF5V0yYIejUXrrx9I4t2VAMEhbfS7U/wBoAF7NRTAeVr6rV/zlRg87Q+YKcQaP3sz4kihQfMSRj8B/YEydmLmEm5+ajYTA5nw1mU8IlKGoxMGwgep+CQtaDw7ekJXovvUO7rPsl6z3ZRHBje5gEKszZ9FRXVHMmT7OZdxtiW5Jzsiy81oRhKDR+EbpZ4HCwhP1GDDI8tKndPDaGO7XbFTYaP0Qn2tdZbIaxIPA7TJk5N/BboFUGh8k0uisPEx7NOQJ3qygj59a5HkixiZMbYa0zTL5GyHSbP3XpQVPkIn0Ze4cuX23QEXUq5NPZMhJWaOWqWrsiXNawpPa/tgnuZmgryrbcK1x7k2DZmcR3iF63d3Jt3S6t1TvEovfmNTzAFem6TO4cPj0eRB5jLQ6FWa/QZlU+RXtwrMct/uNrkAuJqBMXkcf1+NDcxtTCUiYbGGZuX/cPn0XXfdntrxyFu1DUL++9DbVnVE16knjMk0RRQ3MBKCxMNfGOczO32BaHoucdC2xbD/RLrku+L72XNcISINBagG4I/jOCDSXhjmSaCgBhsUc0mtriC1wkaK3OI/B3MDgWM6wLJ7iso7S2Fllx9nNReN71XrwBQVBw5Ev2Z87Lhc0U0wB191TwcG6UazGWhOOrmSxlfa872AaU65DBj+/tSWw4PrVzMhu1c0ctvcnuYvBj3FZ2QfR4FC7e1EboRsB+0qp2o7NFJiXVhIQ9hx3oCLjC0b5zD5vTbdeuOuPC0drPtVvTCW8JxZ6o43VAc/4uuI/n7XyrIG9Zd2DXyom7Im0pMNUMNTGSjJKADihRPeg09teCLH/ZiQKaipOHlWAojGw11RQV5iE/wG/vGSiZD42u2ER+M1rGqotk7xtextGb9UxBsumMiytGFAlvOmGaNfnLCdxckq/771teMVHzPW+0bKDtmxFByfWtWgtYPPTVoX+piAvpmKW+DWVFvIJt//rF6FpSuqP3ypLtvJRFshyefqqWnrn8rtjMO2BohB8ONUpUqOsItiTN9m8FAsZF/e7UpGptKUicPHTR1sjQgZ+3bddI/2ADY0d6uVv2oQKy64iDtiwSJH1cqtKH3rM/6rAuw/lsBxNehjOLcsg/col/xegjl9wz2PiWN6P+D3XgMGix9pzmP+Md5tRpFX6zRrXguGtOfvLYd0qDllNIQ3Kozm0O9Vi4J5c4YMvFodhKoeNqGQ+riGBgN1yeh16mAGx4CBJC0tHDILXf+55+VOx9g+kd1lmr8UpiW6aJ7WtO4IiKTd4LQUF1YcFmPIevaqxHerU54YMpdjnrzOH62bM3UIyeheVbFUspnljHWFO9OG0PfxHE+J5a72mvrwwUvgBw6kpHrqrGc+28wh/MHmpa89meDDd1108rnjyUo+QCtUFiRRa7eJGe7pCpFXxiaeH4aXj8yVVoLUAE37qyRYbCQlBQ+ChP8KbfAJDOEDIvkRZ5168dbR3j5IK17wcodfY59AkgKaDzjYqX8KW1TzeiEidECkkqi/PBULCBfkYlilEj8n+aShBt82X56rocNkeE32CF6KiBFqjkVXIocZNjdYiIR2qUnzF3ru0yV8iSVOldRka0PON/drkuYy4PbEYBcLqdvCCL+Nfd4Jt1kbQ0YC7CCnR3g6ky4jUkIa1h3zYQM2EWx3bH5wKrVAyD278lkZ3Ldffz1/g/SynOKNA9Gq5fuhyqnzHoKd6ejx75H7hFl4ZbR9Q2JYVhJncG3DNXQ3Y+d9dse2gdzTyyhs0m/clElhNT++PwMwajTP3LGnC00LVwuUT+H4N2RdwZMZ6hVdCzwq7CYFQe6zP4uqB+gZtGS6h4/7g2kcs0ZCh4wGFp+pDLWh5h8+jTKkXvGHrnvoWIhksyyA16395uvvvgGBDpiKHvUjtpadOikLTYxKTqjxm9YyednmPVNMCmEasZFvCShHfKPMOKS0ZkRTTn2lkr4lMSv1vvpKaNLA5GWIFVtvK0y/a6GFRjL8MuHRzQY49+gzSeAXzFHkkeXpioJGcnJe8gI3mQZuFvgePH+r+LruuPn6gY2eNFDOL8KPjePKAErl6es6JIQvF+KNzRPsNAHExzGBIhLY3K3IC62uYIygUsmsb2gCtO4SazKNzswOIWLpvU1IXtc4r2iOGY9dJ3dtIxMU8Doj8lU7DgsouzGViz5yGam9IBiYdMSS3AOraIcisIqx3mLFXZh1sXxabaxkNR9+ckxGjralZ4rk5g9ctjKOheadRUw0alOPMe9gLIyVWA0mlyuyGRn88DeXuSYStTQEbsnzIm44c5Clz9f1CfIYfy4uoD5R+E78yU8Cw6lqhklsNcRr9omubRh42ZOcRuEYKzKGfncZ4akRJYV53frzXDE7cLmpGHeQDFP7E8Jcj58eHI+xcY4wH5B6ptA9sYbQhFljOQA5ApMpP32CvA1rbJ5Ofk2dHcW/FyJ3okSOSImCr5BngRd80e66z9BUVIj4vTRY7p4Tp5wUehZrzNf807u4y58Il7+KCRK+A8DznRFdaccg1pis4lhkeymBnqG8BDZO6YHmnQR8qIL0DE2k5B//V11so1pRRUHiSqnJxl9600az51+DI7AO8SP1ieyNSCKfjmw68/33CIhc+F7u4wluv9j4ivQomwGxWqdXk2vA9cyYKZDc8ZIrKej509EtYCa309teYFpl3IyI5VSa5H9VZLP4+6tr8/XQI/miDCY+F1OBCm1isboYwGP/73nlzZY+Lqj32mPDDN2OsyKEA7a8AseFd+qce3VbellTGU8Bf1ncWQ6KUczbB5wQl+xGAh9nwg4E0Jw+JS7dXoyssz5755dbgQB4jQ+yCCC/C/P8s+zErdM7kPm00gMXW7Wonh8kHZflAEajyn3V0ytGHR3iQ7K+5uRjCL3oFXWyB9tqVucI/7IiSOXKcCdYU2SYJos6Rw5W7qg2rowl/INTPsi8q7hO3EKW1XHz0x2+dvXlqmvM953lR7NIRJpe8FeVGSHX4HRygIY4nj8zfeuX8JYnWAPCseMg9l2AEI9FvvtAe2HrKaCmD0zT5+Ok7bUfDAkaiTMeeI0d7D1HrTxjp5QJzUlnCD50HiG9ExEatBIqwBjjVg1KWWi782a+cGiIKtWlFRDr4Et4N7eDJ8ri+Op1HxzWRN/4r8ST1A6zxVFoflxZK3u17JhlB1Dupp/SaGUEgUFzJLREro9m6TGwe0yG5OR0O0hSSmfG8BbbUtpqp/m765W9fovuIiHXZxHkHzqPazV+tKShM6K2u/CM9RXwtGAUELBLQqv301G4AGaiK7/qEmOSiUKA+L4mwAapcRZwWU3gH7RKCyzzVcKgAdc5U3tJ/BKYPUzrxre/y0wfdSAYHPoVp6iJRSGPv7EtzJQXTat7IqKAhjxBq5EnKkw2DYVvrkA2rX17yBWi96dB+bucya+WcNEIV6kdckChTQngSWk10lJw8FaWxJ680GlnsldgKJG0nvqSWGP4WOHBLx4QQ+g2GrZwTX0XcXkQrM1SY3WOJFKlzFSFlaXTdoKwORhv43S9dhJ4B1NAA1BAiseAWRf6tsHFC9Vb4kQzad74NeYLf077LVXPguWG7DyPf3fZ3EBsMZBTfhl+AvK2zwUuT69kpSXk1GjfZSzNhEyICRjtMqkU/3/pG3vrUfAEE2/IgONJjocpsnIg12esZEzk5Bs28UkpxFpdiobtsoqyT3NntGE9Ma+ECjAZXDkrAN4NVtSFOBb2HvskJrKq7mgygmG2sSE5amUpxGN16iTVZi4C995mANGPwbpil4kt3cDSiQrnGInyCF+O2lf9GbtwPBtwjkl/VGw0rwCH3t50ZuUDrGunDFgMkEFJY075io+PSnSPOla1QGFdIIlaDnka124y53E2TNwekIjjtJF6ouBBV8wGYKqTP2O5IHR9yEZ6R2FtjUS5Qds0eJrqVtF7hXSLP2swid7mJPPff6iypiZ3HepzPh8k1mRYgyh/Cy7kYgEb4ggmfrsiW8mpYQgLXNzE2KPVBOivMVqh1QOq5atpR2048cg9R6+euoZeKto7NhIA3e0Jq31wlO7EKHEhPTc4qQp8l37dSUBoy9WRSecOqxmtReBe3V31Gwuif0zGjqt9+m/jsaF1XojHEEoQdyPJcSt5cBsHoA7C2Ofb0aecNYutWfwTF9NJA6uTjLEclUBR9AHt6CREyE/rgoc9BhAtA/aYqzQjdZlXJOZLzhOyanxDjr2Eot4EMPBlC7vFPS8buXyhhwOcMUJcy3owNaVK1BBKmBirWI2fVo307qUekRSKOAAoluhpOHq86cfYqGLaX52+Cpr0s2UW069zWUPSU3kRFfMSBhTe0Tz/XqZwgGsqVRliFC7FUuaIQhxVThrCKr5O77BUNodftfaKeBMdtw8SX/79Kcwhdd7xaLSa6N7tVWCLgS5hCHWU+B2xSh8iIzgZ4mEixaEqW7S6WLdjoVr8sqN692Om0ROuOLuL3sW1QtGmTuSTc4cXftH/BGzKDLZkxf42wNKugUd+gcSx8zUxFZXXNaQEYjmLEgAXURRM5XBVRx1G13vSt1lkgn1v3efhDGh9+xC7N292TiX4d3XHAhzt6WPFQBify0+omRiGSGp48UrLKsYZGFVAnO/s63yV8ADrzqq7RuFWV7iIkpeNlY1FuyVAunSO8qxzAD4jtcFh/zCAgZZYliIX8DSlSFF7dXKUxbpNXgHpMeZpSsJ90/lZvs3Iahvrn2v7FpBnL1V9KqN9nQkl++u/Q0E2SVtfMS0r5gNSWGmRHco5zo6PBOnaOv0swO7r2KOU9Dn0XtQbn4Zl2OUeweyFuhcRLiU+SgcvZXtYQuwMXwCc/XDpaU4cKWzPESSxOIu29KXNEb2t82wwRLBRMXkgi2c2hH71WV5en0nDzogVrQV7PSna5kK9xtUvsKoB4dDx0YD07PIW/vQYGXuujcw9HAUKfI4EEnF85I/FZVqMJGweMj6lCyn7l2OldTboFlrN2gL6IRl3w13B434yuZs0xLEJAOQEgnvMg8KY7q0BOD40JkPsvs1Y2P/1j7v4oR4byO3deaRqvwUnTsyONJ6Fqn3Ouctph1jwwc7ZnBi/8XkNq0scVgNlkpG6by0N3CdtPh4e4JkRgAqOVuV9hduY5nh/uShMxxVV9o4gcDTV9Wl0u4syaySr2deJPrCkMlSXUiJ8jxkkZ0xt3FXZW4QqkvATNlds0XVquUxJrInk0I7UX8SrM66cb/Yr19SlsXXcKwt4hxwRMloqaV29JsB5MZpK8RdTMka4X5swp67FFnVpw+fhvel/a23M15TMS+ejggFPD+KNEv6IEriMhBLHtl9z56v2vEKOK2aJSWreQ+e4VdD6Y0/9GN9ONrRhiJyWs8A8eEJvWMkZXZxQ79JCtAlo4JDLlXnRHblH4yo/Qdo8dE+VuPuKxr399dv2qCMCH11Ih6Ugm00gvICKhA39ibDHGAg6Rg9+om5kVAgwdqOflb4+787VUQdSnaLCmJEdHVkur3QJWBEal8Aatf7f6VYGaMthzBy+0rmQiU1G5BvxWr7ygRiF9+gf/xI6aoxFOMkxz7fXuxvai0zL4tGpa5h4LYiW/F2lOE+2qhteVfn/5Oyvj9b1TSLV9gtvq0vIYT9XzojkUX/5FYLG2vfhFpQiI0OJY4d1g56giwtmS5ATOY5tRFSxLYfy/+PDYTXecHi5lZP2gXkH2EatuKNBjARTAMkgJXY/2gxz3/qwWtYfqakl0oOWYdSF6U+MzXUhvexRQfxrgQpk+FEOWB8FfLxkZNeGdr80Hn2G48ZeiF4R4G+FKD9tb/i1ebQ08eDr6zCPTZaduboDoLjzRGgdXhulHfFPLpga+przW08Ghijt5E3NbaQ7tW56IRRr4OEnfh5zHEPwqXnVvgGJBQ0SWvLK0B+hOdVUwl3UQnSbNTPRM9rM9jB+c03LB32keSn/ukeqBoinxz4Izk5MgNoMEVI0SeqG4g33Kh4G1YOsbjfdHx146KvofYe1CpkqmUD84qHgQrAT3UcUrS2G5prBuiySKmtYZVmpVIHSPbU0082h+VHEjPUjPYDeCqFUIDVVGYzIg3B4DrW6b8eg046MCoLHPL7OchT2REF2/ufucS66RebRjqGzqFg16NMChnek0gNRMgcvNiQxpSxHWe281knH3jc2579FHGbAREPs3fxaHuaeYBb0aFJQJXyCtqhOyKhrtqJ2+W/w3YODK8KN3jzZR8R8wzqOf7tF6TzCCZPPWIZE0a6TEZ/nRbIsQuQlT6SqZm/JTwbkuaOdXEcT1S952CTA25KXBV378QSR1AIWdCqIaSE633idSye8Q2ZX6KGSDZW0P1FfUvqTllDc9IrAxEEdaWQzTdv08fU8HSUzmzsNrUPJYsvU5HI8sd6NVjmJTW7wVa6Uz1dxMZtWZZt1j07v+hazkSa6nbtBxBrqcBX8XH160lWEsgAfinhvFNHoFd/Nd1BC/JZl0TW/sr1nwYofcaTPZcsAy+tVUJsDgNX85fCb3IHvTwkMGCDLtZEVYKLCsSTUy/P6pvzckITL7ryxtiX5bquo5JOYQ5rDrCfeZEMhDoBpmz3eZYZNyFGeTq6df5WSFnylYK1h1VeUvOLK/3Di255NMN28iyX7jlf5qOgpxjLSJSrDIq+U8EtaP9LNf+3vAyM3p4wTd0GoDI/LwdfxMdjQ9Q1C4fx8O+D6OrVmB0WzcPZ8PX8VTrOGa8R8aUI/NqYcAvwi+I39S1s3izU6UsC2sQwZhkxU/JpbAn4cdGDsJynbgHZnRVF7ZFWjGEG7QSUNji+Sq8x54V73sAESdCz6rSZ9xqmcCwIyf9XfTSH9pHz4GCqLKWqdE2svIpn1fkz3c/UfMFSiFQUpT+I5LgVCnfIzzfxdYfZv3+52GolIPtIHOD30KjPU0GJDMBcyrs+ma9OvwtZPSQPIoPSpNIDjNFg26gARMvf6k711Dykr5M+ZezJMBysqZSjw7OG2M+7dSBVwoENMTxBaR7Nz0qFIM+m5peILJ9ooiqrDMB8yGooG+95jN4NMbClmRJKXVik5wCl5JoadXgLgwFAyzNpwsJ0FTQCvPnEVcxeeqjYmbY4ex5m7I5xqh366YQW18xZ9uJPsyzbMHqsV7N0AiYgDw+8OMlHH/i3piorZx78azMM9R+Dr+x+WuxK3JNEep1BD7+RO21GVzzjxkDRJU30l/di2wjRA92AsfVa0/2N/iao+HNZr3tjbYW9MF2dECGCHOln1+5HQA+RHWAlOUvl8OX2IcudyWXm2BZzVIC5MXmOnyj+iNu5VdwSUNYvFR8f9W8BJaMJbmo+kOEN6ZM1U3fsMkAbbwn7LFgf4tzlTYfmGVNjsLEQ1ajJlapIFueup7GzrNT+Nv8sGyxTi4vZQ33G1WQ0eEzethAfLX+ajf2AnnHj1l9PO5kyGMPzzlIf54yICqcDP5ZNFyd9ZRFvB6X77JTf0nqqHZUurjmMWxczDiqRqjNL0tRXpq1thAb266S8QMx7AhjSoCOOgF1rUhgbyYUmfMACRmBn+7dIyQfCiU1t5aPYAjGAvJuVKfoQCfbLGg3R2QaB+zclDu4WcUkcrMBxJ3zggAV5weRfr/dEq9fqGm49ZUmaBE5+FCqUUXYH2nnzLNPxh6fZN30nkXaG3HhGLUFvggRegFDOdPlfcy3skER3J6LLz28mN4Ww7AiHaxj74AyThsO788/DKLGwOcELbpyAiB/fss8r6UZpQv6K7I2xxl/5TQylHEl5Os3gEJQYp6+6ICc8z5hM64i8sbcwGgKCTEpIt4H/5PdACXCavqg5nOItWDrBGhsn0WsHhBbREAdGYxJg6vamA6eT9Ribf2+7Hnck6Z1dLAUU6d6XRHGhEKlpMyXyTVMNF3N3DjGZzUthYoOyoVxps8OH+Kg/Ox/DAFp47uE5XSNwIKYNLHOsnFObqxQs+P/abQ8YekzfA+/FABqaeBFj4SWqDdkY9+4RRwpKmP11/nqOKDyGZeRvtspBN4AVR5qrKUx1f9XscyGK+5YgxC++jTE79zDlkkzWZQBu33XAhIUZx55PTq6CvdLMhMv5OeSNSH93JD/3/ONkGPoLDps2Rv3gXs+a8jbovDywX38K68t6qDYr3QzwvO4geOsEPbZ8/9+f974wBqdGIonitRb6uBgytGwMF2zWfVHFUM5hZIuQywJ7HMSTKq0zVyBMaIFAsZ4wKXCZmG1RQ2b8vjQqNRGXU5UhKPU0kYkZl98mcB7smrGVLmCV7Php2kpu967qQRZmI2Eye7rqqqZeUGnfoy6frYTVqDo+l3Y4MeeP6+B/2pZyH2vHZ15ZN3buptP9KpO9Gd0B0s1EnIF0KnbE9muXvg/pIYintcmGArOogigmYo+Cwi0cnUJEmCdbGl/yuKVAJu6WcjZOURUPe7hSceTvu6V1v4+UX3p5DNWjDhqFEZyOAIYCzH0QHNYcguuw2bYE8iQz2a9tp6T0ngYWI+2BqPk1N8BAC/tF8vGTTZkCmuEib4EtHLBaoa5sQSMxzrgDG4ONMHAO8ngJT84pwqsdhI5YAS695kAo0an51OuwK6CeaROEPbSnid9P6DeOuGdR6y5Y8n3ddvjl72dtU/W8rRq5/ukA82wvsYqqbupkZkbLBaeFcSxQnhq9sMqBnB8gbD2TMAXtcIw5kFOrAtsYEvd7bDjm+g1kZzHNcud5/Y/Vmh+3kDYUhG9cGoFXIdCiJ5djWZbGiWfeinBl9/PkALbFo+ShJSETktE6uwBCo0dM/NRqGfC9fy2JCaEyyKyKBnn1keuy/ucSOdQGk0r37jU1IM505hm5FXs34ENTmqrGVg9TMrHUD8jZ2ZEzvzcitMZH3A6dx2PVbZj9iNUULFoHVkcQj3fGFHyL0ccmInlbzEXjRVGucH8g5whf5BafHK9vNSra0GckQLSCNNyXHRJkLCS9xOxLstfNDVE81hTzEfpoqRnfyBUWQiXokU1EAWROgPpUj+UFNWe59H3ZI69s7OP2Ya3Lw7td/7B0Ba/Xu/hHmYPrx1s/NzkaKIckK5rKn0+WligSmD4TbiQgr17IKKmgFvuKDq+yZziIFLegy7emfjYyKnCMwK1eh+4HJPzVtU5f8HiYIVLXWAUEvLj80TWCb4tdGqcnjbkK0aGeO1gKJphghLX+GV1kSXv1lJlJbUgW6M9wQ5Vzp7QjzarQLdwxdh8m1cBmnaJQ/A9PtMmR9vK0UY3e+PrhiTnxz+vYuMwIYua1YJg/RZBaWPGkue3SIBNAQN2NAehkTY/Qe6KuXXRtP0SHHtfUSvOG1aDVzqlNXb72b9Gi5PcHUU2dRpXxnAbUqWi0dN7iSSbdI0DN0dKoImcYpx8KxmqcSC+jBJS+v8ufz7n/nY5FRYih9VSndLaviEwMOQDw9le+OXtEXmtAwL8QuucY8OaLVUWAq1YkoYGDf9nnBth55Pu7Sug3V/v1hb1qhgeyxe7pZ3D6iXEZNBAKXZf6NcMeOuz8swkuYCfRXJu0ZNvnFjOrNS512+pB61b9NVsTVK6CWVsEwTv/anBwLsGbz6Pj+jusjsY9Qn9ve3BJ0zbYmw1nyDxvjNKN8Ce0YaIL4djx+oEeXUPZzpFcIvTj/iq9cqalAwOwT2YyL+biO675wRMFnb3T0wkT3QnFtlioGVmKMiTxLA+0eefELWqVDAFtJUjSkzB+x/wNqTY+BHBKDr7Tx2GAkCyMIoc4RFz2mUPUeBVoUVolvYWQTSGlPGFdu27YpmuffUK52LaF9JaUjPA62YCCvmDHnB61WkcCbRizd0hneD4AAoQVwEeGIWAhMw6Z7rgKr6V8wEQO8gZv3nu05UL4VLdGBcAXX6SenwEUhGFrTCYaHhqPxIxJdxECOr8Qe0GsXNhgZqp/400RS4ibGepqOVJC+f5w/CGDyJx/w/rAyFVvHVfmlHXqeAGfU6wvjNQ2lHgJRik1E91pRqIJDJzbQaKo+3VMSoRzSgNlcIf2uhBMx5unHE/314gIksQNrkNUbuFrk8+r/oBm1/mILRrEPSya8lvAubzLiwEmyXkTzTKchDSQknD0CSfDtUrQX2o/EuLLtkKIqdG9j5P4N1vPCaGnic1xUWznbWzeDgNiarkitcPb3kpbMMS9wh0v07Vo5R0gYQd2rSBikal0snWZwdUXJsP1q0hrUjUFqOas3pecY6Sl44EMgefb7pOSnLRxUkNvgWstxbnh6L4eD71h7QBAEHNanrEZssg/bAb1aFkRtwvJJJKl1UYju8owTlxOWu7wNMbIrUx6xhA1ppBCrLU0r0rkNzQ+x8tNacP53g6RNGpSVgsvEyHLi18rk3TzKMawPonUwJC1mNgNqYHNjh3UzyLgGnezz5bF3T14ZULNOOUQkdRwrWL+LIg/syoAHzMdbSAp5RyAUYkIrq433oMhvwSv+0nt3sajUEtFqIjttVmWs8qJqMuWMHauOFz+xfItWLtzSyrGcyUpmyOS3O3Mhu0pCBEblLWLZdF9jM+mkBa/Drj48ix1cAy+53ENofSenx23Pp6IwA/+WrWLKpSFOVBvz0xR2k1mMeCgOo/HdtjExd1vqPlQNuziTsVPgQAWOt2UiPfh8yyi6t7f1iMg6yCRrdaHfLJptrtCmZkPdKDy7E1806h/XXgbRJXlAAUUKfGaTh0Cm1ne9gz2LviS4BTmLvpr6LVfoIXH5g7vvBRwOewmtG33zoaPDyEvGocTgQFY6qOpBSO6JRKwXu/4zf51tYcXti+dQPlO8WmoUn5hx/1ZM95ztalx2vEyYWBOmnV8pI1oVN3xqLMzV4Ko4S2c0C5h2Zqc/XW+Ta7G7QNhdtojSaHT55RWs05O8BzEx7z+gkC/d4e4bBMshLQHICml0m6CONu89Z7WAPeGE7Oe6SKNtHIQnYOvYdeISi58khTqM7DqFtNauaSb2r6xQwtWQKrzq+XjrIPT11kOEDLmBkn6d5widnwvn0kYvq+ruolf5B85T0yga3Ojk1vD+mZ+f1qGxANZSX9WmPUu0Ab7lqRaeYUM2HIdPuMYlTnUDWX3QXt/NkiGS1Wd4q/Sueb8GgknAR4mZs2Fe3Hy+5qQExKU+Mcos6POnG6TmEahDMSKtkCn33d+gUfBRVivA3vducsQOCrRQEUefFcac0wBmBcfAur4YergAtwDh/pYIbJuu0bIs5nbKSVXST0CLOUNfAlgusb4loH8eKIs/xKLrMxjWnFZWi0xECyVw+PUc7Brkud2eqZPgVhfWvjKyrbR2wHGW0U4wT93vs83tplQy+1IAK+NNJ31L8dhVNJMz6RLz80hO5zjlAa0xxVjNw/7/qZ6D3KU2p+YF43BSBqzntZZqvgj/m9WBtyoLmDrwo7lE3dsqFuri/3KlGIVrZhEzC1OBh/SJZexumq9iqrTIXfjdv8F8nAUXZYODHLCENypLZzQatMQSvcxnZEUq1Xl8N0kvqaKhU/0U5SIVLNQUJjhegHPHgSQZjANvhWWP2EbVvY31+WxMUzdw8m8SbTz+3aCunStl/w999U+Z564x0QnpgRN0wAdBro/LapiTqM8jjdPhLZQchu2ZksVsYguYXIqph5Me4BtmIRLzrMLSXEU2ac+RzeyrkOONSaLEeEUMV6wIMIGEszPxFEhMhYK1y2rgvOv4R2IoHRSkD/tmvWS5T8/k6zpOgC+oUpGNthghCufll+Sb5tRo1qJOBfWyBsBh48jpOXA7wWOE03Fy42Rc+OgdUBRcoi6RdhJz5ST/C4rltjXMeWiEuguxiUJQ553qxsnbAoz8NqkpJ2bY/mi3dMgeo4TRNM/G2vwW/eGZgOf6e3LxycLnzW6BYkwyNrwDPURRPXTkQRSCtFVwvCRb09DJTimPoXpDAWfOSeZAcizxzWzm3r/tOULyIqXmAUqnG4Vn11UMcpskxsAJWxoA6NJDvlhYaMB55JrveENJ0cqsz3y6gRV/sR58JC3fF+4hUeubfV13z+fI+U2ZIserdrGP2JCMuXJm/cdjr71ZId/WieGD9dc3CJmylABqeopcOO/HmWNwgklSSWb8gFWLvQCAuE76tnjGpigyhK4K4YetJ0XZgtdm758n1EWtOav2I6f4tiHI8kO8yX/l6pyzqdicV+XIJOc8d5FyzgrHRySynotLL1hRcLrUb5rjSrWHumf6sh+xvwcHEfMkdwkcXgwmOU96mWRoScYqo5V0xk+o9v+s2IGPXq+X1Yxv0/hIV+DUmGX48MxZetaHuUk1L8dN7pi2FP/KBcTbZpzJsTdwTjjMzc2P0fCiDLyLVVvfIB+aj4Cff8Oh9tdgyax4RQzhLDJZjFuASOj01/p/mmkt4a3pVW7jUlLS78kCvfpmZwnjHYV+zLXJUFk/PkyiZlAkK902tcuseNZmEpUnYMWBV2Jns8smQIVJsqapPRzv2zzHA/h2HdJjMTUX0Yi8kAn8wWCDuyOUSeN8ES0spwMv6glMACz0kAOYA6WAe0DCARSxgwMS7Z77GdMHybeBliWMOevQjr4QKVBw3HCmUPlJqIRfbqdPb1yJFiVi/zNTm7NAvW1a3EgoaIFD2L5CqxI1Qrwx5XE7fU3Qtvwg0QTKbUjSdEaklYOEuzpiEFBwq+zV8EbCznMXYjCmgtXbps/wyzfp6nOyhWd9jNc2GUlOwVR0Hh6kcM9uDdQCmjrnMbWZRYpjHXUjNbpCD2qDuZE2rmLfLnydcF35Xz4yvtHvTsM+Gb1ElkwZ0zS+1ZHOWAl4IG9iC8MjiIfwYfhxM3vh015Wjp4RVFjwIeGKRRhFm3zbswhbqefWq3dE+MHDKGYhEvLbWlPPFf4K/t77h3H+qCdIxZ0yBJ2nIQhG69l8B70ar6tjtWTbVhp8cH+pX0sfso8iWu2D4x6oS7yrhm++8xDfJJfiKws1UK34kgopKU1FKskgFn8rBKSBYjS0nbUNyCnLSGgv3tcJATdcix68OsmE8Lsxzf3NDqeSE7tGSkCViArZnbmEG0yXhvO0DCbqlPrEF7/86viHxUl5d7gyLObtBXjEKMBeLzd8vuXxQI3CM5h9EOSheB+/bi+NXLPHU/wvXSVwjtU17f6x99il+oGwmrHTQbTsLXOmLhGRBIEqbtUzz/GTGUhUu1HzYi4on+6e0W1n6zZrklsEABah6/zWLI1h/jBLijn1HBhhLKoPugSpnQf4OgDakeoo+n9io//sJtkyyzqgwwSQmMILM52UBogKC3Cbq5/cerWNAddXnxm1aiHvOhz/b6KNVlfBJ3CgkLQgCSM0e9j+hQywC9qAPEeZd8KhmkjQJhXUnWDv5z+00sv0PjdBiC+j+2TAnrZlvOQ5Y0Ln2R3cVmKiEttkCLTIJdsCkJZVXgddpUCohYLDZcHvzJYj45rdLKXeLhclGCpcpwldrqgWouQH2gR1OE3WqmJUtdA3OV7pI8YsCVhbBeDZgIHLVmA9bCidpPsFZ1I2tz0Uf5RXMw/w2OSNjyrnqGeRN0piq70UiZiiFYb0o00hwovpZRnOFAct6+gelZCta57wY9bCiCnyHkr36bWU/TfWHM2Tx8fKUQR5YKkNszdRdqWc9BEQMOG8pHqCLeMR64g7JeyK5OGhvBh8mIsD9+sUQ/vyh4qEla2qjVipHXUGEhTiJK1rQgZK2MNLm9+Lp6uakqlaPaZd4XglkyqGuqEQGNBmb+uTm1CcWd09X01LePUMPwEY7Mbs1qHB1pn07TJEkCjKjQ4xQcZJLAejpDXPrfXyY0CXou3OdxIkPM2DUnAcHmCodfE1a3jwWDXgw/S/KQBBD2leuvVi3qu1iaWd3ZPIX04nkbFW9NWElB2l87D5uNo8YdsYVDNamJko8+SkMkja0Av6bWkjUiCilyVpPKMj/e5nwq6NuWmpw8u9ein0sAYPywJYrgVbABrLEmfKomTfWb+1mEPFTNvXoDJI6CbPUNl59aJxBcr+ZLarhe2vQXGN9s6vhRQk0bHeUixk5hMN8H5kJOa1Aq1D8nbkvVd/nwz0okx4zvaNR/dd3CN6enfN1WIvqTw1uG+vHQE03jC/oyUBDyktM5sPOrEgdWDpm5rx/uMG9LHVImlYoHhllDSb1KE2BkMV4qjG9JjjykxfW9zIqkSuwUptidZq8kW4r7allIK5fxOC04mld5RdbsdGBe1KaAWq5eH22HHXr6sLPFrXTcCEx0LWhussl5XSOOCIcBuaQ+TC4rQZ9BdaCfI79qaj/zGJuNDzULlqj4wqTMvjT1PTUgtOcxTUdHERU03aIVFPBRb8Jm0JUsGjh+5loKtwfrNEcc0Ccytw3VnzPtT/SC8V9pK+ouosnvnHuncpBg3bLbWXih/IYbykbaMvmHPW1xdkAD3xxE/nuwa54V7wciBOjK+sk+ZMceyTN526pDhZmjcEmKeuGw9SZxT2M2cA6mwK3sREQP5qAxnfGlC1TNaUQpnGsA7GaknqtA3rvIRRsR8QfQHA3e0kAx/bK/dKKPweJA0jXs1vqOJz4evbjEhGC87vUPFHUWyUAZyd2Aa3ZPTr8lp+bWbdyBYW2OGj8WLlmJtcM+q8TgqLKARBzWL4G/A8QZOs2O34YECzOpvSCqrwGrYe4vIf+X3yd1pDRpbmLE4J/hnNQX0rtb+VNpV8UYXsyx7bKQnHiMqCfDwp8Guu7jOMisKwvZGf93jJMf4H5uY0F3R59bmILLaETBct16rPCo1yP0j8LWXRptrHGYIzlVL1psGNI3ZbyL9ouaJaETEXGGgrkyVYGp7SsYYs3+Rmy+2I6ueb305M2rnamkAPAxBQAyKsOsgayeEq12OfhIqesBFnBRBWX1fgqqvognS8ncol8vGH6QYSl6gMQ9lJ+6GLJ9lMQsrMM45KQMWgdUkLtRDpCYVZw1WGTP1SXkKX7Sa6tjcog8QevPQGs0uOa/gjhGntuXqURBoEIzys9eNg/l7LpexBjKFGQNPiUaIV0lh6/kvvVqHSGaTEIb8oQPfbqRLwDRzDVhKm9w7jRaDDNT1d9X2p7sBNgxzYS/kvqaDBd5GhjuDCKRoynYxwxVSTIifBzZLitOrZKpr8ucK/LCY12DoOZMi/sA2l35sgQ5ieM3EKZ4VYn5OKz/XMV2CVO72BYZP0h+xq98c/boC0AbjyHXJPEgYrXKHtGeStalBRGEOEWc+aR4vyt4aCSdgUM1FUlj4Lx0W4IlR/XyDy/jVfbdmqlEr1nOpdvIDNvEtpTbnMqRZBRb1AQzL4MJ/Lbfqz2XUL4+2NMEp9zBsPnnyUZ0ikrlO4bU4p6G6Rblwaeuwuu61tezFPgv7PLaz0AFZ3D57sVB03e8hAeGqs0L6nkhzohzbaUKU5MSnEPJ/GV2Z1vVcY3/uLdeZCFQ98E8Vt7JSMgu/Lmtpe6nkKuS6AXJqumddeoMmwrpR2GDgDHXUiRahKX1HTYac8RqT1kvmuOMDzNqg/AQJNB1gnyHm9nyl4naDWalP7eEm4QobrCr2N8xIfz5I8LR3FBGQpfwpr5pk9Rug2Ksk4V9JIejGxsOSCboqlOYJEsdP4PemfRWpxIU5Ur8yQeDvtAhYy1MG536VTKS4y9kTqVsbM2OuG8qZuIoZmaRJF09G1qKOHclFFhB9YZvvYgaDgdSS/OZq/hKSZG/LeS9vT0c1PMtJesJgrKuNglv7mafDC2jyO6EqPNZbQbxY2GNl3JyD0u+WFiIvfT65/OluPL3zmN2ByZvP3TMqEaDLqFqXthpEZnzBy4TpKkLScc3TtqEeMYGcJqrGBnsIAw2xQLDi1hsP3MRNlfOXcPSm2ftrgIMjQhS2n7jhJtOEdao/bi5J6ReYP9HUWyfBNvZzVNlKRLVeoDVXfYlsPtbliyfbbV281qBmJAy7O7YY4yNFU9YBdsM4lwHzFacjAtjnOG+o9dgYxfZSBDGMe8ubXSZlp9b5Pf0TcdSSQvZJsPhOQYH/H8LmmBktf7tE7exIPzPlO9RkEjfa8FtZfyrBvhOOKwTbq0Pn0izm9DfmSzybsUtAhK+bXKnPrIFlGhtfcvXO5WfIjewExxfiCP8udaSb5SlD+zivi2k0mD2euLbGwAnXbWSmIC1notgWntmhi1mRxnuPhVc4aQtWwyrG8TtqmKACETiR50UzS3CavHyWdv05svuP3lBaoVBYHhAmYaHRRisOaXgAKN5z9cPle9brKeyhc6cIEJlVaB2s+cO1STzkrwEB0BkTixCisgpMAf5vNWYqlIvMwC1W51Scj5t4OZE1fiJzf6ue8OErgOOq/PBHeO1/Zdyln2/8IL5P/aJe36q5DuUd8bqW1q7EtDOldjiNS+wMkSR9lwYbBPVhelImbxbkzx9PDJMlaGVbECmbm+cjVec6GGL/x34NNAe+cRGSwe4W+2nIJBLCBL+WFCwGZd0u0Jas+CdiGlGIZO/8yyRkMM7FoL/76GYGzZC+hraf3Z3yA147QeyWwljzNJubOk4vZ1clTFzZxyi0/AcjNyRjBKuphzhd6fhsZFV+HIyy3tdVfLgUdufcfbiOqgDn3aeDrjBJbQ+p7zyrKLfagQupPXSGNZWV47bcC/HiZ/N2HR8i3o3KjYwInsfiSLdEJUgRZXgsUORdGS71UmbS2+OeEfP7VlqFDNIBknC8c5+lS6scZsQzeqHVcaoJM9tBcgtMwxIAhEI7nQYga/yYgtJxXytw8WCTla+qKQ7GUcsJgqgeQHL1CVYP+5peUu6XXbDHPiUmvD0Vwtvgk5zOG6se0zi5AuV9vtrf2d2Z72wu8ly0YNzTb2nTcw8ONJcyySPN06ndbUcDOh264wFquFeqa0YIG5MLt06TiMNBGkXhhs0Fn46rxley3Fk0xUjhzhbmKPdv8rZXBNaoPO6WWx9x5FsTuRsGykRM3aP48kRiDxciYOL/dSysWq65+yGVcHLbkXxGOOhDY/x8awvDEQMlFK8398zDIT7D8poRi7iK+SnZOx72UmR1vJh7xgtXIonucS4+fj3yWglBQEyWsZHbk+zGlT+AFjUtDUnKWurXm4iCZGT5ciuQWbnF/OUi5CcV45cq+GhU/XF09YXVSOwJSZGfskXg7Omes0QelAJ5E/+mS8Gma9v4W8YCySCC6EdalhT0DRpCH9WJ21pfJDZ3XI/3vJ4vt02ZQx4ta5lRhv/oiWwyuapV42vfwfUgotIUmtAOgfKtyqqyurx6ycR/qE4arLnc295kkeGuJW7eSdTF6xUE6bynq2GT4wUhL56XEriBTrJwh/UJg57SGdFKioPXosa8WOAWgPEhRKcTNGZggVmKMy8ff8OEsCmkF6P371uNB25v1yBP7zQaf6iiG9h8NvXMhIBs2w99lzcLFXNQ0TlnR8Gbroj+kZytEJ0T1MkmYES5gkNxUTs2WdANb3Y/2vTfhxTY3aLk0RKSZUtVig7c9gYclm060Bozvfkwb9coZlNtDX56ue7jLSFwqXupmceosq60YGhNWX2GxU/2rJmAU7mgkUstJDWXvIbGmfoPmh92eDK4s+vO3ykDwkG0HeBYEx2DBQbqrnLNfb3FrcWkrQNPHZZ+kAh8lhLShGOyR9qIKNvYmweGHFwfEPjNgWFGpqoB9VIn1ssnx8E0TBnZXBMKf5r1iC9v4Uqkl0VkTm2IOawiL50tAHReqDtUduA/HKvqwwB8X0z3IaFyqoVoioExYwmTChybjgUOi7iKKI/YS1ZHoKIW2XQ18QeUeyAPblW+sQrjx7nqYgjBFvHx23Lgm6w4OOcckXcxAeyNiJgSy7Kgz77iMyeb7dk22BnIr6kIYl02fEJCoy0g14G3/XZrL6iAaScynPVJZ/iyv3BaLcOybyUomJCex7ZNRXkPvuscKOeaMQfNt0cubatpRDJw0eoMYgxdt+eneDFGICahyKkwTsCcpWmv6JQmiQkE4/0KbeEFBmNq+MPNn+wnYLaXu6c8lDE9dnp+F1xbbUC4MNwLSgJolP0+sQjeX+q03hpzQ8WP7tdk7pQAlkpP+bjMSDE+4LFetZBibOuvNsRgY0wn2eNJO6wP9z+8YqLogEWoRGBz0haZ/xI30JQ9XAkauQiXCZ0f/genQ2ThCPhfEJJvsiWDD8M9ZOhTBnCNxUE+VOI/Au0tC7JBvzttNFh2hMINf1a9Iae9aoTFfWdZdONY9MHWm6UEfRDIbkBWs9A5+vOUf8uCsCVj9hZgKVKILrCJj+93P/gYgRmUz9Xl1/L/ACEhFfJaKNuF+CbHGQwFs5yKFxlVA2VSTC1TZgVf58ulVCxkXJy8ZgsFIu01J/qfQCkW6TjMPBBWOgnXN7aSdfH2aD0Kdu8pDpP5aQQArSryubycX9WITp9cSivnT2EFTp+b2BSAK9g13BLjxre/7It3cw3MG2cKh6VbsXeSGz3YW4yL4L+vi12Pd9hdQWcIotxLQzo4mLNffFmlT/7Aa1RXt0qi0m9QEOhl6Ck3n/0dw4HApw9okEZ34HrNMq+nyQk/5ueOTtK2ZGY2XH0CETyQ0iwHGjm9stKTGt7G3oDDt5jbZ08fWLPosp/hlTmLzJxL1ljUyhdL5mo7u8/RzHnPvNDf0ifvNvI+90Xz5LhlF4944exIFogdxzZDbtvCyBjN+riNjECKQHKFQyDwjwBhks0sf45VZaQ2lvbwmQM+rBGRqvc3fdp17eS7WMePJhtgK+zNidfF7Eq8EOm8KC9tux2zXt1xnDzdGyTKks1GBsHRtTQOkU5dTJ9PCQePzMfrJXsBXGmILdB/AlGsNidxSprmw7oN1/b5UB/I0W07vgbwFm4fJ0xGv8PU5Oh0bVyCR2YTt7+sREfiOakFfxfn9J83RFS4n3ZkYFszZxYTxDK89myTv7b+0SSpO2ipMMd+V8jttOL/cm/nNcWqoj6gFkAa2J/37YSaXEXqpw/bn7JXTdkRJkBqPSFcG7E/WjNKjlrG1eqJzA1+B4EOSPmG+Arf5bONXAsJRrRtYew3E8HOWvVhhessBIz6U7/BlnyFs0dMVpwJfY96Lpy/NYT4NLhdKIGN6I/Cge7WSo/4FRy951GUDjsAtR/bgk+h42bsBvvoNhgtVKsq5klvtRr0LBr1aZN4R6N69EcYz6f3PcyFjEPIpxTB5wlg3PYEbru2LWDQ6CxR/5iBJ7MlbzJHLq1VHwyFPM/1OEwT4cPmns2p831oHiffFFCiCzrOG3kArRmYOdSVyb61oxPbAIG1jytnJgusepABXmLnz1A5Pxd1PzI8Lh/8rFQPTG+GlJEnJESYXkkilcbL1KxNyjkzQGR29QjJJnYvjkYoP/McvO6ddLCp9jMd7kjH2LQh4vVI2227dqZYay3l/LmrYst42hQvG/KMT28hk7x5em+IJRqfUJ4uMlkgrnBKlwXaRPvr44cUmXS8e8H9RS88dSSwaWisau/04QR78Hcl+i0yLLYaUoKoECIAaEYChlVmFDyAgJHkd60ITaBn6PQhWewt3QchMzmnnH4kx/6Jyoz62pHqPk0h+MHRNPbcHER304CGBxLJw9zq1imxcnEKTBf8g7darbiDqu23UcvnAswDKuFXkgOXvDgi8aFAPwlmSOz5JgAbbs34L5MuzKHlLZtgthp2yhnhomYE5+St0eDZVto9ioE0Na7jAtbCXmJqqpA30t9zYYo0mqP56B8LwRgpefPlCRa8jEJW72eWEsvM+xYOzI+JKK/hG8JSbYcqFAdSVG+CND+LIGXATsVLNHixxI77eOGIAUL5wHbz73zHHtQLrLluej2xGC9jHZsEGQMeiLQddGanhC4/0jmIJn0J3rc0JZlkcckbXCX8BL1Y+ihkPmqAV5aA5OGhJkKIYgJKRaXmzy9CtmE+dtCLV0Ge6tezdfGucp2PNvFUHS5LAkgeBAtHquRWAx0SWod2rw2i3sjA7MwTNbAtTZuQol2Psru/QEbKz/1qR0SxFBlpu9htIlG07IKN1ChmWe2RazJzFOu0TKkuWxgiQXKUbUASnAyhAtHI8IKtD9/KPnDIHgjRPTvqSLfZeK5UdTb9h+WhXrYNq7rRySC5zrXX8GdWAJ+gX/ZodXuRgH4gHHY++g4xcGxNY+cAEtxqCzhNWFDOVyVfOyw+chYZE6A5XGNEEqI5zBq03Sig4o9V8JNdNj+U0J6DnGILwlnm9GoNiXGd1SU5wQvvfpGAShrraSWjO74q2QijM56Y1Js8pJNveahRtUibEFyc7gGKoCc9wHe3Jb5vznOui47QMfdw1PTjzORaz9W2J5iK65m9ZPDK0WAiyGrOOY9yL5HAZdimIX2R91PdRaY1fz0O6M68XEVCAuhdOl8gj2tBecb0OQYL644M2HKLDmDFJXUEh4zYNYqjxZ3zEI6+Lx+uOYl+i6cqFSjAWRSIiEi4PUkqgQyqWE7xh/uhkm+Le5V2K1OBp/9aCOj93v0KID+t4aPFH5jNGY9y5H94ZA2BgzV2kCqoTl8BuSrLh+q8oCu29GVX90L/ZYEVS2xmgnhJ8/u5bzu+H+A9VJL3A46BlZGMQ2tw7H+Q2S+CpWWLRzspH7JrVukzSLRVev5sQAK7GqVOA5MPHopIDHwO/oa+o94JTxOj4AZIeeX/iyhQU9ncss4LshW93XhNze5EYv6x57H/6iUkPmvkU4fPOOFDX3jbsvWlPNxERn+dK04bv3M84x2tWArpaXm1K87uIKIXC0ZA8d8U6P4n4KVOaR1WdyqgVQnt2JQNJZJJ7r/dWcQOT8OufVR5OXUv5xFex6fa+YtmPtLc/lCESFqkWAtgdmVzdwHHMo2h+NKGnTY1rEC6RYfDgsHaCu/RJkGjrfNQrm9uHSb/11he3xncYxwPGRznJKYdckfK4fuzWN84ZwLejmToFnVdIqLxs4n28TD26iQbpPe5dTtiGMr+4oFWTJhLJFoSEOkLnoCqXIbKlcKePA3xPXUGLdaKusuEeNK5GGJmc0vXjCkrjlfHiUaIDeRNA9L1uPE0kaNAEawhwva3/isTKHotQrObjcLMkb/cEhemQZDOOMNCy0rnjVorHmJTnhlobkZTtO9/w7+SbH49LZFpDe7aJvSAsv8R6IfVMqLCIxDVkQzNaIHZsH5NWQozvuzwz4Tau+Boc/+uN7BUjXfwyq5k1Oct7n6OzW2eH3TMIxWahpNhx+L04QmPomjIqxdBmkSmGxvYqmqC5kVQkKR1Cee3ayXJcW8U7zxit4XboW9I26hf3AnPxyB09WA0YK7qFMqEZ2p30f8smevecItpxjW8Af9Ypg2kZpmLwMStQegUSuEyL4jJsiBzuoINMO5AzK1uiZNMtwguSoCzy8N9slBbGRIhLGNuETqwmOSIBGcTyWOR+PRHgUxHAItdtMcmoyZ1hiMR8354wPUn3zPGvOpg+cfW6gOyK3XATScKLAiEQ8jUi3RknBngpMfwp/+toDzvgHZ2GjyJawgqp5aQskVqfuzNfIq4BxoNrTmRsD6U55nQ9OAJfoIyWJ8ThQ1D7+CUzqxeteQ8/pyALmFni4kgn1MtXG1Bbb0d4OAdKY7Ivi8TO5PkyfQPZX34rbyEE76Xy/ZDyWORSB+PAZgm77m3kHwqUMWj4YEuERH1bYXoN9fCJp7JY1N/y8IJey67D8XTsl9fVksPgISSzCQqySKXcvAzZOA52xj3sKI6sUY75G0pTkhWa4tNMcJ1Ve7LtHjjnF8o+XZcvwRik9AXtPNSayq2wd4bQs2pSPpSvDMt/jJiVqfssoSLLLE/5I9dPSjL7WlxY6QXMXKZVo/TVOqp4Fx+lC2t4vzU7p/Rownn3B1JVr+C0zGS6VWRNp0jI7HH3Wh7cR8S8Ci4IcxjfJYvdgPtCX3LPyqhA5oUzZu4J7GVTDpMrm9Q4ig9scc4Y3yqK5HwfO1uZ+wfSuW/Tr+maEAsTBMKf9NU/A0o9x8m7wr2Z+JcBhAkNfVIeZ2BCx3Kdx8Nld2Lq4Pmsn87KwYJ0p1iv25NzvQXGGxSE3oX7jDGZ7qTyjA1yNuBL05ADxqic+v16nRs9UIXOibN5vIM2kpL+7BnjwJeT3jxw8GepLI2PM7eSgovgMtdqGLPa/n3GDpYsSRvjwFlMynzGR7HeAPoRcg7/O/ln9dqf2d6K4IjazKGSBkcytQtqDTCnM4tUaPrYuWvGE50BXTmUkqu1ydlV0iH5QrcUQec8oQYK+lDsQpIOy7j6ybkjgNKJZS1lUbjjvZh99DYyR/1x6ggBMswZmPm4+2eO8sgfL5NNybIcP1xriWaylalDSY/ur2nkwFsMF4WI/hvll12rOUclmbpdxbwfOyhe+tiaIG2buCKFdEEJw7hEW7IeG2YjxGLVwC50mFMYB1xyJ796NTjFfUReu9g40vacoDhADTKu7aR3Ef0CaQoj/mufX7uqpsKJYOvDxZYFBlKarb8a86G3QNjRRV6qD4XPSpYhGbu0YY51WAhXLWw6zHbMr0EJrk50uE7zXW5gYmavpC/n4DqXrOpIKJtYs8Be91VDGgfSAekH6VMSGzYaXkGxDmy6YDAFvydjhj6RamBWZbyd7UU1Sk3yRIGZrT6m9PuSZ72geO97q50gzVcJWZ6X+BtMowFNqVvEYvCGMpYK2QYEvPK9oy5WMURrG8tmIusjV8pwPFCMD3AOMaDso3cY/QnZNCo4NkXpgRwgH15P5ulHHrwPb73iQOryRrZ3ndaL2RMt0GAKAolFsWG5YQeMWxc9tsUwnotcBtqcuJnmvKYG1LwH2C8zV7mk3JTJ+I3WxCgZZrxbbW8bL3sFuyfPnVSzLrHXZakfYGphHA743FTEvQjvQm/zD/piVHgHHw8U0fGH40RANA0lP84v2nuXxLzGX4/1VH30diYRM1EFGJhgMSvrGBSGUfTqOiFwwJplylTEjo95ErbwGefHgqo5kDnZPluxOMprRLB1oQz0fONdBPT5VUkjxEWRhuDw7nJX56EE3mdf4qpV6yyd3KzYlRhSNeAnAnszRimI4VvCeKPchj8Dspu1fO75zVI3kEUUhRl5+H9rdkpBxZ3Ikfl9RPdG9JznMWuVE13Q/Fiav7jMbpHZp/CA5dM9Neo27G86UZl9Lze3KRdIbNDGEb+Z1yIu4eGVn70Mbwe9f5afUhf6TIrpOAZq+VJ3OWonUYtiw2Y9LSTaynDuf9OObQZ34QGNhdBxm+/hA+fmFCkIWZGW4rzm2oe4r+pdvjYWrZXHzdSea840lIjJx7ahp/TlZ87jso9t+NknnEPK0RDyK9f2hMIuJlhxjkYIENdrivSe0jEggJhHJm3vsgRC3lLjlDt3cEt1tNE5C91pvpIs7DFxXI9/RsqeBFD+BD1/O1DSlIh6UdkX7FyMiq2CKib8JwiJv9EQkfSbWW0aBLy9YKcVcxB9ftvdEfkZYlia8Fmqh+b31xH1cHJBh7QCevDWdiBvGsbtbux7Z1JHZCaWgEPDo9eUCv4phefUl4D6mwMAe7W7I1FU0e7LLmwFULQZJdRcW/sHXV/r7gt3W8CchQodLdUlv7JIQlrkE5mQA1DR+CH/XE4TsmZuJMJPjGxp0HyHejIZbGccFoZ7wXPLkXnuPnJ2LM1Yax5qk1bcv0VwEslSyTXI/VrYUWUE8qULangi3PMna0BaH4xg3n1Sf2SDEXIGx4m/nEFx3vXOP9rdmja7rWPa8vBCIVh8Z7WzY98NypqZGYdPBOnifvRjs/H31AWuscsIOjCB3RKpz0r8Rt+6mTu2HEOycbrxWQ+HTnscn7/mzqZGWaltiE5bGAI8JJy7aEiCGc+cXn8yTZm4eHcfccoIKRYTwilARqPa0q4D9D/kzT5iQZ/TqoxuH8bXSl6qw2vgoWMRhHv1MbZ8blA6CRGU8AizMVRXOoTzIaeBDGfuzuwvDds/NXK1h03ln2wDU+orj17fjuNyyqcH/U8HliiXhWDpixUy5srhCSCVj0w4UUb7Np7m+jEjLI4djmeZVTmgJDXRS4UYgW66LAszbcrthEwQ6YcL0xSa8Y67O6pVs3KXvTi5Lwi+wd8uG/DnpGJcBEsBA/5ogZlb1RbhagdIm0aG+fZb5Vv07fxn15anpidoLfSOQcbdjNHTPRw/ZZcLwI0Q3/7ZD1iVaib7vQREDz1UJin9rXC9poYy5zBT4GkoC6NGtKIi+iHoJcV2eJW3EuABDXJ6vFGMvrFaOuRRtFpNGlAW4KCUl2xH0e9r/KCeJkYEbN8+5s2UQ2RfYUsRWjGJQhOfSqZ+dGwv3ahfHpRirgLV4/rznT270Z0EXw/IC8gXjW2oipj29EHVksy+KyFI5mVCeDpYY6CmXVNSvFq1en6d7lnbGCm9Jbg0hCwgmT3Pwt2t6RwewurgsPcFWtPuYpzKJuJfFKNNvCrCAH5t7tHGTZSLjLL4XOgf03M1ElMoiB3ECqEuEUyXFbyuF9ih859I9VBMtTldJtO8m47ayPRCglle0OBRKvCZNfaqYdMjAZzXedzooHWg0lFS0GgoYD0zE031iuIJ40tuF+oYfrodvWxkhAcF5SH/sUf/+kjAbwrRQsjGO53rRXr0hnvbjOzdF3y+v0lhpTD6sZeR9xNZ6Ij5IYjGe/wrnOzzwzi91YOm0eRUjXsRcs428ebk64Ox0kKhZIZAOZX03G7LYuCTKeNPCpBvu7Q5LeW/OpnY2RNwbd/uSNBkIty3kAdoVGMq1AOHXnwNFO/FwDmJEufuNpn4IZ7mSsQOHX6TL4rZ47T6zHWxzUOj4a/C5y5BL3gcGKy/XeDLCFc/K+OazfzKdtl2W7qkVXrZvHaryE9HbnUGYJ8sScnlSC/2UR42XZuFiRXIwF0UEcYUnaOo/0A4Dd2lbP+2RmV8DTMMD7QWNtteLeWUXTdDrmLpGYQrRx4NTy4uGnlSMuXwdHaaiuP/8714/bRQ457u+2cHKKYnWCkxbu2kZF/SjKxEprK8JxF4wXlFP9hJw4SZLOOB8IAAKz6k+ZfvHdPrQohsJkUsVFBUeuC1eCd3T+Zwa/Y1HU0IIt6ptoIgscfYKSluU0ttMtafKucA8o9Uv8ZeJ+4XxPLBATAdmtU1c4Uw4vGnfCOBYiMspGVjVayfbg9xZRBy+IK2unftE9HVK6NXYq1a1sCiOof+CGRUcAFHB5I6rn33XnRqYl11go+EbDJuZVvIZTM+EjlwuD5GHklX8AOXL/ozx4v7A4d1y6BTz02wvwY2EAbMuSbH0py7fy3fqLt+cbcEqMGO43faGyDtQSWncwdFb0/j/K4rhoyQ5QLf/TsSBpmmd9L0PstZukDKGPyiXKFSlQ+KMJFlav7zYhcbTRCjGYRua0gKVLdUxMN/xkvvqoX8qgjlLBFkyKVphengGzXU3T12r6XLrUHSARdXh2ad2wNxKb38mCMkpVGWpjodFkhxYDNwk2WsXncNbFD5dm4gm8iEmvA9WG3q2C4qopjQ9U0/8xhDelNzm5G13SeBzcfJQ+yqyMoBJeZf1QnDWqqPCFKTsOgnZ2NOwaz9b7XnY+2NLKV04/IR9/tc3yovsCLTAH1kpXYoeG8dFsZePBuAs8KHMesU9OZGVupOaVjLZpciKC46z9QRULfc9+z3+sQD6D5Rh4FKij8JsFC2Np0L8an95uSmB8/juohOWp/E+z2pRtX+yN+ZFVbu32tM6nRg43odf8nNM+k+ZmGsmo0nNkjlsQCM9rxWaI9iqvDQtp2bmKINWKahk6iK+zXqbFdjYc3h3PsTibbus18Ci7zD14NRnxxfPrb/oL6VUm9eWYdkeXBeCzb4YJ8fS39nU+61VYzJz0WuzpECaIoeSsayRf3na7299AVWAc9D383uZrEo3OnkdSASFN4IMnm2CwFee/o/t0sUkpWnrpAv6O241kum/OLT9hsBC+yyS2w2yvcQTy8BEc4OFoH0cBl3yNLUONHOHwxACAV6KBbF55JFmhiK6+CLpNmH1JnAElzGlhOto2K2Rzn4LFrL+OW2C7xZLbWwZzjk69OJPGMDrHbjEogPaHzHyRUDxagDsC3V+7SY25EPzO8CiADnyF3ByQLrCJ1MGeHC93wGLf82zeusA2iWNeezbeEWrNe+7kztqWYjxD5BSVhhevOdREW+KowBZZhWFg478i9fCKF73WGFKAnYP4vw/rgYl/P1QFjT/cUuqbfW859GjotsdzQYHeRxITHWw+7vhJPTiN3sW2ZNFbDKRygAf/VX+Ma5x7oHfFqAiV0EzxUSo32Om7FRV2+DIrSxGiBdmmkFcdDYRfUkRyYLMpkjHPVv38KpQCtha22P2BWZLrpbmcNrN2YCspeK6BVnBLc3WojHviaKWmmxoZyOM6wQYfct/WSToRF6GX8dMrHUs1A5LUDrUhPhNsZag/cAeid3K/ueWQbDUryZ6WHhW3nsCUym4K6TMysb5zt9x513KOaYcFINebaDGF38Qip1y1nI79lXE1532jVulUNVbJRJe8kvagpohU//nWEyPUON5gs2F3k5tG+i73iv+52B9tVEafNADNwnKzwXw+Z/1gAqci0W6SP/YQqNE+n6DVZy7hcZsz88r4kgccX/zHLVcWzV7YzKwyZUMoz0lHBbWH7CRTwNahtsB7rwBq6e/a7BAJ+z+E52rKxROJBXl1XBd6BUPXJwFoH25J+Wgp0wDiY+ZMJMywSqvmV9yW9Rli9pwm7qzQjayDY3g0muNyp7Yo14zef8eis6pnh8JSrqrpOqPniuOILSko5D1nLDNqJHlL2x9PqOKlKTK/zp/8Kd0zjJVRJXf0LpuPGQSR57G0lddJ6IMb4Q3WLBSMkmVRQ3LX+ufp4CaW7sYrzXPhK/vVyMyk8z1riQkpq+SaWFQJg8xfbvfr/2bxROyWiu8FcYlILENydF5pFVbAyMT+WlkNNJeoMhHUhiypLuae6exVwNNs3Bq0oWqdeHIAqWOGJKtpf9YFCJyWtfPNfX1ASE2p+b5fN3RWKdHya/JbaZbVRvUV+4X9nB+Ad0oVNBIZn3YJ6ObJ2x/xYRubTyeLr+A9YoTjA4jBVEQXOWCFWrYq30IEZYp6/6yjvsZWKphM95wV1Nbgs/R5Mc2J63N5Qxb9UW9ashvRl3DRGIhYdT6QX0KbOTTmfYUVMZLU8M6p3wflT0l3WkTg7+AXuBavXy8LmbFkaYOX9Gt52FhPMdijyJCr7biPQNjrCG3nLSFPtC3Vzax3Y7co0jRsYC3CtwmvHfPbQpc54DRtdsEpXyb9nU9YPqxolUG2xksYcoUwBVATyxPl1Se6oKeOi7Q52QEuuhDIwdTl9buhOhKFGuVC77a2zv/OB6uwHE3aNYAwhEdwNYi6ehbHyBzfU1fmxKKG+vF8xihTRuiD3rwlyQCQszmR5vxtWGVBRT9lKDSnChwgaD6VLjrxJ6xZg5y5oZc9iOuRgKxLRFDH22ldpTo48qpFJoLWgCdqVuZwSU0/iYL5Y2fjo8Wwe8XQZx8BAj4ODRk+v3sa64wbHjurlesqLgupSibxoCvp+2HhPinLqYG7qpWARCwImwcxBWOL6CAxe2kw0l2w32qKmaJdv00n5kUABIIqYFG+0Ln+Q/JuL+uqWQoV8ux0I/Hz2+OAyF6RCVvQL5Q7jtKq/npm+FB91DvbFLSOlkyLzgca/A6mqIomYzlnKfDOT007hfiLUqTraNdcRzMjZxe3hNXq56v3oXYHk56YH7qmUplM/8k3rCE0yu2dHKp1AXqChDwD7uWzJrBfbOkgNYa9tiTGe9lDOrwYrtwbW4A/tNc0PbpPlmTQsb0GAH16lc2Tz1S6/tzzg8qCdS9pnmutNHJK+mShcfegrinGKhT9iUHgLyypT/Y/w068LvpudwQKp6w90MYayD2VBwAUa6S9fFs5D0RQeP/RPbIv0l7wbYWBcLztn2tjA94swxsp7SGGUUGbmUnmk1DpVSVeA+N341tg+8jiQcNhtJEbHzkyz4Poh7DqvblO8x9yDTxhKg+FaYayWCx4r+9Gj6VZTzU5k7WJ2tKnRt6bg5apD5Y97JnT7V0Q4QBChVq5twH6WXMZVjbMwqmbV+LIfA6OM4QrjrzSZQ+wgeGKHnMKJvLOFwtTRG7J8Dr0xi9qGajth49w7QSAoQDOGqoCFXHKcXrs/MiPaHgVggGEjeqL3lSQ0aOw9DpJvGkJoglo4XC0URBe75xhrP4Jrd5emBZ7PSI+Red3YXhuiA+8wQyw+gd/LTtPxaXI3TRM0zPuZWYqVXAoGOupyVkiaM5qYoZos91QuSSHxo3QZlSMzePwa2pW2Os9TUfKUMp+xrL4toz08d92KbVtS31gDwcOg4FgJo8TDkqZMppMvuuvGbfJUSnSj0NpxSVJpqzkSbrvAOCN1702n1T+jJqCakrCobGl2BbVnpy4C2qGsVRsRR2wulVaBVrvElqc46wS+ACGbK1EtFxkoL66PYU+oT8lekQEDrVae+bGnLkwm8W9qdLLCSTFDspBYvnamUxVh9s97DYKu3oGr/ppp5u1esL33KmXHtAc5Gh5bjL5M3vzai+fSuyqGlsFuqN6HFaX6ulQid8iLMhh6HjZnPqOv6SqsMd/IpgN/ExKoaJNKkzqV//yf0TJ4V6uV8/zh7gGlJgr7YF4L370JKLYjzkuu/IEgMdWrmZVnvy4VQEGoiFel1TYQSF37bRwJoxpe3FnNNPabTf1h7wJjuZDwa/WRLaa6Tk0wOIA4beq2eX70aURl7uLi0Lp4sEKdgyu1HjihyHelM/xHDbxybogjKA/rYI8qd3vNsN2VGdhhShHezYZcP79d0FkF8Jr19172KJY3lCwoNKPfUigxVvfi3wYR9TDz1fD/koXU+BoKv5tnuF3PlgrP3VwS7X7Nq43IVKi0GDZtFXDwrf+geeiDyZ2lvUpgSLbMo9QwaBZKusnvlZJGJmNHQzGyrGbX2HbhkWpP6wgi6tL8xeTN/Hmgujik3zez96bX5QoNfTTJO4jPRmXtUB7NBInFipPTbN/Ac6zob0615PbyFeIxJDQMclSSg0YPP5PpMdlg9UDzqRbnrUVezcNZ+0FoAFFJ1nn7ouzn+uwm3L1WIrWd8S//DZ4TSYLFW7WZFi2AXekf6P/4pLiA9WU+NTHkVlAx/hPQpnmubzZ0NlLWuIVW2kvvoMrTau39v6uj3tXH5n97lmfh1ZKzOXx3lJlgIlk6bcgqIrQx9c7Sj1tl3VUVoiDd231net5nwDDDLjNJQmxMOPHheHwOlDnc/D1aYA3lkey5KP2BXIGt0J/ugSWi4Xkatr8qlBqdfstDlK8rW3IYqlScno4WVKD+ORbmfOnIRwNrv0W27QHGzcc70snKdzBelhLSNMb5KWsCffFZx4kdxUAw4uhsrygNa2l3PspcoFYbJUy1VawxP4gz4OLFVFFm2AlTpLx7F1mgdxCQ5UoRSYNCW06HVTLD4AgzIaajqtNkrLYdYxMsJ4L2lBFSIGVVUH/4vwT3wwZq+iSReOFd7Hp6/u4u7D9gdLY5BIzyR2K0wNTyD0DELO/QcXUQrhUzpSJa37FAHrPtAYmzvsxWH7aIVryT2PhHDFv4h7//BauDr834r25TXzpreimk8LHWR4wr8tIsEqpZbiBO4B64z7PAMxzHjcO17WNYQDfF3czEvpHf7XmZh5qxdDqsZVbjkLUibYzZ0yUMHgCd+XhVt3qrJ8cR5oynx+Idz6gKf9mbbnz6fHt6tGGxqvMth+wJzj/JGiRU7XMMDTS3qTU7I2f+4eLclEppJYwDvmx9zmjCaFGfkOspz0CYEb+fHVv0gwa4EPvmxczqi5eaAfFfWrzKp9HO7DmQsL9+cofzsIjlNnczLO10dyDAawpttD+5BglEInyboUevITG53u1AgdLsEe3FkGAWqYF6rGD85/durKdCBaA9JktqCnw4LO7/jHcibO19rbEN+mXD/DR6dcGT4Om0l92Lgu948Tj2lFNvC8i4LlNu9m2PccfVpajNoSE01nAbtddSeUXu32nTLE1LIGTzls18RtkS1Yu9okt6NE06Rc0+j0DfaPrCnYmS1KlHeIXFWwMmzG4cX75NhIrPyD/g9Wv6bFr1XytgSksEK4j5gXACTPFF6Ln0Cyb5FTLBInkGiTuztA5qQG3ceY08gMtomsRG2Y/zqWw6PtEpQeyevskD+RYPzAZpUS7wjiqcjwg+st/BigQ83kYBjdzeF79Jq/LX6AghGFH7pCQ3M2kq/R3QNgfjZCH0zUMnsAM94ohIXqJm2HSkeAt7+kOvAHaSqKNNLZcNJxNiLVbZNIN/EgAE9Q8cFK8/o1Pu6MIlS/nzun3UoAb94WRiJpOttCxubcsHJbUDnPlfjAEgCGvLPjzbl5dqXYQW9WZEwZlZWojWDRPgm5NDZm48JR5FoqNaTMSGfM+TqwNqgFs/FtKRbG10u19b5zPJLIbQl9aMMdr23NIK2mgMI4cC4WCtoi1TA5qT5AO+/g7PtthYTHLz8Wsi2/wTE92X4eWVxOIa0Ov5Xy2yHMhx/f8XjnYREf222DKgSa3oR47m6bgZIcAqcgQ7nBYgGt5Bq0bDzw2NFhewekT4BccbVwDeUqkPmD9DNK/e+ck0ECGeG8Mu2Aey37My3YY+yxsBPV/tN9ToWuJ+CAT2C7AWn9klNSkz9aJ3Qqufj083B9eRt3UA/tZKf2qwy3jWfeinVIfrJiO8vjqrvofNJruYO4D1e4klazV5KvtrcDRlAvID3lCJhrErgCr/2buRb10tFqMBYNxAJTsHok6KE2QIrqfUmy180X5Rz6IJIZjHEWrOTwzm/+sLAtWm5iUqx7pX4oSLBmwxv9zOFBikKhZzY4SoWbJ91N1I1VtjXwI/vBkINQT+Z26clDwFBmSSovF6H8Fn+pN/S7wcDtr8WZiMO+QguMWbuRljRODDHpO/crkdfNjqA9c5B03vfwlxGtVpbwdZoV/teE5Fk1053NJmLvr5dOFyobFZfppU70NTqlWwp02uqK8ErM20ICzspen5sGf8nKvd7zgBmZTlvUzoj6l6OgVolmSnK1U+e4CzrSvWPHmKuHBbI6XZ/T8qV9x32cl2Bfi9LzEc0YMm1ZmVOiRl0Gi4VTycTS31JYqXDi9CUYhU73Oo83a47TND4Fn1HordnveSq12dNQ7WTKROhR43Bew4VQ/j2h84qig8yFHf8GfHunjAikRUfSLw8sxmURlgAbI1v8uJQoji+SGjhCO/xe60m4C0/pYFcei2t+cBnnBBMWtFdjwuTKkhN9uQlyluxf2kH84O4DcGrNQwploCMo2PDBuUjge8doSJuWcX90orZt7ho7UTq+YUOXf52SRani60vs/foivymr4iuaVdSvl0y8Tbb/a7dHvQCNqAVIY0Orr0M0ElqCjbi2YDLyaPpCxjvqzxPKieUqXkgX+N5zESvALfDooO9KXrNpMQH3vEz9gNrG/8w6MDLlAaJvPzEC3nZfKeu129SGWW40jsw4Hx7waLEOOJuRdCDmtNsTy7IfudnCHK+0vzCpsxRnJ0kWThDicN+1nJ2g/LFfT8wgBO5ZclqgIFFAyF3V4FhDRSUIHexIl+wTkF2qEI2sGG452p49fPdzYPO91dVqCcXcnxCsyklDWtQizzRcYTL1OjIe94DxqagaPgFhcbLSrCRliRaC6YKyBAhhTlewmXSZuMAXhWsXEMWoqoZM/OcuGh5ZsDKflKG5mhnEfbKzwfQ1QSkzkGhLr1ciZeEqI3TH+VNT3BRkMTcWhGot0DRyr2zw9+A7CSII0kSQGvb1aBjy1L7aSPRs3Y0LvXzTZ+tOWQW1ACQjYHje3NMBdU71CSr71IEodo/jBFmrQNPK91DUB+feFe51GB5nUL0jam0o3DLhfF+4KXZXcKWf4pzG6mEPhMyPkcysHKVypJK8DY0MkeyKRNGINb3IApDYVed9zGAyHZ7jVvNTv/eyZEwt9FfIK/dheKZGryHSZPx+LdUmtplV23Wj6jjNG/UJnRkj1lPIH2cWyjfIOfeKx7sHrSNC84ThUKEj1RviRjTTxu2S5u/jyy1R1HlhS0++lzuUKAJeePmJSHXYLb3acp+DBN+YInFF3jRzkX9OrbDkqPzcmPQU1cCOhSLyO4RVovvBg+2bT2SL5Udh3QvWUA3m7POyyWZZ/gendl2EANPz1krLO2kIJ01ZdUf4sKlldf+zeDJRYcwLEsnpHUvYjzjyHVRCcUCEe1B37EluyUTuiKtf+sWJbk05MMdh0/P59jdL8rBQWS0+DK0erU+VHvfDwwOBXy9OGFD0npn7lGe/FevYI8JKCnQz6MSaDxav7nSLR+B14bpay1kJStEwWE+Mm93NVMQmZsdTyUmUe4nOdP2/S2sGMPxtSTFlonos6ZkX4FCOcyJbxcvQ3GmYo76BZZsbDQMAlCjFHMaXwj/S8S93A8OruDp7Ps4VtPsFNVXlbdgsX/j24DFKURWx9UOtPLFlC6ekwA/5mBd7hsWSLQuPsgNaakHu/EVj5HBYcfJkH9iRulVl+jc6BJYi/rewzLFw1UJ+PB7IqvkQhfRijy0pNGIyX6tjTV9GNENpozQSgbel6Q5WiR3akPg0xVSqDfBZhF0LqHbvypRVZOKLnmM6CgU1zp6b/V2Z26fq7V5MIjPeT6yi2P49Dz7rSdsbSCQAKXnx0JYCbBBLL7seyZQgc5/Qv+83vx6PqQAm8/VVgf+2MVdy6y7UF0MSyeh3iXMiXMdj5W2LHGUaBHEhtH1H5aH46K9H46tKd3JUNBtwPMXH1hUfgGHUwtxEg4U/49qF2EYdeOM+IBhBguzGoChxswnrKy1TEgkowt7i4+qxRq2fbyxT87JUvbKu52mkcR0FSX27hg2U1CUFtgzxE9Zh8k8Lq6vw/PHKmlDpM6Jqc+hN8BXeazpR0GF67eNfKayKZz70Zg1XLgWjq8elYu1IJxB5WxyeZooeRtovTFzcrD1WsT5mFlOGvZ7QeDMDwv5frASsNAAndyYoTDl/K1gEnsu/cGvJPZhKNqZQSvJxPI8LtjaLVlXsBMF9ZyO8VQR1dghT7Z9coFWJEVep6j/39xXMPPPVj/bKJBPiK2tytwz95WJb/Wvxwc6/fFoH5WT2EgIL6YOKREPKgSbLIQwFJkF0LR5/Hz2qVkOcbXXDOO+Tt48cqc4Z0jRqSy4pHVXDBJzfZSUtrIpV1H56uuwNNtpSVRvUcDx2qfgmwGlKKclNNRXIt1nXnmBgKyt0+EEmCH7dRuHq0MYkkCJBharBMIdDIOoFrgpsJmyjIIZ4lVctYOfmz0/vYM5iQvzsa+EyYCRSnlRaUvMK/fN3XqOdZc886zGQbqMPEYbxUwxSWdf5cyEmNo/pyinBUv3bvn72kAYSiuFbXYS9kRSJUeyMoBlexHpcznTG4/rK4MjJRizH+vO30D3q+tgS57qaFxPu3C6MmB/BUm4+D1aUTBxxUWF7cw4m3fILJYqT126yt5jDjhRajru7ad2KZh3a7QR3OY/3CoT3tFSaI721N6fo+L0brvqZEXQ+IyRknIBTOW7ZU9BF1+zdK5RYvCfQe45037vIfTB7EzDGzmIfx1ZQ3HdwszGGj6tQxIty448ltJGIT3BidodmyrcFhLF4kDaFYvjRCp6f3z7aIrLLKPMXSapffl6whAac2JpONsYpiR7Ge33HDj5w+CRDZ3gjPRnyYDErfSkTwKLr+/qYaxbQZMYDcDy2imKG1gqdaSmT5RhFXr7UpM9KB/DiH+0nqKWh/+D/SkXg3Rl3upEHn66pQmJd9eEGdO3VG3HiTfsQq+Xsh8cduLntzSbKKDpi8bQK42kbLwxdz1Kn0HtiT+Es79nQFs/MSl4fJBBM9PhvGhjnwRQ0cLHajIZWMaKlOMXn0fXsIrnkmq6ljXw17RSGEC/BxIXl/zHGdZcPKoUPOYPzcQRL4jvPSePcJIdXn+Smv8tTBlMp1QNxWBKKcYm8ZUA40UATUxx0I9f/EhncQkqaBpS7L6UtfLtn1WydKNEHiT2q7I/mVT3fTrtKQVrHCT7Rk1FdAhmLYTT/bfh7gZg1vP/5j6ppF6gz8S7fh/EKYyCmeXrLpAJHMvI2Qfwu7ic6ZAne0z2WsVsqUFBjYT9IaILsoqtRR7vE3u/7tyQX+vXOuJql4MGTHqX3YVKpTiZ5TYl7JTY6OY92zzkemz4rD8UE76Oi7CF+Dj85BOFGnaAmm/M+NmNjangBdVfnCp+ydIuscvj3hPxZl7r0QXxjHPaNXNyLglixzU7AFVUuElh/X0wD9Pezp2TPrSwDu698zrLzSlEqTIvVhp47W6sFHIzgiE6j6hEFwGwOABtpWsBgTS0vqd7pNq5XkljkPF8785EaL12eRRAogpt+VbZykYvL5+8dxuebzeSilvzD77V2ZtF5qAnbwvKv6xLl7CpJjI1K6g4JX8zg9LyJtiVWjazpbSfl+T5piVKofqT1Nzulr67l8AtPKkdeSu7W+aUXjxMd6eU0CFtaWF8wAPtweJwp/WWhV/o4SouHFYzLM5njQAoI7muhcanBAOSnryvd4SBjvJ2Stoo4kR4m2PDUEZInrYo6hXL/o1azpK3uHjTwFTO6jla5nj2Q7pAyJdQtRecX/Nzx04WheeBOI35JO+Y8/9I4XMHjQm/Ej4Pjkts46obRhi/vkY6aTlJ1XpRh/6y1kkxSrz/GY37tdRmrampZRXEt3xnEQdMHUxPe44HBwHw5QIjEkHjcp837c8M1ITm3nxOVvnC7KS6nYnFGaEJIM5pwuOec5oYMuvvMbxcyviqrYqvo8A6/jf6Kd+0XGF1rz6/gGUeh/qvDMNSzijbgAobeBYvQN35YveqS0tDBP7GnHwrG/PyHWvu1Uf4l0M016Nek1PbyWYzhPxMURPPPhnTysxv0IYOsnYU3riMLvnLpT++lmFzrzTYv4Dg6CD54qGU2M5nU7RtC80xIrUW6abaXOAD3rS1Kd7P1OHiJDUKo5jfLnalQeuwPTfUAq7MLPEHxLzophA7rQFzoNENZxoU9f4lXb0hBYoxfP+NISLQh1wF9eM5PgpMIHENe8AJIs3iha9SvS/NyWmmJxBQw892AQcwH9HLs+W91EUa7e9OgiwMjyxyXXo25VOyngW5IY49ar3SZePkxmtWbCk2CX+wP84ujnf8mpyxif2Rzd7jBi2aA4SlBHMja36jlWBzurVpmxoq1dk/vjs6HUcyXMU6ainwo1oGhRKaYiBcidgRus1SYV93//4vnk77l3dMSKKUzxRicJIvF19r0QkaX5R127oqrbRJEMXQFyAJ4e1sbq/250ZIL7/8YrO/eCRvAjoHhehnx+EA9tSBgfSI5SSiSAHPew/U6U2xuaHhTf6nE1E8RTrVqVB4iHqB6ydL89eX7PYwBxcX0P1jv+ye7UjyIdCzKzZxnjvLLMTzemiANqD22jaoTdS/KqGS93Z4KliGfR4H+ytM3KC/krnAztyWXMZIvIwc2EK8HSt4swPb6qgPvrKvSUkMpS40j3GHa8bbIQ6MxdiE5mmuxI4MRs++XKDSKAKW47PPexf75veNoCDw3/yCZpMvZKPdlgmu3l1q1aavUE6kL5hfbLmylwxmbD/nNcfFCfwZzvR3Q4u1d7POPX0C4b41FyeKe4jYXdlUV7uMcEix10gDpRr/LmzFZmUZjEABAvCc8Od+NsQEfQ/ZxK06FkFpyniB+yMJnh+ChN68AeSE/CFd0m3QXdRA+Hq0azk6FwaUQWeCxW1YDpTRutb7/O7F9/iqbdC9ng1KgVGCJJ8+uYxIE6qeSFPYTQW4aXkwoBgB5NwWGo7ONja9sJTezKBjAoLjUcahWB0RtDqD43I1xYXl7Y+Yry6ugX9cu4UgxvioDTUvs+aTu1uAGRhpwwA/uSedIj4A6q4y57LcE+LVC/40rfLqSNoidif1/jzRrCnPx8ManRaYshB5Z3NqjmnjVu7VpoTfyfzGgLJiaftTVf5KrJU7yDFoHgf1raS1HPM6iH60WQKbfAjQ7FKBL6xn1saQhFP2jz6Qz6vm6s4lVVQF31gAZqSGw6s0kqBk5uoQ6WEFnxuWsZE9aKMQqvljIHAYiRIZDM/fLp9FlSj1/oFX72P18aZSMZyVa6c/NWFnWX8ABrwFBEJkHY1pp5TIgQiHXDw2LRu+9lXkGAUjr4Qa/Hb9EeaLL7PvCZSmDF5ZHAOWAw8b0S/L5QMih5VLkyXCKVAD8UvIKt9ypaAS+9PjpRuKz/2u9+GwZJh0b4Y7jKhqETnHYxn8/zXQpvP7Blgg2x5lz14JM86zAYb9jHMQG5ZyxX5h7XWzZ4W22EntBLQ1ZM5H8zMEVuCalKoFMhj6NfQ7ArIQ9orpzLgyXg4Rk9IwpFfCiVhcEeqlyUKSzucAtAZuSu+Ovo+Lq8ZHXYtpjvdXifg2+/UhLYGg9RgsGGAL0azdbg6mDHI73IwMc3s3qHTVyGg4QHSlWx0MgpxrlU22sXJXOvMjULueA4Y6lBrWBWC6Ojb33HuNUL/yTerYTYkMTgTPPWL2UE/lDytxSatnqs70Gj0K+4IMvJ8nuR2O6UR7qCyI5sMlsE1hnJbyMUJ4d/OU9EL4cATvPww9fTk96w8ODcJOtANPhu5Ssm0BxfeB+Hab23YdsTN0HH8zPaSTF2mdIjon7H9qasX9j8xncCAzPrOrK5lRH/D2UjFd/P/UPMVCFtiAFIldCtv9NEXRZyzMBb92mQmSxJYa+cA52K2DnqdMo/6ipHlLcu5P0fxhLBv6BXVcHeLBgMcHCQqJFzGKaD+XYfHZ2rFd3Pu5nx/yguubeJQitlODlgOaBwrwk0Y22+b2yP0LT41FIBXSCXuxCKnJho4TXiaZQRovIjICwKhP0SByre6vCg0NOdWWev423tz659qR23A/4B8YsEpMBP3IPVpqT5PAWw/Mma8pmX2i8iAhF3+Hsw2GgN12HMJe7MXXsw5fUzdJ2ilyStYg+j7F3eZOcu7lPB41j6FWyRFNd4cXchRkHdp4rlrPS3BHGjeaW/fD2QLd2K1LNdNGQEdJGgflkrUWWJzlTE+gHW9BcBTRrt+B3onwkfX0pKsX2K7zxWW3T4l/PxcpEcBunmDTZGpDdJZeevTKnJMrlPQJZzJQiRfS+ZDN6VjPwztk+qG2sA/Qd7jIyyoBtb/U+TQi2qFws5rsB2KBMAWfup0UQiE0o33E+OClwPV3wUp4Wu07UFyh7BCU6beSYWEImkbGn6w5gJbRtz1GvYFnR6Pfmec2dANveI2O8a580VYVS3tXOoKp02Ir4I8lpTcQLkA0STfHMmVBsOVMPuhXHkpx9lz4/JgWe25xgZ9fPspQd4iDTz8RhpG8uDgiIrliZHi93cbcpWmutOT262eA25dN15zm4iVPAqGziA4xdNkw3TkH5Y/L3CnRxhKJzvJTQLTG4Zf7CheB+Mrmrhr6h7ev93b6EduZCmAXej1qOzjKxift+75LsJRRqAd32D2BgoBmTFL6CV+/VlWHvsEj2kPrJ+y1A8lu29sqCPd+u7/YWJ2meopD6+7ZVSn5PQTmjE+hJvC0aDtPfMpF/F+RVrIUxkgRtmluP7+Ts7oJgcZX3pP9cA4gCPjQ4XxGoDl68ARpF2Ge5+lCwaCOOTgzys75Hwm0EMFHCcd7k03myC5hUpKUFdfLCIVtACzcrt81bAkVYhDNB/n6Ew3aFi2DjTBCjhBLqf2Thp/2fqJXRiAXwOe4C8oAFqHWwwPu0sL0osyT0fOfXrGqEJ9ucvtIB0rvy/z3WUH19auBq4IZmW9A27erqLt4z2sDI3f8DCBnZ8ApwLho8EMGY7MIE6VoIr4LzDlfRUAupURl07Cfs6n5kCZCCkaXNq9x4WY14RlDGu15HSBaTqKUwrv56HS4pldQY6Z+rITPuAchXofZKySOQFWfWq18lbKwyuGeV/Bdw0PL+7gIvnf+RG77xDkzt1INfBZJtx4j6yfJra1jIyYmzQnh+zUeX7JN9cN9XWD8N9eACuVQ2SSw82aL7dJwAUf45R8x+WxkLvmL0FQOyRAEv/6cOrO71Y/q0jAXBc0PgIvMNXe7KK6d1JA4z/qB5QhWOcRfHS1HUydqCp11JS6PHXMwYsEW7/9PGVDAjHy0c6YSfwoQtNxQfHFWsoIW4Qlu0weNm3bf/RBcuxiF+hHHOQHeikNbMIUGUtJYuoW+Wz07ZCVymE6TsWSHdQ6crolO31BsCoXIVnixaKXS7LkJ9kcZzOCx/AqzhlAiTW1Xv/Rom1BOhvcw6X+RiRRtFsYv07KxxZjyOlvnptEWmfbiiPam3HiSwcMWJvVCd3e4AZlrYHvxeDssXu6DG+Bn7tbp40zMxZzmMWYJ8RQMmp98f0WVeermQUGjwUdETj16CVgUT6xo9tf57I+bLZ75HfCfkN3hfgn35ps52pceno1RdrvJiu7WbIOBCm4FdsUFG+pEU7PUBd//m74QxZ0fILPF2nts7EfnkSfB/s5slEexa2yelAQPKSucImVhyx9/Vi+GQDAek+vqCiPrCDn7aE56y/JRa9FUbEBCQ78xJWfQvo65pF6UGCGTb/5MyMt/g8QiRRydexjcpCnNsJ84lS/eaVNjB++nxpaHbsPDJK9qbUY5Mx11POBjrMdm+15jHzejd7B/gPiD307MiWTeArEH9vbrdj+rPwZEVkM2ImbB4ed2Rh7oVNDog6hOjUgulfFB4P3kINCp0Z1Khv1tODBIpxTUO/lQ44xWt0T/0DRfxOOIUQQw75NiEQJF8uo5hekAqOPoe7XHICm0M2Je3po3rgv26KdYkO4U786CRjwu+ewnOyceFpd/0Y1ajNVP/ed77jWbveqLxcOALUiNriixTu28x35KI0RlD9wDOVwed6CbjmEJVaDxebjJKEYVydutVyFFOsAVYmY0Fh8JXGGAm/B4qAGWMB4mdNYVyiZoSMU+d9WLjaPCPaEU2mc1/eemfBCuH5Dr/bx+1RSc77YeLdJeg/AcViPGqtBewLMq5R78B0DKBu1FmLbQeeRzEXHB9Qk8tox+G4m2aoAySinVZjHVeN3xujYjtl3UmMT7OxVoy+tFyNUhlQ6QKRL5b7S1lLRvTnlWfTndet/uul0PUlJpo9G7gavrfmmPNzyD+TYsWwmLAqJYFixXc+yKP0shU1QXIbklfFNTCVfA9G5GCFbMSmnowvOopPIdVwDZ4h6cdUi9be8Bj0sux4gMQ9Pq3y3JeY55sCpiS1NiNIS05ckOSRCId1OLM6Vf0knfghm5qztK+yqRmRJncjugeQnDj1LfD1cogmC5tHt3ltvJSf6S7Zcb7a3WcPskq49S189+m0r4OZZLRa4udEy/PnUiOqCgPrPyvQ9AgIubAyPtQkCGTOD1NTq2by5c90QzJEROOomH9q5GOxjerhPu83APxNQ2n0Xmowyoeh71UT6v2LM4yqYFLJ3spbURXinnoAmjok0y/QeaUOVFdR6EpVXTNQJneD/ZCitHLPQHhT4d4WBT1+QZC90qiXidvDnzU66oG3actDVIwLnFaDw5z3dD1Tq8CVDEDGzqFQoFH7VF2fuuabM1/Ggaein52+kX8XzIpy3X6bI4QWWDo3AO5xT21q3BPaEYLUf3HbdzwQt0UdhrR8PrVKh/5on2N9zNCyqfYYQsY/+SoOGNXzJyvEODAvauX6UrR3DIV34iJhZwSB+8EkNzzJX0uaso6qZwev9bY04ZksgxDCQfqdaBpfCbhUIEECfH/Fs7g2BVGaVd4w2dxkwEMSaBV2zJZbYKLcohyf3E9+1nBrL85qEjoxbtfCKl/00S6wleFt6NNN2CjS3QndgFpcH+1Hban+mJmDSTmkwsCZrZqmVDX3d+PoIQ4kl+1uCOxdbdIqiO6zW8XVbdA4QcwnoiX+6cTbWCBus7fF62LzMprmLJ083TE/vhjna9BtsCR+BIP+LeYybv6AUHudC8XwGIaIupiDk74P976UfbIhVM4H5KLUJ7UEg8nfQJlS65ciifSa3YQwB6X15zvg3xbZtYUIRd08D1Tdzyr9JlfxTeHsKR600WXM3rm1FaInUm8Cyow44MyNYehA6pnjNFL0Mr5RGCWgQqRXPpSDF9Ms/S7H1zwZaxLsmxaOhco4l3UnLbUbNQdgwyVLOiPapWNQQCzYatZvdkosnMbskmizWcbkX42m7GPoveBD6XE8rQTGLxs5olIGJ1B2yOkkC48DrlQPsxZZnTMtwCiPtsCmcd/hTXiaZJqKCXfBRBreI5UtuIcHz/BmPk97WwJYwdqh+fHAaa255uB1YOyvGkb0D459LYx019dt7qpkvW9NWjxKYbwtOTXPbn0ebu7y2iHnm0IS6nupQHuVvt4QITisbN1krbniyWqR72B7d5inTYXF6XzE+vGpJxkczYKW01uLD1hXlESv+GEhw5U4dCl2S8bRiImg9LvABBm5GcWBsRqQ64rRGeoDPeSOlG9ZSLiR89BxibD56ogxWC6Ub6YtZZLPDlds6WvuIrbx0PStMstzqLjnEcgIhv/5m3g+oBpkhoPwM8ZP6gMjp7E3B8AdgPYpr6GvD0BGbVQGL+1e0+JOCQf2mQi1XaEm1AxMVmaBR5YM3O1bbkETItIL1dPylLGeqPZsbEUFGEUxBlGMyXrdS0S0WcpG1TcTcz3Q6tv3Dy5AX/fSyOK5l7MZHNuuGWhr+Rhj5NKsiJyqAJD1BJXAJT0/UkhFofTjnZC6sz1BBLkqzwjxM10+W4w1LlHwYKGiHRxe6z5eCDsft+ybK/GffzEfIwYtE0tN0wwtgMdG3N1tPiIDr5NIEGk0x7X100vaK6TFpy5T+qZMAS14ysssERUGwULNC6HrrtIYEGoOF1nk+fr44EvKP7zCHRdXTi8SmZZdqsjK2hPT5/3NE7wR4k0IZk+MotevI/bAe597thietjL9qSCXhK3uKClHerwEIU8XsLB3cCKS0PoK1hSR5T8bOodKxzIuNxfrqiFeNF4m3a5udEbBbXeTJKcoy/Ih3TVd03six0NgDOPZc+kqusKjhItED3DurPscTrxZNvaQCbWC1HJJ0O1i2lOtdWgwM7TYhCH4LpSLb45+sV5x91VKeLWpvIev9i5AMMexryUQbxPhiqSnnQq3hle7RW13QmaU/kJcyPVvUuEFVSikC8tWXe8YoizRZipFkOqWvvOo+ga8dQTZUphpsW4seHavho1VDKjY1WDWxqpbJn7fP/S+pTepKD9xTTN/ppGyzpOWOant8NCia8Q2bftCwD++0PjMVWPKaClIy7MtmGqvb6K6I5AnELlr9CVbe7RtG3Op8J4Q4qD7TLXbSC0s5+KoOxGdV0s1xfpuYj1R2plEu2i3hNOuGzCL39qUd8uN9qteYt52tjBN+WlSmbXIYt0+1TlLoawoAnxyPcvHGexFAwnM/j7nwUnvCpmKDwowUaT2oHy6Nc8Yqp9LANy/Asy080vNkwe2o0yDh2N0e9GSn0uYst5ZT7tCd6T1sBBb3+Lai08+d9RltLF22GEvT7Wt1ZQGcKbO8l2YSbjwsGvoka6JVPh3eMR2IENMk4mf4ApMZnX+rHwLvhwX/hrNNWLmG+UfCDHDcZVJu+TlsIqSZNy8LSd4NagfM4tS30d13Rb4ciu+NT27Jq8/tZYCCNyI+v9wMIYPq4lbahwFTEzdOYveUQrDIFk2vGuSW0iPcVVPFuYZXhV2N95ifXNuiKWm2w7KNDYQI+OrX7w/ck6Cwalw3uKro7/MgW02L7yBL6kBxsA2qM23txKou3rd+45i8y6555S1Vi8IW6oS1F2wDcBiYyqUIHnnIx57kYA/M9tFoLL8m+bWiXIFPgf0iyJfCHuFaQhHmVt5maJDMxs0ajRsn63qqYg72L91PGhaaVfVRYxB6HsJeewvK60n6sKnsqeLkMw4N8mGa+St/UNnyvhieOO5UhR0yFwNjhOmkiGFmTkCIeHFNuxcIYwcSKcU+6lrUPIgWKDchQf7rVlnGjoRPS2mBCTPeiXDDF24gVHc7mfQtpB8f0Imam3aH5Q98Qs4DaKX0wijYA/P7XVxYh1Prz3JvZjpVlYriD+n9V+QiPyv1XTCR028d70yDHga0kuz7YnIAJhqL99j/cSFZ/Z9H1IH3V1fj06C9ld7Q/Zj6zvjmqif3nYgAP4OJZ6SoSwi7kNGch7A+Kv4Mn8cvtTV+EfsNtHn83RFRS/Pak5MTUkPaMQl2+7i7dXBbBAYcXsEqQ6nlON+I0y33xuNGV2pZ8E9ETdeJ0UBg6al9sNjYJnqxfbqzE6mzxyXJwyJq8rllPcRrxRgGbWpqgefrPJBIwRG/Jrdoo63Ee3k0YazBRF536X1i2Lg5skMn5uysXUYt5pRzsbq+zSh6dQzK6GvfBnV6dxfEHmehhdi9T+Gd3nA7XxZq8oetNikU2RoFAJX08avV7wgFMZ90PXn1Nyq/gA1r+vvZVpluSO5EMdJi/cV3sH62THPRNNDYJuodJVsZAsBp4u3vY58b25Q7Pm3aqHMcGmA5VYT6Un1S6HjLYotzLgrVdmIEwU61GqAeZBSwWpikwaGAR2WIMLHAiNqlmjmZM/3xOj1JWUphcv+Q/yNkK47YTZm0XQar3pM0bhRecvPy5yAn6/yhgWzHqX7eia5fxSQDA0dT5TaciVz8WkCBayuYTZH6+E1XMadYywJXn2n0Rf43GYooUaRS9T+uo0s6LzpDiQNFs+f+jyKoWUnjJZcFFMiCfzy42DdZlHNxUw/tNzMUSy6ANwIqudAF9BK6QttEzCArLTvtHlv7XsCGJloD/vA1JxiCH/EyK1Z4OXuHPrp5pNg95yy7eFWAZoT/ieu8s+wgs1zMHcF331sFZZSmsoKLF1g/r/KkvsFUwIMgWzUL46oNauu77oUH1CkA0dzavF6qWJygUjzYOohoXSUuN+v02G0/lt4hRojPfoZhmSQoTu73EgJI+T5wLGU8S75kg7HHXtS3sbKeeiD+W3aaFhFalHREAMmMTPE2EJpY+5DTP6ahkQsBJqnzxTQsPrOGJaUYo73WTVbArzcwwtMxo7REGfhHOVggaZnR3VC66O/GPI0eogKgU4o8ZFaiwnQROLmFnvgWHPcvRER7oOVd35pALpdkzrHoW/RWjjoNCt5QsmyNxEQY5CDGgKw16cKiHz1+nGThFScm0Gj9zhXAiTq7/gUuQa4RG48nC30RnlA/mZWQMqv7XH2z8EMxoBVhmjJ168qXqnd4EQW9u4ra5SJ4UKPd0nH5Cw1I0aL7s7vUKGQVulAcEMos9SG4ThX62Jd42mdN0Kh1fyK0FQ2rB9htFiiXEd3aRzVvNuNiVeXH1v1yMSZMHRKGV3wU/3vZ4rlCO8zGu9U0ciGa37pFLRuHNxtVGipQtw2iUb9Mr1FXiBxQUMK3rvnk7PdrNwATx8i/QbM1/rzT1wMQTyhPlUhbUQaeqtgb4g3sw9ObkKq/CsCEQ7Uj1RbSqGKinGDxLp+Q9iiOVv3pkt+6dOUo/xIpnTxAGREs5G4BM3bvyMoInZrQH0/jxVZUfEZg4af6S3Zgl4/MDNZLw0+ARxtZFgWFn2ThYJEbjKuXMmRz2B+w+ezpVAcXtlhdc/5euHGMt2xBYqSHJiirySE65A3qA5G1FMQ+Vj56eiFof3yTXeox6gmgpPCoeLEjU8lJ+/Vs4avk7Mxck6jYknSl7BgubesrULtWu9DjWau5MBAoKYo7xpFBOEI7wOMDwzOoJ1P6czu+VQmC64YdvmxX64lQzhu0/on7sfRAsjtz1O9aqRN2VTGCDRMxLkVTtJ6ub6Jvbw90rEBKggMdLk0FG/vCwwqsNp/O7vRY/bwTNuaz3clQ7XEHUVuInZGFx/BRQT4nHP37bkEWgACNYgHQzQK5oHo7sPwk5kyEu5KJWJXAyMQuHKw4gKuEY9KWT55EgcAGazRHFc/r1tmKU5gT3/eEwdGd8fPs7XKBbbBOVno+084AD7Q+2RACTYSV34vptM+2Ee3sBMLYtHcmvTW9lJbExfP1bawT8yEwI8X9mrOI+VyFedksdPrDTp4MZ6RzfV4Y4EGvNCS9vfxcgMlVfpXDPrx4U8OiO3dpY60tV3nkK+b1lViwp7ykcY1rcg+knEsGLPUHkH1wKpQZJSBCth7u20fKxY/F6QDvSAmWjcEaB8L2bllaJldb+l1ZGzLZrn7ifuo8En4fWXV8OXZbSqg5iUHFR+AgaylwWaSpKbQ+JXSLZz0P0+cIzfJHjQL+CJGOJ23O2jbzhN33yw5BVjM4dHtmmoEE+GbkX/yUUev0U+bOcXVQ0gNkpmSsbsMCRN+zpQMwQ03RPuCZK+co6UDuskxAcYDtvF7rwhRSQYCnRUpqbueNG1nUMHZtdAizjW+dQXNiCk0pBNz/yZwzP9D/MCUYFjLx2GOninI7JUToDiqKbdy0QJm76+hB+2GS+uM2YqXxz7cxFXO6PH79nMLHbr3fjQTxQPbxSyi6lB7iCRBU/A1hW3tYsZOsuAqxU4f1RHbYdiiXhvKZDc59Zq1lJHpssB4H0Cbbf/9Iu9J+xF+XSQpQZ0ILLwTIqanOBGBJSxaMoYskFHuXc7U3F247yXuKF7uG2dVYG21JuUaTpLbl6czWsbqC1L9P3zYsCWEqnmwj/u9ZqFjwv5s8FwdJbOWdR58NsxiGwaBMB2WtMDaa23PuqDke1mGdYOjX6FFSyW6tZ+AGUmitcwEHtYASoNnYmDwUGZXe7BDdbSX0Nj/jrjFLRmcWyFh6A34EOOJMubRO/pggZxgc2SQRBndO4sY03g5rlCRu8w5KltTlK9QP9wa4iYiUQp/0qYf1RaJWaDZfaxYexccNalLpFtuyFrGs/q2A2osdtDvOkLMMrUteEZkZWejd++XJa1k1Q61fCDBZlaR13RRRJtYoDgN8G2yvrBMbUl4J6u8m3RCIGuRn4TvEGI/Uwn75usgoMP0EtDluZbtEqem3HUb8DaGjHYyjRuKUtmO18VQR1x66+rbUyPYBdqIueexX9EfMklXnG7R2yusMM3oBa1IRFItz8d993f6yU9vuhL48fhM8QjwWpvR62ZdKvhX+jlJfT8z32UnrcT2+ps5zVFGG7OZD29KNXLZM/xixFYo8bAVQigcuiQEvWQoybVcmXAV+qo5B9j4Vn5avTTyqFDqHfU0789ciTEIYXtaPAHiiJ0IVUKINVG5tF9l5uMgppcOPkzW0bTJOXFcVauJZUUFECF/8xT8kMDliStvqoQ/0WvNM0ZFlaTyeWiUQw+WgCyR1/hPOLMYitctpi4TEZr2D+r/7EETtyqeKx3Ra/9ZJTrrrV62yFUwTjlBOncNwtxGpP+B2XBM6RYakA72TzG2eBoHL3TIoke/IihQY8WkdpMsjowLg+QGhcwmpPto7pxZQjkEYVuBps+SYmFIYdeeMTauMpq9tLXU8LaiPLpe+tb5x7F1yWWWK19r/iSfR8iuDFnBhnYqVLsviQl42KvE9iGYVad2f9QNBRiK0anQCdKOk0LPvEaheZfj/JzY05dn204QlUcTrH36NstxbHYobl/zhwNmLu6R/571HrseqXw418VyWu7Aq5eeVcOjjOU/4+sDOX/52XFYulrnyXJ/4KC8CDrf2orJet3QzPKTC/we58bh/ny72AUFUUdxW4bOOKhWVoXFYyHSOdD+m37EKAkm1xJFCDiu/c9jF7Kf32h1JqwjAteyFt8R6w010O65FoSTGnBoQgAQ2dZ/HZc/ds9CuXD3UvI4Uw7lF8rxTOL5rP45fu6g7EWB/WpYhnMbHWbCNgMtOB3697wcDXWKw6tYizl+HWxWOrlm0ySeXB6lPWUojwM0jrLxGGo+KVEeikK8lmihW+gkA+5VFwD9iovG/MNF0df9pAQN3emexMGxHRHSnDQA0YQsiJfIgkkU317/ZeqDdzkx3N4KtGKwbpNEfWFQSCHleP+M5IAHWDEcnkOTdTp2paMChbJnKqR/AobdN9CDACw4gY++QPci1AdEl8p/4ExpaoEBpqb2wjKHqTfv15Jw+IqtnZ+diyJd5rtCy71s01GWQSJ/w5axAQHyh8K8UgPEcQA0f5ixCOqr9YBeDKMI8eEY6sDi0OlRMuK/68C3yZDvVltmXZkAeYCzFDpKteGyPUuT291Gg8/DumHUkiAeoh+lKmOrPmNLZ1hypMP+sbA+ZL76soO2LHloKIEn4I8cX3Vh7uvieKkiODaFrG7K7w0XdiI6G/Tqzh/VmVIh49O9/YI3NLHyyhEOkqiI/EpDWekusv5QPBEyWiwtsygDY0rpDAvllQzCtG7aRKwVG3We6zPaIPra00ZGQb/791UxaTpn6qgFubAPVGgdZBhwlG1276wggYJ+n2C4P1Ty5YfhB2AqlHuot/cs3rbxlGiGgXViMqZjPMGDNiF/hjqm945Tg3d/1Sc4B1UK3zgLAfvwU5DTxTJ39FLCBvrb0bad6eulirZrM/IkTZmpZnsVbNRT8OHJGJcwNcBLV24vlI7XMmSanaCKZWk3G4padSpZ6s9hbznvWy4FO/M1QihPNQafZn4GexbYjF6BJfDOAigSv+xYYJk7fDd5elrnqv03j1/5SNzdlGwGwU8V0Nouf8ia7ji7bL2VVZSMATPvFm3xAIjqM9kd0PyYd58DC3KQgBfeuZbienHYCSexSjo/7olHGIkXbKXLDuws6GeybJiwViDcwxrQBSqZs1GAB1myVIriFJFQLGnd/54VOB9/ru7Mnk34fMu/gY2XByhbsyhcn1DdOsvnwfraFYkU44cua2IrSYWGDiEZxGR/jxHdF/rG3QMIFl9lOG8oRE6Kd1apJFfrSLZ6OB9/EQHc+B+9rDduvgq4k0Yqubr6Se+x/hBbfoWlfBh/xGp37eEwQlJG1sc4ByAi7i5BTICuPzM3qa78ZGGfTo1q1KxlbRIG+9kQFV19MjocUCXALbP7LGqdTv2tyY91FRKVicmjckhGdMh28xufkKNh5hWJtdS5j6ukVkNEEXs7Ewc+nB6BXoCNcaAE6cpIc2YD5Tx2FFGKsQmevETK0VaI14f0bkw03YWqk0T6B2o3f5G1VIcjapxemEfupbv5bwF6CwgNe04vz//gV7i9dXpMlS97d5ySnZRQeHmxHHVlkyLseodtBpVC2HQ8E+TBaDDf5UmtVrfiMqbzDbY7qzpZjgyL0ZESYR/vplA7XdPJS+raz4PQK5W3LePtrl6CRYWtPCT4A7mGEkJGklCyKhgGdygtKYvDOBqL3MIhbdQH5BaalWZR94Rr37xXBSeDYB6+Vrd2Kw5Rb1XEuIW1iyFxuUUplA9eUKwdn++LQox6sSQV8O7DCYu16o6bEALng+IdUjc7QAvbuA/r82a/StHyXRyKsZP26D+OtaCfgqYXXlA17WO2D1QldyNwyXEt/nW27Hys7tAveSyp0sKodKURFplz6UJ8V3KG4aNwmQFUbBtaFKDzdzajaZuygZDW6NQc0E8ldGyTFEVeVMsSbF4loyAye3fgXlNLbOluR927nqiTe/3WS4sH5qrLHHpIIi198OfJxC/A4dkVu0ET5j55HYAvteCoRtNK+DELqC9P8OIyHaz+S/LmjzjuWYk4oy7t09xfqoTSYenX+1nb9CRdFSfd5MBRXScQrg8AFkUpwGSAD2guJzHpEc5dDy/XCh72Fcpca/lsMkZs9JTNQPg83lKL/dh0WDfsHJn4CqedlUPzdOmWSf4bFA/DLQB1LjNU5BiUX2gNpKbikFM3wyxZtlxeYOy7gGM5XHMiKDl7ds1aXe/X8Fj2f16HY3jf3vFKHo+EIuTm12k+dMEmgJay2A1c/o0X7KDKz8+HbXNNJisQ26ong51RomoBvcYqbOLq+kASmgM9CAwWlDywDn1NR2NIqjWgxYoYDjepcAKkzxlA0yjDTERx1MG+YuQRQ71DVmgmCdhS69qi7uWt68TErshKeECEgzJ7dzsFpEGTsIqRsKy47l5fdLo58s2EbdEwmL1Kq++oGaIaUUodqExICBD9u0+VpRKlOeDdnLxb1HEe11IHiUfjVDj1CJ/mvC54Y6H3n0nX4LgYjhf4cixid7g+kGMlOL//rKzBRynkyfAoBjDBPuM0S42HvcBJBZtinDryuvKB90wYhLv2kxxDajcJ5xxmbD1qDotSnjQsqU4Yt72WtlDykciZQrGMa6S/xZPIBCd6sCMMNP9eQaC6M3iTh/v0qSAOzsczFNcJU/m6R6JsR3lC5Oj1A9EC8zRDMJrAKVJLcEBj67lHlNkFVVvClvDX9wDXQJpDQwQ+T5TGnjWRtXKZvlhaoHt2KD3vI8Zf9kmIWyN2QLOp2rBYWiu10HOuI0dxZiDe3KdTVWRcytZ4YA/WfPBT2tXRVoarUoiWv9aw50JeV2bjIq7iSRSyD+Rdu16jSDfbOR8RgjQfbagvXeepJ98NyFjMJ2Ex1RObEcsc0H6/6G5ZFFl/z6g6zy1Z9fv3Vw+TUKqPWWatZnwoSXr594ADKrjcSOuhuB2qcD5pmuFObdjQAH7YbnO8PFP6S9if89b4tdOb2BbUFMGlB6G438rbbAWiWHK+VFxo3f5RuXPUYB8gQSSeSN7w7iDX/rSohuLGxZurMrClTara+NRXtsbSlUlI52MxWNzHlYjs9GgZLe43aRzOvVPccCXiLLNTok67cqzL+wQV5zFIa0U/XWanXsI3MP73G7QsourcCKl428age7YfWTdrJdsiQ6jmX676Bj9uyw0elp1Ek43o6YenDq9WP3vOmPKUobg+V0GkRxCIlMHpajOFAOu7FQk6x5DCLoqbo2p7OH3CcOFcF1amaYqOQ2JgBQGo0HkXG2Bh8B47RwKpaZ04k1N1XadKCvR53jYvSdCyautX3JLzKqQ48WgdPH8M7NOxe3LxfiGHaYLEkMeJnHImCvPh9nmooXA2TYB9ChtynC5Sgnk5FCBLwfPBCDnBojQEFfCnIzUuEZuzMIU02eLhs5oB3t1O0b7Jon7u0j9sfrsb5VWXoiJLanizj4DyFTfBCwYJ9FIaYEI1BXIloCXz+gOqNUGQx8QpSNpr+BPIsowipkOEkJRRuiuW613VjOzTKudD5L74vYtVRZ8OlRTrFhNsOSgSTOfdxkZXkS1t/Uu2zcmkRiI3ZV/3Mnx0e5sqUxqvI4+WYKrzTiP8lKUVnHOohn4QRLXiNdLM5353FEWIKWJoTBNYqzrjUoPtWOGI6nMIbzehWCVvAWgMdpwgo+dH9rggjbn4UtUUXm8qmI4fT/L49WXLpT1/13tl5RfJtqW9Zx+MhdLwZaBrNGpfeg4KZSQ1nMIYRROg6ELZF6RgbIrpGVRH4OMVYWWSOssc7nwaZ1mBhklq9qdk8JEfa4JtwNDLBr1xHLCJieXRGd7D9o10wsrVnKThnfVIO3AEa98z/JftYvzC/6o8v3ceNrOOtJn48ZfQkBZrrV0B5Y4T7o4yRwoZwgnHxvwUyqoA/Gp1wPpjnIJhdqBEqV9LGK7wzerdg1JmlIQxZMCRh6X8UznaoOk2ydLNUtpxhXy5MgszgjU30kFYZ0HsJ/Bsm0lypkj5ANXSp9VtdzyWjPZpbOHHj0Bm1PGEOaj1NtiQBvJS4Od2f3KWhaLrAv0nb3dZLhptGdX4bjodRruwXrn4hoEd/ayB3y54C98Sc0CUf5aurJB0wbeKu4VrO6z/SG5iZwnAdEM2UZGL3eOmzP0uQwL53UXOUialmqbdpGDapoXavlZcqN5LI1Qkbi6567sszNHCK5YsR4iLQksAN6Io2iztZWc8LTqjuq6FH/BlC81gndde2Qo9AJoIFi4pXC93synLlhhQFz4BUG5l48SSAWq1yogKRKkJ/fezcCyc3ZRoFFf4xV59Tm6r2i7JNyqC2jQB7sMEmsnumi6sE2V4WZIwL0xtuhEVKgKu5OEr5eVK5fbdHnjPiWz6GNisVeAZiWqCpSNsDkmADc9M3QZOf1VN9NsycnJJNiDnj6YeyBW1kMvE9n75dagobcAx9F3lQQ2xJCgjNsEoHU3s3i5p3ESSvq24/rnrVGNQns3AYirZiiakz2rhGmnC/DXlUzZBbLfguU/MuPD2CBP1KFElZEkn8R5JykFrKopxGelostbB7I4Rc45dKt6AX0bsQySvUh3+jWJ6UJxVycq8Rp/tzb1H52pNQvxiafxQ5nywCRv8qsTWaiklUwzKh3iuG7d4ZVKdkJ41VtV9VFCAnRyZxPQvTl/2/jnq7uCmMFXOXmPXTDvxQyF+ZSSnQG8UziSjQO584/Cu1gyvudNrXOrN80Go4jn6oAQhqT3Fv14XoGGvQ/wKAS4LCU0OMVQM0np8paSzTp4XvXRMsCRiEy7vDNAphFqgfvorDneVEBsMNza6O9oOqRxVtRdjKj5Y4sR7EX81bjDR2fpAErfWnqZghdh0Qh/pRka5qLhuC2TI2IMc7Rv8gw60FxdmBB/OJ90glyfJxQbD1PdjXLnYIWDtwmFlxinjlbbJf4FLn28cZXjQURyCjvRJhyBXQ8QNMWl0B4MJVwstKhvdNTkdNbH/AvXW2jAQgG/JEQLQXgMblnHGNIQv0oYT2NGsYndH/tF3iIBSNlGkU7/94zIDcCB2mmBQqMBRvyellfAluPtve/9uD1Xp25R7Hlpdle4bRYIsZXA0IfOA/M99VXLZeKukmYjP4qycGrl3YiiODNWKI0ukJmzwjjyUYcMuQDFJX2OanivGKwnKyHqWp7vJjZ44484azPrJdC9tIUJkOwYQ2SPwaRGstxubfDgUgm5qrm6r+oT7X0n0ZswQJ/PALkLv+9ZzxUP0FccohKfv/5fyT/BZ+D/4bAO/kcSnNHXFt0VeYq632uI7aBT1Hxt0HblNZMBQqv1uqJZjV6610GYiu5xUVNRDEkcGHwmJBd6DFZ2yOKGlFz8iETjGz4q4c1ZIP7kGVoce6GNoPibIbis0CKw2l4xUNKppB1TW9fHr5TAqABPSXmnA3+/A2zoP3VkmUEowcXFpf9jk2nvMYN8vA+DbMknz7XabjYv4aNtS1fahJWrHr4vBDh7Bv8mlLLF3DXjAtjNV+TfDbc+SZPZF3jrrTOUxUfdSGVbmVIR34Kxfn4hqFSVF3C+B4O+NFTH+TneAFUGLgGOeiap/YobfuLYIv3BcceCfN7BX4ygo/xuna3ohFWQvDpbxRDa+w7OREzNjNkuaxmP2jVhyGOUeiB9yqrcUaeaH9z1L5rD9MBLeqh9Bon0uGsdgIG/5rSDO/Hze+bwpETSzX9Fc9CuuHNwLZ+wD/3iM9b6mYqdsLnQfEp0f1F4CQRgJ/D36ZbrayjcnNHuQLMMVntm4QETuHQe+lflSzmJkHBVgVTRSf0As/zZVY1ViyOSxNJBzrj6B+n3cVh4qahXfLtEalrrXjAqGktUMBy4/kIKI0PdNNSy8qDqBn8C4LdME50uIcwmquvQkziojZAseIiLHUPIywdbMIB/K0iHsCNzdvKklkg62/sDMsM9s9yRQcDOkY3zMKJQnOmDj45tyF7gyBVKuVwUGrsWFMHeMwUuXq1Jz05PEjK1GX/cRcNg7XYr1XpRZJPVKQPuCFcd6NbX9S+QIm05SE0qyhwl7YXWAhW31TJXwbJxKQIJXLk501d6rK6h3D5ulGMBmVmBWopkyMNHJhRhRP8t/bhIOmYQhzhav1J5ShcO03g41CNOBs6tV6aIF8V4F+cjy3Srl96ENuSn/6FIYr3bl4DEW+GGFjsymV5on+BPNLctS+V559nFYy3HxJsT+xuEAcDpUyjjDeMZ5XUq8EJEQ0gJ2jYU5ZKrDpySvdmPEBwTeC/3zxpXE+W7XnMiCcRWMZ3o3S59i3qSZZhRIg/BqMMeRJ27QdL4DSAXszBwRLp08mpq0AIf/8ikyvXUNtpCQPtA6ThTMBWRkBJ+CElrhuigrALE2V8wj+UR5arngbUVn36k3e4RMkxUbRzWUjvmPQwsKvPNyAnDHfgI+DtPYdygCg79mMCvR8nMYTnMhQm+X9yEjwQ9kPrO+44CQPW427J55VS7EMFmZkKKyRx4MvG9NR0xvga3p80NB9drNPjZC4D1KZqj5A35lKhw+cEo/utKv8SNKaXDgAiFJi7PvX75KsS8SIEXy/8qKmrbZnJUoACMkzUSKKwy91wn89sWkrrVYPRTK23RHql263+g9+YeuRquGps3ldakTUdZ+CvmyNFgIC0rDyKUS7d/Y9fEi6frrIvECKMhfp7tMU7XfIpFqfS8Kb85q/1HWXykwyyUuqfW3mGULNumszwc76HzTbsHhVvxAOA8p840pSd8EpQGkrB0hdybChdMSTvy7G7Vn32dYeoemz32ivhCpXWr7hkvhgQpurv+WnPt/u7XhVtv63N6xHJVGrvcIRBEXiWL2fpLw2owYHVDAyVkT5VRMNi0EYK/Y1MN6kG6ssvCQECZ+p2GZ4r/5h2SLR7ip3BlttAb0CmJXydBDVCMYMS07++E2OJ6v5MLd16Og2AvuqQtXWRg4K+fo9iSkty0nynbclJGmRWUnBaVBaz+urigrWJ8LJvupCvW4nUbCtMMXdBaYFalj0rMFl/sdhzjEUkjj6LKrk6ulwn6gRi/LXl1GGDsPYtglluUfLKwzsorIRfK/hXd7WepwLnOOcJOOvpMfK0dm4jUGdoEnZOASKqS2MUbsoO6kDpfOvJG/7AxhWi8f2uUQqqach9PuGfTHseo13CJtl1gPJ5TBPP1CRgpj6yOChD7BsfZcXelnrdS/OCYkUDtAJLkmq4gpbpwfUllK8wi3foODC1WNjQe4B/RxDQ4+7GT3o+v0WcC8B2LvbE+5blEmfZPjNXnOKrUQ5OxaAUqqdjdTfdLAwTre7/Ysf5GZTNkdEQk931hZ2T1fVmSoPNVFOeiX1B74yO+7yvfJNvNwffrQq01aGd/aez8U7TbsVXV4Ot40+eF9C3dHWPmZaPD6ZxxycRCmqzeDhaPGw7njscq6ZKiZcnYvBXXX9gVkru+8av1DQjZTfVntlEsd/JWWv/ahxvnOEdzXcXyQBTSR1HRTMmhaRErKz8oxT1jq4Ql3o7sOd6loMmzHmfdenAHWXYdki/G4+tTS+1fgI5gnpBCPui1K1ZhA3LGq77oZ5R6pplUDx+0PCmf679EoItUCY9yKbD9Kb3XygNMgMnuJeA1BANFzG+xa0B0M5t037z6XSJAVBYlvL4LMXYlr8lUkPsD7DItSgXDidOkauNAihs2x3QHOseMTe+Yf+fdQ0L70kBNSLD5RkWQbLIcldTj6b6xOnBhMs6wGgo2X52UcFPsvK/slUXxlz/D6r4D6GoWm+SNown75zaFfXXoZszXuNDojid/cz1Ao6DapkNoFFM2nEYZ9wE/pG44jWA63GOpqzrqWZ1ct7fqsB360mdRrnIcxJy4qhy0DRzsXPl38t34dZfYqeNW4leJYrrt8YdC+aFGFIwxRBxn8TgST2EcDFVJb1tfW6mfUn67bTTB1nvbZI4O9X03Rw4BZZk3q9+YIlAAUj1qRU3DBsP2owQRpb6lRStGjTHXQ1rKr2+mrPez0rDf8ruxxysDQnpilKLDLyJsQNi2mvSJxCAVb0Kf237rreXrzavcsTmMxw2UILkSlVmj38dN2vTSDNv3YX+oubvb4W+mFPwdf7FGzuFCdKSBbidKWw52xIJuh2KviqXdR1sM8CBvjsj9k2OIjLUoVilFMn/TEhYyIwJW+3UITgLGRYJs379p3rwGm0e7FQraLVzmYcid/xXq0r7HL1EspVfvNS0p4DOAg8S5y/wCCJB+TfPjGf7tcannTQdCMSbnniBvfhyZFD6M/mRZzvyWnz7yzfYf9Ghbxu1zLDhRFytIedDw/DQXNX1+DDfmiCqLDLOjkA0/PemTHpSRPr8zMrmUkcKGJnKYMu8mNOu0gYHl+98AOFs0JQhWW8P0/3qGqEW5/RE92JG2A1RGCweu4lwaVAjUA0ioNwmWya8AYtYtGwgRJz3ZpNgGlNdHwatUrmFS5vuLF7MvB+8O1gfMKXYfWZWNrbZwpVu9P/hKXY1MVn8AIHy0wCG6zZ6lqSfeM7TnxVMfif8prZNAfA6cXfqctlLJ6gyKqY1AUfudR98CnR6iGyR+8ANzpjxljqNtlcO4EtXvOXnjPfcSv31iU5HqXhHku8Fo+MUH7FoAPCr2KVHST8NTlOBzBrLYs+szQP2SHxb1YmGQ8+HDDD18sAGwgpnweP8bYulUDvibkcn0n9UJCAT9P2iIgj4iVKnlFOJxl6fDyN7OyVZvc95mftbPujfS2WD/20umSJ2Ailzj9RgmJ2nneyPW209xKixpUwemiKfeH2CP9lRto9h81jN1PKsQAFBURiQXuRVYwKW1RVBd34aPq4hwYqh9rApH23tDF4+G8mWR20O/k24VynOZ7u/lNo2H7UHpgp+FuHATL0PjPLjblgwBgKBe1WQuGxP3qINHt7cUgqqAbuQbqGkOyNf2PstBUFqXRKpCu4sDOtL1eYeqLW8gdVZdea8Sp/TISw8yatAmWPwtJtKRNFVRQA9ZFj4ne5ddIrZaWjXdRTBiNCkpzd+LUGbb0vvuKXv7dPkAkPBuz2eNFKE2ZK9yJdpf7Ik5AMpbYzYRpNd5Z6O5yQUVrqaWbcCZp2p+akOM2aVJJAWQ8h/KQ0cQ6LSoxGoQIDv2mu3PcPnfrxVg498YCE/eW7IZAWIyAt2bZ8ay+PLZ2APFjkc9GV/AJRAW5BCTR5WUvFDU5UR+xMqr/JPHzlvNrz42KVJpS/b/w1c8uKx/40X/ERjaYvAM/Uq3Fx1UgdeO2+eDS2C8hZeK/q/VCVr8nPuiG5gNpAk+C4cROxiN2SVphXrOtBQY6OBQ/ovmhJOV7LAjHxd48Brs4E4mKPKtDO9PiCCW7mynZ8JK+xUslrj0uMCeR/d00HjuQkfBIbpLbbdDUbwAwCj1mm/tMGXm4uBUP0HD3LQ83xI3IWI54jgAWWQ5T+lTOQqei8iAr3uKqyEtIE0u3l0QerSB54zmqcBdlMVC/n1FjisvinXxKAy3r3Z4gAyMnQt7fqH9QwQb+fOo2p48Iu3wocqlKswGRqMOonTlHcVbEN7alD3cB9MWWobDpTgJ7wmEGgGszpUTer04OcOCa08XoEm10odJzct3695r2RZcxSvgRnc96u6MXK2+qTpw6BnzP0dT8/OCBYAU/wOHVxPFNb+Re8nMlzc1i9h4pV9UgBpXwBh6gnE310RiBrt67RJpEDQg+zMfX5hGBcYTtLqaTnHsf2sSkRcIjSZYp30xJet7xFgZ35jIGJEviKEAfv4kjiLux7V6xOefYtbCPlMG+NSbM9MXOm3P0glkJ3adNpPF2ao3tmGiF70PnY2PQfrGxQFXnpCT+eT8Vf+bcaMGDZmyg+qJyVT1FEchxEmu4UBwqNqP6BpTzP5aA5/b9rwnYdM6Thl/5stOtIXM8Bl0lQDH8OEEv7HwGan4p/S9lpBzdzJYtu8GmG2A+J0k0AQukL8T/i05lcb1UQj/qgdnXIUs7nGEtVSOxkCAaJ3VjmWv2ev5OlQ8kLmfPb8FZh3bKrAl2iixkdIXYMr6KJEFblPOpsyp2dC2SOU/SUsU88Ck99DKSJoVjLJqUngPg5GQB5R0ps+PJLzmUir9Z3pY7M56QSt0CCl6ATi2pO5jQwK89JtgZzAKZkHR45jk/9cU2LCYhIXkBtOo7QhpgMCYaViGZB7N7rMYTOlZpgEMXlmJJNY6dpytckg4DvFnK+nXD6W99ocWZRk5ts13PJuHkRz5QcTyXgfXexdC3G0UrCmhF672Ctj5sL3JuLOUb2sSFq9eB3t1yfzmN9b/oveaYTVe1RIHj31DSNNNA8tWSSnSTmW6WyFsyoxsdN/5hq9FHeX8UGzKZJ8us+F/OTLb20a/v+Pje+pi13TJzM2F3JrGqbhcyYVCj7hATRUeEltQObR+DTxbvphAe3VE47ppeV7/f3kO5bpb9G3C5iGzR2SNlKzEpYX1AjLzdPODuhBF5WkZC55mSyvrvhotAjNwnFGa67PFezOIPsC8kIJNSJFaYFJoqhYm3IdUULh2x2FRL/XM1OD9IMO8DOV0JIkESxWp6x3sWk1JS5Cxz3Dw81K4VEyoWAWazxtWCcvZK0AN7T/Kh4Cyz/yHVUkBrL5mAh1QMkiLla2XLqjrNHsuqMBxmCle1uenpj4KESoyyzzV0ds92tt+9iAYjQzEZkDZNtF9EGZYaSpk5IzmVTa9TFriDBCNj5wjPAr7I2+vI4u7L7HNYrO2FO6Unmo94PjZV1k5xupy1nthjQjk414axbu4UbhjL/lO/Z+aXEcsz8YmRX+7eECkr0jqpAAqEscoGIJ0TJ+vZme9uqL2f+o8BsyYtzyf41xNeuEdChMIVurSYUYmp2BxQwu3JZ/6X30OiYNM9kwIKAfTMCgUgOdUxGYvGvVFeqMNIkTHnrqcNWTldO7jhPeUBBKDMgCmYt/Dhbe6Of7xkvP3qrZq2ZMOvIjFgwlVlR8nI/PhYvv7QsHKfcYUv8pZYrzhB0cUHxgFZtV0ne3GCYwWMVKMPaU0Yv9AoUUDrig96IE1I6RqdHOdyshLVDw+/MOcRJnuCUifCfNf0W0IdomyszzkD9+X55QfFn4n84tpxWZs12eIwZItb/V0TKJnNsgAgfZq2AdB9/w8VYHU6DH0kbYOW8mQtloxE816RdkYDsFoQmsX87U59pE3gc9icfFw5U/IflNWplDzbO3QnpmJsDk1wt2JARgEnK8s8VCeesPScUsoWWd9u7d5XrYWsPU5lHHa6uRxh0fkJAFAGaauJaGfygMsQA2rWfozTnLqq3+w9rxfykCGaW5qePiNGH9WX9Iakfw+XMubNPTjKRTxf+mrev9Qk3uwJSXQJhm1KAZ7g/l42+EdLRpE3/LMjjJf5LK4eZxk87ZV0cp5oRUYAAvsKFc3596zfHppjmgur0rS1Z8B93zuS4nubAOEqs1H4M34fQvrC7m3AOxF9GY/BO8zzoEy85/SJXHx8xYpF3ZQuuqDMlgDc9RgeUo3Gv6kkYFLvif+wbeDUfTaQryoE4RjS8R0SScxC1haJ2LAU9dC+0/frfRF85PHpm17mLnYiRifaoDay77oXAs19Cn2/mLZoon3Lnt99V7hIyskoX1sCeGJffQAzWmdo6CY7RboVmFZFj0jaKPwqOGDtFpXfEPEvl72PVPT4jYXyNmDUdsXxSzqzUy6HtuutBk82z5Rn0aMBo+Vy5JIyORBkdRameK6Ye1jl+ZtDcTuqUyzoUFRU83nH8zJsCoTq5HCQiwX8JAPWADF8ocNbtyR6M7pYfMr5oyo1yzi7L+n0YUkFKOUnpU9BB60PHoLwBvRa9/IMbAcH4+eYXbwrtha4tRw3Lc1BPpaHMicoKuyrZoHxPcKP28uPYTvEq9AVkRov/aMSktyleKEkAgZ9iAtXX/DTU/1TXPPygPBi+FlC63nMEfoLQXIKELSNP/RhVDn4oPyLm+NO6KEqeHj9fTwFlbdk7AOo+gqVkUYWjOnmFq2iGzIeVUnihiccTDrZCK6vQ7xGs3LRa8skiXNRLbgIzdY2MXa25wVx9tFvRY50KiMT0gxIshUFv3lFY4EOCFt2+9JIaPFPIAJ4dSxNQIhl4MbzAKr7jqsJK0a0I9Rk99YvVUqMOJhoJgb51Uuzqc07A2RHFNs2fsmMx0bR77VnURrX13w1aESM0e6Y7DaSAWdhrPgw6J3KaLAJXg4ADeYQbaq0fci/f5M8IG8MoBHqNUHsyUq5C4rxgN0bSMg//pFOkZ8I/J2kujjQpO2P+7cplFlcLwKLvlwqLaKXNYfWLKm87fnKgUhR6dnaW3zAaCQxRCzkEsPPHcSDjSVuQdi/GMVb0BpxvzVHp8KhzO6okLfk4qB+DVzMKgyPrz1oZmbRlU3XkukaB/SDMJ6Qw8GH3S7BXdz7Roqg+TogUuJmszcDLYFr7xVGeKAC+/vN/Pgxi+xGDkco87MhH8RpjmJdeElzKTXGVlEkXOrkKSCT4ZIQeR6n4pAxNwc5aZfeZSgqqh+3NB1whpMQ/B2AQC0YyWUKhKMGPuY4OetQ1hGtxkiQqvowfqbf4Exkr6YPHIoZKIWEjwYXE6XRacsMJSlCboQY7yMFJzWwPI+KsgI9yN1gGwdJCKyfiC/wLz+v6pJlYMI5HtYTXtbJhLkYpLA4CD3R7IBhGSN/DHaTEXnYh6GYxu23lCZ+9WYzekDj+7vcTEDJIHfFG7MhRUwQc7D527fcaohcrMC7G0u35k5L3yBaI9JG+e1HOjpoXaLlo97UmKhGp5EoOQQaM9rUfNbNbwn7ZwydWXbPSXvD24nHqeeccDgvFSdHxf2HZ9k4yoWIBwqOAs8eCbCgBgv71Ft+UeWQZjVVtXqvGFL97HOqIbvmFQ4F4xx0d8exyRBgU4JHFeIpUAmPL0KNvWIKbXyoN/qhKmFZ1cqwhzd3YNnfAs+hxjAQ1QqPOJgxRCeq6pNOF/99s/sKf2ieny3XYYZ9RiEdD46q4J46qfLXIj4s76wJ46cRO+dUAF4l7CQX2V1gdJNutheY52CE1Dwa4SIoPaXDLyRJIFdXvkymYJaHmPhUYXxzf00iL0HfIwb8WRvvpyE3VSbRMBFaXZXB7lmO5I0CcShD/iDmGS9UaVsxDiPH1V5F9KyXaVpm+zT5rQzABNSIKyvYiw/s0X1i+vrAk30IOpgVVRfv/bogCysKNQ26DLsNtLhNbXRdUaFoQp6LSwUXWLFnubaGmjMDXlkUZzeHoDc2XuMnkI01g6NKzvhGUhOuPNcP5EWwbXL+s+9j+RMeolB/42uYFhVuzttulWhn9iFYVxsV/7lCWDz02gGEQeLJuCDDA0Ifm0uljbmqfDiUSFDSavFvsUYbO58oRPbWYkPtQ4SLMsrx7UJPMQ9AaCCOdE+NlbSSGxbfTYlIRbcjGh5UUhdboqsoFyAxQs/1BEnklcannfuPmP2YNwGgC9T/4x5ElN3lIwgm00ubgbvyS5IgG+o2sCNhK5+du/vMHFbb2wU3vwqnTJK2BqwrpWK9/pYBgqevspFqgSlTpwnJ8SolXz7TX6DyTvAe97jentgbqhPB7Pg8JZtF4MHSvnTXlFXX/d1yb0PIXJwNpURdbM/+9FNWf056ADs5E8bh9/SMFEw7avlBSoQMi1rWpn1MIh9HobJvcw6tsETQQaXpnHqiV93L+Yqdwid2JX1awwbBs/7+QiPqFUYW/gX2wuI8WLQk3mmFlOow7YN1YUSJ9zi9HqpyC5LyS0JxqSMzdYHXdOQZNd/tOp+rZ3F9V1c9UvN7wmUE+z9uhY6DzjnGB6KDTNP/Hs7QjyTldqY7O5v/F3uC8e7qV2vazn/Kak3wg2z+HklECAf1qI1dl+zl0uQrwYYJHVJK51GJJsB2f51Np0Qtbunam4Tt4pDP4MtBEZoEr5ROjp/afW1OPuspHTXLy0a8IgQeUK4h5WXJB+BNHbvHZQtG/k0UkdfdKjYoXw46djfm9oLi+WDKiTy1ywCthX5Lg0MH7kJWat0HyNE0o4PJzSvzasp2t8KYVxygS1+mUUg9GCdC+gOIKHwop42ZSestwdCsDbmp+hIi2XFTx5nVVQY5MOlOlQOuBYive/DcDpVqjLl9U/8F1Qdzrw5xKwL8o7vMFRk6EQKtRj49cTmrDwR/abqLgwLFXj3qTnlGnairdKAic3C0veBJ7p38yNaFYFgT5mPzmtPeClokykBVrfMR7A5PvFmOzyJ7EOVyjSqXYRm8m+/UpUPfRA/dn4zT7ElgJShDXPEQpK2XEjEXRbtdDVfO21tzvIyoVCHU9/Os8S36Qfzx+QqKQk1LD6ACKTg/YU1vWzoT9lKoWpEuIo1xCXAPSq2RQTY4748PgEpVJxlV4hYMBeNYyNStPITgiQKUIfMs8Jz1FGXmivKZx20/0T6s6wYgX6xSHZXiO8dVyDwtjl4JsWb//v2ZcxXzEdBx6s/pUFqcoukhoOOUFIqrQGkEblnV8PspZGZAW1+Ip+60VuAEOTaOSaSYUNQIKmhSfLhQjHNCntYhWwu+ZR+gu1BHR2lIiclc94jyl15B1Fc4noybWsNeiKC1/slETmlpL7jAwT+XInjwtzY32zuyto6eSNZcRim3tOJGhgJj+THJkbLub9mf+4Q32AHv9xMgEiB8b7xC+oo3shRZBsY1mHFEXLlREytGoF6X568sgy96kYuJlKZH7tmdKzgOmD+BD8OIUPmZQcwS5uy0eETvoLa5spN/HfpCvqG4AGFTQgZ2M7wsJE/C2Hg3+aX1C46yFd3n+ztrae1Zmose4Y80X+2qoheRMS7iMNuUJGUDnVYCkyUWSV0KdUcpGzSS1RGWtsVTUU3hZzV4GjHnvEf3tGJkOV/nHRwEDsm4H7mAtliPhbF8P/F9nRdwT/D+gVA6HcYIKznaB7SbYbRxkY9mi0GLzQFz6Tmd6KNVYke81ItpghrLDBrlNJes9Fi0rxzhuxu92SESkzAyVqK728MGkXtW55gyWIqBZ9hk8xwCcsFOS0Lg50MNg/X5RhQ20UeRhUpVfeBvmfhqGmU/jmMEAyZJVxX4TpKWlg6X5vlD33qEj2lMYQ2O0ErqlXbvkKBhbCsqyCcYotcm0Ydfg5sIZbdbbeo3umJDXPlVd9naDZtEAVqxRXQW0Z1RDc0AlcpT7ogaDolW0cv22etc0jkArB7gKM7VZgGHxoWxHgbdZzt0nXbuXY3OsYQV0u/GQCYc4NoVe0O7H+AwlPeYxTuw9wDeGg3eNDEwEUgrNdIBrmxCJZH2qg5lxyMj0D7xl+lXc1FUR+e4m6cg4rtQ1kdChiX94nmDe0oEyQ2Zn4S1pCslpYzNBydqUU93WsUw8Imjq58VzGFhb/GfdTmMJG0HAJMkdHMX8uvN/U4sWuts4zBTHqi/648mAp6/RT1wOlUc00OtGXh/jbQVmM2P1+mYsY6UkkCvXBQ74ouQtVVyN5xaJNDu2Uq2rhMcRzOnTpsEnBjqwWEKUu/VioC/38w3iOkqgp+W9/gs+gKVt48SQvferjz3J8kegrhRbhzhtFQ6YCBqTJeKDfl6x9wpUwsFmO6Mc+CE5k0LRKmGeymKve7f8+sp2rOonjzLxk23pRMs3p0CXfh1DTe1/nOYAy8F0tFmXHMIuWeePOP9zzuRsWk9gJ35Vd8e1FLxBiAYjr0T0qSaKXLIcRb0E25C3/4BK1wlKQJDrNpbZx+fkBQZT4+Ez3RqESmvmjsgVL3A2EwrJFH0/rdCbDxjtl6PCfKPBzHDVvVY87NVE4l4Q0JEF5vKBxrsMrY6VocWBKY0+NbnLpXlL2NHAAemNLc4wLYW/Kb5Nvm3jXciZgBboTWvSnWeUies8e5XbbQmWehFmcww7EkkWkWUyN7WxXugrIP4Vvnji+WlOeqWviAxhBemSkzQz08BvHoX+RJfOaTIcVB+7ebTaH2P3GN8EjU8JwfSDITVWp+QnXIWeNK9PdX9fO1fzdooAs+25hjKB1Cp2hAVdRW4srJbpoJtEQUclU/wKnXbtZpI1HUEyZdeTRYayD6DCEfqN66LISdxlBHuM29G4R82Te/pZMAW+UIMCN7x+EQP0cKVOhoY+Tb0ZD60ebt2ov5OU791HcWXF8QJu5dmkuHKwaBc4NvHLsgpsAL02YVDIcEtP6Cc7JdM3PH+6L9TQzxkGLtr0Mm99pEDgPIe3kK+bEWUrd4EMkoRoO3m2dcj9lM0nW1LGr9yzBgeBS/qEPWxD9/7vuVBiII3x30FCoEMBo7TW90prJfSj68VVjP/4DQ+SSaEZzxUAdKlygWZDxLDedVcsg8Jm/DmUdfspAeX/0aUOkCyGK88WZOwa6MZPpRAfT5GQW2cNZTXkRuz/qW+6aCXpgzxrvXqW6BURjxff3uiwvTB1VBUiRa6t+C3TSo1sfEbUiyUmH4tfkI2LDxLrljdiHgm/4EULcxCuZ2usttVy6WqhPZQKZbYOl/WuhXZbn577+lNPcZmU5dIbe3J1X72fKGyx8SYp07vcPHIEEIkTyNYdIM5dm1RoPPYvoZIjgm7TE2XeOHautCGXEISawcCooO/d+++wfTvJcbWqKEqEVedgP2i5kQeDFN7tMATZFR1ZutcFBPukaEWRP2uF2jKIZ2As1yKYu7QJhwaAWBgoCA7NTga5IjaTVJkDNMZS0OqPI9R0zDRcZcu9KwQaLgTeWStPoHOs4U+r3Z/ZRoToyfZC/7piwuLWjh+BbDS4+3KXCM237q8XrK03lYFQZ5VAd+Qpqt01opBoXxONfpM0PCDVFInEsS6LSDyaY42SmDlVXtcFUAWVEvFrj9ztqlg8REWvTH42CErt4wqNao767xPxvsjourgErKyLlGTgsCPvtQuTlb4Tpm6oZ7gni+rfqwf6ZJbP2bWnOxg4cSv2zSaEUZsBX5k0xi8N+j/1Dw5DCsD2FB9wUk8QA/xr/hhEMGeA2851Hf7/And7EkECw5eS+q/9GnRSPnI8m3t7bZpj8jsIGDXZaX7YQwhp2fZPr6nOYB4kDKLc4OoO/qXrm5fJ//yjkuRt9o+wlVxQJUkqkLjyilBqTiaaZFCZpjruZqYNKdbd/WBoCErkIqrZUrZkDXieBAlkfVKaQGrXas5iebfok2MPCgbCf5tpkVHPbV1HUJEGbXbL/XxLYop14M5RDz/aC91clG1EY4981h6Wtp5QFqbHJSyzgW8jwVajM/YQKjvR2jo/A9+NqlxgwbLOVgZlxlcukP75taGcrkzN5AKl3TCAwFd577T1iOSaLVmu18vK7S2mMCr5Pz03ebHD7AuyCbpjB7e9fTmOspGvZqAu/1xj81qJ4VuuDUChBnND7JbHvqeq5XgT84XHqPEZ52VnaZJjxbffrF1gjAVNUC/YU55PRXwrW19xj9GNwtf2Dp6Smo85bPK0/ALHmaZN8VUHgQ83RrvykoYYtatyd0H0myCbMYn0zzyBXbTFy1L24DhdhcqXyxluxZ1BcfqoBvidX0ttwe5XSQz30h0vm5rUYNRB3QjpKB8zBYuSK/V/jsbvitOoElzRvi3tACNyjLByRT8SEowhjXYGMZ7wywqXXR5uXY7fvV+/ME+ATRUE6JKBZp4fSQvtGiLNPw58Efccft/Otji0QBQrOPMUk589U1+08V+5ncvR0Cilrb12fTUMXcHU488dJDLWMiEnvvCis6rx2Nz9MwwnLQT7EYWcJRHOu/B9FWliwMSEQ2paKH23OoigFunJyQCuHyOygUk4Mx9/vpvg13q/C1/MYqw6zG4qgtKHHfG0BqWXOHDM4D51pT2ffgRyRMnq6qj1KuRYKPjfln4CBFaeqm7/HdBLM0Lo3aBebQgm3cCiVfarHrGLh5iU+f9zi9OeOYEtATiQeDPpicF8LC/ASmvdttuvj+L8WOTFntfh6r+LkC7HIHQxqaL8114z2Sgm5PC7aSqJed5g8oAr9WMtFPKdKPzigEcKtZt+AwDAVgKVtotyDbi/1JAjDaAJREcs6yUxkgSeSsNEEJKkROcuuVJCfOMLZ7LhiSjbxg5odk9j6o85785T9m3qi0FcfhtkKVKFdvIDulyEUkL10PRSdNKsUywZK+0EpF9WpPx0UZEY0ChjwCalNRNGg1IUz3XUenAty5DUNtHwP5EZOI/PiRWO2aHTi5t6vbOrP71ujxCUfkyz+EGoLIIsueFZeSgkLduOSlOsvtwPggr2trpUKDHhCeHE/SxPU819ypiep/KD2Q8g0Y8xnJnfcp7A1gQ3FCT66unG5cNgqNtxZwkpgdhewSmNZAw5Bib2+SSHbgSGUcbBzBxtdjsXhHpFmR+S0XZ2l55I0HJJrHfOptXZE9LdDSnBaIuL3Vfh1il/2mcDdw0VbBsnnv4hsAE1v68ycZ1UODxHmvr0/zIqXDa/L+Ti223zWqSYjZvPp0Gqpg7ynqdkl0f0SOTDrQqeOqteyIW9S1qJIdZHeXtC29ABATVjyhHFo05MYu+EoEeAmrNd7SpYktXIeDFyiBn7wORWBegQwC3PpSyWBJcLk2doyFtcvzDDV/LZh8I/yZ66RZqngw/j4yyHicFY6CxsbT0qfmhZ60hMYyStVIVcefPvm5fXEDUM6uwHxz/AfW2E3lOVQaAe2xIbReFUp03emYJfmHl606o93xedvVtTkWna5UPp2YHIRM486u0dUSN8ucoNpFlcpcWhC8VcocKZowCx4HdB8hX6UTMbAaltCam35LW0gMSTPXEiEYeCjYsnsm9XcRxRWBApwdTp7X0stzkYFf4DgFFVgAfdg8s5+JVKBTqI5IGPnlmGPFd/UWF7FqxX/9bqx2/CXsZv1DEVancz01ChXYRCpmKwe+Wdq+Z16Ov3Z2+uAyBMYZdox7IUwOp+aqObxw8slP1SFdjWQT13NSJYtVjfPvwp7Q89wAD6oaO9PEtn1JCNSkJajEIiuC62f3HtkxOyVt59kRaNKreluYwqyhkpqKmK+0ZSqd33YbxZyUmxts4HXHuayAnl+CL3Nq2pBWFlsrYVPTgjmpaol1wbPjR5vgAgpoMwnVQyLNAcbcGa1NZ9rCZpQyN0LdksOc1Racj+N1r7dzX9zzdaV+kBjQnNiNu3Vjv8lEaKF5SUAajtAyG1JxXlEQGQGl8ISoNNT7lNTZ0GiVzSfOLXsP3b8LhZ7TaBHsQiJDSwoO8vBxCJC86L7t/VJmrHNblAUunufsXhNaZgvcyDIQ5xc2DH74eYwadGp0pMZbxRl4VhsBJ1W0nA3jgKfXOCeqO858nX8ec95bNIvqj99wJRsJ6acoxRt4yLgoBe7DG5ELdHQauMvbyQLagNinaGBLnUzFymB/83uUUlatNQ5Hni0VoMgUc7mZdGwCE9ftvO8kg0g1yo9T+dnwK0ukP0CWK/iJxbSrmOYfCk7JnjJNEDNBevjdiKtMC90SXDnb0mhb8guPC5mZy1v48UUZO8SqRVKzTlXN9LfaMplTZ7oMEyh7fNjsKg7h7FCx1gxtzVifm5WjBkO40ZPLVtWiw9FGMNPjeKFH8eURi1crq5Gz7LYr3T0EtEYrwrUCZOa8PV4rXDFT+b+nKyUZydWno4/qemALYZ4Z6w1DusQpB6FKhlt1GmJXNyYIIt787uIMCsFfMMlb0bYpCDHVSyzcuxB8kY81qVt9i8Zj+MqQe/btA8kB1gJl5TgXvJm4CkxbrpeS0N3hHIGXhagGEq3CvVLgWowZyswVcCmvDT0MPGdNTuNGYQCdvf7FibKx8zZK8bgTuWMD9G4aE67tJ81X0lUrFKKCyTyzWitqJQrvm+fAHgxqUhgkgws+9WeaaPTzzGlu++z/gBqNCVb6Q4i4v4xebcNSWP+ICsRvmRqR3GDmwnTlSBahmX90AkhqxzaBL7R7fOBg/SMe/D+OH1MyKO1s43dpZ1YYINcIFmKj+hsDx26aF+LFTJKsSWfw2d8yqrP9CgzGNd49TfpeXa8y1vE3H7ZoLZ3YYpxoqZfkBEH+r3lzoUXUlqMaSEdRBgIuVqTltJRcFNxbmS4acHArdhaLAa8VLwNgHHnbo7k7A8A+7NS1zj0TiXYj1WfX8X63HB97eOJBmh7VlreYd1ZVLCsM4eB/W0FK+7/eewRTF7VX2tfVIjPj2+g9lXBRIBmVb7dr4TLP2MYCunDEuEsABWh342gDkBsYpXvotQnR/unj38tPw+gMz9WHKJ7TE9lW6YUXa9lAINBHkGvEngTaEe25Ttd8mivZ1qgLS3rLB4ll7jqraFE0jZp8VuCwjPupYR9FPEGXd2rv5y79TUcvAVJ1HZajTn4+qmIuGjfAeRCRE1yjMiOr3XNnKwy1Er9VnPLRawYxflipadlVvaL8nJIQE5SpCK7gtqxXaDC0nd8tAvR1LemElcpamy4E/NZlKQCL8VASXVgo3kRBlKilGW/HfPZnOgqbusnj5wYJ90q/jJyvKSAgpQDmBBaJu0ER+8PH2nvtuhJk9pimniRz7eHCUt5EOoUV0QM/KmumrDA3mOobbRxbJcKR1jmtBycaqRNYHaHfAiywyHX/mJOBalHsM/TW4zMwYGpRc2ZxlLgxaP2/LtWSSRfS1QO2eogofqdiQFF87C4rgKkamlvQJ2ri3i/rxY/h1LB0D75ztq3MSHeu/+5WdY8pjz4dk9b85V+qGocQJWTn3erb4oQR1jDpKpctQcebBSBUhKi/aPHQUzq5YmJeeunYL57MzhCE7EGLo492hLYsw2m4d8zRIey9pDeOyxz8jEmWqfluH3FLRNnBPx5bmuq5TpfS9p9vRuUJcVUoGRW0HPPOI15mLNhCvPrSPU74xKdf5qH2reiWKruDjcwOLs3wGK3fTEUYuXJhpIXwnG0BjVKRKXipC+ZL/lzh1KbxH397SPZUYxEiqJGJAkHwDRo6TCP4qXIa+oCDYWLMwOZZv+FZdkI3Ny+leYtKu9gtgEhyVMuQBcrHl0i8LKXDOu4BmDhabKJ/Wfsa8+9G99f+ChEtWrNHLzIduoPSdrNPvps7Uq3wDGOY8ImrCAw1zGAeOUk+Va4fbotsWTwX/WENoxaU8Hzaa/miZmEuRlJ1muDSsQBYhkvQvdkqAzdhR1Q8Xl3bzS+XxdnESzSLAdY0V/HjCYgeo1xK+zjaqNrf+UG3G42GJ4FgdbjbOeFa7XPmEacC3RNkQNc6m5gweBb5kF9D+2GBcoob/IhpjAAqVHTWhoojXuSvgs+GRH2AbfYJDHQzztRDTvkzLn5mikEkqQTJwKKRlHFxM+HKP36HbJEGvv8VqwttAzKUE2bH7oBpF1YqGs9uT2gZeUNO5t2g5SB31EeMXkO5PGBr0gs+n1vztPBwo4KZLgsqtlt83rb6vjyMypLgGdx+aa0k+d6/qR43x5MPmGxADnm//iWjdgJ6KFlAj7TGdnhrs3RG/2GD6jioVEJYes5lu7Y7LPHui73OwZmyRmTq7fGsO4R/P2DfSCI2GpcC32HVuEJeNMf4bE4LVsa1stvnWMRjKju9SUKJSsgzNoAqyTu6Mhko95Q4zdhqIs5W/QE7cmtlsRj9ly54mwh4ebmTX5RU8uTvShbom+Y7Kpsq/+Up7HQkYbU6AHCRU5E/nRe/IutIyYJAB4gt+URw6XCcFZj1SHIjg7WZ6Xj6QNUGCgXYOy61EJ9l5bYwqOMdbVCFCYhO2vjgJ9OXJKOuSGqKdGNtxT4H5n5uH6xC8auGZfU4JZtftDdG+NEfLn3GMDXjBe4eLUOPfCOGIvc1S/ffp1U0boVH9CxQq4oMlgK9tQipVRr+4YkfAHQozOVzkLtS4n2hyPhnpt3L2VYpyY1y4lwGAlnN20Z6jA5RhRuaHUWPX13gv46wLOhLiCQg2SOLQYtB9lydbBdAMelKcVFqZKLMalACuiJE3udT81akcBZXBUfss9Wbinq8WLI+T2j3HduDLfToa0iVo0HZ+ZWZyCTs/uZkfh0mxejIhbNrtGyLj6QJFwAqHgYApWbXeyBa7xp4XsgpXyArA8DbJPFau+HycVHI3ZCNSRMa+XqHSGSBWZzvYdb0q68EN9a+1GQRc8+EAYeU21BFMDpre6e5F6++8xTFULf2bQD9WvWnKmAeKk0nkqnMOGqSl8Dzt4AcHj1aa4MahKIWa8pfu7h8M2UQ0drSm4D+3CNc/Ot0gvVDaXNrMLenxXf0n7xO9SpVIrzR/OmV7nr3YNbN2IJSchsQxZLZutjlenGG2LBAS1SSeg0gkg8mrhq7dNOmch0KczkS6/lV7XCxccab6B+aM/AFjVAyjy+Sn87niqjuu+hb6QByj9vQX8l8nLJgm0KnCZh1oZmWDUrsPVLcMP/sRR0P5M/y08jywXaj7qbL1pVIVTYE/wjbAYbk57Fp5yMD2OSzawWCmaoaGwfqTiGklSaESAXJ2/T3qB1yVPodt/ddlzTki+92V0X0Nlk+kfjruq+xkWM/N8k4VR8mNbUw6O3BsZ4rOb1bb97Sorh7+nfGP6ErJacKR83C/LUOq46M2nzNFsHUOZnL6rGGbPhHqvRgDtZXmlsE+GVyG+e5PckYf47+dJuE4x+r1m0/yB6LgfnZQBEs+R1FJRsn48hQRMcukMt4mWeCDuqMAgaaEqMUP1CjLrInrQMwBmtVH9+ThsOw8LD5Om4PPSy32wLS2IdRSDUch9aOf2KG29DbkfQKbAaIA5zOQEKuOUSsk9Me/756CBQGb7XD0pGksbTJziHWmIE1vkwgakkQG2HVk4zrdmst+TZBEaIS6B/N37aBuA2HEz7UxDz04G6iKyqol5MGVPNR7p3ycx0Y+bV76nlgtl83KwgsuNzp71yxEunrnH2/INKfMyz/ig71Iu8tWgoB7nboW7mNSIii+3zlvTrySafxpM5+igyJFqU8pK6ublBYXQNUzZAT/CQIwQgZQIucerCL8xnKOH9skkySo7KchaXeHE6cNZZth0U5MiiXau5fhj58EbCEgW6ZX908eSP5WO1bk9HpRQvPIvGkMvsbqqL4MB8xnque/FNCCGspRhFN3WwYk18CwKoWSHj7fgMCdy6jcsvczDqP28RZze3QkqJON4eRgbARj4YEAgfYT4GLHHKrQpUKe+tf6nvWckU4jnZSQVhhf7Bds2o77jTZdyXXLb/05gJkEJKrWrHRp+H8ToC78l/50ph1PcWK3xptKNghGmBosaj5Um9CH3n6En5FQak9QeOXe2cFdqFYjnIp/QcYfhA61tLaT+E3t8kLfSDA7LNONH6xN+irZPw4U1MY9JEuWwlehtPhG1pLmgK/qIwzQbR+eSqzNVQ1EKSPtVTfoojuKUcGTqczaGo/WXQ/nnQVhXGQrGo3Lt+hd15qZapgSBoZcrvy1YXYb5uOKIIeNvgRad4jqcUSRS2fRsm4eldAvVbDKUxqyzBloVe0qsLjopYoF1B5RS4p8td3OTzgH3oO7kOmc6HdSuMozdGaeThlT8TFWx2QNNS7cH59AU71zaP6OySz/mm4JYgQYugulIwQZwafaQ4YrrYJcfLBr9HXKlYoyeUiqb3/2J5BHbSavdXEcyFI7VPmKGXKpiiAgtBnoAMQ61uEH3NiOuCVNgx/fpUgu4oMaL82dFxcwCFv6CtQijBWZuPYbzYtOcynoaqy5d+gI/4AEHIgXxZxrZu8ulTQsrwv38j4igbgH3LxZb8U7v4zI1kaVdTbJOlBirtlCmgMuf8yheV/5WosM/AJolm3Nxd6mf0paYRbI3QOo311Fcc41cYJDkH+TrkMdi3wKzsZw+1WcVCn9o2X/KgSr3y2dhTik76CmIoNc7G9Cl82+/RWghN+6q3+MoN7f8oMZkGz1TKGTgg/g+yOxqy/UMF8gOpAPWcLfjYuzuz2uBL4G1hlYm5czwFTleynsSITFyuT8zAkZ8P6loTCS0t94cCmNd2xYevxTIPTLIEbRcl91ap9mg2ZLL7h2rLhFv3D1kgQMJxyteIV74JlxLhO5RE59U58SWgh29wfJMvkpmPhPmzMHR4eQrvBhetV+TUsPEg5a0B/9JOlbR8PKsKVw3J4RLI13Cc2MYU+2pxbRX04SPTWA0DMGCa6SqUYtZLycvsK/8cmvyD7lwsVK47bcunZETbybH1+quCB9Z7xc2qdwdRllF6zv09Vf92u/QKSE8HBXzw5KexbAboiTCwHhU4mInm6XVKuiezU6eji/4qq6okFRBZGk5K2ns/z7DElqJQDSH0THnmHghwboXPbzWdssWauUzSWWV85t5fj2S5tPmtrR631kq8PLIHO74sLH6qY6faXPaYeflHffPtAn7pKnlfQP4IQW/ClVL66/tZDOrB89s3NUUDqzmRwvIRZNWh+1/F/Xx/k499BGMrwQK1T6L2pgOiA2ddv3icXia8nqUAzsx3qfRVRTGqx4GY5qYKboR2G5K6jr14yrjFA60AEqzFq5yAcO1QhhfL2DjqUAcnUWWqQMj/oteZGleqgIAxnG7TKaM0POQRr+M6QWD/5MNde0/7fMLmG3PceaZE3FP3y/R02H74Uio4iNh6NknPFVXmwQgMH61GFq1027KtiAuWC55aGEgLvYml+v0uEAnXWmrHqwDOTm1xXkaZuet4KKYomk564CFU1JuzOUN65eOaT30tKeYoGcUxHAtXuW0euKpIOc+MRBlSpoNyT0/F1wEXpfF5X5hY2uhW6DoaaCuVAfu/XMDUwwLxObimHx1EWp9TIudgSNO+mBifEYflGPEfuqMkJOndKdkWCkY+PvlpcITmENP/4RrHjezu7ehJeep3n2Wz6Th5fkZIHwyvq1OlUkiMRgEfeUuxbRMyGCRiIaZh2Dp0mO1LD/qMmNUFKgDkfx0ibiwuWw8TBMqkzue9aNnpZSyNkDMdxlp8l/kQT5tRF+ALyHeDDkI6D4m3SMvxjt0YqxBgFOcMTdgKdvIHTnCydxmEVsijGRBugTkPuXhj69g8Ijcu9PlnmScYiKCfa92w6PdT+E8u4V64uIAMnmE+5mHOM+JgkQqYWTALtK9Ub34cdw8y+NtaApoSMf/J7u5mP+8ZeF3rKV6MCiyBFLafAHO010T/dYGD0gg/r+DmOrQrvd9SlfsEozygX80UaScRIIXZBDD4yCWub5rcoMFuP0hOoI5eQJlfFOfPr2umpjFDk031h2eI56KrFKLlVfrKQlIVRUavUN+LsO1mfNYr4skonUJ9kl1NxsmpcClBlSJ0U5v5Kc322DulMcgVe9DDW9l9UxW4/J9dZcTLXrosYfNfznzmxhRuTXDm7LZ8e82Z1yPE/2EgHL48YLVw8M/GTr3FXJ8UzdQj2tUN01bWj+iN4Gl3eE5Z+AuQfaZZZXZo8mXRFxutvYMBsCNrLHPA+WiRVCOrXPM15BrYBKjyvRvCbm0QSLGsy2Gxj8weVot+OBnL77hsztv98oaVlCvXpW+7ZYWj9znUXqgTXpaFE1qitIiAOhvUnAJ4/r85NWE2nNLvTbg2eu9AJVcQRAFT2DrWzAb3/9lj/5d5E5Lajsghwr+CDTNVeIKgC8FhpT5an0K60N6fAklKnX6dsI9gBq4bP23mOqBDYXH5b6kANgoxb3xvcWxS6KyotIDzjoQf5rDh8vHel9RalAsICFj3Yr0V+EWOr6KFE0bHDQKxo8o1KueO2OBHda8KMlr+Xu08z8rZrIScC/xWxEp21Xk0JprT1XPbOPJ4oIcIh40YkrCHLlB45VFBEyhNrkjn7KtTC9Oh93zuVLkrMSjvdfirClP216EnuN+H9RPACtsbaNEDO7qKVuiNqZmsF0ilsY3+65FusdZEWB5S6QO80euVUqs9bTekfBHgeZXmg5MsZDloiROXQeSP45ilZD79v0rRacKAK0DnvyfH4TeEA4DOSk2B/xcMTCYt3jZ7jD00DrzQKg1WnBiu7hCby3pZLa+dAJ/04PRDhuSlrN0BRzwFr8w8XwLiK4PztvWJ4mZaC3l1Z/t6HSfcLoabQxNFPbjEkeT2+z8wMYpLZ8GgSKQCjZJxCGr9ntV90k9rwuH5jzxY7Kst0DiKywwfSZnXM/M+/q5K/j6roqzouFFFBArnrfa0nLv+/YwsuMiHqdxqVM+X2N8dctmzjcpiZOmQwV0kZlMzpMeLOp/NNWWpyIZSUWb/xbBMKNieftJnukr19mr7jyk87+Zg0LNYOtvgU9QDwKstIBwrQg6BCNgDkQKc6Zg46+Io3fXy4hhjGNqyN16Eyt/V7uuom0xl1b50t0Ax7wioG2NeqkLvV828IhTYt1QCxnAwmFzlIRzy4PbNUh9T1ZVKd7M/6I1C4sXM/upQWyk+GK/IJiDfIdGMbj3KVtMYFoE0VlqM72mEThIxMf1bgvE9pzS/X3DlQpXxlhuGCrSXkUefHKyOSnZvUKTxdaYfQDVfC5XP0o/8KtY0Me/BGXLemDtnMRyrBZFFYeMTBYd3Qe41KHZUa8gysjA31necMhC61hWtvadT0HUFpgk+pmF4KkTxT+97nzvGt7qc/wNIF+sNZBxWkkOeeVNL6KMQ5krpfMckxbKG0QAxHgoopYB/iHrgRNdUopIPkF/liduS3Khm1gOiCwE7iFL/SEgJtjg9Uxx6KaeLL0GWyEgw8qOKIgf3d8Y+03Ue2iGrAYXrmoWvYqRba53BqrM6TlLH64i6HB6Q4I6OEtZgP1Pr/nzB8lvfCYkYeK4L/wOG/dXzza0FO0hs2f+8+gw5ojTHvbAYyDNOPoySg1fIW16KWsr7G/ywoLniLxhTkeoUTIhQK7y58q8HffII0V/W366CKRQU8E2ydmVN0tQ2+sklogtwatkfPP8z7fYcyy920GK0rbLLbiKEwSPpA4Wj35s/tNweGSvvdDVgctG0hvehJKKPYNUsW3t7wExQey0X/R1tUxMpNuOnHujpbcu4eKoeTqXFQ8TwGwHctWaXw4tfCydp/C3R6FitugxnjvrdzMLq2KRvH2QxiiSTUelmGcHP/enRn5TEhuqf+1vW+R8/9prPt/oG1h1KcgtDwDXY2RZHhoBU7Syu6qhboA4D8FkksTNyEcDXojvH6TyTykI7FPoSqtwy8ZrdPqC9HXzJue+HZ396syCrTBuOamKYwq9PaggbtjY41fYuGcOhIc/Bs053ySshCfGCrsIVlsUG9ngfnUGtE5BZDv7dSlpD4QyvR7FmDNE4eYLFZ54euSUrWTdf4fikeN0njuS3WV1k7wr2o1oSDcdHJIuuzIEFEZm4e4V+54YXNISWol7XXp7y9yE7Y4vFE7tyczG0AAmSswiae1SXws9kdtqGVfVgmBNGDo88uhMWgBWJPd/Pp1EIcDu4adCKjh7qor8+yYOTzRu/WvgwnW7pOaTpKhhHxSmLy0UMQW5UYAGlEnsMscdofybkc1y1mROZm2QEZPH+W1iYQEH4jilJ2XALqX2vIjddx9SUuEyZdJqle0xgGf1DuyVJPCMWiRKBNfIHXWY6NR/7t39kS8emsbwO92pCoIzDgyACJZwo89pmumB4/mrIqCv2I9zDPhp3cw5tNtpUxckvJZCHQXMek2jRXTe/Pv6wCGOAzDqXNrY/hoKC7AZbIrqL52goTd/8rfIOO4fmvtMn0x+Mk5McagC4qTLX8ikI8kFxSXrZETYYOvpsdxb5H13hoSRS1ZM3L33pErpXfP3tDWjFwHWz1U+xNZ6wC7m0/1+vo94F0a7lYrtOdEl0VVemmigNMLLJKY6mzSGZLLvdYDrRIDoPAOimKO4zMcx1Mmiht5C33XwE+sI+kATixzrfpuHg+wQUaJ1UJj61QcgvCh602mSrtocYnqDv888a7LweunA2jaO5wGOlG4BaueFchLBaGZXxuHgi4dkZGzCMt3cNB1AHAZCOjxCyDqxA2YVeL+AY83ZlasZt1Obces+l8Oamh3fwwMn+i0FQTruikxwT8fyfBQH8BqMR6FNqrZeoR3G3vNTdYsnGePDi1IVLiQjoSCLZmvqOfRg8XR8WFm8wWW+svH+AFuAmCQggDNBgdYFCJPWIeSaiJ/z7jsrxNvMVaEC56zX6M7ENYudhcKUGgo7XAAoGTiLpIVpYy3G5VZB4se57fojZnN2kDtA1ESPm8VnKFcgfRjOD+Srd0GCsJjLCq96yCkT9XUPg3by77BVMm/E5fgLQYE8O6jhDIXJaN+eQ0uf16u7PSKwAzdnkTwtQOf3hPqAvsyuWa5ROJA0w8StNxCdwZfwrSneyJbUYQE4RFXgaIWr8LSiGjuCHmCjPD7OJHofaNU1zzkiroDs2euP68/OBsYd/ZfJh5wLBK4AvU4HnND50mB9qGZ2x1rlNMaOkZJQefMEVtRC25RSvzPFJ+Dwv3EeLgFbYQIVtMy0abjCNZXh05bHTh9p69JQf3nq/+00XyBC3Y6vLpaybGBheIMkS4K6ichlBpu3Fsse2n/SPWRhHeOphmYA0QR3YUVXeayQnuWzyIIiOD5OIqH0OQ2JyP9SsvymhDgbdkJKcKhyi5uSsTiqOX3DYcRjpTLmYaJAzWabu8b1PsMQZ/M23jp7UfsKPJDU43IpNGQViuQrPQBXk5ATHhgN2XPFMeo1xWN0LJCauyWaIVcCFi3wXoGqfUgA/nPMoEbvfT6aTFctOQ0HZOUeTxG1AHyJfDVKiH+Rkx+NQRiZzQ6vq00pAPcdiRHzh+0XgaIrGpszdnGe2xXkGmT7dGUZvPCoKXjy93i4V3aKHVpvdaX8BEIXfcJB0aGCGnNtf4uJnMmkvpmEYaWOWIHbipA/74eV/ZL6klAOVFZh/X50nqtHNPWYoaLNR1pWvOWhKltMXCLPyKVvIWkLezZQjDzDG3ny7uiCNE0rOE5C+EeAOn4OukWC6pFh0Cl6LA5mtWrBqU5xJDi2graw1j+stWGgvPBMrBPee+pkru9UXjOEMiqt4U2sCRU80MJOHPIdXiFFebdN3DCGTjmnm8ZAZYmoDs07mmIOac9R5IEcc0UN7n6ISH80U6V8C05nsaaBSsTiumBjqQc85Z5grY1uDBHljI9yTtT7jTLyfx/K6OXGg7carTtQRjo74Cpn5+lA7bsOXAIOQmKuS0Je+IeeH6FpwSNlCK3sRIDoaJFtCGt6NeUytOwBCacleB2IzcWub7DHQziufKC28BYgtWj7R5WAMcQfX2c4PbvaltUztVDIjkEd5I4CJd1SUOsvAsd+BfYKyy2ppvgDI+pCRk077AnXxE9Te8v/TPPkVx6KLC7S4KnmFhqu6fjxgiTZzJwtghNRZujJ/DNJRHUcOsIGIfxnHT9ovdQxcxslRSmmI1jO8L95WyXRbPRrPiX5pUwTGND+VnwPsWKOwvMpIb/ky35+MtACPO9anb6Z0GMG5LYDH8RMmKatruKe2JSLFtjGBLtLyTWe/i6V5sON8s8XTEa/lOf2SXkOzZIPRmqGD40FypH3k8Gkkz8VnIwuekxwxW3lVtyPKrywU2VaVOn5yiQEJlP26LaM37zDSFpwmaZ3Bti3OeK78DLNL1YjFuAsIvQJRqslPnt6HaLUcfHQaM32aI7BtoLS+k8/q2X5kAm75ZVQUs5J4lqYKBDXHixRZarC114DUy6bw0etKUZ9AYUk/cMX5A8sTuWw0Wm2JQPsJOvydPWR8XyB3lYtjuxMEK7IW8xmFLo7KJHuD7/uV/AbjClOkiRiiEAdptfCkDsxNzfLt9opIYSMmaxCHQe3lZz2phIMT8z1IyDalSxqT/d6h8po7LrTsRfTZiGf/w1ikDAkXedwdfxgagou3XLo/51BmQIgvz0YDvogBofJkljxwOphWmYcIB9cJxVSmx5q0hIwF0LObveC+Ki/lodSRlF5GAbzLQhyIlie79eBdQQHZMVcvjthk3UVFzx8fqMlzIDDdTDmTTU+6+NwrBnRQhmiA3NyZpuENcERqDWE64n0sB9r6AveSd7ZnwCyGxEZB/4zucFyufimr6XEEkEOW7IlXpjMiYoOJvZfpBTY2pe8UgWCJ8szbN2IiaKHdEspOsjLV2ku5dv6zS7HPaYZa+pyN25pyqI83wZmXsHo5luv+2niaVoiMjdhX5fNhpldQU1M0UrR8C7CbbgrMXvbZwdppL8E3zGRTx4p9grIdoofpL0VvCgyCWEwbDDb14MYPpOY9vh4df8/6/UWrjkLFkyOuuJtp2TymHho/cUFzs54fq7BbNm4urTTNgfR7E+D9Rh6s5GbZFARZQkcHeYhPFfdOIyR94QXlnV6Qa9uwdWa4n/a3MTnQ+DC5FIezhq3vy8Bw78+dzqbELNccES0KR/0HN/oZQ90ZuBFguqqX1Oq7Z8IuZDt/6YR1kwG9CawVy2sem4mc2RSrCOK4J1AzrHUmAp8/Qkm7xsIn43ROZlGz01U9kb+27Rzq56KQTw4Sd+0ieg2soc4hFQFqWFB3iIEoKE2xHiBuxBbuozUNSLC5VmfRlt+3y7DlOd0T0XJNX5A/wfAy0j0vlzbXeHP5JWIFzEu6j8vM9a6o9cq6nzWzA6aYlguNkWgWFLMit+aQJmoV8qe94Gs14FAcHf6RGH2kMhxECFxxbt68TCh/ZMdRvO3I6dsmJwviScyleozSCX31QcgWCMmsjnOV0jVS1LUjrD5YbKyDKQlOOUcKfGGtNrwaLf8NPm0Y3m3RAf4NVvpmKfB1i/m6PFg/gTOmmFX02c1YWSk3lMbl4ekeC11EmeiSacI0iJqS/8qGMDP5esE+sRIxvtR7CBWJjkF1aikHFWuD20zrJ2DqtsfMAFDQe7y5y692z2S21DlKLKwwfYRoRu47hgccdIZOawIY8DPiwQ03cM9zWy6POjHrk685SWJverN0A+940Xf1Km303gEFYk8FmwshFokGk9ird4BlWZGchBMEdxhr2WoCtxffkXdtyQ5JCyPj+ntqjbzWr5AdfJdmj6BasVC2mZCLKWYVUtGuc+EgFpYm1aDqjjHcuWrNxC8fcUuxnRQJgv/gLLbxiooR8JwAVGYPm2xWVNxOm57YltUHDwMJ5DW/rmJAKNzFsrA7MfsPZ+RGNWGP0wNcnXphCYYZu2Tpg2XU2X3xqvFpWkX3fNd1rHWGLrK1Liwwhz2zVFBrHZrkdbEe1VVBDpXvf5O4DQsCRQjldVoqi9og6e2cN4SMhMQK82gvvTZ1W8RcIt80D/UfCMJuh/eDIznAeMsLMc/R1s0WtS+lfmi/UNtqna3mx64LVaRi1TFrDMMPnnX5Cuv6QofXl3hwZ7+t8vdV3Ay0deYUJFe4l2wCWT87yqwIFz6ImDuW4QzK5MCxNutBlXreoTGfpyJNkv3LHnk/lC1q9D31wkOV2ztIBavcXyLhlCOnVlT09ECHPE8J3XUi8OUtOcd6LX8vljHEDxs/IAeJOGMOnwRpEfthi7u4crIDAJkitf91c+5O8Ns+lppatxSP9A6G8dirrnKoWUaZMQekfJzWXxdEq1bYrF/5QGCoO9LjJOO//ZXGek8V4bd8Awo53sqec5dohlZyOLcSIENkhahgtJDVrSMlpClshVivgesDAFD9U+/9ZWnvum0tMRxFeiL78gcfKavELoxVUuje9txhhsEcKyqQKjvftbmkxfIyueBcHA8ky8kYwFy+Zxy9DYGIxAZK+CeJWotjACrVg4SXIseYX2Hd/rPIRs5+6g/Re8Z5PpU8VSk7Ys1hT0S/D7uTtFH6gByiArfV3GcaNQAySECjtelP5NRPtmhN8b9P2CB4zbDt9q9x51Nf2AXFIUnnvoXfUI8Ffwg1sBnOe7ubic1OMiFmxO14aYTFYcIEh9WnRtrv2rvXkOSidOVnnMnJfkdSaMnCA2jcMbv6gqXIySDJL+YWjHHk8L6ESUGlQJv3A8dAJMES/PRU4JLttCMDSHKjU3PLWNkxF1garfPHo7F9x8v6o/kONIy6xOkBysYuQbv/eBuKUmqNcXOMeAb08Q3E0vPbrikUYNDdGEPUB2H1p23W3nJlCpk83SctOk5BFEiCdKhIkJkq5yY+/xLo/zFuUakhrO48pW/ameHThxPn9y9ueyUGOg0K3s2nI0Vtl805mIAbmQDlC7+j0CXW/t0tzDEPtnKXrwkp1bjUa+rS1I4yeaXDJbvLp/H/L290Rl4I5mwit3oaP8PHE+vUPfTonZCDQuQpiiSxTvC4NhGYCnTc4viaosx50gQbvrMnf89M7wAnxSxu7ojE0sWiccc4bcEYC3vhsmbdRQK28q9gHPUZqU1mV4ltOvUWfYz3a9XvXoflk4bnXadC2qLhEHZYdiaw9hhSnP9DsmzWnCwjtWoBdq+FlSWYIED1LXcSgR9rU+2ICVb5U5YDknk/O1ehZpvLd3xEHHdNgJCr3uSfXHmp9iaIS+i4p34oPE3jnDvBvS50kfVR9iBuc5azoBDNM90jcIx/4pmZrJtBRciEmfwaI3cTQJkKs7jQCVBcLeUL3RVV55ZMo+m+PbXG/G47bnTELjiJffEFSfpmmOS32NwjrOsCuj7IsB19pORLShfvK2pQA5vIuDvqxz47ps/23E4wBpwgL5zWlS4r6x1So0/sN88dJXa3ofhKQmvbP+/nA6j/iAkufn2OLcrdXJ/S7bxzAb75SLWU0ZXIlzSevZ9E2w1tGKO6VXam8yv5R7kSp/6wArtggSCeSx5cAkpflON3fI/e+U/Bbohe0Ho/CA1EcuM9g3fD1ge8GFDIL/RipwO/okHRqWZ2qzg5D7NgNulST2tdkRIMIe50KqUR/RCAsKDTNwFRQF+J2BeJGMTyojZpZAkMoVhJDEsIzj2CIwrAKh/rr+7xJ1NGuAqEotJ4Svu3xEM1z44pKgRhV4K9rC1RrGOqrqaYAnLUdoKZVDikkGnGs2YFFF7gth7NvKSCRKPXYOI2dMYX8MBi3xIiTMsGSnjAdO5yKe6OJQY9IBu5lTPmrAK4d1S1T8wFdzweyKsQYQ26nlsxKFIZeytDTcA39DCqzDfjvguOWiF2RJ/D+s+sH8pE0V+ATeb4L+Znb4FHYjxnQB9q80vOtoV60icNggbhEe580nTFh8ze1ffFO04U/mVBLwTIRp96sbYtuRNvAAO2Hfg3CYhcLHvYdbRtrCkZUrDhRZ3QXeFyarfCzcsy/PIXxBOKH8MXFaOoUsX+qlkPbkpsGrM5uDO8TgMnVxQDwkZLW3veTh6ehOCIlwr79TA2Rg6u0Kx1k0C4TTW/2f+BFu65s1MvLwfG/2wR42ShgesBQQLKNpqB20bs3g1VLSnImpJ5TqqYFFJ91pkL+nNskgSjC6EkLRvTixvWGUEh5yOcyy7S2E1ERih8WNSAZ+F77NFWTZxrlz8o4E0I2UhF0OM8YZlIw9UcqDU2Gfb6ypzbkEIb4qi4DmTVqfQxtHIq5/sj6CzW3Q/4Twv/LtCVlzc61RbTtr5SFS9NFtuJzH7Xqx81GhinJQaud7MnOucqXUCoQgy1+af38a76XXLdTvk9xwTavspWZQdYNihSYanLPeBHpKcPRAomwTTwpHw8L9j2woPHVVKrupqT8ymjs8EW44YLAVCRC5VQLYBK/tq5JYJ9wUwUTVCWHiD7YFsQQ/Gk4HO37T6L7YVL5hwYD2tgHpqpQpZP4os7CwfGE7oR4jgpgm8Xgwd+vCGMUeYKqzUPHLx0nRj7Wr6NhEVPn7q6Vh6W7LhTKjKWrlswLDZQ7EFsRhbv6nE+zhhHFTNgnY3PRtNM3VOvF8dROHi55pNVAF/VI3DZ5twYNhYm08vEJOg34A4es1Y7UViEVec/ql0XDkYbrE7c4oewf5uPYFyCizxMZrprUwQYi9RCvOzTOr9RRtlnk4sLAb197dmYyQc2Zze3FObu16O0vM6daCsw7onSQoT1iaW4HlV2Dt0Uqm3xm1iGWYxPr17vlvg7Em2shOCFlMJYIcO1OgDOiTSPEiG5YnEjW6snqhj3mEG5CJWtM+/YnAhMuqVLT7RCPbVBoU9lxIWHVbTVp3yAijb5B3LjODpuGXsznRZuY6hJNw/DXYzIvrd+9gqy1KzYurZGvyM1lc+s6libJSnr9MR4G8NBPyBNCy9/aEqQyTZz3M6wyUndR2fAjg3/6jm7ZroW7hfbzptaCV2G9fJeGeUu1oJEscTAytoX2EHQ/p17K2KSPp253H47KGCpKImrkp3gO9D2Igh3jqr9xBiKV8DsXi+7adJh4StBL5tV0l3EX1NhyK23mB2CA+kVPsLwGENDkOMsu8WDxco4DiTO7azpwZIt3DqRPl8MbFVFogi8h+WHtCG+aRQDmpB2WQTvHmFyiO4qvEpiFsozfLIUlWQQIiibloEOkJCS6OJ5MbguXHNGel/shA6UE4slnUocDDIYzcHtoYXuvvhMOcCnuRmmDGRc8p0tK6VBH9xwOSN9Dl9uAaQsSjnUllt82t0sE48kUng6uwpxbI9lQqQEyUDVKRP7+Bt0fMJVQ8YaP1ONTaOW2P0o7dWwKA2eenKbfgX5Gcl8bb7u2n9wQGwgQ09t4IzRO5jFP/pD97mXDq+LdtgYDvh927W8pcjjxFTtZ/7eb4tmB7EsGkWk1Hn65onQPu+Jw0los9x7Vho741rhK3gGG7PX3fplXBVDCGO70Kwzx5NDa5N0t2Tc3BITjQWlhmxonrsWLP+TYfFzLgQYuTneZFgaLqxF/0HPYpi19O1/wDOLD1TvoiYwGTvm0s1MYJebE+n33nPRdiJVhwY2mKNH/F+j5ld4QIxjOyLxlkTRDORAIbpc86yisJfGb+0juTnMlTnCLRym3IIrbs0mkxGdC4V+hhgo94ka9zsKsxuigCNt6gva/g1a9dNY17Fy6llHnIvtLbmq17SmQVrQKbhRfSdrRErg2l3LINWoR7dm8ZCg9SoQtFpAaLTkRIlKHju0d1InzOY9fHHZPgSvHymKwy5lTZFpRoG+pKsP6k0hKvJvXZ/YOTYnm2ewcvrPTGoJpWOW8G81AMIPE9MTPhfwV3u0Rh7VTAWvyH7Lw5kOFZ3mF4ph6cth2yKfZfuMPTHNg6UXyHyNVrNanYpNrzs4+VSNtmoj3FVZDoy7PfIwSNY4GEhjhKc5EmQaosdjdkK4SwPAT4G7xwh+CO1jXyvltpOSJYYqlc4GkBAa3cRS4kwXJYAzZ1GXxiL7kS6Wy1lGS9gDbZQK/oaCbd+lyXqBKqwSmEXlq51YhikQDmQd48R3dWyNYOWr4c/pY2khErnF9r43JhhqZFvpR3LCs4728/HVOt2ErB0pITyJ8k9akK78qWQdiZevq5GOSM4eDhbKG5wOJptLT6RZBAWpzG1QAoQQ4N5WhYvT2yXB/T9uPgH3d5TZgXV1guqKbLMQABlAWpZkIpc6Wazu1N8ZR81jWS4R9yYvqSmRk0yG4xOopsw3DvyU/R4l1IvXxyGRUxeml0AY2KKxKfzwkcMKbXEymLbrJKYHPdNtsWtAZJgE2SpeVpXb/7G06np3J0iYUfKY8ek9ZxUFBDd5rD2psEz6V4ADHgggevTomOb8UIQCLITcnRXSJU2OcCBFBV5EvJ0bv7Eks53P2paWliEN8HOeKPdjhgmbuiqTay7uCJ/eR6dUJpwfzftD826gjrC+2U3HSfBDLsIvD1E3aP64zqPX7MZlgOjcisLPX/2/HnRs1iPBBLAc3ynyiUdGtCSZmv6nJhLe6E77BdV3WCp3nzv4VRXX0+CECMuk43A1fJ8sVitPmv9wAr8sNw2mYnIa0/Q9b01ijuzhuPEqnkNAJBGSl+zfc60j8S9URxK540sspkMwui4n8VuQ0e4fmCzfMXQZEJviiGe9X5jdX5ivSR2I2cF0pSVJF1VgrsZ5+tuzA4+U+SUNwOOkgxX5W7eCx8cC5udde9zwyXUtCsPgfqmuIV2to0bjy5qDrCYUen0J7Cl1aLior/0Q9hYkwQ/Khzl9R+ncryornYeUIGJfVKb1ayttbZ6GEgbO+RhGinQ2zmQ6ElekuZXrm5/o4BSCnFoJsogk5atBssBzxl/DSsderb7/qqc5WFmRSyAzhHy7GRizJdLXyGb+JvoS7WGlO3ATueAb4dCxZ8b2NE3aRZZPOVx0o1k/E3Y2qAgFUVj2p8mNf0+LCNl02bXzbpb6bnK6idVbYvh4twLw3a7FPkYysWWi/yDNvNKMX3LYEbJsBZg5/EbwN6OwM2b1Cii3mWZje6a4i/aGAodzB3fOUA4zwjk8paSp08jzwPUw5mQiaRR4uZQUWM9ljPGViJ2TrmLtLvxDhD1iv4sTTSbOSL2k9DE9OPUV4F5SKqcvfuDxY8tXUob0X2VBZIvGNEauh3UjDw+Oa4V5/dDhA9L+3Zcicfrh0Nyp564XDS0ZZjSLQQqBOlpjEfGtg++NHUsJ0Q71eaBJEl7X1I7CXRrM3vrhwYPws+ZsZptvixXTRezMDKTBPN08bp49b1pgVg9xxxTfIeAuRYTeduBoNEWqrFSbp16OdbBvUxmoEyV1EGpjw1CWO6TIeTBgRDFqG7e+DUDIpxI1qAKAKDidWS79VdcALK1Nwax0mOAjUgkbfPGCMcnng5whD8y7LTb5+qjFJKOoU5a/P0eRuSx8PxMrvYgJOPXzmPjj9eRhDPvA1YhOlxL0gSm8tj7Re9+irfsCmzmfE4Aq1BeTw3jPbqmeW/hDAIs10ngpCENEh5RDm4fd13tLGbb2yZVZkjuHx74KFK/O/n5Ftc+XJ0Cm+Z8zMrEENInMZKME5ZkJ70nQSR53ih+/cAvVzdyiFz8G9/ADIHZhq48sAhxZaFpYZ7QxF7znWkcHW27NJyj/oWxRcW4AUJPf2oSFSZYc/pQ0BwbU66FuH+RZmx6jcBC58qZDUotVplmcUwj0n4RjhVFSUa0fYy/0RLDc0RMKfPfQDMiZqxFUwfbqUUy9oRVaU8sxo0wrk0gUPDuXkYLQydltyT+8s8HKSUyd9r2mLCtneYTVVkWKX2bGm8USyMDpD+YQB0j5c3yyHmeAR+1+O3yed4kbvi50YVAQrDVds5RCfvyjRQMZXECbP5tRS9VgD8E+okqZlize2f8cBkhBcBO68PiQ7rbkIs3HntfyYwViebgj2XaWbUrPAhE672Uhx4ehC/ZGyXntGlXer7IY0oTRSfreSgQDHGHH3qlXpgcvRyiQq5njKbWZ8qMGxjyruh4V9g1tz4LTR0wVNgDkZozeF8/vQB1W7XowOhWI/bxnBEeQPA0zIYSJwbpJ+rv8NkjBZ8CwaT4YJjxYup7hDtQDi1l26QTEkGVlAXXplm+ffeBnzDL/TDgIbn68L+kXqZ7L6rJrZhSfVYMMVqYes1ETGdN5VpTNM89AHHb9nJR2EA7xWIHTT5tlkxlQ1gQNicWJT9/942CVtFRwSDgOZzt/qQD08r9q252x8wns1HAFpmGqUgJqvfXuX5QZmEqFYIFWA1SkESxDbhRoBenJG2co4b7ZtN5MHfnhL878GjAeSxOZYDBBr4V7UxjHnlNiD5kg3DgzYv6qu7mZeVzCq3/5sBbldVTqRnMt8KWyb0TosRggG0B9CxNRyqDZVnIIKDJSqTiteJcAy3kxMDhTDhmerbsldvTwRxFETmeG/Qvw9h2VmA5+32VwX5EDOpZA2pmQo+AzBLF6puRuFwaFwLoIgde71CKrKHf0YtO+B6rQYEvU2yitwZUUPYZsFA9S3hfqwiO2p1admjjY9vX1mfJckm09lVELBQzFqEqgAnVXSc6MciM7Cr1v18ykXzr4YNHneGdUfR10Vwul9IArFoy3Nhsl45vPvRi8M29UYKw6/PLqIxhTW1bZyTy+77JCYWgxMFxheUhz8cE7m4V1BnfmK3KdVBwAMpNGv6dcxx9ur1aVW91FtwJ/3vaFZiscYWtveA2Ct8LYVWMEJuDZIcfYJmDPt/H7ZNh8ExZYpVsJwOKTMLZi3I11OE2/eFuFG2naSSCzdOH6BsZOob3fsHirGEM4v6NTaRWiKxq+kB31R9V79oMklp+KSE0JjA98YAjO6gKO1hXwoBPMK1A+nVK033UFfBhyK6SRQE+16Wa1HMBeD4JjIAxq6y0XbXv0A59xOitRqeF1KJS/FjJpdJT/PdKNuy/6h++SYvl50ScikZzMC+Oo4Rckfqlzm2hzpdJkW+s6eKIQbVTZuUzDh+jAU2xWgPjx+DC0Lr2sqoJ3g2tWQVhgllRvGfijmrskYE0pTjzpBLXsAFiIzHqqbx2V/CTU17iZv3eK100AWZRzm6xNH9k9mrkBJKyykgkVTGIXYgzRLzS8hFaVUPRSo77ZswsFo6rjJFU+DTojn9SJYsUsIkZGoZjUtN/t/4JFGrz1KPq1UhzRE/i6syylVIPH2fX7CqmDtPe29mrEGt/oOQTk+qQJ6RL7BOwNvMUOsgioe02BumwXq6EuW1bCGDDEV4vVkmztYNSQb/1vwdxDhSpT/LzQkJuNZZHyjDBUhGy0CGKMvByLLFIQxXv/xkHSi2xS0fjQq6Z+XzUjw63IFqsgVSVlWAuOMiVpGGoQhECfHLb4earg0IR8IAE+3lZUU6AObSsNT7kZFrvFEqEW+1+el4rg0zb4LvKSJqt/M5uxokXJHIi8HtAgWKBdaeSOjRyb/XDe26PrB5XpJR47QFJjDlwt/dm1BMM78NZh/vdiqs0Bi4StuW+y6ST8ejECApWNZ+PsIpTcOgW+d6lKFZMdXjaTvqoDwal3ssLTtRftqdUvdR9+raH/x/jktJQtdlMMO9p7yLesPsk/e7D8+7JblKD18Skq+QvVIwZ6bAhzGBGuxHR2W5JSWkaWHJKQk4Gs+YzoO2WTvHjcb4cetrFPdfW7b4yNuSrqJORRj/A5HuBSV4h6RiN+F6QYH17/wn6JG0uZmaq7fvNepqN28yo9Gze1k9on7x3GhOeGYLAuNj5PE35tY3x6dO3FClTUgGsFJmh8GB4H+CKI01YidJhfLv+MRi66CwiJex5kGFcaHteexnya9RpwitINtC2bbKqkseAYR2xLnG4oznKRdB5x5cAnH9WFtDSvPMWol9jpxYVWjdwkyAePrWkI6dg5tDj4iCJsoKcbt1CklPpTlAQ26lg1aDH80DD4bt0HHFM/IOuGyMst1PjSKWtUbORRYKo/imUyEjZ55Jfoao/7F2lh2r0LMIWwYb5U6c+fmJVaYXwQj428zKCfLaqe0icT11Wqh81mMVVH4iBysci/SR/AFJyPIcOD+na1Ej1f1loj0uxlZDmpQu8/DvL1NM8N2EDokT6AwGL7e5XAE6Hyzu/tFzVZKgbUJrNaDQJzrqdfhEU+HoyZMSuXDvTosRrUL+acYLYlIXx1Tyy64/MqxBKyiXn1NxV3fHlmqLabEAU02Tyf6Pz7j6GCcbLIa/FxThI9tRT6Y/xVjWgogp8JN9X5QyYA5K8oKnlTJE60nQ6Yi3CO05csK3eMeVgfLTV9rvZd0R7wMaD2bBR9zzyQxlX9FvtfpRK01M9Qr7miJGdCz8CdmGsBvu+Kk04eJqRp5SGO6P2VpapylVfJJB6C+ETMXYBrWUdRtKsFRmmIO6Fb56FukVA7s+TRnsV9r5B4khlEPuupHDiJC1QNm8Yhl7GgDC/+Ewa8TgVFz1Q7OGoX2G6vlLmZ1etHkYr/O2nmEOV+o4ON2H4Vd5A5BWrj8xcN3WUWdCMexnvGzcIh5x4soECkqT5PHQjN6n9ex0wihFkuFRpp0xhdf81o3X+uT5/Cvsstuj/8DCKyii6caS1WnDxv3jQyaYkgha83adwicf0ZFx8MsXrHNDo2UQ/Qs8RIQG462ObmWiVngOyssKw947Pc0eOqvBDMBGFKG+P5XU0EqRUeMi/xiNLFFajgDGiv1vnnfQj+tp5pyamX2JQ4Ijppjkko/HL69JCEOi2l3yTcOMibH3X530MriHRvaFA35NgeTU6lYHXoRaQnRbxFOGpwHIzeOUFKkbKojuj1CXyPtmk8nmoiWpdhRmfZ+lY7mfgEeUg6VHMHGVb4FZ+PjRZ3z7CbG3uT8kqFc007NWj+PJuJStM952rOJqJ9dbALShqQvPjGUZhmFa5Z1WqvJavQfD9trA8KvYi0s2J4MTw4RBQPh0Kbmb3mfgUjVxB7A5IQmOleOWll2J9lCA0tb3fPvp6lo35rl5XkuCT0kAw3e390L9WHb/nzI6B3rBjtfkGFywKRuca5bzetDS++81l4MMDTE8GTVk3XPMKfcrRP9ducvu4aM53u1Aw7pHq4JKiMeumKlgkjYOcgp+Km5KC19oRGMLrtKbsdSRyvdo96o+tydJjtWPU8q08oXtpTjKqrHRkn5q/knVdt4FZouF1R2GESugT+GxIbTGaN0mK82rsxGxz40RiQW/y0zHcb7nNmwBl6MyoEdIYEvQISjQLVv2qiMYSWnJMF4pVZ3+zs+ikUyYOqxacMBv7WanmXQSDM0kBiK2ltT0kvHkpDN8mRzGSoVCnzNEKvwYucSmPJvi91nB4jJz1CHvuPtvUQcgMXfu2Zgnl1FMgRrOZDLfHxXXfD5MIPHkTTifOJ83Z2kBh7Au57NxMw0vF+nYpRN7LWRlE6Iz7XGL/JzHu43osg7ojcyS4KGjoDawFnbT419pKUULFV6ClpDmh7Ni3xuHQhjLF21iQRitNQT9uygFOlSp4f+IlewX9CMZy4Qy2H9IGaNGs8Lx5HBnCF3DjRxm8DwlbW0jzIs7itjGpzalNp4Nxb8IQCQTZ8wwpuSxLsh9je9/7UbcKNuuTYTx5Ceo8t0DMSkS9NJYtIiUTI245D/VGN+fBSDIH/Q5t8bAKngITRfySpKzjRoePdCWwmB8yuhjSW+tMoHkt0MFAI1r7iKQBCFxG258UgOZCJknjr7OGUFjnjO5wSH79C2aI87DSriE9BIZWy89mOV7SYj/rirzQB5wY9kXat23KP1dqN+lQ4PuLnZFOI+D0dH4Ljz7PtWHi87fuLiA3ByxJlv02wzwu5sNn2movFoIX8QbbcIHlzuR0g8lZGuCRCoHLEOIc+9Az+AXufmXo8FSEfAeB45/nlWqD9GlPXIsCl62dufzUpcWjvkYnnuZzkGRsT9GzGfchkk71561x8msaaGRsOu8i47gNCylpHI7FXRXEGwcjlh2ZswtJB5CVKNr2lAdfM6AP9ADwPrpkqKtuHRNH+znmbYK9uzm7/LfZdilTX76hjTzj0SA8JTSuBg9MdcaFZI7dprJLead3qRRFaW/gmer+AALSWUJRZcnP+4MnsPobOE8ZsbCeGixmBfIuuDkYc9zduMQoXnusS6+SEObS50JkTJeXoq8IHGliPtHUHBthw93fJcs0Hb6cAVULgL2F1pLqp7lEiQCkF5MaWZGvwcN3/dUO806si3MdFmxj8dy6SbSkZeLsl2GpSvlbMFX1HTLFBrBLKr2P6Y65UICRD5wuHsll7bZJv4bGaNy2O/+qL8Z687Cm1y16qVSYyZvAFQVdIwgMV/EQKsiOD8288rvy/UocZ3gXGz4ka3N6u2ZFSbG2YwJXEq/DsoQTYGmzRVbkV9LlEyZ8G/yER+eEA3UMC3JznOO68IAzwELEFavMAmhH9mLP5thahPcSGwyeZ9D3JFVoAQ2lw2+wyVAERxF7gRqLnfinHukTf4QAMIeV+IqhMA8MdRknKWLLcstmlt3N1OfPIBYzJHvei2MoQLbcUo/J4nHYWhLKs4XY8TdG8l7GMQ8hBzstOHt8RKiVUokuCS/ONJWy+STJBTQjhaIQZaeVUF6hblDega34FSdqbNq/ypRYPfdGy0IhpPg0HO+OkxzkIzlB6e57aJSOxe7NlyQMNAExqRHcttoEUNYKPtXwHnKBoPa0argcCMXPIeteGetsB5IPRaJsImrk8e72aSaeGJC9vA9y+V3kXUfnX+kJkLxSZ/oX0AwXLVtfjCoL0+IqOTgitrCJr5fF1YELFaKlUWaukCsWJe9aUcJiWcO2J5hw7a5waqhLTrLXGNS2wIPWK7tY3qEfiUMllsb3ahFuV4722VuN42/odL2r5QtpZgmPy+HKs7l5cDfDfaJvNkUeGt+i6PXZa5d/SKEsb0qNfZ5YBZoaccB3kSDHQjOKICxSrZ0FGvhPvblgGXOF1D2VPNithFdFYNIBAz098l53RBFtVNj3U49eXPtRofXSouwDwMZP0oRLjsTXPsDTe5g3FoZ3YmtO3t9AmkYT748XwAAuHmKufVBMNWAKisCAtGn7+tZbPIaCiHm2jBtkFidhEfGMuNU9IXGocDvuAlS7+yln5j3tG/d/Wnsr95ixp3Y1TnSRKUQvhGvD1qg9HR5TQmWLeAgI5AUTXqHalrp7h2EYLyGndMB7+gVGFYrzG3s18C8gGq91o6k26LoM3eRLeQV9A9yaDgMjWSVFa+v8VL2bubYoNO+SUx/+mWihYF+Xu7AXKzZBdROcgR5YXi21Ah5O5fUv4LKuD4BKTvXyagp1n+WsKKTx9bNWtqKmD68p0wy4yiWvj3HuPT8dcM6wM5LjsI7SoeW6NRSRrrGTgeVxePt25RSSeq6bjhL6PTPaJ8f9SxzKqF3gGrIy6kPsFxwFYAHNyrl4VYd2qrYcFrtyWMOuFZGQDbvA+zNrqn0b3c/dsULhK3j0NlMzUzfdiLZI3LLAPCY6Zj34lToU9M9IbDY1QaLX41TxQzF7r4IA9uEEP+/RdCiR5LbCxp+hbL6UFIrPsiafqFPSWariLFna5yRu3Zuo6z2R/q+120or+y0pZk6Tn4WE7D6QkDYeq/cqTI45OHjL3DyPznDQlbqMDxFfTffMeKsFvhvYZxA9v40z6500OjI/oxPSc7uPVg52IFcrDd14/QO2bA0u2uptjjfp1UyvDBxiXyZleIoYvJiDzEg/ygPiORUQl5Egbso77jPrt6vTaXNDUAVE7zC/36G4JQrmSulRBXeGdqLmFby0V8gwLBlGiafQj0SajxXPQDLszSrViJ+f45Ig2ChehfSoNuiXf1cmA4opjQA4WUQIb9EcrJc9HS22Z8xBNcfyuFFDmAEPaprun6FmFXNnAxQ4E8Z2fN6krUs/7GOOPjf4Qb25eET0gLn9X/xbANO5OuBOTDuTq5Y/cKSbz6fmiymkktyMhlrdHl5ExcLuXPM0ZYjfaToEINfxSnQpA0MoUe+/H+ZHQL8i9Vu/wHm9/Mw9gevvkhsT6mluHTDbwDW6ENZe09DY5r3SzOhFNqTts3MGZZOqhQfiKRHh9sM5s9n98FB+tFUQI+6GbbjykvrYUQ0cE0uow5gIxnL0TjFKONze5vxvm1NlVHs7vnCZ3zlNsAUctomaRJo64nHGgj1K9emyGe696/OaKVpkYBFRCvyEP0sjWkWXCpd7jpbItNTlOHbQs2u6B4BSUY3IQHpuO+k+/DY93PGFGlCjn6LrJU/UNE5TTHmscx61ibONI4vl8ti0WOGOpC0XoAs3/Owx8KN/1eL/hdkZ1m7WEHkSlnzCsiJ/Hb9xwMdaKdhT7gu9aB8zxFQ2x7r2TqmBra9exllrvS1ELzInh3v7Zq/Odctf46UtZb6zySStCoQylkcy+IKiu5YjNMII72AVUBnDRLMPlYMfBHq5d0cXSZrZ2jfa+/Q0qPkeZC4MQ9U8fYtU37nznQffXeylB9cdeh+k7dcp5L1OsfR0gMMv4FuIT90oWaY/vYrCe6UnjmeGCnuyFkEKiIWLZZ6eeLxBcjjXI4uHy1yFJS4ArGKqprsuGsPSwLRRODw/SFtOY1eseayML5cO2W49cx+WXIBf9d9XreGdUr6WrVJ/Qj/gks3Cy/TO/xwmuvd2XzfZq4Def2TD0FEFETuOubJyIm/bKUDiWKP3iNkoIJNZdtnOnAMSoKwHz8/RUmKBhGJnRy3dFav7//4d8dq9uNnUR9V6yHVicnxrnDEhcrPYRYBCXMPMwV6qRbLrh7Ni4ek1xCSrDj3ZJHwv/RL1JZbOukcUAV8r6zAvmZlQ+nnZwNrocQszXRdrJL69cZXQv4K7gO+My9xp7Yg/8Rapb1OsED5Wtd3yRvhNoKAOUx+Bsj3dpKqW9KtEx2MxV6yprV9EMyjsc6YaEsuR5HMjJjE7ZcF9tYjw1cM6e/8z5Vuhcdm8a6A/0wOrTzCkO/Y2qsn44OxWqQj1Wsl+PlT0hLQYQ+HuaiKSOV8tBi10ymqkdm1KXLwD66LwWZr4XCJArv53Cs4g8BHdUhbBVM7/n+JpQlmRa7JHVIj/Fwc8nLbPVJcGO/u9h85TqW9GpIj7dUv4LqXNSTPvXeGZM6tfEQbN43t7sqz+sX6Ssy2fEAAalPdY9/t01QMdR2Qg3kGMgZXl0E9cXCbacoFyxem5GdQElUkpcaj5UoyqfIUFB5H9aq2oXGLdqJmNP+hCJDufNX11Dur9PrU6vxnUxJ29kDLHqgB+BJHiIp+Q1PECwJauqCgcLd27ec1oc2Kz3/hhXzlAl6MWUEGrBdMQifRrU9T6e+Y2ngmdY+fYkA3dH/nb4S8QK0GVlTHmCkhWJH8vsn8AdY+8wIFquGP/J5htt0447q4RcLyoIoe1ViD2hS0SzJfnJmVKZu2MzgF/AkevQL7Ap10qMDpRu5XhQ5jWn9RZx7PKiN9wALV2GgbHpcjPC8SBFNhZKxLhBAHBAd/74gSF9kdLq4g1o5l6BN8DaG/PdeZxJZSQvTADd2pYI7236ZrsYyljbx5E4nbTFLGNu84J+dfxSm+8h44UIHCEgrtNk/W35ieJ5okewsgjnDWD8dewu0WjBCuR1baXXCE6TN6mXQLFlVbNfzTQ+3YvPMsZ+E7RhLP7YdH8YsbSvXaPH9aFRjIU00B+5PvMjEds749uh5wOZmHbNpNV2A2lQPJXFepkAOoyV7DN23GhbUKyuoJaPOJmCkIuLdG+T5pYxvja/iKMe5iPtMQPpmjM6x+iAYBEEOFr2XstLy4YRS+1CXy/HQ1Vb6jMyoieio4hOKWBEjSKdQoH4ZNmsIv5hzJDXetIYjFiVT2F7D2vTkheTo4KpKo/gDR07z3YWSQwar18feK7rAe9SNA0Li43kzrqVDeXxhWSNDXPgQCdAL3RRauUJPnx0+k2HaEzmvK6rcQncZvBbzaxz3tfRpBTpI8c0B5Uu4uzab/if8oXa6Ig5ZEIO066CEchSrTgIQpGSHX4cSSpkY1aErg+DLB/Tu0Q650Marc7DJkLxWx57lh6cCNZf7SVup5oj2trq2Ka4j4BaVhDCvmskHB12h8WqUf5+vXDB1HWxNvyE5ylCqPX+bpjONuOeogqe26Z/f+mUQSDqFb/1IorGZ29qo2AE6WGPyTXjv2OrpSLfYKBPFeNWyNUiD9v6ObTNfszoeb3K1UsL1+81191t42l2MPP1vcwWonwVcAFqnDNEgMqp4q0EkIGO4fk5gDTtx96OkdnrnlKRWaU2tv4DezLTk0krbnAeU1tiJyzA20kuV+oG/X9FSk5G+TCXHvuP9eOvxhZ+kA9RDBlLJeCzUFS32ZH0AujaRf6qsuiX7fVhbmoHm1gEAuQh3KK5lCZw/M6/OSINNl/C4WChP+gD2m68xN97mXY5kPJXaVOQ91GxjQQFVVdtn7PSxa3nNO0YiAsDglpkj9r4UJdiDVKgRr30cQdA5sO55bxs9yK5hdF1UduUzljYRjXzO97aZ49WdCC3uXcakyPtZKR5IEaZ6kGvSZIMvU63iH8GBzHezHR/k7SSfFVsAy8QSfQtJbxfogbQQjXGijpzQUuSo8YblOKEK4stgyUH8nmgP4/wJ5qalUmkFD0EHGfZWHq9VnZzXMlkYDgC25t3WABfYcCRyAwPMI6RIYQVbdOIKtZnjlgWba8/McH7Srmjuxv66fUFt6eYRMbNXW8JdQMzOWLmGaP68K17A0VF6tNYefX8KwU6mDVIMMHTEXNo38R6o48EXudEmZIdz1L2a7JyjMv/QaUNSiAQC4K8/2x9+gGcXJVABZ8I7dzJHEIi91Z2IREYnCh5koD2XPtSCucKg6fIR6v6iEM1QmfRcCN6nBgoZaYPpfMNx4hgxaXZbxgHm2HA30imHny+Kw8KLIESIZJwTPE6ngC6sgzwsfV1wT1A1y/6+2erT0Vsxno3ZePkcqcdgeutwOd4QcaA26fe2AmVBnaFn8sECweJc4mBjdkbilPSI2kFvC6fLNBB6sYiEoaO/uqQMLMwO1aKym4KASztm+sqaWqWzT1tCFbHcCarbf6BVz1ui90G0bQF+kHcIh/jxoYluSY3G8s3cab3iA5kpgNCajT1zxfg62SJtyXfjTIBjoP9rFMNFoNWFCfC3OMDqeyWgt0FYieNyC6Ch7GPvggt5CA18ni3bYC0wyqS6pXyoCogaA8q2YQeVNadfKt9eWjHFTpe+yJhojZ0qbXYp93Vlno5xT9Zcb6Qan1E0GgPYxzV2x02MZAA53pcbYtv96arPIRUJGtmupswECn5tWFv9e9+JWo3nRucD6F1susnAd3783/HyYyeNraNm4R7RqFBWbHUeo5/I4sVn2hrXXBs7dTGUZWuAdghej9rofctfZz28a0KYJiSvGOSD1bsqqVuSEJzWXyp1VLvJ9ADLJGgxDX7nTXBGwBRrXUqJ0/3eb4uuMqvs7lHEvcO6/62VtvDp7EksoTa8t8vQFUNmphP1ELzf9HbReuFSatAo3AeNZ5KQVBsPn6nNpUEtOi8JLToi8bT9kDxKtTacz8/gihSyuPNMPnUbw6PqtyJnmFB4oV7KVQgWobEaBoPjyYI9uxbdF02O80VbxX9/nMDYPqvmF7/1IBNNRswZCN7QRLVmTrg8je33Vl49UbEfCAZvAKTougAq9W3QlEknUb+DhmVUQvXctAOyof/kQj8B24Pndi37nydAT0wGFJTRYR2ZB2bduqEguEwyFbv/9vRe2zsV9fwBG8Vo7mOJf1AaCmMbm5iNf72bBNjYTa95tVcVZLU0zwee1dvMxN6HL9CpYkmUCuYH75di8wIWE8kdZWWD7+9TzCB76D2gsQEyaN9L85w1WpvThT1Zgb0tL5CVsgwdgIg5BFVP52wNT/eADk31abvXLDJ+SOc0T6fRp+8Ftvzt1IWbMTtoLSy8q51V654stoOxhgFc3Jj/oOrMWefw0aIxBe/MC9jzeCQm70U8A/QjNwp/Hd2lLCmZ14X+rpeo1QHgszhuBFRqO7ajnOnt2bjNZvUwMeuA2wNZ3RS8o2MObbO0CshONJsmW0V2e8/oYBU2RJ63NRkX0Emu2EytUSqTkb98FV7u9DU/H/hheq802dBHJhPY6aNXoN/V3jZi0poCb6JNM1/C0GfZ5EWMtR+Trpl1bJ/xsy97gncKYSODN2W29x5emTEOlFzboJ/W1Cxhe6GcqKpJzMdc63x0QuORYU08ssYGCxLyKjupxXN/xFdPFNcFzPe0FmtPpjtHRSJJGaA2/B3ip3wtaB1B1chve9JVGaOgdkh0sHA8fS3l03hLuUyfUI2LZ9vde0aE9+ERXXhvwEJlbTBvNe1l/HFhkm/RAlUMaK5YHR/6iCFLA9lC3lO9KCUABcYaeBNdt+MJinl86WK8dZw5yLafYmYHMB35OekgyRTvkZEKqTH9rya4xXodhl5fX55ijxyFu9nona+/+i/IOci1ZboPwTibensFLTZ72ldQ/wbUnNfBW7ZkULL3tnwM6RHdwVWpazfqjeF6o92xzAk86kNYti6fM8rkFW+RvW7q7vDs/aGjqAwVJOjXW5QANDciaatc/K4y7GgUh11JuCLTikvVsBFbwuECqqr4AeerKdN3rJ3Vazl1rc8FMwEcWBSAvDvlxX9zkMG6CJFewoX3TeI85AJBTaSu+GqIDz2hag0ZARzcoW8LHDt1Yl8wFTa97mft2NcuWz7eBe/QwClnLBXLd0zztUG1zoXS9YFjtwqMzqPtqTntp6jRnbVpbsWdOoLJv25vRKSBnBcBCV2Ry6u94Ju4nFVyipawpqSlluArKgLEVe5ERgWEZFnGLHn54GFrD/qALeG3gCCX6ZkvqHecxiJPaOlIhCsB/ZoFiXrrz9Pei7VUjvphDVjc2S4UnTbl2+ay5AfXDFfFv47+htBqPUhUD5Qf2XRgwgmdoN7UnPs1Y3anm/pmZcnHgGH21VO8cB7fxPX+zCBHa4jDCPJqrZIcbwiCGYT5tlKnxuwTiokq8/alESEQI+9riOQ0DB0jJ0Jag9zNl6w6qn776Yrih0FCpO7VvTgLC2zCIm1Jh1UZb5/ttaWRi9v3Qj4BHY6fIu44q3ryOfciAymmhk5j1DiXdn0LPPsAGqA1RBzMOCjzRktW1kTXo7pQDceWgN6JlfbbkfnJcAlxuojKxK2HgRDqJcGmSldO6jNhHADva4LlT/7vPLoAMFlsBFt6ajgSSeh/NpDIKBfVZ4igPB5R2VoS5wfSyL86XqZIYDAClEQ4d7576/vdDpBPwlv7ywOu8+dUVggVwUjU4JqiZ4rIc9gVItkf27OWEdpzDGpdwpp9UL1eaddoYm/cpf9Uf0Uv2cl3GqTnQ3vxhenYwxvQGRET7vOyXKE3QKqFZZq2gWB8id2j3rp/aIN0D0c3wOevbLlmQnVDAKkfvzmpQ7S194Rc7XorrJ6+EwTgAO+aCZlii4LbJNdkHbr96JgCM85ANgvqQHfOHTqUWfGOZFLo1VtRCi0ZxJrbw7TZcP9mV5TTzjxdewIWebwyo4RdNm2YSfzwnuSFyhMKzYSjzGyg92sBYHnvzEJPZe5flrrTV8G8B+Ey7OUSrDJp+mKshYcnNYn0v7eD7HqckEM738WhlI/Z1ryAVctxd1Di60DD3FD2NFveCHlfu1a9g+Xes/2pZzXnkuK5f4wyexEKFk7Jrt9zv0ct8Vp6dG9jgS/CPikeTqVV9l3RiXmyUnM0JiAKCDdz0w3kpe0sqtGWWMb63NQiAZClt6wNyTB3kUHrYoK2WxvLBabSfhqHQ0jgheSgfcwASnWmxwz7n8ct/e5dHWizwHh2aUO1+SLjLPJua1CRWXMhRquKdGYISdSk4LLSdUJ98G+97Vh50v/+y3uSXLcsR2w7MgbTMdHHCDaL4OSyzTEePu9oA6uAfmxdP09YKMA8LaEukBKw0Mhc3a1lWYWA/XAX5VGFuHPlAj3k49vedHNgsW0W074MiT8+2uziC5Qv9hzQeysVhk7mdioxl7lQ4qJmKWb3u5tMcwOejlzfdcqO46Ob+zTbbYKXe1ZzGuv9Qdn62rz76pLV97eO4YkbdZEJsN57YqrZyoIb1BIWyjA4Mj4eWLFXYHYEl7kvVq/s1pEG9vyuai7GBHHMgQuXhAROyhWBLKEQtXQNi30rn5vtZ0Crdz88mIDuOyLeD+Q+fk0/7d/j5IlTMrHVR8e4VFQNyUKlx9tTgums9YKQLFMwWaeIae6LBh+D0BnaT+XLBUYNqJfRJP/mSwSv7NmvXFqWBTKm1MIcD3F66SPaILMlZRChkPNfXBhk/I+6Ty+lTgKVEc92cVWKFgwnsoBSRCvjY2s3ZZL3HQ2VuVIqIL8i+2vg+YuXqnNSDWU/GLNFj8Vx+EhY0sfVc7vMTv5dBrsHlh+wi9brY8cPBRFKfaxCZyIjC6crabUb4gjSTYnCU4UwQRj5gA4Tovwjzwu7mgWSJiLdvcb7fKb8GVhx0NEXuMz/KnW83Rzql3IT266S9lEsjSUzrv3lIvgetoIY0Im9iQfSYooFAwwD65WEdOcLOcEI9JXUmmey+/CTNkTdyH06b6ezoF4TxLeJotl6g2M0cYi6Q6xZH9HOMJ8pnLNrFGLR7mRq7+SagzLMMWMTWZJSpX4MJ1RO4/X5vb4KJmtIQyrFusCiK7YjV37imJoRHsuQXkXBibNp9qYnkAJsz04Y8MtSKT+XKNdD5mOZfOcPNNS8kqEdx4/CTfJ9taisWVWlHfwvHM+5gRXjrS1pqLb3Op8PkjZIwVYm3Cq8gWJmc9CVKw72VDg6t9IQm2Ff2l/pEeLLbJNaQsxVz00Cs36rtQ2zsPWJkyNlmR1AtDud1QE/eAOch7GK9PKBON9Yc0QujyC/hY5y9m1GQqtTs+8Bn/n/dqQVLof2VR9ljJ+6vcQ3HWIOm+EJuF457Hp51H6fRRwyd2zaPLesErVGBuR4tqonJvlOds/V5/4trcI5Q5E6OjvsH1bMDekql9kHcZ49RU+n+SgCtO/2K0Jw054sevFHCi1dRpPzZky7ne/nb1V27hZ64i5FX9aM0ybrnC7QflZhDJxKquh3E4sV5e31iAZ3YBDKkCTGHQgpP4iq5n0sjRzr33rc65/JUnSj8KuKAs9TA33st/to/7GTsDPQrMmaDE2u6rGBwQXv8LN6Ud6+lzRoBCDIuzoJaKuYoBv9rZbvPDTxtn0yW8kOlD04aUkEi0mlYp6pYiNHAbf8KsD7lUtwBmWqm5ijEIZKiYHMpCdtOk3eCsaDtSpz44K+GnM6KZuk/f7nTVtBuV6zhZgmhNpAxR9g9JBg4P2rr6X7tCITJT4/m9fGx9ueOiBkqRmwpCRCYFzdc2XFv8s3MeDUIEs7ZQLzEIjKl7odE4USTpT5OZLbP0r94VGvfCV2oM5uHmz3Efck30wa8sLFhaR4+LfBaDz7N08gc4rms+OEuXmGLIZZLybDAwW0fYGmApMWrsUBxP5VQtbLoNAO0Ne87EzBsRkPZgzYVJMKR1Yiz+HRJpyyRWazH7PYm4lxeOPqx5IUqiChHVksqrdJTptdevHt9ZU3mRbTWg/opjNx504cBjl+1pTlr8Bxgg6oPFX92DEBwyJaOpVXrEzFey2o+Dhr0Uh6JBskdsmgN2MjT9Kn3j8Iv09dgOiYsg7JrP40L3Zbre6pQfv0h+r9HufThMI/wlyptX2BbywWCRxiy0RF5UlXL8K7gbIkD9Oo1VP2sXihiHN/N7nXJLUE/avbSkcR0bB29FCtAv0z5wQo7QD1dkgGdpBPTWn0edqvbCn13fDeysuxTyouKt6jKJCTMoTd/hcgbdO+68JLL0Nscpsqou6M1B3N1jR2Elsz1xY5h2wkZBZ3HKzy5hZjHoCfVlRWbrnh8ISe35SWf/HV4ordR/LPzXj/TdRfE/xZ2EqHen2uBV9CHLtz/fn5bYdsGh22cqj6C4X58TBJ0coJGCbsklxIULXmRSNtA8FyBJIeaf5M2XnL4Ue86NXdKFgicfVhx/IZRy5jMghCYmneu5qLzahSuYHk5bxyQ7/d4WjhZagmcNpv0bWvoAReCIa52XFWhm6p0yske+vkZNIvVO29893bq3nDFR1zUTmFjROF3mDcO+OSMBmoz2R1r9oztf8tQmJ/K1hM14K02fwOICyomKfyqvrWjN5znx1KeHfxNpOScLVu31mBXX57CE5VRqcLNC4ZW5sm951d+obcZLBlzg+SC2pPslMqrVsqB+M2qCHmcg8qpcUuEYlgbyLiTMDyeug902Ku5lx5QQZcqS1/GJo2mn+k4MaHvL/LzNcihuTKuyLS0+G7J2pkuF10mljluFJ6TTfljWGLUmh9EGh4YIwbGEi9VcfNinUbQgx+/S8s1SG0TBUeabnYKHhOH8VckMu8YXEd798ztHgDJ7IxbOsRizChhmFziYS0iO1WEDtvex6JTzg2gmKjlqfbkWkkSQagbbEZz5DH+LlzHPrXIEHUvOlJFWdnwgJWAGdSzMBzBEHJXUwLXAzIFmiTF/2qYedyDqbM1ofl5MSUo01QJfevnpg0kkLwkqzCwmNMGtXdehM0sGwzlj/nPVFHGjLCTLnMRO+h+tqvH2rWOvNIghbqrbihPx8L3tQ20cBOGuOgjV7WWEwvD0K4TWwX3im9cEI40FkkXompez5N5Vuz9biKqijTrnynYwVfD+MEoolv5Sbi6v0QPc0gLWuNMqSZbBH7SRWaty8c1CIGr+ujeO1YQSSKYnExByQKm9SLHXWOR7hAPwBDMV4LArPwvory5lxJ8t2PNCkuOuu/76aHw1YK/a+7pVTceaTGXc76G7JW4V+3X2hnCsUbficVOhab2F17z1hgSU68gCvUFX4kwYngp8QiF9uWCCXuxL1YOx2et4axHb3mVJX9FCl6Cnb5nXrusKpauHvUW1KQmlrtobaJFwltWKO6PVj1KSJm/MHoPvBeEOwQmjIfD8LLetS4cevHUuhL2qhQ1jRjbceNL+MqQrOT1fytN2cC+INJ2CiQL3Shcq5aoaS2aDSnER0yHla99DKvmioy+eVH/+aBVKUC/CZxC5dOV8ioBHfJJf+78+JibB0WSPLOvbfDjhc0AhmTwu9Dj+uf35amduymyfqhWEq/vVYr9BXqLg1CcH+NV1ZBUwHqEN4IDGAGPv0W03ECAphmInoENJs83JONcnju6kOd4YZ2CMxqASfH+IlObGUVDkwf6F61b8VLE7RvenK90FHtaPdrNyTYdekH7o7kPPWJdeuOqPk2g27nS+n0fWwUj8leLBj7NY/1KWNPz3I+stPPh0RgrVmvAuh8pABI6qUM9ziND2fB3DbwO9bivltW+1vyi5K+NoGbg1Q2BS0tg4UXdzBSTWb4tEQeDnBurC0MTkd328c1w8PhOlOzRuz0AzxbvI5w0LFtKh+bHf7or38dcZaxPh7V2sC0nm9uQGvQc4kpGtgqzhCWtDOaeaHaZ9uKpYUELS+NxHpXoJlwyNR15eLEPLOt1sj+NqkCYIMntq9iZhmxT8tN0yjav1w71RfExFMBtgoCOM/SLfHU4jJtYNEvYqM9/T8FiLbQf0Qj7Z/nxm3VXj7Id7amCBT/B5EYJeJuPBquEXc7ahjTNpRML0oiQzZihiGte5K/oKqM9Z+pGIuttg+ZjKU56u5ZKoL57TgEXeYixCjTUhK/BbCWgfx3FKg+sVypTPYQT0q44dbgq5z7f6aVLDSmYB8Zw9GfWtQ7ZLYCidAZPVg7ab2Kg8QGZU8mzoKUXziH/TyqsG5iccXuxF1aKII/OYcpmLWXdblSPdx3s0dMLUvJxoXyW4KRXd9tOz2WhH44RsGcEddwQv74sucIYcZmwlAvjQhpToRYrSw9u9WD0ff2qcy3n2DLh5eW2RM0rHSsDo3aM4O5nxsGopIJudUa59a9wuR1NGmdPUxMWF3dw1Oc3vrcm4z02Nt3LZapM2tgothh4y95xknqaX+hmZAyd2SpwGHgWH8rThy/fDjSLLc+mpKtPtBwYPrQw1+XIQbkXaQ5Vx8cBmlv34BQCb9qggW6ijOOH5yaPWhwZNX9SfqPMHH/qevQJI2HqeVzZya4foqOvwSwKOZDq2gWi3B2DnhfsywoP2pF3mKlLaSjB203arVT8zXyeTueOk4vP04YflG4ou/oAixKVWhLMzIk8XC1+tj4r+aaCQg9La1mhhA/IRmJXj/ClVhRx520ROGZP7Wyv/znr36YAOt6FfLRflhZzSvoxOn+vb2h9/Wkpwwcbldqxy8IR4bpciyGJMb5n8g/8DFmx7N1f7bLcayv3smH3S1eag1y0uVRdfUJqq21ZgXEAHlXzxILAzRBuKb9KutiMZvrIKgSbxEvvO2j8687W6XofkOH50Pspn97D0HLty4BZIsJRXT7U1vBGsMj6vC8bP215YhZLkGK5eGl16orsFks8ZQJGHKPR1Zg1Q9rKYmWsq6LDhHMo2Cchx0p9masKMiiLFWaWyrTJtZfV2LPIO0odURuuvCYrJf+Q3D4WXkg1aDMLy9PUK4H4Sv1F1880YktSwR0iGfKKsWM95oD1SXPc4tgo8j8eVvjqRLKHWTUuM0QU6crpFkq6mhuQDMHohUDzdwx6px0hB38G4nY2r4U7scCMvCYSbm50Q4R48Toq2EfXvS7U7kcxSj+aRkBWh877Q79IDmTonJSdVGoJ4wXHcM7eV5H5zzA+vJBCOPD2RPS5AqnAod0qYmZ7YWpSDlYtswgxxyhUuISY1s+H+sY1bR8qdEnuF6GHiUMRHhaC0qkemFAT+QNzcqk5ah7XN+p6WWsun84COl4e23Jluhd6nvqI7UKT30hgzTjq6I0I7GHep5RjWEjGZSeh69sy24qImTdpeVw/EYB1OBq7D+XXh4ZkIoJyOTopVIAdMKA2omzW9vwCy/IlHBVGixS4llwYEcuhbUNBrIwGiu2G0z/ndVWL6Wy3L6waQMhzdjRoAAQiw5imtVLabYEHtbGvY57HuCdIia72FO6Q49ektsHyHFooiI3ZzJZFVTkr26V8taL7WRwfPAzlPNOlv+MBJNal+ny8nAZcZW0gRcHh1TAsFSF2nJpj2A3n/pDs38kJRsptm1hPYNreiPo+s28zHJyG1VnW15hPLd3u03l7dMl9YE3cRNoI33B3/CWB/kw/2iVwyd6PrEIFyj4JKmcVkp2s4n6W4wRV3jNWz5XLuddA1TBs2kwVN54MV2jpXINHMOxS4t1cf4N9MR2vx/RaqEnD2A2gJyU4UCPXqUujZ+1b56zF5roJlToCfzJVh0bQAmMWdFWRi7ltiL0dA2BYCe0t8PUWDj/X0oRLZdVeInfx1tahtC0T0fyHYykwftAfQaxG0r9EiPas/7h4D2RYHp9HMl1XS1Kd3GmJgHGrYICyVxKenJL3wlFSfapbaDED34FFdRqzTS1rIA54HvjS3lTmmKUHvmzprR4WouIgwi9qaHoHsashZvGhUnHMG29Wu1jHX+kTFLbL5CqD/vCx7G0Col8ZmfrQSKr2cQ89hfe3eWwUMbUfQC2qwutB0qCKWyE8n7+lcYLc/Wq7LSGDSNd8ODP2KM4QeS9FEtlub2YPdnWMIb22Uw9UFD+eqe63uC31ANsgwAr3Z5XGFN2iAAlvZTuU8GekS2GfxGHHsCDQjzi/+F7+YTzcN+g/5H3iaSf42sLTyYkZrLH4nqWAfkRqBmw7lIVf9dN5TA7Ut5s0zpsUtl7f4kP756U/3RMyJxrPdV3X4xQ6lTtmIUxW0jyMLugL7IKQNVnnHnpB/bHySVAk6sU6GyDE2UDcQfNCgBVVc8Pq+Oomj6WcFSa10AqhtTQI0B3L4loBx2BLIy23FZLJy7JMiz4Xth0t3xP2BODKiWBf5CRUJIF8+qzoAdfGkt9CnU2GF0w3YIYT7WgO/fCrNsDE5q72GT90TWOB9ewC4lSP3EDj8ZXNjeVHAFwm2ot6C2/iKZnm9pzWpORtTJpIVNPRm9Qd+c6cubukHCHGvv5nER0DVieHMR+wiI4Ik1zvdw5X3v3SEWy6ozeJexhV2KsLpyPQinBSQtKVsp+Vz2HuAJa2NDPbDG4YNe1oDvv9JV1ryqDQoijtMAMkCkWEJfcqaJQF6kTb1ishdULqxBzB5/wI6HaIdepEqYnQLJ1FipN/H/n177nsHbg0jy7/DJ6uVBRbL6Xb0j7XnJFeThHBAJrp3rO6TBgcJNV1tYRwUsfAmkrzF718z9v0l9bhcsXZfNHD0HbusmT92nn3tABut596zz/qPPyEVK7ANR/noq6TdHPqxctnprgqCESKLyeUbTOQeO4cJKj9x2jWJ3yZkRLcIIhnItwXWp87nKjt0LK+nXoBwqZDcHBmLFZZ2ms72JetW5NZ+u8xdNtBNk+L6pd+baGFbd+iRgcTIzn1i4kpMVs88ECaxr5Ttc3D5jcMmwsrvoGAqGcYBiAKJYQ5Vkq5BoD3uH8V+QvuJIlOEYDLT2zXRKdmeyoSD3ZZpG+krJ9aLc19PjX468pk5f6GmIw/UWgV2cIBh14opUztCakIFqtd6tRtzKYjk1nxNszHtsQX6Z0g30zIz5cHlCai+ShQR/fXayfmjGMVlH2IPmHD4KawHkA9PbQE1UFMt3cIWQgnzOYs7nsPaO8xWAare/P8t1MmlccJiJPzJMOM6qd6AZ5oOLyqkIb4prjWIOXXCaMBwQySYRXF9874f3Y9kR8wWRWnjzrAjbABw8q42vVOlibr6lfCRXC/bDMMXNfr3pAPHGbVECZusrih5IKv9EqJWEWXc7JUKYOn1SR60B/GYOX0Lgb71K43djP6/AO26hbzJUbcZy+za+tBKdsEGMxkrnIEQKIfM0bw9wY4cEPMT8sZEOEyxnyb0EzFtPUNX1C2iiEHdjLpI4xbfQlaVkDIkyLirWml8fyy9AzZIvJ9XnoG3EPm75PiGVJrdxjvRqEWbyX+Kp/iO945eGd3YpIoh3SZD0JPRC4OCbQjRDZi66vTsXNXpy9Agnmkbrzbo2PBspgWXOm2FsIVNy544TsNUuXIh79xGD7hnEQcyvixK0UJ7P77KgVXGKCDNNswwP9Iq9zCXGJEILEYPcg2KOLUZEbz+hf4WSZ4HEF45BToEVAshAreyQcCPlq2a2Q+mEdyGSeIvKOcYCZzqb5v5pW0xs+Df3aDkWld0vN1j6b1InUxU0+2R2qxwXedqTnmSY46GrLksJzPa/p/XcGtVUk621jfTRmWC9oQ+VY0XSA9blLLis1wlrClsCB+84spIyqezr0Y1WkM/x4RMGi3dy5NziSnY/T1cKpp1SomhKHTvdf5yI0LDpmOKRvscWlbL3VfwenXMhopPmZIhU5O+mOrGl7b6dFFvcVoSakuBzs2PtHrOVoMmMtfd61eaqJXBypS9WnZCL+4zg+RW1Myh0QqyHyrQ1PksU3knYR0BxPubHoe33+RZwvMqcheVHGErb1nmOAi9MpRXmW1UeX099pGm91fUodqHlyA56EIXdcm97+nzAYkvXMwTGjZFkSHA9mI+tb/3gFO9f6XFuH0jaap4NFi3Z6rTe9DMzvmnsZOaMxahgEn7utUqLCRVJ5MCt3077o+8Dnzyb8R5i3Ru8gJKWCt0wogPLd/YT3kZ86Wqyl7v1YQFRIV3lsYlYpwDf+/lHCcNeuSkZzb3s/XOS37q9aycVdGl15FpvOGUTqw5Esh+wTY/EiIq1bg6DlRpa+tQstc1WdqGIplWrQ0Q4YikiX5DZnj6KHbBP9fiVRcOq69pdBFCQBEzpIf+iwQZVlOr4jOKfvYOi81HrCfS8YDAFzGHuJtuMi/syESKyLMpT9ZvlLIKEUsyGtPdvHtYZm9tiL5YZF0l9YYwHCNNHdAvwBsd7Ke4wHflquYjCd5ADsKwG7yTAqK/wHfUv/mgpxURIsEWiRwkzbXQI/M3f7BtI3ZQVoPAXFne3Q3uqUS0amBMdM1jc7tADcIL+PnIRB5CHeZT4UDc266ESmiOpUnDTmGtyRZ/JT9ghV+CgCwf2Rj6JMYcLxt7ZtxTNE74rbEVWow+cU+tRZod1GBXi4rDbr1Ptrf6S/9yYMX+Uh/U2jjsGV05CEKwg75znm4GuzxoW3u+y3y5YK1XzuYSo/efWYl5Twdih3LpB4NBN+eYfW+CIlUdP1JrxarCwkx6GYF3SIObOkbNtN1Qrynrbal761DF3OXoWwT0p5dSOpU7fUPMe1FobbQljOW8f93eSXCp1IuocsZYuYCmUJv5OGI69d4HM9PkCHbcMVzMWT3c5pN7elL2TFGsifezIZEDAyq+YdLfbELh2H2XFvjobhknj06k3U9QyEY4snZiWxZ+6e0suPQAwysZN0QUQIAxQqOg3U68Bs7wq05IK4T2TEgfIchO4lCd+ISHs94XfhLWH/ZMetaye/izeIE5HsgpK1W5eBSqovDQtE2dFdq9TvZCDEJloIga6+BBm6WCz5o4pWAi6MzGUgGlOKeH+QezLbHElzC2hX1ibx2yUoTsN4DO9xh/umLP6EJJk4xLXfhN5D2tgFAo2k4KyeY9D8ooySe0N9U9Dyc1vCaduXNUVeGdoXW82zK4L5hQs7VHEWFY+YzJyEaJwcY3/jEh5Z8WlyPIuMgCTGXpNtyC0EVXmTb7uZPgG67XdeeWXBT10fzz4pTc9BlCfOsrswnZycPEFMrjc2RHs+0XY3Ao/QiqUsPgGBxaV6RR6FmmFC7YG2F1rpfJRT640uDmk+6Jgr4HsWHQZL+7YG33xY1GvFG7mTIRv09TwPRYJDwTxv957D+MXkm72RgDf4DFXPNbxKaVh+NQaB5Td/xHjm917B7G+Tid5sKYU9gU3IHp4cYGWZK7YlwDxxaZgoto8h+gpxPfqu+4v9r+Y+hEQ2gc3ddZdsW353CQKdxa4dZDVUsuQkqWowfvRGmy4RotiPC9rQ97Yk6Y3BWtXWCSBuwb2iNJQH9VtNLkH+VQOGLeP4ohctFJwQ644dVR0B+zSUAQKN/jdfI7K63NMyAIayBEmIRcdynNaU2oQgegCzwapISerj3InXEA0UVC00CAD/yVG94dMhQ0gIDLfjZD1FKc/LQBf+I+2YHBi4yb3/kgqzdO7cQxMDlbPrtfhLkShOoZgpopYumC1d8Zl7gSfkbEQ9ZkLFwQHjSn4rDGYgh7O1lidsarZOZe4cy88/JoSY9TFGuerGZznk2kjC//Xs4Z64O3A/djHWk6+5PfnH/VUzX1E2QBaBj43bspk3n+wZfTEAPvZFblZVAxkiwWd7/q3dtaAFHzcOQ2rZvj/BIiUWay8cukoLxFJ326Lj32CKxiLOiZBATwjbTecgvZ47OxvsMoYmdkhjkaGl0ixZucI0s4jSBVUOfz83pFRbRJOpGegW9jTgf0nB7RPDOaAj3hLRwgh0lgdrIwPe4gGlOCDOvbEYpVO+mRbpFeVcHdyxyhFo4j3vfwasdQAXpXwK34rvXwmpwZ3erLL6kanFe2JDzjhx9XI8V/6t8sl8OVBTdwz0DQsk2l2bsO9ZbeQKItg4ccrDHgQ3PbDfbHFn7PdEbFm7TcjKjejzDl4b4jmfeANQYj4LprUy8UT+JhDzZf8/veDQ0X8Xnb9IRFoMzA4LeImDIiYVequt0jGgb1AkuCLCWYKDTJaQkpLxheK/pa4uOfhKtEqNOXMUg6TIeQvaGdrC4bRAXg0DkIv/djXXzUh45RfuLeIyMiiq6edhovSOwDwVMP0yFfV6Ghx9ZlaeB1Ke3mg4siaVf8YJoJaOr8rH6JrRhWjm/OIfOKkk7FT0l3QbAmq4QlZIkTkHJULQBczYt8HbterobX6NA3DP4fFze+gYMI71LYP5Op5PzXKu8IQ+sRcxTND1kFgOBDQyqtA30sJVJkygBdmRdXZejcaPmJS1ea88quBGNKSfNipK71tkC/D7n4JACwzCFhFvHa7qsyuao2I8f6R9aGezi53BGQRXkCeKP71nE9shAqbocLhtO0m5Wsayo031J2719FL5t46Ne+LjfRwGO2Z8f+FJZWtjRlCtlldgCYFgG/8y2YGiRmWsc+pzBTk5U37W0za37TKDaViuqOyX5NgsvWoZ509Tb1Stq6wOSM2NwqweE7mZEhjRDb7/SZ4HBpLz9Ftv6GftylG48QiHtl3qilQIjVZzJOF204wLHIntuEqEkov2z8RwzRqU0C3+AD8ya/OA46kDxJtRwJlT1+F4bUiA3wB0ILZx1D03eKDV2S/cckIUOCc3n+bvaqU83ymadfjJ0ylFYVbgyBipmYP+fNHzpu29jMo2zuuEQ6Zv3xwRwmtKfvSW/DRlyN7F5695QKGliT0Dz6CIQux5fCsxKEX5YchOVYJlPU3YPyLuZDYfY2tXRSZPHYudAF2GX8+L6wpEKULUF6xUpdanuUEp5B4zxBsYo67NDPRwA8qDPUG9/LrPakEG5oy0dKHYa9lVmDpF8wb5NPYaxWu3WxogG2hwWA3lTFz+XpOWDMfW/dg2rAfYx728S9+pZwdwg6orU+abe+FGCPtdhMl0OIKYUreqFr2jtGBoldYn2XTuM01isptpGapXDl3Y1n0FuZFinH6AxXWM8YjHTxZLT+qpwqlDoTUGlvOA911BEFqhMAgTa7jefNj7f8Vi4oGmGuezLQcAmiMAX3kQMVnvFK92rm6+4/yJ6dI8Xb8S1zbwf5hbyAEBFKfKjoaAGU4uCvi7Lyg6iDP8IQ78DHk5M/ZmP7JNvVxmorYB/wbBEtAclROOAtUl+ywzZ7vEMmxETCGX6B7l5c/GTgJBJeFpz3Ia1yTCMFqIhVlboD1nLbspKaxqQ6TClFTkXVrgm0aKm6naDgz9uY+tP2M5QEdeqoXhHgn/Nm3FHga7IN2G5zNZUabZHl4emKD6F7arT8UGyt1lWW7JBe2Yf9sg2uh+sO6xqOmfa3MM3QGzauXYpfSgtV6tUvuW5zcdZjcgmeQxvHLAnwN5FVN2wvMdMQJeAYTGcMI/nPCDKVIDvI5s656ritFL7un9e3czn+xEOR+NsAGGyiCtUkKhlRR4GonqGZfZ3X3yQmXN3bEmFGZsB4/Sxx8M94fX62fXXnpMTtvCMwRxB7Rta0U+Icj28xX5SCfYDD5qLcoZYUHkTmwVHvJcB1a3/svSjzQeLORNzDVqXGEiZ4blMyA0swnhJeIxKB6NsxACiTGmpYZES6E0sOv7sUUHLIsgNqgY8OGHWCZWlgjBUb7fdVX7xRIU/4MQzL6jduhMC/8Z1YnpbenuXam6Dv4C4PG3KlyE+L7d7g7iHmM1Vw+D4oTFhcW8xp/KraRN5HB0Wakf9edaR0zi8VMtJ3uBDSBYDIu0wITashZXUBnpWp82wSuyBO3UwGu6bWTnOm8ntXdrgIP/9UqHdFszbvX2+Y4F4TZU8dPR8f9whVgwBqOX/VTiGGygHtnIWar3Iyo5HRH6p5h63DfM5tMg7lA3OrINnVYnNEzniGVdebxPsNasDxOdK02bio3gtFrv9XqGVM9dB9fLsyBdqKQt7DVDp4YPJk5+USaXprm2egLo62kHVRE/X7JpTemA4/KMu+7bIEupvGVzPkWc5MyyKiScWC2fXjTsI5wiMO7yX8g6hDt3EzGoj9EU8Aqm0WZ/NcIKSONcNCCRIfDTpCKFPzr1v0umlnur8nEGOS3h2t55W0qTPrctz8DLolRZ4xq+CLerjxMmh82sFJ9xga/LJRrcEAL/VAL1mTyeVlpjGTGkAV4hxnXwOG8LR1Ct+OfvNhRzx6A03G9eegEcnTUPMe5ze/faNB5thXBSelspQtFRpJ/TkQ8wP6kuoxQaLaQu6ldkSfM3rQI4ye/ArA7wM2PTsOJ9R6MY2NcVk5wfYZcjnU1naI+mmEfFXM54ZYdadaxYgF2hjl3KpP0wMMt+jNS1wiyLbylibi4Yi6QSMxswA9mQk6Q3HQiyE8V3dmxM5htQ4KaVpOtAblGRXv/IIWPgn3IqMh7gG/RQFxwgpTxSBF+9uX+aRvOEUJ9oezlXoUx2RpyL61vyDAxaYm1BTK0I/WXE9o5Ol/jgP4hpvu/kD0IXwbKb/zXi79D5FdC/1zLV7Wj4fJdSSOA5gAX7OLbdEdL01DbCIU2F3BhIcKQ43YfYnwN+YBvEJ8uPz6aehxyJ6bufS46Egr1EpUSxJzGFY5UgIxGGqJdRWijFodqZzyG9xS74Pec9y9f+c1yr+RV3jIUJBJZ9c0ItqL0fWTA3I+bSLbHBoaKOEai1hjOLVwKzy3RIX7Lc9gykungVMQ/dF+Cck15Xsz8QBLdhjvZzMu/e+jpNajchSmAnc2r2G0dUL7em0rtZE4q+g0+dklnifiZMfAdjqPGugER0onqXMH1yDpeCGQ7f+QPd8sLxfYed/n6W2NdLbUGJFOv9s7ZMbOu+T1nSF+VBaLJA3wISx6lxOHSAz1U9AuGxxbxHjhpb98btDivQaeHdWUJPEabsoycdtoTnaK9yBgS56JdWnEPV9jSFQPsYT2nde2XsVhZ0PwlH24QSIdtodzPJBBhaG+DEasa3IaD80nc9z5rY3CYAWyUeFXhaE0rV7GlKpW3rOQdPjx5rmj6LUBM/9mHXY5YbQIxxR1AChnLKwj1T+ZZyNh+08HUP9D3r0sSm0Uz9LKYBRQTeO9Ki6sHNGLJRrRBeKTU7GK/9kEIajAGiZhkIgqs5Em5GiDqDDjzd9N9hEPbLhDCmWlqi/5TvWJwkRQA9wDEvt0g8rWtmE5N0P/Wv6jRybAT+iDQNBk2069RNCW3gFKeT1D4mas4araZFHZVPxUpi0T0JsEagzx2sJjsB6wJNC9nIPNlvUY3G0Easp0/h4mPcKL6qLfoy+qk956BvRO7iiRi+f/QkVNylCnUUSPHbkUFQHwUtkhmbjmDz0c3313ZpQulj4zg6vPJtKquwJltckmaVKah9NThQIepZpp7C1t2o1IBnI2CALh3a5z74F/2dMphCG38qtJdP+wevTbGegctcXfTtWQA7py41Qi0ZL3/Pb4cJ3FK5Lnt+FVBR4UBvB5SdgsflWnYodZIf55cg1hodlj5yq5NbuCocTqJjwHOKwrFBzcnV2yDqFpJWFXp8jazF5AZQilXttmVzFR6mkin72gvBADO0LRP4FhsDLAvzixkDF4gHHnegCRQo6l5arj/459zXEDAbs7UB/bMNx4lkZk81Lr5G+LnYeha5nWys/9jeUiqhmkOcMTpfQGKxXy5/m052md7zLmBV47dE2RDsXd3mFed4hfZmhfgqdVOd8VUjSVDnptkYiU1GRYtCMmfmrUe4wNbGCm1cSCp9IW+vhXlEI88w5hQjQSVx2pMxafOiUoLuAb4XhR7xfagu4WIJa3F876ZkXAptG1N49IwJCEDacieI3uC2wdKgydVbXHYaDNuzFJ9D7ruT5YOOjTxjvSJ+wuVjVGVx6mtNyl3UOXHzuWI6XJzS3yWLa6ZDjMGcQ23135ibSoKS0EnZw27tvk6hjNG74JXtso4yceb6Yj2PQrlIHNCZjOZCqRH35FbU+T+3dtw9+TL8w0xO6/XMSkmz5htX5qYwQAzartoNN0gCXo29uTiYs/DORRgt8dYq5V7oDh8U0JxfEs9U8rrdMEc10LSl4F2laFVSWP5u9IOOIj002ESf3wowUsFUywZjEL6U3c0GHnkF2uE3825d/RTpWYwve5xeuJBdV3ABlpo8c4buXlOymeWSkb7iXsfUsRnNNl1rRT4U9+WGnuoFhEhFY7SyuUeCV8Nb1hkskSj0iUEhS/ZcoMhAzNJaHLZvAybCmsZbtflkAlzrMi+HIzUXt7DQim2+bOc0iYiyKYVrMioYv6rIQk9CPm6GJgw64ib3f+lf73YQJ1aFUMcKdTGvSC8QvsGvZSQxNUaBvLkkputp4XrIsi+StghJqwr6ufglVZtDAcHocT4vG9qY9733NwVMHShvFHXT9uh//QVBbz1Krf0qxJrKG4tQrAQ/N3C2lh7w/gZHkSDs0yJALwQaqM5Rt807PGPecVemX0jhtQ95qo9NE//Dnoa2nfyh2OlxENFNW9gwHQS+L/fk7rCGXRUHcRAbSGoTASraJ0ihoIzaR6ajL2czcO4dzXfVwjoMWxuEyeaDmAfIVHoaCw5IY2ep35LFeuv9As7sNcvj18WFKsUX8uiEj+n+Opqx0cQ29afg2zqI3ncmr8SpSMsdI8PYUrYYu89RiKC+tgWElDLyEKQvBf5lEsnI/tfU3EGTPOx+wp7xkipTkqKBZmX4FG8fcpivVCzJPNaAHviQ/YSaJ5MiAGU5FH3unZQgqM/r6qXl1k2w0tPOOzYUBhIvhImmCRj3/8hYmgDgBXOew8tlwkDcj8Eq+RjjJ2c9RLpGkwmo5MWaMyr4S/VMQEd/+LREpJGe/sURoVKdXYOOSyBOy3yRuIxf5erT4QpHizyVse8OaNJ7NNU0hGG7D4a7q7+JjO0t0U+WkMAalU028QFKb/gVdzw40dRW4dqAVDHgsGENEPzj8a6wGZLwRMm5TJRKsD9ChZo2GpUQmX9KqM5bfufC5weodzz6tfhXqQ+jjxWV1vunA44ZplAkMVxuRIxUTGAOjqUPx/2sgkQDUkhMBclPcB9nF6RyC8hMOjiOltcg/R9wBi3ccr3zaeE6NO+15BOIVBs2JS+LU0opJh2BSqsYzQ+ijSNfLlTfMQ9MUKbV2VFJlO8UI/mUdzO1K4earplVqX5K9SzMXTfbR2xtjCIZAGmBBbXl+hggEUG5anC2gOMOUEKg9yFrHcJnYFroMUKnN9vmXrPNV99h1wmGeEcYnqCTSwfKQ6KoqDFjBSacXoyghjgZCnPXK4juOPJU2vCIaXd79UR3nwuNdb2oTxRPb4r6HzHxHWoTbfXCNyRxsVPoYc9bEJhBVuELJj9INLSFfMdbZfbUNlcGa1nIEcgFeCIE9FyY9j/uVyqtHyc0cQKUOgPy8goOfUsIbxhOnmDOM+FsnFmyh42AVR9Le4gilT8jlP7ZY1wfMMAmTsQjE9bhWSpmQerNnBaET89BM6jBHeBfmL3J/fY9ccMvXVk2Q0l/aTOOjW0n7DvcR4izp7yEULp0djL6grAK1OGEXpQ45fkdrYt/ye6XM4uhEV2SSdURkl45+FYfwLErW+ZyeJC3gI1YblJeJW0fhfOuBPUoB1GFyE5pDrKSR3lupvpoxRD89HjAZQdWKxfr6THfgYL/cHZh10LAi53wcxRxjXUAZL8XreeRkIhFLgTxszofTTEaVms+UhxOo76VtHKuuP6lhsQXg/7Z8KDl7KG0RD31gGIf1bNBYtdxU8DD9XAOTZTPVWIBG6jhZN7s0Pb153S/6LQoEolBETY7VFbJiE/nvGEwZA5O49iPMI7tXeQbtdUNO+W6+UvcQ/VvPRjQsiAAPTic8LAI8sV+jTsavn6n9Ya0pthPE10tlyFlq8jUJ03SIPtT7ylBMENeMC4exFwB6Tvbs2eJ1PIa5NNaGKhPAnK/bLZmwxCIqT9RboUhcSgj3kpkW8eaQcmdq+SwJeoHLvbeQIVN/cYk0GeCDLcWfp0jDwSJXIjpCOJu5TzFxwRA2pYXXYj/ggoF9cpu6Vqb3Jm8oPwU5krquNX7lsujwjKbU5DtF5NMYQpWb2zVqWkenRYdQqGJOXtSPykmM6+ws2NfcMGUVOoVXY7I58hJX1eWGh0VHjLuy43jn8N2vWpoV6RVaxRVKShKtLF8X4AjNZFKp/MKfUpJIcuZxxSN6kgmjPY5djl8iyp9E9ULQBH9sEGbng50u6+2Fw8MBy4feZpLh7wQVGV1QDOVfE+lM5qArd8m8CTbPSBaUSH0iBHsKnDGWqWQksl9wiXZ2rxcEC8mnCL6lzucQ5Z7WSm90V2vUjca17u4Lw/yyrOHYRw1eLDILArAkEd8cnyhgBgz/cdzhFsANGAHom1sG6MlQmkdOfi8FWrLO1SvdVPbSlji7ct7pdd01sIgDTdFVd9w1HyHp6unRFUHdFWiZ9HFTqpekzwaOj8RPKrF2AP/pvaLZeHRsJEPlWW7/joj+ea8XO0hBYzrpF4Kwu0m9ZdP0YSTi3eYa1UEFyemlsTAJ4cKPQ3heMXVaiEf5wmVrFz1suzESEa14C+UkBL3y9RNJsdLvOc3hUiavTQnzU7czRq7C8EtfC5u0VhYajxKk2MDDaZF+EJAKDzf8hYBpYyE1kOTWBGjQ5o6RkcllQXX2N8Ut2eqI3ofhVQ6L1UV3zXKWULyckyfDNYyIUYeTFup75gAj+t4aVdnq4/4fWhLhyZMda4A3MN2poSM2xZjyoo+vMjgDHBYWlQFIYnehBGTy5CUJSnvUfNDIAfoyqx8Uum9PqQ1dr6aWs3/J7RwTXStUum64R+ZPaZEZQUNzHl4oSnIj4ydnKQDC9MhHc706J4IjLwmiImIKqevY9fCfMtr303GHRhOJcD/izPVGrr3YNlODBEIL8FyH8hAsDHY6ndtBYHWhScL84aqZ+K/KseyOdkNMj88RxhyZh1YyWm+1bRVBDcTnU4DSqGqwGoCmf8+BSKU3J/x57iAle0Rp5gHaWQYBdNJW2Ssc8WyZaSJACLnhRJFXIm6lAZ6wozdc4lDhtiHDR6YFPQXmS3FcAXZJvmsMBJ23NhzY6cMbkUEFRX/PaYvBsQg5JO7SEdldki6QmP9S50+SqLr7gm/3eL0EWo3DbFC3vuSSKwxbLMKq3iFF7AY/io9dlBpK5kNGpc3GjraC5jZdoAaIe1v3Vdx4AZWcMBxdocVDkUWNdYG6B2Z8un+4SU8BlY4PE8mnQ5AC5eMKuUp2dF1wAFKmTAvW7L+O8zAUMV1kYA9QWS7Nx52lfzxjj5SMM2Q37ervOR7XR62pil+z2p/h5xF1sjYmWXkIfittX6T6MitGO6Dy8t7AXqftpbESMllAkrHklYbEb+nj7xfYR0WNHKIXXGIRqa4X/rnFqRAoE0u+Ho1lbDn5jocws0Fss1ZJQ9OJ0OGwL4D0eg9eGuvRvfHE6/YqYPAjI8WPn6Z1JNL4GQ4sSdCYTvfMvTLujgvrr1wausDr9OuBJ1DCZ2gVEp7Nnj2SYqDZtz2ng4sgxZJwZVYyT20131W0+EZnGcSZMUGvlwIAWrzF9N27QsP9g8GbNGCVGqFprJnETfZOxtNKIQDyEmmoA1tD7Ar299dMLpwtVv0He5fli1WDBB4Sl6ykg3TrxmMQTPo4JooKaxvv7+tmbE08fOEAplYqq6tl3XiAXRTvw4qYptjtimyUqiDmnbEXPavICJSGw4yqiL/7fUms4CPhqn25p6AWIUcMf8FCw+A3DUjslPqDgfYwMB+dT9Tkbe38VJ50ja03mqGN6IG8kf+vObFgkd4fGX9NB8Nfkm//STnnUJtQ2/R0x8iS9HAhbuVrt2f4jDGp30HAs4xjh4RJDL80ufWj5Giod68s9rICZ71OmSgom5xGHpz2nJ4UEP5zE7DeCF+j7HBUtM8Z09vnrPApCWGRqjlF/43KW4nZOmUB4WyJ05Y9O5uRvEbYWrBvWhAgwUn9xZenbsvu6lemLis2GzXG1PaPNU+PXXujoyUr2A5NLgczOOkmMCbc/y0/v1G+NJAxbEhaNhkCn/KrybO/viGXuz7z8DUNslt9il4HiMQz9ZuO5kFPNij6c0sgzqpfma+b8HSXyXQatIiUNAfxrVK7lKY/CqQMOz/u74b3W8yqHQBZeT6X0SIx++hy4XynCVmvF3mABQd0Cfk0dnAb38587GpeB3/aNhfUgTbIjxHooUwICbunqYjm+qBBg/6zWb2/b7GAa+RBuejEVcTR6uWvDmFEa+yADRVSoCJKwoswyoAM2HrE2XGoS+UikQc2eyKlVxigmTHxmmzmoiL8MJJryc1gBSWmHT3u4Zutf6IATcwbTib3d7seRPN21sujImbp5NVPaK8OcslQWBkngIppTM4Di8S8k89oYFTkwyt742OBrUJikTFvt8I60c/XOnOkjMHibdl5/ntH8hKoO6fXSEtByQ72QWu5EgDXoRaG1Y59qBA6fyHmVI2fqbPZ3/FR/DV9u6fLCYZuB592BEo6rq9Rx4OTkJbUAb+8aptru8BAOlM+sMxA3JX/Ifop2UIjGmpI9FFccDKEp8aQSdaBRPcwyHqbcfKGGicon5EM7rScVp1nBCx5V00xQSLlta/9fJMHlv7Hixlspqx4t9SRPNEaJ7V4pjFyPg0hJzyrxm8R5EnI7jGAPBXCYZdKA+G5zVnwhXb8Xq1K8zGYePSXGgi/Dtk3c2IJE+KifQOYWUkZ4W/oaye+6u33aqsZCxAPE7Fz8LExFxGw0lRfTZ+weAy+igNhAplsG9g2Gw/MEEsrnKvhTg4rThTLvix0PQP/blZ1NFburunLwenunkTL/bV6J3JG+9+Oc9+LyvvH9whkcUktJdb/+ZT0MemHEkjb0moyXVEOk0frJIiHt1fh0KF5Nz9ru1KIkj1ddz6ZgcUdQz+w7ZJ5am7uDyutpLD3sob5APxU4TKQiHclkXyVymNt61fFdoxcHVZiPhjqO6n+T+pahteL1bBz+DyYjnVSqZgUsFwozfjQFd23EYu5b9/NgG7Irof/TCNGTu3AoMJ+JmE7f6kMkj+mi/oU+mhC0nEv2AO0lruC/QZeT22XryXXZrVKJwT6pMyZl+nZsdNs7DMJ4i/7bKpkffuUqtF6l1i8erY4eGDcjikhvAM2wHLi99SYqcysuX0uzDZTNwn5UGrjyuqn+YI0I8ZWJWbB0RwA+mLYS6l/Bu5ty6Iqg5sWCYe+HXrek4gKS7WqNhXUZaRxy1ER3OXbrjgrc6vKNNWwwnSD1mMNeKSLpvVNKcosIdvJPfIGqrB5QJfrmDiq7JGnOHncId1Mz7nW3P5hjeCYYzCrxhcgxEiSNQdGbJ0YWHxTGxKr2ONFRQPsWbk6DnP/j5+rSQA2jq35tchmTH2UxHVZ5yyQYU5hWmwqKpbrW1o8SMapiWd0Qqd/rnbog+L+QX160iaMGJh2JLtTLbK8GAgf7a0wG3YzXmlzu24OBIvLc8kKtEGJ4Ec9ynJKCy3geMncQnYS7KIY+2YiXexAIh6Yc1djzcFVG/P52bgAZhOq6coTlkcGGAKaR/i1VpG0WZM2gAdBuyrJEG2rNkCfep6XB0B1e/AG/VGnVJgr7sQ/7fj0yoAvWIscoSB/g0IR8rEVfkbAyneu1pQQqvQZYxW18uG2Ycb/zKNmw05fLdt4xbA7fkllWq1oaBkWjoN6Z9yxLbC3Qp8JxWkylTdFrcsSnN6X/W5JW1IOVGaRmpTZIyRLDWuNt/8e73eJyS5a90l07Yre0etQd9UqlpCGWlBk+Zar3mN+QWzbwDJdfZaTm1oR7C6UP/iuUaO4/Z+trlNxdA+vI+BQdCVFa6C7FDXdbKdMC3wClo/RxDWW7F2eOMC82KaE7kQGoz98scmD+sEAXvX9ntJZ2gYN01AOxP2CKJTqnaanIaBObcai3+h52OEjczwIPkBux86TQD/WVdKmknRgMxxoWXWoBaIL/yg2VLl+doRP+e8JKAmSriftWzjhs4XiaEszdWSeKg8b7K3uRTYaDfcLJFYjA2tRX/xCacCnQ0uwXfor8M9sLqgRDSrxLTzYLap2yrBPyBYIGqdC7wI0s4ZT9lDaSDOrp/05ovv4uwVwHRAbAjlAzN6jw/hvmI+jC1/go24+RRHxLl4XIrOIrRhX/s3ro1rxbpeCAHS0R0SoI3a9qr2FywdXxFcloDQ++QzR4sGyL7H5+deOaCWQ15mK1+zNYM534TvvKNd2SS012XILepOpaNLFB0z9zPXmZEu7mUoIAVKtRamLpm78rkPwwIVYOGcLTY+8FaarZz9cq1H8KDvc5nBdPyiNpBTmK7E8n3sbyb/CqvUryIxgvhr+0YbJRXKscinnFpyfCeLsOYIJpfZwKihH8ykkmO+nyqH7rmJ5gNCzzn72J3esb/aPBTyyCxzjPL3EgjWjcR6Rski6aEKaPSJiseyPPYB3EYpF3MGH1qtx6aPgCRBHjn93nmp1B+wBZk7gvh/sKaPe5mY1TIo1Whm930OF5QTr8saNpA8kh8/mjFkOf/BWmQJD6YTCvGxriFNiAxQ0bOQJc43N5PSMCueW0FE5EKp2uCAUXnVMYurJ5bMIuFig3y5zXjSM2EWnEms71OjR6cZZNMWv+dFl0qtV9wB2bqmHTNtsn7qT6HmoHKpNXWEjr5ulwFUJuMxqs9HdXq5D0+DGiK/zdVONC75GnDlVKjdFCzUSKoaueOMlqTK0uyHDig2aDNE/yZliHpZv6+6ysCvWsQ2MHqvgW2DexHKQdj4UpYqXQM2yjt7TvcL2lYwpiXHeFi8734cb7uL8pTwddyc9R0HC1uBE81PYV4TtT4CLE+yXx6cVioby+K0q5vh69qcdzHZ5dYKrEC1MjgQW6RjVDKeBZ2RD7f49TziIBDE+6+r8qRzr5DrlASzhHftoxh8q4pxNQtS2Y5iYITiyDLv5pUk2lFOPSNW2GvF+aGdKfnlwgfH3yTB5KvxIa7usCNl2blNQIUDUXGzu56pA4L8VXgcKclKAD19uEKmFqtLjE/b6uvcc1hY8pH80lea0ieIVI5bjVbf8Iq8JzfYYL8nqg335NhuXjzLoV0XtK1pWK/F8QKApwNN1hdKlyroVH/jeVtBl8vkj93ysWDO93p4XEvlYJFmygfQ4OeuDokdWXZwbC6xx0+h4kvdtUux729WI4jYLIlTPE61lAwpg/8Grehr6/bb41Rg3KZRTlYE+oAguzCr+IuqbYJXA+9xMplVUdrh3O/CEyEeHay0nFUH9jmvvQLRPl8L02jBaE6SBu8GrTY7EgukWCvRALxoa7TZFu2alJe+gwTqLDyT7cv2qCh8teSPh1EscPewPWe3yB0OHhzDU3S7KjkPSbjLvtlzlapiaelkLCCODWZH7pfonl8DKs94BJ8gASOD1nTdzn6R5j5pShR0wbooV93SaBbcPPTwdKpY3d0/ug+R9n4naBoe8EQ3jndAyqm7eyMEaFUBjfq3wKKhg15xfdv+Bfl3SjcOpXhPknvbukN5rpq475MZPA1/7EyI3moRuukvoD0CNtVbHqHgM0F62o+XCqMwkwBl2yF2teVtM49hXFQTUabEHVov7VGrRuKWEjs+aNgC7cWfa8g+mvaglFYqLTx4sZRkU42nFllg6SPQwKyR1L9dhSRMvLfUBycr0zhHDDvSW3hUK9YAg2z9OI22U1MVsLi0MalobPlTNPRoBSbDUHBOJAAucTgUFY7O8Za0ScOeGxjD58m64shRig56PpzT+JsfhOiYvqxdEN70lbn/B8FV3FAK7BwvCHskxwvFLN8TeYH1vZ5V5h82fEMUGGBTXTz0+2649uWwStTOA1ZDaC/DNK4lOp9/VjI5PRa6FQBCBnOGE4n0Pr2A65c6IC8cLF1bh4B3KqX4a8pNswZsH/GJUlxF9XlIES8yBUIinS9gkPSMhwozkxFSC/ebDoreUgsHlgSvr8Mzo6tUOq+k3MdrN3RPTMVtoYUQtTYzVnU3Q11wOZT5fAk8SGaRgQc0mJJzLJD+Wslc8rO9FCLFay1s6aDtX3JBxXzJvIdt+OT0OXntEPlRGVA/AAC2WX7j95rbRJwZfU0A6zvWTllgbifnT0uWKXM6vZ2P969V49m6Nq0JFKjYJelMrRUvgCv5+B/UdQezI3WMToTfxcgwkUjDobRsCRi4OOxPliakKlatNo6TGEDYxT4XU7VZLM1F2DB26bCPpBlFSa6lYcdn0Fou36vvDgnpo/q11mbmZdjZds6gizock6bFr80kAVKVAh3M72Q+vNQB26fUYTuhyt38GN8E9dOZff40VHaq0jHkRdd84aCJS3NnLEec+zsoaBN7widrEZca5Sme2M002N6WEB3vycbbXczBdxEGX3sCPpZRTGMW3ygEiXIPWrViIjKRdzBIToW8CBOS9z4Qbg0ExCLSFLFH751W880s7kgdEg38k2l60HulGaWZu/1qqKLJOgmFEM54UcW40NpDfaEjsdUkaWHnHPCPVusl
\ No newline at end of file diff --git a/acts/tests/google/power/tel/lab/temp/anritsu_utils.py b/acts/tests/google/power/tel/lab/temp/anritsu_utils.py new file mode 100644 index 0000000000..31ea87f45f --- /dev/null +++ b/acts/tests/google/power/tel/lab/temp/anritsu_utils.py @@ -0,0 +1,2363 @@ +#!/usr/bin/env python3 +# +# Copyright 2016 - The Android Open Source Project +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import time +from queue import Empty +from datetime import datetime + +from acts.controllers.anritsu_lib._anritsu_utils import AnritsuUtils +from acts.controllers.anritsu_lib.md8475a import BtsNumber +from acts.controllers.anritsu_lib.md8475a import BtsNwNameEnable +from acts.controllers.anritsu_lib.md8475a import BtsServiceState +from acts.controllers.anritsu_lib.md8475a import BtsTechnology +from acts.controllers.anritsu_lib.md8475a import CsfbType +from acts.controllers.anritsu_lib.md8475a import ImsCscfCall +from acts.controllers.anritsu_lib.md8475a import ImsCscfStatus +from acts.controllers.anritsu_lib.md8475a import MD8475A +from acts.controllers.anritsu_lib.md8475a import ReturnToEUTRAN +from acts.controllers.anritsu_lib.md8475a import VirtualPhoneStatus +from acts.controllers.anritsu_lib.md8475a import TestProcedure +from acts.controllers.anritsu_lib.md8475a import TestPowerControl +from acts.controllers.anritsu_lib.md8475a import TestMeasurement +from acts.controllers.anritsu_lib.md8475a import Switch +from acts.controllers.anritsu_lib.md8475a import BtsPacketRate +from acts.test_utils.tel.tel_defines import CALL_TEARDOWN_PHONE +from acts.test_utils.tel.tel_defines import CALL_TEARDOWN_REMOTE +from acts.test_utils.tel.tel_defines import MAX_WAIT_TIME_CALL_DROP +from acts.test_utils.tel.tel_defines import RAT_1XRTT +from acts.test_utils.tel.tel_defines import WAIT_TIME_IN_CALL +from acts.test_utils.tel.tel_defines import WAIT_TIME_IN_CALL_FOR_IMS +from acts.test_utils.tel.tel_defines import EventCmasReceived +from acts.test_utils.tel.tel_defines import EventEtwsReceived +from acts.test_utils.tel.tel_defines import EventSmsDeliverSuccess +from acts.test_utils.tel.tel_defines import EventSmsSentSuccess +from acts.test_utils.tel.tel_defines import EventSmsReceived +from acts.test_utils.tel.tel_test_utils import ensure_phone_idle +from acts.test_utils.tel.tel_test_utils import hangup_call +from acts.test_utils.tel.tel_test_utils import initiate_call +from acts.test_utils.tel.tel_test_utils import wait_and_answer_call +from acts.test_utils.tel.tel_test_utils import wait_for_droid_not_in_call + +# Timers +# Time to wait after registration before sending a command to Anritsu +# to ensure the phone has sufficient time to reconfigure based on new +# network in Anritsu +WAIT_TIME_ANRITSU_REG_AND_OPER = 10 +# Time to wait after registration to ensure the phone +# has sufficient time to reconfigure based on new network in Anritsu +WAIT_TIME_ANRITSU_REG_AND_CALL = 10 +# Max time to wait for Anritsu's virtual phone state change +MAX_WAIT_TIME_VIRTUAL_PHONE_STATE = 45 +# Time to wait for Anritsu's IMS CSCF state change +MAX_WAIT_TIME_IMS_CSCF_STATE = 30 +# Time to wait for before aSRVCC +WAIT_TIME_IN_ALERT = 5 + +# SIM card names +P0250Ax = "P0250Ax" +VzW12349 = "VzW12349" +P0135Ax = "P0135Ax" + +# Test PLMN information +TEST_PLMN_LTE_NAME = "MD8475A_LTE" +TEST_PLMN_WCDMA_NAME = "MD8475A_WCDMA" +TEST_PLMN_GSM_NAME = "MD8475A_GSM" +TEST_PLMN_1X_NAME = "MD8475A_1X" +TEST_PLMN_1_MCC = "001" +TEST_PLMN_1_MNC = "01" +DEFAULT_MCC = "310" +DEFAULT_MNC = "260" +DEFAULT_RAC = 1 +DEFAULT_LAC = 1 +VzW_MCC = "311" +VzW_MNC = "480" +TMO_MCC = "310" +TMO_MNC = "260" + +# IP address information for internet sharing +#GATEWAY_IPV4_ADDR = "192.168.137.1" +#UE_IPV4_ADDR_1 = "192.168.137.2" +#UE_IPV4_ADDR_2 = "192.168.137.3" +#UE_IPV4_ADDR_3 = "192.168.137.4" +#DNS_IPV4_ADDR = "192.168.137.1" +#CSCF_IPV4_ADDR = "192.168.137.1" + +# Default IP address in Smart Studio, work for Internet Sharing with and +# without WLAN ePDG server. Remember to add 192.168.1.2 to Ethernet 0 +# on MD8475A after turn on Windows' Internet Coonection Sharing +GATEWAY_IPV4_ADDR = "192.168.1.2" +UE_IPV4_ADDR_1 = "192.168.1.1" +UE_IPV4_ADDR_2 = "192.168.1.11" +UE_IPV4_ADDR_3 = "192.168.1.21" +UE_IPV6_ADDR_1 = "2001:0:0:1::1" +UE_IPV6_ADDR_2 = "2001:0:0:2::1" +UE_IPV6_ADDR_3 = "2001:0:0:3::1" +DNS_IPV4_ADDR = "192.168.1.12" +CSCF_IPV4_ADDR = "192.168.1.2" +CSCF_IPV6_ADDR = "2001:0:0:1::2" +CSCF_IPV6_ADDR_2 = "2001:0:0:2::2" +CSCF_IPV6_ADDR_3 = "2001:0:0:3::2" + +# GSM BAND constants +GSM_BAND_GSM450 = "GSM450" +GSM_BAND_GSM480 = "GSM480" +GSM_BAND_GSM850 = "GSM850" +GSM_BAND_PGSM900 = "P-GSM900" +GSM_BAND_EGSM900 = "E-GSM900" +GSM_BAND_RGSM900 = "R-GSM900" +GSM_BAND_DCS1800 = "DCS1800" +GSM_BAND_PCS1900 = "PCS1900" + +LTE_BAND_2 = 2 +LTE_BAND_4 = 4 +LTE_BAND_12 = 12 +WCDMA_BAND_1 = 1 +WCDMA_BAND_2 = 2 + +# Default Cell Parameters +DEFAULT_OUTPUT_LEVEL = -20 +DEFAULT_1X_OUTPUT_LEVEL = -35 +DEFAULT_INPUT_LEVEL = 0 +DEFAULT_LTE_BAND = [2, 4] +DEFAULT_WCDMA_BAND = 1 +DEFAULT_WCDMA_PACKET_RATE = BtsPacketRate.WCDMA_DLHSAUTO_REL7_ULHSAUTO +DEFAULT_GSM_BAND = GSM_BAND_GSM850 +DEFAULT_CDMA1X_BAND = 0 +DEFAULT_CDMA1X_CH = 356 +DEFAULT_CDMA1X_SID = 0 +DEFAULT_CDMA1X_NID = 65535 +DEFAULT_EVDO_BAND = 0 +DEFAULT_EVDO_CH = 356 +DEFAULT_EVDO_SECTOR_ID = "00000000,00000000,00000000,00000000" +VzW_CDMA1x_BAND = 1 +VzW_CDMA1x_CH = 150 +VzW_CDMA1X_SID = 26 +VzW_CDMA1X_NID = 65535 +VzW_EVDO_BAND = 0 +VzW_EVDO_CH = 384 +VzW_EVDO_SECTOR_ID = "12345678,00000000,00000000,00000000" +DEFAULT_T_MODE = "TM1" +DEFAULT_DL_ANTENNA = 1 + +# CMAS Message IDs +CMAS_MESSAGE_PRESIDENTIAL_ALERT = hex(0x1112) +CMAS_MESSAGE_EXTREME_IMMEDIATE_OBSERVED = hex(0x1113) +CMAS_MESSAGE_EXTREME_IMMEDIATE_LIKELY = hex(0x1114) +CMAS_MESSAGE_EXTREME_EXPECTED_OBSERVED = hex(0x1115) +CMAS_MESSAGE_EXTREME_EXPECTED_LIKELY = hex(0x1116) +CMAS_MESSAGE_SEVERE_IMMEDIATE_OBSERVED = hex(0x1117) +CMAS_MESSAGE_SEVERE_IMMEDIATE_LIKELY = hex(0x1118) +CMAS_MESSAGE_SEVERE_EXPECTED_OBSERVED = hex(0x1119) +CMAS_MESSAGE_SEVERE_EXPECTED_LIKELY = hex(0x111A) +CMAS_MESSAGE_CHILD_ABDUCTION_EMERGENCY = hex(0x111B) +CMAS_MESSAGE_MONTHLY_TEST = hex(0x111C) +CMAS_MESSAGE_CMAS_EXECERCISE = hex(0x111D) + +# ETWS Message IDs +ETWS_WARNING_EARTHQUAKE = hex(0x1100) +ETWS_WARNING_TSUNAMI = hex(0x1101) +ETWS_WARNING_EARTHQUAKETSUNAMI = hex(0x1102) +ETWS_WARNING_TEST_MESSAGE = hex(0x1103) +ETWS_WARNING_OTHER_EMERGENCY = hex(0x1104) + +# C2K CMAS Message Constants +CMAS_C2K_CATEGORY_PRESIDENTIAL = "Presidential" +CMAS_C2K_CATEGORY_EXTREME = "Extreme" +CMAS_C2K_CATEGORY_SEVERE = "Severe" +CMAS_C2K_CATEGORY_AMBER = "AMBER" +CMAS_C2K_CATEGORY_CMASTEST = "CMASTest" + +CMAS_C2K_PRIORITY_NORMAL = "Normal" +CMAS_C2K_PRIORITY_INTERACTIVE = "Interactive" +CMAS_C2K_PRIORITY_URGENT = "Urgent" +CMAS_C2K_PRIORITY_EMERGENCY = "Emergency" + +CMAS_C2K_RESPONSETYPE_SHELTER = "Shelter" +CMAS_C2K_RESPONSETYPE_EVACUATE = "Evacuate" +CMAS_C2K_RESPONSETYPE_PREPARE = "Prepare" +CMAS_C2K_RESPONSETYPE_EXECUTE = "Execute" +CMAS_C2K_RESPONSETYPE_MONITOR = "Monitor" +CMAS_C2K_RESPONSETYPE_AVOID = "Avoid" +CMAS_C2K_RESPONSETYPE_ASSESS = "Assess" +CMAS_C2K_RESPONSETYPE_NONE = "None" + +CMAS_C2K_SEVERITY_EXTREME = "Extreme" +CMAS_C2K_SEVERITY_SEVERE = "Severe" + +CMAS_C2K_URGENCY_IMMEDIATE = "Immediate" +CMAS_C2K_URGENCY_EXPECTED = "Expected" + +CMAS_C2K_CERTIANTY_OBSERVED = "Observed" +CMAS_C2K_CERTIANTY_LIKELY = "Likely" + +#PDN Numbers +PDN_NO_1 = 1 +PDN_NO_2 = 2 +PDN_NO_3 = 3 + +# IMS Services parameters +DEFAULT_VNID = 1 +NDP_NIC_NAME = '"Intel(R) 82577LM Gigabit Network Connection"' +CSCF_Monitoring_UA_URI = '"sip:+11234567890@test.3gpp.com"' +TMO_CSCF_Monitoring_UA_URI = '"sip:001010123456789@msg.lab.t-mobile.com"' +CSCF_Virtual_UA_URI = '"sip:+11234567891@test.3gpp.com"' +TMO_CSCF_Virtual_UA_URI = '"sip:0123456789@ims.mnc01.mcc001.3gppnetwork.org"' +CSCF_HOSTNAME = '"ims.mnc01.mcc001.3gppnetwork.org"' +TMO_USERLIST_NAME = "310260123456789@msg.lab.t-mobile.com" +VZW_USERLIST_NAME = "001010123456789@test.3gpp.com" + +#Cell Numbers +CELL_1 = 1 +CELL_2 = 2 + +# default ims virtual network id for Anritsu ims call test. +DEFAULT_IMS_VIRTUAL_NETWORK_ID = 1 + + +def cb_serial_number(): + """ CMAS/ETWS serial number generator """ + i = 0x3000 + while True: + yield i + i += 1 + + +def set_usim_parameters(anritsu_handle, sim_card): + """ set USIM parameters in MD8475A simulationn parameter + + Args: + anritsu_handle: anritusu device object. + sim_card : "P0250Ax" or "12349" + + Returns: + None + """ + if sim_card == P0250Ax: + anritsu_handle.usim_key = "000102030405060708090A0B0C0D0E0F" + elif sim_card == P0135Ax: + anritsu_handle.usim_key = "00112233445566778899AABBCCDDEEFF" + elif sim_card == VzW12349: + anritsu_handle.usim_key = "465B5CE8B199B49FAA5F0A2EE238A6BC" + anritsu_handle.send_command("IMSI 311480012345678") + anritsu_handle.send_command("SECURITY3G MILENAGE") + anritsu_handle.send_command( + "MILENAGEOP 5F1D289C5D354D0A140C2548F5F3E3BA") + + +def save_anritsu_log_files(anritsu_handle, test_name, user_params): + """ saves the anritsu smart studio log files + The logs should be saved in Anritsu system. Need to provide + log folder path in Anritsu system + + Args: + anritsu_handle: anritusu device object. + test_name: test case name + user_params : user supplied parameters list + + Returns: + None + """ + md8475a_log_folder = user_params["anritsu_log_file_path"] + file_name = getfilenamewithtimestamp(test_name) + seq_logfile = "{}\\{}_seq.csv".format(md8475a_log_folder, file_name) + msg_logfile = "{}\\{}_msg.csv".format(md8475a_log_folder, file_name) + trace_logfile = "{}\\{}_trace.lgex".format(md8475a_log_folder, file_name) + anritsu_handle.save_sequence_log(seq_logfile) + anritsu_handle.save_message_log(msg_logfile) + anritsu_handle.save_trace_log(trace_logfile, "BINARY", 1, 0, 0) + anritsu_handle.clear_sequence_log() + anritsu_handle.clear_message_log() + + +def getfilenamewithtimestamp(test_name): + """ Gets the test name appended with current time + + Args: + test_name : test case name + + Returns: + string of test name appended with current time + """ + time_stamp = datetime.now().strftime("%m-%d-%Y_%H-%M-%S") + return "{}_{}".format(test_name, time_stamp) + + +def _init_lte_bts(bts, user_params, cell_no, sim_card): + """ initializes the LTE BTS + All BTS parameters should be set here + + Args: + bts: BTS object. + user_params: pointer to user supplied parameters + cell_no: specify the cell number this BTS is configured + Anritsu supports two cells. so cell_1 or cell_2 + + Returns: + None + """ + + bts.nw_fullname_enable = BtsNwNameEnable.NAME_ENABLE + bts.nw_fullname = TEST_PLMN_LTE_NAME + bts.mcc = get_lte_mcc(user_params, cell_no, sim_card) + bts.mnc = get_lte_mnc(user_params, cell_no, sim_card) + bts.band = get_lte_band(user_params, cell_no) + bts.transmode = get_transmission_mode(user_params, cell_no) + bts.dl_antenna = get_dl_antenna(user_params, cell_no) + bts.output_level = DEFAULT_OUTPUT_LEVEL + bts.input_level = DEFAULT_INPUT_LEVEL + + +def _init_wcdma_bts(bts, user_params, cell_no, sim_card): + """ initializes the WCDMA BTS + All BTS parameters should be set here + + Args: + bts: BTS object. + user_params: pointer to user supplied parameters + cell_no: specify the cell number this BTS is configured + Anritsu supports two cells. so cell_1 or cell_2 + + Returns: + None + """ + bts.nw_fullname_enable = BtsNwNameEnable.NAME_ENABLE + bts.nw_fullname = TEST_PLMN_WCDMA_NAME + bts.mcc = get_wcdma_mcc(user_params, cell_no, sim_card) + bts.mnc = get_wcdma_mnc(user_params, cell_no, sim_card) + bts.band = get_wcdma_band(user_params, cell_no) + bts.rac = get_wcdma_rac(user_params, cell_no) + bts.lac = get_wcdma_lac(user_params, cell_no) + bts.output_level = DEFAULT_OUTPUT_LEVEL + bts.input_level = DEFAULT_INPUT_LEVEL + bts.packet_rate = DEFAULT_WCDMA_PACKET_RATE + + +def _init_gsm_bts(bts, user_params, cell_no, sim_card): + """ initializes the GSM BTS + All BTS parameters should be set here + + Args: + bts: BTS object. + user_params: pointer to user supplied parameters + cell_no: specify the cell number this BTS is configured + Anritsu supports two cells. so cell_1 or cell_2 + + Returns: + None + """ + bts.nw_fullname_enable = BtsNwNameEnable.NAME_ENABLE + bts.nw_fullname = TEST_PLMN_GSM_NAME + bts.mcc = get_gsm_mcc(user_params, cell_no, sim_card) + bts.mnc = get_gsm_mnc(user_params, cell_no, sim_card) + bts.band = get_gsm_band(user_params, cell_no) + bts.rac = get_gsm_rac(user_params, cell_no) + bts.lac = get_gsm_lac(user_params, cell_no) + bts.output_level = DEFAULT_OUTPUT_LEVEL + bts.input_level = DEFAULT_INPUT_LEVEL + + +def _init_1x_bts(bts, user_params, cell_no, sim_card): + """ initializes the 1X BTS + All BTS parameters should be set here + + Args: + bts: BTS object. + user_params: pointer to user supplied parameters + cell_no: specify the cell number this BTS is configured + Anritsu supports two cells. so cell_1 or cell_2 + + Returns: + None + """ + bts.sector1_mcc = get_1x_mcc(user_params, cell_no, sim_card) + bts.band = get_1x_band(user_params, cell_no, sim_card) + bts.dl_channel = get_1x_channel(user_params, cell_no, sim_card) + bts.sector1_sid = get_1x_sid(user_params, cell_no, sim_card) + bts.sector1_nid = get_1x_nid(user_params, cell_no, sim_card) + bts.output_level = DEFAULT_1X_OUTPUT_LEVEL + + +def _init_evdo_bts(bts, user_params, cell_no, sim_card): + """ initializes the EVDO BTS + All BTS parameters should be set here + + Args: + bts: BTS object. + user_params: pointer to user supplied parameters + cell_no: specify the cell number this BTS is configured + Anritsu supports two cells. so cell_1 or cell_2 + + Returns: + None + """ + bts.band = get_evdo_band(user_params, cell_no, sim_card) + bts.dl_channel = get_evdo_channel(user_params, cell_no, sim_card) + bts.evdo_sid = get_evdo_sid(user_params, cell_no, sim_card) + bts.output_level = DEFAULT_1X_OUTPUT_LEVEL + + +def _init_PDN(anritsu_handle, + pdn, + ipv4, + ipv6, + ims_binding, + vnid_number=DEFAULT_VNID): + """ initializes the PDN parameters + All PDN parameters should be set here + + Args: + anritsu_handle: anritusu device object. + pdn: pdn object + ip_address : UE IP address + ims_binding: to bind with IMS VNID(1) or not + + Returns: + None + """ + # Setting IP address for internet connection sharing + anritsu_handle.gateway_ipv4addr = GATEWAY_IPV4_ADDR + pdn.ue_address_ipv4 = ipv4 + pdn.ue_address_ipv6 = ipv6 + if ims_binding: + pdn.pdn_ims = Switch.ENABLE + pdn.pdn_vnid = vnid_number + else: + pdn.primary_dns_address_ipv4 = DNS_IPV4_ADDR + pdn.secondary_dns_address_ipv4 = DNS_IPV4_ADDR + pdn.cscf_address_ipv4 = CSCF_IPV4_ADDR + + +def _init_IMS(anritsu_handle, + vnid, + sim_card=None, + ipv6_address=CSCF_IPV6_ADDR, + ip_type="IPV4V6", + auth=False): + """ initializes the IMS VNID parameters + All IMS parameters should be set here + + Args: + anritsu_handle: anritusu device object. + vnid: IMS Services object + + Returns: + None + """ + # vnid.sync = Switch.ENABLE # supported in 6.40a release + vnid.cscf_address_ipv4 = CSCF_IPV4_ADDR + vnid.cscf_address_ipv6 = ipv6_address + vnid.imscscf_iptype = ip_type + vnid.dns = Switch.DISABLE + vnid.ndp_nic = NDP_NIC_NAME + vnid.ndp_prefix = ipv6_address + if sim_card == P0135Ax: + vnid.cscf_monitoring_ua = TMO_CSCF_Monitoring_UA_URI + vnid.cscf_virtual_ua = TMO_CSCF_Virtual_UA_URI + vnid.cscf_host_name = CSCF_HOSTNAME + vnid.cscf_ims_authentication = "DISABLE" + if auth: + vnid.cscf_ims_authentication = "ENABLE" + vnid.tmo_cscf_userslist_add = TMO_USERLIST_NAME + elif sim_card == VzW12349: + vnid.cscf_monitoring_ua = CSCF_Monitoring_UA_URI + vnid.cscf_virtual_ua = CSCF_Virtual_UA_URI + vnid.cscf_ims_authentication = "DISABLE" + if auth: + vnid.cscf_ims_authentication = "ENABLE" + vnid.vzw_cscf_userslist_add = VZW_USERLIST_NAME + else: + vnid.cscf_monitoring_ua = CSCF_Monitoring_UA_URI + vnid.psap = Switch.ENABLE + vnid.psap_auto_answer = Switch.ENABLE + + +def set_system_model_lte_lte(anritsu_handle, user_params, sim_card): + """ Configures Anritsu system for LTE and LTE simulation + + Args: + anritsu_handle: anritusu device object. + user_params: pointer to user supplied parameters + + Returns: + Lte and Wcdma BTS objects + """ + anritsu_handle.set_simulation_model(BtsTechnology.LTE, BtsTechnology.LTE) + # setting BTS parameters + lte1_bts = anritsu_handle.get_BTS(BtsNumber.BTS1) + lte2_bts = anritsu_handle.get_BTS(BtsNumber.BTS2) + _init_lte_bts(lte1_bts, user_params, CELL_1, sim_card) + _init_lte_bts(lte2_bts, user_params, CELL_2, sim_card) + pdn1 = anritsu_handle.get_PDN(PDN_NO_1) + pdn2 = anritsu_handle.get_PDN(PDN_NO_2) + pdn3 = anritsu_handle.get_PDN(PDN_NO_3) + # Initialize PDN IP address for internet connection sharing + _init_PDN(anritsu_handle, pdn1, UE_IPV4_ADDR_1, UE_IPV6_ADDR_1, True) + _init_PDN(anritsu_handle, pdn2, UE_IPV4_ADDR_2, UE_IPV6_ADDR_2, False) + _init_PDN(anritsu_handle, pdn3, UE_IPV4_ADDR_3, UE_IPV6_ADDR_3, True) + vnid1 = anritsu_handle.get_IMS(DEFAULT_VNID) + if sim_card == P0135Ax: + vnid2 = anritsu_handle.get_IMS(2) + vnid3 = anritsu_handle.get_IMS(3) + _init_IMS( + anritsu_handle, + vnid1, + sim_card, + ipv6_address=CSCF_IPV6_ADDR, + auth=True) + _init_IMS( + anritsu_handle, + vnid2, + sim_card, + ipv6_address=CSCF_IPV6_ADDR_2, + ip_type="IPV6") + _init_IMS( + anritsu_handle, + vnid3, + sim_card, + ipv6_address=CSCF_IPV6_ADDR_3, + ip_type="IPV6") + elif sim_card == VzW12349: + _init_IMS(anritsu_handle, vnid1, sim_card, auth=True) + else: + _init_IMS(anritsu_handle, vnid1, sim_card) + return [lte1_bts, lte2_bts] + + +def set_system_model_wcdma_wcdma(anritsu_handle, user_params, sim_card): + """ Configures Anritsu system for WCDMA and WCDMA simulation + + Args: + anritsu_handle: anritusu device object. + user_params: pointer to user supplied parameters + + Returns: + Lte and Wcdma BTS objects + """ + anritsu_handle.set_simulation_model(BtsTechnology.WCDMA, + BtsTechnology.WCDMA) + # setting BTS parameters + wcdma1_bts = anritsu_handle.get_BTS(BtsNumber.BTS1) + wcdma2_bts = anritsu_handle.get_BTS(BtsNumber.BTS2) + _init_wcdma_bts(wcdma1_bts, user_params, CELL_1, sim_card) + _init_wcdma_bts(wcdma2_bts, user_params, CELL_2, sim_card) + pdn1 = anritsu_handle.get_PDN(PDN_NO_1) + # Initialize PDN IP address for internet connection sharing + _init_PDN(anritsu_handle, pdn1, UE_IPV4_ADDR_1, UE_IPV6_ADDR_1, False) + return [wcdma1_bts, wcdma2_bts] + + +def set_system_model_lte_wcdma(anritsu_handle, user_params, sim_card): + """ Configures Anritsu system for LTE and WCDMA simulation + + Args: + anritsu_handle: anritusu device object. + user_params: pointer to user supplied parameters + + Returns: + Lte and Wcdma BTS objects + """ + anritsu_handle.set_simulation_model(BtsTechnology.LTE, BtsTechnology.WCDMA) + # setting BTS parameters + lte_bts = anritsu_handle.get_BTS(BtsNumber.BTS1) + wcdma_bts = anritsu_handle.get_BTS(BtsNumber.BTS2) + _init_lte_bts(lte_bts, user_params, CELL_1, sim_card) + _init_wcdma_bts(wcdma_bts, user_params, CELL_2, sim_card) + pdn1 = anritsu_handle.get_PDN(PDN_NO_1) + pdn2 = anritsu_handle.get_PDN(PDN_NO_2) + pdn3 = anritsu_handle.get_PDN(PDN_NO_3) + # Initialize PDN IP address for internet connection sharing + _init_PDN(anritsu_handle, pdn1, UE_IPV4_ADDR_1, UE_IPV6_ADDR_1, True) + _init_PDN(anritsu_handle, pdn2, UE_IPV4_ADDR_2, UE_IPV6_ADDR_2, False) + _init_PDN(anritsu_handle, pdn3, UE_IPV4_ADDR_3, UE_IPV6_ADDR_3, True) + vnid1 = anritsu_handle.get_IMS(DEFAULT_VNID) + if sim_card == P0135Ax: + vnid2 = anritsu_handle.get_IMS(2) + vnid3 = anritsu_handle.get_IMS(3) + _init_IMS( + anritsu_handle, + vnid1, + sim_card, + ipv6_address=CSCF_IPV6_ADDR, + auth=True) + _init_IMS( + anritsu_handle, + vnid2, + sim_card, + ipv6_address=CSCF_IPV6_ADDR_2, + ip_type="IPV6") + _init_IMS( + anritsu_handle, + vnid3, + sim_card, + ipv6_address=CSCF_IPV6_ADDR_3, + ip_type="IPV6") + elif sim_card == VzW12349: + _init_IMS(anritsu_handle, vnid1, sim_card, auth=True) + else: + _init_IMS(anritsu_handle, vnid1, sim_card) + return [lte_bts, wcdma_bts] + + +def set_system_model_lte_gsm(anritsu_handle, user_params, sim_card): + """ Configures Anritsu system for LTE and GSM simulation + + Args: + anritsu_handle: anritusu device object. + user_params: pointer to user supplied parameters + + Returns: + Lte and Wcdma BTS objects + """ + anritsu_handle.set_simulation_model(BtsTechnology.LTE, BtsTechnology.GSM) + # setting BTS parameters + lte_bts = anritsu_handle.get_BTS(BtsNumber.BTS1) + gsm_bts = anritsu_handle.get_BTS(BtsNumber.BTS2) + _init_lte_bts(lte_bts, user_params, CELL_1, sim_card) + _init_gsm_bts(gsm_bts, user_params, CELL_2, sim_card) + pdn1 = anritsu_handle.get_PDN(PDN_NO_1) + pdn2 = anritsu_handle.get_PDN(PDN_NO_2) + pdn3 = anritsu_handle.get_PDN(PDN_NO_3) + # Initialize PDN IP address for internet connection sharing + _init_PDN(anritsu_handle, pdn1, UE_IPV4_ADDR_1, UE_IPV6_ADDR_1, True) + _init_PDN(anritsu_handle, pdn2, UE_IPV4_ADDR_2, UE_IPV6_ADDR_2, False) + _init_PDN(anritsu_handle, pdn3, UE_IPV4_ADDR_3, UE_IPV6_ADDR_3, True) + vnid1 = anritsu_handle.get_IMS(DEFAULT_VNID) + if sim_card == P0135Ax: + vnid2 = anritsu_handle.get_IMS(2) + vnid3 = anritsu_handle.get_IMS(3) + _init_IMS( + anritsu_handle, + vnid1, + sim_card, + ipv6_address=CSCF_IPV6_ADDR, + auth=True) + _init_IMS( + anritsu_handle, + vnid2, + sim_card, + ipv6_address=CSCF_IPV6_ADDR_2, + ip_type="IPV6") + _init_IMS( + anritsu_handle, + vnid3, + sim_card, + ipv6_address=CSCF_IPV6_ADDR_3, + ip_type="IPV6") + elif sim_card == VzW12349: + _init_IMS(anritsu_handle, vnid1, sim_card, auth=True) + else: + _init_IMS(anritsu_handle, vnid1, sim_card) + return [lte_bts, gsm_bts] + + +def set_system_model_lte_1x(anritsu_handle, user_params, sim_card): + """ Configures Anritsu system for LTE and 1x simulation + + Args: + anritsu_handle: anritusu device object. + user_params: pointer to user supplied parameters + + Returns: + Lte and 1x BTS objects + """ + anritsu_handle.set_simulation_model(BtsTechnology.LTE, + BtsTechnology.CDMA1X) + # setting BTS parameters + lte_bts = anritsu_handle.get_BTS(BtsNumber.BTS1) + cdma1x_bts = anritsu_handle.get_BTS(BtsNumber.BTS2) + _init_lte_bts(lte_bts, user_params, CELL_1, sim_card) + _init_1x_bts(cdma1x_bts, user_params, CELL_2, sim_card) + pdn1 = anritsu_handle.get_PDN(PDN_NO_1) + pdn2 = anritsu_handle.get_PDN(PDN_NO_2) + pdn3 = anritsu_handle.get_PDN(PDN_NO_3) + # Initialize PDN IP address for internet connection sharing + _init_PDN(anritsu_handle, pdn1, UE_IPV4_ADDR_1, UE_IPV6_ADDR_1, True) + _init_PDN(anritsu_handle, pdn2, UE_IPV4_ADDR_2, UE_IPV6_ADDR_2, False) + _init_PDN(anritsu_handle, pdn3, UE_IPV4_ADDR_3, UE_IPV6_ADDR_3, True) + vnid1 = anritsu_handle.get_IMS(DEFAULT_VNID) + if sim_card == P0135Ax: + vnid2 = anritsu_handle.get_IMS(2) + vnid3 = anritsu_handle.get_IMS(3) + _init_IMS( + anritsu_handle, + vnid1, + sim_card, + ipv6_address=CSCF_IPV6_ADDR, + auth=True) + _init_IMS( + anritsu_handle, + vnid2, + sim_card, + ipv6_address=CSCF_IPV6_ADDR_2, + ip_type="IPV6") + _init_IMS( + anritsu_handle, + vnid3, + sim_card, + ipv6_address=CSCF_IPV6_ADDR_3, + ip_type="IPV6") + elif sim_card == VzW12349: + _init_IMS(anritsu_handle, vnid1, sim_card, auth=True) + else: + _init_IMS(anritsu_handle, vnid1, sim_card) + return [lte_bts, cdma1x_bts] + + +def set_system_model_lte_evdo(anritsu_handle, user_params, sim_card): + """ Configures Anritsu system for LTE and EVDO simulation + + Args: + anritsu_handle: anritusu device object. + user_params: pointer to user supplied parameters + + Returns: + Lte and 1x BTS objects + """ + anritsu_handle.set_simulation_model(BtsTechnology.LTE, BtsTechnology.EVDO) + # setting BTS parameters + lte_bts = anritsu_handle.get_BTS(BtsNumber.BTS1) + evdo_bts = anritsu_handle.get_BTS(BtsNumber.BTS2) + _init_lte_bts(lte_bts, user_params, CELL_1, sim_card) + _init_evdo_bts(evdo_bts, user_params, CELL_2, sim_card) + pdn1 = anritsu_handle.get_PDN(PDN_NO_1) + pdn2 = anritsu_handle.get_PDN(PDN_NO_2) + pdn3 = anritsu_handle.get_PDN(PDN_NO_3) + # Initialize PDN IP address for internet connection sharing + _init_PDN(anritsu_handle, pdn1, UE_IPV4_ADDR_1, UE_IPV6_ADDR_1, True) + _init_PDN(anritsu_handle, pdn2, UE_IPV4_ADDR_2, UE_IPV6_ADDR_2, False) + _init_PDN(anritsu_handle, pdn3, UE_IPV4_ADDR_3, UE_IPV6_ADDR_3, True) + vnid1 = anritsu_handle.get_IMS(DEFAULT_VNID) + if sim_card == P0135Ax: + vnid2 = anritsu_handle.get_IMS(2) + vnid3 = anritsu_handle.get_IMS(3) + _init_IMS( + anritsu_handle, + vnid1, + sim_card, + ipv6_address=CSCF_IPV6_ADDR, + auth=True) + _init_IMS( + anritsu_handle, + vnid2, + sim_card, + ipv6_address=CSCF_IPV6_ADDR_2, + ip_type="IPV6") + _init_IMS( + anritsu_handle, + vnid3, + sim_card, + ipv6_address=CSCF_IPV6_ADDR_3, + ip_type="IPV6") + elif sim_card == VzW12349: + _init_IMS(anritsu_handle, vnid1, sim_card, auth=True) + else: + _init_IMS(anritsu_handle, vnid1, sim_card) + return [lte_bts, evdo_bts] + + +def set_system_model_wcdma_gsm(anritsu_handle, user_params, sim_card): + """ Configures Anritsu system for WCDMA and GSM simulation + + Args: + anritsu_handle: anritusu device object. + user_params: pointer to user supplied parameters + + Returns: + Wcdma and Gsm BTS objects + """ + anritsu_handle.set_simulation_model(BtsTechnology.WCDMA, BtsTechnology.GSM) + # setting BTS parameters + wcdma_bts = anritsu_handle.get_BTS(BtsNumber.BTS1) + gsm_bts = anritsu_handle.get_BTS(BtsNumber.BTS2) + _init_wcdma_bts(wcdma_bts, user_params, CELL_1, sim_card) + _init_gsm_bts(gsm_bts, user_params, CELL_2, sim_card) + pdn1 = anritsu_handle.get_PDN(PDN_NO_1) + # Initialize PDN IP address for internet connection sharing + _init_PDN(anritsu_handle, pdn1, UE_IPV4_ADDR_1, UE_IPV6_ADDR_1, False) + return [wcdma_bts, gsm_bts] + + +def set_system_model_gsm_gsm(anritsu_handle, user_params, sim_card): + """ Configures Anritsu system for GSM and GSM simulation + + Args: + anritsu_handle: anritusu device object. + user_params: pointer to user supplied parameters + + Returns: + Wcdma and Gsm BTS objects + """ + anritsu_handle.set_simulation_model(BtsTechnology.GSM, BtsTechnology.GSM) + # setting BTS parameters + gsm1_bts = anritsu_handle.get_BTS(BtsNumber.BTS1) + gsm2_bts = anritsu_handle.get_BTS(BtsNumber.BTS2) + _init_gsm_bts(gsm1_bts, user_params, CELL_1, sim_card) + _init_gsm_bts(gsm2_bts, user_params, CELL_2, sim_card) + pdn1 = anritsu_handle.get_PDN(PDN_NO_1) + # Initialize PDN IP address for internet connection sharing + _init_PDN(anritsu_handle, pdn1, UE_IPV4_ADDR_1, UE_IPV6_ADDR_1, False) + return [gsm1_bts, gsm2_bts] + +def load_system_model_from_config_files(anritsu_handle, user_params, sim_card): + # TODO: this function should go. it is only here while testing. + + """ Configures Anritsu system for LTE simulation + + Args: + anritsu_handle: anritusu device object. + user_params: pointer to user supplied parameters + + Returns: + Lte BTS object + """ + + anritsu_handle.load_simulation_paramfile('C:\\Users\MD8475A\Documents\DAN_configs\Anritsu_SIM_Bo.wnssp') + anritsu_handle.load_cell_paramfile('C:\\Users\MD8475A\Documents\\DAN_configs\\Anritsu_SIM_cell_config3.wnscp') + + lte_bts = anritsu_handle.get_BTS(BtsNumber.BTS1) + + return [lte_bts] + +def load_system_model_from_config_files_ca(anritsu_handle, user_params, sim_card): + # TODO: this function should go. it is only here while testing. + + """ Configures Anritsu system for LTE simulation + + Args: + anritsu_handle: anritusu device object. + user_params: pointer to user supplied parameters + + Returns: + Lte BTS object + """ + + anritsu_handle.load_simulation_paramfile('C:\\Users\MD8475A\Documents\DAN_configs\Anritsu_SIM_Bo_ca.wnssp') + anritsu_handle.load_cell_paramfile('C:\\Users\MD8475A\Documents\\DAN_configs\\Anritsu_SIM_cell_config3_ca.wnscp') + + lte_bts1 = anritsu_handle.get_BTS(BtsNumber.BTS1) + lte_bts2 = anritsu_handle.get_BTS(BtsNumber.BTS2) + + return [lte_bts1, lte_bts2] + +def set_system_model_lte(anritsu_handle, user_params, sim_card): + """ Configures Anritsu system for LTE simulation + + Args: + anritsu_handle: anritusu device object. + user_params: pointer to user supplied parameters + + Returns: + Lte BTS object + """ + anritsu_handle.set_simulation_model(BtsTechnology.LTE) + # setting BTS parameters + lte_bts = anritsu_handle.get_BTS(BtsNumber.BTS1) + _init_lte_bts(lte_bts, user_params, CELL_1, sim_card) + pdn1 = anritsu_handle.get_PDN(PDN_NO_1) + pdn2 = anritsu_handle.get_PDN(PDN_NO_2) + pdn3 = anritsu_handle.get_PDN(PDN_NO_3) + # Initialize PDN IP address for internet connection sharing + _init_PDN(anritsu_handle, pdn1, UE_IPV4_ADDR_1, UE_IPV6_ADDR_1, True) + _init_PDN(anritsu_handle, pdn2, UE_IPV4_ADDR_2, UE_IPV6_ADDR_2, False) + _init_PDN(anritsu_handle, pdn3, UE_IPV4_ADDR_3, UE_IPV6_ADDR_3, True) + vnid1 = anritsu_handle.get_IMS(DEFAULT_VNID) + if sim_card == P0135Ax: + vnid2 = anritsu_handle.get_IMS(2) + vnid3 = anritsu_handle.get_IMS(3) + _init_IMS( + anritsu_handle, + vnid1, + sim_card, + ipv6_address=CSCF_IPV6_ADDR, + auth=True) + _init_IMS( + anritsu_handle, + vnid2, + sim_card, + ipv6_address=CSCF_IPV6_ADDR_2, + ip_type="IPV6") + _init_IMS( + anritsu_handle, + vnid3, + sim_card, + ipv6_address=CSCF_IPV6_ADDR_3, + ip_type="IPV6") + elif sim_card == VzW12349: + _init_IMS(anritsu_handle, vnid1, sim_card, auth=True) + else: + _init_IMS(anritsu_handle, vnid1, sim_card) + return [lte_bts] + + +def set_system_model_wcdma(anritsu_handle, user_params, sim_card): + """ Configures Anritsu system for WCDMA simulation + + Args: + anritsu_handle: anritusu device object. + user_params: pointer to user supplied parameters + + Returns: + Wcdma BTS object + """ + anritsu_handle.set_simulation_model(BtsTechnology.WCDMA) + # setting BTS parameters + wcdma_bts = anritsu_handle.get_BTS(BtsNumber.BTS1) + _init_wcdma_bts(wcdma_bts, user_params, CELL_1, sim_card) + pdn1 = anritsu_handle.get_PDN(PDN_NO_1) + # Initialize PDN IP address for internet connection sharing + _init_PDN(anritsu_handle, pdn1, UE_IPV4_ADDR_1, UE_IPV6_ADDR_1, False) + return [wcdma_bts] + + +def set_system_model_gsm(anritsu_handle, user_params, sim_card): + """ Configures Anritsu system for GSM simulation + + Args: + anritsu_handle: anritusu device object. + user_params: pointer to user supplied parameters + + Returns: + Gsm BTS object + """ + anritsu_handle.set_simulation_model(BtsTechnology.GSM) + # setting BTS parameters + gsm_bts = anritsu_handle.get_BTS(BtsNumber.BTS1) + _init_gsm_bts(gsm_bts, user_params, CELL_1, sim_card) + pdn1 = anritsu_handle.get_PDN(PDN_NO_1) + # Initialize PDN IP address for internet connection sharing + _init_PDN(anritsu_handle, pdn1, UE_IPV4_ADDR_1, UE_IPV6_ADDR_1, False) + return [gsm_bts] + + +def set_system_model_1x(anritsu_handle, user_params, sim_card): + """ Configures Anritsu system for CDMA 1X simulation + + Args: + anritsu_handle: anritusu device object. + user_params: pointer to user supplied parameters + + Returns: + Cdma 1x BTS object + """ + PDN_ONE = 1 + anritsu_handle.set_simulation_model(BtsTechnology.CDMA1X) + # setting BTS parameters + cdma1x_bts = anritsu_handle.get_BTS(BtsNumber.BTS1) + _init_1x_bts(cdma1x_bts, user_params, CELL_1, sim_card) + pdn1 = anritsu_handle.get_PDN(PDN_ONE) + # Initialize PDN IP address for internet connection sharing + _init_PDN(anritsu_handle, pdn1, UE_IPV4_ADDR_1, UE_IPV6_ADDR_1, False) + return [cdma1x_bts] + + +def set_system_model_1x_evdo(anritsu_handle, user_params, sim_card): + """ Configures Anritsu system for CDMA 1X simulation + + Args: + anritsu_handle: anritusu device object. + user_params: pointer to user supplied parameters + + Returns: + Cdma 1x BTS object + """ + PDN_ONE = 1 + anritsu_handle.set_simulation_model(BtsTechnology.CDMA1X, + BtsTechnology.EVDO) + # setting BTS parameters + cdma1x_bts = anritsu_handle.get_BTS(BtsNumber.BTS1) + evdo_bts = anritsu_handle.get_BTS(BtsNumber.BTS2) + _init_1x_bts(cdma1x_bts, user_params, CELL_1, sim_card) + _init_evdo_bts(evdo_bts, user_params, CELL_2, sim_card) + pdn1 = anritsu_handle.get_PDN(PDN_ONE) + # Initialize PDN IP address for internet connection sharing + _init_PDN(anritsu_handle, pdn1, UE_IPV4_ADDR_1, UE_IPV6_ADDR_1, False) + return [cdma1x_bts] + + +def wait_for_bts_state(log, btsnumber, state, timeout=30): + """ Waits for BTS to be in the specified state ("IN" or "OUT") + + Args: + btsnumber: BTS number. + state: expected state + + Returns: + True for success False for failure + """ + # state value are "IN" and "OUT" + status = False + sleep_interval = 1 + wait_time = timeout + + if state is "IN": + service_state = BtsServiceState.SERVICE_STATE_IN + elif state is "OUT": + service_state = BtsServiceState.SERVICE_STATE_OUT + else: + log.info("wrong state value") + return status + + if btsnumber.service_state is service_state: + log.info("BTS state is already in {}".format(state)) + return True + + # set to desired service state + btsnumber.service_state = service_state + + while wait_time > 0: + if service_state == btsnumber.service_state: + status = True + break + time.sleep(sleep_interval) + wait_time = wait_time - sleep_interval + + if not status: + log.info("Timeout: Expected BTS state is not received.") + return status + + +class _CallSequenceException(Exception): + pass + + +def call_mo_setup_teardown( + log, + ad, + anritsu_handle, + callee_number, + teardown_side=CALL_TEARDOWN_PHONE, + is_emergency=False, + wait_time_in_call=WAIT_TIME_IN_CALL, + is_ims_call=False, + ims_virtual_network_id=DEFAULT_IMS_VIRTUAL_NETWORK_ID): + """ Makes a MO call and tear down the call + + Args: + ad: Android device object. + anritsu_handle: Anritsu object. + callee_number: Number to be called. + teardown_side: the side to end the call (Phone or remote). + is_emergency: is the call an emergency call. + wait_time_in_call: Time to wait when phone in call. + is_ims_call: is the call expected to be ims call. + ims_virtual_network_id: ims virtual network id. + + Returns: + True for success False for failure + """ + + log.info("Making Call to " + callee_number) + virtual_phone_handle = anritsu_handle.get_VirtualPhone() + + try: + # for an IMS call we either check CSCF or *nothing* (no virtual phone). + if is_ims_call: + # we only need pre-call registration in a non-emergency case + if not is_emergency: + if not wait_for_ims_cscf_status(log, anritsu_handle, + ims_virtual_network_id, + ImsCscfStatus.SIPIDLE.value): + raise _CallSequenceException( + "Phone IMS status is not idle.") + else: + if not wait_for_virtualphone_state(log, virtual_phone_handle, + VirtualPhoneStatus.STATUS_IDLE): + raise _CallSequenceException("Virtual Phone not idle.") + + if not initiate_call(log, ad, callee_number, is_emergency): + raise _CallSequenceException("Initiate call failed.") + + if is_ims_call: + if not wait_for_ims_cscf_status(log, anritsu_handle, + ims_virtual_network_id, + ImsCscfStatus.CALLING.value): + raise _CallSequenceException( + "Phone IMS status is not calling.") + if not wait_for_ims_cscf_status(log, anritsu_handle, + ims_virtual_network_id, + ImsCscfStatus.CONNECTED.value): + raise _CallSequenceException( + "Phone IMS status is not connected.") + else: + # check Virtual phone answered the call + if not wait_for_virtualphone_state( + log, virtual_phone_handle, + VirtualPhoneStatus.STATUS_VOICECALL_INPROGRESS): + raise _CallSequenceException("Virtual Phone not in call.") + + time.sleep(wait_time_in_call) + + if not ad.droid.telecomIsInCall(): + raise _CallSequenceException("Call ended before delay_in_call.") + + if teardown_side is CALL_TEARDOWN_REMOTE: + log.info("Disconnecting the call from Remote") + if is_ims_call: + anritsu_handle.ims_cscf_call_action(ims_virtual_network_id, + ImsCscfCall.END.value) + else: + virtual_phone_handle.set_voice_on_hook() + if not wait_for_droid_not_in_call(log, ad, + MAX_WAIT_TIME_CALL_DROP): + raise _CallSequenceException("DUT call not drop.") + else: + log.info("Disconnecting the call from DUT") + if not hangup_call(log, ad): + raise _CallSequenceException( + "Error in Hanging-Up Call on DUT.") + + if is_ims_call: + if not wait_for_ims_cscf_status(log, anritsu_handle, + ims_virtual_network_id, + ImsCscfStatus.SIPIDLE.value): + raise _CallSequenceException("Phone IMS status is not idle.") + else: + if not wait_for_virtualphone_state(log, virtual_phone_handle, + VirtualPhoneStatus.STATUS_IDLE): + raise _CallSequenceException( + "Virtual Phone not idle after hangup.") + return True + + except _CallSequenceException as e: + log.error(e) + return False + finally: + try: + if ad.droid.telecomIsInCall(): + ad.droid.telecomEndCall() + except Exception as e: + log.error(str(e)) + + +def handover_tc(log, + anritsu_handle, + wait_time=0, + s_bts=BtsNumber.BTS1, + t_bts=BtsNumber.BTS2, + timeout=60): + """ Setup and perform a handover test case in MD8475A + + Args: + anritsu_handle: Anritsu object. + s_bts: Serving (originating) BTS + t_bts: Target (destination) BTS + wait_time: time to wait before handover + + Returns: + True for success False for failure + """ + log.info("Starting HO test case procedure") + log.info("Serving BTS = {}, Target BTS = {}".format(s_bts, t_bts)) + time.sleep(wait_time) + ho_tc = anritsu_handle.get_AnritsuTestCases() + ho_tc.procedure = TestProcedure.PROCEDURE_HO + ho_tc.bts_direction = (s_bts, t_bts) + ho_tc.power_control = TestPowerControl.POWER_CONTROL_DISABLE + ho_tc.measurement_LTE = TestMeasurement.MEASUREMENT_DISABLE + anritsu_handle.start_testcase() + status = anritsu_handle.get_testcase_status() + timer = 0 + while status == "0": + time.sleep(1) + status = anritsu_handle.get_testcase_status() + timer += 1 + if timer > timeout: + return "Handover Test Case time out in {} sec!".format(timeout) + return status + + +def make_ims_call(log, + ad, + anritsu_handle, + callee_number, + is_emergency=False, + check_ims_reg=True, + check_ims_calling=True, + mo=True, + ims_virtual_network_id=DEFAULT_IMS_VIRTUAL_NETWORK_ID): + """ Makes a MO call after IMS registred + + Args: + ad: Android device object. + anritsu_handle: Anritsu object. + callee_number: Number to be called. + check_ims_reg: check if Anritsu cscf server state is "SIPIDLE". + check_ims_calling: check if Anritsu cscf server state is "CALLING". + mo: Mobile originated call + ims_virtual_network_id: ims virtual network id. + + Returns: + True for success False for failure + """ + + try: + # confirm ims registration + if check_ims_reg: + if not wait_for_ims_cscf_status(log, anritsu_handle, + ims_virtual_network_id, + ImsCscfStatus.SIPIDLE.value): + raise _CallSequenceException("IMS/CSCF status is not idle.") + if mo: # make MO call + log.info("Making Call to " + callee_number) + if not initiate_call(log, ad, callee_number, is_emergency): + raise _CallSequenceException("Initiate call failed.") + if not wait_for_ims_cscf_status(log, anritsu_handle, + ims_virtual_network_id, + ImsCscfStatus.CALLING.value): + raise _CallSequenceException( + "Phone IMS status is not calling.") + else: # make MT call + log.info("Making IMS Call to UE from MD8475A...") + anritsu_handle.ims_cscf_call_action(ims_virtual_network_id, + ImsCscfCall.MAKE.value) + if not wait_for_ims_cscf_status(log, anritsu_handle, + ims_virtual_network_id, + ImsCscfStatus.RINGING.value): + raise _CallSequenceException( + "Phone IMS status is not ringing.") + # answer the call on the UE + if not wait_and_answer_call(log, ad): + raise _CallSequenceException("UE Answer call Fail") + + if not wait_for_ims_cscf_status(log, anritsu_handle, + ims_virtual_network_id, + ImsCscfStatus.CONNECTED.value): + raise _CallSequenceException( + "MD8475A IMS status is not connected.") + return True + + except _CallSequenceException as e: + log.error(e) + return False + + +def tear_down_call(log, + ad, + anritsu_handle, + ims_virtual_network_id=DEFAULT_IMS_VIRTUAL_NETWORK_ID): + """ Check and End a VoLTE call + + Args: + ad: Android device object. + anritsu_handle: Anritsu object. + ims_virtual_network_id: ims virtual network id. + + Returns: + True for success False for failure + """ + try: + # end the call from phone + log.info("Disconnecting the call from DUT") + if not hangup_call(log, ad): + raise _CallSequenceException("Error in Hanging-Up Call on DUT.") + # confirm if CSCF status is back to idle + if not wait_for_ims_cscf_status(log, anritsu_handle, + ims_virtual_network_id, + ImsCscfStatus.SIPIDLE.value): + raise _CallSequenceException("IMS/CSCF status is not idle.") + return True + + except _CallSequenceException as e: + log.error(e) + return False + finally: + try: + if ad.droid.telecomIsInCall(): + ad.droid.telecomEndCall() + except Exception as e: + log.error(str(e)) + + +# This procedure is for VoLTE mobility test cases +def ims_call_ho(log, + ad, + anritsu_handle, + callee_number, + is_emergency=False, + check_ims_reg=True, + check_ims_calling=True, + mo=True, + wait_time_in_volte=WAIT_TIME_IN_CALL_FOR_IMS, + ims_virtual_network_id=DEFAULT_IMS_VIRTUAL_NETWORK_ID): + """ Makes a MO call after IMS registred, then handover + + Args: + ad: Android device object. + anritsu_handle: Anritsu object. + callee_number: Number to be called. + check_ims_reg: check if Anritsu cscf server state is "SIPIDLE". + check_ims_calling: check if Anritsu cscf server state is "CALLING". + mo: Mobile originated call + wait_time_in_volte: Time for phone in VoLTE call, not used for SRLTE + ims_virtual_network_id: ims virtual network id. + + Returns: + True for success False for failure + """ + + try: + # confirm ims registration + if check_ims_reg: + if not wait_for_ims_cscf_status(log, anritsu_handle, + ims_virtual_network_id, + ImsCscfStatus.SIPIDLE.value): + raise _CallSequenceException("IMS/CSCF status is not idle.") + if mo: # make MO call + log.info("Making Call to " + callee_number) + if not initiate_call(log, ad, callee_number, is_emergency): + raise _CallSequenceException("Initiate call failed.") + if not wait_for_ims_cscf_status(log, anritsu_handle, + ims_virtual_network_id, + ImsCscfStatus.CALLING.value): + raise _CallSequenceException( + "Phone IMS status is not calling.") + else: # make MT call + log.info("Making IMS Call to UE from MD8475A...") + anritsu_handle.ims_cscf_call_action(ims_virtual_network_id, + ImsCscfCall.MAKE.value) + if not wait_for_ims_cscf_status(log, anritsu_handle, + ims_virtual_network_id, + ImsCscfStatus.RINGING.value): + raise _CallSequenceException( + "Phone IMS status is not ringing.") + # answer the call on the UE + if not wait_and_answer_call(log, ad): + raise _CallSequenceException("UE Answer call Fail") + + if not wait_for_ims_cscf_status(log, anritsu_handle, + ims_virtual_network_id, + ImsCscfStatus.CONNECTED.value): + raise _CallSequenceException("Phone IMS status is not connected.") + log.info( + "Wait for {} seconds before handover".format(wait_time_in_volte)) + time.sleep(wait_time_in_volte) + + # Once VoLTE call is connected, then Handover + log.info("Starting handover procedure...") + result = handover_tc(anritsu_handle, BtsNumber.BTS1, BtsNumber.BTS2) + log.info("Handover procedure ends with result code {}".format(result)) + log.info( + "Wait for {} seconds after handover".format(wait_time_in_volte)) + time.sleep(wait_time_in_volte) + + # check if the phone stay in call + if not ad.droid.telecomIsInCall(): + raise _CallSequenceException("Call ended before delay_in_call.") + # end the call from phone + log.info("Disconnecting the call from DUT") + if not hangup_call(log, ad): + raise _CallSequenceException("Error in Hanging-Up Call on DUT.") + # confirm if CSCF status is back to idle + if not wait_for_ims_cscf_status(log, anritsu_handle, + ims_virtual_network_id, + ImsCscfStatus.SIPIDLE.value): + raise _CallSequenceException("IMS/CSCF status is not idle.") + + return True + + except _CallSequenceException as e: + log.error(e) + return False + finally: + try: + if ad.droid.telecomIsInCall(): + ad.droid.telecomEndCall() + except Exception as e: + log.error(str(e)) + + +# This procedure is for SRLTE CSFB and SRVCC test cases +def ims_call_cs_teardown( + log, + ad, + anritsu_handle, + callee_number, + teardown_side=CALL_TEARDOWN_PHONE, + is_emergency=False, + check_ims_reg=True, + check_ims_calling=True, + srvcc=None, + mo=True, + wait_time_in_volte=WAIT_TIME_IN_CALL_FOR_IMS, + wait_time_in_cs=WAIT_TIME_IN_CALL, + wait_time_in_alert=WAIT_TIME_IN_ALERT, + ims_virtual_network_id=DEFAULT_IMS_VIRTUAL_NETWORK_ID): + """ Makes a MO call after IMS registred, transit to CS, tear down the call + + Args: + ad: Android device object. + anritsu_handle: Anritsu object. + callee_number: Number to be called. + teardown_side: the side to end the call (Phone or remote). + is_emergency: to make emergency call on the phone. + check_ims_reg: check if Anritsu cscf server state is "SIPIDLE". + check_ims_calling: check if Anritsu cscf server state is "CALLING". + srvcc: is the test case a SRVCC call. + mo: Mobile originated call + wait_time_in_volte: Time for phone in VoLTE call, not used for SRLTE + wait_time_in_cs: Time for phone in CS call. + ims_virtual_network_id: ims virtual network id. + + Returns: + True for success False for failure + """ + + virtual_phone_handle = anritsu_handle.get_VirtualPhone() + + try: + # confirm ims registration + if check_ims_reg: + if not wait_for_ims_cscf_status(log, anritsu_handle, + ims_virtual_network_id, + ImsCscfStatus.SIPIDLE.value): + raise _CallSequenceException("IMS/CSCF status is not idle.") + # confirm virtual phone in idle + if not wait_for_virtualphone_state(log, virtual_phone_handle, + VirtualPhoneStatus.STATUS_IDLE): + raise _CallSequenceException("Virtual Phone not idle.") + if mo: # make MO call + log.info("Making Call to " + callee_number) + if not initiate_call(log, ad, callee_number, is_emergency): + raise _CallSequenceException("Initiate call failed.") + else: # make MT call + log.info("Making IMS Call to UE from MD8475A...") + anritsu_handle.ims_cscf_call_action(ims_virtual_network_id, + ImsCscfCall.MAKE.value) + # if check ims calling is required + if check_ims_calling: + if mo: + if not wait_for_ims_cscf_status(log, anritsu_handle, + ims_virtual_network_id, + ImsCscfStatus.CALLING.value): + raise _CallSequenceException( + "Phone IMS status is not calling.") + else: + if not wait_for_ims_cscf_status(log, anritsu_handle, + ims_virtual_network_id, + ImsCscfStatus.RINGING.value): + raise _CallSequenceException( + "Phone IMS status is not ringing.") + + # if SRVCC, check if VoLTE call is connected, then Handover + if srvcc != None: + if srvcc == "InCall": + if not wait_for_ims_cscf_status( + log, anritsu_handle, ims_virtual_network_id, + ImsCscfStatus.CONNECTED.value): + raise _CallSequenceException( + "Phone IMS status is not connected.") + # stay in call for "wait_time_in_volte" seconds + time.sleep(wait_time_in_volte) + elif srvcc == "Alert": + # ring for WAIT_TIME_IN_ALERT seconds + time.sleep(WAIT_TIME_IN_ALERT) + # SRVCC by handover test case procedure + srvcc_tc = anritsu_handle.get_AnritsuTestCases() + srvcc_tc.procedure = TestProcedure.PROCEDURE_HO + srvcc_tc.bts_direction = (BtsNumber.BTS1, BtsNumber.BTS2) + srvcc_tc.power_control = TestPowerControl.POWER_CONTROL_DISABLE + srvcc_tc.measurement_LTE = TestMeasurement.MEASUREMENT_DISABLE + anritsu_handle.start_testcase() + time.sleep(5) + if not mo: + # answer the call on the UE + if not wait_and_answer_call(log, ad): + raise _CallSequenceException("UE Answer call Fail") + # check if Virtual phone in the call + if not wait_for_virtualphone_state( + log, virtual_phone_handle, + VirtualPhoneStatus.STATUS_VOICECALL_INPROGRESS): + raise _CallSequenceException("Virtual Phone not in call.") + # stay in call for "wait_time_in_cs" seconds + time.sleep(wait_time_in_cs) + # check if the phone stay in call + if not ad.droid.telecomIsInCall(): + raise _CallSequenceException("Call ended before delay_in_call.") + # end the call + if teardown_side is CALL_TEARDOWN_REMOTE: + log.info("Disconnecting the call from Remote") + virtual_phone_handle.set_voice_on_hook() + if not wait_for_droid_not_in_call(log, ad, + MAX_WAIT_TIME_CALL_DROP): + raise _CallSequenceException("DUT call not drop.") + else: + log.info("Disconnecting the call from DUT") + if not hangup_call(log, ad): + raise _CallSequenceException( + "Error in Hanging-Up Call on DUT.") + # confirm if virtual phone status is back to idle + if not wait_for_virtualphone_state(log, virtual_phone_handle, + VirtualPhoneStatus.STATUS_IDLE): + raise _CallSequenceException( + "Virtual Phone not idle after hangup.") + return True + + except _CallSequenceException as e: + log.error(e) + return False + finally: + try: + if ad.droid.telecomIsInCall(): + ad.droid.telecomEndCall() + except Exception as e: + log.error(str(e)) + + +def call_mt_setup_teardown(log, + ad, + virtual_phone_handle, + caller_number=None, + teardown_side=CALL_TEARDOWN_PHONE, + rat=""): + """ Makes a call from Anritsu Virtual phone to device and tear down the call + + Args: + ad: Android device object. + virtual_phone_handle: Anritus virtual phone handle + caller_number = Caller number + teardown_side = specifiy the side to end the call (Phone or remote) + + Returns: + True for success False for failure + """ + log.info("Receive MT Call - Making a call to the phone from remote") + try: + if not wait_for_virtualphone_state(log, virtual_phone_handle, + VirtualPhoneStatus.STATUS_IDLE): + raise Exception("Virtual Phone is not in a state to start call") + if caller_number is not None: + if rat == RAT_1XRTT: + virtual_phone_handle.id_c2k = caller_number + else: + virtual_phone_handle.id = caller_number + virtual_phone_handle.set_voice_off_hook() + + if not wait_and_answer_call(log, ad, caller_number): + raise Exception("Answer call Fail") + + time.sleep(WAIT_TIME_IN_CALL) + + if not ad.droid.telecomIsInCall(): + raise Exception("Call ended before delay_in_call.") + except Exception: + return False + + if ad.droid.telecomIsInCall(): + if teardown_side is CALL_TEARDOWN_REMOTE: + log.info("Disconnecting the call from Remote") + virtual_phone_handle.set_voice_on_hook() + else: + log.info("Disconnecting the call from Phone") + ad.droid.telecomEndCall() + + wait_for_virtualphone_state(log, virtual_phone_handle, + VirtualPhoneStatus.STATUS_IDLE) + ensure_phone_idle(log, ad) + + return True + + +def wait_for_sms_deliver_success(log, ad, time_to_wait=60): + sms_deliver_event = EventSmsDeliverSuccess + sleep_interval = 2 + status = False + event = None + + try: + event = ad.ed.pop_event(sms_deliver_event, time_to_wait) + status = True + except Empty: + log.info("Timeout: Expected event is not received.") + return status + + +def wait_for_sms_sent_success(log, ad, time_to_wait=60): + sms_sent_event = EventSmsSentSuccess + sleep_interval = 2 + status = False + event = None + + try: + event = ad.ed.pop_event(sms_sent_event, time_to_wait) + log.info(event) + status = True + except Empty: + log.info("Timeout: Expected event is not received.") + return status + + +def wait_for_incoming_sms(log, ad, time_to_wait=60): + sms_received_event = EventSmsReceived + sleep_interval = 2 + status = False + event = None + + try: + event = ad.ed.pop_event(sms_received_event, time_to_wait) + log.info(event) + status = True + except Empty: + log.info("Timeout: Expected event is not received.") + return status, event + + +def verify_anritsu_received_sms(log, vp_handle, receiver_number, message, rat): + if rat == RAT_1XRTT: + receive_sms = vp_handle.receiveSms_c2k() + else: + receive_sms = vp_handle.receiveSms() + + if receive_sms == "NONE": + return False + split = receive_sms.split('&') + text = "" + if rat == RAT_1XRTT: + # TODO: b/26296388 There is some problem when retrieving message with é + # from Anritsu. + return True + for i in range(len(split)): + if split[i].startswith('Text='): + text = split[i][5:] + text = AnritsuUtils.gsm_decode(text) + break + # TODO: b/26296388 Verify Phone number + if text != message: + log.error("Wrong message received") + return False + return True + + +def sms_mo_send(log, ad, vp_handle, receiver_number, message, rat=""): + try: + if not wait_for_virtualphone_state(log, vp_handle, + VirtualPhoneStatus.STATUS_IDLE): + raise Exception("Virtual Phone is not in a state to receive SMS") + log.info("Sending SMS to " + receiver_number) + ad.droid.smsSendTextMessage(receiver_number, message, False) + log.info("Waiting for SMS sent event") + test_status = wait_for_sms_sent_success(log, ad) + if not test_status: + raise Exception("Failed to send SMS") + if not verify_anritsu_received_sms(log, vp_handle, receiver_number, + message, rat): + raise Exception("Anritsu didn't receive message") + except Exception as e: + log.error("Exception :" + str(e)) + return False + return True + + +def sms_mt_receive_verify(log, ad, vp_handle, sender_number, message, rat=""): + ad.droid.smsStartTrackingIncomingMessage() + try: + if not wait_for_virtualphone_state(log, vp_handle, + VirtualPhoneStatus.STATUS_IDLE): + raise Exception("Virtual Phone is not in a state to receive SMS") + log.info("Waiting for Incoming SMS from " + sender_number) + if rat == RAT_1XRTT: + vp_handle.sendSms_c2k(sender_number, message) + else: + vp_handle.sendSms(sender_number, message) + test_status, event = wait_for_incoming_sms(log, ad) + if not test_status: + raise Exception("Failed to receive SMS") + log.info("Incoming SMS: Sender " + event['data']['Sender']) + log.info("Incoming SMS: Message " + event['data']['Text']) + if event['data']['Sender'] != sender_number: + raise Exception("Wrong sender Number") + if event['data']['Text'] != message: + raise Exception("Wrong message") + except Exception as e: + log.error("exception: " + str(e)) + return False + finally: + ad.droid.smsStopTrackingIncomingMessage() + return True + + +def wait_for_ims_cscf_status(log, + anritsu_handle, + virtual_network_id, + status, + timeout=MAX_WAIT_TIME_IMS_CSCF_STATE): + """ Wait for IMS CSCF to be in expected state. + + Args: + log: log object + anritsu_handle: anritsu object + virtual_network_id: virtual network id to be monitored + status: expected status + timeout: wait time + """ + sleep_interval = 1 + wait_time = timeout + while wait_time > 0: + if status == anritsu_handle.get_ims_cscf_status(virtual_network_id): + return True + time.sleep(sleep_interval) + wait_time = wait_time - sleep_interval + return False + + +def wait_for_virtualphone_state(log, + vp_handle, + state, + timeout=MAX_WAIT_TIME_VIRTUAL_PHONE_STATE): + """ Waits for Anritsu Virtual phone to be in expected state + + Args: + ad: Android device object. + vp_handle: Anritus virtual phone handle + state = expected state + + Returns: + True for success False for failure + """ + status = False + sleep_interval = 1 + wait_time = timeout + while wait_time > 0: + if vp_handle.status == state: + log.info(vp_handle.status) + status = True + break + time.sleep(sleep_interval) + wait_time = wait_time - sleep_interval + + if not status: + log.info("Timeout: Expected state is not received.") + return status + + +# There is a difference between CMAS/ETWS message formation in LTE/WCDMA and CDMA 1X +# LTE and CDMA : 3GPP +# CDMA 1X: 3GPP2 +# hence different functions +def cmas_receive_verify_message_lte_wcdma( + log, ad, anritsu_handle, serial_number, message_id, warning_message): + """ Makes Anritsu to send a CMAS message and phone and verifies phone + receives the message on LTE/WCDMA + + Args: + ad: Android device object. + anritsu_handle: Anritus device object + serial_number = serial number of CMAS message + message_id = CMAS message ID + warning_message = CMAS warning message + + Returns: + True for success False for failure + """ + status = False + event = None + ad.droid.smsStartTrackingGsmEmergencyCBMessage() + anritsu_handle.send_cmas_lte_wcdma( + hex(serial_number), message_id, warning_message) + try: + log.info("Waiting for CMAS Message") + event = ad.ed.pop_event(EventCmasReceived, 60) + status = True + log.info(event) + if warning_message != event['data']['message']: + log.info("Wrong warning messgae received") + status = False + if message_id != hex(event['data']['serviceCategory']): + log.info("Wrong warning messgae received") + status = False + except Empty: + log.info("Timeout: Expected event is not received.") + + ad.droid.smsStopTrackingGsmEmergencyCBMessage() + return status + + +def cmas_receive_verify_message_cdma1x( + log, + ad, + anritsu_handle, + message_id, + service_category, + alert_text, + response_type=CMAS_C2K_RESPONSETYPE_SHELTER, + severity=CMAS_C2K_SEVERITY_EXTREME, + urgency=CMAS_C2K_URGENCY_IMMEDIATE, + certainty=CMAS_C2K_CERTIANTY_OBSERVED): + """ Makes Anritsu to send a CMAS message and phone and verifies phone + receives the message on CDMA 1X + + Args: + ad: Android device object. + anritsu_handle: Anritus device object + serial_number = serial number of CMAS message + message_id = CMAS message ID + warning_message = CMAS warning message + + Returns: + True for success False for failure + """ + status = False + event = None + ad.droid.smsStartTrackingCdmaEmergencyCBMessage() + anritsu_handle.send_cmas_etws_cdma1x(message_id, service_category, + alert_text, response_type, severity, + urgency, certainty) + try: + log.info("Waiting for CMAS Message") + event = ad.ed.pop_event(EventCmasReceived, 60) + status = True + log.info(event) + if alert_text != event['data']['message']: + log.info("Wrong alert messgae received") + status = False + + if event['data']['cmasResponseType'].lower() != response_type.lower(): + log.info("Wrong response type received") + status = False + + if event['data']['cmasUrgency'].lower() != urgency.lower(): + log.info("Wrong cmasUrgency received") + status = False + + if event['data']['cmasSeverity'].lower() != severity.lower(): + Log.info("Wrong cmasSeverity received") + status = False + except Empty: + log.info("Timeout: Expected event is not received.") + + ad.droid.smsStopTrackingCdmaEmergencyCBMessage() + return status + + +def etws_receive_verify_message_lte_wcdma( + log, ad, anritsu_handle, serial_number, message_id, warning_message): + """ Makes Anritsu to send a ETWS message and phone and verifies phone + receives the message on LTE/WCDMA + + Args: + ad: Android device object. + anritsu_handle: Anritus device object + serial_number = serial number of ETWS message + message_id = ETWS message ID + warning_message = ETWS warning message + + Returns: + True for success False for failure + """ + status = False + event = None + if message_id == ETWS_WARNING_EARTHQUAKE: + warning_type = "Earthquake" + elif message_id == ETWS_WARNING_EARTHQUAKETSUNAMI: + warning_type = "EarthquakeandTsunami" + elif message_id == ETWS_WARNING_TSUNAMI: + warning_type = "Tsunami" + elif message_id == ETWS_WARNING_TEST_MESSAGE: + warning_type = "test" + elif message_id == ETWS_WARNING_OTHER_EMERGENCY: + warning_type = "other" + ad.droid.smsStartTrackingGsmEmergencyCBMessage() + anritsu_handle.send_etws_lte_wcdma( + hex(serial_number), message_id, warning_type, warning_message, "ON", + "ON") + try: + log.info("Waiting for ETWS Message") + event = ad.ed.pop_event(EventEtwsReceived, 60) + status = True + log.info(event) + # TODO: b/26296388 Event data verification + except Empty: + log.info("Timeout: Expected event is not received.") + + ad.droid.smsStopTrackingGsmEmergencyCBMessage() + return status + + +def etws_receive_verify_message_cdma1x(log, ad, anritsu_handle, serial_number, + message_id, warning_message): + """ Makes Anritsu to send a ETWS message and phone and verifies phone + receives the message on CDMA1X + + Args: + ad: Android device object. + anritsu_handle: Anritus device object + serial_number = serial number of ETWS message + message_id = ETWS message ID + warning_message = ETWS warning message + + Returns: + True for success False for failure + """ + status = False + event = None + # TODO: b/26296388 need to add logic to check etws. + return status + + +def read_ue_identity(log, ad, anritsu_handle, identity_type): + """ Get the UE identity IMSI, IMEI, IMEISV + + Args: + ad: Android device object. + anritsu_handle: Anritus device object + identity_type: Identity type(IMSI/IMEI/IMEISV) + + Returns: + Requested Identity value + """ + return anritsu_handle.get_ue_identity(identity_type) + + +def get_transmission_mode(user_params, cell_no): + """ Returns the TRANSMODE to be used from the user specified parameters + or default value + + Args: + user_params: pointer to user supplied parameters + cell_no: specify the cell number this BTS is configured + Anritsu supports two cells. so cell_1 or cell_2 + + Returns: + TM to be used + """ + key = "cell{}_transmission_mode".format(cell_no) + transmission_mode = user_params.get(key, DEFAULT_T_MODE) + return transmission_mode + + +def get_dl_antenna(user_params, cell_no): + """ Returns the DL ANTENNA to be used from the user specified parameters + or default value + + Args: + user_params: pointer to user supplied parameters + cell_no: specify the cell number this BTS is configured + Anritsu supports two cells. so cell_1 or cell_2 + + Returns: + number of DL ANTENNAS to be used + """ + key = "cell{}_dl_antenna".format(cell_no) + dl_antenna = user_params.get(key, DEFAULT_DL_ANTENNA) + return dl_antenna + + +def get_lte_band(user_params, cell_no): + """ Returns the LTE BAND to be used from the user specified parameters + or default value + + Args: + user_params: pointer to user supplied parameters + cell_no: specify the cell number this BTS is configured + Anritsu supports two cells. so cell_1 or cell_2 + + Returns: + LTE BAND to be used + """ + key = "cell{}_lte_band".format(cell_no) + band = DEFAULT_LTE_BAND[cell_no - 1] + return user_params.get(key, band) + + +def get_wcdma_band(user_params, cell_no): + """ Returns the WCDMA BAND to be used from the user specified parameters + or default value + + Args: + user_params: pointer to user supplied parameters + cell_no: specify the cell number this BTS is configured + Anritsu supports two cells. so cell_1 or cell_2 + + Returns: + WCDMA BAND to be used + """ + key = "cell{}_wcdma_band".format(cell_no) + wcdma_band = user_params.get(key, DEFAULT_WCDMA_BAND) + return wcdma_band + + +def get_gsm_band(user_params, cell_no): + """ Returns the GSM BAND to be used from the user specified parameters + or default value + + Args: + user_params: pointer to user supplied parameters + cell_no: specify the cell number this BTS is configured + Anritsu supports two cells. so cell_1 or cell_2 + + Returns: + GSM BAND to be used + """ + key = "cell{}_gsm_band".format(cell_no) + gsm_band = user_params.get(key, DEFAULT_GSM_BAND) + return gsm_band + + +def get_1x_band(user_params, cell_no, sim_card): + """ Returns the 1X BAND to be used from the user specified parameters + or default value + + Args: + user_params: pointer to user supplied parameters + cell_no: specify the cell number this BTS is configured + Anritsu supports two cells. so cell_1 or cell_2 + + Returns: + 1X BAND to be used + """ + key = "cell{}_1x_band".format(cell_no) + band = VzW_CDMA1x_BAND if sim_card == VzW12349 else DEFAULT_CDMA1X_BAND + return user_params.get(key, band) + + +def get_evdo_band(user_params, cell_no, sim_card): + """ Returns the EVDO BAND to be used from the user specified parameters + or default value + + Args: + user_params: pointer to user supplied parameters + cell_no: specify the cell number this BTS is configured + Anritsu supports two cells. so cell_1 or cell_2 + + Returns: + EVDO BAND to be used + """ + key = "cell{}_evdo_band".format(cell_no) + band = VzW_EVDO_BAND if sim_card == VzW12349 else DEFAULT_EVDO_BAND + return user_params.get(key, band) + + +def get_wcdma_rac(user_params, cell_no): + """ Returns the WCDMA RAC to be used from the user specified parameters + or default value + + Args: + user_params: pointer to user supplied parameters + cell_no: specify the cell number this BTS is configured + Anritsu supports two cells. so cell_1 or cell_2 + + Returns: + WCDMA RAC to be used + """ + key = "cell{}_wcdma_rac".format(cell_no) + try: + wcdma_rac = user_params[key] + except KeyError: + wcdma_rac = DEFAULT_RAC + return wcdma_rac + + +def get_gsm_rac(user_params, cell_no): + """ Returns the GSM RAC to be used from the user specified parameters + or default value + + Args: + user_params: pointer to user supplied parameters + cell_no: specify the cell number this BTS is configured + Anritsu supports two cells. so cell_1 or cell_2 + + Returns: + GSM RAC to be used + """ + key = "cell{}_gsm_rac".format(cell_no) + try: + gsm_rac = user_params[key] + except KeyError: + gsm_rac = DEFAULT_RAC + return gsm_rac + + +def get_wcdma_lac(user_params, cell_no): + """ Returns the WCDMA LAC to be used from the user specified parameters + or default value + + Args: + user_params: pointer to user supplied parameters + cell_no: specify the cell number this BTS is configured + Anritsu supports two cells. so cell_1 or cell_2 + + Returns: + WCDMA LAC to be used + """ + key = "cell{}_wcdma_lac".format(cell_no) + try: + wcdma_lac = user_params[key] + except KeyError: + wcdma_lac = DEFAULT_LAC + return wcdma_lac + + +def get_gsm_lac(user_params, cell_no): + """ Returns the GSM LAC to be used from the user specified parameters + or default value + + Args: + user_params: pointer to user supplied parameters + cell_no: specify the cell number this BTS is configured + Anritsu supports two cells. so cell_1 or cell_2 + + Returns: + GSM LAC to be used + """ + key = "cell{}_gsm_lac".format(cell_no) + try: + gsm_lac = user_params[key] + except KeyError: + gsm_lac = DEFAULT_LAC + return gsm_lac + + +def get_lte_mcc(user_params, cell_no, sim_card): + """ Returns the LTE MCC to be used from the user specified parameters + or default value + + Args: + user_params: pointer to user supplied parameters + cell_no: specify the cell number this BTS is configured + Anritsu supports two cells. so cell_1 or cell_2 + + Returns: + LTE MCC to be used + """ + + key = "cell{}_lte_mcc".format(cell_no) + mcc = VzW_MCC if sim_card == VzW12349 else DEFAULT_MCC + return user_params.get(key, mcc) + + +def get_lte_mnc(user_params, cell_no, sim_card): + """ Returns the LTE MNC to be used from the user specified parameters + or default value + + Args: + user_params: pointer to user supplied parameters + cell_no: specify the cell number this BTS is configured + Anritsu supports two cells. so cell_1 or cell_2 + + Returns: + LTE MNC to be used + """ + key = "cell{}_lte_mnc".format(cell_no) + mnc = VzW_MNC if sim_card == VzW12349 else DEFAULT_MNC + return user_params.get(key, mnc) + + +def get_wcdma_mcc(user_params, cell_no, sim_card): + """ Returns the WCDMA MCC to be used from the user specified parameters + or default value + + Args: + user_params: pointer to user supplied parameters + cell_no: specify the cell number this BTS is configured + Anritsu supports two cells. so cell_1 or cell_2 + + Returns: + WCDMA MCC to be used + """ + key = "cell{}_wcdma_mcc".format(cell_no) + mcc = VzW_MCC if sim_card == VzW12349 else DEFAULT_MCC + return user_params.get(key, mcc) + + +def get_wcdma_mnc(user_params, cell_no, sim_card): + """ Returns the WCDMA MNC to be used from the user specified parameters + or default value + + Args: + user_params: pointer to user supplied parameters + cell_no: specify the cell number this BTS is configured + Anritsu supports two cells. so cell_1 or cell_2 + + Returns: + WCDMA MNC to be used + """ + key = "cell{}_wcdma_mnc".format(cell_no) + mnc = VzW_MNC if sim_card == VzW12349 else DEFAULT_MNC + return user_params.get(key, mnc) + + +def get_gsm_mcc(user_params, cell_no, sim_card): + """ Returns the GSM MCC to be used from the user specified parameters + or default value + + Args: + user_params: pointer to user supplied parameters + cell_no: specify the cell number this BTS is configured + Anritsu supports two cells. so cell_1 or cell_2 + + Returns: + GSM MCC to be used + """ + key = "cell{}_gsm_mcc".format(cell_no) + mcc = VzW_MCC if sim_card == VzW12349 else DEFAULT_MCC + return user_params.get(key, mcc) + + +def get_gsm_mnc(user_params, cell_no, sim_card): + """ Returns the GSM MNC to be used from the user specified parameters + or default value + + Args: + user_params: pointer to user supplied parameters + cell_no: specify the cell number this BTS is configured + Anritsu supports two cells. so cell_1 or cell_2 + + Returns: + GSM MNC to be used + """ + key = "cell{}_gsm_mnc".format(cell_no) + mnc = VzW_MNC if sim_card == VzW12349 else DEFAULT_MNC + return user_params.get(key, mnc) + + +def get_1x_mcc(user_params, cell_no, sim_card): + """ Returns the 1X MCC to be used from the user specified parameters + or default value + + Args: + user_params: pointer to user supplied parameters + cell_no: specify the cell number this BTS is configured + Anritsu supports two cells. so cell_1 or cell_2 + + Returns: + 1X MCC to be used + """ + key = "cell{}_1x_mcc".format(cell_no) + mcc = VzW_MCC if sim_card == VzW12349 else DEFAULT_MCC + return user_params.get(key, mcc) + + +def get_1x_channel(user_params, cell_no, sim_card): + """ Returns the 1X Channel to be used from the user specified parameters + or default value + + Args: + user_params: pointer to user supplied parameters + cell_no: specify the cell number this BTS is configured + Anritsu supports two cells. so cell_1 or cell_2 + + Returns: + 1X Channel to be used + """ + key = "cell{}_1x_channel".format(cell_no) + ch = VzW_CDMA1x_CH if sim_card == VzW12349 else DEFAULT_CDMA1X_CH + return user_params.get(key, ch) + + +def get_1x_sid(user_params, cell_no, sim_card): + """ Returns the 1X SID to be used from the user specified parameters + or default value + + Args: + user_params: pointer to user supplied parameters + cell_no: specify the cell number this BTS is configured + Anritsu supports two cells. so cell_1 or cell_2 + + Returns: + 1X SID to be used + """ + key = "cell{}_1x_sid".format(cell_no) + sid = VzW_CDMA1X_SID if sim_card == VzW12349 else DEFAULT_CDMA1X_SID + return user_params.get(key, sid) + + +def get_1x_nid(user_params, cell_no, sim_card): + """ Returns the 1X NID to be used from the user specified parameters + or default value + + Args: + user_params: pointer to user supplied parameters + cell_no: specify the cell number this BTS is configured + Anritsu supports two cells. so cell_1 or cell_2 + + Returns: + 1X NID to be used + """ + key = "cell{}_1x_nid".format(cell_no) + nid = VzW_CDMA1X_NID if sim_card == VzW12349 else DEFAULT_CDMA1X_NID + return user_params.get(key, nid) + + +def get_evdo_channel(user_params, cell_no, sim_card): + """ Returns the EVDO Channel to be used from the user specified parameters + or default value + + Args: + user_params: pointer to user supplied parameters + cell_no: specify the cell number this BTS is configured + Anritsu supports two cells. so cell_1 or cell_2 + + Returns: + EVDO Channel to be used + """ + key = "cell{}_evdo_channel".format(cell_no) + ch = VzW_EVDO_CH if sim_card == VzW12349 else DEFAULT_EVDO_CH + return user_params.get(key, ch) + + +def get_evdo_sid(user_params, cell_no, sim_card): + """ Returns the EVDO SID to be used from the user specified parameters + or default value + + Args: + user_params: pointer to user supplied parameters + cell_no: specify the cell number this BTS is configured + Anritsu supports two cells. so cell_1 or cell_2 + + Returns: + EVDO SID to be used + """ + key = "cell{}_evdo_sid".format(cell_no) + return user_params.get(key, DEFAULT_EVDO_SECTOR_ID) + sid = VzW_EVDO_SECTOR_ID if sim_card == VzW12349 else DEFAULT_EVDO_SECTOR_ID + return user_params.get(key, sid) + + +def get_csfb_type(user_params): + """ Returns the CSFB Type to be used from the user specified parameters + or default value + + Args: + user_params: pointer to user supplied parameters + cell_no: specify the cell number this BTS is configured + Anritsu supports two cells. so cell_1 or cell_2 + + Returns: + CSFB Type to be used + """ + try: + csfb_type = user_params["csfb_type"] + except KeyError: + csfb_type = CsfbType.CSFB_TYPE_REDIRECTION + return csfb_type + + +def set_post_sim_params(anritsu_handle, user_params, sim_card): + if sim_card == P0135Ax: + anritsu_handle.send_command("PDNCHECKAPN 1,ims") + anritsu_handle.send_command("PDNCHECKAPN 2,fast.t-mobile.com") + anritsu_handle.send_command("PDNIMS 1,ENABLE") + anritsu_handle.send_command("PDNVNID 1,1") + anritsu_handle.send_command("PDNIMS 2,ENABLE") + anritsu_handle.send_command("PDNVNID 2,2") + anritsu_handle.send_command("PDNIMS 3,ENABLE") + anritsu_handle.send_command("PDNVNID 3,1") + if sim_card == VzW12349: + anritsu_handle.send_command("PDNCHECKAPN 1,IMS") + anritsu_handle.send_command("PDNCHECKAPN 2,VZWINTERNET") + anritsu_handle.send_command("PDNIMS 1,ENABLE") + anritsu_handle.send_command("PDNVNID 1,1") + anritsu_handle.send_command("PDNIMS 3,ENABLE") + anritsu_handle.send_command("PDNVNID 3,1") diff --git a/acts/tests/google/power/tel/lab/temp/iperf_server.py b/acts/tests/google/power/tel/lab/temp/iperf_server.py new file mode 100755 index 0000000000..9fa0930091 --- /dev/null +++ b/acts/tests/google/power/tel/lab/temp/iperf_server.py @@ -0,0 +1,263 @@ +#!/usr/bin/env python3.4 +# +# Copyright 2016 - The Android Open Source Project +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import json +import logging +import math +import os +from acts import utils +from acts.controllers.utils_lib.ssh import connection +from acts.controllers.utils_lib.ssh import settings + +ACTS_CONTROLLER_CONFIG_NAME = "IPerfServer" +ACTS_CONTROLLER_REFERENCE_NAME = "iperf_servers" + + +def create(configs): + """ Factory method for iperf servers. + + The function creates iperf servers based on at least one config. + If configs only specify a port number, a regular local IPerfServer object + will be created. If configs contains ssh settings for a remote host, + a RemoteIPerfServer object will be instantiated + + Args: + config: config parameters for the iperf server + """ + results = [] + for c in configs: + try: + results.append(IPerfServer(c, logging.log_path)) + except: + pass + return results + + +def destroy(objs): + for ipf in objs: + try: + ipf.stop() + except: + pass + + +class IPerfResult(object): + def __init__(self, result_path): + """ Loads iperf result from file. + + Loads iperf result from JSON formatted server log. File can be accessed + before or after server is stopped. Note that only the first JSON object + will be loaded and this funtion is not intended to be used with files + containing multiple iperf client runs. + """ + try: + with open(result_path, 'r') as f: + iperf_output = f.readlines() + if "}\n" in iperf_output: + iperf_output = iperf_output[0: + iperf_output.index("}\n") + 1] + iperf_string = ''.join(iperf_output) + iperf_string = iperf_string.replace("-nan", '0') + self.result = json.loads(iperf_string) + except ValueError: + with open(result_path, 'r') as f: + # Possibly a result from interrupted iperf run, skip first line + # and try again. + lines = f.readlines()[1:] + self.result = json.loads(''.join(lines)) + + def _has_data(self): + """Checks if the iperf result has valid throughput data. + + Returns: + True if the result contains throughput data. False otherwise. + """ + return ('end' in self.result) and ('sum_received' in self.result["end"] + or 'sum' in self.result["end"]) + + def get_json(self): + """ + Returns: + The raw json output from iPerf. + """ + return self.result + + @property + def error(self): + if 'error' not in self.result: + return None + return self.result['error'] + + @property + def avg_rate(self): + """Average UDP rate in MB/s over the entire run. + + This is the average UDP rate observed at the terminal the iperf result + is pulled from. According to iperf3 documentation this is calculated + based on bytes sent and thus is not a good representation of the + quality of the link. If the result is not from a success run, this + property is None. + """ + if not self._has_data() or 'sum' not in self.result['end']: + return None + bps = self.result['end']['sum']['bits_per_second'] + return bps / 8 / 1024 / 1024 + + @property + def avg_receive_rate(self): + """Average receiving rate in MB/s over the entire run. + + This data may not exist if iperf was interrupted. If the result is not + from a success run, this property is None. + """ + if not self._has_data() or 'sum_received' not in self.result['end']: + return None + bps = self.result['end']['sum_received']['bits_per_second'] + return bps / 8 / 1024 / 1024 + + @property + def avg_send_rate(self): + """Average sending rate in MB/s over the entire run. + + This data may not exist if iperf was interrupted. If the result is not + from a success run, this property is None. + """ + if not self._has_data() or 'sum_sent' not in self.result['end']: + return None + bps = self.result['end']['sum_sent']['bits_per_second'] + return bps / 8 / 1024 / 1024 + + @property + def instantaneous_rates(self): + """Instantaneous received rate in MB/s over entire run. + + This data may not exist if iperf was interrupted. If the result is not + from a success run, this property is None. + """ + if not self._has_data(): + return None + intervals = [ + interval["sum"]["bits_per_second"] / 8 / 1024 / 1024 + for interval in self.result["intervals"] + ] + return intervals + + @property + def std_deviation(self): + """Standard deviation of rates in MB/s over entire run. + + This data may not exist if iperf was interrupted. If the result is not + from a success run, this property is None. + """ + return self.get_std_deviation(0) + + def get_std_deviation(self, iperf_ignored_interval): + """Standard deviation of rates in MB/s over entire run. + + This data may not exist if iperf was interrupted. If the result is not + from a success run, this property is None. A configurable number of + beginning (and the single last) intervals are ignored in the + calculation as they are inaccurate (e.g. the last is from a very small + interval) + + Args: + iperf_ignored_interval: number of iperf interval to ignored in + calculating standard deviation + """ + if not self._has_data(): + return None + instantaneous_rates = self.instantaneous_rates[iperf_ignored_interval: + -1] + avg_rate = math.fsum(instantaneous_rates) / len(instantaneous_rates) + sqd_deviations = [(rate - avg_rate)**2 for rate in instantaneous_rates] + std_dev = math.sqrt( + math.fsum(sqd_deviations) / (len(sqd_deviations) - 1)) + return std_dev + + +class IPerfServer(): + """Class that handles iperf3 operations. + + Class handles both local and remote iperf servers. Type of server is set + at runtime based on the configuration input (whether or not ssh settings + were passed to the constructor). + """ + + def __init__(self, config, log_path): + if type(config) is dict and "ssh_config" in config: + self.server_type = "remote" + self.ssh_settings = settings.from_config(config["ssh_config"]) + self.ssh_session = connection.SshConnection(self.ssh_settings) + self.port = config["port"] + else: + self.server_type = "local" + self.port = config + self.log_path = os.path.join(log_path, "iPerf{}".format(self.port)) + utils.create_dir(self.log_path) + #self.iperf_str = "iperf3 -s -J -p {}".format(self.port) + self.iperf_str = "iperf3 -s -J" + self.log_files = [] + self.started = False + + def start(self, extra_args="", tag=""): + """Starts iperf server on specified machine and port. + + Args: + extra_args: A string representing extra arguments to start iperf + server with. + tag: Appended to log file name to identify logs from different + iperf runs. + """ + if self.started: + return + if tag: + tag = tag + ',' + out_file_name = "IPerfServer,{},{}{}.log".format( + self.port, tag, len(self.log_files)) + self.full_out_path = os.path.join(self.log_path, out_file_name) + if self.server_type == "local": + cmd = "{} {} > {}".format(self.iperf_str, extra_args, + self.full_out_path) + print(cmd) + self.iperf_process = utils.start_standing_subprocess(cmd) + else: + cmd = "{} {} > {}".format( + self.iperf_str, extra_args, + "iperf_server_port{}.log".format(self.port)) + job_result = self.ssh_session.run_async(cmd) + self.iperf_process = job_result.stdout + self.log_files.append(self.full_out_path) + self.started = True + + def stop(self): + """ Stops iperf server running and get output in case of remote server. + + """ + if not self.started: + return + if self.server_type == "local": + utils.stop_standing_subprocess(self.iperf_process) + self.started = False + if self.server_type == "remote": + self.ssh_session.run_async( + "kill {}".format(str(self.iperf_process))) + iperf_result = self.ssh_session.run( + "cat iperf_server_port{}.log".format(self.port)) + with open(self.full_out_path, 'w') as f: + f.write(iperf_result.stdout) + self.ssh_session.run_async( + "rm iperf_server_port{}.log".format(self.port)) + self.started = False diff --git a/acts/tests/google/power/tel/lab/temp/liveplot.py b/acts/tests/google/power/tel/lab/temp/liveplot.py new file mode 100644 index 0000000000..f074b50c74 --- /dev/null +++ b/acts/tests/google/power/tel/lab/temp/liveplot.py @@ -0,0 +1,20 @@ +import numpy as np +import matplotlib.pyplot as plt +import collections + +HZ = 500; +T_SPAN = 10; +T_avg = 10; +plt.ion() # This allows for interactive plots, i.e. plots that do not block execution of the script + +wave = collections.deque(np.zeros(HZ*T_SPAN), maxlen=HZ * T_SPAN) +buff = collections.deque(np.zeros(HZ*T_SPAN), maxlen=HZ * T_avg) + +while True: + for i in xrange(HZ): + buff.append(float(raw_input())) + wave.append(sum(buff)/float(len(buff))) + plt.clf() + plt.plot(range(HZ * T_SPAN), list(wave)) + plt.axis([-1, T_SPAN*HZ, 0.0, 0.4]) + plt.pause(0.01) diff --git a/acts/tests/google/power/wifi/PowerWiFiHotspotTest.py b/acts/tests/google/power/wifi/PowerWiFiHotspotTest.py index 57e926376a..f554d12bde 100644 --- a/acts/tests/google/power/wifi/PowerWiFiHotspotTest.py +++ b/acts/tests/google/power/wifi/PowerWiFiHotspotTest.py @@ -158,7 +158,7 @@ class PowerWiFiHotspotTest(PWBT.PowerWiFiBaseTest): time.sleep(2) # Measure power - result = self.collect_power_data() + self.collect_power_data() if traffic: # Wait for iperf to finish @@ -168,7 +168,7 @@ class PowerWiFiHotspotTest(PWBT.PowerWiFiBaseTest): self.client_iperf_helper.process_iperf_results( self.dut, self.log, self.iperf_servers, self.test_name) - self.pass_fail_check(result.average_current) + self.pass_fail_check() def power_idle_tethering_test(self): """ Start power test when Hotspot is idle diff --git a/acts/tests/google/power/wifi/PowerWiFimulticastTest.py b/acts/tests/google/power/wifi/PowerWiFimulticastTest.py index 8832469980..698dd34fa2 100644 --- a/acts/tests/google/power/wifi/PowerWiFimulticastTest.py +++ b/acts/tests/google/power/wifi/PowerWiFimulticastTest.py @@ -27,22 +27,6 @@ DNS_SHORT_LIFETIME = 3 class PowerWiFimulticastTest(PWBT.PowerWiFiBaseTest): - def setup_class(self): - super().setup_class() - self.unpack_userparams(sub_mask="255.255.255.0", - mac_dst="get_from_dut", - mac_src="get_local", - ipv4_dst="get_from_dut", - ipv4_src="get_local", - ipv6_dst="get_from_dut", - ipv6_src="get_local", - ipv6_src_type="LINK_LOCAL", - ipv4_gwt="192.168.1.1", - mac_dst_fake="40:90:28:EF:4B:20", - ipv4_dst_fake="192.168.1.60", - ipv6_dst_fake="fe80::300f:40ee:ee0a:5000", - interval=1) - def set_connection(self): """Setup connection between AP and client. @@ -54,9 +38,8 @@ class PowerWiFimulticastTest(PWBT.PowerWiFiBaseTest): indices = [2, 4] self.decode_test_configs(attrs, indices) # Change DTIMx1 on the phone to receive all Multicast packets - rebooted = wputils.change_dtim(self.dut, - gEnableModulatedDTIM=1, - gMaxLIModulatedDTIM=10) + rebooted = wputils.change_dtim( + self.dut, gEnableModulatedDTIM=1, gMaxLIModulatedDTIM=10) self.dut.log.info('DTIM value of the phone is now DTIMx1') if rebooted: self.dut_rockbottom() @@ -96,7 +79,7 @@ class PowerWiFimulticastTest(PWBT.PowerWiFiBaseTest): self.set_connection() self.pkt_gen_config = wputils.create_pkt_config(self) pkt_gen = pkt_utils.ArpGenerator(**self.pkt_gen_config) - packet = pkt_gen.generate(ip_dst=self.ipv4_dst_fake) + packet = pkt_gen.generate(self.ipv4_dst_fake) self.sendPacketAndMeasure(packet) @test_tracker_info(uuid='dd3ff80d-97ce-4408-92f8-f2c72ce8d79c') @@ -104,8 +87,8 @@ class PowerWiFimulticastTest(PWBT.PowerWiFiBaseTest): self.set_connection() self.pkt_gen_config = wputils.create_pkt_config(self) pkt_gen = pkt_utils.ArpGenerator(**self.pkt_gen_config) - packet = pkt_gen.generate(ip_dst='0.0.0.0', - eth_dst=self.pkt_gen_config['dst_mac']) + packet = pkt_gen.generate( + ip_dst='0.0.0.0', eth_dst=self.pkt_gen_config['dst_mac']) self.sendPacketAndMeasure(packet) @test_tracker_info(uuid='5dcb16f1-725c-45de-8103-340104d60a22') @@ -113,8 +96,8 @@ class PowerWiFimulticastTest(PWBT.PowerWiFiBaseTest): self.set_connection() self.pkt_gen_config = wputils.create_pkt_config(self) pkt_gen = pkt_utils.ArpGenerator(**self.pkt_gen_config) - packet = pkt_gen.generate(ip_dst=self.ipv4_dst_fake, - eth_dst=self.pkt_gen_config['dst_mac']) + packet = pkt_gen.generate( + ip_dst=self.ipv4_dst_fake, eth_dst=self.pkt_gen_config['dst_mac']) self.sendPacketAndMeasure(packet) @test_tracker_info(uuid='5ec4800f-a82e-4462-8b65-4fcd0b1940a2') @@ -122,11 +105,12 @@ class PowerWiFimulticastTest(PWBT.PowerWiFiBaseTest): self.set_connection() self.pkt_gen_config = wputils.create_pkt_config(self) pkt_gen = pkt_utils.ArpGenerator(**self.pkt_gen_config) - packet = pkt_gen.generate(op='is-at', - ip_src='0.0.0.0', - ip_dst=self.ipv4_dst_fake, - hwdst=self.mac_dst_fake, - eth_dst=self.pkt_gen_config['dst_mac']) + packet = pkt_gen.generate( + op='is-at', + ip_src='0.0.0.0', + ip_dst=self.ipv4_dst_fake, + hwdst=self.mac_dst_fake, + eth_dst=self.pkt_gen_config['dst_mac']) self.sendPacketAndMeasure(packet) @test_tracker_info(uuid='6c5c0e9e-7a00-43d0-a6e8-355141467703') @@ -134,10 +118,11 @@ class PowerWiFimulticastTest(PWBT.PowerWiFiBaseTest): self.set_connection() self.pkt_gen_config = wputils.create_pkt_config(self) pkt_gen = pkt_utils.ArpGenerator(**self.pkt_gen_config) - packet = pkt_gen.generate(op='is-at', - ip_dst=self.ipv4_dst_fake, - hwdst=self.mac_dst_fake, - eth_dst=self.pkt_gen_config['dst_mac']) + packet = pkt_gen.generate( + op='is-at', + ip_dst=self.ipv4_dst_fake, + hwdst=self.mac_dst_fake, + eth_dst=self.pkt_gen_config['dst_mac']) self.sendPacketAndMeasure(packet) @test_tracker_info(uuid='8e534d3b-5a25-429a-a1bb-8119d7d28b5a') @@ -153,7 +138,7 @@ class PowerWiFimulticastTest(PWBT.PowerWiFiBaseTest): self.set_connection() self.pkt_gen_config = wputils.create_pkt_config(self) pkt_gen = pkt_utils.NsGenerator(**self.pkt_gen_config) - packet = pkt_gen.generate(ip_dst=self.ipv6_dst_fake) + packet = pkt_gen.generate(self.ipv6_dst_fake) self.sendPacketAndMeasure(packet) @test_tracker_info(uuid='5eed3174-8e94-428e-8527-19a9b5a90322') @@ -193,9 +178,8 @@ class PowerWiFimulticastTest(PWBT.PowerWiFiBaseTest): self.set_connection() self.pkt_gen_config = wputils.create_pkt_config(self) pkt_gen = pkt_utils.RaGenerator(**self.pkt_gen_config) - packet = pkt_gen.generate(RA_LONG_LIFETIME, - enableDNS=True, - dns_lifetime=DNS_SHORT_LIFETIME) + packet = pkt_gen.generate( + RA_LONG_LIFETIME, enableDNS=True, dns_lifetime=DNS_SHORT_LIFETIME) self.sendPacketAndMeasure(packet) @test_tracker_info(uuid='84d2f1ff-bd4f-46c6-9b06-826d9b14909c') @@ -203,9 +187,8 @@ class PowerWiFimulticastTest(PWBT.PowerWiFiBaseTest): self.set_connection() self.pkt_gen_config = wputils.create_pkt_config(self) pkt_gen = pkt_utils.RaGenerator(**self.pkt_gen_config) - packet = pkt_gen.generate(RA_LONG_LIFETIME, - enableDNS=True, - dns_lifetime=DNS_LONG_LIFETIME) + packet = pkt_gen.generate( + RA_LONG_LIFETIME, enableDNS=True, dns_lifetime=DNS_LONG_LIFETIME) self.sendPacketAndMeasure(packet) @test_tracker_info(uuid='4a17e74f-3e7f-4e90-ac9e-884a7c13cede') @@ -350,9 +333,8 @@ class PowerWiFimulticastTest(PWBT.PowerWiFiBaseTest): self.set_connection() self.pkt_gen_config = wputils.create_pkt_config(self) pkt_gen = pkt_utils.RaGenerator(**self.pkt_gen_config) - packet = pkt_gen.generate(RA_LONG_LIFETIME, - enableDNS=True, - dns_lifetime=DNS_SHORT_LIFETIME) + packet = pkt_gen.generate( + RA_LONG_LIFETIME, enableDNS=True, dns_lifetime=DNS_SHORT_LIFETIME) self.sendPacketAndMeasure(packet) @test_tracker_info(uuid='62b99cd7-75bf-45be-b93f-bb037a13b3e2') @@ -360,9 +342,8 @@ class PowerWiFimulticastTest(PWBT.PowerWiFiBaseTest): self.set_connection() self.pkt_gen_config = wputils.create_pkt_config(self) pkt_gen = pkt_utils.RaGenerator(**self.pkt_gen_config) - packet = pkt_gen.generate(RA_LONG_LIFETIME, - enableDNS=True, - dns_lifetime=DNS_LONG_LIFETIME) + packet = pkt_gen.generate( + RA_LONG_LIFETIME, enableDNS=True, dns_lifetime=DNS_LONG_LIFETIME) self.sendPacketAndMeasure(packet) @test_tracker_info(uuid='4088af4c-a64b-4fc1-848c-688936cc6c12') diff --git a/acts/tests/google/power/wifi/PowerWiFiroamingTest.py b/acts/tests/google/power/wifi/PowerWiFiroamingTest.py index 66110a1f34..47358c91b8 100644 --- a/acts/tests/google/power/wifi/PowerWiFiroamingTest.py +++ b/acts/tests/google/power/wifi/PowerWiFiroamingTest.py @@ -26,7 +26,6 @@ from acts.test_utils.wifi import wifi_power_test_utils as wputils PHONE_BATTERY_VOLTAGE = 4.2 - class PowerWiFiroamingTest(PWBT.PowerWiFiBaseTest): def teardown_test(self): # Delete the brconfigs attributes as this is duplicated with one of the @@ -81,30 +80,21 @@ class PowerWiFiroamingTest(PWBT.PowerWiFiBaseTest): time.sleep(5) # Toggle between two networks begin_time = utils.get_current_epoch_time() - results = [] for i in range(self.toggle_times): self.dut.log.info('Connecting to %s' % network_main[wc.SSID]) self.dut.droid.wifiConnect(network_main) - results.append(self.monsoon_data_collect_save()) + file_path, avg_current = self.monsoon_data_collect_save() self.dut.log.info('Connecting to %s' % network_aux[wc.SSID]) self.dut.droid.wifiConnect(network_aux) - results.append(self.monsoon_data_collect_save()) - wputils.monsoon_data_plot(self.mon_info, results) - - total_current = 0 - total_samples = 0 - for result in results: - total_current += result.average_current * result.num_samples - total_samples += result.num_samples - average_current = total_current / total_samples - - self.power_result.metric_value = [result.total_power for result in - results] + file_path, avg_current = self.monsoon_data_collect_save() + [plot, dt] = wputils.monsoon_data_plot(self.mon_info, file_path) + self.test_result = dt.source.data['y0'][0] + self.power_consumption = self.test_result * PHONE_BATTERY_VOLTAGE # Take Bugreport if self.bug_report: self.dut.take_bug_report(self.test_name, begin_time) # Path fail check - self.pass_fail_check(average_current) + self.pass_fail_check() @test_tracker_info(uuid='e5ff95c0-b17e-425c-a903-821ba555a9b9') def test_screenon_toggle_between_AP(self): @@ -127,30 +117,21 @@ class PowerWiFiroamingTest(PWBT.PowerWiFiBaseTest): time.sleep(5) # Toggle between two networks begin_time = utils.get_current_epoch_time() - results = [] for i in range(self.toggle_times): self.dut.log.info('Connecting to %s' % network_main[wc.SSID]) self.dut.droid.wifiConnect(network_main) - results.append(self.monsoon_data_collect_save()) + file_path, avg_current = self.monsoon_data_collect_save() self.dut.log.info('Connecting to %s' % network_aux[wc.SSID]) self.dut.droid.wifiConnect(network_aux) - results.append(self.monsoon_data_collect_save()) - wputils.monsoon_data_plot(self.mon_info, results) - - total_current = 0 - total_samples = 0 - for result in results: - total_current += result.average_current * result.num_samples - total_samples += result.num_samples - average_current = total_current / total_samples - - self.power_result.metric_value = [result.total_power for result in - results] + file_path, avg_current = self.monsoon_data_collect_save() + [plot, dt] = wputils.monsoon_data_plot(self.mon_info, file_path) + self.test_result = dt.source.data['y0'][0] + self.power_consumption = self.test_result * PHONE_BATTERY_VOLTAGE # Take Bugreport if self.bug_report: self.dut.take_bug_report(self.test_name, begin_time) # Path fail check - self.pass_fail_check(average_current) + self.pass_fail_check() @test_tracker_info(uuid='a16ae337-326f-4d09-990f-42232c3c0dc4') def test_screenoff_wifi_wedge(self): diff --git a/acts/tests/google/power/wifi/PowerWiFiscanTest.py b/acts/tests/google/power/wifi/PowerWiFiscanTest.py index e1153c12a6..46c605e1fb 100644 --- a/acts/tests/google/power/wifi/PowerWiFiscanTest.py +++ b/acts/tests/google/power/wifi/PowerWiFiscanTest.py @@ -20,7 +20,6 @@ from acts.test_utils.power import PowerWiFiBaseTest as PWBT from acts.test_utils.wifi import wifi_test_utils as wutils UNLOCK_SCREEN = 'input keyevent 82' -LOCATION_ON = 'settings put secure location_mode 3' class PowerWiFiscanTest(PWBT.PowerWiFiBaseTest): @@ -28,23 +27,36 @@ class PowerWiFiscanTest(PWBT.PowerWiFiBaseTest): super().setup_class() # Setup scan command SINGLE_SHOT_SCAN = ( - 'nohup am instrument -w -r -e min_scan_count \"700\"' + 'am instrument -w -r -e min_scan_count \"700\"' ' -e WifiScanTest-testWifiSingleShotScan %d' ' -e class com.google.android.platform.powertests.' 'WifiScanTest#testWifiSingleShotScan' ' com.google.android.platform.powertests/' 'androidx.test.runner.AndroidJUnitRunner > /dev/null &' % (self.mon_duration + self.mon_offset + 10)) + BACKGROUND_SCAN = ('am instrument -w -r -e min_scan_count \"1\" -e ' + 'WifiScanTest-testWifiBackgroundScan %d -e class ' + 'com.google.android.platform.powertests.WifiScan' + 'Test#testWifiBackgroundScan com.google.android.' + 'platform.powertests/androidx.test.runner.' + 'AndroidJUnitRunner > /dev/null &' % + (self.mon_duration + self.mon_offset + 10)) + WIFI_SCAN = ('am instrument -w -r -e min_scan_count \"1\" -e ' + 'WifiScanTest-testWifiScan %d -e class ' + 'com.google.android.platform.powertests.WifiScanTest#' + 'testWifiScan com.google.android.platform.powertests/' + 'androidx.test.runner.AndroidJUnitRunner > /dev/null &' % + (self.mon_duration + self.mon_offset + 10)) self.APK_SCAN_CMDS = { - 'singleshot': SINGLE_SHOT_SCAN + 'singleshot': SINGLE_SHOT_SCAN, + 'background': BACKGROUND_SCAN, + 'wifi': WIFI_SCAN } def setup_test(self): super().setup_test() # Reset attenuation to minimum self.set_attenuation([0, 0, 0, 0]) - # Turn on location for WiFi Scans - self.dut.adb.shell(LOCATION_ON) def scan_setup(self): """Setup for scan based on the type of scan. @@ -95,7 +107,7 @@ class PowerWiFiscanTest(PWBT.PowerWiFiBaseTest): self.measure_power_and_validate() # Test cases - # Power.apk triggered singleshot scans + # Power.apk triggered scans @test_tracker_info(uuid='e5539b01-e208-43c6-bebf-6f1e73d8d8cb') def test_screen_OFF_WiFi_Disconnected_band_2g_RSSI_high_scan_apk_singleshot( self): @@ -126,6 +138,16 @@ class PowerWiFiscanTest(PWBT.PowerWiFiBaseTest): self): self.wifi_scan_test_func() + @test_tracker_info(uuid='fe38c1c7-937c-42c0-9381-98356639df8f') + def test_screen_OFF_WiFi_Disconnected_band_2g_RSSI_high_scan_apk_wifi( + self): + self.wifi_scan_test_func() + + @test_tracker_info(uuid='8eedefd1-3a08-4ac2-ba55-5eb438def3d4') + def test_screen_OFF_WiFi_Disconnected_band_5g_RSSI_high_scan_apk_wifi( + self): + self.wifi_scan_test_func() + # Firmware/framework scans @test_tracker_info(uuid='ff5ea952-ee31-4968-a190-82935ce7a8cb') def test_screen_OFF_WiFi_ON_band_5g_RSSI_high_scan_system_connectivity( diff --git a/acts/tests/google/tel/config/README.md b/acts/tests/google/tel/config/README.md index d02cf0df5f..741fd7ce76 100644 --- a/acts/tests/google/tel/config/README.md +++ b/acts/tests/google/tel/config/README.md @@ -8,6 +8,9 @@ Telephony config files have some differences from other ACTS configs that requir - **telephony_auto_rerun** - Because testing with live infrastructure sometimes yields flaky results, when no other options are available to mitigate this uncertainty, this key specifies a maximum number of re-runs that will be performed in the event of a test failure. The test will be reported as a 'pass' after the first successful run. - **wifi_network_pass** - The password to the network specified by *wifi_network_ssid*. - **wifi_network_ssid** - The SSID of a wifi network for test use. This network must have internet access. +#### Power Test specific keys (TelPowerTest): + - **pass_criteria_call_(3g/volte/2g/wfc)** - The maximum amount of power in mW that can be used in steady state during calling power tests in order to pass the test. + - **pass_criteria_idle_(3g/volte/2g/wfc)** - The maximum amount of power in mW that can be used in steady state during idle power tests in order to pass the test. #### Call-Server test specific keys (TelLiveStressCallTest): - **phone_call_iteration** - The number of calls to be placed in TelLiveStressCallTest - **call_server_number** - the POTS telephone number of a call server used in TelLiveStressCallTest diff --git a/acts/tests/google/tel/lab/TelLabCmasTest.py b/acts/tests/google/tel/lab/TelLabCmasTest.py index 906c0a9de0..8a48c64c2b 100644 --- a/acts/tests/google/tel/lab/TelLabCmasTest.py +++ b/acts/tests/google/tel/lab/TelLabCmasTest.py @@ -70,8 +70,8 @@ WAIT_TIME_BETWEEN_REG_AND_MSG = 15 # default 15 sec class TelLabCmasTest(TelephonyBaseTest): SERIAL_NO = cb_serial_number() - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + TelephonyBaseTest.__init__(self, controllers) self.ad = self.android_devices[0] self.ad.sim_card = getattr(self.ad, "sim_card", None) self.md8475a_ip_address = self.user_params[ @@ -81,9 +81,10 @@ class TelLabCmasTest(TelephonyBaseTest): self.wait_time_between_reg_and_msg = self.user_params.get( "wait_time_between_reg_and_msg", WAIT_TIME_BETWEEN_REG_AND_MSG) + def setup_class(self): try: - self.anritsu = MD8475A(self.md8475a_ip_address, self.wlan_option, - self.md8475_version) + self.anritsu = MD8475A(self.md8475a_ip_address, self.log, + self.wlan_option, self.md8475_version) except AnritsuError: self.log.error("Error in connecting to Anritsu Simulator") return False diff --git a/acts/tests/google/tel/lab/TelLabDataRoamingTest.py b/acts/tests/google/tel/lab/TelLabDataRoamingTest.py index 8f09fea0b6..3e4cd86929 100644 --- a/acts/tests/google/tel/lab/TelLabDataRoamingTest.py +++ b/acts/tests/google/tel/lab/TelLabDataRoamingTest.py @@ -43,8 +43,8 @@ TIME_TO_WAIT_BEFORE_PING = 10 # Time(sec) to wait before ping class TelLabDataRoamingTest(TelephonyBaseTest): - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + TelephonyBaseTest.__init__(self, controllers) self.ad = self.android_devices[0] self.ad.sim_card = getattr(self.ad, "sim_card", None) self.md8475a_ip_address = self.user_params[ @@ -54,9 +54,10 @@ class TelLabDataRoamingTest(TelephonyBaseTest): if self.ad.sim_card == "VzW12349": set_preferred_apn_by_adb(self.ad, "VZWINTERNET") + def setup_class(self): try: - self.anritsu = MD8475A(self.md8475a_ip_address, self.wlan_option, - self.md8475_version) + self.anritsu = MD8475A(self.md8475a_ip_address, self.log, + self.wlan_option, self.md8475_version) except AnritsuError: self.log.error("Error in connecting to Anritsu Simulator") return False diff --git a/acts/tests/google/tel/lab/TelLabDataTest.py b/acts/tests/google/tel/lab/TelLabDataTest.py index c48446c94f..2577525b2d 100644 --- a/acts/tests/google/tel/lab/TelLabDataTest.py +++ b/acts/tests/google/tel/lab/TelLabDataTest.py @@ -59,7 +59,6 @@ from acts.test_utils.tel.tel_defines import POWER_LEVEL_FULL_SERVICE from acts.test_utils.tel.tel_test_utils import ensure_network_rat from acts.test_utils.tel.tel_test_utils import ensure_phones_idle from acts.test_utils.tel.tel_test_utils import ensure_network_generation -from acts.test_utils.tel.tel_test_utils import get_host_ip_address from acts.test_utils.tel.tel_test_utils import toggle_airplane_mode from acts.test_utils.tel.tel_test_utils import iperf_test_by_adb from acts.test_utils.tel.tel_test_utils import start_qxdm_loggers @@ -87,8 +86,8 @@ class TelLabDataTest(TelephonyBaseTest): SETTLING_TIME = 30 SERIAL_NO = cb_serial_number() - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + TelephonyBaseTest.__init__(self, controllers) self.ad = self.android_devices[0] self.ip_server = self.iperf_servers[0] self.port_num = self.ip_server.port @@ -107,9 +106,10 @@ class TelLabDataTest(TelephonyBaseTest): self.start_power_level) / self.step_size)) self.log.info("Max iterations is %d", self.MAX_ITERATIONS) + def setup_class(self): try: - self.anritsu = MD8475A(self.md8475a_ip_address, self.wlan_option, - self.md8475_version) + self.anritsu = MD8475A(self.md8475a_ip_address, self.log, + self.wlan_option, self.md8475_version) except AnritsuError: self.log.error("Error in connecting to Anritsu Simulator") return False @@ -181,7 +181,11 @@ class TelLabDataTest(TelephonyBaseTest): time.sleep(self.SETTLING_TIME) # Fetch IP address of the host machine - destination_ip = get_host_ip_address(self) + cmd = "|".join(("ifconfig", "grep eth0 -A1", "grep inet", + "cut -d ':' -f2", "cut -d ' ' -f 1")) + destination_ip = exe_cmd(cmd) + destination_ip = (destination_ip.decode("utf-8")).split("\n")[0] + self.log.info("Dest IP is %s", destination_ip) if not adb_shell_ping(self.ad, DEFAULT_PING_DURATION, destination_ip): diff --git a/acts/tests/google/tel/lab/TelLabEmergencyCallTest.py b/acts/tests/google/tel/lab/TelLabEmergencyCallTest.py index 4ea6e7f182..6983d97a96 100644 --- a/acts/tests/google/tel/lab/TelLabEmergencyCallTest.py +++ b/acts/tests/google/tel/lab/TelLabEmergencyCallTest.py @@ -69,8 +69,8 @@ from acts.utils import exe_cmd class TelLabEmergencyCallTest(TelephonyBaseTest): - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + TelephonyBaseTest.__init__(self, controllers) try: self.stress_test_number = int( self.user_params["stress_test_number"]) @@ -118,9 +118,10 @@ class TelLabEmergencyCallTest(TelephonyBaseTest): if self.ad.sim_card == "VzW12349": set_preferred_apn_by_adb(self.ad, "VZWINTERNET") + def setup_class(self): try: - self.anritsu = MD8475A(self.md8475a_ip_address, self.wlan_option, - self.md8475_version) + self.anritsu = MD8475A(self.md8475a_ip_address, self.log, + self.wlan_option, self.md8475_version) except AnritsuError: self.log.error("Error in connecting to Anritsu Simulator") return False diff --git a/acts/tests/google/tel/lab/TelLabEtwsTest.py b/acts/tests/google/tel/lab/TelLabEtwsTest.py index 1a1fbf9252..5eff2885f4 100644 --- a/acts/tests/google/tel/lab/TelLabEtwsTest.py +++ b/acts/tests/google/tel/lab/TelLabEtwsTest.py @@ -56,8 +56,8 @@ WAIT_TIME_BETWEEN_REG_AND_MSG = 15 # default 15 sec class TelLabEtwsTest(TelephonyBaseTest): SERIAL_NO = cb_serial_number() - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + TelephonyBaseTest.__init__(self, controllers) self.ad = self.android_devices[0] self.ad.sim_card = getattr(self.ad, "sim_card", None) self.md8475a_ip_address = self.user_params[ @@ -69,9 +69,10 @@ class TelLabEtwsTest(TelephonyBaseTest): self.wait_time_between_reg_and_msg = self.user_params.get( "wait_time_between_reg_and_msg", WAIT_TIME_BETWEEN_REG_AND_MSG) + def setup_class(self): try: - self.anritsu = MD8475A(self.md8475a_ip_address, self.wlan_option, - self.md8475_version) + self.anritsu = MD8475A(self.md8475a_ip_address, self.log, + self.wlan_option, self.md8475_version) except AnritsuError: self.log.error("Error in connecting to Anritsu Simulator") return False diff --git a/acts/tests/google/tel/lab/TelLabMobilityTest.py b/acts/tests/google/tel/lab/TelLabMobilityTest.py index f620826832..feea2a0be8 100644 --- a/acts/tests/google/tel/lab/TelLabMobilityTest.py +++ b/acts/tests/google/tel/lab/TelLabMobilityTest.py @@ -49,7 +49,6 @@ from acts.test_utils.tel.tel_defines import WAIT_TIME_IN_CALL from acts.test_utils.tel.tel_defines import WAIT_TIME_IN_CALL_FOR_IMS from acts.test_utils.tel.tel_test_utils import ensure_network_rat from acts.test_utils.tel.tel_test_utils import ensure_phones_idle -from acts.test_utils.tel.tel_test_utils import get_host_ip_address from acts.test_utils.tel.tel_test_utils import toggle_airplane_mode_by_adb from acts.test_utils.tel.tel_test_utils import toggle_volte from acts.test_utils.tel.tel_test_utils import run_multithread_func @@ -70,8 +69,8 @@ WAITTIME_AFTER_HANDOVER = 20 class TelLabMobilityTest(TelephonyBaseTest): - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + TelephonyBaseTest.__init__(self, controllers) self.ad = self.android_devices[0] self.ad.sim_card = getattr(self.ad, "sim_card", None) self.md8475a_ip_address = self.user_params[ @@ -86,9 +85,10 @@ class TelLabMobilityTest(TelephonyBaseTest): if self.ad.sim_card == "VzW12349": set_preferred_apn_by_adb(self.ad, "VZWINTERNET") + def setup_class(self): try: - self.anritsu = MD8475A(self.md8475a_ip_address, self.wlan_option, - self.md8475_version) + self.anritsu = MD8475A(self.md8475a_ip_address, self.log, + self.wlan_option, self.md8475_version) except AnritsuError: self.log.error("Error in connecting to Anritsu Simulator") return False @@ -247,7 +247,11 @@ class TelLabMobilityTest(TelephonyBaseTest): def iperf_setup(self): # Fetch IP address of the host machine - destination_ip = get_host_ip_address(self) + cmd = "|".join(("ifconfig", "grep eth0 -A1", "grep inet", + "cut -d ':' -f2", "cut -d ' ' -f 1")) + destination_ip = exe_cmd(cmd) + destination_ip = (destination_ip.decode("utf-8")).split("\n")[0] + self.log.info("Dest IP is %s", destination_ip) if not adb_shell_ping(self.ad, DEFAULT_PING_DURATION, destination_ip): self.log.error("Pings failed to Destination.") diff --git a/acts/tests/google/tel/lab/TelLabNeighborCellTest.py b/acts/tests/google/tel/lab/TelLabNeighborCellTest.py index ae3ac1d92e..3a26b5c1a5 100644 --- a/acts/tests/google/tel/lab/TelLabNeighborCellTest.py +++ b/acts/tests/google/tel/lab/TelLabNeighborCellTest.py @@ -150,8 +150,8 @@ class TelLabNeighborCellTest(TelephonyBaseTest): # 0x7fffffff, need to discard this value when calculating unique_id INVALID_VALUE = 0x7fffffff - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + TelephonyBaseTest.__init__(self, controllers) self.ad = self.android_devices[0] self.ad.sim_card = getattr(self.ad, "sim_card", None) self.md8475a_ip_address = self.user_params[ @@ -169,18 +169,19 @@ class TelLabNeighborCellTest(TelephonyBaseTest): if "gsm_rssi_offset" in self.user_params: self._GSM_RSSI_OFFSET = int(self.user_params["gsm_rssi_offset"]) + def setup_class(self): self.md8475a = None self.mg3710a = None try: - self.md8475a = MD8475A(self.md8475a_ip_address, self.wlan_option, - self.md8475_version) + self.md8475a = MD8475A(self.md8475a_ip_address, self.log, + self.wlan_option, self.md8475_version) except AnritsuError as e: self.log.error("Error in connecting to Anritsu MD8475A:{}".format( e)) return False try: - self.mg3710a = MG3710A(self.mg3710a_ip_address) + self.mg3710a = MG3710A(self.mg3710a_ip_address, self.log) except AnritsuError as e: self.log.error("Error in connecting to Anritsu MG3710A :{}".format( e)) diff --git a/acts/tests/google/tel/lab/TelLabPowerDataTest.py b/acts/tests/google/tel/lab/TelLabPowerDataTest.py new file mode 100644 index 0000000000..7b9174625b --- /dev/null +++ b/acts/tests/google/tel/lab/TelLabPowerDataTest.py @@ -0,0 +1,244 @@ +#!/usr/bin/env python3 +# +# Copyright 2016 - The Android Open Source Project +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Sanity tests for voice tests in telephony +""" +import time, os + +from acts.test_utils.tel.anritsu_utils import make_ims_call +from acts.test_utils.tel.anritsu_utils import tear_down_call +from acts.test_utils.tel.tel_test_utils import iperf_test_by_adb +from acts.test_utils.tel.TelephonyBaseTest import TelephonyBaseTest +from acts.test_utils.tel.TelephonyLabPowerTest import TelephonyLabPowerTest +from acts.utils import adb_shell_ping +from acts.controllers import iperf_server +from acts.utils import exe_cmd +import json + +DEFAULT_PING_DURATION = 10 +IPERF_DURATION = 30 +IPERF_LOG_FILE_PATH = "/sdcard/iperf.txt" + +DEFAULT_CALL_NUMBER = "+11234567891" +WAIT_TIME_VOLTE = 5 + + +class TelLabPowerDataTest(TelephonyLabPowerTest): + # TODO Keep if we want to add more in here for this class. + def __init__(self, controllers): + TelephonyLabPowerTest.__init__(self, controllers) + self.ip_server = self.iperf_servers[0] + self.port_num = self.ip_server.port + self.log.info("Iperf Port is %s", self.port_num) + self.log.info("End of __init__ class of TelLabPowerDataTest") + + # May not need + def teardown_class(self): + # Always take down the simulation + TelephonyLabPowerTest.teardown_class(self) + + def iperf_setup(self): + # Fetch IP address of the host machine + cmd = "|".join(("ifconfig", "grep eth0 -A1", "grep inet", + "cut -d ':' -f2", "cut -d ' ' -f 1")) + destination_ip = exe_cmd(cmd) + destination_ip = (destination_ip.decode("utf-8")).split("\n")[0] + self.log.info("Dest IP is %s", destination_ip) + time.sleep(1) + if not adb_shell_ping( + self.ad, DEFAULT_PING_DURATION, destination_ip, + loss_tolerance=95): + self.log.error("Pings failed to Destination.") + return False + + return destination_ip + + def _iperf_task(self, destination_ip, duration): + self.log.info("Starting iPerf task") + self.ip_server.start() + tput_dict = {"Uplink": 0, "Downlink": 0} + if iperf_test_by_adb( + self.log, + self.ad, + destination_ip, + self.port_num, + True, # reverse + duration, + rate_dict=tput_dict, + blocking=False, + log_file_path=IPERF_LOG_FILE_PATH): + return True + else: + self.log.error("iperf failed to Destination.") + self.ip_server.stop() + return False + + def power_iperf_test(self, olvl, rflvl, sch_mode="DYNAMIC", volte=False): + if volte: + # make a VoLTE MO call + self.log.info("DEFAULT_CALL_NUMBER = " + DEFAULT_CALL_NUMBER) + if not make_ims_call(self.log, self.ad, self.anritsu, + DEFAULT_CALL_NUMBER): + self.log.error("Phone {} Failed to make volte call to {}" + .format(self.ad.serial, DEFAULT_CALL_NUMBER)) + return False + self.log.info("wait for %d seconds" % WAIT_TIME_VOLTE) + time.sleep(WAIT_TIME_VOLTE) + + server_ip = self.iperf_setup() + if not server_ip: + self.log.error("iperf server can not be reached by ping") + return False + + self._iperf_task(server_ip, IPERF_DURATION) + self.log.info("Wait for 10 secconds before power measurement") + time.sleep(10) + self.power_test(olvl, rflvl, sch_mode) + + result = self.ad.adb.shell("cat {}".format(IPERF_LOG_FILE_PATH)) + if result is not None: + data_json = json.loads(''.join(result)) + rx_rate = data_json['end']['sum_received']['bits_per_second'] + xfer_time = data_json['end']['sum_received']['seconds'] + self.ad.log.info('iPerf3 transfer time was %ssecs', xfer_time) + self.ad.log.info('iPerf3 download speed is %sbps', rx_rate) + + if volte: + # check if the phone is still in call, then tear it down + if not self.ad.droid.telecomIsInCall(): + self.log.error("Call is already ended in the phone.") + return False + if not tear_down_call(self.log, self.ad, self.anritsu): + self.log.error("Phone {} Failed to tear down VoLTE call" + .format(self.ad.serial)) + return False + + return True + + """ Tests Begin """ + + @TelephonyBaseTest.tel_test_wrap + def test_data_power_n30_n30(self): + """ Test power consumption for iPerf data @ DL/UL -30/-30dBm + Steps: + 1. Assume UE already in Communication mode. + 2. Initiate iPerf data transfer. + 3. Set DL/UL power and Dynamic scheduling. + 4. Measure power consumption. + + Expected Results: + 1. power consumption measurement is successful + 2. measurement results is saved accordingly + + Returns: + True if pass; False if fail + """ + return self.power_iperf_test(-30, -30) + + @TelephonyBaseTest.tel_test_wrap + def test_data_power_n50_n10(self): + """ Test power consumption for iPerf data @ DL/UL -50/-10dBm + Steps: + 1. Assume UE already in Communication mode. + 2. Initiate iPerf data transfer. + 3. Set DL/UL power and Dynamic scheduling. + 4. Measure power consumption. + + Expected Results: + 1. power consumption measurement is successful + 2. measurement results is saved accordingly + + Returns: + True if pass; False if fail + """ + return self.power_iperf_test(-50, -10) + + @TelephonyBaseTest.tel_test_wrap + def test_data_power_n70_10(self): + """ Test power consumption for iPerf data @ DL/UL -70/+10dBm + Steps: + 1. Assume UE already in Communication mode. + 2. Initiate iPerf data transfer. + 3. Set DL/UL power and Dynamic scheduling. + 4. Measure power consumption. + + Expected Results: + 1. power consumption measurement is successful + 2. measurement results is saved accordingly + + Returns: + True if pass; False if fail + """ + return self.power_iperf_test(-70, 10) + + @TelephonyBaseTest.tel_test_wrap + def test_data_volte_power_n30_n30(self): + """ Test power consumption for iPerf data and volte @ DL/UL -30/-30dBm + Steps: + 1. Assume UE already in Communication mode. + 2. Make MO VoLTE call. + 3. Initiate iPerf data transfer. + 4. Set DL/UL power and Dynamic scheduling. + 5. Measure power consumption. + + Expected Results: + 1. power consumption measurement is successful + 2. measurement results is saved accordingly + + Returns: + True if pass; False if fail + """ + return self.power_iperf_test(-30, -30, volte=True) + + @TelephonyBaseTest.tel_test_wrap + def test_data_volte_power_n50_n10(self): + """ Test power consumption for iPerf data and volte @ DL/UL -50/-10dBm + Steps: + 1. Assume UE already in Communication mode. + 2. Make MO VoLTE call. + 3. Initiate iPerf data transfer. + 4. Set DL/UL power and Dynamic scheduling. + 5. Measure power consumption. + + Expected Results: + 1. power consumption measurement is successful + 2. measurement results is saved accordingly + + Returns: + True if pass; False if fail + """ + return self.power_iperf_test(-50, -10, volte=True) + + @TelephonyBaseTest.tel_test_wrap + def test_data_volte_power_n70_10(self): + """ Test power consumption for iPerf data and volte @ DL/UL -70/+10dBm + Steps: + 1. Assume UE already in Communication mode. + 2. Make MO VoLTE call. + 3. Initiate iPerf data transfer. + 4. Set DL/UL power and Dynamic scheduling. + 5. Measure power consumption. + + Expected Results: + 1. power consumption measurement is successful + 2. measurement results is saved accordingly + + Returns: + True if pass; False if fail + """ + return self.power_iperf_test(-70, 10, volte=True) + + """ Tests End """ diff --git a/acts/tests/google/tel/lab/TelLabPowerVoLTETest.py b/acts/tests/google/tel/lab/TelLabPowerVoLTETest.py new file mode 100644 index 0000000000..fbdd45e819 --- /dev/null +++ b/acts/tests/google/tel/lab/TelLabPowerVoLTETest.py @@ -0,0 +1,121 @@ +#!/usr/bin/env python3 +# +# Copyright 2016 - The Android Open Source Project +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Sanity tests for voice tests in telephony +""" +import time + +from acts.test_utils.tel.anritsu_utils import make_ims_call +from acts.test_utils.tel.anritsu_utils import tear_down_call +from acts.test_utils.tel.TelephonyBaseTest import TelephonyBaseTest +from acts.test_utils.tel.TelephonyLabPowerTest import TelephonyLabPowerTest + +DEFAULT_CALL_NUMBER = "+11234567891" +WAIT_TIME_VOLTE = 5 + + +class TelLabPowerVoLTETest(TelephonyLabPowerTest): + + # TODO Keep if we want to add more in here for this class. + def __init__(self, controllers): + TelephonyLabPowerTest.__init__(self, controllers) + + def setup_class(self): + self.log.info("entering setup_class TelLabPowerVoLTETest") + TelephonyLabPowerTest.setup_class(self) + self.log.info("Making MO VoLTE call") + # make a VoLTE MO call + self.log.info("DEFAULT_CALL_NUMBER = " + DEFAULT_CALL_NUMBER) + if not make_ims_call(self.log, self.ad, self.anritsu, + DEFAULT_CALL_NUMBER): + self.log.error("Phone {} Failed to make volte call to {}" + .format(self.ad.serial, DEFAULT_CALL_NUMBER)) + return False + self.log.info("wait for %d seconds" % WAIT_TIME_VOLTE) + time.sleep(WAIT_TIME_VOLTE) + return True + + def teardown_test(self): + # check if the phone stay in call + if not self.ad.droid.telecomIsInCall(): + self.log.error("Call is already ended in the phone.") + return False + self.log.info("End of teardown_test()") + return True + + def teardown_class(self): + if not tear_down_call(self.log, self.ad, self.anritsu): + self.log.error("Phone {} Failed to tear down" + .format(self.ad.serial)) + return False + # Always take down the simulation + TelephonyLabPowerTest.teardown_class(self) + return True + + """ Tests Begin """ + + @TelephonyBaseTest.tel_test_wrap + def test_volte_power_n40_n20(self): + """ Measure power consumption of a VoLTE call with DL/UL -40/-20dBm + Steps: + 1. Assume a VoLTE call is already in place by Setup_Class. + 2. Set DL/UL power and Dynamic scheduling + 3. Measure power consumption. + + Expected Results: + 1. power consumption measurement is successful + 2. measurement results is saved accordingly + + Returns: + True if pass; False if fail + """ + return self.power_test(-40, -20) + + @TelephonyBaseTest.tel_test_wrap + def test_volte_power_n60_0(self): + """ Measure power consumption of a VoLTE call with DL/UL -60/0dBm + Steps: + 1. Assume a VoLTE call is already in place by Setup_Class. + 2. Set DL/UL power and Dynamic scheduling + 3. Measure power consumption. + + Expected Results: + 1. power consumption measurement is successful + 2. measurement results is saved accordingly + + Returns: + True if pass; False if fail + """ + return self.power_test(-60, 0) + + @TelephonyBaseTest.tel_test_wrap + def test_volte_power_n80_20(self): + """ Measure power consumption of a VoLTE call with DL/UL -80/+20dBm + Steps: + 1. Assume a VoLTE call is already in place by Setup_Class. + 2. Set DL/UL power and Dynamic scheduling + 3. Measure power consumption. + + Expected Results: + 1. power consumption measurement is successful + 2. measurement results is saved accordingly + + Returns: + True if pass; False if fail + """ + return self.power_test(-80, 20) + + """ Tests End """ diff --git a/acts/tests/google/tel/lab/TelLabProjectFiTest.py b/acts/tests/google/tel/lab/TelLabProjectFiTest.py index b5ccd08ed5..6a3a979d9b 100644 --- a/acts/tests/google/tel/lab/TelLabProjectFiTest.py +++ b/acts/tests/google/tel/lab/TelLabProjectFiTest.py @@ -113,8 +113,8 @@ class ActionTypeId(object): class TelLabProjectFiTest(TelephonyBaseTest): SERIAL_NO = cb_serial_number() - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + TelephonyBaseTest.__init__(self, controllers) self.ad = self.android_devices[0] self.ad.sim_card = getattr(self.ad, "sim_card", None) self.md8475a_ip_address = self.user_params[ @@ -126,9 +126,10 @@ class TelLabProjectFiTest(TelephonyBaseTest): self.wait_time_between_reg_and_msg = self.user_params.get( "wait_time_between_reg_and_msg", WAIT_TIME_BETWEEN_REG_AND_MSG) + def setup_class(self): try: - self.anritsu = MD8475A(self.md8475a_ip_address, self.wlan_option, - self.md8475_version) + self.anritsu = MD8475A(self.md8475a_ip_address, self.log, + self.wlan_option, self.md8475_version) except AnritsuError: self.log.error("Error in connecting to Anritsu Simulator") return False diff --git a/acts/tests/google/tel/lab/TelLabSmsTest.py b/acts/tests/google/tel/lab/TelLabSmsTest.py index 47270c9383..df2a916664 100644 --- a/acts/tests/google/tel/lab/TelLabSmsTest.py +++ b/acts/tests/google/tel/lab/TelLabSmsTest.py @@ -72,8 +72,8 @@ class TelLabSmsTest(TelephonyBaseTest): phoneNumber = "911" SETTLING_TIME = 15 - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + TelephonyBaseTest.__init__(self, controllers) self.ad = self.android_devices[0] self.md8475a_ip_address = self.user_params[ "anritsu_md8475a_ip_address"] @@ -81,9 +81,10 @@ class TelLabSmsTest(TelephonyBaseTest): self.wlan_option = self.user_params.get("anritsu_wlan_option", False) self.md8475_version = self.user_params.get("md8475", "A") + def setup_class(self): try: - self.anritsu = MD8475A(self.md8475a_ip_address, self.wlan_option, - self.md8475_version) + self.anritsu = MD8475A(self.md8475a_ip_address, self.log, + self.wlan_option, self.md8475_version) except AnritsuError: self.log.error("Error in connecting to Anritsu Simulator") return False diff --git a/acts/tests/google/tel/lab/TelLabUeIdentityTest.py b/acts/tests/google/tel/lab/TelLabUeIdentityTest.py index 3a9bb7701a..521de91ab1 100644 --- a/acts/tests/google/tel/lab/TelLabUeIdentityTest.py +++ b/acts/tests/google/tel/lab/TelLabUeIdentityTest.py @@ -47,15 +47,16 @@ class TelLabUeIdentityTest(TelephonyBaseTest): CELL_PARAM_FILE = 'C:\\MX847570\\CellParam\\ACTS\\2cell_param.wnscp' - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + TelephonyBaseTest.__init__(self, controllers) self.ad = self.android_devices[0] self.md8475a_ip_address = self.user_params[ "anritsu_md8475a_ip_address"] self.ad.sim_card = getattr(self.ad, "sim_card", None) + def setup_class(self): try: - self.anritsu = MD8475A(self.md8475a_ip_address) + self.anritsu = MD8475A(self.md8475a_ip_address, self.log) except AnritsuError: self.log.error("Error in connecting to Anritsu Simulator") return False diff --git a/acts/tests/google/tel/lab/TelLabVoiceTest.py b/acts/tests/google/tel/lab/TelLabVoiceTest.py index 1a638f9e57..58b905c92c 100644 --- a/acts/tests/google/tel/lab/TelLabVoiceTest.py +++ b/acts/tests/google/tel/lab/TelLabVoiceTest.py @@ -65,8 +65,8 @@ DEFAULT_CALL_NUMBER = "0123456789" class TelLabVoiceTest(TelephonyBaseTest): - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + TelephonyBaseTest.__init__(self, controllers) try: self.stress_test_number = int( self.user_params["stress_test_number"]) @@ -94,9 +94,10 @@ class TelLabVoiceTest(TelephonyBaseTest): if self.ad.sim_card == "VzW12349": set_preferred_apn_by_adb(self.ad, "VZWINTERNET") + def setup_class(self): try: - self.anritsu = MD8475A(self.md8475a_ip_address, self.wlan_option, - self.md8475_version) + self.anritsu = MD8475A(self.md8475a_ip_address, self.log, + self.wlan_option, self.md8475_version) except AnritsuError: self.log.error("Error in connecting to Anritsu Simulator") return False diff --git a/acts/tests/google/tel/live/TelLiveCBRSTest.py b/acts/tests/google/tel/live/TelLiveCBRSTest.py deleted file mode 100644 index 3b825f1b9b..0000000000 --- a/acts/tests/google/tel/live/TelLiveCBRSTest.py +++ /dev/null @@ -1,792 +0,0 @@ -#!/usr/bin/env python3.4 -# -# Copyright 2019 - Google -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -""" - Test Script for CBRS devices -""" - -import time -import collections - -from acts.test_decorators import test_tracker_info -from acts.test_utils.tel.TelephonyBaseTest import TelephonyBaseTest -from acts.test_utils.tel.tel_defines import DIRECTION_MOBILE_ORIGINATED -from acts.test_utils.tel.tel_defines import DIRECTION_MOBILE_TERMINATED -from acts.test_utils.tel.tel_defines import WAIT_TIME_BETWEEN_REG_AND_CALL -from acts.test_utils.tel.tel_defines import WAIT_TIME_IN_CALL -from acts.test_utils.tel.tel_defines import WAIT_TIME_FOR_CBRS_DATA_SWITCH -from acts.test_utils.tel.tel_defines import EventActiveDataSubIdChanged -from acts.test_utils.tel.tel_defines import NetworkCallbackAvailable -from acts.test_utils.tel.tel_defines import EventNetworkCallback -from acts.test_utils.tel.tel_test_utils import get_phone_number -from acts.test_utils.tel.tel_test_utils import hangup_call -from acts.test_utils.tel.tel_test_utils import hangup_call_by_adb -from acts.test_utils.tel.tel_test_utils import initiate_call -from acts.test_utils.tel.tel_test_utils import is_phone_not_in_call -from acts.test_utils.tel.tel_test_utils import wait_and_answer_call -from acts.test_utils.tel.tel_test_utils import is_phone_in_call -from acts.test_utils.tel.tel_test_utils import start_qxdm_loggers -from acts.test_utils.tel.tel_test_utils import test_data_browsing_success_using_sl4a -from acts.test_utils.tel.tel_test_utils import test_data_browsing_failure_using_sl4a -from acts.test_utils.tel.tel_test_utils import get_operator_name -from acts.test_utils.tel.tel_test_utils import is_current_data_on_cbrs -from acts.test_utils.tel.tel_test_utils import toggle_airplane_mode -from acts.test_utils.tel.tel_test_utils import STORY_LINE -from acts.test_utils.tel.tel_test_utils import get_device_epoch_time -from acts.test_utils.tel.tel_test_utils import start_qxdm_logger -from acts.test_utils.tel.tel_test_utils import wifi_toggle_state -from acts.test_utils.tel.tel_voice_utils import is_phone_in_call_3g -from acts.test_utils.tel.tel_voice_utils import is_phone_in_call_2g -from acts.test_utils.tel.tel_voice_utils import is_phone_in_call_csfb -from acts.test_utils.tel.tel_voice_utils import is_phone_in_call_iwlan -from acts.test_utils.tel.tel_voice_utils import is_phone_in_call_not_iwlan -from acts.test_utils.tel.tel_voice_utils import is_phone_in_call_volte -from acts.test_utils.tel.tel_voice_utils import phone_setup_voice_general -from acts.test_utils.tel.tel_voice_utils import phone_setup_volte_for_subscription -from acts.test_utils.tel.tel_voice_utils import phone_setup_cdma -from acts.test_utils.tel.tel_voice_utils import phone_setup_voice_2g -from acts.test_utils.tel.tel_voice_utils import phone_idle_3g -from acts.test_utils.tel.tel_voice_utils import phone_idle_2g -from acts.test_utils.tel.tel_voice_utils import phone_idle_csfb -from acts.test_utils.tel.tel_voice_utils import phone_idle_iwlan -from acts.test_utils.tel.tel_voice_utils import phone_idle_not_iwlan -from acts.test_utils.tel.tel_voice_utils import phone_idle_volte -from acts.test_utils.tel.tel_subscription_utils import get_subid_from_slot_index -from acts.test_utils.tel.tel_subscription_utils import get_operatorname_from_slot_index -from acts.test_utils.tel.tel_subscription_utils import get_cbrs_and_default_sub_id -from acts.utils import get_current_epoch_time -from queue import Empty - -WAIT_TIME_BETWEEN_ITERATION = 5 -WAIT_TIME_BETWEEN_HANDOVER = 10 -TIME_PERMITTED_FOR_CBRS_SWITCH = 2 - -class TelLiveCBRSTest(TelephonyBaseTest): - def setup_class(self): - super().setup_class() - self.number_of_devices = 2 - self.stress_test_number = self.get_stress_test_number() - self.message_lengths = (50, 160, 180) - self.long_message_lengths = (800, 1600) - self.cbrs_subid = None - self.default_subid = None - self.switch_time_dict = {} - self.stress_test_number = int( - self.user_params.get("stress_test_number", 5)) - - - def on_fail(self, test_name, begin_time): - if test_name.startswith('test_stress'): - return - super().on_fail(test_name, begin_time) - - - def _cbrs_call_sequence(self, ads, mo_mt, - cbrs_phone_setup_func, - verify_cbrs_initial_idle_func, - verify_data_initial_func, - verify_cbrs_in_call_state_func, - verify_data_in_call_func, - incall_cbrs_setting_check_func, - verify_data_final_func, - verify_cbrs_final_func, - expected_result): - """_cbrs_call_sequence - - Args: - ads: list of android devices. This list should have 2 ad. - mo_mt: indicating this call sequence is MO or MT. - Valid input: DIRECTION_MOBILE_ORIGINATED and - DIRECTION_MOBILE_TERMINATED. - - Returns: - if expected_result is True, - Return True if call sequence finish without exception. - if expected_result is string, - Return True if expected exception happened. Otherwise False. - - """ - - class _CBRSCallSequenceException(Exception): - pass - - if (len(ads) != 2) or (mo_mt not in [ - DIRECTION_MOBILE_ORIGINATED, DIRECTION_MOBILE_TERMINATED - ]): - self.log.error("Invalid parameters.") - return False - - self.cbrs_subid, self.default_subid = get_cbrs_and_default_sub_id(ads[0]) - - if mo_mt == DIRECTION_MOBILE_ORIGINATED: - ad_caller = ads[0] - ad_callee = ads[1] - caller_number = get_phone_number(self.log, ad_caller) - callee_number = get_phone_number(self.log, ad_callee) - mo_operator = get_operator_name(ads[0].log, ads[0]) - mt_operator = get_operator_name(ads[1].log, ads[1]) - else: - ad_caller = ads[1] - ad_callee = ads[0] - caller_number = get_phone_number(self.log, ad_caller) - callee_number = get_phone_number(self.log, ad_callee) - mt_operator = get_operator_name(ads[0].log, ads[0]) - mo_operator = get_operator_name(ads[1].log, ads[1]) - - self.log.info("-->Begin cbrs_call_sequence: %s to %s<--", - caller_number, callee_number) - self.log.info("--> %s to %s <--", mo_operator, mt_operator) - - try: - # Setup - if cbrs_phone_setup_func and not cbrs_phone_setup_func(): - raise _CBRSCallSequenceException("cbrs_phone_setup_func fail.") - if not phone_setup_voice_general(self.log, ads[1]): - raise _CBRSCallSequenceException( - "phone_setup_voice_general fail.") - time.sleep(WAIT_TIME_BETWEEN_REG_AND_CALL) - - # Ensure idle status correct - if verify_cbrs_initial_idle_func and not \ - verify_cbrs_initial_idle_func(): - raise _CBRSCallSequenceException( - "verify_cbrs_initial_idle_func fail.") - - # Ensure data checks are performed - if verify_data_initial_func and not \ - verify_data_initial_func(): - raise _CBRSCallSequenceException( - "verify_data_initial_func fail.") - - # Make MO/MT call. - if not initiate_call(self.log, ad_caller, callee_number): - raise _CBRSCallSequenceException("initiate_call fail.") - if not wait_and_answer_call(self.log, ad_callee, caller_number): - raise _CBRSCallSequenceException("wait_and_answer_call fail.") - time.sleep(WAIT_TIME_FOR_CBRS_DATA_SWITCH) - - # Check state, wait 30 seconds, check again. - if (verify_cbrs_in_call_state_func and not - verify_cbrs_in_call_state_func()): - raise _CBRSCallSequenceException( - "verify_cbrs_in_call_state_func fail.") - - if is_phone_not_in_call(self.log, ads[1]): - raise _CBRSCallSequenceException("PhoneB not in call.") - - # Ensure data checks are performed - if verify_data_in_call_func and not \ - verify_data_in_call_func(): - raise _CBRSCallSequenceException( - "verify_data_in_call_func fail.") - - time.sleep(WAIT_TIME_IN_CALL) - - if (verify_cbrs_in_call_state_func and not - verify_cbrs_in_call_state_func()): - raise _CBRSCallSequenceException( - "verify_cbrs_in_call_state_func fail after 30 seconds.") - if is_phone_not_in_call(self.log, ads[1]): - raise _CBRSCallSequenceException( - "PhoneB not in call after 30 seconds.") - - # in call change setting and check - if (incall_cbrs_setting_check_func and not - incall_cbrs_setting_check_func()): - raise _CBRSCallSequenceException( - "incall_cbrs_setting_check_func fail.") - - # Hangup call - if is_phone_in_call(self.log, ads[0]): - if not hangup_call(self.log, ads[0]): - raise _CBRSCallSequenceException("hangup_call fail.") - else: - if incall_cbrs_setting_check_func is None: - raise _CBRSCallSequenceException("Unexpected call drop.") - - time.sleep(WAIT_TIME_FOR_CBRS_DATA_SWITCH) - - # Ensure data checks are performed - if verify_data_final_func and not \ - verify_data_final_func(): - raise _CBRSCallSequenceException( - "verify_data_final_func fail.") - - # Ensure data checks are performed - if verify_cbrs_final_func and not \ - verify_cbrs_final_func(): - raise _CBRSCallSequenceException( - "verify_cbrs_final_func fail.") - - except _CBRSCallSequenceException as e: - if str(e) == expected_result: - self.log.info("Expected exception: <%s>, return True.", e) - return True - else: - self.log.info("Unexpected exception: <%s>, return False.", e) - return False - finally: - for ad in ads: - if ad.droid.telecomIsInCall(): - hangup_call_by_adb(ad) - self.log.info("cbrs_call_sequence finished, return %s", - expected_result is True) - return (expected_result is True) - - - def _phone_idle_iwlan(self): - return phone_idle_iwlan(self.log, self.android_devices[0]) - - def _phone_idle_not_iwlan(self): - return phone_idle_not_iwlan(self.log, self.android_devices[0]) - - def _phone_idle_volte(self): - return phone_idle_volte(self.log, self.android_devices[0]) - - def _phone_idle_csfb(self): - return phone_idle_csfb(self.log, self.android_devices[0]) - - def _phone_idle_3g(self): - return phone_idle_3g(self.log, self.android_devices[0]) - - def _phone_idle_2g(self): - return phone_idle_2g(self.log, self.android_devices[0]) - - def _is_phone_in_call_iwlan(self): - return is_phone_in_call_iwlan(self.log, self.android_devices[0]) - - def _is_phone_in_call_not_iwlan(self): - return is_phone_in_call_not_iwlan(self.log, self.android_devices[0]) - - def _is_phone_not_in_call(self): - if is_phone_in_call(self.log, self.android_devices[0]): - self.log.info("{} in call.".format(self.android_devices[0].serial)) - return False - self.log.info("{} not in call.".format(self.android_devices[0].serial)) - return True - - def _is_phone_in_call_volte(self): - return is_phone_in_call_volte(self.log, self.android_devices[0]) - - def _is_phone_in_call_3g(self): - return is_phone_in_call_3g(self.log, self.android_devices[0]) - - def _is_phone_in_call_2g(self): - return is_phone_in_call_2g(self.log, self.android_devices[0]) - - def _is_phone_in_call_csfb(self): - return is_phone_in_call_csfb(self.log, self.android_devices[0]) - - def _is_phone_in_call(self): - return is_phone_in_call(self.log, self.android_devices[0]) - - def _phone_setup_voice_general(self): - return phone_setup_voice_general(self.log, self.android_devices[0]) - - def _phone_setup_volte(self): - return phone_setup_volte_for_subscription(self.log, - self.android_devices[0], - self.default_subid) - - def _phone_setup_1x(self): - return phone_setup_cdma(self.log, self.android_devices[0]) - - def _phone_setup_2g(self): - return phone_setup_voice_2g(self.log, self.android_devices[0]) - - - def _test_data_browsing_success_using_sl4a(self): - return test_data_browsing_success_using_sl4a(self.log, - self.android_devices[0]) - - def _test_data_browsing_failure_using_sl4a(self): - return test_data_browsing_failure_using_sl4a(self.log, - self.android_devices[0]) - - def _is_current_data_on_cbrs(self): - return is_current_data_on_cbrs(self.android_devices[0], - self.cbrs_subid) - - def _is_current_data_on_default(self): - return not is_current_data_on_cbrs(self.android_devices[0], - self.cbrs_subid) - - def _get_list_average(self, input_list): - total_sum = float(sum(input_list)) - total_count = float(len(input_list)) - if input_list == []: - return False - return float(total_sum / total_count) - - - """ Tests Begin """ - - - @test_tracker_info(uuid="f7a3db92-2f1b-4131-99bc-b323dbce812c") - @TelephonyBaseTest.tel_test_wrap - def test_cbrs_mo_voice_data_concurrency_lte(self): - """ Test CBRS Data with MO Voice Call on LTE - - PhoneA should be on LTE with VoLTE enabled - Verify Data Browsing works fine on cbrs before call - Call from PhoneA to PhoneB, call should succeed - Verify Data Browsing works fine on pSIM during call - Terminate call - Verify Data Browsing works fine on cbrs after call - - Returns: - True if pass; False if fail. - """ - ads = [self.android_devices[0], self.android_devices[1]] - result = self._cbrs_call_sequence( - ads, DIRECTION_MOBILE_ORIGINATED, - self._phone_setup_volte, self._is_current_data_on_cbrs, - self._test_data_browsing_success_using_sl4a, - self._is_phone_in_call_volte, - self._is_current_data_on_default, - self._test_data_browsing_success_using_sl4a, - self._test_data_browsing_success_using_sl4a, - self._is_current_data_on_cbrs, True) - - self.log.info("CBRS MO Result: %s", result) - return result - - - @test_tracker_info(uuid="17acce7a-de9c-4540-b2d3-2c98367a0b4e") - @TelephonyBaseTest.tel_test_wrap - def test_cbrs_mt_voice_data_concurrency_lte(self): - """ Test CBRS Data with MT Voice Call on LTE - - PhoneA should be on LTE with VoLTE enabled - Verify Data Browsing works fine on cbrs before call - Call from PhoneB to PhoneA, call should succeed - Verify Data Browsing works fine on pSIM during call - Terminate call - Verify Data Browsing works fine on cbrs after call - - Returns: - True if pass; False if fail. - """ - ads = [self.android_devices[0], self.android_devices[1]] - result = self._cbrs_call_sequence( - ads, DIRECTION_MOBILE_TERMINATED, - self._phone_setup_volte, self._is_current_data_on_cbrs, - self._test_data_browsing_success_using_sl4a, - self._is_phone_in_call_volte, - self._is_current_data_on_default, - self._test_data_browsing_success_using_sl4a, - self._test_data_browsing_success_using_sl4a, - self._is_current_data_on_cbrs, True) - - self.log.info("CBRS MT Result: %s", result) - return result - - @test_tracker_info(uuid="dc2608fc-b99d-419b-8989-e1f8cdeb04da") - @TelephonyBaseTest.tel_test_wrap - def test_cbrs_mo_voice_data_concurrency_1x(self): - """ Test CBRS Data with MO Voice Call on 3G - - PhoneA should be on UMTS - Verify Data Browsing works fine on cbrs before call - Call from PhoneA to PhoneB, call should succeed - Verify Data Browsing works fine on pSIM during call - Terminate call - Verify Data Browsing works fine on cbrs after call - - Returns: - True if pass; False if fail. - """ - ads = [self.android_devices[0], self.android_devices[1]] - result = self._cbrs_call_sequence( - ads, DIRECTION_MOBILE_ORIGINATED, - self._phone_setup_1x, self._is_current_data_on_cbrs, - self._test_data_browsing_success_using_sl4a, - self._is_phone_in_call_3g, - self._is_current_data_on_default, - self._test_data_browsing_failure_using_sl4a, - self._test_data_browsing_success_using_sl4a, - self._is_current_data_on_cbrs, True) - - self.log.info("CBRS MO Result: %s", result) - return result - - - @test_tracker_info(uuid="cd3a6613-ca37-43c7-8364-7e4e627ca558") - @TelephonyBaseTest.tel_test_wrap - def test_cbrs_mt_voice_data_concurrency_1x(self): - """ Test CBRS Data with MT Voice Call on 3G - - PhoneA should be on UMTS - Verify Data Browsing works fine on cbrs before call - Call from PhoneA to PhoneA, call should succeed - Verify Data Browsing works fine on pSIM during call - Terminate call - Verify Data Browsing works fine on cbrs after call - - Returns: - True if pass; False if fail. - """ - ads = [self.android_devices[0], self.android_devices[1]] - result = self._cbrs_call_sequence( - ads, DIRECTION_MOBILE_TERMINATED, - self._phone_setup_1x, self._is_current_data_on_cbrs, - self._test_data_browsing_success_using_sl4a, - self._is_phone_in_call_3g, - self._is_current_data_on_default, - self._test_data_browsing_failure_using_sl4a, - self._test_data_browsing_success_using_sl4a, - self._is_current_data_on_cbrs, True) - - self.log.info("CBRS MT Result: %s", result) - return result - - - def _test_stress_cbrs(self, mo_mt): - """ Test CBRS/SSIM VoLTE Stress - - mo_mt: indicating this call sequence is MO or MT. - Valid input: DIRECTION_MOBILE_ORIGINATED and - DIRECTION_MOBILE_TERMINATED. - - Returns: - True if pass; False if fail. - """ - if (mo_mt not in [DIRECTION_MOBILE_ORIGINATED, - DIRECTION_MOBILE_TERMINATED]): - self.log.error("Invalid parameters.") - return False - ads = [self.android_devices[0], self.android_devices[1]] - total_iteration = self.stress_test_number - fail_count = collections.defaultdict(int) - self.cbrs_subid, self.default_subid = get_cbrs_and_default_sub_id(ads[0]) - self.log.info("Total iteration = %d.", total_iteration) - current_iteration = 1 - for i in range(1, total_iteration + 1): - msg = "Stress Call Test Iteration: <%s> / <%s>" % ( - i, total_iteration) - begin_time = get_current_epoch_time() - self.log.info(msg) - start_qxdm_loggers(self.log, self.android_devices, begin_time) - iteration_result = self._cbrs_call_sequence( - ads, mo_mt, - self._phone_setup_volte, - self._is_current_data_on_cbrs, - self._test_data_browsing_success_using_sl4a, - self._is_phone_in_call_volte, - self._is_current_data_on_default, - self._test_data_browsing_success_using_sl4a, - self._test_data_browsing_success_using_sl4a, - self._is_current_data_on_cbrs, True) - self.log.info("Result: %s", iteration_result) - if iteration_result: - self.log.info(">----Iteration : %d/%d succeed.----<", - i, total_iteration) - else: - fail_count["cbrs_fail"] += 1 - self.log.error(">----Iteration : %d/%d failed.----<", - i, total_iteration) - self._take_bug_report("%s_IterNo_%s" % (self.test_name, i), - begin_time) - current_iteration += 1 - test_result = True - for failure, count in fail_count.items(): - if count: - self.log.error("%s: %s %s failures in %s iterations", - self.test_name, count, failure, - total_iteration) - test_result = False - return test_result - - @test_tracker_info(uuid="860dc00d-5be5-4cdd-aeb1-a89edfa83342") - @TelephonyBaseTest.tel_test_wrap - def test_stress_cbrs_mt_calls_lte(self): - """ Test SSIM to CBRS stress - - Call from PhoneB to PhoneA - Perform CBRS Data checks - Repeat above steps - - Returns: - True if pass; False if fail. - """ - return self._test_stress_cbrs(DIRECTION_MOBILE_TERMINATED) - - @test_tracker_info(uuid="54366c70-c9cb-4eed-bd1c-a37c83d5c0ae") - @TelephonyBaseTest.tel_test_wrap - def test_stress_cbrs_mo_calls_lte(self): - """ Test CBRS to SSIM stress - - Call from PhoneA to PhoneB - Perform CBRS Data checks - Repeat above steps - - Returns: - True if pass; False if fail. - """ - return self._test_stress_cbrs(DIRECTION_MOBILE_ORIGINATED) - - - def _cbrs_default_data_switch_timing(self, ad, method, validation=False): - result = True - callback_key = None - if not getattr(ad, "cbrs_droid", None): - ad.cbrs_droid, ad.cbrs_ed = ad.get_droid() - ad.cbrs_ed.start() - else: - try: - if not ad.cbrs_droid.is_live: - ad.cbrs_droid, ad.cbrs_ed = ad.get_droid() - ad.cbrs_ed.start() - else: - ad.cbrs_ed.clear_all_events() - ad.cbrs_droid.logI("Start test_stress_cbrsdataswitch test") - except Exception: - ad.log.info("Create new sl4a session for CBRS") - ad.cbrs_droid, ad.cbrs_ed = ad.get_droid() - ad.cbrs_ed.start() - if validation: - ad.cbrs_droid.telephonyStartTrackingActiveDataChange() - else: - callback_key = ad.cbrs_droid.connectivityRegisterDefaultNetworkCallback() - ad.cbrs_droid.connectivityNetworkCallbackStartListeningForEvent( - callback_key, NetworkCallbackAvailable) - time.sleep(WAIT_TIME_FOR_CBRS_DATA_SWITCH) - try: - ad.cbrs_ed.clear_events(EventActiveDataSubIdChanged) - ad.cbrs_ed.clear_events(EventNetworkCallback) - initiate_time_before = get_device_epoch_time(ad) - ad.log.debug("initiate_time_before: %d", initiate_time_before) - if method == "api": - ad.log.info("Setting DDS to default sub %s", self.default_subid) - ad.droid.telephonySetPreferredOpportunisticDataSubscription( - 2147483647, validation) - else: - ad.log.info("Making a Voice Call to %s", STORY_LINE) - ad.droid.telecomCallNumber(STORY_LINE, False) - try: - if validation: - events = ad.cbrs_ed.pop_events("(%s)" % - (EventActiveDataSubIdChanged), - WAIT_TIME_FOR_CBRS_DATA_SWITCH) - for event in events: - ad.log.info("Got event %s", event["name"]) - if event["name"] == EventActiveDataSubIdChanged: - if event.get("data") and \ - event["data"] == self.default_subid: - ad.log.info("%s has data switched to: %s sub", - event["name"], event["data"]) - initiate_time_after = event["time"] - break - else: - events = ad.cbrs_ed.pop_events("(%s)" % - (EventNetworkCallback), WAIT_TIME_FOR_CBRS_DATA_SWITCH) - for event in events: - ad.log.info("Got event %s", event["name"]) - if event["name"] == EventNetworkCallback: - if event.get("data") and event["data"].get("networkCallbackEvent"): - ad.log.info("%s %s has data switched to: %s sub", - event["name"], - event["data"]["networkCallbackEvent"], - self.default_subid) - initiate_time_after = event["time"] - break - except Empty: - ad.log.error("No %s or %s event for DataSwitch received in %d seconds", - EventActiveDataSubIdChanged, EventNetworkCallback, - WAIT_TIME_FOR_CBRS_DATA_SWITCH) - return False - time_interval = (initiate_time_after - initiate_time_before) / 1000 - self.switch_time_dict['cbrs_default_switch'].append(time_interval) - if time_interval > TIME_PERMITTED_FOR_CBRS_SWITCH: - ad.log.error("Time for CBRS->Default - %.2f secs", time_interval) - result = False - else: - ad.log.info("Time for CBRS->Default - %.2f secs", time_interval) - time.sleep(WAIT_TIME_BETWEEN_HANDOVER) - ad.cbrs_ed.clear_events(EventActiveDataSubIdChanged) - ad.cbrs_ed.clear_events(EventNetworkCallback) - hangup_time_before = get_device_epoch_time(ad) - ad.log.debug("hangup_time_before: %d", hangup_time_before) - if method == "api": - ad.log.info("Setting DDS to cbrs sub %s", self.cbrs_subid) - ad.droid.telephonySetPreferredOpportunisticDataSubscription( - self.cbrs_subid, validation) - else: - ad.log.info("Ending Call") - ad.droid.telecomEndCall() - try: - if validation: - events = ad.cbrs_ed.pop_events("(%s)" % - (EventActiveDataSubIdChanged), WAIT_TIME_FOR_CBRS_DATA_SWITCH) - for event in events: - ad.log.info("Got event %s", event["name"]) - if event["name"] == EventActiveDataSubIdChanged: - if event.get("data") and \ - event["data"] == self.cbrs_subid: - ad.log.info("%s has data switched to: %s sub", - event["name"], event["data"]) - hangup_time_after = event["time"] - break - else: - events = ad.cbrs_ed.pop_events("(%s)" % - (EventNetworkCallback), WAIT_TIME_FOR_CBRS_DATA_SWITCH) - for event in events: - ad.log.info("Got event %s", event["name"]) - if event["name"] == EventNetworkCallback: - if event.get("data") and event["data"].get("networkCallbackEvent"): - ad.log.info("%s %s has data switched to: %s sub", - event["name"], - event["data"]["networkCallbackEvent"], - self.cbrs_subid) - hangup_time_after = event["time"] - break - except Empty: - ad.log.error("No %s event for DataSwitch received in %d seconds", - EventActiveDataSubIdChanged, - WAIT_TIME_FOR_CBRS_DATA_SWITCH) - return False - time_interval = (hangup_time_after - hangup_time_before) / 1000 - self.switch_time_dict['default_cbrs_switch'].append(time_interval) - if time_interval > TIME_PERMITTED_FOR_CBRS_SWITCH: - ad.log.error("Time for Default->CBRS - %.2f secs", time_interval) - result = False - else: - ad.log.info("Time for Default->CBRS - %.2f secs", time_interval) - except Exception as e: - self.log.error("Exception error %s", e) - raise - finally: - if validation: - ad.cbrs_droid.telephonyStopTrackingActiveDataChange() - elif callback_key: - ad.cbrs_droid.connectivityNetworkCallbackStopListeningForEvent( - callback_key, NetworkCallbackAvailable) - return result - - - def _test_stress_cbrsdataswitch_timing(self, ad, method, validation=False): - setattr(self, "number_of_devices", 1) - ad.adb.shell("pm disable com.google.android.apps.scone") - wifi_toggle_state(self.log, ad, True) - self.cbrs_subid, self.default_subid = get_cbrs_and_default_sub_id(ad) - toggle_airplane_mode(ad.log, ad, new_state=False, strict_checking=False) - if self._is_current_data_on_cbrs(): - ad.log.info("Current Data is on CBRS, proceeding with test") - else: - ad.log.error("Current Data not on CBRS, forcing it now..") - ad.droid.telephonySetPreferredOpportunisticDataSubscription( - self.cbrs_subid, False) - ad.droid.telephonyUpdateAvailableNetworks(self.cbrs_subid) - total_iteration = self.stress_test_number - fail_count = collections.defaultdict(int) - self.switch_time_dict = {'cbrs_default_switch':[], - 'default_cbrs_switch': []} - current_iteration = 1 - for i in range(1, total_iteration + 1): - msg = "Stress CBRS Test Iteration: <%s> / <%s>" % ( - i, total_iteration) - begin_time = get_current_epoch_time() - self.log.info(msg) - start_qxdm_logger(ad, begin_time) - iteration_result = self._cbrs_default_data_switch_timing( - ad, method, validation) - self.log.info("Result: %s", iteration_result) - if iteration_result: - self.log.info(">----Iteration : %d/%d succeed.----<", - i, total_iteration) - else: - fail_count["cbrsdataswitch_fail"] += 1 - self.log.error(">----Iteration : %d/%d failed.----<", - i, total_iteration) - self._take_bug_report("%s_IterNo_%s" % (self.test_name, i), - begin_time) - current_iteration += 1 - time.sleep(WAIT_TIME_BETWEEN_ITERATION) - test_result = True - for time_task, time_list in self.switch_time_dict.items(): - ad.log.info("%s %s", time_task, time_list) - avg_time = self._get_list_average(time_list) - ad.log.info("Average %s for %d iterations = %.2f seconds", - time_task, self.stress_test_number, avg_time) - for failure, count in fail_count.items(): - if count: - self.log.error("%s: %s %s failures in %s iterations", - self.test_name, count, failure, - total_iteration) - test_result = False - ad.adb.shell("pm enable com.google.android.apps.scone") - return test_result - - - @test_tracker_info(uuid="c66e307b-8456-4a86-af43-d715597ce802") - @TelephonyBaseTest.tel_test_wrap - def test_stress_cbrsdataswitch_via_api_without_validation(self): - """ Test CBRS to Default Data Switch Stress Test - - By default, data is expected to be on CBRS - Using TelephonyManagerAPI, switch data to default - Measure time to switch - Using TelephonyManagerAPI, switch data to cbrs - Measure time to switch - Switching to be done with validation set to False - Repeat above steps - Calculate average time to switch - - Returns: - True if pass; False if fail. - """ - ad = self.android_devices[0] - self._test_stress_cbrsdataswitch_timing(ad, "api", validation=False) - - - @test_tracker_info(uuid="a0ae7691-4890-4e94-8a01-b54ba5b6f489") - @TelephonyBaseTest.tel_test_wrap - def test_stress_cbrsdataswitch_via_api_with_validation(self): - """ Test CBRS to Default Data Switch Stress Test - - By default, data is expected to be on CBRS - Using TelephonyManagerAPI, switch data to default - Measure time to switch - Using TelephonyManagerAPI, switch data to cbrs - Measure time to switch - Switching to be done with validation set to True - Repeat above steps - Calculate average time to switch - - Returns: - True if pass; False if fail. - """ - ad = self.android_devices[0] - self._test_stress_cbrsdataswitch_timing(ad, "api", validation=True) - - - @test_tracker_info(uuid="1e69b57a-f2f7-42c6-8389-2194356c599c") - @TelephonyBaseTest.tel_test_wrap - def test_stress_cbrsdataswitch_via_call(self): - """ Test CBRS to Default Data Switch Stress Test - - By default, data is expected to be on CBRS - Initiate MO Phone, data will switch to default - Measure time to switch - Hangup MO Phone, data will switch to cbrs - Measure time to switch - Repeat above steps - Calculate average time to switch - - Returns: - True if pass; False if fail. - """ - ad = self.android_devices[0] - self._test_stress_cbrsdataswitch_timing(ad, "call") diff --git a/acts/tests/google/tel/live/TelLiveCellInfoTest.py b/acts/tests/google/tel/live/TelLiveCellInfoTest.py index 037f260ea0..d050d84593 100644 --- a/acts/tests/google/tel/live/TelLiveCellInfoTest.py +++ b/acts/tests/google/tel/live/TelLiveCellInfoTest.py @@ -37,8 +37,8 @@ WAIT_FOR_CELLULAR_CONNECTION = 20 class TelLiveCellInfoTest(TelephonyBaseTest): - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + TelephonyBaseTest.__init__(self, controllers) self.ad = self.android_devices[0] self.wifi_network_ssid = self.user_params.get( "wifi_network_ssid") or self.user_params.get( @@ -52,6 +52,7 @@ class TelLiveCellInfoTest(TelephonyBaseTest): toggle_airplane_mode(self.log, self.ad, False) time.sleep(WAIT_FOR_CELLULAR_CONNECTION) + def setup_class(self): return True def setup_test(self): diff --git a/acts/tests/google/tel/live/TelLiveConnectivityMonitorBaseTest.py b/acts/tests/google/tel/live/TelLiveConnectivityMonitorBaseTest.py index 135f58373f..b9330be7c2 100644 --- a/acts/tests/google/tel/live/TelLiveConnectivityMonitorBaseTest.py +++ b/acts/tests/google/tel/live/TelLiveConnectivityMonitorBaseTest.py @@ -37,7 +37,6 @@ from acts.test_utils.tel.tel_test_utils import fastboot_wipe from acts.test_utils.tel.tel_test_utils import get_device_epoch_time from acts.test_utils.tel.tel_test_utils import get_model_name from acts.test_utils.tel.tel_test_utils import get_operator_name -from acts.test_utils.tel.tel_test_utils import get_outgoing_voice_sub_id from acts.test_utils.tel.tel_test_utils import hangup_call from acts.test_utils.tel.tel_test_utils import last_call_drop_reason from acts.test_utils.tel.tel_test_utils import reboot_device @@ -116,21 +115,21 @@ IGNORED_CALL_DROP_TRIGGERS = ["toggle_apm", "toggle_wifi"] class TelLiveConnectivityMonitorBaseTest(TelephonyBaseTest): - def setup_class(self): - TelephonyBaseTest.setup_class(self) + def __init__(self, controllers): + TelephonyBaseTest.__init__(self, controllers) self.user_params["enable_connectivity_metrics"] = False self.user_params["telephony_auto_rerun"] = 0 self.consecutive_failure_limit = 5 + def setup_class(self): + TelephonyBaseTest.setup_class(self) self.dut = self.android_devices[0] self.ad_reference = self.android_devices[1] self.dut_model = get_model_name(self.dut) self.dut_operator = get_operator_name(self.log, self.dut) - self.dut_subID = get_outgoing_voice_sub_id(self.dut) - self.dut_capabilities = self.dut.telephony["subscription"][self.dut_subID].get("capabilities", []) - self.dut_wfc_modes = self.dut.telephony["subscription"][self.dut_subID].get("wfc_modes", []) - self.ad_reference_subID = get_outgoing_voice_sub_id(self.ad_reference) - self.reference_capabilities = self.ad_reference.telephony["subscription"][self.ad_reference_subID].get( + self.dut_capabilities = self.dut.telephony.get("capabilities", []) + self.dut_wfc_modes = self.dut.telephony.get("wfc_modes", []) + self.reference_capabilities = self.ad_reference.telephony.get( "capabilities", []) self.dut.log.info("DUT capabilities: %s", self.dut_capabilities) self.skip_reset_between_cases = False diff --git a/acts/tests/google/tel/live/TelLiveConnectivityMonitorMobilityTest.py b/acts/tests/google/tel/live/TelLiveConnectivityMonitorMobilityTest.py index 2cd6ad50d2..699718bf3c 100644..100755 --- a/acts/tests/google/tel/live/TelLiveConnectivityMonitorMobilityTest.py +++ b/acts/tests/google/tel/live/TelLiveConnectivityMonitorMobilityTest.py @@ -68,14 +68,16 @@ IMS_LINK_LOST = "Media Timeout" class TelLiveConnectivityMonitorMobilityTest( TelLiveConnectivityMonitorBaseTest): - def setup_class(self): - TelLiveConnectivityMonitorBaseTest.setup_class(self) + def __init__(self, controllers): + TelLiveConnectivityMonitorBaseTest.__init__(self, controllers) self.attens = {} for atten in self.attenuators: self.attens[atten.path] = atten atten.set_atten(atten.get_max_atten()) # Default all attens to max + def setup_class(self): + TelLiveConnectivityMonitorBaseTest.setup_class(self) # Do WiFi RSSI calibration. self.set_wifi_strong_cell_strong() diff --git a/acts/tests/google/tel/live/TelLiveDSDSVoiceTest.py b/acts/tests/google/tel/live/TelLiveDSDSVoiceTest.py index c979c7ad0f..a44e7237cf 100644 --- a/acts/tests/google/tel/live/TelLiveDSDSVoiceTest.py +++ b/acts/tests/google/tel/live/TelLiveDSDSVoiceTest.py @@ -18,9 +18,6 @@ """ import time -import random -import collections - from queue import Empty from acts.test_decorators import test_tracker_info from acts.test_utils.tel.TelephonyBaseTest import TelephonyBaseTest @@ -52,7 +49,6 @@ from acts.test_utils.tel.tel_defines import EventNetworkCallback from acts.test_utils.tel.tel_defines import NetworkCallbackAvailable from acts.test_utils.tel.tel_defines import NetworkCallbackLost from acts.test_utils.tel.tel_defines import SignalStrengthContainer -from acts.test_utils.tel.tel_defines import WAIT_TIME_CHANGE_DATA_SUB_ID from acts.test_utils.tel.tel_test_utils import wifi_toggle_state from acts.test_utils.tel.tel_test_utils import ensure_network_generation from acts.test_utils.tel.tel_test_utils import ensure_phones_default_state @@ -61,7 +57,6 @@ from acts.test_utils.tel.tel_test_utils import get_network_rat from acts.test_utils.tel.tel_test_utils import get_phone_number from acts.test_utils.tel.tel_test_utils import get_phone_number_for_subscription from acts.test_utils.tel.tel_test_utils import hangup_call -from acts.test_utils.tel.tel_test_utils import hangup_call_by_adb from acts.test_utils.tel.tel_test_utils import initiate_call from acts.test_utils.tel.tel_test_utils import is_network_call_back_event_match from acts.test_utils.tel.tel_test_utils import is_phone_in_call @@ -77,19 +72,9 @@ from acts.test_utils.tel.tel_test_utils import wait_for_wfc_enabled from acts.test_utils.tel.tel_test_utils import wait_for_wifi_data_connection from acts.test_utils.tel.tel_test_utils import verify_http_connection from acts.test_utils.tel.tel_test_utils import get_telephony_signal_strength -from acts.test_utils.tel.tel_test_utils import get_lte_rsrp from acts.test_utils.tel.tel_test_utils import get_wifi_signal_strength from acts.test_utils.tel.tel_test_utils import wait_for_state from acts.test_utils.tel.tel_test_utils import is_phone_in_call -from acts.test_utils.tel.tel_test_utils import start_qxdm_loggers -from acts.test_utils.tel.tel_test_utils import start_qxdm_logger -from acts.test_utils.tel.tel_test_utils import active_file_download_test -from acts.test_utils.tel.tel_test_utils import verify_internet_connection -from acts.test_utils.tel.tel_test_utils import test_data_browsing_success_using_sl4a -from acts.test_utils.tel.tel_test_utils import test_data_browsing_failure_using_sl4a -from acts.test_utils.tel.tel_test_utils import sms_send_receive_verify -from acts.test_utils.tel.tel_test_utils import mms_send_receive_verify -from acts.test_utils.tel.tel_test_utils import get_operator_name from acts.test_utils.tel.tel_voice_utils import is_phone_in_call_3g from acts.test_utils.tel.tel_voice_utils import is_phone_in_call_2g from acts.test_utils.tel.tel_voice_utils import is_phone_in_call_csfb @@ -101,27 +86,14 @@ from acts.test_utils.tel.tel_voice_utils import phone_setup_volte from acts.test_utils.tel.tel_voice_utils import phone_setup_voice_3g from acts.test_utils.tel.tel_voice_utils import phone_setup_voice_2g from acts.test_utils.tel.tel_voice_utils import phone_idle_3g -from acts.test_utils.tel.tel_voice_utils import phone_idle_3g_for_subscription from acts.test_utils.tel.tel_voice_utils import phone_idle_2g from acts.test_utils.tel.tel_voice_utils import phone_idle_csfb from acts.test_utils.tel.tel_voice_utils import phone_idle_iwlan from acts.test_utils.tel.tel_voice_utils import phone_idle_not_iwlan from acts.test_utils.tel.tel_voice_utils import phone_idle_volte -from acts.test_utils.tel.tel_voice_utils import phone_setup_3g -from acts.test_utils.tel.tel_voice_utils import phone_setup_2g from acts.test_utils.tel.tel_subscription_utils import set_subid_for_outgoing_call from acts.test_utils.tel.tel_subscription_utils import set_incoming_voice_sub_id from acts.test_utils.tel.tel_subscription_utils import get_subid_from_slot_index -from acts.test_utils.tel.tel_subscription_utils import get_operatorname_from_slot_index -from acts.test_utils.tel.tel_subscription_utils import get_default_data_sub_id -from acts.test_utils.tel.tel_subscription_utils import perform_dds_switch -from acts.test_utils.tel.tel_subscription_utils import set_subid_for_data -from acts.test_utils.tel.tel_subscription_utils import set_dds_on_slot_0 -from acts.test_utils.tel.tel_subscription_utils import set_dds_on_slot_1 -from acts.test_utils.tel.tel_subscription_utils import set_subid_for_message -from acts.test_utils.tel.tel_subscription_utils import set_slways_allow_mms_data -from acts.utils import get_current_epoch_time -from acts.utils import rand_ascii_str DEFAULT_LONG_DURATION_CALL_TOTAL_DURATION = 1 * 60 * 60 # default value 1 hour @@ -129,29 +101,17 @@ DEFAULT_PING_DURATION = 120 # in seconds class TelLiveDSDSVoiceTest(TelephonyBaseTest): - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + TelephonyBaseTest.__init__(self, controllers) self.number_of_devices = 2 self.stress_test_number = self.get_stress_test_number() - self.dds_operator = self.user_params.get("dds_operator", None) - self.message_lengths = (50, 160, 180) - self.long_message_lengths = (800, 1600) - - - def on_fail(self, test_name, begin_time): - if test_name.startswith('test_stress'): - return - super().on_fail(test_name, begin_time) def _msim_call_sequence(self, ads, mo_mt, slot_id, msim_phone_setup_func, verify_msim_initial_idle_func, - verify_data_initial_func, verify_msim_in_call_state_func, - verify_data_in_call_func, - incall_msim_setting_check_func, - verify_data_final_func, expected_result): + incall_msim_setting_check_func, expected_result): """_msim_call_sequence Args: @@ -185,8 +145,6 @@ class TelLiveDSDSVoiceTest(TelephonyBaseTest): set_subid_for_outgoing_call(ads[0], sub_id) caller_number = get_phone_number(self.log, ad_caller) callee_number = get_phone_number(self.log, ad_callee) - mo_operator = get_operatorname_from_slot_index(ads[0], slot_id) - mt_operator = get_operator_name(ads[1].log, ads[1]) else: ad_caller = ads[1] ad_callee = ads[0] @@ -194,12 +152,9 @@ class TelLiveDSDSVoiceTest(TelephonyBaseTest): callee_number = get_phone_number_for_subscription(ads[0].log, ads[0], sub_id) setattr(ads[0], "incoming_voice_sub_id", sub_id) - mt_operator = get_operatorname_from_slot_index(ads[0], slot_id) - mo_operator = get_operator_name(ads[1].log, ads[1]) self.log.info("-->Begin msim_call_sequence: %s to %s<--", caller_number, callee_number) - self.log.info("--> %s to %s <--", mo_operator, mt_operator) try: # Setup @@ -216,12 +171,6 @@ class TelLiveDSDSVoiceTest(TelephonyBaseTest): raise _MSIMCallSequenceException( "verify_msim_initial_idle_func fail.") - # Ensure data checks are performed - if verify_data_initial_func and not \ - verify_data_initial_func(): - raise _MSIMCallSequenceException( - "verify_data_initial_func fail.") - # Make MO/MT call. if not initiate_call(self.log, ad_caller, callee_number): raise _MSIMCallSequenceException("initiate_call fail.") @@ -237,13 +186,6 @@ class TelLiveDSDSVoiceTest(TelephonyBaseTest): if is_phone_not_in_call(self.log, ads[1]): raise _MSIMCallSequenceException("PhoneB not in call.") - - # Ensure data checks are performed - if verify_data_in_call_func and not \ - verify_data_in_call_func(): - raise _MSIMCallSequenceException( - "verify_data_in_call_func fail.") - time.sleep(WAIT_TIME_IN_CALL) if (verify_msim_in_call_state_func and not @@ -268,12 +210,6 @@ class TelLiveDSDSVoiceTest(TelephonyBaseTest): if incall_msim_setting_check_func is None: raise _MSIMCallSequenceException("Unexpected call drop.") - # Ensure data checks are performed - if verify_data_final_func and not \ - verify_data_final_func(): - raise _MSIMCallSequenceException( - "verify_data_final_func fail.") - except _MSIMCallSequenceException as e: if str(e) == expected_result: self.log.info("Expected exception: <%s>, return True.", e) @@ -281,97 +217,11 @@ class TelLiveDSDSVoiceTest(TelephonyBaseTest): else: self.log.info("Unexpected exception: <%s>, return False.", e) return False - finally: - for ad in ads: - if ad.droid.telecomIsInCall(): - hangup_call_by_adb(ad) - self.log.info("msim_call_sequence finished, return %s", - expected_result is True) - return (expected_result is True) - - - def _msim_sms_sequence(self, ads, mo_mt, slot_id, - msim_phone_setup_func, - verify_actual_messaging_test, expected_result): - """_msim_call_sequence - - Args: - ads: list of android devices. This list should have 2 ad. - mo_mt: indicating this call sequence is MO or MT. - Valid input: DIRECTION_MOBILE_ORIGINATED and - DIRECTION_MOBILE_TERMINATED. - slot_id: either 0 or 1 - - Returns: - if expected_result is True, - Return True if call sequence finish without exception. - if expected_result is string, - Return True if expected exception happened. Otherwise False. - """ - - class _MSIMSmsSequenceException(Exception): - pass - - if (len(ads) != 2) or (mo_mt not in [ - DIRECTION_MOBILE_ORIGINATED, DIRECTION_MOBILE_TERMINATED - ]): - self.log.error("Invalid parameters.") - return False - - sub_id = get_subid_from_slot_index(ads[0].log, ads[0], slot_id) - set_slways_allow_mms_data(ads[0], sub_id) - if mo_mt == DIRECTION_MOBILE_ORIGINATED: - ad_sender = ads[0] - ad_receiver = ads[1] - set_subid_for_message(ads[0], sub_id) - sender_number = get_phone_number(self.log, ad_sender) - receiver_number = get_phone_number(self.log, ad_receiver) - mo_operator = get_operatorname_from_slot_index(ads[0], slot_id) - mt_operator = get_operator_name(ads[1].log, ads[1]) - else: - ad_sender = ads[1] - ad_receiver = ads[0] - sender_number = get_phone_number(self.log, ad_sender) - receiver_number = get_phone_number_for_subscription(ads[0].log, - ads[0], sub_id) - setattr(ads[0], "incoming_message_sub_id", sub_id) - mt_operator = get_operatorname_from_slot_index(ads[0], slot_id) - mo_operator = get_operator_name(ads[1].log, ads[1]) - - self.log.info("-->Begin msim_sms_sequence: %s to %s<--", - sender_number, receiver_number) - self.log.info("--> %s to %s <--", mo_operator, mt_operator) - - try: - # Setup - if msim_phone_setup_func and not msim_phone_setup_func(): - raise _MSIMSmsSequenceException("msim_phone_setup_func fail.") - if not phone_setup_voice_general(self.log, ads[1]): - raise _MSIMSmsSequenceException( - "phone_setup_voice_general fail.") - - time.sleep(WAIT_TIME_BETWEEN_REG_AND_CALL) - - # Send MO/MT sms. - if not verify_actual_messaging_test(): - raise _MSIMSmsSequenceException("sms_test fail.") - - time.sleep(1) - - except _MSIMSmsSequenceException as e: - if str(e) == expected_result: - self.log.info("Expected exception: <%s>, return True.", e) - return True - else: - self.log.info("Unexpected exception: <%s>, return False.", e) - return False - - self.log.info("msim_sms_sequence finished, return %s", + self.log.info("msim_call_sequence finished, return %s", expected_result is True) return (expected_result is True) - def _phone_idle_iwlan(self): return phone_idle_iwlan(self.log, self.android_devices[0]) @@ -387,15 +237,6 @@ class TelLiveDSDSVoiceTest(TelephonyBaseTest): def _phone_idle_3g(self): return phone_idle_3g(self.log, self.android_devices[0]) - def _phone_idle_3g_slot0(self): - sub_id = get_subid_from_slot_index(self.log, self.android_devices[0], 0) - return phone_idle_3g_for_subscription(self.log, - self.android_devices[0], sub_id) - - def _phone_idle_3g_slot1(self): - sub_id = get_subid_from_slot_index(self.log, self.android_devices[0], 1) - return phone_idle_3g_for_subscription(self.log, - self.android_devices[0], sub_id) def _phone_idle_2g(self): return phone_idle_2g(self.log, self.android_devices[0]) @@ -439,255 +280,10 @@ class TelLiveDSDSVoiceTest(TelephonyBaseTest): def _phone_setup_2g(self): return phone_setup_voice_2g(self.log, self.android_devices[0]) - def _set_dds_on_slot_0(self): - return set_dds_on_slot_0(self.android_devices[0]) - - def _set_dds_on_slot_1(self): - return set_dds_on_slot_1(self.android_devices[0]) - - def _test_data_browsing_success_using_sl4a(self): - return test_data_browsing_success_using_sl4a(self.log, - self.android_devices[0]) - - def _test_data_browsing_failure_using_sl4a(self): - return test_data_browsing_failure_using_sl4a(self.log, - self.android_devices[0]) - - def _sms_test_msim_mo(self): - """Test SMS between two phones. - - Returns: - True if success. - False if failed. - """ - ad_sender = self.android_devices[0] - ad_receiver = self.android_devices[1] - for length in self.message_lengths: - message_array = [rand_ascii_str(length)] - if not sms_send_receive_verify(self.log, ad_sender, ad_receiver, - message_array): - ad_sender.log.warning("SMS of length %s test failed", length) - return False - else: - ad_sender.log.info("SMS of length %s test succeeded", length) - self.log.info("SMS test of length %s characters succeeded.", - self.message_lengths) - return True - - - def _sms_test_msim_mt(self): - """Test SMS between two phones. - - Returns: - True if success. - False if failed. - """ - ad_sender = self.android_devices[1] - ad_receiver = self.android_devices[0] - for length in self.message_lengths: - message_array = [rand_ascii_str(length)] - if not sms_send_receive_verify(self.log, ad_sender, ad_receiver, - message_array): - ad_sender.log.warning("SMS of length %s test failed", length) - return False - else: - ad_sender.log.info("SMS of length %s test succeeded", length) - self.log.info("SMS test of length %s characters succeeded.", - self.message_lengths) - return True - - - def _mms_test_msim_mo(self): - """Test MMS between two phones. - - Returns: - True if success. - False if failed. - """ - ad_sender = self.android_devices[0] - ad_receiver = self.android_devices[1] - for length in self.message_lengths: - message_array = [("Test Message", rand_ascii_str(length), None)] - if not mms_send_receive_verify(self.log, ad_sender, ad_receiver, - message_array): - ad_sender.log.warning("MMS of length %s test failed", length) - return False - else: - ad_sender.log.info("MMS of length %s test succeeded", length) - self.log.info("MMS test of length %s characters succeeded.", - self.message_lengths) - return True - - - def _mms_test_msim_mt(self): - """Test MMS between two phones. - - Returns: - True if success. - False if failed. - """ - ad_sender = self.android_devices[1] - ad_receiver = self.android_devices[0] - for length in self.message_lengths: - message_array = [("Test Message", rand_ascii_str(length), None)] - if not mms_send_receive_verify(self.log, ad_sender, ad_receiver, - message_array): - ad_sender.log.warning("MMS of length %s test failed", length) - return False - else: - ad_sender.log.info("MMS of length %s test succeeded", length) - self.log.info("MMS test of length %s characters succeeded.", - self.message_lengths) - return True - """ Tests Begin """ - @test_tracker_info(uuid="3af77c9e-b3bf-438f-bbce-97977a454402") - @TelephonyBaseTest.tel_test_wrap - def test_msim_mo_concurrency_with_dds_volte(self): - """ Test MSIM MO Concurrency with DDS - - Make Sure DDS is on same slot as Voice - Verify Data Browsing works fine before call - Call from PhoneA to PhoneB, call should succeed - Verify Data Browsing works fine during call - Terminate call - Verify Data Browsing works fine after call - - Returns: - True if pass; False if fail. - """ - ads = [self.android_devices[0], self.android_devices[1]] - mo_result_0 = self._msim_call_sequence( - ads, DIRECTION_MOBILE_ORIGINATED, 0, - self._phone_setup_volte, self._set_dds_on_slot_0, - self._test_data_browsing_success_using_sl4a, - self._is_phone_in_call_volte, - self._test_data_browsing_success_using_sl4a, None, - self._test_data_browsing_success_using_sl4a, True) - - mo_result_1 = self._msim_call_sequence( - ads, DIRECTION_MOBILE_ORIGINATED, 1, - self._phone_setup_volte, self._set_dds_on_slot_1, - self._test_data_browsing_success_using_sl4a, - self._is_phone_in_call_volte, - self._test_data_browsing_success_using_sl4a, None, - self._test_data_browsing_success_using_sl4a, True) - - self.log.info("MO Slot0: %s, MO Slot1: %s", mo_result_0, mo_result_1) - return ((mo_result_0 is True) and (mo_result_1 is True)) - - - @test_tracker_info(uuid="110af62d-fc08-42d4-ae52-5985755bff35") - @TelephonyBaseTest.tel_test_wrap - def test_msim_mo_concurrency_without_dds_volte(self): - """ Test MSIM MO Concurrency without DDS - - Make Sure DDS is NOT on same slot as Voice - Verify Data Browsing works fine before call - Call from PhoneA to PhoneB, call should succeed - Verify Data Browsing fails during call - Terminate call - Verify Data Browsing works fine after call - - Returns: - True if pass; False if fail. - """ - ads = [self.android_devices[0], self.android_devices[1]] - mo_result_0 = self._msim_call_sequence( - ads, DIRECTION_MOBILE_ORIGINATED, 0, - self._phone_setup_volte, self._set_dds_on_slot_1, - self._test_data_browsing_success_using_sl4a, - self._is_phone_in_call_volte, - self._test_data_browsing_failure_using_sl4a, None, - self._test_data_browsing_success_using_sl4a, True) - - mo_result_1 = self._msim_call_sequence( - ads, DIRECTION_MOBILE_ORIGINATED, 1, - self._phone_setup_volte, self._set_dds_on_slot_0, - self._test_data_browsing_success_using_sl4a, - self._is_phone_in_call_volte, - self._test_data_browsing_failure_using_sl4a, None, - self._test_data_browsing_success_using_sl4a, True) - - self.log.info("MO Slot0: %s, MO Slot1: %s", mo_result_0, mo_result_1) - return ((mo_result_0 is True) and (mo_result_1 is True)) - - - @test_tracker_info(uuid="35c90533-8e10-4d2b-af30-fe54aec380f2") - @TelephonyBaseTest.tel_test_wrap - def test_msim_mt_concurrency_with_dds_volte(self): - """ Test MSIM MT Concurrency with DDS - - Make Sure DDS is on same slot as Voice - Verify Data Browsing works fine before call - Call from PhoneB to PhoneA, call should succeed - Verify Data Browsing works fine during call - Terminate call - Verify Data Browsing works fine after call - - Returns: - True if pass; False if fail. - """ - ads = [self.android_devices[0], self.android_devices[1]] - mt_result_0 = self._msim_call_sequence( - ads, DIRECTION_MOBILE_TERMINATED, 0, - self._phone_setup_volte, self._set_dds_on_slot_0, - self._test_data_browsing_success_using_sl4a, - self._is_phone_in_call_volte, - self._test_data_browsing_success_using_sl4a, None, - self._test_data_browsing_success_using_sl4a, True) - - mt_result_1 = self._msim_call_sequence( - ads, DIRECTION_MOBILE_TERMINATED, 1, - self._phone_setup_volte, self._set_dds_on_slot_1, - self._test_data_browsing_success_using_sl4a, - self._is_phone_in_call_volte, - self._test_data_browsing_success_using_sl4a, None, - self._test_data_browsing_success_using_sl4a, True) - - self.log.info("MT Slot0: %s, MT Slot1: %s", mt_result_0, mt_result_1) - return ((mt_result_0 is True) and (mt_result_1 is True)) - - - @test_tracker_info(uuid="f67fab80-c010-4f73-b225-793d7db2c528") - @TelephonyBaseTest.tel_test_wrap - def test_msim_mt_concurrency_without_dds_volte(self): - """ Test MSIM MT Concurrency without DDS - - Make Sure DDS is NOT on same slot as Voice - Verify Data Browsing works fine before call - Call from PhoneB to PhoneA, call should succeed - Verify Data Browsing fails during call - Terminate call - Verify Data Browsing works fine after call - - Returns: - True if pass; False if fail. - """ - ads = [self.android_devices[0], self.android_devices[1]] - mt_result_0 = self._msim_call_sequence( - ads, DIRECTION_MOBILE_TERMINATED, 0, - self._phone_setup_volte, self._set_dds_on_slot_1, - self._test_data_browsing_success_using_sl4a, - self._is_phone_in_call_volte, - self._test_data_browsing_failure_using_sl4a, None, - self._test_data_browsing_success_using_sl4a, True) - - mt_result_1 = self._msim_call_sequence( - ads, DIRECTION_MOBILE_TERMINATED, 1, - self._phone_setup_volte, self._set_dds_on_slot_0, - self._test_data_browsing_success_using_sl4a, - self._is_phone_in_call_volte, - self._test_data_browsing_failure_using_sl4a, None, - self._test_data_browsing_success_using_sl4a, True) - - self.log.info("MT Slot0: %s, MT Slot1: %s", mt_result_0, mt_result_1) - return ((mt_result_0 is True) and (mt_result_1 is True)) - - @test_tracker_info(uuid="5a3ff3c0-5956-4b18-86a1-61ac60546330") @TelephonyBaseTest.tel_test_wrap def test_msim_mo_to_ssim_voice_general(self): @@ -705,13 +301,13 @@ class TelLiveDSDSVoiceTest(TelephonyBaseTest): ads = [self.android_devices[0], self.android_devices[1]] mo_result_0 = self._msim_call_sequence( ads, DIRECTION_MOBILE_ORIGINATED, 0, - self._phone_setup_voice_general, None, None, self._is_phone_in_call, - None, None, None, True) + self._phone_setup_voice_general, None, self._is_phone_in_call, + None, True) mo_result_1 = self._msim_call_sequence( ads, DIRECTION_MOBILE_ORIGINATED, 1, - self._phone_setup_voice_general, None, None, self._is_phone_in_call, - None, None, None, True) + self._phone_setup_voice_general, None, self._is_phone_in_call, + None, True) self.log.info("MO Slot0: %s, MO Slot1: %s", mo_result_0, mo_result_1) return ((mo_result_0 is True) and (mo_result_1 is True)) @@ -734,13 +330,13 @@ class TelLiveDSDSVoiceTest(TelephonyBaseTest): ads = [self.android_devices[0], self.android_devices[1]] mt_result_0 = self._msim_call_sequence( ads, DIRECTION_MOBILE_TERMINATED, 0, - self._phone_setup_voice_general, None, None, self._is_phone_in_call, - None, None, None, True) + self._phone_setup_voice_general, None, self._is_phone_in_call, + None, True) mt_result_1 = self._msim_call_sequence( ads, DIRECTION_MOBILE_TERMINATED, 1, - self._phone_setup_voice_general, None, None, self._is_phone_in_call, - None, None, None, True) + self._phone_setup_voice_general, None, self._is_phone_in_call, + None, True) self.log.info("MT Slot0: %s, MT Slot1: %s", mt_result_0, mt_result_1) return ((mt_result_0 is True) and (mt_result_1 is True)) @@ -763,13 +359,11 @@ class TelLiveDSDSVoiceTest(TelephonyBaseTest): ads = [self.android_devices[0], self.android_devices[1]] mo_result_0 = self._msim_call_sequence( ads, DIRECTION_MOBILE_ORIGINATED, 0, self._phone_setup_volte, - self._phone_idle_volte, None, self._is_phone_in_call_volte, None, - None, None, True) + self._phone_idle_volte, self._is_phone_in_call_volte, None, True) mo_result_1 = self._msim_call_sequence( ads, DIRECTION_MOBILE_ORIGINATED, 1, self._phone_setup_volte, - self._phone_idle_volte, None, self._is_phone_in_call_volte, None, - None, None, True) + self._phone_idle_volte, self._is_phone_in_call_volte, None, True) self.log.info("MO Slot0: %s, MO Slot1: %s", mo_result_0, mo_result_1) return ((mo_result_0 is True) and (mo_result_1 is True)) @@ -792,13 +386,11 @@ class TelLiveDSDSVoiceTest(TelephonyBaseTest): ads = [self.android_devices[0], self.android_devices[1]] mt_result_0 = self._msim_call_sequence( ads, DIRECTION_MOBILE_TERMINATED, 0, self._phone_setup_volte, - self._phone_idle_volte, None, self._is_phone_in_call_volte, None, - None, None, True) + self._phone_idle_volte, self._is_phone_in_call_volte, None, True) mt_result_1 = self._msim_call_sequence( ads, DIRECTION_MOBILE_TERMINATED, 1, self._phone_setup_volte, - self._phone_idle_volte, None, self._is_phone_in_call_volte, None, - None, None, True) + self._phone_idle_volte, self._is_phone_in_call_volte, None, True) self.log.info("MT Slot0: %s, MT Slot1: %s", mt_result_0, mt_result_1) return ((mt_result_0 is True) and (mt_result_1 is True)) @@ -821,13 +413,11 @@ class TelLiveDSDSVoiceTest(TelephonyBaseTest): ads = [self.android_devices[0], self.android_devices[1]] mo_result_0 = self._msim_call_sequence( ads, DIRECTION_MOBILE_ORIGINATED, 0, self._phone_setup_3g, - self._phone_idle_3g, None, self._is_phone_in_call_3g, None, None, - None, True) + self._phone_idle_3g, self._is_phone_in_call_3g, None, True) mo_result_1 = self._msim_call_sequence( ads, DIRECTION_MOBILE_ORIGINATED, 1, self._phone_setup_3g, - self._phone_idle_3g, None, self._is_phone_in_call_3g, None, None, - None, True) + self._phone_idle_3g, self._is_phone_in_call_3g, None, True) self.log.info("MO Slot0: %s, MO Slot1: %s", mo_result_0, mo_result_1) return ((mo_result_0 is True) and (mo_result_1 is True)) @@ -850,13 +440,11 @@ class TelLiveDSDSVoiceTest(TelephonyBaseTest): ads = [self.android_devices[0], self.android_devices[1]] mt_result_0 = self._msim_call_sequence( ads, DIRECTION_MOBILE_TERMINATED, 0, self._phone_setup_3g, - self._phone_idle_3g_slot0, None, self._is_phone_in_call_3g, None, None, - None, True) + self._phone_idle_3g, self._is_phone_in_call_3g, None, True) mt_result_1 = self._msim_call_sequence( ads, DIRECTION_MOBILE_TERMINATED, 1, self._phone_setup_3g, - self._phone_idle_3g_slot1, None, self._is_phone_in_call_3g, None, None, - None, True) + self._phone_idle_3g, self._is_phone_in_call_3g, None, True) self.log.info("MT Slot0: %s, MT Slot1: %s", mt_result_0, mt_result_1) return ((mt_result_0 is True) and (mt_result_1 is True)) @@ -879,13 +467,11 @@ class TelLiveDSDSVoiceTest(TelephonyBaseTest): ads = [self.android_devices[0], self.android_devices[1]] mo_result_0 = self._msim_call_sequence( ads, DIRECTION_MOBILE_ORIGINATED, 0, self._phone_setup_2g, - self._phone_idle_2g, None, self._is_phone_in_call_2g, None, None, - None, True) + self._phone_idle_2g, self._is_phone_in_call_2g, None, True) mo_result_1 = self._msim_call_sequence( ads, DIRECTION_MOBILE_ORIGINATED, 1, self._phone_setup_2g, - self._phone_idle_2g, None, self._is_phone_in_call_2g, None, None, - None, True) + self._phone_idle_2g, self._is_phone_in_call_2g, None, True) self.log.info("MO Slot0: %s, MO Slot1: %s", mo_result_0, mo_result_1) return ((mo_result_0 is True) and (mo_result_1 is True)) @@ -908,956 +494,11 @@ class TelLiveDSDSVoiceTest(TelephonyBaseTest): ads = [self.android_devices[0], self.android_devices[1]] mt_result_0 = self._msim_call_sequence( ads, DIRECTION_MOBILE_TERMINATED, 0, self._phone_setup_2g, - self._phone_idle_2g, None, self._is_phone_in_call_2g, None, None, - None, True) + self._phone_idle_2g, self._is_phone_in_call_2g, None, True) mt_result_1 = self._msim_call_sequence( ads, DIRECTION_MOBILE_TERMINATED, 1, self._phone_setup_2g, - self._phone_idle_2g, None, self._is_phone_in_call_2g, None, None, - None, True) - - self.log.info("MT Slot0: %s, MT Slot1: %s", mt_result_0, mt_result_1) - return ((mt_result_0 is True) and (mt_result_1 is True)) - - - @test_tracker_info(uuid="e982c5ea-63f6-43dd-8269-3932eb79136d") - @TelephonyBaseTest.tel_test_wrap - def test_msim_mo_to_ssim_sms_general(self): - """ Test MSIM MO SMS on both slots - - Airplane mode is off. Phone in default state. - Send SMS from PhoneA to PhoneB. - Verify received message on PhoneB is correct. - Above steps to be done for 3 different message lengths - Above steps to be done for slot0 and slot1 - - Returns: - True if pass; False if fail. - """ - ads = [self.android_devices[0], self.android_devices[1]] - mo_result_0 = self._msim_sms_sequence( - ads, DIRECTION_MOBILE_ORIGINATED, 0, - self._phone_setup_voice_general, self._sms_test_msim_mo, True) - - mo_result_1 = self._msim_sms_sequence( - ads, DIRECTION_MOBILE_ORIGINATED, 1, - self._phone_setup_voice_general, self._sms_test_msim_mo, True) - - self.log.info("MO Slot0: %s, MO Slot1: %s", mo_result_0, mo_result_1) - return ((mo_result_0 is True) and (mo_result_1 is True)) - - - @test_tracker_info(uuid="f4dc44c5-8edf-493f-91ca-8998e9c1bfc7") - @TelephonyBaseTest.tel_test_wrap - def test_msim_mo_to_ssim_sms_lte(self): - """ Test MSIM MO SMS on both slots - - Airplane mode is off. Phone in 4G. - Send SMS from PhoneA to PhoneB. - Verify received message on PhoneB is correct. - Above steps to be done for 3 different message lengths - Above steps to be done for slot0 and slot1 - - Returns: - True if pass; False if fail. - """ - ads = [self.android_devices[0], self.android_devices[1]] - mo_result_0 = self._msim_sms_sequence( - ads, DIRECTION_MOBILE_ORIGINATED, 0, - self._phone_setup_volte, self._sms_test_msim_mo, True) - - mo_result_1 = self._msim_sms_sequence( - ads, DIRECTION_MOBILE_ORIGINATED, 1, - self._phone_setup_volte, self._sms_test_msim_mo, True) - - self.log.info("MO Slot0: %s, MO Slot1: %s", mo_result_0, mo_result_1) - return ((mo_result_0 is True) and (mo_result_1 is True)) - - - @test_tracker_info(uuid="c49ddf5d-eb86-4884-adb5-03d6166e9b2e") - @TelephonyBaseTest.tel_test_wrap - def test_msim_mo_to_ssim_sms_3g(self): - """ Test MSIM MO SMS on both slots - - Airplane mode is off. Phone in 3G. - Send SMS from PhoneA to PhoneB. - Verify received message on PhoneB is correct. - Above steps to be done for 3 different message lengths - Above steps to be done for slot0 and slot1 - - Returns: - True if pass; False if fail. - """ - ads = [self.android_devices[0], self.android_devices[1]] - mo_result_0 = self._msim_sms_sequence( - ads, DIRECTION_MOBILE_ORIGINATED, 0, - self._phone_setup_3g, self._sms_test_msim_mo, True) - - mo_result_1 = self._msim_sms_sequence( - ads, DIRECTION_MOBILE_ORIGINATED, 1, - self._phone_setup_3g, self._sms_test_msim_mo, True) - - self.log.info("MO Slot0: %s, MO Slot1: %s", mo_result_0, mo_result_1) - return ((mo_result_0 is True) and (mo_result_1 is True)) - - @test_tracker_info(uuid="27b0f53f-86e9-4608-820c-e9756906c9fd") - @TelephonyBaseTest.tel_test_wrap - def test_msim_mo_to_ssim_sms_2g(self): - """ Test MSIM MO SMS on both slots - - Airplane mode is off. Phone in 2G. - Send SMS from PhoneA to PhoneB. - Verify received message on PhoneB is correct. - Above steps to be done for 3 different message lengths - Above steps to be done for slot0 and slot1 - - Returns: - True if pass; False if fail. - """ - ads = [self.android_devices[0], self.android_devices[1]] - mo_result_0 = self._msim_sms_sequence( - ads, DIRECTION_MOBILE_ORIGINATED, 0, - self._phone_setup_2g, self._sms_test_msim_mo, True) - - mo_result_1 = self._msim_sms_sequence( - ads, DIRECTION_MOBILE_ORIGINATED, 1, - self._phone_setup_2g, self._sms_test_msim_mo, True) - - self.log.info("MO Slot0: %s, MO Slot1: %s", mo_result_0, mo_result_1) - return ((mo_result_0 is True) and (mo_result_1 is True)) - - - @test_tracker_info(uuid="daac5b32-faf2-411c-bcab-720bcb92b7be") - @TelephonyBaseTest.tel_test_wrap - def test_msim_mt_from_ssim_sms_general(self): - """ Test SSIM to MSIM MT SMS - - Airplane mode is off. Phone in default state. - Send SMS from PhoneB to PhoneA. - Verify received message on PhoneA is correct. - Above steps to be done for 3 different message lengths - Above steps to be done for slot0 and slot1 - - Returns: - True if pass; False if fail. - """ - ads = [self.android_devices[0], self.android_devices[1]] - mt_result_0 = self._msim_sms_sequence( - ads, DIRECTION_MOBILE_TERMINATED, 0, - self._phone_setup_voice_general, self._sms_test_msim_mt, True) - - mt_result_1 = self._msim_sms_sequence( - ads, DIRECTION_MOBILE_TERMINATED, 1, - self._phone_setup_voice_general, self._sms_test_msim_mt, True) + self._phone_idle_2g, self._is_phone_in_call_2g, None, True) self.log.info("MT Slot0: %s, MT Slot1: %s", mt_result_0, mt_result_1) return ((mt_result_0 is True) and (mt_result_1 is True)) - - - @test_tracker_info(uuid="2948c245-e1ff-4612-bed0-31c07eb878be") - @TelephonyBaseTest.tel_test_wrap - def test_msim_mt_from_ssim_sms_lte(self): - """ Test SSIM to MSIM MT SMS - - Airplane mode is off. Phone in LTE state. - Send SMS from PhoneB to PhoneA. - Verify received message on PhoneA is correct. - Above steps to be done for 3 different message lengths - Above steps to be done for slot0 and slot1 - - Returns: - True if pass; False if fail. - """ - ads = [self.android_devices[0], self.android_devices[1]] - mt_result_0 = self._msim_sms_sequence( - ads, DIRECTION_MOBILE_TERMINATED, 0, - self._phone_setup_volte, self._sms_test_msim_mt, True) - - mt_result_1 = self._msim_sms_sequence( - ads, DIRECTION_MOBILE_TERMINATED, 1, - self._phone_setup_volte, self._sms_test_msim_mt, True) - - self.log.info("MT Slot0: %s, MT Slot1: %s", mt_result_0, mt_result_1) - return ((mt_result_0 is True) and (mt_result_1 is True)) - - - @test_tracker_info(uuid="b4df4acd-8122-4af1-ae89-e0c32d7c5e5f") - @TelephonyBaseTest.tel_test_wrap - def test_msim_mt_from_ssim_sms_3g(self): - """ Test SSIM to MSIM MT SMS - - Airplane mode is off. Phone in 3G state. - Send SMS from PhoneB to PhoneA. - Verify received message on PhoneA is correct. - Above steps to be done for 3 different message lengths - Above steps to be done for slot0 and slot1 - - Returns: - True if pass; False if fail. - """ - ads = [self.android_devices[0], self.android_devices[1]] - mt_result_0 = self._msim_sms_sequence( - ads, DIRECTION_MOBILE_TERMINATED, 0, - self._phone_setup_3g, self._sms_test_msim_mt, True) - - mt_result_1 = self._msim_sms_sequence( - ads, DIRECTION_MOBILE_TERMINATED, 1, - self._phone_setup_3g, self._sms_test_msim_mt, True) - - self.log.info("MT Slot0: %s, MT Slot1: %s", mt_result_0, mt_result_1) - return ((mt_result_0 is True) and (mt_result_1 is True)) - - - @test_tracker_info(uuid="7b6febe4-97c2-4e98-b656-fc2981ccc8a7") - @TelephonyBaseTest.tel_test_wrap - def test_msim_mt_from_ssim_sms_2g(self): - """ Test SSIM to MSIM MT SMS - - Airplane mode is off. Phone in 2G state. - Send SMS from PhoneB to PhoneA. - Verify received message on PhoneA is correct. - Above steps to be done for 3 different message lengths - Above steps to be done for slot0 and slot1 - - Returns: - True if pass; False if fail. - """ - ads = [self.android_devices[0], self.android_devices[1]] - mt_result_0 = self._msim_sms_sequence( - ads, DIRECTION_MOBILE_TERMINATED, 0, - self._phone_setup_2g, self._sms_test_msim_mt, True) - - mt_result_1 = self._msim_sms_sequence( - ads, DIRECTION_MOBILE_TERMINATED, 1, - self._phone_setup_2g, self._sms_test_msim_mt, True) - - self.log.info("MT Slot0: %s, MT Slot1: %s", mt_result_0, mt_result_1) - return ((mt_result_0 is True) and (mt_result_1 is True)) - - - @test_tracker_info(uuid="1aeb2b27-fbd5-4f58-9b5f-21e10e1e577c") - @TelephonyBaseTest.tel_test_wrap - def test_msim_mo_to_ssim_mms_general(self): - """ Test MSIM MO MMS on both slots - - Airplane mode is off. Phone in default state. - Send MMS from PhoneA to PhoneB. - Verify received message on PhoneB is correct. - Above steps to be done for 3 different message lengths - Above steps to be done for slot0 and slot1 - - Returns: - True if pass; False if fail. - """ - ads = [self.android_devices[0], self.android_devices[1]] - mo_result_0 = self._msim_sms_sequence( - ads, DIRECTION_MOBILE_ORIGINATED, 0, - self._phone_setup_voice_general, self._mms_test_msim_mo, True) - - mo_result_1 = self._msim_sms_sequence( - ads, DIRECTION_MOBILE_ORIGINATED, 1, - self._phone_setup_voice_general, self._mms_test_msim_mo, True) - - self.log.info("MO Slot0: %s, MO Slot1: %s", mo_result_0, mo_result_1) - return ((mo_result_0 is True) and (mo_result_1 is True)) - - - @test_tracker_info(uuid="c3f3cd1a-6314-4bb4-bf8b-37bc4360dfa3") - @TelephonyBaseTest.tel_test_wrap - def test_msim_mo_to_ssim_mms_lte(self): - """ Test MSIM MO MMS on both slots - - Airplane mode is off. Phone in 4G. - Send MMS from PhoneA to PhoneB. - Verify received message on PhoneB is correct. - Above steps to be done for 3 different message lengths - Above steps to be done for slot0 and slot1 - - Returns: - True if pass; False if fail. - """ - ads = [self.android_devices[0], self.android_devices[1]] - mo_result_0 = self._msim_sms_sequence( - ads, DIRECTION_MOBILE_ORIGINATED, 0, - self._phone_setup_volte, self._mms_test_msim_mo, True) - - mo_result_1 = self._msim_sms_sequence( - ads, DIRECTION_MOBILE_ORIGINATED, 1, - self._phone_setup_volte, self._mms_test_msim_mo, True) - - self.log.info("MO Slot0: %s, MO Slot1: %s", mo_result_0, mo_result_1) - return ((mo_result_0 is True) and (mo_result_1 is True)) - - - @test_tracker_info(uuid="c99d3ee5-394e-4230-aae7-0f092b8bde84") - @TelephonyBaseTest.tel_test_wrap - def test_msim_mo_to_ssim_mms_3g(self): - """ Test MSIM MO MMS on both slots - - Airplane mode is off. Phone in 3G. - Send MMS from PhoneA to PhoneB. - Verify received message on PhoneB is correct. - Above steps to be done for 3 different message lengths - Above steps to be done for slot0 and slot1 - - Returns: - True if pass; False if fail. - """ - ads = [self.android_devices[0], self.android_devices[1]] - mo_result_0 = self._msim_sms_sequence( - ads, DIRECTION_MOBILE_ORIGINATED, 0, - self._phone_setup_3g, self._mms_test_msim_mo, True) - - mo_result_1 = self._msim_sms_sequence( - ads, DIRECTION_MOBILE_ORIGINATED, 1, - self._phone_setup_3g, self._mms_test_msim_mo, True) - - self.log.info("MO Slot0: %s, MO Slot1: %s", mo_result_0, mo_result_1) - return ((mo_result_0 is True) and (mo_result_1 is True)) - - - @test_tracker_info(uuid="54d5de46-9691-4b23-bcab-9ac5f96841b9") - @TelephonyBaseTest.tel_test_wrap - def test_msim_mo_to_ssim_mms_2g(self): - """ Test MSIM MO MMS on both slots - - Airplane mode is off. Phone in 2G. - Send MMS from PhoneA to PhoneB. - Verify received message on PhoneB is correct. - Above steps to be done for 3 different message lengths - Above steps to be done for slot0 and slot1 - - Returns: - True if pass; False if fail. - """ - ads = [self.android_devices[0], self.android_devices[1]] - mo_result_0 = self._msim_sms_sequence( - ads, DIRECTION_MOBILE_ORIGINATED, 0, - self._phone_setup_2g, self._mms_test_msim_mo, True) - - mo_result_1 = self._msim_sms_sequence( - ads, DIRECTION_MOBILE_ORIGINATED, 1, - self._phone_setup_2g, self._mms_test_msim_mo, True) - - self.log.info("MO Slot0: %s, MO Slot1: %s", mo_result_0, mo_result_1) - return ((mo_result_0 is True) and (mo_result_1 is True)) - - - @test_tracker_info(uuid="ffcad40f-420d-46ac-affb-f8f559173b0e") - @TelephonyBaseTest.tel_test_wrap - def test_msim_mt_from_ssim_mms_general(self): - """ Test MSIM MT MMS on both slots - - Airplane mode is off. Phone in default state. - Send MMS from PhoneB to PhoneA. - Verify received message on PhoneA is correct. - Above steps to be done for 3 different message lengths - Above steps to be done for slot0 and slot1 - - Returns: - True if pass; False if fail. - """ - ads = [self.android_devices[0], self.android_devices[1]] - mt_result_0 = self._msim_sms_sequence( - ads, DIRECTION_MOBILE_TERMINATED, 0, - self._phone_setup_voice_general, self._mms_test_msim_mt, True) - - mt_result_1 = self._msim_sms_sequence( - ads, DIRECTION_MOBILE_TERMINATED, 1, - self._phone_setup_voice_general, self._mms_test_msim_mt, True) - - self.log.info("MT Slot0: %s, MT Slot1: %s", mt_result_0, mt_result_1) - return ((mt_result_0 is True) and (mt_result_1 is True)) - - - @test_tracker_info(uuid="73bfcedf-5725-4f91-a245-aeae5471f75c") - @TelephonyBaseTest.tel_test_wrap - def test_msim_mt_from_ssim_mms_lte(self): - """ Test MSIM MT MMS on both slots - - Airplane mode is off. Phone in 4G. - Send MMS from PhoneB to PhoneA. - Verify received message on PhoneA is correct. - Above steps to be done for 3 different message lengths - Above steps to be done for slot0 and slot1 - - Returns: - True if pass; False if fail. - """ - ads = [self.android_devices[0], self.android_devices[1]] - mt_result_0 = self._msim_sms_sequence( - ads, DIRECTION_MOBILE_TERMINATED, 0, - self._phone_setup_volte, self._mms_test_msim_mt, True) - - mt_result_1 = self._msim_sms_sequence( - ads, DIRECTION_MOBILE_TERMINATED, 1, - self._phone_setup_volte, self._mms_test_msim_mt, True) - - self.log.info("MT Slot0: %s, MT Slot1: %s", mt_result_0, mt_result_1) - return ((mt_result_0 is True) and (mt_result_1 is True)) - - - @test_tracker_info(uuid="76befdc8-df06-4c50-8f20-d6171c9c91f4") - @TelephonyBaseTest.tel_test_wrap - def test_msim_mt_from_ssim_mms_3g(self): - """ Test MSIM MT MMS on both slots - - Airplane mode is off. Phone in 3G. - Send MMS from PhoneB to PhoneA. - Verify received message on PhoneA is correct. - Above steps to be done for 3 different message lengths - Above steps to be done for slot0 and slot1 - - Returns: - True if pass; False if fail. - """ - ads = [self.android_devices[0], self.android_devices[1]] - mt_result_0 = self._msim_sms_sequence( - ads, DIRECTION_MOBILE_TERMINATED, 0, - self._phone_setup_3g, self._mms_test_msim_mt, True) - - mt_result_1 = self._msim_sms_sequence( - ads, DIRECTION_MOBILE_TERMINATED, 1, - self._phone_setup_3g, self._mms_test_msim_mt, True) - - self.log.info("MT Slot0: %s, MT Slot1: %s", mt_result_0, mt_result_1) - return ((mt_result_0 is True) and (mt_result_1 is True)) - - - @test_tracker_info(uuid="855631c8-30fd-43f5-9a1b-0461b4c4ed86") - @TelephonyBaseTest.tel_test_wrap - def test_msim_mt_from_ssim_mms_2g(self): - """ Test MSIM MT MMS on both slots - - Airplane mode is off. Phone in 2G. - Send MMS from PhoneB to PhoneA. - Verify received message on PhoneA is correct. - Above steps to be done for 3 different message lengths - Above steps to be done for slot0 and slot1 - - Returns: - True if pass; False if fail. - """ - ads = [self.android_devices[0], self.android_devices[1]] - mt_result_0 = self._msim_sms_sequence( - ads, DIRECTION_MOBILE_TERMINATED, 0, - self._phone_setup_2g, self._mms_test_msim_mt, True) - - mt_result_1 = self._msim_sms_sequence( - ads, DIRECTION_MOBILE_TERMINATED, 1, - self._phone_setup_2g, self._mms_test_msim_mt, True) - - self.log.info("MT Slot0: %s, MT Slot1: %s", mt_result_0, mt_result_1) - return ((mt_result_0 is True) and (mt_result_1 is True)) - - - def _test_stress_msim(self, mo_mt, dds_switch=False): - """ Test MSIM/SSIM Voice General Stress - - mo_mt: indicating this call sequence is MO or MT. - Valid input: DIRECTION_MOBILE_ORIGINATED and - DIRECTION_MOBILE_TERMINATED. - slot_id: either 0 or 1 - - Returns: - True if pass; False if fail. - """ - if (mo_mt not in [DIRECTION_MOBILE_ORIGINATED, - DIRECTION_MOBILE_TERMINATED]): - self.log.error("Invalid parameters.") - return False - ads = [self.android_devices[0], self.android_devices[1]] - total_iteration = self.stress_test_number - fail_count = collections.defaultdict(int) - for i in range(0,2): - sub_id = get_subid_from_slot_index(ads[0].log, ads[0], i) - operator = get_operatorname_from_slot_index(ads[0], i) - self.log.info("Slot %d - Sub %s - %s", i, sub_id, operator) - if self.dds_operator == operator: - ads[0].log.info("Setting DDS on %s", operator) - set_subid_for_data(ads[0], sub_id) - ads[0].droid.telephonyToggleDataConnection(True) - - self.log.info("Total iteration = %d.", total_iteration) - current_iteration = 1 - for i in range(1, total_iteration + 1): - msg = "Stress Call Test Iteration: <%s> / <%s>" % ( - i, total_iteration) - begin_time = get_current_epoch_time() - self.log.info(msg) - start_qxdm_loggers(self.log, self.android_devices, begin_time) - - if dds_switch: - if not perform_dds_switch(ads[0]): - ads[0].log.error("DDS Switch Failed") - fail_count["dds_switch"] += 1 - - result_0 = self._msim_call_sequence( - ads, mo_mt, 0, - self._phone_setup_voice_general, None, None, - self._is_phone_in_call, None, None, None, True) - if not result_0: - fail_count["slot_0"] += 1 - - result_1 = self._msim_call_sequence( - ads, mo_mt, 1, - self._phone_setup_voice_general, None, None, - self._is_phone_in_call, None, None, None, True) - if not result_1: - fail_count["slot_1"] += 1 - - self.log.info("Slot0: %s, Slot1: %s", result_0, result_1) - iteration_result = ((result_0 is True) and (result_1 is True)) - if iteration_result: - self.log.info(">----Iteration : %d/%d succeed.----<", - i, total_iteration) - else: - self.log.error(">----Iteration : %d/%d failed.----<", - i, total_iteration) - self._take_bug_report("%s_IterNo_%s" % (self.test_name, i), - begin_time) - current_iteration += 1 - - test_result = True - for failure, count in fail_count.items(): - if count: - self.log.error("%s: %s %s failures in %s iterations", - self.test_name, count, failure, - total_iteration) - test_result = False - return test_result - - @test_tracker_info(uuid="22e3130e-9d46-45e2-a999-36a091acadcf") - @TelephonyBaseTest.tel_test_wrap - def test_stress_msim_mt_calls(self): - """ Test MSIM to SSIM stress - - Call from PhoneB to PhoneA Slot0 - Call from PhoneB to PhoneA Slot1 - Repeat above steps - - Returns: - True if pass; False if fail. - """ - return self._test_stress_msim(DIRECTION_MOBILE_TERMINATED) - - - @test_tracker_info(uuid="e7c97ffb-6b1c-4819-9f3c-29b1c87b0ead") - @TelephonyBaseTest.tel_test_wrap - def test_stress_dds_switch_msim_mt_calls(self): - """ Test MSIM to SSIM stress - - Perform DDS Switch - Call from PhoneB to PhoneA Slot0 - Call from PhoneB to PhoneA Slot0 - Repeat above steps - - Returns: - True if pass; False if fail. - """ - return self._test_stress_msim(DIRECTION_MOBILE_TERMINATED, - dds_switch=True) - - - @test_tracker_info(uuid="bc80622a-09fb-48ed-9340-c5de92df1c69") - @TelephonyBaseTest.tel_test_wrap - def test_stress_msim_mo_calls(self): - """ Test MSIM to SSIM stress - - Call from PhoneA Slot0 to PhoneB - Call from PhoneA Slot1 to PhoneB - Repeat above steps - - Returns: - True if pass; False if fail. - """ - return self._test_stress_msim(DIRECTION_MOBILE_ORIGINATED) - - - @test_tracker_info(uuid="b1af7036-7d91-4f6f-83c9-a763092790b4") - @TelephonyBaseTest.tel_test_wrap - def test_stress_dds_switch_msim_mo_calls(self): - """ Test MSIM to SSIM stress with DDS - - Switch DDS - Call from PhoneA Slot0 to PhoneB - Call from PhoneA Slot1 to PhoneB - Repeat above steps - - Returns: - True if pass; False if fail. - """ - return self._test_stress_msim(DIRECTION_MOBILE_ORIGINATED, - dds_switch=True) - - - def _test_stress_msim_sms(self, mo_mt, sms_mms, dds_switch=False): - """ Test MSIM/SSIM SMS Stress - - mo_mt: indicating this call sequence is MO or MT. - Valid input: DIRECTION_MOBILE_ORIGINATED and - DIRECTION_MOBILE_TERMINATED. - slot_id: either 0 or 1 - - Returns: - True if pass; False if fail. - """ - if (mo_mt not in [DIRECTION_MOBILE_ORIGINATED, - DIRECTION_MOBILE_TERMINATED]): - self.log.error("Invalid parameters.") - return False - ads = [self.android_devices[0], self.android_devices[1]] - if mo_mt == DIRECTION_MOBILE_ORIGINATED: - sms_test_func = self._mms_test_msim_mo - if sms_mms == "sms": - sms_test_func = self._sms_test_msim_mo - else: - sms_test_func = self._mms_test_msim_mt - if sms_mms == "sms": - sms_test_func = self._sms_test_msim_mt - - total_iteration = self.stress_test_number - fail_count = collections.defaultdict(int) - for i in range(0,2): - sub_id = get_subid_from_slot_index(ads[0].log, ads[0], i) - operator = get_operatorname_from_slot_index(ads[0], i) - self.log.info("Slot %d - Sub %s - %s", i, sub_id, operator) - if self.dds_operator == operator: - ads[0].log.info("Setting DDS on %s", operator) - set_subid_for_data(ads[0], sub_id) - ads[0].droid.telephonyToggleDataConnection(True) - - self.log.info("Total iteration = %d.", total_iteration) - current_iteration = 1 - for i in range(1, total_iteration + 1): - msg = "Stress Call Test Iteration: <%s> / <%s>" % ( - i, total_iteration) - begin_time = get_current_epoch_time() - self.log.info(msg) - start_qxdm_loggers(self.log, self.android_devices, begin_time) - - if dds_switch: - if not perform_dds_switch(ads[0]): - ads[0].log.error("DDS Switch Failed") - fail_count["dds_switch"] += 1 - - result_0 = self._msim_sms_sequence( - ads, mo_mt, 0, self._phone_setup_voice_general, sms_test_func, - True) - if not result_0: - fail_count["slot_0"] += 1 - - result_1 = self._msim_sms_sequence( - ads, mo_mt, 1, self._phone_setup_voice_general, sms_test_func, - True) - if not result_1: - fail_count["slot_1"] += 1 - - self.log.info("Slot0: %s, Slot1: %s", result_0, result_1) - iteration_result = ((result_0 is True) and (result_1 is True)) - if iteration_result: - self.log.info(">----Iteration : %d/%d succeed.----<", - i, total_iteration) - else: - self.log.error(">----Iteration : %d/%d failed.----<", - i, total_iteration) - self._take_bug_report("%s_IterNo_%s" % (self.test_name, i), - begin_time) - current_iteration += 1 - - test_result = True - for failure, count in fail_count.items(): - if count: - self.log.error("%s: %s %s failures in %s iterations", - self.test_name, count, failure, - total_iteration) - test_result = False - return test_result - - - @test_tracker_info(uuid="2396723d-4ad1-4a0d-8ee9-98847cf99f34") - @TelephonyBaseTest.tel_test_wrap - def test_stress_msim_mo_sms(self): - """ Test MSIM to SSIM SMS MO stress - - Airplane mode is off. Phone in default state. - Send SMS from PhoneA to PhoneB. - Verify received message on PhoneB is correct. - Above steps to be done for 3 different message lengths - Above steps to be done for slot0 and slot1 - - Returns: - True if pass; False if fail. - """ - return self._test_stress_msim_sms(DIRECTION_MOBILE_ORIGINATED, "sms") - - - @test_tracker_info(uuid="6b2f0796-dd1c-4e18-9e87-e37bb45f1bba") - @TelephonyBaseTest.tel_test_wrap - def test_stress_dds_switch_msim_mo_sms(self): - """ Test MSIM to SSIM SMS MO stress - - Airplane mode is off. Phone in default state. - Switch DDS - Send SMS from PhoneA to PhoneB. - Verify received message on PhoneB is correct. - Above steps to be done for 3 different message lengths - Above steps to be done for slot0 and slot1 - - Returns: - True if pass; False if fail. - """ - return self._test_stress_msim_sms(DIRECTION_MOBILE_ORIGINATED, "sms", - dds_switch=True) - - - @test_tracker_info(uuid="3b2d6fe8-eb6a-43ff-b3e1-a16a12f108c6") - @TelephonyBaseTest.tel_test_wrap - def test_stress_msim_mo_mms(self): - """ Test MSIM to SSIM MMS MO stress - - Airplane mode is off. Phone in default state. - Send MMS from PhoneA to PhoneB. - Verify received message on PhoneB is correct. - Above steps to be done for 3 different message lengths - Above steps to be done for slot0 and slot1 - - Returns: - True if pass; False if fail. - """ - return self._test_stress_msim_sms(DIRECTION_MOBILE_ORIGINATED, "mms") - - - @test_tracker_info(uuid="2b2fae63-d2f2-49c8-974f-3af88391904f") - @TelephonyBaseTest.tel_test_wrap - def test_stress_dds_switch_msim_mo_mms(self): - """ Test MSIM to SSIM MMS MO stress - - Airplane mode is off. Phone in default state. - Switch DDS - Send MMS from PhoneA to PhoneB. - Verify received message on PhoneB is correct. - Above steps to be done for 3 different message lengths - Above steps to be done for slot0 and slot1 - - Returns: - True if pass; False if fail. - """ - return self._test_stress_msim_sms(DIRECTION_MOBILE_ORIGINATED, "mms", - dds_switch=True) - - @test_tracker_info(uuid="71a51e15-ccfa-417d-a3fb-9c6eba214e45") - @TelephonyBaseTest.tel_test_wrap - def test_stress_msim_mt_sms(self): - """ Test MSIM SMS MT from SSIM stress - - Airplane mode is off. Phone in default state. - Send SMS from PhoneB to PhoneA. - Verify received message on PhoneA is correct. - Above steps to be done for 3 different message lengths - Above steps to be done for slot0 and slot1 - - Returns: - True if pass; False if fail. - """ - return self._test_stress_msim_sms(DIRECTION_MOBILE_TERMINATED, "sms") - - - @test_tracker_info(uuid="ac61311d-4100-498e-893d-7669b5de1226") - @TelephonyBaseTest.tel_test_wrap - def test_stress_dds_switch_msim_mt_sms(self): - """ Test MSIM SMS MT from SSIM stress - - Airplane mode is off. Phone in default state. - Switch DDS - Send SMS from PhoneB to PhoneA. - Verify received message on PhoneA is correct. - Above steps to be done for 3 different message lengths - Above steps to be done for slot0 and slot1 - - Returns: - True if pass; False if fail. - """ - return self._test_stress_msim_sms(DIRECTION_MOBILE_TERMINATED, "sms", - dds_switch=True) - - - @test_tracker_info(uuid="33316449-d802-472d-8a51-85322f83a501") - @TelephonyBaseTest.tel_test_wrap - def test_stress_msim_mt_mms(self): - """ Test MSIM MMS MT from SSIM stress - - Airplane mode is off. Phone in default state. - Send MMS from PhoneB to PhoneA. - Verify received message on PhoneA is correct. - Above steps to be done for 3 different message lengths - Above steps to be done for slot0 and slot1 - - Returns: - True if pass; False if fail. - """ - return self._test_stress_msim_sms(DIRECTION_MOBILE_TERMINATED, "mms") - - - @test_tracker_info(uuid="25fecd17-b4a1-4010-acf6-ae72fbe905df") - @TelephonyBaseTest.tel_test_wrap - def test_stress_dds_switch_msim_mt_mms(self): - """ Test MSIM MMS MT from SSIM stress - - Airplane mode is off. Phone in default state. - Switch DDS - Send MMS from PhoneB to PhoneA. - Verify received message on PhoneA is correct. - Above steps to be done for 3 different message lengths - Above steps to be done for slot0 and slot1 - - Returns: - True if pass; False if fail. - """ - return self._test_stress_msim_sms(DIRECTION_MOBILE_TERMINATED, "mms", - dds_switch=True) - - - def _test_msim_file_download_stress(self): - ad = self.android_devices[0] - total_iteration = self.stress_test_number - fail_count = collections.defaultdict(int) - for i in range(0,2): - sub_id = get_subid_from_slot_index(ad.log, ad, i) - operator = get_operatorname_from_slot_index(ad, i) - ad.log.info("Slot %d - Sub %s - %s", i, sub_id, operator) - - file_names = ["5MB", "10MB"] - current_iteration = 1 - for i in range(1, total_iteration + 1): - msg = "File DL Iteration: <%s> / <%s>" % (i, total_iteration) - self.log.info(msg) - begin_time = get_current_epoch_time() - start_qxdm_logger(ad, begin_time) - current_dds = perform_dds_switch(ad) - if not current_dds: - ad.log.error("DDS Switch Failed") - fail_count["dds_switch"] += 1 - ad.log.error(">----Iteration : %d/%d failed.----<", - i, total_iteration) - self._take_bug_report("%s_IterNo_%s" % (self.test_name, i), - begin_time) - current_iteration += 1 - continue - time.sleep(15) - if not verify_internet_connection(ad.log, ad): - ad.log.warning("No Data after DDS. Waiting 1 more minute") - time.sleep(60) - try: - selection = random.randrange(0, len(file_names)) - file_name = file_names[selection] - iteration_result = active_file_download_test( - ad.log, ad, file_name) - if not iteration_result: - fail_count["%s" % current_dds] += 1 - except Exception as e: - ad.log.error("Exception error %s", str(e)) - iteration_result = False - - if iteration_result: - ad.log.info(">----Iteration : %d/%d succeed.----<", - i, total_iteration) - else: - ad.log.error("%s file download failure", file_name) - ad.log.error(">----Iteration : %d/%d failed.----<", - i, total_iteration) - self._take_bug_report("%s_IterNo_%s" % (self.test_name, i), - begin_time) - current_iteration += 1 - - test_result = True - for failure, count in fail_count.items(): - if count: - ad.log.error("%s: %s %s failures in %s iterations", - self.test_name, count, failure, - total_iteration) - test_result = False - return test_result - - - @test_tracker_info(uuid="82e10a34-5018-453a-bf20-52d3b225a36e") - @TelephonyBaseTest.tel_test_wrap - def test_stress_dds_switch_file_download(self): - """ Test File DL stress on both DDS - - Switch DDS - File Download on alternate slot - Repeat above steps - - Returns: - True if pass; False if fail. - """ - return self._test_msim_file_download_stress() - - - def _test_msim_pings_dds_stress(self): - ad = self.android_devices[0] - total_iteration = self.stress_test_number - fail_count = collections.defaultdict(int) - for i in range(0,2): - sub_id = get_subid_from_slot_index(ad.log, ad, i) - operator = get_operatorname_from_slot_index(ad, i) - ad.log.info("Slot %d - Sub %s - %s", i, sub_id, operator) - - current_iteration = 1 - for i in range(1, total_iteration + 1): - msg = "Ping test Iteration: <%s> / <%s>" % (i, total_iteration) - self.log.info(msg) - begin_time = get_current_epoch_time() - start_qxdm_logger(ad, begin_time) - - current_dds = perform_dds_switch(ad) - if not current_dds: - ad.log.error("DDS Switch Failed") - fail_count["dds_switch"] += 1 - ad.log.error(">----Iteration : %d/%d failed.----<", - i, total_iteration) - self._take_bug_report("%s_IterNo_%s" % (self.test_name, i), - begin_time) - current_iteration += 1 - continue - - ad.log.info("Waiting for 30 secs before verifying data") - time.sleep(30) - iteration_result = verify_internet_connection(ad.log, ad) - if not iteration_result: - fail_count["%s" % current_dds] += 1 - - if iteration_result: - ad.log.info(">----Iteration : %d/%d succeed.----<", - i, total_iteration) - else: - ad.log.error(">----Iteration : %d/%d failed.----<", - i, total_iteration) - self._take_bug_report("%s_IterNo_%s" % (self.test_name, i), - begin_time) - current_iteration += 1 - - test_result = True - for failure, count in fail_count.items(): - if count: - ad.log.error("%s: %s %s failures in %s iterations", - self.test_name, count, failure, - total_iteration) - test_result = False - return test_result - - - @test_tracker_info(uuid="7a5127dd-71e0-45cf-bb8a-52081b92ca7b") - @TelephonyBaseTest.tel_test_wrap - def test_stress_dds_switch_pings(self): - """ Test pings stress on both DDS - - Switch DDS - ICMP Pings on alternate slot - Repeat above steps - - Returns: - True if pass; False if fail. - """ - return self._test_msim_pings_dds_stress() diff --git a/acts/tests/google/tel/live/TelLiveDataTest.py b/acts/tests/google/tel/live/TelLiveDataTest.py index e1a691069c..ac25a735b8 100644 --- a/acts/tests/google/tel/live/TelLiveDataTest.py +++ b/acts/tests/google/tel/live/TelLiveDataTest.py @@ -81,7 +81,6 @@ from acts.test_utils.tel.tel_test_utils import set_call_state_listen_level from acts.test_utils.tel.tel_test_utils import set_mobile_data_usage_limit from acts.test_utils.tel.tel_test_utils import setup_sim from acts.test_utils.tel.tel_test_utils import stop_wifi_tethering -from acts.test_utils.tel.tel_test_utils import start_wifi_tethering from acts.test_utils.tel.tel_test_utils import toggle_airplane_mode from acts.test_utils.tel.tel_test_utils import toggle_airplane_mode_by_adb from acts.test_utils.tel.tel_test_utils import toggle_volte @@ -126,8 +125,8 @@ from acts.utils import adb_shell_ping class TelLiveDataTest(TelephonyBaseTest): - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + TelephonyBaseTest.__init__(self, controllers) self.stress_test_number = self.get_stress_test_number() self.provider = self.android_devices[0] @@ -495,8 +494,8 @@ class TelLiveDataTest(TelephonyBaseTest): self.log, self.android_devices[0], False): raise _LocalException("Failed to Disable Cellular Data") - if not verify_internet_connection(self.log, - self.android_devices[0], expected_state=False): + if verify_internet_connection(self.log, + self.android_devices[0]): raise _LocalException("Internet Accessible when Disabled") self.log.info("Step5 Re-enable data.") @@ -1614,7 +1613,7 @@ class TelLiveDataTest(TelephonyBaseTest): "Disable Data on Provider, verify no data on Client.") self.provider.droid.telephonyToggleDataConnection(False) time.sleep(WAIT_TIME_DATA_STATUS_CHANGE_DURING_WIFI_TETHERING) - if not verify_internet_connection(self.log, self.provider, expected_state=False): + if verify_internet_connection(self.log, self.provider): self.provider.log.error("Disable data on provider failed.") return False if not self.provider.droid.wifiIsApEnabled(): @@ -1821,7 +1820,7 @@ class TelLiveDataTest(TelephonyBaseTest): if self.provider.droid.wifiIsApEnabled(): self.provider.log.error("Provider WiFi tethering not stopped.") return False - if not verify_internet_connection(self.log, self.clients[0], expected_state=False): + if verify_internet_connection(self.log, self.clients[0]): self.clients[0].log.error( "Client should not have Internet connection.") return False @@ -3224,47 +3223,6 @@ class TelLiveDataTest(TelephonyBaseTest): resume_internet_with_sl4a_port(dut, sl4a_port) - def _test_airplane_mode_stress(self): - ad = self.android_devices[0] - total_iteration = self.stress_test_number - fail_count = collections.defaultdict(int) - current_iteration = 1 - for i in range(1, total_iteration + 1): - msg = "Airplane mode test Iteration: <%s> / <%s>" % (i, total_iteration) - self.log.info(msg) - if not airplane_mode_test(self.log, ad): - fail_count["apm_run"] += 1 - ad.log.error(">----Iteration : %d/%d failed.----<", - i, total_iteration) - ad.log.info(">----Iteration : %d/%d succeeded.----<", - i, total_iteration) - current_iteration += 1 - test_result = True - for failure, count in fail_count.items(): - if count: - ad.log.error("%s: %s %s failures in %s iterations", - self.test_name, count, failure, - total_iteration) - test_result = False - return test_result - - - @test_tracker_info(uuid="3a82728f-18b5-4a35-9eab-4e6cf55271d9") - @TelephonyBaseTest.tel_test_wrap - def test_apm_toggle_stress(self): - """ Test airplane mode toggle - - 1. Start with airplane mode off - 2. Toggle airplane mode on - 3. Toggle airplane mode off - 4. Repeat above steps - - Returns: - True if pass; False if fail. - """ - return self._test_airplane_mode_stress() - - @test_tracker_info(uuid="fda33416-698a-408f-8ddc-b5cde13b1f83") @TelephonyBaseTest.tel_test_wrap def test_data_stall_detection_cellular(self): diff --git a/acts/tests/google/tel/live/TelLiveEmergencyBase.py b/acts/tests/google/tel/live/TelLiveEmergencyBase.py index e1ec0e298b..6e03b142cc 100644 --- a/acts/tests/google/tel/live/TelLiveEmergencyBase.py +++ b/acts/tests/google/tel/live/TelLiveEmergencyBase.py @@ -63,13 +63,15 @@ BLOCK_DURATION = 300 class TelLiveEmergencyBase(TelephonyBaseTest): - def setup_class(self): - TelephonyBaseTest.setup_class(self) + def __init__(self, controllers): + TelephonyBaseTest.__init__(self, controllers) self.number_of_devices = 1 fake_number = self.user_params.get("fake_emergency_number", "411") self.fake_emergency_number = fake_number.strip("+").replace("-", "") self.my_devices = self.android_devices[:] + def setup_class(self): + TelephonyBaseTest.setup_class(self) for ad in self.android_devices: if not is_sim_lock_enabled(ad): self.setup_dut(ad) diff --git a/acts/tests/google/tel/live/TelLiveImsSettingsTest.py b/acts/tests/google/tel/live/TelLiveImsSettingsTest.py index 7a6d384f4b..d9309b7020 100644 --- a/acts/tests/google/tel/live/TelLiveImsSettingsTest.py +++ b/acts/tests/google/tel/live/TelLiveImsSettingsTest.py @@ -39,7 +39,6 @@ from acts.test_utils.tel.tel_defines import WFC_MODE_CELLULAR_PREFERRED from acts.test_utils.tel.tel_defines import WFC_MODE_DISABLED from acts.test_utils.tel.tel_defines import WFC_MODE_WIFI_ONLY from acts.test_utils.tel.tel_defines import WFC_MODE_WIFI_PREFERRED -from acts.test_utils.tel.tel_subscription_utils import get_outgoing_voice_sub_id from acts.test_utils.tel.tel_test_utils import call_setup_teardown from acts.test_utils.tel.tel_test_utils import dumpsys_carrier_config from acts.test_utils.tel.tel_test_utils import ensure_phone_subscription @@ -80,15 +79,13 @@ class TelLiveImsSettingsTest(TelephonyBaseTest): self.dut = self.android_devices[0] self.number_of_devices = 1 self.skip_reset_between_cases = False - subid = get_outgoing_voice_sub_id(self.dut) - self.carrier_configs = dumpsys_carrier_config(self.dut)[subid] - self.dut_capabilities = self.dut.telephony["subscription"][ - subid].get("capabilities", []) + self.carrier_configs = dumpsys_carrier_config(self.dut) + self.dut_capabilities = self.dut.telephony.get("capabilities", []) self.dut.log.info("DUT capabilities: %s", self.dut_capabilities) if CAPABILITY_VOLTE not in self.dut_capabilities: - raise signals.TestAbortClass("VoLTE is not supported") + raise signals.TestSkipClass("VoLTE is not supported") if CAPABILITY_WFC not in self.dut_capabilities: - raise signals.TestAbortClass("WFC is not supported") + raise signals.TestSkipClass("WFC is not supported") self.default_volte = (CAPABILITY_VOLTE in self.dut_capabilities) and ( self.carrier_configs[CarrierConfigs. @@ -99,8 +96,7 @@ class TelLiveImsSettingsTest(TelephonyBaseTest): self.carrier_configs[CarrierConfigs.DEFAULT_WFC_IMS_ENABLED_BOOL]) self.default_wfc_mode = self.carrier_configs.get( CarrierConfigs.DEFAULT_WFC_IMS_MODE_INT, None) - self.dut_wfc_modes = self.dut.telephony[ - "subscription"][subid].get("wfc_modes", []) + self.dut_wfc_modes = self.dut.telephony.get("wfc_modes", []) def check_call_in_wfc(self): result = True diff --git a/acts/tests/google/tel/live/TelLiveNoQXDMLogTest.py b/acts/tests/google/tel/live/TelLiveNoQXDMLogTest.py index 86e99275ee..4eb12d9262 100644 --- a/acts/tests/google/tel/live/TelLiveNoQXDMLogTest.py +++ b/acts/tests/google/tel/live/TelLiveNoQXDMLogTest.py @@ -39,9 +39,6 @@ from acts.test_utils.tel.tel_defines import ATT_CARRIER_CONFIG_VERSION from acts.test_utils.tel.tel_defines import CARRIER_ID_METADATA_URL from acts.test_utils.tel.tel_defines import CARRIER_ID_CONTENT_URL from acts.test_utils.tel.tel_defines import CARRIER_ID_VERSION -from acts.test_utils.tel.tel_defines import CARRIER_ID_METADATA_URL_P -from acts.test_utils.tel.tel_defines import CARRIER_ID_CONTENT_URL_P -from acts.test_utils.tel.tel_defines import CARRIER_ID_VERSION_P from acts.test_utils.tel.tel_lookup_tables import device_capabilities from acts.test_utils.tel.tel_lookup_tables import operator_capabilities from acts.test_utils.tel.tel_test_utils import lock_lte_band_by_mds @@ -61,20 +58,17 @@ from acts.test_utils.tel.tel_test_utils import cleanup_configupdater from acts.test_utils.tel.tel_test_utils import pull_carrier_id_files from acts.test_utils.tel.tel_test_utils import wifi_toggle_state from acts.test_utils.tel.tel_voice_utils import phone_setup_volte -from acts.test_utils.tel.tel_subscription_utils import get_cbrs_and_default_sub_id from acts.utils import get_current_epoch_time from acts.keys import Config class TelLiveNoQXDMLogTest(TelephonyBaseTest): - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + TelephonyBaseTest.__init__(self, controllers) self.dut = self.android_devices[0] - if len(self.android_devices) > 1: - self.ad_reference = self.android_devices[1] - setattr(self.ad_reference, "qxdm_log", False) - else: - self.ad_reference = None + self.ad_reference = self.android_devices[1] if len( + self.android_devices) > 1 else None setattr(self.dut, "qxdm_log", False) + setattr(self.ad_reference, "qxdm_log", False) self.stress_test_number = int( self.user_params.get("stress_test_number", 5)) self.skip_reset_between_cases = False @@ -121,7 +115,7 @@ class TelLiveNoQXDMLogTest(TelephonyBaseTest): keyword_time_dict = {} text_search_mapping = { - 'boot_complete': "ModemService: Received: android.intent.action.BOOT_COMPLETED", + 'boot_complete': "processing action (sys.boot_completed=1)", 'Voice_Reg': "< VOICE_REGISTRATION_STATE {.regState = REG_HOME", 'Data_Reg': "< DATA_REGISTRATION_STATE {.regState = REG_HOME", 'Data_Call_Up': "onSetupConnectionCompleted result=SUCCESS", @@ -215,113 +209,6 @@ class TelLiveNoQXDMLogTest(TelephonyBaseTest): test_result = False return test_result - def _cbrs_bootup_time_test(self): - """CBRS Bootup Perf Test - - Expected Results: - Time - - Returns: - True is pass, False if fail. - """ - self.number_of_devices = 1 - ad = self.dut - cbrs_subid, default_subid = get_cbrs_and_default_sub_id(ad) - toggle_airplane_mode(self.log, ad, False) - - fail_count = collections.defaultdict(int) - test_result = True - keyword_time_dict = {} - - text_search_mapping = { - 'boot_complete': "ModemService: Received: android.intent.action.BOOT_COMPLETED", - 'cbrs_active': "notifyPreferredDataSubIdChanged to %s" % cbrs_subid, - } - - text_obj_mapping = { - "boot_complete": None, - "cbrs_active": None, - } - blocked_for_calculate = ["boot_complete"] - for i in range(1, self.stress_test_number + 1): - ad.log.info("CBRS Bootup Time Test %s Iteration: %d / %d", - self.test_name, i, self.stress_test_number) - begin_time = get_current_epoch_time() - ad.log.debug("Begin Time is %s", begin_time) - ad.log.info("reboot!") - reboot_device(ad) - iteration_result = "pass" - - time.sleep(WAIT_TIME_FOR_BOOT_COMPLETE) - - dict_match = ad.search_logcat( - text_search_mapping['boot_complete'], begin_time=begin_time) - if len(dict_match) != 0: - text_obj_mapping['boot_complete'] = dict_match[0][ - 'datetime_obj'] - ad.log.debug("Datetime for boot_complete is %s", - text_obj_mapping['boot_complete']) - bootup_time = dict_match[0]['datetime_obj'].strftime('%s') - bootup_time = int(bootup_time) * 1000 - ad.log.info("Bootup Time is %d", bootup_time) - else: - ad.log.error("TERMINATE- boot_complete not seen in logcat") - return False - - for tel_state in text_search_mapping: - if tel_state == "boot_complete": - continue - dict_match = ad.search_logcat( - text_search_mapping[tel_state], begin_time=bootup_time) - if len(dict_match) != 0: - text_obj_mapping[tel_state] = dict_match[0]['datetime_obj'] - ad.log.debug("Datetime for %s is %s", tel_state, - text_obj_mapping[tel_state]) - else: - ad.log.error("Cannot Find Text %s in logcat", - text_search_mapping[tel_state]) - blocked_for_calculate.append(tel_state) - ad.log.debug("New Blocked %s", blocked_for_calculate) - - ad.log.info("List Blocked %s", blocked_for_calculate) - for tel_state in text_search_mapping: - if tel_state not in blocked_for_calculate: - time_diff = text_obj_mapping[tel_state] - \ - text_obj_mapping['boot_complete'] - ad.log.info("Time Diff is %d for %s", time_diff.seconds, - tel_state) - if tel_state in keyword_time_dict: - keyword_time_dict[tel_state].append(time_diff.seconds) - else: - keyword_time_dict[tel_state] = [ - time_diff.seconds, - ] - ad.log.debug("Keyword Time Dict %s", keyword_time_dict) - - ad.log.info("CBRS Bootup Time Test %s Iteration: %d / %d %s", - self.test_name, i, self.stress_test_number, - iteration_result) - ad.log.info("Final Keyword Time Dict %s", keyword_time_dict) - for tel_state in text_search_mapping: - if tel_state not in blocked_for_calculate: - avg_time = self._get_list_average(keyword_time_dict[tel_state]) - if avg_time < 12.0: - ad.log.info("Average %s for %d iterations = %.2f seconds", - tel_state, self.stress_test_number, avg_time) - else: - ad.log.error("Average %s for %d iterations = %.2f seconds", - tel_state, self.stress_test_number, avg_time) - fail_count[tel_state] += 1 - - ad.log.info("Bootup Time Dict: %s", keyword_time_dict) - ad.log.info("fail_count: %s", dict(fail_count)) - for failure, count in fail_count.items(): - if count: - ad.log.error("%s %s failures in %s iterations", count, failure, - self.stress_test_number) - test_result = False - return test_result - """ Tests Begin """ @test_tracker_info(uuid="109d59ff-a488-4a68-87fd-2d8d0c035326") @@ -342,24 +229,6 @@ class TelLiveNoQXDMLogTest(TelephonyBaseTest): """ return self._telephony_bootup_time_test() - @test_tracker_info(uuid="d29e6e62-3d54-4a58-b67f-2ba0de3d0a19") - @TelephonyBaseTest.tel_test_wrap - def test_bootup_cbrs_stress(self): - """Bootup Optimized Reliability Test - - Steps: - 1. Reboot DUT. - 2. Parse logcat for time taken by CBRS data - 3. Repeat Step 1~2 for N times. (before reboot) - - Expected Results: - No crash happens in stress test. - - Returns: - True is pass, False if fail. - """ - return self._cbrs_bootup_time_test() - @test_tracker_info(uuid="67f50d11-a987-4e79-9a20-1569d365511b") @TelephonyBaseTest.tel_test_wrap def test_modem_power_anomaly_file_existence(self): @@ -381,8 +250,9 @@ class TelLiveNoQXDMLogTest(TelephonyBaseTest): begin_time = get_current_epoch_time() for i in range(3): try: + bugreport_path = os.path.join(ad.log_path, self.test_name) + create_dir(bugreport_path) ad.take_bug_report(self.test_name, begin_time) - bugreport_path = ad.device_log_path break except Exception as e: ad.log.error("bugreport attempt %s error: %s", i + 1, e) @@ -407,11 +277,9 @@ class TelLiveNoQXDMLogTest(TelephonyBaseTest): exe_cmd("tar -xvf %s" % (bugreport_path + "/dumpstate_board.tar")) os.chdir(current_dir) - else: - ad.log.info("The dumpstate_path file %s does not exist" % dumpstate_path) - if os.path.isfile(bugreport_path + "/power_anomaly_data.txt"): - ad.log.info("Modem Power Anomaly File Exists!!") - return True + if os.path.isfile(bugreport_path + "/power_anomaly_data.txt"): + ad.log.info("Modem Power Anomaly File Exists!!") + return True ad.log.info("Modem Power Anomaly File DO NOT Exist!!") return False except Exception as e: @@ -507,8 +375,7 @@ class TelLiveNoQXDMLogTest(TelephonyBaseTest): ad.wait_for_boot_completion() ad.root_adb() ad.log.info("Re-install sl4a") - ad.adb.shell("settings put global verifier_verify_adb_installs" - " 0") + ad.adb.shell("settings put global package_verifier_enable 0") ad.adb.install("-r /tmp/base.apk") time.sleep(10) try: @@ -631,11 +498,6 @@ class TelLiveNoQXDMLogTest(TelephonyBaseTest): result_flag = False time_var = 1 ad = self.android_devices[0] - if ad.adb.getprop("ro.build.version.release")[0] in ("9", "P"): - CARRIER_ID_VERSION = CARRIER_ID_VERSION_P - CARRIER_ID_METADATA_URL = CARRIER_ID_METADATA_URL_P - CARRIER_ID_CONTENT_URL = CARRIER_ID_CONTENT_URL_P - ad.log.info("Before - CarrierId is %s", get_carrier_id_version(ad)) # Setup Steps if not ensure_wifi_connected(self.log, ad, self.wifi_network_ssid, diff --git a/acts/tests/google/tel/live/TelLivePostflightTest.py b/acts/tests/google/tel/live/TelLivePostflightTest.py index f738ae1165..f8d5a91ae1 100644 --- a/acts/tests/google/tel/live/TelLivePostflightTest.py +++ b/acts/tests/google/tel/live/TelLivePostflightTest.py @@ -25,9 +25,10 @@ from acts.test_utils.tel.TelephonyBaseTest import TelephonyBaseTest class TelLivePostflightTest(TelephonyBaseTest): - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BaseTestClass.__init__(self, controllers) + def setup_class(self): self.user_params["telephony_auto_rerun"] = 0 def teardown_class(self): diff --git a/acts/tests/google/tel/live/TelLivePreflightTest.py b/acts/tests/google/tel/live/TelLivePreflightTest.py index 18da8804e3..4969e5007f 100644 --- a/acts/tests/google/tel/live/TelLivePreflightTest.py +++ b/acts/tests/google/tel/live/TelLivePreflightTest.py @@ -49,8 +49,8 @@ from acts.test_utils.tel.tel_voice_utils import phone_setup_iwlan_cellular_prefe class TelLivePreflightTest(TelephonyBaseTest): - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + TelephonyBaseTest.__init__(self, controllers) self.user_params["telephony_auto_rerun"] = 0 def _check_wfc_enabled(self, ad): diff --git a/acts/tests/google/tel/live/TelLiveRebootStressTest.py b/acts/tests/google/tel/live/TelLiveRebootStressTest.py index 3b6482af5a..da747f3daa 100644 --- a/acts/tests/google/tel/live/TelLiveRebootStressTest.py +++ b/acts/tests/google/tel/live/TelLiveRebootStressTest.py @@ -81,8 +81,8 @@ from acts.utils import rand_ascii_str class TelLiveRebootStressTest(TelephonyBaseTest): - def setup_class(self): - TelephonyBaseTest.setup_class(self) + def __init__(self, controllers): + TelephonyBaseTest.__init__(self, controllers) self.stress_test_number = int( self.user_params.get("stress_test_number", 10)) @@ -95,11 +95,14 @@ class TelLiveRebootStressTest(TelephonyBaseTest): self.user_params["check_crash"] = False self.skip_reset_between_cases = False - self.dut_subID = get_outgoing_voice_sub_id(self.dut) - self.dut_capabilities = self.dut.telephony["subscription"][self.dut_subID].get("capabilities", []) - self.dut_wfc_modes = self.dut.telephony["subscription"][self.dut_subID].get("wfc_modes", []) + def setup_class(self): + TelephonyBaseTest.setup_class(self) + self.dut_capabilities = self.dut.telephony.get("capabilities", []) + self.dut_wfc_modes = self.dut.telephony.get("wfc_modes", []) self.default_testing_func_names = [] - for method in ("_check_volte", "_check_3g"): + for method in ("_check_volte", "_check_vt", "_check_csfb", + "_check_tethering", "_check_wfc_apm", + "_check_wfc_nonapm", "_check_3g"): func = getattr(self, method) try: check_result = func() @@ -117,8 +120,9 @@ class TelLiveRebootStressTest(TelephonyBaseTest): def feature_validator(self, *args): failed_tests = [] - for method in ("_check_subscription", "_check_data", - "_check_call_setup_teardown", "_check_sms"): + for method in ("_check_subscription", "_check_data", "_check_mms_mt", + "_check_sms_mt", "_check_call_setup_teardown", + "_check_sms", "_check_mms"): func = getattr(self, method) if not func(): self.log.error("%s failed", method) @@ -921,24 +925,6 @@ class TelLiveRebootStressTest(TelephonyBaseTest): return self._crash_recovery_test("netmgrd", *self.default_testing_func_names) - @test_tracker_info(uuid="6d6908b7-7eca-42e3-b165-2621714f1822") - @TelephonyBaseTest.tel_test_wrap - def test_crash_recovery_qtidataservice(self): - """Crash Recovery Test - - Steps: - 1. Crash qtidataservice - 2. Post crash recovery, verify Voice, Data, SMS, VoLTE, VT - - Expected Results: - No crash happens in functional test, features work fine. - - Returns: - True is pass, False if fail. - """ - return self._crash_recovery_test("qtidataservice", - *self.default_testing_func_names) - @test_tracker_info(uuid="fa34f994-bc49-4444-9187-87691c94b4f4") @TelephonyBaseTest.tel_test_wrap def test_crash_recovery_phone(self): diff --git a/acts/tests/google/tel/live/TelLiveSettingsTest.py b/acts/tests/google/tel/live/TelLiveSettingsTest.py index 10b045f545..d64cb6a1b2 100644 --- a/acts/tests/google/tel/live/TelLiveSettingsTest.py +++ b/acts/tests/google/tel/live/TelLiveSettingsTest.py @@ -51,8 +51,7 @@ class TelLiveSettingsTest(TelephonyBaseTest): self.number_of_devices = 1 self.stress_test_number = self.get_stress_test_number() self.carrier_configs = dumpsys_carrier_config(self.dut) - self.dut_subID = get_outgoing_voice_sub_id(self.dut) - self.dut_capabilities = self.dut.telephony["subscription"][self.dut_subID].get("capabilities", []) + self.dut_capabilities = self.dut.telephony.get("capabilities", []) @test_tracker_info(uuid="c6149bd6-7080-453d-af37-1f9bd350a764") @TelephonyBaseTest.tel_test_wrap @@ -149,8 +148,8 @@ class TelLiveSettingsTest(TelephonyBaseTest): if not os.path.exists(path): self.log.error("path %s does not exist", path) self.log.info(self.user_params) - path = os.path.join( - self.user_params[Config.key_config_path.value], path) + path = os.path.join(self.user_params[Config.key_config_path], + path) if not os.path.exists(path): self.log.error("path %s does not exist", path) continue diff --git a/acts/tests/google/tel/live/TelLiveSmokeTest.py b/acts/tests/google/tel/live/TelLiveSmokeTest.py index ac536cf6d5..b36105a8c1 100644 --- a/acts/tests/google/tel/live/TelLiveSmokeTest.py +++ b/acts/tests/google/tel/live/TelLiveSmokeTest.py @@ -54,8 +54,8 @@ SKIP = 'Skip' class TelLiveSmokeTest(TelephonyBaseTest): - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + TelephonyBaseTest.__init__(self, controllers) self.wifi_network_ssid = self.user_params["wifi_network_ssid"] try: diff --git a/acts/tests/google/tel/live/TelLiveSmsTest.py b/acts/tests/google/tel/live/TelLiveSmsTest.py index 2e50b12ace..f448c34328 100644 --- a/acts/tests/google/tel/live/TelLiveSmsTest.py +++ b/acts/tests/google/tel/live/TelLiveSmsTest.py @@ -68,8 +68,8 @@ SMS_OVER_WIFI_PROVIDERS = ("vzw", "tmo", "fi", "rogers", "rjio", "eeuk", class TelLiveSmsTest(TelephonyBaseTest): - def setup_class(self): - TelephonyBaseTest.setup_class(self) + def __init__(self, controllers): + TelephonyBaseTest.__init__(self, controllers) # Try to put SMS and call on different help device # If it is a three phone test bed, use the first one as dut, @@ -81,6 +81,8 @@ class TelLiveSmsTest(TelephonyBaseTest): self.message_lengths = (50, 160, 180) self.long_message_lengths = (800, 1600) + def setup_class(self): + TelephonyBaseTest.setup_class(self) is_roaming = False for ad in self.android_devices: ad.sms_over_wifi = False diff --git a/acts/tests/google/tel/live/TelLiveStressDataTest.py b/acts/tests/google/tel/live/TelLiveStressDataTest.py deleted file mode 100644 index b8012aeca2..0000000000 --- a/acts/tests/google/tel/live/TelLiveStressDataTest.py +++ /dev/null @@ -1,77 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - Google -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -""" - Test Script for Telephony Stress data Test -""" -from acts.test_decorators import test_tracker_info -from acts.test_utils.tel.TelephonyBaseTest import TelephonyBaseTest -from acts.test_utils.tel.tel_test_utils import iperf_test_by_adb -from acts.test_utils.tel.tel_test_utils import iperf_udp_test_by_adb - - -class TelLiveStressDataTest(TelephonyBaseTest): - def setup_class(self): - super().setup_class() - self.ad = self.android_devices[0] - self.iperf_server_address = self.user_params.get("iperf_server", - '0.0.0.0') - self.iperf_srv_tcp_port = self.user_params.get("iperf_server_tcp_port", - 0) - self.iperf_srv_udp_port = self.user_params.get("iperf_server_udp_port", - 0) - self.test_duration = self.user_params.get("data_stress_duration", 60) - - return True - - @test_tracker_info(uuid="190fdeb1-541e-455f-9f37-762a8e55c07f") - @TelephonyBaseTest.tel_test_wrap - def test_tcp_upload_stress(self): - return iperf_test_by_adb(self.log, - self.ad, - self.iperf_server_address, - self.iperf_srv_tcp_port, - False, - self.test_duration) - - @test_tracker_info(uuid="af9805f8-6ed5-4e05-823e-d88dcef45637") - @TelephonyBaseTest.tel_test_wrap - def test_tcp_download_stress(self): - return iperf_test_by_adb(self.log, - self.ad, - self.iperf_server_address, - self.iperf_srv_tcp_port, - True, - self.test_duration) - - @test_tracker_info(uuid="55bf5e09-dc7b-40bc-843f-31fed076ffe4") - @TelephonyBaseTest.tel_test_wrap - def test_udp_upload_stress(self): - return iperf_udp_test_by_adb(self.log, - self.ad, - self.iperf_server_address, - self.iperf_srv_udp_port, - False, - self.test_duration) - - @test_tracker_info(uuid="02ae88b2-d597-45df-ab5a-d701d1125a0f") - @TelephonyBaseTest.tel_test_wrap - def test_udp_download_stress(self): - return iperf_udp_test_by_adb(self.log, - self.ad, - self.iperf_server_address, - self.iperf_srv_udp_port, - True, - self.test_duration) diff --git a/acts/tests/google/tel/live/TelLiveStressTest.py b/acts/tests/google/tel/live/TelLiveStressTest.py index ec364ced23..5d56ba4f89 100644 --- a/acts/tests/google/tel/live/TelLiveStressTest.py +++ b/acts/tests/google/tel/live/TelLiveStressTest.py @@ -23,7 +23,6 @@ import os import random import time -from acts import context from acts import signals from acts import utils from acts.libs.proc import job @@ -40,20 +39,21 @@ from acts.test_utils.tel.tel_defines import NETWORK_MODE_GLOBAL from acts.test_utils.tel.tel_defines import NETWORK_MODE_CDMA from acts.test_utils.tel.tel_defines import NETWORK_MODE_GSM_ONLY from acts.test_utils.tel.tel_defines import NETWORK_MODE_TDSCDMA_GSM_WCDMA +from acts.test_utils.tel.tel_defines import RAT_LTE +from acts.test_utils.tel.tel_defines import RAT_UNKNOWN from acts.test_utils.tel.tel_defines import WAIT_TIME_AFTER_MODE_CHANGE from acts.test_utils.tel.tel_defines import WFC_MODE_CELLULAR_PREFERRED from acts.test_utils.tel.tel_defines import WFC_MODE_WIFI_PREFERRED from acts.test_utils.tel.tel_defines import WAIT_TIME_CHANGE_MESSAGE_SUB_ID from acts.test_utils.tel.tel_defines import WAIT_TIME_CHANGE_VOICE_SUB_ID -from acts.test_utils.tel.tel_defines import WAIT_TIME_FOR_CBRS_DATA_SWITCH from acts.test_utils.tel.tel_lookup_tables import is_rat_svd_capable from acts.test_utils.tel.tel_test_utils import STORY_LINE from acts.test_utils.tel.tel_test_utils import active_file_download_test from acts.test_utils.tel.tel_test_utils import is_phone_in_call from acts.test_utils.tel.tel_test_utils import call_setup_teardown +from acts.test_utils.tel.tel_test_utils import check_is_wifi_connected from acts.test_utils.tel.tel_test_utils import ensure_network_generation_for_subscription from acts.test_utils.tel.tel_test_utils import ensure_wifi_connected -from acts.test_utils.tel.tel_test_utils import extract_test_log from acts.test_utils.tel.tel_test_utils import force_connectivity_metrics_upload from acts.test_utils.tel.tel_test_utils import get_device_epoch_time from acts.test_utils.tel.tel_test_utils import get_telephony_signal_strength @@ -65,7 +65,6 @@ from acts.test_utils.tel.tel_test_utils import run_multithread_func from acts.test_utils.tel.tel_test_utils import set_wfc_mode from acts.test_utils.tel.tel_test_utils import sms_send_receive_verify from acts.test_utils.tel.tel_test_utils import start_qxdm_loggers -from acts.test_utils.tel.tel_test_utils import start_sdm_loggers from acts.test_utils.tel.tel_test_utils import start_adb_tcpdump from acts.test_utils.tel.tel_test_utils import synchronize_device_time from acts.test_utils.tel.tel_test_utils import mms_send_receive_verify @@ -76,7 +75,7 @@ from acts.test_utils.tel.tel_test_utils import verify_http_connection from acts.test_utils.tel.tel_test_utils import wait_for_call_id_clearing from acts.test_utils.tel.tel_test_utils import wait_for_data_connection from acts.test_utils.tel.tel_test_utils import wait_for_in_call_active -from acts.test_utils.tel.tel_test_utils import is_current_data_on_cbrs +from acts.test_utils.tel.tel_test_utils import wifi_toggle_state from acts.test_utils.tel.tel_voice_utils import is_phone_in_call_3g from acts.test_utils.tel.tel_voice_utils import is_phone_in_call_2g from acts.test_utils.tel.tel_voice_utils import is_phone_in_call_csfb @@ -90,9 +89,12 @@ from acts.test_utils.tel.tel_voice_utils import phone_setup_volte from acts.test_utils.tel.tel_voice_utils import phone_idle_iwlan from acts.test_utils.tel.tel_voice_utils import phone_idle_volte from acts.test_utils.tel.tel_voice_utils import get_current_voice_rat +from acts.test_utils.tel.tel_subscription_utils import get_default_data_sub_id +from acts.test_utils.tel.tel_subscription_utils import get_outgoing_message_sub_id +from acts.test_utils.tel.tel_subscription_utils import get_outgoing_voice_sub_id +from acts.test_utils.tel.tel_subscription_utils import get_incoming_voice_sub_id +from acts.test_utils.tel.tel_subscription_utils import get_incoming_message_sub_id from acts.test_utils.tel.tel_subscription_utils import get_subid_from_slot_index -from acts.test_utils.tel.tel_subscription_utils import get_operatorname_from_slot_index -from acts.test_utils.tel.tel_subscription_utils import get_carrierid_from_slot_index from acts.test_utils.tel.tel_subscription_utils import set_subid_for_data from acts.test_utils.tel.tel_subscription_utils import set_subid_for_message from acts.test_utils.tel.tel_subscription_utils import set_subid_for_outgoing_call @@ -125,11 +127,9 @@ class TelLiveStressTest(TelephonyBaseTest): self.file_download_method = "curl" else: self.android_devices = self.android_devices[:2] - self.sdm_log = self.user_params.get("sdm_log", False) for ad in self.android_devices: - setattr(ad, "sdm_log", self.sdm_log) ad.adb.shell("setprop nfc.debug_enable 1") - if self.user_params.get("turn_on_tcpdump", False): + if self.user_params.get("turn_on_tcpdump", True): start_adb_tcpdump(ad, interface="any", mask="all") self.user_params["telephony_auto_rerun"] = 0 self.phone_call_iteration = int( @@ -147,11 +147,8 @@ class TelLiveStressTest(TelephonyBaseTest): self.user_params.get("min_phone_call_duration", 10)) self.crash_check_interval = int( self.user_params.get("crash_check_interval", 300)) - self.cbrs_check_interval = int( - self.user_params.get("cbrs_check_interval", 100)) self.dut_incall = False self.dsds_esim = self.user_params.get("dsds_esim", False) - self.cbrs_esim = self.user_params.get("cbrs_esim", False) telephony_info = getattr(self.dut, "telephony", {}) self.dut_capabilities = telephony_info.get("capabilities", []) self.dut_wfc_modes = telephony_info.get("wfc_modes", []) @@ -167,28 +164,6 @@ class TelLiveStressTest(TelephonyBaseTest): def on_fail(self, test_name, begin_time): pass - def _take_bug_report(self, test_name, begin_time): - if self._skip_bug_report(test_name): - return - src_dir = context.get_current_context().get_full_output_path() - dst_dir = os.path.join(self.log_path, test_name) - - # Extract test_run_info.txt, test_run_debug.txt - for file_name in ("test_run_info.txt", "test_run_debug.txt"): - extract_test_log(self.log, os.path.join(src_dir, file_name), - os.path.join(dst_dir, - "%s_%s" % (test_name, file_name)), - "\[Test Case\] %s " % test_name) - super()._take_bug_report(test_name, begin_time) - - def _ad_take_extra_logs(self, ad, test_name, begin_time): - src_file = os.path.join(ad.device_log_path, - 'adblog_%s_debug.txt' % ad.serial) - dst_file = os.path.join(ad.device_log_path, test_name, - "%s_%s.logcat" % (ad.serial, test_name)) - extract_test_log(self.log, src_file, dst_file, test_name) - return super()._ad_take_extra_logs(ad, test_name, begin_time) - def _setup_wfc(self): for ad in self.android_devices: if not ensure_wifi_connected( @@ -251,19 +226,6 @@ class TelLiveStressTest(TelephonyBaseTest): ad.log.info("RAT 2G is enabled successfully.") return True - def _get_network_rat(self, slot_id): - rat = self.dut.adb.getprop("gsm.network.type") - if "," in rat: - if self.dsds_esim: - rat = rat.split(',')[slot_id] - else: - (rat1, rat2) = rat.split(',') - if rat1 == "Unknown": - rat = rat2 - else: - rat = rat1 - return rat - def _send_message(self, max_wait_time=2 * MAX_WAIT_TIME_SMS_RECEIVE): slot_id_rx = None if self.single_phone_test: @@ -289,7 +251,12 @@ class TelLiveStressTest(TelephonyBaseTest): 0: sms_send_receive_verify, 1: mms_send_receive_verify } - rat = self._get_network_rat(slot_id) + rat = self.dut.adb.getprop("gsm.network.type") + if "," in rat: + if self.dsds_esim: + rat = rat.split(',')[slot_id] + else: + rat = rat.split(',')[0] self.dut.log.info("Network in RAT %s", rat) if self.dut_incall and not is_rat_svd_capable(rat.upper()): self.dut.log.info("In call data not supported, test SMS only") @@ -298,14 +265,11 @@ class TelLiveStressTest(TelephonyBaseTest): the_number = self.result_info["%s Total" % message_type] + 1 begin_time = get_device_epoch_time(self.dut) test_name = "%s_No_%s_%s" % (self.test_name, the_number, message_type) - if self.sdm_log: - start_sdm_loggers(self.log, self.android_devices) - else: - start_qxdm_loggers(self.log, self.android_devices) + start_qxdm_loggers(self.log, self.android_devices) log_msg = "[Test Case] %s" % test_name self.log.info("%s begin", log_msg) for ad in self.android_devices: - if self.user_params.get("turn_on_tcpdump", False): + if self.user_params.get("turn_on_tcpdump", True): start_adb_tcpdump(ad, interface="any", mask="all") if not getattr(ad, "messaging_droid", None): ad.messaging_droid, ad.messaging_ed = ad.get_droid() @@ -344,7 +308,12 @@ class TelLiveStressTest(TelephonyBaseTest): self.log.error("%s fails", log_msg) self.result_info["%s Failure" % message_type] += 1 else: - rat = self._get_network_rat(slot_id) + rat = self.dut.adb.getprop("gsm.network.type") + if "," in rat: + if self.dsds_esim: + rat = rat.split(',')[slot_id] + else: + rat = rat.split(',')[0] self.dut.log.info("Network in RAT %s", rat) if self.dut_incall and not is_rat_svd_capable(rat.upper()): self.dut.log.info( @@ -387,7 +356,7 @@ class TelLiveStressTest(TelephonyBaseTest): self.log.info("%s for %s seconds begin", log_msg, duration) begin_time = get_device_epoch_time(ads[0]) for ad in self.android_devices: - if self.user_params.get("turn_on_tcpdump", False): + if self.user_params.get("turn_on_tcpdump", True): start_adb_tcpdump(ad, interface="any", mask="all") if not getattr(ad, "droid", None): ad.droid, ad.ed = ad.get_droid() @@ -404,16 +373,7 @@ class TelLiveStressTest(TelephonyBaseTest): ad.droid, ad.ed = ad.get_droid() ad.ed.start() ad.droid.logI("[BEGIN]%s" % log_msg) - if self.sdm_log: - for ad in ads: - ad.adb.shell("i2cset -fy 3 64 6 1 b", ignore_status=True) - ad.adb.shell("i2cset -fy 3 65 6 1 b", ignore_status=True) - start_sdm_loggers(self.log, self.android_devices) - else: - start_qxdm_loggers(self.log, self.android_devices) - if self.cbrs_esim: - self._cbrs_data_check_test(begin_time, expected_cbrs=True, - test_time="before") + start_qxdm_loggers(self.log, self.android_devices, begin_time) failure_reasons = set() self.dut_incall = True if self.single_phone_test: @@ -458,14 +418,6 @@ class TelLiveStressTest(TelephonyBaseTest): else: elapsed_time = 0 check_interval = 5 - if self.sdm_log: - for ad in ads: - ad.adb.shell("i2cset -fy 3 64 6 1 b", ignore_status=True) - ad.adb.shell("i2cset -fy 3 65 6 1 b", ignore_status=True) - if self.cbrs_esim: - time.sleep(5) - self._cbrs_data_check_test(begin_time, expected_cbrs=False, - test_time="during") while (elapsed_time < duration): check_interval = min(check_interval, duration - elapsed_time) time.sleep(check_interval) @@ -512,10 +464,6 @@ class TelLiveStressTest(TelephonyBaseTest): pass self.log.info("%s end", log_msg) self.dut_incall = False - if self.cbrs_esim: - time.sleep(30) - self._cbrs_data_check_test(begin_time, expected_cbrs=True, - test_time="after") if not result: self.log.info("%s failed", log_msg) if self.gps_log_file: @@ -555,7 +503,8 @@ class TelLiveStressTest(TelephonyBaseTest): synchronize_device_time(ad) force_connectivity_metrics_upload(ad) if self.get_binder_logs: - log_path = os.path.join(self.log_path, test_name, + log_path = os.path.join(self.log_path, + "%s_binder_logs" % test_name, "%s_binder_logs" % ad.serial) utils.create_dir(log_path) ad.pull_files(BINDER_LOGS, log_path) @@ -564,10 +513,7 @@ class TelLiveStressTest(TelephonyBaseTest): def _prefnetwork_mode_change(self, sub_id): # ModePref change to non-LTE begin_time = get_device_epoch_time(self.dut) - if self.sdm_log: - start_sdm_loggers(self.log, self.android_devices) - else: - start_qxdm_loggers(self.log, self.android_devices) + start_qxdm_loggers(self.log, self.android_devices) self.result_info["Network Change Request Total"] += 1 test_name = "%s_network_change_iter_%s" % ( self.test_name, self.result_info["Network Change Request Total"]) @@ -604,10 +550,7 @@ class TelLiveStressTest(TelephonyBaseTest): def _mobile_data_toggling(self, setup="volte"): # ModePref change to non-LTE begin_time = get_device_epoch_time(self.dut) - if self.sdm_log: - start_sdm_loggers(self.log, self.android_devices) - else: - start_qxdm_loggers(self.log, self.android_devices) + start_qxdm_loggers(self.log, self.android_devices) result = True self.result_info["Data Toggling Request Total"] += 1 test_name = "%s_data_toggling_iter_%s" % ( @@ -701,31 +644,6 @@ class TelLiveStressTest(TelephonyBaseTest): else: return True - def _cbrs_data_check_test(self, begin_time, expected_cbrs=True, - test_time="before"): - cbrs_fail_count = 0 - the_number = self.result_info["CBRS Total"] + 1 - test_name = "%s_cbrs_%s_call_No_%s" % (self.test_name, - test_time, the_number) - for ad in self.android_devices: - current_state = is_current_data_on_cbrs(ad, ad.cbrs) - if current_state == expected_cbrs: - self.result_info["CBRS-Check-Pass"] += 1 - else: - self.result_info["CBRS-Check-Fail"] += 1 - cbrs_fail_count += 1 - try: - self._ad_take_extra_logs(ad, test_name, begin_time) - self._ad_take_bugreport(ad, test_name, begin_time) - except Exception as e: - self.log.warning(e) - if cbrs_fail_count > 0: - ad.log.error("Found %d checks failed, expected cbrs %s", - cbrs_fail_count, expected_cbrs) - cbrs_fail_count += 1 - self.result_info["CBRS Total"] += 1 - return True - def call_test(self, call_verification_func=None): while time.time() < self.finishing_time: time.sleep( @@ -776,17 +694,18 @@ class TelLiveStressTest(TelephonyBaseTest): self.dut.log.info("Data - slot_Id %d", slot_id) set_subid_for_data(self.dut, sub_id) self.dut.droid.telephonyToggleDataConnection(True) - if self.sdm_log: - start_sdm_loggers(self.log, self.android_devices) - else: - start_qxdm_loggers(self.log, self.android_devices) + start_qxdm_loggers(self.log, self.android_devices) self.dut.log.info(dict(self.result_info)) selection = random.randrange(0, len(file_names)) file_name = file_names[selection] self.result_info["Internet Connection Check Total"] += 1 - - rat = self._get_network_rat(slot_id) if not self.internet_connection_check_method(self.log, self.dut): + rat = self.dut.adb.getprop("gsm.network.type") + if "," in rat: + if self.dsds_esim: + rat = rat.split(',')[slot_id] + else: + rat = rat.split(',')[0] self.dut.log.info("Network in RAT %s", rat) if self.dut_incall and not is_rat_svd_capable(rat.upper()): self.result_info[ @@ -859,10 +778,7 @@ class TelLiveStressTest(TelephonyBaseTest): def _data_call_test(self, sub_id, generation): self.dut.log.info(dict(self.result_info)) begin_time = get_device_epoch_time(self.dut) - if self.sdm_log: - start_sdm_loggers(self.log, self.android_devices) - else: - start_qxdm_loggers(self.log, self.android_devices) + start_qxdm_loggers(self.log, self.android_devices) self.result_info["Network Change Request Total"] += 1 test_name = "%s_network_change_test_iter_%s" % ( self.test_name, self.result_info["Network Change Request Total"]) @@ -960,22 +876,6 @@ class TelLiveStressTest(TelephonyBaseTest): if not call_verification_func: call_verification_func = is_phone_in_call self.finishing_time = time.time() + self.max_run_time - if self.cbrs_esim: - cbrs_sub_count = 0 - for ad in self.android_devices: - if not getattr(ad, 'cbrs', {}): - setattr(ad, 'cbrs', None) - for i in range(0, 2): - sub_id = get_subid_from_slot_index(ad.log, ad, i) - operator = get_operatorname_from_slot_index(ad, i) - carrier_id = get_carrierid_from_slot_index(ad, i) - ad.log.info("Slot %d - Sub %s - %s - %d", i, sub_id, operator, carrier_id) - if carrier_id == 2340: - ad.cbrs = sub_id - cbrs_sub_count += 1 - if cbrs_sub_count != 2: - self.log.error("Expecting - 2 CBRS subs, found - %d", cbrs_sub_count) - raise signals.TestAbortClass("Cannot find all expected CBRS subs") if not self.dsds_esim and self.check_incall_data(): self.log.info( "==== Start parallel voice/message/data stress test ====") @@ -1068,19 +968,6 @@ class TelLiveStressTest(TelephonyBaseTest): self.result_detail = result_message return all(results) - def connect_to_wifi(self): - for ad in self.android_devices: - if not ensure_wifi_connected( - self.log, - ad, - self.wifi_network_ssid, - self.wifi_network_pass, - retries=3): - ad.log.error("Bringing up Wifi connection fails.") - return False - ad.log.info("Phone WIFI is connected successfully.") - return True - """ Tests Begin """ @test_tracker_info(uuid="d035e5b9-476a-4e3d-b4e9-6fd86c51a68d") @@ -1089,19 +976,12 @@ class TelLiveStressTest(TelephonyBaseTest): """ Default state stress test""" return self.parallel_tests() - @test_tracker_info(uuid="798a3c34-db75-4bcf-b8ef-e1116414a7fe") - @TelephonyBaseTest.tel_test_wrap - def test_default_parallel_stress_with_wifi(self): - """ Default state stress test with Wifi enabled.""" - if self.connect_to_wifi(): - return self.parallel_tests() - @test_tracker_info(uuid="c21e1f17-3282-4f0b-b527-19f048798098") @TelephonyBaseTest.tel_test_wrap def test_lte_volte_parallel_stress(self): """ VoLTE on stress test""" if CAPABILITY_VOLTE not in self.dut_capabilities: - raise signals.TestAbortClass("VoLTE is not supported") + raise signals.TestSkipClass("VoLTE is not supported") return self.parallel_tests( setup_func=self._setup_lte_volte_enabled, call_verification_func=is_phone_in_call_volte) @@ -1119,7 +999,7 @@ class TelLiveStressTest(TelephonyBaseTest): def test_wfc_parallel_stress(self): """ Wifi calling APM mode off stress test""" if CAPABILITY_WFC not in self.dut_capabilities: - raise signals.TestAbortClass("WFC is not supported") + raise signals.TestSkipClass("WFC is not supported") if WFC_MODE_WIFI_PREFERRED not in self.dut_wfc_modes: raise signals.TestSkip("WFC_MODE_WIFI_PREFERRED is not supported") return self.parallel_tests( @@ -1131,7 +1011,7 @@ class TelLiveStressTest(TelephonyBaseTest): def test_wfc_apm_parallel_stress(self): """ Wifi calling in APM mode on stress test""" if CAPABILITY_WFC not in self.dut_capabilities: - raise signals.TestAbortClass("WFC is not supported") + raise signals.TestSkipClass("WFC is not supported") return self.parallel_tests( setup_func=self._setup_wfc_apm, call_verification_func=is_phone_in_call_iwlan) @@ -1157,7 +1037,7 @@ class TelLiveStressTest(TelephonyBaseTest): def test_volte_modeprefchange_parallel_stress(self): """ VoLTE Mode Pref call stress test""" if CAPABILITY_VOLTE not in self.dut_capabilities: - raise signals.TestAbortClass("VoLTE is not supported") + raise signals.TestSkipClass("VoLTE is not supported") return self.parallel_with_network_change_tests( setup_func=self._setup_lte_volte_enabled) diff --git a/acts/tests/google/tel/live/TelLiveVideoDataTest.py b/acts/tests/google/tel/live/TelLiveVideoDataTest.py index 18dd7f787c..6fdea24b15 100644 --- a/acts/tests/google/tel/live/TelLiveVideoDataTest.py +++ b/acts/tests/google/tel/live/TelLiveVideoDataTest.py @@ -28,8 +28,8 @@ from acts.test_utils.tel.tel_video_utils import video_call_setup_teardown class TelLiveVideoDataTest(TelephonyBaseTest): - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + TelephonyBaseTest.__init__(self, controllers) self.stress_test_number = self.get_stress_test_number() self.number_of_devices = 2 diff --git a/acts/tests/google/tel/live/TelLiveVideoTest.py b/acts/tests/google/tel/live/TelLiveVideoTest.py index 107e05f3ee..68ced549b8 100644 --- a/acts/tests/google/tel/live/TelLiveVideoTest.py +++ b/acts/tests/google/tel/live/TelLiveVideoTest.py @@ -46,7 +46,6 @@ from acts.test_utils.tel.tel_defines import EventTelecomVideoCallSessionEvent from acts.test_utils.tel.tel_defines import SESSION_EVENT_RX_PAUSE from acts.test_utils.tel.tel_defines import SESSION_EVENT_RX_RESUME from acts.test_utils.tel.tel_lookup_tables import operator_capabilities -from acts.test_utils.tel.tel_subscription_utils import get_outgoing_voice_sub_id from acts.test_utils.tel.tel_test_utils import call_setup_teardown from acts.test_utils.tel.tel_test_utils import disconnect_call_by_id from acts.test_utils.tel.tel_test_utils import get_model_name @@ -57,7 +56,6 @@ from acts.test_utils.tel.tel_test_utils import num_active_calls from acts.test_utils.tel.tel_test_utils import verify_internet_connection from acts.test_utils.tel.tel_test_utils import verify_incall_state from acts.test_utils.tel.tel_test_utils import wait_for_video_enabled -from acts.test_utils.tel.tel_test_utils import get_capability_for_subscription from acts.test_utils.tel.tel_video_utils import get_call_id_in_video_state from acts.test_utils.tel.tel_video_utils import \ is_phone_in_call_video_bidirectional @@ -78,8 +76,8 @@ DEFAULT_LONG_DURATION_CALL_TOTAL_DURATION = 1 * 60 * 60 # default 1 hour class TelLiveVideoTest(TelephonyBaseTest): - def setup_class(self): - TelephonyBaseTest.setup_class(self) + def __init__(self, controllers): + TelephonyBaseTest.__init__(self, controllers) self.stress_test_number = self.get_stress_test_number() @@ -87,9 +85,10 @@ class TelLiveVideoTest(TelephonyBaseTest): "long_duration_call_total_duration", DEFAULT_LONG_DURATION_CALL_TOTAL_DURATION) + def setup_class(self): + TelephonyBaseTest.setup_class(self) for ad in self.android_devices: - if not get_capability_for_subscription(ad, CAPABILITY_VT, - get_outgoing_voice_sub_id(ad)): + if CAPABILITY_VT not in ad.telephony.get("capabilities", []): ad.log.error("Video calling is not supported") raise signals.TestAbortClass("Video calling is not supported") diff --git a/acts/tests/google/tel/live/TelLiveVoiceConfTest.py b/acts/tests/google/tel/live/TelLiveVoiceConfTest.py index 66b9977711..de97bc061d 100644 --- a/acts/tests/google/tel/live/TelLiveVoiceConfTest.py +++ b/acts/tests/google/tel/live/TelLiveVoiceConfTest.py @@ -33,7 +33,6 @@ from acts.test_utils.tel.tel_defines import PHONE_TYPE_GSM from acts.test_utils.tel.tel_defines import WAIT_TIME_IN_CALL from acts.test_utils.tel.tel_defines import WFC_MODE_WIFI_ONLY from acts.test_utils.tel.tel_defines import WFC_MODE_WIFI_PREFERRED -from acts.test_utils.tel.tel_subscription_utils import get_outgoing_voice_sub_id from acts.test_utils.tel.tel_test_utils import call_reject from acts.test_utils.tel.tel_test_utils import call_setup_teardown from acts.test_utils.tel.tel_test_utils import get_call_uri @@ -44,8 +43,6 @@ from acts.test_utils.tel.tel_test_utils import multithread_func from acts.test_utils.tel.tel_test_utils import num_active_calls from acts.test_utils.tel.tel_test_utils import verify_incall_state from acts.test_utils.tel.tel_test_utils import wait_and_answer_call -from acts.test_utils.tel.tel_test_utils import get_capability_for_subscription -from acts.test_utils.tel.tel_test_utils import ensure_phones_idle from acts.test_utils.tel.tel_voice_utils import get_cep_conference_call_id from acts.test_utils.tel.tel_voice_utils import is_phone_in_call_1x from acts.test_utils.tel.tel_voice_utils import is_phone_in_call_2g @@ -67,18 +64,13 @@ from acts.test_utils.tel.tel_voice_utils import swap_calls class TelLiveVoiceConfTest(TelephonyBaseTest): def setup_class(self): TelephonyBaseTest.setup_class(self) - if not get_capability_for_subscription( - self.android_devices[0], - CAPABILITY_CONFERENCE, - get_outgoing_voice_sub_id(self.android_devices[0])): + if CAPABILITY_CONFERENCE not in self.android_devices[0].telephony.get( + "capabilities", []): self.android_devices[0].log.error( "Conference call is not supported, abort test.") raise signals.TestAbortClass( "Conference call is not supported, abort test.") - def teardown_test(self): - ensure_phones_idle(self.log, self.android_devices) - # Note: Currently Conference Call do not verify voice. # So even if test cases passed, does not necessarily means # conference call functionality is working. @@ -1618,7 +1610,6 @@ class TelLiveVoiceConfTest(TelephonyBaseTest): self.log.info( "Step6: Disconnect call A-B and verify PhoneA PhoneB end.") - calls = ads[0].droid.telecomCallGetCallIds() call_to_disconnect = None for call in calls: if is_uri_equivalent(call_ab_uri, get_call_uri(ads[0], call)): @@ -1686,7 +1677,6 @@ class TelLiveVoiceConfTest(TelephonyBaseTest): self.log.info( "Step6: Disconnect call A-C and verify PhoneA PhoneC end.") - calls = ads[0].droid.telecomCallGetCallIds() call_to_disconnect = None for call in calls: if is_uri_equivalent(call_ac_uri, get_call_uri(ads[0], call)): @@ -2425,53 +2415,21 @@ class TelLiveVoiceConfTest(TelephonyBaseTest): True if succeed; False if failed. """ + ads = self.android_devices + self.log.info("Step4: Merge to Conf Call and verify Conf Call.") ads[0].droid.telecomCallJoinCallsInConf(call_ab_id, call_ac_id) time.sleep(WAIT_TIME_IN_CALL) calls = ads[0].droid.telecomCallGetCallIds() ads[0].log.info("Calls in PhoneA %s", calls) - - call_conf_id = None if num_active_calls(self.log, ads[0]) != 1: - ads[0].log.info("Total number of call ids is not 1.") - call_conf_id = get_cep_conference_call_id(ads[0]) - if call_conf_id is not None: - self.log.info("New conference call id is found. CEP enabled.") - - calls.remove(call_conf_id) - if (set(ads[0].droid.telecomCallGetCallChildren( - call_conf_id)) != set(calls)): - ads[0].log.error( - "Children list %s for conference call is not correct.", - ads[0].droid.telecomCallGetCallChildren(call_conf_id)) - return False - - if (CALL_PROPERTY_CONFERENCE not in ads[0] - .droid.telecomCallGetProperties(call_conf_id)): - ads[0].log.error( - "Conf call id % properties wrong: %s", call_conf_id, - ads[0].droid.telecomCallGetProperties(call_conf_id)) - return False - - if (CALL_CAPABILITY_MANAGE_CONFERENCE not in ads[0] - .droid.telecomCallGetCapabilities(call_conf_id)): - ads[0].log.error( - "Conf call id %s capabilities wrong: %s", call_conf_id, - ads[0].droid.telecomCallGetCapabilities(call_conf_id)) - return False - - if (call_ab_id in calls) or (call_ac_id in calls): - self.log.error( - "Previous call ids should not in new call list after " - "merge.") - return False - else: - for call_id in calls: - if call_id != call_ab_id and call_id != call_ac_id: - call_conf_id = call_id - self.log.info("CEP not enabled.") - + ads[0].log.error("Total number of call ids is not 1.") + return False + call_conf_id = None + for call_id in calls: + if call_id != call_ab_id and call_id != call_ac_id: + call_conf_id = call_id if not call_conf_id: self.log.error("Merge call fail, no new conference call id.") return False @@ -10836,7 +10794,7 @@ class TelLiveVoiceConfTest(TelephonyBaseTest): ads = self.android_devices tasks = [(phone_setup_iwlan, - (self.log, ads[0], True, WFC_MODE_WIFI_PREFERRED, + (self.log, ads[0], False, WFC_MODE_WIFI_PREFERRED, self.wifi_network_ssid, self.wifi_network_pass)), (phone_setup_voice_general, (self.log, ads[1])), (phone_setup_voice_general, (self.log, ads[2]))] @@ -10845,7 +10803,7 @@ class TelLiveVoiceConfTest(TelephonyBaseTest): return False if not self._three_phone_call_mo_add_mt_reject( - [ads[0], ads[1], ads[2]], [is_phone_in_call_iwlan, None], True): + [ads[0], ads[1], ads[2]], [is_phone_in_call_volte, None], True): return False return True @@ -10855,7 +10813,7 @@ class TelLiveVoiceConfTest(TelephonyBaseTest): ads = self.android_devices tasks = [(phone_setup_iwlan, - (self.log, ads[0], True, WFC_MODE_WIFI_PREFERRED, + (self.log, ads[0], False, WFC_MODE_WIFI_PREFERRED, self.wifi_network_ssid, self.wifi_network_pass)), (phone_setup_voice_general, (self.log, ads[1])), (phone_setup_voice_general, (self.log, ads[2]))] @@ -10864,7 +10822,7 @@ class TelLiveVoiceConfTest(TelephonyBaseTest): return False if not self._three_phone_call_mo_add_mt_reject( - [ads[0], ads[1], ads[2]], [is_phone_in_call_iwlan, None], False): + [ads[0], ads[1], ads[2]], [is_phone_in_call_volte, None], False): return False return True diff --git a/acts/tests/google/tel/live/TelLiveVoiceTest.py b/acts/tests/google/tel/live/TelLiveVoiceTest.py index 5114daa41c..d16640fced 100644 --- a/acts/tests/google/tel/live/TelLiveVoiceTest.py +++ b/acts/tests/google/tel/live/TelLiveVoiceTest.py @@ -56,7 +56,6 @@ from acts.test_utils.tel.tel_test_utils import get_mobile_data_usage from acts.test_utils.tel.tel_test_utils import hangup_call from acts.test_utils.tel.tel_test_utils import initiate_call from acts.test_utils.tel.tel_test_utils import is_phone_in_call_active -from acts.test_utils.tel.tel_test_utils import is_phone_in_call from acts.test_utils.tel.tel_test_utils import multithread_func from acts.test_utils.tel.tel_test_utils import num_active_calls from acts.test_utils.tel.tel_test_utils import remove_mobile_data_usage_limit @@ -69,8 +68,6 @@ from acts.test_utils.tel.tel_test_utils import wait_for_ringing_call from acts.test_utils.tel.tel_test_utils import wait_for_state from acts.test_utils.tel.tel_test_utils import start_youtube_video from acts.test_utils.tel.tel_test_utils import set_wifi_to_default -from acts.test_utils.tel.tel_test_utils import STORY_LINE -from acts.test_utils.tel.tel_test_utils import wait_for_in_call_active from acts.test_utils.tel.tel_voice_utils import is_phone_in_call_1x from acts.test_utils.tel.tel_voice_utils import is_phone_in_call_2g from acts.test_utils.tel.tel_voice_utils import is_phone_in_call_3g @@ -102,8 +99,8 @@ DEFAULT_PING_DURATION = 120 # in seconds CallResult = TelephonyVoiceTestResult.CallResult.Value class TelLiveVoiceTest(TelephonyBaseTest): - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + TelephonyBaseTest.__init__(self, controllers) self.stress_test_number = self.get_stress_test_number() self.long_duration_call_total_duration = self.user_params.get( @@ -116,45 +113,6 @@ class TelLiveVoiceTest(TelephonyBaseTest): """ Tests Begin """ @TelephonyBaseTest.tel_test_wrap - @test_tracker_info(uuid="c5009f8c-eb1d-4cd9-85ce-604298bbeb3e") - def test_call_to_answering_machine(self): - """ Voice call to an answering machine. - - 1. Make Sure PhoneA attached to voice network. - 2. Call from PhoneA to Storyline - 3. Verify call is in ACTIVE state - 4. Hangup Call from PhoneA - - Raises: - TestFailure if not success. - """ - ad = self.android_devices[0] - - if not phone_setup_voice_general(ad.log, ad): - ad.log.error("Phone Failed to Set Up Properly for Voice.") - return False - for iteration in range(3): - result = True - ad.log.info("Attempt %d", iteration + 1) - if not initiate_call(ad.log, ad, STORY_LINE) and \ - wait_for_in_call_active(ad, 60, 3): - ad.log.error("Call Failed to Initiate") - result = False - time.sleep(WAIT_TIME_IN_CALL) - if not is_phone_in_call(ad.log, ad): - ad.log.error("Call Dropped") - result = False - if not hangup_call(ad.log, ad): - ad.log.error("Call Failed to Hangup") - result = False - if result: - ad.log.info("Call test PASS in iteration %d", iteration + 1) - return True - ad.log.info("Call test FAIL in all 3 iterations") - return False - - - @TelephonyBaseTest.tel_test_wrap @test_tracker_info(uuid="fca3f9e1-447a-416f-9a9c-50b7161981bf") def test_call_mo_voice_general(self): """ General voice to voice call. diff --git a/acts/tests/google/tel/live/TelPowerTest.py b/acts/tests/google/tel/live/TelPowerTest.py new file mode 100644 index 0000000000..e5543f1d34 --- /dev/null +++ b/acts/tests/google/tel/live/TelPowerTest.py @@ -0,0 +1,1208 @@ +#!/usr/bin/env python3.4 +# +# Copyright 2016 - The Android Open Source Project +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import math +import os +from acts.test_utils.tel.TelephonyBaseTest import TelephonyBaseTest +from acts.test_utils.tel.tel_defines import WFC_MODE_WIFI_PREFERRED +from acts.test_utils.tel.tel_test_utils import call_setup_teardown +from acts.test_utils.tel.tel_test_utils import ensure_phones_default_state +from acts.test_utils.tel.tel_test_utils import ensure_phones_idle +from acts.test_utils.tel.tel_test_utils import ensure_wifi_connected +from acts.test_utils.tel.tel_test_utils import hangup_call +from acts.test_utils.tel.tel_test_utils import is_wfc_enabled +from acts.test_utils.tel.tel_test_utils import set_phone_screen_on +from acts.test_utils.tel.tel_test_utils import set_wfc_mode +from acts.test_utils.tel.tel_test_utils import toggle_airplane_mode +from acts.test_utils.tel.tel_test_utils import verify_incall_state +from acts.test_utils.tel.tel_voice_utils import is_phone_in_call_3g +from acts.test_utils.tel.tel_voice_utils import is_phone_in_call_2g +from acts.test_utils.tel.tel_voice_utils import is_phone_in_call_iwlan +from acts.test_utils.tel.tel_voice_utils import is_phone_in_call_volte +from acts.test_utils.tel.tel_voice_utils import phone_idle_2g +from acts.test_utils.tel.tel_voice_utils import phone_idle_3g +from acts.test_utils.tel.tel_voice_utils import phone_idle_iwlan +from acts.test_utils.tel.tel_voice_utils import phone_idle_volte +from acts.test_utils.tel.tel_voice_utils import phone_setup_csfb +from acts.test_utils.tel.tel_voice_utils import phone_setup_iwlan +from acts.test_utils.tel.tel_voice_utils import phone_setup_voice_3g +from acts.test_utils.tel.tel_voice_utils import phone_setup_voice_2g +from acts.test_utils.tel.tel_voice_utils import phone_setup_volte +from acts.utils import create_dir +from acts.utils import disable_doze +from acts.utils import get_current_human_time +from acts.utils import set_adaptive_brightness +from acts.utils import set_ambient_display +from acts.utils import set_auto_rotate +from acts.utils import set_location_service +from acts.utils import set_mobile_data_always_on + +# Monsoon output Voltage in V +MONSOON_OUTPUT_VOLTAGE = 4.2 +# Monsoon output max current in A +MONSOON_MAX_CURRENT = 7.8 + +# Default power test pass criteria +DEFAULT_POWER_PASS_CRITERIA = 999 + +# Sampling rate in Hz +ACTIVE_CALL_TEST_SAMPLING_RATE = 100 +# Sample duration in seconds +ACTIVE_CALL_TEST_SAMPLE_TIME = 300 +# Offset time in seconds +ACTIVE_CALL_TEST_OFFSET_TIME = 180 + +# Sampling rate in Hz +IDLE_TEST_SAMPLING_RATE = 100 +# Sample duration in seconds +IDLE_TEST_SAMPLE_TIME = 2400 +# Offset time in seconds +IDLE_TEST_OFFSET_TIME = 360 + +# Constant for RAT +RAT_LTE = 'lte' +RAT_3G = '3g' +RAT_2G = '2g' +# Constant for WIFI +WIFI_5G = '5g' +WIFI_2G = '2g' + +# For wakeup ping test, the frequency to wakeup. In unit of second. +WAKEUP_PING_TEST_WAKEUP_FREQ = 60 + +WAKEUP_PING_TEST_NUMBER_OF_ALARM = math.ceil( + (IDLE_TEST_SAMPLE_TIME * 60 + IDLE_TEST_OFFSET_TIME) / + WAKEUP_PING_TEST_WAKEUP_FREQ) + + +class TelPowerTest(TelephonyBaseTest): + def __init__(self, controllers): + TelephonyBaseTest.__init__(self, controllers) + + def setup_class(self): + super().setup_class() + self.mon = self.monsoons[0] + self.mon.set_voltage(MONSOON_OUTPUT_VOLTAGE) + self.mon.set_max_current(MONSOON_MAX_CURRENT) + # Monsoon phone + self.mon.dut = self.ad = self.android_devices[0] + self.ad.reboot() + set_adaptive_brightness(self.ad, False) + set_ambient_display(self.ad, False) + set_auto_rotate(self.ad, False) + set_location_service(self.ad, False) + # This is not needed for AOSP build + disable_doze(self.ad) + set_phone_screen_on(self.log, self.ad, 15) + + self.wifi_network_ssid_2g = self.user_params["wifi_network_ssid_2g"] + self.wifi_network_pass_2g = self.user_params["wifi_network_pass_2g"] + self.wifi_network_ssid_5g = self.user_params["wifi_network_ssid_5g"] + self.wifi_network_pass_5g = self.user_params["wifi_network_pass_5g"] + + self.monsoon_log_path = os.path.join(self.log_path, "MonsoonLog") + create_dir(self.monsoon_log_path) + return True + + def _save_logs_for_power_test(self, monsoon_result, bug_report): + if monsoon_result and "monsoon_log_for_power_test" in self.user_params: + monsoon_result.save_to_text_file( + [monsoon_result], + os.path.join(self.monsoon_log_path, self.test_id)) + if bug_report and "bug_report_for_power_test" in self.user_params: + self.android_devices[0].take_bug_report(self.test_name, + self.begin_time) + + def _setup_apm(self): + if not toggle_airplane_mode(self.log, self.ad, True): + self.log.error("Phone failed to turn on airplane mode.") + return False + else: + self.log.info("Airplane mode is enabled successfully.") + return True + + def _setup_wifi(self, wifi): + if wifi == WIFI_5G: + network_ssid = self.wifi_network_ssid_5g + network_pass = self.wifi_network_pass_5g + else: + network_ssid = self.wifi_network_ssid_2g + network_pass = self.wifi_network_pass_2g + if not ensure_wifi_connected( + self.log, self.ad, network_ssid, network_pass, retry=3): + self.log.error("Wifi %s connection fails." % wifi) + return False + self.log.info("WIFI %s is connected successfully." % wifi) + return True + + def _setup_wfc(self): + if not set_wfc_mode(self.log, self.ad, WFC_MODE_WIFI_PREFERRED): + self.log.error("Phone failed to enable Wifi-Calling.") + return False + self.log.info("Phone is set in Wifi-Calling successfully.") + if not phone_idle_iwlan(self.log, self.ad): + self.log.error("DUT not in WFC enabled state.") + return False + return True + + def _setup_lte_volte_enabled(self): + if not phone_setup_volte(self.log, self.ad): + self.log.error("Phone failed to enable VoLTE.") + return False + self.log.info("VOLTE is enabled successfully.") + return True + + def _setup_lte_volte_disabled(self): + if not phone_setup_csfb(self.log, self.ad): + self.log.error("Phone failed to setup CSFB.") + return False + self.log.info("VOLTE is disabled successfully.") + return True + + def _setup_3g(self): + if not phone_setup_voice_3g(self.log, self.ad): + self.log.error("Phone failed to setup 3g.") + return False + self.log.info("RAT 3G is enabled successfully.") + return True + + def _setup_2g(self): + if not phone_setup_voice_2g(self.log, self.ad): + self.log.error("Phone failed to setup 2g.") + return False + self.log.info("RAT 2G is enabled successfully.") + return True + + def _setup_rat(self, rat, volte): + if rat == RAT_3G: + return self._setup_3g() + elif rat == RAT_2G: + return self._setup_2g() + elif rat == RAT_LTE and volte: + return self._setup_lte_volte_enabled() + elif rat == RAT_LTE and not volte: + return self._setup_lte_volte_disabled() + + def _start_alarm(self): + # TODO: This one works with a temporary SL4A API to start alarm. + # https://googleplex-android-review.git.corp.google.com/#/c/1562684/ + # simulate normal user behavior -- wake up every 1 minutes and do ping + # (transmit data) + try: + alarm_id = self.ad.droid.telephonyStartRecurringAlarm( + WAKEUP_PING_TEST_NUMBER_OF_ALARM, + 1000 * WAKEUP_PING_TEST_WAKEUP_FREQ, "PING_GOOGLE", None) + except: + self.log.error("Failed to setup periodic ping.") + return False + if alarm_id is None: + self.log.error("Start alarm for periodic ping failed.") + return False + self.log.info("Set up periodic ping successfully.") + return True + + def _setup_phone_active_call(self): + if not call_setup_teardown( + self.log, self.ad, self.android_devices[1], ad_hangup=None): + self.log.error("Setup Call failed.") + return False + self.log.info("Setup active call successfully.") + return True + + def _test_setup(self, + apm=False, + rat=None, + volte=False, + wifi=None, + wfc=False, + mobile_data_always_on=False, + periodic_ping=False, + active_call=False): + if not ensure_phones_default_state(self.log, self.android_devices): + self.log.error("Fail to set phones in default state") + return False + else: + self.log.info("Set phones in default state successfully") + if apm and not self._setup_apm(): return False + if rat and not self._setup_rat(rat, volte): return False + if wifi and not self._setup_wifi(wifi): return False + if wfc and not self._setup_wfc(): return False + if mobile_data_always_on: set_mobile_data_always_on(self.ad, True) + if periodic_ping and not self._start_alarm(): return False + if active_call and not self._setup_phone_active_call(): return False + self.ad.droid.goToSleepNow() + return True + + def _power_test(self, phone_check_func_after_power_test=None, **kwargs): + # Test passing criteria can be defined in test config file with the + # maximum mA allowed for the test case in "pass_criteria"->test_name + # field. By default it will set to 999. + pass_criteria = self._get_pass_criteria(self.test_name) + bug_report = True + active_call = kwargs.get('active_call') + average_current = 0 + result = None + self.log.info("Test %s: %s" % (self.test_name, kwargs)) + if active_call: + sample_rate = ACTIVE_CALL_TEST_SAMPLING_RATE + sample_time = ACTIVE_CALL_TEST_SAMPLE_TIME + offset_time = ACTIVE_CALL_TEST_OFFSET_TIME + else: + sample_rate = IDLE_TEST_SAMPLING_RATE + sample_time = IDLE_TEST_SAMPLE_TIME + offset_time = IDLE_TEST_OFFSET_TIME + try: + if not self._test_setup(**kwargs): + self.log.error("DUT Failed to Set Up Properly.") + return False + + if ((phone_check_func_after_power_test is not None) and + (not phone_check_func_after_power_test( + self.log, self.android_devices[0]))): + self.log.error( + "Phone is not in correct status before power test.") + return False + + result = self.mon.measure_power(sample_rate, sample_time, + self.test_id, offset_time) + average_current = result.average_current + if ((phone_check_func_after_power_test is not None) and + (not phone_check_func_after_power_test( + self.log, self.android_devices[0]))): + self.log.error( + "Phone is not in correct status after power test.") + return False + if active_call: + if not verify_incall_state(self.log, [ + self.android_devices[0], self.android_devices[1] + ], True): + self.log.error("Call drop during power test.") + return False + else: + hangup_call(self.log, self.android_devices[1]) + if (average_current <= pass_criteria): + bug_report = False + return True + finally: + self._save_logs_for_power_test(result, bug_report) + self.log.info("{} Result: {} mA, pass criteria: {} mA".format( + self.test_id, average_current, pass_criteria)) + + def _get_pass_criteria(self, test_name): + """Get the test passing criteria. + Test passing criteria can be defined in test config file with the + maximum mA allowed for the test case in "pass_criteria"->test_name + field. By default it will set to 999. + """ + try: + pass_criteria = int(self.user_params["pass_criteria"][test_name]) + except KeyError: + pass_criteria = DEFAULT_POWER_PASS_CRITERIA + return pass_criteria + + @TelephonyBaseTest.tel_test_wrap + def test_power_active_call_volte(self): + """Power measurement test for active VoLTE call. + + Steps: + 1. DUT idle, in LTE mode, VoLTE enabled. + 2. Make a phone Call from DUT to PhoneB. Answer on PhoneB. + Make sure DUT is in VoLTE call. + 3. Turn off screen and wait for 3 minutes. + Then measure power consumption for 5 minutes and get average. + + Expected Results: + Average power consumption should be within pre-defined limit. + + Returns: + True if Pass, False if Fail. + + Note: Please calibrate your test environment and baseline pass criteria. + Pass criteria info should be in test config file. + """ + return self._power_test( + rat=RAT_LTE, + volte=True, + active_call=True, + phone_check_func_after_power_test=is_phone_in_call_volte) + + @TelephonyBaseTest.tel_test_wrap + def test_power_active_call_3g(self): + """Power measurement test for active CS(3G) call. + + Steps: + 1. DUT idle, in 3G mode. + 2. Make a phone Call from DUT to PhoneB. Answer on PhoneB. + Make sure DUT is in CS(3G) call. + 3. Turn off screen and wait for 3 minutes. + Then measure power consumption for 5 minutes and get average. + + Expected Results: + Average power consumption should be within pre-defined limit. + + Returns: + True if Pass, False if Fail. + + Note: Please calibrate your test environment and baseline pass criteria. + Pass criteria info should be in test config file. + """ + return self._power_test( + rat=RAT_3G, + active_call=True, + phone_check_func_after_power_test=is_phone_in_call_3g) + + @TelephonyBaseTest.tel_test_wrap + def test_power_active_call_2g(self): + """Power measurement test for active CS(2G) call. + + Steps: + 1. DUT idle, in 2G mode. + 2. Make a phone Call from DUT to PhoneB. Answer on PhoneB. + Make sure DUT is in CS(2G) call. + 3. Turn off screen and wait for 3 minutes. + Then measure power consumption for 5 minutes and get average. + + Expected Results: + Average power consumption should be within pre-defined limit. + + Returns: + True if Pass, False if Fail. + + Note: Please calibrate your test environment and baseline pass criteria. + Pass criteria info should be in test config file. + """ + return self._power_test( + rat=RAT_2G, + active_call=True, + phone_check_func_after_power_test=is_phone_in_call_2g) + + @TelephonyBaseTest.tel_test_wrap + def test_power_active_call_wfc_wifi2g_apm(self): + """Power measurement test for active WiFi call. + + Steps: + 1. DUT idle, in Airplane mode, connect to 2G WiFi, + WiFi Calling enabled (WiFi-preferred mode). + 2. Make a phone Call from DUT to PhoneB. Answer on PhoneB. + Make sure DUT is in WFC call. + 3. Turn off screen and wait for 3 minutes. + Then measure power consumption for 5 minutes and get average. + + Expected Results: + Average power consumption should be within pre-defined limit. + + Returns: + True if Pass, False if Fail. + + Note: Please calibrate your test environment and baseline pass criteria. + Pass criteria info should be in test config file. + """ + return self._power_test( + apm=True, + wifi=WIFI_2G, + wfc=True, + active_call=True, + phone_check_func_after_power_test=is_phone_in_call_iwlan) + + @TelephonyBaseTest.tel_test_wrap + def test_power_active_call_wfc_wifi2g_lte_volte_enabled(self): + """Power measurement test for active WiFi call. + + Steps: + 1. DUT idle, LTE cellular data network, VoLTE is On, connect to 2G WiFi, + WiFi Calling enabled (WiFi-preferred). + 2. Make a phone Call from DUT to PhoneB. Answer on PhoneB. + Make sure DUT is in WFC call. + 3. Turn off screen and wait for 3 minutes. + Then measure power consumption for 5 minutes and get average. + + Expected Results: + Average power consumption should be within pre-defined limit. + + Returns: + True if Pass, False if Fail. + + Note: Please calibrate your test environment and baseline pass criteria. + Pass criteria info should be in test config file. + """ + return self._power_test( + rat=RAT_LTE, + volte=True, + wifi=WIFI_2G, + wfc=True, + active_call=True, + phone_check_func_after_power_test=is_phone_in_call_iwlan) + + @TelephonyBaseTest.tel_test_wrap + def test_power_active_call_wfc_wifi5g_apm(self): + """Power measurement test for active WiFi call. + + Steps: + 1. DUT idle, in Airplane mode, connect to 5G WiFi, + WiFi Calling enabled (WiFi-preferred mode). + 2. Make a phone Call from DUT to PhoneB. Answer on PhoneB. + Make sure DUT is in WFC call. + 3. Turn off screen and wait for 3 minutes. + Then measure power consumption for 5 minutes and get average. + + Expected Results: + Average power consumption should be within pre-defined limit. + + Returns: + True if Pass, False if Fail. + + Note: Please calibrate your test environment and baseline pass criteria. + Pass criteria info should be in test config file. + """ + return self._power_test( + apm=True, + wifi=WIFI_5G, + wfc=True, + active_call=True, + phone_check_func_after_power_test=is_phone_in_call_iwlan) + + @TelephonyBaseTest.tel_test_wrap + def test_power_active_call_wfc_wifi5g_lte_volte_enabled(self): + """Power measurement test for active WiFi call. + + Steps: + 1. DUT idle, LTE cellular data network, VoLTE is On, connect to 5G WiFi, + WiFi Calling enabled (WiFi-preferred). + 2. Make a phone Call from DUT to PhoneB. Answer on PhoneB. + Make sure DUT is in WFC call. + 3. Turn off screen and wait for 3 minutes. + Then measure power consumption for 5 minutes and get average. + + Expected Results: + Average power consumption should be within pre-defined limit. + + Returns: + True if Pass, False if Fail. + + Note: Please calibrate your test environment and baseline pass criteria. + Pass criteria info should be in test config file. + """ + return self._power_test( + rat=RAT_LTE, + volte=True, + wifi=WIFI_5G, + wfc=True, + active_call=True, + phone_check_func_after_power_test=is_phone_in_call_iwlan) + + @TelephonyBaseTest.tel_test_wrap + def test_power_idle_baseline(self): + """Power measurement test for phone idle baseline. + + Steps: + 1. DUT idle, in Airplane mode. WiFi disabled, WiFi Calling disabled. + 2. Turn off screen and wait for 6 minutes. Then measure power + consumption for 40 minutes and get average. + + Expected Results: + Average power consumption should be within pre-defined limit. + + Returns: + True if Pass, False if Fail. + + Note: Please calibrate your test environment and baseline pass criteria. + Pass criteria info should be in test config file. + """ + return self._power_test(apm=True) + + @TelephonyBaseTest.tel_test_wrap + def test_power_idle_baseline_wifi2g_connected(self): + """Power measurement test for phone idle baseline (WiFi connected). + + Steps: + 1. DUT idle, in Airplane mode. WiFi connected to 2.4G WiFi, + WiFi Calling disabled. + 2. Turn off screen and wait for 6 minutes. Then measure power + consumption for 40 minutes and get average. + + Expected Results: + Average power consumption should be within pre-defined limit. + + Returns: + True if Pass, False if Fail. + + Note: Please calibrate your test environment and baseline pass criteria. + Pass criteria info should be in test config file. + """ + return self._power_test(apm=True, wifi=WIFI_2G) + + @TelephonyBaseTest.tel_test_wrap + def test_power_idle_wfc_wifi2g_apm(self): + """Power measurement test for phone idle WiFi Calling Airplane Mode. + + Steps: + 1. DUT idle, in Airplane mode. Connected to 2G WiFi, + WiFi Calling enabled (WiFi preferred). + 2. Turn off screen and wait for 6 minutes. Then measure power + consumption for 40 minutes and get average. + + Expected Results: + Average power consumption should be within pre-defined limit. + + Returns: + True if Pass, False if Fail. + + Note: Please calibrate your test environment and baseline pass criteria. + Pass criteria info should be in test config file. + """ + return self._power_test( + apm=True, + wifi=WIFI_2G, + wfc=True, + phone_check_func_after_power_test=phone_idle_iwlan) + + @TelephonyBaseTest.tel_test_wrap + def test_power_idle_wfc_wifi2g_lte_volte_enabled(self): + """Power measurement test for phone idle WiFi Calling LTE VoLTE enabled. + + Steps: + 1. DUT idle, in LTE mode, VoLTE enabled. Connected to 2G WiFi, + WiFi Calling enabled (WiFi preferred). + 2. Turn off screen and wait for 6 minutes. Then measure power + consumption for 40 minutes and get average. + + Expected Results: + Average power consumption should be within pre-defined limit. + + Returns: + True if Pass, False if Fail. + + Note: Please calibrate your test environment and baseline pass criteria. + Pass criteria info should be in test config file. + """ + return self._power_test( + rat=RAT_LTE, + volte=True, + wifi=WIFI_2G, + wfc=True, + phone_check_func_after_power_test=phone_idle_iwlan) + + @TelephonyBaseTest.tel_test_wrap + def test_power_idle_lte_volte_enabled(self): + """Power measurement test for phone idle LTE VoLTE enabled. + + Steps: + 1. DUT idle, in LTE mode, VoLTE enabled. WiFi disabled, + WiFi Calling disabled. + 2. Turn off screen and wait for 6 minutes. Then measure power + consumption for 40 minutes and get average. + + Expected Results: + Average power consumption should be within pre-defined limit. + + Returns: + True if Pass, False if Fail. + + Note: Please calibrate your test environment and baseline pass criteria. + Pass criteria info should be in test config file. + """ + return self._power_test( + rat=RAT_LTE, + volte=True, + phone_check_func_after_power_test=phone_idle_volte) + + @TelephonyBaseTest.tel_test_wrap + def test_power_idle_lte_volte_enabled_wifi2g(self): + """Power measurement test for phone idle LTE VoLTE enabled. + + Steps: + 1. DUT idle, in LTE mode, VoLTE enabled. WiFi enabled, + WiFi Calling disabled. + 2. Turn off screen and wait for 6 minutes. Then measure power + consumption for 40 minutes and get average. + + Expected Results: + Average power consumption should be within pre-defined limit. + + Returns: + True if Pass, False if Fail. + + Note: Please calibrate your test environment and baseline pass criteria. + Pass criteria info should be in test config file. + """ + return self._power_test( + rat=RAT_LTE, + volte=True, + wifi=WIFI_2G, + phone_check_func_after_power_test=phone_idle_volte) + + @TelephonyBaseTest.tel_test_wrap + def test_power_idle_lte_volte_disabled(self): + """Power measurement test for phone idle LTE VoLTE disabled. + + Steps: + 1. DUT idle, in LTE mode, VoLTE disabled. WiFi disabled, + WiFi Calling disabled. + 2. Turn off screen and wait for 6 minutes. Then measure power + consumption for 40 minutes and get average. + + Expected Results: + Average power consumption should be within pre-defined limit. + + Returns: + True if Pass, False if Fail. + + Note: Please calibrate your test environment and baseline pass criteria. + Pass criteria info should be in test config file. + """ + return self._power_test(rat=RAT_LTE) + + @TelephonyBaseTest.tel_test_wrap + def test_power_idle_3g(self): + """Power measurement test for phone idle 3G. + + Steps: + 1. DUT idle, in 3G mode. WiFi disabled, WiFi Calling disabled. + 2. Turn off screen and wait for 6 minutes. Then measure power + consumption for 40 minutes and get average. + + Expected Results: + Average power consumption should be within pre-defined limit. + + Returns: + True if Pass, False if Fail. + + Note: Please calibrate your test environment and baseline pass criteria. + Pass criteria info should be in test config file. + """ + return self._power_test( + rat=RAT_3G, phone_check_func_after_power_test=phone_idle_3g) + + @TelephonyBaseTest.tel_test_wrap + def test_power_idle_3g_wifi2g(self): + """Power measurement test for phone idle 3G. + + Steps: + 1. DUT idle, in 3G mode. WiFi enabled, WiFi Calling disabled. + 2. Turn off screen and wait for 6 minutes. Then measure power + consumption for 40 minutes and get average. + + Expected Results: + Average power consumption should be within pre-defined limit. + + Returns: + True if Pass, False if Fail. + + Note: Please calibrate your test environment and baseline pass criteria. + Pass criteria info should be in test config file. + """ + return self._power_test( + rat=RAT_3G, + wifi=WIFI_2G, + phone_check_func_after_power_test=phone_idle_3g) + + @TelephonyBaseTest.tel_test_wrap + def test_power_idle_2g(self): + """Power measurement test for phone idle 3G. + + Steps: + 1. DUT idle, in 2G mode. WiFi disabled, WiFi Calling disabled. + 2. Turn off screen and wait for 6 minutes. Then measure power + consumption for 40 minutes and get average. + + Expected Results: + Average power consumption should be within pre-defined limit. + + Returns: + True if Pass, False if Fail. + + Note: Please calibrate your test environment and baseline pass criteria. + Pass criteria info should be in test config file. + """ + return self._power_test( + rat=RAT_2G, phone_check_func_after_power_test=phone_idle_2g) + + @TelephonyBaseTest.tel_test_wrap + def test_power_idle_2g_wifi2g(self): + """Power measurement test for phone idle 3G. + + Steps: + 1. DUT idle, in 2G mode. WiFi disabled, WiFi Calling disabled. + 2. Turn off screen and wait for 6 minutes. Then measure power + consumption for 40 minutes and get average. + + Expected Results: + Average power consumption should be within pre-defined limit. + + Returns: + True if Pass, False if Fail. + + Note: Please calibrate your test environment and baseline pass criteria. + Pass criteria info should be in test config file. + """ + return self._power_test( + rat=RAT_2G, + wifi=WIFI_2G, + phone_check_func_after_power_test=phone_idle_2g) + + # TODO: This one is not working right now. Requires SL4A API to start alarm. + @TelephonyBaseTest.tel_test_wrap + def test_power_idle_lte_volte_enabled_wakeup_ping(self): + """Power measurement test for phone LTE VoLTE enabled Wakeup Ping every + 1 minute. + + Steps: + 1. DUT idle, in LTE mode, VoLTE enabled. WiFi disabled, + WiFi Calling disabled. + 2. Start script to wake up AP every 1 minute, after wakeup, + DUT send http Request to Google.com then go to sleep. + 3. Turn off screen and wait for 6 minutes. Then measure power + consumption for 40 minutes and get average. + + Expected Results: + Average power consumption should be within pre-defined limit. + + Returns: + True if Pass, False if Fail. + + Note: Please calibrate your test environment and baseline pass criteria. + Pass criteria info should be in test config file. + """ + return self._power_test( + rat=RAT_LTE, + volte=True, + periodic_ping=True, + phone_check_func_after_power_test=phone_idle_iwlan) + + # TODO: This one is not working right now. Requires SL4A API to start alarm. + @TelephonyBaseTest.tel_test_wrap + def test_power_idle_lte_volte_disabled_wakeup_ping(self): + """Power measurement test for phone LTE VoLTE disabled Wakeup Ping every + 1 minute. + + Steps: + 1. DUT idle, in LTE mode, VoLTE disabled. WiFi disabled, + WiFi Calling disabled. + 2. Start script to wake up AP every 1 minute, after wakeup, + DUT send http Request to Google.com then go to sleep. + 3. Turn off screen and wait for 6 minutes. Then measure power + consumption for 40 minutes and get average. + + Expected Results: + Average power consumption should be within pre-defined limit. + + Returns: + True if Pass, False if Fail. + + Note: Please calibrate your test environment and baseline pass criteria. + Pass criteria info should be in test config file. + """ + return self._power_test(rat=RAT_LTE, periodic_ping=True) + + # TODO: This one is not working right now. Requires SL4A API to start alarm. + @TelephonyBaseTest.tel_test_wrap + def test_power_idle_3g_wakeup_ping(self): + """Power measurement test for phone 3G Wakeup Ping every 1 minute. + + Steps: + 1. DUT idle, in 3G mode. WiFi disabled, WiFi Calling disabled. + 2. Start script to wake up AP every 1 minute, after wakeup, + DUT send http Request to Google.com then go to sleep. + 3. Turn off screen and wait for 6 minutes. Then measure power + consumption for 40 minutes and get average. + + Expected Results: + Average power consumption should be within pre-defined limit. + + Returns: + True if Pass, False if Fail. + + Note: Please calibrate your test environment and baseline pass criteria. + Pass criteria info should be in test config file. + """ + return self._power_test( + rat=RAT_3G, + periodic_ping=True, + phone_check_func_after_power_test=phone_idle_3g) + + @TelephonyBaseTest.tel_test_wrap + def test_power_idle_lte_volte_enabled_mobile_data_always_on(self): + """Power measurement test for phone idle LTE VoLTE enabled. + + Steps: + 1. DUT idle, in LTE mode, VoLTE enabled. WiFi disabled, + WiFi Calling disabled. + 2. Turn on mobile data always on + 3. Turn off screen and wait for 6 minutes. Then measure power + consumption for 40 minutes and get average. + + Expected Results: + Average power consumption should be within pre-defined limit. + + Returns: + True if Pass, False if Fail. + + Note: Please calibrate your test environment and baseline pass criteria. + Pass criteria info should be in test config file. + """ + return self._power_test( + rat=RAT_LTE, + volte=True, + mobile_data_always_on=True, + phone_check_func_after_power_test=phone_idle_volte) + + @TelephonyBaseTest.tel_test_wrap + def test_power_idle_lte_volte_enabled_wifi2g_mobile_data_always_on(self): + """Power measurement test for phone idle LTE VoLTE enabled. + + Steps: + 1. DUT idle, in LTE mode, VoLTE enabled. WiFi enabled, + WiFi Calling disabled. + 2. Turn on mobile data always on + 3. Turn off screen and wait for 6 minutes. Then measure power + consumption for 40 minutes and get average. + + Expected Results: + Average power consumption should be within pre-defined limit. + + Returns: + True if Pass, False if Fail. + + Note: Please calibrate your test environment and baseline pass criteria. + Pass criteria info should be in test config file. + """ + return self._power_test( + rat=RAT_LTE, + volte=True, + wifi=WIFI_2G, + mobile_data_always_on=True, + phone_check_func_after_power_test=phone_idle_volte) + + @TelephonyBaseTest.tel_test_wrap + def test_power_idle_lte_volte_disabled_mobile_data_always_on(self): + """Power measurement test for phone idle LTE VoLTE disabled. + + Steps: + 1. DUT idle, in LTE mode, VoLTE disabled. WiFi disabled, + WiFi Calling disabled. + 2. Turn on mobile data always on + 3. Turn off screen and wait for 6 minutes. Then measure power + consumption for 40 minutes and get average. + + Expected Results: + Average power consumption should be within pre-defined limit. + + Returns: + True if Pass, False if Fail. + + Note: Please calibrate your test environment and baseline pass criteria. + Pass criteria info should be in test config file. + """ + return self._power_test(rat=RAT_LTE, mobile_data_always_on=True) + + @TelephonyBaseTest.tel_test_wrap + def test_power_idle_3g_mobile_data_always_on(self): + """Power measurement test for phone idle 3G. + + Steps: + 1. DUT idle, in 3G mode. WiFi disabled, WiFi Calling disabled. + 2. Turn on mobile data always on + 3. Turn off screen and wait for 6 minutes. Then measure power + consumption for 40 minutes and get average. + + Expected Results: + Average power consumption should be within pre-defined limit. + + Returns: + True if Pass, False if Fail. + + Note: Please calibrate your test environment and baseline pass criteria. + Pass criteria info should be in test config file. + """ + return self._power_test( + rat=RAT_3G, + mobile_data_always_on=True, + phone_check_func_after_power_test=phone_idle_3g) + + @TelephonyBaseTest.tel_test_wrap + def test_power_idle_3g_wifi2g_mobile_data_always_on(self): + """Power measurement test for phone idle 3G. + + Steps: + 1. DUT idle, in 3G mode. WiFi enabled, WiFi Calling disabled. + 2. Turn on mobile data always on + 3. Turn off screen and wait for 6 minutes. Then measure power + consumption for 40 minutes and get average. + + Expected Results: + Average power consumption should be within pre-defined limit. + + Returns: + True if Pass, False if Fail. + + Note: Please calibrate your test environment and baseline pass criteria. + Pass criteria info should be in test config file. + """ + return self._power_test( + rat=RAT_3G, + wifi=WIFI_2G, + mobile_data_always_on=True, + phone_check_func_after_power_test=phone_idle_3g) + + @TelephonyBaseTest.tel_test_wrap + def test_power_idle_2g_mobile_data_always_on(self): + """Power measurement test for phone idle 3G. + + Steps: + 1. DUT idle, in 2G mode. WiFi disabled, WiFi Calling disabled. + 2. Turn on mobile data always on + 3. Turn off screen and wait for 6 minutes. Then measure power + consumption for 40 minutes and get average. + + Expected Results: + Average power consumption should be within pre-defined limit. + + Returns: + True if Pass, False if Fail. + + Note: Please calibrate your test environment and baseline pass criteria. + Pass criteria info should be in test config file. + """ + return self._power_test( + rat=RAT_2G, + mobile_data_always_on=True, + phone_check_func_after_power_test=phone_idle_2g) + + @TelephonyBaseTest.tel_test_wrap + def test_power_idle_2g_wifi2g_mobile_data_always_on(self): + """Power measurement test for phone idle 3G. + + Steps: + 1. DUT idle, in 2G mode. WiFi enabled, WiFi Calling disabled. + 2. Turn on mobile data always on + 3. Turn off screen and wait for 6 minutes. Then measure power + consumption for 40 minutes and get average. + + Expected Results: + Average power consumption should be within pre-defined limit. + + Returns: + True if Pass, False if Fail. + + Note: Please calibrate your test environment and baseline pass criteria. + Pass criteria info should be in test config file. + """ + return self._power_test( + rat=RAT_2G, + wifi=WIFI_2G, + mobile_data_always_on=True, + phone_check_func_after_power_test=phone_idle_2g) + + # TODO: This one is not working right now. Requires SL4A API to start alarm. + @TelephonyBaseTest.tel_test_wrap + def test_power_idle_lte_volte_enabled_wakeup_ping_mobile_data_always_on( + self): + """Power measurement test for phone LTE VoLTE enabled Wakeup Ping every + 1 minute. + + Steps: + 1. DUT idle, in LTE mode, VoLTE enabled. WiFi disabled, + WiFi Calling disabled. + 2. Start script to wake up AP every 1 minute, after wakeup, + DUT send http Request to Google.com then go to sleep. + 3. Turn off screen and wait for 6 minutes. Then measure power + consumption for 40 minutes and get average. + + Expected Results: + Average power consumption should be within pre-defined limit. + + Returns: + True if Pass, False if Fail. + + Note: Please calibrate your test environment and baseline pass criteria. + Pass criteria info should be in test config file. + """ + return self._power_test( + rat=RAT_LTE, + volte=True, + mobile_data_always_on=True, + periodic_ping=True, + phone_check_func_after_power_test=phone_idle_volte) + + # TODO: This one is not working right now. Requires SL4A API to start alarm. + @TelephonyBaseTest.tel_test_wrap + def test_power_idle_lte_volte_enabled_wifi2g_wakeup_ping_mobile_data_always_on( + self): + """Power measurement test for phone LTE VoLTE enabled Wakeup Ping every + 1 minute. + + Steps: + 1. DUT idle, in LTE mode, VoLTE enabled. WiFi enabled, + WiFi Calling disabled. + 2. Start script to wake up AP every 1 minute, after wakeup, + DUT send http Request to Google.com then go to sleep. + 3. Turn off screen and wait for 6 minutes. Then measure power + consumption for 40 minutes and get average. + + Expected Results: + Average power consumption should be within pre-defined limit. + + Returns: + True if Pass, False if Fail. + + Note: Please calibrate your test environment and baseline pass criteria. + Pass criteria info should be in test config file. + """ + return self._power_test( + rat=RAT_LTE, + volte=True, + wifi=WIFI_2G, + mobile_data_always_on=True, + periodic_ping=True, + phone_check_func_after_power_test=phone_idle_volte) + + # TODO: This one is not working right now. Requires SL4A API to start alarm. + @TelephonyBaseTest.tel_test_wrap + def test_power_idle_lte_volte_disabled_wakeup_ping_mobile_data_always_on( + self): + """Power measurement test for phone LTE VoLTE disabled Wakeup Ping every + 1 minute. + + Steps: + 1. DUT idle, in LTE mode, VoLTE disabled. WiFi disabled, + WiFi Calling disabled. + 2. Start script to wake up AP every 1 minute, after wakeup, + DUT send http Request to Google.com then go to sleep. + 3. Turn off screen and wait for 6 minutes. Then measure power + consumption for 40 minutes and get average. + + Expected Results: + Average power consumption should be within pre-defined limit. + + Returns: + True if Pass, False if Fail. + + Note: Please calibrate your test environment and baseline pass criteria. + Pass criteria info should be in test config file. + """ + return self._power_test( + rat=RAT_LTE, mobile_data_always_on=True, periodic_ping=True) + + # TODO: This one is not working right now. Requires SL4A API to start alarm. + @TelephonyBaseTest.tel_test_wrap + def test_power_idle_3g_wakeup_ping_mobile_data_always_on(self): + """Power measurement test for phone 3G Wakeup Ping every 1 minute. + + Steps: + 1. DUT idle, in 3G mode. WiFi disabled, WiFi Calling disabled. + 2. Start script to wake up AP every 1 minute, after wakeup, + DUT send http Request to Google.com then go to sleep. + 3. Turn off screen and wait for 6 minutes. Then measure power + consumption for 40 minutes and get average. + + Expected Results: + Average power consumption should be within pre-defined limit. + + Returns: + True if Pass, False if Fail. + + Note: Please calibrate your test environment and baseline pass criteria. + Pass criteria info should be in test config file. + """ + return self._power_test( + rat=RAT_3G, + mobile_data_always_on=True, + periodic_ping=True, + phone_check_func_after_power_test=phone_idle_3g) + + # TODO: This one is not working right now. Requires SL4A API to start alarm. + @TelephonyBaseTest.tel_test_wrap + def test_power_idle_3g_wifi2g_wakeup_ping_mobile_data_always_on(self): + """Power measurement test for phone 3G Wakeup Ping every 1 minute. + + Steps: + 1. DUT idle, in 3G mode. WiFi enabled, WiFi Calling disabled. + 2. Start script to wake up AP every 1 minute, after wakeup, + DUT send http Request to Google.com then go to sleep. + 3. Turn off screen and wait for 6 minutes. Then measure power + consumption for 40 minutes and get average. + + Expected Results: + Average power consumption should be within pre-defined limit. + + Returns: + True if Pass, False if Fail. + + Note: Please calibrate your test environment and baseline pass criteria. + Pass criteria info should be in test config file. + """ + return self._power_test( + rat=RAT_3G, + wifi=WIFI_2G, + mobile_data_always_on=True, + periodic_ping=True, + phone_check_func_after_power_test=phone_idle_3g) + + # TODO: This one is not working right now. Requires SL4A API to start alarm. + @TelephonyBaseTest.tel_test_wrap + def test_power_idle_2g_wakeup_ping_mobile_data_always_on(self): + """Power measurement test for phone 3G Wakeup Ping every 1 minute. + + Steps: + 1. DUT idle, in 2G mode. WiFi disabled, WiFi Calling disabled. + 2. Start script to wake up AP every 1 minute, after wakeup, + DUT send http Request to Google.com then go to sleep. + 3. Turn off screen and wait for 6 minutes. Then measure power + consumption for 40 minutes and get average. + + Expected Results: + Average power consumption should be within pre-defined limit. + + Returns: + True if Pass, False if Fail. + + Note: Please calibrate your test environment and baseline pass criteria. + Pass criteria info should be in test config file. + """ + return self._power_test( + rat=RAT_2G, + mobile_data_always_on=True, + periodic_ping=True, + phone_check_func_after_power_test=phone_idle_2g) + + # TODO: This one is not working right now. Requires SL4A API to start alarm. + @TelephonyBaseTest.tel_test_wrap + def test_power_idle_2g_wifi2g_wakeup_ping_mobile_data_always_on(self): + """Power measurement test for phone 3G Wakeup Ping every 1 minute. + + Steps: + 1. DUT idle, in 2G mode. WiFi enabled, WiFi Calling disabled. + 2. Start script to wake up AP every 1 minute, after wakeup, + DUT send http Request to Google.com then go to sleep. + 3. Turn off screen and wait for 6 minutes. Then measure power + consumption for 40 minutes and get average. + + Expected Results: + Average power consumption should be within pre-defined limit. + + Returns: + True if Pass, False if Fail. + + Note: Please calibrate your test environment and baseline pass criteria. + Pass criteria info should be in test config file. + """ + return self._power_test( + rat=RAT_2G, + wifi=WIFI_2G, + mobile_data_always_on=True, + periodic_ping=True, + phone_check_func_after_power_test=phone_idle_2g) + diff --git a/acts/tests/google/tel/live/TelWifiDataTest.py b/acts/tests/google/tel/live/TelWifiDataTest.py index fdc73335a7..1039bf6371 100644 --- a/acts/tests/google/tel/live/TelWifiDataTest.py +++ b/acts/tests/google/tel/live/TelWifiDataTest.py @@ -48,8 +48,8 @@ DEFAULT_IRAT_DURATION = 60 class TelWifiDataTest(TelephonyBaseTest): - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + TelephonyBaseTest.__init__(self, controllers) self.stress_test_number = self.get_stress_test_number() @@ -85,7 +85,6 @@ class TelWifiDataTest(TelephonyBaseTest): ad = self.android_devices[0] toggle_airplane_mode(self.log, ad, False) if not ensure_network_generation(self.log, ad, GEN_4G, - MAX_WAIT_TIME_NW_SELECTION, NETWORK_SERVICE_DATA): return False diff --git a/acts/tests/google/tel/live/TelWifiVideoTest.py b/acts/tests/google/tel/live/TelWifiVideoTest.py index 360b09c523..da1675e3cd 100644 --- a/acts/tests/google/tel/live/TelWifiVideoTest.py +++ b/acts/tests/google/tel/live/TelWifiVideoTest.py @@ -75,8 +75,8 @@ DEFAULT_LONG_DURATION_CALL_TOTAL_DURATION = 1 * 60 * 60 # default 1 hour class TelWifiVideoTest(TelephonyBaseTest): - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + TelephonyBaseTest.__init__(self, controllers) self.stress_test_number = self.get_stress_test_number() diff --git a/acts/tests/google/tel/live/TelWifiVoiceTest.py b/acts/tests/google/tel/live/TelWifiVoiceTest.py index b254f865bb..9f1c525046 100644..100755 --- a/acts/tests/google/tel/live/TelWifiVoiceTest.py +++ b/acts/tests/google/tel/live/TelWifiVoiceTest.py @@ -115,8 +115,8 @@ WIFI_RSSI_FOR_HAND_OUT_TEST_PHONE_HAND_OUT = -85 class TelWifiVoiceTest(TelephonyBaseTest): - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + TelephonyBaseTest.__init__(self, controllers) self.stress_test_number = self.get_stress_test_number() self.attens = {} @@ -124,6 +124,10 @@ class TelWifiVoiceTest(TelephonyBaseTest): self.attens[atten.path] = atten atten.set_atten(atten.get_max_atten()) # Default all attens to max + def setup_class(self): + + super().setup_class() + self.log.info("WFC phone: <{}> <{}>".format( self.android_devices[0].serial, get_phone_number(self.log, self.android_devices[0]))) diff --git a/acts/tests/google/tel/live/msim/TelLiveMSIMSmsTest.py b/acts/tests/google/tel/live/msim/TelLiveMSIMSmsTest.py index 336ae01612..8fa72bb68e 100644 --- a/acts/tests/google/tel/live/msim/TelLiveMSIMSmsTest.py +++ b/acts/tests/google/tel/live/msim/TelLiveMSIMSmsTest.py @@ -29,8 +29,8 @@ from acts.test_utils.tel.tel_voice_utils \ class TelLiveMSIMSmsTest(TelephonyBaseTest): - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + TelephonyBaseTest.__init__(self, controllers) self.numer_of_slots = 2 self.sim_config = { "config": MULTI_SIM_CONFIG, "number_of_sims": 2 } diff --git a/acts/tests/google/tel/live/msim/TelLiveMSIMVoiceTest.py b/acts/tests/google/tel/live/msim/TelLiveMSIMVoiceTest.py index f4cb7ca82d..20538741c2 100644 --- a/acts/tests/google/tel/live/msim/TelLiveMSIMVoiceTest.py +++ b/acts/tests/google/tel/live/msim/TelLiveMSIMVoiceTest.py @@ -23,8 +23,8 @@ from acts.test_utils.tel.tel_defines import MULTI_SIM_CONFIG class TelLiveMSIMVoiceTest(TelephonyBaseTest): - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + TelephonyBaseTest.__init__(self, controllers) self.sim_config = { "config":MULTI_SIM_CONFIG, "number_of_sims":2 diff --git a/acts/tests/google/usb/UsbTetheringFunctionsTest.py b/acts/tests/google/usb/UsbTetheringFunctionsTest.py deleted file mode 100644 index 3f0393ba01..0000000000 --- a/acts/tests/google/usb/UsbTetheringFunctionsTest.py +++ /dev/null @@ -1,419 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import re -import time -from queue import Empty - -from acts import utils -from acts import base_test -from acts.libs.proc import job -from acts import signals -from acts.test_decorators import test_tracker_info -from acts.test_utils.wifi import wifi_test_utils as wutils -from acts.test_utils.tel import tel_test_utils as tutils -from acts.test_utils.tel import tel_defines -from acts.test_utils.tel.anritsu_utils import wait_for_sms_sent_success -from acts.test_utils.tel.tel_defines import EventMmsSentSuccess - -# Time it takes for the usb tethering IP to -# show up in ifconfig and function waiting. -DEFAULT_SETTLE_TIME = 5 -WifiEnums = wutils.WifiEnums -USB_CHARGE_MODE = 'svc usb setFunctions' -USB_TETHERING_MODE = 'svc usb setFunctions rndis' -USB_MTP_MODE = 'svc usb setFunctions mtp' -DEVICE_IP_ADDRESS = 'ip address' - - -class UsbTetheringFunctionsTest(base_test.BaseTestClass): - """Tests for usb tethering throughput test. - - Test Bed Requirement: - * One Android device. - * Wi-Fi networks visible to the device. - * Sim card with data call. - """ - - def setup_class(self): - self.dut = self.android_devices[0] - req_params = ['wifi_network', 'receiver_number', 'ping_count'] - self.unpack_userparams(req_param_names=req_params) - - self.ssid_map = {} - for network in self.wifi_network: - SSID = network['SSID'].replace('-', '_') - self.ssid_map[SSID] = network - self.dut.droid.setMobileDataEnabled() - if not tutils.verify_internet_connection( - self.dut.log, self.dut, retries=3): - tutils.abort_all_tests(self.dut.log, 'Internet connection Failed.') - - def setup_test(self): - self.dut.droid.wakeLockAcquireBright() - self.dut.droid.wakeUpNow() - self.dut.unlock_screen() - - def teardown_test(self): - wutils.wifi_toggle_state(self.dut, False) - self.dut.droid.wakeLockRelease() - self.dut.droid.goToSleepNow() - self.dut.droid.setMobileDataEnabled() - self.dut.droid.connectivityStopTethering(tel_defines.TETHERING_WIFI) - self.dut.stop_services() - # Set usb function back to charge mode. - self.dut.adb.shell(USB_CHARGE_MODE) - self.dut.adb.wait_for_device() - self.dut.start_services() - - def teardown_class(self): - wutils.reset_wifi(self.dut) - - def on_fail(self, test_name, begin_time): - self.dut.take_bug_report(test_name, begin_time) - self.dut.cat_adb_log(test_name, begin_time) - - def enable_usb_tethering(self, attempts=3): - """Stop SL4A service and enable usb tethering. - - Logic steps are - 1. Stop SL4A service. - 2. Enable usb tethering. - 3. Restart SL4A service. - 4. Check usb tethering enabled. - 5. Attempt if fail to enable usb tethering. - - Args: - attempts: number of times for enable usb tethering. - - Raises: - TestFailure when unable to find rndis string. - """ - for i in range(attempts): - self.dut.stop_services() - self.dut.adb.shell(USB_TETHERING_MODE, ignore_status=True) - self.dut.adb.wait_for_device() - self.dut.start_services() - if 'rndis' in self.dut.adb.shell(DEVICE_IP_ADDRESS): - self.log.info('Usb tethering is enabled.') - return - else: - self.log.info('Enable usb tethering - attempt %d' % (i + 1)) - raise signals.TestFailure('Unable to enable USB tethering.') - - def connect_to_wifi_network(self, network): - """Connection logic for wifi network. - - Args: - network: Dictionary with network info. - """ - SSID = network[WifiEnums.SSID_KEY] - self.dut.ed.clear_all_events() - wutils.start_wifi_connection_scan(self.dut) - scan_results = self.dut.droid.wifiGetScanResults() - wutils.assert_network_in_list({WifiEnums.SSID_KEY: SSID}, scan_results) - wutils.wifi_connect(self.dut, network, num_of_tries=3) - - def enable_wifi_hotspot(self): - """Enable wifi hotspot.""" - sap_config = wutils.create_softap_config() - wutils.start_wifi_tethering(self.dut, - sap_config[wutils.WifiEnums.SSID_KEY], - sap_config[wutils.WifiEnums.PWD_KEY], - wutils.WifiEnums.WIFI_CONFIG_APBAND_2G) - - def get_rndis_interface(self): - """Check rndis interface after usb tethering enable. - - Returns: - Usb tethering interface from Android device. - - Raises: - TestFailure when unable to find correct usb tethering interface. - """ - time.sleep(DEFAULT_SETTLE_TIME) - check_usb_tethering = job.run('ifconfig').stdout - # A regex that stores the tethering interface in group 1. - tethered_interface_regex = r'^(enp.*?):.*?broadcast 192.168.42.255' - match = re.search(tethered_interface_regex, check_usb_tethering, - re.DOTALL + re.MULTILINE) - if match: - return match.group(1) - else: - raise signals.TestFailure( - 'Unable to find tethering interface. The device may not be tethered.' - ) - - def can_ping(self, ip, extra_params='', count=10): - """Run ping test and check and check ping lost rate. - - Args: - ip: ip address for ping. - extra_params: params for ping test. - count: default ping count. - - Returns: - True: If no packet loss. - False: Otherwise. - """ - out = job.run( - 'ping -c {} {} {}'.format(count, extra_params, ip), - ignore_status=True).stdout - self.log.info(out) - return '0%' in out.split(' ') - - def can_ping_through_usb_interface(self): - """Run ping test and check result after usb tethering enabled. - - Raises: - TestFailure when unable to ping through usb tethering interface. - """ - ip = '8.8.8.8' - interface = self.get_rndis_interface() - if not self.can_ping( - ip, '-I {}'.format(interface), count=self.ping_count): - raise signals.TestFailure( - 'Fail to ping through usb tethering interface.') - - def enable_usb_mtp(self): - """Enable usb mtp mode. - - Raises: - TestFailure when unable to set mtp mode. - """ - try: - self.dut.stop_services() - self.dut.adb.shell(USB_MTP_MODE, ignore_status=True) - self.dut.adb.wait_for_device() - self.dut.start_services() - except: - raise signals.TestFailure('Device can not enable mtp mode.') - - def check_sms_send_status(self, message='usb_sms_test'): - """Send a SMS and check send status. - - Args: - message: SMS string. - - Raises: - Exception when unable to send SMS. - """ - self.dut.droid.smsSendTextMessage(self.receiver_number, message, False) - self.log.info('Waiting for SMS sent event') - test_status = wait_for_sms_sent_success(self.log, self.dut) - if not test_status: - raise Exception('Failed to send SMS') - - def check_mms_send_status(self, - subject='usb_subject', - message='usb_mms_test'): - """Send a MMS and check send status. - - Args: - subject: MMS subject. - message: MMS string. - - Raises: - Exception when unable to send MMS. - """ - # Permission require for send MMS. - self.dut.adb.shell('su root setenforce 0') - self.dut.droid.smsSendMultimediaMessage(self.receiver_number, subject, - message) - self.log.info('Waiting for MMS sent event') - test_status = self.wait_for_mms_sent_success() - if not test_status: - raise Exception('Failed to send MMS') - - def wait_for_mms_sent_success(self, time_to_wait=60): - """Check MMS send status. - - Args: - time_to_wait: Time out for check MMS. - - Returns: - status = MMS send status. - """ - mms_sent_event = EventMmsSentSuccess - try: - event = self.dut.ed.pop_event(mms_sent_event, time_to_wait) - self.log.info(event) - except Empty: - self.log.error('Timeout: Expected event is not received.') - return False - return True - - @test_tracker_info(uuid="7c2ae85e-32a2-416e-a65e-c15a15e76f86") - def test_usb_tethering_wifi_only(self): - """Enable usb tethering with wifi only then executing ping test. - - Steps: - 1. Stop SL4A services. - 2. Enable usb tethering. - 3. Restart SL4A services. - 4. Mobile data disable and wifi enable. - 5. Run ping test through usb tethering interface. - """ - self.enable_usb_tethering() - self.log.info('Disable mobile data.') - self.dut.droid.setMobileDataEnabled(False) - self.log.info('Enable wifi.') - wutils.wifi_toggle_state(self.dut, True) - self.connect_to_wifi_network( - self.ssid_map[self.wifi_network[0]['SSID']]) - self.can_ping_through_usb_interface() - - @test_tracker_info(uuid="8910b07b-0beb-4d9d-b901-c4195b4e0930") - def test_usb_tethering_data_only(self): - """Enable usb tethering with data only then executing ping test. - - Steps: - 1. Stop SL4A services. - 2. Enable usb tethering. - 3. Restart SL4A services. - 4. Wifi disable and mobile data enable. - 5. Run ping test through usb tethering interface. - """ - self.enable_usb_tethering() - wutils.wifi_toggle_state(self.dut, False) - self.dut.droid.setMobileDataEnabled() - time.sleep(DEFAULT_SETTLE_TIME) - self.can_ping_through_usb_interface() - - @test_tracker_info(uuid="f971806e-e003-430a-bc80-321f128d31cb") - def test_usb_tethering_after_airplane_mode(self): - """Enable usb tethering after airplane mode then executing ping test. - - Steps: - 1. Stop SL4A services. - 2. Enable usb tethering. - 3. Restart SL4A services. - 4. Wifi disable and mobile data enable. - 5. Enable/disable airplane mode. - 6. Run ping test through usb tethering interface. - """ - self.enable_usb_tethering() - wutils.wifi_toggle_state(self.dut, False) - self.log.info('Enable airplane mode.') - utils.force_airplane_mode(self.dut, True) - self.log.info('Disable airplane mode.') - utils.force_airplane_mode(self.dut, False) - time.sleep(DEFAULT_SETTLE_TIME) - self.can_ping_through_usb_interface() - - @test_tracker_info(uuid="db1c561d-67bd-47d7-b65e-d882f0e2641e") - def test_usb_tethering_coexist_wifi_hotspot(self): - """Enable usb tethering with hotspot then executing ping test. - - Steps: - 1. Enable hotspot - 2. Stop SL4A services. - 3. Enable usb tethering. - 4. Restart SL4A services. - 5. Run ping test through tethering interface during hotspot enable. - 6. Run ping test through tethering interface during hotspot disable. - """ - self.log.info('Enable wifi hotspot.') - self.enable_wifi_hotspot() - self.enable_usb_tethering() - self.log.info('Ping test with hotspot enable.') - self.can_ping_through_usb_interface() - self.log.info('Disable wifi hotspot.') - self.dut.droid.connectivityStopTethering(tel_defines.TETHERING_WIFI) - self.log.info('Ping test with hotspot disable.') - self.can_ping_through_usb_interface() - - @test_tracker_info(uuid="7018abdb-049e-41aa-a4f9-e11012369d9b") - def test_usb_tethering_after_mtp(self): - """Enable usb tethering after mtp enable then executing ping test. - - Steps: - 1. Stop SL4A services. - 2. Enable usb tethering. - 3. Restart SL4A services. - 4. Enable usb mtp mode. - 5. Enable usb tethering and mtp will disable. - 6. Run ping test through usb tethering interface. - """ - self.enable_usb_tethering() - self.log.info('Enable usb mtp mode.') - self.enable_usb_mtp() - # Turn on mtp mode for 5 sec. - time.sleep(DEFAULT_SETTLE_TIME) - self.enable_usb_tethering() - self.log.info('Usb tethering enable, usb mtp mode disabled.') - self.can_ping_through_usb_interface() - - @test_tracker_info(uuid="f1ba2cbc-1cb2-4b8a-92eb-9b366c3f4c37") - def test_usb_tethering_after_sms_mms(self): - """Enable usb tethering after send sms and mms then executing ping test. - - Steps: - 1. Stop SL4A services. - 2. Enable usb tethering. - 3. Restart SL4A services. - 4. Send a sms and mms. - 5. Run ping test through usb tethering interface. - """ - self.enable_usb_tethering() - self.log.info('Start send SMS and check status.') - self.check_sms_send_status() - time.sleep(DEFAULT_SETTLE_TIME) - self.log.info('Start send MMS and check status.') - self.check_mms_send_status() - self.can_ping_through_usb_interface() - - @test_tracker_info(uuid="e6586b30-4886-4c3e-8225-633aa9333968") - def test_usb_tethering_after_reboot(self): - """Enable usb tethering after reboot then executing ping test. - - Steps: - 1. Reboot device. - 2. Stop SL4A services. - 3. Enable usb tethering. - 4. Restart SL4A services. - 5. Run ping test through usb tethering interface. - """ - self.enable_usb_tethering() - self.log.info('Reboot device.') - self.dut.reboot() - self.dut.droid.setMobileDataEnabled() - self.log.info('Start usb tethering and ping test.') - self.enable_usb_tethering() - self.can_ping_through_usb_interface() - - @test_tracker_info(uuid="40093ab8-6db4-4af4-97ae-9467bf33bf23") - def test_usb_tethering_after_wipe(self): - """Enable usb tethering after wipe. - - Steps: - 1. Enable usb tethering. - 2. Wipe device. - 3. Wake up device and unlock screen. - 4. Enable usb tethering. - 5. Run ping test through usb tethering interface. - """ - self.enable_usb_tethering() - tutils.fastboot_wipe(self.dut) - time.sleep(DEFAULT_SETTLE_TIME) - # Skip setup wizard after wipe. - self.dut.adb.shell( - 'am start -a com.android.setupwizard.EXIT', ignore_status=True) - self.dut.droid.setMobileDataEnabled() - self.dut.droid.wakeUpNow() - self.dut.unlock_screen() - self.enable_usb_tethering() - self.can_ping_through_usb_interface()
\ No newline at end of file diff --git a/acts/tests/google/usb/UsbTetheringThroughputTest.py b/acts/tests/google/usb/UsbTetheringThroughputTest.py index ebe13b8529..818d9e4733 100644 --- a/acts/tests/google/usb/UsbTetheringThroughputTest.py +++ b/acts/tests/google/usb/UsbTetheringThroughputTest.py @@ -28,7 +28,6 @@ USB_CHARGE_MODE = 'svc usb setFunctions' USB_TETHERING_MODE = 'svc usb setFunctions rndis' DEVICE_IP_ADDRESS = 'ip address' - class UsbTetheringThroughputTest(base_test.BaseTestClass): """Tests for usb tethering throughput test. @@ -43,18 +42,11 @@ class UsbTetheringThroughputTest(base_test.BaseTestClass): self.ip_server = self.iperf_servers[0] self.port_num = self.ip_server.port req_params = [ - 'iperf_usb_3_criteria', 'iperf_usb_2_criteria', 'controller_path', - 'iperf_test_sec' + 'iperf_criteria', ] self.unpack_userparams(req_param_names=req_params) - if self.dut.model in self.user_params.get('legacy_projects', []): - self.usb_controller_path = self.user_params[ - 'legacy_controller_path'] - else: - self.usb_controller_path = self.controller_path def setup_test(self): - self.dut.adb.wait_for_device() self.dut.droid.wakeLockAcquireBright() self.dut.droid.wakeUpNow() self.dut.unlock_screen() @@ -62,8 +54,12 @@ class UsbTetheringThroughputTest(base_test.BaseTestClass): def teardown_test(self): self.dut.droid.wakeLockRelease() self.dut.droid.goToSleepNow() - # Reboot device to avoid the side effect that cause adb missing after echo usb speed. - self.dut.reboot() + self.dut.stop_services() + #Set usb function back to charge mode. + self.dut.adb.shell(USB_CHARGE_MODE) + self.dut.adb.wait_for_device() + self.dut.start_services() + self.ip_server.stop() def on_fail(self, test_name, begin_time): self.dut.take_bug_report(test_name, begin_time) @@ -99,7 +95,7 @@ class UsbTetheringThroughputTest(base_test.BaseTestClass): """ time.sleep(IFCONFIG_SETTLE_TIME) check_usb_tethering = job.run('ifconfig').stdout - matches = re.findall('inet (\d+.\d+.42.\d+)', check_usb_tethering) + matches = re.findall('inet addr:(\d+.\d+.42.\d+)', check_usb_tethering) if not matches: raise signals.TestFailure( 'Unable to find tethering IP. The device may not be tethered.') @@ -185,49 +181,8 @@ class UsbTetheringThroughputTest(base_test.BaseTestClass): except: self.log.error('Fail to execute iperf client.') return False, 0 - rate = re.findall('(\d+.\d+) (.)bits/sec.*receiver', result) - return True, rate[0][0], rate[0][1] - - def run_iperf_tx_rx(self, usb_speed, criteria): - """Run iperf tx and rx. - - Args: - usb_speed: string which contains the speed info. - criteria: usb performance criteria. - - Raises: - Signals.TestFailure is raised by usb tethering under criteria. - """ - self.enable_usb_tethering() - self.dut.adb.wait_for_device() - self.ip_server.start() - pc_ip = self.get_pc_tethering_ip() - tx_success, tx_rate, tx_unit = self.run_iperf_client( - pc_ip, '-t{} -i1 -w2M'.format(self.iperf_test_sec)) - rx_success, rx_rate, rx_unit = self.run_iperf_client( - pc_ip, '-t{} -i1 -w2M -R'.format(self.iperf_test_sec)) - self.log.info('TestResult iperf_{}_rx'.format(usb_speed) + rx_rate + - ' ' + rx_unit + 'bits/sec') - self.log.info('TestResult iperf_{}_tx'.format(usb_speed) + tx_rate + - ' ' + tx_unit + 'bits/sec') - self.ip_server.stop() - if not tx_success or (float(tx_rate) < criteria and tx_unit != "G"): - raise signals.TestFailure('Iperf {}_tx test is {} {}bits/sec, ' - 'the throughput result failed.'.format( - usb_speed, tx_rate, tx_unit)) - if not rx_success or (float(rx_rate) < criteria and rx_unit != "G"): - raise signals.TestFailure('Iperf {}_rx test is {} {}bits/sec, ' - 'the throughput result failed.'.format( - usb_speed, rx_rate, rx_unit)) - - def get_usb_speed(self): - """Get current usb speed.""" - usb_controller_address = self.dut.adb.shell( - 'getprop sys.usb.controller', ignore_status=True) - usb_speed = self.dut.adb.shell( - 'cat sys/class/udc/{}/current_speed'.format( - usb_controller_address)) - return usb_speed, usb_controller_address + rate = re.findall('(\d+.\d+) Mbits/sec.*receiver', result) + return True, rate[0] @test_tracker_info(uuid="e7e0dfdc-3d1c-4642-a468-27326c49e4cb") def test_tethering_ping(self): @@ -242,51 +197,34 @@ class UsbTetheringThroughputTest(base_test.BaseTestClass): """ self.enable_usb_tethering() if self.pc_can_ping() and self.dut_can_ping(): - raise signals.TestPass( - 'Ping test is passed. Network is reachable.') + raise signals.TestPass('Ping test is passed. Network is reachable.') raise signals.TestFailure( 'Ping test failed. Maybe network is unreachable.') @test_tracker_info(uuid="8263c880-8a7e-4a68-b47f-e7caba3e9968") - def test_usb_tethering_iperf_super_speed(self): + def test_usb_tethering_iperf(self): """Enable usb tethering then executing iperf test. Steps: 1. Stop SL4A service. 2. Enable usb tethering. 3. Restart SL4A service. - 4. Skip test if device not support super-speed. - 5. Execute iperf test for usb tethering and get the throughput result. - 6. Check the iperf throughput result. + 4. Execute iperf test for usb tethering and get the throughput result. + 5. Check the iperf throughput result. """ - if (self.get_usb_speed()[0] != 'super-speed'): - raise signals.TestSkip( - 'USB 3 not available for the device, skip super-speed performance test.' - ) - self.run_iperf_tx_rx('usb_3', self.iperf_usb_3_criteria) - - @test_tracker_info(uuid="5d8a22fd-1f9b-4758-a6b4-855d134b348a") - def test_usb_tethering_iperf_high_speed(self): - """Enable usb tethering then executing iperf test. - - Steps: - 1. Stop SL4A service. - 2. Enable usb tethering. - 3. Restart SL4A service. - 4. Force set usb speed to high-speed if default is super-speed. - 5. Execute iperf test for usb tethering and get the throughput result. - 6. Check the iperf throughput result. - """ - if (self.get_usb_speed()[0] != 'high-speed'): - self.log.info( - 'Default usb speed is USB 3,Force set usb to high-speed.') - self.dut.stop_services() - self.dut.adb.wait_for_device() - self.dut.adb.shell( - 'echo high > {}{}.ssusb/speed'.format( - self.usb_controller_path, - self.get_usb_speed()[1].strip('.dwc3')), - ignore_status=True) - self.dut.adb.wait_for_device() - self.dut.start_services() - self.run_iperf_tx_rx('usb_2', self.iperf_usb_2_criteria) + self.enable_usb_tethering() + self.ip_server.start() + pc_ip = self.get_pc_tethering_ip() + tx_success, tx_rate = self.run_iperf_client(pc_ip, '-t5 -i1 -w2M') + rx_success, rx_rate = self.run_iperf_client(pc_ip, '-t5 -i1 -w2M -R') + self.log.info('Iperf rx result: ' + rx_rate + ' Mbits/sec') + self.log.info('Iperf tx result: ' + tx_rate + ' Mbits/sec') + self.ip_server.stop() + if not tx_success or float(tx_rate) < self.iperf_criteria: + raise signals.TestFailure( + 'Iperf tx test is {} Mbits/sec, ' + 'the throughput result failed.'.format(tx_rate)) + if not rx_success or float(rx_rate) < self.iperf_criteria: + raise signals.TestFailure( + 'Iperf rx test is {} Mbits/sec, ' + 'the throughput result failed.'.format(rx_rate)) diff --git a/acts/tests/google/wifi/WifiAutoUpdateTest.py b/acts/tests/google/wifi/WifiAutoUpdateTest.py index 33369a2775..bbbb9e17ae 100755 --- a/acts/tests/google/wifi/WifiAutoUpdateTest.py +++ b/acts/tests/google/wifi/WifiAutoUpdateTest.py @@ -1,4 +1,4 @@ -#!/usr/bin/env python3.4 +# !/usr/bin/env python3.4 # # Copyright 2017 - The Android Open Source Project # @@ -14,22 +14,21 @@ # See the License for the specific language governing permissions and # limitations under the License. -import itertools -import pprint -import queue -import time - -import acts.base_test -import acts.signals as signals -import acts.test_utils.wifi.wifi_test_utils as wutils -import acts.utils - +import re from acts import asserts +from acts.controllers.android_device import SL4A_APK_NAME from acts.libs.ota import ota_updater +import acts.signals as signals from acts.test_decorators import test_tracker_info +from acts.test_utils.tel.tel_test_utils import WIFI_CONFIG_APBAND_5G +import acts.test_utils.wifi.wifi_test_utils as wutils from acts.test_utils.wifi.WifiBaseTest import WifiBaseTest +import acts.utils as utils WifiEnums = wutils.WifiEnums +SSID = WifiEnums.SSID_KEY +PWD = WifiEnums.PWD_KEY +NETID = WifiEnums.NETID_KEY # Default timeout used for reboot, toggle WiFi and Airplane mode, # for the system to settle down after the operation. DEFAULT_TIMEOUT = 10 @@ -51,50 +50,52 @@ class WifiAutoUpdateTest(WifiBaseTest): self.tests = ( "test_check_wifi_state_after_au", "test_verify_networks_after_au", + "test_configstore_after_au", + "test_mac_randomization_after_au", + "test_wifi_hotspot_5g_psk_after_au", "test_all_networks_connectable_after_au", - "test_connection_to_new_networks", + "test_connect_to_network_suggestion_after_au", "test_check_wifi_toggling_after_au", + "test_connection_to_new_networks", "test_reset_wifi_after_au") def setup_class(self): super(WifiAutoUpdateTest, self).setup_class() ota_updater.initialize(self.user_params, self.android_devices) self.dut = self.android_devices[0] + self.dut_client = self.android_devices[1] wutils.wifi_test_device_init(self.dut) - req_params = [] - opt_param = [ - "open_network", "reference_networks", "iperf_server_address" - ] - self.unpack_userparams( - req_param_names=req_params, opt_param_names=opt_param) - - if "AccessPoint" in self.user_params: - self.legacy_configure_ap_and_start() - - asserts.assert_true( - len(self.reference_networks) > 0, - "Need at least two reference network with psk.") - asserts.assert_true( - len(self.open_network) > 0, - "Need at least two open network with psk.") wutils.wifi_toggle_state(self.dut, True) + # configure APs + self.legacy_configure_ap_and_start(wpa_network=True) + self.wpapsk_2g = self.reference_networks[0]["2g"] + self.wpapsk_5g = self.reference_networks[0]["5g"] + self.open_2g = self.open_network[0]["2g"] + self.open_5g = self.open_network[0]["5g"] + + # saved & connected networks, network suggestions + # and new networks + self.saved_networks = [self.open_2g] + self.network_suggestions = [self.wpapsk_5g] + self.connected_networks = [self.wpapsk_2g, self.open_5g] + self.new_networks = [self.reference_networks[1]["2g"], + self.open_network[1]["5g"]] + + # add pre ota upgrade configuration self.wifi_config_list = [] - - # Disabling WiFi setup before OTA for debugging. - # Setup WiFi and add few open and wpa networks before OTA. - # self.add_network_and_enable(self.open_network[0]['2g']) - # self.add_network_and_enable(self.reference_networks[0]['5g']) - - # Add few dummy networks to the list. - # self.add_and_enable_dummy_networks() + self.pre_default_mac = {} + self.pre_random_mac = {} + self.pst_default_mac = {} + self.pst_random_mac = {} + self.add_pre_update_configuration() # Run OTA below, if ota fails then abort all tests. try: ota_updater.update(self.dut) - except Exception as err: + except Exception as e: raise signals.TestAbortClass( - "Failed up apply OTA update. Aborting tests") + "Failed up apply OTA update. Aborting tests: %s" % e) def setup_test(self): self.dut.droid.wakeLockAcquireBright() @@ -113,45 +114,115 @@ class WifiAutoUpdateTest(WifiBaseTest): del self.user_params["reference_networks"] del self.user_params["open_network"] - """Helper Functions""" + ### Helper Methods + + def add_pre_update_configuration(self): + self.add_network_suggestions(self.network_suggestions) + self.add_network_and_enable(self.saved_networks[0]) + self.add_wifi_hotspot() + self.connect_to_multiple_networks(self.connected_networks) + + def add_wifi_hotspot(self): + self.wifi_hotspot = {"SSID": "hotspot_%s" % utils.rand_ascii_str(6), + "password": "pass_%s" % utils.rand_ascii_str(6)} + wutils.save_wifi_soft_ap_config(self.dut, + self.wifi_hotspot, + WIFI_CONFIG_APBAND_5G) + + def verify_wifi_hotspot(self): + """Verify wifi tethering.""" + wutils.start_wifi_tethering_saved_config(self.dut) + wutils.connect_to_wifi_network(self.dut_client, + self.wifi_hotspot, + check_connectivity=False) + wutils.stop_wifi_tethering(self.dut) + + def connect_to_multiple_networks(self, networks): + """Connect to a list of wifi networks. + + Args: + networks : list of wifi networks. + """ + self.log.info("Connect to multiple wifi networks") + for network in networks: + ssid = network[SSID] + wutils.start_wifi_connection_scan_and_ensure_network_found( + self.dut, ssid) + wutils.wifi_connect(self.dut, network, num_of_tries=6) + self.wifi_config_list.append(network) + self.pre_default_mac[network[SSID]] = self.get_sta_mac_address() + self.pre_random_mac[network[SSID]] = \ + self.dut.droid.wifigetRandomizedMacAddress(network) + + def get_sta_mac_address(self): + """Gets the current MAC address being used for client mode.""" + out = self.dut.adb.shell("ifconfig wlan0") + res = re.match(".* HWaddr (\S+).*", out, re.S) + return res.group(1) + + def add_network_suggestions(self, network_suggestions): + """Add wifi network suggestions to DUT. + + Args: + network_suggestions : suggestions to add. + """ + self.dut.log.info("Adding network suggestions") + asserts.assert_true( + self.dut.droid.wifiAddNetworkSuggestions(network_suggestions), + "Failed to add suggestions") + + # Enable suggestions by the app. + self.dut.log.debug("Enabling suggestions from test") + self.dut.adb.shell( + "cmd wifi network-suggestions-set-user-approved %s yes" % \ + SL4A_APK_NAME) + + def remove_suggestions_and_ensure_no_connection(self, + network_suggestions, + expected_ssid): + """Remove network suggestions. + + Args: + network_suggestions : suggestions to remove. + expected_ssid : SSID to verify that DUT is not connected. + """ + self.dut.log.info("Removing network suggestions") + asserts.assert_true( + self.dut.droid.wifiRemoveNetworkSuggestions(network_suggestions), + "Failed to remove suggestions") + + # Ensure we did not disconnect + wutils.ensure_no_disconnect(self.dut) + + # Trigger a disconnect and wait for the disconnect. + self.dut.droid.wifiDisconnect() + wutils.wait_for_disconnect(self.dut) + self.dut.ed.clear_all_events() + + # Now ensure that we didn't connect back. + asserts.assert_false( + wutils.wait_for_connect(self.dut, + expected_ssid, + assert_on_fail=False), + "Device should not connect back") def add_network_and_enable(self, network): """Add a network and enable it. Args: network : Network details for the network to be added. - """ + self.log.info("Add a wifi network and enable it") ret = self.dut.droid.wifiAddNetwork(network) asserts.assert_true(ret != -1, "Add network %r failed" % network) - self.wifi_config_list.append({ - WifiEnums.SSID_KEY: network[WifiEnums.SSID_KEY], - WifiEnums.NETID_KEY: ret}) + self.wifi_config_list.append({SSID: network[SSID], NETID: ret}) self.dut.droid.wifiEnableNetwork(ret, 0) - def add_and_enable_dummy_networks(self, num_networks=5): - """Add some dummy networks to the device and enable them. - - Args: - num_networks: Number of networks to add. - """ - ssid_name_base = "dummy_network_" - for i in range(0, num_networks): - network = {} - network[WifiEnums.SSID_KEY] = ssid_name_base + str(i) - network[WifiEnums.PWD_KEY] = "dummynet_password" - self.add_network_and_enable(network) - def check_networks_after_autoupdate(self, networks): - """Verify that all previously configured networks are presistent after - reboot. + """Verify that all previously configured networks are persistent. Args: networks: List of network dicts. - - Return: - None. Raises TestFailure. - """ network_info = self.dut.droid.wifiGetConfiguredNetworks() if len(network_info) != len(networks): @@ -160,21 +231,35 @@ class WifiAutoUpdateTest(WifiBaseTest): "don't match. \nBefore reboot = %s \n After reboot = %s" % (networks, network_info)) raise signals.TestFailure(msg) - current_count = 0 + # For each network, check if it exists in configured list after Auto- # update. for network in networks: - exists = wutils.match_networks({ - WifiEnums.SSID_KEY: network[WifiEnums.SSID_KEY] - }, network_info) - if not len(exists): + exists = wutils.match_networks({SSID: network[SSID]}, network_info) + if not exists: raise signals.TestFailure("%s network is not present in the" " configured list after Auto-update" % - network[WifiEnums.SSID_KEY]) + network[SSID]) # Get the new network id for each network after reboot. - network[WifiEnums.NETID_KEY] = exists[0]['networkId'] + network[NETID] = exists[0]["networkId"] + + def get_enabled_network(self, network1, network2): + """Check network status and return currently unconnected network. + + Args: + network1: dict representing a network. + network2: dict representing a network. + + Returns: + Network dict of the unconnected network. + """ + wifi_info = self.dut.droid.wifiGetConnectionInfo() + enabled = network1 + if wifi_info[SSID] == network1[SSID]: + enabled = network2 + return enabled - """Tests""" + ### Tests @test_tracker_info(uuid="9ff1f01e-e5ff-408b-9a95-29e87a2df2d8") def test_check_wifi_state_after_au(self): @@ -192,6 +277,78 @@ class WifiAutoUpdateTest(WifiBaseTest): """ self.check_networks_after_autoupdate(self.wifi_config_list) + @test_tracker_info(uuid="799e83c2-305d-4510-921e-dac3c0dbb6c5") + def test_configstore_after_au(self): + """Verify DUT automatically connects to wifi networks after ota. + + Steps: + 1. Connect to two wifi networks pre ota. + 2. Verify DUT automatically connects to 1 after ota. + 3. Re-connect to the other wifi network. + """ + wifi_info = self.dut.droid.wifiGetConnectionInfo() + self.pst_default_mac[wifi_info[SSID]] = self.get_sta_mac_address() + self.pst_random_mac[wifi_info[SSID]] = \ + self.dut.droid.wifigetRandomizedMacAddress(wifi_info) + reconnect_to = self.get_enabled_network(self.wifi_config_list[1], + self.wifi_config_list[2]) + wutils.start_wifi_connection_scan_and_ensure_network_found( + self.dut, reconnect_to[SSID]) + wutils.wifi_connect_by_id(self.dut, reconnect_to[NETID]) + connect_data = self.dut.droid.wifiGetConnectionInfo() + connect_ssid = connect_data[SSID] + self.log.info("Expected SSID = %s" % reconnect_to[SSID]) + self.log.info("Connected SSID = %s" % connect_ssid) + if connect_ssid != reconnect_to[SSID]: + raise signals.TestFailure( + "Device failed to reconnect to the correct" + " network after reboot.") + self.pst_default_mac[wifi_info[SSID]] = self.get_sta_mac_address() + self.pst_random_mac[wifi_info[SSID]] = \ + self.dut.droid.wifigetRandomizedMacAddress(wifi_info) + + for network in self.connected_networks: + wutils.wifi_forget_network(self.dut, network[SSID]) + + @test_tracker_info(uuid="e26d0ed9-9457-4a95-a962-4d43b0032bac") + def test_mac_randomization_after_au(self): + """Verify randomized MAC addrs are persistent after ota. + + Steps: + 1. Reconnect to the wifi networks configured pre ota. + 2. Get the randomized MAC addrs. + """ + for ssid, mac in self.pst_random_mac.items(): + asserts.assert_true( + self.pre_random_mac[ssid] == mac, + "MAC addr of %s is %s after ota. Expected %s" % + (ssid, mac, self.pre_random_mac[ssid])) + + @test_tracker_info(uuid="f68a65e6-97b7-4746-bad8-4c206551d87e") + def test_wifi_hotspot_5g_psk_after_au(self): + """Verify hotspot after ota upgrade. + + Steps: + 1. Start wifi hotspot on the saved config. + 2. Verify DUT client connects to it. + """ + self.verify_wifi_hotspot() + + @test_tracker_info(uuid="21f91372-88a6-44b9-a4e8-d4664823dffb") + def test_connect_to_network_suggestion_after_au(self): + """Verify connection to network suggestion after ota. + + Steps: + 1. DUT has network suggestion added before OTA. + 2. Wait for the device to connect to it. + 3. Remove the suggestions and ensure the device does not + connect back. + """ + wutils.start_wifi_connection_scan_and_return_status(self.dut) + wutils.wait_for_connect(self.dut, self.network_suggestions[0][SSID]) + self.remove_suggestions_and_ensure_no_connection( + self.network_suggestions, self.network_suggestions[0][SSID]) + @test_tracker_info(uuid="b8e47a4f-62fe-4a0e-b999-27ae1ebf4d19") def test_connection_to_new_networks(self): """Check if we can connect to new networks after Auto-update. @@ -201,14 +358,11 @@ class WifiAutoUpdateTest(WifiBaseTest): 2. Connect to an open network. 3. Forget ntworks added in 1 & 2. TODO: (@bmahadev) Add WEP network once it's ready. - """ - wutils.connect_to_wifi_network(self.dut, self.open_network[0]['5g']) - wutils.connect_to_wifi_network(self.dut, self.reference_networks[0]['2g']) - wutils.wifi_forget_network(self.dut, - self.reference_networks[0]['2g'][WifiEnums.SSID_KEY]) - wutils.wifi_forget_network(self.dut, - self.open_network[0]['5g'][WifiEnums.SSID_KEY]) + for network in self.new_networks: + wutils.connect_to_wifi_network(self.dut, network) + for network in self.new_networks: + wutils.wifi_forget_network(self.dut, network[SSID]) @test_tracker_info(uuid="1d8309e4-d5a2-4f48-ba3b-895a58c9bf3a") def test_all_networks_connectable_after_au(self): @@ -218,15 +372,14 @@ class WifiAutoUpdateTest(WifiBaseTest): 1. Connect to previously added PSK network using network id. 2. Connect to previously added open network using network id. TODO: (@bmahadev) Add WEP network once it's ready. - """ - for network in self.wifi_config_list: - if 'dummy' not in network[WifiEnums.SSID_KEY]: - if not wutils.connect_to_wifi_network_with_id(self.dut, - network[WifiEnums.NETID_KEY], - network[WifiEnums.SSID_KEY]): - raise signals.TestFailure("Failed to connect to %s after \ - Auto-update" % network[WifiEnums.SSID_KEY]) + network = self.wifi_config_list[0] + if not wutils.connect_to_wifi_network_with_id(self.dut, + network[NETID], + network[SSID]): + raise signals.TestFailure("Failed to connect to %s after OTA" % + network[SSID]) + wutils.wifi_forget_network(self.dut, network[SSID]) @test_tracker_info(uuid="05671859-38b1-4dbf-930c-18048971d075") def test_check_wifi_toggling_after_au(self): diff --git a/acts/tests/google/wifi/WifiChaosTest.py b/acts/tests/google/wifi/WifiChaosTest.py index e0a4668013..0fa77b3ae4 100755 --- a/acts/tests/google/wifi/WifiChaosTest.py +++ b/acts/tests/google/wifi/WifiChaosTest.py @@ -199,12 +199,8 @@ class WifiChaosTest(WifiBaseTest): sec: Time in seconds to run teh ping traffic. """ - self.log.info("Finding Gateway...") - route_response = self.dut.adb.shell("ip route get 8.8.8.8") - gateway_ip = re.search('via (.*) dev', str(route_response)).group(1) - self.log.info("Gateway IP = %s" % gateway_ip) self.log.info("Running ping for %d seconds" % sec) - result = self.dut.adb.shell("ping -w %d %s" % (sec, gateway_ip), + result = self.dut.adb.shell("ping -w %d %s" % (sec, PING_ADDR), timeout=sec + 1) self.log.debug("Ping Result = %s" % result) if "100% packet loss" in result: diff --git a/acts/tests/google/wifi/WifiConnectedMacRandomizationTest.py b/acts/tests/google/wifi/WifiConnectedMacRandomizationTest.py index bd10a8b9a7..0f77be80f6 100644 --- a/acts/tests/google/wifi/WifiConnectedMacRandomizationTest.py +++ b/acts/tests/google/wifi/WifiConnectedMacRandomizationTest.py @@ -51,9 +51,10 @@ class WifiConnectedMacRandomizationTest(WifiBaseTest): * At least two Wi-Fi networks to connect to. """ - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + WifiBaseTest.__init__(self, controllers) + def setup_class(self): self.dut = self.android_devices[0] self.dut_softap = self.android_devices[1] wutils.wifi_test_device_init(self.dut) diff --git a/acts/tests/google/wifi/WifiCrashStressTest.py b/acts/tests/google/wifi/WifiCrashStressTest.py index 837112a62c..0c5062973c 100644..100755 --- a/acts/tests/google/wifi/WifiCrashStressTest.py +++ b/acts/tests/google/wifi/WifiCrashStressTest.py @@ -33,15 +33,16 @@ class WifiCrashStressTest(WifiBaseTest): * One Wi-Fi network visible to the device. """ - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + WifiBaseTest.__init__(self, controllers) + def setup_class(self): self.dut = self.android_devices[0] self.dut_client = self.android_devices[1] wutils.wifi_test_device_init(self.dut) wutils.wifi_test_device_init(self.dut_client) if not self.dut.is_apk_installed("com.google.mdstest"): - raise signals.TestAbortClass("mdstest is not installed") + raise signals.TestSkipClass("mdstest is not installed") req_params = ["dbs_supported_models", "stress_count"] opt_param = ["reference_networks"] self.unpack_userparams( @@ -54,9 +55,6 @@ class WifiCrashStressTest(WifiBaseTest): len(self.reference_networks) > 0, "Need at least one reference network with psk.") self.network = self.reference_networks[0]["2g"] - self.ap_iface = 'wlan0' - if self.dut.model in self.dbs_supported_models: - self.ap_iface = 'wlan1' def setup_test(self): self.dut.droid.wakeLockAcquireBright() @@ -151,8 +149,7 @@ class WifiCrashStressTest(WifiBaseTest): wutils.wifi_toggle_state(self.dut_client, True) wutils.connect_to_wifi_network(self.dut_client, config, check_connectivity=False) # Ping the DUT - dut_addr = self.dut.droid.connectivityGetIPv4Addresses( - self.ap_iface)[0] + dut_addr = self.dut.droid.connectivityGetIPv4Addresses("wlan0")[0] asserts.assert_true( utils.adb_shell_ping(self.dut_client, count=10, dest_ip=dut_addr, timeout=20), "%s ping %s failed" % (self.dut_client.serial, dut_addr)) @@ -165,15 +162,10 @@ class WifiCrashStressTest(WifiBaseTest): # Connect DUT to Network wutils.connect_to_wifi_network(self.dut_client, config, check_connectivity=False) # Ping the DUT - server_addr = self.dut.droid.connectivityGetIPv4Addresses( - self.ap_iface)[0] + server_addr = self.dut.droid.connectivityGetIPv4Addresses("wlan0")[0] asserts.assert_true( - utils.adb_shell_ping( - self.dut_client, - count=10, - dest_ip=server_addr, - timeout=20), - "%s ping %s failed" % (self.dut_client.serial, server_addr)) + utils.adb_shell_ping(self.dut_client, count=10, dest_ip=dut_addr, timeout=20), + "%s ping %s failed" % (self.dut_client.serial, dut_addr)) wutils.stop_wifi_tethering(self.dut) @test_tracker_info(uuid="4b7f2d89-82be-41de-9277-e938cc1c318b") diff --git a/acts/tests/google/wifi/WifiCrashTest.py b/acts/tests/google/wifi/WifiCrashTest.py index d43a0b9c0c..6d1123e8b3 100644..100755 --- a/acts/tests/google/wifi/WifiCrashTest.py +++ b/acts/tests/google/wifi/WifiCrashTest.py @@ -44,9 +44,10 @@ class WifiCrashTest(WifiBaseTest): * One Wi-Fi network visible to the device. """ - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + WifiBaseTest.__init__(self, controllers) + def setup_class(self): self.dut = self.android_devices[0] wutils.wifi_test_device_init(self.dut) req_params = [] diff --git a/acts/tests/google/wifi/WifiDiagnosticsTest.py b/acts/tests/google/wifi/WifiDiagnosticsTest.py index 8ef24bd24f..79fb082941 100644 --- a/acts/tests/google/wifi/WifiDiagnosticsTest.py +++ b/acts/tests/google/wifi/WifiDiagnosticsTest.py @@ -41,9 +41,10 @@ class WifiDiagnosticsTest(WifiBaseTest): * Verbose logging is on. """ - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + WifiBaseTest.__init__(self, controllers) + def setup_class(self): self.dut = self.android_devices[0] wutils.wifi_test_device_init(self.dut) req_params = [] diff --git a/acts/tests/google/wifi/WifiEnterpriseRoamingTest.py b/acts/tests/google/wifi/WifiEnterpriseRoamingTest.py index 0cebd42e28..ededfd8ca3 100644 --- a/acts/tests/google/wifi/WifiEnterpriseRoamingTest.py +++ b/acts/tests/google/wifi/WifiEnterpriseRoamingTest.py @@ -34,9 +34,10 @@ Ent = WifiEnums.Enterprise class WifiEnterpriseRoamingTest(WifiBaseTest): - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + WifiBaseTest.__init__(self, controllers) + def setup_class(self): self.dut = self.android_devices[0] wutils.wifi_test_device_init(self.dut) req_params = ( @@ -121,7 +122,6 @@ class WifiEnterpriseRoamingTest(WifiBaseTest): self.set_attns("default") def on_fail(self, test_name, begin_time): - self.dut.take_bug_report(test_name, begin_time) self.dut.cat_adb_log(test_name, begin_time) def set_attns(self, attn_val_name): diff --git a/acts/tests/google/wifi/WifiEnterpriseTest.py b/acts/tests/google/wifi/WifiEnterpriseTest.py index 6ba5eb4fb5..79c4065dba 100644..100755 --- a/acts/tests/google/wifi/WifiEnterpriseTest.py +++ b/acts/tests/google/wifi/WifiEnterpriseTest.py @@ -36,9 +36,10 @@ Ent = WifiEnums.Enterprise class WifiEnterpriseTest(WifiBaseTest): - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + WifiBaseTest.__init__(self, controllers) + def setup_class(self): self.dut = self.android_devices[0] wutils.wifi_test_device_init(self.dut) # If running in a setup with attenuators, set attenuation on all @@ -162,7 +163,6 @@ class WifiEnterpriseTest(WifiBaseTest): self.dut.droid.wifiStopTrackingStateChange() def on_fail(self, test_name, begin_time): - self.dut.take_bug_report(test_name, begin_time) self.dut.cat_adb_log(test_name, begin_time) """Helper Functions""" diff --git a/acts/tests/google/wifi/WifiHiddenSSIDTest.py b/acts/tests/google/wifi/WifiHiddenSSIDTest.py index a68144d35a..f794a36eea 100644..100755 --- a/acts/tests/google/wifi/WifiHiddenSSIDTest.py +++ b/acts/tests/google/wifi/WifiHiddenSSIDTest.py @@ -38,9 +38,10 @@ class WifiHiddenSSIDTest(WifiBaseTest): network. """ - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + WifiBaseTest.__init__(self, controllers) + def setup_class(self): self.dut = self.android_devices[0] wutils.wifi_test_device_init(self.dut) req_params = [] @@ -106,7 +107,10 @@ class WifiHiddenSSIDTest(WifiBaseTest): hidden_network: The hidden network config to connect to. """ - wutils.connect_to_wifi_network(self.dut, hidden_network, hidden=True) + ret = self.dut.droid.wifiAddNetwork(hidden_network) + asserts.assert_true(ret != -1, "Add network %r failed" % hidden_network) + self.dut.droid.wifiEnableNetwork(ret, 0) + wutils.connect_to_wifi_network(self.dut, hidden_network) if not wutils.validate_connection(self.dut): raise signals.TestFailure("Fail to connect to internet on %s" % hidden_network) diff --git a/acts/tests/google/wifi/WifiIFSTwTest.py b/acts/tests/google/wifi/WifiIFSTwTest.py index 2e4025fe10..95044cd3fb 100644 --- a/acts/tests/google/wifi/WifiIFSTwTest.py +++ b/acts/tests/google/wifi/WifiIFSTwTest.py @@ -43,14 +43,8 @@ class WifiIFSTwTest(WifiBaseTest): *One attenuator with 4 ports """ - def setup_class(self): - """Setup required dependencies from config file and configure - the required networks for testing roaming. - - Returns: - True if successfully configured the requirements for testing. - """ - super().setup_class() + def __init__(self, controllers): + WifiBaseTest.__init__(self, controllers) self.simulation_thread_running = False self.atten_roaming_count = 0 self.start_db = 30 @@ -59,6 +53,13 @@ class WifiIFSTwTest(WifiBaseTest): self.retry_pass_count = 0 self.ping_count = 0 + def setup_class(self): + """Setup required dependencies from config file and configure + the required networks for testing roaming. + + Returns: + True if successfully configured the requirements for testing. + """ self.dut = self.android_devices[0] wutils.wifi_test_device_init(self.dut) req_params = ["attenuators", "ifs_params"] diff --git a/acts/tests/google/wifi/WifiIOTTest.py b/acts/tests/google/wifi/WifiIOTTest.py index 1daf346dca..ec0a3143f7 100644..100755 --- a/acts/tests/google/wifi/WifiIOTTest.py +++ b/acts/tests/google/wifi/WifiIOTTest.py @@ -36,9 +36,10 @@ class WifiIOTTest(WifiBaseTest): * Wi-Fi IOT networks visible to the device """ - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + WifiBaseTest.__init__(self, controllers) + def setup_class(self): self.dut = self.android_devices[0] wutils.wifi_test_device_init(self.dut) diff --git a/acts/tests/google/wifi/WifiIOTTwPkg1Test.py b/acts/tests/google/wifi/WifiIOTTwPkg1Test.py index 359560de76..b30c606b79 100644 --- a/acts/tests/google/wifi/WifiIOTTwPkg1Test.py +++ b/acts/tests/google/wifi/WifiIOTTwPkg1Test.py @@ -44,9 +44,11 @@ class WifiIOTTwPkg1Test(WifiBaseTest): * Wi-Fi IOT networks visible to the device """ - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + self.attenuators = None + WifiBaseTest.__init__(self, controllers) + def setup_class(self): self.dut = self.android_devices[0] wutils.wifi_test_device_init(self.dut) diff --git a/acts/tests/google/wifi/WifiIOTtpeTest.py b/acts/tests/google/wifi/WifiIOTtpeTest.py index fd141ffea6..979a4344bc 100644 --- a/acts/tests/google/wifi/WifiIOTtpeTest.py +++ b/acts/tests/google/wifi/WifiIOTtpeTest.py @@ -36,9 +36,11 @@ class WifiIOTtpeTest(WifiBaseTest): * Wi-Fi IOT networks visible to the device """ - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + self.attenuators = None + WifiBaseTest.__init__(self, controllers) + def setup_class(self): self.dut = self.android_devices[0] wutils.wifi_test_device_init(self.dut) diff --git a/acts/tests/google/wifi/WifiLinkProbeTest.py b/acts/tests/google/wifi/WifiLinkProbeTest.py index 7e6d58ffd7..23ea7a518d 100644 --- a/acts/tests/google/wifi/WifiLinkProbeTest.py +++ b/acts/tests/google/wifi/WifiLinkProbeTest.py @@ -37,9 +37,10 @@ class WifiLinkProbeTest(WifiBaseTest): * One Wi-Fi network visible to the device, with an attenuator """ - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + super().__init__(controllers) + def setup_class(self): self.dut = self.android_devices[0] wutils.wifi_test_device_init(self.dut) self.unpack_userparams(req_param_names=[], diff --git a/acts/tests/google/wifi/WifiMacRandomizationTest.py b/acts/tests/google/wifi/WifiMacRandomizationTest.py index 5ad21884fc..fa01d45b61 100644..100755 --- a/acts/tests/google/wifi/WifiMacRandomizationTest.py +++ b/acts/tests/google/wifi/WifiMacRandomizationTest.py @@ -59,9 +59,10 @@ class WifiMacRandomizationTest(WifiBaseTest): * Several Wi-Fi networks visible to the device. """ - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + WifiBaseTest.__init__(self, controllers) + def setup_class(self): self.dut = self.android_devices[0] self.dut_client = self.android_devices[1] wutils.wifi_test_device_init(self.dut) diff --git a/acts/tests/google/wifi/WifiManagerTest.py b/acts/tests/google/wifi/WifiManagerTest.py index a4ef011f35..b63fee2db9 100644..100755 --- a/acts/tests/google/wifi/WifiManagerTest.py +++ b/acts/tests/google/wifi/WifiManagerTest.py @@ -47,23 +47,18 @@ class WifiManagerTest(WifiBaseTest): network. """ - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + WifiBaseTest.__init__(self, controllers) + def setup_class(self): self.dut = self.android_devices[0] + self.dut_client = self.android_devices[1] wutils.wifi_test_device_init(self.dut) - wutils.wifi_toggle_state(self.dut, True) - - self.dut_client = None - if len(self.android_devices) > 1: - self.dut_client = self.android_devices[1] - wutils.wifi_test_device_init(self.dut_client) - wutils.wifi_toggle_state(self.dut_client, True) - + wutils.wifi_test_device_init(self.dut_client) req_params = [] opt_param = [ "open_network", "reference_networks", "iperf_server_address", - "wpa_networks", "wep_networks", "iperf_server_port" + "wpa_networks", "wep_networks" ] self.unpack_userparams( req_param_names=req_params, opt_param_names=opt_param) @@ -74,10 +69,16 @@ class WifiManagerTest(WifiBaseTest): asserts.assert_true( len(self.reference_networks) > 0, "Need at least one reference network with psk.") + wutils.wifi_toggle_state(self.dut, True) + wutils.wifi_toggle_state(self.dut_client, True) + if "iperf_server_address" in self.user_params: + self.iperf_server = self.iperf_servers[0] self.wpapsk_2g = self.reference_networks[0]["2g"] self.wpapsk_5g = self.reference_networks[0]["5g"] self.open_network_2g = self.open_network[0]["2g"] self.open_network_5g = self.open_network[0]["5g"] + if hasattr(self, 'iperf_server'): + self.iperf_server.start() def setup_test(self): for ad in self.android_devices: @@ -91,8 +92,11 @@ class WifiManagerTest(WifiBaseTest): ad.droid.goToSleepNow() self.turn_location_off_and_scan_toggle_off() wutils.reset_wifi(self.dut) - if self.dut_client: - wutils.reset_wifi(self.dut_client) + wutils.reset_wifi(self.dut_client) + + def teardown_class(self): + if hasattr(self, 'iperf_server'): + self.iperf_server.stop() def on_fail(self, test_name, begin_time): self.dut.take_bug_report(test_name, begin_time) @@ -244,7 +248,7 @@ class WifiManagerTest(WifiBaseTest): SSID = network[WifiEnums.SSID_KEY] self.log.info("Starting iperf traffic through {}".format(SSID)) time.sleep(wait_time) - port_arg = "-p {}".format(self.iperf_server_port) + port_arg = "-p {}".format(self.iperf_server.port) success, data = ad.run_iperf_client(self.iperf_server_address, port_arg) self.log.debug(pprint.pformat(data)) @@ -281,10 +285,10 @@ class WifiManagerTest(WifiBaseTest): self.log.debug(data) def run_iperf_rx_tx(self, time, omit=10): - args = "-p {} -t {} -O 10".format(self.iperf_server_port, time, omit) + args = "-p {} -t {} -O 10".format(self.iperf_server.port, time, omit) self.log.info("Running iperf client {}".format(args)) self.run_iperf(args) - args = "-p {} -t {} -O 10 -R".format(self.iperf_server_port, time, + args = "-p {} -t {} -O 10 -R".format(self.iperf_server.port, time, omit) self.log.info("Running iperf client {}".format(args)) self.run_iperf(args) @@ -497,21 +501,6 @@ class WifiManagerTest(WifiBaseTest): " toggling Airplane mode and rebooting.") raise signals.TestFailure(msg) - def verify_traffic_between_devices(self,dest_device,src_device,num_of_tries=2): - """Test the clients and DUT can ping each other. - - Args: - num_of_tries: the retry times of ping test. - dest_device:Test device. - src_device:Second DUT access same AP - """ - dest_device = dest_device.droid.connectivityGetIPv4Addresses('wlan0')[0] - for _ in range(num_of_tries): - if acts.utils.adb_shell_ping(src_device, count=10, dest_ip=dest_device, timeout=20): - break - else: - asserts.fail("Ping to %s from %s failed" % (src_device.serial, dest_device)) - """Tests""" @test_tracker_info(uuid="525fc5e3-afba-4bfd-9a02-5834119e3c66") @@ -918,7 +907,10 @@ class WifiManagerTest(WifiBaseTest): """ wutils.connect_to_wifi_network(self.dut, self.wpa_networks[0]["2g"]) wutils.connect_to_wifi_network(self.dut_client, self.wpa_networks[0]["2g"]) - self.verify_traffic_between_devices(self.dut,self.dut_client) + dut_address = self.dut.droid.connectivityGetIPv4Addresses('wlan0')[0] + asserts.assert_true( + acts.utils.adb_shell_ping(self.dut_client, count=10, dest_ip=dut_address, timeout=20), + "%s ping %s failed" % (self.dut_client.serial, dut_address)) @test_tracker_info(uuid="94bdd657-649b-4a2c-89c3-3ec6ba18e08e") def test_connect_to_5g_can_be_pinged(self): @@ -931,7 +923,10 @@ class WifiManagerTest(WifiBaseTest): """ wutils.connect_to_wifi_network(self.dut, self.wpa_networks[0]["5g"]) wutils.connect_to_wifi_network(self.dut_client, self.wpa_networks[0]["5g"]) - self.verify_traffic_between_devices(self.dut,self.dut_client) + dut_address = self.dut.droid.connectivityGetIPv4Addresses('wlan0')[0] + asserts.assert_true( + acts.utils.adb_shell_ping(self.dut_client, count=10, dest_ip=dut_address, timeout=20), + "%s ping %s failed" % (self.dut_client.serial, dut_address)) @test_tracker_info(uuid="d87359aa-c4da-4554-b5de-8e3fa852a6b0") def test_sta_turn_off_screen_can_be_pinged(self): @@ -947,8 +942,14 @@ class WifiManagerTest(WifiBaseTest): wutils.connect_to_wifi_network(self.dut, self.wpa_networks[0]["2g"]) wutils.connect_to_wifi_network(self.dut_client, self.wpa_networks[0]["2g"]) # Check DUT and DUT_Client can ping each other successfully - self.verify_traffic_between_devices(self.dut,self.dut_client) - self.verify_traffic_between_devices(self.dut_client,self.dut) + dut_address = self.dut.droid.connectivityGetIPv4Addresses('wlan0')[0] + dut_client_address = self.dut_client.droid.connectivityGetIPv4Addresses('wlan0')[0] + asserts.assert_true( + acts.utils.adb_shell_ping(self.dut, count=10, dest_ip=dut_client_address, timeout=20), + "ping DUT %s failed" % dut_client_address) + asserts.assert_true( + acts.utils.adb_shell_ping(self.dut_client, count=10, dest_ip=dut_address, timeout=20), + "ping DUT %s failed" % dut_address) # DUT turn off screen and go sleep for 5 mins self.dut.droid.wakeLockRelease() self.dut.droid.goToSleepNow() @@ -957,7 +958,9 @@ class WifiManagerTest(WifiBaseTest): self.log.info("Sleep for 5 minutes") time.sleep(300) # Verify DUT_Client can ping DUT when DUT sleeps - self.verify_traffic_between_devices(self.dut,self.dut_client) + asserts.assert_true( + acts.utils.adb_shell_ping(self.dut_client, count=10, dest_ip=dut_address, timeout=20), + "ping DUT %s failed" % dut_address) self.dut.droid.wakeLockAcquireBright() self.dut.droid.wakeUpNow() diff --git a/acts/tests/google/wifi/WifiNetworkRequestTest.py b/acts/tests/google/wifi/WifiNetworkRequestTest.py index b966de243e..eca3268c9f 100644..100755 --- a/acts/tests/google/wifi/WifiNetworkRequestTest.py +++ b/acts/tests/google/wifi/WifiNetworkRequestTest.py @@ -46,9 +46,10 @@ class WifiNetworkRequestTest(WifiBaseTest): network. """ - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + WifiBaseTest.__init__(self, controllers) + def setup_class(self): self.dut = self.android_devices[0] wutils.wifi_test_device_init(self.dut) req_params = [] diff --git a/acts/tests/google/wifi/WifiNetworkSelectorTest.py b/acts/tests/google/wifi/WifiNetworkSelectorTest.py index 5af4ad9584..e0f4a01804 100644 --- a/acts/tests/google/wifi/WifiNetworkSelectorTest.py +++ b/acts/tests/google/wifi/WifiNetworkSelectorTest.py @@ -45,9 +45,10 @@ class WifiNetworkSelectorTest(WifiBaseTest): feature. """ - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + WifiBaseTest.__init__(self, controllers) + def setup_class(self): self.dut = self.android_devices[0] wutils.wifi_test_device_init(self.dut) req_params = [] diff --git a/acts/tests/google/wifi/WifiNetworkSuggestionTest.py b/acts/tests/google/wifi/WifiNetworkSuggestionTest.py index 6d6da35b42..275dee5b39 100644..100755 --- a/acts/tests/google/wifi/WifiNetworkSuggestionTest.py +++ b/acts/tests/google/wifi/WifiNetworkSuggestionTest.py @@ -51,9 +51,10 @@ class WifiNetworkSuggestionTest(WifiBaseTest): network. """ - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + WifiBaseTest.__init__(self, controllers) + def setup_class(self): self.dut = self.android_devices[0] wutils.wifi_test_device_init(self.dut) req_params = [] diff --git a/acts/tests/google/wifi/WifiNewSetupAutoJoinTest.py b/acts/tests/google/wifi/WifiNewSetupAutoJoinTest.py index b5ba8997d7..32d4c1fc4e 100644 --- a/acts/tests/google/wifi/WifiNewSetupAutoJoinTest.py +++ b/acts/tests/google/wifi/WifiNewSetupAutoJoinTest.py @@ -29,6 +29,9 @@ NETWORK_ERROR = "Device is not connected to reference network" class WifiNewSetupAutoJoinTest(WifiBaseTest): + def __init__(self, controllers): + WifiBaseTest.__init__(self, controllers) + def add_network_and_enable(self, network): """Add a network and enable it. @@ -49,8 +52,6 @@ class WifiNewSetupAutoJoinTest(WifiBaseTest): Returns: True if successfully configured the requirements for testing. """ - super().setup_class() - self.dut = self.android_devices[0] wutils.wifi_test_device_init(self.dut) req_params = ("atten_val", "ping_addr", "max_bugreports") @@ -147,8 +148,6 @@ class WifiNewSetupAutoJoinTest(WifiBaseTest): self.dut.cat_adb_log(test_name, begin_time) def teardown_class(self): - for ad in self.android_devices: - wutils.reset_wifi(ad) if "AccessPoint" in self.user_params: del self.user_params["reference_networks"] del self.user_params["open_network"] diff --git a/acts/tests/google/wifi/WifiOtaTest.py b/acts/tests/google/wifi/WifiOtaTest.py new file mode 100644 index 0000000000..c0398c380e --- /dev/null +++ b/acts/tests/google/wifi/WifiOtaTest.py @@ -0,0 +1,243 @@ +#!/usr/bin/env python3.4 +# +# Copyright 2019 - The Android Open Source Project +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import collections +import itertools +import json +import os +from acts import base_test +from acts import context +from acts.metrics.loggers.blackbox import BlackboxMetricLogger +from acts.test_utils.wifi import ota_chamber +from acts.test_utils.wifi import wifi_performance_test_utils as wputils +from WifiRvrTest import WifiRvrTest +from WifiPingTest import WifiPingTest + + +class WifiOtaRvrTest(WifiRvrTest): + """Class to test over-the-air RvR + + This class implements measures WiFi RvR tests in an OTA chamber. It enables + setting turntable orientation and other chamber parameters to study + performance in varying channel conditions + """ + + def __init__(self, controllers): + base_test.BaseTestClass.__init__(self, controllers) + self.failure_count_metric = BlackboxMetricLogger.for_test_case( + metric_name='failure_count') + + def setup_class(self): + WifiRvrTest.setup_class(self) + req_params = ['OTAChamber'] + self.unpack_userparams(req_params) + self.ota_chambers = ota_chamber.create(self.OTAChamber) + self.ota_chamber = self.ota_chambers[0] + + def teardown_class(self): + WifiRvrTest.teardown_class(self) + self.ota_chamber.set_orientation(0) + + def setup_rvr_test(self, testcase_params): + """Function that gets devices ready for the test. + + Args: + testcase_params: dict containing test-specific parameters + """ + # Set turntable orientation + self.ota_chamber.set_orientation(testcase_params['orientation']) + # Continue test setup + WifiRvrTest.setup_rvr_test(self, testcase_params) + + def parse_test_params(self, test_name): + """Function that generates test params based on the test name.""" + # Call parent parsing function + testcase_params = WifiRvrTest.parse_test_params(self, test_name) + # Add orientation information + test_name_params = test_name.split('_') + testcase_params['orientation'] = int(test_name_params[6][0:-3]) + return testcase_params + + def generate_test_cases(self, channels, modes, angles, traffic_types, + directions): + test_cases = [] + testcase_wrapper = self._test_rvr + allowed_configs = { + 'VHT20': [ + 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 36, 40, 44, 48, 149, 153, + 157, 161 + ], + 'VHT40': [36, 44, 149, 157], + 'VHT80': [36, 149] + } + for channel, mode, angle, traffic_type, direction in itertools.product( + channels, modes, angles, traffic_types, directions): + if channel not in allowed_configs[mode]: + continue + testcase_name = 'test_rvr_{}_{}_ch{}_{}_{}deg'.format( + traffic_type, direction, channel, mode, angle) + setattr(self, testcase_name, testcase_wrapper) + test_cases.append(testcase_name) + return test_cases + + +class WifiOtaRvr_StandardOrientation_Test(WifiOtaRvrTest): + def __init__(self, controllers): + WifiOtaRvrTest.__init__(self, controllers) + self.tests = self.generate_test_cases( + [1, 6, 11, 36, 40, 44, 48, 149, 153, 157, 161], + ['VHT20', 'VHT40', 'VHT80'], list(range(0, 360, + 45)), ['TCP'], ['DL']) + + +class WifiOtaRvr_SampleChannel_Test(WifiOtaRvrTest): + def __init__(self, controllers): + WifiOtaRvrTest.__init__(self, controllers) + self.tests = self.generate_test_cases([6, 36, 149], ['VHT20', 'VHT80'], + list(range(0, 360, 45)), ['TCP'], + ['DL']) + + +class WifiOtaRvr_SingleOrientation_Test(WifiOtaRvrTest): + def __init__(self, controllers): + WifiOtaRvrTest.__init__(self, controllers) + self.tests = self.generate_test_cases( + [6, 36, 40, 44, 48, 149, 153, 157, 161], + ['VHT20', 'VHT40', 'VHT80'], [0], ['TCP'], ['DL', 'UL']) + + +# Ping Tests +class WifiOtaPingTest(WifiPingTest): + """Class to test over-the-air ping + + This class tests WiFi ping performance in an OTA chamber. It enables + setting turntable orientation and other chamber parameters to study + performance in varying channel conditions + """ + + def __init__(self, controllers): + base_test.BaseTestClass.__init__(self, controllers) + self.ping_range_metric = BlackboxMetricLogger.for_test_case( + metric_name='ping_range') + self.ping_rtt_metric = BlackboxMetricLogger.for_test_case( + metric_name='ping_rtt') + + def setup_class(self): + WifiPingTest.setup_class(self) + req_params = ['OTAChamber'] + self.unpack_userparams(req_params) + self.ota_chambers = ota_chamber.create(self.OTAChamber) + self.ota_chamber = self.ota_chambers[0] + + def teardown_class(self): + self.process_testclass_results() + self.ota_chamber.set_orientation(0) + + def process_testclass_results(self): + """Saves all test results to enable comparison.""" + WifiPingTest.process_testclass_results(self) + + range_vs_angle = collections.OrderedDict() + for test in self.testclass_results: + curr_params = self.parse_test_params(test['test_name']) + curr_config = curr_params['channel'] + if curr_config in range_vs_angle: + range_vs_angle[curr_config]['orientation'].append( + curr_params['orientation']) + range_vs_angle[curr_config]['range'].append(test['range']) + else: + range_vs_angle[curr_config] = { + 'orientation': [curr_params['orientation']], + 'range': [test['range']] + } + figure = wputils.BokehFigure( + title='Range vs. Orientation', + x_label='Angle (deg)', + primary_y='Range (dB)', + ) + for config, config_data in range_vs_angle.items(): + figure.add_line(config_data['orientation'], config_data['range'], + 'Channel {}'.format(config)) + current_context = context.get_current_context().get_full_output_path() + plot_file_path = os.path.join(current_context, 'results.html') + figure.generate_figure(plot_file_path) + + # Save results + results_file_path = os.path.join(current_context, + 'testclass_summary.json') + with open(results_file_path, 'w') as results_file: + json.dump(range_vs_angle, results_file, indent=4) + + def setup_ping_test(self, testcase_params): + """Function that gets devices ready for the test. + + Args: + testcase_params: dict containing test-specific parameters + """ + # Configure AP + self.setup_ap(testcase_params) + # Set attenuator to 0 dB + for attenuator in self.attenuators: + attenuator.set_atten(0, strict=False) + # Setup turntable + self.ota_chamber.set_orientation(testcase_params['orientation']) + # Reset, configure, and connect DUT + self.setup_dut(testcase_params) + + def parse_test_params(self, test_name): + """Function that generates test params based on the test name.""" + # Call parent parsing function + testcase_params = WifiPingTest.parse_test_params(self, test_name) + # Add orientation information + test_name_params = test_name.split('_') + testcase_params['orientation'] = int(test_name_params[5][0:-3]) + return testcase_params + + def generate_test_cases(self, channels, modes, angles): + test_cases = [] + testcase_wrapper = self._test_ping_range + allowed_configs = { + 'VHT20': [ + 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 36, 40, 44, 48, 149, 153, + 157, 161 + ], + 'VHT40': [36, 44, 149, 157], + 'VHT80': [36, 149] + } + for channel, mode, angle in itertools.product(channels, modes, angles): + if channel not in allowed_configs[mode]: + continue + testcase_name = 'test_ping_range_ch{}_{}_{}deg'.format( + channel, mode, angle) + setattr(self, testcase_name, testcase_wrapper) + test_cases.append(testcase_name) + return test_cases + + +class WifiOtaPing_TenDegree_Test(WifiOtaPingTest): + def __init__(self, controllers): + WifiOtaPingTest.__init__(self, controllers) + self.tests = self.generate_test_cases( + [1, 6, 11, 36, 40, 44, 48, 149, 153, 157, 161], ['VHT20'], + list(range(0, 360, 10))) + + +class WifiOtaPing_45Degree_Test(WifiOtaPingTest): + def __init__(self, controllers): + WifiOtaPingTest.__init__(self, controllers) + self.tests = self.generate_test_cases( + [1, 6, 11, 36, 40, 44, 48, 149, 153, 157, 161], ['VHT20'], + list(range(0, 360, 45))) diff --git a/acts/tests/google/wifi/WifiPingTest.py b/acts/tests/google/wifi/WifiPingTest.py index 1bce90392b..d9263c0baf 100644 --- a/acts/tests/google/wifi/WifiPingTest.py +++ b/acts/tests/google/wifi/WifiPingTest.py @@ -2,36 +2,32 @@ # # Copyright 2017 - The Android Open Source Project # -# Licensed under the Apache License, Version 2.0 (the 'License'); +# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an 'AS IS' BASIS, +# distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections -import itertools import json import logging import os import statistics +import time from acts import asserts -from acts import context from acts import base_test from acts import utils from acts.controllers.utils_lib import ssh -from acts.metrics.loggers.blackbox import BlackboxMappedMetricLogger -from acts.test_utils.wifi import ota_chamber -from acts.test_utils.wifi import ota_sniffer +from acts.metrics.loggers.blackbox import BlackboxMetricLogger from acts.test_utils.wifi import wifi_performance_test_utils as wputils from acts.test_utils.wifi import wifi_retail_ap as retail_ap from acts.test_utils.wifi import wifi_test_utils as wutils -from functools import partial class WifiPingTest(base_test.BaseTestClass): @@ -49,73 +45,68 @@ class WifiPingTest(base_test.BaseTestClass): MED_SLEEP = 5 MAX_CONSECUTIVE_ZEROS = 5 DISCONNECTED_PING_RESULT = { - 'connected': 0, - 'rtt': [], - 'time_stamp': [], - 'ping_interarrivals': [], - 'packet_loss_percentage': 100 + "connected": 0, + "rtt": [], + "time_stamp": [], + "ping_interarrivals": [], + "packet_loss_percentage": 100 } def __init__(self, controllers): base_test.BaseTestClass.__init__(self, controllers) - self.testcase_metric_logger = ( - BlackboxMappedMetricLogger.for_test_case()) - self.testclass_metric_logger = ( - BlackboxMappedMetricLogger.for_test_class()) - self.publish_testcase_metrics = True - - self.tests = self.generate_test_cases( - ap_power='standard', - channels=[1, 6, 11, 36, 40, 44, 48, 149, 153, 157, 161], - modes=['VHT20', 'VHT40', 'VHT80'], - test_types=[ - 'test_ping_range', 'test_fast_ping_rtt', 'test_slow_ping_rtt' - ]) + self.ping_range_metric = BlackboxMetricLogger.for_test_case( + metric_name='ping_range') + self.ping_rtt_metric = BlackboxMetricLogger.for_test_case( + metric_name='ping_rtt') + self.tests = ( + "test_ping_range_ch1_VHT20", "test_fast_ping_rtt_ch1_VHT20", + "test_slow_ping_rtt_ch1_VHT20", "test_ping_range_ch6_VHT20", + "test_fast_ping_rtt_ch6_VHT20", "test_slow_ping_rtt_ch6_VHT20", + "test_ping_range_ch11_VHT20", "test_fast_ping_rtt_ch11_VHT20", + "test_slow_ping_rtt_ch11_VHT20", "test_ping_range_ch36_VHT20", + "test_fast_ping_rtt_ch36_VHT20", "test_slow_ping_rtt_ch36_VHT20", + "test_ping_range_ch36_VHT40", "test_fast_ping_rtt_ch36_VHT40", + "test_slow_ping_rtt_ch36_VHT40", "test_ping_range_ch36_VHT80", + "test_fast_ping_rtt_ch36_VHT80", "test_slow_ping_rtt_ch36_VHT80", + "test_ping_range_ch40_VHT20", "test_ping_range_ch44_VHT20", + "test_ping_range_ch44_VHT40", "test_ping_range_ch48_VHT20", + "test_ping_range_ch149_VHT20", "test_fast_ping_rtt_ch149_VHT20", + "test_slow_ping_rtt_ch149_VHT20", "test_ping_range_ch149_VHT40", + "test_fast_ping_rtt_ch149_VHT40", "test_slow_ping_rtt_ch149_VHT40", + "test_ping_range_ch149_VHT80", "test_fast_ping_rtt_ch149_VHT80", + "test_slow_ping_rtt_ch149_VHT80", "test_ping_range_ch153_VHT20", + "test_ping_range_ch157_VHT20", "test_ping_range_ch157_VHT40", + "test_ping_range_ch161_VHT20") def setup_class(self): - self.dut = self.android_devices[-1] + self.client_dut = self.android_devices[-1] req_params = [ - 'ping_test_params', 'testbed_params', 'main_network', - 'RetailAccessPoints', 'RemoteServer' + "ping_test_params", "testbed_params", "main_network", + "RetailAccessPoints", "RemoteServer" ] - opt_params = ['golden_files_list', 'OTASniffer'] + opt_params = ["golden_files_list"] self.unpack_userparams(req_params, opt_params) self.testclass_params = self.ping_test_params self.num_atten = self.attenuators[0].instrument.num_atten self.ping_server = ssh.connection.SshConnection( - ssh.settings.from_config(self.RemoteServer[0]['ssh_config'])) - self.access_point = retail_ap.create(self.RetailAccessPoints)[0] - if hasattr(self, 'OTASniffer'): - self.sniffer = ota_sniffer.create(self.OTASniffer)[0] - self.log.info('Access Point Configuration: {}'.format( + ssh.settings.from_config(self.RemoteServer[0]["ssh_config"])) + self.access_points = retail_ap.create(self.RetailAccessPoints) + self.access_point = self.access_points[0] + self.log.info("Access Point Configuration: {}".format( self.access_point.ap_settings)) - self.log_path = os.path.join(logging.log_path, 'results') + self.log_path = os.path.join(logging.log_path, "results") utils.create_dir(self.log_path) - if not hasattr(self, 'golden_files_list'): + if not hasattr(self, "golden_files_list"): self.golden_files_list = [ - os.path.join(self.testbed_params['golden_results_path'], file) + os.path.join(self.testbed_params["golden_results_path"], file) for file in os.listdir( - self.testbed_params['golden_results_path']) + self.testbed_params["golden_results_path"]) ] - if hasattr(self, 'bdf'): - self.log.info('Pushing WiFi BDF to DUT.') - wputils.push_bdf(self.dut, self.bdf) - if hasattr(self, 'firmware'): - self.log.info('Pushing WiFi firmware to DUT.') - wlanmdsp = [ - file for file in self.firmware if "wlanmdsp.mbn" in file - ][0] - data_msc = [file for file in self.firmware - if "Data.msc" in file][0] - wputils.push_firmware(self.dut, wlanmdsp, data_msc) self.testclass_results = [] # Turn WiFi ON - if self.testclass_params.get('airplane_mode', 1): - self.log.info('Turning on airplane mode.') - asserts.assert_true(utils.force_airplane_mode(self.dut, True), - "Can not turn on airplane mode.") - wutils.wifi_toggle_state(self.dut, True) + for dev in self.android_devices: + wutils.wifi_toggle_state(dev, True) def teardown_class(self): # Turn WiFi OFF @@ -127,15 +118,14 @@ class WifiPingTest(base_test.BaseTestClass): """Saves all test results to enable comparison.""" testclass_summary = {} for test in self.testclass_results: - if 'range' in test['test_name']: - testclass_summary[test['test_name']] = test['range'] + if "range" in test["test_name"]: + testclass_summary[test["test_name"]] = test["range"] # Save results - results_file_path = os.path.join(self.log_path, - 'testclass_summary.json') + results_file_path = "{}/testclass_summary.json".format(self.log_path) with open(results_file_path, 'w') as results_file: json.dump(testclass_summary, results_file, indent=4) - def pass_fail_check_ping_rtt(self, result): + def pass_fail_check_ping_rtt(self, ping_range_result): """Check the test result and decide if it passed or failed. The function computes RTT statistics and fails any tests in which the @@ -143,40 +133,38 @@ class WifiPingTest(base_test.BaseTestClass): configuration file. Args: - result: dict containing ping results and other meta data + ping_range_result: dict containing ping results and other meta data """ - ignored_fraction = (self.testclass_params['rtt_ignored_interval'] / - self.testclass_params['rtt_ping_duration']) + ignored_fraction = (self.testclass_params["rtt_ignored_interval"] / + self.testclass_params["rtt_ping_duration"]) sorted_rtt = [ - sorted(x['rtt'][round(ignored_fraction * len(x['rtt'])):]) - for x in result['ping_results'] + sorted(x["rtt"][round(ignored_fraction * len(x["rtt"])):]) + for x in ping_range_result["ping_results"] ] - disconnected = any([len(x) == 0 for x in sorted_rtt]) - if disconnected: - asserts.fail('Test failed. DUT disconnected at least once.') - + mean_rtt = [statistics.mean(x) for x in sorted_rtt] + std_rtt = [statistics.stdev(x) for x in sorted_rtt] rtt_at_test_percentile = [ - x[int((1 - self.testclass_params['rtt_test_percentile'] / 100) * + x[int((1 - self.testclass_params["rtt_test_percentile"] / 100) * len(x))] for x in sorted_rtt ] # Set blackbox metric - if self.publish_testcase_metrics: - self.testcase_metric_logger.add_metric('ping_rtt', - max(rtt_at_test_percentile)) + self.ping_rtt_metric.metric_value = max(rtt_at_test_percentile) # Evaluate test pass/fail - rtt_failed = any([ - rtt > self.testclass_params['rtt_threshold'] * 1000 - for rtt in rtt_at_test_percentile - ]) - if rtt_failed: - asserts.fail('Test failed. RTTs at test percentile = {}'.format( - rtt_at_test_percentile)) + test_failed = False + for idx, rtt in enumerate(rtt_at_test_percentile): + if rtt > self.testclass_params["rtt_threshold"] * 1000: + test_failed = True + self.log.info( + "RTT Failed. Test %ile RTT = {}ms. Mean = {}ms. Stdev = {}" + .format(rtt, mean_rtt[idx], std_rtt[idx])) + if test_failed: + asserts.fail("RTT above threshold") else: asserts.explicit_pass( - 'Test Passed. RTTs at test percentile = {}'.format( + "Test Passed. RTTs at test percentile = {}".format( rtt_at_test_percentile)) - def pass_fail_check_ping_range(self, result): + def pass_fail_check_ping_range(self, ping_range_result): """Check the test result and decide if it passed or failed. Checks whether the attenuation at which ping packet losses begin to @@ -185,30 +173,22 @@ class WifiPingTest(base_test.BaseTestClass): range_gap_threshold worse than RvR range. Args: - result: dict containing ping results and meta data + ping_range_result: dict containing ping results and meta data """ # Get target range rvr_range = self.get_range_from_rvr() # Set Blackbox metric - if self.publish_testcase_metrics: - self.testcase_metric_logger.add_metric('ping_range', - result['range']) + self.ping_range_metric.metric_value = ping_range_result["range"] # Evaluate test pass/fail - test_message = ('Attenuation at range is {}dB. Golden range is {}dB. ' - 'LLStats at Range: {}'.format( - result['range'], rvr_range, - result['llstats_at_range'])) - if result['range'] - rvr_range < -self.testclass_params[ - 'range_gap_threshold']: - asserts.fail(test_message) - else: - asserts.explicit_pass(test_message) - - def pass_fail_check(self, result): - if 'range' in result['testcase_params']['test_type']: - self.pass_fail_check_ping_range(result) + if ping_range_result["range"] - rvr_range < -self.testclass_params[ + "range_gap_threshold"]: + asserts.fail( + "Attenuation at range is {}dB. Golden range is {}dB".format( + ping_range_result["range"], rvr_range)) else: - self.pass_fail_check_ping_rtt(result) + asserts.explicit_pass( + "Attenuation at range is {}dB. Golden range is {}dB".format( + ping_range_result["range"], rvr_range)) def process_ping_results(self, testcase_params, ping_range_result): """Saves and plots ping results. @@ -218,11 +198,11 @@ class WifiPingTest(base_test.BaseTestClass): """ # Compute range ping_loss_over_att = [ - x['packet_loss_percentage'] - for x in ping_range_result['ping_results'] + x["packet_loss_percentage"] + for x in ping_range_result["ping_results"] ] ping_loss_above_threshold = [ - x > self.testclass_params['range_ping_loss_threshold'] + x > testcase_params["range_ping_loss_threshold"] for x in ping_loss_over_att ] for idx in range(len(ping_loss_above_threshold)): @@ -231,47 +211,49 @@ class WifiPingTest(base_test.BaseTestClass): break else: range_index = -1 - ping_range_result['atten_at_range'] = testcase_params['atten_range'][ + ping_range_result["atten_at_range"] = testcase_params["atten_range"][ range_index] - ping_range_result['peak_throughput_pct'] = 100 - min( - ping_loss_over_att) - ping_range_result['range'] = (ping_range_result['atten_at_range'] + - ping_range_result['fixed_attenuation']) - ping_range_result['llstats_at_range'] = ( - 'TX MCS = {0} ({1:.1f}%). ' - 'RX MCS = {2} ({3:.1f}%)'.format( - ping_range_result['llstats'][range_index]['summary'] - ['common_tx_mcs'], ping_range_result['llstats'][range_index] - ['summary']['common_tx_mcs_freq'] * 100, - ping_range_result['llstats'][range_index]['summary'] - ['common_rx_mcs'], ping_range_result['llstats'][range_index] - ['summary']['common_rx_mcs_freq'] * 100)) + ping_range_result["peak_throughput"] = "{}%".format( + 100 - min(ping_loss_over_att)) + ping_range_result["range"] = (ping_range_result["atten_at_range"] + + ping_range_result["fixed_attenuation"]) # Save results - results_file_path = os.path.join( - self.log_path, '{}.json'.format(self.current_test_name)) + results_file_path = "{}/{}.json".format(self.log_path, + self.current_test_name) with open(results_file_path, 'w') as results_file: json.dump(ping_range_result, results_file, indent=4) # Plot results - if 'range' not in self.current_test_name: - figure = wputils.BokehFigure( - self.current_test_name, - x_label='Timestamp (s)', - primary_y_label='Round Trip Time (ms)') - for idx, result in enumerate(ping_range_result['ping_results']): - if len(result['rtt']) > 1: - x_data = [ - t - result['time_stamp'][0] - for t in result['time_stamp'] - ] - figure.add_line( - x_data, result['rtt'], 'RTT @ {}dB'.format( - ping_range_result['attenuation'][idx])) - - output_file_path = os.path.join( - self.log_path, '{}.html'.format(self.current_test_name)) - figure.generate_figure(output_file_path) + x_data = [ + list(range(len(x["rtt"]))) + for x in ping_range_result["ping_results"] if len(x["rtt"]) > 1 + ] + rtt_data = [ + x["rtt"] for x in ping_range_result["ping_results"] + if len(x["rtt"]) > 1 + ] + legend = [ + "RTT @ {}dB".format(att) + for att in ping_range_result["attenuation"] + ] + + data_sets = [x_data, rtt_data] + fig_property = { + "title": self.current_test_name, + "x_label": 'Sample Index', + "y_label": 'Round Trip Time (ms)', + "linewidth": 3, + "markersize": 0 + } + output_file_path = "{}/{}.html".format(self.log_path, + self.current_test_name) + wputils.bokeh_plot( + data_sets, + legend, + fig_property, + shaded_region=None, + output_file_path=output_file_path) def get_range_from_rvr(self): """Function gets range from RvR golden results @@ -280,29 +262,25 @@ class WifiPingTest(base_test.BaseTestClass): to zero. Returns: - rvr_range: range derived from looking at rvr curves + range: range derived from looking at rvr curves """ # Fetch the golden RvR results test_name = self.current_test_name - rvr_golden_file_name = 'test_rvr_TCP_DL_' + '_'.join( - test_name.split('_')[3:]) + rvr_golden_file_name = "test_rvr_TCP_DL_" + "_".join( + test_name.split("_")[3:]) golden_path = [ file_name for file_name in self.golden_files_list if rvr_golden_file_name in file_name ] - if len(golden_path) == 0: - rvr_range = float('nan') - return rvr_range - - # Get 0 Mbps attenuation and backoff by low_rssi_backoff_from_range with open(golden_path[0], 'r') as golden_file: golden_results = json.load(golden_file) + # Get 0 Mbps attenuation and backoff by low_rssi_backoff_from_range try: - atten_idx = golden_results['throughput_receive'].index(0) - rvr_range = (golden_results['attenuation'][atten_idx - 1] + - golden_results['fixed_attenuation']) + atten_idx = golden_results["throughput_receive"].index(0) + rvr_range = (golden_results["attenuation"][atten_idx - 1] + + golden_results["fixed_attenuation"]) except ValueError: - rvr_range = float('nan') + rvr_range = float("nan") return rvr_range def run_ping_test(self, testcase_params): @@ -317,72 +295,54 @@ class WifiPingTest(base_test.BaseTestClass): test_result: dict containing ping results and other meta data """ # Prepare results dict - llstats_obj = wputils.LinkLayerStats(self.dut) test_result = collections.OrderedDict() - test_result['testcase_params'] = testcase_params.copy() - test_result['test_name'] = self.current_test_name - test_result['ap_config'] = self.access_point.ap_settings.copy() - test_result['attenuation'] = testcase_params['atten_range'] - test_result['fixed_attenuation'] = self.testbed_params[ - 'fixed_attenuation'][str(testcase_params['channel'])] - test_result['rssi_results'] = [] - test_result['ping_results'] = [] - test_result['llstats'] = [] - # Setup sniffer - if self.testbed_params['sniffer_enable']: - self.sniffer.start_capture( - testcase_params['test_network'], - testcase_params['ping_duration'] * - len(testcase_params['atten_range']) + self.TEST_TIMEOUT) + test_result["test_name"] = self.current_test_name + test_result["ap_config"] = self.access_point.ap_settings.copy() + test_result["attenuation"] = testcase_params["atten_range"] + test_result["fixed_attenuation"] = self.testbed_params[ + "fixed_attenuation"][str(testcase_params["channel"])] + test_result["rssi_results"] = [] + test_result["ping_results"] = [] # Run ping and sweep attenuation as needed zero_counter = 0 - for atten in testcase_params['atten_range']: + for atten in testcase_params["atten_range"]: for attenuator in self.attenuators: attenuator.set_atten(atten, strict=False) rssi_future = wputils.get_connected_rssi_nb( - self.dut, - int(testcase_params['ping_duration'] / 2 / + self.client_dut, + int(testcase_params["ping_duration"] / 2 / self.RSSI_POLL_INTERVAL), self.RSSI_POLL_INTERVAL, - testcase_params['ping_duration'] / 2) - # Refresh link layer stats - llstats_obj.update_stats() + testcase_params["ping_duration"] / 2) current_ping_stats = wputils.get_ping_stats( self.ping_server, self.dut_ip, - testcase_params['ping_duration'], - testcase_params['ping_interval'], testcase_params['ping_size']) - current_rssi = rssi_future.result() - test_result['rssi_results'].append(current_rssi) - llstats_obj.update_stats() - curr_llstats = llstats_obj.llstats_incremental.copy() - test_result['llstats'].append(curr_llstats) - if current_ping_stats['connected']: - self.log.info( - 'Attenuation = {0}dB\tPacket Loss = {1}%\t' - 'Avg RTT = {2:.2f}ms\tRSSI = {3} [{4},{5}]\t'.format( - atten, current_ping_stats['packet_loss_percentage'], - statistics.mean(current_ping_stats['rtt']), - current_rssi['signal_poll_rssi']['mean'], - current_rssi['chain_0_rssi']['mean'], - current_rssi['chain_1_rssi']['mean'])) - if current_ping_stats['packet_loss_percentage'] == 100: + testcase_params["ping_duration"], + testcase_params["ping_interval"], testcase_params["ping_size"]) + current_rssi = rssi_future.result()["signal_poll_rssi"]["mean"] + test_result["rssi_results"].append(current_rssi) + if current_ping_stats["connected"]: + self.log.info("Attenuation = {0}dB\tPacket Loss = {1}%\t" + "Avg RTT = {2:.2f}ms\tRSSI = {3}\t".format( + atten, + current_ping_stats["packet_loss_percentage"], + statistics.mean(current_ping_stats["rtt"]), + current_rssi)) + if current_ping_stats["packet_loss_percentage"] == 100: zero_counter = zero_counter + 1 else: zero_counter = 0 else: self.log.info( - 'Attenuation = {}dB. Disconnected.'.format(atten)) + "Attenuation = {}dB. Disconnected.".format(atten)) zero_counter = zero_counter + 1 - test_result['ping_results'].append(current_ping_stats.as_dict()) + test_result["ping_results"].append(current_ping_stats.as_dict()) if zero_counter == self.MAX_CONSECUTIVE_ZEROS: - self.log.info('Ping loss stable at 100%. Stopping test now.') + self.log.info("Ping loss stable at 100%. Stopping test now.") for idx in range( - len(testcase_params['atten_range']) - - len(test_result['ping_results'])): - test_result['ping_results'].append( + len(testcase_params["atten_range"]) - + len(test_result["ping_results"])): + test_result["ping_results"].append( self.DISCONNECTED_PING_RESULT) break - if self.testbed_params['sniffer_enable']: - self.sniffer.stop_capture() return test_result def setup_ap(self, testcase_params): @@ -392,23 +352,20 @@ class WifiPingTest(base_test.BaseTestClass): testcase_params: dict containing AP and other test params """ band = self.access_point.band_lookup_by_channel( - testcase_params['channel']) - if '2G' in band: + testcase_params["channel"]) + if "2G" in band: frequency = wutils.WifiEnums.channel_2G_to_freq[ - testcase_params['channel']] + testcase_params["channel"]] else: frequency = wutils.WifiEnums.channel_5G_to_freq[ - testcase_params['channel']] + testcase_params["channel"]] if frequency in wutils.WifiEnums.DFS_5G_FREQUENCIES: - self.access_point.set_region(self.testbed_params['DFS_region']) + self.access_point.set_region(self.testbed_params["DFS_region"]) else: - self.access_point.set_region(self.testbed_params['default_region']) - self.access_point.set_channel(band, testcase_params['channel']) - self.access_point.set_bandwidth(band, testcase_params['mode']) - if 'low' in testcase_params['ap_power']: - self.log.info('Setting low AP power.') - self.access_point.set_power(band, 0) - self.log.info('Access Point Configuration: {}'.format( + self.access_point.set_region(self.testbed_params["default_region"]) + self.access_point.set_channel(band, testcase_params["channel"]) + self.access_point.set_bandwidth(band, testcase_params["mode"]) + self.log.info("Access Point Configuration: {}".format( self.access_point.ap_settings)) def setup_dut(self, testcase_params): @@ -417,30 +374,20 @@ class WifiPingTest(base_test.BaseTestClass): Args: testcase_params: dict containing AP and other test params """ - # Check battery level before test - if not wputils.health_check(self.dut, 10): - asserts.skip('Battery level too low. Skipping test.') - # Turn screen off to preserve battery - self.dut.go_to_sleep() - current_network = self.dut.droid.wifiGetConnectionInfo() - try: - connected = wutils.validate_connection(self.dut) is not None - except: - connected = False - if connected and current_network['SSID'] == testcase_params[ - 'test_network']['SSID']: - self.log.info('Already connected to desired network') - else: - wutils.reset_wifi(self.dut) - self.dut.droid.wifiSetCountryCode( - self.testclass_params['country_code']) - testcase_params['test_network']['channel'] = testcase_params[ - 'channel'] - wutils.wifi_connect(self.dut, - testcase_params['test_network'], - num_of_tries=5, - check_connectivity=False) - self.dut_ip = self.dut.droid.connectivityGetIPv4Addresses('wlan0')[0] + band = self.access_point.band_lookup_by_channel( + testcase_params["channel"]) + wutils.reset_wifi(self.client_dut) + self.client_dut.droid.wifiSetCountryCode( + self.testclass_params["country_code"]) + self.main_network[band]["channel"] = testcase_params["channel"] + wutils.wifi_connect( + self.client_dut, + self.main_network[band], + num_of_tries=5, + check_connectivity=False) + self.dut_ip = self.client_dut.droid.connectivityGetIPv4Addresses( + 'wlan0')[0] + time.sleep(self.MED_SLEEP) def setup_ping_test(self, testcase_params): """Function that gets devices ready for the test. @@ -456,325 +403,171 @@ class WifiPingTest(base_test.BaseTestClass): # Reset, configure, and connect DUT self.setup_dut(testcase_params) - def get_range_start_atten(self, testcase_params): - """Gets the starting attenuation for this ping test. - - This function is used to get the starting attenuation for ping range - tests. This implementation returns the default starting attenuation, - however, defining this function enables a more involved configuration - for over-the-air test classes. - - Args: - testcase_params: dict containing all test params - """ - return self.testclass_params['range_atten_start'] - - def compile_test_params(self, testcase_params): - band = self.access_point.band_lookup_by_channel( - testcase_params['channel']) - testcase_params['test_network'] = self.main_network[band] - if testcase_params['test_type'] == 'test_ping_range': - testcase_params.update( - ping_interval=self.testclass_params['range_ping_interval'], - ping_duration=self.testclass_params['range_ping_duration'], - ping_size=self.testclass_params['ping_size'], - ) - elif testcase_params['test_type'] == 'test_fast_ping_rtt': - testcase_params.update( - ping_interval=self.testclass_params['rtt_ping_interval'] - ['fast'], - ping_duration=self.testclass_params['rtt_ping_duration'], - ping_size=self.testclass_params['ping_size'], - ) - elif testcase_params['test_type'] == 'test_slow_ping_rtt': - testcase_params.update( - ping_interval=self.testclass_params['rtt_ping_interval'] - ['slow'], - ping_duration=self.testclass_params['rtt_ping_duration'], - ping_size=self.testclass_params['ping_size']) - - if testcase_params['test_type'] == 'test_ping_range': - start_atten = self.get_range_start_atten(testcase_params) - num_atten_steps = int( - (self.testclass_params['range_atten_stop'] - start_atten) / - self.testclass_params['range_atten_step']) - testcase_params['atten_range'] = [ - start_atten + x * self.testclass_params['range_atten_step'] + def parse_test_params(self, test_name): + test_name_params = test_name.split("_") + testcase_params = collections.OrderedDict() + if "range" in test_name: + testcase_params["channel"] = int(test_name_params[3][2:]) + testcase_params["mode"] = test_name_params[4] + num_atten_steps = int((self.testclass_params["range_atten_stop"] - + self.testclass_params["range_atten_start"]) + / self.testclass_params["range_atten_step"]) + testcase_params["atten_range"] = [ + self.testclass_params["range_atten_start"] + + x * self.testclass_params["range_atten_step"] for x in range(0, num_atten_steps) ] + testcase_params["ping_duration"] = self.testclass_params[ + "range_ping_duration"] + testcase_params["ping_interval"] = self.testclass_params[ + "range_ping_interval"] + testcase_params["ping_size"] = self.testclass_params["ping_size"] else: - testcase_params['atten_range'] = self.testclass_params[ - 'rtt_test_attenuation'] + testcase_params["channel"] = int(test_name_params[4][2:]) + testcase_params["mode"] = test_name_params[5] + testcase_params["atten_range"] = self.testclass_params[ + "rtt_test_attenuation"] + testcase_params["ping_duration"] = self.testclass_params[ + "rtt_ping_duration"] + testcase_params["ping_interval"] = self.testclass_params[ + "rtt_ping_interval"][test_name_params[1]] + testcase_params["ping_size"] = self.testclass_params["ping_size"] return testcase_params - def _test_ping(self, testcase_params): + def _test_ping_rtt(self): + """ Function that gets called for each RTT test case + + The function gets called in each RTT test case. The function customizes + the RTT test based on the test name of the test that called it + """ + # Compile test parameters from config and test name + testcase_params = self.parse_test_params(self.current_test_name) + testcase_params.update(self.testclass_params) + # Run ping test + self.setup_ping_test(testcase_params) + ping_result = self.run_ping_test(testcase_params) + # Postprocess results + self.process_ping_results(testcase_params, ping_result) + self.pass_fail_check_ping_rtt(ping_result) + + def _test_ping_range(self): """ Function that gets called for each range test case The function gets called in each range test case. It customizes the range test based on the test name of the test that called it - - Args: - testcase_params: dict containing preliminary set of parameters """ # Compile test parameters from config and test name - testcase_params = self.compile_test_params(testcase_params) + testcase_params = self.parse_test_params(self.current_test_name) + testcase_params.update(self.testclass_params) # Run ping test self.setup_ping_test(testcase_params) ping_result = self.run_ping_test(testcase_params) # Postprocess results self.testclass_results.append(ping_result) self.process_ping_results(testcase_params, ping_result) - self.pass_fail_check(ping_result) - - def generate_test_cases(self, ap_power, channels, modes, test_types): - test_cases = [] - allowed_configs = { - 'VHT20': [ - 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 36, 40, 44, 48, 149, 153, - 157, 161 - ], - 'VHT40': [36, 44, 149, 157], - 'VHT80': [36, 149] - } - for channel, mode, test_type in itertools.product( - channels, modes, test_types): - if channel not in allowed_configs[mode]: - continue - testcase_name = '{}_ch{}_{}'.format(test_type, channel, mode) - testcase_params = collections.OrderedDict( - test_type=test_type, - ap_power=ap_power, - channel=channel, - mode=mode, - ) - setattr(self, testcase_name, - partial(self._test_ping, testcase_params)) - test_cases.append(testcase_name) - return test_cases - - -class WifiPing_LowPowerAP_Test(WifiPingTest): - def __init__(self, controllers): - super().__init__(self, controllers) - self.tests = self.generate_test_cases( - ap_power='low_power', - channels=[1, 6, 11, 36, 40, 44, 48, 149, 153, 157, 161], - modes=['VHT20', 'VHT40', 'VHT80'], - test_types=['test_ping_range']) + self.pass_fail_check_ping_range(ping_result) + def test_ping_range_ch1_VHT20(self): + self._test_ping_range() -# Over-the air version of ping tests -class WifiOtaPingTest(WifiPingTest): - """Class to test over-the-air ping + def test_ping_range_ch6_VHT20(self): + self._test_ping_range() - This class tests WiFi ping performance in an OTA chamber. It enables - setting turntable orientation and other chamber parameters to study - performance in varying channel conditions - """ - def __init__(self, controllers): - base_test.BaseTestClass.__init__(self, controllers) - self.testcase_metric_logger = ( - BlackboxMappedMetricLogger.for_test_case()) - self.testclass_metric_logger = ( - BlackboxMappedMetricLogger.for_test_class()) - self.publish_testcase_metrics = False + def test_ping_range_ch11_VHT20(self): + self._test_ping_range() - def setup_class(self): - WifiPingTest.setup_class(self) - self.ota_chamber = ota_chamber.create( - self.user_params['OTAChamber'])[0] + def test_ping_range_ch36_VHT20(self): + self._test_ping_range() - def teardown_class(self): - self.process_testclass_results() - self.ota_chamber.reset_chamber() + def test_ping_range_ch36_VHT40(self): + self._test_ping_range() - def process_testclass_results(self): - """Saves all test results to enable comparison.""" - WifiPingTest.process_testclass_results(self) + def test_ping_range_ch36_VHT80(self): + self._test_ping_range() - range_vs_angle = collections.OrderedDict() - for test in self.testclass_results: - curr_params = test['testcase_params'] - curr_config = curr_params['channel'] - if curr_config in range_vs_angle: - range_vs_angle[curr_config]['position'].append( - curr_params['position']) - range_vs_angle[curr_config]['range'].append(test['range']) - range_vs_angle[curr_config]['llstats_at_range'].append( - test['llstats_at_range']) - else: - range_vs_angle[curr_config] = { - 'position': [curr_params['position']], - 'range': [test['range']], - 'llstats_at_range': [test['llstats_at_range']] - } - chamber_mode = self.testclass_results[0]['testcase_params'][ - 'chamber_mode'] - if chamber_mode == 'orientation': - x_label = 'Angle (deg)' - elif chamber_mode == 'stepped stirrers': - x_label = 'Position Index' - figure = wputils.BokehFigure( - title='Range vs. Position', - x_label=x_label, - primary_y_label='Range (dB)', - ) - for channel, channel_data in range_vs_angle.items(): - figure.add_line(x_data=channel_data['position'], - y_data=channel_data['range'], - hover_text=channel_data['llstats_at_range'], - legend='Channel {}'.format(channel)) - average_range = sum(channel_data['range']) / len( - channel_data['range']) - self.log.info('Average range for Channel {} is: {}dB'.format( - channel, average_range)) - metric_name = 'ota_summary_ch{}.avg_range'.format(channel) - self.testclass_metric_logger.add_metric(metric_name, average_range) - current_context = context.get_current_context().get_full_output_path() - plot_file_path = os.path.join(current_context, 'results.html') - figure.generate_figure(plot_file_path) + def test_ping_range_ch40_VHT20(self): + self._test_ping_range() - # Save results - results_file_path = os.path.join(current_context, - 'testclass_summary.json') - with open(results_file_path, 'w') as results_file: - json.dump(range_vs_angle, results_file, indent=4) + def test_ping_range_ch44_VHT20(self): + self._test_ping_range() - def setup_ping_test(self, testcase_params): - WifiPingTest.setup_ping_test(self, testcase_params) - # Setup turntable - if testcase_params['chamber_mode'] == 'orientation': - self.ota_chamber.set_orientation(testcase_params['position']) - elif testcase_params['chamber_mode'] == 'stepped stirrers': - self.ota_chamber.step_stirrers(testcase_params['total_positions']) + def test_ping_range_ch44_VHT40(self): + self._test_ping_range() - def extract_test_id(self, testcase_params, id_fields): - test_id = collections.OrderedDict( - (param, testcase_params[param]) for param in id_fields) - return test_id + def test_ping_range_ch48_VHT20(self): + self._test_ping_range() - def get_range_start_atten(self, testcase_params): - """Gets the starting attenuation for this ping test. + def test_ping_range_ch149_VHT20(self): + self._test_ping_range() - The function gets the starting attenuation by checking whether a test - at the same configuration has executed. If so it sets the starting - point a configurable number of dBs below the reference test. + def test_ping_range_ch149_VHT40(self): + self._test_ping_range() - Returns: - start_atten: starting attenuation for current test - """ - # Get the current and reference test config. The reference test is the - # one performed at the current MCS+1 - ref_test_params = self.extract_test_id(testcase_params, - ['channel', 'mode']) - # Check if reference test has been run and set attenuation accordingly - previous_params = [ - self.extract_test_id(result['testcase_params'], - ['channel', 'mode']) - for result in self.testclass_results - ] - try: - ref_index = previous_params[::-1].index(ref_test_params) - ref_index = len(previous_params) - 1 - ref_index - start_atten = self.testclass_results[ref_index][ - 'atten_at_range'] - ( - self.testclass_params['adjacent_range_test_gap']) - except ValueError: - print('Reference test not found. Starting from {} dB'.format( - self.testclass_params['range_atten_start'])) - start_atten = self.testclass_params['range_atten_start'] - return start_atten - - def generate_test_cases(self, ap_power, channels, modes, chamber_mode, - positions): - test_cases = [] - allowed_configs = { - 'VHT20': [ - 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 36, 40, 44, 48, 149, 153, - 157, 161 - ], - 'VHT40': [36, 44, 149, 157], - 'VHT80': [36, 149] - } - for channel, mode, position in itertools.product( - channels, modes, positions): - if channel not in allowed_configs[mode]: - continue - testcase_name = 'test_ping_range_ch{}_{}_pos{}'.format( - channel, mode, position) - testcase_params = collections.OrderedDict( - test_type='test_ping_range', - ap_power=ap_power, - channel=channel, - mode=mode, - chamber_mode=chamber_mode, - total_positions=len(positions), - position=position) - setattr(self, testcase_name, - partial(self._test_ping, testcase_params)) - test_cases.append(testcase_name) - return test_cases - - -class WifiOtaPing_TenDegree_Test(WifiOtaPingTest): - def __init__(self, controllers): - WifiOtaPingTest.__init__(self, controllers) - self.tests = self.generate_test_cases(ap_power='standard', - channels=[6, 36, 149], - modes=['VHT20'], - chamber_mode='orientation', - positions=list(range(0, 360, - 10))) + def test_ping_range_ch149_VHT80(self): + self._test_ping_range() + def test_ping_range_ch153_VHT20(self): + self._test_ping_range() -class WifiOtaPing_45Degree_Test(WifiOtaPingTest): - def __init__(self, controllers): - WifiOtaPingTest.__init__(self, controllers) - self.tests = self.generate_test_cases( - ap_power='standard', - channels=[1, 6, 11, 36, 40, 44, 48, 149, 153, 157, 161], - modes=['VHT20'], - chamber_mode='orientation', - positions=list(range(0, 360, 45))) + def test_ping_range_ch157_VHT20(self): + self._test_ping_range() + def test_ping_range_ch157_VHT40(self): + self._test_ping_range() -class WifiOtaPing_SteppedStirrers_Test(WifiOtaPingTest): - def __init__(self, controllers): - WifiOtaPingTest.__init__(self, controllers) - self.tests = self.generate_test_cases(ap_power='standard', - channels=[6, 36, 149], - modes=['VHT20'], - chamber_mode='stepped stirrers', - positions=list(range(100))) + def test_ping_range_ch161_VHT20(self): + self._test_ping_range() + def test_fast_ping_rtt_ch1_VHT20(self): + self._test_ping_rtt() -class WifiOtaPing_LowPowerAP_TenDegree_Test(WifiOtaPingTest): - def __init__(self, controllers): - WifiOtaPingTest.__init__(self, controllers) - self.tests = self.generate_test_cases(ap_power='low_power', - channels=[6, 36, 149], - modes=['VHT20'], - chamber_mode='orientation', - positions=list(range(0, 360, - 10))) + def test_slow_ping_rtt_ch1_VHT20(self): + self._test_ping_rtt() + def test_fast_ping_rtt_ch6_VHT20(self): + self._test_ping_rtt() -class WifiOtaPing_LowPowerAP_45Degree_Test(WifiOtaPingTest): - def __init__(self, controllers): - WifiOtaPingTest.__init__(self, controllers) - self.tests = self.generate_test_cases( - ap_power='low_power', - channels=[1, 6, 11, 36, 40, 44, 48, 149, 153, 157, 161], - modes=['VHT20'], - chamber_mode='orientation', - positions=list(range(0, 360, 45))) + def test_slow_ping_rtt_ch6_VHT20(self): + self._test_ping_rtt() + def test_fast_ping_rtt_ch11_VHT20(self): + self._test_ping_rtt() -class WifiOtaPing_LowPowerAP_SteppedStirrers_Test(WifiOtaPingTest): - def __init__(self, controllers): - WifiOtaPingTest.__init__(self, controllers) - self.tests = self.generate_test_cases(ap_power='low_power', - channels=[6, 36, 149], - modes=['VHT20'], - chamber_mode='stepped stirrers', - positions=list(range(100))) + def test_slow_ping_rtt_ch11_VHT20(self): + self._test_ping_rtt() + + def test_fast_ping_rtt_ch36_VHT20(self): + self._test_ping_rtt() + + def test_slow_ping_rtt_ch36_VHT20(self): + self._test_ping_rtt() + + def test_fast_ping_rtt_ch36_VHT40(self): + self._test_ping_rtt() + + def test_slow_ping_rtt_ch36_VHT40(self): + self._test_ping_rtt() + + def test_fast_ping_rtt_ch36_VHT80(self): + self._test_ping_rtt() + + def test_slow_ping_rtt_ch36_VHT80(self): + self._test_ping_rtt() + + def test_fast_ping_rtt_ch149_VHT20(self): + self._test_ping_rtt() + + def test_slow_ping_rtt_ch149_VHT20(self): + self._test_ping_rtt() + + def test_fast_ping_rtt_ch149_VHT40(self): + self._test_ping_rtt() + + def test_slow_ping_rtt_ch149_VHT40(self): + self._test_ping_rtt() + + def test_fast_ping_rtt_ch149_VHT80(self): + self._test_ping_rtt() + + def test_slow_ping_rtt_ch149_VHT80(self): + self._test_ping_rtt() diff --git a/acts/tests/google/wifi/WifiPnoTest.py b/acts/tests/google/wifi/WifiPnoTest.py index 4bfa1d7c49..87728e57f7 100644 --- a/acts/tests/google/wifi/WifiPnoTest.py +++ b/acts/tests/google/wifi/WifiPnoTest.py @@ -26,9 +26,10 @@ MAX_ATTN = 95 class WifiPnoTest(WifiBaseTest): - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + WifiBaseTest.__init__(self, controllers) + def setup_class(self): self.dut = self.android_devices[0] wutils.wifi_test_device_init(self.dut) req_params = ["attn_vals", "pno_interval"] diff --git a/acts/tests/google/wifi/WifiPowerTest.py b/acts/tests/google/wifi/WifiPowerTest.py new file mode 100755 index 0000000000..ffa8dc4c94 --- /dev/null +++ b/acts/tests/google/wifi/WifiPowerTest.py @@ -0,0 +1,347 @@ +#!/usr/bin/env python3.4 +# +# Copyright 2016 - The Android Open Source Project +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import threading +import time + +from acts import base_test +from acts import asserts +from acts import utils +from acts.controllers import adb +from acts.controllers import iperf_server as ip_server +from acts.controllers import monsoon +from acts.test_decorators import test_tracker_info +from acts.test_utils.wifi import wifi_test_utils as wutils +from acts.utils import force_airplane_mode +from acts.utils import set_adaptive_brightness +from acts.utils import set_ambient_display +from acts.utils import set_auto_rotate +from acts.utils import set_location_service + +pmc_base_cmd = ("am broadcast -a com.android.pmc.action.AUTOPOWER --es" + " PowerAction ") +start_pmc_cmd = ("am start -S -n com.android.pmc/com.android.pmc." + "PMCMainActivity") +pmc_interval_cmd = ("am broadcast -a com.android.pmc.action.SETPARAMS --es " + "Interval %s ") +pmc_set_params = "am broadcast -a com.android.pmc.action.SETPARAMS --es " + +pmc_start_connect_scan_cmd = "%sStartConnectivityScan" % pmc_base_cmd +pmc_stop_connect_scan_cmd = "%sStopConnectivityScan" % pmc_base_cmd +pmc_start_gscan_no_dfs_cmd = "%sStartGScanBand" % pmc_base_cmd +pmc_start_gscan_specific_channels_cmd = "%sStartGScanChannel" % pmc_base_cmd +pmc_stop_gscan_cmd = "%sStopGScan" % pmc_base_cmd +pmc_start_iperf_client = "%sStartIperfClient" % pmc_base_cmd +pmc_stop_iperf_client = "%sStopIperfClient" % pmc_base_cmd +pmc_turn_screen_on = "%sTurnScreenOn" % pmc_base_cmd +pmc_turn_screen_off = "%sTurnScreenOff" % pmc_base_cmd +# Path of the iperf json output file from an iperf run. +pmc_iperf_json_file = "/sdcard/iperf.txt" + + +class WifiPowerTest(base_test.BaseTestClass): + def setup_class(self): + self.offset = 5 * 60 + self.hz = 5000 + self.scan_interval = 15 + # Continuosly download + self.download_interval = 0 + self.mon_data_path = os.path.join(self.log_path, "Monsoon") + self.mon = self.monsoons[0] + self.mon.set_voltage(4.2) + self.mon.set_max_current(7.8) + self.dut = self.android_devices[0] + self.mon.attach_device(self.dut) + asserts.assert_true( + self.mon.usb("auto"), + "Failed to turn USB mode to auto on monsoon.") + asserts.assert_true( + force_airplane_mode(self.dut, True), + "Can not turn on airplane mode on: %s" % self.dut.serial) + set_location_service(self.dut, False) + set_adaptive_brightness(self.dut, False) + set_ambient_display(self.dut, False) + self.dut.adb.shell("settings put system screen_brightness 0") + set_auto_rotate(self.dut, False) + required_userparam_names = ( + # These two params should follow the format of + # {"SSID": <SSID>, "password": <Password>} + "network_2g", + "network_5g", + "iperf_server_address") + self.unpack_userparams(required_userparam_names, threshold=None) + wutils.wifi_test_device_init(self.dut) + try: + self.attn = self.attenuators[0] + self.attn.set_atten(0) + except AttributeError: + self.log.warning("No attenuator found, some tests will fail.") + pass + + def teardown_class(self): + self.mon.usb("on") + + def setup_test(self): + # Default measurement time is 30min with an offset of 5min. Each test + # can overwrite this by setting self.duration and self.offset. + self.offset = 5 * 60 + self.duration = 20 * 60 + self.offset + self.start_pmc() + wutils.reset_wifi(self.dut) + self.dut.ed.clear_all_events() + + def on_fail(self, test_name, begin_time): + self.dut.take_bug_report(test_name, begin_time) + + def on_pass(self, test_name, begin_time): + self.dut.take_bug_report(test_name, begin_time) + + def start_pmc(self): + """Starts a new instance of PMC app on the device and initializes it. + + This function performs the following: + 1. Starts a new instance of PMC (killing any existing instances). + 2. Turns on PMC verbose logging. + 3. Sets up the server IP address/port for download/iperf tests. + 4. Removes an existing iperf json output files. + """ + self.dut.adb.shell(start_pmc_cmd) + self.dut.adb.shell("setprop log.tag.PMC VERBOSE") + self.iperf_server = self.iperf_servers[0] + # Setup iperf related params on the client side. + self.dut.adb.shell("%sServerIP %s" % (pmc_set_params, + self.iperf_server_address)) + self.dut.adb.shell("%sServerPort %s" % (pmc_set_params, + self.iperf_server.port)) + try: + self.dut.adb.shell("rm %s" % pmc_iperf_json_file) + except adb.AdbError: + pass + + def get_iperf_result(self): + """Pulls the iperf json output from device. + + Returns: + An IPerfResult object based on the iperf run output. + """ + dest = os.path.join(self.iperf_server.log_path, "iperf.txt") + self.dut.adb.pull(pmc_iperf_json_file, " ", dest) + result = ip_server.IPerfResult(dest) + self.dut.adb.shell("rm %s" % pmc_iperf_json_file) + return result + + def measure_and_process_result(self): + """Measure the current drawn by the device for the period of + self.duration, at the frequency of self.hz. + + If self.threshold exists, also verify that the average current of the + measurement is below the acceptable threshold. + """ + tag = self.current_test_name + result = self.mon.measure_power(self.hz, + self.duration, + tag=tag, + offset=self.offset) + asserts.assert_true(result, + "Got empty measurement data set in %s." % tag) + self.log.info(repr(result)) + data_path = os.path.join(self.mon_data_path, "%s.txt" % tag) + monsoon.MonsoonData.save_to_text_file([result], data_path) + actual_current = result.average_current + actual_current_str = "%.2fmA" % actual_current + result_extra = {"Average Current": actual_current_str} + if "continuous_traffic" in tag: + self.dut.adb.shell(pmc_stop_iperf_client) + iperf_result = self.get_iperf_result() + asserts.assert_true(iperf_result.avg_rate, + "Failed to send iperf traffic", + extras=result_extra) + rate = "%.2fMB/s" % iperf_result.avg_rate + result_extra["Average Rate"] = rate + model = utils.trim_model_name(self.dut.model) + if self.threshold and (model in self.threshold) and ( + tag in self.threshold[model]): + acceptable_threshold = self.threshold[model][tag] + asserts.assert_true( + actual_current < acceptable_threshold, + ("Measured average current in [%s]: %s, which is " + "higher than acceptable threshold %.2fmA.") % ( + tag, actual_current_str, acceptable_threshold), + extras=result_extra) + asserts.explicit_pass("Measurement finished for %s." % tag, + extras=result_extra) + + @test_tracker_info(uuid="99ed6d06-ad07-4650-8434-0ac9d856fafa") + def test_power_wifi_off(self): + wutils.wifi_toggle_state(self.dut, False) + self.measure_and_process_result() + + @test_tracker_info(uuid="086db8fd-4040-45ac-8934-49b4d84413fc") + def test_power_wifi_on_idle(self): + wutils.wifi_toggle_state(self.dut, True) + self.measure_and_process_result() + + @test_tracker_info(uuid="031516d9-b0f5-4f21-bc8b-078258852325") + def test_power_disconnected_connectivity_scan(self): + try: + self.dut.adb.shell(pmc_interval_cmd % self.scan_interval) + self.dut.adb.shell(pmc_start_connect_scan_cmd) + self.log.info("Started connectivity scan.") + self.measure_and_process_result() + finally: + self.dut.adb.shell(pmc_stop_connect_scan_cmd) + self.log.info("Stoped connectivity scan.") + + @test_tracker_info(uuid="5e1f92d7-a79e-459c-aff0-d4acba3adee4") + def test_power_connected_2g_idle(self): + wutils.reset_wifi(self.dut) + self.dut.ed.clear_all_events() + wutils.wifi_connect(self.dut, self.network_2g) + self.measure_and_process_result() + + @test_tracker_info(uuid="e2b4ab89-420e-4560-a08b-d3bf4336f05d") + def test_power_connected_2g_continuous_traffic(self): + try: + wutils.reset_wifi(self.dut) + self.dut.ed.clear_all_events() + wutils.wifi_connect(self.dut, self.network_2g) + self.iperf_server.start() + self.dut.adb.shell(pmc_start_iperf_client) + self.log.info("Started iperf traffic.") + self.measure_and_process_result() + finally: + self.iperf_server.stop() + self.log.info("Stopped iperf traffic.") + + @test_tracker_info(uuid="a9517306-b967-494e-b471-84de58df8f1b") + def test_power_connected_5g_idle(self): + wutils.reset_wifi(self.dut) + self.dut.ed.clear_all_events() + wutils.wifi_connect(self.dut, self.network_5g) + self.measure_and_process_result() + + @test_tracker_info(uuid="816716b3-a90b-4835-84b8-d8d761ebfba9") + def test_power_connected_5g_continuous_traffic(self): + try: + wutils.reset_wifi(self.dut) + self.dut.ed.clear_all_events() + wutils.wifi_connect(self.dut, self.network_5g) + self.iperf_server.start() + self.dut.adb.shell(pmc_start_iperf_client) + self.log.info("Started iperf traffic.") + self.measure_and_process_result() + finally: + self.iperf_server.stop() + self.log.info("Stopped iperf traffic.") + + @test_tracker_info(uuid="e2d08e4e-7863-4554-af63-64d41ab0976a") + def test_power_gscan_three_2g_channels(self): + try: + self.dut.adb.shell(pmc_interval_cmd % self.scan_interval) + self.dut.adb.shell(pmc_start_gscan_specific_channels_cmd) + self.log.info("Started gscan for 2G channels 1, 6, and 11.") + self.measure_and_process_result() + finally: + self.dut.adb.shell(pmc_stop_gscan_cmd) + self.log.info("Stopped gscan.") + + @test_tracker_info(uuid="0095b7e7-94b9-4cd9-912f-51971949748b") + def test_power_gscan_all_channels_no_dfs(self): + try: + self.dut.adb.shell(pmc_interval_cmd % self.scan_interval) + self.dut.adb.shell(pmc_start_gscan_no_dfs_cmd) + self.log.info("Started gscan for all non-DFS channels.") + self.measure_and_process_result() + finally: + self.dut.adb.shell(pmc_stop_gscan_cmd) + self.log.info("Stopped gscan.") + + @test_tracker_info(uuid="263d1b68-8eb0-4e7f-99d4-3ca23ca359ce") + def test_power_connected_2g_gscan_all_channels_no_dfs(self): + try: + wutils.wifi_connect(self.dut, self.network_2g) + self.dut.adb.shell(pmc_interval_cmd % self.scan_interval) + self.dut.adb.shell(pmc_start_gscan_no_dfs_cmd) + self.log.info("Started gscan for all non-DFS channels.") + self.measure_and_process_result() + finally: + self.dut.adb.shell(pmc_stop_gscan_cmd) + self.log.info("Stopped gscan.") + + @test_tracker_info(uuid="aad1a39d-01f9-4fa5-a23a-b85d54210f3c") + def test_power_connected_5g_gscan_all_channels_no_dfs(self): + try: + wutils.wifi_connect(self.dut, self.network_5g) + self.dut.adb.shell(pmc_interval_cmd % self.scan_interval) + self.dut.adb.shell(pmc_start_gscan_no_dfs_cmd) + self.log.info("Started gscan for all non-DFS channels.") + self.measure_and_process_result() + finally: + self.dut.adb.shell(pmc_stop_gscan_cmd) + self.log.info("Stopped gscan.") + + @test_tracker_info(uuid="8f72cd5f-1c66-4ced-92d9-b7ebadf76424") + def test_power_auto_reconnect(self): + """ + Steps: + 1. Connect to network, wait for three minutes. + 2. Attenuate AP away, wait for one minute. + 3. Make AP reappear, wait for three minutes for the device to + reconnect to the Wi-Fi network. + """ + self.attn.set_atten(0) + wutils.wifi_connect(self.dut, self.network_2g) + + def attn_control(): + for i in range(7): + self.log.info("Iteration %s: Idle 3min after AP appeared.", i) + time.sleep(3 * 60) + self.attn.set_atten(90) + self.log.info("Iteration %s: Idle 1min after AP disappeared.", + i) + time.sleep(60) + self.attn.set_atten(0) + + t = threading.Thread(target=attn_control) + t.start() + try: + self.measure_and_process_result() + finally: + t.join() + + @test_tracker_info(uuid="a6db5964-3c68-47fa-b4c9-49f880549031") + def test_power_screen_on_wifi_off(self): + self.duration = 10 * 60 + self.offset = 4 * 60 + wutils.wifi_toggle_state(self.dut, False) + try: + self.dut.adb.shell(pmc_turn_screen_on) + self.measure_and_process_result() + finally: + self.dut.adb.shell(pmc_turn_screen_off) + + @test_tracker_info(uuid="230d667a-aa42-4123-9dae-2036429ed574") + def test_power_screen_on_wifi_connected_2g_idle(self): + self.duration = 10 * 60 + self.offset = 4 * 60 + wutils.wifi_toggle_state(self.dut, True) + wutils.wifi_connect(self.dut, self.network_2g) + try: + self.dut.adb.shell(pmc_turn_screen_on) + self.measure_and_process_result() + finally: + self.dut.adb.shell(pmc_turn_screen_off) diff --git a/acts/tests/google/wifi/WifiPreFlightTest.py b/acts/tests/google/wifi/WifiPreFlightTest.py index 14a4190c85..81fc38eb16 100644..100755 --- a/acts/tests/google/wifi/WifiPreFlightTest.py +++ b/acts/tests/google/wifi/WifiPreFlightTest.py @@ -42,13 +42,14 @@ class WifiPreFlightTest(WifiBaseTest): * Check if attenuators attenuate the correct network """ - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + WifiBaseTest.__init__(self, controllers) self.WIFI_2G = "2g" self.WIFI_5G = "5g" self.PASSWORD = "password" self.MIN_SIGNAL_LEVEL = -45 + def setup_class(self): self.dut = self.android_devices[0] wutils.wifi_test_device_init(self.dut) wutils.wifi_toggle_state(self.dut, True) diff --git a/acts/tests/google/wifi/WifiRoamingPerformanceTest.py b/acts/tests/google/wifi/WifiRoamingPerformanceTest.py index da57bf5c67..f5b90d5ccf 100644 --- a/acts/tests/google/wifi/WifiRoamingPerformanceTest.py +++ b/acts/tests/google/wifi/WifiRoamingPerformanceTest.py @@ -16,6 +16,7 @@ import collections import json +import logging import math import os import time @@ -50,7 +51,7 @@ class WifiRoamingPerformanceTest(base_test.BaseTestClass): This function initializes hardwares and compiles parameters that are common to all tests in this class. """ - self.dut = self.android_devices[-1] + self.client_dut = self.android_devices[-1] req_params = [ 'RetailAccessPoints', 'roaming_test_params', 'testbed_params' ] @@ -66,35 +67,12 @@ class WifiRoamingPerformanceTest(base_test.BaseTestClass): self.access_point = retail_ap.create(self.RetailAccessPoints)[0] self.log.info('Access Point Configuration: {}'.format( self.access_point.ap_settings)) - - if hasattr(self, 'bdf'): - self.log.info('Pushing WiFi BDF to DUT.') - wputils.push_bdf(self.dut, self.bdf) - if hasattr(self, 'firmware'): - self.log.info('Pushing WiFi firmware to DUT.') - wlanmdsp = [ - file for file in self.firmware if "wlanmdsp.mbn" in file - ][0] - data_msc = [file for file in self.firmware - if "Data.msc" in file][0] - wputils.push_firmware(self.dut, wlanmdsp, data_msc) - # Get RF connection map - self.log.info("Getting RF connection map.") - wutils.wifi_toggle_state(self.dut, True) - self.rf_map_by_network, self.rf_map_by_atten = ( - wputils.get_full_rf_connection_map(self.attenuators, self.dut, - self.remote_server, - self.main_network)) - self.log.info("RF Map (by Network): {}".format(self.rf_map_by_network)) - self.log.info("RF Map (by Atten): {}".format(self.rf_map_by_atten)) + self.log_path = os.path.join(logging.log_path, 'results') + utils.create_dir(self.log_path) #Turn WiFi ON - if self.testclass_params.get('airplane_mode', 1): - self.log.info('Turning on airplane mode.') - asserts.assert_true( - utils.force_airplane_mode(self.dut, True), - "Can not turn on airplane mode.") - wutils.wifi_toggle_state(self.dut, True) + for dev in self.android_devices: + wutils.wifi_toggle_state(dev, True) def pass_fail_traffic_continuity(self, result): """Pass fail check for traffic continuity @@ -118,16 +96,13 @@ class WifiRoamingPerformanceTest(base_test.BaseTestClass): self.log.info('Detected {} traffic gaps of duration: {}'.format( len(result['traffic_disruption']), formatted_traffic_gaps)) - if len(result['traffic_disruption']) == 0: - asserts.explicit_pass('Test passed. No traffic disruptions found.') - elif (max(result['traffic_disruption']) > - self.testclass_params['traffic_disruption_threshold']): - asserts.fail('Test failed. Max traffic disruption: {}s.'.format( + if (max(result['traffic_disruption']) > + self.testclass_params['traffic_disruption thresold']): + asserts.fail('Test failed. Max traffic discruption: {}s.'.format( + max(result['traffic_disruption']))) + asserts.explicit_pass( + 'Test passed. Max traffic discruption: {}s.'.format( max(result['traffic_disruption']))) - else: - asserts.explicit_pass( - 'Test passed. Max traffic disruption: {}s.'.format( - max(result['traffic_disruption']))) def pass_fail_roaming_consistency(self, results_dict): """Function to evaluate roaming consistency results. @@ -183,7 +158,7 @@ class WifiRoamingPerformanceTest(base_test.BaseTestClass): results_file_path = os.path.join(current_context, self.current_test_name + '.json') with open(results_file_path, 'w') as results_file: - json.dump(wputils.serialize_dict(result), results_file, indent=4) + json.dump(result, results_file, indent=4) def process_consistency_results(self, testcase_params, results_dict): """Function to process roaming consistency results. @@ -211,8 +186,8 @@ class WifiRoamingPerformanceTest(base_test.BaseTestClass): figure = wputils.BokehFigure( title=self.current_test_name, x_label='Time (ms)', - primary_y_label=primary_y_axis, - secondary_y_label='RSSI (dBm)') + primary_y=primary_y_axis, + secondary_y='RSSI (dBm)') roam_stats[secondary_atten] = collections.OrderedDict() for result in results_list: self.detect_roam_events(result) @@ -224,7 +199,7 @@ class WifiRoamingPerformanceTest(base_test.BaseTestClass): plot_result(testcase_params, result, figure=figure) # save plot plot_file_name = ( - self.current_test_name + '_' + str(secondary_atten) + '.html') + self.current_test_name + '_' + secondary_atten + '.html') plot_file_path = os.path.join(current_context, plot_file_name) figure.save_figure(plot_file_path) @@ -233,7 +208,7 @@ class WifiRoamingPerformanceTest(base_test.BaseTestClass): results_file_path = os.path.join(current_context, self.current_test_name + '.json') with open(results_file_path, 'w') as results_file: - json.dump(wputils.serialize_dict(result), results_file, indent=4) + json.dump(result, results_file, indent=4) def detect_roam_events(self, result): """Function to process roaming results. @@ -366,17 +341,17 @@ class WifiRoamingPerformanceTest(base_test.BaseTestClass): figure = wputils.BokehFigure( title=self.current_test_name, x_label='Time (ms)', - primary_y_label='RTT (ms)', - secondary_y_label='RSSI (dBm)') + primary_y='RTT (ms)', + secondary_y='RSSI (dBm)') figure.add_line( - x_data=result['ping_result']['time_stamp'], - y_data=result['ping_result']['rtt'], - legend='Ping RTT', + result['ping_result']['time_stamp'], + result['ping_result']['rtt'], + 'Ping RTT', width=1) figure.add_line( - x_data=result['rssi_result']['time_stamp'], - y_data=result['rssi_result']['signal_poll_rssi']['data'], - legend='RSSI', + result['rssi_result']['time_stamp'], + result['rssi_result']['signal_poll_rssi']['data'], + 'RSSI', y_axis='secondary') figure.generate_figure(output_file_path) @@ -400,8 +375,8 @@ class WifiRoamingPerformanceTest(base_test.BaseTestClass): figure = wputils.BokehFigure( title=self.current_test_name, x_label='Time (s)', - primary_y_label='Throughput (Mbps)', - secondary_y_label='RSSI (dBm)') + primary_y='Throughput (Mbps)', + secondary_y='RSSI (dBm)') iperf_time_stamps = [ idx * IPERF_INTERVAL for idx in range(len(result['throughput'])) ] @@ -424,11 +399,8 @@ class WifiRoamingPerformanceTest(base_test.BaseTestClass): (primary_net_id, primary_net_config) = next(net for net in self.main_network.items() if net[1]['roaming_label'] == 'primary') - for idx, atten in enumerate(self.attenuators): - nets_on_port = [ - item["network"] for item in self.rf_map_by_atten[idx] - ] - if primary_net_id in nets_on_port: + for atten in self.attenuators: + if primary_net_id in atten.path: atten.set_atten(0) else: atten.set_atten(atten.instrument.max_atten) @@ -439,25 +411,23 @@ class WifiRoamingPerformanceTest(base_test.BaseTestClass): Args: testcase_params: dict containing AP and other test params """ - # Check battery level before test - if not wputils.health_check(self.dut, 10): - asserts.skip('Battery level too low. Skipping test.') - wutils.reset_wifi(self.dut) - self.dut.droid.wifiSetCountryCode( + wutils.reset_wifi(self.client_dut) + self.client_dut.droid.wifiSetCountryCode( self.testclass_params['country_code']) (primary_net_id, primary_net_config) = next(net for net in self.main_network.items() if net[1]['roaming_label'] == 'primary') network = primary_net_config.copy() network.pop('BSSID', None) - self.dut.droid.wifiSetEnableAutoJoinWhenAssociated(1) + self.client_dut.droid.wifiSetEnableAutoJoinWhenAssociated(1) wutils.wifi_connect( - self.dut, network, num_of_tries=5, check_connectivity=False) - self.dut.droid.wifiSetEnableAutoJoinWhenAssociated(1) - self.dut_ip = self.dut.droid.connectivityGetIPv4Addresses('wlan0')[0] + self.client_dut, network, num_of_tries=5, check_connectivity=False) + self.client_dut.droid.wifiSetEnableAutoJoinWhenAssociated(1) + self.dut_ip = self.client_dut.droid.connectivityGetIPv4Addresses( + 'wlan0')[0] if testcase_params['screen_on']: - self.dut.wakeup_screen() - self.dut.droid.wakeLockAcquireBright() + self.client_dut.wakeup_screen() + self.client_dut.droid.wakeLockAcquireBright() time.sleep(MED_SLEEP) def setup_roaming_test(self, testcase_params): @@ -480,13 +450,13 @@ class WifiRoamingPerformanceTest(base_test.BaseTestClass): testcase_params['atten_waveforms']['length'], testcase_params['ping_interval'], 64) rssi_future = wputils.get_connected_rssi_nb( - self.dut, + self.client_dut, int(testcase_params['atten_waveforms']['length'] / testcase_params['rssi_polling_frequency']), testcase_params['rssi_polling_frequency']) self.run_attenuation_waveform(testcase_params) return { - 'ping_result': ping_future.result().as_dict(), + 'ping_result': ping_future.result(), 'rssi_result': rssi_future.result(), 'ap_settings': self.access_point.ap_settings, } @@ -502,12 +472,12 @@ class WifiRoamingPerformanceTest(base_test.BaseTestClass): """ self.log.info('Starting iperf test.') self.iperf_server.start(extra_args='-i {}'.format(IPERF_INTERVAL)) - self.dut_ip = self.dut.droid.connectivityGetIPv4Addresses('wlan0')[0] if isinstance(self.iperf_server, ipf.IPerfServerOverAdb): - iperf_server_address = self.dut_ip + iperf_server_address = ( + self.client_dut.droid.connectivityGetIPv4Addresses('wlan0')[0]) + self.iperf_client._ssh_session.setup_master_ssh() else: - iperf_server_address = wputils.get_server_address( - self.remote_server, self.dut_ip, '255.255.255.0') + iperf_server_address = self.testbed_params['iperf_server_address'] iperf_args = '-i {} -t {} -J'.format( IPERF_INTERVAL, testcase_params['atten_waveforms']['length']) if not isinstance(self.iperf_server, ipf.IPerfServerOverAdb): @@ -516,7 +486,7 @@ class WifiRoamingPerformanceTest(base_test.BaseTestClass): self.iperf_client, iperf_server_address, iperf_args, 0, testcase_params['atten_waveforms']['length'] + MED_SLEEP) rssi_future = wputils.get_connected_rssi_nb( - self.dut, + self.client_dut, int(testcase_params['atten_waveforms']['length'] / testcase_params['rssi_polling_frequency']), testcase_params['rssi_polling_frequency']) @@ -528,11 +498,8 @@ class WifiRoamingPerformanceTest(base_test.BaseTestClass): else: iperf_file = client_output_path iperf_result = ipf.IPerfResult(iperf_file) - instantaneous_rates = [ - rate * 8 * (1.024**2) for rate in iperf_result.instantaneous_rates - ] return { - 'throughput': instantaneous_rates, + 'throughput': iperf_result.instantaneous_rates, 'rssi_result': rssi_future.result(), 'ap_settings': self.access_point.ap_settings, } @@ -550,11 +517,8 @@ class WifiRoamingPerformanceTest(base_test.BaseTestClass): for atten_idx in range(atten_waveforms['length']): start_time = time.time() for network, atten_waveform in atten_waveforms.items(): - for idx, atten in enumerate(self.attenuators): - nets_on_port = [ - item["network"] for item in self.rf_map_by_atten[idx] - ] - if network in nets_on_port: + for atten in self.attenuators: + if network in atten.path: atten.set_atten(atten_waveform[atten_idx]) measure_time = time.time() - start_time time.sleep(step_duration - measure_time) @@ -609,7 +573,7 @@ class WifiRoamingPerformanceTest(base_test.BaseTestClass): waveform_vector *= waveform_params['repetitions'] return waveform_vector - def parse_test_params(self, testcase_params): + def parse_test_params(self, test_name): """Function that generates test params based on the test name. Args: @@ -618,24 +582,28 @@ class WifiRoamingPerformanceTest(base_test.BaseTestClass): testcase_params: dict including all test params encoded in test name """ - if testcase_params["waveform_type"] == 'smooth': + test_name_params = test_name.split('_') + testcase_params = collections.OrderedDict() + if test_name_params[1] == 'smooth': testcase_params[ 'roaming_waveforms_params'] = self.testclass_params[ 'smooth_roaming_waveforms'] - elif testcase_params["waveform_type"] == 'failover': + elif test_name_params[1] == 'failover': testcase_params[ 'roaming_waveforms_params'] = self.testclass_params[ 'failover_roaming_waveforms'] - elif testcase_params["waveform_type"] == 'consistency': + elif test_name_params[1] == 'consistency': testcase_params[ 'roaming_waveforms_params'] = self.testclass_params[ 'consistency_waveforms'] + testcase_params['screen_on'] = test_name_params[4] == 'on' + testcase_params['traffic_type'] = test_name_params[5] return testcase_params - def _test_traffic_continuity(self, testcase_params): + def _test_traffic_continuity(self): """Test function for traffic continuity""" # Compile test parameters from config and test name - testcase_params = self.parse_test_params(testcase_params) + testcase_params = self.parse_test_params(self.current_test_name) testcase_params.update(self.testclass_params) testcase_params['atten_waveforms'] = self.compile_atten_waveforms( testcase_params['roaming_waveforms_params']) @@ -649,9 +617,9 @@ class WifiRoamingPerformanceTest(base_test.BaseTestClass): self.process_traffic_continuity_results(testcase_params, result) self.pass_fail_traffic_continuity(result) - def _test_roam_consistency(self, testcase_params): + def _test_roam_consistency(self): """Test function for roaming consistency""" - testcase_params = self.parse_test_params(testcase_params) + testcase_params = self.parse_test_params(self.current_test_name) testcase_params.update(self.testclass_params) # Run traffic test secondary_attens = range( @@ -692,73 +660,28 @@ class WifiRoamingPerformanceTest(base_test.BaseTestClass): self.pass_fail_roaming_consistency(results) def test_consistency_roaming_screen_on_ping(self): - testcase_params = { - "waveform_type": "consistency", - "screen_on": 1, - "traffic_type": "ping" - } - self._test_roam_consistency(testcase_params) + self._test_roam_consistency() def test_smooth_roaming_screen_on_ping_continuity(self): - testcase_params = { - "waveform_type": "smooth", - "screen_on": 1, - "traffic_type": "ping" - } - self._test_traffic_continuity(testcase_params) + self._test_traffic_continuity() def test_smooth_roaming_screen_on_iperf_continuity(self): - testcase_params = { - "waveform_type": "smooth", - "screen_on": 1, - "traffic_type": "iperf" - } - self._test_traffic_continuity(testcase_params) + self._test_traffic_continuity() def test_failover_roaming_screen_on_ping_continuity(self): - testcase_params = { - "waveform_type": "failover", - "screen_on": 1, - "traffic_type": "ping" - } - self._test_traffic_continuity(testcase_params) + self._test_traffic_continuity() def test_failover_roaming_screen_on_iperf_continuity(self): - testcase_params = { - "waveform_type": "failover", - "screen_on": 1, - "traffic_type": "iperf" - } - self._test_traffic_continuity(testcase_params) + self._test_traffic_continuity() def test_smooth_roaming_screen_off_ping_continuity(self): - testcase_params = { - "waveform_type": "smooth", - "screen_on": 0, - "traffic_type": "ping" - } - self._test_traffic_continuity(testcase_params) + self._test_traffic_continuity() def test_smooth_roaming_screen_off_iperf_continuity(self): - testcase_params = { - "waveform_type": "smooth", - "screen_on": 0, - "traffic_type": "iperf" - } - self._test_traffic_continuity(testcase_params) + self._test_traffic_continuity() def test_failover_roaming_screen_off_ping_continuity(self): - testcase_params = { - "waveform_type": "failover", - "screen_on": 0, - "traffic_type": "ping" - } - self._test_traffic_continuity(testcase_params) + self._test_traffic_continuity() def test_failover_roaming_screen_off_iperf_continuity(self): - testcase_params = { - "waveform_type": "failover", - "screen_on": 0, - "traffic_type": "iperf" - } - self._test_traffic_continuity(testcase_params) + self._test_traffic_continuity() diff --git a/acts/tests/google/wifi/WifiRoamingTest.py b/acts/tests/google/wifi/WifiRoamingTest.py index 9c57d6cc0f..21c91c44f7 100644 --- a/acts/tests/google/wifi/WifiRoamingTest.py +++ b/acts/tests/google/wifi/WifiRoamingTest.py @@ -28,6 +28,9 @@ WifiEnums = wutils.WifiEnums class WifiRoamingTest(WifiBaseTest): + def __init__(self, controllers): + WifiBaseTest.__init__(self, controllers) + def setup_class(self): """Setup required dependencies from config file and configure the required networks for testing roaming. @@ -35,13 +38,11 @@ class WifiRoamingTest(WifiBaseTest): Returns: True if successfully configured the requirements for testing. """ - super().setup_class() - self.dut = self.android_devices[0] wutils.wifi_test_device_init(self.dut) - req_params = ["roaming_attn", "roam_interval", "ping_addr", - "max_bugreports"] - opt_param = ["open_network", "reference_networks",] + req_params = ("roaming_attn", "roam_interval", "ping_addr", "max_bugreports") + opt_param = [ + "open_network", "reference_networks", "iperf_server_address"] self.unpack_userparams( req_param_names=req_params, opt_param_names=opt_param) @@ -55,12 +56,16 @@ class WifiRoamingTest(WifiBaseTest): len(self.open_network) > 1, "Need at least two open networks for roaming") wutils.wifi_toggle_state(self.dut, True) + if "iperf_server_address" in self.user_params: + self.iperf_server = self.iperf_servers[0] + self.iperf_server.start() def teardown_class(self): self.dut.ed.clear_all_events() if "AccessPoint" in self.user_params: del self.user_params["reference_networks"] del self.user_params["open_network"] + self.iperf_server.stop() def setup_test(self): self.dut.droid.wakeLockAcquireBright() diff --git a/acts/tests/google/wifi/WifiRssiTest.py b/acts/tests/google/wifi/WifiRssiTest.py index 91bfa9f717..8fd5d1ab7b 100644 --- a/acts/tests/google/wifi/WifiRssiTest.py +++ b/acts/tests/google/wifi/WifiRssiTest.py @@ -2,44 +2,39 @@ # # Copyright 2018 - The Android Open Source Project # -# Licensed under the Apache License, Version 2.0 (the 'License'); +# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an 'AS IS' BASIS, +# distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections -import itertools import json import logging import math -import numpy import os import statistics from acts import asserts from acts import base_test -from acts import context from acts import utils -from acts.controllers.utils_lib import ssh from acts.controllers import iperf_server as ipf -from acts.metrics.loggers.blackbox import BlackboxMappedMetricLogger -from acts.test_utils.wifi import ota_chamber +from acts.metrics.loggers.blackbox import BlackboxMetricLogger +from acts.test_decorators import test_tracker_info from acts.test_utils.wifi import wifi_performance_test_utils as wputils from acts.test_utils.wifi import wifi_retail_ap as retail_ap from acts.test_utils.wifi import wifi_test_utils as wutils from concurrent.futures import ThreadPoolExecutor -from functools import partial SHORT_SLEEP = 1 MED_SLEEP = 6 CONST_3dB = 3.01029995664 -RSSI_ERROR_VAL = float('nan') +RSSI_ERROR_VAL = float("nan") class WifiRssiTest(base_test.BaseTestClass): @@ -55,56 +50,42 @@ class WifiRssiTest(base_test.BaseTestClass): def __init__(self, controllers): base_test.BaseTestClass.__init__(self, controllers) - self.testcase_metric_logger = ( - BlackboxMappedMetricLogger.for_test_case()) - self.testclass_metric_logger = ( - BlackboxMappedMetricLogger.for_test_class()) - self.publish_test_metrics = True + test_metrics = [ + "signal_poll_rssi_shift", "signal_poll_avg_rssi_shift", + "scan_rssi_shift", "chain_0_rssi_shift", "chain_1_rssi_shift", + "signal_poll_rssi_error", "signal_poll_avg_rssi_error", + "scan_rssi_error", "chain_0_rssi_error", "chain_1_rssi_error", + "signal_poll_rssi_stdev", "chain_0_rssi_stdev", + "chain_1_rssi_stdev" + ] + for metric in test_metrics: + setattr( + self, + "{}_metric".format(metric), + BlackboxMetricLogger.for_test_case(metric_name=metric)) def setup_class(self): self.dut = self.android_devices[0] req_params = [ - 'RemoteServer', 'RetailAccessPoints', 'rssi_test_params', - 'main_network', 'testbed_params' + "RemoteServer", "RetailAccessPoints", "rssi_test_params", + "main_network", "testbed_params" ] self.unpack_userparams(req_params) - self.testclass_params = self.rssi_test_params + self.test_params = self.rssi_test_params self.num_atten = self.attenuators[0].instrument.num_atten self.iperf_server = self.iperf_servers[0] self.iperf_client = self.iperf_clients[0] - self.remote_server = ssh.connection.SshConnection( - ssh.settings.from_config(self.RemoteServer[0]['ssh_config'])) self.access_point = retail_ap.create(self.RetailAccessPoints)[0] - self.log_path = os.path.join(logging.log_path, 'results') + self.log_path = os.path.join(logging.log_path, "results") utils.create_dir(self.log_path) - self.log.info('Access Point Configuration: {}'.format( + self.log.info("Access Point Configuration: {}".format( self.access_point.ap_settings)) - if hasattr(self, 'bdf'): - self.log.info('Pushing WiFi BDF to DUT.') - wputils.push_bdf(self.dut, self.bdf) - if hasattr(self, 'firmware'): - self.log.info('Pushing WiFi firmware to DUT.') - wlanmdsp = [ - file for file in self.firmware if "wlanmdsp.mbn" in file - ][0] - data_msc = [file for file in self.firmware - if "Data.msc" in file][0] - wputils.push_firmware(self.dut, wlanmdsp, data_msc) self.testclass_results = [] - # Turn WiFi ON - if self.testclass_params.get('airplane_mode', 1): - self.log.info('Turning on airplane mode.') - asserts.assert_true( - utils.force_airplane_mode(self.dut, True), - "Can not turn on airplane mode.") - wutils.wifi_toggle_state(self.dut, True) - def teardown_test(self): self.iperf_server.stop() - def pass_fail_check_rssi_stability(self, testcase_params, - postprocessed_results): + def pass_fail_check_rssi_stability(self, postprocessed_results): """Check the test result and decide if it passed or failed. Checks the RSSI test result and fails the test if the standard @@ -112,45 +93,39 @@ class WifiRssiTest(base_test.BaseTestClass): config file. Args: - testcase_params: dict containing test-specific parameters postprocessed_results: compiled arrays of RSSI measurements """ # Set Blackbox metric values - if self.publish_test_metrics: - self.testcase_metric_logger.add_metric( - 'signal_poll_rssi_stdev', - max(postprocessed_results['signal_poll_rssi']['stdev'])) - self.testcase_metric_logger.add_metric( - 'chain_0_rssi_stdev', - max(postprocessed_results['chain_0_rssi']['stdev'])) - self.testcase_metric_logger.add_metric( - 'chain_1_rssi_stdev', - max(postprocessed_results['chain_1_rssi']['stdev'])) - + self.signal_poll_rssi_stdev_metric.metric_value = max( + postprocessed_results["signal_poll_rssi"]["stdev"]) + self.chain_0_rssi_stdev_metric.metric_value = max( + postprocessed_results["chain_0_rssi"]["stdev"]) + self.chain_1_rssi_stdev_metric.metric_value = max( + postprocessed_results["chain_1_rssi"]["stdev"]) # Evaluate test pass/fail test_failed = any([ - stdev > self.testclass_params['stdev_tolerance'] - for stdev in postprocessed_results['signal_poll_rssi']['stdev'] + stdev > self.test_params["stdev_tolerance"] + for stdev in postprocessed_results["signal_poll_rssi"]["stdev"] ]) test_message = ( - 'RSSI stability {0}. Standard deviation was {1} dB ' - '(limit {2}), per chain standard deviation [{3}, {4}] dB'.format( - 'failed' * test_failed + 'passed' * (not test_failed), [ - float('{:.2f}'.format(x)) - for x in postprocessed_results['signal_poll_rssi']['stdev'] - ], self.testclass_params['stdev_tolerance'], [ - float('{:.2f}'.format(x)) - for x in postprocessed_results['chain_0_rssi']['stdev'] + "RSSI stability {0}. Standard deviation was {1} dB " + "(limit {2}), per chain standard deviation [{3}, {4}] dB".format( + "failed" * test_failed + "passed" * (not test_failed), [ + float("{:.2f}".format(x)) + for x in postprocessed_results["signal_poll_rssi"]["stdev"] + ], self.test_params["stdev_tolerance"], [ + float("{:.2f}".format(x)) + for x in postprocessed_results["chain_0_rssi"]["stdev"] ], [ - float('{:.2f}'.format(x)) - for x in postprocessed_results['chain_1_rssi']['stdev'] + float("{:.2f}".format(x)) + for x in postprocessed_results["chain_1_rssi"]["stdev"] ])) if test_failed: asserts.fail(test_message) asserts.explicit_pass(test_message) - def pass_fail_check_rssi_accuracy(self, testcase_params, - postprocessed_results): + def pass_fail_check_rssi_accuracy(self, postprocessed_results, + rssi_under_test, absolute_accuracy): """Check the test result and decide if it passed or failed. Checks the RSSI test result and compares and compute its deviation from @@ -161,27 +136,27 @@ class WifiRssiTest(base_test.BaseTestClass): Args: postprocessed_results: compiled arrays of RSSI measurements - testcase_params: dict containing params such as list of RSSIs under - test, i.e., can cause test to fail and boolean indicating whether - to look at absolute RSSI accuracy, or centered RSSI accuracy. - Centered accuracy is computed after systematic RSSI shifts are - removed. + rssi_under_test: list of RSSIs under test, i.e., can cause test to + fail + absolute_accuracy: boolean indicating whether to look at absolute + RSSI accuracy, or centered RSSI accuracy. Centered accuracy is + computed after systematic RSSI shifts are removed. """ test_failed = False - test_message = '' - if testcase_params['absolute_accuracy']: - error_type = 'absolute' + test_message = "" + if absolute_accuracy: + error_type = "absolute" else: - error_type = 'centered' + error_type = "centered" for key, val in postprocessed_results.items(): # Compute the error metrics ignoring invalid RSSI readings # If all readings invalid, set error to RSSI_ERROR_VAL - if 'rssi' in key and 'predicted' not in key: - filtered_error = [x for x in val['error'] if not math.isnan(x)] + if "rssi" in key and "predicted" not in key: + filtered_error = [x for x in val["error"] if not math.isnan(x)] if filtered_error: avg_shift = statistics.mean(filtered_error) - if testcase_params['absolute_accuracy']: + if absolute_accuracy: avg_error = statistics.mean( [abs(x) for x in filtered_error]) else: @@ -191,30 +166,30 @@ class WifiRssiTest(base_test.BaseTestClass): avg_error = RSSI_ERROR_VAL avg_shift = RSSI_ERROR_VAL # Set Blackbox metric values - if self.publish_test_metrics: - self.testcase_metric_logger.add_metric( - '{}_error'.format(key), avg_error) - self.testcase_metric_logger.add_metric( - '{}_shift'.format(key), avg_shift) + setattr( + getattr(self, "{}_error_metric".format(key)), + "metric_value", avg_error) + setattr( + getattr(self, "{}_shift_metric".format(key)), + "metric_value", avg_shift) # Evaluate test pass/fail - rssi_failure = (avg_error > - self.testclass_params['abs_tolerance'] + rssi_failure = (avg_error > self.test_params["abs_tolerance"] ) or math.isnan(avg_error) - if rssi_failure and key in testcase_params['rssi_under_test']: + if rssi_failure and key in rssi_under_test: test_message = test_message + ( - '{} failed ({} error = {:.2f} dB, ' - 'shift = {:.2f} dB)\n').format(key, error_type, + "{} failed ({} error = {:.2f} dB, " + "shift = {:.2f} dB)\n").format(key, error_type, avg_error, avg_shift) test_failed = True elif rssi_failure: test_message = test_message + ( - '{} failed (ignored) ({} error = {:.2f} dB, ' - 'shift = {:.2f} dB)\n').format(key, error_type, + "{} failed (ignored) ({} error = {:.2f} dB, " + "shift = {:.2f} dB)\n").format(key, error_type, avg_error, avg_shift) else: test_message = test_message + ( - '{} passed ({} error = {:.2f} dB, ' - 'shift = {:.2f} dB)\n').format(key, error_type, + "{} passed ({} error = {:.2f} dB, " + "shift = {:.2f} dB)\n").format(key, error_type, avg_error, avg_shift) if test_failed: asserts.fail(test_message) @@ -231,70 +206,71 @@ class WifiRssiTest(base_test.BaseTestClass): pass/fail check """ # Save output as text file - results_file_path = os.path.join(self.log_path, self.current_test_name) + results_file_path = "{}/{}.json".format(self.log_path, + self.current_test_name) with open(results_file_path, 'w') as results_file: json.dump(rssi_result, results_file, indent=4) # Compile results into arrays of RSSIs suitable for plotting # yapf: disable postprocessed_results = collections.OrderedDict( - [('signal_poll_rssi', {}), - ('signal_poll_avg_rssi', {}), - ('scan_rssi', {}), - ('chain_0_rssi', {}), - ('chain_1_rssi', {}), - ('total_attenuation', []), - ('predicted_rssi', [])]) + [("signal_poll_rssi", {}), + ("signal_poll_avg_rssi", {}), + ("scan_rssi", {}), + ("chain_0_rssi", {}), + ("chain_1_rssi", {}), + ("total_attenuation", []), + ("predicted_rssi", [])]) # yapf: enable for key, val in postprocessed_results.items(): - if 'scan_rssi' in key: - postprocessed_results[key]['data'] = [ - x for data_point in rssi_result['rssi_result'] for x in - data_point[key][rssi_result['connected_bssid']]['data'] + if "scan_rssi" in key: + postprocessed_results[key]["data"] = [ + x for data_point in rssi_result["rssi_result"] for x in + data_point[key][rssi_result["connected_bssid"]]["data"] ] - postprocessed_results[key]['mean'] = [ - x[key][rssi_result['connected_bssid']]['mean'] - for x in rssi_result['rssi_result'] + postprocessed_results[key]["mean"] = [ + x[key][rssi_result["connected_bssid"]]["mean"] + for x in rssi_result["rssi_result"] ] - postprocessed_results[key]['stdev'] = [ - x[key][rssi_result['connected_bssid']]['stdev'] - for x in rssi_result['rssi_result'] + postprocessed_results[key]["stdev"] = [ + x[key][rssi_result["connected_bssid"]]["stdev"] + for x in rssi_result["rssi_result"] ] - elif 'predicted_rssi' in key: - postprocessed_results['total_attenuation'] = [ - att + rssi_result['fixed_attenuation'] + - rssi_result['dut_front_end_loss'] - for att in rssi_result['attenuation'] + elif "predicted_rssi" in key: + postprocessed_results["total_attenuation"] = [ + att + rssi_result["fixed_attenuation"] + + rssi_result["dut_front_end_loss"] + for att in rssi_result["attenuation"] ] - postprocessed_results['predicted_rssi'] = [ - rssi_result['ap_tx_power'] - att - for att in postprocessed_results['total_attenuation'] + postprocessed_results["predicted_rssi"] = [ + rssi_result["ap_tx_power"] - att + for att in postprocessed_results["total_attenuation"] ] - elif 'rssi' in key: - postprocessed_results[key]['data'] = [ - x for data_point in rssi_result['rssi_result'] - for x in data_point[key]['data'] + elif "rssi" in key: + postprocessed_results[key]["data"] = [ + x for data_point in rssi_result["rssi_result"] + for x in data_point[key]["data"] ] - postprocessed_results[key]['mean'] = [ - x[key]['mean'] for x in rssi_result['rssi_result'] + postprocessed_results[key]["mean"] = [ + x[key]["mean"] for x in rssi_result["rssi_result"] ] - postprocessed_results[key]['stdev'] = [ - x[key]['stdev'] for x in rssi_result['rssi_result'] + postprocessed_results[key]["stdev"] = [ + x[key]["stdev"] for x in rssi_result["rssi_result"] ] # Compute RSSI errors for key, val in postprocessed_results.items(): - if 'chain' in key: - postprocessed_results[key]['error'] = [ - postprocessed_results[key]['mean'][idx] + CONST_3dB - - postprocessed_results['predicted_rssi'][idx] + if "chain" in key: + postprocessed_results[key]["error"] = [ + postprocessed_results[key]["mean"][idx] + CONST_3dB - + postprocessed_results["predicted_rssi"][idx] for idx in range( - len(postprocessed_results['predicted_rssi'])) + len(postprocessed_results["predicted_rssi"])) ] - elif 'rssi' in key and 'predicted' not in key: - postprocessed_results[key]['error'] = [ - postprocessed_results[key]['mean'][idx] - - postprocessed_results['predicted_rssi'][idx] + elif "rssi" in key and "predicted" not in key: + postprocessed_results[key]["error"] = [ + postprocessed_results[key]["mean"][idx] - + postprocessed_results["predicted_rssi"][idx] for idx in range( - len(postprocessed_results['predicted_rssi'])) + len(postprocessed_results["predicted_rssi"])) ] return postprocessed_results @@ -304,39 +280,40 @@ class WifiRssiTest(base_test.BaseTestClass): Args: postprocessed_results: compiled arrays of RSSI data. """ - figure = wputils.BokehFigure( - self.current_test_name, - x_label='Attenuation (dB)', - primary_y_label='RSSI (dBm)') - figure.add_line( - postprocessed_results['total_attenuation'], - postprocessed_results['signal_poll_rssi']['mean'], - 'Signal Poll RSSI', - marker='circle') - figure.add_line( - postprocessed_results['total_attenuation'], - postprocessed_results['scan_rssi']['mean'], - 'Scan RSSI', - marker='circle') - figure.add_line( - postprocessed_results['total_attenuation'], - postprocessed_results['chain_0_rssi']['mean'], - 'Chain 0 RSSI', - marker='circle') - figure.add_line( - postprocessed_results['total_attenuation'], - postprocessed_results['chain_1_rssi']['mean'], - 'Chain 1 RSSI', - marker='circle') - figure.add_line( - postprocessed_results['total_attenuation'], - postprocessed_results['predicted_rssi'], - 'Predicted RSSI', - marker='circle') - - output_file_path = os.path.join(self.log_path, - self.current_test_name + '.html') - figure.generate_figure(output_file_path) + data_sets = [[ + postprocessed_results["total_attenuation"], + postprocessed_results["total_attenuation"], + postprocessed_results["total_attenuation"], + postprocessed_results["total_attenuation"], + postprocessed_results["total_attenuation"], + postprocessed_results["total_attenuation"] + ], [ + postprocessed_results["signal_poll_rssi"]["mean"], + postprocessed_results["signal_poll_avg_rssi"]["mean"], + postprocessed_results["scan_rssi"]["mean"], + postprocessed_results["chain_0_rssi"]["mean"], + postprocessed_results["chain_1_rssi"]["mean"], + postprocessed_results["predicted_rssi"] + ]] + legends = [ + "Signal Poll RSSI", "Signal Poll AVG_RSSI", "Scan RSSI", + "Chain 0 RSSI", "Chain 1 RSSI", "Predicted RSSI" + ] + fig_property = { + "title": self.current_test_name, + "x_label": 'Attenuation (dB)', + "y_label": 'RSSI (dBm)', + "linewidth": 3, + "markersize": 10 + } + output_file_path = "{}/{}.html".format(self.log_path, + self.current_test_name) + wputils.bokeh_plot( + data_sets, + legends, + fig_property, + shaded_region=None, + output_file_path=output_file_path) def plot_rssi_vs_time(self, rssi_result, postprocessed_results, center_curves): @@ -348,32 +325,29 @@ class WifiRssiTest(base_test.BaseTestClass): center_curvers: boolean indicating whether to shift curves to align them with predicted RSSIs """ - figure = wputils.BokehFigure( - self.current_test_name, - x_label='Time (s)', - primary_y_label=center_curves * 'Centered' + 'RSSI (dBm)', - ) - + x_data = [] + y_data = [] + legends = [] # yapf: disable rssi_time_series = collections.OrderedDict( - [('signal_poll_rssi', []), - ('signal_poll_avg_rssi', []), - ('scan_rssi', []), - ('chain_0_rssi', []), - ('chain_1_rssi', []), - ('predicted_rssi', [])]) + [("signal_poll_rssi", []), + ("signal_poll_avg_rssi", []), + ("scan_rssi", []), + ("chain_0_rssi", []), + ("chain_1_rssi", []), + ("predicted_rssi", [])]) # yapf: enable for key, val in rssi_time_series.items(): - if 'predicted_rssi' in key: + if "predicted_rssi" in key: rssi_time_series[key] = [ x for x in postprocessed_results[key] for copies in range( - len(rssi_result['rssi_result'][0]['signal_poll_rssi'] - ['data'])) + len(rssi_result["rssi_result"][0]["signal_poll_rssi"][ + "data"])) ] - elif 'rssi' in key: + elif "rssi" in key: if center_curves: filtered_error = [ - x for x in postprocessed_results[key]['error'] + x for x in postprocessed_results[key]["error"] if not math.isnan(x) ] if filtered_error: @@ -382,69 +356,38 @@ class WifiRssiTest(base_test.BaseTestClass): avg_shift = 0 rssi_time_series[key] = [ x - avg_shift - for x in postprocessed_results[key]['data'] + for x in postprocessed_results[key]["data"] ] else: - rssi_time_series[key] = postprocessed_results[key]['data'] + rssi_time_series[key] = postprocessed_results[key]["data"] time_vec = [ - self.testclass_params['polling_frequency'] * x + self.test_params["polling_frequency"] * x for x in range(len(rssi_time_series[key])) ] if len(rssi_time_series[key]) > 0: - figure.add_line(time_vec, rssi_time_series[key], key) - - output_file_path = os.path.join(self.log_path, - self.current_test_name + '.html') - figure.generate_figure(output_file_path) - - def plot_rssi_distribution(self, postprocessed_results): - """Function to plot RSSI distributions. - - Args: - postprocessed_results: compiled arrays of RSSI data - """ - monitored_rssis = ['signal_poll_rssi', 'chain_0_rssi', 'chain_1_rssi'] - - rssi_dist = collections.OrderedDict() - for rssi_key in monitored_rssis: - rssi_data = postprocessed_results[rssi_key] - rssi_dist[rssi_key] = collections.OrderedDict() - unique_rssi = sorted(set(rssi_data['data'])) - rssi_counts = [] - for value in unique_rssi: - rssi_counts.append(rssi_data['data'].count(value)) - total_count = sum(rssi_counts) - rssi_dist[rssi_key]['rssi_values'] = unique_rssi - rssi_dist[rssi_key]['rssi_pdf'] = [ - x / total_count for x in rssi_counts - ] - rssi_dist[rssi_key]['rssi_cdf'] = [] - cum_prob = 0 - for prob in rssi_dist[rssi_key]['rssi_pdf']: - cum_prob += prob - rssi_dist[rssi_key]['rssi_cdf'].append(cum_prob) - - figure = wputils.BokehFigure( - self.current_test_name, - x_label='RSSI (dBm)', - primary_y_label='p(RSSI = x)', - secondary_y_label='p(RSSI <= x)') - for rssi_key, rssi_data in rssi_dist.items(): - figure.add_line( - x_data=rssi_data['rssi_values'], - y_data=rssi_data['rssi_pdf'], - legend='{} PDF'.format(rssi_key), - y_axis='default') - figure.add_line( - x_data=rssi_data['rssi_values'], - y_data=rssi_data['rssi_cdf'], - legend='{} CDF'.format(rssi_key), - y_axis='secondary') - output_file_path = os.path.join(self.log_path, - self.current_test_name + '_dist.html') - figure.generate_figure(output_file_path) - - def run_rssi_test(self, testcase_params): + x_data.append(time_vec) + y_data.append(rssi_time_series[key]) + legends.append(key) + data_sets = [x_data, y_data] + fig_property = { + "title": self.current_test_name, + "x_label": 'Time (s)', + "y_label": center_curves * 'Centered' + 'RSSI (dBm)', + "linewidth": 3, + "markersize": 0 + } + output_file_path = "{}/{}.html".format(self.log_path, + self.current_test_name) + wputils.bokeh_plot( + data_sets, + legends, + fig_property, + shaded_region=None, + output_file_path=output_file_path) + + def rssi_test(self, iperf_traffic, connected_measurements, + scan_measurements, bssids, polling_frequency, + first_measurement_delay): """Test function to run RSSI tests. The function runs an RSSI test in the current device/AP configuration. @@ -452,631 +395,564 @@ class WifiRssiTest(base_test.BaseTestClass): testbed for the RvR test Args: - testcase_params: dict containing test-specific parameters + iperf_traffic: boolean specifying whether or not to run traffic + during RSSI tests + connected_measurements: number of RSSI measurements to make for the + connected AP per attenuation point + scan_measurements: number of scans and scan RSSIs to make per + attenuation point + bssids: list of BSSIDs to monitor in scans + polling_frequency: time between connected AP measurements Returns: rssi_result: dict containing rssi_result and meta data """ - # Run test and log result - rssi_result = collections.OrderedDict() - rssi_result['test_name'] = self.current_test_name - rssi_result['testcase_params'] = testcase_params - rssi_result['ap_settings'] = self.access_point.ap_settings.copy() - rssi_result['attenuation'] = list(testcase_params['rssi_atten_range']) - rssi_result['connected_bssid'] = self.main_network[ - testcase_params['band']].get('BSSID', '00:00:00:00') - channel_mode_combo = '{}_{}'.format( - str(testcase_params['channel']), testcase_params['mode']) - channel_str = str(testcase_params['channel']) - if channel_mode_combo in self.testbed_params['ap_tx_power']: - rssi_result['ap_tx_power'] = self.testbed_params['ap_tx_power'][ - channel_mode_combo] - else: - rssi_result['ap_tx_power'] = self.testbed_params['ap_tx_power'][ - str(testcase_params['channel'])] - rssi_result['fixed_attenuation'] = self.testbed_params[ - 'fixed_attenuation'][channel_str] - rssi_result['dut_front_end_loss'] = self.testbed_params[ - 'dut_front_end_loss'][channel_str] - - self.log.info('Start running RSSI test.') - rssi_result['rssi_result'] = [] - rssi_result['llstats'] = [] - llstats_obj = wputils.LinkLayerStats(self.dut) + self.log.info("Start running RSSI test.") + rssi_result = [] # Start iperf traffic if required by test - if testcase_params['active_traffic'] and testcase_params[ - 'traffic_type'] == 'iperf': + if self.iperf_traffic: self.iperf_server.start(tag=0) if isinstance(self.iperf_server, ipf.IPerfServerOverAdb): iperf_server_address = self.dut_ip else: - iperf_server_address = wputils.get_server_address( - self.remote_server, self.dut_ip, '255.255.255.0') + iperf_server_address = self.testbed_params[ + "iperf_server_address"] executor = ThreadPoolExecutor(max_workers=1) thread_future = executor.submit( - self.iperf_client.start, iperf_server_address, - testcase_params['iperf_args'], 0, - testcase_params['traffic_timeout'] + SHORT_SLEEP) + self.iperf_client.start, iperf_server_address, self.iperf_args, + 0, self.iperf_timeout + SHORT_SLEEP) executor.shutdown(wait=False) - elif testcase_params['active_traffic'] and testcase_params[ - 'traffic_type'] == 'ping': - thread_future = wputils.get_ping_stats_nb( - self.remote_server, self.dut_ip, - testcase_params['traffic_timeout'], 0.02, 64) - for atten in testcase_params['rssi_atten_range']: + for atten in self.rssi_atten_range: # Set Attenuation - self.log.info('Setting attenuation to {} dB'.format(atten)) + self.log.info("Setting attenuation to {} dB".format(atten)) for attenuator in self.attenuators: attenuator.set_atten(atten) - llstats_obj.update_stats() current_rssi = collections.OrderedDict() current_rssi = wputils.get_connected_rssi( - self.dut, testcase_params['connected_measurements'], - self.testclass_params['polling_frequency'], - testcase_params['first_measurement_delay']) - current_rssi['scan_rssi'] = wputils.get_scan_rssi( - self.dut, testcase_params['tracked_bssid'], - testcase_params['scan_measurements']) - rssi_result['rssi_result'].append(current_rssi) - llstats_obj.update_stats() - curr_llstats = llstats_obj.llstats_incremental.copy() - rssi_result['llstats'].append(curr_llstats) - self.log.info( - 'Connected RSSI at {0:.2f} dB is {1:.2f} [{2:.2f}, {3:.2f}] dB' - .format(atten, current_rssi['signal_poll_rssi']['mean'], - current_rssi['chain_0_rssi']['mean'], - current_rssi['chain_1_rssi']['mean'])) + self.dut, connected_measurements, polling_frequency, + first_measurement_delay) + current_rssi["scan_rssi"] = wputils.get_scan_rssi( + self.dut, bssids, scan_measurements) + rssi_result.append(current_rssi) + self.log.info("Connected RSSI at {0:.2f} dB is {1:.2f} dB".format( + atten, current_rssi["signal_poll_rssi"]["mean"])) # Stop iperf traffic if needed for attenuator in self.attenuators: attenuator.set_atten(0) - if testcase_params['active_traffic']: + if self.iperf_traffic: thread_future.result() - if testcase_params['traffic_type'] == 'iperf': - self.iperf_server.stop() + self.iperf_server.stop() return rssi_result - def setup_ap(self, testcase_params): - """Function that gets devices ready for the test. - - Args: - testcase_params: dict containing test-specific parameters - """ - if '2G' in testcase_params['band']: - frequency = wutils.WifiEnums.channel_2G_to_freq[ - testcase_params['channel']] + def setup_ap(self): + """Function that gets devices ready for the test.""" + band = self.access_point.band_lookup_by_channel(self.channel) + if "2G" in band: + frequency = wutils.WifiEnums.channel_2G_to_freq[self.channel] else: - frequency = wutils.WifiEnums.channel_5G_to_freq[ - testcase_params['channel']] + frequency = wutils.WifiEnums.channel_5G_to_freq[self.channel] if frequency in wutils.WifiEnums.DFS_5G_FREQUENCIES: - self.access_point.set_region(self.testbed_params['DFS_region']) + self.access_point.set_region(self.testbed_params["DFS_region"]) else: - self.access_point.set_region(self.testbed_params['default_region']) - self.access_point.set_channel(testcase_params['band'], - testcase_params['channel']) - self.access_point.set_bandwidth(testcase_params['band'], - testcase_params['mode']) - self.log.info('Access Point Configuration: {}'.format( + self.access_point.set_region(self.testbed_params["default_region"]) + self.access_point.set_channel(band, self.channel) + self.access_point.set_bandwidth(band, self.mode) + self.log.info("Access Point Configuration: {}".format( self.access_point.ap_settings)) - def setup_dut(self, testcase_params): + def setup_dut(self): """Sets up the DUT in the configuration required by the test.""" - # Check battery level before test - if not wputils.health_check(self.dut, 10): - asserts.skip('Battery level too low. Skipping test.') - # Turn screen off to preserve battery - self.dut.go_to_sleep() - current_network = self.dut.droid.wifiGetConnectionInfo() - valid_connection = wutils.validate_connection(self.dut) - if valid_connection and current_network['SSID'] == self.main_network[ - testcase_params['band']]['SSID']: - self.log.info('Already connected to desired network') - else: - wutils.wifi_toggle_state(self.dut, True) - wutils.reset_wifi(self.dut) - self.main_network[testcase_params['band']][ - 'channel'] = testcase_params['channel'] - self.dut.droid.wifiSetCountryCode( - self.testclass_params['country_code']) - wutils.wifi_connect( - self.dut, - self.main_network[testcase_params['band']], - num_of_tries=5) + band = self.access_point.band_lookup_by_channel(self.channel) + wutils.wifi_toggle_state(self.dut, True) + wutils.reset_wifi(self.dut) + self.main_network[band]["channel"] = self.channel + self.dut.droid.wifiSetCountryCode(self.test_params["country_code"]) + wutils.wifi_connect(self.dut, self.main_network[band], num_of_tries=5) self.dut_ip = self.dut.droid.connectivityGetIPv4Addresses('wlan0')[0] - def setup_rssi_test(self, testcase_params): + def rssi_test_func(self, iperf_traffic, connected_measurements, + scan_measurements, bssids, polling_frequency, + first_measurement_delay): """Main function to test RSSI. The function sets up the AP in the correct channel and mode configuration and called rssi_test to sweep attenuation and measure RSSI - Args: - testcase_params: dict containing test-specific parameters Returns: rssi_result: dict containing rssi_results and meta data """ + #Initialize test settings + rssi_result = collections.OrderedDict() # Configure AP - self.setup_ap(testcase_params) + self.setup_ap() # Initialize attenuators for attenuator in self.attenuators: - attenuator.set_atten(testcase_params['rssi_atten_range'][0]) + attenuator.set_atten(self.rssi_atten_range[0]) # Connect DUT to Network - self.setup_dut(testcase_params) + self.setup_dut() + # Run test and log result + band = self.access_point.band_lookup_by_channel(self.channel) + rssi_result["test_name"] = self.current_test_name + rssi_result["ap_settings"] = self.access_point.ap_settings.copy() + rssi_result["attenuation"] = list(self.rssi_atten_range) + rssi_result["connected_bssid"] = self.main_network[band]["BSSID"] + if "{}_{}".format(str(self.channel), + self.mode) in self.testbed_params["ap_tx_power"]: + rssi_result["ap_tx_power"] = self.testbed_params["ap_tx_power"][ + "{}_{}".format(str(self.channel), self.mode)] + else: + rssi_result["ap_tx_power"] = self.testbed_params["ap_tx_power"][ + str(self.channel)] + rssi_result["fixed_attenuation"] = self.testbed_params[ + "fixed_attenuation"][str(self.channel)] + rssi_result["dut_front_end_loss"] = self.testbed_params[ + "dut_front_end_loss"][str(self.channel)] + rssi_result["rssi_result"] = self.rssi_test( + iperf_traffic, connected_measurements, scan_measurements, bssids, + polling_frequency, first_measurement_delay) + self.testclass_results.append(rssi_result) + return rssi_result - def get_traffic_timeout(self, testcase_params): + def get_iperf_timeout(self, atten_range, connected_measurements, + polling_frequency, first_measurement_delay, + scan_measurements): """Function to comput iperf session length required in RSSI test. Args: - testcase_params: dict containing test-specific parameters + atten_range: array of attenuations + connected_measurements: number of measurements per atten step + polling_frequency: interval between RSSI measurements + first_measurement_delay: delay before first measurements + scan_measurements: number of scan RSSI measurements per atten step Returns: - traffic_timeout: length of iperf session required in rssi test + iperf_timeout: length of iperf session required in rssi test """ - atten_step_duration = testcase_params['first_measurement_delay'] + ( - testcase_params['connected_measurements'] * - self.testclass_params['polling_frequency'] - ) + testcase_params['scan_measurements'] * MED_SLEEP - timeout = len(testcase_params['rssi_atten_range'] - ) * atten_step_duration + MED_SLEEP - return timeout + atten_step_duration = first_measurement_delay + ( + connected_measurements * + polling_frequency) + scan_measurements * MED_SLEEP + iperf_timeout = len(atten_range) * atten_step_duration + MED_SLEEP + self.log.info("iperf timeout is {}".format(iperf_timeout)) + return iperf_timeout - def compile_rssi_vs_atten_test_params(self, testcase_params): - """Function to complete compiling test-specific parameters + def _test_rssi_vs_atten(self): + """ Function that gets called for each test case of rssi_vs_atten - Args: - testcase_params: dict containing test-specific parameters + The function gets called in each rssi test case. The function + customizes the test based on the test name of the test that called it """ - testcase_params.update( - connected_measurements=self. - testclass_params['rssi_vs_atten_connected_measurements'], - scan_measurements=self. - testclass_params['rssi_vs_atten_scan_measurements'], - first_measurement_delay=MED_SLEEP, - rssi_under_test=self.testclass_params['rssi_vs_atten_metrics'], - absolute_accuracy=1) - - testcase_params['band'] = self.access_point.band_lookup_by_channel( - testcase_params['channel']) - testcase_params['tracked_bssid'] = [ - self.main_network[testcase_params['band']].get( - 'BSSID', '00:00:00:00') - ] - - num_atten_steps = int((self.testclass_params['rssi_vs_atten_stop'] - - self.testclass_params['rssi_vs_atten_start']) / - self.testclass_params['rssi_vs_atten_step']) - testcase_params['rssi_atten_range'] = [ - self.testclass_params['rssi_vs_atten_start'] + - x * self.testclass_params['rssi_vs_atten_step'] + test_params = self.current_test_name.split("_") + self.channel = int(test_params[4][2:]) + self.mode = test_params[5] + self.iperf_traffic = "ActiveTraffic" in test_params[6] + band = self.access_point.band_lookup_by_channel(self.channel) + num_atten_steps = int((self.test_params["rssi_vs_atten_stop"] - + self.test_params["rssi_vs_atten_start"]) / + self.test_params["rssi_vs_atten_step"]) + self.rssi_atten_range = [ + self.test_params["rssi_vs_atten_start"] + + x * self.test_params["rssi_vs_atten_step"] for x in range(0, num_atten_steps) ] - testcase_params['traffic_timeout'] = self.get_traffic_timeout( - testcase_params) - + self.iperf_timeout = self.get_iperf_timeout( + self.rssi_atten_range, + self.test_params["rssi_vs_atten_connected_measurements"], + self.test_params["polling_frequency"], MED_SLEEP, + self.test_params["rssi_vs_atten_scan_measurements"]) if isinstance(self.iperf_server, ipf.IPerfServerOverAdb): - testcase_params['iperf_args'] = '-i 1 -t {} -J'.format( - testcase_params['traffic_timeout']) + self.iperf_args = '-i 1 -t {} -J'.format(self.iperf_timeout) else: - testcase_params['iperf_args'] = '-i 1 -t {} -J -R'.format( - testcase_params['traffic_timeout']) - return testcase_params + self.iperf_args = '-i 1 -t {} -J -R'.format(self.iperf_timeout) + rssi_result = self.rssi_test_func( + self.iperf_traffic, + self.test_params["rssi_vs_atten_connected_measurements"], + self.test_params["rssi_vs_atten_scan_measurements"], + [self.main_network[band]["BSSID"]], + self.test_params["polling_frequency"], MED_SLEEP) + postprocessed_results = self.post_process_rssi_sweep(rssi_result) + self.plot_rssi_vs_attenuation(postprocessed_results) + self.pass_fail_check_rssi_accuracy( + postprocessed_results, self.test_params["rssi_vs_atten_metrics"], + 1) - def compile_rssi_stability_test_params(self, testcase_params): - """Function to complete compiling test-specific parameters + def _test_rssi_stability(self): + """ Function that gets called for each test case of rssi_stability - Args: - testcase_params: dict containing test-specific parameters + The function gets called in each stability test case. The function + customizes test based on the test name of the test that called it """ - testcase_params.update( - connected_measurements=int( - self.testclass_params['rssi_stability_duration'] / - self.testclass_params['polling_frequency']), - scan_measurements=0, - first_measurement_delay=MED_SLEEP, - rssi_atten_range=self.testclass_params['rssi_stability_atten']) - testcase_params['band'] = self.access_point.band_lookup_by_channel( - testcase_params['channel']) - testcase_params['tracked_bssid'] = [ - self.main_network[testcase_params['band']].get( - 'BSSID', '00:00:00:00') - ] - - testcase_params['traffic_timeout'] = self.get_traffic_timeout( - testcase_params) + test_params = self.current_test_name.split("_") + self.channel = int(test_params[3][2:]) + self.mode = test_params[4] + self.iperf_traffic = "ActiveTraffic" in test_params[5] + band = self.access_point.band_lookup_by_channel(self.channel) + self.rssi_atten_range = self.test_params["rssi_stability_atten"] + connected_measurements = int( + self.test_params["rssi_stability_duration"] / + self.test_params["polling_frequency"]) + self.iperf_timeout = self.get_iperf_timeout( + self.rssi_atten_range, connected_measurements, + self.test_params["polling_frequency"], MED_SLEEP, 0) if isinstance(self.iperf_server, ipf.IPerfServerOverAdb): - testcase_params['iperf_args'] = '-i 1 -t {} -J'.format( - testcase_params['traffic_timeout']) + self.iperf_args = '-i 1 -t {} -J'.format(self.iperf_timeout) else: - testcase_params['iperf_args'] = '-i 1 -t {} -J -R'.format( - testcase_params['traffic_timeout']) - return testcase_params - - def compile_rssi_tracking_test_params(self, testcase_params): - """Function to complete compiling test-specific parameters + self.iperf_args = '-i 1 -t {} -J -R'.format(self.iperf_timeout) + rssi_result = self.rssi_test_func( + self.iperf_traffic, connected_measurements, 0, + [self.main_network[band]["BSSID"]], + self.test_params["polling_frequency"], MED_SLEEP) + postprocessed_results = self.post_process_rssi_sweep(rssi_result) + self.plot_rssi_vs_time(rssi_result, postprocessed_results, 1) + self.pass_fail_check_rssi_stability(postprocessed_results) + + def _test_rssi_tracking(self): + """ Function that gets called for each test case of rssi_tracking - Args: - testcase_params: dict containing test-specific parameters + The function gets called in each rssi test case. The function + customizes the test based on the test name of the test that called it """ - testcase_params.update( - connected_measurements=int( - 1 / self.testclass_params['polling_frequency']), - scan_measurements=0, - first_measurement_delay=0, - rssi_under_test=['signal_poll_rssi'], - absolute_accuracy=0) - testcase_params['band'] = self.access_point.band_lookup_by_channel( - testcase_params['channel']) - testcase_params['tracked_bssid'] = [ - self.main_network[testcase_params['band']].get( - 'BSSID', '00:00:00:00') - ] - - rssi_atten_range = [] - for waveform in self.testclass_params['rssi_tracking_waveforms']: + test_params = self.current_test_name.split("_") + self.channel = int(test_params[3][2:]) + self.mode = test_params[4] + self.iperf_traffic = "ActiveTraffic" in test_params[5] + band = self.access_point.band_lookup_by_channel(self.channel) + self.rssi_atten_range = [] + for waveform in self.test_params["rssi_tracking_waveforms"]: waveform_vector = [] - for section in range(len(waveform['atten_levels']) - 1): - section_limits = waveform['atten_levels'][section:section + 2] + for section in range(len(waveform["atten_levels"]) - 1): + section_limits = waveform["atten_levels"][section:section + 2] up_down = (1 - 2 * (section_limits[1] < section_limits[0])) temp_section = list( range(section_limits[0], section_limits[1] + up_down, - up_down * waveform['step_size'])) + up_down * waveform["step_size"])) temp_section = [ temp_section[idx] for idx in range(len(temp_section)) - for n in range(waveform['step_duration']) + for n in range(waveform["step_duration"]) ] waveform_vector += temp_section - waveform_vector = waveform_vector * waveform['repetitions'] - rssi_atten_range = rssi_atten_range + waveform_vector - testcase_params['rssi_atten_range'] = rssi_atten_range - testcase_params['traffic_timeout'] = self.get_traffic_timeout( - testcase_params) - + waveform_vector = waveform_vector * waveform["repetitions"] + self.rssi_atten_range = self.rssi_atten_range + waveform_vector + connected_measurements = int(1 / self.test_params["polling_frequency"]) + self.iperf_timeout = self.get_iperf_timeout( + self.rssi_atten_range, connected_measurements, + self.test_params["polling_frequency"], 0, 0) if isinstance(self.iperf_server, ipf.IPerfServerOverAdb): - testcase_params['iperf_args'] = '-i 1 -t {} -J'.format( - testcase_params['traffic_timeout']) + self.iperf_args = '-i 1 -t {} -J'.format(self.iperf_timeout) else: - testcase_params['iperf_args'] = '-i 1 -t {} -J -R'.format( - testcase_params['traffic_timeout']) - return testcase_params + self.iperf_args = '-i 1 -t {} -J -R'.format(self.iperf_timeout) + rssi_result = self.rssi_test_func( + self.iperf_traffic, connected_measurements, 0, + [self.main_network[band]["BSSID"]], + self.test_params["polling_frequency"], 0) + postprocessed_results = self.post_process_rssi_sweep(rssi_result) + self.plot_rssi_vs_time(rssi_result, postprocessed_results, 1) + self.pass_fail_check_rssi_accuracy(postprocessed_results, + ["signal_poll_rssi"], 0) + + @test_tracker_info(uuid='519689b8-0a3c-4fd9-9227-fd7962d0f1a0') + def test_rssi_stability_ch1_VHT20_ActiveTraffic(self): + self._test_rssi_stability() + + @test_tracker_info(uuid='23eca2ab-d0b4-4730-9f32-ec2d901ae493') + def test_rssi_stability_ch2_VHT20_ActiveTraffic(self): + self._test_rssi_stability() + + @test_tracker_info(uuid='63d340c0-dcf9-4e14-87bd-a068a59836b2') + def test_rssi_stability_ch3_VHT20_ActiveTraffic(self): + self._test_rssi_stability() + + @test_tracker_info(uuid='ddbe88d8-be20-40eb-8f29-55049e3fef28') + def test_rssi_stability_ch4_VHT20_ActiveTraffic(self): + self._test_rssi_stability() + + @test_tracker_info(uuid='9c06304e-2b60-4619-8fb3-73fd2cb4b854') + def test_rssi_stability_ch5_VHT20_ActiveTraffic(self): + self._test_rssi_stability() + + @test_tracker_info(uuid='74b656ca-132e-4d66-9584-560287081607') + def test_rssi_stability_ch6_VHT20_ActiveTraffic(self): + self._test_rssi_stability() + + @test_tracker_info(uuid='23b5f19a-539b-4908-a197-06ce505d3d23') + def test_rssi_stability_ch7_VHT20_ActiveTraffic(self): + self._test_rssi_stability() + + @test_tracker_info(uuid='e7b85167-f4c4-4adb-a111-04d8a5f10e1a') + def test_rssi_stability_ch8_VHT20_ActiveTraffic(self): + self._test_rssi_stability() + + @test_tracker_info(uuid='2a0a9393-4b68-4c08-8787-3f35d1a8458b') + def test_rssi_stability_ch9_VHT20_ActiveTraffic(self): + self._test_rssi_stability() + + @test_tracker_info(uuid='069c7acf-3e7e-4298-91cb-d292c6025ae1') + def test_rssi_stability_ch10_VHT20_ActiveTraffic(self): + self._test_rssi_stability() + + @test_tracker_info(uuid='95c5a27c-1dea-47a4-a1c5-edf955545f12') + def test_rssi_stability_ch11_VHT20_ActiveTraffic(self): + self._test_rssi_stability() + + @test_tracker_info(uuid='8aeab023-a096-4fbe-80dd-fd01466f9fac') + def test_rssi_stability_ch36_VHT20_ActiveTraffic(self): + self._test_rssi_stability() + + @test_tracker_info(uuid='872fed9f-d0bb-4a7b-a2a7-bf8df7740b2d') + def test_rssi_stability_ch36_VHT40_ActiveTraffic(self): + self._test_rssi_stability() + + @test_tracker_info(uuid='27395fd1-e286-473a-b98e-5a50db2a598a') + def test_rssi_stability_ch36_VHT80_ActiveTraffic(self): + self._test_rssi_stability() + + @test_tracker_info(uuid='6f6b25e3-1a1e-4a61-930a-1d0aa25ba900') + def test_rssi_stability_ch40_VHT20_ActiveTraffic(self): + self._test_rssi_stability() + + @test_tracker_info(uuid='c6717da7-855c-4c6e-a6e2-ee42b8feaaab') + def test_rssi_stability_ch44_VHT20_ActiveTraffic(self): + self._test_rssi_stability() + + @test_tracker_info(uuid='2e34f735-079c-4619-9e74-b96dc8d0597f') + def test_rssi_stability_ch44_VHT40_ActiveTraffic(self): + self._test_rssi_stability() + + @test_tracker_info(uuid='d543c019-1ff5-41d4-9b37-ccdc593f3edd') + def test_rssi_stability_ch48_VHT20_ActiveTraffic(self): + self._test_rssi_stability() + + @test_tracker_info(uuid='2bb08914-36b2-4f58-9b3e-c3f3f4fac8ab') + def test_rssi_stability_ch149_VHT20_ActiveTraffic(self): + self._test_rssi_stability() + + @test_tracker_info(uuid='e2f585f5-7811-4570-b987-23da301eb75d') + def test_rssi_stability_ch149_VHT40_ActiveTraffic(self): + self._test_rssi_stability() + + @test_tracker_info(uuid='f3e74d5b-73f6-4723-abf3-c9c147db08e3') + def test_rssi_stability_ch149_VHT80_ActiveTraffic(self): + self._test_rssi_stability() + + @test_tracker_info(uuid='06503ed0-baf3-4cd1-ac5e-4124e3c7f52f') + def test_rssi_stability_ch153_VHT20_ActiveTraffic(self): + self._test_rssi_stability() + + @test_tracker_info(uuid='0cf8286f-a919-4e29-a9f2-e7738a4afe8f') + def test_rssi_stability_ch157_VHT20_ActiveTraffic(self): + self._test_rssi_stability() + + @test_tracker_info(uuid='f9a0165c-468b-4096-8f4b-cc80bae564a0') + def test_rssi_stability_ch157_VHT40_ActiveTraffic(self): + self._test_rssi_stability() - def _test_rssi_vs_atten(self, testcase_params): - """Function that gets called for each test case of rssi_vs_atten + @test_tracker_info(uuid='4b74dd46-4190-4556-8ad8-c55808e9e847') + def test_rssi_stability_ch161_VHT20_ActiveTraffic(self): + self._test_rssi_stability() - The function gets called in each rssi test case. The function - customizes the test based on the test name of the test that called it + @test_tracker_info(uuid='ae54b7cc-d76d-4460-8dcc-2c439265c7c9') + def test_rssi_vs_atten_ch1_VHT20_ActiveTraffic(self): + self._test_rssi_vs_atten() - Args: - testcase_params: dict containing test-specific parameters - """ - testcase_params = self.compile_rssi_vs_atten_test_params( - testcase_params) + @test_tracker_info(uuid='07fe7899-886d-45ba-9c1d-7daaf9844c9c') + def test_rssi_vs_atten_ch2_VHT20_ActiveTraffic(self): + self._test_rssi_vs_atten() - self.setup_rssi_test(testcase_params) - rssi_result = self.run_rssi_test(testcase_params) - rssi_result['postprocessed_results'] = self.post_process_rssi_sweep( - rssi_result) - self.testclass_results.append(rssi_result) - self.plot_rssi_vs_attenuation(rssi_result['postprocessed_results']) - self.pass_fail_check_rssi_accuracy( - testcase_params, rssi_result['postprocessed_results']) + @test_tracker_info(uuid='9e86578b-a6cd-4de9-a79d-eabac5bd5f4e') + def test_rssi_vs_atten_ch3_VHT20_ActiveTraffic(self): + self._test_rssi_vs_atten() - def _test_rssi_stability(self, testcase_params): - """ Function that gets called for each test case of rssi_stability + @test_tracker_info(uuid='e9d258ca-8e70-408e-b704-782fce7a07c5') + def test_rssi_vs_atten_ch4_VHT20_ActiveTraffic(self): + self._test_rssi_vs_atten() - The function gets called in each stability test case. The function - customizes test based on the test name of the test that called it - """ - testcase_params = self.compile_rssi_stability_test_params( - testcase_params) + @test_tracker_info(uuid='1c5d71a0-7532-49e4-98a9-1c2d9d8d58d2') + def test_rssi_vs_atten_ch5_VHT20_ActiveTraffic(self): + self._test_rssi_vs_atten() - self.setup_rssi_test(testcase_params) - rssi_result = self.run_rssi_test(testcase_params) - rssi_result['postprocessed_results'] = self.post_process_rssi_sweep( - rssi_result) - self.testclass_results.append(rssi_result) - self.plot_rssi_vs_time(rssi_result, - rssi_result['postprocessed_results'], 1) - self.plot_rssi_distribution(rssi_result['postprocessed_results']) - self.pass_fail_check_rssi_stability( - testcase_params, rssi_result['postprocessed_results']) + @test_tracker_info(uuid='107f01f3-b6b9-470b-9895-6345edfc9599') + def test_rssi_vs_atten_ch6_VHT20_ActiveTraffic(self): + self._test_rssi_vs_atten() - def _test_rssi_tracking(self, testcase_params): - """ Function that gets called for each test case of rssi_tracking + @test_tracker_info(uuid='88cb18b2-30bf-4c01-ac28-15451289e7cd') + def test_rssi_vs_atten_ch7_VHT20_ActiveTraffic(self): + self._test_rssi_vs_atten() - The function gets called in each rssi test case. The function - customizes the test based on the test name of the test that called it - """ - testcase_params = self.compile_rssi_tracking_test_params( - testcase_params) + @test_tracker_info(uuid='c07a7442-bd1d-40c7-80ed-167e30b8cfaf') + def test_rssi_vs_atten_ch8_VHT20_ActiveTraffic(self): + self._test_rssi_vs_atten() - self.setup_rssi_test(testcase_params) - rssi_result = self.run_rssi_test(testcase_params) - rssi_result['postprocessed_results'] = self.post_process_rssi_sweep( - rssi_result) - self.testclass_results.append(rssi_result) - self.plot_rssi_vs_time(rssi_result, - rssi_result['postprocessed_results'], 1) - self.pass_fail_check_rssi_accuracy( - testcase_params, rssi_result['postprocessed_results']) - - def generate_test_cases(self, test_types, channels, modes, traffic_modes): - """Function that auto-generates test cases for a test class.""" - test_cases = [] - allowed_configs = { - 'VHT20': [ - 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 36, 40, 44, 48, 149, 153, - 157, 161 - ], - 'VHT40': [36, 44, 149, 157], - 'VHT80': [36, 149] - } + @test_tracker_info(uuid='b8946280-88d5-400d-a417-2bdc9d7e054a') + def test_rssi_vs_atten_ch9_VHT20_ActiveTraffic(self): + self._test_rssi_vs_atten() - for channel, mode, traffic_mode, test_type in itertools.product( - channels, modes, traffic_modes, test_types): - if channel not in allowed_configs[mode]: - continue - test_name = test_type + '_ch{}_{}_{}'.format( - channel, mode, traffic_mode) - testcase_params = collections.OrderedDict( - channel=channel, - mode=mode, - active_traffic=(traffic_mode == 'ActiveTraffic'), - traffic_type=self.user_params['rssi_test_params'] - ['traffic_type'], - ) - test_function = getattr(self, '_{}'.format(test_type)) - setattr(self, test_name, partial(test_function, testcase_params)) - test_cases.append(test_name) - return test_cases + @test_tracker_info(uuid='a05db91b-740d-4984-a447-79ab438034f0') + def test_rssi_vs_atten_ch10_VHT20_ActiveTraffic(self): + self._test_rssi_vs_atten() + @test_tracker_info(uuid='f4d565f8-f060-462c-9b3c-cd1f7d27b3ea') + def test_rssi_vs_atten_ch11_VHT20_ActiveTraffic(self): + self._test_rssi_vs_atten() -class WifiRssi_2GHz_ActiveTraffic_Test(WifiRssiTest): - def __init__(self, controllers): - super().__init__(controllers) - self.tests = self.generate_test_cases( - ['test_rssi_stability', 'test_rssi_vs_atten'], [1, 2, 6, 10, 11], - ['VHT20'], ['ActiveTraffic']) + @test_tracker_info(uuid='a33a93ac-604a-414f-ae96-42dffbe59a93') + def test_rssi_vs_atten_ch36_VHT20_ActiveTraffic(self): + self._test_rssi_vs_atten() + @test_tracker_info(uuid='39875ab0-e0e9-464b-8a47-4dedd65f066e') + def test_rssi_vs_atten_ch36_VHT40_ActiveTraffic(self): + self._test_rssi_vs_atten() -class WifiRssi_5GHz_ActiveTraffic_Test(WifiRssiTest): - def __init__(self, controllers): - super().__init__(controllers) - self.tests = self.generate_test_cases( - ['test_rssi_stability', 'test_rssi_vs_atten'], - [36, 40, 44, 48, 149, 153, 157, 161], ['VHT20', 'VHT40', 'VHT80'], - ['ActiveTraffic']) + @test_tracker_info(uuid='c6ff8768-f124-4190-baf2-bbf14b612de3') + def test_rssi_vs_atten_ch36_VHT80_ActiveTraffic(self): + self._test_rssi_vs_atten() + @test_tracker_info(uuid='ed4705af-e202-4737-b410-8bab0515e79f') + def test_rssi_vs_atten_ch40_VHT20_ActiveTraffic(self): + self._test_rssi_vs_atten() -class WifiRssi_AllChannels_ActiveTraffic_Test(WifiRssiTest): - def __init__(self, controllers): - super().__init__(controllers) - self.tests = self.generate_test_cases( - ['test_rssi_stability', 'test_rssi_vs_atten'], - [1, 6, 11, 36, 40, 44, 48, 149, 153, 157, 161], - ['VHT20', 'VHT40', 'VHT80'], ['ActiveTraffic']) + @test_tracker_info(uuid='1388df99-ecbf-4412-9ded-d66552f37ec5') + def test_rssi_vs_atten_ch44_VHT20_ActiveTraffic(self): + self._test_rssi_vs_atten() + @test_tracker_info(uuid='06868677-ad3c-4f50-9b9e-ae8d9455ae4d') + def test_rssi_vs_atten_ch44_VHT40_ActiveTraffic(self): + self._test_rssi_vs_atten() -class WifiRssi_SampleChannels_NoTraffic_Test(WifiRssiTest): - def __init__(self, controllers): - super().__init__(controllers) - self.tests = self.generate_test_cases( - ['test_rssi_stability', 'test_rssi_vs_atten'], [6, 36, 149], - ['VHT20', 'VHT40', 'VHT80'], ['NoTraffic']) + @test_tracker_info(uuid='9b6676de-c736-4603-a9b3-97670bea8f25') + def test_rssi_vs_atten_ch48_VHT20_ActiveTraffic(self): + self._test_rssi_vs_atten() + @test_tracker_info(uuid='2641c4b8-0092-4e29-9139-fdb3b3f04d05') + def test_rssi_vs_atten_ch149_VHT20_ActiveTraffic(self): + self._test_rssi_vs_atten() -class WifiRssiTrackingTest(WifiRssiTest): - def __init__(self, controllers): - super().__init__(controllers) - self.tests = self.generate_test_cases( - ['test_rssi_tracking'], [6, 36, 149], ['VHT20', 'VHT40', 'VHT80'], - ['ActiveTraffic', 'NoTraffic']) + @test_tracker_info(uuid='c8bc3f7d-b459-4e40-9c73-b0bf534c6c08') + def test_rssi_vs_atten_ch149_VHT40_ActiveTraffic(self): + self._test_rssi_vs_atten() + @test_tracker_info(uuid='3e08f5b6-9f3c-4905-8b10-82e1ca830cc9') + def test_rssi_vs_atten_ch149_VHT80_ActiveTraffic(self): + self._test_rssi_vs_atten() -# Over-the air version of RSSI tests -class WifiOtaRssiTest(WifiRssiTest): - """Class to test over-the-air rssi tests. + @test_tracker_info(uuid='2343efe3-fdda-4180-add7-4786d35e29bb') + def test_rssi_vs_atten_ch153_VHT20_ActiveTraffic(self): + self._test_rssi_vs_atten() - This class implements measures WiFi RSSI tests in an OTA chamber. - It allows setting orientation and other chamber parameters to study - performance in varying channel conditions - """ + @test_tracker_info(uuid='89a16974-2399-4356-b720-17b765ff1c3a') + def test_rssi_vs_atten_ch157_VHT20_ActiveTraffic(self): + self._test_rssi_vs_atten() - def __init__(self, controllers): - base_test.BaseTestClass.__init__(self, controllers) - self.testcase_metric_logger = ( - BlackboxMappedMetricLogger.for_test_case()) - self.testclass_metric_logger = ( - BlackboxMappedMetricLogger.for_test_class()) - self.publish_test_metrics = False + @test_tracker_info(uuid='c8e0e44a-b962-4e71-ba8f-068f268c8823') + def test_rssi_vs_atten_ch157_VHT40_ActiveTraffic(self): + self._test_rssi_vs_atten() - def setup_class(self): - WifiRssiTest.setup_class(self) - self.ota_chamber = ota_chamber.create( - self.user_params['OTAChamber'])[0] + @test_tracker_info(uuid='581b5794-239e-4d1c-b0ce-7c6dc5bd373f') + def test_rssi_vs_atten_ch161_VHT20_ActiveTraffic(self): + self._test_rssi_vs_atten() - def teardown_class(self): - self.ota_chamber.reset_chamber() - self.process_testclass_results() + def test_rssi_tracking_ch6_VHT20_ActiveTraffic(self): + self._test_rssi_tracking() - def teardown_test(self): - if self.ota_chamber.current_mode == 'continuous': - self.ota_chamber.reset_chamber() - - def extract_test_id(self, testcase_params, id_fields): - test_id = collections.OrderedDict( - (param, testcase_params[param]) for param in id_fields) - return test_id - - def process_testclass_results(self): - """Saves all test results to enable comparison.""" - testclass_data = collections.OrderedDict() - for test_result in self.testclass_results: - current_params = test_result['testcase_params'] - - channel = current_params['channel'] - channel_data = testclass_data.setdefault( - channel, - collections.OrderedDict( - orientation=[], - rssi=collections.OrderedDict( - signal_poll_rssi=[], chain_0_rssi=[], - chain_1_rssi=[]))) - - channel_data['orientation'].append(current_params['orientation']) - channel_data['rssi']['signal_poll_rssi'].append( - test_result['postprocessed_results']['signal_poll_rssi'] - ['mean'][0]) - channel_data['rssi']['chain_0_rssi'].append( - test_result['postprocessed_results']['chain_0_rssi']['mean'] - [0]) - channel_data['rssi']['chain_1_rssi'].append( - test_result['postprocessed_results']['chain_1_rssi']['mean'] - [0]) - - chamber_mode = self.testclass_results[0]['testcase_params'][ - 'chamber_mode'] - if chamber_mode == 'orientation': - x_label = 'Angle (deg)' - elif chamber_mode == 'stepped stirrers': - x_label = 'Position Index' - - # Publish test class metrics - for channel, channel_data in testclass_data.items(): - for rssi_metric, rssi_metric_value in channel_data['rssi'].items(): - metric_name = 'ota_summary_ch{}.avg_{}'.format( - channel, rssi_metric) - metric_value = numpy.mean(rssi_metric_value) - self.testclass_metric_logger.add_metric( - metric_name, metric_value) - - # Plot test class results - plots = [] - for channel, channel_data in testclass_data.items(): - current_plot = wputils.BokehFigure( - title='Channel {} - Rssi vs. Position'.format(channel), - x_label=x_label, - primary_y_label='RSSI (dBm)', - ) - for rssi_metric, rssi_metric_value in channel_data['rssi'].items(): - legend = rssi_metric - current_plot.add_line(channel_data['orientation'], - rssi_metric_value, legend) - current_plot.generate_figure() - plots.append(current_plot) - current_context = context.get_current_context().get_full_output_path() - plot_file_path = os.path.join(current_context, 'results.html') - wputils.BokehFigure.save_figures(plots, plot_file_path) - - def setup_rssi_test(self, testcase_params): - # Test setup - WifiRssiTest.setup_rssi_test(self, testcase_params) - if testcase_params['chamber_mode'] == 'StirrersOn': - self.ota_chamber.start_continuous_stirrers() - else: - self.ota_chamber.set_orientation(testcase_params['orientation']) + def test_rssi_tracking_ch6_VHT20_NoTraffic(self): + self._test_rssi_tracking() - def compile_ota_rssi_test_params(self, testcase_params): - """Function to complete compiling test-specific parameters + def test_rssi_tracking_ch36_VHT20_ActiveTraffic(self): + self._test_rssi_tracking() - Args: - testcase_params: dict containing test-specific parameters - """ - if "rssi_over_orientation" in self.test_name: - rssi_test_duration = self.testclass_params[ - 'rssi_over_orientation_duration'] - elif "rssi_variation" in self.test_name: - rssi_test_duration = self.testclass_params[ - 'rssi_variation_duration'] - - testcase_params.update( - connected_measurements=int( - rssi_test_duration / - self.testclass_params['polling_frequency']), - scan_measurements=0, - first_measurement_delay=MED_SLEEP, - rssi_atten_range=[ - self.testclass_params['rssi_ota_test_attenuation'] - ]) - testcase_params['band'] = self.access_point.band_lookup_by_channel( - testcase_params['channel']) - testcase_params['tracked_bssid'] = [ - self.main_network[testcase_params['band']].get( - 'BSSID', '00:00:00:00') - ] + def test_rssi_tracking_ch36_VHT20_NoTraffic(self): + self._test_rssi_tracking() - testcase_params['traffic_timeout'] = self.get_traffic_timeout( - testcase_params) - if isinstance(self.iperf_server, ipf.IPerfServerOverAdb): - testcase_params['iperf_args'] = '-i 1 -t {} -J'.format( - testcase_params['traffic_timeout']) - else: - testcase_params['iperf_args'] = '-i 1 -t {} -J -R'.format( - testcase_params['traffic_timeout']) - return testcase_params + def test_rssi_tracking_ch36_VHT40_ActiveTraffic(self): + self._test_rssi_tracking() - def _test_ota_rssi(self, testcase_params): - testcase_params = self.compile_ota_rssi_test_params(testcase_params) + def test_rssi_tracking_ch36_VHT40_NoTraffic(self): + self._test_rssi_tracking() - self.setup_rssi_test(testcase_params) - rssi_result = self.run_rssi_test(testcase_params) - rssi_result['postprocessed_results'] = self.post_process_rssi_sweep( - rssi_result) - self.testclass_results.append(rssi_result) - self.plot_rssi_vs_time(rssi_result, - rssi_result['postprocessed_results'], 1) - self.plot_rssi_distribution(rssi_result['postprocessed_results']) - - def generate_test_cases(self, test_types, channels, modes, traffic_modes, - chamber_modes, orientations): - test_cases = [] - allowed_configs = { - 'VHT20': [ - 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 36, 40, 44, 48, 149, 153, - 157, 161 - ], - 'VHT40': [36, 44, 149, 157], - 'VHT80': [36, 149] - } + def test_rssi_tracking_ch36_VHT80_ActiveTraffic(self): + self._test_rssi_tracking() - for (channel, mode, traffic, chamber_mode, - orientation, test_type) in itertools.product( - channels, modes, traffic_modes, chamber_modes, orientations, - test_types): - if channel not in allowed_configs[mode]: - continue - test_name = test_type + '_ch{}_{}_{}_{}deg'.format( - channel, mode, traffic, orientation) - testcase_params = collections.OrderedDict( - channel=channel, - mode=mode, - active_traffic=(traffic == 'ActiveTraffic'), - traffic_type=self.user_params['rssi_test_params'] - ['traffic_type'], - chamber_mode=chamber_mode, - orientation=orientation) - test_function = self._test_ota_rssi - setattr(self, test_name, partial(test_function, testcase_params)) - test_cases.append(test_name) - return test_cases - - -class WifiOtaRssi_Accuracy_Test(WifiOtaRssiTest): + def test_rssi_tracking_ch36_VHT80_NoTraffic(self): + self._test_rssi_tracking() + + def test_rssi_tracking_ch149_VHT20_ActiveTraffic(self): + self._test_rssi_tracking() + + def test_rssi_tracking_ch149_VHT20_NoTraffic(self): + self._test_rssi_tracking() + + def test_rssi_tracking_ch149_VHT40_ActiveTraffic(self): + self._test_rssi_tracking() + + def test_rssi_tracking_ch149_VHT40_NoTraffic(self): + self._test_rssi_tracking() + + def test_rssi_tracking_ch149_VHT80_ActiveTraffic(self): + self._test_rssi_tracking() + + def test_rssi_tracking_ch149_VHT80_NoTraffic(self): + self._test_rssi_tracking() + + +class WifiRssi_2GHz_ActiveTraffic_Test(WifiRssiTest): def __init__(self, controllers): super().__init__(controllers) - self.tests = self.generate_test_cases( - ['test_rssi_vs_atten'], [6, 36, 149], ['VHT20'], ['ActiveTraffic'], - ['orientation'], list(range(0, 360, 45))) + self.tests = ("test_rssi_stability_ch1_VHT20_ActiveTraffic", + "test_rssi_vs_atten_ch1_VHT20_ActiveTraffic", + "test_rssi_stability_ch2_VHT20_ActiveTraffic", + "test_rssi_vs_atten_ch2_VHT20_ActiveTraffic", + "test_rssi_stability_ch6_VHT20_ActiveTraffic", + "test_rssi_vs_atten_ch6_VHT20_ActiveTraffic", + "test_rssi_stability_ch10_VHT20_ActiveTraffic", + "test_rssi_vs_atten_ch10_VHT20_ActiveTraffic", + "test_rssi_stability_ch11_VHT20_ActiveTraffic", + "test_rssi_vs_atten_ch11_VHT20_ActiveTraffic") -class WifiOtaRssi_StirrerVariation_Test(WifiOtaRssiTest): +class WifiRssi_5GHz_ActiveTraffic_Test(WifiRssiTest): def __init__(self, controllers): - WifiRssiTest.__init__(self, controllers) - self.tests = self.generate_test_cases( - ['test_rssi_variation'], [6, 36, 149], ['VHT20'], - ['ActiveTraffic'], ['StirrersOn'], [0]) + super().__init__(controllers) + self.tests = ("test_rssi_stability_ch36_VHT20_ActiveTraffic", + "test_rssi_vs_atten_ch36_VHT20_ActiveTraffic", + "test_rssi_stability_ch36_VHT40_ActiveTraffic", + "test_rssi_vs_atten_ch36_VHT40_ActiveTraffic", + "test_rssi_stability_ch36_VHT80_ActiveTraffic", + "test_rssi_vs_atten_ch36_VHT80_ActiveTraffic", + "test_rssi_stability_ch40_VHT20_ActiveTraffic", + "test_rssi_vs_atten_ch40_VHT20_ActiveTraffic", + "test_rssi_stability_ch44_VHT20_ActiveTraffic", + "test_rssi_vs_atten_ch44_VHT20_ActiveTraffic", + "test_rssi_stability_ch44_VHT40_ActiveTraffic", + "test_rssi_vs_atten_ch44_VHT40_ActiveTraffic", + "test_rssi_stability_ch48_VHT20_ActiveTraffic", + "test_rssi_vs_atten_ch48_VHT20_ActiveTraffic", + "test_rssi_stability_ch149_VHT20_ActiveTraffic", + "test_rssi_vs_atten_ch149_VHT20_ActiveTraffic", + "test_rssi_stability_ch149_VHT40_ActiveTraffic", + "test_rssi_vs_atten_ch149_VHT40_ActiveTraffic", + "test_rssi_stability_ch149_VHT80_ActiveTraffic", + "test_rssi_vs_atten_ch149_VHT80_ActiveTraffic", + "test_rssi_stability_ch153_VHT20_ActiveTraffic", + "test_rssi_vs_atten_ch153_VHT20_ActiveTraffic", + "test_rssi_stability_ch157_VHT20_ActiveTraffic", + "test_rssi_vs_atten_ch157_VHT20_ActiveTraffic", + "test_rssi_stability_ch157_VHT40_ActiveTraffic", + "test_rssi_vs_atten_ch157_VHT40_ActiveTraffic", + "test_rssi_stability_ch161_VHT20_ActiveTraffic", + "test_rssi_vs_atten_ch161_VHT20_ActiveTraffic") -class WifiOtaRssi_TenDegree_Test(WifiOtaRssiTest): +class WifiRssiTrackingTest(WifiRssiTest): def __init__(self, controllers): - WifiRssiTest.__init__(self, controllers) - self.tests = self.generate_test_cases( - ['test_rssi_over_orientation'], [6, 36, 149], ['VHT20'], - ['ActiveTraffic'], ['orientation'], list(range(0, 360, 10))) + super().__init__(controllers) + self.tests = ("test_rssi_tracking_ch6_VHT20_ActiveTraffic", + "test_rssi_tracking_ch6_VHT20_NoTraffic", + "test_rssi_tracking_ch36_VHT20_ActiveTraffic", + "test_rssi_tracking_ch36_VHT20_NoTraffic", + "test_rssi_tracking_ch36_VHT40_ActiveTraffic", + "test_rssi_tracking_ch36_VHT40_NoTraffic", + "test_rssi_tracking_ch36_VHT80_ActiveTraffic", + "test_rssi_tracking_ch36_VHT80_NoTraffic", + "test_rssi_tracking_ch149_VHT20_ActiveTraffic", + "test_rssi_tracking_ch149_VHT20_NoTraffic", + "test_rssi_tracking_ch149_VHT40_ActiveTraffic", + "test_rssi_tracking_ch149_VHT40_NoTraffic", + "test_rssi_tracking_ch149_VHT80_ActiveTraffic", + "test_rssi_tracking_ch149_VHT80_NoTraffic") diff --git a/acts/tests/google/wifi/WifiRvrTest.py b/acts/tests/google/wifi/WifiRvrTest.py index 289c5e4b27..9a6692a0b5 100644 --- a/acts/tests/google/wifi/WifiRvrTest.py +++ b/acts/tests/google/wifi/WifiRvrTest.py @@ -2,36 +2,33 @@ # # Copyright 2017 - The Android Open Source Project # -# Licensed under the Apache License, Version 2.0 (the 'License'); +# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an 'AS IS' BASIS, +# distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections -import itertools import json import logging -import numpy +import math import os +import time from acts import asserts from acts import base_test from acts import utils from acts.controllers import iperf_server as ipf -from acts.controllers.utils_lib import ssh -from acts.metrics.loggers.blackbox import BlackboxMappedMetricLogger -from acts.test_utils.wifi import ota_chamber -from acts.test_utils.wifi import ota_sniffer +from acts.metrics.loggers.blackbox import BlackboxMetricLogger +from acts.test_decorators import test_tracker_info from acts.test_utils.wifi import wifi_performance_test_utils as wputils from acts.test_utils.wifi import wifi_retail_ap as retail_ap from acts.test_utils.wifi import wifi_test_utils as wutils -from functools import partial class WifiRvrTest(base_test.BaseTestClass): @@ -44,16 +41,15 @@ class WifiRvrTest(base_test.BaseTestClass): example_connectivity_performance_ap_sta.json. """ - TEST_TIMEOUT = 6 + TEST_TIMEOUT = 5 + SHORT_SLEEP = 1 + RSSI_POLL_INTERVAL = 1 MAX_CONSECUTIVE_ZEROS = 3 def __init__(self, controllers): base_test.BaseTestClass.__init__(self, controllers) - self.testcase_metric_logger = ( - BlackboxMappedMetricLogger.for_test_case()) - self.testclass_metric_logger = ( - BlackboxMappedMetricLogger.for_test_class()) - self.publish_testcase_metrics = True + self.failure_count_metric = BlackboxMetricLogger.for_test_case( + metric_name='failure_count') def setup_class(self): """Initializes common test hardware and parameters. @@ -61,51 +57,33 @@ class WifiRvrTest(base_test.BaseTestClass): This function initializes hardwares and compiles parameters that are common to all tests in this class. """ - self.dut = self.android_devices[-1] + self.client_dut = self.android_devices[-1] req_params = [ - 'RetailAccessPoints', 'rvr_test_params', 'testbed_params', - 'RemoteServer' + "RetailAccessPoints", "rvr_test_params", "testbed_params" ] - opt_params = ['main_network', 'golden_files_list', 'OTASniffer'] + opt_params = ["main_network", "golden_files_list"] self.unpack_userparams(req_params, opt_params) self.testclass_params = self.rvr_test_params self.num_atten = self.attenuators[0].instrument.num_atten self.iperf_server = self.iperf_servers[0] - self.remote_server = ssh.connection.SshConnection( - ssh.settings.from_config(self.RemoteServer[0]['ssh_config'])) self.iperf_client = self.iperf_clients[0] - self.access_point = retail_ap.create(self.RetailAccessPoints)[0] - if hasattr(self, 'OTASniffer'): - self.sniffer = ota_sniffer.create(self.OTASniffer)[0] - self.log.info('Access Point Configuration: {}'.format( + self.access_points = retail_ap.create(self.RetailAccessPoints) + self.access_point = self.access_points[0] + self.log.info("Access Point Configuration: {}".format( self.access_point.ap_settings)) - self.log_path = os.path.join(logging.log_path, 'results') + self.log_path = os.path.join(logging.log_path, "results") utils.create_dir(self.log_path) - if not hasattr(self, 'golden_files_list'): + if not hasattr(self, "golden_files_list"): self.golden_files_list = [ - os.path.join(self.testbed_params['golden_results_path'], file) - for file in os.listdir( - self.testbed_params['golden_results_path']) + os.path.join(self.testbed_params["golden_results_path"], + file) for file in os.listdir( + self.testbed_params["golden_results_path"]) ] - if hasattr(self, 'bdf'): - self.log.info('Pushing WiFi BDF to DUT.') - wputils.push_bdf(self.dut, self.bdf) - if hasattr(self, 'firmware'): - self.log.info('Pushing WiFi firmware to DUT.') - wlanmdsp = [ - file for file in self.firmware if "wlanmdsp.mbn" in file - ][0] - data_msc = [file for file in self.firmware - if "Data.msc" in file][0] - wputils.push_firmware(self.dut, wlanmdsp, data_msc) self.testclass_results = [] # Turn WiFi ON - if self.testclass_params.get('airplane_mode', 1): - self.log.info('Turning on airplane mode.') - asserts.assert_true(utils.force_airplane_mode(self.dut, True), - "Can not turn on airplane mode.") - wutils.wifi_toggle_state(self.dut, True) + for dev in self.android_devices: + wutils.wifi_toggle_state(dev, True) def teardown_test(self): self.iperf_server.stop() @@ -119,28 +97,37 @@ class WifiRvrTest(base_test.BaseTestClass): def process_testclass_results(self): """Saves plot with all test results to enable comparison.""" # Plot and save all results - plots = collections.OrderedDict() + plot_data = collections.OrderedDict() + plots = [] for result in self.testclass_results: - plot_id = (result['testcase_params']['channel'], - result['testcase_params']['mode']) - if plot_id not in plots: - plots[plot_id] = wputils.BokehFigure( - title='Channel {} {} ({})'.format( - result['testcase_params']['channel'], - result['testcase_params']['mode'], - result['testcase_params']['traffic_type']), - x_label='Attenuation (dB)', - primary_y_label='Throughput (Mbps)') - plots[plot_id].add_line(result['total_attenuation'], - result['throughput_receive'], - result['test_name'], - marker='circle') - figure_list = [] - for plot_id, plot in plots.items(): - plot.generate_figure() - figure_list.append(plot) + testcase_params = self.parse_test_params(result["test_name"]) + plot_id = (testcase_params["channel"], testcase_params["mode"]) + if plot_id not in plot_data: + plot_data[plot_id] = {"x_data": [], "y_data": [], "legend": []} + total_attenuation = [ + att + result["fixed_attenuation"] + for att in result["attenuation"] + ] + plot_data[plot_id]["x_data"].append(total_attenuation) + plot_data[plot_id]["y_data"].append(result["throughput_receive"]) + plot_data[plot_id]["legend"].append(result["test_name"]) + for plot_id, plot_data in plot_data.items(): + data_set = [plot_data["x_data"], plot_data["y_data"]] + fig_property = { + "title": "Channel {} - {}".format(plot_id[0], plot_id[1]), + "x_label": 'Attenuation (dB)', + "y_label": 'Throughput (Mbps)', + "linewidth": 3, + "markersize": 10 + } + plots.append( + wputils.bokeh_plot( + data_set, + plot_data["legend"], + fig_property, + shaded_region=None)) output_file_path = os.path.join(self.log_path, 'results.html') - wputils.BokehFigure.save_figures(figure_list, output_file_path) + wputils.save_bokeh_plots(plots, output_file_path) def pass_fail_check(self, rvr_result): """Check the test result and decide if it passed or failed. @@ -156,28 +143,28 @@ class WifiRvrTest(base_test.BaseTestClass): try: throughput_limits = self.compute_throughput_limits(rvr_result) except: - asserts.fail('Test failed: Golden file not found') + asserts.fail("Test failed: Golden file not found") failure_count = 0 for idx, current_throughput in enumerate( - rvr_result['throughput_receive']): - if (current_throughput < throughput_limits['lower_limit'][idx] + rvr_result["throughput_receive"]): + current_att = rvr_result["attenuation"][idx] + rvr_result["fixed_attenuation"] + if (current_throughput < throughput_limits["lower_limit"][idx] or current_throughput > - throughput_limits['upper_limit'][idx]): + throughput_limits["upper_limit"][idx]): failure_count = failure_count + 1 - - # Set test metrics - rvr_result['metrics']['failure_count'] = failure_count - if self.publish_testcase_metrics: - self.testcase_metric_logger.add_metric('failure_count', - failure_count) - - # Assert pass or fail - if failure_count >= self.testclass_params['failure_count_tolerance']: - asserts.fail('Test failed. Found {} points outside limits.'.format( + self.log.info( + "Throughput at {}dB attenuation is beyond limits. " + "Throughput is {} Mbps. Expected within [{}, {}] Mbps.". + format(current_att, current_throughput, + throughput_limits["lower_limit"][idx], + throughput_limits["upper_limit"][idx])) + self.failure_count_metric.metric_value = failure_count + if failure_count >= self.testclass_params["failure_count_tolerance"]: + asserts.fail("Test failed. Found {} points outside limits.".format( failure_count)) asserts.explicit_pass( - 'Test passed. Found {} points outside throughput limits.'.format( + "Test passed. Found {} points outside throughput limits.".format( failure_count)) def compute_throughput_limits(self, rvr_result): @@ -199,43 +186,41 @@ class WifiRvrTest(base_test.BaseTestClass): with open(golden_path, 'r') as golden_file: golden_results = json.load(golden_file) golden_attenuation = [ - att + golden_results['fixed_attenuation'] - for att in golden_results['attenuation'] + att + golden_results["fixed_attenuation"] + for att in golden_results["attenuation"] ] attenuation = [] lower_limit = [] upper_limit = [] for idx, current_throughput in enumerate( - rvr_result['throughput_receive']): - current_att = rvr_result['attenuation'][idx] + rvr_result[ - 'fixed_attenuation'] + rvr_result["throughput_receive"]): + current_att = rvr_result["attenuation"][idx] + rvr_result["fixed_attenuation"] att_distances = [ abs(current_att - golden_att) for golden_att in golden_attenuation ] - sorted_distances = sorted(enumerate(att_distances), - key=lambda x: x[1]) + sorted_distances = sorted( + enumerate(att_distances), key=lambda x: x[1]) closest_indeces = [dist[0] for dist in sorted_distances[0:3]] closest_throughputs = [ - golden_results['throughput_receive'][index] + golden_results["throughput_receive"][index] for index in closest_indeces ] closest_throughputs.sort() attenuation.append(current_att) lower_limit.append( - max( - closest_throughputs[0] - max( - self.testclass_params['abs_tolerance'], + max(closest_throughputs[0] - + max(self.testclass_params["abs_tolerance"], closest_throughputs[0] * - self.testclass_params['pct_tolerance'] / 100), 0)) + self.testclass_params["pct_tolerance"] / 100), 0)) upper_limit.append(closest_throughputs[-1] + max( - self.testclass_params['abs_tolerance'], closest_throughputs[-1] - * self.testclass_params['pct_tolerance'] / 100)) + self.testclass_params["abs_tolerance"], closest_throughputs[-1] + * self.testclass_params["pct_tolerance"] / 100)) throughput_limits = { - 'attenuation': attenuation, - 'lower_limit': lower_limit, - 'upper_limit': upper_limit + "attenuation": attenuation, + "lower_limit": lower_limit, + "upper_limit": upper_limit } return throughput_limits @@ -248,101 +233,51 @@ class WifiRvrTest(base_test.BaseTestClass): """ # Save output as text file test_name = self.current_test_name - results_file_path = os.path.join( - self.log_path, '{}.json'.format(self.current_test_name)) + results_file_path = "{}/{}.json".format(self.log_path, + self.current_test_name) with open(results_file_path, 'w') as results_file: json.dump(rvr_result, results_file, indent=4) # Plot and save - figure = wputils.BokehFigure(title=test_name, - x_label='Attenuation (dB)', - primary_y_label='Throughput (Mbps)') + legends = [self.current_test_name] + x_label = 'Attenuation (dB)' + y_label = 'Throughput (Mbps)' + total_attenuation = [ + att + rvr_result["fixed_attenuation"] + for att in rvr_result["attenuation"] + ] + data_sets = [[total_attenuation], [rvr_result["throughput_receive"]]] + fig_property = { + "title": test_name, + "x_label": x_label, + "y_label": y_label, + "linewidth": 3, + "markersize": 10 + } try: golden_path = next(file_name for file_name in self.golden_files_list if test_name in file_name) with open(golden_path, 'r') as golden_file: golden_results = json.load(golden_file) + legends.insert(0, "Golden Results") golden_attenuation = [ - att + golden_results['fixed_attenuation'] - for att in golden_results['attenuation'] + att + golden_results["fixed_attenuation"] + for att in golden_results["attenuation"] ] + data_sets[0].insert(0, golden_attenuation) + data_sets[1].insert(0, golden_results["throughput_receive"]) throughput_limits = self.compute_throughput_limits(rvr_result) shaded_region = { - 'x_vector': throughput_limits['attenuation'], - 'lower_limit': throughput_limits['lower_limit'], - 'upper_limit': throughput_limits['upper_limit'] + "x_vector": throughput_limits["attenuation"], + "lower_limit": throughput_limits["lower_limit"], + "upper_limit": throughput_limits["upper_limit"] } - figure.add_line(golden_attenuation, - golden_results['throughput_receive'], - 'Golden Results', - color='green', - marker='circle', - shaded_region=shaded_region) except: - self.log.warning('ValueError: Golden file not found') - - # Generate graph annotatios - hover_text = [ - 'TX MCS = {0} ({1:.1f}%). RX MCS = {2} ({3:.1f}%)'.format( - curr_llstats['summary']['common_tx_mcs'], - curr_llstats['summary']['common_tx_mcs_freq'] * 100, - curr_llstats['summary']['common_rx_mcs'], - curr_llstats['summary']['common_rx_mcs_freq'] * 100) - for curr_llstats in rvr_result['llstats'] - ] - figure.add_line(rvr_result['total_attenuation'], - rvr_result['throughput_receive'], - 'Test Results', - hover_text=hover_text, - color='red', - marker='circle') - - output_file_path = os.path.join(self.log_path, - '{}.html'.format(test_name)) - figure.generate_figure(output_file_path) - - #Set test metrics - rvr_result['metrics'] = {} - rvr_result['metrics']['peak_tput'] = max( - rvr_result['throughput_receive']) - if self.publish_testcase_metrics: - self.testcase_metric_logger.add_metric( - 'peak_tput', rvr_result['metrics']['peak_tput']) - - tput_below_limit = [ - tput < self.testclass_params['tput_metric_targets'][ - rvr_result['testcase_params']['mode']]['high'] - for tput in rvr_result['throughput_receive'] - ] - rvr_result['metrics']['high_tput_range'] = -1 - for idx in range(len(tput_below_limit)): - if all(tput_below_limit[idx:]): - if idx == 0: - #Throughput was never above limit - rvr_result['metrics']['high_tput_range'] = -1 - else: - rvr_result['metrics']['high_tput_range'] = rvr_result[ - 'total_attenuation'][max(idx, 1) - 1] - break - if self.publish_testcase_metrics: - self.testcase_metric_logger.add_metric( - 'high_tput_range', rvr_result['metrics']['high_tput_range']) - - tput_below_limit = [ - tput < self.testclass_params['tput_metric_targets'][ - rvr_result['testcase_params']['mode']]['low'] - for tput in rvr_result['throughput_receive'] - ] - for idx in range(len(tput_below_limit)): - if all(tput_below_limit[idx:]): - rvr_result['metrics']['low_tput_range'] = rvr_result[ - 'total_attenuation'][max(idx, 1) - 1] - break - else: - rvr_result['metrics']['low_tput_range'] = -1 - if self.publish_testcase_metrics: - self.testcase_metric_logger.add_metric( - 'low_tput_range', rvr_result['metrics']['low_tput_range']) + shaded_region = None + self.log.warning("ValueError: Golden file not found") + output_file_path = "{}/{}.html".format(self.log_path, test_name) + wputils.bokeh_plot(data_sets, legends, fig_property, shaded_region, + output_file_path) def run_rvr_test(self, testcase_params): """Test function to run RvR. @@ -356,99 +291,66 @@ class WifiRvrTest(base_test.BaseTestClass): Returns: rvr_result: dict containing rvr_results and meta data """ - self.log.info('Start running RvR') - # Refresh link layer stats before test - llstats_obj = wputils.LinkLayerStats(self.dut) + self.log.info("Start running RvR") zero_counter = 0 throughput = [] - llstats = [] rssi = [] - for atten in testcase_params['atten_range']: - if not wputils.health_check(self.dut, 5, 50): - asserts.skip('Battery low or DUT overheating. Skipping test.') + for atten in testcase_params["atten_range"]: # Set Attenuation for attenuator in self.attenuators: attenuator.set_atten(atten, strict=False) - # Refresh link layer stats - llstats_obj.update_stats() - # Setup sniffer - if self.testbed_params['sniffer_enable']: - self.sniffer.start_capture( - network=testcase_params['test_network'], - duration=self.testclass_params['iperf_duration'] / 5) # Start iperf session self.iperf_server.start(tag=str(atten)) rssi_future = wputils.get_connected_rssi_nb( - self.dut, self.testclass_params['iperf_duration'] - 1, 1, 1) + self.client_dut, testcase_params["iperf_duration"] - 1, 1, 1) client_output_path = self.iperf_client.start( - testcase_params['iperf_server_address'], - testcase_params['iperf_args'], str(atten), - self.testclass_params['iperf_duration'] + self.TEST_TIMEOUT) + testcase_params["iperf_server_address"], + testcase_params["iperf_args"], str(atten), + testcase_params["iperf_duration"] + self.TEST_TIMEOUT) server_output_path = self.iperf_server.stop() - rssi_result = rssi_future.result() - current_rssi = { - 'signal_poll_rssi': rssi_result['signal_poll_rssi']['mean'], - 'chain_0_rssi': rssi_result['chain_0_rssi']['mean'], - 'chain_1_rssi': rssi_result['chain_1_rssi']['mean'] - } + current_rssi = rssi_future.result()["signal_poll_rssi"]["mean"] rssi.append(current_rssi) - # Stop sniffer - if self.testbed_params['sniffer_enable']: - self.sniffer.stop_capture(tag=str(atten)) # Parse and log result - if testcase_params['use_client_output']: + if testcase_params["use_client_output"]: iperf_file = client_output_path else: iperf_file = server_output_path try: iperf_result = ipf.IPerfResult(iperf_file) - curr_throughput = numpy.mean(iperf_result.instantaneous_rates[ - self.testclass_params['iperf_ignored_interval']:-1] - ) * 8 * (1.024**2) + curr_throughput = (math.fsum(iperf_result.instantaneous_rates[ + self.testclass_params["iperf_ignored_interval"]:-1]) / len( + iperf_result.instantaneous_rates[self.testclass_params[ + "iperf_ignored_interval"]:-1])) * 8 * (1.024**2) except: self.log.warning( - 'ValueError: Cannot get iperf result. Setting to 0') + "ValueError: Cannot get iperf result. Setting to 0") curr_throughput = 0 throughput.append(curr_throughput) - llstats_obj.update_stats() - curr_llstats = llstats_obj.llstats_incremental.copy() - llstats.append(curr_llstats) self.log.info( - ('Throughput at {0:.2f} dB is {1:.2f} Mbps. ' - 'RSSI = {2:.2f} [{3:.2f}, {4:.2f}].').format( - atten, curr_throughput, current_rssi['signal_poll_rssi'], - current_rssi['chain_0_rssi'], - current_rssi['chain_1_rssi'])) - if curr_throughput == 0 and ( - current_rssi['signal_poll_rssi'] < -80 - or numpy.isnan(current_rssi['signal_poll_rssi'])): + "Throughput at {0:.2f} dB is {1:.2f} Mbps. RSSI = {2:.2f}". + format(atten, curr_throughput, current_rssi)) + if curr_throughput == 0: zero_counter = zero_counter + 1 else: zero_counter = 0 if zero_counter == self.MAX_CONSECUTIVE_ZEROS: self.log.info( - 'Throughput stable at 0 Mbps. Stopping test now.') + "Throughput stable at 0 Mbps. Stopping test now.") throughput.extend( [0] * - (len(testcase_params['atten_range']) - len(throughput))) + (len(testcase_params["atten_range"]) - len(throughput))) break for attenuator in self.attenuators: attenuator.set_atten(0, strict=False) # Compile test result and meta data rvr_result = collections.OrderedDict() - rvr_result['test_name'] = self.current_test_name - rvr_result['testcase_params'] = testcase_params.copy() - rvr_result['ap_settings'] = self.access_point.ap_settings.copy() - rvr_result['fixed_attenuation'] = self.testbed_params[ - 'fixed_attenuation'][str(testcase_params['channel'])] - rvr_result['attenuation'] = list(testcase_params['atten_range']) - rvr_result['total_attenuation'] = [ - att + rvr_result['fixed_attenuation'] - for att in rvr_result['attenuation'] - ] - rvr_result['rssi'] = rssi - rvr_result['throughput_receive'] = throughput - rvr_result['llstats'] = llstats + rvr_result["test_name"] = self.current_test_name + rvr_result["ap_settings"] = self.access_point.ap_settings.copy() + rvr_result["fixed_attenuation"] = self.testbed_params[ + "fixed_attenuation"][str(testcase_params["channel"])] + rvr_result["attenuation"] = list(testcase_params["atten_range"]) + rvr_result["rssi"] = rssi + rvr_result["throughput_receive"] = throughput return rvr_result def setup_ap(self, testcase_params): @@ -458,20 +360,20 @@ class WifiRvrTest(base_test.BaseTestClass): testcase_params: dict containing AP and other test params """ band = self.access_point.band_lookup_by_channel( - testcase_params['channel']) - if '2G' in band: - frequency = wutils.WifiEnums.channel_2G_to_freq[ - testcase_params['channel']] + testcase_params["channel"]) + if "2G" in band: + frequency = wutils.WifiEnums.channel_2G_to_freq[testcase_params[ + "channel"]] else: - frequency = wutils.WifiEnums.channel_5G_to_freq[ - testcase_params['channel']] + frequency = wutils.WifiEnums.channel_5G_to_freq[testcase_params[ + "channel"]] if frequency in wutils.WifiEnums.DFS_5G_FREQUENCIES: - self.access_point.set_region(self.testbed_params['DFS_region']) + self.access_point.set_region(self.testbed_params["DFS_region"]) else: - self.access_point.set_region(self.testbed_params['default_region']) - self.access_point.set_channel(band, testcase_params['channel']) - self.access_point.set_bandwidth(band, testcase_params['mode']) - self.log.info('Access Point Configuration: {}'.format( + self.access_point.set_region(self.testbed_params["default_region"]) + self.access_point.set_channel(band, testcase_params["channel"]) + self.access_point.set_bandwidth(band, testcase_params["mode"]) + self.log.info("Access Point Configuration: {}".format( self.access_point.ap_settings)) def setup_dut(self, testcase_params): @@ -480,26 +382,19 @@ class WifiRvrTest(base_test.BaseTestClass): Args: testcase_params: dict containing AP and other test params """ - # Check battery level before test - if not wputils.health_check( - self.dut, 20) and testcase_params['traffic_direction'] == 'UL': - asserts.skip('Overheating or Battery level low. Skipping test.') - # Turn screen off to preserve battery - self.dut.go_to_sleep() - if wputils.validate_network(self.dut, - testcase_params['test_network']['SSID']): - self.log.info('Already connected to desired network') - else: - wutils.reset_wifi(self.dut) - self.dut.droid.wifiSetCountryCode( - self.testclass_params['country_code']) - testcase_params['test_network']['channel'] = testcase_params[ - 'channel'] - wutils.wifi_connect(self.dut, - testcase_params['test_network'], - num_of_tries=5, - check_connectivity=True) - self.dut_ip = self.dut.droid.connectivityGetIPv4Addresses('wlan0')[0] + band = self.access_point.band_lookup_by_channel( + testcase_params["channel"]) + wutils.reset_wifi(self.client_dut) + self.client_dut.droid.wifiSetCountryCode( + self.testclass_params["country_code"]) + self.main_network[band]["channel"] = testcase_params["channel"] + wutils.wifi_connect( + self.client_dut, + self.main_network[band], + num_of_tries=5, + check_connectivity=False) + self.dut_ip = self.client_dut.droid.connectivityGetIPv4Addresses( + 'wlan0')[0] def setup_rvr_test(self, testcase_params): """Function that gets devices ready for the test. @@ -516,54 +411,51 @@ class WifiRvrTest(base_test.BaseTestClass): self.setup_dut(testcase_params) # Get iperf_server address if isinstance(self.iperf_server, ipf.IPerfServerOverAdb): - testcase_params['iperf_server_address'] = self.dut_ip + testcase_params["iperf_server_address"] = self.dut_ip else: - testcase_params[ - 'iperf_server_address'] = wputils.get_server_address( - self.remote_server, self.dut_ip, '255.255.255.0') - - def compile_test_params(self, testcase_params): - """Function that completes all test params based on the test name. - - Args: - testcase_params: dict containing test-specific parameters - """ - num_atten_steps = int((self.testclass_params['atten_stop'] - - self.testclass_params['atten_start']) / - self.testclass_params['atten_step']) - testcase_params['atten_range'] = [ - self.testclass_params['atten_start'] + - x * self.testclass_params['atten_step'] + testcase_params["iperf_server_address"] = self.testbed_params[ + "iperf_server_address"] + + def parse_test_params(self, test_name): + """Function that generates test params based on the test name.""" + test_name_params = test_name.split("_") + testcase_params = collections.OrderedDict() + testcase_params["channel"] = int(test_name_params[4][2:]) + testcase_params["mode"] = test_name_params[5] + num_atten_steps = int((self.testclass_params["atten_stop"] - + self.testclass_params["atten_start"]) / + self.testclass_params["atten_step"]) + testcase_params["atten_range"] = [ + self.testclass_params["atten_start"] + + x * self.testclass_params["atten_step"] for x in range(0, num_atten_steps) ] - band = self.access_point.band_lookup_by_channel( - testcase_params['channel']) - testcase_params['test_network'] = self.main_network[band] - if (testcase_params['traffic_direction'] == 'DL' + testcase_params["iperf_args"] = '-i 1 -t {} -J '.format( + self.testclass_params["iperf_duration"]) + if test_name_params[2] == "UDP": + testcase_params[ + "iperf_args"] = testcase_params["iperf_args"] + "-u -b {}".format( + self.testclass_params["UDP_rates"][testcase_params["mode"]]) + if (test_name_params[3] == "DL" and not isinstance(self.iperf_server, ipf.IPerfServerOverAdb) - ) or (testcase_params['traffic_direction'] == 'UL' + ) or (test_name_params[3] == "UL" and isinstance(self.iperf_server, ipf.IPerfServerOverAdb)): - testcase_params['iperf_args'] = wputils.get_iperf_arg_string( - duration=self.testclass_params['iperf_duration'], - reverse_direction=1, - traffic_type=testcase_params['traffic_type']) - testcase_params['use_client_output'] = True + testcase_params[ + "iperf_args"] = testcase_params["iperf_args"] + ' -R' + testcase_params["use_client_output"] = True else: - testcase_params['iperf_args'] = wputils.get_iperf_arg_string( - duration=self.testclass_params['iperf_duration'], - reverse_direction=0, - traffic_type=testcase_params['traffic_type']) - testcase_params['use_client_output'] = False + testcase_params["use_client_output"] = False return testcase_params - def _test_rvr(self, testcase_params): + def _test_rvr(self): """ Function that gets called for each test case - Args: - testcase_params: dict containing test-specific parameters + The function gets called in each rvr test case. The function customizes + the rvr test based on the test name of the test that called it """ # Compile test parameters from config and test name - testcase_params = self.compile_test_params(testcase_params) + testcase_params = self.parse_test_params(self.current_test_name) + testcase_params.update(self.testclass_params) # Prepare devices and run test self.setup_rvr_test(testcase_params) @@ -574,277 +466,422 @@ class WifiRvrTest(base_test.BaseTestClass): self.process_test_results(rvr_result) self.pass_fail_check(rvr_result) - def generate_test_cases(self, channels, modes, traffic_types, - traffic_directions): - """Function that auto-generates test cases for a test class.""" - test_cases = [] - allowed_configs = { - 'VHT20': [ - 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 36, 40, 44, 48, 64, 100, - 116, 132, 140, 149, 153, 157, 161 - ], - 'VHT40': [36, 44, 100, 149, 157], - 'VHT80': [36, 100, 149] - } + #Test cases + @test_tracker_info(uuid='e7586217-3739-44a4-a87b-d790208b04b9') + def test_rvr_TCP_DL_ch1_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='06b3e979-255c-482f-b570-d347fba048b6') + def test_rvr_TCP_UL_ch1_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='e912db87-dbfb-4e86-b91c-827e6c53e840') + def test_rvr_TCP_DL_ch6_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='ddafbe78-bd19-48fc-b653-69b23b1ab8dd') + def test_rvr_TCP_UL_ch6_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='6fcb7fd8-4438-4913-a1c8-ea35050c79dd') + def test_rvr_TCP_DL_ch11_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='a165884e-c928-46d9-b459-f550ceb0074f') + def test_rvr_TCP_UL_ch11_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='a48ee2b4-3fb9-41fd-b292-0051bfc3b0cc') + def test_rvr_TCP_DL_ch36_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='68f94e6b-b4ff-4839-904b-ec45cc661b89') + def test_rvr_TCP_UL_ch36_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='a8b00098-5c07-44bb-ae17-5d0489786c62') + def test_rvr_TCP_DL_ch36_VHT40(self): + self._test_rvr() + + @test_tracker_info(uuid='ecfb4284-1794-4508-b35e-be56fa4c9035') + def test_rvr_TCP_UL_ch36_VHT40(self): + self._test_rvr() + + @test_tracker_info(uuid='6190c1a6-08f2-4a27-a65f-7321801f2cd6') + def test_rvr_TCP_DL_ch36_VHT80(self): + self._test_rvr() + + @test_tracker_info(uuid='ae12712d-0ac3-4317-827d-544acfa4910c') + def test_rvr_TCP_UL_ch36_VHT80(self): + self._test_rvr() + + @test_tracker_info(uuid='c8f8d107-5176-484b-a0d9-7a63aef8677e') + def test_rvr_TCP_DL_ch40_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='6fa823c9-54bf-450d-b2c3-31a46fc73386') + def test_rvr_TCP_UL_ch40_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='aa6cd955-eaef-4552-87a4-c4a0df59e184') + def test_rvr_TCP_DL_ch44_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='14ad4b1c-7c8f-4650-be74-daf813021ad3') + def test_rvr_TCP_UL_ch44_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='a5fdb54c-60e2-4cc6-a9ec-1a17e7827823') + def test_rvr_TCP_DL_ch44_VHT40(self): + self._test_rvr() + + @test_tracker_info(uuid='112113f1-7f50-4112-81b5-d9a4fdf153e7') + def test_rvr_TCP_UL_ch44_VHT40(self): + self._test_rvr() + + @test_tracker_info(uuid='cda3886c-8776-4077-acfd-cfe128772e2f') + def test_rvr_TCP_DL_ch48_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='2e5ad031-6404-4e71-b3b3-8a3bb2c85d4f') + def test_rvr_TCP_UL_ch48_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='c2e199ce-d23f-4a24-b146-74e762085620') + def test_rvr_TCP_DL_ch52_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='5c5943e8-9d91-4270-a5ab-e7018807c64e') + def test_rvr_TCP_UL_ch52_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='b52afe89-182f-4bad-8879-cbf7001d28ef') + def test_rvr_TCP_DL_ch56_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='f8526241-3b96-463a-9082-a749a8650d5f') + def test_rvr_TCP_UL_ch56_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='c3042d7e-7468-4ab8-aec3-9b3088ba3e4c') + def test_rvr_TCP_DL_ch60_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='80426542-b035-4fb3-9010-e997f95d4964') + def test_rvr_TCP_UL_ch60_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='aa0e7117-390c-4265-adf2-0990f65f8b0b') + def test_rvr_TCP_DL_ch64_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='b2fdda85-256b-4368-8e8b-39274062264e') + def test_rvr_TCP_UL_ch64_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='48b6590f-1553-4170-83a5-40d3976e9e77') + def test_rvr_TCP_DL_ch100_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='2d0525fe-57ce-49d3-826d-4ebedd2ca6d6') + def test_rvr_TCP_UL_ch100_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='52da922d-6c2f-4afa-aca3-c19438ae3217') + def test_rvr_TCP_DL_ch100_VHT40(self): + self._test_rvr() + + @test_tracker_info(uuid='2c7e7106-88c8-47ba-ac28-362475abec41') + def test_rvr_TCP_UL_ch100_VHT40(self): + self._test_rvr() + + @test_tracker_info(uuid='fd4a7118-e9fe-4931-b32c-f69efd3e6493') + def test_rvr_TCP_DL_ch100_VHT80(self): + self._test_rvr() + + @test_tracker_info(uuid='146502b2-9cab-4bbe-8a5c-7ec625edc2ef') + def test_rvr_TCP_UL_ch100_VHT80(self): + self._test_rvr() + + @test_tracker_info(uuid='a5e185d6-b523-4016-bc8a-2a32cdc67ae0') + def test_rvr_TCP_DL_ch104_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='886aed91-0fdc-432d-b47e-ebfa85ac27ad') + def test_rvr_TCP_UL_ch104_VHT20(self): + self._test_rvr() - for channel, mode, traffic_type, traffic_direction in itertools.product( - channels, modes, traffic_types, traffic_directions): - if channel not in allowed_configs[mode]: - continue - test_name = 'test_rvr_{}_{}_ch{}_{}'.format( - traffic_type, traffic_direction, channel, mode) - test_params = collections.OrderedDict( - channel=channel, - mode=mode, - traffic_type=traffic_type, - traffic_direction=traffic_direction) - setattr(self, test_name, partial(self._test_rvr, test_params)) - test_cases.append(test_name) - return test_cases + @test_tracker_info(uuid='fda3de6e-3183-401b-b98c-1b076da139e1') + def test_rvr_TCP_DL_ch108_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='29cc30f5-bbc8-4b64-9789-a56154907af5') + def test_rvr_TCP_UL_ch108_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='5c52ccac-8c38-46fa-a7b3-d714b6a814ad') + def test_rvr_TCP_DL_ch112_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='cc1c2a0b-71a3-4343-b7ff-489527c839d2') + def test_rvr_TCP_UL_ch112_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='11c6ccc3-e347-44ce-9a79-6c90e9dfd0a0') + def test_rvr_TCP_DL_ch116_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='29f0fce1-005d-4ad7-97d7-6b43cbdff01b') + def test_rvr_TCP_UL_ch116_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='112302b1-8261-479a-b397-916b08fbbdd2') + def test_rvr_TCP_DL_ch132_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='3bb0efb8-ddfc-4a0b-b7cf-6d6af1dbb9f4') + def test_rvr_TCP_UL_ch132_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='11a4638f-d872-4730-82eb-71d9c64e0e16') + def test_rvr_TCP_DL_ch136_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='4d797c24-3bbe-43a6-ac9e-291db1aa732a') + def test_rvr_TCP_UL_ch136_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='5d433b44-0395-43cb-b85a-be138390b18b') + def test_rvr_TCP_DL_ch140_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='47061772-21b1-4330-bd4f-daec21afa0c8') + def test_rvr_TCP_UL_ch140_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='24aa1e7a-3978-4803-877f-3ac5812ab0ae') + def test_rvr_TCP_DL_ch149_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='59f0443f-822d-4347-9c52-310f0b812500') + def test_rvr_TCP_UL_ch149_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='3b1524b3-af15-41f1-8fca-9ee9b687d59a') + def test_rvr_TCP_DL_ch149_VHT40(self): + self._test_rvr() + + @test_tracker_info(uuid='36670787-3bfb-4e8b-8881-e88eb608ed46') + def test_rvr_TCP_UL_ch149_VHT40(self): + self._test_rvr() + + @test_tracker_info(uuid='8350cddd-7c62-4fad-bdae-a8267d321aa3') + def test_rvr_TCP_DL_ch149_VHT80(self): + self._test_rvr() + + @test_tracker_info(uuid='7432fccb-526e-44d4-b0f4-2c343ca53188') + def test_rvr_TCP_UL_ch149_VHT80(self): + self._test_rvr() + + @test_tracker_info(uuid='037eec49-2bae-49e3-949e-5af2885dc84b') + def test_rvr_TCP_DL_ch153_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='04d5d873-7d5a-4590-bff3-093edeb92380') + def test_rvr_TCP_UL_ch153_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='4ff83f6e-b130-4a88-8ced-04a09c6af666') + def test_rvr_TCP_DL_ch157_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='c3436402-977e-40a5-a7eb-e2c886379d43') + def test_rvr_TCP_UL_ch157_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='797a218b-1a8e-4233-835b-61b3f057f480') + def test_rvr_TCP_DL_ch157_VHT40(self): + self._test_rvr() + + @test_tracker_info(uuid='38d3e825-6e2c-4931-b0fd-aa19c5d1ef40') + def test_rvr_TCP_UL_ch157_VHT40(self): + self._test_rvr() + + @test_tracker_info(uuid='993e98c5-0647-4ed6-b62e-ab386ada37af') + def test_rvr_TCP_DL_ch161_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='3bf9c844-749a-47d8-ac46-89249bd92c4a') + def test_rvr_TCP_UL_ch161_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='05614f92-38fa-4289-bcff-d4b4a2a2ad5b') + def test_rvr_UDP_DL_ch6_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='577632e9-fb2f-4a2b-b3c3-affee8264008') + def test_rvr_UDP_UL_ch6_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='6f3fcc28-5f0c-49e6-8810-69c5873ecafa') + def test_rvr_UDP_DL_ch36_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='8e518aaa-e61f-4c1d-b12f-1bbd550ec3e5') + def test_rvr_UDP_UL_ch36_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='fd68ff32-c789-4a86-9924-2f5aeb3c9651') + def test_rvr_UDP_DL_ch149_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='29d03492-fc0b-42d0-aa15-c0c838ba50c1') + def test_rvr_UDP_UL_ch149_VHT20(self): + self._test_rvr() + + @test_tracker_info(uuid='044c414c-ac5e-4e28-9b56-a602e0cc9724') + def test_rvr_UDP_DL_ch36_VHT40(self): + self._test_rvr() + + @test_tracker_info(uuid='9cd16689-5053-4ffa-813c-d901384a105c') + def test_rvr_UDP_UL_ch36_VHT40(self): + self._test_rvr() + + @test_tracker_info(uuid='4e4b1e73-30ce-4005-9c34-8c0280bdb293') + def test_rvr_UDP_DL_ch36_VHT80(self): + self._test_rvr() + + @test_tracker_info(uuid='780166a1-1847-45c2-b509-71612c82309d') + def test_rvr_UDP_UL_ch36_VHT80(self): + self._test_rvr() + + @test_tracker_info(uuid='05abdb89-9744-479e-8443-cb8b9427f5e3') + def test_rvr_UDP_DL_ch149_VHT40(self): + self._test_rvr() + + @test_tracker_info(uuid='a321590a-4cbc-4044-9c2b-24e90f444213') + def test_rvr_UDP_UL_ch149_VHT40(self): + self._test_rvr() + + @test_tracker_info(uuid='041fd613-24d9-4606-bca3-0ae0d8436b5e') + def test_rvr_UDP_DL_ch149_VHT80(self): + self._test_rvr() + + @test_tracker_info(uuid='69aab23d-1408-4cdd-9f57-2520a1e9cea8') + def test_rvr_UDP_UL_ch149_VHT80(self): + self._test_rvr() # Classes defining test suites class WifiRvr_2GHz_Test(WifiRvrTest): def __init__(self, controllers): super().__init__(controllers) - self.tests = self.generate_test_cases(channels=[1, 6, 11], - modes=['VHT20'], - traffic_types=['TCP'], - traffic_directions=['DL', 'UL']) + self.tests = ("test_rvr_TCP_DL_ch1_VHT20", "test_rvr_TCP_UL_ch1_VHT20", + "test_rvr_TCP_DL_ch6_VHT20", "test_rvr_TCP_UL_ch6_VHT20", + "test_rvr_TCP_DL_ch11_VHT20", + "test_rvr_TCP_UL_ch11_VHT20") class WifiRvr_UNII1_Test(WifiRvrTest): def __init__(self, controllers): super().__init__(controllers) - self.tests = self.generate_test_cases( - channels=[36, 40, 44, 48], - modes=['VHT20', 'VHT40', 'VHT80'], - traffic_types=['TCP'], - traffic_directions=['DL', 'UL']) + self.tests = ( + "test_rvr_TCP_DL_ch36_VHT20", "test_rvr_TCP_UL_ch36_VHT20", + "test_rvr_TCP_DL_ch36_VHT40", "test_rvr_TCP_UL_ch36_VHT40", + "test_rvr_TCP_DL_ch36_VHT80", "test_rvr_TCP_UL_ch36_VHT80", + "test_rvr_TCP_DL_ch40_VHT20", "test_rvr_TCP_UL_ch40_VHT20", + "test_rvr_TCP_DL_ch44_VHT20", "test_rvr_TCP_UL_ch44_VHT20", + "test_rvr_TCP_DL_ch44_VHT40", "test_rvr_TCP_UL_ch44_VHT40", + "test_rvr_TCP_DL_ch48_VHT20", "test_rvr_TCP_UL_ch48_VHT20") class WifiRvr_UNII3_Test(WifiRvrTest): def __init__(self, controllers): super().__init__(controllers) - self.tests = self.generate_test_cases( - channels=[149, 153, 157, 161], - modes=['VHT20', 'VHT40', 'VHT80'], - traffic_types=['TCP'], - traffic_directions=['DL', 'UL']) + self.tests = ( + "test_rvr_TCP_DL_ch149_VHT20", "test_rvr_TCP_UL_ch149_VHT20", + "test_rvr_TCP_DL_ch149_VHT40", "test_rvr_TCP_UL_ch149_VHT40", + "test_rvr_TCP_DL_ch149_VHT80", "test_rvr_TCP_UL_ch149_VHT80", + "test_rvr_TCP_DL_ch153_VHT20", "test_rvr_TCP_UL_ch153_VHT20", + "test_rvr_TCP_DL_ch157_VHT20", "test_rvr_TCP_UL_ch157_VHT20", + "test_rvr_TCP_DL_ch157_VHT40", "test_rvr_TCP_UL_ch157_VHT40", + "test_rvr_TCP_DL_ch161_VHT20", "test_rvr_TCP_UL_ch161_VHT20") class WifiRvr_SampleDFS_Test(WifiRvrTest): def __init__(self, controllers): super().__init__(controllers) - self.tests = self.generate_test_cases( - channels=[64, 100, 116, 132, 140], - modes=['VHT20', 'VHT40', 'VHT80'], - traffic_types=['TCP'], - traffic_directions=['DL', 'UL']) + self.tests = ( + "test_rvr_TCP_DL_ch64_VHT20", "test_rvr_TCP_UL_ch64_VHT20", + "test_rvr_TCP_DL_ch100_VHT20", "test_rvr_TCP_UL_ch100_VHT20", + "test_rvr_TCP_DL_ch100_VHT40", "test_rvr_TCP_UL_ch100_VHT40", + "test_rvr_TCP_DL_ch100_VHT80", "test_rvr_TCP_UL_ch100_VHT80", + "test_rvr_TCP_DL_ch116_VHT20", "test_rvr_TCP_UL_ch116_VHT20", + "test_rvr_TCP_DL_ch132_VHT20", "test_rvr_TCP_UL_ch132_VHT20", + "test_rvr_TCP_DL_ch140_VHT20", "test_rvr_TCP_UL_ch140_VHT20") class WifiRvr_SampleUDP_Test(WifiRvrTest): def __init__(self, controllers): super().__init__(controllers) - self.tests = self.generate_test_cases( - channels=[6, 36, 149], - modes=['VHT20', 'VHT40', 'VHT80'], - traffic_types=['UDP'], - traffic_directions=['DL', 'UL']) + self.tests = ( + "test_rvr_UDP_DL_ch6_VHT20", "test_rvr_UDP_UL_ch6_VHT20", + "test_rvr_UDP_DL_ch36_VHT20", "test_rvr_UDP_UL_ch36_VHT20", + "test_rvr_UDP_DL_ch36_VHT40", "test_rvr_UDP_UL_ch36_VHT40", + "test_rvr_UDP_DL_ch36_VHT80", "test_rvr_UDP_UL_ch36_VHT80", + "test_rvr_UDP_DL_ch149_VHT20", "test_rvr_UDP_UL_ch149_VHT20", + "test_rvr_UDP_DL_ch149_VHT40", "test_rvr_UDP_UL_ch149_VHT40", + "test_rvr_UDP_DL_ch149_VHT80", "test_rvr_UDP_UL_ch149_VHT80") class WifiRvr_TCP_All_Test(WifiRvrTest): def __init__(self, controllers): super().__init__(controllers) - self.tests = self.generate_test_cases( - channels=[1, 6, 11, 36, 40, 44, 48, 149, 153, 157, 161], - modes=['VHT20', 'VHT40', 'VHT80'], - traffic_types=['TCP'], - traffic_directions=['DL', 'UL']) + self.tests = ( + "test_rvr_TCP_DL_ch1_VHT20", "test_rvr_TCP_UL_ch1_VHT20", + "test_rvr_TCP_DL_ch6_VHT20", "test_rvr_TCP_UL_ch6_VHT20", + "test_rvr_TCP_DL_ch11_VHT20", "test_rvr_TCP_UL_ch11_VHT20", + "test_rvr_TCP_DL_ch36_VHT20", "test_rvr_TCP_UL_ch36_VHT20", + "test_rvr_TCP_DL_ch36_VHT40", "test_rvr_TCP_UL_ch36_VHT40", + "test_rvr_TCP_DL_ch36_VHT80", "test_rvr_TCP_UL_ch36_VHT80", + "test_rvr_TCP_DL_ch40_VHT20", "test_rvr_TCP_UL_ch40_VHT20", + "test_rvr_TCP_DL_ch44_VHT20", "test_rvr_TCP_UL_ch44_VHT20", + "test_rvr_TCP_DL_ch44_VHT40", "test_rvr_TCP_UL_ch44_VHT40", + "test_rvr_TCP_DL_ch48_VHT20", "test_rvr_TCP_UL_ch48_VHT20", + "test_rvr_TCP_DL_ch149_VHT20", "test_rvr_TCP_UL_ch149_VHT20", + "test_rvr_TCP_DL_ch149_VHT40", "test_rvr_TCP_UL_ch149_VHT40", + "test_rvr_TCP_DL_ch149_VHT80", "test_rvr_TCP_UL_ch149_VHT80", + "test_rvr_TCP_DL_ch153_VHT20", "test_rvr_TCP_UL_ch153_VHT20", + "test_rvr_TCP_DL_ch157_VHT20", "test_rvr_TCP_UL_ch157_VHT20", + "test_rvr_TCP_DL_ch157_VHT40", "test_rvr_TCP_UL_ch157_VHT40", + "test_rvr_TCP_DL_ch161_VHT20", "test_rvr_TCP_UL_ch161_VHT20") class WifiRvr_TCP_Downlink_Test(WifiRvrTest): def __init__(self, controllers): super().__init__(controllers) - self.tests = self.generate_test_cases( - channels=[1, 6, 11, 36, 40, 44, 48, 149, 153, 157, 161], - modes=['VHT20', 'VHT40', 'VHT80'], - traffic_types=['TCP'], - traffic_directions=['DL']) + self.tests = ( + "test_rvr_TCP_DL_ch1_VHT20", "test_rvr_TCP_DL_ch6_VHT20", + "test_rvr_TCP_DL_ch11_VHT20", "test_rvr_TCP_DL_ch36_VHT20", + "test_rvr_TCP_DL_ch36_VHT40", "test_rvr_TCP_DL_ch36_VHT80", + "test_rvr_TCP_DL_ch40_VHT20", "test_rvr_TCP_DL_ch44_VHT20", + "test_rvr_TCP_DL_ch44_VHT40", "test_rvr_TCP_DL_ch48_VHT20", + "test_rvr_TCP_DL_ch149_VHT20", "test_rvr_TCP_DL_ch149_VHT40", + "test_rvr_TCP_DL_ch149_VHT80", "test_rvr_TCP_DL_ch153_VHT20", + "test_rvr_TCP_DL_ch157_VHT20", "test_rvr_TCP_DL_ch157_VHT40", + "test_rvr_TCP_DL_ch161_VHT20") class WifiRvr_TCP_Uplink_Test(WifiRvrTest): def __init__(self, controllers): super().__init__(controllers) - self.tests = self.generate_test_cases( - channels=[1, 6, 11, 36, 40, 44, 48, 149, 153, 157, 161], - modes=['VHT20', 'VHT40', 'VHT80'], - traffic_types=['TCP'], - traffic_directions=['UL']) - - -# Over-the air version of RVR tests -class WifiOtaRvrTest(WifiRvrTest): - """Class to test over-the-air RvR - - This class implements measures WiFi RvR tests in an OTA chamber. It enables - setting turntable orientation and other chamber parameters to study - performance in varying channel conditions - """ - def __init__(self, controllers): - base_test.BaseTestClass.__init__(self, controllers) - self.testcase_metric_logger = ( - BlackboxMappedMetricLogger.for_test_case()) - self.testclass_metric_logger = ( - BlackboxMappedMetricLogger.for_test_class()) - self.publish_testcase_metrics = False - - def setup_class(self): - WifiRvrTest.setup_class(self) - self.ota_chamber = ota_chamber.create( - self.user_params['OTAChamber'])[0] - - def teardown_class(self): - WifiRvrTest.teardown_class(self) - self.ota_chamber.reset_chamber() - - def extract_test_id(self, testcase_params, id_fields): - test_id = collections.OrderedDict( - (param, testcase_params[param]) for param in id_fields) - return test_id - - def process_testclass_results(self): - """Saves plot with all test results to enable comparison.""" - # Plot individual test id results raw data and compile metrics - plots = collections.OrderedDict() - compiled_data = collections.OrderedDict() - for result in self.testclass_results: - test_id = tuple( - self.extract_test_id( - result['testcase_params'], - ['channel', 'mode', 'traffic_type', 'traffic_direction' - ]).items()) - if test_id not in plots: - # Initialize test id data when not present - compiled_data[test_id] = {'throughput': [], 'metrics': {}} - compiled_data[test_id]['metrics'] = { - key: [] - for key in result['metrics'].keys() - } - plots[test_id] = wputils.BokehFigure( - title='Channel {} {} ({} {})'.format( - result['testcase_params']['channel'], - result['testcase_params']['mode'], - result['testcase_params']['traffic_type'], - result['testcase_params']['traffic_direction']), - x_label='Attenuation (dB)', - primary_y_label='Throughput (Mbps)') - # Compile test id data and metrics - compiled_data[test_id]['throughput'].append( - result['throughput_receive']) - compiled_data[test_id]['total_attenuation'] = result[ - 'total_attenuation'] - for metric_key, metric_value in result['metrics'].items(): - compiled_data[test_id]['metrics'][metric_key].append( - metric_value) - # Add test id to plots - plots[test_id].add_line(result['total_attenuation'], - result['throughput_receive'], - result['test_name'], - width=1, - style='dashed', - marker='circle') - - # Compute average RvRs and compount metrics over orientations - for test_id, test_data in compiled_data.items(): - test_id_dict = dict(test_id) - metric_tag = '{}_{}_ch{}_{}'.format( - test_id_dict['traffic_type'], - test_id_dict['traffic_direction'], test_id_dict['channel'], - test_id_dict['mode']) - high_tput_hit_freq = numpy.mean( - numpy.not_equal(test_data['metrics']['high_tput_range'], -1)) - self.testclass_metric_logger.add_metric( - '{}.high_tput_hit_freq'.format(metric_tag), high_tput_hit_freq) - for metric_key, metric_value in test_data['metrics'].items(): - metric_key = "{}.avg_{}".format(metric_tag, metric_key) - metric_value = numpy.mean(metric_value) - self.testclass_metric_logger.add_metric( - metric_key, metric_value) - test_data['avg_rvr'] = numpy.mean(test_data['throughput'], 0) - test_data['median_rvr'] = numpy.median(test_data['throughput'], 0) - plots[test_id].add_line(test_data['total_attenuation'], - test_data['avg_rvr'], - legend='Average Throughput', - marker='circle') - plots[test_id].add_line(test_data['total_attenuation'], - test_data['median_rvr'], - legend='Median Throughput', - marker='square') - - figure_list = [] - for test_id, plot in plots.items(): - plot.generate_figure() - figure_list.append(plot) - output_file_path = os.path.join(self.log_path, 'results.html') - wputils.BokehFigure.save_figures(figure_list, output_file_path) - - def setup_rvr_test(self, testcase_params): - # Set turntable orientation - self.ota_chamber.set_orientation(testcase_params['orientation']) - # Continue test setup - WifiRvrTest.setup_rvr_test(self, testcase_params) - - def generate_test_cases(self, channels, modes, angles, traffic_types, - directions): - test_cases = [] - allowed_configs = { - 'VHT20': [ - 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 36, 40, 44, 48, 149, 153, - 157, 161 - ], - 'VHT40': [36, 44, 149, 157], - 'VHT80': [36, 149] - } - for channel, mode, angle, traffic_type, direction in itertools.product( - channels, modes, angles, traffic_types, directions): - if channel not in allowed_configs[mode]: - continue - testcase_name = 'test_rvr_{}_{}_ch{}_{}_{}deg'.format( - traffic_type, direction, channel, mode, angle) - test_params = collections.OrderedDict(channel=channel, - mode=mode, - traffic_type=traffic_type, - traffic_direction=direction, - orientation=angle) - setattr(self, testcase_name, partial(self._test_rvr, test_params)) - test_cases.append(testcase_name) - return test_cases - - -class WifiOtaRvr_StandardOrientation_Test(WifiOtaRvrTest): - def __init__(self, controllers): - WifiOtaRvrTest.__init__(self, controllers) - self.tests = self.generate_test_cases( - [1, 6, 11, 36, 40, 44, 48, 149, 153, 157, 161], - ['VHT20', 'VHT40', 'VHT80'], list(range(0, 360, - 45)), ['TCP'], ['DL']) - - -class WifiOtaRvr_SampleChannel_Test(WifiOtaRvrTest): - def __init__(self, controllers): - WifiOtaRvrTest.__init__(self, controllers) - self.tests = self.generate_test_cases([6], ['VHT20'], - list(range(0, 360, 45)), ['TCP'], - ['DL']) - self.tests.extend( - self.generate_test_cases([36, 149], ['VHT80'], - list(range(0, 360, 45)), ['TCP'], ['DL'])) - - -class WifiOtaRvr_SingleOrientation_Test(WifiOtaRvrTest): - def __init__(self, controllers): - WifiOtaRvrTest.__init__(self, controllers) - self.tests = self.generate_test_cases( - [6, 36, 40, 44, 48, 149, 153, 157, 161], - ['VHT20', 'VHT40', 'VHT80'], [0], ['TCP'], ['DL', 'UL']) + self.tests = ( + "test_rvr_TCP_UL_ch1_VHT20", "test_rvr_TCP_UL_ch6_VHT20", + "test_rvr_TCP_UL_ch11_VHT20", "test_rvr_TCP_UL_ch36_VHT20", + "test_rvr_TCP_UL_ch36_VHT40", "test_rvr_TCP_UL_ch36_VHT80", + "test_rvr_TCP_UL_ch40_VHT20", "test_rvr_TCP_UL_ch44_VHT20", + "test_rvr_TCP_UL_ch44_VHT40", "test_rvr_TCP_UL_ch48_VHT20", + "test_rvr_TCP_UL_ch149_VHT20", "test_rvr_TCP_UL_ch149_VHT40", + "test_rvr_TCP_UL_ch149_VHT80", "test_rvr_TCP_UL_ch153_VHT20", + "test_rvr_TCP_UL_ch157_VHT20", "test_rvr_TCP_UL_ch157_VHT40", + "test_rvr_TCP_UL_ch161_VHT20") diff --git a/acts/tests/google/wifi/WifiRvrTwTest.py b/acts/tests/google/wifi/WifiRvrTwTest.py index 593ea4308c..24afa5ea2d 100644 --- a/acts/tests/google/wifi/WifiRvrTwTest.py +++ b/acts/tests/google/wifi/WifiRvrTwTest.py @@ -49,9 +49,11 @@ class WifiRvrTWTest(WifiBaseTest): """ TEST_TIMEOUT = 10 - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + self.attenuators = None + WifiBaseTest.__init__(self, controllers) + def setup_class(self): self.dut = self.android_devices[0] wutils.wifi_test_device_init(self.dut) diff --git a/acts/tests/google/wifi/WifiScannerMultiScanTest.py b/acts/tests/google/wifi/WifiScannerMultiScanTest.py index b0fc2468ad..491b07a425 100755 --- a/acts/tests/google/wifi/WifiScannerMultiScanTest.py +++ b/acts/tests/google/wifi/WifiScannerMultiScanTest.py @@ -256,7 +256,7 @@ class WifiScannerMultiScanTest(WifiBaseTest): """ Setup the required dependencies and fetch the user params from config file. """ - req_params = ["max_bugreports"] + req_params = ("bssid_2g", "bssid_5g", "bssid_dfs", "max_bugreports") opt_param = ["reference_networks"] self.unpack_userparams( req_param_names=req_params, opt_param_names=opt_param) diff --git a/acts/tests/google/wifi/WifiSensitivityTest.py b/acts/tests/google/wifi/WifiSensitivityTest.py index a982cc6972..838f46c3e7 100644 --- a/acts/tests/google/wifi/WifiSensitivityTest.py +++ b/acts/tests/google/wifi/WifiSensitivityTest.py @@ -2,14 +2,14 @@ # # Copyright 2017 - The Android Open Source Project # -# Licensed under the Apache License, Version 2.0 (the 'License'); +# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an 'AS IS' BASIS, +# distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. @@ -19,20 +19,15 @@ import csv import itertools import json import logging -import numpy import os from acts import asserts -from acts import context from acts import base_test from acts import utils -from acts.controllers import iperf_client +from acts.controllers import iperf_server as ipf from acts.controllers.utils_lib import ssh -from acts.metrics.loggers.blackbox import BlackboxMappedMetricLogger -from acts.test_utils.wifi import ota_chamber -from acts.test_utils.wifi import wifi_performance_test_utils as wputils +from acts.metrics.loggers.blackbox import BlackboxMetricLogger from acts.test_utils.wifi import wifi_test_utils as wutils from acts.test_utils.wifi import wifi_retail_ap as retail_ap -from functools import partial from WifiRvrTest import WifiRvrTest from WifiPingTest import WifiPingTest @@ -47,90 +42,38 @@ class WifiSensitivityTest(WifiRvrTest, WifiPingTest): example_connectivity_performance_ap_sta.json. """ - RSSI_POLL_INTERVAL = 0.2 VALID_TEST_CONFIGS = { - 1: ['legacy', 'VHT20'], - 2: ['legacy', 'VHT20'], - 6: ['legacy', 'VHT20'], - 10: ['legacy', 'VHT20'], - 11: ['legacy', 'VHT20'], - 36: ['legacy', 'VHT20', 'VHT40', 'VHT80'], - 40: ['legacy', 'VHT20'], - 44: ['legacy', 'VHT20'], - 48: ['legacy', 'VHT20'], - 149: ['legacy', 'VHT20', 'VHT40', 'VHT80'], - 153: ['legacy', 'VHT20'], - 157: ['legacy', 'VHT20'], - 161: ['legacy', 'VHT20'] + 1: ["legacy", "VHT20"], + 2: ["legacy", "VHT20"], + 6: ["legacy", "VHT20"], + 10: ["legacy", "VHT20"], + 11: ["legacy", "VHT20"], + 36: ["legacy", "VHT20"], + 40: ["legacy", "VHT20"], + 44: ["legacy", "VHT20"], + 48: ["legacy", "VHT20"], + 149: ["legacy", "VHT20"], + 153: ["legacy", "VHT20"], + 157: ["legacy", "VHT20"], + 161: ["legacy", "VHT20"] } - RateTuple = collections.namedtuple(('RateTuple'), - ['mcs', 'streams', 'data_rate']) - #yapf:disable VALID_RATES = { - 'legacy_2GHz': [ - RateTuple(54, 1, 54), RateTuple(48, 1, 48), - RateTuple(36, 1, 36), RateTuple(24, 1, 24), - RateTuple(18, 1, 18), RateTuple(12, 1, 12), - RateTuple(11, 1, 11), RateTuple(9, 1, 9), - RateTuple(6, 1, 6), RateTuple(5.5, 1, 5.5), - RateTuple(2, 1, 2), RateTuple(1, 1, 1)], - 'legacy_5GHz': [ - RateTuple(54, 1, 54), RateTuple(48, 1, 48), - RateTuple(36, 1, 36), RateTuple(24, 1, 24), - RateTuple(18, 1, 18), RateTuple(12, 1, 12), - RateTuple(9, 1, 9), RateTuple(6, 1, 6)], - 'HT20': [ - RateTuple(7, 1, 72.2), RateTuple(6, 1, 65), - RateTuple(5, 1, 57.8), RateTuple(4, 1, 43.3), - RateTuple(3, 1, 26), RateTuple(2, 1, 21.7), - RateTuple(1, 1, 14.4), RateTuple(0, 1, 7.2), - RateTuple(15, 2, 144.4), RateTuple(14, 2, 130), - RateTuple(13, 2, 115.6), RateTuple(12, 2, 86.7), - RateTuple(11, 2, 57.8), RateTuple(10, 2, 43.4), - RateTuple(9, 2, 28.9), RateTuple(8, 2, 14.4)], - 'VHT20': [ - RateTuple(9, 1, 96), RateTuple(8, 1, 86.7), - RateTuple(7, 1, 72.2), RateTuple(6, 1, 65), - RateTuple(5, 1, 57.8), RateTuple(4, 1, 43.3), - RateTuple(3, 1, 28.9), RateTuple(2, 1, 21.7), - RateTuple(1, 1, 14.4), RateTuple(0, 1, 7.2), - RateTuple(9, 2, 192), RateTuple(8, 2, 173.3), - RateTuple(7, 2, 144.4), RateTuple(6, 2, 130.3), - RateTuple(5, 2, 115.6), RateTuple(4, 2, 86.7), - RateTuple(3, 2, 57.8), RateTuple(2, 2, 43.3), - RateTuple(1, 2, 28.9), RateTuple(0, 2, 14.4)], - 'VHT40': [ - RateTuple(9, 1, 96), RateTuple(8, 1, 86.7), - RateTuple(7, 1, 72.2), RateTuple(6, 1, 65), - RateTuple(5, 1, 57.8), RateTuple(4, 1, 43.3), - RateTuple(3, 1, 28.9), RateTuple(2, 1, 21.7), - RateTuple(1, 1, 14.4), RateTuple(0, 1, 7.2), - RateTuple(9, 2, 192), RateTuple(8, 2, 173.3), - RateTuple(7, 2, 144.4), RateTuple(6, 2, 130.3), - RateTuple(5, 2, 115.6), RateTuple(4, 2, 86.7), - RateTuple(3, 2, 57.8), RateTuple(2, 2, 43.3), - RateTuple(1, 2, 28.9), RateTuple(0, 2, 14.4)], - 'VHT80': [ - RateTuple(9, 1, 96), RateTuple(8, 1, 86.7), - RateTuple(7, 1, 72.2), RateTuple(6, 1, 65), - RateTuple(5, 1, 57.8), RateTuple(4, 1, 43.3), - RateTuple(3, 1, 28.9), RateTuple(2, 1, 21.7), - RateTuple(1, 1, 14.4), RateTuple(0, 1, 7.2), - RateTuple(9, 2, 192), RateTuple(8, 2, 173.3), - RateTuple(7, 2, 144.4), RateTuple(6, 2, 130.3), - RateTuple(5, 2, 115.6), RateTuple(4, 2, 86.7), - RateTuple(3, 2, 57.8), RateTuple(2, 2, 43.3), - RateTuple(1, 2, 28.9), RateTuple(0, 2, 14.4)], + "legacy_2GHz": [[54, 1], [48, 1], [36, 1], [24, 1], [18, 1], [12, 1], + [11, 1], [9, 1], [6, 1], [5.5, 1], [2, 1], [1, 1]], + "legacy_5GHz": [[54, 1], [48, 1], [36, 1], [24, 1], [18, 1], [12, 1], + [9, 1], [6, 1]], + "HT": [[8, 1], [7, 1], [6, 1], [5, 1], [4, 1], [3, 1], [2, 1], [1, 1], + [0, 1], [15, 2], [14, 2], [13, 2], [12, 2], [11, 2], [10, 2], + [9, 2], [8, 2]], + "VHT": [[9, 1], [8, 1], [7, 1], [6, 1], [5, 1], [4, 1], [3, 1], [2, 1], + [1, 1], [0, 1], [9, 2], [8, 2], [7, 2], [6, 2], [5, 2], [4, 2], + [3, 2], [2, 2], [1, 2], [0, 2]] } - #yapf:enable def __init__(self, controllers): base_test.BaseTestClass.__init__(self, controllers) - self.testcase_metric_logger = ( - BlackboxMappedMetricLogger.for_test_case()) - self.testclass_metric_logger = ( - BlackboxMappedMetricLogger.for_test_class()) - self.publish_testcase_metrics = True + self.failure_count_metric = BlackboxMetricLogger.for_test_case( + metric_name='sensitivity') def setup_class(self): """Initializes common test hardware and parameters. @@ -138,50 +81,40 @@ class WifiSensitivityTest(WifiRvrTest, WifiPingTest): This function initializes hardwares and compiles parameters that are common to all tests in this class. """ - self.dut = self.android_devices[-1] + self.client_dut = self.android_devices[-1] req_params = [ - 'RetailAccessPoints', 'sensitivity_test_params', 'testbed_params', - 'RemoteServer' + "RetailAccessPoints", "sensitivity_test_params", "testbed_params", + "RemoteServer" ] - opt_params = ['main_network', 'golden_files_list'] + opt_params = ["main_network", "golden_files_list"] self.unpack_userparams(req_params, opt_params) self.testclass_params = self.sensitivity_test_params self.num_atten = self.attenuators[0].instrument.num_atten self.ping_server = ssh.connection.SshConnection( - ssh.settings.from_config(self.RemoteServer[0]['ssh_config'])) + ssh.settings.from_config(self.RemoteServer[0]["ssh_config"])) self.iperf_server = self.iperf_servers[0] self.iperf_client = self.iperf_clients[0] - self.access_point = retail_ap.create(self.RetailAccessPoints)[0] - self.log.info('Access Point Configuration: {}'.format( + if isinstance(self.iperf_server, ipf.IPerfServerOverSsh): + self.ping_server = self.iperf_server + else: + self.ping_server = self.iperf_client + self.access_points = retail_ap.create(self.RetailAccessPoints) + self.access_point = self.access_points[0] + self.log.info("Access Point Configuration: {}".format( self.access_point.ap_settings)) - self.log_path = os.path.join(logging.log_path, 'results') + self.log_path = os.path.join(logging.log_path, "results") utils.create_dir(self.log_path) - if not hasattr(self, 'golden_files_list'): + if not hasattr(self, "golden_files_list"): self.golden_files_list = [ - os.path.join(self.testbed_params['golden_results_path'], file) - for file in os.listdir( - self.testbed_params['golden_results_path']) + os.path.join(self.testbed_params["golden_results_path"], + file) for file in os.listdir( + self.testbed_params["golden_results_path"]) ] - if hasattr(self, 'bdf'): - self.log.info('Pushing WiFi BDF to DUT.') - wputils.push_bdf(self.dut, self.bdf) - if hasattr(self, 'firmware'): - self.log.info('Pushing WiFi firmware to DUT.') - wlanmdsp = [ - file for file in self.firmware if "wlanmdsp.mbn" in file - ][0] - data_msc = [file for file in self.firmware - if "Data.msc" in file][0] - wputils.push_firmware(self.dut, wlanmdsp, data_msc) self.testclass_results = [] # Turn WiFi ON - if self.testclass_params.get('airplane_mode', 1): - self.log.info('Turning on airplane mode.') - asserts.assert_true( - utils.force_airplane_mode(self.dut, True), - "Can not turn on airplane mode.") - wutils.wifi_toggle_state(self.dut, True) + for dev in self.android_devices: + wutils.wifi_toggle_state(dev, True) def teardown_class(self): # Turn WiFi OFF @@ -194,84 +127,63 @@ class WifiSensitivityTest(WifiRvrTest, WifiPingTest): Args: result: dict containing attenuation, throughput and other meta - data + data """ try: golden_path = next(file_name for file_name in self.golden_files_list - if 'sensitivity_targets' in file_name) + if "sensitivity_targets" in file_name) with open(golden_path, 'r') as golden_file: golden_results = json.load(golden_file) - golden_sensitivity = golden_results[ - self.current_test_name]['sensitivity'] + golden_sensitivity = golden_results[self.current_test_name][ + "sensitivity"] except: - golden_sensitivity = float('nan') - - result_string = ('Throughput = {}%, Sensitivity = {}.' - 'Target Sensitivity = {}'.format( - result['peak_throughput_pct'], - result['sensitivity'], golden_sensitivity)) - if result['peak_throughput_pct'] < 95: - self.log.warning('Result unreliable. Peak rate unstable') - if result['sensitivity'] - golden_sensitivity < self.testclass_params[ - 'sensitivity_tolerance']: - asserts.explicit_pass('Test Passed. {}'.format(result_string)) + golden_sensitivity = float("nan") + + result_string = "Througput = {}, Sensitivity = {}. Target Sensitivity = {}".format( + result["peak_throughput"], result["sensitivity"], + golden_sensitivity) + if result["sensitivity"] - golden_sensitivity < self.testclass_params["sensitivity_tolerance"]: + asserts.explicit_pass("Test Passed. {}".format(result_string)) else: - asserts.fail('Test Failed. {}'.format(result_string)) + asserts.fail("Test Failed. {}".format(result_string)) def process_testclass_results(self): """Saves and plots test results from all executed test cases.""" # write json output testclass_results_dict = collections.OrderedDict() - id_fields = ['mode', 'rate', 'num_streams', 'chain_mask'] - channels_tested = [] for result in self.testclass_results: - testcase_params = result['testcase_params'] - test_id = collections.OrderedDict( - (key, value) for key, value in testcase_params.items() - if key in id_fields) - test_id = tuple(test_id.items()) - if test_id not in testclass_results_dict: - testclass_results_dict[test_id] = collections.OrderedDict() - channel = testcase_params['channel'] - if channel not in channels_tested: - channels_tested.append(channel) - if result['peak_throughput_pct'] >= 95: - testclass_results_dict[test_id][channel] = result[ - 'sensitivity'] - else: - testclass_results_dict[test_id][channel] = '' - + testclass_results_dict[result["test_name"]] = { + "peak_throughput": result["peak_throughput"], + "range": result["range"], + "sensitivity": result["sensitivity"] + } + results_file_path = os.path.join(self.log_path, 'results.json') + with open(results_file_path, 'w') as results_file: + json.dump(testclass_results_dict, results_file, indent=4) # write csv - csv_header = ['Mode', 'MCS', 'Streams', 'Chain', 'Rate (Mbps)'] - for channel in channels_tested: - csv_header.append('Ch. ' + str(channel)) results_file_path = os.path.join(self.log_path, 'results.csv') with open(results_file_path, mode='w') as csv_file: + csv_header = [ + "Channel", "Mode", "MCS", "Streams", "Chain", "Sensitivity", + "Range", "Peak Throughput" + ] writer = csv.DictWriter(csv_file, fieldnames=csv_header) writer.writeheader() - for test_id, test_results in testclass_results_dict.items(): - test_id_dict = dict(test_id) - if 'legacy' in test_id_dict['mode']: - rate_list = self.VALID_RATES['legacy_2GHz'] - else: - rate_list = self.VALID_RATES[test_id_dict['mode']] - data_rate = next(rate.data_rate for rate in rate_list - if rate[:-1] == (test_id_dict['rate'], - test_id_dict['num_streams'])) - row_value = { - 'Mode': test_id_dict['mode'], - 'MCS': test_id_dict['rate'], - 'Streams': test_id_dict['num_streams'], - 'Chain': test_id_dict['chain_mask'], - 'Rate (Mbps)': data_rate, - } - for channel in channels_tested: - row_value['Ch. ' + str(channel)] = test_results.pop( - channel, ' ') - writer.writerow(row_value) - - if not self.testclass_params['traffic_type'].lower() == 'ping': + for result in self.testclass_results: + testcase_params = self.parse_test_params(result["test_name"]) + writer.writerow({ + "Channel": testcase_params["channel"], + "Mode": testcase_params["mode"], + "MCS": testcase_params["rate"], + "Streams": testcase_params["num_streams"], + "Chain": testcase_params["chain_mask"], + "Sensitivity": result["sensitivity"], + "Range": result["range"], + "Peak Throughput": result["peak_throughput"] + }) + + if not self.testclass_params["traffic_type"].lower() == "ping": WifiRvrTest.process_testclass_results(self) def process_rvr_test_results(self, testcase_params, rvr_result): @@ -286,24 +198,23 @@ class WifiSensitivityTest(WifiRvrTest, WifiPingTest): rvr_result: dict containing attenuation, throughput and other meta data """ - rvr_result['peak_throughput'] = max(rvr_result['throughput_receive']) - rvr_result['peak_throughput_pct'] = 100 + rvr_result["peak_throughput"] = max(rvr_result["throughput_receive"]) throughput_check = [ - throughput < rvr_result['peak_throughput'] * - (self.testclass_params['throughput_pct_at_sensitivity'] / 100) - for throughput in rvr_result['throughput_receive'] + throughput < rvr_result["peak_throughput"] * + (self.testclass_params["throughput_pct_at_sensitivity"] / 100) + for throughput in rvr_result["throughput_receive"] ] consistency_check = [ idx for idx in range(len(throughput_check)) if all(throughput_check[idx:]) ] - rvr_result['atten_at_range'] = rvr_result['attenuation'][ + rvr_result["atten_at_range"] = rvr_result["attenuation"][ consistency_check[0] - 1] - rvr_result['range'] = rvr_result['fixed_attenuation'] + ( - rvr_result['atten_at_range']) - rvr_result['sensitivity'] = self.testclass_params['ap_tx_power'] + ( - self.testbed_params['ap_tx_power_offset'][str( - testcase_params['channel'])] - rvr_result['range']) + rvr_result["range"] = rvr_result["fixed_attenuation"] + ( + rvr_result["atten_at_range"]) + rvr_result["sensitivity"] = self.testclass_params["ap_tx_power"] + ( + self.testbed_params["ap_tx_power_offset"][str( + testcase_params["channel"])] - rvr_result["range"]) WifiRvrTest.process_test_results(self, rvr_result) def process_ping_test_results(self, testcase_params, ping_result): @@ -318,22 +229,12 @@ class WifiSensitivityTest(WifiRvrTest, WifiPingTest): rvr_result: dict containing attenuation, throughput and other meta data """ + testcase_params[ + "range_ping_loss_threshold"] = 100 - testcase_params["throughput_pct_at_sensitivity"] WifiPingTest.process_ping_results(self, testcase_params, ping_result) - ping_result['sensitivity'] = self.testclass_params['ap_tx_power'] + ( - self.testbed_params['ap_tx_power_offset'][str( - testcase_params['channel'])] - ping_result['range']) - - def setup_sensitivity_test(self, testcase_params): - if testcase_params['traffic_type'].lower() == 'ping': - self.setup_ping_test(testcase_params) - self.run_sensitivity_test = self.run_ping_test - self.process_sensitivity_test_results = ( - self.process_ping_test_results) - else: - self.setup_rvr_test(testcase_params) - self.run_sensitivity_test = self.run_rvr_test - self.process_sensitivity_test_results = ( - self.process_rvr_test_results) + ping_result["sensitivity"] = self.testclass_params["ap_tx_power"] + ( + self.testbed_params["ap_tx_power_offset"][str( + testcase_params["channel"])] - ping_result["range"]) def setup_ap(self, testcase_params): """Sets up the AP and attenuator to compensate for AP chain imbalance. @@ -342,23 +243,23 @@ class WifiSensitivityTest(WifiRvrTest, WifiPingTest): testcase_params: dict containing AP and other test params """ band = self.access_point.band_lookup_by_channel( - testcase_params['channel']) - if '2G' in band: - frequency = wutils.WifiEnums.channel_2G_to_freq[ - testcase_params['channel']] + testcase_params["channel"]) + if "2G" in band: + frequency = wutils.WifiEnums.channel_2G_to_freq[testcase_params[ + "channel"]] else: - frequency = wutils.WifiEnums.channel_5G_to_freq[ - testcase_params['channel']] + frequency = wutils.WifiEnums.channel_5G_to_freq[testcase_params[ + "channel"]] if frequency in wutils.WifiEnums.DFS_5G_FREQUENCIES: - self.access_point.set_region(self.testbed_params['DFS_region']) + self.access_point.set_region(self.testbed_params["DFS_region"]) else: - self.access_point.set_region(self.testbed_params['default_region']) - self.access_point.set_channel(band, testcase_params['channel']) - self.access_point.set_bandwidth(band, testcase_params['mode']) - self.access_point.set_power(band, testcase_params['ap_tx_power']) + self.access_point.set_region(self.testbed_params["default_region"]) + self.access_point.set_channel(band, testcase_params["channel"]) + self.access_point.set_bandwidth(band, testcase_params["mode"]) + self.access_point.set_power(band, testcase_params["ap_tx_power"]) self.access_point.set_rate( - band, testcase_params['mode'], testcase_params['num_streams'], - testcase_params['rate'], testcase_params['short_gi']) + band, testcase_params["mode"], testcase_params["num_streams"], + testcase_params["rate"], testcase_params["short_gi"]) # Set attenuator offsets and set attenuators to initial condition atten_offsets = self.testbed_params['chain_offset'][str( testcase_params['channel'])] @@ -367,55 +268,12 @@ class WifiSensitivityTest(WifiRvrTest, WifiPingTest): atten.offset = atten_offsets[0] elif 'AP-Chain-1' in atten.path: atten.offset = atten_offsets[1] - self.log.info('Access Point Configuration: {}'.format( - self.access_point.ap_settings)) - - def setup_dut(self, testcase_params): - """Sets up the DUT in the configuration required by the test. - - Args: - testcase_params: dict containing AP and other test params - """ - # Check battery level before test - if not wputils.health_check(self.dut, 10): - asserts.skip('Battery level too low. Skipping test.') - # Turn screen off to preserve battery - self.dut.go_to_sleep() - band = self.access_point.band_lookup_by_channel( - testcase_params['channel']) - current_network = self.dut.droid.wifiGetConnectionInfo() - try: - connected = wutils.validate_connection(self.dut) is not None - except: - connected = False - if connected and current_network['SSID'] == self.main_network[band][ - 'SSID']: - self.log.info('Already connected to desired network') - else: - wutils.reset_wifi(self.dut) - self.dut.droid.wifiSetCountryCode( - self.testclass_params['country_code']) - self.main_network[band]['channel'] = testcase_params['channel'] - wutils.wifi_connect( - self.dut, - self.main_network[band], - num_of_tries=5, - check_connectivity=False) - self.dut_ip = self.dut.droid.connectivityGetIPv4Addresses('wlan0')[0] - atten_dut_chain_map = wputils.get_current_atten_dut_chain_map( - self.attenuators, self.dut, self.ping_server) - self.log.info( - "Current Attenuator-DUT Chain Map: {}".format(atten_dut_chain_map)) - for idx, atten in enumerate(self.attenuators): - if atten_dut_chain_map[idx] == testcase_params['attenuated_chain']: + if testcase_params["attenuated_chain"] in atten.path: atten.offset = atten.instrument.max_atten + self.log.info("Access Point Configuration: {}".format( + self.access_point.ap_settings)) - def extract_test_id(self, testcase_params, id_fields): - test_id = collections.OrderedDict( - (param, testcase_params[param]) for param in id_fields) - return test_id - - def get_start_atten(self, testcase_params): + def get_start_atten(self): """Gets the starting attenuation for this sensitivity test. The function gets the starting attenuation by checking whether a test @@ -427,437 +285,241 @@ class WifiSensitivityTest(WifiRvrTest, WifiPingTest): """ # Get the current and reference test config. The reference test is the # one performed at the current MCS+1 - current_rate = testcase_params['rate'] - ref_test_params = self.extract_test_id( - testcase_params, - ['channel', 'mode', 'rate', 'num_streams', 'chain_mask']) - if 'legacy' in testcase_params['mode']: - if testcase_params['channel'] <= 13: - rate_list = self.VALID_RATES['legacy_2GHz'] + current_test_params = self.parse_test_params(self.current_test_name) + ref_test_params = current_test_params.copy() + if "legacy" in current_test_params["mode"] and current_test_params["rate"] < 54: + if current_test_params["channel"] <= 13: + ref_index = self.VALID_RATES["legacy_2GHz"].index( + [current_test_params["rate"], 1]) - 1 + ref_test_params["rate"] = self.VALID_RATES["legacy_2GHz"][ + ref_index][0] else: - rate_list = self.VALID_RATES['legacy_5GHz'] - ref_index = max( - 0, - rate_list.index(self.RateTuple(current_rate, 1, current_rate)) - - 1) - ref_test_params['rate'] = rate_list[ref_index].mcs + ref_index = self.VALID_RATES["legacy_5GHz"].index( + [current_test_params["rate"], 1]) - 1 + ref_test_params["rate"] = self.VALID_RATES["legacy_5GHz"][ + ref_index][0] else: - ref_test_params['rate'] = current_rate + 1 + ref_test_params["rate"] = ref_test_params["rate"] + 1 # Check if reference test has been run and set attenuation accordingly previous_params = [ - self.extract_test_id( - result['testcase_params'], - ['channel', 'mode', 'rate', 'num_streams', 'chain_mask']) + self.parse_test_params(result["test_name"]) for result in self.testclass_results ] - try: ref_index = previous_params.index(ref_test_params) - start_atten = self.testclass_results[ref_index][ - 'atten_at_range'] - ( - self.testclass_params['adjacent_mcs_range_gap']) - except ValueError: - self.log.warning( - 'Reference test not found. Starting from {} dB'.format( - self.testclass_params['atten_start'])) - start_atten = self.testclass_params['atten_start'] - start_atten = max(start_atten, 0) + start_atten = self.testclass_results[ref_index]["atten_at_range"] - ( + self.testclass_params["adjacent_mcs_range_gap"]) + except: + print("Reference test not found. Starting from {} dB".format( + self.testclass_params["atten_start"])) + start_atten = self.testclass_params["atten_start"] return start_atten - def compile_test_params(self, testcase_params): + def parse_test_params(self, test_name): """Function that generates test params based on the test name.""" - if testcase_params['chain_mask'] in ['0', '1']: - testcase_params['attenuated_chain'] = 'DUT-Chain-{}'.format( - 1 if testcase_params['chain_mask'] == '0' else 0) + test_name_params = test_name.split("_") + testcase_params = collections.OrderedDict() + testcase_params["channel"] = int(test_name_params[2][2:]) + testcase_params["mode"] = test_name_params[3] + + if "legacy" in testcase_params["mode"].lower(): + testcase_params["rate"] = float( + str(test_name_params[4]).replace("p", ".")) + else: + testcase_params["rate"] = int(test_name_params[4][3:]) + testcase_params["num_streams"] = int(test_name_params[5][3:]) + testcase_params["short_gi"] = 0 + testcase_params["chain_mask"] = test_name_params[6][2:] + if testcase_params["chain_mask"] in ["0", "1"]: + testcase_params["attenuated_chain"] = "DUT-Chain-{}".format( + 1 if testcase_params['chain_mask'] == "0" else 0) else: - # Set attenuated chain to -1. Do not set to None as this will be - # compared to RF chain map which may include None - testcase_params['attenuated_chain'] = -1 - - self.testclass_params[ - 'range_ping_loss_threshold'] = 100 - self.testclass_params[ - 'throughput_pct_at_sensitivity'] - if self.testclass_params['traffic_type'] == 'UDP': - testcase_params['iperf_args'] = '-i 1 -t {} -J -u -b {}'.format( - self.testclass_params['iperf_duration'], - self.testclass_params['UDP_rates'][testcase_params['mode']]) - elif self.testclass_params['traffic_type'] == 'TCP': - testcase_params['iperf_args'] = '-i 1 -t {} -J'.format( - self.testclass_params['iperf_duration']) - - if self.testclass_params['traffic_type'] != 'ping' and isinstance( - self.iperf_client, iperf_client.IPerfClientOverAdb): - testcase_params['iperf_args'] += ' -R' - testcase_params['use_client_output'] = True + testcase_params["attenuated_chain"] = None + + if self.testclass_params["traffic_type"] == "UDP": + testcase_params["iperf_args"] = '-i 1 -t {} -J -u -b {}'.format( + self.testclass_params["iperf_duration"], + self.testclass_params["UDP_rates"][testcase_params["mode"]]) + elif self.testclass_params["traffic_type"] == "TCP": + testcase_params["iperf_args"] = '-i 1 -t {} -J'.format( + self.testclass_params["iperf_duration"]) + + if not isinstance(self.iperf_server, ipf.IPerfServerOverAdb): + testcase_params["iperf_args"] += ' -R' + testcase_params["use_client_output"] = True else: - testcase_params['use_client_output'] = False + testcase_params["use_client_output"] = False return testcase_params - def _test_sensitivity(self, testcase_params): + def _test_sensitivity(self): """ Function that gets called for each test case The function gets called in each rvr test case. The function customizes the rvr test based on the test name of the test that called it """ # Compile test parameters from config and test name - testcase_params = self.compile_test_params(testcase_params) + testcase_params = self.parse_test_params(self.current_test_name) testcase_params.update(self.testclass_params) - testcase_params['atten_start'] = self.get_start_atten(testcase_params) + testcase_params["atten_start"] = self.get_start_atten() num_atten_steps = int( - (testcase_params['atten_stop'] - testcase_params['atten_start']) / - testcase_params['atten_step']) - testcase_params['atten_range'] = [ - testcase_params['atten_start'] + x * testcase_params['atten_step'] + (testcase_params["atten_stop"] - testcase_params["atten_start"]) / + testcase_params["atten_step"]) + testcase_params["atten_range"] = [ + testcase_params["atten_start"] + x * testcase_params["atten_step"] for x in range(0, num_atten_steps) ] # Prepare devices and run test - self.setup_sensitivity_test(testcase_params) - result = self.run_sensitivity_test(testcase_params) - self.process_sensitivity_test_results(testcase_params, result) - + if testcase_params["traffic_type"].lower() == "ping": + self.setup_ping_test(testcase_params) + result = self.run_ping_test(testcase_params) + self.process_ping_test_results(testcase_params, result) + else: + self.setup_rvr_test(testcase_params) + result = self.run_rvr_test(testcase_params) + self.process_rvr_test_results(testcase_params, result) # Post-process results self.testclass_results.append(result) self.pass_fail_check(result) - def generate_test_cases(self, channels, modes, chain_mask): + def generate_test_cases(self, channels, chain_mask): """Function that auto-generates test cases for a test class.""" - test_cases = [] + testcase_wrapper = self._test_sensitivity for channel in channels: - requested_modes = set(modes).intersection( - set(self.VALID_TEST_CONFIGS[channel])) - for mode in requested_modes: - if 'VHT' in mode: - rates = self.VALID_RATES[mode] - elif 'HT' in mode: - rates = self.VALID_RATES[mode] - elif 'legacy' in mode and channel < 14: - rates = self.VALID_RATES['legacy_2GHz'] - elif 'legacy' in mode and channel > 14: - rates = self.VALID_RATES['legacy_5GHz'] + for mode in self.VALID_TEST_CONFIGS[channel]: + if "VHT" in mode: + rates = self.VALID_RATES["VHT"] + elif "HT" in mode: + rates = self.VALID_RATES["HT"] + elif "legacy" in mode and channel < 14: + rates = self.VALID_RATES["legacy_2GHz"] + elif "legacy" in mode and channel > 14: + rates = self.VALID_RATES["legacy_5GHz"] else: - raise ValueError('Invalid test mode.') + raise ValueError("Invalid test mode.") for chain, rate in itertools.product(chain_mask, rates): - testcase_params = collections.OrderedDict( - channel=channel, - mode=mode, - rate=rate.mcs, - num_streams=rate.streams, - short_gi=1, - chain_mask=chain) - if chain in ['0', '1'] and rate[1] == 2: + if str(chain) in ["0", "1"] and rate[1] == 2: # Do not test 2-stream rates in single chain mode continue - if 'legacy' in mode: - testcase_name = ('test_sensitivity_ch{}_{}_{}_nss{}' - '_ch{}'.format( - channel, mode, - str(rate.mcs).replace('.', 'p'), - rate.streams, chain)) + if "legacy" in mode: + testcase_name = "test_sensitivity_ch{}_{}_{}_nss{}_ch{}".format( + channel, mode, + str(rate[0]).replace(".", "p"), rate[1], chain) else: - testcase_name = ('test_sensitivity_ch{}_{}_mcs{}_nss{}' - '_ch{}'.format( - channel, mode, rate.mcs, - rate.streams, chain)) - setattr(self, testcase_name, - partial(self._test_sensitivity, testcase_params)) - test_cases.append(testcase_name) - return test_cases + testcase_name = "test_sensitivity_ch{}_{}_mcs{}_nss{}_ch{}".format( + channel, mode, rate[0], rate[1], chain) + setattr(self, testcase_name, testcase_wrapper) + self.tests.append(testcase_name) class WifiSensitivity_AllChannels_Test(WifiSensitivityTest): def __init__(self, controllers): - super().__init__(controllers) - self.tests = self.generate_test_cases( - [6, 36, 40, 44, 48, 149, 153, 157, 161], - ['VHT20', 'VHT40', 'VHT80'], ['0', '1', '2x2']) - - -class WifiSensitivity_SampleChannels_Test(WifiSensitivityTest): - def __init__(self, controllers): - super().__init__(controllers) - self.tests = self.generate_test_cases( - [6, 36, 149], ['VHT20', 'VHT40', 'VHT80'], ['0', '1', '2x2']) + base_test.BaseTestClass.__init__(self, controllers) + self.generate_test_cases( + [1, 2, 6, 10, 11, 36, 40, 44, 48, 149, 153, 157, 161], + ["0", "1", "2x2"]) class WifiSensitivity_2GHz_Test(WifiSensitivityTest): def __init__(self, controllers): - super().__init__(controllers) - self.tests = self.generate_test_cases([1, 2, 6, 10, 11], ['VHT20'], - ['0', '1', '2x2']) + base_test.BaseTestClass.__init__(self, controllers) + self.generate_test_cases([1, 2, 6, 10, 11], ["0", "1", "2x2"]) class WifiSensitivity_5GHz_Test(WifiSensitivityTest): def __init__(self, controllers): - super().__init__(controllers) - self.tests = self.generate_test_cases( - [36, 40, 44, 48, 149, 153, 157, 161], ['VHT20', 'VHT40', 'VHT80'], - ['0', '1', '2x2']) + base_test.BaseTestClass.__init__(self, controllers) + self.generate_test_cases([36, 40, 44, 48, 149, 153, 157, 161], + ["0", "1", "2x2"]) class WifiSensitivity_UNII1_Test(WifiSensitivityTest): def __init__(self, controllers): - super().__init__(controllers) - self.tests = self.generate_test_cases( - [36, 40, 44, 48], ['VHT20', 'VHT40', 'VHT80'], ['0', '1', '2x2']) + base_test.BaseTestClass.__init__(self, controllers) + self.generate_test_cases([36, 40, 44, 48], ["0", "1", "2x2"]) class WifiSensitivity_UNII3_Test(WifiSensitivityTest): def __init__(self, controllers): - super().__init__(controllers) - self.tests = self.generate_test_cases([149, 153, 157, 161], - ['VHT20', 'VHT40', 'VHT80'], - ['0', '1', '2x2']) + base_test.BaseTestClass.__init__(self, controllers) + self.generate_test_cases([149, 153, 157, 161], ["0", "1", "2x2"]) -# Over-the air version of senstivity tests -class WifiOtaSensitivityTest(WifiSensitivityTest): - """Class to test over-the-air senstivity. +class WifiSensitivity_ch1_Test(WifiSensitivityTest): + def __init__(self, controllers): + base_test.BaseTestClass.__init__(self, controllers) + self.generate_test_cases([1], ["0", "1", "2x2"]) - This class implements measures WiFi sensitivity tests in an OTA chamber. - It allows setting orientation and other chamber parameters to study - performance in varying channel conditions - """ +class WifiSensitivity_ch2_Test(WifiSensitivityTest): def __init__(self, controllers): base_test.BaseTestClass.__init__(self, controllers) - self.testcase_metric_logger = ( - BlackboxMappedMetricLogger.for_test_case()) - self.testclass_metric_logger = ( - BlackboxMappedMetricLogger.for_test_class()) - self.publish_testcase_metrics = False + self.generate_test_cases([2], ["0", "1", "2x2"]) - def setup_class(self): - WifiSensitivityTest.setup_class(self) - self.ota_chamber = ota_chamber.create( - self.user_params['OTAChamber'])[0] - def teardown_class(self): - WifiSensitivityTest.teardown_class(self) - self.ota_chamber.reset_chamber() +class WifiSensitivity_ch6_Test(WifiSensitivityTest): + def __init__(self, controllers): + base_test.BaseTestClass.__init__(self, controllers) + self.generate_test_cases([6], ["0", "1", "2x2"]) - def setup_sensitivity_test(self, testcase_params): - # Setup turntable - self.ota_chamber.set_orientation(testcase_params['orientation']) - # Continue test setup - WifiSensitivityTest.setup_sensitivity_test(self, testcase_params) - def process_testclass_results(self): - """Saves and plots test results from all executed test cases.""" - testclass_results_dict = collections.OrderedDict() - id_fields = ['mode', 'rate', 'num_streams', 'chain_mask'] - plots = [] - for result in self.testclass_results: - test_id = self.extract_test_id(result['testcase_params'], - id_fields) - test_id = tuple(test_id.items()) - channel = result['testcase_params']['channel'] - if test_id not in testclass_results_dict: - testclass_results_dict[test_id] = collections.OrderedDict() - if channel not in testclass_results_dict[test_id]: - testclass_results_dict[test_id][channel] = { - 'orientation': [], - 'sensitivity': [] - } - testclass_results_dict[test_id][channel]['orientation'].append( - result['testcase_params']['orientation']) - if result['peak_throughput_pct'] >= 95: - testclass_results_dict[test_id][channel]['sensitivity'].append( - result['sensitivity']) - else: - testclass_results_dict[test_id][channel]['sensitivity'].append( - float('nan')) - - for test_id, test_data in testclass_results_dict.items(): - test_id_dict = dict(test_id) - if 'legacy' in test_id_dict['mode']: - test_id_str = '{} {}Mbps, Chain Mask = {}'.format( - test_id_dict['mode'], test_id_dict['rate'], - test_id_dict['chain_mask']) - metric_test_config = '{}_{}_ch{}'.format( - test_id_dict['mode'], test_id_dict['rate'], - test_id_dict['chain_mask']) - else: - test_id_str = '{} MCS{} Nss{}, Chain Mask = {}'.format( - test_id_dict['mode'], test_id_dict['rate'], - test_id_dict['num_streams'], test_id_dict['chain_mask']) - metric_test_config = '{}_mcs{}_nss{}_ch{}'.format( - test_id_dict['mode'], test_id_dict['rate'], - test_id_dict['num_streams'], test_id_dict['chain_mask']) - curr_plot = wputils.BokehFigure( - title=str(test_id_str), - x_label='Orientation (deg)', - primary_y_label='Sensitivity (dBm)') - for channel, channel_results in test_data.items(): - curr_plot.add_line( - channel_results['orientation'], - channel_results['sensitivity'], - legend='Channel {}'.format(channel), - marker='circle') - metric_tag = 'ota_summary_ch{}_{}'.format( - channel, metric_test_config) - metric_name = metric_tag + '.avg_sensitivity' - metric_value = numpy.nanmean(channel_results['sensitivity']) - self.testclass_metric_logger.add_metric( - metric_name, metric_value) - self.log.info(("Average Sensitivity for {}: {:.2f}").format( - metric_tag, metric_value)) - current_context = ( - context.get_current_context().get_full_output_path()) - output_file_path = os.path.join(current_context, - str(test_id_str) + '.html') - curr_plot.generate_figure(output_file_path) - plots.append(curr_plot) - output_file_path = os.path.join(current_context, 'results.html') - wputils.BokehFigure.save_figures(plots, output_file_path) - - def get_start_atten(self, testcase_params): - """Gets the starting attenuation for this sensitivity test. +class WifiSensitivity_ch10_Test(WifiSensitivityTest): + def __init__(self, controllers): + base_test.BaseTestClass.__init__(self, controllers) + self.generate_test_cases([10], ["0", "1", "2x2"]) - The function gets the starting attenuation by checking whether a test - at the same rate configuration has executed. If so it sets the starting - point a configurable number of dBs below the reference test. - Returns: - start_atten: starting attenuation for current test - """ - # Get the current and reference test config. The reference test is the - # one performed at the current MCS+1 - ref_test_params = self.extract_test_id( - testcase_params, - ['channel', 'mode', 'rate', 'num_streams', 'chain_mask']) - # Check if reference test has been run and set attenuation accordingly - previous_params = [ - self.extract_test_id( - result['testcase_params'], - ['channel', 'mode', 'rate', 'num_streams', 'chain_mask']) - for result in self.testclass_results - ] - try: - ref_index = previous_params[::-1].index(ref_test_params) - ref_index = len(previous_params) - 1 - ref_index - start_atten = self.testclass_results[ref_index][ - 'atten_at_range'] - ( - self.testclass_params['adjacent_mcs_range_gap']) - except ValueError: - print('Reference test not found. Starting from {} dB'.format( - self.testclass_params['atten_start'])) - start_atten = self.testclass_params['atten_start'] - start_atten = max(start_atten, 0) - return start_atten +class WifiSensitivity_ch11_Test(WifiSensitivityTest): + def __init__(self, controllers): + base_test.BaseTestClass.__init__(self, controllers) + self.generate_test_cases([11], ["0", "1", "2x2"]) - def generate_test_cases(self, channels, modes, requested_rates, chain_mask, - angles): - """Function that auto-generates test cases for a test class.""" - test_cases = [] - for channel in channels: - requested_modes = set(modes).intersection( - set(self.VALID_TEST_CONFIGS[channel])) - for mode in requested_modes: - if 'VHT' in mode: - valid_rates = self.VALID_RATES[mode] - elif 'HT' in mode: - valid_rates = self.VALID_RATES[mode] - elif 'legacy' in mode and channel < 14: - valid_rates = self.VALID_RATES['legacy_2GHz'] - elif 'legacy' in mode and channel > 14: - valid_rates = self.VALID_RATES['legacy_5GHz'] - else: - raise ValueError('Invalid test mode.') - for chain, rate, angle in itertools.product( - chain_mask, valid_rates, angles): - testcase_params = collections.OrderedDict( - channel=channel, - mode=mode, - rate=rate.mcs, - num_streams=rate.streams, - short_gi=1, - chain_mask=chain, - orientation=angle) - if rate not in requested_rates: - continue - if str(chain) in ['0', '1'] and rate[1] == 2: - # Do not test 2-stream rates in single chain mode - continue - if 'legacy' in mode: - testcase_name = ('test_sensitivity_ch{}_{}_{}_nss{}' - '_ch{}_{}deg'.format( - channel, mode, - str(rate.mcs).replace('.', 'p'), - rate.streams, chain, angle)) - else: - testcase_name = ('test_sensitivity_ch{}_{}_mcs{}_nss{}' - '_ch{}_{}deg'.format( - channel, mode, rate.mcs, - rate.streams, chain, angle)) - setattr(self, testcase_name, - partial(self._test_sensitivity, testcase_params)) - test_cases.append(testcase_name) - return test_cases + +class WifiSensitivity_ch36_Test(WifiSensitivityTest): + def __init__(self, controllers): + base_test.BaseTestClass.__init__(self, controllers) + self.generate_test_cases([36], ["0", "1", "2x2"]) -class WifiOtaSensitivity_TenDegree_Test(WifiOtaSensitivityTest): +class WifiSensitivity_ch40_Test(WifiSensitivityTest): def __init__(self, controllers): - WifiOtaSensitivityTest.__init__(self, controllers) - requested_channels = [6, 36, 149] - requested_rates = [ - self.RateTuple(8, 1, 86.7), - self.RateTuple(2, 1, 21.7), - self.RateTuple(8, 2, 173.3), - self.RateTuple(2, 2, 43.3) - ] - self.tests = self.generate_test_cases( - requested_channels, ['VHT20', 'VHT80'], requested_rates, ['2x2'], - list(range(0, 360, 10))) + base_test.BaseTestClass.__init__(self, controllers) + self.generate_test_cases([40], ["0", "1", "2x2"]) -class WifiOtaSensitivity_SingleChain_TenDegree_Test(WifiOtaSensitivityTest): +class WifiSensitivity_ch44_Test(WifiSensitivityTest): def __init__(self, controllers): - WifiOtaSensitivityTest.__init__(self, controllers) - requested_channels = [6, 36, 149] - requested_rates = [ - self.RateTuple(8, 1, 86.7), - self.RateTuple(2, 1, 21.7) - ] - self.tests = self.generate_test_cases( - requested_channels, ['VHT20', 'VHT80'], requested_rates, ['2x2'], - list(range(0, 360, 10))) + base_test.BaseTestClass.__init__(self, controllers) + self.generate_test_cases([44], ["0", "1", "2x2"]) -class WifiOtaSensitivity_ThirtyDegree_Test(WifiOtaSensitivityTest): +class WifiSensitivity_ch48_Test(WifiSensitivityTest): def __init__(self, controllers): - WifiOtaSensitivityTest.__init__(self, controllers) - requested_channels = [6, 36, 149] - requested_rates = [ - self.RateTuple(9, 1, 96), - self.RateTuple(8, 1, 86.7), - self.RateTuple(7, 1, 72.2), - self.RateTuple(4, 1, 43.3), - self.RateTuple(2, 1, 21.7), - self.RateTuple(0, 1, 7.2), - self.RateTuple(9, 2, 192), - self.RateTuple(8, 2, 173.3), - self.RateTuple(7, 2, 144.4), - self.RateTuple(4, 2, 86.7), - self.RateTuple(2, 2, 43.3), - self.RateTuple(0, 2, 14.4) - ] - self.tests = self.generate_test_cases( - requested_channels, ['VHT20', 'VHT80'], requested_rates, ['2x2'], - list(range(0, 360, 30))) + base_test.BaseTestClass.__init__(self, controllers) + self.generate_test_cases([48], ["0", "1", "2x2"]) -class WifiOtaSensitivity_45Degree_Test(WifiOtaSensitivityTest): +class WifiSensitivity_ch149_Test(WifiSensitivityTest): def __init__(self, controllers): - WifiOtaSensitivityTest.__init__(self, controllers) - requested_rates = [ - self.RateTuple(8, 1, 86.7), - self.RateTuple(2, 1, 21.7), - self.RateTuple(8, 2, 173.3), - self.RateTuple(2, 2, 43.3) - ] - self.tests = self.generate_test_cases( - [1, 6, 11, 36, 40, 44, 48, 149, 153, 157, 161], ['VHT20', 'VHT80'], - requested_rates, ['2x2'], list(range(0, 360, 45))) + base_test.BaseTestClass.__init__(self, controllers) + self.generate_test_cases([149], ["0", "1", "2x2"]) + + +class WifiSensitivity_ch153_Test(WifiSensitivityTest): + def __init__(self, controllers): + base_test.BaseTestClass.__init__(self, controllers) + self.generate_test_cases([153], ["0", "1", "2x2"]) + + +class WifiSensitivity_ch157_Test(WifiSensitivityTest): + def __init__(self, controllers): + base_test.BaseTestClass.__init__(self, controllers) + self.generate_test_cases([157], ["0", "1", "2x2"]) + + +class WifiSensitivity_ch161_Test(WifiSensitivityTest): + def __init__(self, controllers): + base_test.BaseTestClass.__init__(self, controllers) + self.generate_test_cases([161], ["0", "1", "2x2"]) diff --git a/acts/tests/google/wifi/WifiSoftApAcsTest.py b/acts/tests/google/wifi/WifiSoftApAcsTest.py index 7f92e27643..c3e3b231d5 100644..100755 --- a/acts/tests/google/wifi/WifiSoftApAcsTest.py +++ b/acts/tests/google/wifi/WifiSoftApAcsTest.py @@ -44,9 +44,10 @@ class WifiSoftApAcsTest(WifiBaseTest): * 2GHz and 5GHz Wi-Fi network visible to the device. """ - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + WifiBaseTest.__init__(self, controllers) + def setup_class(self): self.dut = self.android_devices[0] self.dut_client = self.android_devices[1] wutils.wifi_test_device_init(self.dut) @@ -65,10 +66,13 @@ class WifiSoftApAcsTest(WifiBaseTest): asserts.assert_equal(self.dut_client.droid.wifiGetVerboseLoggingLevel(), 1, "Failed to enable WiFi verbose logging on the client dut.") req_params = [] - opt_param = ["iperf_server_address", "reference_networks", - "iperf_server_port"] + opt_param = ["iperf_server_address", "reference_networks"] self.unpack_userparams( req_param_names=req_params, opt_param_names=opt_param) + if "iperf_server_address" in self.user_params: + self.iperf_server = self.iperf_servers[0] + if hasattr(self, 'iperf_server'): + self.iperf_server.start() def setup_test(self): self.dut.droid.wakeLockAcquireBright() @@ -88,6 +92,10 @@ class WifiSoftApAcsTest(WifiBaseTest): pass self.access_points[0].close() + def teardown_class(self): + if hasattr(self, 'iperf_server'): + self.iperf_server.stop() + def on_fail(self, test_name, begin_time): self.dut.take_bug_report(test_name, begin_time) self.dut.cat_adb_log(test_name, begin_time) @@ -105,7 +113,7 @@ class WifiSoftApAcsTest(WifiBaseTest): network, ad = params SSID = network[WifiEnums.SSID_KEY] self.log.info("Starting iperf traffic through {}".format(SSID)) - port_arg = "-p {} -t {}".format(self.iperf_server_port, 3) + port_arg = "-p {} -t {}".format(self.iperf_server.port, 3) success, data = ad.run_iperf_client(self.iperf_server_address, port_arg) self.log.debug(pprint.pformat(data)) @@ -549,7 +557,7 @@ class WifiSoftApAcsTest(WifiBaseTest): self.verify_acs_channel(chan, avoid_chan) @test_tracker_info(uuid="03cb9163-bca3-442e-9691-6df82f8c51c7") - def test_softap_5G_avoid_channel_157(self): + def test_softap_2G_avoid_channel_157(self): """Test to configure AP and bring up SoftAp on 5G.""" self.configure_ap(channel_5g=157) network = self.reference_networks[0]["5g"] diff --git a/acts/tests/google/wifi/WifiSoftApPerformanceTest.py b/acts/tests/google/wifi/WifiSoftApPerformanceTest.py index a31812f3cc..0b20d46a99 100644 --- a/acts/tests/google/wifi/WifiSoftApPerformanceTest.py +++ b/acts/tests/google/wifi/WifiSoftApPerformanceTest.py @@ -14,220 +14,126 @@ # See the License for the specific language governing permissions and # limitations under the License. -import collections -import logging -import os +import WifiRvrTest from acts import base_test -from acts import utils -from acts.controllers import iperf_server as ipf -from acts.controllers import iperf_client as ipc -from acts.metrics.loggers.blackbox import BlackboxMappedMetricLogger +from acts.test_decorators import test_tracker_info from acts.test_utils.wifi import wifi_test_utils as wutils -from acts.test_utils.wifi import wifi_performance_test_utils as wputils -from WifiRvrTest import WifiRvrTest -AccessPointTuple = collections.namedtuple(('AccessPointTuple'), - ['ap_settings']) - -class WifiSoftApRvrTest(WifiRvrTest): +class WifiSoftApRvrTest(WifiRvrTest.WifiRvrTest): def __init__(self, controllers): base_test.BaseTestClass.__init__(self, controllers) self.tests = ("test_rvr_TCP_DL_2GHz", "test_rvr_TCP_UL_2GHz", "test_rvr_TCP_DL_5GHz", "test_rvr_TCP_UL_5GHz") - self.testcase_metric_logger = ( - BlackboxMappedMetricLogger.for_test_case()) - self.testclass_metric_logger = ( - BlackboxMappedMetricLogger.for_test_class()) - self.publish_testcase_metrics = True - - def setup_class(self): - """Initializes common test hardware and parameters. - - This function initializes hardwares and compiles parameters that are - common to all tests in this class. - """ - self.dut = self.android_devices[-1] - req_params = ['sap_test_params', 'testbed_params', 'AndroidDevice'] - opt_params = ['main_network', 'golden_files_list'] - self.unpack_userparams(req_params, opt_params) - self.testclass_params = self.sap_test_params - self.num_atten = self.attenuators[0].instrument.num_atten - self.iperf_server = ipf.create([{ - "AndroidDevice": - self.android_devices[0].serial, - "port": - "5201" - }])[0] - self.iperf_client = ipc.create([{ - "AndroidDevice": - self.android_devices[1].serial, - "port": - "5201" - }])[0] - - self.log_path = os.path.join(logging.log_path, 'results') - utils.create_dir(self.log_path) - if not hasattr(self, 'golden_files_list'): - self.golden_files_list = [ - os.path.join(self.testbed_params['golden_results_path'], file) - for file in os.listdir( - self.testbed_params['golden_results_path']) - ] - if hasattr(self, 'bdf'): - self.log.info('Pushing WiFi BDF to DUT.') - wputils.push_bdf(self.dut, self.bdf) - if hasattr(self, 'firmware'): - self.log.info('Pushing WiFi firmware to DUT.') - wlanmdsp = [ - file for file in self.firmware if "wlanmdsp.mbn" in file - ][0] - data_msc = [file for file in self.firmware - if "Data.msc" in file][0] - wputils.push_firmware(self.dut, wlanmdsp, data_msc) - self.testclass_results = [] - - # Turn WiFi ON - for dev in self.android_devices: - wutils.wifi_toggle_state(dev, True) - - def teardown_class(self): - # Turn WiFi OFF - wutils.stop_wifi_tethering(self.android_devices[0]) - for dev in self.android_devices: - wutils.wifi_toggle_state(dev, False) - self.process_testclass_results() - - def teardown_test(self): - wutils.stop_wifi_tethering(self.android_devices[0]) def get_sap_connection_info(self): info = {} info["client_ip_address"] = self.android_devices[ 1].droid.connectivityGetIPv4Addresses('wlan0')[0] info["ap_ip_address"] = self.android_devices[ - 0].droid.connectivityGetIPv4Addresses('wlan1')[0] - info["frequency"] = self.android_devices[1].adb.shell( + 0].droid.connectivityGetIPv4Addresses('wlan0')[0] + info["frequency"] = self.client_dut.adb.shell( "wpa_cli status | grep freq").split("=")[1] info["channel"] = wutils.WifiEnums.freq_to_channel[int( info["frequency"])] return info - def setup_sap_rvr_test(self, testcase_params): - """Function that gets devices ready for the test. + def sap_rvr_test_func(self): + """Main function to test Soft AP RvR. + + The function sets up the phones in the correct soft ap and client mode + configuration and calls run_rvr to sweep attenuation and measure + throughput Args: - testcase_params: dict containing test-specific parameters + channel: Specifies AP's channel + mode: Specifies AP's bandwidth/mode (11g, VHT20, VHT40, VHT80) + Returns: + rvr_result: dict containing rvr_results and meta data """ + #Initialize RvR test parameters + num_atten_steps = int((self.test_params["rvr_atten_stop"] - + self.test_params["rvr_atten_start"]) / + self.test_params["rvr_atten_step"]) + self.rvr_atten_range = [ + self.test_params["rvr_atten_start"] + + x * self.test_params["rvr_atten_step"] + for x in range(0, num_atten_steps) + ] + rvr_result = {} # Reset WiFi on all devices for dev in self.android_devices: wutils.reset_wifi(dev) dev.droid.wifiSetCountryCode(wutils.WifiEnums.CountryCode.US) - # Setup Soft AP sap_config = wutils.create_softap_config() - self.log.info("SoftAP Config: {}".format(sap_config)) - wutils.start_wifi_tethering(self.android_devices[0], - sap_config[wutils.WifiEnums.SSID_KEY], - sap_config[wutils.WifiEnums.PWD_KEY], - testcase_params['sap_band_enum']) - # Set attenuator to 0 dB - [self.attenuators[i].set_atten(0) for i in range(self.num_atten)] - # Connect DUT to Network - network = { + wutils.start_wifi_tethering( + self.android_devices[0], sap_config[wutils.WifiEnums.SSID_KEY], + sap_config[wutils.WifiEnums.PWD_KEY], self.sap_band_enum) + self.main_network = { "SSID": sap_config[wutils.WifiEnums.SSID_KEY], "password": sap_config[wutils.WifiEnums.PWD_KEY] } + # Set attenuator to 0 dB + [self.attenuators[i].set_atten(0) for i in range(self.num_atten)] + # Connect DUT to Network wutils.wifi_connect( self.android_devices[1], - network, + self.main_network, num_of_tries=5, - check_connectivity=False) - # Compile meta data - self.access_point = AccessPointTuple(sap_config) - testcase_params['connection_info'] = self.get_sap_connection_info() - testcase_params["channel"] = testcase_params['connection_info'][ - 'channel'] - if testcase_params["channel"] < 13: - testcase_params["mode"] = "VHT20" - else: - testcase_params["mode"] = "VHT80" - testcase_params["iperf_server_address"] = testcase_params[ - 'connection_info']["ap_ip_address"] - - def compile_test_params(self, testcase_params): - """Function that completes all test params based on the test name. - - Args: - testcase_params: dict containing test-specific parameters - """ - num_atten_steps = int((self.testclass_params['atten_stop'] - - self.testclass_params['atten_start']) / - self.testclass_params['atten_step']) - testcase_params['atten_range'] = [ - self.testclass_params['atten_start'] + - x * self.testclass_params['atten_step'] - for x in range(0, num_atten_steps) - ] - - if testcase_params['traffic_direction'] == 'DL': - testcase_params['iperf_args'] = wputils.get_iperf_arg_string( - duration=self.testclass_params['iperf_duration'], - reverse_direction=1, - traffic_type=testcase_params['traffic_type']) - testcase_params['use_client_output'] = True - else: - testcase_params['iperf_args'] = wputils.get_iperf_arg_string( - duration=self.testclass_params['iperf_duration'], - reverse_direction=0, - traffic_type=testcase_params['traffic_type']) - testcase_params['use_client_output'] = False - return testcase_params + assert_on_fail=False) + connection_info = self.get_sap_connection_info() + self.test_params["iperf_server_address"] = connection_info[ + "ap_ip_address"] + # Run RvR and log result + rvr_result["test_name"] = self.current_test_name + rvr_result["attenuation"] = list(self.rvr_atten_range) + rvr_result["fixed_attenuation"] = self.test_params[ + "fixed_attenuation"][str(connection_info["channel"])] + rvr_result["throughput_receive"] = self.rvr_test() + self.testclass_results.append(rvr_result) + wutils.stop_wifi_tethering(self.android_devices[0]) + return rvr_result - def _test_sap_rvr(self, testcase_params): + def _test_rvr(self): """ Function that gets called for each test case - Args: - testcase_params: dict containing test-specific parameters + The function gets called in each rvr test case. The function customizes + the rvr test based on the test name of the test that called it """ - # Compile test parameters from config and test name - testcase_params = self.compile_test_params(testcase_params) - - self.setup_sap_rvr_test(testcase_params) - result = self.run_rvr_test(testcase_params) - self.testclass_results.append(result) - self.process_test_results(result) - self.pass_fail_check(result) + test_params = self.current_test_name.split("_") + self.sap_band = test_params[4] + if self.sap_band == "2GHz": + self.sap_band_enum = wutils.WifiEnums.WIFI_CONFIG_APBAND_2G + else: + self.sap_band_enum = wutils.WifiEnums.WIFI_CONFIG_APBAND_5G + self.iperf_args = '-i 1 -t {} -J '.format( + self.test_params["iperf_duration"]) + if test_params[2] == "UDP": + self.iperf_args = self.iperf_args + "-u -b {}".format( + self.test_params["UDP_rates"]["VHT80"]) + if test_params[3] == "DL": + self.iperf_args = self.iperf_args + ' -R' + self.use_client_output = True + else: + self.use_client_output = False + rvr_result = self.sap_rvr_test_func() + self.post_process_results(rvr_result) + self.pass_fail_check(rvr_result) #Test cases + @test_tracker_info(uuid='7910112e-49fd-4e49-bc5c-f84da0cbb9f6') def test_rvr_TCP_DL_2GHz(self): - testcase_params = collections.OrderedDict( - sap_band='2GHz', - sap_band_enum=wutils.WifiEnums.WIFI_CONFIG_APBAND_2G, - traffic_type='TCP', - traffic_direction='DL') - self._test_sap_rvr(testcase_params) + self._test_rvr() + @test_tracker_info(uuid='b3c00814-6fdf-496b-b345-6a719bef657e') def test_rvr_TCP_UL_2GHz(self): - testcase_params = collections.OrderedDict( - sap_band='2GHz', - sap_band_enum=wutils.WifiEnums.WIFI_CONFIG_APBAND_2G, - traffic_type='TCP', - traffic_direction='UL') - self._test_sap_rvr(testcase_params) + self._test_rvr() + @test_tracker_info(uuid='a2f727b5-68ba-46e5-a7fe-f86c0a082fc9') def test_rvr_TCP_DL_5GHz(self): - testcase_params = collections.OrderedDict( - sap_band='5GHz', - sap_band_enum=wutils.WifiEnums.WIFI_CONFIG_APBAND_5G, - traffic_type='TCP', - traffic_direction='DL') - self._test_sap_rvr(testcase_params) + self._test_rvr() + @test_tracker_info(uuid='0cca9352-3f06-4bba-be17-8897a1b42a0f') def test_rvr_TCP_UL_5GHz(self): - testcase_params = collections.OrderedDict( - sap_band='5GHz', - sap_band_enum=wutils.WifiEnums.WIFI_CONFIG_APBAND_5G, - traffic_type='TCP', - traffic_direction='UL') - self._test_sap_rvr(testcase_params) + self._test_rvr() diff --git a/acts/tests/google/wifi/WifiSoftApTest.py b/acts/tests/google/wifi/WifiSoftApTest.py index 9298e63ae4..cfc62d9077 100644 --- a/acts/tests/google/wifi/WifiSoftApTest.py +++ b/acts/tests/google/wifi/WifiSoftApTest.py @@ -29,7 +29,6 @@ from acts.test_utils.tel import tel_test_utils as tel_utils from acts.test_utils.tel.tel_test_utils import WIFI_CONFIG_APBAND_2G from acts.test_utils.tel.tel_test_utils import WIFI_CONFIG_APBAND_5G from acts.test_utils.tel.tel_test_utils import WIFI_CONFIG_APBAND_AUTO -from acts.test_utils.wifi import wifi_constants from acts.test_utils.wifi import wifi_test_utils as wutils from acts.test_utils.wifi.WifiBaseTest import WifiBaseTest @@ -487,139 +486,6 @@ class WifiSoftApTest(WifiBaseTest): "No extra android devices. Skip test") self.validate_full_tether_startup(WIFI_CONFIG_APBAND_5G, test_clients=True) - @test_tracker_info(uuid="b991129e-030a-4998-9b08-0687270bec24") - def test_number_of_softap_clients(self): - """Test for number of softap clients to be updated correctly - - 1. Turn of hotspot - 2. Register softap callback - 3. Let client connect to the hotspot - 4. Register second softap callback - 5. Force client connect/disconnect to hotspot - 6. Unregister second softap callback - 7. Force second client connect to hotspot (if supported) - 8. Turn off hotspot - 9. Verify second softap callback doesn't respond after unresister - """ - config = wutils.start_softap_and_verify(self, WIFI_CONFIG_APBAND_AUTO) - # Register callback after softap enabled to avoid unnecessary callback - # impact the test - callbackId = self.dut.droid.registerSoftApCallback() - # Verify clients will update immediately after register callback - wutils.wait_for_expected_number_of_softap_clients( - self.dut, callbackId, 0) - wutils.wait_for_expected_softap_state(self.dut, callbackId, - wifi_constants.WIFI_AP_ENABLED_STATE) - - # Force DUTs connect to Network - wutils.wifi_connect(self.dut_client, config, - check_connectivity=False) - wutils.wait_for_expected_number_of_softap_clients( - self.dut, callbackId, 1) - - # Register another callback to verify multi callback clients case - callbackId_2 = self.dut.droid.registerSoftApCallback() - # Verify clients will update immediately after register callback - wutils.wait_for_expected_number_of_softap_clients( - self.dut, callbackId_2, 1) - wutils.wait_for_expected_softap_state(self.dut, callbackId_2, - wifi_constants.WIFI_AP_ENABLED_STATE) - - # Client Off/On Wifi to verify number of softap clients will be updated - wutils.toggle_wifi_and_wait_for_reconnection(self.dut_client, config) - - wutils.wait_for_expected_number_of_softap_clients(self.dut, - callbackId, 0) - wutils.wait_for_expected_number_of_softap_clients(self.dut, - callbackId_2, 0) - wutils.wait_for_expected_number_of_softap_clients(self.dut, - callbackId, 1) - wutils.wait_for_expected_number_of_softap_clients(self.dut, - callbackId_2, 1) - - # Unregister callbackId_2 to verify multi callback clients case - self.dut.droid.unregisterSoftApCallback(callbackId_2) - - if len(self.android_devices) > 2: - wutils.wifi_connect(self.android_devices[2], config, - check_connectivity=False) - wutils.wait_for_expected_number_of_softap_clients( - self.dut, callbackId, 2) - - # Turn off softap when clients connected - wutils.stop_wifi_tethering(self.dut) - wutils.wait_for_disconnect(self.dut_client) - if len(self.android_devices) > 2: - wutils.wait_for_disconnect(self.android_devices[2]) - - # Verify client number change back to 0 after softap stop if client - # doesn't disconnect before softap stop - wutils.wait_for_expected_softap_state(self.dut, callbackId, - wifi_constants.WIFI_AP_DISABLING_STATE) - wutils.wait_for_expected_softap_state(self.dut, callbackId, - wifi_constants.WIFI_AP_DISABLED_STATE) - wutils.wait_for_expected_number_of_softap_clients( - self.dut, callbackId, 0) - # Unregister callback - self.dut.droid.unregisterSoftApCallback(callbackId) - - # Check no any callbackId_2 event after unregister - asserts.assert_equal( - wutils.get_current_number_of_softap_clients( - self.dut, callbackId_2), None) - - @test_tracker_info(uuid="35bc4ba1-bade-42ee-a563-0c73afb2402a") - def test_softap_auto_shut_off(self): - """Test for softap auto shut off - - 1. Turn of hotspot - 2. Register softap callback - 3. Let client connect to the hotspot - 4. Start wait [wifi_constants.DEFAULT_SOFTAP_TIMEOUT_S] seconds - 5. Check hotspot doesn't shut off - 6. Let client disconnect to the hotspot - 7. Start wait [wifi_constants.DEFAULT_SOFTAP_TIMEOUT_S] seconds - 8. Check hotspot auto shut off - """ - config = wutils.start_softap_and_verify(self, WIFI_CONFIG_APBAND_AUTO) - # Register callback after softap enabled to avoid unnecessary callback - # impact the test - callbackId = self.dut.droid.registerSoftApCallback() - # Verify clients will update immediately after register callback - wutils.wait_for_expected_number_of_softap_clients(self.dut, - callbackId, 0) - wutils.wait_for_expected_softap_state(self.dut, callbackId, - wifi_constants.WIFI_AP_ENABLED_STATE) - - # Force DUTs connect to Network - wutils.wifi_connect(self.dut_client, config, check_connectivity=False) - wutils.wait_for_expected_number_of_softap_clients( - self.dut, callbackId, 1) - - self.dut.log.info("Start waiting %s seconds with 1 clients ", - wifi_constants.DEFAULT_SOFTAP_TIMEOUT_S*1.1) - time.sleep(wifi_constants.DEFAULT_SOFTAP_TIMEOUT_S*1.1) - - # When client connected, softap should keep as enabled - asserts.assert_true(self.dut.droid.wifiIsApEnabled(), - "SoftAp is not reported as running") - - wutils.wifi_toggle_state(self.dut_client, False) - wutils.wait_for_expected_number_of_softap_clients(self.dut, - callbackId, 0) - self.dut.log.info("Start waiting %s seconds with 0 client", - wifi_constants.DEFAULT_SOFTAP_TIMEOUT_S*1.1) - time.sleep(wifi_constants.DEFAULT_SOFTAP_TIMEOUT_S*1.1) - # Softap should stop since no client connected - # doesn't disconnect before softap stop - wutils.wait_for_expected_softap_state(self.dut, callbackId, - wifi_constants.WIFI_AP_DISABLING_STATE) - wutils.wait_for_expected_softap_state(self.dut, callbackId, - wifi_constants.WIFI_AP_DISABLED_STATE) - asserts.assert_false(self.dut.droid.wifiIsApEnabled(), - "SoftAp is not reported as running") - self.dut.droid.unregisterSoftApCallback(callbackId) - """ Tests End """ diff --git a/acts/tests/google/wifi/WifiStaApConcurrencyStressTest.py b/acts/tests/google/wifi/WifiStaApConcurrencyStressTest.py index fae3103d2f..080279eb72 100755 --- a/acts/tests/google/wifi/WifiStaApConcurrencyStressTest.py +++ b/acts/tests/google/wifi/WifiStaApConcurrencyStressTest.py @@ -110,7 +110,6 @@ class WifiStaApConcurrencyStressTest(WifiStaApConcurrencyTest): "Failed to enable WiFi verbose logging on the client dut.") """Helper Functions""" - def verify_wifi_full_on_off(self, network, softap_config): wutils.wifi_toggle_state(self.dut, True) self.connect_to_wifi_network_and_verify((network, self.dut)) @@ -209,7 +208,7 @@ class WifiStaApConcurrencyStressTest(WifiStaApConcurrencyTest): self.connect_to_wifi_network_and_verify((self.wpapsk_2g, self.dut)) for count in range(self.stress_count): self.log.info("Iteration %d", count+1) - self.verify_softap_full_on_off(self.wpapsk_2g, WIFI_CONFIG_APBAND_5G) + self.verify_softap_full_on_off(self.wpapsk_2g, WIFI_CONFIG_APBAND_2G) raise signals.TestPass(details="", extras={"Iterations":"%d" % self.stress_count, "Pass":"%d" %(count+1)}) diff --git a/acts/tests/google/wifi/WifiStaApConcurrencyTest.py b/acts/tests/google/wifi/WifiStaApConcurrencyTest.py index 92dc7aaac0..b88d5c9fbe 100644..100755 --- a/acts/tests/google/wifi/WifiStaApConcurrencyTest.py +++ b/acts/tests/google/wifi/WifiStaApConcurrencyTest.py @@ -45,9 +45,10 @@ class WifiStaApConcurrencyTest(WifiBaseTest): * One Wi-Fi network visible to the device (for STA). """ - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + WifiBaseTest.__init__(self, controllers) + def setup_class(self): self.dut = self.android_devices[0] self.dut_client = self.android_devices[1] wutils.wifi_test_device_init(self.dut) @@ -72,13 +73,19 @@ class WifiStaApConcurrencyTest(WifiBaseTest): "Failed to enable WiFi verbose logging on the client dut.") req_params = ["AccessPoint", "dbs_supported_models"] - opt_param = ["iperf_server_address", "iperf_server_port"] + opt_param = ["iperf_server_address"] self.unpack_userparams( req_param_names=req_params, opt_param_names=opt_param) - asserts.abort_class_if( - self.dut.model not in self.dbs_supported_models, - "Device %s does not support dual interfaces." % self.dut.model) + if self.dut.model not in self.dbs_supported_models: + asserts.skip( + ("Device %s does not support dual interfaces.") + % self.dut.model) + + if "iperf_server_address" in self.user_params: + self.iperf_server = self.iperf_servers[0] + if hasattr(self, 'iperf_server'): + self.iperf_server.start() # Set the client wifi state to on before the test begins. wutils.wifi_toggle_state(self.dut_client, True) @@ -112,6 +119,10 @@ class WifiStaApConcurrencyTest(WifiBaseTest): del self.user_params["reference_networks"] del self.user_params["open_network"] + def teardown_class(self): + if hasattr(self, 'iperf_server'): + self.iperf_server.stop() + def on_fail(self, test_name, begin_time): for ad in self.android_devices: ad.take_bug_report(test_name, begin_time) @@ -164,7 +175,7 @@ class WifiStaApConcurrencyTest(WifiBaseTest): SSID = network[WifiEnums.SSID_KEY] self.log.info("Starting iperf traffic through {}".format(SSID)) time.sleep(wait_time) - port_arg = "-p {}".format(self.iperf_server_port) + port_arg = "-p {}".format(self.iperf_server.port) success, data = ad.run_iperf_client(self.iperf_server_address, port_arg) self.log.debug(pprint.pformat(data)) @@ -178,7 +189,6 @@ class WifiStaApConcurrencyTest(WifiBaseTest): """ network, ad = params SSID = network[WifiEnums.SSID_KEY] - wutils.reset_wifi(ad) wutils.start_wifi_connection_scan_and_ensure_network_found( ad, SSID) wutils.wifi_connect(ad, network, num_of_tries=3) @@ -195,7 +205,6 @@ class WifiStaApConcurrencyTest(WifiBaseTest): network: config of the ap we are looking for. """ SSID = network[WifiEnums.SSID_KEY] - wutils.reset_wifi(self.dut_client) wutils.start_wifi_connection_scan_and_ensure_network_found( self.dut_client, SSID) wutils.wifi_connect(self.dut_client, network, check_connectivity=check_connectivity) @@ -248,8 +257,17 @@ class WifiStaApConcurrencyTest(WifiBaseTest): self.run_iperf_client((softap_config, self.dut_client)) if len(self.android_devices) > 2: self.log.info("Testbed has extra android devices, do more validation") - self.verify_traffic_between_softap_clients( - self.dut_client, self.android_devices[2]) + ad1 = self.dut_client + ad2 = self.android_devices[2] + ad1_ip = ad1.droid.connectivityGetIPv4Addresses('wlan0')[0] + ad2_ip = ad2.droid.connectivityGetIPv4Addresses('wlan0')[0] + # Ping each other + asserts.assert_true( + utils.adb_shell_ping(ad1, count=10, dest_ip=ad2_ip, timeout=20), + "%s ping %s failed" % (ad1.serial, ad2_ip)) + asserts.assert_true( + utils.adb_shell_ping(ad2, count=10, dest_ip=ad1_ip, timeout=20), + "%s ping %s failed" % (ad2.serial, ad1_ip)) # Verify that both softap & wifi is enabled concurrently. self.verify_wifi_and_softap_enabled() @@ -430,7 +448,7 @@ class WifiStaApConcurrencyTest(WifiBaseTest): self.start_softap_and_connect_to_wifi_network( self.wpapsk_5g, WIFI_CONFIG_APBAND_2G) - @test_tracker_info(uuid="75400685-a9d9-4091-8af3-97bd539c246a") + @test_tracker_info(uuid="a2c62bc6-9ccd-4bc4-8a23-9a1b5d0b4b5c") def test_softap_2G_wifi_connection_5G_DFS(self): """Tests bringing up SoftAp on 2G followed by connection to 5G DFS network. """ diff --git a/acts/tests/google/wifi/WifiStressTest.py b/acts/tests/google/wifi/WifiStressTest.py index 0f9032aaf8..d9b00b7976 100644..100755 --- a/acts/tests/google/wifi/WifiStressTest.py +++ b/acts/tests/google/wifi/WifiStressTest.py @@ -47,22 +47,17 @@ class WifiStressTest(WifiBaseTest): network. """ - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + WifiBaseTest.__init__(self, controllers) + def setup_class(self): self.dut = self.android_devices[0] - # Note that test_stress_softAP_startup_and_stop_5g will always fail - # when testing with a single device. - if len(self.android_devices) > 1: - self.dut_client = self.android_devices[1] - else: - self.dut_client = None + self.dut_client = self.android_devices[1] wutils.wifi_test_device_init(self.dut) req_params = [] opt_param = [ "open_network", "reference_networks", "iperf_server_address", - "stress_count", "stress_hours", "attn_vals", "pno_interval", - "iperf_server_port"] + "stress_count", "stress_hours", "attn_vals", "pno_interval"] self.unpack_userparams( req_param_names=req_params, opt_param_names=opt_param) @@ -77,6 +72,12 @@ class WifiStressTest(WifiBaseTest): self.open_2g = self.open_network[0]["2g"] self.open_5g = self.open_network[0]["5g"] self.networks = [self.wpa_2g, self.wpa_5g, self.open_2g, self.open_5g] + if "iperf_server_address" in self.user_params: + self.iperf_server = self.iperf_servers[0] + if hasattr(self, 'iperf_server'): + self.iperf_server.start() + if(len(self.iperf_servers) > 1): + self.iperf_servers[1].start() def setup_test(self): self.dut.droid.wakeLockAcquireBright() @@ -98,6 +99,10 @@ class WifiStressTest(WifiBaseTest): if "AccessPoint" in self.user_params: del self.user_params["reference_networks"] del self.user_params["open_network"] + if hasattr(self, 'iperf_server'): + self.iperf_server.stop() + if(len(self.iperf_servers) > 1): + self.iperf_servers[1].stop() """Helper Functions""" @@ -198,8 +203,8 @@ class WifiStressTest(WifiBaseTest): else: # force start a single scan so we don't have to wait for the scheduled scan. wutils.start_wifi_connection_scan_and_return_status(self.dut) - self.log.info("Wait 60s for network selection.") - time.sleep(60) + self.log.info("Wait 20s for network selection.") + time.sleep(20) try: self.log.info("Connected to %s network after network selection" % self.dut.droid.wifiGetConnectionInfo()) @@ -286,7 +291,7 @@ class WifiStressTest(WifiBaseTest): self.scan_and_connect_by_id(self.wpa_5g, net_id) # Start IPerf traffic from phone to server. # Upload data for 10s. - args = "-p {} -t {}".format(self.iperf_server_port, 10) + args = "-p {} -t {}".format(self.iperf_server.port, 10) self.log.info("Running iperf client {}".format(args)) result, data = self.dut.run_iperf_client(self.iperf_server_address, args) if not result: @@ -319,7 +324,7 @@ class WifiStressTest(WifiBaseTest): sec = self.stress_hours * 60 * 60 start_time = time.time() - dl_args = "-p {} -t {} -R".format(self.iperf_server_port, sec) + dl_args = "-p {} -t {} -R".format(self.iperf_server.port, sec) dl = threading.Thread(target=self.run_long_traffic, args=(sec, dl_args, q)) dl.start() if(len(self.iperf_servers) > 1): diff --git a/acts/tests/google/wifi/WifiTeleCoexTest.py b/acts/tests/google/wifi/WifiTeleCoexTest.py index 6d5fef8708..3d3064082a 100644 --- a/acts/tests/google/wifi/WifiTeleCoexTest.py +++ b/acts/tests/google/wifi/WifiTeleCoexTest.py @@ -26,9 +26,12 @@ class WifiTeleCoexTest(TelephonyBaseTest): """Tests for WiFi, Celular Co-existance.""" + def __init__(self, controllers): + TelephonyBaseTest.__init__(self, controllers) + + def setup_class(self): TelephonyBaseTest.setup_class(self) - self.dut = self.android_devices[0] wifi_utils.wifi_test_device_init(self.dut) # Set attenuation to 0 on all channels. @@ -114,24 +117,24 @@ class WifiTeleCoexTest(TelephonyBaseTest): Airplane mode OFF, in a sequence. """ - for count in range(stress_count): - self.log.debug("stress_toggle_airplane_and_wifi: Iteration %d" % count) - self.log.debug("Toggling Airplane mode ON") - asserts.assert_true( - acts.utils.force_airplane_mode(self.dut, True), - "Can not turn on airplane mode on: %s" % self.dut.serial) - # Sleep for atleast 500ms so that, call to enable wifi is not deferred. - time.sleep(1) - self.log.debug("Toggling wifi ON") - wifi_utils.wifi_toggle_state(self.dut, True) - # Sleep for 1s before getting new WiFi state. - time.sleep(1) - if not self.dut.droid.wifiGetisWifiEnabled(): - raise signals.TestFailure("WiFi did not turn on after turning ON" - " Airplane mode") - asserts.assert_true( - acts.utils.force_airplane_mode(self.dut, False), - "Can not turn on airplane mode on: %s" % self.dut.serial) + self.log.debug("Toggling Airplane mode ON") + + asserts.assert_true( + acts.utils.force_airplane_mode(self.dut, True), + "Can not turn on airplane mode on: %s" % self.dut.serial) + # Sleep for atleast 500ms so that, call to enable wifi is not deferred. + time.sleep(1) + + self.log.debug("Toggling wifi ON") + wifi_utils.wifi_toggle_state(self.dut, True) + # Sleep for 1s before getting new WiFi state. + time.sleep(1) + if not self.dut.droid.wifiGetisWifiEnabled(): + raise signals.TestFailure("WiFi did not turn on after turning ON" + " Airplane mode") + asserts.assert_true( + acts.utils.force_airplane_mode(self.dut, False), + "Can not turn on airplane mode on: %s" % self.dut.serial) if not self.dut.droid.wifiGetisWifiEnabled(): raise signals.TestFailure("WiFi did not turn on after toggling it" @@ -158,8 +161,8 @@ class WifiTeleCoexTest(TelephonyBaseTest): 3. Make a short sequence voice call between Phone A and B. """ - # Sleep for 30s before getting new WiFi state. - time.sleep(30) + # Sleep for 5s before getting new WiFi state. + time.sleep(5) wifi_info = self.dut.droid.wifiGetConnectionInfo() if wifi_info[WifiEnums.SSID_KEY] != self.wifi_network_ssid: raise signals.TestFailure("Phone failed to connect to %s network on" diff --git a/acts/tests/google/wifi/WifiTethering2GOpenOTATest.py b/acts/tests/google/wifi/WifiTethering2GOpenOTATest.py index 0716158327..a603e017fa 100755 --- a/acts/tests/google/wifi/WifiTethering2GOpenOTATest.py +++ b/acts/tests/google/wifi/WifiTethering2GOpenOTATest.py @@ -52,7 +52,7 @@ class WifiTethering2GOpenOTATest(BaseTestClass): try: ota_updater.update(self.hotspot_device) except Exception as err: - raise signals.TestAbortClass( + raise signals.TestSkipClass( "Failed up apply OTA update. Aborting tests") def on_fail(self, test_name, begin_time): diff --git a/acts/tests/google/wifi/WifiTethering2GPskOTATest.py b/acts/tests/google/wifi/WifiTethering2GPskOTATest.py index 7399e32879..e9fedcd24c 100755 --- a/acts/tests/google/wifi/WifiTethering2GPskOTATest.py +++ b/acts/tests/google/wifi/WifiTethering2GPskOTATest.py @@ -52,7 +52,7 @@ class WifiTethering2GPskOTATest(BaseTestClass): try: ota_updater.update(self.hotspot_device) except Exception as err: - raise signals.TestAbortClass( + raise signals.TestSkipClass( "Failed up apply OTA update. Aborting tests") def on_fail(self, test_name, begin_time): diff --git a/acts/tests/google/wifi/WifiTethering5GOpenOTATest.py b/acts/tests/google/wifi/WifiTethering5GOpenOTATest.py index 985e7a759a..6648d0e461 100755 --- a/acts/tests/google/wifi/WifiTethering5GOpenOTATest.py +++ b/acts/tests/google/wifi/WifiTethering5GOpenOTATest.py @@ -52,7 +52,7 @@ class WifiTethering5GOpenOTATest(BaseTestClass): try: ota_updater.update(self.hotspot_device) except Exception as err: - raise signals.TestAbortClass( + raise signals.TestSkipClass( "Failed up apply OTA update. Aborting tests") def on_fail(self, test_name, begin_time): diff --git a/acts/tests/google/wifi/WifiTethering5GPskOTATest.py b/acts/tests/google/wifi/WifiTethering5GPskOTATest.py index 9e68f2200a..74505787ff 100755 --- a/acts/tests/google/wifi/WifiTethering5GPskOTATest.py +++ b/acts/tests/google/wifi/WifiTethering5GPskOTATest.py @@ -52,7 +52,7 @@ class WifiTethering5GPskOTATest(BaseTestClass): try: ota_updater.update(self.hotspot_device) except Exception as err: - raise signals.TestAbortClass( + raise signals.TestSkipClass( "Failed up apply OTA update. Aborting tests") def on_fail(self, test_name, begin_time): diff --git a/acts/tests/google/wifi/WifiTetheringTest.py b/acts/tests/google/wifi/WifiTetheringTest.py index 82e4c6449b..915b25f239 100644 --- a/acts/tests/google/wifi/WifiTetheringTest.py +++ b/acts/tests/google/wifi/WifiTetheringTest.py @@ -89,7 +89,7 @@ class WifiTetheringTest(base_test.BaseTestClass): False: if not """ # Currently only Verizon support IPv6 tethering - carrier_supports_tethering = ["vzw", "tmo", "Far EasTone", "Chunghwa Telecom"] + carrier_supports_tethering = ["vzw"] operator = get_operator_name(self.log, dut) return operator in carrier_supports_tethering @@ -101,7 +101,7 @@ class WifiTetheringTest(base_test.BaseTestClass): True: if carrier supports ipv6 False: if not """ - carrier_supports_ipv6 = ["vzw", "tmo", "Far EasTone", "Chunghwa Telecom"] + carrier_supports_ipv6 = ["vzw", "tmo"] operator = get_operator_name(self.log, dut) self.log.info("Carrier is %s" % operator) return operator in carrier_supports_ipv6 diff --git a/acts/tests/google/wifi/WifiThroughputStabilityTest.py b/acts/tests/google/wifi/WifiThroughputStabilityTest.py index f3e942f1fd..e6918670f4 100644 --- a/acts/tests/google/wifi/WifiThroughputStabilityTest.py +++ b/acts/tests/google/wifi/WifiThroughputStabilityTest.py @@ -2,37 +2,31 @@ # # Copyright 2017 - The Android Open Source Project # -# Licensed under the Apache License, Version 2.0 (the 'License'); +# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an 'AS IS' BASIS, +# distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. -import collections -import itertools import json import logging import math -import numpy import os +import time from acts import asserts from acts import base_test -from acts import context from acts import utils from acts.controllers import iperf_server as ipf -from acts.controllers.utils_lib import ssh -from acts.metrics.loggers.blackbox import BlackboxMappedMetricLogger -from acts.test_utils.wifi import ota_chamber -from acts.test_utils.wifi import wifi_performance_test_utils as wputils +from acts.metrics.loggers.blackbox import BlackboxMetricLogger +from acts.test_utils.wifi import wifi_power_test_utils as wputils from acts.test_utils.wifi import wifi_retail_ap as retail_ap from acts.test_utils.wifi import wifi_test_utils as wutils -from functools import partial TEST_TIMEOUT = 10 SHORT_SLEEP = 1 @@ -52,93 +46,45 @@ class WifiThroughputStabilityTest(base_test.BaseTestClass): def __init__(self, controllers): base_test.BaseTestClass.__init__(self, controllers) # Define metrics to be uploaded to BlackBox - self.testcase_metric_logger = ( - BlackboxMappedMetricLogger.for_test_case()) - self.testclass_metric_logger = ( - BlackboxMappedMetricLogger.for_test_class()) - self.publish_testcase_metrics = True - # Generate test cases - self.tests = self.generate_test_cases( - [6, 36, 149], ['VHT20', 'VHT40', 'VHT80'], ['TCP', 'UDP'], - ['DL', 'UL'], ['high', 'low']) + self.min_throughput_metric = BlackboxMetricLogger.for_test_case( + metric_name='min_throughput') + self.avg_throughput_metric = BlackboxMetricLogger.for_test_case( + metric_name='avg_throughput') + self.std_dev_percent_metric = BlackboxMetricLogger.for_test_case( + metric_name='std_dev_percent') - def generate_test_cases(self, channels, modes, traffic_types, - traffic_directions, signal_levels): - """Function that auto-generates test cases for a test class.""" - allowed_configs = { - 'VHT20': [ - 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 36, 40, 44, 48, 149, 153, - 157, 161 - ], - 'VHT40': [36, 44, 149, 157], - 'VHT80': [36, 149] - } - test_cases = [] - for channel, mode, traffic_type, traffic_direction, signal_level in itertools.product( - channels, modes, traffic_types, traffic_directions, - signal_levels): - if channel not in allowed_configs[mode]: - continue - testcase_params = collections.OrderedDict( - channel=channel, - mode=mode, - traffic_type=traffic_type, - traffic_direction=traffic_direction, - signal_level=signal_level) - testcase_name = ('test_tput_stability' - '_{}_{}_{}_ch{}_{}'.format( - signal_level, traffic_type, traffic_direction, - channel, mode)) - setattr(self, testcase_name, - partial(self._test_throughput_stability, testcase_params)) - test_cases.append(testcase_name) - return test_cases + # Generate test cases + modes = [(6, "VHT20"), (36, "VHT20"), (36, "VHT40"), (36, "VHT80"), + (149, "VHT20"), (149, "VHT40"), (149, "VHT80")] + traffic_types = [("TCP", "DL"), ("TCP", "UL"), ("UDP", "DL"), ("UDP", + "UL")] + signal_levels = ["high", "low"] + self.generate_test_cases(modes, traffic_types, signal_levels) def setup_class(self): self.dut = self.android_devices[0] req_params = [ - 'throughput_stability_test_params', 'testbed_params', - 'main_network', 'RetailAccessPoints', 'RemoteServer' + "throughput_stability_test_params", "testbed_params", + "main_network", "RetailAccessPoints" ] - opt_params = ['golden_files_list'] + opt_params = ["golden_files_list"] self.unpack_userparams(req_params, opt_params) - self.testclass_params = self.throughput_stability_test_params + self.test_params = self.throughput_stability_test_params self.num_atten = self.attenuators[0].instrument.num_atten - self.remote_server = ssh.connection.SshConnection( - ssh.settings.from_config(self.RemoteServer[0]['ssh_config'])) self.iperf_server = self.iperf_servers[0] self.iperf_client = self.iperf_clients[0] - self.access_point = retail_ap.create(self.RetailAccessPoints)[0] - self.log_path = os.path.join(logging.log_path, 'test_results') + self.access_points = retail_ap.create(self.RetailAccessPoints) + self.access_point = self.access_points[0] + self.log_path = os.path.join(logging.log_path, "test_results") utils.create_dir(self.log_path) - self.log.info('Access Point Configuration: {}'.format( + self.log.info("Access Point Configuration: {}".format( self.access_point.ap_settings)) - if not hasattr(self, 'golden_files_list'): + if not hasattr(self, "golden_files_list"): self.golden_files_list = [ - os.path.join(self.testbed_params['golden_results_path'], file) - for file in os.listdir( - self.testbed_params['golden_results_path']) + os.path.join(self.testbed_params["golden_results_path"], + file) for file in os.listdir( + self.testbed_params["golden_results_path"]) ] - if hasattr(self, 'bdf'): - self.log.info('Pushing WiFi BDF to DUT.') - wputils.push_bdf(self.dut, self.bdf) - if hasattr(self, 'firmware'): - self.log.info('Pushing WiFi firmware to DUT.') - wlanmdsp = [ - file for file in self.firmware if "wlanmdsp.mbn" in file - ][0] - data_msc = [file for file in self.firmware - if "Data.msc" in file][0] - wputils.push_firmware(self.dut, wlanmdsp, data_msc) - self.testclass_results = [] - - # Turn WiFi ON - if self.testclass_params.get('airplane_mode', 1): - self.log.info('Turning on airplane mode.') - asserts.assert_true( - utils.force_airplane_mode(self.dut, True), - "Can not turn on airplane mode.") - wutils.wifi_toggle_state(self.dut, True) def teardown_test(self): self.iperf_server.stop() @@ -153,39 +99,35 @@ class WifiThroughputStabilityTest(base_test.BaseTestClass): test_result_dict: dict containing attenuation, throughput and other meta data """ - avg_throughput = test_result_dict['iperf_results']['avg_throughput'] - min_throughput = test_result_dict['iperf_results']['min_throughput'] + #TODO(@oelayach): Check throughput vs RvR golden file + avg_throughput = test_result_dict["iperf_results"]["avg_throughput"] + min_throughput = test_result_dict["iperf_results"]["min_throughput"] std_dev_percent = ( - test_result_dict['iperf_results']['std_deviation'] / - test_result_dict['iperf_results']['avg_throughput']) * 100 + test_result_dict["iperf_results"]["std_deviation"] / + test_result_dict["iperf_results"]["avg_throughput"]) * 100 # Set blackbox metrics - if self.publish_testcase_metrics: - self.testcase_metric_logger.add_metric('avg_throughput', - avg_throughput) - self.testcase_metric_logger.add_metric('min_throughput', - min_throughput) - self.testcase_metric_logger.add_metric('std_dev_percent', - std_dev_percent) + self.avg_throughput_metric.metric_value = avg_throughput + self.min_throughput_metric.metric_value = min_throughput + self.std_dev_percent_metric.metric_value = std_dev_percent # Evaluate pass/fail min_throughput_check = ( (min_throughput / avg_throughput) * - 100) > self.testclass_params['min_throughput_threshold'] - std_deviation_check = std_dev_percent < self.testclass_params[ - 'std_deviation_threshold'] + 100) > self.test_params["min_throughput_threshold"] + std_deviation_check = std_dev_percent < self.test_params["std_deviation_threshold"] if min_throughput_check and std_deviation_check: asserts.explicit_pass( - 'Test Passed. Throughput at {0:.2f}dB attenuation is stable. ' - 'Mean throughput is {1:.2f} Mbps with a standard deviation of ' - '{2:.2f}% and dips down to {3:.2f} Mbps.'.format( - test_result_dict['attenuation'], avg_throughput, - std_dev_percent, min_throughput)) + "Test Passed. Throughput at {0:.2f}dB attenuation is stable. " + "Mean throughput is {1:.2f} Mbps with a standard deviation of " + "{2:.2f}% and dips down to {3:.2f} Mbps.".format( + self.atten_level, avg_throughput, std_dev_percent, + min_throughput)) asserts.fail( - 'Test Failed. Throughput at {0:.2f}dB attenuation is unstable. ' - 'Mean throughput is {1:.2f} Mbps with a standard deviation of ' - '{2:.2f}% and dips down to {3:.2f} Mbps.'.format( - test_result_dict['attenuation'], avg_throughput, - std_dev_percent, min_throughput)) + "Test Failed. Throughput at {0:.2f}dB attenuation is unstable. " + "Mean throughput is {1:.2f} Mbps with a standard deviation of " + "{2:.2f}% and dips down to {3:.2f} Mbps.".format( + self.atten_level, avg_throughput, std_dev_percent, + min_throughput)) def post_process_results(self, test_result): """Extracts results and saves plots and JSON formatted results. @@ -199,428 +141,205 @@ class WifiThroughputStabilityTest(base_test.BaseTestClass): """ # Save output as text file test_name = self.current_test_name - results_file_path = os.path.join(self.log_path, - '{}.txt'.format(test_name)) + results_file_path = "{}/{}.txt".format(self.log_path, + self.current_test_name) test_result_dict = {} - test_result_dict['ap_settings'] = test_result['ap_settings'].copy() - test_result_dict['attenuation'] = test_result['attenuation'] - if test_result['iperf_result'].instantaneous_rates: + test_result_dict["ap_settings"] = test_result["ap_settings"].copy() + test_result_dict["attenuation"] = self.atten_level + if test_result["iperf_result"].instantaneous_rates: instantaneous_rates_Mbps = [ rate * 8 * (1.024**2) - for rate in test_result['iperf_result'].instantaneous_rates[ - self.testclass_params['iperf_ignored_interval']:-1] + for rate in test_result["iperf_result"].instantaneous_rates[ + self.test_params["iperf_ignored_interval"]:-1] ] else: - instantaneous_rates_Mbps = float('nan') - test_result_dict['iperf_results'] = { - 'instantaneous_rates': + instantaneous_rates_Mbps = float("nan") + test_result_dict["iperf_results"] = { + "instantaneous_rates": instantaneous_rates_Mbps, - 'avg_throughput': - numpy.mean(instantaneous_rates_Mbps), - 'std_deviation': - test_result['iperf_result'].get_std_deviation( - self.testclass_params['iperf_ignored_interval']) * 8, - 'min_throughput': + "avg_throughput": + math.fsum(instantaneous_rates_Mbps) / + len(instantaneous_rates_Mbps), + "std_deviation": + test_result["iperf_result"].get_std_deviation( + self.test_params["iperf_ignored_interval"]) * 8, + "min_throughput": min(instantaneous_rates_Mbps) } with open(results_file_path, 'w') as results_file: json.dump(test_result_dict, results_file) # Plot and save - figure = wputils.BokehFigure( - test_name, x_label='Time (s)', primary_y_label='Throughput (Mbps)') + legends = self.current_test_name + x_label = 'Time (s)' + y_label = 'Throughput (Mbps)' time_data = list(range(0, len(instantaneous_rates_Mbps))) - figure.add_line( - time_data, - instantaneous_rates_Mbps, - legend=self.current_test_name, - marker='circle') - output_file_path = os.path.join(self.log_path, - '{}.html'.format(test_name)) - figure.generate_figure(output_file_path) + data_sets = [[time_data], [instantaneous_rates_Mbps]] + fig_property = { + "title": test_name, + "x_label": x_label, + "y_label": y_label, + "linewidth": 3, + "markersize": 10 + } + output_file_path = "{}/{}.html".format(self.log_path, test_name) + wputils.bokeh_plot( + data_sets, + legends, + fig_property, + shaded_region=None, + output_file_path=output_file_path) return test_result_dict - def setup_ap(self, testcase_params): - """Sets up the access point in the configuration required by the test. + def throughput_stability_test_func(self, channel, mode): + """Main function to test throughput stability. + + The function sets up the AP in the correct channel and mode + configuration and runs an iperf test to measure throughput. Args: - testcase_params: dict containing AP and other test params + channel: Specifies AP's channel + mode: Specifies AP's bandwidth/mode (11g, VHT20, VHT40, VHT80) + Returns: + test_result: dict containing test result and meta data """ - band = self.access_point.band_lookup_by_channel( - testcase_params['channel']) - if '2G' in band: - frequency = wutils.WifiEnums.channel_2G_to_freq[ - testcase_params['channel']] + #Initialize RvR test parameters + test_result = {} + # Configure AP + band = self.access_point.band_lookup_by_channel(channel) + if "2G" in band: + frequency = wutils.WifiEnums.channel_2G_to_freq[channel] else: - frequency = wutils.WifiEnums.channel_5G_to_freq[ - testcase_params['channel']] + frequency = wutils.WifiEnums.channel_5G_to_freq[channel] if frequency in wutils.WifiEnums.DFS_5G_FREQUENCIES: - self.access_point.set_region(self.testbed_params['DFS_region']) + self.access_point.set_region(self.testbed_params["DFS_region"]) else: - self.access_point.set_region(self.testbed_params['default_region']) - self.access_point.set_channel(band, testcase_params['channel']) - self.access_point.set_bandwidth(band, testcase_params['mode']) - self.log.info('Access Point Configuration: {}'.format( + self.access_point.set_region(self.testbed_params["default_region"]) + self.access_point.set_channel(band, channel) + self.access_point.set_bandwidth(band, mode) + self.log.info("Access Point Configuration: {}".format( self.access_point.ap_settings)) - - def setup_dut(self, testcase_params): - """Sets up the DUT in the configuration required by the test. - - Args: - testcase_params: dict containing AP and other test params - """ - # Check battery level before test - if not wputils.health_check(self.dut, 10): - asserts.skip('Battery level too low. Skipping test.') - # Turn screen off to preserve battery - self.dut.go_to_sleep() - band = self.access_point.band_lookup_by_channel( - testcase_params['channel']) - current_network = self.dut.droid.wifiGetConnectionInfo() - try: - connected = wutils.validate_connection(self.dut) is not None - except: - connected = False - if connected and current_network['SSID'] == self.main_network[band][ - 'SSID']: - self.log.info('Already connected to desired network') - else: - wutils.wifi_toggle_state(self.dut, True) - wutils.reset_wifi(self.dut) - self.dut.droid.wifiSetCountryCode( - self.testclass_params['country_code']) - self.main_network[band]['channel'] = testcase_params['channel'] - wutils.wifi_connect( - self.dut, - self.main_network[band], - num_of_tries=5, - check_connectivity=False) - self.dut_ip = self.dut.droid.connectivityGetIPv4Addresses('wlan0')[0] - - def setup_throughput_stability_test(self, testcase_params): - """Function that gets devices ready for the test. - - Args: - testcase_params: dict containing test-specific parameters - """ - # Configure AP - self.setup_ap(testcase_params) - # Set attenuator to 0 dB - self.log.info('Setting attenuation to {} dB'.format( - testcase_params['atten_level'])) + # Set attenuator to test level + self.log.info("Setting attenuation to {} dB".format(self.atten_level)) for attenuator in self.attenuators: - attenuator.set_atten(testcase_params['atten_level']) - # Reset, configure, and connect DUT - self.setup_dut(testcase_params) + attenuator.set_atten(self.atten_level) + # Connect DUT to Network + wutils.wifi_toggle_state(self.dut, True) + wutils.reset_wifi(self.dut) + self.main_network[band]["channel"] = channel + self.dut.droid.wifiSetCountryCode(self.test_params["country_code"]) + wutils.wifi_connect( + self.dut, + self.main_network[band], + num_of_tries=5, + check_connectivity=False) + time.sleep(MED_SLEEP) + # Get iperf_server address if isinstance(self.iperf_server, ipf.IPerfServerOverAdb): - testcase_params['iperf_server_address'] = self.dut_ip + iperf_server_address = self.dut.droid.connectivityGetIPv4Addresses( + 'wlan0')[0] else: - testcase_params[ - 'iperf_server_address'] = wputils.get_server_address( - self.remote_server, self.dut_ip, '255.255.255.0') - - def run_throughput_stability_test(self, testcase_params): - """Main function to test throughput stability. - - The function sets up the AP in the correct channel and mode - configuration and runs an iperf test to measure throughput. - - Args: - testcase_params: dict containing test specific parameters - Returns: - test_result: dict containing test result and meta data - """ + iperf_server_address = self.testbed_params["iperf_server_address"] # Run test and log result # Start iperf session - self.log.info('Starting iperf test.') - self.iperf_server.start(tag=str(testcase_params['atten_level'])) + self.log.info("Starting iperf test.") + self.iperf_server.start(tag=str(self.atten_level)) client_output_path = self.iperf_client.start( - testcase_params['iperf_server_address'], - testcase_params['iperf_args'], str(testcase_params['atten_level']), - self.testclass_params['iperf_duration'] + TEST_TIMEOUT) + iperf_server_address, self.iperf_args, str(self.atten_level), + self.test_params["iperf_duration"] + TEST_TIMEOUT) server_output_path = self.iperf_server.stop() # Set attenuator to 0 dB for attenuator in self.attenuators: attenuator.set_atten(0) # Parse and log result - if testcase_params['use_client_output']: + if self.use_client_output: iperf_file = client_output_path else: iperf_file = server_output_path try: iperf_result = ipf.IPerfResult(iperf_file) except: - asserts.fail('Cannot get iperf result.') - test_result = collections.OrderedDict() - test_result['testcase_params'] = testcase_params.copy() - test_result['ap_settings'] = self.access_point.ap_settings.copy() - test_result['attenuation'] = testcase_params['atten_level'] - test_result['iperf_result'] = iperf_result - self.testclass_results.append(test_result) + asserts.fail("Cannot get iperf result.") + test_result["ap_settings"] = self.access_point.ap_settings.copy() + test_result["attenuation"] = self.atten_level + test_result["iperf_result"] = iperf_result return test_result - def get_target_atten_tput(self, testcase_params): + def get_target_atten_tput(self): """Function gets attenuation used for test The function fetches the attenuation at which the test should be performed, and the expected target average throughput. - Args: - testcase_params: dict containing test specific parameters Returns: test_target: dict containing target test attenuation and expected throughput """ # Fetch the golden RvR results - rvr_golden_file_name = 'test_rvr_' + '_'.join( - self.current_test_name.split('_')[4:]) - try: - golden_path = next(file_name - for file_name in self.golden_files_list - if rvr_golden_file_name in file_name) - except: - asserts.fail('Test failed. Golden data not found.') - - with open(golden_path, 'r') as golden_file: + test_name = self.current_test_name + rvr_golden_file_name = "test_rvr_" + "_".join(test_name.split("_")[4:]) + golden_path = [ + file_name for file_name in self.golden_files_list + if rvr_golden_file_name in file_name + ] + with open(golden_path[0], 'r') as golden_file: golden_results = json.load(golden_file) test_target = {} - if testcase_params['signal_level'] == 'low': - # Get last test point where throughput is above + rssi_high_low = test_name.split("_")[3] + if rssi_high_low == "low": + # Get last test point where throughput is above self.test_params["low_rssi_backoff_from_range"] throughput_below_target = [ - x < self.testclass_params['low_throughput_target'] - for x in golden_results['throughput_receive'] + x < self.test_params["low_rssi_backoff_from_range"] + for x in golden_results["throughput_receive"] ] atten_idx = throughput_below_target.index(1) - 1 - test_target['target_attenuation'] = golden_results['attenuation'][ + test_target["target_attenuation"] = golden_results["attenuation"][ atten_idx] - test_target['target_throughput'] = golden_results[ - 'throughput_receive'][atten_idx] - if testcase_params['signal_level'] == 'high': + test_target["target_throughput"] = golden_results[ + "throughput_receive"][atten_idx] + if rssi_high_low == "high": # Test at lowest attenuation point - test_target['target_attenuation'] = golden_results['attenuation'][ + test_target["target_attenuation"] = golden_results["attenuation"][ 0] - test_target['target_throughput'] = golden_results[ - 'throughput_receive'][0] + test_target["target_throughput"] = golden_results[ + "throughput_receive"][0] return test_target - def compile_test_params(self, testcase_params): - """Function that completes setting the test case parameters.""" - testcase_params['test_target'] = self.get_target_atten_tput( - testcase_params) - testcase_params['atten_level'] = testcase_params['test_target'][ - 'target_attenuation'] - self.atten_level = testcase_params['atten_level'] - - if (testcase_params['traffic_direction'] == 'DL' - and not isinstance(self.iperf_server, ipf.IPerfServerOverAdb) - ) or (testcase_params['traffic_direction'] == 'UL' - and isinstance(self.iperf_server, ipf.IPerfServerOverAdb)): - testcase_params['iperf_args'] = wputils.get_iperf_arg_string( - duration=self.testclass_params['iperf_duration'], - reverse_direction=1, - traffic_type=testcase_params['traffic_type']) - testcase_params['use_client_output'] = True - else: - testcase_params['iperf_args'] = wputils.get_iperf_arg_string( - duration=self.testclass_params['iperf_duration'], - reverse_direction=0, - traffic_type=testcase_params['traffic_type']) - testcase_params['use_client_output'] = False - - return testcase_params - - def _test_throughput_stability(self, testcase_params): + def _test_throughput_stability(self): """ Function that gets called for each test case The function gets called in each test case. The function customizes the test based on the test name of the test that called it - - Args: - testcase_params: dict containing test specific parameters """ - testcase_params = self.compile_test_params(testcase_params) - self.setup_throughput_stability_test(testcase_params) - test_result = self.run_throughput_stability_test(testcase_params) + test_params = self.current_test_name.split("_") + channel = int(test_params[6][2:]) + mode = test_params[7] + test_target = self.get_target_atten_tput() + self.atten_level = test_target["target_attenuation"] + self.iperf_args = '-i 1 -t {} -J'.format( + self.test_params["iperf_duration"]) + if test_params[4] == "UDP": + self.iperf_args = self.iperf_args + " -u -b {}".format( + self.test_params["UDP_rates"][mode]) + if (test_params[5] == "DL" + and not isinstance(self.iperf_server, ipf.IPerfServerOverAdb) + ) or (test_params[5] == "UL" + and isinstance(self.iperf_server, ipf.IPerfServerOverAdb)): + self.iperf_args = self.iperf_args + ' -R' + self.use_client_output = True + else: + self.use_client_output = False + test_result = self.throughput_stability_test_func(channel, mode) test_result_postprocessed = self.post_process_results(test_result) self.pass_fail_check(test_result_postprocessed) - -# Over-the air version of ping tests -class WifiOtaThroughputStabilityTest(WifiThroughputStabilityTest): - """Class to test over-the-air ping - - This class tests WiFi ping performance in an OTA chamber. It enables - setting turntable orientation and other chamber parameters to study - performance in varying channel conditions - """ - - def __init__(self, controllers): - base_test.BaseTestClass.__init__(self, controllers) - # Define metrics to be uploaded to BlackBox - self.testcase_metric_logger = ( - BlackboxMappedMetricLogger.for_test_case()) - self.testclass_metric_logger = ( - BlackboxMappedMetricLogger.for_test_class()) - self.publish_testcase_metrics = False - - def setup_class(self): - WifiThroughputStabilityTest.setup_class(self) - self.ota_chamber = ota_chamber.create( - self.user_params['OTAChamber'])[0] - - def teardown_class(self): - self.ota_chamber.reset_chamber() - self.process_testclass_results() - - def extract_test_id(self, testcase_params, id_fields): - test_id = collections.OrderedDict( - (param, testcase_params[param]) for param in id_fields) - return test_id - - def process_testclass_results(self): - """Saves all test results to enable comparison.""" - testclass_data = collections.OrderedDict() - for test in self.testclass_results: - current_params = test['testcase_params'] - channel_data = testclass_data.setdefault(current_params['channel'], - collections.OrderedDict()) - test_id = tuple( - self.extract_test_id(current_params, [ - 'mode', 'traffic_type', 'traffic_direction', 'signal_level' - ]).items()) - test_data = channel_data.setdefault( - test_id, collections.OrderedDict(position=[], throughput=[])) - current_throughput = (numpy.mean( - test['iperf_result'].instantaneous_rates[ - self.testclass_params['iperf_ignored_interval']:-1]) - ) * 8 * (1.024**2) - test_data['position'].append(current_params['position']) - test_data['throughput'].append(current_throughput) - - chamber_mode = self.testclass_results[0]['testcase_params'][ - 'chamber_mode'] - if chamber_mode == 'orientation': - x_label = 'Angle (deg)' - elif chamber_mode == 'stepped stirrers': - x_label = 'Position Index' - - # Publish test class metrics - for channel, channel_data in testclass_data.items(): - for test_id, test_data in channel_data.items(): - test_id_dict = dict(test_id) - metric_tag = 'ota_summary_{}_{}_{}_ch{}_{}'.format( - test_id_dict['signal_level'], test_id_dict['traffic_type'], - test_id_dict['traffic_direction'], channel, - test_id_dict['mode']) - metric_name = metric_tag + '.avg_throughput' - metric_value = numpy.mean(test_data['throughput']) - self.testclass_metric_logger.add_metric( - metric_name, metric_value) - metric_name = metric_tag + '.min_throughput' - metric_value = min(test_data['throughput']) - self.testclass_metric_logger.add_metric( - metric_name, metric_value) - - # Plot test class results - plots = [] - for channel, channel_data in testclass_data.items(): - current_plot = wputils.BokehFigure( - title='Channel {} - Rate vs. Position'.format(channel), - x_label=x_label, - primary_y_label='Rate (Mbps)', - ) - for test_id, test_data in channel_data.items(): - test_id_dict = dict(test_id) - legend = '{}, {} {}, {} RSSI'.format( - test_id_dict['mode'], test_id_dict['traffic_type'], - test_id_dict['traffic_direction'], - test_id_dict['signal_level']) - current_plot.add_line(test_data['position'], - test_data['throughput'], legend) - current_plot.generate_figure() - plots.append(current_plot) - current_context = context.get_current_context().get_full_output_path() - plot_file_path = os.path.join(current_context, 'results.html') - wputils.BokehFigure.save_figures(plots, plot_file_path) - - def setup_throughput_stability_test(self, testcase_params): - WifiThroughputStabilityTest.setup_throughput_stability_test( - self, testcase_params) - # Setup turntable - if testcase_params['chamber_mode'] == 'orientation': - self.ota_chamber.set_orientation(testcase_params['position']) - elif testcase_params['chamber_mode'] == 'stepped stirrers': - self.ota_chamber.step_stirrers(testcase_params['total_positions']) - - def get_target_atten_tput(self, testcase_params): - test_target = {} - if testcase_params['signal_level'] == 'high': - test_target['target_attenuation'] = self.testclass_params[ - 'default_atten_levels'][0] - elif testcase_params['signal_level'] == 'low': - test_target['target_attenuation'] = self.testclass_params[ - 'default_atten_levels'][1] - test_target['target_throughput'] = 0 - return test_target - - def generate_test_cases(self, channels, modes, traffic_types, - traffic_directions, signal_levels, chamber_mode, - positions): - allowed_configs = { - 'VHT20': [ - 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 36, 40, 44, 48, 149, 153, - 157, 161 - ], - 'VHT40': [36, 44, 149, 157], - 'VHT80': [36, 149] - } - test_cases = [] - for channel, mode, position, traffic_type, signal_level, traffic_direction in itertools.product( - channels, modes, positions, traffic_types, signal_levels, - traffic_directions): - if channel not in allowed_configs[mode]: - continue - testcase_params = collections.OrderedDict( - channel=channel, - mode=mode, - traffic_type=traffic_type, - traffic_direction=traffic_direction, - signal_level=signal_level, - chamber_mode=chamber_mode, - total_positions=len(positions), - position=position) - testcase_name = ('test_tput_stability' - '_{}_{}_{}_ch{}_{}_pos{}'.format( - signal_level, traffic_type, traffic_direction, - channel, mode, position)) - setattr(self, testcase_name, - partial(self._test_throughput_stability, testcase_params)) - test_cases.append(testcase_name) - return test_cases - - -class WifiOtaThroughputStability_TenDegree_Test( - WifiOtaThroughputStabilityTest): - def __init__(self, controllers): - WifiOtaThroughputStabilityTest.__init__(self, controllers) - self.tests = self.generate_test_cases([6, 36, 149], ['VHT20', 'VHT80'], - ['TCP'], ['DL', 'UL'], - ['high', 'low'], 'orientation', - list(range(0, 360, 10))) - - -class WifiOtaThroughputStability_45Degree_Test(WifiOtaThroughputStabilityTest): - def __init__(self, controllers): - WifiOtaThroughputStabilityTest.__init__(self, controllers) - self.tests = self.generate_test_cases([6, 36, 149], ['VHT20', 'VHT80'], - ['TCP'], ['DL', 'UL'], - ['high', 'low'], 'orientation', - list(range(0, 360, 45))) - - -class WifiOtaThroughputStability_SteppedStirrers_Test( - WifiOtaThroughputStabilityTest): - def __init__(self, controllers): - WifiOtaThroughputStabilityTest.__init__(self, controllers) - self.tests = self.generate_test_cases( - [6, 36, 149], ['VHT20', 'VHT80'], ['TCP'], ['DL', 'UL'], - ['high', 'low'], 'stepped stirrers', list(range(100))) + def generate_test_cases(self, modes, traffic_types, signal_levels): + """Function that auto-generates test cases for a test class.""" + testcase_wrapper = self._test_throughput_stability + for mode in modes: + for traffic_type in traffic_types: + for signal_level in signal_levels: + testcase_name = "test_tput_stability_{}_{}_{}_ch{}_{}".format( + signal_level, traffic_type[0], traffic_type[1], + mode[0], mode[1]) + setattr(self, testcase_name, testcase_wrapper) + self.tests.append(testcase_name) diff --git a/acts/tests/google/wifi/WifiWakeTest.py b/acts/tests/google/wifi/WifiWakeTest.py index 13c6b2dc0b..9d9f6159c7 100644 --- a/acts/tests/google/wifi/WifiWakeTest.py +++ b/acts/tests/google/wifi/WifiWakeTest.py @@ -39,9 +39,10 @@ class WifiWakeTest(WifiBaseTest): * Two APs that can be turned on and off """ - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + super().__init__(controllers) + def setup_class(self): self.dut = self.android_devices[0] wutils.wifi_test_device_init(self.dut) # turn location back on diff --git a/acts/tests/google/wifi/WifiWpa3OweTest.py b/acts/tests/google/wifi/WifiWpa3OweTest.py index fbe939c216..4ef3479f90 100644 --- a/acts/tests/google/wifi/WifiWpa3OweTest.py +++ b/acts/tests/google/wifi/WifiWpa3OweTest.py @@ -39,9 +39,10 @@ class WifiWpa3OweTest(WifiBaseTest): * Several Wi-Fi networks visible to the device. """ - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + WifiBaseTest.__init__(self, controllers) + def setup_class(self): self.dut = self.android_devices[0] self.dut_client = self.android_devices[1] wutils.wifi_test_device_init(self.dut) diff --git a/acts/tests/google/wifi/aware/functional/AttachTest.py b/acts/tests/google/wifi/aware/functional/AttachTest.py index 0df82a1c77..167c29f809 100644 --- a/acts/tests/google/wifi/aware/functional/AttachTest.py +++ b/acts/tests/google/wifi/aware/functional/AttachTest.py @@ -26,6 +26,9 @@ from acts.test_utils.wifi.aware.AwareBaseTest import AwareBaseTest class AttachTest(AwareBaseTest): + def __init__(self, controllers): + AwareBaseTest.__init__(self, controllers) + @test_tracker_info(uuid="cdafd1e0-bcf5-4fe8-ae32-f55483db9925") def test_attach(self): """Functional test case / Attach test cases / attach diff --git a/acts/tests/google/wifi/aware/functional/CapabilitiesTest.py b/acts/tests/google/wifi/aware/functional/CapabilitiesTest.py index 3bed77fdc6..ea5b8672fb 100644 --- a/acts/tests/google/wifi/aware/functional/CapabilitiesTest.py +++ b/acts/tests/google/wifi/aware/functional/CapabilitiesTest.py @@ -29,6 +29,9 @@ class CapabilitiesTest(AwareBaseTest): SERVICE_NAME = "GoogleTestXYZ" + def __init__(self, controllers): + AwareBaseTest.__init__(self, controllers) + def create_config(self, dtype, service_name): """Create a discovery configuration based on input parameters. diff --git a/acts/tests/google/wifi/aware/functional/DataPathTest.py b/acts/tests/google/wifi/aware/functional/DataPathTest.py index 3016bb9627..3f927c18ad 100644 --- a/acts/tests/google/wifi/aware/functional/DataPathTest.py +++ b/acts/tests/google/wifi/aware/functional/DataPathTest.py @@ -51,6 +51,9 @@ class DataPathTest(AwareBaseTest): # take some time WAIT_FOR_CLUSTER = 5 + def __init__(self, controllers): + AwareBaseTest.__init__(self, controllers) + def create_config(self, dtype): """Create a base configuration based on input parameters. diff --git a/acts/tests/google/wifi/aware/functional/DiscoveryTest.py b/acts/tests/google/wifi/aware/functional/DiscoveryTest.py index 5f01c80eb7..515513dbc5 100644 --- a/acts/tests/google/wifi/aware/functional/DiscoveryTest.py +++ b/acts/tests/google/wifi/aware/functional/DiscoveryTest.py @@ -40,6 +40,9 @@ class DiscoveryTest(AwareBaseTest): # Note: reliability of message transmission is tested elsewhere msg_retx_count = 5 # hard-coded max value, internal API + def __init__(self, controllers): + AwareBaseTest.__init__(self, controllers) + def create_base_config(self, caps, is_publish, ptype, stype, payload_size, ttl, term_ind_on, null_match): """Create a base configuration based on input parameters. diff --git a/acts/tests/google/wifi/aware/functional/MacRandomNoLeakageTest.py b/acts/tests/google/wifi/aware/functional/MacRandomNoLeakageTest.py index 074ca48826..b749e7b353 100644 --- a/acts/tests/google/wifi/aware/functional/MacRandomNoLeakageTest.py +++ b/acts/tests/google/wifi/aware/functional/MacRandomNoLeakageTest.py @@ -44,9 +44,11 @@ class MacRandomNoLeakageTest(AwareBaseTest, WifiBaseTest): PASSPHRASE = "This is some random passphrase - very very secure!!" PMK = "ODU0YjE3YzdmNDJiNWI4NTQ2NDJjNDI3M2VkZTQyZGU=" - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + WifiBaseTest.__init__(self, controllers) + AwareBaseTest.__init__(self, controllers) + def setup_class(self): asserts.assert_true(hasattr(self, 'packet_capture'), "Needs packet_capture attribute to support sniffing.") self.configure_packet_capture(channel_5g=self.AWARE_DEFAULT_CHANNEL_5_BAND, diff --git a/acts/tests/google/wifi/aware/functional/MacRandomTest.py b/acts/tests/google/wifi/aware/functional/MacRandomTest.py index 6c8d5b1c8a..0278d6dbf5 100644 --- a/acts/tests/google/wifi/aware/functional/MacRandomTest.py +++ b/acts/tests/google/wifi/aware/functional/MacRandomTest.py @@ -35,6 +35,9 @@ class MacRandomTest(AwareBaseTest): # take some time WAIT_FOR_CLUSTER = 5 + def __init__(self, controllers): + AwareBaseTest.__init__(self, controllers) + def request_network(self, dut, ns): """Request a Wi-Fi Aware network. diff --git a/acts/tests/google/wifi/aware/functional/MatchFilterTest.py b/acts/tests/google/wifi/aware/functional/MatchFilterTest.py index e008e12ae0..bf8858236d 100644 --- a/acts/tests/google/wifi/aware/functional/MatchFilterTest.py +++ b/acts/tests/google/wifi/aware/functional/MatchFilterTest.py @@ -57,6 +57,9 @@ class MatchFilterTest(AwareBaseTest): [MF_N2N4, MF_12345, True, False], [MF_12345, MF_1N3N, False, True]] + def __init__(self, controllers): + AwareBaseTest.__init__(self, controllers) + def run_discovery(self, p_dut, s_dut, p_mf, s_mf, do_unsolicited_passive, expect_discovery): """Creates a discovery session (publish and subscribe) with the specified diff --git a/acts/tests/google/wifi/aware/functional/MessageTest.py b/acts/tests/google/wifi/aware/functional/MessageTest.py index 9bfb932b31..7fb3e8eeef 100644 --- a/acts/tests/google/wifi/aware/functional/MessageTest.py +++ b/acts/tests/google/wifi/aware/functional/MessageTest.py @@ -35,6 +35,9 @@ class MessageTest(AwareBaseTest): NUM_MSGS_NO_QUEUE = 10 NUM_MSGS_QUEUE_DEPTH_MULT = 2 # number of messages = mult * queue depth + def __init__(self, controllers): + AwareBaseTest.__init__(self, controllers) + def create_msg(self, caps, payload_size, id): """Creates a message string of the specified size containing the input id. diff --git a/acts/tests/google/wifi/aware/functional/NonConcurrencyTest.py b/acts/tests/google/wifi/aware/functional/NonConcurrencyTest.py index f0286f25a3..369d5d0633 100644 --- a/acts/tests/google/wifi/aware/functional/NonConcurrencyTest.py +++ b/acts/tests/google/wifi/aware/functional/NonConcurrencyTest.py @@ -36,6 +36,9 @@ class NonConcurrencyTest(AwareBaseTest): SERVICE_NAME = "GoogleTestXYZ" TETHER_SSID = "GoogleTestSoftApXYZ" + def __init__(self, controllers): + AwareBaseTest.__init__(self, controllers) + def teardown_test(self): AwareBaseTest.teardown_test(self) for ad in self.android_devices: diff --git a/acts/tests/google/wifi/aware/functional/ProtocolsTest.py b/acts/tests/google/wifi/aware/functional/ProtocolsTest.py index 15e84ff1f6..7a854a1c81 100644 --- a/acts/tests/google/wifi/aware/functional/ProtocolsTest.py +++ b/acts/tests/google/wifi/aware/functional/ProtocolsTest.py @@ -28,6 +28,9 @@ class ProtocolsTest(AwareBaseTest): SERVICE_NAME = "GoogleTestServiceXY" + def __init__(self, controllers): + AwareBaseTest.__init__(self, controllers) + def run_ping6(self, dut, peer_ipv6): """Run a ping6 over the specified device/link diff --git a/acts/tests/google/wifi/aware/ota/ServiceIdsTest.py b/acts/tests/google/wifi/aware/ota/ServiceIdsTest.py index e29cd713f4..969130501e 100644 --- a/acts/tests/google/wifi/aware/ota/ServiceIdsTest.py +++ b/acts/tests/google/wifi/aware/ota/ServiceIdsTest.py @@ -29,6 +29,9 @@ class ServiceIdsTest(AwareBaseTest): Note: this test is an OTA (over-the-air) and requires a Sniffer. """ + def __init__(self, controllers): + AwareBaseTest.__init__(self, controllers) + def start_discovery_session(self, dut, session_id, is_publish, dtype, service_name): """Start a discovery session diff --git a/acts/tests/google/wifi/aware/performance/LatencyTest.py b/acts/tests/google/wifi/aware/performance/LatencyTest.py index 8ebff89ab6..db5d416c41 100644 --- a/acts/tests/google/wifi/aware/performance/LatencyTest.py +++ b/acts/tests/google/wifi/aware/performance/LatencyTest.py @@ -33,6 +33,9 @@ class LatencyTest(AwareBaseTest): # take some time WAIT_FOR_CLUSTER = 5 + def __init__(self, controllers): + AwareBaseTest.__init__(self, controllers) + def start_discovery_session(self, dut, session_id, is_publish, dtype): """Start a discovery session diff --git a/acts/tests/google/wifi/aware/performance/ThroughputTest.py b/acts/tests/google/wifi/aware/performance/ThroughputTest.py index a90734d7d7..673c34c72f 100644 --- a/acts/tests/google/wifi/aware/performance/ThroughputTest.py +++ b/acts/tests/google/wifi/aware/performance/ThroughputTest.py @@ -35,6 +35,9 @@ class ThroughputTest(AwareBaseTest): PASSPHRASE = "This is some random passphrase - very very secure!!" PASSPHRASE2 = "This is some random passphrase - very very secure - but diff!!" + def __init__(self, controllers): + super(ThroughputTest, self).__init__(controllers) + def request_network(self, dut, ns): """Request a Wi-Fi Aware network. diff --git a/acts/tests/google/wifi/aware/stress/DataPathStressTest.py b/acts/tests/google/wifi/aware/stress/DataPathStressTest.py index d2e95df561..b20db61dda 100644 --- a/acts/tests/google/wifi/aware/stress/DataPathStressTest.py +++ b/acts/tests/google/wifi/aware/stress/DataPathStressTest.py @@ -36,6 +36,9 @@ class DataPathStressTest(AwareBaseTest): # Maximum percentage of NDP setup failures over all iterations MAX_FAILURE_PERCENTAGE = 1 + def __init__(self, controllers): + AwareBaseTest.__init__(self, controllers) + ################################################################ def run_oob_ndp_stress(self, diff --git a/acts/tests/google/wifi/aware/stress/DiscoveryStressTest.py b/acts/tests/google/wifi/aware/stress/DiscoveryStressTest.py index 55545ea654..f9bb81e55c 100644 --- a/acts/tests/google/wifi/aware/stress/DiscoveryStressTest.py +++ b/acts/tests/google/wifi/aware/stress/DiscoveryStressTest.py @@ -32,6 +32,9 @@ class DiscoveryStressTest(AwareBaseTest): # Number of iterations on create/destroy Discovery sessions DISCOVERY_ITERATIONS = 40 + def __init__(self, controllers): + AwareBaseTest.__init__(self, controllers) + #################################################################### @test_tracker_info(uuid="783791e5-7726-44e0-ac5b-98c1dbf493cb") diff --git a/acts/tests/google/wifi/aware/stress/InfraAssociationStressTest.py b/acts/tests/google/wifi/aware/stress/InfraAssociationStressTest.py index 58e2c84e07..fc320c0c93 100644 --- a/acts/tests/google/wifi/aware/stress/InfraAssociationStressTest.py +++ b/acts/tests/google/wifi/aware/stress/InfraAssociationStressTest.py @@ -25,6 +25,9 @@ from acts.test_utils.wifi.aware.AwareBaseTest import AwareBaseTest class InfraAssociationStressTest(AwareBaseTest): + def __init__(self, controllers): + AwareBaseTest.__init__(self, controllers) + # Length of test in seconds TEST_DURATION_SECONDS = 300 diff --git a/acts/tests/google/wifi/aware/stress/MessagesStressTest.py b/acts/tests/google/wifi/aware/stress/MessagesStressTest.py index fbe95d4df5..e01a543b76 100644 --- a/acts/tests/google/wifi/aware/stress/MessagesStressTest.py +++ b/acts/tests/google/wifi/aware/stress/MessagesStressTest.py @@ -45,6 +45,9 @@ class MessagesStressTest(AwareBaseTest): SERVICE_NAME = "GoogleTestServiceXY" + def __init__(self, controllers): + AwareBaseTest.__init__(self, controllers) + def init_info(self, msg, id, messages_by_msg, messages_by_id): """Initialize the message data structures. diff --git a/acts/tests/google/wifi/rtt/functional/AwareDiscoveryWithRangingTest.py b/acts/tests/google/wifi/rtt/functional/AwareDiscoveryWithRangingTest.py index e19993db13..9421ef39c5 100644 --- a/acts/tests/google/wifi/rtt/functional/AwareDiscoveryWithRangingTest.py +++ b/acts/tests/google/wifi/rtt/functional/AwareDiscoveryWithRangingTest.py @@ -43,6 +43,10 @@ class AwareDiscoveryWithRangingTest(AwareBaseTest, RttBaseTest): # for both Initiators and Responders. Only the first mode works. RANGING_INITIATOR_RESPONDER_CONCURRENCY_LIMITATION = True + def __init__(self, controllers): + AwareBaseTest.__init__(self, controllers) + RttBaseTest.__init__(self, controllers) + def setup_test(self): """Manual setup here due to multiple inheritance: explicitly execute the setup method from both parents.""" diff --git a/acts/tests/google/wifi/rtt/functional/RangeApMiscTest.py b/acts/tests/google/wifi/rtt/functional/RangeApMiscTest.py index c68ca92f9f..b265f00db4 100644 --- a/acts/tests/google/wifi/rtt/functional/RangeApMiscTest.py +++ b/acts/tests/google/wifi/rtt/functional/RangeApMiscTest.py @@ -32,6 +32,9 @@ class RangeApMiscTest(RttBaseTest): # Time gap (in seconds) between iterations TIME_BETWEEN_ITERATIONS = 0 + def __init__(self, controllers): + RttBaseTest.__init__(self, controllers) + ############################################################################# def test_rtt_mixed_80211mc_supporting_aps_wo_privilege(self): diff --git a/acts/tests/google/wifi/rtt/functional/RangeApNonSupporting11McTest.py b/acts/tests/google/wifi/rtt/functional/RangeApNonSupporting11McTest.py index 1ffbb0278d..0e9efc6a4b 100644 --- a/acts/tests/google/wifi/rtt/functional/RangeApNonSupporting11McTest.py +++ b/acts/tests/google/wifi/rtt/functional/RangeApNonSupporting11McTest.py @@ -33,8 +33,9 @@ class RangeApNonSupporting11McTest(WifiBaseTest, RttBaseTest): # Time gap (in seconds) between iterations TIME_BETWEEN_ITERATIONS = 0 - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + WifiBaseTest.__init__(self, controllers) + RttBaseTest.__init__(self, controllers) if "AccessPoint" in self.user_params: self.legacy_configure_ap_and_start() @@ -60,7 +61,7 @@ class RangeApNonSupporting11McTest(WifiBaseTest, RttBaseTest): stats = rutils.analyze_results(events, self.rtt_reference_distance_mm, self.rtt_reference_distance_margin_mm, self.rtt_min_expected_rssi_dbm, - [], []) + self.lci_reference, self.lcr_reference) dut.log.debug("Stats=%s", stats) for bssid, stat in stats.items(): diff --git a/acts/tests/google/wifi/rtt/functional/RangeApSupporting11McTest.py b/acts/tests/google/wifi/rtt/functional/RangeApSupporting11McTest.py index c218898fba..eac0b0f799 100644 --- a/acts/tests/google/wifi/rtt/functional/RangeApSupporting11McTest.py +++ b/acts/tests/google/wifi/rtt/functional/RangeApSupporting11McTest.py @@ -44,6 +44,9 @@ class RangeApSupporting11McTest(RttBaseTest): # Time to wait before configuration changes WAIT_FOR_CONFIG_CHANGES_SEC = 1 + def __init__(self, controllers): + RttBaseTest.__init__(self, controllers) + def run_test_rtt_80211mc_supporting_aps(self, dut, accuracy_evaluation=False): """Scan for APs and perform RTT only to those which support 802.11mc Args: diff --git a/acts/tests/google/wifi/rtt/functional/RangeAwareTest.py b/acts/tests/google/wifi/rtt/functional/RangeAwareTest.py index 2e53c6db6a..4eff048dff 100644 --- a/acts/tests/google/wifi/rtt/functional/RangeAwareTest.py +++ b/acts/tests/google/wifi/rtt/functional/RangeAwareTest.py @@ -40,6 +40,10 @@ class RangeAwareTest(AwareBaseTest, RttBaseTest): # Time gap (in seconds) when switching between Initiator and Responder TIME_BETWEEN_ROLES = 4 + def __init__(self, controllers): + AwareBaseTest.__init__(self, controllers) + RttBaseTest.__init__(self, controllers) + def setup_test(self): """Manual setup here due to multiple inheritance: explicitly execute the setup method from both parents. diff --git a/acts/tests/google/wifi/rtt/functional/RangeSoftApTest.py b/acts/tests/google/wifi/rtt/functional/RangeSoftApTest.py index c23b5b0ed5..0478be83c3 100644 --- a/acts/tests/google/wifi/rtt/functional/RangeSoftApTest.py +++ b/acts/tests/google/wifi/rtt/functional/RangeSoftApTest.py @@ -35,6 +35,9 @@ class RangeSoftApTest(RttBaseTest): # Number of RTT iterations NUM_ITER = 10 + def __init__(self, controllers): + RttBaseTest.__init__(self, controllers) + ######################################################################### @test_tracker_info(uuid="578f0725-31e3-4e60-ad62-0212d93cf5b8") diff --git a/acts/tests/google/wifi/rtt/functional/RttDisableTest.py b/acts/tests/google/wifi/rtt/functional/RttDisableTest.py index 635837c950..be6f36ff60 100644 --- a/acts/tests/google/wifi/rtt/functional/RttDisableTest.py +++ b/acts/tests/google/wifi/rtt/functional/RttDisableTest.py @@ -30,8 +30,9 @@ class RttDisableTest(WifiBaseTest, RttBaseTest): MODE_ENABLE_DOZE = 1 MODE_DISABLE_LOCATIONING = 2 - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + WifiBaseTest.__init__(self, controllers) + RttBaseTest.__init__(self, controllers) if "AccessPoint" in self.user_params: self.legacy_configure_ap_and_start() diff --git a/acts/tests/google/wifi/rtt/functional/RttRequestManagementTest.py b/acts/tests/google/wifi/rtt/functional/RttRequestManagementTest.py index c91521df0d..48fdf5f578 100644 --- a/acts/tests/google/wifi/rtt/functional/RttRequestManagementTest.py +++ b/acts/tests/google/wifi/rtt/functional/RttRequestManagementTest.py @@ -29,6 +29,9 @@ class RttRequestManagementTest(RttBaseTest): SPAMMING_LIMIT = 20 + def __init__(self, controllers): + RttBaseTest.__init__(self, controllers) + ############################################################################# @test_tracker_info(uuid="29ff4a02-2952-47df-bf56-64f30c963093") diff --git a/acts/tests/google/wifi/rtt/stress/StressRangeApTest.py b/acts/tests/google/wifi/rtt/stress/StressRangeApTest.py index d0e9fe9bb6..9f649820b3 100644 --- a/acts/tests/google/wifi/rtt/stress/StressRangeApTest.py +++ b/acts/tests/google/wifi/rtt/stress/StressRangeApTest.py @@ -23,6 +23,9 @@ from acts.test_utils.wifi.rtt.RttBaseTest import RttBaseTest class StressRangeApTest(RttBaseTest): """Test class for stress testing of RTT ranging to Access Points""" + def __init__(self, controllers): + BaseTestClass.__init__(self, controllers) + ############################################################################# def test_rtt_supporting_ap_only(self): diff --git a/acts/tests/google/wifi/rtt/stress/StressRangeAwareTest.py b/acts/tests/google/wifi/rtt/stress/StressRangeAwareTest.py index ccf8b9d0c5..e5a4099527 100644 --- a/acts/tests/google/wifi/rtt/stress/StressRangeAwareTest.py +++ b/acts/tests/google/wifi/rtt/stress/StressRangeAwareTest.py @@ -30,6 +30,10 @@ class StressRangeAwareTest(AwareBaseTest, RttBaseTest): """Test class for stress testing of RTT ranging to Wi-Fi Aware peers.""" SERVICE_NAME = "GoogleTestServiceXY" + def __init__(self, controllers): + AwareBaseTest.__init__(self, controllers) + RttBaseTest.__init__(self, controllers) + def setup_test(self): """Manual setup here due to multiple inheritance: explicitly execute the setup method from both parents.""" diff --git a/acts/tests/meta/ActsUnitTest.py b/acts/tests/meta/ActsUnitTest.py deleted file mode 100755 index f383adea42..0000000000 --- a/acts/tests/meta/ActsUnitTest.py +++ /dev/null @@ -1,118 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -import logging -import os -import subprocess -import sys - -import acts -from acts import base_test -from acts import signals - -# The files under acts/framework to consider as unit tests. -UNITTEST_FILES = [ - 'tests/acts_adb_test.py', - 'tests/acts_android_device_test.py', - 'tests/acts_asserts_test.py', - 'tests/acts_base_class_test.py', - 'tests/config/unittest_bundle.py', - 'tests/acts_context_test.py', - 'tests/acts_error_test.py', - 'tests/acts_host_utils_test.py', - 'tests/acts_import_test_utils_test.py', - 'tests/acts_import_unit_test.py', - 'tests/acts_job_test.py', - 'tests/libs/ota/unittest_bundle.py', - 'tests/acts_logger_test.py', - 'tests/libs/metrics/unittest_bundle.py', - 'tests/acts_records_test.py', - 'tests/acts_relay_controller_test.py', - 'tests/acts_test_runner_test.py', - 'tests/acts_unittest_suite.py', - 'tests/acts_utils_test.py', - 'tests/controllers/android_lib/android_lib_unittest_bundle.py', - 'tests/event/event_unittest_bundle.py', - 'tests/test_utils/instrumentation/unit_test_suite.py', - 'tests/libs/logging/logging_unittest_bundle.py', - 'tests/metrics/unittest_bundle.py', - 'tests/libs/proc/proc_unittest_bundle.py', - 'tests/controllers/sl4a_lib/test_suite.py', - 'tests/test_runner_test.py', - 'tests/libs/version_selector_test.py', -] - -# The number of seconds to wait before considering the unit test to have timed -# out. -UNITTEST_TIMEOUT = 60 - - -class ActsUnitTest(base_test.BaseTestClass): - """A class to run the ACTS unit tests in parallel. - - This is a hack to run the ACTS unit tests through CI. Please use the main - function below if you need to run these tests. - """ - - def test_units(self): - """Runs all the ACTS unit tests in parallel.""" - acts_unittest_path = os.path.dirname(acts.__path__[0]) - test_processes = [] - - fail_test = False - - for unittest_file in UNITTEST_FILES: - file_path = os.path.join(acts_unittest_path, unittest_file) - test_processes.append( - subprocess.Popen( - [sys.executable, file_path], - stdout=subprocess.PIPE, - stderr=subprocess.STDOUT)) - - for test_process in test_processes: - killed = False - try: - stdout, _ = test_process.communicate(timeout=UNITTEST_TIMEOUT) - except subprocess.TimeoutExpired: - killed = True - self.log.error('Unit test %s timed out after %s seconds.' % - (test_process.args, UNITTEST_TIMEOUT)) - test_process.kill() - stdout, _ = test_process.communicate() - if test_process.returncode != 0 or killed: - self.log.error('=' * 79) - self.log.error('Unit Test %s failed with error %s.' % - (test_process.args, test_process.returncode)) - self.log.error('=' * 79) - self.log.error('Failure for `%s`:\n%s' % - (test_process.args, - stdout.decode('utf-8', errors='replace'))) - fail_test = True - else: - self.log.debug('Output for `%s`:\n%s' % - (test_process.args, - stdout.decode('utf-8', errors='replace'))) - - if fail_test: - raise signals.TestFailure( - 'One or more unit tests failed. See the logs.') - - -def main(): - ActsUnitTest({'log': logging.getLogger()}).test_units() - - -if __name__ == '__main__': - main() diff --git a/acts/tests/meta/__init__.py b/acts/tests/meta/__init__.py deleted file mode 100644 index e69de29bb2..0000000000 --- a/acts/tests/meta/__init__.py +++ /dev/null diff --git a/acts/tests/sample/BudsTest.py b/acts/tests/sample/BudsTest.py index 606ad4b1d3..ba1a04cf72 100644 --- a/acts/tests/sample/BudsTest.py +++ b/acts/tests/sample/BudsTest.py @@ -18,8 +18,8 @@ from acts.base_test import BaseTestClass class BudsTest(BaseTestClass): - def setup_class(self): - super().setup_class() + def __init__(self, controllers): + BaseTestClass.__init__(self, controllers) self.dut = self.buds_devices[0] def test_make_toast(self): diff --git a/tools/create_virtualenv.sh b/tools/create_virtualenv.sh deleted file mode 100755 index 3746ba2936..0000000000 --- a/tools/create_virtualenv.sh +++ /dev/null @@ -1,17 +0,0 @@ -#!/bin/bash - -python3 -m pip install virtualenv - -if [ $? -ne 0 ]; then - echo "Virtualenv must be installed to run the upload tests. Run: " >&2 - echo " sudo python3 -m pip install virtualenv" >&2 - exit 1 -fi - -virtualenv='/tmp/acts_preupload_virtualenv' - -python3 -m virtualenv -p python3 $virtualenv -cp -r acts/framework $virtualenv/ -cd $virtualenv/framework -$virtualenv/bin/python3 setup.py develop -cd - diff --git a/tools/read_acts_results.py b/tools/read_acts_results.py deleted file mode 100644 index acd0e4ce80..0000000000 --- a/tools/read_acts_results.py +++ /dev/null @@ -1,169 +0,0 @@ -#!/usr/bin/env python3 -# -# Copyright 2019 - The Android Open Source Project -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import argparse -import json - - -def read_acts_results(acts_summary_filename): - """Opens the ACTS results file and returns the pass/fail/unknown counters. - - Args: - acts_summary_filename: The ACTS results file name. - - Returns: - master_results_data: A list of all the test results, including the - result of each test. - master_results_pass: A list of all pass test results. - master_results_fail: A list of all fail test results. - master_results_unknown: A list of all unknown test results. - pass_counter: A counter of how many tests pass. - fail_counter: A counter of how many tests fail. - unknown_counter: A counter of how many tests are unknown. - """ - with open(acts_summary_filename) as json_file: - data = json.load(json_file) - - master_results_data = [['Test', 'Result']] - master_results_pass = [['Test', 'Result']] - master_results_fail = [['Test', 'Result']] - master_results_unknown = [['Test', 'Result']] - pass_counter = 0 - fail_counter = 0 - unknown_counter = 0 - - for result in data['Results']: - results_data = [] - results_pass = [] - results_fail = [] - results_unknown = [] - if result['Result'] == 'PASS': - results_pass.append(result['Test Name']) - results_pass.append(result['Result']) - master_results_pass.append(results_pass) - pass_counter += 1 - if result['Result'] == 'FAIL': - results_fail.append(result['Test Name']) - results_fail.append(result['Result']) - master_results_fail.append(results_fail) - fail_counter += 1 - if result['Result'] == 'UNKNOWN': - results_unknown.append(result['Test Name']) - results_unknown.append(result['Result']) - master_results_unknown.append(results_unknown) - unknown_counter += 1 - results_data.append(result['Test Name']) - results_data.append(result['Result']) - master_results_data.append(results_data) - return (master_results_data, - master_results_pass, - master_results_fail, - master_results_unknown, - pass_counter, - fail_counter, - unknown_counter) - - -def print_acts_summary(master_results_data, - master_results_pass, - master_results_fail, - master_results_unknown, - pass_counter, - fail_counter, - unknown_counter, - split_results=False, - ): - """Prints the ACTS test results as either all of the tests together, or - split into pass, fail, and unknown. - - Args: - master_results_data: A list of all the test results, including the - result of each test. - master_results_pass: A list of all pass test results. - master_results_fail: A list of all fail test results. - master_results_unknown: A list of all unknown test results. - pass_counter: A counter of how many tests pass. - fail_counter: A counter of how many tests fail. - unknown_counter: A counter of how many tests are unknown. - split_results: Whether to split the results into pass/fail/unknown or - display the results in the order the tests were run. - """ - widths = [max(map(len, col)) for col in zip(*master_results_data)] - if not split_results: - for row in master_results_data: - print(' '.join((val.ljust(width) for val, width in zip(row, - widths)))) - print('') - print('Pass: %s ' - 'Fail: %s ' - 'Unknown: %s ' - 'Total: %s' % (pass_counter, - fail_counter, - unknown_counter, - pass_counter+fail_counter+unknown_counter)) - else: - print('') - for row in master_results_pass: - print(' '.join((val.ljust(width) for val, width in zip(row, - widths)))) - print('Pass: %s' % pass_counter) - - print('') - for row in master_results_fail: - print(' '.join((val.ljust(width) for val, width in zip(row, - widths)))) - print('Fail: %s' % fail_counter) - if unknown_counter is not 0: - print('') - for row in master_results_unknown: - print(' '.join((val.ljust(width) - for val, width in zip(row, widths)))) - print('Unknown: %s' % unknown_counter) - - -def main(): - parser = argparse.ArgumentParser() - parser.add_argument('-f', - '--results_file', - help='ACTS results file') - parser.add_argument('--split_results', - help='separate passing and failing results', - action='store_true') - - args = parser.parse_args() - if not args.results_file: - parser.error('Use --results_file or -f to specify the ACTS ' - 'results file you want to parse.') - - (master_results_data, - master_results_pass, - master_results_fail, - master_results_unknown, - pass_counter, - fail_counter, - unknown_counter) = read_acts_results(args.results_file) - print_acts_summary(master_results_data, - master_results_pass, - master_results_fail, - master_results_unknown, - pass_counter, - fail_counter, - unknown_counter, - split_results=args.split_results) - - -if __name__ == '__main__': - main() |